Métodos Estadísticos satellogic

Ana Bianco (anambianco@gmail.com)
Mariela Sued (marielasued@gmail.com)

LGN - TCL - Estadística

Un dado: X

t	1	2	3	4	5	6
$\mathbb{P}(X=t)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Suma de dos dados: $S_2 = X_1 + X_2$, $X_i \sim X$

t	2	3	4	5	6	7	8	9	10	11	12
$\mathbb{P}(S_2 = t)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

¿Suma de 4 dados: $S_4 = X_1 + X_2 + X_3 + X_4$?

Aunque conozcamos exactamente la distribución de cada una de las v.a. involucradas, puede ser muy complejo hallar la distribución de la suma en forma exacta: en este caso hay 1296 combinaciones!!

Propuesta: simulemos la distribución de

$$S_4 = X_1 + X_2 + X_3 + X_4$$

- 1. Simulemos el lanzamiento de 4 dados equilibrados.
- 2. Consideremos $S_4 = la$ suma de las caras obtenidas.
- 3. Repitamos Nrep=10000 y grafiquemos el histograma para los valores de S_4 obtenidos.

Simulación

```
caras=\mathbf{c}(1,2,3,4,5,6)
proba=\mathbf{c}(1/6,1/6,1/6,1/6,1/6,1/6)
sum(sample(caras,4,replace=T,prob=proba))
nrep=10000
set.seed(999)
suma=rep(0,nrep)
for(i in 1:nrep){
    suma[i]=sum(sample(caras,4,replace=T,prob=proba))
hist(suma,freq=F,main="Suma 4 dados")
```

Suma 4 dados

Suma de v.a.: algunos casos conocidos

Sean X e Y v. a. independientes y S = X + Y, entonces:

- 1. $X \sim \mathcal{B}(n,p)$ e $Y \sim \mathcal{B}(m,p) \Rightarrow S \sim \mathcal{B}(n+m,p)$.
- 2. $X \sim \mathcal{P}(\lambda_1)$ e $Y \sim \mathcal{P}(\lambda_2) \Rightarrow S \sim \mathcal{P}(\lambda_1 + \lambda_2)$.
- 3. $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ e $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2) \Rightarrow S \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$.
- 4. $X \sim \chi_m^2$ e $Y \sim \chi_n^2 \Rightarrow S \sim \chi_{n+m}^2$.

Más aún...

• $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ indep, entonces

$$X_1 + \ldots + X_k \sim \mathcal{N}(\mu_1 + \mu_2 + \ldots + \mu_k, \sigma_1^2 + \sigma_2^2 + \ldots + \sigma_k^2)$$

• $X_i \sim \mathcal{B}(n_i, p)$ indep, entonces

$$X_1 + \ldots + X_k \sim \mathcal{B}(n_1 + n_2 + \ldots + n_k, p)$$

• $X_i \sim \mathcal{P}(\lambda_i)$ indep, entonces

$$X_1 + \ldots + X_k \sim \mathcal{P}(\lambda_1 + \lambda_2 + \ldots + \lambda_k)$$

Propiedades:

• X_1, \ldots, X_n , variables aleatorias, entonces

$$\mathbb{E}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \mathbb{E}\left(X_i\right)$$

• X_1, \ldots, X_n INDEPENDIENTES, entonces

$$V\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} V\left(X_i\right)$$

Un caso especial: muestra aleatoria (m. a.)

"Data points that are drawn independently from the same distribution are said to be independent and identically distributed, which is often abbreviated to i.i.d.

 X_1, \ldots, X_n son una muestra aleatoria si son v. a. independientes, idénticamente distribuídas.

$$X_1,\ldots,X_n$$
, i.i.d., $X_i \sim F$.

¿Qué relación guarda todo esto con nuestras simulaciones? runif(10,0,1)

rbin(8,5,0.5)

Muestra - Datos (Observaciones)

- Muestra X_1, \ldots, X_n : Variables aleatorias.
- Datos Observaciones x_1, \ldots, x_n : Números.

Datos-Observaciones: son realizaciones de las variables aleatorias

Datos-Observaciones: son los resultados obtenidos al realizar el "experimento"

Un caso especial: muestra aleatoria (m. a.)

"Data points that are drawn independently from the same distribution are said to be independent and identically distributed, which is often abbreviated to i.i.d.

 X_1, \ldots, X_n son una muestra aleatoria si son v. a. independientes, idénticamente distribuídas.

$$X_1,\ldots,X_n$$
 , i.i.d.

En tal caso, $X_i \sim F$ para todo i, y por consiguiente,

- $\mathbb{P}(X_i \leq t) = \mathbb{P}(X_j \leq t) = \mathbb{P}(X_1 \leq t)$
- $\mathbb{E}(X_i) = \mathbb{E}(X_j) = \mathbb{E}(X_1)$
- $V(X_i) = V(X_j) = V(X_1)$.
- $mongo(F_{X_i}) = mongo(F_{X_i}) = mongo(F_{X_1})$.

Suma y promedios de normales

Sean X_1, \ldots, X_n i.i.d., $X_i \sim \mathcal{N}(\mu, \sigma^2)$.

- $\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$
- $\bar{X}_n \sim \mathcal{N}(\mu, \sigma^2/n)$.

Promedio de normales

Comparemos las densidades

En un mismo plot graficar la densidad de

- 1. una v.a. N(0,1)
- 2. del promedio de 10 v.a. independientes cada una de ellas ${\cal N}(0,1)$
- 3. del promedio de 50 v.a. independientes cada una de ellas N(0,1)
- 4. del promedio de 100 v.a. independientes cada una de ellas ${\cal N}(0,1)$

Grafiquemos

```
\times = seq(-4,4,length=1000)
f1=dnorm(x,0,1)
f10=dnorm(x,0,1/sqrt(10))
f50=dnorm(x,0,1/sqrt(50))
f100 = dnorm(x,0,1/sqrt(100))
maximo = max(f100)
plot(x,f1)
lines(x,f1,lwd=2)
lines(x,f10,col="green",lwd=2)
lines(x,f50,col="red",lwd=2)
lines(x,f100,col="blue",lwd=2)
```


En particular, suma y promedios de normales

Sean X_1, \ldots, X_n i.i.d., $X_i \sim \mathcal{N}(\mu, \sigma^2)$.

