РОССИЙСКИЕ ПАТЕНТЫ НА ИЗОБРЕТЕНИЯ ПОЛНЫЕ ТЕКСТЫ (1996-1997)

RUPAT2 DB

номер заявки:

(110) Номер документа: 2075535

C1

(130) Вид документа: **(140)** Дата публикации:

1997.03.20

(190) Страна публикации:

RU

6

(210RU) Регистрационный

95101407/02

(220) Дата подачи заявки:

1995.01.31

(460) Дата публ. формулы:

1997.03.20

(516) Номер редакции МПК:

(511) Основной индекс МПК:

C23C4/16 МПК ПОИСК

(542) НАЗВАНИЕ:

УСТАНОВКА ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЯ НА

BEST AVAILABLE COPY

ВНУТРЕННЮЮ ПОВЕРХНОСТЬ ТРУБЫ

(560) Аналоги изобретения:

1. Патент Франции N 2607830, кл. С 23 С 16/48,

1988. 2. Механизация и автоматизация производства. - М.: 1991, N 6, с.10 - 12.

(711) ИМЯ ЗАЯВИТЕЛЯ:

Институт теоретической и прикладной механики

CO PAH

(721RU) ИМЯ

изобретателя:

Алхимов А.П.

(721RU) ИМЯ

ИЗОБРЕТАТЕЛЯ:

Гуляев В.П.

(721RU) ИМЯ

ИЗОБРЕТАТЕЛЯ:

Демчук А.Ф.

(721RU) ИМЯ

ИЗОБРЕТАТЕЛЯ:

Косарев В.Ф.

(721RU) ИМЯ

ИЗОБРЕТАТЕЛЯ:

Спесивцев В.П.

(721RU) ИМЯ

ИЗОБРЕТАТЕЛЯ:

Ларионов В.П.

(731) ИМЯ

Институт теоретической и прикладной механики

ПАТЕНТООБЛАДАТЕЛЯ: СС

CO PAH

Реферат

Изобретение относится к оборудованию для нанесения покрытий методом холодного газодинамического напыления. Задача - расширение технологической возможности, повышение экономичности и экологичности устройства, решается благодаря тому, что узел напыления, состоящий из сверхзвукового сопла, форкамеры и подогревателя газа смонтирован в подвижной полой штанге, связан пневмопроводом с питателем порошка и пультом управления, установленным на

каретке устройства перемещения. Захватно-поворотный механизм, соединяющий напыляемую трубу с изолирующей камерой и системой отсоса, образует пылеизолирующий канал, позволяющий собрать и повторно использовать избыток порошка, 2 з.п.ф-лы, 2 ил.

Формула

- 1. Установка для нанесения покрытия на внутреннюю поверхность трубы, содержащая станину, узел напыления, установленный с возможностью аксиального перемещения внутри трубы посредством каретки устройства перемещения, питатель напыляемого материала, пульт управления с запорнорегулирующей арматурой и источник газа, отличающаяся тем, что установка имеет изолирующую камеру с системой отсоса и сбора неиспользованного порошка, узел фиксации и захватно-поворотный механизм трубы, узел напыления выполнен в виде сверхзвукого сопла, форкамеры и подогревателя газа с нагревательными элементами, размещенных в полой подвижной штанге, связанных посредством пневмопривода с питателем напыляемого материала, пультом управления и источником сжатого газа, смонтированными на каретке устройства перемещения, при этом захватно-поворотный механизм соединен с изолирующей камерой и системой отсоса и сбора посредством обрабатываемой трубы, образуя пылеизолирующий канал.
- 2. Установка по п.1, отличающаяся тем, что полая штанга выполнена с размещенной на ее конце регулируемой шаровой опорой, имеющей возможность опоры на внутреннюю поверхность трубы.
- 3. Установка по п.1, отличающаяся тем, что подогреватель газа одновременно является и пневмоприводом.

Описание

Изобретение относится к оборудованию для нанесения покрытий, в частности антикоррозионных покрытий, методом холодного газодинамического напыления.

Известно оборудование для нанесения покрытий внутри труб различными способами: газоплазменным, металлизационным, плазменным и т.п.

