Curve Fitting Conceptual Expansion

In this lecture you will learn about some of the key ideas in conceptual expansion of the curve fitting

Fitting a Line Passing Through Origin

- y = m x
- $L(m) = \sum_{i=1}^{i=N} (y_i m x_i)^2$

•
$$X = \begin{bmatrix} x_1 \\ \dots \\ x_N \end{bmatrix}_{N \times 1}$$
, $Y = \begin{bmatrix} y_1 \\ \dots \\ y_N \end{bmatrix}_{N \times 1}$, $W = [m]_{1 \times 1}$

- $L([m]) = (XW Y)^T(XW Y)$
- $\nabla L = \left[\frac{\partial L}{\partial m}\right] / / \text{It's a function}$
- $W_{(new)} = W_{(old)} \nabla L|_{W=W_{(old)}}$

Squared error typ

Fitting a Line – slope and intercept

•
$$y = m \ x + c$$

• $L(m) = \sum_{i=1}^{i=N} (y_i - (m \ x_i + c))^2$ • $\nabla L = \begin{bmatrix} \frac{\partial L}{\partial m} \\ \frac{\partial L}{\partial c} \end{bmatrix} / \text{It's a function}$
• $X = \begin{bmatrix} x_1 & 1 \\ \dots \\ x_N & 1 \end{bmatrix}_{N \times 2}$, $Y = \begin{bmatrix} y_1 \\ \dots \\ y_N \end{bmatrix}_{N \times 1}$, • $W_{(new)} = W_{(old)} - \nabla L|_{W = W_{(old)}}$
• $U = \begin{bmatrix} m \\ c \end{bmatrix}_{2 \times 1}$ • $U = \begin{bmatrix} m \\ c \end{bmatrix}_{2 \times 1}$ • $U = \begin{bmatrix} m \\ c \end{bmatrix}_{2 \times 1}$ • $U = \begin{bmatrix} m \\ c \end{bmatrix}_{2 \times 1}$ • $U = \begin{bmatrix} m \\ c \end{bmatrix}_{2 \times 1}$ • $U = \begin{bmatrix} m \\ c \end{bmatrix}_{2 \times 1}$ • $U = \begin{bmatrix} m \\ c \end{bmatrix}_{2 \times 1}$ • $U = \begin{bmatrix} m \\ c \end{bmatrix}_{2 \times 1}$ • $U = \begin{bmatrix} m \\ c \end{bmatrix}_{2 \times 1}$ • $U = \begin{bmatrix} m \\ c \end{bmatrix}_{2 \times 1}$ • $U = \begin{bmatrix} m \\ c \end{bmatrix}_{2 \times 1}$ • $U = \begin{bmatrix} m \\ c \end{bmatrix}_{2 \times 1}$ • $U = \begin{bmatrix} m \\ c \end{bmatrix}_{2 \times 1}$ • $U = \begin{bmatrix} m \\ c \end{bmatrix}_{2 \times 1}$ • $U = \begin{bmatrix} m \\ c \end{bmatrix}_{2 \times 1}$ • $U = \begin{bmatrix} m \\ c \end{bmatrix}_{2 \times 1}$

Squared error typ

Fitting a Parabola?

$$\bullet \ y = a \ x^2 + b \ x + c$$

•
$$L(a,b,c) = \sum_{i=1}^{i=N} (y_i - (a x_i^2 +$$

Fitting a Cubic curve?

•
$$y = a x^3 + b x^2 + c x + d$$

•
$$L(m) = \sum_{i=1}^{i=N} (y_i - (a x_i^3 + b x_i^2 +$$

Fitting a Degree-K polynomial?

•
$$y = a_k x^k + \dots + a_0$$

• $L(a_k, \dots, a_0) = \sum_{i=1}^{i=N} (y_i - \sum_{j=0}^k a_j x^j)^2$
• $W = \begin{bmatrix} a_k \\ \dots \\ a_0 \end{bmatrix}_{(k+1) \times 1}$
• $f(X) = X \times W$

•
$$X = \begin{bmatrix} x_1^k \dots x_1^2 & x_1^1 & 1 \\ & \dots & \\ x_N^k \dots x_N^2 & x_N^1 & 1 \end{bmatrix}_{N \times (k+1)}$$
 • $f(X) = X \times W$

•
$$Y = \begin{bmatrix} y_1 \\ \dots \\ y_N \end{bmatrix}_{N \times 1}$$

$$\bullet \ W = \begin{bmatrix} a_k \\ \dots \\ a_0 \end{bmatrix}_{(k+1) \times 2}$$

•
$$f(X) = X \times W$$

•
$$L(W) = (XW - Y)^T(XW - Y)$$

•
$$\nabla L = \begin{bmatrix} \frac{\partial L}{\partial a_k} \\ \dots \\ \frac{\partial L}{\partial a_0} \end{bmatrix}$$
 //It's a function

•
$$W_{(new)} = W_{(old)} - \eta \nabla L|_{W=W_{(old)}}$$
 squared error the squared error than the

Steepest Descent for Multi Variate Loss function

Steepest Descent for Multi Variate for Squared Error Loss function

$$W_{(new)} = W_{(old)} - \eta X^{T}(XW - Y)$$
Multi Variate

Squared error type

What is Linear About

PARABOLA Fitting??????

