Evapotranspiration in boreal forest catchments: upscaling by process models and open GIS data

 Samuli Launiainen, Aura Salmivaara, Antti-Jussi Kieloaho, Mikko Peltoniemi, and Mingfu Guan

contact: samuli.launiainen@luke.fi

Presentation available at:

https://github.com/LukeEcomod/EGU2018

Background

- Boreal mixed coniferous forests cover ~80% of land area in Finland
- Forest management creates mosaic landscape
- Climate (60 ... 70 N)
 - Annual mean T & precip from between +5 'C / 750mm in the south to -2 'C / 450 mm in the north
- Why actual ET and its spatial variability?
 - Soil moisture & biogeochemical cycles, growth and climate feedback
 - Improved description of ET will reduce uncertainties in catchment models

Objectives:

- 1) Develop generic daily stand-level ET model
 - validate against eddy-covariance data
- 2) Upscale to landscape scale using open data
 - evaluate using annual ET from catchment water balance

Semi-distributed catchment model

Catchment \rightarrow (n x m) grid of buckets

+ TOPMODEL for streamflow generation, returnflow and saturated area

Launiainen et al. 2018, in prep.

INPUT GRIDS:

- Conifer & deciduous LAI, tree height
- Soil map
- Catchment boundaries
- Topografic wetness index TWI

DAILY FORCING

 Precip, SW radiation, temperature, RH (or VPD), wind speed

DAILY GRID-OUTPUTS:

- ET & components
- Snow water equivalent
- Organic layer & root zone moisture
- Drainage from root zone
- Saturation deficit (→ proxy of water table)
- Returnflow & dynamics of saturated area

CATCHMENT OUTLET

Streamflow

Three-source Penman-Monteith

- Evaporation (sublimation) of canopy intercepted rain (snow)
- Canopy transpiration
- Evaporation from ground

$$E_i = \frac{1}{L_v} \frac{\Delta(R_{n,i}) + \rho_a c_p G_{a,i} D}{\Delta + \gamma (1 + G_{a,i}/G_i)}$$

Temperature-index snow model

Two-layer bucket model

- Organic layer acts as interception storage: evaporation
- Bottom layer root zone: root uptake
- Drainage and returnflow

Leaf to canopy stomatal conductance

$$g_s = g_o + 1.6 \left(1 + \frac{g_1}{\sqrt{D}} \right) \frac{A}{C_a}$$

Medlyn et al. 2011

scale-analysis & hyperbolic light-response

$$g_s \sim \underbrace{\frac{1.6(1+g_1)}{C_a} \frac{A_{max}PAR}{PAR+b}}_{Amax} \frac{1}{\sqrt{D}}$$

g_{sref}

Exponential PAR within canopy

$$PAR(L) = PAR_o \exp(-k_p L)$$

https://github.com/LukeEcomod/EGU2018

- A net photosynthesis
- g₁ depends on water use strategy
- g_{sref} light-saturated stomatal conductance at D = 1 kPa & const C_a
- Scots pine: $g_{sref} \sim 2.5 \text{ mm/s} (2.2 1.5 \text{ mm/s})$ 2.8), b \sim 30 – 50 Wm⁻²
- Birch, aspen $\sim 4.0 4.5$ mm/s
- $k_{p} \sim 0.6$

$$G_c = \frac{g_{sref}}{k_p} ln \left(\frac{PAR + b}{PAR \times exp(-k_pLAI) + b/k_p} \right) \times \frac{1}{\sqrt{D}} \times f(\theta_{REW}) \times f_{CO2} \times f_S.$$
 plant traits Leaf \Rightarrow canopy soil moisture atm. CO2 phenology

Medlyn et al. 2011. Global Change Biol. 17, 2134-2144

Parameterization of the 3-source model

- Parameters mainly from literature
- 3 parameters calibrated using data from a single flux site, Hyytiälä, in Southern Finland
- 1 for ground evaporation:
 - multi-layer SVAT –model APES
 - sub-canopy EC data
- 1 for transpiration
 - g_{sref} from leaf gas exchange
 - check against EC data
- 1 for interception of rainfall:
 - capacity = w x LAI, using throughfall data

Site scale validation

- 9 EC sites from Finland & Sweden, 60 N to 68 N
- LAI (1-sided) from 0.2 to 6.8 m^2m^{-2}
- Pristine peatland ... dense managed forests
- Daily ET
 - dry-canopy conditions
 - Growing season (May-Oct)
- Independent comparison

Multi-source National Forest Inventory (16 X 16 m)

>80 0000 forest inventory plots + Landsat & Resourcesat images, DEM, topographic database & kNN -interpolation

Open data, 3 year update interval

Comparison with MODIS LAI: Härkönen et al 2015 Bor. Env. Res. 20: 181–195

Table 4.3: The estimated raster themes.

