contextual ai

Better, Cheaper, and Faster Alignment with KTO

Amanpreet Singh CTO & Co-Founder

Outline

- 1. Motivation
- 2. KTO
- 3. Results
- 4. Archangel and Libraries

Alignment Protocol

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

Alignment Protocol

Supervised Step 1 Instruction Collect demonstration data, Finetuning (SFT) and train a supervised policy. A prompt is sampled from our Explain the moon prompt dataset. landing to a 6 year old A labeler demonstrates the desired output behavior. Some people went to the moon... This data is used to fine-tune GPT-3 with supervised learning.

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks

the outputs from best to worst.

This data is used

to train our reward model.

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

Alignment Protocol

Reinforcement Learning from Human Feedback (RLHF)

Step 1

Collect demonstration data. and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

Explain the moon

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

1. RLHF is hard.

- 1. RLHF is hard.
 - a. Solution: Direct Preference Optimization (DPO)

- RLHF is hard.
 - a. Solution: Direct Preference Optimization (DPO)

$$L_{DPO}(\pi_{ heta}; \pi_{ref}) = -\mathbb{E}_{(x, y_w, y_l) \sim D} \left[\log \sigma \left(eta \log rac{\pi_{ heta}(y_w|x)}{\pi_{ref}(y_w|x)} - eta \log rac{\pi_{ heta}(y_l|x)}{\pi_{ref}(y_l|x)}
ight)
ight]$$

Where:

- x is some prompt
- $\pi_{\theta}(y_w|x)$ and $\pi_{\theta}(y_l|x)$ are the probabilities of the preferred and dispreferred completions under the current model.
- $\mathbb{E}_{(x,y_w,y_l)\sim D}$ denotes the expectation over the dataset of preferences D.
- β is a parameter controlling the deviation from the base reference policy π_{ref} .

- 1. RLHF is hard.
 - a. Solution: Direct Preference Optimization (DPO)
- 2. Paired preference data is expensive to collect and scale.

- 1. RLHF is hard.
 - a. Solution: Direct Preference Optimization (DPO)
- 2. Paired preference data is expensive to collect and scale.
 - a. Solution: KTO

Enter KTO

Enter KTO

- doesn't require preference datasets
- works directly on abundantly available feedback data
- is more data efficient compared to other alignment methods

KTO Loss

- Directly maximizes the expected utility of an LM's outputs
 - Optimize the model to generate outputs that have higher utility values
- Utility function is inspired by Kahneman and Tversky's prospect theory
 - Determines the utility or desirability of an output from a human perspective

KTO Loss

- Directly maximizes the expected utility of an LM's outputs
 - Optimize the model to generate outputs that have higher utility values
- Utility function is inspired by Kahneman and Tversky's prospect theory
 - Determines the utility or desirability of an output from a human perspective

$$L_{ ext{KTO}}(\pi_{ heta}, \pi_{ ext{ref}}; eta) = \mathbb{E}_{x,y \sim D}[1 - \hat{h}(x,y;eta)]$$
 where $\hat{h}(x,y;eta) = egin{cases} \sigma(eta \log rac{\pi_{ heta}(y|x)}{\pi_{ ext{ref}}(y|x)} - eta \operatorname{KL}(\pi_{ heta} \| \pi_{ ext{ref}})) & ext{if } y \sim y_{ ext{desirable}} | x \ \sigma(eta \operatorname{KL}(\pi_{ heta} \| \pi_{ ext{ref}}) - eta \log rac{\pi_{ heta}(y|x)}{\pi_{ ext{ref}}(y|x)}) & ext{if } y \sim y_{ ext{undesirable}} | x \end{cases}$

Relative improvements (%) compared to base Llama-30B

	Win rate against			
	Llama-7B (SFT)	Llama-13B (SFT)	Llama-30B (SFT)	
DPO	-20%	-8%	4%	
DPO+SFT	-7%	0%	12%	
кто	-9%	-3%	16%	
KTO+SFT	-2%	2%	15%	

	Win rate against			
	Llama-7B (SFT)	Llama-13B (SFT)	Llama-30B (SFT)	
DPO	-20%	-8%	4%	
DPO+SFT	-7%	0%	12%	
кто	-9%	-3%	16%	
KTO+SFT	-2%	2%	15%	

	Win rate against			
	Llama-7B (SFT)	Llama-13B (SFT)	Llama-30B (SFT)	
DPO	-20%	-8%	4%	
DPO+SFT	-7%	0%	12%	
кто	-9%	-3%	16%	
KTO+SFT	-2%	2%	15%	

	Win rate against			
	Llama-7B (SFT)	Llama-13B (SFT)	Llama-30B (SFT)	
DPO	-20%	-8%	4%	
DPO+SFT	-7%	0%	12%	
кто	-9%	-3%	16%	
KTO+SFT	-2%	2%	15%	

	Win rate against			
	Llama-7B (SFT)	Llama-13B (SFT)	Llama-30B (SFT)	
DPO	-20%	-8%	4%	
DPO+SFT	-7%	0%	12%	
кто	-9%	-3%	16%	
KTO+SFT	-2%	2%	15%	

Archangel Suite

56 human-feedback aligned models

- on 7 different sizes (1B to 30B)
- using 8 different methods
- with 3 of the largest public human feedback datasets
- All open source

More details on KTO can be found in our blog post: http://tinyurl.com/kto-ctxl

ContextualAl Company

KTO in the wild

An Automatic Evaluator for Instruction-following Language Models Caution: GPT-4 may favor models with longer outputs and/or those that were fine-tuned on GPT-4 outputs.

()

Version: AlpacaEval AlpacaEval 2.0

Filter: Community Verified

Baseline: GPT-4 Turbo | Auto-annotator: GPT-4 Turbo

Model Name	Win Rate	Length
GPT-4 Turbo 🕒	50.00%	2049
Contextual AI (KTO-Mistral-PairRM)	33.23%	2521
Yi 34B Chat	29.66%	2123
Claude 3 Opus (02/29)	29.04%	1388
Claude 3 Sonnet (02/29)	25.56%	1420
GPT-4	23.58%	1365
GPT-4 0314 🕒	22.07%	1371
Mistral Medium	21.86%	1500
Mixtral 8x7B v0.1	18.26%	1465
Claude 2	17.19%	1069
Claude -	16.99%	1082
Tulu 2+DPO 70B	15.98%	1418
GPT-4 0613 🕒	15.76%	1140
Claude 2.1	15.73%	1096

Using KTO

- KTO Github Repo ContextualAI/HALOs
- Hugging Face TRL huggingface/trl
- NVIDIA's NeMo-Aligner (April 2024) NVIDIA/NeMo-Aligner

Takeaways

KTO:

- is a strong alternative to DPO and RLHF
- 2. works well when used directly without any SFT
- 3. can directly work in production on abundantly available feedback data
- 4. can work directly on any kind of feedback signal
- 5. can also work with imbalanced data

Other research from Contextual Al

Read more at contextual.ai

GRIT: State of the art embedder, reranker and LLM in a single model

LENS: Add vision capabilities to any LLM out of the box

