8. Proprietăți statistice ale imaginilor de intensitate

8.1. Introducere

În această lucrare se vor prezenta principalele trăsături statistice care caracterizează distribuția nivelurilor de intensitate într-o imagine de intensitate (grayscale) sau dintr-o zonă/regiune de interes (ROI) a imaginii. Aceste mărimi statistice se pot aplica în mod analog și imaginilor color pe fiecare componentă de culoare în parte.

În cadrul acestei lucrări vom folosi următoarele notații:

- L=255 nivelul maxim de intensitate al imaginii
- h(g) histograma imaginii (numărul de pixeli având nivelul de gri g)
- $M = H \times W$, numărul de pixeli din imagine
- p(g) = h(g)/M funcția de densitate de probabilitate a nivelurilor de gri (FDP).

8.2. Valoarea medie a nivelurilor de intensitate

Este o măsură a intensității medii a imaginii sau a regiunii de interes. O imagine întunecată va avea o medie scăzută (Fig. 8.1a), iar una luminoasă o medie ridicată (Fig. 8.1b).

Fig. 8.1 Ilustrarea poziției histogramei și a valorii medii a nivelurilor de intensitate pentru o imagine întunecată (a) și una luminoasă (b).

Calculul valorii medii a intensităților se face folosind formulele:

$$\overline{g} = \mu = \int_{-\infty}^{+\infty} g \cdot p(g) dg = \sum_{g=0}^{L} g \cdot p(g) = \frac{1}{M} \sum_{g=0}^{L} g \cdot h(g)$$
(8.1)

$$\overline{g} = \mu = \frac{1}{M} \sum_{i=0}^{H-1} \sum_{j=0}^{W-1} I(i,j)$$
(8.2)

8.3. Deviația standard a nivelurilor de intensitate

Este o măsură a contrastului imaginii (regiunii de interes) și caracterizează gradul de împrăștiere al nivelurilor de intensitate față de valoarea medie. O imagine cu contrast ridicat va avea o deviație standard mare (**Fig. 8.2**a – histograma este împrăștiată pe întreaga plajă a nivelurilor de intensitate), iar o imagine cu contrast scăzut va avea o deviație standard mică (**Fig. 8.2**b – histograma este restrânsă la câteva niveluri de intensitate în jurul valorii medii).

Fig. 8.2 Ilustrarea poziției histogramei și a deviației standard (2σ) a nivelurilor de intensitate pentru o imagine cu contrast ridicat (a) și una cu contrast scăzut (b).

Calculul deviației standard a intensităților:

$$\sigma = \sqrt{\sum_{g=0}^{L} (g - \mu)^2 \cdot p(g)}$$
 (8.3)

$$\sigma = \sqrt{\frac{1}{M} \sum_{i=0}^{H-1} \sum_{j=0}^{W-1} (I(i,j) - \mu)^2}$$
(8.4)

8.4. Histograma cumulativă

Histograma cumulativă C calculează numărul pixelilor din imagine a căror intensitate este mai mică sau egală cu o valoare g, unde $g \in [0,255]$. Histograma cumulativă se poate calcula prin acumularea valorilor din histogramă. Astfel:

$$C(g) = \sum_{i=0}^{g} h(i)$$

unde *h* este histograma nivelurilor de intensitate din imagine.

8.5. Binarizare automată globală

Acest algoritm de binarizare folosește imagini care au histograma bimodală (două vârfuri, obiecte și fundal). Având două vârfuri, este de ajuns un singur prag (T) pentru binarizare.

Algoritm

- 1. Inițializare:
 - Se calculează histograma h
 - Se găsește intensitatea maximă I_{max} și intensitatea minimă I_{min} în imagine
 - Se alege o valoare inițială pentru pragul *T*:

$$T = (I_{min} + I_{max}) / 2$$

- 2. Se segmentează imaginea pe baza pragului *T* și se calculează valorile medii de intensitate:
 - se calculează valoarea medie μ_{G_1} pentru pixelii care satisfac condiția $G_1:I(i,j) \le T$
 - se calculează valoarea medie μ_{G_2} pentru pixelii care satisfac condiția $G_2:I(i,j)>T$

Implementare eficientă: se calculează mediile μ_{G_1} și μ_{G_2} folosind histograma inițială

$$\mu_{G_1} = \frac{1}{N_1} \sum_{g=I_{min}}^{g=T} g \cdot h(g) \text{ unde } N_1 = \sum_{g=I_{min}}^{g=T} h(g)$$

$$\mu_{G_2} = \frac{1}{N_2} \sum_{g=T+1}^{g=I_{max}} g \cdot h(g) \text{ unde } N_2 = \sum_{g=T+1}^{g=I_{max}} h(g)$$

- 3. Se actualizează pragul de binarizare: $T = (\mu_{G_1} + \mu_{G_2})/2$
- 4. Se repetă pașii 2-3 până când $|T_k T_{k-1}| < eroare$ (unde eroare este o valoare pozitivă)
- 5. Se binarizează imaginea folosind pragul T

a. Imaginea originală

b. Histograma imaginii

c. Imagine binară după segmentare cu pragul T = 165 (eroare = 0.1)

Fig. 8.3 Rezultatul binarizării cu pragul calculat.

8.6. Funcții de transformare cu formă analitică

În **Fig. 8.4** sunt ilustrate câteva funcții de transformare tipice ale nivelurilor de intensitate, exprimabile într-o formă analitică:

Fig. 8.4 Funcții tipice de transformare a nivelurilor de intensitate.

