

# **Real and Complex Number Systems**

**Definition 1.** A set of real numbers is called inductive if it has the following two properties:

- 1. The number 1 is in the set.
- 2. For every x in the set, the number x + 1 is also in the set.

**Theorem 1.** Assume  $x \geq 0$ . Then for every integer  $n \geq 1$  there is a finite decimal  $r_n = a_0.a_1a_2\cdots a_n$  such that

$$r_n \le x < r_n + \frac{1}{10^n}.$$

P.P: for x's decimal representation (finite or infinite)  $s_0.s_1s_2...$ , we can have  $a_k \le s_k < a_k + 1$  for every k.

**Theorem 2.** (Cauchy-Schwarz Inequality): If  $a_1 \dots a_n$  and  $b_1 \dots b_n$  are arbitrary real numbers, we have

$$\bigg(\sum_k a_k b_k\bigg)^2 \leq \bigg(\sum_k a_k^2\bigg)\bigg(\sum_k b_k^2\bigg)$$

P.P.: Lagrange's identity  $(\sum_k a_k b_k)^2 = (\sum_k a_k^2)(\sum_k b_k^2) - \sum_{1 \leq j < k \leq n} (a_k b_j - a_j b_k)^2$ 

**Theorem 3.** (Minkowski's inequality)

$$\left(\sum_{k} (a_k + b_k)^2\right)^{1/2} \le \left(\sum_{k} a_k^2\right)^{1/2} + \left(\sum_{k} b_k^2\right)^{1/2}$$

# **Some Basic Notations of Set Theory**

**Theorem 4.** Let F be a collection of sets. Then for any set B, we have

$$B - \bigcup_{A \in F} A = \bigcap_{A \in F} (B - A),$$

and

$$B - \bigcap_{A \in F} A = \bigcup_{A \in F} (B - A),$$

P.P: First statement: B without the whole equals common of [B] without the individuals]. Second Statement: B equals the sum of B-A and the intersections of the A(since B-A does not contain this intersection).

**Theorem 5.** If  $F = \{A_1, A_2, \dots\}$  is a countable collection of sets, let  $G = \{B_1, B_2, \dots\}$ , where  $B_1 = A_1$  and for n > 1,

$$B_n = A_n - \bigcup_{k=1}^{n-1} A_k.$$

Then G is a collection of disjoint sets, and we have

$$\bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} B_k$$

P.P:  $B_n$  is composed of the new members of  $A_n$ .

## **Elements of Point Set Topology**

**Definition 2.** The set of all n-dimensional point is called n-dimensional Euclidean Space or simply n-space, and is denoted by  $\mathbb{R}^n$ .

**Definition 3.** The inner product of two n-dimensional points x and y is defined as

$$\mathbf{x} \cdot \mathbf{y} = \sum_{k=1}^{n} x_k y_k$$

**Definition 4.** Let  $\mathbf{a}$  be a given point in  $\mathbb{R}^n$  and let r be a given positive number. The set of all points  $\mathbf{x}$  in  $\mathbb{R}^n$  such that

$$\|\mathbf{x} - \mathbf{a}\| < r$$

is called an open n-ball of radius r and center  $\mathbf{a}$ . We denote this set by  $B(\mathbf{a})$  or by  $B(\mathbf{a}; r)$ .

**Definition 5.** Let S be a subset of  $\mathbb{R}^n$ , and assume that  $\mathbf{a} \in S$ . Then  $\mathbf{a}$  is called an interior point of S if there is an open n-ball with center  $\mathbf{a}$ , all of whose point belong to S. The set of all interior points of S is denoted by int S.

**Definition 6.** Let S be an open subset of  $\mathbb{R}^1$ . An open interval I is called a component of S if  $I \subseteq S$  and if there is no open interval  $J \neq I$  such that  $I \subseteq J \subseteq S$ 

**Theorem 6.** Every point of a nonempty open set S belongs to one and only one component interval of S.

P.P: A point can not exist in two different non-overlapping intervals.

**Theorem 7.** (Representation theorem for open sets on the real line): Every nonempty open set S in  $\mathbb{R}^1$  is a union of a countable collection of disjoint component intervals of S.

**Definition 7.** Let S be a subset of  $\mathbb{R}^n$ , and  $\mathbf{x}$  a point in  $\mathbb{R}^n$ ,  $\mathbf{x}$  not necessarily in S. Then  $\mathbf{x}$  is said to be adherent to S if every n-ball  $B(\mathbf{x})$  contains at least one point S.

**Definition 8.** If  $S \subseteq \mathbb{R}^n$ , and  $\mathbf{x} \in \mathbb{R}^n$ , then  $\mathbf{x}$  is called an accumulation point of S if every n-ball  $B(\mathbf{x})$  contains at least one point S distinct from  $\mathbf{x}$ . If  $\mathbf{x} \in S$  but  $\mathbf{x}$  is not an accumulation point of S, then  $\mathbf{x}$  is called an isolated point.

