Question 4:

We want to show that

$$V^{T}(s) \triangleq E^{T}(s, a_{e}) \mid s_{o} = s$$
)

 $= \underbrace{T}(s^{0}) \quad S^{e-1}(s, a_{e}) \mid s_{o} = s$)

We can prove this limber by assumption that T is

 $S(a_{e}) = prove \quad a_{e} \mid s_{e} \mid s_{e}$

non we get Pi, = P(Se, = S) | Se = S) = P(S, |S;, a1) P(a1) tp(S, S, oz) P(az) = 0 s(P(S; \S, on) + P(S; \S, O2)) and with that we get 0 0.3123 0.6815 V = 0.5833 0 0.416+ 0.15 0.25 0.3125 0.5833 0.25 0.25 0.25 0.4/64 0.4/64 0.56461now the expected reward for each state is V = 0.45, 0.5, 0.5 and the Estal expected reward 1) ET & RE = 1(So) + (0.3125 1(S1) + (0.68 15 1(S2)) 16.3125.0.5833+0.6875.0.15) r(So) +0.6815.0.25r(51) + 0.3125. 0.4162 N(S2) = 1.415

C. lets write the bellow equation for 3 rounds

$$V_3(s) = 0$$
 $V_4(s) = 0$
 $V_8(s) = 0$
 $V_8(s) = 0$
 $V_8(s) = 0$
 $V_8(s, a) = 0$
 $V_8(s$

d. The Probability to stay in the casina Aster 6 rounds is (1-B)t honce the indinite herizan Chaylogive reword: JB (S) = ETT, So (Story After + Pounds)-Re) = E TSO(2(1-B) tR6) = E T, SO(2(1-B) tr(S6,06)) ≥ 1-B 2. defines the connection between the discount factor and the death rate C. for the insinite horizon case we have the following bellman equations: $V(S) = \max_{\alpha \in \{\alpha, \alpha\}} \left(\frac{1}{1} \cdot \frac{1}{1} \cdot$