# Cifras de Bloco

Fabrício Steinle Amoroso Gustavo Henrique Stahl Rafael Mendes Costa Vinícius de Paula Pilan

### Criptografia

- Um modo de manter a privacidade sobre os seus dados para manter uma comunicação segura entre quem manda e quem recebe uma mensagem
- Isso pode ser feito de diversos modos
  - Desde traduzindo o texto para outra idioma, americanos e o Navajo na Primeira Guerra Mundial
  - Embaralhar as letras seguindo um padrão, Espartanos e as cítala
  - o Cifra de substituição, como a de Júlio César que movia as letras da frase
    - Desvantagem: ao pegar a letra mais comum de uma língua é possível ir decifrando a mensagem
    - O livro dos códigos, Simon Singh: cifras de substituição estão obsoletas
    - Cifra de Vigenere, impede a análise de frequência

### Criptografia

- O avanço da era da informação fez com que as pessoas precisassem cada vez mais de um ambiente seguro
- Hoje em dia criptografia a base de chaves tem tomado bastante abrangência
  - o Chaves com 2^2048, grandeza 10^616
  - Processador comum 238 bi de instruções por segundo
- Uso de chave pública e privada
  - Pública: espécie de caixa de correio
  - o Privada: chave da caixa de correio
- Chave, Encriptografia e Decriptografia

## Cifra de Bloco - O que é

- São cifras de chave simétricas
  - Usam a mesma chave criptográfica para encriptação e decriptação
- Convertem texto simples em texto cifrado bloco a bloco
  - o Bloco: agrupamentos de bits de tamanho fixo
- Tem alta difusão
- É mais lenta do que uma cifra de fluxo
  - Cifra de fluxo: converte texto simples em cifrado símbolo a símbolo

→ Tamanho do bloco (n): deve ser fixo, geralmente 64 ou 128 bits.

**Problema:** caso o tamanho da mensagem total não seja múltiplo de n, blocos não podem ter o mesmo tamanho a **princípio.** 

**Solução:** adicionar algum símbolo de ajuste ao arquivo para que seu tamanho se iguale a um múltiplo de n.

Ex: Adicionando 16 bits no último bloco de um arquivo com tamanho total de 304 bits (n = 64bits):

```
Original file
38 bytes (304 bits)
```



 Algoritmo de encriptação (E): recebe o bloco simples e o converte em texto cifrado de acordo com uma determinada chave K

- $E_{K}(P) = (K, P) = C$ 
  - O K: chave de tamanho k
  - O P: bloco não encriptado (purotexto) cadeia de bits
  - C: cadeia de bits (bloco) encriptado (cifrotexto)
  - on: tamanho de P e consequentemente de C

 Algoritmo de decriptação (D): recebe o bloco cifrado e o converte em texto simples de acordo com uma determinada chave K.

- $D_{K}(C) = D(K, C) = P$ 
  - O K: chave de tamanho k
  - O P: bloco não encriptado (purotexto) cadeia de bits
  - C: cadeia de bits (bloco) encriptado (cifrotexto)
  - on: tamanho de P e consequentemente de C

Para que o funcionamento explicado seja aplicável em mensagens com vários blocos, foram desenvolvidos alguns modos de operação da cifra de bloco

Neste trabalho serão abordados apenas dois dos mais conhecidos:

- → Modo de operação Electronic Code Book (EBC)
- → Modo de operação Cipher Block Chaining (CBC)

- → Electronic Code Book (EBC):
  - Encriptação:
    - 1. Dividir a mensagem em blocos
    - 2. Aplicar o algoritmo E em cada bloco separadamente
    - 3. Concatenar os resultados.
  - Decriptação:
    - 1. Dividir a mensagem em blocos
    - 2. Aplicar o algoritmo D em cada bloco separadamente
    - Concatenar os resultados.

**Problema:** Se houver repetição de blocos, o texto cifrado será igual para ambos - pode gerar padrão de repetição e identificação da chave.

#### → Cipher Block Chaining (CBC):

Possível solução para o problema do EBC. Cada bloco cifrado fica dependente de todos os blocos de texto simples processados até o momento.

A cada bloco de texto simples é aplicada uma função XOR junto com o bloco cifrado anterior antes do texto ser criptografado.

