

ECO 3302 – Intermediate Macroeconomics

Lecture 12: Economic Fluctuations

Luis Pérez (luisperez@smu.edu)

April 21–23, 2025

Table of Contents

- 1. Introduction
- 2. Facts About the Business Cycle
- 3. Time Horizons in Macroeconomics
- 4. Aggregate Demand
- 5. Aggregate Supply
- 6. Stabilization Policy
- 7. Taking Stock

▶ From 1820 to 2022 the US economy grew at an annual rate of about 3%

Source. Maddison Project Database 2023.

▶ But this long-run trend masks important fluctuations

▶ US economy some times grew above trend; some others, below trend

► Large negative fluctuations in output (see shaded areas) create recessions

These periods are naturally associated with employment losses

- ► The business cycle is these short-term fluctuations in output and employment, which are unpredictable and irregular
- ▶ Business cycles have long fascinated economists:
 - What causes short-run fluctuations?
 - What economic model can best explain/predict them?
 - Is there anything the gvt can do to avoid or recessions?
 - If not, can it at least do something to reduce their length and severity?
 - How do business cycles affect the population at large? And its subgroups?
- Today, we start our study of business cycles and try to shed light on some of these questions

Facts About the Business Cycle

1. Business cycle has two phases:

- Expansion: Economy grows as businesses increase production, investments rise, consumer confidence improves, and unemployment falls
- Contraction: Economy experiences decline in economic activity as business investment and consumer spending fall, unemployment rises, and GDP shrinks
 - Recession typically defined as 2 consecutive quarters of negative GDP growth
 - When contraction is severe and prolonged, it may be called depression

2. Beginning/end of phases marked by:

- Peak: Point at which econ growth reaches its highest level before a downturn. At the peak, economy is operating at or near full capacity
- Trough: Lowest point in the business cycle, marking the end of the contraction. Economic activity stabilizes and begins to recover

- 3. **Duration of the business cycle**: recessions can last from a few months to several years, depending on the severity of the downturn
 - From 1854, the average US recessions has lasted 17 months
 - From 1945, the average US recessions has lasted 10 months
- 4. In the US, the NBER's Business Cycle Dating Committee sets recession dates:
 - To do so, committee analyzes range of economic indicators (income, employment, retail sales, industrial production, ...)
 - Committee doesn't use fixed rule; it follows its judgment
 - Depth, diffusion (ie, how widespread the decline is across the economy), and duration of economic downturn are key factors considered by the committee
 - Recession dates announced after recessions end due to nature of analysis

5. Business cycle is tracked using several economic indicators: GDP

Notes. Percent change from previous 4 quarters. Source. FRED: A191RL1Q225SBEA

5. Business cycle is tracked using several economic indicators: consumption

Notes. Percent change from previous 4 quarters. Source. FRED: Real consumption expenditures (PCECC96)

5. Business cycle is tracked using several economic indicators: investment

Notes. Percent change from previous 4 quarters. Source. FRED: Real gross private domestic investment (GPDIC1)

5. Business cycle is tracked using several economic indicators: retail sales

Notes. Percent change from previous 4 quarters. **Source**. FRED: Advance retail sales (RSAFS)

5. Business cycle is tracked using several economic indicators: industrial prod

Notes. Percent change from previous 4 quarters. Source. FRED: Industrial production (INDPRO)

5. Business cycle is tracked using several economic indicators: unemployment

Notes. Percent change from previous 4 quarters. Source. FRED: Unemployment rate (UNRATE)

Time Horizons in Macroeconomics

Time horizons in macroeconomics

- ▶ Previously, we studied long-run economic phenomena
 - Rooted in classical macroeconomic theory
- ▶ We now move to study short-run economic phenomena
- Doing so requires building different types of models
 - Recall that models are only useful when they capture essence of the problem
 - · We now build short-run economic models
- ▶ Long-run vs. short-run economic models: flexible vs. sticky prices
 - In the long run, prices are flexible and adjust to clear markets
 - In the short run, prices are "sticky" and markets not need to clear

Long-run vs. short-run economic models

- ► Because prices behave differently in the short run than in the long run (flexible vs. sticky), economic events and policies may have different effects
- ▶ Monetary-policy example: Suppose Fed reduces money supply by 5%
 - In long run, monetary policy neutral: nominal variables affected, not real ones (classical macro theory)
 - In short run, monetary policy non-neutral: prices do not perfectly adjust and real variables may be affected (Keynesian macro theory)
- ► When building models of short-run economic phenomena, we must accommodate this price stickiness

How sticky are prices?

