PowerEnjoy

Riccardo Redaelli Nicola Sosio Maria Chiara Zaccardi

Politecnico di Milano

6 Marzo 2017

Introduzione

PowerEnjoy è una società di car sharing che offre soltanto macchine elettriche

Permette inoltre agli utenti di noleggiare una macchina per brevi viaggi e invia notifiche agli operatori con le richieste di riparazione o di assistenza.

PowerEnjoy vuole incentivare il comportamente virtuoso degli utenti attraverso sconti.

- Gli operatori ricevono le credenziali di accesso al momento della loro assunzione.
- Nelle ore di servizio gli operatori sono sempre disponibili e connessi all'applicazione.
- Le operazioni vengono sempre assegnate all'operatore più vicino alla macchina.
- Per sbloccare la macchina, una volta prenotata, è necessario inserire il codice della macchina nell'applicazione.

- Gli operatori ricevono le credenziali di accesso al momento della loro assunzione.
- Nelle ore di servizio gli operatori sono sempre disponibili e connessi all'applicazione.
- Le operazioni vengono sempre assegnate all'operatore più vicino alla macchina.
- Per sbloccare la macchina, una volta prenotata, è necessario inserire il codice della macchina nell'applicazione.

- Gli operatori ricevono le credenziali di accesso al momento della loro assunzione.
- Nelle ore di servizio gli operatori sono sempre disponibili e connessi all'applicazione.
- Le operazioni vengono sempre assegnate all'operatore più vicino alla macchina.
- Per sbloccare la macchina, una volta prenotata, è necessario inserire il codice della macchina nell'applicazione.

- Gli operatori ricevono le credenziali di accesso al momento della loro assunzione.
- Nelle ore di servizio gli operatori sono sempre disponibili e connessi all'applicazione.
- Le operazioni vengono sempre assegnate all'operatore più vicino alla macchina.
- Per sbloccare la macchina, una volta prenotata, è necessario inserire il codice della macchina nell'applicazione.

Introduzione

- L'account viene bloccato se l'utente effettua un noleggio per cui non può pagare.
- Il parcheggio è consentito solo all'interno di una Safe Area, fuori da essa il noleggio non può terminare.
- Se un noleggio termina a più di 3km da una power grid station, un operatore viene incaricato di spostare la macchina entro i 3km.
- Una macchina in carica, ricompare fra le macchine disponibili soltant a carica completa.

- L'account viene bloccato se l'utente effettua un noleggio per cui non può pagare.
- Il parcheggio è consentito solo all'interno di una Safe Area, fuori da essa il noleggio non può terminare.
- Se un noleggio termina a più di 3km da una power grid station, un operatore viene incaricato di spostare la macchina entro i 3km.
- Una macchina in carica, ricompare fra le macchine disponibili soltant a carica completa.

- L'account viene bloccato se l'utente effettua un noleggio per cui non può pagare.
- Il parcheggio è consentito solo all'interno di una Safe Area, fuori da essa il noleggio non può terminare.
- Se un noleggio termina a più di 3km da una power grid station, un operatore viene incaricato di spostare la macchina entro i 3km.
- Una macchina in carica, ricompare fra le macchine disponibili soltant a carica completa.

- L'account viene bloccato se l'utente effettua un noleggio per cui non può pagare.
- Il parcheggio è consentito solo all'interno di una Safe Area, fuori da essa il noleggio non può terminare.
- Se un noleggio termina a più di 3km da una power grid station, un operatore viene incaricato di spostare la macchina entro i 3km.
- Una macchina in carica, ricompare fra le macchine disponibili soltant a carica completa.

- **Visitor**: persone che devono registrarsi per usufruire del servizio. Possono visualizzare i form per accedere o registrarsi e una breve descrizione del servizio offerto.
- User: persone che dopo aver eseguito il login, sono abilitate ai servizi offerti.
- Operator: dipendenti della società, che dopo il login, possono visualizzare la macchina sulla quale devono effettuare l'operazione.
- PayPal: è un attore passivo, utilizzato dal sistema per il pagamento delle corse.

