El modelo de regresión lineal

Contents

1	Ecuación del modelo	1
2	Forma matricial del modelo	2
3	Estimación de los parámetros 3.1 Definición de la función de verosimilitud	
4	Residuos 4.1 Definición	5
5	El modelo en diferencias a la media 5.1 Modelo	8

1 Ecuación del modelo

El punto de partida son los **datos**, en este caso se tienen los datos del archivo kidiq.csv. Se quiere estudiar la relación entre la variable kid_score y el resto de variables. A la variable kid_score se le conoce como **variable** respuesta y se representa con la letra y. A las otras variables se les conoce como **variables explicativas**, regresores, cofactores,... y se representan con $x_1, x_2, ..., x_k$.

Pero se quiere estudiar la relación entre kid_score y las otras variables de manera general, se quieren obtener conclusiones generales, no limitadas sólo a los datos. Para ello se considera que los datos disponibles son una parte de un conjunto más grande llamado **población** y se define la ecuación que modela dicha relación en la población, que en este caso es:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki} + u_i, \quad u_i \sim N(0, \sigma^2)$$

- Esta ecuación se conoce como modelo de regresión lineal.
- El término y_i se conoce como variable respuesta: en este caso kid_score.
- x_1, x_2, \ldots, x_k como variables explicativas, regresores, cofactores,...: en este caso mom_hs , mom_iq , mom_work , mom_age .
- El término u_i representa el error del modelo. En este modelo se considera que el error tiene distribución normal con $E[u_i] = 0$ y $Var[u_i] = \sigma^2$.

Este modelo es válido para toda la **población**, es decir, para el conjunto donde se está estudiando el problema, por lo que permite extraer conclusiones generales. Este modelo nos muestra que la relación entre $y \sim x$ es lineal y que depende de unos parámetros: $\beta_0, \beta_1, \beta_2, \cdots, \beta_k$. Estos parámetros son desconocidos. Es decir, se conoce la ecuación del modelo pero no los parámetros del modelo. A partir de los datos o **muestra** se

pueden estimar dichos parámetros, que se indicará con $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \cdots, \hat{\beta}_k$. Pero para conocer el valor exacto de $\beta_0, \beta_1, \beta_2, \cdots, \beta_k$ se necesitaría conocer toda la población.

2 Forma matricial del modelo

La ecuación del modelo se puede escribir en notación matricial:

$$i = 1 \Rightarrow y_1 = \beta_0 + \beta_1 x_{11} + \beta_2 x_{21} + \dots + \beta_k x_{k1} + u_1, \quad u_1 \sim N(0, \sigma^2)$$

$$i = 2 \Rightarrow y_2 = \beta_0 + \beta_1 x_{12} + \beta_2 x_{22} + \dots + \beta_k x_{k2} + u_2, \quad u_2 \sim N(0, \sigma^2)$$

$$\dots$$

$$i = n \Rightarrow y_n = \beta_0 + \beta_1 x_{1n} + \beta_2 x_{2n} + \dots + \beta_k x_{kn} + u_n, \quad u_n \sim N(0, \sigma^2)$$

Agrupando:

$$\begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{21} & \dots & x_{k1} \\ 1 & x_{12} & x_{22} & \dots & x_{k2} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_{1n} & x_{2n} & \dots & x_{kn} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \dots \\ \beta_k \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{bmatrix},$$

$$\begin{bmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{bmatrix} \sim N \left(\begin{bmatrix} 0 \\ 0 \\ \dots \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma^2 & 0 & 0 & \dots \\ 0 & \sigma^2 & 0 & \dots \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \sigma^2 \end{bmatrix} \right)$$

Finalmente:

$$y = X\beta + u, \quad u \sim N(0, \sigma^2 I)$$

Esta ecuación es válida para cualquier número de regresores y cualquier número de observaciones.

3 Estimación de los parámetros

El método que permite estimar los parámetros del modelo a partir de los datos se conoce como método de máxima verosimilitud. El método tiene dos partes:

- 1. Definir la función de verosimilitud.
- 2. Maximizar la función de verosimilitud: los estimadores de los parámetros son aquellos que maximizan la verosimilitud.

