Muncar - 1.1.

(1)
$$f_1(x) = e^x$$
, $f_2(x) = 1$, $f_3(x) = x+1$, $f_4(x) = x-e^x$
 $a_1e^x + a_2 + a_3(x+1) + a_4$, $(x-e^x) = 0$
 $e^x(a_1-a_4) + x(a_3+a_4) + (a_2+a_3) = 0$
 $a_1-a_4=0$
 $a_3+a_4=0 = x$
 $a_3=a_4=0$
 $a_2=a_4=0$

(1) $f_1(x) = f_2(x) + f_3(x) + f_4(x) = 0 = 7$ bentopu nuneano zabucano

(2) $f_1(x) = f_2(x) + f_3(x) + f_4(x) = 0 = 7$ bentopu nuneano zabucano

(3) $f_1(x) = f_2(x) + f_3(x) + f_4(x) = 0 = 7$
 $f_1(x) = f_2(x) + f_3(x) + f_4(x) = 0$
 $f_1(x) = f_2(x) + f_3(x) + f_4(x) + f_4(x) = 0$
 $f_2(x) = f_2(x) + f_3(x) + f_4(x) + f_4(x) + f_4(x) = 0$
 $f_2(x) = f_2(x) + f_3(x) + f_4(x) + f_4(x)$

Tycis
$$a_1=1$$
, morga $a_2=-4$, $a_3=-2$, $a_4=2$
 $f_1(x)-4f_2(x)-2f_3(x)+2f_4(x)=0=7$ be ktopk runeatho zabuczestki

3)
$$x = (2,3,5) \in \mathbb{R}^3$$

 $b_1 = (0,0,10)$ $b_3 = (0,1,0)$
 $b_2 = (2,0,0)$
 $x = (2,3,5) = 2\frac{b_2}{2} + 3b_3 + 5\frac{b_1}{10} = b_2 + 3b_3 + \frac{1}{2}b_1$