

# Net-Zero America - maryland state report

2021-03-15

These data underlie graphs and tables presented in the Princeton Net-Zero America study:

E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, interim report, Princeton University, Princeton, NJ, December 15, 2020. Report available at <a href="https://netzeroamerica.princeton.edu">https://netzeroamerica.princeton.edu</a>.

#### Notes

- These data are all data from the study available at <a href="https://netzeroamerica.prince-ton.edu">https://netzeroamerica.prince-ton.edu</a>.
- The Net-Zero America study describes five pathways to reach net-zero emissions and one "no new policies" reference scenario. In this document, state-level results are grouped by scenario. For some scenarios, the study generated national, but not statelevel results.
- Within results for a given scenario, data tables are organized into corresponding sections of the full net-zero study (e.g., Pillar 1, Pillar 2, etc.)
- For Pillar 6 (Land sinks), values shown are maximum carbon storage potentials.

## Data by category and subcategory

| 1   | E+ scenario - PILLAR I: Efficiency/Electrification - Commercial                 | I |
|-----|---------------------------------------------------------------------------------|---|
| 2   | E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand         | 1 |
| 3   | E+ scenario - PILLAR 1: Efficiency/Electrification - Overview                   | 1 |
| 4   | E+ scenario - PILLAR 1: Efficiency/Electrification - Residential                | 1 |
| 5   | E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation             | 2 |
| 6   | E+ scenario - PILLAR 2: Clean Electricity - Generating capacity                 | 2 |
| 7   | E+ scenario - PILLAR 2: Clean Electricity - Generation                          | 3 |
| 8   | E+ scenario - PILLAR 3: Clean fuels - Bioenergy                                 | 3 |
| 9   | E+ scenario - PILLAR 4: CCUS - CO2 capture                                      | 3 |
| 10  | E+ scenario - PILLAR 4: CCUS - CO2 pipelines                                    | 3 |
| 11  | E+ scenario - PILLAR 4: CCUS - CO2 storage                                      | 4 |
| 12  | E+ scenario - PILLAR 6: Land sinks - Agriculture                                | 4 |
| 13  | E+ scenario - PILLAR 6: Land sinks - Forests                                    | 5 |
| 14  | E+ scenario - IMPACTS - Fossil fuel industries                                  | 7 |
| 15  | E+ scenario - IMPACTS - Health                                                  | 7 |
| 16  | E+ scenario - IMPACTS - Jobs                                                    | 7 |
| 17  | E- scenario - PILLAR 1: Efficiency/Electrification - Commercial                 | 9 |
| 18  | E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand         | 9 |
| 19  | E- scenario - PILLAR 1: Efficiency/Electrification - Overview                   | 9 |
| 20  | E- scenario - PILLAR 1: Efficiency/Electrification - Residential                | 9 |
| 21  | E- scenario - PILLAR 1: Efficiency/Electrification - Transportation 10          | J |
| 22  | E- scenario - PILLAR 6: Land sinks - Agriculture                                | J |
| 23  | E- scenario - PILLAR 6: Land sinks - Forests                                    | 1 |
| 24  | E- scenario - IMPACTS - Health                                                  | 3 |
| 25  | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial              | 4 |
| 26  | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand . 14 | 4 |
| 27  | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview 14             | 4 |
| 28  | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential             | 4 |
| 29  | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation 1        | 5 |
| 30  | E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity              | 5 |
| 31  | E+RE+ scenario - PILLAR 2: Clean Electricity - Generation                       | 5 |
| 32  | E+RE+ scenario - PILLAR 6: Land sinks - Agriculture                             | 6 |
| 33  | E+RE+ scenario - PILLAR 6: Land sinks - Forests                                 | 5 |
| 34  | E+RE+ scenario - IMPACTS - Health                                               | 9 |
| 35  | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial 19           | 9 |
| 36  | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand 20   | J |
| 37  | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview                | J |
| 38  | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential             | J |
| 39  | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation 20       | J |
| 40  | E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity              | 1 |
| 41  | E+RE- scenario - PILLAR 2: Clean Electricity - Generation                       | 1 |
| 42  | E+RE- scenario - PILLAR 6: Land sinks - Agriculture                             | 1 |
| /.2 | E-DE scanario - DILLAP 6-Land sinks - Egreets                                   | ^ |

| 44 | E+RE- scenario - IMPACTS - Health                                         | 25 |
|----|---------------------------------------------------------------------------|----|
| 45 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial         | 25 |
| 46 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand | 25 |
| 47 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview           | 25 |
| 48 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential        | 25 |
| 49 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation     | 26 |
| 50 | E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity         | 26 |
| 51 | E-B+ scenario - PILLAR 2: Clean Electricity - Generation                  | 26 |
| 52 | E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy                         | 27 |
| 53 | E-B+ scenario - PILLAR 4: CCUS - CO2 capture                              | 27 |
| 54 | E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines                            | 27 |
| 55 | E-B+ scenario - PILLAR 4: CCUS - CO2 storage                              | 27 |
| 56 | E-B+ scenario - PILLAR 6: Land sinks - Agriculture                        | 27 |
| 57 | E-B+ scenario - PILLAR 6: Land sinks - Forests                            | 29 |
| 58 | E-B+ scenario - IMPACTS - Health                                          | 31 |
| 59 | REF scenario - PILLAR 1: Efficiency/Electrification - Commercial          | 31 |
| 60 | REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand  | 32 |
| 61 | REF scenario - PILLAR 1: Efficiency/Electrification - Overview            | 32 |
| 62 | REF scenario - PILLAR 1: Efficiency/Electrification - Residential         | 32 |
| 63 | REF scenario - PILLAR 1: Efficiency/Electrification - Transportation      | 32 |
| 64 | REF scenario - PILLAR 6: Land sinks - Forests                             | 33 |
| 65 | REF scenario - PILLAR 6: Land sinks - Forests - REF only                  | 35 |
| 66 | REF scenario - IMPACTS - Health                                           | 35 |

Table 1: E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                       | 2020  | 2025   | 2030   | 2035  | 2040  | 2045 | 2050 |
|--------------------------------------------|-------|--------|--------|-------|-------|------|------|
| Commercial HVAC investment in 2020s -      |       | 21,776 | 24,347 |       |       |      |      |
| Cumulative 5-yr (million \$2018)           |       |        |        |       |       |      |      |
| Sales of cooking units - Electric          | 32    | 46     | 79.9   | 86.5  | 86.9  | 86.9 | 86.9 |
| Resistance (%)                             |       |        |        |       |       |      |      |
| Sales of cooking units - Gas (%)           | 68    | 54     | 20.1   | 13.5  | 13.1  | 13.1 | 13.1 |
| Sales of space heating units - Electric    | 2.22  | 28.1   | 70.4   | 83.7  | 85    | 85.1 | 85.1 |
| Heat Pump (%)                              |       |        |        |       |       |      |      |
| Sales of space heating units - Electric    | 2.54  | 8.39   | 10.6   | 12.7  | 13.1  | 13.1 | 13.1 |
| Resistance (%)                             |       |        |        |       |       |      |      |
| Sales of space heating units - Fossil (%)  | 11    | 4.19   | 0.8    | 0.034 | 0     | 0    | 0    |
| Sales of space heating units - Gas Furnace | 84.3  | 59.3   | 18.3   | 3.58  | 1.9   | 1.86 | 1.85 |
| (%)                                        |       |        |        |       |       |      |      |
| Sales of water heating units - Electric    | 0.097 | 10.5   | 54.4   | 64.3  | 64.7  | 64.8 | 64.7 |
| Heat Pump (%)                              |       |        |        |       |       |      |      |
| Sales of water heating units - Electric    | 2.5   | 10.8   | 28.3   | 32.3  | 32.5  | 32.5 | 32.5 |
| Resistance (%)                             |       |        |        |       |       |      |      |
| Sales of water heating units - Gas Furnace | 93    | 74.5   | 14.3   | 0.646 | 0.003 | 0    | 0    |
| (%)                                        |       |        |        |       |       |      |      |
| Sales of water heating units - Other (%)   | 4.44  | 4.22   | 3.02   | 2.72  | 2.72  | 2.72 | 2.71 |

Table 2: E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|------|------|------|------|------|------|
| Electricity distribution capital invested - |      | 2.99 | 3.04 | 6    | 6.39 | 5.4  | 5.63 |
| Cumulative 5-yr (billion \$2018)            |      |      |      |      |      |      |      |

Table 3: E+ scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ)     | 189  | 188  | 180  | 167  | 157  | 154  | 156  |
| Final energy use - Industry (PJ)       | 130  | 132  | 132  | 141  | 151  | 159  | 167  |
| Final energy use - Residential (PJ)    | 241  | 228  | 209  | 183  | 162  | 149  | 144  |
| Final energy use - Transportation (PJ) | 448  | 417  | 367  | 305  | 249  | 213  | 197  |

Table 4: E+ scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                       | 2020 | 2025 | 2030 | 2035  | 2040  | 2045 | 2050 |
|--------------------------------------------|------|------|------|-------|-------|------|------|
| Residential HVAC investment in 2020s vs.   |      | 4.8  | 4.71 |       |       |      |      |
| REF - Cumulative 5-yr (billion \$2018)     |      |      |      |       |       |      |      |
| Sales of cooking units - Electric          | 59.2 | 67.9 | 94.5 | 99.7  | 100   | 100  | 100  |
| Resistance (%)                             |      |      |      |       |       |      |      |
| Sales of cooking units - Gas (%)           | 40.8 | 32.1 | 5.5  | 0.277 | 0     | 0    | 0    |
| Sales of space heating units - Electric    | 17.4 | 35.6 | 79.7 | 89.7  | 90.1  | 90.1 | 90.1 |
| Heat Pump (%)                              |      |      |      |       |       |      |      |
| Sales of space heating units - Electric    | 13.2 | 13.8 | 5.81 | 3.98  | 3.89  | 3.95 | 3.95 |
| Resistance (%)                             |      |      |      |       |       |      |      |
| Sales of space heating units - Fossil (%)  | 14.3 | 18.9 | 5.51 | 2.51  | 2.38  | 2.35 | 2.35 |
| Sales of space heating units - Gas (%)     | 55.1 | 31.6 | 8.99 | 3.84  | 3.61  | 3.62 | 3.62 |
| Sales of water heating units - Electric    | 0    | 9.19 | 48.7 | 57.6  | 58    | 58   | 58   |
| Heat Pump (%)                              |      |      |      |       |       |      |      |
| Sales of water heating units - Electric    | 35.7 | 51   | 42.2 | 40.3  | 40.2  | 40.2 | 40.2 |
| Resistance (%)                             |      |      |      |       |       |      |      |
| Sales of water heating units - Gas Furnace | 59.5 | 36.5 | 7.04 | 0.317 | 0.002 | 0    | 0    |
| (%)                                        |      |      |      |       |       |      |      |
| Sales of water heating units - Other (%)   | 4.77 | 3.29 | 2.07 | 1.81  | 1.81  | 1.83 | 1.84 |

Table 5: E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         |       | 800   | 2,073 | 3,321 | 5,046 | 5,475 | 5,229 |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.402 |       | 1.31  |       | 5.5   |       | 8.84  |
| units)                                     |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 1.67  |       | 31.5  |       | 132   |       | 212   |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.2  | 92.1  | 67    | 23.3  | 4.22  | 0.628 | 0     |
| Vehicle sales - Heavy-duty - EV (%)        | 0.588 | 3.81  | 19    | 45.6  | 57.4  | 59.6  | 60    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.227 | 0.227 | 0.176 | 0.066 | 0.013 | 0.002 | 0     |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.082 | 0.09  | 0.077 | 0.031 | 0.007 | 0.001 | 0     |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.392 | 2.54  | 12.7  | 30.4  | 38.2  | 39.7  | 40    |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.23  | 1.07  | 0.568 | 0.163 | 0.038 | 0     |
| Vehicle sales - Light-duty - diesel (%)    | 1.29  | 1.58  | 1.16  | 0.367 | 0.07  | 0.013 | 0     |
| Vehicle sales - Light-duty - EV (%)        | 4.79  | 17.9  | 50.4  | 83.4  | 96.5  | 99.3  | 100   |
| Vehicle sales - Light-duty - gasoline (%)  | 88.5  | 75    | 44.7  | 14.9  | 3.08  | 0.584 | 0     |
| Vehicle sales - Light-duty - hybrid (%)    | 5.27  | 5.16  | 3.5   | 1.27  | 0.314 | 0.07  | 0     |
| Vehicle sales - Light-duty - hydrogen FC   | 0.109 | 0.325 | 0.182 | 0.055 | 0.011 | 0.002 | 0     |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.09  | 0.085 | 0.053 | 0.019 | 0.004 | 0.001 | 0     |
| Vehicle sales - Medium-duty - diesel (%)   | 64.7  | 59.7  | 42.3  | 14.4  | 2.59  | 0.384 | 0     |
| Vehicle sales - Medium-duty - EV (%)       | 0.784 | 5.07  | 25.3  | 60.8  | 76.5  | 79.5  | 80    |
| Vehicle sales - Medium-duty - gasoline (%) | 33.7  | 33.3  | 25.5  | 9.32  | 1.77  | 0.277 | 0     |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.402 | 0.341 | 0.14  | 0.03  | 0.005 | 0     |
| Vehicle sales - Medium-duty - hydrogen     | 0.196 | 1.27  | 6.33  | 15.2  | 19.1  | 19.9  | 20    |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.255 | 0.205 | 0.083 | 0.019 | 0.004 | 0     |

Table 6: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity

| Item                                                                           | 2020 | 2025  | 2030  | 2035  | 2040   | 2045   | 2050   |
|--------------------------------------------------------------------------------|------|-------|-------|-------|--------|--------|--------|
| Capital invested - Biomass power plant (billion \$2018)                        | 0    | 0     | 0     | 0     | 0      | 0      | 0      |
| Capital invested - Biomass w/ccu allam power plant (billion \$2018)            | 0    | 0     | 0     | 0     | 0      | 0      | 0      |
| Capital invested - Biomass w/ccu power plant (billion \$2018)                  | 0    | 0     | 0     | 0     | 0      | 0      | 0      |
| Capital invested - Offshore Wind - Base (billion \$2018)                       |      | 0     | 0     | 0     | 0      | 6.33   | 14.7   |
| Capital invested - Offshore Wind -<br>Constrained (billion \$2018)             |      | 0     | 0     | 0     | 0      | 1.46   | 19.1   |
| Capital invested - Solar PV - Base (billion<br>\$2018)                         |      | 4.41  | 2.06  | 2.19  | 1.12   | 1.28   | 0.169  |
| Capital invested - Solar PV - Constrained (billion \$2018)                     |      | 2.9   | 0.138 | 0.35  | 0      | 1.23   | 1.46   |
| Capital invested - Wind - Constrained (billion \$2018)                         |      | 0     | 0     | 0.457 | 3.71   | 0      | 0      |
| Installed renewables - OffshoreWind -<br>Base land use assumptions (MW)        | 0    | 0     | 0     | 0     | 0      | 4,288  | 15,370 |
| Installed renewables - OffshoreWind -<br>Constrained land use assumptions (MW) | 0    | 0     | 0     | 0     | 0      | 4,288  | 15,370 |
| Installed renewables - Rooftop PV (MW)                                         | 851  | 1,276 | 1,695 | 2,240 | 2,899  | 3,650  | 4,510  |
| Installed renewables - Solar - Base land use assumptions (MW)                  | 899  | 4,757 | 6,771 | 9,100 | 10,360 | 11,890 | 12,104 |
| Installed renewables - Solar -<br>Constrained land use assumptions (MW)        | 490  | 4,348 | 4,944 | 6,249 | 6,913  | 8,499  | 9,219  |
| Installed renewables - Wind - Base land use assumptions (MW)                   | 191  | 191   | 191   | 191   | 191    | 191    | 191    |
| Installed renewables - Wind - Constrained land use assumptions (MW)            | 191  | 191   | 191   | 263   | 2,997  | 3,512  | 3,512  |

Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation

| Item                                     | 2020  | 2025  | 2030   | 2035   | 2040   | 2045   | 2050   |
|------------------------------------------|-------|-------|--------|--------|--------|--------|--------|
| Biomass power plant (GWh)                | 0     | 0     | 0      | 0      | 0      | 0      | 0      |
| Biomass w/ccu allam power plant (GWh)    | 0     | 0     | 0      | 0      | 0      | 0      | 0      |
| Biomass w/ccu power plant (GWh)          | 0     | 0     | 0      | 0      | 0      | 0      | 0      |
| OffshoreWind - Base land use             | 0     | 0     | 0      | 0      | 0      | 19,084 | 72,114 |
| assumptions (GWh)                        |       |       |        |        |        |        |        |
| OffshoreWind - Constrained land use      | 0     | 0     | 0      | 0      | 0      | 19,084 | 72,114 |
| assumptions (GWh)                        |       |       |        |        |        |        |        |
| Solar - Base land use assumptions (GWh)  | 1,524 | 7,647 | 10,854 | 14,593 | 16,586 | 18,938 | 19,283 |
| Solar - Constrained land use assumptions | 845   | 6,984 | 7,931  | 9,956  | 10,973 | 13,309 | 14,379 |
| (GWh)                                    |       |       |        |        |        |        |        |
| Wind - Base land use assumptions (GWh)   | 786   | 786   | 786    | 786    | 786    | 786    | 786    |
| Wind - Constrained land use assumptions  | 786   | 786   | 786    | 1,049  | 9,514  | 10,735 | 10,735 |
| (GWh)                                    |       |       |        |        |        |        |        |

Table 8: E+ scenario - PILLAR 3: Clean fuels - Bioenergy

|                                              |      | 37   |      |      |      |      |       |
|----------------------------------------------|------|------|------|------|------|------|-------|
| Item                                         | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
| Biomass purchases (million \$2018/year)      |      | 0    | 0    | 0    | 0    | 0    | 222   |
| Conversion capital investment -              |      | 0    | 0    | 0    | 0    | 0    | 4,833 |
| Cumulative 5-yr (million \$2018)             |      |      |      |      |      |      |       |
| Number of facilities - Allam power w ccu     | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| (quantity)                                   |      |      |      |      |      |      |       |
| Number of facilities - Beccs hydrogen        | 0    | 0    | 0    | 0    | 0    | 0    | 4     |
| (quantity)                                   |      |      |      |      |      |      |       |
| Number of facilities - Diesel (quantity)     | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Number of facilities - Diesel ccu (quantity) | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Number of facilities - Power (quantity)      | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Number of facilities - Power ccu             | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| (quantity)                                   |      |      |      |      |      |      |       |
| Number of facilities - Pyrolysis (quantity)  | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Number of facilities - Pyrolysis ccu         | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| (quantity)                                   |      |      |      |      |      |      |       |
| Number of facilities - Sng (quantity)        | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Number of facilities - Sng ccu (quantity)    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |

Table 9: E+ scenario - PILLAR 4: CCUS - CO2 capture

| Item                               | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|------------------------------------|------|------|------|------|------|------|------|
| Annual - All (MMT)                 |      | 0    | 0    | 0    | 3.32 | 3.42 | 9.75 |
| Annual - BECCS (MMT)               |      | 0    | 0    | 0    | 0    | 0    | 6.21 |
| Annual - Cement and lime (MMT)     |      | 0    | 0    | 0    | 3.32 | 3.42 | 3.53 |
| Annual - NGCC (MMT)                |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Cumulative - All (MMT)             |      | 0    | 0    | 0    | 3.32 | 6.74 | 16.5 |
| Cumulative - BECCS (MMT)           |      | 0    | 0    | 0    | 0    | 0    | 6.21 |
| Cumulative - Cement and lime (MMT) |      | 0    | 0    | 0    | 3.32 | 6.74 | 10.3 |
| Cumulative - NGCC (MMT)            |      | 0    | 0    | 0    | 0    | 0    | 0    |

Table 10: E+ scenario - PILLAR 4: CCUS - CO2 pipelines

| Item                                           | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|------------------------------------------------|------|------|------|------|------|------|------|
| All (km)                                       |      | 0    | 0    | 112  | 197  | 197  | 429  |
| Cumulative investment - All (million \$2018)   |      | 0    | 0    | 667  | 748  | 749  | 961  |
| Cumulative investment - Spur (million \$2018)  |      | 0    | 0    | 0    | 81.3 | 82.7 | 294  |
| Cumulative investment - Trunk (million \$2018) |      | 0    | 0    | 667  | 667  | 667  | 667  |
| Spur (km)                                      |      | 0    | 0    | 0    | 85.1 | 85.1 | 317  |
| Trunk (km)                                     |      | 0    | 0    | 112  | 112  | 112  | 112  |

Table 11: E+ scenario - PILLAR 4: CCUS - CO2 storage

| · · · · · · · · · · · · · · · · · · ·                                   |      |      |      |      |      |      |      |  |  |
|-------------------------------------------------------------------------|------|------|------|------|------|------|------|--|--|
| Item                                                                    | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |  |  |
| CO2 storage (MMT)                                                       |      | 0    | 0    | 0    | 0    | 0    | 0    |  |  |
| Injection wells (wells)                                                 |      | 0    | 0    | 0    | 0    | 0    | 0    |  |  |
| Resource characterization, appraisal, permitting costs (million \$2020) |      | 0    | 0    | 0    | 0    | 0    | 0    |  |  |
| Wells and facilities construction costs (million \$2020)                |      | 0    | 0    | 0    | 0    | 0    | 0    |  |  |

Table 12: E+ scenario - PILLAR 6: Land sinks - Agriculture

| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|------------------------------------------|------|------|------|------|------|------|-------|
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |       |
| grasses (1000 tCO2e/y)                   |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -595  |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |       |
| tCO2e/y)                                 |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -29   |
| deployment - Permanent conservation      |      |      |      |      |      |      |       |
| cover (1000 tCO2e/y)                     |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -624  |
| deployment - Total (1000 tCO2e/y)        |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |       |
| grasses (1000 tC02e/y)                   |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -313  |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |       |
| tCO2e/y)                                 |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -14.5 |
| deployment - Permanent conservation      |      |      |      |      |      |      |       |
| cover (1000 tC02e/y)                     |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -327  |
| deployment - Total (1000 tCO2e/y)        |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 0     |
| Aggressive deployment - Corn-ethanol to  |      |      |      |      |      |      | _     |
| energy grasses (1000 hectares)           |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 525   |
| Aggressive deployment - Cropland         |      |      |      |      |      |      | 020   |
| measures (1000 hectares)                 |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 52.7  |
| Aggressive deployment - Permanent        |      |      |      |      |      |      | 02    |
| conservation cover (1000 hectares)       |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 578   |
| Aggressive deployment - Total (1000      |      |      |      |      |      |      | 010   |
| hectares)                                |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      | Ü     |
| grasses (1000 hectares)                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 276   |
| deployment - Cropland measures (1000     |      |      |      |      |      |      | 210   |
| hectares)                                |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 26.4  |
| deployment - Permanent conservation      |      |      |      |      |      |      | 20.4  |
| cover (1000 hectares)                    |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 302   |
| deployment - Total (1000 hectares)       |      |      |      |      |      |      | 302   |
| uepioyment - rotar (1000 nectares)       |      |      |      |      |      |      |       |

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests

| Table 13: E+ scenario - PILLAR 6: Land sin | ks - Forests |      |      |      |      |      |        |
|--------------------------------------------|--------------|------|------|------|------|------|--------|
| Item                                       | 2020         | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
| Carbon sink potential - High - Accelerate  |              |      |      |      |      |      | -37.6  |
| regeneration (1000 tCO2e/y)                |              |      |      |      |      |      |        |
| Carbon sink potential - High - All (not    |              |      |      |      |      |      | -5,324 |
| counting overlap) (1000 tCO2e/y)           |              |      |      |      |      |      |        |
| Carbon sink potential - High - Avoid       |              |      |      |      |      |      | -1,101 |
| deforestation (1000 tCO2e/y)               |              |      |      |      |      |      |        |
| Carbon sink potential - High - Extend      |              |      |      |      |      |      | -1,332 |
| rotation length (1000 tCO2e/y)             |              |      |      |      |      |      | .,002  |
| Carbon sink potential - High - Improve     |              |      |      |      |      |      | -140   |
| plantations (1000 tCO2e/y)                 |              |      |      |      |      |      |        |
| Carbon sink potential - High - Increase    |              |      |      |      |      |      | -864   |
| retention of HWP (1000 tCO2e/y)            |              |      |      |      |      |      | -004   |
| Carbon sink potential - High - Increase    |              |      |      |      |      |      | -356   |
| ·                                          |              |      |      |      |      |      | -336   |
| trees outside forests (1000 tC02e/y)       |              |      |      |      |      |      | (01    |
| Carbon sink potential - High - Reforest    |              |      |      |      |      |      | -62.1  |
| cropland (1000 tCO2e/y)                    |              |      |      |      |      |      |        |
| Carbon sink potential - High - Reforest    |              |      |      |      |      |      | -886   |
| pasture (1000 tCO2e/y)                     |              |      |      |      |      |      |        |
| Carbon sink potential - High - Restore     |              |      |      |      |      |      | -546   |
| productivity (1000 tCO2e/y)                |              |      |      |      |      |      |        |
| Carbon sink potential - Low - Accelerate   |              |      |      |      |      |      | -18.8  |
| regeneration (1000 tCO2e/y)                |              |      |      |      |      |      |        |
| Carbon sink potential - Low - All (not     |              |      |      |      |      |      | -1,480 |
| counting overlap) (1000 tCO2e/y)           |              |      |      |      |      |      |        |
| Carbon sink potential - Low - Avoid        |              |      |      |      |      |      | -183   |
| deforestation (1000 tCO2e/y)               |              |      |      |      |      |      |        |
| Carbon sink potential - Low - Extend       |              |      |      |      |      |      | -511   |
| rotation length (1000 tC02e/y)             |              |      |      |      |      |      | 311    |
| Carbon sink potential - Low - Improve      |              |      |      |      |      |      | -71.1  |
| plantations (1000 tCO2e/y)                 |              |      |      |      |      |      | -11.1  |
| Carbon sink potential - Low - Increase     |              |      |      |      |      |      | -288   |
|                                            |              |      |      |      |      |      | -200   |
| retention of HWP (1000 tC02e/y)            |              |      |      |      |      |      | 105    |
| Carbon sink potential - Low - Increase     |              |      |      |      |      |      | -125   |
| trees outside forests (1000 tC02e/y)       |              |      |      |      |      |      |        |
| Carbon sink potential - Low - Reforest     |              |      |      |      |      |      | -31.1  |
| cropland (1000 tCO2e/y)                    |              |      |      |      |      |      |        |
| Carbon sink potential - Low - Reforest     |              |      |      |      |      |      | -67.1  |
| pasture (1000 tCO2e/y)                     |              |      |      |      |      |      |        |
| Carbon sink potential - Low - Restore      |              |      |      |      |      |      | -184   |
| productivity (1000 tCO2e/y)                |              |      |      |      |      |      |        |
| Carbon sink potential - Mid - Accelerate   |              |      |      |      |      |      | -28.2  |
| regeneration (1000 tCO2e/y)                |              |      |      |      |      |      |        |
| Carbon sink potential - Mid - All (not     |              |      |      |      |      |      | -3,401 |
| counting overlap) (1000 tCO2e/y)           |              |      |      |      |      |      | -,     |
| Carbon sink potential - Mid - Avoid        |              |      |      |      |      |      | -642   |
| deforestation (1000 tCO2e/y)               |              |      |      |      |      |      | 042    |
| Carbon sink potential - Mid - Extend       |              |      |      |      |      |      | -922   |
| rotation length (1000 tCO2e/y)             |              |      |      |      |      |      | -722   |
| Carbon sink potential - Mid - Improve      |              |      |      |      |      |      | -104   |
| ·                                          |              |      |      |      |      |      | -104   |
| plantations (1000 tC02e/y)                 |              |      |      |      |      |      |        |
| Carbon sink potential - Mid - Increase     |              |      |      |      |      |      | -576   |
| retention of HWP (1000 tCO2e/y)            |              |      |      |      |      |      |        |
| Carbon sink potential - Mid - Increase     |              |      |      |      |      |      | -240   |
| trees outside forests (1000 tCO2e/y)       |              |      |      |      |      |      |        |
| Carbon sink potential - Mid - Reforest     |              |      |      |      |      |      | -46.6  |
| cropland (1000 tCO2e/y)                    |              |      |      |      |      |      |        |
| Carbon sink potential - Mid - Reforest     |              |      |      |      |      |      | -477   |
| pasture (1000 tCO2e/y)                     |              |      |      |      |      |      |        |
| Carbon sink potential - Mid - Restore      |              |      |      |      |      |      | -365   |
| productivity (1000 tCO2e/y)                |              |      |      |      |      |      |        |
| p 32221111 (1200 10020/1)                  | [            | I    |      |      |      |      |        |

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

| lable 13: E+ scenario - PILLAR 6: Land sini                                        |      | <u> </u> |      | 000= |      |      |       |
|------------------------------------------------------------------------------------|------|----------|------|------|------|------|-------|
| Item                                                                               | 2020 | 2025     | 2030 | 2035 | 2040 | 2045 | 2050  |
| Land impacted for carbon sink potential -                                          |      |          |      |      |      |      | 6.15  |
| High - Accelerate regeneration (1000                                               |      |          |      |      |      |      |       |
| hectares) Land impacted for carbon sink potential -                                |      |          |      |      |      |      | 149   |
| High - Avoid deforestation (over 30 years)                                         |      |          |      |      |      |      | 149   |
| (1000 hectares)                                                                    |      |          |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |          |      |      |      |      | 679   |
| High - Extend rotation length (1000                                                |      |          |      |      |      |      | 017   |
| hectares)                                                                          |      |          |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |          |      |      |      |      | 51.5  |
| High - Improve plantations (1000                                                   |      |          |      |      |      |      | 31.3  |
| hectares)                                                                          |      |          |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |          |      |      |      |      | 0     |
| High - Increase retention of HWP (1000                                             |      |          |      |      |      |      | U     |
| hectares)                                                                          |      |          |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |          |      |      |      |      | 33.8  |
| High - Increase trees outside forests                                              |      |          |      |      |      |      | 33.0  |
| (1000 hectares)                                                                    |      |          |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |          |      |      |      |      | 4.11  |
| High - Reforest cropland (1000 hectares)                                           |      |          |      |      |      |      | 4.11  |
| Land impacted for carbon sink potential -                                          |      |          |      |      |      |      | 25.2  |
| High - Reforest pasture (1000 hectares)                                            |      |          |      |      |      |      | 23.2  |
| Land impacted for carbon sink potential -                                          |      |          |      |      |      |      | 181   |
|                                                                                    |      |          |      |      |      |      | 101   |
| High - Restore productivity (1000 hectares)                                        |      |          |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |          |      |      |      |      | 1,130 |
|                                                                                    |      |          |      |      |      |      | 1,130 |
| High - Total impacted (over 30 years)                                              |      |          |      |      |      |      |       |
| (1000 hectares)  Land impacted for carbon sink potential -                         |      |          |      |      |      |      | 3.08  |
|                                                                                    |      |          |      |      |      |      | 3.08  |
| Low - Accelerate regeneration (1000                                                |      |          |      |      |      |      |       |
| hectares) Land impacted for carbon sink potential -                                |      |          |      |      |      |      | 140   |
|                                                                                    |      |          |      |      |      |      | 140   |
| Low - Avoid deforestation (over 30 years) (1000 hectares)                          |      |          |      |      |      |      |       |
|                                                                                    |      |          |      |      |      |      | 260   |
| Land impacted for carbon sink potential -                                          |      |          |      |      |      |      | 260   |
| Low - Extend rotation length (1000 hectares)                                       |      |          |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |          |      |      |      |      | 25.8  |
| Low - Improve plantations (1000                                                    |      |          |      |      |      |      | 23.0  |
| •                                                                                  |      |          |      |      |      |      |       |
| hectares)                                                                          |      |          |      |      |      |      | 0     |
| Land impacted for carbon sink potential -<br>Low - Increase retention of HWP (1000 |      |          |      |      |      |      | U     |
| hectares)                                                                          |      |          |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |          |      |      |      |      | 17.8  |
|                                                                                    |      |          |      |      |      |      | 17.0  |
| Low - Increase trees outside forests (1000 hectares)                               |      |          |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |          |      |      |      |      | 2.05  |
| ·                                                                                  |      |          |      |      |      |      | 2.05  |
| Low - Reforest cropland (1000 hectares)  Land impacted for carbon sink potential - |      |          |      |      |      |      | 4.36  |
|                                                                                    |      |          |      |      |      |      | 4.30  |
| Low - Reforest pasture (1000 hectares)                                             |      |          |      |      |      |      | 110   |
| Land impacted for carbon sink potential -                                          |      |          |      |      |      |      | 110   |
| Low - Restore productivity (1000                                                   |      |          |      |      |      |      |       |
| hectares)                                                                          |      |          |      |      |      |      | F/0   |
| Land impacted for carbon sink potential -                                          |      |          |      |      |      |      | 563   |
| Low - Total impacted (over 30 years)                                               |      |          |      |      |      |      |       |
| (1000 hectares)                                                                    |      |          |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |          |      |      |      |      | 4.61  |
| Mid - Accelerate regeneration (1000                                                |      |          |      |      |      |      |       |
| hectares)                                                                          |      |          |      |      |      |      |       |

| Tahla 13. Fx | econario - | DTIIAP 6. | Land sinks -   | Forests | (continued) |
|--------------|------------|-----------|----------------|---------|-------------|
| Table 15. E+ | scenuro -  | PILLAR O. | Luiiu Siiiks - | Furests | lconunueur  |

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------|------|------|------|------|------|------|------|
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 144  |
| Mid - Avoid deforestation (over 30 years)  |      |      |      |      |      |      |      |
| (1000 hectares)                            |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 470  |
| Mid - Extend rotation length (1000         |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 38.8 |
| Mid - Improve plantations (1000 hectares)  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0    |
| Mid - Increase retention of HWP (1000      |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 25.8 |
| Mid - Increase trees outside forests (1000 |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 3.08 |
| Mid - Reforest cropland (1000 hectares)    |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 31.5 |
| Mid - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 221  |
| Mid - Restore productivity (1000           |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 938  |
| Mid - Total impacted (over 30 years) (1000 |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |

## Table 14: E+ scenario - IMPACTS - Fossil fuel industries

| Item                                    | 2020 | 2025  | 2030  | 2035  | 2040 | 2045  | 2050  |
|-----------------------------------------|------|-------|-------|-------|------|-------|-------|
| Natural gas consumption - Annual (tcf)  |      | 233   | 196   | 157   | 118  | 74.6  | 51.7  |
| Natural gas consumption - Cumulative    |      |       |       |       |      |       | 4,741 |
| (tcf)                                   |      |       |       |       |      |       |       |
| Natural gas production - Annual (tcf)   |      | 0.029 | 0.028 | 0.024 | 0.02 | 0.016 | 0.013 |
| Oil consumption - Annual (million bbls) |      | 69.1  | 59.1  | 44.6  | 31.1 | 20.6  | 12.5  |
| Oil consumption - Cumulative (million   |      |       |       |       |      |       | 1,382 |
| bbls)                                   |      |       |       |       |      |       |       |
| Oil production - Annual (million bbls)  |      | 0     | 0     | 0     | 0    | 0     | 0     |

#### Table 15: E+ scenario - IMPACTS - Health

| Item                                                                     | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution -<br>Coal (million 2019\$)           |      | 743   | 0.504 | 0.499 | 0.457 | 0.318 | 0.027 |
| Monetary damages from air pollution -<br>Natural Gas (million 2019\$)    |      | 248   | 185   | 123   | 112   | 65.6  | 27.4  |
| Monetary damages from air pollution -<br>Transportation (million 2019\$) |      | 2,187 | 2,036 | 1,542 | 889   | 398   | 147   |
| Premature deaths from air pollution -<br>Coal (deaths)                   |      | 83.9  | 0.057 | 0.056 | 0.052 | 0.036 | 0.003 |
| Premature deaths from air pollution -<br>Natural Gas (deaths)            |      | 28    | 20.9  | 13.9  | 12.6  | 7.41  | 3.09  |
| Premature deaths from air pollution -<br>Transportation (deaths)         |      | 246   | 229   | 173   | 100   | 44.8  | 16.5  |

## Table 16: E+ scenario - IMPACTS - Jobs

| 2020 | 2025  | 2030                   | 2035                                    | 2040                                                                                                                    | 2045                                                                                                                                                            | 2050                                                                                                                                                                                                     |
|------|-------|------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 49.8  | 101                    | 38.7                                    | 30                                                                                                                      | 22                                                                                                                                                              | 324                                                                                                                                                                                                      |
|      | 8,177 | 6,965                  | 8,178                                   | 8,092                                                                                                                   | 10,411                                                                                                                                                          | 20,267                                                                                                                                                                                                   |
|      | 6,920 | 12,734                 | 12,785                                  | 10,098                                                                                                                  | 11,764                                                                                                                                                          | 11,071                                                                                                                                                                                                   |
|      |       |                        |                                         |                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                                                                          |
|      | 1,387 | 923                    | 589                                     | 350                                                                                                                     | 190                                                                                                                                                             | 100                                                                                                                                                                                                      |
|      | 2020  | 49.8<br>8,177<br>6,920 | 49.8 101<br>8,177 6,965<br>6,920 12,734 | 49.8         101         38.7           8,177         6,965         8,178           6,920         12,734         12,785 | 49.8         101         38.7         30           8,177         6,965         8,178         8,092           6,920         12,734         12,785         10,098 | 49.8         101         38.7         30         22           8,177         6,965         8,178         8,092         10,411           6,920         12,734         12,785         10,098         11,764 |

