

Schletter, Inc.		20° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	20.62 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
$C_s =$	0.91	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design wind Speed, v =	85 mpn	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 11.34 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1.05	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.05 (<i>Pressure</i>)	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.12 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

Ss	= 0.0	0	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
S_{DS}	= 0.0	0	$C_S = 0$	may be used to calculate the base shear, C_s , of
S_1	= 0.0	0	$\rho = 1.3$	structures under five stories and with a period, T,
S_{D1}	= 0.0	0	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a	= 0.0	0	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
Тор	M3	Outer	N7	Outer
Bottom	M7	Inner	N15	Inner
	M11	Outer	N23	Outer
Location	Rear Struts	Location	Rear Reactions	Location
Outer	M2	Outer	N8	Outer
Inner	M6	Inner	N16	Inner
Outer	M10	Outer	N24	Outer
<u>Location</u>	Bracing	<u>g</u>		
Outer	M15	5		
Inner	M16A	4		
Outer				
	Top Bottom Location Outer Inner Outer Location Outer Inner	Top M3 Bottom M7 M11 M11 Location Rear Struts Outer M2 Inner M6 Outer M10 Location Bracing Outer M1: Inner M16/	Top M3 Outer Bottom M7 Inner M11 Outer Location Rear Struts Location Outer M2 Outer Inner M6 Inner Outer M10 Outer Location Bracing Outer M15 Inner M16A	Top M3 Outer N7 Bottom M7 Inner N15 M11 Outer N23 Location Rear Struts Location Rear Reactions Outer M2 Outer N8 Inner M6 Inner N16 Outer M10 Outer N24 Location Bracing Outer M15 Inner M16A

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type =	<u>1.5x0.25</u> 6061-T6	
F _{ty} =	35	ksi
Φ =	0.90	
$S_y =$	0.02	in ³
E =	10100	ksi
l _y =	33.25	in ⁴
A =	0.38	in ²
g =	0.45	lbs/ft
$M_y =$	0.007	k-ft
P _n =	0.041	k
$M_{y \text{ allowable}} =$	0.046	k-ft
P _{n allowable} =	11.813	k
Utilization =	<u>16%</u>	

A cross brace kit is required every 12 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	314.50	<u>1577.14</u>	k
Compressive Load =	2084.18	<u>1613.10</u>	k
Lateral Load =	<u>5.33</u>	733.67	k
Moment (Weak Axis) =	0.01	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 23347.9 in-lbs Resisting Force Required = 778.26 lbs A minimum 60in long x 21in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1297.10 lbs to resist overturning. Minimum Width = 21 in in Weight Provided = 1903.13 lbs Sliding 176.28 lbs Force = Use a 60in long x 21in wide x 18in tall Friction = 0.4 Weight Required = 440.69 lbs ballast foundation to resist sliding. Resisting Weight = 1903.13 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 176.28 lbs Cohesion = 130 psf Use a 60in long x 21in wide x 18in tall 8.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 951.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width 21 in 22 in 23 in 24 1903 lbs 1994 lbs 2084 lbs 217			
	21 in	22 in	23 in	<u>24 in</u>
$P_{tta} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.75 \text{ ft}) =$	1903 lbs	1994 lbs	2084 lbs	2175 lbs

ASD LC	1.0D + 1.0S 1.0D + 1.0W				1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W											
Width	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in
FA	810 lbs	810 lbs	810 lbs	810 lbs	564 lbs	564 lbs	564 lbs	564 lbs	971 lbs	971 lbs	971 lbs	971 lbs	-148 lbs	-148 lbs	-148 lbs	-148 lbs
FB	595 lbs	595 lbs	595 lbs	595 lbs	497 lbs	497 lbs	497 lbs	497 lbs	773 lbs	773 lbs	773 lbs	773 lbs	-756 lbs	-756 lbs	-756 lbs	-756 lbs
F _V	74 lbs	74 lbs	74 lbs	74 lbs	319 lbs	319 lbs	319 lbs	319 lbs	290 lbs	290 lbs	290 lbs	290 lbs	-353 lbs	-353 lbs	-353 lbs	-353 lbs
P _{total}	3308 lbs	3399 lbs	3490 lbs	3580 lbs	2964 lbs	3055 lbs	3145 lbs	3236 lbs	3647 lbs	3738 lbs	3829 lbs	3919 lbs	237 lbs	292 lbs	346 lbs	400 lbs
M	524 lbs-ft	524 lbs-ft	524 lbs-ft	524 lbs-ft	617 lbs-ft	617 lbs-ft	617 lbs-ft	617 lbs-ft	820 lbs-ft	820 lbs-ft	820 lbs-ft	820 lbs-ft	572 lbs-ft	572 lbs-ft	572 lbs-ft	572 lbs-ft
е	0.16 ft	0.15 ft	0.15 ft	0.15 ft	0.21 ft	0.20 ft	0.20 ft	0.19 ft	0.22 ft	0.22 ft	0.21 ft	0.21 ft	2.41 ft	1.96 ft	1.65 ft	1.43 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	306.3 psf	302.2 psf	298.5 psf	295.2 psf	254.2 psf	252.5 psf	251.0 psf	249.6 psf	304.4 psf	300.5 psf	296.9 psf	293.6 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	449.9 psf	439.4 psf	429.7 psf	420.9 psf	423.3 psf	414.0 psf	405.4 psf	397.6 psf	529.2 psf	515.1 psf	502.1 psf	490.3 psf	1019.7 psf	197.1 psf	142.2 psf	124.6 psf

Maximum Bearing Pressure = 1020 psf Allowable Bearing Pressure = 1500 psf Use a 60in long \times 21in wide \times 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 320.1 \text{ ft-lbs}$

Resisting Force Required = 365.83 lbs S.F. = 1.67 Weight Required = 609.72 lbs

Minimum Width = 21 in in Weight Provided = 1903.13 lbs

A minimum 60in long x 21in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785	D + 0.65625E	+ 0.75S	0	.362D + 0.875	Ε
Width		21 in			21 in			21 in	
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer
F _Y	94 lbs	261 lbs	89 lbs	375 lbs	1144 lbs	370 lbs	28 lbs	76 lbs	26 lbs
F _V	5 lbs	5 lbs	0 lbs	24 lbs	22 lbs	1 lbs	1 lbs	1 lbs	0 lbs
P _{total}	2450 lbs	2617 lbs	2445 lbs	2618 lbs	3387 lbs	2613 lbs	717 lbs	765 lbs	715 lbs
M	7 lbs-ft	7 lbs-ft	0 lbs-ft	40 lbs-ft	34 lbs-ft	4 lbs-ft	2 lbs-ft	2 lbs-ft	0 lbs-ft
е	0.00 ft	0.00 ft	0.00 ft	0.02 ft	0.01 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft
L/6	0.29 ft	1.74 ft	1.75 ft	1.72 ft	1.73 ft	1.75 ft	1.74 ft	1.74 ft	1.75 ft
f _{min}	277.1 sqft	296.3 sqft	279.3 sqft	283.4 sqft	373.9 sqft	297.2 sqft	81.0 sqft	86.7 sqft	81.7 sqft
f _{max}	283.0 psf	301.9 psf	279.6 psf	315.0 psf	400.3 psf	300.1 psf	82.7 psf 88.3 psf 81.8		

Maximum Bearing Pressure = 400 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 21in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	1.603 k	Maximum Axial Load =	1.311 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>28%</u>	Utilization =	<u>23%</u>
Diagonal Strut		Bracing	
Maximum Axial Load =	0.309 k	Maximum Axial Load =	0.041 k
	0.000	Maximum Axiai Load =	0.0+1 K
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
M8 Bolt Shear Capacity = Strut Bearing Capacity =			
	5.692 k	M10 Bolt Capacity =	8.894 k

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 29.57 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.591 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.068 \text{ in} \\ \hline \frac{N\!/\!A}{} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus XT**

Strong Axis:

3.4.14

$$L_{b} = 102.00 \text{ in}$$

$$J = 0.427$$

$$212.736$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 28.6 \text{ ksi}$

3.4.16

$$b/t = 6.6$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_{b} = 102.00 \text{ in}$$

$$J = 0.427$$

$$231.168$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

$$\phi F_{I} = 28.4$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 22.7 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 37.95$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 38.1$$

$$m = 0.63$$

$$C_0 = 40.784$$

$$Cc = 39.216$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$φF_L$$
= 1.3 $φ$ yFcy
 $φF_L$ = 43.2 ksi
 $φF_L$ St= 28.6 ksi

79.7

S2 =

3.4.18

$$h/t = 6.6$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20.5$$

$$Cc = 20.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 22.7 \text{ ksi}$$

$$ly = 148662 \text{ mm}^4$$

$$0.357 \text{ in}^4$$

$$x = 20.5 \text{ mm}$$

$$Sy = 0.443 \text{ in}^3$$

$$M_{max} Wk = 0.838 \text{ k-ft}$$

Compression

3.4.9

$$b/t = 6.6$$

$$\phi F_L = \phi y F c y$$
 $\phi F_L = 33.3 \text{ ksi}$

$$\begin{array}{lll} \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 37.95 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE)})/(1.6b/t) \\ \\ \phi F_L = & 21.4 \text{ ksi} \\ \end{array}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.42 \text{ ksi}$$

$$A = 620.02 \text{ mm}^2$$

$$0.96 \text{ in}^2$$

$$P_{\text{max}} = 20.59 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.49 \\ & 20.14 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$
$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

 $\phi F_L = 30.0 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$\begin{array}{lll} L_{b} = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.49 \\ & 24.5845 \\ S1 = & \frac{1.2(Bc - \frac{\theta_{y}}{\theta_{b}}Fcy)}{Dc} \\ S1 = & 1.37733 \\ S2 = & 1.2C_{c} \\ S2 = & 79.2 \\ \phi F_{L} = & \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})] \end{array}$$

 $\phi F_1 = 30.0 \text{ ksi}$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16

N/A for Strong Direction

 $\phi F_L = 33.3 \text{ ksi}$

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$\theta_{\rm tot} = \frac{1}{2}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

3.4.18

h/t = 24.46

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.0 \text{ ksi}$$

$$\phi F_L St = 364470 \text{ mm}^4$$

$$\phi F_L = 43.2 \text{ KSI}$$

$$\phi F_L St = 30.0 \text{ ksi}$$

$$lx = 364470 \text{ mm}^4$$

$$0.876 \text{ in}^4$$

$$y = 37.77 \text{ mm}$$

$$Sx = 0.589 \text{ in}^3$$

$$M_{max}St = 1.471 \text{ k-ft}$$

Compression

3.4.7

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 13.5 \text{ ksi}$$

$$\psi = 217168 \text{ mm}^4$$

$$0.522 \text{ in}^4$$

$$X = 29 \text{ mm}$$

$$Sy = 0.457 \text{ in}^3$$

$$M_{max}W k = 0.513 \text{ k-ft}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^* \sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$

3.4.9.1

 $\phi F_L =$

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

28.2 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{\theta_b}{Dt}\right)$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 14.29 \text{ ksi}$
 $A = 576.21 \text{ mm}^2$
 0.89 in^2
 $P_{\text{max}} = 12.76 \text{ kips}$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

Weak Axis:

3.4.14

$$\begin{array}{ll} L_b = & 18.00 \text{ in} \\ J = & 0.16 \\ & 47.2194 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ \phi F_L = & \phi b [Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L = & 31.2 \end{array}$$

3.4.16

 $\phi F_L = 31.2 \text{ ksi}$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 ksi$$

$$| x = 39958.2 mm^4$$

$$0.096 in^4$$

$$y = 15 mm$$

$$Sx = 0.163 in^3$$

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$V = 15 \text{ mm}$$

$$V = 0.163 \text{ in}^3$$

 $M_{max}Wk = 0.423 \text{ k-ft}$

7.75

 $M_{max}St = 0.423 \text{ k-ft}$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$OE = OV Ecy$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$P_{max} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$\left(B_{C} - \frac{\theta_{y}}{2}F_{C}v\right)^{\frac{1}{2}}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))]}$$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$
3.4.16.1 Not Use

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

7.75

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$
 $lx = 39958.2 \text{ mm}^4$
 0.096 in^4
 $y = 15 \text{ mm}$

$$Sx = 0.163 \text{ in}^3$$

 $M_{max}St = 0.404 \text{ k-ft}$

Weak Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

S2 =
$$1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$

$\phi F_{L} = 29.8$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ M_{max} W k = & 0.450 \text{ k-ft} \end{array}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$

$$S2^* = 1.23671$$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{\frac{\theta_b}{\theta_b}Fcy}\right)$$

$$\phi F_L {= \phi y F c y}$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 33.07 \text{ in}$$
 $J = 0.16$
 86.7548

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.4 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$Rn - \frac{\theta_y}{\theta_y} F_{CY}$$

$$S1 = \frac{1.6Dp}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Not Used

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
$$S1 = 36.9$$

$$m = 0.65$$

 $C_0 = 15$

$$C_0 = 15$$

 $Cc = 15$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.4 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

0.096 in⁴

$$Sx = 0.163 \text{ in}^3$$

$$M_{max}St = 0.411 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 33.07 \text{ in}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.4$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi y F c y$$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDhr}$$

$$m = 0.65$$

$$C_0 = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

$\begin{array}{lll} \textbf{3.4.7} \\ \lambda = & 1.41804 \\ \textbf{r} = & 0.437 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ \textbf{S1}^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ \textbf{S2}^* = & 1.23671 \\ & \phi cc = & 0.77853 \\ & \phi \textbf{F}_L = & (\phi cc \textbf{Fcy})/(\lambda^2) \\ & \phi \textbf{F}_L = & 13.5508 \text{ ksi} \end{array}$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 13.55 \text{ ksi}$
 $\phi F_L = 323.87 \text{ mm}^2$
 $\phi F_L = 6.80 \text{ kips}$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-57.498	-57.498	0	0
2	M16	Υ	-57.498	-57.498	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-33.217	-33.217	0	0
2	M16	V	-52.198	-52.198	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

		Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1		M13	٧	67.066	67.066	0	0
2	2	M16	٧	31.635	31.635	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	128.755	2	337.396	1	.002	10	0	2	0	1	0	1
2		min	-176.763	3	-368.968	3	195	1	0	3	0	1	0	1
3	N7	max	0	15	563	1	072	15	0	15	0	1	0	1
4		min	197	1	-64.913	3	-1.866	1	003	1	0	1	0	1
5	N15	max	001	15	1603.214	1	.615	1	.001	1	0	1	0	1
6		min	-2.122	1	-241.924	3	242	3	0	3	0	1	0	1
7	N16	max	538.649	2	1240.848	1	29	10	0	1	0	1	0	1
8		min	-564.363	3	-1213.183	3	-37.883	1	0	3	0	1	0	1
9	N23	max	0	15	562.776	1	4.103	1	.007	1	0	1	0	1
10		min	197	1	-64.465	3	.149	15	0	15	0	1	0	1
11	N24	max	129.256	2	343.246	1	35.225	1	.002	1	0	1	0	1
12		min	-176.809	3	-365.889	3	.051	10	0	3	0	1	0	1
13	Totals:	max	794.611	2	4650.48	1	0	3						
14		min	-918.21	3	-2319.341	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	. LC
1	M2	1	max	398.596	1	.642	4	.871	1	0	15	0	3	0	1
2			min	-349.106	3	.152	15	032	3	001	1	0	1	0	1
3		2	max	398.703	1	.601	4	.871	1	0	15	0	1	0	15
4			min	-349.026	3	.142	15	032	3	001	1	0	10	0	4
5		3	max	398.809	1	.56	4	.871	1	0	15	0	1	0	15
6			min	-348.946	3	.133	15	032	3	001	1	0	12	0	4
7		4	max	398.916	1	.519	4	.871	1	0	15	0	1	0	15
8			min	-348.866	3	.123	15	032	3	001	1	0	3	0	4
9		5	max	399.022	1	.477	4	.871	1	0	15	0	1	0	15
10			min	-348.786	3	.113	15	032	3	001	1	0	3	0	4
11		6	max	399.129	1	.436	4	.871	1	0	15	0	1	0	15
12			min	-348.706	3	.104	15	032	3	001	1	0	3	0	4
13		7	max	399.235	1	.395	4	.871	1	0	15	0	1	0	15
14			min	-348.626	3	.094	15	032	3	001	1	0	3	0	4
15		8	max	399.342	1	.354	4	.871	1	0	15	0	1	0	15
16			min	-348.546	3	.084	15	032	3	001	1	0	3	0	4
17		9	max	399.448	1	.312	4	.871	1	0	15	0	1	0	15
18			min	-348.466	3	.075	15	032	3	001	1	0	3	0	4
19		10	max	399.555	1	.271	4	.871	1	0	15	.001	1	0	15
20			min	-348.387	3	.065	15	032	3	001	1	0	3	0	4
21		11	max	399.662	1	.23	4	.871	1	0	15	.001	1	0	15
22			min	-348.307	3	.055	15	032	3	001	1	0	3	0	4
23		12	max	399.768	1	.189	4	.871	1	0	15	.001	1	0	15
24			min	-348.227	3	.045	15	032	3	001	1	0	3	0	4
25		13	max	399.875	1	.147	4	.871	1	0	15	.002	1	0	15
26			min	-348.147	3	.036	15	032	3	001	1	0	3	0	4
27		14	max	399.981	1	.106	4	.871	1	0	15	.002	1	0	15
28			min	-348.067	3	.026	15	032	3	001	1	0	3	0	4
29		15	max	400.088	1	.07	2	.871	1	0	15	.002	1	0	15
30			min	-347.987	3	.014	12	032	3	001	1	0	3	0	4
31		16	max	400.194	1	.038	2	.871	1	0	15	.002	1	0	15
32			min	-347.907	3	006	9	032	3	001	1	0	3	0	4
33		17	max	400.301	1	.009	10	.871	1	0	15	.002	1	0	15
34			min	-347.827	3	035	1	032	3	001	1	0	3	0	4
35		18	max	400.407	1	013	15	.871	1	0	15	.002	1	0	15
36			min	-347.747	3	067	1	032	3	001	1	0	3	0	4
37		19	max	400.514	1	022	15	.871	1	0	15	.002	1	0	15

: Schletter, Inc. : HCV

Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]						y-y Mome		z-z Mome	
38			min	-347.667	3	1	4	032	3	001	1	0	3	0	4
39	M3	1	max		10	1.795	4	028	15	00	15	.003	1	0	4
40			min	-108.672	9	.423	15	847	1	0	1	0	15	0	15
41		2	max	58.899	10	1.617	4	028	15	0	15	.002	1	0	4
42			min	-108.729	9	.381	15	847	1	0	1	0	15	0	15
43		3	max	58.842	10	1.439	4	028	15	0	15	.002	1	0	2
44			min	-108.786	9	.339	15	847	1	0	1	0	15	0	9
45		4	max	58.786	10	1.262	4	028	15	0	15	.002	1	0	15
46			min	-108.842	9	.297	15	847	1	0	1	0	15	0	4
47		5	max	58.729	10	1.084	4	028	15	0	15	.002	1	0	15
48			min	-108.899	9	.256	15	847	1	0	1	0	15	0	4
49		6	max	58.673	10	.906	4	028	15	0	15	.002	1	0	15
50			min	-108.955	9	.214	15	847	1	0	1	0	15	0	4
51		7	max	58.616	10	.729	4	028	15	0	15	.001	1	0	15
52			min	-109.012	9	.172	15	847	1	0	1	0	15	0	4
53		8	max	58.559	10	.551	4	028	15	0	15	.001	1	0	15
54			min	-109.068	9	.13	15	847	1	0	1	0	15	0	4
55		9	max	58.503	10	.373	4	028	15	0	15	.001	1	0	15
56			min	-109.125	9	.089	15	847	1	0	1	0	15	001	4
57		10	max	58.446	10	.196	4	028	15	0	15	0	1	0	15
58			min	-109.181	9	.047	15	847	1	0	1	0	15	001	4
59		11	max	58.39	10	.028	2	028	15	0	15	0	1	0	15
60			min	-109.238	9	003	9	847	1	0	1	0	15	001	4
61		12	max	58.333	10	037	15	028	15	0	15	0	1	0	15
62			min	-109.295	9	16	4	847	1	0	1	0	15	001	4
63		13	max	58.277	10	078	15	028	15	0	15	0	1	0	15
64			min	-109.351	9	337	4	847	1	0	1	0	12	001	4
65		14	max	58.22	10	12	15	028	15	0	15	0	1	0	15
66			min	-109.408	9	515	4	847	1	0	1	0	12	001	4
67		15	max	58.164	10	162	15	028	15	0	15	0	1	0	15
68		1	min	-109.464	9	693	4	847	1	0	1	0	3	0	4
69		16	max		10	204	15	028	15	0	15	0	15	0	15
70			min	-109.521	9	87	4	847	1	0	1	0	1	0	4
71		17	max	58.05	10	246	15	028	15	0	15	0	15	0	15
72			min	-109.577	9	-1.048	4	847	1	0	1	0	1	0	4
73		18	max	57.994	10	287	15	028	15	0	15	0	15	0	15
74		1	min	-109.634	9	-1.226	4	847	1	0	1	0	1	0	4
75		19	max	57.937	10	329	15	028	15	0	15	0	15	0	1
76		10	min	-109.69	9	-1.403	4	847	1	0	1	0	1	0	1
77	M4	1	max		1	0	1	072	15	0	1	0	3	0	1
78	IVIT			-65.786		0	1	-2.058	1	0	1	0	1	0	1
79		2	max		1	0	1	072	15	0	1	0	12	0	1
80			min	-65.738	3	0	1	-2.058	1	0	1	0	1	0	1
81		3	max		1	0	1	072	15	0	1	0	15	0	1
82			min	-65.689	3	0	1	-2.058	1	0	1	0	1	0	1
83		4	max		1	0	1	072	15	0	1	0	15	0	1
84			min	-65.641	3	0	1	-2.058	1	0	1	0	1	0	1
85		5	max		1	0	1	072	15	0	1	0	15	0	1
86		_ J	min	-65.592	3	0	1	-2.058	1	0	1	0	1	0	1
87		6			1		1	072	15	0	1	0	15	0	1
88		0	max	-65.544	3	0	1	-2.058	1	0	1	0	1	0	1
89		7	min		<u>ა</u> 1	0	1	-2.036 072	15	0	1	0	15	0	1
			max												
90		0	min	-65.495	3	0	1	<u>-2.058</u>	1	0	1	<u>001</u>	1 1 5	0	1
91		8	max			0	1	072	15	0		0	15	0	1
92		_	min	-65.446	3	0	1	-2.058	1	0	1	<u>001</u>	1	0	1
93		9	max		1	0	1	072	15	0	1	0	15	0	1
94			min	-65.398	3	0	1	-2.058	1	0	1	002	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	. LC
95		10	max	562.418	1	0	1	072	15	0	1	0	15	0	1
96			min	-65.349	3	0	1	-2.058	1	0	1	002	1	0	1
97		11	max		1	0	1	072	15	0	1	0	15	0	1
98			min	-65.301	3	0	1	-2.058	1	0	1	002	1	0	1
99		12	max	562.547	1	0	1	072	15	0	1	0	15	0	1
100		10	min	-65.252	3	0	1	-2.058	1_	0	1	002	1	0	1
101		13	max		1	0	1	<u>072</u>	15	0	1	0	15	0	1
102		4.4	min	-65.204	3	0	1	-2.058	1	0	1	002	1	0	1
103		14		562.677	1	0	1	072	15	0	1	0	15	0	1
104		4.5	min	-65.155	3	0	1	-2.058	1	0	1	002	1	0	1
105		15	max		1	0	1	072	15	0	1	0	15	0	1
106		4.0	min	-65.107	3	0	1	-2.058	1	0	1	003	1	0	1
107		16	max		1	0	1	072	15	0	1	0	15	0	1
108		17	min		3	0	1	<u>-2.058</u>	1	0	1	003 0		0	1
109		17	max	562.871 -65.01	3	0	1	072 -2.058	15	0	1	003	15 1	<u>0</u> 	1
111		18	min		1	0	1	-2.036 072	15	0	1	003 0	15	0	1
112		10	max	-64.961	3	0	1	-2.058	1	0	1	003	1	0	1
113		19	min	563	<u> </u>	0	1	-2.036 072	15	0	1	<u>003</u> 0	15	0	1
114		19	max	-64.913	3	0	1	-2.058	1	0	1	003	1	0	1
115	M6	1	min	1308.611	<u> </u>	.637	4	<u>-2.056</u> .287	1	0	1	003 0	3	0	1
116	IVIO	-	min	-1144.718	3	.151	15	107	3	0	15	0	2	0	1
117		2		1308.717	1	.595	4	.287	1	0	1	0	3	0	15
118				-1144.638	3	.142	15	107	3	0	15	0	2	0	4
		2		1308.824	<u> </u>				1	-	1	0	1	0	_
119 120		3		-1144.558	3	.554 .132	15	.287 107	3	0	15	0	15	0	15
121		4		1308.93	1	.513	4	.287	1	0	1	0	1	0	15
122		4		-1144.478	3		15		3	-	15		12		
		-	1		<u> </u>	.122	4	107	1	0	1	<u> </u>	1	0	4
123 124		5	min	1309.037 -1144.398	3	.471 .112	15	.287 107	3	0	15	0	3	0 0	15
125		6		1309.143	1	.43	4	.287	1	0	1	0	1	0	15
126		0	min	-1144.318	3	.103	15	107	3	0	15	0	3	0	4
127		7		1309.25	1	.389	4	.287	1	0	1	0	1	0	15
128				-1144.238	3	.093	15	107	3	0	15	0	3	0	4
129		8		1309.356	1	.348	4	.287	1	0	1	0	1	0	15
130		0		-1144.158	3	.083	15	107	3	0	15	0	3	0	4
131		9		1309.463	1	.311	2	.287	1	0	1	0	1	0	15
132		9		-1144.078	3	.074	15	107	3	0	15	0	3	0	4
133		10	1	1309.569	1	.279	2	.287	1	0	1	0	1	0	15
134		10	min	-1143.998	3	.064	15	107	3	0	15	0	3	0	4
135		11	may	1309.676		.247	2	.287	1	0	1	0	1	0	15
136				-1143.919	3	.052	12	107	3	0	15	0	3	0	4
137		12		1309.782	1	.215	2	.287	1	0	1	0	1	0	15
138		12		-1143.839	3	.036	12	107	3	0	15	0	3	0	4
139		13		1309.889	1	.182	2	.287	1	0	1	0	1	0	15
140		10		-1143.759	3	.02	12	107	3	0	15	0	3	0	4
141		14		1309.996	1	.15	2	.287	1	0	1	0	1	0	15
142		'-		-1143.679	3	.002	3	107	3	0	15	0	3	0	4
143		15		1310.102	1	.118	2	.287	1	0	1	0	1	0	15
144		10		-1143.599	3	023	3	107	3	0	15	0	3	0	4
145		16		1310.209	1	.086	2	.287	1	0	1	0	1	0	15
146		10		-1143.519	3	047	3	107	3	0	15	0	3	0	2
147		17	_	1310.315	1	.054	2	.287	1	0	1	0	1	0	15
148				-1143.439	3	071	3	107	3	0	15	0	3	0	2
149		18		1310.422	1	.022	2	.287	1	0	1	0	1	0	15
150		'0		-1143.359	3	095	3	107	3	0	15	0	3	0	2
151		19		1310.528	1	011	2	.287	1	0	1	0	1	0	15
101			παλ	.0.0.020				.201					1 1		

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC				LC	Torque[k-ft]		y-y Mome		z-z Mome	
152			min	-1143.279	3	119	3	107	3	0	15	0	3	0	2
153	M7	1	max	308.829	2	1.793	4	.018	1	0	2	0	2	0	2
154			min	-256.324	3	.423	15	002	3	0	3	0	3	0	12
155		2	max	308.761	2	1.616	4	.018	1	0	2	0	2	0	2
156			min	-256.375	3	.381	15	002	3	0	3	0	3	0	12
157		3	max		2	1.438	4	.018	1	0	2	0	2	0	2
158			min	-256.426	3	.339	15	002	3	0	3	0	3	0	3
159		4	max		2	1.26	4	.018	1	0	2	0	2	0	2
160			min	-256.477	3	.297	15	002	3	0	3	0	3	0	3
161		5	max	308.558	2	1.083	4	.018	1	0	2	0	2	0	15
162		5		-256.527	3	.255	15	002	3	0	3	0	3	0	4
			min									_			
163		6	max	308.49	2	.905	4	.018	1	0	2	0	2	0	15
164		_	min	-256.578	3	.214	15	002	3	0	3	0	3	0	4
165		7	max	308.422	2	.727	4	.018	1	0	2	0	2	0	15
166			min	-256.629	3	.172	15	002	3	0	3	0	3	0	4
167		8	max		2	.55	4	.018	1	0	2	0	2	0	15
168			min	-256.68	3	.13	15	002	3	0	3	0	3	001	4
169		9	max	308.286	2	.372	4	.018	1	0	2	0	2	0	15
170			min	-256.731	3	.088	15	002	3	0	3	0	3	001	4
171		10	max	308.219	2	.213	2	.018	1	0	2	0	2	0	15
172			min	-256.782	3	.043	12	002	3	0	3	0	3	001	4
173		11	max		2	.074	2	.018	1	0	2	0	2	0	15
174			min	-256.833	3	043	3	002	3	0	3	0	3	001	4
175		12	max		2	037	15	.018	1	0	2	0	2	0	15
176		12	min	-256.884	3	161	4	002	3	0	3	0	3	001	4
177		13	max		2	079	15	.018	1	0	2	0	2	0	15
		13							3		3				
178		4.4	min	-256.935	3	338	4	002		0		0	3	001	4
179		14	max		2	12	15	.018	1	0	2	0	2	0	15
180		4.5	min	-256.986	3	516	4	002	3	0	3	0	3	001	4
181		15	max		2	162	15	.018	1	0	2	0	2	0	15
182			min	-257.036	3	694	4	002	3	0	3	0	3	0	4
183		16	max		2	204	15	.018	1	0	2	0	2	0	15
184			min	-257.087	3	871	4	002	3	0	3	0	3	0	4
185		17	max		2	246	15	.018	1	0	2	0	2	0	15
186			min	-257.138	3	-1.049	4	002	3	0	3	0	3	0	4
187		18	max	307.676	2	287	15	.018	1	0	2	0	2	0	15
188			min	-257.189	3	-1.227	4	002	3	0	3	0	3	0	4
189		19	max	307.608	2	329	15	.018	1	0	2	0	2	0	1
190			min	-257.24	3	-1.404	4	002	3	0	3	0	3	0	1
191	M8	1		1602.049	1	0	1	.833	1	0	1	0	15	0	1
192				-242.797		0	1	233	3	0	1	0	1	0	1
193		2		1602.114	1	0	1	.833	1	0	1	0	1	0	1
194			min			0	1	233	3	0	1	0	3	0	1
195		3		1602.179	1	0	1	.833	1	0	1	0	1	0	1
196		3	min	-242.7	3	0	1	233	3	0	1	0	3	0	1
		4					1								-
197		4		1602.244	1	0		.833	1	0	1	0	1	0	1
198		_	min		3	0	1	233	3	0	1	0	3	0	1
199		5		1602.308	1	0	1	.833	1	0	1	0	1	0	1
200			min	-242.603	3	0	1	233	3	0	1	0	3	0	1
201		6		1602.373	1_	0	1	.833	1	0	1	0	1_	0	1
202			min	-242.555	3	0	1	233	3	0	1	0	3	0	1
203		7	max	1602.438	1	0	1	.833	1	0	1	0	1	0	1
204			min		3	0	1	233	3	0	1	0	3	0	1
205		8	max	1602.502	1	0	1	.833	1	0	1	0	1	0	1
206			min	-242.458	3	0	1	233	3	0	1	0	3	0	1
207		9		1602.567	1	0	1	.833	1	0	1	0	1	0	1
208			min		3	0	1	233	3	0	1	0	3	0	1
200			1111111	L72.7U3	U			.200	J			U	U	U	

