Aproximación de Funciones

Carlos Aguirre Maeso Escuela Politécnica superior

<u>APROXIMACION DE FUNCIONES</u>

- En este parte se estudiará la aproximación de funciones disponibles en forma discreta (puntos tabulados), con funciones analíticas sencillas, o bien de aproximación de funciones cuya complicada naturaleza exija su reemplazo por funciones más simples, usualmente polinomios.
- Una vez que se ha determinado un polinomio una función $\tilde{f}(x)$ o un polinomio $P_n(x)$ de manera que aproxime satisfactoriamente una función dada f(x) sobre un intervalo de interés, puede esperarse que al diferenciar $\tilde{f}(x)$ o $P_n(x)$ o integrarlas, también aproxime la derivada o integral correspondiente a f(x).

Polinomio de Taylor

- Una de las aproximaciones más conocidas para una función f(x) es su polinomio de Taylor.
- Para calcular el polinomio necesito saber no solo el valor de la función en un punto, sino también el valor de sus derivadas.

$$P_k(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots$$

$$f^{(k)}(a) \atop k!}(x - a)^k$$

Se demomina el polinomio de Taylor de orden k.

Polinomio de Taylor

 Se puede demostrar que para una función k+1 veces diferenciable se verifica:

$$f(x)=P_k(x)+R_k(x)$$

Donde R_k(x) se denomina resto de Taylor. Hay muchas expresiones para dicho resto, siendo la más conocida la de Peano

$$R_k(x) = \frac{f^{(k+1)}(\xi)}{(k+1)!} (x-a)^{k+1}$$

Donde $\xi \in [x, a]$.

Polinomio de Taylor

- Aunque el polinomio de Taylor tiene un valor teórico interesante, en la práctica no es usual aproximar una función por su polinomio de Taylor.
 - Usualmente de una función no tenemos sus derivadas, sino un conjunto de pares (x_i,y_i) que obtenemos mediante experimentación o mediante evaluación de la función (no tenemos la función, pero podemos evaluarla).
 - El polinomio de Taylor es computacionalmente muy costoso, lo cual, además implica un error de aproximación alto por las operaciones aritméticas.

Aproximación polinómica

Se realiza tanto cuando la función puede ser conocida en forma explícita o mediante un conjunto de valores tabulados para cada uno de los argumentos por donde pasa la función (valores funcionales).

X _i	\mathbf{x}_0	x ₁	•••	X _n
f(x _i)	f_0	f_1	•••	f_n

Normalmente se acepta aproximar a la función tabulada en puntos coincidentes mediante un polinomio de grado "n" (condición de aproximación):

$$f(x_i) \approx P_n(x_i)$$
; para todo x_i en $[x_o, x_n]$
Donde: $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_o$, con $a_n \neq 0$

Aproximación polinómica

Aproximación polinómica

- Donde: $E_{abs}(x) = P_n(x)-f(x)$; Para todo x en $[x_0,x_n]$ Observaciones:
 - 1) Los polinomios son funciones fáciles de derivar, integrar, evaluar y de programar en un computador. Véase :

$$P_{n}(x) = a_{n}x^{n} + a_{n-1}x^{n-1} + ... + a_{1}x + a_{0}$$

$$P'_{n}(x) = na_{n}x^{n-1} + (n-1)a_{n-1}x^{n-2} + ... + a_{1}$$

2) Los polinomios presentan propiedades analíticas importantes que facilitan el cálculo de las raíces del polinomio, así mismo nos permite identificar el tipo de raíz (Real ó complejo).

Cálculos Analíticos

- ■Interpolación: $f(x) \approx P_n(x)$, x en $[x_o, x_n]$
- Extrapolación: $f(x) \approx P_n(x)$, $x < x_0 o x > x_n$
- Diferenciación: $f'(x) ≈ P'_n(x)$
- Integración: $\int_{a}^{b} f(x)dx \approx \int_{a}^{b} P_{n}(x)dx$

Cálculo de Polinomio Interpolante

$$P_n(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n$$

$$y_i = f(x_i) = P_n(x_i) \quad para \quad i = 0 \dots n$$

Sistema de Ecuaciones Lineales de Vandermonde

$$\begin{bmatrix} x_0^n & x_0^{n-1} & \cdots & x_0 & 1 \\ x_1^n & x_1^{n-1} & \cdots & x_1 & 1 \\ x_2^n & x_2^{n-1} & \cdots & x_2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n^n & x_n^{n-1} & \cdots & x_n & 1 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Este procedimiento en la practica no es muy usual debido a que la matriz de Vandermonde es mal condicionada (es decir $||A|| ||A^{-1}|| > 1$, con ||A|| norma de la matriz).

$$||A||_2 = \sqrt{traza(A^*A)}, \quad ||A||_1 = \max_{1 \le j \le m} \left(\sum_{i=1}^n |a_{ij}| \right), \quad ||A||_\infty = \max_{1 \le i \le n} \left(\sum_{j=1}^m |a_{ij}| \right)$$

Propiedades de Aproximación

- Siempre que se acepte aproximar la función f(x) mediante un polinomio de grado n: P_n(x) que pase por (n+1) puntos coincidentes, se puede construir un polinomio que es único (propiedad de existencia y unicidad).
- 2)/El error de aproximación viene dado por:

$$E_n = P_n(x) - f(x) = \frac{f^{(n+1)}(\varepsilon)}{(n+1)!} (x - x_0)(x - x_1) \dots (x - x_n)$$

$$Para \ a \lg ún \ \varepsilon \in \langle x_0, x_n \rangle \ ; \ x \in [x_0, x_n]$$

