לוגיקה מתמטית

משה קמנסקי

2024 בדצמבר 2

מבוא 1

לוגיקה מתמטית הוא התחום במתמטיקה שחוקר בצורה מדויקת מושגים כמו "טענה" ו-"הוכחה". על מנת לספק מוטיבציה, נתבונן בשתי דוגמאות היסטוריות.

1.1 גאומטריית המישור

אוקלידס רצה לדעת את כל הדברים שנכונים עבור נקודות, קווים ומעגלים במישור¹. על-מנת להבין זאת, אוקלידס ניסה לנסח רשימה קצרה של הנחות יסוד שנכונותן "אינה מוטלת בספק", ולהוכיח מהן את כל יתר הטענות הנכונות. ארבעת הנחות היסוד הראשונות אכן פשוטות מאד: הראשונה, לדוגמא, אומרת שבין כל שתי נקודות קיים קו ישר אחד (את עבודתו של אוקלידס, "האלמנטים", ניתן לקרוא עד היום, גם באינטרנט: [3]). אוקלידס הצליח להוכיח את עשרים ושמונה הטענות הראשונות שלו בעזרת ארבע הנחות בסיס אלה². על מנת להוכיח טענות נוספות, ווא נזקק להנחת יסוד נוספת, שקולה לאקסיומת המקבילים: דרך נקודה הנמצאת מחוץ לישר נתון, עובר בדיוק ישר אחד מקביל לישר הנתון. הנחת יסוד זו פחות פשוטה ומובנת מאליה, ואוקלידס ניסה, אך לא הצליח, להוכיח אותה מארבע הנחות היסוד הראשונות.

השאלה איך להוכיח את אקסיומת המקבילים נותרה פתוחה מאות שנים, עד שהוכח שהאקסיומה בלתי תלויה: לא ניתן להוכיח (או להפריך) אותה מיתר הנחות היסוד. נשים לב, שטענה זו אינה טענה גאומטרית: היא אינה עוסקת בנקודות או קווים, אלא בטענות מתמטיות (מבחינה גאומטרית, אנחנו יודעים שאקסיומת המקבילים תקפה במישור). הטענה שייכת לתחום של לוגיקה מתמטית, בו הטענה שאקסיומת המקבילים בלתי תלויה באקסיומות האחרות, היא עצמה טענה מתמטית.

איך הוכחה הטענה? גאוס, לובאצ'בסקי ובוליאי (ובעקבותיהם מתמטיקאים אחרים) בנו *מודל* של ארבע האקסיומות הראשונות של אוקלידס, כלומר מבנה עם "קווים" ו-"נקודות", בו הקווים

^{[5]-}ניתן לקרוא את הסיפור הזה יותר בהרחבה ב 1

למעשה. כפי שנראה. הוא השתמש בהנחות נוספות 2

והנקודות מתנהגים כמו שמוכתב על ידי האקסיומות הראשונות, אולם בו אקסיומת המקבילים אינה מתקיימת. מודל זה בהכרח שונה מהמישור הרגיל, בו אקסיומת המקבילים תקפה, אבל הוא "שווה זכויות" לו: כל טענה שניתן להוכיח מארבע האקסיומות הראשונות, תקפה גם בו. למעשה, כל הוכחה מתוך אקסיומות אלה נותן טענה תקפה בכל המבנים המקיימים אותו.

מה לגבי הכיוון ההפוך? נניח שיש לנו טענה בגאומטריה שנכונה בכל המודלים שסופקו על-ידי גאוס וחבריו, וגם בכל מודל אחר של ארבע האקסיומות הראשונות. האם ניתן אז להוכיח טענה זו מתוך אותן אקסיומות? לכאורה, אפשר לדמיין שהטענה נכונה "במקרה" בכל המבנים הללו, בלי שניתן להוכיח אותה. אנחנו נראה שזה לא כך:

משפט א' (משפט השלמות, ??). כל טענה שנכונה בכל מבנה המקיים את האקסיומות של אוקלידס, ניתן להוכחה מאקסיומות אלה

בניסוח המשפט (שאינו מנוסח בצורה מדויקת בשלב זה) לא הקפדנו לציין על איזו קבוצת אקסיומות מדובר. למעשה, זה לא משנה: המשפט תקף לכל קבוצת אקסיומות, ולא רק לגאומטריה. כאמור, משפט השלמות אינו משפט בגאומטריה. מהם האובייקטים המתמטיים המופיעים במשפט הזה? על-מנת שנוכל אפילו לנסח את המשפט, עלינו לענות לפחות על השאלות הבאות:

"איך אפשר לראות טענות כאובייקטים מתמטיים? איך אפשר לראות טענות

"אאלה 2.1.1.2 מהי הוכחה של טענה אחת מטענות אחרות?

שאלה 1.1.3. מהי משמעות האמירה שטענה מסוימת נכונה בגאומטריית המישור? באופן יותר כללי, מתי נאמר שטענה היא נכונה? מה הקשר בין זה לבין הוכחות של הטענה?

?איך ניתן להוכיח שטענה מסוימת לא תלויה באחרות?

בהינתן שהאקסיומה בלתי תלויה, התוספת שלה כהנחת יסוד מוצדקת. אבל האם יש טענות נוספות שאינן תלויות במערכת האקסיומות החדשה? האם אפשר לרשום רשימת אקסיומות המאפינות את המישור לחלוטין? תשובה אפשרית אחת לשאלה האחרונה נתונה במשפט הבא:

משפט ב' (משפט לוונהיים-סקולם, ??). לכל קבוצה אינסופית A קיים מבנה המקיים את כל הטענות המתקיימות בגאומטריית המישור, שבו קבוצת הנקודות היא

שוב, גם משפט זה נכון למבנים כלליים, ולא רק לגאומטריה.

אריתמטיקה 1.2

ראינו לעיל שלא ניתן לאפיין לגמרי את גאומטריית המישור על ידי רשימה של אקסיומות. עדיין, אפשר לשאול האם לפחות אפשר להוכיח את כל מה שנכון בגאומטרייית המישור מתוך כל חמש האקסיומות של אוקלידס. מסתבר שלא, ולמעשה אפילו המשפט הראשון בספרו של אוקלידס דורש אקסיומות נוספות. אולם טארסקי, בתחילת המאה ה-20 (בעקבות עבודה של קליין, הילברט, ומתמטיקאים נוספים) הצליח להשלים את הרשימה: הוא נתן רשימה מפורשת של אקסיומות, והוכיח שמהן ניתן להוכיח את כל הטענות הגאומטריות הנכונות במישור.

תחום נוסף שבו עסקו היוונים הוא תורת המספרים. גם שם הניסיון הוא לגלות את כל הטענות הנכונות עבור המספרים הטבעיים. בניגוד לגאומטריה, הם לא ניסו לעבוד בשיטה האקסיומטית.

שאלה 1.2.1. האם ניתן לראות גם טענות על מספרים כאובייקטים מתמטיים?

מערכת אקסיומות עבור המספרים הטבעיים הוצעה על-ידי פיאנו. כמו בגאומטריה, גם כאן ניתן לשאול:

שאלה 1.2.2. האם אקסיומות פיאנו מוכיחות את כל הטענות הנכונות על מספרים טבעיים? אם לא. האם קיימת מערכת אחרת שעושה זאת?

אנחנו נראה:

משפט ג' (משפט אי השלמות, ??). ישנן טענות בתורת המספרים שנכונות בטבעיים, אך אינן ניתנות להוכחה מאקסיומות פיאנו

למעשה, המשפט אינו יחודי לאקסיומות פיאנו, ותקף לכל מערכת אקסיומות שניתנת לתיאור מפורש (במובן שנראה מאוחר יותר).

1.3 מבנים אחרים

שתי הדוגמאות האחרונות דנות בשני נושאים מרכזיים במתמטיקה: גאומטריה ותורת המספרים. אלה תחומים חשובים, אך אינם היחידים.

שאלה 1.3.1. באילו מבנים ותורות מתמטיות ניתן לעסוק בשיטות הנ"ל? אילו כלים קיימים על מנת לענות על שאלות מהסוג לעיל לתורות אחרות?

אנחנו נראה מספר שימושים מפתיעים של טענות בלוגיקה לתחומים אחרים במתמטיקה, ביניהם:

עצמו G אז אביע, אז סופי שלו סופי משפט גרף שכל תת-גרף שכל גרף אז אם G אם גרף טענה (טענה 2.3.6). אם אביע אז אביע

לי היא על היא ערכית, אז היא על $F:\mathbb{C}^n \to \mathbb{C}^n$ אם הייערכית, אז היא על היא על הייערכית, אז היא א

המשפט הבא הוא משפט קלאסי על פונקציות ממשיות, אולם אנחנו נראה הוכחה פשוטה שלו, בשפה קרובה (אך מדויקת לגמרי!) לניסוחים המקוריים של ניוטון ולייבניץ

אז $f(0) \leq 0 \leq f(1)$ משפט ו' (משפט ערך הביניים, אם $f:[0,1] \to \mathbb{R}$ אם אם אם ערך הביניים, f(c) = 0 עבורו כ $c \in [0,1]$ איים ליים

הרשימות מבוססות בין היתר על הספרים [2, 6, 7]. הספר [4] מומלץ אף הוא.

2 תחשיב הפסוקים

בסעיף זה נעסוק בסוג פשוט במיוחד של לוגיקה: תחשיב הפסוקים. לוגיקה זו לא מניחה דבר על המבנה של טענות בסיסיות, ובמקום זה עונה על שאלות הנוגעות לבניה של טענה מורכבת מתוך טענות יותר פשוטות על-ידי פעולות לוגיות. בהתאם לשאלות שהותוו במבוא, נראה את התשובות המדויקות שלוגיקה זו נותנת לשאלות:

- ?. מהי טענה?
- 2. מהי המשמעות של האמירה "טענה זו נכונה"?
 - 3. מהי הוכחה?

לאחר שנגדיר את כל המושגים, נראה שניתן לענות על כל השאלות מהמבוא עבור לוגיקה זו, ונראה גם כמה שימושים.

אלגברות בוליאניות 2.1

כאמור, בשלב זה אנו מתייחסים אל כל טענה כאל קופסה שחורה. אם b ו-a וא a" ו-"לא a" ו-"לא a" ו-"לא a" ו-"לא מעוניינים אינטואיטיבית ניתן ליצור מהן את הטענות החדשות a" והא גבה לידי ביטוי. במילים אחרות, על קבוצת הטענות למצוא מבנה פורמלי בו האינטואיציה הזו באה לידי ביטוי. במילים אחרות, על קבוצת הטענות b בהן אנו מתעניינים מוגדרות פעולות a באול a ווגם") a באול ובשלב באנו מתעניינים בחוכן של הטענה, ולא בצורת כתיבתה, למשל, הטענות a וגם a" וגם a" וגם a" הן מבחינתינו אותה טענה. באופן דומה, ניתן להצדיק את התנאים האחרים בהגדרה הבאה:

הגדרה 2.1.1. אלגברה בוליאנית מורכבת מקבוצה B, איברים $0,1\in B$ ופעולות אלגברה בוליאנית $B\times B o B$: $\neg:B o B\to B$ ו- $B\times B o B$: $\neg:B o B\to B$

$$\langle a \lor b \rangle = \langle b \lor a \rangle$$
 , $\langle a \land b \rangle = \langle b \land a \rangle$ (חילופיות) .1

$$a \lor (\langle b \lor c \rangle) = (\langle a \lor b \rangle) \lor c$$
, $\langle a \land (\langle b \land c \rangle) \rangle = \langle (\langle a \land b \rangle) \land c \rangle$ (קיבוציות) .2

$$a \lor (\langle b \land c \rangle) = (\langle a \lor b \rangle) \land (\langle a \lor c \rangle)$$
 , $a \land (\langle b \lor c \rangle) = (\langle a \land b \rangle) \lor (\langle a \land c \rangle)$.3

$$\langle a \wedge 1 \rangle = a , \langle a \vee 0 \rangle = a .4$$

$$a \lor \neg a = 1$$
 , $a \land \neg a = 0$.5

נסמן ב-
$$\langle B, \wedge, \vee, \neg, 0, 1
angle$$
 את המבנה כולו

הערה 2.1.2. כתוצאה מחוקי הקיבוץ, אין צורך לרשום סוגריים כאשר מפעילים אותה פעולה ברצף, ואנחנו נרשום למשל $a \wedge b \wedge c$ במקום $a \wedge b \wedge c$. כמו-כן, נפעל לפי מוסכמה ש-מגם" (כלומר, נרשום למשל ל-"או", וכך נשמיט סוגריים נוספים (כלומר, נרשום ל $a \wedge b \wedge c$). בנוסף נשתמש לרוב בחילופיות בלי להזכיר זאת.

לב שימו שיברה בוליאנית שיבר של אלגברה של איבר אחד, איבר אחד, שיבר אחד, אם אם 2.1.3 אם איבר אחד, או שלא דרשנו ש-1 או חרגיל: הוכיחו שאם ב-B יותר אחד, אז או $t \neq 0$.

 $B = \{0, 1\}$, ישנה אלגברה בוליאנית יחידה בת שני איברים, 2.1.4אינטואיטיבית, זוהי האלגברה של ערכי האמת, כאשר 1 מסמל אמת, ו-0 שקר. נסמן אותה לרוב

ראשר $\mathcal{B}=\langle \mathcal{P}(X),\cap,\cup,\cdot^c,\emptyset,X\rangle$ המבנה כלשהי, המבנה X אם X הבנה X המבנה כלשהי היא קבוצת החזקה, ו- $A^c = X \setminus A$, הוא אלגברה בוליאנית. $\mathcal{P}(X) = \{A \mid A \subseteq X\}$ אנחנו נקרא לאלגברות כאלה אלגברות חזקה.

ניתן לזהות את שתי הדוגמאות הקודמות כמקרים פרטיים לזהות הדוגמאות הדוגמאות ניתן לזהות את שתי הדוגמאות כמקרים פרטיים של הדוגמאות הדוגמאות הקודמות כמקרים פרטיים של הדוגמאות הדוגמאות הקודמות החוד ליותר במחוד ליותר החוד החוד ליותר החוד ריקה או קבוצה בת איבר אחד.

X איברי על איברי טענות על איברי B איברי לחשוב איברי הדוגמא האחרונה איברי נזהה כל טענה עם איברי X המקיימים את הטענה. תחת הפירוש הזה, הפעולות של עם האינטואיציה של "וגם", "או" ושלילה (כלומר, אם $C \subseteq X$ אם האינטואיציה של "וגם", "או" ושלילה (כלומר, אם אינטואיציה של "וגם", אוו" ו טענה האיברים האיברים האיברים היא קבוצת או היא מענה $C\cap D$ אז שענה מקיימים האיברים האיברים בוצת וו-D("d וגם c" הטענה

דוגמא 2.1.6. אם X קבוצה כלשהי, תת-קבוצה קוסופית של X היא תת-קבוצה שהמשלימה שלה ביחס ל-X) סופית, הקבוצה B המורכבת מתתי הקבוצות של X שהן סופיות או קו-סופיות היא אלגברה בוליאנית (עם פעולות כמו קודם).

> X שהן של X שהן תתי-הקבוצות של X קבוצת הממשיים בין X ל-1, אז קבוצת אם X שהן Xאיחוד סופי של קטעים היא אלגברה בוליאנית (שוב, עם פעולות החיתוך והאיחוד). אנחנו נראה עוד דוגמאות רבות מהסוג הזה בהמשד.