**Theorem 8.** If x is an accumulation point, then every n-ball  $B(\mathbf{x})$  contains infinitely many points of S.

P.P.: The infinitude of real values of r.

**Theorem 9.** A set S in  $\mathbb{R}^n$  is closed if, and only if, it contains all its adherent points.

P.P: a closed set contain the points on its "boundaries".

**Definition 9.** The set of all adherent points of a set S is called the closure of S and is denoted by  $\overline{S}$ . The set of all accumulation points of S is called the derived set of S and is denoted by S'

**Theorem 10.** (Bolzano-Weierstrass Theorem) If a bounded set S in  $\mathbb{R}^n$  contains infinitely many points, then there is at least one point in  $\mathbb{R}^n$  which is an accumulation point of S.

P.P: There should be a place that has infinite density of points in a bounded set, if the number of points in the set is infinite.

**Theorem 11.** (The Cantor Intersection Theorem): Let  $\{Q_1, Q_2, \dots\}$  be a countable collection of nonempty sets in  $\mathbb{R}^n$  such that

- 1.  $Q_{k+1} \subseteq Q_k$
- 2. Each set  $Q_k$  is closed and  $Q_1$  is bounded.

Then the intersection  $S = \bigcap_{k=1}^{\infty} Q_k$  is closed and nonempty.

P.P: This happens because all closed infinite sets contain their accumulation points and S should have an accumulation point.

**Definition 10.** A collection F of sets is said to be a covering of a given set S if  $S \subseteq \bigcup_{A \in F}$ . If F is a collection of open sets, then F is called an open covering of S.

**Theorem 12.** Let  $G = \{A_1, A_2, ...\}$  denote a countable collection of all n-balls having rational radii and centers at points with rational coordinates. Assume  $\mathbf{x} \in \mathbb{R}^n$  and let S be an open set in  $\mathbb{R}^n$  which contains  $\mathbf{x}$ . Then at least one of the n-balls of G contains  $\mathbf{x}$  and is contained in S. That is, we have

$$\mathbf{x} \in A_k \subseteq S$$
 for some  $A_k$  in  $G$ 

P.P: The rationals are so dense that there is at least one arbitrarily close to any other real number such that you can have this trade-off of how small should the radius of  $A_k$  should be to be in S and how big it should be to contain  $\mathbf{x}$ .

**Theorem 13.** (*Lindelof covering theoerm*): Assume  $A \subseteq \mathbb{R}^n$  and let F be an open covering of A. Then there is a countable subcollection of F which also covers A.

P.P. Since G of theorem 12 is countable and as A could not be bounded.

**Theorem 14.** (*The Heine-Borel Covering Theorem*) Let F be an open covering of a closed and bounded set A in  $\mathbb{R}^n$ . Then a finite subcollection of F also covers A.

P.P. Duh! because it is bounded and contains its accumulation point(s).

**Definition 11.** A set S in  $\mathbb{R}^n$  is said to be compact if, and only if, every open covering of S contains a finite sub-cover, that is, a finite subcollection which also covers S.

**Theorem 15.** Let S be a subset of  $\mathbb{R}^n$ . Then the following three statments are equivalent:

- 1. S is compact.
- 2. S is closed and bounded.
- 3. Every infinite subset of S has an accumulation point in S.

P.P: There exists an open finite covering F of an closed bounded set such that the collection does not cover the corresponding open set  $(1 \implies 2)$ .

**Definition 12.** A metric space is a nonempty set M of objects(called points) together with a function d from  $M \times M$  to  $\mathbb{R}$ (called the metric of the space) satisfying the following properties for all points x, y, z in M:

- 1. d(x,x) = 0.
- 2.  $d(x,y) > 0 \text{ if } x \neq y$ .
- 3. d(x,y) = d(y,x).
- 4.  $d(x,y) \le d(x,z) + d(z,y)$

**Theorem 16.** Let (S, d) be a metric subspace of (M, d), and let X be a subspace of S. Then X is open in S if, and only if,

$$X = A \cap S$$

for some set A which is open in M.

P.P:  $X \subseteq S$  and X is open in S.

**Theorem 17.** Let (S,d) be a metric subspace of (M,d), and let Y be a subspace of S. Then Y is closed in S if, and only if,

$$Y = B \cap S$$

for some set B which is open in M.

P.P:  $Y \subseteq S$  and X is closed in S.

**Definition 13.** Let S be a subset of a metric space M. A point x in M is called a boundary point of S if every point of S if every ball  $B_M(x;r)$  contains at least one point of S and at least one point of M-S. The set of all boundary points of S is called the boundary of S and is denoted by  $\partial S$ 

## **Limits and Continuity**

**Theorem 18.** A sequence  $\{x_n\}$  in a metric space (S,d) can converge to at most one point in S.

P.P: The triangle inequality forces the distinct points of converge come closer infinitesimally to each other.

