KRISTÁLYHITETESITÉSŰ LABCRATÓRIUMI SZIGNÁLGENERÁTOR Tip. TR-0503 /EMG-1168/

Gyártja:

EMG ELEKTRONIKUS MÉRŐKÉSZÜLÉKEK GYÁRA Budapest, XVI., Cziráky u. 26-32. Telex: 33-50 Telefon: 837-950

Forgalomba hozza:

MIGÉRT MÜSZER- ÉS IRODAGÉP ÉRTÉKESITŐ VÁLLALAT Villamos- és Elektronikus Mérőmüszorek Osztálya Budapest, VI., Bajcsy-Zsilinszky út. 37.

"51-16-80-VFTpr.sz.
1976. április

TARTALOMJEGYZEK

	The state of the s	01081
1.	ALTALÁNOS LEIRÁS	1
	1.1 Uzembehelyezés	1/a
	1.11 Kicsomagolás	1/8
	1.12 Bekapcsolás	1/8
2.	MUSZAKI ADATOK	2
z	mukodési elv	6
-	3.1 A készülék főbb részei	6
	3.2 A készülék működése	7
	3.2.1 Rádiófrekvenciás oszcillátor és szint- szabályozó	7
	3.2.2 Rádiófrekvenciás erősitő	7
	3.2.3 Rádiófrekvenciás visszacsatoló és szabá- lyczó áramkör	8
	3.2.4 Differencial crosito	8
	3.2.5 Modulátor	10
	3.2.6 Feszültségosztó	10
	3.2.7 Kristályhitelesítő	11
	3.2.8 Hangfrekvenciás oszcillátor	11
	3.2.9 Moduláció	11
4.	KEZELÍSI UTASITÁS	12
	4.1 Kimenőszint	12
	4.2 Frekvercieskála	12
	4.3 Kimeneti feszültségosztó	13
	4.4 A 3 V tertomány használeta	13
	4.5 Külső moduláció	13
	4.6 Szinkronizáló jel	14
	4.7 "RF.B+" /Bl/ biztositék	14
	4.8 Általános müködés	14
	4.9 Frekvencis-hitolesités	15
	4.lo Külső moduláció	16

		Oldal
	The test of the second second	17
5.	KARBANTARTÁS	17
	5.1 Kidobozolás	17
	5.2 Arnyékolóbura eltávolitása	18
	5.3 Caőcsere	
	5.4 Ellenőrző mérés	18
	5.5 "PERCENT MODULATION" /M2/ miszer	18
	5.6 Prekvencis ellenorzés	19
	5.7 Szintingadozás ellenőrzése	20
	5.8 Hibakereads	20
6.	SERVICE UTASITÁS	
	6.1 Stabilizált tápegység	32
	6.2 Hengfrekvenciás generátor	32
	6.3 Kristalyhitelesitő	32
	6.4 PF oszcillátor és RF erősitő behan- golása	33
	6.5 Maximális oszcillátor-ársm beállitása	33
	6.6 VivShullam zórusra állitása	33
	6.7 "PERCENT MODULATION" /K2/ müszer be- állitása	34
	6.8 Kaximális vivőhullám beállitás és modulációs null-állitás	34
	6.9 "VOLTS LEVEL" /M1/ müszer beállitása	35
	6. lo Caócsere	35
7.	ALKATRÉSZJEGYZÉK	36

B. RAJZOK

1. ALTALÁNOS LEIRÁS

A TR-0503 /EMG-1168./ tipusu szignálgenerátor több alkalmazási területen használható, mint pl. RF. hidak táplálása, rádio-vevőkészülékek behangolása, erősitők frekvenciamenetének felvétele stb. A laboratóriumi igényeket jobb
specifikációval olégiti ki, mint az eddig forgalomba került szignálgenerátoraink.

A frekvenciatartománya 50 kHz-től 65 MHz-ig terjed. Ezt a frekvenciatartományt a készülék /1300:l frekvenciaátfogás/ 6 sávban fogja át. A közvetlen lcolvasásu frekvencia skálájs 1 % pontosságu.

A kimenőfeszültség 0,1 µV és 3 V között ± 1 d3-en belül állandó és folyamatosan állitható 50 ohm terhelés mellett.

A beépitett kristályhitelesítő segítségével a készülék frekvenciája 7 MHz-ig 100 kHz-enként, 65 MHz-ig podig 1 MHz-enként hitelesíthető, 0,01 % pontossággal.

Külön müszerrel olvasható le - a generátor modulációs sávszélességén belüli frekvenciákon - a moduláció mélysége.

A készüléknek nagypontosságu AM rendszere van, mely lahetővé teszi - 90 % mélységig - a modulációt kis torzitással és minimális káros frekvenciamodulációval. A készülék belsőleg modulálható 400 vagy 1000 Hz-en.

Külső modulációs tertománya DC-20 kHz-ig terjed, a használt hordozó frekvendától függően. Ezenkivül kivülről modulálható, négyszög vagy egyéb összetett hullámalakkal is.

1.1 UZEMBETELYEZES

1.11 Kicsomagolás

A külső ládából történt kiemelés után a ragasztások mentén az ITA papirburkolatot fol kell tépni. Igy a hullámpapir doboz hozzáférhetővé válik, amelyet szintén a ragasztások mentén lehet felbontani. A gépnek a hullámpapirdobozból történt kieme - lésa után a légmentesen zárt /mslegragasztott, hegesztett/ mü-anyag hártya eltávolitható és s készülék szuperior papirbori - tásból kibontható. A krómozott, nikkelezett alkatrészekről a parafinpapirt legöngyölve és a vékony vazelinréteget ronggyal, vattával letörölve, a készülék üzembehelyezhető.

1.12 Bekapcsol/s

A készüléket 220 V hálózati feszültségre beállitva szállitja a gyár; llo vagy 127 V feszültségre való átkapcsolás ugy történik, hogy a készülék hátoldalán levő feszültségválasztó dugót /9/ a kivánt üzemfeszültségnok megfelelően kell beállitani.

A készülék üzembehelyezése előtt védőföldelést kell alkalmaz – ni. Erre a célra a készülék hálózati csatlakozójához kivezetett harmadik /földelő/ vezeték, velamint az előlapon levő földelő csaver szolgál.

A KÉSZÜLÉK VEDŐFÖLDELÉS NÉLKÜLI HASZNÁLATA ÉLETVESZÉLES I

Bekapcsolás előtt ellenőrizzük, hogy az előlapen található M müszer mutatója nullán áll-c. Az esetleg szükségas korrekció a müszerházon tslálható csavarral /l. ábra/ történik. Ezek után a készüléket az 58 hálózati kapcsolóval "ON" állásba kapcsol juk. A bekapcsolt állapotot a V19 jelzőlámpa /l. ábra/ kigyulladása jelzi.

2. MUSZAKI ADATOX

Prekvenciatartomány:

Prekvonciasávok:

50 kHz-től 65 MHz-ig 6 sávban

50 kHz - 170 kHz

165 " - 560 "

530 " - 1,8 MHz

1,76 MHz - 6,0 "

5,80 " -19,2 "

19,00 " -65,0 "

+ 1%

Frekvenciapontosság:

Prokvencia-beállitás finomsága:

Kristályhitelesités:

1 osztás = 0,1%

7 MHz-ig loo kHz-enkent

65 M 1 MHz-enként

10 pontossággal

Pejhallgató kimenet:

Frekvencis stabilitás:

lo mV 5 kohm terhelés mellett

max. 5.10 vagy 5 Hz /amelyik nagyobb/ 2 órai bemelegedés után le pare időtartamra, max. 1 V kimenőszintnél

50 ohm

o.l/uV-tol 3 V-ig /lo/dB-es fokozatokban/

Kimenő impedancia:

Kimenöszint:

VSWR < 1,1 1,uV-tól o,3 V osztó állásig

VSWR < 1.1 '1 és 3 V osztó állásoknál 20 MHz-ig

VSWR < 1.2 1 és 3 V osztó állásoknál 20 MHz fölött

Peszültségfokozatok:

1 /uV - 110 dB - 100 " - 90 "

30 " - 80 "

100 " - 70 "

300 " - 60 " - 50 "

3 " - 40 "

10 " - 30 " 30 " - 20 "

100 " - 10 "

300 " - 0 "

1 V + 10 H 3 H + 20 H

az egyes sávokon belül folyamatosan szabályozható Kimenőreszültség pontossúga:

Sminttartáe /lineária torzitás/:

Kimeno harmonikus:

AMPLITUDO MODULÁCIO 1/ Kulas modulació:

> loo % mod .létesi téséhez szükséges feszül tség:

Bemens impedancia: Egyab mod .lehotoseg:

Max.mod.frokvencia:

A burkológórbe torzitása:

2/ Belső moduláció:

Bels5 mod.frekvencia:

Burkolégorbe torzitása:

± I dB saját müszeren leolvasva, 50 ohm terhelősen

teljes frekvenciatartománytan a kimenőszint bármely állása mellett 50 ohm terhelőellenálláson lo \$

O-loo % szinuszos moduláló jellel O-tól 20 kHz-ig lehetséges

max. 4,5 V_{C8-38}

600 ohm

négyszéghullám vagy más baszetett jel

30 % szinuszes modulációnál:
0,06 f.vivő, max. 20 kHz
70 % szinuszes modulációnál:
0,02 f.vivő, max. 20 kHz
négyszöghullámu modulációnál:
0,003 % f.vivő max. 3 kHz

≤3% a megadott szinuszoa moduláción belül

O-loo% szinuszcs moduláló jellel folyamatosan azabályozható

400 Hz ± 5 %

≦1 %: 3) % modulációnál ≦3 %: 70 % modulációnál 1 V vagy ennől kisebb f.vivő esetén. Modulációmérő müszer méréspatára:

0 - 100%

Modulációmérő müszer pontossága:

± 5%

o-90% moduláció között, végkitérésre vonatkoztatva, max. 1 V kimenőszint esetén

Modulációs szint változása:

4 + 0,5 dB

s kimenőszint és a vivőfrekvencia bármilyen változtatása mallett, saját műszeren leolvasva

Kárcs frekvencia moduláció:

5.10⁻⁵ vagy max. 200 Hz

/amelyik nagyobb/

1 V vagy ennél kisebb kimenő szintnél és 30% AM esetén

Vivóhullámu zajrivó:

min. 5c dB

Sugárzás 1 m távolságban:

30% AM-hcz képest A térerő kisebb, mint l/uV/m

A müantenna müszaki adetai TR-0503-1 /EMG-1169-4/ tip.

Osztóállások:

- 1, 20 dB + 1 dB
- 2. 0 dB + 1 dB
- JA muantenna állásában Ube 1 V esetén, Uki 50 mV ± 5 dB 600 ohm lezáron 2 - 65 MHz-ig

HÁLÓZATI ADATOK

110, 127, 220 V Peszültseg:

/atkapcsolható/ + 10 %

50/60 Periodus:

kb. 170 VA Pogyasztás:

EGYÉB ADATOK

lakkozott fémlemezdoboz Kivitel: 2 db hordfcgantyuval

Mérotek kb.

