# Lecture 1: Spot Markets

Modeling and Marketing Making in Foreign Exchange

#### Course Overview

- Lecture 1: spot markets
  - Market structure, voice trading, and electronic trading
- Lecture 2: forward markets
  - Market structure, spot/forward arb, voice trading, and electronic trading
- Lectures 3 and 4: vanilla option markets
  - Market structure, volatility interpolation, vega risk management,
     correlation risk, volatility relative value, voice & electronic trading
- Lectures 5 and 6: exotic derivative markets
  - Stochastic volatility models, local volatility models, mixture models, jump diffusion models, barrier option pricing, derivatives with multiple assets, volatility products
- Lecture 7: algorithmic index markets
  - Index construction and backtesting

#### Your Instructor

- Mark Higgins (mark.higgins@wsq.io)
- Co-founder and COO of Beacon since May 2014
  - Fin-Tech company selling an institutional quant platform
- Managing Director at JPMorgan, 2006-2014
  - Co-headed Quantitative Research for the investment bank
  - Launched and delivered the Athena project
  - Traded currency options
- Vice President at Goldman Sachs, 1998-2006
  - Headed the currency and NY interest rate quant groups
- Lead developer at Contango Energy, 1996-1998
- PhD in theoretical astrophysics from Queen's University in Canada, 1996

#### Course Material and Pre-Reqs

- Black-Scholes pricing: you should know this very well
  - We will implement BS pricing for exotics
  - We will implement other models that are extensions to BS
- Python: each assignment will have at least one question that needs to be implemented in Python
- Stochastic calculus: you should understand how to solve standard SDEs, know what the forward and backward Kolmogorov equations mean
- Not an easy course

#### Admin Stuff

- TA: TBD
  - Will mark assignments
- Seven lectures, 6:05-8:50pm Wednesdays
  - 9/6, 9/11 (\* 4-6pm instead), 9/13, 9/27, 10/4, 10/11, 10/18
  - Each lecture has an assignment, due at the start of the next class
    - We will go through solutions at the start of the class, so don't be late or you'll get zero
    - We will go through the final (seventh) assignment at the end of the final class, so nothing to hand in there
  - Final exam date TBD
- Course grade: assignments 25%, final exam 75%

#### The FX Spot Markets

- A "spot" trade is an agreement to exchange some amount of one currency for another amount of another currency
  - Usually settles two business days after the trade date
- Bilateral, over-the-counter transactions
  - Not exchange traded, or even traded on SEFs
  - Currency futures exist we'll discuss next week but only a small part of the market
- Not cleared
  - Typically settled through CLS to manage settlement risk, only guarantees that you get back your side of the trade

#### Spot Market Statistics

- The spot market is huge: \$2T/day notional traded according to the 2013 BIS survey
  - http://www.bis.org/publ/rpfx13fx.pdf
  - Much larger than global equity markets: \$3-400B/day
  - About the same as global bond markets: \$2T/day
- Bid/ask spreads are tiny
  - ~0.2-0.5bp for most liquid markets in \$1-5M notional
  - ~0.5-1bp for liquid markets in larger sizes (\$50-100M notional)
- Most trading happens via dealer intermediation
  - London, NYC, Singapore, Tokyo, and Hong Kong are main centers

#### Spot Market Statistics

#### **Daily Turnover in the FX Spot Markets**



#### Spot Market Conventions

- Currency: a currency, like EUR
- Currency pair: a pair of currencies, like EURUSD
  - The first currency in the pair is the "asset" currency, and the second is the "denominated" currency
  - Market chooses a convention for which way around to quote
  - "EURUSD" means "the price of a EUR in USD" (currently around 1.13 USD per EUR)
  - "USDJPY" means "the price of a USD in JPY" (currently around 120 JPY per USD)
  - EURUSD, AUDUSD, NZDUSD, GBPUSD are quoted in USD per currency
  - USDJPY, USDCHF, and USDCAD are quoted in currency per USD
  - Normally convention is such that the price is >1.