: Schletter, Inc. : HCV

Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
209		10	max	1602.632	1	0	1	.833	1	0	1	0	1	0	1
210			min	-242.361	3	0	1	233	3	0	1	0	3	0	1
211		11	max	1602.697	1	0	1	.833	1	0	1	0	1	0	1
212			min		3	0	1	233	3	0	1	0	3	0	1
213		12	max	1602.761	1	0	1	.833	1	0	1	0	1	0	1
214			min	-242.264	3	0	1	233	3	0	1	0	3	0	1
215		13	max	1602.826	1	0	1	.833	1	0	1	0	1	0	1
216			min	-242.215	3	0	1	233	3	0	1	0	3	0	1
217		14	max	1602.891	1	0	1	.833	1	0	1	0	1	0	1
218			min	-242.166	3	0	1	233	3	0	1	0	3	0	1
219		15		1602.955	1	0	1	.833	1	0	1	.001	1	0	1
220			min	-242.118	3	0	1	233	3	0	1	0	3	0	1
221		16	max	1603.02	1	0	1	.833	1	0	1	.001	1	0	1
222			min	-242.069	3	0	1	233	3	0	1	0	3	0	1
223		17	max	1603.085	1	0	1	.833	1	0	1	.001	1	0	1
224			min	-242.021	3	0	1	233	3	0	1	0	3	0	1
225		18	max	1603.15	1	0	1	.833	1	0	1	.001	1	0	1
226			min	-241.972	3	0	1	233	3	0	1	0	3	0	1
227		19	max	1603.214	1	0	1	.833	1	0	1	.001	1	0	1
228			min	-241.924	3	0	1	233	3	0	1	0	3	0	1
229	M10	1	max		1	.633	4	007	15	.001	1	0	1	0	1
230			min	-338.084	3	.151	15	191	1	0	3	0	3	0	1
231		2	max		1	.591	4	007	15	.001	1	0	1	0	15
232			min		3	.141	15	191	1	0	3	0	3	0	4
233		3	max	413.398	1	.55	4	007	15	.001	1	0	1	0	15
234			min	-337.924	3	.131	15	191	1	0	3	Ö	3	0	4
235		4	max		1	.509	4	007	15	.001	1	0	1	0	15
236			min	-337.844	3	.122	15	191	1	0	3	0	3	0	4
237		5	max		1	.467	4	007	15	.001	1	0	2	0	15
238		Ŭ	min	-337.764	3	.112	15	191	1	0	3	0	3	0	4
239		6	max		1	.426	4	007	15	.001	1	0	2	0	15
240			min	-337.685	3	.102	15	191	1	0	3	0	3	0	4
241		7	max		1	.385	4	007	15	.001	1	0	2	0	15
242			min	-337.605	3	.093	15	191	1	0	3	0	3	0	4
243		8	max	413.931	1	.344	4	007	15	.001	1	0	2	0	15
244			min	-337.525	3	.083	15	191	1	0	3	0	3	0	4
245		9	max		1	.302	4	007	15	.001	1	0	2	0	15
246			min	-337.445	3	.073	15	191	1	0	3	0	1	0	4
247		10	max		1	.261	4	007	15	.001	1	0	15	0	15
248		'	min	-337.365	3	.063	15	191	1	0	3	0	1	0	4
249		11		414.25	1	.22	4	007	15	.001	1	0	15	0	15
250			min		3	.054	15	191	1	0	3	0	1	0	4
251		12		414.357	1	.179	4	007	15	.001	1	0	15	0	15
252		- '-		-337.205	3	.044	15	191	1	0	3	0	1	0	4
253		13	max		1	.137	4	007	15	.001	1	0	15	0	15
254		10	min	-337.125	3	.034	15	191	1	0	3	0	1	0	4
255		14	max		1	.096	4	007	15	.001	1	0	15	0	15
256		17	min		3	.013	1	191	1	0	3	0	1	0	4
257		15		414.676	1	.062	10	007	15	.001	1	0	15	0	15
258		'	min	-336.965	3	019	1	191	1	0	3	0	1	0	4
259		16		414.783	<u> </u>	.036	10	007	15	.001	1	0	15	0	15
260		10	min		3	051	1	191	1	0	3	0	1	0	4
261		17		414.889	<u> </u>	.009	10	007	15	.001	1	0	15	0	15
262		17		-336.806	3	083	1	007 191	1	001	3	0	1	0	4
263		18			<u>၂</u> ၂	063	15	007	15		1	0	15		15
264		10	max min		3	115	1	007 191	1	<u>.001</u>	3	0	1	0	4
265		10		415.103	<u>ာ</u> 1	024	15	191	15	.001	1	0	15	0	15
200		l 19	шах	410.103		024	10	007	LIO	.001	1	U	<u> </u>	<u> </u>	_ l O

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]		y Shear[lb]	LC		LC	Torque[k-ft		/-y Mome	LC_	z-z Mome	. LC_
266			min	-336.646	3	148	1	191	1	0	3	0	1	0	4
267	M11	1	max	58.42	10	1.8	4	.98	1	.001	1	0	3	0	4
268			min	-108.584	9	.423	15	.023	12	0	15	002	1	0	15
269		2	max	58.364	10	1.622	4	.98	1	.001	1	0	3	0	2
270			min	-108.64	9	.382	15	.023	12	0	15	002	1	0	12
271		3	max	58.307	10	1.444	4	.98	1	.001	1	0	3	0	2
272			min	-108.697	9	.34	15	.023	12	0	15	002	1	0	3
273		4	max	58.251	10	1.267	4	.98	1	.001	1	0	3	0	15
274			min	-108.753	9	.298	15	.023	12	0	15	002	1	0	3
275		5	max	58.194	10	1.089	4	.98	1	.001	1	0	3	0	15
276			min	-108.81	9	.256	15	.023	12	0	15	002	1	0	4
277		6	max	58.138	10	.911	4	.98	1	.001	1	0	3	0	15
278			min	-108.867	9	.215	15	.023	12	0	15	001	1	0	4
279		7	max	58.081	10	.734	4	.98	1	.001	1	0	3	0	15
280			min	-108.923	9	.173	15	.023	12	0	15	001	1	0	4
281		8	max	58.025	10	.556	4	.98	1	.001	1	0	3	0	15
282			min	-108.98	9	.131	15	.023	12	0	15	001	1	0	4
283		9	max	57.968	10	.378	4	.98	1	.001	1	0	3	0	15
284			min	-109.036	9	.089	15	.023	12	0	15	0	1	001	4
285		10	max	57.911	10	.201	4	.98	1	.001	1	0	3	0	15
286			min	-109.093	9	.048	15	.023	12	0	15	0	1	001	4
287		11	max	57.855	10	.048	2	.98	1	.001	1	0	3	0	15
288			min	-109.149	9	019	3	.023	12	0	15	0	1	001	4
289		12	max	57.798	10	036	15	.98	1	.001	1	0	3	0	15
290		1-	min	-109.206	9	155	4	.023	12	0	15	0	1	001	4
291		13	max	57.742	10	078	15	.98	1	.001	1	0	3	0	15
292		10	min	-109.262	9	332	4	.023	12	0	15	0	2	001	4
293		14	max	57.685	10	12	15	.98	1	.001	1	0	1	0	15
294		17	min	-109.319	9	51	4	.023	12	0	15	0	10	001	4
295		15	max	57.629	10	161	15	.98	1	.001	1	0	1	0	15
296		15	min	-109.375	9	688	4	.023	12	0	15	0	15	0	4
297		16	max	57.572	10	203	15	.98	1	.001	1	0	1	0	15
298		10	min	-109.432	9	865	4	.023	12	0	15	0	15	0	4
299		17	max	57.516	10	245	15	.98	1	.001	1	0	1	0	15
300		1 '	min	-109.489	9	-1.043	4	.023	12	0	15	0	15	0	4
301		18	max	57.459	10	287	15	.98	1	.001	1	.001	1	0	15
302		10	min	-109.545	9	-1.22	4	.023	12	0	15	0	15	0	4
303		19	max	57.402	10	328	15	.98	1	.001	1	.001	1	0	1
304		13	min	-109.602	9	-1.398	4	.023	12	0	15	0	15	0	1
305	M12	1	max	561.611	_ 	0	1	4.521	1	0	1	0	1	0	1
306	IVIIZ			-65.338		0	1	.15	15	0	1	0	3	0	1
307		2		561.676	1	0	1	4.521	1	0	1	0	1	0	1
308			min	-65.29	3	0	1	.15	15	0	1	0	15	0	1
309		3		561.741	_ <u>3</u> 1	0	1	4.521	1	0	1	0	1	0	1
310		J	min	-65.241	3	0	1	.15	15	0	1	0	15	0	1
311		4	max		<u> </u>	0	1	4.521	1	0	1	.001	1	0	1
312		4	min	-65.193	3	0	1	.15	15	0	1	<u>.001</u>	15	0	1
313		5			<u> </u>	0	1	4.521	1	0	1	.002	1	0	1
314		J	max	-65.144	3	0	1	.15	15	0	1	<u>.002</u>	15	0	1
		G	min		<u>ა</u> 1	0	1	4.521	1	0	1	.002	1	0	1
315 316		6	max	561.935 -65.096	3	0	1	.15	15	0	1	<u>.002</u>	15	0	1
		7	min			-	1				1	.002			-
317		/		561.999 -65.047	<u>1</u> 3	0		4.521	1	0			1 15	0	1
318		0	min		_	0	1	.15	15	0	1 1	0		0	1
319		8	max		1	0	1	4.521	1	0	1	.003	1	0	1
320		0	min	-64.999 F62.120	3	0	1	.15	15	0		0	15	0	1 1
321		9	max		1	0	1	4.521	1	0	1	.003	1	0	1
322			min	-64.95	3	0	1	.15	15	0	1	0	15	0	1

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

323	Member	Sec 10	max	Axial[lb] 562.193	LC 1	y Shear[lb]	LC 1	z Shear[lb] 4.521	LC 1	Torque[k-ft]	LC 1	y-y Mome .004	LC 1	z-z Mome	LC 1
324		10	min	-64.902	3	0	1	.15	15	0	1	0	15	0	1
325		11	max			0	1	4.521	1	0	1	.004	1	0	1
326			min	-64.853	3	0	1	.15	15	0	1	0	15	0	1
327		12	max	562.323		0	1	4.521	1	0	1	.004	1	0	1
328		12	min	-64.805	3	0	1	.15	15	0	1	0	15	0	1
329		13	max	562.388	1	0	1	4.521	1	0	1	.005	1	0	1
330		10	min	-64.756	3	0	1	.15	15	0	1	0	15	0	1
331		14	max	562.452	1	0	1	4.521	1	0	1	.005	1	0	1
332		1 7	min	-64.707	3	0	1	.15	15	0	1	0	15	0	1
333		15	max	562.517	1	0	1	4.521	1	0	1	.006	1	0	1
334		-10	min	-64.659	3	0	1	.15	15	0	1	0	15	0	1
335		16	max		1	0	1	4.521	1	0	<u> </u>	.006	1	0	1
336			min	-64.61	3	0	1	.15	15	0	1	0	15	0	1
337		17	max	562.646	1	0	1	4.521	1	0	1	.007	1	0	1
338			min	-64.562	3	0	1	.15	15	0	1	0	15	0	1
339		18	max	562.711	1	0	1	4.521	1	0	1	.007	1	0	1
340			min	-64.513	3	0	1	.15	15	0	1	0	15	0	1
341		19	max	562.776	1	0	1	4.521	1	0	1	.007	1	0	1
342			min	-64.465	3	0	1	.15	15	0	1	0	15	0	1
343	M1	1	max	143.833	1	328.569	3	-2.989	15	0	1	.175	1	.014	1
344			min	4.803	15	-397.376	1	-88.688	1	0	3	.006	15	009	3
345		2	max	143.929	1	328.372	3	-2.989	15	0	1	.156	1	.1	1
346			min	4.831	15	-397.639	1	-88.688	1	0	3	.005	15	081	3
347		3	max	122.157	1	7.599	9	-2.961	15	0	12	.135	1	.184	1
348			min	4.372	15	-20.39	3	-88.417	1	0	1	.005	15	151	3
349		4	max	122.253	1	7.38	9	-2.961	15	0	12	.116	1	.184	1
350			min	4.401	15	-20.587	3	-88.417	1	0	1	.004	15	146	3
351		5	max	122.348	1	7.161	9	-2.961	15	0	12	.097	1	.184	1
352			min	4.429	15	-20.784	3	-88.417	1	0	1	.003	15	142	3
353		6	max	122.444	1	6.943	9	-2.961	15	0	12	.078	1	.184	1
354			min	4.458	15	-20.981	3	-88.417	1	0	1_	.003	15	137	3
355		7	max	122.539	_1_	6.724	9	-2.961	15	0	12	.059	1	.184	1
356			min	4.487	15	-21.177	3	-88.417	1	0	1_	.002	15	133	3
357		8	max	122.635	_1_	6.505	9	-2.961	15	0	12	.039	1	.184	1_
358			min	4.516	15	-21.374	3	-88.417	1	0	1_	.001	15	128	3
359		9	max	122.73	_1_	6.287	9	-2.961	15	0	12	.02	1_	.184	1
360			min	4.545	15	-21.571	3	-88.417	1	0	_1_	0	15	123	3
361		10	max	122.826	_1_	6.068	9	-2.961	15	0	12	.001	1	.185	1
362		4.4	min	4.574	<u>15</u>	-21.768	3	-88.417	1_	0	1_	0	10	119	3
363		11	max		1_	5.849	9	-2.961	15	0	12	0	12	.185	1
364		40	min	4.602	<u>15</u>	-21.965	3	-88.417	1_	0	1_	018	1	114	3
365		12		123.017	1_	5.631	9	-2.961	15	0	12	001	12	.185	1
366		40	min	4.631	15	-22.161	3	-88.417	1_	0	1_	037	1	109	3
367		13	max		1	5.412 -22.358	9	-2.961 -88.417	15	0	12	002	12	.186	1
368		1.1	min	4.66	<u>15</u>		3		1_	0	1	056	1 1 5	104	3
369		14		123.208	1_	5.193 -22.555	9	-2.961	15	0	12	003	15	.186	1
370 371		15	min	4.689 123.303	<u>15</u> 1		9	-88.417 -2.961	1 15	0	<u>1</u> 12	076 003	1 15	099 .186	1
372		10	max	4.718		4.975 -22.752	3	-88.417	1	0	1	005	1	094	3
373		16	min max	79.479	<u>15</u> 2	27.826	10	-2.989	15	0	1	095	15	.188	1
374		10	min	-29.889	3	-84.878	3	-89.155	1	0	12	115	1	089	3
375		17	max		2	27.608	10	-2.989	15	0	1	004	15	.205	1
376		17	min	-29.818	3	-85.075	3	-89.155	1	0	12	134	1	07	3
377		18	max	-4.808	<u></u>	444.903	1	-3.062	15	0	3	134 005	15	.111	1
378		10	min	-143.283	1	-147.152	3	-91.355	1	0	1	154	1	039	3
379		19	max	-4.779	15	444.64	1	-31.062	15	0	3	006	15	.015	1
0,0		10	παλ	7.770	10	777.07		0.002	10	<u> </u>			10	.010	<u> </u>

