MapReduce 1.0

Jay Urbain, PhD

MapReduce

- Programming paradigm
- Originally created at Google
 - MapReduce: Simplified Data Processing on Large Clusters, Jeffrey Dean and Sanjay Ghemawat
 - https://research.google.com/archive/mapreduce.html
- Designed to solve a single problem: how to index the Internet!
- Basically two parts:
 - Map
 - Reduce

MapReduce

- Map(key, value)
 - Execute the Map(key, value) function to transform data
 - Execute on each node
 - If node goes, its restarted on another node
 - Bring computation to data versus bringing the data to the computation.
 - Output(key', value') pairs on each node
- Reduce(key', value'*)
 - Execute the Reduce() function to aggregate data output from mapper
 - Executes on some of the nodes
 - Output(key", value"*) combined list

Notes:

- Programmer provides *Map* and *Reduce* functions
- Data is sorted as part of shuffle *step* to *reducer*
- *Shuffle* step provided by the framework
- Colors show different types of data
- Shows 3 Map nodes on 3 separate physical servers
- Does not show x3 replication

MapReduce 1.0

- Distributed, scalable, inexpensive runs on commodity hardware
- Lends itself to parallel processing, runs on each node, no shared data
- MapReduce 2.0/YARN builds on MapReduce 1.0
- Use MRv2 for new development
- Storage
 - HDFS triple replicated
- Commodity hardware
- Processing
 - Parallel via Map (local) and Reduce (aggregated)
- Relatively easy to understand

Coding Steps

- Create a MapReduce class
- Create a static Map function
 - Transform function
- Create a static Reduce function
 - Aggregation function
- Create a main() function
 - Create a job
 - Job calls the Map and Reduce classes
- Programming paradigm:
 - Functional programming: data/state is not shared, data in, data out
 - The equivalent of a complex SQL query has to be broken into multiple steps/jobs/applications

```
public class MapReduce {
  public static void Main(String[] args)
     //create JobRunnerInstance
     //call MapInstance on JobInstance
     //call ReduceInstance on JobInstance
  public void Map()
     //write Mapper
  public void Reduce()
     //write Reducer
```

Word count: *Hello World for MapReduce*

- Google needed to count the number of words on the web for indexing

Example:

— How much wood could a woodchuck chuck if a woodchuck could chuck wood?

Input:

List of words (example above)

Result:

- {how, 1; much, 1; wood, 2; could, 2; a, 2; woodchuck, 2; chuck, 2; if,1}

Question:

What is a word? Case sensitivity, punctuation, stemming, etc.

Word Count Pseudo Code

Need to look at code with respect to correctness and performance

```
map(filename, file-contents)
  for each word in file-contents
    emit(word, 1)

reduce(word, values)
  sum = 0
  for each value in values:
      sum += value
  emit(word, sum)
```

Key Aspects of MapReduce

- MapReduce is an API, set of libraries (jar files)
 - Job unit of MapReduce work/instance
 - Map task runs on each node
 - Reduce task runs on some nodes
 - Source data HDFS or other location

MapReduce Daemons and Services

- JVMs or services isolated processes, no shared state
 - Job tracker one (controller and scheduler)
 - Task trackers one per cluster host (monitors tasks)
- Job configurations
 - Specify input/output locations for job instances
 - Job clients submit jobs for execution Use GUI, command line, etc.

MapReduce

- Sort and merge have defaults, but can be overridden
- Input split, number of mappers and reducers are configurable

MapReduce Coding Patterns

- Standard usually written in Java
- Hadoop Streaming Java base
 - Other language for mapper/reducer logic
 - Python popular, can use almost anything

Running MapReduce Job

- Can run in IDE, tool, or command line
- Eclipse and Hadoop SDKs included with Cloudera and Hortonworks distribution
- File system or HDFS or S3
- MapReduce output: SUCCESS, series of delimited text files. Note:
 - Immutable if stored in HDFS
 - Will not allow you to overwrite or update existing files
 - Each run needs a new file name or old files to be removed
- Usually appends run time to file name for uniqueness

