INF1130

Mathématiques pour l'informatique

Zied Zaier, PhD

Département d'informatique Université du Québec à Montréal

Cours 2

LES ENSEMBLES

CE DOCUMENT EST INSPIRÉ DES TRAVAUX DES PROFESSEURS KENNETH H. ROSEN ET TIMOTHY WALSH.

Contenu du présent document

- Notions d'ensemble.
- Relations entres les ensembles.
- Diagrammes de Venn.
- Puissance des ensembles.
- Produit cartésien.
- Opérateurs.

Introduction à la théorie des ensembles

- Un ensemble est une structure discrète, représentant une collection non ordonnée de 0 ou plusieurs objets distincts.
- La théorie des ensembles comprend aussi des opérations, des relations, et des énoncés sur des ensembles.
- Les ensembles sont omni présents dans les systèmes logiciels.
- Les énoncés mathématiques peuvent être définis en termes d'ensembles par l'utilisation de la logique des prédicats.

Notations de bases des ensembles

- Les ensembles sont identifiés par des variables S, T, U, ...
- Un ensemble S est décrit par la liste de tous ces éléments entre parenthèses:
 - {a, b, c} est un ensemble de trois objets dénoté par a, b, c.
- Notation de construction d'ensembles:
 Pour une proposition P(x) sur un ud donné {x|P(x)} est l'ensemble de tous les x tel que P(x).
 {x | P(x) : 9 < x < 16}

Notations de bases des ensembles

- Les ensembles sont non ordonnés:
 - Pour n'importent quels objets a, b, et c,{a, b, c} = {a, c, b} = {b, a, c} ={b, c, a} = {c, a, b} = {c, b, a}.
- Tous les éléments sont distincts;
 l'ordre des éléments n'a pas d'importance.
 - Si a=b, Alors $\{a, b, c\} = \{a, c\} = \{b, c\} = \{a, a, b, a, b, c, c, c, c\}.$
 - Cet ensemble contient au plus 2 éléments.

Définition: Egalité des ensembles

- Deux ensembles sont égaux SSI ils contiennent les mêmes éléments.
- La manière avec laquelle est définie n'a pas d'importance.
- Par exemple: L'ensemble {1, 2, 3, 4} = {x | x est un entier avec x>0 et x<5 } = {x | x est un entier positif dont le carré est >0 et <25}

Ensembles infinis

- Les ensembles peuvent être infinis (i.e., non fini, sans fin).
- Symboles associés à certains ensembles infinis:

```
N = {0, 1, 2, ...} Nombres Naturels.

Z = {..., -2, -1, 0, 1, 2, ...} Nombres Entiers.

R = Nombres Réels,

374.1828471929498181917281943125...
```

• Autres symboliques $(\mathbb{N}, \mathbb{Z}, \mathbb{R})$.

Relations: Membre de

- x∈ S ("x est dans S") est la proposition stipulant que l'objet x est un ∈ lément ou membre de l'ensemble S.
 - -Ex: $3 \in \mathbb{N}$, "a" $\in \{x \mid x \text{ est une lettre de l'alphabet}\}$
 - Peu définir l'égalité en termes de la relation ∈:
 ∀S, T: S=T ↔ (∀x: x∈ S ↔ x∈ T)
 "2 ensembles sont égaux SSI ils ont les mêmes membres."
- $x \notin S := \neg(x \in S)$ "x n'est pas dans S"

Ensemble vide

- Ø ("null", "l'ensemble vide") un ensemble avec aucun élément.
- $\emptyset = \{\} = \{x | FAUX\}$
- Pour n'importe quel ud, nous avons l'axiome ¬∃x: x∈∅.

Relations sur les sous-ensembles et les sur-ensembles

- S⊆T ("S est un sous-ensemble de T") chaque élément de S est aussi un élément de T.
- $S\subseteq T \Leftrightarrow \forall x (x\in S \to x\in T)$
- Ø⊆S, S⊆S.
- $S \supseteq T$ ("S est un sur-ensemble de T") alors $T \subseteq S$.
- Note $S=T \Leftrightarrow S\subseteq T \land S\supseteq T$.
- $S \subseteq T$ signifie $\neg(S \subseteq T)$, i.e. $\exists x (x \in S \land x \notin T)$

Sous-ensemble strict et surensemble propre

• $S \subset T$ ("S est un sous-ensemble strict de T") signifie que $S \subseteq T$ mais $T \nsubseteq S$. De façon similaire $S \supset T$ (sur-ensemble stricte).

