CI en ANA3.

Durée 2H

DOCUMENTS, TELEPHONE ET CALCULATRICE INTERDITS.

Exercice1:(4 points)

Les questions sont indépendantes:

- 1) Etudier la convergence de l'intégrale généralisée: $\int \frac{\sin t \cdot \log t}{\sqrt{t^3 + 1}} dt$
- 2) Soit $f(t) = \begin{cases} 1 \text{ si } t \in]0,1[\\ 0 \text{ sinon} \end{cases}$, calculer $\mathcal{L}(f(t))$.
- 3) Etant donné ($\mathbb{R}^n, \|.\|$), soit $a \in \mathbb{R}^n$ et soit r > 0Pour X et Y dans la boule B(a,r). Montrer que:

 $\forall \lambda \in [0,1] : \lambda X + (1-\lambda) Y \in B(a,r).$

Exercice 2:(5 points)

Pour 0 < x < 1 on pose $F(x) = \int_{0}^{+\infty} \frac{x^t}{1 + x^t} dt$.

- 1) Montrer que F est bien définie sur]0,1[.
- 2) Etudier la continuité de F sur]0,1[.
- 3) Calculer explicitement F(x).

Exercice 3: (4 points)

2) En utilisant les TL, résoudre l'équation différentielle:
$$y''(t) - \frac{5}{2}y'(t) + y(t) = -\frac{5}{2}\sin t$$
 avec $y(0) = 0$ et $y'(0) = 2$.

Exercice 4: (7points)

- 1) Donner -sans calculer- la TF de $f / f(t) = e^{-kt^2}$ (k > 0). Montrer que sa TF vérifie l'équation différentielle: $y' + \frac{x}{2k}y = 0$, (on admettra que sa solution est $y = Ce^{-\frac{x^2}{4k}} / C$ une constante réelle).
- 2) Montrer que $C \ge 0$ puis en utilisant le TIF, trouver C.

(on rappelle l'intégrale de Gauss: $\int\limits^{+\infty}e^{-x^2}dx=\frac{1}{2}\sqrt{\pi}$).

3) Résoudre l'équation intégrale:

$$\int\limits_{-\infty}^{+\infty}y\left(u\right).e^{-k\left(t-u\right)^{2}}du=e^{-t^{2}},\ k>1,\ \text{où}\ y\in C^{1}\left(\mathbb{R}\right)\cap\mathcal{L}^{1}\left(\mathbb{R}\right).$$

Un corrigé:

Exercice1:
1) Soit $f(t) = \frac{\sin t \cdot \log t}{\sqrt{t^3 + 1}}$, $f \in R_{loc}[1, +\infty[$.

On a: $|f(t)| \leq \frac{\log t}{t^{\frac{3}{2}}}$, or $\int_{-\infty}^{+\infty} \frac{\log t}{t^{\frac{3}{2}}} dt$ converge car c'est une intégrale de Bertrand

 $\left(\alpha = \frac{3}{2} > 1\right)$; donc l'intégrale proposée converge absolument donc simplement.

2)
$$\mathcal{L}(f(t)) = \int_{0}^{+\infty} e^{-xt} f(t) dt = \int_{0}^{1} e^{-xt} dt = \frac{-1}{x} [e^{-xt}]_{0}^{1} = \frac{1}{x} (1 - e^{-t}) \ \forall x > 0.$$

3) Etant donné $(\mathbb{R}^n, \|.\|)$, soit $a \in \mathbb{R}^n$ et soit r > 0

 $X \text{ et } Y \text{ dans } B(a,r) \text{ ie: } ||X-a|| < r \text{ et } ||Y-a|| < r, \text{ soit } Z = \lambda X + (1-\lambda)Y$ $||X-a|| = ||\lambda X + (1-\lambda)Y - a|| = ||\lambda (X-a) + (1-\lambda)(Y-a)|| \le \lambda ||X-a|| + (1-\lambda)(Y-a)|| + (1-\lambda)(Y-a)|| \le \lambda ||X-a|| + (1-\lambda)(Y-a)|| + (1-\lambda)(Y-$

 $(1-\lambda)\|Y-a\|$ donc $\|Z - a\| \le \lambda r + (1 - \lambda) r$ ie $\|Z - a\| \le r$, on en conclut que $Z \in B(a, r)$.

