Collaborative Filtering Algorithms

Yiyi Zhang; Hanying Ji; Jiaqi Dong; Mingming Liu

Data Set

Memory-Based Model

Model-Based Model

Comparison

Conclusion

Data Set

Microsoft Web Data

The data records the use of www.microsoft.com by 38000 anonymous, randomly-selected users.

implicit

1 for visit

0 for no visited

Use Ranked Score to evaluate

$$R_a = \sum_{j} \frac{\max(v_{a,j} - d, 0)}{2^{(j-1)/(\alpha - 1)}} \quad R = 100 \frac{\sum_{a} R_a}{\sum_{a} R_a^{max}}$$

EachMovie

61265 users entered a total of 2811983 numeric ratings on 1623 movies, i.e. about 2.4% entries are rated by zero-to-five stars.

explicit

Score from 1 to 6

NA for no rated

Use MAE to evaluate

$$S_a = \frac{1}{m_a} \sum_{j \in P_a} |p_{a,j} - v_{a,j}|$$

Assignment

Algorithm	Component	Variants	Data	
Memory-based Algorithm		Pearson	1,2	
	Similarity Weight	Spearman	1,2	
		SimRank	1	
	Variance Weighting	No	1,2	
	Variance Weighting	Yes	1,2	
	Selecting Neighbors	Weight Threshold	1,2	
Model-based Algorithm	Cluster N	2		

Memory-Based Algorithm

$$p_{a,i} = \overline{r}_a + \frac{\sum_{u=1}^{n} (r_{u,i} - \overline{r}_u) * w_{a,u}}{\sum_{u=1}^{n} w_{a,u}}$$

$$p_{a,i} = \overline{r}_a + \sigma_a * \frac{\sum_{u=1}^{n} \frac{r_{u,i} - r_u}{\sigma_u} * w_{a,u}}{\sum_{u=1}^{n} w_{a,u}}$$

Pearson Correlation

$$w(a, i) = \frac{\sum_{j} (v_{a,j} - \overline{v}_a)(v_{i,j} - \overline{v}_i)}{\sqrt{\sum_{j} (v_{a,j} - \overline{v}_a)^2 \sum_{j} (v_{i,j} - \overline{v}_i)^2}}$$

Spearman Correlation

$$w_{a,u} = \frac{\sum_{i=1}^{m} (rank_{a,i} - \overline{rank}_{a}) * (rank_{u,i} - \overline{rank}_{u})}{\sigma_{a} * \sigma_{u}}$$

$$s_1(a,b) = \frac{C_1}{|O(a)||O(b)|} \sum_{i=1}^{|O(a)|} \sum_{j=1}^{|O(b)|} s_2(O_i(a), O_j(b))$$

$$s_2(a,b) = \frac{C_2}{|I(a)||I(b)|} \sum_{i=1}^{|I(a)|} \sum_{j=1}^{|I(b)|} s_1(I_i(a), I_j(b))$$

Vairance Weighting (Pearson Correlation)

$$w_{a,u} = \frac{\sum_{i=1}^{m} v_i * z_{a,i} * z_{u,i}}{\sum_{i=1}^{m} v_i}$$

Selecting neighbors (Weight Threshold)

$$W_{a,u} = \begin{cases} \omega_{a,u}, \\ 0 \end{cases}$$

$$\omega_{a,u} > threshold,$$
 $o.w.$

Result – Data1

Rank Score	Z-Score				Deviation for Mean				
		Variance=OFF		Variance=ON		Variance=OFF		Variance=ON	
		Pearson	Spearman	Pearson	SimRank	Pearson	Spearman	Pearson	SimRank
					40.77057				40.77628
Weight Threshold	0.2	39.364175 (52.42%)	39.364175 (52.42%)	39.977511 (50.15%)		39.459138 (52.42%)	39.459138 (52.42%)	39.959964 (50.15%)	
	0.3	38.077085 (29.03%)	38.077087 (29.02%)	39.145602 (34.91%)		38.171786 (29.03%)	38.171798 (29.02%)	39.233054 (34.91%)	
	0.4	5.820478 (15.14%)	5.820477 (15.14%)	38.091526 (21.31%)		5.857705 (15.14%)	5.857706 (15.14%)	38.232782 (21.31%)	
	0.5	1.835299 (5.76%)	1.837463 (5.77%)	5.856577 (11.02%)		1.8487 (5.76%)	1.846338 (5.77%)	5.871136 (11.02%)	

