Species Composition and Reversibility in Chemical Reaction Network Theory

Gilles Gnacadja

http://math.GillesGnacadja.info/

AMGEN

South San Francisco, California, USA

Emphasis Workshop on Dynamics in Networks with Special Properties

Mathematical Biosciences Institute

Ohio State University Columbus, Ohio, USA

24-29 January 2016

Species Composition: Theory and Applications

- Reaction Networks
- Species Composition
- Reversibility

Species Composition: Theory and Applications

- Reaction Networks
- Species Composition
- Reversibility

Reaction networks: examples

$$E + A \rightleftharpoons EA \rightarrow E + B$$

$$F + B \rightleftharpoons FB \rightarrow F + A$$

$$2A + B \longrightarrow C$$

$$\downarrow$$

$$\downarrow$$

$$D \longleftarrow A + B$$

Reaction Networks

Reaction networks: definition

Reaction network: $\mathcal{N} = (\mathcal{S}, \mathcal{C}, \mathcal{R})$

 \mathcal{S} = set of species; nonempty finite

 $\mathscr{C} = \text{set of complexes (nodes)}; \text{ nonempty finite } \subseteq \mathbb{Z}_{\geq 0} \mathscr{S}$

 \mathscr{R} = set of reactions $\subseteq \mathscr{C} \times \mathscr{C}$

Additional requirements:

No nonparticipating species

No nonparticipating complexes

No self-reacting complexes

Stoichiometric space

Stoichiometric space $\mathcal S$ of reaction network $\mathscr N=(\mathscr S,\mathscr E,\mathscr R)$

The span in the species space $\mathbb{R}\mathscr{S}$ of the reaction vectors.

Dynamics evolutions stay within stoichiometric compatibility classes, which are the traces on $\mathbb{R}_{\geqslant 0}\mathscr{S}$ of the affine subspaces of $\mathbb{R}\mathscr{S}$ parallel to \mathcal{S} .

$$rank(\mathcal{N}) := dim \mathcal{S}.$$

Stoichiometric space – an example

Simplest futile enzymatic cycle

$$E + A \rightleftharpoons EA \rightarrow E + B$$

 $F + B \rightleftharpoons FB \rightarrow F + A$

Set of species:
$$\mathscr{S} = \{E, F, A, B, EA, FB\}$$

Reactions; set \mathscr{R} Reaction vectors; spanning \mathscr{S} in $\mathbb{R}\mathscr{S}$ $E+A\to EA$ EA-E-A

 $EA \rightarrow E + A$ E + A - EA $EA \rightarrow E + B$ E + B - EA

 $F + B \rightarrow FB$ FB - F - B

 $FB \rightarrow F + B$ F + B - FB

 $FB \rightarrow F + A$ F + A - FB

A basis for S (from a canonical construction):

$$\{ (A-B)/2, EA-E-(A+B)/2, FB-F-(A+B)/2 \}$$

Species Composition: Theory and Applications

- Reaction Networks
- Species Composition
- Reversibility

Species composition

Species composition: definition

A species composition of length *n* for a reaction network $\mathcal{N} = (\mathcal{S}, \mathcal{E}, \mathcal{R})$ is any map from the species of set to the set of nonnegative nonzero *n*-tuples.

$$\mathscr{E} = (\mathscr{E}_1, \dots, \mathscr{E}_n) : \mathscr{S} \to \mathbb{Z}_{\geqslant 0}^n \backslash \{0_n\}$$

The ℝ-linear extension

$$\tilde{\mathscr{E}} = \left(\tilde{\mathscr{E}}_1, \dots, \tilde{\mathscr{E}}_n\right) : \mathbb{R}\mathscr{S} \to \mathbb{R}^n$$

gives rise to a sensible notion of composition of complexes (nodes).

