

Decizie și Estimare în Prelucrarea Informației

Capitolul II. Elemente de teorie statistică a detecției

Introducere

- Detecția semnalelor = a decide care semnal este prezent dintre două sau mai multe posibilități
 - inclusiv că nu există nici un semnal
- Avem la dispoziție observații cu zgomot
 - semnalele sunt afectate de zgomot

Schema bloc a detecției semnalelor

Figure 1: Signal detection model

Conţinut:

- Sursa de informație: generează mesajele a_n cu probabilitățile $p(a_n)$
- ▶ Modulator: transmite semnalul $s_n(t)$ la mesajul a_n
- ► Canal: adaugă zgomot aleator
- **E**șantionare: prelevă eșantioane din semnalul $s_n(t)$
- ightharpoonup Receptor: **decide** ce mesaj a_n s-a fost receptionat

Scenarii practice

- Transmisie de date
 - nivele constante de tensiune (e.g. $s_n(t) = constant$)
 - ▶ modulație PSK (Phase Shift Keying): $s_n(t)$ = cosinus cu aceeași frecvență dar faze inițiale diferite
 - modulație FSK (Frequency Shift Keying): $s_n(t) = \text{cosinus cu frecvențe}$ diferite
 - modulație OFDM (Orthogonal Frequency Division Multiplexing): caz particular de FSK

Radar

- ▶ se emite un semnal; în cazul unui obstacol, semnalul se reflectă înapoi
- receptorul așteaptă posibilele reflecții ale semnalului emis și decide
 - nu este prezentă o reflecție -> nici un obiect
 - semnalul reflectat este prezent -> obiect detectat

Generalizări

- ▶ Decizie între mai mult de două semnale
- Numărul de eșantioane (observații):
 - un singur eşantion
 - mai multe esantioane
 - observarea întregului semnal continuu, pentru un timp T

Detecție unui semnal constant, 1 eșantion

- Cel mai simplu caz: detecția unui semnal constant afectat de zgomot, folosind un singur eșantion
 - ▶ două mesaje a₀ și a₁
 - mesajele sunt modulate cu semnale constante
 - pentru a_0 : se emite $s_0(t) = 0$
 - pentru a_1 : se emite $s_1(t) = A$
 - peste semnal se suprapune zgomot aditiv
 - esantionarea preia un singur esantion
 - decizie: se compară eșantionul cu un prag

Decizia pe bază de prag

- ▶ Valoarea eșantionului este r = s + n
 - s este semnalul adevărat ($s_0 = 0$ or $s_1 = A$)
 - ▶ *n* este un eșantion de zgomot
- n este o variabilă aleatoare continuă
- r este de asemenea o variabilă aleatoare
 - ▶ cum depinde distribuția lui r de cea a lui n
- ▶ Decizia se ia prin compararea lui r cu un prag T:
 - dacă r < T, se ia decizia D_0 : semnalul adevărat este s_0
 - ▶ dacă $r \ge T$, se ia decizia D_1 : semnalul adevărat este s_1

Ipoteze

- Receptorul decide între două ipoteze:
 - ▶ H_0 : semnalul adevărat este s_0 (s-a transmis a_0)
 - \vdash H_1 : semnalul adevărat este s_1 (s-a transmis a_1)
- Rezultate posibile
 - 1. Semnalul nu este prezent (s_0) , si nu este detectat
 - ▶ Decizia D_0 în ipoteza H_0
 - ▶ Probabilitatea sa este $P_n = P(D_0 \cap H_0)$
 - 2. **Alarmă falsă**: semnalul nu este prezent (s_0) , dar este detectat (eroare!)
 - ▶ Decizia D_1 în ipoteza H_0
 - ▶ Probabilitatea este $P_{fa}P(D_1 \cap H_0)$
 - 3. **Ratare**: semnalul este prezent (s_1) , dar nu este detectat (eroare!)
 - ▶ Decizia D_0 în ipoteza H_1
 - ▶ Probabilitatea este $P_m = P(D_0 \cap H_1)$
 - 4. Semnal detectat corect: semnalul este prezent, și este detectat
 - ▶ Decizia D_1 în ipoteza H_1
 - ▶ Probabilitatea este $P_d = P(D_1 \cap H_1)$

Criteriul plauzibilității maxime (Maximum Likelihood)

- Se alege ipoteza care pare cea mai plauzibilă dat fiind eșantionul observat r
- ▶ Plauzibilitatea ("likelihood") unei observații r = densitatea de probabilitate a lui r dată fiind ipoteza H_0 sau H_1
- ▶ Plauzibilitatea în cazul ipotezei H_0 : $w(r|H_0)$
 - lacktriangleright r este doar zgomot, deci provine din distribuția zgomotului de pe canal
- ▶ Plauzibilitatea în cazul ipotezei H_1 : $w(r|H_1)$
 - ▶ r este A + zgomot, deci valoarea sa provine din distribuția (A + zgomot)
- Raportul de plauzibilitate

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} 1$$

Interpretare grafică

- ► Fie cazul în care zgomotul are distribuție normală
- ▶ Desen: cele două densități de probabilitate pentru H_0 și H_1

Decizia pe bază de prag

- ightharpoonup Decizie ML pe baza raportului de plauzibilitate = compararea lui r cu un prag T
- ▶ Pragul = punctul de intersecție a celor două distribuții

Zgomot cu distribuție normală

- lacktriangle Caz particular: zgomotul are distribuția normală $\mathcal{N}(0,\sigma^2)$
- ▶ Raportul de plauzibilitate este $\frac{w(r|H_1)}{r|H_0} = \frac{e^{-\frac{(r-A)^2}{2\sigma^2}}}{e^{-\frac{r^2}{2\sigma^2}}} \underset{H_0}{\overset{H_1}{\gtrless}} 1$
- ▶ Pentru distribuția normală, e preferabil să aplicăm logaritmul natural
 - logaritmul este o funcție monoton crescătoare, deci nu schimbă rezultatul comparatiei
 - ▶ dacă A < B, atunci log(A) < log(B)
- log-likelihood al unui observații = logaritmul plauzibilității (likelihood)
 - ▶ de obicei este vorba de logaritmul natural, dar poate fi orice bază

Testul "log-likelihood" în cazul ML

 Pentru zgomot cu distribuție normală, decizia ML înseamnă compararea log-likelihood

$$\frac{(r-A)^2}{r^2} \underset{H_0}{\overset{H_1}{\geqslant}} 1$$

Se extrage radicalul

$$\frac{|r-A|}{|r|} \underset{H_0}{\overset{H_1}{\geqslant}} 1$$

- |r A| = distanța de la r la A, |r| = distanța de la r la 0
- ▶ Decizie ML în zgomot normal: se alege valoarea 0 sau A cea mai apropiată de r
 - principiu foarte general, întâlnit în multe alte scenarii
 - principiul cel mai apropiat vecin ("nearest neighbor")
 - receptorul ML se mai numește receptor de distanță minimă ("minimum distance receiver")
 - echivalent cu setarea unui prag $T = \frac{A}{2}$

Generalizări

- Dacă zgomotul are altă distribuție?
 - ▶ Pragul *T* rămâne punctul de intersecție, oricare ar fi acela
 - ▶ Pot fi mai multe puncte de intersecție, deci mai multe praguri
 - ightharpoonup axa $\mathbb R$ este împărțită în **regiuni de decizie** R_0 și R_1
- ▶ Dacă distribuția zgomotului este diferită în cazurile H₀ și H₁?
 - Pragul T (sau pragurile) rămân punctele de intersecție, oricare ar fi acelea
- ▶ Dacă semnalul $s_0(t)$ (pentru ipoteza H_0 , simbolul a_0) nu este 0, ci o altă valoare constantă B?
 - Pragul T (sau pragurile) rămân punctele de intersecție, dar distribuțiile sunt centrate pe B și A
 - Pentru zgomot gaussian, se alege B sau A, cel mai apropiat de eșantion (pragul este la mijlocul distanței dintre B și A)