3) Cota superior de error (M):

$$|E_n(x)| = |P_n(x) - f(x)| \le \frac{M}{(n+1)!} (x - x_0)(x - x_1) \cdots (x - x_n)$$

$$Donde: \quad M = m x \{ |f^{(n+1)}(x)| \} \quad para \ x \in [x_0, x_n]$$

Polinomios de interpolación de Lagrange

Para intervalos iguales o no.

$$P_n(x) = \sum_{\substack{i=0\\n}}^n f(x_i) L_i(x) = f(x_0) L_0(x) + f(x_1) L_1(x) + \dots + f(x_1) L_n(x)$$

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \left(\frac{x - x_j}{x_i - x_j}\right)$$

$$E_n = f(x) - P_n(x) = \frac{f^{(n+1)}(\varepsilon)}{(n+1)!} (x - x_0)(x - x_1) \dots (x - x_n)$$

para algún:

$$\varepsilon \in \langle x_0, x_n \rangle$$
 ; $x \in [x_0, x_n]$

Ejercicio: Comprobar que el Polinomio interpolador de Lagrange pasa por los puntos $(x_i, f(x_i))$

Obtener el Polinomio de Lagrange a partir de los siguientes datos:

X	Y
0	-2
2	2
5	6

$$P_{2}(x) = \frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} f(x_{0}) + \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} f(x_{1}) + \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} f(x_{2})$$

$$= \frac{(x - 2)(x - 5)}{(0 - 2)(0 - 5)} (-2) + \frac{(x - 0)(x - 5)}{(2 - 0)(2 - 5)} (2) + \frac{(x - 0)(x - 2)}{(5 - 0)(5 - 2)} (6)$$

$$P_{2}(x) = -\frac{2}{15}x^{2} + \frac{34}{15}x - 2$$

Ejecutad ahora el siguiente código Python:

import numpy as np from scipy.interpolate import lagrange from numpy.polynomial.polynomial import Polynomial

```
x = np.array([0, 2, 5])
y = np.array([-2,2,6])
poly = lagrange(x, y)
```

print(Polynomial(poly).coef)

Ejecutad ahora el siguiente código Python:

import numpy as np from scipy.interpolate import lagrange import matplotlib.pyplot as plt

```
x = np.arange(-1,1.1,.01)
y = -x**2
plt.plot(x,y,'r')
y = -x**2 + np.random.normal(0,0.15,len(x))
plt.plot(x[::10],y[::10],'ro')

X=x[::10]
Y=y[::10]
poly = lagrange(X, Y)

Y=poly(x)
plt.plot(x,Y,'g')
plt.ylim(-1.5,.5)
```

¿Consideráis que el polinomio de Lagrange ha hecho una buena aproximación ?

Herramientas de Interpolación

- A continuación definiremos algunas herramientas que nos permitirán más adelante construir otros polinomios de interpolación:
 - Diferencias Finitas
 - Diferencias Divididas

Diferencia Finita hacia adelante o progresiva

- Se emplean cuando los valores x están igualmente espaciados
- Diferencia finita de primer orden:

$$\Delta f_k = f_{k+1} - f_k$$

Diferencia finita de segundo orden:

$$\Delta^2 f_k = \Delta f_{k+1} - \Delta f_k$$

Diferencia Finita de orden n:

$$\Delta^n f_k = \Delta^{n-1} f_{k+1} - \Delta^{n-1} f_k$$

Tabla de diferencias finitas hacia adelante (h=constante)

	$\mathbf{x}_{\mathbf{k}}$	f(x _k)	$\Delta f_{\mathbf{k}}$	$\Delta^2 f_k$	Δ³fk	$\Delta^4 f_k$
I	X _o	\mathbf{f}_0				
ı			$\Delta extbf{f}_0$			
ı	\mathbf{x}_1	\mathbf{f}_1		$\Delta^2 \mathbf{f}_0$		
,			$\Delta \mathbf{f}_1$		$\Delta^3 { m f}_0$	
ı	\mathbf{x}_2	\mathbf{f}_2		$\Delta^2 \mathbf{f}_1$		$\Delta^4 m f_0$
ı			$\Delta \mathbf{f}_2$		$\Delta^3 \mathbf{f}_1$	
ı	\mathbf{x}_3	f_3		$\Delta^2 \mathbf{f}_2$		
ı			$\Delta \mathbf{f}_3$			
	\mathbf{x}_4	\mathbf{f}_4				

Diferencia finita hacia atrás o regresiva:

$$\nabla^n f_k = \nabla^{n-1} f_k - \nabla^{n-1} f_{k-1}$$

Diferencia Finita Central:

$$\delta^{n} f_{k} = \delta^{n-1} f_{k+1/2} - \delta^{n-1} f_{k-1/2}$$

<u>Diferencias Divididas</u>

- Se define para puntos o argumentos desigualmente espaciados:
- Diferencia dividida de Primer orden:

$$f[x_i, x_{i+1}] = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

Diferencia dividida de segundo orden:

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}$$

Diferencia dividida de orden "n":

$$f[x_i, x_{i+1}, \dots, x_{i+n-1}, x_{i+n}] = \frac{f[x_{i+1}, \dots, x_{i+n}] - f[x_i, \dots, x_{i+n-1}]}{x_{i+n} - x_i}$$

Polinomio de interpolación de Newton basado en diferencias Divididas

Sea la función f(x) tabulada para (n+1) puntos, siempre es posible construir un polinomio de grado "n" (o menor) que pase por dichos puntos y se le puede dar la forma:

$$f(x) \approx P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

Se trata ahora de determinar los coeficientes a_k.