Известен способ и устройство для напыления путем испарения внутри трубки, по которому в изолирующей камере источник напыляемого вещества перемещают внутри трубки в аксиальном направлении, что обеспечивает получение покрытия на всей поверхности трубки [1] За прототип выбрано устройство для газоплазменного напыления внутренних поверхностей труб и деталей. Устройство содержит станину, узлы фиксации трубы, узел напыления, питатель напыляемого материала, устройство перемещения, систему управления [2] Недостатком данного устройства является невозможность нанесения покрытий на внутреннюю поверхность длинномерных труб, так как питатель и пульт управления выполнены стационарными и удалены от узла напыления, что приводит к необходимости создания сложной системы трубопроводов, связывающих узел напыления, подогреватель газа, пульт управления и источник сжатого газа.

Задачей изобретения является расширение технологической возможно нанесения покрытия на внутреннюю поверхность длинномерных труб и повышение экономичности и экологичности устройства.

Задача реализуется благодаря тому, что узел напыления, состоящий из сопла, форкамеры и подогревателя газа смонтирован в подвижной полой штанге, связан пневмопроводом с питателем порошка с пультом управления, установленным на каретке устройства перемещения.

Захватно-поворотной механизм, соединяющий напыляемую трубу с изолирующей камерой и системой отсоса, образует пылеизолирующий канал, позволяющий собрать и повторно использовать избытки порошка.

Шаровая опора, установленная на конце штанги с возможностью опирания на внутреннюю поверхность трубы, позволяет повысить качество напыления за счет фиксированного расстояния от среза сопла до напыляемой поверхности.

Совмещение функций нагревательных элементов и пневмопроводов в подогревателе газа обеспечивает компактное размещение узла напыления в штанге и расширяет технологические возможности напыления труб малого диаметра.

Указанные признаки не выявлены в других технических решениях при изучении уровня данной области техники и, следовательно, решение является новым и имеет изобретательский уровень.

Предлагаемое техническое решение промышленно применимо.

На чертеже изображено: фиг. 1 общий вид устройства, фиг. 2 штанга в разрезе.

Устройство для нанесения покрытия на внутреннюю поверхность трубы содержит станину 1, пылеизолирующую камеру 2, захватно-поворотный механизм трубы 3, узлы фиксации трубы-люнеты 4, систему отсоса и сбора неиспользованного порошка 5, пульт управления 6 с запорно-регулирующей арматурой и узел напыления, смонтированный с возможностью аксиального перемещения внутри трубы. Узел напыления состоит из сверхзвукового сопла 7, форкамеры 8, подогревателя газа 9, смонтированных в подвижной полой штанге 10 и связанных пневмопроводом 11 с питателем порошка 12, установленным на каретке 13 и перемещающимся вместе со штангой 10 аксиально напыляемой трубе за счет устройства перемещения 14. Нагревательные элементы 15 подогревателя газа 9 являются одновременно пневмопроводами подачи газа. Штанга снабжена также регулируемой шаровой опорой 16, установленной на конце штанги и контактирующей с внутренней стенкой трубы.

Захватно-поворотный механизм 3, соединяющий напыляемую трубу с пылеизолирующей камерой 2 и системой отсоса 5 образует пылеизолирующий канал.

Устройство работает следующим образом.

Напыляемую трубу устанавливают на опорные ролики люнетов 4, при этом штанга 10 с узлом напыления находится в правом крайнем положении.

Трубу досылают в отверстие захватно-поворотного механизма 13 и зажимают в нем. Пылеизолирующая камера 2 с системой отсоса и сбора порошка 5 образует с внутренней полостью трубы канал. При поморщи привода устройства перемещения 14 штангу 10 с узлом напыления перемещают в крайнее левое положение в напыляемой трубе.

Затем включают систему отсоса и сбора остатков напыляемого порошка 5, задают необходимый режим обработки и включают привод питателя порошка 12. Порошок по пневмопроводу 11 поступает в форкамеру 8. Сжатый воздух подают по пневмопроводам нагревательным элементам 15 в подогреватель газа 9, в затем в форкамеру 8. Смесь разгоняется в сверхзвуковом сопле 7 и благодаря шаровой опоре 16, обеспечивающей необходимый регулируемый зазор между срезом сопла и стенкой трубы, равномерно наносится на поверхность.

Одновременно включают привод вращения трубы и привод поступательного движения каретки 13 со штангой 10 и питателем 12 устройства перемещения 14, получая при этом равномерное покрытие по всей длине трубы. Затем напыленную трубу снимают, после чего цикл повторяют.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.