VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta informačných technológií

Elektronika pre informačné technológie 2020/2021

Semestrálny projekt

Obsah

Úloha č.1 – Metóda zjednodušovania	3
Úloha č.2 – Thévenivova veta	6
Úloha č.3 – Metóda uzlových napätí	8
Úloha č.4 – Metóda slučkových prúdov (striedavý prúd)	10
Úloha č.5 – Diferenciálna rovnica	12
Zhrnutie	14

Úloha č.1 – Metóda zjednodušovania

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
В	95	115	650	730	340	330	410	830	340	220

Využitím metódy postupného zjednodušovania dostanem odpor R_{EKV} a celkový prúd I, spätnými krokmi dopočítam I_{R6} , U_{R6} .

1. Napäťové zdroje U₁ a U₂ zlúčim do U₁₂, paralélne zapojené rezistory R₃ a R₄ zlúčím do R₃₄.

$$U_{12} = U_1 + U_2$$

$$R_{34} = \frac{R_3 \cdot R_4}{R_3 + R_4}$$

2. Sériovo zapojené rezistory R₂ a R₃₄ zlúčim do R₂₃₄.

$$R_{234} = R_{34} + R_2$$

3. Rezistory R₁, R₅ a R₂₃₄, ktorú sú zapojené do trojuholníka prekreslím na zapojenie do hviezdy

$$R_{A} = \frac{R_{1} \cdot R_{234}}{R_{1} + R_{234} + R_{5}} = \frac{R_{1} \cdot \left(R_{2} + \frac{R_{3} \cdot R_{4}}{R_{3} + R_{4}}\right)}{R_{1} + \left(R_{2} + \frac{R_{3} \cdot R_{4}}{R_{3} + R_{4}}\right) + R_{5}}$$

$$R_{B} = \frac{R_{1} \cdot R_{5}}{R_{1} + R_{234} + R_{5}} = \frac{R_{1} \cdot R_{5}}{R_{1} + \left(R_{2} + \frac{R_{3} \cdot R_{4}}{R_{3} + R_{4}}\right) + R_{5}}$$

$$R_{C} = \frac{R_{5} \cdot R_{234}}{R_{1} + R_{234} + R_{5}} = \frac{R_{5} \cdot \left(R_{2} + \frac{R_{3} \cdot R_{4}}{R_{3} + R_{4}}\right) + R_{5}}{R_{1} + \left(R_{2} + \frac{R_{3} \cdot R_{4}}{R_{3} + R_{4}}\right) + R_{5}}$$

4. Dvojice sériovo zapojených rezistorov R_B, R₇ a R_C,R₆ zlúčim a následne zlúčim paralélne zapojené odpory R_{C6} a R_{B7}.

$$R_{B7} = R_B + R_7 = \frac{R_1 \cdot R_5}{R_1 + \left(R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}\right) + R_5} + R_7$$

$$R_{C6} = R_C + R_6 = \frac{R_5 \cdot \left(R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}\right)}{R_1 + \left(R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}\right) + R_5} + R_6$$

$$R_{B7C6} = \frac{R_{B7} \cdot R_{C6}}{R_{B7} + R_{C6}} = \frac{\left(\frac{R_1 \cdot R_5}{R_1 + \left(R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}\right) + R_5} + R_7\right) \cdot \left(\frac{R_5 \cdot \left(R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}\right)}{R_1 + \left(R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}\right) + R_5} + R_6\right)}{\left(\frac{R_1 \cdot R_5}{R_1 + \left(R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}\right) + R_5} + R_7\right) + \left(\frac{R_5 \cdot \left(R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}\right) + R_5}{R_1 + \left(R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}\right) + R_5} + R_6\right)}$$

