CO749 - Random Graph Theory

(Lecture Summaries)

University of Waterloo Nicholas Pun Winter 2020

Contents

1	Introduction	2
	1.1 Probability Primer	2
2	Concentration Inequalities, Coupling, Connection Theorem	4
3	Threshold, First Order Logic of Graphs	5
4	0-1 Law, Evolution of Graphs and Theorem E	6
5		7
R	eferences	8

Lecture 1: Introduction

Definition 1.1. The probability space we'll work in is denoted with the triple (G, \mathbb{P}, F) , where G is a class of graphs, \mathbb{P} a probability measure and F a sigma algebra.

Normally, G is a finite set, \mathbb{P} is a discrete probability measure and $F = 2^G$

Definition 1.2 (Erdős-Rényi Random Graph Model).

- The $\mathcal{G}(n,p)$ model: A graph with vertex set [n] is constructed randomly by including each edge in $k_{[n]}$ with probability p
- The $\mathfrak{G}(n,m)$ model: A graph is chosen uniformly at random from all graphs with vertex set [n] and has m edges.

(Aside: We can think of $\mathfrak{G}(n,m)$ as labelling the edges)

Other models:

- $\mathfrak{G}(n,d)$ is the model of random d-regular graphs
- $\mathfrak{G}(n,\tilde{d})$ where $\tilde{d}=(d_1,\ldots,d_n)$ is a vector representing the degrees of vertices. (This is a generalization of G(n,d))
- $\mathfrak{G}(n,r)$ is the model of random geometric graphs. The construction is as follows: Pick n points uniformly in the unit square, then, add an edge if and only if the distance between two points is $\leq r$
- Random trees. A tree is chosen uniformly at random from the n^{n-2} trees on n vertices. In this class, we will primarily focus on the Erdős-Rényi Model.

1.1 Probability Primer

Definition 1.3. A discrete probability space consists of a countable set Ω and a probability function $\mathbb{P}: \Omega \to [0,1]$ such that $\sum_{\omega \in \Omega} \mathbb{P}(\omega) = 1$

A subset of Ω is called an <u>event</u>. The probability of $A \subseteq \Omega$ is $\sum_{\omega \in A} \mathbb{P}(\omega)$, denoted $\mathbb{P}(A)$.

Proposition 1.1 (Inclusion-Exclusion). For events A, B:

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

and, in general:

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \mathbb{P}(A_{i}) - \sum_{i_{1} < i_{2}} \mathbb{P}(A_{i_{1}} \cap A_{i_{2}}) + \sum_{i_{1} < i_{2} < i_{3}} \mathbb{P}(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}) + \ldots + (-1)^{n-1} \mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}\right)$$

Corollary 1.1. $\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) \leq \sum_{i=1}^{n} \mathbb{P}(A_i)$

Definition 1.4. Two events are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B)$

Definition 1.5. A <u>random variable</u> (r.v) X is a function $X : \Omega \to \mathbb{R}$. In a discrete probability space, the <u>expectation</u> of X is defined by: $\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\omega)$

Proposition 1.2 (Linearity of Expectation). $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$

Proof.
$$\mathbb{E}(X+Y) = \sum_{\omega \in \Omega} (X+Y)(\omega) \, \mathbb{P}(\omega) = \sum_{\omega \in \Omega} X(\omega) \, \mathbb{P}(\omega) + \sum_{\omega \in \Omega} Y(\omega) \, \mathbb{P}(\omega) = \mathbb{E}(X) + \mathbb{E}(Y)$$

Lemma 1.1.

• For any $n \ge k \ge 1$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \frac{n^k}{k!} \le \left(\frac{en}{k}\right)^k$$

• (Stirling's Formula)

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n} + \mathcal{O}(n^{-2})\right)$$

• For every $t \in \mathbb{R}$, $e^t \ge 1 + t$

Lemma 1.2. Assume $k = o(\sqrt{n})$ Then, $\binom{n}{k} \sim \frac{n^k}{k!}$

Proof.

$$\binom{n}{k} = \frac{1}{k!} \prod_{i=0}^{k-1} (n-i)$$

$$= \frac{n^k}{k!} \prod_{i=0}^{k-1} \left(1 - \frac{i}{n}\right)$$

$$= \frac{n^k}{k!} \prod_{i=0}^{k-1} e^{\mathcal{O}(i/n)} \qquad (\log(1-x) = \mathcal{O}(x))$$

$$= \frac{n^k}{k!} \exp\left(\mathcal{O}\left(\frac{1}{n}\sum_{i=0}^{k-1}i\right)\right)$$

$$= \frac{n^k}{k!} \exp\left(\mathcal{O}\left(\frac{k^2}{n}\right)\right)$$

$$= (1+o(1)) \frac{n^k}{k!} \qquad (\text{as } k = o(\sqrt{n}))$$

Remark 1.1. $k = o\left(n^{\frac{2}{3}}\right)$, then $\binom{n}{k} \sim e^{-\frac{k^2}{n}} \cdot \frac{n^k}{k!}$

Lecture 2: Concentration Inequalities, Coupling, Connection Theorem

Definition 2.1. Given a sequence of probability spaces $(\Omega_n, P_n)_{n\geq 1}$. We say that A_n holds asymptotically almost surely (a.a.s) if $P_n(A_n) \to 1$ as $n \to \infty$

Theorem 2.1 (Markov's Inequality). Let X be a nonnegative random variable. Then, for any real t > 0, $\Pr(X \ge t) \le \frac{\mathbb{E}X}{t}$

Proof. Let I_t be the indicator r.v. that $X \geq t$. Then, $X \geq t \cdot I_t$, so:

$$\mathbb{E} x \ge t \cdot \mathbb{E} I_t = t \cdot \mathbb{P}(X \ge t)$$

Theorem 2.2 (Chebyshev's Inequality). For any $t \geq 0$

$$\mathbb{P}(|X - \mathbb{E} X| \ge t) \le \frac{\operatorname{Var} X}{t^2}$$

Lecture 3: Threshold, First Order Logic of Graphs

Lecture 4: 0-1 Law, Evolution of Graphs and Theorem $\stackrel{\cdot}{\rm E}$

Lecture 5:

References

 $[1]\,$ Bollobás Béla. $Random\ graphs.$ Academic Press, 1985.