Probability and Statistics Cookbook

Version 0.2.4 14th May, 2017

C	Contents		14 Exponential Family	16	21.5 Spectral Analysis 28
1	Distribution Overview	3	15 Bayesian Inference	16	22 Math 29
	1.1 Discrete Distributions	3	15.1 Credible Intervals		22.1 Gamma Function 29
	1.2 Continuous Distributions	5	15.2 Function of parameters		22.2 Beta Function
_	D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		15.3 Priors		22.3 Series
2	Probability Theory	8	15.3.1 Conjugate Priors		22.4 Combinatorics
Q	Random Variables	8	15.4 Bayesian Testing	18	
0	3.1 Transformations	9	16 Sampling Methods	18	
	5.1 Transformations	9	16.1 Inverse Transform Sampling		
4	Expectation	9	16.2 The Bootstrap		
	1		16.2.1 Bootstrap Confidence Intervals .		
5	Variance	9	16.3 Rejection Sampling		
			16.4 Importance Sampling		
6	Inequalities	10			
7	Distribution Deletionshins	10	17 Decision Theory	19	
1	Distribution Relationships	10	17.1 Risk		
8	Probability and Moment Generating		17.2 Admissibility		
Ü	Functions	11	17.3 Bayes Rule		
			17.4 Minimax Rules	20	
9	Multivariate Distributions	11	18 Linear Regression	20	
	9.1 Standard Bivariate Normal	11	18.1 Simple Linear Regression		
	9.2 Bivariate Normal		18.2 Prediction		
	9.3 Multivariate Normal	11	18.3 Multiple Regression		
			18.4 Model Selection		
10) Convergence	11			
	10.1 Law of Large Numbers (LLN)		19 Non-parametric Function Estimation	22	
	10.2 Central Limit Theorem (CLT)	12	19.1 Density Estimation		
11	Statistical Inference	12	19.1.1 Histograms		
11	11.1 Point Estimation		19.1.2 Kernel Density Estimator (KDE)		
	11.2 Normal-Based Confidence Interval		19.2 Non-parametric Regression	23	
	11.3 Empirical distribution		19.3 Smoothing Using Orthogonal Functions	24	
	11.4 Statistical Functionals		20 Stochastic Processes	24	
		10	20.1 Markov Chains		
12	Parametric Inference	13	20.2 Poisson Processes		
	12.1 Method of Moments	13			
	12.2 Maximum Likelihood	14	21 Time Series	25	
	12.2.1 Delta Method	14	21.1 Stationary Time Series		This cookbook integrates various topics in probability theory
	12.3 Multiparameter Models		21.2 Estimation of Correlation		and statistics, based on literature $[1,6,3]$ and in-class material
	12.3.1 Multiparameter delta method		21.3 Non-Stationary Time Series		from courses of the statistics department at the University of
	12.4 Parametric Bootstrap	15	21.3.1 Detrending		California in Berkeley but also influenced by others [4, 5]. If you
			21.4 ARIMA models		find errors or have suggestions for improvements, please get in
13	B Hypothesis Testing	15	21.4.1 Causality and Invertibility	28	touch at http://statistics.zone/.

1 Distribution Overview

1.1 Discrete Distributions

	$Notation^1$	$F_X(x)$	$f_X(x)$	$\mathbb{E}\left[X ight]$	$\mathbb{V}\left[X ight]$	$M_X(s)$
Uniform	$\mathrm{Unif}\left\{a,\ldots,b ight\}$	$\begin{cases} 0 & x < a \\ \frac{\lfloor x \rfloor - a + 1}{b - a} & a \le x \le b \\ 1 & x > b \end{cases}$	$\frac{I(a \le x \le b)}{b - a + 1}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$	$\frac{e^{as} - e^{-(b+1)s}}{s(b-a)}$
Bernoulli	$\mathrm{Bern}(p)$	$(1-p)^{1-x}$	$p^x \left(1 - p\right)^{1 - x}$	p	p(1-p)	$1 - p + pe^s$
Binomial	$\operatorname{Bin}\left(n,p ight)$	$I_{1-p}(n-x,x+1)$	$\binom{n}{x} p^x \left(1 - p\right)^{n - x}$	np	np(1-p)	$(1 - p + pe^s)^n$
Multinomial	$\mathrm{Mult}(n,p)$		$\frac{n!}{x_1! \dots x_k!} p_1^{x_1} \dots p_k^{x_k} \sum_{i=1}^k x_i = n$	$\begin{pmatrix} np_1 \\ \vdots \\ np_k \end{pmatrix}$	$\begin{pmatrix} np_1(1-p_1) & -np_1p_2 \\ -np_2p_1 & \ddots \end{pmatrix}$	$\left(\sum_{i=0}^{k} p_i e^{s_i}\right)^n$
Hypergeometric	$\mathrm{Hyp}\left(N,m,n\right)$	$\approx \Phi\left(\frac{x - np}{\sqrt{np(1-p)}}\right)$	$\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}$	$\frac{nm}{N}$	$\frac{nm(N-n)(N-m)}{N^2(N-1)}$	
Negative Binomial	$\mathrm{NBin}\left(r,p\right)$	$I_p(r,x+1)$	$\binom{x+r-1}{r-1}p^r(1-p)^x$	$r\frac{1-p}{p}$	$r\frac{1-p}{p^2}$	$\left(\frac{p}{1 - (1 - p)e^s}\right)^r$
Geometric	Geo(p)	$1 - (1 - p)^x x \in \mathbb{N}^+$	$p(1-p)^{x-1} x \in \mathbb{N}^+$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^s}{1 - (1 - p)e^s}$
Poisson	$\operatorname{Po}\left(\lambda ight)$	$e^{-\lambda} \sum_{i=0}^{x} \frac{\lambda^i}{i!}$	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ	$e^{\lambda(e^s-1)}$

We use the notation $\gamma(s,x)$ and $\Gamma(x)$ to refer to the Gamma functions (see §22.1), and use B(x,y) and I_x to refer to the Beta functions (see §22.2).

1.2 Continuous Distributions

	Notation	$F_X(x)$	$f_X(x)$	$\mathbb{E}\left[X\right]$	$\mathbb{V}\left[X\right]$	$M_X(s)$
Uniform	$\mathrm{Unif}\left(a,b ight)$	$\begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x > b \end{cases}$	$\frac{I(a < x < b)}{b - a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{sb} - e^{sa}}{s(b-a)}$
Normal	$\mathcal{N}\left(\mu,\sigma^2 ight)$	$\Phi(x) = \int_{-\infty}^{x} \phi(t) dt$	$\phi(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	μ	σ^2	$\exp\left\{\mu s + \frac{\sigma^2 s^2}{2}\right\}$
Log-Normal	$\ln \mathcal{N}\left(\mu, \sigma^2\right)$	$\frac{1}{2} + \frac{1}{2}\operatorname{erf}\left[\frac{\ln x - \mu}{\sqrt{2\sigma^2}}\right]$	$\frac{1}{x\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma^2}\right\}$	$e^{\mu+\sigma^2/2}$	$(e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$	
Multivariate Normal	$\operatorname{MVN}\left(\mu,\Sigma\right)$		$(2\pi)^{-k/2} \Sigma ^{-1/2} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$	μ	Σ	$\exp\left\{\boldsymbol{\mu}^T\boldsymbol{s} + \frac{1}{2}\boldsymbol{s}^T\boldsymbol{\Sigma}\boldsymbol{s}\right\}$
Student's t	$\mathrm{Student}(\nu)$	$I_x\left(rac{ u}{2},rac{ u}{2} ight)$	$\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^2}{\nu}\right)^{-(\nu+1)/2}$	$0 \nu > 1$	$\begin{cases} \frac{\nu}{\nu - 2} & \nu > 2\\ \infty & 1 < \nu \le 2 \end{cases}$	
Chi-square	χ^2_k	$\frac{1}{\Gamma(k/2)}\gamma\left(\frac{k}{2},\frac{x}{2}\right)$	$\frac{1}{2^{k/2}\Gamma(k/2)}x^{k/2-1}e^{-x/2}$	k	2k	$(1-2s)^{-k/2} \ s < 1/2$
F	$\mathrm{F}(d_1,d_2)$	$I_{\frac{d_1x}{d_1x+d_2}}\left(\frac{d_1}{2}, \frac{d_1}{2}\right)$	$\frac{\sqrt{\frac{(d_1x)^{d_1}d_2^{d_2}}{(d_1x+d_2)^{d_1+d_2}}}}{xB\left(\frac{d_1}{2},\frac{d_1}{2}\right)}$	$\frac{d_2}{d_2 - 2}$	$\frac{2d_2^2(d_1+d_2-2)}{d_1(d_2-2)^2(d_2-4)}$	
Exponential*	$\mathrm{Exp}\left(eta ight)$	$1 - e^{-x/\beta}$	$\frac{1}{\beta}e^{-x/\beta}$	eta	eta^2	$\frac{1}{1 - \frac{s}{\beta}} \left(s < \beta \right)$
Gamma*	$\operatorname{Gamma}\left(\alpha,\beta\right)$	$rac{\gamma(lpha,eta x)}{\Gamma(lpha)}$	$\frac{\beta^{\alpha}}{\Gamma\left(\alpha\right)}x^{\alpha-1}e^{-\beta x}$	$rac{lpha}{eta}$	$rac{lpha}{eta^2}$	$\left(\frac{1}{1-\frac{s}{\beta}}\right)^{\alpha} (s < \beta)$
Inverse Gamma	$\operatorname{InvGamma}\left(\alpha,\beta\right)$	$rac{\Gamma\left(lpha,rac{eta}{x} ight)}{\Gamma\left(lpha ight)}$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{-\alpha-1}e^{-\beta/x}$	$\frac{\beta}{\alpha - 1} \ \alpha > 1$	$\frac{\beta^2}{(\alpha-1)^2(\alpha-2)} \ \alpha > 2$	$\frac{2(-\beta s)^{\alpha/2}}{\Gamma(\alpha)}K_{\alpha}\left(\sqrt{-4\beta s}\right)$
Dirichlet	$\mathrm{Dir}(\alpha)$		$\frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{k} x_{i}^{\alpha_{i}-1}$	$\frac{\alpha_i}{\sum_{i=1}^k \alpha_i}$	$\frac{\mathbb{E}\left[X_{i}\right]\left(1-\mathbb{E}\left[X_{i}\right]\right)}{\sum_{i=1}^{k}\alpha_{i}+1}$	
Beta	$\mathrm{Beta}\left(\alpha,\beta\right)$	$I_x(lpha,eta)$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{s^k}{k!}$
Weibull	$\mathrm{Weibull}(\lambda,k)$	$1 - e^{-(x/\lambda)^k}$	$\frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}$	$\lambda\Gamma\left(1+\frac{1}{k}\right)$	$\lambda^2 \Gamma \left(1 + \frac{2}{k} \right) - \mu^2$	$\sum_{n=0}^{\infty} \frac{s^n \lambda^n}{n!} \Gamma\left(1 + \frac{n}{k}\right)$
Pareto	Pareto (x_m, α)	$1 - \left(\frac{x_m}{x}\right)^{\alpha} \ x \ge x_m$	$\alpha \frac{x_m^{\alpha}}{x^{\alpha+1}} x \ge x_m$	$\frac{\alpha x_m}{\alpha - 1} \ \alpha > 1$	$\frac{x_m^2 \alpha}{(\alpha - 1)^2 (\alpha - 2)} \ \alpha > 2$	$\alpha(-x_m s)^{\alpha} \Gamma(-\alpha, -x_m s) \ s < 0$

^{*} We use the rate parameterization where $\beta = \frac{1}{\lambda}$. Some textbooks use β as scale parameter instead [6].

2 Probability Theory

Definitions

- Sample space Ω
- Outcome (point or element) $\omega \in \Omega$
- Event $A \subseteq \Omega$
- σ -algebra \mathcal{A}
 - 1. $\varnothing \in \mathcal{A}$
 - 2. $A_1, A_2, \ldots, \in \mathcal{A} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$
 - 3. $A \in \mathcal{A} \implies \neg A \in \mathcal{A}$
- ullet Probability Distribution ${\mathbb P}$
 - 1. $\mathbb{P}[A] \geq 0 \quad \forall A$
 - $2. \ \mathbb{P}\left[\Omega\right] = 1$
 - 3. $\mathbb{P}\left[\bigsqcup_{i=1}^{\infty} A_i\right] = \sum_{i=1}^{\infty} \mathbb{P}\left[A_i\right]$
- Probability space $(\Omega, \mathcal{A}, \mathbb{P})$

Properties

- $\mathbb{P}\left[\varnothing\right] = 0$
- $B = \Omega \cap B = (A \cup \neg A) \cap B = (A \cap B) \cup (\neg A \cap B)$
- $\mathbb{P}\left[\neg A\right] = 1 \mathbb{P}\left[A\right]$
- $\mathbb{P}[B] = \mathbb{P}[A \cap B] + \mathbb{P}[\neg A \cap B]$
- $\mathbb{P}\left[\Omega\right] = 1$ $\mathbb{P}\left[\varnothing\right] = 0$
- $\neg(\bigcup_n A_n) = \bigcap_n \neg A_n \quad \neg(\bigcap_n A_n) = \bigcup_n \neg A_n \quad \text{DEMORGAN}$
- $\mathbb{P}\left[\bigcup_{n} A_{n}\right] = 1 \mathbb{P}\left[\bigcap_{n} \neg A_{n}\right]$
- $\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B] \mathbb{P}[A \cap B]$
 - $\implies \mathbb{P}\left[A \cup B\right] \leq \mathbb{P}\left[A\right] + \mathbb{P}\left[B\right]$
- $\bullet \ \mathbb{P}\left[A \cup B\right] = \mathbb{P}\left[A \cap \neg B\right] + \mathbb{P}\left[\neg A \cap B\right] + \mathbb{P}\left[A \cap B\right]$
- $\mathbb{P}[A \cap \neg B] = \mathbb{P}[A] \mathbb{P}[A \cap B]$

Continuity of Probabilities

- $A_1 \subset A_2 \subset \ldots \implies \lim_{n \to \infty} \mathbb{P}[A_n] = \mathbb{P}[A]$ where $A = \bigcup_{i=1}^{\infty} A_i$
- $A_1 \supset A_2 \supset \ldots \implies \lim_{n \to \infty} \mathbb{P}[A_n] = \mathbb{P}[A]$ where $A = \bigcap_{i=1}^{\infty} A_i$

Independence $\perp \!\!\! \perp$

$$A \perp \!\!\!\perp B \iff \mathbb{P}\left[A \cap B\right] = \mathbb{P}\left[A\right]\mathbb{P}\left[B\right]$$

Conditional Probability

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]} \qquad \mathbb{P}[B] > 0$$

