# CO 250: Introduction to Optimization

Module 3: Duality Through Examples (Correctness)

©University of Waterloo

# Recap: Shortest Path Algorithm

Previous lecture: we showed an algorithm for the shortest path problem that computes

- An s,t-path P whose characteristic vector, x<sup>P</sup>, is feasible for the shortest path LP. and
- a feasible solution, y, for the dual of the shortest path LP.

Important:  $c^T x = \mathbb{1}^T y \to P$  is a shortest path!

We will start this lecture with another example!

#### Shortest path LP:

$$\min \quad \sum (c_e x_e : e \in E)$$

s.t. 
$$\sum (x_e \,:\, e \in \delta(S)) \geq 1$$
 
$$(\delta(S) \,\, s, t\text{-cut})$$
 
$$x > 0$$

#### Shortest path dual:

$$\max \quad \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t. 
$$\sum (y_S : e \in \delta(S)) \le c_e$$
 
$$(e \in E)$$
 
$$y > 0$$

©University of Waterloo 2/

#### Recall the algorithm we developed previously:

#### Algorithm 3.2 Shortest path.

**Input:** Graph G = (V, E), costs  $c_e \ge 0$  for all  $e \in E$ ,  $s, t \in V$  where  $s \ne t$ .

Output: A shortest st-path P

1: 
$$y_W := 0$$
 for all st-cuts  $\delta(W)$ . Set  $U := \{s\}$ 

2: while 
$$t \notin U$$
 do

3: Let ab be an edge in 
$$\delta(U)$$
 of smallest slack for y where  $a \in U$ ,  $b \notin U$ 

4: 
$$y_U := \operatorname{slack}_y(ab)$$

5: 
$$U := U \cup \{b\}$$

6: change edge 
$$ab$$
 into an arc  $\overrightarrow{ab}$ 



→ Run this on the example instance on the right.

Initially: 
$$y = 0$$
 and  $U = \{s\}$ 

©University of Waterloo 3/

Initially:  $y = \mathbb{O}$  and  $U = \{s\}$ 

 $\begin{array}{ll} \text{Step 1} & su \text{ edge with smallest slack in} \\ & \delta(U) \\ & \longrightarrow \text{ increase } y_U \text{ by } 1 \end{array}$ 

$$\begin{array}{ll} \text{Step 2} & \text{Now: } U = \{s,u\} \\ & \text{Slack-minimal edge is } sv \\ & \longrightarrow \text{ increase } y_U \text{ by } 1 \\ \end{array}$$

$$\begin{array}{ll} \text{Step 3} & U = \{s, v, u\} \\ & \text{Slack minimizer is } vw \\ & \longrightarrow \text{increase } y_U \text{ by } 1 \end{array}$$

Step 4 
$$U = \{s, v, u, w\}$$
  
Slack minimizer is  $vz$   
 $\longrightarrow$  increase  $y_U$  by 2

Step 5 
$$U = \{s, v, u, w, z\}$$
  
Slack minimizer is  $wt$   
 $\longrightarrow$  increase  $y_U$  by  $2$ 



Now: We have a directed s,t-path P of length 7, and a dual feasible solution of the same value!

 $\longrightarrow P$  is a shortest path!

©University of Waterloo 4/19

#### Question

Will the algorithm always terminate? Will it always find an s,t-path P whose length is equal to the value of a feasible dual solution?

This lecture: We will show the answers to the above are yes & yes!



©University of Waterloo 5/

Recall: the slack of an edge  $uv \in E$  for a feasible dual solution y is

$$c_{uv} - \sum (y_U : e \in \delta(U))$$

We call an edge  $uv \in E$  an equality edge if its slack is 0.

Example: edge vz is an equality edge, and zt is not!



©University of Waterloo 6/

We will also call a cut  $\delta(U)$  active for a dual solution y if  $y_U > 0$ .

Example:  $\delta(\{s,v,u\})$  is active, while  $\delta(\{s,v\})$  is not!



©University of Waterloo 7/

### **Proposition**

Let y be a feasible dual solution, and P and s,t-path. P is a shortest path if

- (i) all edges on P are equality edges, and
- (ii) every active cut  $\delta(U)$  has exactly one edge of P.

Note: Both conditions are satisfied in the example on the right.



©University of Waterloo 8/1

### **Proposition**

Let y be a feasible dual solution, and P and s, t-path. P is a shortest path if

- (i) all edges on P are equality edges, and
- (ii) every active cut  $\delta(U)$  has exactly one edge of P.

Note: Both conditions are satisfied in the example on the right!