> $\mathcal{B}=\langle B,\wedge,\vee,\neg,0,1
> angle$ אלגברה בוליאנית כלשהי, $\mathcal{B}=\langle B,\wedge,\vee,\neg,0,1
> angle$ גם הדואלית. שנקראת האלגברה הדואלית. גם הוא אלגברה הדואלית. $\mathcal{B}^*=\langle B,\vee,\wedge,\neg,1,0\rangle$

> > התרגיל הבא כולל כמה עובדות שימושיות על אלגברות בוליאניות:

מתקיים: מתקיים. לכל אלגברה בוליאנית \mathcal{B} , ולכל אלגברה לכל 2.1.9.

$$\langle a \lor 1 \rangle = 1$$
 , $\langle a \land 0 \rangle = 0$.1

$$\langle a \wedge a \rangle = a$$
 .2

$$a=b$$
 אז $\langle a{\wedge}b \rangle = \langle a{\vee}b \rangle$ אז .3

$$b=\lnot a$$
 אז $\langle a \lor b \rangle =1$ - ו- $\langle a \land b \rangle =0$ אז .4

$$\neg(\neg a) = a$$
 .5

$$\neg(\langle a \lor b \rangle) = \neg a \land \neg b .6$$

$$a \wedge (\langle a \vee b \rangle) = a$$
 .7

אלגברות חזקה

האלוררה הדואלים

הערה 2.1.10. בהנתן שוויון כלשהו בין שני ביטויים בוליאניים כמו בתרגיל, השוויון הדואלי הוא השוויון המתקבל מהמקורי על-ידי החלפת התפקידים של \land ו- \lor , והחלפת התפקידים של 1 ו-0. השוויון המתקבל מהמקורי על-ידי החלפת התפקידים של $\neg(\langle a \land b \rangle) = \neg a \lor \neg b$ הוא השוויון $\neg(\langle a \lor b \rangle) = \neg a \land \neg b$ השוויון המקורי נכון עבור איברים כלשהם של אלגברה אלגברה הדואלי נכון עבור אותן עליהם כאיברי האלגברה הדואלים \mathcal{B}^* . לכן, אם שוויון כלשהו נכון לכל האלגברות הבוליאניות, אז גם הדואלי שלו נכון עבורן. אנחנו נשתמש בזה באופן חופשי.

התרגיל הבא מציג דרך נוספת לחשוב על אלגברות בוליאניות, שלעתים מקלה על הוכחת תכונות כמו בתרגיל האחרוז.

 $a \wedge b = a$ אם a < b- ש $a, b \in \mathcal{B}$ אברים לכל שני איברים לכל בוליאנית, ונגדיר בוליאנית, מאלגברה בוליאנית, ונגדיר איברים

- .0 ומינימום ומינימום ל, על \mathcal{B} , עם חלקי שזהו סדר חלקי שזהו 1.
- $\langle a \lor b \rangle$. הוכיחו שלכל שני איברים $a,b \in \mathcal{B}$, החסם העליון ביניהם ביחס ל- \geq קיים ושווה ל- $\langle a \lor b \rangle$ (נזכיר ש*חסם עליון* של קבוצה A בסדר חלקי הוא איבר והחסם הגדול או שווה לכל איבר ב-A, וקטן מכל איבר אחר שמקיים זאת. חסם עליון כזה, אם קיים, הוא יחיד)
 - - 4. פתרו שוב את תרגיל 2.1.9 בעזרת התרגיל הנוכחי

העתקה של אלגברות העתקה של אלגברות בוליאנית מאלגברה בוליאנית מאלגברה בוליאנית מאלגברה בוליאנית של אלגברות בוליאנית מאלגברה בוליאנית $\omega: B_1 \to B_2$ היא פונקציה $\omega: B_1 \to B_2$

$$\omega(\langle a \wedge b \rangle) = \omega(a) \wedge \omega(b)$$
 .1

 $\omega(\neg a) = \neg \omega(a) .2$

לכל (העתקה כזו נקראת גם הומומורפיזם של אלגברות בוליאניות) . $a,b\in B_1$ לכל העתקה כזו נקראת שיכון אם היא חד-חד-ערכית, ואיזומורפיזם אם היא הפיכה.

הומומורפיזם

איזומורפיזם

6

 $\omega(1) = \omega(\langle a \lor b \rangle) = \omega(a) \lor \omega(b)$ גם מקיימת גם (2.1.9, העתקה בגלל תרגיל 2.1.9, העתקה בזו מקיימת גם והסימון שלמרות לב שלמרות מתרגיל הסדר החלקי שומרת על הסדר שלמרות שומרת על הסדר. נשים לב שלמרות הסימון $\omega(0)=0$ \mathcal{B}_2 -ם ואלה שבצד ימין הן באד שמאל הן ב- \mathcal{B}_1 ואלה שבצד ימין הולות הזהה,

יותר ב- \mathcal{B} יש יותר בת איבר בת האלגברה אל העתקה יחידה אל העתקה ש ב- \mathcal{B} יש יותר 2.1.14 \mathcal{B} -מאיבר אחד, אין העתקה מהאלגברה בת איבר אחד ל

ל-2 נקראת העתקה העתקה העתקה לכל אלגברה בוליאנית. העתקה מאלגברה \mathcal{B} ל-2 נקראת כל.1.15 אינית. השמה. אלה העתקות שנתעניין בהן מאד בהמשך, שכן, כאמור, הן ממדלות את התהליך של בחירת השמה ערכי אמת לטענות.

השמה אלגברת של X של X איבר החזקה, כל איבר האלגברת היא אלגברת היא $\mathcal{B} = \mathcal{P}(X)$ אם 2.1.16. \mathcal{B} איברי על איברי אם הושבים עה 0-ו $x\in A$ אם $\omega_x(A)=1$ ידי: על איברי אם הנתונה על ידי: $\mathcal{B} o 2$ x בטענות על איברי X, אז היא ההשמה ש"בודקת" האם הטענה נכונה עבור ω_x

היא $A\mapsto A\cap C$ הוכיחו שהפונקציה, $C\subseteq X$ הוכיח יותר כללי, אם באופן יותר הרגיל 2.1.17. $\mathcal{P}(C)$ -ל $\mathcal{P}(X)$ -הומורפיזם מ

דוגמא פונקציית הזהות אינה בת יותר מאיבר בוליאנית בוליאנית אלגברה אלגברה אלגברה אלגברה אותר מאיבר אחד, או \mathcal{B}^{*} הומומורפיזם מ- \mathcal{B} ל- \mathcal{B}^{*} (למה?) מאידך, פונקציית השלילה היא איזומורפיזם מ- \mathcal{B} ל-

0 < b < a המקיים $b \in \mathcal{B}$ איבר אין איבר הוא הוא הוא הוא אלגברה בוליאנית \mathcal{B} המקיים אלגברה של איבר למשל, אם $\mathcal{B}=\mathcal{P}(A)$ אלגברת חזקה, האטומים הם בדיוק היחידונים.

 \mathcal{B} -שיח בוליאנית כופית אלגברה בוליאנית ש- \mathcal{B} אלגברה בוליאנית סופית מרגיל 2.1.19 אלגברות בוליאנית

- a < b יש אטום $b \neq 0$ איבר. 1.
 - הוכיחו ש- \mathcal{B} איזומורפית לאלגברת חזקה 2
- 3. הוכיחו שאלגברה בוליאנית אינסופית אינה בהכרח איזומורפית לאלגברת חזקה

משפט סטון 2.1.20

מי שניסה לפתור את תרגיל 2.1.9, גילה אולי שזה יותר קשה ממה שזה נראה. מצד שני, כל הטענות שם קלות מאד להוכחה עבור המקרה בו $\mathcal{B} = \mathcal{P}(X)$ היא אלגברת החזקה של איזושהי קבוצה. בתרגיל האחרון ראינו שכל אלגברה בוליאנית סופית היא כזו, אבל זה לא נכון לאלגברות

עבור $t:\mathcal{B} \to \mathcal{P}(X)$ עבור שיכון $t:\mathcal{B} \to \mathcal{P}(X)$ עבור עכשיו שלגברה בוליאנית כלשהי, איזושהי הבא: נניח שהשוויון באוכיח את אחד אפשר להוכיח או אפשר \mathcal{B} באופן איזושהי להוכיח את אפשר להוכיח את אחד איזושהי אינו נכון עבור t-שיכון, בגלל את אוריי שנפעיל אחרי שיכון, שיכון, שהשוויון אינו נכון עבור איזשהם איברים $a,b\in\mathcal{B}$ אינו נכון עבור האיברים t(a) ו-t(b) ב- $\mathcal{P}(X)$. אבל כבר הוכחנו שהשוויון נכון לכל זוג איברים בכל אלגברה מהצורה הזו.

סוף

,1 הרצאה 4 בנוב

במילים אחרות, כל משוואה שנכונה לכל האיברים באלגברה ${\cal B}$ נכונה גם לכל האיברים באלגברה שמשוכנת בה (בהמשך תהיה לנו השפה לנסח את הטענה הזו באופן יותר מדויק ויותר כללי). הואיל ובדיקת שוויונים כאלה קלה מאד באלגברות חזקה, נשאלת השאלה: אילו אלגברות ניתנות לשיכון באלגברות חזקה?

משפט 2.1.21 (משפט הייצוג של סטון). לכל אלגברה בוליאנית \mathcal{B} קיימת קבוצה X ושיכון לבוצה $t:\mathcal{B} o \mathcal{P}(X)$

עבור עבור אשית ש- $\mathcal{P}(Y)$ יש על מנת להוכיח את את לזהות את לזהות את עלינו ראשית עלינו את המשפט, עלינו ראשית לזהות את איברי איזשהו Y האם אנחנו יכולים לשחזר את איברי איזשהו Y מתוך מבנה האלגברה של $\mathcal{P}(z)$ ראינו בדוגמא 2.1.16 שלכל איבר z ניתן להתאים השמה בz אשר נתונה על-ידי עלידי העתקה זו z כפי שנראה בהמשך, אז הערכית, משום שאם z או או z או או בחנו מחפשים רק שיכון). על, אבל זה פחות חשוב, כי אנחנו מחפשים רק שיכון).

אז תיארנו קבוצה X המכילה את במונחים של מבנה האלגברה הבוליאנית בלבד. בפרט, אז תיארנו קבוצה X המכילה את המכילה אז במונחר על ההנחה ש- $\mathcal{B}=\mathcal{P}(Y)\subseteq\mathcal{P}(X)$ כעת נוותר על ההנחה ש- \mathcal{B} אלגברת הזקה, ונשתמש באותו רעיון כדי להגדיר את X באופן כללי.

על-ידי: $t:\mathcal{B}\to\mathcal{P}(X)$ ונגדיר על \mathcal{B} , ונגדיר את קבוצת ההשמות ב-X את הכחת משפט סטון. נסמן ב- $t:\mathcal{B}\to\mathcal{P}(X)$ אז לכל $t:\mathcal{B}\to\mathcal{P}(X)$ אז לכל $t:\mathcal{B}\to\mathcal{P}(X)$ אז לכל ב- $t:\mathcal{B}\to\mathcal{P}(X)$

$$t(b \land c) = \{\omega : \mathcal{B} \to \mathbf{2} \mid 1 = \omega(b \land c) = \omega(b) \land \omega(c)\} = \{\omega : \mathcal{B} \to \mathbf{2} \mid 1 = \omega(b)\} \cap \{\omega : \mathcal{B} \to \mathbf{2} \mid 1 = \omega(c)\} = t(b) \cap t(c)$$

ובאופן דומה לשלילה.

זה מראה ש-t העתקה של אלגברות בוליאניות. כדי להוכיח ש-t חד-חד-ערכית, עלינו להוכיח זה מראה ש-t העתקה של אלגברות בוליאניות. כך ש- $\omega:\mathcal{B}\to\mathbf{2}$ יש השמה בא, יש השמה שמסיים את ההוכחה.

 $\omega:\mathcal{B} o 2$ משפט 2.1.22. אם a ו-b שני איברים שונים באלגברה בוליאנית b, אז יש השמה ב $\omega(a)
eq \omega(b)$.

נשים לב שבפרט, המשפט אומר שלכל אלגברה בוליאנית לא טריוויאלית ${\mathcal B}$ יש השמה, עובדה לא ברורה בכלל.

אנחנו נוכיח את המשפט באמצעות תרגומו לכמה טענות שקולות. הראשונה היא רדוקציה למקרה פרטי:

b=0 בו הפרטי הפרטי מהמשפט נובע הפרטי בו 2.1.23

 $\omega(b)=1$ - על כך שאם פי השמה לפי אז יש השמה לפי להוכיח עלינו להוכיח אלינו לפי התרגיל האחרון, עלינו להוכיח אם לפי השמה לפשהי בהשמה כלשהי בהשמה לשהי איך נראית הקבוצה להוכיח איר. מסתבר שקבוצות כאלה מתוארות באופן הבא:

:אם: על-מסנן על-מסנן שב: אלגברה של $\mathcal{F} \subset \mathcal{B}$ של אר. תת-קבוצה 2.1.24 הגדרה

- $.\langle a \wedge b \rangle \in \mathcal{F}$ גם $a,b \in \mathcal{F}$.1
- \mathcal{F} -לכל $a, \neg a$ -מייך מייך $a, \neg a$ אחד מ- $a \in \mathcal{B}$.2
 - $0 \not\in \mathcal{F}$.3

על-מסנן, אז \mathcal{F} על-מסנן, אז הוכיחו \mathcal{F} על-מסנן, אז

- לא ריק \mathcal{F} .1
- $b \in \mathcal{F}$ אז b > a-ו $a \in \mathcal{F}$ אם .2

 $\omega^{-1}(1)=\mathcal{F}$ על-מסנן אם ורק אם יש השמה על על-מסנן על-מסנן ש- $\mathcal{F}\subset\mathcal{B}$ על-מסנן הוכיחו ש- ω

לפי התרגיל האחרון, ניתן לתרגם את הבעיה שלנו לשאלה: האם לכל b>0 יש על-מסנן שמכיל אותו? כדי לענות על השאלה, מסתבר שכדאי לשאול שאלה קצת יותר כללית: אילו קבוצות של איברים של $\mathcal B$ מוכלות בעל-מסנן?

אם: מסנן אם: $\mathcal{F}\subseteq\mathcal{B}$ נקראת מסנן אם: .2.1.27 הגדרה

ניטבן

על-מסנו

- $\langle a \wedge b \rangle \in \mathcal{F}$ גם $a, b \in \mathcal{F}$.1
- $b \in \mathcal{F}$ גם $b \geq a$ ו. $a \in \mathcal{F}$ לכל.
 - לא ריקה \mathcal{F} .3
 - $0 \not\in \mathcal{F}$.4

היתרון במסננים (על פני על-מסננים) הוא שיש הרבה מסננים שמופיעים באופן טבעי ואפשר לתאר אותם במפורש, בעוד שזה לרוב בלתי אפשרי לתאר על-מסנן. נראה דוגמאות של מסננים בהמשך, אבל בינתיים נשים לב לעובדה הבאה:

 $b_1,\ldots,b_k\in\mathcal{F}_0$ כך שלכל כך מלגברה של אלגברה של תת-קבוצה של תת-קבוצה .2.1.28 מרגיל .2.1.28 מת-קבוצה של מסנן שמכיל את מסנן שמכיל את $b\neq 0$ אז יש מסנן שמכיל אותו.

אינטואיטיבית, אפשר לחשוב על מסנן כעל אוסף הטענות שאדם (רציונלי) יכול להאמין בהן. על-מסנן הוא אז אוסף הדעות של אדם שיש לו דעה על כל דבר. הקשר הפורמלי בין מסננים לעל-מסננים נתון בטענה הבאה.

- טענה $\mathcal{F} \subset \mathcal{B}$ שקולים על תת-קבוצה 2.1.29. מענה
 - על-מסנו \mathcal{F} .1

(כלומר, לא מוכל ממש במסנן אחר) מסנן מקסימלי ${\cal F}$.2

הוכחה. נניח ש- \mathcal{F} על-מסנן, ו- $a\in\mathcal{F}$. אז לכל $a\in\mathcal{F}$, בדיוק אחד מ-b ו- $a\in\mathcal{F}$. אם זה $a\in\mathcal{F}$. אם זה מ $-b\in\mathcal{F}$ גם $\mathcal{F}_1\supset\mathcal{F}$ מסנן שמרחיב אותו, בסתירה להגדרה. זה מראה ש- $\mathcal{F}_1\supset\mathcal{F}$ מסנן שמרחיב אותו, $a\in\mathcal{F}_1\supset\mathcal{F}$ מסנן ש $a\in\mathcal{F}_1\supset\mathcal{F}$ ניקח $a\in\mathcal{F}_1\supset\mathcal{F}$ ולכן $a\in\mathcal{F}_1\supset\mathcal{F}$ ההגדרה נותנת בסתירה להגדרה.

נניח עכשיו ש \mathcal{F} - מסנן מקסימלי. אם אינו על-מסנן, יש $a\in\mathcal{B}$ כך ש \mathcal{F} -. אם לכל .a., $\neg a\not\in\mathcal{F}$ איז עכשיו על-מסנן מקסימלי. או על-מסנן מסנן איז לפי תרגיל 2.1.28, יש מסנן שמכיל את \mathcal{F} ואת a, בסתירה למקסימליות של a כך שa מסנן. בסתירה לכך שa מסנן.

