Mean of datasets

6/6 points (100.00%)

Practice Quiz, 6 questions

✓ Congratulations! You passed!

Next Item

1/1 points

1.

What is the mean of the dataset $\mathcal{D}=\{1,2,3\}$?

Do the exercises using pen and paper.

- 0

2

6

Correct

That's it. Good job!

points

2.

Compute the mean of the following dataset:

$$\mathcal{D} = \left\{ egin{array}{c} 1 \ 4 \ 7 \end{array}, egin{array}{c} 2 \ 5 \ 8 \end{array}, egin{array}{c} 3 \ 6 \ 9 \end{array}
ight\}$$

Do the exercises using pen and paper.

- $\begin{bmatrix} -2 \\ -5 \\ -8 \end{bmatrix}$
- 0

Mean of datasets $\begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}$

6/6 points (100.00%)

Practice Quiz, 6 questions

Correct

Well done!

 $\begin{bmatrix} 6 \\ 15 \\ 24 \end{bmatrix}$

1/1 points

3.

What is the mean of the following dataset, **after** multiplying each sample in the dataset by 2?

$$\mathcal{D}=\Big\{egin{bmatrix}1\\2\\3\end{bmatrix},egin{bmatrix}3\\4\\5\end{bmatrix},egin{bmatrix}5\\3\\1\end{bmatrix}\Big\}$$

 $\begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix}$

Correct

Well done!

 $\begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix}$

 $\begin{bmatrix} 18 \\ 18 \\ 18 \end{bmatrix}$

1/1 points

4.

What is the mean of the following dataset, **after** adding 2 to each Mean of datasets

6/6 points (100.00%)

Practice Quiz, 6 questions en the following dataset?

$$\mathcal{D}=\Big\{egin{bmatrix}1\\2\\3\end{bmatrix}$$
 , $egin{bmatrix}3\\4\\5\end{bmatrix}$, $egin{bmatrix}5\\3\\1\end{bmatrix}\Big\}$

$$\begin{bmatrix}
4 \\
5 \\
6
\end{bmatrix}$$

Correct

Well done!

$$\begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

1/1 points

5.

Assuming that we know the mean $ar{x}_{n-1}$ of a dataset \mathcal{D}_{n-1} with n-1data points. Now, suppose that we collect another data point, which we denote by x_{st} . Select the correct formula that computes the correct new mean $ar{x}_n$ of the full data set $\mathcal{D}_n = \mathcal{D}_{n-1} \cup \{x_*\}$, i.e., we add x_* to the dataset \mathcal{D} .

$$igcap ar{x}_n = ar{x}_{n-1} + rac{1}{n-1} (m{x}_* - ar{m{x}}_{n-1})$$

$$ar{x}_n = ar{x}_{n-1} + rac{1}{n+1} (x_* - ar{x}_{n-1})$$

$$igcap ar{x}_n = ar{x}_{n-1} + rac{1}{n+1} (ar{x}_{n-1} - x_*)$$

$$\bar{x}_n = \bar{x}_{n-1} + \frac{1}{n} (x_* - \bar{x}_{n-1})$$

Correct

Excellent!

6/6 points (100.00%)

Practice Quiz, 6 quest**6**ns

Assuming you are given an image as a two dimensional array of shape 28×28 . Write a small piece of python code to reshape this image to a vector of length 784 (= 28×28).

Hint: This can be a one-liner.

Correct Response

Good job!

