1. Fill in the blanks :

Sc-204/AP-II/2nd-Sem/Comm/2017/M

APPLIED PHYSICS - II

Full Marks - 70

Pass Marks - 21

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question Nos.1 and 2 and any six from the rest.

5×1=5

Turn over

(a)	The power of convex lens of focal length 25 cm is ——— .
(b)	r rays have ——— charge.
(c)	The number of photo-electrons emitted depends upon the ——— of incident wave.
(d)	The number of protons in $_{92}U^{238}$ is ——.
(e)	An electric cell converts — energy to — energy.

2. Choose the correct answers:	5×1=5
(a) The focal length of a plane mirror	is —
(i) zero	

- (ii) negative
- (iii) infinity
- (iv) none of the above.
- (b) Light of wavelength 30000Å has frequency
 - (i) 3×105 Hz
- (ii) 1010 Hz
- (iii) 1015 Hz (iv) 3 ×1010 Hz
- (c) A convex mirror slices an image which is
 - (i) real and inverted
 - (ii) real and erect
 - (iii) virtual and inverted
 - (iv) virtual and erect.
- (d) Three condensers each of capacity 5µF are connected in series. The equivalent capacity is

 - (i) $15\mu F$ (ii) $\frac{5}{3}\mu F$
 - (iii) $\frac{3}{5} \mu F$ (iv) $5\mu F$

(e) The majority of charge carriers in an N-type semi-conductor is
(i) holes (ii) electrons
(iii) protons (iv) photons
(a) Distinguish between a real and a virtual image.
(b) With a neat ray diagram, show how a virtual image may be formed by a concave mirror.
(c) An object of size 10 cm is placed at a distance of 30 cm in front of a convex mirror of radius of curvature 40 cm. Find the position, nature and size of the image. 4
(d) Define power of a lens. 2
. (a) State the conditions for total internal reflec- tion. Define critical angle. 2+1=3
(b) What are the elements of terrestrial magnetism? Explain each one.
(c) State and explain tangent law in magnetism.
(d) What is a reinform magnetic field?
2/9- 204/AP II (2) [Turn over

5. (a)	State Coulomb's law of e	lectrostatics. Hence
	define unit charge.	2+1=3

- (b) State and explain the principle of a condenser.
- (c) Deduce an expression for electrostatic potential at a point due to a point charge. 3
- (d) What is a secondary cell?
- (a) Find an expression for current in a circuit when n number of cells are connected in series.
 - (b) Define specific resistance and give its unit.
 2
 - (c) What is the effect of temperature on resistance?
 - (d) The difference of potential between the two terminals of cell in open circuit is 2.2 volt. This difference reduces to 2 volts when the terminals are connected by a resistance 4 ohms. What is the internal resistance of the cell?

7.	(a)	Derive an expression for the equivalent resistance of a number of resistances connected in parallel.	М
	(b)	Convert 1 kilowatt-hr into joules. 2	
	(c)	A 3000 watt electric heater is connected to 240 volt main supply. Calculate the current in the circuit and the resistance of the heater.	
	(d)	What is Seebeck effect ? Explain. 2	
8.	(a)	State Faraday's laws of electromagnetic induction.	S
	(b)	Define self and mutual induction. 2	
	1	71	=5
	(c)	Photo-electrons are emitted by a sodium surface when UV light of wavelength 3×10*m fall on its surface. Calculate the velocity of photo-electrons assuming the work function of sodium to be negligible.	25
		Here mass of electron = 9.1×10-31 kg,	ted
		Plank's constant = 6.6×10^{-34} J-S. 4	ve.
	(d)	What do you understand by atomic mass	-
		unit?	to

- (a) State two properties each of α, β and γ radiations.
 - (b) Why the diode is called a valve? How the diode is used as a full-wave rectifier? 1+3=4
 - (c) With a neat diagram, show how a P-type semi-conductor is formed.
 - (d) Explain intrinsic and extrinsic semi-conductors with examples. 2