L3 Informatique, Lille 1

BDD Cours 10

Dépendances fonctionnelles

et normalisation des BDDs

Traduction et adaptation: C.Kuttler

Addison-Wesley is an imprint of

PEARSON

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Principes informels pour la conception des schémas

Fundamentals of

Database

Systems

Elmasri • Navathe

La justesse de la conception d'un schéma relationnel peut être appréciée aux niveaux:

logique ou conceptuel

de l'implémentation (ou stockage physique)

- Mesures de la qualité d'une conception:
 - Clarté de la sémantique des attributs
 - Réduire la redondance d'information dans les tuples
 - Réduire les valeurs NULL dans les tuples
 - Ne pas permettre la génération d'attributs parasites

Plan

- Principes informels pour la conception des schémas relationnels
- Dépendances fonctionnelles
 - Règles d'inférence pour les DFs
- Def des formes normales basées sur clés primaires
- Définitions générales de 2^{ème} et 3^{ème} forme normale
- Forme normale Boyce-Codd

is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Sémantique des attributs des relations

- Sémantique d'une relation
 - Sa signification résulte de l'interprétation des valeurs de ses attributs
- Une sémantique de relation plus facile à expliquer
 - Indique une meilleure conception du schéma

Addison-Wesle is an imprint of

Figure 15.1

A simplified COMPANY relational database schema.

is an imprint of

PEARSON

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Figure 15.2

Sample database state for the relational database schema in Figure 15.1.

EMPLOYEE

Ename	<u>Ssn</u>	Bdate	Address	Dnumber
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4
Wallace, Jennifer S.	987654321	1941-06-20	291Berry, Bellaire, TX	4
Narayan, Ramesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX	5
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn
Research	5	333445555
Administration	4	987654321
Headquarters	1	888665555

DEPT LOCATIONS

<u>Dnumber</u>	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

Continues...

PEARSON

Exemple : la base d'une société

EMPLOYE: chaque tuple represente un employé, avec son nom, numéro de sécu, adresse perso, et numéro du département ou il travaille.

DEPT LOCATIONS: le numéro d'un département. et une de ses localisations. On note qu'il peut etre réparti sur plusieurs sites. Cette relation représente un attribut multi-valué de Departments!

WORKS ON: relation M:N

Addison-Wesle is an imprint o

PEARSON

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

WORKS_ON

<u>Ssn</u>	<u>Pnumber</u>	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	Null

PROJECT

Pname	<u>Pnumber</u>	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

Principe 1

- Concevez un schéma de facon à ce qu'il soit facile d'en expliquer la signification
- Ne combinez pas des attributs provenants d'entités et des liaisons de différents types en une même relation

Addison-Wesley is an imprint of

PEARSON Co

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

					Redun	dancy
EMP_DEPT						
Ename	Ssn	Bdate	Address	Dnumber	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg James F	888665555	1937-11-10	450 Stone Houston TX	1	Headquarters	888665555

			Redundancy	Redunda	ancy
EMP_PROJ					
Ssn	Pnumber	Hours	Ename	Pname	Plocation
123456789	1	32.5	Smith, John B.	ProductX	Bellaire
123456789	2	7.5	Smith, John B.	ProductY	Sugarland
666884444	3	40.0	Narayan, Ramesh K.	ProductZ	Houston
453453453	1	20.0	English, Joyce A.	ProductX	Bellaire
453453453	2	20.0	English, Joyce A.	ProductY	Sugarland
333445555	2	10.0	Wong, Franklin T.	ProductY	Sugarland
333445555	3	10.0	Wong, Franklin T.	ProductZ	Houston
333445555	10	10.0	Wong, Franklin T.	Computerization	Stafford
333445555	20	10.0	Wong, Franklin T.	Reorganization	Houston
999887777	30	30.0	Zelaya, Alicia J.	Newbenefits	Stafford
999887777	10	10.0	Zelaya, Alicia J.	Computerization	Stafford
987987987	10	35.0	Jabbar, Ahmad V.	Computerization	Stafford
987987987	30	5.0	Jabbar, Ahmad V.	Newbenefits	Stafford
987654321	30	20.0	Wallace, Jennifer S.	Newbenefits	Stafford
987654321	20	15.0	Wallace, Jennifer S.	Reorganization	Houston
888665555	20	Null	Borg, James E.	Reorganization	Houston

Figure 15.4

Sample states for EMP_DEPT and EMP_PROJ resulting from applying NATURAL JOIN to the relations in Figure 15.2. These may be stored as base relations for performance reasons.

