UNIVERSIDAD NACIONAL DE COLOMBIA

Dirección Nacional de Programas de Pregrado

FORMATO DE ASIGNATURA DE PREGRADO (Versión DIEEyC-Mzles)

0. CÓDIGO ASIGNATURA:	4101135				
1. IDENTIFICACIÓN DE LA ASIGNATURA					
1.1 Fecha solicitud					
1.2 Sede	MANIZALES				
1.3 Facultad	FACULTAD DE INGENIERÍA Y ARQUITECTURA				
1.4 Unidad Académica Básica:	DEPARTAMENTO DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA Y COMPUTACIÓN MANIZALES				
1.5 Nivel:	PREGRADO				
1.6 Nombre de la asignatura:	MODELADO Y SIMULACIÓN				

2. DURACIÓN					
A LA SEMANA					
HAP =	3	HAI =	6	THS = (HAP + HAI) =	9
AL SEMESTRE					
Nro de semanas =	16	THP = (THSxSemanas)	144	Nro_de Créditos (THP/48)	3

CONVENCIONES UTILIZADAS

HAP: Horas de Actividad Presencial a la semana o intensidad horaria

HAI: Horas de Actividad Indenpendiente a la semana **THS**: Total Horas de actividad académica por Semana

Semanas: Número de semanas por periodo académico (o semestre)

3. VA	LIDABLE					
ASIG	NATURA VALID	DABLE =>		ASIC	GNATURA NO VALIDABLE =>	XXXXXX
	<u> </u>		·			
4. PO	RCENTAJE DE	ASISTENCIA				
%	75		s presenciales AP x Semanas)	48	Mínimo de horas Semestre	36

5. TIPOLOGÍA Y PLANES DE ESTUDIO ASOCIADOS

Porcentajes aceptados: 75, 80, 85, 90, 95 y 100%

5.1. TIPOLOGÍA

Asigr	Asignatura de Libre Elección NO (C) - Componente Disciplinar SI							
5.2. F	5.2. PLANES DE ESTUDIO A LOS QUE SE ASOCIA LA ASIGNATURA							
Plan	4022 INGENI	ERÍA ELÉCTI	RICA					
1	REQUISITOS							
	Código	Nombre Tipo						
	4100894	4100894 SISTEMAS DINÁMICOS Y CONTROL PRERREQUISITO						
Plan	Plan 4028 INGENIERÍA ELECTRÓNICA							
2	REQUISITOS							
	Código	Nombre Tipo						
	4100894 SISTEMAS DINÁMICOS Y CONTROL PRERREQUISITO							

6. DESCRIPCIÓN DE LA ASIGNATURA

6.1. DESCRIPCIÓN

El análisis cualitativo de sistemas dinámicos es una potente herramienta para estudiar la complejidad presente en la mayoría de aplicaciones en ingeniería. Este curso en particular estudia los diferentes tipos de soluciones en sistemas que pueden ser modelados con ecuaciones diferenciales ordinarias no lineales (con ejemplos en redes complejas y agentes). Se hace énfasis en la formulación matemática del modelo, la interpretación topológica de los fenómenos no lineales (i.e. coexistencia de soluciones , oscilaciones y caos), el análisis de bifurcaciones (i.e. análisis de soluciones ante variaciones de los parámetros que definen el sistema) y en el análisis numérico de las soluciones.

Metodología

Clases magistrales, clases en sala de simulación, exposiciones de los estudiantes.

Evaluación

Primer Corte Semana 8 (40% Documento + 30% Trabajo Extraclase) + Segundo Corte Semana 14 (20% Documento + 10% Trabajo Extraclase)

6.2. CONCEPTOS PREVIOS NECESARIOS

Ecuaciones diferenciales ordinarias:

Sistemas de ecuaciones diferenciales.

Sistemas Dinámicos y Control:

Respuesta transitoria de sistemas, Representación en variables de estado.

7. CONTENIDOS BÁSICOS

	Lista Contenido Básico		Contenido Detallado
		1.	Definición de sistemas dinámicos.
1.		2.	Sistemas dinámicos modelados por ecuaciones diferenciales ordinarias.
	Generalidades.	3.	Modelos computacionales, aproximación de soluciones, visualización de datos.
		4.	Modelado de sistemas físicos: Circuitos eléctricos, Sistemas, Mecánica Clásica.
		1.	Introducción.
		2.	Bifucación Silla-nodo.
		3.	Bifucación Transcrítica.
2.	 Flujos en la Linea (1D)	4.	Bifurcación Transcrítica.
	Trajos on la Ellioa (15)	5.	Bifurcación Tridente.
		6.	Bifurcacións en dos parámetros.
		7.	Flujos en el círculo (Oscilador uniforme y no uniforme.)
		1.	Clasificación de sistemas lineales.
3.	 Sistemas Planares Lineales (2D)	2.	Retratos de fase.
) 3.	Sistemas Flanales Lineales (2D)	3.	Bifurcaciones de equilibrios.
		4.	Ejemplo de aplicación a la ingeniería.
		1.	Retratos de fase.
		2.	Exsistencia y unicidad de soluciones.
4.	Sistemas Planares Nolineales (2D)	3.	Coexistencia de soluciones.
		4.	Equilibrios y linealización.
		5.	Bifurcaciones de equilibrios.
		1	16.17
		1.	Órbitas cerradas (Existencia y no
5.	Ciclos Límite.	2.	Sistemas de Liénard
		3.	Osciladores de relajación y oscilaciones
		4.	Bifurcaciones de cíclos límite (Hopf y
		1.	Sistema de Lorenz.
6.	Cáos.	2.	Diagramas de bifurcaciones.
0.	Caus.	3.	Mapas de Poincaré
			Mapas discretos.
	I	Ι,	
		1.	Aproximación de soluciones.

7.	Análisis numérico.	2.	Métodos explícitos e implícitos de primer orden y de orden superior.
		3.	Métodos de paso variable y sistemas
		4.	Ecuaciones diferenciales-algebráicas.

26 Abril -- Análisis de redes complejas

3 Mayo -- Modelamiento basado en agentes

10 Mayo -- Comportamiento colectivo en sistemas complejos

24 Mayo -- Dinámicas evolutivas en sistemas de agentes

8. BIBLIOGRAFÍA BÁSICA				
Autor (es)	Título	Editorial-Revista-País	Año	
1. Steven H. Strogatz	Nonlinear dynamics and chaos.	West view press	1984	
2. Edward Ott	Chaos in dynamical systems.	Cambridge University Press	1993	
3. K.T. Alligood, T. D. Sauer, J.A. Yorke	Chaos: An introduction to dynamical systems.	Springer	1996	