

Description

The series of devices uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

Application

- DC/DC Converter
- •Ideal for high-frequency switching and synchronous rectification

General Features

- V_{DS} =85V, I_D =290A $R_{DS(ON)}$ =1.8m Ω , typical@ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST08N018-T7	VST08N018	TO-247	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	85	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	290	А	
Drain Current-Continuous(T _C =100 ℃)	I _D (100℃)	220	А	
Pulsed Drain Current	I _{DM}	1160	Α	
Maximum Power Dissipation	P _D	300	W	
Derating factor		2	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	2880	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	T _J ,T _{STG} -55 To 175		

Thermal Characteristic

Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	0.5	°C/W
--------------------------------------	----------------	-----	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	85		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =85V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0	3.0	4.0	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =145A	-	1.8	2.3	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =145A		200	-	S
Dynamic Characteristics (Note4)	•		•	•		
Input Capacitance	C _{lss}	V _{DS} =40V,V _{GS} =0V,	-	14500	-	PF
Output Capacitance	C _{oss}		-	2050	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	105	-	PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}	V_{DD} =40V, I_{D} =145A V_{GS} =10V, R_{G} =1.6 Ω	-	41	-	nS
Turn-on Rise Time	t _r		-	37	-	nS
Turn-Off Delay Time	t _{d(off)}		-	103	-	nS
Turn-Off Fall Time	t _f		-	38	-	nS
Total Gate Charge	Qg	\/ -40\/ L -445A	-	240	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=40V, I_{D}=145A,$	-	61		nC
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	72		nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =145A	-		1.2	V
Diode Forward Current	Is		-	-	290	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = 145A	-	106	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	309	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\!\!\mathrm{C}$,V_DD=40V,V_G=10V,L=0.5mH,Rg=25 Ω

Typical Electrical and Thermal Characteristics

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

T_J-Junction Temperature(°C)

Figure 4 Rdson-Junction Temperature

Qg Gate Charge (nC)

Figure 5 Gate Charge

Vsd Source-Drain Voltage (V)

Figure 6 Source- Drain Diode Forward

Figure 11 Normalized Maximum Transient Thermal Impedance