Airline Customer Satisfaction Travis Lloyd, Isabella Oakes, Lina Nguyen **ADS 505: Applied Data Science for Business** Shiley-Marcos School of Engineering, University of San Diego Github repository: https://github.com/linatnguyen/Predicting-Flight-Satisfaction-for-Airline-Passengers **Problem Statement** Flight satisfaction is one of the most important factors in having a successful airline that customers will happily return to. Using an flight satisfaction survey, 18 features will be used to create models that determine if a customer is satisfied or unsatisfied with their flight. Using information gathered from the model, it will be determined which customers will be satisfied with the service provided as well as what features contribute most heavily when determining if customers are satisfied or not. **Table of Contents Exploratory Data Analysis Data PreProcessing Data Splitting** Model Building & Performance Results Conclusion **Exploratory Data Analysis** In [1]: #importing packages from pathlib import Path import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import shap # import models from sklearn.linear model import LogisticRegressionCV from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.neural network import MLPClassifier from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train test split from sklearn import metrics from sklearn.metrics import confusion matrix, plot confusion matrix, classification report, accuracy sc ore from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import AdaBoostClassifier from dmba import classificationSummary, gainsChart from matplotlib.lines import Line2D import warnings warnings.filterwarnings("ignore") %matplotlib inline DATA = Path('.').resolve().parent / 'data' In [2]: #importing training and testing data df = pd.read csv('Desktop/train.csv') dftest = pd.read csv('Desktop/test.csv') df.head() Out[2]: Inflight On-Le **Unnamed:** Customer Type of **Flight** Departure/Arrival Inflight Gender Age Class board roor Distance Type Travel time convenient entertainment service service servic Personal Loyal 0 0 70172 Male Eco Plus 460 3 4 4 Customer Travel disloyal Business 2 ... 1 5047 Male Business 235 1 1 Customer travel Loyal **Business** 2 110028 Female 26 Business 1142 2 2 5 4 Customer travel Loyal **Business** 3 24026 Female Business 562 2 5 ... 2 Customer travel Loyal Business 119299 Male 61 **Business** 214 3 3 ... 3 Customer travel 5 rows × 25 columns dftest.head() In [3]: Out[3]: Inflight On-Leg **Unnamed:** Customer Type of Flight Departure/Arrival Inflight id Gender wifi board Age Class room **Travel Distance** time convenient Type entertainment service service service Loyal **Business** 0 19556 Female 52 160 5 5 5 5 Eco Customer travel Loyal **Business** 4 1 1 90035 Female **Business** 2863 1 1 4 4 Customer travel disloyal **Business** 20 2 2 12360 Male Eco 192 2 2 4 Customer travel Loyal **Business** 0 ... 3 3 77959 Male **Business** 3377 0 1 1 1 Customer travel Loyal **Business** 2 36875 Female 49 Eco 1182 2 2 Customer trave 5 rows × 25 columns In [4]: #view columns of training data df.columns Out[4]: Index(['Unnamed: 0', 'id', 'Gender', 'Customer Type', 'Age', 'Type of Travel', 'Class', 'Flight Distance', 'Inflight wifi service', 'Departure/Arrival time convenient', 'Ease of Online booking', 'Gate location', 'Food and drink', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'On-board service', 'Leg room service', 'Baggage handling', 'Checkin service', 'Inflight service', 'Cleanliness', 'Departure Delay in Minutes', 'Arrival Delay in Minutes', 'satisfaction'], dtype='object') In [5]: #view data distribution of each column in training data df.describe() Out[5]: Ease of Online Flight Inflight wifi Departure/Arrival Unnamed: 0 Age **Gate location** service time convenient Distance booking 103904.000000 103904.000000 103904.000000 count 103904.000000 103904.000000 103904.000000 103904.000000 103904.000000 2.729683 51951.500000 64924.210502 39.379706 1189.448375 3.060296 2.756901 2.976883 mean 29994.645522 15.114964 std 37463.812252 997.147281 1.327829 1.525075 1.398929 1.277621 31.000000 0.000000 1.000000 7.000000 0.000000 0.000000 0.000000 0.000000 min 25975.750000 27.000000 2.000000 2.000000 2.000000 25% 32533.750000 414.000000 2.000000 50% 51951.500000 64856.500000 40.000000 843.000000 3.000000 3.000000 3.000000 3.000000 77927.250000 51.000000 4.000000 4.000000 75% 97368.250000 1743.000000 4.000000 4.000000 max 103903.000000 129880.000000 85.000000 4983.000000 5.000000 5.000000 5.000000 5.000000 #view columns of test data In [6]: dftest.columns Out[6]: Index(['Unnamed: 0', 'id', 'Gender', 'Customer Type', 'Age', 'Type of Travel', 'Class', 'Flight Distance', 'Inflight wifi service', 'Departure/Arrival time convenient', 'Ease of Online booking', 'Gate location', 'Food and drink', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'On-board service', 'Leg room service', 'Baggage handling', 'Checkin service', 