Trabalho IV: Testes uniformemente mais poderosos.

Disciplina: Inferência Estatística Aluna: Iara Cristina Mescua Castro

24 de novembro de 2022

Data de Entrega: Junto com a A2.

Orientações

- Enuncie e prove (ou indique onde se pode encontrar a demonstração) de <u>todos</u> os resultados não triviais necessários aos argumentos apresentados;
- Lembre-se de adicionar corretamente as referências bibliográficas que utilizar e referenciá-las no texto;
- Equações e outras expressões matemáticas também recebem pontuação;
- Você pode utilizar figuras, tabelas e diagramas para melhor ilustrar suas respostas;
- Indique com precisão os números de versão para quaisquer software ou linguagem de programação que venha a utilizar para responder às questões¹;

Introdução

Vimos que os testes de hipótese fornecem uma abordagem matematicamente sólida para traduzir hipóteses científicas sobre o processo gerador dos dados em decisões sobre os dados – isto é, traduzir afirmações sobre particões do espaço de parâmetros, Ω , em afirmações testáveis sobre o espaço amostral \mathcal{X}^n .

Um teste $\delta(X)$ é uma decisão (binária) de rejeitar ou não uma hipótese nula (H_0) sobre $\theta \in \Omega$ com base em uma amostra X. A capacidade de um teste de rejeitar H_0 quando ela é falsa é medida pela função poder, $\pi(\theta|\delta)$. Nem todos os testes, no entanto, são criados iguais. Em certas situações, é possível mostrar que um procedimento δ_A é uniformemente mais poderoso que outro procedimento δ_B para testar a mesma hipótese.

Neste trabalho, vamos definir e aplicar o conceito de teste uniformemente mais poderoso.

Questões

Dica: ler o capítulo 9.3 de DeGroot.

- 1. Defina precisamente o que é um teste uniformemente mais poderoso (UMP) para uma hipótese;
- 2. Defina precisamente o que é uma razão de verossimilhanças monotônica (RVM);
- 3. Considere uma hipótese nula da forma $H_0: \theta \leq \theta_0, \theta_0 \in \Omega$. Suponha que vale o Teorema da Fatorização e a distribuição de X tem razão de verossimilhanças monotônica. Mostre que se existem $c \in \alpha_0$ tais que

$$\Pr\left(r(\boldsymbol{X}) \ge c \mid \theta = \theta_0\right) = \alpha_0,\tag{1}$$

então o procedimento δ^* que rejeita H_0 se $r(\mathbf{X}) \geq c$ é UMP para H_0 ao nível α_0 ;

 $^{^{1}}$ Não precisa detalhar o que foi usado para preparar o documento com a respostas. Recomendo a utilização do ambiente LaTeX, mas fique à vontade para utilizar outras ferramentas.

4. Qual é dessa moeda aí?

Suponha que você encontra o Duas-Caras na rua e ele não vai com a sua... cara. Ele decide jogar a sua famosa moeda para o alto para decidir se te dá um cascudo. Se der cara (C), você toma um cascudo. Você, que sabe bem Estatística, pede que ele pelo menos jogue a moeda umas n=10 vezes antes de tomar a decisão derradeira.

Surpreendentemente, ele concorda. Lança a moeda e obtém

KCKCKCKKK

Você agora deve decidir se foge, se arriscando a tomar dois cascudos ao invés de um, ou se fica e possivelmente não toma cascudo nenhum. Se p é a probabilidade de dar cara, estamos interessados em testar a hipótese

$$H_0: p \le \frac{1}{2},$$

 $H_1: p > \frac{1}{2}.$

- (a) Escreva a razão de verossimilhanças para esta situação;
- (b) Nesta situação, é do seu interesse encontrar um teste UMP. Faça isso e aplique o teste desenvolvido aos dados que conseguiu arrancar do Duas-Caras.
- 5. (Bônus) Mostre que, no item anterior, não é possível atingir qualquer nível α_0 , isto é, que α_0 toma um número finito de valores. Proponha uma solução para que seja possível atingir qualquer nível em (0,1). (Dica: Ler a seção 9.2 de DeGroot).

Respostas

1. Considere um teste de hipóteses na qual $X=(X_1,X_2,...,X_n)$ é uma amostra de tamanho n, de uma distribuição $f(x|\theta)$. Seja θ um parâmetro desconhecido, onde $\theta \in \Omega$ e $\Omega_0 \cup \Omega_1$. Temos: $H_0: \theta \in \Omega_0$

 $H_1:\theta\in\Omega_1$

Deseja-se testar as hipóteses ao nível de significância α_0 ($0 \le \alpha_0 < 1$).

$$P(\text{Rejeitar } H_0 < \alpha_0)$$

para cada valor de $\theta \in \Omega_0$. Se $\pi(\theta|\delta)$ é a função potência de um teste δ ,

$$\pi(\theta|\delta) \le \alpha_0, \quad \forall \theta \in \Omega_0$$

•

Se $\alpha(\delta)$ representa o tamanho do teste δ ,

$$\alpha(\delta) < \alpha_0$$

Um teste δ^* é uniformemente mais poderoso (UMP) para as hipóteses H_0 e H_1 ao nível de significância α_0 se $\alpha(\delta^*) \leq \alpha_0$, e para cada outro teste δ tal que $\alpha(\delta) \leq \alpha_0$ é verdadeiro que:

$$\pi(\theta|\delta) \le \pi(\theta|\delta^*), \quad \forall \theta \in \Omega_1$$

