

Unravelling Photochemical Mechanisms with Computational Methods

Rachel Crespo-Otero

OUTLINE

PHOTOCHEMICAL REACTION

IUPAC GOLD BOOK

Generally used to describe a chemical reaction caused by absorption of <u>ultraviolet</u>, <u>visible</u> or <u>infrared</u> radiation. There are many ground-state reactions, which have photochemical counterparts....

...

Modern Technologies

PHOTOMECHANISMS

Fl: Fluorescence

Ph: Phosphorescence

ISC: Intersystem crossing

IC: Internal conversion

Reaction coordinate

Many electronic states can be involved in a photoreaction

Coupling between nuclear and electronic motions

PHOTOREACTIONS

Reaction barriers are smaller in the excited state

Thermodynamically disfavoured products can be formed

PHOTODISSOCIATION

To reduce the barrier of the reaction in the excited state, an excited state with high X-Y antibonding character can be populated

EXCITED STATE PROTON TRANSFER (ESPT)

X-H distance

Population of Charge Transfer states accelerate PT process in the excited states

EXCITED STATES REACTIONS

Breakdown of the Born-Oppenheimer approximation

Competition between different pathways

Ultrafast!

Photochemical reactions: can we use our chemical intuition?

Time dependent Schrödinger equation

$$\left(i\hbar\frac{\partial}{\partial t} - H_e\right)\varphi(r,R,t) = 0$$

The dynamics of the nuclei is propagated classically on a single Born–Oppenheimer surface at any time.

The nonadiabatics events are simulated by a stochastic algorithm that allows each trajectory to jump to other states during the propagation.

Approximation for the wavefunction

$$\varphi(r,R,t) = \sum_{j} c_{j}(t) \Phi_{j}(r,R(t))$$

$$\left(i\hbar\frac{\partial}{\partial t} - H_e\right)\varphi(r,R,t) = 0$$

Substitute
$$\varphi(r, R, t) = \sum_{j} c_{j}(t) \Phi_{j}(r, R(t))$$

Multiply by Φ_k^* and integrate over the electronic coordinates

Semi-classical time-dependent Schrödinger equation

$$i\hbar \frac{\partial c_k}{\partial t} + \sum_{i=1}^{N_s} \left(i\hbar \sigma_{kj} - H_{kj} \right) c_j = 0$$

The SC-TDSE is solved with standard methods (Unitary Propagator, Adams Moulton 6th-order, Butcher 5th-oder)

Non-adiabatic couplings

$$\sigma_{kj} = \left\langle \Phi_k \left| \frac{\partial \Phi_j}{\partial t} \right\rangle = \mathbf{F}_{kj} \cdot \mathbf{v} \right\rangle$$

Non-adiabatic coupling terms

nuclear velocities

Tully, J. Chem. Phys. 93, 1061 (1990)

Non-adiabatic couplings

$$\sigma_{kj} = \left\langle \Phi_k \left| \frac{\partial \Phi_j}{\partial t} \right\rangle = \mathbf{F}_{kj} \cdot \mathbf{v} \right\rangle$$

Non-adiabatic coupling terms

nuclear velocities

$$\mathbf{F}_{kj} = \left\langle \Phi_k \, \middle| \, \nabla_R \Phi_j \right\rangle$$

 H_{ii} elements

$$\left(\left\{oldsymbol{\Phi}_{k}
ight\}|H_{kj}=V_{k}\delta_{kj}
ight)$$
 Adiabatic basis

$$\left(\left\{oldsymbol{\Phi}_{k}^{d}\right\} | \, H_{kj} = W_{kj}, \mathbf{F}_{kj} = 0
ight)$$
 Diabatic basis

Newton's equations of motion

$$\frac{d^2\mathbf{R}_m^c}{dt^2} - \frac{\mathfrak{F}_m^c}{M_m} = 0$$

Fewest switches method (Tully)

$$P_{k\to i} = \max \left[0, \frac{-2\Delta t}{\left| c_k \right|^2} \operatorname{Re} \left(c_k c_i^* \right) \sigma_{li} \right]$$

(Adiabatic Representation)

Decoherence corrections

Granucci and Persico, J. Chem. Phys. **126**, 134114 (2007) C. Zhu, S. Nangia, A. W. Jasper, and D. G. Truhlar, J. Chem. Phys. **121**, 7658 (2004).