'Inflight service', 'Cleanliness', 'Departure Delay in Minutes', 'Arrival Delay in Minutes', 'satisfaction'], dtype='object') #view data distribution of each column in test data dftest.describe() Out[7]: Ease of Inflight wifi Food an Flight Departure/Arrival Online Unnamed: 0 id Age **Gate location Distance** service time convenient booking count 25976.000000 25976.000000 25976.000000 25976.000000 25976.000000 25976.000000 25976.000000 25976.000000 25976.00000 12987.500000 65005.657992 39.620958 1193.788459 2.724746 mean 3.046812 2.756775 2.977094 3.21535 7498.769632 37611.526647 15.135685 998.683999 1.335384 1.533371 1.412951 1.282133 1.33150 std 17.000000 7.000000 31.000000 0.000000 0.000000 0.000000 1.000000 0.00000min 0.000000 25% 6493.750000 32170.500000 27.000000 414.000000 2.000000 2.000000 2.000000 2.000000 2.00000 50% 12987.500000 65319.500000 40.000000 849.000000 3.000000 3.000000 3.000000 3.000000 3.00000 19481.250000 97584.250000 51.000000 1744.000000 4.000000 4.000000 4.000000 4.000000 4.00000 75% max 25975.000000 129877.000000 85.000000 4983.000000 5.000000 5.000000 5.000000 5.000000 5.00000 Data Preprocessing Using the describe method we will take initial steps in our Data Exploration. We will be looking for variables that need normalization along with their distributions. The next step in the preparation of the data is to give the variables reusable names, eliminating spaces and capitol letters. This will help with the probability of typing errors while scripting. After changing the labels, we will check the nunique values to check for variable with high amounts of unique variables, typically indicating columns that need to be binned In [82]: #renaming training data columns df = df.rename(columns={'Customer Type':'customer type', 'Type of Travel': 'travel type', 'Flight Distance':'flight dist', 'Inflight wifi service': 'wifi service', 'Departure/Arrival time convenient': 'time convenience', 'Ease of Online booking':'booking_diff', 'Gate location':'gate_loc', 'Food and drink': 'food drink', 'Online boarding': 'online boarding', 'Seat comfort': 'seat_comf', 'Inflight entertainment': 'inflight ent', 'On-board service':'onboard serv', 'Leg room service':'legroom', 'Baggage handling': 'baggage care', 'Checkin service':'checkin', 'Inflight service':'inflight serv', 'Departure Delay in Minutes': 'dept delay', 'Arrival Delay in Minutes':'arr delay' }) In [9]: #renaming testing data columns dftest = dftest.rename(columns={'Customer Type':'customer_type', 'Type of Travel': 'travel type', 'Flight Distance':'flight dist', 'Inflight wifi service':'wifi_service', 'Departure/Arrival time convenient': 'time convenience', 'Ease of Online booking': 'booking diff', 'Gate location':'gate loc', 'Food and drink': 'food drink', 'Online boarding': 'online boarding', 'Seat comfort': 'seat comf', 'Inflight entertainment': 'inflight ent', 'On-board service':'onboard_serv', 'Leg room service':'legroom', 'Baggage handling': 'baggage care', 'Checkin service':'checkin', 'Inflight service':'inflight serv', 'Departure Delay in Minutes': 'dept delay', 'Arrival Delay in Minutes': 'arr delay' }) In [10]: # Number of unique values for training for column in df.columns: print(column, df[column].nunique()) Unnamed: 0 103904 id 103904 Gender 2 customer_type 2 Age 75 travel type 2 Class 3 flight dist 3802 wifi service 6 time convenience 6 booking diff 6 gate loc 6 food drink 6 online boarding 6 seat comf 6 inflight ent 6 onboard serv 6 legroom 6 baggage care 5 checkin 6 inflight serv 6 Cleanliness 6 dept delay 446 arr delay 455 satisfaction 2 In [11]: # Number of unique values for testing for column in dftest.columns: print(column, dftest[column].nunique()) Unnamed: 0 25976 id 25976 Gender 2 customer type 2 Age 75 travel_type 2 Class 3 flight dist 3281 wifi service 6 time convenience 6 booking_diff 6 gate loc 5 food drink 6 online boarding 6 seat comf 5 inflight ent 6 onboard serv 6 legroom 6 baggage care 5 checkin 5 inflight serv 6 Cleanliness 6 dept delay 313 arr delay 320 satisfaction 2 Using helper functions, we can access reusable code that we will use later for model metrics. The stat_print function will print each of the more usable metrics, allowing us to evaluate all models performances with one line of code. After the helper functions, checking for null values in both datasets will prevent errors while parsing data. In [12]: # Helper Functions classes = ('Satisfied', 'Unsatisfied') def check na(df): if df.isna().sum().sum(): print ('Missing values detected') print('No Missing Values Detected') #Function for printing model evaluation metrics def stat print(train y, pred cancel): print('Recall Score : ',recall_score(train_y, pred_cancel, average='weighted')) print('Accuracy Score : ',accuracy_score(train_y, pred_cancel)) print('F1 Score : ',f1_score(train_y,pred_cancel)) print('Precision Score : ',precision score(train y,pred cancel)) def confusionMatrices(model, title): print(title + ' - training