•
$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

•
$$\bar{X}_n \sim \mathcal{N}(\mu, \sigma^2/n)$$
.

$$\mathbb{P}\left(|\bar{X}_n - \mu| > \varepsilon\right) = 2(1 - \Phi(\varepsilon\sqrt{n}/\sigma))$$

En particular, suma y promedios de normales

Sean X_1, \ldots, X_n i.i.d., $X_i \sim \mathcal{N}(\mu, \sigma^2)$.

•
$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

•
$$\bar{X}_n \sim \mathcal{N}(\mu, \sigma^2/n)$$
.

$$\mathbb{P}\left(|\bar{X}_n - \mu| > \varepsilon\right) = 2(1 - \Phi(\varepsilon\sqrt{n}/\sigma))$$

$$\lim_{n \to \infty} \mathbb{P}\left(|\bar{X}_n - \mu| > \varepsilon\right) = 0 , \quad \forall \varepsilon > 0.$$

Promedios- caso general

$$X_1, \ldots, X_n$$
 i.i.d., con $\mathbb{E}(X_i) = \mu$ y $\mathbb{V}(X_i) = \sigma^2$, para todo i .

$$\bar{X} = \bar{X}_n = \frac{\sum_{i=1}^n X_i}{n}$$
 \Longrightarrow $\mathbb{V}(\bar{X}_n) = \frac{\sigma^2}{n}$

$$\mathbb{P}\left(|\bar{X}_n - \mu| > \varepsilon\right)???$$

Desigualdades

• Markov: $X \ge 0$, entonces para todo $\delta > 0$ vale que

$$\mathbb{P}(X \ge \delta) \le \frac{\mathbb{E}(X)}{\delta}$$

En particular

$$\mathbb{P}\left(|T| \ge \varepsilon\right) \le \frac{\mathbb{E}(T^2)}{\varepsilon^2}$$

ullet Tchebycheff : Sea W una v.a. y $\epsilon>0$

$$\mathbb{P}\left(|W - \mathbb{E}(W)| \ge \varepsilon\right) \le \frac{\mathbb{V}(W)}{\varepsilon^2}$$

Teorema: Ley de los Grandes Números (LGN)

• $(X_i)_{i\geq 1}$ i.i.d., con $\mathbb{E}(X_i)=\mu$ y $\mathbb{V}(X_i)=\sigma^2$

$$\mathbb{P}\left(|\bar{X}_n - \mu| > \varepsilon\right) = \mathbb{P}\left(|\bar{X}_n - \mathbb{E}(\bar{X}_n)| > \varepsilon\right) \le \frac{\mathbb{V}(\bar{X}_n)}{\varepsilon^2} = \frac{\sigma^2}{n} \to 0$$

• Definición: $(Y_n)_{n\geq 1}$ converge a Y en probabilidad si $\lim_{n\to\infty}\mathbb{P}\left(|Y_n-Y|>\varepsilon\right)=0$, para todo $\varepsilon>0$.

Teorema: Ley de los Grandes Números (LGN)

ullet $(X_i)_{i\geq 1}$ i.i.d., con $\mathbb{E}(X_i)=\mu$ y $\mathbb{V}(X_i)=\sigma^2$

$$\mathbb{P}\left(|\bar{X}_n - \mu| > \varepsilon\right) = \mathbb{P}\left(|\bar{X}_n - \mathbb{E}(\bar{X}_n)| > \varepsilon\right) \le \frac{\mathbb{V}(X_n)}{\varepsilon^2} = \frac{\sigma^2}{n} \to 0$$

- Definición: $(Y_n)_{n\geq 1}$ converge a Y en probabilidad si $\lim_{n\to\infty}\mathbb{P}\left(|Y_n-Y|>\varepsilon\right)=0$, para todo $\varepsilon>0$.
- Teorema (LGN): Sean $(X_i)_{i\geq 1}$ i.i.d., con $\mathbb{E}(X_i)=\mu$. Entonces, $\overline{X}_n=n^{-1}\sum_{i=1}^n X_i$ converge a μ en probabilidad.

Frecuencias relativas y probabilidad- revisitado

$$\mathsf{LGN} \,\, \mathsf{en} \,\, \mathsf{general} \quad \frac{1}{n} \sum_{i=1}^n \mathsf{mongo}_i \to \mathbb{E}(\mathsf{mongo})$$

Frecuencias relativas y probabilidad- revisitado

LGN en general $\frac{1}{n}\sum_{i=1}^{n} \mathsf{mongo}_i \to \mathbb{E}(\mathsf{mongo})$

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{X_i \in A} \to \mathbb{E}(\mathbb{I}_{X \in A}) = \mathbb{P}(X \in A)$$

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{X_i \le t} \to \mathbb{E}(\mathbb{I}_{X \le t}) = \mathbb{P}(X \le t) = F(t) , \quad X_i \sim F.$$

La EMPIRICA
$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{X_i \leq t}$$

Variables Discretas:

• Sea X con función de probabilidad puntual

t	-1	1	4	5	7	10
$p_X(t)$	2/24	6/24	4/24	1/24	7/24	4/24

- pejemplo : $F_X(t) = \sum_{x_i < t} p_X(x_i)$.
- Grafique F_X , para $t \in (-2, 11)$, by= 0.01
- Calcule la esperanza de X: $\mathbb{E}(X) = \sum x_i p_X(x_i)$
- Calcule la varianza de X:

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \{\mathbb{E}(X)\}^2 = \sum_{i=1}^{\infty} x_i^2 p_X(x_i) - \left\{\sum_{i=1}^{\infty} x_i p_X(x_i)\right\}^2$$

• ¿Cómo samplea con esta distribución?

