

Optimal Configuration of Distribution Networks under Technical Constraints based on Predictive Methods

Master's Thesis Dissertation by Bhargav P Swaminathan

M2 - Smart Grids and Buildings

Supervisors: Raphaël Caire & Vincent Debusschere

June 25, 2014

Agenda

for today's presentation

Introduction

- Background
- Introduction to the Problem
- Literature Review

Introduction

- Background
- Introduction to the Problem
- Literature Review

Preliminary Work

- Work Objectives
- Test Networks
- Day-ahead Load and DRES Models

Introduction

- Background
- Introduction to the Problem
- Literature Review

The Algorithm

- Formulation & Economic Models
- Components
- Working of the Algorithm

Preliminary Work

- Work Objectives
- Test Networks
- Day-ahead Load and DRES Models

Introduction

- Background
- Introduction to the Problem
- · Literature Review

Preliminary Work

- · Work Objectives
- Test Networks
- · Day-ahead Load and DRES Models

The Algorithm

- Formulation & Economic Models
- Components
- · Working of the Algorithm

Results & Conclusions

- Results Obtained
- Conclusions
- Future Work

Electrical Distribution Network Optimization

• Merlin and Back method, close to 40 years ago!

- Merlin and Back method, close to 40 years ago!
- Developments in Optimization.

- Merlin and Back method, close to 40 years ago!
- Developments in Optimization.
- Shift from single-objective to multiple-objectives, to genetic, and other nature-inspired methods.

- Merlin and Back method, close to 40 years ago!
- Developments in Optimization.
- Shift from single-objective to multiple-objectives, to genetic, and other nature-inspired methods.
- · Problems with DRES integration!

- Merlin and Back method, close to 40 years ago!
- Developments in Optimization.

Electrical Distribution Network Optimization

- Shift from single-objective to multiple-objectives, to genetic, and other nature-inspired methods.
- · Problems with DRES integration!
- Distribution network optimization has to take a new, giant leap.

Electrical Distribution Network Optimization

- Merlin and Back method, close to 40 years ago!
- Developments in Optimization.
- Shift from single-objective to multiple-objectives, to genetic, and other nature-inspired methods.
- · Problems with DRES integration!
- Distribution network optimization has to take a new, giant leap.
- This work proposes a method to take this leap!

to the problem

Why is large-scale DRES integration is a problem?

- Variability / Intermittency
- Bi-directional Power Flows
- Grid Weakening
- Network Imbalance
- · Fault Current Issues
- And finally: Money!

There is a **real need** to find solutions that assuage the problem with the integration of DRES.

Current Work in the Domain

Forecasting:

- · A lot of work has been done in forecasting for DRES and Loads
- Persistency / NWP based methods
- Both traditional and stochastic load forecasting: fairly mature
- But are they applicable to Distribution Networks?

Literature Review

Current Work in the Domain

Forecasting:

- · A lot of work has been done in forecasting for DRES and Loads
- Persistency / NWP based methods
- Both traditional and stochastic load forecasting: fairly mature
- But are they applicable to Distribution Networks?

Distribution Network Optimization:

- "Snapshot" based optimization
- Few instances of multi-temporal optimization
- Even they don't take a lot of issues into account
- Hence, there is a real need for a novel tool

Part II Preliminary Work

Create a day-ahead schedule based on DRES and Load forecasts

- Create a day-ahead schedule based on DRES and Load forecasts
- Effectively utilize all **flexibilities** in distribution networks for optimization

Work Objectives

- Create a day-ahead schedule based on DRES and Load forecasts
- Effectively utilize all **flexibilities** in distribution networks for optimization
- NOT only use "snapshot" based optimization, i.e. should be multi-temporal

- Create a day-ahead schedule based on DRES and Load forecasts
- Effectively utilize all **flexibilities** in distribution networks for optimization
- NOT only use "snapshot" based optimization, i.e. should be multi-temporal
- Be multi-objective

- Create a day-ahead schedule based on DRES and Load forecasts
- Effectively utilize all **flexibilities** in distribution networks for optimization
- NOT only use "snapshot" based optimziation, i.e. should be multi-temporal
- Be multi-objective
- Be modular

- Create a day-ahead schedule based on DRES and Load forecasts
- Effectively utilize all **flexibilities** in distribution networks for optimization
- NOT only use "snapshot" based optimziation, i.e. should be multi-temporal
- Be multi-objective
- Be modular
- Be a black box for end-users

Network 1 - PRFDIS LIrban Network

- Reduced-scale Urban Network
- 14 buses, 17 lines
- Connected Load: 26.5 MVA
- Installed DRES Capacity: 27 MW
- Undervoltage and overcurrent problems

Network 2 - IEEE 11kV Rural Network

- · Larger Network than PREDIS
- 70 buses, 79 lines
- Connected Load: 5.41 MVA
- DRES Info not available

Raw Models

- Two raw models extracted from literature.
- Specific weights for different types of loads.
- Residential, Industrial, Commercial, and Public Lighting.
- DRES Models: Values based on characteristic curves.
- Variation of Solar Power etc., taken into account.

