Problem I

Hidden Truth in Recurrence

Time Limit: 1 second

You are given a recursive function, which has the following form:

$$f(0,0) = 1$$

$$f(n,r) = \sum_{i=0}^{k-1} f(n-1,r-i) \text{ when } [(n>0) \text{ and } (0 \le r < n(k-1)+1)]$$

$$f(n,r) = 0 \text{ otherwise}$$

Now, you have to find:
$$x = \left(\sum_{i=0}^{n(k-1)} f(n,i)\right) \mod m$$
, where $(m = 10^i)$

1/2	-2	-1	0	1	2	3	4	5	6	7	8	9	10
0	0	0	1	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	0	0	0	0	0	0	0	0
2	0	0	1	2	3	2	1	0	0	0	0	0	0
3	0	0	1	3	6	7	6	3	1	0	0	0	0
4	0	0	1	4	10	16	19	16	10	4	1	0	0
5	0	0	1	5	15	30	45	51	45	30	15	5	1

A partially filled table for k=3

Input

There will be less than 1001 lines of inputs in the input file. Each line will contain three integers: k (0<k<10¹⁹), n (0<n<10¹⁹) and t (0<t<10). Input will be terminated by three zeros for the value of k, n and t. You must not process this case.

Output

For each line of input, output the value of \mathbf{x} . The output should be in the format shown in the sample output.

Sample Input	Sample Output					
2323 9999999999 8 4 99999 9	Case #1: 736 Case #2: 39087387 Case #3: 494777344 Case #4: 91255296					

Problemsetter: Tanbir Ahmed, special thanks to Monirul Hasan