Data representation

Lecture 2

IFT6758, Fall 2020; Reading: <u>IDS</u> - Chapters 8, 9, 10

A picture is worth a thousand words: can we see the data in pictorial format?

A picture is worth a thousand words: can we see the data in pictorial format?

Effect of informative data representation: e.g., News organizations increasingly embracing data journalism and including effective infographics as part of their reporting.

A picture is worth a thousand words: can we see the data in pictorial format?

Effect of informative data representation: e.g., News organizations increasingly embracing data journalism and including effective infographics as part of their reporting.

Data visualization is the strongest tool of what we call exploratory data analysis (EDA). John W. Tukey, considered the father of EDA, once said,

A picture is worth a thousand words: can we see the data in pictorial format?

Effect of informative data representation: e.g., News organizations increasingly embracing data journalism and including effective infographics as part of their reporting.

Data visualization is the strongest tool of what we call exploratory data analysis (EDA). John W. Tukey, considered the father of EDA, once said,

"The greatest value of a picture is when it forces us to notice what we never expected to see."

PART-1: Visualizing data distributions

Types of variables

Types of variables: Categorical (ordinal or not) and numerical (discrete or continuous)

Types of variables

Types of variables: Categorical (ordinal or not) and numerical (discrete or continuous)

- Example:
 - Categorical: Sex (Male, Female), Regions (North, South, East, West). Ordinal: when there is a sense of order, Spiciness (Mild, Medium, Hot)..
 - ▶ Numerical: Height (continuous), Price (continuous), Population sizes (discrete)...

Types of variables

Types of variables: Categorical (ordinal or not) and numerical (discrete or continuous)

- Example:
 - Categorical: Sex (Male, Female), Regions (North, South, East, West). Ordinal: when there is a sense of order, Spiciness (Mild, Medium, Hot)..
 - ► Numerical: Height (continuous), Price (continuous), Population sizes (discrete)...
 - Discrete numeric data can be considered ordinal.
 - Conventionally, ordinal for variables belonging to a small number of different groups, with each group having many members: e.g.: the number of packs of cigarettes a person smokes a day, rounded to the closest pack
 - Discrete numerical for many groups with few cases in each group: the actual number of cigarettes in each pack

With categorical data, the distribution describes the proportion of each unique category

- With categorical data, the distribution describes the proportion of each unique category
- **Two-category frequency table** is sufficient for comprehension:

Example: Female 0.227, Male 0.773

- With categorical data, the distribution describes the proportion of each unique category
- **Two-category frequency table** is sufficient for comprehension:

Example: Female 0.227, Male 0.773

Visualize for more than two categories: example – bar plot for US population

- With categorical data, the distribution describes the proportion of each unique category
- **Two-category frequency table** is sufficient for comprehension:

Example: Female 0.227, Male 0.773

Visualize for more than two categories: example – bar plot for US population

■ Numerical variable: cumulative distribution is an effective summary

- Numerical variable: cumulative distribution is an effective summary
- In statistics, the following notation is used: $F(a) = Pr(x \le a)$

- Numerical variable: cumulative distribution is an effective summary
- In statistics, the following notation is used: $F(a) = Pr(x \le a)$

F(66) = 0.164, F(72) = 0.841

Male height data

- Numerical variable: cumulative distribution is an effective summary
- In statistics, the following notation is used: $F(a) = Pr(x \le a)$
- F(66) = 0.164, F(72) = 0.841
- Does not answer:
 - At what value is the distribution centered?
 - Is the distribution symmetric?
 - What ranges contain 95% of the values?

Histograms

Divide the span of our data into non-overlapping bins of the same size

Histograms

- Divide the span of our data into non-overlapping bins of the same size
- For each bin, we count the number of values that fall in that interval

Histograms

- Divide the span of ou9.5, 50.5, 50.5, 51.5, ..., (82.5, 83.5)
- o non-overlapping bins of the same size
- For each bin, we count the number of values that fall in that interval

From histogram to smooth density

From histogram to smooth density

What is density?

- Proportion of values between 65 and 68
- The proportion of this area is about 0.3, meaning that about 30% of male heights are between 65 and 68 inches.

The transition to smoother density

Smoothness is relative

- Kernel Density Estimator
- Scipy, Scikit-Learn
- Smoothness varies with Bandwidth

Boxplots

Boxplots

Matplotlib, Seaborn

Boxplots

- Matplotlib, Seaborn
- Helps detecting outliers

Many more to go...

■ E.g. Scatterplot

Many more to go...

- **■** E.g. Scatterplot
 - ► Matplotlib, Seaborn

Many more to go...

- **■** E.g. Scatterplot
 - ► Matplotlib, Seaborn