Grundbegriffe der Theoretischen Informatik

Sommersemester 2017 - Beate Bollig

Die Folien basieren auf den Materialien von Thomas Schwentick.

Teil C: Berechenbarkeit und Entscheidbarkeit

13: Die Church-Turing-These

Plan

- Alle im letzten Kapitel betrachteten Berechnungsmodelle sind gleichmächtig:
 - WHILE-Programme
 - GOTO-Programme
 - Turingmaschinen
- Die Church-Turing-These besagt, dass diese (und andere) Modelle gerade die intuitiv berechenbaren Funktionen erfassen
- Außerdem:
 - Turingmaschinen mit mehreren Strings k\u00f6nnen durch 1-String-Turingmaschinen simuliert werden

Inhalt

→ 13.1 WHILE vs. GOTO

- 13.2 Mehrstring-Turingmaschinen
- 13.3 Turingmaschinen und WHILE/GOTO-Programme
- 13.4 Die Church-Turing-These
- 13.5 Entscheidbarkeit und Berechenbarkeit: Definition

GOTO → WHILE

Satz 13.1

Jede GOTO-berechenbare Funktion ist auch WHILE-berechenbar

Beweisidee

$$M_1:A_1;\ M_2:A_2;\ dots M_k:A_k$$

$$x_z := 1;$$
WHILE $x_z \neq 0$ DO

IF $x_z = 1$ THEN A_1' END;
IF $x_z = 2$ THEN A_2' END;

 \vdots

IF $x_z = k$ THEN A_k' END;

IF $x_z = k + 1$ THEN $x_z := 0$

$$\bullet \ A_{\boldsymbol{n}} = \boxed{\boldsymbol{x_i := x_j + c}}$$

$$\Rightarrow$$
 $A'_n = x_i := x_j + c; \quad x_z := x_z + 1$

$$ullet A_n = \boxed{x_i := x_j - c}$$

$$\Rightarrow$$
 $A'_n = x_i := x_j - c; \quad x_z := x_z + 1$

$$ullet$$
 $oldsymbol{A_n} = oldsymbol{eta_i} oldsymbol{x_i} = oldsymbol{c}$ Then goto $oldsymbol{M_j} \Rightarrow$

$$A_n' = x_z := x_z + 1;$$
 IF $x_i = c$ Then $x_z := j$ end

$$ullet$$
 $A_n = | \mathtt{HALT} |$

$$\Rightarrow$$

$$A'_n = x_z := 0$$

WHILE → GOTO

Satz 13.2

 Jede WHILE-berechenbare Funktion ist auch GOTO-berechenbar

Beweisidee

Ein Teilprogramm

WHILE $x_i \neq 0$ do P end

kann durch

 M_1 : IF $x_i=0$ THEN GOTO M_2 ; P^\prime ; GOTO M_1 ;

 $M_2 : x_i := x_i$

simuliert werden

- Kleines Fazit:
 - Die Klasse der WHILEberechenbaren Funktionen ist also gleich der Klasse der GOTO-berechenbaren Funktionen
- Es gilt sogar:
 - Jede WHILE-berechenbare

 Funktion ist durch ein WHILE Programm mit nur einer
 WHILE-Schleife (aber mehreren IF-Anweisungen) berechenbar

Inhalt

- 13.1 WHILE vs. GOTO
- > 13.2 Mehrstring-Turingmaschinen
 - 13.3 Turingmaschinen und WHILE/GOTO-Programme
 - 13.4 Die Church-Turing-These
 - 13.5 Entscheidbarkeit und Berechenbarkeit: Definition

Mehrstring-Turingmaschinen: Beispiel

- Um die Umwandlung von WHILE-Programmen in Turingmaschinen zu erleichtern, gönnen wir uns etwas mehr Komfort:
 - Turingmaschinen mit mehreren Strings
- Wichtig: Bei jeder einzelnen Turingmaschine ist die Anzahl der Strings fest

Beispiel

2-String-Turingmaschine zum Test, ob die Eingabe von der Form ww^R ist:

a: Kopiere Eingabewort vom ersten auf den zweiten String (bis \Box)

b/c: Bewege Kopf 2 zurück an Anfang, teste dabei, ob die Anzahl der Zeichen gerade oder ungerade ist

d: Bewege Kopf 1 nach links, Kopf 2 nach rechts, vergleiche jeweils die gelesenen Zeichen

Mehrstring-Turingmaschinen: Transitionsfunktion

Beispiel

- 2-String-Turingmaschine zum Test, ob die Eingabe von der Form ww^R ist:
- a: Kopiere Eingabewort vom ersten auf den zweiten String (bis □)
- b/c: Bewege Kopf 2 zurück an Anfang, teste dabei, ob die Anzahl der Zeichen gerade oder ungerade ist
- d: Bewege Kopf 1 nach links, Kopf 2 nach rechts, vergleiche jeweils die gelesenen Zeichen

