Spam Filtering Techniques for Short Message Service

Adrien Besson and Dimitris Perdios

Signal Processing Laboratory (LTS5) École Polytechnique Fédérale de Lausanne (EPFL)

Adaptation and Learning Project Lausanne, Switzerland June 4, 2018

Outline

Introduction

Context

Data Exploration

Feature Extraction

The Bag-of-Words Representation

The Term Frequency-Inverse Document Frequency Weighting

Comparison of Several Classifiers

Considered Classifiers

Experimental Settings

Results

On Sensitivity and Specificity

Increasing the Sensitivity

Results

Online Learning Strategies

Motivations and Strategies

Experiments

Conclusion

Introduction

Context

- ► Short message service (SMS) very popular communication service → 15 M SMS sent per minute in the world in 2017
- Spam is unwanted message sent in bulk to a group of recipients
 - Intrusive
 - Waste of money, time and network bandwidth
- ► SMS filtering still at relatively early stage
 - No publicly available dataset of sufficient size
 - Current methods inherit from Email spam filtering techniques
- Supporting code: https://github.com/dperdios/sms-spam-filtering

Introduction Data Exploration

SMS spam collection dataset

- 5572 tagged SMS extracted from Grumbletext Web site / Caroline Tag's PhD thesis / SMS Spam Corpus v.
 0.1 Big
- ▶ Dataset composed of 4825 ham (86%) and 747 spam (14%)

Most represented words in the dataset

- ➤ Stop-words: Most commonly used english words
- Uninformative words that have to be removed

Introduction

Data Exploration – Ham

Okard gonna o Salesman

pay walmart oniletter people SUNDAY that a cere words Minnamin Pity

was wear Available lotta or request jurong brother urself Well

try time bitching rite want Anything months yup shuh leave texted Sony Aft Ahhh heap surfing gas Even Sot us sleeping

went want Anything months yup shuh leave texted Sony Aft Ahhh heap surfing gas Even Sot us sleeping

went want Anything months yup shuh leave texted Sony Aft Ahhh heap surfing gas Even Sot us sleeping

went want Anything months yup shuh leave texted Sony Aft Ahhh heap surfing gas Even Sot us sleeping

went want Anything months yup shuh leave texted Sony Aft Ahhh heap surfing gas Even Sot us sleeping Indians Oru later Nigeria egg look thaattached da already Carask O loops Pshew kane dump tell brain Melle lar busCool wif back packing goes structured busching back next packing goes structured by think object Roff high aro busched busc jacketreally lei di clear trying Waitvaguely jumpers

Introduction

Data Exploration – Spam

Feature Extraction

The Bag-of-Words Representation

Motivation

A document considered as a sequence of symbols cannot be used as input of a machine learning algorithm \Rightarrow need a **representation**

The Bag-Of-Words representation

Document composed of *D* words and **vocabulary** composed of *M* words:

$$\mathbf{x} = \sum_{i=1}^{D} \mathbf{x}_{d_i},$$

 $\mathbf{x}_{d_i} \in \mathbb{R}^M$ one-hot vector with 1 at the entry of d_i in the vocabulary

▶ Given a **collection** of *N* documents $\rightarrow X \in \mathbb{R}^{N \times M}$

SMS dataset

- A SMS is a document
- ► The vocabulary is extracted from the training set

Feature Extraction

The Term Frequency-Inverse Document Frequency Weighting

Motivation

- Preferable to work with frequencies than occurrences
- ► Need for normalized features

Tf-idf weighting

ightharpoonup Term-frequency of the document n of size D_n in the collection

$$tf_n = \frac{1}{D_n}$$

▶ Inverse-document-frequency of the word d_i in the collection

$$idf_{d_i} = \log \frac{N}{df_{d_i}}$$

 $df_{d_i} = \#$ documents containing d_i

▶ Tf-idf weighting of the word d_i in the document n

$$T(n, d_i) = tf_n \times idf_{d_i}$$

Comparison of Several Classifiers

Considered Classifiers

Туре	Method	Main parameters
k-nearest neighbors	kNN	Number of neighbors
Multinomial Naive Bayes	MNB	Additive smoothing parameter
	LR	_
Logistic Regression	$LR ext{-}\ell_2$	Regularization parameter
	$LR\text{-}\ell_1$	Regularization parameter
	SVM-L	
Support Vector Machine	SVM-R	Reg. param. on slack variable
	SVM-S	
	DT	Minimum number of samples at leaf
Trees	RF	Number of trees in the forest
	AB	Number of estimators
Neural Network	MLP	Hidden-layer sizes

Comparison of Several Classifiers

Experimental Settings

General remarks:

- No dimensionality reduction of the data
- ► Even though data imbalanced we use a threshold of 0.5 for our Bayes plug-in estimator
- ▶ Dataset divided into a training set (80 %) and test set (20 %)
- ▶ Hyper-parameter grid search using 10-fold cross-validation on training set

Metrics:

- ► Misclassification error (ME): $ME = \frac{1}{N_t} \sum_{i=1}^{N_t} \mathbb{I}\left(c\left(\boldsymbol{h}_i\right) \neq \gamma\left(i\right)\right)$
- ► Sensitivity (SE): Probability of predicting **spam** given that it is **spam**

$$SE = \frac{1}{\# \text{spam}} \sum_{i=1}^{N_t} \mathbb{I}\left(c\left(\boldsymbol{h}_i\right) = \gamma\left(i\right)\right) \times \mathbb{I}\left(\gamma\left(i\right) = \text{spam}\right)$$

► Specificity (SP): Probability of predicting ham given that it is ham

$$SP = \frac{1}{\#\mathsf{ham}} \sum_{i=1}^{N_t} \mathbb{I}\left(c\left(\boldsymbol{h}_i\right) = \gamma\left(i\right)\right) \times \mathbb{I}\left(\gamma\left(i\right) = \mathsf{ham}\right)$$

Comparison of Several Classifiers Results

On Sensitivity and Specificity Increasing the Sensitivity

Motivations

- ▶ Optimization of a symmetric loss on an imbalanced dataset → good predictive performance on the majority class and poor result on the other class
- One may want to increase sensitivity

Methods

- ▶ Decreasing the threshold of the Bayes classifier
- ▶ Resampling:
 - Downsampling of the majority class
 - Upsampling of the minority class

Proposed experiments

- 1. Random downsampling of the ham class to have a balanced dataset
- 2. Random upsampling with replacement of the **spam** class to have a balanced dataset

On Sensitivity and Specificity

Results - Downsampling the Majority Class

On Sensitivity and Specificity Results – Upsampling the Minority Class

Online Learning Strategies

Motivations and Strategies

Motivations

- ► Spam content is obviously changing with time: spammers try to fool spam filtering algorithms
- Useful to design algorithm able to adapt to new content labeled by users
- ▶ Main difficulty in designing an online strategy: the vocabulary size

Naive strategy

- ▶ Increasing vocabulary size using all the words of the training set
- ▶ Not viable in longer-term due to memory and computational issues

Windowed-time strategy

- Fixed vocabulary size using only the most frequent words of the training set
- Training set windowed in time
 - Should be quite efficient
 - ▶ But requires to be fitted quite often

Online Learning Strategies

Experiments

Considerations

- We do not have access to time information
- Not possible to analyze the evolution of the vocabulary
- ► Relatively small dataset

Online scenario

- Naive strategy (increasing training set)
- Labeled messages received by batches of 200
- Test set fixed at the beginning
- ► Fast classifiers (LR-ℓ₂, MNB)

Conclusion

- ► Several SMS spam filtering methods have been studied from the feature extraction step to the classification
- ightharpoonup State-of-the-art classifiers work well with a misclassification error of less than 5 %
- ▶ Resampling methods can be used to counter class imbalance but impact the classification error → trade-off required
- Online strategies may have to be adapted to deal with the increasing vocabulary size
- ► More advanced feature extraction methods (e.g. word embeddings) and classification methods (e.g. deep neural networks)

THANK YOU FOR YOUR ATTENTION!

Adrien Besson and Dimitris Perdios

• https://github.com/dperdios/sms-spam-filtering

Signal Processing Laboratory (LTS5)

Attps://lts5www.epfl.ch

École Polytechnique Fédérale de Lausanne