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
380			min	-143.188	1	-147.348	3	-91.355	1	0	1	174	1	007	3
381	M5	1	max	314.34	1	1086.7	3	109	10	0	1	.006	1	.019	3
382			min	9.416	12	-1315.435	1	-32.243	1	0	3	0	10	027	1
383		2	max	314.436	1	1086.503	3	109	10	0	1	0	2	.258	1
384			min	9.464	12	-1315.697	1	-32.243	1	0	3	003	3	217	3
385		3	max	242.463	1	9.388	9	2.934	3	0	3	0	10	.538	1
386			min	7.679	10	-67.793	3	091	10	0	1	008	3	447	3
387		4	max	242.559	1	9.169	9	2.934	3	0	3	0	10	.542	1
388		•	min	7.758	10	-67.99	3	091	10	0	1	007	1	433	3
389		5	max	242.654	1	8.951	9	2.934	3	0	3	0	10	.546	1
390			min	7.838	10	-68.187	3	091	10	0	1	007	1	418	3
391		6		242.75	1	8.732	9	2.934	3		3	000 <i>1</i>	10	.55	1
		-6	max						10	0	1		1		
392		-	min	7.918	10	-68.384	3	091		0		006		403	3
393		7	max	242.845	1	8.513	9	2.934	3	0	3	0	10	.554	1
394			min	7.997	10	-68.58	3	091	10	0	1	006	1	388	3
395		8	max	242.941	1	8.295	9	2.934	3	0	3	0	10	.559	1
396			min	8.077	10	-68.777	3	091	10	0	1	005	1	373	3
397		9	max	243.036	1	8.076	9	2.934	3	0	3	0	10	.563	1
398			min	8.156	10	-68.974	3	091	10	0	1	005	1	358	3
399		10	max	243.132	1	7.857	9	2.934	3	0	3	0	10	.567	1
400			min	8.236	10	-69.171	3	091	10	0	1	004	1	344	3
401		11	max	243.227	1	7.639	9	2.934	3	0	3	0	10	.572	1
402			min	8.316	10	-69.368	3	091	10	0	1	004	1	328	3
403		12	max	243.323	1	7.42	9	2.934	3	0	3	0	10	.576	1
404			min	8.395	10	-69.564	3	091	10	0	1	003	1	313	3
405		13	max	243.418	1	7.201	9	2.934	3	0	3	0	10	.581	1
406		10	min	8.475	10	-69.761	3	091	10	0	1	003	1	298	3
407		14	max		1	6.983	9	2.934	3	0	3	0	15	.585	1
408		17	min	8.554	10	-69.958	3	091	10	0	1	002	1	283	3
409		15	max	243.609	1	6.764) တ	2.934	3	0	3	0	15	.59	1
410		13	min	8.634	10	-70.155	3	091	10	0	1	002	1	268	3
411		16	max		2	162.397	2	2.911	3	0	1	<u>002</u> 0	3	.595	1
412		10									15	001	1		3
		47	min	-97.794	3	-255.636	3	095	10	0				251	
413		17	max	288.318	2	162.135	2	2.911	3	0	1	0	3	.601	1
414		4.0	min	-97.722	3	-255.833	3	095	10	0	15	0	1	196	3
415		18	max	-9.909	12	1466.372	1	2.938	1	0	3	.001	3	.289	1
416			min	-315.301	1_	-484.841	3	019	10	0	1	0	2	091	3
417		19	max	-9.862	12	1466.109	1	2.938	1_	0	3	.002	3	.014	3
418			min	-315.205	1	-485.038	3	019	10	0	1	0	2	029	1
419	<u>M9</u>	1	max	143.153	1_	328.557	3	120.87	1	0	3	006	15	.014	1
420				4.778	15	-397.354	1_	4.183	15	0	1	17 <u>5</u>	1	009	3
421		2		143.249	1	328.361	3	120.87	1	0	3	004	12	.1	1
422			min	4.807	15	-397.616	1	4.183	15	0	1	149	1	081	3
423		3	max	122.112	1	7.573	9	83.042	1	0	1	0	3	.184	1
424			min	4.556	15	-20.335	3	1.618	12	0	15	121	1	15	3
425		4	max		1	7.355	9	83.042	1	0	1	.001	3	.184	1
426			min	4.585	15	-20.532	3	1.618	12	0	15	103	1	146	3
427		5	max		1	7.136	9	83.042	1	0	1	.002	3	.184	1
428			min	4.614	15	-20.729	3	1.618	12	0	15	085	1	142	3
429		6	max		1	6.917	9	83.042	1	0	1	.002	3	.184	1
430			min	4.642	15	-20.926	3	1.618	12	0	15	067	1	137	3
431		7	max		1	6.699	9	83.042	1	0	1	.003	3	.184	1
432		+	min	4.671	15	-21.122	3	1.618	12	0	15	049	1	132	3
433		8		122.59	1	6.48	9	83.042	1		1	.003	3	.184	1
		0	max							0	_				
434		0	min	4.7	15	-21.319	3	1.618	12	0	15	031	1	128	3
435		9	max		1	6.261	9	83.042	1	0	1	.004	3	.184	1
436			min	4.729	15	-21.516	3	1.618	12	0	15	013	1	123	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC_	y-y Mome	LC_	z-z Mome	<u>LC</u>
437		10	max	122.781	1	6.043	9	83.042	1	0	1	.005	1	.185	1
438			min	4.758	15	-21.713	3	1.618	12	0	15	0	10	119	3
439		11	max	122.876	1	5.824	9	83.042	1	0	1	.023	1	.185	1
440			min	4.786	15	-21.91	3	1.618	12	0	15	0	15	114	3
441		12	max	122.972	1	5.605	9	83.042	1	0	1	.041	1	.185	1
442			min	4.815	15	-22.106	3	1.618	12	0	15	.001	15	109	3
443		13	max	123.067	1	5.387	9	83.042	1	0	1	.059	1	.186	1
444			min	4.844	15	-22.303	3	1.618	12	0	15	.002	15	104	3
445		14	max	123.163	1	5.168	9	83.042	1	0	1	.077	1	.186	1
446			min	4.873	15	-22.5	3	1.618	12	0	15	.003	15	099	3
447		15	max	123.258	1	4.949	9	83.042	1	0	1	.095	1	.187	1
448			min	4.902	15	-22.697	3	1.618	12	0	15	.003	15	094	3
449		16	max	79.712	2	27.457	10	83.936	1	0	15	.115	1	.188	1
450			min	-29.92	3	-85.298	3	1.643	12	0	1	.004	15	089	3
451		17	max	79.808	2	27.239	10	83.936	1	0	15	.133	1	.205	1
452			min	-29.848	3	-85.495	3	1.643	12	0	1	.004	15	07	3
453		18	max	-4.799	15	444.903	1	88.433	1	0	1	.152	1	.111	1
454			min	-143.029	1	-147.15	3	1.885	12	0	3	.005	15	039	3
455		19	max	-4.771	15	444.64	1	88.433	1	0	1	.172	1	.015	1
456			min	-142.934	1	-147.347	3	1.885	12	0	3	.006	15	007	3
457	M13	1	max	121.142	1	396.695	1	-4.778	15	.014	1	.175	1	0	1
458			min	4.183	15	-328.543	3	-143.135	1	009	3	.006	15	0	3
459		2	max	121.142	1	279.813	1	-3.665	15	.014	1	.055	1	.265	3
460			min	4.183	15	-231.675	3	-109.728	1	009	3	.002	15	319	1
461		3	max	121.142	1	162.93	1	-2.552	15	.014	1	.002	3	.438	3
462			min	4.183	15	-134.807	3	-76.321	1	009	3	032	1	529	1
463		4	max		1	46.048	1	-1.438	15	.014	1	002	12	.519	3
464			min	4.183	15	-37.94	3	-42.914	1	009	3	089	1	627	1
465		5	max	121.142	1	58.928	3	325	15	.014	1	003	12	.509	3
466		J	min	4.183	15	-70.835	1	-9.507	1	009	3	113	1	615	1
467		6	max	121.142	1	155.796	3	23.9	1	.014	1	003	12	.408	3
468		0	min	4.183	15	-187.717	1	.411	12	009	3	107	1	493	1
469		7		121.142	1	252.663	3	57.308	1	.014	1	002	12	.215	3
470			max min	4.183	15	-304.6	1	1.497	12	009	3	068	1	261	1
471		8		121.142	1	349.531	3	90.715	1	.014	1	.002	1	.082	1
471		0	max min	4.183	15	-421.482	1	2.584	12	009	3	<u>.002</u>	3	069	3
473		9		121.142	1	446.398	3	124.122	1	.014	1	.103	1	.535	1
474		9	max min	4.183	15	-538.365	1	3.67	12	009	3	.003	12	445	3
475		10		121.142	1		3	157.529	1	<u>009</u> .011	2	.236	1	1.099	1
476		10	max min	4.183	15	543.266 -655.247	1		12	014	1	.007	12	913	3
477		11		88.999		538.365		4.756 -3.572	12	.009	3	.007	1	.535	1
478		11	_	2.989			3	-123.437	1	014	1	.001	12		3
		12	min		15						3	<u>.001</u>		445	
479		12			1	421.482	1	-2.486	12	.009			10	.082	1
480		40	min	2.989	15	-349.531	3	-90.03	1	<u>014</u>	1	003		069	3
481 482		13	max	88.999	1	304.6	1	-1.399	12	.009	3	002	15	.215	3
		4.4	min	2.989	15	-252.663	3	-56.623		014	_	072	_	261	_
483		14	max		1	187.717	1	313	12	.009	3	004	15	.408	3
484		4.5	min	2.989	15	-155.796		-23.216	1	014	1	11	1	4 <u>93</u>	1
485		15	max	88.999	1	70.835	1	10.191	1	.009	3	004	15	.509	3
486		40	min	2.989	15	-58.928	3	.349	15	014	1	11 <u>6</u>	1	<u>615</u>	1
487		16		88.999	1	37.94	3	43.599	1	.009	3	003	12	.519	3
488			min	2.989	15	-46.048	1	1.463	15	<u>014</u>	1	09	1	627	1
489		17	max		1	134.807	3	77.006	1	.009	3	0	12	.438	3
490			min	2.989	15	-162.93	1	2.576	15	014	1	033	1	529	1
491		18	max	88.999	1	231.675	3	110.413	1	.009	3	.055	1	.265	3
492			min	2.989	15	-279.813	1	3.689	15	014	1	.002	15	319	1
493		<u> 19</u>	max	88.999	1	328.543	3	143.82	1	.009	3	.175	1	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]			LC			z-z Mome	
494			min	2.989	15	-396.695	1	4.803	15	014	1	.006	15	0	3
495	M16	1	max	-1.884	12	445.339	1	-4.771	15	.007	3	.172	1	0	1
496			min	-88.094	1	-147.367	3	-142.947	1	015	1	.006	15	0	3
497		2	max	-1.884	12	314.115	1	-3.657	15	.007	3	.052	1	.119	3
498			min	-88.094	1	-104.04	3	-109.54	1	015	1	.002	15	359	1
499		3	max	-1.884	12	182.892	1	-2.544	15	.007	3	001	12	.197	3
500			min	-88.094	1	-60.712	3	-76.133	1	015	1	035	1	593	1
501		4	max	-1.884	12	51.668	1	-1.431	15	.007	3	003	15	.233	3
502			min	-88.094	1	-17.385	3	-42.726	1	015	1	092	1	704	1
503		5	max	-1.884	12	25.943	3	318	15	.007	3	004	15	.229	3
504			min	-88.094	1	-79.556	1	-9.319	1	015	1	116	1	691	1
505		6	max	-1.884	12	69.27	3	24.088	1	.007	3	004	15	.184	3
506			min	-88.094	1	-210.78	1	.529	12	015	1	109	1	554	1
507		7	max	-1.884	12	112.598	3	57.495	1	.007	3	002	15	.099	3
508			min	-88.094	1	-342.003	1	1.615	12	015	1	071	1	293	1
509		8	max	-1.884	12	155.925	3	90.902	1	.007	3	0	2	.092	1
510			min	-88.094	1	-473.227	1	2.701	12	015	1	002	3	028	3
511		9	max	-1.884	12	199.252	3	124.309	1	.007	3	.101	1	.601	1
512		-	min	-88.094	1	-604.451	1	3.788	12	015	1	.002	12	196	3
513		10	max	-3.061	15	-17.148	15	157.716	1	0	15	.235	1	1.234	1
514		10	min	-91.059	1	-735.674	1	-7.47	3	015	1	.007	12	405	3
515		11	max	-3.061	15	604.451	1	-3.902	12	.015	1	.102	1	.601	1
516			min	-91.059	1	-199.252	3	-124.055		007	3	.003	12	196	3
517		12	max	-3.061	15	473.227	1	-2.816	12	.015	1	0	2	.092	1
518		12	min	-91.059	1	-155.925	3	-90.648	1	007	3	0	3	028	3
519		13	max	-3.061	15	342.003	1	-90.048 -1.729	12	.015	1	002	12	.099	3
520		13	min	-91.059	1	-112.598	3	-57.241	1	007	3	07	1	293	1
521		14	max	-3.061	15	210.779	1	643	12	.015	1	003	12	.184	3
522		14	min	-91.059	1	-69.27	3	-23.833	1	007	3	108	1	554	1
523		15	max	-3.061	15	79.556	1	9.574	1	.015	1	004	12	.229	3
524		13	min	-91.059	1	-25.943	3	.326	15	007	3	115	1	691	1
525		16	max	-3.061	15	17.385	3	42.981	1	.015	1	003	12	.233	3
526		10	min	-91.059	1	-51.668	1	1.439	15	007	3	003	1	704	1
527		17	max	-3.061	15	60.712	3	76.388	1	.015	1	0	12	.197	3
528		17	min	-91.059	1	-182.892	1	2.553	15	007	3	033	1	593	1
529		18	max	-3.061	15	104.04	3	109.795	1	.015	1	.055	1	.119	3
530		10	min	-91.059	1	-314.115	1	3.666	15	007	3	.002	15	359	1
531		19	max	-3.061	15	147.367	3	143.202	1	.015	1	.174	1	0	1
532		19	min	-91.059	1	-445.339	1	4.779	15	007	3	.006	15	0	3
533	M15	1		0	10	2.958	4	.021	3	0	1	0	1	0	1
534	IVITO	-	max min		1	0	10		1	0	3	0	3	0	1
535		2	max	0	10	2.63	4	.021	3	0	1	0	1	0	10
536			min	-35.511	1	0	10	028	1	0	3	0	3	001	4
537		3	max	0	10	2.301	4	.021	3	0	1	0	1	0	10
538			min	-35.591	1	0	10	028	1	0	3	0	3	003	4
539		4	max	0	10	1.972	4	.021	3	0	1	0	1	- <u>003</u>	10
540			min	-35.67	1	0	10	028	1	0	3	0	3	004	4
541		5	max	0	10	1.643	4	.021	3	0	1	0	1	0	10
542		 	min	-35.75	1	0	10	028	1	0	3	0	3	005	4
543		6	max	0	10	1.315	4	.021	3	0	1	0	1	0	10
544			min	-35.829	1	0	10	028	1	0	3	0	3	005	4
545		7	max	0	10	.986	4	.021	3	0	1	0	3	005 0	10
546		<u> </u>	min	-35.909	1	0	10	028	1	0	3	0	2	006	4
547		8		0	10	.657	4	.021	3	0	1	0	3	006 0	10
548		0	max	-35.988	1	.037	10	028	1	0	3	0	1		4
549		9	min	- <u>35.988</u> 0	10	.329	4	.021	3	0	1	0	3	006 0	10
		1 3	max						1		3				
550			min	-36.068	1	0	10	028		0	J	0	1	007	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	_LC
551		10	max	0	10	0	1	.021	3	0	1_	0	3	0	10
552			min	-36.148	1	0	1	028	1	0	3	0	1	007	4
553		11	max	0	10	0	10	.021	3	0	1	0	3	0	10
554			min	-36.227	1	329	4	028	1	0	3	0	1	007	4
555		12	max	0	10	0	10	.021	3	0	1	0	3	0	10
556		40	min	-36.307	1	657	4	028	1	0	3	0	1	006	4
557		13	max	0	10	0	10	.021	3	0	1	0	3	0	10
558		4.4	min	-36.386	1	986	4	028	1	0	3	0	1	006	4
559		14	max	0	10	0	10	.021	3	0	1	0	3	0	10
560		15	min	-36.466	10	-1. <u>315</u>	4	028	3	0	1	0	1	005	4
561		15	max	0 -36.545	10	0 -1.643	10	.021	1	0	3	0	3	005	10
562		16	min	-36.545 0	10	0	10	028 .021	3	0	1	0	3	005 0	4
563 564		10	max min	-36.625	1	-1.972	4	028	1	0	3	0	1	004	10
565		17	max	-30.023 0	10	0	10	026 .021	3	0	1	0	3	004 0	10
566		17	min	-36.704	1	-2.301	4	028	1	0	3	0	1	003	4
567		18	max	0	10	0	10	.021	3	0	1	0	3	0	10
568		10	min	-36.784	1	-2.63	4	028	1	0	3	0	1	001	4
569		19	max	0	10	0	10	.021	3	0	1	0	3	0	1
570		13	min	-36.864	1	-2.958	4	028	1	0	3	0	1	0	1
571	M16A	1	max	918	10	2.958	4	.02	1	0	3	0	3	0	1
572			min	-40.693	1	.695	15	009	3	0	1	0	1	0	1
573		2	max	852	10	2.63	4	.02	1	0	3	0	3	0	15
574			min	-40.614	1	.618	15	009	3	0	1	0	1	001	4
575		3	max	786	10	2.301	4	.02	1	0	3	0	3	0	15
576			min	-40.534	1	.541	15	009	3	0	1	0	1	003	4
577		4	max	719	10	1.972	4	.02	1	0	3	0	3	0	15
578			min	-40.455	1	.464	15	009	3	0	1	0	1	004	4
579		5	max	653	10	1.643	4	.02	1	0	3	0	3	001	15
580			min	-40.375	1	.386	15	009	3	0	1	0	1	005	4
581		6	max	587	10	1.315	4	.02	1	0	3	0	3	001	15
582			min	-40.296	1	.309	15	009	3	0	1	0	1	005	4
583		7	max	52	10	.986	4	.02	1	0	3	0	3	001	15
584			min	-40.216	1	.232	15	009	3	0	1	0	1	006	4
585		8	max	454	10	.657	4	.02	1	0	3	0	3	001	15
586			min	-40.136	1	.155	15	009	3	0	1	0	1	006	4
587		9	max	388	10	.329	4	.02	1	0	3	0	3	002	15
588		40	min	-40.057	1	.077	15	009	3	0	1	0	1	007	4
589		10	max	322	10	0	1	.02	3	0	3	0	3	002	15
590 591		11	min max	-39.977 255	10	0 077	15	009 .02	1	0	3	0	3	007 002	15
592		11	min	-39.898	1	329	4	009	3	0	1	0	1	002	4
593		12	max	189	10	155	15	.02	1	0	3	0	3	001	15
594		12	min	-39.818	1	657	4	009	3	0	1	0	1	006	4
595		13	max	123	10	232	15	.02	1	0	3	0	1	001	15
596		10	min	-39.739	1	986	4	009	3	0	1	0	13	006	4
597		14	max	056	10	309	15	.02	1	0	3	0	1	001	15
598			min	-39.659	1	-1.315	4	009	3	0	1	0	3	005	4
599		15	max	.01	10	386	15	.02	1	0	3	0	1	001	15
600			min	-39.58	1	-1.643	4	009	3	0	1	0	3	005	4
601		16	max	.076	10	464	15	.02	1	0	3	0	1	0	15
602			min	-39.5	1	-1.972	4	009	3	0	1	0	3	004	4
603		17	max	.142	10	541	15	.02	1	0	3	0	1	0	15
604			min	-39.42	1	-2.301	4	009	3	0	1	0	3	003	4
605		18	max	.209	10	618	15	.02	1	0	3	0	1	0	15
606			min	-39.341	1	-2.63	4	009	3	0	1	0	3	001	4
607		19	max	.275	10	695	15	.02	1	0	3	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-39.261	1	-2.958	4	009	3	0	1	0	3	0	1