/forgatógomo és egyéb ki-500 mm széles álló alkatrészek nélkül/:

> 300 mm magas 390 mm mely

1 db 200 µA 1,5 osztályu

BNC ill. a fejhallgató

részéro banánhüvely

kb. 30 kg. Suly:

Beépitett müszerek szint-1 db 100 µA 1,5 osztályu

mero:

mod. mérő:

Csatlakczók tipusa:

5xPCL84, 2xPCC88, 2x6CL6, PL81, 2xECC85, 3xPL82, PL83, 2x85A2 Elektronosovek:

Diódák:

3x0All60, 3x0All61, 4xSieK4, 4xSiEK7, 4xSiEK3

Potoizzó: 22 V/15 W

6,5 V/o,1 A Jalzőlámpa:

Biztositék a készülékben

2 db 1 A 220 V-ra: 1 db 200 mA

Az elektroncsövek és diódák változtatásának jogát fenntartjukl

TARTOZEKOK

V	terto	zékck		
7A-1	kês201	ck-arában bennfoglalt/		
Typ	1004	Hálózsti csatlakozóvezeték, csatlakozó- dugókkal	1	db
Typ	1024	Roax. árnyékolt kábel mindkét végén "RNC" csatlakozó dugó	1	11
Typ	1027	Koax. érnyékolt kábel kettős árny. /mindkét végén "BNC" csatlakozó dugó	1	n
		Használati utasitás	1	91
Csö	ves ol	vadóbiztositó betétek		-
18	22	0 ₹ - 1000 mA	2	ďb
		0 111. 127 V - 2000 mA	4	11
		odfeszhez - 200 mA	1	**
ugu	tarto	zékok		
	készül lett./	ékkel együtt rendelendő, külön ár felszá	mi	tása
TYP	TR-05	03-1 /EMG-1169-4/ Müantenna		
		2 db "BNC" csatlakozó		

dugasžvégžődéssel 1 db

5. MUKÖDÉSI ELV

5.1 A készülék főbb részei

A készülékek előlapját a kezelőszervekkel és csatlakozókkal az 1. ábra, a készülék hátlapját a 2. ábra, a készülék belső szabályozószorveit valamint a diódák és az elektróncsővek elrendezését a 3. 3/a és 4. ábrák szemléltetik.

A készülék kapcsolási rajza az 5. ébrán, a TR-o503-1 /EMG -

A készülék elektromos felépités szempontjából a következő főbb részekre tagozódik:

- Rédiófrekvenciás oszcillátor
- 2. Demodulátor I.
- 3. Rádiófrekvenciás: szintszabályozó
- 4. Rádiófrokvenciás erősitő
- 5. Demodulator II.

- 6. Differenciálorosito
- 7. Modulator
- 8. Feszültségosztó
- 9. Kristályhitelesitő
- 10. Hangfrokvenciás oszcillátor
- 11. Katódkövotő

Az RF oszcillátor szintját visszacsatolt áramkör stabilizálja, amely összeköti sz RF oszcillátort az őt szabályzó csővel. Hasonló módon az RF kimenetet és a modulációs szintet egy visszacsatoló hurok tartja állandó értéken, amely az RF kimenettől detektoron és differenciál erősitőn keresztil a modulátorhoz vezet.

3.2 A kószülék működőse

3.2.1 Rádiofrekvenciás oszcillátor és szintszabályozó

Az RF oszcillátor V3 hangolt anódkörös ellenütemű oszcillátor. A rádiofrekvenciás szintszabályozó /Vlb/ a V3 cső katódellenállásként működik az RF szintszabályozás céljából. A Vlb pentoda vszérlőrácsa az RF oszcillátor kimenetének egyenirányitott jelét kapja. Ez a feszültség csökkenti a Vlb cső áramát, amiker az RF oszcillátor szintje emelkedik és megforditva. Minthogy ez az áram az RF oszcillátor katódárama is, ez RF szint állandó marad. A Vla trioda katódkövetőt kópez, amely előfeszültséget szolgáltst az RF oszcillátor és az RF erősitő cső vezérlőrácsa számára. S7 mikrokapcsoló az Sl ralé átkapcsolácával a szabályzó pentóda /Vl/b/ segédrács feszültségét kikapcsolja kiváltott dobállásnál - nehogy a megszakadt anódkör miatt tönkre menjen a cső.

3.2.2 Rádiofrekvenciás er5sit5

Az RF oszcillátor jelőt a V4 és V5 csövekből álló ellenütemű RF erősitő vezérlőrácsára vezetjűk. Az árnyékolórácsok közvetlenül +300 V-ra kapcsolócnak. Az RF erősitő katódáramát a V6 cső szabályozza, amely változtatható katódellenállásként működik.

3.2.3 Rádiofrekvenciás visszacsatoló és szabályozó áramkör

A modulált rádiofrekvenciás kimenőjel az RF kimenő transzformátor szekundertekercséről a GeD2-GeD3 diodákra jut, amolyek azt egyenirányitják. Az RC időállandó nagyságát a RANGE /S5/ kapcsoló segitsógóvel váltjuk. Ez sz RC szürő az RF komponens kiszűrésére szolgál, de nem jelent söntöt s moduláló és egyenáramu jel számára. A demodulált rádiofrekvenciás jelet azután a differenciál srósitő vezérlőrácsára vezetjük. Ennek a demodulált jelnek az egyenáramu összetevője srányos ez RF szint csucsértékével, szért ezt az egyenfeszültséget használjuk fel a VoLTS LEVEL /Ml/ müszerr működtetésére. Az áram R6f, C47, C48, L4 szürőn keresztül jut el e VoLTS LEVEL /Ml/ müszerre.

Kétállásu feszültségosztót iktatunk a demodulátor II. /5/
és a differenciál erősitő /5/ közé, amely a visszacsatolás
mértékét azabályozza. Az "l V" és az alacsonyabb kimenőfeszültség állásoknál a visszacsatolást sz R28 és R61 esztón
keresztül kapjuk. Csupán a "3 V"-os beállítástan söntöli
R61 ellenállást az R30 ellenállás. Ez az RF erősitő kimen5feszültségét lo dB-el emeli. Ezt az átkapcsolást az S2 relé önműködően végzi, valahányszor az ATTENUATOR /S5/ kapcsolót "3 V" állásba kapcsoljuk.

3.2.4 Differencial erosito

A "MODULATION INPUT-OUTPUT" /2/ ceatlekozóra táplált külső moduláló jel ugyanolyan móden van ráültetve sz egyen- áramu referencia szintre, mint a bolső modulácio.

Az egyenáremra szuperponált váltófeszültség sz ATTENUATOR VERNIER /P2/ potenciométeren jelenik meg. Ez a P2 potenciométer egyenlő mértékben változtatja mind az egyenáramu, mind s váltóáramu összetevőt. Igy a modulációs-mélység állandó marad, tekintet nélkül a vivőhullám szintjére. A szuperponált jelet a VSa differenciál orðsitő rácsára vezetjük és összehasonlitjuk a differenciál orðsitő másik csövének /VSb/ rácsára vezetett dsmodulált jellel. Mindkét jel váltéáramu összetevőinek szintje arányos a medulációval. A modulációs jel képezi a referenciafeszültséget és a kimon5jel tényleges modulációját hasonlitjuk össze ezzel a referenciával. A kimeneten dotektált egyenáramu szintot hasonlitjuk össze egy egyenáramu referenciaszinttel, amely arányos a kivánt rádiofrekvencia szintjével, az ATTENUATOR VEPNIER /P2/ potonciométer baállitásúnak mogfelelően.

Winthogy a V8a ós V8b differenciál er5sit5-csövek katódjai össze vannsk kötve, a trioda részre /V8a/ adott referenciajel ugysnesak meg fog jelenni a pentoda rész /VBb/ katódján. Ezt a jelet összehasonlitjuk a kimenet demodulált jelével, amelyet a pentoda /V8b/ rácsára adunk. E két jel eltórése egy kimeneti jelet ad, amelynek olysn polaritása van, hogy saját magát csökkenteni igyekszik a vicszacsatoló hurkon keresztűl. Pl. ha a rádiofrekvencia szintje csökken, a differencial erosito pentoda részének /V8b/ rácsán a feszültség negativabbá válik, csökken a csövön átfolyó áram és anódja pozitivabb lesz. A V6 modulátor rácsfeszültsége grányos a VBb erősitő anódfeszültségével. Amint ez a rácsfeszültség pozitívabbá válik, a V6 modulátoron áthaladé áram növekedni fog. De ez az áram a rádiofrekvenciás erősitő /V4, V5/ katódárama is és igy a kimenőjel mindaddig emelkedni fog, amig az eredeti feltőtelek helyre nem állnak.

Ezzel a művelettel a kimenőfeszültség szintjét stabilizáljuk +1 dB-nél kisebb ingadozás mellett. A rádiofrekvencia szintjének változtatása az ATTENUATOR VERNIER /P2/ potenciométer segitségével - a referenciaszint változtatása utján - történik. Hesonló módon a modulációt is állandó szinten tartjuk.
Minthogy a demodulátor áramköre elegendő gyors időállandóval rendelkezik, a modulácio burkológörbójónek követősére,
a kimenő modulációt a moduláló frekvenciával hasonlitjuk
basze és igy a torzitás minimálisra csökken.

A V7a cső mint stabil feszültség-generátor szerepel V8a cső részérs.

A V7 cső másik fele a differenciál crősitő pentoda részének /V8b/ szolgáltat segédráca feszültséget. Az ATTENUATOR VERNIER /P2/ potenciométer beszabályozott állása mellett /O V kimenőszint/ a P3 potenciométerrel, ugy állítjuk be a differenciálerősitő pentodájának /V8b/ segédrács feszültségét, hogy az RF erősitő V4, V5 csöveit lezárjuk.

3.2.5 Modulator

A V6 cső - triodának kapcsolt pontoda - az RF erősitő katódáramkörébe van beiktetva, katodmodulácio létrehozása céljából. A cső belső ellenállása a vezérlőrácsára adott modulálo jelnek megfelelően változik. Igy az RF erősitő katódárama is változik, mely amplitudojában modulálja a rádiofrekvenciás szintet.

3.2.6 Feszilltségosztő

A rádiefrekvenciás kimenőjelet az RF kimenőtranszformátor leágazásáról vesszük le és vezetjük a kimeneti oaztó bemenetére /6/. Ez a feszültségosztó maximálisan 120 dB-t oszt le lo dB-es lépésekben.

A kimenőfeszültség nagyságának folysmatos beállitása - a differenciál erősítő referenciajelének változtatásá-val - az ATTENUATOR VERNIER /P2/ potenciomóter állitásával történik.

3.2.7 Kristályhitelesítő

Az osztó bemenstéről /6/ egy kis kapacitáson keresztul /kb. o,3 pF/ csatlakoztatjuk ez RP jelet a keverőszitő rácsára. Ugyancsak erre a rácsra csatlakoztatjuk a kristályoszcillátor torzitott kimenőjelét. A V9 csőről a kevert jelet a Vlob triodás erősitőbe tápláljuk. A Vlob cső
kimenetét az előlapon lévő PHONES /4-5/ hlivelypárra kapcsoljuk.

A kristályoszcillátor elektroncsatolásu oszcillátorként működik. A vezérlőrács pozitiv visszscsatolását a kristályon keresztül a segédrácsról kapjuk. Az oszcillátor két frekvencián rezeg, a CRYSTAL CALIBRATOR /S3/ kapcsoló állásától függően. Az oszcillátor anódjáról jut a jel a keverőtrioda rácsára.

3.2.8 Hangfrekvenciás oszcillátor

Izzólámpás stabilizálásu Wien-hidas eszcillátor. A visszacsatolt jelet a T2 kimenőtranszformátor azekundertekercsőről kapjuk. Két különböző frekvencián működhet: 400 Hz és lood Hz. A frekvenciát ellenállások átkapcsolásával változtsthatjuk. A jel szintje a P5 potenciométer segitsőgével állitható be. A MODULATION SELECTOR /S4/ kapcsoló "INT-400 c/s" ill. "INT-lood c/s" állásban a moduláló feszültséget egy 85 kohm-os ellenállás sorbaiktatámával a "MODULATION INPUT OUTPUT" /2/ csatlakozó hűvelyen vezetjük ki a szinkronizálás céljára.

