CAPÍTULO 2	
I	
	~
	SUCESSÕES NUMÉRICAS

2.1 Definição e propriedades

Definição 2.1.1

Uma sucessão u de \mathbb{R} é uma aplicação de \mathbb{N} em \mathbb{R} tal que para cada $i \in \mathbb{N}$ associamos um número real u(i).

NOTA 2.1.1 Podemos iniciar a sucessão com o indice 0 considerando aplicações u de \mathbb{N}_0 em \mathbb{R} . Por outro lado, falamos de sucessão de \mathbb{Z} , (resp. \mathbb{Q}) quando $u(i) \in \mathbb{Z}$ (resp. $u(i) \in \mathbb{Q}$.

Notação 2.1.1

No contexto das sucessões, é mais habitual usar a notação $u_i = u(i)$ para designar um elemento da sucessão enquanto $(u_i)_{i \in \mathbb{N}}$ representa a sucessão completa (a função u). Para simplificar a notação, usamos também a forma mais curta (u_i) para designar uma sucessão.

Existem duas maneiras para definir as sucessões: por termo geral ou por recorrência.

A sucessão $u_i = \frac{i+1}{i^2+2}$ é difinida por termo geral. Podemos determinar u_{51} sem saber os valores anteriores.

A sucessão $i_{i+1} = u_i - 2u_{i-1}$ é definida por recorrência. Precisamos dos elementos anteriores para avaliar o valor seguinte. Além de mais, para inicializar a sucessão, é necessario dar o valor de u_1 e u_2 .

Exemplo 2.1.1 (sucessões de relevo) Seja $\alpha \in \mathbb{R}$.

A sucessão de termo geral $u_i = \alpha^i$ se chama sucessão geométrica (progressão geométrica). A sucessão de termo geral $u_i = \alpha i$ se chama a sucessão aritmética (progressão aritmética). A sucessão de termo geral $u_i = \frac{\alpha}{i}$ se chama a sucessão harmónica.

Exemplo 2.1.2 (Aproximação com sucessção) Seja a>0 e consideramos a sucessão definida por recorrência $u_1=a,\ u_{i+1}=\frac{u_i^2+a}{2u_i}$. Esta sucessão converge para \sqrt{a} . As sucessões permitem calcular aproximações numéricas de valores como π .

Definição 2.1.2

Sejam $(u_i)_{i\in\mathbb{N}}$ e $(v_i)_{i\in\mathbb{N}}$ duas sucessões de \mathbb{R} . Notamos por $(u_i+v_i)_{i\in\mathbb{N}}$ a sucessão soma, $(u_iv_i)_{i\in\mathbb{N}}$ a sucessão produto e $(u_i/v_i)_{i\in\mathbb{N}}$ a sucessão quociente. Neste último caso, todos os termos v_i devem ser não nulos.

Exemplo 2.1.3 Seja a sucessão de termo geral $u_i = \frac{1}{i}$. A sucessão ao quadrado é $u_i^2 = \frac{1}{i^2}$, a sucessão ao cubo $u_i^3 = \frac{1}{i^3}$.

Introduzimos aqui várias definições importantes para trabalhar com as sucessões.

Definição 2.1.3

Seja $(u_i)_{i\in\mathbb{N}}$ uma sucessão de \mathbb{R} .

- A sucessão é crescente se $u_{i+1} \ge u_i$.
- A sucessão é estritamente crescente se $u_{i+1} > u_i$.
- A sucessão é decrescente se $u_{i+1} \leq u_i$.
- A sucessão é estritamente decrescente se $u_{i+1} < u_i$.
- A sucessão é majorada por M se $\forall i \in \mathbb{N}, u_i \leq M$.
- A sucessão é minorada por m se $\forall i \in \mathbb{N}, u_i \geq m$.

NOTA 2.1.2 Uma sucessão crescente ou decrescente diz-se sucessão monótona. Uma sucessão majorada e minorada é limitada.

EXEMPLO 2.1.4 Mostrar que a sucessão $u_i = \frac{i}{i+1}$ é crecente. Determinamos a diferença entre dois termos consecutivos

$$u_{i+1} - u_i = \frac{i+1}{i+2} - \frac{i}{i+1} = \frac{(i+1)(i+1) - (i+2)(i)}{(i+1)(i+2)} = \frac{1}{(i+1)(i+2)} > 0.$$

En conclusão, $u_{i+1} - u_i > 0$ quer dizer $u_{i+1} > u_i$. A sucessão é (estritamente) crescente.

