

Matrix Chain Multiplication

CS-6th

Instructor: Dr. Ayesha Enayet

Matrix Multiplication

- Let A be an n by m matrix and B be an m by p matrix, then C=AB is an n by p matrix.
- Total number of multiplications= nmp

Example (parenthesizations)

- Z=A₁XA₂XA₃
- =(A1XA2)XA3
- =A1X(A2XA3)

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \times \begin{bmatrix} 10 & 11 & 12 \\ 13 & 14 & 15 \\ 16 & 17 & 18 \end{bmatrix} \times \begin{bmatrix} 19 & 20 \\ 21 & 22 \\ 23 & 24 \end{bmatrix}$$

Dimensions=[(3X3)*(3X3)]*(3X2)=(3X3)*(3X2)=3X2

#Mult-operations=27+18=45

Example (parenthesizations)

- Z=A₁XA₂XA₃
- =(A1XA2)XA3
- =A1X(A2XA3)

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \times \begin{bmatrix} 10 & 11 & 12 \\ 13 & 14 & 15 \\ 16 & 17 & 18 \end{bmatrix} \times \begin{bmatrix} 19 & 20 \\ 21 & 22 \\ 23 & 24 \end{bmatrix}$$

Dimensions=(3X3)*[(3X3)*(3X2)]=(3X3)*(3X2)=3X2

#Mult-operations=18+18=36

Example (4 matrices)

```
(A_1(A_2(A_3A_4))),

(A_1((A_2A_3)A_4)),

((A_1A_2)(A_3A_4)),

((A_1(A_2A_3))A_4),

(((A_1A_2)A_3)A_4).
```

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min\{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j : i \le k < j\} & \text{if } i < j. \end{cases}$$

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min\{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j : i \le k < j\} & \text{if } i < j. \end{cases}$$

j ------

		1	2	3	4
i I	1	0			
	2		0		
	3			0	
†	4				0

	1	2	3	4
1				
2				
3				
4				

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min\{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j : i \le k < j\} & \text{if } i < j. \end{cases}$$

	1	2	3	4
1	0	24		
2		0	24	
3			0	16
4				0

	1	2	3	4
1		1		
2			2	
3				3
4				

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min\{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j : i \le k < j\} & \text{if } i < j. \end{cases}$$

j -----

	1	2	3	4
1	0	24	36	
2		0	24	
3			0	16
4				0

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min\{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j : i \le k < j\} & \text{if } i < j. \end{cases}$$

j ------

	1	2	3	4
1	0	24	36	
2		0	24	36
3			0	16
4				0

min{ m[2,4]=for $k=2\{0+16+3*4*2=40\}$ m[2,4]=for $k=3\{24,0,3*2*2=36\}$

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min\{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j : i \le k < j\} & \text{if } i < j. \end{cases}$$

 1
 2
 3
 4

 1
 0
 24
 36

 2
 0
 24
 36

 3
 0
 16

 4
 0

	1	2	3	4
1		1	1	
2			2	3
3				3
4				

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min\{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j : i \le k < j\} & \text{if } i < j. \end{cases}$$

j ------

	1	2	3	4
1	0	24	36	44
2		0	24	36
3			0	16
4				0

$$m[1,4]=$$
for $k=1\{0+36+2*3*2=48\}$
 $m[1,4]=$ for $k=2\{24+16+2*4*2=56\}$
 $m[1,4]=$ for $k=3\{36+0+2*2*2=44\}$

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min\{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j : i \le k < j\} & \text{if } i < j. \end{cases}$$

	1	2	3	4
1	0	24	36	44
2		0	24	36
3			0	16
4				0

	1	2	3	4
1		1	1	3
2			2	3
3				3
4				

The initial call PRINT-OPTIMAL-PARENS (s, 1, n) prints an optimal parenthesization of the full matrix chain product $A_1A_2...A_n$

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i == j

2 print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```


Parenthesization

A1 X A2 X A3 x A4
Output: ((A1(A2A3))A4)

		j —			→
		1	2	3	4
 	1	0	24	36	44
	2		0	24	36
	3			0	16
+	4				0

	1	2	3	4
1		1	1	3
2			2	3
3				3
4				