Neural Network for Sign Language Digits Classification

Jan Maděra

Table of content

- 1. Problem
- 2. Dataset
- 3. Preprocessing
- 4. Networks
- 5. Experiments
- 6. Results
- 7. Possible improvements

Problem

Classification of digits 0-9

Dataset

Source: https://www.kaggle.com/ardamavi/sign-language-digits-dataset

• Size: 2062 images

Balanced dataset

Preprocessing

- Wrong sample-target ordering → Reorganize data
- Train test split:
 - 1649 training samples (80%)
 - 413 testing samples (20%)
- Additional data generation (augmentation)
 - Rotation (-20°, +20°)
 - Zoom (0.9,1.2)
 - Brightness (needed only in real-life cases with bad lighting conditions)
 - Reduce overfitting

Network architecture

- Input layer
- Dense layers
- Convolutional layers
- Pool layers
- Dropout layers (reduce overfitting)

Experiments

• 100 epochs, batch size = 250

Layers	Loss (categorical crossentropy)	Accuracy (testing data) /Without data augmentation
2 dense	0.7458	78.2% (75.7%)
1 conv, 1 dense	0.1008	97.8% (93.2%)
3 conv, 1 dense	0.0288	99.1% (97.8%)
3 conv, 2 dense	0.0216	99.5% (98%)

Results

Results

Possible improvements

- More convolutional layers
- Optimize other parameters:
 - number of neurons in dense layer, dropout layers,...
- For real life use:
 - Better data augmentation (brightness, horizontal flip, wider zoom and rotation range,...)
 - Larger dataset with variable environmental conditions

Thank you for your attention