Law of Total Probability

$$\mathbb{P}\left[B\right] = \sum_{i=1}^{n} \mathbb{P}\left[B|A_{i}\right] \mathbb{P}\left[A_{i}\right] \qquad \Omega = \bigsqcup_{i=1}^{n} A_{i}$$

Bayes' Theorem

$$\mathbb{P}\left[A_i \mid B\right] = \frac{\mathbb{P}\left[B \mid A_i\right] \mathbb{P}\left[A_i\right]}{\sum_{j=1}^n \mathbb{P}\left[B \mid A_j\right] \mathbb{P}\left[A_j\right]} \qquad \Omega = \bigsqcup_{i=1}^n A_i$$

Inclusion-Exclusion Principle

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{r=1}^{n} (-1)^{r-1} \sum_{i \le i_1 < \dots < i_r \le n} \left| \bigcap_{j=1}^{r} A_{i_j} \right|$$

3 Random Variables

Random Variable (RV)

$$X:\Omega\to\mathbb{R}$$

Probability Mass Function (PMF)

$$f_X(x) = \mathbb{P}[X = x] = \mathbb{P}[\{\omega \in \Omega : X(\omega) = x\}]$$

Probability Density Function (PDF)

$$\mathbb{P}\left[a \le X \le b\right] = \int_a^b f(x) \, dx$$

Cumulative Distribution Function (CDF)

$$F_X: \mathbb{R} \to [0,1]$$
 $F_X(x) = \mathbb{P}[X \le x]$

- 1. Nondecreasing: $x_1 < x_2 \implies F(x_1) \le F(x_2)$
- 2. Normalized: $\lim_{x\to-\infty} = 0$ and $\lim_{x\to\infty} = 1$
- 3. Right-Continuous: $\lim_{y\downarrow x} F(y) = F(x)$

$$\mathbb{P}\left[a \le Y \le b \mid X = x\right] = \int_{a}^{b} f_{Y\mid X}(y\mid x) dy \qquad a \le b$$
$$f_{Y\mid X}(y\mid x) = \frac{f(x,y)}{f_{X}(x)}$$

Independence

- 1. $\mathbb{P}\left[X \leq x, Y \leq y\right] = \mathbb{P}\left[X \leq x\right] \mathbb{P}\left[Y \leq y\right]$
- 2. $f_{X,Y}(x,y) = f_X(x)f_Y(y)$

3.1 Transformations

Transformation function

$$Z = \varphi(X)$$

Discrete

$$f_Z(z) = \mathbb{P}\left[\varphi(X) = z\right] = \mathbb{P}\left[\left\{x : \varphi(x) = z\right\}\right] = \mathbb{P}\left[X \in \varphi^{-1}(z)\right] = \sum_{x \in \varphi^{-1}(z)} f_X(x)$$

Continuous

$$F_Z(z) = \mathbb{P}\left[\varphi(X) \le z\right] = \int_{A_z} f(x) dx \text{ with } A_z = \{x : \varphi(x) \le z\}$$

Special case if φ strictly monotone

$$f_Z(z) = f_X(\varphi^{-1}(z)) \left| \frac{d}{dz} \varphi^{-1}(z) \right| = f_X(x) \left| \frac{dx}{dz} \right| = f_X(x) \frac{1}{|J|}$$

The Rule of the Lazy Statistician

$$\mathbb{E}\left[Z\right] = \int \varphi(x) \, dF_X(x)$$

$$\mathbb{E}\left[I_A(x)\right] = \int I_A(x) \, dF_X(x) = \int_A dF_X(x) = \mathbb{P}\left[X \in A\right]$$

Convolution

•
$$Z := X + Y$$
 $f_Z(z) = \int_{-\infty}^{\infty} f_{X,Y}(x, z - x) dx \stackrel{X,Y \ge 0}{=} \int_{0}^{z} f_{X,Y}(x, z - x) dx$

•
$$Z := |X - Y|$$
 $f_Z(z) = 2 \int_0^\infty f_{X,Y}(x, z + x) dx$

•
$$Z := \frac{X}{Y}$$
 $f_Z(z) = \int_{-\infty}^{\infty} |x| f_{X,Y}(x,xz) dx \stackrel{\perp}{=} \int_{-\infty}^{\infty} x f_x(x) f_X(x) f_Y(xz) dx$

4 Expectation

Definition and properties

•
$$\mathbb{E}[X] = \mu_X = \int x \, dF_X(x) = \begin{cases} \sum_x x f_X(x) & \text{X discrete} \\ \int x f_X(x) \, dx & \text{X continuous} \end{cases}$$

- $\mathbb{P}[X=c]=1 \implies \mathbb{E}[X]=c$
- $\mathbb{E}\left[cX\right] = c\,\mathbb{E}\left[X\right]$
- $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$

- $\mathbb{E}[XY] = \int_{XY} xy f_{X,Y}(x,y) dF_X(x) dF_Y(y)$
- $\mathbb{E}\left[\varphi(Y)\right] \neq \varphi(\mathbb{E}\left[X\right])$ (cf. Jensen inequality)
- $\mathbb{P}[X \ge Y] = 1 \implies \mathbb{E}[X] \ge \mathbb{E}[Y]$
- $\mathbb{P}\left[X=Y\right]=1 \implies \mathbb{E}\left[X\right]=\mathbb{E}\left[Y\right]$
- $\mathbb{E}[X] = \sum_{x=1}^{\infty} \mathbb{P}[X \ge x]$ X discrete

Sample mean

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Conditional expectation

- $\mathbb{E}[Y | X = x] = \int y f(y | x) dy$
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]]$
- $\mathbb{E}_{\varphi(X,Y)|X=x}[=]\int_{-\infty}^{\infty} \varphi(x,y) f_{Y|X}(y|x) dx$
- $\mathbb{E}\left[\varphi(Y,Z) \mid X=x\right] = \int_{-\infty}^{\infty} \varphi(y,z) f_{(Y,Z)|X}(y,z|x) \, dy \, dz$
- $\mathbb{E}\left[Y + Z \mid X\right] = \mathbb{E}\left[Y \mid X\right] + \mathbb{E}\left[Z \mid X\right]$
- $\mathbb{E}\left[\varphi(X)Y \mid X\right] = \varphi(X)\mathbb{E}\left[Y \mid X\right]$
- $\mathbb{E}[Y | X] = c \implies \text{Cov}[X, Y] = 0$

5 Variance

Definition and properties

$$\bullet \ \mathbb{V}\left[X\right] = \sigma_X^2 = \mathbb{E}\left[(X - \mathbb{E}\left[X\right])^2\right] = \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2$$

•
$$\mathbb{V}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{V}\left[X_i\right] + \sum_{i \neq j} \operatorname{Cov}\left[X_i, X_j\right]$$

•
$$\mathbb{V}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{V}\left[X_i\right]$$
 if $X_i \perp \!\!\! \perp X_j$

Standard deviation

$$\mathsf{sd}[X] = \sqrt{\mathbb{V}[X]} = \sigma_X$$

Covariance

- $\operatorname{Cov}[X, Y] = \mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])] = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $\operatorname{Cov}\left[X,a\right] = 0$
- $\operatorname{Cov}\left[X,X\right] = \mathbb{V}\left[X\right]$
- $\operatorname{Cov}[X, Y] = \operatorname{Cov}[Y, X]$

- Cov[aX, bY] = abCov[X, Y]
- $\operatorname{Cov}\left[X + a, Y + b\right] = \operatorname{Cov}\left[X, Y\right]$

• Cov
$$\left[\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j\right] = \sum_{i=1}^{n} \sum_{j=1}^{m} \text{Cov}\left[X_i, Y_j\right]$$

Correlation

$$\rho\left[X,Y\right] = \frac{\operatorname{Cov}\left[X,Y\right]}{\sqrt{\mathbb{V}\left[X\right]\mathbb{V}\left[Y\right]}}$$

Independence

$$X \perp\!\!\!\perp Y \implies \rho\left[X,Y\right] = 0 \iff \operatorname{Cov}\left[X,Y\right] = 0 \iff \mathbb{E}\left[XY\right] = \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right]$$

Sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}$$

Conditional variance

- $\mathbb{V}[Y|X] = \mathbb{E}[(Y \mathbb{E}[Y|X])^2|X] = \mathbb{E}[Y^2|X] \mathbb{E}[Y|X]^2$
- $\mathbb{V}[Y] = \mathbb{E}[\mathbb{V}[Y|X]] + \mathbb{V}[\mathbb{E}[Y|X]]$

6 Inequalities

CAUCHY-SCHWARZ

$$\mathbb{E}\left[XY\right]^{2} \leq \mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right]$$

Markov

$$\mathbb{P}\left[\varphi(X) \ge t\right] \le \frac{\mathbb{E}\left[\varphi(X)\right]}{t}$$

CHEBYSHEV

$$\mathbb{P}\left[\left|X - \mathbb{E}\left[X\right]\right| \ge t\right] \le \frac{\mathbb{V}\left[X\right]}{t^2}$$

CHERNOFF

$$\mathbb{P}\left[X \ge (1+\delta)\mu\right] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right) \quad \delta > -1$$

Hoeffding

$$X_1, \ldots, X_n$$
 independent $\wedge \mathbb{P}[X_i \in [a_i, b_i]] = 1 \wedge 1 \leq i \leq n$

$$\mathbb{P}\left[\bar{X} - \mathbb{E}\left[\bar{X}\right] \ge t\right] \le e^{-2nt^2} \quad t > 0$$

$$\mathbb{P}\left[|\bar{X} - \mathbb{E}\left[\bar{X}\right]| \ge t\right] \le 2\exp\left\{-\frac{2n^2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right\} \quad t > 0$$

JENSEN

$$\mathbb{E}\left[\varphi(X)\right] \ge \varphi(\mathbb{E}\left[X\right]) \quad \varphi \text{ convex}$$

7 Distribution Relationships

Binomial

- $X_i \sim \text{Bern}(p) \implies \sum_{i=1}^n X_i \sim \text{Bin}(n, p)$
- $X \sim \text{Bin}(n, p), Y \sim \text{Bin}(m, p) \implies X + Y \sim \text{Bin}(n + m, p)$
- $\lim_{n\to\infty} \text{Bin}(n,p) = \text{Po}(np)$ (n large, p small)
- $\lim_{n\to\infty} \text{Bin}(n,p) = \mathcal{N}(np, np(1-p))$ (n large, p far from 0 and 1)

Negative Binomial

- $X \sim \text{NBin}(1, p) = \text{Geo}(p)$
- $X \sim \text{NBin}(r, p) = \sum_{i=1}^{r} \text{Geo}(p)$
- $X_i \sim \text{NBin}(r_i, p) \implies \sum X_i \sim \text{NBin}(\sum r_i, p)$
- $X \sim \text{NBin}(r, p)$. $Y \sim \text{Bin}(s + r, p) \implies \mathbb{P}[X \leq s] = \mathbb{P}[Y \geq r]$

Poisson

•
$$X_i \sim \text{Po}(\lambda_i) \wedge X_i \perp \!\!\!\perp X_j \implies \sum_{i=1}^n X_i \sim \text{Po}\left(\sum_{i=1}^n \lambda_i\right)$$

•
$$X_i \sim \text{Po}(\lambda_i) \wedge X_i \perp \!\!\!\perp X_j \implies X_i \left| \sum_{j=1}^n X_j \sim \text{Bin}\left(\sum_{j=1}^n X_j, \frac{\lambda_i}{\sum_{j=1}^n \lambda_j}\right) \right|$$

Exponential

- $X_i \sim \text{Exp}(\beta) \wedge X_i \perp \!\!\!\perp X_j \implies \sum_{i=1}^n X_i \sim \text{Gamma}(n,\beta)$
- Memoryless property: $\mathbb{P}[X > x + y \mid X > y] = \mathbb{P}[X > x]$

Normal

- $X \sim \mathcal{N}\left(\mu, \sigma^2\right) \implies \left(\frac{X-\mu}{\sigma}\right) \sim \mathcal{N}\left(0, 1\right)$
- $X \sim \mathcal{N}(\mu, \sigma^2) \wedge Z = aX + b \implies Z \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$
- $X_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right) \wedge X_i \perp \!\!\!\perp X_j \implies \sum_i X_i \sim \mathcal{N}\left(\sum_i \mu_i, \sum_i \sigma_i^2\right)$
- $\mathbb{P}\left[a < X \le b\right] = \Phi\left(\frac{b-\mu}{\sigma}\right) \Phi\left(\frac{a-\mu}{\sigma}\right)$
- $\Phi(-x) = 1 \Phi(x)$ $\phi'(x) = -x\phi(x)$ $\phi''(x) = (x^2 1)\phi(x)$
- Upper quantile of $\mathcal{N}(0,1)$: $z_{\alpha} = \Phi^{-1}(1-\alpha)$

Gamma

- $X \sim \text{Gamma}(\alpha, \beta) \iff X/\beta \sim \text{Gamma}(\alpha, 1)$
- Gamma $(\alpha, \beta) \sim \sum_{i=1}^{\alpha} \text{Exp}(\beta)$
- $X_i \sim \text{Gamma}(\alpha_i, \beta) \wedge X_i \perp \!\!\!\perp X_j \implies \sum_i X_i \sim \text{Gamma}(\sum_i \alpha_i, \beta)$

$$\bullet \ \frac{\Gamma(\alpha)}{\lambda^{\alpha}} = \int_0^\infty x^{\alpha - 1} e^{-\lambda x} \, dx$$

Beta

•
$$\frac{1}{\mathrm{B}(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1} = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$$

•
$$\mathbb{E}\left[X^{k}\right] = \frac{\mathrm{B}(\alpha+k,\beta)}{\mathrm{B}(\alpha,\beta)} = \frac{\alpha+k-1}{\alpha+\beta+k-1} \mathbb{E}\left[X^{k-1}\right]$$

• Beta $(1,1) \sim \text{Unif}(0,1)$

8 Probability and Moment Generating Functions

•
$$G_X(t) = \mathbb{E}\left[t^X\right]$$
 $|t| < 1$

•
$$M_X(t) = G_X(e^t) = \mathbb{E}\left[e^{Xt}\right] = \mathbb{E}\left[\sum_{i=0}^{\infty} \frac{(Xt)^i}{i!}\right] = \sum_{i=0}^{\infty} \frac{\mathbb{E}\left[X^i\right]}{i!} \cdot t^i$$

- $\mathbb{P}[X=0] = G_X(0)$
- $\mathbb{P}[X=1] = G'_X(0)$
- $\bullet \ \mathbb{P}\left[X=i\right] = \frac{G_X^{(i)}(0)}{i!}$
- $\bullet \ \mathbb{E}\left[X\right] = G_X'(1^-)$
- $\mathbb{E}\left[X^k\right] = M_X^{(k)}(0)$
- $\mathbb{E}\left[\frac{X!}{(X-k)!}\right] = G_X^{(k)}(1^-)$
- $\mathbb{V}[X] = G_X''(1^-) + G_X'(1^-) (G_X'(1^-))^2$
- $G_X(t) = G_Y(t) \implies X \stackrel{d}{=} Y$

9 Multivariate Distributions

9.1 Standard Bivariate Normal

Let $X, Y \sim \mathcal{N}(0, 1) \wedge X \perp \!\!\!\perp Z$ where $Y = \rho X + \sqrt{1 - \rho^2} Z$

Joint density

$$f(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left\{-\frac{x^2 + y^2 - 2\rho xy}{2(1-\rho^2)}\right\}$$

Conditionals

$$(Y \mid X = x) \sim \mathcal{N}(\rho x, 1 - \rho^2)$$
 and $(X \mid Y = y) \sim \mathcal{N}(\rho y, 1 - \rho^2)$

Independence

$$X \perp\!\!\!\perp Y \iff \rho = 0$$

9.2 Bivariate Normal

Let $X \sim \mathcal{N}\left(\mu_x, \sigma_x^2\right)$ and $Y \sim \mathcal{N}\left(\mu_y, \sigma_y^2\right)$.

