Operations Research Final Presentation

Group P

Optimizing The Efficiency of Fire Rescue Operations

STUDENT

B07102052 Wei-Chien Kao B08704040 Chia-Jen Hsu B08703045 Techi Teng T11902137 Mark Znidar

T11502303 Edwin Lee

Motivation

A Case Study of Taiwan

- Lack of fire stations?
- Inefficiency in rescue work assignments?

I Research Background

- Timely arrival of firefighting personnel and material resources directly impacts the number of lives saved during a fire incident.
- Currently, the rescue work in Taiwan is divided by location, i.e. municipal districts.
- There might be a more efficient way.

Table of Contents

		Pag
I	Background and Motivation	1
II	Problem Description	5
II	Mathematical Model	8
ľ	Data Collection & Preprocessing	14
V	Results & Performance Evaluation	15
V	Conclusions, Implications & Further Development	22

Problem Description

II Problem Description - Two Models

We would like to know:

- How do we optimize the assignment of firefighting resources?
 - How much improvement in efficiency can we gain if we assign firefighting resources (the squad and the ambulances) relaxing the brigade constraints?
 - Which areas do we have the most accidents that may not be rescued within a limited time?
- Where should we build new fire stations given new budget?

Therefore, we formulated two models to deal with these problems respectively.

II Problem Description - Two Models

Model I: Minimizing The Distance From The Fire Station to The Site of Accident

• <u>Objective</u>: Minimize the distance between the site of accident and the fire stations that sent squads and ambulances to the spot

• Decisions:

- For all fire stations, whether the squad should be sent to the scene of accident
- How many ambulances should be sent from each fire station

Constraints:

- Fire rescue and ambulance requirements must be satisfied
- Fires saved and ambulances sent should not exceed their respective daily quota

Decision variables

 a_{ij} : whether to send squad in fire station i to accident $j, i \in I, j \in J$

 x_{ij} : amount of ambulance for fire station i to send to accident $j, \forall i \in I, j \in J$

Parameters

I: the set of fire stations

J: the set of accident locations

 Q^F : fire rescue quota per day

 Q^A : ambulance quota per day

 H_{ij} : distance between fire station i and accident location j

 R_j^F : requirement of fire quota for accident $j, j \in J$

 R_j^A : requirement of ambulance quota for accident $j, j \in J$

 B_{ij} : whether fire station i can go to rescue accident $j, i \in I, j \in J$

 A_{jd} : whether accident j happens on day $d, j \in J, d \in D$

M: should be upper bound

 $F: \frac{1}{|I||J|H} \text{ where H is } \max_{(i,j) \in I \times J} H_{ij}$

Objective function

Constraints for current situation

$$\sum_{j \in J} a_{ij} A_{jd} \le Q^F \quad \forall i \in I, d \in D$$
 (1)

$$\sum_{j \in J} x_{ij} A_{jd} \le Q^A \quad \forall i \in I, d \in D$$
 (2)

$$\sum_{i} a_{ij} \ge R_{j}^{F} \quad \forall j \in J$$

$$\sum_{i} x_{ij} \ge R_{j}^{A} \quad \forall j \in J$$

$$(3)$$

$$\sum_{i} x_{ij} \ge R_j^A \quad \forall j \in J \tag{4}$$

$$a_{ij} \le B_{ij} \quad \forall i \in I, j \in J$$
 (5)

$$x_{ij} \le R_j^A B_{ij} \quad \forall i \in I, j \in J$$
 (6)

$$a_{ij} \in \{0, 1\}$$

$$x_{ij} \ge 0, \quad x_{ij} \in \mathbb{Z}$$

$$(8)$$

- (1) Daily saved fires should not exceed their respective quota for each station.
- (2) Daily sent ambulances should not exceed their respective quota for each station.
- (3) The fire rescue requirement must be satisfied.
- (4) The ambulance requirement must be satisfied.
- (5) The brigade rescue constraint for the squad.
- (6) The brigade rescue constraint for ambulances.