Si
$$x=x_0$$
, $P_n(x_0)=a_0 \approx f(x_0)$
Si $x=x_1$, $P_n(x_1)=f(x_0)+a_1(x_1-x_0) \approx f(x_1)$
 $a_1=(f(x_1)-f(x_0))/(x_1-x_0)=f[x_0,x_1]$

Se puede demostrar que en general se cumple:

$$a_k = f[x_0, x_1, \dots, x_k]$$

Por lo tanto:

$$P_n(x) = f(x_0) + f[x_0x_1](x - x_0) + f[x_0x_1x_2](x - x_0)(x - x_1) + f[x_0x_1...x_n](x - x_0)(x - x_1)...(x - x_{n-1})$$

$$P_n(x) = f(x_0) + \sum_{k=1}^n f[x_0...x_k](x - x_0)...(x - x_{k-1}) = f(x_0) + \sum_{i=0}^n f[x_0...x_i] \prod_{j=0}^{i-1} (x - x_j)$$

Error de Interpolación

$$e_n(x) = \frac{f^{(n+1)}(\varepsilon)}{(n+1)!} (x - x_0)(x - x_1) \dots (x - x_n) = \frac{f^{(n+1)}(\varepsilon)}{(n+1)!} \prod_{i=0}^n (x - x_i) \quad \varepsilon \in [x_0, x_n]$$

$$e_n(x) = f[x_0 x_1 \dots x_n x] \prod_{i=0}^n (x - x_i)$$

Se suele aproximar el error considerando $x=x_{n+1}$, es decir, se requiere un punto adicional.

Ejemplo.- Obtener el polinomio interpolante

X	0	1	2	4	5
У	2	3	10	66	127

Estime y(2.5)

Tabla de diferencias divididas

X	У	y[,]	y[,,]	y[,,,]	y[, ,,
0	2	$\begin{pmatrix} \circ \\ 1 \end{pmatrix}$			
1	3	7	$\begin{pmatrix} \circ \\ 3 \end{pmatrix}$	$\binom{\circ}{1}$	
2	10	/	7		0
4	66	28	11	1	
5	127	61			

De la tabla anterior, obtenemos los coeficientes del polinomio interpolante:

$$P(x) = y_0 + y[x_0, x_1](x - x_0) + y[x_0, x_1, x_2](x - x_0)(x - x_1) + y[x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2) + y[x_0, x_1, x_2, x_3, x_4](x - x_0)(x - x_1)(x - x_2)(x - x_3)$$

$$P(x) = 2 + (1)(x - 0) + 4(x - 0)(x - 1) +$$

$$+(1)(x - 0)(x - 1)(x - 2)$$

$$+(0)(x - 0)(x - 1)(x - 2)(x - 4)$$

$$P(x) = x^{3} + 2$$

$$y(2.5) \approx P(2.5) = 2.5^3 + 2$$

 $y(2.5) \approx 17.625$

Python no tiene un función que implemente el polinomio interpolador de Newton, pero se puede implementar fácilmente

```
def interp_newton_coeffs(xvals,yvals):
  nbr_data_points = len(xvals)
  depth = 1
  coeffs = [yvals[0]]
  iter yvals = yvals
  while depth < nbr_data_points:
    iterdata=[]
    for i in range(len(iter_yvals)-1):
       delta_y= iter_yvals[i+1]-iter_yvals[i]
       delta_x= xvals[i+depth]-xvals[i]
       interval = (delta_y/delta_x)
       iterdata.append(interval)
       if i==0: coeffs.append(interval)
    iter_yvals=iterdata
    depth+=1
  return coeffs
```

Una vez definida la función, ejecutad el siguiente código en Python

```
def newton_pol(xvals,coeffs):
  def f(i):
    terms = []
    retval = 0
    for i in range(len(coeffs)):
       iterval = coeffs[i]
       iterxvals = xvals[:j]
       for k in iterxvals: iterval*=(i-k)
       terms.append(iterval)
       retval+=iterval
    return(retval)
  return(f)
xvals=[0,1,2,4,5]
yvals=[2,3,10,66,127]
coeffs = interp_newton_coeffs(xvals, yvals)
pol=newton_pol(xvals,coeffs)
print(pol(2.5))
```

Ejercicio: Construid una función Python que a partir de los coeficientes de Newton devuelva los coeficientes del polinomio de la forma $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$

Diferencias Finitas Progresivas

Se debe hallar una relación entre las diferencias finitas y divididas; se deja como ejercicio la demostración que:

$$f[x_0, x_1, x_2, \dots x_k] = \frac{\Delta^k f_0}{k! h^k}$$

Reemplazando en el polinomio basado en diferencias divididas se tiene:

$$P_n(x) = f_0 + \frac{\Delta f_0}{1! h^1} (x - x_0) + \frac{\Delta^2 f}{2! h^2} (x - x_0) (x - x_1) + \dots + \frac{\Delta^n f_0}{n! h^n} (x - x_0) \dots (x - x_{n-1})$$

Polinomio de interpolación basado en Diferencias Finitas Progresivas

Teniendo en cuenta que los intervalos se tomarán igualmente espaciados (h=cte) para x, y haciendo el cambio de variable, se demuestra que:

$$s = \frac{x - x_0}{h}$$

$$P_n(s) = f_0 + s\Delta f_0 + \frac{s(s-1)}{2!} \Delta^2 f_0 + \dots + \frac{s(s-1)\dots(s-n+1)}{n!} \Delta^n f_0$$

$$P_n(s) = \sum_{i=0}^n \Delta^i f_0 {s \choose i}$$

$$P_n(s) = f_0 + s\Delta f_0 + \frac{s(s-1)}{2!} \Delta^2 f_0 + \dots + \frac{s(s-1)\dots(s-n+1)}{n!} \Delta^n f_0$$

$$P_n(s) = \sum_{i=0}^n \Delta^i f_0 {s \choose i}$$

- Esta última forma se conoce como polinomio de interpolación de Newton Progresivo con cambio de escala.
 - Ejercicio: deducir la fórmula de error para el polinomio anterior.

