GS/LS 24 info

V-(6.5 points)

Part A

In the adjacent figure (C_g) is the graph of the function g defined over IR by $g(x) = 1 + (x^2 + x - 1)e^{-x}$

The graph(C_g) intersects the axis of abscissas x'ox at two points of abscissas 0 and α The line y = 1 is an asymptote to (C_g) at $+\infty$

- 1) Knowing that g(-1) = 1 e and $g(2) = 1 + 5e^{-2}$ Set up the table of variations of g
- 2) Show that α verifies two conditions $-1.52 < \alpha < -1.5$ and $\alpha^2 + \alpha = 1 e^{\alpha}$
- 3) Study the sign of g(x), according to the values of x
- 4) Let $h(x) = \sqrt{g(x)} + \ln(-x)$. Find domain of definition of h

Part B

Consider a function f defined on IR by $f(x) = -x + (x^2 + 3x + 2)e^{-x}$ Let (C) be the representative curve of f in an orthonormal system (O, $\overrightarrow{\iota}$, \overrightarrow{J})

- 1) Calculate $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to -\infty} \frac{f(x)}{x}$
- 2) a)Calculate $\lim_{x\to+\infty} f(x)$
 - b) Show that the line (D):y = -x is an oblique asymptote to (C) at $+\infty$
 - c) Study the relative positions of (C) and (D)
- 3) a) Show that f'(x) = -g(x)
 - b) Set up the table of variations of f
- Show that (C) admits two points of inflection of coordinates to be determined
- 5) Plot (C) . Choose $\alpha = -1.51$

III. (11 points)

GS/LS 24 info

Part A

The below table is the table of variations of the function g defined over \mathbb{R} by $g(x) = axe^{2x} + b$, where a and b are two real numbers.

- 1) Prove that $g(x) = -4xe^{2x} 1$.
- 2) Study, according to the values of x, the sign of g.

Part B

Consider the function f defined over \mathbb{R} by $f(x) = (2x - 1)e^{2x} + x$. Denote by (C) the representative curve of f in an orthonormal system $(0; \vec{\imath}, \vec{\jmath})$.

- 1) a. Calculate $\lim_{x \to -\infty} f(x)$.
 - **b.** Prove that the line (d) of equation y = x is an asymptote to (C) at $-\infty$.
 - **c.** Study, according to the values of x, the relative position of (C) and (d).
- 2) Calculate $\lim_{x \to +\infty} f(x)$ and find f(1) to the nearest 10^{-2} .
- 3) Prove that f'(x) = -g(x), then setup the table of variation of f.
- 4) Show that (C) admit an inflection point W whose coordinates are to be determined.
- 5) a. Prove that the equation f(x) = 0 admit a unique solution α and verify that $0.4 < \alpha < 0.5$.
 - **b.** Show that $e^{2\alpha} = \frac{-\alpha}{2\alpha 1}$.
- 6) a. Precise the point of intersection A of (C) with the ordinate axis.
 - **b.** Write the equation of tangent (T) to (C) at A.
- 7) Draw (d) and (C). (Take $\alpha = 0.45$)
- 8) Let h be the function defined as $h(x) = \ln(-1 f(x))$.
 - **a.** Use (C) to determine the domain of definition D_h of h.
 - **b.** Prove that h is strictly decreasing over its domain D_h .