PEARSON

Exemple de non respect du Principe 1

Informations redondantes et anomalies de mise à jour

- Regroupement d'attributs dans des schémas
 - Effet important sur l'espace de stockage
- De stocker des jointures naturelles de relations de bases peut mener a des anomalies de mises à jour
- Types d'anomalies de mise à jours:
 - Insertion
 - Suppression

Modification
Copyright 2011 Ramez Emastrand Shamkant Navath

Exemples d'anomalies des 3 types

INSERTION

Ajout d'un nouvel employé à EMP DEPT

Il faut ajouter les valeurs pour son departement

Ou des NULLS (si il n'a pas encore de departement)

P.ex. On ajoute un employé au Dept 5. Toutes les données doivent etre cohérentes avec les autres du dept 5. Avec la conception d'avant, on n'y met que le numéro du département.

Quoi faire si on veut ajouter un nouveau departement qui n'a pas encore d'employés ? Il faut mettre des NULLS. Mais alors, la clé primaire Ssn est nulle.

Avec l'autre conception ce probleme n'existe pas. On ajoute un dept, avec ou sans employés.

SUPPRESSION

Lorsqu'on supprime le dernier employé d'un departement, on pert toute l'info sur ce departement. Probleme pas observé avec l'autre conception.

MODIFICATION: Si on a besoin de changer l'attribut d'un departement, p.ex. Son manager, il faut le faire sur les tuples pour TOUS les employés.

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Valeurs NULL dans les tuples

- Il arrive qu'on regroupe de nombreux attributs dans une relatoin "bien garnie"
 - Ceci peut entrainer un grand nombre de NULLs
- Problèmes résultant des NULLs
 - Gaspillage d'espace de stockage
 - Difficultés de compréhension

Principe 2

- Concevez les schémas des relations de telle sorte qu'il ne puissent pas survenir d'anomalies d'insertion, de suppression et de modifications des données
- S'il y a des anomalies:
 - Indiquez-les clairement
 - Assurez-vous que les programmes qui mettent à jour la base opèreront correctement

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Principe 3

- Evitez de placer dans une relation de base des attributs dont les valeurs sont susceptibles d'être souvent NULL
- Si les NULLs sont invévitables:
 - Faites en sorte qu'ils n'apparaissent que pour des cas exceptionnels et qu'ils ne concernent pas une majorité de tuples dans la relation

Principe 4

- Veillez, au cours de la définition des schémas relationnels, à ce qu'ils puissent être joints à l'aide de conditions d'égalité spécifiées sur des attributs jouant le rôle de clé primaires ou étrangères
 - Garanti l'absence des tuples parasitaires
- Evitez de faire des jointures sur des attributs qui ne sont pas uniques (clés primaires ou étrangères)

Addison-Wesley is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

EMP_PROJ1

Ssn Pnumber Hours Pname Plocation
P.K.

(b)

LWF_LOC3	
Ename	Plocation
Smith, John B.	Bellaire
Smith, John B.	Sugarland
Narayan, Ramesh K.	Houston
English, Joyce A.	Bellaire
English, Joyce A.	Sugarland
Wong, Franklin T.	Sugarland
Wong, Franklin T.	Houston
Wong, Franklin T.	Stafford
Zelaya, Alicia J.	Stafford
Jabbar, Ahmad V.	Stafford
Wallace, Jennifer S.	Stafford
Wallace, Jennifer S.	Houston
Borg, James F.	Houston

Particularly poor design for the EMP_PROJ relation in Figure 15.3(b). (a) The two relation schemas EMP_LOCS and EMP_PROJ1. (b) The result of projecting the extension of EMP_PROJ from Figure 15.4 onto the relations EMP_LOCS and EMP_PROJ1.