3.1 Definición de la función de verosimilitud

Dados unos datos $(y_1, y_2, ..., y_n)$ se define la función de verosimilitud $L(y, X, \beta, \sigma^2)$ como la función de densidad conjunta de los datos. Se supone que los datos son independientes, por lo que:

$$L(y, X, \beta, \sigma^2) = f(y_1, y_2, \dots, y_n) = f(y_1) \cdot f(y_2) \cdot \dots \cdot f(f_n)$$

La distribución $f(y_i)$ se obtiene teniendo en cuenta que:

$$u_i \sim N(0, \sigma^2) \Rightarrow y_i \sim N(\beta_0 + \beta_1 x_{1n} + \beta_2 x_{2n} + \dots + \beta_k x_{kn}, \sigma^2)$$

ya que

$$u_i \sim Normal \Rightarrow y_i \sim Normal$$

$$E[y_i] = E[\beta_0 + \beta_1 x_{1n} + \beta_2 x_{2n} + \dots + \beta_k x_{kn} + u_i] = \beta_0 + \beta_1 x_{1n} + \beta_2 x_{2n} + \dots + \beta_k x_{kn}$$

$$Var[y_i] = E[\beta_0 + \beta_1 x_{1n} + \beta_2 x_{2n} + \dots + \beta_k x_{kn} + u_i] = \sigma^2$$

Por tanto

$$f(y_i) = \frac{1}{\sigma(2\pi)^{1/2}} \exp\left(-\frac{1}{2\sigma^2}(y_i - E[y_i])^2\right) \Rightarrow$$

$$f(y_i) = \frac{1}{\sigma(2\pi)^{1/2}} \exp\left(-\frac{1}{2\sigma^2}u_i^2\right) \Rightarrow$$

Por tanto

$$L(y, X, \beta, \sigma^2) = \prod_{i=1}^n f(y_i) = \frac{1}{\sigma^n (2\pi)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n u_i^2\right) = \frac{1}{\sigma^n (2\pi)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} u^T \cdot u\right)$$

ya que se comprueba facilmente que:

$$\sum_{i=1}^{n} u_i^2 = u_1^2 + u_2^2 + \dots + u_n^2 = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{bmatrix} = u^T \cdot u$$

Utilizando la ecuación del modelo en forma matricial $y = X\beta + u$:

$$L(y, X, \beta, \sigma^{2}) = \prod_{i=1}^{n} f(y_{i}) = \frac{1}{\sigma^{n} (2\pi)^{n/2}} \exp\left(-\frac{1}{2\sigma^{2}} (y - X\beta)^{T} (y - X\beta)\right)$$

Se prefiere trabajar con el logaritmo de la función de verosimilitud ya que el máximo se alcanza en el mismo punto y la función es más fácil de manejar matematicamente:

$$\log L(y, X, \beta, \sigma^{2}) = -\frac{n}{2} \log \sigma^{2} - \frac{n}{2} \log(2\pi) - \frac{1}{2\sigma^{2}} (y - X\beta)^{T} (y - X\beta)$$

3.2 Máximo de la función de verosimilitud

Para calcular el máximo se deriva e iguala a cero. Primero se escribe la verosimilitud como:

$$\log L(y, X, \beta, \sigma^{2}) = -\frac{n}{2} \log \sigma^{2} - \frac{n}{2} \log(2\pi) - \frac{1}{2\sigma^{2}} (y^{T} - y^{T} X \beta - \beta^{T} X^{T} y - \beta^{T} X^{T} X \beta)$$

La derivada de esta función respecto del vector β es (ver Apendice: derivadas).

$$\frac{\partial \log L(y,X,\beta,\sigma^2)}{\partial \beta} = -\frac{1}{2\sigma^2} (-(y^TX)^T - X^Ty - (X^TX + X^TX)\beta)$$

En el máximo se obtienen los estimadores por máxima verosimilitud:

$$-(y^TX)^T - X^Ty - (X^TX + X^TX)\hat{\beta} = 0 \Rightarrow$$

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

Para calcular el estimador de σ^2 :

$$\log L(y, X, \beta, \sigma^2) = -\frac{n}{2} \log \sigma^2 - \frac{n}{2} \log(2\pi) - \frac{1}{2\sigma^2} (y - X\hat{\beta})^T (y - X\hat{\beta}) \Rightarrow$$

$$\frac{\partial \log L(y, X, \beta, \sigma^2)}{\partial \sigma^2} = -\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2\sigma^4} (y - X\hat{\beta})^T (y - X\hat{\beta})$$

