15. Permark: 1. set 7(t) = 5 cos(wt) 7 + 5 cin(wt) j \frac{2\pi}{W} = 2. (Period = \frac{2\pi}{W}).

18. Remark: Ginen dz, can chain rule and change as de

9. Remark: For a, it is $\frac{d\vec{y}}{dt} = \frac{d}{dt} \frac{d\vec{r}}{dt}$

... chain rule is required.

 $\mathbf{r} = 3u\mathbf{i} + 3u^2\mathbf{j} + 2u^3\mathbf{k}$ $\mathbf{v} = \frac{du}{dt}(3\mathbf{i} + 6u\mathbf{j} + 6u^2\mathbf{k})$ $\mathbf{a} = \frac{d^2u}{dt^2}(3\mathbf{i} + 6u\mathbf{j} + 6u^2\mathbf{k}) + \left(\frac{du}{dt}\right)^2(6\mathbf{j} + 12u\mathbf{k}).$

24. Technique: \$\f\right|^2 first.

femont: |\right| is speed!

25. Technique: Same as Q24, start with of (r-ro), Pennank: de ro = 0., v = de

26. Remark: | > 0 means that it is moving away from the origin.

EXERCISES 11.1

In Exercises 1–14, find the velocity, speed, and acceleration at time t of the particle whose position is $\mathbf{r}(t)$. Describe the path of the particle.

1.
$$r = i + tj$$

2. $r = t^2 i + k$

3.
$$\mathbf{r} = t^2 \mathbf{j} + t \mathbf{k}$$

4.
$$\mathbf{r} = \mathbf{i} + t\mathbf{j} + t\mathbf{k}$$

5.
$$\mathbf{r} = t^2 \mathbf{i} - t^2 \mathbf{j} + \mathbf{k}$$

$$6. \mathbf{r} = t\mathbf{i} + t^2\mathbf{j} + t^2\mathbf{k}$$

7.
$$\mathbf{r} = a \cos t \, \mathbf{i} + a \sin t \, \mathbf{j} + ct \, \mathbf{k}$$

8.
$$\mathbf{r} = a\cos\omega t\,\mathbf{i} + b\mathbf{j} + a\sin\omega t\,\mathbf{k}$$

9.
$$\mathbf{r} = 3\cos t\,\mathbf{i} + 4\cos t\,\mathbf{j} + 5\sin t\,\mathbf{k}$$

10.
$$\mathbf{r} = 3\cos t \,\mathbf{i} + 4\sin t \,\mathbf{j} + t\mathbf{k}$$

11.
$$\mathbf{r} = ae^t \mathbf{i} + be^t \mathbf{j} + ce^t \mathbf{k}$$

12.
$$\mathbf{r} = at \cos \omega t \, \mathbf{i} + at \sin \omega t \, \mathbf{j} + b \ln t \, \mathbf{k}$$

13.
$$\mathbf{r} = e^{-t}\cos(e^t)\mathbf{i} + e^{-t}\sin(e^t)\mathbf{j} - e^t\mathbf{k}$$

14.
$$\mathbf{r} = a \cos t \sin t \mathbf{i} + a \sin^2 t \mathbf{j} + a \cos t \mathbf{k}$$

- **15.** A particle moves around the circle $x^2 + y^2 = 25$ at constant speed, making one revolution in 2 s. Find its acceleration when it is at (3, 4).
- **16.** A particle moves to the right along the curve y = 3/x. If its speed is 10 when it passes through the point $(2, \frac{3}{2})$, what is its velocity at that time?
- 17. A point P moves along the curve of intersection of the cylinder $z = x^2$ and the plane x + y = 2 in the direction of increasing y with constant speed v = 3. Find the velocity of P when it is at (1, 1, 1).
- **18.** An object moves along the curve $y = x^2$, $z = x^3$, with constant vertical speed dz/dt = 3. Find the velocity and acceleration of the object when it is at the point (2, 4, 8).
- 19. A particle moves along the curve $\mathbf{r} = 3u\mathbf{i} + 3u^2\mathbf{j} + 2u^3\mathbf{k}$ in the direction corresponding to increasing u and with a constant speed of 6. Find the velocity and acceleration of the particle when it is at the point (3, 3, 2).
 - **30.** Expand and simplify: $\frac{d}{dt} \left(\mathbf{u} \times \left(\frac{d\mathbf{u}}{dt} \times \frac{d^2\mathbf{u}}{dt^2} \right) \right)$.
 - **31.** Expand and simplify: $\frac{d}{dt} \left((\mathbf{u} + \mathbf{u}'') \bullet (\mathbf{u} \times \mathbf{u}') \right)$.
 - **32.** Expand and simplify: $\frac{d}{dt} \left((\mathbf{u} \times \mathbf{u}') \bullet (\mathbf{u}' \times \mathbf{u}'') \right)$.
 - 33. If at all times t the position and velocity vectors of a moving particle satisfy $\mathbf{v}(t) = 2\mathbf{r}(t)$, and if $\mathbf{r}(0) = \mathbf{r}_0$, find $\mathbf{r}(t)$ and the acceleration $\mathbf{a}(t)$. What is the path of motion?
- 34. Verify that $\mathbf{r} = \mathbf{r}_0 \cos(\omega t) + (\mathbf{v}_0/\omega) \sin(\omega t)$ satisfies the initial-value problem

$$\frac{d^2\mathbf{r}}{dt^2} = -\omega^2\mathbf{r}, \qquad \mathbf{r}'(0) = \mathbf{v}_0, \qquad \mathbf{r}(0) = \mathbf{r}_0.$$