Una discretas muy particulares

 Considere una distribución equiprobable en los siguientes valores

$$2.25$$
, 4.30 , 5.37

- Calcule la puntual.
- Calcule la esperanza y la varianza.
- Grafique la función de distribución acumulada.
- ¿Cómo samplea con esta distribución?

Otra discretas muy particulares

 Considere una distribución equiprobable en los siguientes valores

$$2.25$$
, 4.30 , 5.37 , 5.33 , 6.53 , 3.37 , 2.04 , 4.06 , 7.27 , 3.87

- Calcule la puntual.
- Calcule la esperanza y la varianza.
- Grafique la función de distribución acumulada.
- ¿Cómo samplea con esta distribución?

La empírica

Sean X_1, X_2, \ldots, X_n i.i.d., $X_i \sim F$. Definimos

$$\widehat{F}_n(t) := \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{\{X_i \le t\}}$$

- $\widehat{F}_n(t)$ es una función aleatoria.
- \bullet $\widehat{F}_n(t)$ representa a una acumulada que da peso 1/n a $X_1,X_2,\ldots,X_n.$
- Ley de los grandes números:

$$\lim_{n \to \infty} \widehat{F}_n(t) = F(t)$$
 , en probabilidad

La empírica

Sean X_1, X_2, \ldots, X_n i.i.d., $X_i \sim F$. Definimos

$$\widehat{F}_n(t) := \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{\{X_i \le t\}}$$

- $\widehat{F}_n(t)$ es una función aleatoria.
- \bullet $\widehat{F}_n(t)$ representa a una acumulada que da peso 1/n a $X_1,X_2,\ldots,X_n.$
- Ley de los grandes números:

$$\lim_{n\to\infty}\widehat{F}_n(t)=F(t)\;,$$
 en probabilidad

• Glivenko Cantelli:

$$\lim_{n \to \infty} \sup_{t \in \mathbb{R}} |\widehat{F}_n(t) - F(t)| = 0 \;, \quad \text{en probabilidad}$$

Un poco de código

$$\widehat{F}_n(t) := \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{\{X_i \le t\}}$$

- Implemente una La.empirica(t,datos), que tenga por input un valor t y un conjunto de observaciones (datos) y devuelva el valor de la función empírica asociada a los datos evaluada en el punto t.
- Genere un conjunto de n=20 datos normales, calcule la función empírica asociada a los datos obtenidos a lo largo de una grilla en (-3,3) y superponga la función que considere pertinente.

Suma y promedios de normales - revisitado

Sean X_1, \ldots, X_n i.i.d., $X_i \sim \mathcal{N}(\mu, \sigma^2)$.

• Sumas: $S_n = \sum_{i=1}^n X_i \sim \mathcal{N}(n\mu, n\sigma^2)$

$$\frac{S_n - n\mu}{\sqrt{n\sigma^2}} \sim \mathcal{N}(0,1) , \quad \mathbb{P}\left(\frac{S_n - n\mu}{\sqrt{n\sigma^2}} \le t\right) = \Phi(t)$$

• Promedios: $\bar{X}_n \sim \mathcal{N}(\mu, \sigma^2/n)$.

$$\frac{\bar{X}_n - \mu}{\sqrt{\sigma^2/n}} \sim \mathcal{N}(0, 1) , \quad \mathbb{P}\left(\frac{\bar{X}_n - \mu}{\sqrt{\sigma^2/n}} \le t\right) = \Phi(t)$$

Teorema Central del Límite (TCL):

Sean $(X_i)_{i\geq 1}$ v.a. i.i.d. con $\mathbb{E}(X_i)=\mu$ y $V(X_i)=\sigma^2$.

• Aproximación para la suma: $S_n = \sum_{i=1}^n X_i \approx \mathcal{N}(n\mu, n\sigma^2)$

$$\mathbb{P}\left(\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n\sigma^2}} \le t\right) \underset{n \to \infty}{\longrightarrow} \Phi(t) \ \forall t \in \mathbb{R} \ ,$$

• Aproximación para promedios: $\bar{X}_n \approx \mathcal{N}(\mu, \sigma^2/n)$.

$$\frac{\bar{X}_n - \mu}{\sqrt{\sigma^2/n}} \approx \mathcal{N}(0,1) , \quad \mathbb{P}\left(\frac{\bar{X}_n - \mu}{\sqrt{\sigma^2/n}} \le t\right) \underset{n \to \infty}{\longrightarrow} \Phi(t) \ \forall t \in \mathbb{R} ,$$

Teorema Central del Límite (TCL):

Notación sintética

Sean $(X_i)_{1\leq i\leq n}$ v.a. i.i.d. con $\mathbb{E}(X_i)=\mu$ y $V(X_i)=\sigma^2$, entonces para n suficientemente grande

$$\frac{\sqrt{n}}{\sigma}(\bar{X}_n - \mu) \approx \mathcal{N}(0, 1)$$

$$\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n\sigma^2}} \approx \mathcal{N}(0,1)$$

sin estandarizar
$$\sqrt{n}(\bar{X}_n - \mu) \approx \mathcal{N}(0, \sigma^2)$$

en cualquier dimensión $\sqrt{n}(\bar{X}_n-\mu) \approx \mathcal{N}(0,\Sigma)$ normal multivariada

Método Delta

Supongamos que

$$\frac{\sqrt{n}}{\sigma}(Y_n - \theta) \approx \mathcal{N}(0, 1).$$

Si $g'(\theta) \neq 0$, vale que

$$\frac{\sqrt{n}}{|g'(\theta)| \sigma} \{ g(Y_n) - g(\theta) \} \approx \mathcal{N}(0, 1).$$

Método Delta

Supongamos que

$$\frac{\sqrt{n}}{\sigma}(Y_n - \theta) \approx \mathcal{N}(0, 1).$$

Si $g'(\theta) \neq 0$, vale que

$$\frac{\sqrt{n}}{|g'(\theta)| \sigma} \left\{ g(Y_n) - g(\theta) \right\} \approx \mathcal{N}(0, 1).$$

Versión Multivariada: si $\sqrt{n}(Y_n - \theta) \approx \mathcal{N}(0, \Sigma), \nabla g_\theta \neq 0$ entonces $\sqrt{n} \{g(Y_n) - g(\theta)\} \approx \mathcal{N}(0, \nabla g_\theta^T \Sigma \nabla g_\theta).$

in mayor a cuanto?

mu=0 y diferentes sigmas

X tiene distribución LogNormal con densidad

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2}(\log x - \mu)^2\right), \qquad x > 0$$

in mayor a cuanto?

