TP 547- Princípios de Simulação de Sistemas de Comunicação

Prof. Samuel Baraldi Mafra

Modelo conceitual

Bibliografia

- Chwif, L.; Medina, A. C. Modelagem e Simulação de Eventos Discretos: Teoria e Aplicações. 4º edição. São Paulo: Elsevier Brasil, 2014. 320 p. (Capitulo 3)
- Fishman, George S. Discrete-event simulation: modeling, programming, and analysis. Springer Science & Business Media, 2013. (Capitulo 2)
- Banks, Jerry et al. Discrete-event system simulation. Pearson, 2005. (Capítulo 3)

Componentes do modelo

- Sistema Uma coleção de entidades (por exemplo, pessoas e máquinas) que interagem juntas ao longo do tempo para realizar um ou mais objetivos.
- Modelo Uma representação abstrata de um sistema, geralmente contendo relações estruturais, lógicas ou matemáticas que descrevem uma sistema em termos de estado, entidades e seus atributos, conjuntos, processos, eventos, atividades e atrasos.
- Estado do sistema Uma coleção de variáveis que contém todos os informações necessárias para descrever o sistema a qualquer momento.

- Entidade Qualquer objeto ou componente no sistema que requer representação explícita no modelo (por exemplo, um servidor, um cliente, um máquina).
- Atributos As propriedades de uma determinada entidade (por exemplo, a prioridade de um cliente em espera, o encaminhamento de um trabalho através de uma loja de trabalho).
- Lista Uma coleção de (permanentemente ou temporariamente associada) entidades, ordenadas de alguma forma lógica (como todos os clientes atualmente em uma linha de espera, ordenada por primeiro a chegar, primeiro a ser servido ou prioridade).

- Evento Uma ocorrência instantânea que altera o estado de um sistema (como a chegada de um novo cliente).
- Aviso de evento Um registro de um evento para ocorrer no momento atual ou algum tempo futuro, juntamente com quaisquer dados associados necessários para executar o evento; no mínimo, o registro inclui o tipo de evento e o hora do evento.
- Lista de eventos Uma lista de avisos de eventos para eventos futuros, ordenada por hora de ocorrência; também conhecida como a lista de eventos futuros (FEL).

Tempo

- Atividade Um tempo de duração especificado (por exemplo, tempo médio de serviço ou tempo entre chegadas), que é conhecido quando começa a simulação.
- Atraso Um tempo de duração indeterminado, não especificado a priori (por exemplo, o atraso de um cliente em um fila de espera).
- Clock Uma variável que representa o tempo simulado.

Atividade

Atividade

- A duração de uma atividade é computável a partir de sua especificação no instante em que começa. Sua duração não é afetados pela ocorrência de outros eventos (a menos que, como é permitido por alguns pacotes de simulação, o modelo contém lógica para cancelar um evento).
- Para acompanhar as atividades e seu tempo de conclusão esperado, quando uma duração de atividade começa, um aviso de evento é criado tendo um tempo de evento igual ao tempo de conclusão da atividade.
 - Se o tempo simulado atual for CLOCK = 100 minutos e um tempo de execução da tarefa é de exatamente 5 minutos, então um um aviso de evento é criado especificando o tipo de evento e o tempo de termino do evento (100 + 5 = 105 minutos).

Atraso

Atraso

- Em contraste com uma atividade, a duração de um atraso não é especificada antes da simulação, mas é determinado pelas condições do sistema.
 - Por exemplo, o atraso de um cliente em uma fila de espera pode depender do número e da duração de serviço de outros clientes no futuro em linha, bem como a disponibilidade de servidores e equipamentos.
- Um atraso costuma ser chamado de espera condicional, enquanto uma atividade é chamada de espera incondicional.