- **20.** A particle moves along the curve of intersection of the cylinders $y = -x^2$ and $z = x^2$ in the direction in which x increases. (All distances are in centimetres.) At the instant when the particle is at the point (1, -1, 1), its speed is 9 cm/s, and that speed is increasing at a rate of 3 cm/s². Find the velocity and acceleration of the particle at that instant.
- 21. Show that if the dot product of the velocity and acceleration of a moving particle is positive (or negative), then the speed of the particle is increasing (or decreasing).
- Verify the formula for the derivative of a dot product given in Theorem 1(c).
- 23. Verify the formula for the derivative of a 3 × 3 determinant in the second remark following Theorem 1. Use this formula to verify the formula for the derivative of the cross product in Theorem 1.
- **24.** If the position and velocity vectors of a moving particle are always perpendicular, show that the path of the particle lies on a sphere.
- **25.** Generalize Exercise 24 to the case where the velocity of the particle is always perpendicular to the line joining the particle to a fixed point P_0 .
- **26.** What can be said about the motion of a particle at a time when its position and velocity satisfy $\mathbf{r} \bullet \mathbf{v} > 0$? What can be said when $\mathbf{r} \bullet \mathbf{v} < 0$?

In Exercises 27–32, assume that the vector functions encountered have continuous derivatives of all required orders.

27. Show that
$$\frac{d}{dt} \left(\frac{d\mathbf{u}}{dt} \times \frac{d^2\mathbf{u}}{dt^2} \right) = \frac{d\mathbf{u}}{dt} \times \frac{d^3\mathbf{u}}{dt^3}$$
.

28. Write the Product Rule for
$$\frac{d}{dt} \left(\mathbf{u} \bullet (\mathbf{v} \times \mathbf{w}) \right)$$
.

29. Write the Product Rule for
$$\frac{d}{dt} \left(\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) \right)$$
.

(It is the unique solution.) Describe the path $\mathbf{r}(t)$. What is the path if \mathbf{r}_0 is perpendicular to \mathbf{v}_0 ?

35. (Free fall with air resistance) A projectile falling under gravity and slowed by air resistance proportional to its speed has position satisfying

$$\frac{d^2\mathbf{r}}{dt^2} = -g\mathbf{k} - c\frac{d\mathbf{r}}{dt},$$

where c is a positive constant. If $\mathbf{r} = \mathbf{r}_0$ and $d\mathbf{r}/dt = \mathbf{v}_0$ at time t = 0, find $\mathbf{r}(t)$. (*Hint*: Let $\mathbf{w} = e^{ct}(d\mathbf{r}/dt)$.) Show that the solution approaches that of the projectile problem given in this section as $c \to 0$.

In Exercises 1–14, find the velocity, speed, and acceleration at time t of the particle whose position is $\mathbf{r}(t)$. Describe the path of the particle.

1.
$$\mathbf{r} = \mathbf{i} + t\mathbf{j}$$

$$2. \mathbf{r} = t^2 \mathbf{i} + \mathbf{k}$$

3.
$$\mathbf{r} = t^2 \mathbf{j} + t \mathbf{k}$$

$$4. \mathbf{r} = \mathbf{i} + t\mathbf{j} + t\mathbf{k}$$

speed= 1

Path: 1x=1

$$5. \mathbf{r} = t^2 \mathbf{i} - t^2 \mathbf{j} + \mathbf{k}$$

$$6. \mathbf{r} = t\mathbf{i} + t^2\mathbf{j} + t^2\mathbf{k}$$

7.
$$\mathbf{r} = a \cos t \, \mathbf{i} + a \sin t \, \mathbf{j} + ct \, \mathbf{k}$$

く2t,-2t,少

6. <1,2t,2t)

$$y = \{0, 2, 2\}$$

8. $\mathbf{r} = a\cos\omega t\,\mathbf{i} + b\mathbf{j} + a\sin\omega t\,\mathbf{k}$

9. $\mathbf{r} = 3\cos t \,\mathbf{i} + 4\cos t \,\mathbf{j} + 5\sin t \,\mathbf{k}$

Civole, contre 0,6.0, radius a

$$\chi^2 + \chi^2 = \Lambda^2, \quad \chi = b$$

9.1-3cost i + 4cost j + Joint k 2

elligse,

$$\frac{1}{3^{2}} + \frac{1}{4^{2}} + \frac{1}{5^{2}} = 1$$

$$x^{2} + y^{2} + z^{2} = 25$$

 $y = \frac{4}{3}x$
 $3y = 4x$.

12. $\mathbf{r} = at \cos \omega t \, \mathbf{i} + at \sin \omega t \, \mathbf{j} + b \ln t \, \mathbf{k}$

十日子 安子王 ânt 0 1 1 1 1 1 水型=社 四十二年至七0

1x= atusut

xsinut = ycosut

13. $\mathbf{r} = e^{-t} \cos(e^t)\mathbf{i} + e^{-t} \sin(e^t)\mathbf{j} - e^t\mathbf{k}$

13. $\mathbf{r} = e^{-t} \cos(e^t)\mathbf{i} + e^{-t} \sin(e^t)\mathbf{j} - e^t\mathbf{k}$ 14. $\mathbf{r} = a \cos t \sin t \mathbf{i} + a \sin^2 t \mathbf{j} + a \cos t \mathbf{k}$ 14. x=acostsint y>acort

15. A particle moves around the circle
$$x^2 + y^2 = 25$$
 at constant speed, making one revolution in 2 s. Find its acceleration when it is at $(3, 4)$.