2. Seja $f_n(\underline{\mathbf{x}}|\theta)$ a conjunta de $X=(X_1,X_2,...,X_n)$ e T(X) uma estatística, é dito que X tem razão de verossimilhanças monotônica (RVM) em T(X) se a seguinte propriedade é satisfeita para todo $\theta_2 > \theta_1$:

$$\frac{f_n(x|\theta_2)}{f_n(x|\theta_1)}$$

depende unicamente em x através de r(x) e a razão é uma função monótona de r(x) entre todos os possíveis valores de x.

Se a razão cresce, dizemos que a dist. de X tem RVM crescente, se a razão decresce, a dist de X tem RVM decrescente.

3. Sejam $\theta' < \theta''$ valores arbitrários de θ e $\alpha'_0 = \pi(\theta'|\delta^*)$. Usando o Lema de Neyman-Pearson que entre todos os procedimentos δ para os quais:

$$\pi(\theta'|\delta) \le \alpha_0', \quad (*)$$

o valor de $\pi(\theta''|\delta)$ seja maximizado ($\{1-\pi(\theta''|\delta)\}$ minimizado) por um procedimento que rejeita H_0 quando $\frac{f_n(x|\theta'')}{f_n(x|\theta')} \geq k$. k é escolhido de modo que

$$\pi(\theta'|\delta) = \alpha_0' \tag{2}$$

Já que a dist. de X tem RVM crescente, $\frac{f_n(x|\theta')}{f_n(x|\theta'')}$ é uma função crescente de r(x). Assim também, um procedimento que rejeita H_0 quando a R.V. é igual a c será equivalente ao procedimento que rejeita H_0 quando $r(x) \geq c$. O valor de c é escolhido de modo que (2) seja satisfeita. O teste δ^* satisfaz (2) e tem a forma correta, logo maximiza a função potência em $\theta = \theta''$ entre todos os testes que satisfazem (*). Outro teste δ que satisfaz (*) é o seguinte:

Lançamos uma moeda com a probabilidade de obter cara igual a α_0' , e rejeitar H_0 se a moeda resulta em cara. Este teste tem $\pi(\theta|\delta) = \alpha_0'$ $\forall \theta$ incluindo θ' e θ'' . Já que δ^* maximiza a função potência em θ'' ,

$$\pi(\theta''|\delta^*) \ge \pi(\theta'|\delta) = \alpha_0 = \pi(\theta'|\delta^*)$$

Logo, provamos que $\pi(\theta|\delta^*)$ é monotonicamente crescente em θ .

Agora considere que $\theta' = \theta_0 \Rightarrow \alpha'_0 = \alpha_0$, e provamos que para $\theta'' > \theta_0$, δ^* maximiza $\pi(\theta''|\delta)$ entre todos os testes δ que satisfazem:

$$\pi(\alpha_0|\delta) \le \alpha_0 \tag{3}$$

Cada teste de nível α_0 satisfaz (3).

 $\pi(\theta|\delta^*)$ é monotonicamente crescente, logo,

$$\pi(\theta|\delta^*) < \alpha_0 \quad \forall \theta < \theta_0$$

e δ^* é um teste de nível α_0 .

4. (a)
$$x_i = \begin{cases} 1, \text{ se cara } p \\ 0, \text{ se coroa } (1-p) \end{cases}$$

Seja $Y = \sum x_i$,

$$f_n(\mathbf{x}) = p^y (1-p)^{n-y}$$

e p_1 e p_2 tal que $0 < p_1 < p_2 < 1$. Temos o δ (UMP):

$$\frac{f_n(x|p_2)}{f_n(x|p_1)} = \left[\frac{p_2(1-p_1)^y}{p_1(1-p_2)} \left(\frac{1-p_2}{1-p_1} \right)^y \dots \right]$$

Depende de $\underline{\mathbf{x}}$ somente por $Y = \sum x_i$ e a função $\frac{f_n(x|p_2)}{f_n(x|p_1)}$ é função crescente de y. Assim também, $f_n(x|p)$ é uma função monotônica de $Y = \sum x_i$.

(b)
$$x_i = \begin{cases} 1, \text{ se cara } p \\ 0, \text{ se coroa } (1-p) \end{cases}$$

Seja $Y = \sum x_i$, o teste rejeita H_0 se $Y \ge c$ é um teste uniformemente mais poderoso. Para n = 10,

$$P(Y \ge 8|p = \frac{1}{2}) = 0.0546875$$

· O teste (UMP) que rejeita H_0 quando $Y \ge 8$ tem um nível de significância de 0.0546875. Mas visto que Y = 4, falhamos em rejeitar a hipótese nula.