▶ In a famous study of US firms, Alan Blinder asked firm managers how often they changed the prices on their most important products

Frequency	Percentage of firms
Less than once	10.2%
Once	39.3%
1.01 to 2 times	15.6%
2.01 to 4 times	12.9%
4.01 to 12 times	7.5%
12.01 to 52 times	4.3%
More than 52 times	10.2%
6	

Source. Blinder 1994.

How sticky are prices?

- ▶ In a famous study of US firms, Alan Blinder asked firm managers how often they changed the prices on their most important products. Study revealed:
 - Prices are sticky: 50% of firms adjust their prices once or less a year
 - · Large difference among firms in frequency of price adjustment:
 - 10% of firms do not change their prices during the year
 - 10% of firms do change their prices more than once a week
 - 40% of firms change their prices once a year
 - 16% of firms change their prices twice a year
 - 13% of firms change their prices 3–4 times per year

Why are prices sticky?

► In a famous study of US firms, Alan Blinder asked firm managers why they didn't change their prices more often

Theory	Percentage of firms
Coordination failure: firms wait for others to move first	60.6%
Cost-based pricing with lags: price increases delayed until costs rise	55.5%
Delivery lags, service, quality: firms prefer to vary other attributes	54.8%
Implicit contracts: firms tacitly agree to offer stable prices	50.5%
Nominal contracts: prices are fixed by contracts	35.7%
Costs of price adjustment: changing prices is costly	30.0%
Procyclical elasticity: demand curves become less elastic	29.7%
Pricing points: prices have psychological significance (eg, \$9.99)	24.0%
Inventories: firms vary inventory stocks instead	20.9%
Constant marginal cost: constant MC and markups	19.7%
Hierarchical delays: bureaucratic delays slow down decisions	13.6%
Judging quality by price: fear customers will mistake price cuts with quality reductions	10.0%

Why are prices sticky?

- ► In a famous study of US firms, Alan Blinder asked firm managers why they didn't change their prices more often. Study revealed:
 - Coordination failures (ie, inability of firms to coordinate price changes) is main reason for price stickiness and short-run economic fluctuations
 - Most firms only increase prices when costs rise and sometimes, even if that's the case, they prefer to adjust other margins
 - Some firms are unwilling or unable to increase prices
 - Increasing prices is costly

Aggregate supply and aggregate demand

- ► In classical macroeconomic theory:
 - Economy's output depends on supplies of capital and labor: Y = F(K, L)
 - Flexible prices clear markets: P, R, W adjust so that Y, K, L markets clear
- ► In Keynesian macroeconomic theory:
 - Economy's output depends on demand for goods and services
 - Demand in turn depends on consumers' and firms' sentiment (animal spirits) and monetary and fiscal policy—which can influence demand
 - Sticky prices provide rationale for use of fiscal and monetary policies to stabilize demand
- ► We now build a model of aggregate supply and aggregate demand to explain short-run fluctuations in economic activity

Aggregate Demand

Aggregate demand

- ▶ Aggregate demand (AD): relationship between quantity of output demanded (Y) and aggregate price level (P)
 - AD curve: quantities of goods & services people want to buy at given prices

The quantity equation as aggregate demand

Recall quantity theory:

$$M_t V_t = P_t Y_t$$

M: money supply V: money velocity P: price level Y: output

- With constant money velocity, nominal GDP determined by money supply
- ▶ Also recall quantity equation can be rewritten in terms of supply and demand of real money balances:

$$\frac{M_t}{P_t} = \left(\frac{M_t}{P_t}\right)^d = \underbrace{\gamma}_{=1/V} \times Y_t$$

where γ is share of income people want to hold as money

 Assumption of constant velocity equivalent to assumption of constant demand 18 / 47 for real money balances per unit of output

The quantity equation as aggregate demand

▶ Quantity equation in terms of supply and demand of real money balances

$$\frac{M_t}{P_t} = \left(\frac{M_t}{P_t}\right)^d = \underbrace{\gamma}_{\equiv 1/V} \times Y_t$$

"Supply of real money balances equals its demand, which is prop. to output"

- ▶ If we assume money velocity V is constant and money supply M is fixed by central bank, quantity equation yields negative relationship $\mathbf{b/w}$ P and Y
 - Ie, AD curve is downward sloping as shown in previous figure

Why does the aggregate demand curve slope downward?

