YAN AZDOUD, Ph.D.

yazdoud1@jhu.edu

Tel (USA) +1 (443) 240 8318 French citizenship

1807 Saint Paul Street, 21202 Baltimore, Maryland

Experience

Postdoctoral researcher, CMRL, civil eng. dept., Johns Hopkins University, Baltimore, MD, USA

Feb 2014-Present

Task: Adaptive enrichment of the Crystal Plasticity Finite Element Model (CPFEM)

Principal Investigator: Prof. Somnath Ghosh

Skills: Finite deformation, wavelet decomposition, hierarchical FEM, crystal plasticity

Doctoral student researcher, COHMAS, KAUST, Saudi Arabia

2010-2014

Thesis title: A hybrid local/nonlocal framework for the simulation of damage and fracture

Advisor: Prof. Gilles Lubineau

Skills: Development under C++ and OpenMP, non-local mechanics, damage mechanics, fracture

mechanics, coupling methods

Research intern, Sandia National Lab at Albuquerque NM, USA

Summer 2011

Task: Development of composite models on EMU

Advisor: Dr. Stewart Silling

Skills: Development under FORTRAN and MPI, non-local mechanics, damage mechanics, laminated

composite theory

Graduate student researcher, LMT Cachan, France

Spring 2010

Thesis title: Two optimization algorithms by multi-time-stepping for explicit dynamic simulations

Advisor: Prof. Christian Rey

Skills: Domain decomposition, multi-time stepping, 2D FEM solution in MATLAB

Research intern, Department of Mechanical Engineering, UC Berkeley, CA, USA

Summer 2009

Task: Simulation of embed SiC sensor in composite structures

Advisor: Prof. Debbie Senesky

Skills: Simulation in Abagus, stress criteria in anisotropic models

Education

Ph. D. in Mechanical Engineering, King Abdullah University of Science and Technology (KAUST), Saudi Arabia

Graduated in Feb 2014

M. S. in Mechanical Engineering, Advanced Techniques in Structure Calculus (TACS), ENS de Cachan

Graduated in 2010

B. S. in Mechanical Engineering, ENS de Cachan, France

Graduated in 2008

Classe Preparatoire, Lycée Saint-Louis, Paris, France

2005-2007

Baccalauréat, French high school equivalent, El Jadida, Morocco

Completed in 2005

Mechanical engineering

Theoretical skills

Computational mechanics, local continuum mechanics, atomistic, non-local fracture, non-linear solver, advanced FEM, Peridynamics, damage mechanics, fracture theory, dynamic simulation, laminate theory, XFEM/GFEM, homogenization methods, coupling methods, inverse methods, finite deformation, crystal plasticity, DG/FEM, CAD-CAM

Experimental skills

Preparation of composite laminate (vacuum infusion, molding, curing and post-curing), metal casting and working, long distance microscopy, indentation test, traction and microtraction test, image correlation, basic knowledge in numerical control for multiaxis machining and rapid prototyping

Languages

Fluent in French and English, conversational in Spanish and Arabic

Programming

Languages: C, C++, FORTRAN, HTML/CSS, Javascript, MATLAB **Libraries:** OpenMP, MPI, Cuda, OpenGL shaders, Qt, JQuerry, Nodejs

Software

OS: Windows, Mac, Linux

Engineering: Comsol Multiphysics, Abaqus, MATLAB, Cast3m, Freefem, CATIA,

Mathematica, EMU, Tecplot

General: Latex, Adobe Illustrator, Photoshop, Premiere, Windows and Open office

Conferences and publications

Peer reviewed publications: 58 citations excluding self and co-authors, Google scholar

- F. Han, G. Lubineau, **Y. Azdoud**, *Adaptive coupling between damage mechanics and peridynamics: a route for objective simulation of material degradation up to complete failure*, Journal of the Mechanics and Physics of Solids, (2016)
- F Han, G. Lubineau, **Y. Azdoud**, A. Askari, *A morphing approach to couple state-based peridynamics with classical continuum mechanics*, Computer Methods in Applied Mechanics and Engineering, (2016)
- **Y. Azdoud**, F. Han, G. Lubineau, *The morphing method as a flexible tool for adaptive local/non-local simulation of fracture*, Computational mechanics, Vol 54, 711-722, (2014)
- F. Han, **Y. Azdoud**, G. Lubineau, *Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part I: Microstructural characterization and geometric modeling*, Computational Materials Science, Vol 81, 641-651, (2014)
- F. Han, **Y. Azdoud**, G. Lubineau, *Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part II: Mechanical modeling*, Computational Materials Science, Vol 81, 652-661, (2014)
- Y.Azdoud, F. Han, G. Lubineau, A morphing framework to couple non-local and local anisotropic continua,

International Journal of Solids and Structures, Vol 50, 9, 1332-1341, (2013)