3.2.9 Modulácio

A moduláló jel egyrészt a differenciál erősitő triodájának /VSa/ rácsára jut. A jel ezintje a MODULATION VERNIER /P2/ potenciométerrel szabályozható. A jel amplitudójának változtatása esetén a modulációs mélység változik. Amint a RANGE /S5/ kapcsolót átváltjuk az S7 mikrokapcmoló kikapcsolja a +300 V feszültséget, ennek következtében a V8 cső rácsa földpotenoiálra kerül és V6 csővön ke resztül lezárja az RF erősítő V4, V5 csőveit. Erre azért van szükség, mort a V4 és V5 csővek segédrácsa közvetlenül +300 V feszültségre kapcsolódik és a tekercsek kiváltása esetén a szakadt anódáramkörű cső segédrácsa tuldisszipálna és a cső tönkremenne.

A moduláló jel másrészt a VlOa katódkövető rácsára jut. A katódról a jelet egy parallel dioda GeD5 cgyenirányitja.

Ezt a modulációs szintnek megfelelő ogyonfeszültséget vezetjük a PERCENT MODULATION /M2/ műszerre. A GeD4 dioda a VlOa cső katódjának négativba menését akadályozza meg, a C45 kondenzátor védelme céljából.

4. KEZELÉSI UTASTTÁS

4.1 Kimenőszint

A készülék VOLTS LEVEL /MI/ müszere csak akkor hiteles, ha az RF OUTPUT /1/ csatlakozót 50 ohm-os terhelőellenállágsal lezárjuk. Ajánlátos a TR-0503-1 /FMG-1169-4/ tipusu mérőfej használata, mert az tartalmazza áz 50 ohm-os lezárást is. A készülékhez használható a tartozékként szereplő koaxiális kábel BNC csatlakozókkal a végén. Az "egy réteges" árnyékolásak kábel rondolkező kábel a maximális kimonészinttől -80 dB /30 µV/ szintig haszálhátó. "A két réteges" árnyékolásu kábelt 50 µV-nál kisebb kimenészint esetében ajánlatos használni.

4.2 Frekvenciaskálu

Allitsuk a CAL. /12/ gomb segitségével a skálaablak függőleges vonásának kót végét a skálaablak keretén - a FREQUENCY felirat alatt - lévő alsó és felső jelzéssel egy vonalba. Csak így hiteles 1 %-on belül a skálatárcsa

1168.

felirata a teljes frekvenciatartományban, mert ebben a helyzetben történt a frekvenciaskála felvétele.

4.3 Kimeneti feszültségosztó

AZ ATTENUATOR /S6/ kapcsoló megrongálódhat, ha a "3 V-os" állásában a kimenetet /l/ rövidrezárjuk, vegy külső feszültség jut a kimenetre.

4.4 A 3 V tartomány használata

Az ATTENUATOR /S6/ kapcsoló "5 V"-os állása RF hid vegy más olyan készülék táplálására szolgál, amely hitelesített magasszintű RF feszültséget igényel. Ezt a negy kimenőszintet ugy érjűk el, hogy az RF kimenőfokozat csöveit a disszipáció határán vesszűk igénybe. Ezeknek a csöveknek hosszsbb élettartamát ugy biztosíthatjuk, ha a generátort nem hagyjuk a 3 V tartorányban hosszabb ideig, nint amennyi a mérés elvégzéséhez szűkséges. Ne hagyjuk a "3 V"-os tartományt bokapcsoltan a bemelegités ideje slatt.

4.5 Külső moduláció alkalmazása

Csak kellő vigyázattal használjuk a MODULATION SELECTOR /S4/ kepcsoló "EXT.-DC" állását. A bemenő moduláló jel egyenáramu szintjs befolyásolja az átlagos RF szintet. Ha a moduláló jelmek csupán váltóáramu összetevője van, kapcsoljuk a MODULATION SELECTOR /S4/ kapcsoló "EXT.-AC" állásba. Felhivjuk a figyolmet arra, hogy "EXT-AC" állásban a loo%-os modulációhoz szükséges moduláló feszültség kb. 50 Hz-nél kisebb frekvenciáju moduláció esetén nagyebb a müszaki adatokban közölt max. 4,5 V_{CS} feszültségnél, valamint kb. 200 Hz-nél kisebb frekvenciáju négyszögmoduláció esetén a tetőcsés mértéke már meghaladhatja a lo%-ot is. lo V-nál nagyebb egyen- vagy váltófeszültséget ne adjunk a "MODULATION IMPUT-CUTPUT" /2/ csatlakozóra, mert ez megröviditi a "MODULATION AMPLITUDE" /P6/ potencióméter élettartamát.

4.6 Szinkronizáló jel

Ha a generátort belső jellel moduláljuk, skkor a
"MODULATION INPUT-OUTPUT" /2/ hűvelyről - szinkronizálás
céljaira - jel vehető ki. Ez a jel frekvencfában megegyezik a belső moduláló jellel. Amplitudoja kb. 3 V. Ennek a
kimenetnek, mint generátornak a belső ellenállása kb.
82 kohm.

4.7 "RP.B+" /Bl/ biztositók

Az "RF.B+" /Bl/ biztositék az előlapon /l.ábra/ van.
Ha esetleg tul nagy moduláló feszültség jut a "MODULATION
INPUT-OUTPUT" /2/ csatlakozóra, a hangolt áramkörök forgókondenzátorai /C6-C9/ átivelhetnek. Ez az "RF.B+" /Bl/ biztositékot kiolvasztja. A készüléknek nem lesz kimenőfeszültsége és a VOLTS LEVEL /Ml/ müszer mutatója a "O" állástól balra tér ki. Ezesetben a Bl biztosítékot ki kell
cserélni.

4.8 Altslános muködés

Mórésnél a következő beállitások végzendők el:

- a/ Allitsuk a "RANCE" /S5/ kapcsolót a kivánt állásba.
- b/ Porgassuk a "PREQUENCY /C6-C9/ forgókondenzátorokat a kivánt frekvenciára.
- c/ Allitsuk a "MODULATION SELECTOR" /S4/ knpcsolót
 "INT.-400 c/s" vagy "INT.-1000 c/s" állásba.
- d/ Allitsuk a modulációs szintet a "MODULATION AMPLITUDE" /P6/ potenciométerrel a "PERCENT MODULATION" /M2/ műszer leolvasása mellett a mogfelelő értékre.
- e/ Allitsuk az "ATTENUATOR" /Ső/ kapcsolót a kivánt állásba.
- f/ Allitsuk az "ATTENUATOR VERNIER" /P2/ potenciométert a megfelelő kimenőszintre.

Kimenet lezárása

A generátor feszültségosztója csak 50 ohm-os terhelés alkalmazása esetén hiteles. A TR-0503-1 /EMG-1189-4/ típusu mérőfej kimeneté három állással - lezárással - rendelkezik.

- 1. "DUMAY ANTENNA" /müantenna/: A kimenő impedancia változik, a szabváhýos müantenna kapcsolás impedanciajának megfelelően. A"VOL/ES LEVEL" /Ml/ müszer által mutatott szint 20 dB leosztásbal jut a müantennára.
- 2. "O dB ATTENUATION": 25 ohm kimenő impedancia /1:1 fesziltségosotás/.
- 7. "20 dB ATTENUATION": 20 dB feszültségosztás, 5 chm kinohőimpedancia mellett.

Megjegyzés

A regengedhető maximális bemenőenergia a mérőfejhez 180 mW

4.9 Frekvencia-hitelesités

- 1. Kapcsoljuk a "CRYSTAL CALIBRATOR" /S3/ kapcsolót
 "1 Mc/s"-ra.
- 2. Duguszojunk egy nagy impedanciáju fejhallgatót /2000 ohm/ a "PHONES" /4-5/ csatlakozókra.
- 3. Állitsunk be füttymélypontot a mérőfrekvenciához /"l Mc/s"/ legközelobb cső kerek "Mc/s" frekvencián.
- 4. Állitsuk a skálasblak függőleges jelzését a CAL. /12/ gombbal pontosan a "Mc/s" jelzésre. Ugyanez végezhető el a 100 kHz-es kristály segitségévol 7 MHz alatt, 100 kHzenkénti kalibráció esetén.
- 5. Állitsuk a"CRYSTAL CALIBRATOR" /S3/ kapcsolót "OFF" állásba. Ha bekapcsolva hagyjuk, akkor az üttetett jel visszahat a kimenetre és modulálni fogja.

4.lo Kilső modulácio

- 1. Kapcsoljuk a "MODULATION SELECTOR" /54/ kapcsolót "EXT.-AC" vagy "EXT.-DC" állásba.
- 2. Csatlakoztassuk a külső generátort a "KODULATION INPUT-AUTPUT" /2/ csatlakozóra.
- Forgassuk a "MODULATION AMPLITUDE" /P6/ potenciométert jobbra ütközésig.
- 4. Növeljük a külső gonerátorból jövő jelet addig, amig a "PERCENT MODULATION" /M2/ müszor mutatója loo %-ot nem mutat.
- Csökkentsük a moduláció százalókot a "MODULATION AMPLITUDE" /P6/ poterciométerrel a megfelelő szintre.

A moduláló frekvencia felső határa függ a burkológörbe torzitásától.

Woduláció: 30 % AN 70 % AN Nógyszöghullám Viv5hullám: 0,06 fc 0,02 fc 0,003 fc Mod.frekv.max. 20 kHz 20 kHz 3 kHz

A képletek alkalmazásárál a 3 % AM torzitáshoz tartozó sávszélességek a következők:

Vivohullam /fc/		Moduláló fre	kvencia
	30 % AM	70 % AM	Nogyszöghullám
50 kHz	3 kHz	I kHz	150 Hz
200 kHz	12 kHz	4 kHz	600 Hz
500 kHz	20 kHz	lo kHz	1500 Hz
I Miz és felette	20 kHz	20 kHz	3 kHz

Megjegyzés:

- s/ A külső generátor torzitása kisebb kell hogy legyen 1 %-nál.
- b/ A 3 V kimeneti tartományban a 30 %-on tul történő moduláció nem ajánlatos.

5. KARBANTARTÁS

Ez a rész a készülék beállitására és karbantartására vonatkozó utbaigazitásokat tartalmazza. Ezenfelül tartalmazza a készülék specifikált jellemzőinek ellenőrzését. A specifikált jellemzők ellenőrzéséhez kidobozolás vagy belső állitások nem szükcégesek.

5.1 Kidobozolás

- a/ Távolitsuk el u hálózatból kikapcsolt kószülék 16 db felerősítő csavarját.
- b/ Huzzuk ki a készüléket a dobozából.

5.2 Arnyckolóbura eltávolitása

- a/ Forditsuk a készülőkeket az ol5lapjával lefelő.
- b/ Huzzuk ki az árnyékolódoboz hátulján /2.ábra/ lévő osatlakozóból a dugaazt /7/.
- c/ Távolitsuk el az árnyékolódobozt leszoritó összes csavart.
- d/ Távolitsuk al az árnyékolóburát felfelé huzással.

Vizsgalsthoz szükséges miszerek

- a/ Csővoltmérő ± 3 % pontossággal, nagyfrokvenciás mérőfejjel
- b/ Hangfrekvenciás csővoltmérő
- c/ Milliampermors / FAW/ 300 mA
- d/ Elektronikus számláló
- e/ Oszcilloszkóp loo MHz
- f/ Toroid /198-242 V között szabályozható/
- g/ Négyszög generátor

5.3 CsScsere

A legtöbb esetben a készülőkben előforduló hiba elháritható a gyonge vagy meghibásodott csövek kicserélésével. Bármilyen belső szabályozászerv elállitása előtt ellenőrizzűk a csöveket /3, 3/a és 4. ábra/.

Leghelyesebb, ha a hitásnak vólt csövet kicseréljük, mert ez sekkal kevesebb időt vssz igénybe, mint ogy csőmérőben vsló vizsgálat. Búrmilyen gyártmányu, de azonos tipusu cső felhasználható a meghitásodott cső pótlására, ahol azonban s cső-szórúsból adódó karakterisztikaváltozás az áramkörben változást időzhot elő, utánállitást kell elvégeznünk.

