

DIVIDE AND CONQUER

CS112.O11.KHTN **Team 10**

TABLE OF CONTENT

01 02

PROBLEM GENERAL IDEA

03 04

WHY? COMPLEXITY

05 06

EXAMPLE Q&A

TABLE OF CONTENT

01

PROBLEM

03

WHY?

05

EXAMPLE

02

GENERAL IDEA

04

COMPLEXITY

06

Q&A

PROBLEM

Finding a closest pair of points

Given a set of points {p1, . . . , pn} find the pair of points {pi , pj } that are closest together.

With the distance calculated using the formula

$$d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

OOO **01 PROBLEM**

11/17/2023

BRUTEFORCE

Check every pair of points

```
// A Brute Force method to return the
// smallest distance between two points
// in P[] of size n
float bruteForce(Point P[], int n)
    float min = FLT_MAX;
    for (int i = 0; i < n; ++i)
        for (int j = i+1; j < n; ++j)
            if (dist(P[i], P[j]) < min)</pre>
                min = dist(P[i], P[j]);
    return min;
```


000 **01 PROBLEM** 11/17/2023

$$p_1$$
 (x_1, y_1)

$$d(p_1, p_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Time Complexity: $O(N^2)$

Can we do it faster?

02 GENERAL IDEA

000 **02 GENERAL IDEA** 11/17/2023

DIVIDE AND CONQUER

OOO 02 GENERAL IDEA

11/17/2023

DIVIDE AND CONQUER

- 1. **Divide:** This involves dividing the problem into smaller sub-problems.
- 2. **Conquer:** Solve sub-problems by calling recursively until solved.
- 3. Combine: Combine the sub-problems to get the final solution of the

whole problem.

Finding a closest pair of points

Apply the idea of "divide and conquer":

- 1. Divide N points to be processed into 2 sets with a vertical line
- 2. Call recursively to find the closest pair of points for the left set and the right set
- 3. Find the shortest distance between a point in the left set and a point in the right set.

000 **02 GENERAL IDEA** 11/17/2023

Divide and Conquer

- 1. Split the points with line L so that half the points are on each side.
- 2. Recursively find the pair of points closest in each half.

Combine: the hard case

Let $d = min\{d_{left}, d_{right}\}.$

d would be the answer, except maybe L split a close pair!

000 **02 GENERAL IDEA** 11/17/2023

Region Near L

If there is a pair {pi, pj} with dist(pi, pj) < d that is split by the line, then both pi and pj must be within distance d of L.

IDENTITY

- 1. **Divide**: Can the problem be divided into smaller subproblems of the same type?
- 2. Conquer: Can the sub-problems be directly solved when they are small enough?
- 3. **Combine**: Can the solutions of the sub-problems be combined to form a solution for the original problem? Examples: binary search, quick-sort...

000 **02 GENERAL IDEA** 11/17/2023

Finding a closest pair of points

- 1. Divide
- 2. Conquer
- 3. Combine

WHY?

000 **03 WHY?** 11/17/2023

Advantages

- Reusable Solutions
- Good Time Performance
- Optimization Support
- Versatility

000 **03 WHY?** 11/17/2023

Disadvantages

- Slow recursion
- Complicates sometimes
- Difficult to implement
- Only suitable for certain problems

000 **03 WHY?** 11/17/2023

Compare

"Divide and Conquer" and "Brute Force"

Feature	Divide and Conquer	Brute Force
Efficiency	Typically more efficient for large or complex problems	Typically less efficient for large or complex problems
Approach	Breaks a problem down into smaller subproblems	Tries every possible solution
Complexity	Often has a logarithmic time complexity (O(log n) or On(log n))	Often has a linear time complexity (O(n) or O(n^2))
Examples	Binary search, merge sort, quick sort	Bubble sort, insertion sort, selection sort

COMPLEXITY

The recurrence

$$T(n) = aT(n/b) + f(n)$$

where n = size of the problem
a = number of subproblems in the recursion and a >= 1
n/b = size of each subproblem
f(n) = cost of work done outside the recursive calls like dividing into subproblems and cost of combining them to get the solution.

0 0 0 04 COMPLEXITY 11/17/2023

Master theorem

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^a \\ O(n^d) & \text{if } a < b^a \\ O(n^{\log_b(a)}) & \text{if } a > b^a \end{cases}$$

Finding a closest pair of points

Classic divide and conquer recurrence:

$$T(n) = 2T(n/2) + O(n)$$

Apply Master Theorem, we have complexity is:

EXAMPLE

Merge Sort

1. Let the given array be:

7 6 1 5 4 3

Merge Sort

2. **Divide** the array into two halves.

Merge Sort

Again, divide each subpart recursively into two halves until you get individual elements.

Merge Sort

3. Now, combine the individual elements in a sorted manner. Here, **conquer** and **combine** steps go side by side.

Large Integer Multiplication

- Common procedure in computer-assisted problem solving.
- Multiplying big numbers is not only difficult, but also time-consuming and error-prone.

Traditional Multiplication Method.

Traditional Multiplication Method.

- time-consuming
- inefficient.

Complexity: O(mn)

Divide and Conquer Approach

Suppose we have to multiply 2 integers of size 2n decimal places By dividing a and b we can write a and b in the form

$$a = a_1 \cdot 10^n + a_2,$$

 $b = b_1 \cdot 10^n + b_2$

in there

a₁, a₂, b₁, b₂ are n-digit numbers

0 0 0 05 EXAMPLE 11/17/2023

Divide and Conquer Approach

For example: a= 5678 and b= 6789.

a.b? Time-consuming Inefficient

How about a better way?

Divide and Conquer Approach

For example: a= 5678 and b= 6789.

- **1.** Our algorithm separates the terms into $a_1 = 56$, $a_2 = 78$, $b_1 = 67$ and $b_2 = 89$.
- **2.** Three halves multiplications that need to be performed are:

$$\mathbf{p} = a_1b_1 = 56 \times 67 = 3752$$

 $\mathbf{q} = a_2b_2 = 78 \times 89 = 6942$

and

$$\mathbf{r} = (a_1 + a_2) \times (b_1 + b_2) = 134 \times 156 = 20904$$

Divide and Conquer Approach

For example: a= 5678 and b= 6789.

Therefore

= 3752 0000 + 10210 00+ 6942

= 38547942

We have:

$$a \times b = (a_1 \cdot 10^n + a_2)(b_1 \cdot 10^n + b_2)$$

= $a_1b_110^{2n} + (a_1b_2 + a_2b_1) \cdot 10^n + a_2b_2$

Divide and Conquer Approach

For example: a= 5678 and b= 6789.

So we have seen a multiplication with **2n digits** about **4 multiplication** with **n digits** and **2 additions**.

06Q&A

11/17/2023

QUIZ

In the divide and conquer process, breaking the problem into smaller sub-problems is the responsibility of

- A. Sorting/Divide
- B. Conquer/Solve
- C. Merge/Combine
- D Divide/Break

QUIZ

The running time of merge sort can be reccursively represented by

B.
$$T(n)=2T(n/4)+O(n)$$

C.
$$T(n)=3T(n/2)+O(n)$$

D.
$$T(n)=3T(n/2)+O(n)$$

06 Q&A

THANK YOU FOR YOUR WATCHING

