Constraint satisfaction problems

- Describe states implicitly in terms of variables and constraints
- More search algorithms:
 - backtracking search
 - local search

Constraint satisfaction problem (CSP)

- A CSP is defined by:
 - a set of variables $\{x_1, ..., x_n\}$
 - a set of values for each variable $dom(x_1), ..., dom(x_n)$
 - a set of constraints $\{C_1, ..., C_m\}$
- A solution to a CSP is a complete assignment to all the variables that satisfies the constraints

Given a CSP

- Determine whether it has a solution or not
- Find one solution
- Find all solutions
- Find an optimal solution, given some cost function

Example domains and constraints

- Reals, linear constraints
 - $3x + 4y \le 7$, 5x 3y + z = 2
 - Guassian elimination, linear programming
- Integers, linear constraints
 - integer linear programming, branch-and-bound
- Boolean, propositional sentences
- Here:
 - finite domains
 - expressive constraint languages

Constraint languages

Usual arithmetic operators:

• =, \leq , \geq , <, >, \neq , +, -, *, /, absolute value, exponentiation

• e.g.,
$$3x + 4y \le 7$$
, $5x^3 - x^*y = 9$

Usual logical operators:

• \wedge , \vee , \neg , \Rightarrow (or "if ... then")

• e.g., if x = 1 then y = 2, $\neg x \lor y \lor z$, $(3x + 4y \le 7) \lor (x^*y = z)$

Global constraints:

can be specified over an arbitrary number of variables

• e.g., all different $(x_1, ..., x_n)$ — pairwise different

Table constraints

Alldifferent constraint

- Consists of:
 - set of variables $\{x_1, ..., x_n\}$
- Satisfied iff:
 - each of the variables is assigned a different value

Example: Sudoku

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Each Sudoku has a unique solution that can be reached logically without guessing.

Enter digits from 1 to 9 into the blank spaces. Every row must contain one of each digit. So must every column, as must every 3x3 square.

Constraint model for Sudoku

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X 9
X ₁₀	X ₁₁	X ₁₂	X ₁₃	X ₁₄				
X ₁₉	X ₂₀	X ₂₁						
X ₂₈								
X ₃₇								
X ₄₆								
X ₅₅	•••							
X ₆₄	•••							
X ₇₃	•••							

Constraint model for Sudoku

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

$$\begin{aligned} &\textit{dom}(x_i) = \{1, \, ..., \, 9\}, \, \text{for all } i = 1, \, ..., \, 81 \\ &\text{alldifferent}(x_1, \, x_2, \, x_3, \, x_4, \, x_5, \, x_6, \, x_7, \, x_8, \, x_9) \\ &\dots \\ &\text{alldifferent}(x_1, \, x_{10}, \, x_{19}, \, x_{28}, \, x_{37}, \, x_{46}, \, x_{55}, \, x_{64}, \, x_{73}) \\ &\dots \\ &\text{alldifferent}(x_1, \, x_2, \, x_3, \, x_{10}, \, x_{11}, \, x_{12}, \, x_{19}, \, x_{20}, \, x_{21}) \\ &\dots \\ &x_1 = 5, \, x_2 = 3, \, x_5 = 7, \, \dots, \, x_{81} = 9 \end{aligned}$$

Example: *n*-queens

Place n-queens on an $n \times n$ board so that no pair of queens attacks each other

Constraint model

variables:

$$X_1, X_2, X_3, X_4$$

domains:

 $\{1, 2, 3, 4\}$

constraints:

$$X_{1} \neq X_{2} \land | X_{1} - X_{2} | \neq 1$$

 $X_{1} \neq X_{3} \land | X_{1} - X_{3} | \neq 2$
 $X_{1} \neq X_{4} \land | X_{1} - X_{4} | \neq 3$
 $X_{2} \neq X_{3} \land | X_{2} - X_{3} | \neq 1$
 $X_{2} \neq X_{4} \land | X_{2} - X_{4} | \neq 2$
 $X_{3} \neq X_{4} \land | X_{3} - X_{4} | \neq 1$

Example: 4-queens

A solution

$$x_1 = 2$$

$$x_2 = 4$$

$$x_3 = 1$$

$$x_4 = 3$$

Example: crossword puzzles

1	2	3	4	5
6	7	8		9
10	11	12	13	14
15		16	17	18
19	20	21	22	23

a ...
aardvark monarch
aback monarchy
abacus monarda
abaft ...
abalone zymurgy
abandon zyrian
... zythum

A closer look at constraints

- An assignment (also called an instantiation)
 - x = a, where $a \in dom(x)$,
- A tuple t over an ordered set of variables $\{x_1, ..., x_k\}$ is an ordered list of values $(a_1, ..., a_k)$ such that $a_i \in dom(x_i)$, i = 1, ..., k
 - can be viewed as a set of assignments $\{x_1 = a_1, ..., x_k = a_k\}$
- Given a tuple t, notation $t[x_i]$ selects out the value for variable x_i ; i.e. $t[x_i] = a_i$