15. A particle moves around the circle $x^2 + y^2 = 25$ at constant speed, making one revolution in 2 s. Find its acceleration when it is at (3, 4).

$$\frac{2\pi}{\omega} = 2$$

CHAPTER 11. VECTOR FUNCTIONS AND CURVES

Section 11.1 Vector Functions of One Variable (page 629)

1. Position: $\mathbf{r} = \mathbf{i} + t\mathbf{j}$ Velocity: $\mathbf{v} = \mathbf{j}$ Speed: v = 1Acceleration: $\mathbf{a} = \mathbf{0}$

Path: the line x = 1 in the xy-plane.

- 2. Position: $\mathbf{r} = t^2 \mathbf{i} + \mathbf{k}$ Velocity: $\mathbf{v} = 2t\mathbf{i}$ Speed: v = 2|t|Acceleration: $\mathbf{a} = 2\mathbf{i}$ Path: the line z = 1, y = 0.
- 3. Position: $\mathbf{r} = t^2 \mathbf{j} + t \mathbf{k}$ Velocity: $\mathbf{v} = 2t \mathbf{j} + \mathbf{k}$ Speed: $v = \sqrt{4t^2 + 1}$ Acceleration: $\mathbf{a} = 2\mathbf{j}$ Path: the parabola $y = z^2$ in the plane x = 0.
- 4. Position: $\mathbf{r} = \mathbf{i} + t\mathbf{j} + t\mathbf{k}$ Velocity: $\mathbf{v} = \mathbf{j} + \mathbf{k}$ Speed: $v = \sqrt{2}$ Acceleration: $\mathbf{a} = \mathbf{0}$ Path: the straight line x = 1, y = z.
- 5. Position: $\mathbf{r} = t^2 \mathbf{i} t^2 \mathbf{j} + \mathbf{k}$ Velocity: $\mathbf{v} = 2t\mathbf{i} - 2t\mathbf{j}$ Speed: $v = 2\sqrt{2}t$ Acceleration: $\mathbf{a} = 2\mathbf{i} - 2\mathbf{j}$ Path: the half-line $x = -y \ge 0$, z = 1.
- 6. Position: $\mathbf{r} = t\mathbf{i} + t^2\mathbf{j} + t^2\mathbf{k}$ Velocity: $\mathbf{v} = \mathbf{i} + 2t\mathbf{j} + 2t\mathbf{k}$ Speed: $v = \sqrt{1 + 8t^2}$ Acceleration: $\mathbf{a} = 2\mathbf{j} + 2\mathbf{k}$ Path: the parabola $y = z = x^2$.
- 7. Position: $\mathbf{r} = a \cos t \mathbf{i} + a \sin t \mathbf{j} + c t \mathbf{k}$ Velocity: $\mathbf{v} = -a \sin t \mathbf{i} + a \cos t \mathbf{j} + c \mathbf{k}$ Speed: $v = \sqrt{a^2 + c^2}$ Acceleration: $\mathbf{a} = -a \cos t \mathbf{i} - a \sin t \mathbf{j}$ Path: a circular helix.
- 8. Position: $\mathbf{r} = a \cos \omega t \mathbf{i} + b \mathbf{j} + a \sin \omega t \mathbf{k}$ Velocity: $\mathbf{v} = -a\omega \sin \omega t \mathbf{i} + a\omega \cos \omega t \mathbf{k}$ Speed: $v = |a\omega|$ Acceleration: $\mathbf{a} = -a\omega^2 \cos \omega t \mathbf{i} - a\omega^2 \sin \omega t \mathbf{k}$ Path: the circle $x^2 + z^2 = a^2$, y = b.