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}}\exp\left\{-\frac{z}{2(1-\rho^2)}\right\}$$

$$z = \left[\left(\frac{x - \mu_x}{\sigma_x} \right)^2 + \left(\frac{y - \mu_y}{\sigma_y} \right)^2 - 2\rho \left(\frac{x - \mu_x}{\sigma_x} \right) \left(\frac{y - \mu_y}{\sigma_y} \right) \right]$$

Conditional mean and variance

$$\mathbb{E}[X | Y] = \mathbb{E}[X] + \rho \frac{\sigma_X}{\sigma_Y} (Y - \mathbb{E}[Y])$$

$$\mathbb{V}\left[X\,|\,Y\right] = \sigma_X \sqrt{1 - \rho^2}$$

9.3 Multivariate Normal

Covariance matrix Σ (Precision matrix Σ^{-1})

$$\Sigma = \begin{pmatrix} \mathbb{V}[X_1] & \cdots & \operatorname{Cov}[X_1, X_k] \\ \vdots & \ddots & \vdots \\ \operatorname{Cov}[X_k, X_1] & \cdots & \mathbb{V}[X_k] \end{pmatrix}$$

If $X \sim \mathcal{N}(\mu, \Sigma)$,

$$f_X(x) = (2\pi)^{-n/2} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

Properties

- $Z \sim \mathcal{N}(0,1) \wedge X = \mu + \Sigma^{1/2}Z \implies X \sim \mathcal{N}(\mu, \Sigma)$
- $X \sim \mathcal{N}(\mu, \Sigma) \implies \Sigma^{-1/2}(X \mu) \sim \mathcal{N}(0, 1)$
- $X \sim \mathcal{N}(\mu, \Sigma) \implies AX \sim \mathcal{N}(A\mu, A\Sigma A^T)$
- $X \sim \mathcal{N}(\mu, \Sigma) \wedge ||a|| = k \implies a^T X \sim \mathcal{N}(a^T \mu, a^T \Sigma a)$

10 Convergence

Let $\{X_1, X_2, \ldots\}$ be a sequence of RV's and let X be another RV. Let F_n denote the CDF of X_n and let F denote the CDF of X. Types of Convergence

1. In distribution (weakly, in law): $X_n \stackrel{\text{D}}{\to} X$

$$\lim_{n \to \infty} F_n(t) = F(t) \qquad \forall t \text{ where } F \text{ continuous}$$

2. In probability: $X_n \stackrel{P}{\to} X$

$$(\forall \varepsilon > 0) \lim_{n \to \infty} \mathbb{P}\left[|X_n - X| > \varepsilon\right] = 0$$

3. Almost surely (strongly): $X_n \stackrel{\text{as}}{\to} X$

$$\mathbb{P}\left[\lim_{n\to\infty}X_n=X\right]=\mathbb{P}\left[\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=X(\omega)\right]=1$$

4. In quadratic mean $(L_2): X_n \stackrel{\text{qm}}{\to} X$

$$\lim_{n \to \infty} \mathbb{E}\left[(X_n - X)^2 \right] = 0$$

Relationships

- $\bullet \ X_n \stackrel{\text{\tiny qm}}{\to} X \implies X_n \stackrel{\text{\tiny P}}{\to} X \implies X_n \stackrel{\text{\tiny D}}{\to} X$
- $\bullet X_n \stackrel{\text{as}}{\to} X \implies X_n \stackrel{\text{P}}{\to} X$
- $X_n \stackrel{\mathrm{D}}{\to} X \wedge (\exists c \in \mathbb{R}) \mathbb{P}[X = c] = 1 \implies X_n \stackrel{\mathrm{P}}{\to} X$
- $\bullet \ X_n \stackrel{\mathrm{P}}{\to} X \wedge Y_n \stackrel{\mathrm{P}}{\to} Y \implies X_n + Y_n \stackrel{\mathrm{P}}{\to} X + Y$
- $X_n \stackrel{\text{qm}}{\to} X \wedge Y_n \stackrel{\text{qm}}{\to} Y \implies X_n + Y_n \stackrel{\text{qm}}{\to} X + Y$
- $X_n \stackrel{P}{\to} X \wedge Y_n \stackrel{P}{\to} Y \implies X_n Y_n \stackrel{P}{\to} XY$
- $X_n \stackrel{\mathrm{P}}{\to} X \implies \varphi(X_n) \stackrel{\mathrm{P}}{\to} \varphi(X)$
- $X_n \stackrel{\mathrm{D}}{\to} X \implies \varphi(X_n) \stackrel{\mathrm{D}}{\to} \varphi(X)$
- $X_n \stackrel{\text{qm}}{\to} b \iff \lim_{n \to \infty} \mathbb{E}[X_n] = b \wedge \lim_{n \to \infty} \mathbb{V}[X_n] = 0$
- $X_1, \dots, X_n \text{ fid } \wedge \mathbb{E}\left[X\right] = \mu \wedge \mathbb{V}\left[X\right] < \infty \iff \bar{X}_n \stackrel{\text{qm}}{\to} \mu$

SLUTZKY'S THEOREM

- $X_n \stackrel{\mathrm{D}}{\to} X$ and $Y_n \stackrel{\mathrm{P}}{\to} c \implies X_n + Y_n \stackrel{\mathrm{D}}{\to} X + c$
- $X_n \stackrel{\mathrm{D}}{\to} X$ and $Y_n \stackrel{\mathrm{P}}{\to} c \implies X_n Y_n \stackrel{\mathrm{D}}{\to} c X$
- In general: $X_n \stackrel{\text{D}}{\to} X$ and $Y_n \stackrel{\text{D}}{\to} Y \Longrightarrow X_n + Y_n \stackrel{\text{D}}{\to} X + Y$

10.1 Law of Large Numbers (LLN)

Let $\{X_1, \ldots, X_n\}$ be a sequence of IID RV's, $\mathbb{E}[X_1] = \mu$. Weak (WLLN)

$$\bar{X}_n \stackrel{\mathrm{P}}{\to} \mu \qquad n \to \infty$$

Strong (SLLN)

$$\bar{X}_n \stackrel{\text{as}}{\to} \mu \qquad n \to \infty$$

10.2 Central Limit Theorem (CLT)

Let $\{X_1, \ldots, X_n\}$ be a sequence of IID RV's, $\mathbb{E}[X_1] = \mu$, and $\mathbb{V}[X_1] = \sigma^2$.

$$Z_{n} := \frac{\bar{X}_{n} - \mu}{\sqrt{\mathbb{V}\left[\bar{X}_{n}\right]}} = \frac{\sqrt{n}(\bar{X}_{n} - \mu)}{\sigma} \xrightarrow{\mathrm{D}} Z \quad \text{where } Z \sim \mathcal{N}\left(0, 1\right)$$
$$\lim_{n \to \infty} \mathbb{P}\left[Z_{n} \le z\right] = \Phi(z) \quad z \in \mathbb{R}$$

CLT notations

$$Z_n \approx \mathcal{N}(0, 1)$$

$$\bar{X}_n \approx \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\bar{X}_n - \mu \approx \mathcal{N}\left(0, \frac{\sigma^2}{n}\right)$$

$$\sqrt{n}(\bar{X}_n - \mu) \approx \mathcal{N}\left(0, \sigma^2\right)$$

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \approx \mathcal{N}(0, 1)$$

Continuity correction

$$\mathbb{P}\left[\bar{X}_n \le x\right] \approx \Phi\left(\frac{x + \frac{1}{2} - \mu}{\sigma/\sqrt{n}}\right)$$

$$\mathbb{P}\left[\bar{X}_n \ge x\right] \approx 1 - \Phi\left(\frac{x - \frac{1}{2} - \mu}{\sigma/\sqrt{n}}\right)$$

Delta method

$$Y_n \approx \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right) \implies \varphi(Y_n) \approx \mathcal{N}\left(\varphi(\mu), (\varphi'(\mu))^2 \frac{\sigma^2}{n}\right)$$

11 Statistical Inference

Let $X_1, \dots, X_n \stackrel{iid}{\sim} F$ if not otherwise noted.

11.1 Point Estimation

- Point estimator $\widehat{\theta}_n$ of θ is a RV: $\widehat{\theta}_n = g(X_1, \dots, X_n)$
- $\operatorname{bias}(\widehat{\theta}_n) = \mathbb{E}\left[\widehat{\theta}_n\right] \theta$
- Consistency: $\widehat{\theta}_n \stackrel{P}{\to} \theta$
- Sampling distribution: $F(\widehat{\theta}_n)$
- Standard error: $\operatorname{se}(\widehat{\theta}_n) = \sqrt{\mathbb{V}\left[\widehat{\theta}_n\right]}$

- Mean squared error: $\text{MSE} = \mathbb{E}\left[(\widehat{\theta}_n \theta)^2\right] = \mathsf{bias}(\widehat{\theta}_n)^2 + \mathbb{V}\left[\widehat{\theta}_n\right]$
- $\lim_{n\to\infty} \mathsf{bias}(\widehat{\theta}_n) = 0 \wedge \lim_{n\to\infty} \mathsf{se}(\widehat{\theta}_n) = 0 \implies \widehat{\theta}_n$ is consistent
- Asymptotic normality: $\widehat{\theta}_{n} \theta \xrightarrow{D} \mathcal{N}(0, 1)$
- SLUTZKY'S THEOREM often lets us replace $se(\widehat{\theta}_n)$ by some (weakly) consistent estimator $\widehat{\sigma}_n$.

11.2 Normal-Based Confidence Interval

Suppose $\widehat{\theta}_n \approx \mathcal{N}\left(\theta, \widehat{\mathsf{se}}^2\right)$. Let $z_{\alpha/2} = \Phi^{-1}(1 - (\alpha/2))$, i.e., $\mathbb{P}\left[Z > z_{\alpha/2}\right] = \alpha/2$ and $\mathbb{P}\left[-z_{\alpha/2} < Z < z_{\alpha/2}\right] = 1 - \alpha$ where $Z \sim \mathcal{N}\left(0, 1\right)$. Then

$$C_n = \widehat{\theta}_n \pm z_{\alpha/2} \widehat{\mathsf{se}}$$

11.3 Empirical distribution

Empirical Distribution Function (ECDF)

$$\widehat{F}_n(x) = \frac{\sum_{i=1}^n I(X_i \le x)}{n}$$

$$I(X_i \le x) = \begin{cases} 1 & X_i \le x \\ 0 & X_i > x \end{cases}$$

Properties (for any fixed x)

- $\mathbb{E}\left[\widehat{F}_n\right] = F(x)$
- $\mathbb{V}\left[\widehat{F}_n\right] = \frac{F(x)(1 F(x))}{n}$
- MSE = $\frac{F(x)(1-F(x))}{n} \stackrel{\text{D}}{\to} 0$
- $\widehat{F}_n \stackrel{\mathrm{P}}{\to} F(x)$

DVORETZKY-KIEFER-WOLFOWITZ (DKW) inequality $(X_1, \ldots, X_n \sim F)$

$$\mathbb{P}\left[\sup_{x} \left| F(x) - \widehat{F}_n(x) \right| > \varepsilon \right] = 2e^{-2n\varepsilon^2}$$

Nonparametric $1 - \alpha$ confidence band for F

$$L(x) = \max\{\widehat{F}_n - \epsilon_n, 0\}$$

$$U(x) = \min\{\widehat{F}_n + \epsilon_n, 1\}$$

$$\epsilon = \sqrt{\frac{1}{2n} \log \left(\frac{2}{\alpha}\right)}$$

$$\mathbb{P}\left[L(x) \le F(x) \le U(x) \ \forall x\right] \ge 1 - \alpha$$

11.4 Statistical Functionals

- Statistical functional: T(F)
- Plug-in estimator of $\theta = (F)$: $\widehat{\theta}_n = T(\widehat{F}_n)$
- Linear functional: $T(F) = \int \varphi(x) dF_X(x)$
- Plug-in estimator for linear functional:

$$T(\widehat{F}_n) = \int \varphi(x) \, d\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \varphi(X_i)$$

- Often: $T(\widehat{F}_n) \approx \mathcal{N}\left(T(F), \widehat{\mathsf{se}}^2\right) \implies T(\widehat{F}_n) \pm z_{\alpha/2}\widehat{\mathsf{se}}$
- p^{th} quantile: $F^{-1}(p) = \inf\{x : F(x) \ge p\}$
- $\widehat{\mu} = \bar{X}_n$
- $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$
- $\widehat{\kappa} = \frac{\frac{1}{n} \sum_{i=1}^{n} (X_i \widehat{\mu})^3}{\widehat{\sigma}^3}$
- $\widehat{\rho} = \frac{\sum_{i=1}^{n} (X_i \bar{X}_n)(Y_i \bar{Y}_n)}{\sqrt{\sum_{i=1}^{n} (X_i \bar{X}_n)^2} \sqrt{\sum_{i=1}^{n} (Y_i \bar{Y}_n)^2}}$

12 Parametric Inference

Let $\mathfrak{F} = \{f(x;\theta) : \theta \in \Theta\}$ be a parametric model with parameter space $\Theta \subset \mathbb{R}^k$ and parameter $\theta = (\theta_1, \dots, \theta_k)$.

