Crowds, Crashes, and the Carry Trade Working Paper Valeri Sokolovski

Claudia Bruschi

January, 2019

Introduction

Motivation

- Currency carry trade (CT) is known to experience sudden and extreme losses or crashes
 - ★ Limited understanding of drivers (no consensus)
 - ★ Not driven primarily by fundamentals (Chernov et al, 2018)
 - Non-linear relationship (negatively skewed) between CT activity and their returns (Brunnermeier et al, 2009)

Objective

 Link whether and how crowdedness increases the likelihood and intensity of a carry trade crash

Basic Mechanism

- Carry trade returns are a consequence of the carry trade activity
 - Large negative exchange rate shock trigger a mass liquidation of CT positions due to constraints
 - Simultaneous unwinding results in a large order flow that further depreciates the investment currency
- Assumptions
 - Leverage
 - Institutional constrains (only bind in event of loss)
- Impact intuitive but not obvious
 - Macro models: shifts would be due to fundamentals
 - Heterogeneous participants

Hypothesis

Hypothesis 1

The likelihood of an extreme negative carry trade return realization (crash) is higher during times of elevated carry trade crowdedness

Hypothesis 2

Elevated carry trade crowdedness amplifies any positive effects of the other factors on the likelihood of a carry trade crash

Definition - Payoff

Payoff to currency trading strategies (perspective of US investor):

$$z_{t+1}^{j} \equiv (1 + i_{t}^{j}) \frac{S_{t}^{j}}{S_{t+1}^{j}} - (1 + i_{t}^{\$})$$
 (1)

 S_t^j is spot exchange rate of currency j at time t

 $i_t^\$$ is one-period dollar interest rate

 $\emph{i}_t^\emph{J}$ is one-period for eign currency j's interest rate

• If covered interest rate parity (CIP) holds

$$z_{t+1}^{j} = \left[\frac{F_t^{j}}{S_{t+1}^{j}} - 1 \right] (1 + i_t^{\$})$$
 (2)

 F_t^j is the forward exchange rate

Definition - CT Payoff

Payoff of a single foreign currency carry trade:

$$Z_{t+1}^j = w_t^j z_{t+1}^j (3)$$

where:

$$w_t^j = egin{cases} +1, & ext{if } i_t^j \geqslant i_t^\$ \ -1, & ext{otherwise} \end{cases}$$

Data

- Data: Spot + 1-month forward exchange rates (close, ask, bid, high low), TED spread, CBOE VIX index, AUD turnover, AUM, eurocurrency interest rate, Fama-French factors
- Period: Jan 1976 Apr 2016
- G10 currencies: AUD, GBP, CAD, EUR, DEM, JPY, NZD, NOK, SEK, CHF, USD
- Source: Datastream, Bloomberg, FRED, Kenneth's Frech, Reserve Bank of Australia, Barclay Hedge

Definitions

CT Portfolio:

$$R_{Carry,t+1} = \frac{1}{N_t} \sum_{j=1}^{N_t} Z_{t+1}^j$$
 (4)

Equal-weighted (rebalanced monthly) carry trade portfolio of N_t currencies

Carry Trade Performance Sumulative Payoff to \$1 Jan 76 Jan 80 Jan 85 Jan 90 Jan 95 Jan 00 Jan 05 Jan 10 Jan 15 Carry Trade Bank Deposit USD Carry Trade Returns (% p.m.) 2 0 -4 -3 -2 -1

ΐρ

Jan 80

Jan 85

Jan 95

Jan 00

Jan 05

Jan 10

Definitions

• Carry trade crashes: drawdown belonging to the top (most negative) 100 drawdowns in the sample

Carry Trade Crashes

Definitions - Carry Trade Crowdedness

- Currency co-momentum (4 most likely target currencies)
 - Purge effects of the global FX and U.S. shocks (dollar factor average currency excess return of all other currencies against the USD) country specific effect

$$\left(\frac{S_{\tau+1}^j - S_{\tau}^j}{S_{\tau}^j}\right) = \alpha + \beta_{DOL}DOL_{\tau+1} + e_{\tau+1}^j$$
 (5)

