Further Topics in Analysis: Solutions 8

- 1. Find the pointwise limit of the following sequences of functions on the segment [0,2]. Is this convergence uniform on [0,2]?
 - (a) $f_n(x) = \frac{x}{n}$;
 - $(b) f_n(x) = \frac{x}{nx+1};$
 - $(c) f_n(x) = \frac{x^n}{1+x^n} .$

SOLUTION. (a) Fix $x \in [0, 2]$. Then

$$\lim_{n \to \infty} \frac{x}{n} = x \lim_{n \to \infty} \frac{1}{n} = 0.$$

Thus the sequence of functions $f_n(x) = \frac{x}{n}$ converges pointwise on [0,2] to the function f(x) = 0.

To verify that $f_n(x) = \frac{x}{n}$ converges to f(x) = 0 uniformly on [0,2] we need to check that

$$(\forall \varepsilon > 0)(\exists N \in \mathbb{N})(\forall x \in [0, 2])(\forall n \in \mathbb{N})[(n \ge N) \Rightarrow (|f_n(x) - f(x)| < \varepsilon)]. \tag{1}$$

Fix $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $N > \frac{2}{\varepsilon}$. Then for any $x \in [0,2]$ and any $n \geq N$ we obtain

$$|f_n(x) - f(x)| = \left| \frac{x}{n} - 0 \right| = \frac{x}{n} \le 2\frac{1}{N} < \varepsilon.$$

Thus $f_n(x) = \frac{x}{n}$ converges uniformly on [0,2] to f(x) = 0

(b) Note that

$$0 \le f_n(x) = \frac{x}{nx+1} \le \frac{x}{nx} = \frac{1}{n} \to 0 \quad \text{as } n \to \infty.$$

Then by the sandwich rule we conclude that for each fixed $x \in [0,2]$

$$\lim_{n \to \infty} \frac{x}{nx+1} = 0.$$

So the sequence of functions $\frac{x}{xn+1}$ converges pointwise on [0,2] to the function f(x)=0.

To verify that $f_n(x)=\frac{x}{nx+1}$ converges to f(x)=0 uniformly on [0,2] we need to check (1). Fix $\varepsilon>0$. Choose $N\in\mathbb{N}$ such that $N>\frac{1}{\varepsilon}$. Then for any $x\in[0,2]$ and any $n\geq N$ we obtain

$$|f_n(x) - f(x)| = \left| \frac{x}{nx+1} - 0 \right| \le \frac{x}{nx} \le \frac{1}{N} < \varepsilon.$$

Thus $f_n(x) = \frac{x}{nx+1}$ converges uniformly on [0,2] to f(x) = 0.

(c) For $x \in [0,2]$ we compute that

$$\lim_{n \to \infty} \frac{x^n}{1 + x^n} = f(x), \quad \text{where} \ \ f(x) = \left\{ \begin{array}{ll} 0, & \text{if} \ \ 0 \le x < 1, \\ \frac{1}{2}, & \text{if} \ \ x = 1, \\ 1, & \text{if} \ \ 1 < x \le 2. \end{array} \right.$$

So the sequence of functions $f_n(x) = \frac{x^n}{1+x^n}$ converges pointwise on [0,2] to the function f(x).

Next we show that $f_n(x)=\frac{x^n}{1+x^n}$ does not converge uniformly to f(x) on [0,2]. Indeed, all the functions $f_n(x)$ are continuous on [0,2]. Assume that the sequence $(f_n(x))_{n\in\mathbb{N}}$ converges to f(x) uniformly on [0,2]. Then, by the Weierstrass Theorem on Uniform Convergence, the limit function f(x) must be continuous on [0,2]. However f(x) is not continuous on [0,2]! We conclude that $f_n(x)=\frac{x^n}{1+x^n}$ does not converge uniformly to f(x) on [0,2].

- 2. Find the pointwise limit of the following sequences of functions. Is this convergence uniform? Justify your answer.
 - (a) $f_n(x) = \sqrt[n]{x}$ on the closed segment [0, 1];
 - (b) $f_n(x) = \frac{x^n 1}{x^n + 1}$ on the closed segment [0, 2];
 - (c) $f_n(x) = (1 x^2)^n$ on the closed segment [-1, 1].

Solution. (a) We see that the pointwise limit of $f_n(x) = \sqrt[n]{x}$ on the interval [0,1] is

$$\lim_{n \to \infty} \sqrt[n]{x} = \left\{ \begin{array}{ll} 0 & \text{if } x = 0, \\ 1 & \text{if } x \in (0, 1]. \end{array} \right.$$

Clearly the pointwise limit is a discontinuous function. Thus by Weierstrass's Theorem on Uniform Convergence (Theorem 12.8) we conclude that the sequences $f_n(x) = \sqrt[n]{x}$ does not converge uniformly on [0,1].

