PATENT ABSTRACTS OF JAPAN

(11)Publication number:

(43) Date of publication of application: 18.06.1999

(51)Int.CI.

G03B 21/16 GO2F 1/13 1/1333 GO2F G03B 21/00 HO4N 5/74 HO4N 9/31

(21)Application number : 09-323312

(71)Applicant: HITACHI LTD

HITACHI VIDEO & INF SYST INC

(22)Date of filing:

25.11.1997

(72)Inventor: FUSE KENJI

KAKU NOBUYUKI **OZAWA NAOHIRO** TANITSU MASAHIKO **OUCHI SATOSHI**

OTSUKA YASUO

MARUYAMA TAKESUKE KONUMA YOSHIHIRO YOSHIMURA HIDETOMO

(54) OPTICAL DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To reduce height dimension and to obtain cooling constitution effective to miniaturization and thinning by arranging a cooling fan on the side of a projection lens and guiding air sent from a cooling fan to a liquid crystal panel through a ventilating path. SOLUTION: The cooling fan 61 is arranged on the side of the projection lens 27, and the air sent from the fan 61 is guided to the liquid crystal panels 14, 18 and 21 through the ventilating path 65, so that the cooling constitution effective to miniaturization and thinning is obtained. Furthermore, by adopting a blower type sirocco fan as the fan 61, pressure 🚐 loss caused by passage resistance is reduced to perform cooling with high efficiency. Then, the quantity and the speed of the air sent from the fan 61 to the liquid crystal panels 14, 18 and 21 are freely controlled so that the temperature rise of each liquid crystal panel may be kept minimum. Thus, the height dimension of the optical device such as a liquid crystal projector is restrained to the minimum and plane outside dimension is miniaturized to be equal to or under A4 file size.

LEGAL STATUS

[Date of request for examination]

24.10.2000

[Date of sending the examiner's decision of rejection]

04.03.2003

[Kind of final disposal of application other than the

examiner's decision of rejection or application converted

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-160793

(43)公開日 平成11年(1999)6月18日

(51) Int.Cl. ⁶		識別記号		FΙ				
G03B	21/16			G03B 2	21/16			
G02F	1/13	5 0 5	•	G02F	1/13		5 0 5	•)(-
	1/1333				1/1333			
G03B	21/00			G03B 2	21/00		D	
H04N	5/74			H04N	5/74		K	
			審查請求	未請求 請求	頁の数19	OL	(全 10 頁)	最終頁に続く
(21)出顧番号		特顯平9-323312		(71) 出願人 000005108				
					株式会	吐日立	具作所	· -
(22)出顧日		平成9年(1997)11月25日		東京都	千代田	区神田駿河台	四丁目 6 番地	
				(71)出題人	0002331	36		
				株式会社日立画像情報システム				
					神奈川	具横浜	市戸塚区吉田	叮292番地
			•	(72)発明者	布施			
					神奈川	果横浜	市戸塚区古田	叮292番地株式
				会社日立製作所マルチメディアシステム開				
•		• .			発本部	•		
		•		(74)代理人			勝男	

最終頁に続く

(54) 【発明の名称】 光学装置

(57)【要約】

【課題】小形かつ薄形化に有利で、高効率な液晶パネル 冷却構造を有した液晶プロジェクタ等の光学装置を得 る。

【解決手段】投写レンズの側方に冷却ファンを配置し、 冷却ファンの空気排出口からは送風ダクトにより液晶パ ネルの下方に冷却空気を案内する。送風ダクト内には、 R、G、B各光用液晶パネルに対応した送風用案内板を 設ける。

【特許請求の範囲】

【請求項1】液晶パネルを含む密閉形通風路を有する第 1の冷却循環系と、装置外殼内にあって該通風路を外側 から冷却する第2の冷却循環系とを備え、該液晶パネル を、該第1の冷却循環系で直接的に冷却し、該第2の冷 却循環系では間接的に冷却するようにした構成を特徴と する光学装置。

【請求項2】上記第1の冷却循環系は、専用の冷却ファンを備えた構成である請求項1に記載の光学装置。

【請求項3】光を複数の液晶パネルに照射し、該液晶パネルからの光を複数のプリズムおよび投写レンズを介してスクリーン上に投射する光学装置において、

液晶パネルを冷却するための複数の冷却ファンを具備 し、少なくとも該冷却ファンのひとつは、該投写レンズ の側方に配置される構成であることを特徴とする光学装 置。

【請求項4】光を複数の液晶パネルに照射し、該液晶パネルからの光を複数のプリズムおよび投写レンズを介してスクリーン上に投射する光学装置において、

該液晶パネルを冷却するための複数の冷却ファンを具備 し、少なくとも該冷却ファンのひとつは、シロッコファ ンであることを特徴とする光学装置。

【請求項5】少なくとも上記複数の冷却ファンのうちのひとつは、上記液晶パネルを冷却するための専用の冷却ファンである請求項3または請求項4に記載の光学装置。

【請求項6】上記液晶パネルまでの冷却用風路を有し、 該冷却用風路は、複数に分割されている構成である請求 項3、4または5に記載の光学装置。

【請求項7】上記複数に分割された冷却用風路は、G色 光用液晶パネル(18)への風速または風量を増大させ るようにした構成である請求項6に記載の光学装置。

【請求項8】平面外形寸法が略A4ファイル寸法以下である請求項1、2、3、4、5、6または7に記載の光学装置。

【請求項9】上記A4ファイル寸法は、263m×31 8mmである請求項8に記載の光学装置。

【請求項10】光源からの光を色分離して第1の液晶パネル,第2の液晶パネル,第3の液晶パネルに照射し、第1の液晶パネル,第2の液晶パネル,第3の液晶パネルからの出射光を色合成して投写レンズでスクリーン上に投写する液晶プロジェクタにおいて、少なくとも収納時の液晶プロジェクタの突起部を含む平面寸法が略A4ファイルサイズ以下の外形寸法とした請求項1、2、3、4、5、6または7に記載の光学装置。

【請求項11】上記A4ファイルサイズを263mm× 318mmとした請求項10に記載の光学装置。

【請求項12】上記A4ファイルサイズを243mm×307mmとした請求項8または10に記載の光学装置。

【請求項13】上記A4ファイルサイズを230mm× 307mmとした請求項8または10に記載の光学装 置。

【請求項14】液晶パネルの表示画面サイズを0.9インチ以下とした請求項8または10に記載の光学装置。

【請求項15】液晶パネル表示面から投写レンズ先端までの距離を146mm以下とした請求項8または10に記載の光学装置。

【請求項16】液晶パネル表示面から投写レンズ先端までの距離を135mm以下とした請求項8または10に記載の光学装置。

【請求項17】色合成光学系としてクロスダイクロイックプリズムを備えるとともに、クロスダイクロイックプリズムの平面寸法が32mm×32mm以下とした請求項8または10に記載の光学装置。

