

Universidad Tecnológica de La Habana José Antonio Echeverría cujae

Facultad de Ingeniería Automática y Biomédica

Trabajo de Diploma para optar por el título académico de Ingeniero en Automática

Optimización en el sistema de tratamiento de agua de la planta de bulbos en Laboratorios AICA+ mediante electrodesionización

Autor

Armando Cesar Martin Calderón

Tutores

Ing. Amanda Martí Coll
Ing. Rosaine Ayala Gispert

La Habana, Cuba Junio, 2023

La necesidad de alcanzar niveles más altos de pureza del agua ha impulsado la evolución y mejora continua de las tecnologías de tratamiento de agua. Una de estas tecnologías es la Electrodesionización (EDI), que combina los principios de electrodiálisis y resinas de intercambio iónico para producir agua de alta pureza. En la industria farmacéutica, donde se requiere un agua con una calidad excepcional, la implementación de la tecnología EDI se convierte en un paso esencial después de la ósmosis inversa doble.

Este capítulo presentará la propuesta de implementación de un sistema EDI en la empresa AICA. En primer lugar, se discutirá el sistema de control que regula el funcionamiento del EDI y cómo este se coordina con el sistema de control de la planta en general. Luego, se presentará la propuesta de integración de un sistema SCADA, mostrando su interfaz de usuario y explicando cómo este sistema ayudará a supervisar y controlar el proceso de tratamiento del agua. Finalmente, se describirá el proceso de implementación y puesta en marcha del EDI, abarcando desde la instalación física del dispositivo hasta las pruebas iniciales para verificar su funcionamiento correcto.

1.1 Sistema de control

En cualquier sistema industrial, el control es un componente crucial. La eficiencia, seguridad y eficacia de un sistema dependen en gran medida de su capacidad para responder a las variables del entorno y ajustar su funcionamiento en consecuencia. El sistema de control es el cerebro de la operación, coordinando y supervisando todos los aspectos del proceso. En el caso de un sistema de Electrodesionización, el control es aún más crítico debido a la complejidad del proceso y la alta calidad del producto final requerido.

La programación del Controlador Lógico Programable (PLC, por sus siglas en inglés) es un elemento esencial de este sistema de control. El PLC se encarga de interpretar las señales de entrada de los distintos sensores y actuadores y ejecutar la lógica de control para ajustar las operaciones del sistema de acuerdo a las necesidades. En esta sección, se presentará la programación del PLC en forma de diagrama de flujo para la secuencia principal de funcionamiento del sistema de Electrodesionización.

1.1.1 Puesta en marcha

Un diagrama de flujo ofrece una visión clara y concisa de la lógica de control, facilitando la comprensión y el seguimiento de la secuencia de operaciones. Esto es especialmente útil para el personal de mantenimiento y operación, así como para cualquier persona que necesite entender el funcionamiento del sistema.

La secuencia operacional del sistema de Electrodesionización se inicia con la activación de la planta de ósmosis inversa a través de una interfaz de usuario. Este evento de inicio es seguido de un período de espera hasta que el sensor de nivel determine que el tanque de agua pretratada (TK50A) ha alcanzado su nivel operativo óptimo (1.1).

Durante este tiempo inicial, las etapas de ósmosis inversa (RO1 y RO2) se encuentran en un estado latente. RO1 aguarda la señal de nivel correcta del tanque TK50A, mientras que RO2 permanece en un estado de inactividad.

Una vez que el sensor de nivel indica que TK50A ha alcanzado su nivel adecuado, se implementa un período de confirmación del nivel, que sirve para mitigar el impacto de posibles fluctuaciones en el nivel del tanque. Esta duración de tiempo se ha establecido típicamente en 60 segundos.

A continuación, se inicia el flujo de agua hacia la primera etapa de ósmosis inversa (RO1). Esta etapa implica una descarga inicial de agua, necesaria debido a las posibles condiciones iniciales subóptimas del agua que entra en el sistema. Este período de descarga varía dependiendo de la condición de la membrana de ósmosis, pero suele ser de aproximadamente 120 segundos.

Después de este período de descarga, el agua de RO1 es examinada para determinar si cumple con los parámetros de conductividad requeridos. Si la conductividad no cumple con las especificaciones, RO1 entra en un estado de descarga por alta conductividad y se mantiene en este estado hasta que las mediciones de conductividad y un período de confirmación de 60 segundos indiquen que se cumplen los parámetros de conductividad.

