Universidade Federal de São Carlos – Departamento de Computação Matemática Discreta – Profa. Helena Caseli

Sétima Lista de Exercícios – Teoria dos Números

1)	Para os pares de inteiros a e b a seguir, determine q e r tais que $a = qb + r$ e $0 \le r < b$. a) $a = 100$, $b = 3$. b) $a = -100$, $b = 3$. c) $a = 99$, $b = 3$. d) $a = -99$, $b = 3$. e) $a = 0$, $b = 3$.
2)	Para cada par de inteiros a e b do exercício anterior, calcule a div b e a mod b .
3)	Calcule usando o Algoritmo de Euclides: a) mdc(20,25). b) mdc(123, 23). c) mdc(89, 98). d) mdc(54321, 50). e) mdc(1739,29341).

4) Para cada par de inteiros a, b do exercício anterior, determine os inteiros x e y tais que ax + by =mdc(a, b).

5) Escreva as fatorações em primos dos números a seguir:

a) 201

b) 1001

c) 201000

6) Calcule o seguinte, no contexto de \mathbb{Z}_{10} :

a) $3 \oplus 3$

b) 6 ⊕ 6

c) 7 \plus 3

d) 9 ⊕ 8

e) 9 ⊕ 1

f) $9 \oplus 9$

g) 3⊗4

h) $9 \otimes 3$

i) 3 ⊗ 3

j) 5 ⊗ 2

k) 6 ⊗ 6

l) 5 θ 8

m) 8θ 5

n) 8 ⊘ 7

o) 5 Ø 9

7) Resolva as equações no contexto indicado:

a) $3 \otimes x = 4 \text{ em } \mathbb{Z}_{11}$

b) $4 \otimes x = 9 \text{ em } \mathbb{Z}_{11}$

c) $3 \otimes x \oplus 8 = 1 \text{ em } \mathbb{Z}_{10}$

- 8) Resolva as equações no contexto indicado (pode haver mais de uma solução, ou nenhuma):
 - a) $2 \otimes x = 4 \text{ em } \mathbb{Z}_{10}$
 - b) $2 \otimes x = 3 \text{ em } \mathbb{Z}_{10}$
 - c) $9 \otimes x = 4 \text{ em } \mathbb{Z}_{12}$
- 9) Determine quem é \mathbb{Z}^* nos casos abaixo:
 - a) ℤ₄*
 - b) ℤ₇*
 - c) Z₈*