Igualando a cero:

$$\hat{\sigma}^2 = \frac{(y - X\hat{\beta})^T (y - X\hat{\beta})}{n}$$

Este estimador de la varianza no es centrado, por lo que en la práctica se utiliza

$$\hat{\sigma}^2 = \frac{(y - X\hat{\beta})^T (y - X\hat{\beta})}{n - k - 1}$$

4 Residuos

4.1 Definición

Se definen los residuos como

$$e_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i} + \dots + \hat{\beta}_k x_{ki}), \quad i = 1, 2, \dots, n$$

Es decir, hay un residuo para cada dato de la muestra.

Utilizando el mismo procedimiento que antes se puede escribir la ecuación matricial:

$$\begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{21} & \dots & x_{k1} \\ 1 & x_{12} & x_{22} & \dots & x_{k2} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_{1n} & x_{2n} & \dots & x_{kn} \end{bmatrix} \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \\ \dots \\ \hat{\beta}_k \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \dots \\ e_n \end{bmatrix},$$

$$y = X\hat{\beta} + e$$

Por tanto, el estimador de la varianza se puede escribir en función de los residuos:

$$\hat{\sigma}^2 = \frac{(y - X\hat{\beta})^T (y - X\hat{\beta})}{n} = \frac{e^T e}{n - k - 1} = \frac{\sum e_i^2}{n - k - 1}$$

4.2 Suma de residuos al cuadrado

Se suele utilizar la siguiente notación:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i} + \dots + \hat{\beta}_k x_{ki}, \quad i = 1, 2, \dots, n$$

por lo que

$$e_i = y_i - \hat{y}_i$$

En forma matricial, estas equaciones equivalen a:

$$e = y - \hat{y}$$

donde

$$\hat{y} = X\hat{\beta}.$$

Se define la matriz H como:

$$\hat{y} = X\hat{\beta} = X(X^TX)^{-1}X^Ty = Hy$$

La matriz $H = X(X^TX)^{-1}X^T$ se denomina en inglés hat matrix. Es sencillo comprobar que la matriz H es simétrica $(H^T = H)$ e idempotente $(H \cdot H = H)$.

Los residuos se pueden expresar en función de dicha matriz como:

$$e = y - \hat{y} = y - Hy = (I - H)y$$

Se suele utilizar para derivar resultados teóricos. Por ejemplo, utilizando esta matriz se puede demostrar la siguiente propiedad para la suma de los residuos al cuadrado:

$$\sum e_i^2 = e^T e = (y - Hy)^T (y - Hy) = y^T y - y^T H y - y^T H^T y + y^T H^T H y = y^T y - y^T H^T y$$

$$= y^{T}y - (Hy)^{T}y = y^{T}y - (X\hat{\beta})^{T}y = y^{T}y - \hat{\beta}^{T}(X^{T}y)$$

Finalmente

$$\sum e_i^2 = y^T y - \hat{\beta}^T (X^T y)$$

4.3 Mínimos cuadrados

Los estimadores de los parámetros minimizan la suma de los residuos al cuadrado:

$$SRC(\hat{\beta}) = \sum e_i^2 = e^T e = (y - X\hat{\beta})^T (y - X\hat{\beta})$$

Desarrollando el producto:

$$SRC(\hat{\beta}) = y^T y - y^T X \hat{\beta} - \hat{\beta}^T X^T y + \hat{\beta}^T X^T X \hat{\beta}$$

Para calcular el mínimo se deriva respecto a $\hat{\beta}$ y se iguala a cero (ver Apendice: derivadas)

$$\frac{dSRC(\hat{\beta})}{d\hat{\beta}} = -X^Ty - X^Ty + (X^TX + X^TX)\hat{\beta} = 0$$

