Apellido y Nombres:	 ,	
2 0	Código Asignatura:	
	Profesor:	
Corros electrónico:		

Análisis Matemático III. Examen Integrador. Tercera fecha. 9 de abril de 2021.

Justificar claramente todas las respuestas. La aprobación del examen requiere la correcta resolución de 3 (tres) ejercicios

Ejercicio 1. La función f tiene a $\sum_{n=1}^{\infty} \frac{n}{4^n} (z-1-i)^n$ como desarrollo de Taylor centrado en $z_0 = 1+i$, válido en un entorno D. Dadas las curvas $\gamma_1 = \{z \in \mathbb{C} : |z-i|=1\}$ y $\gamma_2 = \{z \in \mathbb{C} : |z-1|=1\}$, ambas orientadas en sentido positivo, sean $\Gamma_1 = f(\gamma_1 \cap D)$ y $\Gamma_2 = f(\gamma_2 \cap D)$. Verificar que Γ_1 y Γ_2 se intersecan en $f(z_0)$. Obtener $f(z_0)$ y la magnitud del ángulo determinado por Γ_1 y Γ_2 en $f(z_0)$. Estudiar el mismo problema para el caso en que la serie está dada por $\sum_{n=1}^{\infty} \frac{n-1}{4^n} (z-1-i)^n$.

Ejercicio 2. Se tiene un condensador que encierra la región del plano:

$$A = \{(x, y) \in \mathbb{R}^2 : (x - 2)^2 + (y - 2)^2 \leqslant 4, \ y \leqslant x \}$$

para el cual la función potencial en los bordes satisface:

$$u(x,y) = \begin{cases} 0 & \text{para} \quad y = x, \ (x-2)^2 + (y-2)^2 < 4 \\ 1 & \text{para} \quad (x-2)^2 + (y-2)^2 = 4, \ y < x \end{cases}$$

Hallar una función T de variable compleja que transforme este condensador en uno equivalente de placas paralelas. Indicar cómo quedan las condiciones de contorno en las placas paralelas (no se pide hallar u(x,y)).

Ejercicio 3. Resolver el siguiente problema, indicando las hipótesis consideradas sobre f:

$$\begin{cases} u_{tt} = 2u_{xx} - 3x & 0 < x < \pi, \ t > 0 \\ u(0, t) = u(\pi, t) = 0 & t \geqslant 0 \\ u(x, 0) = f(x) & 0 \leqslant x \leqslant \pi \\ u_t(x, 0) = 0 & 0 \leqslant x \leqslant \pi \end{cases}$$

Ejercicio 4. Sea $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 1 & \text{si} \quad |x| \leqslant 1\\ e^{-2|x|} & \text{si} \quad |x| > 1 \end{cases}$$

Probar que existe \hat{f} , la transformada de Fourier de f. Determinar si f es cuadrado integrable y calcular el valor de la integral impropia $\int\limits_0^\infty |\hat{f}(\omega)|^2 d\omega$.

Ejercicio 5. Obtener y en términos de g, sabiendo que para t>0:

$$y(t) = \phi(t-2)H(t-2) + (H * \phi)(t)$$

 $\phi'(t) = \int_{0}^{t} g(\tau) d\tau$

con $\phi(0^+)=0$, siendo H(t) la función de Heaviside.

RESOLUCIÓN MUY ESQUEMÁTICA DEL INTEGRADOR DE ANÁLISIS III 09-04-2021

1) Las dos circunferencias orientadas se cortan ortogonalmente en $z_0=1+i$. Por otra parte, tenemos $f(z)=\sum_{n=1}^{\infty}\frac{n}{4^n}(z-z_0)^n=\frac{1}{4}(z-z_0)+\frac{2}{4^2}(z-z_0)^2+\frac{3}{4^3}(z-z_0)^3+....$ serie que define a la función holomorfa en el disco abierto de centro z_0 y radio 4. Se observa que la derivada de f en z_0 es $\frac{1}{4}\neq 0$, por lo tanto f es conforme en este punto y entonces el ángulo buscado es $\frac{\pi}{2}$.

Ahora, si
$$f(z) = \sum_{n=1}^{\infty} \frac{n-1}{4^n} (z-z_0)^n = \frac{1}{4^2} (z-z_0)^2 + \frac{2}{4^3} (z-z_0)^3 + \frac{3}{4^4} (z-z_0)^4 + \dots$$
, la serie que define a la función holomorfa en el disco abierto de centro z_0 y radio 4 pero se observa que la derivada de f en z_0 es nula, por lo tanto f no es conforme en este punto. Lo que sigue no es necesario para la aprobación del ejercicio:

Podemos escribir

$$f(z) = (z - z_0)^2 \left[\frac{1}{4^2} + \frac{2}{4^3} (z - z_0) + \frac{3}{4^4} (z - z_0)^2 + \dots \right]$$

donde la función g es holomorfa en el mismo disco y además $g'(z_0)=\frac{2}{4^3}\neq 0$, por lo tanto es conforme en el punto z_0 y entonces conserva los ángulos entre las curvas orientadas que se cortan en z_0 , mientras que la función cuadrática $p(z)=(z-z_0)^2$ duplica estos ángulos y lo mismo ocurre con f. Veamos un poco porqué , de manera algo intuitiva. Alcanza ver este fenómeno para los ángulos que forman dos rectas orientadas que pasan por z_0 , pues el ángulo que forman dos curvas orientadas que se cortan en z_0 es el ángulo entre sus dos vectores tangentes orientados en dicho punto. Sean $r_u=\{z_0+tu:t\in\Re\}$ y $r_v=\{z_0+tv:t\in\Re\}$ dos de estas rectas, donde $u=e^{i\alpha}$ y $v=e^{i\beta}v$ son dos complejos de módulo 1. Supongamos que $\alpha>\beta$, con lo cual, el ángulo orientado entre ambos versores es $\alpha-\beta$. Las curvas parametrizadas por $\gamma(t)=f(z_0+tu)$ y $\sigma(t)=f(z_0+tv)$ se cortan en $\gamma(0)=\sigma(0)=f(z_0)=0$. El problema con estas parametrizaciones es que no son regulares en 0, pues $\gamma'(t)=f'(z_0+tu)u$ y $\sigma'(t)=f'(z_0+tv)v$ se anulan en t=0. Pero veamos qué pasa si tomamos un t "próximo" a 0:

$$\gamma'(t) = f'(z_0 + tu)u = \{ f'(z_0) + f''(z_0)tu + \frac{1}{2}f'''(z_0)t^2u^2 + \dots \} u$$

y por lo tanto, para cada $t \in (0,4)$ (esto para no salir del disco de convergencia de la serie):

$$\frac{\gamma'(t)}{t} = \{ f''(z_0)u + \frac{1}{2}f'''(z_0)tu^2 + \dots \} u = f''(z_0)u^2 + \frac{1}{2}f'''(z_0)tu^3 + \dots$$

y análogamente,

$$\frac{\sigma'(t)}{t} = f''(z_0)v^2 + \frac{1}{2}f'''(z_0)tv^3 + \dots$$

Ahora bien: el ángulo entre los tangentes $\gamma'(t)$ y $\sigma'(t)$ es el argumento del cociente $\frac{\gamma'(t)}{\sigma'(t)}$ (meditarlo a partir de la expresión en polares). En nuestro caso, tenemos

$$\frac{\gamma'(t)}{\sigma'(t)} = \frac{\frac{\gamma'(t)}{t}}{\frac{\sigma'(t)}{t}} = \frac{f''(z_0)u^2 + \frac{1}{2}f'''(z_0)tu^3 + \dots}{f''(z_0)v^2 + \frac{1}{2}f''(z_0)tv^3 + \dots} \xrightarrow{t \to 0+} \frac{u^2}{v^2}$$

Pero el ángulo entre $u^2 = e^{i2\alpha}$ y $v^2 = e^{i2\beta}$ es $2\alpha - 2\beta = 2(\alpha - \beta)$, el doble del ángulo entre u y v. Todo este razonamiento puede hacerse detalladamente para curvas regulares que se cortan en el punto z_0 , en lugar de semirrectas. El razonamiento es el mismo, pero los detalles técnicos son más engorrosos.

En definitiva, la respuesta es $2\frac{\pi}{2} = \pi$.

2) La bisectriz del primer cuadrante corta a la circunferencia en los puntos $z_1 = 2 - \sqrt{2} + (2 - \sqrt{2})i$ y $z_2 = 2 + \sqrt{2} + (2 + \sqrt{2})i$. Ahora, las sucesivas transformaciones

$$z \longrightarrow z - z_1 \longrightarrow \frac{1}{z - z_1} \longrightarrow \frac{1}{z - z_1} - \frac{1}{z_2 - z_1}$$

llevan el semidisco original al sector angular $A = \left\{z \in \mathbb{C} : -\frac{\pi}{4} < Arg(z) < \frac{\pi}{4}\right\}$. Por lo tanto, la transformación

$$z \xrightarrow{T} Log \left(\frac{1}{z - z_1} - \frac{1}{z_2 - z_1} \right)$$

(donde Log es el logaritmo principal), transforma el semidisco original en la banda infinita

$$R = \left\{ w \in \mathbb{C} : -\frac{\pi}{4} < \operatorname{Im}(w) < \frac{\pi}{4} \right\}.$$

Asimismo, puede comprobarse que la parte rectilínea del borde del semidisco original se transforma en la recta $r_1 = \left\{ w \in \mathbb{C} : \operatorname{Im}(w) = -\frac{\pi}{4} \right\}$, y la semicircunferencia en la recta $r_2 = \left\{ w \in \mathbb{C} : \operatorname{Im}(w) = \frac{\pi}{4} \right\}$. Obsérvese que $u(x,y) = \frac{2}{\pi} \operatorname{Im}(T(x+iy)) + \frac{1}{2}$ es la solución del problema de Dirichlet planteado.

