1 Space-time chemin

Nous considérons les sommets et les arêtes qui inclus dans une boite $\Lambda(l)$ de taille $2l \times h$.

Définition 1. Une arête-temps est un couple (e,t) où e est une arête de \mathbb{E} et t un nombre réel.

Nous définissons une relation d'équivalence de connexion sur l'espace $\mathbb{E} \times \mathbb{R}$ de la manière suivante : nous disons que les arêtes-temps (e,t) et (f,s) sont connectés si e = f ou (s = t et $e \sim f)$. Nous notons $(e,t) \sim (f,s)$ si l'une des conditions est vérifiée. Un space-time chemin est une suite d'arête-temps $(e_i,t_i)_{i\geqslant 0}$ telle que pour tout $i\geqslant 0$, $(e_i,t_i)\sim (e_{i+1},t_{i+1})$. Désormais, nous considérons les space-time chemins simple, i.e. si $e_k=e_{k+1}$ alors, $e_{k+2}\neq e_k$.

Nous considérons le processus de percolation dynamique à temps discret. L'espace des trajectoires Nous appelons un space time chemin d'occurrence disjointe de longueur n avec m changement de temps s'il existe m indices $1 \le k(1) < k(2) < \cdots < k(m) \le n$ telles que :

• Les changements de temps arrivent aux instants $t_{k(1)}, \ldots, t_{k(m)}$, i.e.

$$\forall i \in \{1, \dots, m-1\}$$
 $e_{k(i)} = e_{k(i)+1}$ $t_{k(i)+1} = \dots = t_{k(i+1)}$.

• les arêtes visitées à un temps donné sont 2 à 2 distinctes, i.e.

$$\forall i, j \in \{1, \dots, n\}$$
 $i \neq j \Rightarrow e_i \neq e_j$.

- les fermetures d'arêtes arrivent disjointement, i.e. pour tout $i, j \in \{1, ..., j\}$, i < j tels que $e_i = e_j$, l'une des 3 conditions suivantes est vérifiée :
 - $-i = i + 1 \text{ et } i \in \{k(1), \dots, k(m)\};$
 - $-t_i < t_j$ et il existe un instant $s \in]t_i, t_j[$ tel que e_j est ouverte à s;
 - $-t_j < t_i$ et il existe un instant $s \in]t_j, t_i[$ tel que e_j est ouverte à s;

Proposition 1. Soit $(e_1, t_1), \ldots, (e_N, t_N)$ un space time chemin qui relie x à y, il existe une fonction $\phi : \{1, \ldots, n\} \to \{1, \ldots, N\}$ strictement croissante telle que $(e_{\phi(1)}, t_{\phi(1)}), \ldots, (e_{\phi(n)}, t_{\phi(n)})$ est un space time chemin d'occurrence disjointe qui relie x à y.

 $D\acute{e}monstration$. Nous allons montrer cette proposition par récurrence sur la longueur N. Supposons que la proposition est vrai pour tout chemin de

longueur inférieur à N. Nous considérons maintenant un chemin

$$(e_1, t_1), \ldots, (e_{N+1}, t_{N+1})$$

de longueur N+1 qui relie x y. S'il existe une indice $i \leq N$ telle que $(e_i, t_i) = (e_{N+1}, t_{N+1})$ alors le chemin

$$(e_1, t_1), \ldots, (e_i, t_i)$$

est un chemin de longueur $i \leq N$ qui relie x à y. Par l'hypothèse de récurrence, nous avons un chemin extrait d'occurrence disjointe qui relie x à y. S'il existe une indice $1 \leq i \leq N$ telles que $e_i = e_{N+1}$, et e_{N+1} reste fermée entre t_i et t_{N+1} , nous considérons le chemin

$$(e_1, t_1), \ldots, (e_i, t_i), (e_{N+1}, t_{N+1})$$

qui est de longueur inférieur à N. Nous appliquons l'hypothèse de récurrence à ce chemin et nous obtenons le chemin extrait. Si aucun des cas précédents se présente, nous considérons le chemin $(e_1, t_1), \ldots, (e_N, t_N)$ de longueur N et qui relie x à z. Par l'hypothèse de récurrence, il existe une fonction strictement croissante $\phi: \{1, \ldots, n\} \to \{1, \ldots, N\}$ telle que le chemin extrait $\gamma(\phi) = (e_{\phi(1)}, t_{\phi(1)}), \ldots, (e_{\phi(n)}, t_{\phi(n)})$ est un chemin d'occurrence disjointe qui relie x à z.

