2017 清华大学优秀高中生信息学 夏季体验营

THUSC 2017

第一试

时间: 2017 年 5 月 21 日 13:30 ~ 18:30

题目名称	巧克力	杜老师	换桌
题目类型	传统型	传统型	传统型
输入	标准输入	标准输入	标准输入
输出	标准输出	标准输出	标准输出
每个测试点时限	5.0 秒	5.0 秒	5.0 秒
内存限制	512 MB	512 MB	512 MB
测试点/包数目	20	20	20
测试点是否等分	是	是	是

巧克力 (chocolate)

【题目描述】

"人生就像一盒巧克力,你永远不知道吃到的下一块是什么味道。"

明明收到了一大块巧克力,里面有若干小块,排成 n 行 m 列。每一小块都有自己特别的图案 $c_{i,j}$,它们有的是海星,有的是贝壳,有的是海螺…… 其中还有一些因为挤压,已经分辨不出是什么图案了。明明给每一小块巧克力标上了一个美味值 $a_{i,j}$ ($0 \le a_{i,j} \le 10^6$),这个值越大,表示这一小块巧克力越美味。

正当明明四了咽口水,准备享用美味时,舟舟神奇地出现了。看到舟舟恳求的目 光,明明决定从中选出一些小块与舟舟一同分享。

舟舟希望这些被选出的巧克力是连通的(两块巧克力连通当且仅当他们有公共边),而且这些巧克力要包含至少 k ($1 \le k \le 5$) 种。而那些被挤压过的巧克力则是不能被选中的。

明明想满足舟舟的愿望,但他又有点"抠",想将美味尽可能多地留给自己。所以明明希望选出的巧克力块数能够尽可能地少。如果在选出的块数最少的前提下,美味值的中位数(我们定义n个数的中位数为第 $\left|\frac{n+1}{2}\right|$ 小的数)能够达到最小就更好了。

你能帮帮明明吗?

【输入格式】

从标准输入读入数据。

每个测试点包含多组测试数据。

输入第一行包含一个正整数 $T(1 \le T \le 5)$,表示测试数据组数。

对于每组测试数据:

输入第一行包含三个正整数 n, m 和 k;

接下来 n 行,每行 m 个整数,表示每小块的图案 $c_{i,j}$ 。若 $c_{i,j} = -1$ 表示这一小块受到过挤压,不能被选中;

接下来 n 行,每行 m 个整数,表示每个小块的美味值 $a_{i,j}$ 。

【输出格式】

输出到标准输出。

输出共包括 T 行,每行包含两个整数,用空格隔开,即最少的块数和最小的美味值中位数。

若对于某组测试数据,不存在任意一种合法的选取方案,请在对应行输出两个-1。

【样例输入】

1

5 4 5

3 4 3 4

5 5 -1 5

-1 4 5 5

5 5 4 2

1 -1 2 4

1 3 1 1

3 2 3 3

4 4 4 5

8 9 9 5

7 2 6 3

【样例输出】

9 5

【子任务】

测试点编号	n, m 的限制	$c_{i,j}$ 的限制	部分分说明
1	$n = 1, 1 \le m \le 233$		
2	$1 \le n \times m \le 20$		
3	n = 2, m = 15	$c_{i,j} = -1 \vec{\boxtimes}$ $1 \le c_{i,j} \le n \times m$	若输出的最少块数均 正确,但最小中位数 存在错误,选手可以 获得该测试点 80% 的 分数。
4	n = 2, m = 10		
5	1 4 4 4 20		
6	$1 \le n \times m \le 30$		
7			
8	$1 \le n \times m \le 50$	$c_{i,j} = -1 或$ $1 \le c_{i,j} \le 8$	
9			
10	$1 \le n \times m \le 233$		
11			
12			
13		$c_{i,j} = -1$ 或	 若输出的最少块数均
14		$1 \le c_{i,j} \le 14$	正确,但最小中位数
15		$1 \le C_{i,j} \le 14$	存在错误,选手可以 获得该测试点 60% 的
16			
17		$c_{i,j} = -1$ 或	分数。
18		$1 \le c_{i,j} \le n \times m$	<i>月 </i>
19		$1 \leq C_{i,j} \leq n \wedge m$	
20			

杜老师(dls)

【题目描述】

杜老师可是要打 $+\infty$ 年 *World Final* 的男人,虽然规则不允许,但是可以改啊! 但是今年 *WF* 跟 *THUSC* 的时间这么近,所以他造了一个 *idea* 就扔下不管了...... 给定 L,R,求从 L 到 R 的这 R-L+1 个数中能选出多少个不同的子集,满足子集中所有的数的乘积是一个完全平方数。特别地,空集也算一种选法,定义其乘积为 1。

由于杜老师忙于跟陈老师和鏼老师一起打ACM竞赛,所以,你能帮帮杜老师写写标算吗?

