CONTROLE CONTINU 2

Durée : 1h. Tous documents, calculatrices (sauf type collège) et téléphones interdits. La note tiendra compte de la rédaction.

Exercice 1. Déterminer la nature et la limite éventuelle des suites de termes généraux :

- 1. $\sqrt{n^3+3n}-\sqrt{n^3+2n}$
- $2. \ \frac{1}{3n^2} + (-1)^n$
- 4. $3n^2 n^2 \sin(2n)$

Exercice 2. Soit la fonction f définie sur l'intervalle [0; 2] par

$$f(x) = \frac{2x+1}{x+1}.$$

- 1) Etudier les variations de f sur l'intervalle [0; 2]. Montrer que si $x \in [1; 2]$ alors $f(x) \in [1; 2]$. Soit la suite (u_n) définie sur \mathbb{N} par :
- $u_0 = 1$ et pour tout entier naturel n, $u_{n+1} = f(u_n)$.
- 2) Montrer à l'aide d'un raisonnement par récurrence que :
- Pour tout entier naturel $n, 1 \leq u_n \leq 2$.
- 3) Etudier la suite (u_n) .

Exercice 3.! On reprend les notations de l'exercice précédent

Soit la fonction f définie sur l'intervalle [0; 2] par

$$f(x) = \frac{2x+1}{x+1}.$$

- (u_n) et (v_n) sont deux suites définies sur \mathbb{N} par :
- $u_0 = 1$ et pour tout entier naturel n, $u_{n+1} = f(u_n)$.
- $v_0 = 2$ et pour tout entier naturel $n, v_{n+1} = f(v_n)$.
- On pourra utiliser les résultats obtenus dans l'Exercice 2, sans les redémontrer.
- En particulier, on admettra, dans cet exercice seulement, les résultats donnés, à savoir :
- $f([1;2]) \subset [1;2]$ et que $1 \leq u_n \leq 2$.
- On admettra, également, que l'on peut démontrer de la même façon qu'à l' Exercice 2 question 2) :
- Pour tout entier naturel $n, 1 \leq v_n \leq 2$.
- 1) On admet ici que pour tout entier naturel n, $v_{n+1} u_{n+1} = \frac{v_n u_n}{(v_n + 1)(u_n + 1)}$.
- En déduire que pour tout entier naturel $n,\ v_n-u_n\geqslant 0$ et

$$v_{n+1} - u_{n+1} \leqslant \frac{1}{4} (v_n - u_n).$$

- 2) Montrer que pour tout entier naturel $n, v_n u_n \leqslant \left(\frac{1}{4}\right)^n$.
- 3) Montrer que les suites (u_n) et (v_n) sont adjacentes.

QUESTIONS HORS BAREME

- 4) En déduire une méthode pour donner une valeur approchée de $\frac{1+\sqrt{5}}{2}$ à 10^{-3} près. 5) Montrer que pour tout entier naturel $n,\ v_{n+1}-u_{n+1}=\frac{v_n-u_n}{(v_n+1)\,(u_n+1)}$.

Barême indicatif: Ex 1/6 Ex 2/7