第四章 多目标规划

- 前面讨论的线性规划、整数规划都只有一个目标函数。
- 但实际问题中往往需要考虑多个目标,而且在诸多目标中还有主、次之分,有的相互补充,有的相互对立。
- 问题是如何处理复杂的甚至互相矛盾的多个目标,即在一定的约束条件下,要从众多的方案中选择一个或几个较好的方案,使多个目标都能达到满意的结果。
- 比如,设计一个新产品的工艺过程,希望产量高、成本低、 质量好、利润大。由于需要同时考虑多个目标,这类问题 比单目标问题要复杂得多。
- 多目标规划是上个世纪60年代初发展起来的运筹学的一个 分支。

例4-1国家计划对n个企业进行投资,投资总额为a亿元,设当对第i个企业投资额为 a_i 亿元时可得收益为 c_i 亿元, $i=1,2,\cdots,n$. 投资的宗旨是力争投资少而收益大. 试确定最佳的投资方案.

建立数学模型:

设总投资为 $f_1(X)$ 总收益为 $f_2(X)$

$$\min f_{1}(X) = \sum_{i=1}^{n} a_{i} x_{i}$$

$$\max f_{2}(X) = \sum_{i=1}^{n} c_{i} x_{i}$$

$$\sum_{i=1}^{n} a_{i} x_{i} \leq a$$

$$x_{i}(x_{i} - 1) = 0$$

$$i = 1, 2, \dots, n$$

第四章 多目标规划

第四节 目标规划

- 目标规划方法是目前解决多目标规划问题的成功的方法之一,它是在(*LP*)基础上发展起来的。
- 这种方法的基本思想是:对每一个目标函数,预 先给定一个期望值(目标值),在现有的约束条件 下,这组期望值也许能够达到,也许达不到。我 们的任务是求出尽可能接近这组预定期望值的解。

第四章 多目标规划

第四节 目标规划

- **类**线性目标规划的数学模型
 - 单目标目标规划数学模型
 - 多目标目标规划数学模型
 - 线性目标规划的求解方法
 - 序列法
 - 多阶段法
 - 単纯形法★

一. 线性目标规划的数学模型:

例1 某家俱厂生产两种产品:桌子和椅子。售出一张桌子的利润为8百元,售出一把椅子的利润为4百元。又知桌子和椅子需经过两个加工工段:装配工段和精整工段。其中每张桌子和每把椅子所需工时,以及各工段的生产能力由下表给出:

问题:制定最优的生产计划使一天的利润最大。

	桌子	椅子	总工时/天
装配工段	4	3	30
精整工段	1	3	12
利润(百元)	8	4	

	桌子	椅子	总工时/天
装配工段	4	3	30
精整工段	1	3	12
利润(百元)	8	4	

建立数学模型:设桌子和椅子一天的产量分别为 x_1,x_2

目标: 一天的利润最大

$$\max Z = 8x_1 + 4x_2$$

$$s.t. \begin{cases} 4x_1 + 3x_2 \le 30 \\ x_1 + 3x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

第四章 多目标规划

第四节 目标规划

- 线性目标规划的数学模型
 - 单目标目标规划数学模型
 - 多目标目标规划数学模型
- 线性目标规划的求解方法
 - 序列法
 - 多阶段法
 - 单纯形法 ★

(1)要求一天的利润达到200(百元),问应如何安排生产计划?

性能指标 目标值(期望值)

$$8x_1 + 4x_2 = 200$$

例1

	桌子	椅子	工时
装配	4	3	30
精整	1	3	12
利润	8	4	

$$\max Z = 8x_1 + 4x_2$$

$$s.t. \begin{cases} 4x_1 + 3x_2 \le 30 \\ x_1 + 3x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

(1)要求一天的利润达到200(百元),问应如何安排生产计划?

性能指标

目标值(期望值)

$$8x_1 + 4x_2 = 200 \longrightarrow 8x_1 + 4x_2 + d^- - d^+ = 200$$

建立单目标目标规划数学模型的方法:

- 一引入偏差变量将目标转化为目标约束;
- 2. 极小化偏差变量实现目标。

引入一对偏差变量:

负偏差变量d⁻= 利润不足200百元的差额值≥0

正偏差变量d+= 利润超过200百元的超出值≥0

(1)要求一天的利润达到200(百元),问应如何安排生产计划?

