LSTM compression for language modeling

Artem Grachev, Svyatoslav Elizarov, Boris Kovalenko

Higher School of Economics

May 19th, 2018

Outline

- Introduction
- 2 Compression
- Tensor Train Format
- 4 Conclusion

Language modeling

We need to compute the probability of a sentence or sequence of words (w_1, \ldots, w_T) in language L.

$$P(w_1, ..., w_T) = P(w_1, ..., w_{T-1}) P(w_T | w_1, ..., w_{T-1}) =$$

$$= \prod_{t=1}^T P(w_t | w_1, ..., w_{t-1})$$

Fix N and try to compute $P(w_t|w_{t-N},...,w_{t-1})$

RNN

RNN – recurrent neural network. T – number timesteps, L – number recurrent layers. Each layer we can describe as follows:

$$z_{l}^{t} = W_{l} x_{l-1}^{t} + V_{l} x_{l}^{t-1} + b_{l}$$
 (1)

$$x_I^t = \sigma(z_I) \tag{2}$$

 $t \in 1, ..., N$; $l \in 1, ..., L$. The output of the network is given by

$$y^{t} = \operatorname{softmax} \left[W_{L+1} x_{L}^{t} + b_{t}^{L+1} \right]$$

Then define

$$P(w_t|w_{t-N},...,w_{t-1}) = y^t$$

LSTM

Equations for one LSTM-layer:

$$i_l^t = \sigma \left[W_l^i x_{l-1}^t + V_l^i x_l^{t-1} + b_l^i + D(v_l^i) c_l^{t-1} \right]$$
 input gate (3)

$$f_{l}^{t} = \sigma \left[W_{l}^{f} x_{l-1}^{t} + V_{l}^{f} x_{l}^{t-1} + b_{l}^{f} + D(v_{l}^{f}) c_{l}^{t-1} \right]$$
 forget gate (4)

$$c_{l}^{t} = f_{l}^{t} \cdot c_{l}^{t-1} + i_{l}^{t} \tanh \left[W_{l}^{c} x_{l-1}^{t} + U_{l}^{c} x_{l}^{t-1} + b_{l}^{c} \right]$$
 cell state (5)

$$o_l^t = \sigma \left[W_l^o x_{l-1}^t + V_l^o x_l^{t-1} + b_l^o + D(v_l^o) c_l^{t-1} \right]$$
 output gate (6)

$$x_l^t = o_l^t \cdot \tanh[c_l^t] \tag{7}$$

 $t \in 1, ..., N$; $l \in 1, ..., L$. The output of the network is given by

$$y^{t} = \operatorname{softmax} \left[W_{L+1} x_{L}^{t} + b_{t}^{L+1} \right]$$

LSTM unit

Figure 1: Left: RNN unit, Right: LSTM unit

Problem

Neural network models can take up a lot of space on disk and in memory. Also they need a lot of time for inference.

Let's compress neural networks

Outline

- Introduction
- 2 Compression
- Tensor Train Format
- 4 Conclusion

- Pruning
- Quantization
- 3 Low-rank decomposition

Pruning

Definition

Pruning – method for reducing number of parameters in NN. All connections with weights below a threshold are removed from the network. After this we retrain the network to learn the final weights for the remaining sparse connections

Figure 2: Weights distribution before and after pruning

Quantization¹

Definition

Quantization – method for compression the size of neural network in memory. We are compressing each float value to an eight-bit integer representing the closest real number in a linear set of 256 within the range.

When we use the model for inference we still need to do full-precision computations.

PTB Results

Method	Size (Mb)	Test PP
Original. 2-layer (each 200) LSTM.	18.6 Mb	117.659
Pruning output layer 90%		
w/o additional training	5.5 Mb	149.310
Pruning output layer 90%		
with additional training	5.5 Mb	121.123
Quantization.	4.7 Mb	118.232

Table 1: Pruning and quantization results

Low-rank factorization

Simple factorization can be done as follows:

$$x_{l}^{t} = \sigma \left[W_{l}^{a} W_{l}^{b} h_{l-1}^{t} + U_{l}^{a} U_{l}^{b} h_{l}^{t-1} + b_{l} \right]$$

