Limites

Considere a função $f(x)=\frac{x^2-4}{x-2}$. Não temos um valor de f(x) quando x=2, pois não é possível dividir por 0. O limite dessa função com x se aproximando de 2 é o valor que f(x) tende conforme a aproximação de x chega mais próxima do 2, i.e. 4. Usando os símbolos de limite: $\lim_{x\to 2}\frac{x^2-4}{x-2}=4$

Podemos ter funções sem limites definidos, e.g. $\sin(1/x)$. É possível visualizar isto usando a tabela:

x	$\sin(x)$
-0.1	0.54402111
-0.01	0.50636564
-0.001	-0.99388865
-0.0001	-0.99388865

Veja o link

Limites laterais

Considere a função

$$f(x) = \begin{cases} x < 2 \Rightarrow x + 1 \\ x \ge 2 \Rightarrow x^2 - 4 \end{cases}$$

O limite $\lim_{x\to 2} f(x)$ não existe, pois se aproximarmos de 2 pelo "lado esquerdo" encontrariamos -1 e pelo "lado direito" encontrariamos 2, para essa função temos os chamados limites laterais:

$$\lim_{x \to 2^{-}} f(x)$$

representa a aproximação pela "esquerda" (negativo)

$$\lim_{x \to 2^+} f(x)$$

representa a aproximação pela "direita" (positivo)

Limites infinitos

Considere a função $f(x) = \frac{1}{x}$, ela tem limites infinitos:

$$\lim_{x \to 0^{-}} f(x) = -\infty$$

$$\lim_{x \to 0^+} f(x) = +\infty$$

Leis do limite

Qualquer número real \boldsymbol{a} ou constante \boldsymbol{c}

- $1. \lim_{x \to a} x = a$
- $2. \lim_{x \to a} c = c$