Analízis I. informatikusoknak

Jegyzet mérnök-informatikus hallgatók részére

Készítette: Kriván Bálint dr. Tasnádi Tamás előadásai alapján

2009. szeptember - 2009. december 19.

Tartalomjegyzék

1.	Valos számok						
	1.1	Csoportok	7				
	1.2	Valós számok axiómái	7				
		1.2.1 Rendezési axiómák	7				
		1.2.2 Archimédesz-féle axióma	8				
		1.2.3 Cantor-féle axióma	8				
2.	Szán	nsorozatok	9				
	2.1	Kör kerülete	9				
	2.2	Bevezetés; definíciók	9				
		2.2.1 Példák	10				
		2.2.2 Divergens sorozatok és \pm végtelenbe tartás	11				
			11				
	2.3	Ekvivalens megfogalmazások	12				
	2.4		12				
	2.5		12				
		2.5.1 Példák	14				
	2.6		15				
			15				
		2.6.2 Hasonló tételek	16				
		2.6.3 Határozatlan alakok	16				
		2.6.4 Példák a rendőr-elv használatára	17				
	2.7	További gyakran használt határértékek	18				
		2.7.1 Példák a fentiek használatára	20				
	2.8	Rekurzív sorozatok	20				
	2.9		21				
			2 3				
	2.10	További fontosabb tételek	2 3				
			25				
3	Nun	nerikus sorok	27				
	3.1	Példák	27				
	3.2		29				
			29				
		8 8	29				
		0 0	29				
	3.3		30				
	-		31				
	3.4	· ,	31				
			27				

	3.5	5 Hiba, hibabecslés						
		3.5.1 Példák						
	3.6 Abszolút és feltételes konvergencia							
	3.7	Pozitív tagú sorok						
		3.7.1 Példa						
		3.7.2 Nem Leibniz-típusú pozitív tagú sorok hibabecslése						
4.	Valo	ós egyváltozós függvények 37						
	4.1	Topológiai alapfogalmak						
	4.2	Függvény tulajdonságok						
	4.3	Függvények határértéke						
		4.3.1 Végesben vett határértékek						
		4.3.2 Végtelenben vett határértékek						
	4.4	Műveletek függvényekkel						
		4.4.1 Határértékre vonatkozó tételek						
	4.5	Folytonosság						
		4.5.1 Szakadási helyek						
		4.5.2 Folytonos függvények tulajdonságai						
		4.5.3 Tételek korlátos zárt intervallumon folytonos függvényekhez 45						
		4.5.4 Egyenletes folytonosság						
	4.6	Függvények differenciálása						
		4.6.1 "Ismert" függvények deriváltja						
		4.6.2 Érintő egyenlete						
		4.6.3 Deriválási szabályok						
		4.6.4 Inverz függvény deriválása						
		4.6.5 Exponenciális függvények						
		4.6.6 Logaritmus függvények						
		4.6.7 Hatvány függvények						
		4.6.8 Hiperbolikus függvények						
		4.6.9 Differenciálszámítás középérték-tételei 62						
		4.6.10 Nyílt intervallumon differenciálható függvények tulajdonságai 66						
		4.6.11 Differenciálható függvények lokális tulajdonságai						
		4.6.12 Implicit deriválás						
	4.7	Teljes függvény vizsgálat						
		4.7.1 Teendők						
		4.7.2 Konkrét példákon való függvény vizsgálat 71						
		4.7.3 Folytonos függvények szélsőértékei zárt intervallumon (abszolút szélsőértékhely)						
=	Da14	ír koordináták 75						
٥.	5.1	Ortogonális koordinátarendszer						
	5.1	Görbék paraméteres megadása						
	<i>J.</i> ∠	5.2.1 Kör						
		5.2.2 Ellipszis						
	5.3	1						
	ن.ن	3 Görbék invertálhatósága, differenciálása						

6.	Inte	grálszá	mítás	79				
	ozatlan integrál	79						
		6.1.1	Primitív függvény	79				
		6.1.2	Határozatlan integrál tulajdonságai	80				
		6.1.3	Integrálási módszerek	81				
	6.2 Határozott integrál (Riemann-integrál)							
		6.2.1	Riemann-integrálhatóság szükséges és elégséges feltételei	88				
		6.2.2	Elégséges feltételek a Riemann-integrálhatóságra	90				
		6.2.3	Riemann-integrál tulajdonságai	91				
		6.2.4	Az integrálszámítás középértéktétele	92				
		6.2.5	Integrál függvény	93				
		6.2.6	Parciális integrálás	94				
		6.2.7	Integrálás helyettesítéssel	94				
	6.3	Impro	prius integrál	97				
		6.3.1	Ha az intervallum nem korlátos	97				
		6.3.2	Ha a függvény nem korlátos	97				
		6.3.3	Improprius integrál néhány tulajdonsága	99				
		6.3.4	Majoráns kritérium	99				
		6.3.5	Minoráns kritérium	100				
	6.4	Az inte	egrálás néhány alkalmazása	100				
		6.4.1	Terület számítás	100				
		6.4.2	Forgástest térfogatának kiszámolása	101				
		6.4.3	Ívhossz	101				
	6.5	Integra	ál kritérium	102				
		6.5.1	Hibabecslés	103				
7.	Szár	nsoroza	atok nagyságrendje	105				
		7.0.2		106				

1. fejezet

Valós számok

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\overline{\mathbb{R}}\subset\mathbb{C}$$

Csoportok 1.1.

Definíció 1.1 Legyen G halmaz és \cdot egy kétváltozós művelet G-n: $G \times G \to G$. (G, \cdot) csoport, ha

- 1. $(a \cdot b) \cdot c = a \cdot (b \cdot c) \quad \forall a, b, c \in G \text{ (tehát asszociatív)}$
- 2. $\exists e \in G$, hogy $e \cdot g = g \cdot e = g \quad \forall g \in G$ (létezik egység elem) 3. $\forall g \in G$ esetén $\exists ! g^{-1}$ melyre $g \cdot g^{-1} = g^{-1} \cdot g = e$ (létezik inverze)

Definíció 1.2 Egy csoportot kommutatív csoportnak (Abel-csoport) hívunk, ha a művelet kommutatív. Tehát $(G; \cdot)$ kommutatív csoport, ha

$$a \cdot b = b \cdot a \quad \forall a, b \in G$$

Definíció 1.3 A test egy olyan $F = (T, +, \cdot)$ kétműveletes algebrai struktúrát jelöl, ahol T kommutatív csoportot alkot a + ("összeadás") műveletre nézve, a · ("szorzás") kommutatív, asszociatív, minden nem nulla elemnek van inverze a · műveletre nézve, továbbá a · művelet disztributív a + műveletre. Tehát:

- 1. (T, +) kommutatív csoport: $e = 0, a^{-1} = -a$.
- 2. $(T \setminus \{0\}, \cdot)$ kommutatív csoport: $e = 1, a^{-1} = \frac{1}{a}$.
- 3. $a \cdot (b+c) = ab + ac \quad \forall a, b, c \in T$

Valós számok axiómái 1.2.

1-9. $(\mathbb{R}, +, \cdot)$ testet alkot.

Rendezési axiómák 1.2.1.

 $\forall a, b, c \in \mathbb{R}$ -re

- **10.** A következő 3 közül pontosan 1 teljesül: a < b; a = b; a > b.
- **11.** Tranzitivitás: a < b és b < c $\Rightarrow a < c$
- **12.** A rendezés monoton az összeadásra: ha a < b, akkor a + c < b + c
- **13.** A rendezés monoton a szorzásra:ha a < b, akkor $a \cdot c < b \cdot c$

1.2.2. Archimédesz-féle axióma

14. $\forall x \in \mathbb{R}$ -hez $\exists n \in \mathbb{N}$, hogy n > x.

1.2.3. Cantor-féle axióma

15. R teljes:

Ha
$$I_n = [a_n, b_n] \subset \mathbb{R} \neq \emptyset$$
 és $a_n \leqslant a_{n+1}, b_{n+1} \leqslant b_n \quad \forall n \in \mathbb{N}$:
$$I_1 \subset I_2 \subset I_3 \subset \ldots \subset I_n \quad \text{akkor} \quad \exists \xi \in \mathbb{R}, \text{hogy}$$

$$\xi\in\bigcap_{n\in\mathbb{N}}I_n$$

Megjegyzés: Q-ban nem teljesül!

2. fejezet

Számsorozatok

2.1. Kör kerülete

A kör (K) kerületét beírt (k_n) és hozzáírt (K_n) sokszögek kerületével közelítjük.

$$k_n = n \cdot 2 \cdot \sin \frac{\pi}{n}$$

$$K_n = n \cdot 2 \cdot \lg \frac{\pi}{n}$$

$$k_n \leqslant K \leqslant K_n$$

			10		
k_m	$3\sqrt{3}$	$4\sqrt{2}$	6, 1803 6, 4983	6,2822	 $\rightarrow 2\pi$
K_n	$6\sqrt{3}$	8	6,4983	6,2853	 $ ightarrow 2\pi$

2.2. Bevezetés; definíciók

Definíció 2.1 Valós számsorozatok

$$f: \mathbb{N} \mapsto \mathbb{R}$$
 $a_n = f(n)$

Megjegyzés: Van olyan, hogy néha nem értelmezzük a függvényt az első néhány természetes számon, pl.: $a_n = \frac{1}{n}$ (n = 1, 2, 3, ...)

Definíció 2.2 Az $\{a_n\}$ sorozat felülről korlátos, ha $\exists K \in \mathbb{R} : a_n \leqslant K \quad \forall n \in \mathbb{N}.$

Definíció 2.3 $Az \{a_n\}$ sorozat alulról korlátos, ha $\exists k \in \mathbb{R} : a_n \geqslant k \quad \forall n \in \mathbb{N}.$

Definíció 2.4 $Az \{a_n\}$ sorozat korlátos, ha alulról **és** felülről is korlátos.

Definíció 2.5 $Az \{a_n\}$ határértéke $A \in \mathbb{R}$, ha $\forall \varepsilon > 0 : \exists N(\varepsilon)$, hogy $|a_n - A| < \varepsilon$, ha $n > N(\varepsilon)$. *Jelölés:* $\lim_{n \to \infty} a_n = A$, vagy $a_n \xrightarrow{n \to \infty} A$

Definíció 2.6 Az $\{a_n\}$ sorozat konvergens, ha $\exists A \in \mathbb{R}$, hogy $\lim_{n \to \infty} a_n = A$.

Intervallumok:

- $zárt: [a; b] = \{x \in \mathbb{R} | a \le x \le b\}$
- nyîlt: |a;b| vagy $(a;b) = \{x \in \mathbb{R} | a < x < b\}$
- félig nyílt v. zárt: $(a;b] = \{x \in \mathbb{R} | a < x \le b\}$

Definíció 2.7 $\lim_{n\to\infty} a_n = A \in \mathbb{R}$, ha $\forall \varepsilon > 0$ esetén a sorozat véges számú eleme van az $(A - \varepsilon; A + \varepsilon)$ intervallumon kívül. Ez ekvivalens a 2.5. definícióval.

2.2.1. Példák

(1) $a_n = \frac{1}{n}$. $\lim_{n \to \infty} \frac{1}{n} = 0$. Bizonyítás a 2.5. definíció felhasználásával:

$$\left| \frac{1}{n} - 0 \right| < \varepsilon \quad \to \quad \frac{1}{n} < \varepsilon$$

$$n > \frac{1}{\varepsilon} \quad \to \quad N(\varepsilon) = \left[\frac{1}{\varepsilon} \right]$$

Tehát küszöbindexnek $\forall \varepsilon > 0$ -hoz az $\left[\frac{1}{\varepsilon}\right]$ -t választhatjuk.

(2)
$$b_n = \frac{(-1)^n}{n}$$
. $\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$.
$$\left| \frac{(-1)^n}{n} - 0 \right| < \varepsilon \quad \to \quad \frac{1}{n} < \varepsilon \quad \to \quad N(\varepsilon) = \left[\frac{1}{\varepsilon} \right]$$

(3)
$$c_n = \frac{3+n}{5-2n} \xrightarrow{n\to\infty} -\frac{1}{2}$$

$$\left| \frac{3+n}{5-2n} + \frac{1}{2} \right| = \left| \frac{6+2n+5-2n}{2(5-2n)} \right| = \left| \frac{11}{10-4n} \right| < \varepsilon$$

Ha $n \ge 3$, akkor:

$$\left| \frac{11}{10 - 4n} \right| = \frac{11}{4n - 10} < \varepsilon \quad \to \quad \frac{11 + 10\varepsilon}{4\varepsilon} < n \quad \to \quad N(\varepsilon) = \max \left\{ 3, \left[\frac{11 + 10\varepsilon}{4\varepsilon} \right] \right\}$$

$$(4) \ d_n = \frac{n^2 - 2n}{3n^3 + 2} \xrightarrow{n \to \infty} 0$$

$$\left| \frac{n^2 - 2n}{3n^3 + 2} - 0 \right| \stackrel{x \ge 2}{=} \frac{n^2 - 2n}{3n^3 + 2} < \varepsilon \qquad \text{neh\'ez egzaktul megoldani} \to \text{becsl\'es}$$

$$\frac{n^2 - 2n}{3n^3 + 2} < \frac{n^2}{3n^3} = \frac{1}{3n} < \varepsilon \qquad \to \qquad n > \frac{1}{3\varepsilon} \qquad \to \qquad N(\varepsilon) = \max \left\{ 2, \left[\frac{1}{3\varepsilon} \right] \right\}$$

$$(5) e_{n} = \frac{n^{3} - 2n}{3n^{3} - 2} \xrightarrow{n \to \infty} \frac{1}{3}$$

$$\left| \frac{n^{3} - 2n}{3n^{3} - 2} - \frac{1}{3} \right| = \left| \frac{3n^{3} - 6n - 3n^{3} + 2}{9n^{3} - 6} \right| = \left| \frac{-6n + 2}{9n^{3} - 6} \right| \stackrel{x \ge 1}{=} \frac{6n - 2}{9n^{3} - 6} < \frac{6n}{9n^{3} - 6n^{3}} = \frac{2}{n^{2}} < \varepsilon$$

$$\frac{2}{n^{2}} < \varepsilon \quad \to \quad n > \sqrt{\frac{2}{\varepsilon}} \quad \to \quad N(\varepsilon) = \max\left\{1, \left[\sqrt{\frac{2}{\varepsilon}}\right]\right\}$$

11

Divergens sorozatok és \pm végtelenbe tartás

Definíció 2.8 $Az \{a_n\}$ sorozat divergens ha $\nexists A \in \mathbb{R}$, hogy $a_n \to A$.

Definíció 2.9 $a_n \xrightarrow{n \to \infty} \infty$, ha $\forall P \in \mathbb{R} > 0 : \exists N(P) \text{ küszöbindex, hogy } a_n > P$, ha n > N(P).

Definíció 2.10 $a_n \xrightarrow{n \to \infty} -\infty$, ha $\forall M \in \mathbb{R} < 0 : \exists N(M)$ küszöbindex, hogy $a_n < M$, ha n > N(M).

Lemma 2.1
$$a_n \to \infty \iff -a_n \to -\infty$$

2.2.3. Példák

(1) $a_n = n^3 + 10n + 2 \rightarrow \infty$ Kell, hogy adott *P*-re $a_n > P$:

$$a_n = n^3 + 10n + 2 \stackrel{*}{>} n^3 > P \implies n > \sqrt[3]{P}$$

(*) becslünk: ha egy az erdetinél kisebb sorozatot vizsgálunk, akkor az ehhez tartozó küszöbindex az eredetihez is jó lesz.

Tehát küszöbindexnek $\forall P>0$ -hoz például az $N(P)=\left\lceil \sqrt[3]{P}\right\rceil$ -t választhatjuk.

(2)
$$a_n = n^3 - 10n + 2 \to \infty$$

$$a_n = n^3 - 10n + 2 > n^3 - 10n \stackrel{n \ge 5}{>} n^3 - \frac{n^3}{2} = \frac{n^3}{2} > P \implies n > \sqrt[3]{2P}$$

$$N(P) = \max\left\{5, \left\lceil \sqrt[3]{2P} \right\rceil \right\}$$

Megjegyzés: $a_n = (-1)^n$ divergens, nem tart se $+\infty$, se $-\infty$ -be.

Tétel 2.1 Ha egy sorozat konvergens, akkor a hatáértéke egyértelmű, tehát:

$$\lim_{n\to\infty} a_n = A \in \mathbb{R} \text{ \'es } \lim_{n\to\infty} a_n = B \in \mathbb{R} \quad \Longrightarrow \quad A = B$$

Bizonyítás 2.1 Indirekt. Tfh: $A \neq B$. Legyen például: B < A

Legyen
$$\varepsilon = \frac{|A - B|}{3}$$
.

$$a_n \to A \Rightarrow a_n \in (A - \varepsilon, A + \varepsilon) \text{ ha } n > N_a(\varepsilon)$$
 \Rightarrow $a_n \to B \Rightarrow a_n \in (B - \varepsilon, B + \varepsilon) \text{ ha } n > N_b(\varepsilon)$ \Rightarrow $a_n \in (A - \varepsilon, A + \varepsilon) \cup (B - \varepsilon, B + \varepsilon) = \emptyset$

Tehát az állításunk hamis, így igaz az eredeti állítás.

2.3. Ekvivalens megfogalmazások

P és Q két állítás:

- 1. $P \Leftrightarrow Q \qquad Q \Leftrightarrow P$
- 2. *P* ekvivalens *Q*-val.
- 3. P pontosan akkor teljesül, amikor Q.
- 4. *P* akkor és csak akkor teljesül, ha *Q*.
- 5. P szükséges és elégséges feltétele Q-nak.
- 6. *Q* szükséges és elégséges feltétele *P*-nek.
- 1. $P \Rightarrow Q$
- 2. P-ből következik Q.
- 3. P maga után vonja Q-t.
- 4. P implikálja Q-t.
- 5. P elégséges feltétele Q-nak.
- 6. Q szükséges feltétele P-nek.

2.4. Korlátosság és konvergencia kapcsolata

Tétel 2.2 Ha az $\{a_n\}$ sorozat konvergens, akkor korlátos

Megjegyzés: Minden konvergens sorozat korlátos.

A korlátosság szükséges feltétele a konvergenciának, a konvergencia elégséges feltétele a korlátosságnak.

Bizonyítás 2.2

 $a_n \to A \in \mathbb{R}$, tehát $\forall \varepsilon > 0 : \exists N(\varepsilon)$, hogy $a_n \in (A - \varepsilon, A + \varepsilon)$ $n > N(\varepsilon)$. Tehát az $(A - \varepsilon, A + \varepsilon)$ -on kívül csak véges sok elemek esnek kívül: $a_0, a_1, \ldots, a_{N(\varepsilon)}$

$$\implies \left\{ \begin{array}{ll} \exists k : \forall n\text{-re} & k \leqslant a_n & k = \min\{a_0, a_1, \dots, a_{N(\varepsilon)}, A - \varepsilon\} \\ \exists K : \forall n\text{-re} & K \geqslant a_n & K = \max\{a_0, a_1, \dots, a_{N(\varepsilon)}, A + \varepsilon\} \end{array} \right.$$

Mivel van alsó és felső korlátja, ezért korlátos.

2.5. Műveletek konvergens számsorozatokkal

Tétel 2.3
$$a_n \to A \ \acute{e}s \ b_n \to B \implies (a_n + b_n) \to A + B$$

Bizonvítás 2.3

A $c_n = a_n + b_n$ sorozatról kell belátni, hogy C = A + B a határértéke. Számsorozatok konvergenciája szerint: $\forall \varepsilon : \exists N(\varepsilon)$, hogy $|c_n - C| < \varepsilon$, ha $n > N_c(\varepsilon)$. Legyen $\varepsilon^* = \frac{\varepsilon}{2}$. Hasonlóan elmondható, hogy:

$$|a_{n} - A| < \varepsilon^{*} \quad \forall n > N_{a}(\varepsilon^{*})$$

$$|b_{n} - B| < \varepsilon^{*} \quad \forall n > N_{b}(\varepsilon^{*})$$
 Ha $n > \max\{N_{a}(\varepsilon^{*}), N_{b}(\varepsilon^{*})\}$, akkor

$$|c_{n} - C| = |a_{n} + b_{n} - (A + B)| \leqslant |a_{n} - A| + |b_{n} - B| < 2\varepsilon^{*} = \varepsilon$$

Tehát $N_c(\varepsilon)$ küszöbindexnek $N_c(\varepsilon) = \max\left\{N_a\left(\frac{\varepsilon}{2}\right), N_b\left(\frac{\varepsilon}{2}\right)\right\}$ -t választhatjuk. (*) = háromszög egyenlőtlenség!

Tétel 2.4
$$a_n \to A \implies c \cdot a_n \to c \cdot A$$

Bizonyítás 2.4

$$|ca_n - cA| = |c||a_n - A| < \varepsilon \implies |a_n - A| < \frac{\varepsilon}{|c|} \rightarrow N_{ca}(\varepsilon) = N_a\left(\frac{\varepsilon}{|c|}\right)$$

Következmény:

$$a_n \to A \text{ \'es } b_n \to B \implies (a_n - b_n) \to A - B$$

Könnyen bizonyítható az előző két tétel felhasználásával.

Tétel 2.5
$$a_n \to 0$$
 és b_n korlátos \Longrightarrow $a_n b_n \to 0$

Bizonyítás 2.5

$$|a_nb_n-0|=|a_nb_n|=|a_n||b_n|<\varepsilon$$

Mivel b_n korlátos, ezért $b_n \leq K \in \mathbb{R}$:

$$|a_n|<rac{arepsilon}{K}$$
 teljesül, ha: $n>N_a\left(rac{arepsilon}{K}
ight)=N_{ab}(arepsilon)$

Tétel 2.6
$$a_n \to A \ \acute{e}s \ b_n \to B \implies a_n b_n \to AB$$

Bizonyítás 2.6

$$a_n b_n = \underbrace{(a_n - A)(b_n - B)}_{\to 0} + \underbrace{Ab_n + Ba_n}_{\to AB} - AB \longrightarrow AB$$

Tétel 2.7
$$a_n \to A \implies |a_n| \to |A|$$

Bizonyítás 2.7

$$||a_n| - |A|| \leqslant |a_n - A| < \varepsilon \quad o \quad N_{|a|}(\varepsilon) = N_a(\varepsilon)$$

Tétel 2.8
$$b_n \to B \neq 0 \implies \frac{1}{b_n} \to \frac{1}{B}$$

Bizonyítás 2.8

$$\left|\frac{1}{b_n} - \frac{1}{B}\right| = \left|\frac{B - b_n}{b_n B}\right| = \frac{|b_n - B|}{|b_n||B|}$$

Felhasználva a 2.7. tételt: $|b_n| \to |B|$, tehát $\exists N_1\left(\frac{|B|}{2}\right)$, hogy $n > N_1\left(\frac{|B|}{2}\right)$ esetén:

$$|b_n| \in \left(|B| - \frac{|B|}{2}, |B| + \frac{|B|}{2}\right) \implies |b_n| > \frac{|B|}{2}$$

Másrészt viszont $\exists N_2\left(\frac{\varepsilon}{2}|B|^2\right)$, hogy $|b_n-B|<\frac{\varepsilon}{2}|B|^2$. Ezt a két dolgot felhasználva, ha $n>\max\{N_1,N_2\}=N(\varepsilon)$:

$$\frac{|b_n - B|}{|b_n||B|} < \frac{|b_n - B|}{\frac{|B|}{2}|B|} < \frac{\frac{\varepsilon}{2}|B|^2}{\frac{|B|}{2}|B|} = \varepsilon$$

Bizonyítottuk az állítást, hiszen $\forall \varepsilon : \exists N(\varepsilon)$, hogy $n > N(\varepsilon)$ esetén $\left| \frac{1}{b_n} - \frac{1}{B} \right| < \varepsilon$.

Tétel 2.9
$$a_n \to A \ \acute{e}s \ b_n \to B \neq 0 \implies \frac{a_n}{b_n} \to \frac{A}{B}$$

Bizonyítás 2.9

$$\frac{a_n}{b_n} = \underbrace{a_n}_{\rightarrow A} \cdot \underbrace{\frac{1}{b_n}}_{\rightarrow 1/B} \quad \rightarrow \quad \frac{A}{B}$$

Felhasználva az előző, illetve a 2.6. tételt.

2.5.1. Példák

$$a_n = \underbrace{\frac{1}{n^2}}_{\to 0} + \underbrace{\frac{2}{n^2}}_{\to 0} + \ldots + \underbrace{\frac{500}{n^2}}_{\to 0} \xrightarrow{n \to \infty} 0$$

Azért használhatjuk a 2.3. tételt, mert véges sok tagot adunk össze!

$$b_n = \underbrace{\frac{1}{n^2}}_{\to 0} + \underbrace{\frac{2}{n^2}}_{\to 0} + \ldots + \underbrace{\frac{n}{n^2}}_{\to 0} \xrightarrow{n \to \infty} ?$$

Itt már nem használhatjuk; át kell alakítani:

$$b_n = \frac{1+2+\ldots+n}{n^2} = \frac{\frac{n(n+1)}{2}}{n^2} = \frac{n+1}{2n} = \frac{1+\frac{1}{n}}{2} \xrightarrow{n\to\infty} \frac{1}{2}$$
$$c_n = \left(1+\frac{1}{n}\right)^3 = \left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right) \xrightarrow{n\to\infty} 1$$

Viszont

$$d_n = \left(1 + \frac{1}{n}\right)^n \xrightarrow{n \to \infty} e \quad \text{majd visszatérünk rá!}$$

$$e_n = \frac{3n^3 - 2n^2 + 5}{-n^3 + 3n - 6} = \frac{3 - \frac{2}{n} + \frac{5}{n^3}}{-1 + \frac{3}{n^2} - \frac{6}{n^3}} \xrightarrow{n \to \infty} -3$$

$$f_n = \underbrace{\frac{n^2 - 8}{3n^3 + n}}_{\text{korlátos}} \underbrace{\cos(2n + 6)}_{\text{korlátos}} \xrightarrow{n \to \infty} 0 \quad 0 \cdot \text{korlátos} \to 0 \text{ (lásd 2.5. tétel!)}$$

2.6. Néhány jól használható tétel

Tétel 2.10
$$a_n \geqslant 0 \text{ \'es } a_n \to A \implies \sqrt{a_n} \to \sqrt{A}$$

Bizonyítás 2.10

1. Ha A = 0:

$$|\sqrt{a_n} - \sqrt{A}| = \underbrace{\sqrt{a_n} \le \varepsilon}_{igaz, ha \ a_n < \varepsilon^2}$$

Tehát
$$N_{\sqrt{a}}(\varepsilon) = N_a(\varepsilon^2)$$
. \checkmark

2. Ha A > 0

$$|\sqrt{a_n} - \sqrt{A}| = \left| \left(\sqrt{a_n} - \sqrt{A} \right) \cdot \frac{\sqrt{a_n} + \sqrt{A}}{\sqrt{a_n} + \sqrt{A}} \right| = \left| \frac{a_n - A}{\sqrt{a_n} + \sqrt{A}} \right| \leqslant \frac{|a_n - A|}{\sqrt{A}}$$
$$\frac{|a_n - A|}{\sqrt{A}} < \varepsilon \quad \text{ha} \quad |a_n - A| < \varepsilon \sqrt{A}$$

Tehát
$$N_{\sqrt{a}}(\varepsilon) = N_a(\varepsilon\sqrt{A})$$
. \checkmark

Lemma 2.2
$$a_n \geqslant 0 \text{ \'es } a_n \to A \implies \sqrt[k]{a_n} \to \sqrt[k]{A} \quad \forall k \in \mathbb{N}$$

Tétel 2.11 $Ha \lim_{n\to\infty} a_n = A \text{ \'es } f \text{ folytonos } A\text{-ban, akkor}$

$$\lim_{n \to \infty} f(a_n) = f(A) = f(\lim_{n \to \infty} a_n)$$

Bizonyítás 2.11

Következik a folytonosság definíciójából

2.6.1. Példák

$$a_n = \underbrace{\sqrt{2n^2 + 3n - 1}}_{\infty} - \underbrace{\sqrt{2n^2 + n}}_{\infty}$$
 határozatlan alak $(\infty - \infty)$

Konjugálttal bővítünk:

$$a_n = \frac{(2n^2 + 3n - 1) - (2n^2 + n)}{\sqrt{2n^2 + 3n - 1} + \sqrt{2n^2 + n}} = \frac{2n - 1}{\sqrt{2n^2 + 3n - 1} + \sqrt{2n^2 + n}} = \frac{2 - \frac{1}{n}}{\sqrt{2 + \frac{3}{n} - \frac{1}{n^2}} + \sqrt{2 + \frac{1}{n}}} \to \frac{2}{\sqrt{2} + \sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$b_n = \sqrt[3]{n^3 + 3n^2 + 1} - \sqrt[3]{n^3 + 4} = \frac{n^3 + 3n^2 + 1 - (n^3 + 4)}{\sqrt[3]{n^3 + 3n^2 + 1}^2 + \sqrt[3]{(n^3 + 3n^2 + 1)(n^3 + 4)} + \sqrt[3]{n^3 + 4}} = \frac{n^3 + 3n^2 + 1 - (n^3 + 4)}{\sqrt[3]{n^3 + 3n^2 + 1} + \sqrt[3]{(n^3 + 3n^2 + 1)(n^3 + 4)} + \sqrt[3]{n^3 + 4}} = \frac{n^3 + 3n^2 + 1 - (n^3 + 4)}{\sqrt[3]{n^3 + 3n^2 + 1} + \sqrt[3]{(n^3 + 3n^2 + 1)(n^3 + 4)}} = \frac{n^3 + 3n^2 + 1 - (n^3 + 4)}{\sqrt[3]{n^3 + 3n^2 + 1}} = \frac{n^3 + 3n^2 + 1 - (n^3 + 4$$

$$= \frac{3n^2 - 3}{\sqrt[3]{n^3 + 3n^2 + 1^2} + \sqrt[3]{(n^3 + 3n^2 + 1)(n^3 + 4)} + \sqrt[3]{n^3 + 4^2}} = \frac{3 - \frac{3}{n^2}}{\sqrt[3]{1 + \frac{3}{n} + \frac{1}{n^3}}^2 + \sqrt[3]{(1 + \frac{3}{n} + \frac{1}{n^3})(1 + \frac{4}{n^3})}} \to \frac{3}{1 + 1 + 1} = 1$$

Megjegyzés: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

$$c_n = \frac{\sqrt[4]{2n^4 + n^3 - 2n^2 + 8}}{\sqrt[3]{n^6 + 5n^2 + 3}} = \frac{n\sqrt[4]{2 + \frac{1}{n} - \frac{2}{n^2} + \frac{8}{n^4}}}{n^2\sqrt[3]{1 + \frac{5}{n^4} + \frac{3}{n^6}}} = \frac{1}{n} \cdot c \to 0$$

Tétel 2.12
$$Ha \ a_n \to \infty \implies \frac{1}{a_n} \to 0$$

Bizonyítás 2.12

$$a_n > \stackrel{\circ}{P} \geqslant 0$$
, ha $n > N_a(P) \implies 0 < \frac{1}{a_n} < \frac{1}{P}$, ha $n > N_a(P)$. Tehát $N_{\frac{1}{a}}(\varepsilon) = N_a(\frac{1}{P})$

Lemma 2.3
$$0 < a_n \to 0 \implies \frac{1}{a_n} \to \infty$$

Lemma 2.4
$$0 > a_n \to 0 \implies \frac{1}{a_n} \to -\infty$$

Lemma 2.5
$$a_n \to \infty \implies \frac{1}{|a_n|} \to \infty$$

Tétel 2.13
$$a_n \to 0 \iff |a_n| \to 0$$

Bizonyítás 2.13

$$|a_n - 0| = |a_n| < \varepsilon$$
 $||a_n| - 0| = |a_n| < \varepsilon$

2.6.2. Hasonló tételek

$$\frac{0}{\infty} = 0;$$
 $\frac{\text{korlátos}}{\infty} = 0;$ $\frac{\infty}{+0} = \infty;$ $\infty \cdot \infty = \infty;$ $\infty + \infty = \infty$

2.6.3. Határozatlan alakok

$$\frac{0}{0}$$
; $\frac{\infty}{\infty}$; $0 \cdot \infty$; $\infty - \infty$; ∞^0 ; 1^{∞} ; 0^0

Megoldási lehetőségek: azonos átalakítás, becslés, (L'Hospital szabály)

Tétel 2.14 A limesz monoton: $a_n < b_n$ és $a_n \to A$, $b_n \to B \implies A \leq B$ Megjegyzés: $a_n \leq b_n$ -re is igaz az állítás. Pl: $a_n = 1 - \frac{1}{n} < b_n = 1 + \frac{1}{n}$ $\lim a_n = \lim b_n = 1$

Bizonyítás 2.14

Indirekt. Tfh: B > A

17

Legyen $\varepsilon = \frac{|A - B|}{3}$, ekkor a számsorozatok konvergenciája alapján:

$$A - \varepsilon < a_n < A + \varepsilon$$
 $n > N_a(\varepsilon)$

$$B - \varepsilon < b_n < B + \varepsilon$$
 $n > N_b(\varepsilon)$

Elsőt -1-el megszorozva, majd átrendezve a következőt kapjuk:

$$-A - \varepsilon < -a_n < -A + \varepsilon$$

Hozzáadva a *B*-s egyenlőtlenséghez:

$$B - A - 2\varepsilon < b_n - a_n < \underbrace{B - A}_{-3\varepsilon} + 2\varepsilon \qquad n > \max\{N_a(\varepsilon), N_b(\varepsilon)\}$$

Tehát
$$b_n - a_n < -\varepsilon$$
 }

Ellentmondás, hiszen feltétel szerint $a_n < b_n$ ($a_n \le b_n$), tehát $b_n - a_n$ biztosan pozitív (nem negatív).

