Sistemas Operativos Práctica 2: Sistema de Ficheros

Christian Tenllado José Ignacio Gómez Katzalin Olcoz José Luis Risco Joaquin Recas Juan Carlos Saez

> Dep. Arquitectura de Computadores y Automática Universidad Complutense de Madrid

> > 10 de marzo de 2015

- Objetivo
- 2 Mi Sistema De Ficheros
- 3 Librería myFS
- 4 Fuse
- Parte Obligatoria

Objetivo

- Crear nuestro propio sistema de ficheros sobre un disco virtual representado por un fichero del SF nativo de Linux
- Montar nuestro sistema de ficheros con FUSE para poder interacicionar con él con las herramientas habituales (ls, cat, nautilus, ...)

- Objetivo
- 2 Mi Sistema De Ficheros
- 3 Librería myFS
- 4 Fuse
- Parte Obligatoria

Sistema de Ficheros Simple

- Sólo un directorio, de tamaño 1 bloque
 - Limitamos el tamaño del nombre de los ficheros
- Estructura del nodo-i:
 - sólo enlaces directos, todo el índice en el nodo-i
- 1 bloque para el superbloque
- 1 bloque para el Mapa de bits
- Tabla de nodos-i: 5 bloques
- Resto para bloques de datos
 - (Tamaño Disco Virtual / Tamaño de bloque)
 - Debe haber 1 como mínimo
- Limitamos el tamaño de los ficheros (en bloques)

Estructura del disco Virtual

Archivo ⇔ SF ⇔ Conjunto de bloques

Correspondencia estructura SF ⇔ bloques del archivo

- Objetivo
- 2 Mi Sistema De Ficheros
- 3 Librería myFS
- 4 Fuse
- Parte Obligatoria

Macros

```
#define BIT unsigned
#define TAM_BLOQUE_BYTES 4096
#define NUM_BITS (TAM_BLOQUE_BYTES/sizeof(BIT))
#define MAX_BLOQUES_CON_NODOSI 5
#define MAX_BLOQUES_POR_ARCHIVO 100
#define MAX_ARCHIVOS_POR_DIRECTORIO 100
#define MAX_TAM_NOMBRE_ARCHIVO 15
#define DISK_LBA int
#define BOOLEAN int
#define SUPERBLOQUE_IDX 0
#define MAPA_BITS_IDX 1
#define DIRECTORIO_IDX 2
#define NODOI_IDX 3
```

Superbloque

Directorio

Nodo-i

Sistema de Ficheros

Acceso a MiSistemaDeFicheros

Offset_Bloque_i = MiSistemaDeFicheros->nodosI[nodo-i]->idxBloques[i]*TamBloque k Bloques = idxBloques[i] Bloques de Datos Bk Superbloque de bis Directorio I MiSistemaDeFicheros discoVirtual descriptor ficheros linux superBloque (read, write) mapaDeBits nodo-i numBloques tamArchivo tipoArchivo directorio tiempoModificado nodo-i nombre interno blog 0 bloq 1 blog 2 nodosl blog 3 blog i MiSistemaDeFicheros->nodoslf nodo-i 1->idxBloquesf i 1 blog n-1 nodosl[nodo-i] lihre numNodosLibres

Funciones Manejo del SF (1)

- Escritura sobre disco virtual:
 - int escribeSuperBloque(MiSistemaDeFicheros* miSistemaDeFicheros)
 - int escribeMapaDeBits(MiSistemaDeFicheros* miSistemaDeFicheros)
 - int escribeDirectorio(MiSistemaDeFicheros* miSistemaDeFicheros)
 - int escribeNodoI(MiSistemaDeFicheros* miSistemaDeFicheros, int numNodoI, EstructuraNodoI* nodoI)
- Lectura del disco virtual:
 - int leeNodoI(MiSistemaDeFicheros* miSistemaDeFicheros, int numNodoI, EstructuraNodoI* nodoI)
- Auxiliares:
 - int calculaPosNodoI(int numNodoI)

