

megaAVR® 0-series

Introduction

The ATmega3208/3209/4808/4809 microcontrollers of the megaAVR[®] 0-series are using the AVR[®] processor with hardware multiplier, running at up to 20 MHz, with a wide range of Flash sizes up to 48 KB, up to 6 KB of SRAM, and 256 bytes of EEPROM in 28-, 32-, or 48-pin package. The series uses the latest technologies from Microchip with a flexible and low-power architecture including Event System and SleepWalking, accurate analog features and advanced peripherals.

The devices described here offer Flash sizes from 32 KB to 48 KB in a 48-pin package.

Features

- AVR[®] CPU
 - Single-cycle I/O access
 - Two-level interrupt controller
 - Two-cycle hardware multiplier
- Memories
 - Up to 48 KB In-system self-programmable Flash memory
 - 256B EEPROM
 - Up to 6 KB SRAM
 - Write/Erase endurance:
 - Flash 10,000 cycles
 - EEPROM 100,000 cycles
 - Data retention: 20 Years at 85°C
- System
 - Power-on Reset (POR) circuit
 - Brown-out Detection (BOD)
 - Clock options:
 - 20 MHz low power internal oscillator with fuse-protected frequency setting
 - 32.768 kHz Ultra Low Power (ULP) internal oscillator
 - · 32.768 kHz external crystal oscillator
 - External clock input
 - Single pin Unified Program Debug Interface (UPDI)
 - Three sleep modes:
 - Idle with all peripherals running and mode for immediate wake-up time

DS40002016A-page 1

- Standby
 - Configurable operation of selected peripherals

- SleepWalking peripherals
- Power Down with limited wake-up functionality
- · Peripherals
 - One 16-bit Timer/Counter type A with dedicated period register, three compare channels (TCA)
 - Four 16-bit Timer/Counter type B with input capture (TCB)
 - One 16-bit Real Time Counter (RTC) running from external crystal or internal RC oscillator
 - Four USART with fractional baud rate generator, autobaud, and start-of-frame detection
 - Master/slave Serial Peripheral Interface (SPI)
 - Dual mode Master/Slave TWI with dual address match
 - Standard mode (Sm, 100 kHz)
 - Fast mode (Fm, 400 kHz)
 - Fast mode plus (Fm+, 1 MHz)
 - Event System for CPU independent and predictable inter-peripheral signaling
 - Configurable Custom Logic (CCL) with up to four programmable Lookup Tables (LUT)
 - One Analog Comparator (AC) with scalable reference input
 - One 10-bit 150 ksps Analog to Digital Converter (ADC)
 - Five selectable internal voltage references: 0.55V, 1.1V, 1.5V, 2.5V, and 4.3V
 - CRC code memory scan hardware
 - Optional automatic scan after reset
 - Watchdog Timer (WDT) with Window Mode, with separate on-chip oscillator
 - External interrupt on all general purpose pins
- I/O and Packages:
 - 41 programmable I/O lines
 - 48-pin UQFN 6x6 and TQFP 7x7
- Temperature Range: -40°C to 125°C
- · Speed Grades:
 - 0-5 MHz @ 1.8V 5.5V
 - 0-10 MHz @ 2.7V 5.5V
 - 0-20 MHz @ 4.5V 5.5V, -40°C to 105°C

Table of Contents

Inti	oduc	tion	1
Fe	atures	S	1
1.	Orde	ring Information	5
2.	Block	k Diagram	6
3.	Pino 3.1.	ut48-pin QFN/TQFP	
4.	I/O N	Multiplexing and Considerations	8
	4.1.	Multiplexed Signals	8
5.	Elect	trical Characteristics	10
	5.1.	Absolute Maximum Ratings	10
	5.2.	General Operating Ratings	10
	5.3.	Power Considerations	11
	5.4.	Power Consumption	12
	5.5.	Peripherals Power Consumption	13
	5.6.	BOD and POR Characteristics	14
	5.7.	External Reset Characteristics	15
	5.8.	Oscillators and Clocks	
	5.9.	I/O Pin Characteristics	
		VREF	
		ADC	
		ACUPDI Timing	
6.		cal Characteristics	
٥.	6.1.	Power Consumption	
	6.2.	GPIO	
	6.3.	VREF Characteristics	
	6.4.	BOD Characteristics.	
	6.5.	ADC Characteristics	
	6.6.	AC Characteristics	
	6.7.	OSC20M Characteristics	57
	6.8.	OSCULP32K Characteristics	59
7.	Pack	age Drawings	61
	7.1.	48 pin TQFP	61
8.	Conv	ventions	63
	8.1.	Memory Size and Type	63
	8.2.	Frequency and Time	63

9.	Data Sheet Revision History	64
	9.1. Rev. A - 02/2018	64
Th	e Microchip Web Site	65
Cu	stomer Change Notification Service	65
Cu	stomer Support	65
Pro	oduct Identification System	66
Mi	crochip Devices Code Protection Feature	66
Le	gal Notice	66
Tra	ademarks	67
Qυ	ality Management System Certified by DNV	67
Wo	orldwide Sales and Service	68

Ordering	Information
----------	-------------

i. Olucilla illiolillation	1.	Orderina	Information
----------------------------	----	----------	-------------

Find available ordering options online at microchipdirect.com, or contact your local sales representative.