Recordamos uma técnica de demonstração importante em análise matemátematica: a prova por indução.

Teorema 2.1.1 (Prova por indução)

Seja $\mathcal{H}(i)$ uma propriedade que depende do indice $i \in \mathbb{N}$ e supomos que temos as duas asserções.

- Existe um indice I_0 tal que $\mathcal{H}(I_0)$ é verdadeira.
- Para qualquer $i \geq I_0$, $\mathcal{H}(i)$ verdadeira implica $\mathcal{H}(i+1)$ verdadeira.

Então, para qualquer $i \geq I_0$ a propriedade $\mathcal{H}(i)$ é verdadeira.

Vamos aplicar este teorema com o exemplo seguinte.

EXEMPLO 2.1.5 Seja a sucessão definida por $u_i = 2$, $u_{i+1} = \frac{u_i+1}{2}$. Mostrar que 1 é um minorante da sucessão.

Seja $\mathcal{H}(i)$ a propriedade $u_i \geq 1$. É claro que temos $\mathcal{H}(1)$ proque $u_1 = 2 > 1$. Agora supomos que $\mathcal{H}(i)$ é verdadeira, quer dizer que $u_i > 1$, então $u_i + 1 > 2$ e finalmente $u_{i+1} = \frac{u_i + 1}{2} > 1$. Isto significa que $\mathcal{H}(i+1)$ é verdadeira e concluimos que $u_i > 1$ para qualquer $i \in \mathbb{N}$.

Definição 2.1.4 (subsucessão)

Sejam $(u_i)_{i\in\mathbb{N}}$ uma sucessão de \mathbb{R} e $(i_j)_{j\in\mathbb{N}}$ uma sucessão estritamente crescente de elementos de \mathbb{N} . Então a sucessão $(u_{i_j})_{j\in\mathbb{N}}$ se chama subsucessão da sucessão $(u_i)_{i\in\mathbb{N}}$.

EXEMPLO 2.1.6 Seja a sucessão $u_i = 2^i$, então a sucessão $u_{ij} = 2^{2j} = 4^j$ é uma subsucessão de u_i com $i_j = 2j$.

2.2 Limite de Sucessões

Definição 2.2.1

Sejam $(u_i)_{i\in\mathbb{N}}$ uma sucessão de \mathbb{R} e $\ell\in\mathbb{R}$. A sucessão converge para ℓ se

$$\forall \varepsilon > 0, \exists I_{\varepsilon}, \text{ tal que se } i \geq I_0, |u_i - \ell| < \varepsilon.$$

Escrivemos que $\lim_{i\to\infty} u_i = \ell$.

Proposição 2.2.1

Sejam $(u_i)_{i\in\mathbb{N}}$ uma sucessão de \mathbb{R} e $\ell\in\mathbb{R}$ tal que $\lim_{i\to\infty}u_i=\ell$. Então o limite é único.

Este última proposta justifica o facto que dizemos **o** limite da sucessão e não **um** limite da sucessão.

Nota 2.2.1 A únicidade do limite é de um ponto prático muito importante porque garante que podemos implementar algoritmos informáticos baseado numa sucessão que converge.

Proposição 2.2.2

Seja $(u_i)_{i\in\mathbb{N}}$ uma sucessão de \mathbb{R} tal que $\lim_{i\to\infty}u_i=\ell\in\mathbb{R}$. Então a sucessão é limitada.

DEMONSTRAÇÃO. Escolhemos o caso particular $\varepsilon=1$ na definição de convergência. Existe então $I_1\in\mathbb{N}$ tal que se $i\geq I_0$ temos $\ell-1\leq u_i\leq \ell+1$. Do outro lado notamos por $a=\min_{i\leq I_1}u_i$ e por $b=\max_{i\leq I_1}u_i$ o mínimo e o máximo dos valores de i_i num conjunto finito. Tomando $m=\min(a,\ell-1)$ e $M=\max(b,\ell+1)$, verificamos que para qualquer $i\in\mathbb{N}$, temos $m\leq u_i\leq M$.

Proposição 2.2.3 (monótona limitada)

Seja $(u_i)_{i\in\mathbb{N}}$ uma sucessão de \mathbb{R} .

- Se (u_i) é crescente majorada então converge.
- Se (u_i) é decrescente minorada então converge.