G. Lubineau, **Y. Azdoud**, F. Han, C. Rey and A. Askari, *A morphing strategy to couple local to non-local continuum mechanics*, Journal of the Mechanics and Physics of Solids, Vol 60, **6**, 1088-1102, (2012)

In preparation

Y. Azdoud, J. Cheng, S. Ghosh, *Wavelet Enhanced Adaptive Hierarchical Finite Element Model for Polycrystalline Microstructures*, **under preparation**

Y. Azdoud, J. Cheng, S. Ghosh, *Adaptive Wavelet Enhancement for Finite Deformation Generalized Crystal Plasticity Finite Element Method*, **under preparation**

Book chapters

A. Askari, **Y. Azdoud**, F. Han, G. Lubineau, S. Silling, *Peridynamics for analysis of failure in advanced composite materials*, Chapter 19 (12), **Numerical Modelling of Failure in Advanced Composite Materials**, Woodhead Publishing (2015)

Y. Azdoud, F. Han, D. Littlewood, G. Lubineau and P. Seleson, *Coupling Local and Nonlocal Models*, Chapter 17, **Handbook of Peridynamic Modeling**, Chapman and Hall/CRC, **expected 2016**

Conferences and workshops

Y.Azdoud, J.Cheng, S. Ghosh, *The Adaptive Wavelet Enhancement for Crystal Plastic Finite Element Method*, 13th US National Congress on Computational Mechanics, San Diego, CA (2015)

S.Ghosh, **Y. Azdoud**, Advancing Computational Methods for Image-based Modeling of Polycrystalline Metallic Material, AFOSR 2015 Multiscale Structural Mechanics Annual Grantees Meeting, Fort Walton, FL (2015)

S.Ghosh, **Y. Azdoud**, *Advancing Computational Methods for Image-based Modeling of Polycrystalline Metallic Material*, AFOSR 2014 Multiscale Structural Mechanics Annual Grantees Meeting, Albuquerque, NM (2014)

G. Lubineau, F. Han and **Y. Azdoud**, *How can peridynamics and damage mechanics work together to achieve objective simulation of failure?* MM&FGM 2014, Sao Paulo, Brazil (2014)

Y.Azdoud, F.Han, G. Lubineau, *Adaptive coupling for the simulation of non-local static fracture*, CEMAM workshop, KAUST, Thuwal, KSA (2013)

Y. Azdoud, Multiscale Simulation of Non-Local Models, Noor for Research, KAUST, Thuwal, KSA (2013)

Y. Azdoud, F. Han, G. Lubineau, *Static fracture in non-local simulation using adaptive DGFEM*, NDF2013, San Antonio, TX, USA (2013)

Y. Azdoud, G. Lubineau, F. Han, *Ghost Forces in Non-Local-to-Local Continua Coupling by the Morphing Method*, ESMC'12, Graz, Austria (2012)

G. Lubineau, **Y. Azdoud**, F. Han, C. Rey and A. Askari, *A gradient-based coupling method between Cauchy and non-local continuum*, WCCM'12, Sao Paulo, Brazil (2012)

Y. Azdoud and G. Lubineau, A Gradient-based Coupling Method between Cauchy Continuum Model and Bond-Based Peridynamics, CFRAC'11, Barcelona, Spain (2011)

G. Lubineau, Y. Azdoud, F. Han, C. Rey and A. Askari, A gradient-based Coupling method between

Cauchy and Non-local continuum, USNCCM'11, Minneapolis, MN, USA (2011)

Awards, recognition and fellowship

KAUST Provost academic achievement award

KAUST Ph.D. student fellowship

ENS Normalien fellowship

2010-2011

2010-present
2007-2010

Additional information

Sport: Soccer, squash and natation

Volunteering: Instructor in KAUST for WEP, instructor in the Baltimore Station North Tool Library

Music: Derbuka (traditional Moroccan drum) and piano

Hobbies: Steel forging, gardening, photography, and astro-photography

References

Prof. Somnath Ghosh, Michael G. Callas Chair Professor, Department of Civil Engineering, Johns Hopkins University, Latrobe 203, 3400 N. Charles Street, Baltimore, MD 21218, USA sghosh20@jhu.edu

Prof. Gilles Lubineau, King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, COHMAS Laboratory, Thuwal 23955-6900, Saudi Arabia gilles.lubineau@kaust.edu.sa

Prof. Christian Rey, LMT Cachan (ENS Cachan / CNRS / UPMC / PRES UniverSud Paris), 61 Avenue du President Wilson, 94235 Cachan Cedex, France rey@lmt.ens-cachan.fr

Dr. Stewart Silling, Multiscale Dynamic Material Modeling Department, Sandia National Laboratories, Albuquerque, NM, USA sasilli@sandia.gov

Prof. Debbie G. Senesky, Aeronautics and Astronautics Department, Stanford University, CA, USA dsenesky@stanford.edu