2. Block Diagram

3. Pinout

3.1 48-pin QFN/TQFP

4. I/O Multiplexing and Considerations

4.1 Multiplexed Signals

QFN48/ TQFP48	Pin name ^(1,2)	Special	ADC0	AC0	USARTn	SPI0	TWI0	TCA0	TCBn	Other	CCL-LUTn
44	PA0	EXTCLK			0,TxD			0-WO0			0-IN0
45	PA1				0,RxD			0-WO1			0-IN1
46	PA2	TWI			0,XCK		SDA(MS)	0-WO2	0-WO	EVOUTA	0-IN2
47	PA3	TWI			0,XDIR		SCL(MS)	0-WO3	1-WO		0-OUT
48	PA4				0,TxD(3)	MOSI		0-WO4			
1	PA5				0,RxD(3)	MISO		0-WO5			
2	PA6				0,XCK ⁽³⁾	SCK					0-OUT ⁽³⁾
3	PA7	CLKOUT		OUT	0,XDIR(3)	SS				EVOUTA(3)	
4	PB0				3,TxD			0-WO0(3)			
5	PB1				3,RxD			0-WO1 ⁽³⁾			
6	PB2				3,XCK			0-WO2 ⁽³⁾		EVOUTB	
7	PB3				3,XDIR			0-WO3(3)			
8	PB4				3,TxD ⁽³⁾			0-WO4 ⁽³⁾	2-WO ⁽³⁾		
9	PB5				3,RxD(3)			0-WO5(3)	3-WO		
10	PC0				1,TxD	MOSI(3)		0-WO0(3)	2-WO		1-IN0
11	PC1				1,RxD	MISO ⁽³⁾		0-WO1 ⁽³⁾	3-WO ⁽³⁾		1-IN1
12	PC2	TWI			1,XCK	SCK(3)	SDA(MS)(3)	0-WO2 ⁽³⁾		EVOUTC	1-IN2
13	PC3	TWI			1,XDIR	SS(3)	SCL(MS)(3)	0-WO3(3)			1-OUT
14	VDD										
15	GND										
16	PC4				1,TxD(3)			0-WO4 ⁽³⁾			
17	PC5				1,RxD ⁽³⁾			0-WO5 ⁽³⁾			
18	PC6				1,XCK ⁽³⁾						1-OUT ⁽³⁾
19	PC7				1,XDIR ⁽³⁾					EVOUTC(3)	
20	PD0		AIN0					0-WO0 ⁽³⁾			2-IN0
21	PD1		AIN1	P3				0-WO1 ⁽³⁾			2-IN1
22	PD2		AIN2	P0				0-WO2(3)		EVOUTD	2-IN2
23	PD3		AIN3	N0				0-WO3 ⁽³⁾			2-OUT
24	PD4		AIN4	P1				0-WO4 ⁽³⁾			
25	PD5		AIN5	N1				0-WO5(3)			
26	PD6		AIN6	P2							2-OUT ⁽³⁾
27	PD7	VREFA	AIN7	N2						EVOUTD(3)	
28	AVDD										
29	GND										
30	PE0		AIN8			MOSI(3)		0-WO0(3)			
31	PE1		AIN9			MISO(3)		0-WO1 ⁽³⁾			
32	PE2		AIN10			SCK ⁽³⁾		0-WO2 ⁽³⁾		EVOUTE	
33	PE3		AIN11			SS(3)		0-WO3(3)			
34	PF0	TOSC1			2,TxD			0-WO0(3)			3-IN0
35	PF1	TOSC2			2,RxD			0-WO1 ⁽³⁾			3-IN1
36	PF2	TWI	AIN12		2,XCK		SDA(S) ⁽³⁾	0-WO2 ⁽³⁾		EVOUTF	3-IN2
37	PF3	TWI	AIN13		2,XDIR		SCL(S)(3)	0-WO3(3)			3-OUT

I/O Multiplexing and Considerations

QFN48/ TQFP48	Pin name (1,2)	Special	ADC0	AC0	USARTn	SPI0	TWI0	TCA0	TCBn	Other	CCL-LUTn
38	PF4		AIN14		2,TxD ⁽³⁾			0-WO4 ⁽³⁾	0-WO ⁽³⁾		
39	PF5		AIN15		2,RxD ⁽³⁾			0-WO5 ⁽³⁾	1-WO ⁽³⁾		
40	PF6	RESET			2,XCK ⁽³⁾						3-OUT ⁽³⁾
41	UPDI										
42	VDD										
43	GND										

Note:

- 1. Pin names are of type Pxn, with x being the PORT instance (A,B,C, ...) and n the pin number. Notation for signals is PORTx_PINn. All pins can be used as event input.
- 2. All pins can be used for external interrupt, where pins Px2 and Px6 of each port have full asynchronous detection.
- 3. Alternate pin positions. For selecting the alternate positions, refer to the PORTMUX documentation.

5. Electrical Characteristics

5.1 Absolute Maximum Ratings

Stresses beyond those listed in this section may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 5-1. Absolute Maximum Ratings

Symbol	Description	Conditions	Min.	Max.	Unit
V_{DD}	Power Supply Voltage		-0.5	6	V
I_{VDD}	Current into a V _{DD} pin	T _A =[-40, 85]°C	-	200	mA
		T _A =[85, 125]°C	-	100	mA
I _{GND}	Current out of a GND pin	T _A =[-40, 85]°C	-	200	mA
		T _A =[85, 125]°C	-	100	mA
V_{PIN}	Pin voltage with respect to GND		-0.5	V _{DD} +0.5	V
I _{PIN}	I/O pin sink/source current		-40	40	mA
I _{c1} ⁽¹⁾	I/O pin injection current except for the RESET pin	V _{pin} <gnd-0.6v 5.5v<v<sub="" or="">pin≤6.1V 4.9V<v<sub>DD≤5.5V</v<sub></gnd-0.6v>	-1	1	mA
I _{c2} ⁽¹⁾	I/O pin injection current except for the RESET pin	V _{pin} <gnd-0.6v or="" v<sub="">pin≤5.5V V_{DD}≤4.9V</gnd-0.6v>	-15	15	mA
T _{storage}	Storage temperature		-65	150	°C

Note:

- 1. If V_{PIN} is lower than GND-0.6V, then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = $(GND-0.6V V_{pin})/I_{Cn}$.
 - If V_{PIN} is greater than V_{DD} +0.6V, then a current limiting resistor is required. The positive DC injection current limiting resistor is calculated as R = $(V_{pin}$ - $(V_{DD}$ +0.6))/ I_{Cn} .

5.2 General Operating Ratings

The device must operate within the ratings listed in this section in order for all other electrical characteristics and typical characteristics of the device to be valid.

Table 5-2. General Operating Conditions

Symbol	Description	Condition	Min.	Max.	Unit
V_{DD}	Operating Supply Voltage		1.8 ⁽¹⁾	5.5	V
T _A	Operating temperature range	Standard temperature range	-40	125	°C

Note:

1. Operation is guaranteed down to 1.8V or VBOD with BODLEVEL=1.8V, whichever is lower.

Table 5-3. Operating Voltage and Frequency

Symbol	Description	Condition	Min.	Max.(1)	Unit
f _{CLK_CPU} Nominal operating system clos	Nominal operating system clock frequency	V _{DD} =[1.8, 5.5]V T _A =[-40, 105]°C ⁽²⁾	0	5	MHz
		V _{DD} =[2.7, 5.5]V T _A =[-40, 105]°C ⁽³⁾	0	10	
		V _{DD} =[4.5, 5.5]V T _A =[-40, 105]°C ⁽⁴⁾	0	20	
		V _{DD} =[2.7, 5.5]V T _A =[-40, 125]°C ⁽³⁾	0	8	
		V _{DD} =[4.5, 5.5]V T _A =[-40, 125]°C ⁽³⁾	0	16	

Note:

- 1. Operation is guaranteed 5% above the maximum frequency.
- 2. Operation is guaranteed down to BOD triggering level, V_{BOD} with BODLEVEL=1.8V.
- 3. Operation is guaranteed down to BOD triggering level, V_{BOD} with BODLEVEL=2.7V.
- 4. Operation is guaranteed down to BOD triggering level, V_{BOD} with BODLEVEL=4.3V.

