カウントデータをGLM・GLMMで解析

▶ 例:『シカが食べると根萌芽が増えるんじゃないか仮説』の検証

タイミンタチバナの根萌芽

根萌芽が増えたのかも

データ収集・GLMで解析

- ▶ 10×10mの調査区をたくさん作っていろいろ調べる
 - 。根萌芽の数
 - ・シカ
 - 。その他影響しそうなもの:親木の数,光環境,地形

調査地の違いは?GLMMで釈明

シカ密度の違う3ヶ所に10数個ずつ調査区を作った

データが入れ子(nested)状になっている

『疑似反復(pseudo-replication)とちゃうの?』 とかいう"いちゃもん"が付きそう・・・

GLMMで調査地の違いを考慮しよう!

というか ちゃんと考慮したよ って言い訳しよう

GLMMの関数とパッケージ

- ▶ いろいろある。それぞれ長所と短所がある・・・のか?
 - glmmML(glmmML)
 - Imer(Ime4)
 - negbin(aod)
 - Ime(nlme)
 - glmm(glmm)
 - glmmPQL(MASS) etc...

*関数(パッケージ)

glmmMLとImerしか 使ったことがないので 他は誰か解説して下さい

glmmML

- 混合効果は一つだけ扱える
- ∘ ポアソン分布・二項分布が扱える
- stepAICが使える
 - →モデル選択が簡単
- 用途は狭いが融通が効く

Imer

- 。 混合効果は複数指定できる
- "ランダム傾き"という良く分から んものも考慮することができる
- いろんな分布型が使える
- 動きが重い、無理させると落ちる
- 。 stepAICは使えない

この2つで実践!

あり/なしデータをGLMで解析

▶ 例:『シカは小さい木がお好き?』仮説の検証

全体での採食頻度はほぼ同じ2か所だけど・・・

二項分布を使ったGLM

今さらながら、結果の解釈のしかた

bite~height*site (siteはAIKOとHNYMの2カテゴリ)

	Estimate	Pr(> z)	
(Intercept)	0.090065	0.4034	
height	-0.020882	< 2e-16	***
siteHNYM	-0.429934	0.0171	*
height:siteHNYM	0.007225	0.0075	**

AIKO: bite=-0.021*height+0.09

HNYM: bite=-0.014*height-0.34

おまけ: offset項を使おう

▶割り算してたデータも有効活用しよう

• 密度, 優占度, 確率...

- ▶割り算を避ける方法
 - 確率の場合(N個のうちのk個)
 - · 二項分布でGLM
 - 。密度や優占度など(分母もデータ)
 - offset項を使用+ポアソン分布でGLM

まう 第一段階の 情報圧縮 第二段階の 情報圧縮 類別 データ 野外調査 野外実験 室内実験 久保さん自由集会資料

Offset項 例えば・・・面積(A)あたりの花の数(y)は光環境(x)で説明できるのか?

* 詳しいことは北大の久保さんの講義ノートを見てください

やってみる

(調査年の違いを含むGLMMというおまけ付き)

例:『シカが多いところは根萌芽だらけ』仮説の検証

重ね重ね・・

* 詳しいことは北大の久保さんの講義ノートを見てください