Table 16: E+ scenario - IMPACTS - Jobs (continued)

| Table 10. L+ Scellul 10 - IMPACTS - Jobs (col                            | •                 |             |        |        |        |                                       |
|--------------------------------------------------------------------------|-------------------|-------------|--------|--------|--------|---------------------------------------|
| Item                                                                     | 2020 2025         |             | 2035   | 2040   | 2045   | 2050                                  |
| By economic sector - Other (jobs)                                        | 1,195             |             | 1,308  | 1,398  | 1,767  | 3,128                                 |
| By economic sector - Pipeline (jobs)                                     | 304               |             | 280    | 153    | 102    | 100                                   |
| By economic sector - Professional (jobs)                                 | 3,366             |             | 3,203  | 3,313  | 4,882  | 11,061                                |
| By economic sector - Trade (jobs)                                        | 2,506             |             | 2,245  | 2,286  | 3,158  | 6,652                                 |
| By economic sector - Utilities (jobs)                                    | 5,91 <sup>-</sup> |             | 6,814  | 7,153  | 9,692  | 20,441                                |
| By education level - All sectors -                                       | 9,450             | 10,362      | 11,399 | 10,661 | 13,643 | 23,749                                |
| Associates degree or some college (jobs)                                 |                   |             |        |        |        |                                       |
| By education level - All sectors -<br>Bachelors degree (jobs)            | 5,984             | 6,519       | 6,921  | 6,349  | 8,182  | 14,417                                |
| By education level - All sectors - Doctoral                              | 193               | 3 180       | 190    | 181    | 248    | 507                                   |
| degree (jobs)  By education level - All sectors - High                   | 12,803            | 3 14,136    | 15,396 | 14,236 | 18,005 | 30,863                                |
| school diploma or less (jobs)                                            |                   |             |        |        |        |                                       |
| By education level - All sectors - Masters or professional degree (jobs) | 1,392             | 1,433       | 1,535  | 1,446  | 1,912  | 3,608                                 |
| By resource sector - Biomass (jobs)                                      | 214               | + 279       | 110    | 90.3   | 80.4   | 1,382                                 |
| By resource sector - CO2 (jobs)                                          |                   | ) 0         | 655    | 56     | 72.2   | 326                                   |
|                                                                          |                   |             | 000    | 0      |        | 0                                     |
| By resource sector - Coal (jobs)                                         | 803               |             | _      | _      | 10.077 | _                                     |
| By resource sector - Grid (jobs)                                         | 7,244             |             | 10,558 | 12,271 | 18,066 | 40,246                                |
| By resource sector - Natural Gas (jobs)                                  | 3,25              |             | 2,312  | 2,623  | 1,856  | 1,306                                 |
| By resource sector - Nuclear (jobs)                                      | 923               |             | 527    | 0      | 0      | 0                                     |
| By resource sector - Oil (jobs)                                          | 3,07              |             | 1,678  | 1,089  | 673    | 385                                   |
| By resource sector - Solar (jobs)                                        | 14,159            |             | 19,117 | 15,493 | 15,638 | 16,688                                |
| By resource sector - Wind (jobs)                                         | 154               |             | 483    | 1,250  | 5,605  | 12,811                                |
| Median wages - Annual - All (\$2019 per job)                             | 62,912            | 63,005      | 63,816 | 64,974 | 66,381 | 68,724                                |
| On-Site or In-Plant Training - Total jobs - 1                            | 4,87              | 1 5,255     | 5,779  | 5,410  | 6,920  | 12,158                                |
| to 4 years (jobs)                                                        | 10//              | 1.07/       | 0.107  | 0.070  | 0.400  | F 100                                 |
| On-Site or In-Plant Training - Total jobs - 4 to 10 years (jobs)         | 1,945             | 1,876       | 2,126  | 2,070  | 2,689  | 5,108                                 |
| On-Site or In-Plant Training - Total jobs -                              | 4,886             | 5,387       | 5,806  | 5,343  | 6,819  | 11,768                                |
| None (jobs) On-Site or In-Plant Training - Total jobs -                  | 250               | ) 267       | 299    | 286    | 369    | 666                                   |
| Over 10 years (jobs)                                                     |                   |             |        |        |        |                                       |
| On-Site or In-Plant Training - Total jobs -<br>Up to 1 year (jobs)       | 17,869            | 19,847      | 21,430 | 19,763 | 25,192 | 43,444                                |
| On-the-Job Training - All sectors - 1 to 4                               | 6,254             | 6,701       | 7,390  | 6,938  | 8,892  | 15,718                                |
| years (jobs)                                                             |                   |             |        |        |        |                                       |
| On-the-Job Training - All sectors - 4 to 10 years (jobs)                 | 1,90              | 7 1,814     | 2,079  | 2,043  | 2,663  | 5,106                                 |
| On-the-Job Training - All sectors - None                                 | 1,634             | 1,749       | 1,880  | 1,734  | 2,213  | 3,862                                 |
| (jobs) On-the-Job Training - All sectors - Over 10                       | 316               | 366         | 389    | 346    | 430    | 681                                   |
| years (jobs)                                                             |                   |             |        |        |        |                                       |
| On-the-Job Training - All sectors - Up to 1 year (jobs)                  | 19,71             | 1 22,000    | 23,702 | 21,811 | 27,792 | 47,778                                |
| Related work experience - All sectors - 1                                | 10,646            | 5 11,563    | 12,549 | 11,667 | 14,937 | 26,208                                |
| to 4 years (jobs)                                                        |                   |             |        |        |        |                                       |
| Related work experience - All sectors - 4 to 10 years (jobs)             | 6,894             | 7,454       | 8,119  | 7,559  | 9,697  | 17,070                                |
| Related work experience - All sectors -                                  | 4,279             | 9 4,641     | 5,082  | 4,756  | 6,065  | 10,645                                |
| None (jobs)  Related work experience - All sectors -                     | 1,876             | 5 2,138     | 2,297  | 2,094  | 2,666  | 4,500                                 |
| Over 10 years (jobs)                                                     |                   |             |        |        |        |                                       |
| Related work experience - All sectors - Up                               | 6,12              | 7 6,835     | 7,394  | 6,797  | 8,625  | 14,720                                |
| to 1 year (jobs) Wage income - All (million \$2019)                      | 1,876             | 5 2,056     | 2,262  | 2,136  | 2,788  | 5,027                                 |
|                                                                          | ,,,,,             | 1 1 1 1 1 1 |        |        |        | · · · · · · · · · · · · · · · · · · · |

Table 17: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                       | 2020  | 2025   | 2030   | 2035 | 2040 | 2045  | 2050  |
|--------------------------------------------|-------|--------|--------|------|------|-------|-------|
| Commercial HVAC investment in 2020s -      |       | 21,752 | 24,163 |      |      |       |       |
| Cumulative 5-yr (million \$2018)           |       |        |        |      |      |       |       |
| Sales of cooking units - Electric          | 32    | 36.2   | 40.9   | 53.4 | 71   | 81.7  | 85.5  |
| Resistance (%)                             |       |        |        |      |      |       |       |
| Sales of cooking units - Gas (%)           | 68    | 63.8   | 59.1   | 46.6 | 29   | 18.3  | 14.5  |
| Sales of space heating units - Electric    | 2.22  | 20.1   | 24.9   | 38.9 | 61   | 76.7  | 82.8  |
| Heat Pump (%)                              |       |        |        |      |      |       |       |
| Sales of space heating units - Electric    | 2.54  | 8.05   | 8.31   | 9.13 | 10.6 | 12    | 12.8  |
| Resistance (%)                             |       |        |        |      |      |       |       |
| Sales of space heating units - Fossil (%)  | 11    | 4.85   | 4.51   | 3.43 | 1.69 | 0.531 | 0.139 |
| Sales of space heating units - Gas Furnace | 84.3  | 67     | 62.3   | 48.5 | 26.7 | 10.8  | 4.34  |
| (%)                                        |       |        |        |      |      |       |       |
| Sales of water heating units - Electric    | 0.097 | 2.03   | 7.02   | 21.4 | 43.5 | 57.9  | 63    |
| Heat Pump (%)                              |       |        |        |      |      |       |       |
| Sales of water heating units - Electric    | 2.5   | 7.39   | 9.34   | 15.1 | 24   | 29.8  | 31.8  |
| Resistance (%)                             |       |        |        |      |      |       |       |
| Sales of water heating units - Gas Furnace | 93    | 86.1   | 79.2   | 59.6 | 29.2 | 9.38  | 2.45  |
| (%)                                        |       |        |        |      |      |       |       |
| Sales of water heating units - Other (%)   | 4.44  | 4.46   | 4.4    | 3.91 | 3.31 | 2.91  | 2.76  |

Table 18: E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|------|------|------|------|------|------|
| Electricity distribution capital invested - |      | 2.54 | 2.53 | 3.68 | 3.81 | 5.55 | 5.88 |
| Cumulative 5-yr (billion \$2018)            |      |      |      |      |      |      |      |

Table 19: E- scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ)     | 189  | 189  | 186  | 183  | 177  | 171  | 167  |
| Final energy use - Industry (PJ)       | 130  | 132  | 133  | 143  | 154  | 162  | 170  |
| Final energy use - Residential (PJ)    | 241  | 229  | 222  | 214  | 200  | 183  | 167  |
| Final energy use - Transportation (PJ) | 449  | 421  | 386  | 356  | 331  | 302  | 268  |

Table 20: E- scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------|------|------|------|------|------|------|------|
| Residential HVAC investment in 2020s vs.   |      | 4.8  | 4.72 |      |      |      |      |
| REF - Cumulative 5-yr (billion \$2018)     |      |      |      |      |      |      |      |
| Sales of cooking units - Electric          | 59   | 60.1 | 63.8 | 73.7 | 87.5 | 96   | 98.9 |
| Resistance (%)                             |      |      |      |      |      |      |      |
| Sales of cooking units - Gas (%)           | 41   | 39.9 | 36.2 | 26.3 | 12.5 | 4.04 | 1.09 |
| Sales of space heating units - Electric    | 17.4 | 27.2 | 32.2 | 46.7 | 68.8 | 83.3 | 88.3 |
| Heat Pump (%)                              |      |      |      |      |      |      |      |
| Sales of space heating units - Electric    | 13.2 | 15.3 | 14.3 | 11.6 | 7.67 | 5.11 | 4.2  |
| Resistance (%)                             |      |      |      |      |      |      |      |
| Sales of space heating units - Fossil (%)  | 14.3 | 21.5 | 20.1 | 15.7 | 8.92 | 4.46 | 2.92 |
| Sales of space heating units - Gas (%)     | 55.1 | 36   | 33.4 | 26   | 14.6 | 7.13 | 4.52 |
| Sales of water heating units - Electric    | 0    | 1.58 | 6.08 | 19   | 38.9 | 51.9 | 56.4 |
| Heat Pump (%)                              |      |      |      |      |      |      |      |
| Sales of water heating units - Electric    | 35.7 | 52.7 | 51.6 | 48.7 | 44.3 | 41.5 | 40.5 |
| Resistance (%)                             |      |      |      |      |      |      |      |
| Sales of water heating units - Gas Furnace | 59.5 | 42.2 | 38.9 | 29.2 | 14.4 | 4.62 | 1.21 |
| (%)                                        |      |      |      |      |      |      |      |
| Sales of water heating units - Other (%)   | 4.77 | 3.53 | 3.4  | 3    | 2.4  | 2.02 | 1.89 |

Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         |       | 0     | 133   | 271   | 925   | 2,883 | 4,210 |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.402 |       | 0.44  |       | 2.06  |       | 5.66  |
| units)                                     |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 1.67  |       | 10.6  |       | 49.6  |       | 136   |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.4  | 96    | 91.3  | 79.8  | 58.2  | 32.1  | 13.7  |
| Vehicle sales - Heavy-duty - EV (%)        | 0.498 | 1.45  | 4.11  | 10.8  | 23.6  | 39.5  | 51    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.228 | 0.236 | 0.239 | 0.225 | 0.179 | 0.109 | 0.051 |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.083 | 0.094 | 0.104 | 0.107 | 0.092 | 0.06  | 0.03  |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.332 | 0.969 | 2.74  | 7.17  | 15.7  | 26.3  | 34    |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.28  | 1.46  | 1.95  | 2.25  | 1.96  | 1.14  |
| Vehicle sales - Light-duty - diesel (%)    | 1.3   | 1.76  | 2.01  | 1.59  | 0.995 | 0.506 | 0.218 |
| Vehicle sales - Light-duty - EV (%)        | 2.19  | 5.36  | 13.2  | 28    | 50.7  | 73.5  | 88.2  |
| Vehicle sales - Light-duty - gasoline (%)  | 90.8  | 86.2  | 77.5  | 63.9  | 43.6  | 23.3  | 10.3  |
| Vehicle sales - Light-duty - hybrid (%)    | 5.48  | 6.24  | 6.9   | 6.15  | 4.48  | 2.57  | 1.22  |
| Vehicle sales - Light-duty - hydrogen FC   | 0.112 | 0.373 | 0.311 | 0.232 | 0.161 | 0.088 | 0.041 |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.092 | 0.095 | 0.085 | 0.073 | 0.052 | 0.028 | 0.013 |
| Vehicle sales - Medium-duty - diesel (%)   | 64.8  | 62.2  | 57.7  | 49.4  | 35.6  | 19.6  | 8.37  |
| Vehicle sales - Medium-duty - EV (%)       | 0.664 | 1.94  | 5.49  | 14.3  | 31.4  | 52.6  | 68    |
| Vehicle sales - Medium-duty - gasoline (%) | 33.8  | 34.7  | 34.7  | 31.9  | 24.4  | 14.2  | 6.33  |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.418 | 0.464 | 0.478 | 0.414 | 0.275 | 0.141 |
| Vehicle sales - Medium-duty - hydrogen     | 0.166 | 0.485 | 1.37  | 3.58  | 7.86  | 13.2  | 17    |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.266 | 0.279 | 0.286 | 0.258 | 0.184 | 0.102 |

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture

| Item                                    | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|-----------------------------------------|------|------|------|------|------|------|-------|
| Carbon sink potential - Aggressive      |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy     |      |      |      |      |      |      |       |
| grasses (1000 tCO2e/y)                  |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive      |      |      |      |      |      |      | -595  |
| deployment - Cropland measures (1000    |      |      |      |      |      |      |       |
| tCO2e/y)                                |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive      |      |      |      |      |      |      | -29   |
| deployment - Permanent conservation     |      |      |      |      |      |      |       |
| cover (1000 tC02e/y)                    |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive      |      |      |      |      |      |      | -624  |
| deployment - Total (1000 tCO2e/y)       |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate        |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy     |      |      |      |      |      |      |       |
| grasses (1000 tC02e/y)                  |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate        |      |      |      |      |      |      | -313  |
| deployment - Cropland measures (1000    |      |      |      |      |      |      |       |
| tCO2e/y)                                |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate        |      |      |      |      |      |      | -14.5 |
| deployment - Permanent conservation     |      |      |      |      |      |      |       |
| cover (1000 tC02e/y)                    |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate        |      |      |      |      |      |      | -327  |
| deployment - Total (1000 tC02e/y)       |      |      |      |      |      |      |       |
| Land impacted for carbon sink -         |      |      |      |      |      |      | 0     |
| Aggressive deployment - Corn-ethanol to |      |      |      |      |      |      |       |
| energy grasses (1000 hectares)          |      |      |      |      |      |      |       |
| Land impacted for carbon sink -         |      |      |      |      |      |      | 525   |
| Aggressive deployment - Cropland        |      |      |      |      |      |      |       |
| measures (1000 hectares)                |      |      |      |      |      |      |       |
| Land impacted for carbon sink -         |      |      |      |      |      |      | 52.7  |
| Aggressive deployment - Permanent       |      |      |      |      |      |      |       |
| conservation cover (1000 hectares)      |      |      |      |      |      |      |       |

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture (continued)

| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|------------------------------------------|------|------|------|------|------|------|------|
| Land impacted for carbon sink -          |      |      |      |      |      |      | 578  |
| Aggressive deployment - Total (1000      |      |      |      |      |      |      |      |
| hectares)                                |      |      |      |      |      |      |      |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 0    |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |      |
| grasses (1000 hectares)                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 276  |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |      |
| hectares)                                |      |      |      |      |      |      |      |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 26.4 |
| deployment - Permanent conservation      |      |      |      |      |      |      |      |
| cover (1000 hectares)                    |      |      |      |      |      |      |      |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 302  |
| deployment - Total (1000 hectares)       |      |      |      |      |      |      |      |

Table 23: E- scenario - PILLAR 6: Land sinks - Forests

| Item                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|-------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - High - Accelerate | 2020 | 2023 | 2030 | 2033 | 2040 | 2045 | -37.6  |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - High - All (not   |      |      |      |      |      |      | -5,324 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |        |
| Carbon sink potential - High - Avoid      |      |      |      |      |      |      | -1,101 |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |        |
| Carbon sink potential - High - Extend     |      |      |      |      |      |      | -1,332 |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |        |
| Carbon sink potential - High - Improve    |      |      |      |      |      |      | -140   |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |        |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -864   |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |        |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -356   |
| trees outside forests (1000 tC02e/y)      |      |      |      |      |      |      |        |
| Carbon sink potential - High - Reforest   |      |      |      |      |      |      | -62.1  |
| cropland (1000 tCO2e/y)                   |      |      |      |      |      |      |        |
| Carbon sink potential - High - Reforest   |      |      |      |      |      |      | -886   |
| pasture (1000 tC02e/y)                    |      |      |      |      |      |      |        |
| Carbon sink potential - High - Restore    |      |      |      |      |      |      | -546   |
| productivity (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Accelerate  |      |      |      |      |      |      | -18.8  |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Low - All (not    |      |      |      |      |      |      | -1,480 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      | •      |
| Carbon sink potential - Low - Avoid       |      |      |      |      |      |      | -183   |
| deforestation (1000 tC02e/y)              |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Extend      |      |      |      |      |      |      | -511   |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Improve     |      |      |      |      |      |      | -71.1  |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Increase    |      |      |      |      |      |      | -288   |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Increase    |      |      |      |      |      |      | -125   |
| trees outside forests (1000 tCO2e/y)      |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Reforest    |      |      |      |      |      |      | -31.1  |
| cropland (1000 tCO2e/y)                   |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Reforest    |      |      |      |      |      |      | -67.1  |
| pasture (1000 tCO2e/y)                    |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Restore     |      |      |      |      |      |      | -184   |
| productivity (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Accelerate  |      |      |      |      |      |      | -28.2  |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |        |