Envelope Member Section Deflections

	siope ivicini			on Dene											
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.003	1	.007	2	.016	1	-4.506e-5	15	NC	3	NC	3
2			min	003	3	006	3	0	3	-1.346e-3	1	4574.669	2	2024.261	1
3		2	max	.003	1	.007	2	.015	1	-4.32e-5	15	NC	3	NC	3
4			min	003	3	006	3	0	3	-1.291e-3	1	4962.582	2	2190.534	
5		3	max	.003	1	.006	2	.014	1	-4.133e-5	15	NC	3	NC	3
6			min	003	3	006	3	0	3	-1.235e-3	1	5418.769	2	2386.31	1
7		4	max	.003	1	.006	2	.013	1	-3.947e-5	15	NC	3	NC	3
8		-		002	3	005	3	0	3	-1.18e-3	1	5958.844	2	2618.742	1
		-	min												_
9		5	max	.003	1	.005	2	.011	1	-3.76e-5	<u>15</u>	NC	3_	NC	3
10			min	002	3	00 <u>5</u>	3	0	3	-1.125e-3	1_	6603.371	2	2897.373	1
11		6	max	.002	1	.005	2	.01	1	-3.573e-5	<u>15</u>	NC	1	NC	3
12			min	002	3	005	3	0	3	-1.069e-3	_1_	7379.877	2	3235.17	1
13		7	max	.002	1	.004	2	.009	1		15	NC	_1_	NC	3
14			min	002	3	005	3	0	3	-1.014e-3	1_	8325.9	2	3650.121	1
15		8	max	.002	1	.004	2	.008	1	-3.2e-5	<u>15</u>	NC	_1_	NC	2
16			min	002	3	004	3	0	3	-9.587e-4	1	9493.755	2	4167.779	1
17		9	max	.002	1	.003	2	.007	1	-3.013e-5	15	NC	1	NC	2
18			min	002	3	004	3	0	3	-9.034e-4	1	NC	1	4825.48	1
19		10	max	.002	1	.003	2	.006	1	-2.827e-5	15	NC	1	NC	2
20			min	001	3	004	3	0	3	-8.481e-4	1	NC	1	5679.599	1
21		11	max	.001	1	.002	2	.005	1	-2.64e-5	15	NC	1	NC	2
22			min	001	3	003	3	0	3	-7.927e-4	1	NC	1	6818.688	
23		12	max	.001	1	.002	2	.004	1		15	NC	-	NC	2
24		12	min	001	3	003	3	0	3	-7.374e-4	1	NC	1	8388.732	
25		13		.001	1	.003 .001	2	.003	1	-2.267e-5	15	NC	1	NC	1
		13	max		3		3					NC NC	1	NC NC	1
26		4.4	min	0		003		0	3	-6.821e-4	1_				
27		14	max	0	1	.001	2	.002	1	-2.08e-5	<u>15</u>	NC	1	NC NC	1
28		4.5	min	0	3	002	3	0	3	-6.267e-4	1_	NC	1	NC NC	1
29		15	max	0	1	0	2	.002	1	-1.894e-5	15	NC	1	NC	1
30			min	0	3	002	3	0	3	-5.714e-4	<u>1</u>	NC	1_	NC	1
31		16	max	0	1	0	2	.001	1	-1.707e-5	<u>15</u>	NC	_1_	NC	1
32			min	0	3	001	3	0	12	-5.161e-4	1_	NC	1	NC	1
33		17	max	0	1	0	2	0	1	-1.52e-5	15	NC	1_	NC	1
34			min	0	3	0	3	0	12	-4.607e-4	1_	NC	1	NC	1
35		18	max	0	1	0	2	0	1	-1.334e-5	15	NC	1	NC	1
36			min	0	3	0	3	0	12	-4.054e-4	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	-9.848e-6	12	NC	1	NC	1
38			min	0	1	0	1	0	1	-3.501e-4	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	1.609e-4	1	NC	1	NC	1
40			min	0	1	0	1	0	1		12	NC	1	NC	1
41		2	max	0	9	0	2	0	12	2.032e-4	1	NC	1	NC	1
42			min	0	10	0	3	0	1	6.705e-6	15	NC	1	NC	1
43		3	max	0	9	0	2	0	12	2.456e-4	1	NC	1	NC	1
		3			10	001	3					NC NC	1	NC NC	1
44		4	min	0				001	1	8.134e-6	<u>15</u>				
45		4	max	0	9	0	2	0	12	2.879e-4	1 -	NC	1	NC	1
46			min	0	10	002	3	001	1	9.564e-6	<u>15</u>	NC	1_	NC	1
47		5	max	0	9	0	2	0	12	3.302e-4	_1_	NC	<u>1</u>	NC	1
48			min	0	10	003	3	001	1	1.099e-5	15	NC	1_	NC	1
49		6	max	0	9	0	2	0	3	3.725e-4	1_	NC	_1_	NC	1
50			min	0	10	004	3	001	1	1.242e-5	15	NC	1_	NC	1
51		7	max	0	9	0	2	0	3	4.148e-4	1	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		
52			min	0	10	004	3	001	1	1.385e-5	15	NC	1_	NC	1
53		8	max	0	9	.001	2	0	3	4.571e-4	<u>1</u>	NC	_1_	NC	1
54			min	0	10	005	3	0	1	1.528e-5	15	NC	1	NC	1
55		9	max	0	9	.002	2	0	3	4.995e-4	1	NC	1	NC	1
56			min	0	10	005	3	0	2	1.671e-5	15	NC	1	NC	1
57		10	max	0	9	.002	2	0	1	5.418e-4	1_	NC	1	NC	1
58			min	0	10	006	3	0	15	1.814e-5	15	NC	1	NC	1
59		11	max	0	9	.003	2	.001	1	5.841e-4	1	NC	1	NC	1
60			min	0	10	006	3	0	15	1.957e-5	15	NC	1	NC	1
61		12	max	0	9	.003	2	.002	1	6.264e-4	1	NC	1_	NC	1
62			min	0	10	007	3	0	15	2.1e-5	15	NC	1	NC	1
63		13	max	0	9	.004	2	.003	1	6.687e-4	1	NC	1	NC	1
64			min	0	10	007	3	0	15	2.243e-5	15	NC	1	NC	1
65		14	max	0	9	.005	2	.004	1	7.111e-4	1	NC	1	NC	1
66			min	0	10	007	3	0	15	2.386e-5	15	9980.391	2	NC	1
67		15	max	0	9	.005	2	.005	1	7.534e-4	1	NC	3	NC	2
68			min	0	10	007	3	0	15	2.529e-5	15	8396.026	2	9005.239	1
69		16	max	.001	9	.006	2	.006	1	7.957e-4	1	NC	3	NC	2
70			min	0	10	007	3	0	15	2.672e-5	15		2	7573.807	1
71		17	max	.001	9	.007	2	.007	1	8.38e-4	1	NC	3	NC	2
72			min	0	10	007	3	0	15	2.815e-5	15	6205.429	2	6551.439	1
73		18	max	.001	9	.008	2	.008	1	8.803e-4	1	NC	3	NC	2
74			min	0	10	007	3	0	15		15	5444.762	2	5798.417	1
75		19	max	.001	9	.01	2	.009	1	9.226e-4	1	NC	3	NC	2
76			min	0	10	007	3	0	15	3.101e-5	15	4839.202	2	5232.762	1
77	M4	1	max	.003	1	.008	2	0	15		15	NC	1	NC	3
78			min	0	3	006	3	007	1	-1.115e-3	1	NC	1	2924.672	1
79		2	max	.003	1	.008	2	0	15		15	NC	1	NC	3
80			min	0	3	006	3	006	1	-1.115e-3	1	NC	1	3190.185	
81		3	max	.002	1	.008	2	0	15		15	NC	1	NC	3
82			min	0	3	006	3	006	1	-1.115e-3	1	NC	1	3506.204	1
83		4	max	.002	1	.007	2	0	15		15	NC	1	NC	2
84			min	0	3	005	3	005	1	-1.115e-3	1	NC	1	3886.05	1
85		5	max	.002	1	.007	2	0	15	-3.704e-5	15	NC	1	NC	2
86			min	0	3	005	3	004	1	-1.115e-3	1	NC	1	4347.866	
87		6	max	.002	1	.006	2	0	15		15	NC	1	NC	2
88			min	0	3	005	3	004	1	-1.115e-3	1	NC	1	4916.888	
89		7	max	.002	1	.006	2	0	15			NC	1	NC	2
90			min	0	3	004	3	003	1	-1.115e-3	1	NC	1	5629.065	
91		8	max	.002	1	.005	2	0	15			NC	1	NC	2
92			min	0	3	004	3	003		-1.115e-3		NC		6537.039	
93		9	max	.001	1	.005	2	0		-3.704e-5		NC	1	NC	2
94			min	0	3	004	3	003	1	-1.115e-3	1	NC	1	7720.442	
95		10	max	.001	1	.004	2	0	15	-3.704e-5	15	NC	1	NC	2
96		- 10	min	0	3	003	3	002	1	-1.115e-3	1	NC	1	9304.473	
97		11	max	.001	1	.004	2	0	15	-3.704e-5	15	NC	1	NC	1
98			min	0	3	003	3	002	1	-1.115e-3	1	NC	1	NC	1
99		12	max	.001	1	.003	2	0	15		15	NC	1	NC	1
100		14	min	0	3	002	3	001	1	-1.115e-3	1	NC	1	NC	1
101		13	max	0	1	.003	2	0	15			NC	1	NC	1
102		13	min	0	3	002	3	0	1	-1.115e-3	1	NC	1	NC	1
103		14	max	0	1	.002	2	0	15		•	NC	1	NC	1
103		14	min	0	3	002	3	0	1	-3.704e-3		NC NC	1	NC NC	1
105		15			1			0			1_	NC NC	•	NC NC	
		15	max	0	3	.002	2		15	-3.704e-5			<u>1</u> 1		1
106		10	min	0		001	3	0	1_	-1.115e-3	1_	NC NC		NC NC	•
107		16	max	0	1	.001	2	0	15			NC NC	1	NC NC	1
108			min	0	3	001	3	0	1	-1.115e-3	<u>1</u>	NC	1_	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC	,	LC
109		17	max	0	1	0	2	0	15	-3.704e-5		NC	_1_	NC	1_
110			min	0	3	0	3	0	1	-1.115e-3		NC	1_	NC	1
111		18	max	0	1	0	2	0	15	-3.704e-5	15	NC	_1_	NC	1
112			min	0	3	0	3	0	1	-1.115e-3	1_	NC	1_	NC	1
113		19	max	0	1	0	1	0	1	-3.704e-5	<u>15</u>	NC	1_	NC	1_
114			min	0	1	0	1	0	1	-1.115e-3	1_	NC	1_	NC	1
115	M6	1	max	.011	1	.024	2	.005	1	2.778e-4	1_	NC	3	NC	2
116			min	009	3	018	3	002	3	4.557e-6	10	1389.411	2	7269.017	1
117		2	max	.01	1	.022	2	.004	1	2.608e-4	1_	NC	3	NC	2
118			min	009	3	017	3	002	3	3.612e-6	10	1483.313	2	7899.215	1
119		3	max	.01	1	.021	2	.004	1	2.438e-4	1	NC	3	NC	2
120			min	008	3	016	3	002	3	2.667e-6	10	1590.488	2	8647.76	1
121		4	max	.009	1	.019	2	.003	1	2.268e-4	1	NC	3	NC	2
122			min	008	3	015	3	002	3	1.721e-6	10	1713.587	2	9545.032	1
123		5	max	.008	1	.018	2	.003	1	2.098e-4	1	NC	3	NC	1
124			min	007	3	014	3	002	3	7.759e-7	10	1856.024	2	NC	1
125		6	max	.008	1	.016	2	.003	1	1.928e-4	1	NC	3	NC	1
126			min	007	3	013	3	001	3	-1.694e-7	10	2022.27	2	NC	1
127		7	max	.007	1	.015	2	.002	1	1.758e-4	1	NC	3	NC	1
128			min	006	3	012	3	001	3	-1.115e-6			2	NC	1
129		8	max	.007	1	.014	2	.002	1	1.589e-4	1	NC	3	NC	1
130			min	006	3	011	3	001	3	-2.06e-6	10	2452.21	2	NC	1
131		9	max	.006	1	.012	2	.002	1	1.419e-4	1	NC NC	3	NC	1
132		Ť	min	005	3	01	3	001	3	-3.005e-6		2735.433	2	NC	1
133		10	max	.005	1	.011	2	.002	1	1.321e-4	3	NC	3	NC	1
134		10	min	005	3	009	3	0	3	-3.951e-6		3084.41	2	NC	1
135		11	max	.005	1	.009	2	.001	1	1.272e-4	3	NC	3	NC	1
136				004	3	008	3	0	3	-4.896e-6		3523.831	2	NC	1
		10	min		1			0				NC		NC NC	
137		12	max	.004	3	.008	3	0	3	1.223e-4	3		2	NC NC	1
138		12	min	<u>004</u>		007				-6.481e-6	2	4092.486			•
139		13	max	.004	1	.007	2	0	1	1.174e-4	3	NC 4055,000	3	NC	1
140		4.4	min	003	3	006	3	0	3	-1.17e-5	2	4855.026	2	NC NC	1