Figura 1.1: Diagrama de flujo para la RO1 del proceso de producción de PW.

En cuanto las condiciones de conductividad sean satisfactorias, RO1 cambia a un estado de producción y, simultáneamente, se inicia la segunda etapa de ósmosis inversa (RO2). Esta segunda etapa, al igual que RO1, comienza con una descarga inicial (ver Figura 1.2). No obstante, a diferencia de RO1, el agua descargada por RO2 se devuelve al tanque de agua pretratada (TK50A), combinándose con el agua de permeado y concentrado. Este período de descarga también está sujeto a las condiciones de las membranas de ósmosis y dura aproximadamente 120 segundos.

Posteriormente, se evalúan los parámetros de conductividad y temperatura en el permeado de RO2. Si alguno de estos parámetros no cumple con las especificaciones, RO2 entra en un estado de descarga por parámetros deficientes y se mantiene en este estado hasta que los parámetros medidos y un período de confirmación de 60 segundos indiquen condiciones aceptables.

Figura 1.2: Diagrama de flujo para la RO2 del proceso de producción de PW.

Una vez que se alcanzan estos criterios, RO2 cambia a un estado de producción. Con ambas etapas de ósmosis inversa (RO1 y RO2) en producción, el módulo de Electrodesionización (EDI) puede comenzar su operación con una descarga inicial hacia el tanque de pretratamiento. Esta descarga inicial tiene una duración de aproximadamente 60 segundos.

Posteriormente, se comprueban los parámetros como la conductividad y la presión en el producto del EDI. Si alguno de estos parámetros no cumple con las especificaciones, el EDI entra en un estado de descarga por parámetros deficientes y se mantiene en este estado hasta que los parámetros medidos y un período de confirmación de 60 segundos indiquen condiciones aceptables.

Finalmente, una vez que los parámetros de conductividad y presión son óptimos y han pasado 60 segundos de confirmación, el EDI cambia a un estado de producción, indicando la finalización exitosa de la secuencia operacional del sistema de Electrodesionización.

Con el sistema completo en estado de producción (ver Figura 1.3), el estado posterior depende del nivel del tanque final. Si el tanque final está completamente lleno, la ósmosis comienza una circulación conjunta, que dura un tiempo de alrededor de 10 minutos. Superado este tiempo, se realiza una pausa de tiempo de 60 minutos antes de comenzar otro ciclo. La ósmosis continúa recirculando y no vuelve a producir hasta que el tanque de almacenamiento de agua purificada, que distribuye a los puntos de uso, señale un nivel del 75 % de capacidad.

Cada vez que concluye un ciclo de producción y debe comenzar otro, se comprueba el estado del sensor de nivel bajo del tanque de agua pretratada. Si este sensor permanece activo (ver Figura 1.3), se lleva a cabo directamente la descarga inicial de la OI1. De lo contrario, será necesario esperar hasta que el tanque TK 50A alcance el nivel mínimo necesario para poner el sistema a purificar.

Figura 1.3: Diagrama de flujo para el EDI del proceso de producción de PW.

1.2 Propuesta de SCADA

Los Sistemas de Control y Adquisición de Datos (SCADA) se han convertido en una herramienta fundamental en el ámbito de la automatización industrial, permitiendo la supervisión y control de procesos a gran escala de una manera eficiente y centralizada. Este sistema ofrece ventajas significativas, como la optimización de operaciones, el aumento de la eficiencia, la mejora de la calidad del producto y la prevención de condiciones peligrosas.

En el contexto del sistema de purificación de agua de la planta, la implementación de un SCA-DA proporcionaría una visibilidad en tiempo real del proceso y facilitaría la gestión de alarmas y el control de los componentes clave del sistema, como las membranas de la ósmosis inversa y el dispositivo EDI. Además, un sistema SCADA permitiría el registro de datos, esencial para el análisis de tendencias y la toma de decisiones basada en datos.

El SCADA propuesto para la optimización de la purificación de agua en la industria farmacéutica AlCA se ha desarrollado en el entorno de TIA Portal. Este sistema está diseñado para proporcionar un monitoreo en tiempo real del proceso de ósmosis inversa, además de ofrecer una interfaz de usuario intuitiva e interactiva para los operadores.

Figura 1.4: Vista general del sistema SCADA.

El SCADA se estructura en varias secciones dedicadas a diferentes aspectos del proceso de purificación de agua. A continuación, se describen detalladamente cada una de estas secciones.