Tétel 2.15 *Rendőr-elv*

Ha $\lim a_n = A \in \mathbb{R}$ és $\lim b_n = A$, illetve $a_n \leqslant c_n \leqslant b_n$, akkor $\forall n > N_0 \in \mathbb{N}$ -re akkor $\exists \lim c_n = A$

Bizonyítás 2.15

$$A - \varepsilon < a_n < A + \varepsilon \qquad n > N_a(\varepsilon)$$

$$A - \varepsilon < a_n \le c_n \le b_n < A + \varepsilon$$

$$A - \varepsilon < b_n < A + \varepsilon \qquad n > N_b(\varepsilon)$$

$$A - \varepsilon < c_n < A + \varepsilon$$

$$A - \varepsilon < c_n < A + \varepsilon$$

Tétel 2.16 Speciális rendőr-elv Ha $a_n \to \infty$ és $a_n \le b_n \ \forall n > N_0$, akkor $b_n \to \infty$. *Ha* $a_n \to -\infty$ *és* $a_n \geqslant b_n \ \forall n > N_0$, akkor $b_n \to -\infty$.

Bizonyítás 2.16

Csak az elsőt bizonyítjuk:

 $\forall P > 0$, ha $n > N_a(P)$, akkor: $P < a_n \leq b_n$. Tehát:

$$\forall P > 0 \quad n > N_h(P) = \max\{N_a(P), N_0\} \Rightarrow P < b_n$$

Példák a rendőr-elv használatára

(1)
$$a_n = \frac{2n^6 + n^3 - n}{n^4 + 3} \to \infty$$

A fenti sorozatot egy nálánál kisebb sorozattal közelítjük, melyről belátjuk, hogy a végtelenhez tart. Ekkor felhasználhatjuk a speciális rendőr-elvet és kész:

$$a_n = \frac{2n^6 + n^3 - n}{n^4 + 3} \geqslant \frac{2n^6 + 0 - n^6}{n^4 + 3n^4} = \frac{n^6}{4n^4} = \frac{1}{4}n^2 \to \infty$$
 Tehát $a_n \to \infty$

(2)
$$b_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \ldots + \frac{1}{\sqrt{n^2 + n^2}}$$

(2) $b_n = \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \ldots + \frac{1}{\sqrt{n^2+n}}$ Ezt a "sima" rendőr-elvvel oldjuk meg (kisebb sorozathoz minden elem helyére a legkisebbet írjuk, a nagyobbhoz pedig a legnagyobbat):

$$\frac{n}{\sqrt{n^2 + n}} \leqslant b_n \leqslant \frac{n}{\sqrt{n^2 + 1}}$$

$$\frac{1}{\sqrt{1 + \frac{1}{n}}} \leqslant b_n \leqslant \frac{1}{\sqrt{1 + \frac{1}{n^2}}}$$

Tehát rendőr-elv alapján $b_n \to 1$.

További gyakran használt határértékek 2.7.

Tétel 2.17
$$\lim_{n \to \infty} a^n = \begin{cases} 0, \ ha \ |a| < 1 \\ 1, \ ha \ a = 1 \\ +\infty, \ ha \ a > 1 \\ \nexists, \ ha \ a \le -1 \end{cases}$$
 (\nexists)

Bizonyítás 2.17

Itt az 0 < a < 1 esetet bizonyítjuk:

$$\forall \varepsilon > 0 \quad \rightarrow \quad |a^n - 0| = |a^n| = a^n < \varepsilon$$

$$a^n < \varepsilon \implies n \cdot \underbrace{\ln a}_{<0} < \underbrace{\ln \varepsilon}_{<0 \text{ ha } 0 < \varepsilon < 1}$$

$$a^n < \varepsilon \implies n \cdot \underbrace{\ln a}_{<0} < \underbrace{\ln \varepsilon}_{<0 \text{ ha } 0 < \varepsilon < 1}$$
 $n > \frac{\ln \varepsilon}{\ln a} > 0$ jó küszöbindexnek: $N(\varepsilon) = \left[\frac{\ln \varepsilon}{\ln a}\right]$

Tétel 2.18
$$\lim_{n\to\infty} n^k \cdot a^n = 0 \qquad ha |a| < 1 \text{ \'es } k \in \mathbb{N}^+$$

Bizonyítás 2.18

Elfogadjuk, később l'Hospital szabállyal beláthatjuk. Konkrét példára esetleg monoton csökkenéssel és korlátossággal bizonyítható.

Tétel 2.19
$$\lim_{n\to\infty} \sqrt[n]{p} = 1 \qquad ha \ p > 0$$

Bizonyítás 2.19

Ha p = 1, akkor ✓.

Ha p > 1, akkor $\sqrt[n]{p} > 1$, tehát $\sqrt[n]{p} = 1 + x_n$. Tehát kell, hogy $\lim x_n = 0$.

$$p = (1 + x_n)^n = 1 + n \cdot x_n + \binom{n}{2} x_n^2 + \dots$$

$$p = (1 + x_n)^n > 1 + n \cdot x_n \quad \Rightarrow \quad x_n < \frac{p-1}{n}$$

$$\underbrace{0}_{\to 0} < x_n < \underbrace{\frac{p-1}{n}}_{\to 0}$$

Tehát $x_n \rightarrow 0$ a rendőr-elv alapján. ✓ Ha 0 , akkor:

$$\sqrt[n]{p} = \frac{1}{\sqrt[n]{\frac{1}{p}} \to 1} \to \frac{1}{1} = 1 \quad \checkmark$$

Megjegyzés: Bernoulli-egyenlőtlenség: ha x > -1, akkor $(1 + x)^n > 1 + n \cdot x$.

Tétel 2.20 $n \to \infty$, a > 1, k > 0

$$n^n \stackrel{\alpha}{\gg} n! \stackrel{\beta}{\gg} a^n \stackrel{\gamma}{\gg} n^k \gg \log n$$

Illetve $a^n \gg b^n$, ha a > b > 1. Továbbá $n^k \gg n^l$, ha k > l > 0.

Megjegyzés: $x_n \gg y_n$, ha $\lim_{n\to\infty} \frac{x_n}{y_y} = \infty$.

Bizonyítás 2.20

 (α) :

$$\frac{n^n}{n!} = \frac{n \cdot n \cdot \ldots \cdot n}{n(n-1)(n-3) \cdot \ldots \cdot 1} = \frac{n}{n} \cdot \frac{n}{n-1} \cdot \frac{n}{n-2} \cdot \ldots \cdot n > \underbrace{1 \cdot 1 \cdot \ldots \cdot n}_{\to \infty}$$

Tehát spec. rendőr-elv alapján az eredeti sorozat is a végtelenhez tart! ✓

(β):
$$a > 1$$

$$\frac{n!}{a^n} = \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{a \cdot a \cdot a \cdot a \cdot a \cdot a} = \underbrace{\frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot [a]}{a \cdot a \cdot a \cdot a \cdot a \cdot a}}_{\text{konst! } K > 0} \cdot \underbrace{\frac{[a] + 1}{a}}_{>1} \cdot \underbrace{\frac{[a] + 2}{a}}_{>1} \cdot \dots \cdot \frac{n}{a} \geqslant K \cdot 1 \cdot 1 \cdot \dots \cdot \frac{n}{a} \to \infty \checkmark$$

$$(\gamma)$$
: $a > 1, k > 0$

$$\frac{n^k}{a^n} = n^k \cdot \left(\frac{1}{a}\right)^n \to 0 \qquad \text{2.18. tétel alapján } (0 < \frac{1}{a} < 1)$$

$$\implies \frac{a^n}{n^k} \to \infty \qquad \text{2.3. lemma alapján}$$

Tétel 2.21
$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$

Bizonyítás 2.21

$$\sqrt[n]{n} = n^{\frac{1}{n}} = (e^{\ln n})^{\frac{1}{n}} = e^{\frac{1}{n} \cdot \ln n}$$

$$\lim_{n \to \infty} \frac{1}{n} \cdot \ln n = 0 \qquad \text{felhasználva a fentit}$$

$$\sqrt[n]{n} \to e^0 = 1 \quad \checkmark$$

Tétel 2.22 A *Ha* $a_n \to A$ *és* a_{n_k} *az* a_n *sorozat egy részsorozata, akkor* $a_{n_k} \to A$

Bizonyítás 2.22

 $\varepsilon > 0$ esetén $N_a(\varepsilon)$ jó küszöbindex a részsorozathoz is!

2.7.1. Példák a fentiek használatára

(1)
$$a_n = \frac{3^{2n}}{4^n + 3^{n+1}} = \frac{9^n}{4^n + 3 \cdot 3^n} = \frac{1}{\left(\frac{4}{9}\right)^n + 3 \cdot \left(\frac{1}{3}\right)^n} \to \frac{1}{0 + 3 \cdot 0} \to \infty$$

Ennél a 2.17 tételt használtuk fel.

(2)
$$b_n = \frac{n^2 + 9^{n+1}}{2n^5 + 3^{2n-1}} = \frac{n^2 + 9 \cdot 9^n}{2n^5 + 3^{-1} \cdot 9^n} = \frac{\frac{n^2}{9^n} + 9}{\frac{2n^5}{9^n} + 3^{-1}} \to \frac{0+9}{0+3^{-1}} = 27$$

Itt a 2.20 tételt használtuk fel, vagyis az exponenciális függvény nagyságrendje nagyobb a hatványfüggvénynél.

(3)
$$c_n = \sqrt[3n]{n} = \sqrt[3n]{\frac{3n}{3}} = \frac{\sqrt[3n]{3n}}{\sqrt[3n]{3}} \to \frac{1}{1} = 1$$

Felhasználtuk a 2.22 tételt, hiszen mindkettő $\left(\sqrt[3n]{3n}, \sqrt[3n]{3}\right)$ részsorozat.

(4)
$$d_n = \sqrt[n]{\frac{3n^6 + 8n^2}{4n^3 - 2n + 1}}$$
. Rendőr-elvet használunk:

$$\sqrt[n]{\frac{n^2}{4n^3 + n^3}} \leqslant d_n \leqslant \sqrt[n]{\frac{3n^6 + 8n^6}{4n^3 - 2n^3}}$$

$$\sqrt[n]{\frac{1}{5n}} \leqslant d_n \leqslant \sqrt[n]{\frac{11n^3}{2}}$$

$$\sqrt[n]{\frac{1}{5}} \cdot \frac{1}{\sqrt[n]{n}} \leqslant d_n \leqslant \sqrt[n]{\frac{11}{2}} \cdot (\sqrt[n]{n})^3$$

$$\xrightarrow[-1]{} \xrightarrow[-1]{} \xrightarrow[-1]{} \xrightarrow[-1]{}$$

Tehát $d_n \rightarrow 1$.

(5)
$$e_n = \sqrt[n]{\frac{3^n + 5^n}{2^n + 4^n}}$$
. Rendőr-elv használatával:

$$\sqrt[n]{\frac{5^n}{4^n + 4^n}} \leqslant e_n \leqslant \sqrt[n]{\frac{5^n + 5^n}{4^n}}$$

$$\sqrt[n]{\frac{1}{2}} \sqrt[n]{\left(\frac{5}{4}\right)^n} \leqslant e_n \leqslant \sqrt[n]{2} \sqrt[n]{\left(\frac{5}{4}\right)^n}$$

$$\xrightarrow{\rightarrow \frac{5}{4}}$$

Tehát
$$e_n \to \frac{5}{4}$$
.

2.8. Rekurzív sorozatok

Adott a kezdőelem (a_0) és az eggyel előre lépés szabálya (vagyis a rekurzió).

$$a_{n+1} = f(a_n, a_{n-1}, \ldots)$$

Amit vizsgálhatunk:

- Monotonitás
- Korlátosság
- Konvergencia ⇒ határérték

Példa: $a_0 = 2$, $a_{n+1} = 1 + \sqrt{a_n}$. Sejtés: mon. nő. Bizonyítsuk teljes indukcióval: $a_1 < a_2$, $a_2 < a_3 \checkmark$. Tfh: n-re igaz, bizonyítsuk n + 1-re:

$$a_n \leqslant a_{n+1}$$

$$\sqrt{a_n} \leqslant \sqrt{a_{n+1}}$$

$$a_{n+1} = 1 + \sqrt{a_n} \leqslant 1 + \sqrt{a_{n+1}} = a_{n+2}$$

Tehát igaz $\forall n$ -re, tehát monoton nő a sorozatunk.

Ha van határérték, akkor $\{a_n\}$ és az $\{a_{n+1}\}$ sorozat is oda tart, tehát:

$$\begin{array}{rcl} a_{n+1} & = & 1 + \sqrt{a_n} \\ \downarrow & & \downarrow \\ A & = & 1 + \sqrt{A} \end{array}$$

Ebből $A=\frac{3+\sqrt{5}}{2}$ vagy $A=\frac{3-\sqrt{5}}{2}$. Mivel a sorozatunk mon. nő ezért a határértéke biztos nagyobb mint az első elem, tehát ha van határéték, akkor csak $A=\frac{3+\sqrt{5}}{2}$ lehet az. Bizonyítsuk be, hogy ez egy felső korlátja a sorozatnak; Sejtés: $a_n\leqslant A=\frac{3+\sqrt{5}}{2}$. Ezt is teljes indukcióval bizonyítjuk. Első pár elemre igaz, tfh: n-re igaz, bizonyítsuk n+1-re:

$$a_n \leqslant \frac{3+\sqrt{5}}{2}$$
Biz: $1+\sqrt{a_n} \leqslant \frac{3+\sqrt{5}}{2}$

$$\sqrt{a_n} \leqslant \frac{1+\sqrt{5}}{2}$$

$$a_n \leqslant \frac{1+5+2\sqrt{5}}{4} = \frac{3+\sqrt{5}}{2}$$

Összefoglalva: $\{a_n\}$ monoton nő és felülről korlátos, tehát $\exists \lim_{n\to\infty} a_n = \frac{3+\sqrt{5}}{2}$.

2.9. Egy kitüntetett számsorozat

$$e_n = \left(1 + \frac{1}{n}\right)^n$$

Tétel 2.23
$$\left(1 + \frac{1}{n}\right)^n = e_n \le e_{n+1} = \left(1 + \frac{1}{n+1}\right)^{n+1}$$

Bizonyítás 2.23

Tehát az e_n sorozat **monoton nő**.

Tétel 2.24
$$e_n = \left(1 + \frac{1}{n}\right)^n \le 4$$

Bizonyítás 2.24

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \left(1 + \frac{1}{n}\right)^n \stackrel{?}{\leqslant} 1$$

$$\sqrt[n+2]{\frac{1}{2} \cdot \frac{1}{2} \cdot \left(1 + \frac{1}{n}\right)^n} \leqslant \frac{\frac{1}{2} + \frac{1}{2} + n(1 + \frac{1}{n})}{n+2} = 1 = \sqrt[n+2]{1}$$

Mivel az e_n sorozat felülről korlátos és monoton növő, ezért $\exists \lim e_n = e$.

Tétel 2.25

$$\left(1 + \frac{x}{n}\right)^n \xrightarrow{n \to \infty} e^x \qquad x \in \mathbb{R}$$

Bizonyítás 2.25

Csak speciális *x*-ekre bizonyítjuk. Legyen x = -1:

$$\left(1 - \frac{1}{n}\right)^n \xrightarrow{n \to \infty}?$$

$$\left(1 - \frac{1}{n}\right)^n = \frac{1}{\left(\frac{n}{n-1}\right)^n} = \frac{1}{\left(\frac{n-1+1}{n-1}\right)^n} = \frac{1}{\left(\frac{n-1+1}{n-1}\right)^n} = \frac{1}{\left(1 + \frac{1}{n-1}\right)^n} = \frac{1}{\left(1 +$$

Legyen $x = \frac{1}{p}$:

$$\left(1 + \frac{1}{pn}\right)^n = \sqrt[p]{\left(1 - \frac{1}{pn}\right)^{pn}} \rightarrow \sqrt[p]{e} = e^{\frac{1}{p}}$$

Megjegyzés: p. gyökfüggvény folytonos.

2.9.1. Példák

1. példa:

$$a_n = \left(\frac{n+6}{n+4}\right)^{n-3} = \frac{n^{n-3}}{n^{n-3}} \cdot \frac{\left(1+\frac{6}{n}\right)^{n-3}}{\left(1+\frac{4}{n}\right)^{n-3}} = \frac{\left(1+\frac{6}{n}\right)^n}{\left(1+\frac{4}{n}\right)^n} \cdot \underbrace{\frac{\left(1+\frac{6}{n}\right)^{-3}}{\left(1+\frac{4}{n}\right)^{-3}}}_{\longrightarrow 1} \longrightarrow \frac{e^6}{e^4} = e^2$$

2. példa:

$$a_n = \left(\frac{2n^2 + 2}{2n^2 - 1}\right)^{2n^2} \qquad b_n = \underbrace{\left(\frac{2n^2 + 2}{2n^2 - 1}\right)^{4n^2}}_{=a_n^2} \qquad c_n = \underbrace{\left(\frac{2n^2 + 2}{2n^2 - 1}\right)^{2n^3}}_{a_n^n} \qquad d_n = \underbrace{\left(\frac{2n^2 + 2}{2n^2 - 1}\right)^{2n}}_{\sqrt[n]{a_n}}$$

$$a_n = \left(\frac{2n^2}{2n^2}\right)^{2n^2} \cdot \frac{\left(1 + \frac{2}{2n^2}\right)^{2n^2}}{\left(1 - \frac{1}{2n^2}\right)^{2n^2}} \to \frac{e^2}{e^{-1}} = e^3$$

Azért, mert $\left(1+\frac{2}{2n^2}\right)^{2n^2}$ egy részszorozata $\left(1+\frac{2}{n}\right)^n$ -nek (lásd a 2.22 tétel).

Mivel $b_n = (a_n)^2$, ezért $b_n \to e^6$.

Tekintve, hogy $a_n \to e^3$, $\exists N_0$, hogy ha $n > N_0$, akkor $a_n > 8$. Mivel $c_n = (a_n)^n$, ezért speciális rendőrelv alapján:

$$\underbrace{8^n}_{\to\infty} < (a_n)^n = \underbrace{c_n}_{\to\infty}$$

A fenti logikából kiindulva, $\exists M_0$, hogy ha $n > M_0$, akkor $8 < a_n < 27$, tehát:

$$\underbrace{\sqrt[n]{8}}_{\rightarrow 1} < \underbrace{\sqrt[n]{a_n}}_{=d_n} < \underbrace{\sqrt[n]{27}}_{\rightarrow 1}$$

Tehát rendőrelv alapján: $d_n \rightarrow 1$.

2.10. További fontosabb tételek

Definíció 2.11 Az $\{a_n\}$ sorozatban az a_k elem csúcs, ha $\forall n > k$ -ra $a_n \leq a_k$.

Tétel 2.26 *Minden sorozatnak van monoton részsorozata*

Bizonyítás 2.26

Két eset lehetséges:

- 1. Ha véges sok csúcs van, akkor a csúcsok után ∃ monoton növekedő részsorozat, hiszen minden elemet követ nála nagyobb vagy egyenlő (különben lenne még csúcs)
- 2. Ha végtelen sok csúcs van, akkor a csúcsok monoton csökkenő részsorozatot alkotnak

Tehát mindkét esetben létezik monoton részsorozat.

Tétel 2.27 *Bolzano-Weierstrass tétel*

Minden korlátos sorozatnak van konvergens részsorozata.

Bizonyítás 2.27

Előző tétel alapján van monoton részsorozata, ami korlátos, hiszen az eredeti is az volt, tehát ∃ határértéke, azaz konvergens. ■

Tétel 2.28 *Cauchy-féle konvergencia kritérium*

 $Az \{a_n\}$ sorozat pontosan akkor konvergens, ha $\forall \varepsilon > 0$ -hoz $\exists N(\varepsilon)$, hogy

$$|a_n - a_m| < \varepsilon$$
 $n, m > N(\varepsilon)$

Megjegyzés: Nem hivatkozik a határértékre!

Másképp megfogalmazva:

Definíció 2.12 Az $\{a_n\}$ sorozat Cauchy-sorozat, ha $\forall \varepsilon > 0$ -hoz $\exists N(\varepsilon)$, hogy

$$|a_n - a_m| < \varepsilon$$
 $n, m > N(\varepsilon)$

Tétel 2.29 *Cauchy-féle konvergencia kritérium*

$$\exists \lim_{n \to \infty} a_n = A \in \mathbb{R} \quad \Leftrightarrow \quad \{a_n\} \ Cauchy\text{-sorozat}$$

Bizonyítás 2.29

 \Rightarrow

$$\exists \lim_{n\to\infty} a_n = A \in \mathbb{R} \Rightarrow \forall \varepsilon > 0$$
-hoz $\exists N(\varepsilon)$, hogy $|a_n - A| < \varepsilon$, ha $n > N(\varepsilon)$

Legyen $n, m > N(\varepsilon)$, ekkor:

$$|a_n - a_m| = |a_n - A + A - a_m| = |(a_n - A) - (a_m - A)| \le |a_n - A| + |a_m - A| < 2\varepsilon$$

⇐ Ezt nem bizonyítjuk.

Példa ennek használatára:

$$s_{1} = 1$$

$$s_{2} = 1 + \frac{1}{2}$$

$$s_{3} = 1 + \frac{1}{2} + \frac{1}{3}$$

$$\vdots$$

$$s_{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}$$

Létezik-e $\lim_{n\to\infty} s_n$? Másképp fogalmazva: Cauchy-sorozat-e?

$$s_{2n} - s_n = \left(1 + \frac{1}{2} + \dots + \frac{1}{2n}\right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) =$$

$$= \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}\right) \geqslant n \cdot \frac{1}{2n} = \frac{1}{2}$$

Tehát $\varepsilon < \frac{1}{2}$ -hez biztosan nem létezik $N(\varepsilon)$!

2.11. Torlódási pont, lim, lim

Definíció 2.13 $A \in \mathbb{R}$ $\varepsilon > 0$ sugarú környezete: $K_{\varepsilon}(A) = (A - \varepsilon, A + \varepsilon)$.

Definíció 2.14 ∞ *környezete:* $K_P(\infty) = (P, \infty)$.

Definíció 2.15 $-\infty$ környezete: $K_M(-\infty) = (-\infty, M)$.

Definíció 2.16 $t \in \mathbb{R} \cup \{+\infty, -\infty\}$ az $\{a_n\}$ sorozat torlódási pontja, ha t minden környezetében végtelen sok eleme esik a sorozatnak.

Legyen $S \subset \mathbb{R} \cup \{\pm \infty\}$ az $\{a_n\}$ sorozat torlódási pontjainak halmaza.

Példák:

$$a_n = 1$$
, ekkor $S = \{1\}$
 $a_n = (-1)^n$; $S = \{1, -1\}$
 $a_n = \frac{1}{n}$; $S = \{0\}$
 $a_n = n$; $S = \{\infty\}$

Tétel 2.30

$$\lim_{n\to\infty} a_n = A \iff S = \{A\} \qquad A \in \mathbb{R} \cup \{\pm \infty\}$$

Tehát $\{a_n\}$ sorozat akkor és csak akkor konvergens ha pontosan 1 torlódási pontja van.

Tétel 2.31 *Ha S felülről korlátos, akkor* \exists *legnagyobb torlódási pont* (Sup $S \in S$). *Ha S alulról korlátos, akkor* \exists *legkisebb torlódási pont* (Inf $S \in S$).

Tétel 2.32 t pontosan akkor torlódási pontja $\{a_n\}$ -nek, ha létezik $\{a_n\}$ -nek t-hez konvergáló részsorozata.

Definíció 2.17 *Legyen* $\{a_n\}$ *sorozat torlódási pontjainak halmaza S. Ekkor:*

$$\frac{\overline{\lim}_{n\to\infty} a_n = \limsup_{n\to\infty} a_n = \sup S}{\lim_{n\to\infty} a_n = \liminf_{n\to\infty} a_n = \inf S} \right\} \in \mathbb{R} \cup \{\pm\infty\}$$

Tétel 2.33

$$\lim_{n \to \infty} a_n = A \in \mathbb{R} \cup \{\pm \infty\} \quad \Leftrightarrow \quad \overline{\lim}_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} a_n = A$$

Példák

1.
$$a_n = 2^{(-1)^n \cdot n} = \begin{cases} 2^n, \text{ ha } n \text{ páros} \\ 2^{-n}, \text{ ha } n \text{ páratlan} \end{cases}$$

$$S = \{0; +\infty\} \longrightarrow \overline{\lim} \, a_n = \infty, \underline{\lim} \, a_n = 0. \text{ Mivel } \overline{\lim} \, a_n \neq \underline{\lim} \, a_n, \text{ ezért } \nexists \lim a_n! \end{cases}$$

2.
$$b_n = (-1)^n = \begin{cases} 1, \text{ ha } n \text{ páros} \\ -1, \text{ ha } n \text{ páratlan} \end{cases}$$

 $S = \{-1, 1\}, \text{ tehát } \nexists \lim a_n!$

3. fejezet

Numerikus sorok

Numerikus sor: $a_1 + a_2 + a_3 + \dots$

Összeg:
$$S = \sum_{n=1}^{\infty} a_n$$

Definíció 3.1 *Részletösszeg:* $S_n = a_1 + a_2 + ... + a_n = \sum_{k=1}^{n} a_k$

Definíció 3.2 A sor összege a részletösszeg-sorozat határértéke:

$$S = \sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^{n} a_k$$

Definíció 3.3 $A \sum_{n=1}^{\infty} a_n$ sor **konvergens**, ha S_n sorozat konvergens.

Definíció 3.4 $A \sum_{n=1}^{\infty} a_n$ sor divergens, ha S_n sorozat divergens.

Két speciális eset: $\sum_{n=1}^{\infty} = \pm \infty$, ha $\lim_{n \to \infty} S_n = \pm \infty$

Definíció 3.5

$$S = \sum_{n=1}^{\infty} a_n = \underbrace{a_1 + a_2 + \ldots + a_n}_{r\'{e}szlet\"{o}sszeg: S_n} + \underbrace{a_{n+1} + a_{n+2} + \ldots}_{marad\'{e}k\"{o}sszeg: r_n}$$

$$r_n = \sum_{k=n+1}^{\infty} a_k$$
$$S = S_n + r_n \quad \forall n \in \mathbb{N}$$

3.1. Példák

(1)
$$a_n = 1 \to \sum_{n=1}^{\infty} 1 = \lim_{n \to \infty} S_n = \lim_{n \to \infty} n = \infty$$

(2)
$$\sum_{n=1}^{\infty} (-1)^n = -1 + 1 - 1 + \dots = ?$$

$$S_{n} = \begin{cases} 0, \text{ ha páros} \\ -1, \text{ ha } n \text{ páratlan} \end{cases} \Rightarrow \lim_{n \to \infty} S_{n} = \nexists \text{ div.}$$

$$(3) \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = ?$$

$$a_{n} = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$S = \lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1$$

$$S_{1} = a_{1} = 1 - \frac{1}{2}$$

$$S_{2} = a_{1} + a_{2} = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right)$$

$$S_{n} = a_{1} + a_{2} + \dots + a_{n} = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$S_{n} = 1 - \frac{1}{n+1}$$

Teleszkópikus összeg!

(4)
$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = 1 + \frac{1}{2} + \frac{1}{4} + \dots$$

Ez egy **geometriai sor** (lásd később), melynek kvóciense $\frac{1}{2}$.

$$S_1=1$$

$$S_2=1+\frac{1}{2}=\frac{3}{2}$$

$$S_3=\frac{3}{2}+\frac{1}{4}=\frac{7}{4}$$

$$S_n=\frac{2^n-1}{2^{n-1}}=2-\frac{1}{2^{n-1}} \qquad \rightarrow \text{ teljes ind.-val bizonyithato}$$

$$\text{Tehát } \sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^n=\lim_{n\to\infty}S_n=\lim_{n\to\infty}2-\frac{1}{2^{n-1}}=2.$$

(5) Harmonikus sor:

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

$$S_{1} = 1$$

$$S_{2} = 1 + \frac{1}{2}$$

$$S_{4} = 1 + \frac{1}{2} + \underbrace{\frac{1}{3}}_{>\frac{1}{4}} + \frac{1}{4} > 1 + 2 \cdot \frac{1}{2}$$

$$S_{8} = 1 + \frac{1}{2} + \underbrace{\frac{1}{3}}_{>\frac{1}{4}} + \underbrace{\frac{1}{5}}_{>\frac{1}{8}} + \underbrace{\frac{1}{6}}_{>\frac{1}{8}} + \underbrace{\frac{1}{7}}_{>\frac{1}{8}} + \frac{1}{8} > 1 + 3 \cdot \frac{1}{2}$$

$$S_{16} = 1 + \frac{1}{2} + \underbrace{\frac{1}{3}}_{>\frac{1}{4}} + \underbrace{\frac{1}{5}}_{>\frac{1}{8}} + \dots + \underbrace{\frac{1}{8}}_{\frac{1}{9}} + \dots + \underbrace{\frac{1}{16}}_{16} > 1 + 4 \cdot \frac{1}{2}$$

$$S_{2^k} \ge 1 + k \cdot \frac{1}{2} \xrightarrow{k \to \infty} \infty$$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

3.2. Geometriai sor

Egymást követő tagok hányadosai állandók: $q=\frac{a_{n+1}}{a_n} \quad \forall n \in \mathbb{N}. \ a_n=a_0 \cdot q^n. \ q \neq 0$ (lásd később). Tehát a **geometria sor**:

$$\sum_{n=0}^{\infty} a_0 \cdot q^n$$

3.2.1. Véges geometriai sor összege

$$S_{n} = \sum_{k=0}^{n-1} a_{k} = a_{0} + a_{0} \cdot q + a_{0} \cdot q^{2} + \dots + a_{0} \cdot q^{n-1}$$

$$q \cdot S_{n} = a_{0} \cdot q + a_{0} \cdot q^{2} + \dots + a_{0} \cdot q^{n-1} + a_{0} \cdot q^{n}$$

$$S_{n} = a_{0} \cdot \frac{1 - q^{n}}{1 - q}$$

Itt látható, hogy $q \neq 1$, ha q = 1, akkor azt nem szokás geometriai sornak nevezni! (Ezért zárjuk ki a defiben)

3.2.2. Végtelen geometriai sor összege

$$S = \sum_{n=0}^{\infty} a_0 \cdot q^n = \lim_{n \to \infty} S_n = \lim_{n \to \infty} a_0 \cdot \frac{1 - q^n}{1 - q} = \begin{cases} \boxed{\frac{a_0}{1 - q'}, & \text{ha } |q| < 1} \\ \nexists, & \text{ha } |q| \ge 1 \end{cases}$$
$$S = \sum_{n=0}^{\infty} a_0 \cdot q^n = a_0 \cdot \frac{1}{1 - q} \quad \text{ha } |q| < 1$$

3.2.3. Példák

$$(1) \sum_{k=3}^{\infty} \frac{(-5)^{k+1}}{2^{3k+4}} = \sum_{k=3}^{\infty} \frac{-5}{2^4} \cdot \underbrace{\left(\frac{-5}{8}\right)^k}_{|q|<1\checkmark} = \underbrace{\frac{-5}{16} \cdot \left(\frac{-5}{8}\right)^3}_{=a_0} \cdot \frac{1}{1 - \frac{-5}{8}} = \frac{5^4}{2^{13}} \cdot \frac{8}{13} = \frac{5^4}{2^{10} \cdot 13}$$

(2)
$$\sum_{k=1}^{\infty} \frac{(-2)^{2k+1} + (-3)^{k+3}}{5^k} = ?$$

$$S_n = \sum_{k=1}^n \frac{(-2)^{2k+1} + (-3)^{k+3}}{5^k} = \sum_{k=1}^n \left(\frac{(-2)^{2k+1}}{5^k} + \frac{(-3)^{k+3}}{5^k} \right) =$$
 véges tagú összeg, tehát:

$$= \sum_{k=1}^{n} \frac{(-2)^{2k+1}}{5^k} + \sum_{k=1}^{n} \frac{(-3)^{k+3}}{5^k} = -2 \cdot \sum_{k=1}^{n} \left(\frac{4}{5}\right)^k + -27 \cdot \sum_{k=1}^{n} \left(\frac{-3}{5}\right)^k =$$

$$= -2 \cdot \frac{4}{5} \cdot \frac{1 - \left(\frac{4}{5}\right)^n}{1 - \frac{4}{5}} - 27 \cdot \frac{-3}{5} \cdot \frac{1 - \left(\frac{-3}{5}\right)^n}{1 - \frac{-3}{5}}$$

$$S = \lim_{n \to \infty} S_n = \frac{-8}{5} \cdot \frac{1}{\frac{1}{5}} + \frac{81}{5} \cdot \frac{1}{\frac{8}{5}} = -8 + \frac{81}{8}$$

Tehát konvergens geometriai sorokat lehet külön-külön összeadni:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(S_n^{(1)} + S_n^{(2)} \right) = \lim_{n \to \infty} S_n^{(1)} + \lim_{n \to \infty} S_n^{(2)} = S^{(1)} + S^{(2)}$$

3.3. Tételek

Tétel 3.1 *Cauchy-kritérium sorokra*

 $\sum_{n=1}^{\infty} a_n \text{ sor konvergens} \Leftrightarrow \forall \varepsilon > 0 \text{ eset\'en } \exists N(\varepsilon) \in \mathbb{N}, \text{ hogy } |a_m + a_{m+1} + \ldots + a_{m+k}| < \varepsilon, \text{ ha} \\ m > N(\varepsilon) \text{ \'es } k \in \mathbb{N}.$

Bizonyítás 3.1

Áttérünk részletösszeg-sorozatra:

$$|a_m+a_{m+1}+\ldots+a_{m+k}|=|S_{m+k}-S_{m-1}|N(arepsilon)$$
 Cauchy-kritérium az S_n részletösszeg sorozatra $\Leftrightarrow S_n$ Cauchy-sorozat $\exists \lim_{n\to\infty} S_n=S=\sum_{n=1}^\infty a_n$

Tétel 3.2 Sor konvergenciájának szükséges feltétele

$$\exists \sum_{n=1}^{\infty} a_n = S \in \mathbb{R} \quad \Rightarrow \quad \lim_{n \to \infty} a_n = 0$$

Bizonyítás 3.2

$$\exists \sum_{n=1}^{\infty} a_n \iff \text{teljes\"{u}l a Cauchy-krit. a sorra}$$

$$\stackrel{k=0}{\Longrightarrow} \forall \varepsilon > 0 \ : \ \exists N(\varepsilon) \in \mathbb{N}, \text{hogy } |a_n| < \varepsilon, \text{ha } n > N(\varepsilon) \quad \Leftrightarrow \lim_{n \to \infty} a_n = 0$$

Bizonyítás 3.2

Másik megközelízés:

$$\begin{array}{ccccc} S_{n+1} & = & S_n & + & a_{n+1} \\ \downarrow & & \downarrow & & \downarrow \\ \infty & & \infty & \Rightarrow & 0 \end{array}$$

31

Példák a sor konvergenciájának szükséges feltételére

$$(1)\sum_{n}(-1)^{n}=\nexists \operatorname{mert} \lim_{n\to\infty}(-1)^{n}=\nexists \quad (\boxed{\neq 0}).$$

(2)
$$\sum_{n=1}^{\infty} 1 = \infty \ (\nexists) \text{ mert } \lim_{n \to \infty} 1 = 1 \neq 0$$
.

