Forecasting "High" and "Low" of financial time series by Particle systems and Kalman filters

S. ANANDARAJAH, S. BOUTIGNY, F. DI FABIO, N. LATRACHE

Introduction

▶ But de l'article : prédiction du premier "stop-loss time" évalué à partir de "tick data" et d'un modèle de trading.

Introduction

- But de l'article : prédiction du premier "stop-loss time" évalué à partir de "tick data" et d'un modèle de trading.
- Utilisation des fonctions RBF :

$$f(x_k) = \sum_{i=1}^{I} \lambda_{ik}^f \exp\left[-\frac{1}{\sigma_{ik}^f} (x_k - c_{ik}^f)^t (x_k - c_{ik}^f)\right]$$

$$h(x_k) = \sum_{j=1}^J \lambda_{jk}^h exp \left[-\frac{1}{\sigma_{jk}^h} (x_k - c_{jk}^h)^t (x_k - c_{jk}^h) \right]$$

Utilisation du filtre à particules pour la prédiction

Table des matières

Linear Kalman Filter

Extended Kalman Filter

Unscented Kalman Filter

Sigma Point Particle Filter

Applications

Linear Kalman Filter

Dans le cadre du LKF, le système d'équations est linéaire. Soit le système d'équations linéaires suivant :

$$\begin{cases} x_{k+1} = A_k x_k + B_k u_k + G_k v_k \\ y_k = C_k x_k + n_k \end{cases}$$

avec v_k et n_k des bruits gaussiens.

Deux fonctions non linéaires :

$$\begin{cases} x_{k+1} = f_k(x_k, u_k, v_k; w) \\ y_k = h_k(x_k, v_k; w) \end{cases}$$

- Principe :
 - Approximation linéaire de premier ordre des fonctions de transition et de mesure à l'aide de matrices jacobiennes
 - Application du filtre de Kalman : Etapes de prévision et de mise à jour

Extended Kalman Filter: limites

► Limites :

Extended Kalman Filter: limites

- Limites :
 - Erreurs engendrées par la linéarisation
 - Divergence de l'EKF
 - Matrice jacobienne compliquée à calculer pour certains modèles

Une extension: Consistent Extended Kalman Filter

- Le but est de rendre la méthode EKF cohérente en concevant et ajoutant les paramètres suivants :
 - $ightharpoonup \Delta Q_k$ aux calculs de $P_{k|k-1}, \Sigma_{k|k-1}, K_k, \hat{x}_{k|k}, P_{k|k}$
 - $ightharpoonup \Delta R_k$ au calcul de $P_{k|k}$
- Les expressions de Q_k et R_k sont choisies de telle sorte que le filtre CEKF soit le plus performant
- ▶ Un filtre est cohérent si : $\mathbb{E}\left[\hat{X}_k X_k\right] = 0$ et $\mathbb{E}\left[(\hat{X}_k - X_k)(\hat{X}_k - X_k)^t\right] = P_k$
- 1. erreur d'estimation suffisamment petite
- 2. erreur quadratique moyenne de l'estimateur égale à celle du filtre de Kalman

Unscented Kalman Filter

- ► Technique de filtrage qui permet de traiter des problèmes non linéaires sans utiliser la linéarisation de l'EKF.
- Utilisation de l'unscented transformation.

Calcul des Sigma-Points

$$\chi^{0} = \mu$$

$$\chi^{i} = \mu + \gamma(\sqrt{\Sigma})_{i} \ \forall i = 1, \dots, L$$

$$\chi^{i} = \mu - \gamma(\sqrt{\Sigma})_{i} \ \forall i = L + 1, \dots, 2L$$

οù

- L : dimension du vecteur d'état augmenté
- \triangleright λ : paramètre d'échelle (nous indique de combien on s'éloigne de la moyenne)

Calcul de la matrice racine carrée

On a deux méthodes pour calculer la matrice racine carrée :

1. Par diagonalisation : $\sqrt{\Sigma} = P\bar{D}P^{-1}$ où

$$ar{D} = egin{bmatrix} \sqrt{d_{11}} & \cdots & 0 \ dots & \ddots & dots \ 0 & \cdots & \sqrt{d_{nn}} \end{bmatrix}$$

En effet, soit $S = P\bar{D}P^{-1}$. Alors:

$$S \times S = P\bar{D}P^{-1} \times P\bar{D}P^{-1}$$
$$= P\bar{D}\bar{D}P^{-1}$$
$$= PDP^{-1}$$
$$= \Sigma$$

Calcul de la matrice racine carrée

On a deux méthodes pour calculer la matrice racine carrée :

1. Par diagonalisation : $\sqrt{\Sigma} = P\bar{D}P^{-1}$ où

$$ar{D} = egin{bmatrix} \sqrt{d_{11}} & \cdots & 0 \ dots & \ddots & dots \ 0 & \cdots & \sqrt{d_{nn}} \end{bmatrix}$$

