Linear Motor Active Damper (LMAD) for Vibration Reduction in Precision Manufacturing System

Contents

- 1. Intro
 - Machining vibration issue
 - Passive strategies
 - Active strategies
 - This research?
- 2. Analytical modeling
 - System modeling, Identification
 - Required Force constant
 - Required Actuator mass
- 3. Single Frequency vibration reduction
 - Result
- 4. Multi-Frequency vibration reduction
 - Result
- 5. Conclusion
- 6. Future work
- 7. Acknowledgments

1. Intro - Machining Vibration issue

Chatter vibration

- Free vibration Widely
- Forced vibration

Widely developed

- <u>Self-excited vibration</u> **TARGET**

Made by interaction between tool & workpiece

Negative Effect of Chatter

- Poor surface quality
- Inaccuracy
- Noise
- Machine tool damage
- And so on....

1. Intro - Passive strategies

1. Intro - Active strategies

Boring bar

Magnetic actuator

Chen F, Liu G (2016) Active damping of machine tool vibrations and cutting force measurement with a magnetic actuator. Int J Adv Manuf Technol:1–10.

Excitation flux, \tilde{B}

Flux density, B = B+B

Flux density, B, =B-B,

Air gap, x₀-x

Air gap, x₀+x

- Monitor : Displacement sensor
- Actuator : Magnetic actuator

Munoa J, Beudaert X, Erkorkmaz K, Lglesias A, Barrios A. Active suppression of structural chatter vibrations using machine drives and accelerometers. CIRP Ann- Manuf Technol 2015;64(1):385–8.

- Monitor : Accelerometer
- Actuator : tool's own drive

1. Intro - This research?

2. Analytical Modeling - Setup

2. Analytical Modeling - System Modeling

Moving mass (Rotor part of linear motor)

 I_p : Peak current of commutation law for the linear motor. Positive if $F_{LM}>0$

 F_d : Disturbance force

Standard Second-order system of Optical table

$$M\ddot{x} + c\dot{x} + kx = F_{LM} + F_{disturbance}$$

Mechanical governing equation of Linear Motor

$$m_{\mathrm{LM}}\ddot{x}_{LM} = \mathrm{K_i}\mathrm{I_p} - \mathrm{K_d}\dot{x}_{LM} - \mathrm{c_d}\dot{x}_{LM}$$
 \Rightarrow $m_{\mathrm{LM}}\ddot{x}_{LM} = F_{LM} = \mathrm{K_i}\mathrm{I_p}$

SJ Moon, TY Chung, CW Lim, DH Kim, "A linear motor damper for vibration control of steel structures". Mechatronics. 14(10), 1157-1181, 2004

M_{LM}: moving mass

 x_{LM} : Relative position of LM from the table

K_i: linear motor force constant

I_p: peak current of commutation law for the linear motor

2. Analytical Modeling - System Modeling (Identification)

DSA Experiment

- Frequency domain analysis for Unknown : c, k

Open-loop Transfer Function

$$\frac{A(s)}{I_p(s)} = \frac{K_i s^2}{Ms^2 + cs + k}$$

Frequency 별로 Magnitude, Phase 데이터 수집

Natural frequency 근접 👄 Magnitude 👚

2. Analytical Modeling - System Modeling (Identification)

Estimated parameters (DSA test)

10⁰

$$M=280kg$$
, $c=2300~Ns/m$, k = 1,018,700 N/m (k = $M(2w_n\pi)^2$)

Open-loop Transfer Function

$$\frac{A(s)}{I_p(s)} = \frac{K_i s^2}{Ms^2 + cs + k}$$

Frequency domain analysis for Unknown: c, k

Modeled Open-loop Transfer Function

$$\frac{A(s)}{I_p(s)} = \frac{23s^2}{280s^2 + 2300s + 1061622}$$

flipped phase : measurement of $-A(s)/I_p(s)$

2. Analytical Modeling - Multi-Frequency System Modeling

$$(1) M\ddot{x}_1 + c_1\dot{x}_1 + c_2(\dot{x}_1 - \dot{x}_2) + k_1x_1 + k_2(x_1 - x_2) = F_{LM} + F_d$$

(2)
$$m\ddot{x}_2 + c_2(\dot{x}_2 - \dot{x}_1) + k_2(x_2 - x_1) = 0$$
 $(F_{LM} = K_i i)$

(3)
$$i = -[g_1 \dot{x}_1 + g_2(\dot{x}_1 - \dot{x}_2)]$$

$$M\ddot{x}_1 + (c_1 + K_i g_1)\dot{x}_1 + (c_2 + K_i g_2)(\dot{x}_1 - \dot{x}_2) + k_1 x_1 + k_2(x_1 - x_2) = F_d$$

Additional damping coefficient to the collocated mass

2. Analytical Modeling - Multi-Frequency System Modeling(Identification)

Estimated parameters (DSA test)

$$M = 280kg$$
, $c_1 = 2300 Ns/m$, $k_1 = 1,018,700 N/m$
$$m = 30kg$$
, $c_2 = 55 Ns/m$, $k_2 = 455,270 N/m$ $K_i = 36 N/A$

2. Analytical Modeling - Required Force Constant(LMAD)

Role of Linear Motor: Exciter (sine wave current)

$$X(s) = \frac{M\dot{x}_0}{Ms^2 + (c + K_v K_i)s + k}$$

Amplitude attenuation ratio(η) at target frequency (w_n)

$$\eta = \left| \frac{X(s)}{X_{plant}(s)} \right|_{s=jw_n} = \frac{c}{c + K_v K_i}$$

 w_n : Natural frequency of optical table K_i : Linear motor force constant

c : Damping coefficient of optical table K_{v} : Velocity feedback controller gain