Beispiel

Vorher			Nachher				
$oldsymbol{q}$	γ_1	$ \gamma_2 $	q	$ \gamma_1 $	$ \gamma_2 $	$ d_1 $	d_2
a	\triangle	\triangleright	a	\triangleright	\triangleright	\rightarrow	\rightarrow
a	0		a	0	0	\rightarrow	\rightarrow
a	1		a	1	1	\rightarrow	\rightarrow
a			b			\downarrow	←
b		0	c		0	\downarrow	←
c		1	b		1	\rightarrow	←
b	Ш	1	c	Ш	1	\downarrow	←
c	Ш	0	b		0	\downarrow	←
b	Ш	\triangleright	d		\triangleright	←	\rightarrow
d	0	0	d	0	0	←	\rightarrow
d	1	1	d	1	1	←	\rightarrow
d	\triangleright	Ш	+	\triangleright	Ш	\downarrow	\downarrow

Mehrstring-Turingmaschinen: Definition (1/2)

Definition: Mehrstring-TM (Syntax)

- Sei k eine natürliche Zahl
- Eine k-String-Turingmaschine (k-TM)

$$oldsymbol{M} = (oldsymbol{Q}, oldsymbol{\Gamma}, oldsymbol{\delta}, oldsymbol{s})$$
 besteht aus

- einer Menge $oldsymbol{Q}$ von **Zuständen**,
- einem Bandalphabet Γ mit $\sqcup \in \Gamma$ und $\rhd \in \Gamma$ (wir nennen \sqcup "Blank" und \rhd "linker Rand"),
- einem Anfangszustand $s \in Q$, und
- einer Transitionsfunktion

$$egin{aligned} \delta: Q imes \Gamma^k &
ightarrow \ (Q \cup \{h, \mathsf{ja}, \mathsf{nein}\}) imes \Gamma^k imes \{\leftarrow, \downarrow,
ightarrow\}^k \end{aligned}$$

ullet Dabei seien $Q, \Gamma, \{h, \mathsf{ja}, \mathsf{nein}\}$ und $\{\leftarrow, \downarrow, \rightarrow\}$ paarweise disjunkt

Bemerkungen

- ullet Die Anzahl k der Strings ist implizit durch δ gegeben
- ullet Wenn es auf das genaue k nicht ankommt, sagen wir auch Mehrstring-Turingmaschine statt k-String-Turingmaschine

Mehrstring-Turingmaschinen: Diagrammdarstellung

Beispiel-TM in Diagramm-Darstellung

- In diesem Beispiel gilt die Konvention:
 - Ist für $(q,\sigma_1,\ldots,\sigma_k)\in Q imes\Gamma^k$ kein Übergang eingezeichnet, so sei $\delta(q,\sigma_1,\ldots,\sigma_k)\stackrel{ ext{def}}{=} (\mathsf{nein},\sigma_1,\ldots,\sigma_k,\downarrow,\ldots,\downarrow)$

Mehrstring-Turingmaschinen: Definition (2/2)

Definition: Mehrstring-TM (Semantik)

- ullet Sei $k\geqslant 1$ und $M=(Q,\Gamma,\delta,s)$ eine k-String-TM
- Ein-/Ausgabealphabet:

$$\Sigma \subseteq \Gamma - \{\sqcup, \rhd\}$$

- ullet Konfiguration von M: k+1Tupel (q,s_1,\ldots,s_k) , wobei
 - $-q \in Q$
 - s_i String-Zeiger-Beschreibung für i-ten String
- Startkonfiguration $K_0(u)$ von M bei Eingabe $u \in \Sigma^*$: $(s,(u,0), \ldots, (\epsilon,0))$
- (q, s_1, \ldots, s_k) ist Haltekonfiguration, falls $q \in \{h, \mathsf{ja}, \mathsf{nein}\}$

Definition: Mehrstring-TM (Semantik) (Forts.)

- ullet Sei $m{K}=(m{q},(m{u_1},m{z_1}),\ldots,(m{u_k},m{z_k}))$ eine Konfiguration von $m{M}$ und sei, für jedes $m{i},m{\sigma_i}\stackrel{ ext{def}}{=}m{w}[m{i}]$
- Ist $\delta(q,\sigma_1,\ldots,\sigma_k)$ = $(q',\tau_1,\ldots,\tau_k,d_1,\ldots,d_k),$ so ist $K'=(q',(u_1',z_1'),\ldots,(u_k',z_k'))$ die Nachfolgekonfiguration von K, wenn für alle i gilt:
 - $z_i'=z_i+1$, falls $d_i=
 ightarrow$
 - $z_i'=z_i$, falls $d_i=\downarrow$
 - $-z_i'=z_i-1$, falls $d_i=\leftarrow$
 - $-\ u_i' = u_i[z_i/ au_i]$ u falls $z_i = |u_i|$ und $d_i =
 ightarrow$
 - $u_i' = u_i[z_i/ au_i]$, andernfalls
- ullet Schreibweise: $K dash_M K'$
 - Sprechweise: $oldsymbol{M}$ erreicht $oldsymbol{K}'$ von $oldsymbol{K}$ aus in einem Schritt
- ullet Die übrigen Begriffe wie Berechnungen, Akzeptieren, Ablehnen, $\vdash_{m{M}}^*$, $m{L}(m{M})$ sind definiert wie bei 1-String-Turingmaschinen