EMP PROJ1

Ssn	Pnumber	Hours	Pname	Plocation
123456789	1	32.5	ProductX	Bellaire
123456789	2	7.5	ProductY	Sugarland
666884444	3	40.0	ProductZ	Houston
453453453	1	20.0	ProductX	Bellaire
453453453	2	20.0	ProductY	Sugarland
333445555	2	10.0	ProductY	Sugarland
333445555	3	10.0	ProductZ	Houston
333445555	10	10.0	Computerization	Stafford
333445555	20	10.0	Reorganization	Houston
999887777	30	30.0	Newbenefits	Stafford
999887777	10	10.0	Computerization	Stafford
987987987	10	35.0	Computerization	Stafford
987987987	30	5.0	Newbenefits	Stafford
987654321	30	20.0	Newbenefits	Stafford
987654321	20	15.0	Reorganization	Houston
888665555	20	NULL	Reorganization	Houston

Addison-Wesley is an imprint of

Génération de tuples parasites

- Figure 15.5(a)
 - relations EMP_LOCS et EMP_PROJ1, remplacant EMP_PROJ de 15.3(b)
- NATURAL JOIN (15.6)
 - Le résultat produit beaucoup plus de tuples qu'il y en avait dans EMP_PROJ

On appelle ces tuples supplémentaires **parasites**, ils sont marqués par *

 Représentent des données parasites ou erronées qui ne sont pas valides

Addison-Wesle is an imprint o

PEARSON

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

	Ssn	Pnumber	Hours	Pname	Plocation	Ename
	123456789	1	32.5	ProductX	Bellaire	Smith, John B.
*	123456789	1	32.5	ProductX	Bellaire	English, Joyce A.
	123456789	2	7.5	ProductY	Sugarland	Smith, John B.
*	123456789	2	7.5	ProductY	Sugarland	English, Joyce A.
*	123456789	2	7.5	ProductY	Sugarland	Wong, Franklin T.
	666884444	3	40.0	ProductZ	Houston	Narayan, Ramesh K.
*	666884444	3	40.0	ProductZ	Houston	Wong, Franklin T.
*	453453453	1	20.0	ProductX	Bellaire	Smith, John B.
	453453453	1	20.0	ProductX	Bellaire	English, Joyce A.
*	453453453	2	20.0	ProductY	Sugarland	Smith, John B.
	453453453	2	20.0	ProductY	Sugarland	English, Joyce A.
*	453453453	2	20.0	ProductY	Sugarland	Wong, Franklin T.
*	333445555	2	10.0	ProductY	Sugarland	Smith, John B.
*	333445555	2	10.0	ProductY	Sugarland	English, Joyce A.
	333445555	2	10.0	ProductY	Sugarland	Wong, Franklin T.
*	333445555	3	10.0	ProductZ	Houston	Narayan, Ramesh K.
	333445555	3	10.0	ProductZ	Houston	Wong, Franklin T.
	333445555	10	10.0	Computerization	Stafford	Wong, Franklin T.
*	333445555	20	10.0	Reorganization	Houston	Narayan, Ramesh K.
	333445555	20	10.0	Reorganization	Houston	Wong, Franklin T.

Figure 15.6

Result of applying NATURAL JOIN to the tuples above the dashed lines in EMP_PROJ1 and EMP_LOCS of Figure 15.5. Generated spurious tuples are marked by asterisks.

Récap: conséquences de mauvaise conception

- Les anomalies entraînent un surcroît de travail
- Gaspillage d'espace de stockage lié aux valeurs NULL
- Difficulté de réaliser des opérations d'aggrégation et de jointures
- Production de données non valides et de tuples parasites par des jointures

Addison-Wesley is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Définition: dépendance fonctionnelle

- Contrainte entre deux ensembles d'attributs de la relation R(A₁,A₂,...,Aₙ).
- Propriété de la sémantique ou signification des attributs
- Def: Une dépendance fonctionnelle, notée X→ Y, entre deux ensembles d'attributs X et Y qui sont des sous-ensembles de R, spécifie une contrainte sur les tuples possibles pouvant former un état de R. Selon cette contrainte, si deux tuples t₁ et t₂ sont tels que t₁[X]=t₂[X], alors ceux-ci doivent être tels que t₁[Y]=t₂[Y].
- Etats relationnels légaux satisfont les contraintes de dépendance fonctionnelles

Dépendances fonctionnelles

Avec les clés, les DF permettent de définir des formes normales, pour

- spécifier des mesures formelles pour la qualité d'une conception;
- détecter des problèmes vu dans le précédent, de manière précise.

Addison-Wesley is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Figure 15.3

Two relation schemas suffering from update anomalies. (a) EMP_DEPT and (b) EMP_PROJ.

