OLABISI ONABANJO UNIVERSITY, AGO - IWOYE

DEPARTMENT OF CHEMICAL SCIENCES

.. B.SC DEGREE EXAMINATION /.

ORICUNAN

2009/2010 SESSION

RAIN SEMESTER						2009/20	OTO SESSION	100
CHM 242: ANALYT						TIME: 5	Omins	
MATRIC NUMBER			DEP	ARTMEN	T			
2.] 3 [] 4	5. 6.	7.		8 9		10.	
11.	13.	14.] 16	17.	18.	19	20.	
21 22 [23.	24. 25.	26	27] 28.	29	30.	· · · · · · · · · · · · · · · · · · ·
31 32.	33	34 35	36	j 37] 38	39	40	
41. 42	43] 44 45	46] 47 _	48.	19	50.	X
The accuracy error (a) The analysis calculate the O.0447 mg/k The initial as respectively burette = 0. Given that tolerance = the HCl: (a) (b) (c) 0.07,0 The results intern: x=1	y of a measure c) indetermina of a certified e percentage r (g: (a) 8.96 (b) nd final burett (Calculate the (O2): (a) 0.02 the burette vo (O.03) (O.05M.N (O.001 (b) 0.0 absolute and m a class A 25 (O.07% (d) 0.0	reference mater relative error in to 1-9.84 te reading in a stee propagated unit (b) 13.12 olume in question (a) 1.2 olume in question (a) 1.2 olume in question (b) 13.12 olume in question (c) 0.0 percentage relation transfer pipe (3,0.03% (e) 0.00 on and her Q,C min=6.	reduced by ematic error (c) 9.84 and ardizate certainty in (c) 0.04 he propagate the propagate the (tolerate 5,0.07% anager in a carrier of the propagate the tolerate the tol	of (e) tu & sons the read (c) was titrated unco d) 0.015 alnty in the need color.	ie of the ala precision he accept (d)-8 clse for HCl ding 13.12r 1)0.028 ted against ertainty in (e)0 he volume 3); (a) 0.06,	(e) 0.0 ove. / gives 0.0 ed true vi .96 was 0.25 nl (Toler 20mL (p) the deter 02 100mL, d 0.06% are show	(b) randon 0491mg/Kg I alue Is (e)10.00 mL and 13.3 ance for class 03 olpette volument mined molar elivered with (b)0.12, 0	m 7mL s A ne, rity of
					not in			
		5 44	1 1]				

de library.
Determine the value of the students t calculated by comparing the intern with her manager:
(a) 2.58 (b) 2.01 (c) 1.38 (d) 1.47(e) 2.11 The results for replicate analysis for Sanusi are as follows: 14.51, 14.47, 14.38, 14.42, 14.39, 14.47,
The results for replicate analysis for Sands as follows: 14.51, 14.53, 14.49, and 14.46. Given that the accepted true value for the measurement is 14.60,
calculate the relative error associated with Sanusi's measurement(Q ₁₀ =0.41): (a)-0.98%
(b)1.00% (c) 0.14% (d) 0.98% (e)-0.14%
For question 8 above, calculate the students t value associated with Sanusi's mean and the
accepted true value: (a)2.35 (b)3.14 (c)1.85 (d) 8.25 (e)9.75
For question 8 above, given that the standard deviation for the true value is 0.047. calculate the
variance ratio value for the precision of the analyst: (a) 1.21 (b)1.10 (c)0.91 (d) 0.005 (e)2.12
L. For question 8 above, calculate the coefficient of variation of the analyst: (a) 0.35 (b)5.2
(c)0.052 (d)0.017 (e)0.14
In the titration of 50mL, 0.05M NaOH with 0.1M H2SO4, the pH of the starting solution would be
dependent on NaOH alone. The pH would read: (a)7.00 (b) 12.69: (c) 1.70 (d)13.00
(e)12.30
3. For question 12 above, the respective pH at 3mL and 12.5mL of the acid would be: (a)12.55,7
(b)12.30,7 (c) 1.44,7 (d)13.00,7 (e) 12.55,7
14. In 'he titration of 50.00mL, 0.020 MES (2-(N-morpholino) ethane sulfonic acid) with 0.100M NaOH, (c) 3.85
calculate the pH of the starting solution. Ka=10 , Ha/Hb-1. (a) 5.52
15. For question 14 above, what is the pH of the solution after adding 5mL of the base: (a)5.27 (b) 6.15 (c) 4.37 (d)5.10 (e)6.00
(b) 6.15 (c) 4.37 (d) 5.10 (e) 6.00 16. For question 14 above, calculate the equivalence point pH: (a) 7.71 (b) 9.18 (c) 7.14 (d) 8.47 (e) 7.00
16. For question 14 above, calculate the equivalence points and chelating ligands can be 17. The increased stability of the complexes formed from metals and chelating ligands can be
ine increased stability of the complexes. (b) thermodynamic data alone (c) none above (d) all increased using: (a) kinetic data alone (b) thermodynamic data alone (c) none above (d) all
1 de la condition data
25 and District was treated with 25mL, 0.054M EDTA. The excess EDTA required 14.25mL,
18
(a)0.02664M (b) 0.01319M (c)0.05147M (d)0.022/010 (e) 0.0405101
Solution: (a)0.03664W (b) 0.01513W (c)0.01513W (c)0.0
-9 / \ A C7 \ /10°9
X 10° (d) 2.20 X 10° (e) 4.67 X 10 20. Calculate the end point pH for the titration of 0.25M H ₃ PO ₄ with 50mL, 0.5M Mg(OH) ₂ : (a)3.72
- 1 - 00 / 11 B 00 / 010 12
21 25ml 0.05M Pb2+ was standardized by titrating with 0.05M EDIA. Calculate pro at the start of the
(c) 4.11 (d) 1.50
22. Calculate the pPb2+ for question 21 bove after adding 5mL of EDTA. (a)2.42
(4) 11 (6) 3 49
(c)1.30 (a)4.11 23. Calculate pPb2+ at 25mL EDTA given that the conditional formation constant for Pb2+ at the
23. Calculate prozer at 251112 (b)3.49 (c)1.30 (d) 2.42 (e)1.48 titrating pH is 4.17 X 10 ⁶ : (a) 4.11 (b)3.49 (c)1.30 (d) 2.42 (e)1.48
titrating pH is 4.17 × 10. (a) 4.11 (b) 4.11 (b) 4.11 (b) 5.43 (c) 4.11 (b) 5.43 (c) 4.11 (c) 5.43 (c) 6.13 (c)
24. Analytical measurements are used to, (i) monitor impurities by-products used in trade (ii) control or optimize manufacturing processes (iii) monitor impurities by-products used in trade (ii) control or optimize manufacturing processes (iii) monitor impurities by-products (b) ii only (c) i and ii only (d) I, ii and iii (e) i and iii only.
and pollutants: (a)i only (b)ii only (c) i and ii only (d) I,ii and iii (e)i and iii only.
- log(H)

