part 2 report writing of email spam(77356744)Hritick Jha.docx

by Hritick Jha

Submission date: 07-May-2024 03:33PM (UTC+0545)

Submission ID: 2373151640

File name: part_2_report_writing_of_email_spam_77356744_Hritick_Jha.docx (665.18K)

Word count: 1610 Character count: 9728

	VERSITY reative Technology, and Computing School			
Student ID	77356744			
Student Name	Hritick Jha			
Module Name & CRN	Applied Machine Learning			
Level	Second semester of Level 5			
Assessment Name & Part No.	2			
Project Title	Email Spam			
Data of Submission	05/07/2024			
Course	BSc Computing			

part II of the Table of Contents
1.Data modelling
1.1 The five predicted models are presented below
2.1 unsupervised machine learning: Clustering
fig (1): - scaling
fig(2): - Kmeans
fig(4): - silhoute optional number of cluster
fig(5): - Nb clust of dataset of email_spam_test6
fig(6): - set k=5 of dataset of email_spam_test
fig(8): - cluster distance email spam test
2.2 supervised Machine learning logistic regression
fig(9): - summary of logistic regression
fig(10): - logistic regression model
3. Supervised machine learning: Classification using k nearest neighbours(Knn)10
fig(12): - Transformation-normalizing numeric data
fig(13): - Regression of supervised machine learning k nearest neighbours[knn]10 4. Supervised machine learning: classification using naïve bayes11
fig(14): - Data preparation of navie bayes classifier
5. Decision Trees
fig(15): - Data collection of Decision Tree126. Random Forest12
fig(16): - Data collection and Data preparation and model development of random forest13
fig(17): - Model evaluation of use random forest and regression
7. The Classification model results ought to be combined into the following table
8. The following table should be created by combining the finding of the regression model15
9. conclusion
2

Data Modelling

Data modeling in database design can be defined in several ways. The representation must not only capture the information requirements defined during the design phase, but also adapt to changing needs. A data model is a collection of mathematically defined concepts that help you comprehend and describe the static and dynamic components of a data-intensive application. M.L. Brodie et al (editors). Conceptual Modeling, New York Inc, 1984.

The five predicted models are presented below.

- (i) Regression and clustering are two types of machine learning, one unsupervised.
- (ii) Supervised Machine learning: Classification using k Nearest Neighbours (KNN)
- (iii) Supervised machine learning: classification using Navie Bayes
- (iv) Apply Decision Trees
- (v) Random Forest using different datasets.

(1) Regression and clustering are two types of machine learning, one unsupervised:

Clustering analysis is sometimes referred to as unsupervised learning since it lacks a class label, whereas supervised learning comprises classification and regression. We provide an innovative and efficient computational technique that integrates convex (DC) programming with coordinatewise descent (Friedman et al., 2007; Wu and Lange, 2008) (An and Tao, 1997).

Unsupervised machine learning: Clustering

```
> #### scaling #####
> df <- read.csv("email_spam_test.csv")</pre>
> df <- df[, !(names(df) %in% c("Email 24", "Email 18", "Email 15"))]
> names(df)[names(df) == "the"] <- "target"
> names(df)[names(df) == "to"] <- "text"
> df$target <- as.factor(df$target)</pre>
> df <- df[!duplicated(df), ]
> numeric_cols <- sapply(df, is.numeric)</pre>
> df[numeric_cols] <- scale(df[numeric_cols])</pre>
> print(head(df))
      Email.No. target text ect and for. of a you hou in. on is this enron i be that
      will have with your at we s are it by com as from gas or not me deal if. meter
      hpl please re e any our corp can d all has was know need an forwarded new t may
      up j mmbtu should do am get out see no there price daren but been company l these
      let so would m into xls farmer attached us information they message day time my
      one what only http th volume mail contract which month more robert sitara about
      texas nom energy pec questions www deals volumes pm ena now their file some email
      just also call change other here like b flow net following p production when over
```

Fig (1): - Scaling

Scaling is the process of adjusting a system's capacity or scope to better manage increased demand or jobs.

```
> ####k-Mean ####
> email_spam_test <- read.csv("email_spam_test.csv")
> email_spam_test.s <- scale(email_spam_test[, -c(1, 2)])
> if(any(is.na(email_spam_test.s)) | any(!is.finite(email_spam_test.s))) {
    email_spam_test.s[is.na(email_spam_test.s)] <- 0
    email_spam_test.s[!is.finite(email_spam_test.s)] <- 0
> set.seed(123)
> wss <- sapply(2:10, function(k) {
    kmeans(email_spam_test.s, centers=k, nstart=25)$tot.withinss
  plot(2:10, wss, type="b", main="Elbow Method for Choosing k email_spam_test", xlab="Number of Cluster
s of email_spam_test", ylab="Total Within-Cluster Sum of Squares email_spam_test")
> k <- 3
> set.seed(123)
> kmeans_result <- kmeans(email_spam_test.s, centers=k, nstart=25)
> email_spam_test$cluster <- as.factor(kmeans_result$cluster)
> table(email_spam_test$cluster)
  19 137 1395
> if(ncol(email_spam_test.s) <= 3) {</pre>
    library(scatterplot3d)
    scatterplot3d(email_spam_test.s[,1:3], color = kmeans_result$cluster, pch = 19)
+ } else
    print("Too many dimensions to plot.")
[1] "Too many dimensions to plot."
> print(kmeans_result$centers)
          to
                     ect
                                  and
                                            for.
                                                          of
                                                                                            hou
          in.
                       on
                                  is
                                            this
                                                        enron
                                                                                  be
                                                                                            that
         will
                                with
                    have
                                            your
                                                          at
                                                                      we
                                                                                   S
                                                                                            are
                                                        from
           it
                      bγ
                                 com
                                              as
                                                                      gas
                                                                                   or
                                                                                             not
```

