

Propensity Score Based Approaches for Leveraging Real World Data in Single Arm Clinical Trials Jian Zhu, PhD Servier Pharmaceuticals

Eric Baron

Bayesian Divide-and-Conquer

Univ. of Connecticut **DIA BSWG KOL LECTURE SERIES** MAY 20, 2022

Acknowledgement

Servier and UConn Stats Co-op

UCONN UNIVERSITY OF CONNECTICUT

Jian Zhu Rui (Sammi) Tang Eric Baron Ming-Hui Chen

Outline for this talk

Background

- Real-World Data (RWD)
- Bayesian borrowing
- Individual Patient Data (IPD)

Framework

- Divide:
 - Propensity score stratification
 - Bayesian borrowing within each stratum
- Conquer: combine inference across strata
- Illustrative methods (power prior, mixture prior, double hierarchical prior)
- Simulation
- Takeaway messages

Real World Data

Using RWD to supplement trial data is particularly relevant in rare diseases

Literature Regulatory Guidance Case Studies • • •

 This presentation focuses on leveraging RWD to estimate parameter of interest (e.g. treatment effect) in single arm trials

Bayesian Borrowing

- Naturally used with prior elicitation
- Data inconsistency between sources

Common Bayesian methods:

- power prior [Ibrahim et al., 2015]
- commensurate power prior [Hobbs et al., 2011]
- meta-analytic-predictive (MAP) prior [Schmidli et al., 2014]
- elastic prior [Jiang et al., 2020]

Inconsistency

- different study conduct (incl./excl., supportive care ...)
- different distribution of baseline prognostic factors (age, ethnicity, BMI, prognostic biomarker ...)
- and more

Individual Patient Data

- Patient level baseline characteristics and prognostic factors data
- Some inconsistency can be mitigated by balancing the baseline covariates
 - e.g. Propensity Score (PS) matching, weighting, stratification*
- Separate inconsistency into two parts

Existing methods

- Propensity Score Integrated Methods:
 - PS power prior [Wang et al., 2019]
 - PS MAP prior (multiple external data sources) [Liu et al., 2021]
- We focus on one external data source and explore a general framework

Wang, C., Li, H., Chen, W.-C., Lu, N., Tiwari, R., Xu, Y., and Yue, L. Q. 2019. Propensity score-integrated power prior approach for incorporating real-world evidence in single-arm clinical studies. Journal of biopharmaceutical statistics, 29(5):731–748.

Liu, M., Bunn, V., Hupf, B., Lin, J., and Lin, J. 2021. Propensity-score-based meta-analytic predictive prior for incorporating real-world and historical data. Statistics in medicine.

Our Objectives

- Explore generalized framework for normal endpoint
- Propose three additional propensity score stratified methods to compare with their non-stratified counterparts
 - Extension of the PS power prior approach
 - Mixture prior approach (MP)
 - Double hierarchical prior approach (HB)
- Properly consider nuisance parameters

Framework (Divide): PS-stratification

Framework (Divide): PS-stratification

Create K strata w/ thresholds based on quantiles of trial PS (e.g. K=5)

Framework (Divide): PS-stratification

Allocate external pts into corresponding strata

What do we expect to see after stratification

- Balance the prognostic factors (at least for those included in the PS model)
- What about PS distribution and outcome distribution?

Framework (Divide): Bayesian borrowing within each stratum

Within each stratum, apply prior to estimate stratum-specific parameter of interest, accounting for heterogeneity among strata

Goal: Estimate overall parameter of interest for the target trial

Remarks

- Trimming
 - External group subjects are omitted if their PS is outside the range of the PS of the current group
- Not guaranteed that stratum-specific sample size for each group is large enough
 - In this case, will not leverage any information from RWD and will use non-informative prior

Bayesian Borrowing Option 1: Double Hierarchical

Double Hierarchical Approach

- Assume that $n_{ek} \geq 2$ and $n_{ck} \geq 2$ for k = 1, ..., K
- First stage in the kth stratum

$$heta_{\mathit{ck}} \sim \mathit{N}\left(\mu_{\mathit{k}}, au_{\mathit{k}}^2\right) \; \mathsf{and} \; heta_{\mathit{ek}} \sim \mathit{N}\left(\mu_{\mathit{k}}, au_{\mathit{k}}^2\right).$$

Second stage in the kth stratum

$$\mu_k \sim \mathcal{N}(\mu, arphi^2) ext{ and } au_k^2 \sim \mathsf{TN}\Big(b_{01}, b_{02}, b_{03}, b_{04}\Big),$$

We further assume

$$\mu \sim \textit{N}(0,\kappa_0 arphi^2), \; rac{1}{arphi^2} \sim \mathsf{Gamma}\Big(\textit{b}_{05},\textit{b}_{06}\Big),$$

• $\sigma_{ck}^2 \sim IG(0.01, 0.01)$ and $\sigma_{ek}^2 \sim IG(0.01, 0.01)$ for $k = 1, \dots, K$.