Species compositions – Examples

$$E + A \rightleftharpoons EA \rightarrow E + B$$

 $F + B \rightleftharpoons FB \rightarrow F + A$

X	$\mathscr{E}(X)$
A B	1 1
C D	3

В

RA

RB

RAB

Notions associated with a composition $\mathscr E$

 \mathscr{E} -elementary species X : $\mathscr{E}(X) = e_{n,i}$ for some i = 1, ..., n

 $\mathscr{E}\text{-composite species }Y \hspace{1cm} : \hspace{1cm} \mathscr{E}(Y) \in \mathbb{Z}_{\geqslant 0}^{n} \backslash \{0_{n}, e_{n,1}, \ldots, e_{n,n}\}$

 \mathscr{E} -isomeric species Z and Z' : $\mathscr{E}(Z) = \mathscr{E}(Z')$

 ${\mathscr E}\text{-isomerism classes}$: Preimages of occurring compositions

 \mathscr{E} -conservative reaction $Q \to Q'$: $\tilde{\mathscr{E}}(Q) = \tilde{\mathscr{E}}(Q')$

 \mathscr{E} -conservative network : All reactions are \mathscr{E} -conservative

 \mathscr{E} -conservation space : $\operatorname{Ker} \tilde{\mathscr{E}}$

A Couple of Trivial Results

- Reaction network is $\mathscr E$ -conservative $\Leftrightarrow \mathscr E$ -conservation space $\operatorname{Ker} \tilde{\mathscr E} \supseteq \operatorname{stoichiometric} \operatorname{space} \mathscr S$
- In an ℰ-conservative reaction network,
 stoichiometric isomerism ⇒ ℰ-isomerism.
 - Stoichiometric isomerism:
 Two species X and Y are stoichiometrically isomeric if Y − X ∈ S.
 - Example:

$$E + A \rightleftharpoons EA \rightarrow E + B$$

 $F + B \rightleftharpoons FB \rightarrow F + A$

Species A and B are stoichiometrically isomeric:

$$B - A = (E + B - EA) + (EA - E - A)$$

29 January 2016

Compositions and Conservative Networks – Examples

$$R + A \rightleftharpoons RA$$

$$+ B$$

$$\parallel B$$

$$\parallel RB + A \rightleftharpoons RAB$$

$$X \mathscr{E}(X)$$

$$R (1,0,0)$$

$$A (0,1,0)$$

$$B (0,0,1)$$

$$E + A \rightleftharpoons EA \rightarrow E + B$$

 $F + B \rightleftharpoons FB \rightarrow F + A$

X	$\mathscr{E}(X)$
A	1
<u>B</u>	1
C	3
D	3

RA

RB

RAB

(0,0,1)

(1,1,0)

(1,0,1)

(1,1,1)

Core Composition

Core Composition Map ℰ – definition

- All expected \mathscr{E} -elementary species do occur, i.e. length n is not unneededly large. ($\widetilde{\mathscr{E}}$ is surjective.)
- ② \mathscr{E} -conservation space $\operatorname{Ker}\tilde{\mathscr{E}} = \operatorname{stoichiometric} \operatorname{space} \mathscr{S}$.

Near-Core Composition Map \mathscr{E} – definition

- ◆ All expected ℰ-elementary species do occur.
- ② \mathscr{E} -conservation space $\operatorname{Ker} \tilde{\mathscr{E}} \supseteq \operatorname{stoichiometric} \operatorname{space} \mathscr{S}$, i.e. the network is \mathscr{E} -conservative.

Contention:

For a near-core composition \mathscr{E} , the quotient space $\left|\operatorname{Ker}\tilde{\mathscr{E}}/\mathcal{S}\right|$ embodies a deficiency of the network or the composition map.