Váltakozó előjelű sorok 3.4.

Definíció 3.6 $A \sum_{n=1}^{\infty} a_n$ sor váltakozó előjelű, ha $a_n \cdot a_{n+1} < 0 \quad \forall n \in \mathbb{N}$ -re.

Például:
$$c_1 - c_2 + c_3 - c_4 + \ldots = \sum_{n=1}^{\infty} \underbrace{(-1)^{n+1} \cdot c_n}_{a_n}$$
, ahol $c_n > 0 \quad \forall n \in \mathbb{N}$.

Definíció 3.7
$$A \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^{n+1} \cdot c_n$$
 sor **Leibniz-sor**, ha:

- 1. Válatakozú előjelű (lásd fent)
- 2. $c_n = |a_n|$ monoton csökkenő sorozat; $c_{n+1} = |a_{n+1}| \leqslant c_n = |a_n| \quad \forall n \in \mathbb{N}$
- 3. $c_n = |a_n| \xrightarrow{n \to \infty} 0$

Tétel 3.3 *Leibniz-kritérium*

Ha
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^{n+1} \cdot c_n$$
 sor Leibniz-sor, akkor konvergens

Bizonyítás 3.3

Csak vázlat:

$$S = S^* = S_*$$
 Ez lesz a határérték.

$$S_1 = a_1 = c_1$$

 $S_2 = a_2 = c_1 - c_2 = S_1 - c_2$
 $S_3 = S_2 + c_3$
 $S_4 = S_3 - c_3$
 $S_5 = S_4 + c_4$
...

Példa 3.4.1.

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$$
 konvergens-e?

Leibniz-kritérium ellenőrzése:

1. Váltakozó?
$$\checkmark$$
2. $c_n = \frac{1}{n} \geqslant c_{n+1} = \frac{1}{n+1} \checkmark$
3. $\lim_{n \to \infty} c_n = \lim_{n \to \infty} \frac{1}{n} = 0 \checkmark$ konvergens \checkmark

Hiba, hibabecslés 3.5.

Definíció 3.8 $Az S_n = \sum_{k=1}^n a_k r észletösszeg hibája:$

$$H_n = |S - S_n|$$
, ahol $S = \sum_{n=1}^{\infty} a_n$ az egzakt összeg.

Hibabecslés: $H_n = |S - S_n| < \underline{becslés}$

Tétel 3.4 Hibabecslés Leibniz-típusú sor esetén $Az S_n$ közelítő összeg hibája \leq , mint az első elhagyott tag abszolút értéke:

$$|S - S_n| \leqslant |a_{n+1}| = c_{n+1}$$

Bizonyítás 3.4

Az előzőekben láttuk, hogy: $S_{2k} \leq S \leq S_{2k+1}$, ebből:

$$|S - S_{2k}| \leqslant |S_{2k+1} - S_{2k}| = c_{2k+1}$$

Hasonlóan: $S_{2k+2} \leq S \leq S_{2k+1}$, ebből:

$$|S - S_{2k+1}| \le |S_{2k+2} - S_{2k+1}| = c_{2k+2}$$

Tehát valóban igaz, hogy:

$$|S - S_n| \leqslant c_{n+1} = |a_{n+1}|$$

3.5.1. Példák

(1)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}+3}$$
. Konvergens-e? Milyen n -re lesz $|S-S_n| \le 10^{-3}$? Leibniz-típusú-e?:

1. Váltakozó?
$$\checkmark$$
2. $c_n \geqslant c_{n+1}$, hiszen $\sqrt{n} \leqslant \sqrt{n+1} \checkmark$
3. $c_n \xrightarrow{n \to \infty} 0$, mert $\sqrt{n} \to \infty \checkmark$
Hiba: $|S - S_n| \leqslant c_{n+1} = \frac{1}{\sqrt{n+1} + 3} \leqslant 10^{-3}$

$$\sqrt{n+1} + 3 \geqslant 1000 \implies n \geqslant 997^2 - 1$$

(2)
$$\sum_{k=2}^{\infty} \frac{\cos(k\pi)}{\ln k}$$
. Konvergens-e? Milyen n -re lesz $|S - S_n| \le 10^{-3}$? $\cos(k\pi) = \begin{cases} +1, \text{ ha } k \text{ páros} \\ -1, \text{ ha } k \text{ páratlan} \end{cases} \Rightarrow \cos(k\pi) = (-1)^k$ Tehát $\sum_{k=2}^{\infty} \frac{\cos(k\pi)}{\ln k} = \sum_{k=2}^{\infty} (-1)^k \cdot \frac{1}{\ln k}$

1. Váltakozó?
$$\checkmark$$
2. $c_n \geqslant c_{n+1}$, hiszen $\ln n$ monoton nő \checkmark
3. $c_n \xrightarrow{n \to \infty} 0$, mert $\ln n \to \infty$ \checkmark

Hiba:
$$|S - S_n| \le c_{n+1} = \frac{1}{\ln(n+1)} \le 10^{-3}$$

$$\ln(n+1) \geqslant 1000 \quad \Rightarrow \quad n \geqslant e^{1000} - 1$$

(3)
$$\sum_{k=2}^{\infty} \frac{(-1)^{k-1} \cdot 2k}{k^2 - 1}$$
. Konvergens-e?

• Alternáló?
$$\checkmark$$

• $c_k = |a_k| = \frac{2k}{k^2 - 1} = \frac{2}{k - \frac{1}{k}} \xrightarrow{k \to \infty} 0 \checkmark$

•
$$c_k \stackrel{?}{\geqslant} c_{k+1}$$

$$\frac{2k}{k^2 - 1} \stackrel{?}{\geqslant} \frac{2(k+1)}{(k+1)^2 - 1}$$

$$(2k)((k+1)^2 - 1) \stackrel{?}{\geqslant} (2k+2)(k^2 - 1)$$

$$2k^2 + 2k + 2 \stackrel{?}{\geqslant} 0 \checkmark$$

Tehát a fenti sor Leibniz-sor, tehát konvergens.

Megjegyzés: A konvergenciához elég, ha a Leibniz-kritérium $n > N_0$ -ra teljesül.

Abszolút és feltételes konvergencia 3.6.

Definíció 3.9 $A \sum_{n=1}^{\infty} a_n$ sor abszolút konvergens, ha $\sum_{n=1}^{\infty} |a_n|$ konvergens.

Definíció 3.10 $A \sum_{n=1}^{\infty} a_n$ sor **feltételesen konvergens**, ha konvergens, de nem abszolút konvergens.

Pl.:
$$\sum_{n=0}^{\infty} \left(\frac{-1}{2}\right)^n$$
 konvergens, sőt abszolút konvergens.

$$\sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{1}{n}$$
 konvergens (Leibniz-sor), de nem abszolút.

Tétel 3.5 Ha
$$\sum_{n=1}^{\infty} a_n$$
 abszolút konvergens $\Rightarrow \sum_{n=1}^{\infty} a_n$ konvergens.

Bizonyítás 3.5

$$\sum_{n=1}^{\infty} a_n \text{ abszolút konvergens } \stackrel{\text{def}}{\Longleftrightarrow} \sum_{n=1}^{\infty} |a_n| \text{ konvergens } \stackrel{\text{Cauchy-krit.}}{\Longrightarrow} \forall \varepsilon > 0 \ : \ \exists N(\varepsilon) > 0 \text{, hogy:}$$

$$\left|\underbrace{|a_m| + |a_{m+1}| + |a_{m+2}| + \ldots + |a_{m+k}|}_{\geqslant a_m + a_{m+1} + a_{m+2} + \ldots + a_{m+k}}\right| < \varepsilon, \text{ ha } m > N(\varepsilon), k \in \mathbb{N} \implies$$

$$\Rightarrow \quad \forall \varepsilon > 0 \ : \ \exists N(\varepsilon) > 0 \text{, hogy: } |a_m + a_{m+1} + a_{m+2} + \ldots + a_{m+k}| < \varepsilon \text{, ha } m > N(\varepsilon), k \in \mathbb{N}$$

$$\updownarrow \text{ Cauchy-krit\'erium}$$

$$\sum_{n=1}^{\infty} a_n \text{ konvergens}$$

3.7. Pozitív tagú sorok

Definíció 3.11
$$\sum_{n=0}^{\infty} a_n$$
 pozitív tagú sor, ha $a_n > 0 \quad \forall n \in \mathbb{N}$

Tulajdonságok:

- 1. pozitív tagú sorok részlet-összegei monoton nőnek: $S_n \leqslant S_{n+1} = S_n + \underbrace{a_{n+1}}_{>0}$
- 2. pozitív tagú sor konvergens \iff a részlet-összeg sorozat korlátos. Biz \Rightarrow : Ha $\sum_{n=0}^{\infty} a_n$ konvergens, akkor $\exists \lim_{n \to \infty} S_n = S \Rightarrow S_n$ korlátos (minden konvergens sorozat korlátos).

Biz
$$\Leftarrow$$
:
$$S_n < k \in \mathbb{R}$$

$$S_n \nearrow$$

$$\Rightarrow \exists \lim_{n \to \infty} S_n = S = \sum_{n=1}^{\infty} a_n \checkmark$$

Pozizív tagú sorok esetén:

$$\sum_{n=0}^{\infty} a_n \text{ konvergens} \quad \iff \quad \sum_{n=0}^{\infty} a_n < \infty$$

$$\sum_{n=0}^{\infty} a_n \text{ divergens} \quad \iff \quad \sum_{n=0}^{\infty} a_n = \infty$$

Tétel 3.6

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = \begin{cases} x \in \mathbb{R}, ha \ \alpha > 1 \\ \infty, ha \ \alpha \leqslant 1 \end{cases}$$

Bizonyítás 3.6

Ø Majd félév végén.

Tétel 3.7 *Majoráns kritérium* $\forall n \in \mathbb{N} \text{ esetén } 0 < a_n \leqslant c_n \text{ és } \sum_{n=1}^{\infty} c_n < \infty \text{ (konvergens), akkor } \sum_{n=1}^{\infty} a_n < \infty \text{ (konvergens).}$

Bizonyítás 3.7

$$0 < a_n \leqslant c_n \quad \Rightarrow \quad S_n^{(a)} \leqslant S_n^{(c)} \leqslant \sum_{n=1}^{\infty} c_n = S^{(c)} \in \mathbb{R}$$
$$\Rightarrow \quad \exists \sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n^{(a)} = S^{(a)} \leqslant S^{(c)}$$

Tétel 3.8 Minoráns kritérium $\forall n \in \mathbb{N} \text{ esetén } 0 \leqslant d_n \leqslant a_n \text{ és } \sum_{n=1}^{\infty} d_n = \infty \text{ (divergens), akkor } \sum_{n=1}^{\infty} a_n = \infty \text{ (divergens).}$

Bizonyítás 3.8

$$\begin{array}{ccc} S_n^{(d)} & \leqslant & S_n^{(a)} \\ \downarrow & & \downarrow \\ \infty & \Rightarrow & \infty & \text{(speciális rendőrelv)} \end{array}$$

3.7.1. Példa

(1)
$$\sum_{n=1}^{\infty} \frac{1}{3n+2}$$
. Konvergens-e?

A konvergencia szükséges feltétele teljesül: $a_n \xrightarrow{n \to \infty} 0$. Minoráns kritérium:

$$\sum_{n=1}^{\infty} \frac{1}{3n+2} \geqslant \sum_{n=1}^{\infty} \frac{1}{3n+2n} = \underbrace{\sum_{n=1}^{\infty} \frac{1}{5} \cdot \frac{1}{n}}_{\text{divergens}}$$

Tehát az eredeti sor is divergens.

(2)
$$\sum_{n=2}^{\infty} \frac{1}{n^2 - \sqrt{n}}$$
. Konvergens-e?

A konvergencia szükséges feltétele teljesül: $a_n \xrightarrow{n \to \infty} 0$. Majoráns kritérium:

$$\sum_{n=2}^{\infty} \frac{1}{n^2 - \sqrt{n}} \leqslant \sum_{n=2}^{\infty} \frac{1}{n^2 - \frac{1}{2}n^2} = \sum_{n=2}^{\infty} \frac{2}{n^2}$$
 konvergens

Tehát az eredeti sor is konvergens.

3.7.2. Nem Leibniz-típusú pozitív tagú sorok hibabecslése

Ötlet: a sort konvergens geometriai sorral majoráljuk:

$$H_n = |S - S_n| = |r_n| = \sum_{k=n+1}^{\infty} a_k \leqslant \sum_{k=n+1}^{\infty} A \cdot q^k = A \cdot q^{n+1} \frac{1}{1-q}$$
 ha $|q| < 1$

Példák

(1)
$$\sum_{n=1}^{\infty} \frac{2^n}{4^n - 3}$$
. Adjunk az $s \approx s_{1000}$ közelítés hibájára becslést!

$$H = \sum_{n=1001}^{\infty} \frac{2^n}{4^n - 3} \leqslant \sum_{n=1001}^{\infty} \frac{2^n}{4^n - \frac{1}{2}4^n} = \sum_{n=1001}^{\infty} 2 \cdot \left(\frac{1}{2}\right)^n = 2 \cdot \left(\frac{1}{2}\right)^{1001} \cdot \frac{1}{1 - \frac{1}{2}} = \left(\frac{1}{2}\right)^{999}$$

Tehát
$$H \leqslant \left(\frac{1}{2}\right)^{999}$$

(2)
$$\sum_{n=1}^{\infty} \frac{5^n + n^2 \cdot 2^n}{3^n + 8^n}$$
. Adjunk az $s \approx s_{100}$ közelítés hibájára becslést!

$$H = \sum_{n=101}^{\infty} \frac{5^n + n^2 \cdot 2^n}{3^n + 8^n} \leqslant \sum_{n=101}^{\infty} \frac{5^n + 5^n}{8^n} = \sum_{n=101}^{\infty} 2 \cdot \left(\frac{5}{8}\right)^n = 2 \cdot \left(\frac{5}{8}\right)^{101} \cdot \frac{1}{1 - \frac{5}{8}} = \frac{16}{3} \cdot \left(\frac{5}{8}\right)^{101}$$

Tehát
$$H \leqslant \frac{16}{3} \cdot \left(\frac{5}{8}\right)^{101}$$

4. fejezet

Valós egyváltozós függvények

Definíció 4.1 Valós egyváltozójú **függvény**: egyértelmű reláció. $f: D_f \to R_f \quad \forall x \in D_f \subset \mathbb{R}$ -hez hozzárendel pontosan egy $y \in R_f \subset \mathbb{R}$ -et. D_f : értelmezési tartomány (domain), ÉT; R_f : értékkészlet (range), ÉK.

Definíció 4.2 $Az \ f : A \rightarrow B$ leképezés **szürjektív** (ráképezés), ha $\forall b \in B$ -re $\exists a \in A$, hogy f(a) = b.

Definíció 4.3 $Az \ f: A \to B$ leképezés **injektív**, ha $f(a_1) = f(a_2)$ esetén $a_1 = a_2$, tehát $\forall b \in B$ -re legfeljebb egy A-beli elemre $(a \in A)$ teljesül, hogy f(a) = b.

Definíció 4.4 $Az \ f : A \to B$ leképezés **bijektív** (egy-egy értelmű), ha f szürjektív és injektív, azaz $\forall b \in B$ esetén $\exists ! \ a \in A$, hogy f(a) = b. Ilyenkor |A| = |B|.

Definíció 4.5 Legyen f injektív. Ekkor f inverze $f^{-1}: R_f \to A$, $b \mapsto f^{-1}(b) = a$, melyre f(a) = b.

4.1. Topológiai alapfogalmak

Legyen $H \subset \mathbb{R}$

Definíció 4.6 $b \in H$ a H belső pontja, ha $\exists \varepsilon > 0$, hogy $(b - \varepsilon, b + \varepsilon) = K_{\varepsilon}(b) \subset H$. Jelölés: Int(H)

Definíció 4.7 $k \in \mathbb{R} \setminus H$ a H külső pontja, ha $\exists \varepsilon > 0$, hogy $(k - \varepsilon, k + \varepsilon) = K_{\varepsilon}(k) \subset \mathbb{R} \setminus H$.

Tehát az előző kettőből: k a H külső pontja $\Leftrightarrow k$ az $\mathbb{R} \setminus H$ belső pontja.

Definíció 4.8 $h \in \mathbb{R}$ a H határpontja, ha nem külső és nem belső pontja, azaz $\forall \varepsilon > 0$ esetén $K_{\varepsilon}(h) \cap H \neq \emptyset$ és $K_{\varepsilon}(h) \cap (H \setminus \mathbb{R}) \neq \emptyset$. Jelölés: Front(H)

Definíció 4.9 $H \subset \mathbb{R}$ nyílt, ha H minden pontja belsőpont. (Int(H) = H)

Definíció 4.10 $H \subset \mathbb{R}$ zárt, ha $\mathbb{R} \setminus H$ nyílt.

Például (a; b] se nem nyílt, se nem zárt.

Tétel 4.1 \mathbb{R} és \emptyset nyílt és zárt is.

Definíció 4.11 $H \subset \mathbb{R}$ *kompakt*, ha H korlátos és zárt.

4.2. Függvény tulajdonságok

Definíció 4.12

f felülről korlátos, ha $\exists K \in \mathbb{R}$, hogy $\forall x \in D_f$ esetén $f(x) \leqslant K$. f alulról korlátos, ha $\exists k \in \mathbb{R}$, hogy $\forall x \in D_f$ esetén $f(x) \geqslant k$. f korlátos, ha $\exists K \in \mathbb{R}$, hogy $\forall x \in D_f$ esetén $|f(x)| \leqslant k$.

Definíció 4.13

f páros, ha f(x) = f(-x). f páratlan, ha f(x) = -f(-x).

Definíció 4.14

```
f monoton nő, ha x_1 < x_2 esetén f(x_1) \le f(x_2).
f monoton csökken, ha x_1 < x_2 esetén f(x_1) \ge f(x_2).
f szigorúan monoton nő, ha x_1 < x_2 esetén f(x_1) < f(x_2).
f szigorúan monoton csökken, ha x_1 < x_2 esetén f(x_1) > f(x_2).
```

Definíció 4.15 f periodikus, ha $\exists T > 0$, hogy $f(x + T) = f(T) \quad \forall x \in D_f$. A periódusa legyen a legkisebb ilyen T érték.

Definíció 4.16

 $A \ t \in \mathbb{R} \ \varepsilon > 0 \ sugar \acute{u} \ k\"{o}rnyezete: K_{\varepsilon}(t) = (t - \varepsilon, t + \varepsilon).$ $A \ t \in \mathbb{R} \ \varepsilon > 0 \ pontozott \ sugar \acute{u} \ k\"{o}rnyezete: \dot{K}_{\varepsilon}(t) = K_{\varepsilon}(t) \setminus \{t\}.$

Definíció 4.17 $t \in \mathbb{R}$ a $H \subset \mathbb{R}$ torlódási pontja, ha $\forall \varepsilon > 0$ esetén $|K_{\varepsilon}(t) \cap H| = \infty$, azaz $\forall K_{\varepsilon}(t)$ környezetbe végtelen sok H-beli pont esik.

Definíció 4.18 *Alternatív definíció:*

 $t \in \mathbb{R}$ a $H \subset \mathbb{R}$ torlódási pontja, ha $\forall \varepsilon > 0$ esetén $\dot{K}_{\varepsilon}(t) \cap H \neq \emptyset$ (bármely pontozott környezetbe esik H-beli elem).

Tétel 4.2 A fenti két definíció ekvivalens $(4.17 \Leftrightarrow 4.18)$

Bizonyítás 4.2

 $4.17 \Rightarrow 4.18$

$$|K_{\varepsilon}(t) \cap H| = \infty \quad \Rightarrow \quad |\dot{K}_{\varepsilon}(t) \cap H| = \infty \quad \Rightarrow \quad \dot{K}_{\varepsilon}(t) \cap H \neq \emptyset$$

4.18 ⇒ **4.17** Egyre szűkülő környezetet veszünk: $\varepsilon > \varepsilon_2 > \dots > \varepsilon_n > 0$

$$\dot{K}_{\varepsilon}(t) \cap H \neq \emptyset \quad \Rightarrow \quad \exists h_1 \in \dot{K}_{\varepsilon}(t) \cap H
\dot{K}_{\varepsilon_2}(t) \cap H \neq \emptyset \quad \Rightarrow \quad \exists h_2 \in \dot{K}_{\varepsilon_2}(t) \cap H
\vdots
\Rightarrow \{h_n\} \subset \dot{K}_{\varepsilon}(t) \cap H \quad \Rightarrow \quad |K_{\varepsilon}(t) \cap H| = \infty$$

Tétel 4.3 $t \in \mathbb{R}$ a $H \subset \mathbb{R}$ torlódási pontja, ha $\exists h_n \in H, h_n \neq t$, hogy $\lim_{n \to \infty} h_n = t$.

39

4.3. Függvények határértéke

Definíció 4.19 Az f függvény határértéke x_0 -ban A, jelölve: $\lim_{x \to x_0} f(x) = A$, ha

1. x₀ torlódási pontja D_f-nek és

2.
$$\forall \varepsilon > 0$$
 esetén $\exists \delta(\varepsilon) > 0$, hogy $|f(x) - A| < \varepsilon$, ha $x \in D_f$ és $0 < |x - x_0| < \delta$

Megjegyzés: Nem kell, hogy $x_0 \in D_f$. x_0 -ban felvett függvényérték nem befolyásolja a határértéket.

Definíció 4.20 Az f függvény jobboldali határértéke x₀-ban A, ha

1. x_0 torlódási pontja $D_f \cap (x_0, +\infty)$ -nek és

2.
$$\forall \varepsilon > 0$$
 esetén $\exists \delta(\varepsilon) > 0$, hogy $|f(x) - A| < \varepsilon$, ha $x \in D_f$ és $0 < x - x_0 < \delta$

Jelölés:
$$\lim_{x \to x_0 + 0} f(x) = A \text{ vagy } f(x_0 + 0) = A$$

Definíció 4.21 Az f függvény baloldali határértéke x₀-ban A, ha

1. x_0 torlódási pontja $D_f \cap (-\infty, x_0)$ -nak és

2.
$$\forall \varepsilon > 0$$
 esetén $\exists \delta(\varepsilon) > 0$, hogy $|f(x) - A| < \varepsilon$, ha $x \in D_f$ és $0 < x_0 - x < \delta$

Jelölés:
$$\lim_{x \to x_0 - 0} f(x) = A \text{ vagy } f(x_0 - 0) = A$$

Megjegyzés: Legyen x_0 a D_f belső pontja, ekkor:

Tétel 4.4
$$\lim_{x \to x_0} f(x) = A \iff f(x_0 + 0) = f(x_0 - 0) = A$$

Példák függvények határértékeinek, definícióval történő meghatározására

1) Definícióval igazoljuk, hogy:

$$\lim_{x \to 2} \sqrt{2x + 5} = 3 \qquad (\delta(\varepsilon) = ?)$$

$$D_f = \left[-\frac{2}{5}, \infty \right]$$

$$|\sqrt{2x+5} - 3| = \left| \frac{(\sqrt{2x+5} - 3)(\sqrt{2x+5} + 3)}{\sqrt{2x+5} + 3} \right| = \left| \frac{2x-4}{\sqrt{2x+5} + 3} \right| = \frac{2|x-2|}{\sqrt{2x+5} + 3} \le \frac{2}{3} \cdot |x-2| < \varepsilon \quad \text{teljesül, ha } |x-x_0| < \delta(\varepsilon)$$

Tehát
$$\delta(\varepsilon) = \frac{3\varepsilon}{2}$$
.

(2) Definícióval igazoljuk, hogy:

$$\lim_{x \to 2} (x^2 - 3x + 1) = -1 \qquad (\delta(\varepsilon) = ?)$$

$$|x^2 - 3x + 1 - -1| = |x^2 - 3x + 2| = |x - 1||x - 2|$$

Nyugodtan feltehetjük, hogy $\delta(\varepsilon) \le 1$, ekkor |x-1| < 2, tehát:

$$|x-1||x-2|<2|x-2|<\varepsilon$$

Innen: $\delta(\varepsilon) = \min\left\{\frac{\varepsilon}{2}, 1\right\}$. (Az 1 a fenti feltevés miatt kell)

De akár feltehetjük, azt is, hogy $\delta(\varepsilon) \leqslant \frac{1}{2}$, ekkor $|x-1| < \frac{3}{2}$, így:

$$|x-1||x-2| < \frac{3}{2}|x-2| < \varepsilon$$

Tehát ebből $\delta(\varepsilon) = \min\left\{\frac{2\varepsilon}{3}, \frac{1}{2}\right\}$.

(3) Definícióval igazoljuk, hogy:

$$\lim_{x \to 3} \left(\frac{x-3}{x^2 - 9} \right) = \frac{1}{6} \qquad (\delta(\varepsilon) = ?)$$

$$D_f = \mathbb{R} \setminus \{\pm 3\}$$

$$\left| \frac{x-3}{x^2-9} - \frac{1}{6} \right| = \left| \frac{-x^2 + 6x - 9}{6x^2 - 54} \right| = \left| \frac{(x-3)^2}{6(x+3)(x-3)} \right| = \frac{|x-3|}{6|x+3|}$$

Tegyük fel, hogy $\delta(\varepsilon) \leqslant 1$, ekkor $\frac{1}{|x+3|} < \frac{1}{5}$ (hiszen 5 < |x+3| < 7). Tehát:

$$\frac{|x-3|}{6|x+3|} < \frac{|x-3|}{30} < \varepsilon$$

Így $\delta(\varepsilon) = \min \{30\varepsilon, 1\}.$

Tétel 4.5 *Átviteli-elv* (Szükséges és elégséges feltétel határérték létezésére)

$$\lim_{x \to x_0} f(x) = A \quad \Leftrightarrow \quad \begin{array}{c} \forall \{x_n\} \xrightarrow{n \to \infty} x_0 \text{ sorozatra, melyre } x_n \in D_f \setminus \{x_0\} \\ \lim_{n \to \infty} f(x_n) = A \quad \text{(sorozat határérték)} \end{array}$$

Megjegyzés: Főleg határérték **nem létezésére** használjuk, mert ahhoz, hogy bebizonyítsuk ennek segítségével, hogy létezik hatáérték, végtelen sorozatot kell megvizsgálni.

Bizonyítás 4.5

$$\Rightarrow$$
 Teljesül, hogy $|f(x) - A| < \varepsilon$, ha $0 < |x - x_0| < \delta(\varepsilon)$ és $\lim_{n \to \infty} x_n = x_0$. Ebből:

$$|x_n - x_0| < \delta(\varepsilon)$$
 ha $n > N_1(\delta(\varepsilon))$

De ekkor:

$$|f(x_n) - A| < \varepsilon$$
 ha $n > N_1(\delta(\varepsilon))[=N(\varepsilon)]$

Ez pedig pontosan azt jelenti, hogy $f(x_n) \rightarrow A$.

 $\Leftarrow \forall \{x_n\} \to x_0$ -ra $f(x_n) \to A$. Következik-e, hogy $f(x) \to A$? Indirekt bizonyítjuk: Tegyük fel, hogy $\exists \varepsilon > 0$, melyre $\nexists \delta(\varepsilon)$, hogy:

$$|f(x) - A| < \varepsilon$$
, ha $0 < |x - x_0| < \delta(\varepsilon)$

Tehát bármilyen δ -ra:

$$|f(x) - A| \geqslant \varepsilon$$
, ha $0 < |x - x_0| < \delta$

Vagyis
$$\delta = \frac{1}{m}$$
-re $(m \in \mathbb{N}^+)$ is igaz, vagyis $\exists x_m$, hogy:

$$0 < |x_m - x_0| < \frac{1}{m}$$
 hiszen feltétel alapján $\forall x_m \to x_0$

De $|f(x_m) - A| \ge \varepsilon$. Ez viszont ellentmondás, hiszen ekkor $f(x_m) \nrightarrow A$.

Példa:
$$\lim_{x\to 0}\cos\left(\frac{1}{x}\right) = ?$$
 $D_f: \mathbb{R}\setminus\{0\}$

Átviteli elvvel igazoljuk, hogy nem létezik!

Vegyünk fel két olyan sorozatot, melyre $\cos\left(\frac{1}{x_n}\right) \equiv 1$, illetve $\cos\left(\frac{1}{y_n}\right) \equiv -1$.

Tehát $x_n = \frac{1}{2n\pi}$; $y_n = \frac{1}{\pi + 2n\pi}$ Mindkettőre: $x_n \xrightarrow{n \to \infty} 0$ és $y_n \xrightarrow{n \to \infty} 0$. **De**:

$$\lim_{n \to \infty} \cos\left(\frac{1}{x_n}\right) = 1 \qquad \lim_{n \to \infty} \cos\left(\frac{1}{y_n}\right) = -1$$

Így az Átviteli-elv alapján nem létezik a határérték!

4.3.1. Végesben vett határértékek

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = A$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 - 0}} f(x) = A$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = A$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = \infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = \infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = \infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0 + 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to x_0 + 0 \\ \lim x \to x_0$$

 $x-4 < \frac{1}{20}$

Ez akkor igaz, ha $0 < x - 4 < \delta(\Omega)$, tehát $\delta(\Omega) = \frac{1}{2\Omega}$

4.3.2. Végtelenben vett határértékek

$$\lim_{\substack{x \to +\infty \\ \lim_{x \to -\infty} f(x) = A}} f(x) = A$$
 $\forall \varepsilon > 0 : \exists P(\varepsilon) > 0, \text{hogy}$
$$|f(x) - A| < \varepsilon, \text{ha}$$

$$\begin{cases} x > P(\varepsilon) \\ x < -P(\varepsilon) \end{cases} x \in D_f$$

$$\lim_{\substack{x \to +\infty \\ \lim x \to -\infty \\ \lim x \to +\infty }} f(x) = +\infty \\ \lim_{\substack{x \to +\infty \\ \lim x \to +\infty \\ \lim x \to +\infty }} f(x) = -\infty \\ \lim_{\substack{x \to +\infty \\ \lim x \to +\infty \\ \lim x \to +\infty }} f(x) = -\infty \\ \end{bmatrix} \quad \forall \Omega > 0 \text{-hoz} \quad \left\{ \begin{array}{l} f(x) > \Omega, \text{ ha } x > P(\Omega) \\ f(x) > \Omega, \text{ ha } x < -P(\Omega) \\ f(x) < -\Omega, \text{ ha } x > P(\Omega) \\ f(x) < -\Omega, \text{ ha } x < -P(\Omega) \end{array} \right\} \\ x \in D_f$$

$$\begin{split} &P\'elda: \lim_{x \to \infty} \frac{2 - 3x}{x + 1} = -3 \quad P(\varepsilon) = ? \qquad D_f: \mathbb{R} \setminus \{-1\} \\ &\left| \frac{2 - 3x}{x + 1} + 3 \right| = \left| \frac{2 - 3x + 3x + 3}{x + 1} \right| = \frac{5}{|x + 1|} \stackrel{x \ge -1}{=} \frac{5}{x + 1} < \varepsilon \qquad \text{ha } x > \boxed{\frac{5}{\varepsilon} - 1 = P(\varepsilon)} \end{split}$$

Megjegyzés: Az átviteli-elv és a rendőr-elv is működik mindegyik határérték típusra.