2. Par la transformation de Cholesky : $\Sigma = L \times L^t \Rightarrow \sqrt{\Sigma} = L$

Poids des Sigma-Points

- $w_m^0 = \frac{\lambda}{I + \lambda}$ Poids pour le calcul de la moyenne
- $w_c^0 = \frac{\lambda}{I+\lambda} + (1-\alpha^2+\beta)$ Poids pour le calcul de la matrice de covariance
- $w_m^i = \frac{\lambda}{2(I+\lambda)} \ \forall i=1,\cdots,2L$ Poids pour le calcul de la moyenne
- $w_c^i = \frac{\lambda}{2(L+\lambda)} \ \forall i=1,\cdots,2L$ Poids pour le calcul de la matrice de covariance

Propagation des Sigma-Points et calcul de la moyenne et covariance

$$\blacktriangleright \ \tilde{\mu} = \sum_{i=0}^{2L} w_m^i f(\chi^i)$$

$$\qquad \qquad \tilde{\Sigma} = \sum_{i=0}^{2L} w_c^i (f(\chi^i) - \tilde{\mu}) (f(\chi^i) - \tilde{\mu})^t$$

IKF vs FKF vs UKF

La mise en place de ces filtres est critiquable :

- Cadre gaussien et fonctions linéaires relativement peu probables.
- Introduction de fonctions non linéaires, plus proche de la réalité, indispensable.
- EKF le permet et fait appel à une linéarisation qui posera à son tour problème.
- La distribution est approchée avec plusieurs points.

EKF vs UKF

Particle Filter

- ► LKF, EKF, UKF vs PF : plus aucune hypothèse sur la distribution
- On utilise deux techniques :
 - 1. Sequential Importance Sampling
 - Resampling

Sequential Importance Sampling

Sequential Importance Sampling

$$w_k^i = w_{k-1}^i \frac{p(y_k|x_k^i)p(x_k^i|x_{k-1}^i)}{\pi(x_k^i|x_{0:k-1}^i,y_{1:k})}$$

Resampling

Après avoir simulé N points au temps t, on double le nombre de points ayant un grand poids et on élimine ceux ayant un petit poids :

Estimation en t

$$\begin{bmatrix} w_1 & x_{1,t} \\ w_2 & x_{2,t} \\ \vdots & \vdots \\ w_N & x_{N,t} \end{bmatrix}$$

Triage du vecteur

$$\begin{bmatrix} \tilde{w}_1 & \tilde{x}_{1,t} \\ \tilde{w}_2 & \tilde{x}_{2,t} \\ \vdots & \vdots \\ \tilde{w}_N & \tilde{x}_{N,t} \end{bmatrix}$$

$$\tilde{w}_i > \tilde{w}_j$$

$$\text{pour } i > j$$

Elimination petits poids,

doublement grands poids

$$\begin{bmatrix} \tilde{W}_{N-j} & \tilde{X}_{N-j,t} \\ \tilde{W}_{N-j+1} & \tilde{X}_{N-j+1,t} \\ \vdots & \vdots \\ \tilde{W}_{N} & \tilde{X}_{N,t} \\ \tilde{W}_{j+1} & \tilde{X}_{j+1,t} \\ \vdots & \vdots \\ \tilde{W}_{N} & \tilde{X}_{N,t} \end{bmatrix}$$

Calcul de l'estimateur

$$\hat{x}_t = \frac{1}{N} \sum_i \tilde{x}_{i,t}$$

Sigma-Point Particle Filter

- 1. Etape 1 : Initialisation $\rightarrow x_i \sim proposal$
- 2. Etape 2 : UKF $\rightarrow (\bar{x}_t^i, S_t^i)$
- 3. Etape 3 : Tirage $\rightarrow \tilde{x}_t^i = \bar{x}_t^i + S_t^i \times v_t$ avec $v_t \sim N(0,1)$
- 4. Etape 4 : Calcul des poids

$$w_t^i = w_{t-1}^i \frac{\text{vraisemblance} \times \text{transition prior}}{\text{proposal}}$$

5. Etape 5 : Resampling

Application filtres UKF et SPPF

Considérons un SSM avec les deux équations d'état et de mesure suivantes:

$$f(x_t) = \lambda^f \left[\frac{1}{\sigma^f} (x_t - c^f)^t (x_t - c^f) \right]$$

$$h(x_t) = \lambda^h \left[\frac{1}{\sigma^h} (x_t - c^h)^t (x_t - c^h) \right]$$

Nous avons appliqué les filtres UKF et SPPF afin de reconstruire la série Apple (02-01-2015/31-12-2019).

Application filtres UKF et SPPF

Résultats :

Application filtres EKF et UKF

Considérons un SSM avec les deux équations d'état et de mesure suivantes :

$$dVt = k(\theta - V_t)dt + \eta \rho (d \ln S_t - (\mu - \frac{1}{2}V_t)dt) + \eta \sqrt{V_t}\sqrt{1 - \rho^2}dBt$$
 $d \ln S_t = (\mu - \frac{1}{2}V_t)dt + \sqrt{V_t}dW_t$

Nous avons appliqué les filtres UKF et SPPF afin d'extraire la volatilité de la série Apple (02-01-2015/31-12-2019).

Application filtres EKF et UKF et SPPF

Résultats :

Application filtres EKF et UKF et SPPF Résultats :