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

4.4 Ortogonalidad de residuos y regresores

Otra propiedad importante de los residuos es que $X^T e = 0$. Efectivamente, sustituyendo el valor de $\hat{\beta}$ en la ecuación de los residuos

$$y = X\hat{\beta} + e = X(X^TX)^{-1}X^Ty + e$$

Multiplicando por la izquierda por X^T se obtiene

$$X^{T}y = (X^{T}X)(X^{T}X)^{-1}X^{T}y + X^{T}e \Rightarrow X^{T}y = X^{T}y + X^{T}e \Rightarrow X^{T}e = 0$$

Si excribimos dicha propiedad en función de las componentes de las matrices:

$$X^{T}e = \begin{bmatrix} 1 & x_{11} & x_{21} & \cdots & x_{k1} \\ 1 & x_{12} & x_{22} & \cdots & x_{k2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1n} & x_{2n} & \cdots & x_{kn} \end{bmatrix}^{T} \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix} = \begin{bmatrix} \sum e_i \\ \sum x_{1i}e_i \\ \vdots \\ \sum x_{ki}e_i \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Este producto equivale a las siguientes ecuaciones:

$$\sum e_i = 0$$
, $\sum x_{1i}e_i = 0$, $\sum x_{2i}e_i = 0$, ..., $\sum x_{ki}e_i = 0$

La primera ecuación indica que los residuos siempre suman cero. Las siguientes ecuaciones indican que el vector residuos es ortogonal a las columnas de la matriz X (consideradas estas columnas como vectores). Por tanto es ortogonal al espacio vectorial generado por dichos vectores.

5 El modelo en diferencias a la media

5.1 Modelo

Dada la ecuación de los residuos

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i} + \dots + \hat{\beta}_k x_{ki} + e_i, \ i = 1, 2, \dots, n$$

Si sumamos en ambos miembros desde 1 hasta n

$$\sum y_{i} = \sum \hat{\beta}_{0} + \hat{\beta}_{1} \sum x_{1i} + \hat{\beta}_{2} \sum x_{2i} + \dots + \hat{\beta}_{k} \sum x_{ki} + \sum e_{i}$$

Teniendo en cuenta que los residuos suman cero

$$\sum y_i = n\hat{\beta}_0 + \hat{\beta}_1 \sum x_{1i} + \hat{\beta}_2 \sum x_{2i} + \dots + \hat{\beta}_k \sum x_{ki}$$

Y dividiendo entre n

$$\bar{y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}_1 + \hat{\beta}_2 \bar{x}_2 + \dots + \hat{\beta}_k \bar{x}_k$$

Si a la ecuación de los residuos le restamos esta última ecuación se obtiene:

$$y_i - \bar{y} = \hat{\beta}_1(x_{1i} - \bar{x}_1) + \hat{\beta}_2(x_{2i} - \bar{x}_2) + \dots + \hat{\beta}_k(x_{ki} - \bar{x}_k) + e_i, \ i = 1, 2, \dots, n$$

Estas n ecuaciones se pueden expresar en forma matricial de la misma forma que se hizo antes, obteniendo:

$$\begin{bmatrix} y_1 - \bar{y} \\ y_2 - \bar{y} \\ \dots \\ y_n - \bar{y} \end{bmatrix} = \begin{bmatrix} x_{11} - \bar{x}_1 & x_{21} - \bar{x}_2 & \cdots & x_{k1} - \bar{x}_k \\ x_{12} - \bar{x}_1 & x_{22} - \bar{x}_2 & \cdots & x_{k2} - \bar{x}_k \\ \dots & \dots & \dots & \dots \\ x_{1n} - \bar{x}_1 & x_{2n} - \bar{x}_2 & \cdots & x_{kn} - \bar{x}_k \end{bmatrix} \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \\ \dots \\ \hat{\beta}_k \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \dots \\ e_n \end{bmatrix}$$

Que en este caso se expresa como

$$y_a = X_a \hat{\beta}_a + e$$

donde $\hat{\beta}_a$ es el vector de coeficientes del modelo excepto $\hat{\beta}_0$.

