Basics of Statistics & Probability

Outline

- Basic probability concepts
- Conditional probability
- Discrete Random Variables and Probability Distributions
- Continuous Random Variables and Probability Distributions
- Sampling Distribution of the Sample Mean
- Central Limit Theorem

Idea of Probability

- Chance behavior is unpredictable in the short run, but has a regular and predictable pattern in the long run.
- The probability of any outcome of a random phenomenom is the proportion of times the outcome would occur in a very long series of repetitions.

Terminology

- Sample Space the set of all possible outcomes of a random phenomenon
- Event any set of outcomes of interest
- Probability of an event the relative frequency of this set of outcomes over an infinite number of trials
- Pr(A) is the probability of event A

Example

- Suppose we roll two die and take their sum
- $S = \{2, 3, 4, 5, ..., 11, 12\}$
- $\Pr(sum = 5) = \frac{4}{36}$
- Because we get the sum of two die to be 5 if we roll a (1,4),(2,3),(3,2) or (4,1).

Notation

- Let A and B denote two events.
 - $A \cup B$ is the event that either A or B or both occur.
 - $A \cap B$ is the event that both A and B occur simultaneously.
 - The complement of A is denoted by \overline{A} .
 - $ightharpoonup \overline{A}$ is the event that A does not occur.
 - Note that $Pr(\overline{A}) = 1 Pr(A)$.

Definitions

- A and B are mutually exclusive if both cannot occur at the same time.
- A and B are independent events if and only if

$$Pr(A \cap B) = Pr(A) Pr(B).$$

Laws of Probability

• Multiplication Law: If A_1, \dots, A_k are independent events, then

$$\Pr(A_1 \cap A_2 \cap \cdots \cap A_k) = \Pr(A_1) \Pr(A_2) \cdots \Pr(A_k).$$

Addition Law: If A and B are any events, then

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

Note: This law can be extended to more than 2 events.

Conditional Probability

■ The conditional probability of B given A

$$\Pr(B|A) = \frac{\Pr(A \cap B)}{\Pr(A)}$$

A and B are independent events if and only if

$$\Pr(B|A) = \Pr(B) = \Pr(B|\overline{A})$$

Random Variable

- A random variable is a variable whose value is a numerical outcome of a random phenomenon
- Usually denoted by X, Y or Z.
- Can be
 - Discrete a random variable that has finite or countable infinite possible values
 - Example: the number of days that it rains yearly
 - Continuous a random variable that has an (continuous) interval for its set of possible values
 - Example: amount of preparation time for the SAT

Probability Distributions

- The probability distribution for a random variable X gives
 - the possible values for X, and
 - the probabilities associated with each possible value (i.e., the likelihood that the values will occur)
- The methods used to specify discrete prob. distributions are similar to (but slightly different from) those used to specify continuous prob. distributions.

Probability Mass Function

- f(x) Probability mass function for a discrete random variable X having possible values x_1, x_2, \cdots
- $f(x_i) = \Pr(X = x_i)$ is the probability that X has the value x_i
- Properties
 - $0 \le f(x_i) \le 1$
- $f(x_i)$ can be displayed as a table or as a mathematical function

Probability Mass Function

- Example: (Moore p. 244)Suppose the random variable X is the number of rooms in a randomly chosen owner-occupied housing unit in Anaheim, California.
- The distribution of X is:

Rooms X	1	2	3	4	5	6	7
Probability	.083	.071	.076	.139	.210	.224	.197

Parameters vs. Statistics

- A parameter is a number that describes the population. Usually its value is unknown.
- A statistic is a number that can be computed from the sample data without making use of any unknown parameters.
- In practice, we often use a statistic to estimate an unknown parameter.

Parameter vs. Statistic Example

- For example, we denote the population mean by μ , and we can use the sample mean \bar{x} to estimate μ .
- Suppose we wanted to know the average income of households in Bangalore.
- To estimate this population mean income μ , we may randomly take a sample of 1000 households and compute their average income \bar{x} and use this as an estimate for μ .