Deficient ≠ Bad

Core Composition – Example and Counter Example

$$H + OH \Rightarrow H_2O$$

 $C + 2O \Rightarrow CO_2$

			_		
	Χ	$\mathscr{E}(X)$		Χ	$\mathscr{E}'(X)$
•	H C	(1,0,0) (0,1,0)	•	H C	(1,0,0,0) (0,1,0,0)
	0	(0,0,1)		0	(0,0,1,0)
	OH H ₂ O CO ₂	(1,0,1) (2,0,1) (0,1,2)		OH H ₂ O CO ₂	$(0,0,0,1) \\ \hline (1,0,0,1) \\ (0,1,2,0)$
	Sensible, but only near-core.		•	Not so sensible, vet core.	

 $\mathsf{Ker} \tilde{\mathscr{E}} = \mathcal{S} \oplus \mathbb{R} \cdot (OH - O - H)$

Stoichiometry does not reveal that OH is made of O and H.

Another Couple of Trivial Results

• If $\mathscr E$ is a near-core composition, then:

```
\dim \operatorname{Ker} \tilde{\mathscr{E}} = \#\operatorname{species} 
- \#\operatorname{isomerism\_classes\_elem\_species}
```

Note: #isomerism_classes_elem_species = n, where n is the length of composition map.

Also:
$$\dim \operatorname{Ker} \tilde{\mathscr{E}} = \operatorname{rank} \mathscr{S} - \dim \left(\operatorname{Ker} \tilde{\mathscr{E}} / \mathcal{S} \right)$$
.

If & is a core composition, then:

Species Composition: Theory and Applications

- Reaction Networks
- Species Composition
- Reversibility

Why Yet Another Notion of Reversibility?

Motivation: Augment Chemical Reaction Network Theory with a notion of phenomenological non-graph-theoretic reversibility.

Example:

$$E + A \rightleftharpoons EA \rightarrow E + B$$

$$F + B \rightleftharpoons FB \rightarrow F + A$$

This futile enzymatic network is not reversible and not weakly reversible per CRNT.

Yet it models a reversible phenomenon.

Many scientists would simply call it reversible.

A categorization of reactions

Association or binding

$$\sum_i n_i X_i \to Y$$

Dissociation or unbinding

$$Y \to \sum_i n_i X_i$$

Isomerisation

$$U \rightarrow V$$

Do these really exist? Do they have a name?

$$\sum_i a_i A_i \to \sum_j b_j B_j$$

A categorization of species

Explicitly constructible: the target of a binding reaction

Explicitly destructible : the source of a dissociation reaction

Explicitly constructive: in the source of a binding reaction

Explicitly destructive : in target of a dissociation reaction

Each category extends with stoichiometric isomerism.

Constructive Networks

Constructive Network – definition

A reaction network is constructive if it admits a core composition.

- Terminology co-opted from Guy Shinar, Uri Alon and Martin Feinberg.
- In a constructive network, any core composition is universal among conserved compositions (in a category-theoretic sense).
- In a constructive network, notions of elementary, composite and isomeric species are independent of the choice of core composition.

Explicitly Constructive Networks

Explicitly Constructive Network – definition

- The network is constructive.
- Each composite species is
 - explicitly constructible, or
 - explicitly destructible, or
 - both.
- Each elementary species is
 - explicitly constructive, or
 - explicitly destructive, or
 - both.

Explicitly-Reversibly Constructive Networks

Explicitly-Reversibly Constructive Network – definition

- The network is constructive.
- Each composite species is both explicitly constructible and explicitly destructible.
- Each elementary species is both explicitly constructive and explicitly destructive.

A Theorem on Reversibility and Persistence

Stated casually

In a well-formed mass-action reaction network, isomerism among the building blocks controls persistence.

A little more seriously

There is persistence if among the elementary species,

- there is no isomerism, or more generally
- each isomerism class is phenomenologically strongly connected. (Example: futility in enzymatic networks.)

Theorems on Reversibility and Persistence

Theorem

- If a reaction network is explicitly-reversibly constructive, and
 - there is no isomerism among elementary species, and
 - the law of mass action is in effect,

then the reaction network is ("vacuously") persistent.

Theorem

If a mass-action binary enzymatic network is futile and cascaded, then it is ("vacuously") persistent.