

Advanced Computer Architecture

INTRODUCTION

Dennis A. N. Gookyi

Course Organization and Syllabus

INSTRUCTOR

- Instructor
 - Name: Dennis Agyemanh Nana Gookyi
 - Email: dennisgookyi@gmail.com
 - Phone: 0203493435
 - Research Portals:
 - https://www.researchgate.net/profile/Dennis-Gookyi
 - https://sites.google.com/view/eisedlab

INSTRUCTOR

Instructor

Education

- Ph.D. in Information and Communication Engineering, Hanbat National University,
 South Korea, 2021.
- M.Eng. in Information and Communication Engineering, Hanbat National University,
 South Korea, 2017.
- B.Sc. in Computer Engineering, Kwame Nkrumah University of Science and Technology, Ghana, 2009.

Employment

- Research Scientist, CSIR-INSTI, Ghana, 2022 Present.
- Researcher, Korea Electronics Technology Institute (KETI), South Korea, 2021 2022.
- Research and Teaching Assistant, SoC Design Lab, Hanbat National University, South Korea, 2014 – 2021.
- RTL Design Engineer, Future Systems, South Korea, 2015 2016.
- Teaching Assistant, Computer Engineering Department, Kwame Nkrumah University of Science and Technology, Ghana, 2013 – 2014.

LEARNING OUTCOMES

- Expected Learning Outcomes
 - Understand the basic building blocks of digital systems
 - Understand the Instruction Set Architecture of RISC-V Processor
 - Understand the inner workings of a RISC-V Processor
 - Understand the fundamentals of Designing a RISC-V Processor

PREREQUISITES AND GRADING

- Prerequisite
 - Inclination toward computer programming
 - Inclination towards Digital Systems Design
 - Engineering mindset
 - Inquisitive about the physical world
- Grading scheme: Attendance (15%), Homework (5%), Participation (5%), Project (15%), Exam (60%)
 - Homework: hybrid grading show your work in class
 - Participation: attendance, ask questions, answer questions, be active
 - Project: non-trivial implementation of something useful by applying knowledge including and beyond what's learned in class

LEARNING APPROACH

- Learning approach:
 - □ Type up your own code, and make it work on your device
 - Learn from sample code, assimilate then modify, integrate, or extend
 - Be ready to show your work
 - Read manuals and product specification documents

COURSE OUTLINE

Schedule

Lecture	Topic
01	Course Overview
02	Transistors to Logic Gates
03	Combinational Logic Design
04	Memory Elements
05	Sequential Logic Design
06	Introduction to RISC-V Processor
07	RISC-V Single Cycle Implementation
80	Designing a RISC-V Single Cycle Processor from the Scratch
09	Project

TEXTBOOKS AND LINKS

Textbook and Links

- https://riscv.org
- https://en.wikichip.org/wiki/WikiChip
- https://allaboutfpga.com/product/edge-artix-7-fpga-development-board/
- https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
- https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf#RISC-V%20Reference%20Data

