计算机应用数学

Quaternijkon

计算机应用数学课程笔记

September 10, 2024

目录

1. 随机游走与马尔可夫链	4
1.1. 引言	
1.2. 平稳分布 Stationary Distribution	
1.3. 无向图上随机游走的收敛性	
1.4. 4. 单位边权重的无向图上的随机游走	
1.5. 更多关于 Markov 的内容	

1. 随机游走与马尔可夫链

1.1. 引言

Definition

随机游走 在有向图上:从一个起始顶点生成一系列顶点,每次随机选择一个出边,沿着这条边移动到一个新的顶点,并重复这个过程。正式定义如下:

$$p(t)P = p(t+1)$$

其中,p(t)是一个行向量,它的每个分量表示在时间t时每个顶点的概率质量分布,P是所谓的转移矩阵, $P_{i,j}$ 是游走从顶点i选择顶点j的概率。

Example

图 1 邻接矩阵与转移矩阵

Markov 链

有限的状态集合。

 p_{xy} : 从状态x到状态y的转移概率, $\sum_{y} p_{xy} = 1$ 。

Markov 链可以表示为有向图,其中从顶点 \mathbf{x} 到顶点 \mathbf{y} 的权重为 p_{xy} 。

RANDOM WALK	Markov chain	
图 Graph	随机过程 Stochastic process	
顶点 Vertex	状态 State	
强连通 Strongly connected	持续 Persistent	
非周期的 Aperiodic	非周期的 Aperiodic	
强连通且非周期的 Strongly connected and aperiodic	遍历的 Ergodic	
无向图 Undirected graph	时间可逆的 Time reversible	

表 1 随机游走与马尔可夫链

我们将在本节中介绍以下内容:

- 示例: PageRank 和 Markov 决策过程。
- 平稳分布。
- 收敛性。
- Markov 过程。

Example

PageRank

将网页看作一个图:每个网页是一个顶点,超链接是边。

目标:根据重要性对网页进行排序。

Insight

一个网页的链接越多, 它就越重要。

将入链看作投票, 著名网站有更多的入链。

此外,来自重要网页的链接权重更大。

$$r_L = \frac{r_i}{3} + \frac{r_j}{2} + \frac{r_k}{4}$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i} \qquad (*)$$

图 3

随机邻接矩阵

 d_i 是节点 i 的度。

如果 $i \rightarrow j$,则 $M_{ji} = \frac{1}{d_i}$ 。

排序向量

 r_i 是页面 i 的重要性得分。

公式(*)可以重写为:

Example

图 4

第一次迭代

$$\begin{bmatrix} \frac{1}{3} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$$

$$PR(Y)^{1} = \frac{1}{2}PR(Y)^{0} + \frac{1}{2}PR(A)^{0} = \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{3}$$

$$PR(A)^{1} = \frac{1}{2}PR(Y)^{0} + 1 \cdot PR(M)^{0} = \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{3} = \frac{3}{6}$$

$$PR(M)^{1} = \frac{1}{2}PR(A)^{0} = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$$

第二次迭代

$$\begin{bmatrix} \frac{5}{12} \\ \frac{1}{3} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{3} \\ \frac{1}{2} \\ \frac{1}{6} \end{bmatrix}$$

...

收敛

$$\begin{bmatrix} \frac{2}{5} \\ \frac{2}{5} \\ \frac{1}{5} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \cdot \begin{bmatrix} \frac{2}{5} \\ \frac{2}{5} \\ \frac{1}{5} \end{bmatrix}$$

Markov 过程(Markov 决策过程)

$$\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{P}, \gamma$$

S: 状态集合。

A: 动作集合。

 \mathcal{R} : 在状态s下执行动作a的奖励r(s,a)。

 \mathbb{P} : 在状态 s 下执行动作 a 后转移到下一个状态 s' 的转移概率 $P(s' \mid s, a)$ 。

 γ : 折扣因子。

MDP (Markov 决策过程):

1 t = 0初始状态 $s_0 \sim p(s_0)$

2 对于t=0到结束:

3 | 执行动作a,

4 | 获得奖励 $r_t \sim R(\cdot \mid s_t, a_t)$

5 获得下一个状态 $s_{t+1} \sim P(\cdot \mid s_t, a_t)$

6 人代理获得奖励 r_t 和状态 s_{t+1}

算法 1 Markov 决策过程

目标:最大化长期奖励 (累计奖励) $\sum_{t>0} D^t r_t$ 。

Example

动作集合={左,右,上,下}到达空白格的奖励→使用最小化的动作数到达终点状态。

1.2. 平稳分布 Stationary Distribution

设 p_t 是随机游走经过t步后的概率分布。通过以下公式定义长期平均概率分布 a_t :

$$a_t = \frac{1}{t}(p_0+p_1+\cdots+p_{t-1})$$

Markov 链的基本定理:

对于一个连通的 Markov 链, 它收敛于一个极限概率向量 x, 满足:

$$XP=x; \sum_i x_i=1 \Rightarrow X[P-I,1]=[0,1]$$

引理 1.3.1 设 P 是一个连通的 Markov 链的转移概率矩阵。通过在矩阵 P-I 上增加一列 1 的列构造出的 $n \times (n+1)$ 矩阵 A = [P-I,1] 的秩为 n。

证明: 作业

定理 1.3.2 设 P 是连通 Markov 链的转移概率矩阵,则存在一个唯一的概率向量 π 满足 $\pi P = \pi$ 。此外,对于任何初始分布, $\lim_{t\to\infty}a_t$ 存在且等于 π 。

证明: 考虑 a_t 和 a_{t+1} 的差, $a_t - a_{t+1} = a_t P$:

$$\begin{split} a_t P - a_t &= \frac{1}{t} [p_0 P + p_1 P + \dots + p_{t-1} P] - \frac{1}{t} [p_0 + p_1 + \dots + p_{t-1}] \\ &= \frac{1}{t} [p_1 + p_2 + \dots + p_t] - \frac{1}{t} [p_0 + p_1 + \dots + p_{t-1}] \\ &= \frac{1}{t} (p_t - p_0) \end{split}$$

因此, $b_t = a_t P - a_t$ 满足 $|b_t| \leq \frac{2}{t}$, 并且当 $t \to \infty$ 时趋于 0。

根据引理 1.3.1, A = [P - I, 1] 的秩为 n。 由于 A 的所有行和为 0, $n \times n$ 矩阵 B 中除了最后一列以外的所有列是可逆的。

令 c_t 由 $b_t = a_t P - a_t$ 去掉第一列得到, 使得 $a_t B = [c_t, 1]$ 。

因此 $a_t \to [c_t, 1] \to [0, 1]$ 并且 $a_t \to [0, 1]B^{-1}$ 。

因此 $a_t \to \pi$, 我们得出 π 是一个概率向量。

由于 $a_t[P-I]=b_t\to 0$, 我们得到 $\pi[P-I]=0$ 。

由于A的秩为n,这是唯一的解,如所要求的。

引理 1.3.3 对于在强连通图上的随机游走,若边上带有概率,向量 π 满足 $\pi_x p_{xy} = \pi_y p_{yx}$ 对于所有x和y,且 $\sum_x \pi_x = 1$,那么 π 是随机游走的平稳分布。

证明: $\pi_x p_{xy} = \pi_y p_{yx}$,两边求和, $\pi_x = \sum_y \pi_y p_{yx}$,因此 (pi) 满足 $\pi = \pi P$ 。(By Theorem 1.3.2 ...)

1.3. 无向图上随机游走的收敛性

下一个问题:游走需要多长时间开始反映 Markov 过程的平稳概率?

示例:这需要很长时间才能收敛。游走很难通过图的两个部分之间的窄通道。

Constriction 收缩/瓶颈

图 6

我们在下面定义了 Markov 链的收缩的一个组合度量, 称为归一化导通率。

定义 1.3.1 设 $\varepsilon > 0$ 。Markov 链的 $\varepsilon - mixing$ 时间是最小的整数 t,使得对于任何初始分布 P_0 ,第 t 步的平均概率分布与平稳分布之间的 1-范数距离最多为 ε 。

$$\mid a_t - \pi \mid \ \leq \varepsilon$$

定义 1.3.2 对于一个顶点子集 S, 令 $\pi(S)$ 表示 $\sum_{x \in S} \pi_x$ 。 归一化导通率定义为:

$$\Phi(S) = \frac{\sum_{(x,y) \in (S,\bar{S})} \pi_x p_{xy}}{\min(\pi(S),\pi(\bar{S}))}$$

其中, $\bar{S} = V - S$ 。 $\pi(S)$ 是平稳分布下, Markov 链处于某状态属于 S 的概率。

定义 1.3.3 Markov 链的归一化导通率,记作 Φ ,定义为:

$$\Phi = \min_S \Phi(S)$$

定理 1.3.4. 在无向图上, 随机游走的 $\varepsilon - mixing$ 时间为:

$$\Phi \left(rac{\ln \left(rac{1}{\pi_{\min}}
ight)}{\Phi^2 arepsilon^3}
ight)$$

其中, π_{\min} 是任何状态的最小平稳概率。

使用归一化导通率证明收敛性。

接下来, 我们应用定理 1.3.4 通过一些例子说明归一化导通率如何限制收敛速度。

① 一个一维的格子

n个顶点路径,两端都有自环。

平稳概率在所有顶点上是均匀的 $\frac{1}{n}$ 。

具有最小归一化导通率的集合是:

- 具有 $\pi \leq \frac{1}{2}$ 的集合;
- 包含前 分顶点的集合。

从集合 S 到集合 \bar{S} 的边的总导通率是:

$$\pi_m p_{m,m+1} = \Omega\big(\tfrac{1}{n}\big), (m = \tfrac{n}{2})$$

$$\pi(S) = \frac{1}{2}$$

因此,
$$\Phi(\bar{S}) = 2\pi_m p_{m,m+1} = \Omega(\frac{1}{n})$$

根据定理 1.3.4,对于 $\varepsilon=\frac{1}{100}$,经过 $O(n^2\log n)$ 步之后, $||a_t-\pi||\leq \frac{1}{100}$ 。 此图没有快速收敛性。

1.4. 4. 单位边权重的无向图上的随机游走

我们使用这种特殊类型的图来回答以下问题:

- 随机游走从x到达y的期望时间是多少?
- · 从 x 到 y 并返回的期望时间是多少?
- 到达每个顶点的期望时间是多少?

① 命中时间

 h_{xy} —— 也称为发现时间。

引理 1.3.5. 从路径上的一个端点开始随机游走,穿过有 n 个顶点的路径到达另一端的期望时间是 $\Theta H(n^2)$ 。

证明:

$$\begin{split} h_{12} &= 1 \\ h_{i,i+1} &= \frac{1}{2} + \frac{1}{2}(1 + h_{i-1,i+1}) \\ &= 1 + \frac{1}{2}(h_{i-1,i} + h_{i,i+1}) \\ &= 2 + h_{i-1,i} \\ \\ \mathbb{B} 此, \ h_{i,i+1} &= 2i - 1 \ , \ 2 \leq i \leq n - 1 \\ &\not\in \mathcal{M} \ 1 \, \not\in \mathfrak{J} \ \mathbf{n}, \\ h_{1,n} &= \sum_{i=1}^{n-1} h_{i,i+1} \\ &= \sum_{i=1}^{n-1} (2i - 1) \\ &= 2 \sum_{i=1}^{n-1} i - \sum_{i=1}^{n-1} 1 \\ &= 2 \frac{n(n-1)}{2} - (n-1) \\ &= (n-1)^2 \end{split}$$

引理 1.3.6 设随机游走从顶点 1 到顶点 n,在包含 n 个顶点的链中。令 t(i) 为在顶点 i 停留的期望时间。那么:

$$t(i) = \begin{cases} n-1, & i=1 \\ 2(n-i), 2 \le i \le n-1 \\ 1, & i=n \end{cases}$$

证明 现在 t(n) = 1,因为游走到达 n 时会停止。当游走到达 n-1 时,一半的时间它会继续走向 n。因此, t(n-1) = 2。对于 $3 \le i \le n-1$,

$$t(i) = \frac{1}{2}[t(i-1) + t(i+1)]$$

$$t(1) = \frac{1}{2}t(2) + 1$$

$$t(2) = t(1) + \tfrac{1}{2}t(3)$$

因此我们得到

$$t(i+1) = 2t(i) - t(i-1)$$

因此, t(i) = 2(n-i) 对于 $3 \le i \le n-1$ 。

$$t(2) = 2(n-2), \ t(1) = n-1.$$

因此, 在顶点停留的总时间是

$$n-1+2(1+2+\ldots+n-2)+1=(n-1+1+2\frac{(n-1)(n-2)}{2}+1)=(n-1)^2+1$$

这比 h_{1n} 多出1。

②往返时间

$$commute(x,y) = h_{xy} + h_{yx}$$

③ 覆盖时间

 $Cover(x,G) \rightarrow$ 从顶点 x 开始的随机游走到达每个顶点至少一次的期望时间。

$$Cover(G) = \max_{x} Cover(x,G)$$

定理 1.3.7. 设 G 是一个有 n 个顶点和 m 条边的图。覆盖时间 Cover(G) 的上界为 4m(n-1)。

证明. 进行一次从某个顶点 Z 开始的深度优先搜索。T 是结果生成的深度优先搜索生成树。深度优先搜索覆盖每个顶点。注意,生成树中的每条边在两个方向上都被遍历了两次。

$$Cover(Z,G) \leq \sum_{(x,y) \in T, (y,x) \in T} h_{xy}$$

推论. 如果 x 和 y 是相邻的,则 $h_{xy}+h_{yx}\leq 2m$,其中 m 是边的数量。该推论表明 $h_{xy}\leq 2m$ 。由于深度优先搜索树中有 n-1 条边,并且每条边都被遍历两次, $Cover(Z)\leq 4m(n-1)$ 。因此, $Cover(G)\leq 4m(n-1)$ 。

1.5. 更多关于 Markov 的内容

 \triangle 一个简单的 Markov 链 $\langle S, P \rangle$ S: 状态, P: 概率

图 9

大量路径的例子:

$$C_1, C_2, C_3, pass$$

$$C_1, TikTok, C_1, C_2, C_3, pass$$

$$C_1, C_2, C_3, Library, C_2, pass$$

.