12.1 Method of Moments

 $j^{\rm th}$ moment

$$\alpha_j(\theta) = \mathbb{E}\left[X^j\right] = \int x^j dF_X(x)$$

 $j^{\rm th}$ sample moment

$$\widehat{\alpha}_j = \frac{1}{n} \sum_{i=1}^n X_i^j$$

Method of Moments estimator (MoM)

$$\alpha_1(\theta) = \widehat{\alpha}_1$$

$$\alpha_2(\theta) = \widehat{\alpha}_2$$

$$\dot{\dot{z}} = \dot{\dot{z}}$$

$$\alpha_k(\theta) = \widehat{\alpha}_k$$

Properties of the MoM estimator

• $\widehat{\theta}_n$ exists with probability tending to 1

• Consistency: $\widehat{\theta}_n \stackrel{P}{\to} \theta$

• Asymptotic normality:

$$\sqrt{n}(\widehat{\theta} - \theta) \stackrel{\text{D}}{\to} \mathcal{N}(0, \Sigma)$$

where
$$\Sigma = g\mathbb{E}\left[YY^T\right]g^T$$
, $Y = (X, X^2, \dots, X^k)^T$, $g = (g_1, \dots, g_k)$ and $g_j = \frac{\partial}{\partial \theta}\alpha_j^{-1}(\theta)$

12.2 Maximum Likelihood

Likelihood: $\mathcal{L}_n:\Theta\to[0,\infty)$

$$\mathcal{L}_n(\theta) = \prod_{i=1}^n f(X_i; \theta)$$

Log-likelihood

$$\ell_n(\theta) = \log \mathcal{L}_n(\theta) = \sum_{i=1}^n \log f(X_i; \theta)$$

Maximum likelihood estimator (MLE)

$$\mathcal{L}_n(\widehat{\theta}_n) = \sup_{\theta} \mathcal{L}_n(\theta)$$

Score function

$$s(X; \theta) = \frac{\partial}{\partial \theta} \log f(X; \theta)$$

Fisher information

$$I(\theta) = \mathbb{V}_{\theta} [s(X; \theta)]$$

 $I_n(\theta) = nI(\theta)$

Fisher information (exponential family)

$$I(\theta) = \mathbb{E}_{\theta} \left[-\frac{\partial}{\partial \theta} s(X; \theta) \right]$$

Observed Fisher information

$$I_n^{obs}(\theta) = -\frac{\partial^2}{\partial \theta^2} \sum_{i=1}^n \log f(X_i; \theta)$$

Properties of the MLE

• Consistency: $\widehat{\theta}_n \stackrel{P}{\to} \theta$

- Equivariance: $\widehat{\theta}_n$ is the MLE $\Longrightarrow \varphi(\widehat{\theta}_n)$ is the MLE of $\varphi(\theta)$
- Asymptotic optimality (or efficiency), i.e., smallest variance for large samples. If $\widetilde{\theta}_n$ is any other estimator, the asymptotic relative efficiency is:

1. se
$$\approx \sqrt{1/I_n(\theta)}$$

$$\frac{(\widehat{\theta}_n - \theta)}{\mathsf{se}} \stackrel{\mathrm{D}}{\to} \mathcal{N}\left(0, 1\right)$$

$$2. \ \widehat{\mathsf{se}} \approx \sqrt{1/I_n(\widehat{\theta}_n)}$$

$$\frac{(\widehat{\theta}_{n} - \theta)}{\widehat{\mathsf{se}}} \overset{\mathsf{D}}{\to} \mathcal{N}\left(0, 1\right)$$

• Asymptotic optimality

$$\operatorname{ARE}(\widetilde{\theta}_n,\widehat{\theta}_n) = \frac{\mathbb{V}\left[\widehat{\theta}_n\right]}{\mathbb{V}\left[\widetilde{\theta}_n\right]} \leq 1$$

• Approximately the Bayes estimator

12.2.1 Delta Method

If $\tau = \varphi(\widehat{\theta})$ where φ is differentiable and $\varphi'(\theta) \neq 0$:

$$\frac{(\widehat{\tau}_n - \tau)}{\widehat{\mathsf{se}}(\widehat{\tau})} \stackrel{\mathrm{D}}{\to} \mathcal{N}(0, 1)$$

where $\widehat{\tau} = \varphi(\widehat{\theta})$ is the MLE of τ and

$$\widehat{\mathsf{se}} = \left| \varphi'(\widehat{\theta}) \right| \widehat{\mathsf{se}}(\widehat{\theta}_n)$$

12.3 Multiparameter Models

Let $\theta = (\theta_1, \dots, \theta_k)$ and $\widehat{\theta} = (\widehat{\theta}_1, \dots, \widehat{\theta}_k)$ be the MLE.

$$H_{jj} = \frac{\partial^2 \ell_n}{\partial \theta^2}$$
 $H_{jk} = \frac{\partial^2 \ell_n}{\partial \theta_s \partial \theta_k}$

Fisher information matrix

$$I_n(\theta) = - \begin{bmatrix} \mathbb{E}_{\theta} \left[H_{11} \right] & \cdots & \mathbb{E}_{\theta} \left[H_{1k} \right] \\ \vdots & \ddots & \vdots \\ \mathbb{E}_{\theta} \left[H_{k1} \right] & \cdots & \mathbb{E}_{\theta} \left[H_{kk} \right] \end{bmatrix}$$

Under appropriate regularity conditions

$$(\widehat{\theta} - \theta) \approx \mathcal{N}(0, J_n)$$

with $J_n(\theta) = I_n^{-1}$. Further, if $\widehat{\theta}_j$ is the j^{th} component of θ , then

$$\frac{(\widehat{\theta}_{j} - \theta_{j})}{\widehat{\mathsf{se}}_{j}} \stackrel{\mathsf{D}}{\to} \mathcal{N}\left(0, 1\right)$$

where $\widehat{\mathsf{se}}_{j}^{2} = J_{n}(j,j)$ and $\operatorname{Cov}\left[\widehat{\theta}_{j},\widehat{\theta}_{k}\right] = J_{n}(j,k)$

12.3.1 Multiparameter delta method

Let $\tau = \varphi(\theta_1, \dots, \theta_k)$ and let the gradient of φ be

$$\nabla \varphi = \begin{pmatrix} \frac{\partial \varphi}{\partial \theta_1} \\ \vdots \\ \frac{\partial \varphi}{\partial \theta_k} \end{pmatrix}$$

Suppose $\nabla \varphi |_{\theta = \widehat{\theta}} \neq 0$ and $\widehat{\tau} = \varphi(\widehat{\theta})$. Then,

$$\frac{(\widehat{\tau} - \tau)}{\widehat{\mathsf{se}}(\widehat{\tau})} \stackrel{\scriptscriptstyle \mathrm{D}}{\to} \mathcal{N}\left(0, 1\right)$$

where

$$\widehat{\mathsf{se}}(\widehat{\tau}) = \sqrt{\left(\widehat{\nabla}\varphi\right)^T \widehat{J}_n\left(\widehat{\nabla}\varphi\right)}$$

and $\widehat{J}_n = J_n(\widehat{\theta})$ and $\widehat{\nabla} \varphi = \nabla \varphi|_{\theta - \widehat{\theta}}$.

12.4 Parametric Bootstrap

Sample from $f(x; \hat{\theta}_n)$ instead of from \hat{F}_n , where $\hat{\theta}_n$ could be the MLE or method of moments estimator.

13 Hypothesis Testing

 $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$

Definitions

- Null hypothesis H_0
- Alternative hypothesis H_1
- Simple hypothesis $\theta = \theta_0$
- Composite hypothesis $\theta > \theta_0$ or $\theta < \theta_0$
- Two-sided test: $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$
- One-sided test: $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$

- \bullet Critical value c
- Test statistic T
- Rejection region $R = \{x : T(x) > c\}$
- Power function $\beta(\theta) = \mathbb{P}[X \in R]$
- Power of a test: $1 \mathbb{P} [\text{Type II error}] = 1 \beta = \inf_{\theta \in \Theta_1} \beta(\theta)$
- Test size: $\alpha = \mathbb{P}\left[\text{Type I error}\right] = \sup_{\theta \in \Theta_0} \beta(\theta)$

	Retain H_0	Reject H_0
H_0 true		Type I Error (α)
H_1 true	Type II Error (β)	$\sqrt{\text{(power)}}$

p-value

• p-value =
$$\sup_{\theta \in \Theta_0} \mathbb{P}_{\theta} [T(X) \ge T(x)] = \inf \{ \alpha : T(x) \in R_{\alpha} \}$$

• p-value =
$$\sup_{\theta \in \Theta_0} \underbrace{\mathbb{P}_{\theta} [T(X^*) \ge T(X)]}_{1 - F_{\theta}(T(X)) \text{ since } T(X^*) \sim F_{\theta}} = \inf \{ \alpha : T(X) \in R_{\alpha} \}$$

p-value	evidence
< 0.01	very strong evidence against H_0
0.01 - 0.05	strong evidence against H_0
0.05 - 0.1	weak evidence against H_0
> 0.1	little or no evidence against H_0

Wald test

- Two-sided test
- Reject H_0 when $|W| > z_{\alpha/2}$ where $W = \frac{\widehat{\theta} \theta_0}{\widehat{se}}$
- $\mathbb{P}\left[|W| > z_{\alpha/2}\right] \to \alpha$
- p-value = $\mathbb{P}_{\theta_0}[|W| > |w|] \approx \mathbb{P}[|Z| > |w|] = 2\Phi(-|w|)$

Likelihood ratio test

•
$$T(X) = \frac{\sup_{\theta \in \Theta} \mathcal{L}_n(\theta)}{\sup_{\theta \in \Theta_0} \mathcal{L}_n(\theta)} = \frac{\mathcal{L}_n(\widehat{\theta}_n)}{\mathcal{L}_n(\widehat{\theta}_{n,0})}$$

•
$$\lambda(X) = 2 \log T(X) \xrightarrow{\mathbb{D}} \chi_{r-q}^2$$
 where $\sum_{i=1}^k Z_i^2 \sim \chi_k^2$ and $Z_1, \dots, Z_k \stackrel{iid}{\sim} \mathcal{N}(0,1)$

• p-value =
$$\mathbb{P}_{\theta_0} \left[\lambda(X) > \lambda(x) \right] \approx \mathbb{P} \left[\chi_{r-q}^2 > \lambda(x) \right]$$

Multinomial LRT

• MLE:
$$\widehat{p}_n = \left(\frac{X_1}{n}, \dots, \frac{X_k}{n}\right)$$

•
$$T(X) = \frac{\mathcal{L}_n(\widehat{p}_n)}{\mathcal{L}_n(p_0)} = \prod_{j=1}^k \left(\frac{\widehat{p}_j}{p_{0j}}\right)^{X_j}$$

•
$$\lambda(X) = 2\sum_{j=1}^{k} X_j \log\left(\frac{\widehat{p}_j}{p_{0j}}\right) \stackrel{\text{D}}{\to} \chi_{k-1}^2$$

• The approximate size α LRT rejects H_0 when $\lambda(X) \geq \chi^2_{k-1,\alpha}$

Pearson Chi-square Test

•
$$T = \sum_{j=1}^{k} \frac{(X_j - \mathbb{E}[X_j])^2}{\mathbb{E}[X_j]}$$
 where $\mathbb{E}[X_j] = np_{0j}$ under H_0

- $T \stackrel{\mathrm{D}}{\to} \chi^2_{k-1}$
- p-value = $\mathbb{P}\left[\chi_{k-1}^2 > T(x)\right]$
- Faster $\stackrel{\mathrm{D}}{\to} X_{k-1}^2$ than LRT, hence preferable for small n

Independence testing

- I rows, J columns, \mathbf{X} multinomial sample of size n = I * J
- MLEs unconstrained: $\widehat{p}_{ij} = \frac{X_{ij}}{n}$
- MLEs under H_0 : $\widehat{p}_{0ij} = \widehat{p}_{i.}\widehat{p}_{\cdot j} = \frac{X_{i.}}{n} \frac{X_{\cdot j}}{n}$
- LRT: $\lambda = 2\sum_{i=1}^{I} \sum_{j=1}^{J} X_{ij} \log \left(\frac{nX_{ij}}{X_i \cdot X_{\cdot j}} \right)$
- PearsonChiSq: $T = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(X_{ij} \mathbb{E}[X_{ij}])^2}{\mathbb{E}[X_{ij}]}$
- LRT and Pearson $\stackrel{\mathrm{D}}{\to} \chi_k^2 \nu$, where $\nu = (I-1)(J-1)$

14 Exponential Family

Scalar parameter

$$f_X(x \mid \theta) = h(x) \exp \{ \eta(\theta) T(x) - A(\theta) \}$$

= $h(x)g(\theta) \exp \{ \eta(\theta) T(x) \}$

Vector parameter

$$f_X(x \mid \theta) = h(x) \exp \left\{ \sum_{i=1}^s \eta_i(\theta) T_i(x) - A(\theta) \right\}$$
$$= h(x) \exp \left\{ \eta(\theta) \cdot T(x) - A(\theta) \right\}$$
$$= h(x) g(\theta) \exp \left\{ \eta(\theta) \cdot T(x) \right\}$$

Natural form

$$f_X(x \mid \eta) = h(x) \exp \{ \eta \cdot \mathbf{T}(x) - A(\eta) \}$$
$$= h(x)g(\eta) \exp \{ \eta \cdot \mathbf{T}(x) \}$$
$$= h(x)g(\eta) \exp \{ \eta^T \mathbf{T}(x) \}$$

15 Bayesian Inference

Bayes' Theorem

$$f(\theta \mid x) = \frac{f(x \mid \theta)f(\theta)}{f(x^n)} = \frac{f(x \mid \theta)f(\theta)}{\int f(x \mid \theta)f(\theta) d\theta} \propto \mathcal{L}_n(\theta)f(\theta)$$

Definitions

- $\bullet \ X^n = (X_1, \dots, X_n)$
- $\bullet \ x^n = (x_1, \dots, x_n)$
- Prior density $f(\theta)$
- Likelihood $f(x^n | \theta)$: joint density of the data

In particular,
$$X^n \text{ IID } \implies f(x^n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta) = \mathcal{L}_n(\theta)$$

- Posterior density $f(\theta \mid x^n)$
- Normalizing constant $c_n = f(x^n) = \int f(x \mid \theta) f(\theta) d\theta$
- \bullet Kernel: part of a density that depends on θ
- Posterior mean $\bar{\theta}_n = \int \theta f(\theta \mid x^n) d\theta = \frac{\int \theta \mathcal{L}_n(\theta) f(\theta) d\theta}{\int \mathcal{L}_n(\theta) f(\theta) d\theta}$

15.1 Credible Intervals

Posterior interval

$$\mathbb{P}\left[\theta \in (a,b) \mid x^n\right] = \int_a^b f(\theta \mid x^n) \, d\theta = 1 - \alpha$$

Equal-tail credible interval

$$\int_{-\infty}^{a} f(\theta \mid x^{n}) d\theta = \int_{b}^{\infty} f(\theta \mid x^{n}) d\theta = \alpha/2$$

Highest posterior density (HPD) region R_n

- 1. $\mathbb{P}\left[\theta \in R_n\right] = 1 \alpha$
- 2. $R_n = \{\theta : f(\theta \mid x^n) > k\}$ for some k

 R_n is unimodal $\Longrightarrow R_n$ is an interval

15.2 Function of parameters

Let $\tau = \varphi(\theta)$ and $A = \{\theta : \varphi(\theta) \le \tau\}$.