Semantik von Mehrstring-TM: Beispiel

Beispiel


```
(a,(\epsilon,\epsilon,011110),(\epsilon,\epsilon,\epsilon)) \vdash_M (a,(\epsilon,0,11110),(\epsilon,\sqcup,\epsilon)) \vdash_M
                                                              (a, (0, 1, 1110), (0, \sqcup, \epsilon)) \vdash_{M} (a, (01, 1, 110), (01, \sqcup, \epsilon)) \vdash_{M}
                                                 (a, (011, 1, 10), (011, \sqcup, \epsilon)) \vdash_{M} (a, (0111, 1, 0), (0111, \sqcup, \epsilon)) \vdash_{M}
                               (a, (01111, 0, \epsilon), (01111, \sqcup, \epsilon)) \vdash_{M} (a, (011110, \sqcup, \epsilon), (011110, \sqcup, \epsilon)) \vdash_{M}
                       (b, (011110, \sqcup, \epsilon), (01111, 0, \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (0111, 1, 0 \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (01111, 1, 0 \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (01111, 1, 0 \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (01111, 1, 0 \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (01111, 1, 0 \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (01111, 1, 0 \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (01111, 1, 0 \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (01111, 1, 0 \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (01111, 1, 0 \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (01111, 1, 0 \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (01111, 1, 0 \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (011111, 1, 0 \sqcup)) \vdash_{M} (c, (0111110, \sqcup, \epsilon), (011111, 1, 0 \sqcup)) \vdash_{M} (c, (0111110, \sqcup, \epsilon), (011111, 1, 0 \sqcup)) \vdash_{M} (c, (0111110, \sqcup, \epsilon), (011111, 1, 0 \sqcup)) \vdash_{M} (c, (0111110, \sqcup, \epsilon), (011111, 1, 0 \sqcup)) \vdash_{M} (c, (0111110, \sqcup, \epsilon), (011111, 1, 0 \sqcup)) \vdash_{M} (c, (0111110, \sqcup, \epsilon), (0111111, 1, 0 \sqcup)) \vdash_{M} (c, (0111110, \sqcup, \epsilon), (0111111, 1, 0 \sqcup))
                       (b, (011110, \sqcup, \epsilon), (011, 1, 10 \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (01, 1, 110 \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (01, 1, 110 \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (01, 1, 110 \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (01, 1, 110 \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (01, 1, 110 \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (01, 1, 110 \sqcup)) \vdash_{M} (c, (0111110, \sqcup, \epsilon), (011, 1, 110 \sqcup)) \vdash_{M} (c, (0111110, \sqcup, \epsilon), (011, 1, 110 \sqcup)) \vdash_{M} (c, (0111110, \sqcup, \epsilon), (011, 1, 110 \sqcup)) \vdash_{M} (c, (0111110, \sqcup, \epsilon), (011, 1, 110 \sqcup)) \vdash_{M} (c, (0111110, \sqcup, \epsilon), (011, 1, 110 \sqcup)) \vdash_{M} (c, (0111110, \sqcup, \epsilon), (011, 1, 110 \sqcup)) \vdash_{M} (c, (0111110, \sqcup, \epsilon), (011, 1, 110 \sqcup)) \vdash_{M} (c, (0111110, \sqcup, \epsilon), (011, 1110 \sqcup)) \vdash_{M} (c, (0111110, \sqcup, \epsilon), (011, \sqcup, \epsilon), (011, \sqcup, \epsilon))
                       (b, (011110, \sqcup, \epsilon), (0, 1, 1110 \sqcup)) \vdash_{M} (c, (011110, \sqcup, \epsilon), (\epsilon, 0, 11110 \sqcup)) \vdash_{M}
            (b, (011110, \sqcup, \epsilon), (\epsilon, \epsilon, 011110 \sqcup)) \vdash_{M} (d, (01111, 0, \sqcup), (\epsilon, 0, 11110 \sqcup)) \vdash_{M}
                            (d, (0111, 1, 0 \sqcup), (0, 1, 1110 \sqcup)) \vdash_{M} (d, (011, 1, 10 \sqcup), (01, 1, 110 \sqcup)) \vdash_{M}
                            (d, (01, 1, 110 \sqcup), (011, 1, 10 \sqcup)) \vdash_{M} (d, (0, 1, 1110 \sqcup), (0111, 1, 0 \sqcup)) \vdash_{M}
                      (d, (\epsilon, 0, 11110 \sqcup), (01111, 0, \sqcup)) \vdash_{M} (d, (\epsilon, \epsilon, 011110 \sqcup), (011110, \sqcup, \epsilon)) \vdash_{M}
(\mathbf{y}a^{\mathbf{y}}, (\epsilon, \epsilon, 011110 \sqcup), (011110, \sqcup, \epsilon))
```

