Γ_{ee} and f_D : Testing the Flavors of Lattice QCD

Jim Pivarski

CLEO Collaboration

The basics

 Nuclear strong force is well-described by QCD, in calculable limits

- At low energies, coupling α_s is $\mathcal{O}(1)$, perturbation theory breaks down, and problems are notoriously difficult to solve
- But, formally, it's a simple theory
 - Highly symmetric
 - -1 tunable parameter + quark masses
- Electroweak force is also described by a model, but it is less satisfying:
 - CP symmetry broken (only a little bit!)
 - No obvious pattern in flavor-changing transitions; in general, a matrix:

$$P(q_1 o q_2) \propto \left| q_2 \cdot \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight) \cdot q_1
ight|^2 \hspace{1cm} ext{known as CKM}$$

- Electroweak physics seems to point to something beyond itself, which makes it very exciting
- Well-recognized at SLAC, as seen in the attention given to precision electroweak observables at SLD and the B meson at BaBar
- Most recently, studies have focused on pinning down the exact values of the CKM matrix, as departures from unitarity would be sure evidence of new physics
- \bullet Doing so has reminded us that QCD plays a role, one which is often not quantitatively understood
- To understand flavor physics, we need to understand color physics better

Outline

1. Follow an example of a CKM matrix element that is strictly limited by our ability to compute QCD

2. Introduce Lattice QCD as a tool which can help to compute the necessary parameter

3. Describe two CLEO experiments which test the calculation closely: each will be measuring the same process, substituting one quark for another

QCD is needed to understand electroweak physics

- Some of the largest uncertainties are theory uncertainties
- $\bullet \, \Delta M_{B_d} = (known) \times (f_B{}^2B_B) \times |V_{td}|^2 = \text{0.510} \, \pm \, \text{0.005 ps}^{-1} \, \text{(HFAG)}$
- 1% measurement!
- The band is ${\sim}20\%$ because QCD factors $f_B{}^2B_B$ are uncertain

What is this factor?

• B-mixing (ΔM_{B_d}) "box diagram"

$$B \left\{ \begin{array}{c|c} b & t & d \\ \hline \hline w & \hline b & \hline \end{array} \right\} \overline{B}$$

• Would really look more like this

- ullet W is very short-range; most often $ar{d}$ is in a diffuse cloud around b quark
- Spatial extent of this wavefunction (and its value at the origin) is determined by QCD potential

Can f_B be measured experimentally?

• Leptonic mode: $B^- \to \ell^- \bar{\nu}$

$$B^{-}\left\{\begin{array}{c|c} b & W^{-} & \ell^{-} \\ \hline \overline{u} & \overline{v} \end{array}\right.$$

•
$$\Gamma(B^- \to \ell^- \bar{\nu}) = \frac{G_F^2}{8\pi} |V_{ub}|^2 m_l^2 M_B \left(1 - \frac{m_l^2}{M_B^2}\right)^2 f_B^2$$
 small

• $\mathcal{B}(B^- \to \tau^- \bar{\nu}) < 2.6 \times 10^{-4} \text{ at } 90\% \text{ C.L. (BaBar)}$

Can f_B be calculated theoretically?

- Deriving the QCD potential is a non-perturbative problem
- Most promising technique: Lattice QCD (LQCD)
- Represent space-time as a 4-D grid of quark and gluon field values
- Evaluate Feynman path integral

• Very computationally intensive— many problems are intractable

Approximation to simplify calculation

Ignore light quark loops ("quenched")

• Until c. 2000, this was necessary for physical calculations

• Introduces large (10–20%) uncertainties that are difficult to assess

Precision LQCD

• Improved algorithms allow "unquenched," realistic calculations with few percent uncertainties

• Update: Ω^- and B_c masses work also

CLEO contributions

• " $\psi(1P-1S)$ ": observation of h_c with mass 3524.4 \pm 0.6 \pm 0.4 MeV (2005)

6 Generic (c) MC 4 Data

3.40 3.46 3.52 M(π⁰ recoil) (GeV)

• " $\Upsilon(1D-1S)$ ": discovery of $\Upsilon(1D)$ with mass $10161.1\pm0.6\pm1.6$ MeV (2004) (two methods)