Generalizări

- Mai mult de două semnale?
 - ▶ De ex. 4 nivele de semnal posibile: -6, -2, 2, 6
 - Se alege cea mai plauzibilă ipoteză, pe baza celor 4 plauzibilități
 - ▶ Nu mai există un singur prag T, sunt în mod necesar mai multe

Exercitii

- ▶ Un semnal poate avea două valori posibile, 0 sau 5. Receptorul ia un singur eșantion cu valoarea r=2.25
 - 1. Dacă zgomotul este gaussian, ce semnal este detectat pe baza criteriului plauzibilității maxime?
 - 2. Dar dacă semnalul 0 este afectat de zgomot gaussian $\mathcal{N}(0,0.5)$, iar semnalul 5 de zgomot uniform $\mathcal{U}[-4,4]$?
 - 3. Repetați a. și b. dacă valoarea 0 se înlocuiește cu -1
- ▶ Un semnal poate avea patru valori posibile: -6, -2, 2, 6. Fiecare valoare durează timp de o secundă. Semnalul este afectat de zgomot alb cu distribuție normală. Receptorul ia un singur eșantion pe secundă. Folosind criteriul plauzibilității maxime, decideți ce semnal s-a transmis, dacă receptorul primește eșantioanele următoare:

$$4, 6.6, -5.2, 1.1, 0.3, -1.5, 7, -7, 4.4$$

Probabilități de eroare condiționate

- Putem calcula probabilitățile de eroare condiționate
- Fie regiunile de decizie:
 - ▶ R_0 : dacă $r \in R_0$, decizia este D_0 , de ex. (∞, T) pentru zgomot gaussian
 - ▶ R_1 : daca $r \in R_1$, decizia este D_1 , de ex. $[T, \infty)$ pentru zgomot gaussian
- ▶ Probabilitatea unei alarme false **dacă** semnalul original este $s_0(t)$

$$P(D_1|H_0) = \int_{R_1} w(r|H_0) dx$$

▶ Probabilitatea unei ratări **dacă** semnalul original este $s_1(t)$

$$P(D_0|H_1) = \int_{R_0} w(r|H_1) dx$$

- Aceste valori nu țin cont de probabilitatea ca semnalul să fie $s_0(t)$ sau $s_1(t)$
 - sunt condiționate ("dacă")

Probabilități de eroare condiționate

Figure 2: Probabilitățile deciziilor

[sursa: hhttp://gru.stanford.edu/doku.php/tutorials/sdt]

Reamintire (TCI): regula lui Bayes

► Reamintire (TCI): regula lui Bayes

$$P(A \cap B) = P(B|A) \cdot P(A))$$

- Interpretare
 - ▶ Probabilitatea P(A) este extrasă din P(B|A)
 - P(B|A) nu mai conține nici o informație despre P(A), șansele ca A chiar să aibă loc
 - ► Exemplu: P(gol | șut la poartă). Câte goluri se înscriu?

Exercițiu

- ▶ Un semnal poate avea două valori posibile, 0 sau 5. Semnalul 0 este afectat de zgomot gaussian $\mathcal{N}(0,0.5)$, iar semnalul 5 de zgomot uniform $\mathcal{U}[-4,4]$. Receptorul decide pe baza criteriului plauzibilității maxime, folosind un singur eșantion din semnal.
 - 1. Calculați probabilitatea unei decizii greșite când semnalul original este $s_0(t)$
 - 2. Calculați probabilitatea unei decizii greșite când semnalul original este $s_1(t)$

Dezavantaje ale criteriului plauzibilității maxime

- Raportul de plauzibilitate utilizează densitățile de probabilitate conditionate
 - ▶ condiționate de ipotezele H₀ sau H₁
- ▶ Condiționarea de ipotezele H_0 și H_1 ignoră probabilitatea celor două ipoteze H_0 și H_1
- ▶ Dacă $p(H_0) > p(H_1)$, am vrea să împingem pragul T înspre H_1 , și vice-versa
 - pentru că este mai probabil ca semnalul să fie $s_0(t)$
 - și de aceea vrem să "favorizăm" decizia D₀

Criteriul probabilității minime de eroare

- Se iau în calcul probabilitățile $P(H_0)$ și $P(H_1)$
- ► Se urmărește minimizarea probabilității totale de eroare P_e
 - ▶ erori = alarme false si ratări
- ► Trebuie să găsim regiunile de decizie R₀ și R₁

Probabilitatea de eroare

▶ Probabilitatea unei alarme false

$$P(D_1 \cap H_0) = P(D_1|H_0) \cdot P(H_0)$$

$$= \int_{R_1} w(r|H_0) dx \cdot P(H_0)$$

$$= (1 - \int_{R_0} w(r|H_0) dx \cdot P(H_0)$$

Probabilitatea unei ratări

$$P(D_0 \cap H_1) = P(D_0|H_1) \cdot P(H_1)$$

= $\int_{R_0} w(r|H_1) dx \cdot P(H_1)$

Suma lor este

$$P_e = P(H_0) + \int_{-\infty}^{T} [w(r|H_1) \cdot P(H_1) - w(r|H_0) \cdot P(H_0)] dx$$

Probabilitatea de eroare minimă

- lacktriangle Urmărim minimizarea P_e , adică să minimizăm integrala
- Pentru a minimiza integrala, se alege R_0 astfel încât pentru toți $r \in R_0$, termenul din integrala este **negativ**
 - integrarea pe întregul interval în care o funcție este negativă conduce la valoarea minimă
- ▶ Aṣadar, când $w(r|H_1) \cdot P(H_1) w(r|H_0) \cdot P(H_0) < 0$ avem $r \in R_0$, adică decizia D_0
- ▶ Invers, dacă $w(r|H_1) \cdot P(H_1) w(r|H_0) \cdot P(H_0) > 0$ avem $r \in R_1$, adică decizia D_1
- Astfel

$$w(r|H_1) \cdot P(H_1) - w(r|H_0) \cdot P(H_0) \underset{H_0}{\overset{H_1}{\geqslant}} 0$$

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \frac{P(H_0)}{P(H_1)}$$

Interpretare

- Similar cu criteriul plauzibilității maxime, dar depinde de probabilitățile celor două ipoteze (cazuri, simboluri)
 - ► Când una dintre ipoteze este mai probabilă decât cealaltă, pragul este împins în favoarea sa, înspre cealaltă ipoteză
- ▶ De asemenea bazat pe raportul de plauzibilitate, ca și primul criteriu

Criteriul probabilității minime de eroare - zgomot gaussian

• Presupunând că zgomotul este gaussian (normal), $\mathcal{N}(0, \sigma^2)$

$$w(r|H_1) = e^{-\frac{(r-A)^2}{2\sigma^2}}$$

 $w(r|H_0) = e^{-\frac{r^2}{2\sigma^2}}$

► Se aplică logaritmul natural

$$-\frac{(r-A)^2}{2\sigma^2} + \frac{r^2}{2\sigma^2} \underset{H_0}{\overset{H_1}{\geqslant}} \ln\left(\frac{P(H_0)}{P(H_1)}\right)$$

Echivalent

$$2rA - A^{2} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} 2\sigma^{2} \cdot \ln \left(\frac{P(H_{0})}{P(H_{1})} \right)$$

$$r \underset{H_{0}}{\overset{H_{1}}{\gtrless}} \frac{A^{2} + 2\sigma^{2} \cdot \ln \left(\frac{P(H_{0})}{P(H_{1})} \right)}{2A}$$

$$T$$

Regiuni de decizie

- ▶ Se compară eșantionul tot cu un prag *T*, dar valoarea acestuia este împinsă înspre ipoteza mai puțin probabilă
 - ▶ T depinde de raportul $\frac{P(H_0)}{P(H_1)}$
- Regiuni de decizie
 - ▶ $R_0 = (-\infty, T]$
 - $ightharpoonup R_1 = [T, \infty)$
 - pot fi diferite pentru alte tipuri de zgomot