性能指标

目标值(期望值)

$$8x_1 + 4x_2 = 200 \longrightarrow 8x_1 + 4x_2 + d^- - d^+ = 200$$

$$8x_1 + 4x_2$$
 200 8 $x_1 + 4x_2 + a - a = 200$ **建立单目标目标规划数学模型的方法: 8** $x_1 + 4x_2 = 200$ **1**. 引入偏差变量将目标转化为目标约束

极小化偏差变量实现目标。

分析:
$$\because d^-, d^+ \ge 0 \therefore d^- + d^+ \ge 0$$
, 若 $\min(d^- + d^+) = 0$ 则 $d^- = d^+ = 0$ $\min(d^- + d^+)$

(2)要求一天的利润不少于200(百元),问应如何安排生产计划?

性能指标 目标值(期望值)

$$3x_1 + 4x_2 \ge$$

$$8x_1 + 4x_2 \ge 200 \longrightarrow 8x_1 + 4x_2 + d^- - d^+ = 200$$

分析:
$$::d^- \ge 0$$
 : 希望 $\min d^- = 0$ $8x_1 + 4x_2 - d^+ = 200$

$$8x_1 + 4x_2 \ge 200$$

引入一对偏差变量:

 d^- = 利润不足200百元的差额值 ≥ 0

 d^+ = 利润超过200百元的超出值 ≥ 0

- 1. 引入偏差变量将目标转化为目标约束;
- 2. 极小化偏差变量实现目标。

(2)要求一天的利润不少于200(百元),问应如何安排生产计划?

性能指标 目标值(期望值)

$$8x_1 + 4x_2$$

$$200 \longrightarrow 8$$

$$8x_1 + 4x_2 \ge 200 \longrightarrow 8x_1 + 4x_2 + d^- - d^+ = 200$$

分析:
$$:: d^- \ge 0$$
 :. 希望 $\min d^- = 0$

$$8x_1 + 4x_2 - d^+ = 200$$

min
$$d^-$$

$$8x_1 + 4x_2 + d^- - d^+ = 200$$

$$|4x_1 + 3x_2| \le 30$$

$$x_1 + 3x_2 \le 12$$

$$\begin{cases} 4x_1 + 3x_2 \le 30 \\ x_1 + 3x_2 \le 12 \\ x_1, x_2 \ge 0 \quad d^-, d^+ \ge 0 \end{cases}$$

$$8x_1 + 4x_2 \ge 200$$

$$0 \ d \ , d \ge 0$$
 $\max Z = 8x_1 + 4x_2$ $1. 引入偏差变量将目标转4 2. 极小化偏差变量实现目标 $x_1 + 3x_2 \le 12$ $x_1, x_2 \ge 0$$

(3)要求一天的利润不少于230百元, → $8x_1 + 4x_2 \ge 230$

装配车间的总工时不超过28工时,问应如何安排生产计划?

性能指标

目标值(期望值)

$$4x_1 + 3x_2$$

$$\leq$$

$$4x_1 + 3x_2 \leq 28 \longrightarrow 4x_1 + 3x_2 + d^- - d^+ = 28$$

分析: $::d^+ \ge 0$: 希望 $\min d^+ = 0$

$$4x_1 + 3x_2 + d^- = 28$$

$$4x_1 + 3x_2 \le 28$$

引入一对偏差变量:

 d^- = 装配车间总工时不足28工时的

 d^+ = 装配车间总工时超过28工时的

- 1. 引入偏差变量将目标转 s.t. $x_1+3x_2 ≤ 12$
- 2. 极小化偏差变量实现目

$$\max Z = 8x_1 + 4x_2$$

$$\begin{cases} 4x_1 + 3x_2 \le 30 \\ x_1 + 3x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

(3)要求一天的利润不少于230百元, $\longrightarrow 8x_1 + 4x_2 \ge 230$

装配车间的总工时不超过28工时,问应如何安排生产计划?