- **Visitor**: persone che devono registrarsi per usufruire del servizio. Possono visualizzare i form per accedere o registrarsi e una breve descrizione del servizio offerto.
- User: persone che dopo aver eseguito il login, sono abilitate ai servizi offerti.
- Operator: dipendenti della società, che dopo il login, possono visualizzare la macchina sulla quale devono effettuare l'operazione.
- PayPal: è un attore passivo, utilizzato dal sistema per il pagamento delle corse.

- **Visitor**: persone che devono registrarsi per usufruire del servizio. Possono visualizzare i form per accedere o registrarsi e una breve descrizione del servizio offerto.
- User: persone che dopo aver eseguito il login, sono abilitate ai servizi offerti.
- Operator: dipendenti della società, che dopo il login, possono visualizzare la macchina sulla quale devono effettuare l'operazione.
- PayPal: è un attore passivo, utilizzato dal sistema per il pagamento delle corse.

- **Visitor**: persone che devono registrarsi per usufruire del servizio. Possono visualizzare i form per accedere o registrarsi e una breve descrizione del servizio offerto.
- User: persone che dopo aver eseguito il login, sono abilitate ai servizi offerti.
- Operator: dipendenti della società, che dopo il login, possono visualizzare la macchina sulla quale devono effettuare l'operazione.
- PayPal: è un attore passivo, utilizzato dal sistema per il pagamento delle corse.

Use case 1/2

Use case 2/2

Diagramma a stati

Introduzione

parked=True

- Architettura client-server
- Three-tiers application
 - Thin-client
 - Application Logic
 - Database

- Architettura client-server
- Three-tiers application
 - Thin-client
 - Application Logic
 - Database

- Architettura client-server
- Three-tiers application
 - Thin-client
 - Application Logic
 - Database

- Architettura client-server
- Three-tiers application
 - Thin-client
 - Application Logic
 - Database

- Architettura client-server
- Three-tiers application
 - Thin-client
 - Application Logic
 - Database

High level components

Component view

Struttura database

Sequence diagram - Prenotazione 1/2

Introduzione

Sequence diagram - Prenotazione 2/2

Design Test plan Project plan Introduzione Analisi dei requisiti

Alloy - Cancellazione prenotazione

```
$deleteReservation r: 1
area: 3
availability: 2
car: 2
car: 1
code: 1
driver: 1
numberPassenger: 1
position: 1
position: 2
reservation: 1
user: 2
```


Introduzione Analisi dei requisiti **Design** Test plan Project plan

UX User

Introduzione Analisi dei requisiti **Design** Test plan Project plan

BCE User 1/2

Introduzione Analisi dei requisiti **Design** Test plan Project plan

BCE User 2/2

Prerequisiti

- RASD e DD devono essere stati precedentemente redatti.
- Tutte le classi di ogni component devono essere correttamente documentate.
- Ogni classe deve essere stata testata attraverso i test d'unità.

Prerequisiti

- RASD e DD devono essere stati precedentemente redatti.
- Tutte le classi di ogni component devono essere correttamente documentate.
- Ogni classe deve essere stata testata attraverso i test d'unità.

Prerequisiti

- RASD e DD devono essere stati precedentemente redatti.
- Tutte le classi di ogni component devono essere correttamente documentate.
- Ogni classe deve essere stata testata attraverso i test d'unità.

Strategia di Integrazione

Bottom-up approach

- I componenti vengono testati a partire da quelli senza dipendenze
- Gli stubs non sono necessar
- Driver temporanei

Strategia di Integrazione

- Bottom-up approach
 - I componenti vengono testati a partire da quelli senza dipendenze
 - Gli stubs non sono necessar
 - Driver temporanei

Strategia di Integrazione

- Bottom-up approach
 - I componenti vengono testati a partire da quelli senza dipendenze
 - Gli stubs non sono necessari
 - Driver temporanei

Strategia di Integrazione

- Bottom-up approach
 - I componenti vengono testati a partire da quelli senza dipendenze
 - Gli stubs non sono necessari
 - Driver temporanei