Funciones Manejo del SF (II)

- void initSuperBloque(MiSistemaDeFicheros* miSistemaDeFicheros, int tamDisco)
- void initNodosI(MiSistemaDeFicheros* miSistemaDeFicheros)
- void copiaNodoI(EstructuraNodoI* dest, EstructuraNodoI* src)
- int buscaNodoLibre(MiSistemaDeFicheros* miSistemaDeFicheros)
- int buscaPosDirectorio(MiSistemaDeFicheros* miSistemaDeFicheros, char* nombre)
- int myQuota(MiSistemaDeFicheros* miSistemaDeFicheros)
- void reservaBloquesNodosI(MiSistemaDeFicheros* miSistemaDeFicheros,
 DISK_LBA idxBloques[], int numBloques)
- void myFree(MiSistemaDeFicheros* miSistemaDeFicheros)

- Objetivo
- 2 Mi Sistema De Ficheros
- 3 Librería myFS
- 4 Fuse
- Parte Obligatoria

Estructura del servidor de ficheros

Módulo de organización de ficheros

- Modelo de fichero del SO
- Mapeo direcciones lógicas de bloques a direcciones físicas.
- Manejo de los descriptores internos de fichero
 - i-nodos de UNIX
 - registros de Windows NT
- Un módulo por cada tipo de SF soportado
 - Incluye pseudo ficheros como /proc

FUSE: Filesystem in Userspace

- Módulo de kernel: manejador SF Fuse
- Montaje:
 - solicitud proceso a módulo (/proc)
 - 2 registro SF Fuse en punto de montaje
 - creación socket entre módulo y proceso
 - Accesos al SF redirigidas al proceso por el socket
- Acciones realizadas por el proceso de usuario

FUSE: ¿Cómo se usa?

- Creamos controlador (achivo .c)
 - Hay que incluir fuse.h y enlazar con libfuse
- Oeclarar estructura llamada fuse_operations
 - Contiene punteros a funciones que serán llamados por cada operación
- Se termina el programa con la llamada a fuse_main
 - El proceso se queda atendiendo al socket

FUSE: fuse_operations

```
• int (*getattr)(const char *, struct stat *);
int (*open)(const char *, struct fuse_file_info *);
  int (*read)(const char *, char *, size_t, off_t, struct fuse_file_info *);
int (*readdir)(const char *, void *, fuse_fill_dir_t, off_t, struct
  fuse_file_info *);
int (*mknod)(const char *, mode_t, dev_t);
int (*unlink)(const char *);
• int (*rename)(const char *, const char *);
• int (*truncate)(const char *, off_t);
int (*write)(const char *, const char *, size_t, off_t, struct
  fuse file info *):
Auxiliar:
     int resizeInodo(uint64_t idxNodoI, size_t newSize)
```

- Objetivo
- 2 Mi Sistema De Ficheros
- 3 Librería myFS
- 4 Fuse
- Parte Obligatoria

Programa de la Práctica

- Argumentos:
 - -t tamaño_en_bytes_del_SF
 - -a fichero _que _representará _el _disco
 - -f argumentos_a_fuse
 - Ejemplo: ./MiSistemaDeFicheros -t 2097152 -a disco-virtual -f '-d -s punto-montaje'
- ¿Qué hace?
 - Crea el sistema de ficheros sobre el disco virtual
 - Invoca fuse_main con los argumentos pasados con la opción -f
 - Dejaremos montado nuestro sistema de ficheros en un directorio
 - Podremos interactuar con nuestro sistema de ficheros con los comandos habituales (Is, cat, nautilus, ...)

¿Qué debe hacer el alumno?

- Implementar las operaciones:
 - unlink
 - read
 - Devuelve un valor negativo en caso de error
 - El mínimo entre el número de bytes del fichero y el número de bytes solicitados (0 si no hay más datos)
- Registrar estas operaciones en el campo correspondiente de fuse_operations.
- Desarrollar un script de test
 - Descrito en el guión de la práctica