FPTAS für das Restricted Shortest Path-Problem

Rasmus Diederichsen Sebastian Höffner

Universität Osnabrück

6. Dezember 2015

Inhalt

- 1 Das Problem
- 2 Exakte Lösung Algorithmus Laufzeit Terminierung Beispiel
- 3 Das FPTAS

 Test für Grenzen von *OPT*Laufzeit

Problemstellung

Gegeben

- azyklischer Graph G = (V, E)
- $(u, v) \in E$ hat Gewicht c und Verzögerung t

Single Source Shortest Path

Berechne vom Startknoten aus alle nach Kosten kürzesten Wege zu allen anderen ► Dijkstra

All Pairs Shortest Path

Kürzeste Wege zwischen allen Knotenpaaren ▶ Floyd

Das Problem

Gegeben

- azyklischer Graph G = (V, E)
- $(u, v) \in E$ hat gewicht c und Verzögerung t

Restricted Shortest Path

Finde nach Kosten kürzesten Weg von a nach b mit Verzögerung $\leq T$. **NP**-schwer.

Algorithmus

Dynamische Programmierung (ähnlich wie Knapsack). Kanten (i,j) mit i < j, da azyklisch.

Algorithmus

$$\begin{split} g_1(c) &= 0, \; \text{Für } c = 0, \dots, \textit{OPT}, \\ g_j(0) &= \infty, \; \text{Für } j = 2, \dots, n, \\ g_j(c) &= \min \left\{ g_j(c-1), \min_{k \mid c_{kj} \leq c} \left\{ g_k(c-c_{kj}) + t_{kj} \right\} \right\} \\ &\quad \text{Für } j = 2, \dots, n; \; c = 1, \dots, \textit{OPT} \end{split}$$

Laufzeit

$$g_1(c) = 0$$
, Für $c = 0, ..., OPT$, $g_j(0) = \infty$, Für $j = 2, ..., n$, $g_j(c) = \min \left\{ g_j(c-1), \min_{k \mid c_{kj} \le c} \left\{ g_k(c-c_{kj}) + t_{kj} \right\} \right\}$ Für $j = 2, ..., n$; $c = 1, ..., OPT$

- $\mathcal{O}(OPT \cdot n \cdot Aufwand pro(c,j))$
 - ightharpoonup Pro (c,j) evtl. alle Vorgänger betrachten
 - $\triangleright \mathcal{O}(n^2OPT) = \mathcal{O}(|E|OPT)$
- Pseudopolynomiell

Terminierung

Man weiß
$$OPT = \min\{c \mid g_n(c) \leq T\}$$

• Setze *OPT*, sobald erstes c mit $g_n(c) \leq T$ gefunden.

Beispiel

Beispiel

$j \backslash c$	0	1	2	3	4	5
1	0	0	0 ∞ ∞ ∞ ∞ ∞ ∞	0	0	0
2	∞	∞	∞	∞	∞	∞
3	∞	∞	∞	∞	∞	∞
4	∞	∞	∞	∞	∞	∞
5	∞	∞	∞	∞	∞	∞
6	∞	∞	∞	∞	∞	∞

Beispiel

$$g_2(1) = \min \left\{ g_2(0), \min_{k \mid c_{kj} \le c} \left\{ g_k \left(c - c_{kj} \right) + t_{kj} \right\} \right\}$$
 $g_2(1) = \min \left\{ \infty, \min \left\{ g_1 \left(1 - 1 \right) + 1 \right\} \right\}$
 $g_2(1) = 1$

Exakte Lösung Beispiel

Test für Grenzen von OPT

Wir suchen zunächst ein Verfahren, dass untere und obere Schranken für *OPT* findet.

• Wünsch-dir-was: Polynomieller Algorithmus *TEST(k)*, sodass

$$TEST_{magic}(k) = \begin{cases} 1 & \text{falls } OPT \ge k \\ 0 & \text{falls } OPT < k \end{cases}$$

- ▶ Binäre Suche auf 0,..., UB
- ► Leider **NP**-schwer

Test für Grenzen von OPT

 $TEST_{magic}(k)$ kann nicht existieren, also schwächer:

Eigenschaften von TEST(k)

$$TEST(k) = egin{cases} 1 & ext{falls } \mathit{OPT} \geq k \ 0 & ext{falls } \mathit{OPT} < k(1+\epsilon) \end{cases}$$

Test für Grenzen von OPT

 $TEST_{magic}(k)$ kann nicht existieren, also schwächer:

TEST(k)

- Skaliere und runde Kantengewichte als $\hat{c}_{ij} = \left\lfloor \frac{c_{ij}(n-1)}{k\epsilon} \right
 vert$
- Wende exakten Algorithmus an, bis $g_n(c) \leq T$ gefunden ist oder $c \geq \frac{n-1}{\epsilon}$.

Test für Grenzen von OPT

TEST(k) erfüllt seinen Zweck:

$$c < \frac{n-1}{\epsilon}$$

$$k \le k$$

$$\frac{k\epsilon}{n-1} \frac{n-1}{\epsilon} \le k$$

Durch Einsetzen folgt:

t:
$$\frac{k\epsilon}{n-1}c < k$$
$$\frac{k\epsilon}{n-1}c + k\epsilon < k + k\epsilon$$
$$\frac{k\epsilon}{n-1}c + k\epsilon < k(1+\epsilon)$$

Test für Grenzen von OPT

TEST(k) erfüllt seinen Zweck:

$$c \geq \frac{n-1}{\epsilon}$$

$$c \geq \frac{n-1}{\epsilon}$$
 $c \frac{k\epsilon}{n-1} \geq \frac{k\epsilon}{n-1} \frac{n-1}{\epsilon}$
 $c \frac{k\epsilon}{n-1} \geq k$

Test für Grenzen von OPT

Test-Algorithmus

```
1 Setze c \leftarrow 0
2 Für alle (i,j) \in E:
       Falls c_{ii} > k, entferne (i, j)
       Sonst c_{ii} \leftarrow |c_{ii}(n-1)/k\epsilon|
5
   Falls c > (n-1)/\epsilon, return true
   Sonst:
        Wende Algorithmus B an und berechne g_i(c) für
            i=2,\ldots,n
       Falls g_n(c) \leq T, return false
       Sonst:
            Setze c \leftarrow c + 1
            Goto Zeile 6
```

Laufzeit von TEST

- Runden: in $\mathcal{O}(\log n)$ durch binäre Suche, falls nach oben beschränkt $\mathcal{O}(|E|\log\frac{n-1}{\epsilon})$
- Exakter Algorithmus führt $\leq \frac{n-1}{\epsilon}$ Iterationen durch, $\mathcal{O}\left(|E|\right)$ pro Iteration
 - ▶ Insgesamt $\mathcal{O}\left(|E|\log\frac{n-1}{\epsilon} + |E|\frac{n-1}{\epsilon}\right) = \mathcal{O}\left(|E|\frac{n-1}{\epsilon}\right)$