- Objetivo: Determinar una magnitud desconocida.
- μ : valor de la magnitud que queremos determinar.
- Mediciones

$$X_i = \mu + \varepsilon_i$$

- $(\varepsilon_i)_{i>1}$ i.i.d.
- ullet Exactitud: $\mathbb{E}(\varepsilon_i)=0$, luego $\mathbb{E}(X_i)=\mu$ (insesgado).
- Precisión: tamaño de $V(\varepsilon_i)$.

- Objetivo: Determinar una magnitud desconocida.
- ullet μ : valor de la magnitud que queremos determinar.
- Mediciones

$$X_i = \mu + \varepsilon_i$$

- $(\varepsilon_i)_{i\geq 1}$ i.i.d.
- ullet Exactitud: $\mathbb{E}(\varepsilon_i)=0$, luego $\mathbb{E}(X_i)=\mu$ (insesgado).
- Precisión: tamaño de $V(\varepsilon_i)$.

- Objetivo: Determinar una magnitud (macroscópica) desconocida: peso, concentración de , bla bla bla..
- ullet μ : valor de la magnitud que queremos determinar.
- Mediciones

$$X_i = \mu + \varepsilon_i$$

- $(\varepsilon_i)_{i\geq 1}$ i.i.d.
- Exactitud: $\mathbb{E}(\varepsilon_i) = 0$, luego $\mathbb{E}(X_i) = \mu$ (insesgado)
- Precisión: tamaño de $\mathbb{V}(\varepsilon_i)$.
- Piense en algún laboratorio que haya cursado...

¿Cómo estima μ , la magnitud desconocida?

- Objetivo: Determinar una magnitud (macroscópica) desconocida: peso, concentración de , bla bla bla..
- ullet μ : valor de la magnitud que queremos determinar.
- Mediciones

$$X_i = \mu + \varepsilon_i$$

- $(\varepsilon_i)_{i\geq 1}$ i.i.d.
- Exactitud: $\mathbb{E}(\varepsilon_i) = 0$, luego $\mathbb{E}(X_i) = \mu$ (insesgado)
- Precisión: tamaño de $\mathbb{V}(\varepsilon_i)$.
- Piense en algún laboratorio que haya cursado...

¿Cómo estima μ , la magnitud desconocida?

Nuestro primer estimador: $\widehat{\mu}_n := \bar{X}_n$

Estimando $\mu = \mathbb{E}(X)$

• Estimador: $\widehat{\mu}_n = \bar{X}_n$ cuenta hecha con la muestra

 Consistencia: el estimador converge a lo que queremos estimar:

de LGN
$$\widehat{\mu}_n \to \mu$$

Wasserman dixit

$$X_1, \ldots, X_n, X_i \sim F$$
 how do we infer F ?

In some cases, we may want to infer only some feature of F such as its mean.

Modelos paramétricos

$$X_1,\ldots,X_n,X_i\sim f,f\in\mathcal{F}$$

$$\mathcal{F} = \{f(\cdot, \theta); \theta \in \Theta\}.$$

Diferentes cosas a estimar

$$X_1,\ldots,X_n,X_i\sim F$$

- Estimar F.
- Estimar algo asociado a F (esperanza, varianza, una probabilidad...). Enfoque funcional.
- Estimar la densidad sin modelo paramétrico.

Estimación Puntual

Point estimation refers to providing a single "best guess" of some quantity of interest. All of statistics. Wasserman

Estimación Puntual

Point estimation refers to providing a single "best guess" of some quantity of interest.

All of statistics. Wasserman

$$X_1,\ldots,X_n X_i \sim F$$
, $F \in \mathcal{F}$

- Objeto de interés: $\theta = \theta(F)$
- best guess: Estimador Función de la muestra

$$\widehat{\theta}_n \equiv \widehat{\theta}_n(X_1, \dots, X_n)$$

Estimación Puntual

Point estimation refers to providing a single "best guess" of some quantity of interest.

All of statistics. Wasserman

$$X_1, \ldots, X_n X_i \sim F$$
, $F \in \mathcal{F}$

- Objeto de interés: $\theta = \theta(F)$
- best guess: Estimador Función de la muestra

$$\widehat{\theta}_n \equiv \widehat{\theta}_n(X_1, \dots, X_n)$$

• Estimación: Valor del estimador en un conjunto de datos:

$$\widehat{\theta}_n(x_1,\ldots,x_n)$$

Estadística

$POBLACION \leftrightarrow F$	MUESTRA $X_1, \ldots X_n$ i.i.d. $X_i \sim F$
Parámetro: Valor asociado de F	Estimador:estadístico para estimar $ heta$
$\theta = \theta(F)$	$\widehat{\theta}_n = \widehat{\theta}_n(X_1, \dots, X_n)$
heta: valor poblacional	$\widehat{ heta}_n$ nueva variable aleatoria

¿Cuánto mide la mesa?

¿Cuánto mide la mesa?

