Produit Scalaire

Première Spécialité Mathématiques

4 Septembre 2024

Exercice 1:

Soit \overrightarrow{u} et \overrightarrow{v} tels que $\|\overrightarrow{u}\| = 2$, $\|\overrightarrow{v}\| = 3$ et $\widehat{\overrightarrow{u}}, \overrightarrow{v} = 60^{\circ}$. Calculer le produit scalaire $\overrightarrow{u} \cdot \overrightarrow{v}$.

Exercice 2:

Soit \overrightarrow{p} et \overrightarrow{q} tels que $\|\overrightarrow{p}\| = 5$, $\|\overrightarrow{q}\| = \sqrt{3}$ et $\widehat{\overrightarrow{p}}, \widehat{\overrightarrow{q}} = 135^{\circ}$. Calculer le produit scalaire $\overrightarrow{p} \cdot \overrightarrow{q}$.

Exercice 3

Soit deux vecteurs \overrightarrow{y} et \overrightarrow{z} tels que $\|\overrightarrow{y}\| = 6$, $\|\overrightarrow{z}\| = 2$ et $\overrightarrow{y} \cdot \overrightarrow{z} = -2$. Déterminer une mesure de l'angle $\overrightarrow{y} \colon \overrightarrow{z}$.

Exercice 4:

Soit \overrightarrow{ABC} un triangle équilatéral de côté 5. Calculer le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

Exercice 5:

Soit ABCD un carré de côté 5. Calculer le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

Exercice 6:

Soit ABCD un carré de côté 4 et de centre O. On place les points les milieux I, J, K et L respectifs des segments [AB], [BC], [CD] et [DA]. Calculer les produits scalaires suivants :

- (a) $\overrightarrow{CO} \cdot \overrightarrow{CK}$
- (b) $\overrightarrow{CJ} \cdot \overrightarrow{LJ}$
- (c) $\overrightarrow{IJ} \cdot \overrightarrow{KL}$
- (d) $\overrightarrow{IJ} \cdot \overrightarrow{IL}$

Exercice 7:

Soit ABCD un rectangle de centre E. On pose F le symétrique de E par rapport à la droite (AB).

1

Calculer les produits scalaires suivants en fonction de L et de l :

- (a) $\overrightarrow{BA} \cdot \overrightarrow{BE}$
- (b) $\overrightarrow{CF} \cdot \overrightarrow{CD}$
- (c) $\overrightarrow{AF} \cdot \overrightarrow{AB}$
- (d) $\overrightarrow{AB} \cdot \overrightarrow{BE}$
- (e) $\overrightarrow{BF} \cdot \overrightarrow{DC}$