Exemplo 2.2.1 Seja a sucessão $u_i=2,\ u_{i+1}=\frac{u_i+1}{2}.$ Mostramos que a ela é minorada pelo 1. Agora temos

$$u_{i+1} - u_i = \frac{u_i + 1}{2} - u_i = \frac{u_i - 2u_i + 1}{2} = \frac{1 - u_i}{2} < 0$$

porque $u_i > 1$. Deduzimos que $u_{i+1} < u_i$ então é decrescente. Da proposição anterior concluimos que u_i converge para um limite ℓ .

NOTA 2.2.2 A proposição não dá o valor do limite. A única coisa que podemos afirmar é que $\ell \geq 1$.

Proposição 2.2.4 (sucessões enquadradas)

Sejam $(u_i)_{i\in\mathbb{N}}$ e $(v_i)_{i\in\mathbb{N}}$ duas sucessões de \mathbb{R} tal que ambos

$$\lim_{i \to \infty} u_i = \lim_{i \to \infty} w_i = \ell \in \mathbb{R}.$$

Seja uma sucessão $(u_i)_{i\in\mathbb{N}}$ e $I_0\in\mathbb{N}$ tal que

$$\forall i \geq I_o, \qquad u_i \leq w_i \leq v_i.$$

Então $\lim_{i \to \infty} w_i = \ell$.

Exemplo 2.2.2 Seja a sucessão $w_i = \sqrt{\frac{i+1}{i}}$. Temos então

$$u_i = 1 \le \sqrt{\frac{i+1}{i}} \le \frac{i+1}{i} = 1 + \frac{1}{i} = v_i$$

Claramente $\lim_{i\to\infty}u_i=\lim_{i\to\infty}v_i=1$ e concluimos que $\lim_{i\to\infty}w_i=1.$

Definição 2.2.2

Uma sucessão $(u_i)_{i\in\mathbb{N}}$ de \mathbb{R} é uma sucessão de Cauchy se

 $\forall \varepsilon > 0, \exists I_{\varepsilon} \text{ tal que } \forall p.q \geq I_{\varepsilon} \text{ temos } |u_p - u_q| < \varepsilon.$

A principal propriedade da sucessão de Cauchy é que elas são convergentes.

Proposição 2.2.5 (sucessão de Cauchy)

Se $(u_i)_{i\in\mathbb{N}}$ é uma sucessão de Cauchy, então ela converge.

NOTA 2.2.3 As sucessões de Cauchy são muita importantes do ponto de vista teórico.

Uma outra propriedade das sucessões convergentes é que qualquer sua subsucessão também converge.

Proposição 2.2.6

Sejam $(u_i)_{i\in\mathbb{N}}$ uma sucessão de \mathbb{R} e $\ell\in\mathbb{R}$ tal que $\lim_{i\to\infty}u_i=\ell$. Então, qualquer subsucessão $(u_{i_j})_{j\in\mathbb{N}}$ converge para ℓ ,

Exemplo 2.2.3 Seja a sucessão $u_i = (-1)^i$. Mostrar que a sucessão não converge.

Fazemos um raciocínio por absurdo. Supomos que a sucessão converge para um limite ℓ e consideramos as duas subsucessões $(u_{2j})_{j\in\mathbb{N}}$ e $(u_{2j+1})_{j\in\mathbb{N}}$. Obtemos que $u_{2j}=(-1)^{2j}=1$ enquanto $u_{2j+1}=(-1)^{2j+1}=-1$. Deduzimos que $\lim_{j\to\infty}u_{2j}=1$ e $\lim_{j\to\infty}u_{2j+1}=-1$. Os dois limites são diferentes o que traz uma contradição com a hipótese que a sucessão converge. Conclusão: a sucessão não é convergente.

Definição 2.2.3

Sejam $(u_i)_{i\in\mathbb{N}}$ uma sucessão de \mathbb{R} .

• A sucessão tende para $+\infty$ se

$$\forall M > 0, \exists I_M, \text{ tal que se } i \geq I_0, u_i \geq M.$$

Escrevemos que $\lim_{i\to\infty} u_i = +\infty$ ou ainda $u_i \xrightarrow[i\to\infty]{} +\infty$.

• A sucessão tende para $-\infty$ se

$$\forall M > 0, \exists I_M, \text{ tal que se } i \geq I_0, u_i \leq -M.$$

Escrevemos que $\lim_{i\to\infty} u_i = -\infty$ ou ainda $u_i \xrightarrow[i\to\infty]{} -\infty$.

EXEMPLO 2.2.4 A sucessão $u_i = 5i$ tende para $+\infty$. Com efeito seja M > 0, existe um indice I_M tal que temos o enquadramento $I_M - 1 \le M \le I_M$. Em particular se $i \ge I_M$, então $5i \ge 5I_M \ge I_M \ge M$.