5.2 Estimación del modelo utilizando matrices de covarianzas

Se puede demostrar que $X_a^T e = 0$:

$$X_{a}^{T}e = \begin{bmatrix} x_{11} - \bar{x}_{1} & x_{21} - \bar{x}_{2} & \cdots & x_{k1} - \bar{x}_{k} \\ x_{12} - \bar{x}_{1} & x_{22} - \bar{x}_{2} & \cdots & x_{k2} - \bar{x}_{k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1n} - \bar{x}_{1} & x_{2n} - \bar{x}_{2} & \cdots & x_{kn} - \bar{x}_{k} \end{bmatrix}^{T} \begin{bmatrix} e_{1} \\ e_{2} \\ \vdots \\ e_{n} \end{bmatrix} = \begin{bmatrix} \sum (x_{1i} - \bar{x}_{1})e_{i} \\ \sum (x_{2i} - \bar{x}_{2})e_{i} \\ \vdots \\ \sum (x_{2i}e_{i} - \bar{x}_{2}) = e_{i} \\ \vdots \\ \sum x_{2i}e_{i} - \bar{x}_{2} \geq e_{i} \\ \vdots \\ \sum x_{2i}e_{i} - \bar{x}_{2} \geq e_{i} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Por tanto, partiendo de la ecuación en diferencias a la media:

$$y_a = X_a \hat{\beta}_a + e$$

y multiplicando ambos miembros por X_a^T :

$$X_a^T y_a = X_a^T X_a \hat{\beta}_a + X_a^T e \Rightarrow \hat{\beta}_a = (X_a^T X_a)^{-1} (X_a^T Y_a) = \left(\frac{1}{n-1} X_a^T X_a\right)^{-1} \left(\frac{1}{n-1} X_a^T Y_a\right)$$

$$\hat{\beta}_a = S_{XX}^{-1} S_{Xy}$$

donde S_{Xy} es la matriz de covarianzas de X e y, y S_{XX} es la matriz de covarianzas de X:

$$S_{Xy} = \frac{1}{n-1} X_a^T y_a = \begin{bmatrix} S_{1y} \\ S_{2y} \\ \vdots \\ S_{ky} \end{bmatrix}$$

$$S_{XX} = \frac{1}{n-1} X_a^T X_a = \begin{bmatrix} S_{11} & S_{21} & \cdots & S_{k1} \\ S_{12} & S_{22} & \cdots & S_{k2} \\ \vdots & \vdots & \ddots & \vdots \\ S_{1k} & S_{2k} & \cdots & S_{kk} \end{bmatrix}$$

donde S_{ij} representa la covarianza entre x_i e x_j , y S_{iy} representa la covarianza entre x_i e y (ver Apendice: covarianzas).

Las ecuaciones derivadas en este apartado constituyen una alternativa para la estimación de los coeficientes del modelo de regresión lineal.

A modo de resumen:

- Las matrices X e y son matrices de **datos**. Con ellas se pueden estimar los parámetros del modelo haciendo $\hat{\beta} = (X^T X)^{-1} X^T y$.
- Las matrices S_{Xy} y S_{XX} son matrices de **covarianzas**. Con ellas se pueden estimar los parámetros del modelo haciendo $\hat{\beta}_a = S_{XX}^{-1} S_{Xy}$.

5.3 Residuos

Los residuos en este modelo se calculan como

$$e = y_a - X_a \hat{\beta}_a$$

Se ha demostrado que $X_a^T e = 0$. Por último vamos a demostrar otra propiedad análoga a la obtenida con el modelo con matrices de datos:

$$\sum e_i^2 = e^T e = (y_a - X_a \hat{\beta}_a)^T (y_a - X_a \hat{\beta}_a) = y_a^T y_a - y_a^T X_a \hat{\beta}_a - \hat{\beta}_a^T X_a^T y_a - \hat{\beta}_a^T X_a^T X_a \hat{\beta}_a$$

$$= (n-1)s_y^2 - (n-1)S_{Xy}^T \hat{\beta}_a - (n-1)\hat{\beta}_a^T S_{Xy} + (n-1)(S_{XX}^{-1} S_{Xy})^T S_{XX} \hat{\beta}_a$$

Finalmente:

$$\sum e_i^2 = (n-1)s_y^2 - (n-1)\hat{\beta}_a^T S_{Xy}$$