5. Celkový odpor R_{EKV} dostanem po zlúčení troch rezistorov R_A, R_{B7C6} a R₈ zapojených sériovo.

$$R_{EKV} = \frac{R_1 \cdot \left(R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}\right)}{R_1 + \left(R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}\right) + R_5} + \frac{\left(\frac{R_1 \cdot R_5}{R_1 + \left(R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}\right) + R_5} + R_7\right) \cdot \left(\frac{R_5 \cdot \left(R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}\right)}{R_1 + \left(R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}\right) + R_5} + R_6\right)}{\left(\frac{R_1 \cdot R_5}{R_1 + \left(R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}\right) + R_5} + R_7\right) + \left(\frac{R_5 \cdot \left(R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}\right) + R_5}{R_1 + \left(R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}\right) + R_5} + R_6\right)}{R_1 + \left(R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}\right) + R_5} + R_6\right)}$$

$$R_{EKV} = \frac{650 \cdot \left(730 + \frac{340 \cdot 330}{340 + 330}\right)}{650 + \left(730 + \frac{340 \cdot 330}{340 + 330}\right) + 410} + \frac{\left(\frac{650 \cdot 410}{650 + \left(730 + \frac{340 \cdot 330}{340 + 330}\right) + 410}{340 + 330}\right) \cdot \left(\frac{410 \cdot \left(730 + \frac{340 \cdot 330}{340 + 330}\right)}{650 + \left(730 + \frac{340 \cdot 330}{340 + 330}\right) + 410} + 830\right)}{\left(\frac{650 \cdot 410}{650 + \left(730 + \frac{340 \cdot 330}{340 + 330}\right) + 410}}{\left(\frac{650 \cdot 410}{650 + \left(730 + \frac{340 \cdot 330}{340 + 330}\right) + 410}}\right) + \left(\frac{410 \cdot \left(730 + \frac{340 \cdot 330}{340 + 330}\right) + 410}}{650 + \left(730 + \frac{340 \cdot 330}{340 + 330}\right) + 410}}\right) + 220$$

 $R_{EKV} = 842.421794265955 \,\Omega \cong 842.4218 \,\Omega$

6. Následne dosadím do vzorca na výpočet R_{EKV} hodnoty rezistorov. Pomocou R_{EKV} dopočítam aj celkový prúd I.

$$I = \frac{U_{12}}{R_{EKV}}$$

$$I = \frac{U_{12}}{R} = 0.2492812999729525 A \cong 249.2813 \, mA$$

$$U_{R_A} = I \cdot R_A = \frac{781690}{2623}V$$

$$U_{R_{B7C6}} = I \cdot R_{B7C6} = \frac{3890644255260}{48110533531}V$$

$$U_{R_{B7C6}} = U_{R_{B7}} = U_{R_{C6}}$$

$$I_{R_{C6}} = I_{R_6} = \frac{U_{R_{C6}}}{R_{C6}} = \frac{1457085}{18341797} = 0.07944068948 A \approx 0.07944 A$$

$$U_{R_6} = I_{R_6} \cdot R_6 = \frac{1209380550}{18341797} = 65.93577227 V \approx 65.9358 V$$

Úloha č.2 – Thévenivova veta

sk.	<i>U</i> [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
C	200	70	220	630	240	450	300

- 1. Obvod naľavo si zjednoduším na obvod napravo, z ktorého následne vypočítam hodnoty prúdu I_{R3} a napätia U_{R3} . Aby som bol schopný vypočítať tieto hodnoty, tak si najprv musím určit U_i a R_i .
- 2. Výpočet R_i
- Obvod prekreslím bez R₃ a napäťové zdroje nahradím "skratom".

$$R_{45} = R_4 + R_5$$

$$R_{145} = \frac{R_1 \cdot R_{45}}{R_1 + R_{45}}$$

$$R_{26} = \frac{R_2 \cdot R_6}{R_2 + R_6}$$

$$R_i = R_{145} + R_{26} = \frac{R_1 \cdot R_{45}}{R_1 + R_{45}} + \frac{R_2 \cdot R_6}{R_2 + R_6} = 190.4757085\Omega$$

- 3. Výpočet U_i
- Prekreslím obvod bez R₃ a vypočítam napätie "naprázdno" medzi bodmi A a B.