a) Aproximar los siguientes datos usando un polinomio basado en diferencias finitas:

X	2	3	4
Υ	0	-1	0

- **b)** Estime Y(2.5):
- c) Calcule el error cometido, si esta data se obtuvo de la función Y=sen(pi*X/2)

Solución

Tabla de diferencias finitas:

X	Υ	ΔΥ	Δ ² Y
2	0	-1	
3	-1	1 (2
4	0		

$$P(s) = Y_0 + s\Delta Y_0 + \frac{s(s-1)}{2!}\Delta^2 Y_0$$

$$P(s) = 0 + s(-1) + \frac{s(s-1)}{2!}(2)$$

$$P(s) = s^2 - 2s$$

$$X = 2.5$$

$$s = \frac{X - X_0}{h} = \frac{X - 2}{1}$$

$$s = \frac{2.5 - 2}{1} = 0.5$$

$$P(s = 0.5) = (0.5)^2 - 2(0.5)$$

$$= -0.75$$

$$y(2.5) = sen\left(\frac{2.5 \pi}{2}\right) = -0.7071$$

$$Error = 0.0429$$

Polinomio de interpolación basado en Diferencias Finitas Regresivas

$$\begin{aligned} & P_{n}(s) \\ & = f_{n} + s \nabla f_{n} + \frac{s(s+1)}{2!} \nabla^{2} f_{n} + \frac{s(s+1)(s+2)}{3!} \nabla^{3} f_{n} + \ldots + \frac{s(s+1)(s+2) + \ldots + (s+n-1)}{n!} \nabla^{n} f_{n} \\ & \text{Teniendo en cuenta que: } s = \frac{x - x_{n}}{h} \end{aligned}$$

Polinomio de interpolación basado en Diferencias Finitas Centrales Polinomio de Stirling

$$P_{2m}(s) = f_0 + \frac{s}{1!} \frac{\left[\delta f_{-1/2} + \delta f_{+1/2}\right]}{2} + \frac{s^2}{2!} \delta^{-2} f_0 + \frac{s(s^2 - 1^2)}{3!} \frac{\left[\delta^3 f_{-1/2} + \delta^3 f_{+1/2}\right]}{2} + \frac{s^2(s^2 - 1^2)}{4!} \delta^{-4} f_0 + \frac{s^2(s^2 - 1^2)(s^2 - 2^2)}{5!} \frac{\left[\delta^5 f_{-1/2} + \delta^5 f_{+1/2}\right]}{2} + \dots$$

Queda para el estudiante demostrar que el polinomio anterior puede representarse en la forma siguiente:

$$P_{2n}(s) = f_0 + \binom{s}{1} \delta_{1/2} + \binom{s}{2} \delta_0^2 + \binom{s+1}{3} \delta_{1/2}^3 + \binom{s+1}{4} \delta_0^4 + \dots + \binom{s+n-1}{2n-1} \delta_{1/2}^{2n-1} + \binom{s+n-1}{2n} \delta_0^{2n}$$

$$P_{2n}(s) = f_0 + \sum_{i=1}^n \binom{s+i-1}{2i-1} \delta_{1/2}^{2i-1} + \binom{s+i-1}{2i} \delta_0^{2i} \qquad s = \frac{x-x_0}{h}$$

Interpolación segmentaria o Splines

- Un Spline o trazador es una función que consiste en trozos de polinomios unidos con ciertas condiciones de continuidad.
- Dados los nodos x_o<x₁<...<x_n, un spline de grado k con esos nodos es una función S tal que:
 - •En cada sub-intervalo $[t_{i-1},t_i]$ S es un polinomio de grado $\leq k$
 - •La (k-1)-iésima derivada de S es continua en $[x_0, x_n]$

Spline Lineal

$$s_i(x) = m_i x + b_i$$
, para $x \in [x_i, x_{i+1}]$, $i = 0, 1, 2, \dots, n-1$

Las condiciones, $s_i(x_i) = y_i$ y $s_i(x_{i+1}) = y_{i+1}$ producen 2n ecuaciones para encontrar 2n incógnitas. Aplicando esto, conseguimos:

$$s_i(x) = y_i \frac{x - x_{i+1}}{x_i - x_{i+1}} + y_{i+1} \frac{x - x_i}{x_{i+1} - x_i} = y_i + \frac{y_{i+1} - y_i}{x_{i+1} - x_i} (x - x_i), \quad x \in [x_i, x_{i+1}]$$

cyyo resultados son líneas rectas que ensamblan puntos vecinos.

Claramente se observa que, $s_i(x)$ es la formula de interpolación de Lagrange para un conjunto de datos que consiste en los puntos (x_i,y_i) y (x_{i+1},y_{i+1}) , observad que $\frac{y_{i+1}-y_i}{x_{i+1}-x_i}$ es la diferencia divida de Newton.

Figuiente conjunto de datos:

i	0	1	2	3	4
X	0	5	7	8	10
У	0	2	-1	-2	20

Splines Lineales:

$$s_0(x) = 0 \frac{x-5}{0-5} + 2 \frac{x-0}{5-0} = \frac{2}{5}x, \quad x \in [0, 5]$$

$$s_2(x) = -1\frac{x-8}{7-8} - 2\frac{x-7}{8-7} = -x+6, \quad x \in [7, 8]$$

$$s_1(x) = 2\frac{x-7}{5-7} - 1\frac{x-5}{7-5} = -1.5x + 9.5, \quad x \in [5, 7]$$

$$s_3(x) = -2\frac{x-10}{8-10} + 20\frac{x-8}{10-8} = 11x-90, \quad x \in [8, 10]$$