Use the regression residuals to calculate correlation coefficients btw the currencies:

$$Crowd_{t}^{FX} = \frac{corr_{t}^{I_{1}I_{2}} + corr_{t}^{F_{1}F_{2}} - corr_{t}^{I_{1}F_{1}} - corr_{t}^{F_{2}I_{1}} - corr_{t}^{I_{2}F_{1}} - corr_{t}^{F_{2}I_{2}}}{6}$$
(6)

Carry Trade Crowdedness

Carry Trade Crowdedness

Other Definitions

- FX volatility (Bakshi and Panayotov, 2013): square root of the sum of squares of daily log changes in the spot exchange rate against the USD over a month
- FX illiquidity (Karnaukh et al., 2015): average between a relative bid-ask spread and a bid-ask estimator (Corwin and Schultz, 2012)
- TED spread (funding illiquidity) difference btw the 3-month U.S. LIBOR and U.S. T-Bill interest rates
- CBOE VIX Index (stock market volatility)

Result - Carry trade crashes and Crowdedness

Carry Trade Crashes and Crowdedness

Carry trade crashes, crowdedness and alternative factors

• Elevated level of crowdedness increases the probability of a crash?

$$\mathbb{P}(Crash_t = 1) = b_0 + b_1 I_{t-1, Crowd, Q(5)} + b_2 I_{t-1, X^k, Q(5)}$$
 (7)

- Crash_t : binary variable. Equals 1 on the day of the start of the carry trade crash
- $I_{t-1,Crowd,Q(5)}$: binary variable. Equals 1 on the days when the carry trade crowdedness is above the 80th percentile of its sample distribution

Carry trade crashes, crowdedness and alternative factors

Crash Probability: Crowdedness, FX Volatility, and FX Illiquidity

	(1)	(2)	(3)	(4)	(5)
	$\mathbb{P}\left(\operatorname{Crash}=1\right)$	$\mathbb{P}\left(\operatorname{Crash}=1\right)$	$\mathbb{P}\left(\operatorname{Crash}=1\right)$	$\mathbb{P}\left(\operatorname{Crash}=1\right)$	P (Crash=1
Panel A: FX Volatility					
Constant	0.95***	0.70***	0.58***	0.44***	0.57***
	(0.09)	(0.09)	(0.08)	(0.09)	(0.09)
$I_{Crowd,Q(5)}$	()	1.26***	()	0.90***	0.12
Cloud,Q(0)		(0.32)		(0.29)	(0.25)
I _{FX-Vol.Q(5)}		(, ,	1.85***	1.66***	0.88***
134-401,Q(0)			(0.35)	(0.33)	(0.34)
$\mathbf{I}_{\text{Crowd,Q(5)}} \cdot \mathbf{I}_{\text{FX-Vol,Q(5)}}$			()	()	2.52***
-Clowd,Q(3) -FA=V0l,Q(3)					(0.82)
Observations	10.479	10,479	10,479	10,479	10.479
R-squared	0.000	0.002	0.007	0.008	0.010
Panel B: FX Illiquidity					
Constant	1.22***	0.83***	0.74***	0.56***	0.70***
	(0.14)	(0.13)	(0.12)	(0.13)	(0.13)
$I_{Crowd,Q(5)}$	(012-1)	1.57***	()	1.00***	0.23
~Crowa,Q(5)		(0.40)		(0.37)	(0.33)
$I_{FX\text{-Illiq},Q(5)}$		(0110)	2.38***	2.06***	0.99*
-r A-miq,Q(0)			(0.49)	(0.47)	(0.52)
$I_{Crowd,Q(5)} \cdot I_{FX-Illiq,Q(5)}$			()	()	2.62***
-Crowd,Q(0) -FA-miq,Q(0)					(1.01)
Observations	6,568	6,568	6,568	6,568	6,568
R-squared	0,000	0.003	0.008	0.009	0.011

*** p<0.01, ** p<0.05, * p<0.

Carry trade crashes, crowdedness and alternative factors

Crash Prob	ability:	Crowdedness.	VIX.	and	TED	Spread
------------	----------	--------------	------	-----	-----	--------