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

| Carbon sink potential - Mid - All (not     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050<br>-3,401 |
|--------------------------------------------|------|------|------|------|------|------|----------------|
| counting overlap) (1000 tC02e/y)           |      |      |      |      |      |      | -3,401         |
| Carbon sink potential - Mid - Avoid        |      |      |      |      |      |      | -642           |
| deforestation (1000 tC02e/y)               |      |      |      |      |      |      | -042           |
| Carbon sink potential - Mid - Extend       |      |      |      |      |      |      | -922           |
| rotation length (1000 tCO2e/y)             |      |      |      |      |      |      | ,,,            |
| Carbon sink potential - Mid - Improve      |      |      |      |      |      |      | -104           |
| plantations (1000 tCO2e/y)                 |      |      |      |      |      |      | 10-1           |
| Carbon sink potential - Mid - Increase     |      |      |      |      |      |      | -576           |
| retention of HWP (1000 tCO2e/y)            |      |      |      |      |      |      | 0.0            |
| Carbon sink potential - Mid - Increase     |      |      |      |      |      |      | -240           |
| trees outside forests (1000 tCO2e/y)       |      |      |      |      |      |      |                |
| Carbon sink potential - Mid - Reforest     |      |      |      |      |      | +    | -46.6          |
| cropland (1000 tCO2e/y)                    |      |      |      |      |      |      |                |
| Carbon sink potential - Mid - Reforest     |      |      |      |      |      |      | -477           |
| pasture (1000 tC02e/y)                     |      |      |      |      |      |      |                |
| Carbon sink potential - Mid - Restore      |      |      |      |      |      |      | -365           |
| productivity (1000 tCO2e/y)                |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 6.15           |
| High - Accelerate regeneration (1000       |      |      |      |      |      |      |                |
| hectares)                                  |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 149            |
| High - Avoid deforestation (over 30 years) |      |      |      |      |      |      |                |
| (1000 hectares)                            |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 679            |
| High - Extend rotation length (1000        |      |      |      |      |      |      |                |
| hectares)                                  |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 51.5           |
| High - Improve plantations (1000           |      |      |      |      |      |      |                |
| hectares)                                  |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0              |
| High - Increase retention of HWP (1000     |      |      |      |      |      |      |                |
| hectares)                                  |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 33.8           |
| High - Increase trees outside forests      |      |      |      |      |      |      |                |
| (1000 hectares)                            |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 4.11           |
| High - Reforest cropland (1000 hectares)   |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 25.2           |
| High - Reforest pasture (1000 hectares)    |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 181            |
| High - Restore productivity (1000          |      |      |      |      |      |      |                |
| hectares)                                  |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,130          |
| High - Total impacted (over 30 years)      |      |      |      |      |      |      |                |
| (1000 hectares)                            |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 3.08           |
| Low - Accelerate regeneration (1000        |      |      |      |      |      |      |                |
| hectares)                                  |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 140            |
| Low - Avoid deforestation (over 30 years)  |      |      |      |      |      |      |                |
| (1000 hectares)                            |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 260            |
| Low - Extend rotation length (1000         |      |      |      |      |      |      |                |
| hectares)                                  |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 25.8           |
| Low - Improve plantations (1000            |      |      |      |      |      |      |                |
| hectares)                                  |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0              |
| Low - Increase retention of HWP (1000      |      |      |      |      |      |      |                |
| hectares)                                  |      |      |      |      |      |      |                |

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------|------|------|------|------|------|------|------|
| Land impacted for carbon sink potential -  | 2020 | 2023 | 2030 | 2000 | 2040 | 2043 | 17.8 |
| Low - Increase trees outside forests       |      |      |      |      |      |      | 11.0 |
| (1000 hectares)                            |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 2.05 |
| Low - Reforest cropland (1000 hectares)    |      |      |      |      |      |      | 2.05 |
|                                            |      |      |      |      |      |      | / 0/ |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 4.36 |
| Low - Reforest pasture (1000 hectares)     |      |      |      |      |      |      | 440  |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 110  |
| Low - Restore productivity (1000           |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 563  |
| Low - Total impacted (over 30 years)       |      |      |      |      |      |      |      |
| (1000 hectares)                            |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 4.61 |
| Mid - Accelerate regeneration (1000        |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 144  |
| Mid - Avoid deforestation (over 30 years)  |      |      |      |      |      |      |      |
| (1000 hectares)                            |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 470  |
| Mid - Extend rotation length (1000         |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 38.8 |
| Mid - Improve plantations (1000 hectares)  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0    |
| Mid - Increase retention of HWP (1000      |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 25.8 |
| Mid - Increase trees outside forests (1000 |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 3.08 |
| Mid - Reforest cropland (1000 hectares)    |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 31.5 |
| Mid - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 221  |
| Mid - Restore productivity (1000           |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 938  |
| Mid - Total impacted (over 30 years) (1000 |      |      |      |      |      |      | ,50  |
| hectares)                                  |      |      |      |      |      |      |      |
|                                            |      |      |      |      |      |      |      |

Table 24: E- scenario - IMPACTS - Health

| Item                                  | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|---------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution - |      | 743   | 0.504 | 0.499 | 0.457 | 0.318 | 0.027 |
| Coal (million 2019\$)                 |      |       |       |       |       |       |       |
| Monetary damages from air pollution - |      | 248   | 162   | 73.2  | 34.7  | 11.7  | 7.64  |
| Natural Gas (million 2019\$)          |      |       |       |       |       |       |       |
| Monetary damages from air pollution - |      | 2,231 | 2,262 | 2,199 | 1,975 | 1,567 | 1,069 |
| Transportation (million 2019\$)       |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 83.9  | 0.057 | 0.056 | 0.052 | 0.036 | 0.003 |
| Coal (deaths)                         |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 28    | 18.3  | 8.27  | 3.91  | 1.32  | 0.863 |
| Natural Gas (deaths)                  |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 251   | 254   | 247   | 222   | 176   | 120   |
| Transportation (deaths)               |      |       |       |       |       |       |       |

Table 25: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                       | 2020  | 2025   | 2030   | 2035  | 2040  | 2045 | 2050 |
|--------------------------------------------|-------|--------|--------|-------|-------|------|------|
| Commercial HVAC investment in 2020s -      |       | 21,776 | 24,347 |       |       |      |      |
| Cumulative 5-yr (million \$2018)           |       |        |        |       |       |      |      |
| Sales of cooking units - Electric          | 32    | 46     | 79.9   | 86.5  | 86.9  | 86.9 | 86.9 |
| Resistance (%)                             |       |        |        |       |       |      |      |
| Sales of cooking units - Gas (%)           | 68    | 54     | 20.1   | 13.5  | 13.1  | 13.1 | 13.1 |
| Sales of space heating units - Electric    | 2.22  | 28.1   | 70.4   | 83.7  | 85    | 85.1 | 85.1 |
| Heat Pump (%)                              |       |        |        |       |       |      |      |
| Sales of space heating units - Electric    | 2.54  | 8.39   | 10.6   | 12.7  | 13.1  | 13.1 | 13.1 |
| Resistance (%)                             |       |        |        |       |       |      |      |
| Sales of space heating units - Fossil (%)  | 11    | 4.19   | 0.8    | 0.034 | 0     | 0    | 0    |
| Sales of space heating units - Gas Furnace | 84.3  | 59.3   | 18.3   | 3.58  | 1.9   | 1.86 | 1.85 |
| (%)                                        |       |        |        |       |       |      |      |
| Sales of water heating units - Electric    | 0.097 | 10.5   | 54.4   | 64.3  | 64.7  | 64.8 | 64.7 |
| Heat Pump (%)                              |       |        |        |       |       |      |      |
| Sales of water heating units - Electric    | 2.5   | 10.8   | 28.3   | 32.3  | 32.5  | 32.5 | 32.5 |
| Resistance (%)                             |       |        |        |       |       |      |      |
| Sales of water heating units - Gas Furnace | 93    | 74.5   | 14.3   | 0.646 | 0.003 | 0    | 0    |
| (%)                                        |       |        |        |       |       |      |      |
| Sales of water heating units - Other (%)   | 4.44  | 4.22   | 3.02   | 2.72  | 2.72  | 2.72 | 2.71 |

Table 26: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|------|------|------|------|------|------|
| Electricity distribution capital invested - |      | 2.99 | 3.04 | 6    | 6.39 | 5.4  | 5.63 |
| Cumulative 5-yr (billion \$2018)            |      |      |      |      |      |      |      |

Table 27: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview

|                                        | ,, = |      |      |      |      |      |      |
|----------------------------------------|------|------|------|------|------|------|------|
| Item                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
| Final energy use - Commercial (PJ)     | 189  | 188  | 180  | 167  | 157  | 154  | 156  |
| Final energy use - Industry (PJ)       | 130  | 132  | 132  | 141  | 151  | 159  | 167  |
| Final energy use - Residential (PJ)    | 241  | 228  | 209  | 183  | 162  | 149  | 144  |
| Final energy use - Transportation (PJ) | 448  | 417  | 367  | 305  | 249  | 213  | 197  |

Table 28: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                       | 2020 | 2025 | 2030 | 2035  | 2040  | 2045 | 2050 |
|--------------------------------------------|------|------|------|-------|-------|------|------|
| Residential HVAC investment in 2020s vs.   |      | 4.8  | 4.71 |       |       |      |      |
| REF - Cumulative 5-yr (billion \$2018)     |      |      |      |       |       |      |      |
| Sales of cooking units - Electric          | 59.2 | 67.9 | 94.5 | 99.7  | 100   | 100  | 100  |
| Resistance (%)                             |      |      |      |       |       |      |      |
| Sales of cooking units - Gas (%)           | 40.8 | 32.1 | 5.5  | 0.277 | 0     | 0    | 0    |
| Sales of space heating units - Electric    | 17.4 | 35.6 | 79.7 | 89.7  | 90.1  | 90.1 | 90.1 |
| Heat Pump (%)                              |      |      |      |       |       |      |      |
| Sales of space heating units - Electric    | 13.2 | 13.8 | 5.81 | 3.98  | 3.89  | 3.95 | 3.95 |
| Resistance (%)                             |      |      |      |       |       |      |      |
| Sales of space heating units - Fossil (%)  | 14.3 | 18.9 | 5.51 | 2.51  | 2.38  | 2.35 | 2.35 |
| Sales of space heating units - Gas (%)     | 55.1 | 31.6 | 8.99 | 3.84  | 3.61  | 3.62 | 3.62 |
| Sales of water heating units - Electric    | 0    | 9.19 | 48.7 | 57.6  | 58    | 58   | 58   |
| Heat Pump (%)                              |      |      |      |       |       |      |      |
| Sales of water heating units - Electric    | 35.7 | 51   | 42.2 | 40.3  | 40.2  | 40.2 | 40.2 |
| Resistance (%)                             |      |      |      |       |       |      |      |
| Sales of water heating units - Gas Furnace | 59.5 | 36.5 | 7.04 | 0.317 | 0.002 | 0    | 0    |
| (%)                                        |      |      |      |       |       |      |      |
| Sales of water heating units - Other (%)   | 4.77 | 3.29 | 2.07 | 1.81  | 1.81  | 1.83 | 1.84 |

Table 29: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         |       | 800   | 2,073 | 3,321 | 5,046 | 5,475 | 5,229 |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.402 |       | 1.31  |       | 5.5   |       | 8.84  |
| units)                                     |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 1.67  |       | 31.5  |       | 132   |       | 212   |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.2  | 92.1  | 67    | 23.3  | 4.22  | 0.628 | 0     |
| Vehicle sales - Heavy-duty - EV (%)        | 0.588 | 3.81  | 19    | 45.6  | 57.4  | 59.6  | 60    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.227 | 0.227 | 0.176 | 0.066 | 0.013 | 0.002 | 0     |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.082 | 0.09  | 0.077 | 0.031 | 0.007 | 0.001 | 0     |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.392 | 2.54  | 12.7  | 30.4  | 38.2  | 39.7  | 40    |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.23  | 1.07  | 0.568 | 0.163 | 0.038 | 0     |
| Vehicle sales - Light-duty - diesel (%)    | 1.29  | 1.58  | 1.16  | 0.367 | 0.07  | 0.013 | 0     |
| Vehicle sales - Light-duty - EV (%)        | 4.79  | 17.9  | 50.4  | 83.4  | 96.5  | 99.3  | 100   |
| Vehicle sales - Light-duty - gasoline (%)  | 88.5  | 75    | 44.7  | 14.9  | 3.08  | 0.584 | 0     |
| Vehicle sales - Light-duty - hybrid (%)    | 5.27  | 5.16  | 3.5   | 1.27  | 0.314 | 0.07  | 0     |
| Vehicle sales - Light-duty - hydrogen FC   | 0.109 | 0.325 | 0.182 | 0.055 | 0.011 | 0.002 | 0     |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.09  | 0.085 | 0.053 | 0.019 | 0.004 | 0.001 | 0     |
| Vehicle sales - Medium-duty - diesel (%)   | 64.7  | 59.7  | 42.3  | 14.4  | 2.59  | 0.384 | 0     |
| Vehicle sales - Medium-duty - EV (%)       | 0.784 | 5.07  | 25.3  | 60.8  | 76.5  | 79.5  | 80    |
| Vehicle sales - Medium-duty - gasoline (%) | 33.7  | 33.3  | 25.5  | 9.32  | 1.77  | 0.277 | 0     |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.402 | 0.341 | 0.14  | 0.03  | 0.005 | 0     |
| Vehicle sales - Medium-duty - hydrogen     | 0.196 | 1.27  | 6.33  | 15.2  | 19.1  | 19.9  | 20    |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.255 | 0.205 | 0.083 | 0.019 | 0.004 | 0     |

Table 30: E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity

| Item                                        | 2020  | 2025  | 2030   | 2035   | 2040   | 2045   | 2050   |
|---------------------------------------------|-------|-------|--------|--------|--------|--------|--------|
| Capital invested - Offshore Wind - Base     |       | 0     | 0      | 0      | 1.71   | 17.2   | 3.59   |
| (billion \$2018)                            |       |       |        |        |        |        |        |
| Capital invested - Solar PV - Base (billion |       | 4.53  | 0.414  | 2.16   | 2.49   | 3.65   | 14.9   |
| \$2018)                                     |       |       |        |        |        |        |        |
| Capital invested - Wind - Base (billion     |       | 0     | 0      | 0      | 0      | 2.43   | 6.5    |
| \$2018)                                     |       |       |        |        |        |        |        |
| Installed renewables - OffshoreWind -       | 0     | 0     | 0      | 0      | 987    | 12,663 | 15,370 |
| Base land use assumptions (MW)              |       |       |        |        |        |        |        |
| Installed renewables - OffshoreWind -       | 0     | 0     | 0      | 0      | 1,978  | 1,978  | 30,744 |
| Constrained land use assumptions (MW)       |       |       |        |        |        |        |        |
| Installed renewables - Solar - Base land    | 1,090 | 5,050 | 5,455  | 7,750  | 10,551 | 14,905 | 33,771 |
| use assumptions (MW)                        |       |       |        |        |        |        |        |
| Installed renewables - Solar -              | 2,967 | 6,995 | 10,842 | 16,782 | 20,630 | 21,260 | 67,160 |
| Constrained land use assumptions (MW)       |       |       |        |        |        |        |        |
| Installed renewables - Wind - Base land     | 191   | 191   | 191    | 191    | 191    | 1,394  | 4,802  |
| use assumptions (MW)                        |       |       |        |        |        |        |        |
| Installed renewables - Wind - Constrained   | 382   | 382   | 382    | 3,606  | 7,024  | 7,024  | 7,024  |
| land use assumptions (MW)                   |       |       |        |        |        |        |        |

Table 31: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation

| Item                                     | 2020  | 2025   | 2030   | 2035   | 2040   | 2045   | 2050    |
|------------------------------------------|-------|--------|--------|--------|--------|--------|---------|
| OffshoreWind - Base land use             | 0     | 0      | 0      | 0      | 4,268  | 58,926 | 72,114  |
| assumptions (GWh)                        |       |        |        |        |        |        |         |
| OffshoreWind - Constrained land use      | 0     | 0      | 0      | 0      | 8,552  | 8,552  | 144,242 |
| assumptions (GWh)                        |       |        |        |        |        |        |         |
| Solar - Base land use assumptions (GWh)  | 1,833 | 8,064  | 8,720  | 12,261 | 16,434 | 22,811 | 52,725  |
| Solar - Constrained land use assumptions | 4,898 | 11,221 | 17,264 | 26,520 | 32,278 | 33,228 | 105,973 |
| (GWh)                                    |       |        |        |        |        |        |         |
| Wind - Base land use assumptions (GWh)   | 786   | 786    | 786    | 786    | 786    | 4,950  | 14,593  |

## Table 31: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation (continued)

| Item                                    | 2020  | 2025  | 2030  | 2035   | 2040   | 2045   | 2050   |
|-----------------------------------------|-------|-------|-------|--------|--------|--------|--------|
| Wind - Constrained land use assumptions | 1,572 | 1,572 | 1,572 | 12,555 | 21,470 | 21,470 | 21,470 |
| (GWh)                                   |       |       |       |        |        |        |        |

#### Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture

| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|------------------------------------------|------|------|------|------|------|------|-------|
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |       |
| grasses (1000 tC02e/y)                   |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -595  |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |       |
| tCO2e/y)                                 |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -29   |
| deployment - Permanent conservation      |      |      |      |      |      |      |       |
| cover (1000 tCO2e/y)                     |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -624  |
| deployment - Total (1000 tCO2e/y)        |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |       |
| grasses (1000 tC02e/y)                   |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -313  |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |       |
| tCO2e/y)                                 |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -14.5 |
| deployment - Permanent conservation      |      |      |      |      |      |      |       |
| cover (1000 tC02e/y)                     |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -327  |
| deployment - Total (1000 tCO2e/y)        |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 0     |
| Aggressive deployment - Corn-ethanol to  |      |      |      |      |      |      |       |
| energy grasses (1000 hectares)           |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 525   |
| Aggressive deployment - Cropland         |      |      |      |      |      |      |       |
| measures (1000 hectares)                 |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 52.7  |
| Aggressive deployment - Permanent        |      |      |      |      |      |      |       |
| conservation cover (1000 hectares)       |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 578   |
| Aggressive deployment - Total (1000      |      |      |      |      |      |      | 0.0   |
| hectares)                                |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      | ·     |
| grasses (1000 hectares)                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate | +    |      |      |      |      |      | 276   |
| deployment - Cropland measures (1000     |      |      |      |      |      |      | 210   |
| hectares)                                |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate | +    |      | +    |      |      |      | 26.4  |
| deployment - Permanent conservation      |      |      |      |      |      |      | 20.4  |
| cover (1000 hectares)                    |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 302   |
| deployment - Total (1000 hectares)       |      |      |      |      |      |      | 302   |
| uepioyment - rotar (1000 nectares)       |      |      |      |      |      |      |       |

#### Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests

| Item                                                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|--------------------------------------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - High - Accelerate regeneration (1000 tCO2e/y)    |      |      |      |      |      |      | -37.6  |
| Carbon sink potential - High - All (not counting overlap) (1000 tC02e/y) |      |      |      |      |      |      | -5,324 |
| Carbon sink potential - High - Avoid deforestation (1000 tCO2e/y)        |      |      |      |      |      |      | -1,101 |