5.4 Ellenőrző mérés

- a/ Kapcsoljuk be a készüléket lezárás nélkül és hagyjuk melegedni lo-15 percig.
- b/ Ha a "VOLTS LEVEL" /Ml/ müszer mutatója a O-állásból belra tér ki, akkor sz "RF.B+" /Bl/ biztositók égett ki, azt kell kicserőlni /160 mA/.

5.5 "PERCENT MODILATION" /M2/ miszer

- a/ Csatlakoztassunk a generátor "RF OUTPUT" /1/ csatlakozójáról oszcilloszkópra, amely legalább lo MHz-es sávszólcssógű.
- b/ Kapcsoljuk a "RAKGE" /S5/ kapcsolót 530-1800 kHz sávra.
- c/ Allitsuk be a generatort 1 MHz-es frekvensiára.
- d/ Kapesoljuk a "MODULATION SELECTOR" /S4/ kapesolót
 "OFF" állásta.
- o/ Allitank be ex esseillesaképon 40 mm-es ábrát.
- f/ Kapcsoljuk a "M.DULATION SELECTOR" /Sa/ kapcsolot

- g/ Állitsuk a "MODULATION AMPLITUDE" /P6/ potenciómétert addig, amig az oszcilloszkópon a modulációs ábra 60 mm-ig nő. A "PERCENT MODULATION" /M2/ müszernek 45 és 55% érték között kell mutatnia.
- h/ Ellenőrizzük a "PFRCENT MODULATION" /M2/ hitelesítést 0 és 90% között. A valós és a műszer által mutatott modulációs mélység közötti eltérésnek <u>+</u> 5%-on belül kell maradni.

5.6 Frekvencia ellenőrzés

- Az ellenőrzést legegyszerűbb digitális frekvenciamérő segitségével végezni.
- a/ A készüléket 15-20 porcig előmelegitjük.
- b/ Csatlakozzunk a generátorral az "ATTENUATOR" /S6/ "1 V +lo dB" állásban - 1 V kimenőszint mellett digitális frek venciamérőre.
- c/ Kapcsoljuk be a "CRISTAL CALIBRATORT" /53/ "1 Mc/s" állásba.
- d/ Hangoljuk a készüléket 1 MHz-re.
- e/ Allitsunk be fejhallgatóval hallgatva füttymélypontot.
- f/ Olvassuk le a frekvanciemérő által mutatott értéket. Ha ez az érték 999.9000 kHz és 1,000.100 kHz között van, ugy a kristály megfelel a specifikációnsk.
- g/ Ugyanezt ismételjük meg a "CRISTAL CALIERATOR" /S3/
- h/ Állitsuk a "CAL." /12/ gomb segitségével a skálaablak függőleges vonalát a skálatárcsa l Miz osztásával egy vonalba.
- 1/ Az olöző beállitás mollett ellenőrizzük valamennyi "WHz-es frekvenciát" az összes sávon. A füttymélypont beállitása mellett a skálatárcsa által mutatott frekvenciának 1%-on belül koll maradnia.
- j/ Nagy frekvenoiastabilitást megkivánó mérések esetében a bemelsgedett készüléknél /2 óra bemelegedési idő/ sávváltás esetén lo perc ujrastabilizálódási idő szükséges.

5.7 Szintingadozás ellenőrzése

- a/ Csetlakozzurk nagyfrekvenciás csővoltmérővel a készülék "RF.OUTPUT" /1/ hűvelyőro.
- b/ Allitsuk a frekvenciát I MHz-re.
- c/ Alljunk a "VOLTS LEVEL" /Ml/ miszerrel 1 V-ra.
- d/ Hangoljuk a készüléket a teljes frekvenciatartományon keresztül. A kimenőfeszültségnek l V ± 11 % /1 dB/ értékek között kell maradnia.

5.8 Hibakoresés

A belső szabályozószervek állithatósága korlátolt mértékű és az egyes áramköri elemek gyártási szórásainak kiegyenlitósóre szolgálnak.

Ha a kónzülék részlegesen vagy egyáltalán nem működik, a belső szabályozószervek utánállitásával a készülék működését helyreállitani nem lehet.

Mielőtt a belső szabályozószorveket elállitanánk, előbb állapitsuk meg a hiba okát.

A hitakereséshez segitséget nyujt az I. Hibakeresési táblázat. Ha egy rész hibásnak mutatkozik, ugy nézzük meg az I. Hibakeresési táblázat idevonatkozó részét.

Amennyiben a hiba az "ATTENUATOR" /56/ kapcsolóban van, ugy a készülék csak szervizben javitható.

A hibás készülék javitásakor ajánlatos a tápfeszültségek ellenőrzésével kezdeni. Ellenőrizzük a hálózati zsinért,a biztositékokat és a tápegység kimeneti feszültségeit.

Ha a stabil tápegységben hibás csövet találunk, kicserélése esetén rendszerint nem kell a belső szabályozószervekhoz nyulni /csőcsere esetén ellenőrizzük a stabil feszülteségeket/.

A hálózati biztositékok /B2, B3/ mellett ellenőrizzük le az "RF.B." /B1/ biztositékot is. Kielvadása esetén a "VOLTS LEVEL" /M1/ műszer mutatója a O-állásból balra tér ki.

Kiolvadást okozhat pl. a forgókondenzátor /C6-C9/ lemezei közé került zárlatot vagy átvezetést okozó anyag. Ezért ajánlatos az árnyékolóburák eltávolitása esetén a lemezközöket sűritett levegővel vagy hajszáritóval kifuvatni.

A következő táblázat alapján vizsgáljuk a hibús készüléket elektromos egységekro bontva.

I. HTBAKERESÉSI TÁBLÁZAT

Az elektroncsövek lábain mórt sgyon- és váltófeszültségeket a IV. Táblázat tartalmszza.

Mérjük meg a feszültséget a földhöz képest az alábbi pontokon, amennyiben a mért feszültség eltér az előirt értéktől, ugy a hiba oka a következő:

-200 V-08 tapcayang

Helyezzük üzemen kivül a +300 V-os tápegységet az Riol ellenállás egyik végének kiforrasztásával. Ideiglenoson kössük össze a V16 elektroncső 2. és 7. lábát egy 1 Mohm l W-os ellenállással.

V18 /2, 4, 7/ cs6. /V18 cs6 2.4. és 7. lábs/ Szeksit, vagy átűtött a CloS kondenzátor.

Clos kondenzátor /+195 V + 10 %/
A VI6 cső hibás. Ellenőrizzük le a fütőfeszültséget: 15 V.

Vis /1,5/ cs6.

A VIS cső hibás. Ellenőrizzük a narancsszinű izzást.

117 /3,7/ 090

A VI7 cső vagy a hozzákapczolódó alkatroszek hibásak.

A hiba kijavitása után távolitsuk el az ideiglenesen boiktatott 1 MOhm 1 W-os ellenállást.

+300 V-os tapegység

A -200 V-os tápegységet működésképesnek tekintjük.

71 /7/ transzformátor /165 V + 10%/ Szakadt, vagy zárlatos menatak.

Clos és Clos kondenzátor /225 V. egy-egy kondensátoror/ A Clo5, Clo6 kondenzátorok, vagy a SiDlol, SiDlo2, SiDlo3 és SiDlo4 diódák zárlatosak, vegy szakadtak.

V12 /7/, V13 /7/, V14 /7/ csövek

à Clo5, Clo6 kondenzátorok, vagy a SiDlo1, SiDlo2, SiDlo3 és SiDlo4 diódák zárlatosak, vagy szakaduak. Ellenőrizzük le a V12, V13, V14 és V15 csöveket.

V15 /6.7. AB 9/ CBO

A V15 cső vagy az Rlo9, Rl14 ellenállások hibásak.

RF oszcillator

Ezt a mérést csak akkor végezhetjük el, ha előbb meggyőződtünk a stabilizált tápegységek /-200 V, +300 V/ biztos mű -

Zárjuk rövidre az R22 ellcnállást és végezzük el a következő méréseket.

V3 /5/ CSÖ

A soros fütésű csövek közül valamelyik fütőszála szakadt.

71 /4,4-5/ CBO

Silenőrizzük le a feszültséget a Clll alektrolytkondenzátoron /+48 V/.

V1 /2./ cső

Ellenőrizzük le az "RF.B+" /BI/ biztosítékot, továbbá a C7,

C8a, C8b, Clo, Cll, Cl2 és Cl3 kondenzátorokat zárlatra és az L2 tekercset szakadásra.

V1 /1./ csó

Ellenoriszük le az RI, RZ ellenállásokat a GeDl diódát és a Cl kondenzátort.

VI /3./950

Ellenőrizzük le az R4 ellenállást a V1 csövet, ill. a V4 és V5 csövek 2. és 9. lábaira menő vezetéket.

V3 /1. 6./ CBŐ

Ellenőrizzük le az R9 ellenállást és a C6a, C6b kondenzáto - rokat.

V3 /2. 7/ CB6

Ellenőrizzük le a VI csövet és a hozzákapcsolódó alkatrészeket.

V3 /3.8./ CSO

Ellenőrizzük le a VI csövet és a hozzákapcsolódó alkatrészeket.

13 /2.7./ cső /19 Mc/s-on: 6 Veff; 65 Mc/s-on: 5,5 Veff/
31lenőrizzük le a V3 csövet a GeDl diódát és a C6a, C6b kondenzátorokat.

79 eilenállás /3,3 kOhm + 10%/

Ellenőrizzük le a C6a, C6b kondenzátorokat, ill. a V1, V3 csöveket zárlatre.

RF erősitő

E mérésnél feltételezzük, hogy a stabilizált tápegységek és az RF oszcillátor működik. Szüntessük meg az R22 ellenálfás rövidzárját és mérjünk feszültséget az alábbi pontokon:

Cill kondenzator /+ 48 V +10%/

Ellenőrizzük le a Clll, Cll2, Cll3, Cll4 és Cl24 kondenzá torokat, valamint a Vl, V3, V4, V5, V6 és V8 esőveket.

¥4 /4-5/, ¥5 /4-5/ csövek

Ellenörizzük le s Clll, Cll2, Cll3, Cll4 és Cl24 kondenzátorokat, valamint a Vl, V3, V4, V5, V6 és V8 csöveket.

V6 /4-5/ cs8

Ellenőrizzük le a Cll1, Cll2, Cll3, Cll4 és Cl24 kondenzátorokat, valamint a Vl, V3, V4, V5, V6 és V8 csöveket.

V4 /3. 8./, V5 /3. 8./ csövek

Az R15 ellenállás szakadt, a C7, Clo kondenzátorok zárlatosak.

V8 /1./ cső

Ellenőrizzűk le az R17, R50, R53, R54, R55, R56, R57 és R60 ellenállásokat, valamint a P7, P9 potenciómétereket és a C44 kondenzátort.

V8 /2./ CBS

Ellenőrizzük le az R2o, R21 és R25 ellenállásokat, valamint a P5 potenciómétert és a C28 kondenzátort.

V8 /3. 7./ csδ

Bllenőrizzük le az Rlô, Rl9, R2o és R21 ellenállásokat, a P3 potenciómétert, valamint a Cl6 kondenzátort és a V7, V8 csöveket.

V8 /6./ cs8

Ellenőrizzük le az R22, R23, R25, R26 és R27 ellenállásokat, valamint a V8 csövet.

78 /9./ 088

Ellenőrizzük le az R2o, R21 és R23 ellenállásokat, valamint a P3 potenciómétert és a C28 kondenzátort.

V8 /8./ cs6

Ellenőrizzük le az R28, R29, R30 és R61 ellenállásokat, a GeD2, GeD3 diódákat, valamint a C24, C25 és C26 kondenzátorokat és a V8 csövet.

