Kapitel 2

Garben und Divisoren

§ 9 \mathcal{O}_X -Modulgarben

Definition 9.1

Sei (X, \mathcal{O}_X) ein lokal geringter Raum. Eine Garbe \mathcal{F} von abelschen Gruppen auf X heißt \mathcal{O}_X -Modulgarbe, wenn gilt:

- (i) $\mathcal{F}(U)$ "ist" $\mathcal{O}_X(U)$ -Modul für jedes offene $U \subseteq X$
- (ii) $\rho_{U'}^U: \mathcal{F}(U) \to \mathcal{F}(U')$ ist $\mathcal{O}_X(U)$ -Modul-Homomophismus für $U' \subseteq U \subseteq X$ offen (via $\mathcal{O}_X(U) \to \mathcal{O}_X(U')$)

Bemerkung

Die \mathcal{O}_X -Modulgarben auf X bilden eine Kategorie. Gegenbeispiel: \mathcal{O}_X^{\times} ist keine \mathcal{O}_X -Modulgarbe.

Beispiele (für \mathcal{O}_X -Modulgarben)

- 1) Idealgarben
- 2) Sei X eine nichtsinguläre Kurve (über einem algebraisch abgeschlossenen Körper k), $D := \sum_{\substack{P \in X \\ (\text{abg.})}} n_P P$ ein Divisor. \mathcal{O}_X soll die Garbe der regulären Differentiale auf X sein.

Für $U \subseteq X$ offen sein $\mathcal{L}(D)(U) := \{ f \in k(X) : \operatorname{div} f|_{U} + D|_{U} \geq 0 \}$, das heißt für alle $P \in U$ gilt $\operatorname{ord}_{P} f \geq -m_{P}$.

 $\mathcal{L}(D)(U)$ ist $\mathcal{O}_X(U)$ -Modul: für $g \in \mathcal{O}_X(U), f \in \mathcal{L}(D)(U)$ und $P \in U$ ist $\operatorname{ord}_P(fg) = \operatorname{ord}_P(f) + \underbrace{\operatorname{ord}_P(g)}_{>0}$

- $\Rightarrow \mathcal{L}(D)$ ist Modulgarbe
- 3) Sei X weiterhin nichtsinguläre Kurve.

Erinnerung: Sei R ein Ring, A eine R-Algebra, M ein A-Modul, $Der_R(A, M) = \{\delta : A \to M, R$ -liniear, $\delta(f \cdot g) = f \cdot \delta(g) + g \cdot \delta(f)\}$.

Es gibt
$$\left\{ \begin{array}{ll} \Omega_{A/R} & A\text{-Modul} \\ d: A \to \Omega_{A/R} & Derivation \end{array} \right\} \text{ sodass } A \xrightarrow{} \Omega_{A/R}$$

$$A \to \Omega_{A/R} \quad Derivation \quad A \to \Omega_{A/R} \quad A \to \Omega_{A/$$

$$A = k[X]$$

$$\Rightarrow \boxed{\Omega_{A/k} = A \cdot dX}$$

$$\Omega_{k(X)/k} = k(X) \cdot dX$$

Es gilt: Ist X irreduzible Kurve, so ist $\Omega_{k(X)/k}$ 1-dimensionaler Vektorraum über k(X) (Beispiel $y^2 = x^3 + ax + b \Rightarrow 2ydy = 3x^2dx + adx$)

Für $\omega \in \Omega_{k(X)/k}$ und $P \in X$ sei ord_P ω wie folgt definiert: sei t_P ein Erzeuger von m_P (= maximales Ideal in $\mathcal{O}_{X,P}$)

$$\Rightarrow \exists f_P \in k(X) \text{ mit } \omega = f_P dt_P. \text{ Setze ord}_P \omega := \text{ord}_P f_P$$

Für
$$\omega \in \Omega_{k(X)/k}$$
 sei div $\omega := \sum_{P \in X} \operatorname{ord}_P \omega$ (wobei $d(t_P - c) = dt_P$).

Für
$$U \subseteq X$$
 offen: $\Omega_X(U) := \{ \omega \in \Omega_{k(X)/k} : \operatorname{div} \omega|_U \ge 0 \}$

 \mathcal{O}_X ist \mathcal{O}_X -Modulgarbe, da $\operatorname{div}(f \cdot \omega) = \operatorname{div} f + \operatorname{div} \omega$.

Definition + Bemerkung 9.2

Sei (X, \mathcal{O}_X) lokal geringter Raum, $\mathcal{F}, \mathcal{G} \mathcal{O}_X$ -Modulgarben.