	(1)	(2)	(3)	(4)	(5)
	$\mathbb{P}\left(\operatorname{Crash}=1\right)$	$\mathbb{P}\left(\operatorname{Crash}=1\right)$	P(Crash=1)	$\mathbb{P}\left(\operatorname{Crash}=1\right)$	P(Crash=1
Panel A: VIX					
Constant	1.21***	0.85***	0.91***	0.62***	0.81***
	(0.13)	(0.13)	(0.13)	(0.14)	(0.14)
$I_{Crowd,Q(5)}$		1.50***		1.37***	0.47
		(0.40)		(0.39)	(0.37)
$I_{VIX,Q(5)}$			1.59***	1.37***	0.26
			(0.45)	(0.43)	(0.38) 3.46***
$\mathbf{I}_{\text{Crowd,Q(5)}} \cdot \mathbf{I}_{\text{VIX,Q(5)}}$					(1.12)
					(1.12)
Observations	6,612	6,612	6,612	6,612	6,612
R-squared	0.000	0.002	0.003	0.005	0.009
Panel B: TED spread					
Constant	1.09***	0.78***	0.91***	0.62***	0.73**
	(0.12)	(0.12)	(0.12)	(0.13)	(0.12)
$I_{Crowd,Q(5)}$		1.31***		1.30***	0.81**
		(0.36)		(0.35)	(0.36)
$I_{TED,Q(5)}$			0.73**	0.59*	- 0.03
			(0.35)	(0.34)	(0.29) 2.06**
$I_{Crowd,Q(5)} \cdot I_{TED,Q(5)}$					(0.96)
					(0.90)
Observations	7,427	7,427	7,427	7,427	7,427
R-squared	0,000	0.002	0,000	0.003	0.004

Crash Intensity

 $Q_{R_{\mathrm{Carry},t}}\left(q\right) = \alpha_q + \beta_q \operatorname{I}_{\mathsf{t-1,Crowd},\mathsf{Q}(5)} + b_2 \operatorname{I}_{\mathsf{t-1,FX-Vol},\mathsf{Q}(5)} + b_3 \operatorname{I}_{\mathsf{t-1,Crowd},\mathsf{Q}(5)} \cdot \operatorname{I}_{\mathsf{t-1,FX-Vol},\mathsf{Q}(5)}$

Doily Come Toods Datums Quantile Domession: EV Volatility and EV Illianidity

	Q(0.05)	Q(0.10)	Q(0.2)	Q(0.3)	Q(0.4)	Q(0.5)	OLS
Panel A: FX Volatility							
$I_{Crowd,Q(5)}$	- 0.069***	- 0.036**	- 0.012	- 0.007	- 0.005	- 0.004	- 0.001
	(0.024)	(0.015)	(0.010)	(0.007)	(0.007)	(0.005)	(0.009)
$I_{FX-Vol,Q(5)}$	- 0.366***	- 0.267***	- 0.111***	- 0.057***	- 0.022***	0.003	- 0.016
	(0.024)	(0.015)	(0.010)	(0.007)	(0.007)	(0.005)	(0.010)
Constant	- 0.408***	- 0.275***	- 0.153***	- 0.077***	- 0.022***	0.021***	0.017**
	(0.012)	(0.007)	(0.005)	(0.003)	(0.003)	(0.002)	(0.003)
$I_{Crowd,Q(5)}$	0.021 (0.032)	- 0.007 (0.019)	- 0.008 (0.012)	- 0.007 (0.009)	- 0.008 (0.008)	- 0.009 (0.006)	- 0.006 (0.008)
$I_{FX-Vol,Q(5)}$	- 0.234***	- 0.209***	- 0.099***	- 0.057***	- 0.026***	- 0.003	- 0.021*
	(0.031)	(0.019)	(0.012)	(0.009)	(0.008)	(0.006)	(0.011)
$\mathbf{I}_{\mathrm{Crowd,Q(5)}} \cdot \mathbf{I}_{\mathrm{FX-Vol,Q(5)}}$	- 0.335***	- 0.214***	- 0.024	- 0.000	0.011	0.015	0.016
	(0.057)	(0.035)	(0.021)	(0.016)	(0.015)	(0.011)	(0.024)
Constant	- 0.423*** (0.012)	- 0.280*** (0.008)	- 0.154*** (0.005)	- 0.077*** (0.004)	- 0.021*** (0.003)	0.022*** (0.003)	0.018** (0.003)
Panel B: FX Illiquidity							
$I_{Crowd,Q(5)}$	0.006	0.013	0.016	0.003	- 0.005	- 0.010	0.002
	(0.038)	(0.028)	(0.015)	(0.012)	(0.012)	(0.011)	(0.012)
$I_{\mathrm{FX-Illiq,Q(5)}}$	- 0.091**	- 0.083**	- 0.059***	- 0.043***	- 0.024*	0.002	- 0.020
	(0.045)	(0.033)	(0.018)	(0.014)	(0.014)	(0.013)	(0.015)
$\mathbf{I}_{\mathrm{Crowd,Q(5)}} \cdot \mathbf{I}_{\mathrm{FX-Illiq,Q(5)}}$	- 0.447***	- 0.330***	- 0.083***	- 0.032	- 0.007	0.002	- 0.000
	(0.071)	(0.052)	(0.028)	(0.022)	(0.021)	(0.020)	(0.029)
Constant	- 0.507*** (0.017)	- 0.345*** (0.012)	- 0.195*** (0.007)	- 0.102*** (0.005)	- 0.036*** (0.005)	0.022***	0.014** (0.005)