1. példa: $\lim_{x \to \pm \infty} \frac{\sin x}{x^2 + 3} = 0$. Rendőr-elv alapján:

$$\underbrace{\frac{-1}{x^2 + 3}}_{\to 0} \leqslant \frac{\sin x}{x^2 + 3} \leqslant \underbrace{\frac{1}{x^2 + 3}}_{\to 0}$$

Megjegyzés: Az, hogy a bal és jobb oldal miért tart 0-hoz (bár kézenfekvő), a következő fejezetben tanultak alapján indokolható.

$$x_{k} = k\pi \xrightarrow{k \to \infty} \infty \qquad \Rightarrow \quad \sin(x_{k}) \equiv 0$$

$$y_{k} = \frac{\pi}{2} + 2k\pi \xrightarrow{k \to \infty} \infty \qquad \Rightarrow \quad \sin(y_{k}) \equiv 1$$

$$\lim_{k \to \infty} \sin(x_{k}) \neq \lim_{k \to \infty} \sin(y_{k}) \Rightarrow \lim_{k \to \infty} \sin x$$

4.4. Műveletek függvényekkel

Pontonként definiált műveletek; $x \in D = D_f = D_g \subset \mathbb{R}$

$$(f+g)(x) := f(x) + g(x)$$

$$(f \cdot g)(x) := f(x) \cdot g(x)$$

$$(cf)(x) := c \cdot f(x) \quad c \in \mathbb{R}$$

$$\left(\frac{f}{g}\right)(x) := \frac{f(x)}{g(x)} \quad g(x) \neq 0$$

$$(f \circ g)(x) := f(g(x)) \quad g(x) \in D_f$$

4.4.1. Határértékre vonatkozó tételek

Tétel 4.6 Ha
$$\exists \lim_{x \to x_0} f(x) = A$$
, $\exists \lim_{x \to x_0} g(x) = B$ és $c \in \mathbb{R}$, akkor:

$$\lim_{x \to x_0} (c \cdot f)(x) = c \cdot \lim_{x \to x_0} f(x) = c \cdot A$$

$$\lim_{x \to x_0} (f + g)(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = A + B$$

$$\lim_{x \to x_0} (f \cdot g)(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = A \cdot B$$

$$\lim_{x \to x_0} \left(\frac{f}{g}\right)(x) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{A}{B} \quad ha \ B \neq 0$$

Bizonyítás 4.6

Mindegyiket az átviteli-elvvel könnyedén bizonyítható, pl. a szorzatra:

$$\lim_{x \to x_0} f(x) = A \quad \Leftrightarrow \quad \forall \{x_n\} \to x_0, \ x_n \in D_f \setminus \{0\} \text{ és } \exists \lim_{n \to \infty} f(x_n) = A$$

$$\lim_{x \to x_0} g(x) = B \quad \Leftrightarrow \quad \forall \{x_n\} \to x_0, \ x_n \in D_f \setminus \{0\} \text{ és } \exists \lim_{n \to \infty} g(x_n) = B$$

Tehát a sorozatokra tanult szabályok értelmében:

$$\lim_{n\to\infty} (f \cdot g)(x_n) = \lim_{n\to\infty} (f(x_n) \cdot g(x_n)) = \lim_{n\to\infty} f(x_n) \cdot \lim_{n\to\infty} g(x_n)$$

Most alkalmazva az átviteli-elv ⇒ irányát:

$$\lim_{n\to\infty} f(x_n) \cdot \lim_{n\to\infty} g(x_n) = \lim_{x\to x_0} f(x) \cdot \lim_{x\to x_0} g(x) = A \cdot B$$

És az eredetire alkalmazva az átviteli-elv \Leftarrow irányát:

$$\lim_{n\to\infty} (f \cdot g)(x_n) = \lim_{x\to x_0} (f \cdot g)(x) = A \cdot B$$

4.5. Folytonosság

Definíció 4.22 Legyen $x_0 \in \text{Int } D_f$. f **folytonos** x_0 -ban, akkor $\exists f(x_0)$ és $\exists \lim_{x \to x_0} f(x)$, illetve $f(x_0) = \lim_{x \to x_0} f(x)$.

Alternatív definíciók:

Definíció 4.23 Legyen $x_0 \in \text{Int } D_f$. f **folytonos** x_0 -ban, ha $\forall \varepsilon > 0$ esetén $\exists \delta(\varepsilon) > 0$, hogy $|f(x) - f(x_0)| < \varepsilon$, ha $|x - x_0| < \delta(\varepsilon)$.

Definíció 4.24 f folytonos x_0 -ban, ha $f\left(\lim_{x\to x_0} x\right) = \lim_{x\to x_0} f(x)$

Definíció 4.25 *f jobbról folytonos* x_0 -ban, ha $f(x_0) = f(x_0 + 0)$

Definíció 4.26 f balról folytonos x_0 -ban, ha $f(x_0) = f(x_0 - 0)$

Tétel 4.7 $x_0 \in \text{Int Df. } f \text{ folytonos } x_0\text{-ban} \iff f \text{ balről és jobbról folytonos } x_0\text{-ban.}$

Bizonyítás 4.7

Határértékre vonatkozó hasonló tétel alapján következik.

Tétel 4.8 Ha f, g folytonos x_0 -ban, akkor $c \cdot f$, f + g, $f \cdot g$ is folytonos x_0 -ban ($c \in \mathbb{R}$) és $g(x_0) \neq 0$ esetén $\frac{f}{\sigma}$ is folytonos x_0 -ban.

Bizonyítás 4.8

Visszavezethető a függvény határértékre vonatkozó számolási szabályokra. Például a szorzás:

$$\lim_{x \to x_0} (f \cdot g)(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = f(x_0) \cdot g(x_0) = (f \cdot g)(x_0)$$

Tétel 4.9 Folytonos függvények kompozíciója folytonos Ha g folytonos x_0 -ban és f folytonos $g(x_0)$ -ban, akkor $f \circ g$ folytonos x_0 -ban.

Bizonyítás 4.9

$$\lim_{x \to x_0} (f \circ g)(x) = \lim_{x \to x_0} f(g(x)) = f(\lim_{x \to x_0} g(x)) = f(g(x_0)) = (f \circ g)(x_0)$$

Lemma 4.1 Folytonossági lemmák

- Minden polinom folytonos $\forall x_0 \in \mathbb{R}$ -ben.
- Minden racionális tört függvény (polinom/polinom) folytonos mindenütt, ahol értelmezve van

Szakadási helyek 4.5.1.

Ha f nem folytonos x_0 -ban, akkor x_0 -ban **szakad**. Fajtái:

- 1. *Elsőfajú*: ha x_0 -ban szakad és $\exists f(x_0 + 0) \in \mathbb{R}$ és $\exists f(x_0 0) \in \mathbb{R}$.
 - (a) Megszüntethető, ha $f(x_0 + 0) = f(x_0 0)$
 - (b) Nem megszüntethető, ha $f(x_0 + 0) \neq f(x_0 0)$. Másnevén: véges ugrás.
- 2. *Másodfajú*: ha x_0 nem elsőfajú szakadási hely.

4.5. FOLYTONOSSÁG 45

Folytonos függvények tulajdonságai

Definíció 4.27 *f folytonos az* $(a;b) \subset \mathbb{R}$ *intervallumon, ha* $\forall x \in (a;b)$ *ponton folytonos.*

Definíció 4.28 f folytonos az $[a;b] \subset \mathbb{R}$ intervallumon, ha (a;b)-n folytonos és jobbról folytonos a-ban és balról folytonos b-ben.

Tétel 4.10 Ha f folytonos x_0 -ban és $f(x_0) > c$, akkor $\exists \delta > 0$, hogy $x \in K_{\delta}(x_0)$ esetén f(x) > c.

Bizonyítás 4.10

Mivel f folytonos x_0 -ban ezért a folytonosság definícióját (4.23) alkalmazhatjuk. Legyen $\varepsilon = \frac{f(x_0) - c}{2}$. Ehhez létezik olyan $\delta(\varepsilon)$, hogy ha

$$|x - x_0| < \delta(\varepsilon)$$
, akkor $|f(x) - f(x_0)| = |f(x) - y_0| < \varepsilon$
 $|f(x) - y_0| < \varepsilon \quad \Leftrightarrow \quad y_0 - \varepsilon < f(x) < y_0 + \varepsilon$

Mivel $\varepsilon = \frac{y_0 - c}{2}$, ezért:

$$c < c + \varepsilon = y_0 - \varepsilon < f(x)$$

Tételek korlátos zárt intervallumon folytonos függvényekhez 4.5.3.

Tétel 4.11 *Bolzano-tétel*

Ha f folytonos [a,b]-n és f(a) < c < f(b), akkor $\exists \xi \in (a,b)$, hogy $f(\xi) = c$

Bizonyítás 4.11

(Vázlat) - Cantor-axióma (lásd 8. oldal)

Legyen
$$a_0 = a, b_0 = b$$
 és $I_0 = [a_0, b_0]$. Ha $f\left(\frac{a+b}{2}\right) = c$ \Rightarrow kész $\xi = \frac{a+b}{2}$ Ha $f\left(\frac{a_0 + b_0}{2}\right) < c$ \Rightarrow $I_1 := \left[\frac{a_0 + b_0}{2}; b_0\right]$ Ha $f\left(\frac{a_0 + b_0}{2}\right) > c$ \Rightarrow $I_1 := \left[a_0; \frac{a_0 + b_0}{2}\right]$

És így tovább, tehát mindig elfelezzük az intervallumot és azzal az intervallummal dolgozunk tovább, ami tartalmazza c-t. Tehát n lépés után: $f(a_n) < c$; $f(b_n) > c$

$$\operatorname{Ha} f\left(\frac{a_n + b_n}{2}\right) = c \quad \Rightarrow \operatorname{k\acute{e}sz} \ \xi = \frac{a_n + b_n}{2}$$

$$\operatorname{Ha} f\left(\frac{a_n + b_n}{2}\right) < c \quad \Rightarrow \quad I_{n+1} := \left[\frac{a_n + b_n}{2}; b_n\right]$$

$$\operatorname{Ha} f\left(\frac{a_n + b_n}{2}\right) > c \quad \Rightarrow \quad I_{n+1} := \left[a_n; \frac{a_n + b_n}{2}\right]$$

$$I_0 \supset I_1 \supset I_2 \supset \ldots \supset I_n$$

 $|I_n|=rac{(b-a)}{2^n}\stackrel{n o\infty}{\longrightarrow} 0$, de Cantor-axióma alapján nem üres \Rightarrow csak 1 pontot tartalmazhat:

$$\bigcap_{n}I_{n}=\{\xi\}$$

Amit még be kell látni: $a_n \xrightarrow{n \to \infty} \xi$ és $b_n \xrightarrow{n \to \infty} \xi$. Ez vázlatosan: Mivel $f(a_n) < c$ és $f(b_n) > c$, de mind a kettő egy egyre szükülő intervallumok két vége, melyek egyetlen közöspontja ξ , ezért:

$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} f(b_n) = \lim_{n \to \infty} f(\xi) = c$$

Tétel 4.12 Bolzano-tétel egy következménye

Ha f folytonos [a,b]-n és f(a) < 0 < f(b), akkor f-nek van gyöke (a,b)-n. (Tehát a Bolzano-tételt c = 0-ra alkalmazzuk)

Megjegyzés: Nagyon hatékony gyökkereső algoritmusokat lehet ennek felhasználásával írni.

Tétel 4.13 Bolzano-tétel egy következménye

Minden páratlan fokszámú polinomnak van legalább 1 valós gyöke.

$$p(x) = x^{2n+1} + a_{2n}x^{2n} + \dots + a_0 \qquad (n \in \mathbb{Z}^+)$$
$$\lim_{x \to \pm \infty} p(x) = \pm \infty$$

Tétel 4.14 *Weierstrass I. tétel*

Korlátos zárt intervallumon¹ folytonos függvény korlátos.

Bizonyítás 4.14

(*) Indirekt

Tfh: f folytonos [a, b]-n, de nem korlátos felülről, tehát

1 nem felső korlát ⇒ $\exists x_1 \in [a, b] : f(x_n) > 1$.

2 nem felső korlát $\Rightarrow \exists x_2 \in [a,b] : f(x_n) > 2$.

:

 $n \in \mathbb{N}$ nem felső korlát $\Rightarrow \exists x_n \in [a, b] : f(x_n) > n$.

 $\forall x_n \in [a,b]$, tehát $\{x_n\}$ korlátos $\overset{\text{B. W. kiv. t.}}{\Longrightarrow}$ $\exists x_{n_k}$ konvergens részsorozat: $\{x_{n_k}\} \to t \in [a,b]$. $f(x_{n_k}) \xrightarrow{k \to \infty} \infty$, de mivel $f(x_{n_k})$ folytonos, ezért $f(x_{n_k}) \xrightarrow{k \to \infty} f(t)$, de ez nem lehet, hiszen a határérték egyértelmű. $\mbox{\ensuremath{\not|}}$

¹Ehelyett mondhatjuk, hogy kompakt halmazon – ekkor egy erősebb állítást kapunk

47

Tétel 4.15 *Weierstrass II. tétel*

Korlátos zárt intervallumon² folytonos függvény felveszi szélsőértékeit. Tehát

$$m := \operatorname{Inf} \{ f(x) \mid x \in [a,b] \} \in \mathbb{R}$$
 (W. I. alapján korlátos)

$$M := \operatorname{Sup}\{f(x) \mid x \in [a, b]\} \in \mathbb{R}$$

Ekkor $\exists \alpha, \beta \in [a, b]$, hogy $f(\alpha) = M$, $f(\beta) = b$.

Bizonyítás 4.15

Megmutatjuk, hogy $\exists \alpha : f(\alpha) = M$. Hasonlóan lehetne $f(\beta) = m$ -re. Indirekt, tfh: $\nexists \alpha \in [a,b] : f(\alpha) = M \Rightarrow M - f(x) > 0$, ha $x \in [a,b] \Rightarrow g(x) = \frac{1}{M - f(x)}$ folytonos [a,b]-ben $\overset{\text{W.I. t.}}{\Longrightarrow} g$ korlátos [a,b]-ben, tehát $\exists K$:

$$\frac{1}{M - f(x)} < K \qquad x \in [a, b], K > 0$$

$$M - f(x) > \frac{1}{K} \qquad x \in [a, b], K > 0$$

$$f(x) < M - \frac{1}{K} < M$$

De ez nem lehet igaz, hiszen M a legkisebb felső korlátunk volt, mi viszont találtunk ennél kisebbet.

Példa:
$$f(x) = \frac{x^4 + 3x^2 - 4}{x^2 + x - 2}$$
.

a. Hol és milyen szakadásai vannak?

 $f(x) = \frac{x^4 + 3x^2 - 4}{(x+2)(x-1)}$, tehát x = -2 és x = 1-ben nem értelmezett a függvény, itt milyen szakadások vannak?

$$\lim_{x \to -2+0} f(x) = \mp \infty \quad \Rightarrow \quad \text{másodfajú szakadás.}$$

$$\lim_{x \to 1 \pm 0} f(x) = \frac{10}{3} \quad \Rightarrow \quad \text{megszüntethető szakadás.}$$

b. Van-e minimuma a [-1,0]-n?

f folytonos [-1,0]-n, mivel mindenhol folytonos kivéve x=-2 és x=1-ben. [-1,0] egy korlátos zárt intervallum, tehát az f Weierstrass II. tétele alapján felveszi a szélső értékeket $\Rightarrow \exists$ minimuma az [-1,0]-en.

4.5.4. Egyenletes folytonosság

Egyenletes folytonosság definícióját motiváljuk:

1. Mutassuk meg, hogy $f(x) = x^2 + 2$ folytonos az [1,2] minden pontjában. $\delta(\varepsilon, x_0) = x_0 \in [1,2]$

$$|f(x) - f(x_0)| = |x^2 + 2 - x_0^2 - 2| = |x^2 - x_0^2| = |x - x_0| \cdot |x + x_0| < \varepsilon$$

$$|x - x_0| \cdot |x + x_0| \leqslant |x - x_0| \cdot |2 + x_0| < \varepsilon \quad \text{teljesül, ha:}$$

$$|x - x_0| < \frac{\varepsilon}{2 + x_0} = \delta(\varepsilon, x_0)$$

²Ehelyett mondhatjuk, hogy kompakt halmazon – ekkor egy erősebb állítást kapunk

2. Létezik-e "univerzális" x_0 -tól független $\delta(\varepsilon)$? Keressük a legkisebb $\delta(\varepsilon, x_0)$ -t:

$$\delta(\varepsilon) := \frac{\varepsilon}{2+2} = \underbrace{\frac{\varepsilon}{4}}_{\leq 0} \left[\leqslant \frac{\varepsilon}{|2+x_0|} = \delta(\varepsilon, x_0) \right]$$

Definíció 4.29 *Egyenletes folytonosság*

(Nem lokális tulajdonság!)

Az f az $A \subset D_f$ halmazon **egyenletesen folytonos**, ha $\forall \varepsilon > 0: \exists \delta(\varepsilon) > 0$ (x_0 -tól független, "univerzális"), hogy

$$|f(x_1)-f(x_0)|<\varepsilon$$
, ha $|x_1-x_0|<\delta(\varepsilon)$ és $x_1,x_0\in A$

Megjegyzés: Ha f egyenletesen folytonos A-n, akkor folytonos $\forall x_0 \in A$ -ban.

Példa: Egyenletesen folytonos-e az $f(x) = x^2 + 2$ az [1, ∞)-on?

Tekintsük az $x_n = n$ és $y_n = n + \frac{1}{n}$ sorozatokat.

$$|y_n - x_n| = \frac{1}{n} \xrightarrow{n \to \infty} 0$$

Tehát ha n-el tartunk végtelenbe, akkor a sorozatok n. tagjai egyre közelebbek lesznek egymáshoz. Ha vizsgáljuk az ezen számokhoz tartozó függvényértékek különbségét, akkor:

$$|f(y_n) - f(x_n)| = \left| \left(n + \frac{1}{n} \right)^2 - n^2 \right| = 2 + \frac{1}{n} > 2$$

Tehát ha $n \to \infty$, akkor ezen két függvényértékek különbsége nagyobb lesz mint 2. Tehát ha $\varepsilon < 2$, akkor $\nexists \delta(\varepsilon)$, hiszen bármilyen kicsire is vesszük a $\delta(\varepsilon)$ -t, láthatjuk, hogy a függényértékek különbsége nagyobb lesz, mint 2. Tehát **nem** egyenletesen folytonos a függvényünk az $[1, \infty)$ intervallumon.

Tétel 4.16 Korlátos zárt intervallumon³ folytonos függvény egyenletesen folytonos!

Példák (ha a fentit tételt nem alkalmazhatjuk)

1. Egyenletesen folytonos-e az $f(x) = \frac{1}{x}$ az $[1, \infty)$ -on?

A fenti tételt nem használhatjuk, hiszen nem korlátos az intervallum, de ez nem zárja ki azt, hogy a függvényünk egyenletesen folytonos, pusztán a tételből nem következik. A kritikus rész az 1 környezete, hiszen ha ott találunk $\delta(\varepsilon)$ -t, akkor az jó lesz végig, hiszen utána ha távolodunk az origótól, akkor adott ε esetén, a két helyettesítési pont egyre távolabb lesz egymástól, tehát jó lesz az előzőekben talált $\delta(\varepsilon)$. Legyen $\varepsilon>0$ adott és $1\leqslant x_0< x_1$.

$$|f(x_1) - f(x_0)| = \left| \frac{1}{x_1} - \frac{1}{x_0} \right| = \frac{|x_0 - x_1|}{x_0 x_1} = \frac{x_1 - x_0}{\underbrace{x_0 x_1}} \leqslant \frac{x_1 - x_0}{1}$$

$$\frac{x_1 - x_0}{1} < \varepsilon$$
 ha $|x_1 - x_0| < \delta(\varepsilon) = \varepsilon$

Tehát $\delta(\varepsilon) = \varepsilon$ jó választás; egyenletesen folytonos f(x) az $[1, \infty)$ -n.

³Ehelyett mondhatjuk, hogy kompakt halmazon – ekkor egy erősebb állítást kapunk

2. Egyenletesen folytonos-e az $f(x) = \sqrt{x}$ az $[0, \infty)$ intervallumon? Itt is a kritikus helyzetet keressük ez pedig az, ha mindkét szám helyettesítési érték közel van a 0-hoz. Legyen $\varepsilon > 0$ adott és $0 \le x_0 < x_1$

$$|f(x_1) - f(x_0)| = |\sqrt{x_1} - \sqrt{x_0}| = (\sqrt{x_1} - \sqrt{x_0}) \cdot \frac{\sqrt{x_1} + \sqrt{x_0}}{\sqrt{x_1} + \sqrt{x_0}} = \frac{x_1 - x_0}{\sqrt{x_1} + \sqrt{x_0}} \le \frac{x_1 - x_0}{\sqrt{x_1 - x_0} + \sqrt{x_0 - x_0}} = \sqrt{x_1 - x_0} < \varepsilon$$

Ez akkor teljesül, ha $|x_1 - x_0| < \overline{\delta(\varepsilon) = \varepsilon^2}$

3. Egyenletesen folytonos-e az $f(x) = \frac{1}{x}$ az (0,1] intervallumon (korlátos, de nem zárt)? Vegyünk fel két pontsorozatot: $x_n = \frac{1}{n} \xrightarrow{n \to \infty} 0$ és $y_n = \frac{1}{n+1} \xrightarrow{n \to \infty} 0$. Ezek ha meggondoljuk, egyre közelebb lesznek egymáshoz.

$$|f(x_n) - f(y_n)| = |n - (n+1)| = 1 < \varepsilon$$

4.6. Függvények differenciálása

Definíció 4.30 Differenciahányados: $\frac{\Delta f}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \operatorname{tg} \alpha$

Ha $\Delta x \to 0$, akkor az x_0 -ban vett érintőt kapjuk: $\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = f'(x)$.

Definíció 4.31 Differenciálhányados: $x_0 \in \text{Int } D_f$

$$f'(x_0) = \frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Definíció 4.32 Derivált függvény: $f': x_0 \mapsto f'(x_0)$. (Azaz minden pontban deriváljuk az eredeti függvényt)

Húr meredeksége:
$$\operatorname{tg} \alpha = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

$$f'(x_0) = \operatorname{tg} \beta = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
Derivált függvény: $f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$

Definíció 4.33 *Jobb-oldali derivált:*
$$f'_+(x_0) = \lim_{h \to 0+0} \frac{f(x_0+h) - f(x_0)}{h}$$

Definíció 4.34 *Bal-oldali derivált:*
$$f'_{-}(x_0) = \lim_{h \to 0-0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Tétel 4.17

$$\exists f'(x_0) = A \iff \exists f'_{-}(x_0), \exists f'_{+}(x_0) \text{ \'es } f'_{-}(x_0) = f'_{+}(x_0) = A$$

Bizonyítás 4.17 Legyen $g(h)=\frac{f(x_0+h)-f(x_0)}{h}$, ekkor az állítást a következő képpen foglmazhatjuk át felhasználva a megfelelő definíciókat:

$$\exists \lim_{h \to 0} g(h) = A \qquad \Leftrightarrow \qquad \underbrace{\lim_{h \to 0+0} g(h)}_{=g(0+0)} = \underbrace{\lim_{h \to 0-0} g(h)}_{=g(0-0)} = \lim_{h \to 0} g(h)$$

Ez pedig igaz a 4.4 tétel (39. oldal) alapján.

Példa: f(x) = |x|. $\nexists f'(0)$, hiszen $f'_+(x_0) = 1$, de $f'_-(x_0) = -1$. Ekkor 0-ban *töréspont*ja van a függvénynek.

Definíció 4.35 f(x) differenciálható (a;b)-n, ha $\forall x \in (a;b)$ esetén $\exists f'(x)$.

Definíció 4.36 f(x) differenciálható [a;b]-n, ha differenciálható (a;b)-n és $\exists f'_{-}(a)$ és $\exists f'_{+}(b)$.

4.6.1. "Ismert" függvények deriváltja

$$f(x) \equiv c \in \mathbb{R}; f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = 0$$

$$g(x) = x; g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} \frac{x + h - x}{h} = 1$$

$$i(x) = x^2; i'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{h^2 + 2xh}{h} = \lim_{h \to 0} h + 2x = 2x$$

 $j(x) = x^n, n \in \mathbb{N}$. Ennek a deriváltjához a binomiális-tételt alkalmazzuk:

Lemma 4.2 Binomiális-tétel

$$(a+b)^{n} = \binom{n}{0}a^{n} + \binom{n}{1}a^{n-1} \cdot b + \binom{n}{2}a^{n-2} \cdot b^{2} + \ldots + \binom{n}{n-1}a \cdot b^{n-1} + \binom{n}{n}b^{n}$$

$$j'(x) = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = \lim_{h \to 0} \frac{1}{h} \left(n \cdot x^{n-1} \cdot h + \binom{n}{2} x^{n-2} \cdot h^2 + \dots + h^n \right) = n \cdot x^{n-1}$$

Tehát természetes számokra igaz. Bármely valós számra megcsinálhatjuk a definíció segedelmével a bizonyítást, tehát igaz lesz az állítás valók számokra is. Nézzünk meg egy két példát:

$$j(x) := \sqrt{x} = x^{\frac{1}{2}}.$$

$$(\sqrt{x})' = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} = \lim_{h \to 0} \frac{x+h-x}{h \cdot (\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{h}{h \cdot (\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{1}{h \cdot (\sqrt{x+h} + \sqrt{x})} = \frac{1}{2\sqrt{x}} = \frac{1}{2} \cdot x^{-\frac{1}{2}}$$

$$j(x) := \frac{1}{x} = x^{-1}.$$

$$\left(\frac{1}{x}\right)' = \lim_{h \to 0} \frac{1}{h} \cdot \left(\frac{1}{x+h} - \frac{1}{x}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \left(\frac{x}{x(x+h)} - \frac{x+h}{x(x+h)}\right) =$$

$$= \lim_{h \to 0} \frac{-1}{x(x+h)} = \frac{-1}{x^2} = -1 \cdot x^{-2} \quad \checkmark$$

Tehát: $(x^n)' = n \cdot x^{n-1}$ $n \in \mathbb{R}$ (később explicit bizonyítjuk)

Tétel 4.18

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Bizonyítás 4.18

$$T_{OAC} = \frac{1}{2} \cdot \frac{\sin x}{\cos x} \qquad T_{OAB \text{ k\"orcikk}} = \frac{1}{2} \cdot 1 \cdot x \qquad T_{OBD} = \frac{1}{2} \cdot \sin x \cos x$$

$$T_{OBD} \leqslant T_{OAB \text{ k\"orcikk}} \leqslant T_{OAC}$$

$$\frac{1}{2} \cdot \sin x \cos x \leqslant \frac{x}{2} \leqslant \frac{1}{2} \frac{\sin x}{\cos x} \qquad / \cdot \frac{2}{\sin x}$$

$$\cos x \leqslant \frac{x}{\sin x} \leqslant \frac{1}{\cos x}$$

$$\frac{1}{\cos x} \geqslant \frac{\sin x}{x} \geqslant \cos x$$

Rendőr szabály használva: $\frac{\sin x}{x} \to 1$

Szinusz és koszinusz deriváltjai

$$(\sin x)' = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h \to 0} \frac{\sin x \cos h + \sin h \cos x - \sin x}{h} =$$

$$= \lim_{h \to 0} \left(\sin x \cdot \frac{\cos h - 1}{h} + \cos x \cdot \frac{\sin h}{h} \right) = \boxed{\cos x}$$

$$(\cos x)' = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h} =$$

$$= \lim_{h \to 0} \left(\cos x \cdot \frac{\cos h - 1}{h} - \sin x \cdot \frac{\sin h}{h} \right) = \boxed{-\sin x}$$

Tétel 4.19 *Szükséges és elégséges feltétel a differenciálhatóságra*

Legyen $x_0 \in \text{Inf Df.}$

$$\exists f'(x_0) \Leftrightarrow \Delta f = f(x_0 + h) - f(x_0) =$$

$$= \underbrace{A \cdot h}_{f \"{o} r \acute{e} s z} + \underbrace{\varepsilon(h) \cdot h}_{eleny \acute{e} s z \"{o} r \acute{e} s z} A \in \mathbb{R}$$

$$\varepsilon(h) \xrightarrow{h \to 0} 0 \quad ekkor \quad A = f'(x_0)$$

Ezért hívjuk a főrészt másképpen linearizált növekménynek, hiszen ha $h \to 0$, akkor $A \cdot h = f'(x_0) \cdot h$.

Bizonyítás 4.19 ⇒

Tudjuk, hogy
$$\exists \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) \in \mathbb{R}$$

$$\frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) + \underbrace{\varepsilon(h)}_{\to 0} / \cdot h$$

$$f(x_0 + h) - f(x_0) = \underbrace{f'(x_0)}_{A} \cdot h + \varepsilon(h) \cdot h$$

$$f(x_0 + h) - f(x_0) = A \cdot h + \underbrace{\varepsilon(h)}_{h \to 0} \cdot h / : h$$

$$\frac{f(x_0 + h) - f(x_0)}{h} = A + \varepsilon(h)$$

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = A = f'(x_0) \in \mathbb{R}$$

Következmény:

53

Tétel 4.20 *Deriválhatóság szükséges feltétele: folytonosság*

$$\exists f'(x_0) \Rightarrow f \text{ folytonos } x_0\text{-ban}$$

Bizonyítás 4.20

$$\exists f'(x_0) \Leftrightarrow f(x_0 + h) - f(x_0) = f'(x_0) \cdot h + \varepsilon(h) \cdot h$$

$$\lim_{x \to x_0} f(x) = \lim_{h \to 0} f(x_0 + h) = \lim_{h \to 0} f(x_0) + \underbrace{f'(x_0) \cdot h}_{>0} + \underbrace{\varepsilon(h) \cdot h}_{>0} = f(x_0)$$

Ha megnézzük akkor a fenti sor a folytonosság definíciója, tehát f folytonos x_0 -ban.

Megjegyzés: A feltétel nem elégséges! (Például: f(x) = |x|, hiszen folytonos 0-ban, de nem itt differenciálható)

Definíció 4.37 *Függvény differenciálja*: f függvény elsőrendű differenciálja az x_0 helyen a h növekmény mellett:

$$df(x_0, h) = \underbrace{f'(x_0) \cdot h}_{linearizált \, főrész}$$

Egyéb jelölések:

$$df = f'(x) \cdot dx = df(x, dx)$$
$$\frac{df}{dx} = f'(x)$$

Pl.: $d(x^3) = 3x^2 dx$ $d(x^2) = (x + dx)^2 - x^2 = x^2 + 2x dx + dx^2 - x^2 \approx 2x \cdot dx$ (elsőrendben számolunk!) Közelítéseknél lehet jól alkalmazni:

$$\Delta f = f(x_0 + h) - f(x_0) \approx df(x_0, dx) = f'(x_0) \cdot dx$$

4.6.2. Érintő egyenlete

Egy érintő egyenlete az x_0 pontban:

$$y = f'(x_0) \cdot (x - x_0) + f(x_0)$$

Nem nehéz meggondolni miért: a meredeksége a függvény deriváltja az x_0 pontban, és rajta van az $(x_0, f(x_0))$ pont (az érintési pont).

4.6.3. Deriválási szabályok

Tétel 4.21 *Ha* $\exists f'(x_0)$ *és* $c \in \mathbb{R}$

$$\exists (c \cdot f)'(x_0) = c \cdot f'(x_0)$$

Bizonyítás 4.21

$$(c \cdot f)'(x_0) = \lim_{h \to 0} \frac{(cf)(x_0 + h) - (cf)(x_0)}{h} = \lim_{h \to 0} \frac{c \cdot f(x_0 + h) - c \cdot f(x_0)}{h} =$$

$$= c \cdot \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = c \cdot f'(x_0)$$

Tétel 4.22 *Ha* $\exists f'(x_0)$ *és* $\exists g'(x_0)$

$$\exists (f+g)'(x_0) = f'(x_0) + g'(x_0)$$

Bizonyítás 4.22

$$(f+g)'(x_0) = \lim_{h \to 0} \frac{(f+g)(x_0+h) - (f+g)(x_0)}{h} =$$

$$= \lim_{h \to 0} \frac{f(x_0+h) + g(x_0+h) - (f(x_0) + g(x_0))}{h} =$$

$$= \lim_{h \to 0} \frac{f(x_0+h) - f(x_0)}{h} + \frac{g(x_0+h) - g(x_0)}{h} = f'(x_0) + g'(x_0)$$

Tétel 4.23 $Ha \exists f'(x_0) \text{ \'es } \exists g'(x_0); Leibniz-szabály:$

$$\exists (f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + g'(x_0) \cdot f(x_0)$$

Bizonyítás 4.23

$$(f \cdot g)'(x_0) = \lim_{h \to 0} \frac{(f \cdot g)(x_0 + h) - (f \cdot g)(x_0)}{h} =$$

$$= \lim_{h \to 0} \frac{f(x_0 + h) \cdot g(x_0 + h) - f(x_0) \cdot g(x_0)}{h} =$$

$$= \lim_{h \to 0} \frac{f(x_0 + h) \cdot g(x_0 + h) - f(x_0) \cdot g(x_0) + -f(x + h)g(x) + f(x + h)g(x)}{h} =$$

$$= \lim_{h \to 0} \frac{f(x_0 + h) \cdot (g(x_0 + h) - g(x)) + g(x_0) \cdot (f(x + h) - f(x_0))}{h} =$$

$$= f(x_0) \cdot g'(x_0) + g(x_0) \cdot f'(x_0)$$

Tétel 4.24 *Ha* $\exists g'(x_0) \ \textit{\'es} \ g(x_0) \neq 0$

$$\exists \left(\frac{1}{g}\right)'(x_0) = \frac{-g'(x_0)}{g^2(x_0)}$$

Bizonyítás 4.24

$$\left(\frac{1}{g}\right)'(x_0) = \lim_{h \to 0} \frac{1}{h} \cdot \left(\frac{1}{g(x_0 + h)} - \frac{1}{g(x_0)}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \frac{g(x_0) - g(x_0 + h)}{g(x_0 + h)g(x_0)} = \lim_{h \to 0} \frac{-\left(g(x_0 + h) - g(x_0)\right)}{h} \cdot \frac{1}{g(x_0 + h)g(x_0)} = \frac{-g'(x_0)}{g^2(x_0)}$$

Tétel 4.25 Ha $\exists f'(x_0), \exists g'(x_0) \not\in g(x_0) \neq 0$ (Az előző két tétel következménye)

$$\exists \left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) \cdot g(x_0) - g'(x_0) \cdot f(x_0)}{g^2(x_0)}$$

Bizonyítás 4.25

$$\left(\frac{f}{g}\right)'(x_0) = \left(f \cdot \frac{1}{g}\right)'(x_0) = f'(x_0) \cdot \frac{1}{g}(x_0) + f(x_0) \cdot \left(\frac{-g'(x_0)}{g^2(x_0)}\right) =$$

$$= \frac{f'(x_0) \cdot g(x_0) - g'(x_0) \cdot f(x_0)}{g^2(x_0)}$$

Példák

$$\left(x^{3} + \sqrt{x} - \frac{2}{x^{3}}\right)' = 3x^{2} + \frac{1}{2} \cdot x^{\frac{-1}{2}} - 2 \cdot (-3) \cdot x^{-4}$$

$$(\operatorname{tg} x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{\cos x \cos x - \sin x \cdot - \sin x}{\cos^{2} x} = \frac{\cos^{2} x + \sin^{2} x}{\cos^{2} x} = \frac{1}{\cos^{2} x}$$

Tétel 4.26 Összetett függvény deriválása; **láncszabály**

Ha g differenciálható x_0 helyen és f differenciálható $g(x_0)$ helyen, akkor

$$\exists (f \circ g)'(x_0) = f' \circ g(x_0) \cdot g'(x_0) = f'(g(x_0)) \cdot g'(x_0)$$

Bizonyítás 4.26

$$(f \circ g)'(x_0) = \lim_{h \to 0} \frac{(f \circ g)(x_0 + h) - (f \circ g)(x_0)}{h} =$$

$$= \lim_{h \to 0} \frac{f(g(x_0 + h)) - f(g(x_0))}{g(x_0 + h) - g(x_0)} \cdot \underbrace{\frac{g(x_0 + h) - g(x_0)}{h}}_{\rightarrow g'(x_0)}$$

 $\Delta g = g(x_0 + h) - g(x_0)$. Mivel $h \to 0$, ezért $\Delta g \to 0$ (g folytonos) tehát:

$$\lim_{\Delta g \to 0} \frac{f(g(x_0) + \Delta g) - f(g(x_0))}{\Delta g} \cdot \lim_{h \to 0} \frac{g(x_0 + h) - g(x_0)}{h} = f'(g(x_0)) \cdot g'(x_0)$$

Példák

$$(\sin 2x)' = \cos(2x) \cdot 2.$$
Másképp: $(\sin 2x)' = (2\cos x \sin x)' = -2 \cdot \sin^2 x + 2\cos^2 x = 2(\cos^2 x - \sin^2 x) = 2\cos 2x.$

$$\left(\sqrt{\operatorname{tg}(3x^3 + 2x)}\right)' = \frac{1}{2}(\operatorname{tg}(3x^3 + 2x))^{-\frac{1}{2}} \cdot \frac{1}{\cos^2(3x^3 + 2x)} \cdot (9x^2 + 2)$$

4.6.4. Inverz függvény deriválása

Definíció 4.38 f az I intervallumon **szigorúan monoton nő**, ha $x_1 < x_2$, $x_1, x_2 \in I$ esetén $f(x_1) < f(x_2)$.