- a) $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$ sei die zur Prägarbe $U \mapsto \mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{G}(U)$ assoziierte Garbe, $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$ ist eine \mathcal{O}_X -Modulgarbe.
- b) Für $U \subseteq X$ offen sei

$$\mathcal{H}om(\mathcal{F},\mathcal{G})(U) := \operatorname{Hom}_{\mathcal{O}_X|_U}(\mathcal{F}|_U,\mathcal{G}|_U)$$

Das ist eine \mathcal{O}_X -Modulgarbe.

Beweis

b) ...

Definition + Bemerkung 9.3

Sei $f: X \to Y$ ein Morphismus lokal geringter Räume

- a) Für jede \mathcal{O}_X -Modulgarbe \mathcal{F} auf X ist $f_*\mathcal{F}$ eine \mathcal{O}_Y -Modulgarbe.
- b) Für jede \mathcal{O}_Y -Modulgarbe \mathcal{G} auf Y ist $f^{-1}\mathcal{G}$ eine $f^{-1}\mathcal{O}_Y$ -Modulgarbe und $f^*\mathcal{G} := f^{-1}\mathcal{G} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X$ eine \mathcal{O}_X -Modulgarbe.

Reweis

- a) Für $U \subseteq Y$ offen ist $f_*\mathcal{F}(U) = \mathcal{F}(f^{-1}(U))$ ein $\mathcal{O}_X(f^{-1}(U))$ -Modul, $f^\#: \mathcal{O}_Y \to f_*\mathcal{O}_X$ induziert $f_U^\#: \mathcal{O}_Y(U) \to f_*\mathcal{O}_X(U) = \mathcal{O}_X(f^{-1}(U))$. Dadurch wird $\mathcal{F}(f^{-1}(U))$ zu einem $\mathcal{O}_Y(U)$ -Modul.
- b) Zu Definition von $f^*\mathcal{G}$ wird Garbenhomomorphismus $f^{-1}\mathcal{O}_Y \to \mathcal{O}_X$ benötigt. $f^\#: \mathcal{O}_Y \to f_*\mathcal{O}_X$ induziert $f^{-1}\mathcal{O}_Y \to f^{-1}f_*\mathcal{O}_X \xrightarrow{1.14} \mathcal{O}_X$

Erinnerung

 $X = \operatorname{Spec} R$ affines Schema, $I \subseteq R$ Ideal, $f \in R$, $\tilde{I}(D(f)) = I \cdot R_f = I \cdot \mathcal{O}_X(D(f))$, \tilde{I} heißt quasikohärente Idealgarbe.

Definition + Bemerkung 9.4

- a) Sei $X = \operatorname{Spec} R$ affines Schema, M ein R-Modul. Dann sei \tilde{M} die (!) Garbe auf X mit $\tilde{M}(D(f)) := M_f$ (der von M erzeugte Modul über R_f) für jedes $f \in R$. \tilde{M} ist \mathcal{O}_{X} -Modulgarbe, $(\tilde{M})_{\mathfrak{p}} = M_{\mathfrak{p}}$ für jedes Primideal $\mathfrak{p} \in \operatorname{Spec} R$.
- b) Sei X ein Schema. Eine \mathcal{O}_X -Modulgarbe \mathcal{F} heißt $quasikoh\ddot{a}rent$, wenn für jede affine Teilmenge $U = \operatorname{Spec} R \subseteq X$ ein R-Modul M_U existiert, sodass $\mathcal{F}|_U \cong \tilde{M}_U$.
- c) \mathcal{F} (wie in b)) ist genau dann quasikohärent, wennn es eine offene affine Überdeckung $U_i = \operatorname{Spec} R_i$ von X gibt mit $\mathcal{F}|_{U_i} \cong \tilde{M}_i$ für geeignete R_i -Moduln M_i .
- d) Ist X noethersch, so heißt \mathcal{F} **kohärent**, wenn in b) (beziehungsweise c)) alle R-Moduln M_U endllich erzeugbar sind.

Beweis

c) Wie Übung 4, Aufgabe 3

Bemerkung 9.5

Sei $X = \operatorname{Spec} R$ ein affines Schema.

Die Zuordnung $M \mapsto \tilde{M}$ ist ein kovarianter auf Objekten injektiver Funktor von der Kategorie R-Mod in \mathcal{O}_X -Mod; Umkehrfunktor: $\mathcal{F} \to \mathcal{F}(X)$.

Beweis

Sei $0 \to M' \to M \to M'' \to 0$ exakt.

Zu zeigen: $0 \to \tilde{M}' \to \tilde{M} \to \tilde{M}'' \to 0$ ist exakt.