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050                                    |
|--------------------------------------------|------|------|------|------|------|------|-----------------------------------------|
| Carbon sink potential - High - Extend      |      |      |      |      |      |      | -1,332                                  |
| rotation length (1000 tC02e/y)             |      |      |      |      |      |      |                                         |
| Carbon sink potential - High - Improve     |      |      |      |      |      |      | -140                                    |
| plantations (1000 tC02e/y)                 |      |      |      |      |      |      |                                         |
| Carbon sink potential - High - Increase    |      |      |      |      |      |      | -864                                    |
| retention of HWP (1000 tCO2e/y)            |      |      |      |      |      |      |                                         |
| Carbon sink potential - High - Increase    |      |      |      |      |      |      | -356                                    |
| trees outside forests (1000 tC02e/y)       |      |      |      |      |      |      |                                         |
| Carbon sink potential - High - Reforest    |      |      |      |      |      |      | -62.1                                   |
| cropland (1000 tCO2e/y)                    |      |      |      |      |      |      |                                         |
| Carbon sink potential - High - Reforest    |      |      |      |      |      |      | -886                                    |
| pasture (1000 tCO2e/y)                     |      |      |      |      |      |      |                                         |
| Carbon sink potential - High - Restore     |      |      |      |      |      |      | -546                                    |
| productivity (1000 tCO2e/y)                |      |      |      |      |      |      |                                         |
| Carbon sink potential - Low - Accelerate   |      |      |      |      |      |      | -18.8                                   |
| regeneration (1000 tCO2e/y)                |      |      |      |      |      |      |                                         |
| Carbon sink potential - Low - All (not     |      |      |      |      |      |      | -1,480                                  |
| counting overlap) (1000 tCO2e/y)           |      |      |      |      |      |      |                                         |
| Carbon sink potential - Low - Avoid        |      |      |      |      |      |      | -183                                    |
| deforestation (1000 tCO2e/y)               |      |      |      |      |      |      |                                         |
| Carbon sink potential - Low - Extend       |      |      |      |      |      |      | -511                                    |
| rotation length (1000 tCO2e/y)             |      |      |      |      |      |      | • • • • • • • • • • • • • • • • • • • • |
| Carbon sink potential - Low - Improve      |      |      |      |      |      |      | -71.1                                   |
| plantations (1000 tCO2e/y)                 |      |      |      |      |      |      | -1 1.1                                  |
| Carbon sink potential - Low - Increase     |      |      |      |      |      |      | -288                                    |
| retention of HWP (1000 tCO2e/y)            |      |      |      |      |      |      | -200                                    |
|                                            |      |      |      |      |      |      | -125                                    |
| Carbon sink potential - Low - Increase     |      |      |      |      |      |      | -125                                    |
| trees outside forests (1000 tC02e/y)       |      |      |      |      |      |      | 011                                     |
| Carbon sink potential - Low - Reforest     |      |      |      |      |      |      | -31.1                                   |
| cropland (1000 tCO2e/y)                    |      |      |      |      |      |      |                                         |
| Carbon sink potential - Low - Reforest     |      |      |      |      |      |      | -67.1                                   |
| pasture (1000 tCO2e/y)                     |      |      |      |      |      |      |                                         |
| Carbon sink potential - Low - Restore      |      |      |      |      |      |      | -184                                    |
| productivity (1000 tCO2e/y)                |      |      |      |      |      |      |                                         |
| Carbon sink potential - Mid - Accelerate   |      |      |      |      |      |      | -28.2                                   |
| regeneration (1000 tCO2e/y)                |      |      |      |      |      |      |                                         |
| Carbon sink potential - Mid - All (not     |      |      |      |      |      |      | -3,401                                  |
| counting overlap) (1000 tCO2e/y)           |      |      |      |      |      |      |                                         |
| Carbon sink potential - Mid - Avoid        |      |      |      |      |      |      | -642                                    |
| deforestation (1000 tCO2e/y)               |      |      |      |      |      |      |                                         |
| Carbon sink potential - Mid - Extend       |      |      |      |      |      |      | -922                                    |
| rotation length (1000 tCO2e/y)             |      |      |      |      |      |      |                                         |
| Carbon sink potential - Mid - Improve      |      |      |      |      |      |      | -104                                    |
| plantations (1000 tCO2e/y)                 |      |      |      |      |      |      |                                         |
| Carbon sink potential - Mid - Increase     |      |      |      |      |      |      | -576                                    |
| retention of HWP (1000 tCO2e/y)            |      |      |      |      |      |      | 0.0                                     |
| Carbon sink potential - Mid - Increase     |      |      |      |      |      |      | -240                                    |
| trees outside forests (1000 tC02e/y)       |      |      |      |      |      |      | -240                                    |
| Carbon sink potential - Mid - Reforest     |      |      |      |      |      |      | -46.6                                   |
| · ·                                        |      |      |      |      |      |      | -40.0                                   |
| cropland (1000 tCO2e/y)                    |      |      |      |      |      |      | -477                                    |
| Carbon sink potential - Mid - Reforest     |      |      |      |      |      |      | -4//                                    |
| pasture (1000 tC02e/y)                     |      |      |      |      |      |      |                                         |
| Carbon sink potential - Mid - Restore      |      |      |      |      |      |      | -365                                    |
| productivity (1000 tC02e/y)                |      |      |      |      |      |      |                                         |
| Land impacted for carbon sink potential -  |      |      |      | T    |      |      | 6.15                                    |
| High - Accelerate regeneration (1000       |      |      |      |      |      |      |                                         |
| hectares)                                  |      |      |      |      |      |      |                                         |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 149                                     |
| High - Avoid deforestation (over 30 years) |      |      |      |      |      |      |                                         |
| (1000 hectares)                            |      |      |      |      |      |      |                                         |

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                                                                                          | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050<br>679 |
|---------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|-------------|
| Land impacted for carbon sink potential -<br>High - Extend rotation length (1000<br>hectares)                 |      |      |      |      |      |      | 679         |
| Land impacted for carbon sink potential -<br>High - Improve plantations (1000                                 |      |      |      |      |      |      | 51.5        |
| hectares)  Land impacted for carbon sink potential -                                                          |      |      |      |      |      |      | 0           |
| High - Increase retention of HWP (1000 hectares)                                                              |      |      |      |      |      |      | 33.8        |
| Land impacted for carbon sink potential -<br>High - Increase trees outside forests<br>(1000 hectares)         |      |      |      |      |      |      | 33.8        |
| Land impacted for carbon sink potential -<br>High - Reforest cropland (1000 hectares)                         |      |      |      |      |      |      | 4.11        |
| Land impacted for carbon sink potential -<br>High - Reforest pasture (1000 hectares)                          |      |      |      |      |      |      | 25.2        |
| Land impacted for carbon sink potential -<br>High - Restore productivity (1000<br>hectares)                   |      |      |      |      |      |      | 181         |
| Land impacted for carbon sink potential -<br>High - Total impacted (over 30 years)<br>(1000 hectares)         |      |      |      |      |      |      | 1,130       |
| Land impacted for carbon sink potential -<br>Low - Accelerate regeneration (1000<br>hectares)                 |      |      |      |      |      |      | 3.08        |
| Land impacted for carbon sink potential -<br>Low - Avoid deforestation (over 30 years)<br>(1000 hectares)     |      |      |      |      |      |      | 140         |
| Land impacted for carbon sink potential -<br>Low - Extend rotation length (1000<br>hectares)                  |      |      |      |      |      |      | 260         |
| Land impacted for carbon sink potential -<br>Low - Improve plantations (1000<br>hectares)                     |      |      |      |      |      |      | 25.8        |
| Land impacted for carbon sink potential -<br>Low - Increase retention of HWP (1000<br>hectares)               |      |      |      |      |      |      | 0           |
| Land impacted for carbon sink potential -<br>Low - Increase trees outside forests<br>(1000 hectares)          |      |      |      |      |      |      | 17.8        |
| Land impacted for carbon sink potential -<br>Low - Reforest cropland (1000 hectares)                          |      |      |      |      |      |      | 2.05        |
| Land impacted for carbon sink potential -<br>Low - Reforest pasture (1000 hectares)                           |      |      |      |      |      |      | 4.36        |
| Land impacted for carbon sink potential -<br>Low - Restore productivity (1000<br>hectares)                    |      |      |      |      |      |      | 110         |
| Land impacted for carbon sink potential -<br>Low - Total impacted (over 30 years)                             |      |      |      |      |      |      | 563         |
| (1000 hectares)  Land impacted for carbon sink potential - Mid - Accelerate regeneration (1000                |      |      |      |      |      |      | 4.61        |
| hectares) Land impacted for carbon sink potential - Mid - Avoid deforestation (over 30 years) (1000 hectares) |      |      |      |      |      |      | 144         |
| Land impacted for carbon sink potential - Mid - Extend rotation length (1000 hectares)                        |      |      |      |      |      |      | 470         |
| Land impacted for carbon sink potential -<br>Mid - Improve plantations (1000 hectares)                        |      |      |      |      |      |      | 38.8        |

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------|------|------|------|------|------|------|------|
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0    |
| Mid - Increase retention of HWP (1000      |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 25.8 |
| Mid - Increase trees outside forests (1000 |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 3.08 |
| Mid - Reforest cropland (1000 hectares)    |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 31.5 |
| Mid - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 221  |
| Mid - Restore productivity (1000           |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 938  |
| Mid - Total impacted (over 30 years) (1000 |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |

#### Table 34: E+RE+ scenario - IMPACTS - Health

| Item                                  | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|---------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution - |      | 743   | 0.504 | 0.499 | 0.457 | 0.318 | 0.027 |
| Coal (million 2019\$)                 |      |       |       |       |       |       |       |
| Monetary damages from air pollution - |      | 228   | 159   | 99    | 69.7  | 24.4  | 4.65  |
| Natural Gas (million 2019\$)          |      |       |       |       |       |       |       |
| Monetary damages from air pollution - |      | 2,187 | 2,036 | 1,542 | 889   | 398   | 147   |
| Transportation (million 2019\$)       |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 83.9  | 0.057 | 0.056 | 0.052 | 0.036 | 0.003 |
| Coal (deaths)                         |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 25.7  | 18    | 11.2  | 7.87  | 2.76  | 0.525 |
| Natural Gas (deaths)                  |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 246   | 229   | 173   | 100   | 44.8  | 16.5  |
| Transportation (deaths)               |      |       |       |       |       |       |       |

#### Table 35: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                       | 2020  | 2025   | 2030   | 2035  | 2040  | 2045 | 2050 |
|--------------------------------------------|-------|--------|--------|-------|-------|------|------|
| Commercial HVAC investment in 2020s -      |       | 21,776 | 24,347 |       |       |      |      |
| Cumulative 5-yr (million \$2018)           |       |        |        |       |       |      |      |
| Sales of cooking units - Electric          | 32    | 46     | 79.9   | 86.5  | 86.9  | 86.9 | 86.9 |
| Resistance (%)                             |       |        |        |       |       |      |      |
| Sales of cooking units - Gas (%)           | 68    | 54     | 20.1   | 13.5  | 13.1  | 13.1 | 13.1 |
| Sales of space heating units - Electric    | 2.22  | 28.1   | 70.4   | 83.7  | 85    | 85.1 | 85.1 |
| Heat Pump (%)                              |       |        |        |       |       |      |      |
| Sales of space heating units - Electric    | 2.54  | 8.39   | 10.6   | 12.7  | 13.1  | 13.1 | 13.1 |
| Resistance (%)                             |       |        |        |       |       |      |      |
| Sales of space heating units - Fossil (%)  | 11    | 4.19   | 0.8    | 0.034 | 0     | 0    | 0    |
| Sales of space heating units - Gas Furnace | 84.3  | 59.3   | 18.3   | 3.58  | 1.9   | 1.86 | 1.85 |
| (%)                                        |       |        |        |       |       |      |      |
| Sales of water heating units - Electric    | 0.097 | 10.5   | 54.4   | 64.3  | 64.7  | 64.8 | 64.7 |
| Heat Pump (%)                              |       |        |        |       |       |      |      |
| Sales of water heating units - Electric    | 2.5   | 10.8   | 28.3   | 32.3  | 32.5  | 32.5 | 32.5 |
| Resistance (%)                             |       |        |        |       |       |      |      |
| Sales of water heating units - Gas Furnace | 93    | 74.5   | 14.3   | 0.646 | 0.003 | 0    | 0    |
| (%)                                        |       |        |        |       |       |      |      |
| Sales of water heating units - Other (%)   | 4.44  | 4.22   | 3.02   | 2.72  | 2.72  | 2.72 | 2.71 |

## Table 36: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|------|------|------|------|------|------|
| Electricity distribution capital invested - |      | 2.99 | 3.04 | 6    | 6.39 | 5.4  | 5.63 |
| Cumulative 5-yr (billion \$2018)            |      |      |      |      |      |      |      |

#### Table 37: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ)     | 189  | 188  | 180  | 167  | 157  | 154  | 156  |
| Final energy use - Industry (PJ)       | 130  | 132  | 132  | 141  | 151  | 159  | 167  |
| Final energy use - Residential (PJ)    | 241  | 228  | 209  | 183  | 162  | 149  | 144  |
| Final energy use - Transportation (PJ) | 448  | 417  | 367  | 305  | 249  | 213  | 197  |

#### Table 38: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                       | 2020 | 2025 | 2030 | 2035  | 2040  | 2045 | 2050 |
|--------------------------------------------|------|------|------|-------|-------|------|------|
| Residential HVAC investment in 2020s vs.   |      | 4.8  | 4.71 |       |       |      |      |
| REF - Cumulative 5-yr (billion \$2018)     |      |      |      |       |       |      |      |
| Sales of cooking units - Electric          | 59.2 | 67.9 | 94.5 | 99.7  | 100   | 100  | 100  |
| Resistance (%)                             |      |      |      |       |       |      |      |
| Sales of cooking units - Gas (%)           | 40.8 | 32.1 | 5.5  | 0.277 | 0     | 0    | 0    |
| Sales of space heating units - Electric    | 17.4 | 35.6 | 79.7 | 89.7  | 90.1  | 90.1 | 90.1 |
| Heat Pump (%)                              |      |      |      |       |       |      |      |
| Sales of space heating units - Electric    | 13.2 | 13.8 | 5.81 | 3.98  | 3.89  | 3.95 | 3.95 |
| Resistance (%)                             |      |      |      |       |       |      |      |
| Sales of space heating units - Fossil (%)  | 14.3 | 18.9 | 5.51 | 2.51  | 2.38  | 2.35 | 2.35 |
| Sales of space heating units - Gas (%)     | 55.1 | 31.6 | 8.99 | 3.84  | 3.61  | 3.62 | 3.62 |
| Sales of water heating units - Electric    | 0    | 9.19 | 48.7 | 57.6  | 58    | 58   | 58   |
| Heat Pump (%)                              |      |      |      |       |       |      |      |
| Sales of water heating units - Electric    | 35.7 | 51   | 42.2 | 40.3  | 40.2  | 40.2 | 40.2 |
| Resistance (%)                             |      |      |      |       |       |      |      |
| Sales of water heating units - Gas Furnace | 59.5 | 36.5 | 7.04 | 0.317 | 0.002 | 0    | 0    |
| (%)                                        |      |      |      |       |       |      |      |
| Sales of water heating units - Other (%)   | 4.77 | 3.29 | 2.07 | 1.81  | 1.81  | 1.83 | 1.84 |

#### Table 39: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         |       | 800   | 2,073 | 3,321 | 5,046 | 5,475 | 5,229 |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.402 |       | 1.31  |       | 5.5   |       | 8.84  |
| units)                                     |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 1.67  |       | 31.5  |       | 132   |       | 212   |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.2  | 92.1  | 67    | 23.3  | 4.22  | 0.628 | 0     |
| Vehicle sales - Heavy-duty - EV (%)        | 0.588 | 3.81  | 19    | 45.6  | 57.4  | 59.6  | 60    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.227 | 0.227 | 0.176 | 0.066 | 0.013 | 0.002 | 0     |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.082 | 0.09  | 0.077 | 0.031 | 0.007 | 0.001 | 0     |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.392 | 2.54  | 12.7  | 30.4  | 38.2  | 39.7  | 40    |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.23  | 1.07  | 0.568 | 0.163 | 0.038 | 0     |
| Vehicle sales - Light-duty - diesel (%)    | 1.29  | 1.58  | 1.16  | 0.367 | 0.07  | 0.013 | 0     |
| Vehicle sales - Light-duty - EV (%)        | 4.79  | 17.9  | 50.4  | 83.4  | 96.5  | 99.3  | 100   |
| Vehicle sales - Light-duty - gasoline (%)  | 88.5  | 75    | 44.7  | 14.9  | 3.08  | 0.584 | 0     |
| Vehicle sales - Light-duty - hybrid (%)    | 5.27  | 5.16  | 3.5   | 1.27  | 0.314 | 0.07  | 0     |
| Vehicle sales - Light-duty - hydrogen FC   | 0.109 | 0.325 | 0.182 | 0.055 | 0.011 | 0.002 | 0     |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.09  | 0.085 | 0.053 | 0.019 | 0.004 | 0.001 | 0     |
| Vehicle sales - Medium-duty - diesel (%)   | 64.7  | 59.7  | 42.3  | 14.4  | 2.59  | 0.384 | 0     |
| Vehicle sales - Medium-duty - EV (%)       | 0.784 | 5.07  | 25.3  | 60.8  | 76.5  | 79.5  | 80    |
| Vehicle sales - Medium-duty - gasoline (%) | 33.7  | 33.3  | 25.5  | 9.32  | 1.77  | 0.277 | 0     |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.402 | 0.341 | 0.14  | 0.03  | 0.005 | 0     |

## Table 39: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation (continued)

| Item                                             | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050 |
|--------------------------------------------------|-------|-------|-------|-------|-------|-------|------|
| Vehicle sales - Medium-duty - hydrogen<br>FC (%) | 0.196 | 1.27  | 6.33  | 15.2  | 19.1  | 19.9  | 20   |
| Vehicle sales - Medium-duty - other (%)          | 0.253 | 0.255 | 0.205 | 0.083 | 0.019 | 0.004 | 0    |

