Performance analysis of edge detection in an image using cuda

By: Brijesh Kumar Vikramaditya

Agenda

- 1. Locality and Parallelism
- 2. Coordination
- 3. Purpose of using GPU
- 4. Machine properties
- 5. Parallelism
- 6. Overheads

Locality and Parallelism

CPU Vs GPU

Purpose of using GPU

- Parallel implementation of edge detection should reduce the time complexity.
- Convolution: Tiled Convolution should further reduce the execution time of algorithm
- Using constant memory for storing various masks and should also enhance the performance

Coordination

Computation partition

Data partition

Concurrency management

Different approch

Serial approach

- Calculate Laplacian of Gaussian
- Read Input Image
- Convolve the image with mask
- Write image to output

Parallel approach

- Calculate Laplacian of Gaussian in CPU
- Read Input image from CPU
- Copy image and Mask data to GPU
- Convolve the image data and mask
- Copy output data to CPU
- Write image to output

Device Properties

CPU

3-380M
2

Processor Frequency 2.53 GHz

Cache 3MB

Number of core 2

Number of Threads 4

Max Memory Bandwidth 17.1 GB/s

Device Properties

GPU

```
bk@k: ~/coding/kokil/src

    General Information for device 0

Name: GeForce GT 540M
Compute capability: 2.1
Clock rate: 1344000
Device copy overlap: Enabled
Kernel execution timeout : Enabled
    -- Memory Information for device 0 ---
Total global mem: 2147155968
Total constant Mem: 65536
Max mem pitch: 2147483647
Texture Alignment: 512
   -- MP Information for device 0
Multiprocessor count: 2
Shared mem per mp: 49152
Registers per mp: 32768
Threads in warp: 32
Max threads per block: 1024
Max thread dimensions: (1024, 1024, 64)
Max grid dimensions: (65535, 65535, 65535)
```

Parallelism

Speed up time in log scale

Parallelism

Amdahl's law

Performance comparison

Performance comparison •CPU execution time at various size

Performance comparison •GPU execution time at various size

Overheads CPU Vs GPU execution time at various size

Demo