UNIVERSITI KUALA LUMPUR KAMPUS CAWANGAN MALAYSIAN SPANISH INSTITUTE (UNIKL- MSI)

SAB35403 - PCB DESIGN

PREPARED FOR: DR MOHD REZAL BIN MOHAMED

N	Ο.	NAME	ID. NO	
1	L.	KHAIRUL ANWAR BIN KHAIRUL SALLEH	54215119151	
2	2.	NUR AZFIRINA BINTI NOR AZHA	54215121221	

Table of Contents

ABSTRACT	3
1.0 INTRODUCTION	3
2.0 OBJECTIVES	3
3.0 METHODOLOGY	4
4.0 SCHEMATIC CIRCUIT	5
PART PROPERTIES FOOTPRINT NAME	6
5.0 PCB CIRCUIT	7
LAYER SPREADSHEET	7
6.0 BILL OF MATERIAL	8
7.0 GERBER FILES	9
8.0 RESULT AND DISCUSSION	9
9.0 CONCLUSION	10
10.0 RECOMMENDATION	10

ABSTRACT

This project is to design a DC Motor Controller circuit using Orcad Capture and Orcad Layout Plus software. The design process encompasses various stages, including schematic design, circuit layout, component placement, and generating Gerber files. This report outlines the application of PCB design techniques, development of the PCB circuit, and preparation of a comprehensive technical report.

1.0 INTRODUCTION

The DC Motor Controller serves as a crucial component in various applications, regulating the speed and direction of DC motors. This project focuses on designing a PCB layout for a DC Motor Controller using Orcad Capture for schematic design and Orcad Layout Plus for PCB layout.

2.0 OBJECTIVES

- To apply PCB design process techniques using CAD software.
- To develop PCB circuit using CAD software and generate the Gerber files.
- To prepare a comprehensive technical report based on typical engineering report guidelines.
- To foster teamwork effectively in a group while preparing business plans to produce economically PCB design.

3.0 METHODOLOGY

1. Schematic Circuit Design

Utilized Orcad Capture to create a detailed schematic circuit for the DC Motor Controller, incorporating essential components such as resistors, capacitors, transistors, and the DC motor.

2. Circuit DRC (Design Rule Check)

Performed a thorough DRC to ensure the schematic design adheres to standard design rules, including clearance, trace width, and component spacing.

3. Circuit Netlist CreatioN

Generated a circuit netlist from the schematic design, capturing the connectivity information of the components.

4. Layout Circuit Design

Transitioned to Orcad Layout Plus to create the physical layout of the PCB circuit, ensuring optimal component placement and routing.

5. New Footprint Creation

Designed custom footprints for specific components to ensure accurate representation and compatibility with the PCB layout.

6. Board Outline and Component Arrangement

Established the board outline and strategically arranged the components within the layout, considering functionality, space constraints, and signal integrity.

7. PCB Routing

Employed both auto-routing and manual routing techniques to establish electrical connections between components while minimizing signal interference and ensuring manufacturability.

8. PCB Configuration

Configured the PCB circuit as a two-sided design, optimizing the layout for efficient manufacturing and assembly processes.

9. Gerber Files Generation

Generated Gerber files from the finalized PCB layout, ensuring compliance with manufacturing specifications and standards.