Turingmaschinen: Robustheit

Satz 13.3

- ullet Zu jeder Mehrstring-TM $oldsymbol{M}=(oldsymbol{Q},\Gamma,\delta,s)$ gibt es eine 1-String-TM $oldsymbol{M}'$ mit $oldsymbol{L}(oldsymbol{M}')=oldsymbol{L}(oldsymbol{M})$
- ullet Analog kann auch $f_{M'}=f_M$ gezeigt werden

Inhalt

- 13.1 WHILE vs. GOTO
- 13.2 Mehrstring-Turingmaschinen
- > 13.3 Turingmaschinen und WHILE/GOTO-Programme
 - 13.4 Die Church-Turing-These
 - 13.5 Entscheidbarkeit und Berechenbarkeit: Definition

Strings vs. Zahlen

- ullet Turingmaschinen M berechnen partielle Funktionen $f_M:\Sigma^*
 ightharpoonup \Sigma^*$ (OBdA: $\Sigma=\{0,1\}$)
- ullet WHILE-Programme P berechnen partielle Funktionen $f_P:\mathbb{N}_0
 ightharpoonup \mathbb{N}_0$
- Um die beiden Modelle miteinander zu vergleichen, müssen wir Strings und Zahlen ineinander umwandeln können
- Wir verwenden dazu die beiden wie folgt definierten Umwandlungsfunktionen:
 - Str2N bildet jeden Binärstring auf die durch ihn kodierte Zahl ab, also z.B.:
 - * Str2N(110)=6
 - $* \operatorname{Str2N}(00110) = 6$
 - * Str2N(00000) = 0
 - * Str2N(ϵ) = 0
 - N2Str bildet jede natürliche Zahl auf ihren Binärstring ohne führende Nullen ab, also z.B.:
 - * N2Str(6) = 110
 - * N2Str $(0) = \epsilon$

WHILE-Programme → Turingmaschinen (1/2)

Satz 13.4

- Jede WHILE-berechenbare Funktion ist Turing-berechenbar
- ullet Genauer: Für jede WHILE-berechenbare Funktion $f:\mathbb{N}_0 o \mathbb{N}_0$ gibt es eine Mehrstring-Turingmaschine M, so dass für alle $n\in\mathbb{N}_0$ gilt:

$$oldsymbol{f}(oldsymbol{n}) = \mathsf{Str2N}(oldsymbol{f_M}(\mathsf{N2Str}(oldsymbol{n})))$$

Beweisskizze

- ullet Sei P ein WHILE-Programm für f
 - lacktriangledown es gibt ein k>0, so dass P keine anderen Variablen als x_1,\ldots,x_k benutzt
- ullet Idee: P wird durch eine k-String Turingmaschine M simuliert
 - Jeder String von M repräsentiert dabei den Wert einer Variablen x_i
 - Zu Beginn steht in String 1 der String N2Str(n) und auf den anderen Strings der Leerstring (entspricht 0)
 - Am Ende der Simulation steht auf String
 1 die Binärkodierung des Ergebnisses
 - Jedes Teilprogramm P' von P wird durch eine TM $M_{P'}$ simuliert $*M_{P'}$ ist dabei induktiv definiert

WHILE-Programme → **Turingmaschinen** (2/2)

Beweisskizze für Satz 13.4 (Forts.)						
$P'\mid M_{P'}$						
$x_j := x_i + c$	$ullet$ Falls $m{j} + m{i}$ $-$ String $m{j}$ mit \sqcup überschreiben $-$ String $m{i}$ nach String $m{j}$ kopieren $m{c}$ -mal 1 zu String $m{j}$ addieren					
$egin{array}{c} x_j \coloneqq x_i \dot{\hspace{0.2cm}} c \ \hline x_j \coloneqq c \ \hline x_j \coloneqq x_i \end{array}$	analog					
$P_1; P_2$	Führe zuerst M_{P_1} aus, dann M_{P_2}					
WHILE $x_i \neq 0$ DO P_1 END	(a) Wenn i -ter String Leerstring ist: fertig (b) Andernfalls M_{P_1} ausführen, dann weiter mit (a)					

Turingmaschinen → **GOTO-Programme** (1/5)

- Die Simulation von Turingmaschinen durch GOTO-Programme wirft ein Problem auf:
 - Turingmaschinen können, abhängig von der Eingabe, beliebig viele Positionen benutzen
 - Jedes GOTO- (oder WHILE-) Programm hat aber nur eine feste Zahl von Variablen
 - * Wir können also leider **nicht** für jede Position des Turingmaschinen-Strings eine Variable verwenden
 - mit indirekter Adressierung ginge das...
- Wir werden deshalb String-Zeigerbeschreibungen, durch je drei Zahlen kodieren, damit sie in drei Variablen gespeichert werden können
- $oldsymbol{\Gamma}=\{oldsymbol{\sigma_1},\ldots,oldsymbol{\sigma_\ell}\}$ interpretieren wir dazu als Zahlen in $(\ell+1)$ -adischer Darstellung gemäß $oldsymbol{\sigma_i}\mapsto i$, für jedes i

