DEPARTMENT OF ELECTRICAL	AND ELECTRONIC	ENGINEERING
EXAMINATIONS 2013		

MSc and EEE/EIE PART IV: MEng and ACGI

MACHINE LEARNING FOR COMPUTER VISION

Monday, 29 April 10:00 am

Time allowed: 3:00 hours

There are FIVE questions on this paper.

Answer FOUR questions.

All questions carry equal marks.

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible First Marker(s): T-K. Kim

Second Marker(s): C. Ling

1. (Gaussian Mixture Model and EM)

The Gaussian distribution is

$$N(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\},$$

the log of data probability of $\mathbf{x} = (x_1, ..., x_N)^T$ is

$$\ln p(\mathbf{x}, \mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi).$$

Denote z as the 1-of-K representation such that $z_k \in \{0,1\}$ and $\sum_k z_k = 1$. We define

$$p(z_k = 1) = \pi_k$$
, where $0 \le \pi_k \le 1$, $\sum_{k=1}^K \pi_k = 1$.

- a) Given $p(z) = \prod_{k=1}^{K} \pi_k^{z_k}$ and $p(x|z) = \prod_{k=1}^{K} N(x|\mu_k, \sigma_k)^{z_k}$, show that the marginal distribution p(x) is a linear superposition of Gaussian distributions. [5]
- b) Explain the maximum-likelihood solution and show the expression of the log likelihood function of GMM for given a data set, $\mathbf{x} = (x_1, ..., x_N)^T$. See Figure 1.1. [5]
- In the maximum-likelihood solution, explain how to calculate μ_k , and then derive the formulation for μ_k . For the derivation, define $\gamma(z_{nk})$ as

$$\gamma(z_{nk}) = \frac{\pi_k N(x_n \ \mu_k, \sigma_k)}{\sum_{j=1}^K \pi_j N(x_n \ \mu_j, \sigma_j)}.$$

[8]

d) Explain the EM algorithm using the variables, γ , μ and σ , E-step and M-step, and the termination of the loop. No formulation derivations are needed.

[7]

Figure 1.1 Probablistic model of GMM.

2. (Boosting)

A boosting classifier is given as a linear combination of base classifiers such that

$$f_m(x) = \frac{1}{2} \sum_{l=1}^m \alpha_l y_l(x).$$

a) Given a classifier f_m and a data set (x_n, t_n) , where n = 1, ..., N and t_n is the data label, define the exponential error function E.

[5]

Show that the error function is given in the form of $E = \sum_{n=1}^{N} w_n^{(m)} \exp\left(-\frac{1}{2}t_n\alpha_m y_m(x_n)\right)$. What is the equation for $w_n^{(m)}$? Explain how $w_n^{(m)}$ can be treated as constants?

[7]

c) Discuss the pros and cons of using the exponential error function.

[5]

d) Explain the AdaBoost algorithm by mentioning the steps of initialising data weights, finding the best weak-classifier $y_m(x)$ and re-weighting data samples in the rounds of boosting.

[8]

- 3. (Random Forest and Committee Machine)
 - a) Explain the Bagging (bootstrap aggregation) process.

[7]

b) The average error made by models acting individually is

$$E_{av} = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}\left[\varepsilon_m(x)^2\right],$$

where the output of each model $y_m(x) = h(x) + \varepsilon_m(x)$, and h(x) and $\varepsilon_m(x)$ denote the true value and the error of each model respectively.

Calculate the expected error E_{com} of the committee machine

$$y_{com}(x) = \frac{1}{M} \sum_{m=1}^{M} y_m(x).$$

Show that $E_{com} = \frac{1}{M}E_{av}$, and explain what condition is required to hold the equation.

[10]

c) In the RF (Random Forest) node splitting as shown in Figure 3.1, we maximise the information gain $\Delta E = -\frac{I_{I}!}{|I_n|} E(I_I) - \frac{I_{I}!}{|I_n|} E(I_I)$. Explain what is the meaning of the function E and ΔE , and what are the desired distributions of the two children nodes.