results') classificationSummary(train y, model.predict(train X), class names=classes) print(title + ' - validation results') valid pred = model.predict(valid X) classificationSummary(valid y, valid pred, class names=classes) In [13]: #view na for test data check na(dftest) Missing values detected In [14]: #view na for train data check na(df) Missing values detected In [15]: # Checking for na values df.isna().sum() Out[15]: Unnamed: 0 0 id 0 Gender customer type travel_type 0 Class flight dist 0 wifi service time convenience 0 booking diff gate loc food drink online_boarding seat comf inflight ent 0 onboard serv legroom 0 0 baggage care checkin inflight serv Cleanliness dept delay 0 arr delay 310 0 satisfaction dtype: int64 In [16]: #view na for testing dftest.isna().sum() Out[16]: Unnamed: 0 0 0 Gender customer_type Age travel type Class flight dist wifi service time convenience booking diff gate_loc food drink online boarding 0 seat comf inflight ent 0 0 onboard serv legroom baggage care checkin inflight_serv Cleanliness 0 0 dept delay arr_delay 83 0 satisfaction dtype: int64 In [17]: #sorting values by 'dept delay' in training df.sort_values(by='dept_delay', ascending=False) Out[17]: Unnamed: id Gender customer_type Age travel_type Class flight_dist wifi_service time_convenience ... inflight_ent Personal 83741 83741 73471 Female Loyal Customer 1120 2 Eco Travel **Business** 2 ... 6744 69661 Loyal Customer **Business** 2916 2 Male travel Business 61310 61310 4903 Male Loyal Customer **Business** 1959 travel Personal 72206 78300 30 1598 4 5 72206 Male Loyal Customer Eco Travel Business 80182 80182 8345 Loyal Customer 47 **Business** 2187 4 5 Male travel Personal 44435 44435 95245 49 3 Male Loyal Customer Eco 189 Travel **Business** 5 5 ... 44434 58151 Female 42 3239 44434 Loyal Customer **Business** 4 travel Personal 2 44432 44432 8 413 6253 Female **Loyal Customer** Eco 5 Travel **Business** 2 ... 44431 4 44431 48424 47 Eco 819 5 Male Loyal Customer travel **Business** 103903 103903 62567 27 **Business** Male Loyal Customer 1723 travel 103904 rows × 25 columns In [18]: #sorting values for testing data in testing dftest.sort values(by = 'dept delay', ascending = False) Out[18]: Unnamed: Gender customer_type Age travel_type Class flight_dist wifi_service time_convenience ... inflight_ent Personal 17429 17429 73482 8 1144 2 5 Male Loyal Customer Eco Travel Business 1655 63689 39 **Business** 1696 4 2 1655 Female Loyal Customer travel Business 19000 19000 2247 42 **Business** 2 2 Female Loyal Customer 693 travel Personal 10072 10072 6062 45 630 4 3 Female Loyal Customer Eco Travel Business 21907 21907 90926 24 2507 2 3 Female Loyal Customer **Business** travel Personal 2 11057 11057 Female 35 5 31858 Loyal Customer Eco 2640 Travel **Business** 91300 11055 55 **Business** 4 11055 Loyal Customer 3219 Male travel Personal 11048 11048 Female 57 3 5 31996 Loyal Customer **Business** 216 Travel **Business** 5 11046 27 Eco 5 3 ... 11046 29265 Loyal Customer 859 Female travel Personal 5 ... 25975 42 2 1 25975 34799 Loyal Customer 264 Female Eco Travel 25976 rows × 25 columns Filling in the missing values with relatively close values that match the pattern of arr_delay. The effect of filling in these missing values should be unnoticable as the total amount of records missing the values are insignificant in size. In [19]: # Replacing arrival delay missing values based on the departing delay df['arr delay'].fillna(value=df['dept delay'] -5,inplace=True) dftest['arr delay'].fillna(value=dftest['dept delay'] -5,inplace=True) Taking the minimum and maximum values, we turned the flight distance variable into a categorical variable to pull more correlation out of the variable. This is the only feature creation we had to do within this dataset. After we bin we will check the correlation of variables using heatmaps and correlation tables. In [20]: #finding min/max values of 'flight dist' train min_value = df['flight_dist'].min() max_value = df['flight_dist'].max() print(min value) print(max value) 31 4983 In [21]: #finding min/max values of 'flight dist' test min valuetest = dftest['flight dist'].min() max valuetest = dftest['flight dist'].max() print(min valuetest) print(max_valuetest) 31 4983 # Turning flight length into a binned variable In [22]: bins = np.linspace(min value, max value, 4) bins.round(2) bins = np.linspace(min value, max value, 4) bins.round(2) labels = ['short', 'medium', 'long'] In [23]: # Turning flight length into a binned variable bins = np.linspace(min valuetest, max valuetest, 4) bins.round(2) bins = np.linspace(min valuetest, max valuetest, 4) bins.round(2) dftest['flight length'] = pd.cut(dftest['flight dist'], bins=bins, labels=labels, include lowest=True) In [24]: #create bins for histogram df['flight length'] = pd.cut(df['flight dist'], bins=bins, labels=labels, include lowest=True) In [25]: #creating histogram for Flight Lengths plt.hist(df['flight length'], bins=3) plt.title('Flight