CSE 311 - HW 8

Eric Boris Tim Coulter, Alyssa Cote December 2019

- 1 State of the Art (Submitted Online)
- 2 Regular as Clockwork (Submitted Online)
- 3 State's Evidence (Submitted Online)
- 4 Enemy of the State (Submitted Online)
- 5 Not Again

5(a)

- 1. Let P(A) be the claim that $T(neg_p(A)) \equiv T(A)$ or $T(neg_p(A)) \equiv \neg T(A)$. Prove P(A) for all $A \in Prop$ by structural induction.
- 2. Base Case: Let p, q be arbitrary members of \mathcal{A} . Then P(Atomic(q)) says when p = q that $T(\text{neg}_p(\text{Atomic}(q))) = \neg T((\text{Atomic}(q)))$ because

$$\begin{split} \mathbf{T}(\mathrm{neg}_p(\mathrm{Atomic}(q))) &= \mathbf{T}(\mathrm{NOT}(\mathrm{Atomic}(q))) & \text{Definition of neg}_p \\ &= \neg \mathbf{T}(\mathrm{Atomic}(q)) & \text{Definition of T} \end{split}$$

or when $p \neq q$ that $T(neg_p(Atomic(q))) = T((Atomic(q)))$ by the definition of neg_p .

- 3. Inductive Hypothesis: Assume that P(A) and P(B) hold for some arbitrary $A,B \in Prop.$
- 4. Show P(NOT(A)) and P(XOR(A)) as follows: Case $T(neg_p(NOT(A)))$

$$T(\operatorname{neg}_p(\operatorname{NOT}(A))) = T(\operatorname{NOT}(\operatorname{neg}_p(A))) \qquad \qquad \operatorname{Definition \ of \ ngz}$$

$$= \neg T(\operatorname{neg}_p(A)) \qquad \qquad \operatorname{Definition \ of \ T}$$

$$= \neg T(A) \qquad \qquad \operatorname{Inductive \ Hypothesis}$$

$$= T(\operatorname{NOT}(A)) \qquad \qquad \operatorname{Definition \ of \ T}$$

$$T(\operatorname{neg}_p(\operatorname{NOT}(A))) = T(\operatorname{NOT}(\operatorname{neg}_p(A))) \qquad \text{Definition of ngz}$$

$$= \neg T(\operatorname{neg}_p(A)) \qquad \text{Definition of T}$$

$$= \neg \neg T(A) \qquad \text{Inductive Hypothesis}$$

$$= \neg T(\operatorname{NOT}(A)) \qquad \text{Definition of T}$$

Case $T(neg_p(XOR(A, B)))$

$$\begin{split} T(\operatorname{neg}_p(\operatorname{XOR}(A,B))) &= T(\operatorname{XOR}(\operatorname{neg}_p(A),\operatorname{neg}_p(B))) & \operatorname{Definition \ of \ ngz} \\ &= (T(\operatorname{neg}_p(A))) \oplus (T(\operatorname{neg}_p(B))) & \operatorname{Definition \ of \ T} \\ &= T(A) \oplus T(B) & \operatorname{Inductive \ Hypothesis} \\ &= T(\operatorname{XOR}(A,B)) & \operatorname{Definition \ of \ T} \end{split}$$

$$T(\operatorname{neg}_p(\operatorname{XOR}(A,B))) = T(\operatorname{XOR}(\operatorname{neg}_p(A),\operatorname{neg}_p(B))) \qquad \operatorname{Definition of ngz} \\ = (T(\operatorname{neg}_p(A))) \oplus (T(\operatorname{neg}_p(B))) \qquad \operatorname{Definition of T} \\ = \neg T(A) \oplus T(B) \qquad \operatorname{Inductive Hypothesis} \\ = \neg T(\operatorname{XOR}(A,B)) \qquad \operatorname{Definition of T} \\ T(\operatorname{neg}_p(\operatorname{XOR}(A,B))) = T(\operatorname{XOR}(\operatorname{neg}_p(A),\operatorname{neg}_p(B))) \qquad \operatorname{Definition of ngz} \\ = (T(\operatorname{neg}_p(A))) \oplus (T(\operatorname{neg}_p(B))) \qquad \operatorname{Definition of T} \\ = T(A) \oplus \neg T(B) \qquad \operatorname{Inductive Hypothesis} \\ = \neg T(\operatorname{XOR}(A,B)) \qquad \operatorname{Definition of T} \\ T(\operatorname{neg}_p(\operatorname{XOR}(A,B))) = T(\operatorname{XOR}(\operatorname{neg}_p(A),\operatorname{neg}_p(B))) \qquad \operatorname{Definition of T} \\ = (T(\operatorname{neg}_p(A))) \oplus (T(\operatorname{neg}_p(B))) \qquad \operatorname{Definition of T} \\ = \neg T(A) \oplus \neg T(B) \qquad \operatorname{Definition of T} \\ = T(A) \oplus T(B) \qquad \operatorname{Definition of T} \\ \operatorname{Defini$$