Bemerkung 9.6

Sei $X = \operatorname{Spec} R$ affines Schema.

a) Für R-Moduln M und N gilt:

$$\tilde{M} \otimes_{\mathcal{O}_X} \tilde{N} \cong \widetilde{M \otimes_R N}$$

b) Für R-Moduln M_i , $i \in I$ gilt:

$$\bigotimes_{i \in I} \tilde{M}_i \cong \bigotimes_{i \in I} M_i$$

Beweis

a)
$$(\widetilde{M \otimes_R N})_{\mathfrak{p}} = (M \otimes_R N)_{\mathfrak{p}} \cong M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} N_{\mathfrak{p}} = \widetilde{M}_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} \widetilde{N}_{\mathfrak{p}} \cong (\widetilde{M} \otimes_R \widetilde{N})_{\mathfrak{p}}$$

Bemerkung 9.7

Seien $X = \operatorname{Spec} R$, $Y = \operatorname{Spec} R'$ affine Schemata, $f: X \to Y$ Morphismen, $\alpha = f_X^{\#}: R' \to R$.

a) Für jeden R-Modul gilt:

$$f_*\tilde{M} =_{\alpha} \tilde{M} (= \text{der via } \alpha \text{ als } R'\text{-Modul aufgefasste } R\text{-Modul } M)$$

b) Für jeden R'-Modul N gilt:

$$f^*\tilde{N} \cong (\widetilde{N \otimes_{R'} R})$$

Beweis

- a) Für $U \subseteq Y$ offen ist $f_*\tilde{M}(U) = \tilde{M}(f^{-1}(U))$; das wird durch $f_U^\# : \mathcal{O}_Y(U) \to \mathcal{O}_X(f^{-1}(U))$ zum $\mathcal{O}_Y(U)$ -Modul (vergleiche 9.3 a)).
- b) $f^*\tilde{N}(X) = f^{-1}\tilde{N}(X) \otimes_{f^{-1}\mathcal{O}_Y(X)} \mathcal{O}_X(X) = N \otimes_R R$; Entsprechendes gilt für jedes $U \subseteq X$ offen.

Proposition 9.8

Sei $f: X \to Y$ Morphismus von Schemata.

a) Ist \mathcal{G} quasikohärent auf Y, so ist $f^*\mathcal{G}$ quasikohärent auf X.

- b) Sind X und Y noethersch und ist \mathcal{G} kohärent, so ist $f^*\mathcal{G}$ kohärent.
- c) Ist X noethersch und \mathcal{F} quasikohärent auf X, so ist $f_*\mathcal{F}$ quasikohärent auf Y.

Beweis

a) Œ $Y = \operatorname{Spec} R'$ affin, $\mathcal{G} = \tilde{N}$ für einen R'-Modul N. Œ $X = \operatorname{Spec} R$ affin. Damit folgt die Behauptung aus 9.7 b).

$$x_1, \ldots, x_n$$
 seien Erzeuger von N also R' -Modul $\Rightarrow x \in N$ hat Darstellung $\sum_{i=1}^n a_i x_i$
Behauptung: $x_1 \otimes 1, \ldots, x_n \otimes 1$ erzeugen $N \otimes_{R'} R$ als R -Modul
Sei $x \otimes a \in N \otimes_{R'} R, x = \sum a_i x_i \ (a_i \in R') \Rightarrow x \otimes a = a \cdot \sum a_i (x_i \otimes 1)$

- b) Ist N endlich erzeugt als R'-Modul, so ist $N \otimes_{R'} R$ endlich erzeugt als R'-Modul.
- c) Œ Y affin. Sei U_1, \ldots, U_r offene affine Überdeckung von X. Œ $U_i \cap U_j$ affin(!)? (Übung)

$$0 \rightarrow f_*\mathcal{F} \rightarrow \bigoplus_{i=1}^r f_*\mathcal{F}|_{U_i} \rightarrow \bigoplus_{i < j} f_*\mathcal{F}|_{U_i \cap U_j}$$

$$m \mapsto (m|_{u_i})_{i=1,\dots,r}$$

$$(m)_{i=1,\dots,r} \mapsto (m_i|_{u_i \cap u_j} - m_j|_{u_i \cap u_j})_{i < j}$$

ist exakt (weil \mathcal{F} Garbe ist, weil f_* linksexakt ist) $\Rightarrow f_*\mathcal{F}$ ist als Kern einer Morphismus von quasikohärenten Garben selbst quasikohärent.

§ 10 Lokal Freie Garben

Definition + Bemerkung 10.1

Sei (X, \mathcal{O}_X) lokal geringter Raum, \mathcal{F} eine \mathcal{O}_X -Modulgarbe.