【請求項18】色分離光学系として第1のダイクロイックミラー、第2のダイクロイックミラー、第1のミラー、第2のミラー、第3のミラーをクロスダイクロイックプリズムの周囲に備えるとともに、光源からの照明光の利用効率を向上させ、かつ均一な照明光を得るための光源、偏光変換素子、オプティカルインテグレータ手段とを含む照明光学系と、光源用電源とを備えるとともに、投写レンズ、クロスダイクロイックプリズム、色分離光学系、照明光学系、光源用電源をこの順に配置した請求項8または10に記載の光学装置。

【請求項19】色分離光学系として第1のダイクロイックミラー、第2のダイクロイックミラー、第1のミラー、第2のミラー、第3のミラーをクロスダイクロイックプリズムの周囲に備えるとともに、光源からの照明光の利用効率を向上させ、かつ均一な照明光を得るための光源、偏光変換素子、オプティカルインテグレータ手段とを含む照明光学系と、光源用電源とを備えるとともに、投写レンズ、クロスダイクロイックプリズム、色分離光学系の並びと、照明光学系、光源用電源をこの順に配置した請求項8または10に記載の光学装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は透過型液晶パネルを 用いる液晶プロジェクタ等の光学装置に係わり、特に、 液晶パネルを冷却する技術に関する。

[0002]

【従来の技術】従来の複数のプリズムを用いた光学装置では、図2に示した液晶プロジェクタの投射レンズおよび液晶パネル部分の側面図に記載のように液晶パネルの温度上昇を抑えるために液晶パネル14,18,21の下方に軸流型の冷却ファン81を配置するのが一般的である。この場合ファンからの送風が、直接液晶パネル14,18,21(図示せず)に、あてられるので容易に上記液晶パネル14,18,21冷却できる。

[0003]

【発明が解決しようとする課題】図2に示した従来の光学装置においては、装置の全体高さ寸法は、図2中に示した投射レンズ27および液晶パネル14,18,21部分の高さ寸法に加算される高さ寸法L2になる。またこの時、前記投射レンズ27の下方には有効活用しにくいスペース(デッドスペース)が生じてしまい、装置全体の高さ寸法の低減に不利である。

【0004】本発明の目的は高さ寸法を低減し、装置の小型化に有効な光学装置を提供することにある。

[0005]

【課題を解決するための手段】上記目的を達成するために本発明では、図1に示したように、投射レンズ27の側方に冷却ファン61を配置し、冷却ファン61からの送風を送風経路65を介して液晶パネル14,18,21を導く構成とすることで、小型化、薄型化に有効な冷却構成を提供するものである。

【0006】さらに本発明では、上記冷却ファン61を ブロアー式のシロッコファンとすることで流路抵抗によ る圧力損失を低減し高効率に冷却を行える構成としたも のである。

【0007】さらに本発明では、上記冷却ファン61からの送風を液晶パネル14,18,21に各液晶パネルの温度上昇が最低になるように自由に風量および風速を制御できる構成としたものである。

【0008】さらに本発明では、上記冷却ファン61からの送風を液晶パネル14,18,21に各液晶パネルの温度上昇が平均化するように自由に風量および風速を制御できる構成とし、さらに、各液晶パネルへの風量および風速を、G色光用液晶パネル18への風量および風速がに最大になるようにし、R色光用液晶パネル14への風量および風速が最小になるようにしたものである。【0009】

【発明の実施の形態】以下,図面を用いて本発明の実施 例を説明する。

【0010】図3は、本発明の第1の実施例の液晶プロジェクタの上面図である。

【0011】光源である放電ランプ1からの照明光2は、放物面鏡のランプリフレクタ3、レンズ4、レンズ5を介して偏光変換索子6、第1レンズアレイ7、ミラー8、第2レンズアレイ9を介してダイクロイックミラー10に入射する。

【0012】ダイクロイックミラー10は、R色光11が透過し、GおよびB色光12が反射する。R色光11は、ミラー13で反射され、R色光用液晶パネル14に入射する。GおよびB色光12は、G色光反射、B色光透過のダイクロイックミラー15に入射し、G色光16は、G色光用液晶パネル18に入射する。

【0013】B色光17は、ミラー19、ミラー20を介して、B色光用液晶パネル21に入射する。

【0014】液晶パネル14からのR透過光22と、液晶パネル18からのG透過光23と、液晶パネル21からのB透過光24は、クロスダイクロイックプリズム25により色合成され、色合成された出射光26を投写レンズ27によりスクリーン(図示せず)上に投写する。【0015】高温になる光源から発生する熱が光源以外の構成部品に影響を及ぼさなくするために、放電ランプ1、ランプリフレクタ3の近傍には、光源冷却用の排気ファン28が配置されており、液晶プロジェクタの筐体29の外に熱風30を排気する。また、放電ランプ1の近傍にはランプ電源31が配置される。

【0016】本実施例では、色分離光学系として第1のダイクロイックミラー10、第2のダイクロイックミラー15、第1のミラー13、第2のミラー19、第3のミラー20をクロスダイクロイックプリズム25の周囲に備えるとともに、光源からの照明光の利用効率を向上させ、かつ均一な照明光を得るための光源である放電ランプ1とランプリフレクタ3とレンズ4とレンズ5、偏光変換素子6、オプティカルインテグレータ手段である第1レンズアレイ7、ミラー8、第2レンズアレイ9とを含む照明光学系と、光源用電源であるランプ電源31とを備えるとともに、投写レンズ27、クロスダイクロイックプリズム25、色分離光学系、照明光学系、ランプ電源31をこの順に配置してある。

【0017】筐体29の中に投写レンズ27を収納する構成として、その筐体29、すなわち収納時の液晶プロジェクタの突起部を含む平面寸法が略A4ファイルサイズ以下の外形寸法とした。実施例の外形寸法は、奥行きが307mmで,幅が230mmである。

【0018】なお、外形寸法の設定は、本実施例に限定されるものではなく、略A4ファイルサイズであれば良い。各種A4ファイルサイズについて調査した結果、最も小型のサイズは本実施例の230mm×307mmであるが、それよりも若干大きいサイズとしては243mm×307mm、最大のサイズとしては263mm×318mmであった。したがって、本発明ではA4ファイルサイズとして上記3種類のサイズを設定することにした。

【0019】本実施例の構成の液晶プロジェクタによれば、広く一般に普及している収納棚やキャリングケースが利用できる外形寸法の液晶プロジェクタを得ることができる。

【0020】なお、このサイズが小さい程、より技術的 に実現が困難となるが、広く一般に普及している収納棚 やキャリングケースがより多く利用できるようになると いう効果がある。

【0021】この外形寸法を実現するために、本実施例では、液晶パネルの表示画面サイズを0.9インチとしている。従来の液晶パネルの表示画面サイズの1.3インチに比べて0.9インチと小型な液晶パネルを使用す

ることにより、投写レンズ27やクロスダイクロイック プリズム25が小型にでき、これに伴って色分離光学系 も小型にできる。

【0022】本実施例では、A4ファイルサイズを実現するために、液晶パネル表示面から投写レンズ先端までの距離を135mmとした。この距離を135mm以下とすることにより、最も小型なA4ファイルサイズを実現することができる。なお、より大きいA4ファイルサイズに対しては、この距離を146mm以下とすればそれを実現することができる。これは、A4ファイルサイズの長手寸法が大きいものが318mmで、小さいものが307mmで、その差が11mmであるからである。【0023】本実施例では、A4ファイルサイズを実現するために、色合成光学系としてクロスダイクロイックプリズム25を備えるとともに、クロスダイクロイックプリズム25の平面寸法を32mm×32mmとした。この寸法を、32mm×32mm以下とすれば、これに