Definíció 4.39 f az I intervallumon szigorúan monoton csökken, ha $x_1 < x_2$, $x_1, x_2 \in I$ esetén $f(x_1) > f(x_2)$.

Tétel 4.27 *Ha f szig. mon. az I intervallumon, akkor* $\exists f^{-1}$ (azaz f **injektív**).

Bizonyítás 4.27

Tegyük fel, hogy f szig. mon. nő. Ha $f(x_1) = f(x_2)$, akkor $x_1 = x_2$, különben nem teljesül a szig. monotonitás. Tehát nem lesz olyan érték, amit a függvény kétszer vesz fel, tehát az inverze is függvény marad.

Tétel 4.28 Ha $D_f = I$ intervallum és f szig. mon. I- $n \implies \exists f^{-1}$) és f folytonos I-n, akkor f(I) is intervallum és ezen f^{-1} folytonos.

Tétel 4.29 *Inverz függvény deriváltja*

Legyen

- f szig. mon. az I- $n (\rightsquigarrow \exists f^{-1})$
- f differenciálható I-n ($\leadsto f$ folytonos és f^{-1} is)
- $f'(x) \neq 0$, ha $x \in I$

Ekkor f^{-1} differenciálható I belsejében és

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Bizonyítás 4.29

$$f^{-1}(f(x)) = x \qquad \stackrel{\frac{d}{dx}}{\Longrightarrow} \qquad (f^{-1})'(f(x)) \cdot f'(x) = 1$$
$$(f^{-1})'(f(x)) = \frac{1}{f'(x)} \qquad \Rightarrow \qquad (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

Szögfüggvények inverzei

A sin x függvény szig. mon. nő a $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ -ben, tehát itt invertálható: $\sin^{-1} x = \arcsin x$. $\arcsin x : [-1;1] \mapsto \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$

$$(\arcsin x)' = \frac{1}{\sin'(\arcsin x)} = \frac{1}{\cos(\underbrace{\arcsin x})}$$
 $(\sin \alpha = x)$

Mivel $\cos^2 \alpha = (1 - \sin^2 \alpha)$, ezért $\cos \alpha = \pm \sqrt{1 - \sin^2 \alpha}$, de mivel $\alpha \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$, ezért $\cos \alpha \geqslant 0$, tehát:

$$(\arcsin x)' = \frac{1}{\sqrt{1 - \sin^2 \alpha}} = \boxed{\frac{1}{\sqrt{1 - x^2}}} \quad \text{ha } x \in (-1; 1)$$

A tg x függvény szig. mon. nő a $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ -ben, tehát itt invertálható: tg $^{-1}$ $x = \operatorname{arctg} x$. arctg $x : \mathbb{R} \mapsto \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$.

$$(\operatorname{arctg} x)' = \frac{1}{\operatorname{tg}'(\operatorname{arctg} x)} = \frac{1}{\frac{1}{\cos^2(\operatorname{arctg} x)}} = \cos^2(\underbrace{\operatorname{arctg} x}_{\alpha})$$

Mivel $\operatorname{tg} \alpha = x \operatorname{\acute{e}s} \cos^2 \alpha = \frac{\cos^2 \alpha}{\cos^2 \alpha + \sin^2 \alpha} = \frac{1}{1 + \operatorname{tg}^2 \alpha}$, ezért:

$$(\operatorname{arctg} x)' = \cos^2 \alpha = \frac{1}{1 + \operatorname{tg}^2 \alpha} = \boxed{\frac{1}{1 + x^2}}$$

A cos x függvény szig. mon. csökken a $[0;\pi]$ intervallumon, tehát itt invertálható: $\cos^{-1} x = \arccos x$. $\arccos x : [-1;1] \mapsto [0;\pi]$

$$(\arccos x)' = \frac{1}{\cos'(\arccos x)} = \frac{1}{-\sin(\underbrace{\arccos x})}$$
 $(\cos \alpha = x)$

Mivel $\sin^2\alpha=(1-\cos^2\alpha)$, ezért $\sin\alpha=\pm\sqrt{1-\cos^2\alpha}$, de mivel $\alpha\in[0;\pi]$, ezért $\sin\alpha\leqslant0$, tehát:

$$(\arccos x)' = \frac{1}{-\sqrt{1-\cos^2(\alpha)}} = \boxed{\frac{1}{-\sqrt{1-x^2}}} \quad \text{ha } x \in (-1;1)$$

A ctg x függény szig. mon. csökken a $[0; \pi]$ intervallumon, tehát itt invertálható: ctg $^{-1}x = \operatorname{arcctg} x$. arcctg $x : \mathbb{R} \mapsto [0; \pi]$

$$(\operatorname{arcctg} x)' = \frac{1}{\operatorname{ctg}'(\operatorname{arcctg} x)} = \frac{1}{-\frac{1}{\sin^2(\operatorname{arcctg} x)}} = -\sin^2(\underbrace{\operatorname{arcctg} x}_{\alpha})$$

$$(\operatorname{arcctg} x)' = -\sin^2 \alpha = \frac{-\sin^2 \alpha}{\sin^2 \alpha + \cos^2 \alpha} = -\frac{1}{1 + \operatorname{ctg}^2 \alpha}$$

Mivel ctg $\alpha = x$, ezért:

$$(\operatorname{arcctg} x)' = -\frac{1}{1 + \operatorname{ctg}^2 \alpha} = \boxed{-\frac{1}{1 + x^2}}$$

58

Exponenciális függvények

$$f: \mathbb{R} \mapsto (0; \infty). \ f(x) = a^x \ (a \in \mathbb{R} > 0)$$

Tulajdonságok

1.
$$f(x) = a^x$$
 folytonos \mathbb{R} -ben

2.
$$a^0 = 1$$
; $a^1 = a$

2.
$$a^{x} = 1$$
; $a^{x} = a$

$$\begin{cases}
\text{szig. mon. nő, ha } a > 1 \\
\text{konstans 1, ha } a = 1 \\
\text{szig. mon. csökken, ha } 0 < a < 1.
\end{cases}$$
4. $a^{x+y} = a^{x} \cdot a^{y}$

4.
$$a^{x+y} = a^x \cdot a^y$$

5.
$$(a^x)^y = a^{x \cdot y}$$

6.
$$\lim_{x \to +\infty} a^{x} = \begin{cases} 0, \text{ ha } 0 < a < 1 \\ 1, \text{ ha } a = 1 \\ \infty, \text{ ha } a > 1 \end{cases}$$
$$\lim_{x \to -\infty} a^{x} = \begin{cases} \infty, \text{ ha } 0 < a < 1 \\ 1, \text{ ha } a = 1 \\ 0, \text{ ha } a > 1 \end{cases}$$

Tétel 4.30 Ha a = e, akkor $x \mapsto e^x$ meredeksége 0-ban 1. Tehát $g(x) := e^x$, ekkor g'(0) = 1, azaz $\lim_{h\to 0}\frac{e^h-e^0}{h}=1.$

$$(e^{x})' = \lim_{h \to 0} \frac{e^{x+h} - e^{x}}{h} = \lim_{h \to 0} e^{x} \cdot \underbrace{\frac{e^{h} - 1}{h}}_{\text{otherwise}} = \boxed{e^{x}}$$

Logaritmus függvények

A logaritmus függvény az exponenciális függvény inverze, azaz: $y = a^x \Leftrightarrow x = \log_a y$. Tehát $f: (0; \infty) \mapsto \mathbb{R}$. $f(x) = \log_a x$ $(a \in \mathbb{R}; a > 0; a \neq 0)$

Tulajdonságok

1.
$$f(x) = \log_a x$$
 folytonos $(0; \infty)$ -n

2.
$$\log_a 1 = 0$$
; $\log_a a = 1$

2.
$$\log_a 1 = 0$$
; $\log_a a = 1$
3. $f(x) = \log_a x$ $\begin{cases} \text{szig. mon. nő, ha } a > 1 \\ \text{szig. mon. csökken, ha } 0 < a < 1. \end{cases}$

4.
$$\log_a xy = \log_a x + \log_a y$$

$$5. \log_a x^y = y \cdot \log_a x$$

4.
$$\log_a xy = \log_a x + \log_a y$$

5. $\log_a x^y = y \cdot \log_a x$
6. $\lim_{x \to \infty} \log_a x = \begin{cases} -\infty, \text{ ha } 0 < a < 1 \\ \infty, \text{ ha } a > 1 \end{cases}$

$$\lim_{x \to 0+0} \log_a x = \begin{cases} \infty, \text{ ha } 0 < a < 1 \\ -\infty, \text{ ha } a > 1 \end{cases}$$

$$7. \log_b c = \frac{\log_a c}{\log_a b}$$

Derivált függvények

$$(\log_e x)' = (\ln x)' = \frac{1}{\exp'(\ln x)} = \frac{1}{e^{\ln x}} = \frac{1}{x}$$
$$(\log_a x)' = \left(\frac{\ln x}{\ln a}\right)' = \frac{1}{x \cdot \ln a}$$
$$(a^x)' = ((e^{\ln a})^x)' = (e^{x \cdot \ln a})' = e^{x \cdot \ln a} \cdot \ln a = a^x \cdot \ln a$$

4.6.7. Hatvány függvények

$$f: \mathbb{R}^+ \mapsto \mathbb{R}^+$$
. $f(x) = x^a \ (a \in \mathbb{R}, x > 0)$.

Tulajdonságok

$$f(x) = x^a$$
 $\begin{cases} \text{szig. mon. nő, ha } a > 0 \\ \text{szig. mon. csökken, ha } 0 < a. \end{cases}$

Derivált függvények

$$(x^{a})' = ((e^{\ln x})^{a})' = (e^{\ln x \cdot a})' = x^{a} \cdot \frac{a}{x} = a \cdot x^{a-1}$$

$$(x^{x})' = ((e^{\ln x})^{x})' = (e^{\ln x \cdot x})' = x^{x} \cdot \left(\frac{x}{x} + \ln x\right) = (1 + \ln x) \cdot x^{x}$$

4.6.8. Hiperbolikus függvények

Tétel 4.31

$$\cosh^2 x - \sinh^2 x = 1$$

Bizonyítás 4.31

$$\frac{(e^x + e^{-x})^2 - (e^x - e^{-x})^2}{4} = \frac{e^{2x} + e^{-2x} + 2 - (e^{2x} + e^{-2x} - 2)}{4} = \frac{4}{4} = 1$$

Tétel 4.32

$$sh(\alpha + \beta) = sh \alpha ch \beta + ch \alpha sh \beta$$

Bizonyítás 4.32

Tétel 4.33

$$ch(\alpha + \beta) = ch \alpha ch \beta + sh \alpha sh \beta$$

Bizonyítás 4.33

$$\operatorname{ch} \alpha \operatorname{ch} \beta + \operatorname{sh} \alpha \operatorname{sh} \beta = \frac{(e^{\alpha} + e^{-\alpha})(e^{\beta} + e^{-\beta})}{4} + \frac{(e^{\alpha} - e^{-\alpha})(e^{\beta} - e^{-\beta})}{4} =$$

$$= \frac{2e^{\alpha}e^{\beta} + 2e^{-\alpha}e^{-\beta}}{4} = \frac{e^{\alpha+\beta} + e^{-(\alpha+\beta)}}{2} = \operatorname{ch}(\alpha+\beta)$$

Derivált függvények

$$\operatorname{sh}' x = \left(\frac{e^x - e^{-x}}{2}\right)' = \frac{e^x + e^{-x}}{2} = \operatorname{ch} x$$

$$\operatorname{ch}' x = \left(\frac{e^x + e^{-x}}{2}\right)' = \frac{e^x - e^{-x}}{2} = \operatorname{sh} x$$

$$\operatorname{th}' x = \left(\frac{\operatorname{sh} x}{\operatorname{ch} x}\right)' = \frac{\operatorname{ch}^2 x - \operatorname{sh}^2 x}{\operatorname{ch}^2 x} = \frac{1}{\operatorname{ch}^2 x}$$

$$\operatorname{cth}' x = \left(\frac{\operatorname{ch} x}{\operatorname{sh} x}\right)' = \frac{\operatorname{sh}^2 x - \operatorname{ch}^2 x}{\operatorname{sh}^2 x} = \frac{-1}{\operatorname{sh}^2 x}$$

Inverzek

$$y=\operatorname{sh} x=\frac{e^x-e^{-x}}{2}=\frac{q-\frac{1}{q}}{2}\quad /\cdot 2q \qquad (q=e^x>0)$$

$$2qy=q^2-1 \quad \Leftrightarrow \quad q^2-2qy-1=0. \text{ Ebből } q_{1/2}=y\pm\sqrt{y^2+1}, \text{ de mivel } q>0, \text{ ezért } q=y+\sqrt{y^2+1}. \text{ Tehát } e^x=y+\sqrt{y^2+1}, \text{ így } x=\ln(y+\sqrt{y^2+1}).$$
 Innen látszik, hogy sh x inverzét felírhatjuk a logaritmus segítségével, tehát

$$\operatorname{arsh} x = \ln(x + \sqrt{x^2 + 1})$$

Hasonlóképpen arch *x* is levezethető:

$$y= \operatorname{ch} x = rac{e^x + e^{-x}}{2} = rac{q + rac{1}{q}}{2} \ / \cdot 2q \ (q=e^x > 0)$$
 $2qy=q^2+1 \Leftrightarrow q^2-2qy+1=0.$ Ebből $q_{1/2}=y\pm\sqrt{y^2-1}$, de mivel $q>0$, ezért $q=y+\sqrt{y^2-1}$. Tehát $e^x=y+\sqrt{y^2-1}$, így $x=\ln(y+\sqrt{y^2-1})$. Tehát ch inverze:

$$\operatorname{arch} x = \ln(x + \sqrt{x^2 - 1})$$

Nézzük meg arth x-et:

$$y = \operatorname{th} x = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = \frac{q - \frac{1}{q}}{q + \frac{1}{q}} = \frac{q^{2} - 1}{q^{2} + 1} \qquad (q = e^{x} > 0)$$

$$(q^{2} + 1)y = q^{2} - 1 \quad \Leftrightarrow \quad (y - 1)q^{2} + y + 1 = 0. \text{ Ebből } q^{2} = \frac{1 + y}{1 - y} \quad \Leftrightarrow \quad q = \sqrt{\frac{1 + y}{1 - y}}.$$

$$\operatorname{Tehát} e^{x} = \sqrt{\frac{1 + y}{1 - y}}, \operatorname{fgy} x = \ln \sqrt{\frac{1 + y}{1 - y}}. \text{ Tehát th inverze:}$$

$$\operatorname{arth} x = \frac{1}{2} \ln \left(\frac{1 + x}{1 - x}\right)$$

Végül arcth x:

$$y = \operatorname{cth} x = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}} = \frac{q + \frac{1}{q}}{q - \frac{1}{q}} = \frac{q^{2} + 1}{q^{2} - 1} \qquad (q = e^{x} > 0)$$

$$(q^{2} - 1)y = q^{2} + 1 \quad \Leftrightarrow \quad (y - 1)q^{2} - y - 1 = 0. \text{ Ebből } q^{2} = \frac{y + 1}{y - 1} \quad \Leftrightarrow \quad q = \sqrt{\frac{y + 1}{y - 1}}.$$

$$\operatorname{Tehát} e^{x} = \sqrt{\frac{y + 1}{y - 1}}, \text{ fgy } x = \ln \sqrt{\frac{y + 1}{y - 1}}. \text{ Tehát cth inverze:}$$

$$\operatorname{arcth} x = \frac{1}{2} \ln \left(\frac{x + 1}{x - 1} \right)$$

Inverzek deriváltjai

$$\operatorname{arsh}' x = \frac{1}{\sinh'(\underbrace{\operatorname{arsh} x}_{y})} = \frac{1}{\cosh(y)} = \frac{1}{\sqrt{1 + \sinh^{2} y}} = \frac{1}{\sqrt{1 + x^{2}}}$$

$$\operatorname{arch}' x = \frac{1}{\operatorname{ch}'(\underbrace{\operatorname{arch} x}_{y})} = \frac{1}{\sinh(y)} = \frac{1}{\sqrt{\cosh^{2} y - 1}} = \frac{1}{\sqrt{x^{2} - 1}} \quad (\operatorname{ch} y \geqslant 1 \Rightarrow x > 1)$$

$$\operatorname{arth}' x = \left(\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)\right)' = \frac{1}{2} \cdot \frac{1-x}{1+x} \cdot \frac{(1-x)+(1+x)}{(1-x)^2} = \frac{1}{1-x^2} \qquad x \neq \pm 1$$

$$\operatorname{arcth}' x = \left(\frac{1}{2}\ln\left(\frac{x+1}{x-1}\right)\right)' = \frac{1}{2} \cdot \frac{x-1}{1+x} \cdot \frac{(x-1)-(x+1)}{(x-1)^2} = \frac{1}{1-x^2} \qquad x \neq \pm 1$$

4.6.9. Differenciálszámítás középérték-tételei

Definíció 4.40 *Legyen* $x_0 \in \text{Int } D_f$.

f-nek az x_0 helyen **lokális maximuma** van, ha $\exists \varepsilon > 0$, hogy $f(x) \leqslant x_0 \ \forall x \in K_{\varepsilon}(x_0)$ esetén.

Definíció 4.41 *Legyen* $x_0 \in \text{Int } D_f$.

f-nek az x_0 helyen **lokális minimuma** van, ha $\exists \varepsilon > 0$, hogy $f(x) \geqslant x_0 \ \forall x \in K_{\varepsilon}(x_0)$ esetén.

Megjegyzés: $f(x) \equiv c \in \mathbb{R}$ esetén f-nek minden pontjában lokális minimuma és maximuma is van.

Tétel 4.34 Lokális szélsőérték szükséges feltétele Ha f differenciálható x_0 -ban és ott lokális szélsőértéke van, akkor $f'(x_0) = 0$.

Bizonyítás 4.34

Tfh x_0 -ban lokális maximuma van (konretizálva egyszerűbb a bizonyítás – hasonlóan megy ha lokális minimuma van).

$$f'_{-}(x_0) = \lim_{h \to 0-0} \underbrace{\frac{f(x_0 + h) - f(x_0)}{h}}_{\leqslant 0} \geqslant 0 \qquad \text{hiszen ha } |h| < \varepsilon \Rightarrow f(x_0) \geqslant f(x_0 + h)$$

$$f'_{+}(x_0) = \lim_{h \to 0+0} \frac{\overbrace{f(x_0 + h) - f(x_0)}^{\leqslant 0}}{\underbrace{h}_{\geqslant 0}} \leqslant 0$$

Mivel deriválható f az x_0 pontban, ezért:

$$\underbrace{f'_{-}(x_0)}_{\geqslant 0} = \underbrace{f'_{+}(x_0)}_{\leqslant 0} = f'(x_0) = 0$$

Tétel 4.35 *Rolle-tétel*

Ha f folytonos [a,b]-n és differenciálható (a,b)-n és f(a)=f(b), akkor $\exists \xi \in (a,b)$, hogy $f'(\xi)=0$

Bizonyítás 4.35

Weierstrass II. tétele alapján (f korlátos, zárt intervallumon folytonos) felveszi szélsőértékeit.

- 1. ha f az intervallum végpontjaiban veszi fel a maximumát és minimumát is, akkor $f(x) \equiv c$, ekkor $\forall \xi \in (a,b)$ -re $f'(\xi) = 0$.
- 2. ha az egyik szélső érték hely nem a végpont, akkor itt $f'(\xi) = 0$

Tétel 4.36 *Lagrange-tétel*

Ha f folytonos [a,b]-n (a,b] $\in \mathbb{R}$) és f differenciálható (a,b)-n, akkor $\exists \xi \in (a,b)$, hogy $f'(\xi) = \frac{f(b) - f(a)}{b - a} = intervallum végpontjai közti húr meredeksége$

Bizonyítás 4.36

(*)

Húr egyenlete:
$$h(x) = \frac{f(b) - f(a)}{b - a} \cdot (x - a) + f(a)$$

g(x) := f(x) - h(x)-re alkalmazhatjuk a Rolle-tételt:

$$g'(x) = f'(x) - h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a} \xrightarrow{\text{Rolle-t.}}$$

$$\implies \exists \xi \in (a, b) : g'(\xi) = 0 \iff f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Tétel 4.37 Legyen f folytonos [a,b]-n $(a,b \in \mathbb{R})$ és differenciálható (a,b)-n, továbbá f'(x)=0, ha $x \in (a,b)$. Ekkor $\exists c \in \mathbb{R}$, hogy $f(x)=c \ \forall x \in [a,b]$.

Bizonyítás 4.37

Legyen $x_1, x_2 \in (a, b)$, $a < x_1 < x_2 < b$. Lagrange-tételt alkalmazva:

$$\exists \xi \in (x_1, x_2) \text{ hogy } \underbrace{f'(\xi)}_{=0} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = 0 \qquad x_2 - x_1 \neq 0 \quad \Rightarrow \quad f(x_2) - f(x_1) = 0$$

Tehát $f(x_2) = f(x_1) \quad \forall x_2, x_1 \in (a, b).$

Tétel 4.38 *Integrálszámítás alaptétele*

Legyen f és g folytonos [a,b]-n $(a,b) \in \mathbb{R}$) és differenciálható (a,b)-n, továbbá f'(x) = g'(x) $(x \in (a,b))$, ekkor $\exists c \in \mathbb{R}$, hogy $f(x) = g(x) + c \quad \forall x \in [a,b]$.

Bizonyítás 4.38

$$h(x) := f(x) - g(x)$$
, ekkor $h'(x) = f'(x) - g'(x) = 0 \quad \forall x \in (a,b)$, alkalmazva az előző tételt: $h(x) = c \in \mathbb{R} \quad \forall x \in (a,b)$, tehát $f(x) = g(x) + c$.

Példák a fenti tételek alkalmazására

- 1. Alkalmazható-e a Rolle-tétel az $f(x) = e^{-|x|}$ -re az I = [-2, +2]-n?
 - f folytonos [-2, +2]-n \checkmark
 - f(-2) = f(2)
 - de f nem differenciálható (-2,2)-ben, hiszen töréspontja van x=0-ban.
- 2. Alkalmazható-e a Lagrange-tétel az $f(x) = \frac{1}{(x-1)^2}$ -re az I = [-1,0]-n? $(\xi = ?)$
 - f folytonos [-1,0]-n \checkmark
 - f differenciálható (-1,0)-n \checkmark

A húr meredeksége: $\frac{f(0) - f(-1)}{0 - (-1)} = \frac{\frac{1}{1} - \frac{1}{4}}{1} = \frac{3}{4}$. Keressük ξ -t, melyre $f'(\xi) = \frac{3}{4}$:

$$f'(\xi) = ((\xi - 1)^{-2})' = -2 \cdot (\xi - 1)^{-3} = \frac{3}{4}$$

$$(\xi - 1)^{-3} = \frac{-3}{8} \rightarrow \xi = \sqrt[3]{\frac{8}{-3}} + 1 = \frac{2}{-\sqrt[3]{3}} + 1$$

3. Igazoljuk, hogy ha $0 < a < b < \frac{\pi}{2}$, akkor

$$\frac{b-a}{\cos^2 a} < \operatorname{tg} b - \operatorname{tg} a < \frac{b-a}{\cos^2 b}$$

 $f(x)=\operatorname{tg} x$ -re az $I=\left[0,\frac{\pi}{2}\right]$ -n alkalmazhatjuk a Lagrange-tételt, hiszen folytonos I-n és differenciálható I belsejében. Tehát $\exists \xi \in (a,b) \subset \left(0,\frac{\pi}{2}\right)$, hogy:

$$tg'\xi = \frac{1}{\cos^2 \xi} = \frac{tg \, b - tg \, a}{b - a}$$

Mivel $0 < a < b < \frac{\pi}{2}$ és $\xi \in (a, b)$, ezért:

$$\cos a > \cos \xi > \cos b > 0$$

$$\frac{1}{\cos^2 a} > \frac{1}{\cos^2 \xi} > \frac{1}{\cos^2 b}$$

$$\frac{1}{\cos^2 a} > \frac{\operatorname{tg} b - \operatorname{tg} a}{b - a} > \frac{1}{\cos^2 b}$$

$$\frac{b-a}{\cos^2 a} > \operatorname{tg} b - \operatorname{tg} a > \frac{b-a}{\cos^2 b}$$
 \checkmark

Tétel 4.39 L'Hospital szabály $\left(\frac{0}{0}, \frac{\infty}{\infty} \text{ típusú határérték számításához használható} \right)$ Legyen f és g differenciálható $\dot{K}_{\epsilon}(x_0)$, ahol $\epsilon > 0$, illetve $g(x) \neq 0$, $g'(x) \neq 0$, ahol $x \in \dot{K}_{\epsilon}(x_0)$. Továbbá $\exists \lim_{x \to x_0} f(x) = 0$ és $\exists \lim_{x \to x_0} g(x) = 0$. Ekkor ha $\exists \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \beta$, akkor $\exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = \beta$.

Megjegyzés: Bizonyítása nem tananyag. De $x \to x_0$ helyett állhat $x \to x_0 + 0$, $x \to x_0 - 0$, $x \to \infty$ és $x \to -\infty$ is. Hasonlóan β lehet valós és $\pm \infty$ is! Továbbá akkor is igaz a szabály, ha $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \infty$.

A fenti tétel segedelmével az alábbi határozatlan alakok könnyedén meghatározhatóak, de olyan alakra kell őket hozni, hogy a tételt alkalmazni lehessen:

- $\frac{0}{0}$; $\frac{\infty}{\infty}$: közvetlen L'Hospital szabály
- $0 \cdot \infty : f \cdot g = \frac{f}{1/g} \text{ vagy } \underbrace{\frac{g}{1/f}}$ (2. esetben előjel vizsgálat szükséges!)
- $\infty \infty : f g = \frac{1}{1/f} \frac{1}{1/g} = \frac{1/g 1/f}{1/f \cdot 1/g}$
- 0^0 , 1^∞ , ∞^0 : $f^g = e^{g \cdot \ln f}$ és ekkor $g \cdot \ln f$ határértékét kel vizsgálni.

Példák a L'Hospital szabály alkalmazására

1.
$$\lim_{x \to \infty} \underbrace{x^2}_{e^x} \cdot \underbrace{e^{-x}}_{e^x} = \lim_{x \to \infty} \frac{x^2}{e^x} \stackrel{L'H}{=} \lim_{x \to \infty} \frac{2x}{e^x} \stackrel{L'H}{=} \lim_{x \to \infty} \frac{2}{e^x} = 0$$

A fenti feladatnál mindig feltesszük, hogy létezik az adott határérték, ezért alkalmazhatjuk a L'Hospitalt, de amikor a végére jutunk, láthatjuk, hogy valóban létezik, ezért az előzőek is léteztek √.

2.
$$\lim_{x \to 1-0} \underbrace{\ln x}_{\to 0} \cdot \underbrace{\operatorname{tg}\left(\frac{\pi}{2}x\right)}_{\to \infty} = \lim_{x \to 1-0} \frac{\ln x}{\operatorname{ctg}\left(\frac{\pi}{2}x\right)} \stackrel{L'H}{=} \lim_{x \to 1-0} \frac{\frac{1}{x}}{-\frac{1}{\sin^2\left(\frac{\pi}{2}x\right)} \cdot \frac{\pi}{2}} = \lim_{x \to 1-0} -\frac{2\sin^2\left(\frac{\pi}{2}x\right)}{\pi \cdot x} = -\frac{2\sin^2\left(\frac{\pi}{2}x\right)}{\pi \cdot 1} = \frac{-2}{\pi}$$

3.
$$\lim_{x \to 0+0} \left(\underbrace{\frac{1}{x}}_{x \to +\infty} - \underbrace{\frac{1}{e^x - 1}}_{x \to +\infty} \right) = \lim_{x \to 0+0} \frac{e^x - 1 - x}{x \cdot (e^x - 1)} \stackrel{L'H}{=} \lim_{x \to 0+0} \frac{e^x - 1}{x \cdot (e^x) + e^x - 1} \stackrel{L'H}{=}$$

$$\stackrel{L'H}{=} \lim_{x \to 0+0} \frac{e^x}{x \cdot (e^x) + e^x + e^x} = \lim_{x \to 0+0} \frac{e^x}{e^x} \cdot \frac{1}{x+2} = \frac{1}{2}$$

4.
$$\lim_{x\to 0}(\cos 3x)^{\frac{1}{x^2}}=\lim_{x\to 0}\exp\left(\frac{1}{x^2}\cdot\ln(\cos 3x)\right)=\exp\left(\lim_{x\to 0}\frac{\ln(\cos 3x)}{x^2}\right)$$
 Kitevőt vizsgáljuk:

$$\lim_{x \to 0} \frac{\ln(\cos 3x)}{x^2} \stackrel{L'H}{=} \lim_{x \to 0} \frac{\frac{1}{\cos 3x} \cdot -\sin 3x \cdot 3}{2x} = \lim_{x \to 0} \frac{-3 \cdot \lg 3x}{2x} \stackrel{L'H}{=} \lim_{x \to 0} \frac{-9 \cdot \frac{1}{\cos^2 3x}}{2} = \frac{-9}{2}$$

Tehát
$$\lim_{x \to 0} (\cos 3x)^{\frac{1}{x^2}} = e^{\frac{-9}{2}}$$

5. $\lim_{x \to \infty} \frac{\sinh 3x}{e^{3x}} \stackrel{L'H}{=} \lim_{x \to \infty} \frac{3 \cosh 3x}{3e^{3x}} \stackrel{L'H}{=} \lim_{x \to \infty} \frac{\sinh 3x}{e^{3x}}$. Ez nem vezet eredményre.

$$\lim_{x \to \infty} \frac{\sinh 3x}{e^{3x}} = \lim_{x \to \infty} \frac{e^{3x} - e^{-3x}}{2 \cdot e^{3x}} = \lim_{x \to \infty} \left(\frac{1}{2} - \underbrace{\frac{e^{-6x}}{2}}_{\to 0} \right) = \frac{1}{2}$$

A L'Hospital szabállyal eddig explicit be nem látott tételek igazolhatóak: Láttuk, hogy $\sqrt[n]{n} \xrightarrow{n \to \infty} 1$ $n \in \mathbb{N}$. Ezt bármilyen $n := x \in \mathbb{R}$ -re beláthatjuk:

$$\lim_{x \to \infty} \sqrt[x]{x} = \lim_{x \to \infty} x^{\frac{1}{x}} = \lim_{x \to \infty} \exp\left(\frac{1}{x} \cdot \ln x\right) = \exp\left(\lim_{x \to \infty} \frac{1}{x} \cdot \ln x\right)$$

$$\lim_{x \to \infty} \frac{\ln x}{x} \stackrel{L'H}{=} \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = 0$$

Tehát $\lim_{x\to\infty} \sqrt[x]{x} = e^0 = 1$.

Hasonlóan bizonyíthatjuk $\left(1+\frac{1}{x}\right)^x \xrightarrow{x\to\infty} e \quad x\in\mathbb{R}$:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to \infty} \exp \left[x \cdot \ln \left(1 + \frac{1}{x} \right) \right] = \exp \left[\lim_{x \to \infty} x \cdot \ln \left(1 + \frac{1}{x} \right) \right]$$

$$\lim_{x \to \infty} x \cdot \ln\left(1 + \frac{1}{x}\right) = \lim_{x \to \infty} \frac{\ln\left(1 + \frac{1}{x}\right)}{\frac{1}{x}} \stackrel{L'H}{=} \lim_{x \to \infty} \frac{\frac{1}{1 + \frac{1}{x}} \cdot \frac{-1}{x^2}}{-\frac{1}{x^2}} = \lim_{x \to \infty} \frac{1}{1 + \frac{1}{x}} = 1$$

Tehát
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e^1 = e$$
.

4.6.10. Nyílt intervallumon differenciálható függvények tulajdonságai

Legyen I = (a, b) $a, b \in \mathbb{R} \cup \{\pm \infty\}.$

Definíció 4.42 f monoton nő I-n, ha $\forall x_1, x_2 \in I$ esetén, ha $x_1 < x_2$, akkor $f(x_1) \leqslant f(x_2)$.

Definíció 4.43 f szigorúan monoton nő I-n, ha $\forall x_1, x_2 \in I$ esetén, ha $x_1 < x_2$, akkor $f(x_1) < f(x_2)$.

