R.Brualdi《组合数学》(第五版) 习题选解

Alfred Sines*

2020年9月4日

目录

*	Department of Combinatorics, Cloud Society	
10	组合设计	12
9	相异代表系	12
8	特殊计数序列	12
7	递推关系和生成函数	12
6	容斥原理及应用	10
5	二项式系数	5
4	生成排列和组合	4
3	鸽巢原理	3
2	排列与组合	2
1	什么是组合数学	1

11 图论导引	12
12 再论图论	12
13 有向图与网络	12
14 Pólya 计数	12

1 什么是组合数学

11. 用Loubère法构造7阶幻方.

	30	39	48	1	10	19	28
	38	47	7	9	18	27	29
	46	6	8	17	26	35	37
解:	5	14	16	25	34	36	45
	13	15	24	33	42	44	4
	21	23	32	41	43	3	12
	22	31	40	49	2	11	20

12. 用Loubère法构造9阶幻方.

	47	58	69	80	1	12	23	34	45
	57	68	79	9	11	22	33	44	46
	67	78	8	10	21	32	43	54	56
	77	7	18	20	31	42	53	55	66
解:	6	17	19	30	41	52	63	65	76
	16	27	29	40	51	62	64	75	5
	26	28	39	50	61	72	74	4	15
	36	38	49	60	71	73	3	14	25
	37	48	59	70	81	2	13	24	35

18. 证明不存在2阶幻方体.

证明: 假设存在2阶幻方体, 其幻和为9, 1相邻的三个位置均应为8, 矛盾.

19. 证明不存在4阶幻方体.

证明: 假设存在4阶幻方体, 其幻和为130. 考虑任一4*4 的平面截面(含过面对角线的截面), 其两条对角线之和及第二行、第三行之和为520, 减去第一、第四两列之和260, 得中间四个数之和的两倍为260, 中间四个数之和为130. 考虑中心2*2*2 的子立方体, 其每个2*2 平面截面(含过面对角线的截面)和为130, 从而其中每相邻两个数和都相等, 为65; 任一个数相邻的三个数相等, 矛盾.

24. 求构造n阶拉丁方的一般方法.

	1	2	3	• • •	n-1	n
	n	1	2	• •	n-2	n-1
解:	n-1	n	1	• • •	n-3	n-2
川十・	• • •	• • •	• • •	• • •	• • •	• • •
	3	4	5	• • •	1	2
	2	3	4		n	1

37. n 阶拉丁方是幂等的, 如果对角线位置 $(1,1)(2,2)\cdots(n,n)$ 依次为 $1,2,3,\cdots,n$; 它是对称的, 如果位置(i,j)(j,i)的整数总相等 $(1 \le i,j \le n,i \ne j)$. (1)构造一个3阶对称幂等拉丁方. (2) 证明偶数阶对称幂等拉丁方不存在.

解:(1) | 1 | 3 | 2 | | 3 | 2 | 1 | (2) 考虑1出现的次数, 其在对角线上出现1次, 对角线之外出 | 2 | 1 | 3 |

现偶数次, 总共出现奇数次, 矛盾.

2 排列与组合

40. 设 $S = \{1, 2, 3, \dots, n\}$, 现取出其一个k元子集A, 要求A中任两个元素之差至少为l+1, 这样的子集有多少个?

解: 记A中元素从小到大依次为 a_1, a_2, \dots, a_k ,令 $b_1 = a_1, b_2 = a_2 - a_1, b_3 = a_3 - a_2, \dots, b_k = a_k - a_{k-1}, b_{k+1} = n - a_k$,则 $b_1 + b_2 + \dots + b_k + b_{k+1} = n$,其中 $b_1 \geq 1, b_i \geq l + 1(2 \leq i \leq k), b_{k+1} \geq 0$. 用变量替换法可知,解的数目为 $\binom{n-lk+l}{k}$.

49. 证明最多m个A和最多n 个B的排列数为 $\binom{m+n+2}{m+1} - 1$.

证明: $k \land A n l \land B$ 的排列数为 $\binom{k+l}{k}$, 对 $l \lor M 0$ 到n求和, 得 $k \land A n$ 最多 $n \land B$ 的排列数为 $\binom{k+n+1}{n}$. 对 $k \lor M 0$ 到m求和, 得 $\binom{m+n+2}{n+1} - 1$ (包含了空排列).

3 鸽巢原理

9. 集合S中有10个正整数,它们均不超过60. 证明存在S的两个不交非空子集,它们的元素之和相同.