【0024】なお、本実施例では液晶プロジェクタの奥行き寸法が幅寸法よりも大きい構成例を示したが、これに限定されるものではなく、幅寸法が奥行き寸法よりも大きい構成でもかまわない。

伴って色分離光学系をより小型にできる。

【0025】図中61は、上記液晶パネル14,18,21を冷却するための冷却用のファンで、図にはブロアー型のシロッコファンを示してある。65は第一の送風ダクト、27は冷却用ヒートシンク、70は第三の送風ダクトである。

【0026】図4、図5は上記実施例における液晶パネル14,18,21および前記投射レンズ27周囲の冷却構造を示す詳細斜視図である。図4は前記照明光学系方向からの斜視図を示し、図5は冷却ファン61方向からの斜視図である。また図6は前記冷却構造の送風構造を示す詳細斜視図である。以下図4、図5、図6を用いて前記液晶パネルの冷却構造を説明する。

【0027】前述の冷却ファン61から排出された空気 は、図中矢印111で示したように、前記第一の送風ダ クト65を通り前記液晶パネル14,18,21の下方 に案内される。この時第一の送風ダクト65内には、第 一の案内板123、第二の案内板124、第三の案内板 125が配置されており、前記矢印111の空気は、B 色光用液晶パネル14用の送風112、G色光用液晶パ ネル18用の送風113、R色光用液晶パネル21用の 送風114に分割されて各液晶パネルに案内され各液晶 パネルを冷却する構成である。この時、各案内板12 3,124,125を適切に配置することで、一般に一 番パネルの温度上昇が高いG色光用液晶パネル18用の 送風113に、最大の送風量または風速が導かれるよう に配置し、次に温度上昇が高いB色光用液晶パネル14 用の送風112およびあまり温度上昇の高くないR色光 用液晶パネル21用の送風114に分割し送風すること

で、各液晶パネルの温度上昇値をほぼ均等化できる構成である。すなわち冷却用空気は、図4中に示した導風口91、92、93(図示せず)を通り、図6中矢印115、116、117(図示せず)のように各液晶パネル14、18、21を冷却する構成である。

【0028】さらに上記冷却用空気は、第二の送風ダクト101を通り、第二の送風ダクト101の内外壁に設けた冷却用ヒートシンク27により放熱され、さらに第三の送風ダクト70を通り、第四の送風ダクト71を通り、前記冷却ファン61に戻される構成である。この時前述の送風ダクト65、101、70、71は液晶パネル14、18、21および冷却ファン61を密閉した構造になっている。このため外部からのゴミの進入を防ぎ液晶パネル面上にゴミが付着しスクリーン上にゴミが照射されるという不良を防ぐことができるものである。また以上の冷却構造は、装置の薄形化のためには特に密閉構造である必要はなく、液晶パネル面上に別途ゴミよけガラスを貼り付けた構成でもゴミの対策は可能である。

【0029】また上記第1の実施例においては、冷却ファン61からの送風を案内板123,124,125により分割しているが、これは3本パイプ等で分割する構造であっても同様の効果が得られる。

【0030】図7は、本発明の第2の実施例の液晶プロジェクタの上面図である。

【0031】光源である放電ランプ1からの照明光2は、放物面鏡のランプリフレクタ3、レンズ4、レンズ5を介して偏光変換素子6、第1レンズアレイ7、ミラー8、第2レンズアレイ9を介してダイクロイックミラー40に入射する。

【0032】ダイクロイックミラー40は、R色光41が反射し、GおよびB色光42が透過する。R色光41は、ミラー13で反射され、R色光用液晶パネル14に入射する。GおよびB色光42は、G色光反射、B色光透過のダイクロイックミラー15に入射し、G色光16が反射し、B色光17が透過する。G色光16は、G色光用液晶パネル18に入射する。

【0033】B色光17は、ミラー19、ミラー20を介して、B色光用液晶パネル21に入射する。

【0034】液晶パネル14からのR透過光22と、液晶パネル18からのG透過光23と、液晶パネル21からのB透過光24は、クロスダイクロイックプリズム25により色合成され、色合成された出射光26を投写レンズ27によりスクリーン(図示せず)上に投写する。

【0035】高温になる光源から発生する熱が光源以外の構成部品に影響を及ぼさなくするために、放電ランプ1、ランプリフレクタ3の近傍には、光源冷却用の排気ファン43が配置されており、液晶プロジェクタの筐体44の外に熱風45を排気する。

【0036】また、放電ランプ1の近傍にはランプ電源 31が配置される。 【0037】色分離光学系として第1のダイクロイックミラー40、第2のダイクロイックミラー15、第1のミラー13、第2のミラー19、第3のミラー20をクロスダイクロイックプリズム25の周囲に備えるとともに、光源からの照明光の利用効率を向上させ、かつ均一な照明光を得るための光源である放電ランプ1とランプリフレクタ3とレンズ4とレンズ5、偏光変換素子6、オプティカルインテグレータ手段である第1レンズアレイ7、ミラー8、第2レンズアレイ9とを含む照明光学系と、光源用電源であるランプ電源31とを備えるとともに、投写レンズ27、クロスダイクロイックプリズム25、色分離光学系の並びと、照明光学系、ランプ電源31をこの順に配置してある。

【0038】図7に示した実施例においては、前述の冷却ファン61は、前記第一の実施例と同じく投写レンズ27の側方に配置してあり基本構成は、前述の図4,5,6に示したものと同様である。この時、前記冷却ファン61は、前記ランプリフレクタ3の近傍に配置されるため熱の影響を受けやすいので断熱板60等を配置す

る必要があるが、装置全体を小型化できるここと高さ寸 法を低減できる効果は同じである。

【0039】筐体51の中に投写レンズ27を収納する構成として、その筐体51、すなわち収納時の液晶プロジェクタの突起部を含む平面寸法が略A4ファイルサイズ以下の外形寸法とした。実施例の外形寸法は、奥行きが230mmで、幅が307mmである。

【0040】本実施例によれば、第1の実施例と同様に、広く一般に普及している収納棚やキャリングケースが利用できる外形寸法の液晶プロジェクタを得ることができる。

【0041】なお、本実施例では、筐体51に対して投 写レンズ27が奥に収納された構成となっており、液晶 パネル表示面から投写レンズ先端までの距離を十分大き くすることができるという効果がある。一般に、この距 離を大きくすることにより、投写レンズ設計の自由度が 広がり、より高性能の投写レンズを得ることができると いう効果がある。

【0042】なお、幅寸法が奥行き寸法よりも大きい構成では、いろいろなレイアウトの変更が可能である。

【0043】図8は、本発明の第3の実施例の液晶プロジェクタの上面図である。第2の実施例との違いは、排気ファン50等の部品のレイアウトを工夫して、筐体51に対して投写レンズ27を前側に移動した構成とした点である。高温になる光源から発生する熱が光源以外の構成部品に影響を及ぼさなくするために、放電ランプ1、ランプリフレクタ3の近傍には、光源冷却用の排気ファン50が横方向にずらして配置されており、液晶プロジェクタの筐体51の外に熱風52を排気する。