141		14	max	.003	1	.006	2	0	1	1.125e-4	3_	NC F007.04F	3_	NC NC	1
142		45	min	003	3	005	3	0	3	-1.693e-5	2	5927.815	2	NC NC	1
143		15	max	.002	1	.004	2	0	1	1.076e-4	3_	NC	3	NC NC	1
144		40	min	002	3	004	3	0	3	-2.215e-5	2	7543.566	2	NC	1
145		16	max	.002	1	.003	2	0	1	1.027e-4	3	NC	_1_	NC	1
146			min	002	3	003	3	0	3	-2.737e-5		NC	_1_	NC	1
147		17	max	.001	1	.002	2	0	1	9.785e-5	3_	NC	_1_	NC	1
148			min	001	3	002	3	0	3	-3.26e-5	2	NC	1_	NC	1
149		18	max	00	1	.001	2	0	1	9.296e-5	3	NC	1_	NC	1_
150			min	0	3	001	3	0	3	-3.782e-5	2	NC	1_	NC	1
151		19	max	0	1	0	1	0	1	8.807e-5	3	NC	<u>1</u>	NC	1
152			min	0	1	0	1	0	1	-4.304e-5	2	NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	1.949e-5	2	NC	1	NC	1
154			min	0	1	0	1	0	1	-4.03e-5	3	NC	1	NC	1
155		2	max	0	3	.001	2	0	3	1.661e-5	2	NC	1	NC	1
156			min	0	2	002	3	0	2	-3.021e-5	3	NC	1	NC	1
157		3	max	0	3	.003	2	0	3	1.509e-5	1	NC	1	NC	1
158			min	0	2	003	3	0	2	-2.012e-5		NC	1	NC	1
159		4	max	0	3	.004	2	0	3	1.65e-5	1	NC	1	NC	1
160			min	0	2	005	3	0	2	-1.002e-5		NC	1	NC	1
161		5	max	0	3	.005	2	0	3	1.791e-5	1	NC	3	NC	1
162			min	0	2	006	3	0	2	5.38e-8	12	8699.754	2	NC	1
163		6	max	0	3	.007	2	0	3	1.932e-5	1	NC	3	NC	1
164		0	min	0	2	008	3	0	2	5.69e-7		6968.799	2	NC NC	1
		7							3		-				
165		7	max	0	3	.008	2	0	<u></u>	2.073e-5	<u>1</u>	NC	3	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					LC
166			min	001	2	009	3	0	2	6.692e-7		5785.139	2	NC	1
167		8	max	.001	3	.009	2	.001	3	3.034e-5	3	NC	3	NC	1
168			min	001	2	01	3	0	1	-6.358e-7	2	4917.549	2	NC	1
169		9	max	.001	3	.011	2	.001	3	4.043e-5	3	NC	3	NC	1
170		4.0	min	002	2	012	3	0	1	-3.511e-6	2	4250.81	2	NC	1
171		10	max	.001	3	.012	2	.001	3	5.052e-5	3	NC	3_	NC	1
172		44	min	002	2	013	3	0	1	-6.386e-6	2	3721.039	2	NC NC	1
173		11	max	.002	3	.014	2	.001	3	6.061e-5	3_	NC	3	NC	1
174		40	min	002	2	<u>014</u>	3	001	1	-9.261e-6	2	3289.858	2	NC NC	1
175		12	max	.002	3	<u>.016</u> 015	3	.001	3	7.07e-5	2	NC 2932.691	3	NC NC	1
176 177		13	min	002 .002	3	015 .017	2	001	3	-1.214e-5	3	NC	3	NC NC	1
178		13	max	002	2	016	3	.001 001	1	8.079e-5 -1.501e-5	2	2632.948	2	NC NC	1
179		14	max	.002	3	.019	2	.001	3	9.088e-5	3	NC	3	NC NC	1
180		14	min	003	2	017	3	002	1	-1.789e-5	2	2378.926	2	NC	1
181		15	max	.002	3	.021	2	.002	3	1.01e-4	3	NC	3	NC	1
182		10	min	003	2	018	3	002	1	-2.076e-5	2	2162.059	2	NC	1
183		16	max	.002	3	.023	2	.002	3	1.111e-4	3	NC	3	NC	1
184		10	min	003	2	019	3	002	1	-2.364e-5	2	1975.883	2	NC	1
185		17	max	.003	3	.025	1	.001	3	1.212e-4	3	NC	3	NC	1
186		<u> </u>	min	003	2	019	3	002	1	-2.651e-5	2	1811.688	1	NC	1
187		18	max	.003	3	.028	1	.001	3	1.312e-4	3	NC	3	NC	1
188			min	003	2	02	3	002	1	-2.939e-5	2	1668.909	1	NC	1
189		19	max	.003	3	.03	1	.001	3	1.413e-4	3	NC	3	NC	1
190			min	003	2	021	3	002	1	-3.226e-5	2	1545.856	1	NC	1
191	M8	1	max	.008	1	.027	2	.003	1	-1.971e-6	10	NC	1	NC	2
192			min	001	3	018	3	0	3	-1.618e-4	1	NC	1	7355.315	1
193		2	max	.007	1	.026	2	.002	1	-1.971e-6	10	NC	1	NC	2
194			min	001	3	017	3	0	3	-1.618e-4	1	NC	1	8019.279	1
195		3	max	.007	1	.024	2	.002	1	-1.971e-6	10	NC	1_	NC	2
196			min	001	3	016	3	0	3	-1.618e-4	1_	NC	1	8809.73	1
197		4	max	.006	1	.023	2	.002	1	-1.971e-6	10	NC	_1_	NC	2
198			min	0	3	015	3	0	3	-1.618e-4	1_	NC	1_	9759.985	1
199		5	max	.006	1	.021	2	.002	1	-1.971e-6	10	NC	_1_	NC	1
200			min	0	3	014	3	0	3	-1.618e-4	_1_	NC	_1_	NC	1
201		6	max	.006	1	.02	2	.002	1	-1.971e-6	<u>10</u>	NC	_1_	NC	1
202		<u> </u>	min	0	3	<u>013</u>	3	0	3	-1.618e-4	1_	NC	1_	NC	1
203		7	max	.005	1	.018	2	.001	1	-1.971e-6	<u>10</u>	NC	1_	NC	1
204			min	0	3	012	3	0	3	-1.618e-4	1_	NC	_1_	NC	1
205		8	max	.005	1	.017	2	.001	1	-1.971e-6	<u>10</u>	NC NC	1_	NC NC	1
206			min		3	011	3	0		-1.618e-4		NC NC	1	NC NC	1
207		9	max	.004	3	.015	2	0	1	-1.971e-6	-	NC	1	NC	1
208		10	min	0	1	01	2	0	1	-1.618e-4	1	NC NC	<u>1</u> 1	NC NC	1
209		10	max	.004	3	.014	3	0 0	3	-1.971e-6			1	NC NC	1
210		11	min max	.003	1	009 .012	2	0	1	-1.618e-4 -1.971e-6	10	NC NC	1	NC NC	1
212			min	0	3	008	3	0	3	-1.618e-4	1	NC	1	NC	1
213		12	max	.003	1	.011	2	0	1	-1.016e-4 -1.971e-6		NC	1	NC	1
214		14	min	0	3	007	3	0	3	-1.618e-4	1	NC	1	NC NC	1
215		13	max	.003	1	.007	2	0	1	-1.016e-4		NC NC	1	NC NC	1
216		13	min	.003	3	006	3	0	3	-1.618e-4	1	NC NC	1	NC NC	1
217		14	max	.002	1	.008	2	0	1	-1.971e-6	•	NC	1	NC	1
218			min	0	3	005	3	0	3	-1.618e-4	1	NC	1	NC	1
219		15	max	.002	1	.006	2	0	1	-1.971e-6		NC	1	NC	1
220		10	min	0	3	004	3	0	3	-1.618e-4	1	NC	1	NC	1
221		16	max	.001	1	.005	2	0	1	-1.971e-6	•	NC	1	NC	1
222			min	0	3	003	3	0	3	-1.618e-4	1	NC	1	NC	1
					_				_	110100 Т	-		_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio	LC		LC
223		17	max	00	1	.003	2	0	1	-1.971e-6	10	NC	_1_	NC	1
224			min	0	3	002	3	0	3	-1.618e-4	1_	NC	1_	NC	1
225		18	max	0	1	.002	2	0	1	-1.971e-6	10	NC	_1_	NC	1
226			min	0	3	001	3	0	3	-1.618e-4	1_	NC	1_	NC	1
227		19	max	0	1	0	1	0	1	-1.971e-6	10	NC	1_	NC	1
228	P.4.4.0		min	0	1	0	1	0	1	-1.618e-4	1_	NC	1	NC	1
229	<u>M10</u>	1	max	.003	1	.007	2	0	3	1.117e-3	1	NC	3	NC NC	1
230			min	003	3	006	3	002	1	-1.616e-4		4579.768	2	NC NC	1
231		2	max	.003	1	.007	2	0	3	1.058e-3	1_	NC	3_	NC NC	1
232			min	003	3	006	3	002	1	-1.574e-4	3	4955.596	2	NC NC	1
233		3	max	.003	1	.006	2	0	3	9.997e-4	1	NC	3	NC NC	1
234		4	min	002	3	006	3	002	1	-1.531e-4	3	5395.324	2	NC NC	1
235		4	max	.003	1	.006	2	0	3	9.41e-4	1_	NC FO40 044	3_	NC	1
236		-	min	002	3	006	3	002	1	-1.489e-4	3	5913.014	2	NC NC	1
237		5	max	.003	1	.005	2	0	3	8.823e-4	1	NC CEOZ 0.45	3_	NC NC	1
238			min	002	3	005	3	002	1	-1.447e-4	3	6527.045	2	NC NC	1
239		6	max	.002	1	.005	2	0	3	8.236e-4	1	NC	1_	NC	1
240		-	min	002	3	005	3	002	1	-1.405e-4	3	7261.824	2	NC NC	1
241		7	max	.002	1	.004	2	0	3	7.649e-4	1_	NC 0450.044	1_	NC NC	1
242		0	min	002	3	005	3	<u>001</u>	1	-1.363e-4	3	8150.344	2	NC NC	1
243		8	max	.002 002	1	.004	2	0	3	7.062e-4	1	NC	1	NC NC	1
244			min		3	004	3	001	1	-1.321e-4	3	9238.179	2	NC NC	1
245		9	max	.002	1	.003	2	0	3	6.475e-4	1	NC NC	1	NC NC	1
246		40	min	002	3	004	3	001	1	-1.278e-4	3	NC NC	•	NC NC	1
247		10	max	.002	3	.003	3	<u> </u>	3	5.889e-4	1	NC NC	1	NC NC	1
248		11	min	001		<u>004</u>				-1.236e-4	3		_		
249		11	max	.002	3	.002	2	0	3	5.302e-4	1	NC NC	1_	NC NC	1
250		40	min	001		004	3	0	1	-1.194e-4	3	NC NC	1_	NC NC	1
251		12	max	.001	1	.002	2	0	3	4.715e-4	1	NC NC	1	NC	1
252 253		13	min	<u>001</u> .001	3	003 .002	2	0	3	-1.152e-4 4.128e-4	<u>3</u> 1	NC NC	1	NC NC	1
254		13	max	001	3	002	3	0	1	-1.11e-4	3	NC NC	1	NC NC	1
255		14	min	0	1	003 .001	2	0	3	3.541e-4	<u> </u>	NC NC	1	NC NC	1
256		14	max min	0	3	002	3	0	1	-1.068e-4	3	NC NC	1	NC NC	1
257		15		0	1	<u>002</u> 0	2	0	3	2.954e-4	1	NC	1	NC	1
258		13	max min	0	3	002	3	0	1	-1.025e-4	3	NC NC	1	NC	1
259		16	max	0	1	<u>002</u> 0	2	0	3	2.367e-4	1	NC	1	NC	1
260		10	min	0	3	002	3	0	1	-9.833e-5	3	NC NC	1	NC	1
261		17	max	0	1	002	2	0	3	1.78e-4	1	NC	1	NC	1
262		17	min	0	3	001	3	0	1	-9.411e-5	3	NC	1	NC	1
263		18	max	0	1	0	2	0	3	1.193e-4		NC	1	NC	1
264		10	min	0	3	0	3	0	1	-8.989e-5		NC	1	NC	1
265		19	max	0	1	0	1	0	1	6.059e-5	1	NC	1	NC	1
266		10	min	0	1	0	1	0	1	-8.568e-5		NC	1	NC	1
267	M11	1	max	0	1	0	1	0	1	3.94e-5	3	NC	1	NC	1
268			min	0	1	0	1	0	1	-2.948e-5	1	NC	1	NC	1
269		2	max	0	9	0	2	0	2	2.686e-5	3	NC	1	NC	1
270			min	0	10	0	3	0	3	-1.061e-4		NC	1	NC	1
271		3	max	0	9	0	2	0	2	1.432e-5	3	NC	1	NC	1
272			min	0	10	002	3	0	3	-1.828e-4	1	NC	1	NC	1
273		4	max	0	9	0	2	0	10	1.784e-6	3	NC	1	NC	1
274			min	0	10	002	3	0	1	-2.595e-4	1	NC	1	NC	1
275		5	max	0	9	0	2	0	10	-7.426e-6	•	NC	1	NC	1
276			min	0	10	003	3	001	1	-3.361e-4	1	NC	1	NC	1
277		6	max	0	9	0	2	0	15	-1.38e-5	15	NC	1	NC	1
278			min	0	10	004	3	002	1	-4.128e-4	1	NC	1	NC	1
279		7	max	0	9	.001	2	0	15	-1.641e-5	15		1	NC	1
	_	_													