Pour (b):

FD1: {Ssn,Pnumber} → Hours

Le numéro de sécu et numéro de projet determinent le nombre d'heures travaillés par cet employé sur ce projet par semaine.

FD2 : Ssn → Ename

Le numéro de sécu détermine le nom de l'employé.

FD3: Pnumber → {Pname, Location}
 Le numéro de projet détermine son nom et l'emplacement

Addison-Wesley is an imprint of

PEARSON

Dépendances fonctionnelles

- Donnée une relation peuplée:
 - On ne peut pas inférer automatiquement quelles DFs sont valides ou non
 - Sauf si la signification et les relations entre les attributs sont connus
 - Il suffit de trouver un seul contre exemple pour réfuter une DF

Addison-Wesley is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Figure 15.8 A relation *R*(A, B, C, D) with its extension.

A	В	С	D
a1	b1	c1	d1
a1	b2	c2	d2
a2	b2	c2	d3
a3	b3	c4	d3

Dépendances fonctionnelles possibles :

 $B \rightarrow C$

 $C \rightarrow B$

 $\{A,B\} \rightarrow C$

 $\{C,D\} \rightarrow B$

FD non valides (contre exemples):

 $A \rightarrow B$ (tuples 1 et 2)

 $B \rightarrow A$ (tuples 2 et 3)

 $D \rightarrow C$ (tuples 3 et 4)

PEARSON

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

TEACH

Teacher	Course	Text
Smith	Data Structures	Bartram
Smith	Data Management	Martin
Hall	Compilers	Hoffman
Brown	Data Structures	Horowitz

Figure 15.7

A relation state of TEACH with a possible functional dependency TEXT → COURSE. However, TEACHER → COURSE is ruled out

Addison-Wesle is an imprint of

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Règles d'inférence pour DFs (1)

Etant donné un ensemble de DFs F, nous pouvons en déduire des DFs supplémentaires, qui sont vérifiées par tous les états légaux de la base.

Les règles d'inférence d'Armstrong sont:

- IR1. (Réfléxivité) si Y est sous ensemble de X, aors X → Y
- IR2. (**Extensibilité**) Si $X \rightarrow Y$, alors $XZ \rightarrow YZ$
 - (Notation: XZ signifie X U Z)
- IR3. (**Transitivité**) si $X \rightarrow Y$ et $Y \rightarrow Z$, alors $X \rightarrow Z$

IR1, IR2, IR3 constituent un ensemble de règles d'inférence correct et complet

 Ses règles sont valides et toutes les autres règles déduites d'elles également

Addison-Wesle is an imprint o

Règles d'inférence pour DFs (2)

Quelques règles supplémentaires sont utilies:

Décomposition:

Si
$$X \rightarrow YZ$$
, alors $X \rightarrow Y$ et $X \rightarrow Z$

- **Union:** Si X→Y et X →Z, alors X \rightarrow YZ
- Pseudo-transitivité:Si X→Y et WY → Z, alors WX → Y et WY → Z, alors WX → Z

Les trois dernieres règles peuvent être déduites de IR1, IR2 et IR3 (propriété de complétitude)

Addison-Wesley is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navat

Algo: détermination de X+, la clôture de X sous F

$$\begin{array}{l} X^+:=X;\\ \\ \text{repeat}\\ \\ \text{ex}X^+:=X^+;\\ \\ \text{for each dépendance fonctionnelle }Y\to Z \text{ dans }F \text{ do}\\ \\ \text{if }X^+\supseteq Y \text{ then}\\ \\ X^+:=X^+\cup Z;\\ \\ \text{until }(X^+=\text{ex}X^+);\\ \end{array}$$

Règles d'inférence pour DFs (3)

Clôture d'un ensemble F de DFs est l'ensemble F+ de toutes les DFs pouvant en être déduites

Clôture d'un ensemble d'attributs X par rapport à F est l'ensemble X+ de tous les attributs qui dépendent fonctionellement de X

X+ peut être calculé en applicant IR1, IR2, IR3 avec les FDs de F, de manière itérée

is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Equivalence d'ensembles de DFs

Deux ensembles de DFs F et G sont équivalents si:

- Chaque DF dans F peut être déduite de G, et
- Chaque DF dans G peut être déduite de F
- Donc, F et G sont équivalents si F+ =G+

Définition (Couvrir):

- F couvre G si chaque DF dans G peut être déduite de F
 - (i.e., si G+ est sous-ensemble de F+)

F et G sont équivalents s'ils se couvrent mutuellement
Il y a un algorithme pour tester l'équivalence d'ensemble de DFs

Formes normales basées sur les cleś primaires

- Processus de normalisation
- Approches pour les projets de conception relationnelle
 - La réalisation préalable d'un schéma conceptuel puis sa traduction en un ensemble de relations
 - La conception tenant en compte de la connaissance externe dérivée d'une implémentation de fichiers ou de formulaires ou de rapports existants

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Normalisation des relations (cont'd.)