- a) \mathcal{F} heißt \mathbf{frei} vom Rang $n \geq 1$, wenn $\mathcal{F} \cong \mathcal{O}_X^n = \bigoplus_{i=1}^n \mathcal{O}_X$.
- b) \mathcal{F} heißt **lokal frei** vom Rang n, wenn es eine offene Überdeckung $(U_i)_{i\in I}$ von X gibt, sodass $\mathcal{F}|_{U_i} \cong (\mathcal{O}_X|_{U_i})^n$ für jedes $i \in I$.
- c) Ist X Schema, so sind lokal freie Garben quasikohärent (und sogar kohärent wenn X noethersch ist)

Beweis

c) Ist $U = \operatorname{Spec} R$, so ist $\mathcal{F}|_U$ frei vom Rang $n \Leftrightarrow \mathcal{F} \cong \tilde{R}^n$.

Beispiel 10.2

Sei X nichtsinguläre Kurve (über k...) und D ein Divisor auf X. Dann ist $\mathcal{L}(D)$ lokal frei vom Rang 1: Übung 9, Aufgabe 3b)

$$\mathcal{L}(D)(U) = \{ f \in k(X) : \operatorname{div}(f|_{U}) + D|_{U} \ge 0 \}$$

Beispiel

Sei X nichtsinguläre Kurve/k, k algebraisch abgeschlossen, \mathcal{L} lokal freie Garbe vom Rang 1 auf X, $\mathcal{L} \subseteq k(X)$ (konstante Garbe) $\Rightarrow \exists$ Divisor auf X mit $\mathcal{L} \cong \mathcal{L}(D)$

Denn: Sei $(U_i)_{i=1,\dots,r}$ offene Überdeckung von X mit $\mathcal{L}|_{U_i} \cong \mathcal{O}_X|_{U_i}$, $i=1,\dots,r$

Nach Voraussetzung ist dann $\mathcal{L}(U_i) = f_i \cdot \mathcal{O}_X(U_i)$ für ein $f_i \in k(X)$. Setze $D|_{U_i} := \operatorname{div}(\frac{1}{f_i})$

Behauptung: Auf $U_i \cap U_j$ ist $\operatorname{div}(\frac{1}{f_i}) = \operatorname{div}(\frac{1}{f_i})$

Äquivalent: $\frac{f_i}{f_j} \in \mathcal{O}_X(U_i \cap U_j)^*$

denn: $\mathcal{L}(U_i \cap U_j) = f_i \mathcal{O}_X(U_i \cap U_j) = f_i \mathcal{O}_X(U_i \cap U_j)$

Beispiel 10.3

Sei X eine Mannigfaltigkeit (reelle, differenzierbare, komplexe) und \mathcal{O}_X die Garbe der stetigen (differenzierbaren, holomorphen) Funktionen auf X. Sei E eine weitere Mannigfaltigkeit, $p: E \to X$ eine stetige (differenzierbare, holomorphe) Abbildung.

(E,p) heißt **Vektorbündel** vom Rang n über X, wenn es eine offene Überdeckung (U_i) von X gibt und Isomorphismen $\varphi_i: p^{-1}(U_i) \to U_i \times \mathbb{R}^n$ sodass

mit $p = \operatorname{pr}_{U_i} \circ \varphi_i$, sodass für alle i, j gilt: $\varphi_i \circ \varphi_j^{-1} : (U_i \cap U_j) \times \mathbb{R}^n \to (U_i \cap U_j) \times \mathbb{R}^n$ induziert für jedes $x \in U_i \cap U_j$ eine lineare Abbildung $\mathbb{R}^n \to \mathbb{R}^n$, die stetig (differenzierbar, holomorph) von x abhängt, das heißt $\varphi_i \circ \varphi_j^{-1} \in \operatorname{GL}_n(\mathcal{O}_X(U_i \cap U_j))$.

Sei \mathcal{E} die Garbe der Schnitte in E, das heißt $\mathcal{E}(U) = \{s : U \to E \text{ stetig (differenzierbar, holomorph)} : <math>p \circ s = \mathrm{id}_U\}$. \mathcal{E} ist lokal frei vom Rang n.