**Theorem 19.** In a metric space (S, d), assume  $x_n \to p$  and let  $T = \{x_1, x_2, \dots\}$  be the range of  $\{x_n\}$ . Then:

- T is bounded.
- p is an adherent point of T

**P.P**: If not bounded, then infinite x's in infinite space fail to satisfy the definition of convergence. For infinite x's in a limited(finite) space, there has to be a point whose balls contain the x's, i.e the adherent point.

**Theorem 20.** Given a metric space (S, d) and a subset  $T \subseteq S$ . If a point p in S is an accumulation point of T, then there is a sequence of points in T which converges to p.

**P.P**: Every ball  $B_S(p;\varepsilon)$  contains elements of T

**Theorem 21.** In a metric space (S, d) a sequence converges to p if, and only if, every infinite subsequence converges to p.

**P.P**: Picking out certain elements does not change the density distribution of the numbers.

**Theorem 22.** Assume that converges in a metric space (S, d). Then for every  $\varepsilon > 0$  there is an integer N such that

$$d(x_n, x_m) < \varepsilon$$
 whenever  $n \ge N$  and  $m \ge N$ 

**P.P**: As  $x_n$  and  $x_m$  get closer to a single point they get closer to each other.

**Definition 14.** A sequence  $\{x_n\}$  in a metric space (S,d) is called a **Cauchy sequence** if it satisfies the following condition (called the Cauchy condition):

For every  $\varepsilon > 0$  there is an integer N such that

$$d(x_n, x_m) < \varepsilon$$
 whenever  $n \ge N$  and  $m \ge N$ 

**Theorem 23.** In Euclidean space  $\mathbb{R}^k$  every Cauchy sequence is convergent.

**P.P**: In  $U = \mathbb{R}^k$ , as two points get closer to each other, they get closer to a single point.

**Definition 15.** A sequence  $\{x_n\}$  in a metric space (S,d) is called a **Cauchy sequence** if it satisfies the following condition (called the Cauchy condition):

For every  $\varepsilon > 0$  there is an integer N such that

$$d(x_n, x_m) < \varepsilon$$
 whenever  $n \ge N$  and  $m \ge N$ 

A metric space (S,d) is called **complete** if every Cauchy sequence in S converges in S

**Theorem 24.** In any metric space (S, d) every compact subset T is complete.

P.P: A compact set is closed and hence contains all of its adherent points.

**Definition 16.** If p is an accumulation point of A and if  $b \in T$ , the notation

$$\lim_{x \to p} f(x) = b$$

is defined as the following:

For every  $\varepsilon > 0$  there is a  $\delta > 0$  such that

$$d_T(f(x), b) < \varepsilon$$
 whenever  $x \in A, x \neq p$ , and  $d_S(x, p) < \delta$ 

**Theorem 25.** Assume p is an accumulation point of A and assume binT. Then

$$\lim_{x \to p} f(x) = b$$

if, and only if,

$$\lim_{n \to \infty} f(x_n) = b$$

for every sequence  $\{x_n\}$  of points in  $A - \{p\}$  which converges to p.

P.P: The discreetness of the the inputs does not change the value of the function.

**Theorem 26.** Let f and g be complex-valued functions defined on a subset A of a metric space (S, d). Let p be an accumulation point of A, and assume that

$$\lim_{x\to p} f(x) = a \text{ and } \lim_{x\to p} g(x) = b$$

Then we also have:

- $\lim_{x\to p} f(x) \pm g(x) = a \pm b$
- $\lim_{x\to p} f(x) \cdot g(x) = ab$

**Theorem 27.** Let p be an accumulation point of A and assume that

$$\lim_{x \to p} \mathbf{f}(x) = \mathbf{a} \text{ and } \lim_{x \to p} \mathbf{g}(x) = \mathbf{b}$$

Then we also have:

- $\lim_{x\to p} [\mathbf{f}(x) \pm \mathbf{g}(x)] = \mathbf{a} \pm \mathbf{b}$
- $\lim_{x\to p} \lambda \mathbf{f}(x) = \lambda \mathbf{a}$
- $\lim_{x\to p} \mathbf{f}(x) \cdot \mathbf{g}(x) = \mathbf{a} \cdot \mathbf{b}$
- $\lim_{x\to p} ||\mathbf{f}(x)|| = ||\mathbf{a}||$

P.P: A vector function is a collection of real-valued functions.

