RECEIVED CENTRAL FAX CENTER JUL 0 3 2008

DOCKET NO. 99-B-186 (STMI01-99186) SERIAL NO. 09/591,621 PATENT

IN THE SPECIFICATION:

Please replace the paragraph bridging page 15, line 9 through page 16, line 7 of the specification as filed with the following:

Table 1 and Table 2 below illustrate exemplary contents of memory models file 260. The data in memory models file 260 specifies the relative performance advantages and disadvantages of a plurality of memory types, including static random access memory (SRAM), dynamic random access memory (DRAM), readonly memory (ROM), flash RAM (FLASH), and electronically erasable programmable read only memory (EEPROM).

Memory	Write	Refresh	Read	Area	Write
Туре	Power	Power	Power	Per bit	Speed
SRAM	high	n/a	mid	high	fast
DRAM	low	high	\mathbf{mid}	low	fast
ROM	n/a	n/a	low	low	n/a
FLASH	high	n/a	mid	low	slow
EEPROM	low	n/a	mid	mid	mid

TABLE 1

Memory Type	Read Speed	Erase Capability	Block Size	Area Efficiency	
SRAM	fast	yes	all	high	
DRAM	fast	yes	all	OK <u>low</u>	
ROM	fast	no	ali	good mid	
FLASH	mid	yes	limited	OK low	
EEPROM	mid	yes	limited	OK low	

TABLE 2

DOCKET NO. 99-B-186 (STMI01-99186) SERIAL NO. 09/591,621 PATENT

Please replace the paragraph bridging page 17, line 4 through page 18, line 12 of the specification as filed with the following:

Table 3 and Table 4 below illustrate an additional example of a portion of code that has been re-written by code optimizer program 240 to operate in a more efficient manner. For the original code in Table 3, it is assumed that the variable J is changed in the outer loop and is continually read and written from a conventional SRAM.

```
For (J=0; J<N; J++)
{
For (I=0; I<M; I++)
{
[BLOCK OF EXECUTABLE CODE]
}
}
```

TABLE 3

Code optimizer program 240 creates the new code in Table 4, which makes J into an array in flash RAM that is written and read in consecutive locations:

```
For (J[mem_access=0]=0; J[mem_access]<N; J[mem_access+1]=
J[mem_access]+1, mem_access++)
{
For (J[mem_access]=0]=0; J[mem_access]<N-M; J[mem_access]+1]=
J[mem_access]=0]=0; J[mem_access]<N-M; J[mem_access]+1]=
J[mem_access]=0]=0; J[mem_access]=0; J[mem_ac
```

TABLE 4

DOCKET NO. 99-B-186 (STMI01-99186) SERIAL NO. 09/591,621 PATENT

Mem_access and mem_access1 are now stored in the memory controller block, not in SRAM.