Algebra Autumn 2023 Frank Sottile 18 September 2023

Fifth Homework

Write your answers neatly, in complete sentences. I highly recommend recopying your work before handing it in. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Read Hungerford, Section I.7 on Categories.

Hand in to Frank Monday 25 September: (Have this on a separate sheet of paper.)

1. True or False, with justification. Given a collection of groups $\{H_{\alpha} \mid \alpha \in I\}$ then the Cartesian product $\prod \{H_{\alpha} \mid \alpha \in I\}$ is generated by its collection of subgroups $\iota_{\alpha}(H_{\alpha})$ for $\alpha \in I$, where, for $h \in H_{\alpha}$, the element $\iota_{\alpha}(h)$ takes value h at α , and is the identity at $\beta \in I \setminus \{\alpha\}$.

Hand in for the grader Monday 25 September: (Have this separate from #1.)

- 17. Show that the symmetric group S_n is generated by
 - (a) The transpositions $(1,2), (1,3), \ldots, (1,n)$.
 - (b) The transpositions $(1, 2), (2, 3), \ldots, (n-1, n)$.
 - (c) The transposition (1,2) and the *n*-cycle $(1,2,\ldots,n)$.
- 18. Show that the group defined by generators a, b and relations $a^2 = e$, $b^3 = e$ is infinite and nonabelian.
- 19. If $f: G \to H$ and $g: K \to L$ are homomorphisms of groups, then there is a unique homomorphism $h: G*K \to H*L$ between their free products such that $h|_G = f$ and $h|_K = g$.
- 20. Give an example to show that the direct product (in Hungerford, weak direct product) is not a coproduct in the category of all groups. It suffices to consider the case of two factors. That is, find a group G and groups H, K that have homomorphisms $f_H \colon H \to G$ and $f_K \colon K \to G$ for which there is no homomorphism $f \colon H \times K \to G$ such that $f|_H = f_H$ and $f|_K = f_K$.
- 21. Following this last question up, show that the direct product is a coproduct in the category of abelian groups. That is, suppose $\{H_{\alpha} \mid \alpha \in I\}$ is a family of abelian groups indexed by a set I, and G is an abelian group such that there are homomorphisms $f_{\alpha} \colon H_{\alpha} \to G$ for $\alpha \in I$. Prove there is a unique map $f \colon \bigoplus \{H_{\alpha} \mid \alpha \in I\} \to G$ such that for each $\alpha \in I$ we have $f_{\alpha} = f \circ \iota_{\alpha}$, where $\iota_{\alpha} \colon H_{\alpha} \hookrightarrow \bigoplus \{H_{\alpha} \mid \alpha \in I\}$ is the canonical injection.

Deduce that this property determines the direct product $\bigoplus\{H_{\alpha} \mid \alpha \in I\}$ of abelian groups up to unique automorphism.