CHU VAN TUNG

† Hanoi, Vietnam | **♣** 0325038934 | **►** chutung2608@gmail.com

GitHub: github.com/Tung003 | LinkedIn: linkedin.com/in/tung-chu-van-5b0629318/

——— Summary ————

Recent Artificial intelligence graduate with a strong technical focus in Computer Vision and applied Artificial Intelligence. Hands-on experience with image recognition, object detection/classification, and OCR through self-directed projects. Proficient in Python, OpenCV, and PyTorch, with foundational knowledge of transformer-based architectures and large language models (LLMs). Solid understanding of deep learning workflows, data preprocessing, and model training/evaluation pipelines. Eager to contribute to AI teams building efficient and scalable computer vision systems.

Career Objective —

Aspiring AI Engineer with a strong foundation in deep learning, computer vision, and NLP. Experienced in developing end-to-end systems using PyTorch, YOLO, and Hugging Face Transformers. Eager to contribute to real-world AI products through continuous learning and hands-on implementation.

—— Technical Skills ——

- Programming Languages: Python, C/C++
- Deep Learning Frameworks: PyTorch, TensorFlow, Keras
- Computer Vision: OpenCV, YOLO, Image Processing, Object Detection, Classification, OCR
- Machine Learning: Scikit-learn, Data Preprocessing, Model Evaluation, Feature Engineering
- NLP & LLMs: Hugging Face Transformers, Tokenization, Prompt Engineering
- Tools & Platforms: Git, Google Colab, Jupyter Notebook, Linux, Docker
- Other: REST API, JSON, CSV, Data Annotation, Model Deployment

– Experience —

Viettel project customer care staff | KASACO - HA NOI | 10/2023 - 06/2025

- Provided customer service by responding to phone, email, and in-person inquiries in a timely manner.
- Analyzed call data to determine areas of improvement in customer care process.
- Investigated customer complaints and provided solutions within acceptable time frames.
- Recorded details of all inquiries, complaints, and comments.
 Intern | FOXCONN Hong Hai Science and Technology Group | 1/2025 4/2025
- Directly participated in the assembly process of NVLink Switch Tray (Blackwell architecture) and NVIDIA Spectrum-4 products.
- Involved in setting up and programming error-checking module nodes for the product's connection ports, using image processing and OCR techniques to verify, extract data to identify defective.

—— Education and Training —

Projects —

License Plate Recognition(completed)

https://github.com/Tung003/License-Plate-Recognition

- Technologies: Python, YOLO, OCR, Docker.
- Built an automated license plate recognition system to detect and extract characters from vehicle plates.
- Utilized deep learning for object detection and OCR for character recognition. Optimized and varying environmental conditions. Designed for integration into smart parking.
- Using model:
 - YOLOv11 to train the model detection license plate on custom dataset.
 - OCR to extract characters from license plate.
 - CNN to classify characters from OCR.
- Designed a multi-stage pipeline where input images from parking lot cameras are first processed by a license plate detection model. The detected plates are then passed to an OCR model for character extraction, followed by a classification model to refine and sort the extracted characters.

Counting trucks passing through BOT toll stations(completed)

https://github.com/Tung003/Object-Counting

- Technologies: Python, Pytorch, YOLO, SAM2, Opency
- Developed an object detection system to automatically identify and classify vehicles passing through BOT toll stations using the YOLOv11 architecture.
- Trained a vehicle detection model at BOT toll stations using YOLOv11.
- Data Augmentation & Labeling:
 - Leveraged the Segment Anything Model (SAM2) to assist in automated object segmentation and labeling over large datasets.
 - Used Roboflow for post-processing and manual refinement of edge cases to ensure high-quality annotations.
 - Achieved a mean Average Precision of 93.8% at IoU threshold 0.5 (mAP@0.5), indicating high detection accuracy across all vehicle classes.

LLM-Powered QA System for Viettel Telecom Packages (completed)

https://github.com/Tung003/Viettel-gpkg-rag

- Technologies: Python, HuggingFace Transformers, RAG (Retrieval-Augmented Generation), FastAPI, FAISS, AWS EC2, Docker
- Developed an end-to-end LLM-based question answering system to answer user queries about Viettel telecom packages.
 - Built a custom RAG (Retrieval-Augmented Generation) pipeline using Vietnamese data crawled
 - Integrated the lightweight QA model nguyenvulebinh/vi-mrc-large for efficient inference in low-resource environments.
 - Deployed the system as a FastAPI web service on AWS EC2 (free tier), publicly accessible via IP or domain.
 - Used FAISS + SentenceTransformer for fast and accurate semantic search over the vectorized telecom knowledge base.
- Optimized for deployment with limited hardware, while supporting larger models like vilm/vinallama-2.7b-chat for experimental high-performance inference.
- Delivered a production-ready QA solution tailored for Vietnamese domain-specific information retrieval.