Clustering Analysis for Athletes Data

Sharmin Akhter

Memorial University of Newfoundland

April 17, 2023

Aim of the Analysis

- Ontains information for athletes from various sports.
- Test if blood hemoglobin levels differ between endurance and power athletes.
- Analysis aims to cluster athletes into their respective events.
- Check if clustering algorithm separates athletes by gender.
- Evaluate if the clustering algorithm follows the endurance/power classification.

Problem Statement

- Cluster the data into ten classes each one representing a sport.
- Cluster into female and male or power-related and endurance-related.

Data Information

Below is an initial look at the data.

```
rcc wcc
                hc
                     hg ferr
                               bmi
                                     ssf pcBfat
                                                   1bm
                                                          ht
                                                                       sport
## 1 3.96 7.5 37.5 12.3
                          60 20.56 109.1
                                          19.75 63.32 195.9 78.9
                                                                    f B Ball
  2 4.41 8.3 38.2 12.7
                          68 20.67 102.8
                                          21.30 58.55 189.7 74.4
                                                                    f B Ball
## 3 4.14 5.0 36.4 11.6
                          21 21.86 104.6
                                          19.88 55.36 177.8 69.1
                                                                    f B Ball
## 4 4.11 5.3 37.3 12.6
                          69 21.88 126.4
                                          23.66 57.18 185.0 74.9
                                                                    f B Ball
  5 4.45 6.8 41.5 14.0
                          29 18.96
                                    80.3
                                          17.64 53.20 184.6 64.6
                                                                    f B Ball
## 6 4.10 4.4 37.4 12.5
                          42 21.04 75.2
                                          15.58 53.77 174.0 63.7
                                                                    f B Ball
```

rcc	wcc	$^{ m hc}$	hg	ferr	bmi
3.96	7.5	37.5	12.3	60	20.56
4.41	8.3	38.2	12.7	68	20.67

ssf	pcBfat	$_{ m lbm}$	$_{ m ht}$	wt	sex	x sport	
109.1	19.75	63.32	195.9	78.9	f	B_Ball	
102.8	21.30	58.55	189.7	74.4	\mathbf{f}	B_Ball	

- 202 observations, 13 variables
- 2 Source: R document

Outline

- Clustering through some pair plots
- Hierarchical
- K-means
- Conclusion

Clustering into Sports

Variables are not distinguishable between the sports

Clustering into Sports

 Only BMI is distinguishable which are in red points and represents athletes in sports

Clustering into Gender

- Clearly distinguishable (Men, Women)
- Hemoglobin and Hematocrit are the most effective variables for differentiating between Men and Women

Clustering into two sports group

- Endurance sports: Basketball, Rowing, Sprint (400m), Tennis, and Water Polo.
- Power sports: Gym, Netball, Swimming, Sprints (¡400m), and Field.
- Not distinguishable

Hierarchical Clustering k=2, k=10, k=2

Confusion Matrix for Gender, Sports, Power/Endurance Sports

Confusion Matrix (Clusters Represent Gender)

 $\begin{array}{c|ccc}
 & 1 & 2 \\
 \hline
 & 99 & 5 \\
 & 1 & 97 \\
 \end{array}$

: Confusion Matrix (Clusters Represent Sports)

4	5	3	10	8	7	1.	6	2	9
17	2	0	0	O	0	5	1	O	1
2	19	0	0	0	2	5	5	0	1.
3	1.	4	0	0	7	2	3	0	- 3
0	1.	0	4	0	0	1.	0	6	0
1	1.	0	0	4	4	0	0	1	2
0	0	0	4	5	15	5	7	4	2
0	11	0	5	1	0	6	4	1	0
0	0	0	1.	3	1	0	2	0	1
0	2	0	3	0	0	1.	0	7	0
0	0	0	0	2	0	0	0	0	1

Confusion Matrix (Clusters Represent Power/Endurance

 $\begin{array}{c|cccc}
2 & 1 \\
\hline
47 & 57 \\
36 & 62
\end{array}$

Hierarchical Clustering and K-means

- \bullet Error Rate and R^2 for Hierarchical
 - Cluster Represent Gender 2.9% and 0.3470876
 - Cluster Represent Sports 60% and 0.6568497
 - $\ \, \ \, \ \,$ Cluster Represent Power/Endurance Sports 46% and 0.3470876
- lacktriangle Error Rate and R^2 for K-mean
 - Cluster Represent Gender 3.9% and 0.3551394
 - ② Cluster Represent Sports 61% and 0.9355204
 - $\ \, \odot \,$ Cluster Represent Power/Endurance Sports 47% and 0.3551394

Summary

- lacktriangle Data is best suited for clustering male and female athletes due to the lowest classification error when k=2.
- Clustering based on sports was not successful, but may be possible with more data.
- Clustering sports into power and endurance categories has potential, but requires better judgment of which sports belong to each category.
- Evaluating all combinations to find the lowest error rate is possible, but computationally expensive and time-consuming.

Thank you!!!