Please check the examination deta	ails below	before ente	ring your candidate i	information
Candidate surname		Other names		
Pearson Edexcel	Centre	e Number	Cand	lidate Number
International				
Advanced Level				
T			2024	
Tuesday 19 Ja	anu	ıary	2021	
Morning (Time: 1 hour 30 minute	es)	Paper R	eference WME	01/01
Mathematics				
Interpetional Advance	٦ د٠.١	aidia.	/	Haval
International Advance	a Suk	osiciar	y/Advanced	Levei
Mechanics M1				
You must have:				Total Marks
Mathematical Formulae and Stat	tictical	Tables (Blu	ie) calculator	IOtal ivialiks
Mathematical Politiciae and State	usucai	iabies (Dit	ie), calculatoi	
(1.1

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$, and give your answer to either 2 significant figures or 3 significant figures.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 8 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

 Turn over

1.	A small stone is projected vertically upwards with speed $20\mathrm{ms^{-1}}$ from a point O which is 5 m above horizontal ground. The stone is modelled as a particle moving freely under gravity.
	Find
	(a) the speed of the stone at the instant when it is 2 m above the ground, (2)
	(b) the total time between the instant when the stone is projected from O and the instant when it first strikes the ground. (4)

Question 1 continued	Leave blank
(Total 6 marks)	Q1

2.	Two particles, P and Q , have masses $2m$ and m respectively. The particles are moving towards each other in opposite directions along the same straight line on a smooth horizontal plane. The particles collide directly.
	Immediately before the collision, the speed of P is $3u$ and the speed of Q is $2u$.
	The magnitude of the impulse exerted on Q by P in the collision is $5mu$.
	Find
	(a) the speed of P immediately after the collision, (3)
	(b) the speed of Q immediately after the collision. (3)

Question 2 continued	blank
Question 2 continuou	
	Q2
(Total 6 marks)	
(10mi v marks)	

3.

Figure 1

A parcel of mass 20 kg is at rest on a rough horizontal floor. The coefficient of friction between the parcel and the floor is 0.3

Two forces, both acting in the same vertical plane, of magnitudes $200\,\mathrm{N}$ and $T\,\mathrm{N}$ are applied to the parcel. The line of action of the $200\,\mathrm{N}$ force makes an angle of 15° with the horizontal and the line of action of the $T\,\mathrm{N}$ force makes an angle of 25° with the horizontal, as shown in Figure 1. The parcel is modelled as a particle P.

Find the smallest value of *T* for which *P* remains in equilibrium.

(9)

uestion 3 continued	1
	Q
	(Total 9 marks)

Figure 2

A metal girder AB has weight W newtons and length 6 m. The girder rests in a horizontal position on two supports C and D where AC = DB = 1 m, as shown in Figure 2.

When a force of magnitude $900 \,\mathrm{N}$ is applied vertically upwards to the girder at A, the girder is about to tilt about D.

When a force of magnitude $1500 \,\mathrm{N}$ is applied vertically upwards to the girder at B, the girder is about to tilt about C.

The girder is modelled as a non-uniform rod whose centre of mass is a distance x metres from A.

Find the value of x .	(0

Question 4 continued		blank
		Q4
	(Total 6 marks)	

5. A particle is acted upon by two forces **F** and **G**. The force **F** has magnitude 8 N and acts in a direction with a bearing of 240°. The force **G** has magnitude 10 N and acts due South.

Given that $\mathbf{R} = \mathbf{F} + \mathbf{G}$, find

- (i) the magnitude of R,
- (ii) the direction of R, giving your answer as a bearing to the nearest degree.

(7)

Question 5 continued	Leave blank
	Q5
(Total 7 marks)	

6. Two girls, Agatha and Brionie, are roller skating inside a large empty building. The girls are modelled as particles.

At time t = 0, Agatha is at the point with position vector $(11\mathbf{i} + 11\mathbf{j})$ m and Brionie is at the point with position vector $(7\mathbf{i} + 16\mathbf{j})$ m. The position vectors are given relative to the door, O, and \mathbf{i} and \mathbf{j} are horizontal perpendicular unit vectors.

