Санкт-Петербургский политехнический университет Петра Великого Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе № 2

Дисциплина: Низкоуровневое программирование

Тема: Программирование на Edsac

Выполнил студент гр. 3530901/10005	-	Захар	ов В.А
	(подпись)		
Преподаватель		Корен	нев Д.А.
	(подпись)		
		· · · · · · · · · · · · · · · · · · ·	2022 г.

Санкт-Петербург

Оглавление

1. T3	стр.1
2. Метод решения	.стр.1
3. Программа Orders1	стр.1
4. Работа программы Orders1	стр.3
5. Программа Orders2	стр.4
6. Работа программы Orders2	стр.6

1. T3

Определение наиболее часто встречающегося в массиве значения.

2. Метод решения

Подсчет количества вхождений для каждого элемента в массиве. Создание вложенного цикла, в котором считается количество совпадений для текущего элемента (из внешнего цикла, который проходится по всем элементам). Если совпадений больше максимального количества совпадений, то перезапись этого максимума и сохранение данного элемента.

3. Программа Orders1

```
1
     [(90 T 2 S) Наиболе часто повторяющийся элемент]
 2
     [(88 T 3 S) Количество повторений]
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
```

```
[Ответ - 2 ячейка (самый частый элемент), в 3 ячейке количество]
28
    [ТЗ - Определение наиболее часто встречающегося в массиве значения]
29
    [счетчик внешнего цикла - 4 ячейка, значение из внешнего цикла - 5 ячейка]
    [счетчик внутреннего цикла - 6 ячейка, инструкция w1 - 7 ячейка]
30
31
    T 106 S
32
    X 0 S
    T 0 S
33
    A[c0]93 S
34
35
    T 3 S
36
    A [len]95 S [array length]
37
   T 1 S
38
   A[addr]96 S
39
   L O L
40
   A [r1]51 S
41
   T [r1]51 S
42
   A [addr]96 S
43
   L O L
44
   A [w1]63 S
   T 7 S
45
46
   [loop1] Т 10 S [Обнуление]
47
   А 1 S [1 счетчик необработанных элементов]
   S [<c1>]94 S [Уменьшаем на 1]
   G [<exit>]92 S [если меньше нуля - выход]
   Т 1 S [Обновление счетчика]
   [r1] A 0 S [загрузка в аккумулятор значения из ячейки N]
   Т 5 S [загрузка этого значения в ячейку 5]
53 A [c0]93 S [0]
    Т 4 S [обновление внутреннего счетчика совпадений на 0]
54
55
    A [len]95 S [длина массива]
56
    T 6 S
               [запись в 6 ячейку]
57
    A [w1 clean] 7 S
58
     T [w1]63 S
59
     [loop2] A 6 S [счетчик необработанных элементов вложенного цикла]
60
     S [c1]94 S [уменьшение счетчика на 1]
61
    G [loop1change] 78 S [если меньше нуля выход во вешний цикл]
62
    T 6 S
                      [обновление счетчика]
     [w1]A [j]0 S
63
    S 5 S [вычитаем значение из внешнего цикла]
64
65
    G [loop2change]72 S
66
    S [c1] 94 S [-1]
    E [loop2change]72 S
67
68
    T 10 S
69
    А 4 S [увеличение текущий совпадений на 1]
70
    A [c1]94 S
71
    T 4 S
72
     [loop2change] T 10 S[clear]
    A [c1]94 S
73
74
    L O L
75
    A [w1]63 S
76
    T [w1]63 S
77
    E [loop2]59 S
78
    [loop1change]T 10 S[clear]
79
    A [c1]94 S
    L O L
80
81
    A [r1]51 S
                   [обновление инструкции]
82
    T [r1]51 S
83
    A 4 S
                 [проверка на максимальное количество совпадений]
84
    S 3 S
85
    G [loop1]46 S
86
    T 10 S
                 [Если совпадений больше или равно то перезапись]
87
    A 4 S
                  [максимального количества повторений и числа]
88
    Т 3 S [Перезапись количества повторений]
89
     A 5 S
```

Т 2 S [Перезапись наиболее часто повторяющегося элемента]

```
91
     E [loop1]46 S
 92
      [exit] Z 0 S
 93
      [c0] p 0 S [0]
      [c1] P 0 L [1]
 94
 95
      [len]P 4 L
 96
      [addr] P 48 L [97]
 97
      [array]P 0 S [0]
 98
     P 0 1 [1]
 99
     P 1 1
            [3]
100
     P 1 1
            [3]
101
    P 0 S [0]
102
    P \ O \ L
            [1]
103
    P 0 S
            [0]
104
     P 1 L
            [3]
105
     P 0 S [0]
100
```

4.Работа программы Orders1 скрины:

1. Длина массива в ячейке 95

```
WORD 95 Order = P 4 L Integer 95S = 9 Fraction 94L = 0.00013732916
```

