Задача 1

Построить обратные матрицы для следующих матриц:

$$\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} -5 & 9 & 7 \\ -2 & 3 & 3 \\ 3 & -5 & -4 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 2 & 0 & 2 & 1 \\ 1 & 1 & 2 & 1 \end{bmatrix}.$$

Ответы:

$$\mathbf{A}^{-1} = \begin{bmatrix} -4 & 3 \\ 3 & -2 \end{bmatrix}, \quad \mathbf{B}^{-1} = \begin{bmatrix} 3 & 1 & 6 \\ 1 & -1 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \quad \mathbf{C}^{-1} = \begin{bmatrix} 2 & -1 & -1 & 1 \\ 2 & -1 & -2 & 2 \\ -1 & 1 & 1 & -1 \\ -2 & 0 & 1 & 0 \end{bmatrix}.$$

Залача 2

Входят ли слагаемые $a_{34}a_{11}a_{24}a_{53}a_{42}$ и $a_{21}a_{54}a_{15}a_{32}a_{43}$ в формулу полного разложения определителя пятого порядка и, если да, то с каким знаком?

Ответ: входит слагаемое $a_{21}a_{54}a_{15}a_{32}a_{43}$ со знаком "+".

Задача 3

Доказать следующие свойства определителя:

1)
$$|\ell^{\mathrm{I}}(\mathbf{A})| = \lambda |\mathbf{A}|, |\ell^{\mathrm{II}}(\mathbf{A})| = |\mathbf{A}|, |\ell^{\mathrm{III}}(\mathbf{A})| = |\mathbf{A}|, |\ell^{\mathrm{IV}}(\mathbf{A})| = -|\mathbf{A}|;$$

- 2) если в матрице \mathbf{A} имеется нулевая строка, то $|\mathbf{A}| = 0$;
- 3) если в матрице **A** имеются две одинаковые строки, то $|\mathbf{A}| = 0$.

Задача 4

Вычислить определители следующих матрица

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 1 & 2 \\ -1 & -2 & 3 & -2 \\ 1 & -1 & 2 & -2 \\ 2 & 2 & 3 & 4 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 4 & 4 & -1 & -1 \\ -1 & -2 & 2 & 1 \\ -3 & 3 & -3 & -3 \\ 2 & -2 & 3 & 2 \end{bmatrix}.$$

Ответы: $|\mathbf{A}| = -10$, $|\mathbf{B}| = 3$.

Задача 5

Решить уравнение $|\mathbf{A} - \lambda \mathbf{E}| = 0$ относительно λ , если:

1)
$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
,
2) $\mathbf{A} = \begin{bmatrix} -5 & -6 \\ 3 & 4 \end{bmatrix}$,
3) $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.

Ответы:

1)
$$\lambda_{1,2} = \pm 1$$
;

2)
$$\lambda_1 = -2$$
, $\lambda_2 = 1$;

3)
$$\lambda_1 = 1$$
, $\lambda_2 = -1$, $\lambda_3 = 0$.