Ic	ible 4.5: The estimated raster themes.
Theme	
Biomass	, spruce, living branches 2013 (10 kg/ha)
Biomass	, spruce, stem residual 2013 (10 kg/ha)
Biomass	, spruce, roots, d > 1 cm 2013 (10 kg/ha)
Biomass	, spruce, stump 2013 (10 kg/ha)
Biomass	, spruce, dead branches 2013 (10 kg/ha)
	, spruce, stem and bark 2013 (10 kg/ha) , spruce, foliage 2013 (10 kg/ha)
	, broad-leaved trees, living branches 2013 (10 kg/ha)
	, broad-leaved trees, stem residual 2013 (10 kg/ha)
	, broad-leaved trees, roots, d > 1 cm 2013 (10 kg/ha)
Biomass	, broad-leaved trees, stump 2013 (10 kg/ha)
Biomass	, broad-leaved trees, dead branches 2013 (10 kg/ha)
Biomass	, broad-leaved trees, stem and bark 2013 (10 kg/ha)
Biomass	, broad-leaved trees, foliage 2013 (10 kg/ha)
Biomass	, pine, living branches 2013 (10 kg/ha)
Biomass	, pine, stem residual 2013 (10 kg/ha)
Biomass	, pine, roots, d > 1 cm 2013 (10 kg/ha)
Biomass	, pine, stump 2013 (10 kg/ha)
Biomass	, pine, dead branches 2013 (10 kg/ha)
Biomass	, pine, stem and bark 2013 (10 kg/ha)
	, pine, foliage 2013 (10 kg/ha) n class 2013 (1–4)
	lity class 2013 (1-8)
Land cla	ss 2013 (1–3)
	e 2013 (year)
Stand m	ean diameter of 2013 (cm)
	ean height 2013 (dm)
	cover 2013 (%)
	cover of broad-leaved trees 2013 (%)
Stand ba	isal area 2013 (m²/ha)
Data sou	rce index, MSNFI 2013
Volume,	birch 2013 (m3/ha)
Volume,	birch pulpwood 2013 (m³/ha)
Volume,	birch saw timber 2013 (m³/ha)
Volume,	spruce 2013 (m³/ha)
Volume,	spruce pulpwood 2013 (m³/ha)
Volume,	spruce saw timber 2013 (m³/ha)
	other broad-leaved trees 2013 (m3/ha)
	other broad-leaved trees pulpwood 2013 (m3/ha)
	other broad-leaved trees saw timber 2013 (m³/ha)
Volume,	pine 2013 (m³/ha)
	pine pulpwood 2013 (m³/ha)
Volume,	pine saw timber 2013 (m³/ha)
Volume,	the growing stock 2013 (m3/ha)

http://kartta.luke.fi/index-en.html

Spatial variability within catchment

Porkkavaara catchment, Eastern Finland, 64ha, 16x16m grid

ET / P

 LAI –relationship non-linear; inflection point at LAI 2 to 3 m²m⁻²

Interception

- Capacity ~ a x LAI
- Snow interception

Transpiration

- Saturates due to light limitations
- Higher where deciduous dominant
- Drought stress at coarse soils

Evaporation from ground

- available energy
- Gridcells with high TWI receive returnflow & behave as wet surfaces

INSTITUTE FINLAND

Annual evapotranspiration ratio

Catchment water balance ET = P - Q

- 21 headwater catchments
 over Finland. Streamflow data
 1 10 yr / catchment
- Independent comparison
- Across-catchment variability primarily due to north-south gradient:
 - E_{pot}/P
 - Length of snow-cover & annual snowfall
 - LAI

Take home!

- Daily ET can be predicted with simple scheme with no site / catchment-specific calibration
- A three-source model seems as a good compromise
- Multi-source NFI data as a resource for hydrologic & biogeochemical modeling

- Codes (Python 2.7/3.x) + data available by request
- Contact: samuli.launiainen@luke.fi

Thank you!

contact: samuli.launiainen@luke.fi

Presentation available at: https://github.com/LukeEcomod/EGU2018