#### Spot Market Dynamics

#### **EURUSD Spot and Realized Volatility**



#### Spot Market Dynamics

- Spot is diffusive
  - Occasional small jumps around economic releases etc
  - But ~0.5% or less, once every month or two
  - Markets are never closed: global trading
- Realized volatility is normally in the 5-15% range
  - Occasionally runs higher eg during the credit crisis
- Some evidence for mean reversion in FX prices
  - Half life around 1 year
  - Quite weak
  - And regardless doesn't affect derivatives pricing

- A "cross" is another term for a non-USD currency pair
  - eg EURJPY
- Can replicate a currency cross spot trade with trades in the underlying USD pairs
  - eg buy 10.0M EUR, sell 10.9M CHF for 2 days in the future
    - EURCHF spot price 1.0900
  - Replication: buy 10.0M EUR, sell 11.3M USD; buy 11.3M USD, sell 10.9M CHF
    - EURUSD spot price 1.1300, USDCHF spot price 0.9646
  - The "triangle" is the spot market for the three currency pairs that are linked by this arbitrage

- Tricky part: sometimes market-convention spot date is different for the three currency pairs in the triangle
  - Sometimes due to "spot days" convention differences
  - Mostly due to holiday differences
- Spot date convention for crosses (assumes 2 business days)
  - Move ahead one day, avoiding currency settlement holidays in each of the two non-USD currencies
  - Move ahead one more day, avoid currency settlement holidays in each of the two non-USD currencies and avoiding USD currency settlement holidays

- Triangle arbitrage still holds when spot dates are different; it's
  just that some of the trades are not exactly spot trades
  - They are forward trades to settlement dates that are not spot
  - When calculating the cross spot rate, need to make sure the USD forward rates are to the spot date of the currency cross

$$F = Se^{(R-Q)T}$$

- F = forward FX rate to time T
- R = denominated currency interest rate
- Q = asset currency interest rate
- T = time to settlement (measured from spot date, T=0)

- Currency cross spots often trade in their own markets, separate from the USD-pair markets but linked through the triangle arbitrage
  - Sometimes a cross is more liquid than a USD pair
    - EURCHF is more liquid than USDCHF in London hours
  - Generally executing the triangle arbitrage results in effective bid/ask spreads that are larger than the cross-specific market
- When making markets on currency crosses, traders need to look at the cross market but also at the triangle arbitrage to determine the best market to hedge their risk in

# Voice Trading

- Traditional OTC market structure:
  - Clients: humans who are not dealers who want to trade FX
    - Corporates, hedge funds, pension and sovereign wealth funds ("real money"), smaller banks without global FX desks, retail channels
  - Salespeople: humans who talk to human clients on the phone (or over chat channels like Bloomberg) and take client requests for trades
  - Traders: humans who talk to human salespeople in response to a client trade request
    - Make markets to clients, based on where they can hedge, what their risk position is, and who the client is
    - Manage market risk that comes from taking the other side of client trades
- Inter-dealer market for traders to trade with each other

# Voice Trading

- Traders are market makers, not execution traders
  - They execute at a pre-agreed price with a client and take the market risk on the other side of the trade
  - Not an execution model where they buy or sell at whatever price they can get and pass the executed trade to the client for a free
    - More common in equity markets
- Clients are market takers
  - Can leave orders but those are seen only by the dealer holding the order, not the broader market
- Dealers have a privileged position in the market
  - Typical for OTC markets

#### Voice Trading Example

- Hedge fund ABC wants to buy 10M EUR vs USD in spot
- ABC trader calls Dealer A
  - Talks on the phone to salesperson, and asks him for A's 2-way market on 10M EUR
  - Salesperson stands up and yells at the EURUSD trader and asks for the 2-way market on 10M EUR for hedge fund ABC
  - Trader looks at the inter-dealer market; looks at her current risk position; and considers historical trading behavior of ABC to make her price, and yells the bid & ask prices back to the salesperson
  - Salesperson quotes the bid & ask back to the ABC trader
- ABC trader calls Dealers B and C and checks the pricing and deals on the lowest offer price across the dealers

#### Voice Market Making

- What goes into the trader's decision to quote a particular bid
   & offer price in response to a client request?
- Inter-dealer market
  - Market where a dealer can hedge (if desired)
    - Dealing here is by voice as well, via brokers or "direct"
- Current risk position
  - Already long, bias down prices; already short, bias up
- Market views
  - Dealer wants to take risk one way or the other?
- Client behavior
  - Does the client typically buy vs sell? Is the client typically right about market direction?

