MBA Business Foundations, Quantitative Methods: Session Two

Boris Babic, Assistant Professor of Decision Sciences

INSEAD

The Business School for the World®

Today

Exponents

Application: interest rates Exponents

Exponential functions

Exponents

Boris Babic, INSEAE

Exponents

Application interest rates

functions

Logarithn functions

- Essential for analysis of interest rates and growth.
- Denotes repeated multiplication of the same quantity

Examples:

- 3⁴
- 1.5^2
- $\left(\frac{1}{2}\right)^2$
- $(a+2)^2 =$

Solutions:

- $3^4 = 81$
- $1.5^2 = 2.25$
- $\left(\frac{1}{2}\right)^2 = \left(\frac{1}{4}\right)^2$
- $(a+2)^2 = a^2 + 4a + 4$ (what kind of function?)

Some examples of exponential phenomena

Boris Babic, INSEAI

Exponents

Applicatio interest rates

Exponenti functions

Logarithn functions

Rules for exponents

Babic INSEA

Exponents

Application interest rates

Exponentia functions

Logarithmi

Products $b^c \cdot b^d = b^{c+d}$

Powers $(b^c)^d = (b^d)^c = b^{c \cdot d}$

Negative exponents $b^{-c} = \frac{1}{b^c}$

Quotients $\frac{b^c}{b^d} = b^{c-d}$

Zero power $b^0 = 1$

Roots $\sqrt[n]{b} = b^{1/n}$

Simplify the following:

•
$$(3^4)^2 =$$

•
$$\frac{6^2}{6^5} =$$

•
$$3^0 =$$

•
$$27^{2/3} =$$

$$\bullet \left(\frac{x}{y}\right)^3 \cdot \left(\frac{x}{z}\right)^{-2}$$

$$\bullet \quad \frac{x^3y^2}{x^5y^{-2}}$$

$$\frac{24x^5y^3z^7}{6x^3y^2z^4}$$

- $(3^4)^2 = 3^8$
- $\bullet \ \frac{6^2}{6^5} = 6^{2-5} = 6^{-3} = \frac{1}{6^3}$
- $3^0 = 1$
- $27^{2/3} = \sqrt[3]{27^2}$
- $\bullet \left(\frac{x}{y}\right)^3 \cdot \left(\frac{x}{z}\right)^{-2} = \left(\frac{x}{y}\right)^3 \cdot \left(\frac{z}{x}\right)^2 = \frac{x^3 z^2}{y^3 x^2} = \frac{xz^2}{y^3}$
- $\bullet \ \frac{x^3y^2}{x^5y^{-2}} = \frac{x^3y^2y^2}{x^5} = x^{-2}y^4 = \frac{y^4}{x^2}$

Simple interest, part 1

Boris Babic, INSEAL

Exponent

Application: interest rates

Exponenti functions

Logarithn

- *I*: interest income in one period
- P: capital to invest
- r: interest rate per period
- n: number of periods invested
- P = \$1,000, r = 4%, what is I after one year?
- Solution: \$40
- if n = 3, what is I?
- Solution \$120
- $\bullet \ \ \text{In general,} \ I = P \cdot r \cdot n$

Simple interest, part 2

Boris Babic,

Application: interest

rates
Exponent functions

Logarithr

Ex: Treasury notes.

Face Value (FV) of the bond: amount you recuperate at the maturity date of the bond

Fixed (annual) interest rate on FV

10-year bond

Interest paid semi-annually via coupons

If we bought the bond for \$4,500 dollars, how much money have we made when the bond reaches maturity?

10 / 36

Answer:

NOTE: If we assume annual interest (the part in yellow is just about how you are receiving your earnings):

 $5000 + 10 \cdot 0.08 \cdot 5000 - 4500 = 5000 + 10 \cdot 400 - 4500 = 4500.$

(Capital increases by interest every period)

- You invest \$1 at an annual interest rate r=4%.
- After year 1: 1 + 1(0.04) = 1.04
- After year 2: $1.04 + 1.04(0.04) = 1.04(1 + 0.04) = 1.04^2$
- After year 3: $1.04^2 + 1.04^2(0.04) = 1.04^2(1 + 0.04) = 1.04^3$
 - After year t: 1.04^t

Some notation:

- P = present amount
- A = final amount
- r = interest rate
- \bullet t = number of years money is invested.
- General formula: if compounding annually, $A = P(1+r)^t$

Compounding could be done:

- Yearly \rightarrow rate/period = r
- Semi-annually \rightarrow rate/period = r/2
- Quarterly \rightarrow rate/period = r/4
- Monthly \rightarrow rate/period = r/12
- Some more notation: n number of periods per year A more general formula: $A = P(1 + \frac{r}{r})^{tn}$