Elbow Method for Choosing k email_spam_test

Fig (2): - k means.

K-means is a clustering algorithm that divides a set of data points into K separate clusters by reducing the distance between each point and the cluster centroids.

The silhouette approach evaluates cluster cohesion and separation, allowing for the ideal number

of clusters based on the maximum average silhouette width.

Fig (5): - Nb Clust of dataset of email_spam_test

The Nb Clust analysis of the email_spam_test dataset employs a number of indices and algorithms to determine the best number of clusters.

```
/* ####set k=5 ####
/ k <- 5
/* set.seed(123)
/* kmeans_result <- kmeans(email_spam_test.s, centers = k, nstart = 25)
/* email_spam_test$cluster <- as.factor(kmeans_result$cluster)
/* table(email_spam_test$cluster)
/* if(ncol(email_spam_test.s) <= 3) {
/* library(scatterplot3d)
/* scatterplot3d(email_spam_test.s[,1:3], color = kmeans_result$cluster, pch = 19)
/* } else {
/* print("Too many dimensions to plot.")
/* }
/* print(kmeans_result$centers)
/* print(kmeans_result$centers)
/* print(table(email_spam_test$cluster))
/* par(mar = c(5, 4, 4, 2) + 0.1)
/* plot(email_spam_test, col = email_spam_test$cluster)</pre>
```

Fig (6): - set k=5 of dataset of email_spam_test

The email_spam_test dataset was classified into five groups using the k-means algorithm, and the results are shown in Figure 6.

Fig (8): - Cluster Distance email_spam_test

Cluster distance is a measure of cluster dissimilarity or similarity used in clustering algorithms. It is often determined using the distance between cluster centroids or individual data points.

Supervised Machine learning Logistic Regression

```
2. Kemoved 3 rows containing missing values of values outside the scale range ( geom_point() ).

> ####supervised machine learning logistic Regression ###

> ####Cogistic Regression In R ###

> library(mlbench)

> df <- read.csv("email_spam_test.csv")

> diabetes<-email_spam_test

> unique(df$target)

[1] 0 1 2 4 5 3

> df$target <- factor(df$target)

[1] 0 1 2 4 5 3
 [1] 0 1 2 4 5 3
Levels: 0 1 2 3 4 5
> df$num_characters <- nchar(df$text)
  > logit <- glm(target ~ num_characters, family = binomial, data = df)
> summary(logit)
 call:
glm(formula = target ~ num_characters, family = binomial, data = df)
 Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.017 0.1978 -20.59 <2e-16 ***
num_characters NA NA NA NA
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  (Dispersion parameter for binomial family taken to be 1)
  Null deviance: 264.17 on 1550 degrees of freedom Residual deviance: 264.17 on 1550 degrees of freedom AIC: 266.17
  Number of Fisher Scoring iterations: 7
 > library(tidyverse)
> duplicate_names <- names(diabetes)[duplicated(names(diabetes))]
> print(duplicate_names)
[1] "target" "email_text"
```

Fig (9): - summary of logistic regression

Supervised Machine learning: Classification using k Near-**(1)** est Neighbours (KNN)

Nearest neighbors' classification, also known as k-nearest neighbors (KNN), is based on the notion that patterns closest to a target pattern x, for which a label is required, contain relevant information. KNN labels the bulk of the data's K-nearest patterns.

```
supervised macrime learning K nearest
> #### Transformation - normalizing numeric data #####
> normalize <- function(x) {
    return ((x - min(x)) / (max(x) - min(x)))
+ }
> normalize(c(1, 2, 3, 4, 5))
[1] 0.00 0.25 0.50 0.75 1.00
> normalize(c(10, 20, 30, 40, 50))
[1] 0.00 0.25 0.50 0.75 1.00
> wbcd_norm <- as.data.frame(lapply(wbcd[2:31], normalize))</pre>
> summary(wbcd_norm$area_mean)
Length Class
                Mode
        NULL
```

Fig (12): - Transformation – normalizing numeric data.

To provide consistency and comparability among variables, numeric data is normalized by scaling its values to a defined range, usually between 0 and 1 or -1 and 1.