Diagramme de Venn équivalent à $S \subset T$

Les ensembles sont aussi des objets

- Les objets éléments d'un ensemble peuvent eux-mêmes être des ensembles.
- Posons $S=\{x \mid x \subseteq \{1,2,3\}\}$ Alors $S=\{\emptyset,$ $\{1\}, \{2\}, \{3\},$ $\{1,2\}, \{1,3\}, \{2,3\},$ $\{1,2,3\}\}$
- Sachez que 1 ≠ {1} ≠ {{1}}}

Cardinalité et finitude

- |S| (cardinalité de S) est le nombre d'éléments de l'ensemble S.
- $Ex: |\varnothing|=0, |\{1,2,3\}|=3, |\{a,b\}|=2, |\{1,2,3\},\{4,5\},\{6\},\{7,8\}\}|=4$
- Si |S|∈ N, alors S est fini.
 Autrement, S est infini.
- Quels ensembles infinis avons nous vus?

Opération puissance

- La puissance de l'ensemble S, P(S)
 est l'ensemble des sous-ensembles de
 S. P(S) :≡ {x | x⊆S}.
- $Ex: P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}.$
- P(S) est aussi écrite 2^S . Pour S fini, $|P(S)| = 2^{|S|}$.
- Alors $\forall S: |P(S)| > |S|$, e.g. |P(N)| > |N|.

Revue: Notations sur les ensembles

- Objets x, y, z; ensembles S, T, U.
- Ensemble $\{a, b, c\}$ et constructeur $\{x | P(x)\}$.
- \in membre de, \varnothing ensemble vide.
- Relations =, ⊆, ⊇, ⊂, ⊃, ⊄,
- Diagrammes de Venn.
- Cardinalité |S| et ensembles infinis N, Z, R.
- Puissance d'un ensemble P(S).

n-tuplets ordonnés

- Sont des ensembles, sauf que l'ordonnancement des éléments est importants.
- Pour n∈ N, un n-tuplet ordonné ou une séquence ou une liste de longeur n est écrite (a₁, a₂, ..., a_n). Le premier élément est a₁, etc.
- Notez que $(1, 2) \neq (2, 1) \neq (2, 1, 1)$. les ensembles $\{\}$
- Séquence vide, singlets, paires, triplets, quadruplets, quintuplets, ..., *n*-tuplets.

Produits Cartésien sur les ensembles

- Pour les ensembles A, B, le produit
 Cartésien A×B := {(a, b) | a∈ A ∧ b∈ B }.
- $Ex: \{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$
- Pour A, B fini, $|A \times B| = |A||B|$.
- Le produit Cartésien n'est pas commutatif: i.e., ¬∀AB: A×B=B×A.
- Généralisé à: $A_1 \times A_2 \times ... \times A_n$...

René Descartes (1596-1650)

Revue: Notions d'ensembles

- Objets x, y, z; ensembles S, T, U.
- Ensemble $\{a, b, c\}$ et constructeur $\{x | P(x)\}$.
- $\bullet \in \mathsf{membre} \; \mathsf{de}, \varnothing \; \mathsf{ensemble} \; \mathsf{vide}.$
- Relations =, ⊆, ⊇, ⊂, ⊃, ⊄,
- Diagrammes de Venn.
- Cardinalité |S|.
- Ensembles infinis N, Z, R.
- Puissance d'un ensemble P(S).

Revue: Notions d'ensembles

- Ensembles Finis vs. infinis.
- Opérations sur les ensembles |S|, P(S), S×T.
- Autres opérations: ∪, ∩, –. (section 5 suivante)

Opérateur d'Union

- Pour les ensembles A, B, leur ∠nion A∪B est l'ensemble de tous les éléments qui sont soient dans A, ou ("∨") dans B (ou dans les deux ensembles).
- Formellement , ∀A,B: A∪B = {x | x∈ A ∨ x∈ B}.
- A∪B est un sur-ensemble de A et B (en fait, le plus petit sur-ensemble):

 $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$

Exemples d'Union

• $\{a,b,c\}\cup\{2,3\} = \{a,b,c,2,3\}$

• $\{2,3,5\}\cup\{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\}$

Exemple d'Union:
"Les <u>Uni</u>ted States
of America sont
habités par des
personnes travaillant
dans <u>un ou</u>
plusieurs états."

L'Opérateur d'intersection

- Pour A, B, leur intersection A∩B est l'ensemble contenant les éléments étant simultanément dans A et ("∧") B.
- Formellement, $\forall A,B: A \cap B = \{x \mid x \in A \land x \in B\}$.
- Notez que A∩B est un sur-ensemble de A et B (le plus large):

 $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$

Exemples d'Intersection

- $\{a,b,c\} \cap \{2,3\} =$
- $\{2,4,6\} \cap \{3,4,5\} = \{4\}$

"L'<u>intersection</u> des boulevards Des Forges et Des Récolets est juste la surface appartenant aux deux boulevards."