How to check f_B calculation: swap quarks

• *f*_B

LQCD only

$$\bullet \ \Gamma(\Upsilon \to e^+e^-) \quad \Upsilon(\mathrm{nS}) \left\{ \begin{array}{c} \mathbf{b} & \gamma & \mathbf{e}^- \\ \hline \mathbf{b} & \mathbf{f} \end{array} \right.$$

LQCD vs CLEO-III

 $\bullet f_D$

$$D^{+}\left\{\begin{array}{c|c} C & W^{+} & \ell^{+} \\ \hline \overline{d} & V \end{array}\right.$$

LQCD vs CLEO-c

$$\Gamma_{ee}$$
 for $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$

- Three results; potentially three contacts with theory
- All three are narrow resonances: below $B\bar{B}$ threshold
- Outline will be at the top of the screen

• By definition, $\Gamma_{ee}(\Upsilon)$ is the decay rate of Υ to e^+e^-

$$\Gamma_{ee} = \Gamma \times \mathcal{B}_{ee}$$
 where Γ is the resonance width

- It may seem that a measurement would consist of counting e^+e^- , but
 - —this measures \mathcal{B}_{ee} , which is a step removed from Γ_{ee}
 - $-\Gamma$ can't be measured directly
- Alternative method: consider time-reversed process

• Measure Υ production from e^+e^- beams

$$\Gamma_{ee} = \frac{M\gamma^2}{6\pi^2} \int \sigma(e^+e^- \to \Upsilon) dE$$

- ullet Scan Υ resonance to perform dE integration
- Cross-section versus beam energy \rightarrow integrated cross-section $\rightarrow \Gamma_{ee}$

Cornell Electron Storage Ring

- Dedicated scans
- \int Luminosity in fb⁻¹

	scan	off-res
1S	0.10	0.18
2S	0.06	0.44
3S	0.10	0.16

• Nov 2001 – Aug 2002

- ullet Most background processes scale as 1/s
- Breit-Wigner (BW) lineshape is convoluted with beam energy spread: does not affect $area (= \Gamma_{ee})$
- Also convoluted with ISR tail $(e^+e^- \to \gamma \Upsilon)$ which diverges
- Fit to BW \otimes Gauss \otimes ISR, quote BW area

- Majority of Υ events are hadronic; well-measured fraction are $\ell^+\ell^-$
- Design event selection for $\Upsilon \to \mathsf{hadrons}$

Cut out

- 1. Bhabhas
- 2.
- 3.
- 4.

- Majority of Υ events are hadronic; well-measured fraction are $\ell^+\ell^-$
- Design event selection for $\Upsilon \to \mathsf{hadrons}$

Cut out

1. Bhabhas

2. Two-photon fusion

3.

4.

- Majority of Υ events are hadronic; well-measured fraction are $\ell^+\ell^-$
- Design event selection for $\Upsilon \to \mathsf{hadrons}$

Cut out

- 1. Bhabhas
- 2. Two-photon fusion
- 3. Cosmic rays
- 4.

- Majority of Υ events are hadronic; well-measured fraction are $\ell^+\ell^-$
- Design event selection for $\Upsilon \to \mathsf{hadrons}$

Cut out

- 1. Bhabhas
- 2. Two-photon fusion
- 3. Cosmic rays
- 4. Beam-gas

(a) Cosmic ray sideband: normalize with "no-beam" sample

(XY distance from beamspot)

(b) Beam-gas sideband: normalize with "single-beam" sample

(Z distance from beamspot)

- How many hadronic Υ decays pass event selection?
- Model-independent method for measuring hadronic efficiency:
 - -Select $\Upsilon(2S) \to \pi^+\pi^- \Upsilon(1S)$ based on $\pi^+\pi^-$ only
 - Choose $\pi^+\pi^-$ to be sufficient for all cuts, trigger
 - -Set of $\Upsilon(1S)$ events is unbiased Includes all decays, even if undetectable $(\nu\bar{\nu})$
 - $-\#pass/\#total = (97.8 \pm 0.5)\%$

• Events in Υ peak (cut variables)

- For $\Upsilon(2S)$, $\Upsilon(3S)$, most modes are unchanged
- Exception: Xe^+e^- and $X\mu^+\mu^-$, which have zero efficiency (track momentum cut)

- $\Upsilon(2S)$, $\Upsilon(3S)$ efficiency is essentially $1 \mathcal{B}(X\ell^+\ell^-)$
- Mini-analysis to determine these branching fractions in data