【0044】本実施例の場合は、前記冷却ファン61を 投写レンズ27の側面でランプリフレクタ3と反対側に 配置することにより前記のランプリフレクタ3からの熱の影響を受けることなく前記液晶パネル14,18,2 1を効率良く冷却可能である。またこの時前記液晶パネルの冷却構造は、前記第1、第2の実施例とは左右反転した構成であるが基本構造は同様である。さらに、前記排気ファン50は、図中50'で示したようにプロアー型のファンを用いた場合にはても効果は同じである。

【0045】また本実施例によれば、筺体51の後ろ側に空きスペースを作ることができ、回路部品等のレイアウト設計の自由度が広がり、より高性能かつ高機能の回路を得ることができる。

[0046]

【発明の効果】以上説明したように、本発明によれば、 液晶プロジェクタ等光学装置の高さ寸法を最小限に抑え られるとともに、平面外径寸法もA4ファイルサイズ以 下の小型化が可能となる。特に、省スペース内にファン を配置でき、複数の液晶パネルを非常に高効率にほぼ均 等な温度に冷却できる。

【図面の簡単な説明】

【図1】本発明の第1の実施例の液晶プロジェクタの液晶パネル周辺の側面図である。

【図2】従来の液晶プロジェクタの液晶パネル周辺の側面図である。

【図3】本発明の第1の実施例の液晶プロジェクタの上面図である。

【図4】本発明の第1の実施例の液晶プロジェクタの冷 却構造の斜視図である。

【図5】本発明の第1の実施例の液晶プロジェクタの冷 却構造の斜視図である。

【図6】本発明の第1の実施例の液晶プロジェクタの冷却構造の下方詳細斜視図である。

【図7】本発明の第2の実施例の液晶プロジェクタの上面図である。

【図8】本発明の第3の実施例の液晶プロジェクタの上 面図である。

【符号の説明】

1…放電ランプ、2…照明光、3…ランプリフレクタ、4…レンズ、5…レンズ、6…偏光変換素子、7…第1レンズアレイ、8…ミラー、9…第2レンズアレイ、10…ダイクロイックミラー、11…R色光、12…GおよびB色光、13…ミラー、14…液晶パネル、15…ダイクロイックミラー、16…G色光、17…B色光、18…液晶パネル、19…ミラー、20…ミラー、21…液晶パネル、22…R透過光、23…G透過光、24…B透過光、25…クロスダイクロイックプリズム、26…出射光、27…投写レンズ、28…排気ファン、29…筐体、30…熱風、31…ランプ電源、40…ダイクロイックミラー、41…R色光、42…GおよびB色光、43…排気ファン、44…筐体、45…熱風、50…排気ファン、51…筐体、52…熱風、61…冷却フ

ァン, 65…第一の送風ダクト, 101…第二の送風ダクト, 70…第三の送風ダクト, 71…第四の送風ダク

ト,123…第一の案内板、124…第二の案内板,1 25…第三の案内板。

【図5】

【図6】

図6

【手続補正書】

【提出日】平成10年1月22日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】液晶パネルを含む密閉形通風路を有する第 1の冷却循環系と、装置外殻内にあって該通風路を外側 から冷却する第2の冷却循環系とを備え、該液晶パネル を、該第1の冷却循環系で直接的に冷却し、該第2の冷 却循環系では間接的に冷却するようにした構成を特徴と する光学装置。

【請求項2】上記第1の冷却循環系は、専用の冷却ファンを備えた構成である請求項1に記載の光学装置。

【請求項3】光を<u>液晶パネル</u>に照射し、該液晶パネルからの光を複数のプリズムおよび投写レンズを介してスクリーン上に投射する光学装置において、液晶パネルを冷

却<u>する冷却ファンとしてシロッコファンを備える</u>ことを 特徴とする光学装置。

【請求項4】光を液晶バネルに照射し、該液晶バネルからの光を複数のプリズムおよび投写レンズを介してスクリーン上に投射する光学装置において、上記液晶パネルを冷却するための冷却ファンを上記投写レンズの側方に備えることを特徴とする光学装置。

【請求項5】少なくとも上記<u>冷却ファン</u>のうちのひとつは、上記液晶パネルを冷却するための専用の冷却ファンである請求項3または請求項4に記載の光学装置。

【請求項6】<u>液晶パネル</u>までの冷却用風路を有し、該冷却用風路は、複数に分割されて<u>いる</u>請求項3、4または5に記載の光学装置。

【請求項7】上記複数に分割された冷却用風路は、G色 光用液晶パネル(18)への風速または風量を増大させ るようにした構成である請求項6に記載の光学装置。

【請求項8】平面外形寸法が略A4ファイル寸法以下である請求項1、2、3、4、5、6または7に記載の光

学装置。

【請求項9】上記A4ファイル寸法は、<u>略</u>263㎜×3 18mmである請求項8に記載の光学装置。

【請求項10】光源からの光を色分離して第1の液晶パネル、第2の液晶パネル、第3の液晶パネルに照射し、第1の液晶パネル、第3の液晶パネルからの出射光を色合成して投写レンズでスクリーン上に投写する液晶プロジェクタの突起部を含む平面寸法が略A4ファイルサイズ以下の外形寸法とした請求項1、2、3、4、5、6または7に記載の光学装置。

【請求項11】上記A4ファイルサイズを<u>略</u>263mm×318mmとした請求項10に記載の光学装置。

【請求項12】上記A4ファイルサイズを<u>略</u>243mm ×307mmとした請求項8または<u>請求項</u>10に記載の 光学装置。

【請求項13】上記A4ファイルサイズを<u>略</u>230mm ×307mmとした請求項8または<u>請求項</u>10に記載の 光学装置。

【請求項14】液晶パネルの表示画面サイズを<u>略</u>0.9 インチ以下とした請求項8または<u>請求項</u>10に記載の光 学装置。

【請求項15】液晶パネル表示面から投写レンズ先端までの距離を<u>略</u>146mm以下とした請求項8または<u>請求</u>項10に記載の光学装置。

【請求項16】液晶パネル表示面から投写レンズ先端までの距離を<u>略</u>135mm以下とした請求項8または<u>請求</u>項10に記載の光学装置。

【請求項17】色合成光学系としてクロスダイクロイッ

クプリズムを備えるとともに、クロスダイクロイックプリズムの平面寸法<u>を略</u>32mm×32mm以下とした請求項8または請求項10に記載の光学装置。

【請求項18】色分離光学系として第1のダイクロイックミラー、第2のダイクロイックミラー、第1のミラー、第2のミラー、第3のミラーをクロスダイクロイックアリズムの周囲に備えるとともに、光源からの照明光の利用効率を向上させ、かつ均一な照明光を得るための光源、偏光変換素子、オプティカルインテグレータ手段とを含む照明光学系と、光源用電源とを備えるとともに、投写レンズ、クロスダイクロイックプリズム、色分離光学系、照明光学系、光源用電源をこの順に配置した請求項8または請求項10に記載の光学装置。