Estas son las n=7 primeras observaciones realizadas por Juan:

 $1.17, \quad 1.36, \quad 0.15, \quad 2.52, \quad 0.21, \quad 1.78, \quad 2.67$

Juan cada vez con más datos. $\widehat{\theta}_n = 2 \overline{X}_n$

Juan y Andrea, cada vez con más datos. $\widehat{\theta}_n = 2 \overline{X}_n$

Varios, cada vez con más datos. $\widehat{\theta}_n = 2 \overline{X}_n$

Cada uno con lo suyo. $\widehat{\theta}_n = 2 \overline{X}_n$

	Nombre	n=5	n=30	n=50
1	Juan	1.08	3.2	2.96
2	Andrea	2.87	2.95	2.88
3	Flor	3.47	3.2	3.18
4	Gonzalo	3.88	3.23	3.18
5	Paula	3.79	2.93	2.81
6	Agustin	3.01	2.9	2.59
7	Julieta	3.55	3.03	3.01
8	Marina	2.09	2.79	3.1
9	Pablo	4.14	3.41	3.01
10	Enrique	2.65	3.29	3.11
			•	•
				•
				•
			•	

Histogramas de $\widehat{\theta}_n = 2\overline{X}_n$ (empirical) Sampling Distribution of $\widehat{\theta}_n$

Histogramas de $\widehat{\theta}_n = 2\overline{X}_n$ (empirical) Sampling Distribution of $\widehat{\theta}_n$

Histogramas de $\widehat{\theta}_n = 2\overline{X}_n$ (empirical) Sampling Distribution of $\widehat{\theta}_n$

Histogramas de $\widetilde{\theta}_n=\max\{X_1,\ldots,X_n\}$ (empirical) Sampling Distribution of $\widetilde{\theta}_n$

Histogramas de $\widetilde{\theta}_n = \max\{X_1,\ldots,X_n\}$ (empirical) Sampling Distribution of $\widetilde{\theta}_n$

Histogramas de $\widetilde{\theta}_n=\max\{X_1,\ldots,X_n\}$ (empirical) Sampling Distribution of $\widetilde{\theta}_n$

Histogramas de $\widehat{\theta}_n=2\overline{X}_n$ y de $\widetilde{\theta}_n=\max\{X_1,\dots,X_n\}$

Notemos que el estimador ...

$$\widehat{\theta}_n \equiv \widehat{\theta}_n(X_1, \dots, X_n)$$

- ullet $\widehat{\theta}_n$ es una variable aleatoria.
- $\widehat{\theta}_n$ tiene distribución (siempre).

Sampling distribution of
$$\widehat{\theta}_n$$
: $f_{\widehat{\theta}_n}$

ullet $\widehat{ heta}_n$ tiene (en general) esperanza: $\mathbb{E}(\widehat{ heta}_n)$

Notemos que el estimador ...

$$\widehat{\theta}_n \equiv \widehat{\theta}_n(X_1, \dots, X_n)$$

- ullet $\widehat{\theta}_n$ es una variable aleatoria.
- $\widehat{\theta}_n$ tiene distribución (siempre).

Sampling distribution of
$$\widehat{\theta}_n$$
: $f_{\widehat{\theta}_n}$

- $\widehat{\theta}_n$ tiene (en general) esperanza: $\mathbb{E}(\widehat{\theta}_n) = \int u f_{\widehat{\theta}_n}(u) du$
- ullet $\widehat{ heta}_n$ tiene (en general) varianza: $\mathbb{V}(\widehat{ heta}_n)$
- $\widehat{\theta}_n$ tiene (en general) desvío estandar.

$$\operatorname{se} = \operatorname{se}(\widehat{\theta}_n) = \sqrt{\mathbb{V}(\widehat{\theta}_n)}$$
 Standard error of $\widehat{\theta}_n$.

Sesgo - Varianza

Consistencia

A medida que aumenta el tamaño n de la muestra, el estimador se aproxima al objeto de interés.

$$\widehat{\theta}_n \longrightarrow \theta$$
 , cuando $n \to \infty$

Consistencia

- $(X_i)_{i\geq 1}$ i.i.d., $X_i\sim F$, $F\in\mathcal{F}$
- \mathcal{F} : modelo estadístico.
- ullet $\theta(F)$ objeto de interés definido para cada posible $F\in\mathcal{F}$
- estimador $\widehat{\theta}_n = \widehat{\theta}_n(X_1, \dots, X_n)$.
- Consistencia:

$$\widehat{\theta}_n(X_1,\ldots,X_n)\longrightarrow \theta(F)$$

cuando $n \to \infty$, $X_i \sim F$, cualquiera sea $F \in \mathcal{F}$

A medida que aumenta el tamaño n de la muestra, el estimador se aproxima al objeto de interés.

$$\widehat{\theta}_n \longrightarrow \theta$$
 , cuando $n \to \infty$

Propiedades - si, de nuevo!, pero todas juntas.

- Consistencia (abreviado): $\widehat{\theta} \to \theta$
- Error cuadratico medio: ECM= $\mathbb{E}\{(\widehat{\theta}_n \theta)^2\}$
- Lema: Si $\mathbb{E}\{(\widehat{\theta}_n \theta)^2\} \to 0$, entonces $\widehat{\theta}_n \to \theta$
- Sesgo: $\mathbb{E}(\widehat{\theta}_n) \theta$.
- Estimador insesgado: Sesgo=0. $\mathbb{E}(\widehat{\theta}_n) = \theta$
- Lema (trade off bias- variance):

$$\mathbb{E}\left\{(\widehat{\theta}_n - \theta)^2\right\} = \mathbb{V}(\widehat{\theta}_n) + \left\{\mathbb{E}(\widehat{\theta}_n) - \theta\right\}^2$$

• Si $\mathbb{V}(\widehat{\theta}_n) \to 0$ y $\mathbb{E}(\widehat{\theta}_n) \to \theta$, entonces

$$\mathbb{E}\{(\widehat{\theta}_n - \theta)^2\} \to 0$$

Estimando $\mu = \mathbb{E}(X)$

- Estimador: $\widehat{\mu}_n = \overline{X}_n$ cuenta hecha con la muestra
- Consistencia: el estimador converge a lo que queremos estimar:

de LGN
$$\widehat{\mu}_n \to \mu$$

• Standard Error (del estimador):

$$\operatorname{se} = \operatorname{se}(\widehat{\mu}_n) = \sqrt{\mathbb{V}(\widehat{\mu}_n)} = \sqrt{\frac{\mathbb{V}(X_1)}{n}}$$

• Sampling Distribution (del estimador): Distribución del estimador. $\hat{\mu}_n$ es asintóticamente normal:

del TCL
$$\frac{\widehat{\mu}_n - \mu}{\operatorname{se}(\widehat{\mu}_n)} \approx Z$$
, con $Z \sim \mathcal{N}(0,1)$.