A closer look at constraints

- Each constraint C is a relation
 - a set of tuples over some ordered subset of the variables, denoted by vars(C)
 - specifies the allowed combinations of values for the variables in vars(C)
- The set *vars*(*C*) is called the *scope* (or *scheme*) of the constraint
- The size of *vars*(*C*) is known as the *arity* of the constraint
 - a unary constraint has an arity of 1
 - a binary constraint has an arity of 2
 - a non-binary constraint has arity greater than 2
- A binary CSP is a CSP where all constraints are unary or binary

Example

Let

- $dom(x_1) = \{1, 2, 3, 4\},$
- $dom(x_2) = \{1, 2, 3, 4\}$
- C be the constraint $x_1 \neq x_2 \land |x_1 x_2| \neq 1$

Then

•
$$vars(C) = \{x_1, x_2\}$$

- tuples in $C = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$
- C is a binary constraint

if
$$t = (1, 3)$$

 $t[x_1] = 1$
 $t[x_2] = 3$

intensional

^ 1	^ 2
1	3
1	4
2	4
3	1
4	1
4	2

Application areas

- scheduling
- logistics
- planning
- supply chain management
- rostering
- timetabling
- vehicle routing
- bioinformatics

- networks
- configuration
- assembly line sequencing
- cellular frequency assignment
- airport counter and gate allocation
- airline crew scheduling
- optimize placement of transmitters for wireless

• ...

Some commercial applications

Outline

- Introduction
- Constraint propagation
- Backtracking search
- Local search

Outline

- Introduction
- Constraint propagation
 - arc consistency
- Backtracking search
- Local search

Local consistency: arc consistency

Given a constraint, remove a value from the *domain* of a variable if it cannot be part of a solution according to that constraint

Local consistency: arc consistency

- Given a constraint C, a value $a \in dom(x)$ for a variable $x \in vars(C)$ has:
 - a domain support in C if there exists a $t \in C$ such that t[x] = a and $t[y] \in dom(y)$, for every $y \in vars(C)$
 - i.e., there exists values for each of the other variables (from their respective domains)
 such that the constraint is satisfied
- A constraint C is:
 - arc consistent iff for each $x \in vars(C)$, each value $a \in dom(x)$ has a domain support in C
- A CSP is:
 - arc consistent if every constraint is arc consistent
- A CSP can be made arc consistent by repeatedly removing unsupported values from the domains of its variables

Arc consistency algorithm

```
ac(): boolean
     Q \leftarrow all variable/constraint pairs (x, C)
     while Q \neq \{\} do
3.
        select and remove a pair (x, C) from Q
        if revise(x, C)
4.
5.
            if dom(x) = \{\}
               return false
6.
           else
8.
               add pairs to Q
9.
     return true
revise(x, C): boolean
    change ← false
    for each a \in dom(x) do
3.
       if \neg \exists domain support for a in C
           remove a from dom(x)
4.
5.
           change ← true
6.
     return change
```

Arc consistency algorithm

```
ac(): boolean
     Q \leftarrow all variable/constraint pairs (x, C)
     while Q \neq \{\} do
3.
        select and remove a pair (x, C) from Q
        if revise(x, C)
4.
5.
            if dom(x) = \{\}
6.
               return false
           else
8.
               add pairs to Q
     return true
9.
revise(x, C): boolean
    change ← false
    for each a \in dom(x) do
3.
       if \neg \exists domain support for a in C
           remove a from dom(x)
4.
5.
           change ← true
6.
     return change
```

variabledomain \longrightarrow X $\{1, 2, 3\}$ \longrightarrow Y $\{1, 2, 3\}$ \longrightarrow X $\{1, 2, 3\}$ \longrightarrow X $\{1, 2, 3\}$

constraints

4-queens: Is it arc consistent?

variables:

$$X_1, X_2, X_3, X_4$$

domains:

 $\{1, 2, 3, 4\}$

constraints:

$$X_{1} \neq X_{2} \land | X_{1} - X_{2} | \neq 1$$

 $X_{1} \neq X_{3} \land | X_{1} - X_{3} | \neq 2$
 $X_{1} \neq X_{4} \land | X_{1} - X_{4} | \neq 3$
 $X_{2} \neq X_{3} \land | X_{2} - X_{3} | \neq 1$
 $X_{2} \neq X_{4} \land | X_{2} - X_{4} | \neq 2$
 $X_{3} \neq X_{4} \land | X_{3} - X_{4} | \neq 1$

	<i>X</i> ₁	X ₂	X ₃	X ₄
1	Q	Q		
2	Q	Q		
3	Q	Q		
4	Q	Q		