Denn: Für jedes $i \in I$ ist $\mathcal{E}(U_i) = \{s : U_i \to \mathbb{R}^n \text{ stetig (differenzierbar, holomorph)}\} = (\mathcal{O}_X(U_i))^n \Rightarrow \mathcal{E}|_{U_i} \cong (\mathcal{O}_X|_{U_i})^n$

Umgekehrt: Sei \mathcal{E} lokal frei vom Rang n auf X. Sei $U_i \subset X$ offen, $\varphi_i : \mathcal{E}|_{U_i} \to (\mathcal{O}_X|_{U_i})^n$ Isomorphismus $(i \in I, (U_i) \text{ Überdeckung}).$

Für $i, j \in I$ und $x \in U_i \cap U_j$ ist die induzierte Abbildung $(\varphi_i \circ \varphi_j^{-1})_x : \kappa_x^n \to \kappa_x^n$ ein Isomorphismus von $\kappa(x)$ -Vektorraum $(\kappa(x) = \mathbb{R}$ beziehungsweise \mathbb{C}).

$$\Rightarrow (\varphi_i \circ \varphi_j^{-1})_x \in \operatorname{GL}_n(\mathbb{R}) \text{ und } \varphi_i \circ \varphi_j^{-1} \in \operatorname{GL}_n(\mathcal{O}_X(U_i \cap U_j))$$

Sei $E_i := U_i \times \mathbb{R}^n$. Verklebe E_i und E_j über $(U_i \cap U_j) \times \mathbb{R}^n$ via $\varphi_i \circ \varphi_j^{-1}$. Erhalte E!

Definition 10.4

Sei (X, \mathcal{O}_X) ein Schema, $p: E \to X$ ein Morphismus von Schemata.

(E,p) heißt (geometrisches) **Vektorbündel** über X, wenn es eine offene Überdeckung $(U_i)_{i\in I}$ von X gibt und Isomorphismen $\varphi_i: p^{-1}(U_i) \to \mathbb{A}^n_{\mathbb{Z}} \times_{\operatorname{Spec} \mathbb{Z}} U_i$, sodass für alle i,j und für alle offenen affinen Teilmengen $U_{=\operatorname{Spec} R} \subseteq U_i \cap U_j$ gilt:

 $\varphi_i \circ \varphi_j^{-1}|_{\mathbb{A}^n_U}$ wird vone einem linearen Automorphismus α_{ij} von $R[X_1,\ldots,X_n]$, das heißt $\alpha_{ij}(a)=a$ für alle $a\in R$ und $\alpha_{ij}(x)=\sum_{j=1}^n a_{ij}X_j$ für gewisse $a_{ij}\in R$ ($\Leftrightarrow \alpha_{ij}$ ist R-Algebra-Homomorphismus), induziert.

Anmerkung: $\mathbb{A}_U^n = \operatorname{Spec} R[X_1, \dots, X_n]$

Proposition 10.5

Sei X ein Schema. Die Isomorphieklassen von lokal freien Garben vom Rang n auf X ensprechen bijektiv den Isomorphieklassen von Vektorbündeln vom Rang n über X.

Beweis

Analog Beispiel 10.3; Übung?

Definition + Proposition 10.6

Sei (X, \mathcal{O}_X) lokal geringter Raum, \mathcal{E} lokal freie Garbe vom Rang n auf X.

- a) $\mathcal{E}^* = \mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{O}_X)$ ist lokal freie Garbe vom Rang n, sie heißt zu \mathcal{E} duale Garbe.
- b) $(\mathcal{E}^*)^* \cong \mathcal{E}$
- c) Für jede \mathcal{O}_X -Modulgarbe \mathcal{F} ist $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{E},\mathcal{F}) \cong \mathcal{E}^* \otimes_{\mathcal{O}_X} \mathcal{F}$.
- d) Ist \mathcal{E}' eine weitere lokal freie Garbe vom Rang m, so ist $\mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{E}'$ lokal frei vom Rang $n \cdot m$.
- e) Ist $f: Y \to X$ Morphismus lokal geringter Räume, so ist $f^*\mathcal{E}$ lokal frei vom Rang n auf Y.

Beweis

- a) Lokal ist $\mathcal{E} \cong \mathcal{O}_X^n$ und $\mathcal{H}om(\mathcal{O}_X^n, \mathcal{O}_X) \cong \mathcal{O}_X^n$.
- b) Wie in Lineare Algebra I
- c) Für $U \subseteq X$ offen ist

$$(\mathcal{E}^* \otimes_{\mathcal{O}_X} \mathcal{F})(U) = \operatorname{Hom}(\mathcal{E}|_U, \mathcal{O}_X|_U) \otimes_{\mathcal{O}_X(U)} \mathcal{F}(U) \cong \operatorname{Hom}(\mathcal{E}|_U, \mathcal{F}|_U) = \mathcal{H} \mathit{om}_{\mathcal{O}_X}(\mathcal{E}, \mathcal{F})(U)$$

$$l \otimes v \mapsto v \mapsto (x \mapsto l(x)v)$$

- d) $\mathcal{O}_X^n \otimes_{\mathcal{O}_X} \mathcal{O}_X^m \cong \mathcal{O}_X^{n \cdot m}$
- e) Ist $U \subseteq X$ offen mit $\mathcal{E}|_U = (\mathcal{O}_X|_U)^n$, so ist $f^*\mathcal{E}(f^{-1}(U)) = (f^{-1}\mathcal{O}_X|_U \otimes_{f^{-1}\mathcal{O}_X|_U} \mathcal{O}_Y)(f^{-1}(U)) = (\mathcal{O}_Y(f^{-1}(U)))^n$

