Exercice 1:

On note:

$$f: M \in M_n(\mathbb{R}) \mapsto (\operatorname{Tr}(M), \operatorname{Tr}(M^2), \dots, \operatorname{Tr}(M^n))$$

On munit $M_n(\mathbb{R})$ de sa structure euclidienne canonique.

- 1. Montrer que f est différentiable en tout M et expliciter df(M).
- 2. Comparer le rang de df(M) au degré du polynôme minimal de M.
- 3. Montrer que l'ensemble $\{M \in M_n(\mathbb{R}), \chi_M = \mu_M\}$ est un ouvert de $M_n(\mathbb{R})$.

Exercice 2 (avec préparation):

1. Donner un développement asymptotique à deux termes de

$$u_n = \sum_{k=2}^n \frac{\ln k}{k}$$

2. À l'aide de la constante d'Euler, calculer

$$\sum_{n=1}^{+\infty} (-1)^n \frac{\ln n}{n}$$

Exercice 3:

- 1. Soit $A \in GL_n(\mathbb{R})$, montrer qu'il existe $O \in \mathcal{O}_n(\mathbb{R})$ et $S \in \mathcal{S}_n(\mathbb{R})$ tels que A = OS. Étendre ce résultat aux matrices non-inversibles.
- 2. Soit $M \in M_n(\mathbb{R})$, justifier l'existence de $\sup_{O \in \mathcal{O}_n(\mathbb{R})} |Tr(OM)|$ et calculer sa valeur.
- 3. Montrer que l'ensemble des matrices de $M_n(\mathbb{R})$ à déterminant > 0 est connexe par arcs.

Exercice 4 (avec préparation):

- 1. Montrer que $GL_n(\mathbb{K})$ est dense dans $M_n(\mathbb{K})$.
- 2. Justifier que l'ensemble des matrices diagonalisables dans \mathbb{C} est dense dans $M_n(\mathbb{C})$.
- 3. a) Montrer que l'ensemble des matrices diagonalisables dans \mathbb{R} n'est pas dense dans $M_n(\mathbb{R})$. On se contentera du cas n=2.
 - b) Montrer que $P \in \mathbb{R}[X]$ unitaire de degré $n \in \mathbb{N}$ sur \mathbb{R} est scindé si et seulement si $\forall z \in \mathbb{C}, |Im(z)|^n \leq |P(z)|$.
 - c) En déduire que l'ensemble des matrices trigonalisables dans \mathbb{R} est fermé dans $M_n(\mathbb{R})$.
 - d) Montrer que l'adhérence des matrices diagonalisables dans \mathbb{R} est l'ensemble des matrices trigonalisables dans \mathbb{R} .

Bonus : Calculer l'adhérence des matrices de rang r dans $M_n(\mathbb{K})$

Exercice 5:

- 1. Montrer qu'un sous-groupe additif de \mathbb{R} est soit monogène soit dense.
- 2. Montrer que $\{\sin n, n \in \mathbb{Z}\}$ est dense dans [-1, 1].
- 3. Montrer que $\{\sin n, n \in \mathbb{N}\}$ est dense dans [-1, 1].

Exercice 6 : Soit $(E, \|.\|)$ un e.v.n. On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ est de Cauchy si;

$$\forall \varepsilon > 0, \ \exists n_0, \ \forall p, q \ge n_0, \ \|u_p - u_q\| \le \varepsilon$$

On dit que E est complet si toute suite de Cauchy est convergente.

- 1. Justifier que toute suite convergente est de Cauchy.
- 2. Montrer qu'une suite de Cauchy est convergente si et seulement si elle admet une suite extraite convergente.
- 3. Montrer que $(\mathbb{R}, |.|)$ est complet. Que dire de $(\mathbb{Q}, |.|)$?
- 4. Montrer qu'un espace métrique est complet si et seulement si la convergence absolue des séries entraine la convergence simple.

Exercice bonus:

Montrer que tout sous-groupe fini des inversibles d'un corps commutatif est cyclique.