Respostas

September 2, 2025

```
[2]: #Preparar as bibliotecas que serão usadas na analise
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     from matplotlib.ticker import FuncFormatter
     # Configurando o estilo dos gráficos
     sns.set style('whitegrid')
     plt.rcParams['figure.figsize'] = (12, 6)
     try:
         df = pd.read_csv('desafio_indicium_imdb.csv')
     except FileNotFoundError:
         print("Arquivo n\u00e3o encontrado. Verifique o nome e o caminho do arquivo.")
         # Encerre o script ou lide com o erro como preferir
         exit()
     # --- LIMPEZA E PREPARAÇÃO DOS DADOS ---
     # Remove a coluna 'Unnamed: O', que é apenas um índice duplicado
     df.drop('Unnamed: 0', axis=1, inplace=True)
     # Limpa a coluna 'Runtime' removendo o sufixo " min" e convertendo para inteiro
     df['Runtime'] = df['Runtime'].str.replace(' min', '').astype(int)
     # Limpa a coluna 'Gross' removendo vírgulas e convertendo para float
     # 'errors=coerce' transforma valores inválidos em NaN (Not a Number)
     df['Gross'] = df['Gross'].str.replace(',', '', regex=False).astype(float)
     # Converte a coluna 'Released_Year' para um tipo numérico
     # 'errors=coerce' lida com possíveis valores não numéricos que possam existir
     df['Released Year'] = pd.to_numeric(df['Released Year'], errors='coerce')
     mapeamento_colunas = {
         'Series_Title': 'Titulo',
         'Released Year': 'Ano Lancamento',
         'Certificate': 'Certificado',
```

```
'Runtime': 'Duracao_Min',
    'Genre': 'Genero',
    'IMDB_Rating': 'Nota_IMDB',
    'Overview': 'Resumo',
    'Meta_score': 'Nota_Metascore',
    'Director': 'Diretor',
    'Star1': 'Estrela1',
    'Star2': 'Estrela2',
    'Star3': 'Estrela3',
    'Star4': 'Estrela4',
    'No_of_Votes': 'Num_Votos',
    'Gross': 'Faturamento'
}

# Renomear as colunas usando o método .rename()
df.rename(columns=mapeamento_colunas, inplace=True)
```

```
[3]: # 2a. Qual filme você recomendaria para uma pessoa que você não conhece?

# Calcular a média entre IMDB Rating e Meta Score

df['IMDB_Meta_med'] = (df['Nota_IMDB'] + (df['Nota_Metascore'] / 10)) / 2

# Selecionar o filme com a maior média

filme_recomendado = df.loc[df['IMDB_Meta_med'].idxmax()]

print(f"Filme recomendado: {filme_recomendado['Titulo']}")

print(f"IMDB Rating: {filme_recomendado['Nota_IMDB']}")

print(f"Meta Score: {filme_recomendado['Nota_Metascore']}")
```