Exercice 2:

1) Soit $f(t,x) = \frac{x^t}{1+x^t} \ge 0$, on a que $f \in R_{loc}[0, +\infty[(x^t = e^{t \log x}).$

 $f(t,x) \leq x^t = e^{t \log x}$ et $\int_{-\infty}^{+\infty} e^{t \log x} dt$ converge (Intégrale expo) donc par com-

paraison $\int_{0}^{+\infty} f(t,x)dt$ converge absolument donc converge.

2) a) La continuité :

et $\int_{0}^{+\infty} |f(t,x)| \le x^t = e^{t \log x} \le e^{t \log b} = \varphi(t) \ \forall t \in [0,+\infty[, \ \forall x \in]0,b], \ 0 < b < 1$ et $\int_{0}^{+\infty} \varphi(t)dt$ converge (Intégrale expo) donc il ya CD sur tout $]0,b] \subset]0,1[$, de

 $\rightarrow f$ est continue selon t car composée, somme et rapport de fonctions continues

 $\rightarrow f$ est continue selon x car composée, somme et rapport de fonctions continues sur tout $[0,b] \subset [0,1[$.

Donc F est continue sur tout $[0,b] \subset]0,1[$, alors F est continue sur [0,1[

3) Pour le calcul, posons $u = x^t = e^{t \log x}$, $du = (\log x) \cdot x^t dx$ donc:

$$F(x) = \frac{-1}{\log x} \int_{0}^{1} \frac{du}{1+u} = \frac{-\log 2}{\log x}.$$

Exercice3:

1) On trouve: $\frac{2x+1}{(x-2)(x^2+1)} = \frac{1}{x-2} - \frac{x}{(x^2+1)}$ 2) Appliqons les TL à l'edo:

On rappelle: $\mathcal{L}(y'') = x^2Y - xy(0) - y'(0)$ et $\mathcal{L}(y') = xY - y(0)$

Donc
$$x^2Y - 2 - \frac{5}{2}xY + Y = -\frac{5}{2}\frac{1}{(x^2+1)}$$
 ie $Y = \frac{2x+1}{(x-2)(x^2+1)}$.
On déduit de 1) que $y(t) = e^{2t} - \cos t$ qui vérifie bien les conditions

Exercice4:

1)
$$\bigstar f \in \mathcal{L}^1(\mathbb{R})$$
, en effet $f \in C^1(\mathbb{R})$, $\int_{-\infty}^{+\infty} |f(t)| dt = \int_{-\infty}^{+\infty} e^{-kt^2} dt \stackrel{\text{paire}}{=} 2 \int_{0}^{+\infty} e^{-kt^2} dt$ converge au $v(+\infty)$ par la RO, on a $\lim_{t \to \infty} t^2 e^{-kt^2} = 0$.

converge au
$$v(+\infty)$$
 par la RO, on a $\lim_{t \to +\infty} t^2 e^{-kt^2} = 0$.

$$\star \mathcal{F}f(x) = \int_{-\infty}^{+\infty} e^{-ixt} f(t) dt = \int_{-\infty}^{+\infty} e^{-ixt} . e^{-kt^2} dt = 2 \int_{0}^{+\infty} \cos(xt) . e^{-kt^2} dt.$$

$$\star tf \in \mathcal{L}^{1}\left(\mathbb{R}\right), \text{puisque } tf \in C^{1}\left(\mathbb{R}\right), \int_{-\infty}^{+\infty} \left|tf\left(t\right)\right| dt = \int_{-\infty}^{+\infty} te^{-kt^{2}} dt \stackrel{\text{paire}}{=} 2 \int_{0}^{+\infty} te^{-kt^{2}} dt$$
 converge au $v\left(+\infty\right)$ par la RO, on a $\lim_{t \longrightarrow +\infty} t^{3} e^{-kt^{2}} = 0.$

$$\star (\mathcal{F}f)'(x) = -i \int_{0}^{+\infty} e^{-ixt} \cdot te^{-kt^2} dt \text{ utilisons une IPP:} \quad u = e^{-ist} \to u' = -ise^{-ist}$$
$$v' = -te^{-kt^2} \to v = \frac{1}{2k} e^{-kt^2}$$

$$(\mathcal{F}f)'(x) = i \left(\underbrace{\left[\frac{1}{2k}e^{-ixt}.e^{-kt^2}\right]_{-\infty}^{+\infty}}_{=0.....\$} + \frac{i}{2k}x\int_{-\infty}^{+\infty}e^{-ixt}.e^{-kt^2}dt\right) = -\frac{x}{2k}\mathcal{F}f(x).$$