Exerciții

- O sursă de informație furnizează două mesaje cu probabilitățile $p(a_0)=\frac{2}{3}$ și $p(a_1)=\frac{1}{3}$. Mesajele se transmit prin semnale constante cu valorile -5 (a_0) și 5 (a_1) . Semnalele sunt afectate de zgomot alb cu distribuție gaussiană $\mathcal{N}(0,\sigma^2=1)$ Receptorul ia un singur eșantion cu valoarea r. Decizia se face prin compararea valorii r cu un prag T, astfel: dacă r < T se decide că s-a transmis mesajul a_0 , altfel se decide mesajul a_1 .
 - 1. Să se găsească valoarea pragului $\mathcal T$ conform criteriul probabilității minime de eroare
 - 2. Dar dacă semnalul 5 este afectat de zgomot uniform $\mathcal{U}[-4,4]$?
 - 3. Calculați probabilitatea unei alarme false și a unei ratări

Criteriul riscului (costului) minim

- Dacă ne afectează mai mult un anume tip de erori (de ex. alarme false) decât celelalte?
- Criteriul riscului (sau costului) minim: deciziile au un cost, se minimizează costul mediu
 - $ightharpoonup C_{ij} = {\sf costul}$ deciziei D_i când ipoteza adevărată este H_j
 - ► C₀₀ = costul unei rejecții corecte
 - $C_{10} = \text{costul}$ unei alarme false
 - $ightharpoonup C_{01} = \text{costul unei ratări}$
 - ▶ C₁₁ = costul unei detecții corecte
- ▶ Definim **riscul** = costul mediu

$$R = C_{00}P(D_0 \cap H_0) + C_{10}P(D_1 \cap H_0) + C_{01}P(D_0 \cap H_1) + C_{11}P(D_1 \cap H_1)$$

► Criteriul riscului minim: se minimizează riscul R

Calcule

- ► Demonstrație la tablă
 - ▶ se folosește regula lui Bayes
- ► Concluzie: regula de decizie este

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \frac{(C_{10} - C_{00})p(H_0)}{(C_{01} - C_{11})p(H_1)}$$

Interpretare

- Similar cu primele două criterii, bazat tot pe raportul de plauzibilitate
- ► Atât probabilitățile cât și costurile pot împinge pragul T într-o parte sau alta
- ▶ Caz particular: dacă $C_{10} C_{00} = C_{01} C_{11}$, se reduce la criteriul probabilității de eroare minime
 - de ex.: dacă $C_{00} = C_{11} = 0$ și $C_{10} = C_{01}$

În zgomot gaussian

- Dacă zgomotul este gaussian (normal), se aplică logaritmul natural, ca la celelalte criterii
- ► Se obține valoarea pragului T:

$$-(r-A)^{2} + r^{2} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} \underbrace{2\sigma^{2} \cdot \ln\left(\frac{(C_{10} - C_{00})p(H_{0})}{(C_{01} - C_{11})p(H_{1})}\right)}_{C}$$

$$r \underset{H_{0}}{\overset{H_{1}}{\gtrless}} \underbrace{A^{2} + 2\sigma^{2} \cdot \ln\left(\frac{(C_{10} - C_{00})p(H_{0})}{(C_{01} - C_{11})p(H_{1})}\right)}_{T}$$

În zgomot gaussian

▶ În general, pentru un raport de plauzibilitate comparat cu K, $\frac{w(r|H_1)}{w(r|H_0)} \underset{H}{\overset{H_1}{\geqslant}} K$, pragul este

$$T = \frac{A^2 + 2\sigma^2 \cdot \ln K}{2A}$$

Exemplu

Exemplu la tablă: 0 / 5, zgomot alb $N(0,\sigma^2)$, un eșantion

Criteriul Neymar-Pearson

- ▶ Criteriul Neymar-Pearson: se maximizează probabilitatea de detecție $(P(D_1 \cap H_1))$ păstrând probabilitatea alarmei false sub o limită fixată $(P(D_1 \cap H_0) \leq \lambda)$
- ▶ Se deduce pragul T din constrângerea la limită $P(D_1 \cap H_0) = \lambda$

Exercițiu

- O sursă de informație produce două mesaje cu probabilitățile $p(a_0) = \frac{2}{3}$ și $p(a_1) = \frac{1}{3}$.
- ▶ Mesajele sunt codate ca semnale constante cu valorile -5 (a_0) și 5 (a_1).
- ► Semnalele sun afectate de zgomot alb cu distribuție *triunghiulară* în intervalul [-5, 5].
- ▶ Receptorul ia un singur eșantion r.
- ▶ Decizia se ia prin compararea r cu un prag T: dacp r < T se decide că mesajul este a_0 , altfel este a_1 .
 - 1. Găsiți pragul T conform criteriului Neymar-Pearson, pentru $P_{fa} \leq 10^{-2}$
 - 2. Care este probabilitatea de detecție corectă?

Două nivele de semnal nenule

- ▶ Dacă semnalul $s_0(t)$ nu este 0, ci are o altă valoare constantă $s_0(t) = B$?
- ▶ Distribuția zgomotului $w(r|H_0)$ va fi centrată pe B în loc de 0
- ▶ În rest, totul rămâne la fel
- ▶ Performanțele sunt determinate de diferența dintre cele două valori (A − B)
 - cazul $s_0 = 0$, $s_1 = A$ este identic cu cazul $s_0 = -\frac{A}{2}$, $s_1 = \frac{A}{2}$
- ▶ Valabil pentru toate criteriile de decizie

Semnale diferențiale sau unipolare

- ▶ Semnal unipolar: o valoare este 0, cealaltă este nenulă
 - $s_0 = 0$, $s_1 = A$
- Semnal diferențial: două valori nenule cu semne contrare, aceeași valoare absolută

•
$$s_0 = -\frac{A}{2}$$
, $s_1 = \frac{A}{2}$

► Care metodă este mai bună?

Semnale diferențiale sau unipolare

- ► Cu aceeași diferență între nivele, performanțele deciziei sunt identice
- ▶ Dar puterea medie a semnalelor diferă
- Pentru semnale diferențiale: $P = \left(\pm \frac{A}{2}\right)^2 = \frac{A^2}{4}$
- ▶ Pentru semnale unipolare: $P = P(H_0) \cdot 0 + P(H_1)(A)^2 = \frac{A^2}{2}$
 - presupunând probabilități egale $P(H_0) = P(H_1) = \frac{1}{2}$
- Semnalul diferențial necesită putere la jumătate față de cel unipolar (mai bine)

Sumar: criterii de decizie

- ▶ Am văzut: decizie între două nivele constante, bazată pe 1 eșantion *r*
- ▶ Toate criteriile au la bază un test al raportului de plauzibilitate

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

- Criterii diferite conduc la valori diferite pentru K (pragul de plauzibilitate)
- ▶ În funcție de distribuția zgomotului, axa reală este împărțită în regiuni
 - regiunea R_0 : dacă r este aici, se decide D_0
 - regiunea R_1 : dacă r este aici, se decide D_1
 - ▶ de ex. $R_0 = (-\infty, \frac{A+B}{2}]$, $R_1 = (\frac{A+B}{2}, \infty)$ (pentru crit. plauz. max)
- ▶ Pentru zgomot gaussian, pragul este $T = \frac{A^2 + 2\sigma^2 \cdot \ln K}{2A}$

Caracteristica de operare a receptorului (ROC)

- Performanța unui receptor este ilustrată cu un grafic numit "Caracteristica de operare a receptorului" ("Receiver Operating Characteristic", ROC)
- ▶ Reprezintă probabilitatea detecției corecte $P_d = P(D_1 \cap H_1)$ în funcție de probabilitatea alarmei false $P_{fa} = P(D_1 \cap H_0)$

Caracteristica de operare a receptorului (ROC)