**Definition 17.** Let  $(S, d_S)$  and  $(T, d_T)$  be metric spaces and let  $f: S \to T$  be a function from S to T. The function f is said to be continuous at a point p in S if for every  $\varepsilon > 0$  there is a  $\delta > 0$  such that

$$d_T(f(x), f(p)) < \varepsilon$$
 whenever  $d_T(x, p) < \delta$ 

**P.P**: This definition reflects the intuitive idea that points close to p are mapped by f into points close to f(p).

**Definition 18.** Let  $f: S \to T$  be a function from a set S to a set T. If Y is a subset of T, the inverse image of Y under f, denoted by  $f^{-1}(Y)$ , is defined to be the largest subset of S which f maps into Y; that is,

$$f^{-1}(Y) = \{x : x \in S \text{ and } f(x) \in Y\}$$

**Theorem 28.** . Let  $f: S \to T$  be a function from S to T. If  $X \subseteq S$  and  $Y \subseteq T$ , then we have:

1. 
$$X = f^{-1}(Y) \implies f(X) \subseteq Y$$

2. 
$$Y = f(X) \implies X \subseteq f^{-1}(Y)$$

**P.P**: (1): There might be a y that is not in the map f. (2): There might be  $z \notin X$  such that  $f(z) \in f(Y)$ , i.e, the function f is not one-to-one.

**Theorem 29.** Let  $f: S \to T$  be a function from one metric space  $(S, d_S)$  to another  $(T, d_T)$ . Then f is continuous on S if, and only if, for every open/closed set Y in T, the inverse image  $f^{-1}(Y)$  is open/closed in S.

**P.P**: If a function is continuous, all the points near y = f(x) are the image of points near x. If every point in Y is in intY, then  $f^{-1}(Y) = intf^{-1}(Y)$ .

**Theorem 30.** Let  $f: S \to T$  be a function from one metric space  $(S, d_S)$  to another  $(T, d_T)$ . If f is continuous on a compact subset X of S, then the image f(X) is a compact subset of T; in particular, f(X) is closed and bounded in T.

**P.P**: #X > #f(X) and if points in vicinity remain close under the mapping, finite covering of X will guarantee the finite covering of f(X).

**Theorem 31.** Let  $f: S \to T$  be a function from one metric space  $(S, d_S)$  to another  $(T, d_T)$ . Assume that f is one-to-one on S, so that the inverse function  $f^{-1}$  exists. If S is compact and if f is continuous on S; then  $f^{-1}$  is continuous on f(S).

**P.P**:  $f^{-1}: f(S) \to S$  is from a compact set to a compact set. If f is one-to-one, so is  $f^{-1}$ .

**Definition 19.** Let  $f: S \to T$  be a function from one metric space  $(S, d_S)$  to another  $(T, d_T)$ . Assume also that f is one-to-one on S, so that the inverse function  $f^{-1}$  exists. If f is continuous on S and if  $f^{-1}$  is continuous on f(S), then f is called a **topological mapping** or a **homeomorphism**, and the metric spaces  $(S, d_S)$  and  $(f(S), d_T)$  are said to be **homeomorphic**.

**Theorem 32.** Let f be defined on an interval S in  $\mathbb{R}$ . Assume that f is continuous at a point c in S and that  $f(c) \neq 0$ . Then there is a 1-ball  $B(c; \delta)$  such that f(x) has the same sign as f(c) in  $B(c; \delta) \cap S$ .

**Theorem 33.** (Bolzano)Let f be real-valued and continuous on a compact interval [a,b] in  $\mathbb{R}$ , and suppose that f(a) and f(b) have opposite signs; that is, assume f(a)f(b) < 0. Then there is at least one point c in the open interval (a,b) such that f(c) = 0.

**Theorem 34.** A metric space S is called **disconnected** if  $S = A \cup B$ , where A and B are disjoint nonempty open sets in S. We call S connected if it is not disconnected.

**Definition 20.** A real-valued function f which is continuous on a metric space S is said to be two-valued on S if  $f(S) \subseteq \{0,1\}$ , i.e., maps to the discrete metric space.

**Theorem 35.** A metric space S is connected if, and only if, every two-valued function on S is constant.

**P.P**: Points in vicinity should be mapped in vicinity, otherwise they should be disconnected?

**Theorem 36.** Let  $f: S \to M$  be a function from a metric space S to another metric space M. Let X be a connected subset of S. If f is continuous on X, then f(X) is a connected subset of M.

**P.P**: If f is continuous, then points near each other should be mapped near each other, and not separated by gaps like discontinuouities.

**Theorem 37.** Let F be a collection of connected subsets of a metric space S such that the intersection  $T = \bigcap_{A \in F} A$  is not empty. Then the union  $U = \bigcup_{A \in F} A$  is connected.

**P.P**: The points in the intersection of the A's connect them.

Components of a set are disjoint connected sets.