Beispiel

- ullet Für $\Gamma = \{ igtriangleup, \sqcup, 0, 1 \}$ ergibt sich
 - $\triangleright \mapsto 1$
 - $\sqcup \mapsto 2$
 - $-0 \mapsto 3$
 - $-1 \mapsto 4$
- ullet Z.B.: Str2N $_{oldsymbol{\Gamma}}(100)= \ 4 imes 5^2 + 3 imes 5 + 3 = 118$
- Str2N $_{oldsymbol{\Gamma}}(oldsymbol{w})$ ist induktiv definiert durch:
 - Str2N $_{oldsymbol{\Gamma}}(\epsilon)\stackrel{ ext{def}}{=} \mathbf{0}$ und
 - Str2N $_{oldsymbol{\Gamma}}(oldsymbol{u}oldsymbol{\sigma_i})\stackrel{ ext{def}}{=} \ (oldsymbol{\ell}+\mathbf{1}) imes ext{Str2N}_{oldsymbol{\Gamma}}(oldsymbol{u})+oldsymbol{i}$
- Es gelten:
 - Str2N $_{oldsymbol{\Gamma}}(uoldsymbol{\sigma})\div(oldsymbol{\ell}+1)=$

Str2N $_{oldsymbol{\Gamma}}(oldsymbol{u})$

– $\mathsf{Str2N}_{oldsymbol{\Gamma}}(oldsymbol{u}oldsymbol{\sigma}) mod (oldsymbol{\ell}+oldsymbol{1}) = \\ \mathsf{Str2N}_{oldsymbol{\Gamma}}(oldsymbol{\sigma})$

Turingmaschinen → **GOTO-Programme** (2/5)

- ullet Für die Simulation von Turingmaschinen durch GOTO-Programme verwenden wir die Notation (u,σ,v) für String-Zeigerbeschreibungen
- Konfigurationen der TM M werden durch Speicherinhalte der Variablen x_1, x_2, x_3, x_4 repräsentiert:

$$-S_{m{M}}(m{q_i},(m{u},m{\sigma},m{v}))\stackrel{ ext{def}}{=} \ i$$
, Str2N $_{m{\Gamma}}(m{u})$, Str2N $_{m{\Gamma}}(m{\sigma})$, Str2N $_{m{\Gamma}}(m{v^R}),\ldots$

- riangle Warum v^R ?
 - * Damit das erste Zeichen von $oldsymbol{v}$ durch $oldsymbol{x_4}$ mod $(oldsymbol{\ell+1})$ gegeben ist

Beispiel

- Die Startkonfiguration $(q_1, (\epsilon, \epsilon, 001))$ entspricht also dem Speicherinhalt $1, 0, 0, 118, \ldots$
- riangle Zu beachten: Str2N $_{\Gamma}(001^R)=$ Str2N $_{\Gamma}(100)=118$
 - ullet Die Umkehrabbildung N2Str $_\Gamma:\mathbb{N} \to \Gamma^*$ von Str2N $_\Gamma$ sei wie folgt definiert:

- N2Str
$$_{f \Gamma}(n) \stackrel{ ext{def}}{=} egin{cases} m{w} & ext{falls Str2N}_{f \Gamma}(m{w}) = m{n}, ext{ für ein } m{w} \in f{\Gamma}^* \ oxed{\perp} & ext{andernfalls} \end{cases}$$

Turingmaschinen → **GOTO-Programme** (3/5)

Satz 13.5

- Jede Turing-berechenbare Funktion ist auch GOTO-berechenbar
- ullet Genauer: für jede Turing-berechenbare Funktion $f:\{0,1\}^*
 ightharpoonup \{0,1\}^*$ gibt es ein GOTO-Programm P, so dass für alle $w\in \Sigma^*$ gilt:

Beweisskizze

ullet Sei $M=(Q,\Gamma,\delta,q_1)$ eine TM mit Zuständen q_1,\dots,q_k , die f berechnet und sei $q_0=h$

 $oldsymbol{f}(oldsymbol{w}) = \mathsf{N2Str}_{oldsymbol{\Gamma}}(oldsymbol{f_P}(\mathsf{Str2N}_{oldsymbol{\Gamma}}(oldsymbol{w})))$

- Wir repräsentieren Konfigurationen wie beschrieben durch die Variablen x_1, \ldots, x_4
- ullet P simuliert M in drei Phasen:
 - 1. Variablen initialisieren
 - 2. M schrittweise simulieren

(Teilprogramm: P_M)

3. Funktionswert aus x_2, x_3, x_4 umkodieren

Beweisskizze (Forts.)

