

Administración de Sistemas Operativos

Tema 6. Auditoría y monitorización

© 2016 J.M. Santos, C. R. García, S. Candela

Contenidos

- Consultar la configuración del sistema
- Registros de actividad (logs)
- Registros de accesos al sistema
- Sistema de ficheros /proc
- Monitorizar la CPU y los procesos
- Monitorizar la memoria
- Monitorizar la E/S y los sistemas de ficheros

Auditoría y monitorización

¿Para qué?

- Para saber el grado de utilización de los recursos: si hay algún recurso saturado, o un mal reparto, etc.
- Para detectar comportamientos anómalos (ej. posibles intrusiones, fallos del hardware...)
- Para observar el cumplimiento de las especificaciones y detectar posibles mejoras o evoluciones

• ¿Cómo?

- Registros de actividad (*logs*)
- Órdenes específicas
- Sistema /proc

Algunos conceptos

- Auditoría. Examen del sistema para verificar que cumple con los requisitos establecidos.
- Monitorización. Observación en tiempo real del comportamiento del sistema.
- Afinamiento (system tuning). Ajuste de parámetros del sistema para mejorar algún aspecto del rendimiento.

Consultar la configuración del sistema

- Hardware
- Núcleo del SO
- Sistema operativo

Consultar configuración del hardware

free uso de la memoria, swap, cachés...

1scpu información sobre los procesadores

1susb lista de dispositivos USB

1spci dispositivos conectados al bus PCI

ifconfig dispositivos de red y su estado

Consultar configuración del núcleo (módulos cargables)

1smod muestra los módulos instalados
modprobe añade o quita módulos
modinfo muestra información de los módulos

Consultar configuración del SO

- hostname nombre del equipo.
- uname versión del núcleo.
- /etc/issue fichero de texto con la versión del SO (en Linux, la distribución). Es lo que se visualiza antes de abrir sesión en la consola.

Registros de actividad (logs)

- Los servicios del SO suelen registrar en ficheros los eventos que les ocurren.
- Muchos registros están en /var/log y son ficheros de texto.
- Ejemplos:

```
/var/log/boot.log
/var/log/dmesg
/var/log/messages
/var/log/secure
```

mensajes del arranque del SO mensajes del núcleo mensajes de los servicios incidentes de seguridad

Ejemplos de entradas de logs

/var/log/secure

Nov 13 09:02:25 labsopa sshd[18270]: Failed password for invalid user pepe from 212.129.27.164 port 51818 ssh2

/var/log/messages

```
Nov 13 09:29:35 labsopa dhcpd: DHCPREQUEST for 192.168.200.24 from fc:aa:14:1a:92:84 via eth1
```

/var/log/cron

```
Nov 13 11:41:01 labsopa CROND[20857]: (jomis) CMD (/usr/bin/date +)
```


Configuración de los registros

- Demonio rsyslogd, se configura editando el fichero /etc/rsyslogd.conf
- Páginas del man: rsyslog.conf, rsyslogd
- **logrotate:** para controlar el crecimiento de los registros, se pueden ir limpiando periódicamente. logrotate utiliza un *crontab* con ciclos diarios y semanales (se puede cambiar en **/etc/logrotate.conf**).

Registros de acceso al sistema

• Órdenes:

```
    listado de últimos accesos al sistema
    lastb listado de últimos intentos fallidos de acceso
    lastlog lista de usuarios y su último acceso
    estadísticas del tiempo de conexión
```

• Ficheros de registro:

```
/var/log/wtmp ¡ojo, este es binario!
/var/log/btmp también es binario
/var/log/lastlog
```


Sistema de ficheros /proc

- Seudosistema de ficheros: ofrece información del núcleo del SO bajo la apariencia de ficheros normales.
- Ej. /proc/meminfo nos da los datos de ocupación actual de la memoria como un fichero de texto.
- man proc nos da el catálogo completo de ficheros disponibles.

Ejemplos de ficheros /proc

fichero	contenido
/proc/cpuinfo	Número de procesadores y arquitectura
/proc/devices	Dispositivos reconocidos por el núcleo
/proc/filesystems	Sistemas de ficheros reconocidos por el núcleo
/proc/loadavg	Tiempo de marcha del sistema (<i>uptime</i>), número de usuarios conectados y carga media del sistema (1-5-15 minutos anteriores)
/proc/meminfo	Información de ocupación de la memoria RAM y mem. virtual
/proc/mounts	Sistemas de ficheros montados para el proceso actual
/proc/net/*	Varios ficheros con información sobre los servicios de red
/proc/stat	Estadísticas del núcleo: consumo de CPU, memoria, procesos
/proc/sys/*	Acceso a variables del núcleo
/proc/version	Versión del núcleo y plataforma (lo usa uname)
/proc/vmstat	Estadísticas de la memoria virtual