- ightharpoonup Există întotdeauna un **compromis** între P_d și P_{fa}
 - ightharpoonup creșterea P_d implică și creșterea P_{fa}
 - ▶ pentru a fi siguri că nu ratăm nici un semnal (creșterea P_d), plătim prin creșterea probabilității de alarme false
- Criterii diferite = diferite praguri K = diferite puncte pe grafic = compromisuri diferite
- Cum să creștem performanțele unui receptor?
 - ightharpoonup adică să creștem P_D menținând P_{fa} la aceeași valoare

Performanțele detecției în zgomot alb gaussian

- ▶ Considerăm probabilități egale $P(H_0) = P(H_1) = \frac{1}{2}$
- Deciziile se iau pe baza raportului de plauzibilitate

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

Probabilitatea detecției corecte este

$$P_{d} = P(D_{1}|H_{1})P(H_{1})$$

$$= P(H_{1}) \int_{T}^{\infty} w(r|H_{1})$$

$$= P(H_{1})(F(\infty) - F(T))$$

$$= \frac{1}{4} \left(1 - erf\left(\frac{T - A}{\sqrt{2}\sigma}\right)\right)$$

$$= Q\left(\frac{T - A}{\sqrt{2}\sigma}\right)$$

Performanțele detecției în zgomot alb gaussian

▶ Probabilitatea alarmei false este

$$\begin{aligned} P_{fa} &= P(D_1|H_0)P(H_0) \\ &= P(H_0) \int_T^\infty w(r|H_0) \\ &= P(H_0)(F(\infty) - F(T)) \\ &= \frac{1}{4} \left(1 - erf\left(\frac{T - 0}{\sqrt{2}\sigma}\right) \right) \\ &= Q\left(\frac{T}{\sqrt{2}\sigma}\right) \end{aligned}$$

- Rezultă că $\frac{T}{\sqrt{2}\sigma} = Q^{-1}(P_{fa})$
- Înlocuind în P_d se obține

$$P_d = Q\left(\underbrace{Q^{-1}(P_{fa})}_{constant} - \frac{A}{\sqrt{2}\sigma}\right)$$

Raportul semnal zgomot

- ▶ Raportul semnal zgomot (SNR) = puterea semnalului original puterea zgomotului
- ▶ Puterea medie a unui semnal = valoarea pătratică medie = $\overline{X^2}$
 - ▶ Puterea semnalului original este $\frac{A^2}{2}$
 - ullet Puterea zgomotului este $\overline{X^2}=\sigma^2$ (pentru valoare medie nulă $\mu=0$)
- În cazul nostru, SNR = $\frac{A^2}{2\sigma^2}$

$$P_d = Q \left(\underbrace{Q^{-1}(P_{fa})}_{constant} - \sqrt{SNR} \right)$$

- ▶ Pentru P_{fa} de valoare fixă, P_d crește odată cu SNR
 - Q este o funcție monoton descrescătoare

Performanța depinde de SNR

Performanța receptorului crește odată cu creșterea SNR

SNR mare: performanță bună

SNR mic: performanță slabă

Figure 4: Performanțele detecției depind de SNR

[sursa: Fundamentals of Statistical Signal Processing, Steven Kay]

Decizii între ipoteze statistice

- Teoria statistică a detecției este utilă și în alte contexte în afară de detecția unor semnale propriu-zise
 - oriunde avem de ales între două ipoteze
- Decizia se face între două distribuții de probabilitate
 - indiferent ce semnificație au cele două distribuții
- În cazul detecției unui semnal constant, se alege între două distribuții care diferă doar prin valoarea medie, în general
 - o distribuție are valoarea medie 0, cealaltă A
- ▶ Dar se poate face decizie între distribuții care diferă prin alt parametru
 - valoarea medie, sau
 - varianta, or
 - ▶ forma distributiei, etc

Decizii între ipoteze statistice

- Exemplu: Un eșantion cu valoarea r=2.5 poate proveni dintr-o distribuție $\mathcal{N}(0,\sigma^2=1)$ (ipoteza H_0) sau dintr-o alta $\mathcal{N}(0,\sigma^2=2)$ (ipoteza H_1). Care ipoteză se consideră adevărată?
 - ► Ceea ce diferă este varianta, nu valoarea medie
- Se pot folosi exact aceleași criterii
 - ► Se desenează cele două distributii
 - ▶ Se calculează plauzibilitățile $w(r|H_0)$ și $w(r|H_1)$ for r
 - ▶ Se decide pe baza raportului de plauzibilitate, conform unui criteriu

Eșantioane multiple dintr-un semnal constant

- Presupunem că avem mai multe eșantioane, nu doar unul
- ► Eșantioanele formează vectorul eșantioanelor

$$\mathbf{r} = [r_1, r_2, ... r_N]$$

- În ambele ipoteze, semnalul recepționat este un proces aleator
 - ► H₀: proces aleator cu valoarea medie 0
 - ▶ H₁: proces aleator cu valoarea medie A
- ▶ Dacă zgomotul este staționar și ergodic, semnalul recepționat este și el staționar și ergodic (semnalul = o constantă + zgomotul)
- ▶ Valorile vectorului **r** sunt descrise de **distribuția de ordin** N a procesului aleator, $w_N(\mathbf{r}) = w_N(r_1, r_2, ... r_N)$
- ▶ Dacă zgomotul este alb, momentele de timp când se iau eșantioanele nu contează

Plauzibilitatea vectorului de esantioane

► Se aplică aceleași criterii bazate pe raportul de plauzibilitate în cazul unui singur eșantion

$$\frac{w_N(\mathbf{r}|H_0)}{w_N(\mathbf{r}|H_1)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

- Observatii
 - r este un vector; prin el se consideră plauzibilitatea tuturor eșantioanelor
 - ▶ ipotezele H_0 și H_1 sunt aceleași ca în cazul cu 1 eșantion
 - $w_N(\mathbf{r}|H_0) = \text{plauzibilitatea vectorului } \mathbf{r}$ în ipoteza H_0
 - $w_N(\mathbf{r}|H_1) = \text{plauzibilitatea vectorului } \mathbf{r}$ în ipoteza H_1
 - ▶ valoarea lui K este dată de criteriul de decizie utilizat
- ▶ Interpretare: se alege ipoteza cea mai plauzibilă de a fi generat datele observate
 - ▶ identic ca la 1 eșantion, doar că acum datele = mai multe eșantioane

Descompunere pe fiecare eșantion

- ▶ Presupunând că zgomotul este alb, eșantioanele r_i sunt realizări independente ale aceleiași distribuții
- ▶ În acest caz, distribuția totală $w_N(\mathbf{r}|H_j)$ se poate descompune ca un produs

$$w_N(\mathbf{r}|H_j) = w(r_1|H_j) \cdot w(r_2|H_j) \cdot ... \cdot w(r_N|H_j)$$

- ▶ Termenii $w(r_i|H_i)$ sunt plauzibilitățile fiecărui eșantion în parte
 - be de ex. plauzibilitatea obținerii vectorului [5.1,4.7,4.9] = plauzibilitatea obținerii lui $5.1 \times$ plauzibilitatea obținerii lui $4.7 \times$ plauzibilitatea obținerii lui 4.9

Descompunere pe fiecare eșantion

▶ Prin urmare, criteriile bazate pe raportul de plauzibilitate devin

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{w(r_1|H_1)}{w(r_1|H_0)} \cdot \frac{w(r_2|H_1)}{w(r_2|H_0)} ... \frac{w(r_N|H_1)}{w(r_N|H_0)} \underset{H_0}{\overset{H_1}{\gtrsim}} K$$

 Raportul de plauzibilitate al unui vector de eșantioane = produsul rapoartelor plauzibilitate ale fiecărui eșantion

Caz particulae: AWGN

- ► AWGN = "Additive White Gaussian Noise" = Zgomot alb, gaussian, aditiv
- ▶ În ipoteza H_1 : $w(r_i|H_1) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(r_i-A)^2}{2\sigma^2}}$
- ▶ În ipoteza H_0 : $w(r_i|H_1) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{r_i^2}{2\sigma^2}}$
- ▶ Raportul de plauzibilitate al vectorului r