(b) We see that the pointwise limit of $f_n(x)=\frac{x^n-1}{x^n+1}$ on the segment [0,2] is

$$\lim_{n \to \infty} \frac{x^n - 1}{x^n + 1} = \left\{ \begin{array}{ll} -1 & \text{if } x \in [0, 1), \\ 0 & \text{if } x = 1, \\ 1 & \text{if } x \in (1, 2]. \end{array} \right.$$

Clearly the pointwise limit is a discontinuous function. Thus by Weierstrass's Theorem on Uniform Convergence (Theorem 12.8) we conclude that the sequences $f_n(x) = \frac{x^n - 1}{x^n + 1}$ does not converge uniformly on [0, 2].

(c) We see that the pointwise limit of $f_n(x)=(1-x^2)^n$ on the interval [-1,1] is

$$\lim_{n \to \infty} (1 - x^2)^n = \begin{cases} 0 & \text{if } x = [-1, 0) \cup (0, 1], \\ 1 & \text{if } x = 1. \end{cases}$$

Clearly the pointwise limit is a discontinuous function. Thus by Weierstrass's Theorem on Uniform Convergence (Theorem 12.8) we conclude that the sequences $f_n(x) = (1-x^2)^n$ does not converge uniformly on [-1,1].

- **3.** Find the pointwise limit of the following sequences of functions. Is this convergence uniform? Justify your answer.
 - (a) $f_n(x) = \begin{cases} 1 & \text{if } x = \frac{1}{n} \\ 0 & \text{if } x \neq \frac{1}{n} \end{cases}$ on the closed segment [0, 1];
 - (b) $f_n(x) = \sqrt[n]{x}$ on the open segment (0,1);
 - (c) $f_n(x) = \frac{x}{n}$ on the real line \mathbb{R} .

SOLUTION. (a) We see that for each $x \in [0,1]$

$$\lim_{n \to \infty} f_n(x) = 0,$$

that is $(f_n(x))_{n\in\mathbb{N}}$ converges pointwise on [0,1] to the limit function f(x)=0.

We are going to show this convergence is not uniform on $\left[0,1\right]$. To do this we need to check that

$$(\exists \varepsilon > 0)(\forall N \in \mathbb{N})(\exists x \in [0, 1])(\exists n \in \mathbb{N})[(n \ge N) \land (|f_n(x) - 0| \ge \varepsilon)].$$

Set $\varepsilon=1.$ For any given $N\in\mathbb{N}$ choose $x_N=\frac{1}{N}$ and n=N. Then

$$|f_n(x_N)| = 1 = \varepsilon,$$

that is $(f_n(x))_{n\in\mathbb{N}}$ does not converge to 0 uniformly on [0,1].

(b) We see that for each $x \in (0,1)$

$$\lim_{n \to \infty} \sqrt[n]{x} = 1,$$

that is $(f_n(x))_{n\in\mathbb{N}}$ converges pointwise on (0,1) to the limit function f(x)=1.

We are going to show this convergence is not uniform on [0,1]. To do this we need to check that

$$(\exists \varepsilon > 0)(\forall N \in \mathbb{N})(\exists x \in (0,1))(\exists n \in \mathbb{N})[(n \ge N) \land (|f_n(x) - 1| \ge \varepsilon)].$$

Set $\varepsilon=\frac{1}{2}$. For any given $N\in\mathbb{N}$ choose $x_N=\frac{1}{2^N}$ and n=N. Observe that $x_N\in(0,1)$. Then

$$|f_n(x_N) - 1| = |\sqrt[n]{x_N} - 1| = |\frac{1}{2} - 1| = \frac{1}{2} = \varepsilon,$$

that is $(f_n(x))_{n\in\mathbb{N}}$ does not converge to f(x)=1 uniformly on (0,1).

(c) We see that for each $x \in \mathbb{R}$

$$\lim_{n \to \infty} \frac{x}{n} = x \lim_{n \to \infty} \frac{1}{n} = 0,$$

that is $(f_n(x))_{n\in\mathbb{N}}$ converges pointwise on \mathbb{R} to the limit function f(x)=0.

