ЛЕКЦИЯ А1. Основные понятия алгебры множеств. Понятие множества.

Основные принципы интуитивной теории множеств. Парадокс Рассела. Подмножества. Основные операции над множествами. Диаграммы Венна. Основные тождества алгебры множеств

Понятие *множества* будем считать первоначальным, неопределяемым, мыслимым интуитивно (аналогично понятиям точки, прямой, плоскости в школьной геометрии). Под множеством M интуитивно понимаем совокупность определенных, различимых между собой объектов, мыслимых как единое целое. Эти объекты называются элементами множества M.

Пример 1.1. Множество студентов, учащихся в МАИ, множество натуральных чисел, множество целых чисел и т.д.

Мы пишем $x \in M$, если x – элемент множества M, и $x \notin M$ – в противном случае.

Принцип объемности. Два множества считаются *равными*, если они состоят из одних и тех же элементов. Мы пишем A = B, если множества A и B равны, и $A \neq B$ — в противном случае. Из определения равенства множеств следует, что $A = B \Leftrightarrow (a)$ для любого $x \in A$ справедливо $x \in B$; (б) для любого $x \in B$ справедливо $x \in A$.

Если элементами множества A являются объекты $a_1, a_2, ..., a_n$ и только они, то обозначаем $A = \{a_1, a_2, ..., a_n\}$. Множество, не содержащее элементов, называется *пустым* и обозначается \varnothing . В случае, если каждый элемент множества A является элементом множества B, множество A называется *подмножеством* множества B (или A *включено* B; или B *включает* B себя A). Для любых множеств A, B, C выполняется: $\varnothing \subseteq A$; $A \subseteq A$; $A \subseteq B, B \subseteq A \Leftrightarrow A = B$; $A \subseteq B, B \subseteq C \Rightarrow A \subseteq C$. Количество элементов в конечном множестве A будем обозначать |A|.

Пример 1.2.
$$|\emptyset| = 0$$
, $|\{\emptyset\}| = 1$, $|\{\emptyset, \{\emptyset\}\}| = 2$ и т.д.

Пример 1.3. (a)
$$\{1,2,3,4\} = \{3,4,2,1\}$$
, (б) $|\{1,2,3,4\}| = 4$, $|\{\{1,2,3,4\}\}| = 1$, $|\{\{1,2\},\{3,4\}\}| = 2$.

Принцип абстракции. Многие конечные множества трудно (или даже невозможно) описать перечислением объектов, принадлежащих этим множествам (тем более это относится к бесконечным множествам). В таких случаях часто применяется так называемый принцип абстракции. Приведем несколько определений. Языковое предложение, о котором имеет смысл говорить, что оно истинно или ложно, называется высказыванием.

Пример 1.4. «Москва – столица РФ», « $2 \neq 3$ », «2 + 2 = 3» – высказывания. Предложения: «который час?», « $x \ge 2$ » не являются высказываниями.

Под «формой от x» интуитивно понимается языковое предложение с вхождением в него x такое, что, если каждое вхождение в него x заменить именем некоторого объекта из рассматриваемой совокупности объектов, то в результате получится высказывание.

Пример 1.5. Пусть рассматриваемая совокупность объектов является множеством действительных чисел. Тогда предложения $(x) \ge 2$, $(x) \le 3$, $(x) \le 4$ являются формами от $(x) \le 4$ являются формами от $(x) \le 4$ являются формами от $(x) \le 4$ не являются формами от

Обозначим форму от x через P(x). Сформулируем теперь интуитивный принцип абстракции. Любая форма P(x) определяет некоторое множество A, состоящее из тех и только

тех предметов a, для которых P(a) – истинное предложение. При этом обозначаем $A = \{x \mid P(x)\}.$

Пример 1.6. $\{x \mid \langle x \rangle - \text{натуральное нечетное число, меньшее 9} = \{1,3,5,7\}.$

Следующий пример иллюстрирует несовершенство интуитивных представлений о множествах. Заметим, что для множества $M = \{x \mid x = x\}$ выполняется $M \in M$, а для множества \emptyset выполняется $\emptyset \notin \emptyset$, т.е для любого множества возможны обе ситуации.

Пример 1.7 (Парадокс Рассела). Пусть $N = \{x \mid x \notin x\}$. Возможны два случая: 1) $N \in N$, и тогда по определению N выполняется $N \notin N$; 2) $N \notin N$, и тогда по определению N выполняется $N \in N$, т.е. в любом случае приходим к противоречию.

