Tentamen i Datorsystemteknik EDA332 / DIT122

Tid och plats: 7 Juni, 2019, fm, H-salar

Examinator: Lars R Bengtsson

Institution: Data- och Informationsteknik

Förfrågningar: Lars Bengtsson (tel.8441)

Rättningsgranskning: Fredagen 28/6 kl. 11.00-11.30; hos Lars på D & IT inst. plan 4.

Betygsgränser:

3: 24–35 poäng, 4: 36–47 poäng, 5: 48–60 poäng

Tillåtna hjälpmedel:

Referenskort för MIPS-arkitekturen ("Green card")

Av Chalmers typgodkänd kalkylator.

Allmänt: Svar lämnas på lösblad. Använd gärna figurer. Tentan kan delas för rättning; kombinera inte flera uppgifter på samma blad.

Skriv gärna textsvar och kommentarer på engelska!

I förekommande fall gör de antaganden som behövs och motivera dessa.

Maximal poäng på varje deluppgift anges inom parentes efter uppgiftstexten.

Lycka till!

1.

a) Hur många gånger accessas instruktionsminnet i MIPS koden nedan? Hur många gånger accessas dataminnet? (räkna enbart accesser till dataminnet, inte till register).

(2p)

```
      lw
      $v1, 0($a0)

      addi
      $v0, $v0, 1

      sw
      $v1, 0($a1)

      addi
      $a0, $a0, 1
```

(b) Koda nedanstående högnivåkod i MIPS assembly.

```
int A[200], B[200];
for (i=1; i < 200; i++)
A[i] = A[i-1] + B[i];
```

De enda värden som finns i registren före exekvering av koden är basadresserna till vektorerna A och B i \$a0 and \$a1. Följ register- och anropskonventionen för MIPS processorn. Kommentera koden flitigt. (10p)

2. Antag att vi har en 5-stegs pipeline (F-Fetch, D-Decode, E-Execute, M-Memory, W-Writeback) som utökats för att hantera flercykelinstruktioner genom att exekveringssteget kan utföra FP (Floating Point) multiplikationer (vilka tar 4 klockcykler), FP load/stores (1 klockcykel), FP additioner (2 klockcykler). Alla heltalsinstruktioner tar 1 klockcykel.

Antag att alla hazarder hanteras via stalls av pipen och att <u>den enda forwarding som finns är via registerfilen</u> (skriv och läs i denna sker alltså under skilda halvperioder).

Det finns 32 heltalsregister (benämnda \$0, \$1, ..., \$31) samt 16 flyttalsregister (för dubbel precision) benämnda \$f0, \$f2, ...).

- a) Komplettera tabellen nedan och visa hur koden flyter genom pipen (använd beteckningarna F,D,E,M,W). Ange en eventuell stall i en klockcykel med en punkt (.) (10p)
- b) Vilken är den första hazarden i koden och vad skulle hårdvarumässigt behövas läggas till om man vill hantera denna hazard utan stalls? (2p)

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
addu	\$2,	F																								
	\$2, \$3	•																								
1.d	\$f0,																									
	0(\$2)																									
mul.d	\$f2,																									
	\$f2,																									ł
	\$f0																									
l.d	\$f8,																									
	1000(
	\$2)																									ł
mul.d	\$f4,																									
	\$f4,																									
	\$f8																									
add.d	\$f6,																									
	\$f2,																									
	\$f4																									<u> </u>
s.d	\$f6,																									
	0(\$4)																									<u> </u>
subui	\$4,																									
	\$4, 4																									<u> </u>
beq	\$2,																									ĺ
	\$4,																									ĺ
	L46																									ł

3.

Ett datorsystem byggt som en video server är konstruerat runt en systembuss kopplande samman processor, primärminne (DRAM), och maximalt 20 st. DMA-interface som vardera ansluter en diskdrive via en I/O-buss. Systembussen är synkron och klockas med 200 MHz, använder multiplexad överföring av adress och data med ett ord (64 bitar) per busscykel. En bussöverföring består av 1 busscykel för adress, följt av 1 eller 4 cykler med data. Vid DMA överförs alltid 4 dataord efter den inledande busscykeln med adressen.

Systembussen är tillgänglig för I/O 40% av tiden.

En diskdrive består av 4 dubbelsidiga skivor med ett R/W-huvud per yta. Antal cylindrar är 30000, det finns 500 sektorer per spår. Varje sektor innehåller 512 bytes och disken spinner med 7200 RPM. Sök- (SEEK) tiden är 10 ms.

- a) Vad är den maximala lagringskapaciteten hos diskarna som vi kan ha givet att vi vill kunna accessa alla diskarna samtidigt med maximal bandbredd? (5p)
- b) Hur stor är den relativa andelen tid för att lokalisera ett 8 KiB block till den totala accesstiden för ett sådant block? (antag att dessa 8 KiB block är slumpmässigt utspridda över diskarna) (5p)
- c) Vad skulle svaret bli i uppgift b om vi istället antar att 99% av alla accesser sker till ett närliggande block? (5p)
- 4. Följande data gäller för ett visst datorsystem med fysiskt adresserad cache och virtuellt minne:
 - 48 bitars virtuella adresser
 - Sidstorlek 4 KiB
 - 36 bitars fysiska adresser
 - Ett 256 KiB (gemensamt I och D) 16-vägs associativt cache med 16 Bytes block
 - En 8-vägs associativ TLB med 64 ingångar

Uppgifter: Om den virtuella adressen är 0xBCDEF9876548 och den fysiska adressens sidnummer är 0x46844 (förutom inledande nollor), svara på deluppgifterna a-g:

a)	Ange värdet på sidoffset för adressen ovan (på hexform)	(3p)
b)	Ange värdet på det virtuella sidnumret (på hexform)	(3p)
c)	Hur många bitar utgörs av det fysiska sidnumret?	(3p)
d)	Ange värdet på den fysiska adressen (på hexform)	(3p)
e)	Ange värdet på offsetfältet (blockoffset) för cacheblocket	(3p)
f)	Ange värdet på "Set-Index" fältet (i den fysiska adressen till cachen)	(3p)
g)	Ange värdet på tag-fältet (i den fysiska adressen till cachen)	(3p)