Topological Sort

Introduction

- There are many problems involving a set of tasks in which some of the tasks must be done before others.
- For example, consider the problem of taking a course only after taking its prerequisites.
- Is there any systematic way of linearly arranging the courses in the order that they should be taken?

Yes! - Topological sort.

<u>Definition of Topological Sort or</u> <u>Topological Ordering</u>

- Topological sort is a method of ordering the vertices in a directed acyclic graph (DAG), as a sequence, such that if there is a path from v_i to v_j , then v_j appears after v_i in the ordering.
- The graph in (a) can be topologically sorted as in (b)

Topological Sort is not unique

- Topological sort is not unique.
- The following are all topological sort of the graph below:

$$s1 = \{a, b, c, d, e, f, g, h, i\}$$

$$s2 = \{a, c, b, f, e, d, h, g, i\}$$

$$s3 = \{a, b, d, c, e, g, f, h, i\}$$

Topological Sort Algorithm

- One way to find a topological sort is to consider in-degrees of the vertices.
- The first vertex must have in-degree zero -- every DAG must have at least one vertex with in-degree zero.
- The Topological sort algorithm is

```
int topologicalOrderTraversal( )
    int numVisitedVertices = 0;
    while(there are more vertices to be visited)
        if(there is no vertex with in-degree 0)
             break;
        else
         select a vertex v that has in-degree 0;
         visit v;
         numVisitedVertices++;
         delete v and all its emanating edges;
return numVisitedVertices;
```

Pseudocode to perform Topological Sort

```
void toposort (graph g)
   queue q;
   int counter=0;
   vertex v,w;
   q=createqueue(numvertex);
   makeempty(q);
   for each vertex v
         if(indegree[v]==0)
              enqueue(v,q);
   while(!isempty(q))
         v=dequeue(q);
         topnum[v]=++counter;
         for each w adjacent to v
              if(--indegree[w]==0)
                   enqueue(w,q);
   if(counter!=numvertex)
     printf("Graph is cyclic");
   disposequeue(q);
```


Example 1-An Acyclic Graph

Result of applying Toposort to the graph shown in previous slide

Vertex	Indegree Before Dequeue								
	I	II	III	IV	V	VI	VII		
V ₁	0	0	0	0	0	0	0		
V ₂	1	0	0	0	0	0	0		
V ₃	2	1	1	0	0	0	0		
V ₄	2	1	0	0	0	0	0		
V ₅	2	2	1	0	0	0	0		
V ₆	3	3	3	2	1	1	0		
V ₇	2	2	2	1	1	0	0		
Enqueue	V ₁	V ₂	V ₄	V ₃ ,V ₅		V ₇	V ₆		
Dequeue	V ₁	V ₂	V ₄	V ₃	V ₅	V ₇	V ₆		

Example 2-An Acyclic Graph

Result of applying Toposort to the graph shown in previous slide

	Indegree Before Dequeue								
Vertex	I	II	III	IV	V	VI	VII		
V ₁	0	0	0	0	0	0	0		
V ₂	1	0	0	0	0	0	0		
V ₃	2	1	1	1	0	0	0		
V ₄	3	2	1	0	0	0	0		
V ₅	1	1	0	0	0	0	0		
V ₆	3	3	3	3	2	1	0		
V ₇	2	2	2	1	0	0	0		
Enqueue	V ₁	V ₂	V ₅	V ₄	V ₃ ,V ₇		V ₆		
Dequeue	V ₁	V ₂	V ₅	V ₄	V ₃	V ₇	V ₆		

Exercise

List the order in which the nodes of the directed graph G_B are visited by topological order traversal that starts from vertex a.