4.0 SCHEMATIC CIRCUIT

PART PROPERTIES FOOTPRINT NAME

			Value	Reference	Primitive	Name	Power Pins Visible	PCB Footprint
1		SCHEMATIC1 : PAGE1 : Y1	CRYSTAL	Y1	DEFAULT	129014	Fower Fins Visible	ABLS2 Series ABR
2	+	SCHEMATIC1: PAGE1: U2	PIC16F877	U2	DEFAULT	102337		PDIP40 600MC MCH
3	+	SCHEMATIC1: PAGE1: SW3	Stop	SW3	DEFAULT	106230		
	+		-					SWITCH_FSMSM_TY
4	+	SCHEMATIC1 : PAGE1 : SW2	Direction 2	SW2	DEFAULT	106202		SWITCH_FSMSM_TY
5	+	SCHEMATIC1 : PAGE1 : SW1	Direction 1	SW1	DEFAULT	104107		SWITCH_FSMSM_TY
6	+	SCHEMATIC1 : PAGE1 : R9	10k	R9	DEFAULT	104391		AX/RC05
7	+	SCHEMATIC1: PAGE1: R8	10k	R8	DEFAULT	104369		AX/RC05
8	+	SCHEMATIC1: PAGE1: R7	330	R7	DEFAULT	104347		AX/RC05
9	+	SCHEMATIC1: PAGE1: R6	10k	R6	DEFAULT	104325		AX/RC05
10	+	SCHEMATIC1: PAGE1: R5	10k	R5	DEFAULT	104303		AX/RC05
11	+	SCHEMATIC1: PAGE1: R4	1k	R4	DEFAULT	104281		AX/RC05
12	+	SCHEMATIC1: PAGE1: R3	470	R3	DEFAULT	104259		AX/RC05
13	+	SCHEMATIC1: PAGE1: R2	470	R2	DEFAULT	104237		AX/RC05
14	+	SCHEMATIC1: PAGE1: R14	10K	R14	DEFAULT	105500		VRES10
15	+	SCHEMATIC1: PAGE1: R13	10k	R13	DEFAULT	104479		AX/RC05
16	+	SCHEMATIC1: PAGE1: R12	1k	R12	DEFAULT	104457		AX/RC05
17	+	SCHEMATIC1: PAGE1: R11	10k	R11	DEFAULT	104435		AX/RC05
18	+	SCHEMATIC1: PAGE1: R10	330	R10	DEFAULT	104413		AX/RC05
19	+	SCHEMATIC1: PAGE1: R1	10k	R1	DEFAULT	104215		AX/RC05
20	+	SCHEMATIC1: PAGE1: Q6	IRF3205S	Q6	DEFAULT	116307		TRANS_IRF3710PBF
21	+	SCHEMATIC1: PAGE1: Q5	IRF4905ST	Q5	DEFAULT	131559		TO220AB
22	+	SCHEMATIC1: PAGE1: Q4	IRF3205S	Q4	DEFAULT	101107		TRANS_IRF3710PBF
23	+	SCHEMATIC1: PAGE1: Q3	2N2222A	Q3	DEFAULT	100953		T018
24	+	SCHEMATIC1: PAGE1: Q2	2N2222A	Q2	DEFAULT	100927		T018
25	+	SCHEMATIC1: PAGE1: Q1	IRF4905ST	Q1	DEFAULT	131114		T0220AB
26	+	SCHEMATIC1: PAGE1: MG1	MOTOR D	MG1	DEFAULT	100905		TRANS_IRF3710PBF
27	+	SCHEMATIC1: PAGE1: D6	LED2	D6	DEFAULT	124667		DAX1/.300X.050/.02
28	+	SCHEMATIC1: PAGE1: D5	LED1	D5	DEFAULT	124224		DAX1/.300X.050/.02
29	+	SCHEMATIC1: PAGE1: D4	D1N4001	D4	DEFAULT	101045		DO-41
30	+	SCHEMATIC1: PAGE1: D3	D1N4001	D3	DEFAULT	101023		DO-41
$\overline{}$	_				•		•	
3	<u> </u>		D1N4001	D2	DEFAULT	101001		DO-41
32	<u>+</u>	SCHEMATIC1 : PAGE1 : D1	D1N4001	D1	DEFAULT	100979		DO-41
33	±	SCHEMATIC1: PAGE1: C2	22p	C2	DEFAULT	104547		RAD/CK05
34	ŧ	SCHEMATIC1: PAGE1: C1	22p	C1	DEFAULT	104525		RAD/CK05