Integrazione dei componenti

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito

Mockito

- permette di creare e configurare mock objects
- semplifica il test di classi con dipendenze esterne
- utile per la creazione di stubs

- open source software utilizzato per il test delle performance
- simula un gruppo di utenti che inviano richieste al server

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito

Mockito

- permette di creare e configurare mock objects
- semplifica il test di classi con dipendenze esterne
- utile per la creazione di stubs

- open source software utilizzato per il test delle performance
- simula un gruppo di utenti che inviano richieste al server

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito
- Mockito
 - permette di creare e configurare mock objects
 - semplifica il test di classi con dipendenze esterne
 - utile per la creazione di stubs
- JMeter
 - open source software utilizzato per il test delle performance
 - simula un gruppo di utenti che inviano richieste al server.

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito
- Mockito
 - permette di creare e configurare mock objects
 semplifica il test di classi con dipendenze esterne
 utile per la creazione di stubs
- JMeter
 - open source software utilizzato per il test delle performance
 simula un gruppo di utenti che inviano richieste al server

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito

Mockito

- permette di creare e configurare mock objects
- semplifica il test di classi con dipendenze esterne
- utile per la creazione di stubs

- open source software utilizzato per il test delle performance
- simula un gruppo di utenti che inviano richieste al server

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito

Mockito

- permette di creare e configurare mock objects
- semplifica il test di classi con dipendenze esterne
- utile per la creazione di stubs

JMeter

• open source software utilizzato per il test delle performance

simula un gruppo di utenti che inviano richieste al server

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito

Mockito

- permette di creare e configurare mock objects
- semplifica il test di classi con dipendenze esterne
- utile per la creazione di stubs

JMeter

open source software utilizzato per il test delle performance
 simula un gruppo di utenti che inviano richieste al server

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito

Mockito

- permette di creare e configurare mock objects
- semplifica il test di classi con dipendenze esterne
- utile per la creazione di stubs

JMeter

open source software utilizzato per il test delle performance
 simula un gruppo di utenti che inviano richieste al server

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito

Mockito

- permette di creare e configurare mock objects
- semplifica il test di classi con dipendenze esterne
- utile per la creazione di stubs

- open source software utilizzato per il test delle performance
- simula un gruppo di utenti che inviano richieste al server

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito

Mockito

- permette di creare e configurare mock objects
- semplifica il test di classi con dipendenze esterne
- utile per la creazione di stubs

- open source software utilizzato per il test delle performance
- simula un gruppo di utenti che inviano richieste al server

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito

Mockito

- permette di creare e configurare mock objects
- semplifica il test di classi con dipendenze esterne
- utile per la creazione di stubs

- open source software utilizzato per il test delle performance
- simula un gruppo di utenti che inviano richieste al server

- Un function point è un'unità di misura per esprimere le dimensioni del software
- La dimensione del software è funzione delle caratteristiche del programma
 - External Input
 - External Output
 - External Inquiry
 - Internal Logic File
 - External Logic Files
- $UFP = \sum (N_i * w_i)$, dove N_i è il numero di elementi di un determinato tipo e w_i il peso associato.

- Un function point è un'unità di misura per esprimere le dimensioni del software
- La dimensione del software è funzione delle caratteristiche del programma
 - External Input
 - External Output
 - External Inquiry
 - Internal Logic File
 - External Logic Files
- $UFP = \sum (N_i * w_i)$, dove N_i è il numero di elementi di un determinato tipo e w_i il peso associato.

- Un function point è un'unità di misura per esprimere le dimensioni del software
- La dimensione del software è funzione delle caratteristiche del programma
 - External Input
 - External Output
 - External Inquiry
 - Internal Logic File
 - External Logic Files
- $UFP = \sum (N_i * w_i)$, dove N_i è il numero di elementi di un determinato tipo e w_i il peso associato.

