LATIHAN SOAL

Studi Kasus 1: Perancangan Jaringan VLSM (Subnetting)

Skenario Terintegrasi

Sebuah perusahaan *startup* teknologi mendapatkan alokasi alamat IP utama **192.168.10.0/24**. Perusahaan tersebut merencanakan perluasan jaringan dan membaginya menjadi empat departemen utama. Untuk mengoptimalkan penggunaan alamat IP (menghemat *space* IP), Anda diminta merancang jaringan menggunakan **Variable Length Subnet Masking (VLSM)** berdasarkan kebutuhan host berikut (diurutkan dari terbesar ke terkecil):

- 1. R&D (Penelitian & Pengembangan): Membutuhkan 50 host.
- 2. Marketing & Sales: Membutuhkan 25 host.
- 3. Finance: Membutuhkan 10 host.
- 4. Management: Membutuhkan 5 host.

Semua departemen akan dihubungkan melalui sebuah *router* pusat.

Pertanyaan Studi Kasus:

- 1. **Konsep VLSM:** Jelaskan secara singkat, mengapa penggunaan **VLSM** sangat direkomendasikan dalam skenario ini dibandingkan dengan FLSM (Fixed Length Subnet Mask), khususnya dalam konteks konservasi alamat IP.
- 2. **Perhitungan VLSM:** Lakukan perhitungan VLSM dan tentukan informasi subnetting berikut untuk **Departemen Marketing & Sales** dan **Departemen Finance** (Tunjukkan langkah penentuan *Subnet Mask* dan *Network Address* secara berurutan):
 - o Subnet Mask (Decimal dan CIDR).
 - o Alamat Jaringan (Network Address).
 - o Alamat Broadcast.
 - o Range Alamat Host vang Valid.

Studi Kasus 2: Implementasi Routing OSPF pada Multi-Router

Skenario:

Setelah menyelesaikan perancangan subnetting (Studi Kasus 1), perusahaan memutuskan untuk membagi jaringan mereka ke dalam dua lokasi geografis (Kantor Pusat dan Cabang) yang dihubungkan menggunakan dua router: Router R1 (Kantor Pusat) dan Router R2 (Kantor Cabang). Mereka memilih protokol OSPF (Open Shortest Path First) untuk routing dinamis.

Topologi Jaringan:

• R1 (Kantor Pusat): Terhubung ke Network A (R&D): 172.16.1.0/24 (LAN utama).

- R2 (Kantor Cabang): Terhubung ke Network B (Finance): 192.168.20.0/24 (LAN cabang).
- **Jaringan Penghubung (WAN):** Koneksi *Point-to-Point* antara R1 dan R2 menggunakan subnet **10.10.10.0/30**.

IP R1: 10.10.10.1/30IP R2: 10.10.10.2/30

Pertanyaan Studi Kasus:

- 1. **Konsep OSPF:** Jelaskan keunggulan utama protokol routing OSPF dibandingkan dengan protokol Distance Vector (misalnya RIP) dalam hal **Konvergensi** dan **Pemilihan Jalur Terbaik**.
- 2. Konfigurasi OSPF: Tuliskan Langkah-Langkah Konfigurasi (Command Line Interface/CLI) lengkap (asumsi menggunakan *Cisco IOS*) yang diperlukan pada Router R1 saja. Konfigurasi harus mengaktifkan OSPF Area 0 dan mengikutsertakan semua jaringan yang terhubung langsung (Network A dan Jaringan Penghubung). (Sertakan *Wildcard Mask* yang benar dalam setiap perintah network).

Studi Kasus 3: Migrasi Protokol Routing (OSPF & RIP)

Skenario

Sebuah perusahaan memiliki tiga kantor yang saling terhubung menggunakan tiga router (R1, R2, R3) seperti pada gambar. Jaringan utama perusahaan adalah **192.168.10.0/24**. Anda diminta untuk melakukan subnetting menggunakan VLSM dan mengkonfigurasi routing dinamis yang berbeda pada setiap router untuk studi migrasi.

