

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

Институт информационных технологий (ИТ) Кафедра инструментального и прикладного программного обеспечения (ИиППО)

ОТЧЁТ ПО ПРАКТИЧЕСКИМ ЗАНЯТИЯМ

по дисциплине

«Системное программное обеспечение»

Выполнил студент группы ИКБО-03-18			Маковецкий И. А.		
Принял	Соболев О. В.				
Практические занятия выполнены	<u> </u>	»	2021 г.	(подпись студента)	
Практические занятия зачтены	«	»	2021 г.	(подпись руководителя)	

СОДЕРЖАНИЕ

1 ПРАКТИЧЕСКАЯ РАБОТА № 1				
	1.1	Тема	3	
	1.2	Задание	3	
	1.3	Ход выполнения работы	3	

1 ПРАКТИЧЕСКАЯ РАБОТА № 1

1.1 Тема

Генерация кода для выражения с константами и переменными.

1.2 Задание

Реализовать генерацию ассемблерного кода для арифметического выражения из констант и переменных.

1.3 Ход выполнения работы

В ходе выполнения работы был реализован модуль транслятора, осуществляющий генерацию asm-кода для арифметических выражений, состоящих из целочисленных констант и операций сложения, вычитания, умножения, целочисленного деления, взятия остатка от деления. Разработка опирается на лексический и синтаксический анализатор, реализованные в результате освоения дисциплины «Теория автоматов и формальных языков». Входными данными для модуля является абстрактное синтаксическое дерево (AST), получаемое в результате лексического и синтаксического разбора математических выражений, записанных в текстовом виде. Выходными данными является asm-код, представляющий собой код вычисления выражения, поданного в качестве входных данных.

Генерация кода для узлов AST выполняется по правилам, описанным ниже. Для узлов, представляющих константу — команда ассемблера PUSH

QWORD < n >, где < n > — константа, хранящаяся в узле. Для узлов с бинарной операцией — команды ассемблера:

- РОР RBX; второй операнд бинарной операции сверху стека;
- РОР RAX; первый операнд бинарной операции под вторым;
- Код конкретной операции;
- $PUSH\ RAX$; помещение результата операции на вершину стека. Ниже приведен фрагмент кода обхода AST.

```
\linespread{1.0}
public static void generateASM(Set<String> vars) {
    for (String var: vars) {
        System.out.println("MOV RCX, promt " + var);
        System.out.println("MOV R11, printf");
        System.out.println("CALL R11");
        System.out.println(" ");
        System.out.println("MOV RDX, scanf format");
        System.out.println("MOV RDX, " + var);
        System.out.println("MOV R11, scanf");
        System.out.println("CALL R11\n");
    }
}
public static void main(String[] args) {
    String text = "x + y + 2";
    Lexer 1 = new Lexer(text);
    List<Token> tokens = 1.lex();
    tokens.removeIf(t -> t.type == TokenType.SPACE);
```