证明: S有1023个非空子集, 它们的元素和在1到600之间, 由鸽巢原理, 必有两个子集A, B 的元素和相同. 则 $A \setminus B$, $B \setminus A$ 即为所求.

推广: 设集合S中有k个正整数, 它们均不超过n; 且不存在S 的两个不交非空子集, 它们的元素之和相同. 求k = f(n)之最大值.

评注: $6 \le f(60) \le 8$. 事实上, $S = \{1, 2, 4, 8, 16, 32\}$ 符合要求. 若 $|S| \ge 10$, 由本题证法得不符合要求. 若|S| = 9, 考虑其所有不超过四元的非空子集, 共255个, 而其元素和均不超过240.

13. 对 K_6 的边做红蓝二着色, 证明: 必存在至少两个同色 K_3 .

证明: 设 K_6 的6个顶点为a,b,c,d,e,f.

- (1) 若a引出的5条边有4条同色,不妨ab, ac, ad, ae全为红色,则b, c, d, e之间的边若有两条为红色,即得两个红色 K_3 ;若全为蓝色,bcde为蓝色 K_4 ,包含两个蓝色 K_3 ;若恰有一边红色,不妨为bc,则abc为红色 K_3 ,cde为蓝色 K_3 .
- (2) 若a引出的5条边至多有3条同色,不妨ab, ac, ad为红色, ae, af为蓝色. 此时abcd中至少有一个同色 K_3 , 若ef为蓝色,则已得两个同色 K_3 . 下设ef为红色.
- (2a) 若bcd中至少两条红边,已得两个红色 K_3 ;
- (2b) 若bcd中恰有一条红边,设bc为红色,bd,cd为蓝色,则已有abc为红色 K_3 . 若de为蓝色,则可设df为蓝色(否则def为红色 K_3),又可设bf为红色(否则bdf为蓝色 K_3),则不论cf为什么颜色,都得到另一个同色 K_3 (红色bcf或蓝色cdf).若de为蓝色,则可设de为红色(否则de为蓝色de为蓝色,则可设de为红色(否则de为蓝色de为 五色。到另一个同色de3(红色de0)。
- (2c) 若bcd中没有红边,即bc,bd,cd全为蓝色,则已有bcd为蓝色 K_3 .若de为红色,则可设df为蓝色(否则def为红色 K_3),又可设df为红色(否则def为红色df为红色(否则def为红色df为红色(否则def为红色df)。

论cf为什么颜色,都得到另一个同色 K_3 (红色cef或蓝色cdf).若de为蓝色,则可设be为红色(否则bde为蓝色 K_3),又可设bf为蓝色(否则bef为红色 K_3),又可设def为红色(否则def为蓝色def为蓝色def为红色(否则def为蓝色def)。如不论def为红色(否则def为蓝色def)。

20. 证明: $r(3,3,3) \le 17$.

证明: 考虑 K_{17} 边的红黄蓝三染色, 任取一个顶点a, 考虑其引出的16条边, 其中必有6条边同色, 不妨设有6条红边. 考虑这些边连接的6个顶点, 若其中有红边,则其两端点和a构成红色 K_3 ; 若不然, 它们构成的 K_6 中只有黄边和蓝边, 其中必有黄色或蓝色 $K_3(r(3,3)=6)$.

23. 证明: $r(3,4) \le 10$.

证明: 考虑 K_{10} 边的红蓝二染色, 往证或者有红色 K_3 , 或者有蓝色 K_4 . 假设不存在红色 K_3 , 任取一个顶点a, 考虑其引出的9条边. 若有4条红边, 则这些边连接的4个顶点构成蓝色 K_4 . 若不然, 至少有6条蓝边, 其连接的6 个顶点中必有蓝色 $K_3(r(3,3)=6)$, 又由假设没有红色 K_3), 加上a 即得蓝色 K_4 .

4 生成排列和组合

5. 设 $i_1i_2\cdots i_n$ 是 $\{1,2,\cdots,n\}$ 的排列,且它的逆序数为k. 证明不能通过少于k次连续交换相邻两项将其变为 $12\cdots n$.

证明: 将一个 $\{1,2,\cdots,n\}$ 的排列的相邻两项ij 变为ji时,若i < j,逆序列中只有i对应的项 b_i 增加1; 若i > j,逆序列中只有j对应的项 b_j 减少1. 故每次交换相邻两项恰使排列的逆序数改变1,从而 $i_1i_2\cdots i_n$ 至少要k次交换相邻两项才能变为 $12\cdots n$.