011

0.0

m d

י בי

```
Fo. The main causes of variability are: (a) molarity and time (b) concentration and time
       (c) concentration and position (d) normality and time (e) position and time.
26 Sampling techniques for gases and vapors in the work place fall into: (a)gas sampling vessels
       (b)static sensors and entrapment (c)real time analysis (d)all above
27 Gas phase molecular fluorescence is employed for: (a) ozone,03 (b) nitrogen oxide, NO
        (c) sulphur dioxide, SO<sub>2</sub> (d) nitrogen dioxide, NO<sub>2</sub> (e) peroxylacetyl nitrate PAN
 281 As defined in chemical analysis, MATRIX is the; (i) substance to be analyzed (ii) rest of the material
     in which the analyte is embedded (iii) solve it under test:
                                                                                           (a)i only
        (b) i and ii only (c)iii only (d)I, ii and iii (g) ii only
 29. Partition coefficient is correctly defined by : (i) K = \frac{a_{s1}}{a_{s2}} (ii) K = \frac{a_{s2}}{a_{s1}} (iii) Ka_{s2} = a_{s1} (iv)
      Ka_{s1} = a_{s2}: (a) i only (b) i and iii only (c) ii only (d) i and iv only (e) none above
  30 The accelerating force F_i on a charged particle i under the influence of a constant electric field E is
      given by: (a) F_i = ZeE_i (b) F_l = \frac{Z_le}{E} (c) F_{l} = Z_leE (d) F_l = \frac{E}{Z_le} (e) F_i = \frac{Z_l}{eE}
      Which of the following is/are included in application of loss on drying gravimetric technique:
      I.Moisture determination in food beverage II.moisture determination in water analysis
                                                                   IV. Geochemical analysis.
           III. Determination of drying temperature
                                                   D. I, Ill and IV. E. I and IV
      A. I and II. B. II only.
                                · C. I only.
   32. The similarities between Loss on decomposition and to loss on drying techniques include the
       following except;
  I.drying takes place at 105°C. II. Drying takes place at 650°C. III. Sample container is made of glass.
  IV! Sample container is made of porcelain crucible...
  A. Il ai d II. B. I, Il and III. S. None of the above. D. IV only. E. All of the above.
   33. In electrogravimetic technique, electrodeposition of analyte is based on;
   1. Ohm's law. II. Gravimetry law III. 2" law of Faraday. IV. Beer Lambert's law.
                  B. I and II. C. I only. D. III and IV. E. I, II, III and IV.
   A.II, Iland III.
  (34) Which of the following is/are included in the application of thermogravimetry?
  1. Determination of purity of standards. II. Determination of correct drying temperature.
  III Determination of thermal stability of materials. IV. Determination of the composition of
  analyte.
                                                                          E. I, III and IV.
                 B. I, II and III. C. Illand IV. D. All of the above:
  A. I and II.
  35. The preliminary step in precipitation gravimetric includes which of the following factors?
  i. volume of the solution. ii. Concentration range of the analyte. III. Temperature of analyte
  solution. IV. PH of the solution. A. All of the above. B. Illand IV. C. I, II and III. D. I and III. E. 1& III
  (36) Processes involved in precipitation step in gravimetric technique include;
  i. Jon cluster formation. Ii. Oswald ripening. Iii. Nucleation. W. Crystal growth.
                   B. III only. C. All of the above. D. I, III and IV. . I, II and III.
   Al I and ii.
   37. nolative supersaturation is reduced during precipitation in gravimetry through; precipitation from,
  -1. Dilute solution. II. Hot solution. III. At high PH. IV. Concentrated solution.
   A land II. B. All of the above. C. I, I' and III. D. III and IV. P. I, III and IV.
```