Data Modelling Methods-VI

CS771: Introduction to Machine Learning
Purushottam Kar

Outline of today's discussion

- Two alternating optimization algorithms for PPCA
- The EM algorithm

- Please respond to the Piazza poll on lecture topics
- This directly affects the content of the course
- So far very few have responded

Alternating Optimization for PCA

$$\mathbf{z}^i \sim \mathcal{N}(\mathbf{0}, I_k)$$

Marginals and Posteriors

• We have $\mathbf{z}^i \sim \mathcal{N}(\mathbf{0}, I_k)$ and $\mathbf{x}^i | \mathbf{z}^i \sim \mathcal{N}(W\mathbf{z}^i, \sigma^2 \cdot I_d)$

Marginal Distribution

$$\mathbb{P}[\mathbf{x}^i \mid \sigma, W] = \mathcal{N}(\mathbf{0}, \Sigma_{\chi})$$
where $\Sigma_{\chi} = WW^{\mathsf{T}} + \sigma^2 \cdot I_d \in \mathbb{R}^{d \times d}$

Posterior Distribution

$$\begin{aligned} & \mathbb{P} \big[\mathbf{z}^i \mid \mathbf{x}^i, \sigma, W \big] = \mathcal{N} \big(\boldsymbol{\mu}_{\boldsymbol{z}}^i, \boldsymbol{\Sigma}_{\boldsymbol{z}} \big) \\ & \text{where } \boldsymbol{\mu}_{\boldsymbol{z}}^i = (W^\top W + \sigma^2 \cdot I_k)^{-1} W^\top \mathbf{x}^i \in \mathbb{R}^k \\ & \text{and } \boldsymbol{\Sigma}_{\boldsymbol{z}} = \sigma^2 \cdot (W^\top W + \sigma^2 \cdot I_k)^{-1} \in \mathbb{R}^{k \times k} \end{aligned}$$

Marginals and Posteriors

• We have $\mathbf{z}^i \sim \mathcal{N}(\mathbf{0}, I_k)$ and $\mathbf{x}^i | \mathbf{z}^i \sim \mathcal{N}(W\mathbf{z}^i, \sigma^2 \cdot I_d)$

Marginal Distribution

$$\mathbb{P}[\mathbf{x}^i \mid \sigma, W] = \mathcal{N}(\mathbf{0}, \Sigma_{\chi})$$
where $\Sigma_{\chi} = WW^{\mathsf{T}} + \sigma^2 \cdot I_d \in \mathbb{R}^{d \times d}$

Because we have seen **x**ⁱ

Why isn't

Suppose $\|\mathbf{x}^{i}\|_{2}$ is large. It is unlikely that noise cause it. More likely that $\mathbf{z}^{i} \neq \mathbf{0}$

Posterior Distribution

$$\begin{aligned} & \mathbb{P} \big[\mathbf{z}^i \, | \mathbf{x}^i, \sigma, W \big] = \mathcal{N} \big(\boldsymbol{\mu}_Z^i, \boldsymbol{\Sigma}_Z \big) \\ & \text{where } \boldsymbol{\mu}_Z^i = (W^\top W + \sigma^2 \cdot I_k)^{-1} W^\top \mathbf{x}^i \in \mathbb{R}^k \\ & \text{and } \boldsymbol{\Sigma}_Z = \sigma^2 \cdot (W^\top W + \sigma^2 \cdot I_k)^{-1} \in \mathbb{R}^{k \times k} \end{aligned}$$

Marginals and Posteriors

• We have $\mathbf{z}^i \sim \mathcal{N}(\mathbf{0}, I_k)$ and $\mathbf{x}^i | \mathbf{z}^i \sim \mathcal{N}(W\mathbf{z}^i, \sigma^2 \cdot I_d)$

Marginal Distribution

$$\mathbb{P}[\mathbf{x}^i \mid \sigma, W] = \mathcal{N}(\mathbf{0}, \Sigma_{\chi})$$
where $\Sigma_{\chi} = WW^{\top} + \sigma^2 \cdot I_d \in \mathbb{R}^{d \times d}$

Posterior Distribution

$$\mathbb{P}\big[\mathbf{z}^i \mid \mathbf{x}^i, \sigma, W\big] = \mathcal{N}\big(\boldsymbol{\mu}_z^i, \boldsymbol{\Sigma}_z\big)$$
 where $\boldsymbol{\mu}_z^i = (W^\top W + \sigma^2 \cdot I_k)^{-1} W^\top \mathbf{x}^i \in \mathbb{R}^k$ and $\boldsymbol{\Sigma}_z = \sigma^2 \cdot (W^\top W + \sigma^2 \cdot I_k)^{-1} \in \mathbb{R}^{k \times k}$

Because we have seen x^l

Why isn't

 $\mu_{z}^{i} = 0$?

Suppose $\|\mathbf{x}^i\|_2$ is large. It is unlikely that noise cause it. More likely that $\mathbf{z}^i \neq \mathbf{0}$

Because $\mathbf{x}^i = W\mathbf{z}^i + \boldsymbol{\epsilon}^i$. where $\epsilon^i \sim \mathcal{N}(\mathbf{0}, \sigma^2 \cdot I_d)$ and least squares is the MLE

> For Gaussians, mean is mode

Why does this look like least squares?