Si ce chemin n'emprunte pas l'arête e_{N+1} , alors nous posons $\phi(n+1) = N+1$ et nous obtenons le chemin extrait souhaité.

Considérons le cas où $\gamma(\phi)$ emprunte l'arête e_{N+1} . Supposons tout d'abord que $\gamma(\phi)$ passe par e_{N+1} avant et après t_{N+1} . Nous considérons t_- (resp. t_+) le dernier (resp. premier) instant strictement avant (resp. après) t_{N+1} où $\gamma(\phi)$ visite e_{N+1} et soit j_- (resp. j_+) l'unique indice telle que $t_{\phi(j_-)} = t_-$ (resp. $t_{\phi(j_+)} = t_+$) et $e_{\phi(j_-)} = e_{N+1}$ (resp. $e_{\phi(j_+)} = e_{N+1}$). Plus formellement, les indices j_-, j_+ sont définis par les conditions suivantes :

$$j_{-} < t_{N+1}$$
 $e_{j_{-}} = e_{N+1}$ $t_{j_{-}} = \max \{ t_j : 1 \le j \le N, e_j = e_{N+1}, t_j < t_{N+1} \}$
 $j_{+} > t_{N+1}$ $e_{j_{+}} = e_{N+1}$ $t_{j_{+}} = \min \{ t_j : 1 \le j \le N, e_j = e_{N+1}, t_j > t_{N+1} \}$

Comme $\gamma(\phi)$ est d'occurrence disjointe qui ne contient pas l'arête temps (e_{N+1}, t_{N+1}) , et qu'aucun de ses changements de temps ne contient pas cette arête-temps, nécessairement, l'arête e_{N+1} doit s'ouvrir dans l'intervalle $]t_{j^-}, t_{j^+}[$.

Si l'arête e_{N+1} s'ouvre sur $]t_{j_-}, t_{N+1}[$ et sur $]t_{N+1}, t_{j_+}[$, nous ajoutons (e_{N+1}, t_{N+1}) à la fin de $\gamma(\phi)$ et nous obtenons le chemin extrait d'occurrence disjointe qui relie x à y.

Si l'arête reste fermée sur $]t_{j_-}, t_{N+1}[$, nécessairement, elle s'ouvre sur $]t_{N+1}, t_{j_+}[$. Nous considérons le space-time chemin

$$(e_{\phi(1)}, t_{\phi(1)}), \ldots, (e_{\phi(j_{-})}, t_{\phi(j_{-})}), (e_{N+1}, t_{N+1}).$$

Ce chemin est d'occurrence disjointe et il relie x à y. Le cas où e_{N+1} reste fermée sur $]t_{N+1}, t_{j+}[$ se traite de manière similaire en remplaçant j_- par j_+ .

Maintenant, nous supposons que $\gamma(\phi)$ visite e_{N+1} uniquement avant t_{N+1} , nous définissons j_- de la même façon que dans le cas précédent. Si e_{N+1} reste fermée entre $]t_{j_-}, t_{N+1}[$, nous considérons le chemin extrait

$$(e_{\phi(1)}, t_{\phi(1)}), \dots, (e_{\phi(j_{-})}, t_{\phi(j_{-})}), (e_{N+1}, t_{N+1}).$$

Il est d'occurrence disjointe et il relie x à y. Si e_{N+1} s'ouvre entre t_{j_-} et t_{N+1} , alors le chemin $(e_{\phi(1)}, t_{\phi(1)}), \ldots, (e_{\phi(n)}, t_{\phi(n)}), (e_{N+1}, t_{N+1})$ vérifie les conditions voulues.

Enfin, si $\gamma(\phi)$ visite e_{N+1} uniquement après t_{N+1} , nous définissons seulement j_+ et nous obtenons le chemin extrait voulu de la même manière que le cas précédent.

Définition 2. Un space-time chemin est dit impatient si toute arête de changement de temps e_k est suivi par une arête e_{k+2} qui change son état à l'instant t_{k+2} .