The maximum CPU clock frequency depends on V_{DD} . As shown in the following figure, the Maximum Frequency vs. V_{DD} is linear between 1.8V < V_{DD} < 2.7V and 2.7V < V_{DD} < 4.5V

Figure 5-1. Maximum Frequency vs. V_{DD} for [-40, 105]°C

5.3 Power Considerations

The average die junction temperature, T_J (in °C) is given from the formula

$$T_J = T_A + P_D * R_{\theta,JA}$$

where P_D is the total power dissipation.

The total thermal resistance of a package ($R_{\theta JA}$) can be separated into two components, $R_{\theta JC}$ and $R_{\theta CA}$, representing the barrier to heat flow from the semiconductor junction to the package (case) surface ($R_{\theta JC}$) and from the case to the outside ambient air ($R_{\theta CA}$). These terms are related by the equation:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

 $R_{\theta JC}$ is device related and cannot be influenced by the user. However, $R_{\theta CA}$ is user dependent and can be minimized by thermal management techniques such as heat sinks, ambient air cooling, and thermal convection. Thus, good thermal management on the part of the user can significantly reduce $R_{\theta CA}$ so that $R_{\theta JA}$ approximately equals $R_{\theta JC}$.

The power dissipation curve is negatively sloped as ambient temperature increase. The maximum power dissipation is therefore at minimum ambient temperature while the highest junction temperature occurs at the maximum ambient temperature.

Table 5-4. Power Dissipation and Junction Temperature vs Temperature

Package	T _A Range	R _{θJA} (°C/W)	P _D (W) typical	T _J - T _A (°C) typical
QFN48	-40°C to 125°C		1.0	
TQFP48	-40°C to 125°C		1.0	

5.4 Power Consumption

The values are measured power consumption under the following conditions, except where noted:

- V_{DD}=3V
- T_A=25°C
- OSC20M used as system clock source, except where otherwise specified
- System power consumption measured with peripherals disabled and without I/O drive.

Table 5-5. Power Consumption in Active and Idle Mode

Mode	Description	Condition		Тур.	Max.	Unit
Active	Active power consumption	f _{CLK_CPU} =20 MHz (OSC20M)	V _{DD} =5V	8.5	-	mA
		f _{CLK_CPU} =10 MHz (OSC20M div2)	V _{DD} =5V	4.3	-	mA
		V _{DD} =3V	2.3	-	mA	
	f _{CLK_CPU} =5 MHz (OSC20M div4)	V _{DD} =5V	2.15	-	mA	
			V _{DD} =3V	1.2	-	mA
			V _{DD} =2V	0.75	-	mA
		f _{CLK_CPU} =32 KHz (OSCULP32K)	V _{DD} =5V	16.4	-	μΑ
			V _{DD} =3V	9.0	-	μΑ
			V _{DD} =2V	6.0	-	μΑ
Idle	dle Idle power consumption	f _{CLK_CPU} =20 MHz (OSC20M)	V _{DD} =5V	2.8	-	mA
		f _{CLK_CPU} =10 MHz (OSC20M div2)	V _{DD} =5V	1.4	-	mA

Mode	Description	Condition			Max.	Unit
			V _{DD} =3V	0.8	-	mA
		f _{CLK_CPU} =5 MHz (OSC20M div4)	V _{DD} =5V	0.7	-	mA
			V _{DD} =3V	0.4	-	mA
			V _{DD} =2V	0.25	_	mA
		f _{CLK_CPU} =32 KHz (OSCULP32K)	V _{DD} =5V	5.6	_	μA
		V _{DD} =3V	2.8	_	μA	
			V _{DD} =2V	1.8	_	μA

Table 5-6. Power Consumption in Power-Down, Standby and Reset Mode

Mode	Description	Condition		Typ. 25°C	Max. 85°C	Max. 125°C	Unit
Standby	Standby power consumption	RTC running at 1.024 kHz from external XOSC32K (CL=7.5pF)	V _{DD} =3V	0.69	-	-	μA
		RTC running at 1.024 kHz from internal OSCULP32K	V _{DD} =3V	0.65	TBD	TBD	μΑ
Power Down/ Standby	Power down/Standby power consumption are the same when all peripherals are stopped	All peripherals stopped	V _{DD} =3V	0.10	TBD	TBD	μΑ
Reset	Reset power consumption	RESET line pulled low	V _{DD} =3V	100	-	-	μA

5.5 Peripherals Power Consumption

The table below can be used to calculate the additional current consumption for the different I/O peripherals in the various operating modes.

Operating conditions:

- V_{DD}=3V
- T=25°C
- OSC20M at 1 MHz used as system clock source, except where otherwise specified.

Table 5-7. Peripherals Power Consumption

Peripheral	Conditions	Typ. ⁽¹⁾	Unit
BOD	Continuous	19	μΑ
	Sampling @ 1 kHz	1.2	
TCA	16-bit count @ 1 MHz	12.6	μA

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40002016A-page 13

Electrical Characteristics

Peripheral	Conditions	Typ. ⁽¹⁾	Unit
ТСВ	16-bit count @ 1 MHz	7.4	μA
RTC	16-bit count @ OSCULP32K	1.2	μA
WDT (including OSCULP32K)		0.7	μΑ
OSC20M		125	μA
AC	Fast Mode ⁽²⁾	92	μΑ
	Low Power Mode ⁽²⁾	45	μA
ADC	50 ksps	325	μA
	100 ksps	340	μΑ
XOSC32K	C _L =7.5 pF	0.5	μΑ
OSCULP32K		0.4	μΑ
USART	Enable @ 9600 Baud	13	μΑ
SPI (Master)	Enable @ 100 kHz	2.1	μΑ
TWI (Master)	Enable @ 100 kHz	23.9	μΑ
TWI (Slave)	Enable @ 100 kHz	17.1	μA
Flash programming	Erase Operation	1.5	mA
	Write Operation	3.0	

Note:

- 1. Current consumption of the module only. To calculate the total power consumption of the system, add this value to the base value in section "Power Consumption".
- 2. CPU in Standby mode.