 $\langle bee c
angle\in\mathcal{F}$ אם $b,c\in\mathcal{B}$ אם לכל אם ורק אם ורק הוא על-מסנן הוא על-מסנן הוכיחו שמסנן. הוכיחו שמסנן $c\in\mathcal{F}$ או או $b\in\mathcal{F}$

הטענה האחרונה, בתוספת התרגיל שלפניה, מראים שהוכחת המשפט תסתיים אם נראה שכל מסנן מוכל במסנן מקסימלי. הכלי הסטנדרטי לעשות זאת נקרא *הלמה של צורן.* כדי לצטט אותה, נזכיר את ההגדרה הבאה.

תהי חלקית. קבוצה סדורה תהי (X, \prec) תהי 2.1.31 הגדרה

- ת. שרשרת ב-X הינה תת-קבוצה Y עליה הy עליה הסדר מלא, כלומר לכל x
 eq y, מתקיים שרשרת בy
 eq x אוx
 eq y
- חסומה מלעיל אם קיים y=x או $y\prec x$ כך ש- $x\in X$ החסומה מלעיל אם היא ב-X היא היא חסומה מלעיל ב- $x\in X$ הוא לכל לכל $y\in Y$

איבר מירבי

 $x \not\prec y$ מתקיים $y \in X$ לכל עבורו איבר $x \in X$ הוא איבר איבר מירבי ב-3

דוגמא 2.1.32. תהי S קבוצה, ו-X קבוצה של קבוצות המוכלות ב-S. אז X סדורה חלקית ביחס $y\in X$ אם $x\subset y$ אם אם להכלת קבוצות $x\in Y$ אם $x\subset y$ אם אם להכלת קבוצות ב-X. איבר מירבי הוא איבר שלא מוכל בשום קבוצה אחרת ב-X.

לעיתים קרובות נעסוק בקבוצות X מסוג זה, עם התכונה שהאיחוד של כל שרשרת של קבוצות ב-X, גם הוא קבוצה ב-X. במקרה זה, האיחוד הוא חסם מלעיל של השרשרת, ולכן כל שרשרת חסומה מלעיל.

דוגמא 2.1.33. בתור מקרה פרטי של הדוגמא הקודמת, יהי S מרחב וקטורי (מעל שדה כלשהו), ותהי X קבוצת הקבוצות הבלתי תלויות לינארית ב-S. איחוד של שרשרת של קבוצות בלתי תלויות הוא קבוצה בלתי תלויה (שכן כל תלות לינארית היא בין מספר סופי של וקטורים, אשר שייכים לאחד האיברים בשרשרת). איבר מירבי ב-X, כלומר קבוצה בלתי תלויה מירבית, נקרא בסיס של S.

עובדה 2.1.34 (הלמה של צורן). תהי X קבוצה סדורה חלקית, בה כל שרשרת חסומה מלעיל. אז קיים ב-X איבר מירבי

תרגיל 2.1.35. הראו שמהלמה של צורן נובעת הגירסא היותר חזקה: עם אותן הנחות, לכל איבר קיים איבר מירבי הגדול ממנו

תרגיל 2.1.36. הקבוצה הריקה הינה קבוצה סדורה חלקית (באופן יחיד). למה היא אינה מהווה סתירה ללמה של צורן?

בגלל הלמה של צורן, משתלם לנסח תכונות של עצמים על-ידי תנאי מקסימליות. למשל: דוגמא 2.1.33. לפי דוגמא 2.1.33, לכל מרחב וקטורי יש בסיס

מסיבות דומות, הלמה של צורן מופיעה במקומות רבים במתמטיקה. אנחנו נשתמש בה כדי להראות את קיומם של על-מסננים, ובכך להחזיר את כל החובות שצברנו:

טענה 2.1.38. כל מסנן באלגברה בוליאנית מוכל בעל-מסנן

הוכחה. נתבונן בקבוצת כל המסננים, עם יחס ההכלה. לפי תרגיל 2.1.35, מספיק להראות: איחוד הוכחה. נתבונן בקבוצת כל המסננים, עם יחס ההכלה. עם איחוד C- שרשרת מסננים היא מסנן. נניח שרC- שרשרת כזו, עם איחוד $a,b\in\mathcal{F}_a$ הוכל בניח \mathcal{F}_a , כך ש \mathcal{F}_a , כך ש $a\in\mathcal{F}_a$ - הואיל ו- $a,b\in\mathcal{F}_b$ - מסנן. הוכחת התכונות האחרות דומה. בשני. אז $a,b\in\mathcal{F}_b$ - ולכן $a,b\in\mathcal{F}_b$ - ולכן $a,b\in\mathcal{F}_b$ - מסנן). הוכחת התכונות האחרות דומה.

נסכם את ההוכחה:

השמה השמה ב-0 ב-3 קיימת השמה השמה הוכחת משפט 2.1.22. לפי תרגיל 2.1.23, עלינו להראות שלכל b>0 ב-b>0 קיימת השמה האחרונה, מסנן . $\omega(b)=1$ - ב- $\omega:\mathcal{B}\to\mathbf{2}$. לפי תרגיל בעל-מסנן בעל-מסנן . $\omega(b)=1$ אם ורק אם $\omega(a)=1$ ידי בעל-מסנן בעל-מסנן . $\omega(b)=1$ גדיר בעל-מסנן $\omega:\mathcal{B}\to\mathbf{2}$. על-ידי $\omega:\mathcal{B}\to\mathbf{2}$. אז בעל-מסנן ולפי תרגיל בעל-מסנן . $\omega(a)=1$ השמה.

סוף

,2 הרצאה 7 בנוב מודל

המסקנה הבאה היא כמעט טריוויאלית בהקשר הזה, אך בהקשר של הפירוש לפסוקים שיבוא המסקנה הבאה היא כמעט טריוויאלית בהקשר הזה, אך בהמשך היא אחת התוצאות המרכזיות. נגיד שהשמה $\omega:\mathcal{B}\to 2$ היא מודל של תת-קבוצה $\omega(b)=1$ אם מספקת את מספקת את $\omega(b)=1$ אם לכל של לכל משהיא מספקת את מספקת את מחור של היא מספקת את מחור של היא מספקת את מחור של היא מחור של היא

מסקנה 2.1.39 (משפט הקומפקטיות לאלגברות בוליאניות). אם \mathcal{B}_0 קבוצת איברים של אלגברה בוליאנית B_0 , אז ל- B_0 יש מודל בוליאנית B_0 , כך שלכל תת-קבוצה סופית $F \subset B_0$ יש מודל

תרגיל 2.1.40. הוכיחו את המסקנה

השמה ל-מוע ניתן להרחיב להשמה של \mathcal{B}_0 . הוכיחו שכל השמה ל- \mathcal{B}_0 ניתן להרחיב להשמה ל- \mathcal{B}_0

 $a o b = \lnot(a) \lor b$ נסמן $a,b \in \mathcal{B}$ ולכל בוליאנית, אלגברה אלגברה תהי \mathcal{B} אלגברה בוליאנית, ולכל

- $\omega(a \to b) = \omega(a) \to \omega(b)$ אז השמה, אז $\omega: \mathcal{B} \to 2$ אם הוכיחו .1
- $\omega:\mathcal{B}\to 2$ נניח ש- \mathcal{B} קבוצה עם איבר נתון $0\in\mathcal{B}$ ופעולה ש קבוצה ש- \mathcal{B} . נגיד ש-2. .2 השמה אם $\omega(0)=0$ ומתקיים השוויון מהסעיף הקודם. נניח שמתקיים התנאי הבא: לכל $\omega(0)=0$, אם לכל השמה שיש מבנה יחיד מתקיים $\omega(a)=0$, אז של אלגברה בוליאנית על $\omega(a)=0$, עבורו $\omega(a)=0$ מתקבל כמו בתחילת השאלה.

2.2 פסוקים ואלגברות חפשיות

הדיון שלנו על "טענות" היה, עד כה, קצת ערטילאי: הטענות הן איברים של אלגברה בוליאנית, הדוגמאות היו בעיקר אלגברות של קבוצות, וקשה לראות בקבוצות אלה טענות. יותר מזה, אלגברה הדוגמאות היו בעיקר אלגברות שקילות: הטענות $\langle b \wedge a \rangle$ ו- $\langle a \wedge b \rangle$ שוות, על-פי הגדרה, בעוד בוליאנית מייצגת טענות עד-כדי שקילות: הטענה "קר ויורד גשם" כשונה מ-"יורד גשם וקר".

בסעיף זה ניקח את הגישה השניה: נתחיל מקבוצה P של "טענות בסיסיות", ונבנה מהן, ברמה התחבירית, טענות חדשות. על-מנת להפריד בין טענות ברמה הטכנית והטענות בדיון עצמו, נקרא לאיברי P והטענות שנבנות ממהם "פסוקים".

P אנחנו שמכילה שמכילה היא כזו: אנחנו בונים אלגברה בוליאנית שמכילה את ברמה ברמה הטכנית, המשמעות של היא מדונו, ומרגע שקבענו אותם, ערך האמת של יתר אנחנו יכולים לקבוע את ערכי האמת של P כרצוננו, ומרגע שקבענו אותם, ערך האמת של ידי האיברים נקבע. במלים אחרות, האלגברה נתונה על-ידי ההגדרה הבאה:

האלגברה הבוליאנית החפשית $\mathcal{B}(P)$

הגדרה 2.2.1. לכל קבוצה P, האלגברה הבוליאנית החפשית על P היא אלגברה בוליאנית (P), המכילה את בעלת התכונה הבאה: אם $\mathcal B$ אלגברה בוליאנית כלשהי, לכל העתקה של קבוצות P המכילה את P יש הרחבה יחידה להעתקה של אלגברות בוליאניות $\mathcal B$ יש הרחבה יחידה להעתקה של אלגברות בוליאניות

מכתיבה את הערך של האיברים הבסיסיים ב-P, ומשם יש רק דרך אחת לחשב את כלומר, מערך של כל איבר אחר. המטרה העיקרית שלנו בסעיף זה היא להוכיח:

 $\mathcal{B}(P)$ משפט 2.2.2. לכל קבוצה P קיימת אלגברה בוליאנית הפשית משפט

 $\mathcal{B}(P)$ -ב בירבים של השמות את לשנות מובן ניתן כמובן הסבר: ניתן בירשת קצת הסברים בהידות במשפט דורשת לאלגברה אחרת, אבל היא תהיה זהה מכל בחינה מעשית לאלגברה (בהנחה שהיא קיימת), ולקבל אלגברה אחרת, אבל היא תהיה זהה מכל בחינה מעשית המקורית. באופן יותר מדויק:

על חפשיות של אלגברות הפשיות ו-($P \to Q$ אלגברות הפשיות על פונקציה בין פונקציה ל $t_0: P \to Q$ אלגברות הכיות אלה קבוצות אלה

- $p\in P$ לכל $t(p)=t_0(p)$ -ש כך כך ל $t:\mathcal{B}(P)\to\mathcal{B}(Q)$ לכל יחיד הומומורפיזם שיש הוכיחו .1
- בכיוון פונקציה הפוכה ביחרו (רמז: ביחרו של חד-תרכית או על אם ורק אם לכוו (רמז: ביחרו חד-תרכית או ביחרו פונקציה הפוכה פרט. אחד). בפרט, אם $P\subseteq Q$, אז ניתן לזהות את נעשה אחד). בפרט, אם או ניתן לזהות את ניתן לזהות את נעשה אחת)
- הוכיזם איזומורפיזם אותה קבוצה P, אז קיים איזומורפיזם של אלגברות שאם ווכיחו שאם \mathcal{B}_1 שתי אלגברות שלו ל-P שהצמצום שלו ל-P שהצמצום שלו ל-P שהצמצום שלו ל-

שימו לב שכל הטענות נובעות ישירות מההגדרה של אלגברה חפשית, ולא מהבנייה שלה.

הנתן נזכיר בומה מאד לרעיון של "מרחב לינארי שנוצר על-ידי קבוצה "רעיון נזכיר שבהנתן מרחב ... המצב דומה מאד לרעיון של "מרחב וקטורי k מעל k שמכיל את k, וש-P בסיס שלו. אדה k וקבוצה k ניתן לבנות מרחב וקטורי לרעיון מעל את אוני מרחב וקטורי לרעיון מרחב וקטורי את אוני מרחב וקטורי לרעיון מרחב וקטורי את המצב דומה מאד לרעיון של המצב דומה מרחב וקטורי את המצב דומה מאד לרעיון של המצב דומה מרחב וקטורי המצב דומה מאד לרעיון של "מרחב וקטורי" מרחב וקטורי המצב דומה מאד לרעיון של "מרחב וקטורי" מרחב וקטורי המצב דומה מאד לרעיון של "מרחב וקטורי" מרחב וקטורי המצב דומה מאד לרעיון של "מרחב וקטורי" מרחב וקטורי המצב דומה מאד לרעיון של "מרחב וקטורי" מרחב וקטורי המצב דומה מאד לרעיון של "מרחב וקטורי" מרחב וקטורי המצב דומה מאד לרעיון של "מרחב וקטורי" מרחב וקטורי המצב דומה מאד לרעיון של "מרחב וקטורי" מרחב וקטורי המצב דומה מאד לרעיון של "מרחב וקטורי" מרחב וקטורי המצב דומה מרחב וקיים המצב דומה

מהגדרת הבסיס נובע שכל העתקה של קבוצות $P \to V$, כאשר V מרחב וקטורי כלשהו מהגדרת הבסיס נובע שכל העתקה לינארית לינארית $T: k\langle P\rangle \to V$ מעל K, ניתנת להרחבה יחידה להעתקה לינארית שלה ל-R. נקבעת בצורה "חפשית" ויחידה על-ידי הצמצום שלה ל-R

על-מנת להוכיח את חלק הקיום במשפט, אנחנו נבנה את קבוצת הפסוקים מעל P. לשם כך, נזכיר שמחרוזת או מילה (מעל קבוצה A) היא סדרה סופית של איברים מA (אנחנו מזהים את מילה איברי A עם סדרות באורך A).

הגדרה 2.2.5. עבור קבוצה P, קבוצת הפסוקים $\mathcal{F}(P)$ מעל P היא הקבוצה הקטנה ביותר P קבוצת הפסוקים של מלים מעל הקבוצה $P \cup \{\langle,\rangle,\to,0\}$ המקיימת:

- $0 \in F$.1
- $P \subseteq F$.2
- $\langle x{
 ightarrow}y
 angle\in F$ אז $x,y\in F$ אם .3

P נקרא פסוק מעל $\mathcal{F}(P)$ מעל

פסוק

כמובן שבהגדרה הזו אנו מניחים ש-P לא כוללת את הסימנים הנוספים ... בשלב כמובן שבהגדרה מניחים ש-P לא משחק תפקיד מיוחד, ואנחנו נסמן P0 לא משחק תפקיד מיוחד, ואנחנו נסמן

 $\langle p \rightarrow q \rangle$, $\langle p \rightarrow 0 \rangle$, p:P מעל מעל פסוקים, המחרוזות המחרוזות אם $P=\{p,q\}$ אם 2.2.6. אם וכן הלאה.

לקבוצת הפסוקים אין מבנה טבעי של אלגברה בוליאנית, אך מלבד זאת, היא מקיימת את הדרישה:

 $t_0: P_0 o A$ קבוצות של העתקה אל לכל העתקה איל. אינית עם פעולה דו-מקומית פעולה דו-מקומית $t: \mathcal{F}(P) o A$ משפט 2.2.7. נניח של $t: \mathcal{F}(P) o A$

$$t(\langle x \rightarrow y \rangle) = t(x) * t(y) \tag{2.1}$$

 $x, y \in \mathcal{F}(P)$ לכל

ההוכחה תדגים את הדרך הרגילה להשתמש בהגדרה, שהיא סוג של אינדוקציה: מסתכלים על קבוצת הפסוקים שמקיימת את התכונה שאנחנו רוצים, ומראים שהיא מכילה את P_0 וסגורה תחת הגרירה. נקודה מעניינת היא שאנחנו מוכיחים קודם את היחידות, ואז משתמשים בה כדי להוכיח את הקיום.