Exponen

Application: interest rates

Exponenti

Logarithn

A general inverse formula: if we know the final amount A, the interest rate r, the time money is invested t and compounding periods per year, n, we can calculate the principal P.

$$P = A\left(1 + \frac{r}{n}\right)^{-tn}$$

Examples on interest rates, part 1

Application: interest

rates

- P = \$1000, r = 4%, t = 3 years
- Compare the final amount A for,
- Simple interest
- Compounded annually
- Compounded semi-annually
- Compounded quarterly
- Compounded monthly

Answers:

- $1000 \cdot 0.04 \cdot 3 = 120 \rightarrow 1000 + 120 = 1120$
- $A = P(1+r)^t \to 1000(1+0.04)^3 = 1124.87$
- $A = P(1 + r/n)^{tn} = 1000(1 + 0.04/2)^{3.2} = 1126.12$
- $A = P(1 + r/n)^{tn} = 1000(1 + 0.04/4)^{3.4} = 1126.83$
- $A = P(1 + r/n)^{tn} = 1000(1 + 0.04/12)^{3.12} = 1127.27$

Examples on interest rates, part 2

Boris Babic,

Exponer

Application: interest rates

Exponenti functions

Logarithr functions

- Problem 1: I borrowed \$2,000 for 5 years at r=8%, compounded quarterly. How much do I have to pay back at the end of the term?
 - Problem 2: I put my money in a savings account at r=6% which is compounded semi-annually and received \$530.45 at the end of the year. How much did I put in at the beginning?
- Solution 1: $2000(1+0.08/4)^{5\cdot4}=2971.89$
- Solution 2: $P = A(1 + r/n)^{-tn} = 530.45(1 + 0.06/2)^{-2} = 500$

Exponential functions

 $f(x) = b^x$ where b > 0, b is the base, x is the exponent. (Check: is x^2 exponential? Why or why not?)

INSEA

Exponent

interest rates

Exponential functions

Logarithn

- All the curves pass through the point (x, y) = (0, 1).
- The exponential functions are always above the f(x)=0 horizontal line. In fact, that line is an asymptote.
- $f(x) \to 0$ as $x \to -\infty$ (when b > 1), and $f(x) \to 0$ as $x \to \infty$ when 0 < b < 1.
- Can we have b<0? Consider $f(x)=-4^x$. What is f(2)?, f(-3)?, f(1/2)?

(hint: $\sqrt{-4} = 2i$).

Boris Babic,

Exponen

Application interest rates

Exponential functions

- If b > 1, the curve becomes steeper as b increases
- if 0 < b < 1, it is the other way around, the curve becomes steeper as the base gets closer to 0.

Practice

Boris Babic,

Exponent

Application interest rates

Exponential functions

Logarithm functions $\label{eq:match} \mbox{Match each equation with the graph of } f,g,h,k \!\! :$

(A)
$$f(x) = 2^x$$

(B)
$$f(x) = (0.2)^x$$

(C)
$$f(x) = 4^x$$

(D)
$$f(x) = (1/3)^x$$

- Exponential functions can be generalized to $f(x) = ab^x$ where a is now a scaling constant of the function.
 - Ex: Compound interest when compounded annually. Recall it is given by $A = P(1+r)^t$. Here a = P, b = (1+r), and x = t.
 - Ex: Compound interest when compounded n times per year. Given by $A = P(1 + \frac{r}{n})^{tn}$
 - Why is this an exponential function of the form $f(x) = ab^x$?

$$A = P\left[\left(1 + \frac{r}{n}\right)^n\right]^t$$
 Here $a = P, b = \left(1 + \frac{r}{n}\right)^n, x = t$.

Logarithm functions

• $f(x) = e^x$, where $e \approx 2.71828$, named after Leonhard Euler.

- Examples:
- Finance: continuous compounding: $A = P \cdot e^{rt}$
- Economics: growth rate: $e^{0.03t}$
- Probability: exponential families (includes normal distribution!)

Boris Babic,

Exponen

Applicatio interest rates

Exponential functions

Logarithm

- $A = A_0 e^{kt}$, where A = ending value, $A_0 =$ initial value, t is elapsed time, and k is the growth/decay rate.
- k > 0, the amount is increasing (growing); k < 0, the amount is decreasing (decaying).
- Ex: bacteria grow continuously i.e., they do not "wait" and then all at once reproduce in the next period.