5.6 BOD and POR Characteristics

Table 5-8. Power Supply Characteristics

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
SRON	Power-on Slope		-	-	100	V/ms

Table 5-9. Power On Reset (POR) Characteristics

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
V _{POR}	POR threshold voltage on V _{DD} falling	V _{DD} falls/rises at 0.5V/ms or slower	8.0	-	1.6	V
	POR threshold voltage on V _{DD} rising		1.4	-	1.8	

Table 5-10. Brownout Detection (BOD) Characteristics

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
V_{BOD}	BOD detection level (falling)	BODLEVEL=1.8V	1.71	1.78	1.85	V
		BODLEVEL=2.7V	2.45	2.60	2.75	
		BODLEVEL=4.3V	4.05	4.25	4.45	
V _{HYS}	Hysteresis	BODLEVEL=1.8V	-	25	-	mV
		BODLEVEL=2.7V	_	40	_	
		BODLEVEL=4.3V	_	80	-	
t _{BOD}	Detection time	Continuous	_	7	-	μs
		Sampled, 1 kHz	_	1	-	ms
		Sampled, 125 Hz	_	8	-	
t _{startup}	Start-up time	Time from enable to ready	_	40	-	μs
ΔV_{LVD}	Interrupt level 0	Percentage above the selected BOD	-	4	-	%
ļ	Interrupt level 1	level	-	13	-	
	Interrupt level 2		-	25	-	

5.7 External Reset Characteristics

Table 5-11. External Reset Characteristics

Mode	Description	Condition	Min.	Тур.	Max.	Unit
V _{VIH_RST}	Input Voltage for RESET		0.7×V _{DD}	-	V _{DD} +0.2	V
V _{VIL_RST}	Input Low Voltage for RESET		-0.2	_	0.3×V _{DD}	
t _{MIN_RST}	Minimum pulse width on RESET pin		300	-	-	ns
R _{p_RST}	RESET pull-up resistor	V _{Reset} =0V	20	35	50	kΩ

5.8 Oscillators and Clocks

Operating conditions:

• V_{DD}=3V, except where specified otherwise.

Table 5-12. 20 MHz Internal Oscillator (OSC20M) Characteristics

Symbol	Description	Condition			Тур.	Max.	Unit
f _{OSC20M}	Factory calibration	FREQSEL=0	T _A =25°C, 3.0V		16		MHz
	frequency	FREQSEL=1			20		
f _{CAL}	Frequency calibration range	OSC16M ⁽²⁾		14.5		17.5	MHz
		OSC20M ⁽²⁾		18.5		21.5	MHz

Electrical Characteristics

Symbol	Description	Condition		Min.	Тур.	Max.	Unit	
	Factory calibration accuracy		T _A =25°C, 3.0V	TBD	±0.75	TBD	%	
E _{TOTAL}	Total error with 16 MHz frequency selection	From target frequency	T _A =[0, 70]°C, V _{DD} =[1.8, 3.6]V	TBD	±2	TBD	%	
			Full operation range	TBD	±3	TBD		
	Total error with 20 MHz frequency selection	From target frequency	T _A =[0, 70]°C, V _{DD} =[1.8, 3.6]V	TBD	±2	TBD		
			Full operation range	TBD	±3	TBD		
E _{DRIFT}	Accuracy with 16 MHz Frequency Selection relative to the factory-stored frequency value	Factory calibrated V _{DD} =3V ⁽¹⁾	T _A =[0, 70]°C, V _{DD} =[1.8, 5.5]V	TBD	±1.5	TBD	%	
	Accuracy with 20 MHz Frequency Selection relative to the factory-stored frequency value	Factory calibrated V _{DD} =3V ⁽¹⁾	T _A =[0, 70]°C, V _{DD} =[1.8, 5.5]V	TBD	±1.5	TBD		
Δf_{OSC20M}	Calibration step size			_	0.75	-	%	
D _{OSC20M}	Duty cycle			-	50	-	%	
t _{startup}	Start-up time	Within 2% accuracy		-	12	-	μs	

Note:

- 1. See also the description of OSC20M on calibration.
- 2. Oscillator Frequencies above speed specification must be divided so that CPU clock always is within specification.

Table 5-13. 32.768 kHz Internal Oscillator (OSCULP32K) Characteristics

Symbol	Description	Condition	Condition	Min.	Тур.	Max.	Unit
f _{OSCULP32K}	Factory calibration frequency				32.768		kHz
	Factory calibration accuracy		T _A =25°C, 3.0V	-3	±2	3	%
E _{TOTAL}	Total error from target frequency	Factory calibrated	T _A =[0, 70]°C, V _{DD} =[1.8, 3.6]V	-10	±5	+10	%
			Full operation range	-30	±10	+30	
D _{OSCULP32K}	Duty cycle				50		%
t _{startup}	Start-up time			-	250	-	μs

Table 5-14. 32.768 kHz External Crystal Oscillator (XOSC32K) Characteristics

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
f _{out}	Frequency		-	32.768	-	kHz
t _{startup}	Startup time	C _L =7.5 pF	-	300	-	ms
		C _L =12.5 pF	-	TBD	-	
C _L	Crystal load capacitance		7.5	-	12.5	pF
C _{TOSC1}	Parasitic capacitor load		-	5.5	-	pF
C _{TOSC2}			-	5.5	-	pF
ESR	Equivalent Series Resistance - Safety Factor=3	C _L =7.5 pF	-	_	80	kΩ
		C _L =12.5 pF	-	-	40	

Figure 5-2. External Clock Waveform Characteristics

Table 5-15. External Clock Characteristics

Symbol	Description	Condition			V _{DD} =[2.7, V _{DD} =[4.5, 5.5]V 5.5]V		Unit		
			Min.	Max.	Min.	Max.		Min.	Max.
f _{CLCL}	Frequency		0	5.0	0.0	10.0	0.0	20.0	MHz
t _{CLCL}	Clock Period		200	_	100	-	50	-	ns
t _{CHCX}	High Time		80	_	40	-	20	_	ns
t _{CLCX}	Low Time		80	_	40	-	20	_	ns
t _{CLCH}	Rise Time (for maximum frequency)		-	40	-	20	-	10	ns
t _{CHCL}	Fall Time (for maximum frequency)		-	40	-	20	_	10	ns
Δt_{CLCL}	Change in period from one clock cycle to the next		-	20	-	20	-	20	%

5.9 I/O Pin Characteristics

Table 5-16. I/O Pin Characteristics (T_A=[-40, 85]°C, V_{DD}=[1.8, 5.5]V unless otherwise noted)