Bayesian Borrowing Option 2: Mixture Prior

$$\uparrow \pi(\theta_{ck}|\overline{Y}_{ek},\sigma_{ek}^2,\gamma_k) = (1-\gamma_k)\pi_0(\theta_{ck}|\sigma_{ek}^2) + \gamma_k\pi(\theta_{ck}|\overline{Y}_{ek},\sigma_{ek}^2)$$

Mixture Prior (MP)

- To construct the mixture prior, [Yuan et al., 2021] assume $\theta_{ek} = \theta_{ck}$.
- Then use \overline{Y}_{ek} to construct the MP for θ_{ck} as follows

$$\pi(\theta_{ck}|\overline{Y}_{ek},\sigma_{ek}^2,\gamma_k) = (1-\gamma_k)\pi_0(\theta_{ck}|\sigma_{ek}^2) + \gamma_k\pi(\theta_{ck}|\overline{Y}_{ek},\sigma_{ek}^2),$$

- $0 < \gamma_k < 1$ is the weight, $\pi_0(\theta_{ck}|\sigma_{ek}^2)$ is the density of $N(0, 100 \cdot \sigma_{ek}^2)$
- Mixing parameter for k = 1, ... K

$$\gamma_k = \frac{n_{ck}}{2 \cdot n_{ek}}$$

• $\sigma_{ck}^2 \sim IG(0.01, 0.01)$ and $\sigma_{ek}^2 \sim IG(0.01, 0.01)$ for $k = 1, \dots, K$.

Bayesian Borrowing Option 3: Power Prior

$$\uparrow \pi(\theta_{ck}|\overline{Y}_{ek},\sigma_{ek}^2,\alpha_k) \propto f(\overline{Y}_{ek}|\theta_{ck},\sigma_{ek}^2)^{\alpha_k}\pi_0(\theta_{ck}|\sigma_{ek}^2)$$

Power Prior

- Assume $\theta_{ek} = \theta_{ck}$
- Power Prior

$$\pi(\theta_{ck}|\overline{Y}_{ek},\sigma_{ek}^2,\alpha_k) \propto f(\overline{Y}_{ek}|\theta_{ck},\sigma_{ek}^2)^{\alpha_k}\pi_0(\theta_{ck}|\sigma_{ek}^2),$$

where $0 \le \alpha_k \le 1$ and $\pi_0(\theta_{ck}|\sigma_{ek}^2)$ is the density of $N(0, 100 \cdot \sigma_{ek}^2)$

Discounting Parameter: [Chen and Ibrahim, 2006, Jiang et al., 2020]

$$\alpha_k = \frac{1}{\frac{2\varphi_{0k}n_{ek}}{S_{ek}^2} + 1},$$

where $\varphi_{0k} = \max\{(\overline{Y}_{ck} - \overline{Y}_{ek})^2, 0.10 \cdot S_{ek}^2\}$ to avoid over-borrowing of the external data.

• $\sigma_{ck}^2 \sim IG(0.01, 0.01)$ and $\sigma_{ek}^2 \sim IG(0.01, 0.01)$ for $k = 1, \dots, K$.

Framework (Conquer): Combining inference from Different Strata

To estimate θ_c , we combine $\theta_{c1}, \ldots, \theta_{cK}$

Use draws from the posterior distribution of θ_c made using the draws from the posterior distributions of $\theta_{c1}, \ldots, \theta_{cK}$

$$\theta_c = \sum_{k=1}^K w_k \theta_{ck},$$

 $\mathbf{w} = (w_1, \dots, w_K)'$ are the weights such that $\sum_{k=1}^K w_k = 1$

Simulation Objectives

- Examine the performance of the proposed methods when there is imbalance in the current and external groups
 - Difference in means of baseline characteristics
- Examine effect of sample size on performance
- Pairwise comparison of stratified and non-stratified approaches
- Investigate advantages of using different combining weights

Simulation Setting

 Simulate covariates for both the current group and external group using a multivariate normal distribution with dimension d,

$$m{X}_{ci} \sim m{N}_d(\mathcal{M}_c, \Sigma_c), \,\, m{X}_{ej} \sim m{N}_d(\mathcal{M}_e, \Sigma_e)$$

for
$$i = 1, ..., n_c$$
 and $j = 1, ..., n_e$.