Constraints for our relaxed model

$$\sum_{j \in J} a_{ij} A_{jd} \le Q^F \quad \forall i \in I, d \in D$$
 (1)

$$\sum_{i \in I} x_{ij} A_{jd} \le Q^A \quad \forall i \in I, d \in D$$
 (2)

$$\sum_{i} a_{ij} \ge R_j^F \quad \forall j \in J \tag{3}$$

$$\sum_{i} x_{ij} \ge R_j^A \quad \forall j \in J \tag{4}$$

$$a_{ij} \le B_{ij} \quad \forall i \in I, j \in J$$
 (5)

$$x_{ij} \le R_j^A B_{ij} \quad \forall i \in I, j \in J \tag{6}$$

$$a_{ij} \in \{0, 1\}$$
 (7)

$$x_{ij} \ge 0, \quad x_{ij} \in \mathbb{Z}$$
 (8)

- (1) Daily saved fires should not exceed their respective quota for each station.
- (2) Daily sent ambulances should not exceed their respective quota for each station.
- (3) The fire rescue requirement must be satisfied.
- (4) The ambulance requirement must be satisfied.

II Problem Description - Two Models

Model II: Maximizing the Number of Accidents Rescued Within a Limited Time

- Objective: Maximize the number of accidents rescued within a limited time.
- Decisions:
 - For all fire stations, whether the squad should be sent to the accident spot
- Constraints:
 - Fire rescue requirements must be satisfied
 - Fires saved and ambulances sent should not exceed their respective daily quota
 - The squad sent to rescue should be in the same brigade as the accident spot

Objective function

Constraints

$$a_{ij}H_{ij} \leq P + M(1 - y_{ij}) \quad \forall i \in I, j \in J$$

$$s_{j} \leq \sum_{i \in I} y_{ij} \quad \forall j \in J$$

$$\sum_{i \in I} a_{ij}A_{jd} \leq Q^{F} \quad \forall i \in I, d \in D$$

$$\sum_{i \in I} a_{ij} \geq R_{j}^{F} \quad \forall j \in J$$

$$a_{ij} \leq B_{ij} \quad \forall i \in I, j \in J$$

$$a_{ij} \in \{0, 1\} \quad \forall i \in I, j \in J$$

$$y_{ij} \in \{0, 1\} \quad \forall i \in I, j \in J$$

$$s_{j} \in \{0, 1\} \quad \forall j \in J$$

(12)

(15)

(9) (9) The distance to the area of the rescue must be
 (10) less or equal to the limited distance P

(10) For each fire station that rescues the incident site, if one pair meets the distance constraint, the incident will contribute to the objective function

(11) Daily saved fires should not exceed their respective quota for each station

(12) The fire rescue requirement must be satisfied.

(13) Brigade rescue constraint for the squad

Data Collection and Preprocessing

IV Data Collection & Preprocessing

Model Focus:

- Greater Taipei Area
- Taoyuan City

Between year 2018 and 2020.

Data preprocessing

- Fixing missing values
- Dealing with problematic data
- Adding some columns needed based on operations on raw data

Data Sources (Provided by Taiwanese Government)

Fire station locations

Townships and municipalities map

	4	Α	В	С	D	Е	
1	na	me	location	wgs84aX	wgs84aY	cluster	
2	第	一大隊部	基隆市信義區信二路299號	121.7445	25.13578		1
3	仁	愛分隊	仁愛區成功一路86號	121.7379	25.1275		1
4	信	二分隊	中正區信二路299號	121.7462	25.13109		1
5	中	正分隊	中正區環港街100號	121.7933	25.14024		1