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{e^{-\frac{\sum (r_i - A)^2}{2\sigma^2}}}{e^{-\frac{\sum (r_i)^2}{2\sigma^2}}}$$

Se pot găsi trei interpretări ale raportului de plauzibilitate

Interpretarea 1: media eșantioanelor

Interpretarea 1: media eșantioanelor

$$\frac{w_{N}(\mathbf{r}|H_{1})}{w_{N}(\mathbf{r}|H_{0})} = \frac{e^{-\frac{\sum (r_{i}-A)^{2}}{2\sigma^{2}}}}{e^{-\frac{\sum (r_{i})^{2}}{2\sigma^{2}}}}$$

$$= e^{-\frac{\sum (r_{i}-A)^{2} - \sum (r_{i})^{2}}{2\sigma^{2}}}$$

$$= e^{-\frac{\sum (r_{i}^{2} - 2r_{i}A + A^{2}) - \sum (r_{i})^{2}}{2\sigma^{2}}}$$

$$= e^{-\frac{\sum (-2r_{i}A + A^{2})}{2\sigma^{2}}}$$

$$= e^{-\frac{-2A \sum (r_{i}) + NA^{2}}{2\sigma^{2}}}$$

$$= e^{-\frac{-2A \sum (r_{i}) + A^{2}}{2\sigma^{2}}}$$

$$= e^{-\frac{-2A \sum (r_{i}) + A^{2}}{2\sigma^{2}}}$$

Media a N variabile aleatoare normale

Fie U_r = media aritmetică a esantioanelor r_i

$$U_r = \frac{1}{N} \sum r_i$$

- Care este distributia sa?
- Fie suma $S_r = \sum r_i$ a celor N eşantioane r_i
 - ▶ Din cap.l: suma unor v.a. normale cu distribuția $\mathcal{N}(\mu, \sigma^2)$ este:
 - cu distribuție normală $\mathcal{N}(\mu_S, \sigma_S^2)$, unde:
 - valoarea medie: $\mu_S = \mathbf{N} \cdot \mu$
 - varianta: $\sigma_s^2 = N \cdot \sigma^2$
- Aşadar $U_r = \frac{1}{N}S_r$, din proprietățile mediei se obține:
 - ▶ *U_r* are distributie normală, cu:

 - ▶ valoarea medie = $\frac{1}{N}\mu_S = \frac{1}{N}N\mu = \mu$ ▶ varianța = $\left(\frac{1}{N}\right)^2 \sigma_S^2 = \left(\frac{1}{N}\right)^2 N\sigma_S^2 = \frac{1}{N}\sigma^2$

Media a N variabile aleatoare normale

- Media a N realizări ale unei distribuții normale are tot o distribuție normală, cu
 - aceeasi valoare medie
 - varianta de N ori mai mică
- ▶ Dacă *N* este foarte mare, media aritmetică este un **estimator** foarte bun pentru valoarea medie a distribuției
 - distribuția sa devine foarte "îngustă" în jurul valorii medii

Interpretarea 1: media eșantioanelor

$$\frac{w_{N}(\mathbf{r}|H_{1})}{w_{N}(\mathbf{r}|H_{0})} = e^{-\frac{-2AU_{r}+A^{2}}{2\frac{\sigma^{2}}{N}}}$$

$$= \frac{e^{-\frac{U_{r}^{2}-2AU_{r}+A^{2}}{2\frac{\sigma^{2}}{N}}}}{e^{-\frac{U_{r}^{2}}{2\frac{\sigma^{2}}{N}}}}$$

$$= \frac{e^{-\frac{(U_{r}-A)^{2}}{2\frac{\sigma^{2}}{N}}}}{e^{-\frac{U_{r}^{2}}{2\frac{\sigma^{2}}{N}}}}$$

$$= \frac{w(U_{r}|H_{1})}{w(U_{r}|H_{0})}$$

► Raportul de plauzibilitate a *N* eșantioane gaussiene = raportul de plauzibilitate al **mediei esantioanelor**

Interpretarea 1: media eșantioanelor

- ► Raportul de plauzibilitate a *N* eșantioane gaussiene = raportul de plauzibilitate al **mediei eșantioanelor**
 - ▶ media are o varianță mai mică, $\frac{1}{N}\sigma^2$, deci este mai precisă
 - e ca și cum distribuția zgomotului devine de N ori mai îngustă (datorită medierii)
- Detecția unui semnal constant cu N eșantioane este similaru cu detecția cu un singur eșantion, doar că
 - se folosește valoarea medie a eșantioanelor r_i
 - distribuția sa este de N ori mai îngustă (varianța e de N ori mai mică)
- Când N crește, probabilitatea erorilor scade => performanțe îmbunătătite

Exercitiu

Exercițiu:

- ▶ Un semnal poate avea două valori, 0 (ipoteza H_0) sau 6 (ipoteza H_1). Semnalul este afectat de AWGN $\mathcal{N}(0, \sigma^2 = 1)$. Receptorul ia 5 eșantioane cu valorile $\{1.1, 4.4, 3.7, 4.1, 3.8\}$.
 - 1. Ce decizie se ia conform criteriului plauzibilitătii maxime?
 - 2. Ce decizie se ia conform criteriului probabilității minime de eroare. dacă $P(H_0)=2/3$ și $P(H_1)=1/3?$

Interpretarea 2: geometric

- Folositoare în special pentru criteriul plauzibilității maxime
- Raportul de plauzibilitate pentru vectorul r

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{e^{-\frac{\sum (r_i - A)^2}{2\sigma^2}}}{e^{-\frac{\sum (r_i)^2}{2\sigma^2}}} \underset{H_0}{\overset{H_1}{\gtrless}} K$$

La criteriul plauzibilitătii maxime se compară cu 1

$$\frac{e^{-\frac{\sum(r_i-A)^2}{2\sigma^2}}}{e^{-\frac{\sum(r_i)^2}{2\sigma^2}}} \mathop{\gtrless}_{H_0}^{H_1} 1$$

$$e^{-\frac{\sum(r_i-A)^2}{2\sigma^2} + \frac{\sum(r_i)^2}{2\sigma^2}} \mathop{\gtrless}_{H_0}^{H_1} 1$$

$$-\sum(r_i-A)^2 + \sum(r_i)^2 \mathop{\gtrless}_{H_0}^{H_1} 0$$

$$\sum(r_i)^2 \mathop{\gtrless}_{H_0}^{H_1} \sum(r_i-A)^2$$

Interpretarea 2: geometric

- ▶ $\sqrt{\sum (r_i)^2}$ este distanța geometrică (Euclidiană) între punctul $\mathbf{r} = [r_1, r_2, ... r_N]$ și punctul $\mathbf{0} = [0, 0, ... 0]$
- ▶ $\sqrt{\sum (r_i A)^2}$ este distanța geometrică (Euclidiană) între punctul $\mathbf{r} = [r_1, r_2, ... r_N]$ și punctul $\mathbf{A} = [A, A, ... A]$
- criteriul plauzibilității maxime alege vectorul (punctul) semnalului cel mai apropiat de vectorul (punctul) recepționat, într-un spațiu N-dimensional
 - receptorul se mai numește "receptor de distanță minimă"
 - aceeași interpretare ca în cazul 1-D
- Întrebare: care este interpretarea geometrică pentru celelalte criterii?

Exercițiu

Exercițiu:

- ▶ Un semnal poate avea două valori, 0 (ipoteza H_0) sau 6 (ipoteza H_1). Semnalul este afectat de AWGN $\mathcal{N}(0, \sigma^2 = 1)$. Receptorul ia două eșantioane cu valorile $\{1.1, 4.4\}$.
 - 1. Care este decizia conform criteriului plauzibilității maxime? Utilizați interpretarea geometrică.