Let's require $W_l^b = U_{l-1}^b$. After this we can rewrite our equation for RNN:

$$x_{l}^{t} = \sigma \left[W_{l}^{a} m_{l-1}^{t} + U_{l}^{a} m_{l}^{t-1} + b_{l} \right]$$
 (8)

$$m_l^t = U_l^b x_l^t \tag{9}$$

$$y_t = softmax \left[W_{L+1} m_L^t + b_{L+1} \right] \tag{10}$$

Note that for LSTM it is pretty the same

Low-rank factorization. Visual results

Figure 3: up — original, down — compressed

Low-rank factorization. Results

Method	Size (Mb)	Test PP
Plain vanilla model		
2-layer (each 600) LSTM	71.1	43.4
SVD for output layer (128)	52.5	43.6
Reduce embedding size (100)	46.3	42.9
Reduce embedding size (100) and		
SVD for output layer (128)	27.7	42.9
Reduce embedding size (100) and		
Low-rank factorization (128)	14.5	45.0
Reduce embedding size (100) and		
Low-rank factorization (128) in half-precision	7.3	45.0

Table 2: Low-rank factorization results. (not PTB)

Outline

- Introduction
- Compression
- Tensor Train Format
- 4 Conclusion

What is a $tensor^2$?

Tensor = multidimensional array:

$$\vec{A} = [A(i_1, \dots, i_d)], \qquad i_k \in \{1, \dots, n_k\}.$$
 (11)

Terminology:

- dimensionality = d (number of indices).
- $size = n_1 \times \cdots \times n_d$ (number of nodes along each axis).

Case $d = 1 \Rightarrow$ vector, $d = 2 \Rightarrow$ matrix.

²The whole tensor-train part of this presentation was made by Anton Rodomanov (bayesgroup.ru)

Curse of dimensionality

When
$$n=2,\ d=100$$

$$2^{100}>10^{30} \qquad (\approx 10^{18}\ {\sf PB}\ {\sf of}\ {\sf memory}). \eqno(12)$$

Cannot work with tensors using standard methods.

Number of elements = n^d (exponential in d)

Tensor rank decomposition [Hitchcock, 1927]

Recall the rank decomposition for matrices:

$$A(i_1, i_2) = \sum_{\alpha=1}^{r} U(i_1, \alpha) V(i_2, \alpha).$$
 (13)

This can be generalized to tensors.

Tensor rank decomposition (canonical decomposition):

$$A(i_1,\ldots,i_d)=\sum_{\alpha=1}^R U_1(i_1,\alpha)\ldots U_d(i_d,\alpha).$$
 (14)

The minimal possible R is called the (canonical) rank of the tensor \vec{A} .

- (+) No curse of dimensionality.
- (-) Rank R should be known in advance for many methods.
- (-) Computation of R is NP-hard [Hillar, Lim, 2013].

Unfolding matrices: definition

Every tensor \vec{A} has d-1 unfolding matrices:

$$A_k := [A(i_1 \dots i_k; i_{k+1} \dots i_d)],$$
 (15)

where

$$A(i_1 \ldots i_k; i_{k+1} \ldots i_d) := A(i_1, \ldots, i_d).$$
 (16)

Here $i_1 \dots i_k$ and $i_{k+1} \dots i_d$ are row and column (multi)indices; A_k are matrices of size $M_k \times N_k$ with $M_k = \prod_{s=1}^k n_s$, $N_k = \prod_{s=k+1}^d n_s$.

This is just a reshape.

Unfolding matrices: example

Consider $\vec{A} = [A(i, j, k)]$ given by its elements:

$$A(1,1,1) = 111, \quad A(2,1,1) = 211,$$
 $A(1,2,1) = 121, \quad A(2,2,1) = 221,$
 $A(1,1,2) = 112, \quad A(2,1,2) = 212,$
 $A(1,2,2) = 122, \quad A(2,2,2) = 222.$

$$(17)$$

Then

$$A_1 = [A(i; jk)] = \begin{bmatrix} 111 & 121 & 112 & 122 \\ 211 & 221 & 212 & 222 \end{bmatrix},$$
 (18)

$$A_2 = [A(ij; k)] = \begin{bmatrix} 111 & 112 \\ 211 & 212 \\ 121 & 122 \\ 221 & 222 \end{bmatrix}.$$
 (19)

Tensor Train decompositon: motivation

Main idea: variable splitting.

Consider a rank decomposition of an unfolding matrix:

$$A(i_1i_2; i_3i_4i_5i_6) = \sum_{\alpha_2} U(i_1i_2; \alpha_2)V(i_3i_4i_5i_6; \alpha_2).$$
 (20)

On the left: 6-dimensional tensor; on the right: 3- and 5-dimensional.

The dimension has reduced!

Proceed recursively.