3) Se puede simplificar considerablemente el problema considerando la nueva función incógnita $v(x,t) = u(x,t) - \frac{1}{4}x^3 + \frac{1}{4}\pi^2 x$, que debe satisfacer:

$$\begin{cases} (1)\frac{\partial^2 v(x,t)}{\partial t^2} = 2\frac{\partial^2 v(x,t)}{\partial x^2} & 0 < x < \pi, t > 0 \\ (2)v(0,t) = v(\pi,t) = 0 & t > 0 \\ (3)v(x,0) = f(x) - \frac{1}{4}x^3 + \frac{1}{4}\pi^2 x & 0 \le x \le \pi \\ (4)\frac{\partial}{\partial t}u(x,0) = 0 & 0 \le x \le \pi \end{cases}$$

Para cada entero positivo n, la función $v_n(x,t) = sen(nx)\cos(\sqrt{2}nt)$ satisface (1), (2) y (4), que constituyen la parte lineal del problema (estas soluciones se pueden obtener mediante separación de variables). Ahora, planteamos una solución de las cuatro condiciones en la forma

$$v(x,t) = \sum_{n=1}^{\infty} c_n sen(nx) \cos(\sqrt{2}nt)$$

Los coeficientes c_n ahora se determinan por la condición (4):

$$v(x,0) = \sum_{n=1}^{\infty} c_n sen(nx) = f(x) - \frac{g(x)}{4}x^3 + \frac{1}{4}\pi^2 x , \quad 0 \le x \le \pi$$

Es decir: se considera la extensión 2π -periódica impar de la función g, cuyos coeficientes de Fourier son, precisamente los coeficientes c_n . Sobre las condiciones que debe satisfacer f para que todo esto funcione bien, se recomienda leer la resolución del integrador 26-03-2021 publicada en la página de la materia. Nuestra solución puede expresarse, finalmente, en la forma

$$u(x,t) = \sum_{n=1}^{\infty} c_n sen(nx) \cos(\sqrt{2nt}) + \frac{1}{4}x^3 - \frac{1}{4}\pi^2 x$$

4) Que f es absolutamente integrable y de cuadrado integrable es casi obvio y no lo detallamos aquí. Por otra parte, por ser f una función real par:

$$\hat{f}(\omega) = \int_{-\infty}^{+\infty} f(x)\cos(\omega x)dx - i\int_{-\infty}^{+\infty} \underbrace{f(x)\sin(impar\ de\ x)}_{f(x)sen(\omega x)}dx = \underbrace{\int_{-\infty}^{f(unción\ par\ de\ \omega)}}_{f(x)\cos(\omega x)dx - i0$$

Por lo tanto \hat{f} es par y entonces:

$$\int_{0}^{+\infty} \left| \hat{f}(\omega) \right|^{2} d\omega = \frac{1}{2} \int_{-\infty}^{+\infty} \left| \hat{f}(\omega) \right|^{2} d\omega = \frac{1}{2} 2\pi \int_{-\infty}^{+\infty} \left| f(x) \right|^{2} dx = \pi \int_{-\infty}^{+\infty} \left| f(x) \right|^{2} dx$$

Calculemos:

$$\int_{-\infty}^{+\infty} |f(x)|^2 dx = 2 \int_{0}^{+\infty} |f(x)|^2 dx = 2 \int_{0}^{+\infty} |f(x)|^2 dx = 2 \int_{0}^{1} dx + 2 \int_{1}^{+\infty} e^{-4x} dx = 2 + 2 \left[\frac{e^{-4x}}{-4} \right]_{x=1}^{x=+\infty} = 2 + 2 \frac{e^{-4}}{4} = 2 + \frac{1}{2e^4}$$

Por lo tanto, la respuesta es $2\pi + \frac{\pi}{2e^4}$.

5) Utilizando las propiedades de la TL mencionadas en la resolución del Profesor Acero, la ecuación $y'(t) = \phi(t-2)H(t-2) + (H*\phi)(t)$ se transforma en

$$Y(s) = e^{-2s}\Phi(s) + \frac{1}{s}\Phi(s)$$

donde Φ es la TL de la función ϕ que verifica $\phi'(t) = \int_0^t g(\tau)d\tau$ y $\phi(0^+) = 0$. De esta

expresión tenemos $\phi''(t) = g(t)$ y por lo tanto $s^2\Phi(s) - s\phi'(0^+) - \phi(0^+) = G(s)$ (= TL de g). Resulta entonces que

$$Y(s) = e^{-2s} \frac{G(s)}{s^2} + \frac{G(s)}{s^3} = \left(\frac{e^{-2s}}{s^2} + \frac{1}{s^3}\right) G(s)$$
 (*)

Obsérvese que todo esto es posible si la abscisa de convergencia de G es menor o igual a 0, hipótesis que debe mencionarse. En ese caso, la identidad (*) se verifica para todo complejo s tal que Re(s) > 0 y resulta entonces que

$$y(t) = (u * g)(t)$$

donde u es una función cuya TL es $\frac{e^{-2s}}{s^2} + \frac{1}{s^3}$ con abscisa de convergencia 0. Haciendo las cuentas tenemos que $u(t) = (t-2)H(t-2) + \frac{1}{2}t^2H(t)$.