- 9. Position: $\mathbf{r} = 3\cos t\mathbf{i} + 4\cos t\mathbf{j} + 5\sin t\mathbf{k}$ Velocity: $\mathbf{v} = -3\sin t\mathbf{i} - 4\sin t\mathbf{j} + 5\cos t\mathbf{k}$ Speed: $v = \sqrt{9\sin^2 t + 16\sin^2 t + 25\cos^2 t} = 5$ Acceleration: $\mathbf{a} = -3\cos t\mathbf{i} - 4\cos t\mathbf{j} - 5\sin t\mathbf{k} = -\mathbf{r}$ Path: the circle of intersection of the sphere $x^2 + y^2 + z^2 = 25$ and the plane 4x = 3y.
- 10. Position: $\mathbf{r} = 3\cos t\mathbf{i} + 4\sin t\mathbf{j} + t\mathbf{k}$ Velocity: $\mathbf{v} = -3\sin t\mathbf{i} + 4\cos t\mathbf{j} + \mathbf{k}$ Speed: $v = \sqrt{9\sin^2 t + 16\cos^2 t + 1} = \sqrt{10 + 7\cos^2 t}$ Acceleration: $\mathbf{a} = -3\cos t\mathbf{i} - 4\sin t\mathbf{j} = t\mathbf{k} - \mathbf{r}$ Path: a helix (spiral) wound around the elliptic cylinder $(x^2/9) + (y^2/16) = 1$.
- 11. Position: $\mathbf{r} = ae^t\mathbf{i} + be^t\mathbf{j} + ce^t\mathbf{k}$ Velocity and acceleration: $\mathbf{v} = \mathbf{a} = \mathbf{r}$ Speed: $v = e^t\sqrt{a^2 + b^2 + c^2}$ Path: the half-line $\frac{x}{a} = \frac{y}{b} = \frac{z}{c} > 0$.
- 12. Position: $\mathbf{r} = at \cos \omega t \mathbf{i} + at \sin \omega t \mathbf{j} + b \ln t \mathbf{k}$ Velocity: $\mathbf{v} = a(\cos \omega t - \omega t \sin \omega t) \mathbf{i}$ $+ a(\sin \omega t + \omega t \cos \omega t) \mathbf{j} + (b/t) \mathbf{k}$ Speed: $v = \sqrt{a^2(1 + \omega^2 t^2) + (b^2/t^2)}$ Acceleration: $\mathbf{a} = -a\omega(2\sin \omega t + \omega \cos \omega t) \mathbf{i}$ $+ a\omega(2\cos \omega t - \omega \sin \omega t) \mathbf{j} - (b/t^2) \mathbf{k}$ Path: a spiral on the surface $x^2 + y^2 = a^2 e^{z/b}$.
- 13. Position: $\mathbf{r} = e^{-t} \cos(e^t)\mathbf{i} + e^{-t} \sin(e^t)\mathbf{j} e^t\mathbf{k}$ Velocity: $\mathbf{v} = -\left(e^{-t} \cos(e^t) + \sin(e^t)\right)\mathbf{i}$ $-\left(e^{-t} \sin(e^t) - \cos(e^t)\right)\mathbf{j} - e^t\mathbf{k}$ Speed: $v = \sqrt{1 + e^{-2t} + e^{2t}}$ Acceleration: $\mathbf{a} = \left(\left(e^{-t} - e^t\right) \cos(e^t) + \sin(e^t)\right)\mathbf{i}$ $+\left(\left(e^{-t} - e^t\right) \sin(e^t) - \cos(e^t)\right)\mathbf{j} - e^t\mathbf{k}$ Path: a spiral on the surface $z\sqrt{x^2 + y^2} = -1$.
- 14. Position: $\mathbf{r} = a \cos t \sin t \mathbf{i} + a \sin^2 t \mathbf{j} + a \cos t \mathbf{k}$ $= \frac{a}{2} \sin 2t \mathbf{i} + \frac{a}{2} \left(1 \cos 2t \right) \mathbf{j} + a \cos t \mathbf{k}$ Velocity: $\mathbf{v} = a \cos 2t \mathbf{i} + a \sin 2t \mathbf{j} a \sin t \mathbf{k}$ Speed: $v = a\sqrt{1 + \sin^2 t}$ Acceleration: $\mathbf{a} = -2a \sin 2t \mathbf{i} + 2a \cos 2t \mathbf{j} a \cos t \mathbf{k}$ Path: the path lies on the sphere $x^2 + y^2 + z^2 = a^2$, on the surface defined in terms of spherical polar coordinates by $\phi = \theta$, on the circular cylinder $x^2 + y^2 = ay$, and on the parabolic cylinder $ay + z^2 = a^2$. Any two of these surfaces serve to pin down the shape of the path.
- $\mathbf{r} = 5\cos(\omega t)\mathbf{i} + 5\sin(\omega t)\mathbf{j},$ where $\omega = \pi$ to ensure that \mathbf{r} has period $2\pi/\omega = 2$ s. Thus $\mathbf{a} = \frac{d^2\mathbf{r}}{dt^2} = -\omega^2\mathbf{r} = -\pi^2\mathbf{r}.$ At (3, 4), the acceleration is $-3\pi^2\mathbf{i} 4\pi^2\mathbf{j}$.

15. The position of the particle is given by

421

8. $\mathbf{r} = a\cos\omega t\,\mathbf{i} + b\mathbf{j} + a\sin\omega t\,\mathbf{k}$

9. $r = 3\cos t i + 4\cos t j + 5\sin t k$

10. $r = 3\cos t \, \mathbf{i} + 4\sin t \, \mathbf{j} + t\mathbf{k}$

11. $\mathbf{r} = ae^t\mathbf{i} + be^t\mathbf{j} + ce^t\mathbf{k}$

12. $\mathbf{r} = at \cos \omega t \, \mathbf{i} + at \sin \omega t \, \mathbf{j} + b \ln t \, \mathbf{k}$

13. $\mathbf{r} = e^{-t} \cos(e^t) \mathbf{i} + e^{-t} \sin(e^t) \mathbf{j} - e^t \mathbf{k}$

14. $\mathbf{r} = a \cos t \sin t \, \mathbf{i} + a \sin^2 t \, \mathbf{j} + a \cos t \, \mathbf{k}$

15. A particle moves around the circle $x^2 + y^2 = 25$ at constant speed, making one revolution in 2 s. Find its acceleration when it is at (3, 4).

16. A particle moves to the right along the curve y = 3/x. If its speed is 10 when it passes through the point $(2, \frac{3}{2})$, what is its

speed is 10 when it passes through the point $(2, \frac{2}{2})$, what is its velocity at that time? $\begin{cases} 1 & \text{if } x < -2 \text{ w Sinwt}, 0, & \text{when it passes through the point } (2, \frac{2}{2}), \text{ what is its velocity at that time?} \end{cases}$

speed

an

r'1 < -aw2coswt, 0, -aw2cinwt>

9. r' <-3sint, -4sint, 50st)

1r' 1 16 51 n2t + 25 cos 2t

z J.

