МФТИ ФИВТ

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ), ФАКУЛЬТЕТ ИННОВАЦИЙ И ВЫСОКИХ ТЕХНОЛОГИЙ

Луничкин Егор Валериевич

ТЕОРЕМА БЛУМА ОБ УСКОРЕНИЯХ

Оглавление

1	Введение					
	1.1	Аннот	тация	. 3		
	1.2	Обозн	начения	. 3		
2	Teo	Теорема и её доказательство				
	2.1	Форму	гулировка	. 4		
2.2 До		Доказ	казательство			
		2.2.1	Идея доказательства			
		2.2.2	Лемма			
		2.2.3	Завершение доказательства	. 6		

Глава 1

Введение

1.1 Аннотация

Теорема Блума об ускорениях — это одна из базовых теорем в теории сложности. В этой работе изложено одно из упрощённых доказательств этой теоремы, которое, однако, хорошо обобщается на весь класс общерекурсивных (а следовательно, и частично рекурсивных) функций.

1.2 Обозначения

В этой статье используется нотация, аналогичная [1]. $\lambda i\phi_i$ — стандартная индексация частично рекурсивных функций. \mathbb{N} — множество всех неотрицательных целых. λiD_i — все конечные подмножества \mathbb{N} . Аналогично, λiF_i — индексация всех финитных функций, определённых на участке $\{0,1,2,\ldots,n\}$. $\lambda_i\Phi_i$ — любая мера вычислительной или ресурсной сложности задачи по Блуму. В частности, для всех i, область определения Φ_i в точности совпадает с областью определения ϕ_i , и отношение $\Phi_i \leq y$ рекурсивно разрешимо. Простым языком, $\Phi_i(x)$ — количество времени или памяти, которое потребуется машине Тьюринга i на входе x. Если f — некоторая функция, а S — множество, то f/S — ограничение f на S.

Глава 2

Теорема и её доказательство

Доказательство, которое здесь будет приведено, является по своей сути упрощением доказательства Блума из [2]. Хорошо известно, что для всех мер, связанных рекурсивно [2], следует, что если доказательство можно провести для одной из них, то оно будет верно для всех остальных, поэтому не будем проводить доказательство в самом общем случае. Начнём с того предположения, что для любой меры верно:

$$\Phi_{S(i,x)}(y) \le \Phi_i(x,y) \tag{2.1}$$

и если $x \notin$ области определения F_v ,

$$\Phi_{\rho(i,v)}(x) \le \Phi_i(x) \tag{2.2}$$

Например, лента машины Тьюринга удовлетворяет этим условиям. Также предположим, что можно определить функцию рекурсивно не только по её предыдущим значениям, но и по предыдущим запускам. Это можно понять из следующего рассуждения: если мы использовали программу для вычисления значения функции на каком-либо начальном аргументе, мы можем узнать вычислительные ресурсы, которые потребовались для этого, даже не зная явно программу, которая вычисляет эту функцию. Теперь мы хотим доказать:

2.1 Формулировка

Теорема (Теорема Блума об ускорениях [2]). Для каждой общерекурсивной функции r(x,y) мы можем найти общерекурсивную функцию f(x) такую, что из $\phi_i = f$ следует, что $\exists j$ такое, что $\phi_j = f$ и $\Phi_i(x) > r(x, \Phi_j(x))$ во всех точках кроме, быть может, конечного их числа.

2.2 Доказательство

2.2.1 Идея доказательства

Доказательство. Идея доказательства в том, чтобы построить функцию $\phi_t(u,x)$ такую, чтобы для любого u было верно $\lambda x \phi_t(u,x) = \lambda x \phi_t(0,x)$. Положим $f = \lambda x \phi_t(0,x)$, и при построении будем использовать первый параметр u в диагонализации по всем возможным программам, чтобы гарантировать, что если $\phi_i = f$, то $\Phi_i(x) \ge r(x,\Phi_t(i+1,x))$ во всех точках, кроме, быть может, конечного их числа. В силу (2.1) этого будет достаточно для доказательства теоремы. К сожалению, может быть доказано [2], что в общем случае невозможно сделать это, сохраняя $\lambda x \phi_t(u,x) = \lambda x \phi_t(0,x)$ $\forall u$. Однако с учётом (2.2) будет достаточно показать, что $\lambda x \phi_t(u,x) = \lambda x \phi_t(0,x)$ для всех точек, кроме конечного их числа и $\forall u$, так как всегда можно подправить $\lambda x \phi_t(u,x)$ на конечном числе входов, не увеличивая основной оценки сложности. Предлагается для начала доказать ослабленную версию **теоремы**:

2.2.2 Лемма

Лемма (Эффективные псевдоускорения; Блум [3]). Пусть Φ — мера, удовлетворяющая (2.1). Тогда для каждой общерекурсивной функции r(x,y) мы можем эффективно найти общерекурсивную функцию f, такую, что для любого данного i, для которого $\phi_i = f$, мы можем эффективно указать j, для которых $\phi_j = f$ и $\Phi_i(x) > r(x, \Phi_j(x))$ (для всех функций, кроме, быть может, конечного их числа).