MapReduce Job Status and Logs

- Monitor job run status
 - Command line
 - Tools in vendor distribution
 - Log files
 - Troubleshooting failed jobs requires programming and admin skills
 - Error logs much more verbose than RDBMS systems, can adjust level of logging

Linux Shell Commands

Command	Description	
ls	list folder contents	
cat	reads (displays) a file	
mkdir	makes a directory	
cd	change to a directory	
sudo command	run command as administrator	
chmod file	show/change permissions of file	

Hint: Use tab to complete commands

Hadoop Shell Commands

```
hadoop fs -cat file:///file2
hadoop fs -mkdir /user/hadoop/dir1 /user/hadoop/dir2
hadoop fs -copyFromLocal <fromDir> <toDir>
hadoop fs -put <localfile> hdfs://nn.example.com/hadoop/hadoopfile
sudo hadoop jar <jarFileName> <method> <fromDir> <toDir>
hadoop fs -ls /user/hadoop/dir1
hadoop fs -cat hdfs://nn1.example.com/file1
hadoop fs -get /user/hadoop/file <localfile>
```

Notes:

- Some installations use dfs rather than fs
- Old style uses hdfs rather than hadoop

Cloudera VM Terminal

```
Σ
                           cloudera@quickstart:~
                                                                         _ 🗆 ×
File Edit View Search Terminal Help
[cloudera@quickstart ~]$
[cloudera@quickstart ~]$ ls
cloudera-manager Downloads
                                                                  workspace
                                             kerberos Pictures
cm api.py
                 eclipse
                                             lib
                                                       Public
Desktop
                 enterprise-deployment.json
                                                       Templates
                                             Music
                 express-deployment.json
                                             parcels
                                                       Videos
Documents
[cloudera@quickstart ~]$ hadoop fs -ls /
Found 6 items
drwxrwxrwx - hdfs supergroup
                                        0 2017-04-05 04:27 /benchmarks
drwxr-xr-x - hbase supergroup
                                        0 2017-06-20 07:16 /hbase
drwxr-xr-x - solr solr
                                        0 2017-06-20 06:45 /solr
drwxrwxrwt - hdfs supergroup
                                        0 2017-06-20 07:32 /tmp
drwxr-xr-x - hdfs supergroup
                                        0 2017-06-20 06:32 /user
            - hdfs supergroup
                                        0 2017-04-05 04:29 /var
drwxr-xr-x
[cloudera@quickstart ~]$
```