הוכחה. נתחיל מהיחידות. נניח ש $t_1,t_2:\mathcal{F}(P)\to A$ - שתיהן מקיימות את התנאים. נסמן הוכחה. נתחיל מהיחידות. נניח ש $X=\{x\in\mathcal{F}(P)\mid t_1(x)=t_2(x)\}$ אז $X=\{x\in\mathcal{F}(P)\mid t_1(x)=t_2(x)\}$ ל-נמו-כך, אם X

$$t_1(\langle x \rightarrow y \rangle) = t_1(x) * t_1(y) = t_2(x) * t_2(y) = t_2(\langle x \rightarrow y \rangle)$$

 $\mathcal{F}(P)$ עם של של בהגדרה את מקיימת את מקיימת לכן, לכן, לכן, גם כן גוב גע $\langle x{\to}y\rangle\in X$ כלומר, כלומר כלומר ו $t_1=t_2$ ו-ב $X=\mathcal{F}(P)$

להוכחת הקיום, נזדקק לגרסא חזקה יותר של היחידות, שמופיעה בתרגיל 2.2.8. במונחים של תרגיל זה, נתבונן בקבוצה

$$E = \{t : X \to A \mid X \le \mathcal{F}(P), t \mid_{X \cap P_0} = t_0 \mid_{X \cap P_0}, t \mid_{X \cap P_0} t \}$$
הומומורפיזם חלקי

אנחנו טוענים שלכל (P) קיים $t\in E$ קיים $t\in E$ קיים $t\in E$ קיים את אכן, נסמן את קבוצת האיברים המקיימים תנאי זה ב-t. נשים לב ש-t0, ולכן t1, ולכן t2. נניח ש-t3, אז t4, גער זה ב-t4, נשים לב ש-t5, גער אפי מפונים של t5, גער אפי ווים, ולכן לפי תרגיל t6, גער שפונקציה אווים, ולכן לפי תרגיל t7, גער שפונקציה אווים, ולכן לפי תרגיל t7, גער שפונקציה אווים, ולכן לפי אינה מוגדרת שם) אינה מוגדרת שם).

אנו טוענים ש-t הומומורפיזם חלקי. המקרה היחיד שצריך לבדוק הוא האיבר החדש בעריך לפי תרגיל לפי תרגיל לפי תרגיל אבל לפי תרגיל לפי החדש געריך להראות הוא געריך להראות הוא $t(x_1 \rightarrow x_2) = t(x_1 \rightarrow x_2) = t(x_1) + t(x_2)$

התחום על tיחידה פונקציה קיימת לכ.2.2, ולכן תרגיל על מקיים את מקיים מקיים הראינו הראינו את מקיים מקיימת את מגאי שהצמצום שלה לכל קבוצה סגורה הוא ב-E. בפרט, tעצמה שלה לכל קבוצה סגורה הוא המעוה

בהוכחה השתמשנו בשלוש הטענות הבאות, שהראשונה שבהן גם מסבירה את המינוח.

 $x,y\in\mathcal{F}(P)$ אם לכל $X\leq\mathcal{F}(P)$ אסטרה, $X\leq\mathcal{F}(P)$ היא סגורה, $X\subseteq\mathcal{F}(P)$ אם לכל X במת שתת-קבוצה $X\leq\mathcal{F}(P)$ אז גם X במת שתר X באם X באם X באם לכל X אז גם X אז גם X באם X באם X באם לכל אם לכ

- 1. הוכיחו שחיתוך כלשהו של קבוצות סגורות הוא קבוצה סגורה
- שאם הלקיים כך הומומורפיזמים הלקיים כך שה גורה, ו-1, $t_1,t_2:X\to A$ סגורה, אז גורה, אז גורה, אז $t_1=t_2$ אז גור $t_1=t_2$ אז גור $t_1=t_2$ אז גורה,

התרגיל הבא הוא תרגיל כללי על פונקציות בין קבוצות.

התרגיל האחרון נקרא גם משפט הקריאה היחידה, משום שהוא אומר שיש דרך יחידה "לקרוא" . איבר של $\mathcal{F}(P)$, כלומר, להבין איך הוא נבנה מהפסוקים הבסיסיים.

 $I:\mathcal{F}(P) imes\mathcal{F}(P) o\mathcal{F}(P)$ משפט הקריאה היחידה). הוכיחו שהפונקציה (משפט הקריאה היחידה) מ P_0 - היא זרה שלה ושהתמונה ושהתמונה וד-חד-ערכית, היא וודרת לה $I(x,y) = \langle x \rightarrow y \rangle$ המוגדרת על-ידי

 $\mathcal{F}(P)$ בהגדרת בהגדרת בהגדרת בהגדרת בהגדרת בהגדרת בהגדרת בהגדרת אל היינו שהטענה לא הייתה לא (כלומר, מוותרים על הסוגריים)

 $:\mathcal{F}(P)$ נגדיר את הפעולות הבאות על

$$\neg: \mathcal{F}(P) \to \mathcal{F}(P) \qquad \qquad \neg(x) = \langle x \to 0 \rangle \tag{2.2}$$

$$\neg : \mathcal{F}(P) \to \mathcal{F}(P) \qquad \qquad \neg(x) = \langle x \to 0 \rangle \qquad (2.2)$$

$$\land : \mathcal{F}(P) \times \mathcal{F}(P) \to \mathcal{F}(P) \qquad \qquad \land (x, y) = \neg(\langle x \to \neg(y) \rangle) \qquad (2.3)$$

הסיבה, הסיבה $\neg(\neg(p)) \neq p$, למשל, למשל, ברה לאלגברה לאלגברה הפעולות את הופכות את הופכות את לאלגברה הפעולות הללו כמו בדוגמא הזו, היא שיש פסוקים שהם שונים כמחרוזות, אך זהים מבחינת המשמעות הלוגית שלהם. במילים אחרות, ישנו יחס שקילות על קבוצת הפסוקים, בו שני פסוקים הם שקולים אם יש להם אותה משמעות לוגית. ישנן לפחות שתי דרכים לתאר את השקילות הזו, אנחנו נראה אחת מהו עכשיו. ואת השניה מאוחר יותר.

 $x,y \in \mathcal{B}$ עבור כל $x \to y = \neg(x) \lor y$ נסמן, \mathcal{B} לכל אלגברה בוליאנית

הגדרה P קבוצה.

- ו- השמה על $\omega(0)=0$ היא פונקציה ב $\omega:\mathcal{F}(P) o 2$ היא פונקציה $\mathcal{F}(P)$ היא השמה על 1. $.\omega(\langle x \rightarrow y \rangle) = \omega(x) \rightarrow \omega(y)$
- מתקיים שקולים לוגית $\omega:\mathcal{F}(P) o 2$ מתקיים שקולים לוגית אם לכל השמה $x,y\in\mathcal{F}(P)$ מתקיים מולים לוגית .2 $x \equiv y$:סימון: $\omega(x) = \omega(y)$
 - $\omega(x)=1$ המקיימת $\omega:\mathcal{F}(P) o\mathbf{2}$ הוא השמה $\Gamma\subseteq\mathcal{F}(P)$ המקיימת פסוקים. Γ את מספקת ש-ש. גע נאמר את גע את את את את אכל מספקת

טענה P מענה. 2.2.12. תהי

- $\mathcal{F}(P)$ שקילות לוגית היא יחס שקילות על 1.
- \wedge י משרות. $\wedge(x,y) \equiv \wedge(x',y')$ י ו $\neg(x) \equiv \neg(x')$ אז $y \equiv y'$ י לכן, $\neg(x) \equiv x'$ משרות. פעולות מוגדרות היטב על המנה $\mathcal{F}(P)/\equiv$ ממסומנות באותו סימון).
- מסמל $\mathcal{B}=\langle B,\wedge,\neg,0\rangle$ המבנה $\mathcal{B}=\langle B,\wedge,\neg,0\rangle$ הוא אלגברה בוליאנית עם הפעולות המושרות (כאשר את המחלקה של $\mathcal{F}(P)$, ויתר המבנה נקבע)
 - \mathcal{B} אינם שקולים, ולכן P_0 משוכנת ב- P_0

תרגיל 2.2.13. הוכיחו את הטענה

הוכחת משפט 2.2.12. נוכיח שהאלגברה $\mathcal B$ המופיעה בטענה 2.2.12 היא חפשית על P. נניח ש- הוכחת משפט 2.2.2. נוכיח שהאלגברה להרחבה אל אלגברה בוליאנית $\mathcal B$. עלינו להוכיח שהיא ניתנת להרחבה $\pi:\mathcal F(P)\to\mathcal B=\mathcal F(P)/\equiv$ את $\pi:\mathcal F(P)\to\mathcal B=\mathcal F(P)/\equiv$ של אלגברות בוליאניות. נסמן ב- π של אלגברות בוליאניות. נסמן ב- העתקת המנה.

 $. ilde{t}_i=t_i\circ\pi:\mathcal{F}(P) o\mathcal{B}'$ נסמן $.t_0$ את שתיהן מרחיבות $t_1,t_2:\mathcal{B} o\mathcal{B}'$ שתיה: נניח יחידות: נניח של שתיהן של שתיהן מרחיבות של שתיהן מקיימות על $. ilde{t}_i(\langle x o y\rangle)$ ועל $. ilde{t}_i$ ועל $. ilde{t}_i$ ושל שתיהן מקיימות של $. ilde{t}_i$ נובע מזה ש- $. ilde{t}_i$ לכל $. ilde{t}_i$ משפט $. ilde{t}_i$ בגלל ש $. ilde{t}_i$ לכל $. ildе{t}_i$ לכל $. ildе{t}_i$

ilde t(0)=0- ש קיום: לפי משפט 2.2.7, יש העתקה $\mathcal E:\mathcal F(P)\to\mathcal B'$ שמרחיבה את 2.2.7, כך ש-2.7, פיום: לפי לפי ilde t(x)= ilde t(x') אז $x\equiv x'$ אז ilde t(x)= ilde t(x). אז $ilde t(x)= ilde t(x)\to ilde t(x)$ משפט 2.1.22 יש השמה על $\omega:\mathcal B'\to \mathcal B'$ בסתירה לכך ש-2.1 $\omega:\mathcal B'\to \mathcal B'$ שנותנת ערכים שונים ל- $\omega:\mathcal B'$ בסתירה לכך ש- $\omega:\mathcal B'$

t-ש מבטיחה t מבטיחה של מבטיחה מוגדרת היטב על משרה משרה של מבטיחה לפי הטענה האחרונה, א משרה פונקציה מוגדרת t(0)=0 של לכל מרחיבה את מרחיבה את t(0)=0 ושל t(0)=0 ושל אלגברות בוליאניות באמצעות אפיון באמצעות (ו-0), ולכן t(0)=0

אפשר לסכם את הנקודה שאנחנו עומדים בה: בהנתן קבוצה P של "טענות בסיסיות", בנינו את הקבוצה $\mathcal{F}(P)$ של הטענות שניתן להרכיב מהן, ואת הקבוצה של "טענות עד כדי שקילות הקבוצה $\mathcal{F}(P)$ של הטענות שניתן להרכיב מהן, ולכן אנחנו יודעים עליה משהו). לקבוצה לוגית". לקבוצה $\mathcal{F}(P)$ יש מבנה של אלגברה בוליאנית (ולכן אנחנו יודעים עליה משהו). בצורה שלה בצורה אלגברי פשוט, אבל יש לה את היתרון שאפשר לרשום את האיברים שלה בצורה מפורשת, ולהוכיח עליהם טענות באינדוקציה (על בניית הפסוק). במילים אחרות $\mathcal{F}(P)$ את הצד הסמנטי.

סוף הרצאה 3, 11 בנוב

תרגיל 2.2.14 שורפית ש(P) איזומורפית לאלגברת חזקה אם ורק אם P סופית הרגיל 2.2.14 קבוצה, ו-P קבוצה, ויP קבוצה של תתי-קבוצות של P קבוצה של הרגיל 2.2.15. נניח שP קבוצה, ויP כתת-אלגברה של P (תרגיל 2.2.3).

- $\mathcal{B}(P_1)\cap\mathcal{B}(P_2)=\mathcal{B}(P_1\cap P_2)$ אז $P_1,P_2\in\mathcal{C}$ אם הוכיחו שאם .1
- אז $P_1,P_2\subseteq P_3$ כך שר $P_3\in\mathcal{C}$ יש $P_1,P_2\in\mathcal{C}$ ולכל $\mathcal{D}=P$ שאם $\mathcal{D}=P_3$ כ. בפרט, לכל $\mathcal{B}(P)=\bigcup_{P_0\subseteq P,|P_0|<\infty}\mathcal{B}(P_0)$ ישרט, לכל $\mathcal{B}(P)=\bigcup_{P_0\subseteq P,|P_0|<\infty}\mathcal{B}(P_0)$

2.3 שימושים של משפט הקומפקטיות

נזכיר שבמסקנה 2.1.39 הוכחנו את משפט הקומפקטיות לאלגברות בוליאניות. בשביל השימושים יהיה נזכיר שבמסקנה את התוצאה במונחים של קבוצת הפסוקים $\mathcal{F}(P)$.

מסקנה 2.3.1 (משפט הקומפקטיות לתחשיב הפסוקים). אם $F\subseteq \mathcal{F}(P)$ קבוצה של פסוקים, כך מסקנה 2.3.1 מסקנה הקומפקטיות לתחשיב הקומפקטיות לתחשיב היש מודל, אז ל-Fיש מודל

תרגיל 2.3.2. הסיקו את מסקנה 2.3.1 מתוך מסקנה 2.1.39

נראה עכשיו כמה שימושים של המסקנה האחרונה לבעיות מתחומים שונים. האסטרטגיה בכל השימושים דומה: אנחנו מתעניינים במחלקה מסוימת של אובייקטים. אנחנו מניחים את קיומם במקרה הסופי, ורוצים להראות שהם קיימים במקרה הכללי. מייצרים קבוצת פסוקים שמודל שלה מתאר (ומתואר על-ידי) אובייקטים מהסוג המעניין. אז בעיית הקיום של האובייקט הופכת לבעיית קיום מודל עבור אותה קבוצה. לפי משפט הקומפקטיות, הוכחת הקיום הזו נתונה על-ידי קיום במקרה הסופי, שאנחנו מניחים (או מוכיחים בנפרד).

טענה 2.3.3. כל סדר חלקי \times על קבוצה X ניתן להרחבה לסדר מלא

הוכחה. נוכיח ראשית למקרה ש-X סופית, באינדוקציה על גודלה. הטענה ברורה אם X ריקה. $Y=X\setminus\{x\}$ איבר מירבי ב-X. אז באינדוקציה X ניתן להרחבה לסדר מלא על X איבר מירבים סדר זה ל-X על ידי הכלל X לכל Y לכל Y מתקבל סדר מלא על וקל לראות שאם מרחיבים סדר זה ל-X על ידי הכלל X המרחיב את הסדר המקורי.

תהי עתה X קבוצה סדורה חלקית כלשהי, ונתבונן בקבוצת הפסוקים הבסיסיים

$$P_X = \{ p_{a,b} \mid a, b \in X \}$$

ובקבוצת הפסוקים Γ_X מעליה המורכבת מכל הפסוקים הבאים:

- $a \prec b$ לכל $p_{a,b}$ הפסוקים .1
 - $a \in X$ לכל $\neg p_{a,a}$.2
- $a,b,c \in X$ לכל $\langle p_{a,b} \wedge p_{b,c} \rangle \rightarrow p_{a,c}$.3
 - $a \neq b \in X$ לכל $\langle p_{a,b} \lor p_{b,a} \rangle$.4

נשים לב שהמידע של השמה המספקת את המספקת אק שקול למידע של סדר מלא על X המרחיב השים לב שהמידע של השמה השמה המספקת את את אם ורק אם ורק אם $a\prec b$ ידי: את את את לבן, על ידי שהיא ספיקה סופית.

תהי $\Gamma_0\subseteq\Gamma_X$ קבוצה סופית. אז היא מערבת מספר סופי של פסוקים בסיסיים, ולכן גם תת- תהי $\Gamma_0\subseteq\Gamma_X$ קבוצה סופית של איברי X. כלומר, כלומר, $\Gamma_0\subseteq\Gamma_{X_0}$ ומספיק שנוכיח שיש השמה המספקת את אד לפי האמור לעיל, השמה כזו נתונה על-ידי סדר מלא על X_0 המרחיב את על על סדר כזה קיים לפי המקרה הסופי

צביעת גרפים 2.3.4

הדוגמא הבאה קשורה לתורת הגרפים. xרף הוא יחס דו-מקומי, סימטרי ואי-רפלקסיבי E על xרוגמא הבאה קשורה לנלומר, E(a,a) גורר E(b,a) לכל E(b,a), ולכל Cרא מתקיים Cרומר, Cרומר, Cרומר, Cרומר, ולכל Cרומר, בוצה הקודקוים, ווא Cרומר, ולכל בוצה הקשתות. אם Cרומר, הגרף וא Cרוא הקשתות. אם Cרומר קבוצה הקודקוים, ווא Cרוא הקשתות. אם Cרומר קבוצה הגרף וא פניגו הקודקוים, ווא פניגו הקודקוים, ווא פניגו הקשתות. אם Cרומר קבוצה הגרף ווא פניגו הקודקוים, ווא פניגו הקודקוים, ווא פניגו הקודקוים, ווא פניגו הקשתות.