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
V _{IL}	Input Low Voltage		-0.2	-	0.3×V _{DD}	V
V _{IH}	Input High Voltage		0.7×V _{DD}	-	V _{DD} +0.2V	V
I _{IH} / I _{IL}	I/O pin Input Leakage Current	V _{DD} =5.5V, Pin high	-	< 0.05	-	μΑ
		V _{DD} =5.5V, Pin low	-	< 0.05	-	
V _{OL}	I/O pin drive strength	V _{DD} =1.8V, I _{OL} =1.5 mA	-	-	0.36	V
		V _{DD} =3.0V, I _{OL} =7.5 mA	-	-	0.6	
		V _{DD} =5.0V, I _{OL} =15 mA	-	_	1	
V_{OH}	I/O pin drive strength	V _{DD} =1.8V, I _{OH} =1.5 mA	1.44	-	-	V
		V _{DD} =3.0V, I _{OH} =7.5 mA	2.4	-	-	
		V _{DD} =5.0V, I _{OH} =15 mA	4	-	-	
I _{total}	Maximum combined I/O sink/ source current per pin group ⁽¹⁾		-	-	100	mA
	Maximum combined I/O sink/ source current per pin group ⁽¹⁾	T _A =25°C	-	-	200	
t _{RISE}	Rise time	V _{DD} =3.0V, load=20 pF	-	2.5	-	ns
		V _{DD} =5.0V, load=20 pF	-	1.5	-	
		V _{DD} =3.0V, load=20 pF, slew rate enabled	-	19	-	
		V _{DD} =5.0V, load=20 pF, slew rate enabled	-	9	-	
t _{FALL}	Fall time	V _{DD} =3.0V, load=20 pF	-	2.0	-	ns
		V _{DD} =5.0V, load=20 pF	-	1.3	-	
		V _{DD} =3.0V, load=20 pF, slew rate enabled	-	21	-	
		V _{DD} =5.0V, load=20 pF, slew rate enabled	-	11	-	
C _{pin}	I/O pin capacitance except for TOSC, VREFA, and TWI pins		-	3.5	-	pF
C _{pin}	I/O pin capacitance on TOSC pins		-	4	-	pF
C _{pin}	I/O pin capacitance on TWI pins		-	10	-	pF
C _{pin}	I/O pin capacitance on VREFA pin		-	14	-	pF
R _p	Pull-up resistor		20	35	50	kΩ

Note:

1. Pin group A (PA[7:0]), PF[6:2]), pin group B (PB[7:0], PC[7:0]), pin group C (PD:7:0, PE[3:0], PF[1:0]). For 28-pin and 32-pin devices pin group A and B should be seen as a single group. The combined continuous sink/source current for each individual group should not exceed the limits.

5.10 **VREF**

Table 5-17. Internal Voltage Reference Characteristics

Symbol	Description	Min.	Тур.	Max.	Unit
t _{start}	Start-up time	-	25	-	μs
V _{DDINT055V}	Power supply voltage range for INT055V	1.8	-	5.5	V
V _{DDINT11V}	Power supply voltage range for INT11V	1.8	-	5.5	
V _{DDINT15V}	Power supply voltage range for INT15V	1.8	-	5.5	
V _{DDINT25V}	Power supply voltage range for INT25V	3.0	-	5.5	
V _{DDINT43V}	Power supply voltage range for INT43V	4.8	-	5.5	

Table 5-18. ADC Internal Voltage Reference Characteristics⁽¹⁾

Symbol ⁽²⁾	Description	Condition	Min.	Тур.	Max.	Unit
INT11V	Internal reference voltage	V _{DD} =[1.8V, 3.6V] T=[0 - 105]°C	-2.0		2.0	%
INT055V INT15V INT25V	Internal reference voltage	V _{DD} =[1.8V, 3.6V] T=[0 - 105]°C	-3.0		3.0	
INT055V INT11V INT15V INT25V INT43V	Internal reference voltage	V _{DD} =[1.8V, 5.5V] T=[-40 - 125]°C	-5.0		5.0	

Note:

- 1. These values are based on characterization and not covered by production test limits.
- The symbols INTxxV refer to the respective values of the ADC0REFSEL bit field in the VREF.CTRLA register.

Table 5-19. AC Internal Voltage Reference Characteristics⁽¹⁾

Symbol ⁽²⁾	Description	Condition	Min.	Тур.	Max.	Unit
INT055V INT11V	Internal reference voltage	V _{DD} =[1.8V, 3.6V] T=[0 - 105]°C	-3.0		3.0	%

Electrical Characteristics

Symbol ⁽²⁾	Description	Condition	Min.	Тур.	Max.	Unit
INT15V INT25V						
INT055V INT11V INT15V INT25V INT43V	Internal reference voltage	V _{DD} =[1.8V, 5.5V] T=[-40 - 125]°C	-5.0		5.0	

Note:

- 1. These values are based on characterization and not covered by production test limits.
- 2. The symbols INTxxV refer to the respective values of the AC0REFSEL bit field in the VREF.CTRLA register.

5.11 ADC

5.11.1 Internal Reference Characteristics

Operating conditions:

- $V_{DD} = 1.8 \text{ to } 5.5 \text{V}$
- Temperature = -40°C to 125°C
- DUTYCYC = 25%
- CLK_{ADC} = 13 * f_{ADC}
- SAMPCAP is 10 pF for 0.55V reference, while it is set to 5 pF for V_{RFF}≥1.1V
- Applies for all allowed combinations of V_{REF} selections and Sample Rates unless otherwise noted

Table 5-20. Power Supply, Reference, and Input Range

Symbol	Description	Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Supply voltage	CLK _{ADC} ≤ 1.5 MHz	1.8	-	5.5	V
		CLK _{ADC} > 1.5 MHz	2.7	-	5.5	
V_{REF}	Reference voltage	REFSEL = Internal reference	0.55	-	V _{DD} -0.5	V
		REFSEL = External reference	1.1		V_{DD}	
		REFSEL = V _{DD}	1.8	-	5.5	
C _{IN}	Input capacitance	SAMPCAP=5 pF	-	5	-	pF
		SAMPCAP=10 pF	-	10	_	
V _{IN}	Input voltage range		0	-	V _{REF}	V
I _{BAND}	Input bandwidth	1.1V≤V _{REF}	-	-	57.5	kHz

Table 5-21. Clock and Timing Characteristics

Symbol	Description	Conditions	Min.	Тур.	Max.	Unit
f _{ADC}	Sample rate	1.1V≤V _{REF}	15	-	115	ksps
		1.1V≤V _{REF} (8-bit resolution)	15	-	150	
		V _{REF} =0.55V (10 bits)	7.5	-	20	
CLK _{ADC}	Clock frequency	V _{REF} =0.55V (10 bits)	100	-	260	kHz
		1.1V≤V _{REF} (10 bits)	200	-	1500	
		1.1V≤V _{REF} (8-bit resolution)	200	-	2000	
Ts	Sampling time		2	2	33	CLK _{ADC} cycles
T _{CONV}	Conversion time (latency)	Sampling time = 2 CLK _{ADC}	8.7	-	50	μs
T _{START}	Start-up time	Internal V _{REF}	-	22	-	μs

