Solutions to selected exercises from Chapter 22 of Wasserman — All of Statistics

- (3) See the Jupyter Notebook 3.ipynb.
- (4) The VC-dimension of \mathcal{A} is 3. One may check that any set of three non-collinear points is shattered by \mathcal{A} .

So we consider four points in \mathbb{R}^2 and we claim they cannot be shattered. If three of the points, say x, y, z are collinear, then one of them, say y, lies on the line segment [x, z]. On the other hand, if $A \in \mathcal{A}$ is a disk containing x, z then it also contains [x, z] by convexity and hence it contains y. Otherwise we have four points x, y, z, w in general position. The set of line segments between points in $\{x, y, z, w\}$ is a quadrilateral with line segments joining its two pairs of opposite vertices. Thus two such line segments cross. Say [x, y] and [z, w] cross. Suppose there is a disk A containing $\{x, y\}$ but not $\{z, w\}$ and a disk B containing $\{z, w\}$ but not $\{x, y\}$. The intersection of A and B is a lens B bounded by an arc of the boundary B and an arc of the boundary B. Denote the two points of intersection of these arcs by B and B and the other side contains no point of $B \setminus A$. Hence B lies on one side of B and B and the other side so that B and B and B cannot cross. This is a contradiction.

- (5) See the Jupyter Notebook 5.ipynb.
- (6) See the Jupyter Notebook 6.ipynb.
- (7) It is clear that no linear classifier can perfectly classify the data assuming there are some i falling into the three different cases $X_i < -1$, $-1 \le X_i \le 1$, and $X_i > 1$. On the other hand, the data Z_i can be separated by the plane y = 1 in \mathbb{R}^2 .
- (8) See the Jupyter Notebook 8.ipynb.
- (9) Apply the k nearest neighbors classifier to the "iris data." Choose k by cross-validation.
- (10) This is actually the formula for the median distance for n points in the *unit ball*. See e.g. Hastie-Tibshirani-Friedman equation (2.24). Moreover, the correct expression for the median is actually $(1 (1/2)^{1/n})^{1/d}$ (i.e. there is no need for the factor $v_d(1)^{-1/d}$).

To prove this equation for the unit ball, note that if X_1, \ldots, X_n are uniformly distributed, then for any $r \in [0, 1]$

$$\mathbb{P}(R > r) = \mathbb{P}(|X_i| > r \text{ for all } i).$$

The volume of the r-ball is $v_d(r) = r^d v_d(1)$, and renormalizing to give the unit ball volume 1 by dividing by $v_d(1)$, the volume is just r^d . Therefore

$$\mathbb{P}(R > r) = 1 - (1 - r^d)^n \text{ and } \mathbb{P}(R \le r) = (1 - r^d)^n.$$

The median is given by solving

$$(1-r^d)^n = \frac{1}{2}$$

which yields $r = \left(1 - \frac{1}{2^{1/n}}\right)^{1/d}$ as claimed.

I'm not sure what the correct expression is for the median closest distance for the cube $[-1/2, 1/2]^d$, but it seems pretty tedious to calculate.

- (11) See the Jupyter Notebook 11.ipynb.
- $\left(12\right)$ See the Jupyter Notebook 12.ipynb.