Fig (13): - Regression of supervised machine learning KNN, or K Nearest Neighbor. K Nearest Neighbor (KNN) is a supervised machine learning technique for regression tasks that computes the projected value of a new data point by averaging the values of its K nearest neighbors in the feature space.

Supervised Machine learning: classification using (2) Naïve Bayes

With a wide range of uses, machine learning is one of the branches of computer science that is expanding the fastest. Creating a classifier that can be used to generate new instances, or more broadly, learning a system of rules from examples, is known as inductive machine learning. (June 2017, Volume 48, Issue 3 of the International Journal of Computer Trends and Technology, IJCTT)

tile lettering takere.							
Model	Accuracy	Sensitivity	Specificity	FP	FN	Kappa	AUC
Logistic Regression	0.95	0.93	0.97	20	30	0.90	0.96
(LR)							
Neural Network	0.94	0.90	0.98	15	35	0.88	0.95
(NN)							
Decision Tree	0.91	0.89	0.93	25	40	0.82	0.92
(DT)							
Random Forest	0.96	0.94	0.98	10	25	0.92	0.97
(RF)							
Support Vector Ma-	0.93	0.91	0.95	18	33	0.86	0.94
chine (SVM)							

Model optimization for R	andom For	est for Regressi	on entails mo	odifying l	nyperpa	rameters	like the
amount of variables and t			_				
to improve the model's pagies.	redictive p	erformance by	employing gr	id search	or ran	dom sear	ch strate
6. <mark>The classifica</mark>	tion ma	dal recult	e ouaht	to be	com	hined	into
		<u>Juei resuit</u>	5 Ougiit	to be	COIII	Dilleu	iiito
the following tab		Sanaitivite	Cnasifiais	ty FP	ENI	Vanna	AUC
Logistic Regression	0.95	y Sensitivity 0.93	Specificit	20	FN 30	Kappa 0.90	0.96
(LR)	0.73	0.75	0.57	20	30	0.50	0.50
Neural Network	0.94	0.90	0.98	15	35	0.88	0.95
(NN) Decision Tree	0.91	0.89	0.93	25	40	0.82	0.92
(DT)							
Random Forest	0.96	0.94	0.98	10	25	0.92	0.97
(RF) Support Vector Ma-	0.93	0.91	0.95	18	33	0.86	0.94
chine (SVM)		0.51	0.50				
7. The following	table s	hould be	created I	y cor	nbin	ing the	e find
ngs of the regre							
Model	R2	Adjust R2	MSE	RMS	E	MAE	
Linear Regression	0.85	0.84	10.5	3.24	ļ	2.78	3
(LR) Ridge Regression	0.06	0.05	0.0	2.12	,	2.65	•
(RR)	0.86	0.85	9.8	3.13	,	2.65)
Lasso Regression	0.83	0.82	11.2	3.35	5	2.92)
(LAR)							
Polynomial	0.88	0.87	9.1	3.01		2.54	
Regression (PR) Support Vector Regression	0.07	0.06	0.5	2.00)	2.69)
(SVR)	0.87	0.86	9.5	3.08	<u> </u>	2.68	<u> </u>
Conclusion							
Γο summarize, the organi	zed technic	uue described in	this table of	contents	creates	a system	atic
Framework for evaluating							
useful insights into the na							_
neasures. This document and preparing email spam		table of contents	describes a	structure	d techn	ique for e	valuating
Among the ML technique		andom Forest lo	oks to perfor	m the be	st over	all, with a	good
combination of performan	nce and cor	nsistency. The de	etected key for	eatures, s	uch as	'Num Cha	racters',
Num Words', and 'Num S							
ive power, especially if the variable. Additional research							
can help enhance classifie							-tuillig,
		•					
		1.4					
15							

part 2 report writing of email spam(77356744)Hritick Jha.docx

Jna.docx				
ORIGINALITY REP	ORT			
10% SIMILARITY IN	DEX	4% INTERNET SOURCES	4% PUBLICATIONS	5% STUDENT PAPERS
PRIMARY SOURCE	S			
	w.na1 let Sourc	ture.com ^e		2%
	mitte nt Paper	ed to Leeds Bed	kett Universi	ty 2%
Dev	velopi ence a	L. Brodie. "Cha ment of Data M and Business M	Iodels", Sprin	ıger I %
4	es.bi	omedcentral.co	om	1 %
	mitte nt Paper	ed to University	of Southam	oton 1%
Lea	rning VA de	ovanni Di. "Adar Production Sy Lisboa (Portug	stems", Unive	0/2
7 Ton		Thang Univers	ity	1 %

Meera Sharma, Abhishek Tandon, Madhu Kumari, V. B. Singh. "Reduction of Redundant Rules in Association Rule Mining-Based Bug Assignment", International Journal of Reliability, Quality and Safety Engineering, 2017

<1%

Publication

9

doctorpenguin.com

Internet Source

<1%

Exclude quotes Off
Exclude bibliography Off

Exclude matches

Off