Observar procesos con /proc

- La carpeta /proc/NNN permite ver información detallada del proceso con PID=NNN.
- Algunos ficheros en /proc/nnn:

cmdline	Línea de órdenes que ejecuta el proceso (argv)
cwd	Directorio actual de trabajo
environ	Todas las variables shell del proceso
exe	Un enlace simbólico a la ruta del ejecutable
fd/*	Carpeta con una entrada por cada fichero abierto por este proceso
stat, status	Estado del proceso

Monitorización y afinamiento de CPU, memoria y E/S

Monitorizar CPU y procesos

- Órdenes básicas: ps, pstree
- top muestra una vista que se actualiza cada 5 segundos (configurable). Se puede cambiar la vista de forma interactiva.
- time orden nos devuelve el tiempo real invertido por orden y cuánta CPU consumió (tiempo en modo usuario y tiempo en modo sistema).
- uptime y /proc/loadavg nos dan la carga del sistema (nr. de procesos en colas de CPU).
- vmstat da info combinada de CPU y memoria.

time orden

```
Ejemplo:
```

```
[root@srv]# time find /home -size +1G
(salida normal de la orden)
                     Tiempo real invertido
real 3m13.512s
user 0m2.354s
                      Tiempo de CPU consumido
sys 0m17.054s
                      en modo usuario
[root@srv]#
                      Tiempo de CPU consumido
                      en modo núcleo
```


uptime

Ejemplo:

¿Cómo interpretar la información de uptime y vmstat?

- Las colas deberían tener de 0 a 3 procesos en espera... un valor superior significa que el sistema está sobrecargado.
- Sobrecarga si vemos que la CPU tiene menos de un 5% de tiempo desocupado, o más de un 35% de tiempo de sistema.

Afinamiento de procesos: nice, at

 Bajar la prioridad a los procesos muy intensivos en CPU o procesos por lotes:

```
nice -n prioridad orden arg1 arg2...
renice -n nueva_prioridad -p pid
```

- Prioridad: -20 (máxima) ... +20 (mínima)
- Ejemplo: nice -n 15 find / -nouser >>/root/huerfanos &
- Posponer la ejecución de un proceso "molesto" a horas de baja carga:

```
    para ejecutarlo en una fecha y hora dadas
    batch para ejecutarlo cuando la carga del sistema esté por debajo de un nivel dado
```

- Ejemplo: at -f mi_script.sh 03:00 31.12.2016
- atq (ver la cola), atrm (borrar una tarea de la cola)

Monitorizar la memoria

free ocupación de la memoria del sistema

vmstat estado de uso de los principales

recursos (memoria, CPU, E/S)

top vista interactiva y en tiempo real

de los procesos y memoria, CPU y E/S

Afinamiento de la memoria

- Objetivo: aprovechar al máximo la RAM e impedir que la memoria virtual se sature o se haga mucho uso de ella.
- En Unix, la memoria virtual se almacena en particiones de tipo swap.
- Si los dispositivos swap están muy activos (>200-300 páginas por segundo), hay saturación en la memoria del sistema.
- Para crear o activar nuevas áreas de swap:
 mkswap crea una nueva área
 swapon/swapoff activa/desactiva un área

Monitorizar sistemas de ficheros

df consumo de espacio en un sistema de ficheros completo

du consumo de espacio para un directorio
 o un conjunto de ficheros

1sof lista de los ficheros abiertos

Monitorizar la E/S

vmstat también informa sobre la E/S

iostat estado del subsistema de E/S

iotop informa de la actividad de E/S

tune2fs modifica atributos de un sistema de ficheros

Afinamiento de la E/S

- La E/S tiene más limitaciones de velocidad que la CPU y la memoria RAM:
 - Controladores de E/S
 - Los propios periféricos de E/S
- La E/S impacta en la velocidad de ejecución
 - Disco: al leer y escribir en ficheros; en el uso de memoria virtual (swap)
 - Red: mensajes, almacenamiento remoto...
- El parámetro clave es la velocidad de transferancia

Afinamiento de la E/S

- Monitorizar el área de intercambio, para asegurarse de que el uso de memoria virtual no perjudica al acceso al sistema de ficheros.
- Tamaño de colas de disco inferior a 3.
- Ajustar el tamaño de bloque de datos con el que formateamos nuestros discos:
 - Si nuestro perfil típico son procesos de larga duración y con poca E/S, es mejor formatear nuestros discos con tamaños grandes de bloques de datos (así se reduce el número de transferencias).
 - Si nuestro perfil típico son muchos procesos de corta duración, hay que compartir el ancho de banda de E/S entre todos ellos: tamaños de bloques pequeños.

Administración de Sistemas Operativos

Tema 6. Auditoría y monitorización

© 2016 J.M. Santos, C. R. García, S. Candela