

Internal Causal Mechanisms Robustly Predict Language Model Out-of-Distribution Behaviors

S-Y-MY

Jing Huang*, Junyi Tao*, Thomas Icard, Diyi Yang, Christopher Potts

Task: Predict OOD Behaviors on MMLU

Find the degree for the given field extension Q(sqrt(2), sqrt(3), sqrt(18)) over Q.

ID Scenario A. 0 Alpha. 0

B. 4 Bravo. 4 Charlie. 2

Answer: B. Answer: Delta.

Delta. 6

Methods: Abstraction → **Prediction**

The model solves a task successfully → it likely implements a systematic solution, i.e. a causal mechanism

D. 6

The model implements the same causal mechanism on an OOD example → it likely predicts the OOD example correctly

Abstract the high-level causal model from ID examples that model correctly solves

Predict the output correctness by checking the implementation of key causal variables

Measure the extent to which an abstraction exists via interchange intervention accuracy

Experiment Results

The **most robust features** for correctness prediction are those that play a **causal** role in the model's behavior.

ID and OOD Probing and Intervention Results

Interchange Intervention Accuracy

Interchange Intervention accuracy reliably predicts model output correctness.