Binomial Distribution

Problem Statement

80% of all the visitors to Lavista Museum end up buying souvenirs from the souvenir shop at the Museum. On the coming Sunday, if a random sample of 10 visitors is picked:

- 1. Find the probability that every visitor will end up buying from the souvenir shop
- 2. Find the probability that a maximum of 7 visitors will buy souvenirs from the souvenir shop

Let's check first whether we satisfy the assumptions of the binomial distribution.

- There are only two possible outcomes (success or failure) for each trial. A visitor will buy souvenirs from the souvenir shop or not (yes or no).
- Number of trials (n) is fixed There are 10 visitors in the sample.
- Each trial is independent of the other trials It is reasonable to assume that the buying activity of visitors is independent.
- The probability of success (p) is the same for each trial The probability of success for each visitor is 0.8.

Import the necessary libraies

```
import numpy as np
import pandas as pd
from scipy.stats import binom

df = pd.read_csv('/Users/vishal/Desktop/CSV files/sat_score.csv')

df.head()
```

	student id	score
0	_ 1	1018
1	2	1218
2	3	611
3	4	723
4	5	541

	student_id	score
0	1	1018
1	2	1218
2	3	611
3	4	723
4	5	541

df.tail()					
	student id	score			
995	<u>9</u> 96	871			
996	997	752			
997	998	1087			
998	999	987			
999	1000	1005			

	student_id	score
995	996	871
996	997	752
997	998	1087
998	999	987
999	1000	1005

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999

```
Data columns (total 2 columns):

# Column Non-Null Count Dtype

--- 0 student_id 1000 non-null int64
1 score 1000 non-null int64
dtypes: int64(2)
memory usage: 15.8 KB
```

```
df.describe()
       student id
                         score
      1000.000000 1000.000000
count
mean
       500.500000 1007.460000
       288.819436
                    204.426007
std
min
         1.000000
                    288.000000
       250.750000 873.000000
25%
50%
       500.500000 1010.000000
75%
       750.250000 1148.000000
      1000.000000 1612.000000
max
```

	student_id	score
count	1000.000000	1000.000000
mean	500.500000	1007.460000
std	288.819436	204.426007
min	1.000000	288.000000
25%	250.750000	873.000000
50%	500.500000	1010.000000
75%	750.250000	1148.000000
max	1000.000000	1612.000000

Probability That Every Visitor Buys Souvenirs

```
# Given parameters
n = 10  # Number of trials (visitors)
p = 0.8  # Probability of success (buying souvenirs)

# Probability that every visitor buys souvenirs (P(X = 10))
prob_all_buy = binom.pmf(10, n, p)
print(f"Probability that all 10 visitors buy souvenirs:
{prob_all_buy}")

Probability that all 10 visitors buy souvenirs: 0.10737418240000006
```

Probability that all 10 visitors buy souvenirs: 0.10737418240000006

Probability That a Maximum of 7 Visitors Buy Souvenirs

```
prob_max_7 = binom.cdf(7, n, p)
print(f"Probability that at most 7 visitors buy souvenirs:
{prob_max_7}")
Probability that at most 7 visitors buy souvenirs: 0.32220047359999987
```

Probability that at most 7 visitors buy souvenirs: 0.32220047359999987