Lengths') plt.ylabel('Frequency') Out[25]: Text(0, 0.5, 'Frequency') Flight Lengths 80000 70000 60000 50000 40000 30000 20000 10000 medium long Here we are converting nominal data into categorical. This will also aid in correlation. After doing this, the original columns will be dropped from the dataset. In [26]: | ## Creating dummy variable for Gender # Male:0, Female:1 df.loc[df['Gender'] == 'Male', 'flight dummy'] = 0 df.loc[df['Gender'] == 'Female', 'flight dummy'] = 1 ## Creating dummy variable for customer type # disloyal:0, loyal:1 df.loc[df['customer type'] == 'Loyal Customer', 'flight dummy'] = 1 df.loc[df['customer_type'] == 'disloyal Customer', 'flight_dummy'] = 0 ## Creating dummy variable for travel type # personal:0, business:1 df.loc[df['travel type'] == 'Business travel', 'flight dummy'] = 1 df.loc[df['travel type'] == 'Personal Travel', 'flight dummy'] = 0 ## Creating dummy variable for flight length #1:short, 2:medium, 3:long df.loc[df['flight_length'] == 'short', 'flight_dummy'] = 1 df.loc[df['flight_length'] == 'medium', 'flight_dummy'] = 2 df.loc[df['flight_length'] == 'long', 'flight_dummy'] = 3 ## Creating dummy variable for Class #1:Eco, 2:Eco Plus 3:Business df.loc[df['Class'] == 'Eco', 'class dummy'] = 1 df.loc[df['Class'] == 'Eco Plus', 'class_dummy'] = 2 df.loc[df['Class'] == 'Business', 'class_dummy'] = 3 ## Creating dummy variable for satisfaction (1 for satisfied) df.loc[df['satisfaction'] == 'neutral or dissatisfied', 'satisfaction dummy'] = 0 df.loc[df['satisfaction'] == 'satisfied', 'satisfaction_dummy'] = 1 In [27]: ## Creating dummy variable for Gender # Male:0, Female:1 dftest.loc[dftest['Gender'] == 'Male', 'flight_dummy'] = 0 dftest.loc[dftest['Gender'] == 'Female', 'flight dummy'] = 1 ## Creating dummy variable for customer type # disloyal:0, loyal:1 dftest.loc[dftest['customer type'] == 'Loyal Customer', 'flight dummy'] = 1 dftest.loc[dftest['customer type'] == 'disloyal Customer', 'flight dummy'] = 0 ## Creating dummy variable for travel type # personal:0, business:1 dftest.loc[dftest['travel type'] == 'Business travel', 'flight dummy'] = 1 dftest.loc[dftest['travel type'] == 'Personal Travel', 'flight dummy'] = 0 ## Creating dummy variable for flight length #1:short, 2:medium, 3:long dftest.loc[dftest['flight_length'] == 'short', 'flight_dummy'] = 1 dftest.loc[dftest['flight_length'] == 'medium', 'flight_dummy'] = 2 dftest.loc[dftest['flight_length'] == 'long', 'flight_dummy'] = 3 ## Creating dummy variable for Class #1:Eco, 2:Eco Plus 3:Business dftest.loc[dftest['Class'] == 'Eco', 'class dummy'] = 1 dftest.loc[dftest['Class'] == 'Eco Plus', 'class dummy'] = 2 dftest.loc[dftest['Class'] == 'Business', 'class_dummy'] = 3 ## Creating dummy variable for satisfaction (1 for satisfied) dftest.loc[dftest['satisfaction'] == 'neutral or dissatisfied', 'satisfaction dummy'] = 0 dftest.loc[dftest['satisfaction'] == 'satisfied', 'satisfaction_dummy'] = 1 In [28]: #dropping 'travel_type', 'customer_type', 'flight_dist', 'flight_length', 'satisfaction', 'Class', 'Gen der' from train df = df.drop(columns=['travel_type','customer_type','flight_dist','flight_length','satisfaction','Clas s','Gender']) df.head(30) Out[28]: Unnamed: id Age wifi_service time_convenience booking_diff gate_loc food_drink online_boarding seat_comf ... legroom 1 5047 25 2 3 3 5 3 1 3 1 ... 2 2 2 2 110028 26 2 2 5 5 5 3 2 ... 3 24026 25 2 5 5 5 2 2 5 3 119299 4 61 3 3 3 3 4 5 5 5 3 4 2 1 1 2 1 ... 5 111157 26 4 2 3 2 6 6 82113 47 2 4 2 2 ... 3 5 ... 4 5 5 7 7 96462 52 4 3 4 5 8 8 79485 41 1 2 2 2 4 3 3 2 3 ... 9 3 3 2 3 65725 20 3 4 3 5 2 ... 10 10 34991 24 4 5 4 2 5 3 2 2 2 2 4 1 2 11 11 51412 12 1 ... 12 12 98628 53 4 4 4 1 1 1 ... 4 2 4 3 4 4 4 ... 5 13 13 83502 33 3 2 ... 14 95789 26 3 2 2 2 3 3 14 2 2 1 ... 15 1 3 4 2 15 100580 13 1 3 3 16 16 71142 26 3 3 4 4 4 3 4 ... 17 17 127461 41 4 4 2 4 4 4 5 18 70354 45 4 4 4 4 3 4 5 5 18 2 5 5 ... 19 2 3 3 3 2 19 66246 38 2 20 20 39076 9 2 4 2 2 1 ... 5 5 ... 3 3 3 5 3 5 21 21 22434 17 1 3 4 5 ... 22 22 43510 43 3 5 5 5 3 23 4 5 4 5 4 3 4 ... 23 114090 58 4 105420 1 ... 24 24 23 5 0 5 1 1 5 5 4 4 1 5 4 5 ... 25 25 102956 57 4 2 26 26 18510 33 1 1 1 5 3 1 2 27 27 14925 49 4 4 4 4 2 1 ... 4 28 118319 36 3 1 1 1 1 2 1 ... 3 28 2 3 3 3 3 3 1 ... 4 29 29 75460 22 30 rows × 22 columns In [29]: #dropping 'travel type', 'customer type', 'flight dist', 'flight length', 'satisfaction', 'Class', 'Gen dftest = dftest.drop(columns=['travel type','customer type','flight dist','flight length','satisfactio n','Class','Gender']) dftest.head(30) Out[29]: Unnamed: wifi_service time_convenience booking_diff gate_loc food_drink online_boarding seat_comf ... legroom id Age 3 ... 0 5 4 3 4 5 0 19556 52 3 5 ... 1 90035 36 1 1 3 1 5 4 1 2 4 2 2 2 2 12360 20 2 0 2 3 77959 44 0 0 0 2 3 4 4 ... 