Таким образом, теория множеств в интуитивном изложении является противоречивой. Между тем, если в ходе данного рассуждения не выходить за пределы некоторого конкретного множества U (например, являющегося предметной областью какого-нибудь классического раздела математики, исследование которого никогда не приводило к противоречиям, или даже доказана непротиворечивость системы аксиом, на которой базируется указанный раздел), т.е. предполагать, что $\{x \mid P(x)\} = \{x \mid x \in U, P(x)\}$, то при удачном выборе U мы можем избежать противоречий. При этом множество U называется универсальным для данного рассуждения. Всюду далее будем предполагать, что универсальное множество U выбрано, при этом $U \neq \emptyset$.

Для любого множества $A \subseteq U$ обозначим $2^A = \{B \mid B \subseteq A\}$.

Пример 1.8. Пусть
$$A = \{1,2,3\}$$
. Тогда $2^A = \{\emptyset, A, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$.

Утверждение 1.1. Если |A| = n, то $|2^A| = 2^{|A|} = 2^n$.

Доказательство. Пусть $A = \{a_1,...,a_n\}$. Произвольное подмножество $B \subseteq A$ есть результат заполнения n ячеек: первая ячейка соответствует элементу a_1 , вторая – элементу a_2 и т.д., n -я ячейка – элементу a_n . Каждая ячейка может быть заполнена соответствующим элементом или нет (т.е. имеются две возможности для каждой ячейки) независимо от других ячеек. Тогда общее число возможностей для заполнения совокупности из n ячеек выражается формулой 2^n (перемножаем число вариантов для каждой из ячеек n раз).

Операции над множествами. Введем следующие двухместные операции: $A \cup B = \{x \mid x \in A \text{ или } x \in B\}$ — объединение множеств A и B; $A \cap B = \{x \mid x \in A, x \in B\}$ — пересечение множеств A и B; $A \setminus B = \{x \mid x \in A, x \notin B\}$ — относительное дополнение множества B до множества A; $A + B = (A \setminus B) \cup (B \setminus A)$ — симметрическая разность множеств A и B, а также одноместную операцию $\overline{A} = U \setminus A$ — абсолютное дополнение множества A. Для упрощения записи различных выражений в алгебре множеств последняя операция считается самой «сильной», т.е. выполняемой в первую очередь.

Основные тождества алгебры множеств. Для любых множеств A , B , C справедливы равенства:

1.
$$A \cup B = B \cup A$$
 (коммутативность объединения);
2. $A \cup (B \cup C) = (A \cup B) \cup C$ (ассоциативность объединения);
3. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (дистрибутивность объединения относительно пересечения);
4. $A \cup A = A$ (идемпотентность

объединения);

1'.
$$A \cap B = B \cap A$$
 (коммутативность пересечения); $2'. A \cap (B \cap C) = (A \cap B) \cap C$ (ассоциативность пересечения); $3'. A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (дистрибутивность пересечения относительно объединения); $4'. A \cap A = A$ (идемпотентность пересечения);

5.
$$A \cup \overline{A} = U$$
:

6.
$$A \cup \emptyset = A$$
;

7.
$$A \cup U = U$$
;

8. $\overline{A \cup B} = \overline{A} \cap \overline{B}$ (первый закон де Моргана);

9.
$$A \cup (A \cap B) = A$$
 (первый закон поглощения);

10.
$$(A \cup B) \cap (A \cup \overline{B}) = A$$
 (первый закон расщепления);

5'.
$$A \cap \overline{A} = \emptyset$$
;

6'.
$$A \cap \emptyset = \emptyset$$
;

7'.
$$A \cap U = A$$
;

8'.
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
 (второй

закон де Моргана);

9'.
$$A \cap (A \cup B) = A$$
 (второй

закон поглощения);

10'.
$$(A \cap B) \cup (A \cap \overline{B}) = A$$

(второй закон расщепления);

11.
$$\overline{\overline{A}} = A$$
;

12.
$$A \setminus B = A \cap \overline{B}$$
;

13.
$$A+B=(A\cup B)\setminus (A\cap B)=(A\cup B)\cap \overline{(A\cap B)}$$
.

Тождества 1, 1', 2, 2', 4–7, 4' – 7', 9, 9', 11 следует признать очевидными. Докажем тождество 3. Для любого $x \in U$ имеем:

$$x \in A \cup (B \cap C) \Rightarrow \begin{bmatrix} x \in A \\ x \notin A \Rightarrow x \in B \cap C \Rightarrow x \in B, x \in C \end{bmatrix} \Rightarrow$$

 $\Rightarrow x \in A \cup B, x \in A \cup C \Rightarrow x \in (A \cup B) \cap (A \cup C).$

С другой стороны, для любого $x \in U$ имеем:

$$x \in (A \cup B) \cap (A \cup C) \Rightarrow x \in A \cup B, x \in A \cup C \Rightarrow$$

$$\Rightarrow \begin{bmatrix} x \in A \\ x \notin A \Rightarrow x \in B, x \in C \Rightarrow x \in B \cap C \end{bmatrix} \Rightarrow x \in A \cup (B \cap C).$$