Concluimos que para qualquer M > 0, encontramos um $I_M \in \mathbb{N}$ tal que se $i \geq I_M$, temos $u_i \geq M$ e u_i tende para $+\infty$.

Proposição 2.2.7

Seja $(u_i)_{i\in\mathbb{N}}$ uma sucessão de \mathbb{R} .

- Se existe uma outra sucessão $(v_i)_{i\in\mathbb{N}}$ e um indice $I_0 \in \mathbb{N}$ tal que para $i \geq I_0$ temos $u_i \geq v_i$ e $\lim_{i \to \infty} v_i = +\infty$ então $\lim_{i \to \infty} u_i = +\infty$.
- Se existe uma outra sucessão $(w_i)_{i\in\mathbb{N}}$ e um indice $I_0 \in \mathbb{N}$ tal que para $i \geq I_0$ temos $u_i \leq w_i$ e $\lim_{i \to \infty} w_i = -\infty$ então $\lim_{i \to \infty} u_i = -\infty$.

Exemplo 2.2.5 Consideramos a sucessão $u_i = \frac{i^2 - 3i + 1}{2i + 1}$. Podemos verificar que $u_i \ge \frac{i}{2} = v_i$ e como $\lim_{i \to \infty} \frac{i}{2} = +\infty$ então deduzimos $\lim_{i \to \infty} u_i = +\infty$.

2.3 Aritmética dos limites

Damos aqui alguns limites de revelo

Exemplo 2.3.1 Seja $\alpha \in \mathbb{R}$ e consideramos a sucessão $u_i = \alpha^i$.

- Se $\alpha \leq -1$, a sucessão não converge.
- Se $|\alpha| < 1$, a sucessão converge para 0.
- Se $\alpha = 1$, a sucessão converge para 1.
- Se $\alpha > 1$, a sucessão tende para $+\infty$.

Exemplo 2.3.2 Seja $\alpha \in \mathbb{R}$ a consideramos sucessão $u_i = i^{\alpha}$.

- Se $\alpha < 0$, a sucessão converge para 0.
- Se $\alpha = 0$, a sucessão converge para 1.
- Se $\alpha > 0$, a sucessão tende para $+\infty$.

Sejam $(u_i)_{i\in\mathbb{N}}$ e $(v_i)_{i\in\mathbb{N}}$ duas sucessões de \mathbb{R} . As tabelas seguintes correspondem aos limites da soma, do produto e do quociente. O símbolo \star significa que não podemos diretamente determinar o limite.

$\lim u_i$	$-\infty$	ℓ	$+\infty$
$-\infty$	$-\infty$	$-\infty$	*
ℓ'	$-\infty$	$\ell + \ell'$	$+\infty$
$+\infty$	*	$+\infty$	$+\infty$

$\lim u_i$	$-\infty$	$\ell < 0$	$\ell = 0$	$\ell > 0$	$+\infty$
$-\infty$	$+\infty$	$+\infty$	*	$-\infty$	$-\infty$
$\ell' < 0$	$+\infty$	$\ell\ell'$	0	$\ell\ell'$	$\mid -\infty \mid$
$\ell' = 0$	*	0	0	0	*
$\ell' > 0$	$-\infty$	$\ell\ell'$	0	$\ell\ell'$	$+\infty$
$+\infty$	$-\infty$	$-\infty$	*	$+\infty$	$+\infty$

Figura 2.1: Soma (esquerda) e produto (direita) de limites.

$ \lim u_i $	$-\infty$	$\ell < 0$	$\ell = 0$	$\ell > 0$	$+\infty$
$-\infty$	*	0	0	0	*
$\ell' < 0$	$+\infty$	ℓ/ℓ'	0	ℓ/ℓ'	$-\infty$
$\ell' = 0$	*	*	*	*	*
$\ell' > 0$	$-\infty$	ℓ/ℓ'	0	ℓ/ℓ'	$+\infty$
$+\infty$	*	0	0	0	*

Figura 2.2: Quociente (u_i/v_i) de limites.

Exemplo 2.3.3 Seja $\lim_{i\to\infty}u_i=4$ e $\lim_{i\to\infty}v_i=-3$. Usando as tabelas podemos afirmar

$$\lim_{i \to \infty} u_i + v_i = 1, \quad \lim_{i \to \infty} u_i v_i = -12, \quad \lim_{i \to \infty} u_i / v_i = -4/3.$$