1 4 4 49 3 4 1 2 2 4 36875 2 3 5 39177 16 3 3 3 3 5 5 3 3 77 5 5 5 5 3 5 5 6 79433 5 7 7 97286 43 2 2 2 2 4 4 5 4 8 47 5 2 2 2 5 5 5 2 8 27508 2 2 2 9 62482 46 2 3 4 4 4 47 4 1 1 5 1 5 10 10 47583 1 4 11 11 115550 33 2 5 5 5 1 3 4 2 5 5 5 5 12 12 119987 46 5 4 5 5 13 13 42141 60 1 1 4 1 5 5 4 5 14 2 2 2 5 5 14 2274 52 2 4 4 22470 2 15 15 50 3 4 0 3 2 0 2 5 5 5 2 2 2 16 16 124915 2 3 31 5 17 17 17836 52 5 4 3 4 5 4 5 18 18 76872 43 3 4 3 1 4 4 5 3 19 19 64287 50 5 5 5 5 4 5 4 5 4 4 4 20 20 63995 60 4 4 2 5 5 2 21 21 75855 43 3 4 3 4 2 3 2 2 4 3 4 22 22 106181 55 1 4 4 3 23 23 44304 25 4 4 4 4 4 4 4 5 3 5 3 5 24 82602 30 4 2 2 2 24 2 25 25 7823 62 3 5 3 4 2 3 5 127781 4 1 4 4 2 2 2 26 26 24 5 27 27 34501 22 4 1 1 1 4 4 4 4 28 28 121658 44 3 5 3 3 5 4 5 5 3 29 29 20219 51 4 3 3 4 4 4 2 30 rows × 22 columns In [30]: #view correlations in train df.corr() Out[30]: Unnamed: gate_loc food_drink online_boarding id wifi_service time_convenience booking_diff Age Unnamed: 0 1.000000 0.002991 0.004786 -0.0024900.000739 0.001913 0.005073 -0.002162 0.001002 id 0.002991 1.000000 0.022857 -0.021276 -0.002110 0.014163 -0.000606 0.001063 0.055477 Age 0.004786 0.022857 1.000000 0.017859 0.038125 0.024842 -0.001330 0.023000 0.208939 0.336248 wifi_service -0.002490 -0.021276 0.017859 1.000000 0.343845 0.715856 0.134718 0.456970 0.000739 -0.002110 0.038125 1.000000 0.444757 time_convenience 0.343845 0.436961 0.004906 0.070119 booking_diff 0.001913 0.014163 0.024842 0.715856 0.436961 1.000000 0.458655 0.031873 0.404074 0.005073 -0.000606 0.458655 1.000000 gate_loc -0.001330 0.336248 0.444757 -0.001159 0.001688 food_drink -0.002162 0.001063 0.023000 0.134718 0.004906 0.031873 -0.001159 1.000000 0.234468 0.404074 online_boarding 0.001002 0.055477 0.208939 0.456970 0.070119 0.001688 0.234468 1.000000 0.003669 seat_comf 0.000044 0.052903 0.160277 0.122658 0.011344 0.030014 0.574556 0.420211 inflight_ent 0.001363 0.002300 0.076444 0.209321 -0.004861 0.047032 0.003517 0.622512 0.285066 onboard_serv 0.000813 0.055241 0.057594 0.121500 0.068882 0.038833 -0.028373 0.059073 0.155443 0.012441 0.107601 -0.005873 legroom 0.004052 0.044634 0.040583 0.160473 0.032498 0.123950 -0.000526 0.074940 -0.047529 0.120923 0.072126 0.038762 0.002313 0.034746 0.083280 baggage_care -0.004321 0.079273 0.093333 0.011081 -0.035427 checkin 0.035482 0.043193 0.087299 0.204462 inflight_serv -0.000134 0.079346 -0.049427 0.110441 0.073318 0.035272 0.001681 0.033993 0.074573 -0.003830 Cleanliness -0.001117 0.024965 0.053611 0.132698 0.014292 0.016179 0.657760 0.331517 dept_delay -0.000045 -0.019546 -0.010152 -0.017402 0.001005 -0.006371 0.005467 -0.029926 -0.018982 arr_delay 0.000584 -0.037310 -0.012133 -0.019035 -0.000663 -0.008045 0.005097 -0.032462 -0.022382 0.199445 flight_dummy 0.002144 0.064137 0.114496 0.004179 -0.031174 0.054428 0.007898 0.052659 class_dummy 0.000798 0.095698 0.140565 0.036279 -0.092788 0.106391 0.004150 0.085908 0.322924 satisfaction_dummy -0.004731 0.013734 0.137167 0.284245 -0.051601 0.171705 0.000682 0.209936 0.503557 22 rows × 22 columns In [31]: #training heatmap to view correlations between predictors. #dept_delay, and arr_delay are highly correlated as expected. There is also some correlation between pr edictors that describe the on-board experience of customers, like baggage care and onboard serv, food d rink and Cleanliness, which is also expected. plt.figure(figsize=(15,10)) sns.heatmap(df.corr()) Out[31]: <AxesSubplot:> Unnamed: 0 Age wifi_service - 0.8 time_convenience booking_diff gate_loc food_drink 0.6 online_boarding seat_comf inflight_ent onboard_serv 0.4 legroom baggage_care checkin inflight_serv 0.2 Cleanliness dept_delay arr_delay flight_dummy 0.0 class_dummy satisfaction_dummy ē food_drink Unnamed: 0 gate_loc legroom checkin arr_delay wifi_service booking_diff inflight_ent time_convenience seat_comf onboard_serv baggage_care inflight_serv Cleanliness dass_dummy satisfaction_dummy online_boarding dept_delay flight_dummy

In [32]:	#Viewing correlatino between guest satisfaction and predictors. #We see that the top 5 predictors that are most correlated with customer satisfaction are online_boarding, class, inflight_ent, seat_comf, and online_serv. #The lest correlated predictors with customer satisfaction are arr_delay, time_convenience, dept_delay, Unnamed: 0, and gate_loc. This is observation is valid because customers are less satisfied when they are inconvienced with flight delays or flight times. fig, ax = plt.subplots(figsize=(10,10)) fig.suptitle('Correlation between Guest Satisfaction and Predictors', fontsize=20) ax=sns.heatmap(df.corr()[['satisfaction_dummy']].sort_values("satisfaction_dummy"),vmax=1, vmin=-1, cma p="rocket", annot=True, ax=ax); ax.invert_yaxis() Correlation between Guest Satisfaction and Predictors
	satisfaction_dummy -
	Cleanliness - 0.31 flight_dummy - 0.29 - 0.25 wifi_service - 0.28 baggage_care - 0.25 inflight_serv - 0.24 checkin - 0.24 food_drink - 0.21 booking_diff - 0.17
	Age - 0.14 id - 0.014 gate_loc - 0.00068 Unnamed: 00.0047 dept_delay0.05 time_convenience0.052 arr_delay0.058 satisfaction_dummy