2. Массив в ячейках 97-105

```
WORD 97 Order = P 0 S Integer 97S = 0 Fraction 96L = 0.000000000565

WORD 98 Order = P 0 L Integer 98S = 1 Fraction 98S = 0.000015

WORD 99 Order = P 1 L Integer 99S = 3 Fraction 98L = 0.00004577643

WORD 100 Order = P 1 L Integer 100S = 3 Fraction 100S = 0.000046

WORD 101 Order = P 0 S Integer 101S = 0 Fraction 100L = 0.00000000017

WORD 102 Order = P 0 L Integer 102S = 1 Fraction 102S = 0.000015

WORD 103 Order = P 0 S Integer 103S = 0 Fraction 102L = 0.0000000006

WORD 104 Order = P 1 L Integer 104S = 3 Fraction 104S = 0.000046

WORD 105 Order = P 0 S Integer 105S = 0 Fraction 104L = 0.00000000017
```

3. Результат. Ячейка 2 - наиболее часто повторяющийся элемент. Ячейка 3 - количество повторений

```
WORD 2 Order = P 0 S Integer 2S = 0 Fraction 2S = 0.000000

WORD 3 Order = P 2 S Integer 3S = 4 Fraction 2L = 0.00006103516
```

5. Программа Orders2

Числа исходного массива записаны в ячейках 128-136. Выполнение подпрограммы начинается с 56 ячейки + длина подпрограммы + длина программы до массива. Соответсвенно 55 + 60 + 12 = 127 и со следующей ячейки записывается массив.

```
[ТЗ - определение наиболее часто встречащегося в массиве значения]
[Ответ - 2 ячейка (52 T 2 F), количество повторений - 3 ячейка (50 T 3 F)]
T 56 K
G К [ директива IO2, фиксация начального адреса подпрограммы ]
[0] А 3 F [ пролог: формирование кода инструкции возврата в Асс ]
[1] Т [ret]55 @ [ пролог: запись инструкции возврата ]
[2] A 0[addr] F
[3] A [r1init] 58 @
[4] T [r1]12 @
[5] A [c0]56 @
[6] T 3 F
[loop1:]
[7] Т 10 F [Обнуление]
[8] А 1 Г [Загружаем счетчик необработанных элементов]
[9] S [c1]57 @ [уменьшаем на 1]
[10] G [exit]55 @ [если меньше 0 то завершаем работу]
[11] Т 1 F [Обновление счетчика]
[12] [r1:] A 0 F [Загрузка в аккумулятор значение из N]
[13] Т 5 Г [Загрузка этого значения в ячейку 5]
[14] A [c0]56 @
[15] Т 4 F [обновление внутреннего счетчика совпадений на 0]
[16] А 7 Г [длина массива]
[17] T 6 F
[18] A 0[addr] F
[19] A [w1Init]59 @
[20] T [w1]25 @
 [loop2:]
[21] А 6 F [счётчик необработанных элементов вложенного цикла]
[22] S [c1]57 @
[23] G [loop1change]40 @
[24] T 6 F
[25] [w1:] A 0 F
[26] S 5 F [вычитаем значение из внешнего цикла]
[27] G [loop2change]34 @
[28] S [c1]57 @
[29] E [loop2change]34 @
[30] T 10 F
[31] A 4 F
[32] А [с1]57 @ [увеличение количества повторений]
[33] T 4 F
```

```
[loop2change:]
[34] T 10 F
[35] A [c1]57 @
[36] L 0 D
[37] A [w1]25 @
[38] Т [w1]25 @ [обновление инструкции]
[39] E [loop2]21 @
 [loop1change]
[40] T 10 F
[41] A [c1]57 @
[42] L 0 D
[43] А [r1]12 @ [обновление инструкции]
[44] T [r1]12 @
[45] А 4 F [проверка на максимальное количество повторений]
[46] S 3 F
[47] G [loop1]7 @
[48] T 10 F
[49] A 4 F
[50] Т 3 F [перезапись количества повторений]
[51] A 5 F
[52] Т 2 F [перезапись наиболее посторяющегося элемента]
[53] E [loop1]7 @
[exit:]
[54] T 0 F
[ret]
[55] Е 0 F [ эпилог: инструкция возврата из подпрограммы ]
[56] P 0 F [c0]
[57] p 0 D [c1]
[58] [r1init] A 0 F
[59] [w1init] A 0 F
 G К [ директива IO2, фиксация начального адреса программы ]
[0] X 0 F
[1] A [addr]10 @ [адрес массива]
[2] Т 0 F [запись адреса в ячейку 0]
[3] A [len]11 @ [длина массива]
[4] Т 1 F [запись длины в ячейку 1]
[5] A [len]11 @
[6] T 7 F
[7] A 5 @
[8] G 56 F
[9] Z 0 F
[10] [addr]Р 12 @ [адрес массива]
[11] [len]P 4 D
```

```
[12] [array] P 0 F [0]

[13] P 0 D [1]

[14] P 1 D [3]

[15] P 1 D [3]

[16] P 0 F [0]

[17] P 0 D [1]

[18] P 0 F [0]

[19] P 1 D [3]
```

[20] P 0 F [0]

EZ PF

6. Работа программы Orders2

Результат 2 ячейка - наиболее часто повторяющийся элемент, 3 ячейка - количество повторений.

```
WORD 2 Order = P 0 F Integer 2F = 0 Fraction 2F = 0.000000

WORD 3 Order = P 2 F Integer 3F = 4 Fraction 2D = 0.00006103516
```