2. Analytical Modeling - Required Force Constant(LMAD)

Active Damper Design Specification

- Required force constant(K_i) of the actuator $\eta = \frac{c}{c + K_i K_v} \xrightarrow{K_v = I_p/\dot{x}} K_i = \frac{(1 - \eta) V_{max} c}{\eta I_{max}}$ (4)

- (1) η : Required amplitude attenuation ratio \rightarrow 80% reduction target
- (2) V_{max} : Maximum treatable velocity amplitude (0.040m/s by test)
- (3) c: Obtained by experiment (Linear motor excitation, DSA test, ...)
- (4) I_{max} : Maximum capacity of current driver ~ 21A

2. Analytical Modeling – Required Force Constant(LMAD)

• Required force constant(K_i) of the actuator

$$K_{i,required} = \frac{(1-\eta)V_{max}c}{\eta I_{max}} = 14.4734 \text{ N/A}$$

 η : Required amplitude attenuation ratio → 0.20 (**80% reduction**)

 V_{max} : Maximum treatable velocity amplitude \rightarrow 0.040 m/s

c: Damping coefficient of the optical table system \rightarrow 2300 Ns/m

 I_{max} : Maximum capacity of current driver \rightarrow 21A

For our system

$$K_{i,LMAD} = 36N/A > K_{i,required} = 14.47N/A$$

$$K_{i,LMAD} = 36N/A > K_{i,required} = 14.47N/A$$

$$\eta = \frac{c}{c + K_v K_i} \rightarrow K_v = 255.6 \text{ As/m}$$

2. Analytical Modeling - Required Actuator Mass

Required actuator mass

Moving mass (Rotor part of linear motor)

$$M\ddot{x} + c\dot{x} + kx = F_{LM} + F_d$$
 : Table dynamics

 $\frac{2K_i I_{max}}{2} < m < m_{lim}$

$$F_{LM} = K_i i$$
 : Linear Motor plant

$$F_{LM} = m_{LM}a = m_{LM}w_L^2 X sin(w_L t) = K_i I_{max} sin(w_L t)$$

$$m_{lim}$$
: Maximum actuator mass (system limit)

$$w_L$$
: Minimum frequency of actuator excitation

$$L_{max}$$
: Maximum Stroke of actuator

For our system

$$\frac{2K_{i}I_{max}}{L_{max}w_{L}^{2}} = 3.36kg < m = 10.8kg$$

3. Single Frequency Vib. Reduction - Direct Velocity Feedback

Standard Second-order system of Optical table

$$M\ddot{x} + c\dot{x} + kx = F_{LM} + F_{disturbance}$$

Mechanical governing equation of Linear Motor

$$m_{\rm LM}\ddot{x}_{LM} = F_{LM} = K_{\rm i}I_{\rm p}$$

Direct Velocity feedback

$$M\ddot{x} + c\dot{x} + kx = F_{LM} + F_{disturbance}$$

$$F_{LM} = K_i I_p$$

$$I_p = -g_1 \dot{x}$$
 (Velocity feedback control)

$$\eta = \frac{c}{c + g_1 K_i} \to g_1 = 255.6 \, As/m$$

$$M\ddot{x} + (c + g_1 K_i)\dot{x} + kx = F_{\text{disturbance}}$$

Adjustable Damping Term

3. Single Frequency Vib. Reduction - Direct Velocity Feedback

Test Results

- Role of Linear Motor (Absence of exciter)

Control OFF: Exciter (sine wave current)

Control ON: Active Damper

- Excitation

9.8 Hz: 5.0A excitation (by LM)

- Control gain

$$g_1 = 255.6$$

 $\frac{2\% \ settling \ time \ 43.3\% \ reduced}{t_{s.natural}} = 1.68 \ll t_{s.control} = 0.95$

4. Multi-Frequency Vib. Reduction - Direct Velocity Feedback

Test Results

- Role of Linear Motor (Absence of exciter)

Control OFF: Exciter (sine wave current)

Control ON: Active Damper

- Excitation

9.8 Hz : no excitation

31.3 Hz: 2.3A excitation (by LM)

- Control gain

$$g_1 = 255.6$$
, $g_2 = 100$

 $\frac{5\% \ settling \ time \ 39.5\% \ reduced}{t_{s.natural}} = 2.26 \ll t_{s.control} = 1.36$

4. Multi-Frequency Vib. Reduction - Direct Velocity Feedback

Test Results

- Role of Linear Motor (Absence of exciter)

Control OFF: Exciter (sine wave current)

Control ON: Active Damper

- Excitation

9.8 Hz : 4.0A excitation

31.3 Hz: 2.3A excitation (by LM)

- Control gain

$$g_1 = 255.6$$
, $g_2 = 100$

 $\frac{5\% \ settling \ time \ 71.5\% \ reduced}{t_{s.natural} = 1.71 \ll t_{s.control} = 0.49}$

5. Conclusion

Speed X0.25

Excitation 9.8Hz, 31.3Hz

Red: non-collocated
White: collocated

Control

Found feasibility for dealing with the Entire Frequency

6. Future work

During control, LMAD deviates from the center

- Apply parallel controller (Separate effect on performance)
- LMAD position controller with low frequency bandwidth

Only 1DOF & 2DOF applications (modeling, controller)

- Generalize n-DOF applications

Used simple controller (DVF, P control)

- Apply specific stability conditions
- Specification of control methods

7. Acknowledgements

Special thanks to

Professor Min

Professor Yoon

T.A. Kim