In [33]:	#plotting stacked and normalized stacked barplots of online boarding vs. satisfaction, using the origin al data without dummy variables dfog = pd.read_csv('Desktop/train.csv') fig = plt.figure(figsize=(12,8)) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) fig.suptitle('Absolute vs Normalized Distributions') ctonline = pd.crosstab(dfog['Online boarding'], dfog['satisfaction']) ctonlinenorm = ctonline.div(ctonline.sum(1), axis=0)
	plotonline = ctonline.plot(kind='bar', stacked = True, title = 'Online Boarding and Satisfaction',
	neutral or dissatisfied 0.8 0.6 0.00 15000 10000 5000 Online boarding
In [34]:	<pre>#plotting stacked and normalized stacked barplots class satisfaction fig = plt.figure(figsize=(12,8)) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) fig.suptitle('Absolute vs Normalized Distributions') ctclass = pd.crosstab(dfog['Class'], dfog['satisfaction']) ctclassnorm = ctclass.div(ctclass.sum(1), axis=0) plotclass = ctclass.plot(kind='bar', stacked = True, title = 'Class and Satisfaction',</pre>
	Absolute vs Normalized Distributions Class and Satisfaction Class and Satisfaction Satisfaction neutral or dissatisfied satisfied 0.8 0.6
In [35]:	#plotting stacked and normalized stacked of in-flight entertainment and satisfaction
111 [33].	<pre>fig = plt.figure(figsize=(12,8)) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) fig.suptitle('Absolute vs Normalized Distributions') ctentertain = pd.crosstab(dfog['Inflight entertainment'], dfog['satisfaction']) ctentertainnorm = ctentertain.div(ctentertain.sum(1), axis=0) plotentertain = ctentertain.plot(kind='bar', stacked = True, title = 'In-flight entertainment and Satis faction',</pre>
	Absolute vs Normalized Distributions In-flight entertainment and Satisfaction Satisf
In [36]:	#plotting stacked and normalized stacked barplot of seat comfort and satisfaction fig = plt.figure(figsize=(12,8)) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222)
	fig.suptitle('Absolute vs Normalized Distributions') ctseat = pd.crosstab(dfog['Seat comfort'], dfog['satisfaction']) ctseatnorm = ctseat.div(ctseat.sum(1), axis=0) plotseat = ctseat.plot(kind='bar', stacked = True, title = 'Seat Comfort and Satisfaction',
	Seat Comfort and Satisfaction Seat Comfort and Satisfaction Normalized 1.0
In [37]:	Seat comfort Seat comfort Seat comfort
	1500 - 500 - 500 - 0 20000 40000 60000 80000 100000 Unnamed: 0
	2000 - 1500 - 500 -
	3000 - 2500 - 2500 - 15
	1000 - 500 - 10 20 30 40 50 60 70 80 25000 -
	15000 - 10000 - 5000 - 1 2 3 4 5 wifi_service
	25000 - 20000 - 15000 - 10000 - 5000 -
	25000 - 20000 - 15000 - 10000
	5000 - 1 2 3 4 5 booking_diff 30000 - 25000 - 20000 -
	10000 - 10000
	20000 - 15000 - 5000 - 5000 - 7
	0 1 2 3 4 5 30000 - 25000 - 20000 - 10000 -
	3000 - 25000 - 20000 -
	10000 - 10000
	25000 - 20000 - 15000 - 10000
	30000 - 25000 - 20000 - 10000 - 5000 -
	30000 - 20000 - 20000 - 15000
	35000 - 30000000 - 30000 - 300000 - 30000 - 300000 - 30000 - 30000 - 30000 - 3
	25000 - 15000 - 10000 - 5000 - 10 15 2.0 2.5 3.0 3.5 4.0 4.5 5.0 baggage_care
	30000 - 25000 - 20000 - 15000 - 10000 -
	35000 - 30000 - 25000 - 15000 -
	10000 - 5000 - 0 1 2 3 4 5 inflight_serv
	15000 - 10000 - 5000 - 0 1 2 Cleanliness
	50000 - 40000 - 20000 - 10000 - 0 200 400 600 800 1000 1200 1400 1600
	60000 - 50000 - 40000 - 20000 -
	10000 - 0 200 400 600 800 1000 1200 1400 1600 arr_delay
	40000 - 30000 - 20000 - 10000 - 1000 125 150 175 2.00 2.25 2.50 2.75 3.00 flight_dummy
	40000 - 30000 - 20000 - 10000 - 10000 - 100 125 150 175 2.00 2.25 2.50 2.75 3.00 dass_dummy
	60000 - 50000 - 40000 - 20000 - 20000 -
In [38]:	<pre>predictors = ['Age', 'wifi_service','booking_diff', 'food_drink', 'online_boarding','seat_comf',</pre>
In [39]:	Classification Models The models that we will use here include: Logistic Regression, Decision Tree, Random Forest, K-Nearest Neighbors, Bagging, AdaBoost, and Neural Network. Logistic Regression Model #12: uses Ridge regression, which adds squared magnitude of coefficient as a penalty term to the loss f unction #cv = 5: to estimate the optimal parameters of the model
In [40]:	<pre>#cv = 5: to estimate the optimal parameters of the model #solver = 'saga': penalties of elasticnet, 11, 12, and none #max_iter = 110000: max iterations until solvers can converage logit = LogisticRegressionCV(penalty='12', solver='saga', cv=5, max_iter=110000, random_state=3).fit(tr ain_X, train_y.values.ravel()) logit_confusion = confusionMatrices(logit, 'Logistic regression') Logistic regression - training results Confusion Matrix (Accuracy 0.8434) Prediction Actual Satisfied Unsatisfied</pre>
	Actual Satisfied Unsatisfied Satisfied 51747 7132 Unsatisfied 9140 35885 Logistic regression - validation results Confusion Matrix (Accuracy 0.8381) Prediction Actual Satisfied Unsatisfied Satisfied 12722 1851 Unsatisfied 2354 9049 The training accuracy is 84.34% while the testing accuracy is 83.81%, which is not a huge difference showing that the model was not overtrained.