【請求項19】色分離光学系として第1のダイクロイックミラー、第2のダイクロイックミラー、第1のミラー、第2のミラー、第3のミラーをクロスダイクロイックアリズムの周囲に備えるとともに、光源からの照明光の利用効率を向上させ、かつ均一な照明光を得るための光源、偏光変換素子、オプティカルインテグレータ手段とを含む照明光学系と、光源用電源とを備えるとともに、投写レンズ、クロスダイクロイックプリズム、色分離光学系の並びと、照明光学系、光源用電源をこの順に配置した請求項8または請求項10に記載の光学装置。【請求項20】光を液晶パネルに照射し、該液晶パネルからの光を複数のプリズムおよび投写レンズを介してスクリーン上に投射する光学装置において、上記液晶パネルを冷却するためのシロッコファンを上記投写レンズの側方に備えることを特徴とする光学装置。

フロントページの続き

(51) Int. Cl.6

識別記号

H 0 4 N 9/31

(72)発明者 賀来 信行

神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内

(72)発明者 小沢 直弘

神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内

(72)発明者 谷津 雅彦

神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内 FΙ

HO4N 9/31

С

(72) 発明者 大内 敏

神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内

(72) 発明者 大塚 康男

神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内

(72) 発明者 丸山 竹介

神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内 (72)発明者 小沼 順弘

神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所映像情報メディア事業部 内 (72)発明者 吉村 秀友

神奈川県横浜市戸塚区吉田町292番地 株 式会社日立画像情報システム内 * NOTICES *

Japan Patent Office is not r sponsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] the 1st cooling circulatory system which has a sealed type ventilation flue containing a liquid crystal panel, and the 2nd cooling circulatory system which is in an equipment coat and cools this ventilation flue from an outside -- having -- this liquid crystal panel -- this -- the 1st cooling circulatory system -- direct -- cooling -- this -- the optical equipment characterized by the composition indirectly cooled in the 2nd cooling circulatory system [Claim 2] The cooling circulatory system of the above 1st is optical equipment according to claim 1 which is the composition equipped with the cooling fan of exclusive use.

[Claim 3] It is optical equipment which irradiates light at two or more liquid crystal panels, possesses two or more cooling fans for cooling a liquid crystal panel in the optical equipment which projects the light from this liquid crystal panel on a screen through two or more prism and projection lenses, and is characterized by one [at least] of the cooling fans of these being composition arranged in the side of this projection lens.

[Claim 4] It is optical equipment characterized by irradiating light at two or more liquid crystal panels, providing two or more cooling fans for cooling this liquid crystal panel in the optical equipment which projects the light from this liquid crystal panel on a screen through two or more prism and projection lenses, and one [at least] of the cooling fans of these being a sirocco fan.

[Claim 5] One of two or more above-mentioned cooling fans is optical equipment according to claim 3 or 4 which is the cooling fan of the exclusive use for cooling the above-mentioned liquid crystal panel at least.

[Claim 6] It is optical equipment according to claim 3, 4, or 5 which is the composition that have an air course for cooling to the above-mentioned liquid crystal panel, and this air course for cooling is divided into plurality.

[Claim 7] The air course for cooling divided into the above-mentioned plurality is optical equipment according to claim 6 which is the composition of having made it increase the wind speed or air capacity to the liquid crystal panel for G colored light (18).

[Claim 8] Optical equipment according to claim 1, 2, 3, 4, 5, 6, or 7 whose flat-surface dimension is below an abbreviation A4 file size.

[Claim 9] The above-mentioned A4 file size is optical equipment according to claim 8 which is 263mmx318mm. [Claim 10] Carry out color separation of the light from the light source, and irradiate the 1st liquid crystal panel, the 2nd liquid crystal panel, and the 3rd liquid crystal panel, and color composition of the outgoing radiation light from the 1st liquid crystal panel, the 2nd liquid crystal panel, and the 3rd liquid crystal panel is carried out. Optical equipment according to claim 1, 2, 3, 4, 5, 6, or 7 which the flat-surface size which contains the height of the liquid crystal projector at the time of receipt at least in the liquid crystal projector projected on a screen with a projection lens made the dimension not more than abbreviation A4 file size.

[Claim 11] Optical equipment according to claim 10 which set the A4 above-mentioned file size to 263mmx318mm.

[Claim 12] Optical equipment according to claim 8 or 10 which set the A4 above-mentioned file size to 243mmx307mm.

[Claim 13] Optical equipment according to claim 8 or 10 which set the A4 above-mentioned file size to 230mmx307mm.

[Claim 14] Optical equipment according to claim 8 or 10 which made display screen size of a liquid crystal panel 0.9 inches or less.

[Claim 15] Optical equipment according to claim 8 or 10 which set distance from the liquid crystal panel screen to a projection lens nose of cam to 146mm or less.

[Claim 16] Optical equipment according to claim 8 or 10 which set distance from the liquid crystal panel screen to a projection lens nose of cam to 135mm or less.

[Claim 17] Optical equipment according to claim 8 or 10 which the flat-surface size of a cross dichroic prism made less

than [32mmx32mm] while having the cross dichroic prism as a tone Narimitsu study system.

[Claim 18] Optical equipment according to claim 8 or 10 which has both arranged the power supply for a projection lens, a cross dichroic prism, color separation optical system, lighting optical system, and the light sources in this order as it is characterized by providing the following The light source for raising the use efficiency of the lighting light from the light source, and obtaining a uniform lighting light, while equipping the circumference of a cross dichroic prism with the 1st dichroic mirror, the 2nd dichroic mirror, the 1st mirror, and the 3rd mirror as color separation optical system, a polarization sensing element, lighting optical system including an optical integrator means The power supply for the light sources

[Claim 19] While equipping the circumference of a cross dichroic prism with the 1st dichroic mirror, the 2nd dichroic mirror, the 1st mirror, the 2nd mirror, and the 3rd mirror as color separation optical system While having lighting optical system including the light source for raising the use efficiency of the lighting light from the light source, and obtaining a uniform lighting light, a polarization sensing element, and an optical integrator means, and a power supply for the light sources The list of a projection lens, a cross dichroic prism, and color separation optical system, and lighting optical system, optical equipment according to claim 8 or 10 which has arranged the power supply for the light

sources in this order.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[The technical field to which invention belongs] this invention relates to the technology which cools a liquid crystal panel especially with respect to optical equipments, such as a liquid crystal projector which uses a penetrated type liquid crystal panel.

[0002]

[Description of the Prior Art] In order to hold down the temperature rise of a liquid crystal panel like a publication with the optical equipment using two or more conventional prism to the side elevation of the projector lens of a liquid crystal projector and liquid crystal panel portion which were shown in <u>drawing 2</u>, it is common in the lower part of liquid crystal panels 14, 18, and 21 to arrange the axial flow type cooling fan 81. in this case -- since the ventilation from a fan is hit to the direct liquid crystal panels 14, 18, and 21 (not shown) -- easy -- the above-mentioned liquid crystal panels 14 and 18 -- it can cool 21 times

[0003]

[Problem(s) to be Solved by the Invention] In the conventional optical equipment shown in <u>drawing 2</u>, the whole equipment height size turns into the projector lens 27 and liquid crystal panels 14 and 18 which were shown in <u>drawing 2</u>, and the height size L2 added to the height size of 21 portions. Moreover, at this time, the space (dead space) which is hard to use effectively under the aforementioned projector lens 27 is generated, and it is disadvantageous for reduction of the height size of the whole equipment.