Spline cúbico

- Corresponde a la categoría de interpolación segmentaria donde cada tramo es aproximado con polinomios de tercer grado, aplicando condiciones de suavidad que se ven a continuación:
- Consideremos dos puntos consecutivos: (x_i, y_i,) y (x_{i+1}, y_{i+1}), y el polinomio cúbico:

$$S_i(x) = a_i(x-x_i)^3 + b_i(x-x_i)^2 + c_i(x-x_i) + d_i$$

- A continuación impondremos las condiciones de suavidad, esto es, restricciones a las derivadas de primer y segundo orden.
- Garantizamos que el spline pase por todos los puntos de la tabla y además la continuidad.
- Ambos puntos (x_i, y_i) y (x_{i+1}, y_{i+1}) pertenecen a $S_i(x)$

Para (x_i, y_i) :

$$S_i(x_i) = a_i (x_i - x_i)^3 + b_i (x_i - x_i)^2 + c_i (x_i - x_i) + d_i = d_i = y_i (1)$$

Para (x_{i+1}, y_{i+1}) :

$$S_i(x_{i+1}) = a_i (x_{i+1} - x_i)^3 + b_i (x_{i+1} - x_i)^2 + c_i (x_{i+1} - x_i) + d_i = a_i h_i^3 + b_i h_i^2 + c_i h_i + d_i (2)$$

Donde: $h_i = xi_{+1} - x_i$

Garantizamos la primera y segunda diferenciabilidad en los nodos comunes:

La primera derivada:

$$S_i'(x_i) = 3a_i(x_i - x_i)^2 + 2b_i(x_i - x_i) + c_i$$
 (3)

La segunda derivada:

$$S_{i}$$
" $(x_{i}) = 6a_{i}(x_{i} - x_{i}) + 2b_{i}(4)$

Definiendo: S_i " $(x_i)=Mi$ y S_i " $(x_{i+1})=M_{i+1}$ y reemplazando (4) en x_i y x_{i+1} , entonces:

$$Si x=x_i$$
, $M_i=6a_i/(x_i-x_i)+2b_i=2b_i$ (5)

$$Si x=x_{i+1}, M_{i+1}=6a_i/(x_{i+1}-x_i)+2b_i=6a_ih_i+2b_i$$
 (6)

Reordenando las ecuaciones (5) y (6) se obtiene:

$$b_{i} = \frac{M_{i}}{2}$$

$$a_{i} = \frac{M_{i+1} - 2b_{i}}{6h_{i}} = \frac{M_{i+1} - M_{i}}{6h_{i}}$$

Si reemplazamos las ecuaciones (1), (7), (8) en (2) se llega a:

$$y_{i+1} = \frac{M_{i+1} - M_i}{6h_i} h_i^3 + \frac{M_i}{2} h_i^2 + c_i h_i + y_i$$

Con lo cual:

$$c_i = \frac{y_{i+1} - y_i}{h_i} - \frac{M_{i+1} - 2M_i}{6}h_i$$

Ahora impondremos continuidad para la primera derivada:

$$S'(x_{i-1})=S'(x_i)$$
 (10)

Evaluando (3) en x_{i-1} , se obtiene:

$$S'(x_{i-1}) = 3a_{i-1}(x_i - x_{i-1})^2 + 2b_{i-1}(x_i - x_{i-1}) + c_{i-1} = 3a_{i-1}h_{i-1}^2 + 2b_{i-1}h_{i-1} + c_{i-1}$$
(11)

y además lo evaluamos en x_i

$$S'(x_i) = 3a_i(x_i - x_i)^2 + 2b_{i-1}(x_i - x_i) + c_i$$

= c_i (12)

De la ecuación (10), con reemplazos de (11) y (12)

$$3a_{i-1}h_{i-1}^{2} + 2b_{i-1}h_{i-1} + c_{i-1} = c_{i}$$

$$(13)$$

A continuación reemplazamos (7), (8) y (9) en la expresión (13) (para i y i-1)

$$\sqrt{3} \frac{M_{i+1} - M_i}{6h_i} h_{i-1}^2 + 2 \frac{M_i}{2} h_{i-1} + \left(\frac{y_i - y_{i-1}}{h_{i-1}} - \frac{M_i + 2M_{i-1}}{6} h_{i-1} \right) = \frac{y_{i+1} - y_i}{h_i} - \frac{M_{i+1} + 2M_i}{6} h_i$$

Reordenado la última expresión se concluye:

$$h_{i-1}M_{i-1} + 2(h_{i-1} + h_i)M_i + h_iM_{i+1} = 6(y[x_i, x_{i+1}] - y[x_{i-1}, x_i])$$

Con i=1, 2, ..., n-1. Además:
$$y[x_i, x_{i+1}] = \frac{y_{i+1} - y_i}{h_i}$$

Así se define un sistema de n-1 ecuaciones para n+1 incognitas (los M_i).

En general, para resolver el sistema se debe imponer condiciones externas. Existen dos posibilidades:

a) Spline de frontera libre o natural

Sea el conjunto de datos:
$$(x_0,y_0)$$
, (x_1,y_1) , (x_2,y_2) , ..., (x_n,y_n)

Donde cada segmento puede ser aproximado con un polinomio cúbico de la forma:

$$S_i(x) = a_i(x-x_i)^3 + b_i(x-x_i)^2 + c_i(x-x_i) + d_i, i=0,1:,n-1$$

Haciendo: $h_i=x_{i+1}-x_i$, $M_i=S''(x_i)$

Para el spline natural: $M_0 = M_n = 0$

Debemos primero resolver el siguiente sistema tridiagonal:

$$\begin{bmatrix} 2(h_0 + h_1) & h_1 & 0 & \cdots & 0 \\ h_1 & 2(h_1 + h_2) & h_2 & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & h_{n-3} & 2(h_{n-3} + h_{n-2}) & h_{n-2} \\ 0 & \cdots & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) \end{bmatrix} \begin{bmatrix} M_1 \\ M_2 \\ \vdots \\ M_{n-2} \\ M_{n-1} \end{bmatrix} = \begin{bmatrix} y[x_1, x_2] - y[x_0, x_1] \\ y[x_2, x_3] - y[x_1, x_2] \\ \vdots \\ y[x_{n-2}, x_{n-1}] - y[x_{n-3}, x_{n-2}] \\ y[x_{n-1}, x_n] - y[x_{n-2}, x_{n-1}] \end{bmatrix}$$

