תרגילים:

$$U = \text{span} \left((1, -1, 1, -1), (1, 1, 1, 1), (1, 3, 1, 3) \right)$$

$$W = \text{span} \left((3, 1, 3, 1), (1, 2, 1, 2), (1, 2, 0, 2) \right)$$

 $\dim(U\cap W)$ ב. $\dim(U+W)$ א. מצא $\dim(U+W)$ ג. מצא בסיס ב- U+W ד. מצא בסיס ב- U+W

2. תהיה S קבוצה במרחב וקטורי V.

א. הוכיחו: אם S תת-מרחב ב- V, אזי S+S=S.

ב. האם הטענה ההפוכה נכונה: אם S+S=S, אזי S תת-מרחב.

 $x_1+x_2+\ldots+x_n=0$ הוכיחו: R^n הוא סכום ישר של מרחב האפס של R^n :ומרחב אני ומרחב אפס של און $x_1=x_2=\ldots=x_n$ ומרחב אפס של

 $U = \{(a,b,c) , a+b+c=0 , a,b,c \in R\}$ יהיו .4 $V = \{(a,b,c) , a=c , a,b,c \in R\} , W = \{(0,0,c) , c \in R\}$ תת-מרחבים ב- R^3 . הוכיחו:

 $R^3 = V + W$ ג. $R^3 = U + W$ ב. $R^3 = U + V$ ג. $R^3 = U + V$ באילו מן המקרים הסכום הוא ישר.

 \mathbf{u}_1 =(1,0,1), \mathbf{u}_2 =(3,2,1), \mathbf{u}_3 =(1,2,3), \mathbf{u}_4 =(2,2,3) נתונים וקטורים .5 . \mathbf{U} = span { $\mathbf{u}_1,\mathbf{u}_2$ } , \mathbf{W} = span { $\mathbf{u}_3,\mathbf{u}_4$ }

הוכיחו: $U+W=R^3$ והסכום אינו ישיר.

- V ו- V תת-מרחבים במרחב וקטורי V ו- V אזי $V=U\cup W$, אזי $V=U\cup W$.
- $C^{n\times n}$ -ם סכום של תת-המרחב של המטריצות ההרמיטיות ב- 7. ותת- המרחב של המטריצות האנטי-הרמיטיות ב- $C^{n\times n}$ הוא סכום ישר.
- 8. תהיה A קבוצת כל הפונקציות מ- R ל- R הזוגיות ורציפות ו- 8 קבוצת כל הפונקציות מ- R ל- R האי-זוגיות (ראה הגדרה [5], פרק [II.3]) קבוצת כל הפונקציות מ-R ל-R האי-זוגיות (ראה הגדרה [5], פרק ורציפות. הוכיחו:
- א. A ו- B הן תת-מרחבים במרחב V של פונקציות רציפות מ-R ל- R.
 - ב. הסכום של A ו- B הוא סכום ישר.
- פ. יהיה $F_5[x]$ תת-מרחב של פולינומים ממעלה קטנה מ-5 של מרחב $F_5[x]$. הפולינומים $F_5[x]$. מצאו משלים ל- $F_5[x]$.
- סכום הוכיחו שמרחב שהפונקציות הממשיות הרציפות על [0,1] הוא סכום ישר של תת-מרחב של פונקציות קבועות ותת-מרחב של פונקציות המתאפסות בנקודה נתונה $0 \le c \le 1$, כ