- Propriétés désirées du schéma relationnel:
 - Jointure sans perte (non-additivité)
 - Fortement recommandée
 - Garantie de ne pas générer de tupes parasites
 - Préservation des dépendances
 - Desirable, mais parfois sacrifiée pour d'autres aspects

Normalisation des relations

- Fait subir à un schéma relationnel une série de tests
 - Certifier qu'il satisfait à une forme normale déterminée
 - Opère du haut vers le bas
- Test de formes normales

Définition: la forme normale d'une relation est liée à la condition de forme normale qu'elle satisfait et indique le degré auquel

celle-ci a été normalisée

Usage pratique des formes normales

- Dans la pratique, la conception
 - est entreprise en manière à ce que les conceptions auxquelles on aboutit soient de haute qualité et satisfassents les propriétés précédemment évoquées.
 - mène la procédure de normalisation seulement jusqu'à la 3NF, BCNF, ou la 4NF
- Pas besoin de normaliser jusqu'à la forme normale la plus élevée

Def : Dénormalisation : stockage de la jointure de relations normalisées à un degré plus élevé, sous forme d'une relation de base.

Définition: clés et attributs primaires

Def : Une superclé d'un schéma relationnel R= $\{A_1, A_{2n}, \dots, A_n\}$ est un sous-ensemble d'attributs S de R caractérisé par la propriété suivante : Dans chaque état relationnel r de R, deux tuples t_1 et t_2 ne seront pas tels que $t_1[S]=t_2[S]$.

Une **clé** est une superclé dotée de la propriété supplémentaire suivante : la suppression d'un de ses attributs annule son statut de superclé.

Terminologie: Si un schéma relationnel compte plusieurs clés, chacune est appelée clé candidate. On désigne une comme clé primaire. Les autres sont dites clés secondaires

Def: L'attribut d'un schéma relationnel est R est appelé attribut primaire s'il est membre d'une des clés candidates de R. Dans le cas contraire, càd s'il n'est pas membre d'une clé candidate,on parle d'attribut non primaire.

is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Première forme normale (cont'd.)

•Passage en 1NF:

- Désimbriquer la relation, en faire un ensemble de relations 1NF
- Placer des attributs multivalués, dans une nouvelle relation avec des attributs atomiques
- Propager la clé primaire dans cette nouvelle relation

Première forme normale

- Fait partie de la définition formelle d'une relation du modèle relationnel (bases à un niveau)
- Le seules valeurs permises pour les attributs sont atomiques (ou indivisibles)
- Interdit les relations imbriquées où un tuple peut avoir une relation à l'intérieur de luimême

Addison-Wesley is an imprint of

PEARSON

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

(b)

DEPARTMENT

Dname	Dnumber	Dmgr_ssn	Dlocations
Research	5	333445555	{Bellaire, Sugarland, Houston}
Administration	4	987654321	{Stafford}
Headquarters	1	888665555	{Houston}

(c) DEPARTMENT

DEPART

Dname	Dnumber	Dmgr_ssn	Dlocation
Research	5	333445555	Bellaire
Research	5	333445555	Sugarland
Research	5	333445555	Houston
Administration	4	987654321	Stafford
Headquarters	1	888665555	Houston

Addison-Wesley

PEARSON

Normalization into 1NF. (a) A relation schema that is not in 1NF. (b) Sample state of relation DEPARTMENT. (c) 1NF version of the same relation with redundancy.