**Definition 21.** S in  $\mathbb{R}^n$  is called **arcwise connected** if for any two points  $\mathbf{a}$  and  $\mathbf{b}$  in S there is a continuous function  $\mathbf{f}:[0,1]\to S$  such that

$$f(0) = a$$
 and  $f(1) = b$ .

**P.P**: Arc-wise connected means any two points, **a** and **b** can be connected by a path.

**Theorem 38.** Every arcwise connected set S in  $\mathbb{R}^n$  is connected.

**P.P**: If  $S = A \cup B$  and A and B were disjoint the points  $\mathbf{a} \in A$  and  $\mathbf{b} \in B$  could not be connected by an arc/path.

**Theorem 39.** Every open connected set S in  $\mathbb{R}^n$  is arcwise connected.

**P.P**: For every x and y in S, since  $B(x; r_x)$  and  $B(y; r_y)$  are subsets of S, a path of at least length  $r_x + r_y$  connect the center of the balls, i.e, x and y.

**Theorem 40.** Let  $f: S \to T$  be a function from one metric space  $(S, d_S)$  to another  $(T, d_T)$ . Then f is said to be uniformly continuous on a subset A of S if the following condition holds:

For every  $\varepsilon > 0$  there exists a  $\delta > 0$  (depending only on  $\varepsilon$ ) such that if  $x \in A$  and  $p \in A$  then:

$$d_T(f(x), f(p)) < \varepsilon$$
 whenever  $d_S(x, p) < \delta_{\varepsilon}$ 

**P.P**: A function is uniformly continuous if its graph can be "covered" by identical non-overlapping rectangles.

**Theorem 41.** Let  $f: S \to T$  be a function from one metric space  $(S, d_S)$  to another  $(T, d_T)$ . Let A be a compact subset of S and assume that f is continuous on A. Then f is uniformly continuous on A.

**P.P**: If f is continuous on a closed and bounded set S, then it does not undergo a huge amount of increase/decrease.

Let  $f: S \to S$  be a function from a metric space (S,d) into itself. A point p in S is called a **fixed point** of f if f(p) = p. The function f is called a **contraction** of S if there is a positive number  $\alpha < 1$  (called a **contraction constant**), such that

$$d(f(x), f(y)) \le \alpha d(x, y)$$
 for all  $x, y$  in  $S$ 

**Theorem 42.** Fixed-point Theorem: A contraction f of a complete metric space S has a unique fixed point n.

**P.P**: If f is a contraction then it is a concave down function and it crosses y = x only once.

#### **Derivatives**

**Theorem 43.** If f is defined on (a,b) and differentiable at a point c in (a,b), then there is a function  $f^*$  (depending on f and on c) which is continuous at c and which satisfies the equation

$$f(x) - f(c) = (x - c)f^*(x)$$

for all x in (a,b), with  $f^*(c) = f'(c)$ . Conversely, if there is a function  $f^*$ , continuous at c, which satisfies the above equation, then f is differentiable at c and  $f'(c) = f^*(c)$ .

**P.P**: Continuity forces  $f^* = f'$  at x = c.

**Definition 22.** Let f be defined on a closed interval S and assume that f is continuous at the point c in S. Then f is said to have a righthand derivative at c if the righthand limit

$$\lim_{x \to +} \frac{f(x) - f(c)}{x - c}$$

exists as a finite value, or if the limit is  $+\infty$  or  $-\infty$ . This limit will be denoted by  $f'_+(c)$ . Lefthand derivatives, denoted by  $f'_-(c)$ , are similarly defined. In addition if c is an interior point of S, then we say that f has the derivative  $f'(c) = +\infty$  both the right- and lefthand derivatives at c are  $+\infty$  the derivative  $f'(c) = \infty$  id similarly defined.)

**Theorem 44.** Let f be defined on an open interval (a,b) and assume that for some c in (a,b) we have f'(c) > 0 or  $f'(c) = +\infty$ . Then there is a 1-ball  $B(c) \in (a,b)$  in which

$$f(x) > f(c)$$
 if  $x > c$  and  $f(x) < f(c)$  if  $x < c$ 

**P.P**: f is continuous at c and strictly increasing on B(c).

**Definition 23.** Let f be a real-valued function defined on a subset S of a metric space M, and assume  $a \in S$ . Then f is said to have a local maximum at a if there is a ball B(a) such that

$$f(x) \le f(a)$$
 for all  $x \in B(a) \cap S$ 

If  $f(x) \ge f(a)$  for all  $xinB(a) \cap S$ , then f is said to have a local minimum at a.

**Theorem 45.** Let f be defined on an open interval (a,b) and assume that f has a local maximum or a local minimum at an interior point c of (a,b). If f has a derivative (finite or infinite) at c, then f'(c) must be 0.

P.P: The tangent is horizontal at the local extrema.

