Course Presentation

Planning and Scheduling

Computer Sciences Degree

Computer Engineering Department

Dra. Ma Dolores Rodríguez Moreno

Teachers and Tutoring hours

Dra. María Dolores R-Moreno	Dr. Pablo Parra Espada
Course leader	
Email: malola.rmoreno@uah.es	Email: pablo.parra@uah.es
Office: E-313	Office: E-235
Phone: 91-885-66-07	Phone: 91-885-69-52
Tutoring hours: Tu: 11-14	Tutoring hours: Tu: 10-12
W: 17-18	Th: 15:00 a 17:00.
Research: AI & ML and robotics	Research: Embedded systems

CV

- European PhD in Computer Sciences
- Research interest
 - AI & ML
 - Robotics
- Research Visits
 - BT, UK
 - CNR, Italy
 - NASA Ames, USA
 - JPL-NASA, USA
- Full Professor (2018)
- https://atcr.aut.uah.es/~mdolores/

General features

Course 3rd Year

Semester Second

Credits 6 ECTS

Web Aula Virtual

Course Schedule Wed: 10-12 (on-line)

Labs Schedules Wed: 8-10(SA1), 12-14 (SA1), 15-17 (SA1), 17-19 (SA1)

Objectives

General Objective

Know AI Planning: concept & techniques

Specific Objectives

- Explain how classic search techniques differ in planning systems
- Explain the differences between planning as search, operator-based planning and propositional planning
- Compare and contrast static planning with those that need dynamic execution
- Know the impact of AI planning in Robotics

Contents

Pai	rt	Topics
I.	Introduction	Scientific ProgrammingPlanning
2.	AI Planning	• Languages & Techniques
3.	AI Scheduling	• Techniques
4.	Application Domains	• Robotic

Course Scheduling

• <u>Time distribution of the course</u> (on-line or labs SA1)

Methodology

- Theory classes
- Problems solved

- Flipped Learning
 - Please, install SOCRATIVE

Continuous Assessment

Instruments Rating		% Mark
I.	Final Exam	40%
2.	Testing Lab	30%
3.	Partial Exam/Assignments	30%

Testing Lab (30%)

- Each lab assignment has a deadline, upload in a .zip the exercises before that date
- The assignment is compulsory
- The **lab exam** defines the lab mark
- Missing a lab assignment means 1/3 (10%) less of the total lab mark (30%)

Partial Exam/Homework (30%)

- Visualizing ALL videos → 0,25points
- 0,75 points \rightarrow The rest, by quizzes in the class
- Patrial exam (20points)

Single Assessment

1	nstruments Rating	% Mark
I	. Final Exam	100%

Regulation

- Notifications by the e-learning platform
- Contact by e-mail
- Respect and courtesy
- Plagiarism will not be tolerated

Bibliography

- Malik Ghallab, Dana Nau and Paolo Traverso (2016). Automated Planning and Acting. Cambridge University Press, online ISBN: 9781139583923.
- Stuart Russell y Peter Norvig (2009). Artificial Intelligence: A Modern Approach. (3rd Edition). Ed. Pearsons.
- McDermott, Drew; Ghallab, Malik; Howe, Adele; Knoblock, Craig; Ram, Ashwin; Veloso, Manuela; Weld, Daniel; Wilkins, David (1998). PDDL-The Planning Domain Definition Language. Technical Report CVC TR98003/DCS TR1165. New Haven, CT: Yale Center for Computational Vision and Control.
- Fikes and Nilsson (1971). STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving, Artificial intelligence, 2 (3-4): 189-208.
- A. Blum and M. Furst (1997). Fast Planning Through Planning Graph Analysis. Artificial Intelligence, 90:281-300
- Jörg Hoffmann (2001). FF: The Fast-Forward Planning System. AI Magazine, 22 (3):57-62.

Questions???

Planning and Scheduling

Computer Sciences Degree

Computer Engineering Department

Dra. Mª Dolores Rodríguez Moreno

Socrative Quiz: GIIPLANNING (Room)

Planning and Scheduling

Computer Sciences Degree

Computer Engineering Department

Dra. Ma Dolores Rodríguez Moreno