Доказательство. Определим программу t, вычисляющую частную рекурсивную функцию двух переменных $\phi_t(u,x)$. Пусть $f = \lambda x \phi_t(0,x)$. Нужно показать, что ϕ_t — общая. $\phi_t(u,x)$ задаётся рекурсивно через $\phi_t(u,0), \phi_t(u,1), \cdots, \phi_t(u,x-1)$, а также, если u < x, через $\phi_t(x,x), \phi_t(x-1,x), \phi_t(x-2,x), \cdots, \phi_t(u+1,x)$. Конкретно, на уровне x зададим:

$$C_{u,x} = \left\{ i | u \le i < x \text{ if } i \notin \bigcup_{y < x} C_{u,v} \text{ if } \Phi_i(x) \le r(x, \phi_t(i+1, x)) \right\}$$
 (2.3)

Будем говорить, что $C_{u,x}$ — это набор программ, *отменённых* на этапе x при вычислении $\phi_t(u,x)$. Тогда определим:

$$\phi_t(u,x) = 1 + \max\{\phi_i(x)|i \in C_{u,x}\}\tag{2.4}$$

То есть, $\phi_i(x) = 1 + \max\{u \le i < x \text{ и } \Phi_i(x) \le r(x, \Phi_t(i+1, x)), \text{ и } i \text{ не была отменена раньше при вычислении } \lambda x \phi_t(u, x)\}.$

Это прямо следует из определения, что $\phi_t(u,0)=1$ для всех u и $\phi_t(u,x)=1$ всякий раз, когда $u\geq x$. Более того, для любого u< x, для того, чтобы определить $\phi_t(u,x)$, необходимо определить $\Phi_t(x,x), \Phi_t(x-1,x), \Phi_t(x-2,x), \cdots, \Phi_t(u+1,x)$ и $\phi_t(u,0), \phi_t(u,1), \phi_t(u,2), \cdots, \phi_t(u,x-1)$. Отсюда видно, что достаточно определить $\phi_t(x,x), \phi_t(x-1,x), \cdots, \phi_t(u+1,x); \phi_t(u,0), \phi_t(u,1), \cdots, \phi_t(u,x-1)$.

Продолжая по индукции, предположим, что $\lambda u\phi_t(u,x')$ — общая функция для всех x' < x. Можно заметить, что $\phi_t(u,x) = 1$ для всех $u \ge x$, значит, $\phi_t(x-1,x)$ определена. Аналогично, $\phi_t(x-2,x)$ определена. Продолжая рекурсивно до $\phi_t(0,x)$, увидим, что $\lambda u\phi_t(u,x)$ — общая. Таким образом, по индукции доказано, что ϕ_t — общая функция.

Очевидно, что $C_{0,x}-\{0,1,\ldots,u-1\}=C_{u,x}$. Более того, очевидно, что для каждого u существует n_u , такой, что если i< u и $i\in\bigcup_y C_{0,y}$, то

$$i \in \bigcup_{y \leqslant n_u} C_{0,y} \tag{2.5}$$

Таким образом, никакое i < u не принадлежит $C_{0,x}$ для $x > n_u$. Отсюда сразу получаем, что для $x > n_u$ $C_{0,x} = C_{u,x}$, а значит, $\phi_t(0,x) = \phi_t(u,x)$ для $x > n_u$.

Окончательно, если $\phi_i = \lambda x \phi(0, x)$, должно выполняться:

$$\phi_i(x) > r(x, \Phi_t(i+1, x))$$
 для всех $x > i$ (2.6)

Иначе, при вычислении $\lambda x \phi_t(0,x)$, мы должны *отменить* i для первого такого x > i, приходя к противоречию $\phi_t(0,x) \neq \phi_i(x)$. Таким образом, доказательство фактически завершено.

Мы можем предположить без потери общности, что r монотонна по своему второму аргументу. Тогда из (2.6) и (2.1) имеем:

$$\Phi_i(x) > r(x, \Phi_t(i+1, x)) \ge r(x, \Phi_{S(t,i+1)}(x))$$
 (2.7)

для всех точек кроме, быть может, конечного числа.

Таким образом, мы завершили доказательство леммы.

2.2.3 Завершение доказательства

Так как для каждого i, $\lambda x \phi_t(0,x) = \phi_{\rho(S(t,i+1),v)}(x)$, то для некоторых v в условиях, удовлетворяющих (2.2), из (2.7) мы получаем:

$$\Phi_i(x) \ge r(x, \Phi_{o(S(t,i+1),v)}(x) \tag{2.8}$$

для всех точек кроме, быть может, конечного числа.

Таким образом, теорема доказана при данных условиях.

Как было отмечено ранее, доказательство **теоремы** при произвольных условиях не привязано к рекурсивному отношению, но прямое доказательство при произвольных условиях может быть получено изменением приведённого выше доказательства. Чтобы его провести, мы просто определим ϕ_t как приложение рекурсивной теоремы, изменяя определение $C_{u,x}$ на:

$$C_{u,x} = \left\{ i | u \le i < x \text{ if } i \notin \bigcup_{y < x} C_{u,y} \text{ if } \Phi_i(x) \le \max_{r < x} r(x, \Phi_{\rho(S(t,i+1),v)}(x)) \right\}$$
 (2.9)

Теперь предыдущее доказательство повторяется практически дословно, исключая тот факт, что доказательство (2.6) прямо переводится в доказательство желаемого, а именно (2.8).

На самом деле, **теорема об ускорениях** из [2] немного сложнее, чем доказанная **теорема**, потому что в [2] f берётся как функция, принимающая значения 0-1. Однако переход к случаю функции, принимающей любые значения, не является целью этой работы и не представляет большого интереса.

Список литературы

- 1. Hartley Rogers, Jr., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967. MR 37~#61.
- 2. M. Blum, A machine-independent theory of the complexity of recursive functions, J. Assoc. Comput. Mach. 14 (1967), 322—336. MR 38 #4213.
- 3. M. Blum, On effective procedures for sppeding up algorithms, J. Assoc. Comput. Mach. 18 (1971), 290—305.