E-Comerce Customer Churn Predict

Oktar Mahardika

Bussines Understanding

- Perusahaan ini adalah sebuah platform e-commerce yang melayani berbagai kategori produk
- Di tengah kompetisi industri e-commerce yang sangat ketat, perusahaan mulai menghadapi tantangan dalam mempertahankan pelanggannya
- Terdapat dua cara untuk mengatasi fenomena customer churn, yaitu Customer Acquisition dan Customer Retention

Bussines Understanding

customer acquisition memiliki biaya 5 kali lipat lebih dari customer retention.

Kita asumsikan perusahaan per tahunnya menggelontorkan dana \$100.000 untuk memaintain 1000 customer lama

• Retention Cost per Customer

 $100,000 \div 1,000 = 100 \text{ per customer}$

Acquisition Cost per Customer

Retention Cost per Customer × 5 = \$500 per customer

Problem

Perusahaan tidak memiliki sistem yang dapat mengidentifikasi pelanggan yang berisiko churn secara proaktif. Jika semua pelanggan diperlakukan sama tanpa segmentasi, maka strategi retensi menjadi tidak efisien dari segi biaya, waktu, dan sumber daya.

Goal

Perusahaan memiliki ingin untuk memprediksi kemampuan kemungkinan seorang pelanggan churn, sehingga divisi akan mengambil dapat pemasaran tindakan seperti preventif memberikan penawaran khusus, diskon, atau kampanye personalisasi.

Analitical Approach

- Melakukan analisis eksploratif pada data untuk memahami data leih dalam.
- Melakukan feature engineering untuk meningkatkan kualitas input ke dalam model.
- Membangun model klasifikasi yang dapat memprediksi kemungkinan pelanggan churn.

Metric Evaluation

False Positive (FP)

- Model memprediksi pelanggan akan churn, padahal sebenarnya tidak.
- Estimasi kerugian: \$100 per pelanggan.

False Negative (FN)

- Model memprediksi pelanggan akan tetap, padahal sebenarnya churn.
- Estimasi kerugian: \$500 per pelanggan.

Scoring: F2 Score

Dataset

Kolom	Deskripsi	
Tenure	Lama waktu (dalam bulan) pelanggan telah terdaftar.	
WarehouseToHome	Jarak (kemungkinan dalam km) antara gudang dan rumah pelanggan.	
NumberOfDeviceRegistered	Jumlah perangkat yang terdaftar di akun pelanggan.	
PreferedOrderCat	Kategori produk yang paling sering dipesan pelanggan.	
SatisfactionScore	Skor kepuasan pelanggan (kemungkinan skala 1–5).	
MaritalStatus	Status pernikahan pelanggan (Single, Married, Divorced).	
NumberOfAddress	Jumlah alamat yang terdaftar di akun pelanggan.	
Complain	Apakah pelanggan pernah komplain (0 = tidak, 1 = ya).	
DaySinceLastOrder	Jumlah hari sejak pemesanan terakhir oleh pelanggan.	
CashbackAmount	Jumlah cashback yang diterima oleh pelanggan.	
Churn	Apakah pelanggan berhenti menggunakan layanan (0 = tidak, 1.=.ya).	

Dataset

- Dataset terdiri dari 3941 baris dan 11 kolom
- Mayoritas tipe data merupakan numerikal (Int/Float) namun terdapat 2 kolom kategorikal (Str/object)
- Terdapat missing value pada kolom Tenure, WarehouseToHome, dan DaySinceLastOrder
- Terdapat 671 data duplicate pada dataset

Exploratory Data Analysis (EDA)

Target Proportion

Churn (1)	534
Not Churn (0)	2736

proporsi target tidak seimbang maka akan ditangani dengan Resampler

Numerical Data Distribution

 Hal ini juga dibuktikan pada uji statistik, dimana seluruh nilai P-Value kurang dari 0.05 yang berarti data tidak terdistribusi normal