Posterior CDF for τ

$$H(r \mid x^n) = \mathbb{P}\left[\varphi(\theta) \le \tau \mid x^n\right] = \int_A f(\theta \mid x^n) d\theta$$

Posterior density

$$h(\tau \mid x^n) = H'(\tau \mid x^n)$$

Bayesian delta method

$$\tau \mid X^n \approx \mathcal{N}\left(\varphi(\widehat{\theta}), \widehat{\mathsf{se}}\left|\varphi'(\widehat{\theta})\right|\right)$$

15.3 Priors

Choice

- Subjective Bayesianism: prior should incorporate as much detail as possible the research's a priori knowledge—via *prior elicitation*
- Objective Bayesianism: prior should incorporate as little detail as possible (non-informative prior)
- ullet Robust Bayesianism: consider various priors and determine sensitivity of our inferences to changes in the prior

Types

- Flat: $f(\theta) \propto constant$
- Proper: $\int_{-\infty}^{\infty} f(\theta) d\theta = 1$
- Improper: $\int_{-\infty}^{\infty} f(\theta) d\theta = \infty$
- Jeffrey's Prior (transformation-invariant):

$$f(\theta) \propto \sqrt{I(\theta)}$$
 $f(\theta) \propto \sqrt{\det(I(\theta))}$

• Conjugate: $f(\theta)$ and $f(\theta | x^n)$ belong to the same parametric family

15.3.1 Conjugate Priors

Cont	inuous likelihood (sul	oscript c denotes constant)
Likelihood	Conjugate prior	Posterior hyperparameters
$\mathrm{Unif}\left(0,\theta\right)$	$Pareto(x_m, k)$	$\max_{n} \left\{ x_{(n)}, x_m \right\}, k+n$
$\operatorname{Exp}(\lambda)$	$\operatorname{Gamma}\left(\alpha,\beta\right)$	$\alpha + n, \beta + \sum_{i=1}^{n} x_i$
$\mathcal{N}\left(\mu,\sigma_c^2\right)$	$\mathcal{N}\left(\mu_0,\sigma_0^2\right)$	$\begin{pmatrix} \left(\frac{\mu_0}{\sigma_0^2} + \frac{\sum_{i=1}^n x_i}{\sigma_c^2}\right) / \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma_c^2}\right), \\ \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma_c^2}\right)^{-1} \end{pmatrix}$
$\mathcal{N}\left(\mu_c,\sigma^2\right)$	Scaled Inverse Chi- square (ν, σ_0^2)	$\nu + n, \frac{\nu \sigma_0^2 + \sum_{i=1}^n (x_i - \mu)^2}{\nu + n}$
$\mathcal{N}\left(\mu,\sigma^2\right)$	Normal- scaled Inverse $\operatorname{Gamma}(\lambda, \nu, \alpha, \beta)$	$\begin{vmatrix} \frac{\nu\lambda + n\bar{x}}{\nu + n}, & \nu + n, & \alpha + \frac{n}{2}, \\ \beta + \frac{1}{2} \sum_{i=1}^{n} (x_i - \bar{x})^2 + \frac{\gamma(\bar{x} - \lambda)^2}{2(n + \gamma)} \end{vmatrix}$
$ \text{MVN}(\mu, \Sigma_c) $	$\mathrm{MVN}(\mu_0,\Sigma_0)$	$ \left \begin{array}{l} \left(\Sigma_0^{-1} + n \Sigma_c^{-1} \right)^{-1} \left(\Sigma_0^{-1} \mu_0 + n \Sigma^{-1} \bar{x} \right), \\ \left(\Sigma_0^{-1} + n \Sigma_c^{-1} \right)^{-1} \end{array} \right $
$\mathrm{MVN}(\mu_c,\Sigma)$	Inverse- Wishart (κ, Ψ)	$n + \kappa, \Psi + \sum_{i=1}^{n} (x_i - \mu_c)(x_i - \mu_c)^T$
Pareto (x_{m_c}, k)	$\operatorname{Gamma}\left(\alpha,\beta\right)$	$\alpha + n, \beta + \sum_{i=1}^{n} \log \frac{x_i}{x_{m_c}}$
Pareto (x_m, k_c)	Pareto (x_0, k_0)	$x_0, k_0 - kn \text{ where } k_0 > kn$
Gamma (α_c, β)	Gamma (α_0, β_0)	$\alpha_0 + n\alpha_c, \beta_0 + \sum_{i=1} x_i$

Discrete likelihood					
Likelihood	Conjugate prior	Posterior hyperparameters			
Bern(p)	$\mathrm{Beta}(\alpha,\beta)$	$\alpha + \sum_{i=1}^{n} x_i, \beta + n - \sum_{i=1}^{n} x_i$			
$\operatorname{Bin}(p)$	Beta (α, β)	$\alpha + \sum_{i=1}^{n} x_i, \beta + \sum_{i=1}^{n} N_i - \sum_{i=1}^{n} x_i$			
$\operatorname{NBin}(p)$	Beta (α, β)	$\alpha + rn, \beta + \sum_{i=1}^{n} x_i$			
$\operatorname{Po}(\lambda)$	$\boxed{\operatorname{Gamma}\left(\alpha,\beta\right)}$	$\alpha + \sum_{i=1}^{n} x_i, \beta + n$			
	$\operatorname{Dir}\left(\alpha\right)$	$\alpha + \sum_{i=1}^{n} x^{(i)}$			
Geo(p)	Beta (α, β)	$\alpha + n, \beta + \sum_{i=1}^{n} x_i$			

15.4 Bayesian Testing

If $H_0: \theta \in \Theta_0$:

Prior probability
$$\mathbb{P}\left[H_0\right] = \int_{\Theta_0} f(\theta) \, d\theta$$

Posterior probability $\mathbb{P}\left[H_0 \,|\, x^n\right] = \int_{\Theta_0} f(\theta \,|\, x^n) \, d\theta$

Let $H_0 ... H_{k-1}$ be k hypotheses. Suppose $\theta \sim f(\theta \mid H_k)$,

$$\mathbb{P}\left[H_k \mid x^n\right] = \frac{f(x^n \mid H_k)\mathbb{P}\left[H_k\right]}{\sum_{k=1}^K f(x^n \mid H_k)\mathbb{P}\left[H_k\right]},$$

Marginal likelihood

$$f(x^n \mid H_i) = \int_{\Theta} f(x^n \mid \theta, H_i) f(\theta \mid H_i) d\theta$$

Posterior odds (of H_i relative to H_j)

$$\frac{\mathbb{P}\left[H_{i} \mid x^{n}\right]}{\mathbb{P}\left[H_{j} \mid x^{n}\right]} = \underbrace{\frac{f(x^{n} \mid H_{i})}{f(x^{n} \mid H_{j})}}_{\text{Bayes Factor } BF_{ij}} \times \underbrace{\frac{\mathbb{P}\left[H_{i}\right]}{\mathbb{P}\left[H_{j}\right]}}_{\text{prior odds}}$$

Bayes factor

$\log_{10} BF_{10}$	BF_{10}	evidence
0 - 0.5	1 - 1.5	Weak
0.5 - 1	1.5 - 10	Moderate
1 - 2	10 - 100	Strong
> 2	> 100	Decisive

$$p^* = \frac{\frac{p}{1-p}BF_{10}}{1+\frac{p}{1-p}BF_{10}}$$
 where $p = \mathbb{P}[H_1]$ and $p^* = \mathbb{P}[H_1 \mid x^n]$

16 Sampling Methods

16.1 Inverse Transform Sampling

Setup

- $U \sim \text{Unif}(0,1)$
- X ~ I
- $F^{-1}(u) = \inf\{x \mid F(x) \ge u\}$

Algorithm

- 1. Generate $u \sim \text{Unif}(0,1)$
- 2. Compute $x = F^{-1}(u)$

16.2 The Bootstrap

Let $T_n = g(X_1, \ldots, X_n)$ be a statistic.

- 1. Estimate $\mathbb{V}_F[T_n]$ with $\mathbb{V}_{\widehat{F}_n}[T_n]$.
- 2. Approximate $\mathbb{V}_{\widehat{F}_n}[T_n]$ using simulation:
 - (a) Repeat the following B times to get $T_{n,1}^*, \ldots, T_{n,B}^*$, an IID sample from the sampling distribution implied by \widehat{F}_n
 - i. Sample uniformly $X_1^*, \ldots, X_n^* \sim \widehat{F}_n$.
 - ii. Compute $T_n^* = g(X_1^*, ..., X_n^*)$.
 - (b) Then

$$v_{boot} = \widehat{\mathbb{V}}_{\widehat{F}_n} = \frac{1}{B} \sum_{b=1}^{B} \left(T_{n,b}^* - \frac{1}{B} \sum_{r=1}^{B} T_{n,r}^* \right)^2$$

16.2.1 Bootstrap Confidence Intervals

Normal-based interval

$$T_n \pm z_{\alpha/2} \widehat{\mathsf{se}}_{boot}$$

Pivotal interval

1. Location parameter $\theta = T(F)$

2. Pivot $R_n = \widehat{\theta}_n - \theta$

3. Let $H(r) = \mathbb{P}[R_n \leq r]$ be the CDF of R_n

4. Let $R_{n,b}^* = \hat{\theta}_{n,b}^* - \hat{\theta}_n$. Approximate H using bootstrap:

$$\widehat{H}(r) = \frac{1}{B} \sum_{b=1}^{B} I(R_{n,b}^* \le r)$$

5. $\theta_{\beta}^* = \beta$ sample quantile of $(\widehat{\theta}_{n,1}^*, \dots, \widehat{\theta}_{n,B}^*)$

6. $r_{\beta}^* = \text{beta sample quantile of } (R_{n,1}^*, \dots, R_{n,B}^*), \text{ i.e., } r_{\beta}^* = \theta_{\beta}^* - \widehat{\theta}_n$

7. Approximate $1 - \alpha$ confidence interval $C_n = (\hat{a}, \hat{b})$ where

$$\hat{a} = \widehat{\theta}_n - \widehat{H}^{-1} \left(1 - \frac{\alpha}{2} \right) = \widehat{\theta}_n - r_{1-\alpha/2}^* = 2\widehat{\theta}_n - \theta_{1-\alpha/2}^*$$

$$\hat{b} = \widehat{\theta}_n - \widehat{H}^{-1} \left(\frac{\alpha}{2} \right) = \widehat{\theta}_n - r_{\alpha/2}^* = 2\widehat{\theta}_n - \theta_{\alpha/2}^*$$

Percentile interval

$$C_n = \left(\theta_{\alpha/2}^*, \theta_{1-\alpha/2}^*\right)$$

16.3 Rejection Sampling

Setup

• We can easily sample from $g(\theta)$

• We want to sample from $h(\theta)$, but it is difficult

• We know $h(\theta)$ up to a proportional constant: $h(\theta) = \frac{k(\theta)}{\int k(\theta) d\theta}$

• Envelope condition: we can find M > 0 such that $k(\theta) \leq Mg(\theta) \quad \forall \theta$

Algorithm

1. Draw $\theta^{cand} \sim g(\theta)$

2. Generate $u \sim \text{Unif}(0,1)$

3. Accept θ^{cand} if $u \leq \frac{k(\theta^{cand})}{Mq(\theta^{cand})}$

4. Repeat until B values of θ^{cand} have been accepted

Example

• We can easily sample from the prior $g(\theta) = f(\theta)$

• Target is the posterior $h(\theta) \propto k(\theta) = f(x^n \mid \theta) f(\theta)$

• Envelope condition: $f(x^n \mid \theta) < f(x^n \mid \widehat{\theta}_n) = \mathcal{L}_n(\widehat{\theta}_n) \equiv M$

• Algorithm

1. Draw $\theta^{cand} \sim f(\theta)$

2. Generate $u \sim \text{Unif}(0,1)$

3. Accept θ^{cand} if $u \leq \frac{\mathcal{L}_n(\theta^{cand})}{\mathcal{L}_n(\widehat{\theta}_n)}$

16.4 Importance Sampling

Sample from an importance function g rather than target density h. Algorithm to obtain an approximation to $\mathbb{E}\left[q(\theta)\,|\,x^n\right]$:

1. Sample from the prior $\theta_1, \ldots, \theta_n \stackrel{iid}{\sim} f(\theta)$

2. $w_i = \frac{\mathcal{L}_n(\theta_i)}{\sum_{i=1}^B \mathcal{L}_n(\theta_i)} \quad \forall i = 1, \dots, B$

3. $\mathbb{E}\left[q(\theta) \mid x^n\right] \approx \sum_{i=1}^B q(\theta_i) w_i$

17 Decision Theory

Definitions

• Unknown quantity affecting our decision: $\theta \in \Theta$

• Decision rule: synonymous for an estimator $\widehat{\theta}$

• Action $a \in \mathcal{A}$: possible value of the decision rule. In the estimation context, the action is just an estimate of θ , $\widehat{\theta}(x)$.

• Loss function L: consequences of taking action a when true state is θ or discrepancy between θ and $\widehat{\theta}$, $L: \Theta \times \mathcal{A} \to [-k, \infty)$.

Loss functions

• Squared error loss: $L(\theta, a) = (\theta - a)^2$

• Linear loss: $L(\theta, a) = \begin{cases} K_1(\theta - a) & a - \theta < 0 \\ K_2(a - \theta) & a - \theta \ge 0 \end{cases}$

• Absolute error loss: $L(\theta, a) = |\theta - a|$ (linear loss with $K_1 = K_2$)

• L_p loss: $L(\theta, a) = |\theta - a|^p$

• Zero-one loss: $L(\theta, a) = \begin{cases} 0 & a = \theta \\ 1 & a \neq \theta \end{cases}$

17.1 Risk

Posterior risk

$$r(\widehat{\theta} \mid x) = \int L(\theta, \widehat{\theta}(x)) f(\theta \mid x) d\theta = \mathbb{E}_{\theta \mid X} \left[L(\theta, \widehat{\theta}(x)) \right]$$

(Frequentist) risk

$$R(\theta, \widehat{\theta}) = \int L(\theta, \widehat{\theta}(x)) f(x \mid \theta) dx = \mathbb{E}_{X \mid \theta} \left[L(\theta, \widehat{\theta}(X)) \right]$$

Bayes risk

$$r(f, \widehat{\theta}) = \iint L(\theta, \widehat{\theta}(x)) f(x, \theta) \, dx \, d\theta = \mathbb{E}_{\theta, X} \left[L(\theta, \widehat{\theta}(X)) \right]$$
$$r(f, \widehat{\theta}) = \mathbb{E}_{\theta} \left[\mathbb{E}_{X|\theta} \left[L(\theta, \widehat{\theta}(X)) \right] \right] = \mathbb{E}_{\theta} \left[R(\theta, \widehat{\theta}) \right]$$
$$r(f, \widehat{\theta}) = \mathbb{E}_{X} \left[\mathbb{E}_{\theta|X} \left[L(\theta, \widehat{\theta}(X)) \right] \right] = \mathbb{E}_{X} \left[r(\widehat{\theta}|X) \right]$$

17.2 Admissibility

• $\widehat{\theta}'$ dominates $\widehat{\theta}$ if

$$\forall \theta : R(\theta, \widehat{\theta}') \le R(\theta, \widehat{\theta})$$

$$\exists \theta : R(\theta, \widehat{\theta}') < R(\theta, \widehat{\theta})$$

• $\widehat{\theta}$ is inadmissible if there is at least one other estimator $\widehat{\theta}'$ that dominates it. Otherwise it is called admissible.

