Introducción al Equating

Simulación Estadística

Kevin Steven Garcia Chica Cod. 1533173 Cesar Andres Saavedra Vanegas Cod. 1628466

Universidad Del Valle

Facultad De Ingenieria Estadistica Febrero 2018 ${\rm \acute{I}ndice}$

Índice de figuras

EQUATING

Equating (equiparando) de forma general, es un proceso estadístico cuyo objetivo o finalidad es ajustar los puntajes de dos formas distintas de una misma prueba; con esto, se busca relacionar el puntaje de una forma de una prueba y su equivalente en la otra forma con la cual se quiere comparar o equiparar, en otras palabras, lo que se busca aplicando Equating es que los puntajes en los formularios de prueba se puedan usar indistintamente.

Debemos tener en cuenta que condiciones o supuestos se debe cumplir para poder aplicar Equating. Para comparar dos formas diferentes de un test se deben cumplir básicamente los siguientes 5 supuestos:

- Simetría: Esta propiedad nos dice que la función utilizada para transformar una puntuación en la Forma X a la escala de la Forma Y sea la inversa de la función utilizada para transformar un puntaje en la Forma Y a la escala de la forma X. Por ejemplo, esta propiedad implica que si un puntaje bruto de 85 en la Forma X se convierte a un puntaje bruto de 90 en la Forma Y, luego un puntaje bruto de 90 en la Forma Y debe convertirse a un puntaje bruto de 85 en la forma X.
- Igual o cercana confiabilidad:
- Equidad: Lord (1980) definió esta propiedad específicamente. La propiedad es válida si los examinados con un puntaje verdadero dado tienen la misma distribución de puntajes en el Formulario X como lo harían en el Formulario Y.
 - En nuestras palabras, esto quiere decir que la media, y la desviación estándar en las dos formas del test deben ser aproximadamente iguales. Por ejemplo, si vemos que la mayoría de examinados expuestos a la forma X del test tienen puntajes mucho mas altos que los expuestos a la forma Y, entonces esta propiedad no se cumpliría, ya que las medias van a ser muy diferentes (la media de los puntajes de la forma X va a ser mucho mayor que la de los puntajes de la forma Y).
- Invarianza poblacional:
- Igual constructo: Esta condición nos dice que ambas formas del test deben medir el mismo constructo o las mismas características.

En general, las situaciones en las que se requiere el uso de Equating son en la aplicación de distintas formas de una misma prueba o test. Por ejemplo, en un examen de ingreso a estudios superiores en el que se convoca a los aspirantes para distintas fechas resulta extremadamente conveniente disponer de formas alternativas de la prueba o del examen, por razones estrictamente de seguridad (evitar plagio o conocimiento previo de la prueba). También es necesario disponer de distintas formas de un test cuando se desea medir en repetidas ocasiones a un mismo individuo o colectivo con el fin de evaluar, por ejemplo, su progreso académico o un posible cambio en sus actitudes. En cualquiera de estos casos, para poder comparar las puntuaciones obtenidas en las distintas formas del test es necesario ponerlas previamente en la misma escala, y eso lo logramos mediante el uso adecuado del Equating.

Universidad Del Valle 3

En cuanto al problema matemático o estadístico como tal en la equiparación ó el Equating consiste en modelar la relación entre un puntaje en un formulario de prueba y su puntaje correspondiente en otra forma. Matemáticamente, esto significa que se debe definir una función que tome valores en X y da como resultado un valor en Y.

Un ejemplo de esto, es cuando convertimos grados celsius a grados farenheit, la función en este caso es:

 $F = (\frac{9}{5} + C) + 32$

Esto significa que 0°C equivalen a 32°F. Exactamente lo mismo busca el Equating, hallar una función que dado un valor o un puntaje de la forma X nos arroje un puntaje en la escala de la forma Y.

Considerando solo dos tipos de pruebas o dos formas del test (debemos tener en cuenta que no necesariamente son dos formas del test, pueden ser muchas más), X y Y, supongamos que la prueba X se le aplica a n_x personas y la prueba Y se le aplica a n_y personas al azar, los puntajes obtenidos de la forma X y Y de los test se pueden ubicar en un vector X_i ($i=1,...,n_x$) y Y_j ($j=1,...,n_y$); además, como X y Y son resultados de cada uno de los test, estos pueden tomar cualquier valor en la escala del test, por lo cuál, consideramos X y Y como variables aleatorias, y estas a su vez, por ser variables aleatorias, se les pude asignar o siguen una distribución ya sea discreta o continua, F_x y F_y .

Universidad Del Valle 4

Referencias

- Inés María Varas Cáceres, 2018. Taller: Introducción al Equating.
- Jorge González, Marie Wiberg, 2017. Applying Test Equating Methods Using R.
- Michael J. Kalen, Robert L. Brennan, 2004. Test Equating, Scaling, and Linking Methods and Practices, Second Edition.
- Fang Chen, Xiaomin Huang y David MacGregor, 2009. EQUATING OR LINKING: BASIC CONCEPTS AND A CASE STUDY.
- Lady Catheryne Lancheros Florian, 2013, Universidad Nacional de Colombia. MÉTODOS DE EQUIPARACIÓN DE PUNTUACIONES: LOS EXÁMENES DE ESTADO EN PO-BLACIÓN CON Y SIN LIMITACIÓN VISUAL.
- Neil J. Dorans, Tim P. Moses, and Daniel R. Eignor, 2010. Principles and Practices of Test Score Equating.
- Navas, M. J. ,2000. Equiparación de puntuaciones: Exigencias actuales y retos de cara al futuro.
- Jorge González, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, 2017.
 Equating: Una breve introducción.

Universidad Del Valle 5