\triangle Markov 奖励过程 $\langle S, P, R, \gamma \rangle$ R: 奖励, γ : 折扣因子

总奖励

$$\begin{split} G_t &= R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots \\ &= \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \end{split}$$

状态的价值函数

$$V(s) = \mathbb{E}[G_t \mid S_t = s]$$

12 随机游走与马尔可夫链

= 从该状态开始的期望奖励,即不同路径的平均奖励。

路径: $C_1, C_2, C_3, Pass, Exit$

$$S_1=C_1 \perp \!\!\! \perp \gamma=1/2$$

$$V_{C_1} = -2 - 2 \cdot \tfrac{1}{2} - 2 \cdot \tfrac{1}{4} - 10 \cdot \tfrac{1}{8} = -2.25$$

路径: C_1 , TikTok, TikTok, C_1 , C_2 , Exit

$$V_{C_1} = -2 - 1 \cdot \frac{1}{2} - 1 \cdot \frac{1}{4} - 2 \cdot \frac{1}{8} - 2 \cdot \frac{1}{16} = -3.125$$

Bellman 期望方程

$$\begin{split} V(s) &= \mathbb{E}[G_t \mid s_t = s] \\ &= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots \mid s_t = s] \\ &= \mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} \cdots) \mid s_t = s] \\ &= \mathbb{E}[R_{t+1} + \gamma G_{t+1} \mid s_t = s] \\ &= \mathbb{E}[R_{t+1} + \gamma V(s_{t+1}) \mid s_t = s] \end{split}$$

使用 s' 表示 t+1 的可能状态,

$$V(s) = R_s + \gamma \sum_{s' \in S} P_{ss'} V(s')$$

对于 class 3

$$4.3 = -2 + 0.6 \times 10 + 0.4 \times 0.8$$

 \triangle Markov 决策过程 $\langle S, A, P, R, \gamma \rangle$ A: 动作

策略:采取动作的概率分布。

$$\pi(a \mid s) = \mathbb{P}[A_t = a \mid S_t = s]$$

给定一个 MDP $M=\langle S,A,P,R,\gamma\rangle$ 和一个策略 π 。 序列 S_1,S_2,\cdots 是一个 Markov 过程 $\langle S,p^\pi\rangle$ 。 状态和奖励序列 S_1,R_2,S_2,\cdots 是一个 Markov 过程 $\langle S,P^\pi,R^\pi,\gamma\rangle$ 。

在策略 π 下,从状态 s 转移到 s' 的概率是:

$$P^\pi_{ss\prime} = \sum_{a \in A} \pi(a \mid s) P^a_{ss\prime}$$

在策略 π 下, 状态 s 的奖励是:

$$R_s^{\pi} = \sum_{a \in A} \pi(a \mid s) R_s^a$$

价值函数:

$$V_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

策略价值函数:

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

Bellman 方程:

$$\begin{split} V_\pi(s) &= \mathbb{E}_\pi \big[R_{t+1} + \gamma v_\pi \big(s_{t+1} \big) \mid s_t = s \big] \\ q_\pi(s,a) &= \mathbb{E}_\pi \big[R_{t+1} + \gamma q_\pi \big(s_{t+1}, A_{t+1} \big) \mid s_t = s, A_t = a \big] \\ \texttt{因此} \quad V_\pi(s) &= \sum_{a \in \mathcal{A}} \pi(a \mid s) q_\pi(s,a) \end{split}$$

且
$$q_\pi(s) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a V_\pi(s')$$

因此,

$$q_{\pi}(s) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \sum_{a' \in A} \pi(a' \mid s') q_{\pi}(s', a')$$

最优价值函数

$$V_*(s) = \max_{\pi} V_{\pi}(s)$$

最优动作-价值函数

$$q_*(s, a) = \max_{\pi} q_{\pi}(s, a)$$

我们可以使用 $q_*(s,a)$ 来得到最优策略 π :

$$\pi_*(a \mid s) = \begin{cases} 1 \text{ if } a = \arg\max_{a \in A} q_*(s, a) \\ 0 \text{ otherwise} \end{cases}$$