Homework

Frederick Robinson

23 November 2009

1 Chapter 5

1.1 Problem 6

1.1.1 Question

Suppose

- 1. f is continuous for $x \ge 0$
- 2. f'(x) exists for x > 0
- 3. f(0) = 0
- 4. f' is monotonically increasing

Put

$$g(x) = \frac{f(x)}{x} \quad (x > 0)$$

and prove that g is monotonically increasing.

1.1.2 Answer

Proof. We will compute the derivative and show that it is always $g'(x) \ge 0$. The derivative of g(x) is given by the quotient rule to be

$$g'(x) = \frac{xf'(x) - f(x)}{x^2}$$

The denominator is clearly always positive as we know it is the square of some real number x > 0, so in order to show that the entire derivative is always positive we need to show that the numerator is positive.

However,

$$\frac{f(x)}{x} \le f'(x) \Leftrightarrow xf'(x) - f(x) \ge 0$$

and we know that, by the mean value theorem there is some $c \in (0, x)$ such that $\frac{f(x)}{x} = f'(x)$ since f(0) = 0. Since f is monotonically increasing it must be that $f'(x) \ge \frac{f(x)}{x}$.

Thus, $xf'(x) - f(x) \ge 0$ and so the derivative of g is positive, which implies that g is monotonically increasing.

1.2 Problem 11

1.2.1 Question

Suppose that f is defined in a neighborhood of x, and suppose that f''(x) exists. Show that

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x).$$

Show by an example that the limit may exist even if f''(x) does not. *Hint:* Use Theorem 5.13.

1.2.2 Answer

Theorem 5.13 (L'Hopital's Rule)

Suppose f and g are real and differentiable in (a, b), and $g'(x) \neq 0$ for all $x \in (a, b)$ where $-\infty \leq a < b \leq +\infty$. Suppose

$$\frac{f'(x)}{g'(x)} \to A \text{ as } x \to a.$$

If

$$f(x) \to 0$$
 and $g(x) \to 0$ as $x \to a$,

or if

$$g(x) \to +\infty \ as \ x \to a,$$

then

$$\frac{f(x)}{g(x)} \to A \ as \ x \to a.$$

Proof. Since the denominator of

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2}$$

goes to zero as $h \to 0$ we can employ L'Hopital's rule. Using this we get

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = \lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{2h}$$

Since the denominator is again zero we apply L'Hopital's rule again

$$= \lim_{h \to 0} \frac{f''(x+h) + f''(x-h)}{2}$$
$$= f''(x)$$

An example of a function that is not differentiable, but where this limit exists is

$$f(x) = \begin{cases} 0 & x \le 0 \\ x^2 & x > 0 \end{cases}$$

The second derivative of this function does not exist at zero, as

$$f'(x) = \begin{cases} 0 & x \le 0 \\ 2x & x > 0 \end{cases}$$

however we can compute the above limit at zero by

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = \lim_{h \to 0} \frac{h^2}{h^2} = 1$$

1.3 Problem 14

1.3.1 Question

Let f be a differentiable real function defined in (a, b). Prove that f is convex if and only if f' is monotonically increasing. Assume next that f''(x) exists for every $x \in (a, b)$, and prove that f is convex if and only if $f''(x) \ge 0$ for all $x \in (a, b)$.

1.3.2 Answer

A function f is said to be convex if

$$f(\lambda + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

First we shall prove (\Rightarrow) that f' monotonically increasing implies f is convex.

Proof. Assume f' is monotonically increasing. Let x < y < z for $x, y, z \in (a, b)$. The mean value theorem implies that $\exists c \in (x, y)$ such that $f'(c) = \frac{f(y) - f(x)}{y - x}$. Similarly $\exists d \in (y, z)$ such that $f'(d) = \frac{f(z) - f(y)}{z - y}$. Thus, since f' is assumed to be monotonically increasing we have

$$f'(c) \le f'(d) \Rightarrow \frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(y)}{z - y}$$

