Problem 1

Based on the following qqplots, how well do you think a Gaussian model fit the data?

If you think a Gaussian model does not fit the data indicate another model that you think might fit better.

Problem 2

Suppose y₁,y₂,...,y_n is an observed random sample from the distribution with probability density function

$$f(y;\theta) = \frac{\theta}{y^{\theta+1}}$$
 $y \ge 1$, $\theta > 0$

- (a) Find the maximum likelihood estimate of θ .
- (b) Find the relative likelihood function of θ .
- (c) Find the maximum likelihood estimate of $P(Y > 2; \theta)$ if Y has the probability density function above.

Problem 3

A proposed model for the number of children Y in a randomly chosen family is given by:

$$P(Y = y; \theta) = y(1-\theta)^2 \theta^{y-1}, \quad y = 1, 2, ..., \ 0 < \theta \le \frac{1}{2}$$

Data from 200 randomly chosen children gave the following data (frequency table):

у	1	2	3	4	> 4	Total
f _y	22	7	3	1	0	33

Problem 3 Continued

- (a) Determine the maximum likelihood estimate of θ .
- (b) Determine the relative likelihood function of θ .
- (c) Determine the maximum likelihood estimate of $P(Y \le 2; \theta)$ if Y has the probability function above.