GGCCTGACTACCAGAAAC ATG GCG ACC AGC GCT GTT CCA AGT GAA AAC CTT CCC ACA TAT T S AVPSENLPT 14 AAA CTA GTG GTG GGA GAT GGT GGT GTG GGC AAG AGT GCG CTC ACT ATT CAG TTT TTC 120 G G V G K S A L 34 V G D v v CAG AAG. ATC TIT GTG CCT GAC TAC GAC CCC ACC ATT GAA GAC TCC TAC CTG AAG CAT ACA 180 D P T T E D S Y GAG ATT GAC AAT CAG TGG GCC ATC TTG GAT GTT CTG GAC ACA GCC GGG CAG GAG GAG TTC 240 DNQWAILDVL D T A AGT GCC ATG CGG GAA CAA TAC ATG CGC ACA GGG GAT GGC TTC CTC ATT GTC TAC TCC GTC 300 s v 94 M R E Q Y M R TGD G F L I ACC GAC AAG GCC AGC TTC GAG CAC GTG GAC CGC TTC CAC CAG CTC ATT CTG CGT GTC AAG 360 Ε H D R F A S GAC AGG GAG TCA TTC CCA ATG ATC CTC GTG GCC AAC AAG GTG GAT CTG ATG CAC CTA AGG 420 NKVDLM F P M I L V A S AAA GTC ACC AGG GAC CAA GGA AAA GAA ATG GCA ACC AAA TAC AAT ATC CCA TAT ATA GAG 480 N 154 E M A T K Y I P R QGK ACC AGT GCC AAG GAC CCG CCT CTC AAC GTG GAT AAA ACC TTC CAT GAC CTA GTT AGA GTA 540 174 P P L K T H N V D Α K D 600 PEKNQKKKKKTKWR Q GAC AGG GCC ACC GGC ACT CAC AAA CTG CAG TGT GTC ATC TTG TGA CAG CCT GAA GCC CTG 660 208 D R A T G T H K L Q C V GGCATAGCAACCGTGAACTGCCAGCCCCTGGGACCAGCCCACTGCCTAACTGCACTGAGAACCACTTCTAACTACAGCC 739 818 $\verb|CCCAGGAGACAGGGCTACAGCTTCCAAACCTTTTGTGTTGACTGAGCCCAGTTCCCAGTCTCTTGGTGGGCTTGTTT|\\$ 897 CTTTTAACTCATAGGCTGGTTTGCTATGGAAGTGCTTACCCACATACAACGCACCAGACAAGCCATGAGCAAGCTTCCT 976 1119 AGAGGTCTGTGCCCATTGCCTGCGAAGCCCCAAGTCTTTGGCAGACCTCTGATAAATGTCTGCA

Figure 1

p21 Ras	MTEYKLVVVGAGGVGKSALTIQLI	24
M-Ras	MATSAVPSENLPTYKLVVVGDGGVGKSALTIQFF	34
R-Ras	MSSGAASGTGRGRPRGGGPGPRDPPPGETHKLVVVGGGGGVGKSALTIQFI	50
p21 Ras	QNHFVDEYDPTIEDSYRKQVVIQGETCLLDYLDTAGQEEYSAMRDQYMRT	74
M-Ras		84
R-Ras		150
p21 Ras	GEGFLCVFAINNTKSFEDIHQYREQIKRVKDSDDVPMVLVGNKCDLAA-R	123
M-Ras		134
R-Ras	GNGFLLVFAINDRQSFNEVGKLFTQILRVKDRDDFPIVLVGNKADLENQR	150
p21 Ras	· TVESRQAQDLARSYGIPYIETSAK-TRQGVEDAFYTLVREIRQHKLRKLN	172
M-Ras		184
R-Ras		199
p21 Ras	PPDESGPGCMSCKCVLS	189
M-Ras	KKKKKTKWRGDRATGTHKLQCVIL	208
R-Ras	PSPPSAPRKKDGGCPCVLL	218