**Theorem 46.** Rolle Assume f has a derivative (finite or infinite) at each point of an open interval (a,b), and assume that f is continuous at both endpoints a and b. If f(a) = f(b) there is at least one interior point c at which f'(c) = 0.

**Theorem 47.** (Generalized Mean-Value Theorem). Let f and g be two functions, each having a derivative (finite or infinite) at each point of an open interval (a,b) and each continuous at the endpoints a and b. Assume also that there is no interior point x at which both f'(x) and g'(x) are infinite. Then for some interior point c we have

$$f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a))$$

If g(x) = x, we have the mean-value theorem.

**P.P** Consider the case when g(x) = x. The equation

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

is equivalent to saying there is a point  $c \in (a, b)$  such that the tangent of f at c is parallel to the line,  $\ell$ , passing through (a, f(a)) and (b, f(b)). This true since one can apply Rolle's theorem after tilting the whole thing in such a way that  $\ell$  is parallel to the x-axis.

The generalized mean-value theorem can be thought of as x changes as a function of a parameter t, i,e x = g(t) and y = f(t). The f(t) against g(t) graph is continuous.

**Theorem 48.** (Intermediate-value theorem for derivatives): Assume that f is defined on a compact interval [a, b] and that f has a derivative (finite or infinite) at each interior point. Assume also that f has finite onesided derivatives  $f'_{+}(a)$  and  $f'_{-}(b)$  at the endpoints, with  $f'_{+}(a) \neq f'_{-}(b)$ . Then, if c is a real number between  $f'_{+}(a)$  and  $f'_{-}(b)$ , there exists at least one interior point x such that f'(x) = c.

**P.P**: If  $f'(x) \neq c$  for all x in (a, b) then there should be a cusp(i.e a sudden change of a tangent) at x which contradicts the fact that f has a derivative in (a,b).s

**Theorem 49.** (Taylor's Formula with Remainder):Let f and g be two functions having finite nth derivatives  $f^{(n)}$  and  $g^{(n)}$  in an open interval (a,b) ,and continuous (n-1)st derivatives in the closed interval [a,b]. Assume that  $c \in [a,b]$ . Then, for every x in [a,b],  $x \neq c$ , there exists a point  $x_1$  interior to the interval joining x and c such that

$$\left[ f(x) - \sum_{k=0}^{n-1} \frac{f^{(k)}(c)}{k!} (x - c)^k \right] g^{(n)}(x_1) = f^{(n)}(x_1) \left[ g(x) - \sum_{k=0}^{n-1} \frac{g^{(k)}(c)}{k!} (x - c)^k \right]$$

P.P: "Young man, in mathematics, you don't understand things, you just get used to them."

**Definition 24.** Let  $\mathbf{f}(t) = (f_1(t), \dots, f_n(t))$ . Then

$$\mathbf{f}'(t) = (f_1'(t), \dots, f_n'(t))$$

Let S be an open set in Euclidean space  $\mathbb{R}^n$ , and let  $f: S \to R$  be a real-valued function defined on S. If  $\mathbf{x} = (x_1, \dots, x_n)$  and  $\mathbf{c} = (c_1, \dots, c_n)$  are two points of S having corresponding coordinates equal except for the kth, that is, if  $x_i = c_i$ ; for  $i \neq k$  and if  $x_k \neq c_k$ , then we can consider the limit

$$D_k f(\mathbf{c}) = \lim_{x_k \to c_k} \frac{f(\mathbf{x}) - f(\mathbf{c})}{x_k - c_k}$$

NOTE: Since partial derivative only sees the derivatives along a finite set of co-ordinates, it is possible that there could exist a function not continuous but has all partial derivatives.

**Definition 25.** Let f be a complex-valued function defined on an open set S in  $\mathbb{C}$ , and assume  $c \in S$ . Then f is said to be differentiable at c if the limit

$$\lim_{z \to c} \frac{f(z) - f(c)}{z - c}$$

**Theorem 1** (The Cauchy-Riemann Equations). Let f = u + iv be defined on an open set S in  $\mathbb{C}$ . If f'(c)exists for some c in S, then the partial derivatives  $D_1u(c)$ ,  $D_2u(c)$ ,  $D_1v(c)$  and  $D_2v(c)$  also exist and we have

$$f'(c) = D_1 u(c) + i D_1 v(c)$$
 (5.1)

$$f'(c) = D_1 u(c) + i D_1 v(c)$$

$$f'(c) = D_2 v(c) - i D_2 u(c)$$
(5.1)
(5.2)

**P.P**: In order for  $f'(a+bi) = \lim_{(x,y)\to(a,b)} \Delta f/\Delta z$  to exist  $\lim_{(a,y)\to(a,b)} \Delta f/\Delta z = \lim_{(x,b)\to(a,b)} \Delta f/\Delta z$ .