הבוצת הקשתות

 $c(a) \neq c(b)$ אז E(a,b) כך שאם כך מגריף אם קודקודי הגרף) $c:V \to S$ אז עביע אם קיימת העתקה a מספר טבעי, אנו מזהים אותו עם הקבוצה $\{1\dots k-1\}$, ולכן המושג צביע מוגדר היטב. אם a מספר טבעי, אנו מזהים אותו עם הקבוצה ([8,1]) קובע שכל גרף מישורי סופי הוא a-צביע (גרף מישורי הוא $a,b) \in E$ למשל, משפט ארבעת הצבעים ([8,1]) קובע שכל גרף מישורי טופי הוא $a,b) \in E$ לכל $a,b) \in E$ לכל a אז a (a) ואם a אז a (a) ואם a אז a (a) ואם a אז a (a) אז a (a) ואם a (a) אז a) ואם a0 אז a1 הוא הגרף a2 אז a3 הוא הגרף a3 הוא הגרף a4 (a6 ממש) של הגרף a4 (a6 ממש) של הגרף a7 הוא הגרף (a8 ממש) של a8.

תרגיל 2.3.5. לכל k טבעי, מצאו דוגמא לגרף שאינו k-צביע, אבל כל תת-גרף מלא ממש שלו הוא k-צביע

מענה 2.3.6. יהי G=(V,E) אם כל תת-גרף, א מספר טבעי. אז G הוא G=(V,E) יהי מענה ביע אם ורק אם כל תת-גרף מלא סופי שלו הוא G=(V,E)

 Γ_G ביוון אחד ברור. בכיוון השני, נתבונן בקבוצת הפסוקים Γ_G

$$a \in V$$
 לכל $p_{1,a} \lor \cdots \lor p_{k,a}$.1

$$1 \le i, j \le k$$
-ו $a \in V$ עבור $\neg \langle p_{i,a} \land p_{j,a} \rangle$.2

$$.1 \le i \le k$$
-ו $(a,b) \in E$ לכל $\neg \langle p_{i,a} \land p_{i,b} \rangle$.3

אםם c(a)=i-1 אדי צבעים על ב-k ביעה חוקית לצביעה שקולה לצביעה שקולה המספקת המספקת אז השמה המספקת להראות ש Γ_G שקולה לכן מספיק להראות ש Γ_G ספיקה. ההמשך לכן מספיק להראות לעני ($\omega(p_{i,a})=1$

תרגיל 2.3.7. הראו שאם מחליפים את בקבוצה אינסופית בטענה האחרונה, הטענה אינה נכונה

משפט החתונה 2.3.8

נניח שנתונות קבוצות F ו-M של נשים וגברים, בהתאמה, ולכל אישה קבוצה סופית של גברים נניח שנתונות קבוצות F ו-M של נשים וגברים, בהיא מעוניינת בו (כך שלכל גבר מותאמת שהיא מעוניינת בהם. האם ניתן לשדך לכל אישה גבר שהיא מעוניינת בו (כך שלכל גבר מותאמת רק אישה אחת)? במלים אחרות, בהנתן יחס $R\subseteq F\times M$ כך שלכל $P\subseteq F$ הקבוצה פונקציה (שידוך) חח"ע $P:F\to M$ כך שר (נזכיר שלכל $P:F\to M$). התמונה של P:F על P:F היא הקבוצה פופית P:F של נשים מתקיים תנאי הכרחי הוא שלכל קבוצה סופית P:F

$$|F_0| \le |R[F_0]| \tag{2.4}$$

משפט החתונה (משפט Hall) אומר שזה גם תנאי מספיק.

תרגיל 2.3.9. הוכיחו שאם התנאי (2.4) מתקיים לכל $F_0\subseteq F$ סופית, אז קיים פתרון לבעיה הנתונה על ידי R (הוכיחו ראשית את המקרה הסופי, ואז השתמשו במשפט הקומפקטיות למקרה הכללי.)

2.3.10 הלמה של קניג

מסלול בגרף x_1,\dots,x_n מקדקוד a הוא סדרה סופית של קדקודים a מקדקוד a מקדקודים a מסלול בגרף שונים בזוגות, כך ש-a הוא a הוא a ולכל a ולכל a שנים בזוגות, כך של מסלול כזה הוא a ולכל a ולכל a שנים בזוגות, כך a שני קדקודים הוא אורך המסלול הקצר ביותר ביניהם (אם קיים). השכנים של קודקוד a הם הקודקודים במרחק a ממנו. הגרף a נקרא עץ אם בין כל שני קודקודים קיים של מסלול יחיד.

טענה 2.3.11 (הלמה של קניג). אם G הוא עץ אינסופי בו לכל קודקוד מספר סופי של שכנים, טענה ב-G מסלול אינסופי (כלומר סדרה x_i של קדקודים שונים בזוגות, לכל i טבעי, כך של $E(x_i,x_{i+1})$ -

הוכחה. שוב, הרעיון הוא לבנות קבוצת פסוקים, שמודל שלהם נותן פתרון, כלומר מסלול אינסופי. נקבע קודקוד a_0 , ונסמן ב- S_k את קבוצת האיברים במרחק k מ- a_0 . באינדוקציה, כל סופית. נתבונן בקבוצת הפסוקים הבאה:

- k לכל $\bigvee_{a \in S_k} p_a$.1
- k לכל , $a \neq b \in S_k$ לכל קלכל הכל , $a \neq b \in S_k$
- a-ל a_0 אם b אם להמסלול היחיד מ-3 אם להמטלול היחיד מ- $p_a
 ightarrow p_b$

 a_0 -ב המתחיל אינסופי מידע כמו מידע ביו מכיל זו מכיל של מודל אז מודל של מידע מידע מידע מידע

תרגיל 2.3.12. השלימו את ההוכחה

תרגיל 2.3.13. נניח ש $\{p_1,\dots\}=P=\{p_1,\dots\}$ בת-מניה. השתמשו בלמה של קניג כדי להוכיח את משפט הקומפקטיות במקרה זה (רמז: הגדירו גרף בו הקודקודים הם השמות חלקיות)

סוף

,4 הרצאה 14 בנוב'

אלגברות בוליאניות 2.3.14

קיבלנו את משפט הקומפקטיות כמסקנה ישירה של הצעד המרכזי בהוכחת משפט סטון (2.1.21), בו הצעד העיקרי הוא ההוכחה שההעתקה הטבעית היא חח"ע. ראינו בתרגיל 2.1.23 שזה נובע מהעובדה הבאה, אותה נוכיח עכשיו באמצעות משפט הקומפקטיות:

טענה 2.3.15. אם b איבר שונה מ-0 באלגברה בוליאנית $\mathcal B$, אז קיימת השמה b איבר שונה $\omega(b){=}1$

תרגיל 2.3.16. הוכיחו את הטענה עבור אלגברות בוליאניות סופיות (רמז: אפשר להשתמש בתרגיל 2.1.19)

נניח ש- \mathcal{B} אלגברה בוליאנית, ו-b איבר שונה מ-0. תהי איבר $P=\{p_x \mid x\in\mathcal{B}\}$, ונתבונן בקבוצה פוליאנית הפסוקים הבאים:

$$x, y \in \mathcal{B}$$
 לכל $p_{\langle x \wedge y \rangle} \leftrightarrow \langle p_x \wedge p_y \rangle$.1

$$x \in \mathcal{B}$$
 לכל $p_{\neg x} \leftrightarrow \neg p_x$.2

 p_b .3

2.3.15 את טענה Γ כדי להוכיח את טענה Γ השתמשו בקבוצה .2.3.17

משפט רמזי 2.3.18

משפט רמזי שימושי מאד גם בלוגיקה וגם בענפים אחרים במתמטיקה. יש לו גרסא סופית וגרסא אינסופית, ובמקרה הזה נוכיח את הגרסא האינסופית ישירות, ונסיק ממנה את הגרסא הסופית בעזרת משפט הקומפקטיות.

על מנת לנסח את המשפט, ננסח את ההגדרות הבאות: בהנתן קבוצה X, נסמן ב-X את קבוצת תתי הקבוצות בגודל X בX. אם X אם X אפשר לחשוב על X באופן טבעי כעל קבוצת תתי הקבוצות בגודל X בX אם X בX אם X אם X אם X אם X היא "צביעה" (כלומר, פשוט פונקציה), X הוא פונקציה קבועה מונוכרומטית של X היא תת-קבוצה X בX כך שהצמצום של X ל-X הוא פונקציה קבועה (כלומר, כל הקבוצות שכל איבריהן ב-X נצבעות באותו צבע).

תת-קבוצה מונוכרומטיר

S-ו אינסופית X אינסופית במשפט 2.3.19 משפט המין, גרסא אינסופית, גרסא אינסופית לכל משפט פופית הת-קבוצה מונוכרומטית אינסופית

 $k\geq 1$ המקרים k=0,1 ברורים. נניח שהטענה נכונה לאיזשהו x_0 - x_0 -

 $j\in J$ עבור j-1 לא תלוי בj-1 עבור לפי המקרה לפי המקרה לפי המקרה אינסופית אינסופית אינסופית אינסופית לפי המקרה לפי המקרה לפי האינדקס קבוצה אינסופית אור בעבור בקבוצה j-1 אם j-1 אם j-1 אם אינסופית בעבור לפן ביותר אור אינסופית המבוקשת. ביותר אינסופית המבוקשת. ביותר אינסופית המבוקשת.

 $c:\binom{m}{k}{ o}l$ כך שלכל (משפט רמזי, גרסא סופית). לכל חלכל $n,k,l\geq 0$ קיים (משפט רמזי, גרסא כופית). לכל חלכל $n,k,l\geq 0$ כד שלכל המונוכרומטית בגודל האונוכרומטית בגודל

הוכחה. לשם הפשטות, נוכיח את הטענה רק למקרה k=l=2, ההוכחה למקרה הכללי דומה. לשם הפשטות, נוכיח את הטענה רק למקרה $p_{i,j}$ יהי בסיסי, ולכל קבוצה I בגודל n של נקבע מספר טבעי n. לכל i< j טבעיים, יהי i< j טבעיים, יהי i< j הפסוק i< j עבור הפסוקים i< j עבור i< j עבור i< j עבור אינסופית של משפט רמזי, קיימת קבוצה אינסופית עבור של ינה בעם בועה על i< j< j עבור אינסופית של מספקת את i< j< j לכל שינה מספקת את i< j< j לכל עבועה על i< j< j אינה מספקת את i< j< j< j לכל דומה אינסופית של יונה מספקת את i< j< j< j< j

הראינו ש- Γ אינה ספיקה. לפי משפט הקומפקטיות, תת-קבוצה סופית הינה ספיקה. לפי הראינו ש- Γ אינה הינה ש- לפיקה. לכן, לכל השמה ש ω לפסוקים הבסיסיים המופיעים ב-Iעבורו לפסוקים הבסיסיים המופיעים שבורו הבסיסיים מנונרומטית.

2.4

ראינו שניתן להגדיר במדויק את המושגים טענה, ואמיתות של טענה. כעת נעבור למושג ההוכחה. ליתר דיוק, אנו רוצים להגדיר במדויק מהי הוכחה של פסוק x מתוך קבוצת פסוקים ההוכחה. ליתר דיוק, אנו רוצים להגדיר במדויק מהי מספר סופי של שלבים, כאשר בכל אחד אנו Γ . אינטואיטיבית, הוכחה של x מ Γ היא תהליך בעל מספר סופי של שהוכחנו קודם. כל שלב כזה מסיקים פסוק חדש מתוך פסוקים ב- Γ , או אקסיומות, או פסוקים שהוכחנו קודם. כל שלב כזה הוא "מכני": הוא מאפשר לעבור לפסוק המוכח לפי מבנה הפסוק בלבד. בפרט, כל התהליך הוא בלתי תלוי באמיתות או בהשמות.

על מנת למנוע בלבול, נשתמש במונח "היסק" עבור הוכחות במובן הטכני. כמו-כן, נוח יותר בהיקשר זה לעבוד עם הפעולה הלוגית של גרירה (\leftarrow) במקום גימום. אין כאן בעיה, שכן זהו פשוט קיצור.

הגדרה 2.4.1 הגדרה הופית פסוקים. נסמן x קבוצת פסוקים חדרה סדרה סופית הגדרה 1. נניח ש-x פסוק ו-x קבוצת פסוקים. נממן x, או שקיימים x, או שקיימים x, או שקיימים x, או שקיימים x, כאשר x, כאשר x, במקרה x או אומרים ש-x ובעלת x, במקרה x (במקרה במקרה x). אם x ביקה, נשמיט אותה מהסימון: x שריקה (Modus Ponens). אם x ביקה, נשמיט אותה מהסימון: x

כלל ההיסק

Modus Ponens

2. מערכת *האקסיומות הלוגיות* A הינה קבוצת כל הפסוקים בעלי אחת משלוש הצורות הבאות:

$$x \to \langle y \to x \rangle$$
 A1

$$\langle x \to \langle y \to z \rangle \rangle \to \langle \langle x \to y \rangle \to \langle x \to z \rangle \rangle$$
 A2

$$\langle \neg(x) \rightarrow \neg(y) \rangle \rightarrow \langle \langle \neg(x) \rightarrow y \rangle \rightarrow x \rangle$$
 A3

x,y,z בור פסוקים כלשהם

 α פסוק x הוא מסקנה של Γ או יכיח מ- Γ אם אר $\Gamma\cup A\vdash_0 x$ (כאשר A קבוצת האקסיומות .כיח הלוגיות). במקרה זה נסמן $\Gamma\vdash x$

המטרה העיקרית שלנו בסעיף הזה היא השוואת המושג התחבירי של יכיחות מהגדרה 2.4.1 למושג הסמנטי המקביל, נביעה לוגית:

הגדרה 2.4.2. נניח ש- Γ קבוצה של פסוקים, ו-x פסוק. הפסוק x נובע לוגית מ- Γ אם לכל מודל הבעלוגית הדרה Γ מתקיים Γ (סימון: Γ (סימון: Γ אווער הפסוק E הוא טאוטולוגיה אם הוא נובע לוגית סאוטולוגיה. הריקה, והוא סתירה אם E טאוטולוגיה.

סופית אי עד $\Gamma \models x$ אז אם הבאה: אם שקול לטענה הקומפקטיות שקול שמשפט הוכיחו אז יש רוכיחו הבאה: הבאה: הרגיל $\Gamma \models x$ אז יש רוכיחו סופית כך שריש. רוכיחו שמשפט הקומפקטיות שקול לטענה הבאה: הרגים שמשפט הקומפקטיות הרגיל הרגים שמשפט הקומפקטיות שקול לטענה הבאה: אם רוכיחו שמשפט הקומפקטיות הרגיל לטענה הבאה: אם רוכיחו שמשפט הקומפקטיות הרגיל הרגים הרגים שמשפט הקומפקטיות שקול לטענה הבאה: אם רוכיחו שמשפט הקומפקטיות הרגיל הרגים הרג

כיוון אחד של ההשוואה בין יכיחות לנביעה הוא שהגדרנו *מערכת היסק נאותה*: אם הצלחנו $^{ ext{auco}}$ מערמ היסק נאותה להסיק פסוק מתוך Γ , אז הוא נובע לוגית מ- Γ , כלומר, אפשר להוכיח רק דברים נכונים.

 $.\Gamma \models x$ אז ה $.\Gamma$ מענה 2.4.5. אם אם מסקנה של

תרגיל 2.4.6. 1. הוכיחו שכל אקסיומה היא טאוטולוגיה

 $x,y \models z$ אז או ידי על-ידי y-ו מ-x התקבל התקבל מ-2.

2.4.5 את טענה 3.