Estimando $\mu = \mathbb{E}(X)$

- ullet Estimador: $\widehat{\mu}_n = ar{X}_n$ cuenta hecha con la muestra
- Consistencia: el estimador converge a lo que queremos estimar:

de LGN
$$\widehat{\mu}_n \to \mu$$

• Standard Error (del estimador):

$$\operatorname{se} = \operatorname{se}(\widehat{\mu}_n) = \sqrt{\mathbb{V}(\widehat{\mu}_n)} = \sqrt{\frac{\mathbb{V}(X_1)}{n}}$$

• Sampling Distribution (del estimador): Distribución del estimador. $\hat{\mu}_n$ es asintóticamente normal:

del TCL
$$\frac{\widehat{\mu}_n - \mu}{\mathsf{se}(\widehat{\mu}_n)} \approx Z$$
, con $Z \sim \mathcal{N}(0,1)$.

Para que servirá esto...

Comprar o no comprar la mesa

Intervalos de Confianza - Pesentación

- Usted necesita comprar una mesa que mida TRES metros.
- Más grande, no le entra en la casa.
- Más chica, queda gente sentada en el piso.
- Considere el siguiente conjunto de datos.

```
\begin{array}{c} 1.40\;,\; 0.62\;,\; 2.40\;,\; 1.96\;,\; 0.96\;,\; 2.16\;,\; 0.87\;,\; 2.80\;,\; 2.31\;,\; 1.93\;,\\ 1.37\;,\; 0.27\;,\; 1.30\;,\; 1.63\;,\; 0.41\;,\; 2.78\;,\; 0.00\;,\; 0.79\;,\; 0.83\;,\; 1.56\;,\\ 0.67\;,\; 1.22\;,\; 1.84\;,\; 0.64\;,\; 1.99\;,\; 2.93\;,\; 0.29\;,\; 1.84\;,\; 1.58\;,\; 2.45\;,\\ 0.62\;,\; 1.87\;,\; 2.80\;,\; 0.55\;,\; 1.18\;,\; 1.03\;,\; 2.82\;,\; 2.85\;,\; 1.22\;,\; 2.23 \end{array}
```

• ¿Considera usted que la mesa sirve?

Intervalos de confianza: All of Statistics, Wasserman

- Interval that contains an unknown quantity with a given frequency-

All of Statistics, Wasserman

-Intervalo que contiene una cantidad desconocida (parámetro de interés) con cierta frecuencia (nivel) -

Intervalos de confianza: definición

• Diremos que $C_n=(a(X_1,\ldots,X_n),b(X_1,\ldots,X_n))$ es un intervalo de confinanza de nivel exacto $1-\alpha$ para el parámetro θ sii

$$\mathbb{P}\left(\theta \in C_n\right) = 1 - \alpha \ .$$

• Diremos que $C_n=(a(X_1,\ldots,X_n),b(X_1,\ldots,X_n))$ es un intervalo de confinanza de nivel asintótico $1-\alpha$ para el parámetro θ sii

$$\mathbb{P}(\theta \in C_n) \longrightarrow 1 - \alpha$$
, cuando $n \to \infty$.

Cambio de Notación: percentiles

En adelante, utilizaremos z_{lpha} para

$$\mathbb{P}(Z \geq z_{\alpha}) = \alpha$$
, cuando $Z \sim \mathcal{N}(0, 1)$.

Volvamos a las uniformes...

- $X_i \sim \mathcal{U}[0, \theta]$
- Queremos intervalos de confianza para θ .
- ¿podemos exacto?
- ¿podemos asintótico?

Volvamos a las uniformes...

- $X_i \sim \mathcal{U}[0, \theta]$
- Queremos intervalos de confianza para θ .
- ¿podemos exacto?
- ¿podemos asintótico? si!
- Miremos el pizarrón

Volvamos a las uniformes...

- $X_i \sim \mathcal{U}[0, \theta]$
- Queremos intervalos de confianza para θ .
- ¿podemos exacto?
- ¿podemos asintótico? si!
- Miremos el pizarrón
- Implemente **IC.mesa.asintot** que dado el nivel 1α y un conjunto de datos devuelva un intervalo de confinaza asintótico de nivel 1α para θ bajo el modelo $X_i \sim \mathcal{U}[0, \theta]$

Estimadores Asintóticamente Normales

ullet $\widehat{ heta}_n$ se dice asintóticamente normal (a.n) sii

$$\frac{\widehat{\theta}_n - \theta}{\text{se}} \approx \mathcal{N}(0, 1),$$

donde se = se $(\widehat{\theta}_n)$ denota el desvío estandar del estimador $\widehat{\theta}_n.$

• Ejemplo: $\widehat{\mu}_n = \bar{X}_n$ es a.n., por TCL.

$$\frac{\bar{X}_n - \mu}{\text{se}} \approx \mathcal{N}(0, 1),$$

siendo

$$\operatorname{se} = \operatorname{se}(\bar{X}_n) = \sqrt{\mathbb{V}(\bar{X}_n)} = \sqrt{\frac{\sigma^2}{n}}$$

Intervalos de Confianza Asintóticamente Normal

• Sea $\widehat{\theta}_n$ asintóticamente normal

$$\frac{\widehat{\theta}_n - \theta}{\mathsf{se}} = \frac{\widehat{\theta}_n - \theta}{\mathsf{se}(\widehat{\theta}_n)} \approx \mathcal{N}(0, 1)$$