$$U_i + U_{R_1} - U_{R_2} = 0$$

 $U_i = U_{R_2} - U_{R_1}$

- Na výpočet Ui si musím najprv určiť napätia U_{R2} a U_{R1}.

$$\mathbf{1}: -U + U_{R_1} - U_{R_{45}} = 0$$

1:
$$-U + R_1 \cdot I_{x_1} + R_{45} \cdot I_{x_1} = 0$$

$$2: -U + U_{R_2} + U_{R_6} = 0$$

$$2: -U + R_2 \cdot I_{x_2} + R_6 \cdot I_{x_2} = 0$$

$$I_{x_1} = \frac{U}{R_1 + R_{45}} = \frac{5}{19} A$$

$$I_{x_2} = \frac{U}{R_2 + R_6} = \frac{5}{13} A$$

$$U_{R_1} = R_1 \cdot I_{x_1} = \frac{350}{19} V$$

$$U_{R_2} = R_2 \cdot I_{x_2} = \frac{1100}{13} V$$

$$U_i = U_{R_2} - U_{R_1} = \frac{1100}{13} - \frac{350}{19} = \frac{16350}{247} V$$

4. Výpočet IR3 a UR3

$$I_{R_3} = \frac{U_i}{R_i + R_3} = 0.08067799119 A \approx 0.08068 A$$

$$U_{R_3} = R_3 \cdot I_{R_3} = 50.82713445 \, V \cong 50.8271 \, V$$

Úloha č.3 – Metóda uzlových napätí

							$R_3 [\Omega]$		
Γ	С	110	0.85	0.75	44	31	56	20	30

A:
$$I_{R_1} - I_{R_2} - I_{R_3} = 0$$

B:
$$I_{R_1} + I_1 - I_{R_5} = 0$$

$$C: I_{R_5} + I_2 - I_1 - I_{R_4} = 0$$

Postupne si v každej sľučke vyznačenej číslom 1.- 5. vyjadrím prúd a dosadím do rovníc A,B a C.

1.
$$U_A - U + R_1 I_{R_1} = 0$$
 => $I_{R_1} = \frac{U - U_A}{R_1}$

2.
$$U_A - R_2 I_{R_2} = 0$$
 => $I_{R_2} = \frac{U_A}{R_2}$

2.
$$U_A - R_2 I_{R_2} = 0$$
 => $I_{R_2} = \frac{U_A}{R_2}$
3. $U_B + R_3 I_{R_3} - U_A = 0$ => $I_{R_3} = \frac{U_A - U_B}{R_3}$
4. $U_C - R_4 I_{R_4} = 0$ => $I_{R_4} = \frac{U_C}{R_4}$
5. $U_B - U_C - R_5 I_{R_5} = 0$ => $I_{R_5} = \frac{U_B - U_C}{R_5}$

4.
$$U_C - R_4 I_{R_4} = 0$$
 => $I_{R_4} = \frac{U_C}{R_A}$

5.
$$U_B - U_C - R_5 I_{R_5} = 0$$
 => $I_{R_5} = \frac{U_B - U_C}{R_5}$

A:
$$\frac{U - U_A}{R_1} - \frac{U_A}{R_2} - \frac{U_A - U_B}{R_3} = 0$$

B:
$$\frac{U_A - U_B}{R_3} + I_1 - \frac{U_B - U_C}{R_5} = 0$$

C:
$$\frac{U_B - U_C}{R_5} + I_2 - I_1 - \frac{U_C}{R_4} = 0$$

Z rovnice A si vyjadrím napätie U_A a z rovnice C napätie U_C .

$$U_A = \frac{R_1 R_2 U_B + R_2 R_3 U}{R_2 R_3 + R_1 R_3 + R_1 R_2} \qquad U_C = \frac{R_4 U_B + R_4 R_5 (I_2 - I_1)}{R_4 + R_5}$$