Para encriptar o primeiro bloco deve-se utilizar junto um **vetor de inicialização V**:

Idealmente deve ser aleatório, imprevisível e descartável

→ Cipher Block Chaining (CBC) - Encriptação:



Cipher Block Chaining (CBC) mode encryption

Para todo i >= 1:

$$C_i = E_k (P_i XOR C_{i-1})$$

Se i = 0 (primeiro bloco):

$$C_i = E_k (P_i XOR V)$$

→ Cipher Block Chaining (CBC) - Decriptação:



Cipher Block Chaining (CBC) mode decryption

Para todo i >= 1:

$$P_i = D_k (C_i) XOR C_{i-1}$$

Se i = 0 (primeiro bloco):

$$P_i = D_k (C_i) XOR V$$

### Exemplo da cifra de bloco

```
def cipher_xor_ecm(phrase_block, key, BLOCK_BYTES, KEY_BYTES):
    cipher = phrase_block
    for bshift_n in range(max(BLOCK_BYTES//KEY_BYTES, 1)):
        cipher ^= key << BYTE * KEY_BYTES * bshift_n
    return cipher</pre>
```

## Exemplo da cifra de bloco



# DES (Data Encryption Standard)

- 64-bits plaintext (block size) ->
   64-bits ciphertext
- Key size pode ser de 64-bits
- Known attacks against DES include Brute-force, Linear crypt-analysis, and Differential crypt-analysis.
- Criptografia utilizando o algoritmo DES pode ser quebrado facilmente devido a suas vulnerabilidades serem conhecidas. 3DES(Triple DES) é uma variação mais segura de DES.
- Criado pela IBM na década de 70

# AES (Advanced Encryption Standard)

- 128-bits plaintext (block size) ->
   128-bits ciphertext
- Key size pode ser de 128-bits, 192-bits,
   e 256-bits
- No known crypt-analytical attacks
   against AES but side channel attacks
   against AES implementations possible.
   Biclique attacks have better complexity
   than brute force but still ineffective.
- AES é mais seguro que DES e é "de facto world standard".
- Algoritmo que substituiu o DES (1999)

# DES (Data Encryption Standard)

AES (Advanced Encryption Standard)

- 16 rounds de operações
- São eles:
  - Expansion,
  - XOR operation with round key,
  - Substitution and
  - Permutation

- Rounds:
  - 0 10(128-bits)
  - o 12(192-bits)
  - o 14(256-bits)
- São eles:
  - o Byte Substitution,
  - Shift Row,
  - Mix Column e

Permutation

Round Key Addition (xor)

Round:

keyN (cada

round tem uma chave)



128 - 10 rounds 192 - 12 rounds 256 - 14 rounds

Plaintext 16 bytes

| В | 0 | B1 | B2 | В3 | B4 |  |  |  |  |  | B16 |
|---|---|----|----|----|----|--|--|--|--|--|-----|
|   |   |    |    |    |    |  |  |  |  |  |     |



| В0 | B4 | B8  | B12 |
|----|----|-----|-----|
| B1 | B5 | В9  | B13 |
| B2 | В6 | B10 | B14 |
| В3 | B7 | B11 | B15 |

Byte Substitution a partir de uma função definida (mapeamento)

Não é possível um byte ser substituído por ele mesmo, necessariamente será diferente (se começou com um 15, não termina com 15)

| В0 | B4 | B8  | B12 |
|----|----|-----|-----|
| B1 | B5 | B9  | B13 |
| B2 | B6 | B10 | B14 |
| B3 | B7 | B11 | B15 |



| S(B0) | S(B4) | S(B8)  | S(B12) |
|-------|-------|--------|--------|
| S(B1) | S(B5) | S(B9)  | S(B13) |
| S(B2) | S(B6) | S(B10) | S(B14) |
| S(B3) | S(B7) | S(B11) | S(B15) |

Shift Rows

Cada coluna se move para a esquerda 0, 1, 2 ou 3 vezes

| S(B0) | S(B4) | S(B8)  | S(B12) | S(B0)  | S(B4)  | S(B8)  | S(B12) | ← 0        |
|-------|-------|--------|--------|--------|--------|--------|--------|------------|
| S(B1) | S(B5) | S(B9)  | S(B13) | S(B5)  | S(B9)  | S(B13) | S(B1)  | ← 1        |
| S(B2) | S(B6) | S(B10) | S(B14) | S(B10) | S(B14) | S(B2)  | S(B6)  | <b>←</b> 2 |
| S(B3) | S(B7) | S(B11) | S(B15) | S(B15) | S(B3)  | S(B7)  | S(B11) | <b>←</b> 3 |