[BIS] eqn (12.42) has a mistake

Estimating z^i

- Recall, in the last lecture, we claimed that in PML setting, $W_{\text{MLE}} = U_k \sqrt{\Lambda_k} \in \mathbb{R}^{d \times k}$ and $\mathbf{z}^i = \Lambda_k^{-1} W_{\text{MLE}}^{\mathsf{T}} \mathbf{x}^i$
- ullet We can easily derive this now as the MLE estimate for \mathbf{z}^i
- We have $\mathbb{P}[\mathbf{z}^i \mid \mathbf{x}^i, \sigma, W] = \mathcal{N}(\boldsymbol{\mu}_z^i, \Sigma_z)$ mode of a Gaussian is mean $\mathbf{z}^i = (W^\top W + \sigma^2 \cdot I_k)^{-1} W^\top \mathbf{x}^i$ See previous slide $= (\Lambda_k + \sigma^2 \cdot I_k)^{-1} W^\top \mathbf{x}^i$ $= (\Lambda_k^{-1} W^\top \mathbf{x}^i)$ If $\sigma = 0$
- Note that we also have $\mathbb{E}[\mathbf{z}^i \mid \mathbf{x}^i, \sigma, W] = (\Lambda_k + \sigma^2 \cdot I_k)^{-1} W^\mathsf{T} \mathbf{x}^i$

The Complete Likelihood

- Given data $X = [\mathbf{x}^1, \mathbf{x}^2, ..., \mathbf{x}^n] \in \mathbb{R}^{d \times n}$
- Let (latent) low-dim reps be $Z = [\mathbf{z}^1, \mathbf{z}^2, ..., \mathbf{z}^n] \in \mathbb{R}^{k \times n}$
- Observed data likelihood $\mathbb{P}[X \mid W, \sigma] = \prod_{i=1}^{n} \mathbb{P}[\mathbf{x}^{i} \mid W, \sigma]$
- Complete data likelihood $\mathbb{P}[X,Z\mid W,\sigma]=\prod_{i=1}^n\mathbb{P}[\mathbf{x}^i,\mathbf{z}^i\mid W,\sigma]$ $\log \mathbb{P}[X, Z \mid W, \sigma] = \sum_{i=1}^{n} \log \mathbb{P}[\mathbf{x}^i \mid \mathbf{z}^i, W, \sigma] + \log \mathbb{P}[\mathbf{z}^i \mid W, \sigma]$ $= -\sum_{i=1}^{n} \frac{1}{2\sigma^{2}} (\|\mathbf{x}^{i}\|_{2}^{2} + (\mathbf{z}^{i})^{\mathsf{T}} W^{\mathsf{T}} W \mathbf{z}^{i} - 2(\mathbf{z}^{i})^{\mathsf{T}} W^{\mathsf{T}} \mathbf{x}^{i}) + \frac{1}{2} \cdot \|\mathbf{z}^{i}\|_{2}^{2} + C$

$$= -\sum_{i=1}^{n} \frac{1}{2\sigma^2} \left(\operatorname{tr} \left(W^{\mathsf{T}} W \mathbf{z}^i (\mathbf{z}^i)^{\mathsf{T}} \right) - 2(\mathbf{z}^i)^{\mathsf{T}} W^{\mathsf{T}} \mathbf{x}^i \right) + \frac{1}{2} \cdot \operatorname{tr} \left(\mathbf{z}^i (\mathbf{z}^i)^{\mathsf{T}} \right) + C'$$

The Complete Likelihood

- Given data $X = [\mathbf{x}^1, \mathbf{x}^2, ..., \mathbf{x}^n] \in \mathbb{R}^{d \times n}$
- Let (latent) low-dim reps be $Z=[\mathbf{z}^1,\mathbf{z}^2,...,\mathbf{z}^n]\in\mathbb{R}^{k\times n}$
- We have $\arg\max_{W}\log\mathbb{P}[X,Z\mid W,\sigma]$

$$=\arg\min_{W}\sum_{i=1}^{n}\frac{1}{\sigma^{2}}\left(\operatorname{tr}\left(W^{\mathsf{T}}W\mathbf{z}^{i}(\mathbf{z}^{i})^{\mathsf{T}}\right)-2(\mathbf{z}^{i})^{\mathsf{T}}W^{\mathsf{T}}\mathbf{x}^{i}\right)+\operatorname{tr}\left(\mathbf{z}^{i}(\mathbf{z}^{i})^{\mathsf{T}}\right)$$

= arg min
$$\sum_{i=1}^{n} \operatorname{tr}\left(W^{\mathsf{T}} W \mathbf{z}^{i} (\mathbf{z}^{i})^{\mathsf{T}}\right) - 2(\mathbf{z}^{i})^{\mathsf{T}} W^{\mathsf{T}} \mathbf{x}^{i}$$

$$= \left[\sum_{i=1}^{n} \mathbf{x}^{i} (\mathbf{z}^{i})^{\mathsf{T}}\right] \cdot \left[\sum_{i=1}^{n} \mathbf{z}^{i} (\mathbf{z}^{i})^{\mathsf{T}}\right]^{-1}$$

• For simplicity, assume σ is known (can estimate it too)

The Complete Likelihood

- Given data $X = [\mathbf{x}^1, \mathbf{x}^2, ..., \mathbf{x}^n] \in \mathbb{R}^{d \times n}$
- Let (latent) low-dim reps be $Z = [\mathbf{z}^1, \mathbf{z}^2, ..., \mathbf{z}^n]$
- We have $\arg\max_{W}\log\mathbb{P}[X,Z\mid W,\sigma]$

$$=\arg\min_{W}\sum_{i=1}^{n}\frac{1}{\sigma^{2}}\left(\operatorname{tr}\left(W^{\mathsf{T}}W\mathbf{z}^{i}\left(\mathbf{z}^{i}\right)^{\mathsf{T}}\right)-2\left(\mathbf{z}^{i}\right)^{\mathsf{T}}W^{\mathsf{T}}\mathbf{x}^{i}\right)+\operatorname{tr}\left(\mathbf{z}^{i}\left(\mathbf{z}^{i}\right)^{\mathsf{T}}\right)$$