Expected Value

Expected Value of X or (population) mean

$$\mu = E(X) = \sum_{i=1}^{R} x_i \Pr(X = x_i) = \sum_{i=1}^{R} x_i f(x_i),$$

where the sum is over R possible values. R may be finite or infinite.

- Analogous to the sample mean \bar{x}
- Represents the "average" value of X

Variance

(Population) variance

$$\sigma^{2} = Var(X)$$

$$= \sum_{i=1}^{R} (x_{i} - \mu)^{2} \Pr(X = x_{i})$$

$$= \sum_{i=1}^{R} x_{i}^{2} \Pr(X = x_{i}) - \mu^{2}$$

- Represents the spread, relative to the expected value, of all values with positive probability
- The standard deviation of X, denoted by σ , is the square root of its variance.
- Homework: http://keydifferences.com/difference-between-variance-and-standard-deviation.html

Exercise

- http://www.wikihow.com/Calculate-Variance
- What is difference between the formula?

Binomial Distribution

Structure

- Two possible outcomes: Success (S) and Failure (F).
- Repeat the situation n times (i.e., there are n trials).
- The "probability of success," p, is constant on each trial.
- The trials are independent.

Binomial Distribution

- Let X = the number of S's in n independent trials. (X has values $x = 0, 1, 2, \dots, n$)
- Then X has a binomial distribution with parameters n and p.
- The binomial probability mass function is

$$\Pr(X = x) = \binom{n}{x} p^x (1-p)^{n-x}, \qquad x = 0, 1, 2, \dots, n$$

ref: https://www.intmath.com/counting-probability/4-combinations.php

- Expected Value: $\mu = E(X) = np$
- Variance: $\sigma^2 = Var(X) = np(1-p)$

Example

- Example: (Moore p.306) Each child born to a particular set of parents has probability 0.25 of having blood type O. If these parents have 5 children, what is the probability that exactly 2 of them have type O blood?
- Let X= the number of boys

$$\Pr(X=2) = f(2) = {5 \choose 2} (.25)^2 (.75)^3 = .2637$$

Example

What is the expected number of children with type O blood?

$$\mu = 5(.25) = 1.25$$

What is the probability of at least 2 children with type O blood?

$$\Pr(X \ge 2) = \sum_{k=2}^{5} {5 \choose k} (.25)^k (.75)^{5-k}$$
$$= 1 - \sum_{k=0}^{1} {5 \choose k} (.25)^k (.75)^{5-k}$$
$$= .3671875$$

Continuous Random Variable

• f(x) - Probability density function for a continuous random variable X

Properties

- $f(x) \ge 0$
- $P[a \le X \le b] = \int_a^b f(x) dx$

Important Notes

- $P[a \le X \le a] = \int_a^a f(x) dx = 0$ This implies that P[X = a] = 0
- $P[a \le X \le b] = P[a < X < b]$

Summarizations

Summarizations for continuous prob. distributions

Mean or Expected Value of X

$$\mu = EX = \int_{-\infty}^{\infty} x f(x) dx$$

Variance

$$\sigma^{2} = VarX$$

$$= \int_{-\infty}^{\infty} (x - EX)^{2} f(x) dx$$

$$= \int_{-\infty}^{\infty} x^{2} f(x) dx - (EX)^{2}$$

Example

Let X represent the fraction of the population in a certain city who obtain the flu vaccine.

$$f(x) = \begin{cases} 2x & \text{when } 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

• Find P($1/4 \le X \le 1/2$)

$$P(1/4 \le X \le 1/2) = \int_{1/4}^{1/2} f(x)dx$$
$$= \int_{1/4}^{1/2} 2xdx$$
$$= 3/16$$

Example

$$f(x) = \begin{cases} 2x & \text{when } 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

- Find $P(X \ge 1/2)$
- ullet Find EX
- ullet Find VarX

Normal Distribution

- Most widely used continuous distribution
- Also known as the Gaussian distribution
- Symmetric

src:https://en.wikipedia.org/wiki/Normal_distribution

Normal Distribution

Probability density function

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

- \bullet $EX = \mu$
- $VarX = \sigma^2$
- Notation: $X \sim N(\mu, \sigma^2)$ means that X is normally distributed with mean μ and variance σ^2 .