[8]

Figure 3.1 RF node splitting.

- 4. (Sparse Kernel Machine and Bag of Words)
 - a) Explain how to build a visual dictionary and how to represent an image by the Bag of Words.

[5]

b) Explain the maximum margin classifier using the function

$$\arg\max_{\mathbf{w},b}\left\{\frac{1}{\|\mathbf{w}\|}\min_{n}[t_{n}(\mathbf{w}^{T}\phi(\mathbf{x}_{n})+b)]\right\}.$$

Address the meaning of \mathbf{w}, b, t_n , the kernel function ϕ , and the margin (i.e. the minimum perpendicular distance).

[7]

Show the constrained optimisation problem, $L(\mathbf{w}, b, a)$, equivalent to the max margin problem above, with the Lagrange multipliers $a_n > 0$.

[7]

d) Explain the two approaches for multi-class classification using binary SVMs (support vector machines): the one-versus-the-rest and one-versus-one approach.

[6]

5. (PCA: maximum-variance formulation)

Given a data set $\{x_n\}$, n = 1, ..., N, $x_n \in \mathbb{R}^D$, the goal is to project the data onto a space of dimension M << D while maximising the projected data variance. Assume M = 1. The projection is $\bar{x}_n = u_1^T x_n$, where $u_1^T u_1 = 1$. See Figure 5.1

a) Define the data covariance matrix S, and then show the mean and the variance of the projected data using S.

[5]

b) Show the objective function of PCA using a Lagrange multiplier λ_1 .

[5]

c) Show that the solution of u_1 is the eigenvector of S.

[5]

d) Show that the maximum variance is obtained as the eigenvalue.

[5]

e) Explain the optimal linear projections for the general case of an *M* dimensional subspace.

[5]

Figure 5.1 Maximum-variance formulation of PCA.

La) The marginal distribution of x is

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

which is as a linear superposition of Gaussians

The log of the likelihood function is We find the three parameters that maximise the log likelihood function.

$$\ln p(\mathbf{X}|\pi,\mu,\Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n|\mu_k,\Sigma_k) \right\}$$

zero, we obtain Setting the derivatives of $\ln p(\mathbf{X}|\pi,\mu,\Sigma)$ with respect to μ_k to $0 = -\sum_{n=1}^{N} \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)}{\sum_{j=1}^{N} \pi_j \mathcal{N}(\mathbf{x}_n | \mu_j, \Sigma_j)} \Sigma_k(\mathbf{x}_n - \mu_k)$ $\gamma(z_{nk})$

 $\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n, \quad N_k = \sum_{n=1} \gamma(z_{nk}).$

1d)

- cients π_k , and evaluate the initial value of the log likelihood. 1. Initialise the means μ_k , covariances Σ_k and mixing coeffi-
- rameter values 2. E step: Evaluate the responsibilities using the current pa- $\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \mu_j, \Sigma_j)}$
- sponsibilities 3. M step: RE-estimate the parameters using the current re-

$$\mu_k^{new} = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_n \quad \Sigma_k^{new} = \frac{1}{N_k} \sum_{m=1}^{N} \gamma(z_{nk}) (\mathbf{x}_n - \mu_k^{new}) (\mathbf{x}_n - \mu_k^{new})^T$$

$$\pi_k^{new} = \frac{N_k}{N} \text{. where } N_k = \sum_{n=1}^{N} \gamma(z_{nk}).$$

4. Evaluate the log likelihood

$$\ln p(\mathbf{X}|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k) \right\}$$

step 2. and check for convergence of either the parameters or the log likelihood. If the convergence criterion is not satisfied, return to

2a)
$$E = \sum_{m=1}^{N} \exp\{-t_m f_m(\mathbf{x}_m)\}$$

2b) $= \sum_{m=1}^{N} \exp\{-t_n f_{m-1}(\mathbf{x}_m) - \frac{1}{2}\}$

$$= \sum_{n=1}^{N} \exp\left\{-t_n f_{m-1}(\mathbf{x}_n) - \frac{1}{2} t_n \alpha_m y_m(\mathbf{x}_n)\right\} = \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2} t_n \alpha_m y_m(\mathbf{x}_n)\right\}$$

where $w_n^{(m)} = \exp\{-t_n f_{m-1}(\mathbf{x}_n)\}$ are constants.