Result – Data2

MAE	Z-Score				Deviation for Mean			
		Variance=OFF		Variance=ON	Variance=OFF		Variance=ON	
		Pearson	Spearman	Pearson	Pearson	Spearman	Pearson	
Weight Threshold	0	1.428475 (100%)	1.593824 (100%)	1.88334 (100%)	1.336934 (100%)	1.319426 (100%)	1.69374 (100%)	
	0.2	1.137397 (57.83%)	1.137854 (57.81%)	1.145734 (50.10%)	1.135716 (57.83%)	1.136039 (57.81%)	1.139967 (50.18%)	
	0.3	1.147375 (40.65%)	1.149654 (39.92%)	1.159057 (34.82%)	1.140594 (40.64%)	1.142161 (39.92%)	1.140594 (40.64%)	
	0.4	1.16645 (24.28%)	1.171506 (23.15%)	1.182244 (21.21%)	1.149662 (24.28%)	1.1532 (23.15%)	1.149662 (24.28%)	
	0.5	1.202854 (11.80%)	1.210711 (10.82%)	1.216701 (10.93%)	1.169631 (11.80%)	1.174899 (10.82%)	1.169631 (11.81%)	

Model-Based Algorithm

Score Estimation

$$\mathbb{E}[V_b^{(i)}|v_j^{(i)}, j \in I(i)] = \sum_{b=1}^{6} k \cdot P(V_b^{(i)} = k|v_j^{(i)}, j \in I(i)),$$

$$= \frac{\sum_{c=1}^{C} P(\Delta_i = c) \cdot P(V_b^{(i)} = k | \Delta_i = c) \cdot \prod_{j \in I(i)} P(V_j^{(i)} = v_j^{(i)} | \Delta_i = c)}{\sum_{c=1}^{C} P(\Delta_i = c) \cdot \prod_{j \in I(i)} P(V_j^{(i)} = v_j^{(i)} | \Delta_i = c)}$$

Log-likelihood Function

$$\begin{split} l(\mu, \gamma | data) &= \sum_{i=1}^{N} l_i(\mu, \gamma | data) \\ &= \sum_{i=1}^{N} \log \big[\sum_{c=1}^{C} \mu_c \cdot \prod_{j \in I(i)} P(V_j^{(i)} = v_j^{(i)} | \Delta_i = c) \big], \end{split}$$

EM Algorithm

$$\hat{\pi}_{i}^{c} = \frac{\hat{\mu_{c}} \cdot \hat{\phi_{c}}(D(i))}{\sum_{c=1}^{C} \hat{\mu_{c}} \cdot \hat{\phi_{c}}(D(i))} \quad \hat{\mu_{c}} = \frac{\sum_{i=1}^{N} \hat{\pi_{i}^{c}}}{N}, \quad \text{for} \quad c = 1, ..., C$$

$$\hat{\gamma}_{c,j}^{(k)} = \frac{\sum_{i:j \in I(i)}^{C} \hat{\pi_{i}^{c}} \cdot \mathbb{I}(v_{j}^{(i)} = k)}{\sum_{i:j \in I(i)} \hat{\pi_{i}^{c}}}, \quad \text{for} \quad \forall c, j, k$$

$$\mu_c = \frac{\sum_{i:j\in I(i)}^c \hat{\pi}_i^c \cdot \mathbb{I}(v_j^{(i)} = k)}{N}$$
, for $c = 1, ...$

$$\sum_{i:j\in I(i)}^{n} \hat{\pi_i^c}$$
, for $\forall c, j, i$

Cluster Models 5-Fold Cross-Validation

© Comparison — Data 2

	MAE
Cluster Model	1.360271
Memory-Based Model (Corrleation = Pearson Variance = No Threshold =0.2)	1.135716

For data2,
Memory-Based Model
(pearson, threshold=0.2) is
better than Cluster Model

Variance Weighting improve the performance for data1, while lower the performance for data2

3

Conclusion

The best threshold is 0.2 for both data sets

Thank You!

Yiyi Zhang; Hanying Ji; Jiaqi Dong; Mingming Liu