Because $y \in (x, z)$ we know that $y = \lambda x + (1 - \lambda)z$ for some $\lambda \in (0, 1)$. Moreover, we have

$$\frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(y)}{z - y}$$

$$\Rightarrow \frac{f(\lambda x + (1 - \lambda)z) - f(x)}{\lambda x + (1 - \lambda)z - x} \le \frac{f(z) - f(\lambda x + (1 - \lambda)z)}{z - \lambda x - (1 - \lambda)z}$$

$$\Rightarrow \frac{f(\lambda x + z - z\lambda) - f(x)}{\lambda x + z - \lambda z - x} \le \frac{f(z) - f(\lambda x + z - \lambda z)}{z - \lambda x - z + \lambda z}$$

$$\Rightarrow \frac{f(\lambda x + z - z\lambda) - f(x)}{\lambda x + z - \lambda z - x} \le \frac{f(z) - f(\lambda x + z - \lambda z)}{-\lambda x + \lambda z}$$

$$\Rightarrow \lambda(z - x) \left(f(\lambda x + z - z\lambda) - f(x) \right) \le \left(f(z) - f(\lambda x + z - \lambda z) \right) (1 - \lambda) (z - x)$$

We note here that the direction of the inequality is preserved since we have x < z and $\lambda > 0$ and $1 - \lambda > 0$ (*)

$$\Rightarrow \lambda \left(f(\lambda x + z - z\lambda) - f(x) \right) \le \left(f(z) - f(\lambda x + z - \lambda z) \right) (1 - \lambda)$$

$$\Rightarrow \lambda \left(f(\lambda x + z(1 - \lambda)) - f(x) \right) \le \left(f(z) - f(\lambda x + z(1 - \lambda)) \right) (1 - \lambda)$$

$$\Rightarrow \lambda f(\lambda x + z(1 - \lambda)) - \lambda f(x) \le f(z) - f(\lambda x + z(1 - \lambda)) - \lambda f(z) + \lambda f(\lambda x + z(1 - \lambda))$$
reducing yields

$$-\lambda f(x) \le f(z) - f(\lambda x + z(1-\lambda)) - \lambda f(z)$$

$$\Rightarrow -\lambda f(x) - f(z) + \lambda f(z) \le -f(\lambda x + z(1 - \lambda))$$
$$\Rightarrow \lambda f(x) + f(z) - \lambda f(z) \ge f(\lambda x + z(1 - \lambda))$$
$$\Rightarrow \lambda f(x) + f(z)(1 - \lambda) \ge f(\lambda x + z(1 - \lambda))$$

but since the initial choice of x, y, z was arbitrary (up to ordering) this holds for any x < z. We must still address the case corresponding to x > z. This is easy though.

For let x > z. Then by what we have proven already

$$\lambda f(z) + f(x)(1-\lambda) > f(\lambda z + x(1-\lambda))$$

now let $\alpha = 1 - \lambda$ so it follows from the above that

$$(1 - \alpha)f(z) + f(x)(1 - 1 + \alpha) \ge f((1 - \alpha)z + x(1 - 1 + \alpha))$$

$$\Rightarrow (1 - \alpha)f(z) + \alpha f(x) \ge f((1 - \alpha)z + \alpha x)$$

Thus if f' is monotonically increasing

$$\lambda f(x) + f(z)(1-\lambda) \ge f(\lambda x + z(1-\lambda))$$

for
$$\forall x, y \in (a, b), \lambda \in (0, 1)$$

Now we prove (\Leftarrow) that f convex implies f' is monotonically increasing.

Proof. The proof of this direction follows similarly to the previous. Let's assume f is convex.

Then

$$\lambda f(x) + f(z)(1-\lambda) \ge f(\lambda x + z(1-\lambda))$$

for x < z (Note: we must have x < z by (*)) and $x, z \in (a, b), \lambda \in (0, 1)$. Following the previous reasoning in reverse we see that

$$\frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(y)}{z - y}$$

for $\forall y \in (x, z)$.

So in the limit $y \to x$ we have

$$f'(x) \le \frac{f(z) - f(x)}{z - x}$$

and in the limit $y \to z$ we have

$$\frac{f(z) - f(x)}{z - x} \le f'(z)$$

thus, combining these statements we have

$$f'(x) \le \frac{f(z) - f(x)}{z - x} \le f'(z)$$

so f' is monotonically increasing as desired.

Now it only remains to prove that (assuming f''(x) exists for $x \in (a, b)$) f is convex if and only if $f''(x) \ge 0$ for $\forall x \in (a, b)$.

Proof. f is convex $\Leftrightarrow f'$ is monotonically increasing by the previous proof. Moreover, f' is monotonically increasing $\Leftrightarrow f'' \geq 0$ (proved in class).

So we have shown that (assuming f''(x) exists for $x \in (a,b)$) f is convex if and only if $f''(x) \ge 0$ for $\forall x \in (a,b)$ as desired.