Definíció 4.44 f monoton csökken I-n, ha $\forall x_1, x_2 \in I$ esetén, ha $x_1 < x_2$, akkor $f(x_1) \geqslant f(x_2)$.

Definíció 4.45 f szigorúan monoton csökken I-n, ha $\forall x_1, x_2 \in I$ esetén, ha $x_1 < x_2$, akkor $f(x_1) > f(x_2)$.

Definíció 4.46 f alulról konvex I-n, ha $\forall x_1, x_2 \in I$, $x_1 < x_2$ esetén x_1, x_2 pontokban állított húr a függvény grafikonja fölött halad. Azaz: $h(x) \ge f(x)$ $x \in [x_1, x_2]$.

Definíció 4.47 f alulról konkáv I-n, ha $\forall x_1, x_2 \in I$, $x_1 < x_2$ esetén x_1, x_2 pontokban állított húr a függvény grafikonja alatt halad. Azaz: $h(x) \leq f(x)$ $x \in [x_1, x_2]$.

Definíció 4.48 f-nek x_0 -ban **inflexiós pontja** van, ha f folytonos x_0 -ban és x_0 -ban konvex és kon-káv szakaszok találkoznak.

Tétel 4.40 *Ha f differenciálható I-n, akkor:*

$$\begin{array}{llll} 1. & f \ mon. \ n\Ho & \Leftrightarrow & f'(x) \geqslant 0 \\ 2. & f \ szig. \ mon. \ n\Ho & \Leftarrow & f'(x) > 0 \\ 3. & f \ mon. \ cs\"okken & \Leftrightarrow & f'(x) \leqslant 0 \\ 4. & f \ szig. \ mon. \ cs\"okken & \Leftarrow & f'(x) < 0 \end{array} \right\} \forall x \in I$$

Bizonyítás 4.40

$$1. \Rightarrow f'(x) = f'_{+}(x) = \lim_{h \to 0+0} \frac{\overbrace{f(x+h) - f(x)}^{\geqslant 0}}{\underbrace{h}_{>0}} \geqslant 0 \quad \checkmark$$

 \Leftarrow Lagrange-tétel alapján $\exists \xi \in (x_1, x_2) \quad a < x_1 < x_2 < b$, hogy

$$f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$
 ez a feltétel szerint $\geq 0 \implies f(x_2) - f(x_1) \geq 0$ \checkmark

2. \Leftarrow Szintén Lagrange-tétel [x_1 , x_2] ⊂ I-re

$$f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0 \quad \Rightarrow f(x_2) - f(x_1) > 0 \quad \checkmark$$

Megjegyzés: A 2-es és 4-es állítás megfordítása **nem** igaz. Például: $f(x) = x^3$ szig. mon. nő \mathbb{R} -en, de $f'(x) = 3x^2$ -nek van zérushelye: f'(0) = 0.

Tétel 4.41 Legyen f differenciálható I-n.

1.
$$f$$
 konvex I - n \Leftrightarrow f' monoton nő I - n
2. f konkáv I - n \Leftrightarrow f' monoton csökken I - n

Tétel 4.42 *Legyen f kétszer differenciálható I-n.*

1.
$$f \text{ konvex } I\text{-}n \Leftrightarrow f''(x) \geqslant 0$$

2. $f \text{ konk\'av } I\text{-}n \Leftrightarrow f''(x) \leqslant 0$ $\forall x \in I$

Bizonyítás 4.42

Előző két tétel alapján.

Példák

 $f(x)=rac{x^3}{3}-rac{7}{2}x^2+6x$. $D_f=\mathbb{R}$, végtelenszer differenciálható. Melyek azok a legbővebb intervallumok, ahol f monoton nő/csökken, konvex/konkáv? $f'(x)=x^2-7x+6=(x-6)(x-1)$. Parabola, ami 1< x<6 esetén negatív, egyébként pozitív. Táblázatba foglalva:

\boldsymbol{x}	$(-\infty,1)$	1	(1,6)	6	(6,∞)
f'	+	0	_	0	+
f		lok. max.		lok. min.	7

$$f''(x) = 2x - 7$$
. Tehát:

χ	$\left(-\infty,\frac{7}{2}\right)$	$\frac{7}{2}$	$(\frac{7}{2},\infty)$
f''	_	0	+
f	\cap	infl. pont	U

Ábrázolva f(x)-et (analízis után)

Másik példa: $f(x) = e^{2x} - (4x + 1)$. Monotonitás? Konvexitás? $f'(x) = 2 \cdot e^{2x} - 4$. $f'(x) = 0 \Leftrightarrow x = \ln \sqrt{2}$ $f''(x) = 4 \cdot e^{2x} > 0.$

\boldsymbol{x}	$(-\infty, \ln\sqrt{2})$	$ln \sqrt{2}$	$(\ln\sqrt{2},\infty)$
f'	_	0	+
f	>	lok. min	7

\boldsymbol{x}	\mathbb{R}
f''	+
f	U

Az ábrán g(x) = -4x - 1 az f(x) függvény egy lineáris asszimptotája ($-\infty$ -ben ehhez tart).

Differenciálható függvények lokális tulajdonságai 4.6.11.

Definíció 4.49 f az x_0 -ban $\left\{ \begin{array}{l} \textbf{lokálisan növekedő} \\ \textbf{lokálisan csökkenő} \end{array} \right\}$, ha $\exists \varepsilon > 0$, hogy $\left\{ \begin{array}{l} f(x) \leqslant f(x_0) \\ f(x) \geqslant f(x_0) \end{array} \right\}$, ha $x \in (x_0 - \varepsilon, x_0]$ és $\left\{ \begin{array}{l} f(x) \geqslant f(x_0) \\ f(x) \leqslant f(x_0) \end{array} \right\}$, ha $x \in [x_0, x_0 + \varepsilon)$

Tétel 4.43 Legyen f az x_0 -ban deriválható. Ekkor

1. Ha f lokálisan nő
$$x_0$$
-ban \Rightarrow $f'(x_0) \ge 0$

2.
$$Ha f'(x_0) > 0$$
 \Rightarrow $f lokálisan nő x_0 -ban$

1'. Ha f lokálisan csökken
$$x_0$$
-ban \Rightarrow $f'(x_0) \leq 0$

1. Ha f lokálisan nő
$$x_0$$
-ban \Rightarrow $f'(x_0) \geqslant 0$
2. Ha $f'(x_0) > 0$ \Rightarrow f lokálisan nő x_0 -ban \Rightarrow $f'(x_0) \leqslant 0$
2'. Ha $f'(x_0) < 0$ \Rightarrow f lokálisan csökken x_0 -ban \Rightarrow f lokálisan csökken x_0 -ban

Bizonvítás 4.43

1.

$$\exists f'(x_0) = f'_+(x_0) = \lim_{h \to 0+0} \frac{\overbrace{f(x_0 + h) - f(x_0)}^{\geqslant 0 \quad (h \in (0, \varepsilon))}}{\underbrace{h}_{\geqslant 0}} \geqslant 0$$

2.
$$f'(x_0) = \lim_{h \to 0+0} \frac{f(x_0 + h) - f(x_0)}{h} = A > 0$$
, tehát $\exists \varepsilon_1 > 0$, hogy ha $h \in (0, \varepsilon_1)$ akkor:

$$\frac{f(x_0+h)-f(x_0)}{h} > \frac{A}{2} > 0 \qquad \text{mivel } h > 0, \text{ ezért}$$

$$f(x_0 + h) - f(x_0) > 0 \implies f(x_0 + h) > f(x_0)$$

Hasonlóan: $f'(x_0)=\lim_{h\to 0-0}\frac{f(x_0+h)-f(x_0)}{h}=A>0$, tehát $\exists \varepsilon_2>0$, hogy ha $h\in$ $(-\varepsilon_2,0)$ akkor:

$$\frac{f(x_0+h)-f(x_0)}{h} > \frac{A}{2} > 0 \quad \text{mivel } h < 0, \text{ ezért}$$

$$f(x_0 + h) - f(x_0) < 0 \implies f(x_0 + h) < f(x_0)$$

Tehát $\exists \varepsilon = \min\{\varepsilon_1, \varepsilon_2\} > 0$, hogy $f(x_0) < f(x_0 + h)$, és $f(x_0 - h) < f(x_0)$, ha $h \in (0, \varepsilon)$ tehát f lokálisan nő x_0 -ban.

Megjegyzés: A vesszős állítások hasonlóan bizonyíthatóak.

Tétel 4.44 Legyen f differenciálható x_0 egy környezetében.

1 Ha f-nek x_0 -ban lokális minimuma van \Rightarrow $f'(x_0) = 0$ (lokális szélsőérték szük. felt.).

2/a Ha $f'(x_0) = 0$ és f'(x) negatívból pozitívba vált \Rightarrow f-nek x_0 -ban lokális minimuma van.

2/b
$$f'(x) < 0$$
, ha $x \in (x_0 - \varepsilon, x_0)$ $\Longrightarrow f'(x)$ lokálisan növekedő x_0 -ban.

Tehát ha f deriválható x_0 környékén és $\exists f''(x_0) \Rightarrow$

ha
$$f'(x_0) = 0$$
 és $f''(x_0) > 0$ \Rightarrow f -nek lokális minimuma van x_0 -ban ha $f'(x_0) = 0$ és $f''(x_0) < 0$ \Rightarrow f -nek lokális maximuma van x_0 -ban

Bizonyítás 4.44

- 1 Lásd 4.34 tétel (62. oldal).
- **2/a** Tehát $\exists \varepsilon$, hogy f szig. mon. csökkenő, ha $x \in (x_0 \varepsilon, x_0)$ és f szig. mon. nő, ha $x \in (x_0, x_0 + \varepsilon)$, illetve x_0 -ban lokális szélsőértéke van, tehát x_0 -ban lokális minimuma van.
- **2/b** A 4.43. tétel alapján ha $f''(x_0) > 0$, akkor f' lokálisan nő x_0 -ban. Mivel $f'(x_0) = 0$, ezért a lokálisan növekedés miatt f' az x_0 pontban előjelet vált (negatívból pozitívba), ezért itt lokális minimuma van. Ugyanígy bizonyítható a másik fele.

Tétel 4.45 *Elégséges feltétel inflexiós pont létezésére*

- 1. Ha f kétszer differenciálható x_0 egy környezetében és $f''(x_0) = 0$, és f''(x) előjelet vált x_0 -ban vagy f''(x) lokálisan nő v. csökken x_0 -ban $\Rightarrow f$ -nek x_0 -ban inflexiós pontja van.
- 2. Ha f kétszer differenciálható x_0 egy környezetében és $f''(x_0) = 0$ és $\exists f'''(x_0) \neq 0$, akkor f-nek x_0 -ban inflexiós pontja van.

4.6.12. Implicit deriválás

Explicit kapcsolat: y(x) = ...Implicit kapcsolat: f(x,y) = 0

Cél: Implicit kapcsolat segítségével adjuk meg az $y'(x_0)$ deriváltat egy adott x_0 pontban.

Példák

1. p'elda: y(x) folytonos, kétszer deriválható és kielégíti a következő implicit egyenletet:

$$y + x \cdot \ln y + 2x^2 - x + \ln(1+x) = 1$$

Az $(x_0, y_0) = (0, 1)$ pontban milyen lokális tulajdonságok vannak az y(x) függvény grafikonjában? $(y'(x_0) =?, y''(x_0) =?)$

 $(x_0, y_0) = (0, 1)$ valóban kielégíti a fenti egyenletet. y is valamilyen függvény, hiszen függ x-től:

$$y(x) + x \cdot \ln y(x) + 2x^{2} - x + \ln(1+x) = 1 \qquad /\frac{d}{dx}$$

$$y'(x) + \ln y(x) + x \cdot \frac{1}{y(x)} \cdot y'(x) + 4x - 1 + \frac{1}{1+x} = 0$$

$$y'(x) = \frac{1 - 4x - \frac{1}{1+x} - \ln y(x)}{1 + x \cdot \frac{1}{y(x)}}$$

$$y'(x) = \left(\frac{y(x)}{y(x) + x}\right) \cdot \left(1 - 4x - \frac{1}{1 + x} - \ln y(x)\right)$$

Nézzük meg, hogy akkor mi lehet az (0,1) pontban (x = 0, y(x) = 1):

$$y'(0) = \left(\frac{1}{1+0}\right) \cdot \left(1 - 0 - \frac{1}{1+0} - \ln y(1)\right) = 0$$

Tehát itt lehet lokális szélső érték, határozzuk meg a 2. deriváltat:

2. p'elda: $x \cdot \sinh x - y \cdot \cosh y = 0$. y(x) kétszer folytonosan deriválható. Milyen lokális tulajdonságai vannak y-nak $x_0 = 0$ -ban? Először is ekkor mennyi az y_0 ?

$$0 \cdot \operatorname{sh} 0 - y_0 \cdot \operatorname{ch} y_0 = 0 \quad \Rightarrow \quad y_0 \cdot \operatorname{ch} y_0 = 0$$

Mivel ch $y_0 \ge 1$, ezért $y_0 = 0$. Lederiváljuk:

$$\operatorname{sh} x + x \cdot \operatorname{ch} x - y' \cdot \operatorname{ch} y - y \cdot \operatorname{sh} y \cdot y' = 0$$

x = 0, y = 0, tehát:

$$sh 0 + 0 \cdot ch 0 - y' \cdot ch 0 - 0 \cdot sh 0 \cdot y' = 0 \quad \Rightarrow \quad y'(0) = 0$$

Tehát (0,0)-ban lehet szélsőérték, nézzük meg a második deriváltat:

$$\operatorname{ch} x + \operatorname{ch} x + x \cdot \operatorname{sh} x - y'' \cdot \operatorname{ch} y - y' \cdot \operatorname{sh} y \cdot y' - y' \cdot \operatorname{sh} y \cdot y' - y \cdot \operatorname{ch} y \cdot y'^2 - y \cdot \operatorname{sh} y \cdot y'' = 0$$
Beírva az ismert adatokat: $x = 0, y = 0, y' = 0$:

$$2 \cdot \operatorname{ch} 0 + 0 \cdot \operatorname{sh} 0 - y'' \cdot \operatorname{ch} 0 - 2 \cdot 0^2 \cdot \operatorname{sh} 0 - 0 \cdot \operatorname{ch} 0 \cdot 0^2 - 0 \cdot \operatorname{sh} 0 \cdot y'' = 0$$

 $2 = y''(0) > 2 \quad \Rightarrow \quad \operatorname{lokális\ minimuma\ van\ } (0,0)\text{-ban}$

4.7. Teljes függvény vizsgálat

4.7.1. Teendők

- 1. D_f , zérushelyek, periocitás, paritás, szakadási helyek, határértékek ($\pm \infty$, szakadási helyeken, D_f végpontjaiban)
- 2. f'(x): monotonitás, lokális szélsőértékek
- 3. f''(x): konvexitás, inflexiós pontok
- 4. (Lineáris asszimptoták vizsgálatat nem tanultuk!)
- 5. R_f , grafikon felrajzolása

71

4.7.2. Konkrét példákon való függvény vizsgálat

$$f(x) = x^2 \cdot \ln x$$

 $D_f = (0; \infty)$. Nem periodikus, nem páros/páratlan. Folytonos D_f -en, tehát nincs szakadási hely. Zérushely:

$$x^2 \cdot \ln x = 0 \quad \Leftrightarrow \quad x = 1$$

Határértékek:

$$\lim_{x \to 0} \left(x^2 \cdot \ln(x) \right) = \lim_{x \to 0} \frac{\ln(x)}{x^{-2}} \stackrel{L'H}{=} \lim_{x \to 0} \frac{\frac{1}{x}}{-2x^{-3}} = \lim_{x \to 0} \frac{x^2}{-2} = \infty$$

$$\lim_{x \to \infty} \left(x^2 \cdot \ln(x) \right) = \infty$$

Deriváltakat felírjuk, majd keressük a zérushelyeket:

$$f'(x) = (x^2 \cdot \ln x)' = 2x \cdot \ln x + x = x(2\ln x + 1) = 0$$

Mivel $x \in (0, \infty)$, ezért $f'(x) = 0 \Leftrightarrow 2 \ln x + 1 = 0 \Rightarrow x = e^{-\frac{1}{2}}$.

$$f''(x) = (2x \cdot \ln x + x)' = 2 \cdot \ln x + 2 + 1 = 0 \quad \Leftrightarrow \quad x = e^{-\frac{3}{2}}$$

Táblázatba foglalva:

\boldsymbol{x}	$(0,e^{-\frac{1}{2}})$	$e^{-\frac{1}{2}}$	$\left(e^{-\frac{1}{2}},\infty\right)$
f'	_	0	+
f	\	lok. min	7

\boldsymbol{x}	$(0,e^{-\frac{3}{2}})$	$e^{-\frac{3}{2}}$	$(e^{-\frac{3}{2}},\infty)$
f''	_	0	+
f	\supset	infl. pont	U

Felrajzolva (az analízis és a rajz után R_f könnyen meghatározható: $R_f = \left[\frac{-1}{2e}, \infty\right)$):

$$g(x) = \sqrt[3]{(x^2 - 1)^2} \qquad D_f = \mathbb{R}$$

A függvény nem periodikus, de páros, hiszen f(-x)=f(x). Folytonos $\mathbb R$ -en. Zérushelyek:

$$f(x) = 0 \Leftrightarrow (x^2 - 1)^2 = 0 \Leftrightarrow x = \pm 1$$

Határértékek:

$$\lim_{x \to +\infty} \sqrt[3]{(x^2 - 1)^2} = \infty$$

Derivált függvény:

$$f'(x) = \frac{2}{3} \cdot (x^2 - 1)^{\frac{-1}{3}} \cdot 2x = \frac{4x}{3\sqrt[3]{x^2 - 1}} \quad \text{ha } x \neq \pm 1$$
$$f'(x) = 0 \quad \Leftrightarrow \quad x = 0$$

Derivált függvény $x = \pm 1$ -ben nem értelmezett, de definíció alapján megnézhetjük, hogy van-e differenciálhányados vagy nincs:

$$\lim_{h \to 0+0} \frac{f(\pm 1 + h) - f(\pm 1)}{h} = \lim_{h \to 0+0} \frac{\sqrt[3]{((\pm 1 + h)^2 - 1)^2} - 0}{h} = \lim_{h \to 0+0} \frac{\sqrt[3]{(h^2 \pm 2h)^2} - 0}{h} = \lim_{h \to 0+0} \sqrt[3]{\frac{h^4 + 4h^2 \pm 4h^3}{h^3}} = \lim_{h \to 0+0} \sqrt[3]{h + \frac{4}{h} \pm 4} = \infty$$

Tehát $\sharp f'(1)$ és $\sharp f'(-1)$. Táblázat felrajzolásához segítségül hívunk egy számegyenest, hogy a törtben melyik tag, milyen előjelű:

Második derivált:

$$f''(x) = \left(\frac{4x}{3\sqrt[3]{x^2 - 1}}\right)' = \frac{12\sqrt[3]{x^2 - 1} - 8x^2 \cdot (x^2 - 1)^{\frac{-2}{3}}}{9(\sqrt[3]{x^2 - 1})^2} = \frac{12(x^2 - 1)^{\frac{1}{3}} - 8x^2 \cdot (x^2 - 1)^{\frac{-2}{3}}}{9(x^2 - 1)^{\frac{2}{3}}} = \frac{12 - 8x^2 \cdot (x^2 - 1)^{\frac{-3}{3}}}{9(x^2 - 1)^{\frac{1}{3}}} = 0 \quad \Leftrightarrow \quad 12 - 8x^2 \cdot (x^2 - 1)^{\frac{-3}{3}} = 0$$

$$12 - \frac{8x^2}{x^2 - 1} = 0$$

$$12x^2 - 12 = 8x^2 \quad \Leftrightarrow \quad 4x^2 = 12$$

$$x = \pm\sqrt{3}$$

$$x \quad ||(-\infty, -\sqrt{3})|| -\sqrt{3}||(-\sqrt{3}, -1)|| -1||(-1, 1)||1||(1, \sqrt{3})||\sqrt{3}||(\sqrt{3}, \infty)|$$

$$f'' \quad + \quad 0 \quad - \quad ||f||| - \quad ||f|||$$

$$R_f=[0,\infty).$$

4.7.3. Folytonos függvények szélsőértékei zárt intervallumon (abszolút szélsőértékhely)

Zárt intervallumon folytonos függvénynek van minimuma és maximuma (lásd Weierstrass II. tétele (jegyzetben a 4.15. tétel a 47. oldalon). Vizsgálandó pontok:

- Derivált zérushelyei
- Ahol a függvény nem deriválható
- intervallum végpontjai.

Példa

$$f(x) = \sqrt[3]{2x - 8} - \frac{2}{3}x + 3. \ I = \left[0; \frac{9}{2}\right].$$
 Intervallum végpontjaiban: $f(0) = -2 + 3 = 1. \ f\left(\frac{9}{2}\right) = 1 - 3 + 3 = 1.$ Derivált: $f'(x) = \frac{2}{3} \cdot (2x - 8)^{\frac{-2}{3}} - \frac{2}{3}. \ \# f'(x)$, ha $x = 4. \ f(4) = \frac{1}{3}.$ $f'(x) = 0$, ha:
$$\frac{2}{3} \cdot (2x - 8)^{\frac{-2}{3}} - \frac{2}{3} = 0$$

$$\sqrt[3]{\frac{1}{(2x - 8)^2}} = 1$$

$$2x - 8 = \pm 1 \qquad \Leftrightarrow \qquad x_1 = \frac{7}{2}; \ x_2 = \frac{9}{2}$$

$$f\left(\frac{7}{2}\right) = -\frac{1}{3}.$$

Tehát a függvény abszolút minimuma *I*-n: Inf $\left\{1, -\frac{1}{3}, \frac{1}{3}\right\} = -\frac{1}{3}$, amit akkor vesz fel, ha $x = \frac{7}{2}$. Abszolút maximuma: Sup $\left\{1, -\frac{1}{3}, \frac{1}{3}\right\} = 1$, amit akkor vesz fel ha x = 0 vagy ha $x = \frac{9}{2}$.

5. fejezet

Polár koordináták

Egy adott P pont megadása a két koordinátával: (r, φ) , ahol r az origótól mért távolság (OP szakasz hossza), φ pedig az x tengely és az OP szakasz irányított szögtávolsága. Tehát: $(r, \varphi) \in [0, \infty) \times [0, 2\pi)$. Ezzel a koordinátázással az origó kivételével a sík összes pontját egy-egy értelműen megfeleltethetjük, az origónál r = 0, de φ tetszőleges.

5.1. Ortogonális koordinátarendszer

Amennyiben φ -t állandónak vesszük r pedig befutja a $[0,\infty)$ intervallumot, akkor egy az origón átmenő félegyenest kapunk. Ha pedig φ futja be a $[0,2\pi)$ intervallumot, r pedig állandó, akkor egy r sugarú origó középpontú kört kapunk.

Amennyiben egy a derékszögű koordinátarendszerben megadott (x,y) pontot, szeretnénk polár koordinátákkal felírni, akkor:

$$r = \sqrt{x^2 + y^2}$$
 $\operatorname{tg} \varphi = \frac{y}{x}$ $\operatorname{ctg} \varphi = \frac{x}{y}$

Visszafele pedig:

$$\left. \begin{array}{rcl}
x & = & r \cdot \cos \varphi \\
y & = & r \cdot \sin \varphi
\end{array} \right\}$$

5.2. Görbék paraméteres megadása

Eddig a következő megadást használtuk: y(x) = f(x), ahol a görbe a függvény grafikonja. Ennek feltétele, hogy $\forall x_0$ -hoz legfeljebb egy $y = f(x_0)$ érték tartozzon. Ehelyett a paraméteres megadást használjuk:

$$\left. \begin{array}{rcl}
x & = & \xi(t) \\
y & = & \eta(t)
\end{array} \right\} \qquad \left. \begin{array}{rcl}
t \in [t_1, t_2] \subset \mathbb{R} \\
\xi[t_1, t_2] \to \mathbb{R} \\
\eta[t_1, t_2] \to \mathbb{R}
\end{array} \right.$$

Tehát a görbe:

$$\left\{ \left(\xi(t), \eta(t) \right) \mid t \in [t_1, t_2] \right\} \subset \mathbb{R}^2$$

5.2.1. Kör

$$t \in [0, 2\pi)$$

$$x(t) = \xi(t) = R \cdot \cos t$$

$$y(t) = \eta(t) = R \cdot \sin t$$

Ahol R a kör sugara.

5.2.2. Ellipszis

$$t \in [0, 2\pi)$$

$$x(t) = \xi(t) = a \cdot \cos t$$

$$y(t) = \eta(t) = b \cdot \sin t$$

Ahol *a* és *b* rendre a nagy- és kistengely hosszának a fele.

5.2.3. Archimédeszi spirál

$$x(t) = \xi(t) = \frac{A}{2\pi} \cdot t \cdot \cos t$$

$$y(t) = \eta(t) = \frac{A}{2\pi} \cdot t \cdot \sin t$$

Az ábrán látható spirálhoz $t \in [0, 5\pi]$ paramétert használtunk.

5.3. Görbék invertálhatósága, differenciálása

$$t \in [t_1, t_2] \subset \mathbb{R}$$
 Legyen $t_0 \in I$

Tétel 5.1 Ha $I' \subset I$ -n a $\xi(t)$ invertálható, akkor $\xi(I') \subset \mathbb{R}$ en felírható a görbe y(x) alakban.

Bizonyítás 5.1

$$y(x) = \eta\left(\underbrace{\xi^{-1}(x)}_{t \in I'}\right) \qquad x \in \xi(I')$$

Következmény: Az invertálás elégséges feltétele

- ∃\$\delta\$ és nem vált előjelet \$t_0\$ egy környezetében.
 \$\delta\$ folytonos \$t_0\$-ban és \$\delta\$(\$t_0\$) ≠ 0

Ahol
$$\dot{\xi} = \frac{d\xi}{dt}$$

Ilyenkor (ha az intervallumon invertálható a függvény) tudjuk vizsgálni az y egy x_0 -ban vett deriváltját, de előtte nézzük meg mégegyszer az y értékét x_0 -ban:

$$y(x_0) = \eta(\xi^{-1}(x_0)) = \eta(t_0)$$
 $(x_0 = \xi(t_0))$

Elsőrendű derivált (ha $\exists \dot{\eta}(t_0)$ és $\exists \dot{\xi}(t_0)$, illetve $\dot{\xi}(t_0) \neq 0$):

$$\frac{dy(x_0)}{dx_0} = y'(x_0) = \dot{\eta}(\xi^{-1}(x_0)) \cdot \frac{1}{\dot{\xi}(\xi^{-1}(x_0))} = \boxed{\frac{\dot{\eta}(t_0)}{\dot{\xi}(t_0)}}$$

Másodrendű derivált:

$$\frac{d^{2}y(x_{0})}{dx_{0}^{2}} = y''(x_{0}) = \left(\frac{\dot{\eta}(\xi^{-1}(x_{0}))}{\dot{\xi}(\xi^{-1}(x_{0}))}\right)' = \frac{\left(\dot{\eta}(\xi^{-1}(x_{0}))\right)'\dot{\xi}(\xi^{-1}(x_{0}))}{\dot{\xi}^{2}(\xi^{-1}(x_{0}))} - \frac{\dot{\eta}(\xi^{-1}(x_{0}))\left(\dot{\xi}(\xi^{-1}(x_{0}))\right)'}{\dot{\xi}^{2}(\xi^{-1}(x_{0}))} = \frac{\ddot{\eta}(\xi^{-1}(x_{0}))\dot{\xi}(\xi^{-1}(x_{0}))}{\dot{\xi}^{2}(\xi^{-1}(x_{0}))} \cdot \frac{1}{\dot{\xi}(\xi^{-1}(x_{0}))} - \frac{\dot{\eta}(\xi^{-1}(x_{0}))\ddot{\xi}(\xi^{-1}(x_{0}))}{\dot{\xi}^{2}(\xi^{-1}(x_{0}))} \cdot \frac{1}{\dot{\xi}(\xi^{-1}(x_{0}))} = \frac{\ddot{\eta}\cdot\dot{\xi}-\dot{\eta}\cdot\ddot{\xi}}{\dot{\xi}^{3}}\left(t_{0}\right)$$

6. fejezet

Integrálszámítás

6.1. Határozatlan integrál

6.1.1. Primitív függvény

Definíció 6.1 F az f függvény **prmitív függvénye** az $I \subset \mathbb{R}$ intervallumon, ha $\forall x \in I$ esetén $\exists F'(x) = f(x)$.

Például:

$$F(x)=\cos(2x) \Rightarrow F'(x)=-2\sin(2x).$$
 $G(x)=2\cos^2 x \Rightarrow G'(x)=-4\cos x\sin x=-2\sin(2x).$ Tehát $f(x)=-2\sin(2x)$ -nek F és G is primitív függvénye.

Tétel 6.1 *Ha F és G az f primitív függvénye I-n, akkor* $\exists c \in \mathbb{R}$ *, hogy F*(x) = G(x) + c*,* $\forall x \in I$ -re.

Bizonyítás 6.1

$$F'(x) = G'(x) = f(x)$$
 Int. $\underset{\rightarrow}{\text{szám}}$. $F(x) - G(x) = c$

Megjegyzés: Csak intervallumon!

Definíció 6.2 Az f függvény határozatlan integrálja az $I \subset \mathbb{R}$ intervallumon az f primitív függvényeinek összessége:

$$\int f(x) dx = \left\{ F(x) \mid F'(x) = f(x) \quad \forall x \in I \right\}$$

Példa

$$f(x) = \frac{1}{x}$$
 $D_f = \mathbb{R} \setminus \{0\}.$

$$\int \frac{1}{x} dx = \begin{cases} \ln x + c_1, & \text{ha } x > 0 \\ \ln(-x) + c_2, & \text{ha } x < 0 \end{cases} = \ln|x| + c$$

6.1.2. Határozatlan integrál tulajdonságai

$$\int \left(f(x) + g(x) \right) dx = \int f(x) dx + \int g(x) dx$$

$$\int c \cdot f(x) dx = c \cdot \int f(x) dx \qquad c \in \mathbb{R}$$

$$\int \left(f(\varphi(x)) \cdot \varphi'(x) \right) dx = F(\varphi(x)) + c \qquad F'(t) = f(t)$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \qquad n \neq -1$$

$$\int \frac{1}{x} dx = \ln|x| + c$$

$$\int \varphi^{\alpha}(x) \cdot \varphi'(x) dx = \frac{\varphi^{\alpha+1}(x)}{\alpha+1} + c \qquad \alpha \neq -1$$

$$\int \frac{\varphi'(x)}{\varphi(x)} dx = \ln|\varphi(x)| + c$$

$$\int e^{\varphi(x)} \cdot \varphi'(x) dx = e^{\varphi(x)} + c$$

$$\int f(ax+b) dx = \frac{F(ax+b)}{a} + c \qquad a \neq 0$$

A fentiek a már ismeretes deriválás szabályaival levezethetőek.