$$4x_1 + 3x_2$$

$$\leq$$

分析: $::d^+ \ge 0$: 希望 $\min d^+ = 0$

 $\min d^+$

$$s.t.\begin{cases} 4x_1 + 3x_2 + d^- - d^+ = 28 \\ 8x_1 + 4x_2 \ge 230 \\ x_1 + 3x_2 \le 12 \\ x_1, x_2 \ge 0 \quad d^-, d^+ \ge 0 \end{cases}$$

$$4x_1 + 3x_2 + d^- = 28$$
$$4x_1 + 3x_2 \le 28$$

$$\max Z = 8x_1 + 4x_2$$

$$s.t.\begin{cases} 4x_1 + 3x_2 \le 30 \\ x_1 + 3x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

将上述三种情况推广到一般:

假设性能指标 $f(X) = f(x_1, x_2, \dots, x_n)$ 的目标值为 f_0

引入一对偏差变量:

 d^- = 性能指标 f(X) 不足 f_0 的差额值

 d^+ = 性能指标 f(X) 超过 f_0 的超出值

将该目标转化成目标约束: $f(X)+d^--d^+=f_0$

- 1. 引入偏差变量将目标转 $\{x_1, t_2\} \le 12$
- 2. 极小化偏差变量实现目标

$$\max Z = 8x_1 + 4x_2$$

$$s.t.\begin{cases} 4x_1 + 3x_2 \le 30 \\ x_1 + 3x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

1. 单目标目标规划数学模型: $f(X)+d^--d^+=f_0$

目标规划有以下五种形式的目标函数:

- **1.** 若要求 $f(X) = f_0$,则目标函数为 $min(d^- + d^+)$
- 2. 若要求 $f(X) \ge f_0$,则目标函数为 $\min d^{-1}$
- 3. 若要求 $f(X) \le f_0$,则目标函数为 $\min d^+$
- 4. 若要求 $\min f(X)$,则目标函数为 $\min (d + d^-)$

$$f(X) + d^{-} - d^{+} = f_{0} \longrightarrow f(X) = f_{0} + (d^{+} - d^{-})$$

- 1. 引入偏差变量将目标转化为目标约束;
- 2. 极小化偏差变量实现目标。

1. 单目标目标规划数学模型: $f(X)+d^--d^+=f_0$

目标规划有以下五种形式的目标函数:

- **1.** 若要求 $f(X) = f_0$,则目标函数为 $min(d^- + d^+)$
- 2. 若要求 $f(X) \ge f_0$,则目标函数为 min d^-
- 3. 若要求 $f(X) \le f_0$,则目标函数为 $\min d^+$
- 4. 若要求 $\min f(X)$,则目标函数为 $\min (d + d^-)$
- **5.** 若要求 $\max f(X)$,则目标函数为 $\min (d^{-} d^{+})$

$$f(X) + d^{-} - d^{+} = f_{0} \longrightarrow f(X) = f_{0} - (d^{-} - d^{+})$$

第四章 多目标规划

第四节 目标规划

- 线性目标规划的数学模型
 - ✓ 单目标目标规划数学模型
 - 多目标目标规划数学模型
- 线性目标规划的求解方法
 - 序列法
 - 多阶段法
 - 单纯形法 ★

例1 在制定最优生产计划时考虑以下两级目标:

第一级目标:

性能指标

目标值

要求一天的利润达到200百元 $8x_1 + 4x_2 =$

200

第二级目标:

装配车间工时剩余的越多 \min $4x_1 + 3x_2$

30

引入两对偏差变量:

 $d_1^- = 利润不足200百元的差额值$

 $d_1^+ = 利润超过200百元的超出值$

 d_{i}^{+} = 装配车间工时超过30工时的超出

 $\max Z = 8x_1 + 4x_2$ $d_1 =$ 村預超过200日7년时超出值 $d_2 =$ 装配车间工时不足30工时的差据 $x_1 + 3x_2 \le 30$ $x_1 + 3x_2 \le 12$ $d_2 =$ 装配车间工时超过30工时的超出 $x_1, x_2 \ge 0$