8.6.1. Funcția identitate (fără efect)

$$g_{out} = g_{in} \tag{8.5}$$

8.6.2. Negativul imaginii

$$g_{out} = L - g_{in} = 255 - g_{in} \tag{8.6}$$

8.6.3. Modificarea luminozității

- Adunarea unei valori pozitive (offset > 0) rezultă în creșterea luminozității
- Adunarea unei valori negative (offset < 0) rezultă în scăderea luminozității

$$g_{out} = g_{in} + offset (8.7)$$

Atenție: se va face întotdeauna verificarea următoare: $0 \le g_{out} \le 255$, iar eventualele depășiri se vor rezolva prin saturare !!!

a. Imaginea inițială

Fig. 8.5 Modificarea luminozității.

c. Offset = -50

8.6.4. Modificarea contrastului (lățirea/îngustarea histogramei)

- Transformarea intensităților originale din intervalul [g_{in}^{MIN} , g_{in}^{MAX}] în intervalul [g_{out}^{MIN} , g_{out}^{MAX}]
- Lățirea histogramei determină creșterea contrastului
- Îngustarea histogramei determina scăderea contrastului

$$g_{out} = g_{out}^{MIN} + (g_{in} - g_{in}^{MIN}) \frac{g_{out}^{MAX} - g_{out}^{MIN}}{g_{in}^{MAX} - g_{in}^{MIN}}$$
(8.8)

unde:

$$\frac{g_{out}^{MAX} - g_{out}^{MIN}}{g_{in}^{MAX} - g_{in}^{MIN}} = \begin{cases} >1 & \Rightarrow & l\check{a}tire \\ <1 & \Rightarrow & \hat{i}ngustare \end{cases}$$
(8.9)

a. Imaginea inițială și histograma

b. Lățirea histogramei (g_{out}^{MIN} =10, g_{out}^{MAX} =250)

Fig. 8.6 Lățirea histogramei.

a. Imaginea inițială și histograma

b. Îngustarea histogramei $(g_{out}^{MIN}=50, g_{out}^{MAX}=150)$

Fig. 8.7 Îngustarea histogramei.

8.6.5. Corecția gamma

$$g_{out} = L \left(\frac{g_{in}}{L}\right)^{\gamma} \tag{8.10}$$

unde: γ este un coeficient pozitiv: subunitar (codificare/compresie gamma) sau supraunitar (decodificare/decompresie gamma)

Atenție: se va face întotdeauna verificarea următoare: $0 \le g_{out} \le 255$, iar eventualele depășiri se vor rezolva prin saturare !!!

 γ < 1: codificare/comprimare gamma

 γ > 1: decodificare/decompresie gamma

Fig. 8.8 Ilustrarea rezultatelor operațiilor de corecție gamma.

8.7. Egalizarea histogramei

Este o transformare care permite obținerea unei imagini cu histogramă/FDP cvasiuniformă, indiferent de forma histogramei/FDP imaginii de intrare. Pentru aceasta se va folosi următoarea transformare (vezi notele de curs pentru mai multe detalii):

$$s_k = p_C(k) = \sum_{g=0}^k \frac{h(g)}{M}, \ k = 0...L$$
 (8.11)

unde:

k – nivelul de intensitate al imaginii de intrare,

 s_k – nivelul de intensitate normalizat al imaginii de ieșire,

 $p_{\mathcal{C}}(k)$ – funcția densității de probabilitate cumulative (FDPC) a imaginii de intrare.

8.7.1. Algoritmul de egalizare a histogramei

- 1. Se calculează histograma sau FDP a imaginii de intrare (vector de 256 elemente).
- 2. Se calculează FDPC, conform (8.11), sub forma unui vector p_c de 256 elemente.
- 3. Deoarece din relația (8.11) se obțin valori s_k normalizate ale intensităților de ieșire este necesară înmulțirea valorii s_k cu L (255):

$$g_{out} = Ls_k = \frac{L}{M} \sum_{g=0}^{g_{in}} h(g)$$
 , $k = g_{in}$ (8.12)

Această funcție de transformare se poate scrie sub forma unei tabele (vector) de echivalențe:

$$g_{out} = tab(g_{in}) = 255 \cdot p_C(g_{in}) \tag{8.13}$$

4. Se calculează intensitățile pixelilor din imaginea de ieșire (egalizată) pe baza echivalențelor din tabelă:

$$Dst(i,j) = tab\left(Src(i,j)\right) \tag{8.14}$$

Fig. 8.9 Egalizarea histogramei

8.8. Activități practice

- 1. Calculați și afișați media, deviația standard, histograma și histograma cumulativă a nivelurilor de intensitate. Pentru histogramă folosiți funcția *ShowHistogram* din *OpenCVApplication* (vezi și Laborator 3).
- 2. Implementați metoda de determinare automată a pragului de binarizare (vezi secțiunea 8.5) și binarizați imaginile folosind acest prag. Afișați pragul obținut.
- 3. Implementați funcțiile de transformare a histogramei (vezi secțiunea 8.6) pentru calculul negativului imaginii, lățirea/îngustarea histogramei, corecția gamma, modificarea luminozității. Introduceți limitele \mathcal{S}_{out}^{MIN} , \mathcal{S}_{out}^{MAX} , coeficientul gamma și valoarea de creștere a luminozității prin intermediul consolei. După fiecare procesare afișați histogramele imaginilor (sursă si destinație).
- **4.** Implementați algoritmul de egalizare a histogramei (vezi secțiunea 8.7). Afișați histogramele imaginilor (sursă și destinație).
- 5. Salvați-vă ceea ce ați lucrat. Utilizați aceeași aplicație în laboratoarele viitoare. La sfârșitul laboratorului de procesare a imaginilor va trebui să prezentați propria aplicație cu algoritmii implementați!!!

8.9. Referințe

[1] R.C.Gonzales, R.E.Woods, *Digital Image Processing*, 2-nd Edition, Prentice Hall, 2002.