Interpretarea 3: valoarea corelației

Raportul de plauzibilitate al vectorului r

$$\frac{w_{N}(\mathbf{r}|H_{1})}{w_{N}(\mathbf{r}|H_{0})} = \frac{e^{-\sum \frac{(r_{i}-A)^{2}}{2\sigma^{2}}}}{e^{-\sum \frac{(r_{i})^{2}}{2\sigma^{2}}}} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} K$$

$$e^{-\sum \frac{(r_{i}-A)^{2}}{2\sigma^{2}} + \sum \frac{(r_{i})^{2}}{2\sigma^{2}}} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} K$$

$$-\sum (r_{i}-A)^{2} + \sum (r_{i})^{2} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} 2\sigma^{2} \ln K$$

$$2\sum r_{i}A - NA^{2} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} 2\sigma^{2} \ln K$$

$$\frac{1}{N}\sum r_{i}A \underset{H_{0}}{\overset{H_{1}}{\gtrless}} \frac{A^{2}}{2} + \frac{1}{N}\sigma^{2} \ln K$$

$$L = const$$

Interpretarea 3: valoarea corelației

▶ Valoarea de corelație (sau "corelația") a două semnale x and y este

$$\langle x, y \rangle = \frac{1}{N} \sum x[n]y[n]$$

► Este valoarea funcției de corelație în 0

$$\langle x, y \rangle = R_{xy}[0] = \overline{x[n]y[n+0]}$$

Pentru semnale continue

$$< x, y > = \frac{1}{T} \int_{T/2}^{T/2} x(t)y(t)dt$$

▶ $\frac{1}{N} \sum r_i A = \langle \mathbf{r}, \mathbf{A} \rangle$ este corelația vectorului recepționat $\mathbf{r} = [r_1, r_2, ... r_N]$ cu vectorul **țintă** $\mathbf{A} = [A, A, ... A]$

Interpretarea 3: valoarea corelației

- ▶ Dacă valoarea de corelație a vectorului recepționat cu vectorul țintă $\mathbf{A} = [A, A, ...A]$ este mai mare decât un prag L, se decide că semnalul este detectat.
 - altfel, semnalul este rejectat
- Decizia este similară cu detecția semnalului cu singur eșantion, unde valoarea eșantionului este < r, A >

Corelația ca măsura a similarității semnalelor

- ▶ În domeniul prelucrărilor de semnal, corelația este o formă de a măsura **similaritatea** a două semnale
- ► Interpretare: verificăm dacă vectorul recepționat este suficient de similar cu semnalul constant *A*
 - ▶ Da: (corelație mare) => semnalul este detectat
 - ▶ Nu: (corelație mică) => nu este detectat

Generalizare: două valori nenule

- Generalizare: două valori nenule, B și A
 - ▶ în zgomot Gaussian
- Interpretarea 1: media eșantioanelor
 - se folosește tot media eșantioanelor, cele două distribuții sunt centrate pe B și A
- Interpretarea 2: geometric (crit. plauzib. maxime)
 - se alege minimul distanței dintre $\mathbf{r} = [r_1, r_2, ... r_N]$ și punctele $\mathbf{B} = [B, B, ...]$ și $\mathbf{A} = [A, A, ...]$
- Interpretarea 3: corelația
 - ▶ se calculează $\langle \mathbf{r}, \mathbf{B} \rangle$ and $\langle \mathbf{r}, \mathbf{A} \rangle$, corelația lui \mathbf{r} cu $\mathbf{B} = [B, B, ...]$ și cu $\mathbf{A} = [A, A, ...]$.
 - pe slide-ul următor

Detecția a două valori nenule folosind corelația

$$e^{-\frac{\sum (r_{i}-A)^{2}}{2\sigma^{2}} + \frac{\sum (r_{i}-B)^{2}}{2\sigma^{2}}} \underset{H_{0}}{\overset{H_{1}}{\geqslant}} K$$

$$-\sum (r_{i}-A)^{2} + \sum (r_{i}-B)^{2} \underset{H_{0}}{\overset{H_{1}}{\geqslant}} 2\sigma^{2} \ln K$$

$$2\sum r_{i}A - NA^{2} - 2\sum r_{i}B + NB^{2} \underset{H_{0}}{\overset{H_{1}}{\geqslant}} 2\sigma^{2} \ln K$$

$$\frac{1}{N}\sum r_{i}A - \frac{A^{2}}{2} \underset{H_{0}}{\overset{H_{1}}{\geqslant}} \frac{1}{N}\sum r_{i}B - \frac{B^{2}}{2} + \frac{1}{N}\sigma^{2} \ln K$$

Detecția a două valori nenule folosind corelația

Pentru criteriul plauzibilității maxime (K = 1):

$$<\textbf{r},\textbf{A}>-\frac{<\textbf{A},\textbf{A}>}{2}\mathop{\gtrless}_{H_0}^{H_1}<\textbf{r},\textbf{B}>-\frac{<\textbf{B},\textbf{B}>}{2}$$

- ▶ Dacă valorile sunt opuse, B = -A, se alege cea mai similară cu \mathbf{r} :
 - corelația este o măsură a similarității

$$<\mathbf{r},\mathbf{A}> \stackrel{H_1}{\underset{H_0}{\gtrless}} <\mathbf{r},-\mathbf{A}>$$

► Alte criterii: termen adițional $\frac{1}{N}\sigma^2 \ln K$

Exercițiu

Exercițiu:

- ▶ Un semnal poate avea două valori, -4 (ipoteza H_0) sau 5 (ipoteza H_1). Semnalul este afectat de zgomot alb Gaussian $\mathcal{N}(0, \sigma^2 = 1)$. Receptorul ia trei eșantioane cu valorile $\{1.1, 4.4, 2.2\}$.
 - 1. Care este decizia, conform criteriului plauzibilității maxime? Folosiți toate cele trei interpretări.

Eșantioane multiple dintr-un semnal oarecare

- ▶ Dorim detecția unui semnal oarecare (ne-constant) s(t)
- ▶ Cele N eșantioane se iau la momentele de timp $\mathbf{t} = [t_1, t_2, ... t_N]$ și formează **vectorul eșantioanelor**

$$\mathbf{r} = [r_1, r_2, ... r_N]$$

Ce diferă față de cazul unui semnal constant?

Ipoteze

- În fiecare ipoteză, semnalul este un proces aleator
 - \vdash H_0 : proces aleator cu medie 0
 - H_1 : proces aleator cu media s(t)
- **E**șantionul r_i , de la momentul t_i , poate fi:
 - \triangleright 0 + zgomot, în ipoteza H_0
 - $s(t_i)$ + zgomot, în ipoteza H_1
- ▶ Întregul vector al eșantioanelor **r** poate fi
 - \triangleright 0 + zgomot, , în ipoteza H_0
 - $ightharpoonup s(t) + \operatorname{zgomot}$, în ipoteza H_1 , pentru $t = \operatorname{timpii}$ de eșantionare t_i
- ▶ Distribuția vectorului \mathbf{r} este descrisă de o funcție $w_N(\mathbf{r})$

Plauzibilitatea vectorului eșantioanelor

Se folosesc aceleași criterii bazate pe raportul de plauzibilitate ca la semnale constante:

$$\frac{w_N(\mathbf{r}|H_0)}{w_N(\mathbf{r}|H_1)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

- ▶ Diferența este că semnalele "adevărate" sunt acum
 - ▶ [0, 0, ... 0] în ipoteza *H*₀
 - $[s(t_1), s(t_2), ...s(t_N)]$ în ipoteza H_1

Descompunere

ightharpoonup Distribuția vectorială $w_N(\mathbf{r}|H_j)$ se poate descompune ca un produs

$$w_N(\mathbf{r}|H_j) = w(r_1|H_j) \cdot w(r_2|H_j) \cdot \dots \cdot w(r_N|H_j)$$

