

Keras-CV Object Detection Live ((•))

Imen Masmoudi

@WTM Ambassador

Agenda

- Applied ML with Keras-CV & Keras-NLP
- 2. Keras-CV for Object Detection
- 3. From Matplotlib to Open-CV
- 4. Live Demo

Applied ML with Keras-CV & Keras-NLP

What can you do with KerasCV and KerasNLP?

Libraries for state of the art **computer vision** and **natural language processing**.

From idea to implementation in just a few lines of code!

Why KerasCV and KerasNLP?

SOTA models, written in minutes

BERT, GPT-2, Stable Diffusion, ResNet, RetinaNet, etc.

Integrated with the TF Ecosystem

TFLite, DTensor, XLA, TPUs, and beyond

Easy to get started

Readable and modular design with great documentation

What can you do with KerasCV?

Image Classification


```
from keras_cv.models import (
    ResNetBackbone, ImageClassifier,
backbone = ResNetBackbone.from_preset(
    "resnet50_imagenet",
```

```
from keras cv.models import (
    ResNetBackbone, ImageClassifier,
backbone = ResNetBackbone.from preset(
    "resnet50 imagenet",
model = ImageClassifier(
    backbone=backbone,
    num_classes=2,
```

```
from keras cv.models import (
    ResNetBackbone, ImageClassifier,
backbone = ResNetBackbone.from preset(
    "resnet50 imagenet",
model = ImageClassifier(
    backbone=backbone,
    num classes=2,
model.compile(...)
model.fit(cat_vs_dog_dataset)
```

Section 01

Data Augmentation


```
from keras cv.layers import (
   CutMix, MixUp, RandAugment, RandomFlip,
augmenter = keras.Sequential(
       RandomFlip(),
       RandAugment(value range=(0, 255)),
        CutMix(),
       MixUp(),
    ],
train_dataset = flowers_dataset.map(augmenter)
```

Image Generation

Text to image

```
from keras_cv.models import (
    StableDiffusion,
model = StableDiffusion(
    img_width=512,
    img height=512,
images = model.text_to_image(
    "photograph of an astronaut "
    "riding a horse",
    batch size=3,
```

Object Detection

Keras-CV for Object Detection

Keras-CV OD

Here's a quick look!

Want to learn more? Take a deep dive in our full talk on KerasCV/NLP!

Object Detection

From Matplotlib to Open-CV


```
[ ] 1 type(y_pred)
    dict

[ ] 1 len(y_pred)
    4

[ ] 1 y_pred.keys()
    dict_keys(['boxes', 'confidence', 'classes', 'num_detections'])
```


Now into action!

Open CV

```
y_pred = pretrained_model.predict(image_batch)
for i in np.arange(0, y_pred['num_detections'][0]):
    confidence = y_pred['confidence'].numpy()[0, i]
    if confidence > 0.5:
        idx = int(y_pred['classes'].numpy()[0, i])
        if class_ids[idx] == class_ids[14]:
            cow_box = y_pred['boxes'].numpy()[0, i, :]
            (startX, startY, w, h) = cow_box.astype("int")
            (startX, startY, endX, endY) = (startX, startY, startX + w, startY + h)
            cv2.rectangle(image, (startX, startY), (endX, endY), (0, 255, 0), 5)
```


Live Demo

https://bit.ly/KerasC VODLive

You can find the demo code and videos here!

Thank you for tuning in!

