Introduction to Formal Language

(交大資工系 2014 Spring)

Midterm (A 卷)

(請按順序作答,並列出演算過程)

Time: 13:20 -15:10 4/21/2014

Place: EC122

(11 problems and 110 points in total)

- [1] Find $\underline{dfa'}$ s for the following languages on $\Sigma = \{a, b\}$.
 - (a) $L_1 = \{ abaa, abb, bab, bbab \},$
 - (b) $L_2 = \{ w: |w| \mod 3=1 \}$,
 - (c) all strings with no more than two a's. (9 points)
- [2] Convert the nfa below to an equivalent dfa. (8 points)

- [3] Give <u>regular expressions</u> for the following languages over $\Sigma = \{a, b\}$.
 - (a) $L_3 = \{ a^n b^m, n \le 2, m \ge 2 \},$
 - (b) $L_4 = \{ a^n b^m, (n+m) \text{ is odd } \},$
 - (c) all strings containing an odd number of a's. (9 points)
- [4] Find the regular expression for the language accepted by

[5](a) Find a dfa for the language

 $L = \{w \in \{a, b\}^* : n_a(w) \text{ is even and } n_b(w) \text{ is odd} \}.$

(b) Find a regular grammar for L in (a). (10 points)

- [6] Construct right-linear and left-linear grammars for $L_3 = \{ a^n b^m, n \le 2, m \ge 2 \}$. (8 points)
- $^{1/2}$ [7] Given two dfa's M₁ and M₂,
 - (a) construct an nfa accepting $L(M_1) \cup L(M_2)$; (3 points)
 - (b) construct an nfa accepting $\overline{L(M_1)}$; (3 points)
 - (c) construct an nfa accepting $L(M_1) \cap L(M_2)$; and (4 points)
 - (d) design an algorithm to determine if $L(M_1) = L(M_2)$. (4 points)
 - (14 points)
 - [8](a) Show that $L = \{ ww^R : w \in \{a,b\}^* \}$ is not regular. (6 points)
 - (b) Show that $L = \{a^{n!} : n \ge 1\}$ is not regular. (6 points)
 - [9]Find context-free grammars for
 - (a) L = { ww^R : $w \in \{a,b\}^*$ },
 - (b) $L = \{ a^n b^n : n \ge 1 \},$
 - (c) $L = \{ a^n b^m : n \le m \le 2n \}$. (12 points)
 - [10] Convert the grammar
 - $S \rightarrow AB|aB$,
 - $A \rightarrow aab|\lambda$,
 - $B \rightarrow bbA$

into Chomsky normal form. (8 points)

[11]Describe the CKY parsing algorithm for context-free grammars in less than 1.5 pages and briefly explain how the complexity $O(|w|^3)$ can be reached in this algorithm. (12 points)