First Name:

Last Name:

```
In [1]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import statsmodels.formula.api as smf
import statsmodels.stats.multicomp as multi
import matplotlib.pyplot as plt
```

From Prac 1 to 3

```
In [2]:
```

```
nesarc = pd.read_csv('nesarc.csv', low_memory=False)
pd.set_option('display.float_format', lambda x:'%f'%x)
```

In [3]:

```
nesarc['S2AQ5B'] = pd.to_numeric(nesarc['S2AQ5B'], errors='coerce') #convert variable to nunesarc['S2AQ5D'] = pd.to_numeric(nesarc['S2AQ5D'], errors='coerce') #convert variable to nunesarc['S2AQ5A'] = pd.to_numeric(nesarc['S2AQ5A'], errors='coerce') #convert variable to nunesarc['S2AQ5A']
```

In [4]:

```
sub1=nesarc[(nesarc['AGE']>=26) & (nesarc['AGE']<=50) & (nesarc['S2AQ5A']==1)]
sub2=sub1.copy()</pre>
```

In [5]:

```
#SETTING MISSING DATA
sub2['S2AQ5D']=sub2['S2AQ5D'].replace(99, np.nan)
sub2['S2AQ5B']=sub2['S2AQ5B'].replace(8, np.nan)
sub2['S2AQ5B']=sub2['S2AQ5B'].replace(9, np.nan)
sub2['S2AQ5B']=sub2['S2AQ5B'].replace(10, np.nan)
sub2['S2AQ5B']=sub2['S2AQ5B'].replace(99, np.nan)
```

In [6]:

```
recode2 = {1:30, 2:26, 3:14, 4:8, 5:4, 6:2.5, 7:1}
sub2['BEER_FEQMO']= sub2['S2AQ5B'].map(recode2)
sub2['BEER_FEQMO']= pd.to_numeric(sub2['BEER_FEQMO'])
```

In [2]:

Creating a secondary variable multiplying the days consumed beer/month and the number of
sub2['NUMBEERMO_EST']=sub2['BEER_FEQMO'] * sub2['S2AQ5D']
sub2['NUMBEERMO_EST']= pd.to_numeric(sub2['NUMBEERMO_EST'])

In [8]:

```
ct1 = sub2.groupby('NUMBEERMO_EST').size()
print (ct1)
```

```
NUMBEERMO_EST
                                     Result shows how many
1.000000
               477
                                     interviewees drank from 1 to 900
2.000000
               407
                                     bottles of beer per month
2.500000
               414
3.000000
               172
4.000000
               429
5.000000
               623
6.000000
                36
7.000000
                 5
7.500000
               267
8.000000
               635
10.000000
               119
               296
12.000000
12.500000
                48
14.000000
               160
15.000000
                87
16.000000
               561
                 5
17.500000
18.000000
                 1
20.000000
                81
22.500000
                  3
24.000000
               410
25.000000
                 6
                51
26.000000
27.500000
                 1
               242
28.000000
30.000000
                62
32.000000
               168
35.000000
                  1
36.000000
                  3
                  2
37.500000
98.000000
                 9
104.000000
                37
112.000000
                21
                39
120.000000
130.000000
                13
                 5
140.000000
                 2
144.000000
150.000000
                18
156.000000
                54
                27
168.000000
180.000000
                 77
182.000000
                 6
192.000000
                 3
                10
208.000000
                 5
210.000000
                 2
234.000000
240.000000
                13
252.000000
                  5
                 3
260.000000
                 4
270.000000
                 6
300.000000
312.000000
                14
360.000000
                25
```

468.000000

1

510.000000	1	
520.000000	1	
540.000000	2	
624.000000	1	
720.000000	2	
900.000000	1	
Length: 75	, dtype:	int64

Categorical -> Quantitative - ANOVA

```
In [9]:
```

```
sub2['DYSLIFE'] = sub2['DYSLIFE'].astype('category')
```

Draw boxplot to show relationship between minor depression status (DYSLIFE (categorical)) and estimated number of beer consumed (NUMBEERMO_EST (quantitative))

In [22]:

%matplotlib notebook
sns.boxplot(x='DYSLIFE', y='NUMBEERMO_EST', data=sub2)
plt.xlabel('DYSLIFE')
plt.ylabel('NUMBEERMO_EST')

Figure 1

The box plot indicates people who are slightly depressed drank higher volume of beer per month.