Filme recomendado: The Godfather

IMDB Rating: 9.2
Meta Score: 100.0

```
# 2b. Quais são os principais fatores que estão relacionados com altau expectativa de faturamento de um filme?

#podemos realisar uma analise dos dados numericos e encontrar sua correlaçãou com o faturamento de um filme, para isso:

plt.figure(figsize=(12, 10))

numerical_cols = df.select_dtypes(include=['float64', 'int64']).columns

correlation_matrix = df[numerical_cols].corr()

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f')

plt.title('Matriz de Correlação (Foco no Faturamento)')

plt.tight_layout()

plt.show()

#Tambem realizamos uma analise de variaveis categoricas como a Classicaçãou cindicativa

# Remover filmes com dados de 'Certificado' ou 'Faturamento' ausentes para estau canálise
```

```
df_certificado = df.dropna(subset=['Certificado', 'Faturamento'])
# Contar quantos filmes existem por certificado para quantir relevância
certificados_comuns = df_certificado['Certificado'].value_counts()
# Manter apenas certificados com um número razoável de filmes
certificados_filtrados = certificados_comuns[certificados_comuns > 10].index
df_certificado_filtrado = df_certificado[df_certificado['Certificado'].
 →isin(certificados_filtrados)]
# Ordenar os certificados pela mediana do faturamento
order_cert = df_certificado_filtrado.groupby('Certificado')['Faturamento'].

¬median().sort_values(ascending=False).index
plt.figure(figsize=(15, 8))
sns.boxplot(data=df_certificado_filtrado, x='Certificado', y='Faturamento', u
 →order=order_cert, palette='plasma', hue = 'Certificado', legend=False)
# Usar escala logarítmica no eixo Y para melhor visualização da distribuição do_{f \sqcup}
 \hookrightarrow faturamento
plt.yscale('log')
plt.title('Distribuição do Faturamento por Classificação Indicativa', u
 ⇔fontsize=16)
plt.xlabel('Classificação (Certificado)', fontsize=12)
plt.ylabel('Faturamento (em $ - Escala Logarítmica)', fontsize=12)
plt.xticks(rotation=0)
plt.tight_layout()
#E tambem genero--
# Criar a nova coluna no DataFrame principal
df['Genero_Principal'] = df['Genero'].apply(lambda x: str(x).split(',')[0])
# Agora, criar a fatia a partir do DF já modificado
df_genero_fat = df.dropna(subset=['Faturamento'])
# Calcular a mediana do faturamento
median_faturamento_por_genero = df_genero_fat.
 ⇒groupby('Genero_Principal')['Faturamento'].median()
# Contar o número de filmes em cada gênero
contagem_genero = df_genero_fat['Genero_Principal'].value_counts()
# Juntar os dados de mediana e contagem
df_genero_agg = pd.DataFrame({'Faturamento_Mediano':__
 →median_faturamento_por_genero, 'Contagem': contagem_genero})
```

```
# Filtrar gêneros com poucos filmes (mais de 5)
df_genero_filtrado = df_genero_agg[df_genero_agg['Contagem'] > 5]
# Ordenar os gêneros pelo faturamento mediano
df_genero_ordenado = df_genero_filtrado.sort_values('Faturamento_Mediano', __
 ⇔ascending=False)
plt.figure(figsize=(14, 8))
sns.set_style("whitegrid")
barplot = sns.barplot(x=df_genero_ordenado['Faturamento_Mediano'],__
 →y=df_genero_ordenado.index, palette='magma',
 ⇔hue=df_genero_ordenado['Faturamento_Mediano'],legend=False)
# Customização
plt.title('Faturamento Mediano por Gênero Principal de Filme', fontsize=16)
plt.xlabel('Faturamento Mediano (em milhões de $)', fontsize=12)
plt.ylabel('Gênero Principal', fontsize=12)
def millions_formatter(x, pos):
   return f'${int(x/1000000)}M'
barplot.xaxis.set_major_formatter(FuncFormatter(millions_formatter))
barplot.bar_label(
   barplot.containers[0],
   fmt=lambda x: f' \{x/1000000:.1f\}M',
   padding=5
plt.tight_layout()
plt.show()
```


[]: """

Apartir das analises tem-se as seguintes conclusões:

- 1. Popularidade e Engajamento (Número de Votos): Este é o fator com a correlação \Box \Box mais forte com o faturamento.
- 2. Classificação Indicativa Ampla (Certificado): Filmes com classificações mais $_{\sqcup}$ $_{\to}$ abrangentes, como "U" (Livre) e "UA" (equivalente a +12/+13), têm um potencial de faturamento muito superior.
- 3. Qualidade Percebida (Notas): Embora uma nota altíssima não garanta o sucesso, \sqcup \sqcup um filme precisa ser percebido como "bom o suficiente". A análise mostra que os maiores blockbusters se concentram em uma faixa de Metascore \sqcup \sqcup entre 65 e 85.
- 4. Gênero de Grande Apelo: Os filmes de maior faturamento são predominantemente $_{\sqcup}$ $_{\ominus}$ dos gêneros Animação, Ação e terror
- []: # 2c. Quais insights podem ser tirados com a coluna Overview? É possível⊔

 inferir o gênero do filme a partir dessa coluna?