# **Bounded Variations and Rectifiable Curves**

**Theorem 50.** Let f be an increasing function defined on [a,b] and let  $x_0, x_1, ..., x_n$  be n+1 points such that

$$a = x_0 < x_1 < \dots < x_n = b$$

Then we have the inequality

$$\sum_{k=1}^{n-1} [f(x_k+) - f(x_k-)] \le f(b) - f(a)$$

**P.P**: The sum at the jump of f(x) at  $x = x_i$  is within (f(a), f(b)) if f is monotonic.

**Theorem 51.** If f is monotonic on [a, b], then the set of discontinuities of f is countable.

**P.P**: The jumps of f are within an interval that has a finite width. A finite-width interval can only be a union of a countable set of disjoint non-zero width intervals

**Definition 26.** If [a, b] is a compact interval, a set of point

$$P = \{x_0, x_1, \dots, x_n\}$$

satisfying the inequalities

$$a = x_0 < x_1 < \dots < x_n = b$$

is called a partition of [a,b]. The interval  $[x_{k-1},x_k]$  is called the k-th subinterval of P and we write  $\Delta x_k = x_k - x_{k-1}$  so that  $\sum_{k=1}^n \Delta x_k = b - a$ . The collection of all possible partitions of [a,b] will be denoted by  $\mathcal{P}([a,b])$ .

**Definition 27.** Let f be defined on [a,b]. If  $P = \{x_0, x_1, \ldots, x_n\}$  is a partition of [a,b], write  $\Delta f_k = f(x_k) - f(x_{k-1})$ , for  $k = 1, 2, \ldots, n$ . If there exists a positive nuber M such that

$$\sum_{k=1}^{n} |\Delta f_k| \le M$$

or all partitions of [a, b], then f is said to be of bounded variation on [a, b].

Counter example:

$$f(x) = \begin{cases} 1/x \text{ if } x \neq 0\\ 0 \text{ if otherwise} \end{cases}$$

**Theorem 52.** If f is monotonic on [a, b], then f is of bounded variation on [a, b]

P.P: The sum telescopes for a monotonic function.

**Theorem 53.** If f is continuous on [a,b] and if f' exists and is bounded in the interior, say  $|f'(x)| \le A$  for all x in (a,b), then f is of bounded variation on [a,b].

**P.P**: We know mx+b is of bounded variation. Pick m=A and  $b=\min(f(x))$ . Then  $mx+b\geq f(x)$  hence f is of bounded variation.

**Theorem 54.** If f is of bounded variation on [a,b], say  $\sum |\Delta f_k| \leq M$ , for all partitions of [a,b], then f is bounded on [a,b]. In fact

$$|f(x)| \le |f(a)| + M$$
 for all  $x$  in  $[a, b]$ 

**P.P**: The value of f at x is less than its total jump in [a,b] more than the smallest value of x in [a,b], i.e f(a)

**Definition 28.** Let f be of bounded variation on [a,b], and let  $\sum(P)$  denote the sum  $\sum_{k=1}^{n} |\Delta f_k|$  corresponding to the partition  $P = \{x_0, x_1, \ldots, x_n\}$ , of [a,b]. The number

$$V_f(a,b) = \sup \left\{ \sum (P) : P \in \mathcal{P}[a,b] \right\}$$

is called the total variation of f on the interval [a, b].

This can be thought as the maximum jump f can have in [a,b], i.e, for a continuous function, when  $P = \{x : x \text{ is a turning point of } f \text{ in } [a,b]\}$ 

**Theorem 55.** Assume that f and g are each of bounded variation on [a, b]. Then so are their sum, difference, and product. Also, we have

$$V_{f\pm g} \le V_f + V_g$$

and

$$V_{fg} \le AV_f + BV_g$$

where  $A = \sup\{|g(x)| : x \in [a, b]\}$  and  $B = \sup\{|f(x)| : x \in [a, b]\}$ 

**P.P**: This is in a way the consequence of the fact that  $f \pm g$  tends to have lower number of turning points in a fixed interval than the total number of turning points of f and g. And  $fg \leq Af$  and  $fg \leq Bf$ ; the equality rarely shows up.

**Theorem 56.** Let f be of bounded variation on [a,b], and assume that f is bounded away from zero; that is, suppose that there exists a positive number m such that  $0 < m \le |f(x)|$  or all x in [a,b]. Then g = 1/f is also of a bounded variation on [a,b], and  $V_g \le V_f/m^2$ .

**Theorem 57.** Let f be of bounded variation on [a, b], and assume that  $c \in (a, b)$ . Then f is of bounded variation on [a, c] and on [c, b] and we have

$$V_f(a,b) = V_f(a,c) + V_f(c,d)$$

**P.P**: If c is a turning point of f, then it is trivial. If otherwise then  $|f(c)-f(x_k)|+|f(x_{k+1}-f(c))|=|f(x_{k+1}-f(x_k))|$ , where  $x_k$  and  $x_{k+1}$  are the immediate turning points of f found to the left and to the right of c respectively.