SURFACE HOPPING: SOME USEFUL REFERENCES

Comparison to other methods

- Cattaneo and Persico, J. Phys. Chem. A **101**, 3454 (1997)
- Worth, Hunt, Robb, J. Phys. Chem. A 107, 621 (2003)

Comparison between hopping algorithms

- Zhu, A. W. Jasper, and D. G. Truhlar, JCTC 1, 527 (2005)
- Fabiano, Groenhof, Thiel, Chem. Phys. 351, 111 (2008)

Conceptual background

- Herman, J. Chem. Phys. 103, 8081 (1995)
- Schwartz, Bittner, Prezhdo, Rossky, J. Chem. Phys. 104, 5942 (1996)
- Tully, Faraday Discuss. **110**, 407 (1998)
- Schmidt, Parandekar, Tully, J. Chem. Phys. 129, 044104 (2008)

Surface hopping reviews

- Doltsinis, NIC series, 2002
- Barbatti, WIREs: Comp. Mol. Sci. 1, 620 (2011)

NEWTON-X: A package for Newtonian dynamics close to the crossing seam

M. Barbatti, G. Granucci, M. Ruckenbauer, F. Plasser, R. Crespo-Otero, J. Pittner, M. Persico and H. Lischka, *NEWTON-X: a package for Newtonian dynamics close to the crossing seam*, 2013, http://www.newtonx.org

NEWTON-X: A package for Newtonian dynamics close to the crossing seam

Web:

http://www.newtonx.org

Wiki:

https://en.wikipedia.org/wiki/Newton-X

NX forum at Google:

https://groups.google.com/forum/?fromgroups#!forum/newtonx

ELECTRONIC METHODS

Common methods used with Surface Hopping

Multi-Reference Methods

Advantage: Appropriate description of the S_1/S_0 crossing seam region.

Disadvantage: It is challenging to find a stable active state, which can represent all regions of the potential energy surface that can be explored during the dynamics.

CASSCF: Lack of dynamic correlation

MRCI: Too computationally expensive for most applications

ELECTRONIC METHODS

Common methods used with Surface Hopping

Single-Reference Methods

Advantage: Black box methods, they do not require much user intervention, which is very convenient for dynamics simulations.

Algebraic-Diagramatic-Construction ADC(2): Dynamics is very stable. (Plasser *et al.* JCTC **10**, 1395 (2014))

Coupled Cluster to the second order (CC2, RI-CC2): Numerical instabilities close to quasi-degenerate excited states. It seems to provide a proper description of conical interceptions (Tuna *et al.* JCTC **11**, 5758 (2015))

ELECTRONIC METHODS

Common methods used with Surface Hopping

Single-Reference Methods

DFT/TDDFT

Incorrect description of S₁/S₀ crossing seam

MULTIREFERENCE METHODS vs TDDFT

ADENINE: LEVEL OF THEORY

Adenine conical intersections

Population of S_0 at 1ps

Tested functionals do not explain the photochemistry .

Best results: ADC(2).

NON-ADIABATIC COUPLINGS IN NEWTON-X

$$\sigma_{kj} = \left\langle \Phi_k \middle| \frac{\partial \Phi_j}{\partial t} \right\rangle = \mathbf{F}_{kj} \cdot \mathbf{v} \qquad \mathbf{F}_{kj} = \left\langle \Phi_k \middle| \nabla_R \Phi_j \right\rangle$$

Analytical evaluation of \mathbf{F}_{ki}

- MCSCF, MRCI (H. Lischka et al. Phys. Chem. Chem. Phys., 3, 664 (2001))

Numerical Evaluation

Finite difference method (S. Hammes-Schiffer and J. C. Tully. J Chem Phys 10, 4657 (1994))

$$\sigma_{kj} \approx \frac{1}{2\Delta t} \left[\left\langle \Phi_k \left(t - \frac{\Delta t}{2} \right) \middle| \Phi_j \left(t - \frac{\Delta t}{2} \right) \right\rangle - \left\langle \Phi_k \left(t + \frac{\Delta t}{2} \right) \middle| \Phi_j \left(t - \frac{\Delta t}{2} \right) \right\rangle \right]$$

$$\approx \frac{1}{4\Delta t} \left[3S_{kj}(t) - 3S_{jk}(t) - S_{kj}(t - \Delta t) + S_{jk}(t - \Delta t) \right]$$

$$S_{kj}(t) = \left\langle \Phi_k \left(t - \Delta t \right) \middle| \Phi_j \left(t \right) \right\rangle$$

The Newton-X implementation for TDDFT, ADC(2), CC2 is based on approximate CIS wavefunctions.

TDDFT AND TDA: THE CASIDA'S ANSATZ

$$\Phi_K = \sum_{o} \sum_{v} C_{ov}^K \Psi_{ov},$$

Energies of the Kohn-Sham orbitals

$$C_{ov}^K = A_K \left(\frac{\mathcal{E}_v - \mathcal{E}_o}{\Delta E_K}\right)^{1/2} (X_{ov}^K + Y_{ov}^K),$$

$$\Delta E_K = V_K - V_0, \qquad \text{vectors from linear response}$$

$$Y_{ov}^K = 0 \quad \text{for TDA}$$

$$A_K = \left(\sum_{o,v} |C_{ov}^K|^2\right)^{-1/2}$$
, Normalization factor

Tapavicza E, Tavernelli I, Rothlisberger U. *Phys. Rev. Lett.* 98, 023001 (2007).

Barbatti M, Pittner J, Pederzoli M, Werner U, Mitrić R, Bonačić-Koutecký V, Lischka H. *Chem. Phys.* 375, 26 (2010).

Plasser, F.; Crespo-Otero, R.; Pederzolli, M.; Pittner, J.; Lischka, H.; Barbatti, M. *J. Chem. Theory Comput.* 10, 1395 (2014).