Categorical Data Distributions

- Pada kolom NumberOfAddress, ditemukan bahwa terdapat orang dengan jumlah alamat 19, 20, dan 21 yang masing-masing hanya muncul sebanyak satu kali.
- Hal ini dapat mempengaruhi predikisi Machine Learning jadi akan dihapus saja

• • • •

Outlier

- Terdapat 3 kolom numerikal dengan outlier paling signifikan
- Outlier pada kolom tenure akan dihapus, sedangkan yang lainnya akan dibiarkan

Machine Learning

- Target (y) : Churn
- Data di split dengan 80% data train serta 20% data test
- Kemudian digunakan stratify agar proporsi target dibagi menjadi rata

Data Preprocessing

Imputer:

Iterative :Tenure, WarehouseToHome, DaySinceLastOrder

Encoding:

• OneHot:PreferedOrderCat, MaritalStatus

Scaling:

 Robust: NumberOfAddress, NumberOfDeviceRegistered, CashbackAmount, Tenure, WarehouseToHome, DaySinceLastOrder

pass: SatisfactionScore, Complain

Cross Validation

Model	Mean F2	Std
LGBMClassifier	0.666251	0.038162
XGBClassifer	0.665740	0.045977
DecisionTree	0.595214	0.053707

- {'modeling_booster': 'gbtree',
 'modeling_max_depth': 3,
 'modeling_n_estimators': 150,
 'modeling_scale_pos_weight': 4}
- Training Score: 0.7284

Predict To Test:

- Score Before Tunning: 0.7059
- Score After Tunning: 0.8024

Confusion Metric

- Pada Garfik confusion matric terlihat model before tunning salah memprediksi FN sebanyak 34 Data sedangkan FP sebanyak 16 Data
- Sedangkan Pada Garfik confusion matric terlihat model after tunning salah prediksi FN turun menjadi 16 data, sedangkan FP nya naik menjadi 48 Data

Feature Importance

Terlihat bahwa feature yang paling berpengaruh adalah:

- Tenure,
- Complain
- PreferedOrderCat_Laptop & Accessory.

Sedangkan feature yang lain tidak berpengaruh signifikan

Streamlit Simulation

OR

Click Here

Kesimpulan

Berdasarkan hasil metric evaluation Machine Learning berhasil memperoleh F2 Score sebesar 80% untuk memprediksi pelanggan Churn atau Not Churn dari dari data test.

F2 Score adalah metrik evaluasi yang mengutamakan recall lebih tinggi daripada precision (karena recall diberi bobot lebih besar).

Data test sendiri terdiri dari 653 data dimana secara metric Machine Learning salah memprediksi 16 Data FN, Serta 48 Data FN.

Kesimpulan

Tanpa ML

	Predict (0)	Predict (1)
Actual (0)	0	546
Actual (1)	0	107

Pengeluaran perusahaan untuk promosi

• \$100 x 653 = \$65,300

Promosi yang tepat sasaran

• $$100 \times 107 = $10,700$

Biaya promosi sia-sia

• \$65,300 - \$10,700 = \$54,600

Dengan ML

	Predict (0)	Predict (1)
Actual (0)	500	48
Actual (1)	16	91

salah promosi ke customer loyal (FP)

• \$100 x 46 = \$4,800

Tidak terprediksi akan churn (FN)

• \$500 x 16 = \$8000

Total Kerugian

• \$4,800 + \$8000 = \$12,800

Kesimpulan

- Kerugian sebelum pakai ML: \$54,600
- Kerugian setelah pakai ML: \$12,800
- ML berhasil menurunkan kerugian perusahaan sebesar 75% --> (\$54,600 \$12,600) / \$159,300

Rekomendasi

- Lebih baik data yang diambil dengan lebih teliti lagi agar tidak terdapat missing value serta membuat prediksi akan lebih akurat dengan data real
- Menambahkan feature-feature yang lain mungkin seperti jumlah order barang, umur, dll
- Menambahkan parameter yang lebih banyak pada bagian Hyperparameter Tunning.

Terma Kasih