1.2.1 Gestión de Usuarios y Control de Acceso

Una característica crítica del sistema SCADA propuesto es su capacidad para gestionar usuarios y controlar el acceso a sus diferentes secciones. El sistema se ha diseñado con dos niveles de acceso: Operadores y Administradores, para garantizar la seguridad y funcionalidad adecuada. Es importante resaltar que todas las vistas y funcionalidades del SCADA están protegidas y se requiere un inicio de sesión válido para acceder. Un usuario debe al menos tener privilegios de Operador para navegar por las diversas vistas del sistema SCADA. La Figura 1.5 muestra la pantalla de inicio de sesión.

Figura 1.5: Pantalla de inicio de sesión del sistema SCADA propuesto.

Los Operadores tienen acceso a las funciones básicas del sistema. Pueden monitorizar el proceso en tiempo real y realizar ajustes a los parámetros según sea necesario. Sin embargo, están limitados en el acceso a ciertas funciones de administración, como la gestión de usuarios.

Los Administradores, por otro lado, tienen acceso total a todas las secciones y funciones del sistema SCADA. Esto incluye la capacidad para gestionar usuarios, lo que les permite añadir, eliminar o modificar los privilegios de acceso de los operadores.

La Figura 1.6 proporciona una representación visual de la interfaz de la sección de gestión de usuarios del sistema SCADA propuesto.

Figura 1.6: Interfaz de la sección de gestión de usuarios del sistema SCADA propuesto.

1.2.2 Monitoreo del proceso

El proceso de ósmosis inversa con electrodesionización, se presenta en la interfaz del SCA-DA como una vista detallada, que refleja la operación del sistema en tiempo real. Esta vista reflejada en la figura 1.7 permite al usuario interactuar y obtener información detallada de los componentes del sistema, como modelo, fabricante, entre otras características. Para acceder a estos detalles, el usuario simplemente puede hacer clic en el componente deseado.

Figura 1.7: Interfaz de la vista del proceso de ósmosis inversa.

Cuando un usuario hace clic en un componente, se abre una ventana con las características detalladas del componente seleccionado. La Figura 1.8 muestra un ejemplo de esta ventana.

Figura 1.8: Interfaz de las características del componente.

Esta funcionalidad de monitoreo en tiempo real proporciona a los usuarios una comprensión clara y actualizada del estado de la planta de tratamiento, permitiéndoles tomar decisiones informadas y rápidas en caso de necesidad. Este nivel de control y transparencia mejora la eficiencia operativa y reduce la probabilidad de errores y problemas no detectados.

1.2.3 Configuración de Parámetros

El sistema SCADA propuesto provee una interfaz dedicada para la configuración de parámetros, brindándole al usuario la capacidad de ajustar y personalizar varios aspectos operativos de la planta de tratamiento de agua. Esta sección es de vital importancia para garantizar el rendimiento óptimo del sistema y adaptarlo a condiciones cambiantes.

A través de esta interfaz, los usuarios pueden modificar parámetros de retardo para cada fase del proceso, así como la cantidad de corriente y voltaje suministrada al electrodesionizador. Además, también se pueden ajustar parámetros asociados a las alarmas del sistema, como los umbrales de activación, para adaptarlos a las necesidades específicas de la planta.

La Figura 1.9 muestra la interfaz de la sección de configuración de parámetros.

Figura 1.9: Interfaz de la sección de configuración de parámetros.

1.2.4 Sistema de Alarmas

Una característica esencial del sistema SCADA propuesto es su sofisticado sistema de alarmas. Este sistema tiene como objetivo alertar a los operadores y administradores sobre cualquier condición anómala que pudiera afectar el rendimiento de la planta de tratamiento de agua o que requiera atención inmediata.

Cuando se activa una alarma, el sistema SCADA muestra una ventana emergente en la que se enlistan todas las alarmas activas no acusadas. Los usuarios pueden acusar estas alarmas directamente desde esta ventana. La Figura 1.10 muestra esta ventana emergente de alarmas.

Figura 1.10: Ventana emergente de alarmas.

En la interfaz dedicada para las alarmas, se puede observar un registro que muestra un historial de alarmas. Este registro tiene un buffer que almacena las alarmas más recientes hasta que se llena, momento en el que las alarmas más antiguas son reemplazadas por las nuevas. La Figura 1.11 muestra la interfaz de la sección de alarmas.

Figura 1.11: Interfaz de la sección de alarmas.

