In this note, we will consider the canonical extension of a quasi-unipotent local syetem of rank 1, *i.e.* root of unity. We will use a simple example to justify the idea that the equivariant bundle on the branched cover is the canonical extension of the pullback of the local system.

Let $X=\Delta$ be the unit disk, $D\subset X$ be the origin. Consider the local system $\mathscr V$ on Δ^* given by $(\mathbb Z,T)$, where $T=\epsilon_{10}^3=\exp\frac{6\pi i}{10}$. Let x be the coordinate on Δ . Then, the canonical extension (V,∇) of $\mathscr V$ is $L=O_X\otimes x^{3/10}$. The connection matrix of ∇ is given by $\frac{3}{10}\frac{dx}{x}$, and the inclusion map

$$\mathcal{V} \to L$$

is given by $e_1 \mapsto x^{-1/3} \otimes x^{1/3}$.

Let $p: Y \to X$ be the branched cyclic cover defined by $y^10 = x$. $p^{-1}\mathcal{V}$ is the trivial local system, so its canonical extension is the trivial line bundle with trivial connection. I will recover the trivial line bundle on Y using Biswas's construction of orbifold bundle.

Use Biswas's notation. The parabolic structure of L is given by

$$L = F_1(L) \subset F_2(L) = L \otimes O_X(-D)$$

the weight is 3/10.

Let $f_2:(10-3)\tilde{D}\to n\tilde{D}$ be the inclusion of schemes. Let \bar{V}_2 be the restriction of $p^*(L|_D/F_2(L|_D))\otimes O_X(D)$ to the scheme $(10-3)\tilde{D}$. But in our case, $F_2(L|_D)=0$. So \bar{V}_2 is the restriction of $p^*(L|_D\otimes O_X(D))$ to the scheme $(10-3)\tilde{D}$. We will be done once we write down the generators of \bar{V}_2 as a \mathbb{C} -vector space.

$$L|_D = \mathbb{C} \otimes x^{3/10}$$
.

$$p^*L|_D = \mathbb{C} \otimes y^3$$
.

$$p^*O_X(D) = O_Y \otimes y^{-10}.$$

Restriction of $p^*O_X(D)$ to $(10-3)\tilde{D}$ is $\mathbb{C}<1\otimes y^{-10},y\otimes y^{-10},\cdots,y^6\otimes y^{-10}>$ So $\bar{V}_2=\mathbb{C}<1\otimes y^{-7},y\otimes y^{-7},\cdots,y^6\otimes y^{-7}>$

Now, consider the exact sequence

$$0 \rightarrow V_2 \rightarrow V \rightarrow \bar{V} \rightarrow 0$$

Use Biswas's algorithm in our case, we know that V_2 is the orbifold bundle corresponding to L. And according to our description of \bar{V}_2 , we know that

$$V_2 = O_Y y^7 \otimes y^{-7}$$

Then, it is obvious how to think of V_2 as a trivial line bundle.