37. 令 R_1 , R_2 为X上的两个偏序关系, 定义 R_1 与 R_2 的交R, xRy当且仅当 xR_1y , xR_2y 同时成立. 证明: R也是X上的偏序关系.

证明: 自反性: $\forall x \in X$, 由 xR_1x , xR_2x , 得xRx; 反对称性: $\forall x, y \in X$, 若xRy, yRx, 得 xR_1y , yR_1x , 知x = y; 传递性: $\forall x, y, z \in X$, 若xRy, yRz, 则 xR_1y , yR_1z 推出 xR_1z , xR_2y , yR_2z 推出 xR_2z , 故xRz.

38. 设(X_i , \leq_i), $1 \leq i \leq n$ 是n个偏序集, 在 $X = X_1 \times X_2 \times \cdots \times X_n$ 上定义关系 $T : (x_1, x_2, \cdots, x_n) T(y_1, y_2, \cdots, y_n)$ 当且仅当 $x_i \leq_i y_i$ 对 $\forall 1 \leq i \leq n$ 成立.证明: $(X_1 \times X_2 \times \cdots \times X_n, T)$ 是偏序集, 称为这n个偏序集的直积.

证明:

(1)自反性:
$$\forall (x_1, x_2, \dots, x_n) \in X$$
, 由 $x_i \leq_i x_i, \forall 1 \leq i \leq n$, 得
$$(x_1, x_2, \dots, x_n) T(x_1, x_2, \dots, x_n).$$

(2)反对称性: $\forall (x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \in X$, 若

$$(x_1, x_2, \dots, x_n)T(y_1, y_2, \dots, y_n), (y_1, y_2, \dots, y_n)T(x_1, x_2, \dots, x_n)$$

得

$$x_i \leq_i y_i, y_i \leq_i x_i, \forall 1 \leq i \leq n$$

知 $x_i = y_i, \forall 1 \leq i \leq n;$

(3)传递性: $\forall (x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n), (z_1, z_2, \dots, z_n) \in X$, 若

$$(x_1, x_2, \dots, x_n)T(y_1, y_2, \dots, y_n), (y_1, y_2, \dots, y_n)T(z_1, z_2, \dots, z_n)$$

则 $x_i \leq_i y_i, y_i \leq_i z_i$ 推出 $x_i \leq_i z_i, \forall 1 \leq i \leq n$. 故 $(x_1, x_2, \dots, x_n)T(z_1, z_2, \dots, z_n)$.

49. 令R, S为X上的两个等价关系. 证明: $T = R \cap S$ 也是X上的等价关系.

证明: 自反性: $\forall x \in X$, 由xRx, xSx, 得xTx; 对称性: $\forall x, y \in X$, 若xTy, 得xRy, xSy, 知yRx, ySx, 故yTx; 传递性: $\forall x, y, z \in X$, 若xTy, yTz, 则xRy, xSy, yRz, ySz推出xRz, xSz, 故xTz.

5 二项式系数

10. 设n, k是正整数, 用组合推理证明

$$k\binom{n}{k} = n\binom{n-1}{k-1}$$

证明: 考虑如下情景: $从n名学生中选k 名组成一个小组, 并从中选出一名组长, 方法数为<math>k\binom{n}{k}$; 为达到同样的结果, 也可以先从n名学生中选出组长, 再从剩下的n-1 名同学中选出k-1名普通组员, 方法数为 $n\binom{n-1}{k-1}$.

12. 设n是正整数,证明

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k}^2 = \begin{cases} 0, & n \not\in \text{ from } \\ (-1)^m \binom{2m}{m}, & n = 2m \end{cases}$$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k}^2 = \sum_{k=0}^{m} ((-1)^k \binom{n}{k}^2 + (-1)^{n-k} \binom{n}{n-k}^2)$$
$$= \sum_{k=0}^{m} (-1)^k \binom{n}{k}^2 - \binom{n}{n-k}^2)$$
$$= 0.$$

$$(1 - x^2)^n = (1 + x)^n (1 - x)^n$$

中 $x^n = x^{2m}$ 的系数. 左边为

$$(-1)^m \binom{2m}{m}$$

右边为

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} \binom{n}{n-k} = \sum_{k=0}^{n} (-1)^k \binom{n}{n-k}^2.$$

16. 设n是正整数, 通过对二项展开式积分证明

$$\sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k} = \frac{2^{n+1}-1}{n+1}.$$

证明: 由二项式定理

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

从0到x积分得

$$\frac{1}{n+1}((1+x)^{n+1}-1) = \sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k} x^{k+1}$$

令x = 1即得待证等式.