#### Table 40: E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity

| Item                                                                           | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Capital invested - Offshore Wind -<br>Constrained (billion \$2018)             |      | 0     | 0     | 0     | 0     | 0.383 | 0.427 |
| Capital invested - Solar PV - Base (billion<br>\$2018)                         |      | 1.12  | 0.84  | 0.53  | 0.29  | 0     | 0     |
| Capital invested - Solar PV - Constrained (billion \$2018)                     |      | 1.2   | 1.38  | 0.17  | 0.879 | 0.198 | 0     |
| Capital invested - Wind - Base (billion<br>\$2018)                             |      | 0     | 0     | 0     | 0     | 0     | 0     |
| Capital invested - Wind - Constrained (billion \$2018)                         |      | 0     | 0     | 0     | 0     | 0     | 0     |
| Installed renewables - OffshoreWind -<br>Base land use assumptions (MW)        | 0    | 0     | 0     | 0     | 0     | 0     | 0     |
| Installed renewables - OffshoreWind -<br>Constrained land use assumptions (MW) | 0    | 0     | 0     | 0     | 0     | 260   | 582   |
| Installed renewables - Solar - Base land use assumptions (MW)                  | 617  | 1,596 | 2,417 | 2,980 | 3,306 | 3,306 | 3,306 |
| Installed renewables - Solar -<br>Constrained land use assumptions (MW)        | 786  | 1,832 | 3,182 | 3,362 | 4,352 | 4,589 | 4,589 |
| Installed renewables - Wind - Base land use assumptions (MW)                   | 191  | 191   | 191   | 191   | 191   | 191   | 191   |
| Installed renewables - Wind - Constrained land use assumptions (MW)            | 191  | 191   | 191   | 191   | 191   | 191   | 191   |

## Table 41: E+RE- scenario - PILLAR 2: Clean Electricity - Generation

| Item                                     | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| OffshoreWind - Base land use             | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| assumptions (GWh)                        |       |       |       |       |       |       |       |
| OffshoreWind - Constrained land use      | 0     | 0     | 0     | 0     | 0     | 1,098 | 2,486 |
| assumptions (GWh)                        |       |       |       |       |       |       |       |
| Solar - Base land use assumptions (GWh)  | 1,078 | 2,619 | 3,931 | 4,822 | 5,347 | 5,347 | 5,347 |
| Solar - Constrained land use assumptions | 1,345 | 3,008 | 5,115 | 5,408 | 6,969 | 7,338 | 7,338 |
| (GWh)                                    |       |       |       |       |       |       |       |
| Wind - Base land use assumptions (GWh)   | 786   | 786   | 786   | 786   | 786   | 786   | 786   |
| Wind - Constrained land use assumptions  | 786   | 786   | 786   | 786   | 786   | 786   | 786   |
| (GWh)                                    |       |       |       |       |       |       |       |

## Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture

|   |   | 0    |
|---|---|------|
|   |   |      |
|   | I |      |
|   |   |      |
|   |   | -595 |
|   |   |      |
|   |   |      |
|   |   | -29  |
|   |   |      |
|   |   |      |
|   |   | -624 |
|   |   |      |
|   |   | 0    |
|   |   |      |
|   |   |      |
| _ |   |      |

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture (continued)

| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|------------------------------------------|------|------|------|------|------|------|-------|
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -313  |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |       |
| tCO2e/y)                                 |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -14.5 |
| deployment - Permanent conservation      |      |      |      |      |      |      |       |
| cover (1000 tCO2e/y)                     |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -327  |
| deployment - Total (1000 tCO2e/y)        |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 0     |
| Aggressive deployment - Corn-ethanol to  |      |      |      |      |      |      |       |
| energy grasses (1000 hectares)           |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 525   |
| Aggressive deployment - Cropland         |      |      |      |      |      |      |       |
| measures (1000 hectares)                 |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 52.7  |
| Aggressive deployment - Permanent        |      |      |      |      |      |      |       |
| conservation cover (1000 hectares)       |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 578   |
| Aggressive deployment - Total (1000      |      |      |      |      |      |      |       |
| hectares)                                |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |       |
| grasses (1000 hectares)                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 276   |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |       |
| hectares)                                |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 26.4  |
| deployment - Permanent conservation      |      |      |      |      |      |      |       |
| cover (1000 hectares)                    |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 302   |
| deployment - Total (1000 hectares)       |      |      |      |      |      |      |       |

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests

| Item                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|-------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - High - Accelerate |      |      |      |      |      |      | -37.6  |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - High - All (not   |      |      |      |      |      |      | -5,324 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |        |
| Carbon sink potential - High - Avoid      |      |      |      |      |      |      | -1,101 |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |        |
| Carbon sink potential - High - Extend     |      |      |      |      |      |      | -1,332 |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |        |
| Carbon sink potential - High - Improve    |      |      |      |      |      |      | -140   |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |        |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -864   |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |        |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -356   |
| trees outside forests (1000 tCO2e/y)      |      |      |      |      |      |      |        |
| Carbon sink potential - High - Reforest   |      |      |      |      |      |      | -62.1  |
| cropland (1000 tCO2e/y)                   |      |      |      |      |      |      |        |
| Carbon sink potential - High - Reforest   |      |      |      |      |      |      | -886   |
| pasture (1000 tCO2e/y)                    |      |      |      |      |      |      |        |
| Carbon sink potential - High - Restore    |      |      |      |      |      |      | -546   |
| productivity (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Accelerate  |      |      |      |      |      |      | -18.8  |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Low - All (not    |      |      |      |      |      |      | -1,480 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Avoid       |      |      |      |      |      |      | -183   |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |        |

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

| Item Contantial Law Extend                                                                                           | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|----------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|-------|
| Carbon sink potential - Low - Extend                                                                                 |      |      |      |      |      |      | -51   |
| rotation length (1000 tC02e/y)                                                                                       |      |      |      |      |      |      | 71    |
| Carbon sink potential - Low - Improve plantations (1000 tCO2e/y)                                                     |      |      |      |      |      |      | -71.  |
| Carbon sink potential - Low - Increase retention of HWP (1000 tC02e/y)                                               |      |      |      |      |      |      | -288  |
| Carbon sink potential - Low - Increase trees outside forests (1000 tC02e/y)                                          |      |      |      |      |      |      | -12   |
| Carbon sink potential - Low - Reforest                                                                               |      |      |      |      |      |      | -31.  |
| cropland (1000 tCO2e/y) Carbon sink potential - Low - Reforest                                                       |      |      |      |      |      |      | -67.  |
| pasture (1000 tCO2e/y)<br>Carbon sink potential - Low - Restore                                                      |      |      |      |      |      |      | -18   |
| productivity (1000 tCO2e/y) Carbon sink potential - Mid - Accelerate                                                 |      |      |      |      |      |      | -28.  |
| regeneration (1000 tCO2e/y)<br>Carbon sink potential - Mid - All (not                                                |      |      |      |      |      |      | -3,40 |
| counting overlap) (1000 tCO2e/y) Carbon sink potential - Mid - Avoid                                                 |      |      |      |      |      |      | -64   |
| deforestation (1000 tCO2e/y)                                                                                         |      |      |      |      |      |      |       |
| Carbon sink potential - Mid - Extend<br>rotation length (1000 tCO2e/y)                                               |      |      |      |      |      |      | -92   |
| Carbon sink potential - Mid - Improve plantations (1000 tCO2e/y)                                                     |      |      |      |      |      |      | -10   |
| Carbon sink potential - Mid - Increase retention of HWP (1000 tCO2e/y)                                               |      |      |      |      |      |      | -57   |
| Carbon sink potential - Mid - Increase<br>trees outside forests (1000 tCO2e/y)                                       |      |      |      |      |      |      | -24   |
| Carbon sink potential - Mid - Reforest cropland (1000 tCO2e/y)                                                       |      |      |      |      |      |      | -46.  |
| Carbon sink potential - Mid - Reforest                                                                               |      |      |      |      |      |      | -47   |
| pasture (1000 tCO2e/y) Carbon sink potential - Mid - Restore                                                         |      |      |      |      |      |      | -36   |
| productivity (1000 tC02e/y) Land impacted for carbon sink potential - High - Accelerate regeneration (1000 hectares) |      |      |      |      |      |      | 6.1   |
| Land impacted for carbon sink potential -<br>High - Avoid deforestation (over 30 years)<br>(1000 hectares)           |      |      |      |      |      |      | 14    |
| Land impacted for carbon sink potential -<br>High - Extend rotation length (1000<br>hectares)                        |      |      |      |      |      |      | 67    |
| Land impacted for carbon sink potential -<br>High - Improve plantations (1000<br>hectares)                           |      |      |      |      |      |      | 51.   |
| Land impacted for carbon sink potential -<br>High - Increase retention of HWP (1000<br>nectares)                     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -<br>High - Increase trees outside forests<br>(1000 hectares)                |      |      |      |      |      |      | 33.   |
| Land impacted for carbon sink potential -<br>High - Reforest cropland (1000 hectares)                                |      |      |      |      |      |      | 4.    |
| Land impacted for carbon sink potential -<br>High - Reforest pasture (1000 hectares)                                 |      |      |      |      |      |      | 25.   |
| Land impacted for carbon sink potential -<br>High - Restore productivity (1000<br>hectares)                          |      |      |      |      |      |      | 18    |

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

| Table 43: E+RE- scenario - PILLAR 6: Land s |      | •    |      |      |      |      |       |
|---------------------------------------------|------|------|------|------|------|------|-------|
| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 1,130 |
| High - Total impacted (over 30 years)       |      |      |      |      |      |      |       |
| (1000 hectares)                             |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 3.08  |
| Low - Accelerate regeneration (1000         |      |      |      |      |      |      |       |
| hectares)                                   |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 140   |
| Low - Avoid deforestation (over 30 years)   |      |      |      |      |      |      |       |
| (1000 hectares)                             |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 260   |
| Low - Extend rotation length (1000          |      |      |      |      |      |      |       |
| hectares)                                   |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 25.8  |
| Low - Improve plantations (1000             |      |      |      |      |      |      |       |
| hectares)                                   |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 0     |
| Low - Increase retention of HWP (1000       |      |      |      |      |      |      | _     |
| hectares)                                   |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 17.8  |
| Low - Increase trees outside forests        |      |      |      |      |      |      |       |
| (1000 hectares)                             |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 2.05  |
| Low - Reforest cropland (1000 hectares)     |      |      |      |      |      |      | 2.00  |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 4.36  |
| Low - Reforest pasture (1000 hectares)      |      |      |      |      |      |      | 4.30  |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 110   |
| · · · · · · · · · · · · · · · · · · ·       |      |      |      |      |      |      | 110   |
| Low - Restore productivity (1000            |      |      |      |      |      |      |       |
| hectares)                                   |      |      |      |      |      |      | F/0   |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 563   |
| Low - Total impacted (over 30 years)        |      |      |      |      |      |      |       |
| (1000 hectares)                             |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 4.61  |
| Mid - Accelerate regeneration (1000         |      |      |      |      |      |      |       |
| hectares)                                   |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 144   |
| Mid - Avoid deforestation (over 30 years)   |      |      |      |      |      |      |       |
| (1000 hectares)                             |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 470   |
| Mid - Extend rotation length (1000          |      |      |      |      |      |      |       |
| hectares)                                   |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 38.8  |
| Mid - Improve plantations (1000 hectares)   |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 0     |
| Mid - Increase retention of HWP (1000       |      |      |      |      |      |      |       |
| hectares)                                   |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 25.8  |
| Mid - Increase trees outside forests (1000  |      |      |      |      |      |      |       |
| hectares)                                   |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 3.08  |
| Mid - Reforest cropland (1000 hectares)     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 31.5  |
| Mid - Reforest pasture (1000 hectares)      |      |      |      |      |      |      | 00    |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 221   |
| Mid - Restore productivity (1000            |      |      |      |      |      |      | 441   |
| hectares)                                   |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 938   |
|                                             |      |      |      |      |      |      | 730   |
| Mid - Total impacted (over 30 years) (1000  |      |      |      |      |      |      |       |
| hectares)                                   |      |      |      |      |      |      |       |

| Table /./ | E, DE | aganania   | IMPACTS - | Hoalth |
|-----------|-------|------------|-----------|--------|
| Ianie 77. | F+KF- | srennrin - | IMPALIS - | непітп |

| Item                                  | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|---------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution - |      | 743   | 0.504 | 0.499 | 0.457 | 0.318 | 0.027 |
| Coal (million 2019\$)                 |      |       |       |       |       |       |       |
| Monetary damages from air pollution - |      | 202   | 159   | 206   | 157   | 54.8  | 16.7  |
| Natural Gas (million 2019\$)          |      |       |       |       |       |       |       |
| Monetary damages from air pollution - |      | 2,187 | 2,036 | 1,542 | 889   | 398   | 147   |
| Transportation (million 2019\$)       |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 83.9  | 0.057 | 0.056 | 0.052 | 0.036 | 0.003 |
| Coal (deaths)                         |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 22.9  | 18    | 23.2  | 17.7  | 6.19  | 1.89  |
| Natural Gas (deaths)                  |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 246   | 229   | 173   | 100   | 44.8  | 16.5  |
| Transportation (deaths)               |      |       |       |       |       |       |       |

#### Table 45: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                       | 2020  | 2025   | 2030   | 2035 | 2040 | 2045  | 2050  |
|--------------------------------------------|-------|--------|--------|------|------|-------|-------|
| Commercial HVAC investment in 2020s -      |       | 21,752 | 24,163 |      |      |       |       |
| Cumulative 5-yr (million \$2018)           |       |        |        |      |      |       |       |
| Sales of cooking units - Electric          | 32    | 36.2   | 40.9   | 53.4 | 71   | 81.7  | 85.5  |
| Resistance (%)                             |       |        |        |      |      |       |       |
| Sales of cooking units - Gas (%)           | 68    | 63.8   | 59.1   | 46.6 | 29   | 18.3  | 14.5  |
| Sales of space heating units - Electric    | 2.22  | 20.1   | 24.9   | 38.9 | 61   | 76.7  | 82.8  |
| Heat Pump (%)                              |       |        |        |      |      |       |       |
| Sales of space heating units - Electric    | 2.54  | 8.05   | 8.31   | 9.13 | 10.6 | 12    | 12.8  |
| Resistance (%)                             |       |        |        |      |      |       |       |
| Sales of space heating units - Fossil (%)  | 11    | 4.85   | 4.51   | 3.43 | 1.69 | 0.531 | 0.139 |
| Sales of space heating units - Gas Furnace | 84.3  | 67     | 62.3   | 48.5 | 26.7 | 10.8  | 4.34  |
| (%)                                        |       |        |        |      |      |       |       |
| Sales of water heating units - Electric    | 0.097 | 2.03   | 7.02   | 21.4 | 43.5 | 57.9  | 63    |
| Heat Pump (%)                              |       |        |        |      |      |       |       |
| Sales of water heating units - Electric    | 2.5   | 7.39   | 9.34   | 15.1 | 24   | 29.8  | 31.8  |
| Resistance (%)                             |       |        |        |      |      |       |       |
| Sales of water heating units - Gas Furnace | 93    | 86.1   | 79.2   | 59.6 | 29.2 | 9.38  | 2.45  |
| (%)                                        |       |        |        |      |      |       |       |
| Sales of water heating units - Other (%)   | 4.44  | 4.46   | 4.4    | 3.91 | 3.31 | 2.91  | 2.76  |

#### Table 46: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|------|------|------|------|------|------|
| Electricity distribution capital invested - |      | 2.54 | 2.53 | 3.68 | 3.81 | 5.55 | 5.88 |
| Cumulative 5-yr (billion \$2018)            |      |      |      |      |      |      |      |

#### Table 47: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ)     | 189  | 189  | 186  | 183  | 177  | 171  | 167  |
| Final energy use - Industry (PJ)       | 130  | 132  | 133  | 143  | 154  | 162  | 170  |
| Final energy use - Residential (PJ)    | 241  | 229  | 222  | 214  | 200  | 183  | 167  |
| Final energy use - Transportation (PJ) | 449  | 421  | 386  | 356  | 331  | 302  | 268  |

#### Table 48: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|------------------------------------------|------|------|------|------|------|------|------|
| Residential HVAC investment in 2020s vs. |      | 4.8  | 4.72 |      |      |      |      |
| REF - Cumulative 5-yr (billion \$2018)   |      |      |      |      |      |      |      |
| Sales of cooking units - Electric        | 59   | 60.1 | 63.8 | 73.7 | 87.5 | 96   | 98.9 |
| Resistance (%)                           |      |      |      |      |      |      |      |
| Sales of cooking units - Gas (%)         | 41   | 39.9 | 36.2 | 26.3 | 12.5 | 4.04 | 1.09 |
| Sales of space heating units - Electric  | 17.4 | 27.2 | 32.2 | 46.7 | 68.8 | 83.3 | 88.3 |
| Heat Pump (%)                            |      |      |      |      |      |      |      |

Table 48: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential (continued)

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------|------|------|------|------|------|------|------|
| Sales of space heating units - Electric    | 13.2 | 15.3 | 14.3 | 11.6 | 7.67 | 5.11 | 4.2  |
| Resistance (%)                             |      |      |      |      |      |      |      |
| Sales of space heating units - Fossil (%)  | 14.3 | 21.5 | 20.1 | 15.7 | 8.92 | 4.46 | 2.92 |
| Sales of space heating units - Gas (%)     | 55.1 | 36   | 33.4 | 26   | 14.6 | 7.13 | 4.52 |
| Sales of water heating units - Electric    | 0    | 1.58 | 6.08 | 19   | 38.9 | 51.9 | 56.4 |
| Heat Pump (%)                              |      |      |      |      |      |      |      |
| Sales of water heating units - Electric    | 35.7 | 52.7 | 51.6 | 48.7 | 44.3 | 41.5 | 40.5 |
| Resistance (%)                             |      |      |      |      |      |      |      |
| Sales of water heating units - Gas Furnace | 59.5 | 42.2 | 38.9 | 29.2 | 14.4 | 4.62 | 1.21 |
| (%)                                        |      |      |      |      |      |      |      |
| Sales of water heating units - Other (%)   | 4.77 | 3.53 | 3.4  | 3    | 2.4  | 2.02 | 1.89 |

Table 49: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         |       | 0     | 133   | 271   | 925   | 2,883 | 4,210 |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.402 |       | 0.44  |       | 2.06  |       | 5.66  |
| units)                                     |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 1.67  |       | 10.6  |       | 49.6  |       | 136   |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.4  | 96    | 91.3  | 79.8  | 58.2  | 32.1  | 13.7  |
| Vehicle sales - Heavy-duty - EV (%)        | 0.498 | 1.45  | 4.11  | 10.8  | 23.6  | 39.5  | 51    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.228 | 0.236 | 0.239 | 0.225 | 0.179 | 0.109 | 0.051 |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.083 | 0.094 | 0.104 | 0.107 | 0.092 | 0.06  | 0.03  |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.332 | 0.969 | 2.74  | 7.17  | 15.7  | 26.3  | 34    |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.28  | 1.46  | 1.95  | 2.25  | 1.96  | 1.14  |
| Vehicle sales - Light-duty - diesel (%)    | 1.3   | 1.76  | 2.01  | 1.59  | 0.995 | 0.506 | 0.218 |
| Vehicle sales - Light-duty - EV (%)        | 2.19  | 5.36  | 13.2  | 28    | 50.7  | 73.5  | 88.2  |
| Vehicle sales - Light-duty - gasoline (%)  | 90.8  | 86.2  | 77.5  | 63.9  | 43.6  | 23.3  | 10.3  |
| Vehicle sales - Light-duty - hybrid (%)    | 5.48  | 6.24  | 6.9   | 6.15  | 4.48  | 2.57  | 1.22  |
| Vehicle sales - Light-duty - hydrogen FC   | 0.112 | 0.373 | 0.311 | 0.232 | 0.161 | 0.088 | 0.041 |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.092 | 0.095 | 0.085 | 0.073 | 0.052 | 0.028 | 0.013 |
| Vehicle sales - Medium-duty - diesel (%)   | 64.8  | 62.2  | 57.7  | 49.4  | 35.6  | 19.6  | 8.37  |
| Vehicle sales - Medium-duty - EV (%)       | 0.664 | 1.94  | 5.49  | 14.3  | 31.4  | 52.6  | 68    |
| Vehicle sales - Medium-duty - gasoline (%) | 33.8  | 34.7  | 34.7  | 31.9  | 24.4  | 14.2  | 6.33  |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.418 | 0.464 | 0.478 | 0.414 | 0.275 | 0.141 |
| Vehicle sales - Medium-duty - hydrogen     | 0.166 | 0.485 | 1.37  | 3.58  | 7.86  | 13.2  | 17    |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.266 | 0.279 | 0.286 | 0.258 | 0.184 | 0.102 |