- error function by and we minimise only w.r.t. α_m and $y_m(\mathbf{x})$. We can write the $y_1(\mathbf{x}), \dots, y_{m-1}(\mathbf{x})$ and their coefficients $\alpha_1, \dots, \alpha_{m-1}$ are fixed • Sequential minimisation: suppose that the base classifiers
- Pros: it leads to simple derivations of Adaboost algorithms.
- bust to outliers or misclassified data points. Cons: it penalises large negative values. It is much less ro-

1. Initialise the data weights $\{w_n\}$ by $w_n^{(1)} = 1/N$ for n = 1

2. For m = 1, ..., M

(a) Learn a classifier $y_m(\mathbf{x})$ that minimises the weighted error

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(y_m(\mathbf{x}) \neq t_n)$$

where I is the impulse function which is 1 when $y_m(\mathbf{x}) \neq t_m$.

(b) Evaluate

$$\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(y_m(\mathbf{x}) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}} \qquad \alpha_m = \ln \left\{ \frac{1 - t_n}{t_n} \right\}$$

 $\alpha_m = \ln\left\{\frac{1 - \epsilon_m}{\epsilon_m}\right\}$

(c) Update the data weighting coefficients

$$w_n^{(m+1)} = w_n^{(m)} \exp\{\alpha_m I(y_m(\mathbf{x}) \neq t_n)\}$$

3. Make predictions using the final model by

$$Y_{M}(\mathbf{x}) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_{m} y_{m}(\mathbf{x})\right)$$

3a)

n'=n, by sampling examples from D uniformly and with resize m, bagging generates m new training sets D_i , each of size examples will be repeated in each D_i . If n' = n, then for large nplacement. By sampling with replacement, it is likely that some the set D_i is expected to have 63.2% of the unique examples of D, the rest being duplicates. ullet Bootstrapping data sets: Given a standard training set D of

3b)

• The expected error of the committee is

$$E_{com} = \mathbb{E}\left[\left\{\frac{1}{M}\sum_{m=1}^{M}y_{m}(\mathbf{x}) - h(\mathbf{x})\right\}^{2}\right] = \mathbb{E}\left[\left\{\frac{1}{M}\sum_{m=1}^{M}\epsilon_{m}(\mathbf{x})\right\}^{2}\right]$$

If we assume

$$\mathbb{E}[\epsilon_m(\mathbf{x})\epsilon_l(\mathbf{x})] = 0, \quad m \neq l$$

then we obtain

$$E_{com} = \frac{1}{M} E_{com}$$

$$= E\left(\frac{1}{M^{2}}\left(\xi_{1}+\xi_{2}+\xi_{3}+\cdots\right)^{2}\right) \qquad E\left(\xi_{3}\xi_{3}\right)=0 \quad \text{if } i\neq j$$

$$= E\left(\frac{1}{M^{2}}\left(\xi_{1}+\xi_{2}+\xi_{3}+\xi_{3}+\cdots\right)^{2}\right)$$

3c) E measures the entropy (amount of info.) of the class distribution of each chide node. classification in the final leaf nodes, we want to have both distributions peaky as possible in a node splitting. Uniform distribution has max entropy while peak distribution has min entropy. Thus, for

Image patches are represented by descriptor Interest points are detected from an image SIFT (Scale-Invariant Feature Transform) or Raw pixel intensity Corners, Blob detector, SIFT detector

together, to form a codebook Visual words (real-valued vectors) can be compared using Euclidean distance These vectors are divided into groups which are similar, essentially clustered

4b)

found by wish to find w and b that maximises the margin. The solution is • The margin is the minimum perpendicular distance, and we

d by
$$\arg\max_{\mathbf{w},b} \left\{ \frac{1}{\|\mathbf{w}\|} \min_{n} [t_n(\mathbf{w}^T \phi(\mathbf{x}) + b)] \right\}$$