17. 设n是正整数,用组合恒等式证明

$$\sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k} = \frac{2^{n+1}-1}{n+1}.$$

证明:由

$$k\binom{n}{k} = n\binom{n-1}{k-1}$$

可得

$$\frac{1}{n+1} \binom{n+1}{k+1} = \frac{1}{k+1} \binom{n}{k}$$

故

$$\sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k} = \frac{1}{n+1} \sum_{k=0}^{n} \binom{n+1}{k+1}$$

$$= \frac{1}{n+1} \sum_{k=1}^{n+1} \binom{n+1}{k}$$

$$= \frac{1}{n+1} (\sum_{k=0}^{n+1} \binom{n+1}{k} - 1)$$

$$= \frac{2^{n+1} - 1}{n+1}.$$

22. 设 $r \in \mathbb{R}, k, m \in \mathbb{Z}$, 证明

$$\binom{r}{m}\binom{m}{k} = \binom{r}{k}\binom{r-k}{m-k}.$$

证明: 当k < 0, $\binom{m}{k} = \binom{r}{k} = 0$; 当k = 0, 上式为 $\binom{r}{m} = \binom{r}{m}$; 下设k > 0. 当m < k, $\binom{m}{k} = \binom{r-k}{m-k} = 0$; 当m = k, 上式为 $\binom{r}{m} = \binom{r}{k}$; 下设m > k. 此时有

$$\binom{r}{m} \binom{m}{k} = \frac{r(r-1)\cdots(r-m+1)}{m!} \frac{m!}{k!(m-k)!}$$

$$= \frac{r(r-1)\cdots(r-m+1)}{k!(m-k)!}$$

$$= \frac{r(r-1)\cdots(r-k+1)}{k!} \frac{(r-k)(r-k-1)\cdots(r-m+1)}{(m-k)!}$$

$$= \binom{r}{k} \binom{r-k}{m-k}.$$

27. 设n, k是正整数, 用组合推理证明

$$n(n+1)2^{n-2} = \sum_{k=1}^{n} k^2 \binom{n}{k}$$

证明: 考虑如下情景: 从n名学生中选出一个小组, 并从中选出一名组长和一名支部书记(可由一人兼任). 对小组人数分类, 当小组有k 人时, 方法数为 $k^2\binom{n}{k}$, 得右边的结果; 为达到同样的结果, 也可以分组长和支部书记是否为同一人讨论: 若为同一人, 先从n名学生中选出组长, 再确定剩下的n-1名同学是否加入小组, 方法数为 $n2^{n-1}$; 若不为同一人, 先从n名学生中选出组长和支部书记, 再确定剩下的n-2名同学是否加入小组, 方法数为 $n(n-1)2^{n-2}$, 二者之和为 $n(n+1)2^{n-2}$, 得右边的结果.

28. 设n, k是正整数, 用组合推理证明

$$\sum_{k=1}^{n} k \binom{n}{k}^2 = n \binom{2n-1}{n-1}$$

证明: 考虑如下情景: 有2n名爱好舞蹈的学生, 男女各n 人, 从中选出n人成立舞蹈队, 并从女生中选出一名队长. 按队中女生人数分类($1 \le k \le n$), 当女生有k人时, 方法数为 $k\binom{n}{k}\binom{n}{n-k}$, 得左边的结果; 为达到同样的结果, 也可以先选出队长, 再从剩下的2n-1名同学中选出n-1人进队, 方法数为 $n\binom{2n-1}{n-1}$, 得左边的结果.

30. 设 $S = \{1, 2, 3, 4\}$, 其幂集在包含关系下成一偏序集. 证明其大小为6的唯一反链是所有2子集的集合.

证明: 考虑S的对称链划分

$$\varnothing \subset \{1\} \subset \{1,2\} \subset \{1,2,3\} \subset \{1,2,3,4\}$$
 $\{4\} \subset \{1,4\} \subset \{1,2,4\}$
 $\{2\} \subset \{2,3\} \subset \{2,3,4\}$
 $\{3\} \subset \{1,3\} \subset \{1,3,4\}$
 $\{2,4\}$

知其反链最大大小为6, 且必须从6个链中各取1 个. 现{2,4}{3,4} 已取, 以上第二、三、四个链也只能取2子集, 最后知第一个链中也只能取2子集.