例1

$$\min[(d_1^- + d_1^+) + (d_2^+ - d_2^-)]$$

第一级目标:

性能指标目标值

要求一天的利润达到200百元 $8x_1 + 4x_2 = 200$

$$8x_1 + 4x_2$$

第二级目标:

$$8x_1 + 4x_2 + d_1^- - d_1^+ = 200$$

装配车间工时剩余的越多 $\frac{1}{min}$ $4x_1 + 3x_2$

30

引入两对偏差变量:

$$4x_1 + 3x_2 + d_2^- - d_2^+ = 30$$

 $d_1^- = 利润不足200百元的差额4x_1 + 3x_2 = 30 + d_2^+ - d_2^-$

 d_1^+ = 利润超过200百元的超出值

 d_{γ}^{-} = 装配车间工时不足30工时的差额值

 d_{7}^{+} = 装配车间工时超过30工时的超出值

例1

$$\min[(d_1^- + d_1^+) + (d_2^+ - d_2^-)]$$

第一级目标:

要求一天的利润达到200百元 $8x_1 + 4x_2 = 200$

性能指标 目标值

 $8x_1 + 4x_2 + d_1^- - d_1^+ = 200$

第二级目标:

装配车间工时剩余的越多 $\frac{1}{min}$ $4x_1 + 3x_2$

 $\min[(d_1^- + d_1^+) + (d_2^+ - d_2^-)]$

 $8x_{1} + 4x_{2} + d_{1}^{-} - d_{1}^{+} = 200$ $4x_{1} + 3x_{2} + d_{2}^{-} - d_{2}^{+} = 30$ $x_{1} + 3x_{2} \le 12$ $x_{1}, x_{2} \ge 0 \qquad d_{j}^{-}, d_{j}^{+} \ge 0$

 $4x_1 + 3x_2 + d_2^- - d_2^+ = 30$

 $\max Z = 8x_1 + 4x_2$ $s.t. \begin{cases} 4x_1 + 3x_2 \le 30 \\ x_1 + 3x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$

例1

第一级目标:

要求一天的利润达到200百元 $8x_1 + 4x_2 =$

性能指标 目标值

200

第二级目标:

装配车间工时剩余的越多 $\frac{1}{min}$ $4x_1 + 3x_2$

$$4x_1 + 3x_2$$

30

$$\min[(d_{1}^{-} + d_{1}^{+}) + (d_{2}^{+} - d_{2}^{-})]$$

$$8x_{1} + 4x_{2} + d_{1}^{-} - d_{1}^{+} = 200$$

$$4x_{1} + 3x_{2} + d_{2}^{-} - d_{2}^{+} = 30$$

$$x_{1} + 3x_{2} \le 12$$

$$x_{1}, x_{2} \ge 0$$

$$d_{j}^{-}, d_{j}^{+} \ge 0$$

 P_1, P_2 一优先因子

用于区别两级目 标的重要程度

要求: $P_1 >> P_2$

例1

第一级目标:

要求一天的利润达到200百元

性能指标 目标值

 $8x_1 + 4x_2 =$ 200

第二级目标:

装配车间工时剩余的越多 $\frac{1}{min}$ $4x_1 + 3x_2$

$$4x_1 + 3x_2$$

30

$$\min \left[P_{1}(d_{1}^{-} + d_{1}^{+}) + P_{2}(d_{2}^{+} - d_{2}^{-}) \right]$$

$$8x_{1} + 4x_{2} + d_{1}^{-} - d_{1}^{+} = 200$$

$$4x_{1} + 3x_{2} + d_{2}^{-} - d_{2}^{+} = 30$$

$$x_{1} + 3x_{2} \le 12$$

$$x_{1}, x_{2} \ge 0 \quad d_{j}^{-}, d_{j}^{+} \ge 0$$

 P_1, P_2 一优先因子

用于区别两级目 标的重要程度

要求: $P_1 >> P_2$

例2某厂生产两种型号的产品:产品甲和乙,产品信息如下表:

