

### Chapitre 1: Les Concepts Fondamentaux

#### Ibrahima Sy

Université Cheikh Anta Diop de Dakar(UCAD) Master Modélisation Statistique et Informatique(MSI) Faculté des Sciences et Techniques (FST)

April 14, 2021

#### Plan

Motivation

Notation et nomenclature

Types d'apprentissage

Exemple: régression polynomiale

Sur-apprentissage / sous-apprentissage

Régularisation

Sélection de modèle

Malédiction de la dimensionnalité

References

#### Motivation

► Comment développer une intelligence artificielle ?



Figure 1: reconnaissance de chiffres manuscrits

- ▶ <u>Première Possibilité</u>: Par énumération de règles
  - ▶ Par énumération de règles : par exemple en faisant des hypothèse sur l'intensité des pixels , leurs position etc..
    - trop fastidieux, difficile de couvrir tous les cas d'espèce

#### Motivation

- ▶ <u>Deuxième Possibilité</u>: laisser l'ordinateur faire des essais et apprendre de ses erreurs
  - ▶ Machine Learning / Apprentissage Automatique : le domaine s'intéressant à l'étude de tels algorithmes
  - Proposition de Définition :

L'apprentissage automatique(machine learning) ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'apprendre à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.



Figure 2: Intelligence Artificielle/Deep Learning/Machine Learning

### Données d'entraînement vs. généralisation

- Les algorithmes d'apprentissage procèdent comme suit :
  - ▶ on fournit à l'algorithme des données d'entraînement ...



 ... et l'algorithme retourne un «programme» capable de généraliser à de nouvelles données



## Ensemble d'entraînement, entrée, cible

▶ on note l'ensemble d'entraînement

$$\mathcal{D} = \left\{ (\mathbf{x_1}, t_1), (\mathbf{x_2}, t_2), \dots, (\mathbf{x_N}, t_N) \right\}$$

|               | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | househ | _          | ,                  | ,                    | _            | 4                             |  |
|---------------|-----------|----------|--------------------|-------------|----------------|------------|--------|------------|--------------------|----------------------|--------------|-------------------------------|--|
| 0             | -122.23   | 37.88    | 41.0               | 880.0       | 129.0          | 322.0      | 126.0  | 9          | 6                  | Ø                    | 5            | 4 2                           |  |
| 1             | -122.22   | 37.86    | 21.0               | 7099.0      | 1106.0         | 2401.0     | 1138.0 | ,          |                    | •                    |              | 10.                           |  |
| 2             | -122.24   | 37.85    | 52.0               | 1467.0      | 190.0          | 496.0      | 177.0  | <b>'9'</b> | '6'                | '6'                  | <b>'5'</b>   | '4' \   '0' <b>▼</b>          |  |
| 3             | -122.25   | 37.85    | 52.0               | 1274.0      | 235.0          | 558.0      | 219.0  | ,          | O                  | O                    | ,            | , / , ~                       |  |
| 4             | -122.25   | 37.85    | 52.0               | 1627.0      | 280.0          | 565.0      | 259.0  |            |                    |                      |              | \ /                           |  |
| 5             | -122.25   | 37.85    | 52.0               | 919.0       | 213.0          | 413.0      | 193.0  |            |                    |                      |              | \ /                           |  |
| 6             | -122.25   | 37.84    | 52.0               | 2535.0      | 489.0          | 1094.0     | 514.0  |            | •                  |                      |              | \ /                           |  |
| 7             | -122.25   | 37.84    | 52.0               | 3104.0      | 687.0          | 1157.0     | 647.0  |            | TD =               | $\{(\mathbf{x}_1)\}$ | $t_1$        | $\ldots, (\mathbf{x}_N, t_N)$ |  |
| 8             | -122.26   | 37.84    | 42.0               | 2555.0      | 665.0          | 1206.0     | 595.0  |            | $\boldsymbol{\nu}$ | ((22)                | $, \iota_1,$ | , (22/1,0/1)                  |  |
| (fichier csv) |           |          |                    |             |                |            |        |            | (images)           |                      |              |                               |  |

ightharpoonup on appelle  $\mathbf{x}_n$  une entrée et  $t_n$  la cible

#### Modèle

- $\blacktriangleright$  On note le «programme» généré par l'algorithme d'apprentissage  $y(\mathbf{x})$ 
  - on va aussi appeler  $y(\mathbf{x})$  un  $\mathbf{mod\grave{e}le}$
- $\triangleright$   $y(\mathbf{x})$  est une fonction

#### Ensemble de test

- L' objectif de L'apprentissage est la généralisation
- ightharpoonup on utilise un **ensemble de test**  $\mathcal{D}_{test}$  pour mesurer la performance de **généralisation** de notre modèle

