Rangeland Brush Estimation Toolbox (RaBET) A New Aid for Rangeland Mangers

Chandra Holifield Collins
USDA-ARS Southwest Watershed Research Center
RISE Symposium
October 21, 2017

BRUSH MANAGEMENT IN NRCS

- Brush management is one of the most cost-shared and implemented conservation practices on grazing lands.
- 2012-2014 NRCS spent over \$18.6 million nationwide.
 - □ Slightly over \$11.1 million was spent in Texas.
- Little to no documentation that would support or refute the need for Brush Management in the conservation planning process.
- Need a more efficient, repeatable way to determine woody canopy cover baseline and change data for documentation in the planning process.

Rangeland Brush Estimation Toolbox (RaBET)

- An ArcGIS toolbox for generating large-scale maps of woody cover and performing analysis in western grazing lands.
- Key requirements:
 - □ Use free, publicly available imagery
 - Spatial coverage at the Major Land Resource Area (MLRA) scale
 - □ Temporal coverage spanning a decade or longer
 - ☐ Easy operation with few required user inputs
 - Automation to retrieve imagery as it becomes available

IMAGE PLATFORMS

- Landsat-TM and Operational Land Imager (OLI) Imagery
 - □ 30m resolution
 - □ Landsat surface reflectance product scenes were used
 - □ Data record: 1984-present

- National Agriculture Imagery Program (NAIP)
 - □ 1m resolution
 - □ Data record: 2003-present (~2 year revisit time)

PROJECT MLRAS

Rangeland Brush Estimation Toolbox (RaBET)

- An ArcGIS toolbox for generating large-scale maps of woody cover and performing analysis in western grazing lands.
- Key requirements:
 - □ Use free, publicly available imagery
 - Spatial coverage at the Major Land Resource Area (MLRA) scale
 - Temporal coverage panning a decade or longer
 - □ Easy operation with few required user inputs
 - Automation to retrieve imagery as it becomes available

SATELLITE DATA COLLECTION

NASA Applied Remote Sensing Training (ARSET) Webinar

VEGETATION INDICES

Green Soil Adjusted Total Vegetation Index

$$GSATVI = \frac{\rho_{NIR} - \rho_{Green}}{\rho_{NIR} + \rho_{Green} + L} (1 + L) - \frac{\rho_{SWIR1}}{2}$$

GSATVI: improved woody cover estimation

Modified Soil Adjusted Vegetation Index

$$MSAVI_2 = \frac{2\rho_{NIR} + 1 - \sqrt{(2\rho_{NIR} + 1)^2 - (\rho_{NIR} - \rho_{Red})}}{2}$$

 MSAVI₂: adjusted woody cover estimates influenced by grass background cover

Normalized Difference Index

$$NDI5 = \frac{\rho_{NIR} - \rho_{SWIR1}}{\rho_{NIR} + \rho_{SWIR1}}$$

NDI5: related to grass background

TIMING

Time window with greatest separation between woody and herbaceous vegetation: month(s)

PRECIPITATION

- Precipitation influences greenness
 - Variable
- 4-year composites used to dampen effects of high precipitation years

Landsat Image Years

Landsat 4-year Composite

HETEROGENEOUS LANDSCAPE

THE MIXED PIXEL PROBLEM

- Multiple linear regression equations were developed between % woody cover and Landsat vegetation indices
- Equations were applied to the 4-year composite Landsat imagery to produce the maps of % woody cover

RaBET RANGELAND BRUSH ESTIMATION TOOLBOX

- ArcGIS toolbox
- Currently contains two tools:
 - ☐ Generate WC Maps
 - □ RaBET Analysis Tool

GENERATE WC MAPS

GENERATE WC MAPS

GENERATE WC MAPS

OUTPUT (MLRA 41)

Rabet Analysis tool

The RaBET Analysis Tool was created to facilitate tracking brush treatment effects over time.

NEXT STEPS

- Continue validation and algorithm revision to improve woody cover estimation
- Release prototype for user field testing
- Complete user documentation
- Transfer the Generate WC Maps tool into an automated platform on Google Earth Engine

ACKNOWLEDGEMENTS

- Loretta Metz: funding the project
- Mark Kautz: coding the tool
- Susan Skirvin: algorithm development

THANK YOU