Bemerkung + Definition 10.7

Sei (X, \mathcal{O}_X) lokal geringter Raum.

a) Für jede lokal freie Garbe \mathcal{L} auf X von Rang 1 gilt:

$$\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{L}^* \cong \mathcal{O}_X$$

- b) Die Isomorphieklassen von lokal freien Garben vom Rang 1 auf X bilden eine Gruppe Pic(X) (**Picard-Gruppe** von X).
- c) Eine \mathcal{O}_X -Modulgarbe \mathcal{L} auf X heißt *invertierbar*, wenn sie lokal frei vom Rang 1 ist.

Beweis

a) Nach 10.6 c) ist $\mathcal{L} \otimes \mathcal{L}^* \cong \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{L}, \mathcal{L})$. Sei $\varphi : \mathcal{O}_X \to \operatorname{Hom}_X(\mathcal{L}, \mathcal{L})$ gegeben durch $1 \mapsto \operatorname{id}. \varphi$ ist injektiver Morphismus von Garben.

 φ ist surjektiv, da φ_X surjektiv ist für jedes $x \in X$: sei dazu $\alpha \in \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{L}_X, \mathcal{L}_X)$ und $(U, \tilde{\alpha})$ Vertreter von α , sodass $\mathcal{L}|_U = \mathcal{O}_X|_U$. Dann ist $\tilde{\alpha}$ durch $\tilde{\alpha}(1) \in \mathcal{L}(U) = \mathcal{O}_X(U)$ bestimmt $\Rightarrow \tilde{\alpha} = \tilde{\alpha}(1) \cdot \operatorname{id} \in \operatorname{Bild} \varphi_U$.

§ 11 Divisoren

Sei X ein noethersches, irreduzibles, reduziertes Schema.

Definition + Bemerkung 11.1

- a) Ein Primdivisor auf X ist ein integres abgeschlossenes Unterschema der Kodimension 1.
- b) Die freie abelsche Gruppe Div(X), die von den Primdivisoren erzeugt wird, heißt die gruppe der **Weil-Divisoren**.
- c) Ist X eine Kurve über einem algebraisch abgeschlossenen Körper, so sind die Primdivisoren die abgeschlossenen Punkte auf X.
- d) Sei W ein Primdivisor auf X, η_W der generische Punkt von W, $\mathcal{O}_{X,W} = \mathcal{O}_{X,\eta_W}$ (dim $\mathcal{O}_{X,W} = 1$). Für $f \in \mathcal{O}_{X,W} \setminus \{0\}$ sei $\operatorname{ord}_W(f) := \dim_{\kappa(W)} \mathcal{O}_{X,W} / (f)$. Für $f = \frac{g}{h} \in K = k(X) = \operatorname{Quot}(\mathcal{O}_{X,W})$ sei $\operatorname{ord}_W(f) = \operatorname{ord}_W(g) \operatorname{ord}_W(h)$ (wohldefiniert). Es gilt: $\operatorname{ord}_W(f \cdot g) = \operatorname{ord}_W(f) + \operatorname{ord}_W(g)$.

$$k[X,Y]/(y^2-x^3)_{(x,y)}/(y)=k\cdot \overline{1}+k\cdot \overline{x}+k\cdot \overline{x}^2 \leadsto \operatorname{ord}_{(0,0)} x=2$$

- e) Für $f \in k^{\times}$ sei $\operatorname{div}(f) := \sum_{W \text{Primdiv.}} \operatorname{ord}_W(f) \cdot W$; $\operatorname{div}(f)$ ist Divisor.
- f) $\operatorname{Cl}(X) := \operatorname{Div}(X) / \operatorname{Div}_H(X)$ heißt **Weil-Divisorengruppe** von X.

Beispiel 11.2

$$X = \mathbb{P}^n_{\mathbb{Z}} = \operatorname{Proj} \mathbb{Z}[X_0, \dots, X_n]$$

Jeder Primdivisor W auf \mathbb{P}^n ist von der Form W = V(F) für ein irreduzibles homogenes Polynom $F \in \mathbb{Z}[X_0, \dots, X_n]$. Sei $d := \deg F$.