5.0 PCB CIRCUIT

LAYER SPREADSHEET

Layer	Layer	Layer	Layer	Mirror	
Name	Hotkey	NickName	Туре	Layer	
ГОР	1	TOP	Routing	воттом	
BOTTOM	2	BOT	Routing	TOP	
GND	3	GND	Plane	(None)	
POWER	4	PWR	Plane	(None)	
NNER1	5	IN1	Unused	(None)	
NNER2	6	IN2	Unused	(None)	
NNER3	7	IN3	Unused	(None)	
NNER4	8	IN4	Unused	(None)	
NNER5	9	IN5	Unused	(None)	
NNER6	Ctrl + 0	IN6	Unused	(None)	
NNER7	Ctrl + 1	IN7	Unused	(None)	
NNER8	Ctrl + 2	IN8	Unused	(None)	
NNER9	Ctrl + 3	IN9	Unused	(None)	
NNER10	Ctrl + 4	l10	Unused	(None)	
NNER11	Ctrl + 5	l11	Unused	(None)	
NNER12	Ctrl + 6	l12	Unused	(None)	
SMTOP	Ctrl + 7	SMT	Doc	SMBOT	
SMBOT	Ctrl + 8	SMB	Doc	SMTOP	
SPTOP	Ctrl + 9	SPT	Doc	SPBOT	
SPBOT	Shift + 0	SPB	Doc	SPTOP	
SSTOP	Shift + 1	SST	Doc	SSBOT	

6.0 BILL OF MATERIAL

<

Minipro.bom 9: 10: Bill Of Materials January 10,2024 19:15:10 Pagel 2: Item Quantity Reference Part L3: 14: 15: 1 2 C2,C1 22p 16: 2 4 D1, D2, D3, D4 D1N4001 D5 LED1 1 7: 3 18: 4 1 D6 LED2 19: 5 1 MG1 MOTOR DC 10: 6 2 Q1,Q5 IRF4905STRRPBF 21: 7 2 Q2,Q3 2N2222A 2 Q6,Q4 IRF3205S 22: 8 13: 9 8 R1, R5, R6, R8, R9, R11, R13, 10k 24: R14 25: 10 2 R3,R2 470 26: 11 2 R12, R4 1k 27: 12 2 R7,R10 330 28: 13 1 SWl Direction 1 39: 14 1 SW2 Direction 2 30: 15 1 SW3 Stop 31: 16 1 U2 PIC16F877A-IP 32: 17 1 Y1 CRYSTAL

No	Component	Quantity	Price
1	Capacitor 22pF	2	
2	Diode	4	
3	Led d5	1	
4	Led d6	1	
5	Motor dc	1	
6	NPN TRANSISTOR (2N2222A)	2	
7	IRF4905STRRPBF	2	
8	IRF3205S	2	
9	Resistor 10k ohm	8	
10	Resistor 470 ohm	2	
11	Resistor 1k ohm	2	
12	Resistor 330	2	
13	Switch direction 1	1	
14	Switch direction 2	1	
15	Switch stop	1	
16	PIC16F877A	1	
17	CRYSTAL	1	
	TOTAL		<rm1500< td=""></rm1500<>

7.0 GERBER FILES

8.0 RESULT AND DISCUSSION

The design process yielded a functional and optimized PCB layout for the DC Motor Controller, demonstrating proficiency in using Orcad Capture and Orcad Layout Plus software. Key outcomes and observations include:

- Successful application of PCB design techniques, fulfilling the specified course learning outcomes.
- Development of a robust and efficient PCB circuit layout tailored for controlling a DC motor.
- Compliance with design rules, standards, and best practices to ensure reliability, performance, and manufacturability.
- Effective utilization of CAD software capabilities for schematic design, layout, component placement, routing, and Gerber file generation.

9.0 CONCLUSION

The design of the DC Motor Controller using Orcad Capture and Orcad Layout Plus exemplifies a systematic approach to PCB design. By adhering to established methodologies, standards, and best practices, a functional and optimized PCB layout was achieved. This project reinforces the importance of CAD software proficiency, design validation, collaboration, and continuous improvement in PCB design processes and outcomes.

10.0 RECOMMENDATION

- Further optimization of component placement and routing techniques for enhanced performance and efficiency.
- Continuous learning and exploration of advanced features and functionalities within Orcad Capture and Orcad Layout Plus software.
- Collaboration with manufacturing and assembly teams to ensure seamless transition from design to production while considering cost-effective strategies.