Ensembles disjoints

- Deux ensembles A, B sont dits disjointsSSI si leur intersection est vide. ($A \cap B = \emptyset$)
- Exemple: l'ensemble des nombres entiers pairs est disjoint avec l'ensemble des nombres entiers impairs.

Principe d'Inclusion-Exclusion

- Combien d'éléments sont dans $A \cup B$? $|A \cup B| = |A| + |B| - |A \cap B|$
- Exemple: Combien d'étudiants ont des cours le jour ou le soir? C = J ∪ S,
 J = {e | e prend des cours le jour}
 S = {e | e prend des cours le soir}
- Quelques étudiants font les deux ! $|C| = |J \cup S| = |J| + |S| |J \cap S|$

Différence d'ensembles

- Pour les ensembles A, B, la différence de A et B, A-B, est l'ensemble des éléments qui sont dans A mais pas dans B.
- Formellement:

$$A - B := \{x \mid x \in A \land x \notin B\}$$
$$= \{x \mid \neg(x \in A \rightarrow x \in B) \}$$

Autre forme:

Le complément de B par rapport à A.

Exemples de différence (ensemble)

- $\{1,2,3,4\}$ $\{6\}$ $\{2,3,5,7,9,11\}$ = $\{1,4,6\}$
- Z N = {..., -1, 0, 1, 2, ...} {0, 1, ...}
 = {x | x est un entier mais pas un nombre naturel}
 = {x | x est un entier négatif}
- Résultat = $\{..., -3, -2, -1\}$

Différence – Diagramme de Venn

A–B ce qui reste après que B soit enlevé.

Compléments d'un ensemble

- Le ud (univers du discours) peut être luimême considéré comme un ensemble, disons U.
- Quand le contexte definis clairement *U*, pour tout ensemble *A*⊆*U*, le *complément* de *A*,
 A, est donné par *U*–*A*.
- Ex:, Si U=N, $\overline{\{3,5,7,9\}} = \{0,1,2,4,6,8,10,11,...\}$

Compléments des ensembles

• Définition équivalente, quand *U* est défini:

$$\overline{A} = \{x \mid x \notin A\}$$

Identités des ensembles

- Identité: $A \cup \emptyset = A = A \cap U$
- Domination: $A \cup U = U$, $A \cap \emptyset = \emptyset$
- Idempotence: $A \cup A = A = A \cap A$
- Double complément: $(\overline{A}) = A$
- Commutativité: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- Associativité: $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$
- Distributivité: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Règles de De Morgan (ensembles)

 Analogues aux lois de De Morgan pour les propositions.

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Preuves des Identités (ensembles)

- La preuve des énoncés sur les ensembles de la forme E₁ = E₂ (où Es des expressions sur les ensembles), peut être faite de 3 façons:
- 1. Prouver $E_1 \subseteq E_2$ et $E_2 \subseteq E_1$ séparément.
- 2. Utiliser la notation de construction des ensembles & les équivalences logiques.
- 3. Utiliser les tables d'appartenance.

Méthode 1: Sous-ensembles mutuels

Exemple: Prouver $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- Partie 1: $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Supposons $x \in A \cap (B \cup C)$, & Prouver $x \in (A \cap B) \cup (A \cap C)$.
 - Sachant que $x \in A$, et soit $x \in B$ ou $x \in C$.
 - Cas 1: $x \in B$. Alors $x \in A \cap B$, donc $x \in (A \cap B) \cup (A \cap C)$.
 - Cas 2: $x \in C$. Alors $x \in A \cap C$, donc $x \in (A \cap B) \cup (A \cap C)$.
 - Par conséquent, $x \in (A \cap B) \cup (A \cap C)$.
 - Par conséquent, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
- Partie 2: $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$

Méthode 2: Construction des ensembles et équivalences logiques

Exemple: Prouver $(A \cap B)' = A' \cup B'$.

- $(A \cap B)' = \{x \mid x \notin A \cap B\}.$
- $(A \cap B)' = \{x \mid \neg (x \in A \cap B)\}.$
- $(A \cap B)' = \{x \mid \neg (x \in A \land x \in B)\}.$
- $(A \cap B)' = \{x \mid (x \notin A \lor x \notin B)\}.$
- $(A \cap B)' = \{x \mid (x \in A' \lor x \in B')\}.$
- $(A \cap B)' = \{x \mid (x \in A' \cup B')\}.$

Méthode 2: Construction des ensembles et équivalences logiques

Exemple: LEMME: Associativité de l'Union $(A \cup B) \cup C = A \cup (B \cup C)$ Preuve: $(A \cup B) \cup C = \{x \mid x \in A \cup B \lor x \in C\}$ $= \{x \mid (x \in A \lor x \in B) \lor x \in C\}$ $= \{x \mid x \in A \lor (x \in B \lor x \in C)\}$ $= \{x \mid x \in A \lor (x \in B \cup C)\}$ $= A \cup (B \cup C)$

Méthode 3: Tables d'appartenance

- Comme les tables de vérité de la logique propositionnelle.
- Colonnes: différentes expressions.
- Rangés pour toutes les combinaisons d'appartenance dans les ensembles.
- Utilisé "1" pour indiquer l'appartenance dans l'ensemble dérivé, "0" pour la nonappartenance.
- Équivalence quand des colonnes sont identiques.