V6 /2./ US5

Ellenőrizsük le az R22, R23, R25, R26 és R27 ellenállásokat, valamint a C17 kondenzátort és a V7, V8 csöveket.

V6 /8./ cs8

Ellenőrizzük le az Rlo, R24 ellenállásokat, valamint a V4, V5 és V6 csöveket.

V4 /6./, V5 /6./ csövek

Zárlatos a C9a-b forgókondenzátor, vagy a forgódob hibásan érintkezik.

V4 /3.8./, V5 /3.8./ csövek

Ellenőrizzük le az Rlo, R15 ellenállásokat, valamint a C7, C3a, C8b és C9a-b kondenzátorokat.

14 /2.9./, V5 /2.9./ csövek

Ha ez a feszültség nem egyezik a IV. Táblázatban feltüntotott ertékkel /+loo V/, akkor az RF oszcillátor nem működik.

7a /1./ és V5 /1./ csővek

Ellenőrizzük le az R13 és R14 ellenállásokat, valamint a V6 eső 8. lábán a feszültséget.

GeD2 /+/ dióda /1 V kimenőszint esetén: 6 Veff/ Ellenőrizzük le a V4 és V5 cső anód /6./ és kimenőfeszültségét a III. Táblázat alapján.

"RF.B+" /B1/ biztositék kiégett

Ellenőrizzük le a C8a, C8b, C11, C12 és C13 kondenzátorokat. Idegen, zárlatot előidéző anyag van a C6 és C9a-b forgókondenzátorok lemezei között. Hibás az S7 mikro-kapcsoló. Hibás a visszacsatoló hurok.

Az RI5 ellenállás leégett /100 Ohm + 5%/

A C9a-b forgókondenzátor zárlatos. A GeD2 és GeD3 diódák szakadtak, vegy zárlatosak. A C24, C25 és C26 kondenzátorok, vagy a RANGE /S5/ kapcsoló zárlatos. Ha ez a hiba csak egy sávnál fordul elő, ugy ellenőrizzük a forgódob érintkezőit ezen a sávon. Továbbá ellenőrizzük le a "FANGE" /S5/ kepcsolót zárlatra. Ha ez a hiba valamennyi sávon fennáll, akkor a II. Táblázat alapján keressük a hibát.

Leszivás a kimonőfeszültség szintjén vagy az RF oszcillátor ill, az RF erősitő áramfelvétele rohamosan megnő és rezonanciaszerűen viselkedik.

Ellenőrizzak la a forgódob érintkezőit és a rövidrezáró rugós érintkezőt. Ez a rugós érintkező akadályozzu meg, hogy a szomszédos alacsonyabb sáv tekercse leszívást okozzon.

Hangfrekvenciás oszcillátor

VII /1, 2, 3, 5, 7, 8./ cs6

Feszültségmérés sz alábbi beállitás mellett történik:

MODULATION SELECTOR /S4/: "INT.-loop c/s"
MODULATION AMPLITUDE /P6/: jobbra ütközésig.

A C39 kondenzátor és a P5 potenciométer közös pontja. /20 Veff /

A T2 transzformátorról a MODULATION SELECTOR /S4/ kapcsolóra monő vezeték.

Modulácio-mélyséamérő fokozat

V10 /2.3./ cs6

Peszültségmérés ez alábbi beállitás mellett történik:

WODULATION SELECTOR /S4/: "INT.-loop c/8"

YODULATION AMPLITUDE /P6/: jobbra Utközésig.

Kristály hitelesitő

Foszültségmérés az alábbi beállitás mellett történik: CRISTAL CALIBRATOR /S3/: "Ico Kc/s"

C	රිසර්	1	2	3	4	5	¹³ 6	7	8	9
19			0,55V +90 V		-		33 ₹ +235 ¥			

CRISTAL CALIBRATOR /S3/: "I Mc/s"

C	86	1	5	3	4	5	6	7	8	9
79			0,2V +185V			5 V	37 V +155V	0 V	16 V -24 V	10 V +130 V

II. HIBAKERESÉSI TÁBLÁZAT

A visszscsatoló hurok hibakerosése

Hibsjelenség: Egyik sávon sincs kimenőszint, vegy az RI5 ellenállás minden sávon leóg.

Ennél a müveletnél a következő előfeltételeket kell teljesitenis a készüléknek:

- a/ A -200 V-os és a +300 V-os stabilizált tápegységek hibátlanul működnek.
- b/ Az bsszes fütőfeszültségek rendben vannak.
- c/ A készülék összss csöve jé.
- d/ Az RF oszcillátor az összes sávon működik és megközelítően a III. Tátlázatban feltüntetett feszültség és áramórtékek mérhetők.
- e/ A C6ab forgókondenzátor vozetékei nem zárlatosak.

Mérési eljárás:

- 1./ Helyezzük üzomen kivül a visezacsatolást ugy, hogy az R22 ellenállást rövidrezárjuk. /Ezáltal a V6 caó 2. lába -200 V-os feszültségértékre kerül./ Ez lezárja a V6 csövet és az nem enged át áramot a V4 óa V5 csöveken sem. Ezesetben az R15 ellenálláson nem folyhat át áram. Ezt ellenőrizzük le mA mérővel.
- 2./ Csatlakoztasaunk egy 5 kohm /5 W/ ellenállásból ós
 egy 2 kohm /2 W/ potenciomóterből álló osztót a V6
 cső anódja és a föld köző.
 Zárjuk le az RF OUTPUT /1/ csatlakozót 50 ohmos ellenállással. Állitsuk be a 2 kohmos potenciométert ugy,
 hogy az RP OUTPUT /1/ csatlakozón 1 MHz frekvencián I V feszílltséget kapjunk.
 Wérjünk feszülteéget és áramot az elábbi pontokon:

Arammérés:

V6 cs6 katódáramkörében /3föld/	1 =	19,0	mA
Rlo ellenállás áramköróben	I =	5,6	mA
R24 ellenállás áramköróben /1-5 sávban/	I =	5,6	mA
R24 ellenállás áramkörében /6. sávban/	I =	0	mA

Penziltsóamérés:

2000	
R13 ellenálláson	U = +0,15 ₹
R14 ellenálláson	U = +0,15 V
GeD 2 dioda anódján	U = +5,7 V
GeD 3 dioda katódján	U = -7, I V
VB cs5 8 lábán	U = +3.1 V /AC = OV/

3./ Ismételjük meg a móróst az előző pontban /2./ leirt beállitás mellett - az 1, 2, 4, 5. ós 6. aávon is.

A feszültség és áramértékeket a III. Táblázat adatai alapján ellenőrizzük le.

A GeD2, GeD3 diodákra és a V8 csőre vonstkozó feszültsógadatok megegyeznek az előző pontban /2/ felsoroltekkal.

- 4./ Allitsik a 2 kohmos potenciométert mindaddig, amig a V8 caő 8. lábán mérhető feszültség 5,1 V losz.

 AZ ATTENUATOR VERNIER /P2/ potenciomært forgassuk balra ütközésig. /P2 = 0°/.

 Mérjünk feszültséget a V8 cső elsktrodáin a IV.Táblázat adatsi alapján.
- 5./ Az ATTENUATOR VERNIER /P2/ potenciométert forgassuk jobbra ütközésig. /P2 = 270°/. Mérjünk feszültséget a V8 cső olektrodáin a IV.Táblázat adatai alapján.
- 6./ Távolitsuk el a rövidzárt az R22-es ellenállásról, ezáltal lekapcsolódik a V6 cső 2. lábáról /vezérlőráca/ a -200 V-os feszültség. Kapcsoljuk le a V6 cső anódja és a föld köző helyezett osztít /R = 5 kohm. P = 2 kohm/. A készüléknek helyesen kell működnig.
- 7./ Hangoljuk ismét össze az RF oszcillátort és sz RP erősitőt, ha valamelyik alkatrészt vagy csövet kicseréltük.

List a SERVICE UTASITÁS kövotkező fejezeteit:

- 6.7 "PERCENT MODULATION /M2/ muszer beallitass."
- 6.8 "Maximális vivóhullám-beállitás és modulációs null-állitás."
- 6.9 "VOLTS level /Ml/ miszer beállitásu."

III. Táblázat

RF OSZCILLÁTOR:

oncia	I.oszc.	v3/2,7/ U _E	V3 /1,6/ U _a	C6ab U _C
kHz	2.0 må	9 T	76 V	174 V
kHz	4,4 mA	8,8 V	27 ₹	60 ₹
MHz	2,5 mA	9,1 V	96 ₹	96 ₹
MHz	4,0 mA	9,2 V	70 ₹	70 Y
MHz	6,0 mA	8,8 V	40 V	40 V
<i>V</i> Hz	17,0 mA	9,0 ₹	27 V	27 V
	kHz kHz MHz MHz	kHz 2.0 mÅ kHz 4,4 mA MHz 2,5 mA MHz 4,0 mÅ MHz 6,0 mÅ	kHz 2.0 mÅ 9 V kHz 4,4 mÅ 8,8 V MHz 2,5 mÅ 9,1 V MHz 4,0 mÅ 9,2 V MHz 6,0 mÅ 8,8 V	kHz 2.0 mÅ 9 V 76 V kHz 4,4 mÅ 8,8 V 27 V MHz 2,5 mÅ 9,1 V 96 V MHz 4,0 mÅ 9,2 V 70 V MHz 6,0 mÅ 8,8 V 40 V

RF EROSITO:

Frek	vencia	I.es	rősitő	V4, V5 /2,9/	V4,	75 /6/ Ja	U _c
94	kHz	6	mA	9 V	9	v	56 V
310	kHz	9	mA	8,8 V	7	٧	25 V
1	MHz	10	mA	9,1 V	8	٧	18,4 Y
3,3	MHz	9	mA	9,15 ₹	10	V	Io V
11	MHz	5	mA	8,75 ¥	9	v	9 V
36,3	MEz	7	mA	8,1 V	9	v	9 V

Y		1	2	3	4	5	6	7	8	9	6
V1 PCL84		+991	+2951	+100	+5,5¥	+2o5V	+11oV	0 V			
¥2 85A2		◆295V	+2101		+21oV	•295V	,	+21o¥	-	-	
V3 POC88		+28oV	+100¥	+11oV	OV	+74	+28o¥	+100V	+lloV	-	
V4 6016	DC AC	+112V 2V		+295V	41,70	3 7/ +48V	•295V 7,8V	+lloV	•295¥	+1007	
¥5 6015	DC AC	+1127	+100V	+295V	35.5	V/ +41,78	•295V 7.8V	·11oV	•295V	+100%	
T6 PLAD			-1oV- -25V	0 ¥	·14	5 V/ •35,5V	0 A		+lloV	0 ¥	+lloY
Y7 POC88	=014	+2957	+8oV	+83V	•7¥	+19V 7/	+295V	•145¥	+1507	-	
	U _{k1} =0 V P2=0°	0 V	+150V	•3,9Y	+35,5V /15	+20,5V	•loV	•3,9V	+3,10	+85Y	
Y8 PCL84	Uki=1 V P2=270°	+3,37	+145V	+4,50	+35.5V	+20,5V	+50V	+4,57	O V	+83¥	
	U _{k1} =3 V P2=270°	0 - +3,5V	+150V	+4,17		+20,5V	◆86V	++,1V	0 - •3,4V	+837	
V9	B3 = DC looMsAC	-46V 33V	+90V 0,55V	0 V	~15	٧	+235V 33V	0 Y	-55V 41V	•115V 34V	
PCL84	85 . DC 1 M/s AC	-62V 37V	+185V 0,2V	0 A	~15	v	◆155V 37V	0 Y	-24V 16V	+130Y 10Y	
V10 B0085	DC AC	+500V	0 A	•3.87 2.87	~ 6,3	v	+14oV		o v		
V11 ECC85	DC AO	+16oV 4V	0 V 7,5V	+2 V 7,27	~ 6,3	A	+295Y 87Y	4 A 0 A	44,3Y		
V12 PL82			+28o¥	+300Y	~16,5	٨		+450°		•45oV	
VIE PLE2			+28oV	+300¥	16,5	٧		•⇒5oV		+45°V	
V14 P182			+28oV	Yoot+	w16,5	٨		+45oV		→5oV	
V15 PCE64		0 4	+3coV	+3,17	~15	Y	•28oV	+3,10	+2,2V	•36V	
716 FL83		+195V	-8V	0 4	~15	٧	•195V	•195V			
717 PCL84		-1167	0 4	-1127	~ 15	A	-8V	-112V	-1127		
18		-11oV	-200¥	-	-200V	-lloV	-	-200V	-		

10.