Una vez obtenidos $M_1, \dots M_{n-1}$, obtendremos los coeficientes:

Una vez obtenidos
$$M_1, \dots M_{n-1},$$

$$a_i \neq \frac{M_{i+1} - M_i}{6h_i}$$

$$b_i = \frac{M_i}{2}$$

$$c_i = y[x_i, x_{i+1}] - \frac{M_{i+1} + 2M_i}{6}h_i$$

$$d_i = y_i$$

b) Spline de frontera sujeta

 $S_0'(x_0) = A$ y $S_n'(x_n) = B$, con lo cual se agregan dos ecuaciones:

$$2h_0 M_0 + h_0 M_1 = 6(y[x_0, x_1] - A)$$

$$h_{n-1} M_{n-1} + 2h_{n-1} M_n = 6(B - y[x_{n-1}, x_n])$$

Y llegamos a tener n+1 ecuaciones con n+1 incognitas:

$$\begin{bmatrix} 2h_0 & h_0 & 0 & \cdots & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & M_1 \\ \vdots & \ddots & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & \cdots & 0 & h_{n-1} & 2h_{n-1} \end{bmatrix} \begin{bmatrix} M_0 \\ M_1 \\ \vdots \\ M_{n-1} \\ M_n \end{bmatrix} = \begin{bmatrix} y[x_0, x_1] - A \\ y[x_1, x_2] - y[x_0, x_1] \\ \vdots \\ y[x_{n-1}, x_n] - y[x_{n-2}, x_{n-1}] \\ B - y[x_{n-1}, x_n] \end{bmatrix}$$

Ejemplo

Obtener un Spline Natural para los siguientes datos:

X	0	1	1.5	2.25
F(x)	2	4.4366	6.7134	13.9130

Sølución

į	hi	X	F(x)	f[,]
0	1	0	2	2.4366
1	0.5	1	4.4366	4.5536
2	0.75	1.5	6.7134	9.5995
		2.25	13.9130	

En este caso:

$$\begin{bmatrix} 2(h_0 + h_1) & h_1 \\ h_1 & 2(h_1 + h_2) \end{bmatrix} \begin{bmatrix} M_1 \\ M_2 \end{bmatrix} = 6 \begin{bmatrix} f[x_1 x_2] - f[x_0 x_1] \\ f[x_2 x_3] - f[x_1 x_2] \end{bmatrix}$$

Reemplazando:

$$\begin{bmatrix} 3 & 0.5 \\ 0.5 & 2.5 \end{bmatrix} \begin{bmatrix} M_1 \\ M_2 \end{bmatrix} = 6 \begin{bmatrix} 4.5536 - 2.4366 \\ 9.5995 - 4.5536 \end{bmatrix} = \begin{bmatrix} 12.7020 \\ 30.2754 \end{bmatrix}$$

$$M_1 = 2.2921$$
 $M_2 = 11.6517$ $M_0 = M_3 = 0$

Para i=0, 1 y 2, reemplazamos las siguientes fórmulas para obtener los polinomios segmentarios:

$$a_i = \frac{M_{i+1} - M_i}{6h_i}$$

$$b_i = \frac{M_i}{2}$$

$$c_{i} = y[x_{i}, x_{i+1}] - \frac{M_{i+1} + 2M_{i}}{6}h_{i}$$

$$d_i = y_i$$

$$S(x) = \begin{cases} x \in [0, 1] & 0.382(x-0)^3 + 0(x-0)^2 + 2.0546(x-0) + 2 \\ x \in [1, 1.5] & 3.1199(x-1)^3 + 1.146(x-1)^2 + 3.2005(x-1) + 4.4366 \\ x \in [1.5, 2.25] & -2.5893(x-1.5)^3 + 5.8259(x-1.5)^2 + 6.6866(x-1.5) + 6.7134 \end{cases}$$

Ejemplo

Obtener una interpolación por Spline Cúbico forzado para $f(x)=(x-1)^4$ en x=0, 1, 1.5.

Se pide:

- a) Mostrar las funciones Spline S(x) para cada intervalo.
- b) Demuestre que las funciones Spline cumplen las condiciones mínimas.
- c) Interpole para x=0.5 y x=1.25 y determine el error cometido en cada caso.

Solución

x	0	1	3/2
y	1	0	1/16

$$h_0=1$$
 $h_1=1/2$ $y[x_0,x_1]=-1$ $y[x_1,x_2]=1/8$

$$\alpha = f'(0) = -4$$
 $\beta = f'(3/2) = 1/2$

$$\begin{bmatrix} 2h_0 & h_0 & 0 \\ h_0 & 2(h_0 + h_1) & h_1 \\ 0 & h_1 & 2h_1 \end{bmatrix} \begin{bmatrix} M_0 \\ M_1 \\ M_2 \end{bmatrix} = 6 \begin{bmatrix} y[x_0x_1] - \alpha \\ y[x_1x_2] - y[x_0x_1] \\ \beta - y[x_1x_2] \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & 1/2 \\ 0 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} M_0 \\ M_1 \\ M_2 \end{bmatrix} = \begin{bmatrix} 18 \\ 27/4 \\ 9/4 \end{bmatrix}$$
$$M_0 = 39/4 \quad M_1 = -3/2 \quad M_2 = 3$$