In [41]:	<pre>#Unprunned decision tree dtree = DecisionTreeClassifier(random_state=3).fit(train_X, train_y) tree_confusion = confusionMatrices(dtree, 'Decision Tree') Decision Tree - training results Confusion Matrix (Accuracy 0.9996) Prediction</pre>
	Actual Satisfied Unsatisfied Satisfied 58878 1 Unsatisfied 43 44982 Decision Tree - validation results Confusion Matrix (Accuracy 0.9265) Prediction Actual Satisfied Unsatisfied Satisfied 13595 978 Unsatisfied 932 10471
In [42]:	The training accuracy is 99.96% and the test accuracy is 92.65%. **Bagging** #Using the decision classification tree as the base estimator, bagging is used to improve metrics bagging = BaggingClassifier(dtree, random_state=3, max_samples = 0.5, max_features = 0.5) bagging.fit(train_X, train_y) bag_confusion = confusionMatrices(bagging, 'Bagging') Bagging - training results Confusion Matrix (Accuracy 0.9552)
	Prediction Actual Satisfied Unsatisfied Satisfied 57173 1706 Unsatisfied 2945 42080 Bagging - validation results Confusion Matrix (Accuracy 0.9207) Prediction Actual Satisfied Unsatisfied Satisfied 13725 848 Unsatisfied 1213 10190
In [43]:	<pre>Training accuracy is 95.52% and test accuracy is 92.07%. Decision trees with bagging did not help with improvement in the accuracy.</pre> <pre>Adaboost</pre> #Using the decision classification tree as the base estimator, adaboost is used to improve metrics adaboost = AdaBoostClassifier(n_estimators = 100, base_estimator = dtree, random_state=3) adaboost.fit(train_X, train_y) ada_confusion = confusionMatrices(adaboost, 'Adaboost') Adaboost - training results
	Prediction Actual Satisfied Unsatisfied Satisfied 58877 2 Unsatisfied 42 44983 Adaboost - validation results Confusion Matrix (Accuracy 0.9423) Prediction Actual Satisfied Unsatisfied Satisfied 13941 632
[45] :	forest_confusion = confusionMatrices(rf, 'Random Forest') Random Forest - training results Confusion Matrix (Accuracy 0.9996) Prediction Actual Satisfied Unsatisfied Satisfied 58861 18 Unsatisfied 26 44999 Random Forest - validation results Confusion Matrix (Accuracy 0.9483) Prediction Actual Satisfied Unsatisfied
In [46]:	Actual Satisfied Unsatisfied Satisfied 14076 497 Unsatisfied 846 10557 The training accuracy is 99.96% and 94.83%. Random forest performed better than decision tree classifier by 2%. **K-NN** #finding optimal k value results = []
Out[46]:	<pre>values = [1, 3, 5, 7, 9, 11, 13, 15, 17] for k in values: knn = KNeighborsClassifier(n_neighbors=k).fit(train_X, train_y) results.append({ 'k': k, 'accuracy': accuracy_score(valid_y, knn.predict(valid_X)) }) results = pd.DataFrame(results) results k accuracy</pre>
	0 1 0.898945 1 3 0.908646 2 5 0.910956 3 7 0.910725 4 9 0.909147 5 11 0.909493 6 13 0.908300 7 15 0.909070 8 17 0.906375
In [47]:	<pre>#creating knn algorithm with n_neighbors = 5 knn = KNeighborsClassifier(n_neighbors=5).fit(train_X, train_y) knn_confusion = confusionMatrices(knn, 'k-NN Model') k-NN Model - training results Confusion Matrix (Accuracy 0.9360) Prediction Actual Satisfied Unsatisfied Satisfied 56911 1968</pre>
In [48]:	Linear Discriminant Analysis daModel = LinearDiscriminantAnalysis()
In [49]:	<pre>#scaling training features to 1.0 scaleInput = MinMaxScaler() scaleInput.fit(train_X * 1.0) #hidden_layer_sizes = 10: number of neurons in the ith hidden layer #activation: logistic sigmoid function #solver: weight optimization using stocastic gradient descent neuralNet = MLPClassifier(hidden_layer_sizes = (10),</pre>
	<pre>neuralNet = MLPClassifier(hidden_layer_sizes = (10),</pre>
	Prediction Actual Satisfied Unsatisfied Satisfied 7786 51093 Unsatisfied 1631 43394 Neural Network - validation results Confusion Matrix (Accuracy 0.4983) Prediction Actual Satisfied Unsatisfied Satisfied 1974 12599 Unsatisfied 432 10971 The neural network performs poorly on this data, with 49.26% accuracy on the training segment and 49.83% accuracy on the test segment.
	The neural network performs poorly on this data, with 49.26% accuracy on the training segment and 49.83% accuracy on the test segment. Results Models are evaluated using the test data for accuracy, precision, recall, f1 score, area under ROC curve, and cumulative gains.

	<pre>print(accuracy_score(valid_y, dtree_pred_test)) dtree_roc = metrics.roc_curve(valid_y, dtree_pred_test) dtree_auc = metrics.auc(dtree_roc[0], dtree_roc[1]) dtree_plot = metrics.RocCurveDisplay(dtree_roc[0], dtree_roc[1], roc_auc=dtree_auc, estimator_name='Decision Tree') Accuracy score:</pre>
In [51]:	0.9264705882352942 print(classification_report(valid_y, dtree_pred_test)) precision recall f1-score support 0.0 0.94 0.93 0.93 14573 1.0 0.91 0.92 0.92 11403 accuracy 0.93 25976 macro avg 0.93 0.93 0.93 25976
In [52]:	<pre>#Bagging bagging_pred_test = bagging.predict(valid_X) print(accuracy_score(valid_y, bagging_pred_test)) bagging_roc = metrics.roc_curve(valid_y, bagging_pred_test) bagging_auc = metrics.auc(bagging_roc[0], bagging_roc[1]) bagging_plot = metrics.RocCurveDisplay(bagging_roc[0], bagging_roc[1], roc_auc=bagging_auc, estimator_name='Bagging')</pre>
In [53]:	0.9206575300277179 print(classification_report(valid_y, bagging_pred_test)) precision recall f1-score support 0.0 0.92 0.94 0.93 14573 1.0 0.92 0.89 0.91 11403 accuracy 0.92 25976
In [54]:	macro avg 0.92 0.92 0.92 25976 weighted avg 0.92 0.92 0.92 25976
In [55]:	adaboost_prot = metrics.koccurvebispray(adaboost_roc[o], adaboost_roc[o], adaboost_roc[o]
In [56]:	accuracy 0.94 25976 macro avg 0.94 0.94 0.94 25976 weighted avg 0.94 0.94 0.94 25976 #Logistic Regression logit_pred_test = logit.predict(valid_X) print(accuracy_score(valid_y,logit_pred_test)) logit_roc = metrics.roc_curve(valid_y, logit_pred_test)