Table 5-22. Accuracy Characteristics Internal Reference⁽²⁾

Symbol	Description	Conditions		Min.	Тур.	Max.	Unit
Res	Resolution			-	10	_	bit
INL	Integral Non- linearity	REFSEL = INTERNAL	f _{ADC} =7.7 ksps	-	1.0	-	LSB
		V _{REF} =0.55V					
		REFSEL = INTERNAL or VDD	f _{ADC} =15 ksps	-	1.0	_	
		REFSEL =	f _{ADC} =77 ksps	-	1.0	_	
		INTERNAL or VDD 1.1V≤V _{REF}	f _{ADC} =115 ksps	-	1.2	-	
DNL ⁽¹⁾	Differential Non-linearity	REFSEL = INTERNAL V _{REF} = 0.55V	f _{ADC} =7.7 ksps	-	0.6	-	LSB
		REFSEL = INTERNAL	f _{ADC} =15 ksps	-	0.4	-	
		V _{REF} = 1.1V					
		REFSEL = INTERNAL or VDD	f _{ADC} =15 ksps	-	0.4	-	
		1.5V≤V _{REF}					
		REFSEL = INTERNAL or VDD	f _{ADC} =77 ksps	-	0.4	-	
		1.1V≤V _{REF}					

Electrical Characteristics

Symbol	Description	Conditions		Min.	Тур.	Max.	Unit
		REFSEL = INTERNAL	f _{ADC} =115 ksps	-	0.5	-	
		1.1V≤V _{REF}					
		REFSEL = VDD	f _{ADC} =115 ksps	-	0.9	-	
		1.8V≤V _{REF}					
EABS	Absolute	REFSEL =	T=[0-105]°C	-	<10	-	LSB
	accuracy	INTERNAL	$V_{DD} = [1.8V-3.6V]$				
		V _{REF} = 1.1V	V _{DD} = [1.8V-3.6V]	-	<15	-	
		REFSEL = V _{DD}		-	2	-	
		REFSEL = INTERNAL		-	<35	-	
EGAIN	Gain error		T=[0-105]°C	-	±15	-	LSB
		INTERNAL	$V_{DD} = [1.8V-3.6V]$				
		V _{REF} = 1.1V	V _{DD} = [1.8V-3.6V]	-	±20	_	
		REFSEL = V _{DD}		-	2	-	
		REFSEL = INTERNAL		-	±35	-	
EOFF	Offset error	REFSEL = INTERNAL		-	-0.5	-	LSB
		V _{REF} = 0.55V					
		REFSEL = INTERNAL		-	-0.5	-	LSB
		1.1V ≤ V _{REF}					

Note:

- 1. A DNL error of less than or equal to 1 LSB ensures a monotonic transfer function with no missing codes.
- 2. These values are based on characterization and not covered by production test limits.
- 3. Reference setting and f_{ADC} must fulfill the specification in "Clock and Timing Characteristics" and "Power supply, Reference, and Input Range" tables.

5.11.2 External Reference Characteristics

Operating conditions:

- $V_{DD} = 1.8 \text{ to } 5.5 \text{V}$
- Temperature = -40°C to 125°C
- DUTYCYC = 25%
- $CLK_{ADC} = 13 * f_{ADC}$
- SAMPCAP is 5 pF

The accuracy characteristics numbers are based on characterization of the following input reference levels and V_{DD} ranges:

- $Vref = 1.8 V, V_{DD} = 1.8 to 5.5 V$
- $Vref = 2.6 V, V_{DD} = 2.7 to 5.5 V$
- $Vref = 4.096 V, V_{DD} = 4.5 to 5.5 V$
- $Vref = 4.3 V, V_{DD} = 4.5 to 5.5 V$

Table 5-23. Accuracy Characteristics External Reference⁽²⁾

Symbol	Description	Conditions		Min.	Тур.	Max.	Unit
Res	Resolution			-	10	_	bit
INL	Integral Non-		f _{ADC} =15 ksps	-	0.9	-	LSB
	linearity		f _{ADC} =77 ksps	-	0.9	-	
			f _{ADC} =115 ksps	-	1.2	_	
DNL ⁽¹⁾	Differential Non-linearity		f _{ADC} =15 ksps	-	0.2	_	LSB
			f _{ADC} =77 ksps	-	0.4	_	
			f _{ADC} =115 ksps	-	0.8	_	
EABS	Absolute	Absolute f _{ADC} =15 ksps -	-	2	_	LSB	
	accuracy		f _{ADC} =77 ksps	-	2	_	
			f _{ADC} =115 ksps	-	2	_	
EGAIN	Gain error		f _{ADC} =15 ksps	-	2	_	LSB
			f _{ADC} =77 ksps	-	2	_	
			f _{ADC} =115 ksps	-	2	_	
EOFF	Offset error			-	-0.5	-	LSB

Note:

- 1. A DNL error of less than or equal to 1 LSB ensures a monotonic transfer function with no missing
- These values are based on characterization and not covered by production test limits.

5.12 AC

Table 5-24. Analog Comparator Characteristics

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
V _{IN}	Input Voltage	Low Power Mode	-0.2	-	V_{DD}	V
		High speed mode	-0.2	-	V_{DD}	
C _{IN}	Input Pin Capacitance	PD1 to PD6	_	3.5	_	pF
		PD7	-	14	-	

Electrical Characteristics

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
V _{OFF}	Input Offset Voltage, Low Power	0.7V <v<sub>IN<(V_{DD}-0.7V)</v<sub>	TBD	±10	TBD	mV
	Mode	V _{IN} =[0V, V _{DD}]	-	±30	_	
	Input Offset Voltage, High-speed Mode	0.7V <v<sub>IN<(V_{DD}-0.7V)</v<sub>	TBD	±5	TBD	
		V _{IN} =[-0.2V, V _{DD}]	-	±20	-	
IL	Input Leakage Current		-	5	_	nA
T _{START}	Start-up Time		-	1.3	-	μs
V _{HYS}	Hysteresis, High-speed mode	HYSMODE=0x0	-	0	_	mV
		HYSMODE=0x1	-	10	-	
		HYSMODE=0x2	-	25	_	
		HYSMODE=0x3	-	50	-	
t _{PD}	Propagation Delay	25 mV Overdrive, V _{DD} ≥2.7V, High speed mode	_	50	-	ns
		25 mV Overdrive, V _{DD} ≥2.7V, Low Power Mode	-	150	-	

5.13 UPDI Timing

UPDI Enable Sequence

Symbol	Description	Min.	Max.	Unit
T _{RES}	Duration of Handshake/Break on RESET	10	200	μs
T _{UPDI}	Duration of UPDI.txd=0	10	200	μs
T _{Deb0}	Duration of Debugger.txd=0	0.2	1	μs
T _{DebZ}	Duration of Debugger.txd=z	200	14000	μs

6. Typical Characteristics

6.1 Power Consumption

6.1.1 Supply Currents in Active Mode

Figure 6-1. Active Supply Current vs. Frequency (1-20 MHz) at T=25°C

Figure 6-2. Active Supply Current vs. Frequency [0.1, 1.0] MHz at T=25°C

Figure 6-3. Active Supply Current vs. Temperature (f=20 MHz OSC20M)