- Sea see tal que $\frac{\operatorname{se}(\widehat{\theta}_n)}{\widehat{\operatorname{se}}} \to 1$,
- Tenemos entonces que

$$\mathbb{P}\left(-z_{\alpha/2} \ \leq \ \frac{\widehat{\theta}_n - \theta}{\widehat{\mathsf{se}}} \ \leq \ z_{\alpha/2}\right) \to 1 - \alpha \text{ y por consiguiente}$$

$$\mathbb{P}\left(\widehat{\theta}_n - z_{\alpha/2} \ \widehat{\mathsf{se}} \ \le \ \theta \ \le \ \widehat{\theta}_n + z_{\alpha/2} \ \widehat{\mathsf{se}}\right) \to 1 - \alpha,$$

Llegamos así a que

$$\left(\widehat{\theta}_n - z_{\alpha/2} \ \widehat{\mathsf{se}} \right)$$
 , $\left(\widehat{\theta}_n + z_{\alpha/2} \ \widehat{\mathsf{se}}\right)$

es un intervalo de confianza de nivel asintótico $1-\alpha$ para θ .

Diferentes culturas

ullet Intervalo de confianza de nivel asintótico 1-lpha para heta

$$\left(\widehat{\theta}_n - z_{lpha/2} \ \widehat{\mathsf{se}} \right)$$
 , $\widehat{\theta}_n + z_{lpha/2} \ \widehat{\mathsf{se}}$

• Otra manera de informar

$$\widehat{\theta}_n = pirulo$$
, $(\widehat{se} = aurelio)$

En general

Si

$$\frac{\widehat{\theta}_n - \theta}{\widehat{\text{mongo}}} \approx \mathcal{N}(0, 1) ,$$

entonces,

$$\left(\widehat{\theta}_n - z_{\alpha/2} \ \widehat{\mathrm{mongo}} \quad , \quad \widehat{\theta}_n + z_{\alpha/2} \ \widehat{\mathrm{mongo}} \right)$$

es un intervalo de confianza de nivel asintótico $1-\alpha$ para θ .

Intervalo de confianza para la mediana

- Asuma que la mediana es asintóticamente normal.
- Haga Bootstrap para estimar su desvío.
- Proponga un intervalo asintótico con el desvío estimado.

Intervalo de confianza para la mediana

• Distribución de la mediana muestral: asintóticamente normal

$$rac{\mathsf{med}(X_1,\ldots,X_n)-\mathsf{med}(X)}{\mathsf{se}} pprox \mathcal{N}(0,1) \quad n \ \mathsf{grande}$$

Desvio del Estimador:

$$\mathsf{se} = \mathsf{se}(\mathsf{med}(X_1, \dots, X_n)) = \sqrt{\mathbb{V}_F\{\mathsf{med}(X_1, \dots, X_n)\}} = ????$$

- $\widehat{\mathsf{se}} = ??$
- Bootstrap! seboot

Intervalo de confianza $\operatorname{med}(X_1,\ldots,X_n) \pm z_{\alpha/2}\widehat{\operatorname{se}}_{boot}$

Población = Función de Distribución Acumulada

 $\mathbb{P}(X=a)$ es el salto en a de F_X

X

Variables Discretas:

• Sea X con función de probabilidad puntual

t	-1	1	4	5	7	10
$p_X(t)$	2/24	6/24	4/24	1/24	7/24	4/24

- pejemplo : $F_X(t) = \sum_{x_i < t} p_X(x_i)$.
- Grafique F_X , para $t \in (-2, 11)$, by= 0.01
- Calcule la esperanza de X: $\mathbb{E}(X) = \sum x_i p_X(x_i)$
- Calcule la varianza de X:

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \{\mathbb{E}(X)\}^2 = \sum_{i=1}^{\infty} x_i^2 p_X(x_i) - \left\{\sum_{i=1}^{\infty} x_i p_X(x_i)\right\}^2$$

• Como samplea con esta distribución?

Una discretas muy particulares

 Considere una distribución equiprobable en los siguientes valores

$$2.25$$
, 4.30 , 5.37

- Calcule la puntual.
- Calcule la esperanza y la varianza.
- Grafique la función de distribución acumulada.
- ¿Cómo samplea con esta distribución?

Otra discretas muy particulares

 Considere una distribución equiprobable en los siguientes valores

$$2.25$$
, 4.30 , 5.37 , 5.33 , 6.53 , 3.37 , 2.04 , 4.06 , 7.27 , 3.87

- Calcule la puntual.
- Calcule la esperanza y la varianza.
- Grafique la función de distribución acumulada.
- ¿Cómo samplea con esta distribución?

La empírica

Sean X_1, X_2, \ldots, X_n i.i.d., $X_i \sim F$. Definimos

$$\widehat{F}_n(t) := \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{\{X_i \le t\}}$$

- $\widehat{F}_n(t)$ es una función aleatoria.
- \bullet $\widehat{F}_n(t)$ representa a una acumulada que da peso 1/n a $X_1,X_2,\ldots,X_n.$
- Ley de los grandes números:

$$\lim_{n \to \infty} \widehat{F}_n(t) = F(t)$$
 , en probabilidad

La empírica

Sean X_1, X_2, \ldots, X_n i.i.d., $X_i \sim F$. Definimos

$$\widehat{F}_n(t) := \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{\{X_i \le t\}}$$

- $\widehat{F}_n(t)$ es una función aleatoria.
- \bullet $\widehat{F}_n(t)$ representa a una acumulada que da peso 1/n a $X_1,X_2,\ldots,X_n.$
- Ley de los grandes números:

$$\lim_{n\to\infty}\widehat{F}_n(t)=F(t)\;,$$
 en probabilidad

• Glivenko Cantelli:

$$\lim_{n \to \infty} \sup_{t \in \mathbb{R}} |\widehat{F}_n(t) - F(t)| = 0 \;, \quad \text{en probabilidad}$$

Un poco de código

$$\widehat{F}_n(t) := \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{\{X_i \le t\}}$$

- Implemente una La.empirica(t,datos), que tenga por input un valor t y un conjunto de observaciones (datos) y devuelva el valor de la función empírica asociada a los datos evaluada en el punto t.
- Genere un conjunto de n=20 datos normales, calcule la función empírica asociada a los datos obtenidos a lo largo de una grilla en (-3,3) y superponga la función que considere pertinente.

