MA1301 Tallteori — Høsten 2014 — Løsninger til Midtsemesterprøven

Richard Williamson

6. oktober 2014

Innhold

Oppgave 1 a) b)	1 1
Oppgave 2 a) b)	2 2 3
Oppgave 3 a)	4 4 5
Oppgave 4 a)	5 6 6
Onngaye 1	

Oppgave 1

a)

De første fem Fibonaccitallene er:

1, 1, 2, 3, 5.

b)

Først sjekker vi om utsagnet er sant når n=1. I dette tilfellet er utsagnet at

$$u_{2\cdot 1} = u_{2\cdot 1+1} - 1,$$

altså at

$$u_2 = u_3 - 1$$
.

Siden $u_2 = 1$ og

$$u_3 - 1 = 2 - 1 = 1$$
,

er dette sant.

Anta nå at utsagnet har blitt bevist når n=m, hvor m er et gitt naturlig tall. Således har det blitt bevist at

$$u_2 + u_4 + \dots + u_{2m} = u_{2m+1} - 1.$$

Da er

$$u_2 + u_4 + \dots + u_{2m} + u_{2(m+1)} = (u_{2m+1} - 1) + u_{2(m+1)}$$

= $u_{2m+1} + u_{2m+2} - 1$.

Ut ifra definisjonen til Fibonaccitallene er

$$u_{2m+1} + u_{2m+2} = u_{2m+3}$$

Dermed er

$$u_2 + u_4 + \dots + u_{2m} + u_{2(m+1)} = u_{2m+3} - 1 = u_{2(m+1)+1} + 1.$$

Således har vi bevist at utsagnet er sant når n = m + 1.

Ved induksjon konkluderer vi at utsagnet er sant for et hvilket som helst naturlig tall n.

Oppgave 2

a)

Ut ifra antakelsen at n = 5k + 3 er

$$n^{2} = (5k + 3)^{2}$$

$$= 25k^{2} + 30k + 9$$

$$= (25k^{2} + 30k + 5) + 4$$

$$= 5(5k^{2} + 6k + 1) + 4.$$

La m være $5k^2 + 6k + 1$. Dermed er

$$n^2 = 5m + 4.$$

Siden k er et heltall, er m et heltall.

b)

Ut ifra divisjonsalgoritmen er det et heltall k og et heltall r slik at:

- (1) n = 5k + r;
- (2) $0 \le r < 5$.

Dermed er det et heltall k slik at ett av de følgende utsagnene er sant:

- (A) n = 5k;
- (B) n = 5k + 1;
- (C) n = 5k + 2;
- (D) n = 5k + 3;
- (E) n = 5k + 4.

Anta først at (A) er sant. Da er

$$n^2 = (5k)^2$$
$$= 5(5k^2).$$

La m være $5k^2$. Da er $n^2=5m$. Siden k er et heltall, er m er heltall. Anta nå at (B) er sant. Da er

$$n^{2} = (5k + 1)^{3}$$
$$= 25k^{2} + 10k + 1$$
$$= 5(5k^{2} + 2k) + 1$$

La m være $5k^2 + 2k$. Da er $n^2 = 5m + 1$. Siden k er et heltall, er m et heltall. Anta nå at (C) er sant. Da er

$$n^{2} = (5k + 2)^{2}$$
$$= 25k^{2} + 20k + 4$$
$$= 5(5k^{2} + 4k) + 4.$$

La m være $5k^2+4k$. Da er $n^2=5m+4$. Siden k er et heltall, er m et heltall. Anta nå at (D) er sant. Fra a) vet vi at det er et heltall m slik at $n^2=5m+4$. Anta nå at (E) er sant. Da er

$$n^{2} = (5k + 4)^{2}$$

$$= 25k^{2} + 40k + 16$$

$$= 25k^{2} + 40k + 15 + 1$$

$$= 5(5k^{2} + 8k + 3) + 1.$$

La m være $5k^2 + 8k + 3$. Da er $n^2 = 5m + 1$. Siden k er et heltall, er m et heltall. Andre bevis er mulige. For eksempel kan kongruenser benyttes.

Oppgave 3

a)

Først benytter vi Euklids algoritme for å finne sfd(295, -126).

