CSCE 689-609 Fundamentals of Large Language Models (LLMs)

Jeff Huang jeff@cse.tamu.edu o2lab.github.io

The Transformer

https://arxiv.org/pdf/1706.03762

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar*
Google Research
nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Figure 1: The Transformer - model architecture.

Attention is all your need

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

$$MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$$

$$where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$$

$$FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$$

Transformer Explainer https://poloclub.github.io/transformer-explainer/

Illustrated Transformer

https://jalammar.github.io/illustrated-transformer/

- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads. We multiply X or R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix W° to produce the output of the layer

Thinking Machines

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

Self-Attention

FFN

Residual Connection

During backpropagation, gradients can become very small (vanishing gradients) or very large (exploding gradients)

- Residual connections mitigate these issues

Layer Normalization (RMSNorm: Root Mean Square)

$$ext{RMSNorm}(x) = rac{x}{ ext{RMS}(x)} \cdot \gamma$$

where RMS is calculated as:

$$ext{RMS}(x) = \sqrt{rac{1}{d}\sum_{i=1}^d x_i^2}$$

Here, d is the dimensionality of the input, and γ is a learnable scaling parameter.

Question: Size of each component in Ilama2_7b?

Question: Size of each component in Ilama2_7b?

```
Total: 25.1G (type f32: 32-bit floating point)
Token embedding: 4K x 32K x 4 bytes = 0.5 GB
Fach block:
     K/Q/V: 4K x 4K x 4 bytes x 3 = 192 MB
     attn out: 4K \times 4K \times 4 bytes = 64 \text{ MB}
     attn norm: 4K x 4 bytes = 16 KB
     ffn gate: 4K x 11008 x 4 bytes = 172 MB
     ffn down: 11008 \times 4K \times 4 bytes = 172 \text{ MB}
     ffn up: 4K \times 11008 \times 4 \text{ bytes} = 172 \text{ MB}
     ffn norm: 4K \times 4 bytes = 16KB
Block x 32 = 772 MB x 32 = 24.1 GB
Output weight: 4K \times 32K \times 4 bytes = 0.5 GB
```

Question: Why QKV?

Question: Why QKV?

https://towardsdatascience.com/all-you-need-to-know-about-attention-and-transformers-in-depth-understanding-part-1-552f0b41d021

- 1. It measures the similarity between the query and each key
- 2. This similarity returns a weight for each key
- 3. Output is the weighted combination of all values

https://medium.com/@joaolages/kv-caching-explained-276520203249

Zoom-in! (simplified without Scale and Softmax)

https://medium.com/@joaolages/kv-caching-explained-276520203249

Zoom-in! (simplified without Scale and Softmax)

https://medium.com/@joaolages/kv-caching-explained-276520203249

KV Cache

https://medium.com/@joaolages/kv-caching-explained-276520203249

Multihead Attention

$$MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$$

where $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

Where the projections are parameter matrices $W_i^Q \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^K \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^V \in \mathbb{R}^{d_{\text{model}} \times d_v}$ and $W^O \in \mathbb{R}^{hd_v \times d_{\text{model}}}$.

In this work we employ h=8 parallel attention layers, or heads. For each of these we use $d_k=d_v=d_{\rm model}/h=64$. Due to the reduced dimension of each head, the total computational cost is similar to that of single-head attention with full dimensionality.

Multihead Attention (Reduced KV Heads)

```
Llama 2:

llama.attention.head_count = 32

llama.attention.head_count_kv = 32

Llama 3.1:

llama.attention.head_count = 32

llama.attention.head_count = 32

llama.attention.head_count_kv = 8

grouped query attention (GQA)
```

Grouped Query Attention (GQA)

Paper: https://arxiv.org/pdf/2305.13245

Difference between MHA, GQA, and MQA (Source — https://arxiv.org/pdf/2305.13245.pdf)

Blog: https://towardsdatascience.com/demystifying-gqa-grouped-query-attention-3fb97b678e4a

softmax

$$\operatorname{softmax}(x_i) = rac{\exp(x_i - \max(x))}{\sum_{j=0}^{\operatorname{size}-1} \exp(x_j - \max(x))}$$