Simulation bei Eingabe 001 und Ausgabe 010

• <u>13.1</u>

Turingmaschinen → **GOTO-Programme** (4/5)

Beweisskizze (Forts.)

ullet P simuliert die Berechnung von M Schritt für Schritt durch:

```
M_1\colon IF (x_1=1) AND (x_3=1)
          THEN GOTO M_{11}
     IF (x_1 = 1) AND (x_3 = 2)
          THEN GOTO M_{12}
     IF (x_1 = \mathtt{k}) AND (x_3 = \ell)
         THEN GOTO M_{k\ell}
     IF (x_1 = 0) THEN HALT
M_{11}: P_{11}
     GOTO M_1
M_{12}: P_{12}
     GOTO M_1
M_{k\ell}\colon P_{k\ell}
     GOTO M_1
```

ullet Zur Erinnerung: x_1 speichert die Nummer des Zustandes, x_3 die Kodierung des aktuellen Zeichens (und $x_3=0$, falls der Zeiger am linken Rand ist)

Turingmaschinen → **GOTO-Programme** (5/5)

Beweisskizze (Forts.)

- Beispiel für die Konstruktion der Teilprogramme $P_{5,6}$:
 - Ist $\delta(q_5,\sigma_6)=(q_8,\sigma_9,
 ightarrow)$, dann ist $P_{5,6}$:

$$M_{5,6}\colon x_1 := 8; \ x_2 := (\ell+1) imes x_2 + 9; \ M'_{5,6}\colon x_3 := 2; \ ilde{ ext{IF}} \ x_4 = 0 \ ext{THEN GOTO} \ M''_{5,6}; \ x_3 := x_4 \ ext{mod} \ (\ell+1); \ M''_{5,6}\colon x_4 := x_4 \div (\ell+1);$$

Beweisskizze (Forts.)

- Erläuterungen:
 - $-x_1 := 8$: Neuer Zustand q_8
 - $x_2 := (\ell + 1) imes x_2 + 9$ Kodierung des neuen Strings links vom Kopf
 - Die drei Zeilen ab $M_{\mathbf{5.6}}'$ bewirken, dass
 - * im Falle einer Rechtsbewegung zu einer Position, die kein Eingabesymbol enthält und noch nicht besucht wurde, das aktuelle Zeichen zu einem Leerzeichen wird (= 2),
 - st andernfalls das neue aktuelle Zeichen das erste Zeichen des bisherigen, durch x_4 kodierten Strings rechts vom Kopf, wird
 - $x_4 := x_4 \div (\ell + 1)$ Der neue String rechts vom Kopf (auch im Falle, dass dieser leer ist, weil gerade erst ein Blank erzeugt wurde)

Turingmaschinen → **GOTO-Programme:** Beispiel

Diagramm zur 2. TM

- ullet Wir betrachten die Simulation dieser TM bei Eingabe 001
- ullet $\sigma_1=igtriangledown,\sigma_2=\sqcup,\sigma_3=0,\sigma_4=1$
- $q_0 = h, q_1 = a, q_2 = b,...$

Beispiel

- ullet Statt der Eingabe $oldsymbol{w}=oldsymbol{001}$ erhält $oldsymbol{P}$ die Zahl Str2N $_{oldsymbol{\Gamma}}(oldsymbol{w})=$ Str2N $_{oldsymbol{\Gamma}}(oldsymbol{001})=oldsymbol{94}$
- ullet Daraus berechnet $m{P}$ die Kodierung der Startkonfiguration $(m{a}, (m{\epsilon}, m{\epsilon}, \mathbf{001}))$ von $m{M}$
 - Es ergibt sich die Speicherbelegung $1,0,0,118,\ldots$
- ullet M bewegt nun den Kopf nach rechts und bleibt im Zustand a
 - Die neuen Werte für x_2, x_3, x_4 ergeben sich durch:
 - * x_2 bleibt unverändert gleich ϵ da der Kopf am linken Rand stand
 - $*~x_3 := x_4 mod 5 = 118 mod 5 = 3$
 - entsprechend dem Zeichen 0
 - $* x_4 := x_4 \div 5 = 23$
 - · entsprechend dem restlichen String

$$((01)^R = 10)$$

- Die Konfiguration nach dem ersten Schritt entspricht also der Speicherbelegung $1,0,3,23,\ldots$

Inhalt

- 13.1 WHILE vs. GOTO
- 13.2 Mehrstring-Turingmaschinen
- 13.3 Turingmaschinen und WHILE/GOTO-Programme
- > 13.4 Die Church-Turing-These
 - 13.5 Entscheidbarkeit und Berechenbarkeit: Definition

Die Church-Turing-These

Wir haben gesehen, dass alle bisher betrachteten Berechnungsmodelle äquivalent sind:

- Es gibt viel weitere Ansätze zur Formalisierung des Begriffes Algorithmus, die hinsichtlich ihrer Berechnungsstärke äquivalent sind, zum Beispiel:
 - 2-Kellerautomaten
 - Markov-Algorithmen
 - Typ-0-Grammatiken
 - λ -Kalkül [Kleene 35, Church 36]
 - Registermaschinen
- Aus diesem Grunde wird die Klasse der durch Turingmaschinen und die anderen genannten Modelle berechenbaren Funktionen als die "richtige" Formalisierung des Algorithmus-Begriffs angesehen

• Es gibt wohl keine stärkeren "realistischen" Berechnungsmodelle

• Church-Turing-These:

- Die Klasse der durch Turingmaschinen (WHILE-Programme,...) berechenbaren Funktionen umfasst alle intuitiv berechenbaren Funktionen
- Die Church-Turing-These wurde explizit erstmals von Kleene 1943 formuliert, aber dort schon auf Church und Turing zurückgeführt
- Sie ist nicht beweisbar
- Sie w\u00e4reim Prinzip widerlegbar: durch den Bau von Computern, die Funktionen berechnen, die nicht Turing-berechenbar sind

Inhalt

- 13.1 WHILE vs. GOTO
- 13.2 Mehrstring-Turingmaschinen
- 13.3 Turingmaschinen und WHILE/GOTO-Programme
- 13.4 Die Church-Turing-These
- > 13.5 Entscheidbarkeit und Berechenbarkeit: Definition

Entscheidbar und berechenbar

Definition

- ullet Eine Menge $L\subseteq \Sigma^*$ heißt <u>entscheidbar</u>, falls es eine TM M gibt, die L entscheidet
- Zu beachten:
 - Bei einer entscheidbaren Menge muss die TM für alle Eingaben anhalten
- Statt "nicht entscheidbar" sagen wir oft auch "unentscheidbar"
 - ullet Klar: Wenn L entscheidbar ist, dann auch das Komplement \overline{L} von L

Definition

- ullet Eine partielle Funktion $f: \Sigma^*
 ightharpoonup \Sigma^*$ heißt <u>berechenbar</u>, falls es eine TM M gibt, die
 - für alle $oldsymbol{w} \in oldsymbol{D}(oldsymbol{f})$ mit Ausgabe $oldsymbol{f}(oldsymbol{w})$ anhält und
 - für alle $oldsymbol{w}
 otin oldsymbol{D}(oldsymbol{f})$ nicht anhält
- Zur Erinnerung: auch totale Funktionen sind partielle Funktionen
 - f kann also auch überall definiert sein...

Algorithmische Probleme vs. Sprachen und Funktionen (1/4)

- Unsere bisherigen Berechnungsmodelle beziehen sich nur auf
 - Sprachen und Stringfunktionen bzw.
 - Mengen natürlicher Zahlen und Zahlenfunktionen
- Die soeben definierten Begriffe "entscheidbar" und "berechenbar" sind auch für Sprachen und Stringfunktionen definiert
- Wie hängt dies mit "richtigen" algorithmischen Problemen zusammen?

Algorithmische Probleme vs. Sprachen und Funktionen (2/4)

- Informatikerinnen und Informatiker wissen: alle Arten von Strukturen lassen sich durch 0-1-Strings kodieren
- Graphen können z.B. wie folgt durch Strings kodiert werden

Beispiel

• Der Graph $G = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$

kann durch die Adjazenzmatrix

$$\left(egin{array}{cccc} 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \end{array}
ight)$$

und diese dann durch den String $\operatorname{enc}(G) = 0110000100011000$ kodiert werden

- Solche Kodierungen ermöglichen uns, die Lücke zu schließen, die besteht zwischen
 - algorithmischen Problemen mit "komplizierteren" Eingaben wie Graphen, Automaten etc., deren Lösbarkeit wir eigentlich untersuchen wollen, und
 - Sprachen und Funktionen auf Strings, die wir mit Turingmaschinen entscheiden bzw. berechnen können
- Die Frage der Eindeutigkeit der Kodierung werden wir hier ignorieren
 - Wichtig ist, dass jedem syntaktisch korrekten String eine (bis auf Isomorphie eindeutige) Eingabe zugeordnet werden kann

Algorithmische Probleme vs. Sprachen und Funktionen (3/4)

 Algorithmische Entscheidungsprobleme entsprechen also Sprachen

Definition: REACH

Gegeben: (Gerichteter) Graph $oldsymbol{G}$, Knoten $oldsymbol{s}$ und $oldsymbol{t}$

Frage: Gibt es in G einen Weg von s nach t?