 # podemos usar esse modelo simples para prever com certa precisão o gênero de⊔

 um filme
- [5]: # Importar bibliotecas
 import re
 import pandas as pd

```
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.multiclass import OneVsRestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn.preprocessing import MultiLabelBinarizer
from nltk.corpus import stopwords
import nltk

# Baixar stopwords (se ainda não tiver)
try:
    stopwords.words('english')
except LookupError:
    nltk.download('stopwords')
```

```
[6]: # limpar dados
     df = df.dropna(subset=['Resumo', 'Genero'])
     df = df.drop_duplicates(subset=['Resumo'])
     # Pré-processamento do Texto
     stop_words = set(stopwords.words('english'))
     def preprocess_text(text):
         text = text.lower()
         text = re.sub(r'\W', ' ', text)
         text = re.sub(r'\s+', '', text)
         return ' '.join(word for word in text.split() if word not in stop_words)
     df['resumo_limpo'] = df['Resumo'].apply(preprocess_text)
     # Preparar Labels (Gêneros) para Classificação Multi-Label
     df['genero_lista'] = df['Genero'].apply(lambda x: [genre.strip() for genre in x.
      ⇔split(',')])
     mlb = MultiLabelBinarizer()
     y = mlb.fit_transform(df['genero_lista'])
     # Divisão em Treino e Teste (80% treino, 20% teste)
     X = df['resumo_limpo']
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
      →random_state=42, shuffle=True)
     # Vetorização do Texto (TF-IDF com n-gramas)
     vectorizer = TfidfVectorizer(max_features=10000, ngram_range=(1, 2))
     X train tfidf = vectorizer.fit transform(X train)
     X_test_tfidf = vectorizer.transform(X_test)
```

```
# Treinamento do Modelo
# Usando a Regressão Logística com 'class_weight' para lidar com o⊔
\hookrightarrow desbalanceamento
logreg = LogisticRegression(solver='liblinear', random_state=42,__
 ⇔class_weight='balanced', C=1.0)
ovr_classifier = OneVsRestClassifier(logreg)
ovr_classifier.fit(X_train_tfidf, y_train)
# Avaliação do Modelo
y_pred = ovr_classifier.predict(X_test_tfidf)
report = classification_report(y_test, y_pred, target_names=mlb.classes_,u
 ⇒zero division=0)
print("--- Relatório de Classificação ---")
print(report)
# Exemplo de Previsão para um Novo Resumo
print("\n--- Exemplo de Previsão para um Novo Resumo ---")
novo\_resumo = "A thief who steals corporate secrets through the use of_<math>\sqcup
⇔dream-sharing technology is given the inverse task of planting an idea into⊔
⇔the mind of a C.E.O."
novo_resumo_clean = preprocess_text(novo_resumo)
novo_resumo_tfidf = vectorizer.transform([novo_resumo_clean])
previsao_binaria = ovr_classifier.predict(novo_resumo_tfidf)
previsao_generos = mlb.inverse_transform(previsao_binaria)
print(f"Resumo: '{novo_resumo}'")
print(f"Gêneros Previstos: {previsao_generos[0]}")
```

--- Relatório de Classificação ---

	precision	recall	f1-score	support	
Action	0.48	0.29	0.36	34	
Adventure	0.71	0.25	0.37	40	
Animation	0.60	0.17	0.26	18	
Biography	0.46	0.24	0.32	25	
Comedy	0.39	0.24	0.30	46	
Crime	0.60	0.35	0.44	43	
Drama	0.84	0.88	0.86	157	
Family	0.00	0.00	0.00	5	
Fantasy	0.00	0.00	0.00	9	
Film-Noir	0.00	0.00	0.00	3	
History	0.00	0.00	0.00	8	
Horror	1.00	0.10	0.18	10	
Music	0.50	0.22	0.31	9	
Musical	0.00	0.00	0.00	4	
Mystery	0.71	0.22	0.33	23	
Romance	0.25	0.14	0.18	21	
Sci-Fi	1.00	0.18	0.31	11	

