

"Only big words for ordinary things on account of the sound."

James Joyce
Ulysses
(Lestrygonians chapter)

Background

- The term *Spectral Method* refers to a range of techniques used to study the structure of *matrices*.
- These methods have been widely used in settings where matrix forms arise as a *basic modelling technique*, eg

Graphs (both directed and undirected)

Images (jpeg, gif, etc)

Data Science

Machine Learning

Game Theory

What this section involves

- We first return to reviewing properties of *matrices* extending from ideas introduced when considering *vectors* earlier.
- We introduce the *Eigenvalue Problem*, a key element in the study of *Spectral Methods*.
- We consider some *computational issues* involving finding *eigenvalues* and *eigenvectors*.
- Finally we illustrate *use in CS* through two examples:

Google's Page Ranking algorithm
Image Compression

Matrices Revisited

- We looked briefly at matrices in Section 2 and have seen other instances mentioned in contexts such as the *Hessian* or the *Fourier Transform*.
- There are two important concepts we did not review:

The notion of *Inverse Matrix*

The **Determinant** of a Matrix

 First recall that the *Identity Matrix*, *I*, has entries all 0 apart from those whose *column* and *row index* are equal (the *diagonal* elements): the diagonal elements equal 1. For any *A*,

$$A \cdot I = I \cdot A = A$$
.

Matrix Inverse

• For an $n \times n$ matrix, A, its *inverse* is the matrix denoted A^{-1} for which:

$$A \cdot A^{-1} = A^{-1} \cdot A = I$$

- Not every matrix has an inverse.
- The term *singular matrix* is used for matrices with *no inverse*.
- Any matrix having an inverse is called non-singular.

Matrix Determinant

- For any Real-valued $n \times n$ matrix, A, its *determinant* is a Real value whose properties are key to the *existence* of an *inverse* matrix A^{-1} .
- In other words whether *A* is *singular* or *non-singular*.
- The determinant also is central to *The Eigenvalue Problem*.
- We refer to pages 375–379 of the module text for computational methods.
- Our principle interest is the following:

 $\det A \neq 0 \Leftrightarrow A^{-1}$ exists, ie A is non-singular

The Eigenvalue Problem

• Given an $n \times n$ matrix, A:

Find *all scalar values*, λ , for which there is an n-vector, \underline{x}_{λ} , satisfying:

$$A \cdot \underline{x}_{\lambda} = \lambda \underline{x}_{\lambda}$$

These scalar values are called the *eigenvalues* of *A*.

- The *n*-vectors, \underline{x}_{λ} , are called the *eigenvectors of A* (wrt λ).
- Eigenvectors of the matrix formed from a set of *linked web pages* form the basis of *Google's Page Rank* approach.
- This derives from a famous result of the early 20th century:

The Perron-Frobenius Theorem

More about Eigenvalues

- The case x = 0 always produces a solution for trivial reasons.
- Therefore, in finding eigenvectors, this case is *not* considered.
- The case, $\lambda = 0$, is of interest.
- First note that if *A* is *non-singular* then only *trivial solutions* exist. (textbook, pp. 389–390).
- In general finding eigenvalues involves finding λ for which

$$(A - \lambda I)\underline{x}_{\lambda} = \underline{0}$$

- That is to say for which: $det(A \lambda I) = 0$.
- Notice that $(A \lambda I)$ is the matrix A with λ subtracted from each diagonal entry.

Eigenvalues, Determinants, & Roots

- The form $det(A \lambda I) = 0$ has an interpretation involving roots of a polynomial.
- Since $\det A$ (with some parameter, λ , say) may be described as a polynomial of degree n in λ (with A an $n \times n$ matrix) the solutions to $\det(A \lambda I) = 0$ are exactly the roots of this polynomial which is called the *Characteristic Polynomial* of A.
- This is denoted by $\chi(A)$.
- Details may be found on pages 381–382, 391–393.

Two important consequences

- 1. An $n \times n$ matrix has n eigenvalues (although these are not necessarily distinct, cf the situation with polynomial roots).
- 2. Eigenvalues may be Complex Numbers.
- In principle we can extend the *domain* of matrices to the set of *Complex Numbers* instead of only *Reals*.
- It is also possible to identify classes of *Real-valued matrix* whose eigenvalues are *guaranteed all to be Real*:

Symmetric matrices -
$$[a_{ij}] = [a_{ji}]$$
.

Ordering Eigenvalues and Dominance

Conventionally the eigenvalues are written

$$\sigma(A) = (\lambda_1, \lambda_2, \lambda_3, ..., \lambda_k, ..., \lambda_n)$$

- This is called the *spectrum* of *A*.
- The convention used is: $|\lambda_k| \ge |\lambda_{k+1}| \ \forall \ 1 \le k < n$.
- The value λ_1 , if unique, is called the *Dominant Eigenvalue* of A.
- The *largest* eigenvalue is referred to as the *Spectral Radius*.
- For *Complex values*, if λ is an eigenvalue of A then so too is $\overline{\lambda}$.
- We consider *Computational methods* in the next lecture.