Standard Normal Distribution

- A normal distribution with mean 0 and variance 1 is called a standard normal distribution.
- Standard normal probability density function

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left[\frac{-x^2}{2}\right]$$

• Standard normal cumulative probability function Let $Z \sim N(0,1)$

$$\Phi(z) = P(Z \le z)$$

Symmetry property

$$\Phi(-z) = 1 - \Phi(z)$$

Standardization

Standardization of a Normal Random Variable

- Suppose $X \sim N(\mu, \sigma^2)$ and let $Z = \frac{X \mu}{\sigma}$. Then $Z \sim N(0, 1)$.
- If $X \sim N(\mu, \sigma^2)$, what is P(a < X < b)?
 - Form equivalent probability in terms of Z:

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

Use standard normal tables to compute latter probability.

Standardization

- Example. (Moore pp.65-67) Heights of Women
- Suppose the distribution of heights of young women are normally distributed with $\mu=64$ and $\sigma^2=2.7^2$ What is the probability that a randomly selected young woman will have a height between 60 and 70 inches?

$$Pr(60 < X < 70) = Pr\left(\frac{60 - 64}{2.7} < Z < \frac{70 - 64}{2.7}\right)$$

$$= Pr(-1.48 < Z < 2.22)$$

$$= \Phi(2.22) - \Phi(-1.48)$$

$$= .9868 - .0694$$

$$= .9174$$

Sampling Distribution of \overline{X}

• A natural estimator for the population mean μ is the sample mean

$$\overline{X} = \sum_{i=1}^{n} \frac{X_i}{n}.$$

- Consider \overline{x} to be a single realization of a random variable \overline{X} over all possible samples of size n.
- The sampling distribution of \overline{X} is the distribution of values of \overline{x} over all possible samples of size n that could be selected from the population.

Expected Value of \overline{X}

- The average of the sample means $(\overline{x}$'s) when taken over a large number of random samples of size n will approximate μ .
- Let X_1, \dots, X_n be a random sample from some population with mean μ . Then for the sample mean \overline{X} , $E(\overline{X}) = \mu$.
- \overline{X} is an unbiased estimator of μ .

Standard Error of \overline{X}

- Let X_1, \dots, X_n be a random sample from some population with mean μ . and variance σ^2 .
- The variance of the sample mean \overline{X} is given by

$$Var(\overline{X}) = \sigma^2/n.$$

• The standard deviation of the sample mean is given by σ/\sqrt{n} . This quantity is called the standard error (of the mean).

Standard Error of \overline{X}

- The standard error σ/\sqrt{n} is estimated by s/\sqrt{n} .
- The standard error measures the variability of sample means from repeated samples of size n drawn from the same population.
- ${\color{red} \bullet}$ A larger sample provides a more precise estimate \overline{X} of μ

Sampling Distribution of \overline{X}

- Let X_1, \dots, X_n be a random sample from a population that is normally distributed with mean μ and variance σ^2 .
- Then the sample mean \overline{X} is normally distributed with mean μ and variance σ^2/n .
- That is

$$\overline{X} \sim N(\mu, \sigma^2/n).$$

Central Limit Theorem

- Let X_1, \dots, X_n be a random sample from any population with mean μ and variance σ^2 .
- Then the sample mean \overline{X} is approximately normally distributed with mean μ and variance σ^2/n .

Data Sampled from Uniform Distribution

The following is a distribution of \overline{X} when we take samples of size 1.

Example

The following is a distribution of \overline{X} when we take samples of size 10.

References

- Moore, David S., "The Basic Practice of Statistics." Third edition. W.H. Freeman and Company. New York. 2003
- Weems, Kimberly. SIBS Presentation, 2005.