= arg
$$\min_{W} \sum_{i=1}^{n} \operatorname{tr} \left(W^{\mathsf{T}} W \mathbf{z}^{i} (\mathbf{z}^{i})^{\mathsf{T}} \right) - 2(\mathbf{z}^{i})^{\mathsf{T}} W^{\mathsf{T}} \mathbf{x}^{i}$$

$$= \left[\sum_{i=1}^{n} \mathbf{x}^{i} (\mathbf{z}^{i})^{\mathsf{T}}\right] \cdot \left[\sum_{i=1}^{n} \mathbf{z}^{i} (\mathbf{z}^{i})^{\mathsf{T}}\right]^{-1}$$

Actually doing least squares to minimize reconstruction error ©

$$\arg\min_{W} \sum_{i=1}^{n} \left\| \mathbf{x}^{i} - W\mathbf{z}^{i} \right\|_{2}^{2}$$

Apply first order optimality condition

• For simplicity, assume σ is known (can estimate it too)

Alternating Optimization

ullet So if someone gave me \mathbf{z}^i , I can estimate W as

$$W_{\text{MLE}} = \left[\sum_{i}^{n} \mathbf{x}^{i} (\mathbf{z}^{i})^{\top}\right] \cdot \left[\sum_{i}^{n} \mathbf{z}^{i} (\mathbf{z}^{i})^{\top}\right]^{-1}$$

- However, if someone gave me W, I can estimate \mathbf{z}^i as $\mathbf{z}^i_{\mathrm{MLE}} = (W^{\mathsf{T}}W + \sigma^2 \cdot I_k)^{-1}W^{\mathsf{T}}\mathbf{x}^i$
- So can I do alternating optimization using these?
- Yes, of course!

Hard Alternating Minimization

HARD ALTERNATING OPTIMIZATION

- 1 1. Initialize W^{0}
- 2. For t = 0, 1, 2, ...
 - 1. For $i \in [n]$, update $\mathbf{z}^{i,t}$ using W^t
 - 1. Let $\mathbf{z}^{i,t} = \arg \max_{\mathbf{z}^i} \mathbb{P}[\mathbf{z}^i \mid \mathbf{x}^i, \sigma, W^t]$

$$= ((W^t)^{\mathsf{T}} W^t + \sigma^2 \cdot I_k)^{-1} (W^t)^{\mathsf{T}} \mathbf{x}^i$$

2. Update $W^{t+1} = \arg \max_{W} \mathbb{P}[X, Z^t \mid W, \sigma]$

$$= \left[\sum_{i}^{n} \mathbf{x}^{i} (\mathbf{z}^{i,t})^{\mathsf{T}}\right] \cdot \left[\sum_{i}^{n} \mathbf{z}^{i,t} (\mathbf{z}^{i,t})^{\mathsf{T}}\right]^{-1}$$

 $O(k^2d + dnk)$ time

 $O(k^2d + dnk)$ time

Hard Alternating Minimization for $\sigma=0$

HARD ALTERNATING OPTIMIZATION

- 1 1. Initialize W^{0}
- 2. For t = 0, 1, 2, ...
 - 1. For $i \in [n]$, update $\mathbf{z}^{i,t}$ using W^t
 - 1. Let $\mathbf{z}^{i,t} = \arg \max_{\mathbf{z}^i} \mathbb{P}[\mathbf{z}^i \mid \mathbf{x}^i, W^t]$

$$= ((W^t)^\top W^t)^{-1} (W^t)^\top \mathbf{x}^i$$

2. Update $W^{t+1} = \arg \max_{W} \mathbb{P}[X, Z^t \mid W]$

$$= \left[\sum_{i=1}^{n} \mathbf{x}^{i} (\mathbf{z}^{i,t})^{\mathsf{T}}\right] \cdot \left[\sum_{i=1}^{n} \mathbf{z}^{i,t} (\mathbf{z}^{i,t})^{\mathsf{T}}\right]^{-1}$$

 $O(k^2d + dnk)$ time

 $O(k^2d + dnk)$ time

Some Thoughts

- We updated \mathbf{z}^i using maximum posterior probability but W using maximum likelihood. Can we do MAP for W as well?
- \bullet Yes, put a prior on W but things get more complicated
- Can I have a "soft" assignment algorithm for this?
- Yes, but since there are infinite possibilities for \mathbf{z}^i , making partial assignments of a point \mathbf{x}^i to all possible \mathbf{z}^i is challenging
- ullet Easier solution is to let \mathbf{x}^i declare allegiance to expected values
- Use $\mathbb{E}[\mathbf{z}^i \mid \mathbf{x}^i, \sigma, W]$ and $\mathbb{E}[\mathbf{z}^i(\mathbf{z}^i)^{\mathsf{T}} \mid \mathbf{x}^i, \sigma, W]$ in AltOpt
- $\mathbb{E}[\mathbf{z}^i \mid \mathbf{x}^i, \sigma, W] = (W^\mathsf{T}W + \sigma^2 \cdot I_k)^{-1}W^\mathsf{T}\mathbf{x}^i = \boldsymbol{\zeta}^i$ (same as in hard algo)
- $\mathbb{E}\left[\mathbf{z}^{i}(\mathbf{z}^{i})^{\mathsf{T}}|\mathbf{x}^{i},\sigma,W\right] = \boldsymbol{\zeta}^{i}(\boldsymbol{\zeta}^{i})^{\mathsf{T}} + \sigma^{2}\cdot(W^{\mathsf{T}}W + \sigma^{2}\cdot I_{k})^{-1} = Z^{i}$