Atraso

Atraso

- A conclusão de uma atividade é um evento, geralmente chamado de evento primário, que é gerenciado colocando um aviso de evento no FEL.
- Em contraste, os atrasos são gerenciados colocando a entidade associada em outra lista, pro exemplo uma lista de processos na fila de espera.
- A conclusão de um atraso é chamada de evento condicional ou evento secundário, mas esses eventos não são representados por evento avisos, nem aparecem no FEL.
- Os sistemas considerados aqui são dinâmicos.

Modelo Conceitual

- A definição dos componentes do modelo fornece uma descrição estática do modelo.
- Uma simulação de evento discreto produz uma sequência de instantâneos do sistema (ou imagens do sistema) que representam a evolução do sistema ao longo do tempo.

Modelo Conceitual

Uma imagem de um determinado momento (CLOCK =t) não inclui apenas o estado do sistema no tempo t, mas também uma lista (FEL) de todas as atividades atualmente em andamento e quando cada uma dessas atividades terminará, o status de todas as entidades e membros atuais de todos os conjuntos, além da valores de estatísticas e contadores cumulativos que serão usados para calcular estatísticas de resumo no final da simulação.

CLOCK	System state	Entities and attributes	Set 1	Set 2	 Future event list (FEL)	Cumulative statistics and counters
t	(x, y, z,)				$(3, t_1)$ – Type 3 event to occur at time t_1 $(1, t_2)$ – Type 1 event to occur at time t_2	

Modelo Conceitual: World views

O modelador pode adotar diferentes visões de mundo ou orientações para desenvolvimento de um modelo, sendo as três mais conhecidas:

- Agendamento de eventos (event-scheduling)
 - A simulação se baseia em eventos e seu efeito no estado do sistema. Usa a tabela de eventos futuros para o encadeamento das fases da simulação.
- Interação de processos (process-interaction)
 - O modelo é definido em termos de entidades ou objetos e seu ciclo de vida de uma entidade. Simula os diferentes processos em paralelo como em um sistema operacional de computador.
 - Tem apelo intuitivo e permite descrever o processo ow em termos de construções de blocos ou redes de alto nível.
 - O agendamento de eventos está oculto.
- Essas duas abordagens usam um avanço de tempo variável; isto é, quando todos eventos e mudanças de estado do sistema ocorreram em um instante de simulado, o relógio de simulação é adiantado para a hora do próximo evento iminente no FEL.

Modelo Conceitual: World views

- Varredura de atividade (Activity-scanning) usa um incremento de tempo fixo e é baseado em regras para decidir qual atividade pode começar em cada ponto tempo simulado.
 Lento!
 - A cada ciclo de clock, as condições de cada atividade são verificadas e se eles são verdadeiros, a atividade correspondente começa.
 - É adequado para sistemas pequenos.
 - Melhoria: abordagem de três fases.

- A sequência de ações que um simulador (ou linguagem de simulação) deve executar para avançar o relógio e criar um novo instantâneo do sistema é chamado de algoritmo de agendamento de eventos / avanço de tempo.
- O mecanismo para avançar o tempo de simulação e garantir que todos os eventos ocorram em ordem cronológica correta tem como base a lista de eventos futuros (FEL).

• A qualquer momento t, a FEL contém todos os eventos futuros previamente estabelecidos e seus tempos de evento associados (chamados $t_1, t_2,...$). A FEL é ordenada por hora do evento, o que significa que os eventos estão organizados cronologicamente:

$$t < t_1 < t_2 < t_3 < \dots < t_n$$

- O tempo *t* é o valor atual do tempo simulado.
- O evento associado ao tempo t_1 é chamado de **evento iminente**.

- Após a realização da imagem instantânea do sistema, o tempo de simulação da simulação CLOCK =t é atualizado para tempo de simulação CLOCK $=t_1$, e o aviso do evento executado é removido da FEL.
- A execução do evento iminente significa que um novo instantâneo do sistema para o tempo t_1 é criado. No momento t_1 , novos eventos futuros podem ou não ser gerados. Em caso positivo, novos eventos são agendados e colocados em sua posição correta na FEL.
- Este processo se repete até que a simulação termine.