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
280			min	0	10	004	3	003	1	-4.895e-4	1_	NC	1_	NC	1
281		8	max	0	9	.001	2	0	15		15	NC	_1_	NC	1
282			min	0	10	005	3	004	1	-5.661e-4	1_	NC	1_	NC	1
283		9	max	0	9	.002	2	0	15	-2.163e-5	15	NC	1_	NC	2
284		4.0	min	0	10	006	3	005	1	-6.428e-4	_1_	NC	1_	9038.252	1
285		10	max	0	9	.002	2	0	15	-2.424e-5	<u>15</u>	NC	1	NC 7000,070	2
286		44	min	0	10	006	3	006	1_	-7.195e-4	1_	NC NC	1_	7288.378	1
287		11	max	0	9	.003	2	0	15	-2.685e-5	<u>15</u>	NC NC	1_	NC core coc	2
288		40	min	0	10	006	3	008	1	-7.961e-4	1_	NC NC	1_1	6058.296	
289		12	max	0	9	.003	3	0 009	15	-2.946e-5	<u>15</u>	NC NC	1	NC 5161.162	2
290 291		13	min		9	007	2		1 1 5	-8.728e-4 -3.207e-5	1_	NC NC	1	5161.163 NC	2
292		13	max	0	10	.004 007	3	0 01	15	-9.495e-4	<u>15</u> 1	NC NC	1	4487.934	1
293		14	max	0	9	.005	2	<u>01</u> 0	15	-3.468e-5	15	NC NC	1	NC	2
294		14	min	0	10	007	3	012	1	-1.026e-3	1	9762.413	2	3971.454	1
295		15	max	0	9	.006	2	<u>012</u> 0	15	-3.729e-5	15	NC	3	NC	2
296		10	min	0	10	007	3	013	1	-1.103e-3	1	8270.412	2	3568.548	
297		16	max	.001	9	.006	2	0	15	-3.99e-5	15	NC	3	NC	3
298		10	min	0	10	007	3	014	1	-1.179e-3	1	7099.378	2	3250.486	
299		17	max	.001	9	.007	2	0	15	-4.251e-5	15	NC	3	NC	3
300		<u> </u>	min	0	10	007	3	015	1	-1.256e-3	1	6172.955	2	2997.628	
301		18	max	.001	9	.008	2	0	15	-4.512e-5	15	NC	3	NC	3
302			min	0	10	007	3	016	1	-1.333e-3	1	5434.886	2	2796.282	1
303		19	max	.001	9	.01	2	0	15	-4.773e-5	15	NC	3	NC	3
304			min	0	10	007	3	017	1	-1.409e-3	1	4843.65	2	2636.799	1
305	M12	1	max	.003	1	.008	2	.014	1	1.236e-3	1	NC	1	NC	3
306			min	0	3	006	3	0	15	4.238e-5	15	NC	1	1343.524	1
307		2	max	.003	1	.008	2	.013	1	1.236e-3	1	NC	1	NC	3
308			min	0	3	006	3	0	15	4.238e-5	15	NC	1	1465.135	1
309		3	max	.002	1	.008	2	.012	1	1.236e-3	1_	NC	1_	NC	3
310			min	0	3	006	3	0	15	4.238e-5	15	NC	1_	1609.897	1
311		4	max	.002	1	.007	2	.011	1	1.236e-3	1_	NC	1_	NC	3
312			min	0	3	005	3	0	15	4.238e-5	15	NC	1_	1783.911	1
313		5	max	.002	1	.007	2	.01	1	1.236e-3	_1_	NC	_1_	NC	3
314			min	0	3	005	3	0	15	4.238e-5	15	NC	_1_	1995.49	1
315		6	max	.002	1	.006	2	.009	1	1.236e-3	_1_	NC	_1_	NC	3
316		<u> </u>	min	0	3	<u>005</u>	3	0	15	4.238e-5	15	NC	1_	2256.194	
317		7	max	.002	1	.006	2	.007	1	1.236e-3	1_	NC	1_	NC	3
318			min	0	3	004	3	0	15	4.238e-5	15	NC	1_	2582.493	
319		8	max	.002	1	.005	2	.006	1	1.236e-3	1_	NC NC	1	NC	3
320			min		3	004	3	0		4.238e-5			1	2998.5	1
321		9	max	.001	3	.005	2	.005	1	1.236e-3	1_	NC NC	1	NC 2540 COC	3
322		10	min	0		004	2	0	15	4.238e-5 1.236e-3	<u>15</u>	NC NC	<u>1</u> 1	3540.696	
323		10	max	.001	3	.004	3	.005 0	1 1 5		15	NC NC	1	NC 4266 420	2
324		11	min max	.001	1	003 .004	2	.004	1 <u>5</u>	4.238e-5 1.236e-3	<u>15</u> 1	NC NC	1	4266.429 NC	2
326			min	0	3	003	3	0	15	4.238e-5	15	NC	1	5270.164	
327		12	max	.001	1	.003	2	.003	1	1.236e-3	1	NC	1	NC	2
328		12	min	0	3	003	3	<u>.003</u>	15	4.238e-5	15	NC	1	6716.696	
329		13	max	0	1	.003	2	.002	1	1.236e-3	1	NC	1	NC	2
330		13	min	0	3	002	3	0	15	4.238e-5	15	NC NC	1	8915.169	
331		14	max	0	1	.002	2	.002	1	1.236e-3	1	NC	1	NC	1
332		14	min	0	3	002	3	0	15	4.238e-5	15	NC NC	1	NC	1
333		15	max	0	1	.002	2	.001	1	1.236e-3	1	NC	1	NC	1
334		10	min	0	3	001	3	0	15	4.238e-5	15	NC	1	NC	1
335		16	max	0	1	.001	2	0	1	1.236e-3	1	NC	1	NC	1
336		1.0	min	0	3	001	3	0	15		15	NC	1	NC	1
500			111111	•	U	.001	U		10	1.2000 0		110		110	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
337		17	max	0	1	0	2	0	1	1.236e-3	_1_	NC	_1_	NC	1
338			min	0	3	0	3	0	15	4.238e-5	15	NC	<u>1</u>	NC	1
339		18	max	0	1	0	2	0	1	1.236e-3	_1_	NC	_1_	NC	1
340			min	0	3	0	3	0	15	4.238e-5	15	NC	1_	NC	1
341		19	max	0	1	0	1	0	1	1.236e-3	1_	NC	1_	NC	1
342			min	0	1	0	1	0	1	4.238e-5	15	NC	1	NC	1
343	M1	1	max	.006	3	.022	3	.001	3	1.976e-2	1	NC	1	NC	1
344			min	007	2	03	1	005	1	-1.628e-2	3	NC	1	NC	1
345		2	max	.006	3	.012	3	0	3	9.411e-3	1	NC	4	NC	2
346			min	007	2	016	1	012	1	-8.063e-3	3	3382.628	1	6819.916	1
347		3	max	.006	3	.003	3	0	3	4.029e-6	3	NC	5	NC	2
348			min	007	2	003	1	016	1	-7.451e-4	1	1749.696	1	4133.958	1
349		4	max	.006	3	.008	1	0	3	8.535e-6	3	NC	5	NC	3
350		•	min	007	2	005	3	019	1	-6.203e-4	1	1238.252	1	3418.895	
351		5	max	.006	3	.017	1	0	12	1.304e-5	3	NC	5	NC	3
352		+ -	min	007	2	011	3	019	1	-4.956e-4	1	992.549	1	3280.297	1
353		6	max	.006	3	.024	1	0	12	1.755e-5	3	NC	5	NC	3
354		1	min	007	2	016	3	018	1	-3.709e-4	1	853.789	1	3505.663	1
355		7		.006	3	.03	1	<u>010</u> 0	12	2.205e-5		NC	•	NC	2
356		1	max	006	2	02	3	016	1	-2.461e-4	<u>3</u>	769.9	_ <u>5</u> 1	4165.641	1
		0							_			NC	_		-
357		8	max	.006	3	.034	1	0	12	2.656e-5	3		5_4	NC FCOE 400	2
358		_	min	007	2	022	3	013	1	-1.214e-4	1_	719.235	<u>1</u>	5695.422	1
359		9	max	.006	3	.037	1	0	3	3.106e-5	3_	NC 004 000	5_	NC NC	1
360		4.0	min	007	2	024	3	009	1	-8.485e-6	2	691.698	1_	NC	1
361		10	max	.006	3	.038	1	0	3	1.281e-4	1_	NC 000 040	5_	NC NC	1
362		1.4	min	007	2	024	3	<u>005</u>	1	4.568e-6	<u>15</u>	682.642	1_	NC NC	1
363		11	max	.006	3	.037	1	0	3	2.528e-4	1_	NC	5	NC	1
364			min	007	2	023	3	001	1	8.732e-6	15	690.671	_1_	NC	1
365		12	max	.006	3	.034	1	.002	1	3.775e-4	_1_	NC	5_	NC	2
366			min	007	2	021	3	0	15	1.29e-5	15	717.062	1_	6711.661	1
367		13	max	.006	3	.03	1	.006	1	5.023e-4	1_	NC	5	NC	2
368			min	007	2	018	3	0	15	1.706e-5	15	766.302	<u>1</u>	4645.728	1
369		14	max	.006	3	.024	1	.008	1_	6.27e-4	_1_	NC	5_	NC	3
370			min	007	2	014	3	0	15	2.122e-5	15	848.202	1_	3803.237	1
371		15	max	.006	3	.016	1	.009	1	7.517e-4	1_	NC	5	NC	3
372			min	007	2	01	3	0	15	2.539e-5	15	983.784	1_	3499.79	1
373		16	max	.006	3	.007	1	.009	1	8.42e-4	1_	NC	5	NC	3
374			min	007	2	004	3	0	15	2.842e-5	15	1223.152	1	3604.74	1
375		17	max	.006	3	.002	3	.007	1	1.121e-4	1_	NC	4	NC	2
376			min	007	2	005	1	0	15	4.551e-6	15	1716.7	1	4322.88	1
377		18	max	.006	3	.01	3	.003	1	1.103e-2	1	NC	4	NC	2
378			min	007	2	018	1	0	15	-3.682e-3	3	3308.834	1	7090.646	1
379		19	max	.006	3	.017	3	0	3	2.217e-2	1	NC	1	NC	1
380			min	007	2	032	1	004	1	-7.461e-3	3	NC	1	NC	1
381	M5	1	max	.017	3	.066	3	.001	3	6.379e-7	1	NC	1	NC	1
382			min	023	2	091	1	006	1	4.46e-8	15	NC	1	NC	1
383		2	max	.017	3	.037	3	.002	3	4.404e-5	3	NC	5	NC	1
384			min	023	2	05	1	005	1	-9.111e-5	1	1128.995	1	NC	1
385		3	max	.017	3	.01	3	.002	3	8.674e-5	3	NC	5	NC	1
386		Ĭ	min	023	2	011	1	005	1	-1.809e-4	1	581.284	1	NC	1
387		4	max	.017	3	.022	1	.003	3	8.559e-5	3	NC	5	NC	1
388			min	023	2	013	3	004	1	-1.688e-4	1	410.285	1	NC	1
389		5	max	.023	3	.05	1	.003	3	8.443e-5	3	NC	15	NC	1
390			min	024	2	031	3	003	1	-1.567e-4	1	328.082	1	NC	1
391		6	max	.017	3	.073	1	.003	3	8.327e-5	3	NC	15	NC	1
392			min	024	2	046	3	003	1	-1.446e-4	1	281.575	1	NC	1
393		7	max	.017	3	.091	1	.003	3	8.212e-5	3	NC	15	NC	1
UJJ			шал	.017	_ J	.001		.005		0.2126-0	<u> </u>	INO	10	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
394			min	024	2	057	3	002	1	-1.325e-4	1	253.359	1_	NC	1
395		8	max	.017	3	.104	1	.003	3	8.096e-5	3	NC	<u>15</u>	NC	1
396			min	024	2	064	3	002	1	-1.203e-4	<u>1</u>	236.197	<u>1</u>	NC	1
397		9	max	.017	3	.112	1	.003	3	7.981e-5	3	9737.909	15	NC	1
398		10	min	024	2	068	3	002	1	-1.082e-4	1_	226.707	1_	NC	1
399		10	max	.017	3	.115	1	.003	3	7.865e-5	3	9637.71	<u>15</u>	NC NC	1
400		44	min	024	2	069	3	002	1	-9.612e-5	1_	223.324	1_	NC NC	1
401		11	max	.017	3	.112	1	.003	3	7.749e-5	3	9777.439	<u>15</u>	NC NC	1
402		40	min	024	2	066	3	002	1	-8.4e-5	1	225.562	1_	NC NC	1
403 404		12	max	.017 024	3	.104 061	3	.002 002	3	7.634e-5	<u>3</u> 1	NC 233.819	<u>15</u>	NC NC	1
404		13	min	0 <u>24</u> .017	3	.091		.002	3	-7.189e-5		NC	<u>1</u> 15	NC NC	1
406		13	max min	024	2	053	3	002	1	7.518e-5 -5.977e-5	<u>3</u>	249.545	1	NC NC	1
407		14		.017	3	.073	1	.002	3	7.403e-5	3	NC	15	NC NC	1
407		14	max min	024	2	041	3	002	1	-4.765e-5	1	275.946	1	NC NC	1
409		15	max	.017	3	.049	1	.002	3	7.287e-5	3	NC	15	NC	1
410		13	min	024	2	028	3	002	1	-3.764e-5	2	319.925	1	NC	1
411		16	max	.017	3	.019	1	.002	3	6.959e-5	3	NC	5	NC	1
412		1.0	min	024	2	012	3	002	1	-3.529e-5	2	398.066	1	NC	1
413		17	max	.017	3	.007	3	0	3	1.573e-5	3	NC	5	NC	1
414			min	024	2	015	1	003	1	-2.412e-4	1	561.237	1	NC	1
415		18	max	.017	3	.028	3	0	3	7.382e-6	3	NC	5	NC	1
416			min	024	2	056	1	003	1	-1.237e-4	1	1087.607	1	NC	1
417		19	max	.017	3	.049	3	0	3	0	15	NC	1	NC	1
418			min	024	2	1	1	003	1	-1.08e-7	3	NC	1	NC	1
419	M9	1	max	.006	3	.022	3	0	3	1.628e-2	3	NC	1	NC	1
420			min	007	2	03	1	007	1	-1.976e-2	1	NC	1	NC	1
421		2	max	.006	3	.012	3	0	3	8.07e-3	3	NC	4	NC	2
422			min	007	2	016	1	001	1	-9.718e-3	1	3383.422	1	8119.332	1
423		3	max	.006	3	.003	3	.002	1	1.365e-4	1_	NC	5	NC	2
424			min	007	2	003	1	0	3	4.741e-6	15	1750.116	1_	5066.488	
425		4	max	.006	3	.007	1	.004	1	3.033e-5	1_	NC	5	NC	3
426			min	007	2	005	3	0	3	-7.942e-8	3	1238.546	1_	4314.897	1
427		5	max	.006	3	.017	1	.005	1	-6.452e-7	10	NC	5_	NC	3
428		_	min	007	2	011	3	0	3	-7.584e-5	_1_	992.772	1_	4306.42	1
429		6	max	.006	3	.024	1	.004	1	-5.963e-6	<u>15</u>	NC	5	NC	2
430			min	007	2	016	3	<u>001</u>	3	-1.82e-4	_1_	853.967	1_	4886.543	1
431		7	max	.006	3	.03	1	.002	1	-9.531e-6		NC	5	NC	2
432			min	007	2	02	3	002	3	-2.882e-4	1_	770.045	1_	6450.665	
433		8	max	.006	3	.034	1	0	10	-1.31e-5	<u>15</u>	NC 740.057	5	NC NC	1
434			min		2	022	3	002		-3.943e-4			1_	NC NC	1
435		9	max	.006	3	.037	1	0		-1.667e-5			5	NC	1
436 437		10	min	007 .006	3	024 .038	1	004 0	15	-5.005e-4	1_	691.802 NC	<u>1</u> 5	NC NC	1
		10	max				3		1	-2.024e-5 -6.067e-4			<u> </u>		1
438 439		11	min max	007 .006	3	024 .037	1	008 0	15	-2.38e-5	<u>1</u> 15	682.73 NC	5	NC NC	2
440		11	min	007	2	023	3	011	1	-7.128e-4	1	690.746	1	6874.677	1
441		12		.006	3		1	<u>011</u> 0	15			NC	5	NC	2
441		12	max min	007	2	.034 021	3	014	1	-2.737e-5 -8.19e-4	1	717.126	<u> </u>	4620.002	1
443		13	max	.006	3	.03	1	014 0	15	-3.094e-5	15	NC	5	NC	2
444		13	min	007	2	018	3	017	1	-9.252e-4	1	766.355	1	3650.528	
445		14	max	.006	3	.024	1	<u>017</u> 0		-3.451e-5		NC	5	NC	3
446		14	min	007	2	015	3	018	1	-1.031e-3	1	848.245	1	3205.298	
447		15	max	.006	3	.016	1	<u>018</u> 0		-3.808e-5		NC	5	NC	3
448		10	min	007	2	01	3	019	1	-1.138e-3	1	983.817	1	3080.002	1
449		16	max	.006	3	.007	1	0	15		15	NC	5	NC	3
450		1.0	min	007	2	004	3	017	1	-1.216e-3	1	1223.176	1	3266.277	1
100			111111	.007	_	.00-		.017		1.2 100 0				J200.211	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
451		17	max	.006	3	.002	3	0	15 -1.428e-5	12	NC	4	NC	2
452			min	007	2	005	1	014	1 -6.3e-4	1	1716.733	1	3999.645	1
453		18	max	.006	3	.01	3	0	15 3.686e-3	3	NC	4	NC	2
454			min	007	2	018	1	009	1 -1.13e-2	1	3308.891	1	6663.262	1
455		19	max	.006	3	.017	3	0	3 7.46e-3	3	NC	1	NC	1
456			min	007	2	032	1	002	1 -2.217e-2	1	NC	1	NC	1
457	M13	1	max	.007	1	.022	3	.006	3 3.786e-3	3	NC	1	NC	1
458	IVITO	<u> </u>	min	0	3	03	1	007	2 -5.231e-3	1	NC	1	NC	1
459		2	max	.007	1	.2	3	.056	1 4.585e-3	3	NC	5	NC	3
460		-			3	246	1			1	943.56	1	3361.754	
		2	min	0				.001		_		_		
461		3	max	.007	1	.346	3	.141	1 5.384e-3	3	NC 540.440	5_	NC	3
462			min	0	3	423	1	.005	15 -7.51e-3	1_	519.148	_1_	1395.413	
463		4	max	.007	1	.436	3	.214	1 6.183e-3	3	NC	5	NC	3
464			min	0	3	534	1	.007	15 -8.649e-3	1_	405.036	1_	931.609	1
465		5	max	.007	1	.462	3	.25	1 6.981e-3	3_	NC	<u>15</u>	NC	3
466			min	0	3	566	1	.009	15 -9.789e-3	1	380.757	1	800.121	1
467		6	max	.007	1	.424	3	.239	1 7.78e-3	3	NC	5	NC	3
468			min	0	3	521	1	.008	15 -1.093e-2	1	415.658	1	837.546	1
469		7	max	.007	1	.335	3	.183	1 8.579e-3	3	NC	5	NC	3
470			min	0	3	414	1	.006	15 -1.207e-2	1	530.94	1	1086.824	
471		8	max	.007	1	.22	3	.099	1 9.378e-3	3	NC	5	NC	3
472			min	001	3	276	1	0	10 -1.321e-2	1	830.448	1	1966.136	
473		9	max	.006	1	.114	3	.017	9 1.018e-2	3	NC	5	NC	2
474		-	min	001	3	149	1	009	10 -1.435e-2	1	1719.047	1	9439.858	
		10			_			.017			NC			1
475		10	max	.006	3	.066	3		3 1.098e-2 2 -1 549e-2	3		4	NC NC	1
476		4.4	min	001		091	1	023	_ 110 100 _	1_	3348.318	1_	NC NC	•
477		11	max	.006	1	.114	3	.022	1 1.018e-2	3	NC	5	NC To Too	2
478			min	001	3	149	1	009	10 -1.435e-2	1_	1719.048	_1_	7450.592	
479		12	max	.006	1	.22	3	.108	1 9.379e-3	3	NC	5_	NC	3
480			min	001	3	276	1	0	10 -1.321e-2	1_	830.448	1_	1801.977	1
481		13	max	.006	1	.335	3	.194	1 8.58e-3	3_	NC	5_	NC	5
482			min	001	3	414	1	.007	15 -1.207e-2	1	530.94	1	1024.99	1
483		14	max	.006	1	.424	3	.25	1 7.782e-3	3	NC	5	NC	5
484			min	001	3	521	1	.009	15 -1.093e-2	1	415.659	1	799.283	1
485		15	max	.006	1	.462	3	.261	1 6.983e-3	3	NC	15	NC	5
486			min	001	3	566	1	.009	15 -9.788e-3	1	380.757	1	767.784	1
487		16	max	.006	1	.436	3	.223	1 6.184e-3	3	NC	5	NC	3
488		- ' -	min	001	3	534	1	.008	15 -8.648e-3	1	405.036	1	895.48	1
489		17	max	.005	1	.346	3	.148	1 5.386e-3	3	NC	5	NC	3
490		17	min	001	3	423	1	.005	15 -7.509e-3	1	519.148	1	1338.409	
		18		.005	1	<u>423</u> .2	3	.059	1 4.587e-3	3	NC	5	NC	3
491		10	max											
492		40	min	001	3	246	1	.001		1_	943.561	1_	3193.888	
493		19	max	.005	1	.022	3	.006	3 3.789e-3	3	NC	1_	NC NC	1
494			min	001	3	03	1	007	2 -5.229e-3	1_	NC	1_	NC	1
495	M16	1_	max	.002	1	.017	3	.006	3 5.437e-3	1_	NC	_1_	NC	1
496			min	0	3	032	1	007		3	NC	1_	NC	1
497		2	max	.002	1	.099	3	.06	1 6.659e-3	1_	NC	5_	NC	3
498			min	0	3	275	1	.001		3	840.936	1_	3122.657	1
499		3	max	.002	1	.166	3	.149	1 7.882e-3	1	NC	5	NC	3
500			min	0	3	473	1	.005	15 -4.032e-3	3	462.708	1	1323.526	
501		4	max	.002	1	.208	3	.224	1 9.105e-3	1	NC	5	NC	3
502			min	0	3	597	1	.008	15 -4.611e-3	3	361.036	1	891.088	1
503		5	max	.003	1	.221	3	.26	1 1.033e-2	1	NC	15	NC	5
504			min	.003	3	633	1	.009	15 -5.189e-3	3	339.448	1	767.679	1
505		6		.003	1	.206	3	.249	1 1.155e-2	1	NC	5	NC	5
		0	max		3		1							
506		-	min	0		583		.009	15 -5.768e-3	3	370.666	1_	803.041	1
507		7	max	.003	1	.167	3	.191	1 1.277e-2	<u>1</u>	NC	5	NC	5