产品	工时	产值	计划产量	
	(小时/件)	(元/件)	(件/周)	
甲	0.1	80	30	
乙	0.2	120	15	

又知该厂的 工作时间为 **40**小时/周

在制定最优生产计划时有以下 4 级目标:

第一级目标 尽量达到计划产值4000元/周;

第二级目标 避免加班;

第三级目标 产量不要低于计划值(产品乙为新型号,更具有竞争力,故重要程度比为甲:乙=1:2);

第四级目标 如果提前完成任务,早下班的时间也不要多于 **5**小时/周。

 d_1^- = 产值不足4000的差额值

 $d_1^+ =$ 产值超过4000的超出值

 d_2^- = 工作时间不足40的差额值

 d_2^+ = 工作时间超过40的超出值

 d_3^- = 甲产量不足30的差额值

 d_3^+ = 甲产量超过30的超出值

 d_4^- = 乙产量不足15的差额值

 d_4^+ = 乙产量超过15的超出值

 d_5^- = 早下班时间不足5的差额值

 d_5^+ = 早下班时间超过5的超出值

第四级目标

早下班的时间不要多于

5小时/周

产品	工时	产值	计划值
甲	0.1	80	30
乙	0.2	120	15

性能指标

目标值

产值
$$80x_1 + 120x_2 = 4000$$
 $80x_1 + 120x_2 + d_1^- - d_1^+ = 4000$
工作时间 $0.1x_1 + 0.2x_2 \le 40$
 $0.1x_1 + 0.2x_2 + d_2^- - d_2^+ = 40$

$$\begin{array}{cccc}
& & \geq & 30 \\
x_1 + d_3^- - d_3^+ = 30 \\
& & \geq & 15 \\
x_2 + d_4^- - d_4^+ = 15 \\
& & \Rightarrow & \leq & 5
\end{array}$$
早下班时间 $d_2^ d_2^- + d_5^- - d_5^+ = 5$