Tempo limite de simulação

- Determinado antes do inicio da simulação. Por exemplo: Tempo máximo de simulação de 100 minutos.
- A simulação termina quando um fato ocorre, por exemplo, executar a simulação até que o centésimo cliente seja atendido. Não pode ser determinado previamente.

Agendamento de eventos: Algoritmo

- Etapa 1. Remova o "aviso de evento" para o evento iminente da FEL.
- Etapa 2. Avançar o CLOCK para o horário do evento iminente.
- Etapa 3. Executar evento iminente: atualizar o estado do sistema.
- Etapa 4. Gere eventos futuros (se necessário) e coloque seu evento avisos na FEL de acordo com tempo do evento.
- Etapa 5. Atualizar estatísticas e contadores cumulativos.
- Etapa 6. Verifica se o tempo limite foi atingido.
- Etapa 7. Contabilizar as estatísticas.

Agendamento de eventos: Fluxograma

Exemplo

Uma pequena mercearia tem apenas um balcão de caixa. Os clientes chegam a este balcão em horários aleatórios com distribuição uniforme entre 1 a 8 minutos de intervalo entre as chegadas. Os tempos de serviço variam de acordo com uma distribuição uniforme de 1 a 6 minutos. Faça uma análise do sistema, simulando a chegada e o atendimento de clientes.

Componentes

- Estado do sistema
 - LQ(t) : Número de clientes esperando na fila
 - LS(t): Número de clientes sendo servidos (0 ou 1) no tempo t.
- Entidades O caixa e o cliente.
- Eventos Chegada (A), partida (D), evento de parada (E = 60 minutos)
- Avisos de eventos (A, t), (D, t), (E, 60)
- Atividades Tempo entre chegadas e tempo de serviço
- Atraso Tempo do cliente gasto no tempo de espera

Exemplo: Fluxograma do evento de chegada

Exemplo: Fluxograma do evento de partida

- Tempo entre chegadas: 1,1,6,3,7,5,2,4,1,...
- Tempo de serviço: 4,2,5,4,1,5,4,1,4,...

Condições iniciais:

• No tempo 0, LQ(0) = 0, LS(0) = 1.

Estatísticas:

- **Utilização do caixa**: Tempo total do caixa ocupado (B) dividido pelo tempo de simulação (E);
- ullet Tamanho máximo da fila (MQ)

- Tempo entre chegadas: 1,1,6,3,7,5,2,4,1,...
- Tempo de serviço: 4,2,5,4,1,5,4,1,4,...

CLOCK	System state		_		Cumulative statistics	
	LQ(t)	LS(t)	Future event list	Comment	В	MQ
0	0	1	(A, 1) (D, 4) (E, 60)	First A occurs $(a^* = 1)$ Schedule next A $(s^* = 4)$ Schedule first D	0	0
1	1	1	(A, 2) (D, 4) (E, 60)	Second A occurs: $(A, 1)$ $(a^* = 1)$ Schedule next A (Customer delayed)	1	1
2	2	I	(D, 4) (A, 8) (E, 60)	Third A occurs: $(A, 2)$ $(a^* = 6)$ Schedule next A (Two customers delayed)	2	2
4	1	1	(D, 6) (A, 8) (E, 60)	First D occurs: (D, 4) (s* = 2) Schedule next D (Customer delayed)	4	2
6	0	1	(A, 8) (D, 11) (E, 60)	Second D occurs: (D, 6) ($s^* = 5$) Schedule next D	6	2

- Tempo entre chegadas: 1,1,6,3,7,5,2,4,1,...
- Tempo de serviço: 4,2,5,4,1,5,4,1,4,...