הערה 2.4.7. הרעיון העיקרי בטענה האחרונה הוא שצעד ההיסק שומר על נכונות לוגית. לפני שנמשיך לכיוון השני, נציין שאותו רעיון מאפשר לנו להראות שהאקסיומות שלנו הן *בלתי-תלויות:* אין קבוצת אקסיומות שנובעת מהאקסיומות האחרות.

:המקיימת שאם שה בעתקה $\omega:\mathcal{F}(P) \to S$ העתקה שאם שאם הוכיחו

$$\omega(x \to y) = \omega(x) \cdot \omega(y)$$

 $\omega(x) = a, \quad x \in \Gamma$

 $\omega(x) = a$ אז אם $\Gamma \vdash_0 x$ אז אם

 $x\cdot y$ =0-ו $S=\{0,1\}$ כלומר, כאשר (כלומר, מתרגיל ה נובעת מתרגיל נובעת 2.4.5 נובעת אם (.a=1 ו-1, אם ורק אם אם אם יא

כדי להוכיח, למשל, ש-A1 אינה מסקנה של יתר האקסיומות, ניקח: $S=\{a,b,c\}$ ונגדיר כדי להוכיח, למשל, $a\cdot b=a\cdot c=b\cdot c=c$ בכל מקרה אחר. אם $a\cdot b=a\cdot c=b\cdot c=c$ הבסיסיים ל-S, נרחיב אותה ל-0 על-ידי $a\cdot b=a\cdot c=c$ לפי משפט 2.2.7, כל העתקה כזו ניתן להרחיב האופן יחיד לקבוצת כל הפסוקים. קל לבדוק אז שכל "השמה" כזאת נותנת ערך a לכל האקסיומות באופן יחיד לקבוצת כל הפסוקים. קל עני שוב a עני שוב לa אז שכל "השמה" כזאת נותנת ערך a לכל האקסיומות באופן יחיד לקבוצת כל אם a עני שוב a עני שוב לבדוק אז שכל "השמה" כזאת נותנת ערך a לכל האקסיומות באופן יחיד לקבוצת כל אם a

נראה כעת את הדוגמא הראשונה שלנו להיסק, שתשמש אותנו גם בהמשך. היא מדגימה גם, שמציאת היסק, גם של פסוקים פשוטים, אינה בהכרח פשוטה.

. $\vdash \langle t {\rightarrow} t \rangle$ טענה 2.4.9. לכל פסוק ל

 $:\langle t{
ightarrow}t
angle$ של מפורש במפורש נרשום נרשום נרשום

$$\begin{array}{ll} t_1:t\to \langle\langle t\to t\rangle\to t\rangle & A1[x:t,y:\langle t\to t\rangle] \\ t_2:\langle t\to \langle\langle t\to t\rangle\to t\rangle\rangle\to \langle\langle t\to t\rangle\rangle\to \langle t\to t\rangle\rangle & A2[x:t,y:\langle t\to t\rangle,z:t] \\ t_3:\langle t\to \langle t\to t\rangle\rangle\to \langle t\to t\rangle & MP[t_1,t_2] \\ t_4:t\to \langle t\to t\rangle & A1[x:t,y:t] \\ t_5:t\to t & MP[t_3,t_4] \end{array}$$

П

משפט השלמות 2.4.10

ראינו בטענה 2.4.5, שכל מה שניתן להוכיח באמצעות מערכת ההיסק הוא נכון. עכשיו נשאל לגבי הכיוון ההפוך: עד כמה מערכת ההיסק חזקה? מה הן הטענות שניתן להוכיח? כפי שראינו, השאלה אינה טריוויאלית: נדרשנו למאמץ אפילו כדי להוכיח שהפסוק $\langle p{
ightarrow}p \rangle$ ניתן להיסק מהקבוצה הריקה.

$$\Gamma \vdash x$$
 אז רוב אם אם השלמות). אם אז 2.4.11 משפט

ביחד עם הנאותות, הוא אומר ש-⊢ ו-⊨ הם למעשה אותו יחס. השלב הראשון בהוכחת המשפט הוא הרדוקציה למקרה הסופי.

 Γ -תרגיל 2.4.12. הראו שמשפט השלמות ל- Γ כלשהי נובע ממשפט השלמות עבור המקרה ש-סופית

 $\langle x {
ightarrow} y
angle$ הוכחת משפט השלמות מצריכה כלי שמאפשר להראות יכיחות של פסוקים מהצורה הוכלי הכלי הזה נקרא משפט הדדוקציה. הוא האנלוג הפורמלי של הנוהג הרגיל בהוכחת טענות כאלה: כדי להוכיח את $\langle x {
ightarrow} y
angle$, מותר לנו להניח את $\langle x {
ightarrow} y
angle$.

$$\Gamma dash \langle x{
ightarrow}y
angle$$
 אז $\Gamma, xdash y$ אז $\Gamma, xdash y$ מענה 2.4.13 משפט הדדוקציה).

נשים לב שהכיוון השני גם נכון, באופן מיידי מ-MP.

- של ,k של באינדוקציה נוכיח, נוכיח, מתוך $y=y_n$ של של (y_1,\dots,y_n) יהי הוכחה. יהי הוכחה על אוך איז היסענה נכונה לכל i < k נתבונן באפשרויות:

- ועל המקרה y_k אקסיומה, או איבר של : Γ במקרה במקרה אר אקסיומה, או איבר של במקרה במקרה על אר איבר של במקרה אר $\langle x{ o}y_k\rangle$ של A_1 של $\langle y_k{ o}\langle x{ o}y_k\rangle\rangle$
- לכל $\vdash \langle t{\to}t \rangle$ במקרה הינו כבר ש- $\Gamma \vdash \langle x{\to}x \rangle$ שלכי שלינו להוכיח לכל יצו במקרה הינו כבר ש-לינו להוכיח לכל פסוק ל

$$\langle\langle x \rightarrow \langle y_i \rightarrow y_k \rangle\rangle \rightarrow \langle\langle x \rightarrow y_i \rangle \rightarrow \langle x \rightarrow y_k \rangle\rangle\rangle$$

(מהצורה A2), ובעובדה שניתן להסיק את את לא לפי הנחת האינדוקציה כדי להסיק (מהצורה M2), ובעובדה שניתן להסיק את לא שוב בהנחת האינדוקציה עבור וב-MP כדי בעזרת את לארת לאר להסיק את לארטיק את

היעילות של המשפט הזה משתקפת למשל בהוכחת המסקנה הבאה (שתשמש אותנו בהוכחת משפט השלמות).

$x \vdash \neg \neg x$.1 .2.4.14 מסקנה

- $\neg \neg x \vdash x .2$
- $\neg x \vdash \langle x \rightarrow y \rangle$.3
- $x, \neg y \vdash \neg \langle x \rightarrow y \rangle$.4
- $\langle x \rightarrow y \rangle \vdash \langle \neg y \rightarrow \neg x \rangle$.5

תרגיל 2.4.15. הוכיחו את המסקנה

סוף

,5 הרצאה הרבאה העבור כעת להוכחת משפט השלמות. נזכיר שאנחנו מניחים ש- Γ סופית, ובפרט, הרצאה הרצאה הרצאה העבור קבוצה סופית Γ נוכיח האשית את הטענה עבור קבוצות ששקולות לאטום. במלים במלים עבור לכל השמה ω נסמן ω

$$\Gamma_{\omega} = \{ y \in P \mid \omega(y) = 1 \} \cup \{ \neg y \mid y \in P, \ \omega(y) = 0 \}$$
 (2.5)

למה 2.4.16. משפט השלמות נכון עבור קבוצות מהצורה Γ_ω : לכל פסוק x, אם $\omega(x)=1$ משפט השלמות נכון עבור קבוצות מהצורה $\Gamma_\omega\vdash \neg x$ אז $\omega(x)=0$ ואם $\Gamma_\omega\vdash x$

החלק השני של הטענה נובע ישירות מהחלק הראשון, אבל הניסוח הזה נוח למטרת האינדוקציה

הפסוק אז שכן אז א עבורם אז נכונה. אז א חבר שכן אז איסוק אז אז הפסוק אז הפסוק הוכחה. תהי $P\subseteq A$ אז הפסוק אז מעל עבורם אז מעל הפסוק שצריך להסיק נמצא ב $0\in A$ וור היק) שכן להסיק להסיק מצא ב $0\in A$ וור

נניח ש- $\omega(y)=1$ או $\omega(x)=0$ אז $\omega(\langle x\to y\rangle)=1$. במקרה הראשון, $x,y\in A$ ועניח ש- $x,y\in A$ והתוצאה נובעת מסעיף (3) של מסקנה 2.4.14, ובמקרה השני ובעת $\Gamma_\omega\vdash \neg x$ והתוצאה נובעת מסעיף (3) של $\omega(y)=0$ ויט ולכן $\omega(x)=0$ וולכן $\omega(x)=0$ והתוצאה נובעת מסעיף (4) של אותה מסקנה.

הטענה הבאה מראה שפסוקים שאינם משפיעים, סמנטית, על נביעה לוגית, הם גם מיותרים למטרות היסק.

 $.\Gamma \vdash y$ אז $.\Gamma, \neg x \vdash y$ וגם $\Gamma, x \vdash y$ אז $\Gamma, x \vdash y$ ממה 2.4.17

תרגיל 2.4.18. הוכיחו את הלמה

אז $\Gamma=\Gamma_0\cup\{x\}$ אם Γ אם הגודל של הגודל באינדוקציה. באינדוקציה ל- Γ אם הוכחת משפט השלמות ל- Γ סופית. באינדוקציה Γ לפי Γ , מקבלים Γ ולכן באינדוקציה Γ

... בסיסיים הבסיסים את חבר P תהי+ תהי אז שטאוטולוגיה, אז אם אם נותר להוכיח את נותר לפי הבסיסיים ב- ω השמה לכל השמה לכל השמה לפי למה ל-2.4.16 השמה ש

אם ω_i אינה ריקה, יהי P_a , ותהי α_i , ותהי α_i אם α_i אם α_i השמה כלשהי ל- α_i , ותהי α_i , ותהי α_i וו α_i , ותהי ל α_i וו α_i וו α_i וו α_i וו α_i וו α_i המקיימת α_i וו α_i

הערה 2.4.19. עם מאמץ נוסף, ניתן להוכיח את משפט השלמות ישירות גם לקבוצות אינסופיות Γ , ללא שימוש במשפט הקומפקטיות. הואיל ומשפט הקומפקטיות נובע ישירות ממשפט השלמות (למה?), זה נותן הוכחה אלטרנטיבית למשפט הקומפקטיות.

הערה 2.4.20. קיבלנו תיאור נוסף של יחס השקילות באמצעותו בנינו את ($\mathcal{B}(P)$: שני פסוקים הערה $\psi \vdash \phi$ ו- $\psi \vdash \phi$ במובן מסוים, זהו תיאור יותר מפורש.

3 תחשיב היחסים

תחשיב הפסוקים עליו דובר בסעיף הקודם לא מאפשר יכולת ביטוי גדולה: לא ניתן לנסח בו טענות מתמטיות אמיתיות, אלא רק הפשטה שלהן שמסומנת על-ידי הפסוקים הבסיסיים. בסעיף זה נחקור לוגיקה בעלת יכולת ביטוי המאפשרת ניסוח טענות מתמטיות. לוגיקה זו מורכבת יותר בצורה משמעותית, אולם המבנה הכללי מבחינת ההגדרות והשאלות שנשאלות בה הוא דומה: נגדיר את משמעותית, הסמנטיקה (השמות ומודלים), אקסיומות וכללי היסק, ונוכיח את משפט השלמות ומשפט הקומפקטיות המתאימים.

3.1 דוגמאות

הגדרת התחביר מורכבת ממספר מושגים: *חתימה, שמות עצם, נוסחה, פסוק,* ומושגים נוספים. בהמשך נגדיר *השמות, מודלים וקבוצות גדירות.* על מנת לתת מושג לאן אנחנו שואפים, נדגים את המושגים הללו בצורה לא פורמלית במספר דוגמאות.

דוגמא 3.1.1 (יחס סדר).

 $E\in\mathscr{R}_{PP}$ אחד יחס וסימן יחס אחד, אחד, סוג אחד חתימה בחתימה ישנו סוג אחד,

x=y או E(x,y) או מהצורה היא מהיסית

 $\forall x (E(x,y) \lor x = y)$ נוסחה למשל

יא: התורה שאומרת ש-E-שאומרת שאומרת הוא התורה

$$\forall x, y \neg \langle E(x, y) \land E(y, x) \rangle$$
$$\forall x, y, z \langle \langle E(x, y) \land E(y, z) \rangle \rightarrow E(x, z) \rangle$$

מודל של התורה הוא קבוצה סדורה

דוגמא 3.1.2 (גרף). בדוגמא זו כל רכיבי התחביר מוגדרים באותה צורה (שכן גם גרף נתון על-ידי יחס דו-מקומי), אבל התורה היא

$$\forall x, y \langle E(x, y) \to E(y, x) \rangle$$

 $\forall x \neg E(x, x)$

והמודלים הם גרפים

דוגמא 3.1.3 (חוגים).

 $0,1\in\mathscr{F}_{\epsilon,A}$ ה ו $a,m\in\mathscr{F}_{AA,A}$ יהימני פונקציה: ,A, וארבעה אחד, חתימה חתימה וארבעה סימני פונקציה

(למשל) m(1,z)ו -וa(m(x,y),z) הביטויים מהצורה שמות שמות שמות שמות שמות העצם הם ביטויים

$$a(m(x,x),y) = m(a(1,1),x)$$
 נוסחה בסיסית

 $\exists x (m(x,y) = 1)$ נוסחה לדוגמא

תורה התורה של החוגים מכילה למשל את הפסוקים הבאים:

$$\forall x, y(a(x, y) = a(y, x))$$
$$\forall x(m(1, x) = x)$$
$$\forall x \exists y(a(x, y) = 0)$$

מודל של התורה (המלאה של חוגים) הוא חוג.

a(x,y) במקום $x\cdot y$ ו וכן x+yוכן הייחס לדוגמא הזו, ונרשום לרוב הייחס לרוב ו-יבמקום $x\cdot y$ ו-יבמקום $x\cdot y$ ו-יבמקום $x\cdot y$ ו-יבמקום (לדוגמא).

דוגמא 3.1.4 (גאומטריה).

 $B\in \mathscr{R}_{PPP}$ ו ו- $I\in \mathscr{R}_{PL}$ יחסימני סימני ,P,L התימה שני סוגים,

 x_L ו- ו x_P ו- שמות עצם שמות העצם הם משתנים שמות שמות שמות ו

$$I(x_P,y_L)$$
 , $B(x_P,y_P,z_P)$ נוסחה בסיסית

$$\exists x \in P \langle B(y,x,z) \land I(x,t) \rangle$$
 נוסחה לדוגמא

תורה בין היתר, האקסיומות הבאות

מודל המישור הממשי

K מרחבים (מרחבים שדה מעל שדה וקטוריים וקטוריים מרחבים) 3.1.5 מרחבים אונים מעל

 $\underline{c}\in\mathscr{F}_{V,V}$, $c\in K$ לכל לכל , $0\in\mathscr{F}_{\epsilon,V}$, $+\in\mathscr{F}_{VV,V}$:סימני פונקציה. סימני פונקציה

$$\underline{c}(x+y)=\underline{d}(z)$$
 נוסחה בסיסית לדוגמא

$$\forall x \exists y \underline{c}(y) = x + z$$
 נוסחה לדוגמא

תורה בין היתר, האקסיומות הבאות

$$\forall x, y \underline{c}(x+y) = \underline{c}(x) + \underline{c}(y) \quad c \in K$$
 לכל
$$\forall x \underline{0}(x) = 0$$

$$\forall x, y \langle x+y=y+x \rangle$$

$$\forall x \underline{c} \cdot \underline{d}(x) = \underline{c}(\underline{d}(x)) \quad c, d \in K$$
 לכל

K מודל כל מרחב וקטורי מעל

דוגמא 3.1.6 (מרחבים וקטוריים).