1" < -3cost, -4cost, -tsent> = -1

10.1' < -35int, 46st, 1>

r" <-36st,-4cint,0)

(F) = 1 9 shet + 16 cm 3 t +1

N9+76052+11 = N10+76024

Made with Goodnotes

11.
$$\mathbf{r} = ae^t\mathbf{i} + be^t\mathbf{j} + ce^t\mathbf{k}$$

12.
$$\mathbf{r} = at \cos \omega t \, \mathbf{i} + at \sin \omega t \, \mathbf{j} + b \ln t \, \mathbf{k}$$

13.
$$\mathbf{r} = e^{-t} \cos(e^t)\mathbf{i} + e^{-t} \sin(e^t)\mathbf{j} - e^t\mathbf{k}$$

$$|v'| = \sqrt{\alpha e^{t} |be^{t}|} e^{t}$$
 $|v'| = \sqrt{\alpha e^{t} |be^{t}|} e^{t}$
 $|v'| = \sqrt{\alpha e^{t} |be^{t}|} e^{t}$

$$(1)' = \sqrt{a^2w^2 + b^2}$$

 $|r'| = \sqrt{a^2w^2 + b^2t^2}$

$$r'/=N(-e^{-t}\cos(e^{t})-\sin(e^{t}))^{2}+e^{2t}$$

$$= \sqrt{e^{-2t}\cos^2(e^t) + 2e^{-t}\cos(e^t)\sin(e^t)} + 2e^{-t}\cos(e^t)\sin(e^t) + 2e^{-t}\cos(e^t)\cos(e^t) + 2e^{-t}\cos(e^t) + 2e^{-t}$$

- 14. $\mathbf{r} = a \cos t \sin t \, \mathbf{i} + a \sin^2 t \, \mathbf{j} + a \cos t \, \mathbf{k}$
- 15. A particle moves around the circle $x^2 + y^2 = 25$ at constant speed, making one revolution in 2 s. Find its acceleration when it is at (3, 4).
- **16.** A particle moves to the right along the curve y = 3/x. If its speed is 10 when it passes through the point $(2, \frac{3}{2})$, what is its velocity at that time?

$$|4| + |4| = \langle d(-\sin^2 t + \cos^2 t), 2d \sin^2 t \cos^2 t, -d \sin^2 t \rangle$$

$$|r'| = \sqrt{d^2(\cos^2 t - \sin^2 t)^2} + 4d^2 \sin^2 t \cos^2 t + d^2 \sin^2 t$$

$$|d| = \sqrt{(\cos^4 t - 2\sin^2 t \cos^2 t + \sin^4 t + 4\sin^2 t \cos^2 t + \sin^2 t)}$$

$$|d| = \langle d| (\sin^2 t + \cos^2 t)^2 + \sin^2 t + \sin^2 t \cos^2 t + \sin^2 t + \cos^2 t + \sin^2 t \cos^2 t + \cos^2 t \cos^2 t + \cos^2 t \cos^$$

- **15.** A particle moves around the circle $x^2 + y^2 = 25$ at constant speed, making one revolution in 2 s. Find its acceleration when it is at (3, 4).
- **16.** A particle moves to the right along the curve y = 3/x. If its speed is 10 when it passes through the point $(2, \frac{3}{2})$, what is its velocity at that time?

peed is 10 when it passes through the point
$$(2, \frac{3}{2})$$
, what is its elocity at that time?

$$\frac{dy}{dt} = y = (1 - \frac{3}{x^2} \frac{1}{3}) \frac{dx}{dt}$$

$$\frac{dy}{dt} = y = (1 - \frac{3}{x^2} \frac{1}{3}) \frac{dx}{dt}$$

$$\frac{dy}{dt} = \sqrt{1 + (\frac{3}{x^2})^2}$$

$$\sqrt{1 + (\frac{3}{x^2})^2}$$

$$\frac{dx}{dt} = \frac{10}{\sqrt{1+\frac{9}{x^4}}}$$

When
$$x = 2$$
, $\frac{37}{47} = \frac{10}{\sqrt{1+\frac{9}{16}}} = \frac{10}{\sqrt{\frac{21}{16}}}$
= $\frac{10}{4} = \frac{10}{\sqrt{1+\frac{9}{16}}} = \frac{10}{\sqrt{\frac{21}{16}}}$

$$\frac{dr}{dt}\Big|_{X=2} = \left(1 - \frac{3}{4}\right)(8)$$

$$\frac{1}{\sqrt{3}} = 8i - 6\sqrt{3}$$

17. A point
$$P$$
 moves along the curve of intersection of the cylinder $z = x^2$ and the plane $x + y = 2$ in the direction of increasing y with constant speed $v = 3$. Find the velocity of P when it is at $(1, 1, 1)$.

$$x+y=2$$
 $x=2-y$
 $z=x^{2}$
 $z=(2-y)^{2}$
 $z=4-4y+y^{2}$

(et
$$\vec{r} = \langle z-y, y, 44y+y^2 \rangle$$

$$\vec{r} = \frac{dr}{dt} = \langle -1, 1, -4+2y \rangle \frac{dy}{dt}$$

$$\begin{vmatrix} dr \\ dt \end{vmatrix} = \sqrt{1+1+(-4+2y)^2} \frac{|4y|}{|4t|}$$

$$\begin{vmatrix} dr \\ dt \end{vmatrix} = \sqrt{2+16-16y+4y^2} \frac{|4y|}{|4t|}$$

$$\sqrt{4y^2-16y+16} = \frac{dy}{dt}$$

When
$$P = (1,1,1)$$
, $3 = \sqrt{4-16+18}$

$$V = (-1,1,-4+2w) \times \frac{3}{16}$$

$$= (-1,1,-2) = 3$$

18. An object moves along the curve
$$y = x^{2}, z = x^{3}$$
, with constant vertical speed $d_{1}/d_{1} = 3$. Find the velocity and acceleration of the object when it is at the point $(2.4, 8)$.

