Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} -4 \\ -1 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 0 \\ -3 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$$
 (1)

1 Vectors

parameters	values	description	
m ₁	$\begin{pmatrix} 4 \\ -2 \end{pmatrix}$	AB	
\mathbf{m}_2	$\begin{pmatrix} -5 \\ 8 \end{pmatrix}$	ВС	
m ₃	$\begin{pmatrix} 1 \\ -6 \end{pmatrix}$	CA	
A - B	4.47	length of AB	
B-C	9.43	length of BC	
C - A	6.08	length of CA	
$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}$	3	non collinear	
n ₁	$\begin{pmatrix} -2 \\ -4 \end{pmatrix}$	AB	
c_1	12		
n ₂	$\binom{8}{5}$	ВС	
c_2	-15		
n ₃	$\begin{pmatrix} -6 \\ -1 \end{pmatrix}$	CA	
c_3	25		
Area	11	Area of Triangle	
∠A	126.03°		
∠B	31.43°	Angles	
∠C	22.54°		

TABLE 1: Vectors.

Fig. 1: triangle plotted using python

2 Median

parameters	value	description		
D	$\begin{pmatrix} -2.5\\1 \end{pmatrix}$	BC midpoint		
E	$\begin{pmatrix} -4.5\\2 \end{pmatrix}$	CA midpoint		
F	$\begin{pmatrix} -2 \\ -2 \end{pmatrix}$	AB midpoint		
m ₄	$\begin{pmatrix} 1.5 \\ 2 \end{pmatrix}$	AD		
n ₄	$\begin{pmatrix} 2 \\ -1.5 \end{pmatrix}$			
c_4	-6.5			
m ₅	$\begin{pmatrix} -4.5 \\ 5 \end{pmatrix}$	BE		
n ₅	$\begin{pmatrix} 5 \\ 4.5 \end{pmatrix}$			
c_5	-13.5			
m ₆	$\begin{pmatrix} 3 \\ -7 \end{pmatrix}$	CF		
n ₆	$\begin{pmatrix} -7 \\ -3 \end{pmatrix}$			
c_6	20			
G	$\begin{pmatrix} -3\\0.33 \end{pmatrix}$	Centroid		
$\frac{\underline{BG}}{\underline{GE}}$ \underline{CG} \underline{GF} \underline{AG} \underline{GD}	2	Division ratio by G		
	2	collinear		
$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{C} & \mathbf{F} & \mathbf{G} \end{pmatrix}$				

TABLE 2: Median.

Fig. 3: altitudes plotted using python

4 Perpendicular Bisector

description

value

parameters

3 ALTITUDE

			parameters	varac	description
			m ₁₀	(8) (5)	A.D.
naramatars	value	description	n ₁₀	$\begin{pmatrix} -5 \\ 8 \end{pmatrix}$	AD_1
parameters		description	Cia	20.5	1
$\mathbf{D_1}$	$\begin{pmatrix} -2.02 \\ 0.24 \end{pmatrix}$	Foot of altitude from A	<i>c</i> ₁₀	(6)	
_	(-3.57)		. m ₁₁	(1)	D.C.
$\mathbf{E_1}$	(-3.59)	Foot of altitude from B	n ₁₁	$\begin{pmatrix} -1 \\ \cdot \end{pmatrix}$	BE_1
$\mathbf{F_1}$	(-7.2)	Foot of altitude from C		(6)	
11	(0.6)	root of attitude from C	c_{11}	16.5	
m ₇	(1.98) 1.24)		m ₁₂	$\begin{pmatrix} 2 \\ 4 \end{pmatrix}$	GF.
n ₇	$\begin{pmatrix} 1.24 \\ -1.98 \end{pmatrix}$	AD_1	n ₁₂	$\begin{pmatrix} -4 \\ 2 \end{pmatrix}$	CF_1
c_7	-2.97		c ₁₂	4	
m ₈	$\begin{pmatrix} -3.57 \\ -0.59 \end{pmatrix}$	D.C.	O	$\begin{pmatrix} 0.41 \\ 2.82 \end{pmatrix}$	Circumcentre
n ₈	(-0.59)	BE_1	$ \mathbf{O} - \mathbf{A} $		
0	(3.57)		$ \mathbf{O} - \mathbf{B} $	5.02	OA OB OC B
c_8	-10.7		$ \mathbf{O} - \mathbf{C} $	5.83	OA = OB = OC = R
	(-2.2)		R		
\mathbf{m}_{9}	(-4.4)	CE	∠BOC	107.95°	POG 2 PAG
	(-4.4)	CF_1	∠BAC	126.03°	$\angle BOC = 2\angle BAC$
n ₉	(2.2)		∠AOC	62.86°	.10G 2.1PG
<i>C</i> 9	33		∠ABC	31.43°	$\angle AOC = 2\angle ABC$
Н	(-9.82)	Orthocentre	∠AOB	314.91°	$\angle AOB = 2\angle BCA$
n	(-4.64)		∠BCA	22.54°	

TABLE 3: Altitude.

TABLE 4: Perpendicular Bisector.

Fig. 4: perpendicular bisectors plotted using python

5 Angle Bisector

parameters	value	description	
m ₁₃	$\begin{pmatrix} -0.73 \\ -0.54 \end{pmatrix}$	AI	
n ₁₃	$\begin{pmatrix} -0.54\\ 0.73 \end{pmatrix}$		
c_{13}	1.43		
m ₁₄	$\begin{pmatrix} -1.42 \\ 1.29 \end{pmatrix}$		
n ₁₄	$\begin{pmatrix} -1.29 \\ -1.42 \end{pmatrix}$	BI	
c_{14}	4.27		
m ₁₅	$\begin{pmatrix} -0.69 \\ 1.83 \end{pmatrix}$		
n ₁₅	$\begin{pmatrix} -1.83 \\ -0.69 \end{pmatrix}$	CI	
c_{15}	5.7		
I	$\begin{pmatrix} -3 \\ -0.27 \end{pmatrix}$	Incentre	
\mathbf{D}_3	$\begin{pmatrix} -2.07 \\ 0.32 \end{pmatrix}$	Point of contact with BC	
E_3	$\begin{pmatrix} -4.09 \\ -0.45 \end{pmatrix}$	Point of contact with AC	
$\mathbf{F_3}$	$\begin{pmatrix} -3.50 \\ -1.25 \end{pmatrix}$	Point of contact with AB	
$ I-D_3 $			
$\ I-E_3\ $		10 10 10	
$ I-F_3 $	1.1	$ID_3 = IE_3 = IF_3 = r$	
r			
∠BAI	62.019	$\sqrt{DAI} = \sqrt{CAI}$	
∠CAI	63.01°	$\angle BAI = \angle CAI$	
∠ABI	15.71°	ADI = ADI	
∠CBI	15./1	$\angle ABI = \angle CBI$	
∠ACI	11.27°	$\angle ACI = \angle BCI$	
∠BCI	11.27		

TABLE 5: Angle Bisectors.

Fig. 5: Angle bisectors plotted using python