#### Electronic Trading

- Over the last 15y, trading has massively moved to electronic channels
  - 65% by volume, >95% by ticket
- Single-dealer platforms: electronify voice dealing
  - Client requests a price through an app, can click to deal
  - Still a price from just one dealer
- Multi-dealer platforms: electronic auctions
  - Client requests a price from multiple dealers simultaneously through an app, who know who the client is when they quote
  - Client sees prices from many dealers at once, by name, and can click to deal with whomever they like

#### Electronic Trading

- Inter-dealer trading has also moved electronic
- ECNs (Electronic Communication Networks) are the machines they use to trade
  - EBS (Electronic Broker System) was the first and still one the most popular
  - But now dozens of ECNs available for trading
  - Many of them are open to non-dealers as well
  - Look very much like exchanges, but with no clearing

# Electronic Price Making

- Computers at dealers now make prices automatically to clients via single dealer and multi-dealer platforms
- Price-making algorithms can get very complex and evolve over time but the main components are the same as for voice trading:
  - Inter-dealer market: aggregated across ECNs
  - Current risk position
  - Market views: manually specified or algorithmic
  - Client behavior: historical profitability of trades against the client over various interesting time intervals

- ECNs show resting bids and offers which define the interdealer marketplace
  - Level 1 data: best bid & best offer, maybe with sizes
  - Level 2 data: whole order book (bid & offer levels + sizes)
  - Level 3 data: individual order messages sent to ECN
  - Different ECNs expose different kinds of data to dealers
- Dealers have electronic connections to ECNs and stream in the market data
- Then aggregate the data to come up with an aggregated crossmarket order book

• Example of order books from three ECNs at any particular moment (EURUSD):

| EBS     |              | HotSpot |              | Lava    |              |
|---------|--------------|---------|--------------|---------|--------------|
| Level   | Size (M EUR) | Level   | Size (M EUR) | Level   | Size (M EUR) |
| 1.26690 | 8.00         | 1.26673 | 1.50         | 1.26680 | 2.50         |
| 1.26680 | 1.25         | 1.26670 | 0.30         | 1.26673 | 0.25         |
| 1.26675 | 2.50         | 1.26668 | 0.75         | 1.26670 | 1.75         |
| 1.26670 | 4.75         | 1.26665 | 0.25         | 1.26668 | 0.15         |
| 1.26660 | 7.50         | 1.26663 | 0.15         | 1.26664 | 0.10         |
| 1.26650 | 6.00         | 1.26660 | 0.85         | 1.26663 | 0.45         |
| 1.26645 | 2.25         | 1.26655 | 2.50         | 1.26660 | 1.80         |
| 1.26630 | 10.00        | 1.26653 | 0.85         | 1.26655 | 0.40         |

Aggregated book:

| Aggregated |              |                      |
|------------|--------------|----------------------|
| Level      | Size (M EUR) | ECNs                 |
| 1.26690    | 8.00         | EBS                  |
| 1.26680    | 3.75         | EBS & Lava           |
| 1.26675    | 2.50         | EBS                  |
| 1.26673    | 1.75         | HotSpot & Lava       |
| 1.26670    | 6.80         | EBS & HotSpot & Lava |
| 1.26668    | 0.90         | HotSpot & Lava       |
| 1.26665    | 0.25         | HotSpot              |
|            |              |                      |
| 1.26664    | 0.10         | Lava                 |
| 1.26663    | 0.60         | HotSpot & Lava       |
| 1.26660    | 10.15        | EBS & HotSpot & Lava |
| 1.26655    | 2.90         | HotSpot & Lava       |
| 1.26650    | 6.00         | EBS                  |
| 1.26645    | 2.25         | EBS                  |
| 1.26630    | 10.00        | EBS                  |

#### Hedgeable Bid and Offer by Size



#### Risk Position

How do you know how much to "skew" your bid and/or offer when you have a net risk position?

- Real answer depends on market microstructure
  - Moving bid up increases the probability you'll buy
  - Moving offer down increases the probability you'll sell
  - How much those probabilities change depend on complex details
- Usually dealers do not bother with microstructure models
  - Ad hoc algorithm for moving bid and/or offer as a function of net risk position

#### Risk Position

Here is one approach that some dealers take:





 End up tightening the client bid/ask spread for intermediate risk positions, widening back out for large risk positions

#### Market Views

- The time scale of a view on the market is approximately the average risk holding time
  - Order one minute or less, usually
- Economics and fundamentals don't matter on those time scales, just technical signals
  - Momentum signals
  - Mean reversion signals
  - Directional signals based on order book structure and other types of market microstructure analysis
  - Directional signals based on informational advantage due to seeing trades of big clients before the rest of the market

#### Client Behavior

- Two types of client behavior matter
- Ability to predict (short-term) direction of the market
  - Not always because the client is good sometimes just because they are big and move the market
  - Sometimes due to latency arbitrage
- Price sensitivity
  - Some clients deal with many dealers and are always putting prices in competition on every trade
  - Others trade with only a small number of dealers and try to spread out their trades between dealers