- ullet Das algorithmische Entscheidungsproblem REACH entspricht der Sprache $L_{\rm REACH}$ aller 0-1-Strings, die einen gerichteten Graphen G und zwei Knoten s und t kodieren, in dem es einen Weg von s nach t gibt
- Besteht die Eingabe zu einem algorithmischen Problem aus mehreren Komponenten, so trennen wir diese in der Kodierung als Strings durch #
- $oldsymbol{L}_{\mathsf{REACH}} = \{\mathsf{enc}(oldsymbol{G}) \# \mathsf{enc}(oldsymbol{s}) \# \mathsf{enc}(oldsymbol{t}) \mid \ oldsymbol{G} \ \mathsf{hat} \ \mathsf{Weg} \ \mathsf{von} \ oldsymbol{s} \ \mathsf{nach} \ oldsymbol{t} \} \ \mathsf{f\"{u}r} \ \mathsf{geeignete} \ \mathsf{Kodierungsfunktionen} \ \mathsf{enc} \ \mathsf{f\"{u}r} \ \mathsf{Graphen} \ \mathsf{und} \ \mathsf{Knoten}$

 Algorithmische Berechnungsprobleme entsprechen also Funktionen auf Strings

Definition: MINGRAPHCOL

Gegeben: Ungerichteter Graph *G*

Gesucht: Kleinstmögliche Anzahl von Farben, mit denen der Graph zulässig gefärbt werden kann

- ullet Die zugehörige Funktion $f_{
 m MINGRAPHCOL}$ ordnet jedem String, der einen ungerichteten Graphen G kodiert, die (Kodierung der) kleinsten Zahl k, für die G eine k-Färbung hat, zu
 - Graphfärbungen werden wir in Teil D der Vorlesung noch genauer definieren

Algorithmische Probleme vs. Sprachen und Funktionen (4/4)

- Wir werden die Begriffe "entscheidbar" und "berechenbar" auch für die entsprechenden algorithmischen Probleme verwenden
- ullet Also: ist A ein algorithmisches Entscheidungsproblem und L_A entscheidbar, so nennen wir auch A entscheidbar
- Außerdem werden wir uns häufig die Church-Turing-These zunutze machen:
 - Statt eine TM für L_A zu konstruieren genügt es, einen Algorithmus für A anzugeben, um zu zeigen, dass A entscheidbar ist
- ullet Ein Entscheidungsalgorithmus für A ist also künftig ein Algorithmus, der für jede Eingabe anhält und korrekt angibt, ob sie eine "Ja-Eingabe" ist

Entscheidbar und berechenbar: Beispiele

Beispiel

- REACH ist entscheidbar
 - Der Tiefensuche-Algorithmus terminiert immer und gibt immer die richtige Antwort
- Das Wortproblem für kontextfreie Sprachen ist entscheidbar
 - Gegeben eine Grammatik $m{G}$ und ein Wort $m{w}$ kann mit dem CYK-Algorithmus überprüft werden, ob $m{w} \in m{L}(m{G})$ ist
 - Der CYK-Algorithmus terminiert bei jeder Eingabe und gibt immer die richtige Antwort
- Bei den Grammatik-Beispielen nehmen wir der Einfachheit halber an, dass die Grammatiken in CNF sind
 - Wenn nicht, können sie in eine CNF-Grammatik umgewandelt werden

Beispiel

- Die Funktion, die jedem endliche Automaten A die Anzahl der Zustände seines Minimalautomaten zuordnet, ist berechenbar und total
- ullet Die Funktion, die jedem Paar (G_1,G_2) kontextfreier Grammatiken den lexikographisch kleinsten String $w\in L(G_1)\cap L(G_2)$ zuordnet, ist berechenbar, aber nicht total
 - Sie ist undefiniert für Paare (G_1,G_2) mit $L(G_1) \cap L(G_2) = arnothing$
- ullet Die Funktion, die jeder TM M und jeder Eingabe x den Wert $f_M(x)$ zuordnet, ist berechenbar, aber nicht total

Zusammenfassung

- Die verschiedenen Varianten der Turingmaschine sind hinsichtlich ihrer Berechnungsstärke äquivalent
- Sie sind hinsichtlich ihrer Berechnungsstärke ebenfalls äquivalent zu WHILE-Programmen und GOTO-Programmen
- Church-Turing-These: Turingmaschinen und die dazu äquivalenten Modelle sind die richtige Formalisierung des informellen Begriffes von Algorithmus
- Algorithmische Probleme k\u00f6nnen durch Sprachen und Funktionen auf Strings repr\u00e4sentiert werden

Erläuterungen

Bemerkung (13.1)

 Die Zahl 348 kodiert den String der TM am Ende der Berechnung:

– N2Str
$$_{\Gamma}(348)=010$$
 \sqcup , da Str2N $_{\Gamma}((010$ $\sqcup)^R)=$ Str2N $_{\Gamma}(\cup 010)=$ $2\times 5^3+3\times 5^2+4\times 5+3=348$

ullet P berechnet daraus die Zahl 98, die den Ergebnisstring 010 kodiert

Literatur

• Turingmaschinen:

 A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. *Proc. London Math. Soc.*, 2(42):230– 265, 1936

• λ -Kalkül:

- S. C. Kleene. A theory of positive integers in formal logic. American Journal of Mathematics, 57, 1935
- Alonzo Church. An unsolvable problem of elementary number theory. American Journal of Mathematics, 58(2):345–363, 1936