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
508			min	0	3	463	1	.007	15	-6.347e-3	3		1	1036.53	1
509		8	max	.003	1	.117	3	.105	1	1.4e-2	1_	NC	5	NC	3
510			min	0	3	307	1	0	10	-6.925e-3	3	741.854	1_	1845.611	1
511		9	max	.003	1	.07	3	.02	1	1.522e-2	1_	NC	5	NC	2
512			min	0	3	165	1	009	10	-7.504e-3	3	1540.989	1	8109.334	1
513		10	max	.003	1	.049	3	.017	3	1.644e-2	1_	NC	4	NC	1
514			min	0	3	1	1	024	2	-8.083e-3	3	3020.539	1_	NC	1
515		11	max	.003	1	.07	3	.018	1	1.522e-2	1_	NC	5	NC	2
516			min	0	3	165	1	009	10	-7.503e-3	3	1540.99	1_	8766.733	1
517		12	max	.003	1	.117	3	.102	1	1.4e-2	1_	NC	5	NC	3
518			min	0	3	307	1	0	10	-6.924e-3	3	741.854	1	1906.693	1
519		13	max	.003	1	.167	3	.187	1	1.277e-2	1_	NC	5	NC	3
520			min	0	3	463	1	.007	15	-6.345e-3	3	473.722	1_	1062.779	1
521		14	max	.004	1	.206	3	.243	1	1.155e-2	1	NC	5	NC	3
522			min	0	3	583	1	.008	15	-5.766e-3	3	370.666	1	821.617	1
523		15	max	.004	1	.221	3	.254	1	1.033e-2	1		15	NC	3
524			min	0	3	633	1	.009	15	-5.187e-3	3	339.448	1	785.673	1
525		16	max	.004	1	.208	3	.218	1	9.107e-3	1	NC	5	NC	3
526			min	0	3	597	1	.007	15	-4.608e-3	3	361.036	1	914.191	1
527		17	max	.004	1	.166	3	.144	1	7.885e-3	1	NC	5	NC	3
528			min	0	3	473	1	.005	15	-4.029e-3	3	462.708	1	1365.516	1
529		18	max	.004	1	.099	3	.057	1	6.662e-3	1	NC	5	NC	3
530			min	0	3	275	1	.001	10	-3.45e-3	3	840.937	1	3264.855	1
531		19	max	.004	1	.017	3	.006	3	5.44e-3	1	NC	1	NC	1
532			min	0	3	032	1	007	2	-2.871e-3	3	NC	1	NC	1
533	M15	1	max	0	1	0	1	0	1	3.067e-4	3	NC	1	NC	1
534			min	0	1	0	1	0	1	-1.058e-4	2	NC	1	NC	1
535		2	max	0	1	007	15	.001	1	7.872e-4	3	NC	15	NC	1
536			min	0	10	03	4	0	3	-7.942e-4	1		4	NC	1
537		3	max	0	1	014	15	.004	1	1.268e-3	3		15	NC	1
538			min	0	10	058	4	003	3	-1.519e-3	1		4	NC	1
539		4	max	0	1	02	15	.008	1	1.748e-3	3		15	NC	3
540			min	0	10	085	4	006	3	-2.243e-3	1		4	8721.573	1
541		5	max	0	1	026	15	.014	1	2.228e-3	3		15	NC	4
542			min	0	10	109	4	01	3	-2.968e-3	1	987.807	4	5713.088	1
543		6	max	0	1	03	15	.019	1	2.709e-3	3		15	NC	4
544			min	0	10	129	4	014	3	-3.692e-3	1	831.344	4	4154.243	1
545		7	max	0	1	034	15	.025	1	3.189e-3	3		15	NC	4
546			min	0	10	146	4	019	3	-4.416e-3	1	737.252	4	3244.276	1
547		8	max	0	1	037	15	.031	1	3.67e-3	3		15	NC	4
548			min	0	10	158	4	023	3	-5.141e-3			4	2672.918	
549		9	max	0	1	039	15	.036	1	4.15e-3	3		15	NC	4
550			min	0	10	166	4	027	3	-5.865e-3	1	650.388	4	2299.301	1
551		10	max	0	1	039	15	.04	1	4.631e-3	3		15	NC	4
552			min	0	10	168	4	03	3	-6.59e-3	1	640.772	4	2052.779	1
553		11	max	0	1	039	15	.043	1	5.111e-3	3		15	NC	5
554			min	0	10	166	4	032	3	-7.314e-3	1	650.388	4	1896.289	1
555		12	max	0	1	037	15	.045	1	5.591e-3	3		15	NC	5
556		1-	min	0	10	159	4	033	3	-8.039e-3	1	680.783	4	1811.421	1
557		13	max	0	1	034	15	.044	1	6.072e-3	3		15	NC	5
558		10	min	0	10	147	4	033	3	-8.763e-3	1	737.252	4	1792.759	1
559		14	max	0	1	03	15	.041	1	6.552e-3	3		15	NC	5
560		'-	min	0	10	13	4	03	3	-9.488e-3	1	831.344	4	1848.022	1
561		15	max	0	1	026	15	.035	1	7.033e-3	3		15	NC	4
562		13	min	0	10	026 11	4	026	3	-1.021e-2	1	987.807	4	2005.834	1
563		16		0	1	11 02	15	.026	1	7.513e-3	3		4 15	NC	4
564		10	max		10		4		3				4	2344.043	
304			min	0	10	086	4	019	J	-1.094e-2	1	1265.916	4	2344.043	

Company Designer Job Number Model Name : Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
565		17	max	0	1	014	15	.014	1	7.994e-3	3	7849.751	15	NC	4
566			min	0	10	059	4	009	3	-1.166e-2	1	1845.201	4	3106.982	1
567		18	max	0	1	007	15	.004	3	8.474e-3	3	NC	15	NC	4
568			min	0	10	031	4	008	2	-1.239e-2	1	3626.105	4	5530.769	1
569		19	max	.001	1	.004	3	.02	3	8.955e-3	3	NC	1	NC	1
570			min	0	10	005	1	025	2	-1.311e-2	1	NC	1	NC	1
571	M16A	1	max	0	10	0	3	.007	3	3.017e-3	3	NC	1	NC	1
572			min	001	1	002	1	008	2	-3.969e-3	1	NC	1	NC	1
573		2	max	0	10	007	15	.007	1	2.883e-3	3	NC	15	NC	2
574			min	001	1	03	4	0	10	-3.776e-3	1	3626.105	4	8717.228	1
575		3	max	0	10	014	15	.016	1	2.749e-3	3	7849.751	15	NC	3
576			min	001	1	059	4	004	3	-3.583e-3	1	1845.201	4	4929.462	1
577		4	max	0	10	02	15	.024	1	2.615e-3	3	5385.388	15	NC	4
578			min	0	1	085	4	007	3	-3.389e-3	1	1265.916	4	3746.852	1
579		5	max	0	10	026	15	.028	1	2.481e-3	3	4202.273	15	NC	4
580			min	0	1	109	4	01	3	-3.196e-3	1	987.807	4	3233.598	1
581		6	max	0	10	03	15	.031	1	2.347e-3	3	3536.657	15	NC	4
582			min	0	1	13	4	011	3	-3.003e-3	1	831.344	4	3008.423	1
583		7	max	0	10	034	15	.032	1	2.213e-3	3	3136.376	15	NC	4
584			min	0	1	146	4	012	3	-2.809e-3	1	737.252	4	2951.743	1
585		8	max	0	10	037	15	.032	1	2.079e-3	3	2896.148	15	NC	4
586			min	0	1	158	4	012	3	-2.616e-3	1	680.783	4	3022.492	1
587		9	max	0	10	039	15	.03	1	1.945e-3	3	2766.843	15	NC	4
588			min	0	1	165	4	011	3	-2.422e-3	1	650.388	4	3214.805	1
589		10	max	0	10	039	15	.027	1	1.811e-3	3	2725.937	15	NC	4
590			min	0	1	168	4	01	3	-2.229e-3	1	640.772	4	3547.882	1
591		11	max	0	10	039	15	.024	1	1.677e-3	3	2766.843	15	NC	4
592			min	0	1	165	4	009	3	-2.036e-3	1	650.388	4	4070.066	1
593		12	max	0	10	037	15	.02	1	1.543e-3	3	2896.148	15	NC	3
594			min	0	1	158	4	007	3	-1.842e-3	1	680.783	4	4877.432	1
595		13	max	0	10	034	15	.015	1	1.409e-3	3	3136.376	15	NC	3
596			min	0	1	146	4	005	3	-1.649e-3	1	737.252	4	6161.487	1
597		14	max	0	10	03	15	.011	1	1.275e-3	3	3536.657	15	NC	2
598			min	0	1	129	4	004	3	-1.456e-3	1	831.344	4	8335.758	1
599		15	max	0	10	026	15	.007	1	1.141e-3	3	4202.273	15	NC	1
600			min	0	1	109	4	002	3	-1.262e-3	1	987.807	4	NC	1
601		16	max	0	10	02	15	.004	1	1.007e-3	3	5385.388	15	NC	1
602			min	0	1	085	4	001	3	-1.069e-3	1	1265.916	4	NC	1
603		17	max	0	10	014	15	.001	1	8.728e-4	3	7849.751	15	NC	1
604			min	0	1	058	4	0	3	-8.756e-4	1	1845.201	4	NC	1
605		18	max	0	10	007	15	0	4	7.388e-4	3	NC	15	NC	1
606			min	0	1	03	4	0	2	-6.965e-4	2	3626.105	4	NC	1
607		19	max	0	1	0	1	0	1	6.048e-4	3	NC	1	NC	1
608			min	0	1	0	1	0	1	-5.383e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4 /						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.