- Un function point è un'unità di misura per esprimere le dimensioni del software
- La dimensione del software è funzione delle caratteristiche del programma
 - External Input
 - External Output
 - External Inquiry
 - Internal Logic File
 - External Logic Files
- $UFP = \sum (N_i * w_i)$, dove N_i è il numero di elementi di un determinato tipo e w_i il peso associato.

- Un function point è un'unità di misura per esprimere le dimensioni del software
- La dimensione del software è funzione delle caratteristiche del programma
 - External Input
 - External Output
 - External Inquiry
 - Internal Logic File
 - External Logic Files
- $UFP = \sum (N_i * w_i)$, dove N_i è il numero di elementi di un determinato tipo e w_i il peso associato.

- Un function point è un'unità di misura per esprimere le dimensioni del software
- La dimensione del software è funzione delle caratteristiche del programma
 - External Input
 - External Output
 - External Inquiry
 - Internal Logic File
 - External Logic Files
- $UFP = \sum (N_i * w_i)$, dove N_i è il numero di elementi di un determinato tipo e w_i il peso associato.

- Un function point è un'unità di misura per esprimere le dimensioni del software
- La dimensione del software è funzione delle caratteristiche del programma
 - External Input
 - External Output
 - External Inquiry
 - Internal Logic File
 - External Logic Files
- $UFP = \sum (N_i * w_i)$, dove N_i è il numero di elementi di un determinato tipo e w_i il peso associato.

- Un function point è un'unità di misura per esprimere le dimensioni del software
- La dimensione del software è funzione delle caratteristiche del programma
 - External Input
 - External Output
 - External Inquiry
 - Internal Logic File
 - External Logic Files
- $UFP = \sum (N_i * w_i)$, dove N_i è il numero di elementi di un determinato tipo e w_i il peso associato.

External Input

External Input	Complexity	FPs
Registration	Simple	3
Login	Simple	3
Make a reservation	Medium	4
Cancel a reservation	Medium	4
Enable money saving option	Complex	6
Report damage	Complex	6
Plug the car	Simple	3
Unlcok the car (insert the	Simple	3
code)		
Login	Simple	3
Accept an operation	Simple	3
Report operations informations	Simple	3
Total		41

External Output

External Output	Complexity	FPs	
Notify an operator	Simple	4	
Provide a password	Simple	4	
Apply possible fee or discount	Medium	7	
Show the map	Medium	7	
Show the total amount	Simple	4	
Total		26	

External Inquiry

External Inquiry	Complexity	FPs
Select a car	Simple	3
See reservation informations	Simple	3
See available car (by GPS)	Simple	3
See available car (by address)	Simple	3
See power grid station and their position	Simple	3
Availability of each Power Grid Station in real time	Simple	3
See Safe Area	Simple	3
Amount of the cost of the ride	Simple	3
See unavailable cars that need an operation	Simple	3
Total		27

Internal Logic File	Complexity	FPs
Information registerd user	Simple	7
Information registered operator	Simple	7
Safe area	Complex	10
Power grid stations	Simple	7
Мар	Complex	15
Car informations	Simple	7
Reservation	Simple	7
Ride	Simple	7
Operations	Medium	10
Total		77

External Logic File

External Logic File	Complexity	FPs
GPS signal	Complex	10
Reverse geocoding	Complex	10
Map data retrieval	Complex	10
Total		30

SLOC

Function Type	Function Complexity
External Input (EI)	41
External Output (EO)	26
External Inquiry (EQ)	27
Internal Logical File (ILF)	77
External Interface Files (EIF)	30
Total	201

$$SLOC = 46 * 201 = 9246$$

Scale Drivers

SCALE	Very Low	Low	Nominal	High	Very	EXTRA
FACTORS					High	High
PREC	thoroughly unprecedented	largely unprecedented	somewhat unprecedented	generally familiar 2.48	largely familiar 1.24	throughly familiar
SFj	6.20	4.96	3.72	2.48	1.24	0.00
FLEX	rigorous	occasional	some	general	some	general goals
		relaxation	relaxation	conformity	conformity	
SFj	5.07	4.05	3.04	2.03	1.01	0.00
RESL	little (20%)	some (40%)	often (60%)	generally (75%)	mostly (90%)	full (100%)
SFj	7.07	5.65	4.24	2.83	1.41	0.00
ТЕАМ	very difficult interactions	some difficult interactions	basically cooperative interactions	largely cooperative	highly cooperative	seamless interactions
SFj	5.48	4.38	3.29	2.19	1.10	0.00
Рмат	Level Lower 1	Level Upper 1	Level 2	Level 3	Level 4	Level 5
SF_j	7.80	6.24	4.68	3.12	1.56	0.00