Cloudera VM Terminal: head | tail Handy for huge files

File Edit View Search Terminal Help [cloudera@quickstart ~] \$ hadoop fs -cat /user/cloudera/2015 11 21/web logs 4.csv | tail 🗲 1480895575709712388,,318,Ashburn,54.227.93.32,302,US,USA,United States,Other,,39.0437,-77.4875,GET,Windows XP,,HTTP/1.1,,-,VA,GE T / HTTP/1.1,,2014-05-04T07:49:18Z,/,"Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Saf ari/419.3) Arora/0.3 (Change: 287 c9dfb30)".Arora.0.71d7bebe-d146-4147-8111-a3dd50dd0fb9 1480895575709712389,accounts,423,Ashburn,54.227.93.32,302,US,USA,United States,Other,,39.0437,-77.4875,GET,Windows XP,,HTTP/1.1, .-.VA.GET /accounts/login/?next=/ HTTP/1.1.login.2014-05-04T07:49:18Z./accounts/login/?next=/."Mozilla/5.0 (Windows: U: Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)", Arora,0,fa2952ac-d1bf-47e2a5ed-0c659559f9a4 1480895575709712390,,318,Ashburn,54.227.93.32,302,US,USA,United States,Other,,39.0437,-77.4875,GET,Windows XP,,HTTP/1.1,,-,VA,GE T / HTTP/1.1,,2014-05-04T07:49:18Z,/,"Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Saf ari/419.3) Arora/0.3 (Change: 287 c9dfb30)", Arora, 0, e4bda130-lecb-4009-8b76-d72e430fe312 1480895575710760960,accounts,423,Ashburn,54.227.93.32,302,US,USA,United States,Other,,39.0437,-77.4875,GET,Windows XP,,HTTP/1.1, ,-,VA,GET /accounts/login/?next=/ HTTP/1.1,login,2014-05-04T07:49:18Z,/accounts/login/?next=/,"Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)", Arora,0,dd950b38-65eb-4dbda70d-6eada0e09e72 1480895575710760961,,318,Ashburn,54.227.93.32,302,US,USA,United States,Other,,39.0437,-77.4875,GET,Windows XP,,HTTP/1.1,,-,VA,GE T / HTTP/1.1,,2014-05-04T07:49:18Z,/,"Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Saf ari/419.3) Arora/0.3 (Change: 287 c9dfb30)", Arora, 0, a43add10-edd4-41ad-973a-5d25aa13bf57 1480895575710760962,accounts,423,Ashburn,54,227.93.32,302,US,USA,United States,Other,.39.0437,-77.4875,GET,Windows XP,,HTTP/1.1, ,-,VA,GET /accounts/login/?next=/ HTTP/1.1,login,2014-05-04T07:49:18Z,/accounts/login/?next=/,"Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)",Arora,0,441198e8-5e25-4b2d-9d67-f790161bf466 1480895575710760963,,318,Ashburn,54.227.93.32,302,US,USA,United States,Other,,39.0437,-77.4875,GET,Windows XP,,HTTP/1.1,,-,VA,GE T / HTTP/1.1,,2014-05-04T07:49:18Z,/,"Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Saf ari/419.3) Arora/0.3 (Change: 287 c9dfb30)", Arora, 0, db662da7-dd61-48de-85ee-a00fe38445b6 1480895575710760964.accounts.423.Ashburn.54.227.93.32.302.US.USA.United States.0ther...39.0437.-77.4875.GET.Windows XP..HTTP/1.1. ,-,VA,GET /accounts/login/?next=/ HTTP/1.1,login,2014-05-04T07:49:18Z,/accounts/login/?next=/,"Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)",Arora,0,63ba1477-0eb4-43fbb711-fdcdcec99b2a 1480895575710760965,,304,Ashburn,54.227.93.32,302,US,USA,United States,Other,,39.0437,-77.4875,GET,Windows XP,,HTTP/1.1,,-,VA,GE T / HTTP/1.1,,2014-05-04T07:49:18Z,/,"Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Saf ari/419.3) Arora/0.3 (Change: 287 c9dfb30)", Arora, 0, 05f2868f-19e2-4939-b6df-eb28aa368ad4 1480895575710760966,accounts,423,Ashburn,54.227.93.32,302,US,USA,United States,0ther,,39.0437,-77.4875,GET,Windows XP,,HTTP/1.1, ,-,VA,GET /accounts/login/?next=/ HTTP/1.1,login,2014-05-04T07:49:18Z,/accounts/login/?next=/,"Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)",Arora,0,793d311b-3e56-4376-

Hue Home – jobs Select MapReduce Sleep Jobs

Oozie Workflow

Application Counts words then sleeps

Edit Properties

Oozie Dashboard – Job Status

Job Browser (via logs view)

Tasks

Design Your Own Project – Hue -> Query Editor -> Job Designer

MapReduce Word Count Example

MapReduce Example - Word Count

Developers focus on map and reduce, can override defaults

MapReduce API Versions

- Version 1.0
 - org.apache.hadoop.mapred
- Version 2.0
 - org.apache.hadoop.mapreduce

MapReduce Libraries

```
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;
```

MapReduce Mapper Code (Version 1)