Tensor Train decomposition [Oseledets, 2011]

• TT-format for a tensor \vec{A} :

$$A(i_1, \dots, i_d) = \sum_{\alpha_0, \dots, \alpha_d} G_1(\alpha_0, i_1, \alpha_1) G_2(\alpha_1, i_2, \alpha_2) \dots G_d(\alpha_{d-1}, i_d, \alpha_d).$$
(21)

This can be written compactly as a matrix product:

$$A(i_1, \dots, i_d) = \underbrace{G_1[i_1]}_{1 \times r_1} \underbrace{G_2[i_2]}_{r_1 \times r_2} \dots \underbrace{G_d[i_d]}_{r_{d-1} \times 1}$$
(22)

- Terminology:
 - G_i: TT-cores (collections of matrices)
 - r_i: TT-ranks
 - $r = \max r_i$: maximal TT-rank
- TT-format uses $O(dnr^2)$ memory to store $O(n^d)$ elements.
- Efficient only if the ranks are small.

TT-format: example

Consider a tensor:

$$A(i_1, i_2, i_3) := i_1 + i_2 + i_3, \tag{23}$$

$$i_1 \in \{1,2,3\}, \quad i_2 \in \{1,2,3,4\}, \quad i_3 \in \{1,2,3,4,5\}.$$
 (24)

Its TT-format:

$$A(i_1,i_2,i_3)=G_1[i_1]G_2[i_2]G_3[i_3],$$

where

$$G_1[i_1] := \left[\begin{array}{cc} i_1 & 1 \end{array} \right], \quad G_2[i_2] := \left[\begin{array}{cc} 1 & 0 \\ i_2 & 1 \end{array} \right], \quad G_3[i_3] := \left[\begin{array}{cc} 1 \\ i_3 \end{array} \right]$$

Check:

$$A(i_1, i_2, i_3) = \begin{bmatrix} i_1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ i_2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ i_3 \end{bmatrix} =$$

$$= \begin{bmatrix} i_1 + i_2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ i_3 \end{bmatrix} = i_1 + i_2 + i_3.$$

TT-format: example

Consider a tensor:

$$A(i_1, i_2, i_3) := i_1 + i_2 + i_3, \tag{23}$$

$$i_1 \in \{1,2,3\}, \quad i_2 \in \{1,2,3,4\}, \quad i_3 \in \{1,2,3,4,5\}.$$
 (24)

Its TT-format:

$$A(i_1,i_2,i_3)=G_1[i_1]G_2[i_2]G_3[i_3],$$

where

$$G_{1} = \left(\begin{bmatrix} 1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 1 \end{bmatrix} \right)$$

$$G_{2} = \left(\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} \right)$$

$$G_{3} = \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 5 \end{bmatrix} \right)$$

$$(25)$$

• The tensor has $3 \cdot 4 \cdot 5 = 60$ elements.

Finding a TT-representation of a tensor

General ways of building a TT-decomposition of a tensor:

- Analytical formulas for the TT-cores.
- TT-SVD algorithm [Oseledets, 2011]:
 - Exact quasi-optimal method.
 - Suitable only for small tensors (which fit into memory).
- Interpolation algorithms: AMEn-cross [Dolgov & Savostyanov, 2013],
 DMRG [Khoromskij & Oseledets, 2010], TT-cross [Oseledets, 2010]
 - Approximate heuristically-based methods.
 - Can be applied for large tensors.
 - No strong guarantees but work well in practice.
- Operations between other tensors in the TT-format: addition, element-wise product etc.

TT format. Summary

- TT-decomposition and corresponding algorithms are a good way to work with huge tensors.
- Memory and complexity depend on d linearly ⇒ no curse of dimensionality.
- TT-format is efficient only if the TT-ranks are small. This is the case in many applications.
- Code is available:
 - Python: https://github.com/oseledets/ttpy
 - MATLAB: https://github.com/oseledets/TT-Toolbox

Results

Table 3: Matrix decomposition results on PTB dataset

	Model	Size	No. of params	Test PP
PTB	LSTM 200-200	18.6 Mb	4.64 M	117.659
Benchmarks	LSTM 650-650	79.1 Mb	19.7 M	82.07
	LSTM 1500-1500	264.1 Mb	66.02 M	78.29
Ours	LR LSTM 650-650	16.8 Mb	4.2 M	92.885
	TT LSTM 600-600	50.4 Mb	12.6 M	168.639
	LR LSTM 1500-1500	94.9 Mb	23.72 M	89.462

Outline

- Introduction
- 2 Compression
- Tensor Train Format
- Conclusion

Future work

- Better TT for LSTM (in proccess)
- Variational dropout)

Thank you for listening!

