Inducción estructural

Clase 20

IIC 1253

Prof. Cristian Riveros

Inducción sobre los naturales

Principio de inducción simple

Para una afirmación P sobre los naturales, si P cumple que:

- 1. P(0) es verdadero,
- 2. si P(n) es verdadero, entonces P(n+1) es verdadero, entonces para todo $n \in \mathbb{N}$ se tiene que P(n) es verdadero.

Principio de inducción fuerte

Para una afirmación P sobre los naturales, si P cumple que:

P(k) es verdadero **para todo k** < **n**, entonces P(n) es verdadero entonces para todo $n \in \mathbb{N}$ se tiene que P(n) es verdadero.

¿podemos generalizar este principio sobre otros conjuntos?

Outline

Definiciones recursivas

Inducción estructural

Outline

Definiciones recursivas

Inducción estructural

Definiciones recursivas

Definiciones recursivas

Definición

Una definición se dice recursiva si puede ser definida a partir de:

- 1. Casos bases sencillos.
- 2. Una serie de reglas que reducen la definición a casos anteriores.

Ejemplo

```
Caso base: F(0) = 0
F(1) = 1
```

Regla recursiva: F(n) = F(n-1) + F(n-2) para $n \ge 2$

Definiciones recursivas

Mas ejemplos

Sumatorias $\sum_{i=0}^{n} i$

Caso base:
$$\sum_{i=0}^{0} i = 0$$

Regla recursiva:
$$\sum_{i=0}^{n} i = \left(\sum_{i=0}^{n-1} i\right) + n$$

Exponencial 2ⁿ

Caso base:
$$2^0 = 1$$

Regla recursiva:
$$2^n = 2^{n-1} \cdot 2$$

Definición

Una definición recursiva de un conjunto S consta de:

- 1. Un conjunto base $B = \{b_1, \dots, b_N\}$ tal que $b_i \in \mathbb{S}$ para todo $i \leq N$.
- 2. Reglas recursivas *R* de la forma:

si
$$s_1, \ldots, s_n \in \mathbb{S}$$
 entonces $R(s_1, \ldots, s_n) \in \mathbb{S}$

3. Una afirmación de exclusión de la forma:

" El conjunto $\mathbb S$ son todos los elementos que se construyen solamente a partir de B y las reglas R."

¿para qué necesitamos la afirmación de exclusión?

Ejemplos

■ Se define el conjunto N tal que:

Caso base: $0 \in \mathbb{N}$

Regla recursiva: Si $a \in \mathbb{N}$, entonces $a + 1 \in \mathbb{N}$.

 $\ensuremath{\mathbb{N}}$ es el conjunto que se construye solo a partir de las reglas anteriores.

■ Se define el conjunto S tal que:

Caso base: $3 \in \mathbb{S}$

Regla recursiva: Si $a \in \mathbb{S}$ y $b \in \mathbb{S}$, entonces $a + b \in \mathbb{S}$.

 $\mathbb S$ es el conjunto que se construye solo a partir de las reglas anteriores.

Desde ahora, siempre omitiremos la afirmación de exclusión.

Palabras

Sea Σ un alfabeto. El conjunto Σ^* se define recursivamente como:

- 1. $\epsilon \in \Sigma^*$.
- 2. si $w \in \Sigma^*$, entonces $wa \in \Sigma^*$ para todo $a \in \Sigma$.

Otro conjunto de palabras

Sea Σ un alfabeto. El conjunto \mathcal{P}_Σ se define recursivamente como:

- $1. \ \epsilon \in \mathcal{P}_{\Sigma} \ \ \text{y} \ \ a \in \mathcal{P}_{\Sigma} \ \ \text{para todo} \ \ a \in \Sigma.$
- 2. si $w \in \mathcal{P}_{\Sigma}$, entonces $a \cdot w \cdot a \in \mathcal{P}_{\Sigma}$ para todo $a \in \Sigma$.

qué corresponde el conjunto \mathcal{P}_{Σ} ?

