Elements in regression

Researchers are interested in the relation of weight of newborn and weeks of pregnancy. There are 1153 babies.

y = response variablex = explanatory variable

What is a regression?

RECALL: regression line y_hat = a + bx residual = y - y_hat

▶ Regression is a statistical methodology that use the statistical relation between predictor variable(s)(input, independent variable(s), etc.) and a response variable (output, dependent variable, etc.), so that a response can be predicted from the others.

► Two distinct goals

- 1. Construct and Tests about statistical relation between predictor variables and response variables
- 2. Prediction

Where to start? ...a little history

- 1. First used by Sir Francis Galton, 19th century.
 - Sweet pea experiment in 1875: size of mother pea and size of daughter pea.

- Median weights of daughter seeds from a particular size of mother seed: a straight line with positive slope ("r") less than 1.0 approximately.
- ► Regression to the mean "Extremely large or small mother seeds typically generated substantially less extreme daughter seeds."
- 2. Later, Karl Pearson extended to statistics
 - ▶ median to mean (1896)
 - ▶ mechanical calculating machine (no later than 1910)

Ranalli M. Chapter 10 3 / 28

Regression: Examples

 Science and Engineering Luminosity and temperature of stars.

- Epidemiology and Biology smoking behavior, heart disease.
- Finance, economics and business. trend analysis

Regression: a interesting example

► House price and SAT score in Boston area

Does X cause Y??

No! "Correlation does not imply causation."

Goals

Given some data to fit regression model

- How do you validate model assumptions and fit a regression (or other) model to the data?
- ▶ How to interpret the results and examine the confidence in the values of the model?
- ► How to predict value for a new observation by the model?

Given a problem to predict some variable by some others.

- What kind of model should you use?
- Which variables to be include?
- Which transformations of variables and interaction terms should you use?

Chapter 10 6 / 28

Relations between Two Variables: Regression

Recall the example of newborn baby weight and his/her mother pregnancy weeks.

Ranalli M. Chapter 10 7 / 28

Sample v.s. Population

Not only **Regression**, **Statistical Methods** are usually used to make generalization about population based on information of sample.

- A sample is the collection of units (people, animals, cities, fields, whatever you study) that is actually measured or surveyed in a study.
- ► The **population** is the large group of units we are interested in, from which the sample was selected.
- ► The sample, a subset of the population, is used to estimate characteristics of the population.

Example

Example: Pregnancy weeks and baby weight

population:

► Sample:

Notations for Sample and Population

Different notations are used for sample and population characteristics. For instance,

- ▶ The mean of a sample is often denoted as \bar{y} .
- ▶ The mean of a population is often denoted as μ .
- An alternative notation for population mean is

$$\mu = E(Y),$$

called the expected value of Y, or the expectation of Y.

NOTE: In practice, we do not know the exact value of μ but only the value of \bar{y} . Therefore, we often use the sample characteristic to estimate the feature of the population.

Based on a sample of 1153 babies,

▶ blue line estimated from the 1153 observations.

$$y = -0.56 + 0.11x$$

- ▶ Is it for the sample (x, y)?
- ls it for the population variable (X, Y)?

A component of the simple regression model is that the mean value of the Y-variable is a straight line function of an X-variable. The two coefficients of a straight line are the intercept and the slope.

$$E(Y) = \beta_0 + \beta_1 X$$

► Intercept:

population : β_0

sample : b_0 or $\hat{\beta}_0$

► Slope:

population : β_1

sample : b_1 or \hat{eta}_1

In the example of newborn babies. Based on a sample of 1153 women, a regression line is

predicted weight=
$$-0.56 + 0.11$$
 weeks

Then the sample slope is $b_1 = 0.367$ and the sample intercept is $b_0 = -7.15$

We do not know the values of β_0 and β_1 , the intercept and slope for the larger population of all individuals in the population (all babies born). It would be wrong, for example, to write $\beta_1 = 0.367$

Chapter 10 13 / 28

Ranalli M. Chapter 10 14 / 28

- A regression equation describes how the mean value of a Y-variable relates to specific values of the X-variable(s) used to predict Y.
- ► The **simple (linear) regression equation** is that the mean of Y is a straight line function of X:

$$E(y_i) = \beta_0 + \beta_1 \cdot x_i,$$

where $E(y_i)$ is used to represent the mean value (expected value), and the subscript i denotes the ith unit in the population.

