Travail pratique 3

Djerakei MISTALENGAR et PAHANE SEUNKAM Kerencia Dyvana 2025-02-02

Résumé de cours : Séries numériques

Dans toute la suite, $(u_n)_{n\in\mathbb{N}}$ désigne une suite de nombres complexes.

Généralités

Définition d'une série

On appelle **série de terme général** u_n la suite $(S_n)_{n\geq 0}$ où, pour tout $n\geq 0$:

$$S_n = \sum_{k=0}^n u_k.$$

On note $\sum u_k$ cette suite, et S_n est appelé **somme partielle d'ordre** n de la série $\sum u_k$.

Convergence d'une série

On dit que la série $\sum u_n$ converge si la suite de ses sommes partielles $(S_n)_{n\geq 0}$ est convergente. Dans le cas contraire, on dit qu'elle **diverge**.

Dans le cas de la convergence, on note :

$$\sum_{k=0}^{+\infty}u_k=\lim_{n o +\infty}S_n.$$

Le nombre complexe $\sum_{k=0}^{+\infty} u_k$ s'appelle la somme de la série $\sum u_k$.

Reste d'une série

Dans le cas où la série converge, le **reste d'ordre** n de la série est défini par :

$$R_n = \sum_{k=n+1}^{+\infty} u_k.$$

Propriétés

Propriété 1 :

Si la série $\sum u_n$ converge, alors la suite $(u_n)_{n\geq 0}$ converge vers 0.

Propriété 2 :

Une série $\sum u_n$ telle que (u_n) ne tend pas vers 0 est dite **grossièrement divergente**.

Séries géométriques

Proposition:

Soit $a\in\mathbb{C}$. La série géométrique $\sum a^n$ converge si et seulement si |a|<1. Dans ce cas, on a :

$$\sum_{n=0}^{+\infty}a^n=\frac{1}{1-a}.$$

Lien suite-série

Si on pose, pour $n \geq 0$:

$$v_n = u_{n+1} - u_n,$$

alors:

$$\sum_{k=0}^n v_k = u_{n+1} - u_0.$$

En particulier, la suite (u_n) converge si et seulement si la série $\sum (u_{n+1}-u_n)$ converge.

Séries à termes positifs

Croissance des sommes partielles

Si la suite (u_n) est une suite de réels positifs, alors la suite des sommes partielles (S_n) est croissante. On en déduit les résultats suivants :

Théorème:

Une série à termes positifs converge si et seulement si la suite de ses sommes partielles est majorée.

Corollaire 1:

Soient (u_n) et (v_n) deux suites de réels positifs telles que $u_n \leq v_n$. Alors :

- 1. Si $\sum v_n$ converge, alors $\sum u_n$ converge. 2. Si $\sum u_n$ diverge, alors $\sum v_n$ diverge.

Corollaire 2:

Si $u_n \sim v_n$, alors $\sum u_n$ converge si et seulement si $\sum v_n$ converge.

Séries de référence

Pour appliquer ces résultats, on utilise des séries de référence. Par exemple, les séries géométriques ou les séries de la forme :

$$\sum_{n>1} \frac{1}{n^{\alpha}}$$

Comparaison avec une intégrale

Soit $f:[0,+\infty[o \mathbb{R}]$ une fonction continue par morceaux. On s'intéresse aux séries du type $\sum f(n)$. Lorsque f est monotone, on peut encadrer f(n) en utilisant la méthode des rectangles :

• Si f est croissante, alors pour tout $n \geq 1$:

$$\int_{n-1}^n f(t) dt \leq f(n) \leq \int_n^{n+1} f(t) dt.$$

• Si f est décroissante, alors pour tout $n \geq 1$:

$$\int_n^{n+1} f(t)\,dt \leq f(n) \leq \int_{n-1}^n f(t)\,dt.$$

En sommant ces inégalités, on obtient des encadrements pour les sommes partielles et les restes des séries.

Séries absolument convergentes

Définition

Une série $\sum u_n$ est dite **absolument convergente** si la série $\sum |u_n|$ est convergente.

Théorème:

Toute série absolument convergente est convergente. Cependant, la réciproque est fausse. Une série convergente sans être absolument convergente est dite **semi-convergente**.

Exemples

Exemple 1 : Série exponentielle

Pour tout $z\in\mathbb{C}$, la série $\sumrac{z^n}{n!}$ est absolument convergente. On a :

$$\exp(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n!}.$$

Développement décimal propre d'un réel

Théorème:

Soit $x \in [0,1[$. Il existe une unique suite $(a_n)_{n \geq 1}$ d'éléments de $\{0,\dots,9\}$ telle que :

1. (a_n) n'est pas stationnaire à 9 ;

2.
$$x=\sum_{n=1}^{+\infty}rac{a_n}{10^n}$$
 .

Cette écriture s'appelle le **développement décimal propre de** x .