We are going to show this convergence is not uniform on ${\mathbb R}.$ To do this we need to check that

$$(\exists \varepsilon > 0)(\forall N \in \mathbb{N})(\exists x \in \mathbb{R})(\exists n \in \mathbb{N})[(n \ge N) \land (|f_n(x) - 0| \ge \varepsilon)].$$

Set $\varepsilon=1$. For any given $N\in\mathbb{N}$ choose $x_N=N$ and n=N. Then

$$|f_n(x_N)| = 1 = \varepsilon,$$

that is $(f_n(x))_{n\in\mathbb{N}}$ does not converge to 0 uniformly on [0,1].

Note that in all these examples the limit function is continuous but the convergence is not uniform!

4. Let

$$f_n: [0,1] \to \mathbb{R}: x \mapsto \frac{n}{n^2 + x^2} \qquad (n \in \mathbb{N}^+).$$

Show that $(f_n)_{n\in\mathbb{N}^+}$ converges uniformly on [0,1].

SOLUTION. Note that for any $x \in [0, 1]$,

$$f_n(x) = \frac{1/n}{1 + (x/n)^2} \to 0 \text{ as } n \to \infty.$$

Let $f:[0,1]\to\mathbb{R}$ be the zero function. Then, for any $x\in[0,1]$,

$$|f_n(x) - f(x)| = \frac{n}{n^2 + x^2} \le \frac{n}{n^2} = \frac{1}{n}$$
 $(n \in \mathbb{N}^+).$

Let $\varepsilon>0.$ Choose $N\in\mathbb{N}^+$ such that $N>1/\varepsilon.$ Then, for any $\mathbb{N}^+\ni n\geqslant N$,

$$|f_n(x) - f(x)| < \varepsilon$$
 $(x \in [0, 1]).$

That is, $(f_n)_{n\in\mathbb{N}^+}$ converges to f uniformly on [0,1].

5. Let A be a subset of the real line and $(f_n)_{n\in\mathbb{N}}$ be a sequence of functions from A to \mathbb{R} . Prove that the sequence $(f_n)_{n\in\mathbb{N}}$ converges uniformly on A if and only if

$$(\forall \varepsilon > 0)(\exists N \in \mathbb{N})(\forall x \in A)(\forall n, m \in \mathbb{N})[(n \ge N) \land (m \ge N) \Rightarrow (|f_n(x) - f_m(x)| < \varepsilon)].$$

Hint: Use Cauchy's Theorem (Theorem 10.5).

SOLUTION. Assume that $(f_n)_{n\in\mathbb{N}}$ converges uniformly on A to the limit function $f:A\to\mathbb{R}$. Thus, by Definition 12.4, for any $\varepsilon>0$

$$(\exists N \in \mathbb{N})(\forall x \in A)(\forall n \in \mathbb{N})[(n \ge N) \Rightarrow (|f_n(x) - f(x)| < \varepsilon/2)].$$

Therefore (compare the proof of Theorem 10.4) by the triangle inequality for any $x \in A$ and for any $n, m \in \mathbb{N}$ we have

$$(n \ge N) \land (m \ge N) \Rightarrow (|f_n(x) - f_m(x)| \le \underbrace{|f_n(x) - f(x)|}_{<\varepsilon/2} + \underbrace{|f_m(x) - f(x)|}_{<\varepsilon/2} < \varepsilon),$$

that is (*) holds.

Assume that (*) holds. Fix $x \in A$. Then (*) means that $(f_n(x))_{n \in \mathbb{N}}$ is a Cauchy sequence of real numbers. Therefore by Cauchy's Theorem (Theorem 10.5) $(f_n(x))_{n \in \mathbb{N}}$ converges. Denote the limit of $(f_n(x))_{n \in \mathbb{N}}$ by f(x), i.e. In such a way we defined a function $f: A \to \mathbb{R}$ such that for every fixed $x \in A$

$$\lim_{n \to \infty} f_n(x) = f(x).$$

This means the sequence $(f_n(x))_{n\in\mathbb{N}}$ converges pointwise on A to the function f(x).

We need to prove that $(f_n(x))_{n\in\mathbb{N}}$ converges to f(x) uniformly on A. To do this, we use (*). Fix $\varepsilon>0$. Then by (*) there exists $N\in\mathbb{N}$ such that for any $x\in A$ and for any $n,m\in\mathbb{N}$ such that $n\geq N$ and $m\geq N$ we have

$$|f_n(x) - f_m(x)| < \varepsilon.$$

Fix n in the above inequality and let $m \to \infty$. Then

$$|f_n(x) - f(x)| = \lim_{m \to \infty} |f_n(x) - f_m(x)| \le \varepsilon.$$

Therefore $(f(x)_n)_{n\in\mathbb{N}}$ converges uniformly on A to f(x).