Notación

$$\mathbb{P}_F(X \in A) \iff \mathbb{P}(X \in A) \text{ cuando } X \sim F.$$

$$\mathbb{E}_F(X) \iff \mathbb{E}(X) \text{ cuando } X \sim F.$$

$$\mathbb{E}_F \left\{ g(X_1, \dots, X_n) \right\} \iff \mathbb{E} \left\{ g(X_1, \dots, X_n) \right\} \; ,$$
 cuando X_1, \dots, X_n i.i.d, $X_i \sim F$.

- ? $\mathbb{P}_{\widehat{F}_n}(A) = \dots$
- ? $\mathbb{E}_{\widehat{F}_n}(X) = \dots$
- ? $\mathbb{V}_{\widehat{F}_n}(X) = \dots$

Notación

$$\mathbb{P}_F(X \in A) \iff \mathbb{P}(X \in A) \text{ cuando } X \sim F.$$

$$\mathbb{E}_F(X) \quad \Longleftrightarrow \quad \mathbb{E}(X) \text{ cuando } X \sim F.$$

$$\mathbb{E}_F \left\{ g(X_1, \dots, X_n) \right\} \iff \mathbb{E} \left\{ g(X_1, \dots, X_n) \right\} ,$$
 cuando X_1, \dots, X_n i.i.d, $X_i \sim F$.

- ? $\mathbb{P}_{\widehat{F}_n}(A) = \dots$
- ? $\mathbb{E}_{\widehat{F}_n}(X) = \dots$
- ? $\mathbb{V}_{\widehat{F}_n}(X) = \dots$
- ? $\mathbb{V}_{\widehat{F}_n}(\bar{X}_n) = \dots$

Estimación Plug-in

Si le interesa estimar $\mathbf{mongo}(F)$, haga $\mathbf{mongo}(\widehat{F}_n)$,

Estimación Plug-in

Si le interesa estimar $\mathbf{mongo}(F)$, haga $\mathbf{mongo}(\widehat{F}_n)$,

Posibles mongos:

- mongo₁ $(F) = \mathbb{E}_F(X)$
- $\mathbf{mongo}_2(F) = \mathbf{med}_F(X)$
- $\operatorname{mongo}_3(F) = \mathbb{V}_F(X)$

En matemática: $\mathbf{mongo}(F)$ se denota con $\theta = T(F)$. T se dice funcional.

El procedimiento **plug-in** propone estimar $\theta = T(F)$ con $\widehat{\theta}_n = T(\widehat{F}_n)$

Intervalo de confianza para la media

• $\mu := T_1(F) = \mathbb{E}_F(X)$. Estimador plug-in:

$$\widehat{\mu}_n = T_1(\widehat{F}_n) = \mathbb{E}_{\widehat{F}_n}(X) = \bar{X}_n$$

• Distribución de $\widehat{\mu}_n$: asintóticamente normal

$$\frac{\widehat{\mu}_n - \mu}{\operatorname{se}(\widehat{\mu}_n)} \approx \mathcal{N}(0, 1)$$
 n grande

Desvío del Estimador:

$$\operatorname{se}(\widehat{\mu}) = \sqrt{\mathbb{V}_F(\widehat{\mu})} = \sqrt{\frac{\sigma^2}{n}} = \operatorname{se}$$

se estima con
$$\widehat{\mathsf{se}} = \sqrt{\frac{\widehat{\sigma}^2}{n}}$$
 o con $\widehat{\mathsf{se}} = \sqrt{\frac{S^2}{n}}$

Intervalo de confianza $\widehat{\mu}\pm z_{lpha/2}\widehat{\mathsf{se}}$

Intervalo de confianza para la mediana?

• Distribución de la mediana muestral: asintóticamente normal

$$rac{\mathsf{med}(X_1,\ldots,X_n)-\mathsf{med}(X)}{\mathsf{se}} pprox \mathcal{N}(0,1) \quad n \ \mathsf{grande}$$

• Desvío del Estimador:

$$\mathsf{se} = \mathsf{se}(\mathsf{med}(X_1, \dots, X_n)) = \sqrt{\mathbb{V}_F\{\mathsf{med}(X_1, \dots, X_n)\}} = ????$$

- $\widehat{\mathsf{se}} = ??$
- Bootstrap! seboot

Intervalo de confianza $\operatorname{med}(X_1,\ldots,X_n) \pm z_{\alpha/2} \widehat{\operatorname{se}}_{boot}$

Esquema Bootstrap

Intevalos Bootstrap Normal

ullet $\widehat{\theta}_n$ asintóticamente normal si

$$\frac{\widehat{\theta}_n - \theta}{\text{Se}} pprox \mathcal{N}(0, 1)$$

$$\mathsf{con}\;\mathsf{se}=\mathsf{se}(\widehat{\theta_n})$$

ullet Sea $\widehat{\operatorname{se}}_{\operatorname{boot}}$ el estimador bootstrap de $\operatorname{se}(\widehat{\theta_n})$

intervalo boot normal nivel $1-\alpha$: $\widehat{\theta}_n \pm z_{\alpha/2} \ \widehat{\mathsf{se}}_{\mathsf{boot}}$

Intevalos Bootstrap Percentil.

• Sean $\widehat{\theta}_1^*,\dots,\widehat{\theta}_{Nboot}^*$ estadísticos bootstrap de su estimador.

intervalo boot percentil
$$1-\alpha$$
: $\left(\widehat{\theta}_{\alpha/2}^*\;,\;\widehat{\theta}_{1-\alpha/2}^*\right)$