

Máster en Transformación Energética Power Electronics

Máquinas eléctricas y sistemas de alta tensión en convertidores

Práctica: Generación Alta Tensión

José Giménez Llanos Álvaro Navarro Jorquera

${\bf \acute{I}ndice}$

1.	Introducción	2
2.	Objetivos	3
3.	Estado de la técnica	3
4.	Establecimiento de requerimientos	4
5 .	Verificaciones	4
Ír	ndice de figuras	
	1. Multiplicador de Greinacher de 1 etapa	2
	 Multiplicador de Greinacher de 1 etapa	5
	3. Tensión de salida y entrada a 50Hz con carga	5

1. Introducción

En este entregable se realiza el diseño y análisis de un circuito multiplicador de tensión basado en el Duplicador de Greinacher. Este circuito, el cual se puede ver en la figura 1, se basa en el principio del rectificador de medio puente.

El condensador C1 se carga para tensiones de entrada desde $-\hat{V}$ hasta $+\hat{V}$ ($\frac{dV}{dt}$ positivo) y se descarga a través del diodo D2 durante las variaciones de tensión de entrada $\frac{dV}{dt}$ negativas, cargando así el condensador C2. Este proceso se repite durante varios ciclos, hasta llegar a un punto en el que el condensador C1 quede cargado a la tensión de pico de la senoidal de entrada y el condensador C2 al doble de la tensión de pico de entrada. Esto se produce puesto que, en los ciclos de tensión de entrada negativa, la tensión soportada por el condensador C2 es la del condensador C1 sumada a la tensión de la fuente.

Figura 1: Multiplicador de Greinacher de 1 etapa

Además, cabe destacar que este circuito es escalable, permitiendo de manera teórica obtener tensiones de salida infinitas a partir de fuentes de tensión oscilatorias de bajo voltaje.

2. Objetivos

El principal objetivo de este trabajo es conseguir diseñar un Multiplicador de Greinacher que permita obtener una tensión de salida específica. Además, debe ser capaz de proveer cierta cantidad de corriente de salida sin que se produzca una caída significativa de la tensión, de manera que será necesario dimensionar correctamente la capacidad de los condensadores. Por otra parte, el circuito debe ser capaz de funcionar en un rango de frecuencia definido y para tensiones de entrada senoidales y cuadradas. También será necesario diseñar un circuito que permita medir la tensión de salida a partir de un multímetro. Todos los requisitos se definen de manera específica en la sección 4.

3. Estado de la técnica

Para la construcción del Multiplicador de Greinacher será necesario obtener el número de etapas necesarias a partir de la tensión de pico de entrada y la tensión continua requerida a la salida. A partir de ahí se seleccionarán los componentes (diodos y condensadores), los cuales deben ser capaces de soportar las tensiones máximas a las que se puedan someter.

Respecto a la carga, puesto que la tensión de salida es continua, se dimensionará una resistencia para que circule a través de la misma la corriente deseada. Dicha resistencia, en el circuito real, deberá ser seleccionada para que pueda soportar la potencia a disipar. Puesto que la tensión de salida será elevada, corrientes de miliamperios pueden producir potencias de decenas de vatios que deberán ser disipadas por la resistencia.

Para el diseño del circuito de medida de tensión, se utilizará un divisor resistivo con un multímetro en paralelo con la resistencia de debajo del divisor. De esta manera, la resistencia total de debajo del divisor estará limitada por la resistencia del multímetro. Consecuentemente, puesto que se debe construir el circuito para obtener corrientes mínimas, se diseñará para que la resistencia de debajo del puente total sea lo más cercana posible a la resistencia del multímetro.

4. Establecimiento de requerimientos

Los requerimientos del circuito se dividen, en este caso, en los requerimientos del Multiplicador de Greinacher y los del equipo de monitorización de tensión de salida. Los requerimientos del Multiplicador de Greinacher son los siguientes:

• Tensión de salida: $3kV \pm 5\%$ (DC)

 \blacksquare Corriente de salida: 5mA

■ Rizado máximo: ±10 %

• Tensión de entrada: 220V (AC)

• Tensión de trabajo de componentes: < 1000V

■ Rango de frecuencia de entrada: [50Hz, 200Hz]

• Forma de tensión: senoidal o cuadrada

Respecto al equipo de monitorización, debe cumplir los siguientes requisitos para que el funcionamiento del circuito se vea lo menos afectado posible al utilizarlo:

- Consumo de corriente mínimo
- Tensión máxima de 200V, correspondiente con la tensión máxima de salida

5. Verificaciones

En esta sección se va a justificar mediante las simulaciones necesarias que el funcionamiento del circuito es el correcto. Primero, se comprueba que la tensión de salida sin carga es igual a la esperada. En la figura \ref{seq} se puede ver que, al transcurrir un tiempo de aproximadamente 5 segundos, la tensión de salida se estabiliza en 3101V, valor que supone un error mínimo del 0,33% respecto a la tensión de salida esperada sin carga (3111,27V), como se puede ver en la siguiente expresión:

$$E_{V_{noload}} = \frac{3111,27V - 3101V}{3111,27V} \cdot 100 = 0,33\%$$
 (1)

Figura 2: Tensión de salida y entrada a 50Hz (sin carga)

Además, podemos garantizar que la tensión obtenida está dentro del rango de tensión de salida especificado, puesto que la tensión máxima establecida (5 % de 3kV) es de 3150V.

Tras comprobar que el circuito funciona correctamente, pasamos a conectar la carga y el circuito de medida. Respecto del caso anterior, el tiempo de establecimiento es similar y no relevante puesto que no existe ningún requerimiento respecto del mismo, por lo que se pasa a analizar la tensión de salida en estacionario, obteniendo el resultado 3.

Figura 3: Tensión de salida y entrada a 50Hz con carga

Como se puede ver en la figura 3, se obtiene una tensión media de 3044V, una tensión máxima de 3049V y una tensión mínima de 3039V. De esta manera, se puede garantizar que el requisito de rizado de 10V para 50Hz sí se cumple, y el error obtenido para la tensión media es mínimo:

$$E_{V_{load}} = \frac{3047,93V - 3044V}{3047,93V} \cdot 100 = 0,13\%$$
 (2)