Table 50: E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity

| Item                                                                | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------------------------------|------|------|------|------|------|------|------|
| Capital invested - Biomass power plant (billion \$2018)             | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Capital invested - Biomass w/ccu allam power plant (billion \$2018) | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Capital invested - Biomass w/ccu power plant (billion \$2018)       | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

#### Table 51: E-B+ scenario - PILLAR 2: Clean Electricity - Generation

| Item                                  | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------|------|------|------|------|------|------|------|
| Biomass power plant (GWh)             | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Biomass w/ccu allam power plant (GWh) | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Biomass w/ccu power plant (GWh)       | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

Table 52: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy

| Item                                         | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|----------------------------------------------|------|------|------|------|------|------|-------|
| Biomass purchases (million \$2018/year)      |      | 0    | 0    | 0    | 0    | 0    | 476   |
| Conversion capital investment -              |      | 0    | 0    | 0    | 0    | 0    | 5,252 |
| Cumulative 5-yr (million \$2018)             |      |      |      |      |      |      |       |
| Number of facilities - Allam power w ccu     | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| (quantity)                                   |      |      |      |      |      |      |       |
| Number of facilities - Beccs hydrogen        | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| (quantity)                                   |      |      |      |      |      |      |       |
| Number of facilities - Diesel (quantity)     | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Number of facilities - Diesel ccu (quantity) | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Number of facilities - Power (quantity)      | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Number of facilities - Power ccu             | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| (quantity)                                   |      |      |      |      |      |      |       |
| Number of facilities - Pyrolysis (quantity)  | 0    | 0    | 0    | 0    | 0    | 0    | 6     |
| Number of facilities - Pyrolysis ccu         | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| (quantity)                                   |      |      |      |      |      |      |       |
| Number of facilities - Sng (quantity)        | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Number of facilities - Sng ccu (quantity)    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |

#### Table 53: E-B+ scenario - PILLAR 4: CCUS - CO2 capture

| Item                               | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|------------------------------------|------|------|------|------|------|------|------|
| Annual - All (MMT)                 |      | 0    | 0    | 0    | 3.32 | 3.42 | 3.53 |
| Annual - BECCS (MMT)               |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Annual - Cement and lime (MMT)     |      | 0    | 0    | 0    | 3.32 | 3.42 | 3.53 |
| Annual - NGCC (MMT)                |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Cumulative - All (MMT)             |      | 0    | 0    | 0    | 3.32 | 6.74 | 10.3 |
| Cumulative - BECCS (MMT)           |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Cumulative - Cement and lime (MMT) |      | 0    | 0    | 0    | 3.32 | 6.74 | 10.3 |
| Cumulative - NGCC (MMT)            |      | 0    | 0    | 0    | 0    | 0    | 0    |

#### Table 54: E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines

| Item                                              | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------------|------|------|------|------|------|------|------|
| All (km)                                          |      | 0    | 0    | 112  | 197  | 197  | 257  |
| Cumulative investment - All (million \$2018)      |      | 0    | 0    | 667  | 748  | 749  | 820  |
| Cumulative investment - Spur (million<br>\$2018)  |      | 0    | 0    | 0    | 81.3 | 82.7 | 153  |
| Cumulative investment - Trunk (million<br>\$2018) |      | 0    | 0    | 667  | 667  | 667  | 667  |
| Spur (km)                                         |      | 0    | 0    | 0    | 85.1 | 85.1 | 145  |
| Trunk (km)                                        |      | 0    | 0    | 112  | 112  | 112  | 112  |

#### Table 55: E-B+ scenario - PILLAR 4: CCUS - CO2 storage

| Item                                                                    | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|-------------------------------------------------------------------------|------|------|------|------|------|------|------|
| CO2 storage (MMT)                                                       |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Injection wells (wells)                                                 |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Resource characterization, appraisal, permitting costs (million \$2020) |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Wells and facilities construction costs (million \$2020)                |      | 0    | 0    | 0    | 0    | 0    | 0    |

## Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture

| Item                                                                                                | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|-----------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|
| Carbon sink potential - Aggressive<br>deployment - Corn-ethanol to energy<br>grasses (1000 tCO2e/y) |      |      |      |      |      |      | -140 |

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

| Item Carbon sink potential - Aggressive                                                                | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050<br>-526 |
|--------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|--------------|
| deployment - Cropland measures (1000 tCO2e/y)                                                          |      |      |      |      |      |      | -526         |
| Carbon sink potential - Aggressive                                                                     |      |      |      |      |      |      | 0            |
| deployment - Cropland to woody energy crops (1000 tC02e/y)                                             |      |      |      |      |      |      | Ü            |
| Carbon sink potential - Aggressive deployment - Pasture to energy crops                                |      |      |      |      |      |      | 0            |
| (1000 tCO2e/y)                                                                                         |      |      |      |      |      |      |              |
| Carbon sink potential - Aggressive<br>deployment - Permanent conservation<br>cover (1000 tCO2e/y)      |      |      |      |      |      |      | -25.2        |
| Carbon sink potential - Aggressive<br>deployment - Total (1000 tCO2e/y)                                |      |      |      |      |      |      | -691         |
| Carbon sink potential - Moderate                                                                       |      |      |      |      |      |      | -140         |
| deployment - Corn-ethanol to energy grasses (1000 tCO2e/y)                                             |      |      |      |      |      |      |              |
| Carbon sink potential - Moderate                                                                       |      |      |      |      |      |      | -276         |
| deployment - Cropland measures (1000 tCO2e/y)                                                          |      |      |      |      |      |      |              |
| Carbon sink potential - Moderate                                                                       |      |      |      |      |      |      | 0            |
| deployment - Cropland to woody energy crops (1000 tCO2e/y)                                             |      |      |      |      |      |      |              |
| Carbon sink potential - Moderate<br>deployment - Pasture to energy crops<br>(1000 tCO2e/y)             |      |      |      |      |      |      | 0            |
| Carbon sink potential - Moderate deployment - Permanent conservation cover (1000 tC02e/y)              |      |      |      |      |      |      | -12.6        |
| Carbon sink potential - Moderate                                                                       |      |      |      |      |      |      | -429         |
| deployment - Total (1000 tCO2e/y)                                                                      |      |      |      |      |      |      | // -         |
| Land impacted for carbon sink - Aggressive deployment - Corn-ethanol to energy grasses (1000 hectares) |      |      |      |      |      |      | 66.5         |
| Land impacted for carbon sink - Aggressive deployment - Cropland                                       |      |      |      |      |      |      | 1,142        |
| measures (1000 hectares)                                                                               |      |      |      |      |      |      |              |
| Land impacted for carbon sink - Aggressive deployment - Cropland to                                    |      |      |      |      |      |      | 24.8         |
| woody energy crops (1000 hectares) Land impacted for carbon sink -                                     |      |      |      |      |      |      | 15.5         |
| Aggressive deployment - Pasture to energy crops (1000 hectares)                                        |      |      |      |      |      |      | 15.5         |
| Land impacted for carbon sink -                                                                        |      |      |      |      |      |      | 45.8         |
| Aggressive deployment - Permanent conservation cover (1000 hectares)                                   |      |      |      |      |      |      |              |
| Land impacted for carbon sink -                                                                        |      |      |      |      |      |      | 1,295        |
| Aggressive deployment - Total (1000 hectares)                                                          |      |      |      |      |      |      |              |
| Land impacted for carbon sink - Moderate                                                               |      |      |      |      |      |      | 66.5         |
| deployment - Corn-ethanol to energy<br>grasses (1000 hectares)                                         |      |      |      |      |      |      |              |
| Land impacted for carbon sink - Moderate deployment - Cropland measures (1000                          |      |      |      |      |      |      | 243          |
| hectares)                                                                                              |      |      |      |      |      |      |              |
| Land impacted for carbon sink - Moderate deployment - Cropland to woody energy                         |      |      |      |      |      |      | 24.8         |
| crops (1000 hectares)  Land impacted for carbon sink - Moderate                                        |      |      |      |      |      |      | 15.5         |
| deployment - Pasture to energy crops (1000 hectares)                                                   |      |      |      |      |      |      |              |

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

| Item                                                                                               | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|
| Land impacted for carbon sink - Moderate deployment - Permanent conservation cover (1000 hectares) |      |      |      |      |      |      | 22.9 |
| Land impacted for carbon sink - Moderate deployment - Total (1000 hectares)                        |      |      |      |      |      |      | 372  |

#### Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests

| Table 57: E-B+ scenario - PILLAR 6: Land  | sinks - Fores | sts  |      |      |      |      |                                         |
|-------------------------------------------|---------------|------|------|------|------|------|-----------------------------------------|
| Item                                      | 2020          | 2025 | 2030 | 2035 | 2040 | 2045 | 2050                                    |
| Carbon sink potential - High - Accelerate |               |      |      |      |      |      | -37.6                                   |
| regeneration (1000 tCO2e/y)               |               |      |      |      |      |      |                                         |
| Carbon sink potential - High - All (not   |               |      |      |      |      |      | -5,324                                  |
| counting overlap) (1000 tCO2e/y)          |               |      |      |      |      |      |                                         |
| Carbon sink potential - High - Avoid      |               |      |      |      |      |      | -1,101                                  |
| deforestation (1000 tCO2e/y)              |               |      |      |      |      |      |                                         |
| Carbon sink potential - High - Extend     |               |      |      |      |      |      | -1,332                                  |
| rotation length (1000 tCO2e/y)            |               |      |      |      |      |      |                                         |
| Carbon sink potential - High - Improve    |               |      |      |      |      |      | -140                                    |
| plantations (1000 tCO2e/y)                |               |      |      |      |      |      |                                         |
| Carbon sink potential - High - Increase   |               |      |      |      |      |      | -864                                    |
| retention of HWP (1000 tCO2e/y)           |               |      |      |      |      |      |                                         |
| Carbon sink potential - High - Increase   |               |      |      |      |      |      | -356                                    |
| trees outside forests (1000 tC02e/y)      |               |      |      |      |      |      |                                         |
| Carbon sink potential - High - Reforest   |               |      |      |      |      |      | -62.1                                   |
| cropland (1000 tCO2e/y)                   |               |      |      |      |      |      |                                         |
| Carbon sink potential - High - Reforest   |               |      |      |      |      |      | -886                                    |
| pasture (1000 tC02e/y)                    |               |      |      |      |      |      |                                         |
| Carbon sink potential - High - Restore    |               |      |      |      |      |      | -546                                    |
| productivity (1000 tCO2e/y)               |               |      |      |      |      |      |                                         |
| Carbon sink potential - Low - Accelerate  |               |      |      |      |      |      | -18.8                                   |
| regeneration (1000 tCO2e/y)               |               |      |      |      |      |      |                                         |
| Carbon sink potential - Low - All (not    |               |      |      |      |      |      | -1,480                                  |
| counting overlap) (1000 tCO2e/y)          |               |      |      |      |      |      | ,                                       |
| Carbon sink potential - Low - Avoid       |               |      |      |      |      |      | -183                                    |
| deforestation (1000 tCO2e/y)              |               |      |      |      |      |      |                                         |
| Carbon sink potential - Low - Extend      |               |      |      |      |      |      | -511                                    |
| rotation length (1000 tCO2e/y)            |               |      |      |      |      |      | -                                       |
| Carbon sink potential - Low - Improve     |               |      |      |      |      |      | -71.1                                   |
| plantations (1000 tCO2e/y)                |               |      |      |      |      |      |                                         |
| Carbon sink potential - Low - Increase    |               |      |      |      |      |      | -288                                    |
| retention of HWP (1000 tCO2e/y)           |               |      |      |      |      |      |                                         |
| Carbon sink potential - Low - Increase    |               |      |      |      |      |      | -125                                    |
| trees outside forests (1000 tCO2e/y)      |               |      |      |      |      |      |                                         |
| Carbon sink potential - Low - Reforest    |               |      |      |      |      |      | -31.1                                   |
| cropland (1000 tCO2e/y)                   |               |      |      |      |      |      |                                         |
| Carbon sink potential - Low - Reforest    |               |      |      |      |      |      | -67.1                                   |
| pasture (1000 tCO2e/y)                    |               |      |      |      |      |      | • • • • • • • • • • • • • • • • • • • • |
| Carbon sink potential - Low - Restore     |               |      |      |      |      |      | -184                                    |
| productivity (1000 tCO2e/y)               |               |      |      |      |      |      |                                         |
| Carbon sink potential - Mid - Accelerate  |               |      |      |      |      |      | -28.2                                   |
| regeneration (1000 tCO2e/y)               |               |      |      |      |      |      |                                         |
| Carbon sink potential - Mid - All (not    |               |      |      |      |      |      | -3,401                                  |
| counting overlap) (1000 tCO2e/y)          |               |      |      |      |      |      | -,                                      |
| Carbon sink potential - Mid - Avoid       |               |      |      |      |      |      | -642                                    |
| deforestation (1000 tCO2e/y)              |               |      |      |      |      |      | J                                       |
| Carbon sink potential - Mid - Extend      |               |      |      |      |      |      | -922                                    |
| rotation length (1000 tC02e/y)            |               |      |      |      |      |      | - <b></b>                               |
| Carbon sink potential - Mid - Improve     |               |      |      |      |      |      | -104                                    |
| plantations (1000 tCO2e/y)                |               |      |      |      |      |      |                                         |
| Carbon sink potential - Mid - Increase    |               |      |      |      |      |      | -576                                    |
| retention of HWP (1000 tCO2e/y)           |               |      |      |      |      |      | 5.0                                     |
| (1000 10020/7)                            |               |      |      |      |      |      |                                         |

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Item  Carbon sink potential - Mid - Increase          | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050<br>-240 |
|-------------------------------------------------------|------|------|------|------|------|------|--------------|
| trees outside forests (1000 tC02e/y)                  |      |      |      |      |      |      | -240         |
| Carbon sink potential - Mid - Reforest                |      |      |      |      |      |      | -46.6        |
| cropland (1000 tCO2e/y)                               |      |      |      |      |      |      | -40.0        |
| Carbon sink potential - Mid - Reforest                |      |      |      |      |      |      | -477         |
| pasture (1000 tC02e/y)                                |      |      |      |      |      |      | -477         |
| Carbon sink potential - Mid - Restore                 |      |      |      |      |      |      | -365         |
| productivity (1000 tC02e/y)                           |      |      |      |      |      |      | -303         |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 6.15         |
| High - Accelerate regeneration (1000                  |      |      |      |      |      |      | 0.10         |
| hectares)                                             |      |      |      |      |      |      |              |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 149          |
| High - Avoid deforestation (over 30 years)            |      |      |      |      |      |      | 149          |
| (1000 hectares)                                       |      |      |      |      |      |      |              |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 679          |
| High - Extend rotation length (1000                   |      |      |      |      |      |      | 019          |
|                                                       |      |      |      |      |      |      |              |
| hectares) Land impacted for carbon sink potential -   |      |      |      |      |      |      | 51.5         |
|                                                       |      |      |      |      |      |      | 51.5         |
| High - Improve plantations (1000 hectares)            |      |      |      |      |      |      |              |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 0            |
|                                                       |      |      |      |      |      |      | U            |
| High - Increase retention of HWP (1000                |      |      |      |      |      |      |              |
| hectares)                                             |      |      |      |      |      |      | 33.8         |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 33.8         |
| High - Increase trees outside forests (1000 hectares) |      |      |      |      |      |      |              |
| -                                                     |      |      |      |      |      |      | / 11         |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 4.11         |
| High - Reforest cropland (1000 hectares)              |      |      |      |      |      |      | 25.2         |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 25.2         |
| High - Reforest pasture (1000 hectares)               |      |      |      |      |      |      | 181          |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 181          |
| High - Restore productivity (1000                     |      |      |      |      |      |      |              |
| hectares)  Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,130        |
|                                                       |      |      |      |      |      |      | 1,130        |
| High - Total impacted (over 30 years) (1000 hectares) |      |      |      |      |      |      |              |
| `                                                     |      |      |      |      |      |      | 2.00         |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 3.08         |
| Low - Accelerate regeneration (1000                   |      |      |      |      |      |      |              |
| hectares)                                             |      |      |      |      |      |      | 1/ 0         |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 140          |
| Low - Avoid deforestation (over 30 years)             |      |      |      |      |      |      |              |
| (1000 hectares)                                       |      |      |      |      |      |      | 0/0          |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 260          |
| Low - Extend rotation length (1000                    |      |      |      |      |      |      |              |
| hectares)                                             |      |      |      |      |      |      | 05.0         |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 25.8         |
| Low - Improve plantations (1000                       |      |      |      |      |      |      |              |
| hectares)                                             |      |      |      |      |      |      |              |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 0            |
| Low - Increase retention of HWP (1000                 |      |      |      |      |      |      |              |
| hectares)                                             |      |      |      |      |      |      | 47.0         |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 17.8         |
| Low - Increase trees outside forests                  |      |      |      |      |      |      |              |
| (1000 hectares)                                       |      |      |      |      |      |      |              |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 2.05         |
| Low - Reforest cropland (1000 hectares)               |      |      |      |      |      |      |              |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 4.36         |
| Low - Reforest pasture (1000 hectares)                |      |      |      |      |      |      |              |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 110          |
| Low - Restore productivity (1000                      |      |      |      |      |      |      |              |
| hectares)                                             |      |      |      |      |      |      |              |