Figure 2

Figure 3

FVB Liver Hear Braint estine on hone want

Tg5 Liver Lidney Brain to estime on his Lind done was

Figure 4

								CGG	cccc	GACC	crec	CTC	TCAC	cccc	GCAC	GCT	AGGAC	GGGG	CGG	46
CCTG	AGTO	cca	PAGCO	CGAGO	cccc	GCT	GAGC	cccc	GGT	TGAC	CTAC	GAGA	AAC							120
														M	A	T	s	A	V	6
ccc	agt	GAC	AAC	CIC	ccc	ACA	TAC	AAG	CIG	GTG	GTG	GTG	GGG	GAT	GGG	GGT	GTG	GGC	AAA	180
P	S	D	N	L	P	T	Y	K	L	A	٧	V	G	D	G	G	V	G	K	26
AGT	GCC	CIC	ACC	ATC	CAG	TTT	TTC	CAG	AAG	ATC	TTT	GTG	CCT	GAC	TAT	GAC	ccc	ACC	ATT	240
S	A	L	T	I	Q	F	F	Q	K	I	F	V	P	D	Y	D	P	T	I	46
		TCC	TAC	CIG	AAA	CAT	ACG	GAG	ATT	GAC	AAT	CAA	TGG	GCC	ATC	TTG	GAC	GIT	CTG	300
E.	D	S	Y	L	ĸ	H	T	E	I	D	N	Q	W	A	I	L	D	٧	L	66
GAC	ACA	GCT	GGG	CAG	GAG	GAA	TTC	AGC	GCC	ATG	CGG	GAG	CAA	TAC	ATG	CGC	ACG	GGG	GAT	360
D	T	A	G	Q	E	E	F	S	A	M	R	E	Q	Y	M	R	T	G	D	86
GGC	TTC	CIC	ATC	GTC	TAC	TCC	GTC	ACT	GAC	AAG	GCC	AGC	TTT	GAG	CAC	GTG	GAC	œc	TTC	420
G	F	L	I	٧	Y	S	V	T	D	K	A	S	F	Ε	H	V	D	R	F	106
CAC	CAG	CIT	ATC	CIG	CGC	GTC	AAA	GAC	AGG	GAG	TCA	TTC	CCG	atG	atC	CTC	GTG	GCC	AAC	480
Ħ	Q	L	I	L	R	V	K	D	R	E	S	F	P	M	I	L	V	A	N	126
AAG	GTC	GAT	TTG	ATG	CAC	TTG	AGG	AAG	ATC	ACC	AGG	GAG	CAA	GGA	AAA	GAA	ATG	GCG	ACC	540
K	V	D	L	M	H	L	R	K	I	T	R	E	Q	G	K	E	M	A	T	146
λλλ	CAC	AAT	TTA	œ	TAC	ATA	GAA	ACC	AGT	GCC	AAG	GAC	CCA	CCT	CIC	AAT	GTC	GAC	AAA	600
K	H	N	I	P	Y	I	E	T	S	A	K	D	P	P	L	N	V	D	K	166
		CAT			GTT	AGA	GTA	ATT	AGG	CAA	CAG	ATT	CCG	GAA	AAA	AGC	CAG	AAG	AAG	660
A	F	H	D	L	V	R	V	I	R	Q	Q	I	P	E	K	S	Q	K	K	186
		AAA				CGG		GAC	CGG	CCC	ACA	GGC	ACC	CAC	AAA	CIG	CAA	TGT	GTG	720
K	K	K	T	K	₩	R	G	D	R	A	T	G	T	H	K	L	Q	С	v	206
ATC	TTG	TGA	GGC	CTGC	AGGC	CTGA	AGGC	CTCG	GGCA	CAGT	GACG	GTGG	CTG	GCCA	GCCC	TCGG	GACC	CCIC	CCCA	791
I	L	*																		208
CCT	NACT	GCAC.	TGAA.	ACCA'	TTTC	TAAC	CACA	ACCC	ITGG	CCCA	AGGA	CITG	GTAC	AGGA	AGGG	AGAA	GGGC	aggt	GGGC	870
		AAGA															_			949
														TGGA	TITC	AAAC	CGGG	TITC	CITC	1028
\cdots	بالمدب	TTTT	تعادب	كاللا	تلعلت	TOTI	تللفاف	4111	CULL	nau I		تاتاتم	1.1							TORT

Figure 5

Figure 6

Figure 7

	Cons	stitutively Activ	Dominant Negative				
M-Ras	M-Ras-1	M-Ras-2	M-Ras-3	M-Ras-4	M-Ras-5		
	G22-V22	Q71-K71	G22-K22	` S27-N27	C205-S205		
	GGT→GTT	CAG-AAA	GGT-AAG	AGT-AAT	TGT-TCT		

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Effect of Lovastatin on the Proliferation of TS2 Cells

Figure 19

Figure 20

Figure 21

Lovastatin Inhibition of M-RAS Prenylation

Figure 22