 $\label{eq:Vyjadrené} V_{A} \ a \ U_{C} \ dosadím \ do \ rovnice \ U_{B} \ a \ vypočítam \ U_{B}. Po \ vyjadrení \ a \ vypočítaní \ U_{B} \ mi \ vyšiel \ výsledok:$

$$U_B = \frac{197921}{4657} = 42.49996779 V$$

Dopočítam U_{A} pomocou U_{B} .

$$U_A = 44.7393716 V$$

Pomocou U_A dopočítam I_{R2} a nakoniec U_{R2} .

$$I_{R_2} = \frac{U_A}{R_2} = 1.443203779 A \cong 1.4432A$$

$$U_{R_2} = I_{R_2} \cdot R_2 = 44.73931715 V \cong 44.7393 V$$

Úloha č.4 – Metóda slučkových prúdov (striedavý prúd)

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	L_2 [mH]	C_1 [μ F]	$C_2 [\mu \mathrm{F}]$	f [Hz]
В	25	40	11	15	100	85	220	95	80

1. Zostavím si rovnice pre slučkové prúdy IA, IB a IC

$$i_A: R_1 I_A + u_1 + Z_{L2} \cdot (I_A - I_C) + Z_{C2} \cdot (I_A - I_B) = 0$$

$$i_B: Z_{C1} \cdot (I_B - I_A) + R_2 \cdot (I_B - I_C) + Z_{L1} I_B = 0$$

$$i_C: u_2 + Z_{C2} I_C + R_2 \cdot (I_C - I_B) + Z_{L2} \cdot (I_C - I_A) = 0$$

2. Vypočítam si uhlovú frekvenciu

$$\omega = 2\pi f = 160\pi$$

3. Zostavím si maticovú rovnicu pre slučkové prúdy IA, IB a IC

$$\begin{pmatrix} R_1 + Z_{L2} + Z_{C1} & -Z_{C1} & -Z_{L2} \\ -Z_{C1} & Z_{C1} + R_2 + Z_{L1} & -R_2 \\ -Z_{L2} & -R_2 & Z_{C2} + R_2 + Z_{L2} \end{pmatrix} \cdot \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} -u_1 \\ 0 \\ -u_2 \end{pmatrix}$$

$$\begin{pmatrix} 11 + 33.68276559j & 9.042894494j & -42.72566009j \\ 9.042894494j & 15 + 41.22258796j & -15 \\ -42.72566009j & -15 & 15 + 21.78422021j \end{pmatrix} \cdot \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} -25 \\ 0 \\ -40 \end{pmatrix}$$

4. Z tejto rovnice po riešení Cramerovým pravidlom vyjadrím I_A a I_C.

$$\Delta = -24693.744050750965912 \ + \ 57181.409805041304832j$$

 $\Delta 1 = 92900.539592031827445 - 43837.21242135$

 $\Delta 3 = 89700.230087835994116 - 50978.6351549$ j

 $I_A = -1.2374642117430885358 - 1.0902654426996541261$ j A

 $I_C = -1.3223538760373199487 - 0.99763825556155745241j A$

5. Vypočítam i_{L2} a u_{L2}

$$i_{L2} = I_A - I_C = 0.0848896642942314129 \, - \, 0.09262718713809667369 \mathrm{j} \, \mathrm{A}$$

 $u_{L2} = Z_{L2} \cdot i_{L2} = 3.957557712755138369638586 \ + \ 3.62696694178954109536584 \mathrm{j \ A}$

5. Vypočítam $|U_{L2}|$ a $\varphi_{u_{L2}}$

$$|U_{L2}| = \sqrt{\text{Re}(u_{L2})^2 + \text{Im}(u_{L2})^2} = 5.368160974358151518590395253 \text{ V} \cong 5.3682 \text{ V}$$

$$\varphi_{L2} = \arctan \frac{\text{Im}(u_{L2})}{\text{Re}(u_{L2})} = 0.741838195684874817616042 \text{ rad} \cong 0.7418 \text{ rad}$$