Sport	0.00	0.00	0.00	3
Thriller	0.43	0.12	0.19	25
War	0.60	0.38	0.46	8
Western	0.00	0.00	0.00	3
micro avg	0.67	0.42	0.52	505
macro avg	0.41	0.18	0.23	505
weighted avg	0.60	0.42	0.46	505
samples avg	0.69	0.47	0.52	505

⁻⁻⁻ Exemplo de Previsão para um Novo Resumo ---

Resumo: 'A thief who steals corporate secrets through the use of dream-sharing technology is given the inverse task of planting an idea into the mind of a C.E.O.'

Gêneros Previstos: ('Action', 'Adventure', 'Sci-Fi')

[]: #3.Explique como você faria a previsão da nota do imdb a partir dos dados. U Quais variáveis e/ou suas transformações você utilizou e por quê? Qual tipou de problema estamos resolvendo (regressão, classificação)? Qual modelou melhor se aproxima dos dados e quais seus prós e contras? Qual medida deu performance do modelo foi escolhida e por quê?

[]: """

O problema é classificado como regressão devido à natureza contínua da variável $_{\sqcup}$ $_{\dashv}$ alvo, a nota (IMDB_Rating), que varia de 0 a 10.

O modelo foi construído com as seguintes variáveis preditoras, cada uma $_{\sqcup}$ $_{\hookrightarrow}$ submetida a transformações específicas para otimizar o desempenho do $_{\sqcup}$ $_{\hookrightarrow}$ algoritmo:

IMDB_Rating: Variável de resposta (target).

Gross (Receita): Uma variável numérica com uma distribuição assimétrica, \Box \rightarrow caracterizada por um grande número de valores baixos e alguns valores extremamente altos. Para mitigar o impacto desses outliers e linearizar a_{\Box} \rightarrow relação, foi aplicada a transformação logarítmica (np.log1p).

Genre (Gênero) e Director (Diretor): Variáveis categóricas, convertidas em $_{\sqcup}$ $_{\hookrightarrow}$ formato numérico através do One-Hot Encoding. Para o gênero, foi extraído apenas o valor principal (Genre_main) antes da codificação, uma vez que cada $_{\sqcup}$ $_{\hookrightarrow}$ filme pode ter múltiplos gêneros.

No_of_Votes (Número de Votos) e Meta_score: Variáveis numéricas que_ \sqcup \hookrightarrow representam, respectivamente, a popularidade e a avaliação da crítica. Ambas \sqcup \hookrightarrow foram

padronizadas utilizando o StandardScaler, o que garante que as variáveis com $_{\sqcup}$ $_{\hookrightarrow}$ escalas diferentes contribuam de forma equitativa para o modelo, evitando que uma domine a outra.

Overview (descrição/sinopse do filme): texto processado por meio de $TF-IDF_{\square}$ \hookrightarrow (Term Frequency-Inverse Document Frequency), que transforma as palavras mais relevantes em variáveis numéricas. O limite de 500 palavras mais frequentes foi $_{\square}$ \hookrightarrow utilizado para reduzir dimensionalidade e evitar ruído.

Stars_all (atores principais): nomes dos atores foram combinados em uma única $_{\sqcup}$ $_{\hookrightarrow}$ string por filme e convertidos em variáveis numéricas usando CountVectorizer (com limite de 100 atores mais frequentes). Isso permite $_{\sqcup}$ $_{\hookrightarrow}$ capturar a relevância de atores na recepção do filme.