 $\mu^+\mu^-$ invariant mass, histogram is Monte Carlo, points are data, shaded is $prompt \ \mu^+\mu^-$ (no X)

•
$$\mathcal{B}(2S \to X\ell^+\ell^-) = (1.58 \pm 0.16)\%$$

$$\mathcal{B}(3S) = (1.34 \pm 0.13)\%$$

- Need to know integrated luminosity for each scan point: count $\gamma\gamma$ events
- Need to normalize scale: careful analysis using e^+e^- , $\mu^+\mu^-$, $\gamma\gamma$

• Blinded Γ_{ee} by applying this normalization at the end

- All off-resonance runs at a given energy reproduce the same cross-section
- Cross-section instability $\lesssim 0.03$ nb

Beam energy reproducibility

Each resonance was completely scanned once a week

 Measurements alternated above and below resonance peak

 A point of high slope was repeated in the scan

- Repeated point beam energy reproducibility
- Total of 30 pairs

• Beam-energy measurement $instability \lesssim 0.07 \; MeV$

Parameters:

- 1. Area without tail (MeV nb) $\longrightarrow \Gamma_{ee}$ (keV)
- 2. Beam energy spread (MeV)
- 3. Background level (nb)
- 4–15. Υ mass for each weekly scan (MeV)

• Best before CLEO-III

 $\Upsilon(1S)$ Pull Distributions: $\chi^2/{\rm ndf}=230/195=1.2$, C.L. = 4%

 $\Upsilon(2S)$ Pull Distributions: $\chi^2/{\rm ndf}=58/66=$ 0.87, C.L. =76%

 $\Upsilon(3S)$ Pull Distributions: $\chi^2/{\rm ndf}=155/165=$ 0.94, C.L. =70%

Summary of Uncertainties

Contribution to Γ_{ee}	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$
Statistical*	0.7%	1.6%	2.2%
$(1 - 3\mathcal{B}_{\mu\mu})$	0.2%	0.2%	0.3%
Hadronic efficiency	0.5%	0.6%	0.7%
Luminosity calibration	1.3%	1.3%	1.3%
Cross-section stability	0.1%	0.1%	0.1%
Beam-energy stability	0.2%	0.2%	0.2%
Shape of the fit function	0.05%	0.06%	0.05%
Total	1.6%	2.2%	2.7%

^{*}Statistical uncertainty is dominated by run-by-run luminosity measurement ($\gamma\gamma$ counting)

Preliminary Results

Quantity	Value	Uncertainty
$\Gamma_{ee}(1S)$	$1.336\pm0.009\pm0.019$ keV	1.6%
$\Gamma_{ee}(2S)$	$0.616\pm0.010\pm0.009$ keV	2.2%
$\Gamma_{ee}(3S)$	$0.425\pm0.009\pm0.006$ keV	2.7%
$\Gamma_{ee}(2S)/\Gamma_{ee}(1S)$	$0.461\pm0.008\pm0.003$	1.8%
$\Gamma_{ee}(3S)/\Gamma_{ee}(1S)$	$0.318\pm0.007\pm0.002$	2.4%
$\Gamma_{ee}(3S)/\Gamma_{ee}(2S)$	$0.690\pm0.019\pm0.006$	2.8%

Presented at EPS, Lattice05

technique backgrounds efficiency luminosity stability fits results theory

technique backgrounds efficiency luminosity stability fits results theory

- LQCD result not yet complete
- But we can compare ratio of $\Gamma_{ee}(2S)/\Gamma_{ee}(1S)$ (missing factors cancel)

technique backgrounds efficiency luminosity stability fits results theory

• Why does the lattice result have 10% uncertainty?

$$\Gamma_{ee} = \frac{16\pi\alpha^2 e_b^2}{6M\Upsilon^2} \ \langle \Upsilon | J_\nu | 0 \rangle^2 \ Z_{match}^2$$
 wavefunction at origin

• Wavefunction at origin is particularly sensitive to discretization

- \bullet Z_{match} is the missing factor, it contains discrete o continuum matching
- Predicted precision: few percent on ratios, 10% on absolute values