Mix Columns

Multiplica-se cada coluna por uma matriz de multiplicação (in order to diffuse / espalhar)

| S(B0)  | S(B4)  | S(B8)  | S(B12)     |  | S(B0)  |   | 2 | 3 | 1 | 1 |
|--------|--------|--------|------------|--|--------|---|---|---|---|---|
| S(B5)  | S(B9)  | S(B13) | B13) S(B1) |  | S(B5)  |   | 1 | 2 | 3 | 1 |
| S(B10) | S(B14) | S(B2)  | S(B6)      |  | S(B10) | X | 1 | 1 | 2 | 3 |
| S(B15) | S(B3)  | S(B7)  | S(B11)     |  | S(B15) |   | 3 | 1 | 1 | 2 |

**Plaintext** Round: **XOR** key0 Sub Bytes **Shift Rows** Mix Columns key1, key2, ..., keyN (cada Add Round Key round tem

uma chave)

128 - 10 rounds 192 - 12 rounds 256 - 14 rounds

### Vantagens e Desvantagens

#### Vantagens

- High diffusion:
  - As informações de um texto de símbolos é difundida para outros vários símbolos de textos de cifras
- Immunity to tampering:
  - Dificuldade de inserir símbolos sem ser detectado
- Melhor aproveitado quando o tamanho dos dados é sabido
- Cada bloco pode ser transformado em uma cifra de fluxo com CFB,CBC

### Vantagens e Desvantagens

#### Desvantagens

- Demora de encriptação
  - o É necessário acumular um bloco inteiro de informações antes de pode encripta-lo
- Erro de propagação
  - o Um erro em um símbolo pode corromper todo um bloco de encriptação
- Geralmente requerem mais memória

### Referências

WIKIPÉDIA. Cifra de bloco. Disponível em: <a href="https://pt.wikipedia.org/wiki/Cifra\_de\_bloco">https://pt.wikipedia.org/wiki/Cifra\_de\_bloco</a>. Acesso em: 29 junho 2022.

PROJETO DE REDES. Cifras em Bloco e Cifras de Fluxo. Disponível em:

<a href="https://www.projetoderedes.com.br/artigos/artigo-cifras-em-bloco-cifras-de-fluxo.php">https://www.projetoderedes.com.br/artigos/artigo-cifras-em-bloco-cifras-de-fluxo.php</a>>. Acesso em: 29 junho 2022.

SERAFIM, VINICIUS DA SILVEIRA. Introdução à Criptografia: Cifras de Fluxo e Cifras de Bloco. Brasil, v. 1, ago/2012. Disponível em: <a href="http://www.serafim.eti.br/academia/recursos/Roteiro">http://www.serafim.eti.br/academia/recursos/Roteiro</a> 05-Cifras de Fluxo e Bloco.pdf>. Acesso em: 29 junho 2022.

WIKIPÉDIA. Modo de operação (criptografia). Disponível em:

<a href="https://pt.wikipedia.org/wiki/Modo">https://pt.wikipedia.org/wiki/Modo</a> de opera%C3%A7%C3%A3o (criptografia)>. Acesso em: 29 junho 2022.

CRYPTOID. O que é uma cifra de bloco e como ela funciona para proteger seus dados?. Disponível em:

<a href="https://cryptoid.com.br/criptografia/o-que-e-uma-cifra-de-bloco-e-como-ela-funciona-para-proteger-seus-dados/">https://cryptoid.com.br/criptografia/o-que-e-uma-cifra-de-bloco-e-como-ela-funciona-para-proteger-seus-dados/</a>. Acesso em: 29 junho 2022.

**AES Explained (Advanced Encryption Standard) - Computerphile**. 1 vídeo (14 min e 13 segundos). Publicado pelo canal Computerphile. Disponível em: <a href="https://www.youtube.com/watch?v=04xNJsjtN6E">https://www.youtube.com/watch?v=04xNJsjtN6E</a>>. Acesso em: 28 jun. 2022.

GEEKSFORGEEKS. Difference between AES and DES ciphers. Disponível em:

<a href="https://www.geeksforgeeks.org/difference-between-aes-and-des-ciphers/">https://www.geeksforgeeks.org/difference-between-aes-and-des-ciphers/</a> Acesso em: 28 jun. 2022.