NAD WITH NEWTON-X

SPECTRA SIMULATIONS AND INITIAL CONDITIONS

Cross Section: $\sigma(E)$

$$\sigma(E) = \frac{\pi e^{2} \hbar}{2mc\varepsilon_{0} n_{r} E} \sum_{n=1}^{N_{fs}} \frac{1}{N_{p}} \sum_{l=1}^{N_{p}} \left| \chi_{00}(\mathbf{R}_{l}) \right|^{2} \Delta E_{0,n}(\mathbf{R}_{l}) f_{0n}(\mathbf{R}_{l}) g\left(E - \Delta E(\mathbf{R}_{l}), \delta_{n}\right)$$
Gaussian or

N_p Number of geometries

N_{fs} Number of states

$$\left|\chi_{00}\left(\mathbf{q}\right)\right|^{2} = \prod_{j=1}^{3N-6} \left(\frac{\mu_{j}\omega_{j}}{\pi\hbar}\right)^{1/2} \exp\left(-\mu_{j}\omega_{j}q_{j}^{2}/\hbar\right) \qquad \text{Wigner distribution}$$

Crespo-Otero, R.; Barbatti, M., Theor. Chem. Acc. 2012, 131, 1237

Lorentzian

SPECTRA SIMULATIONS AND INITIAL CONDITIONS

Equilibrium Geometry

Wigner Distribution

Spectrum

IMIDAZOLE: DYNAMICS

Window A

pump: 240 nm

Window B

pump: 201 nm

TDDFT (B3LYP/TZVP+mod)

The mechanism depends on the initial excitation

N-METHYLFORMAMIDE PHOTOCHEMISTRY

N-METHYLFORMAMIDE: MONOMER

Argon matrix

HOH HOH HO HO HO + CO

CH₃
(Z)-FIA

$$hv$$
 hv
 hv

N-METHYLFORMAMIDE: QM/MM SIMULATIONS

Gas phase dynamics:

SA-3-CASSCF(10,8)/6-31G(d,p)

Matrix conditions:

QM (NMF): SA-3-CASSCF(10,8)/6-31G(d,p) MM (Argon matrix) : OPLSAA force field

- 3 states
- Maximum Simulation time: 2000 fs
- Total of 400 trajectories

Active Space: n(O), σ_{CN} , σ^*_{CN} , σ_{CH} , σ^*_{CH} , 2π , π^*

N-METHYLFORMAMIDE: CONICAL INTERSECTIONS

Structures optimized at SA-3-CASSCF(10,8)/6-31G(d) level of theory

N-METHYLFORMAMIDE:

dots: MS-CASPT2

line: CASSCF

N-METHYLFORMAMIDE:

dots: MS-CASPT2

line: CASSCF

N-METHYLFORMAMIDE: GAS PHASE

First step in the photo-mechanism: C-N dissociation

SA-3-CASSCF(10,8)/6-31G(d,p)

MATRIX EFFECTS: QM/MM

Photo-mechanism

- 1.) C-N photo -dissociation
- 2.) Hydrogen transfer
- 3.) CH₃NH₂...CO complex

QM (NMF): SA-3-CASSCF(10,8)/6-31G(d,p) MM (Argon matrix) : OPLSAA force field

PROTON TRANSFER MECHANISM

This mechanism protects biomolecules from UV-irradiation

S₀/S₁ CROSSING GEOMETRIES

C-N dissociation

Proton Transfer

 $TD/LC-BLYP(\mu=0.2)/6-311+G(d)$

C-N DISSOCIATION IN THE DIMER

A TYPICAL TRAYECTORY

72 % of the trajectories deactivated through the ESTP mechanism

N-METHYLFORMAMIDE: THE DIMER

Experiments: The dimer does not dissociate under same irradiation conditions

Proton transfer mechanism protects the dimer from photo-dissociation

Proton-transfer is faster than C-N dissociation (50 fs vs 400 fs).

Orange → Green

TDDFT/LC-BLYP(μ =0.2)/6-311+G(d)

DOUBLE PROTON TRANSFER IN ... DIMERS

7-Azaindole (7AI) dimer: Concerted vs Stepwise ESPT

CONCERTED MECHANISM

RI-CC2/TZVP

Most electronic methods fail to provide a balance description of the different regions of the excited state.

DOUBLE PROTON TRANSFER IN ... DIMERS

RI-CC2/TZVP

Low energy window $(4.1 \pm 0.1 \text{ eV})$

DPT: 80%, **SPT**: 15%, **MPT**: 5%

CONCLUSIONS

- Surface Hopping is very useful to explore photochemical mechanisms.

- Be careful before starting running long NAD dynamics simulations. Make sure that the level of theory is appropriate!

ACKNOWLEDGMENTS

Mario Barbatti (Air Marseille Université)

Newton-X team

Elsa Sanchez (MPI, Mülheim)

Artur Mardykov (University of Bochum)

Wolfram Sander (University of Bochum)

Susanne Ulrich (University of Georgia)

Nawee Kugnwan (University of Chiang Mai)

Michael Dommett (Queen Mary University of London)

