DM 7 : Électrostatique Éléments de correction

LN°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0
01-08	Mécanisme de déclenchement de l'étincelle		
01-02	Effet d'avalanche lors du déplacement d'un électron dans		
	un gaz soumis à un champ électrique		
01	Un électron est accéléré entre deux chocs par le champ électrique		
1	11,	1	1

01-02	Effet d avalanche fors du deplacement d'un électron dans		
	un gaz soumis à un champ électrique		
01	Un électron est accéléré entre deux chocs par le champ électrique		
	d'après $m_e \vec{a} = -e \vec{E}$		
	donc sa vitesse avant collision est $\vec{v}_e = -\frac{e\tau_c}{m_e}\vec{E}$		
	soit une énergie cinétique de $E_c = \frac{1}{2} m_e v_e^2 = \frac{e^2 \tau_c^2}{2m_e} E^2$.		
	On atteint le champ disruptif pour $E_c = W$ donc $\frac{e^2 \tau_c^2}{2m_e} E_d^2 = W$		
	$\operatorname{donc} E_d = \frac{\sqrt{2m_eW}}{e\tau_c} = 12 \text{ MV.m}^{-1}$		
02	entre deux chocs $v_e = \frac{eE_d}{m_e}t$ donc $l = \int_0^{\tau_c} v_e dt = \frac{eE_d}{2m_e}\tau_c^2 = 1,32$		
	μ m. Sur la figure le potentiel varie sur des distances de 0,1 mm, or		
	$l \ll 0,1$ mm donc le champ peut-être considéré comme uniforme		
	entre deux chocs.		
03-08	Estimation de la tension inter électrodes nécessaire pour		
	déclencher l'étincelle		
03	En coordonnées cylindriques le plan (\vec{e}_r, \vec{e}_z) est un plan de symé-		
	trie donc \vec{E} appartient au plan donc les lignes de champs restent		
	dans le plan de la feuille,		
	il y a invariance par rotation autour de (Oz) donc toutes les cartes		
	de champs dans les plans (\vec{e}_r, \vec{e}_z) sont identiques,		
	pour $r=0$ il y a une infinité de plan de symétrie $(\vec{e_r}, \vec{e_z})$ qui se		
	croisent, d'où \vec{E} // \vec{e}_z .		
	Le plan entre les deux électrodes $z=0$ est un plan d'anti-symétrie		
1		1	

04	Les lignes de champ électrique sont perpendiculaires aux équipo-	
	tentielles,	
	et dirigées des potentiels élevés vers les potentiels faibles, soit ici	
	en suivant les z croissant.	
	L'électrode portée au potentiel positif porte des charges positives,	
	et l'électrode de potentiel négatif des charges négatives.	
	Le saut de potentiel entre les équipotentielles est de 0,1 V et celle	
	du milieu est à 0V donc valeurs encadrées de bas en haut sont 0,2	
	V puis 0 V puis -0,1 V puis -0,2 V.	
05	$C = \frac{q}{U} = 0.31 \text{ pF}$	
06	D'après les graphes le chemin comportant les plus fortes valeurs	
	de champ sont pour $r = 0$.	
	On a $E \sim \frac{U}{d}$ donc $U > E_d d \sim 14 \text{ kV}$	
07	$E = \frac{1}{2}CU^2 = 32 \mu J$, cette énergie est dissipée sous forme d'effet	
	Joule, de rayonnement lumineux et d'émission sonore. Comme un	
	éclair!	
08	D'après le dernier graphe $E(r) > 0,9E(r=0)$ pour $r < 0,45$ mm,	
	donc la zone parcourue à une largeur radiale de diamètre $0,90~\mathrm{mm}$	