Processed station location data 1

Processed fire incident location data •

	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	О	Р
1	city	district	street	id	notified_time	arrive_time	time_elap:	s reason	death	injured	ambulance	fire_reqr	day_happe	cluster	wgs84aX	wgs84aY
2	新北市	八里區	文昌五街	H18A01A	2018/1/1 00:12	2018/1/1 00:16	4	其他-雜草、垃圾	(0	0	1	. 1	3	121.4104	25.15427
3	新北市	淡水區	大同路	H18A01A	2018/1/1 00:34	2018/1/1 00:43	9	玩火-打火機	(0	0	1	. 1	3	121.4637	25.14083
4	新北市	板橋區	中山路二	H18A01B	2018/1/1 01:09	2018/1/1 01:16	7	其他-雜草、垃圾	(0	0	1	. 1	1	121.4789	25.01844
5	新北市	五股區	芳洲六路	H18A01E	2018/1/1 04:03	2018/1/1 04:11	8	其他-雜草、垃圾	(0	0	1	. 1	2	121.4458	25.0871
6	新北市	瑞芳區	三爪子坊	H18A01M	2018/1/1 12:23	2018/1/1 12:30	7	電氣因素(不含車輛)-短路	(0	0	1	. 1	6	121.8116	25.10736

ANALYSIS OF FIRST MODEL

- How much improvement in efficiency can we gain if we assign firefighting resources (the squad and the ambulances) relaxing the brigade constraints?
- Let's look at exemplary results of Taoyuan.

16

MODEL

- Where do accidents not rescued within a limited time happen?
- Where should we build new fire stations given the budget?
- Let's revisit the results of Taoyuan.

Where are accidents not rescued within a limited time (7 min)?

Brigade	Not Satisfied Accidents	Percentage (%)
1	16	34%
2	6	13%
3	13	28%
4	12	26%

47 vs. 2000+ (Real World, 10 min)

Accident Location in Taoyuan not Satisfied within Threshold from 2018 - 2020

Where should we build the new locations given the budget?

• Using current roads as naive candidates

Where should we build the new locations given the budget?

- Modification and re-running of the second model
- Maximize the number of accidents rescued within 7 min (that failed previously)
- Budget Suggestion: 250M NTD (3% of the military budget)
- 5 new stations, each assumed to cost 50M NTD.

Where should we build the new locations given the budget?

Brigade	Not Satisfied before	Additionaly Satisfied	Percentage (%)
1	16	11	69%
2	6	1	17%
3	13	9	69%
4	12	7	58%
Total	47	28	60%

Conclusion & Future Development

VI Conclusions & Implications

Plans to optimize firefighting operations

- By relaxing the constraints of the brigades, provides improved results for the year 2018-2020, which in turn saves 22 seconds per accident on average and a total of 9 hours.
- Identifies and optimizes the locations where accidents that were not handled within a limited amount of time, lowering from current 2000+ cases to 47 in Taoyuan.
- Identifies the optimal locations to build new stations.

VII Further Development- The Model for Strategic issues

From the strategic perspective, another useful work could be the reclassification of brigades.

The objective is to minimize the following function:

$$\min \sum_{i \in I} \sum_{j \in J} z_{ji} H_{ji}$$

subject to the following constraints:

$$\sum_{b \in B} \sum_{i \in I} a_{ab} s_{ib} z_{ji} \ge 1 \quad \forall j \in J$$

$$\sum_{b \in B} d_{db} = 1 \quad \forall d \in D$$

$$(17)$$

$$\sum_{b \in B} d_{db} = 1 \quad \forall d \in D \quad (18)$$

$$\sum_{b \in B} \sum_{d \in D} F_{id} d_{db} s_{ib} = 1 \quad \forall i \in I$$
 (19)

$$\sum_{b \in B} \sum_{d \in D} K_{id} d_{db} a_{ib} = 1 \quad \forall i \in J \quad (20)$$

$$z_{ji} \in \{0, 1\}, \quad a_{jb} \in \{0, 1\} \quad \forall i \in I, \quad \forall j \in J, \quad \forall b \in B$$
 (21)

$$s_{ib} \in \{0, 1\}, d_{db} \in \{0, 1\} \forall i \in I, \forall b \in B, \forall d \in D$$
 (22)

STUDENT

B07102052 Wei-Chien Kao B08704040 Chia-Jen Hsu B08703045 Techi Teng T11902137 Mark Znidar

Edwin Lee

T11502303

Thank you!