 $V = \frac{1}{3}z^{-\frac{1}{3}}, \frac{2}{3}z^{-\frac{1}{3}}, 1 > \frac{d^{2}}{d^{2}}$
 $V = \frac{1}{3}z^{-\frac{1}{3}}, \frac{2}{3}z^{-\frac{1}{3}}, \frac{2}{3}z^{-\frac{1}{3}}, 1 > \frac{d^{2}}{d^{2}}$
 $V = \frac{1}{3}z^{-\frac{1}{3}}, \frac{2}{3}z^{-\frac{1}{3}}, \frac{2}{3}$

19. A particle moves along the curve $\mathbf{r} = 3u\mathbf{i} + 3u^2\mathbf{j} + 2u^3\mathbf{k}$ in the direction corresponding to increasing u and with a constant speed of 6. Find the velocity and acceleration of the particle when it is at the point (3, 3, 2).

$$V = (3i + 6j + 6k) = \frac{3}{3}$$
 $V = (2i + 4j + 4k)$

21. Show that if the dot product of the velocity and acceleration of a moving particle is positive (or negative), then the speed of the particle is increasing (or decreasing).

$$(x_0, y_0, Z_0 > 0)$$
 $(x_0, y_0, Z_0 > 0)$
 $(x_0, Z_0 > 0)$

24. If the position and velocity vectors of a moving particle are always perpendicular, show that the path of the particle lies on a sphere.

here.

$$\overrightarrow{r} \cdot \overrightarrow{v} = 0$$

 $\overrightarrow{r} = (x, y, z) \quad \overrightarrow{v} = (M, v, w)$

$$\sqrt{\frac{u^2tu^2t^2}{|v|}} = c$$

25. Generalize Exercise 24 to the case where the velocity of the particle is always perpendicular to the line joining the particle to a fixed point P_0 .

26. What can be said about the motion of a particle at a time when its position and velocity satisfy r • v > 0? What can be said when r • v < 0?</p>

In Exercises 27–32, assume that the vector functions encountered have continuous derivatives of all required orders.

27. Show that
$$\frac{d}{dt} \left(\frac{d\mathbf{u}}{dt} \times \frac{d^2\mathbf{u}}{dt^2} \right) = \frac{d\mathbf{u}}{dt} \times \frac{d^3\mathbf{u}}{dt^3}$$
.

28. Write the Product Rule for
$$\frac{d}{dt} \left(\mathbf{u} \bullet (\mathbf{v} \times \mathbf{w}) \right)$$
.

29. Write the Product Rule for $\frac{d}{dt} \left(\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) \right)$.

30. Expand and simplify:
$$\frac{d}{dt} \left(\mathbf{u} \times \left(\frac{d\mathbf{u}}{dt} \times \frac{d^2\mathbf{u}}{dt^2} \right) \right)$$
.

31. Expand and simplify:
$$\frac{d}{dt} \Big((\mathbf{u} + \mathbf{u}'') \bullet (\mathbf{u} \times \mathbf{u}') \Big)$$
.

32. Expand and simplify:
$$\frac{d}{dt} \left((\mathbf{u} \times \mathbf{u}') \bullet (\mathbf{u}' \times \mathbf{u}'') \right)$$
.

31. Expand and simplify: $\frac{d}{dt} \left((\mathbf{u} + \mathbf{u}'') \cdot (\mathbf{u} \times \mathbf{u}') \right)$.

32. Expand and simplify: $\frac{d}{dt} \left((\mathbf{u} \times \mathbf{u}') \cdot (\mathbf{u} \times \mathbf{u}') \right)$.