EMP PROJ Ename Pnumber Hours

(2)	
EMP	PROJ

Ssn	Ename	Pnumber	Hours
123456789	Smith, John B.	1	32.5
		2	7.5
666884444	Narayan, Ramesh K.	3	40.0
453453453	English, Joyce A.	1	20.0
L		2	20.0
333445555	Wong, Franklin T.	2	10.0
		3	10.0
		10	10.0
L		20	10.0
999887777	Zelaya, Alicia J.	30	30.0
		10	10.0
987987987	Jabbar, Ahmad V.	10	35.0
		30	5.0
987654321	Wallace, Jennifer S.	30	20.0
L		20	15.0
888665555	Borg, James E.	20	NULL

Figure 15.10

Normalizing nested rela tions into 1NF. (a) EMP_PROJ relation with a nested relation attribut showing nested relations within each tuple. (c) EMP_PRO_Linto_relations EMP_PRO.11 and

EMP_PROJ1

Ename

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Exemple: DF complète vs partielle

(b) EMP PROJ Hours Ename Pname FD2 FD3

Pour 15.3 (b):

 FD1: {Ssn,Pnumber} → Hours est complète : Ni Ssn → Hours,

ni Pnumber -> Hours sont vraies.

• {Ssn,Pnumber} → Ename

Addison-West partielle: Snn \rightarrow Ename est vraie.

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Deuxième forme normale

X→Y est dépendance fonctionnelle complète, si la suppression d'un des attributs A de X annule la DF. Opposée à dépendance fct partielle.

Def. Un schéma relationnel est en 2NF si chaque attribut non primaire de R est complètement dépendant fonctionnellement de la clé primaire de R.

Décomposition en plusieurs relations 2NF: Attributs non primaires ne sont associés qu'à la clé primaire dont ils sont fonctionnellement complètement dépendants

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Troisième forme normale

- $X \rightarrow Y$ est transitive s'il y a un ensemble d'attributs Z qui n'est ni une clé candidate ni un sous-ensemble d'une des clés de R, et que $X \rightarrow Z$ et $Z \rightarrow Y$ sont toutes les deux vraies.
- Def: un schéma relationnel est en 3NF si il satisfait 2NF et qu'aucun attribut non primaire n'est transitivement dépendant de la clé primaire
- DF problématique
 - Partie gauche fait partie de la clé primaire
 - Partie gauche est un attribut ne jouant pas le rôle

Récap: 2NF 3NF via clés primaires

Forme normale	Test	Remède (normalisation)
Première (1FN)	La relation ne doit pas comporter d'attributs non atomiques ou de relations imbriquées.	Former de nouvelles relations pour chaque attribut non atomique ou relation imbriquée.
Deuxième (2FN)	Pour les relations dans lesquelles la clé primaire contient plusieurs attributs, il ne doit pas y avoir d'attribut non-clé fonctionnellement dépendant d'une partie de la clé primaire.	Décomposer et construire une nouvelle relation pour chaque clé partielle et son (ses) attribut(s) dépendant(s). Il faut s'assurer de préserver une relation avec la clé primaire d'origine et tous les attributs qui dépendent fonctionnellement d'elle.
Troisième (3FN) La relation ne doit pas avoir d'attribut non-clé fonctionnellement déterminé par un autre attribut non-clé (ou par un ensemble de plusieurs attributs non-clés). Autrement dit, il ne doit pas y avoir de dépendance transitiv d'un attribut non-clé vis-à-vis de la clé primaire.		Décomposer et construire une relation qui inclut le ou les attributs non-clés qui déterminent fonctionnellement le ou les autres attributs non-clés.

Addison-Wesley is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Définitions générales 2NF et 3NF

- Les définitions précédentes interdisent les dépendences partielles et transitives sur la clé primaire.
- Les dépendances fonctionnelles partielles, complètes et transitives seront désormais envisagés en tenant compte de toutes les clés candidates d'une relation
- Attribut primaire: tout attribut qui fait partie d'une des clés candidates

Addison-Wesley

Normalizing into 2NF and 3NF. (a) Normalizing EMP_PROJ into 2NF relations. (b) Normalizing EMP DEPT into 3NF relations.

PEARSON

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Définition générale de 2NF

Def: Un schéma relationnel R est en seconde forme normale (2FN) si chacun des attributs non primaires A de R n'est pas partiellement dépendant *d'une* des clés de R.

