1 When designing computer systems, it is important to consider the security, integrity and privacy of the data.

Draw **one** line from each measure to indicate whether it keeps data secure or protects the integrity of data.

Measure

Firewall	
Double entry	Data Security
Presence check	
Access rights	Data Integrity
Password	

2 (a) Complete the truth table for each of the following two logic gates.

	Α	В	Output
A————	0	0	
В	0	1	
	1	0	
	1	1	

(b) Draw a logic circuit for the following logic expression.

X = NOT(NOT(A AND B)AND C)

[2]

(a)		ly uses several input devices to play the games. These include a keyboard and a rophone.
	Des	scribe the principal operation of a microphone.
		[3
(b)		ly plays some of the computer games over the internet. He has several devices that nect wirelessly to the router in his house.
	(i)	Identify the topology of Andy's home network. Justify your choice.
		Topology
		Justification
		[2
	(ii)	The router has a wireless access point (WAP) to allow the devices to connect wirelessly
		Identify three functions of the router in Andy's network.
		1
		2
		3
		[3

3

Andy likes to play computer games.

		1	1	0	0	1	1	0	1		
(a)	The binary value Convert the uns						_	d binar	y integ	ger.	
(b)	The binary value	in the	e regis	ter rep	resent	s a two	o's com	npleme			[1]
(c)	The binary value			·	resent	s a he					 [1]
(d)	State why the va	alue in	the re								[1] nal (BCD).
(e)	The binary conte	ents of									 [1]
	Regis	ter 1	0	0	1	1	1	1	0	1	
	Regis	ter 2	0	0	1	0	1	1	0	1	
	(i) Add the cor	ntents	of Reg	jister ′	1 and F	Regist	er 2 . S	how yo	our wo	rking.	
	Answer										 [2]

A register stores the following binary number:

(ii)	Subtract the contents of Register 2 from the contents of Register 1. Show your working	ng.
	Answer	
		[2]

5 Riya has created the following logo as a vector graphic.

(a) Complete the table by writing a description of each vector graphic term **and** give an example for this logo.

Term	Description	Example from logo
Property		
Drawing list		

(ii)	Riya needs to email the photograph. She compresses the photograph before sending it using an email.
	Describe two lossy methods that Riya can use to compress the image.
	Method 1
	Method 2
	[4]

6 A shop sells plants to customers. The shop manager has a relational database to keep track of the sales.

The database, PLANTSALES, has the following structure:

PLANT(PlantName, QuantityInStock, Cost)

CUSTOMER(CustomerID, FirstName, LastName, Address, Email)

PURCHASE(PurchaseID, CustomerID)

PURCHASE ITEM(PurchaseID, PlantName, Quantity)

- (a) The database is normalised.
 - (i) The table lists the following three stages of normalisation:
 - The first stage is from a database that is not normalised (0NF) to First Normal Form (1NF).
 - The second stage is from 1NF to Second Normal Form (2NF).
 - The third stage is from 2NF to Third Normal Form (3NF).

Tick (\checkmark) one box in each row to identify the appropriate stage for each task.

Took	Normalisation stage					
Task	0NF to 1NF	1NF to 2NF	2NF to 3NF			
Remove any partial key dependencies						
Remove any repeating groups of attributes						
Remove any non-key dependencies						

[2]

(ii) Draw an entity-relationship (E-R) diagram for the database PLANTSALES.

PLANT CUSTOMER

PURCHASE ITEM

PURCHASE

(D)	ine	snop manager uses a Database Management System (DBMS).
	Des	cribe the purpose and contents of the data dictionary in the DBMS.
		[3]
(c)		shop manager uses both Data Definition Language (DDL) and Data Manipulation guage (DML) statements to create and search the database.
	(i)	Complete the DML statements to return the total number of items purchased with the purchase ID of 3011A.
		SELECT SUM()
		FROM
		WHERE; [4]
	(ii)	Write DDL statements to include a field in the table PURCHASE to store the date of the order.
		[3]

- 7 A computer has system software.
 - (a) The Operating System handles interrupts.

Tick (\checkmark) one box in each row to identify whether each event is an example of a hardware interrupt or a software interrupt.

Event	Hardware interrupt	Software interrupt
Buffer full		
Printer is out of paper		
User has pressed a key on the keyboard		
Division by zero		
Power failure		
Stack overflow		

(b)	Describe the file management tasks that an Operating System performs.
	[4]
(c)	Identify two utility programs that can be used to improve the performance of a computer and
(-)	state how they improve the performance.
(-)	
(-)	state how they improve the performance.
	state how they improve the performance. 1
	state how they improve the performance. 1
(-)	state how they improve the performance. 1
(-)	state how they improve the performance. 1

[3]

The	· Von	Neumann model for a computer system uses registers.				
(a)	Des	scribe the role of the following special purpose registers in the fetch-execute (F-E) cycle.				
	(i)	Memory Address Register (MAR)				
		Memory Data Register (MDR)				
		[4]				
	(ii)	Another special purpose register is the Index Register.				
		Identify one other special purpose register used in the Von Neumann model for a computer system.				
		[1]				

(b) The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Instruction		Funlanation	
Opcode	Operand	Explanation	
LDM	#n	Immediate addressing. Load the number n to ACC	
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC	
STO	<address></address>	Store the contents of ACC at the given address	
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)	
CMP	<address></address>	Compare the contents of ACC with the contents of <address></address>	
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False</address>	
JMP	<address></address>	Jump to the given address	
IN		Key in a character and store its ASCII value in ACC	
OUT		Output to the screen the character whose ASCII value is stored in ACC	
END		Return control to the operating system	
XOR	#n	Bitwise XOR operation of the contents of ACC with the operand	
XOR	<address></address>	Bitwise XOR operation of the contents of ACC with the contents of <address></address>	
OR	#n	Bitwise OR operation of the contents of ACC with the operand	
OR	<address></address>	Bitwise OR operation of the contents of ACC with the contents of <address></address>	
AND	#n	Bitwise AND operation of the contents of ACC with the operand	
AND	<address></address>	Bitwise AND operation of the contents of ACC with the contents of <address></address>	
LSL	#n	Bits in ACC are shifted logically n places to the left. Zeros are introduced on the right hand end	
LSR	#n	Bits in ACC are shifted logically n places to the right. Zeros are introduced on the left hand end	

The current contents of main memory are shown:

Address	Data
100	01010101
101	11110000
102	00001111
103	00000000
104	11111111

(i) In the following table, each row shows the current contents of the ACC in binary and the instruction that will be performed on those contents.

Complete the table by writing the new contents of the ACC after the execution of each instruction.

Current contents of the ACC	Instruction	New contents of the ACC
01010101	XOR 101	
11110000	AND 104	
00001111	LSL #4	
1111111	OR 102	

(ii) The following table contains five assembly language instruction groups.

Write an appropriate assembly language instruction for each instruction group, using the given instruction set. The first one has been completed for you.

Instruction Group	Instruction
Data movement	LDM #2
Input and output of data	
Arithmetic operations	
Unconditional and conditional instructions	
Compare instructions	

[4]

The opcode ${\tt LDM}$ uses immediate addressing. The opcode ${\tt LDD}$ uses direct addressing	
Identify and describe one additional mode of addressing.	
Mode of addressing	
Description	
	 [2]
	Identify and describe one additional mode of addressing. Mode of addressing Description