What is Linear About

Parabola Fitting??????

AMBIGUOUS TERMINOLOGY NEEDS SOME CLARIFICATION

Expand the Concept of Curve Fitting

Data, Label, Parameter – Simple supervised case

Fitting a Degree-K polynomial? → ANY X

Fitting a Degree-K polynomial?
$$\rightarrow$$
 All X

• $y = a_k x^k + \dots + a_0$
• $L(m) = \sum_{i=1}^{i=N} (y_i - \sum_{j=0}^k a_j x^j)^2$
• $W = \begin{bmatrix} a_0 \\ \dots \\ a_k \end{bmatrix}_{(k+1)\times 1}$
• $X = \begin{bmatrix} x_1^k \dots x_1^2 & x_1^1 & 1 \\ \dots & \dots & \dots \\ x_N^k \dots x_N^2 & x_N^1 & 1 \end{bmatrix}_{N\times (k+1)}$
• $V = \begin{bmatrix} y_1 \\ \dots \\ y_N \end{bmatrix}_{N\times 1}$
• $V = \begin{bmatrix} y_1 \\ \dots \\ y_N \end{bmatrix}_{N\times 1}$
• $V = \begin{bmatrix} y_1 \\ \dots \\ y_N \end{bmatrix}_{N\times 1}$
• $V = \begin{bmatrix} y_1 \\ \dots \\ y_N \end{bmatrix}_{N\times 1}$
• $V = \begin{bmatrix} y_1 \\ \dots \\ y_N \end{bmatrix}_{N\times 1}$
• $V = \begin{bmatrix} y_1 \\ \dots \\ y_N \end{bmatrix}_{N\times 1}$
• $V = \begin{bmatrix} y_1 \\ \dots \\ y_N \end{bmatrix}_{N\times 1}$
• $V = \begin{bmatrix} y_1 \\ \dots \\ y_N \end{bmatrix}_{N\times 1}$
• $V = \begin{bmatrix} y_1 \\ \dots \\ y_N \end{bmatrix}_{N\times 1}$
• $V = \begin{bmatrix} y_1 \\ \dots \\ y_N \end{bmatrix}_{N\times 1}$
• $V = \begin{bmatrix} y_1 \\ \dots \\ y_N \end{bmatrix}_{N\times 1}$
• $V = \begin{bmatrix} y_1 \\ \dots \\ y_N \end{bmatrix}_{N\times 1}$
• $V = \begin{bmatrix} y_1 \\ \dots \\ y_N \end{bmatrix}_{N\times 1}$

any... X Formulation

Representation

Linear Model

•
$$L(W) = (XW - Y)^T (XW - Y)$$

• $\nabla L = \begin{bmatrix} \frac{\partial L}{\partial w_1} \\ \vdots \\ \frac{\partial L}{\partial w_k} \end{bmatrix}$ //It's a function

•
$$W_{(new)} = W_{(old)} - \nabla L|_{W=W_{(old)}}$$

This is the Linear part of the Squared error type s

Input point x is a vector k x 1 matrix

Linear Model

Linear Model Multi-Variate

• where, $g(A_{m \times m}) \rightarrow scalar$

$$\bullet Y_{N\times m} = \begin{bmatrix} y_{11}, y_{1,2} \dots y_{1,m} \\ \dots \\ y_{N1}, y_{N,2} \dots y_{N,m} \end{bmatrix}_{N\times m}, \qquad \bullet \nabla L_{k\times m} = \begin{bmatrix} \frac{\partial L}{\partial w_{1,1}}, \dots, \frac{\partial L}{\partial w_{1,m}} \\ \dots \\ \frac{\partial L}{\partial w_{k,1}}, \dots, \frac{\partial L}{\partial w_{k,m}} \end{bmatrix} / / \text{It's a}$$

$$\begin{bmatrix} w_{1,1} \dots w_{1,m} \\ \end{bmatrix}$$
function

•
$$W_{(new)} = W_{(old)} - \eta \nabla L|_{W=W_{(old)}}$$

•
$$L(W) = g((XW - Y)^T(XW - Y))$$

Brain storm applications...

Depends on X and Y

- For example, Audio recording → file size prediction
- For example, Image → Cat-like-picture-ness prediction [we will see classification formulation later]
- For example, Video → A given scene-like-ness prediction [we will see classification formulation later]
- For example, Text → A given meaning-like-ness prediction [we will see classification formulation later]
- For example, Measurements \rightarrow A given *concept*-like-*ness* prediction
- For example, Housing colony data

 House price prediction (California house price prediction)

Depends on X and Y (multi variate)

The whole of the deep neural networks is an extension of this concept!

- Map one image to another
- Given a set of images, *fill-in the gap* regions of an image
- Given a set of audio clips, fill in the gaps of an audio clip
- Given a sentence in one language, translate a sentence in another language
- Given an image, map it to text sentence
- Given a text label, map it to generate an image
- Hundreds of applications... so many use cases, so many domains...

...people started to think that it is the end of the world? But not!! {Refer to what is and what is not ml slides}

Given a vector map it to Another vector