17.3 Bayes Rule

Bayes rule (or Bayes estimator)

- $r(f, \widehat{\theta}) = \inf_{\widetilde{\theta}} r(f, \widetilde{\theta})$
- $\widehat{\theta}(x) = \inf r(\widehat{\theta} \mid x) \ \forall x \implies r(f, \widehat{\theta}) = \int r(\widehat{\theta} \mid x) f(x) \ dx$

Theorems

- Squared error loss: posterior mean
- Absolute error loss: posterior median
- Zero-one loss: posterior mode

17.4 Minimax Rules

Maximum risk

$$\bar{R}(\hat{\theta}) = \sup_{\theta} R(\theta, \hat{\theta}) \qquad \bar{R}(a) = \sup_{\theta} R(\theta, a)$$

Minimax rule

$$\sup_{\theta} R(\theta, \widehat{\theta}) = \inf_{\widetilde{\theta}} \bar{R}(\widetilde{\theta}) = \inf_{\widetilde{\theta}} \sup_{\theta} R(\theta, \widetilde{\theta})$$

$$\widehat{\theta} = \text{Bayes rule } \wedge \exists c : R(\theta, \widehat{\theta}) = c$$

Least favorable prior

$$\widehat{\theta}^f = \text{Bayes rule } \wedge R(\theta, \widehat{\theta}^f) \leq r(f, \widehat{\theta}^f) \ \forall \theta$$

18 Linear Regression

Definitions

- \bullet Response variable Y
- Covariate X (aka predictor variable or feature)

18.1 Simple Linear Regression

Model

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
 $\mathbb{E}\left[\epsilon_i \mid X_i\right] = 0, \ \mathbb{V}\left[\epsilon_i \mid X_i\right] = \sigma^2$

Fitted line

$$\widehat{r}(x) = \widehat{\beta}_0 + \widehat{\beta}_1 x$$

Predicted (fitted) values

$$\widehat{Y}_i = \widehat{r}(X_i)$$

Residuals

$$\hat{\epsilon}_i = Y_i - \widehat{Y}_i = Y_i - \left(\widehat{\beta}_0 + \widehat{\beta}_1 X_i\right)$$

Residual sums of squares (RSS)

$$\operatorname{RSS}(\widehat{\beta}_0, \widehat{\beta}_1) = \sum_{i=1}^n \widehat{\epsilon}_i^2$$

Least square estimates

$$\widehat{\beta}^T = (\widehat{\beta}_0, \widehat{\beta}_1)^T : \min_{\widehat{\beta}_0, \widehat{\beta}_1} RSS$$

$$\begin{split} \widehat{\beta}_0 &= \bar{Y}_n - \widehat{\beta}_1 \bar{X}_n \\ \widehat{\beta}_1 &= \frac{\sum_{i=1}^n (X_i - \bar{X}_n) (Y_i - \bar{Y}_n)}{\sum_{i=1}^n (X_i - \bar{X}_n)^2} = \frac{\sum_{i=1}^n X_i Y_i - n \bar{X} \overline{Y}}{\sum_{i=1}^n X_i^2 - n \overline{X^2}} \\ \mathbb{E} \left[\widehat{\beta} \, | \, X^n \right] &= \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} \\ \mathbb{V} \left[\widehat{\beta} \, | \, X^n \right] &= \frac{\sigma^2}{n s_X^2} \begin{pmatrix} n^{-1} \sum_{i=1}^n X_i^2 & -\overline{X}_n \\ -\overline{X}_n & 1 \end{pmatrix} \\ \widehat{\operatorname{se}}(\widehat{\beta}_0) &= \frac{\widehat{\sigma}}{s_X \sqrt{n}} \sqrt{\frac{\sum_{i=1}^n X_i^2}{n}} \\ \widehat{\operatorname{se}}(\widehat{\beta}_1) &= \frac{\widehat{\sigma}}{s_X \sqrt{n}} \end{split}$$

where $s_X^2 = n^{-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$ and $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{\epsilon}_i^2$ (unbiased estimate). Further properties:

• Consistency: $\widehat{\beta}_0 \stackrel{P}{\rightarrow} \beta_0$ and $\widehat{\beta}_1 \stackrel{P}{\rightarrow} \beta_1$

• Asymptotic normality:

$$\frac{\widehat{\beta}_{0} - \beta_{0}}{\widehat{\mathsf{se}}(\widehat{\beta}_{0})} \overset{\text{\tiny D}}{\to} \mathcal{N}\left(0, 1\right) \quad \text{and} \quad \frac{\widehat{\beta}_{1} - \beta_{1}}{\widehat{\mathsf{se}}(\widehat{\beta}_{1})} \overset{\text{\tiny D}}{\to} \mathcal{N}\left(0, 1\right)$$

• Approximate $1 - \alpha$ confidence intervals for β_0 and β_1 :

$$\widehat{\beta}_0 \pm z_{\alpha/2} \widehat{\mathsf{se}}(\widehat{\beta}_0)$$
 and $\widehat{\beta}_1 \pm z_{\alpha/2} \widehat{\mathsf{se}}(\widehat{\beta}_1)$

• Wald test for $H_0: \beta_1 = 0$ vs. $H_1: \beta_1 \neq 0$: reject H_0 if $|W| > z_{\alpha/2}$ where $W = \widehat{\beta}_1/\widehat{\operatorname{se}}(\widehat{\beta}_1)$.

 \mathbb{R}^2

$$R^{2} = \frac{\sum_{i=1}^{n} (\widehat{Y}_{i} - \overline{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}} = 1 - \frac{\sum_{i=1}^{n} \widehat{\epsilon}_{i}^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$

Likelihood

$$\mathcal{L} = \prod_{i=1}^{n} f(X_i, Y_i) = \prod_{i=1}^{n} f_X(X_i) \times \prod_{i=1}^{n} f_{Y|X}(Y_i \mid X_i) = \mathcal{L}_1 \times \mathcal{L}_2$$

$$\mathcal{L}_1 = \prod_{i=1}^{n} f_X(X_i)$$

$$\mathcal{L}_2 = \prod_{i=1}^{n} f_{Y|X}(Y_i \mid X_i) \propto \sigma^{-n} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i} \left(Y_i - (\beta_0 - \beta_1 X_i)\right)^2\right\}$$

Under the assumption of Normality, the least squares estimator is also the MLE but the least squares variance estimator is not the MLE.

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \widehat{\epsilon}_i^2$$

18.2 Prediction

Observe $X = x_*$ of the covariate and want to predict their outcome Y_* .

$$\widehat{Y}_* = \widehat{\beta}_0 + \widehat{\beta}_1 x_*$$

$$\mathbb{V}\left[\widehat{Y}_*\right] = \mathbb{V}\left[\widehat{\beta}_0\right] + x_*^2 \mathbb{V}\left[\widehat{\beta}_1\right] + 2x_* \operatorname{Cov}\left[\widehat{\beta}_0, \widehat{\beta}_1\right]$$

Prediction interval

$$\widehat{\xi}_n^2 = \widehat{\sigma}^2 \left(\frac{\sum_{i=1}^n (X_i - X_*)^2}{n \sum_i (X_i - \bar{X})^2 j} + 1 \right)$$

$$\widehat{Y}_* \pm z_{\alpha/2} \widehat{\xi}_n$$

18.3 Multiple Regression

$$Y = X\beta + \epsilon$$

where

$$X = \begin{pmatrix} X_{11} & \cdots & X_{1k} \\ \vdots & \ddots & \vdots \\ X_{n1} & \cdots & X_{nk} \end{pmatrix} \quad \beta = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_k \end{pmatrix} \quad \epsilon = \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

Likelihood

$$\mathcal{L}(\mu, \Sigma) = (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \text{RSS}\right\}$$

RSS =
$$(y - X\beta)^T (y - X\beta) = ||Y - X\beta||^2 = \sum_{i=1}^{N} (Y_i - x_i^T \beta)^2$$

If the $(k \times k)$ matrix $X^T X$ is invertible,

$$\begin{split} \widehat{\beta} &= (X^T X)^{-1} X^T Y \\ \mathbb{V}\left[\widehat{\beta} \,|\, X^n\right] &= \sigma^2 (X^T X)^{-1} \\ \widehat{\beta} &\approx \mathcal{N}\left(\beta, \sigma^2 (X^T X)^{-1}\right) \end{split}$$

Estimate regression function

$$\widehat{r}(x) = \sum_{j=1}^{k} \widehat{\beta}_j x_j$$

Unbiased estimate for σ^2

$$\hat{\sigma}^2 = \frac{1}{n-k} \sum_{i=1}^n \hat{\epsilon}_i^2 \qquad \hat{\epsilon} = X \hat{\beta} - Y$$

MLE

$$\widehat{\mu} = \overline{X}$$
 $\widehat{\sigma}^2 = \frac{n-k}{n}\sigma^2$

 $1 - \alpha$ Confidence interval

$$\widehat{\beta}_j \pm z_{\alpha/2} \widehat{\mathsf{se}}(\widehat{\beta}_j)$$

18.4 Model Selection

Consider predicting a new observation Y^* for covariates X^* and let $S \subset J$ denote a subset of the covariates in the model, where |S| = k and |J| = n. Issues

- Underfitting: too few covariates yields high bias
- Overfitting: too many covariates yields high variance

Procedure

- 1. Assign a score to each model
- 2. Search through all models to find the one with the highest score

Hypothesis testing

$$H_0: \beta_j = 0 \text{ vs. } H_1: \beta_j \neq 0 \quad \forall j \in J$$

Mean squared prediction error (MSPE)

$$\text{MSPE} = \mathbb{E}\left[(\widehat{Y}(S) - Y^*)^2\right]$$

Prediction risk

$$R(S) = \sum_{i=1}^{n} \text{MSPE}_i = \sum_{i=1}^{n} \mathbb{E}\left[(\widehat{Y}_i(S) - Y_i^*)^2 \right]$$

Training error

$$\widehat{R}_{tr}(S) = \sum_{i=1}^{n} (\widehat{Y}_i(S) - Y_i)^2$$

 \mathbb{R}^2

$$R^{2}(S) = 1 - \frac{\text{RSS}(S)}{\text{TSS}} = 1 - \frac{\widehat{R}_{tr}(S)}{\text{TSS}} = 1 - \frac{\sum_{i=1}^{n} (\widehat{Y}_{i}(S) - \overline{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}$$

The training error is a downward-biased estimate of the prediction risk.

$$\mathbb{E}\left[\widehat{R}_{tr}(S)\right] < R(S)$$

$$\operatorname{bias}(\widehat{R}_{tr}(S)) = \mathbb{E}\left[\widehat{R}_{tr}(S)\right] - R(S) = -2\sum_{i=1}^{n} \operatorname{Cov}\left[\widehat{Y}_{i}, Y_{i}\right]$$

Adjusted \mathbb{R}^2

$$R^{2}(S) = 1 - \frac{n-1}{n-k} \frac{\text{RSS}}{\text{TSS}}$$

Mallow's C_p statistic

$$\widehat{R}(S) = \widehat{R}_{tr}(S) + 2k\widehat{\sigma}^2 = \text{lack of fit} + \text{complexity penalty}$$

Akaike Information Criterion (AIC)

$$AIC(S) = \ell_n(\widehat{\beta}_S, \widehat{\sigma}_S^2) - k$$

Bayesian Information Criterion (BIC)

$$BIC(S) = \ell_n(\widehat{\beta}_S, \widehat{\sigma}_S^2) - \frac{k}{2} \log n$$

Validation and training

$$\widehat{R}_V(S) = \sum_{i=1}^m (\widehat{Y}_i^*(S) - Y_i^*)^2 \qquad m = |\{\text{validation data}\}|, \text{ often } \frac{n}{4} \text{ or } \frac{n}{2}$$

Leave-one-out cross-validation

$$\widehat{R}_{CV}(S) = \sum_{i=1}^{n} (Y_i - \widehat{Y}_{(i)})^2 = \sum_{i=1}^{n} \left(\frac{Y_i - \widehat{Y}_i(S)}{1 - U_{ii}(S)} \right)^2$$

$$U(S) = X_S(X_S^T X_S)^{-1} X_S$$
 ("hat matrix")

19 Non-parametric Function Estimation

19.1 Density Estimation

Estimate f(x), where $f(x) = \mathbb{P}[X \in A] = \int_A f(x) dx$. Integrated square error (ISE)

$$L(f, \widehat{f}_n) = \int \left(f(x) - \widehat{f}_n(x) \right)^2 dx = J(h) + \int f^2(x) dx$$

Frequentist risk

$$R(f, \widehat{f}_n) = \mathbb{E}\left[L(f, \widehat{f}_n)\right] = \int b^2(x) dx + \int v(x) dx$$

$$b(x) = \mathbb{E}\left[\widehat{f}_n(x)\right] - f(x)$$
$$v(x) = \mathbb{V}\left[\widehat{f}_n(x)\right]$$

19.1.1 Histograms

Definitions

- \bullet Number of bins m
- Binwidth $h = \frac{1}{m}$
- Bin B_i has ν_i observations
- Define $\widehat{p}_j = \nu_j/n$ and $p_j = \int_{B_i} f(u) du$

Histogram estimator

$$\widehat{f}_n(x) = \sum_{j=1}^m \frac{\widehat{p}_j}{h} I(x \in B_j)$$

$$\mathbb{E}\left[\widehat{f}_n(x)\right] = \frac{p_j}{h}$$

$$\mathbb{V}\left[\widehat{f}_n(x)\right] = \frac{p_j(1 - p_j)}{nh^2}$$

$$R(\widehat{f}_n, f) \approx \frac{h^2}{12} \int (f'(u))^2 du + \frac{1}{nh}$$

$$h^* = \frac{1}{n^{1/3}} \left(\frac{6}{\int (f'(u))^2} du\right)^{1/3}$$

$$R^*(\widehat{f}_n, f) \approx \frac{C}{n^{2/3}} \qquad C = \left(\frac{3}{4}\right)^{2/3} \left(\int (f'(u))^2 du\right)^{1/3}$$

Cross-validation estimate of $\mathbb{E}\left[J(h)\right]$

$$\widehat{J}_{CV}(h) = \int \widehat{f}_n^2(x) \, dx - \frac{2}{n} \sum_{i=1}^n \widehat{f}_{(-i)}(X_i) = \frac{2}{(n-1)h} - \frac{n+1}{(n-1)h} \sum_{j=1}^m \widehat{p}_j^2$$

