9

GS543 (Tutorial 3) AMT/MT sounding

The apparent resistivity (ρ_a) and phase (ϕ) over a multi-layered model is obtained from the surface impedance Z_1 given by Vozoff (1991):

$$\rho_a(\omega) = \frac{1}{\omega\mu} |Z_1|^2 \,, \tag{1}$$

(2)

In eq. (1) ω is the angular frequency and $\mu=\mu_0=4\pi\times10^{-7}\text{H/m}$. The surface impedance Z_1 is computed by following recurrence relation:

$$Z_{n} = k\sqrt{\rho_{n}}$$

$$Z(i) = (Z(i+1) + T(i))/(1 + Z(i+1)S(i))$$

where T_i and S_i are given by:

$$T_{i} = \left(k\sqrt{\rho_{i}}\right) \tanh\left(\frac{kh_{i}}{\sqrt{\rho_{i}}}\right), \quad S_{i} = \frac{1}{k\sqrt{\rho_{i}}} \tanh\left(\frac{kh_{i}}{\sqrt{\rho_{i}}}\right)$$

 $k = (i\omega\mu)^{1/2}$, $\omega = 2\pi f$, f is frequency varying from 10⁴ Hz to 1 Hz.

The term Z_1 is equation (1) will be a complex quantity and it is used to determine phase

$$\varphi = \tan^{-1} \left(\frac{\operatorname{Im}(Z_1)}{\operatorname{Re}(Z_1)} \right)$$
 change as $\varphi = \tan^{-1} \left(\frac{\operatorname{Im}(Z_1)}{\operatorname{Re}(Z_1)} \right)$

Apparent resistivity and phase are computed over a large frequency range to depict the variation in responses from different models shown as

Resistivity	Thickness
(\Om)	(m)
5.0	0.5
25	3.5
10	25
7500	70
10	10
7500	70
10	10
7500	

Assignment -1: Write a Python program to compute the apparent resistivity and phase for the tabled model parameters.

Input - Rho=[500 10 2000] h=[20000 10000] time period - 0.001