Expresiones aritméticas

El conjunto $\mathcal{E}_{\mathbb{N}}$ se define recursivamente como:

- 1. $n \in \mathcal{E}_{\mathbb{N}}$ para todo $n \in \mathbb{N}$.
- 2. si $e_1 \in \mathcal{E}_{\mathbb{N}}$ y $e_2 \in \mathcal{E}_{\mathbb{N}}$, entonces:
 - $(e_1 + e_2) \in \mathcal{E}_{\mathbb{N}}$
 - $(e_1 \times e_2) \in \mathcal{E}_{\mathbb{N}}$

 ξ es $\mathcal{E}_{\mathbb{N}} = \mathbb{N}$? ξ de que esta compuesto $\mathcal{E}_{\mathbb{N}}$?

Otra definición recursiva

Sea • un símbolo cualquiera.

El conjunto \mathcal{T}_2 se se define recursivamente como:

- 1. $\bullet \in \mathcal{T}_2$.
- 2. si $t_1 \in \mathcal{T}_2$ y $t_2 \in \mathcal{T}_2$ entonces:

$$\downarrow^{\bullet} \downarrow \qquad \in \mathcal{T}_2$$
 $t_1 \qquad t_2$

¿a qué corresponde el conjunto \mathcal{T}_2 ?

Funciones sobre definiciones recursivas

Podemos utilizar la naturaleza recursiva de un conjunto $\mathbb S$ para definir funciones o propiedades sobre $\mathbb S$.

Ejemplo de funciones sobre palabras

Se define $f: \Sigma^* \to \mathbb{N}$ tal que:

$$f(\epsilon) = 0$$

 $f(wa) = f(w) + 1$ para $w \in \Sigma^*$ y $a \in \Sigma$

¿qué define la función f?

Funciones sobre definiciones recursivas

Podemos utilizar la naturaleza recursiva de un conjunto $\mathbb S$ para definir funciones o propiedades sobre $\mathbb S$.

Mas ejemplos de funciones sobre palabras

Para $b \in \Sigma$ se define $|\cdot|_b : \Sigma^* \to \mathbb{N}$ como:

$$\begin{array}{rcl} \mid \epsilon \mid_b & = & 0 \\ \\ \mid w \cdot a \mid_b & = & \left\{ \begin{array}{ll} \mid w \mid_b + 1 & \text{ si } a = b \\ \\ \mid w \mid_b & \text{ si } a \neq b \end{array} \right. \end{array} \quad \text{para } w \in \Sigma^* \text{ y } a \in \Sigma$$

¿qué define la función
$$|\cdot|_b$$
?

Funciones sobre definiciones recursivas

¿qué definen las siguientes funciones sobre \mathcal{T}_2 ?

Se define la función $g: \mathcal{T}_2 \to \mathbb{N}$ como:

$$g(ullet) = 1$$

$$g\left(ullet box{0.5}{\line (t_1 - t_2)} \right) = g(t_1) + g(t_2) + 1 \quad \text{para } t_1, t_2 \in \mathcal{T}_2$$

Se define la función $g': \mathcal{T}_2 \to \mathbb{N}$ como:

Definiciones sobre construcciones recursivas

```
¿qué definen la siguiente función sobre \mathcal{E}_{\mathbb{N}}?
```

Se define la función $[\cdot]: \mathcal{E}_{\mathbb{N}} \to \mathbb{N}$ como:

¡Cuidado con las definiciones recursivas!

Construcción alternativa de palabras

Sea Σ un alfabeto.

El conjunto $\bar{\Sigma}^*$ se define recursivamente como:

- 1. $\epsilon \in \overline{\Sigma}^*$ y $a \in \overline{\Sigma}^*$ para todo $a \in \Sigma$.
- 2. si $w_1 \in \overline{\Sigma}^*$ y $w_2 \in \overline{\Sigma}^*$, entonces $w_1 w_2 \in \overline{\Sigma}^*$.