设甲乙一周的产量为 x_1, x_2

第一级目标

尽量达到计划产值4000元/周

第二级目标

避免加班

第三级目标

产品数量不要低于计划值

甲:乙=1:2

第四级目标

早下班的时间不要多于 5小时/周

产品	工时	产值	计划值
甲	0.1	80	30
乙	0.2	120	15

$$80x_1 + 120x_2 + d_1^- - d_1^+ = 4000$$

$$0.1x_1 + 0.2x_2 + d_2^- - d_2^+ = 40$$

$$x_1 + d_3^- - d_3^+ = 30$$

$$x_2 + d_4^- - d_4^+ = 15$$

$$d_2^- + d_5^- - d_5^+ = 5$$

设甲乙一周的产量为 x_1, x_2

第一级目标

尽量达到计划产值4000元/周

第二级目标

避免加班

第三级目标

产品数量不要低于计划值 "用:乙=1:2

第四级目标

早下班的时间不要多于 **5**小时/周

产品	工时	产值	计划值
甲	0.1	80	30
乙	0.2	120	15

$$80x_{1} + 120x_{2} + d_{1}^{-} - d_{1}^{+} = 4000$$

$$0.1x_{1} + 0.2x_{2} + d_{2}^{-} - d_{2}^{+} = 40$$

$$x_{1} + d_{3}^{-} - d_{3}^{+} = 30$$

$$x_{2} + d_{4}^{-} - d_{4}^{+} = 15$$

$$d_{2}^{-} + d_{5}^{-} - d_{5}^{+} = 5$$

$$x_{1}, x_{2} \ge 0 \qquad d_{j}^{-}, d_{j}^{+} \ge 0$$

四级目标的目标规划数学模型

$$\min[P_1(d_1^- + d_1^+) + P_2d_2^+ + P_3(d_3^- + 2d_4^-) + P_4d_5^+]$$

$$80x_{1} + 120x_{2} + d_{1}^{-} - d_{1}^{+} = 4000$$

$$0.1x_{1} + 0.2x_{2} + d_{2}^{-} - d_{2}^{+} = 40$$

$$x_{1} + d_{3}^{-} - d_{3}^{+} = 30$$

$$x_{2} + d_{4}^{-} - d_{4}^{+} = 15$$

$$d_{2}^{-} + d_{5}^{-} - d_{5}^{+} = 5$$

 $x_1, x_2 \ge 0$ $d_i^-, d_i^+ \ge 0$

产品	工时	产值	计划值
甲	0.1	80	30
Z	0.2	120	15

性能指标

目标值

值
$$80x_1 + 120x_2 = 4000$$

作时间
$$0.1x_1 + 0.2x_2 \le 40$$

「甲产量
$$x_1$$

l
乙产量 x_2

早下班时间 d_{i}

四级目标的目标规划数学模型

$$\min[P_{1}(d_{1}^{-} + d_{1}^{+}) + P_{2}d_{2}^{+} + P_{3}(d_{3}^{-} + 2d_{4}^{-}) + P_{4}d_{5}^{+}]$$

$$+ P_{3}(d_{3}^{-} + 2d_{4}^{-}) + P_{4}d_{5}^{+}]$$

$$80x_{1} + 120x_{2} + d_{1}^{-} - d_{1}^{+} = 4000$$

$$0.1x_{1} + 0.2x_{2} + d_{2}^{-} - d_{2}^{+} = 40$$

$$x_{1} + d_{3}^{-} - d_{3}^{+} = 30$$

$$x_{2} + d_{4}^{-} - d_{4}^{+} = 15$$

$$d_{2}^{-} + d_{5}^{-} - d_{5}^{+} = 5$$

 $x_1, x_2 \ge 0$ $d_i^-, d_i^+ \ge 0$

注释:

若各级目标的偏差变量能达 到极小值0,则各级目标被完 全实现. 但多目标规划中, 由 于各级目标之间可能是互补 的,也可能是矛盾的.所以在 现有的约束条件下各级目标 也许能达到,也许不能达到. 我们的任务是使各级目标的 偏差变量达到最小. 各级目 标偏差变量的极小化程度反 映了各级目标被实现的程度.

例4-11

已知三个工厂生产的产品供应四个用户的需要,各工厂的产量,用户的需求量及从各工厂到各用户单位产品的运价如下表: 最优调运方案

工厂用户	1	2	3	4	产量		1	2	3	4	
1	\mathcal{X}_{11}	λ_{12}	χ_{13}	χ_{14}	300	1	200	100			300
2	\mathcal{X}_{21}	\mathcal{X}_{22}	x_{23}	$\int x_{24}$	200	2			200		200
	3	5	4	6 24	200	3			250	150	400
3	$ _{4} ^{x_{31}}$	$\int x_{32}$	$2^{x_{33}}$	$ _{3} x_{34}$	400	4			200	100	100
销量	200	100	450	250			200	100	450	250	

总产量=900 < 总需求量=1000 min

 $\min S = 2950 元$

上述方案只考虑了总运费最小.但在实际问题中,在制定最优调运方案时,所追求的目标及受到的客观限制往往是多方面的。 例如考虑以下7个目标:

用户工厂	1	2	3	4	产量
1	x_{11}	x_{12}	x_{13}	$7^{-x_{14}}$	300
2	$\frac{1}{3} x_{21}$	$\frac{1}{5}$ x_{22}	$\stackrel{\circ}{_{\mathcal{A}}} x_{23}$	$6^{x_{24}}$	200
3	$\int_{A} x_{31}$	$\frac{5}{5} x_{32}$	$\frac{1}{2} x_{33}$	$\frac{3}{3} x_{34}$	400
销量	200	100 80	450	250	

用户4是重要部门,需求量必须满足

目标2

供应用户1的产量中,工厂3的产量 不少于100

目标3

为兼顾一般,每个用户需求量的满足 率不低于**80%**

性能指标

目标值

$$x_{14} + x_{24} + x_{34} = 250$$

$$\begin{array}{c|cccc} x_{31} & \geq & 100 \\ x_{11} + x_{21} + x_{31} \geq & 160 \\ x_{12} + x_{22} + x_{32} \geq & 80 \\ x_{13} + x_{23} + x_{33} \geq & 360 \end{array}$$