Models Applied to Networks

Load Model A

- This model consists of a simple association of each load type to one node.
- The load in each node varies accordingly for a given 24 hour period.

Load Model B

Each node has a particular % of loads of each type.

Load Type	PREDIS Network	Rural Network
Residential	5 – 80%	8 – 50%
Industrial	5 – 50%	20 - 75%
Commercial	0 – 50%	5 – 70%
Lighting	5-15%	5-15%

Models Applied to Networks Load Model A

- This model consists of a simple association of each load type to one node.
- The load in each node varies accordingly for a given 24 hour period.

Load Model B

Each node has a particular % of loads of each type.

Load Type	PREDIS Network	Rural Network
Residential	5 – 80%	8 – 50%
Industrial	5 – 50%	20 - 75%
Commercial	0 – 50%	5-70%
Lighting	5 – 15%	5-15%

Rural Network (Based on Model 2) ower (MW) 3 8 20 Time (hour) — Model A — Model B — DRES.

Part III The Algorithm

Formulation

Formulation

Available Flexibilities

© pro-NERDS, SunValley, gov.com.au, wikipedia

Economic Models

· Switching:

$$Cost/switching = \frac{C_{sw}}{n_{sw}} + C_{OM} + C_{log}$$

$$C_{OM} = c \cdot f(t_{sw})$$

$$\begin{aligned} \textit{Cost/operation} &= \frac{\textit{C}_{OLTC}}{\textit{n}_{op}} + \textit{C}_{OM} + \textit{C}_{log} \\ &\textit{C}_{OM} = \textit{c} \cdot \textit{f}(\textit{t}_{op}) \end{aligned}$$

Models for Load Reduction, VVC, and Violations are more difficult to develop.

Switching Operation	300€
Load Reduction	6 €/MWh
OLTC Operation	20 €/Tap Change
VVC	132.9 €/MWh
Violations	500 €/violation

Components

 $Legend: VVC: Voltage\ VAr\ Control, LR: Load\ Reduction, OLTC: On-Load\ Tap\ Changing$

Components - Reconfiguration

Multi-Objective Reconfiguration

- Branch exchange based method with pre-selection
- Membership Functions for Each Objective:

$$x_{i} = \frac{PLOSS(i)}{PLOSS0} \qquad i = 1, 2, N_{k}$$

$$\mu L_{i} = \frac{(x_{max} - x_{i})}{(x_{max} - x_{min})} \qquad \text{for } x_{min} < x_{i} < x_{max}$$

$$\mu L_{i} = 0 \qquad \qquad \text{for } x_{i} \le x_{min}$$

$$\mu L_{i} = 1 \qquad \qquad \text{for } x_{i} \ge x_{max}$$

- Fuzzy min-max principle for finding branch to exchange
- Reconfiguration database based on "maximum" conditions

Components - Local Management

To manage "local" violations in distribution networks for the hour when it is launched.

Voltage Violations

- When V < 0.95pu or V > 1.05pu
- Solution: Use nearby nodes to improve voltage profile
- Objective function: f = abs(V (0.95 + c))

Current Violations

- When I > I_{max}
- Solution: Use downstream nodes to try reduce line current
- Objective function: $f = abs(I_{max} - (I + c))$
- When both current and voltage violations exist, consider both sets of nodes, $f = abs(V (0.95 + c)) + abs(I_{max} (I + c))$
- Once done, check if $C_{spent} \ge C_{org}$, if yes, do not optimize.
- Return solution to calling function.

