exercise 1:

Find a function $f:(0,\infty)\times[0,1]\to\mathbb{R}$ such that $x\to f(x,t)$ is in $\mathcal{L}^1((0,\infty))$ for all t in [0,1], $\frac{\partial f}{\partial t}(x,t)$ exists for all x>0 and t in [0,1], and $x\to \frac{\partial f}{\partial t}(x,t)$ is in $\mathcal{L}^1((0,\infty))$ for all t in [0,1], and setting $F(t)=\int_0^\infty f(x,t)dx$, F is fails to be differentiable at some point in [0,1]. **Hint:** t^ae^{-tx} , for some adequate value of a.

exercise 2:

Find (with proof)

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \frac{(\sin x)^n}{x^2} \, dx$$

.

exercise 3:

- (a). Let f_n be a sequence of measurable functions on [a,b] valued in \mathbb{R} and converging uniformly to zero. Use the D.C.T. to show that $\int_a^b f_n$ converges to 0.
- (b). Let f_n be a sequence of measurable functions in $\mathcal{L}^1(\mathbb{R})$ converging uniformly to zero. Does $\int_{\mathbb{R}} f_n$ converge to 0?

exercise 4:

(i). Let (X, \mathcal{A}, μ) be a measure space and Y a metric space. Let $f: X \times Y \to \mathbb{R}$. Assume that for all y in $Y, x \to f(x, y)$ is in $L^1(X)$, and that for almost all x in $X, y \to f(x, y)$ is continuous on Y. Assume that there is an h in $L^1(X)$ such that $|f(x, y)| \leq h(x)$, for all y in Y, for almost all x in X. Set

$$F(y) = \int_{Y} f(x, y) d\mu(x).$$

Show that F is continuous on Y.

(ii). Let q be in $L^1(\mathbb{R})$. Set

$$G(y) = \int_{-\infty}^{\infty} \cos(xy)g(x)dx,$$

for y in \mathbb{R} . Show that G is continuous.

$\underline{\text{exercise } 5}$:

Let (X, d) be a metric space and x_n a Cauchy sequence in X. Show that there is a subsequence z_n of x_n such that $d(z_{n+1}, z_n) \leq 2^{-n}$.

$\underline{\text{exercise } 6}$:

Let (X, \mathcal{A}, μ) be a measure space. We proved in class that $L^1(X)$ is complete. Show that

 $L^2(X)$ is complete. **Hint:** Apply the triangle inequality in $L^2(X)$ to $G = \sum_{n=1}^{\infty} |g_n - g_{n+1}|$.

$\underline{\text{exercise } 7}$:

Let \overline{V} be an open subset of \mathbb{R} and f be in $C(V) \cap L^{\infty}(V)$. Show that $||f||_{\infty} = \sup_{V} |f|$, where $||f||_{\infty}$ is the norm on L^{∞} defined in class.

exercise 8:

For \overline{t} in $[0, \infty)$, define $F(t) = \int_0^\infty e^{-x^2 - \frac{t^2}{x^2}} dx$.

- a. Show that F is continuous on $[0, \infty)$.
- b. Show that F is differentiable on $(0, \infty)$ and form a differential equation for F.
- c. Using that $F(0) = \frac{\sqrt{\pi}}{2}$, express F(t) using known functions.

exercise 9:

Let (X, \mathcal{A}, μ) be a measure space such that $\mu(X) < +\infty$.

- a. Let f be in $L^{\infty}(X)$. Show that for all $p \geq 1$, $|f|^p$ is in $L^1(X)$, and $\limsup_{p \to \infty} (\int |f|^p)^{1/p} \leq ||f||_{\infty}$.
- b. Let ϵ be positive. What can be said about the set $A = \{x \in X : |f(x)| \ge ||f||_{\infty} \epsilon\}$? Infer that $\lim_{p \to \infty} (\int |f|^p)^{1/p} = ||f||_{\infty}$.