Példák

$$\int \sin(3x) dx = \frac{-\cos(3x)}{3} + c$$

$$\int \frac{6 \cdot e^3 x - 2e^{-x}}{e^{2x}} dx = 6 \int e^x dx - 2 \int e^{-3x} dx = 6e^x + \frac{2}{3}e^{-3x} + c$$

$$\int x^3 dx = \frac{x^4}{4} + c$$

$$\int \left(\sinh x \cdot (3 + 4 \cosh x)^3 \right) dx = \frac{(3 + 4 \cosh x)^4}{16} + c$$

$$\int \operatorname{tg} x dx = \int \frac{\sin x}{\cos x} dx = -\ln|\cos x| + c$$

$$\int \operatorname{tg}^2 x dx = \int \frac{\sin^2 x}{\cos^2 x} dx = \int \frac{1 - \cos^2 x}{\cos^2 x} dx = \int \frac{1}{\cos^2 x} dx - \int dx = \operatorname{tg} x - x + c$$

$$\int \frac{\operatorname{tg}^2 x}{\cos^2 x} dx = \int \operatorname{tg}^2 x \cdot \frac{1}{\cos^2 x} dx = \frac{\operatorname{tg}^3 x}{3} + c$$

$$\int \left(\sin x \cdot \cos^3 x \right) dx = -\frac{\cos^4 x}{4} + c$$

$$\int \left(x^2 \operatorname{sh}(3x^3 - 5) \right) dx = \frac{1}{9} \operatorname{ch}(3x^3 - 5) + c$$

$$\int \frac{3}{2 + 5x} dx = \frac{3}{5} \ln|2 + 5x| + c$$

$$\int \frac{3}{(2 + 5x)^2} dx = \frac{3}{5} \cdot \frac{-1}{2 + 5x} + c$$

$$\int \frac{3}{2+5x^2} dx = \int \frac{3}{2} \cdot \frac{1}{1+\frac{5}{2}x^2} dx = \frac{3}{2} \cdot \int \frac{1}{1+\left(\sqrt{\frac{5}{2}}x\right)^2} dx = \frac{3}{2} \cdot \sqrt{\frac{2}{5}} \cdot \operatorname{arctg}\left(\sqrt{\frac{5}{2}}x\right) + c$$

$$\int \frac{1}{\sqrt{1-4x^2}} dx = \int \frac{1}{\sqrt{1-(2x)^2}} dx = \frac{\arcsin(2x)}{2} + c$$

$$\int \frac{1}{\sqrt{1+(4x)^2}} dx = \frac{1}{4} \operatorname{arsh}(4x) + c$$

$$\int \frac{1}{\sqrt{2-8x^2}} dx = \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{1-(2x)^2}} dx = \frac{1}{2\sqrt{2}} \operatorname{arcsin}(2x) + c$$

$$\int \frac{x}{\sqrt{3+5x^2}} dx = \frac{2(3+5x^2)^{\frac{1}{2}}}{10} + c$$

$$\int \frac{1}{\sqrt{3-2x-x^2}} dx = \int \frac{1}{\sqrt{4-(x+1)^2}} dx = \int \frac{1}{2\sqrt{1-\left(\frac{x+1}{2}\right)^2}} dx = \arcsin\left(\frac{x+1}{2}\right) + c$$

6.1.3. Integrálási módszerek

1. $\sin(ax)\cos(bx)$; $\sin(ax)\sin(bx)$; $\cos(ax)\cos(bx)$

A jól ismert addíciós tételek segítségével:

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$

$$cos(\alpha \pm \beta) = cos(\alpha) cos(\beta) \mp sin(\alpha) sin(\beta)$$

Felírhatjuk a következőket:

$$\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin(\alpha)\cos(\beta)$$

$$\cos(\alpha + \beta) + \cos(\alpha - \beta) = 2\cos(\alpha)\cos(\beta)$$

$$\cos(\alpha + \beta) - \cos(\alpha - \beta) = -2\sin(\alpha)\sin(\beta)$$

Ezek alapján könnyű a fenti típusú integrálokat kiszámolni, hiszen összegre/különbségre alakíthatjuk őket, és ezeket tagonként integrálhatjuk, pl:

$$\int \sin(2x)\sin(3x) \, dx = -\frac{1}{2} \int \left(\cos(3x + 2x) - \cos(3x - 2x)\right) dx =$$

$$= -\frac{1}{2} \left(\frac{\sin(5x)}{5} - \sin x\right) + c = -\frac{\sin(5x)}{10} + \frac{\sin x}{2} + c$$

$$\int \cos(3x)\cos(5x) \, dx = \frac{1}{2} \int \left(\cos(5x + 3x) + \cos(5x - 3x)\right) dx = \frac{\sin(8x)}{16} + \frac{\sin(2x)}{4} + c$$

- $2. \overline{\sin^n x \cdot \cos^m x}$
 - a) $sin^n x$ vagy $cos^m x$ és n, m páratlan

$$\sin^{2k+1} x = \sin x \cdot (\sin^2 x)^k = \sin x \cdot (1 - \cos^2 x)^k = \sum_l a_l \cdot \underbrace{\sin x \cdot \cos^l x}_{\varphi' \cdot \varphi^l}$$

Hasonlóan \cos^{2k+1} is felírható. Példa:

$$\int \cos^5 x \, dx = \int \cos x (1 - \sin^2 x)^2 \, dx = \int \cos x \, dx + \int \cos x \sin^4 x \, dx -$$

$$-2 \int \cos x \sin^2 x \, dx = \sin x + \frac{\sin^5 x}{5} - 2 \cdot \frac{\sin^3}{3} + c$$

b) $sin^n x$ vagy $cos^m x$ és n, m páros

$$\sin^2 x = \frac{1 - \cos 2x}{2} \qquad \cos^2 x = \frac{1 + \cos 2x}{2}$$

A fentieket felhasználva, tehát:

$$\sin^{2k} x = (\sin^2 x)^k = \frac{(1 - \cos 2x)^k}{2^k} \quad \text{illetve:} \qquad \cos^{2k} x = \frac{(1 + \cos 2x)^k}{2^k}$$

$$\int \underbrace{\sin^6 x}_{(\sin^2 x)^3} dx = \frac{1}{8} \int (1 - \cos 2x)^3 dx = \frac{1}{8} \left(\int dx + 3 \int \underbrace{\cos^2 2x}_{\frac{1 + \cos 4x}{2}} dx - 3 \int \cos 2x dx - \int \cos^2 2x dx \right)$$

$$- \int \cos^3 2x dx = \frac{1}{8} \left(x + \frac{3}{2} \int (1 + \cos 4x) dx - \frac{3}{2} \sin 2x - \int \cos^3 2x dx \right) =$$

$$\frac{x}{8} + \frac{3x}{16} + \frac{3}{16 \cdot 4} \sin 4x - \frac{3}{16} \sin 2x - \frac{1}{8} \int \cos 2x (1 - \sin^2 2x) dx = \frac{5x}{16} + \frac{3}{64} \sin 4x - \frac{3}{16} \sin 2x - \frac{1}{16} \sin 2x + \frac{1}{8 \cdot 3 \cdot 2} \sin^3 2x + c$$

c) $sin^n x \cdot cos^m x$, ha n és m közül valamelyik páratlan, lásd a). Példa:

$$\int \cos^3 x \sin^2 x \, dx = \int \cos x (1 - \sin^2 x) \sin^2 x \, dx =$$

$$= \int \cos x \sin^2 dx - \int \cos x \sin^4 x \, dx = \frac{\sin^3}{3} - \frac{\sin^5 x}{5} + c$$

d) $sin^n x \cdot cos^m x$, ha n és m páros, lásd b). Példa:

$$\int \sin^2 x \cos^4 x \, dx = \int (1 - \cos^2 x) \cos^4 x \, dx = \int \cos^4 x \, dx - \int \cos^6 x \, dx =$$

$$= \int \frac{(1 + \cos 2x)^2}{4} \, dx - \int \frac{(1 + \cos 2x)^3}{8} \, dx = \frac{1}{4} \int \left(1 + \cos^2 2x + 2\cos 2x\right) \, dx -$$

$$-\frac{1}{8} \int 1 + \cos^3 2x + 3\cos^2 2x + 3\cos 2x \, dx = \frac{1}{8} \int \left(1 - \cos^2 2x + \cos 2x - \cos^3 2x\right) \, dx =$$

$$= \frac{x}{8} - \frac{1}{8 \cdot 2} \int (1 + \cos 4x) \, dx + \frac{1}{8 \cdot 2} \sin 2x - \frac{1}{8} \int \cos 2x (1 - \sin^2 2x) \, dx =$$

$$= \frac{x}{8} - \frac{x}{16} - \frac{1}{16 \cdot 4} \sin 4x + \frac{1}{8 \cdot 2} \sin 2x - \frac{1}{8 \cdot 2} \sin 2x + \frac{1}{8 \cdot 3 \cdot 2} \sin^3 2x + c =$$

$$= \frac{x}{16} - \frac{1}{64} \sin 4x + \frac{1}{48} \sin^3 2x + c$$

3. Parciális integrálás

$$\int u(x) \cdot v'(x) \, dx = u(x) \cdot v(x) - \int u'(x) \cdot v(x) \, dx$$

Azért gyorsan nézzük meg, hogy ez honnan jött ki:

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

$$u \cdot v' = (u \cdot v)' - u' \cdot v / \int$$

$$\int u \cdot v' \, dx = u \cdot v - \int u' \cdot v \, dx$$

Mikor célszerű használni? Ha v(x)-nek ismert az integráltja és u(x)-nek a deriváltja. Példák:

a)
$$\int \underbrace{\text{polinom}}_{u} \cdot \underbrace{\begin{cases} \exp. \\ \text{trig.} \\ \text{hiper.} \end{cases}}_{v'} dx$$

$$\int (x^{2} + x + 1) \sinh 2x \, dx = (x^{2} + x + 1) \frac{\text{ch } 2x}{2} - \int (2x + 1) \frac{\text{ch } 2x}{2} \, dx =$$

$$(x^{2} + x + 1) \frac{\text{ch } 2x}{2} - (2x + 1) \frac{\text{sh } 2x}{4} + \int 2 \frac{\text{sh } 2x}{4} \, dx =$$

$$= (2x^{2} + 2x + 3) \frac{\text{ch } 2x}{4} - (2x + 1) \frac{\text{sh } 2x}{4} + c$$
b)
$$\int \underbrace{\text{polinom}}_{v'} \cdot \underbrace{\begin{cases} \log \\ \text{arsh, arch} \\ \text{arcsin, arccos} \end{cases}}_{u} dx$$

$$\int \ln x \, dx = \int 1 \cdot \ln x \, dx = x \ln x - \int x \cdot \frac{1}{x} \, dx = x(\ln x - 1) + c$$

$$\int x \cdot \operatorname{arctg} x \, dx = \frac{x^{2}}{2} \cdot \operatorname{arctg} x - \int \frac{x^{2}}{2} \cdot \frac{1}{1 + x^{2}} \, dx = \frac{x^{2}}{2} \cdot \operatorname{arctg} x - \frac{1}{2} \int \frac{x^{2} + 1 - 1}{1 + x^{2}} \, dx =$$

$$= \frac{x^{2}}{2} \cdot \operatorname{arctg} x - \frac{1}{2} \int \left(1 - \frac{1}{1 + x^{2}}\right) \, dx = \frac{x^{2}}{2} \cdot \operatorname{arctg} x - \frac{x}{2} + \frac{1}{2} \operatorname{arctg} x + c$$
c)
$$\int \begin{cases} e^{x} \\ \text{sh, ch} \\ \text{sin, cos} \end{cases} \cdot \begin{cases} e^{x} \\ \text{sh, ch} \\ \text{sin, cos} \end{cases}$$

 $e^{3x} \cdot \frac{\cosh(2x)}{2} - \frac{3}{2} \left(e^{3x} \cdot \frac{\sinh(2x)}{2} - \int 3 \cdot e^{3x} \cdot \frac{\sinh(2x)}{2} dx \right)$

Tehát azt kaptuk, hogy:

$$\int e^{3x} \cdot \sinh(2x) \, dx = e^{3x} \cdot \frac{\cosh(2x)}{2} - \frac{3}{4} e^{3x} \cdot \sinh(2x) + \frac{9}{4} \int e^{3x} \cdot \sinh(2x) \, dx$$

$$\int e^{3x} \cdot \sinh(2x) \, dx = -\frac{4}{5} \left(e^{3x} \cdot \frac{\cosh(2x)}{2} - \frac{3}{4} e^{3x} \cdot \sinh(2x) \right) + c$$

$$\int e^{3x} \cdot \sinh(2x) \, dx = -\frac{2}{5} \cdot e^{3x} \cdot \cosh(2x) + \frac{3}{5} \cdot e^{3x} \cdot \sinh(2x) + c$$

4. Racionális törtfüggvények integrálása

Definíció 6.3 Racionális törtfüggvény a $\frac{p(x)}{q(x)}$, ahol p(x), q(x) polinomok. Valódi racionális törtről beszélünk, ha a számláló foka kisebb, mint a nevezőé ($\deg p(x) < \deg q(x)$).

Lépések:

 i) Ha nem valódi a racionális tört, akkor felírjuk polinom + valódi rac. tört alakban. Ekkor a polinomot a megszokott módon integráljuk a valódi racionális törtet pedig a következő lépés alapján.

$$\frac{p_n(x)}{q_m(x)} = r_k(x) + \frac{\tilde{p}_{\tilde{n}}(x)}{q_m(x)}$$

- ii) Ha valódi racionális törtünk van, akkor a nevezőt (q(x)-et) valós gyöktényezők (valós gyök: ($x \alpha$) vagy ha komplex gyökpár, akkor: ($x^2 + ax + b$)) szorzatára bontjuk.
- iii) Parciális törtekre való bontás, esetek:
 - a) n darab csupa egyszeres valós gyöktényező van, pl: $q(x) = (x \alpha_1)(x \alpha_2) \cdot \ldots \cdot (x \alpha_n)$, $\alpha_i \neq \alpha_j$, ha $i \neq j$.

$$\frac{p(x)}{q(x)} = \frac{A_1}{x - \alpha_1} + \frac{A_2}{x - \alpha_2} + \dots + \frac{A_n}{x - \alpha_n} \qquad A_1, \dots, A_n \in \mathbb{R}$$

b) Ha $(x - \alpha)$ n-szeres valós gyöke q(x)-nek; $q(x) = (x - \alpha)^n \cdot \dots$

$$\frac{p(x)}{q(x)} = \frac{B_1}{x - \alpha} + \frac{B_2}{(x - \alpha)^2} + \frac{B_3}{(x - \alpha)^3} + \dots + \frac{B_n}{(x - \alpha)^n} + \dots$$

c) Ha $(x^2 + Ax + B)$ egyszeres, másodfokú tovább nem bontható gyöktényező:

$$\frac{p(x)}{q(x)} = \frac{Cx + D}{x^2 + Ax + B} + \dots$$

d) (*) Többszörös komplex gyökpár $q(x) = (x^2 + Ax + B)^n \cdot \dots$

$$\frac{p(x)}{q(x)} = \frac{C_1 x + D_1}{x^2 + Ax + B} + \frac{C_2 x + D_2}{(x^2 + Ax + B)^2} + \dots + \frac{C_n x + D_n}{(x^2 + Ax + B)^n} + \dots$$

Tétel 6.2 Az így kapható parciális tört felbontás egyértelmű.

Bizonyítás 6.2

 \emptyset . Megjegyzés: Legyen deg q=n. Ekkor deg $q\leqslant n-1$, tehát n darab együttható $(0,1,\ldots,n-1)$ és a parciális tört felbontásban is n darab szabad paraméter van.

Láttuk, hogy hogy lehet a valódi racionális törtet parciális törtekre bontani, ezek után már csak ezeket kell a tanult szabályok alapján integrálni. Nézzünk egy példát:

$$\int \frac{x^4 + 2x^2 - 1}{x^4 - 1} \, dx = \int \left(1 + \frac{2x^2}{x^4 - 1} \right) \, dx = x + \int \frac{2x^2}{x^4 - 1} \, dx$$

Tehát először a nem valódiból valódi törtet csináltunk, majd ennek a nevezőjének keressük a gyökeit:

$$(x^{4} - 1) = (x^{2} + 1)(x^{2} - 1) = (x^{2} + 1)(x + 1)(x - 1)$$
$$\frac{2x^{2}}{x^{4} - 1} = \frac{Ax + B}{x^{2} + 1} + \frac{C}{x + 1} + \frac{D}{x - 1}$$

Határozzuk meg A, B, C és D értékét:

$$2x^{2} = (Ax + B)(x^{2} - 1) + C(x - 1)(x^{2} + 1) + D(x + 1)(x^{2} + 1)$$

$$2x^{2} = x^{3}(A + C + D) + x^{2}(B - C + D) + x(-A + C + D) + (-B - C + D)$$

$$A + C + D = 0$$

$$+B - C + D = 0$$

$$-A + C + D = 0$$

$$-B - C + D = 0$$

$$-B - C + D = 0$$

$$-B - C + D = 0$$

$$+C + D =$$

Tehát:

$$\int \frac{x^4 + 2x^2 - 1}{x^4 - 1} dx = x + \int \frac{1}{x^2 + 1} dx - \int \frac{1}{2x + 2} dx + \int \frac{1}{2x - 2} dx =$$

$$= x + \arctan x - \frac{1}{2} \ln|x + 1| + \frac{1}{2} \ln|x - 1| + c$$

Másik példa:

$$\int \frac{3x+1}{x^2 - 2x + 5} \, dx = ?$$

Itt a nevező nem bontható tovább, ez már tulajdonképpen 1 darab parciális tört. $(x^2 - 2x + 3)' = 2x - 2$, tehát ezt kéne belecsempészni a számlálóba:

$$\int \frac{3x+1}{x^2-2x+5} dx = \int \frac{\frac{3}{2}(2x-2)+4}{x^2-2x+5} dx = \int \frac{\frac{3}{2}(2x-2)}{x^2-2x+5} dx + 4 \cdot \int \frac{1}{(x-1)^2+4} dx = \frac{3}{2} \cdot \ln(x^2-2x+5) + 4 \cdot \frac{1}{4} \cdot \int \frac{1}{\left(\frac{x-1}{2}\right)^2+1} dx = \frac{3}{2} \cdot \ln(x^2-2x+5) + 2 \arctan\left(\frac{x-1}{2}\right) + c$$

6.2. Határozott integrál (Riemann-integrál)

Motiváció: Legyen $[a,b] \subset \mathbb{R}$ korlátos intevallum és legyen $f:[a,b] \to \mathbb{R}$ valós, korlátos függvény. Szeretnénk az [a,b] intervallum függvény alatti területét kiszámolni:

Definíció 6.4 [a,b] egy felosztása $F_n = \{I_k\}_{k=1}^n$; $I_k = [x_{k-1},x_k]$. Véges sok osztópont:

$$a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$$

Legyen $m_k = \inf_{x \in I_k} \{f(x)\}$ (ezek léteznek, hiszen f korlátos).

Legyen $M_k = \sup_{x \in I_k} \{f(x)\}.$

Ekkor az F felosztáshoz tartozó alsó (s_F) ill. felső (S_F) közelítő összeg:

$$s_F = \sum_{k=1}^n m_k \cdot (x_k - x_{k-1}) = \sum_{k=1}^n m_k \cdot |I_k|$$

$$S_F = \sum_{k=1}^n M_k \cdot (x_k - x_{k-1}) = \sum_{k=1}^n M_k \cdot |I_k|$$

Ezeket az ábrán jelölve (tetején sráffal jelölt téglalapok területeinek összege):

Tétel 6.3 $s_f \leqslant S_f$, hiszen $m_k \leqslant M_k$. \checkmark

Tétel 6.4 Legyen F^* az F felosztás egy új osztóponttal vett finomítása. Ekkor $s_{F^*} \geqslant s_F$ és $S_{F^*} \leqslant S_F$.

Bizonyítás 6.4

Legyen az új x^* osztópont x_k és x_{k+1} között. Ekkor:

$$m'_{k} = \inf_{x \in [x_{k}, x^{*}]} \{ f(x) \}$$

$$m''_{k} = \inf_{x \in [x^{*}, x_{k+1}]} \{ f(x) \}$$

$$m''_{k} \geqslant m_{k}$$

$$m''_{k} \geqslant m_{k}$$

Hasonlóan $M_k' \leq M_k$, illetve $M_k'' \leq M_k$. Tehát igaz az állítás.

Tétel 6.5 Legyen F_1 , F_2 két véges felosztás. Ekkor:

$$s_{F_1} \leqslant S_{F_2}; \qquad s_{F_2} \leqslant S_{F_1}$$

Bizonyítás 6.5

$$s_{F_1} \leqslant s_{F_1 \cup F_2} \leqslant S_{F_1 \cup F_2} \leqslant S_{F_2}$$

Először a 6.4. tételt (felosztás finomítása) használjuk, majd a 6.3. tételt, és majd megint a 6.4-et.

Definíció 6.5 Legyen F véges felosztás, Darbaux-féle alsó integrál:

$$h := \operatorname{Sup} s_F = \int_{x=a}^b f(x) \ dx$$

Ha [a,b] véges és f ezen korlátos, akkor ∃h.

Definíció 6.6 Legyen F véges felosztás, Darbaux-féle felső integrál:

$$H := \operatorname{Inf} S_F = \int_{x=a}^{\overline{b}} f(x) \ dx$$

Ha [a,b] véges és f ezen korlátos, akkor $\exists H$.

Definíció 6.7 Az f korlátos függvény az [a,b] korlátos intervallumon **Riemann-szerint integrál-ható**, ha h=H és ekkor $h=H=\int_{x=a}^b f(x)\ dx$. Jelölés: $f\in R[a,b]$ (Megjegyzés: R[a,b] az [a,b] korlátos intervallumon Riemann-szerint integrálható függvények halmaza).

Példák a definíció alkalmazására:

Példa 1: Legyen $f(x) \equiv c \in \mathbb{R}$ ($\leadsto m_k = \inf_{x \in I_k} \{f(x)\} = M_k = \sup_{x \in I_k} \{f(x)\} = c$). Legyen F felosztása [a,b]-nek.

$$s_F = \sum_{k=1}^n m_k (x_k - x_{k-1}) = c \sum_{k=1}^n |I_k| = c(b-a)$$

$$S_F = \sum_{k=1}^n M_k(x_k - x_{k-1}) = c(b - a)$$

Ebből következően nyílván h = H, tehát:

$$\int_{x=a}^{b} c \, dx = c(b-a)$$

Példa 2: Dirichlet-függvény:

$$D(x) = \begin{cases} 1, \text{ ha } x \in \mathbb{Q} \\ 0, \text{ ha } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Tetszőleges *F* felosztásra:

$$S_{F} = \sum_{k=1}^{n} \underbrace{M_{k}}_{0} |I_{k}| = 0$$

$$S_{F} = \sum_{k=1}^{n} \underbrace{M_{k}}_{1} |I_{k}| = b - a$$

$$h = \operatorname{Sup} S_{F} = 0$$

$$H = \operatorname{Inf} S_{F} = b - a$$

$$h \neq H$$

Tehát D(x) Riemann-szerint **nem** integrálható!

Láthatjuk, hogy néhány esetben kézenfekvő a definíció használata, de általánosabb esetekben nehézkes. De ennek kiküszöbölésére a következő tétel segítséget nyújt, ami összekapcsolja a határozott integrált a határozotlan ingtegrállal:

Tétel 6.6 Newton-Leibniz formula

Ha f Riemann-integrálható [a, b]-n és F az f primitív függvénye az [a, b]-n, akkor:

$$\int_{x=a}^{b} f(x) \, dx = \left[F(x) \right]_{x=a}^{b} = F(b) - F(a)$$

Bizonyítás 6.6

Majd később visszatérünk rá.

Definíció 6.8 F_n felosztás finomsága: $\Delta F_n = \max_{k=1,...n} \{(x_k - x_{k-1})\}.$

Definíció 6.9 Minden határon túl finomodó felosztás sorozat (röv: m.h.t.f.f.s.):

$${F_n}_{n\in\mathbb{N}}; \qquad \Delta F_n \xrightarrow{n\to\infty} 0$$

Például: n osztópontos egyenletes felosztás.

Riemann-integrálhatóság szükséges és elégséges feltételei 6.2.1.

Tétel 6.7 (Segéd tétel)

Ha F_n m.h.t.f.f.s. [a,b]-n, akkor

$$\exists \lim_{n \to \infty} s_{F_n}(f) = h(f); \quad \exists \lim_{n \to \infty} S_{F_n}(f) = H(f)$$

Tétel 6.8

1. Ha
$$\exists \int_{x=a}^{b} f(x) dx \Rightarrow \forall F_n \text{ m.h.t.f.f.s. esetén } \exists \lim_{n \to \infty} s_{F_n}(f) = \lim_{n \to \infty} S_{F_n}(f) = I = \int_{x=a}^{b} f(x) dx.$$

2. Ha
$$\exists F_n \text{ m.h.t.f.f.s., hogy } \lim_{n \to \infty} s_{F_n}(f) = \lim_{n \to \infty} S_{F_n}(f) \implies f \in R[a, b] \text{ \'es } \int_{x=a}^b f(x) dx = \lim_{n \to \infty} s_{F_n}(f) = \lim_{n \to \infty} S_{F_n}(f).$$

Bizonyítás 6.8

1. Az előző tétel alapján $\exists h, H$, de mivel $\exists \int_{x-a}^{b} f(x) dx$, ezért h = H = I.

2. Mivel h = H, ezért definíció alapján $f \in R[a, b]$.

Definíció 6.10 Oszcillációs összeg:

$$O_{F_n}(f) = S_{F_n}(f) - s_{F_n}(f) = \sum_{k=1}^n (\underbrace{M_k - m_k}_{\geqslant 0}) (\underbrace{x_k - x_{k-1}}_{\geqslant 0}) \geqslant 0$$

Tétel 6.9

$$\exists \int_{x=a}^{b} f(x) dx \iff \forall \varepsilon > 0 \text{ eset\'en } \exists F \text{ feloszt\'as, hogy } O_F(f) < \varepsilon$$

Bizonyítás 6.9

(\Rightarrow) h=H, tehát $\exists F_1: I-\frac{\varepsilon}{2} < s_{F_1}, \exists F_2: I+\frac{\varepsilon}{2} > S_{F_2}$. Vegyük $F_1 \cup F_2$ felosztást, ekkor ugye: $s_{F_1 \cup F_2} \geqslant s_{F_1}$, illetve $S_{F_1 \cup F_2} \leqslant S_{F_2}$. Tehát:

$$O_{F_1 \cup F_2}(f) = S_{F_1 \cup F_2} - S_{F_1 \cup F_2} < S_{F_2} - S_{F_1} < \varepsilon$$

(*⇐*) $\forall \varepsilon > 0$ -ra:

$$H - h \leqslant S_F - s_f = O_f < \varepsilon$$

Tehát
$$H - h = 0 \implies H = h = I$$
.

Tekintsük az F_n felosztását [a,b]-nek, és vegyünk fel minden $[x_{k-1},x_k]$ -n $(k=1,\ldots,n)$ egy ξ_k reprezentáns pontot.

Definíció 6.11 Integrál közelítő összeg:

$$\sigma_{F_n}(f) = \sum_{k=1}^n \underbrace{\underbrace{f(\xi_k)}_{\geqslant m_k}}^{\leqslant M_k} (x_k - x_{k-1})$$

$$s_{F_n}(f) \leqslant \sigma_{F_n}(f) \leqslant S_{F_n}(f)$$

Tétel 6.10

1.
$$Ha \exists \int_{x=a}^{b} f(x) dx \Rightarrow \forall F_n \text{ m.h.t.f.f.s. eset\'en } \exists \lim_{n \to \infty} \sigma_{F_n}(f) = \int_{x=a}^{b} f(x) dx.$$

2. $Ha \exists F_n \text{ m.h.t.f.f.s., hogy } \lim_{n \to \infty} \sigma_{F_n}(f) \text{ a } \{\xi_k\} \text{ reprezent\'ans pontok v\'alaszt\'as\'at\'ol független\"ul}$

 $\Rightarrow f \in R[a,b] \text{ \'es } \int_{x-a}^{b} f(x) dx = \lim_{n \to \infty} \sigma_{F_n}(f).$

Bizonyítás 6.10

1. Rendőr-elv alapján:

$$\underbrace{s_{F_n}}_{\to h} \leqslant \sigma_{F_n} \leqslant \underbrace{S_{F_n}}_{\to H}$$

De mivel
$$\exists \int_{x=a}^{b} f(x) dx$$
, ezért $h = H = I$, tehát $\sigma_{F_n} = I$.

2. Ø

6.2.2. Elégséges feltételek a Riemann-integrálhatóságra

Tétel 6.11 *Ha f monoton az* $[a,b] \subset \mathbb{R}$ *intervallumon, akkor f* $\in R[a,b]$.

Bizonyítás 6.11

Tfh. f monoton nő. Legyen F_n az [a,b] intervallumon való egyenletes felosztás: $|I_k| = x_k - x_{k-1} = \frac{b-a}{n}$. Ekkor:

$$O_{F_n}(f) = \sum_{k=1}^n (M_k - m_k)(x_k - x_{k-1}) = \frac{b - a}{n} \sum_{k=1}^n (M_k - m_k) = \frac{b - a}{n} \sum_{k=1}^n (f(x_k) - f(x_{k-1}))$$

Ha jól meggondoljuk ez egy teleszkópikus összeg, amiből azt kapjuk, hogy:

$$O_{F_n}(f) = \frac{b-a}{n} \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) = \frac{b-a}{n} \cdot (f(b) - f(a)) \xrightarrow{n \to \infty} 0$$

A 6.9. tételnél láthattuk, hogy $O_{F_n}(f) \to 0 \Leftrightarrow f \in R[a,b]$.

Tétel 6.12 *Ha* $f \in C[a,b] \stackrel{W.I.}{\leadsto} f$ *korlátos* [a,b]-n), *akkor* $f \in R[a,b]$.

Bizonyítás 6.12

Weierstrass II. tétele alapján (4.15. tétel; 47. oldal) a függvény felveszi szélsőértékeit a kérdéses intervallumokon (I_k -n ξ_k helyen veszi fel maximumát, η_k helyen a minimumát), tehát:

$$O_{F_n}(f) = \sum_{k=1}^n (M_k - m_k)(x_k - x_{k-1}) = \sum_{k=1}^n \left(f(\xi_k) - f(\eta_k) \right) (x_k - x_{k-1})$$

Zárt intervallumon folytonos függvény egyenletesen folytonos, tehát:

$$|f(\xi_k) - f(\eta_k)| < \varepsilon$$
, ha $|\xi_k - \eta_k| < \delta(\varepsilon)$

Adott $\varepsilon > 0$: $\exists \delta(\varepsilon) > 0$. Legyen $\Delta F_n < \delta(\varepsilon)$, ekkor

$$\xi_k - \eta_k < \delta(\varepsilon) \quad \Rightarrow \quad |f(\xi_k) - f(\eta_k)| < \varepsilon$$

Tehát:

$$O_{F_n} \leqslant \varepsilon \sum_{k=1}^n (x_k - x_{k-1}) = \varepsilon \cdot (b - a) \xrightarrow{\varepsilon \to 0} 0$$

Tétel 6.13 *Ha f egy pont kivételével folytonos* [a,b]*-n és f korlátos, akkor f* \in R[a,b].

Bizonyítás 6.13

Legyen $x^* \in [a,b]$ a szakadási pont, illetve $x^* \in (x_{k-1},x_k)$. Legyen O_I az $[a,x_{k-1}]$ intervallumon, O_{II} pedig az $[x_k,b]$ intervallumon vett oszcillációs összeg. Legyen $|f(x^*)| < K$. Ekkor adott $\varepsilon > 0$ -hoz válasszuk úgy az F felosztás finomságát, hogy $O_I < \frac{\varepsilon}{3}$, $O_{II} < \frac{\varepsilon}{3}$, az $[x_{k-1},x_k]$ intervallumhoz tartozó oszcillációs összeg helyett vegyünk egy intervallum szélességnyi 2K magas téglalap területét. Legyen $x_k - x_{k-1} < \frac{\varepsilon}{6K}$, ekkor:

$$O_F = O_I + O_{II} + (x_k - x_{k-1})2K < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Tétel 6.14 *Ha f véges pont kivételével folytonos* [a,b]*-n és f korlátos, akkor* $f \in R[a,b]$.

Tétel 6.15 Ha $f \in R[a,b]$ és f(x) = g(x) véges sok x kivételével, akkor $g \in R[a,b]$ és $\int_{x=a}^{b} f(x) dx = \int_{x=a}^{b} g(x) dx$

Tétel 6.16 Newton-Leibniz formula

Ha f Riemann-integrálható [a, b]-n és F az f primitív függvénye az [a, b]-n, akkor:

$$\int_{x=a}^{b} f(x) \, dx = \left[F(x) \right]_{x=a}^{b} = F(b) - F(a)$$

Bizonyítás 6.16

Legyen ϕ_n az [a, b] egy m.h.t.f.f.s; osztópontok: $a = x_0 < x_1 < \ldots < x_n = b$.

$$F(b) - F(a) = \sum_{k=1}^{n} \left(F(x_k) - F(x_{k-1}) \right) \stackrel{\text{Lagrange-t}}{=} \sum_{k=1}^{n} F'(\xi_k) \cdot (x_k - x_{k-1})$$

Mivel *F* az *f* primitív függvénye [a, b]-n, ezért $F'(x) = f(x) \quad \forall x \in [a, b]$:

$$F(b) - F(a) = \sum_{k=1}^{n} f(\xi_k) \cdot (x_k - x_{k-1}) = \sigma_{\phi_n}(f) \xrightarrow{\substack{n \to \infty \\ \text{m.h.t.f.f.s.}}} \int_{x=a}^{b} f(x) \, dx$$

Például:

$$\int_{x=0}^{\pi} \sin x \, dx = \left[-\cos x \right]_{x=0}^{\pi} = -\cos \pi - (-\cos 0) = 2$$

6.2.3. Riemann-integrál tulajdonságai

Eddig mindig úgy vettük, hogy a < b, és [a,b] intervallumon számoltuk ki a határozott integrált. Lehet másik irányba is:

Definíció 6.12

$$\int_{x=b}^{a} f(x) \, dx := -\int_{x=a}^{b} f(x) \, dx$$

Tulajdonságok:

1. Intervallum additív: $a < c < b \text{ és } f \in R[a, b]$:

$$\int_{x=a}^{b} f(x) \, dx = \int_{x=a}^{c} f(x) \, dx + \int_{x=c}^{b} f(x) \, dx$$

2. Az integrál lineáris vektorteret alkot R[a,b]-n, azaz ha $f,g\in R[a,b]$ és $\alpha,\beta\in\mathbb{R}$, akkor $\alpha f+\beta g\in R[a,b]$ és

$$\int_{x=a}^{b} (\alpha f + \beta g)(x) dx = \alpha \int_{x=a}^{b} f(x) dx + \beta \int_{x=a}^{b} g(x) dx$$

3. Az integrál monoton: Ha $f(x) \geqslant g(x) \ \forall x \in [a,b]$ -re, akkor $\int_{x=a}^{b} f(x) \, dx \geqslant \int_{x=a}^{b} g(x) \, dx$.

Az integrálszámítás középértéktétele

Legyen f korlátos függvény $[a, b] \subset \mathbb{R}$ -en, ekkor:

$$(b-a) \inf_{x \in [a,b]} \{ f(x) \} \leqslant \int_{x=a}^{b} f(x) \, dx \leqslant (b-a) \sup_{x \in [a,b]} \{ f(x) \}$$

Hiszen:

$$(b-a) \inf_{x \in [a,b]} \{f(x)\} \leqslant \sigma_F(f) = \sum_{k=1}^n f(\xi_k) \cdot (x_k - x_{k-1}) \leqslant (b-a) \sup_{x \in [a,b]} \{f(x)\}$$

$$\text{Mivel} \inf_{x \in [a,b]} \{ f(x) \} \leqslant f(\xi_k) \leqslant \sup_{x \in [a,b]} \{ f(x) \}.$$

Definíció 6.13 Integrál közép:

$$\kappa := \frac{\int_{x=a}^{b} f(x) \, dx}{b-a}$$

Tétel 6.17

$$\inf_{x \in [a,b]} \{ f(x) \} \leqslant \kappa \leqslant \sup_{x \in [a,b]} \{ f(x) \}$$

Bizonyítás 6.17

A fenti egyenletet leosztva (b-a)-val kapjuk az állítást.

Tétel 6.18 *Ha f folytonos* [a,b]-n, $akkor \exists \xi \in (a,b)$, $hogy f(\xi) = \kappa$.

