ระบบค้นหากองทุนที่เหมาะสมกับผู้ลงทุน Mutual Fund Searching System

คณะผู้จัดทำ

นาย ฐปนพงศ์ จันตะมะ 600510542 นาย วชิระ นรสิงห์ 600510576

อาจารย์ที่ปรึกษา

ผู้ช่วยศาสตราจารย์ ดร.อารีรัตน์ ตรงรัศมีทอง

รายงานนี้เป็นส่วนหนึ่งของวิชา การออกแบบและพัฒนาออนโทโลยี (204424) ภาคการศึกษาที่ 2 ปีการศึกษา 2563

คำนำ

รายงานเล่มนี้จัดทำขึ้นเพื่อเป็นส่วนหนึ่งของวิชา การออกแบบและพัฒนาออนโทโลยี (204424) โดยคณะ ผู้จัดทำได้สร้างระบบสำหรับค้นหากองทุนให้เหมาะสมกับผู้ลงทุน โดยใช้ฐานข้อมูลในรูปแบบ ออนโทโลยีซึ่งมี ความสามารถสำหรับจัดเก็บฐานข้อมูลในรูปแบบฐานข้อมูลแบบความรู้

โดยคณะผู้จัดทำหวังว่าการจัดทำเอกสารฉบับนี้จะช่วยให้ข้อมูลที่เป็นประโยชน์ต่อผู้สนใจในการออกแบบ ฐานข้อมูลแบบ ออนโทโลยี และ การใช้งานเครื่องมือสำหรับใช้ฐานข้อมูลแบบ ออนโทโลยี

นาย ฐปนพงศ์ จันตะมะ

นาย วชิระ นรสิงห์

สารบัญ

เรื่อง		หน้า
คำนำ		a
สารบัญ		b
บทที่ 1	บทนำ	1
1.1	แนวคิดหลัก (Concept)	1
1.2	วัตถุประสงค์	1
1.3	ข้อความที่เกี่ยวข้อง	1
บทที่ 2	เครื่องมือ และ ทฤษฎีที่เกี่ยวข้อง	3
2.1	เครื่องมือที่ใช้ในการพัฒนาระบบ	3
2.1.	1 Related Technologies	3
2.2	ภาษาที่ใช้พัฒนาระบบและภาษาที่ใช้ในการ Query Ontology	3
บทที่ 3	การออกแบบ	5
3.1	Ontology Schema	5
3.2	Class Hierarchy	7
3.3	Object Properties	9
3.4	Data Properties	9
3.5	ตัวอย่างของ Instance	10
3.6	Relation between objects	12
3.7	ส่วนก่อประสาน (User Interface)	13
3.8	สถาปัตยกรรมของระบบ (Software Architecture)	14

บทที่ 1

บทนำ

1.1 แนวคิดหลัก (Concept)

ระบบค้นหากองทุนที่เหมาะสมกับนักลงทุน เนื่องจากการลงทุนเป็นเรื่องที่จำเป็นต้องใช้ความรู้ในการพิจารณา ทำให้นักลงทุนจะต้องศึกษาข้อมูลจำนวนมากก่อนตัดสินใจ แต่ระบบที่จัดทำจะนำ Knowledge Base มาช่วยใน การตัดสินใจและเลือกกองทุนที่เหมาะสมกับนักลงทุน และ แสดงข้อมูลการคาดการณ์ ผลตอบแทนที่ได้ผ่านระบบ ภายนอก โดยใช้การเขียนโปรแกรมสำหรับแสดงผลคาดการณ์ในอนาคตทั้งนี้ผลคาดการณ์เป็นเพียงการนำข้อมูล จากอดีตมาประมวลผล

1.2 วัตถุประสงค์

เพื่อแสดงกองทุนที่เหมาะสมกับ เป้าหมาย, เงินทุน และ ระยะเวลาการลงทุน ของผู้ลงทุน

1.3 ข้อความที่เกี่ยวข้อง

- บริษัทหลักทรัพย์จัดการกองทุน
- นักลงทุน
- ราคา
 - NAV
 - ราคาซื้อ
 - ราคาขาย
- กองทุนรวม
 - กองทุนเปิด
 - กองทุนปิด
 - กองทุนรวมตลาดเงิน
 - กองทุนรวมตราสารหนี้
 - กองทุนรวมตราสารทุน

- กองทุนรวมผสม
- กองทุนรวมทรัพย์สินทางเลือก
- กองทุนรวมต่างประเทศ
- ความเสี่ยง
 - เสี่ยงน้อย (1)
 - เสี่ยงมาก (8)
- สินทรัพย์
 - กองทุน
 - หุ้น
 - ตราสารหนี้ภาครัฐ
 - หุ้นกู้
 - ทองคำ
 - น้ำมัน
 - อสังหาริมทรัพย์
- ผลตอบแทน
 - ปันผล
 - สะสมมูลค่า

บทที่ 2 เครื่องมือ และ ทฤษฎีที่เกี่ยวข้อง

2.1 เครื่องมือที่ใช้ในการพัฒนาระบบ

2.1.1 Related Technologies

- React Framework สำหรับสร้าง Client application
- Express.js (a server framework)
- Prisma (an ORM for creating Object-oriented model for Relational Database)
- Fast API (a server framework for python)
- Axios (Library for creating Http Request to RESTful API)
- PostgreSQL สำหรับเก็บข้อมูลที่จำเป็นต้อง Update อยู่ตลอด
 ยกตัวอย่างเช่น NAV, ราคาซื้อ, ราคาขาย, รายละเอียดกองทุน
- Protégé (a knowledge base administration tool) สำหรับสร้าง Ontology
- Apache Jena Fuseki สำหรับ Ontology Server เพื่อรับ Query และ Update Command
- fbProphet สำหรับทำนาย Growth rate ของกองทุน