$$x_{14} + x_{24} + x_{34} \ge 200$$

	用户工厂	1	2	3	4	产量
I	1	$5^{x_{11}}$	$2^{x_{12}}$	$6^{x_{13}}$	$7^{x_{14}}$	300
	2	x_{21}	x_{22}	$4^{-x_{23}}$	$6^{x_{24}}$	200
	3	$4^{x_{31}}$	5 x ₃₂	$2^{x_{33}}$	$3^{x_{34}}$	400
	销量	200	100	450	250	

$$\frac{x_{11} + x_{21} + x_{31}}{200}$$

$$= \frac{x_{13} + x_{23} + x_{33}}{450}$$

$$2950 \times 110\% = 3245$$

新方案总运费不超过原方案的10% $\sum c_{ii}x_{ii}$

目标5

因道路限制,从工厂2到用户4的路 线应尽量避免运输任务

目标6

用户1和用户3的需求量满足率尽量 保持平衡

性能指标

$$\sum \sum c_{ij} x_{ij}$$

 \boldsymbol{x}_{24}

目标值

< 3245

$$\frac{x_{11} + x_{21} + x_{31}}{200}$$

$$-\frac{x_{13} + x_{23} + x_{33}}{450} = 0$$

用户工厂	1	2	3	4	产量
1	5 x ₁₁	$2^{x_{12}}$	$6^{x_{13}}$	$7^{x_{14}}$	300
2	$\frac{1}{3} x_{21}$	5 x ₂₂	$4^{-x_{23}}$	$6^{x_{24}}$	200
3	$\int_{\Lambda} x_{31}$	$\int_{5}^{3} x_{32}$	x_{33}	$\frac{3}{3} x_{34}$	400
销量	200	100	450	250	

力求减少新方案的总费用

性能指标

 $\frac{1}{2}\sum c_{ij}x_{ij}$

目标值

2950

	性能指标		目标值	1- 1- 0-0
目标1	$x_{14} + x_{24} + x_{34}$, <u>=</u>	250	$x_{14} + x_{24} + x_{34} + d_4^ d_4^+ = 250$
目标2	x_{31}	<u>></u>	100	
	$x_{11} + x_{21} + x_3$	12	160	
口七つ	$\begin{cases} x_{11} + x_{21} + x_{3} \\ x_{12} + x_{22} + x_{32} \\ x_{13} + x_{23} + x_{33} \\ x_{14} + x_{24} + x_{34} \end{cases}$	2 ≥	80	
日标る	$x_{13} + x_{23} + x_{33}$	3 ≥	360	
	$(x_{14} + x_{24} + x_{34})$	1 ≥	200	
目标4	$\sum \sum c_{ij} x_{ij}$	<u><</u>	3245	
目标5	x_{24}	=	0	
目标6	$x_{11} + x_{21} + x$	31		
200				
$-\frac{x_{13} + x_{23} + x_{33}}{=}$				
450				
目标7	$\sum \sum c_{ij}$	x_{ij}	2950	

用户工厂	1	2	3	4	产量
1	x_{11}	\mathcal{X}_{12}	x_{13}	\mathcal{X}_{14}	300
2	x_{21}	x_{22}	X_{23}	\mathcal{X}_{24}	200
3	x_{31}	x_{32}	x_{33}	x_{34}	400
销量	200	100	450	250	