Agatha skates with constant velocity $(3\mathbf{i} - \mathbf{j}) \,\mathrm{m}\,\mathrm{s}^{-1}$

Brionie skates with constant velocity (4i - 2j) m s⁻¹

(a) Find the position vector of Agatha at time t seconds.

(2)

At time t = 6 seconds, Agatha passes through the point P.

(b) Show that Brionie also passes through P and find the value of t when this occurs.

(4)

At time t seconds, Agatha is at the point A and Brionie is at the point B.

(c) Show that
$$\overrightarrow{AB} = [(t-4)\mathbf{i} + (5-t)\mathbf{j}] \,\mathrm{m}$$

(2)

(d) Find the distance between the two girls when they are closest together.

(4)

	I
Question 6 continued	
<u> </u>	

Question 6 continued	

Question 6 continued	blank
	Q6
(Total 12 marks)	
(10th 12 marks)	

7. A helicopter is hovering at rest above horizontal ground at the point H. A parachutist steps out of the helicopter and immediately falls vertically and freely under gravity from rest for 2.5 s. His parachute then opens and causes him to immediately decelerate at a constant rate of $3.9 \,\mathrm{m\,s^{-2}}$ for T seconds (T < 6), until his speed is reduced to $V \mathrm{m\,s^{-1}}$. He then moves with this constant speed $V \mathrm{m\,s^{-1}}$ until he hits the ground. While he is decelerating, he falls a distance of $73.75 \,\mathrm{m}$. The total time between the instant when he leaves H and the instant when he hits the ground is $20 \,\mathrm{s}$.

The parachutist is modelled as a particle.

(a) Find the speed of the parachutist at the instant when his parachute opens.

(1)

(b) Sketch a speed-time graph for the motion of the parachutist from the instant when he leaves *H* to the instant when he hits the ground.

(2)

(c) Find the value of T.

(5)

(d) Find, to the nearest metre, the height of the point H above the ground.

(4)

Duestion 7 continued	Le bl.

Question 7 continued		

Question 7 continued	Lea bla	ınk
	Q	7
	(Total 12 marks)	

OO NOT WRITE IN THIS AREA

Figure 3

Two particles, A and B, have masses 2 kg and 4 kg respectively. The particles are connected by a light inextensible string. The string passes over a small smooth pulley which is fixed at the top of a rough plane. The plane is inclined to the horizontal ground at an angle α where $\tan \alpha = \frac{3}{4}$. The particle A is held at rest on the plane at a distance d metres from the pulley. The particle B hangs freely at rest, vertically below the pulley, at a distance d metres above the ground, as shown in Figure 3. The part of the string between A and the pulley is parallel to a line of greatest slope of the plane. The coefficient of friction between A and the plane is $\frac{1}{A}$

The system is released from rest with the string taut and *B* descends.

(a) Find the tension in the string as B descends.

(9)

On hitting the ground, *B* immediately comes to rest.

Given that A comes to rest before reaching the pulley,

(b) find, in terms of h, the range of possible values of d.

(7)

(c) State one physical factor, other than air resistance, that could be taken into account to make the model described above more realistic.

(1)

	Leave
	blank
Question 8 continued	

Question 8 continued		

	I t
uestion 8 continued	

			4			
		á				
	5		3	7	ï	
			É			
					٥	
		2				
		۶				
	q	F	⇃	Б		
₹	S	Ę	9	Ę	1	
?	3	P	3	5		
?	8	2	3	2	4	
?	3	2	3	2		֡
?	3	2		2		
	3	2				
3	3	2				
	3					
		S				
		S				
?	ξ	\geq				
	ξ	S				
	ξ	\geq				
?	ξ	\geq				
?	ξ	\geq				
	ξ	\geq				
	ξ	\geq				
	ξ	\geq				
	ξ	\geq				
	ξ	\geq				
	ξ	\geq				
	ξ	\geq				
	ξ	\geq				
	ξ	\geq				
	ξ	\geq				
	ξ	\geq				
	ξ	\geq				
	ξ	\geq				
	ξ	\geq				
	ξ	\geq				
		\geq				

	Q8
(Total 17 marks) TOTAL FOR PAPER: 75 MARKS	(Total 17 mayls)