¿esta bien la definición?

Se define la función $h: \bar{\Sigma}^* \to \mathbb{N}$ como:

$$h(\epsilon) = 0$$

 $h(w_1w_2) = h(w_1) + 1$ para $w_1, w_2 \in \overline{\Sigma}^*$

¿algún problema?

Outline

Definiciones recursivas

Inducción estructural

Inducción estructural

Sea S un conjunto definido a partir de:

- un conjunto base B y
- lacktriangle un conjunto de reglas recursivas \mathcal{R} .

Definimos la capa S[n] de S para todo $n \ge 0$ como:

$$\begin{split} \mathbb{S}[0] &= B \\ \mathbb{S}[n+1] &= \mathbb{S}[n] \cup \left\{ T(s_1,\ldots,s_k) \mid T \in \mathcal{R} \wedge s_1,\ldots,s_k \in \mathbb{S}[n] \right\} \end{split}$$

¿cuál es el conjunto de capas para las definiciones anteriores?

Inducción estructural

Sea S un conjunto definido a partir de:

- un conjunto base B y
- un conjunto de reglas recursivas R.

Principio de inducción estructural

Para una afirmación P sobre \mathbb{S} , si P cumple que:

- 1. P es verdadero sobre $\mathbb{S}[0]$,
- 2. si P es verdadero sobre $\mathbb{S}[n]$, entonces P es verdadero sobre $\mathbb{S}[n+1]$, entonces la afirmación P es verdadera sobre todo \mathbb{S} .

¿es necesario demostrar este principio de inducción?

Ejemplo de inducción estructural

Ejemplo

Demuestre la afirmación para $w \in \mathcal{P}_{\Sigma}$:

$$P(w)$$
 := si $|w|$ es par, entonces $|w|_b$ es par para todo $b \in \Sigma$.

- 1. $P(\epsilon)$ o P(a) para $a \in \Sigma^*$.
- 2. si P(w) es verdadero, entonces demostramos para $P(a \cdot w \cdot a)$:
 - si $|a \cdot w \cdot a|$ NO es par , entonces $P(a \cdot w \cdot a)$ se cumple.
 - si $|a \cdot w \cdot a|$ es par y $b \in \Sigma$:
 - $\Rightarrow |w| \text{ es par.}$
 - $\Rightarrow |w|_b$ es par.
 - $\Rightarrow |a \cdot w \cdot a|_b$ es par. \checkmark

Por lo tanto, P(w) se cumple para todo $w \in \mathcal{P}_{\Sigma}$.

. .

(por HI)

Ejemplo de inducción estructural

Ejemplo

Demuestre la afirmación para $t \in \mathcal{T}_2$:

$$P(t) := \operatorname{nodos}(t) < 2 \cdot \operatorname{hojas}(t).$$

2. si $P(t_1)$ y $P(t_2)$ es verdadero, entonces dem. para $P(\bullet(t_1,t_2))$:

$$\begin{array}{lll} \mathsf{nodos}(\, \bullet(t_1, t_2) \,) &=& \mathsf{nodos}(t_1) + \mathsf{nodos}(t_2) + 1 \\ &<& 2 \cdot \mathsf{hojas}(t_1) + \mathsf{nodos}(t_2) + 1 \quad \mathsf{(por\ HI)} \\ \mathsf{nodos}(\, \bullet(t_1, t_2) \,) &\leq& 2 \cdot \mathsf{hojas}(t_1) + \mathsf{nodos}(t_2) \\ &<& 2 \cdot \mathsf{hojas}(t_1) + 2 \cdot \mathsf{hojas}(t_2) \quad \mathsf{(por\ HI)} \\ &<& 2 \cdot \mathsf{(hojas}(t_1) + \mathsf{hojas}(t_2)) \end{array}$$

 $< 2 \cdot hojas(t)$

Por lo tanto, P(t) se cumple para todo $t \in \mathcal{T}_2$.