Oblivious Transfer Protocol with discrete variables (Polarization)

Mariana Ferreira Ramos

(marianaferreiraramos@ua.pt)

Department of Electronics, Telecommunications and Informatics, University of Aveiro, Aveiro, Portugal Instituto de Telecomunicações, Aveiro, Portugal

©2005, it - instituto de telecomunicações

instituto de telecomunicações

creating and sharing knowledge for telecommunications

INSTITUIÇÕES ASSOCIADAS:

1-out-of-2 OT Protocol: starting conditions

- Alice has two messages m_1 and m_2 and Bob wants to know one of them, m_b , without Alice knowing which one, i.e. without Alice knowing b, and Alice wants to keep the other message private, i.e. without Bob knowing $m_{\bar{b}}$.
- ullet First of all, Alice and Bob must know two parameters: message length s and the expansion factor k.
- Two basis are required: '+' rectilinear basis and $'\times'$ diagonal basis.
- \bullet For rectilinear basis we defined as a binary 0 the polarization of 0° and a binary 1 the polarization of $90^\circ.$
- \bullet For diagonal basis we defined as a binary 0 the polarization of -45° and a binary 1 the polarization of $45^\circ.$

1-out-of-2 OT Protocol: starting conditions

- Lets look an example: Alice has two messages to send to Bob: $m_0 = \{0011\}$ and $m_1 = \{0001\}$.
- Lets assume that in this example Alice and Bob knows two start parameters: the message's size s=4 and a expansion factor k=2.

Step 1 Alice randomly generates two bit sequences, with ks length:

Step 2 Alice sends to Bob throughout a quantum channel ks photons encrypted using the basis defined in S_{A1} and according to the keys defined in S_{A2} .

$$S_{AB} = \{\uparrow, \nearrow, \searrow, \rightarrow, \rightarrow, \nearrow, \rightarrow, \searrow\}$$

$$S_{AB} = \{90^{\circ}, 45^{\circ}, -45^{\circ}, 0^{\circ}, 0^{\circ}, 45^{\circ}, 0^{\circ}, -45^{\circ}\}$$

Step 3 Bob also randomly generates ks bits. Lets assume:

$$S_{B1} = \{0, 1, 0, 1, 0, 1, 1, 1\}.$$

When Bob receives photons from Alice, he measures them using the basis defined in S_{R1} :

$$\{+,\times,+,\times,+,\times,\times,\times\}$$

Bob will get ks results:

$$S_{B1'} = \{1, 1, 0, 1, 0, 1, 1, 0\}$$

Step 4 Bob will send a *Hash Function* result HASH1 to Alice. This value will do Bob's commitment with the measurements done. In this case, this *Hash Function* is calculated from *SHA-256* algorithm for each pair (Basis from S_{B1} and measured value from S_{B1}).

Step 5 When Alice receives HASH1, she sends throughout a classical channel the basis she used to encode the photons. In this case, we have assumed:

$$S_{A1} = \{0, 1, 1, 0, 0, 1, 0, 1\}$$

Step 6 In order to know if he measured the photons correctly, Bob does the operation $S_{B2} = S_{B1} \oplus S_{A1}$.

The values '1' correspond to the values he measured correctly and '0' to the values he just guessed. Thus, $S_{B2} = \{1,1,0,0,1,1,0,1\}$. Bob needs to send to Alice, through a classical channel, n = min(#0,#1) = 3, where #0 represents the number of zeros in S_{B2} and #1 the number of ones in S_{B2} . In order to prove his honesty and to prove that he is not cheating Alice, Bob must send to Alice a value (resulted from an Hash Function), such that she can know n from this function.

Step 6 (cont) At this time, Alice must be able to know if Bob is being honest or not. Therefore, she will open Bob's commitment from *step 4* and she verify if the number n sent by Bob is according with the commitment values sent by him.

Step 7 If n < s, Alice and Bob will repeat the steps from 1 to 7. In this case, n = 3 which is smaller than s = 4. Therefore, Alice and Bob repeat the steps from 1 to 7 in order to enlarge Bob's sets S_{B1} and S_{B2} as well as Alice's sets S_{A1} and S_{A2} .

Step 8 Lets assume:

$$S_{B1} = \{1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1\},$$

$$S_{A1} = \{0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0\},$$

$$S_{A2} = \{1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1\}.$$

Step 8 (cont) Finally, for $S_{B2} = S_{B1} \oplus S_{A1}$:

$$S_{B2} = \{1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1\}.$$

Note that the sets were enlarge in the second iteration.

Step 9 At this time, Bob sends again to Alice, through a classical channel, n = min(#0, #1) = 7.

Step 10 Alice checks if n > s and acknowledge to Bob that she already knows that n > s. In this case, n = 7 and s = 4 being n > s a valid condition.

Step 11 Bob defines two new sub-sets, I_0 and I_1 .In this example, Bob defines two sub-sets with size s=4:

$$I_0 = \{3,4,7,11\}, I_1 = \{2,5,6,13\}.$$

Bob sends to Alice the set S_b . If Bob wants to know m_0 he must send to Alice throughout a classical channel the set $S_0 = \{I_1, I_0\}$, otherwise if he wants to know m_1 he must send to Alice throughout a classical channel the set $S_1 = \{I_0, I_1\}$.

Step 12 With both the received set S_b and the hash function value HASH1, Alice must be able to prove that Bob has been being honest.

Step 13 Lets assume Bob sent $S_0 = \{I_1, I_0\}$. Alice defines two encryption keys K_0 and K_1 using the values in positions defined by Bob in the set sent by him. In this example, lets assume:

$$K_0 = \{1,0,1,0\}$$
 and $K_1 = \{0,0,0,1\}$.

Alice does the operation $m = \{m_0 \oplus K_0, m_1 \oplus K_1\}.$

Adding the two results, Alice will send to Bob the encoded message $m = \{1,0,0,1,0,0,0,0\}$.

Step 14 When Bob receives the message m, in the same way as Alice, Bob uses $S_{B1'}$ values of positions given by I_1 and I_0 and does the decrypted operation:

The first four bits corresponds to message 1 and he received $\{0,0,1,1\}$, which is the right message m_0 and $\{0,1,1,0\}$ which is a wrong message for m_1 .

1-out-of-2 OT Protocol: Open Issues

Steps 4 and 12 are not fully defined.

- 1. In step 4 Bob may says to Alice that he has already measured the photon and it could be a lie. In order to prevent this an Hash Function must be used.
- 2. In step 12 Bob may uses some values in a dishonest way, i.e Bob can pick values from I_1 which he knows they are correct and send them in I_0 in order to know correct information about message $m_{\bar{b}}$.

This problems can hopefully be solved using *Bit Commitment* through *Hash Functions*.

