Simulación y optimización

Septiembre 2 2016

Prof. Yris Olaya

yolayam@unal.edu.co

¿Cómo manejar la incertidumbre?

Algunas definiciones

Variable aleatoria

 Asocia un valor numérico a cada posible resultado aleatorio

Distribución de probabilidad

 Lista todos los posibles valores de la variable aleatoria y su correspondiente probabilidad

Distribuciones de probabilidad usadas comúnmente

Discretas

- Bernoulli
- Binomial
- Poisson

Continuas

- Triangular
- Exponencial negativa
- Normal
- Gamma

Distribución normal

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

Distribución binomial

n repeticiones independientes de experimento P(A)=p

$$P(\bar{A})=(1-p)$$

X: Número de veces que ocurre suceso A

$$P(X = k) = {n \choose k} p^k (1 - p)^{n-k}$$

E(X)=np
Stdev(X)=sqrt(np(1-p))

n=30, p=0.4, 10000 experimentos

Método de la transformada inversa

Transforma una desviación uniforme estándar en otra distribución

Particularmente útil cuando la función de densidad f(x) se puede integrar para encontrar la fdp acumulada F(x) o cuando F(x) es una distribución empírica

Probabilidad acumulada

Transformada inversa

- 1. Generar un número aleatorio uniforme. Los lenguajes de programación tienen métodos para generar números aleatorios uniformes x~U(0,1) implementados en funciones como runif(), rnd()
- 2. Si r es el número uniforme estándar generado en 1 entonces,

$$X_o = F^{-1}(r)$$

es la observación no uniforme deseada

Distribución Bernoulli Ber[p] (fracaso o éxito)

Soporte
$$\{0,1\}$$
, $P(X = 1) = p$, $E[X] = p$, $\sigma[X] = \sqrt{p(1-p)}$

$$f_X(x) = P[X = x] = \begin{cases} q, x = 0 \\ p, x = 1 \end{cases}$$

Si $r < q \Rightarrow x = 0$, de lo contrario x = 1

Distribución uniforme U[a,b]

$$f_X(x) = \frac{1}{b-a}, \ F_X(x) = \frac{x-a}{b-a}, \ x \in (a,b)$$

$$r = \frac{x-a}{b-a} \implies x = F_X^{-1}(r) = (b-a)r + a$$

Distribución exponencial, Exp[λ]

$$f_X(x) = \lambda e^{-\lambda x}, F_X(x) = 1 - e^{-\lambda x}, x > 0$$

$$r = 1 - e^{-\lambda x} \implies x = F_X^{-1}(r) = -\frac{1}{\lambda} \ln(1 - r)$$

Distribución triangular Tri[a, c, b]

Soporte (a, b)

$$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & a \le x \le c \\ \frac{2(b-x)}{(b-a)(b-c)} & c \le x \le b \end{cases}$$

$$F(x) = \begin{cases} \frac{(x-a)^2}{(b-a)(c-a)} a \le x \le c\\ 1 - \frac{(b-x)^2}{(b-a)(b-c)} c \le x \le b \end{cases}$$

$$E(x) = \frac{1}{3}(a+b+c),$$

$$\sigma(X) = \frac{1}{3\sqrt{2}}\sqrt{a^2 + b^2 + c^2 - ab - ac - bc}$$

Distribución normal: método Box-Muller

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$$
 para todo x real

Box-Muller

- 1. Generar $x \sim N(0, 1)$
- 2. Convertir x en una variable x' $\sim N(\mu, \sigma^2)$: x'= $\mu + \sigma x$

Método Box-Muller

Dadas U_1 , U_2 observaciones independientes de U(0,1), Generar x_1 , $x_2 \sim N(0,1)$ de la siguiente forma:

$$x_1 = \sqrt{-2lnU_1}\cos 2\pi U_2$$
 $x_2 = \sqrt{-2lnU_1}\sin 2\pi U_2$ $x_1' = \mu + \sigma x_1$ $x_2' = \mu + \sigma x_2$

Taller

Guía generación de variables aleatorias en R