Refined Fundamental Trade-Off

- Let E_{best} be the irreducible error (lowest possible error for *any* model).
 - For example, irreducible error for predicting coin flips is 0.5.
- Some learning theory results use E_{best} to futher decompose E_{test} :

- This is similar to the bias-variance decomposition:
 - Term 1: measure of variance (how sensitive we are to training data).
 - Term 2: measure of bias (how low can we make the training error).
 - Term 3: measure of noise (how low can any model make test error).

Refined Fundamental Trade-Off

- Decision tree with high depth:
 - Very likely to fit data well, so bias is low.
 - But model changes a lot if you change the data, so variance is high.
- Decision tree with low depth:
 - Less likely to fit data well, so bias is high.
 - But model doesn't change much you change data, so variance is low.
- And degree does not affect irreducible error.
 - Irreducible error comes from the best possible model.

Bias-Variance Decomposition

- You may have seen "bias-variance decomposition" in other classes:
 - Assumes $\tilde{y}_i = \bar{y}_i + \varepsilon$, where ε has mean 0 and variance σ^2 .
 - Assumes we have a "learner" that can take 'n' training examples and use these to make predictions \hat{y}_i .
- Expected squared test error in this setting is

$$\mathbb{E}\left[\left(\hat{y}_{i}-\hat{y}_{i}\right)^{2}\right] = \mathbb{E}\left[\left(\hat{y}_{i}-\bar{y}_{i}\right)\right]^{2} + \left(\mathbb{E}\left[\hat{y}_{i}^{2}\right] - \mathbb{E}\left[\hat{y}_{i}\right]^{2}\right) + o^{2}$$
"test squared error"

"bias"

"variance"

"noise"

- Where expectations are taken over possible training sets of 'n' examples.
- Bias is expected error due to having wrong model.
- Variance is expected error due to sensitivity to the training set.
- Noise (irreducible error) is the best can hope for given the noise (E_{best}).

Bias-Variance vs. Fundamental Trade-Off

- Both decompositions serve the same purpose:
 - Trying to evaluate how different factors affect test error.

- They both lead to the same 3 conclusions:
 - 1. Simple models can have high E_{train} /bias, low E_{approx} /variance.
 - 2. Complex models can have low E_{train} /bias, high E_{approx} /variance.
 - 3. As you increase 'n', E_{approx} /variance goes down (for fixed complexity).

A Theoretical Answer to "How Much Data?"

- Assume we have a source of IID examples and a fixed class of parametric models.
 - Like "all depth-5 decision trees".
- Under some nasty assumptions, with 'n' training examples it holds that:
 E[test error of best model on training set] (best test error in class) = O(1/n).
- You rarely know the constant factor, but this gives some guidelines:
 - Adding more data helps more on small datasets than on large datasets.
 - Going from 10 training examples to 20, difference with best possible error gets cut in half.
 - If the best possible error is 15% you might go from 20% to 17.5% (this does **not** mean 20% to 10%).
 - Going from 110 training examples to 120, error only goes down by ~10%.
 - Going from 1M training examples to 1M+10, you won't notice a change.
 - Doubling the data size cuts the error in half:
 - Going from 1M training to 2M training examples, error gets cut in half.
 - If you double the data size and your test error doesn't improve, more data might not help.