```
In [1]: ▶ import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

	frzr4	frzr2
0	-78.921478	-81.919121
1	-79.073391	-80.711522
2	-78.384396	-80.614746
3	-80.136295	-79.818321
4	-81.665934	-81.058738
495	-78.563320	-79.710078
496	-80.250203	-79.792869
497	-79.145973	-81.040803
498	-76.098627	-80.775510
499	-80.548183	-80.393269

500 rows × 2 columns

In [7]: N sns.histplot(myDataFromFile, multiple="dodge")

Out[7]: <AxesSubplot:ylabel='Count'>

Out[23]: <AxesSubplot:xlabel='frzr4', ylabel='Density'>

In [24]: MyExerciseSummary = myDataFromFile.describe() print(myExerciseSummary)

```
frzr4
                         frzr2
       500.000000
                   500.000000
count
       -78.950004
                   -80.042102
mean
         1.590001
                      1.052367
std
min
       -83.397327
                    -83.105795
25%
       -80.073219
                   -80.757600
50%
       -78.861037
                    -80.010948
75%
       -77.841418
                   -79.284328
       -75.047915
                   -77.134292
max
```

```
In [25]: 

myExerciseSummary.to_csv("myExercise006Summary.csv")
```

	Unnamed: 0	frzr4	frzr2
0	count	500.000000	500.000000
1	mean	-78.950004	-80.042102
2	std	1.590001	1.052367
3	min	-83.397327	-83.105795
4	25%	-80.073219	-80.757600
5	50%	-78.861037	-80.010948
6	75%	-77.841418	-79.284328
7	max	-75.047915	-77.134292

Based on the data, it appears that freezer 2 is functioning normally while freezer 4 does not regularly meet the proper temperature of minus 80

In []: ▶