$$\circledast : \text{En fait } \lim_{t \to \pm \infty}\cos\left(xt\right)e^{-kt^2} = 0 = \lim_{t \to \pm \infty}\sin\left(xt\right)e^{-kt^2}$$

$$\circledast$$
: En fait $\lim_{t \to +\infty} \cos(xt) e^{-kt^2} = 0 = \lim_{t \to +\infty} \sin(xt) e^{-kt^2}$

$$\mathcal{F}f$$
 vérifie donc l'edo : $y' + \frac{x}{2k}y = 0$, ie $\mathcal{F}f(x) = Ce^{-\frac{x^2}{4k}}$,
Remarque: On peut également trouver ce résultat en utilisant la parité de f :

$$\mathcal{F}f(x) = 2\int_{0}^{+\infty} \cos(xt).e^{-kt^2}dt \Longrightarrow (\mathcal{F}f)'(x) = -2\int_{0}^{+\infty} \sin(xt).te^{-kt^2}dt \text{ puis faire}$$
 une IPP.

2) On a que
$$C \ge 0$$
 car: $C = \mathcal{F}f(0) = 2 \int_{0}^{+\infty} e^{-kt^2} dt \ge 0$.

Utilisons à présent le TIF:

Puisque $\bigstar f$ est continue et dérivable sur $\mathbb R$ et f est paire

alors
$$f(a) = e^{-ka^2} = \frac{1}{\pi} C \int_{0}^{+\infty} \cos(xt) \cdot e^{\frac{-x^2}{4k}} dx$$
, en particulier pour $a = 0$:

$$1 = \frac{C}{\pi} \int\limits_0^{+\infty} e^{\frac{-x^2}{4k}} dx$$
: on pose $u = \frac{x}{2\sqrt{k}}$ ie $dx = 2\sqrt{k}du$ et on a l'intégrale de

Gauss:
$$\int_{0}^{+\infty} e^{-u^2} dx = \frac{1}{2} \sqrt{\pi}.$$

On a alors
$$1 = \frac{C}{\pi} \int_{0}^{+\infty} e^{\frac{-x^2}{4k}} dx = \frac{2\sqrt{k}C}{\pi} \int_{0}^{+\infty} e^{-u^2} du$$
 ie $1 = \frac{2\sqrt{k}C}{\pi} \cdot \frac{1}{2}\sqrt{\pi} \Longrightarrow C = \frac{1}{2\sqrt{k}C} \cdot \frac{1}{2\sqrt{k}C} = \frac{1}{2$

$$\sqrt{\frac{\pi}{k}}$$
.

Donc
$$\mathcal{F}f(x) = \sqrt{\frac{\pi}{k}}e^{-\frac{x^2}{4k}}$$
.

3) Il s'agit d'une équation de convolution : soit $h(t) = e^{-t^2}$, et $\mathcal{F}h(x) = \sqrt{\pi}e^{-\frac{x^2}{4}}$ il suffit de prendre k = 1 dans $\mathcal{F}f(x)$

$$h = f * y \Longrightarrow \mathcal{F}(h) = \mathcal{F}(f * y) \Longrightarrow \mathcal{F}(h) = \mathcal{F}(f) . \mathcal{F}(y) \Longrightarrow \mathcal{F}(y) = \frac{\mathcal{F}(h)}{\mathcal{F}(f)}$$

ie
$$\mathcal{F}(y) = \frac{\sqrt{\pi}e^{-\frac{x^2}{4}}}{\sqrt{\frac{\pi}{k}}e^{-\frac{x^2}{4k}}} = \sqrt{k}e^{-\frac{x^2}{4}(1-\frac{1}{k})} = \sqrt{k}e^{-\frac{x^2}{4}(\frac{k-1}{k})} = \sqrt{k}e^{-\frac{x^2}{4\alpha}} / \alpha =$$

$$\frac{k}{k-1}, \ k > 1.$$

On rappelle que
$$\mathcal{F}\left(e^{-kt^2}\right) = \sqrt{\frac{\pi}{k}}e^{-\frac{x^2}{4k}} \Longrightarrow e^{-\frac{x^2}{4k}} = \mathcal{F}\left(\sqrt{\frac{k}{\pi}}e^{-kt^2}\right)$$
donc $\sqrt{k}e^{-\frac{x^2}{4\alpha}} = \mathcal{F}\left(\sqrt{k}\sqrt{\frac{\alpha}{\pi}}e^{-\alpha t^2}\right)$ la solution est $f\left(x\right) = \sqrt{k}\sqrt{\frac{\alpha}{\pi}}e^{-\alpha t^2}$