Out[22]:

Text(0,0.5,'NUMBEERMO_EST')

Perform ANOVA analysis between minor depression status (DYSLIFE (categorical)) and estimated number of beer consumed (NUMBEERMO_EST (quantitative))

```
In [11]:
```

```
model1 = smf.ols(formula='NUMBEERMO_EST ~ C(DYSLIFE)', data=sub2).fit()
print (model1.summary())
```

OLS Regression Results

=======================================	:=======	:=======	==========	========	=========	:=
==						
Dep. Variable: 03	NUME	BEERMO_EST	R-squared:		0	.0
Model: 03	OLS		Adj. R-squared:		0	.0
Method: 23	Least Squares		F-statistic:		20	ð.
Date: 06	Fri, 27 Apr 2018		Prob (F-statistic):		6.99	2-
Time:	14:58:59		Log-Likelihood:		-388	30
No. Observations:	: 7303		AIC:		7.761	2+
Df Residuals:	7301		BIC:		7.763	2+
Df Model:		1				A summary for ANOVA analysis of
Covariance Type:		nonrobust				relation between minor depression and estimated bottle of
======						= beer drank per month.
0.975]			t		-	
Intercept	27.2277	0.587	46.361	0.000	26.076	
28.379 C(DYSLIFE)[T.1] 18.619	12.9670	2.883	4.497	0.000	7.315	
=======================================	=======	:======	========	=======	=========	==
Omnibus: 26		7622.371	Durbin-Wats	on:	2	.0
Prob(Omnibus): 69		0.000	Jarque-Bera	(JB):	640965	.7
Skew: 00		5.150	Prob(JB):		(ð.
Kurtosis: 02		47.725	Cond. No.		!	5.
==	:=======			=======		==
Warnings: [1] Standard Error ctly specified.	's assume t	hat the cov	/ariance matr	ix of the e	rrors is corr	re

ctly specified.

In [12]:

```
sub3 = sub2[['NUMBEERMO_EST', 'DYSLIFE']].dropna()
```

print the mean of number of beer consumed grouped

by minor depression status

In [13]:

```
print ('means for NUMBEERMO_EST by minor depression status')
m1= sub3.groupby('DYSLIFE').mean()
print (m1)
```

means for NUMBEERMO_EST by minor depression status

NUMBEERMO_EST

DYSLIFE

0 27.227714 1 40.194719 People with minor depression on average drank 40 bottles of beer per month, while people with no depression drank 27 on average.

print the standard deviation (std) of number beer consumed grouped by minor depression status

In [14]:

```
print ('standard deviations for NUMBEERMO_EST by minor depression status')
sd1 = sub3.groupby('DYSLIFE').std()
print (sd1)
```

standard deviations for NUMBEERMO_EST by minor depression status

NUMBEERMO_EST

DYSLIFE

47.67846775.407118

Group with depression has higher standard deviation, which indicates the values in that group are more volatile.

Categorical (>2) -> Quantitative - ANOVA

In [15]:

```
sub2['ETHRACE2A'] = sub2['ETHRACE2A'].astype('category')
sub2['ETHRACE2A']=sub2['ETHRACE2A'].cat.rename_categories(["White", "Black", "NatAm", "Asia
```

Draw boxplot to show relationship between ethinicity (ETHRACE2A (categorical)) and estimated number of beer consumed (NUMBEERMO_EST (quantitative))

In [16]:

```
%matplotlib notebook
sns.boxplot(x='ETHRACE2A', y='NUMBEERMO_EST', data=sub2)
plt.xlabel('ETHRACE2A')
plt.ylabel('NUMCIGMO_EST')
```


A box plot that shows number of beer drank per month among 5 ethnic groups.

Black and Native Americans are two groups drank most beer on average.

Asians and Hispanic are two groups with lowest amount of beer consumption.