Components - Global Management

- At hour h, perform reconfiguration, and globally optimize using LM functions
- From hour h+1 to end of the day, check for violations
- Classify violations found and launch the respective management function
- At the end of the day, calculate overall costs and feed it back to calling function

- At hour h, use only LM functions to optimize globally
- From hour h+1 to end of the day, check for violations
- · Classify violations found and launch the respective management function
- At the end of the day, calculate overall costs and feed it back to calling function

Working

Part IV Results & Conclusions

Initial Results

Why "Maximum" Condition was Chosen

Methodology

- Both networks were tested with the two load models.
- Two initial configurations were used: the original, and the 24 hour optimal configurations.

Methodology

- · Both networks were tested with the two load models.
- Two initial configurations were used: the original, and the 24 hour optimal configurations.

1	Output Variables		
	Money Spent without Optimization	Money Spent with Optimization	
	Load Reduction effected	DRES VVC Outputs	
	Number of Switching Operations	Number of OLTC Operations	
	Loss Curves over the 24h period	Complete Bus Voltage Profiles	
	Violations in the Network	Final Line and Bus statuses for every hour	

PREDIS Network - Load Model A

PREDIS Network - Load Model A

Rural Network - Load Model B

Conclusions

The developed algorithm

- · Can optimize networks with a variety of characteristics.
- Is multi-objective and multi-temporal.
- Takes into account the day-ahead forecasts of DRES and loads, and uses inherent flexibilities.
- Outputs a day-ahead schedule.
- Provides Up to 70% reduction in expenditure, 91% reduction in violations, and 75% reduction in losses.
- Executes quickly.

R P Swaminathan

Conclusions

The developed algorithm

- Can optimize networks with a variety of characteristics.
- Is multi-objective and multi-temporal.
- Takes into account the day-ahead forecasts of DRES and loads, and uses inherent flexibilities.
- Outputs a day-ahead schedule.
- \bullet Provides Up to 70% reduction in expenditure, 91% reduction in violations, and 75% reduction in losses.
- Executes quickly.

Professional and Personal Perspectives

- Professional Perspectives: about my work in the laboratory
- · Personal Perspectives: studying abroad

Work envisaged

- · Sensibility studies
- The development of a novel reconfiguration function
- The development of a better multi-objective constrained optimization function
- The development of a complete economic model
- The development of a day-ahead market based purchase scenario
- The development of a probabilistic load-flow function

All as a part of my PhD here at G2ELab, commencing in September.

Questions? ©

Elevator Pitch

The Algorithm

Components - Reconfiguration (Extras)

Multi-Objective Reconfiguration

- Branch exchange based method with pre-selection
- Membership Functions for Each Objective:

$$\begin{aligned} x_i &= \frac{PLOSS(i)}{PLOSS0} & i = 1, 2, N_k \\ \mu L_i &= \frac{(k_{max} - x_i)}{(k_{max} - x_{min})} & \text{for } x_{min} < x_i < x_{max} \\ \mu L_i &= 0 & \text{for } x_i \le x_{min} \\ \mu L_i &= 1 & \text{for } x_i \le x_{max} \end{aligned} \quad \begin{aligned} \mu V_i &= \frac{(y_{max} - y_i)}{(y_{max} - y_{min})} & \text{for } y_{min} < y_i < y_{max} \\ \mu V_i &= 1 & \text{for } y_i \le y_{min} \\ \mu V_i &= 0 & \text{for } y_i \ge y_{max} \end{aligned}$$

$$\begin{aligned} z_i &= max \left(\frac{I}{I_{max}} \right) & \text{for all branches} \\ \mu A_i &= \frac{(z_{max} - z_i)}{(z_{max} - z_{min})} & \text{for } z_i < z_{max} \end{aligned} \quad \mu B_i &= \frac{(u_{max} - u_i)}{(u_{max} - u_{min})} & \text{for } u_i < u_{max} \\ \mu B_i &= 1 & \text{for } u_i < u_{max} \end{aligned}$$

- Fuzzy min-max principle for finding branch to exchange
- Creation of the reconfiguration database based on "maximum" conditions

The Algorithm

Working

Initial Results

Why "Maximum" Condition was Chosen

Parameter	Original Network	Merlin & Back	Fuzzy Algorithi
PREDIS Network			
Power Losses (kWh)	11503.77	2678.49	2796.41
Minimum Voltage (pu)	0.9359	0.9415	0.9433
Voltage Violations	70	9	5
Rural Network			
Power Losses (kWh)	999.81	814.11	822.82
Minimum Voltage (pu)	0.9262	0.9410	0.9462
Voltage Violations	34	11	7

PREDIS Network - Load Model B

PREDIS Network - Load Model B

Rural Network - Load Model A

