10 Cuestiones de TEORIA (6 puntos). Puntuación: BIEN:+0.6 puntos; MAL: -0.15 puntos; N.C: 0

1. En el circuito de la figura y para los datos que se indican, ¿cuál será la tensión de salida Vs del circuito?

28 de Marzo de 2019

Datos: Ve = 10V; V1 = 4V; Diodo D1: $V_v = 0.7V$

[B] 5V

[C] 4V

[D] -0.7V

2. El circuito de la figura incluye 4 LED idénticos (D1 a D4) y una resistencia R, cuyo valor debe elegirse para polarizar los LED según los datos de abajo. Señale la afirmación **VERDADERA**:

Datos: $V_{LED} = 1.5V$; $I_{LED} = 10mA$; $V_{CC} = 5V$

- [B] En esta configuración los 4 LED no pueden brillar simultáneamente, pues V_{CC} debiera ser mayor de 6V.
- [C] El voltaje en el punto (a) es 3V.
- [D] Un valor adecuado para R es 100Ω .

3. En el circuito de la figura hay dos subcircuitos digitales hechos con diodos, transistores y resistencias: el 1), con entradas A y B, y salida C; y el 2) con entrada D, y salida F. Suponiendo que se conecta C y D, señale la afirmación **FALSA**:

Datos: $V_Y = 0.7V$ (para todos los diodos); $V_{BEON} = 0.7V$; $\beta = 100$ (para el transistor)

- [A] Cuando las entradas son A = 5V y B = 0V, los diodos D1 y D3 están cortados y por el diodo D2 circula una corriente de 2.15mA.
- [B] Cuando las entradas son A = 0V y B = 5V entonces la tensión ánodo-cátodo del diodo D2 es -4.3V.
- [C] Cuando las entradas son A = B = "1", la corriente por el diodo D3 es 2.15mA.
- [D] Cuando las entradas son A = B = "1", el transistor conduce en la región de saturación (F = "0").

4. En el circuito de la figura, y para los datos que se indican, ¿Se puede averiguar el valor de la resistencia R2?

28 de Marzo de 2019

Datos: $V_{BEON}=0.7V$; $V_{CESAT}=0.2V$; V1=0V; $R1=200k\Omega$; $\beta=500$

- [A] Si, 400Ω
- [B] No, ya que podemos comprobar que el transistor está cortado.
- [C] Si, $2k\Omega$
- [D] No, porque desconocemos el valor de Vcc.
- 5. El circuito de la figura es un inversor lógico que debe trabajar entre corte y saturación. ¿Para qué valor de Rc podemos asegurar este comportamiento?

Datos: Vcc = 5V; Rb = 100 k Ω ; V_{BE(ON)} = 0.7V; V_{CE(SAT)} = 0.2V; β =100; Vi es digital (0V o 5V)

- [A] $2k\Omega$
- [B] 940Ω
- [C] $0.5k\Omega$
- [D] 600Ω
- 6. En un transistor bipolar NPN que está funcionando en un circuito y cuya ganancia de corriente β es de 50, se miden las siguientes corrientes y tensiones continuas:

$$V_{BE} = 0.7V$$
 $I_{B} = 0.2mA$ $I_{E} = 5mA$

Señale la afirmación VERDADERA:

- [A] Está en corte.
- [B] Está funcionando en zona activa.
- [C] No podemos indicar la zona de funcionamiento, ya que nos falta el valor de Vce.
- [D] Está saturado.
- 7. Acerca del transistor de la figura, señale la respuesta FALSA.
 - [A] Se trata de un transistor MOSFET de canal N, en el que el canal está estrangulado por la relación entre V_{DS} y V_{GS}.
 - [B] El transistor se encuentra en una zona de funcionamiento en la que la corriente depende sólo de la tensión V_{GS} y ya no depende de V_{DS}.
 - [C] El transistor NMOS se encuentra en una zona de funcionamiento que es equivalente a la de saturación en los transistores BJT.
 - [D] Esta situación ocurre cuando: $V_{GS} > V_T$ y $V_{DS} >= V_{GS} V_T$

8. Dado el circuito con Mosfet PMOS de la figura, indique la respuesta VERDADERA.

Datos: $|V_T| = 2V$, K = 0.5 mA/V²

- [A] Si Vi = 0 el transistor está en corte.
- [B] Si Vi se conecta a la S (fuente) el transistor estará en saturación, porque la tensión de fuente es igual a la tensión de la puerta.
- [C] Si Vi = 4V el transistor conduce
- [D] Si Vi = 2V el transistor conduce

- 9. Acerca del transistor MOSFET de canal N, señale la respuesta FALSA.
 - [A] En la zona de saturación, la corriente aumenta cuadráticamente en función de V_{GS}-V_T.
 - [B] En la zona óhmica, la Ron es directamente proporcional a VGS.
 - [C] La corriente de puerta siempre la consideramos nula, independientemente de la región de funcionamiento del transistor.
 - [D] En la zona óhmica, la corriente depende de V_{DS} y V_{GS} , incluso cuando V_{DS} es positiva y próxima a 0V.
- 10. Acerca de la gráfica V-l de la figura de un NMOS, señale la respuesta FALSA.
 - [A] La K del transistor es 0.5 mA/V².
 - [B] La V_T del transistor es 2V.
 - [C] La línea en forma de parábola, separa las zonas B (saturación) y C (óhmica).
 - [D] Para V_{GS} = 6V y V_{DS} positiva y próxima a 0V, el transistor se comporta como una resistencia de valor 100Ω .

PAGINA INTENCIONADAMENTE EN BLANCO

Apellidos: Nombre:

PROBLEMA 1 (4 PTOS)

El circuito de la figura es una puerta lógica NMOS. Se pide:

Datos:

 $V_T = 1V$

 $K = 1mA/V^2$

En zona óhmica: $I_{DS} \approx 2K(V_{GS} - V_T) V_{DS}$

"0" equivale a 0V

"1" equivale a 10V

Nota: Asumir la misma R_{ON} para todos los transistores en caso de conducción y que estos trabajan en conmutación.

[A] (1p) Rellene los valores de la siguiente tabla:

			1
Α	В	С	F(valor lógico)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

[B]

(0.5p) ¿Qué función lógica realiza el circuito?

F(A,B,C) =

[C] (0.3p) Calcule el voltaje en F cuando A="0", B="0", C="0". Dibuje el circuito equivalente y justifique su respuesta.

[D] (0.3p) Calcule el voltaje en F cuando A="1", B="0", C="0". Dibuje el circuito equivalente y justifique su respuesta.

[E] (0.3p) Calcule el voltaje en F cuando A="0", B="1", C="1". Dibuje el circuito equivalente y justifique su respuesta.

[F] (0.3p) Calcule el voltaje en F cuando A="1", B="1", C="0". Dibuje el circuito equivalente y justifique su respuesta.

[G] (0.3p) Calcule el voltaje en F cuando A="1", B="1", C="1". Dibuje el circuito equivalente y justifique su respuesta.

[H] (1p) Para el caso A="1", B="1", C="1", indique qué efecto tendría en la tensión de salida V_F aumentar la resistencia de 10kΩ. Justifique su respuesta.

DNI							
0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7
8	8 9	8 9	8 9	8 9	8 9	8 9	8 9

E i Silve - i echologia de computadore	S
--	---

NO BORRAR, corregir con Typex

Primer pa	rcial - 28/03/2	2019
Apellidos		
Nombre .		
Marque a	sí	Así NO marque

1		b		d
2		b		
3		b		d
4		b		d
5		b		
6		b		d —
7		b		
8	а	b	С	d
9		b		