Some Thoughts

- We updated \mathbf{z}^i using maximum posterior probability but W using maximum likelihood. Can we do MAP for W as well?
- \bullet Yes, put a prior on W but things get more complicated
- Can I have a "soft" assignment algorithm for this?
- Yes, but since there are infinite possibilities for \mathbf{z}^i , making partial assignments of a point \mathbf{x}^i to all possible \mathbf{z}^i is challenging Mode of
- ullet Easier solution is to let \mathbf{x}^i declare allegiance to expected
- Use $\mathbb{E}[\mathbf{z}^i \mid \mathbf{x}^i, \sigma, W]$ and $\mathbb{E}\left[\mathbf{z}^i (\mathbf{z}^i)^{\mathsf{T}} \mid \mathbf{x}^i, \sigma, W\right]$ in AltOpt
- $\mathbb{E}[\mathbf{z}^i \mid \mathbf{x}^i, \sigma, W] = (W^\top W + \sigma^2 \cdot I_k)^{-1} W^\top \mathbf{x}^i = \boldsymbol{\zeta}^i$ (same as in hard algo)

•
$$\mathbb{E}\left[\mathbf{z}^{i}(\mathbf{z}^{i})^{\mathsf{T}}|\mathbf{x}^{i},\sigma,W\right] = \boldsymbol{\zeta}^{i}(\boldsymbol{\zeta}^{i})^{\mathsf{T}} + \sigma^{2}\cdot(W^{\mathsf{T}}W + \sigma^{2}\cdot I_{k})^{-1} \neq Z^{i}$$

This is new

Gaussian is

the mean

Soft Alternating Minimization

SOFT ALTERNATING OPTIMIZATION

- 1. Initialize W^0
- 2. For t = 0, 1, 2, ...
 - 1. Compute $M^t = (W^t)^T W^t + \sigma^2 \cdot I_k$
 - 2. For $i \in [n]$, update $\mathbf{z}^{i,t}$ and $Z^{i,t}$ using W^t
 - 1. Compute $\mathbf{z}^{i,t} = \mathbb{E}[\mathbf{z}^i \mid \mathbf{x}^i, \sigma, W^t] = (M^t)^{-1}(W^t)^\mathsf{T}\mathbf{x}^i$
 - 2. Compute $Z^{i,t} = \mathbb{E}\left[\mathbf{z}^i(\mathbf{z}^i)^\mathsf{T}|\mathbf{x}^i,\sigma,W\right] = \mathbf{z}^{i,t}(\mathbf{z}^{i,t})^\mathsf{T} + \sigma^2 \cdot (M^t)^{-1}$
 - 3. Update $W^{t+1} = \arg \max_{W} \mathbb{E}[\log \mathbb{P}[X, Z^t \mid W, \sigma]]$

$$= \left[\sum_{i}^{n} \mathbf{x}^{i} (\mathbf{z}^{i,t})^{\mathsf{T}}\right] \cdot \left[\sum_{i}^{n} Z^{i,t}\right]^{-1}$$

Same time complexity as hard AltOpt

Oct 06, 2017

Some Thoughts

- For $\sigma=0$ hard and soft AltOpt are the same algorithm
- Power method-based solution took O(dnk) time (last lecture)
- Most costly operation in power method: calculate $S\mathbf{v},\mathbf{v} \in \mathbb{R}^d$

$$S\mathbf{v} = \frac{1}{n} \cdot XX^{\mathsf{T}}\mathbf{v}$$

- AltOpt solution takes $O(k^2d + dnk)$ time usually a bit more costly
- But ... no convergence guarantee for AltOpt not even to the power-method solution ⊗
- But ... lots of things to play around with ☺
- Mixture of PPCA?
- Handle missing data $\mathbf{x} = [\mathbf{x}_{\text{obs}}, \mathbf{x}_{\text{miss}}]$
- Treat $\mathbf{x}_{\mathrm{miss}}$ as latent vars and use $\mathbb{P}[\mathbf{x}] = \mathbb{P}[\mathbf{x}_{\mathrm{miss}} \mid \mathbf{x}_{\mathrm{obs}}] \cdot \mathbb{P}[\mathbf{x}_{\mathrm{obs}}]$

The EM Algorithm

The EM Algorithm

- EM: Expectation Maximization
- Little secret: whenever we did "soft assignment" alternating optimization, we were executing exactly the EM algorithm
- Very versatile and adaptive to variety of problem settings
- Very popular for learning latent variable models soft k-means, HMMs (Baum-Welch), PPCA

The Generative Story with Latent Variables

- A parameterized distribution to generate two pairs of variables $\mathbb{P}[\mathbf{x}, \mathbf{z} \mid \mathbf{\Theta}^*], \mathbf{x} \in \mathcal{X}, \mathbf{z} \in \mathcal{Z}$
- In secret a bunch of data points are generated ... $(\mathbf{x}^1, \mathbf{z}^1), (\mathbf{x}^2, \mathbf{z}^2), ..., (\mathbf{x}^n, \mathbf{z}^n)$
- ... but only the first component of each of them are revealed $X = [\mathbf{x}^1, \mathbf{x}^2, ..., \mathbf{x}^n]$
- Can we recover both $\mathbf{\Theta}^*$ as well as $\mathbf{Z} = [\mathbf{z}^1, \mathbf{z}^2, ..., \mathbf{z}^n]$?
- Clustering/GMM: $\mathcal{Z} = \{1, 2, ..., K\}$ for K clusters/Gaussians
- Mixed Regression: $\mathcal{Z} = \{0, 1\}$ for two components (may be more)
- PCA/PPCA: $\mathcal{Z} = \mathbb{R}^k$
- Guess my Grocery List:

MLE with Latent Variables

• We have

$$\begin{aligned} \mathbf{\Theta}_{\text{MLE}} &= \arg\max_{\mathbf{\Theta}} \log \mathbb{P}[X \mid \mathbf{\Theta}] = \arg\max_{\mathbf{\Theta}} \sum_{i=1}^{n} \log \mathbb{P}[\mathbf{x}^{i} \mid \mathbf{\Theta}] \\ &= \begin{cases} \arg\max_{\mathbf{\Theta}} \sum_{i=1}^{n} \log \sum_{\mathbf{z} \in \mathcal{Z}} \mathbb{P}[\mathbf{x}^{i}, \mathbf{z} \mid \mathbf{\Theta}], \text{ when } \mathcal{Z} \text{ is discrete (GMM, MR)} \\ \arg\max_{\mathbf{\Theta}} \sum_{i=1}^{n} \log \int_{\mathbf{z} \in \mathcal{Z}} \mathbb{P}[\mathbf{x}^{i}, \mathbf{z} \mid \mathbf{\Theta}], \text{ when } \mathcal{Z} \text{ is continuous (PCA)} \end{cases} \end{aligned}$$

- Often NP-hard to solve these optimization problems directly
- Indirect methods required

Alternating Optimization to the Rescue

- In many of these problems, although $\max_{\mathbf{\Theta}} \log \mathbb{P}[X \mid \mathbf{\Theta}]$ is difficult,
- ... but $\arg \max_{\mathbf{\Theta}} \log \mathbb{P}[X, Z \mid \mathbf{\Theta}]$ is simple
- ... and $\arg\max_{Z}\log\mathbb{P}[Z\mid X,\mathbf{\Theta}]$ is simple
- Immediately leads us to a simple "hard" assignment algorithm

HARD ALTERNATING OPTIMIZATION

- !1. Initialize Θ^0
- 2. Update $Z^{t+1} = \arg \max_{Z} \mathbb{P}[Z \mid X, \Theta]$
- 3. Update $\mathbf{\Theta}^{t+1} = \arg \max_{\mathbf{\Theta}} \mathbb{P}[X, Z \mid \mathbf{\Theta}]$
- 4. Repeat until convergence

A "Softer" Approach

- Hard AltOpt is often fast and used due to its speed
- However, for complicated problems it can misbehave
- Hard AltOpt also throws away useful information about the latent variables that don't win the MAP contest
- ullet Motivates a softer approach which doesn't trust a single \mathbf{z}^i for \mathbf{x}^i
- How to trust multiple latent variables?
 - Trust all of them but with varying degree of confidence?
 - Trust a few of them?
 - Trust a random latent variable (sampled from some distribution)?
- Is there a sound way to guide this choice?
- Yes, that way will give us the EM algorithm

Deriving the EM algorithm

- Assume discrete latent variables (for simplicity)
- ullet Suppose we already have an estimate $oldsymbol{\Theta}^0$ with us somehow

$$\log \mathbb{P}[\mathbf{x}^{i} \mid \mathbf{\Theta}] = \log \sum_{\mathbf{z} \in \mathcal{Z}} \mathbb{P}[\mathbf{x}^{i}, \mathbf{z} \mid \mathbf{\Theta}]$$

$$= \log \sum_{\mathbf{z} \in \mathcal{Z}} \mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}] \cdot \frac{\mathbb{P}[\mathbf{x}^{i}, \mathbf{z} \mid \mathbf{\Theta}]}{\mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]}$$

$$= \log \mathbb{E} \qquad \left[\mathbb{P}[\mathbf{x}^{i}, \mathbf{z} \mid \mathbf{\Theta}] \right]$$

$$= \log \mathbb{E}_{\mathbf{z} \sim \mathbb{P}\left[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}\right]} \left[\frac{\mathbb{P}\left[\mathbf{x}^{i}, \mathbf{z} \mid \mathbf{\Theta}\right]}{\mathbb{P}\left[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}\right]} \right]$$

$$\geq \mathbb{E}_{\mathbf{z} \sim \mathbb{P}\left[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}\right]} \log \left[\frac{\mathbb{P}\left[\mathbf{x}^{i}, \mathbf{z} \mid \mathbf{\Theta}\right]}{\mathbb{P}\left[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}\right]} \right]$$

Deriving the EM algorithm

- Assume discrete latent variables (for simplice
- ullet Suppose we already have an estimate $oldsymbol{\Theta}^0$ with

$$\log \mathbb{P}[\mathbf{x}^i \mid \mathbf{\Theta}] = \log \sum_{\mathbf{z} \in \mathcal{Z}} \mathbb{P}[\mathbf{x}^i, \mathbf{z} \mid \mathbf{\Theta}]$$

$$= \log \sum_{\mathbf{z} \in \mathcal{Z}} \mathbb{P} \left[\mathbf{z} \mid \mathbf{x}^i, \mathbf{\Theta}^0 \right] \cdot \frac{\mathbb{P} \left[\mathbf{x}^i, \mathbf{z} \mid \mathbf{\Theta} \right]}{\mathbb{P} \left[\mathbf{z} \mid \mathbf{x}^i, \mathbf{\Theta}^0 \right]}$$

$$= \log \mathbb{E}_{\mathbf{z} \sim \mathbb{P}\left[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}\right]} \left[\frac{\mathbb{P}\left[\mathbf{x}^{i}, \mathbf{z} \mid \mathbf{\Theta}\right]}{\mathbb{P}\left[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}\right]} \right]$$

$$\geq \mathbb{E}_{\mathbf{z} \sim \mathbb{P}\left[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}\right]} \log \left[\frac{\mathbb{P}\left[\mathbf{x}^{i}, \mathbf{z} \mid \mathbf{\Theta}\right]}{\mathbb{P}\left[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}\right]} \right]$$

Looks like an expectation

$$\mathbb{E}[f(x)] = \sum_{x \in \mathcal{X}} \mathbb{P}[x] \cdot f(x)$$

NANOW

Just multiplying and dividing by the same quantity

For concave functions $\frac{f(x) + f(y)}{2} \le f\left(\frac{x + y}{2}\right)$

Jensen's inequality: For concave functions $\mathbb{E}[f(x)] \leq f(\mathbb{E}[x])$