31. $\frac{d}{dt} \left((\mathbf{u} + \mathbf{u}'') \cdot (\mathbf{u} \times \mathbf{u}') \right)$ $= \left((\mathbf{u} + \mathbf{u}'') \right) \cdot \left((\mathbf{u} \times \mathbf{u}') + \frac{d}{dt} \left((\mathbf{u} + \mathbf{u}'') \cdot (\mathbf{u} \times \mathbf{u}') \right)$ $= \left((\mathbf{u} + \mathbf{u}'') \right) \cdot \left((\mathbf{u} \times \mathbf{u}' + \mathbf{u} \times \mathbf{u}'') + \left((\mathbf{u} + \mathbf{u}'') \right) \cdot (\mathbf{u} \times \mathbf{u}') \right)$ $= \left((\mathbf{u} + \mathbf{u}'') \right) \cdot \left((\mathbf{u} \times \mathbf{u}'') + \left((\mathbf{u} \times \mathbf{u}'') + \mathbf{u}' \cdot (\mathbf{u} \times \mathbf{u}') \right) + \left((\mathbf{u} \times \mathbf{u}'') + \mathbf{u}' \cdot (\mathbf{u} \times \mathbf{u}') \right)$ $= \left((\mathbf{u} + \mathbf{u}'') \cdot (\mathbf{u} \times \mathbf{u}'') + \mathbf{u}' \cdot (\mathbf{u} \times \mathbf{u}') + \mathbf{u}' \cdot (\mathbf{u} \times \mathbf{u}') \right)$ $= \left((\mathbf{u} \times \mathbf{u}'') + \mathbf{u}' \cdot (\mathbf{u} \times \mathbf{u}') + \mathbf{u}' \cdot (\mathbf{u} \times \mathbf{u}') + \mathbf{u}' \cdot (\mathbf{u} \times \mathbf{u}') \right)$ $= \left((\mathbf{u} \times \mathbf{u}'') + \mathbf{u}' \cdot (\mathbf{u} \times \mathbf{u}') + \mathbf{u}' \cdot (\mathbf{u} \times \mathbf{u}') + \mathbf{u}' \cdot (\mathbf{u} \times \mathbf{u}') \right)$ $= \left((\mathbf{u} \times \mathbf{u}'') + \mathbf{u}' \cdot (\mathbf{u} \times \mathbf{u}') + \mathbf{u}' \cdot (\mathbf{u}$

32. Expand and simplify:
$$\frac{d}{dt} \left((\mathbf{u} \times \mathbf{u}') \bullet (\mathbf{u}' \times \mathbf{u}'') \right)$$
.

33. If at all times t the position and velocity vectors of a moving particle satisfy $\mathbf{v}(t) = 2\mathbf{r}(t)$, and if $\mathbf{r}(0) = \mathbf{r}_0$, find $\mathbf{r}(t)$ and the acceleration $\mathbf{a}(t)$. What is the path of motion?

32.
$$(u \times u')$$
, $\frac{1}{2} (u' \times u'') + \frac{1}{2} (v \times u') \cdot (u' \times u'')$
 $= (u \times u') \cdot (u' \times u''') + (u \times u'') \cdot (u' \times u'')$
33. $\int_{0}^{t} r(t) = r(t) + (u' \times u'') + (u' \times u'') + (u' \times u'')$

CHAPTER 11. VECTOR FUNCTIONS AND CURVES

Section 11.1 Vector Functions of One Variable (page 629)

1. Position: $\mathbf{r} = \mathbf{i} + t\mathbf{j}$ Velocity: $\mathbf{v} = \mathbf{j}$ Speed: v = 1Acceleration: $\mathbf{a} = \mathbf{0}$

Path: the line x = 1 in the xy-plane.

- 2. Position: $\mathbf{r} = t^2 \mathbf{i} + \mathbf{k}$ Velocity: $\mathbf{v} = 2t\mathbf{i}$ Speed: v = 2|t|Acceleration: $\mathbf{a} = 2\mathbf{i}$ Path: the line z = 1, y = 0.
- 3. Position: $\mathbf{r} = t^2\mathbf{j} + t\mathbf{k}$ Velocity: $\mathbf{v} = 2t\mathbf{j} + \mathbf{k}$ Speed: $v = \sqrt{4t^2 + 1}$ Acceleration: $\mathbf{a} = 2\mathbf{j}$ Path: the parabola $y = z^2$ in the plane x = 0.
- 4. Position: $\mathbf{r} = \mathbf{i} + t\mathbf{j} + t\mathbf{k}$ Velocity: $\mathbf{v} = \mathbf{j} + \mathbf{k}$ Speed: $v = \sqrt{2}$ Acceleration: $\mathbf{a} = \mathbf{0}$ Path: the straight line x = 1, y = z.
- 5. Position: $\mathbf{r} = t^2 \mathbf{i} t^2 \mathbf{j} + \mathbf{k}$ Velocity: $\mathbf{v} = 2t \mathbf{i} - 2t \mathbf{j}$ Speed: $v = 2\sqrt{2}t$ Acceleration: $\mathbf{a} = 2\mathbf{i} - 2\mathbf{j}$ Path: the half-line $x = -y \ge 0$, z = 1.
- **6.** Position: $\mathbf{r} = t\mathbf{i} + t^2\mathbf{j} + t^2\mathbf{k}$ Velocity: $\mathbf{v} = \mathbf{i} + 2t\mathbf{j} + 2t\mathbf{k}$ Speed: $v = \sqrt{1 + 8t^2}$ Acceleration: $\mathbf{a} = 2\mathbf{j} + 2\mathbf{k}$ Path: the parabola $y = z = x^2$.
- 7. Position: $\mathbf{r} = a \cos t \mathbf{i} + a \sin t \mathbf{j} + c t \mathbf{k}$ Velocity: $\mathbf{v} = -a \sin t \mathbf{i} + a \cos t \mathbf{j} + c \mathbf{k}$ Speed: $v = \sqrt{a^2 + c^2}$ Acceleration: $\mathbf{a} = -a \cos t \mathbf{i} - a \sin t \mathbf{j}$ Path: a circular helix.
- 8. Position: $\mathbf{r} = a \cos \omega t \mathbf{i} + b \mathbf{j} + a \sin \omega t \mathbf{k}$ Velocity: $\mathbf{v} = -a\omega \sin \omega t \mathbf{i} + a\omega \cos \omega t \mathbf{k}$ Speed: $v = |a\omega|$ Acceleration: $\mathbf{a} = -a\omega^2 \cos \omega t \mathbf{i} - a\omega^2 \sin \omega t \mathbf{k}$ Path: the circle $x^2 + z^2 = a^2$, y = b.