[0004] It is in the purpose of this invention reducing a height size and offering optical equipment effective in the miniaturization of equipment.

[0005]

[Means for Solving the Problem] By this invention, in order to attain the above-mentioned purpose, as shown in drawing 1, a cooling fan 61 is arranged to the side of a projector lens 27, and cooling composition effective in a miniaturization and thin-shape-izing is offered by considering the ventilation from a cooling fan 61 as the composition which leads liquid crystal panels 14, 18, and 21 through the ventilation path 65.

[0006] Furthermore by this invention, it considers as the composition which reduces the pressure loss by passage resistance and can cool efficient by making the above-mentioned cooling fan 61 into the sirocco fan of a blower formula.

[0007] Furthermore by this invention, it considers as the composition which can control air capacity and a wind speed freely so that the temperature rise of each liquid crystal panel becomes the minimum to liquid crystal panels 14, 18, and 21 about the ventilation from the above-mentioned cooling fan 61.

[0008] it considers as the composition which can control air capacity and a wind speed freely so that the temperature rise of each liquid crystal panel equalizes the ventilation from the above-mentioned cooling fan 61 to liquid crystal panels 14, 18, and 21, and the air capacity and the wind speed to the liquid crystal panel 18 for G colored light boil the air capacity and the wind speed to each liquid crystal panel, and it is made to become the maximum, and is made for the air capacity and the wind speed to the liquid crystal panel 14 for R colored light to become the minimum further by this invention furthermore

[0009]

[Embodiments of the Invention] Hereafter, the example of this invention is explained using a drawing.

[0010] Drawing 3 is the plan of the liquid crystal projector of the 1st example of this invention.

[0011] Incidence of the lighting light 2 from the discharge lamp 1 which is the light source is carried out to a dichroic mirror 10 through the polarization sensing element 6, the 1st lens array 7, a mirror 8, and the 2nd lens array 9 through the lamp reflector 3 of a parabolic mirror, a lens 4, and a lens 5.

- [0012] The R colored light 11 penetrates a dichroic mirror 10, and G and the B colored light 12 reflect it. It is reflected by the mirror 13 and incidence of the R colored light 11 is carried out to the liquid crystal panel 14 for R colored light. Incidence is carried out to the dichroic mirror 15 of G colored light reflection and B colored light transparency, the G colored light 16 reflects, and the B colored light 17 penetrates G and the B colored light 12. Incidence of the G colored light 16 is carried out to the liquid crystal panel 18 for G colored light.
- [0013] Incidence of the B colored light 17 is carried out to the liquid crystal panel 21 for B colored light through a mirror 19 and a mirror 20.
- [0014] Color composition is carried out with the cross dichroic prism 25, and the R transmitted light 22 from a liquid crystal panel 14, the G transmitted light 23 from a liquid crystal panel 18, and the B transmitted light 24 from a liquid crystal panel 21 project the outgoing radiation light 26 by which color composition was carried out on a screen (not shown) with the projection lens 27.
- [0015] In order that the heat generated from the light source which becomes an elevated temperature does not do influence and may carry out it to component parts other than the light source, near a discharge lamp 1 and the lamp reflector 3, the ventilating fan 28 for light source cooling is arranged, and hot blast 30 is exhausted besides the case 29 of a liquid crystal projector. Moreover, the lamp power supply 31 is arranged near the discharge lamp 1.
- [0016] In this example, as color separation optical system While equipping the circumference of the cross dichroic prism 25 with the 1st dichroic mirror 10, the 2nd dichroic mirror 15, the 1st mirror 13, the 2nd mirror 19, and the 3rd mirror 20 The use efficiency of the lighting light from the light source Make it improve and a uniform lighting light The discharge lamp 1 and the lamp reflector 3 which are the light source for obtaining, a lens 4, a lens 5, the polarization sensing element 6, the 1st lens array 7 that is an optical integrator means, a mirror 8, and the lighting optical system containing the 2nd lens array 9, While having the lamp power supply 31 which is a power supply for the light sources, the projection lens 27, the cross dichroic prism 25, color separation optical system, lighting optical system, and the lamp power supply 31 are arranged in this order.
- [0017] The flat-surface size which contains the height of the case 29, i.e., the liquid crystal projector at the time of receipt, in a case 29 as composition which contains the projection lens 27 considered as the dimension not more than abbreviation A4 file size. Depth is 307mm and the width of face of the dimension of an example is 230mm.
- [0018] In addition, a setup of a dimension is not limited to this example and should just be abbreviation A4 file size. Although the smallest size was 230mmx307mm of this example as a result of investigating about A4 [various] file size, as larger size a little than it, it was 263mmx318mm as 243mmx307mm and the greatest size. Therefore, in this invention, it decided to set up the three above-mentioned kinds of sizes as A4 file size.
- [0019] According to the liquid crystal projector of the composition of this example, the liquid crystal projector of a dimension which can use the receipt shelf which has generally spread widely, and a carrying case can be obtained. [0020] In addition, although realization becomes difficult more nearly technically so that this size is small, it is effective in the ability of the receipt shelf and carrying case which have generally spread widely to use now more mostly.
- [0021] In order to realize this dimension, in this example, display screen size of a liquid crystal panel is made into 0.9 inches. By using 0.9 inches and a small liquid crystal panel compared with 1.3 inches of the display screen size of the conventional liquid crystal panel, the projection lens 27 and the cross dichroic prism 25 are made small, and can also make color separation optical system small in connection with this.
- [0022] In this example, in order to realize A4 file size, distance from the liquid crystal panel screen to a projection lens nose of cam was set to 135mm. By setting this distance to 135mm or less, A4 smallest file size is realizable. In addition, to A4 larger file size, 146mm or less, then it are [this distance] realizable. This is because it is 318mm which has the longitudinal large size of A4 file size, a small thing is 307mm and the difference is 11mm.
- [0023] In this example, in order to realize A4 file size, while having the cross dichroic prism 25 as a tone Narimitsu study system, the flat-surface size of the cross dichroic prism 25 was set to 32mmx32mm. With this size, color separation optical system can be done more in less than [32mmx32mm], then this small.
- [0024] In addition, although this example showed the example of composition with the larger depth size of a liquid crystal projector than a width-of-face size, it may not be limited to this and larger composition than a depth size is sufficient as a width-of-face size.
- [0025] 61 in drawing is a fan for cooling for cooling the above-mentioned liquid crystal panels 14, 18, and 21, and has shown the blower type sirocco fan in drawing. As for the first ventilation duct and 27, 65 is [the heat sink for cooling and 70] the third ventilation duct.
- [0026] <u>Drawing 4</u> and <u>drawing 5</u> are the detailed perspective diagrams showing the cooling structure of the liquid crystal panels 14, 18, and 21 in the above-mentioned example, and the projector-lens 27 circumference of the above. <u>Drawing 4</u> shows the perspective diagram from [aforementioned] lighting optical system, and <u>drawing 5</u> is a perspective diagram from cooling-fan 61 direction. Moreover, <u>drawing 6</u> is the detailed perspective diagram showing

the ventilation structure of the aforementioned cooling structure. The cooling structure of the aforementioned liquid crystal panel is explained using <u>drawing 4</u>, <u>drawing 5</u>, and <u>drawing 6</u> below.

