Financial Data Structure

What are we going to learn today?

- Essential Types of Financial Data
- Bars
 - standard bars
 - information-driven bars
- Dealing with Multi-Product Series
- Sampling Features

Essential Types of Financial Data

Fundamental Data	Market Data	Analytics	Alternative Data
 Assets Liabilities Sales Costs/earnings Macro variables 	 Price/yield/implied volatility Volume Dividend/coupons Open interest Quotes/cancellations Aggressor side 	 Analyst recommendations Credit ratings Earnings expectations News sentiment 	 Satellite/CCTV images Google searches Twitter/chats Metadata

Bars

Forming Bars

- Information does not arrive to the market at a constant entropy rate
- Sampling data in chronological intervals means that the informational content of the individual observations is far from constant
- A better approach is to sample observations as a subordinated process of the amount of information exchanged:
 - Trade bars
 - Volume bars
 - Dollar bars
 - Volatility or run bars
 - Order imbalance bars
 - Entropy bars

Sampling Frequencies

Three bar types computed on E-mini S&P 500 futures.

Tick bars tend to exhibit a wide range of sampling frequencies, for multiple microstructural reasons.

Sampling frequencies for **volume bars** are often inversely proportional to price levels.

In general, **dollar bars** tend to exhibit more stable sampling frequencies.

Dollar Imbalance Bars (1/2)

- Let's define the imbalance at time T as $\theta_T = \sum_{t=1}^T b_t v_t$, where $b_t \in \{-1,1\}$ is the aggressor flag, and v_t may represent either the number of securities traded or the dollar amount exchanged.
- We compute the expected value of θ_T at the beginning of the bar

$$\begin{split} \mathbf{E}_{0}[\theta_{T}] &= \mathbf{E}_{0} \left[\sum_{t \mid b_{t} = 1} v_{t} \right] - \mathbf{E}_{0} \left[\sum_{t \mid b_{t} = -1} v_{t} \right] \\ &= \mathbf{E}_{0}[T] (\mathbf{P}[b_{t} = 1] \mathbf{E}_{0}[v_{t} \mid b_{t} = 1] - \mathbf{P}[b_{t} = -1] \mathbf{E}_{0}[v_{t} \mid b_{t} = -1]) \end{split}$$

• Let's denote $v^+ = P[b_t = 1]E_0[v_t|b_t = 1]$, $v^- = P[b_t = -1]E_0[v_t|b_t = -1]$, so that $E_0[T]^{-1}E_0[\sum_t v_t] = E_0[v_t] = v^+ + v^-$. You can think of v^+ and v^- as decomposing the initial expectation of v_t into the component contributed by buys and the component contributed by sells.

Dollar Imbalance Bars (2/2)

- Then, $E_0[\theta_T] = E_0[T](v^+ v^-) = E_0[T](2v^+ E_0[v_t])$
- In practice, we can estimate $\mathrm{E}_0[T]$ as an exponentially weighted moving average of T values from prior bars, and $(2v^+ \mathrm{E}_0[v_t])$ as an exponentially weighted moving average of $b_t v_t$ values from prior bars.
- We define a bar as a T^* -contiguous subset of ticks such that the following condition is met

$$T^* = \underset{T}{\operatorname{arg\,min}} \{ |\theta_T| \ge \mathrm{E}_0[T] |2v^+ - \mathrm{E}_0[v_t] | \}$$

where the size of the expected imbalance is implied by $|2v^+ - E_0[v_t]|$.

• When θ_T is more imbalanced than expected, a low T will satisfy these conditions.

Multi-Product Series

Dealing with Multi-Product Series

Sometimes we are interested in modelling a time series of instruments, where the weights need to be dynamically adjusted over time.

```
def getRolledSeries(pathIn,key):
  series=pd.read hdf(pathIn,key='bars/ES 10k')
  series['Time']=pd.to_datetime(series['Time'],format='%Y%m%d%H%M%S%f')
  series=series.set index('Time')
  gaps=rollGaps(series)
  for fld in ['Close', 'VWAP']:series[fld]-=gaps
  return series
def rollGaps(series,dictio={'Instrument':'FUT_CUR_GEN_TICKER','Open':'PX_OPEN', \
  'Close':'PX LAST'},matchEnd=True):
  # Compute gaps at each roll, between previous close and next open
  rollDates=series[dictio['Instrument']].drop_duplicates(keep='first').index
  gaps=series[dictio['Close']]*0
  iloc=list(series.index)
  iloc=[iloc.index(i)-1 for i in rollDates] # index of days prior to roll
  gaps.loc[rollDates[1:]]=series[dictio['Open']].loc[rollDates[1:]]-\
    series[dictio['Close']].iloc[iloc[1:]].values
  gaps=gaps.cumsum()
  if matchEnd:gaps-=gaps.iloc[-1] # roll backward
  return gaps
```

(*) For rolling baskets of futures & options, see also Section 2.4.1 (the "ETF Trick")

Sampling Features

Ways to Do Feature Sampling

One reason for sampling features from a structured dataset is to reduce the amount of data used to fit the ML algorithm. The operation is also referred to as *downsampling*

- Sampling for reduction
 - linspace sampling
 - uniform sampling
- Event-Based Sampling
 - macroeconomic statistics: a spike in volatility, a significant departure in a spread away from its equilibrium level

The CUMSUM Filter

```
def getTEvents(gRaw,h):
    tEvents,sPos,sNeg=[],0,0
    diff=gRaw.diff()
    for i in diff.index[1:]:
        sPos,sNeg=max(0,sPos+diff.loc[i]),min(0,sNeg+diff.loc[i])
        if sNeg<-h:
            sNeg=0;tEvents.append(i)
        elif sPos>h:
            sPos=0;tEvents.append(i)
        return pd.DatetimeIndex(tEvents)
```

Example of CUSUM filter