Behauptung: $W - d \cdot H$ ist hauptdivisor für $H := V(X_0)$

denn:
$$\frac{F}{X_0^d} \in K = k(X)$$
, div $\frac{F}{X_0^d} = W - d \cdot H \Rightarrow \mathrm{Cl}(\mathbb{P}^n) \cong \mathbb{Z}$ (als Gruppe)

Proposition 11.3

Sei R faktorieller Ring, $X = \operatorname{Spec} R$. Dann ist $\operatorname{Cl}(X) = 0$.

Beweis

Sei W Primdivisor, also $W = V(\mathfrak{p})$ für ein Primideal \mathfrak{p} der Höhe 1.

Behauptung: p ist Hauptideal

Dann ist $\mathfrak{p}(f)$ für ein Primideal $f \in R \Rightarrow \operatorname{div}(f) = W$

Beweis der Behauptung: Sei
$$0 \neq f \in \mathfrak{p}, f = f_1 \cdot \ldots \cdot f_r$$
 die Primfaktorzerlegung \Rightarrow Œ $f_1 \in \mathfrak{p} \Rightarrow (0) \subsetneq (f_1) \subseteq \mathfrak{p}$ ist Primidealkette $\Longrightarrow \mathfrak{p} = (f_1)$

Beispiel

Sei $R = k[X,Y]/(Y^2 - X^3 + X) = k[E]$, $E = V(Y^2 - X^3 + X) \subseteq \mathbb{A}^2_k$. Dann ist für $P \in E$ abgeschlossen $1 \cdot P$ kein Hauptdivisor!

Definition + Bemerkung 11.4

Sei X ein integres Schema, K = k(X), der Funktionenkörper von X.

- a) Ein *Cartier-Divisor* auf X ist eine Äquivalenzklasse von Familien $(U_i, f_i)_{i \in I}$, wobei $(U_i)_{i \in I}$ offene Überdeckung von $X, f_i \in K^{\times}$, sodass $\frac{f_i}{f_j} \in \mathcal{O}_X(U_i \cap U_j)^{\times}$. Dabei sei $(U_i, f_i)_{i \in I} \sim (V_j, g_j)_{j \in J} :\Leftrightarrow \frac{f_i}{g_j} \in \mathcal{O}_X(U_i \cap V_j)$.
- b) Die Cartier-Divisoren auf X bilden eine Gruppe CaDiv(X) mit folgender Verknüpfung: Seien $D_1 = (U_i, f_i), D_2 = (V_j, g_j) \in \text{CaDiv}(X), (W_k)_k$ gemeinsame Verfeinerung, also $I = J, U_i = V_i, D_1 + D_2 := (U_i, f_i \cdot g_i)_{i \in I}$.
- c) CaDiv $(X) \cong \mathcal{K}_X^{\times} / \mathcal{O}_X^{\times}(X)$, wobei \mathcal{K}_X^{\times} die konstante Garbe K^{\times} sei.
- d) $D \in \operatorname{CaDiv}(X)$ heißt $\boldsymbol{Haptdivisor}$, wenn es einen Vertreter von D der Form (X, f) gibt.

$$\operatorname{CaCl}(X) := \frac{\operatorname{CaDiv}}{\operatorname{CaDiv}_H}(X)$$

Beweis

c) Sei $D = (U_i, f_i)_i \in \text{CaDiv}(X)$, U_i klein. Für $i \in I$ sei $\varphi_i \in K^{\times} / \mathcal{O}_X(U_i) = \mathcal{K}_X^{\times} / \mathcal{O}_X^{\times}(U_i)$ die Restklasse von f_i . φ_i ist durch D eindeutig bestimmt.

Auf
$$U_i \cap U_j$$
 ist $\varphi_i = \varphi_j \Rightarrow \exists \varphi \in K_X^{\times} / \mathcal{O}_X^{\times}(X)$ mit $\varphi|_{U_i} = \varphi_i$

Sei umgekehrt $\varphi \in \mathcal{K}_X^{\times}/\mathcal{O}_X^{\times}(X)$. Für $x \in X$ sei $(U_x, \varphi^{(x)})$ Vertreter von $\varphi_x \in (\mathcal{K}^{\times}, \mathcal{O}^{\times})_x$ $(U_x \text{ Umgebung von } x \in K^{\times})$

$$\Rightarrow (U_x, \varphi^{(x)})_{x \in X}$$
 ist Cartier-Divisor.

Beispiel

Sei $X = \mathbb{P}_k^n$, k Körper, $U_i = D(X_i)$, $i = 0, \dots, n$, $f_i := \frac{X_0}{X_i}$, $f_0 := 1$.

