R AND RCPP

David Zarruk Valencia

October 11, 2017

WHY USE R?

1. Open Source:

- No license free
- Packages for every single task
- Tons of documentation

"Am I a developer or just a good googler?"

WHY DOES OPEN SOURCE WORK?

Signaling device:

http://dirk.eddelbuettel.com/code/

- See my blog for some updates on what I've been up to.
- Sometimes I tweet using the @eddelbuettel tag.
- · And I also update my Google+ page.

3,137 5 ~18.0m answers questions people reached ♥ Chicago, II., United States ♥ eddelbuettel ○ eddelbuettel.com • Member for 7 years, 11 months

31,116 profile views

C Last seen 30 mins ago

View network profile →

View all tags →

WHY USE R?

- 2. Leading tool for statistics and data processing
 - Coordination game
 - ► Estimation: regression, RD, non-parametric, semi-parametric, etc.
 - ► Time series: forecasting, filters, ARIMA, etc.
 - Optimization: global, local, etc.
 - Graphing packages: ggplot2, dplyr
 - Ongoing research:

Robust Nonparametric Confidence Intervals for Regression-Discontinuity Designs

Sebastian Calonico, Matias D. Cattaneo, Rocio Titiunik

First published: November 2014 Full publication history

Inference on Counterfactual Distributions

Victor Chernozhukov, Iván Fernández-Val, Blaise Melly

First published: 13 November 2013 Full publication history

3. Additional tools: Machine learning, Data scraping, GIS tools

R AND RCPP

- ▶ Only problem of R...
- ► Very slow at some tasks
- ► Eg: nested loops
- ► Solution:

$$R + C++ = Rcpp$$
Open Source Speed

LIFE-CYCLE MODEL

► Households solve:

$$egin{aligned} V(t,e,x) &= \max_{\{c,x'\}} & rac{c^{1-\sigma}}{1-\sigma} + eta \mathbb{E} V(t+1,e',x') \quad s.t. \ & c+x' \leq (1+r)x + ew \ & \mathbb{P}(e'|e) = \Gamma(e) \ & x' \geq 0 \ & t \in \{1,\dots,T\} \end{aligned}$$

COMPUTING THE MODEL

- 1. Choose grids for assets $X = \{x_1, \dots, x_{n_X}\}$ and shocks $E = \{e_1, \dots, e_{n_e}\}$.
- 2. Backwards induction:
 - 2.1 For t = T and every $x_i \in X$ and $e_i \in E$, solve the static problem:

$$V(t, e_j, x_i) = \max_{\{c\}} u(c)$$
 s.t. $c \leq (1+r)x_i + e_j w$

2.2 For t = T - 1, ..., 1, use $V(t + 1, e_j, x_i)$ to solve:

$$V(t, e_j, x_i) = \max_{\{c, x' \in X\}} u(c) + \beta \mathbb{E} V(t+1, e', x') \quad s.t.$$

$$c + x' \le (1+r)x_i + e_j w$$

$$\mathbb{P}(e' \in E|e_j) = \Gamma(e_j)$$

CODE STRUCTURE

```
for(age = T:-1:1)
 for(ix = 1:nx)
   for(ie = 1:ne)
     VV = -10^3:
     for(ixp = 1:nx)
       expected = 0.0;
       if(age < T)
        for(iep = 1:ne)
           expected = expected + P[ie, iep]*V[age+1, ixp, iep];
         end
       end
       cons = (1 + r)*xgrid[ix] + egrid[ie]*w - xgrid[ixp];
       utility = (cons^(1-ssigma))/(1-ssigma) + bbeta*expected;
       if(cons \le 0)
        utility = -10^5;
       end
       if(utility >= VV)
        VV = utility;
       end
     end
     V[age, ix, ie] = VV;
   end
 end
end
```