Out[16]:

Text(0,0.5,'NUMCIGMO_EST')

In [17]:

sub4 = sub2[['NUMBEERMO_EST', 'ETHRACE2A']].dropna()

Perform ANOVA analysis between ethinicity (ETHRACE2A (categorical)) and estimated number of beer consumed (NUMBEERMO_EST (quantitative))

In [18]:

model2 = smf.ols(formula='NUMBEERMO_EST ~ C(ETHRACE2A)', data=sub4).fit()
print (model2.summary())

OLS Regression Results

	=========	=======	-=======	=======	=====	
== Dep. Variable: 05	NUMBEERMO_EST	R-squared: 0.			0.0	
Model: 04	OLS	Adj. R-so	Adj. R-squared:		0.0	
Method:	Least Squares	F-statis	tic:		8.2	
	i, 27 Apr 2018	Prob (F-	statistic):	1.21e-		
06 Time:	14:59:00	Log-Like	Log-Likelihood:		-3879	
7. No. Observations:	7303	AIC:	AIC:		.760e+	
04 Df Residuals:	7298	BIC:	BIC: 7		.764e+	
04 Df Model:	4					A summary for
Covariance Type:	nonrobust					ANOVA analysis of relation between ethnic group and
	========	=======	========	=======	=====	monthly beer
[0.025 0.975]	coef	std err	t	P> t		consumption
Intercept 6.404 29.314	27.8589	0.742	37.535	0.000	2	
C(ETHRACE2A)[T.Black] 1.338 7.831	4.5843	1.656	2.768	0.006		
C(ETHRACE2A)[T.NatAm] 2.670	11.6496	4.581	2.543	0.011		
	-11.2589	3.594	-3.133	0.002	-1	
C(ETHRACE2A)[T.Hispanic 6.111 -0.370] -3.2403	1.464	-2.213	0.027	-	
=======================================	========	=======		=======	=====	
Omnibus: 27	7639.304	Durbin-Wa	atson:		2.0	
Prob(Omnibus): 33	0.000	Jarque-Be	era (JB):	646	5522.8	
Skew: 00	5.167	Prob(JB)	:		0.	
Kurtosis: 28	47.921	Cond. No			8.	
=======================================	=========	=======	========	=======	=====	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

print the mean of number of beer consumed grouped by ethinicity

```
In [19]:
```

```
print ('means for NUMBEERMO_EST by ethinicity')
m2= sub4.groupby('ETHRACE2A').mean()
print (m2)
```

means for NUMBEERMO EST by ethinicity

NUMBEERMO_EST

ETHRACE2A

White 27.858922 Black 32.443182 NatAm 39.508475

Asian 16.600000 Hispanic 24.618638 Native Americans has the highest average of monthly beer consumption - 39.5 bottles.

And Asians has the lowest number - 16.6 bottles.

print the standard deviation (std) of number of beer consumed grouped by ethinicity

In [20]:

```
print ('standard deviations for NUMBEERMO EST by ethnicity')
sd2 = sub4.groupby('ETHRACE2A').std()
print (sd2)
```

standard deviations for NUMBEERMO_EST by ethnicity

NUMBERDMO ECT

ı ı	NOMBEERMO_EST	White Diods and Native American arrayna have a
ETHRACE2A		White, Black, and Native American groups have a std value that is over 50.
White	50.537013	std value that is over 50.
Black	55.289755	Hispanic group is slightly better with a standard
NatAm	57.231386	deviation of 41.
Asian	25.572698	deviation of 41.
Hispanic	41.073842	Asians are the most consistent dataset, with
		standard deviation of 25.6.

Perform Tukey's Honestly Significant Difference (Post hoc) test

In [21]:

```
mc1 = multi.MultiComparison(sub4['NUMBEERMO_EST'], sub4['ETHRACE2A'])
res1 = mc1.tukeyhsd()
print(res1.summary())
```

Multiple Comparison of Means - Tukey HSD,FWER=0.05

group1	group2	meandiff	lower	upper	reject
Asian Asian Asian Asian Black Black Black Hispanic Hispanic NatAm	Black Hispanic NatAm White Hispanic NatAm White NatAm White NatAm White White	15.8432 8.0186 22.9085 11.2589 -7.8245 7.0653 -4.5843 14.8898 3.2403 -11.6496	5.4332 -2.1752 7.2827 1.4533 -13.1332 -5.9129 -9.103 2.0844 -0.7553 -24.1482	26.2532 18.2124 38.5343 21.0646 -2.5159 20.0435 -0.0655 27.6953 7.2359 0.8491	True True True False True True False

A summary for Turkey's Honestly Significant Difference (Post hoc) Test. The summary shows comparison and describes differences between each ethnic group.