Example: Carbon decay

Application interest rates

Exponential functions

Logarithr functions • Problem: A certain artifact originally had 12 grams of carbon-14 present. Suppose the decay model $A=12e^{-0.000121t}$ correctly describes the amount of carbon-14 present after t years. How many grams of carbon-14 will be present in this artifact after 10,000 years?

$$A = 12e^{-0.000121t}$$
$$= 12e^{-0.000121 \cdot 10000}$$
$$= 3.58$$

Logarithm functions

• Problem: A strain of bacteria growing on your desktop doubles every 5 minutes. Assuming that you start with only one bacterium, how many bacteria could be present after 1.5 hours? Hint: $\log(e^x) = x$.

$$A = A_0 e^{kt}$$

$$\rightarrow 2 = 1 \cdot e^{k \cdot 5}$$

$$\rightarrow 2 = e^{5k}$$

$$\rightarrow \log 2 = \log e^{5k}$$

$$\rightarrow \log 2 = 5k$$

$$\rightarrow \frac{\log 2}{5} = k$$

$$\rightarrow k = 0.139$$

$$\rightarrow A = A_0 e^{0.139 \cdot 90}$$

$$\rightarrow A = 1 \cdot e^{0.139 \cdot 90} = 271,034!$$

Example: population growth

Boris Babic

Exponer

Applicatio interest rates

Exponential functions

ntial

The expression $A=30\exp(0.019t)$ (note: $\exp(x)=e^x$) describes the population of a city, in thousands, t years after 2015. Use this expression to solve the following:

- What was the population of the city in 2015?
- By what % is the population of the city increasing each year?
- What will the population be in 2026?
- When will the city's population be 60 thousand?
 Solutions
- Set t = 0, convert to thousands $= 30,000 = A_0$.
- It is increasing $k \cdot 100 = 1.9\%$ each year.
- $30 \exp\{0.019 * 11\} \approx 37 \rightarrow 37 \cdot 1000 = 37000$.
- $60 = 30e^{0.019t} \rightarrow t = 36 \rightarrow 2015 + 36 = 2051$.

- A logarithmic function is the inverse of an exponential function
- If $b^x = c$ then $\log_b(c) = x$
- Natural log: if $e^x = c$ then $\ln(c) = x$ where $\ln x = \log_e x$

Logarithmic functions

Boris Babic,

Exponer

Application interest rates

Exponent functions

- There are no logs of zero or negative numbers (x > 0) (Why?).
- If $\log_b(-k) = c$ then $b^c = -k$.
- Logs of numbers less than one are negative.
- All curves pass through the point (x, y) = (1, 0).
- When x tends to 0 in positive value, f(x) is higher and higher in negative value.
- The vertical line at x=0 is an asymptote: a straight line which the graph approaches but never touches.

Operations on logs

Boris Babic INSEA

Exponent

Application interest rates

Exponenti functions

Logarithmic functions

• $\log_b(b^x) = x$

•
$$b^{\log_b(x)} = x$$

•
$$\log_b(c \cdot d) = \log_b c + \log_b d$$

•
$$\log_b \frac{c}{d} = \log_b c - \log_b d$$

•
$$\log_b(c^d) = d \cdot \log_b c$$

•
$$\log_b(b) = 1$$

•
$$\log_b 1 = 0$$

Practice:

- Ex 1: $\log_5(4x+11)=2$
- Ex 2: $\log_2(x+5) \log_2(2x-1) = 5$
- Ex 3: $\log_8(x) + \log_8(x+6) = \log_8(5x+12)$

Hint: get into quadratic form, find positive root

- Ex 4: $\log_6(x) + \log_6(x-9) = 2$
- Ex 5: $\ln(10) \ln(7 x) = \ln(x)$

Boris Babic, INSEAI

Exponent

Application interest rates

Exponentia functions

$$\log_5(4x + 11) = 2$$
$$4x + 11 = 5^2$$
$$x = 7/2$$

$$\log_2(x+5) - \log_2(2x-1) = 5$$

$$\log_2\left(\frac{x+5}{2x-1}\right) = 5$$

$$\left(\frac{x+5}{2x-1}\right) = 2^5 = 32$$

$$x+5 = 32(2x-1)$$

$$x = 37/63$$

Exponent

Application interest rates

Exponentia functions

$$\log_8(x) + \log_8(x+6) = \log_8(5x+12)$$
$$\log_8(x(x+6)) = \log_8(5x+12)$$
$$x(x+6) = 5x+12$$
$$x^2 + 6x = 5x + 12$$
$$x^2 + x - 12 = 0$$
$$(x-3)(x+4) = 0 \to x = 3$$

Exponent

Application interest rates

Exponentia functions

$$\log_6(x) + \log_6(x - 9) = 2$$
$$x(x - 9) = 36$$
$$(x + 3)(x - 12) = 0$$
$$x = 12$$

Boris Babic, INSEAL

Exponents

Application interest rates

Exponentia functions

Europe | Asia | Middle Eas