Úloha č.5 – Diferenciálna rovnica

sk.	U [V]	L [H]	$R [\Omega]$	$i_L(0)$ [A]
D	25	5	25	12

1. II. Kirchhoffov zákon

$$0 = u_R + u_L - U$$
$$u_L = U - R \cdot i_L$$

2. Známe hodnoty dosadím do rovníc, ktoré platia pre zadaný obvod a následne rovnice upravím

$$i'_{L} = \frac{1}{L}u_{L}$$

$$i'_{L} = \frac{1}{L} \cdot (U - R \cdot i_{L})$$

$$i'_{L} = \frac{1}{5} \cdot (25 - 25 \cdot i_{L})$$

$$i'_{L} = 5 - 5 \cdot i_{L}$$

$$i'_{L} + 5 \cdot i_{L} = 5$$

3. Všeobecný (obecný) tvar riešenia

$$i_L(t) = K(t) \cdot e^{\lambda t}$$

4. Vyjadrím λ z charakteristickej rovnice

$$\lambda + 5 = 0$$
$$\lambda = -5$$

5. Hodnoty dosadím do všeobecného(obecného) tvaru riešenia a rovnicu zderivujem. Následne hodnoty dosadím do rovnice z bodu 2 a vyjadrím.

$$i_{L}(t) = K(t) \cdot e^{-5t}$$

$$i'_{L}(t) = K'(t) \cdot e^{-5t} - 5 \cdot K(t) \cdot e^{-5t}$$

$$i'_{L} + 5 \cdot i_{L} = 5$$

$$K'(t) \cdot e^{-5t} - 5 \cdot K(t) \cdot e^{-5t} + 5 \cdot K(t) \cdot e^{-5t} = 5$$

$$K'(t) \cdot e^{-5t} = 5$$

6. Z K'(t) vyjadrím K(t) pomocou integrácie

$$K'(t) \cdot e^{-5t} = 5 => K'(t) = 5 \cdot e^{5t}$$
$$\int K'(t)dt = 5 \cdot e^{5t}$$
$$K(t) = e^{5t} + c$$

7. K(t) dosadím do rovnice všeobecného(obecného) tvaru riešenia.

$$i_L(t) = K(t) \cdot e^{\lambda t}$$

$$i_L(t) = (e^{5t} + c) \cdot e^{-5t}$$

$$i_L(t) = 1 + c \cdot e^{-5t}$$

8. Pomocou počiatočnej podmienky si vyjadrím konštantu "c", ktorá vznikla pri integrácií.

$$12 = 1 + c \cdot e^{-5 \cdot 0}$$

$$12 = 1 + c \cdot 1$$

$$11 = c$$

9. Riešenie

$$i_L(t) = 1 + 11 \cdot e^{-5t}$$

10. Skúška správnosti

$$i_L(0) = 1 + 11 \cdot e^{-5*0}$$

 $i_L(0) = 12$

$$i'_{L} + 5 \cdot i_{L} = 5$$

$$i_{L}(t) = 1 + 11 \cdot e^{-5t}$$

$$i'_{L}(t) = -55 \cdot e^{-5t}$$

$$-55 \cdot e^{-5t} + 5 \cdot (1 + 11 \cdot e^{-5t}) = 5$$

$$5 = 5$$

Zhrnutie

Príklad	Variant	Výsledky			
č.1	В	$I_{R6} \cong 0.07944 \text{ A}$	$U_{R6} \cong 65.9358 \text{ V}$		
č.2	С	$I_{R3} \cong 0.08068 \text{ A}$	$U_{R3} \cong 50.8271 \text{ V}$		
č.3	C	$I_{R2} \cong 1.4432 \text{ A}$	$U_{R2} \cong 44.7393 \text{ V}$		
č.4	В	$\varphi_{L2}\cong~0.7418~\mathrm{rad}$	$ U_{L2} \cong 5.3682 \mathrm{V}$		
č.5	D	$i_L(t) = 1 + 11 \cdot e^{-5t}$	$i_L(0) = 12$		