6. SERVICE UTASITÁS

5.1 Stabilizált tápogysóg

A köszülék tápegyadgei rendkivül stabilak, ezőrt csak ritkán igényelnek beszsbályozást. A tápegységek szabályos időközökben - vagy első hibakeresősi lópósként - mórendők, de a szükségtelen utánállitás kerűlendő.

Mérjük meg a tápegység feszültsőgeit, a két feszültsőg értéke: -200 V + 1 % és 300 V + 1 %. Amennyiben eltérnek a megadott értéktől, ugy a Plo /+300 V/ ill. a Pll /-200V/patenciométerekkel utánállithatjuk. Ezek a potenciométerek a kidobozolt készülékben a Tl transzformátortól balra eső panel eldalán találhatók /3.ábra/. A zagófeszültség max. értéke egyik feszültségnél sem haladhatja meg a le mV effektiv értéket.

A fenti műveletet cső és egyőb alkatrészek cseréje esetén feltétlenül el kell végezni.

6.2 Hangfrekvenciás generátor

A "RANGE" /S5/ kapcsolét állitsuk 550-1800 kHz sávrs. Állitsuk a "MODULATION SELECTOR" /S4/ kapcsolét "INT. -400 c/s" állásba. Csatlakozzunk hangfrekvenciás csővoltmérővel a hangfrekvenciás transzformátor /T2/ S4 kapcsolóra menő leágazásara és állitsunk be ezen a ponton - P5 potenciométer segitségével - 3,2 V feszültséget. /A P5 potenciométer a modulációs szerelvénylap tetején lévő 5 potenciométer közül a középső, lásd a 3.ábrát/.

6.3 Kristályhitelositő

állitsuk a "CRYSTAL CALIBRATOR" /S3/ kapcsolót "loo kc/s" állásba. Csatlakoztassunk elektronikus számlálót a 79 cső anódjára /6/.

Allitsuk be coo trimmerrel a frekvenciát loo Hz-re. Majd kapcsoljuk át az So kupcsolót "looo kc/s"-ra. A C33 trimmer segitségével állitsunk be loop kHz-t. A frekvenciánsk /digitális frekvenciamérővel mérve/ az alábbi értékek között kell lennie:

loo kHz 99.990 - loo.olo loo kHz 999.900 - l,000.100

Csócsero esetén ajánlatos ellenőrző mérést végrehajtani.

6.4 RF oszcillátor és RF erősitő behangolása

Ezt a műveletet cssk akkor végezzük, ha határozott jelét tapasztaljuk snnak, hogy az RF oszcillátor frekvenciája türésen kivül esik. Az RF oszcillátor frekvenciájának beállitását I V vagy ennél kisebb kimenőszintnél végezzük. A sáv elején /alacsonyabb frekvencia/ vasmaggal, a sáv végén /magasabb frekvencia/ trimmerrel végezzük a behangolást. Az RF erősitő utánállitását ugy végezhetjük, hogy bontjuk az RI5 ellenállás áramkörét, majd árammóró csatlakoztatásával zárjuk /Jo mA állásban/. A sáv alsó végén vesmaggal, felső végén pedig kondenzátorral állitsunk be áram minimumot. A kondenzátor állitására használt csavarhuzó végére huzzunk szigetelő műanyagcsövet, hogy a csavarhuzó fémrészéből csak kb. I-2 mr rósz álljon ki szigeteletlenül a zárlet elkerülése céljábál.

6.5 Maximális oszcillátor-áram beállitása

Allitsuk a RANGE /S5/ kapcsolót a 19-65MHz sávra.
Bontsuk sz R9 ellenáliás áramközét, majd zárjuk mA mórő-vel /30 mA állásban/. Porgassuk a skálatárcsát a legnagyobb áramu helyre. majd a Pl csavarhuzó-allitásu potenciomóterrel /3.ábra/ állitsunk be 30 mA anódáramot.

6.6 Vivohullam zórusra állitása

Csatlakozzunk - 1 MHz frekvencia állásnál - oszcilloszkópra, csavarjuk az "ATTENUATOR VERNIER" /P2/ poterciométert teljesen balra. Kapcsoljuk az oszcilloszkópot legárzákenyebb állásba.

A P3 csavsrhuzó-állitásu potenciométerrel álljunk be ugy, hogy az oszcilloszkópon a jel éppen eltünjék. Ennek elvégzése után a "RANGE" /S5/ kapcsolót 19-65 MHz sávra állitvs a kimenőfeszültség nem haladhatja meg a 30 mV órttéket.

6.7 "PERCENT MODULATION' /M2/ miszer beallitasa.

Alljunk i Mhz frekvenciára. Csatlakozzunk i v kimenőszintnől oszcilloszkópra. Kapcsoljuk a "MODULATION
SELECTOR /S4/ kapcsolót "INT.-400 c/s" állásba. Állitsunk
be sz oszcilloszkópon 50 % modulációt. /A maximális és
zinimális jel viszonya 3:1/. Állitsuk a "PERCENT MODULATION"
/NZ/ müszer mutatóját "50 %" vonásra. A beállitást a P8
potenciomóter segitsógóvel végezzük. /A P8 potenciométer
s modulációs szerelvénylap tetején lévő 5 potenciométer
közül a második az előlap felől számolva, lásd a 3.ábrát/.

6.8 Maximális vivőhullám beállitás és modulációs null-állitás.

Forgassuk az "ATTENUATOR VERNIER" /P2/ potenciomótert teljesen jobbra. Caatlakozzunk az RF "OUTPUT" /l/ hűvelyre nagyfrekvenciás szintmérővel. Állitsuk az "ATTENUATOR"
/S6/ kapcsolót "l V" állásba. Caatlakozzunk a
"MODULATION INPUT-OUTPUT" /2/ csatlakozóra nagy belső ellenállásu DC feszültségmérővel /1341/E tip. ORIVOHM II./
Kepcsoljuk a "MODULATION SELECTOR" /S4/ kapcsolót "EXT.DC" állásba. Forgassuk teljesen jobbra a "MODULATION
AMPLITUDE" /P6/ potenciométert. A készüléket végighangolva 50 kHz - 65 MHz-ig, jegyezzük fel a kimenő RF-szintet.
Álljunk a minimális kimenő RF-szintű pontra. Állitsuk be
a P7 potenciométerrel 1,02 V kimenő RF-szintet. /A P7 potenciométer a modulációs szerelvénylapon lévő 5 potenciométer közül a negyedik, lásd a 3. ábrát./ Najd a P9 po-

tenciomóterrel /P7 potenciométert követő potenciomóter, lásd a 3. ábrát/ állitsunk be 0 V feszültséget az Orivohm II. legőrzékenyebb állásánál. A P9 potenciométer kieső elviszi a P7 potenciométer által beállitott szintet, ezért a beállitást a két szabályozószerv változtatott állitásával kell elvégezni. Helyes beállitás esetén a "MODULATION SELECTOR" /S4/ kapcsolót átkapcsolva "EXT.-AC" állásba, a kimenőszint nem változik.

6.9 "VOLTS LEVEL" /Ml/ muszer beallitasa

Ellenőrizzük a "VOLTS LEVEL" /M1/ müszer nullállását, a készülők kikapcsolt állapotában. Csatlakoztassunk RF feszültségmérőt - 1 V kimenőszintnél - az 50 ohm-mal lezárt RF "OUTPUT" /1/ hüvelyre.

Változtatva a frekvenciát 50 kHz és 60 Mhz között tartsuk a külső RF-szintmérőt 0,9 V álláson és olvassuk le a "VOLTS LEVEL" /Ml/ müszer minimális és meximális állását. Határozzuk meg a két állás számtani közepét, mejd álljunk egy olyan pontra, ahol a számtani középnek megfelelő értékre tér ki a "VOLTS LEVEL" /Ml/ müszer, majd ennél az állásnál állitsuk a "VOLTS LEVEL" /Ml/ müszert a P4 potenciométer segitségével 0,9 V kitérésre. /P4 potenciométer s modulációs szerelvénylap tetején lévő 5 potenciométer közül az első /lásd a 3.ábrát/.

6.10 Csőcsere

A V7, V9, Vlo, VII, VI2, VI3 és V16 csövek cseréje utánállitás nélkül elvégezhető.

A VI, V2 és V3 csövek cseréje esetén a 6.5 pontban leirt utánállitás vágzendő el.

A V4, V5, V6 és V8 csövek cseréje esetőn a 6.8 pontban leirt beállitás vógzendő el.

A V15, vi7 6s V18 csövek cseréjónól a 6.1 pontban leirt ellenőrző mórós és - szükség esetén - beállitás végzendő el.

ALKATHESIZJEG/NEK

Az alkatrészjegyzék betűjelejnek magyarázata

Jol	Kivitel	Jol	Elvitel .
	KLLENÁLLÁSOK	R	←→
M	Kristályos szénréteg ollenállás	RF	Pénrétog ellonállás
EB	Borkarbon retog ellenállás	RFo	Discould stone ollowed
AZ	Zománe bevenatu huzel ellenállás	AUF O	Pénoxid rétog ellenállás
	VÁLTOZTAZHATÓ BILES	ullison P	
34	Huzel petenciónéter	PRB	Boallithato reteg
28	Rétes potenciónéter		potencióméter
	KONDENZÁTORO	K C	. ₩
00-D	Pémezett papirkondenzátor fémházas, hengerelaku	CC-at	Cuillám kondenzátor, milanyagbe préselt, téglaslaku
OK-1c	Kerémia kondenzátor,	CTI-1	lég trimmer kondenzátor lemezon
	lakkozott, cadelaku	CZK-t	Kerimia trimmer kondenzátor tárosa
02-20	Blektrolit kondenzátor fenházas, hargorelsku	CIN	Forgókondenzátor
	V - 🖨	D	-14-
T-tt	Kettős trióds	T	Potoizzó
Y-0	Pentóda	GeD	Germanium dióda
Y-ty	Trióda-pentóda	SiReo	Szilioium ogyonirásyitő
	norta .	ADATOK	
r	Everokristaly	T	Hálózati transzformátor
EY	Relé	Tx	Kimfrekvonoiás transmformátor
3	Jelzőlánya	L	Tekeros
H	Mutetos miszer	PoSe1	Hrlózati feszültségválasztó dugó
EN	Pokozatkepozoló	PoSo	Hálózati csatlekozó aljzat
Sin.	Mikrokepomoló Svegomóvna biztomitó	So SoE	Egysarku csatlakozó aljast Földelő csatlakozó
	betét		hilvoly

Minies mérőkénzülék - a megbizhatóság és a műszaki adatokban előirt határértékeken belüli nagyobt pontosság érdekében - gondos egyedi néréssal és baszabályozászal ké-szű. Bunek következtében előfordulhat, hogy a készülékek a mellékelt alkatrészjegyzéktől eltérő értékű alketelezeket is tartelmannak.