19.1.2 Kernel Density Estimator (KDE)

Kernel K

- $K(x) \geq 0$
- $\int K(x) dx = 1$
- $\int xK(x) dx = 0$
- $\int x^2 K(x) dx \equiv \sigma_K^2 > 0$

KDE

$$\widehat{f}_n(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h} K\left(\frac{x - X_i}{h}\right)$$

$$R(f, \widehat{f}_n) \approx \frac{1}{4} (h\sigma_K)^4 \int (f''(x))^2 dx + \frac{1}{nh} \int K^2(x) dx$$

$$h^* = \frac{c_1^{-2/5} c_2^{-1/5} c_3^{-1/5}}{n^{1/5}} \qquad c_1 = \sigma_K^2, \ c_2 = \int K^2(x) dx, \ c_3 = \int (f''(x))^2 dx$$

$$R^*(f, \widehat{f}_n) = \frac{c_4}{n^{4/5}} \qquad c_4 = \underbrace{\frac{5}{4} (\sigma_K^2)^{2/5} \left(\int K^2(x) dx\right)^{4/5}}_{C(K)} \left(\int (f'')^2 dx\right)^{1/5}$$

EPANECHNIKOV Kernel

$$K(x) = \begin{cases} \frac{3}{4\sqrt{5}(1-x^2/5)} & |x| < \sqrt{5} \\ 0 & \text{otherwise} \end{cases}$$

Cross-validation estimate of $\mathbb{E}\left[J(h)\right]$

$$\widehat{J}_{CV}(h) = \int \widehat{f}_n^2(x) \, dx - \frac{2}{n} \sum_{i=1}^n \widehat{f}_{(-i)}(X_i) \approx \frac{1}{hn^2} \sum_{i=1}^n \sum_{j=1}^n K^* \left(\frac{X_i - X_j}{h}\right) + \frac{2}{nh} K(0)$$

$$K^*(x) = K^{(2)}(x) - 2K(x) \qquad K^{(2)}(x) = \int K(x - y) K(y) \, dy$$

19.2 Non-parametric Regression

Estimate f(x) where $f(x) = \mathbb{E}[Y | X = x]$. Consider pairs of points $(x_1, Y_1), \dots, (x_n, Y_n)$ related by

$$Y_i = r(x_i) + \epsilon_i$$

$$\mathbb{E}\left[\epsilon_i\right] = 0$$

$$\mathbb{V}\left[\epsilon_i\right] = \sigma^2$$

k-nearest Neighbor Estimator

$$\widehat{r}(x) = \frac{1}{k} \sum_{i: x_i \in N_k(x)} Y_i \quad \text{where } N_k(x) = \{k \text{ values of } x_1, \dots, x_n \text{ closest to } x\}$$

NADARAYA-WATSON Kernel Estimator

$$\begin{split} \widehat{r}(x) &= \sum_{i=1}^n w_i(x) Y_i \\ w_i(x) &= \frac{K\left(\frac{x-x_i}{h}\right)}{\sum_{j=1}^n K\left(\frac{x-x_j}{h}\right)} \quad \in [0,1] \\ R(\widehat{r}_n,r) &\approx \frac{h^4}{4} \left(\int x^2 K^2(x) \, dx\right)^4 \int \left(r''(x) + 2r'(x) \frac{f'(x)}{f(x)}\right)^2 \, dx \\ &+ \int \frac{\sigma^2 \int K^2(x) \, dx}{nhf(x)} \, dx \\ h^* &\approx \frac{c_1}{n^{1/5}} \\ R^*(\widehat{r}_n,r) &\approx \frac{c_2}{n^{4/5}} \end{split}$$

Cross-validation estimate of $\mathbb{E}\left[J(h)\right]$

$$\widehat{J}_{CV}(h) = \sum_{i=1}^{n} (Y_i - \widehat{r}_{(-i)}(x_i))^2 = \sum_{i=1}^{n} \frac{(Y_i - \widehat{r}(x_i))^2}{\left(1 - \frac{K(0)}{\sum_{j=1}^{n} K\left(\frac{x - x_j}{h}\right)}\right)^2}$$

19.3 Smoothing Using Orthogonal Functions

Approximation

$$r(x) = \sum_{j=1}^{\infty} \beta_j \phi_j(x) \approx \sum_{j=1}^{J} \beta_j \phi_j(x)$$

Multivariate regression

$$Y = \Phi \beta + \eta$$
where $\eta_i = \epsilon_i$ and $\Phi = \begin{pmatrix} \phi_0(x_1) & \cdots & \phi_J(x_1) \\ \vdots & \ddots & \vdots \\ \phi_0(x_n) & \cdots & \phi_J(x_n) \end{pmatrix}$

Least squares estimator

$$\begin{split} \widehat{\beta} &= (\Phi^T \Phi)^{-1} \Phi^T Y \\ &\approx \frac{1}{n} \Phi^T Y \quad \text{(for equally spaced observations only)} \end{split}$$

Cross-validation estimate of $\mathbb{E}\left[J(h)\right]$

$$\widehat{R}_{CV}(J) = \sum_{i=1}^{n} \left(Y_i - \sum_{j=1}^{J} \phi_j(x_i) \widehat{\beta}_{j,(-i)} \right)^2$$

20 Stochastic Processes

Stochastic Process

$$\{X_t : t \in T\}$$
 $T = \begin{cases} \{0, \pm 1, \dots\} = \mathbb{Z} & \text{discrete} \\ [0, \infty) & \text{continuous} \end{cases}$

- Notations X_t , X(t)
- State space \mathcal{X}
- \bullet Index set T

20.1 Markov Chains

Markov chain

$$\mathbb{P}\left[X_n = x \mid X_0, \dots, X_{n-1}\right] = \mathbb{P}\left[X_n = x \mid X_{n-1}\right] \quad \forall n \in T, x \in \mathcal{X}$$

Transition probabilities

$$p_{ij} \equiv \mathbb{P}\left[X_{n+1} = j \mid X_n = i\right]$$
$$p_{ij}(n) \equiv \mathbb{P}\left[X_{m+n} = j \mid X_m = i\right] \quad \text{n-step}$$

Transition matrix \mathbf{P} (n-step: \mathbf{P}_n)

- (i,j) element is p_{ij}
- $p_{ij} > 0$
- $\sum_{i} p_{ij} = 1$

CHAPMAN-KOLMOGOROV

$$p_{ij}(m+n) = \sum_{k} p_{ij}(m)p_{kj}(n)$$

$$\mathbf{P}_{m+n} = \mathbf{P}_m \mathbf{P}_n$$

$$\mathbf{P}_n = \mathbf{P} \times \cdots \times \mathbf{P} = \mathbf{P}^n$$

Marginal probability

$$\mu_n = (\mu_n(1), \dots, \mu_n(N))$$
 where $\mu_i(i) = \mathbb{P}[X_n = i]$
 $\mu_0 \triangleq \text{initial distribution}$
 $\mu_n = \mu_0 \mathbf{P}^n$

20.2 Poisson Processes

Poisson process

- $\{X_t : t \in [0,\infty)\}$ = number of events up to and including time t
- $X_0 = 0$
- Independent increments:

$$\forall t_0 < \dots < t_n : X_{t_1} - X_{t_0} \perp \!\!\! \perp \dots \perp \!\!\! \perp X_{t_n} - X_{t_{n-1}}$$

• Intensity function $\lambda(t)$

$$- \mathbb{P}[X_{t+h} - X_t = 1] = \lambda(t)h + o(h) - \mathbb{P}[X_{t+h} - X_t = 2] = o(h)$$

• $X_{s+t} - X_s \sim \text{Po}\left(m(s+t) - m(s)\right)$ where $m(t) = \int_0^t \lambda(s) \, ds$

Homogeneous Poisson process

$$\lambda(t) \equiv \lambda \implies X_t \sim \text{Po}(\lambda t) \qquad \lambda > 0$$

Waiting times

 $W_t := \text{time at which } X_t \text{ occurs}$

$$W_t \sim \operatorname{Gamma}\left(t, \frac{1}{\lambda}\right)$$

Interarrival times

$$S_t = W_{t+1} - W_t$$

$$S_t \sim \operatorname{Exp}\left(\frac{1}{\lambda}\right)$$

21 Time Series

Mean function

$$\mu_{x_t} = \mathbb{E}\left[x_t\right] = \int_{-\infty}^{\infty} x f_t(x) \, dx$$

Autocovariance function

$$\gamma_x(s,t) = \mathbb{E}\left[(x_s - \mu_s)(x_t - \mu_t) \right] = \mathbb{E}\left[x_s x_t \right] - \mu_s \mu_t$$
$$\gamma_x(t,t) = \mathbb{E}\left[(x_t - \mu_t)^2 \right] = \mathbb{V}\left[x_t \right]$$

Autocorrelation function (ACF)

$$\rho(s,t) = \frac{\operatorname{Cov}\left[x_s, x_t\right]}{\sqrt{\mathbb{V}\left[x_s\right]\mathbb{V}\left[x_t\right]}} = \frac{\gamma(s,t)}{\sqrt{\gamma(s,s)\gamma(t,t)}}$$

Cross-covariance function (CCV)

$$\gamma_{xy}(s,t) = \mathbb{E}\left[(x_s - \mu_{x_s})(y_t - \mu_{y_t}) \right]$$

Cross-correlation function (CCF)

$$\rho_{xy}(s,t) = \frac{\gamma_{xy}(s,t)}{\sqrt{\gamma_x(s,s)\gamma_y(t,t)}}$$

Backshift operator

$$B^k(x_t) = x_{t-k}$$

Difference operator

$$\nabla^d = (1 - B)^d$$

White noise

- $w_t \sim wn(0, \sigma_w^2)$
- Gaussian: $w_t \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma_w^2\right)$
- $\mathbb{E}\left[w_t\right] = 0 \quad t \in T$
- $\mathbb{V}[w_t] = \sigma^2 \quad t \in T$
- $\gamma_w(s,t) = 0$ $s \neq t \land s, t \in T$

Random walk

- Drift δ
- $x_t = \delta t + \sum_{j=1}^t w_j$
- $\mathbb{E}\left[x_t\right] = \delta t$

Symmetric moving average

$$m_t = \sum_{j=-k}^k a_j x_{t-j}$$
 where $a_j = a_{-j} \ge 0$ and $\sum_{j=-k}^k a_j = 1$

21.1 Stationary Time Series

Strictly stationary

$$\mathbb{P}\left[x_{t_1} \le c_1, \dots, x_{t_k} \le c_k\right] = \mathbb{P}\left[x_{t_1+h} \le c_1, \dots, x_{t_k+h} \le c_k\right]$$
$$\forall k \in \mathbb{N}, t_k, c_k, h \in \mathbb{Z}$$

Weakly stationary

- $\mathbb{E}\left[x_t^2\right] < \infty \quad \forall t \in \mathbb{Z}$
- $\mathbb{E}\left[x_t^2\right] = m \quad \forall t \in \mathbb{Z}$
- $\gamma_x(s,t) = \gamma_x(s+r,t+r) \quad \forall r,s,t \in \mathbb{Z}$

Autocovariance function

- $\gamma(h) = \mathbb{E}\left[(x_{t+h} \mu)(x_t \mu) \right] \quad \forall h \in \mathbb{Z}$
- $\gamma(0) = \mathbb{E}\left[(x_t \mu)^2\right]$
- $\gamma(0) \ge 0$
- $\gamma(0) \ge |\gamma(h)|$
- $\gamma(h) = \gamma(-h)$

Autocorrelation function (ACF)

$$\rho_x(h) = \frac{\operatorname{Cov}\left[x_{t+h}, x_t\right]}{\sqrt{\mathbb{V}\left[x_{t+h}\right] \mathbb{V}\left[x_t\right]}} = \frac{\gamma(t+h, t)}{\sqrt{\gamma(t+h, t+h)\gamma(t, t)}} = \frac{\gamma(h)}{\gamma(0)}$$

Jointly stationary time series

$$\gamma_{xy}(h) = \mathbb{E}\left[(x_{t+h} - \mu_x)(y_t - \mu_y) \right]$$

$$\rho_{xy}(h) = \frac{\gamma_{xy}(h)}{\sqrt{\gamma_x(0)\gamma_y(h)}}$$

Linear process

$$x_t = \mu + \sum_{j=-\infty}^{\infty} \psi_j w_{t-j}$$
 where $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$

$$\gamma(h) = \sigma_w^2 \sum_{j=-\infty}^{\infty} \psi_{j+h} \psi_j$$

21.2 Estimation of Correlation

Sample mean

$$\bar{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$

Sample variance

$$\mathbb{V}\left[\bar{x}\right] = \frac{1}{n} \sum_{h=-n}^{n} \left(1 - \frac{|h|}{n}\right) \gamma_x(h)$$

Sample autocovariance function

$$\widehat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-h} (x_{t+h} - \bar{x})(x_t - \bar{x})$$

Sample autocorrelation function

$$\widehat{\rho}(h) = \frac{\widehat{\gamma}(h)}{\widehat{\gamma}(0)}$$

Sample cross-variance function

$$\widehat{\gamma}_{xy}(h) = \frac{1}{n} \sum_{t=1}^{n-h} (x_{t+h} - \overline{x})(y_t - \overline{y})$$

Sample cross-correlation function

$$\widehat{\rho}_{xy}(h) = \frac{\widehat{\gamma}_{xy}(h)}{\sqrt{\widehat{\gamma}_x(0)\widehat{\gamma}_y(0)}}$$

Properties

- $\sigma_{\widehat{\rho}_x(h)} = \frac{1}{\sqrt{n}}$ if x_t is white noise
- $\sigma_{\widehat{\rho}_{xy}(h)} = \frac{1}{\sqrt{n}}$ if x_t or y_t is white noise

21.3 Non-Stationary Time Series

Classical decomposition model

$$x_t = \mu_t + s_t + w_t$$

- $\mu_t = \text{trend}$
- $s_t = \text{seasonal component}$
- $w_t = \text{random noise term}$

21.3.1 Detrending

Least squares

1. Choose trend model, e.g., $\mu_t = \beta_0 + \beta_1 t + \beta_2 t^2$

2. Minimize RSS to obtain trend estimate $\hat{\mu}_t = \hat{\beta}_0 + \hat{\beta}_1 t + \hat{\beta}_2 t^2$

3. Residuals \triangleq noise w_t

Moving average

• The low-pass filter v_t is a symmetric moving average m_t with $a_j = \frac{1}{2k+1}$:

$$v_t = \frac{1}{2k+1} \sum_{i=-k}^{k} x_{t-1}$$

• If $\frac{1}{2k+1} \sum_{i=-k}^{k} w_{t-j} \approx 0$, a linear trend function $\mu_t = \beta_0 + \beta_1 t$ passes without distortion