- 9. Position: $\mathbf{r} = 3\cos t\mathbf{i} + 4\cos t\mathbf{j} + 5\sin t\mathbf{k}$ Velocity: $\mathbf{v} = -3\sin t\mathbf{i} - 4\sin t\mathbf{j} + 5\cos t\mathbf{k}$ Speed: $v = \sqrt{9\sin^2 t + 16\sin^2 t + 25\cos^2 t} = 5$ Acceleration: $\mathbf{a} = -3\cos t\mathbf{i} - 4\cos t\mathbf{j} - 5\sin t\mathbf{k} = -\mathbf{r}$ Path: the circle of intersection of the sphere $x^2 + y^2 + z^2 = 25$ and the plane 4x = 3y.
- 10. Position: $\mathbf{r} = 3\cos t\mathbf{i} + 4\sin t\mathbf{j} + t\mathbf{k}$ Velocity: $\mathbf{v} = -3\sin t\mathbf{i} + 4\cos t\mathbf{j} + \mathbf{k}$ Speed: $v = \sqrt{9\sin^2 t + 16\cos^2 t + 1} = \sqrt{10 + 7\cos^2 t}$ Acceleration: $\mathbf{a} = -3\cos t\mathbf{i} - 4\sin t\mathbf{j} = t\mathbf{k} - \mathbf{r}$ Path: a helix (spiral) wound around the elliptic cylinder $(x^2/9) + (y^2/16) = 1$.
- 11. Position: $\mathbf{r} = ae^t\mathbf{i} + be^t\mathbf{j} + ce^t\mathbf{k}$ Velocity and acceleration: $\mathbf{v} = \mathbf{a} = \mathbf{r}$ Speed: $v = e^t\sqrt{a^2 + b^2 + c^2}$ Path: the half-line $\frac{x}{a} = \frac{y}{b} = \frac{z}{c} > 0$.
- 12. Position: $\mathbf{r} = at \cos \omega t \mathbf{i} + at \sin \omega t \mathbf{j} + b \ln t \mathbf{k}$ Velocity: $\mathbf{v} = a(\cos \omega t - \omega t \sin \omega t) \mathbf{i}$ $+ a(\sin \omega t + \omega t \cos \omega t) \mathbf{j} + (b/t) \mathbf{k}$ Speed: $v = \sqrt{a^2(1 + \omega^2 t^2) + (b^2/t^2)}$ Acceleration: $\mathbf{a} = -a\omega(2\sin \omega t + \omega \cos \omega t) \mathbf{i}$ $+ a\omega(2\cos \omega t - \omega \sin \omega t) \mathbf{j} - (b/t^2) \mathbf{k}$ Path: a spiral on the surface $x^2 + y^2 = a^2 e^{z/b}$.
- 13. Position: $\mathbf{r} = e^{-t} \cos(e^t)\mathbf{i} + e^{-t} \sin(e^t)\mathbf{j} e^t\mathbf{k}$ Velocity: $\mathbf{v} = -\left(e^{-t} \cos(e^t) + \sin(e^t)\right)\mathbf{i}$ $-\left(e^{-t} \sin(e^t) - \cos(e^t)\right)\mathbf{j} - e^t\mathbf{k}$ Speed: $v = \sqrt{1 + e^{-2t} + e^{2t}}$ Acceleration: $\mathbf{a} = \left(\left(e^{-t} - e^t\right) \cos(e^t) + \sin(e^t)\right)\mathbf{i}$ $+\left(\left(e^{-t} - e^t\right) \sin(e^t) - \cos(e^t)\right)\mathbf{j} - e^t\mathbf{k}$ Path: a spiral on the surface $z\sqrt{x^2 + y^2} = -1$.
- 14. Position: $\mathbf{r} = a \cos t \sin t \mathbf{i} + a \sin^2 t \mathbf{j} + a \cos t \mathbf{k}$ $= \frac{a}{2} \sin 2t \mathbf{i} + \frac{a}{2} \left(1 \cos 2t \right) \mathbf{j} + a \cos t \mathbf{k}$ Velocity: $\mathbf{v} = a \cos 2t \mathbf{i} + a \sin 2t \mathbf{j} a \sin t \mathbf{k}$ Speed: $v = a\sqrt{1 + \sin^2 t}$ Acceleration: $\mathbf{a} = -2a \sin 2t \mathbf{i} + 2a \cos 2t \mathbf{j} a \cos t \mathbf{k}$ Path: the path lies on the sphere $x^2 + y^2 + z^2 = a^2$, on the surface defined in terms of spherical polar coordinates by $\phi = \theta$, on the circular cylinder $x^2 + y^2 = ay$, and on the parabolic cylinder $ay + z^2 = a^2$. Any two of these surfaces serve to pin down the shape of the path.
- 15. The position of the particle is given by $\mathbf{r} = 5\cos(\omega t)\mathbf{i} + 5\sin(\omega t)\mathbf{j},$ where $\omega = \pi$ to ensure that \mathbf{r} has period $2\pi/\omega = 2$ s. Thus $\mathbf{a} = \frac{d^2\mathbf{r}}{dt^2} = -\omega^2\mathbf{r} = -\pi^2\mathbf{r}.$

At (3, 4), the acceleration is $-3\pi^2 \mathbf{i} - 4\pi^2 \mathbf{j}$.

421