		Ω	*	R			Ω	×	
H 1.	RX	390 k	10	1	R47.	RK	Bo k	1	0,5
R 2.	RE	150 "	10	0,5	R49.	RK	1 -	10	0,1
R 3.	KB	56 ™	10	0,5	R49.	RK	680 "	10	0,5
R 4.	RB	56 "	10	0,5	R50.	RB	82 **	lo	0,5
95.	RB	56 "	lo	0,5	R51.	RB	150 -	10	0,5
P 6.	RX	100 "	10	0,1	R52.	R3	680	lo	
R 7.	RK	270	lo	0,1	R53.	RB	1 k	5	0,25
R 6.	RK	270	lo	0,1				1	1 *
R 9.	RZ	3,5 k	lo	7.5	255.	RB	22 **	5	2
Ris.	RB	33 "	10	2	R56.	RB	22 =	5	2
R11.	RX.	220	10	0,1	R57.	RK	680	1	0,5
212.	RX	220	10	0,1	R58.	RB	47 k	lo	2
R15.	RB	39	5	0,25	R60.	RB	35 **	5	5
E14.	33	39	5	0,25	R61.	RX	25 **	1	0.5
B15.	RB	100	5	1	R62.	RX	1 "	10	0,1
R16.	RX	50	1	0,25	R63.	RK	100	10	0,1
R17.	RK	47 k	lo	0,25	R64.	RK	1 k	5	0,5
RLS.	RB	12 ₩	1	5	R65.	RK	150 H	5	0,5
B19.	RB	lo "	1	2	Rlo1.	RZ	5	10	7.5
R20.	RX	150 "	10	1	Rlo2.	RFo	820 k	5	0,5
221.	RK	180 "	10	0,5	Rlo3.	RX.	1 "	lo	0,1
122.	RK	220 H	20	0,5	R104.	RB	22	20	0.5
123.	RK	120 "	lo	0,5	R105.	230	620 k	5	0,5
24.	RB	33 "	lo	5	Rlo6.	RFo	390 "	5	0,5
25.	RB	1,6 "	5	0.5	Rlo7.	RK	1 =	20	0,1
126.	RB	33 "	1	2	R108.	RB	10 to	10	0.5
27.	RB	1 "	5	0,5	R109.	RB	22	20	0,5
28.	RK	33 "	1	0,5	Rilo.	RFo	68 k	5	1
29.	RK	68 "	5	0,5	R111.	RX	1 -	10	0,1
3c.	RK	6,46 "	1	0,5	R112.	RFo	1 1 11	5	0.5
31.	KB	1,5 "	10	1	R113.	RFo	150 k	5	0.5
32.	RX	220 =	lo	0,5	R114.	RB	22	20	0.5
32.	RK	1 11	10	0,5	R115.	RFo	390 k	5	0,5
'A.	RK	33 k	10	0,5	R116.	RFo	270 "	5	0,5
35.	RK	82 **	lo	0,5	2117.	RFo	47 =	5	0,5
15.	RI	5.5 M	10	0,5	R118.	RFo	100 -	5	0.5
37.	RE	470 k	10	0,5	R119.	RFo	820 **	5	0.5
19.	RB	33 k	10	2	R120.	RFo	47 "	5	0,5
ic.	RK	350 "	lo	0,5	R121.	RFo	100 -		0,5
	RIK .	200 **	1	0,5	R122.	RFo	47 "	5	0,5
2	RE	80 "	2	0,5	R124.	RB	680	10	5
3.	RK	1 "	10	0,1	R125.	23	1		
4.	RE	1,5 "	10	0,5	R127.	RF	18	10	2
5.	RK	56 H	10	0,5	R126.	RP	53,27	0,5	0,25
6.	ROC	200 "	1	0,5	R129.	RP	790 26,63	0,5	0.25

		Ω	- 5	¥			Ω		8	1
M130.	R#	790	0,	0,25	3202	. RF	220		5	1
B131.	RF	53,27	0.	110000	2203	8	2,2		10	1000
R135.	100000000000000000000000000000000000000	96,25	0,5		R204		39		2	0,
B135.		71,15	0,5	E-08/09/09	1/200	100	39		2	0,
2134.		96,25	0.5	Control of the Contro	R206				5	0,5
R135.		61,11	0,5	1	R207	7	1,5	0.000		0,
R130.		247,5	0,5		R208		15		20	0,
£137.	1000000	61,11	0,5		R209				20	0,
R158.	600000	55,27	0,5	1	R210	1	1,8		lo	0.
2159.	P.F	790	0,5	10 A CONTROL OF	R211		100		lo	0,
R140.		53,27	0,5	0.000	R212		330 56		10	0,
P201.	P.P	550	5	1	1	1	1		10	0,
	1			P -	1					1
P :.	PR	50	k 20	0,1	¥ 7.	PH	10	× T	10	1
P 2.	PH	5		1	P 8.	PR	50		20	0,1
P 3.	PR	100	m 20	0,5	P 9.	Pff	10		lo	1
P 4.	PR	100	20	-c,1	Flo.	PR	loc	25	30	0,0
5.	PR		" 20	0.7	P11.	PR	100		30	0,2
6.	PR	1	· 20	0,5	P12.	PR	33		20	2
П				C	+					
	•	2	*	Y			F	55	T	A
1.	CK-10	lo n	+50-20	500	C19.	CMP-Th	loo n	1	0	400
2.	*	10 **	+50-20	500	020.		100 M	1		400
3.	CIO-20	100 "	10	400	C21.	CC-est	1 **	5		500
4.	CI-10	10 "	+5c-20	500	C22.	**	2,2 "	5		500
100										
5.	0 350	10 "	+50-20	500	C23.	**	10 "	5		620
60	1320			500	100000000000000000000000000000000000000	-	10 "	5		250
64	C7L	420 p	1		C23.	112		5		250
64 Co 7.	1320			500	C23.		10 " 220 p 750 "			250 250
6a (5) 7. 8a	C7L	420 p	1		C23. C24. C25.		10 " 220 p	5		250 250 250
6a (0) 7. 8a 8b	CVIL CMP-IL CE-IL	420 p 100 n 20+20/E	1 40	250	C23. C24. C25. C26.		10 " 220 p 750 " 150 "	5 5	200	250 250 250 400
54 Co 7. 88 80 96	CAT CAL-UP CAL-UP	420 p	1	250	C23. C24. C25. C26.	 CMP-25	10 " 220 p 750 = 150 = 100 n	5 5 5	20	250 250 250 400 500
6a Co 7. 8a 8b 9a 9b	CAT CAT CAT-UP	420 p 100 n 20+20 L 420 p 100 n	1 10	250	C23. C24. C25. C26. C27. CE8.	CMP-Ib	10 " 220 p 750 = 150 = 100 n 2 =	5 5 5 10 +50~i	20	250 250 250 400
64 Co 7. 88 80 90 10.	CAT CAL	420 p loc n 20+20 k 420 p loc n loc =	1	250 350	C23. C24. C25. C26. C27. G86. C29.	" CMP-Th CK-lso CC-at	lo " 220 p 750 = 150 = 100 n 2 = 100 p	5 5 5 10 +50~i	20	250 250 250 400 500 250 250
64 Co 7. 88 80 94 90 10.	CAT CAL	420 p loc n 20+20/E 420 p loc n loc " loc "	1 10	250 350	C23. C24. C25. C26. C27. OEB. C29.	CMP-Th CK-lso CC-at CTE-t	lo " 220 p 750 = 150 = 100 n 2 = 100 p 10-40	5 5 5 10 +50~2	20	250 250 250 400 500 250 250 500
64 Co 7. 84 80 94 90 10.	CYL CEP-IN CYL CKP-IN	420 p 100 n 20+20 u 420 p 100 n 100 n 2 n	1 10 10	250 350 400	C23. C24. C25. C26. C27. G88. C30. C30.	CMP-fb CK-lso CC-at CTE-t CK-lc	lo " 220 p 750 = 150 = 100 n 2 = 100 p 10-40 = 5 n	5 5 5 +50~2	20	250 250 250 400 500 250 250
64 Co 7. 88 80 90 10.	CYL CMP-TE CVL CMP-Th CK-lnc CK-lnc	420 p loc n 20+20/E 420 p loc n loc " loc "	1 lo lo lo	250 350 400 400	C23. C24. C25. C26. C27. C29. C30. C51.	CMP-Th CK-lso CC-at CTK-t CK-lc CC-ct	10 " 220 p 750 = 150 = 100 n 2 = 100 p 10-40 = 5 n 82 p	5 5 5 +50~2	20	250 250 250 400 500 250 250 250 250
54 Co 7. 88 80 90 10. 11.	CYL CMP-Th CVL CMP-Th CK-lnc CK-lnc CK-lnc	420 p 100 n 20+20 u 420 p 100 n 100 n 2 n	1 10 10 10 10 +50-20	250 350 400 400 500	C23. C24. C25. C26. C27. OEB. C29. C30. C51. C52. C33.	CMP-Th CK-lso CC-at CTE-t CK-lc CC-at	10 " 220 p 750 = 150 = 100 n 2 = 100 p 10-40 = 5 n 82 p 10-40 =	5 5 5 +50~2 5 +50~2 5	20	250 250 250 400 500 250 250 250 250 250
64 60 7. 88 80 90 10. 11.	CTL CMP-Th CVL-Inc CK-Inc CK-Inc CK-Inc	420 p 100 n 20+20 p 420 p 100 n 100 " 2 " 100 " 300 p 10 n	1 10 10 10 10 +50-20 +50-20	250 350 400 400 500 500	C23. C24. C25. C26. C27. GEB. C30. C52. C33. C34.	CMP-Th CK-lso CC-at CTE-t CK-lc CC-at CTE-t CK-lc CC-at	10 " 220 p 750 " 150 " 100 n 2 " 100 p 10-40" 5 n 82 p 10-10" 5 n	5 5 5 +50~2 +50~2	20	250 250 250 400 500 250 250 250 250 250
5. 6a Co 7. 8a 8b 9a 9b 10. 11. 12. 15. 16. 17. 18.	CYL CMP-Th CVL CMP-Th CK-lnc CK-lnc CK-lnc	420 p 100 n 20+20 p 420 p 100 n 100 " 100 " 2 " 10 " 300 p	1 10 10 10 10 +50-20 +50-20	250 350 400 400 400 500 500 500	C23. C24. C25. C26. C27. G88. C39. C30. C31. C32. C33. C34. C35.	CMP-Th CK-lso CC-at CTE-t CK-lc CC-at CTK-t CK-lc CK-lc CMP-Th	10 " 220 p 750 " 150 " 100 n 2 " 100 p 10-40" 5 n 82 p 10-0" 5 n	5 5 5 +50~2 5 +50~2 10	20	250 250 250 400 500 250 250 250 250 250 400

Eq.		7	- 5	7	Ko			*	y
5.	CK-lac	300 p	10	500	C31.	CX-10	50	-50-E0	500
€.	CK-1c	lo n	+50~20	500	C32.	CC-st	82 p	5	250
7.	14	26 p	5	500	C35.	CTK-t	10-40°		250
8.	CK-lac	2	+50-20	500	C34.	CK-lo	5 n	+50-20	500
9.	CMP-ft	100 n	10	400	C35.	CMP-fb	47 "	10	400
0.		100 *	10	400	C36.	G-19	10 "	◆ 50−20	500
1.	CC-at	1 "	5	500	C37.		100 1	lo	400
2.	**	2,2 "	5	500	C38.	CX-lc	10.00	+50-20	500
3.	11	20 **	5	250	C39.	CC-st	2 *	2	500
4.		500 p	2	250	C40.	"	2 "	2	500
5.	**	750 "	5	250	C4	CX-10	lo "	+50-20	500
6-	- 11	150 "	5	250	C42.	CMP-fb	1/4	lo	160
7.	CMP-fh	loo n	lo.	400	C43.		100 n	lo	400
8.	CK-lac	2 "	+50-20	500	Cun.	CE-lac	2 **	·90-20	500
39.	OC-at	100 p	5	250	C45.	CK-fb	20 /u		25/30
50-	J-XIO	10-40		250	066.	CMP-fb	100 n	10	400
		4							