- ightharpoonup Mathematically: $\overline{M}/P_t = \gamma Y_t$
 - Since \overline{M} fixed and γ constant, if P goes up, Y must go down
- Intuitively, with constant velocity of money:
 - Money supply determines dollar value of all transactions $(\overline{M}V=P_tY_t)$
 - If price level rises, each transaction requires more dollars
 - Because money supply is fixed, the number of transactions/quantity of goods and services purchased must fall

Shifts in the aggregate demand curve

- ► AD curve is drawn for fixed money supply M (It tells us possible combinations of P and Y given M)
- ightharpoonup If Fed changes M, AD curve shifts: possible P-Y combinations change

Shifts in the aggregate demand curve

- ► In reality, aggregate demand changes not only because of fluctuations in money supply
- ► Even if money supply is held constant, AD curve may shift if money velocity changes or because of other reasons
- ▶ For now, we try to gain simple intuition behind movements in the AD curve
- ➤ Soon enough we'll develop a (*IS-LM*) model which will allow us to consider many reasons for shifts in the AD curve

Aggregate Supply

Aggregate supply

- ▶ AD curve shows relationship between *P* and *Y*, but it doesn't tell us equilibrium price and output levels.
- ➤ To obtain equilibrium price and output levels, we need both demand and supply curves: their intersection pins down equilibrium levels
- Aggregate supply (AS): relationship between quantity of output supplied (Y) and aggregate price level (P)
 - · AS curve: quantities of goods & services firms want to supply at given prices
- ▶ Shape of AS curve depends on time horizon:
 - Long-run aggregate supply (LRAS) curve is vertical: output is determined by capital, labor and technology; not by price level, which is perfectly flexible
 - Short-run aggregate supply (SRAS) curve is horizontal: prices are perfectly sticky

Aggregate supply curves: long-run vs. short-run

- ▶ LRAS curve: prices are perfectly flexible
- ➤ SRAS curve: prices are perfectly sticky

The LRAS supply curve

In long run, output is determined by supply of capital, labor, and technology: $Y = F(K, L) = \overline{Y}$; not by the price level, which adjusts to clear market

Long-run equilibrium in the market for goods and services

- ► In the long-run equilibrium, changes in aggregate demand affect prices but not output, which is determined by available resources and technology
 - ullet \overline{Y} is the full-employment (or natural or potential) level of output
 - LRAS curve satisfies classical dichotomy: money is neutral

The SRAS supply curve

► In the short run, prices are sticky and do not adjust to changes in demand, so the SRAS curve is horizontal (assuming prices are fully sticky)

Short-run equilibrium in the market for goods and services

- ▶ In the short-run equilibrium, changes in aggregate demand affect output because prices do not adjust
 - Monetary policy is non-neutral: $\downarrow M \rightarrow \downarrow Y$

Short-run equilibrium in the market for goods and services

- ► In the short-run equilibrium, changes in aggregate demand affect output because prices do not adjust
 - If prices could adjust, they would go down; currently, they are "too high"
 - With low demand and high prices, firms sell less and reduce production by laying off workers, which leads the economy to a recession

Recap: short-run vs. long-run

► In the long run, prices are fully flexible; that is, the aggregate supply curve is vertical and changes in agg. demand affect nominal but not real quantities

► In the (very) short run, prices are fully sticky; that is, the aggregate supply curve is horizontal and changes in aggregate demand affect real quantities

Transition from the short-run to the long-run

- **Economy begins in long-run equilibrium**: AD crosses LRAS (and SRAS) curve
 - Prices adjusted to reach this equilibrium

Transition from the short-run to the long-run

- Now suppose Fed reduces money supply and AD curve shifts downward
 - Because prices are sticky in the short run, economy moves to equilibrium B: output and employment fall below natural levels and economy enters recession

Transition from the short-run to the long-run

- Now suppose Fed reduces money supply and AD curve shifts downward
 - Over time, wages and prices fall in response to low demand and we move to C: in new eq., output and employment back at natural levels and prices are lower

Stabilization Policy

Stabilization policy

- ▶ Fluctuations come from changes in aggregate supply or aggregate demand
- ▶ Economists refer to exogenous events shifting these curves as "shocks":
 - A demand shock shifts the aggregate demand curve
 - A supply shock shifts the aggregate supply curve
- Demand and supply shocks push economy away from natural levels of employment and output
- ▶ Two-fold purpose of short-run models of aggregate supply and demand:
 - 1. Understand how shocks cause economic fluctuations
 - 2. Assess appropriate policy responses to shocks (stabilization policy)

Stabilization policy

➤ Stabilization policy: policy actions aimed at reducing severity of short-run economic fluctuations; Goal is to minimize fluctuations from long-run trend

- ▶ Consider the demand shock that it is the availability of credit cards: it reduces quantity of money that people want to hold, $\downarrow M^d$
- ▶ Reduction in money demand is equivalent to increase in money velocity:

$$\frac{M_t^d}{P_t} = \underbrace{\gamma}_{\equiv 1/V} \times Y_t$$

- When people hold less money $(\downarrow M^d)$, share of income held in cash lower $(\downarrow \gamma)$
- This means each dollar moves from hand to hand quicker ($\uparrow V$)
- ▶ If money supply is held constant, the increase in money velocity causes nominal spending to rise and AD curve to shift outward (MV = PY)

▶ In the short run, increase in demand rises economy's output: $A \to B$ (At the old prices, firms can sell more products: they increase employment and production)

lackbox Over time, high demand pushes up wages and prices, reducing aggregate demand and moving economy to its natural level of production: $B \to C$

- ightharpoonup During the transition (from A to C), output exceeds its natural level
- ▶ What can the Fed do to dampen boom & keep output closer to natural level?
 - $\,\cdot\,$ Fed can reduce money supply M to fully offset increase in money velocity

$$\frac{M_t}{P_t} = \frac{M_t^d}{P_t} = \underbrace{\gamma}_{\equiv 1/V} \times Y_t$$

- Offsetting change in velocity stabilizes aggregate demand
- Fed could eliminate impact of demand shocks on output and employment by adjusting money supply

- Supply shocks alter cost of producing goods and services and hence can affect the prices firm charge
 - Even if prices are sticky, a large-enough shock can trigger a price response
- ➤ Supply shocks have a direct impact on the price level and thus are sometimes referred to as **price shocks**
- ► Examples of adverse supply shocks:
 - Drought destroying crops increases food prices
 - New environmental law requires lower pollution and leads to higher prices
 - Mandatory unionization pushes up wages and thus consumer prices
 - Cartel formation pushes up prices by purposedly reducing production levels

- ▶ Consider the supply shock that it is regulation reducing allowable pollution: it pushes up price level and reduces quantity produced $(A \rightarrow B)$
 - Stagflation: falling output and inflation

- ▶ What can the Fed do to mitigate impact of shock? Allow recession
 - Hold agg. demand constant so that output and employment first fall below natural level and wait for initial eq. to be restored when prices fall in response

- ▶ What can the Fed do to mitigate impact of shock? Mitigate recession
 - Stimulate aggregate demand to bring economy to natural level quickly at the cost of (permanently) higher price level $(A \to B \to C \text{ vs. } A \to B \to A)$

Adverse supply shocks: OPEC

- ▶ Real-life example of adverse supply shock: OPEC in 1970s and 1980s
 - Organization of oil suppliers that coordinate production levels and prices
- ▶ In the 1970s, OPEC reduced supply of oil causing a doubling of its price
- ▶ Increase of oil prices caused stagflation: falling output + rising price levels

Year	Change in oil price	Inflation rate (CPI)	Unemployment rate
1973	11%	6.2%	4.9%
1974	68%	11%	5.6%
1979	25%	11.3%	5.8%
1980	48%	13.5%	7.0%
1981	44%	10.3%	7.5%

Taking Stock

Taking stock

- ► For the past two centuries, US grew at an averge annual rate of 3%, but trend masks important fluctuations (eg, great depression, oil crises, ...)
- ► Business cycle is this period of short-term fluctuations in output and employment causing deviation from long-term growth
- Key facts about business cycles:
 - Two phases: expansions and contractions
 - · Beginning and end of phases marked by peak and trough
 - Unpredictable and of uncertain duration
 - When business cycle is severly bad, economy enters into recession
 - Analyzed looking at battery of economic indicators: GDP, unemployment, consumption, investment, sales, industrial production, ...

Taking stock

- ► Analysis of business cycles (short-run phenomena) requires different economic models
 - We used classical models to study long-run phenomena
 - We use Keynesian models to study short-run phenomena
- ➤ Key difference between long-run and short-run economic models is the behavior of prices:
 - In the long run, prices are flexible and adjust to clear markets
 - In the short run, prices are stikey and markets not need to clear
- ▶ Because prices behave differently in the short run than in the long run (flexible vs. sticky), economic events and policies may have different effects
 - In the long run, monetary policy is neutral whereas in the short run is not (Ie, monetary policy affects real quantities only in the short run)

Taking stock

- ➤ Easiest to understand distinction between short-run and long-run economic models of aggregate demand and supply in terms of supply curves:
 - LRAS curve is vertical: prices fully flexible
 - SRAS curve is horizontal: prices completely stuck
- ➤ Short-run models of aggregate supply and demand useful to study stabilization policy (ie, policy actions that reduce severity of short-run econ fluctuations)
 - Fed can eliminate impact of demand shocks on output and employment by managing money supply
 - Fed can mitigate impact of supply shocks on output and employment at the cost of permanently higher prices

Questions?

Thank You!

(Email: luisperez@smu.edu)

(Website: https://luisperezecon.com)