【输入格式】

从标准输入读入数据。

每个测试点包含多组测试数据。

输入第一行包含一个正整数 $T(1 \le T \le 100)$, 表示测试数据组数。

接下来 T 行,第 i+1 行两个正整数 L_i, R_i 表示第 i 组测试数据的 L, R ,保证 $1 \le L_i \le R_i \le 10^7$ 。

【输出格式】

输出到标准输出。

输出 T 行,每行一个非负整数,表示一共可以选出多少个满足条件的子集,答案 对 998244353 取模。

【样例 1 输入】

3

1 8

12 24

1 1000000

【样例 1 输出】

16

16

947158782

【样例 2】

见题目目录下的 2.in 与 2.ans。

【样例解释】

对于 L = 1, R = 8, 对应的 16 种选法为:

- 1. 空集
- 2. 4
- 3. 368
- 4. 3 4 6 8
- 5. 28
- 6. 248
- 7. 2 3 6
- 8. 2346
- 9. 1
- 10. 14
- 11. 1 3 6 8
- 12. 1 3 4 6 8
- 13. 1 2 8
- 14. 1 2 4 8
- 15. 1 2 3 6
- 16. 1 2 3 4 6

【子任务】

测试点	R_i	T	$\sum_{i=1}^{T} R_i - L_i + 1$		
$\frac{1,2}{1,2}$	≤ 30	1	$\Delta_{l=1} R_l \Sigma_l + \Gamma$	无特殊约束	
3	$ \leq 10^2 $			保证答案不超过 5×10 ⁶	
4			$\leq 10^3$	无特殊约束	
5,6	$\leq 10^3$	≤ 10		$R_i - L_i \le 22$	
7,8				保证答案不超过 2×106	
9,10			$\leq 5,000$	无特殊约束	
11,12	- 10 ⁶	$\leq 10^6$		$R_i - L_i \ge 999,990$	
13,14	<u> </u>		$\leq 10^7$		
15		_			
16			$\leq 2 \times 10^7$		
17	$\leq 10^7 \mid \leq 100$	< 100	$\leq 3 \times 10^7$	无特殊约束	
18		$\leq 4 \times 10^7$			
19			$\leq 5 \times 10^7$		
20			$\leq 6 \times 10^7$		

换桌(seat)

【题目背景】

班级聚会的时候,班主任为了方便管理,规定吃饭的时候同一个寝室的同学必须坐在一起;但是吃完饭后,到了娱乐时间,喜欢不同游戏的同学会聚到一起;在这个过程中就涉及到了座位分配的问题。

【题目描述】

有 n 张圆桌排成一排(从左到右依次编号为 0 到 n-1),每张桌子有 m 个座位(按照逆时针依次编号为 0 到 m-1),在吃饭时每个座位上都有一个人;在吃完饭后的时候,每个人都需要选择一个新的座位(新座位可能和原来的座位是同一个),具体来说,第 i 桌第 j 个人的新座位只能在第 $L_{i,j}$ 桌到第 $R_{i,j}$ 桌中选,可以是这些桌中的任何一个座位。确定好新座位之后,大家开始移动,移动的体力消耗按照如下规则计算:

移动座位过程分为两步:

- 1. 从起始桌移动到目标桌**对应座位**,这个过程中的体力消耗为**两桌距离的两倍**,即 从第 i 桌移动到第 j 桌对应座位的体力消耗为 $2 \times i j$;
- 2. 从目标桌的对应座位绕着桌子移动到目标座位,由于桌子是圆的,所以客人会选择最近的方向移动,体力消耗为移动距离的一倍,即从编号为x的座位移动的编号为y的座位的体力消耗为 $\min(x-y, m-x-y)$;

详情如下图:

现在,给定每个客人的限制(即每个人的新座位所在的区间),需要你设计一个方案,使得**所有客人消耗的体力和最小,本题中假设客人在移动的时候互不影响**。

【输入格式】

从标准输入读入数据。

第一行输入两个数 n 和 m;

接下来输入 n 行,每行 m 个空格隔开的整数描述矩阵 L: 其中,第 i 行的第 j 个数表示 $L_{i,i}$;

接下来输入n行,每行m个空格隔开的整数描述矩阵R: 其中,第i行的第j个数表示 $R_{i,j}$ 。

数据是随机生成的,生成数据的伪代码如下:

【输出格式】

输出到标准输出。

输出总体力消耗的最小值,如果没有合法的方案输出 no solution。

【样例 1 输入】

2 4

0 1 1 0

1 0 1 0

0 1 1 0

1010

【样例 1 输出】

10

【样例 1 解释】

第 0 桌的 0 和 3 号,以及第 1 桌的 0 号和 2 号都被限制为只能坐在他们原来的桌子(可以不是原来的座位),其他人分别需要换到第 1 桌和第 0 桌;

可以发现,最优方案如上图,总体力消耗为10。

【样例 2 输入】

2 4

0000

0000

0000

0000

【样例 2 输出】

no solution

【样例2解释】

所有人都想坐到第0桌,所以没有合法的方案。

【样例 3】

见题目目录下的 3.in 与 3.ans。

【样例 4】

见题目目录下的 4.in 与 4.ans。

【子任务】

对于全部数据: $1 \le n \le 300$, $1 \le m \le 10$, $0 \le L_{i,j} \le R_{i,j} \le n-1$ 。

	n	m
1, 2	$1 \le n \le 2$	
3, 4, 5, 6, 7, 8	$1 \le n \le 40$	1 / m / 10
9, 10, 11, 12, 13, 14	$1 \le n \le 100$	$1 \le m \le 10$
15, 16, 17, 18, 19, 20	$1 \le n \le 300$	