Differencing

•
$$\mu_t = \beta_0 + \beta_1 t \implies \nabla x_t = \beta_1$$

21.4 ARIMA models

Autoregressive polynomial

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z_p$$
 $z \in \mathbb{C} \land \phi_p \neq 0$

Autoregressive operator

$$\phi(B) = 1 - \phi_1 B - \dots - \phi_p B^p$$

Autoregressive model order p, AR (p)

$$x_t = \phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + w_t \iff \phi(B) x_t = w_t$$

AR(1)

•
$$x_t = \phi^k(x_{t-k}) + \sum_{j=0}^{k-1} \phi^j(w_{t-j}) \stackrel{k \to \infty, |\phi| < 1}{=} \underbrace{\sum_{j=0}^{\infty} \phi^j(w_{t-j})}_{x_t}$$

•
$$\mathbb{E}[x_t] = \sum_{i=0}^{\infty} \phi^j(\mathbb{E}[w_{t-i}]) = 0$$

•
$$\gamma(h) = \operatorname{Cov}\left[x_{t+h}, x_t\right] = \frac{\sigma_w^2 \phi^h}{1 - \phi^2}$$

•
$$\rho(h) = \frac{\gamma(h)}{\gamma(0)} = \phi^h$$

•
$$\rho(h) = \phi \rho(h-1)$$
 $h = 1, 2, ...$

Moving average polynomial

$$\theta(z) = 1 + \theta_1 z + \dots + \theta_q z_q$$
 $z \in \mathbb{C} \land \theta_q \neq 0$

Moving average operator

$$\theta(B) = 1 + \theta_1 B + \dots + \theta_p B^p$$

 $\mathsf{MA}(q)$ (moving average model order q)

$$x_t = w_t + \theta_1 w_{t-1} + \dots + \theta_q w_{t-q} \iff x_t = \theta(B) w_t$$

$$\mathbb{E}\left[x_{t}\right] = \sum_{j=0}^{q} \theta_{j} \mathbb{E}\left[w_{t-j}\right] = 0$$

$$\gamma(h) = \operatorname{Cov}\left[x_{t+h}, x_t\right] = \begin{cases} \sigma_w^2 \sum_{j=0}^{q-h} \theta_j \theta_{j+h} & 0 \le h \le q \\ 0 & h > q \end{cases}$$

MA(1)

$$x_t = w_t + \theta w_{t-1}$$

$$\gamma(h) = \begin{cases} (1 + \theta^2)\sigma_w^2 & h = 0\\ \theta \sigma_w^2 & h = 1\\ 0 & h > 1 \end{cases}$$

$$\rho(h) = \begin{cases} \frac{\theta}{(1+\theta^2)} & h = 1\\ 0 & h > 1 \end{cases}$$

ARMA(p,q)

$$x_t = \phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + w_t + \theta_1 w_{t-1} + \dots + \theta_q w_{t-q}$$
$$\phi(B) x_t = \theta(B) w_t$$

Partial autocorrelation function (PACF)

- $x_i^{h-1} \triangleq \text{regression of } x_i \text{ on } \{x_{h-1}, x_{h-2}, \dots, x_1\}$
- $\phi_{hh} = corr(x_h x_h^{h-1}, x_0 x_0^{h-1})$ $h \ge 2$
- E.g., $\phi_{11} = corr(x_1, x_0) = \rho(1)$

ARIMA(p, d, q)

$$\nabla^d x_t = (1 - B)^d x_t \text{ is ARMA}(p, q)$$
$$\phi(B)(1 - B)^d x_t = \theta(B)w_t$$

Exponentially Weighted Moving Average (EWMA)

$$x_t = x_{t-1} + w_t - \lambda w_{t-1}$$

$$x_t = \sum_{j=1}^{\infty} (1 - \lambda)\lambda^{j-1} x_{t-j} + w_t$$
 when $|\lambda| < 1$

$$\tilde{x}_{n+1} = (1 - \lambda)x_n + \lambda \tilde{x}_n$$

Seasonal ARIMA

- Denoted by ARIMA $(p, d, q) \times (P, D, Q)_s$
- $\Phi_P(B^s)\phi(B)\nabla^D_s\nabla^d x_t = \delta + \Theta_Q(B^s)\theta(B)w_t$

21.4.1 Causality and Invertibility

 $\mathsf{ARMA}\,(p,q) \text{ is causal (future-independent)} \iff \exists \{\psi_j\} : \textstyle\sum_{j=0}^\infty \psi_j < \infty \text{ such that}$

$$x_t = \sum_{j=0}^{\infty} w_{t-j} = \psi(B)w_t$$

 $\mathsf{ARMA}\,(p,q)$ is invertible $\iff \exists \{\pi_j\}: \sum_{j=0}^\infty \pi_j < \infty$ such that

$$\pi(B)x_t = \sum_{j=0}^{\infty} X_{t-j} = w_t$$

Properties

• ARMA (p,q) causal \iff roots of $\phi(z)$ lie outside the unit circle

$$\psi(z) = \sum_{j=0}^{\infty} \psi_j z^j = \frac{\theta(z)}{\phi(z)} \quad |z| \le 1$$

• ARMA (p,q) invertible \iff roots of $\theta(z)$ lie outside the unit circle

$$\pi(z) = \sum_{j=0}^{\infty} \pi_j z^j = \frac{\phi(z)}{\theta(z)} \quad |z| \le 1$$

Behavior of the ACF and PACF for causal and invertible ARMA models

	$AR\left(p\right)$	$MA\left(q ight)$	$ARMA\left(p,q\right)$
ACF	tails off	cuts off after lag q	tails off
PACF	cuts off after lag p	tails off q	tails off

21.5 Spectral Analysis

Periodic process

$$x_t = A\cos(2\pi\omega t + \phi)$$

= $U_1\cos(2\pi\omega t) + U_2\sin(2\pi\omega t)$

- Frequency index ω (cycles per unit time), period $1/\omega$
- \bullet Amplitude A
- Phase ϕ
- $U_1 = A\cos\phi$ and $U_2 = A\sin\phi$ often normally distributed RV's

Periodic mixture

$$x_t = \sum_{k=1}^{q} (U_{k1} \cos(2\pi\omega_k t) + U_{k2} \sin(2\pi\omega_k t))$$

- U_{k1}, U_{k2} , for $k = 1, \ldots, q$, are independent zero-mean RV's with variances σ_k^2
- $\gamma(h) = \sum_{k=1}^{q} \sigma_k^2 \cos(2\pi\omega_k h)$
- $\gamma(0) = \mathbb{E}\left[x_t^2\right] = \sum_{k=1}^q \sigma_k^2$

Spectral representation of a periodic process

$$\gamma(h) = \sigma^2 \cos(2\pi\omega_0 h)$$

$$= \frac{\sigma^2}{2} e^{-2\pi i \omega_0 h} + \frac{\sigma^2}{2} e^{2\pi i \omega_0 h}$$

$$= \int_{-1/2}^{1/2} e^{2\pi i \omega h} dF(\omega)$$

Spectral distribution function

$$F(\omega) = \begin{cases} 0 & \omega < -\omega_0 \\ \sigma^2/2 & -\omega \le \omega < \omega_0 \\ \sigma^2 & \omega \ge \omega_0 \end{cases}$$

- $F(-\infty) = F(-1/2) = 0$
- $F(\infty) = F(1/2) = \gamma(0)$

Spectral density

$$f(\omega) = \sum_{h=-\infty}^{\infty} \gamma(h) e^{-2\pi i \omega h} - \frac{1}{2} \le \omega \le \frac{1}{2}$$

- Needs $\sum_{h=-\infty}^{\infty} |\gamma(h)| < \infty \implies \gamma(h) = \int_{-1/2}^{1/2} e^{2\pi i \omega h} f(\omega) d\omega$ $h = 0, \pm 1, \dots$
- $f(\omega) \ge 0$
- $f(\omega) = f(-\omega)$
- $f(\omega) = f(1 \omega)$
- $\gamma(0) = \mathbb{V}[x_t] = \int_{-1/2}^{1/2} f(\omega) d\omega$
- White noise: $f_w(\omega) = \sigma_w^2$

• ARMA (p,q), $\phi(B)x_t = \theta(B)w_t$:

$$f_x(\omega) = \sigma_w^2 \frac{|\theta(e^{-2\pi i\omega})|^2}{|\phi(e^{-2\pi i\omega})|^2}$$

where $\phi(z) = 1 - \sum_{k=1}^p \phi_k z^k$ and $\theta(z) = 1 + \sum_{k=1}^q \theta_k z^k$

Discrete Fourier Transform (DFT)

$$d(\omega_j) = n^{-1/2} \sum_{i=1}^{n} x_i e^{-2\pi i \omega_j t}$$

Fourier/Fundamental frequencies

$$\omega_j = j/n$$

Inverse DFT

$$x_t = n^{-1/2} \sum_{j=0}^{n-1} d(\omega_j) e^{2\pi i \omega_j t}$$

Periodogram

$$I(j/n) = |d(j/n)|^2$$

Scaled Periodogram

$$P(j/n) = \frac{4}{n}I(j/n)$$

$$= \left(\frac{2}{n}\sum_{t=1}^{n} x_t \cos(2\pi t j/n)\right)^2 + \left(\frac{2}{n}\sum_{t=1}^{n} x_t \sin(2\pi t j/n)\right)^2$$

22 Math

22.1 Gamma Function

- Ordinary: $\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt$
- Upper incomplete: $\Gamma(s,x) = \int_x^\infty t^{s-1} e^{-t} dt$
- Lower incomplete: $\gamma(s,x) = \int_0^x t^{s-1}e^{-t}dt$
- $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$ $\alpha > 1$
- $\Gamma(n) = (n-1)!$ $n \in \mathbb{N}$
- $\Gamma(0) = \Gamma(-1) = \infty$
- $\Gamma(1/2) = \sqrt{\pi}$
- $\Gamma(-1/2) = -2\Gamma(1/2)$

22.2 Beta Function

- Ordinary: $B(x,y) = B(y,x) = \int_0^1 t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$
- Incomplete: $B(x; a, b) = \int_0^x t^{a-1} (1-t)^{b-1} dt$
- Regularized incomplete:

$$I_x(a,b) = \frac{B(x; a, b)}{B(a, b)} \stackrel{a,b \in \mathbb{N}}{=} \sum_{j=a}^{a+b-1} \frac{(a+b-1)!}{j!(a+b-1-j)!} x^j (1-x)^{a+b-1-j}$$

- $I_0(a,b) = 0$ $I_1(a,b) = 1$
- $I_x(a,b) = 1 I_{1-x}(b,a)$

22.3 Series

Finite

$$\bullet \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

•
$$\sum_{k=1}^{n} (2k-1) = n^2$$

•
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\bullet \sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

•
$$\sum_{k=0}^{n} c^k = \frac{c^{n+1} - 1}{c - 1}$$
 $c \neq 1$

Binomial

$$\bullet \sum_{k=0}^{n} \binom{n}{k} = 2^n$$

$$\bullet \ \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}$$

$$\bullet \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}$$

• Vandermonde's Identity:

$$\sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k} = \binom{m+n}{r}$$

Binomial Theorem

$$\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k = (a+b)^n$$

Infinite

•
$$\sum_{k=0}^{\infty} p^k = \frac{1}{1-p}$$
, $\sum_{k=1}^{\infty} p^k = \frac{p}{1-p}$ $|p| < 1$

•
$$\sum_{k=0}^{\infty} kp^{k-1} = \frac{d}{dp} \left(\sum_{k=0}^{\infty} p^k \right) = \frac{d}{dp} \left(\frac{1}{1-p} \right) = \frac{1}{(1-p)^2} \quad |p| < 1$$

•
$$\sum_{k=0}^{\infty} {r+k-1 \choose k} x^k = (1-x)^{-r} \quad r \in \mathbb{N}^+$$

•
$$\sum_{k=0}^{\infty} {\alpha \choose k} p^k = (1+p)^{\alpha} \quad |p| < 1, \ \alpha \in \mathbb{C}$$

22.4 Combinatorics

Sampling

k out of n	w/o replacement	w/ replacement
ordered	$n^{\underline{k}} = \prod_{i=0}^{k-1} (n-i) = \frac{n!}{(n-k)!}$	n^k
unordered		$\binom{n-1+r}{r} = \binom{n-1+r}{n-1}$

Stirling numbers, 2^{nd} kind

$${n \brace k} = k {n-1 \brace k} + {n-1 \brace k-1} \qquad 1 \le k \le n \qquad {n \brace 0} = {1 \quad n=0 \atop 0 \quad \text{else}}$$

Partitions

$$P_{n+k,k} = \sum_{i=1}^{n} P_{n,i}$$
 $k > n : P_{n,k} = 0$ $n \ge 1 : P_{n,0} = 0, P_{0,0} = 1$

Balls and Urns

$$f:B\to U$$

 $D = \text{distinguishable}, \neg D = \text{indistinguishable}.$

B =n, U =m	f arbitrary	f injective	f surjective	f bijective
$B:D,\ U:D$	m^n	$\begin{cases} m^{\underline{n}} & m \ge n \\ 0 & \text{else} \end{cases}$	$m! \begin{Bmatrix} n \\ m \end{Bmatrix}$	$\begin{cases} n! & m = n \\ 0 & \text{else} \end{cases}$
$B: \neg D, \ U:D$	$\binom{m+n-1}{n}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$	$\begin{cases} 1 & m = n \\ 0 & \text{else} \end{cases}$
$B:D,\ U:\neg D$	$\sum_{k=1}^{m} {n \brace k}$	$\begin{cases} 1 & m \ge n \\ 0 & \text{else} \end{cases}$	$\binom{n}{m}$	$\begin{cases} 1 & m = n \\ 0 & \text{else} \end{cases}$
$B: \neg D, \ U: \neg D$	$\sum_{k=1}^{m} P_{n,k}$	$\begin{cases} 1 & m \ge n \\ 0 & \text{else} \end{cases}$	$P_{n,m}$	$\begin{cases} 1 & m = n \\ 0 & \text{else} \end{cases}$

References

- [1] P. G. Hoel, S. C. Port, and C. J. Stone. *Introduction to Probability Theory*. Brooks Cole, 1972.
- [2] L. M. Leemis and J. T. McQueston. Univariate Distribution Relationships. *The American Statistician*, 62(1):45–53, 2008.

- [3] R. H. Shumway and D. S. Stoffer. Time Series Analysis and Its Applications With R Examples. Springer, 2006.
- [4] A. Steger. Diskrete Strukturen Band 1: Kombinatorik, Graphentheorie, Algebra. Springer, 2001.
- [5] A. Steger. Diskrete Strukturen Band 2: Wahrscheinlichkeitstheorie und Statistik. Springer, 2002.
- [6] L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, 2003.

Univariate distribution relationships, courtesy Leemis and McQueston [2].