**Proof:** Let's suppose that P and y satisfy (i) and (ii) of the proposition. Then,

$$\sum_{e \in P} c_e = \sum_{e \in P} (\sum (y_U : e \in \delta(U)))$$

because every edge on P is an equality edge by (i). The right-hand side equals

$$\sum (y_U \cdot |P \cap \delta(U)| : \delta(U))$$

But, by (ii),  $y_U > 0$  only if  $|P \cap \delta(U)| = 1$ . Hence:

$$\sum_{e \in P} c_e = \sum_{U} y_U$$

© University of Waterloo 9 / 1

#### Algorithm 3.2 Shortest path.

**Input:** Graph G = (V, E), costs  $c_e \ge 0$  for all  $e \in E$ ,  $s, t \in V$  where  $s \ne t$ . **Output:** A shortest st-path P

- 1:  $y_W := 0$  for all st-cuts  $\delta(W)$ . Set  $U := \{s\}$
- 2: while  $t \notin U$  do
- 3: Let ab be an edge in  $\delta(U)$  of smallest slack for y where  $a \in U$ ,  $b \notin U$
- 4:  $y_U := \operatorname{slack}_y(ab)$
- 5:  $U := U \cup \{b\}$
- 6: change edge ab into an arc  $\overrightarrow{ab}$
- 7: end while
- 8: return A directed st-path P.

Note: The algorithm terminates since one vertex is added to U in every step and V is finite.



It suffices to show:

## **Proposition**

The Shortest Path Algorithm maintains throughout its execution if:

- (I1) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (I3) no active cut  $\delta(U)$  has an entering arc: an arc wu with  $w \notin U$ , and  $u \in U$ ,
- (I4) for every  $u \in U$  there is a directed s, u-path, and
- (I5) arcs have both ends in U.

©University of Waterloo 10 / 18

Suppose the invariants hold when the algorithm terminates. Then:

- $t \in U$  and (I4) implies that there is a directed s, t-path P,
- y is feasible by (I1), and
- arcs on P are equality arcs by (I2)

To show this:  $\delta(U)$  active  $\longrightarrow P$  has exactly one edge in  $\delta(U)$ .

## **Proposition**

The Shortest Path Algorithm maintains throughout its execution if:

- (I1) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut  $\delta(U)$  has an entering arc: an arc wu with  $w \notin U$ , and  $u \in U$ ,
- (I4) for every  $u \in U$  there is a directed s, u-path, and
- (I5) arcs have both ends in U.

©University of Waterloo 11/1

For a contradiction suppose  $\delta(U)$  active  $\longrightarrow P$  has more than one edge in  $\delta(U)$ 

Let e and e' be the first two edges on P that leave  $\delta(U)$ .

Then, there must also be an arc f on P that enters U, but this contradicts (I3)!

## **Proposition**

The Shortest Path Algorithm maintains throughout its execution if:

(13) no active cut  $\delta(U)$  has an entering arc: an arc wu with  $w \not\in U$ , and  $u \in U$ 



©University of Waterloo

#### Algorithm 3.2 Shortest path.

**Input:** Graph G=(V,E), costs  $c_e\geq 0$  for all  $e\in E$ ,  $s,t\in V$  where  $s\neq t$ . **Output:** A shortest st-path P

- 1:  $y_W := 0$  for all st-cuts  $\delta(W)$ . Set  $U := \{s\}$
- 2: while  $t \notin U$  do
- 3: Let ab be an edge in  $\delta(U)$  of smallest slack for y where  $a \in U, b \notin U$
- 4:  $y_U := \operatorname{slack}_y(ab)$
- 5:  $U := U \cup \{b\}$
- 6: change edge ab into an arc  $\overrightarrow{ab}$
- 7: end while
- 8: return A directed st-path P.

#### Let's now prove the proposition!

Trivial: (I1) - (I5) hold after Step 1. Suppose (I1) - (I5) hold before Step 3. We will show that they also hold after Step 6.

## **Proposition**

The Shortest Path Algorithm maintains throughout its execution if:

- (I1) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut  $\delta(U)$  has an entering, arc: an arc wu with  $w \notin U$ , and  $u \in U$ ,
- (I4) for every  $u \in U$  there is a directed s, u-path, and
- (I5) arcs have both ends in U.

©University of Waterloo

# (I1) y is Dual Feasible

#### Algorithm 3.2 Shortest path.

**Input:** Graph G = (V, E), costs  $c_e \ge 0$  for all  $e \in E$ ,  $s, t \in V$  where  $s \ne t$ .

#### Output: A shortest st-path P

- 1:  $y_W := 0$  for all st-cuts  $\delta(W)$ . Set  $U := \{s\}$
- 2: while  $t \notin U$  do
- 3: Let ab be an edge in  $\delta(U)$  of smallest slack for y where  $a \in U$ ,  $b \notin U$
- 4:  $y_U := \operatorname{slack}_{v}(ab)$
- 5:  $U := U \cup \{b\}$
- 6: change edge ab into an arc  $\overrightarrow{ab}$
- 7: end while
- 8: return A directed st-path P.