Autrement dit: chaque attribut non primaire est fonct complètement dépendant de chacune des clés de R

Addison-Wesle is an imprint of

Définition générale de troisième forme normale

Définition. Un schéma relationnel R est en troisième forme normale (3NF) si, lorsqu'une dépendance fonctionnelle non triviale $X \rightarrow A$ est vraie dans R, soit

X est une superclé de R, ou alors,

A est un attribut primaire de R

Définition alternative: un schéma relationnel R est en 3NF si chacun des attributs non primaires de R satisfait les deux conditions suivantes:

Il est fonctionnellement dépendant de chacune des clés de R Il est non transitivement dépendant de chacune des clés de R

Addison-Wesley is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Exemple

Figure 15.12

Normalization into 2NF and 3NF. (a) The LOTS relation with its functional dependencies FD1 through FD4. (b) Decomposing into the 2NF relations LOTS1 and LOTS2. (c) Decomposing LOTS1 into the 3NF relations LOTS1A and LOTS1B. (d) Summary of the progressive normalization of LOTS.

- LOTS décrit des parcelles de terrain en vente dans différents départements (County).
- 2 clés candidates : Property id# et {County name,Lot#}
 - · Numéro de lots sont uniques à l'intérieur d'un département
 - ID de propriété est unique, globalement
- FD3: le taux d'imposition est fixe par département
- FD4 : La superficie détermine le prix.

Viole la 2NF : Taux d'imposition est partiellement dépendant de la clé

PEARSO

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Explications

Pour Normaliser LOTS en 2NF,

Decompose en deux relations LOTS1 et LOTS2.

On construit LOTS1 en supprimant l'attribut pour le taux d'imposition qui viole 2NF de LOTS, en le placant avec le nom de departement (la partie gauche de DF3 qui est la cause de la dependance partielle) dans une autre relation LOTS2.

Notez que DF4 ne viole pas 2NF et qu'elle est transféée à LOTS1.

LOTS2 est en 3NF. Mais DF4 de LoTS1 viole 3NF car superficie (area) n'est pas une superclé, et PRIX n'est pas un attribut primaire dans LOTS1. Pour normaliser LOTS1 en 3NF, on la décompose en schémas relationnels LOTS1A et LOTS1B.

On construit LOTS1A en supprimant l'attribut PRIX qui viole 3NF de LOTS1 et en placant celui-ci avec SUPERFICIE (AREA) dans une autre relation LOTS1B. SUPERFICIE est la partie gauche de la DF4 qui est la cause de la dependance transitive.

Addison-Wesl

PEARSO

Forme normale de Boyce-Codd

Def: Un schéma relationnel est en FNBC si lorsqu'une dépendance fonctionnelle non triviale X→ A est vraie dans R, alors X est une superclé de R.

- Différence entre FNBC et 3NF:
 - Condition 2, qui permet à A d'être primaire, est absente pour FNBC
- •Toute relation en FNBC est aussi en 3NF. Mais, une relation en 3NF n'est pas nécessairement en FNBC
- La plupart des schémas relationnels qui sont en 3NF, sont aussi en FNBC.

ddison-Wesley an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Cet exemple montre que BCNF est plus fort que 3NF.

On regarde la relation LOTS1A.

Supposez maintenant qu'il y a des milliers de lignes dans cette relation, mais qu'il n'y a que deux departements, DeKalb et Fulton. Supposez que les tailles les lots en hectar (AREA) pour DeKalb sont {0.5,0.6,0.7,0.8,0.9,1.0} et celles de Fulton {1.1,1.2,...,1.9,2.0}.

Dans ce cas, cette DF supplementaire est valide:

FD5 : Area → County name.

Avec cette DF la relation reste bien en 3NF puisque County_name est attribut prime.

On peut construire une relation separee R(Area,Contry_name) avec les seulement 16 lignes. Ceci va réduire la redondance.

Donc BCNF est une forme normale plus forte que 3NF, qui interdirait LOTS1A et propose comment le décomposer, en deux relations en BCNF, avec mois de redondances.

Addison-Wesley is an imprint of

PEARSON

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Explication

En pratique la majorité des schémas en BCNF sont également en 3NF.

Exception:

Seulement si X-> A est valide pour un schéma R, sans que X soit une superclé, et avec A attribut prime, la relation R sera en 3NF mais pas BCNF.

Addison-Wesl

PEARSON

Résumé

- Principes informels pour une conception de qualité
- Dépendance fonctionnelle
 - Outil de base pour l'analyse des schémas relationnels
- Normalisation:
 - 1NF, 2NF, 3NF, FNBC, 4NF, 5NF