Figure 6-4. Active Supply Current vs. V_{DD} (f=[1.25, 20] MHz OSC20M) at T=25°C

Figure 6-5. Active Supply Current vs. V_{DD} (f=32 KHz OSCULP32K)

6.1.2 Supply Currents in Idle Mode Figure 6-6. Idle Supply Current vs. Frequency (1-20 MHz) at T=25°C

Figure 6-8. Idle Supply Current vs. Temperature (f=20 MHz OSC20M)

Figure 6-9. Idle Supply Current vs. V_{DD} (f=32 KHz OSCULP32K)

6.1.3 Supply Currents in Power-Down Mode

Figure 6-10. Power-Down Mode Supply Current vs. Temperature (all functions disabled)

Figure 6-11. Power-Down Mode Supply Current vs. V_{DD} (all functions disabled)

Figure 6-12. Power-Down Mode Supply Current vs. V_{DD} (all functions disabled)

6.1.4 Supply Currents in Standby Mode

Figure 6-13. Standby Mode Supply Current vs. V_{DD} (RTC running with internal OSCULP32K)

Figure 6-14. Standby Mode Supply Current vs. V_{DD} (Sampled BOD running at 125 Hz)

Temperature [°C] **-** -40 9.0 -20 0 - 25 8.0 -70 **-** 85 7.0 --- 105 6.0 ---- 125 5.0 4.0 3.0 2.0 1.0 0.0 2.0 2.5 3.0 1.5 3.5 4.0 4.5 5.0 5.5 Vdd [V]

Figure 6-15. Standby Mode Supply Current vs. V_{DD} (Sampled BOD running at 1 kHz)

6.1.5 Power on Supply Currents

Figure 6-16. Power-on Supply Current vs. V_{DD} (BOD enabled at 4.3V level)

6.2 GPIO

GPIO Input Characteristics

Figure 6-17. I/O Pin Input Hysteresis vs. V_{DD}

Figure 6-18. I/O Pin Input Threshold Voltage vs. V_{DD} (T=25°C)

Figure 6-19. I/O Pin Input Threshold Voltage vs. V_{DD} (V_{IH})

Figure 6-20. I/O Pin Input Threshold Voltage vs. $V_{DD}\ (V_{IL})$

GPIO Output Characteristics

Figure 6-21. I/O Pin Output Voltage vs. Sink Current (V_{DD}=1.8V)

Figure 6-22. I/O Pin Output Voltage vs. Sink Current (V_{DD}=3.0V)

Figure 6-23. I/O Pin Output Voltage vs. Sink Current (V_{DD} =5.0V)

Figure 6-24. I/O Pin Output Voltage vs. Sink Current (T=25°C)

Figure 6-25. I/O Pin Output Voltage vs. Source Current (V_{DD}=1.8V)

Figure 6-26. I/O Pin Output Voltage vs. Source Current (V_{DD}=3.0V)

Figure 6-27. I/O Pin Output Voltage vs. Source Current (V_{DD}=5.0V)

Figure 6-28. I/O Pin Output Voltage vs. Source Current (T=25°C)

GPIO Pull-Up Characteristics

Figure 6-29. I/O Pin Pull-Up Resistor Current vs. Input Voltage (V_{DD}=1.8V)

Figure 6-30. I/O Pin Pull-Up Resistor Current vs. Input Voltage (V_{DD}=3.0V)

Figure 6-31. I/O Pin Pull-Up Resistor Current vs. Input Voltage (V_{DD} =5.0V)

6.3 VREF Characteristics

Figure 6-33. Internal 1.1V Reference vs. Temperature

Figure 6-34. Internal 2.5V Reference vs. Temperature

Figure 6-35. Internal 4.3V Reference vs. Temperature

6.4 BOD Characteristics

BOD Current vs. V_{DD} Figure 6-36. BOD Current vs. V_{DD} (Continuous Mode Enabled)

Figure 6-37. BOD Current vs. V_{DD} (Sampled BOD at 125 Hz)

Figure 6-38. BOD Current vs. V_{DD} (Sampled BOD at 1 kHz)

BOD Threshold vs. Temperature

Figure 6-39. BOD Threshold vs. Temperature (Level 1.8V)

Figure 6-40. BOD Threshold vs. Temperature (Level 2.6V)

Temperature [°C]

Figure 6-41. BOD Threshold vs. Temperature (Level 4.3V)

20

6.5 ADC Characteristics

-40

-20

Figure 6-42. Absolute Accuracy vs. V_{DD} (f_{ADC} =115 ksps) at T=25°C, REFSEL = Internal Reference

60

100

120

Figure 6-43. Absolute Accuracy vs. V_{ref} (V_{DD}=5.0V, f_{ADC}=115 ksps), REFSEL = Internal Reference

Figure 6-44. DNL Error vs. V_{DD} (f_{ADC}=115 ksps) at T=25°C, REFSEL = Internal Reference

Figure 6-45. DNL vs. V_{ref} (V_{DD} =5.0V, f_{ADC} =115 ksps), REFSEL = Internal Reference

Figure 6-46. Gain Error vs. V_{DD} (f_{ADC} =115 ksps) at T=25°C, REFSEL = Internal Reference

Figure 6-47. Gain Error vs. V_{ref} (V_{DD} =5.0V, f_{ADC} =115 ksps), REFSEL = Internal Reference

Figure 6-48. INL vs. V_{DD} (f_{ADC}=115 ksps) at T=25°C, REFSEL = Internal Reference

Figure 6-49. INL vs. V_{ref} (V_{DD} =5.0V, f_{ADC} =115 ksps), REFSEL = Internal Reference

Figure 6-50. Offset Error vs. V_{DD} (f_{ADC}=115 ksps) at T=25°C, REFSEL = Internal Reference

Figure 6-51. Offset Error vs. V_{ref} (V_{DD} =5.0V, f_{ADC} =115 ksps), REFSEL = Internal Reference

Figure 6-52. Absolute Accuracy vs. V_{DD} (f_{ADC}=115 ksps, T=25°C), REFSEL = External Reference

Figure 6-53. Absolute Accuracy vs. V_{REF} (V_{DD}=5.0V, f_{ADC}=115 ksps, REFSEL = External Reference)

Figure 6-54. DNL vs. V_{DD} (f_{ADC}=115 ksps, T=25°C, REFSEL = External Reference)

Figure 6-55. DNL vs. V_{REF} (V_{DD}=5.0V, f_{ADC}=115 ksps, REFSEL = External Reference)

Figure 6-56. Gain vs. V_{DD} (f_{ADC}=115 ksps, T=25°C, REFSEL = External Reference)

Figure 6-57. Gain vs. V_{REF} (V_{DD}=5.0V, f_{ADC}=115 ksps, REFSEL = External Reference)