Positional Encoding (RoPE: rotary positional encoding)

https://pub.towardsai.net/the-guest-to-have-endless-conversations-with-llama-and-chatgpt-%EF%B8%8F-81360b9b34b2

$$ext{RoPE}(x_{2i}, x_{2i+1}, p) = egin{pmatrix} x_{2i} \cdot \cos(p \cdot \omega_i) - x_{2i+1} \cdot \sin(p \cdot \omega_i) \ x_{2i} \cdot \sin(p \cdot \omega_i) + x_{2i+1} \cdot \cos(p \cdot \omega_i) \end{pmatrix}$$

The frequency for the i-th dimension is calculated as:

$$\omega_i = rac{1}{10000^{rac{2i}{d}}}$$

where d is the dimension of the embedding vector.

Paper: Extending Context Window of Large Language Models via Positional Interpolation

Let's write one!

https://github.com/karpathy/llama2.c

https://github.com/karpathy/llama2.c/blob/master/run.c#L249-L354

```
248
            // forward all the layers
249
            for(unsigned long long l = 0; l < p->n layers; l++) {
250
251
                // attention rmsnorm
252
                rmsnorm(s->xb, x, w->rms_att_weight + l*dim, dim);
253
254
                // key and value point to the kv cache
255
                int loff = l * p->seq_len * kv_dim; // kv cache layer offset for convenience
256
                s->k = s->kev cache + loff + pos * kv dim:
257
                s\rightarrow v = s\rightarrow value cache + loff + pos * kv dim;
258
259
                // gkv matmuls for this position
260
                matmul(s->q, s->xb, w->wq + l*dim*dim, dim, dim);
261
                matmul(s->k, s->xb, w->wk + l*dim*kv dim, dim, kv dim);
262
                matmul(s->v, s->xb, w->wv + l*dim*kv_dim, dim, kv_dim);
263
264
                // RoPE relative positional encoding: complex-valued rotate q and k in each head
265
                for (int i = 0; i < dim; i+=2) {
```

Meta's Llama 2 7B model as an example

```
tensor 0:
                  token embd.weight q4 K
                                             [ 4096, 32000,
                                                                 1]
                blk.0.attn norm.weight f32
                                             [ 4096.
tensor
               blk.0.ffn down.weight g6 K
                                            [11008, 4096,
tensor
                blk.0.ffn gate.weight q4 K
                                            [ 4096, 11008.
                                                                  11
tensor
tensor 4:
                  blk.0.ffn up.weight q4 K
                                            [ 4096, 11008.
                 blk.0.ffn norm.weight f32
tensor
                                            f 4096.
                                                                11
tensor 6:
                  blk.0.attn k.weight q4 K
                                              4096. 4096.
               blk.0.attn output.weight q4_K
tensor 7:
                                              [ 4096, 4096,
                                              4096.
tensor
                  blk.0.attn q.weight q4 K
                                                    4096.
tensor 9:
                  blk.0.attn_v.weight q6_K
                                              4096, 4096,
                                                                 1]
tensor 281:
                 blk.31.attn norm.weight f32
                                               [ 4096.
tensor 282:
                 blk.31.ffn down.weight q6 K
                                               [11008, 4096,
tensor 283:
                 blk.31.ffn_gate.weight q4_K
                                               [ 4096, 11008,
                                                                    1]
tensor 284:
                                               4096, 11008,
                   blk.31.ffn up.weight q4 K
                                                                   11
tensor 285:
                  blk.31.ffn norm.weight f32
                                              [ 4096,
tensor 286:
                   blk.31.attn k.weight q4 K
                                               4096, 4096,
                                                                   11
tensor 287:
                blk.31.attn output.weight q4 K
                                                [ 4096, 4096,
                                                                    1]
tensor 288:
                   blk.31.attn q.weight q4 K
tensor 289:
                   blk.31.attn v.weight q6 K
                                               4096, 4096,
                                                                   1]
tensor 290:
                    output norm.weight f32
                                                                1]
                                              [ 4096,
```

Question: How many matmuls to generate a token?

Important Notes

- Read:
 - llama2.c: https://github.com/karpathy/llama2.c
 - SGLang https://github.com/sql-project/sqlang
- Due
 - HW0 (Saturday)
 - Don Knuth: https://cs.stanford.edu/~knuth/chatGPT20.txt