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                                                                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|-----------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|
| Land impacted for carbon sink potential -<br>Low - Total impacted (over 30 years)<br>(1000 hectares)      |      |      |      |      |      |      | 563  |
| Land impacted for carbon sink potential -<br>Mid - Accelerate regeneration (1000<br>hectares)             |      |      |      |      |      |      | 4.61 |
| Land impacted for carbon sink potential -<br>Mid - Avoid deforestation (over 30 years)<br>(1000 hectares) |      |      |      |      |      |      | 144  |
| Land impacted for carbon sink potential -<br>Mid - Extend rotation length (1000<br>hectares)              |      |      |      |      |      |      | 470  |
| Land impacted for carbon sink potential -<br>Mid - Improve plantations (1000 hectares)                    |      |      |      |      |      |      | 38.8 |
| Land impacted for carbon sink potential -<br>Mid - Increase retention of HWP (1000<br>hectares)           |      |      |      |      |      |      | 0    |
| Land impacted for carbon sink potential -<br>Mid - Increase trees outside forests (1000<br>hectares)      |      |      |      |      |      |      | 25.8 |
| Land impacted for carbon sink potential -<br>Mid - Reforest cropland (1000 hectares)                      |      |      |      |      |      |      | 3.08 |
| Land impacted for carbon sink potential -<br>Mid - Reforest pasture (1000 hectares)                       |      |      |      |      |      |      | 31.5 |
| Land impacted for carbon sink potential -<br>Mid - Restore productivity (1000<br>hectares)                |      |      |      |      |      |      | 221  |
| Land impacted for carbon sink potential -<br>Mid - Total impacted (over 30 years) (1000<br>hectares)      |      |      |      |      |      |      | 938  |

Table 58: E-B+ scenario - IMPACTS - Health

| Item                                                                     | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution -<br>Coal (million 2019\$)           |      | 743   | 0.504 | 0.499 | 0.457 | 0.318 | 0.027 |
| Monetary damages from air pollution -<br>Natural Gas (million 2019\$)    |      | 241   | 149   | 85.6  | 67.2  | 39.7  | 11.7  |
| Monetary damages from air pollution -<br>Transportation (million 2019\$) |      | 2,231 | 2,262 | 2,199 | 1,975 | 1,567 | 1,069 |
| Premature deaths from air pollution -<br>Coal (deaths)                   |      | 83.9  | 0.057 | 0.056 | 0.052 | 0.036 | 0.003 |
| Premature deaths from air pollution -<br>Natural Gas (deaths)            |      | 27.2  | 16.8  | 9.67  | 7.59  | 4.48  | 1.32  |
| Premature deaths from air pollution -<br>Transportation (deaths)         |      | 251   | 254   | 247   | 222   | 176   | 120   |

Table 59: REF scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                      | 2020 | 2025   | 2030   | 2035 | 2040  | 2045  | 2050 |
|-------------------------------------------|------|--------|--------|------|-------|-------|------|
| Commercial HVAC investment in 2020s -     |      | 21,455 | 22,311 |      |       |       |      |
| Cumulative 5-yr (million \$2018)          |      |        |        |      |       |       |      |
| Sales of cooking units - Electric         | 32   | 34.3   | 34.3   | 34.3 | 34.4  | 34.3  | 34.3 |
| Resistance (%)                            |      |        |        |      |       |       |      |
| Sales of cooking units - Gas (%)          | 68   | 65.7   | 65.7   | 65.7 | 65.6  | 65.7  | 65.7 |
| Sales of space heating units - Electric   | 2.22 | 24.1   | 48.5   | 68.5 | 71.8  | 72.2  | 72.1 |
| Heat Pump (%)                             |      |        |        |      |       |       |      |
| Sales of space heating units - Electric   | 2.54 | 8.78   | 12.8   | 20.1 | 25.2  | 25.9  | 26   |
| Resistance (%)                            |      |        |        |      |       |       |      |
| Sales of space heating units - Fossil (%) | 11   | 4.72   | 3.48   | 1.49 | 0.219 | 0.018 | 0    |

| Table 59: RFF scenario - | DTILADA EEGalaman     | /Flactuifiantian   | 0             | (h          |
|--------------------------|-----------------------|--------------------|---------------|-------------|
| Tanie 59' REE Scenncin - | - PILLAR I' EMICIPOCV | /FIPCTCITICATION - | Linmmerrini i | rnntiniieni |

| Item                                                      | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|-----------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Sales of space heating units - Gas Furnace (%)            | 84.3  | 62.4  | 35.2  | 9.92  | 2.85  | 1.92  | 1.85  |
| Sales of water heating units - Electric<br>Heat Pump (%)  | 0.097 | 0.269 | 0.266 | 0.268 | 0.269 | 0.268 | 0.269 |
| Sales of water heating units - Electric<br>Resistance (%) | 2.5   | 6.69  | 6.63  | 6.64  | 6.67  | 6.65  | 6.66  |
| Sales of water heating units - Gas Furnace (%)            | 93    | 88.5  | 88.5  | 88.6  | 88.5  | 88.5  | 88.6  |
| Sales of water heating units - Other (%)                  | 4.44  | 4.5   | 4.6   | 4.5   | 4.54  | 4.55  | 4.51  |

## Table 60: REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|------|------|------|------|------|------|
| Electricity distribution capital invested - |      | 2.72 | 2.74 | 4.82 | 5.09 | 5.1  | 5.33 |
| Cumulative 5-yr (billion \$2018)            |      |      |      |      |      |      |      |

#### Table 61: REF scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ)     | 189  | 191  | 193  | 193  | 194  | 199  | 210  |
| Final energy use - Industry (PJ)       | 130  | 136  | 143  | 150  | 159  | 169  | 180  |
| Final energy use - Residential (PJ)    | 241  | 228  | 225  | 225  | 227  | 233  | 239  |
| Final energy use - Transportation (PJ) | 449  | 422  | 391  | 372  | 373  | 384  | 398  |

#### Table 62: REF scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------|------|------|------|------|------|------|------|
| Residential HVAC investment in 2020s vs.   |      | 4.7  | 4.34 |      |      |      |      |
| REF - Cumulative 5-yr (billion \$2018)     |      |      |      |      |      |      |      |
| Sales of cooking units - Electric          | 58.7 | 58.7 | 58.7 | 58.7 | 58.7 | 58.7 | 58.7 |
| Resistance (%)                             |      |      |      |      |      |      |      |
| Sales of cooking units - Gas (%)           | 41.3 | 41.3 | 41.3 | 41.3 | 41.3 | 41.3 | 41.3 |
| Sales of space heating units - Electric    | 15   | 40.3 | 41.5 | 42.8 | 43.7 | 44.6 | 45.9 |
| Heat Pump (%)                              |      |      |      |      |      |      |      |
| Sales of space heating units - Electric    | 13.7 | 12.7 | 12.4 | 12   | 11.7 | 10.8 | 9.45 |
| Resistance (%)                             |      |      |      |      |      |      |      |
| Sales of space heating units - Fossil (%)  | 14.7 | 16.1 | 7.71 | 4.03 | 3.79 | 3.76 | 3.81 |
| Sales of space heating units - Gas (%)     | 56.6 | 31   | 38.4 | 41.1 | 40.8 | 40.8 | 40.9 |
| Sales of water heating units - Electric    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Heat Pump (%)                              |      |      |      |      |      |      |      |
| Sales of water heating units - Electric    | 35.7 | 53   | 53   | 52.9 | 52.9 | 52.8 | 52.8 |
| Resistance (%)                             |      |      |      |      |      |      |      |
| Sales of water heating units - Gas Furnace | 59.5 | 43.4 | 43.4 | 43.5 | 43.5 | 43.6 | 43.6 |
| (%)                                        |      |      |      |      |      |      |      |
| Sales of water heating units - Other (%)   | 4.77 | 3.57 | 3.58 | 3.59 | 3.6  | 3.6  | 3.61 |

### Table 63: REF scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                      | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|-------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Vehicle sales - Heavy-duty - diesel (%)   | 98.1  | 98.2  | 97.9  | 97    | 95.6  | 93.5  | 91.6  |
| Vehicle sales - Heavy-duty - EV (%)       | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Vehicle sales - Heavy-duty - gasoline (%) | 0.229 | 0.242 | 0.257 | 0.274 | 0.294 | 0.317 | 0.343 |
| Vehicle sales - Heavy-duty - hybrid (%)   | 0.083 | 0.096 | 0.112 | 0.13  | 0.15  | 0.174 | 0.202 |
| Vehicle sales - Heavy-duty - hydrogen FC  | 0.119 | 0.138 | 0.16  | 0.186 | 0.216 | 0.25  | 0.29  |
| _ (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)    | 1.51  | 1.31  | 1.57  | 2.37  | 3.69  | 5.71  | 7.57  |
| Vehicle sales - Light-duty - diesel (%)   | 1.29  | 1.75  | 2.14  | 2     | 1.79  | 1.66  | 1.58  |
| Vehicle sales - Light-duty - EV (%)       | 4.42  | 6.72  | 7.55  | 9.34  | 11.3  | 12.8  | 14.1  |
| Vehicle sales - Light-duty - gasoline (%) | 88.8  | 85    | 82.5  | 80.4  | 78.1  | 76.3  | 74.8  |
| Vehicle sales - Light-duty - hybrid (%)   | 5.29  | 6.1   | 7.38  | 7.93  | 8.43  | 8.88  | 9.17  |

Table 63: REF scenario - PILLAR 1: Efficiency/Electrification - Transportation (continued)

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Vehicle sales - Light-duty - hydrogen FC   | 0.109 | 0.367 | 0.331 | 0.29  | 0.286 | 0.285 | 0.294 |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.09  | 0.094 | 0.09  | 0.091 | 0.09  | 0.088 | 0.091 |
| Vehicle sales - Medium-duty - diesel (%)   | 65.2  | 63.5  | 61.6  | 59.6  | 58    | 56.5  | 55.2  |
| Vehicle sales - Medium-duty - EV (%)       | 0.027 | 0.105 | 0.329 | 0.671 | 0.895 | 0.973 | 0.993 |
| Vehicle sales - Medium-duty - gasoline (%) | 34    | 35.5  | 37    | 38.5  | 39.7  | 40.8  | 41.7  |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.365 | 0.427 | 0.496 | 0.577 | 0.674 | 0.793 | 0.929 |
| Vehicle sales - Medium-duty - hydrogen     | 0.175 | 0.208 | 0.242 | 0.285 | 0.339 | 0.409 | 0.487 |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.255 | 0.271 | 0.298 | 0.345 | 0.42  | 0.528 | 0.671 |

Table 64: REF scenario - PILLAR 6: Land sinks - Forests

| Item                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|-------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - High - Accelerate |      |      |      |      |      |      | -37.6  |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      | F 20/  |
| Carbon sink potential - High - All (not   |      |      |      |      |      |      | -5,324 |
| counting overlap) (1000 tC02e/y)          |      |      |      |      |      |      | 110    |
| Carbon sink potential - High - Avoid      |      |      |      |      |      |      | -1,10  |
| deforestation (1000 tC02e/y)              |      |      |      |      |      |      | 1.00   |
| Carbon sink potential - High - Extend     |      |      |      |      |      |      | -1,33  |
| rotation length (1000 tC02e/y)            |      |      |      |      |      |      | 4.1    |
| Carbon sink potential - High - Improve    |      |      |      |      |      |      | -14    |
| plantations (1000 tC02e/y)                |      |      |      |      |      |      | 0.4    |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -86    |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      | 0.5    |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -35    |
| trees outside forests (1000 tC02e/y)      |      |      |      |      |      |      |        |
| Carbon sink potential - High - Reforest   |      |      |      |      |      |      | -62    |
| cropland (1000 tC02e/y)                   |      |      |      |      |      |      |        |
| Carbon sink potential - High - Reforest   |      |      |      |      |      |      | -88    |
| pasture (1000 tC02e/y)                    |      |      |      |      |      |      |        |
| Carbon sink potential - High - Restore    |      |      |      |      |      |      | -54    |
| productivity (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Accelerate  |      |      |      |      |      |      | -18.   |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Low - All (not    |      |      |      |      |      |      | -1,48  |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      | 10     |
| Carbon sink potential - Low - Avoid       |      |      |      |      |      |      | -18    |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Extend      |      |      |      |      |      |      | -5     |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      | 71     |
| Carbon sink potential - Low - Improve     |      |      |      |      |      |      | -71    |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      | 00     |
| Carbon sink potential - Low - Increase    |      |      |      |      |      |      | -28    |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      | 10     |
| Carbon sink potential - Low - Increase    |      |      |      |      |      |      | -12    |
| trees outside forests (1000 tC02e/y)      |      |      |      |      |      |      | 01     |
| Carbon sink potential - Low - Reforest    |      |      |      |      |      |      | -31    |
| cropland (1000 tC02e/y)                   |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Reforest    |      |      |      |      |      |      | -67    |
| pasture (1000 tCO2e/y)                    |      |      |      |      |      |      | - 10   |
| Carbon sink potential - Low - Restore     |      |      |      |      |      |      | -18    |
| productivity (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Accelerate  |      |      |      |      |      |      | -28.   |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - All (not    |      |      |      |      |      |      | -3,40  |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Avoid       |      |      |      |      |      |      | -64    |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |        |

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|--------------------------------------------|------|------|------|------|------|------|-------|
| Carbon sink potential - Mid - Extend       |      |      |      |      |      |      | -922  |
| rotation length (1000 tC02e/y)             |      |      |      |      |      |      | 10/   |
| Carbon sink potential - Mid - Improve      |      |      |      |      |      |      | -104  |
| plantations (1000 tCO2e/y)                 |      |      |      |      |      |      | F7/   |
| Carbon sink potential - Mid - Increase     |      |      |      |      |      |      | -576  |
| retention of HWP (1000 tC02e/y)            |      |      |      |      |      |      | 0/.0  |
| Carbon sink potential - Mid - Increase     |      |      |      |      |      |      | -240  |
| trees outside forests (1000 tC02e/y)       |      |      |      |      |      |      |       |
| Carbon sink potential - Mid - Reforest     |      |      |      |      |      |      | -46.6 |
| cropland (1000 tCO2e/y)                    |      |      |      |      |      |      |       |
| Carbon sink potential - Mid - Reforest     |      |      |      |      |      |      | -477  |
| pasture (1000 tC02e/y)                     |      |      |      |      |      |      |       |
| Carbon sink potential - Mid - Restore      |      |      |      |      |      |      | -365  |
| productivity (1000 tCO2e/y)                |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 6.15  |
| High - Accelerate regeneration (1000       |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 149   |
| High - Avoid deforestation (over 30 years) |      |      |      |      |      |      |       |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 679   |
| High - Extend rotation length (1000        |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 51.5  |
| High - Improve plantations (1000           |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0     |
| High - Increase retention of HWP (1000     |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 33.8  |
| High - Increase trees outside forests      |      |      |      |      |      |      |       |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 4.11  |
| High - Reforest cropland (1000 hectares)   |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 25.2  |
| High - Reforest pasture (1000 hectares)    |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 181   |
| High - Restore productivity (1000          |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,130 |
| High - Total impacted (over 30 years)      |      |      |      |      |      |      | ,     |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 3.08  |
| Low - Accelerate regeneration (1000        |      |      |      |      |      |      | -     |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 140   |
| Low - Avoid deforestation (over 30 years)  |      |      |      |      |      |      |       |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 260   |
| Low - Extend rotation length (1000         |      |      |      |      |      |      | 200   |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 25.8  |
| Low - Improve plantations (1000            |      |      |      |      |      |      | 23.0  |
| hectares)                                  |      |      |      |      |      |      |       |
| -                                          |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0     |
| Low - Increase retention of HWP (1000      |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      | 17.0  |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 17.8  |
| Low - Increase trees outside forests       |      |      |      |      |      |      |       |
| (1000 hectares)                            |      |      |      |      |      |      |       |

| Table 6/1 | RFFSCP  | nario - | DTII AR 6  | : Land sinks | - Forests   | (continued) |
|-----------|---------|---------|------------|--------------|-------------|-------------|
| Table 04. | KEF SUE | Huriu - | · PILLAK O | . LUHU SIHKS | - FULESIS I | COMUNICEUM  |

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------|------|------|------|------|------|------|------|
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 2.05 |
| Low - Reforest cropland (1000 hectares)    |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 4.36 |
| Low - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 110  |
| Low - Restore productivity (1000           |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 563  |
| Low - Total impacted (over 30 years)       |      |      |      |      |      |      |      |
| (1000 hectares)                            |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 4.61 |
| Mid - Accelerate regeneration (1000        |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 144  |
| Mid - Avoid deforestation (over 30 years)  |      |      |      |      |      |      |      |
| (1000 hectares)                            |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 470  |
| Mid - Extend rotation length (1000         |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 38.8 |
| Mid - Improve plantations (1000 hectares)  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0    |
| Mid - Increase retention of HWP (1000      |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 25.8 |
| Mid - Increase trees outside forests (1000 |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 3.08 |
| Mid - Reforest cropland (1000 hectares)    |      |      |      |      |      |      | 04.5 |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 31.5 |
| Mid - Reforest pasture (1000 hectares)     |      |      |      |      |      |      | 004  |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 221  |
| Mid - Restore productivity (1000           |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      | 000  |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 938  |
| Mid - Total impacted (over 30 years) (1000 |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |

## Table 65: REF scenario - PILLAR 6: Land sinks - Forests - REF only

| Item                                      | 2020   | 2025 | 2030   | 2035 | 2040 | 2045 | 2050  |
|-------------------------------------------|--------|------|--------|------|------|------|-------|
| Business-as-usual carbon sink - Natural   | -4.41  |      | -2.14  |      |      |      | -1.92 |
| uptake (Mt CO2e/y)                        |        |      |        |      |      |      |       |
| Business-as-usual carbon sink - Retained  | -0.235 |      | -0.423 |      |      |      | -0.44 |
| in Hardwood Products (Mt CO2e/y)          |        |      |        |      |      |      |       |
| Business-as-usual carbon sink - Total (Mt | -4.65  |      | -2.57  |      |      |      | -2.36 |
| CO2e/y)                                   |        |      |        |      |      |      |       |

#### Table 66: REF scenario - IMPACTS - Health

| Item                                                                     | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution -<br>Coal (million 2019\$)           |      | 1,938 | 1,218 | 1,140 | 1,108 | 1,087 | 997   |
| Monetary damages from air pollution -<br>Natural Gas (million 2019\$)    |      | 199   | 221   | 263   | 277   | 254   | 246   |
| Monetary damages from air pollution -<br>Transportation (million 2019\$) |      | 2,223 | 2,284 | 2,337 | 2,400 | 2,459 | 2,517 |
| Premature deaths from air pollution -<br>Coal (deaths)                   |      | 219   | 138   | 129   | 125   | 123   | 113   |
| Premature deaths from air pollution -<br>Natural Gas (deaths)            |      | 22.4  | 24.9  | 29.7  | 31.3  | 28.6  | 27.7  |

## Table 66: REF scenario - IMPACTS - Health (continued)

| Item                                  | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------|------|------|------|------|------|------|------|
|                                       |      |      |      |      |      |      |      |
| Premature deaths from air pollution - |      | 250  | 257  | 263  | 270  | 277  | 283  |
| Transportation (deaths)               |      |      |      |      |      |      |      |