#### Shortest path dual:

$$\max \quad \sum (y_S \, : \, \delta(S) \, \, s, t\text{-cut})$$

s.t. 
$$\sum (y_S \, : \, e \in \delta(S)) \leq c_e$$
 
$$(e \in E)$$

$$y \ge 0$$

Note: In Step 3-6, only  $y_U$  for the current U changes.

 $y_U$  arises only on the left-hand sides of constraints for edges in  $\delta(U)$ .

The smallest slack of any of these constraints is precisely the increase in  $y_U$ .

 $\longrightarrow y$  remains feasible!

Also: The constraint of the newly created arc holds with equality after the increase

 $\longrightarrow$  (I2) continues to hold and constraints for arcs have slack 0.

©University of Waterloo 14/

#### Algorithm 3.2 Shortest path.

**Input:** Graph G=(V,E), costs  $c_e\geq 0$  for all  $e\in E$ ,  $s,t\in V$  where  $s\neq t$ . **Output:** A shortest st-path P

- 1:  $y_W := 0$  for all st-cuts  $\delta(W)$ . Set  $U := \{s\}$
- 2: while  $t \notin U$  do
- 3: Let ab be an edge in  $\delta(U)$  of smallest slack for y where  $a \in U$ ,  $b \notin U$
- 4:  $y_U := \operatorname{slack}_y(ab)$
- 5:  $U := U \cup \{b\}$
- 6: change edge ab into an arc  $\overrightarrow{ab}$
- 7: end while
- 8: return A directed st-path P.
  - the only new active cut created is  $\delta(U)$
  - (I5)  $\longrightarrow$  all old arcs have both ends in U
  - $\bullet$  one new arc has tail in U, and head outside U
- $\longrightarrow$  (I3) holds after Step 6

## **Proposition**

The Shortest Path Algorithm maintains throughout its execution if:

- (I1) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut  $\delta(U)$  has an entering arc: an arc wu with  $w \notin U$ , and  $u \in U$ ,
- (I4) for every  $u \in U$  there is a directed s, u-path, and
- (I5) arcs have both ends in U.

©University of Waterloo 15/1

Note: Algorithms adds arc ab in current step, and (I4) implies that there is a directed s,a-path P.



- (I5)  $\longrightarrow$  arcs different from ab have both ends in U
- $\longrightarrow$  since b is outside U, it cannot be on P, and thus, P together with ab is a directed s,b-path
  - $\longrightarrow$  (I4) holds at the end of loop

## **Proposition**

The Shortest Path Algorithm maintains throughout its execution if:

- (I1) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (13) no active cut  $\delta(U)$  has an entering arc: an arc wu with  $w \notin U$ , and  $u \in U$ ,
- (I4) for every  $u \in U$  there is a directed s, u-path, and
- (I5) arcs have both ends in U.

©University of Waterloo 16 / 18



Finally, the only new arc added is ab. As b is added to U, (I5) continues to hold.

We are now done!

## **Proposition**

The Shortest Path Algorithm maintains throughout its execution if:

- (I1) y is a feasible dual,
- (I2) arcs are equality arcs (i.e., have 0 slack),
- (I3) no active cut  $\delta(U)$  has an entering arc: an arc wu with  $w \notin U$ , and  $u \in U$ ,
- (I4) for every  $u \in U$  there is a directed s, u-path, and
- (I5) arcs have both ends in U.

©University of Waterloo 17 / 1

#### Algorithm 3.2 Shortest path.

**Input:** Graph G = (V, E), costs  $c_e \ge 0$  for all  $e \in E$ ,  $s, t \in V$  where  $s \ne t$ .

Output: A shortest st-path P

- 1:  $y_W := 0$  for all st-cuts  $\delta(W)$ . Set  $U := \{s\}$
- 2: while  $t \notin U$  do
- 3: Let ab be an edge in  $\delta(U)$  of smallest slack for y where  $a \in U$ ,  $b \notin U$
- 4:  $y_U := \operatorname{slack}_{v}(ab)$
- 5:  $U := U \cup \{b\}$
- 6: change edge ab into an arc  $\overrightarrow{ab}$
- 7: end while
- 8: return A directed st-path P.

### Recap

- We saw that the shortest path algorithm
  - (i) always produces an s, t-path P, and
  - (ii) a feasible dual solution y.
- Moreover, the length of P equals the objective value of y, and hence, P must be a shortest s, t-path.
- Implicitly, we therefore showed that the shortest path LP always has an optimal integer solution!

©University of Waterloo 18 / 18