- $\Sigma_c = \Sigma_e = I_d$
- Generate outcome

$$m{Y}_{ci}|m{X}_{ci}=eta_0+m{eta}'m{X}_{ci}+\epsilon_i$$
 and $m{Y}_{ej}|m{X}_{ej}=eta_0+m{eta}'m{X}_{ej}+\epsilon_j,$

assuming $\epsilon_i \stackrel{iid}{\sim} N(0, \eta_c^2)$ and $\epsilon_j \stackrel{iid}{\sim} N(0, \eta_e^2)$ for $i = 1, \ldots, n_c$ and $j = 1, \ldots, n_e$

Selected Simulation Scenarios

- Let d=3, K=5, $\beta_0=0$, $\boldsymbol{\beta}'=\mathbf{1}_3$, $\mathcal{M}_e=(0.5,1,1)'$, and $\mathcal{M}_c=(1,1.2,1.25)'$.
- Cutoffs: $p = (p_1, p_2, p_3, p_4) = (0.2, 0.4, 0.6, 0.8)$ and $p_5 = 1$

	Scenario	θ_{true}	n _c	n _e	n _e	$\eta_{\sf e}$	η_c
Imbalance with small variance	1	3.45	100	1000	960	1	1
Imbalance with large variance	2	3.45	100	1000	960	3	3
Imbalance with double sample	3	3.45	200	2000	1957	1	1

Table 1: Simulation Scenarios presented with θ_{true} calculated as the mean response in the current group and n_e as the mean number of observations in the external group post-trimming averaged over 1000 simulated data sets.

Exploring different weight

	Weight Scenario	w
Rely more on middle strata	1	(0.20, 0.20, 0.20, 0.20, 0.20)
	2	(0.10, 0.20, 0.40, 0.20, 0.10)
	3	(0.05, 0.15, 0.60, 0.15, 0.05)
	4	(0.05, 0.10, 0.70, 0.10, 0.05)
	5	(0.00, 0.10, 0.80, 0.10, 0.00)

Table 2: Weighting scenarios for conquering weights.

Model Evaluation

- Use 1000 replications of the data for each scenario
- For each replicate, generate a MCMC sample of 10000 iterations with first 1000 discarded
- Bias= $\sum_{r=1}^{R} (\hat{\theta}_r \theta_r)/R$
- Root mean squared error(RMSE):= $\sqrt{\sum_{r=1}^{R} (\hat{\theta}_r \theta_r)^2/R}$, where $\hat{\theta}_r$ denotes the posterior mean of the rth replicated data set, and θ_r denotes the true parameter in the current group in the rth replicate with $r = 1, \ldots, R$ and R = 1000.
- Coverage probability (CP): the number of 95% HPD intervals of θ_r that contain the true parameter and divide by the total number of replicates.
- Sample standard deviation of the posterior mean over the replicates as $SD = \sum_{r=1}^{R} \sqrt{\sum_{m=1}^{M} (\theta_r^{[m]} \hat{\theta}_r)^2/(M-1)}/R$,
- $\theta_r^{[m]}$ denotes the *m*th iteration of the MCMC sample for the parameter θ_r in the *r*th replicate and m = 1, ..., M.
- Simulation standard error: SE = $\sqrt{\sum_{r=1}^{R} (\hat{\theta}_r \frac{1}{R} \sum_{\ell=1}^{R} \hat{\theta}_\ell)^2 / (R-1)}$

Hierarchical Approach: Scenario 1 and 2 (Bias and RMSE)

NS

w1

Approach

Imbalance with small variance

Imbalance with large variance

w4

w5

NS

w2

Approach

W1

w3

w4

w5

Hierarchical Approach: Scenario 1 and 2 (CP, SD, SE)

Imbalance with small variance
Imbalance with large variance

1 2

SD and SE Plot Scenario 1

Mixture Approach: Scenario 1 and 2 (Bias and RMSE)

Imbalance with small variance Imbalance with large variance

Scenario

Mixture Approach: Scenario 1 and 2 (CP, SD, SE)

Imbalance with small variance

Imbalance with large variance

Power Prior Approach: Scenario 1 and 2 (Bias and RMSE)

Imbalance with small variance Imbalance with large variance

Scenario

0.216

0.239

w3

Approach

W4

0.273

W5

Power Prior Approach: Scenario 1 and 2 (CP, SD, SE)

Imbalance with small variance Imbalance with large variance

1 2

Hierarchical Approach: Scenario 3 (Double Sample Size)

Hierarchical Approach: Scenario 3 (Double Sample Size)

Next Steps

- Explore additional scenarios
 - Time trend effect
 - Misspecification of propensity score model
- Determine appropriate variance estimation when combining stratumspecific estimates
- Extend to design setting
- Generalize to randomized control trial and compare with existing methods

Takeaway Messages

"Divide and conquer" allows more intuitive handling of inconsistency

Certain improvement has been observed

Additional research is needed for further improvement

Thank You!

Eric Baron (eric.baron@uconn.edu)
Jian Zhu (jian.zhu@servier.com)

