Задание 1 по курсу "Вычислительная математика"

Лукашевич Илья, 792 группа 21 сентября 2019 г.

Теоретическая задача 1.3

Пусть $A = I + \alpha u u^*$, $\alpha \in \mathbb{C}$, $u \in \mathbb{C}^n$, $||u||_2 = 1$. Найдите все α , при которых матрица A будет унитарной.

Решение.

Найдем эрмитово-сопряженную матрицу для матрицы A:

$$A^* = (I + \alpha uu^*)^* = I^* + (\alpha uu^*)^* = I + \alpha^*(uu^*) = I + \overline{\alpha}uu^*.$$

Найдем произведение AA^* :

$$AA^* = (I + \alpha uu^*)(I + \overline{\alpha}uu^*) = I + \overline{\alpha}uu^* + \alpha uu^* + \alpha uu^* \overline{\alpha}uu^* =$$

$$= I + (\alpha + \overline{\alpha})uu^* + \alpha \overline{\alpha}uu^*uu^* = I + (\alpha + \overline{\alpha})uu^* + |\alpha|^2 ||u||_2^2 uu^* =$$

$$= I + (\alpha + \overline{\alpha} + |\alpha|^2)uu^*.$$
(1)

По определению, матрица A называется унитарной, если выполнено условие $A^{-1}=A^*$. Тогда $AA^*=AA^{-1}=I$. Следовательно, должно выполняться условие $\alpha+\overline{\alpha}+|\alpha|^2=0$. Обозначим $Re(\alpha)=a$, $Im(\alpha)=b$. Тогда получаем, что

$$a + bi + a - bi + a^{2} + b^{2} = 0,$$

$$2a + a^{2} + b^{2} = 0,$$

$$b = \pm \sqrt{-a(a+2)}.$$
(2)

Понятно, что подкоренное выражение должно быть неотрицательно, следовательно $a \in [-2,0]$. Таким образом, матрица A будет унитарной, если для α выполнено:

$$\begin{cases}
Re(\alpha) \in [-2,0], \\
Im(\alpha) = \pm \sqrt{-Re(\alpha)(Re(\alpha)+2)}.
\end{cases}$$
(3)