Exemple de Table d'Appartenance

Prouver $(A \cup B) - B = A - B$.

\boldsymbol{A}	B	$A \cup B$	$(A \cup E)$	B)-B	A	<i>−B</i>
0	0	0	0			0
0	1	1	0			0
1	0	1	1			1
1	1	1	0			0

Exemple de Table d'Appartenance

Prouver $(A \cup B) - C = (A - C) \cup (B - C)$.

ABC	$A \cup B$	$(A \cup B) - C$	A– C	В-С	$(A-C)\cup (B-C)$
0 0 0					
0 0 1					
0 1 0					
0 1 1					
1 0 0					
1 0 1					
1 1 0					
1 1 1					

Revue (Section 5)

- Ensembles S, T, U... Ensembles spéciaux N, Z,
 R.
- Notations des ensembles {a,b,...}, {x|P(x)}...
- Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, S = T, $S \subseteq T$, $S \supset T$.
- Opérations |S|, P(S), \times , \cup , \cap , -,
- Techniques de preuve de l'égalité des ensembles:
 - Sous-ensembles mutuels.
 - Tables d'appartenance.
 - Derivation à partir des équivalences logiques.

Généralisation Unions & Intersections

 Sachant que l'union & l'intersection sont commutatives et associatives, nous pouvons donc généraliser leur application sur des séquences d'ensembles (A₁,...,A_n), ou même sur des ensembles non ordonnés d'ensembles, X={A | P(A)}.

Généralisation: Union

- Opération d'union binaire: A∪B
- Union *n*-aire:
 - $A \cup A_2 \cup ... \cup A_n := ((...((A_1 \cup A_2) \cup ...) \cup A_n))$ (groupement & ordonnancement sont sans importance)
- Notation "Big U": $\bigcup_{i=1}^{n} A_i$
- Ou pour des ensembles infinis d'ensembles: $\bigcup_{A \in X} A$

Généralisation: Intersection

- Opération d'intersection binaire : A∩B
- Intersection *n*-aire:

$$A_1 \cap A_2 \cap ... \cap A_n \equiv ((...((A_1 \cap A_2) \cap ...) \cap A_n))$$

(groupement & ordonnancement sont sans importance)

- Notation "Big Arch": $\bigcap_{i=1}^{n} A_i$
- Ou pour des ensembles infinis d'ensembles: : $\bigcap A$

 $A \in X$

Représentations

- Il est possible d'utiliser diverses méthodes pour représenter chaque structure discrète à partir d'autres structures discrètes.
- Ex: représentation des N
 - Ensembles: 0:≡∅, 1:≡{0}, 2:≡{0,1}, 3:≡{0,1,2},
 ...
 - Chaînes de bits:
 0:≡0, 1:≡1, 2:≡10, 3:≡11, 4:≡100, ...

Représenter des ensembles avec des chaînes de bits

- Pour un ud énumérable U ordonné $x_1, x_2, ...,$ représentant un ensemble fini $S\subseteq U$ comme une chaîne de bits finie $B=b_1b_2...b_n$ où $\forall i: x_i \in S \leftrightarrow (i < n \land b_i = 1).$ $ex: U=N, S=\{2,3,5,7,11\},$ B=001101010001.
- Avec cette représentation, les opérateurs "∪", "∩", "¬" correspondent à OU, ET, NON bit à bit.

Exemples d'applications des ensembles

 $a = (a_1, a_2)$ $a \in A$ ensemble de coordonnées 2D

 $b = (b_1, b_2)$ $b \in B$ ensemble de coordonnées 2D

Exemples d'applications des ensembles (complément, union)

 $A \cup B = \{ \max_{\sigma}(a,b) \mid a \in A \land b \in B \}$

 $A^{c} = \{(x,y, K-z) \mid (x,y,z) \in A \}$ z couleur à la position x,y $Z = \{z \mid z \in [0..255] \} -> K = 255$

Exemples d'applications des ensembles (complément, union)

Arrière plan: noir (0) Avant plan: blanc (1)