חתימה שני סוגים, $0_U\in\mathscr{F}_{\epsilon,U}$, $+_U\in\mathscr{F}_{UU,U}$: סימני פונקציה, K,U סימני סוגים, K סימני פונקציה $\cdot\in\mathscr{F}_{KU,U}$ איל הסוג K, כמו בדוגמא 3.1.3, סימן פונקציה על הסוג

 $c \cdot_K d$, $u +_U 0$, $c \cdot (u +_U v)$ שמות העצם הם שמות העצם שמות שמות שמות שמות העצם

 $c \cdot (x +_U y) = d \cdot u$ נוסחה בסיסית לדוגמא

 $\exists a \in K \langle u = a \cdot v \rangle$ נוסחה לדוגמא

תורה בין היתר, האקסיומות הבאות

$$\forall a \in K \forall x, y \in U \langle a \cdot (x +_U y) = a \cdot x +_U a \cdot y \rangle$$
$$\forall x \in U 0_K \cdot x = 0_U$$
$$\forall x, y \in K \langle x +_K y = y +_K x \rangle$$

מודל זוג (L,V) כאשר L שדה, ו-V מרחב וקטורי מעליו

3.2

כעת נגדיר במדויק את התחביר של תחשיב היחסים. ההגדרה היא ארוכה וכוללת מספר שלבים, ומומלץ בכל שלב לחזור לדוגמאות בסעיף הקודם ולבדוק איך הן מתקבלות, ומה משמעות ההגדרה.

 $_{A^*}$ לכל קבוצה A, אנחנו מסמנים ב- $_{A^*}$ את קבוצת המלים מעל A. את המילה הריקה נסמן ב- $_{A^*}$ (האיברים ב- $_{A^*}$, ואת האורך של מילה w נסמן ב- $_{A^*}$, את האיבר $_{A^*}$ של מילה $_{A^*}$ נסמן ב- $_{A^*}$ שתי מלים, נסמן ב- $_{A^*}$ את המילה המתקבלת מהוספת $_{A^*}$ לסוף של $_{A^*}$ לרוב נזהה בין איבר $_{A^*}$ לבין המילה באורך $_{A^*}$ המורכבת מ- $_{A^*}$

האובייקט התחבירי הבסיסי ביותר הוא החתימה.

הגדרה 3.2.1. התימה מורכבת מהנתונים הבאים:

 \mathscr{S} קבוצה \mathscr{S} של סוגים

w מעל \mathscr{S} , קבוצה \mathscr{R}_w , המכונה *קבוצת סימני היחס* מסוג w .2

. לכל מילה w מעל $\mathscr S$ ולכל איבר $\mathscr S$, קבוצה $\mathscr F_{w,a}$ המכונה *קבוצת סימני הפונקציה a-i.* מw-

חחימה

סוגים

קבוצת סימני היחס

-ס או בקיצור כי $\Sigma=(\mathscr{S},(\mathscr{R}_w)_{w\in\mathscr{S}^*},(\mathscr{F}_{w,a})_{w\in\mathscr{S}^*,a\in\mathscr{S}})$ - או בקיצור כי תסומן לרוב כי $\mathscr{F}_{\epsilon,a}$ - מכונים לרוב *סימני קבועים* (מסוג $\Sigma=(\mathscr{S},\mathscr{R},\mathscr{F})$

בהגדרה זו, ובהגדרות דומות בהמשך, אנחנו מניחים שכל הקבוצות המעורבות הן זרות בזוגות.

לגבי הברומה n האורך של w הוא n הוא n הוא האורך של m האורך של m הוא האורך של m הוא האורך של m הוא האורך של m האורך של m הוא האורך של m הוא האורך של m הוא האורך של m האורך של m הוא האורך של m הוא האורך של m הוא האורך של m האורך של m הוא האורך של m הוא האורך של m הוא האורך של m האורך של m הוא האורך של m הוא האורך של m הוא האורך של m האורך של m הוא האורך של m הוא האורך של m הוא האורך של m האורך של m הוא האורך של m הוא האורך של m הוא האורך של m האורך של m הוא האורך של m הוא האורך של m הוא האורך של m האורך של m הוא האורך של m הוא האורך של m הוא האורך של m האורך של m הוא האורך של m הוא האורך של m הוא האורך של m האורך של m הוא האורך של m הוא האורך של m הוא האורך של m האורך של m הוא האורך של m הוא האורך של m הוא האורך של m האורך של m הוא האורך של m הוא האורך של m הוא האורך של m האורך של m הוא האורך של m הוא האורך של m הוא האורך של m האורך של m הוא האורך של m הוא האורך של m הוא האורך של m האורך של m הוא האורך של m הוא האורך של m הוא האורך של m האורך של m הוא האורך סימני פונקציות. בספרות נוהגים לפעמים להניח ש- ${\mathscr S}$ מורכבת מאיבר אחד ובמקרה זה, ישנה ,מילה מקומיים. כפי שראינו, m מכל אורך n, ואז איברי \mathscr{R}_w הם בדיוק סימני היחס הm מכל אורך mהנחה זו אינה נוחה בחלק מהדוגמאות הטבעיות, ומסבכת דברים מאוחר יותר, ולכן לא נניח אותה.

 $A\in\mathscr{S}$ עבור עבור בנוסף בקבוצות ההגדרות ההגדרות יתר יתר גבור אבור $\Sigma=(\mathscr{S},\dots)$ a מסוג משתנים מסוג

קבוצת שמות העצם

הגדרה 3.2.3. בהנתן חתימה $\Sigma = (\mathscr{S},\mathscr{R},\mathscr{F})$ ולכל $\Sigma = (\mathscr{S},\mathscr{R},\mathscr{F})$ הנדרה 3.2.3. בהנתן התימה מטנה ביותר ברקורסיה כקבוצה מנגדרת עבור $a\in\mathscr{S}$ מסוג מסוג ($\mathscr{V}=\coprod_{a\in\mathscr{S}}\mathscr{V}_a$ מעל \mathscr{T}_a :המקיימת

$$\mathscr{V}_a \subset \mathscr{T}_a$$
 .1

תהחרוזת $1 \leq i \leq n$ עבור $t_i \in \mathscr{T}_{w(i)}$ ולכל ,|w| = n עם , $f \in \mathscr{F}_{w,a}$.2 a היא שם עצם מסוג $f(t_1,\ldots,t_n)$

a מסוג שם עצם הוא a הוע מסוג קבוע סימן כל סימן שבפרט, נשים לב

תרגיל 3.2.4. עיברו על הדוגמאות בסעיף 3.1, ושכנעו את עצמכם ששמות העצם המוזכרים שם הם אכן כאלה.

כמו במקרה של תחשיב הפסוקים, הוכחות של טענות על שמות עצם (וחלקים אחרים בתחביר) מתבצעות לרוב באינדוקציה על הבניה, וכמו במקרה ההוא, שימושי לדעת שכל שם עצם נבנה מגדיר העתקה $f \in \mathscr{F}_{w,a}$ לביוק, נשים לב דיוק, ליתר ליתר אחת. לדיוק בדרך

$$C_f: \mathscr{T}_{w(1)} \times \ldots \times \mathscr{T}_{w(n)} \to \mathscr{T}_a$$

 $C_f(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$ הנתונה על-ידי

,תרגיל 3.2.5 (קריאה יחידה, שמות עצם). הוכיחו שכל אחת מההעתקות C_f היא חד-חד-ערכית, והתמונות של כל שתי העתקות כאלה הן זרות. הסיקו שכל שם עצם נבנה במספר סופי של הפעלות . מימני פונקציה, של סימני יחידה עבור סדרה כאלה, עבור כאלה, C_{f_i}

סוף

,6 הרצאה של) הוא שלהן שלהן שהטווח מבנים, כהעתקות מבנים, כשנגדיר יפורשו של מסוג a מסוג מסוג של בירים איברים של העתקה איברים $f\in\mathscr{F}_{bb,a}$ של איברים לכאורה, התחום של $f\in\mathscr{F}_{bb,a}$ 2024 x,y בפירוש של b לעיל, ושנית, אם f כזו אינה שם עצם לפי ההגדרה לעיל, ושנית, אם ,שניהם שמות עצם שנוצרים פונקציה, וf(x,y) וf(x,y) אז היהם שמות שניהם שמות שניהם f(x,y) אז וויים פונקציה, ומשתנים מאותו סוג, אך מייצגים העתקות עם תחומים שונים. כלומר, התחום של ההעתקה תלוי במשתנים עצמם, ולא רק בסוגים שלהם.

הגדרה 3.2.6. קבוצת המשתנים החפשיים $\mathscr{V}(t)$ בשם עצם t מוגדרת ברקורסיה על בנית tהמשתנים החפשיים $\mathcal{V}(t)$ הבא: אם $t=f(t_1,\ldots,t_n)$ אם $\mathscr{V}(t)=\{t\}$ אז הוא משתנה, אז

$$\mathscr{V}(t) = \mathscr{V}(t_1) \cup \cdots \cup \mathscr{V}(t_n).$$

 $\mathcal{N}(t) = \{x_1, \dots, x_n\}$ אם $t(x_1, \dots, x_n)$ נרשום $t(x_1,\ldots,x_n)$

כעת נגדיר את יתר התחביר.

קבוצת (\mathscr{V}_a אם הזר הזר האיחוד הזר האיחוד חתימה, ו- $\mathscr{V}=\coprod_{a\in\mathscr{S}}\mathscr{V}_a$ חתימה, ב $\Sigma=(\mathscr{S},\mathscr{R},\mathscr{F})$ האיחוד הזר של משתנים.

- וכל נוסחא בסיסית, כאשר אבר בסיסית, וכל \mathscr{V} וכל היא מחרוזת מהצורה אוא בסיסית מעל ביט וכל אויא ביט מחרוזת מהצורה וויא שם עצם מסוג וw(i) הוא שם עצם מסוג וויא שם עצם מסוג וויא שני שני וויא שני עצם מסוג וויא שני וויא שני שני וויא שני עצם מסוג וויא שני עצם מסוג וויא שני וו
 - - $\langle \phi \rightarrow \psi \rangle \in \Phi$ אז גם $\phi, \psi \in \Phi$ אם (א)
 - $\exists x \in a\phi \in \Phi$ אז $\phi \in \Phi$ ר ב $x \in \mathscr{V}_a$ אם (ב)

תרגיל 3.2.8 (קריאה יחידה, נוסחאות). נסחו והוכיחו את משפט הקריאה היחידה עבור נוסחאות הרגיל 3.2.8 (קיצורים). בדוגמאות, ובמקרים אחרים בהם לא נזדקק להגדרה המדויקת, נשתמש בקיצורים הבאים:

- עבות לעתים לעתים (ולא אות), נרשום לעתים u. באשר u. באשר u. באשר u. במקום עבור u. במקום u. במחויון (כאשר הם בשפה), נרשום u. במקום u.
- .2 נשתמש בקשרים הלוגיים \neg , \neg \neg \neg \neg \neg כפי שעשינו בתחשיב הפסוקים (עם אותם קיצורים). בנוסף, נרשום $\forall x \in a \phi$ כקיצור ל- $\exists x \in a \neg \phi$. במקרים בהם $\exists x \in a \phi$ מורכבת מאיבר אחד $\exists x \in a \phi$ במקום $\exists x \in a \phi$ נקצר כך גם אם סוג המשתנה מובן מן ההקשר, למשל בנוסחה מהצורה ($\exists x \in a \phi$, כאשר הסוג של \exists ידוע או אינו חשוב. כמו-כן, נרשום בנוסחה מהצורה $\exists x \in a \phi$, בתור קיצור ל- $\exists x \in a \phi$, וכך הלאה.

כמובן שמשפט הקריאה היחידה לא תקף עם קיצורים אלה, ובכל פעם שנרצה להוכיח או להגדיר משהו על נוסחאות, נשתמש בהגדרה המקורית

כמו במקרה של שמות עצם, נרצה להגדיר את קבוצת המשתנים שנוסחא ϕ תלויה בהם כמו במקרה שנראה בהמשך, ערך האמת שלה תלוי בערכיהם). נשים לב שנוסחא מהצורה ב-x אך לא ב-x.

 ϕ המשתנים החופשיים ϕ מוגדרת ברקורסיה על-ידי: אם ϕ המשתנים החופשיים $\mathcal{V}(\phi)$ בנוסחא ϕ מוגדרת ברקורסיה על-ידי: אם $\mathcal{V}(\phi)$ היא הנוסחא הבסיסית $E(t_1,\dots,t_n)$ אז $E(t_1,\dots,t_n)$ אז הנוסחא הבסיסית

$$\mathscr{V}(\bot) = \emptyset \tag{3.1}$$

$$\mathcal{V}(\langle \phi \to \psi \rangle) = \mathcal{V}(\phi) \cup \mathcal{V}(\psi) \tag{3.2}$$

$$\mathcal{V}(\exists x \in a\phi) = \mathcal{V}(\phi) \setminus \{x\} \tag{3.3}$$

ברשום $\psi(\phi)$ אם $\psi(\phi)=\{x_1,\ldots,x_n\}$ אם $\psi(x_1,\ldots,x_n)$ נקראת פסוק אם $\psi(x_1,\ldots,x_n)$ נרשום

3.3

כעת נגדיר את האופן שבו מפרשים את האובייקטים התחביריים שהוגדרו לעיל. ההגדרות הבאות מקבילות להשמות של תחשיב הפסוקים. שוב, כדאי לחזור לדוגמאות ב-3.1 על-מנת לראות על מה מדובר.

נתחיל עם הפירוש של חתימות.

:הגדרה Σ מורכב מהנתונים הבאים חתימה. מבנה Σ עבור Σ מורכב מהנתונים הבאים

 $w\in\mathscr{S}^*$ באורך העלם $w\in\mathscr{S}^*$ בהנתן מילה M_a בהנתן העולם של M_a באורך .1 לכל M_a באורך $M_{\epsilon}=1=\{\emptyset\}$ בפרט, $M_w=M_{w(1)}\times M_{w(2)}\times\ldots\times M_{w(n)}$ היא קבוצה בת איבר אחד).

מבנה

- $\mathcal{M}_{-2 \ E}$ היחס $E^{\mathcal{M}} \subseteq M_w$, תת-קבוצה, $E \in \mathscr{R}_w$ היחס $E^{\mathcal{M}} \subseteq M_w$. 2
- $_{c\in\mathscr{F}_{\epsilon,a}}$, $_{c\in\mathscr{F}_{\epsilon,a}}$ פונקציה $_{f}\in\mathscr{F}_{\epsilon,a}$ פונקציה $_{f}\in\mathscr{F}_{w,a}$ פונקציה $_{f}\in\mathscr{F}_{w,a}$ פונקציה $_{f}\in\mathscr{F}_{w,a}$ עם האיבר $_{c}\in\mathscr{M}$, ונקרא לו הקבוע $_{c}\in\mathscr{M}$ עם האיבר $_{c}\in\mathscr{M}$

כזכור, הביטויים בשפה שלנו תלויים לא רק בחתימה, אלא גם בקבוצת המשתנים. על מנת לקבוע את ערכי הביטויים הללו, אנו צריכים לכן לקבוע את ערכי המשתנים:

הגדרה 3.3.2. יהי $\mathcal M$ מבנה עבור חתימה Σ , ותהי $\mathcal V=\coprod_{a\in\mathscr S}\mathcal V_a$ ותהי קבוצה של משתנים עבורה. $\mathcal M$ השמה ל- $\mathcal W$ (בתוך $\mathcal M$) הינה אוסף העתקות ($\omega_a:\mathcal V_a\to M_a$ עבור $\mathcal A=\mathcal S$), כאשר $\mathcal M^{\mathscr V}$ בתוך $\mathcal M$ נסמן ב- $\mathcal M^{\mathscr V}$.

0, סימן קבוע +, סימן פונקציה דו-מקומי +, סימן קבוע +, סימן קבועה +, סימן קבועה +, סימן השלמים +, משייך ל-+, את הקבוצה + של השלמים ול-+, את החיבור על +, ל-+ את האיבר +, את האיבר על היא השמה. את היחס השוויון. אם + או + הם משתנים, ההתאמה שמשייכת ל-+ את + או + את + היא השמה. באופן כללי, ניתן לזהות את + את + אם קבוצת הזוגות הסדורים של איברי + (אם בוחרים סדר על +).

כעת ניתן לפרש את כל הביטויים של השפה. כפי שכבר הוזכר, שמות עצם ונוסחאות תלויים במשתנים החופשיים שלהם, והם יגדירו העתקות על ההשמות למשתנים החופשיים שלהם.

