HOMEWORK SET #6 Based on lectures 9 - 10

- 1. Let X_1, X_2, \ldots, X_n be i.i.d. with density $f(x) = \lambda e^{-\lambda(x-\beta)} I_{(\beta,\infty)}(x)$, where $\lambda > 0$, $\beta \in \mathbb{R}$ are unknown parameters.
 - (a) Is this exponential family? Would the answer change if we assumed $\beta = 0$?
 - (b) Find a minimal sufficient statistic.
 - (c) Is $S(\mathbf{X}) = \frac{X_{(n)} X_{(1)}}{X_{(n)} X_n}$ an ancillary statistics? Justify! (Hint: If $Y \sim \text{Exp}(1)$ and $X = \frac{Y}{\lambda} + \beta$, then the density of X is $f(x) = \lambda e^{-\lambda(x-\beta)} I_{(\beta,\infty)}(x)$.)
 - (d) Assume $\beta=0.$ Calculate $E\left(\frac{X_{(1)}}{\tilde{X}_n}\right).$ (Hint: Use Basu's theorem.)
 - (e) Do not assume $\beta=0.$ Calculate $E\left(\frac{X_{(n)}-X_{(1)}}{\bar{X}_n-\beta}\right).$
- 2. From the book: 6.9 (Hint: parts c and d use Fundamental Theorem of Algebra in the proof), 6.21, 6.27 (there is a typo $T = n/(\sum_{i=1}^{n} (1/X_i 1/\bar{X}))$.