Analisi dei requisiti Design Test plan Project plan

Cost Drivers

Feature	Factor	Value
Required Software Reliability	Low	0.92
Database size	Nominal	1.00
Product complexity	Nominal	1.00
Required Reusability	Nominal	1.00
Documentation match to life-cycle needs	Nominal	1.00
Execution Time Constraint	High	1.11
Main storage constrain	Hominal	1.00
Platform volatility	Low	0.87
Analyst capability	High	0.85
Programmer capability	Nominal	1.00
Personnel continuity	High	0.81
Application Experience	Very Low	1.22
Platform Experience	Very Low	1.19
Language and Tool Experience	Low	1.09
		T 1 5 1 1 1 5 5

Effort

$$E = B + 0.01* \sum_{j=1}^{5} SF_j = 0.91 + 0.01* 17.85 = 1.0885$$

$$PM = A* Size^{E}* \prod_{i=1}^{n} EM_i = 2.94* 9246^{1.0885}* 0.81 \simeq 27PM$$

- dove:
 - $A = 2.94 \, PM/\kappa SLOC$
 - Size è la dimensione stimata con i FP
 - EM; sono i Cost Driver
 - B = 0.91
 - SF_i sono i Scale Factor

Test plan

$TDEV = [C * PM^F] * \frac{SCED\%}{100} = 3.67 * 27^{0.3157} * \frac{130}{100} \simeq 14 months$ F = D + 0.2 * (E - B) = 0.28 + 0.2 * (1.86 - 0.91) = 0.3157dove:

- C = 3.67.
- PM è il numero di persone al mese stimate precedentemente
- D = 0.28
- B = 0.91.
- SCED% è il fattore percentuale di compressione/espansione

Allocazione risorse 1/3

Allocazione risorse 2/3

Allocazione risorse 3/3

- cambiamento nei requirements
- perdita di dati
- dipendenza da servizi esterni
- affidabilità e compatibilità dei sensori
- comportamenti inaspettati dei clienti
- concorrenza
- sponsorizzare PowerEnJoy

- cambiamento nei requirements
- perdita di dati
- dipendenza da servizi esterni
- affidabilità e compatibilità dei sensori
- comportamenti inaspettati dei client
- concorrenza
- sponsorizzare PowerEnJoy

- cambiamento nei requirements
- perdita di dati
- dipendenza da servizi esterni
- affidabilità e compatibilità dei sensori
- comportamenti inaspettati dei clienti
- concorrenza
- sponsorizzare PowerEnJoy

- cambiamento nei requirements
- perdita di dati
- dipendenza da servizi esterni
- affidabilità e compatibilità dei sensori
- comportamenti inaspettati dei client
- concorrenza
- sponsorizzare PowerEnJoy

- cambiamento nei requirements
- perdita di dati
- dipendenza da servizi esterni
- affidabilità e compatibilità dei sensori
- comportamenti inaspettati dei clienti
- concorrenza
- sponsorizzare PowerEnJoy

- cambiamento nei requirements
- perdita di dati
- dipendenza da servizi esterni
- affidabilità e compatibilità dei sensori
- comportamenti inaspettati dei clienti
- concorrenza
- sponsorizzare PowerEnJoy

- cambiamento nei requirements
- perdita di dati
- dipendenza da servizi esterni
- affidabilità e compatibilità dei sensori
- comportamenti inaspettati dei clienti
- concorrenza
- sponsorizzare PowerEnJoy