Behauptung: (U_i, f_i) ist Cartier-Divisor

Denn: Für $i \neq 0 \neq j$ ist $\frac{f_i}{f_j} = \frac{X_j}{X_i} \in \mathcal{O}_X(U_i \cap U_j)^{\times}$.

$$\frac{f_i}{f_0} = \frac{X_0}{X_i} \in \mathcal{O}_X(U_0 \cap U_i)$$

$$\operatorname{div}(f_i)|_{U_i} = V(X_0)$$

 $(U_i,f_i)_{i=0,\dots,n}$ "induziert" also den Weil-Divisor $V(X_0)$.

Satz 3

Sei X noethersches intetegres separiertes Schema. Dann gilt:

- a) $\operatorname{CaCl}(X) \cong \operatorname{Pic}(X)$
- b) Es gibt natürlichen Homomophismus $\alpha: \operatorname{CaCl}(X) \to \operatorname{Cl}(X)$.
- c) Ist $\mathcal{O}_{X,x}$ faktoriell für jedes $x \in X$, so ist α Isomorphismus.

Beweis

b) Sei $D = (U_i, f_i) \in \text{CaDiv}(X)$, W Primdivisor auf X. Wähle i mit $U_i \cap W \neq \emptyset$. Setze $n_W := \text{ord}_W(f_i)$.

 n_W ist wohldefininiert: Sei $j \in I$ mit $U_j \cap W \neq \emptyset \xrightarrow{W \text{ irred.}} U_i \cap U_j \cap W \neq \emptyset$, $\frac{f_i}{f_j} \in \mathcal{O}_X(U_i \cap U_j)^{\times} \Rightarrow (f_i) = (f_j)$ in $\mathcal{O}_{X,W} \Rightarrow \operatorname{ord}_W(f_i) = \operatorname{ord}_W(f_j)$

Œ I endlich, da X noethersch $\Rightarrow D = \sum_{W \text{ Primid.}} n_W W$ ist Weil-Divisor

c) Umkehrabbildung zu α

Behauptung: Zu jedem Weil-Divisor $D = \sum n_W W$ auf X gibt es Überdeckung $(U_i)_i$ von X und $f_i \in K^{\times}$ mit $D|_{U_i} = \operatorname{div}(f_i)|_{U_i}$.

Dann gilt: $\beta(D) := (U_i, f_i)$ ist Cartier-Divisor.

Denn:
$$\operatorname{div}(f_i)|_{U_i \cap U_j} = \operatorname{div}(f_j)|_{U_i \cap U_j} = D|_{U_i \cap U_j} \Rightarrow \frac{f_i}{f_i} \in \mathcal{O}_X(U_i \cap U_j)^{\times}$$

Beweis der Behauptung: Œ $X = \operatorname{Spec} R$. Sei $\xi \in X$ abgeschlossener Punkt.

$$\Rightarrow \mathcal{O}_{X,\xi} = R_{m_{\xi}}$$
 (nach Voraussetzung faktoriell!)

Für jeden Primdivisor $W = V(\mathfrak{p})$ von X gilt: $\xi \in W \Leftrightarrow \mathfrak{p} \subseteq m_{\xi}$

Da ht
$$(\mathfrak{p})=1$$
 ist nach 11.3 $\mathfrak{p}\cdot\mathcal{O}_{X,\xi}=(f_w)$ ein Hauptideal. Sei $f_\xi:=\prod_{\xi\in W}f_W^{n_W}$ und

$$U_{\xi} := X - \bigcup_{\substack{W \text{ Primid.} \\ \xi \notin W \\ n_W \neq \text{ord}_W f_{\xi}}} W$$

- a) Sei $D = (U_i, f_i) \in \operatorname{CaDiv}(X), \mathcal{L}(D)(U_i) := \frac{1}{f_i} \cdot \mathcal{O}_X(U_i) \subset K \text{ (als } \mathcal{O}_X(U_i)\text{-Untermodul von } K).$ Da $\frac{f_i}{f_j} \in \mathcal{O}_X(U_i \cap U_j)^{\times}$ gilt $\frac{1}{f_i} \mathcal{O}_X(U_i \cap U_j) = \frac{1}{f_j} \mathcal{O}_X(U_i \cap U_j).$
 - **Behauptung 1:** $\mathcal{L}(D)$ ist lokal freie Garbe vom Rang 1. \mathcal{L} induziert Homomophismus $\operatorname{CaCl}(X) \to \operatorname{Pic} X$
 - Behauptung 2: Jede lokal freie \mathcal{O}_X -Modulgarbe von \mathcal{K}^{\times} ist von der Form $\mathcal{L}(D)$ für ein $D \in \operatorname{CaDiv}(X)$.
 - **Behauptung 3:** Jede lokal freie Garbe vom Rang 1 auf X ist isomorph zu einer Untergarbe von K.

Beweis 3:
$$\mathcal{L} \hookrightarrow \mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{K} \cong \mathcal{K}$$