 Σ מבנה לחתימה \mathcal{M} יהי מבנה לחתימה

ברקורסיה: $t^{\mathcal{M}}: M^{\mathcal{V}(t)} \to M_a$ נגדיר העתקה בנגדיר מסוג a מסוג מסוג .1

$$t^{\mathcal{M}}(\omega)=\omega(t)$$
 ונגדיר, $\mathscr{V}(t)=\{t\}$ אם משתנה, או אם ל

אז
$$t=f(t_1,\ldots,t_n)$$
 אז (ב)

$$t^{\mathcal{M}}(\omega) = f^{\mathcal{M}}(t_1^{\mathcal{M}}(\omega \upharpoonright_{\psi(t_1)}), \dots, t_n^{\mathcal{M}}(\omega \upharpoonright_{\psi(t_n)}))$$

 ω את משמעות, ולכן ניתן לכל $\mathscr{V}(t_i)\subseteq\mathscr{V}(t)$ שכן שכן לביטוי האחרון יש משמעות, שכן $\mathscr{V}(t_i)\subseteq\mathscr{V}(t_i)$ ל-

 $\mathcal{M}^{\mathscr{V}}$ אם מוגדרת g מונקציה אלו: אם הצימצומים את נקפיד לרשום בהמשך, לא נקפיד לרשום את בהמשך לע $g(\omega\!\upharpoonright_{\mathscr{V}})$ גם עבור היא ל- $\mathscr{N}\subseteq\mathscr{V}_1$ אם של $\omega\in\mathcal{M}^{\mathscr{V}_1}$ גם עבור נרשום נרשום ל

בא: באופן באופן, ברקורסיה, ברקורסיה, לכל נוסחא $\phi^{\mathcal{M}} \subset \mathcal{M}^{\mathscr{V}(\phi)}$ באופן באופן גדיר תת-קבוצה.

אז
$$E(t_1,\ldots,t_n)$$
 אז מהצורה ϕ אם ϕ אז

$$\phi^{\mathcal{M}} = \{ \omega \in \mathcal{M}^{\mathcal{V}(\phi)} \mid (t_1^{\mathcal{M}}(\omega), \dots, t_n^{\mathcal{M}}(\omega)) \in E^{\mathcal{M}} \}$$

 ψ ו- עבור נוסחאות (ב)

$$\left(\bot\right)^{\mathcal{M}} = \emptyset \tag{3.4}$$

$$\langle \phi \to \psi \rangle^{\mathcal{M}} = (\phi^{\mathcal{M}})^c \cup \psi^{\mathcal{M}} \tag{3.5}$$

$$(\exists x \in a\phi)^{\mathcal{M}} = \{\omega \upharpoonright_{\mathscr{V}(\phi) \backslash \{x\}} | \omega \in \phi^{\mathcal{M}}\}$$
 (3.6)

(3.5)-ב בדקו את משמעות בפרט, בפרט, הבהירו לעיל לעיל שלהגדרות לעיל משמעות. בפרט, הבהירו את משמעות בדקו שלהגדרות לעיל אז $\phi^{\mathcal{M}}$ היא פסוק, אם לפרט, אם ϕ של לפרט, אם לפרט, אם לפרט, אז אים לעיל היא היא לעיל שלה בפרט, אם לפרט, אם לעיל היא היא לעיל היא משמעות בפרט, אם לעיל היא היא לעיל היא היא לעיל היא משמעות בפרט, אם לעיל היא היא לעיל היא היא לעיל היא היא משמעות היא משמע

הגדרה 3.3.6. אם $\mathcal M$ מבנה עבור חתימה Σ , ו- ϕ פסוק בחתימה זו, אז $\phi^{\mathcal M}$ נקרא ערך האמת של מבנה עבור חתימה $\mathcal M$ מספק את ϕ נכון ב- ϕ . אם $\mathcal M$. מספק את ϕ נאמר ש- ϕ .

 $(\phi \wedge \psi)^{\mathcal{M}} = \phi^{\mathcal{M}} \cdot \psi^{\mathcal{M}}$ ו, $(\neg \phi)^{\mathcal{M}} = 1 - \phi^{\mathcal{M}}$ ו, הראו שאם ϕ ו הם פסוקים, אז $\phi \mapsto \phi^{\mathcal{M}}$ ו. הראו שאם $\phi \mapsto \phi^{\mathcal{M}}$ ום במילים אחרות, $\phi \mapsto \phi^{\mathcal{M}}$ ום היא השמה על קבוצת הפסוקים, במובן של תחשיב הפסוקים שכל הרחבה $\mathcal{V}(\phi) \setminus \{x\}$ שכל הרחבה שלהן ל ϕ יכת ל $\phi^{\mathcal{M}}$ ו.

דוגמא 3.3.9. נמשיך עם החתימה והמבנה מדוגמא 3.3.3. שם העצם x+y מגדיר את ההעתקה . $\omega\mapsto\omega(x)+\omega(y)$ מגדיר את ההעתקה הנתונה על-ידי $\omega\mapsto\omega(x)+\omega(y)$ עם איברי $\omega\mapsto\omega+\omega$ (אם מזהים השמות על ω

 $\omega(x)+\omega(y)=0$ שכן $\omega\in\mathbb{Z}^{\{x,y\}}$ - הנוסחא מגדירה את קבוצת מגדירה את מגדירה את קבוצת כלומר, כל הזוגות מהצורה (a,-a) עם $a\in\mathbb{Z}$ עם $a\in\mathbb{Z}$ מגדירה את קבוצת כלומר, כל הזוגות מהצורה (a,-a) עם $a\in\mathbb{Z}$ שניתן להרחיב אותן ל- $a\in\mathbb{Z}$ שניתן להרחיב אותן ל- $a\in\mathbb{Z}$ מגדירה את קבוצת כל ההשמות שלכל הרחבה זוהי כל הקבוצה $a\in\mathbb{Z}$. לכן $a\in\mathbb{Z}$ שלהן ל- $a\in\mathbb{Z}$ מגדירה את קבוצת כל ההשמות שלכל הרחבה שלהן ל- $a\in\mathbb{Z}$ קיימת הרחבה ל- $a\in\mathbb{Z}$ כך ש- $a\in\mathbb{Z}$ שלהן ל- $a\in\mathbb{Z}$ הואיל וזה נכון, המבנה $a\in\mathbb{Z}$ מספק את $a\in\mathbb{Z}$ שלהן ל- $a\in\mathbb{Z}$

- Γ מספק קבוצה $\mathcal M$. אם $arphi
 eq \mathcal M$. נאמר ש $\mathcal M$ מספק קבוצה $\mathcal M$. נאמר ש $\mathcal M$ מספק קבוצה $\mathcal M$. של נוסחאות אם קיימת השמה ששייכת ל $\mathcal M$ לכל $\mathcal G$
- תורה $\varphi^{\mathcal{M}}=1$ תורה פסוקים φ עבורם הפסוקים למעל φ). קבוצת החלדה בחתימה בחתימה לקראת נקראת התורה של המבנה החלבת ב- $\mathrm{Th}(\mathcal{M})$
 - נכונים מהל \mathcal{T} בכונים ב- \mathcal{T} לכל $\varphi^{\mathcal{M}}=1$ אם \mathcal{T} אם תורה של הוא מודל של הוא מודל של לכל $\varphi^{\mathcal{M}}=1$ אם ב- \mathcal{M} .
- ם קבוצה בדירה (ביחס קבוצה מהצורה φ נקראת *קבוצה גדירה.* נוסחאות φ ו- ψ הן נוסחאות שקולות (ביחס $\varphi^{\mathcal{M}}$ בסחאות שקולות (ביחס $\varphi^{\mathcal{M}}=\psi^{\mathcal{M}}$) אם $\varphi^{\mathcal{M}}=\psi^{\mathcal{M}}$
 - נוסחא φ נובעת לוגית מקבוצת הנוסחאות Γ אם לכל מבנה M והשמה ω המספקים את העת לוגית ס.5 Γ_1 נובעת לוגית מ- Γ_2 אם כל איבר של Γ_3 נובעת לוגית מ- Γ_4 או מספקת גם את σ או מ- σ או מימון: σ או σ או σ או מימון: σ

בפרט, כל מבנה הוא מודל של התורה שלו.

מבנים עם שוויון 3.3.11

יחס השוויון מוגדר על כל קבוצה, ולרוב התכונות המעניינות אותנו מנוסחות בעזרתו. כפי שנראה בהמשך, לא ניתן לכפות על יחס להיות יחס השוויון באמצעות הנוסחאות שהגדרנו, ולכן יש להוסיף את זה כדרישה חיצונית.

M מכנה עם שוויון עבור Σ הוא מבנה M מכנה עם שוויון עבור בור החתימה עם קבוצת סוגים $\mathscr S$ מכנה עם שוויון עבור החתימה המרחיבה את Σ על-ידי יחס חדש M_a לכל סוג M_a , בו היחס המחרש כשוויון על M_a

בהקשר של מבנים עם שוויון, הנוסחאות, הפסוקים ויתר האלמנטים התחביריים יהיו ביחס בהקשר של מבנים עם שוויון Σ_\pm למשל, התורה של מבנה עם שוויון היא קבוצת הפסוקים מעל ב Σ_\pm הנכונים ב- \mathcal{M} עם השוויון הרגיל.

3.4 שאלות ודוגמאות נוספות

נתבונן עתה במספר דוגמאות.

3.4.1 קבוצות גדירות בשדות

יהי K שדה ונתבונן כמבנה (הטבעי) לחתימה החד-סוגית $(L,0,1,+,-,\cdot)$. איזה קבוצות גדירות במבנה הזה? נתחיל בנוסחאות הבסיסיות במשתנה אחד. נוסחא בסיסית שקולה (ביחס ל-K) לנוסחא מהצורה במשתנה אחד, עם מקדמים לנוסחא מהצורה R ב-R בתמונה של R בתוך R בתוך R בתמונה של R בתוך R בתוך R במשתנה אחד היא צירוף בוליאני של קבוצות במשתנה אחד היא צירוף בוליאני של קבוצות כאלה. בפרט, כל קבוצה כזו היא סופית או קו-סופית ומורכבת מאיברים אלגבריים מעל השדה הראשוני

במספר משתנים התמונה דומה: קבוצות חסרות כמתים מוגדרות על-ידי מערכות של משוואות פולינומיות ושלילותיהן. במקרה של יותר ממשתנה אחד, קבוצת הפתרונות של מערכת משוואות אינה בהכרח סופית (אך ניתן לחשוב עליה כעל קבוצה עם מבנה גאומטרי; זהו הנושא של התחום גאומטריה אלגברית).

מה בנוגע לנוסחאות עם כמתים? דוגמא אחת לנוסחא כזו היא מה בנוגע לנוסחאות עם כמתים? דוגמא אחת מה בנוגע לנוסחאות את קבוצת כל האיברים להם יש הפכי כפלי, ולכן היא שקולה לנוסחא $x \neq 0$. האם קיימות נוסחאות שאינן שקולות לנוסחא חסרת כמתים?

הסיקו החיוביים. מצאו נוסחה (בחתימה של חוגים) המגדירה ב- \mathbb{R} את הממשיים החיוביים. הסיקו שלא כל נוסחא שקולה ב- \mathbb{R} לנוסחא חסרת כמתים. מהי הקבוצה שאותה נוסחא מגדירה ב- \mathbb{R}

בפרט, אנו רואים שהתיאור של הקבוצות הגדירות משתנה משדה לשדה.

יהאם ניתן להגדיר את $\mathbb{Z}\subseteq\mathbb{R}$ האם ניתן \mathbb{Q} , \mathbb{R} , \mathbb{C} האם ניתן הגדיר את פונקצות הגדירות בשדות $x\mapsto e^x$ ב- \mathbb{R} , ב- \mathbb{R} , ב- \mathbb{R}

ילופי חוג חילופי שדה הוא שדה לעיל, השתמשנו בעובדה ש-K הוא שדה לעיל, העיאור לעיל, השתמשנו בעובדה ש-Kיותר)?

3.4.5 גאומטריית המישור

נתבונן במבנה לחתימה של גיאומטריית המישור המורכב מנקודות וקוים, עם היחסים הרגילים של zw בייכות נקודה לקו וביניות. האם ניתן להגדיר את היחס "הקטע בין z ל-z שווה אורך לקטע z בייכות נקודה לקו וביניות. האם ניתן להגדיר את מקביל לקו z העובר דרך z העובר דרך z העובר דרך z העובר דרך z היטב).

המישור: מצאו נוסחאות שמגדירות את היחסים ב- \mathbb{R}^2 כמבנה לגאומטריית המישור:

- L_{zw} -ל (או שווה) ל-1 מקביל מקביל .1
- zw שווה לאורך של הקטע xy אם האורך של ממנו אז ממנו L_{zw} -1 מקביל ל L_{xy}
 - L_{zw} -מונה מ- L_{xy} שונה מ-3.

(0,0) האם הנקודה כלליים? גדיר לקטעים בייס "zw" שווה אורך לzw שווה אורך אורך במישור בייה?

את פרויקט הגאומטריה של אוקלידס ניתן לנסח כך:

שאלה 3.4.8. באיזו חתימה ניתן לנסח את גאומטריית המישור? האם ניתן לתאר את התורה של המישור הממשי בחתימה זו?

3.4.9 השלמים והטבעיים

נתבונן במבנה של השלמים $\mathbb Z$ בשפת החוגים. התיאור של קבוצות חסרות כמתים בדוגמא זו זהה למקרה של שדות. האם ניתן להגדיר את הטבעיים בתוך $\mathbb Z$?

עובדה 3.4.10 (משפט לגרנז'). כל מספר טבעי ניתן להציג כסכום של ארבעה ריבועים (של מספרים שלמים)

 $\exists a, b, c, d(x = a^2 + b^2 + c^2 + d^2)$ הנוסחא על-ידי מוגדרים מוגדרים לכן הטבעיים

באות: במבנה \mathbb{Z} , רשמו נוסחאות המגדירות את הקבוצות הבאות: 3.4.11

- 1. קבוצת הראשוניים
- 5. קבוצת החזקות של 3

 $5 \mapsto 5^n$ את הפונקציה אל 10% של החזקות החזקות ב- \mathbb{Z} את הגדיר ב-3.4.12את האם ניתן להגדיר שאלה

 ${
m ?Th}(\mathbb{Z},+,\cdot)$ את לתאר לתאר ניתן האם 3.4.13.

שאלה 3.4.14. האם קיים פסוק בשפה של מרחבים וקטוריים מעל שדה קבוע K, שהמודלים שלו הם מרחבים וקטוריים ממימד ??

 \mathbb{R} שאלה 3.4.15. האם קיימת קבוצה של פסוקים בשפה של פסוקים היחיד שלה הוא

"אאלה 3.4.16. האם קיימת תורה שהמודלים שלה הב הגרפים הקשירים?

שאלה 3.4.17. האם לחבורה החפשית מעל שני איברים אותה תורה כמו לחבורה החפשית על שלושה איברים?

*תרגיל 3.4.*18. הראו שלחבורה החפשית מעל איבר אחד תורה שונה מזאת שלחבורה החפשית מעל שני איברים. הראו שלחבורה האבלית החפשית מעל שני איברים תורה שונה מלחבורה האבלית החפשית על שלושה איברים

סוף

,8 הרצאה 2 בדצמ'

2024

מקורות

- [1] Kenneth Appel and Woflgang Haken. "The solution of the four-color-map problem." In: *Sci. Amer.* 237.4 ,(1977) pp. –108,121 .152 ISSN: .0036-8733
- [2] Herbert B. Enderton. *A mathematical introduction to logic.* 2nd ed. Harcourt/Academic Press, Burlington, MA, ,2001 pp. xii+317. ISBN: -0-12 .238452-0
- [3] Euclid. The Elements. Online version with Java illusetrations by David E. Joyce. URL: http://aleph0.clarku.edu/~djoyce/java/elements/elements.html.
- [4] Martin Hils and François Loeser. *A first journey through logic*. Student Mathematical Library .89 American Mathematical Society, Providence, RI, ,2019 pp. xi+185. ISBN: .978-1-4704-5272-8 DOI: 10.1090/stml/089.
- [5] Douglas R. Hofstadter. *Gödel, Escher, Bach: An Eternal Golden Braid.* New York, NY, USA: Basic Books, Inc., .1979 ISBN: .0465026850
- [6] Elliott Mendelson. *Introduction to mathematical logic.* 4th ed. Chapman & Hall, London, ,1997 pp. x+440. ISBN: .0-412-80830-7
- [7] Woflgang Rautenberg. *A concise introduction to mathematical logic.* 2nd ed. Universitext. With a foreword by Lev Beklemishev. Springer, New York, ,2006 pp. xviii+256. ISBN: .978-0387-30294-2
- [8] The Four color theorem. URL: https://en.wikipedia.org/wiki/Four_color_theorem.