 $y(\mathbf{x}) = 0$ is $|y(\mathbf{x})|/||\mathbf{w}||$. As we assumed $t_n y(\mathbf{x}_n) > 0$ for all n, the distance of a point x_n to the decision surface is The perpendicular distance of a point x from a hyperplane

$$\frac{t_n y(\mathbf{x}_n)}{||\mathbf{w}||} = \frac{t_n(\mathbf{w}^T \phi(\mathbf{x}) + b)}{||\mathbf{w}||}$$

the distance from any point x_n to the decision surface. We can therefore set Note that rescaling $\mathbf{w} \to k\mathbf{w}$ and $b \to kb$ does not change

 $t_n(\mathbf{w}^T \phi(\mathbf{x}) + b) = 1$

for the point that is closest to the surface. In this case, all data points will satisfy

$$t_n(\mathbf{w}^T \phi(\mathbf{x}) + b) \ge 1, \quad n = 1, ..., N.$$

||w|| ¹. Equivalently, we have The optimisation problem then simply becomes to maximise $\arg\min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^2$

programming problem where we try to minimise a quadratic subject to the constraints $t_n(\mathbf{w}^T\phi(\mathbf{x})+b) \geq 1$. This is a quadratic

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{n=1} a_n \{ t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b) - 1 \}$$

where $\mathbf{a} = (a_1, ..., a_N)^T$. Note the minus sign in front of the maximising w.r.t. a. Lagrange multiplier term, as we are minimising w.r.t. \mathbf{w} , b, and

One-versus-the-rest approach: trains K separate SVMs, in as the positive examples and the data from the remaining K-1classes as the negative examples. which the k-th model $y_k(\mathbf{x})$ is trained using the data from class C_k

The prediction for new input x is by

$$y(\mathbf{x}) = \max_{k} y_k(\mathbf{x}).$$

have no appropriate scales. 2) the training sets are imbalanced Problems: 1) the output values $y_k(\mathbf{x})$ for different classifiers

One-versus-one approach: is to train K(K-1)/2 different 2class SVMs on all possible pairs of classes, and then to classify test points according to which class has the highest number of

Problems: it requires more training time and evaluation time

The mean is $\mathbf{u}_1^T \overline{\mathbf{x}}$, where $\overline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$.

The variance is given by

$$\frac{1}{N} \sum_{n=1}^{N} \{\mathbf{u}_{1}^{T} \mathbf{x}_{n} - \mathbf{u}_{1}^{T} \overline{\mathbf{x}}\}^{2} = \mathbf{u}_{1}^{T} \mathbf{S} \mathbf{u}_{1}$$

where S is the data covariance matrix defined as

$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_{n} - \overline{\mathbf{x}}) (\mathbf{x}_{n} - \overline{\mathbf{x}})^{T}.$$

- **5b)** We now maximise the projected variance $\mathbf{u}_1^I \mathbf{S} \mathbf{u}_1$ with regrange multiplier formulation becomes spect to \mathbf{u}_1 with the normalisation condition $\mathbf{u}_1^T \mathbf{u}_1 = 1$. La-
- $\mathbf{u}_1^I \mathbf{S} \mathbf{u}_1 + \lambda_1 (1 \mathbf{u}_1^I \mathbf{u}_1).$

By setting the derivative with respect to \mathbf{u}_1 to zeros, we obtain

5c)

5d) thus, \mathbf{u}_1 is an eigenvector of S. By multiplying \mathbf{u}_1^T , the variance is obtained by $\mathbf{S}\mathbf{u}_1 = \lambda_1 \mathbf{u}_1$ $\mathbf{u}_1^t \mathbf{S} \mathbf{u}_1 = \lambda_1.$

5e) space, the optimal linear projection is defined by the M eigening to the M largest eigenvalues $\lambda_1, \lambda_2, ..., \lambda_M$. vectors $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_M$ of the data covariance matrix \mathbf{S} correspond-• If we consider the general case of an M dimensional sub-