43. 对 $z \in (-1,1)$, 假设

$$\frac{1}{1-z} = \sum_{k=0}^{\infty} z^k,$$

用归纳法证明

$$\frac{1}{(1-z)^n} = \sum_{k=0}^{\infty} \binom{n+k-1}{k} z^k,$$

证明: 设上式对n 成立, 考虑n+1的情形:

$$\frac{1}{(1-z)^{n+1}} = \frac{1}{(1-z)^n} \frac{1}{1-z}$$

$$= \sum_{k=0}^{\infty} \binom{n+k-1}{k} z^k \sum_{l=0}^{\infty} z^l$$

$$= \sum_{m=0}^{\infty} z^m \sum_{k=0}^{m} \binom{n+k-1}{k}$$

$$= \sum_{m=0}^{\infty} z^m \binom{n+m}{m}$$

$$= \sum_{k=0}^{\infty} z^k \binom{n+1+k-1}{k}.$$

48. 设m,n是正整数,证明mn + 1元偏序集S 有一个大小为m + 1的链或大小为n + 1的反链.

证明: 设S最大链长度为k, 若 $k \ge m + 1$ 结论已成立. 若 $k \le m$, S可划分为k个 反链, 根据抽屉原理至少存在一个反链大小不小于n + 1.

49. 证明mn + 1个实数的序列或者有长度为m + 1 的递增子序列, 或者有长度为n + 1的递减子序列.

证明: 在 $\{(i,a_i)|1 \le i \le mn+1\}$ 上定义偏序R, $(j,a_j)R(k,a_k)$ 当且仅当 $j \le k$ 且 $a_j \le a_k$, 则递增子序列与链对应, 递减子序列与反链对应. 由上一题结论即得证.

50. 设 $X = \{1, 2, 3, \dots, 12\}$, 其在整除关系下成一偏序集. (1)确定最大链和

将X划分成最小数目的反链的划分. (2)确定最大反链和将X划分成最小数目的链的划分.

解: (1)考虑X的反链划分

$$\{1\}, \{2, 3, 5, 7, 11\}, \{4, 6, 9, 10\}, \{8, 12\}$$

知最大链长度至多为4; 而{1,2,4,8}是一个长为4的链, 故上述划分为最小数目的反链划分.

(2)考虑X的链划分

$$\{1, 2, 4, 8\}, \{3, 6, 12\}, \{5, 10\}, \{7\}, \{9\}, \{11\}$$

知最大反链长度至多为6; 而{4,5,6,7,9,11}是一个长为6的反链, 故上述划分为最小数目的链划分.

6 容斥原理及应用

16. 用组合推理证明

$$n! = \sum_{i=0}^{n} \binom{n}{i} D_{n-i}$$

证明: 考虑 $\{1,2,3,\cdots,n\}$ 的全部n!个排列, 按相对于自然排列 $123\cdots n$ 不动点个数i分类 $(0 \le i \le n)$, 恰有i个不动点时的排列数为 $\binom{n}{i}D_{n-i}$.

19. 证明

$$D_n = (n-1)(D_{n-2} + D_{n-1})$$

证明:

$$(n-1)(D_{n-2} + D_{n-1})$$

$$= (n-1)((n-2)! \sum_{k=0}^{n-2} (-1)^k \frac{1}{k!} + (n-1)! \sum_{k=0}^{n-1} (-1)^k \frac{1}{k!})$$

$$= (n-1)(n(n-2)! \sum_{k=0}^{n-2} (-1)^k \frac{1}{k!} + (n-1)! (-1)^{n-1} \frac{1}{(n-1)!})$$

$$= n! \sum_{k=0}^{n-2} (-1)^k \frac{1}{k!} + (-1)^{n-1} (n-1)$$

$$= n! \sum_{k=0}^{n} (-1)^k \frac{1}{k!}$$

$$= D_n.$$

21. 证明 D_n 是偶数当且仅当n是奇数.

证明: 我们有

$$D_n = nD_{n-1} + (-1)^n$$

以下对n归纳证明 D_{2n-1} 是偶数且 D_{2n} 是奇数. n=1 时由 $D_1=0, D_2=1$ 成立. 设 D_{2n-1} 是偶数, D_{2n} 是奇数, 则 $D_{2n+1}=(2n+1)D_{2n}-1$ 是偶数, $D_{2n+2}=(2n+2)D_{2n+1}+1$ 是奇数.

- 7 递推关系和生成函数
- 8 特殊计数序列
- 9 相异代表系
- 10 组合设计
- 11 图论导引
- 12 再论图论
- 13 有向图与网络
- 14 Pólya 计数