Typical evolution of market making:

- 1. Voice trading market
- Clients can click to trade, but humans set prices and manage portfolio risk
- 3. Price-making is automated, but humans manage portfolio risk
- 4. Hedging is automated as well; humans monitor the machine but do not get involved in individual trades

- Two extremes of risk management:
  - Don't hedge at all
    - Take market risk
    - Get paid bid/ask spread on each client trade
    - Client trades hopefully net against each other so get paid the spread to close out risk
  - Hedge every trade
    - No material market risk
    - Get paid bid/ask spread on each client trade
    - Pay inter-dealer bid/ask spread to hedge each client trade
- Inter-dealer bid/ask spread is often wider than the bid/ask spread shown to clients to be competitive

- Typical approach taken by modern dealers: break up positions into two buckets
- Bucket 1: trades against clients who are generally right on the direction of market moves
  - Hedge their trades aggressively
- Bucket 2: trades against everyone else
  - Do not hedge each trade, and hope for netting
  - Monitor net risk position and hedge when a risk limit is exceeded

What does "right on the direction of market moves" mean?

- Time scale is determined by average risk holding period
  - In turn determined by average time between client trades
  - Typically order seconds
- Clients who hold risk positions over much longer periods (eg global macro traders) are not relevant here
- Clients who are right on short timescales are relevant
  - High frequency traders, or big names whose trades move the market

What risk limits do hedging engines monitor?

- Individual currency delta
  - "Delta" means "PNL for a unit move in a currency spot rate"
  - No model involved: just net amount of currency long or short
  - Risk limits set by currency by human risk managers
- Value-at-risk
  - Model-based estimate of PNL standard deviation over some representative period (eg 1 day)
  - Allows for approximate hedging between positions on highly correlated assets
    - eg EUR and CHF vs USD

What is the right delta limit to use? (Single currency case)

- Use a model to simulate trading and optimize over a Monte Carlo simulation (or closed form solution)
  - Simple, easy to implement and understand, but often overly simplistic
- Backtest hedging simulations against historical data and optimize over backtested PNL
  - Very useful, but risk over-fitting on historical data, and real trading can change market conditions
- Run production experiments with real trading and optimize over realized PNL
  - Most accurate, but lots of statistical noise and paying real money, and limited by the actual market conditions

#### Toy simulation approach

- Brownian motion process for spot
  - Constant volatility, zero drift
  - Simple model but drift, lognormal behavior etc doesn't impact dynamics over intraday trading
- Poisson process for realized client trades
  - Constant frequency of a trade happening
  - Even odds of it being long or short when it happens
  - Every trade is of unit size
- Break time up into fixed-length interval
  - Any trades happen at the start of the interval
  - Use a short enough interval that odds of > 1 trade happening are very small

Toy simulation approach (cont'd)

- When a client trade happens, you make a PNL equal to half the bid/ask spread typically shown to a client
  - Assume that client-facing bid/ask spread is constant
- When the hedging engine trades against the inter-dealer market to hedge its risk, it pays the inter-dealer bid/ask spread
  - Assume that the inter-dealer bid/ask spread is constant (and typically higher than the client-facing bid/ask spread)
  - When a hedge happens, hedge the position back to zero

#### Toy simulation algorithm:

- 1. At start of time step, generate a uniform random number in (0,1) and check if it's less than the trade probability. If so, randomly generate the sign of the trade and update the position by +/- one unit. Get paid half the client bid/ask.
- 2. Check whether net position is outside the delta limit (+ or -). If so, pay half the dealer bid/ask on the whole position to hedge to zero.
- 3. Advance the spot by one step in the simulation. PNL = position at start of time step \* change in spot over time step
- 4. Go back to 1, keep looping until the end of the simulation happens.
- 5. Re-do the whole thing for a bunch of different simulation runs.
- Look at PNL distribution across the runs.

- Can use the simulation to estimate optimal delta limit
  - eg based on Sharpe ratio of PNL mean:standard deviation

#### **Sharpe Ratio for Trading PNL**



- Target risk position may be non-zero if a relative value metric suggests a net position
- In that case, the engine tries to "hedge" to the target risk position instead of a flat position
  - Everything else is the same, though
- When analyzing hedger performance, need to split out PNL due to (static) target position from PNL due to hedger
  - Allows you to determine whether your relative value metrics are performing
  - Allows you to determine whether your hedging algorithm is effectively hedging