2.1.2 Outer API

• SEC API (กลต) สำหรับเรียก Fact Sheet และ NAV ของกองทุนรวมทั้งหมด

2.2 ภาษาที่ใช้พัฒนาระบบและภาษาที่ใช้ในการ Query Ontology

2.2.1 Client App + Server

- TypeScript
- Python
- SQL Language

2.2.2 Ontology Server (Jena Fuseki)

- SPARQL Command
- Turtle Type extension

บทที่ 3

การออกแบบ

3.1 Ontology Schema

การออกแบบ Ontology Schema ในระบบค้นหากองทุนนั้นเริ่มจากการออกแบบที่ตัวกองทุนซึ่งสำคัญที่สุด โดยกองทุนมี Sub-Class ที่ได้มากจากการจำแนกของ กลต. จากเอกสาร นิยามประกาศ สน.87/2558 ภาคผนวก 2 โดยออกแบบไว้ดังนี้

• กองทุน

- กองทุนที่จ่ายปันผล
- กองทุนตราสารหนี้
- กองทุนตราสารทุน
- กองทุนผสม
- กองทุนทางเลือก
- อื่น

นอกจากนี้กองทุนยังมี Data-Properties หรือ ข้อมูลภายใน Object โดยการเลือก Data-Properties ทำได้ จากการวิเคราะห์การเลือกกองทุนเบื้องต้นซึ่งประกอบไปด้วย

- ชื่อรหัสกองทุน
- ผลตอบแทนที่ทำได้ ตั้งแต่เริ่มจัดตั้ง
- ระดับความเสี่ยง
- การขาดทุนมากที่สุด ตั้งแต่จัดตั้ง
- ค่าความคลาดเคลื่อน

เนื่องจากข้อมูลเหล่านี้มีการเปลี่ยนแปลงเพียงปีละครั้งจึงเหมาะสมที่จะนำเข้าไปไว้ใน Knowledge Base เพื่อ ทำการวิเคราะห์หากองทุนที่เหมาะสม

ตัวอย่าง Individual ของ กองทุน

ในส่วนต่อไปคือส่วนของ สินทรัพย์ที่กองทุนลงทุนโดยจะถูกเชื่อมความสัมพันธ์กับกองทุนโดย Object Properties ที่ชื่อว่า Invest โดยลักษณะของ Class สินทรัพย์มีดังนี้

- สินทรัพย์
 - 0 เงินฝาก
 - 0 หน่วยลงทุน
 - 0 หุ้น
 - 0 ตราสารหนี้
 - 0 หุ้นกู้
 - ทองคำ
 - 0 ใบสำแดงสิทธิ

โดย สินทรัพย์จะมี Data Properties เพียง 3 เท่านั้นซึ่งประกอบไปด้วย

- รหัสของสินทรัพย์
- ชื่อของสินทรัพย์
- สัญลักษณ์ของสินทรัพย์

ตัวอย่าง Individual ของ สินทรัพย์

3.2 Class Hierarchy

Class Hierarchy คือ แผนภาพแสดงความสัมพันธ์ระหว่าง Class และ Property ซึ่งมีความสัมพันธ์ใน ลักษณะ Subject => Predicate => Object โดยใช้สัญลักษณ์ในการแสดงแผนภาพดังนี้

Symbol	Meaning
Class	แสดงถึง Class ที่เป็น Subject
Relation	แสดงถึง ความสัมพันธ์ระหว่าง Class ถึง Class หรือ Class ถึง Property
Property	แสดงถึงความหมายของ ความสัมพันธ์ที่เกิดขึ้นระหว่าง Class โดยผ่าน Relation

แผนภาพแสดง Class Hierarchy

3.3 Object Properties

Name	Domain	Range
Invest	Fund	Asset

3.4 Data Properties

Name	Domain	Range
asset_id	asset	string
asset_name	asset	string
asset_symbol	asset	string
project_class_name	fund	string
project_id	fund	string
project_loss	fund	decimal
project_name	fund	string
project_profit	fund	decimal
project_sd	fund	decimal
risk_rate	fund	integer

3.5 ตัวอย่างของ Instance

1. Class: fund

Sub-Class: Equity-Fund

Instance Name: SCBSET50

Data Property

Subject	Туре	Value
project_id	string	M0415_2562
loss	float	36.5%
risk_rate	int	6
sd	float	18.76%
profit	float	5.04%

Object Property

Subject	Predicate	Object
SCBSET50	Invest	PTT
SCBSET50	Invest	AOT
SCBSET50	Invest	CPALL
SCBSET50	Invest	DELTA
SCBSET50	Invest	AIS

2. Class: asset

Sub-class: stock

Instance Name: AOT

Data Property

Property	Туре	Value
asset_id	string	AOT
asset_name	string	AIRPORTS OF THAILAND
		PUBLIC COMPANY LIMITED
Asset_symbol	string	AOT

3.6 Relation between objects

ตัวอย่างของ Individual ที่ถูกเชื่อมความสัมพันธ์เข้ากับทั้ง Object Property และ Data Property

3.7 ส่วนก่อประสาน (User Interface)

หน้าต่างที่ผู้ใช้จะใช้งานมีลักษณะดังนี้

ระบบค้นหากองทุน

3.8 สถาปัตยกรรมของระบบ (Software Architecture)

ภาพแสดงสถาปัตยกรรมทั้งหมดของระบบ