(1) Vi har:

$$295 = 2 \cdot 126 + 43.$$

Derfor er sfd(295, 126) = sfd(126, 43).

(2) Vi har:

$$126 = 2 \cdot 43 + 40.$$

Derfor er sfd(126, 43) = sfd(43, 40).

(3) Vi har:

$$43 = 1 \cdot 40 + 3.$$

Derfor er sfd(43, 40) = sfd(40, 3).

(4) Vi har:

$$40 = 13 \cdot 3 + 1$$
.

Derfor er sfd(40,3) = sfd(3,1).

(5) Vi har: sfd(3,1) = 1.

Dermed er

$$sfd(295, 126) = 1.$$

Derfor er

$$sfd(295, -126) = 1.$$

Siden 1 | 27, har ligningen en heltall-løsning. For å beskrive den, finner vi heltall u og v slik at

$$1 = 295u - 126v$$

på følgende måte.

(1) Siden

$$295 = 2 \cdot 126 + 43,$$

er

$$43 = 1 \cdot 295 + (-2) \cdot 126.$$

(2) Siden

$$126 = 2 \cdot 43 + 40$$
,

er

$$40 = -2 \cdot 43 + 126$$

= $-2 \cdot (1 \cdot 295 + (-2) \cdot 126) + 126$
= $(-2) \cdot 295 + 5 \cdot 126$.

(3) Siden

$$43 = 1 \cdot 40 + 3$$

er

$$3 = -1 \cdot 40 + 43$$

= $-1 \cdot (5 \cdot 126 + (-2) \cdot 295) + ((-2) \cdot 126 + 1 \cdot 295)$
= $3 \cdot 295 + (-7) \cdot 126$.

(4) Siden

$$40 = 13 \cdot 3 + 1$$
,

er

$$1 = -13 \cdot 3 + 40$$

= -13 \cdot \left((-7) \cdot 126 + 3 \cdot 295 \right) + \left(5 \cdot 126 + (-2) \cdot 295 \right)
= (-41) \cdot 295 + 96 \cdot 126.

Dermed er

$$1 = (-41) \cdot 295 + (-96) \cdot (-126).$$

Siden $27 = 27 \cdot 1$, følger det fra en proposisjon i kurset at

$$x = 27 \cdot (-41)$$

og

$$y = 27 \cdot (-96),$$

altså

$$x = -1107$$

og

$$y = -2592,$$

er en løsning til ligningen.

b)

Siden $\mathsf{sfd}(295, -126) = 1$, og siden $1 \mid c$ for et hvilket som helst heltall c, følger det fra en proposisjon i kurset at ligningen har en løsning. Derfor er utsagnet riktig.

Oppgave 4

a)

Vi har: 7 - (-1) = 8, og $8 \mid 8$.

b)

Siden $7 \equiv -1 \pmod 8$, er $7^{33} \equiv (-1)^{33} \pmod 8$. Siden $(-1)^{33} = -1$, konkluderer vi at $7^{33} \equiv -1 \pmod 8$.

c)

Vi gjør følgende observasjoner.

(1) Vi har: $9 \equiv 1 \pmod 8$, altså $3^2 \equiv 1 \pmod 8$. Derfor er $\left(3^2\right)^{38} \equiv 1^{38} \pmod 8$, altså

$$3^{76} \equiv 1 \pmod{8}.$$

Derfor er

$$3 \cdot 3^{76} \equiv 3 \cdot 1 \pmod{8},$$

altså

$$3^{77} \equiv 3 \pmod{8}.$$

(3) Fra b) har vi: $7^{33} \equiv -1 \pmod 8$. Derfor er $3 \cdot 7^{33} \equiv 3 \cdot (-1) \pmod 8$, altså $3 \cdot 7^{33} \equiv -3 \pmod 8$.

Det følger fra (1) - (3) at

$$3^{77} + 3 \cdot 7^{33} \equiv 3 - 3 \pmod{8},$$

altså

$$3^{77} + 3 \cdot 7^{33} \equiv 0 \pmod{8}.$$

Dermed er $3^{77} + 3 \cdot 7^{33}$ delelig med 8.