Conclusion for $\Gamma_{ee}(\Upsilon)$

- Improvement to experiment:
 - —If we measure point-by-point luminosity with e^+e^- rather than $\gamma\gamma$, we can gain a factor of two in statistical uncertainty
 - This would especially help ratios, which are statistically-limited
 - But this may introduce systematic error
- Improvements to theory are forthcoming

$$f_D \text{ from } D^+ \to \mu^+ \nu$$

- CLEO-c, the next generation of CLEO
- Very different kind of analysis: discovery, statistics-limited

introduction event selection results

- CLEO-c: new inner tracker, charm energies
- 281 pb $^{-1}$ at $\psi(3770)$: 3 million $D\bar{D}$

introduction event selection results

- MARK-III procedure
- Fully reconstruct D^- decay, search for $D^+ \to \mu^+ \nu$

$$D^-$$
 Tag Modes $K^+\pi^-\pi^ K^+\pi^-\pi^ K^+\pi^-\pi^ K_S\pi^ K_S\pi^-\pi^ K_S\pi^-\pi^0$ $K^+K^-\pi^-$

• RICH detector for μ/K , π/K separation

ullet Mass of reconstructed D^-

events - 2.8 background $47.2\pm7.1^{\,+0.3}_{\,-0.8}$

introduction event selection results

• 2% systematic uncertainty, 15% statistical uncertainty

•
$$\mathcal{B}(D^+ \to \mu^+ \nu) = (4.40 \pm 0.66 ^{+0.09}_{-0.12}) \times 10^{-4}$$

$$ullet f_{D^+} =$$
 (222.6 \pm 16.7 $^{+2.8}_{-3.4}$) MeV

Conclusion for f_D

- ullet Experimental f_D is likely to acquire more data
- LQCD also predicts f_{D_s} and f_D/f_{D_s} (5.4% uncertainty in ratio)
- CLEO-c is preparing for a $D_s\overline{D_s^{(\star)}}$ run, which will measure $D_s\to \mu^+ \nu$

Decay constant ratios

- LQCD uncertainties cancel significantly in ratios
- After tests of LQCD, applications are likely to come in the form:

$$f_B = \left(f_D\right)_{\text{experiment}} \times \left(\frac{f_B}{f_D}\right)_{\text{LQCD}}$$

and

$$f_{B_s}/f_B = \left(f_{D_s}/f_D\right)_{\text{experiment}} imes \left(\frac{f_{B_s}/f_B}{f_{D_s}/f_D}\right)_{\text{LQCD}}$$

• D and D_s measurements are directly applicable to CKM bands

Related and interesting

$$\Gamma(\psi(2S) \to e^+e^-)$$

- Physically very similar to $\Gamma(\Upsilon \to e^+e^-)$ ($\Upsilon = b\bar{b}$ and $\psi = c\bar{c}$)
- Not measured by a scan, but by $e^+e^- \to \gamma \psi(2S)$ where $\sqrt{s} \gg M_{\psi(2S)}$
 - Cross-section on a resonance depends on beam energy spread (wide beam \Rightarrow low cross-section)
 - Cross-section far above depends only on coupling to e^+e^-
- BaBar recently measured $\Gamma(J/\psi \to e^+e^-)$ this way

• Look for $\psi(2S)$ in specific final states, such as $\pi^+\pi^-J/\psi$

- Limited by branching fraction measurements, which CLEO-c is improving
- $\Gamma_{ee}(\psi(2S)) = 2.13 \pm 0.03 \pm 0.08 \text{ keV}$
- CLEO measurement of $\Gamma_{ee}(J/\psi)$ is in the works

Another relevant test of LQCD: try all the flavor combinations!

- LQCD can and will calculate $\Gamma_{ee}(\psi)$
- For Υ , discretization is more significant
- ullet For ψ , relativistic corrections are more significant

Semileptonic form factors

- ullet $|V_{ub}|$ limited by form factor $f(q^2)$
- Much the same story as f_B : Can be calculated by LQCD and extrapolated from D measurements

• D measurements near threshold are much easier: less cross-feed, better q^2 resolution

Conclusions

- Two new points of contact between LQCD and experiment
- LQCD $\Gamma_{ee}(\Upsilon)$ result will improve substantially
- f_D and f_{D_s} will improve and be used directly in f_B , f_{B_s}

- $\Gamma_{ee}(\psi)$ probes differences in treatment of charm and bottom quarks
- This is only part of the program: similar studies are being made of semileptonic form factors

- All of this is only a small part of the implications of precision QCD: low energy hadrons are a jungle of overlapping resonances that could be hiding surprises
- And wouldn't it be nice to understand the proton?