Докажем тождество 3'. Для любого $x \in U$ имеем:

$$x \in A \cap (B \cup C) \Rightarrow x \in A, x \in B \cup C \Rightarrow x \in A$$

$$\begin{bmatrix} x \in B \Rightarrow x \in A \cap B \\ x \notin B \Rightarrow x \in C \Rightarrow x \in A \cap C \end{bmatrix} \Rightarrow x \in (A \cap B) \cup (A \cap C).$$

С другой стороны, для любого $x \in U$ имеем:

$$x \in (A \cap B) \cup (A \cap C) \Rightarrow \begin{bmatrix} x \in A \cap B \Rightarrow x \in A, x \in B \\ x \notin A \cap B \Rightarrow x \in A, x \in C \end{bmatrix} \Rightarrow x \in A, x \in B \cup C$$
$$\Rightarrow x \in A \cap (B \cup C).$$

Докажем тождество 8. Для любого $x \in U$ имеем: $x \in \overline{A \cup B} \Leftrightarrow$

$$\Leftrightarrow x \notin A \cup B \Leftrightarrow x \notin A, x \notin B \Leftrightarrow x \in \overline{A}, x \in \overline{B} \Leftrightarrow x \in \overline{A} \cap \overline{B}.$$

Докажем тождество 8'. Применим тождество 8 к $\overline{A}, \overline{B}$ и воспользуемся очевидным

тождеством 11:
$$\overline{\overline{A} \cup \overline{B}} = \overline{\overline{A}} \cap \overline{\overline{B}} = A \cap B$$
, а следовательно, $\overline{\overline{\overline{A} \cup \overline{B}}} = \overline{A \cap B}$, откуда $\overline{A} \cup \overline{B} = \overline{A \cap B}$.

Докажем тождество 10. Используя доказанное тождество 3, имеем:

$$(A \cup B) \cap (A \cup \overline{B}) = A \cup (B \cap \overline{B}) = A \cup \emptyset = A.$$

Докажем тождество 10'. Используя доказанное тождество 3', имеем:

$$(A \cap B) \cup (A \cap \overline{B}) = A \cap (B \cup \overline{B}) = A \cap U = A.$$

Докажем тождество 12. Для любого $x \in U$ имеем:

$$x \in A \setminus B \Leftrightarrow x \in A, x \notin B \Leftrightarrow x \in A, x \in \overline{B} \Leftrightarrow x \in A \cap \overline{B}.$$

Докажем тождество 13. Используя доказанные ранее тождества, имеем:

$$(A \cup B) \setminus (A \cap B) = (A \cup B) \cap \overline{(A \cap B)} = (A \cup B) \cap (\overline{A} \cup \overline{B}) =$$

$$= (A \cap \overline{A}) \cup (A \cap \overline{B}) \cup (B \cap \overline{A}) \cup (B \cap \overline{B}) = \emptyset \cup (A \cap \overline{B}) \cup (B \cap \overline{A}) \cup \emptyset$$

$$= (A \setminus B) \cup (B \setminus A) = A + B.$$

Докажем теперь тождество (ассоциативность +):

$$A + (B + C) = (A + B) + C. (1.1)$$

Будем в последующих выкладках для сокращения записи вместо $A \cap B$ писать AB и считать операцию \cap более «сильной» операцией, чем \cup ,\,+(т.е. выполняемой в первую очередь). Имеем: $A + (B + C) = [A \setminus (B + C)] \cup [(B + C) \setminus A] = [A \setminus (B\overline{C} \cup C\overline{B})] \cup \cup [(B\overline{C} \cup C\overline{B}) \setminus A] = A(\overline{BC} \cup C\overline{B}) \cup (B\overline{C} \cup C\overline{B}) \overline{A} = A(\overline{B} \cup C)(\overline{C} \cup B) \cup \overline{A}B\overline{C} \cup \overline{A}\overline{B}C = A(\overline{BC} \cup C\overline{C} \cup B) \cup \overline{A}B\overline{C} \cup \overline{A}B\overline{C} \cup \overline{A}B\overline{C} \cup \overline{A}B\overline{C}$ (1.2)

C другой стороны, обозначив A'=C,C'=A и используя (1.2), имеем: $(A+B)+C=C+(A+B)=C+(B+A)=A'+(B+C')=\\ =A'\overline{B}\overline{C}'\cup A'BC'\cup \overline{A}'B\overline{C}'\cup \overline{A}'\overline{B}C'=C\overline{B}\overline{A}\cup CBA\cup \overline{C}B\overline{A}\cup \overline{C}\overline{B}A=\\ \overline{A}\overline{B}C\cup ABC\cup \overline{A}B\overline{C}\cup A\overline{B}\overline{C}=A+(B+C).$