Figure 6-58. INL vs. V_{DD} (f_{ADC}=115 ksps, T=25°C, REFSEL = External Reference)

Figure 6-59. INL vs. V_{REF} (V_{DD}=5.0V, f_{ADC}=115 ksps, REFSEL = External Reference)

Figure 6-60. Offset vs. V_{DD} (f_{ADC}=115 ksps, T=25°C, REFSEL = External Reference)

Figure 6-61. Offset vs. V_{REF} (V_{DD} =5.0V, f_{ADC} =115 ksps, REFSEL = External Reference)

6.6 AC Characteristics

Figure 6-62. Hysteresis vs. V_{CM} - 10 mV (V_{DD}=5V)

Figure 6-63. Hysteresis vs. V_{CM} - 10 mV to 50 mV (V_{DD} =5V, T=25°C)

Figure 6-64. Offset vs. V_{CM} - 10 mV (V_{DD}=5V)

Figure 6-65. Offset vs. V_{CM} - 10 mV to 50 mV (V_{DD} =5V, T=25°C)

6.7 OSC20M Characteristics

Figure 6-66. OSC20M Internal Oscillator: Calibration Stepsize vs. Calibration Value (V_{DD}=3V)

Figure 6-67. OSC20M Internal Oscillator: Frequency vs. Calibration Value (V_{DD}=3V)

Figure 6-68. OSC20M Internal Oscillator: Frequency vs. Temperature

Temperature [°C] - -40 20.4 -20 0 25 20.3 - 70 20.2 --- 85 Frequency [MHz] 20.1 ---- 125 20.0 19.9

Figure 6-69. OSC20M Internal Oscillator: Frequency vs. V_{DD}

6.8 OSCULP32K Characteristics

2.0

2.5

19.8 · 19.7 · 19.6 · 19.5 ·

1.5

Figure 6-70. OSCULP32K Internal Oscillator Frequency vs. Temperature

3.5

Vdd [V]

4.0

4.5

5.0

5.5

3.0

ATmega3209/4809 - 48-pin Data Sheet

Typical Characteristics

Figure 6-71. OSCULP32K Internal Oscillator Frequency vs. V_{DD}

7. Package Drawings

7.1 48 pin TQFP

Table 7-1. Device and Package Maximum Weight

140	mg	

ATmega3209/4809 - 48-pin Data Sheet

Package Drawings

Table 7-2.	Package	Characteristics
-------------------	----------------	------------------------

Moisture Sensitivity Level	MSL3

Table 7-3. Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	E3

8. Conventions

8.1 Memory Size and Type

Table 8-1. Memory Size and Bit Rate

Symbol	Description
КВ	kilobyte (2 ¹⁰ = 1024)
MB	megabyte (2 ²⁰ = 1024*1024)
GB	gigabyte (2 ³⁰ = 1024*1024*1024)
b	bit (binary '0' or '1')
В	byte (8 bits)
1 kbit/s	1,000 bit/s rate (not 1,024 bit/s)
1 Mbit/s	1,000,000 bit/s rate
1 Gbit/s	1,000,000,000 bit/s rate
word	16-bit

8.2 Frequency and Time

Table 8-2. Frequency and Time

Symbol	Description
kHz	1 kHz = 10 ³ Hz = 1,000 Hz
KHz	1 KHz = 1,024 Hz, 32 KHz = 32,768 Hz
MHz	1 MHz = 10 ⁶ Hz = 1,000,000 Hz
GHz	1 GHz = 10 ⁹ Hz = 1,000,000,000 Hz
s	second
ms	millisecond
μs	microsecond
ns	nanosecond

ATmega3209/4809 - 48-pin Data Sheet

Data Sheet Revision History

9. Data Sheet Revision History

Note: The data sheet revision is independent of the die revision and the device variant (last letter of the ordering number).

9.1 Rev. A - 02/2018

Initial release.

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40002016A-page 65

Product Identification System

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Note: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of
 these methods, to our knowledge, require using the Microchip products in a manner outside the
 operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is
 engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40002016A-page 66

from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-2713-1

Quality Management System Certified by DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40002016A-page 67

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4450-2828
echnical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
http://www.microchip.com/	China - Chongqing	Japan - Osaka	Finland - Espoo
support	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
Veb Address:	China - Dongguan	Japan - Tokyo	France - Paris
ww.microchip.com	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Atlanta	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Ouluth, GA	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
el: 678-957-9614	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
ax: 678-957-1455	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
ustin, TX	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
el: 512-257-3370	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Boston	China - Nanjing	Malaysia - Penang	Tel: 49-7131-67-3636
Vestborough, MA	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
el: 774-760-0087	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
ax: 774-760-0088	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
chicago	China - Shanghai	Singapore	Tel: 49-89-627-144-0
asca, IL	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
el: 630-285-0071	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
ax: 630-285-0075	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Pallas	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
ddison, TX	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
el: 972-818-7423	China - Suzhou Tel: 86-186-6233-1526	Taiwan - Taipei	Italy - Milan
ax: 972-818-2924	China - Wuhan	Tel: 886-2-2508-8600	Tel: 39-0331-742611
etroit	Tel: 86-27-5980-5300	Thailand - Bangkok	Fax: 39-0331-466781
lovi, MI	China - Xian	Tel: 66-2-694-1351	Italy - Padova
el: 248-848-4000	Tel: 86-29-8833-7252	Vietnam - Ho Chi Minh Tel: 84-28-5448-2100	Tel: 39-049-7625286
louston, TX	China - Xiamen	101. 01 20 0110 2100	Netherlands - Drunen
el: 281-894-5983	Tel: 86-592-2388138		Tel: 31-416-690399
ndianapolis	China - Zhuhai		Fax: 31-416-690340
loblesville, IN	Tel: 86-756-3210040		Norway - Trondheim
el: 317-773-8323	1000 000 000 000 000		Tel: 47-7289-7561
ax: 317-773-5453			Poland - Warsaw
el: 317-536-2380			Tel: 48-22-3325737
os Angeles			Romania - Bucharest
lission Viejo, CA			Tel: 40-21-407-87-50
el: 949-462-9523			Spain - Madrid
ax: 949-462-9608			Tel: 34-91-708-08-90
el: 951-273-7800			Fax: 34-91-708-08-91
aleigh, NC			Sweden - Gothenberg
el: 919-844-7510			Tel: 46-31-704-60-40
lew York, NY			Sweden - Stockholm
el: 631-435-6000			Tel: 46-8-5090-4654
San Jose, CA			UK - Wokingham
el: 408-735-9110			Tel: 44-118-921-5800
el: 408-436-4270			Fax: 44-118-921-5820
anada - Toronto			
el: 905-695-1980			
ax: 905-695-2078			