Además, el sistema también cuenta con una funcionalidad que permite a los usuarios acceder a un historial completo de alarmas almacenadas en un fichero, incluyendo alarmas de días anteriores, lo que facilita el análisis y la identificación de tendencias o problemas recurrentes. La Figura 1.12 muestra esta interfaz de historial completo de alarmas.

Figura 1.12: Interfaz del historial completo de alarmas.

1.2.5 Gráficos Históricos

La sección de gráficos históricos del sistema SCADA propuesto proporciona una herramienta vital para el análisis de la planta de tratamiento de agua. Los gráficos ilustran el comportamiento de las variables más importantes del proceso a lo largo del tiempo, lo que permite a los operadores y administradores rastrear cambios y detectar tendencias o problemas.

Las variables se almacenan en un fichero, lo que permite realizar análisis retrospectivos con información de días, semanas o incluso meses atrás. Además, los usuarios pueden generar informes basados en estos datos para un análisis más detallado o para la documentación de procesos.

La Figura 1.13 muestra la interfaz de la sección de gráficos históricos.

Figura 1.13: Interfaz de la sección de gráficos históricos.

1.2.6 Generación de Informes

La generación de informes es otra funcionalidad clave en el sistema SCADA propuesto. Los operadores y administradores pueden generar informes detallados basados en los datos de las variables del proceso, lo que facilita el análisis detallado y la toma de decisiones informada.

Los informes pueden contener información de varias variables en un período de tiempo determinado, lo que permite evaluar la eficiencia del sistema y detectar posibles problemas. Además, estos informes pueden servir para la documentación de procesos, lo que es útil para auditorías y revisiones de calidad.

La Figura 1.14 muestra la interfaz de la generación de informes.

Figura 1.14: Interfaz de la generación de informes.

1.3 Instalación del EDI

La implementación de un nuevo componente de un sistema de tratamiento de agua, como un dispositivo de EDI, es un proceso complejo que requiere consideraciones cuidadosas de diseño, logística, instalación y pruebas. Esta tarea se vuelve aún más crítica cuando este nuevo componente debe integrarse a un sistema existente sin interrumpir significativamente su funcionamiento normal.

La implementación del sistema de Electrodesionización (EDI) luego de la ósmosis inversa doble requiere una serie de pasos clave para garantizar su correcta instalación y funcionamiento. A continuación, se proporciona un desglose detallado de este proceso:

- 1. Evaluación del sitio de instalación: Antes de la instalación del EDI, es esencial realizar una evaluación exhaustiva del sitio para determinar la adecuación del área para alojar la unidad. Factores como la disponibilidad de espacio, la accesibilidad para el mantenimiento, la disponibilidad de suministro de agua y energía, y las condiciones ambientales deben ser considerados.
- 2. **Preparación del sitio de instalación:** Una vez evaluado el sitio, se prepara para la instalación. Esto puede implicar trabajos de construcción menores para proporcionar una base estable y segura para la unidad EDI, y la configuración de las conexiones necesarias para el agua, la electricidad y el drenaje.

- 3. Instalación de la unidad EDI: La unidad de EDI se instala en el sitio preparado. Esto debe ser realizado por técnicos cualificados para garantizar que la unidad se instale correctamente y de manera segura. Los componentes de la unidad deben ser cuidadosamente manejados para evitar daños.
- 4. **Conexión de la unidad EDI:** Una vez instalada la unidad, se conecta a las fuentes de agua y electricidad, y al sistema de drenaje. Los componentes de la unidad, como las membranas, las bombas y los sensores, también se conectan y se aseguran.
- 5. **Pruebas de la unidad EDI:** Antes de la puesta en marcha completa, la unidad EDI se somete a una serie de pruebas para verificar su correcto funcionamiento. Esto incluye pruebas de la funcionalidad del PLC y del sistema SCADA, así como pruebas de la capacidad de la unidad para purificar el agua a las especificaciones requeridas.
- 6. Puesta en marcha de la unidad EDI: Una vez que se han realizado y superado todas las pruebas, se pone en marcha la unidad EDI. Durante la puesta en marcha inicial, se debe monitorear de cerca la operación de la unidad para identificar y corregir cualquier problema que pueda surgir.

En cada una de estas etapas, se deben seguir estrictamente las normas y procedimientos de seguridad para proteger tanto al personal como al equipo. También es fundamental mantener una documentación detallada de todo el proceso de instalación y puesta en marcha para facilitar futuras referencias y mantenimiento.