Central Limit Theorem: Binomial and Proportion Sampling

Chad Worley

4/23/2020

Bernoulli Review

Let's use X to refer to a Bernoulli random variable. It has only two possible outcomes: 0 or 1. We often call 0 a "fail" and a 1 a "success". We allow for the probability of success to be any number between 0 and 1, and we use a lowercase p to represent that probability.

Outcome	Probability
0	1-p
1	p

$$P(X = 0) = 1 - p$$
$$P(X = 1) = p$$

As an example, some basketball player may have an 80% chance of making a free throw. We could describe each free throw attempt as a Bernoulli random variable where p = 0.8.

Outcome	Probability
0	0.2
1	0.8

$$P(X=0) = 0.2$$

$$P(X=1) = 0.8$$

Binomial Review

When we sum n instances of a Bernoulli random variable, the result is an integer between 0 and n (inclusive, inclusive). We learned how to determine the probability that the sum equalled some value.

$$P\left(\sum X = a\right) = {}_{n}\mathbf{C}_{a} \cdot p^{a} \cdot (1-p)^{n-a}$$

So, for example, if the basketball player with p=0.8 took 5 freethrows, we could calculate the following probabilities.

Outcome	Probability
0	0.00032

Outcome	Probability
1	0.0064
2	0.0512
3	0.2048
4	0.4096
5	0.32768