Bizonvítás 6.18

Lásd Bolzano-tétel (4.11. tétel; 45. oldal)

Definíció 6.14 f függvény pozitív/negatív része:

$$f^{+}(x) = \begin{cases} f(x), & \text{ha } f(x) \geqslant 0\\ 0, & \text{ha } f(x) \leqslant 0 \end{cases}$$

$$f^{-}(x) = \begin{cases} f(x), & \text{ha } f(x) \leq 0\\ 0, & \text{ha } f(x) \geq 0 \end{cases}$$

Lemma 6.1

$$f(x) = f^+(x) + f^-(x)$$

$$|f(x)| = f^+(x) - f^-(x)$$

Tétel 6.19 *Ha* $f \in R[a, b]$ (b > a), *akkor*:

1.
$$f^+, f^-, |f| \in R[a, b]$$

1.
$$f^+, f^-, |f| \in R[a, b]$$

2. $\left| \int_{x=a}^b f(x) \, dx \right| \le \int_{x=a}^b \left| f(x) \right| dx$

Bizonvítás 6.19

1.

$$O_F(f^+) \leqslant O_F(f) < \varepsilon$$

$$O_F(f^-) \leqslant O_F(f) < \varepsilon$$

Tehát az $O_F(f)$ -hez tartozó ε-hoz jó $\delta(\varepsilon)$ jó az $O_F(f^+)$ -hoz és $O_F(f^-)$ -hoz is.

$$\int_{x=a}^{b} |f(x)| \, dx = \int_{x=a}^{b} \left(f^{+}(x) - f^{-}(x) \right) dx = \int_{x=a}^{b} f^{+}(x) \, dx - \int_{x=a}^{b} f^{-}(x) \, dx$$

2.

$$-|f(x)| \leqslant f(x) \leqslant |f(x)|$$

Mivel az integrál monoton, ezért:

$$-\int_{x=a}^{b} |f(x)| \, dx \leqslant \int_{x=a}^{b} f(x) \, dx \leqslant \int_{x=a}^{b} |f(x)| \, dx$$

6.2.5. Integrál függvény

Definíció 6.15 Legyen $f \in R[a,b]$ ($\leadsto f \in R[c,d]$, ha $[c,d] \subset [a,b]$). Ekkor f integrálfüggvénye:

$$F(x) := \int_{t-a}^{x} f(t) dt \qquad x \in [a, b]$$

Tétel 6.20 Az integrálszámítás II. alaptétele

- 1. F(x) folytonos [a, b]-n
- 2. Ha f folytonos $x_0 \in [a,b]$ -ben, akkor F differenciálható x_0 -ban és $F'(x_0) = f(x_0)$

Következmény: Ha $f \in C[a,b] \subset R[a,b]$ akkor $\forall x \in [a,b]$ esetén F'(x) = f(x) (végpontokban féloldalú folytonosság/derivált).

Bizonyítás 6.20

1. Legyen $x_0 \in [a, b]$

$$|F(x) - F(x_0)| = \left| \int_{t=a}^{x} f(t) dt - \int_{t=a}^{x_0} f(t) dt \right| =$$

$$= \left| \int_{t=a}^{x_0} f(t) dt + \int_{t=x_0}^{x} f(t) dt - \int_{t=a}^{x_0} f(t) dt \right| = \left| \int_{t=x_0}^{x} f(t) dt \right|$$

Mivel $f \in R[a,b]$, ezért f korlátos, tehát $\exists K : |f(t)| \leq K$:

$$|F(x) - F(x_0)| = \left| \int_{t=x_0}^x f(t) dt \right| \le K|x - x_0| < \varepsilon \quad \forall \varepsilon > 0$$

Ez teljesül, ha $|x-x_0|<\delta(\varepsilon)$, tehát $\delta(\varepsilon):=rac{\varepsilon}{K}$. Tehát folytonos \checkmark .

2. f folytonos $x_0 \in [a, b]$ -ben.

$$F'(x_0) = \lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} \stackrel{?}{=} f(x_0)$$

$$\left| \frac{F(x_0 + h) - F(x_0)}{h} - f(x_0) \right| = \left| \frac{\int_{t=x_0}^{x_0 + h} f(t) dt}{h} - f(x_0) \cdot \frac{h}{h} \right| =$$

$$= \left| \frac{\int_{t=x_0}^{x_0 + h} f(t) dt}{h} - \frac{\int_{t=x_0}^{x_0 + h} f(x_0) dt}{h} \right| = \left| \frac{\int_{t=x_0}^{x_0 + h} f(t) - f(x_0) dt}{h} \right| =$$

$$= \frac{\left| \int_{t=x_0}^{x_0 + h} f(t) - f(x_0) dt \right|}{|h|} \leqslant \frac{\int_{t=x_0}^{x_0 + h} |f(t) - f(x_0)| dt}{|h|}$$

Mivel f folytonos x_0 -ban, ezért $|f(t)-f(x_0)|<arepsilon$, ha $|t-x_0|<\delta(arepsilon)$, tehát:

$$\frac{\int_{t=x_0}^{x_0+h} |f(t) - f(x_0)| \ dt}{|h|} < \frac{\int_{t=x_0}^{x_0+h} \varepsilon \, dt}{|h|} = \varepsilon$$

Vagyis:

$$\left| \frac{F(x_0 + h) - F(x_0)}{h} - f(x_0) \right| < \varepsilon$$

Tehát $F'(x_0) = f(x_0)$.

Példák

$$F(x) = \int_{t=0}^{x} \cos^{3}(t) dt$$

$$G(x) = \int_{t=x^{2}}^{e^{x}} \cos^{3}(t) dt$$

 $F'(x) = \cos^3 x$, hiszen $\cos^3 x$ folytonos.

$$G(x) = \int_{t=x^2}^{e^x} \cos^3(t) dt = \int_{t=0}^{e^x} \cos^3(t) dt - \int_{t=0}^{x^2} \cos^3(t) dt = F(e^x) - F(x^2).$$

$$G'(x) = \left(F(e^x) - F(x^2)\right)' = f'(e^x) \cdot e^x - f'(x^2) \cdot 2x = e^x \cdot \cos^3 e^x - 2x \cdot \cos^3 x^2.$$

6.2.6. Parciális integrálás

$$\int u(x) \cdot v'(x) \, dx = u(x) \cdot v(x) - \int u'(x) \cdot v(x) \, dx$$
$$\int_{x=a}^{b} u(x) \cdot v'(x) \, dx = \left[u(x) \cdot v(x) \right]_{a}^{b} - \int_{x=a}^{b} u'(x) \cdot v(x) \, dx$$

6.2.7. Integrálás helyettesítéssel

Tétel 6.21 *Ha* $x = \varphi(t)$, akkor:

$$\int f(\varphi(t)) \cdot \varphi'(t) dt = F(\varphi(t)) + c = F(x) + c = \int f(x) dx$$

ahol F az f egy primitív függvénye, tehát:

$$\int f(x) \, dx \Big|_{x = \varphi(t)} = \int f(\underbrace{\varphi(t)}_{x}) \cdot \underbrace{\varphi'(t)}_{\frac{dx}{dt}} \, dt$$

Feltételek: φ folytonosan differenciálható, szig. monoton.

Bizonyítás 6.21

$$\int f(x) dx = F(x) + c$$

$$\int f(x) dx \Big|_{x=\varphi(t)} = F(\varphi(t)) + c$$

$$\frac{d}{dt} \Big(F(\varphi(t)) + c \Big) = F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t)) \cdot \varphi'(t)$$

Tétel 6.22 *Ha* $x = \varphi(t)$, *akkor:*

$$\int_{x=a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) dt$$

Bizonyítás 6.22

$$\int_{x=a}^{b} f(x) dx = \left[F(x) \right]_{a}^{b} = F(b) - F(a)$$

$$\int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) dt = \left[F(\varphi(t)) \right]_{\alpha}^{\beta} = F(\varphi(\beta)) - F(\varphi(\alpha))$$

Helyettesítéssel megadható integrálok

1.
$$\int R\left(x, \sqrt{ax^2 + bx + c}\right) dx$$
 Módszer: teljes négyzetté alakítunk:

$$\sqrt{ax^{2} + bx + c} \to \begin{cases} c\sqrt{1 - A^{2}(x)} & A(x) := \sin t \\ c\sqrt{1 + A^{2}(x)} & A(x) := \sinh t \\ c\sqrt{A^{2}(x) - 1} & A(x) := \cosh t \end{cases}$$

Pl:
$$\int \sqrt{x^2 + 2x + 2} \, dx = \int \sqrt{(x+1)^2 + 1} \, dx$$
. Legyen sh $t = x + 1$, ekkor $dx = \operatorname{ch} t \cdot dt$

$$\int \sqrt{(x+1)^2 + 1} \, dx = \int \sqrt{\operatorname{sh}^2 t + 1} \cdot \operatorname{ch} t \, dt = \int \operatorname{ch}^2 t \, dt = \int \left(\frac{e^t + e^{-t}}{2}\right)^2 \, dt =$$

$$= \frac{1}{4} \int e^{2t} \, dt + \frac{1}{2} \int \, dt + \frac{1}{4} \int e^{-2t} \, dt = \frac{e^{2t}}{8} + \frac{t}{2} - \frac{e^{-2t}}{8} + c = \frac{t}{2} + \frac{1}{4} \operatorname{sh}(2t) + c$$

Visszatérünk *x*-re:

$$\frac{t}{2} + \frac{1}{4} \underbrace{\sinh(2t)}_{\text{sh tch t}} + c = \frac{\operatorname{arsh}(x+1)}{2} + \frac{1}{2}(x+1)\sqrt{x^2 + 2x + 2} + c$$

2.
$$\boxed{\int R(e^x) \, dx} \text{ Itt } t := e^x, \text{ ekkor } dx = \frac{dt}{t}.$$
 Pl:
$$\int \frac{1}{e^{2x} - 2e^x} \, dx = \int \frac{1}{t^2 - 2t} \cdot \frac{1}{t} \, dt = \int \frac{1}{t^2(t-2)} \, dt. \text{ Ezt parciális törtekre bontjuk:}$$

$$\int \frac{1}{t^2(t-2)} dt = \int \frac{A}{t} dt + \int \frac{B}{t^2} dt + \int \frac{C}{t-2} dt$$

$$1 = A(t)(t-2) + B(t-2) + C(t^2) = t^2(A+C) + t(-2A+B) - 2B$$

Ebből $B=-\frac{1}{2}$, $A=-\frac{1}{4}$ és $C=\frac{1}{4}$. Tehát:

$$-\int \frac{1}{4t} dt - \int \frac{1}{2t^2} dt + \int \frac{1}{4t - 8} dt = -\frac{1}{4} \ln|t| - \frac{1}{2} \frac{t^{-1}}{-1} + \frac{1}{4} \ln|t - 2| + c$$

Visszatérünk *x*-re:

$$-\frac{1}{4}\ln|t| - \frac{1}{2}\frac{t^{-1}}{-1} + \frac{1}{4}\ln|t - 2| + c = -\frac{1}{4}x + \frac{1}{2e^x} + \frac{1}{4}\ln|e^x - 2| + c$$

3.
$$\int R\left(x, \sqrt[n]{ax+b}\right) dx$$
 Ekkor $t := \sqrt[n]{ax+b}$.

Pl:
$$\int x\sqrt{5x+3}\,dx$$
. Így $t=\sqrt{5x+3}$, $x=\frac{t^2-3}{5}$, illetve $dx=\frac{2t}{5}dt$. Tehát:

$$\int x\sqrt{5x+3} \, dx = \int \frac{t^2-3}{5} \cdot t \cdot \frac{2t}{5} \, dt = \frac{2}{25} \int (t^2-3)t^2 \, dt = \frac{2}{25} \left(\int t^4 \, dt - \int 3t^2 \, dt \right) =$$

$$= \frac{2}{25} \cdot \frac{t^5}{5} - \frac{6}{25} \cdot \frac{t^3}{3} + c = \frac{2}{125} (5x+3)^{\frac{5}{2}} - \frac{2}{25} (5x+3)^{\frac{3}{2}} + c$$

4.
$$\int R(x^{\frac{p_1}{q_1}}, x^{\frac{p_2}{q_2}}, \dots) dx$$
 Itt $t := x^{\frac{1}{q}}$, ahol q a q_i legkisebb közös többszöröse.

Pl:
$$\int \frac{1+x^{\frac{3}{2}}}{3-x^{\frac{1}{3}}} dx$$
. Így $t = x^{\frac{1}{6}}$, $dx = 6t^5 dt$.

$$6\int \frac{1+x^{\frac{3}{2}}}{3-x^{\frac{1}{3}}} dx = \int \frac{1+t^{9}}{3-t^{2}} \cdot 6t^{5} dt =$$

$$= 6\int \left(-729 - 3t - 243t^{2} - t^{3} - 81t^{4} - 27t^{6} - 9t^{8} - 3t^{10} - t^{12} + \frac{9(243+t)}{3-t^{2}}\right) dt =$$

$$= \underbrace{6\left(-729t - 3\frac{t^{2}}{2} - 81t^{3} - \frac{t^{4}}{4} - 81 \cdot \frac{t^{5}}{5} - 27\frac{t^{7}}{7} - t^{9} - 3 \cdot \frac{t^{11}}{11} - \frac{t^{13}}{13}\right)}_{G} + 6\int \frac{9(243+t)}{3-t^{2}} dt =$$

$$= G + 6\int \frac{(-2t) \cdot (-\frac{9}{2})}{3-t^{2}} dt + 18 \cdot 243 \cdot \int \frac{1}{1-\left(\frac{t}{\sqrt{3}}\right)^{2}} dx =$$

$$= G - 27\ln|3 - t^{2}| + 18\sqrt{3} \cdot 243 \cdot \operatorname{arth} \frac{t}{\sqrt{3}} + c$$

Visszaírva *x*-et:

$$4374\sqrt[6]{x} - 9\sqrt[3]{x} - 486\sqrt{x} - \frac{3}{2} \cdot x^{\frac{2}{3}} - \frac{486}{5} \cdot x^{\frac{5}{6}} - \frac{162}{7}x^{\frac{7}{6}} - 6 \cdot x^{\frac{3}{2}} - \frac{18}{11} \cdot x^{\frac{11}{6}} - \frac{6}{13}x^{\frac{13}{6}} - \frac{6}{$$

5.
$$\int R(\sin x, \cos x) \, dx$$
 It $t := \operatorname{tg} \frac{x}{2}, x = 2 \operatorname{arctg} t \text{ és } dx = \frac{2}{1+t^2} dt$

$$\sin x = \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{2 \operatorname{tg} \frac{x}{2}}{\operatorname{tg}^2 \frac{x}{2} + 1} = \frac{2t}{t^2 + 1}$$

$$\cos x = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{1 - \operatorname{tg}^2 \frac{x}{2}}{\operatorname{tg}^2 \frac{x}{2} + 1} = \frac{1 - t^2}{t^2 + 1}$$

$$\text{Pl: } \int \frac{1}{2 - \cos x} \, dx :$$

$$\int \frac{1}{2 - \cos x} \, dx = \int \frac{1}{2 - \frac{1 - t^2}{t^2 + 1}} \cdot \frac{2}{1 + t^2} \, dt = \int \frac{2}{2 + 2t^2 - 1 + t^2} \, dt = \int \frac{2}{1 + 3t^2} \, dt =$$

$$= 2 \int \frac{1}{1 + (\sqrt{3}t)^2} \, dt = \frac{2}{\sqrt{3}} \operatorname{arctg}(\sqrt{3}t) + c = \frac{2}{\sqrt{3}} \operatorname{arctg}(\sqrt{3} \operatorname{tg} \frac{x}{2}) + c$$

6.3. Improprius integrál

Eddig korlátos intervallumon korlátos függvényt integráltunk.

6.3.1. Ha az intervallum nem korlátos

Definíció 6.16 Legyen $f \in R[a, \omega]$ $\forall \omega > a$ esetén, ekkor $\int_{x=a}^{\infty} f(x) dx = \lim_{\omega \to \infty} \int_{x=a}^{\omega} f(x) dx$, ha a limesz létezik.

Definíció 6.17 Legyen $f \in R[\omega, b]$ $\forall \omega < b$ esetén, ekkor $\int_{x=-\infty}^{b} f(x) dx = \lim_{\omega \to -\infty} \int_{x=\omega}^{b} f(x) dx$, ha a limesz létezik.

Definíció 6.18 $Az \int_{x=a}^{b} f(x) dx$ improprius integrál konvergens, ha $\forall c \in [a,b]$ esetén

$$\int_{x=a}^{b} f(x) \, dx = \int_{x=a}^{c} f(x) \, dx + \int_{x=c}^{b} f(x) \, dx$$

Pl: $\int_{x=-\infty}^{\infty} x \, dx$ nem konvergens, hiszen $\nexists \int_{x=0}^{\infty} x \, dx$.

6.3.2. Ha a függvény nem korlátos

Definíció 6.19 *Ha a-ban nem korlátos, de* $\forall \delta > 0$ *esetén* $f \in R[a + \delta, b]$:

$$\int_{x=a}^{b} f(x) dx = \lim_{\delta \to 0+0} \int_{x=a+\delta}^{b} f(x) dx$$

Definíció 6.20 *Ha b-ben nem korlátos, de* $\forall \delta > 0$ *esetén* $f \in R[a, b - \delta]$:

$$\int_{x=a}^{b} f(x) \, dx = \lim_{\delta \to 0+0} \int_{x=a}^{b-\delta} f(x) \, dx$$

Definíció 6.21 *Ha* $c \in (a,b)$ -ben nem korlátos, de $\forall \delta > 0$ esetén $f \in R[a,c-\delta]$ és $f \in R[c+\delta,b]$:

$$\int_{x=a}^{b} f(x) dx = \int_{x=a}^{c} f(x) dx + \int_{x=c}^{b} f(x) dx = \lim_{\delta \to 0+0} \int_{x=a}^{c-\delta} f(x) dx + \lim_{\delta \to 0+0} \int_{x=c+\delta}^{b} f(x) dx$$

Példák

1.

$$\int_{x=0}^{1} \frac{(\arcsin x)^{\frac{1}{3}}}{\sqrt{1-x^2}} dx = \lim_{\delta \to 0+0} \int_{x=0}^{1-\delta} \frac{(\arcsin x)^{\frac{1}{3}}}{\sqrt{1-x^2}} dx = \lim_{\delta \to 0+0} \left[\frac{(\arcsin x)^{\frac{4}{3}}}{\frac{4}{3}} \right]_{0}^{1-\delta} =$$

$$= \frac{3}{4} \lim_{\delta \to 0+0} (\arcsin^{\frac{4}{3}} (1-\delta) - \arcsin^{\frac{4}{3}} 0) = \frac{3}{4} \left(\frac{\pi}{2} \right)^{\frac{4}{3}}$$

2.

$$\int_{x=3}^{7} \frac{x}{\sqrt{x-3}} dx = \lim_{\delta \to 0+0} \int_{x=3+\delta}^{7} \frac{x}{\sqrt{x-3}} dx =$$

Legyen $t = \sqrt{x-3}$, figyeljünk arra, hogy az intervallumokat is transzformáljuk:

$$= \lim_{\delta \to 0+0} \int_{0+\delta}^{2} \frac{t^2 + 3}{t} \cdot 2t \, dt = 2 \lim_{\delta \to 0+0} \int_{0+\delta}^{2} (t^2 + 3) \, dt = 2 \lim_{\delta \to 0+0} \left[\frac{t^3}{3} + 3t \right]_{0+\delta}^{2} =$$

$$= 2 \lim_{\delta \to 0+0} \left(\frac{8}{3} + 6 - \frac{\delta^3}{3} + 3\delta \right) = \frac{16}{3} + 12$$

3. Milyen α -ra konvergens a $\int_{x=1}^{\infty} \frac{1}{x^{\alpha}} dx$?

Ha $\alpha = 1$

$$\int_{x-1}^{\infty} \frac{1}{x} dx = \lim_{\omega \to \infty} (\ln \omega - \ln 1) = \infty, \text{ tehát divergens}$$

Ha $\alpha \neq 1$

$$\int_{x=1}^{\infty} x^{-\alpha} dx = \lim_{\omega \to \infty} \left[\frac{x^{-\alpha+1}}{-\alpha+1} \right]_{1}^{\omega} = \lim_{\omega \to \infty} \left(\frac{\omega^{-\alpha+1}}{-\alpha+1} - \frac{1}{-\alpha+1} \right) = \begin{cases} \frac{1}{\alpha-1}, \text{ ha } \alpha > 1 \\ \infty, \text{ ha } \alpha < 1 \end{cases}$$

Tehát $\int_{x=1}^{\infty} \frac{1}{x^{\alpha}} dx$ konvergens, ha $\alpha > 1$, divegens, ha $\alpha \leqslant 1$.

4. Milyen α -ra konvergens a $\int_{x=0}^{1} \frac{1}{x^{\alpha}} dx$?

Ha $\alpha = 1$

$$\int_{x=0}^{1} \frac{1}{x} dx = \lim_{\delta \to 0+0} (\ln 1 - \ln \delta) = \infty, \text{ tehát divergens}$$

Ha $\alpha \neq 1$

$$\int_{x=0}^{1} x^{-\alpha} dx = \lim_{\delta \to 0+0} \left[\frac{x^{-\alpha+1}}{-\alpha+1} \right]_{\delta}^{1} = \lim_{\delta \to 0+0} \left(\frac{1}{-\alpha+1} - \frac{\delta^{-\alpha+1}}{-\alpha+1} - \right) = \begin{cases} \frac{1}{1-\alpha'}, & \text{ha } \alpha < 1 \\ \infty, & \text{ha } \alpha > 1 \end{cases}$$

Tehát $\int_{x=0}^{1} \frac{1}{x^{\alpha}} dx$ konvergens, ha $\alpha < 1$, divegens, ha $\alpha \ge 1$.

5. Milyen α -ra konvergens a $\int_{x=0}^{\infty} \frac{1}{x^{\alpha}} dx$?

$$\int_{x=0}^{\infty} \frac{1}{x^{\alpha}} dx = \underbrace{\int_{x=0}^{1} \frac{1}{x^{\alpha}} dx}_{\text{div., ha } \alpha \geqslant 1} + \underbrace{\int_{x=1}^{\infty} \frac{1}{x^{\alpha}} dx}_{\text{div., ha } \alpha \leqslant 1} \text{ tehát divergens}$$

6.3.3. Improprius integrál néhány tulajdonsága

Tétel 6.23 $f \in R[a, \omega] \quad \forall \omega > a \ eset \'en.$

 $\int_{x=a}^{\infty} f(x) \, dx \, improprius \, integrál \, konvergens \Leftrightarrow \forall \varepsilon > 0 \, eset \'en \, \exists \Omega(\varepsilon) \in \mathbb{R}, hogy \left| \int_{x=\omega_1}^{\omega_2} f(x) \, dx \right| < \varepsilon, \, ha \, \omega_1, \omega_2, > \Omega.$

Tétel 6.24 Legyen $F(x) = \int_{t=a}^{x} f(t) dt$ integrál függvény. F folytonos $[a, \infty)$ -n.

$$\int_{x=a}^{\infty} f(x) dx \Leftrightarrow \lim_{x \to \infty} F(x) \overset{Gauchy}{\Leftrightarrow} \forall \varepsilon > 0 \text{ eset\'en } \exists \Omega(\varepsilon) \in \mathbb{R}, hogy \left| \int_{x=\omega_1}^{\omega_2} f(x) dx \right| = |F(\omega_2) - F(\omega_1)| < \varepsilon, ha \omega_1, \omega_2, > \Omega.$$

Definíció 6.22 $\int_{x=a}^{\infty} f(x) dx$ abszolút konvergens, ha $\exists \int_{x=a}^{\infty} |f(x)| dx < \infty$.

Definíció 6.23 $\int_{x=a}^{\infty} f(x) dx$ **feltételesen konvergens**, ha konvergens, de nem abszolút konvergens.

Tétel 6.25 Ha $\int_{x=a}^{\infty} f(x) dx$ abszolút konvergens, akkor konvergens.

Bizonyítás 6.25 (Cauchy-kritérium)

$$\left| \int_{x=\omega_1}^{\omega_2} f(x) \, dx \right| \leqslant \int_{x=\omega_1}^{\omega_2} |f(x)| \, dx < \varepsilon, \text{ ha } \omega_1, \omega_2 > \Omega(\varepsilon)$$

6.3.4. Majoráns kritérium

Tétel 6.26 $f \in R[a,b]$, illetve $g \in R[a,b]$ $\forall b > a$ esetén és $|f(x)| \leq g(x)$ $\forall x > a$ esetén, ha $\int_{x=a}^{b} g(x) dx$ konvergens, akkor $\int_{x=a}^{b} |f(x)| dx$ is az, illetve

$$\int_{x=a}^{\infty} |f(x)| \, dx \leqslant \int_{x=a}^{\infty} g(x) \, dx$$

Bizonyítás 6.26 (Cauchy-kritérium)

$$\int_{x=\omega_1}^{\omega_2} |f(x)| \, dx \leqslant \int_{x=\omega_1}^{\omega_2} g(x) \, dx < \varepsilon \quad \text{ha } \omega_1, \omega_2 > \Omega(\varepsilon)$$

Teáht $\int_{x=\omega_1}^{\omega_2} |f(x)| \, dx$ konvergens és az integrál monotonitásából következik, hogy ha $|f(x)| \leqslant g(x)$, akkor:

$$\int_{x=a}^{\omega} |f(x)| dx \le \int_{x=a}^{\omega} g(x) dx / \lim_{\omega \to \infty}$$
$$\int_{x=a}^{\infty} |f(x)| dx \le \int_{x=a}^{\infty} g(x) dx$$

b

6.3.5. Minoráns kritérium

Tétel 6.27 Ha h és $f \in R[a, \omega]$ $\forall \omega > a$ esetén és $\int_{x=a}^{\infty} h(x) dx = \infty$ és $f(x) \geqslant h(x) \forall x > a$ esetén akkor $\int_{x=a}^{\infty} f(x) dx = \infty$.

Bizonxítás 6.27

Ha $\int_{x=a}^{\infty} f(x) dx < \infty$ lenne, akkor a majoráns kritérium miatt $\int_{x=a}^{\infty} h(x) dx < \infty$ lenne, ami ellentmondás.

6.4. Az integrálás néhány alkalmazása

6.4.1. Terület számítás

Pl: Ellipszis területe. Egyenlete: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Számoljuk ki a besatírozott területet, és ezt 4-el megszorozva megkaphatjuk a teljes területét.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$y = b\sqrt{1 - \frac{x^2}{a^2}}$$

Ezzel megkaptuk az ellipszis felső ágának egyenletét. Magyarán az ellipszis területe:

$$4\int_{0}^{a} \left(b\sqrt{1 - \frac{x^{2}}{a^{2}}} \right) dx = 4b\int_{0}^{a} \sqrt{1 - \left(\frac{x}{a}\right)^{2}} dx$$

Legyen $\sin t := \frac{x}{a}$. Ekkor $dx = a \cos t \cdot dt$, a határok pedig: $0, \frac{\pi}{2}$, Tehát:

$$4b\int_{0}^{\frac{\pi}{2}}\sqrt{1-\sin t^{2}}\cdot a\cos t\,dt = 4ab\int_{0}^{\frac{\pi}{2}}\cos^{2}t\,dt = 4ab\int_{0}^{\frac{\pi}{2}}\frac{1+\cos 2t}{2}\,dt = 4ab\left[\frac{1}{2}t + \frac{\sin 2t}{4}\right]_{0}^{\frac{\pi}{2}} =$$

$$=4ab\left(\frac{\pi}{4}+\frac{\sin\pi}{4}-\frac{\sin0}{4}\right)=\boxed{ab\pi}$$

6.4.2. Forgástest térfogatának kiszámolása

Ha megnézzük akkor az x és x + dx közti rész, ha megforgatjuk, akkor jó közelítéssel egy hengert ad ki (dx tetszőleges kicsiny), ennek a térfogata:

$$dV(x) = \underbrace{\pi \cdot f^2(x)}_{\text{alapterület}} \cdot \underbrace{dx}_{\text{magasság}}$$

A teljes térfogat:

$$V = \int_{a}^{b} \pi \cdot f^{2}(x) \, dx$$

Például a kúp térfogata: Legyen a magassága m, alapterülete r. A kúpot kaphatjuk például az $y=\frac{r}{m}x$ egyenletű egyenes megforgatásásval:

$$V = \int_{0}^{m} \pi \cdot \frac{r^{2}}{m^{2}} x^{2} dx = \pi \frac{r^{2}}{m^{2}} \left[\frac{x^{3}}{3} \right]_{0}^{m} = \pi \frac{r^{2}}{m^{2}} \cdot \frac{m^{3}}{3} = \boxed{\frac{r^{2} \pi \cdot m}{3}}$$

6.4.3. Ívhossz

Ha megnézzük az ábrát, akkor *A* és *B* közti ív jó közelítéssel egy szakasz, Pithagorasz-tétel alapján:

$$dS(x)^2 = dx^2 + (f'(x)dx)^2$$

$$dS(x) = dx\sqrt{1 + f'^2(x)}$$

A teljes ívre pedig:

$$S = \int_{a}^{b} \sqrt{1 + f'^2(x)} \, dx$$

Pl. a kör kerülete. Kör egyenlete: $x^2 + y^2 = r^2$, ekkor a felső ív függvénye:

$$y = \sqrt{r^2 - x^2}$$

$$y' = \frac{-2x}{2\sqrt{r^2 - x^2}}$$

Ha ennek a felének a hosszát kiszámoljuk, majd beszorozzuk 4-el, akkor megkapjuk a kör kerületét:

$$K = 4 \int_{0}^{r} \sqrt{1 + \left(\frac{-x}{\sqrt{r^2 - x^2}}\right)^2} dx = 4 \int_{0}^{r} \sqrt{\frac{r^2}{r^2 - x^2}} dx = 4 \int_{0}^{r} \sqrt{\frac{1}{1 - \left(\frac{x}{r}\right)^2}} dx = 4 \left[\frac{\arcsin\frac{x}{r}}{\frac{1}{r}}\right]_{0}^{r} = 4r \left(\arcsin 1 - \arcsin 0\right) = 4r \frac{\pi}{2} = \boxed{2r\pi}$$

6.5. Integrál kritérium

Tétel 6.28 *Integrál kritérium*

Legyen $f \in R[1,a] \quad \forall a > 1$ esetén, és f monoton csökkenő és $f(x) \ge 0 \ \forall x \ge 1$ esetén. Legyen $a_n = f(n)$. Ekkor

$$\sum_{n=1}^{\infty} a_n \quad és \int_1^{\infty} f(x) dx \quad ekvikonvergensek, azaz$$

$$\sum_{n=1}^{\infty} a_n < \infty \quad \Leftrightarrow \quad \int_1^{\infty} f(x) dx < \infty \quad és$$

$$\sum_{n=1}^{\infty} a_n = \infty \quad \Leftrightarrow \quad \int_1^{\infty} f(x) dx = \infty$$

Bizonyítás 6.28

$$\sum_{k=2}^{n} a_k \leqslant \int\limits_{1}^{\infty} f(x) \, dx \leqslant \sum_{k=1}^{n-1} a_k$$

Illetve:

$$\int_{1}^{n+1} f(x) \, dx \leqslant \sum_{k=1}^{n} a_k \leqslant a_1 + \int_{1}^{n} f(x) \, dx$$

Mindkét esetben minoráns és majornás kritérium alapján igaz az állítás.

Pl:

$$\sum_{n=1}^{\infty} \frac{1}{n} \quad \underset{\text{ekvikonv.}}{\sim} \quad \int_{1}^{\infty} \frac{1}{x} \, dx = \infty$$

Tehát

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

6.5.1. Hibabecslés

$$R_n = S - S_n = \sum_{k=n+1}^{\infty} a_k \leqslant \int_{n}^{\infty} f(x) dx$$

7. fejezet

Számsorozatok nagyságrendje

Definíció 7.1 Ekvivalencia reláció:

- $a \sim b \Leftrightarrow b \sim a$ (szimmetrikus)
- $a \sim a$ (reflexív)
- $a \sim b, b \sim a \Rightarrow a \sim b$ (tranzitív)

Definíció 7.2 $a_n = O(b_n)$, ha $\exists c \in \mathbb{R} \text{ \'es } N \in \mathbb{N}$, hogy

$$|a_n| \leqslant c|b_n|$$
 ha $n > N$

Definíció 7.3 $a_n = \Omega(b_n)$, ha $\exists c \in \mathbb{R}^+$ és $N \in \mathbb{N}$, hogy

$$c|b_n| \leqslant a_n$$
 han $> N$

Definíció 7.4 $a_n = \Theta(b_n) \Leftrightarrow b_n = \Theta(a_n)$, ha

$$a_n = O(b_n)$$
 és $a_n = \Omega(b_n)$

Tehát $a_n = \Theta(b_n) \quad \Leftrightarrow \quad \exists c, d > 0, N \in \mathbb{N}$, hogy

$$c|b_n| \leqslant a_n \leqslant d|b_n|$$
 han $> N$

Definíció 7.5 $a_n \sim b_n$ (asszimptotikusan egyenlő), ha

$$\lim_{n\to\infty}\frac{a_n}{b_n}=1$$

Lemma 7.1 $a_n > 0, b_n > 0$ Θ és \sim ekvivalencia relációk és

$$a_n \sim b_n \quad \Rightarrow \quad a_n = \Theta(b_n)$$

Bizonyítás:

$$1 - \varepsilon \leqslant \frac{a_n}{b_n} \leqslant 1 + \varepsilon \quad \text{ ha } n > N$$

$$(1-\varepsilon)b_n \leqslant a_n \leqslant (1+\varepsilon)b_n$$
 ha $n > N$

7.0.2. Műveleti szabályok

Tétel 7.1 Ha $a_n = \Theta(b_n)$ és $c_n = \Theta(d_n)$

$$a_n + c_n = \Theta(b_n + d_n)$$
$$a_n \cdot c_n = \Theta(b_n \cdot d_n)$$
$$\frac{a_n}{c_n} = \Theta\left(\frac{b_n}{d_n}\right)$$

Megjegyzés: különbségre nincs szabály! És hasonló szabályok igazak a ∼-re.

Tétel 7.2 $a_n > 0$, $b_n > 0$ és $a_n \sim b_n$, akkor

$$\sum_{n=1}^{\infty} a_n \quad ekvikonvergens \quad \sum_{n=1}^{\infty} b_n - el$$

Tétel 7.3 *Stirling-formula*

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$