$$a_{i} = \frac{M_{i+1} - M_{i}}{6h_{i}}$$

$$b_{i} = \frac{M_{i}}{2}$$

$$c_{i} = y[x_{i}x_{i+1}] - \frac{M_{i+1} + 2M_{i}}{6}h_{i}$$

$$d_{i} = y_{i}$$

$$a_{0} = -15/8 \qquad a_{1} = 3/2$$

$$b_{0} = 39/8 \qquad b_{1} = -3/4$$

$$c_{0} = -4 \qquad c_{1} = 1/8$$

$$d_{0} = 1 \qquad d_{1} = 0$$

$$f'(0) = -4 \qquad f'(1.5) = 1/2$$

Solución

b)
$$S_0(1) = S_1(1) = 0$$
 $S_0(x_j) = y_j$ $S_1(x_j) = y_j$ $j = 0, 1, 2$
 $S'_0(x) = -45/8x^2 + 39/4x - 4$ $S'_1(x) = 9/2x^2 - 21/2x + 49/8$
 $S'_0(1) = S'_1(1) = 1/8$
 $S''_0(x) = -45/4x + 39/4$ $S''_1(x) = 9x - 21/2$
 $S''_0(1) = S''_1(1) = -3/2$

$$S_0(0.5) = -1/64$$

 $S_1(1.25) = 0.0078$

$$f(0.5) = 1/16$$

 $f(0.5) = 0.0039$

$$S_0(0.5) = -1/64$$
 $f(0.5) = 1/16$ $Error1 = |f(0.5) - S_0(0.5)| = 0.0781$ $S_1(1.25) = 0.0078$ $f(0.5) = 0.0039$ $Error2 = |f(1.25) - S_1(1.25)| = 0.0039$

Smoothing Splines

- Los Splines están forzados al paso en los nodos.
- Podemos forzar a Splines con derivadas mas suaves, relajando la condición de que el Spline tenga que pasar por los nodos.
- En general se define el Smoothing Spline como la función dos veces diferenciable f que minimiza

$$\sum_{i=1}^{n} \{ y_i - \hat{f}(x_i) \} + \lambda \int \hat{f}''(x)^2 dx$$

- Para λ=0 tenemos un Spline normal
- Para λ → ∞ tenemos una regresión

Python

 Python incorpora funciones que implementan diferentes tipos de splines mediante la librería scipy.interpolate

from scipy import interpolate

- La función splrep construye el Spline, algunos de sus parámetros son:
 - x,y: Datos que definen la curva f(x).
 - w: Array de pesos empleados en Splines con peso.
 - xb, xe: Intervalo a aproximar (por defecto x[0],x[-1])
 - k: Grado del Spline (por defecto 3)
 - s: Factor de suavizado.
- La función devuelve una tupla que contiene:
 - Los nodos
 - Los coeficientes
 - El grado del Spline.
- Una vez creado el spline, se puede evaluar cualquier valor llamando a la función splev, cuyos parámetros son:
 - x: Array de puntos a evalur.
 - tck: Definción de Spline, usualmente devuelta por splrep.

Python

import numpy as np

Probad ahora el siguiente código.

```
import matplotlib.pyplot as plt
from scipy import interpolate
x = np.arange(0, 2*np.pi+np.pi/4, 2*np.pi/8)
y = np.sin(x)
tck = interpolate.splrep(x, y, s=0)
xnew = np.arange(0, 2*np.pi, np.pi/50)
ynew = interpolate.splev(xnew, tck, der=0)
plt.figure()
plt.plot(x, y, 'x', xnew, ynew, xnew, np.sin(xnew), x, y, 'b')
plt.legend(['Linear', 'Cubic Spline', 'True'])
plt.axis([-0.05, 6.33, -1.05, 1.05])
plt.title('Cubic-spline interpolation')
plt.show()
```

Python, Splines cúbicos

- Si lo que se desean es usar Splines cúbicos, existe también la función CubicSpline:
 - x,y: Datos que definen la curva f(x).
 - bc_type: Tupla o cadena que indica el tipo de Spline (Natural, Clamped, etc)
- La función devuelve un objeto de tipo PPoly.
- Una vez creado el spline, se puede evaluar cualquier valor llamando directamente al objeto PPoly con un array x de los puntos a evaluar.

Python

Probad ahora el siguiente código.

```
from scipy.interpolate import CubicSpline
import matplotlib.pyplot as plt
x = np.arange(10)
y = np.sin(x)
cs = CubicSpline(x, y)
xs = np.arange(-0.5, 9.6, 0.1)
fig, ax = plt.subplots(figsize=(6.5, 4))
ax.plot(x, y, 'o', label='data')
ax.plot(xs, np.sin(xs), label='true')
ax.plot(xs, cs(xs), label="S")
ax.plot(xs, cs(xs, 1), label="S"")
ax.plot(xs, cs(xs, 2), label="S"")
ax.plot(xs, cs(xs, 3), label="S"")
ax.set_xlim(-0.5, 9.5)
ax.legend(loc='lower left', ncol=2)
plt.show()
```

Python, Splines cúbicos

- Para usar Smoothing Splines existe la función UnivariateSpline:
 - x,y: Datos que definen la curva f(x).
 - w: Array de pesos empleados en Splines con peso.
 - k: Grado del Spline (por defecto 3)
 - **s:** Smoothin coefficient, por defecto s=len(x).
- La función devuelve un objeto de tipo PPoly.
- Una vez creado el spline, se puede evaluar cualquier valor llamando directamente al objeto PPoly con un array x de los puntos a evaluar.

Python

Probad ahora el siguiente código.