Crash Intensity

$$Q_{R_{Carry,t}}(q) = \alpha_q + \beta_q I_{t-1,Crowd,Q(5)} + b_2 I_{t-1,TED,Q(5)} + b_3 I_{t-1,Crowd,Q(5)} \cdot I_{t-1,TED,Q(5)}$$

Daily Carry Trade Returns Quantile Regression: TED Spread

	Q(0.05)	Q(0.10)	Q(0.2)	Q(0.3)	Q(0.4)	Q(0.5)	OLS
	0.101***	0.000***	0.027***	0.018*	- 0.011	0.005	0.000
$I_{Crowd,Q(5)}$	- 0.191*** (0.030)	- 0.080*** (0.021)	- 0.037*** (0.011)	- 0.018* (0.009)	(0.007)	- 0.005 (0.007)	- 0.002 (0.011)
$I_{TED,Q(5)}$	- 0.028	- 0.009	0.019	0.024**	0.020**	0.005	- 0.005
	(0.032)	(0.022)	(0.012)	(0.010)	(0.008)	(0.008)	(0.011)
Constant	- 0.489***	- 0.324***	- 0.183***	- 0.096***	- 0.035***	0.022***	0.015**
	(0.017)	(0.011)	(0.006)	(0.005)	(0.004)	(0.004)	(0.005)
$I_{Crowd,Q(5)}$	- 0.054	- 0.007	- 0.007	- 0.006	- 0.008	- 0.010	- 0.005
-Crowd,Q(5)	(0.035)	(0.023)	(0.014)	(0.010)	(0.009)	(0.008)	(0.011)
$I_{TED,Q(5)}$	0.096**	0.071***	0.049***	0.035***	0.022**	- 0.000	- 0.008
	(0.039)	(0.026)	(0.016)	(0.012)	(0.010)	(0.009)	(0.009)
$I_{Crowd,Q(5)} \cdot I_{TED,Q(5)}$	- 0.487***	- 0.364***	- 0.125***	- 0.078***	- 0.013	0.016	0.012
	(0.070)	(0.047)	(0.029)	(0.021)	(0.018)	(0.016)	(0.030)
Constant	- 0.504***	- 0.340***	- 0.188***	- 0.098***	- 0.036***	0.023***	0.015**
	(0.016)	(0.011)	(0.007)	(0.005)	(0.004)	(0.004)	(0.004)
01	7100	7400	7400	7400	7100	7100	= 100
Observations	7426	7426	7426 (0.01, ** p<0.0	7426	7426	7426	7426

Monthly carry trade returns and crowdedness

Monthly Carry Trade Returns and Crowdedness

Robustness

- Is the carry trade measurement right?
 - ► Alternative measurement for CT crowdedness: historic hedge fund exposure to the currency CT

Conclusion

- 40% to 50% of the most extreme carry trade drawdowns occur following periods that are identified (in-sample) as having the highest levels of carry trade crowdedness
- High levels of crowdedness double the probability of realizing an extreme carry trade loss after controlling for other factors
- The level of crowdedness amplifies negative carry trade returns and has no effect on the positive ones

Thank you!

Claudia Bruschi

claudiabm1@insper.edu.br