Deriving the EM algorithm

- Assume discrete latent variables (for simplicity)
- Suppose we already have an estimate Θ^0 with us somehow

$$\log \mathbb{P}[\mathbf{x}^{i} \mid \mathbf{\Theta}] \geq \mathbb{E}_{\mathbf{z} \sim \mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]} \log \left[\frac{\mathbb{P}[\mathbf{x}^{i}, \mathbf{z} \mid \mathbf{\Theta}]}{\mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]} \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim \mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]} \log \mathbb{P}[\mathbf{x}^{i}, \mathbf{z} \mid \mathbf{\Theta}] - \mathbb{E}_{\mathbf{z} \sim \mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]} \log \mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]$$

• Thus, we have

$$\max_{\mathbf{\Theta}} \log \mathbb{P}[X \mid \mathbf{\Theta}] = \max_{\mathbf{\Theta}} \sum_{i=1}^{n} \log \mathbb{P}[\mathbf{x}^{i} \mid \mathbf{\Theta}]$$

$$\geq \max_{\mathbf{O}} \sum_{i=1}^{n} \mathbb{E}_{\mathbf{z} \sim \mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]} \log \mathbb{P}[\mathbf{x}^{i}, \mathbf{z} \mid \mathbf{\Theta}]$$

Deriving the EM algorithm

Assume discrete latent variables (for simplicity)

Does not depend on **0**

• Suppose we already have an estimate Θ^0 with us some solution

$$\log \mathbb{P}[\mathbf{x}^{i} \mid \mathbf{\Theta}] \geq \mathbb{E}_{\mathbf{z} \sim \mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]} \log \left[\frac{\mathbb{P}[\mathbf{x}^{i}, \mathbf{z} \mid \mathbf{\Theta}]}{\mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]} \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim \mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]} \log \mathbb{P}[\mathbf{x}^{i}, \mathbf{z} \mid \mathbf{\Theta}] - \mathbb{E}_{\mathbf{z} \sim \mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]} \log \mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]$$

• Thus, we have

$$\max_{\mathbf{\Theta}} \log \mathbb{P}[X \mid \mathbf{\Theta}] = \max_{\mathbf{\Theta}} \sum_{i=1}^{n} \log \mathbb{P}[\mathbf{x}^{i} \mid \mathbf{\Theta}]$$

$$\geq \max_{\mathbf{\Theta}} \sum_{i=1}^{n} \mathbb{E}_{\mathbf{z} \sim \mathbb{P}\left[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}\right]} \log \mathbb{P}\left[\mathbf{x}^{i}, \mathbf{z} \mid \mathbf{\Theta}\right]$$

Maximizing RHS will improve the data likelihood

Holds true for every $\mathbf{\Theta}^0$

If we some **0** gives a large value for RHS, it will give an even larger value for LHS!

The EM Algorithm

Don't trust a single $z \in \mathcal{Z}$ but trust them in expectation

E-step

M-step

EM ALGORITHM

- 1. Initialize Θ^0
- 2. For each $i \in [n]$
 - 1. Let $Q_{i,t}(\mathbf{\Theta}) = \mathbb{E}_{\mathbf{z} \sim \mathbb{P}[\mathbf{z} \mid \mathbf{x}^i, \mathbf{\Theta}^t]} \log \mathbb{P}[\mathbf{x}^i, \mathbf{z} \mid \mathbf{\Theta}]$
- 3. Update $\mathbf{\Theta}^{t+1} = \arg \max_{\mathbf{\Theta}} \sum_{i=1}^{n} Q_{i,t}(\mathbf{\Theta})$
- 4. Repeat until convergence
- Notice that if we let $\mathbf{z}^{i,t} = \arg \max_{\mathbf{z} \in \mathcal{Z}} \mathbb{P}\left[\mathbf{z} \mid \mathbf{x}^i, \mathbf{\Theta}^t\right]$
- ... and use $Q_{i,t}(\mathbf{\Theta}) = \log \mathbb{P} \big[\mathbf{x}^i , \mathbf{z}^{i,t} | \mathbf{\Theta} \big]$ (no expectations)
- ... then we get hard AltOpt ©

The EM algorithm implements soft AltOpt

- For sake of simplicity, let $\mathcal{Z} = \{1, 2, ..., K\}$ (GMM, MR)
- Below we reproduce EM exactly for the above special case

EM ALGORITHM

- !1. Initialize Θ^0
- 12. For each $i \in [n]$
 - 1. For each $k \in [K]$
 - 1. Let $\gamma^{i,k,t} = \mathbb{P}[\mathbf{z}^k \mid \mathbf{x}^i, \mathbf{\Theta}^t]$
- 3. Update $\mathbf{\Theta}^{t+1} = \arg\max_{\mathbf{\Theta}} \sum_{i=1}^n \sum_{k=1}^K \gamma^{i,k,t} \cdot \log \mathbb{P}[\mathbf{x}^i, \mathbf{z}^k | \mathbf{\Theta}]$
- 4. Repeat until convergence

Weighted MLE!! Exactly what we did for GMM, MR

Exercise: verify that EM exactly recovers soft AltOpt for GMM, MR, PPCA

Why the EM algorithm is the way it is

• Basically, the message EM gives us is

"Working with
$$\log \mathbb{P}[\mathbf{x}^i \mid \mathbf{\Theta}]$$
 makes life difficult, Working with $\mathbb{E}_{\mathbf{z} \sim \mathbb{P}[\mathbf{z} \mid \mathbf{x}^i, \mathbf{\Theta}^0]} \log \left[\frac{\mathbb{P}[\mathbf{x}^i, \mathbf{z} \mid \mathbf{\Theta}]}{\mathbb{P}[\mathbf{z} \mid \mathbf{x}^i, \mathbf{\Theta}^0]} \right]$ gives peace"