			*	A			7	5	¥
039.	CC-art	2 n	2	500	G111.	CE-fa	500/4		70/8
C40.		2 "	2	500	C112.	CMP-In	loo n	lo	400
041.	CK-lc	10 "	+50-20	500	C113.		100 "	10	900
542.	OMP-Th	1,11	10	160	C114.	CK-lao	2 **	+50-20	500
C43.	99	loo n	10	4-00	C115.	CE-Sa	100/4	The section of	6
G44.	CK-lao	2 *	+50-20	500	C116.		100 "		6
C45.	OB-fh	20,11		25/30	0117.	CE-lo	lo n	+50-20	500
C46.	SERTE	loo n	10	400	C118.	CK-lo	lo "	•50-2o	500
C47.	CPE	100 *	10	400	C201.	CTL-1	2-11 p		500
C48.	CK-lso	2 4	+50-20	500	C202.	91	2-11 4		500
349.	CC-at	220 p	5	250	C203.	69	2-11 "		500
Clol.	CMP-fb	4,7 n	20	250	C204.		2-11 "		500
C102.		4,7 "	20	250	C205.		2-11 "		500
C103.	CK-lac	510 p	10	2500	C2o6.		2-11 "		500
0104.	-	510 "	10	2500	C207.	C7K-t	4 "	30 p	500
Clo5.	CE-fb	100/4		350	C208.		4 "	30 "	500
Clo6.	-	100 =		350	C209.	**	4 "	30 W	500
C107.	OP-Th	47 n	20	400	C210.	-	A "	30 "	500
Clos.	CB-CB	50 /u	10.7	450	0211.		4 "	30 "	500
Clo9.	CP-50	47 n	20	250	C212.	-	4 "	30 =	500
0110.		47 "	20	250	C213.	CK-lf	27 "	5 =	500
			V -@)		14			
			1 6) -₩			
¥ 1.		V-tp		TL84	GeD1.	1	GeD	OAI	
V 2.		V8	PC 85	1184	GeD1. 3eD2.	.		OAL	160
V 2.		VS V-tt	PC 85	11.84 14.2 10.88	GeD1. GeD3.			OAL	160 160
V 2. V 3. V 4.		VS V-tt V-p	PC 85 PC 66	11.84 14.2 12.88 11.6	GeD1. 3eD2. GeD3. GeD4.	1		OA1 OA1	160 160 161
¥ 2. ¥ 3. ¥ 4. ¥ 5.		VS V-tt V-p V-p	PC 85 PC 60 60	0184 642 6088 616	GeD1. 3eD2. GeD3. GeD4. GeD5.			OA1 OA1 OA1	160 160 161 161
¥ 3. ¥ 4. ¥ 5. ¥ 6.		V8 V-tt V-p V-p	PC 85 PC 60 FT	01.84 542 5088 51.6 51.6	GeD1. 3eD2. GeD3. GeD4.			OA1 OA1	160 160 161 161
¥ 2. ¥ 3. ¥ 4. ¥ 5. ¥ 6. ¥ 7.		V8 V-tt V-p V-p V-tt	85 PC 60 60 PT PC	51.84 54.2 50.88 51.6 51.6 51.6 51.6 50.81	GeD1. 3eD2. GeD3. GeD4. GeD5.		GoD	OAL OAL OAL OAL	160 160 161 161
V 2. V 3. V 4. V 5. V 6. V 7. V 8.		V8 V-tt V-p V-p	85 PC 60 60 PT PC	01.84 542 5088 51.6 51.6	GeD1. 3eD2. GeD3. GeD4. GeD5.			OA1 OA1 OA1	160 160 161 161
¥ 2. ¥ 3. ¥ 4. ¥ 5. ¥ 6. ¥ 7.		V8 V-tt V-p V-p V-tt	85 PC 60 60 91 PC	51.84 54.2 50.88 51.6 51.6 51.6 51.6 50.81	GeD1. GeD2. GeD3. GeD4. GeD6.		GoD	OAL OAL OAL OAL	160 160 161 161 161
V 2. V 3. V 4. V 5. V 6. V 7. V 8.		V8 V-tt V-p V-p V-tt V-tp	85 85 60 60 91 90	522 528 516 516 516 516 518 5088	GeD1. SeD2. GeD3. GeD4. GeD5. GeD6.		GeD " " "	OAL OAL OAL OAL	160 160 161 161 161
¥ 2. ¥ 3. ¥ 4. ¥ 5. ¥ 6. ¥ 7. ¥ 8. ¥ 9.		V8 V-tt V-p V-p V-tt V-tp V-tp	PC PC PC	12.84 5.22 5.28 5.16 5.16 5.16 5.28 5.28 5.184	GeD1. SeD2. GeD3. GeD5. GeD6. SiDlo1		GeD " " "	CAL CAL CAL CAL CAL SIE	160 160 161 161 161 44 K4
¥ 2. ¥ 3. ¥ 5. ¥ 6. ¥ 7. ¥ 8. ¥ 9.		V8 V-tt V-p V-tt V-tp V-tp V-pp V-pp	85 86 60 60 91 90 90 90	01.84 542 5088 516 516 516 518 5088 5184 5184 5184	GeD1. 3eD2. GeD3. GeD4. GeD5. GeD6. SiDlo2 SiDlo3		GoD " " " SiReo	CAL CAL CAL CAL CAL SIE SIE	160 160 161 161 161 44 K4 K4
V 2. V 3. V 5. V 6. V 7. V 8. V 9. V10.		V8 V-tt V-p V-tt V-tp V-tp V-pp	PC P	12.84 12.02.88 12.6 12.6 12.6 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8	GeD1. SeD2. GeD3. GeD4. GeD5. GeD6. SiDlo2 SiDlo3 SiDlo4		GoD "	OAL OAL OAL OAL OAL SIE SIE SIE	160 160 161 161 161 44 K4 K6 K8
V 2. V 3. V 4. V 5. V 6. V 7. V 8. V 9. V10. V11.		V8 V-tt V-p V-tt V-tp V-tp V-pp V-pp	FC F	1284 542 528 516 516 518 5184 5184 5184 5184 5184 5184 5184	GeD1. SeD2. GeD3. GeD4. GeD5. GeD6. SiDlo1 SiDlo2 SiDlo4 SiDlo5		GoD " " " " BiReo	OAL OAL OAL OAL OAL SIE SIE SIE SIE SIE	160 160 161 161 161 64 84 86 86
Y 2. Y 3. Y 4. Y 5. Y 6. Y 7. V 8. V 9. V10. V11. V12.		V8 V-tt V-p V-tt V-tp V-tp V-pp V-pp V-pp	FC F	1284 542 5288 516 516 518 5088 5184 5085 5085 82	GeD1. SeD2. GeD3. GeD4. GeD5. GeD6. SiDlo2 SiDlo5 SiDlo5 SiDlo5 SiDlo5		GeD " " " SiReo	OAL OAL OAL OAL OAL OAL OAL SIE	160 160 161 161 161 44 84 84 84 84 88
V 2. V 3. V 4. V 5. V 6. V 7. V 8. V 9. V10. V11. V12. V13. V15.		V8 V-tt V-p V-p V-tt V-tp V-tp V-pp V-pp V	PC P	12.84 5.22 5.28 5.26 5.26 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28	GeD1. 3eD2. 3eD3. 3eD4. GeD5. GeD6. 81D1o2 81D1o3 81D1o5 81D1o5 81D1o6 81D1o7		GeD "	OAL OAL OAL OAL OAL SIE SIE SIE SIE SIE SIE SIE SIE	160 160 161 161 161 161 4 4 4 4 4 4 4 5 7 5
V 2. V 3. V 5. V 6. V 7. V 8. V 9. V10. V12. V13. V15. V15.		V8 V-tt V-p V-p V-tt V-tp V-tp V-p V-p V-p V-p V-p V-p V-p V-p V-p V-	PO P	11.84 5.22 5.088 5.16 5.16 5.085 5.085 5.085 5.085 5.085 5.085	GeD1. 3eD2. 5eD3. 5eD4. GeD5. GeD6. 81D1o2 81D1o3 81D1o5 81D1o5 81D1o6 81D1o7 81D1o8		GeD "	OAL OAL OAL OAL OAL OAL SIE	160 160 161 161 161 161 44 K4 K4 K6 K8
V 2. V 3. V 4. V 5. V 6. V 7. V 8. V 9. V10. V12. V13.		V8 V-tt V-p V-p V-tt V-tp V-tp V-pp V-pp V	FC F	1284 1282 126 126 126 1284 1284 1284 1284 1284 1285 1284 1284 1285 1282 1282 1282 1288 1288 1288 1288	GeD1. 3eD2. 5eD3. 5eD4. GeD5. GeD6. 81D1o1 81D1o2 81D1o3 81D1o5 81D1o6 81D1o7 81D1o8		GeD "	OAL OAL OAL OAL OAL OAL SIE SIE SIE SIE SIE SIE SIE SIE SIE	160 160 161 161 161 64 84 86 86 86 86 83
V 2. V 3. V 4. V 5. V 6. V 7. V 8. V 9. V10. V11. V12. V15. V15. V15. V17.		V8 V-tt V-p V-tt V-tp V-tp V-tp V-tp V-tp	FC F	1284 542 528 516 516 516 5184 5184 5184 5184 5184 5184 5184 5185 5185	GeD1. 3eD2. GeD3. GeD4. GeD5. GeD6. SiDlo1 SiDlo2 SiDlo5 SiDlo5 SiDlo6 SiDlo6 SiDlo7 SiDlo8 SiDlo9 SiDlo9 SiDlo9		GeD "	OAL OAL OAL OAL OAL OAL SIE	160 160 161 161 161 161 64 84 86 86 86 86 86 86 83

			L 1.	L	
8 2.	RY		L 2.		
3 3.	618		1, 3.		
B 4a	-		L 4.		
B 46			Llol.	-	
8 5a			Lle2.		
B 5%	**	1	Lloj.		
8 5c	*		L201.	**	
3 6.	Sm		L202.	-	
в 7.	**		1.205.		
3 8.	PeS		1.204.	24	
Blol.	Em		1.205.	215	
8102.	91		L206.	**	
8103.			L207.	**	
310%.	**		L208•	**	
8105.	-		L209.		
8106.	**		L210.		
Blo7.			L211.	"	
8108.	*		1212.	-	
X 1.	XT				
r 1.	T		1.	CoSo	BMC
7 2.	Tx		2.	-	
2.01703			3-	*	-
1.	M		4.	So	
M 2.	M		5.	-	
			6.	CoSo	BURC
B 1.	7	160 mA	9.	PoSel	
B 2.	y	1 A	lo.	PoSo	
В 3.	у	1 A	11.	SoE	

TR-0503-1 /EMG-1169-4/ Müantenna alkatrészjegyzéka

Értékek	Toler.	Uzemi fesz. V	Terhol- hetőség W
45 ohm	0,5		0,25
5 "	0,5		0,25
320 "	0,5		0,25
75 "	0,5		0,25
120 pF	5	250	
390 "	5	250	
200 "	5	250	
	45 ohm 5 " 320 " 75 " 120 pF 390 "	## ## ## ## ## ## ## ## ## ## ## ## ##	Ertékek Toler. fesz. 45 ohm 0.5 5 " 0.5 320 " 0.5 75 " 0.5 120 pF 5 250 390 " 5 250

L 1. Tekercs

1167. aprīlis Pk.Kiskepusi László

TR-0503(EME- 4168)

TR-0503(EMG-1168)

TR-0503-1 (EMG-1169-4)