MapReduce Reducer Code

MapReduce Job Main

```
public static void main(String[] args) throws Exception {
    JobConf conf = new JobConf(WordCound.class);
    conf.setJobName("wordcount");
    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(IntWritable.class);
    conf.setMapperClass(Map.class);
    conf.setCombinerClass(Reduce.class);
    conf.setReducerClass(Reduce.class);
    conf.setInputFormat(TextInputFormat.class);
    conf.setInputFormat(TextInputFormat.class);
    FileInputFormat.setInputPaths(conf, new Path(args[0]));
    FileOutputFormat.setOutputPath(conf, new Path(args[1]));
    JobClient.runJob(conf);
}
```

Key Components

- Input/output (data)
 - Writable/write comparable
- Mapper
 - Maps input key/value pairs to a set of intermediate key/value pairs.
- Reducer
 - Reduces a set of intermediate values which share a key to a smaller set of values.
- Partitioner
 - Controls the partitioning of the keys of the intermediate map-outputs.
- Reporter
 - A facility for reporting progress and update counters, status information etc.
- OutputCollector
 - Collect data output by either the Mapper or the Reducer i.e. intermediate outputs or the output of the job.

Writable Data Types

Class	Size (bytes)	Description	Sort Policy
BooleanWritable	1	Wrapper for standard Boolean variable	False before, true after
ByteWritable	1	Wrapper for single byte	Ascending
DoubleWritable	8	Wrapper for a Double	Ascending
FloatWritable	4	Wrapper for a Float	Ascending
IntWritable	4	Wrapper for an Integer	Ascending

Note: Can also write custom writable data type

Input Types

Format	Description
TextInputFormat	Each line in a text file is a record LongWritable (offset of line), Text (content of line)>
KeyValueTextInputFormat	Each line is a record. First separator divides line (\t) <text (after="" (before="" separator)="" separator),="" text=""></text>
SequenceFileInputFormat <k,v></k,v>	Sequence for reading files
NLineInputFormat	Like TextInputFormat; each split has exactly N lines <longwritable, text=""></longwritable,>

SequenceFileInputFormat: Serialized binary files, different formats and compression available

Output Types

Format	Description
TextOutputFormat	Write each record as a line of text. Keys and values are written as strings and separated by \t
SequenceFileOutputFormat <k, v=""></k,>	Write the key/value pairs in sequence file format. Works with SequenceFileInputFormat.
NullOutputFormat <k,v></k,v>	Outputs nothing

Running and tracking Hadoop Jobs

- Configure JobConf options
- From the development environment (IDE)
- From a GUI (Hue / HDInsight console)
- From the command line:
 - hadoop jar filename.jar input output

Job Execution Optimizations

- Speculative execution
 - kills long-running jobs, and (tries) restarts
 - Based on configuration parameters

Methods to write MapReduce Jobs

- Standard usually written in Java
- Streaming (Python common)
- Pipes (C++ common)
- Abstraction libraries
 - Hive, Pig, et. (higher-level language)
 - Generate MapReduce jobs

Ways to use MapReduce

Need to determine what level of abstraction you want to work at Java gives you a lot of control

Libraries	Languages	
HBase	Java	
Hive	HiveQL (HQL)	
Pig	Pig Latin	
Sqoop	Python	
Oozie	C#	
Mahout	JavaScript	
Others	R	

Review

- Which of the following are key aspects of MapReduce Version 1?
 - It is extremely distributed, scalable, and cheap
 - It is resilient because if one of the nodes goes down, HDFS is selfhealing
 - It really lends itself to parallel processing
 - All of the answers
- Which of the following terminal commands will read the contents of a file from the loal file system?
 - hadoop fs –cat file:///file2
 - hadoop fs –cat hdfs:///file1
 - hadoop fs –get /user/hadoop/file <localfile>
 - hadoop fs –copyFromLocal <fromDir> <toDir>

Review

- If you're using HDFS in addition to MapReduce API, you're going to have some core libraries that you need. Which of the following is a core library?
 - All of these answers
 - org.apache.hadoop.io.*
 - org.apache.hadoop.conf.*
 - org.apache.fs.Path.*
- Which of the following is not a method to write MapReduce Job?
 - Standard usually Java
 - Streaming paradigm
 - Pipes
 - JobConf