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import UnivariateSpline
x = np.linspace(-3, 3, 50)
y = np.exp(-x**2) + 0.1 * np.random.randn(50)
plt.plot(x, y, 'ro', ms=5)
spl = UnivariateSpline(x, y)
xs = np.linspace(-3, 3, 1000)
plt.plot(xs, spl(xs), 'g', lw=3)
spl.set_smoothing_factor(0.5)
plt.plot(xs, spl(xs), 'b', lw=3)
plt.show()
```

AJUSTE POR MINIMOS CUADRADOS

Dado un conjunto de pares ordenados (x_i, y_i) , se

busca una función de aproximación g, tal que:

 $g(x_i)$ se aproxime a y_i para i=1, 2, ..., n

un modo general, una función aproximante dependerá de varias constantes, es decir:

$$g(x) = F(x, c_1, c_2, \dots, c_k)$$

Para i=1, 2,, n, definimos las desviaciones como:

$$d_i = y_i - F(x_i, c_1, c_2, \dots, c_k)$$

- La función aproximada deberá ser escogida de forma que tales desviaciones sean pequeñas en valor absoluto.
- Esta función puede ser elegida como una combinación lineal de otras:

$$F(x,c_1,\ldots,c_k)=c_1\varphi_1+\ldots c_k\varphi_k$$

Por ejemplo, la aproximación mediante una recta será: $F(x,c_1,c_2) = c_1x + c_2$

El método de los mínimos cuadrados consiste en obtener una función de aproximación, que busca:

$$Minimizar \sum_{i=1}^{n} d_i^2$$

Se busca entonces, minimizar la suma de los cuadrados de las desviaciones:

$$e(c_1, \dots, c_k) = \sum_{i=1}^n d_i^2 = \sum_{i=1}^n \left[y_i - \left(c_1 \varphi_1(x_i) + \dots + c_k \varphi_k(x_i) \right) \right]^2$$

por lo tanto:

$$\nabla e = 0$$

$$\frac{\partial e}{\partial c_j} = 0, \quad j = 1, \dots, k$$

Aproximación de una recta por mínimos cuadrados:

$$g(x) = c_1 x + c_2$$

$$c_1 \sum_{i=1}^{n} x_i^2 + c_2 \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i$$

$$c_1 \sum_{i=1}^{n} x_i + c_2 \sum_{i=1}^{n} 1 = \sum_{i=1}^{n} y_i$$

por mínimos cuadrados

Sistema sobre-determinado para ajuste de una recta

Escribiendo la ecuación $c_1x + c_2 = y$ para todos los puntos conocidos (x_i, y_i) , i = 1,...,n obtenemos un sistema sobre-determinado:

$$\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Forma Matricial del ajuste o regresión por mínimos cuadrados

$$\bigcirc$$
: $A c = y$

$$A = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \qquad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Ecuación normal para el ajuste

El cuadrado de la norma 2 de r = y - Ac es:

$$\rho = ||r||_2^2 = r^T r = (y - Ac)^T (y - Ac)$$

$$= y^T y - (Ac)^T y - y^T (Ac) + c^T A^T Ac$$

$$= y^T y - 2y^T Ac + c^T A^T Ac.$$

La minimización de ρ requiere que:

$$\frac{\partial \rho}{\partial c} = -2A^T y + 2A^T A c = 0$$

La/minimización de ρ requiere que:

$$(A^T A)c = A^T y$$

A esta ecuación se le denomina ECUACION NORMAL.

Factor de regresión:

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - y_{m})^{2}}{\sum_{i=1}^{n} (y_{i} - y_{m})^{2}}$$

$$\hat{y}_{i} \text{ de la funcion de ajuste}$$

$$y_{i} \text{ de la data}$$

$$y_{m} = \frac{\sum_{i=1}^{n} y_{i}}{n}$$

Factor de regresión:

 $0 \le R^2 \le 1$

- El factor de regresión mide la eficiencia del ajuste,
- Cuando $R^2 = 1$ la función de ajuste coincide con la data.
- Cuando R² es cercano a 1 el ajuste se considera aceptable.
- Cuando R² es cercano a 0 el ajuste se considera pésimo o deficiente

ción a problemas de mínimos cuadrados

Las funciones:

$$y = ax^b$$
$$y = ae^{bx}$$

Se puede linealizar:

$$\log(y) = \log(a) + b \log(x)$$
$$\log(y) = \log(a) + b x$$

Ejemplo

Ajustar los siguientes datos a una recta:

X	0.1	0.4	0.5	0.7	0.7	0.9
Y	0.61	0.92	0.99	1.52	1.47	2.03

Se ajustará a la recta: y=c₁ x + c₂ se plantea el siguiente sistema

$$\begin{bmatrix} 0.1 & 1 \\ 0.4 & 1 \\ 0.5 & 1 \\ 0.7 & 1 \\ 0.7 & 1 \\ 0.9 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0.61 \\ 0.92 \\ 0.99 \\ 1.52 \\ 1.47 \\ 2.03 \end{bmatrix}$$

Planteando la ecuación normal:

MT*M*C=MT*Y

$$\begin{bmatrix} 0.1 & 0.4 & 0.5 & 0.7 & 0.7 & 0.9 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0.1 & 1 \\ 0.4 & 1 \\ 0.5 & 1 \\ 0.7 & 1 \\ 0.9 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0.1 & 0.4 & 0.5 & 0.7 & 0.7 & 0.9 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0.61 \\ 0.92 \\ 0.99 \\ 1.52 \\ 1.47 \\ 2.03 \end{bmatrix}$$

$$\begin{bmatrix} 2.21 & 3.3 \\ 3.3 & 6 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 4.844 \\ 7.54 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1.7646 \\ 0.2862 \end{bmatrix}$$

$$y = 1.7646x + 0.2862$$

$$R^2 = 0.93$$

Ejemplo

Ajustar los siguientes datos a la función y=axb

X	1	1.2	1.6	2
У	1	1.3	1.4	1.7

=1.0525x