 Toate criteriile de decizie bazate pe raportul de plauzibilitate se pot scrie ca

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{w(r_1|H_1)}{w(r_1|H_0)} \cdot \frac{w(r_2|H_1)}{w(r_2|H_0)} ... \frac{w(r_N|H_1)}{w(r_N|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

- Raportul de plauzibilitate al unui singur eșantion r_i se calculează folosind cele două valori posibile ale semnalului, 0 și $s(t_i)$
 - ▶ la semnale constante, valorile erau 0 și A întotdeauna
 - ightharpoonup acum sunt 0 și $s(t_i)$, în funcție de momentele de eșantionare t_i
 - ▶ momentele de eșantionare *t_i* trebuie alese astfel încât să maximizeze performanțele detecției

Caz particular: zgomot alb Gaussian ("AWGN")

- ► AWGN = "Additive White Gaussian Noise"
- ► In hypothesis H_1 : $w(r_i|H_1) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(r_i-s(t_i))^2}{2\sigma^2}}$
- ▶ In hypothesis H_0 : $w(r_i|H_1) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{r_i^2}{2\sigma^2}}$
- Raportul de plauzibilitate al vectorului r

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{e^{-\frac{\sum (r_i - s(t_i))^2}{2\sigma^2}}}{e^{-\frac{\sum (r_i)^2}{2\sigma^2}}}$$

Sunt posibile două interpretări

Interpretarea 1: valoarea medie

- ▶ Interpretarea 1: valoarea medie
- Nu mai este valabilă, întrucât valorile $s(t_i)$ nu mai sunt identice

Interpretarea 2: geometric

- Folositoare mai ales în cazul criteriului plauzibilității maxime
- Raportul de plauzibilitate pentru vectorul r

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{e^{-\frac{\sum (r_i - s(t_i))^2}{2\sigma^2}}}{e^{-\frac{\sum (r_i)^2}{2\sigma^2}}} \underset{H_0}{\overset{H_1}{\gtrless}} K$$

ightharpoonup Criteriul plauzibilitătii maxime: K=1

$$egin{aligned} & rac{e^{-rac{\sum (r_i-s(t_i))^2}{2\sigma^2}}}{e^{-rac{\sum (r_i)^2}{2\sigma^2}}} egin{aligned} & H_1 \ & \gtrless & 1 \end{aligned} \ & e^{-rac{\sum (r_i-s(t_i))^2}{2\sigma^2} + rac{\sum (r_i)^2}{2\sigma^2}} egin{aligned} & H_1 \ & \gtrless & 1 \end{aligned} \ & - \sum (r_i-s(t_i))^2 + \sum (r_i)^2 igwedge_{H_0} & 0 \end{aligned} \ & \sum (r_i)^2 igwedge_{H_0} & \sum (r_i-s(t_i))^2 \end{aligned}$$

Interpretarea 2: geometric

- ▶ $\sqrt{\sum (r_i)^2}$ este distanța geometrică (Euclidiană) între punctul $\mathbf{r} = [r_1, r_2, ... r_N]$ și punctul $\mathbf{0} = [0, 0, ... 0]$
- $\sqrt{\sum (r_i s(t_i))^2}$ este distanța geometrică (Euclidiană) între punctul $\mathbf{r} = [r_1, r_2, ... r_N]$ și punctul $\mathbf{s}(\mathbf{t}) = [s(t_1), s(t_2), ... s(t_N)]$
- Criteriul plauz. maxime alege semnalul cel mai apropiat de cel recepționat, într-un spațiu N-dimensional
 - se mai numeste "receptor de distantă minimă"
 - aceeasi interpretare ca în cazul 1-D
- Întrebare: interpretarea geometrică pentru celelalte criterii?

Exercitiu

Exercițiu:

- Fie detecția unui semnal $s(t) = 3\sin(2\pi ft)$ care poate fi prezent (ipoteza H_1) sau absent (ipoteza H_0). Semnalul este afectat de zgomot alb Gaussian $\mathcal{N}(0, \sigma^2 = 1)$. Receptorul ia două eșantioane.
 - Care sunt cele mai bune momente de eșantionare t₁ și t₂ pentru a maximiza performanțele detecției?
 - 2. Receptorul ia două eșantioane $\{1.1, 4.4\}$, la momentele de timp $t_1 = \frac{0.125}{f}$ și $t_2 = \frac{0.625}{f}$. Care este decizia, conform criteriului plauz. maxime? Utilizați interpretarea geometrică.
 - 3. Dar dacă receptorul ia un al treilea eșantion la momentul $t_3 = \frac{0.5}{f}$. Se poate îmbunătăți detecția?

Interpretarea 3: valoarea corelației

► Raportul de plauzibilitate pentru vectorul r

$$\frac{w_{N}(\mathbf{r}|H_{1})}{w_{N}(\mathbf{r}|H_{0})} = \frac{e^{-\frac{\sum (r_{i}-s(t_{i}))^{2}}{2\sigma^{2}}}} e^{-\frac{\sum (r_{i})^{2}}{2\sigma^{2}}} e^{-\frac{\sum (r_{i})^{2}}{2\sigma^{2}}} e^{-\frac{\sum (r_{i}-s(t_{i}))^{2}}{2\sigma^{2}}} e^{-\frac{\sum (r_{i}-s(t_{i}))^{2}}{2\sigma^{2}}} e^{-\frac{\sum (r_{i})^{2}}{2\sigma^{2}}} e^{-\frac{\sum (r_{i}-s(t_{i}))^{2}}{2\sigma^{2}}} e^{-\frac{\sum (r_{i}-s(t_{i}))^{2}}{2\sigma^{2}}} e^{-\frac{\sum (r_{i}-s(t_{i}))^{2}}{2\sigma^{2}}} e^{-\frac{N}{N}} e^{-\frac{N}{N}$$

Interpretarea 3: valoarea corelației

- ▶ $\frac{1}{N} \sum r_i s(t_i) = \langle \mathbf{r}, \mathbf{s}(\mathbf{t}_i) \rangle$ reprezintă valoarea corelației (sau "corelația") eșantioanelor recepționate $\mathbf{r} = [r_1, r_2, ... r_N]$ cu eșantioanele **țintă** $\mathbf{s}(\mathbf{t}_i) = [s(t_1), s(t_2), ... s(t_N)]$
- ▶ Dacă corelația eșantioanelor recepționate \mathbf{r} cu eșantioanele **țintă** $\mathbf{s}(\mathbf{t_i})$ este mai mare decât un prag L, se decide că semnalul este prezent.
 - ► Altfel, se decide că semnalul este absent
 - Corelația este o măsură a similarității a două semnale

Generalizare: două semnale oarecare

- ightharpoonup Generalizare: se decide între **două semnale diferite** $s_0(t)$ și $s_1(t)$
 - ▶ în zgomot Gaussian
- ▶ Interpretarea 2: geometric
 - ▶ se alege distanța Euclidiană minimă dintre $\mathbf{r} = [r_1, r_2, ... r_N]$ și punctele $\mathbf{s_0}(\mathbf{t}) = [s_0(t_1), s_0(t_2), ...]$ și $\mathbf{s_1}(\mathbf{t}) = [s_1(t_1), s_1(t_2), ...]$
- ► Interpretarea 3: valoarea corelației
 - ▶ se calculează corelația **r** cu $\mathbf{s_0}(\mathbf{t}) = [s_0(t_1), s_0(t_2), ...]$ și $\mathbf{s_1}(\mathbf{t}) = [s_1(t_1), s_1(t_2), ...], < \mathbf{r}, \mathbf{s_0} > \text{and} < \mathbf{r}, \mathbf{s_1} > ...$
 - pe slide-ul următor