[0027] The air discharged from the above-mentioned cooling fan 61 is guided under the aforementioned liquid crystal panels 14, 18, and 21 through the ventilation duct 65 of the above first, as the arrow 111 in drawing showed. At this time, the first guide plate 123, the second guide plate 124, and the third guide plate 125 are arranged in the first ventilation duct 65, and the air of the aforementioned arrow 111 is composition which is divided into the ventilation 112 for liquid crystal panel 14 for B colored light, the ventilation 113 for liquid crystal panel 18 for G colored light, and the ventilation 114 for liquid crystal panel 21 for R colored light, is guided at each liquid crystal panel, and cools each liquid crystal panel. At this time, by arranging each guide plate 123,124,125 appropriately, it arranges so that the maximum blast weight or the maximum wind speed may be led to the ventilation 113 for liquid crystal panel 18 for G colored light with the general highest temperature rise of a panel, and next, it is the composition that the temperature rise value of each liquid crystal panel can be mostly equated by a temperature rise dividing into the high ventilation 112 for liquid crystal panel 14 for B colored light, and the ventilation 114 for liquid crystal panel 21 for R colored light which is not so high as for a temperature rise, and ventilating namely, the wind holes 91, 92, and 93 (not shown) which showed the air for cooling in drawing 4 -- a passage -- the drawing 6 Nakaya mark 115,116,117 (not shown) -- like -- each -- they are liquid crystal panel 14 and the composition which cools 18 and 21

[0028] further -- the above -- cooling -- ** -- air -- the -- two -- ventilation -- a duct -- 101 -- a passage -- the -- two -- ventilation -- a duct -- 101 -- inside and outside -- a wall -- having prepared -- cooling -- ** -- a heat sink -- 27 -- radiating heat -- having -- further -- the third ventilation duct 70 -- a passage -- the fourth ventilation duct 71 -- a passage -- the aforementioned cooling fan 61 -- returning -- having -- composition -- it is . The ventilation ducts 65, 101, 70, and 71 of this time above-mentioned have structure which sealed liquid crystal panels 14, 18, and 21 and the cooling fan 61. For this reason, penetration of the dust from the outside is prevented, dust adheres on a liquid crystal panel side, and the defect that dust is irradiated on a screen can be prevented. Moreover, the above cooling structure does not need to be sealing structure especially for the formation of a thin form of equipment, and the composition which stuck dust **** glass separately on the liquid crystal panel side is also possible for the cure of dust.

[0029] Moreover, in the 1st example of the above, although the guide plate 123,124,125 is dividing the ventilation from a cooling fan 61, even if this is structure divided in 3 pipes etc., the same effect is acquired.

[0030] <u>Drawing 7</u> is the plan of the liquid crystal projector of the 2nd example of this invention.

[0031] Incidence of the lighting light 2 from the discharge lamp 1 which is the light source is carried out to a dichroic mirror 40 through the polarization sensing element 6, the 1st lens array 7, a mirror 8, and the 2nd lens array 9 through the lamp reflector 3 of a parabolic mirror, a lens 4, and a lens 5.

[0032] The R colored light 41 reflects and G and the B colored light 42 penetrate a dichroic mirror 40. It is reflected by the mirror 13 and incidence of the R colored light 41 is carried out to the liquid crystal panel 14 for R colored light. Incidence is carried out to the dichroic mirror 15 of G colored light reflection and B colored light transparency, the G colored light 16 reflects, and the B colored light 17 penetrates G and the B colored light 42. Incidence of the G colored light 16 is carried out to the liquid crystal panel 18 for G colored light.

[0033] Incidence of the B colored light 17 is carried out to the liquid crystal panel 21 for B colored light through a mirror 19 and a mirror 20.

[0034] Color composition is carried out with the cross dichroic prism 25, and the R transmitted light 22 from a liquid crystal panel 14, the G transmitted light 23 from a liquid crystal panel 18, and the B transmitted light 24 from a liquid crystal panel 21 project the outgoing radiation light 26 by which color composition was carried out on a screen (not shown) with the projection lens 27.

[0035] In order that the heat generated from the light source which becomes an elevated temperature does not do influence and may carry out it to component parts other than the light source, near a discharge lamp 1 and the lamp reflector 3, the ventilating fan 43 for light source cooling is arranged, and hot blast 45 is exhausted besides the case 44 of a liquid crystal projector.

[0036] Moreover, the lamp power supply 31 is arranged near the discharge lamp 1.

[0037] While equipping the circumference of the cross dichroic prism 25 with the 1st dichroic mirror 40, the 2nd dichroic mirror 15, the 1st mirror 13, the 2nd mirror 19, and the 3rd mirror 20 as color separation optical system The use efficiency of the lighting light from the light source Make it improve and a uniform lighting light The discharge lamp 1 and the lamp reflector 3 which are the light source for obtaining, a lens 4, a lens 5, the polarization sensing element 6, the 1st lens array 7 that is an optical integrator means, a mirror 8, and the lighting optical system containing the 2nd lens array 9, While having the lamp power supply 31 which is a power supply for the light sources, the list of the projection lens 27, the cross dichroic prism 25, and color separation optical system, and lighting optical system and the lamp power supply 31 are arranged in this order.

[0038] In the example shown in <u>drawing 7</u>, the above-mentioned cooling fan 61 is arranged to the side of the projection lens 27 as well as the first example of the above, and that of basic composition is the same as that of above-mentioned <u>drawing 4</u> and the thing shown in 5 and 6. Although it is necessary to arrange heat-insulation-plate 60 grade since the aforementioned cooling fan 61 is arranged near the aforementioned lamp reflector 3 at this time and it is easy to be influenced of heat, the effect that a height size can be reduced is the same as here where the whole equipment can be miniaturized.

[0039] The flat-surface size which contains the height of the case 51, i.e., the liquid crystal projector at the time of receipt, in a case 51 as composition which contains the projection lens 27 considered as the dimension not more than abbreviation A4 file size. Depth is 230mm and the width of face of the dimension of an example is 307mm.

[0040] According to this example, the liquid crystal projector of a dimension which can use the receipt shelf which has

generally spread widely, and a carrying case like the 1st example can be obtained.

[0041] In addition, in this example, the projection lens 27 has composition contained by the back to the case 51, and it is effective in the ability to enlarge enough distance from the liquid crystal panel screen to a projection lens nose of cam. Generally, by enlarging this distance, the flexibility of a projection lens design spreads and it is effective in the ability to obtain a more highly efficient projection lens.

[0042] In addition, with composition with a larger width-of-face size than a depth size, change of various layouts is possible.