Nous montrons tout space time chemin admet une modification temporelle qui est impatiente. Plus formellement, nous introduisons l'algorithme de modification récursive suivante :

Algorithme 1. soit $(e_1, t_1), \ldots, (e_n, t_n)$ un space time chemin, nous allons modifier la première arête e_1 du chemin, selon les cas suivants :

- $si\ e_2 \neq e_1$, alors nécessairement $t_1 = t_2$, et nous ne modifions pas (e_1, t_1) et nous recommençons l'algorithme avec le chemin $(e_2, t_2), \ldots, (e_n, t_n)$;
- $si \ t_1 < t_2$, $soit \ \tau_3$ le dernier instant avant t_2 où e_3 se ferme. $Si \ t_1 \geqslant \tau_3$, nous remplaçons $(e_1, t_1), (e_2, t_2)$ par $(e_1, t_1), (e_3, t_1)$; sinon $t_1 < \tau_3$, nous remplaçons $(e_1, t_1), (e_2, t_2)$ par $(e_1, t_1), (e_2, \tau_3), (e_3, \tau_3)$ et nous recommençons l'algorithme avec le chemin $(e_3, \tau_3), (e_3, t_3), \ldots, (e_n, t_n)$;
- $si \ t_1 > t_2$, $soit \ \tau_3$ le premier instant après t_2 où e_3 s'ouvre. $Si \ t_1 \leqslant \tau_3$, nous remplaçons $(e_1, t_1), (e_2, t_2)$ par $(e_1, t_1), (e_3, t_1)$; $sinon \ t_1 > \tau_3$, nous remplaçons $(e_1, t_1), (e_2, t_2)$ par $(e_1, t_1), (e_2, \tau_3), (e_3, \tau_3)$ et nous recommençons l'algorithme avec le chemin $(e_3, \tau_3), (e_3, t_3), \ldots, (e_n, t_n)$.

Nous remarquons que la longueur de chemin non modifié diminue après chaque itération, donc l'algorithme se termine. Par la définition d'un chemin impatient, nous avons directement la propriété suivante :

Proposition 2. Soit $(e_1, t_1), \ldots, (e_n, t_n)$ un space time chemin, sa modification obtenue selon l'algorithme précédent est impatient.

Nous montrons maintenant qu'un chemin d'occurrence disjointe est toujours d'occurrence disjointe après la modification selon l'algorithme.

Proposition 3. Soit $\gamma = (e_1, t_1), \ldots, (e_n, t_n)$ un space time chemin d'occurrence disjointe, nous modifions ce chemin selon algorithme 1. Le chemin obtenu est d'occurrence disjointe et impatient.

Démonstration. Considérons le cas où γ admet m changements de temps. Notons γ' le chemin obtenu après la modification et $(e_{k(1)}, t_{k(1)}), \ldots, (e_{k(m)}, t_{k(m)})$ les arêtes-temps où un changement de temps arrive et nous posons k(0) = 0, k(m+1) = n. Notons γ_j le chemin $(e_{k(j)+1}, t_{k(j)+1}), \ldots, (e_{k(j+1)}, t_{k(j+1)})$ et γ'_j la modification de γ_j . Or γ est un chemin d'occurrence disjointe, pour tout $0 \leq j \leq m$, les γ_j sont disjoints. Remarquons que pour toute arête $e_i \in \gamma_j$ modifiée par l'algorithme 1, nous ajoutons seulement un instant t'_i où e_i est restée fermée entre t'_i et t_i . La condition d'occurrence disjointe est toujours respectée, i.e. pour toute indice $r \neq q$ telle que $e_r = e_q$, il existe un instant s entre t_r, t_q tel que e_r est ouverte à l'instant s. D'où le résultat.

2 Décroissance exponentielle

Nous démontrons maintenant la décroissance exponentielle de la probabilité d'avoir un space time chemin qui relie deux points de distance l. Soit γ_n un chemin de longueur n qui relie ces deux points x et y, d'après ce qui précède, nous pouvons supposer que ce chemin est d'occurrence disjointe et impatient. Nous avons l'inégalité suivante :

Théorème 1. $P(x \ connect \ y)$