5. Thus, P(A) holds for all parse trees $A \in Prop$ by structural induction. \square

5(b)

We've shown that with combinations of NOT and XOR $T(neg_p(A))$ can only generate T(A) or $\neg T(A)$. So, we know that when $T(neg_p(A)) \equiv T(A)$ their truth table columns will be the same or when $T(neg_p(A)) \equiv \neg T(A)$ their truth table columns will be the same.

This is in contrast to combinations of NOT and OR which can generate a truth table with any combination of truth values, NOT and XOR are much more limited in only being able to create the same truth values or the negation thereof.

5(c)

p	q	$\neg p$	$\neg q$	p∧q	$\neg p \oplus q$	$p \oplus \neg q$	$\mathbf{p} \oplus \mathbf{q}$	$\neg p \oplus \neg q$
Т	Т	F	F	F	F	F	Т	Т
${\rm T}$	F	\mathbf{F}	T	${ m T}$	T	Т	\mathbf{F}	\mathbf{F}
F	\mathbf{T}	${ m T}$	F	${ m T}$	${ m T}$	${ m T}$	\mathbf{F}	\mathbf{F}
\mathbf{F}	F	Τ	T	T	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$

As the truth table above shows, there is no pairing of p and q with \oplus that matches the column with p, q, and \wedge . Therefore, not all propositional statements can be represented with \neg and \oplus .

6 Just Irregular Guy

6(a)

1. Suppose for contradiction that some DFA, M, recognizes $L = \{0^x 1^m 0^y | x, m, y > 1 \text{ and } x \equiv y \pmod{m}\}.$

- 2. Let $S = \{0^x : x \ge 0\}$.
- 3. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^{a+1} in S for $a \equiv a \pmod{m}$ and m > 1 that end up at the same state of M.
- 4. Consider appending 1^m0^a to each of the two strings.
- 5. Note that $0^a 1^m 0^a \in L$ since $a \equiv a \pmod{m}$ but $0^{a+1} 1^m 0^a \notin L$ since $a+1 \not\equiv a \pmod{m}$ when m > 1. Since 0^a and 0^{a+1} both end up at the same state of M, and we appended the same string $1^m 0^a$, both 0^a and 0^{a+1} end at the same state q of M. Since $0^a 1^m 0^a \in L$ and $0^{a+1} 1^m 0^a \notin L$, M does not recognize L.
- 6. Thus, no DFA recognizes L.

6(b)

- 1. Suppose for contradiction that some DFA, M, recognizes $L = \{Unicode strings that are syntatically valid JSON\}.$
- 2. Let $S = \{\{x : x \ge 0\}.$
- 3. Since S is infinite and M has finitely many states, there must be two strings, $\{^a \text{ and } \{^b \text{ in S for } a \neq b \text{ that end up at the same state of M.} \}$
- 4. Consider appending $\}^a$ to each of the two strings.
- 5. Note that $\{^a\}^a \in L$ since a = a but $\{^b\}^a \notin L$ since $a \neq b$. Since $\{^a\}$ and $\{^b\}$ both end up at the same state of M, and we appended the same string $\}^a$, both $\{^a\}$ and $\{^b\}$ end at the same state q of M. Since $\{^a\}^a \in L$ and $\{^b\}^a \notin L$, M does not recognize L.
- 6. Thus, no DFA recognizes L.