[0043] <u>Drawing 8</u> is the plan of the liquid crystal projector of the 3rd example of this invention. The difference from the 2nd example is the point of having devised the layout of the parts of ventilating-fan 50 grade, and having considered the projection lens 27 as the composition which moved to the anterior to the case 51. In order that the heat generated from the light source which becomes an elevated temperature does not do influence and may carry out it to component parts other than the light source, near a discharge lamp 1 and the lamp reflector 3, the ventilating fan 50 for light source cooling shifts in a longitudinal direction, is arranged at it, and exhausts hot blast 52 besides the case 51 of a liquid crystal projector.

[0044] In the case of this example, the aforementioned liquid crystal panels 14, 18, and 21 can be cooled efficiently, without being influenced of the heat from the aforementioned lamp reflector 3 by arranging the aforementioned cooling fan 61 to the lamp reflector 3 and an opposite side on the side of the projection lens 27. Moreover, at this time, although it is the composition in which the above 1st and the 2nd example carried out right-and-left reversal of the cooling structure of the aforementioned liquid crystal panel, basic structure is the same. Furthermore, as 50in drawing' showed, when a blower type fan is used, an effect is [an end] the same [the aforementioned ventilating fan 50]. [0045] Moreover, according to this example, free space can be made to the backside of a case 51, the flexibility of layout designs, such as passive circuit elements, spreads, and a more highly efficient and highly efficient circuit can be obtained.

[0046]

[Effect of the Invention] As explained above, while being able to stop the height size of optical equipments, such as a liquid crystal projector, to the minimum according to this invention, the miniaturization not more than A4 file size also of a flat-surface outer-diameter size is attained. Especially, a fan can be stationed in a ** space and two or more liquid crystal panels can be cooled to very efficient almost equal temperature.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 3]

[Drawing 5]

l

[Drawing 6]

図6

[Drawing 7]

[Drawing 8]

図8

į

[Translation done.]

Japan Patent Office is not responsibl for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CORRECTION or AMENDMENT

[Official Gazette Type] Printing of amendment by the convention of 2 of Article 17 of patent law [Section partition] The 2nd partition of the 6th section [Date of issue] August 31, Heisei 13 (2001. 8.31)

[Publication No.] JP,11-160793,A [Date of Publication] June 18, Heisei 11 (1999. 6.18) [**** format] Open patent official report 11-1608 [Filing Number] Japanese Patent Application No. 9-323312 [The 7th edition of International Patent Classification]

G03B 21/16 505 G02F 1/13 1/1333 21/00 G03B H04N 5/74 9/31

[FI]

G03B 21/16 505 G02F 1/13 1/1333 21/00 D G03B 5/74 K H04N 9/31

[Procedure revision]

[Filing Date] October 24, Heisei 12 (2000. 10.24)

[Procedure amendment 1]

[Document to be Amended] Specification

[Item(s) to be Amended] Claim

[Method of Amendment] Change

[Proposed Amendment]

[Claim(s)]

[Claim 1] Optical equipment characterized by being optical equipment which irradiates light at a liquid crystal panel and projects the light from this liquid crystal panel on a screen through a projector lens, and being the composition which arranges the cooling fan for cooling the aforementioned liquid crystal panel to the side of the aforementioned projector

[Claim 2] The cooling wind from the aforementioned cooling fan is optical equipment according to claim 1 characterized by being constituted so that the aforementioned liquid crystal panel may be caudad led by the air course

[Claim 3] The aforementioned liquid crystal panel is optical equipment given in the claim 1 or any of 2 they are. [which is constituted so that there may be more than one, the cooling wind from the aforementioned cooling fan may be distributed by two or more guide plates and predetermined air capacity may be supplied to each liquid crystal panel] [Claim 4] The aforementioned cooling fan is optical equipment given in the claim 1 or any of 3 they are. [which is

characterized by being constituted by the sirocco fan]

[Claim 5] the cooling fan for being optical equipment which irradiates light at a liquid crystal panel and projects the light from this liquid crystal panel on a screen through a projector lens, and cooling the aforementioned liquid crystal panel -- having -- the aforementioned liquid crystal panel, the aforementioned projector lens, and the aforementioned cooling fan -- abbreviation -- the optical equipment characterized by being arranged at the same height [Claim 6] the following -- having -- the aforementioned liquid crystal panel, the aforementioned projector lens, and the aforementioned air course for cooling -- the aforementioned cooling fan and abbreviation -- the optical equipment characterized by constituting so that it may arrange within the limits of the same height direction The cooling fan for being optical equipment which irradiates light at a liquid crystal panel and projects the light from this liquid crystal panel on a screen through a projector lens, and cooling the aforementioned liquid crystal panel The air course for cooling which draws the cooling wind from this cooling fan to the lower part of the aforementioned liquid crystal panel [Claim 7] Optical equipment given in the claim 1 or any of 6 they are. [which is characterized by a flat-surface dimension being an abbreviation A4 file size]

[Claim 8] the 1st cooling circulatory system which has an abbreviation sealing type ventilation flue containing a liquid crystal panel, and the 2nd cooling circulatory system which is in an equipment coat and cools this ventilation flue from an outside -- having -- this liquid crystal panel -- this -- the 1st cooling circulatory system -- direct -- cooling -- this -- the optical equipment characterized by the composition indirectly cooled in the 2nd cooling circulatory system

[Procedure amendment 2]

[Document to be Amended] Specification

[Item(s) to be Amended] 0006

[Method of Amendment] Change

[Proposed Amendment]

[0006] Furthermore, by this invention, while considering as the composition which reduces the pressure loss by passage resistance and can cool efficient by making the above-mentioned cooling fan into the sirocco fan of a blower formula, a guide plate distributes the cooling wind from the above-mentioned cooling fan, and it considers as the composition which can be adjusted so that the cooling wind of the specified quantity may be supplied to each of two or more liquid crystal panels.

[Procedure amendment 3]

[Document to be Amended] Specification

[Item(s) to be Amended] 0007

[Method of Amendment] Change

[Proposed Amendment]

[0007] moreover -- this invention -- a liquid crystal panel, a projector lens, and a cooling fan -- abbreviation -- the air course for cooling, the liquid crystal panel, and the aforementioned projector lens which arrange or lead the cooling wind from a cooling fan to the same height to the lower part of the aforementioned liquid crystal panel -- the aforementioned cooling fan and abbreviation -- cooling composition effective in a miniaturization is offered by constituting so that it may arrange within the limits of the same height direction

[Procedure amendment 4]

[Document to be Amended] Specification

[Item(s) to be Amended] 0008

[Method of Amendment] Change

[Proposed Amendment]

[0008] It has the 1st cooling circulatory system which has an abbreviation sealing type ventilation flue containing a liquid crystal panel, and the 2nd cooling circulatory system which is in an equipment coat and cools this ventilation flue from an outside. this liquid crystal panel -- this -- the 1st cooling circulatory system -- direct -- cooling -- this -- in the 2nd cooling circulatory system, it becomes possible to prevent penetration of the dust from the outside and to prevent irradiating dust on a screen by [it was made to cool indirectly] constituting

[Translation done.]

A ... •