Jaringan	Kebutuhan Host Minimum	Subnetting	Protokol Routing
LAN R1 (Gedung A)	28 host	VLSM	OSPF Area 0
LAN R3 (Gedung C)	12 host	VLSM	RIP v2
WAN Link R1-R2	2 host	/30	OSPF Area 0
WAN Link R2-R3	2 host	/30	RIP v2

Bagian A: Perhitungan Subnetting (VLSM)

Pertanyaan:

- 1. Dengan menggunakan alamat utama 192.168.10.0/24, terapkan VLSM untuk memenuhi kebutuhan *host* pada LAN R1 (28 host) dan LAN R3 (12 host).
- 2. Tentukan alamat *Subnet Mask* (CIDR dan Desimal) dan *Network Address* yang akan digunakan:
 - o LAN R1
 - **LAN R3**:
 - WAN Link R1-R2:
 - WAN Link R2-R3:

Bagian B: Konfigurasi Routing (OSPF & RIP)

Pertanyaan:

- 1. Tuliskan Langkah-Langkah Konfigurasi CLI lengkap (asumsi *Cisco IOS*) yang diperlukan pada Router R1. Konfigurasi harus mengaktifkan OSPF Area 0 untuk jaringan LAN R1 dan WAN Link R1-R2 (Asumsikan R1 menggunakan IP *first usable host* untuk setiap interface).
- Tuliskan Langkah-Langkah Konfigurasi CLI lengkap pada Router R3.
 Konfigurasi harus mengaktifkan RIP v2 untuk jaringan LAN R3 dan WAN Link R2-R3.
- 3. **Redistribusi:** Jelaskan mengapa Router R2 harus mengimplementasikan **Redistribusi Routing** dan bagaimana perintah tersebut harus ditulis (tuliskan 1 baris perintah *redistribute* yang paling efisien di R2).

Studi Kasus 2: Jaringan Enterprise Heterogen (EIGRP & OSPF)

Skenario

Sebuah kantor pusat (HQ) dan dua kantor cabang (Branch A dan Branch B) terhubung melalui Router R1, R2, dan R3. HQ menggunakan teknologi Cisco sehingga menerapkan EIGRP, sementara Branch A menggunakan perangkat *vendor* lain dan memutuskan OSPF. Jaringan utama yang digunakan adalah 10.0.0.0/8. Anda harus menggunakan subnet 10.10.10.0/24 untuk merancang jaringan di bawah.

Jaringan	Kebutuhan Host Minimum	Subnetting	Protokol Routing
LAN R1 (HQ)	100 host	VLSM	EIGRP AS 10
LAN R2 (Branch A)	60 host	VLSM	OSPF Area 0
WAN Link R1-R2	2 host	/30	EIGRP AS 10
WAN Link R1-R3	2 host	/30	EIGRP AS 10
WAN Link R2-R3	2 host	/30	OSPF Area 0

Bagian A: Perhitungan Subnetting (VLSM)

Pertanyaan:

- 1. Dengan menggunakan alamat **10.10.10.0/24**, terapkan VLSM untuk memenuhi kebutuhan *host* pada **LAN R1 (100 host)** dan **LAN R2 (60 host)**.
- 2. Tentukan alamat Network Address dan Subnet Mask (CIDR) yang akan digunakan:
 - o LAN R1:
 - LAN R2:
 - WAN Link R1-R2:
 - WAN Link R1-R3:
 - o WAN Link R2-R3:

Bagian B: Konfigurasi Routing (EIGRP & OSPF)

Asumsi IP: R1, R2, dan R3 menggunakan IP *first usable host* pada setiap segmen WAN (misalnya, untuk 10.10.10.192/30, R1 = 10.10.10.193 dan R2 = 10.10.10.194).

Pertanyaan:

- 1. Tuliskan Langkah-Langkah Konfigurasi CLI lengkap yang diperlukan pada Router R1. Konfigurasi harus mengaktifkan EIGRP AS 10 untuk jaringan LAN R1, WAN R1-R2, dan WAN R1-R3. (Gunakan wildcard mask yang benar).
- 2. Tuliskan Langkah-Langkah Konfigurasi CLI lengkap yang diperlukan pada Router R2. Konfigurasi harus mengaktifkan OSPF Area 0 untuk LAN R2 dan WAN R2-R3.
- 3. **Redistribusi dan Metrik:** Router **R2** bertindak sebagai *Autonomous System Boundary Router (ASBR)*. Tuliskan 2 baris perintah *redistribute* yang dibutuhkan di R2 untuk memastikan semua jaringan dapat berkomunikasi. Jelaskan secara singkat mengapa proses *redistribution* dari OSPF ke EIGRP membutuhkan penentuan **Metrik** sedangkan sebaliknya (EIGRP ke OSPF) tidak.