O algoritmo escolhido para a modelagem de regressão foi o Random Forest $_{\sqcup}$ $_{\hookrightarrow}$ Regressor, um modelo de ensemble que se mostrou a opção mais adequada devido aos seguintes aspectos:

Vantagens: Este modelo é altamente eficaz na captura de relações não-lineares e_{\sqcup} \hookrightarrow complexas entre as variáveis. Sua robustez e baixa sensibilidade a outliers e overfitting o tornam uma escolha superior em comparação com modelos $_{\sqcup}$ \hookrightarrow lineares mais simples.

Desvantagens: Sua principal limitação reside na interpretabilidade. A natureza d de "caixa preta" do algoritmo dificulta a análise direta da contribuição de cada variável individual.

A performance do modelo foi avaliada com duas métricas-chave, apropriadas para∟ ⇔problemas de regressão:

Erro Quadrático Médio (MSE - Mean Squared Error): O valor de 0.0462 indica que \rightarrow as previsões do modelo têm um erro médio muito baixo em relação aos valores reais, demonstrando um ajuste preciso aos dados de teste.

Coeficiente de Determinação (R^2): Com um valor de 0.4347, o modelo explica \rightarrow aproximadamente 43,5% da variabilidade na nota do IMDB. Este resultado demonstra um poder preditivo significativo, embora a variância residual sugira \rightarrow a influência de outros fatores não incluídos no modelo.

```
[10]: #4. Prever a nota IMDb de The Shawshank Redemption
      import pandas as pd
      import pickle
      import numpy as np
      import re
      # Carregar o modelo salvo
      try:
          with open('modelo_preditivo_imdb.pkl', 'rb') as file:
              model_pipeline = pickle.load(file)
      except FileNotFoundError:
          print("Erro: O arquivo 'modelo_preditivo_imdb.pkl' n\u00e3o foi encontrado.")
          print("Por favor, execute o código de treinamento do modelo primeiro para_

¬gerar o arquivo.")
      def prever_nota_nova_entrada(dados_filme):
          Prevê a nota IMDB de um filme a partir de um dicionário de dados.
          try:
              # Criar DataFrame a partir do dicionário
              filme_novo = pd.DataFrame([dados_filme])
              # Garantir que 'Gross' seja numérico e aplicar log
              filme_novo['Gross'] = filme_novo['Gross'].apply(
                  lambda x: float(re.sub(r'[^\d]', '', str(x))) if pd.notna(x) else 0.
       ⇔0
              filme_novo['Gross_log'] = np.log1p(filme_novo['Gross'])
              # Extrair gênero principal
              filme_novo['Genre_main'] = filme_novo['Genre'].apply(lambda x: x.
       ⇒split(',')[0].strip())
              # Criar Stars_all (se não existir no dicionário)
              if 'Stars_all' not in filme_novo.columns:
                  filme_novo['Stars_all'] = ''
              # Recriar DataFrame com as mesmas features usadas no treino
              features_para_prever = filme_novo[[
                  'Genre main',
                  'Director',
                  'Gross_log',
                  'No_of_Votes',
                  'Meta_score',
                  'Overview',
                  'Stars_all'
```

```
]]
       # Fazer a previsão
       previsao_nota = model_pipeline.predict(features_para_prever)
       print(f"\nNota IMDB prevista para '{dados_filme['Series_Title']}':

¬{previsao_nota[0]:.2f}")
   except Exception as e:
       print(f"Ocorreu um erro durante a previsão: {e}")
# =========
# Teste com The Shawshank Redemption
# -----
dados_shawshank = {
    'Series_Title': 'The Shawshank Redemption',
    'Genre': 'Drama',
   'Director': 'Frank Darabont',
    'Gross': '28,341,469',
    'No_of_Votes': 2343110,
   'Meta_score': 80.0,
   'Overview': "Two imprisoned men bond over a number of years, finding solace ⊔
⇔and eventual redemption through acts of common decency.",
    'Stars_all': "Tim Robbins Morgan Freeman Bob Gunton"
}
prever_nota_nova_entrada(dados_shawshank)
```

Nota IMDB prevista para 'The Shawshank Redemption': 8.80

[]: