# Lecture 3B: BJT Circuits

**EE 103** 

2023-24/I (Autumn)

Joseph John (j.john@iitb.ac.in, jjohn@ee.iitb.ac.in)

#### Bipolar Junction Transistor (BJT)





| Parameter            | ВЈТ                                                                                                                          |
|----------------------|------------------------------------------------------------------------------------------------------------------------------|
| Types                | Based on the construction, BJTs are classified into two types:  NPN and PNP                                                  |
| Terminals            | BJT has three terminals viz. emitter, base and collector.                                                                    |
| Controlling quantity | BJT is a current controlled device Base current ( $I_B$ ) controls the Collector Current ( $I_C$ )                           |
| Applications         | BJT is used in Following applications <ol> <li>Amplifiers</li> <li>Oscillators</li> <li>Switches</li> <li>Buffers</li> </ol> |

## Modes of Operation

- BJT has Three terminals, Two junctions:
  - Base-Emitter Junction and Base Collector Junction
- Base-Emitter is the main controlling junction
- Three main modes of operation:
  - Cut-off: Both Base-Emitter and Base-Collector junctions reverse-biased
  - Active: Base-Emitter junction is forward-biased, Base-Collector junction reverse biased.
  - Saturation: Both Base-Emitter and Base-Collector junctions are forwardbiased



**Figure 6.3** Current flow in an *npn* transistor biased to operate in the active mode. (Reverse current components due to drift of thermally generated minority carriers are not shown.)

### Basic Equations

- $I_E = I_B + I_C (KCL) always true$
- $\beta = I_C/I_B$  (Current gain in the Common-Emitter mode)
  - β >> 1
  - Common Emitter: Input applied between Base and Emitter, Output between Collector and Emitter. Emitter is common to both input and output.
- $\alpha = I_C/I_E$  (Current gain in the Common-Base mode)
  - $\alpha$  < 1
  - Common Base: Input applied between Emitter and Base, Output between Collector and Base. Base is common to both input and output.
- $\beta = \alpha/(1-\alpha)$ ;  $\alpha = \beta/(\beta+1)$

#### BJT Inverter Circuit

#### **BJT** Inverter

- Case-1  $V_{IN} < V_{BE}$  (Less than PN Junction Conduction Voltage)  $I_B = 0, I_C = 0. \rightarrow V_{out} = V_{CE} = V_{CC}$  (BJT is said to be Cut-off)
- Case-2  $V_{IN} > V_{BE}$  BJT Conducts, with  $I_B > 0$

$$\begin{split} I_B &= (V_{IN}\text{-}V_{BE}) / \ R_B \qquad \text{and} \qquad I_C = \beta \ I_B \Rightarrow V_{OUT} = V_{CE} = V_{CC}\text{-}\ I_C R_C \\ V_{CEmin} &= V_{CE\ Sat} = 0.2\ V \qquad \qquad I_{CMax} = (V_{CC}\text{-}V_{CESat}) / \ R_C = \beta \ I_{BSat} \\ \text{At that point } V_{BE} &= 0.7\ V \quad \text{and} \quad \text{Corresponding } V_{INH} = I_{BSat}\ R_B + V_{BE} \end{split}$$

(Active/ Linear Region)

• Case-3  $V_{IN}>V_{INH}$   $I_B=(V_{IN}\text{-}V_{BESat})/\ R_B \qquad \text{and} \quad I_C=I_{CMax} \qquad \text{But} \quad I_B\ \beta>I_{CMax}$  (BJT is said to be in Saturation)





### BJT DC Circuits