Dans ce cours, on veut montrer le théorème de Kleene : un langage est régulier si et seulement s'il est reconnaissable.

I Régulier \implies reconnaissable

I.1 Langage linéaire

Définition: Expression régulière linéaire

Définition : Linéarisation

Soit e une expression régulière sur un alphabet Σ .

Soit k le nombre de lettres (avec multiplicité) apparaissant dans e.

Soit Σ' un alphabet de taille k.

Linéariser e consiste à remplacer chaque occurrence de lettre apparaissant dans e par une lettre différente de Σ' .

Exemple : soit $e = \varepsilon |b(a|bb)^*b$. En prenant $\Sigma' = \{c_0, c_1, c_2, c_3, c_4\}$, on peut linéariser e en $e' = \varepsilon |c_0(c_1|c_2c_3)^*c_4$.

I.2 Langage local

Définition : Linéarisation

Soit L un langage. On définit :

- $P(L) = \{a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset\}$ (premières lettres des mots de L)
- $S(L) = \{a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset\}$ (dernières lettres des mots de L)
- $F(L) = \{u \in \Sigma^2 \mid \Sigma^* u \Sigma^* \cap L \neq \emptyset\}$ (facteurs de longueur 2 des mots de L)

Exercice 1.

Donner P(L), S(L), F(L) pour $L = a^*b(ab)^*c$.

Définition: Langage local

Un langage L est local si, pour tout mot $u = u_1 u_2 ... u_n \neq \varepsilon$:

$$u \in L \iff u_1 \in P(L) \land u_n \in S(L) \land \forall k, u_k u_{k+1} \in F(L)$$

Définition équivalente :

Définition : Langage local

Un langage L est local si:

$$L \setminus \{\varepsilon\} = P(L)\Sigma^* \cap \Sigma^* S(L) \setminus \Sigma^* N(L)\Sigma^*$$

où $N(L) = \Sigma^2 \backslash F(L)$.

Théorème

Soit L un langage. Si L est local alors L est reconnaissable.

<u>Preuve</u>:

	s suivants sont lo			
1. $L_1 = a^*$			$ 3. L_3 = a^* (ab)^*$	
2. $L_2 = (ab)^*$			3. $L_3 = a^* (ab)^*$ 4. $L_4 = a^* (ab)^*$	
TD1- 4 \				
			sjoints Σ_1 et Σ_2 . Alors :	
	local sur $\Sigma_1 \cup \Sigma_2$ cal sur $\Sigma_1 \cup \Sigma_2$	2		
	sui ∠ ₁			
<u>ive</u> :				
ention : Comme	vu précédemment	t, $L_1 = a^*$ et $L_2 = (ab)^2$	* sont locaux mais pas $L_3 = L_1 \cup L_2$.	
en déduit :				
Théorème _				
Tout langage line	aire est local.			
<u>uve</u> :				
<u>uve</u> :				
<u>uve</u> :				
uve:				
uve:				
ave:				
auve: Automate	local			
Automate Définition: 1	Langage local	(g_0,F,E) est local si tout	tes les transitions étiquetées par une même lettre aboutis	sent

$\underline{\mathrm{ve}}$:	

Construire un automate local reconnaissant $e = a(a|b)^*$.

Algorithme de Berry-Sethi

Algorithme de Berry-Sethi

Entrée : Une expression régulière e.

Sortie : Un automate reconnaissant e, appelé automate de Glushkov.

Linéariser e en e', en remplaçant chaque lettre a de e par une nouvelle lettre $\varphi(a)$.

Calculer P(L(e')), S(L(e')), F(L(e')).

Construire un automate local A reconnaissant L(e').

Renvoyer A dans lequel on a remplacé chaque étiquette a par $\varphi^{-1}(a)$.

Exercice 4.

Appliquer l'algorithme de Berry-Sethi à l'expression régulière $e = a(a|b)^*$.

ε -transitions I.5

On peut généraliser la notion d'automate en autorisant des ε -transitions (transition étiquetée par ε).

Remarque : un automate avec ε -transitions n'est pas déterministe.

•	•	
 ne	ore	me

Tout automate avec ε -transitions est équivalent à un automate sans ε -transition.

;
_

Exercice 5.

Donner un automate sans ε -transition équivalent à l'automate suivant :

Autre méthode : automate de Thompson

L'automate de Thompson est une autre façon de construire un automate à partir d'une expression régulière (et donc de prouver régulier \implies reconnaissable).

On peut aussi construire récursivement un automate T(e) à partir d'une expression régulière e:

• Cas de base :

- $T(e_1e_2)$:
- $T(e_1|e_2)$:

• $T(e^*)$:

Exercice 6.

Construire l'automate de Thompson reconnaissant l'expression régulière $e = a(ab|b)^*$.

II Reconnaissable \implies régulier

II.1 Méthode d'élimination des états

Théorème

Soit A un automate.

Il existe un automate A' équivalent à A avec :

- Un unique état initial sans transition entrante.
- Un unique état final sans transition sortante.

<u>Preuve</u>:

Dans l'algorithme suivant, on autorise n'importe quelle expression régulière et on utilise la transformation suivante qui ne change pas le langage reconnu par l'automate :

Figure 1: Élimination de l'état q

Algorithme d'élimination des états

Entrée : Un automate A.

Sortie: Une expression régulière e telle que L(e) = L(A).

Construire A' équivalent à A avec un unique état initial q_i et un unique état final q_f .

Tant que A' a au moins 3 états :

Choisir un état q différent de q_i et q_f .

Éliminer q comme sur la figure 1.

Renvoyer l'étiquette de la transition entre q_i et q_f .

Exercice 7.

Donner une expression régulière de même langage que l'automate suivant, par la méthode d'élimination des états.

III Théorème de Kleene et conséquences

Théorème : Théorème de Kleene

Un langage est régulier si et seulement s'il est reconnaissable.

Conséquences :

- On pourra choisir de raisonner avec des automates ou des expressions régulières, selon ce qui est le plus simple.
- Les langages réguliers sont stables par union, concaténation, étoile, intersection, complémentaire, différence.
- En pratique, il est utile de passer d'une expression régulière (qu'on peut rentrer facilement en ligne de commande) à un automate plus efficace algorithmiquement. La réciproque est moins utile, mais reste un résultat théorique important.