One reason why EM suggests this is because

$$\mathbb{E}_{\mathbf{z} \sim \mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]} \log \left[\frac{\mathbb{P}[\mathbf{x}^{i}, \mathbf{z} \mid \mathbf{\Theta}^{0}]}{\mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]} \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim \mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]} \log \left[\frac{\mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}] \cdot \mathbb{P}[\mathbf{x}^{i} \mid \mathbf{\Theta}^{0}]}{\mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]} \right]$$

$$= \mathbb{E}_{\mathbf{z} \sim \mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]} \log \left[\mathbb{P}[\mathbf{x}^{i} \mid \mathbf{\Theta}^{0}] \right]$$

$$= \log \mathbb{P}[\mathbf{x}^{i} \mid \mathbf{\Theta}^{0}]$$

Why the EM algorithm is the way it is

• Basically, the message EM gives us is

"Working with
$$\log \mathbb{P}[\mathbf{x}^i \mid \mathbf{\Theta}]$$
 makes life difficult, Working with $\mathbb{E}_{\mathbf{z} \sim \mathbb{P}[\mathbf{z} \mid \mathbf{x}^i, \mathbf{\Theta}^0]} \log \left[\frac{\mathbb{P}[\mathbf{x}^i, \mathbf{z} \mid \mathbf{\Theta}]}{\mathbb{P}[\mathbf{z} \mid \mathbf{x}^i, \mathbf{\Theta}^0]} \right]$ gives peace"

Nice! Let us denote

$$Q_t(\mathbf{\Theta}) = \sum_{i=1}^n \mathbb{E}_{\mathbf{z} \sim \mathbb{P}\left[\mathbf{z} \mid \mathbf{x}^i, \mathbf{\Theta}^t\right]} \log \left[\frac{\mathbb{P}\left[\mathbf{x}^i, \mathbf{z} \mid \mathbf{\Theta}\right]}{\mathbb{P}\left[\mathbf{z} \mid \mathbf{x}^i, \mathbf{\Theta}^t\right]} \right]$$

- This means $Q_t(\mathbf{\Theta}^t) = \log \mathbb{P}[X \mid \mathbf{\Theta}^t]$
- But since the M-step maximizes the function $Q_t(\cdot)$, we must have $Q_t(\mathbf{\Theta}^{t+1}) \geq Q_t(\mathbf{\Theta}^t) = \log \mathbb{P}[X \mid \mathbf{\Theta}^t]$

Oct 06, 2017

CS771: Intro to M

Why the EM algorithm is the way it is

• So we have

$$Q_t(\mathbf{\Theta}^{t+1}) \ge Q_t(\mathbf{\Theta}^t) = \log \mathbb{P}[X \mid \mathbf{\Theta}^t]$$

ullet But remember that we showed that for any $oldsymbol{\Theta}$ and any $oldsymbol{\Theta}^0$

$$\log \mathbb{P}[\mathbf{x}^{i} \mid \mathbf{\Theta}] \geq \mathbb{E}_{\mathbf{z} \sim \mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]} \log \left| \frac{\mathbb{P}[\mathbf{x}^{i}, \mathbf{z} \mid \mathbf{\Theta}]}{\mathbb{P}[\mathbf{z} \mid \mathbf{x}^{i}, \mathbf{\Theta}^{0}]} \right|$$

- This means for every $\mathbf{\Theta}$, we have $\log \mathbb{P}[X \mid \mathbf{\Theta}] \geq Q_t(\mathbf{\Theta})$
- Very very nice since this means $\log \mathbb{P}[X \mid \mathbf{\Theta}^{t+1}] \ge Q_t(\mathbf{\Theta}^{t+1}) \ge Q_t(\mathbf{\Theta}^t) = \log \mathbb{P}[X \mid \mathbf{\Theta}^t]$
- The EM algorithm never decreases the log likelihood!
- Hard AltOpt does not have such guarantees in general
- Monotonic progress but may converge to local optimum 😊

 $---Q_1(\Theta)$

- The Q_t -curves always lie below the red curve $\log \mathbb{P}[X \mid \mathbf{\Theta}] \geq Q_t(\mathbf{\Theta}), \forall \mathbf{\Theta}$
- The Q_t curves always touch the red curve at $\mathbf{\Theta}^t$ because

 $Q_t(\mathbf{\Theta}^t) = \log \mathbb{P}[X \mid \mathbf{\Theta}^t]$

 $Q_t(\cdot)$ is not always a quadratic fn. Just an illustration

 $\frac{--\log \mathbb{P}\left[X \mid \mathbf{\Theta}\right]}{--Q_1(\Theta)}$

- The Q_t -curves always lie below the red curve $\log \mathbb{P}[X \mid \mathbf{\Theta}] \geq Q_t(\mathbf{\Theta}), \forall \mathbf{\Theta}$
- The Q_t curves always touch the red curve at $\mathbf{\Theta}^t$ because

 $Q_t(\mathbf{\Theta}^t) = \log \mathbb{P}[X \mid \mathbf{\Theta}^t]$

 $Q_t(\cdot)$ is not always a quadratic fn. Just an illustration

 $\frac{--\log \mathbb{P}\left[X \mid \mathbf{\Theta}\right]}{--Q_1(\Theta)}$

- The Q_t -curves always lie below the red curve $\log \mathbb{P}[X \mid \mathbf{\Theta}] \geq Q_t(\mathbf{\Theta}), \forall \mathbf{\Theta}$
- The Q_t curves always touch the red curve at $\mathbf{\Theta}^t$ because

$$Q_t(\mathbf{\Theta}^t) = \log \mathbb{P}[X \mid \mathbf{\Theta}^t]$$

 $Q_t(\cdot)$ is not always a quadratic fn. Just an illustration

 $\frac{--}{--}\log \mathbb{P}\left[X \mid \mathbf{\Theta}\right]$ $---Q_1(\Theta)$