Detecție între două semnale diferite folosind corelația

$$e^{-\frac{\sum (r_i - s_1(t_i))^2}{2\sigma^2} + \frac{\sum (r_i - s_0(t_i))^2}{2\sigma^2}} \underset{\neq}{\overset{H_1}{\gtrless}} K$$

$$-\sum (r_i - s_1(t_i))^2 + \sum (r_i - s_0(t_i))^2 \underset{H_0}{\overset{H_1}{\gtrless}} 2\sigma^2 \ln K$$

$$2\sum r_i s_1(t_i) - \sum s_1(t_i)^2 - 2\sum r_i s_0(t_i) + \sum s_0(t_i)^2 \underset{H_0}{\overset{H_1}{\gtrless}} 2\sigma^2 \ln K$$

$$\frac{1}{N}\sum r_i s_1(t_i) - \sum s_1(t_i)^2 \underset{H_0}{\overset{H_1}{\gtrless}} \frac{1}{N}\sum r_i s_0(t_i) - \sum s_0(t_i)^2 + \frac{1}{N}\sigma^2 \ln K$$

Detecție între două semnale diferite folosind corelația

▶ Criteriul plauz. maxime (K = 1):

$$<\textbf{r},\textbf{s}_{1}>-\frac{<\textbf{s}_{1},\textbf{s}_{1}>}{2}\underset{H_{0}}{\overset{H_{1}}{\geqslant}}<\textbf{r},\textbf{s}_{0}>-\frac{<\textbf{s}_{0},\textbf{s}_{0}>}{2}$$

- ▶ Dacă semnalele au aceeași energie: $\sum s_1(t_i)^2 = \sum s_0(t_i)^2$, atunci $< \mathbf{s_1}, \mathbf{s_1} > = < \mathbf{s_0}, \mathbf{s_0} >$, și alegem semnalul **cel mai asemănător cu r**:
 - corelația este o măsură a similarității a două semnale

$$< \mathbf{r}, \mathbf{s_1} > \underset{H_0}{\overset{H_1}{\geqslant}} < \mathbf{r}, \mathbf{s_0} >$$

- Exemple:
 - ▶ Modulație BPSK: $s_1 = A\cos(2\pi ft)$, $s_0 = -A\cos(2\pi ft)$
 - Modulație 4-PSK: $s_{n=0,1,2,3} = A\cos(2\pi f t + n\frac{\pi}{4})$

Detecție pe baza corelației

Figure 5: Detecția unui semnal folosind un corelator

[sursa: http://nptel.ac.in/courses/117103018/43]

Detecția a doua semnale

Figure 6: Decizie între două semnale diferite

[sursa: Fundamentals of Statistical Signal Processing, Steven Kay]

ightharpoonup Cum se calculează corelația a două semnale r[n] și s[n] de lungime N?

$$\langle r,s \rangle = \frac{1}{N} \sum r_i s(t_i)$$

- ► Fie h[n] semnalul h[n] oglindit
 - începând tot de la momentul 0, semnal cauzal

$$h[n] = s[N-1-n]$$

► Convoluția lui r[n] cu h[n] este

$$y[n] = \sum_{k} r[k]h[n-k] = \sum_{k} r[k]h[N-1-n+k]$$

- Rezultatul convoluției la finalul semnalului de intrare, y[N-1] (n=N-1), este chiar corelația
 - ▶ până la un factor de scalare $\frac{1}{N}$

$$y[N] = \sum_{k} r[k]s[k]$$

- Pentru detecția unui semnal s[n] se poate folosi un **filtru a cărui răspuns la impuls = oglindirea lui** s[n], luându-se eșantionul de la finalul semnalului de intrare
 - se obține valoarea corelației

$$h[n] = s[N-1-n]$$

- ► Filtru adaptat = un filtru proiectat să aibă răspunsul la impuls egal cu oglindirea semnalului care se dorește a fi detectat (eng. "matched filter")
 - ▶ filtrul este *adaptat* semnalului dorit

Figure 7: Detectie folosind un filtru adaptat

[sursa: Fundamentals of Statistical Signal Processing, Steven Kay]

Observarea continuă a unui semnal oarecare

- Observare continuă = fără eșantionare, se folosește întreg semnalul continuu
 - similar cazului cu N esantioane, dar cu $N \to \infty$
- ▶ Semnalul recepționat este r(t)
- ▶ Semnalul țintă este s(t)
- Presupunem doar zgomot Gaussian
- Cum are loc detectia?

Detecția semnalelor continue

- ▶ Se extinde cazul precedent cu N eșantioane la cazul unui semnal continuu, $N \to \infty$
- ▶ Interpretarea 1: media eșantioanelor
 - Nu mai este valabilă, întrucât s(t) nu este constant

Interpretarea 2: geometric

- Interpretarea 2: geometric
- Fiecare semnal r(t), s(t) sau 0 reprezintă un punct într-un spațiu Euclidian infinit dimensional
- Distanța între două semnale este:

$$d(r,s) = \sqrt{\int (r(t) - s(t))^2 dt}$$

- ► Similar cu cazul N dimensional, dar cu integrală în loc de sumă
- Criteriul plauzibilității maxime:
 - se calculează distanța d(r,s) între r(t) și s(t)
 - ▶ se calculează distanța d(r,0) între r(t) și 0
 - se alege valoarea minimă

Interpretarea 3: corelația

lacktriangle Corelația a două semnale continue r(t) și s(t) de lungime T

$$<\mathbf{r},\mathbf{s}>=rac{1}{T}\int_{0}^{T}r(t)\cdot s(t)dt$$

- Dacă corelația semnalului recepționat cu semnalul căutat $s(t_i)$ este mai mare decât un prag L, se decide că semnalul este detectat.
 - ▶ Altfel, se decide că semnalul este absent
 - Corelația este o măsură a similarității a două semnale

Generalizări

- ▶ Detecția între **două semnale** $s_0(t)$ și $s_1(t)$
 - ▶ în zgomot Gaussian
- ▶ Interpretarea 2: geometric
 - se alege distanța Euclidiană minimă între punctul $\mathbf{r}(t)$ și punctele $\mathbf{s}_0(t)$ și $\mathbf{s}_1(t)$
 - ▶ folosind distanta dintre semnale definită mai sus
- Interpretarea 3: corelaţia
 - ightharpoonup se calculează corelația lui $\mathbf{r}(\mathbf{t})$ cu $\mathbf{s}_0(\mathbf{t})$ și cu $\mathbf{s}_1(\mathbf{t})$.

Detecția între două semnale folosind corelația

• Criteriul plauz. maxime (K = 1):

$$<\textbf{r},\textbf{s}_{1}>-\frac{<\textbf{s}_{1},\textbf{s}_{1}>}{2}\underset{H_{0}}{\overset{H_{1}}{\geqslant}}<\textbf{r},\textbf{s}_{0}>-\frac{<\textbf{s}_{0},\textbf{s}_{0}>}{2}$$

- ▶ Dacă cele două semnale au energii egale: $\int s_1(t)^2 dt = \int s_0(t)^2 dt$, atunci $\langle s_1, s_1 \rangle = \langle s_0, s_0 \rangle$, așadar se alege **semnalul cel mai** asemănător cu r(t):
 - Corelația este o măsură a similarității a două semnale

$$<{\sf r},{\sf s}_1> \stackrel{{\cal H}_1}{\geqslant} <{\sf r},{\sf s}_0>$$

- Exemple
 - Modulația BPSK: $s_1 = A\cos(2\pi ft)$, $s_0 = -A\cos(2\pi ft)$
 - ► Modulația 4-PSK: $s_{n=0,1,2,3} = A\cos(2\pi f t + n\frac{\pi}{4})$

- ► Corelația a două semnale se poate calcula cu un filtru adaptat
- ► Filtru adaptat = filtru proiectat să aibă răspunsul la impuls egal cu oglindirea semnalului căutat
 - ▶ filtrul este *adaptat* semnalului căutat
 - ▶ filtru continuu, cu răspuns la impuls continuu
- Pentru detecția unui semnal s(t) se poate folosi un filtru adaptat, luând eșantionul de la ieșire în momentul final al semnalului de intrare
 - se obtine chiar valoarea corelatiei