The overall **simple (linear) regression model**:

$$Y = \beta_0 + \beta_1 \cdot X + \epsilon,$$

- y: response/dependent variable
- x: predictor/independent variable
- ϵ : random error of Y from the line $\beta_0 + \beta_1 X$.

Assumptions of Errors

- All the errors ϵ are independent with mean 0, i.e. $E(\epsilon) = 0$.
- \blacktriangleright All the errors ϵ have the same degree of variation from the regression line for all x, i.e. $var(\epsilon) = \sigma^2$.
- For the purpose of statistical inference, we assume that the errors have a normal distribution, i.e. $\epsilon \sim N(0, \sigma^2)$.

Ranalli M. Chapter 10 17 / 28

Sample Estimates of Model

Assume simple regression model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, \dots, n. \tag{1}$$

Fitted model:

$$\hat{y}_i = b_0 + b_1 x_i; \ i = 1, ..., n. \tag{2}$$

where Predicted/Fitted values: $\hat{y}_i = b_0 + b_1 x_i$

Our **goal** is to estimate β_0, β_1 by b_0, b_1 based on a sample of observations (x_i, y_i) of size n.

How to decide the best estimates based on the sample?

Chapter 10 19 / 28

How to get b_0 and b_1 ?

Which one is better Guess 1 and Guess 2?

green line: $y = 3.38 + 0 \cdot x$, sum of squared lengths= 312.0133

blue line:
$$y = -0.56 + 0.11 \cdot x$$
, sum of squared lengths= 254.2687

How to get b_0 and b_1 ?

Our criterion is **least sum of squared errors**.

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2.$$

Predicted/Fitted values

$$\hat{y}_i = b_0 + b_1 x_i$$

Observed errors (residuals)

$$e_i = y_i - \hat{y}_i$$

Find b_0, b_1 such that SSE is minimized!

How to get b_0 and b_1 ?

Based on the rule of least sums of squared errors, the estimated β coefficients in the simple linear regression model have the following expressions:

$$b_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$b_{0} = \bar{y} - b_{1}\bar{x}$$

 b_0 and b_1 are called the **least square** estimates of β_0 and β_1 .

Ranalli M. Chapter 10 22 / 28

The old example again...

The simple regression equation relating weight of a new born baby(y) and his/her mother's pregnancy weeks(x) is

average weight
$$= \beta_0 + \beta_1 \cdot \text{weeks}$$
.

Based on sample, sample intercept is $b_0 = -0.56$ and the sample slope is $b_1 = 0.11$. Interpret the parameters:

- \blacktriangleright b_0 : the average height at weeks=0 is 0.56
- b_1 : For one unit increase in weeks, the average weight increases by 0.11 kg.

Chapter 10 23 / 28

The old example again...

Note: It would be wrong, for example, to write the regression equation

average weight = $-0.56 + 0.11 \cdot$ week.

But we can write

$$\widehat{\text{weight}} = -0.56 + 0.11 \cdot \text{week}.$$

Sum of Squared Errors

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Mean Squared Error

$$MSE = \frac{SSE}{n-2}$$

MSE is the sample variance of the errors and estimates σ^2 . Important Note: The divisor n-2 only applies to simple regression. The general rule is that the divisor is n-p, where p = number of parameters in the regression equation.

$$E\{MSE\} = \sigma^2$$

Standard Deviation of Errors

$$s = \sqrt{MSE}$$

which is the sample standard deviation of the errors (residuals) from the regression line. $s = \sqrt{MSE}$ can be interpreted (roughly) as the average absolute size of deviations of individuals from the sample regression line.

Chapter 10 26 / 28

R-square

$$R^2 = \frac{SST - SSE}{SST}$$

where SST is the Sums of Squares Total (or total sum of squares)

$$SST(\text{ or } SSTO) = \sum_{i=1}^{n} (y_i - \bar{y})^2.$$

- $ightharpoonup \sqrt{R^2} = r(\text{correlation})$
- Interpretation: R^2 is interpreted as the fraction of variation in y that is explained by the fitted regression equation. It is often converted to a percentage.

Chapter 10 27 / 28

NOTE: residual std dev = $sqrt(sum(y - y_hat)^2 / n - 2)$

green line:
$$\bar{y} = 3.385$$
, $SSTO = 312.0133$

$$MSE=$$
 , $s=$

blue line:
$$y = -0.56 + 0.11x$$
, $SSE = 254.2687$

Ranalli M. Chapter 10 28 / 28