力求减少新方案的总费用

性能指标

 $\min \sum \sum c_{ij} x_{ij}$

目标值

2950

性能指标 目标值
$$x_{14} + x_{24} + x_{34} = 250$$
 $x_{14} + x_{24} + x_{34} + d_4^- - d_4^+ = 250$ 目标2 $x_{31} \ge 100$ $x_{31} + d_5^- - d_5^+ = 100$ $x_{11} + x_{21} + x_{31} \ge 160$ $x_{11} + x_{21} + x_{31} + d_6^- - d_6^+ = 160$ $x_{12} + x_{22} + x_{32} \ge 80$ $x_{12} + x_{22} + x_{32} + d_7^- - d_7^+ = 80$ $x_{13} + x_{23} + x_{33} \ge 360$ $x_{13} + x_{23} + x_{33} + d_8^- - d_8^+ = 360$ $x_{14} + x_{24} + x_{34} + d_9^- - d_9^+ = 200$ $x_{14} + x_{24} + x_{34} + d_9^- - d_9^+ = 200$ $x_{14} + x_{24} + x_{34} + d_9^- - d_9^+ = 200$ $x_{15} + x_{25} + x_{35} = 0$ $x_{15} + x_{25} + x_{25} + x_{25} = 0$ $x_{15} + x_{25} + x_{25} + x_{25} = 0$ $x_{15} + x_{25} + x_{25} + x_{25} = 0$ $x_{15} + x_{25} + x_{25} + x_{25} = 0$ $x_{15} + x_{25} + x_{25} + x_{25} + x_{25} = 0$ $x_{15} + x_{25} + x_{25} + x_{25} = 0$ $x_{15} + x_{25} + x_{2$

线性规划4-4_

性能指标 目标値
目标1
$$x_{14} + x_{24} + x_{34} = 250$$
 $x_{14} + x_{24} + x_{34} + d_4^- - d_4^+ = 250$ 目标2 $x_{31} \ge 100$ $x_{31} + d_5^- - d_5^+ = 100$ $x_{11} + x_{21} + x_{31} > 160$ $x_{11} + x_{21} + x_{31} > 160$ $x_{11} + x_{21} + x_{31} + d_5^- - d_5^+ = 160$ min $Z = P_1 d_4^- + P_2 d_5^- + P_3 (d_6^- + d_7^- + d_8^- + d_9^-)$ $+ P_4 d_{10}^+ + P_5 d_{11}^+ + P_6 (d_{12}^- + d_{12}^+) + P_7 d_{13}^+$ 目标5 $x_{24} = 0$ $x_{24} + d_{11}^- - d_{11}^+ = 0$ 目标6 $x_{11} + x_{21} + x_{31}$ x_{200} $x_{24} + x_{23} + x_{23}$

$$\min Z = P_1 d_4^- + P_2 d_5^- + P_3 (d_6^- + d_7^- + d_8^- + d_9^-) + P_4 d_{10}^+ + P_5 d_{10}^+ + P_6 (d_{12}^- + d_{12}^+) + P_7 d_{13}^+$$

$$(x_{14} + x_{24} + x_{34} + d_{4}^{-} - d_{4}^{+} = 250)$$

$$x_{31} + d_{5}^{-} - d_{5}^{+} = 100$$

$$x_{11} + x_{21} + x_{31} + d_{6}^{-} - d_{6}^{+} = 160$$

$$x_{12} + x_{22} + x_{32} + d_{7}^{-} - d_{7}^{+} = 80$$

$$x_{13} + x_{23} + x_{33} + d_{8}^{-} - d_{8}^{+} = 360$$

$$x_{14} + x_{24} + x_{34} + d_{9}^{-} - d_{9}^{+} = 200$$

<u> </u>	<u> </u>	JŦ			
	1	2	3	4	产量
1	x_{11}	x_{12}	x_{13}	x_{14}	300
2	x_{21}	x_{22}	x_{23}	x_{24}	200
3	x_{31}	x_{32}	x_{33}	x_{34}	400
销量	200	100	450	250	

$$\begin{cases} x_{11} + x_{12} + x_{13} + x_{14} = 300 \\ x_{21} + x_{22} + x_{23} + x_{24} = 200 \\ x_{31} + x_{32} + x_{33} + x_{34} = 400 \\ x_{11} + x_{21} + x_{31} \le 200 \\ x_{12} + x_{22} + x_{32} \le 100 \\ x_{13} + x_{23} + x_{33} \le 450 \\ x_{ij} \ge 0 \quad d_i^-, d_i^+ \ge 0 \end{cases}$$

$$\int_{2}^{1}-d_{12}^{+}=0$$

第四章 多目标规划

第四节 目标规划

- 线性目标规划的数学模型
 - ✓ 单目标目标规划数学模型
 - ✓ 多目标目标规划数学模型
- 线性目标规划的求解方法
 - 序列法
- *
- ■多阶段法
- 单纯形法 ★

作业: P295 7 8

作业: P241 7 8