In [57]:	<pre>logit_auc = metrics.auc(logit_roc[0], logit_roc[1]) logit_plot = metrics.RocCurveDisplay(logit_roc[0], logit_roc[1], roc_auc=logit_auc, estimator_name='Logistic Regression') 0.83811980289498 print(classification_report(valid_y, logit_pred_test))</pre>
In [58]:	0.0 0.84 0.87 0.86 14573 1.0 0.83 0.79 0.81 11403 accuracy 0.84 25976 macro avg 0.84 0.83 0.83 25976 weighted avg 0.84 0.84 0.84 25976 #Random Forest rf pred test = rf.predict(valid X)
In [59]:	<pre>print(accuracy_score(valid_y,rf_pred_test)) rf_roc = metrics.roc_curve(valid_y, rf_pred_test) rf_auc = metrics.auc(rf_roc[0], rf_roc[1]) rf_plot = metrics.RocCurveDisplay(rf_roc[0], logit_roc[1], roc_auc=rf_auc, estimator_name='Random Forest') 0.9482984293193717 print(classification_report(valid_y, rf_pred_test))</pre>
In [60]:	0.0 0.94 0.97 0.95 14573 1.0 0.96 0.93 0.94 11403 accuracy 0.95 25976 macro avg 0.95 0.95 0.95 25976 weighted avg 0.95 0.95 0.95 25976
	<pre>knn_pred_test = knn.predict(valid_X) print(accuracy_score(valid_y, knn_pred_test)) knn_roc = metrics.roc_curve(valid_y, knn_pred_test) knn_auc = metrics.auc(knn_roc[0], knn_roc[1]) knn_plot = metrics.RocCurveDisplay(knn_roc[0], knn_roc[1], roc_auc=knn_auc, estimator_name='k-Nearest Neighbors') 0.9109562673236834 print(classification_report(valid_y, knn_pred_test))</pre>
	precision recall f1-score support 0.0 0.90 0.95 0.92 14573 1.0 0.93 0.86 0.89 11403 accuracy 0.91 25976 macro avg 0.91 0.91 0.91 25976 weighted avg 0.91 0.91 0.91 25976
In [62]:	<pre>#Linear Discriminant Analysis ldaModel_pred_test = ldaModel.predict(valid_X) print(accuracy_score(valid_y,ldaModel_pred_test)) ldaModel_roc = metrics.roc_curve(valid_y, ldaModel_pred_test) ldaModel_auc = metrics.auc(ldaModel_roc[0], ldaModel_roc[1]) ldaModel_plot = metrics.RocCurveDisplay(ldaModel_roc[0], ldaModel_roc[1], roc_auc=ldaModel_auc, estimator_name='Linear Discriminant Analysis')</pre> 0.8334231598398522
In [63]:	print(classification_report(valid_y, ldaModel_pred_test)) precision recall f1-score support 0.0 0.84 0.86 0.85 14573 1.0 0.82 0.79 0.81 11403 accuracy 0.83 25976 macro avg 0.83 0.83 0.83 25976 weighted avg 0.83 0.83 0.83 25976
In [64]:	
In [65]:	0.4983446258084386 print(classification_report(valid_y, neuralNet_pred_test)) precision recall f1-score support 0.0 0.82 0.14 0.23 14573 1.0 0.47 0.96 0.63 11403 accuracy 0.50 25976 macro avg 0.64 0.55 0.43 25976
In [66]:	<pre>weighted avg 0.66 0.50 0.41 25976 # Plotting ROC Curves for models fig, ax = plt.subplots(figsize=(12,8)) fig.suptitle('ROC Curves for Models', fontsize=12) plt.plot([0, 1], [0, 1], linestyle = '', color = '#174ab0') plt.xlabel('', fontsize=12) plt.ylabel('', fontsize=12)</pre>
	<pre>logit_plot.plot(ax) dtree_plot.plot(ax) rf_plot.plot(ax) knn_plot.plot(ax) bagging_plot.plot(ax) adaboost_plot.plot(ax) ldaModel_plot.plot(ax) neuralNet_plot.plot(ax) plt.show()</pre>
	ROC Curves for Models
	Lue Positive Rate
	0.2 - Logistic Regression (AUC = 0.83) Decision Tree (AUC = 0.93) Random Forest (AUC = 0.95) k-Nearest Neighbors (AUC = 0.91) Bagging (AUC = 0.92) Adaboost (AUC = 0.94) Linear Discriminant Analysis (AUC = 0.83) Artificial Neural Network (AUC = 0.91) False Positive Rate
In [67]:	The Random Forest model has the highest AUC, followed closely by Adaboost, which has strong performance when predicting true positives vs. false positives. from dmba import liftChart logisticchart = pd.Series(logit.predict_proba(valid_X)[:, 1]) logisticchart = logisticchart.sort_values(ascending=False) dtreechart = pd.Series(dtree.predict_proba(valid_X)[:, 1]) dtreechart = dtreechart.sort_values(ascending=False) rfchart = pd.Series(rf.predict_proba(valid_X)[:, 1])
Out[67]:	<pre>gainsChart(neuralNetchart, color='red', ax=ax) ax.set_title('Cumulative Gains Chart for Models') colors = ['royalblue', 'palevioletred', 'green', 'purple', 'orange', 'blue', 'yellow', 'red'] lines = [Line2D([0], [0], color=c, linewidth=3, linestyle='-') for c in colors] labels=['Logistic Regression', 'Decision Tree', 'Random Forest', 'k-NN'</pre>
	12000 Cumulative Gains Chart for Models 10000 -
	# 4000 - Logistic Regression Decision Tree Random Forest K-NNRandom Predictors Bagging Adaboost Happen Discriminant Applysic
<pre>In [68]: Out[68]:</pre>	<pre>Conclusion # Table of metrics metrics = [['Decision Tree', 0.926, 0.93], ['Bagging', 0.921, 0.92], ['Adaboost', 0.942, 0.94],</pre>
J[68]:	Model Accuracy AUC 0 Decision Tree 0.926 0.93 1 Bagging 0.921 0.92 2 Adaboost 0.942 0.94 3 Logistic Regression 0.838 0.83 4 Random Forest 0.948 0.95 5 k-NN 0.911 0.91
In [81]:	<pre>sorted_indices = np.argsort(importance)[::-1] plt.title('Feature Importance') plt.bar(range(train_X.shape[1]), importance[sorted_indices], align='center') plt.xticks(range(train_X.shape[1]), train_X.columns[sorted_indices], rotation=90) plt.tight_layout()</pre>
	Feature Importance 0.20 0.15 0.10 0.05
	Oline_boarding wifi_service dass_dummy Age cleanliness composite care deckin inflight_ent checkin cleanliness deckin deckin cleanliness deckin deckin cleanliness cleanliness deckin cleanliness deckin deckin deckin cleanliness deckin decki
In []:	accuracy, with the test data at 94.8% accuracy, the highest area under the ROC curve, and strong performance in cumulative gains. Using the random forest model, the most influencial features in determining if someone has a satisfactory experience is the quality of online boarding, the wifi service, what class they are in, their age, and the amount of legroom. Inflight entertainment and seat comfort are also important features, and are additional features airlines have a level of control over.