- The Q_t -curves always lie below the red curve $\log \mathbb{P}[X \mid \mathbf{\Theta}] \geq Q_t(\mathbf{\Theta}), \forall \mathbf{\Theta}$
- The Q_t curves always touch the red curve at $\mathbf{\Theta}^t$ because

 $Q_t(\mathbf{\Theta}^t) = \log \mathbb{P}[X \mid \mathbf{\Theta}^t]$

 $Q_t(\cdot)$ is not always a quadratic fn. Just an illustration

 $---\log \mathbb{P}\left[X \mid \mathbf{\Theta}\right]$

 $---Q_1(\Theta)$

 $---Q_2(\Theta)$

- The Q_t -curves always lie below the red curve $\log \mathbb{P}[X \mid \mathbf{\Theta}] \geq Q_t(\mathbf{\Theta}), \forall \mathbf{\Theta}$
- The Q_t curves always touch the red curve at $\mathbf{\Theta}^t$ because

 $Q_t(\mathbf{\Theta}^t) = \log \mathbb{P}[X \mid \mathbf{\Theta}^t]$

 $Q_t(\cdot)$ is not always a quadratic fn. Just an illustration

 $---Q_1(\Theta)$

 $Q_2(\Theta)$

- The Q_t -curves always lie below the red curve $\log \mathbb{P}[X \mid \mathbf{\Theta}] \geq Q_t(\mathbf{\Theta}), \forall \mathbf{\Theta}$
- The Q_t curves always touch the red curve at $\mathbf{\Theta}^t$ because

 $Q_t(\mathbf{\Theta}^t) = \log \mathbb{P}[X \mid \mathbf{\Theta}^t]$

 $Q_t(\cdot)$ is not always a quadratic fn. Just an illustration

 $--\log \mathbb{P}\left[X \mid \mathbf{\Theta}\right]$

 $---Q_1(\Theta)$

 $---Q_2(\Theta)$

- The Q_t -curves always lie below the red curve $\log \mathbb{P}[X \mid \mathbf{\Theta}] \geq Q_t(\mathbf{\Theta}), \forall \mathbf{\Theta}$
- The Q_t curves always touch the red curve at $\mathbf{\Theta}^t$ because

 $Q_t(\mathbf{\Theta}^t) = \log \mathbb{P}[X \mid \mathbf{\Theta}^t]$

 $Q_t(\cdot)$ is not always a quadratic fn. Just an illustration

$$---Q_1(\Theta)$$

$$---Q_2(\Theta)$$

$$---Q_3(\Theta)$$

- The Q_t -curves always lie below the red curve $\log \mathbb{P}[X \mid \mathbf{\Theta}] \geq Q_t(\mathbf{\Theta}), \forall \mathbf{\Theta}$
- The Q_t curves always touch the red curve at $\mathbf{\Theta}^t$ because

$$Q_t(\mathbf{\Theta}^t) = \log \mathbb{P}[X \mid \mathbf{\Theta}^t]$$

 $Q_t(\cdot)$ is not always a quadratic fn. Just an illustration

 $--\log \mathbb{P}\left[X\mid \mathbf{\Theta}\right]$

 $---Q_1(\Theta)$

 $---Q_2(\Theta)$

 $---Q_3(\Theta)$

• The Q_t curves always touch the red curve at $\mathbf{\Theta}^t$ because

 $Q_t(\mathbf{\Theta}^t) = \log \mathbb{P}[X \mid \mathbf{\Theta}^t]$

 $Q_t(\cdot)$ is not always a quadratic fn. Just an illustration

 $--\log \mathbb{P}\left[X\mid \mathbf{\Theta}\right]$

 $---Q_1(\Theta)$

 $---Q_2(\Theta)$

 $---Q_3(\Theta)$

• The Q_t curves always touch the red curve at $\mathbf{\Theta}^t$ because

 $Q_t(\mathbf{\Theta}^t) = \log \mathbb{P}[X \mid \mathbf{\Theta}^t]$

 $\mathbf{\Theta}^1\mathbf{\Theta}^2 \mathbf{\Theta}^3 \mathbf{\Theta}^4$

 Θ_{MLE}

 $Q_t(\cdot)$ is not always a quadratic fn. Just an illustration

$$---Q_1(\Theta)$$

$$---Q_2(\Theta)$$

$$---Q_3(\Theta)$$

$$---Q_4(\Theta)$$

- The Q_t -curves always lie below the red curve $\log \mathbb{P}[X \mid \mathbf{\Theta}] \geq Q_t(\mathbf{\Theta}), \forall \mathbf{\Theta}$
- The Q_t curves always touch the red curve at $\mathbf{\Theta}^t$ because

$$Q_t(\mathbf{\Theta}^t) = \log \mathbb{P}[X \mid \mathbf{\Theta}^t]$$

Some Thoughts

- EM is useful whenever we have latent variables
- Missing data can be thought of as latent variables
- May variants of EM exist
 - "Fully corrective" E and M steps
 - Incomplete/partial E and M steps
 - Stochastic E and M steps
- More advanced extensions exist (e.g. variational Bayes)
- See the paper by Balakrishnan, Wainwright, Yu Statistical guarantees for the EM algorithm: From population to sample-based analysis, Annals of Statistics 45(1): 77-120, 2017.

Please give your Feedback

http://tinyurl.com/ml17-18afb