# Types d'apprentissage

il existe différents types d'apprentissage en machine learning

▶ apprentissage supervisé(supervised learning) : il y a une cible à prédire

$$\mathcal{D} = \left\{ (\mathbf{x_1}, t_1), (\mathbf{x_2}, t_2), \dots, (\mathbf{x_N}, t_N) \right\}$$

apprentissage non-supervisé(unsupervised learning) : cible n'est pas fournie

$$\mathcal{D} = \left\{\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_N}\right\}$$

apprentissage par renforcement

# Apprentissage supervisé, classification, régression

- L'apprentissage supervisé est lorsqu'on a une cible à prédire
  - **classification**: la cible est un indice de classe  $t \in \{1, 2, ..., K\}$ 
    - exemple : reconnaissance de caractères
      - $\mathbf{x}$  : vecteur des intensités de tous les pixels de l'image
      - t : identité du caractère
  - **régression** : la cible est un nombre réel  $t \in \mathbb{R}$ 
    - ▶ exemple : prédiction de la valeur d'une action à la bourse
    - $\mathbf{x}$  : vecteur contenant l'information sur l'activité économique de la journée
    - t : valeur d'une action à la bourse le lendemain















## Apprentissage non-supervisé, partitionnement

- L'apprentissage non-supervisé est lorsqu'une cible n'est pas explicitement donnée
  - partitionnement de données / clustering

$$\left\{
 \begin{array}{c}
 6 & 6 & 6 & 6 & 5 \\
 5 & 6 & 5 & 6 & 5
 \end{array}
 \right\}
 \left\{
 \begin{array}{c}
 6 & 6 & 6 & 6 & 6 \\
 6 & 6 & 6 & 6 & 6
 \end{array}
 \right\}
 \left\{
 \begin{array}{c}
 6 & 6 & 6 & 6 & 6 \\
 \end{array}
 \right\}$$

## Apprentissage non-supervisé, visualisation

visualisation de données



Tenenbaum, de Silva, Langford, (2000)

## Apprentissage non-supervisé, estimation de densité

ightharpoonup C'est a dire apprendre la loi de probabilité p(x) dont les données sont issues



## Apprentissage non-supervisé, estimation de densité

Exemple : trouver 2 groupes d'étudiants suite à un examen



Types d'apprentissage

# Apprentissage non-supervisé, estimation de densité

#### ► Autres Applications

- pour générer de nouvelles données réalistes
- pour distinguer les «vrais» données des «fausses» données (spam filtering)
- compression de données

## Apprentissage non-supervisé, estimation de densité

Exemple : trouver 2 groupes d'étudiants suite à un examen



- ► Autres Applications
  - pour générer de nouvelles données réalistes
  - pour distinguer les «vrais» données des «fausses» données (spam filtering)
  - compression de données

### Régression en 1D

- Exemple simple: régression en une dimension :
  - ightharpoonup entrée : scalaire x
  - ightharpoonup cible : scalaire t
- ▶ Données d'entrainement  $\mathcal{D}$  contiennent:
  - $\mathbf{X} \equiv (x_1, \dots, x_N)^T$
  - $\mathbf{t} \equiv (t_1, \dots, t_N)^T$
- ► Objectif:
  - $\blacktriangleright$  faire une prédiction  $\hat{t}$  pour une nouvelle entrée  $\hat{x}$

LExemple : régression polynomiale

## Régression en 1D



## Régression polynomiale, modèle

On va supposer qu'une bonne prédiction aurait une forme polynomiale

$$y(x, \mathbf{w}) = \omega_0 x + \omega_2 x^2 + \dots + \omega_M x^M$$

- $\triangleright y(x, \mathbf{w})$  est notre modèle
  - représente nos hypothèses sur le problème à résoudre
  - a normalement des paramètres, qu'on doit trouver  $(\omega_0, \omega_1, \dots, \omega_M)$
- On peut voir un modèle comme un programme définit mathématiquement

```
def predict(x,w):
    x_poly = x ** np.arange(len(w))
    return np.dot(x_poly,w)
```

## Minimisation de perte (côut, erreur)

- Comment trouver w? (c'est un problème d'optimisation )
  - ➤ On cherche le **w**\* qui minimise la somme de notre perte / erreur / côut sur l'ensemble d'entrainement

$$\mathbb{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

- le terme  $\ll \frac{1}{2} \gg$  permet juste de simplifier les calculs mais n'a pas un rôle capital
- ▶ Un algorithme d'apprentissage résoudrait ce problème
  - ▶ à partir des données, il va retourner w\*

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \mathbb{E}(\mathbf{w})$$

LExemple : régression polynomiale

## Minimisation de perte (côut, erreur)



# Sur-apprentissage / sous-apprentissage

► Comment trouver le bon M?

Le problème avec les **hyper-paramètres** est qu'ils ne peuvent pas être estimés à l'aide des algorithmes d'optimisation classiques (**descente de gradient**, **méthode de Newton**, **etc.**) comme pour les paramètres .

Par conséquent, on fixe souvent « à la main » les hyper-paramètres.

# Sous-apprentissage (underfitting)

Comment trouver le bon M?
 Un petit M donne un modèle trop simple causant du sous-apprentissage



- ► Erreur sur l'ensemble entrainement est élevé
- ► Erreur sur ensemble de test est élevé

# Sur-apprentissage (overfitting)

 Un grand M donne un modèle qui « apprend par coeur » les données d'apprentissage ce qui cause du sur-apprentissage



- ► Erreur sur l'ensemble entrainement est faible
- ► Erreur sur ensemble de test est élevé

#### Sélection de modèle

- ightharpoonup on voudrait une valeur intermédiaire qui permet de retrouver la tendance générale de la relation entre x et t, sans le bruit
- c'est ce qui va permettre de bien généraliser à de nouvelles entrées!
- ► trouver cette meilleure valeur de M s'appelle de la sélection de modèle



## Capacité d'un modèle, performance

- ► Capacité d'un modèle
  - ▶ aptitude d'un modèle à apprendre «par coeur»
  - exemple : plus M est grand, plus le modèle a de capacité
- ▶ Plus la capacité est grande, plus la différence entre l'erreur d'entraînement et l'erreur de test augmente
  - ► En régression, l'erreur sur tout un ensemble est souvent mesurée par la racine de la moyenne des erreurs au carré (root-mean-square error)

$$\mathbb{E}_{RMS} = \sqrt{\frac{2 \times \mathbb{E}(\mathbf{w})}{N}}$$

## Capacité d'un modèle, performance



### Généralisation vs. quantité de données

▶ Plus la quantité de données d'entraînement augmente, plus le modèle entraîné va bien généraliser



### Régularisation

- Lorsqu'on souhaite éviter qu'on modèle sur-apprenne nous avons ces possibilités
  - ► On choisit un petit « M »
  - On réduit la capacité du modèle par **régularisation**: permettant l'utilisation des valeurs de «  $\mathbf{M}$  » élevées

$$\mathbb{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

 $\lambda$ :<br/>contrôle la capacité du modèle

$$||\mathbf{w}|| = \omega_1^2 + \omega_2^2 + \dots + \omega_M^2$$

# Régularisation : Sans Régularisation

- Simulation du modèle de régression polynomiale sur différent valeurs de M
- ightharpoonup \* : valeurs de m w après entrainement du modèle

|                             | M = 0 | M = 1 | M = 6  | M = 9       |
|-----------------------------|-------|-------|--------|-------------|
| $\overline{w_0^{\star}}$    | 0.19  | 0.82  | 0.31   | 0.35        |
| $w_1^{\star}$               |       | -1.27 | 7.99   | 232.37      |
| $w_2^{\star}$               |       |       | -25.43 | -5321.83    |
| $w_3^{\stackrel{-}{\star}}$ |       |       | 17.37  | 48568.31    |
| $w_4^{\star}$               |       |       |        | -231639.30  |
| $w_5^{\star}$               |       |       |        | 640042.26   |
| $w_6^{\star}$               |       |       |        | -1061800.52 |
| $w_7^{\star}$               |       |       |        | 1042400.18  |
| $w_8^{\star}$               |       |       |        | -557682.99  |
| $w_9^\star$                 |       |       |        | 125201.43   |

### Régularisation

 $\blacktriangleright$  Plus la régularisation augmente (  $\lambda$  augmente ) , plus la capacité du modèle diminue



### Régularisation

 $\blacktriangleright$  Comme avec M , les variations de M influence sur l'erreur entrainement et de test



## Notion d'hyper-paramètres

- ▶ d'hyper-paramètres : ce sont les paramètres qui permettent de contrôler le processus d'apprentissage
- Dans le cadre de la régularisation précédente

$$\mathbb{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

- $\triangleright \lambda$  et **M** sont des des hyper-paramètres
- Qu'on doit déterminer avant l'apprentissage



Sélection de modèle

Comment déterminer les bons hyper-paramètres?

C'est dire  $\lambda$  et  ${\bf M}$  en régression polynomiale

#### Pourquoi on devrait pas procéder comme suit?

- ▶ Très mauvaise solution : choisir au hasard
- ▶ Mauvaise solution : prendre plusieurs paires  $(\mathbf{M}, \lambda)$  et garder celle dont l'erreur d'entraînement est la plus faible
  - Sur-apprentissage
- ▶ Mauvaise solution : prendre plusieurs paires  $(\mathbf{M}, \lambda)$ et garder celle dont l'erreur de test est la plus faible
  - $ightharpoonup \mathcal{D}_{test}$  ne doit pas être utilisé pour entraîner le modèle

Bonne pratique : prendre plusieurs paires  $(\mathbf{M}, \lambda)$  et garder celle dont <u>l'erreur de validation</u> est la plus faible

# Validation croisée (cross-validation)

- ▶ Option I : on réserve des données d'entraı̂nement pour comparer différentes valeurs
  - ▶ garde la majorité pour l'ensemble d'entraı̂nement  $\mathcal{D}_{train}$  (ex: 80 %)
  - le reste  $\mathcal{D}_{val}$  (ex: 20 %) servira á comparer les hyper-paramètres

 $\mathcal{D}_{val}$ : ensemble de validation

## Validation croisée (cross-validation)

### Validation croisée (cross-validation)

1- Diviser au hasard les données d'entraînement en 2 groupes



2- Pour M allant de  $M_{\min}$  à  $M_{\max}$  Pour  $\lambda$  allant de  $\lambda_{\min}$  à  $\lambda_{\max}$ 

Entraîner le modèle sur  $D_{train}$ Calculer l'erreur sur  $D_{valid}$ 

3- Garder la paire (M, \lambda) dont l'erreur de validation est la plus faible

### Validation croisée K fois (k-fold cross-validation)

### Option II

- Lorsqu'on a peu de données, 20 % est trop peu pour estimer la performance de généralisation
- On pourrait répéter la procédure de séparation train/valid plus d'une fois
- $\blacktriangleright$  k-fold cross-validation : divise les données en S portions différentes
- ightharpoonup chaque portion est utilisée une fois en tant que  $\mathcal{D}_{valid}$

### Validation croisée K fois (k-fold cross-validation)

**Exemple**: Avec k = 4



### Validation croisée K fois (k-fold cross-validation)

 $\begin{aligned} & \text{Validation crois\'ee K fois } (k\text{-}fold\ cross\text{-}validation}) \\ & \text{Pour } M \text{ allant } \text{de } M_{\min} \text{ à } M_{\max} \\ & \text{Pour } \lambda \text{ allant } \text{de } \lambda_{\max}^{-\frac{1}{2}} \text{ a.} \lambda_{\max}^{-\frac{1}{2}} \\ & \text{Pour } j \text{ allant } \text{de } 0 \text{ à K} \end{aligned} \\ & \text{Diviser au hasard les données d'entraînement} \Rightarrow D_{\min} D_{\min} \\ & \text{Entraîner le modèle sur } D_{\min} \\ & \text{Calculer l'erreur sur } D_{\min} \end{aligned}$ 

 $\triangleright$  Si k=N: on parle alors de méthode leave-one-out

### recherche sur une grille

- ➤ Comment déterminer la liste des valeurs d'hypermètres à comparer
- ▶ recherche sur une grille (grid search) :
  - détermine une liste de valeur pour chaque hyper-paramètre
  - construit la liste de toutes les combinaisons possibles

```
>>> M = [1,2]

>>> lba = [0,1e-6,1e-3]

>>> hypers = [ [ (m,1) for m in M ] for l in lba ]

>>> print hypers

[[(1, 0), (2, 0)], [(1, 1e-06), (2, 1e-06)], [(1, 0.001),

(2, 0.001)]]
```

#### References I

- ▶ Hugo Larochelle, Professeur associé, Université de Montréal, Google
- ▶ Pierre-Marc Jodoin, Professeur titulaire Université Sherbrooke
- ▶ Bayesian Reasoning and Machine Learning de David Barber
- ▶ The Elements of Statistical Learning de Trevor Hastie,
- Robert Tibshirani et Jerome Friedman
- ▶ Information Theory, Inference, and Learning Algorithms de David J.C. MacKay
- Convex Optimization de Stephen Boyd et Lieven Vandenberghe
- Natural Image Statistics de Aapo Hyvärinen, Jarmo Hurri et Patrik O. Hoyer
- ▶ The Quest for Artificial Intelligence A History of Ideas and Achievements de Nils J. Nilsson
- Gaussian Processes for Machine Learning de Carl Edward Rasmussen et Christopher K. I. Williams
- Introduction to Information Retrieval de Christopher D. Manning, Prabhakar Raghavan et Hinrich Schütze