8	1	I	(D, 11) (A, 11) (E, 60)	Fourth A occurs: (A, 8) (a* = 3) Schedule next A (Customer delayed)	8	2
11	1	1	(D, 15) (A, 18) (E, 60)	Fifth A occurs: (A, 11) $(a^* = 7)$ Schedule next A Third D occurs: (D, 11) $(s^* = 4)$ Schedule next D (Customer delayed)	11	2
15	0	1	(D, 16) (A, 18) (E, 60)	Fourth D occurs: (D, 15) $(s^* = 1)$ Schedule next D	15	2
16	0	0	(A, 18) (E, 60)	Fifth D occurs: (D, 16)	16	2
18	0	1	(D, 23) (A, 23) (E, 60)	Sixth A occurs $(a^* = 5)$ Schedule next A $(s^* = 5)$ Schedule next D	16	2
23	0	1	(A, 25) (D, 27) (E, 60)	Seventh A occurs: (A, 23) (a* = 2) Schedule next Arrival Sixth D occurs: (D, 23)	21	2

Modelo Conceitual

Diagrama de ciclo de atividade(ACD)

- O ACD é uma forma de modelagem das interações entre os objetos pertencentes a um sistema; particularmente útil em sistemas com fortes características de geração de filas.
- Os ACDs utilizam somente dois símbolos para descrever o ciclo de vida das entidades ou de objetos do sistema: uma circunferência, que representa uma "fila", e um retângulo, que representa uma "atividade".

Filósofos famintos

Um certo número de filósofos se sentam numa mesa circular. Entre cada par de filósofos há um garfo. Um filósofo só pode comer se ambos os garfos adjacentes a ele estiverem disponíveis; caso contrário, deverá aguardar. Após acabar de comer, o filósofo pensa por um certo tempo. Quando para de pensar, tentará comer novamente. Para comer, os filósofos levam um tempo uniformemente distribuído entre cinco e oito minutos, e, para pensar, um tempo obedecendo a uma distribuição normal com média de seis e desvio-padrão de um minuto. O objetivo do modelo é determinar a proporção de tempo que cada filósofo espera para comer, na média.

Entidades

- Filósofos
- Garfos.

Entidade	Estado	Símbolo
	É utilizado	
Garfo	Esperando	
	Comendo	
	Esperando para pensar	
Filósofo	Pensando	
	Esperando para comer	

Ciclo de vida dos clientes

Ciclo de vida dos garfos

ACD completo

O cliente, a garçonete e o copo

Considere uma versão simplificada de um pub, em que existem três entidades: "o cliente", "a garçonete" e "o copo". Quando o cliente entra no pub, ele pede uma cerveja, e a garçonete enche um copo para servi-lo. A seguir, o cliente bebe o conteúdo do copo. O cliente participa, portanto, das seguintes atividades: encher e beber. Tanto a garçonete quanto os copos participam da atividade "encher".

Entidade	Estado	Símbolo
Cliente	Bebendo	
	Esperando	
	Encher	
	Pronto (para beber)	
Garçonete	Enchendo	
	Esperando	
Соро	Sendo esvaziado	
	Vazio	
	Sendo enchido	
	Cheio	

Ciclo de vida dos clientes, garçonete e copos

ACD completo

Simulação Manual

- Importante para o analista aumentar sua sensibilidade em relação a execução da simulação.
- Uma ferramenta de verificação se a lógica do modelo está coerente.
- Permite estabelecimento de prioridades onde existem.
- Promove um melhor entendimento do mecanismo de simulação

Método das três fases

- A: Checar o tempo de todas as atividades em progresso.
 Determinar a que ocorre primeiro. Avançar o relógio de simulação.
- B: Para as atividades que terminaram, mover as entidades para as respectivas filas.
- C: Procurar as atividades em uma ordem determinada e iniciar as que tem condição de começar. Mover as entidades das filas para a atividade. Amostrar e calcular o tempo de término da atividade.

Fluxograma

Para aplicar o método das três fases no exemplo do pub, vamos considerar que a atividade "beber" dura quatro minutos; encher dura três minutos; e que, no início da simulação, copos, clientes e garçonete estão dispostos como na Figura abaixo note que existem três copos, três clientes e uma garçonete.

FASE A tempo 0

FASE C tempo 0

FASE B tempo 3

FASE C tempo 3