**Theorem 58.** Let f be of bounded variation on [a,b]. Let V be defined on [a,b] as follows:  $V(x) = V_f(a,x)$  if  $a < x \le b$ , V(a) = 0. Then

- 1. V is an increasing function on [a, b].
- 2. V f is an an increasing function on [a, b].

**P.P**: (1)  $V_f$  is additive. (2)  $V(x) - V(y) = V(y, x) \ge f(y) - f(x)$ .

**Theorem 59.** Let f be defined on [a,b]. Then f is of bounded variation on [a,b] if, and only if, f can be expressed as the difference of two increasing functions.

P.P: Theorem 55 and 58.

**Theorem 60.** Let f be of bounded variation on [a,b]. If  $x \in (a,b]$ , let  $V(x) = V_f(a,x)$  and put V(a) = 0. Then every point of continuity of f is also a point of continuity of V. The converse is also true.

**P.P**: 
$$\omega_f(x) = 0 \iff \omega_V(x) = 0$$
.

Let the set of all polygons that can be inscribed in a curve f be  $I_f$ . The curve f is **rectifiable** if the length of the curve is  $\sup\{p: p \text{ is the length of a polygon in } I_f\}$ . More formally...

Let  $\mathbf{f}:[a,b]\to\mathbb{R}^n$  be a path in  $\mathbb{R}^n$ . For any partition of [a,b] given by  $P=\{t_0,t_1,\ldots,t_m\}$ , the points  $\mathbf{f}(t_0),\mathbf{f}(t_1),\ldots$  are the vertices of an inscribed polygon. The length of this polygon is denoted by  $\Lambda_{\mathbf{f}}(P)$  and is defined to be the sum

$$\Lambda_{\mathbf{f}}(P) = \sum_{k=1}^{n} \|\mathbf{f}(t_k) - \mathbf{f}(t_{k-1})\|$$

**Definition 29.** If the set of numbers  $\Lambda_{\mathbf{f}}(P)$  is bounded for all partitions P of [a, b], then the path  $\mathbf{f}$  is said to be rectifiable and its arc length, denoted by  $\Lambda_{\mathbf{f}}(a, b)$ , is defined by the equation

$$\Lambda_{\mathbf{f}}(a,b) = \sup \{\Lambda_{\mathbf{f}}(P) : P \in \mathcal{P}[a,b]\}$$

If the set of numbers  $\Lambda_{\mathbf{f}}(P)$  is unbounded,  $\mathbf{f}$  is called nonrectiflable.

**Theorem 61.** 7. Consider a path  $\mathbf{f}:[a,b]\to\mathbb{R}^n$  with components  $\mathbf{f}=(f_1,\ldots,f_n)$  is rectifiable if, and only if, each component  $f_k$  is of bounded variation on [a,b]. If  $\mathbf{f}$  is rectifiable, we have the inequalities

$$V_k(a,b) \le \Lambda_{\mathbf{f}}(a,b) \le V_1(a,b) + \dots + V_n(a,b)$$

where  $V_k(a,b)$  is the total variation of  $f_k$  in [a,b]

**P.P**: For the  $V_k(a,b) \leq \Lambda_{\mathbf{f}}(a,b)$ , one can observe that the total variation of  $f_k$  is less than the k-th component (in  $\mathbb{R}^n$ ) of a certain increasing function with the same arc-length as  $\mathbf{f}$ . For the  $\Lambda_{\mathbf{f}}(a,b) \leq V_1(a,b) + \cdots + V_n(a,b)$  observe that any increasing function originating from a "Rook domain" approaches to look like the side of the rook domain which is at most the sum of the total variations  $V_1, V_2, \ldots, V_k$ , hence less than than this sum. It is easier to visualize on  $\mathbb{R}^2$ 

**Theorem 62.** *If*  $c \in (a, b)$  *we have* 

$$\Lambda(a,b) = \Lambda(a,c) + \Lambda(c,b)$$

**Theorem 63.** Consider a rectifiable path  $\mathbf{f}$  defined on [a,b]. If  $x \in (a,b]$ , let  $s(x) = \Lambda_{\mathbf{f}}(a,x)$  and let s(a) = 0. Then we have:

- 1. The function s so defined is increasing and continuous on [a, b]
- 2. If there is no subinterval of [a, b] on which  $\mathbf{f}$  is constant, then s is strictly increasing on [a, b].

Two curves **f** and **g** are called *equivalent* if  $\mathbf{g}(t) = \mathbf{f}(u(t))$  for a real-valued monotonic function  $u: [c,d] \to [a,b]$  and a vector function  $\mathbf{f}: [a,b] \to \mathbb{R}^n$ .

<sup>&</sup>lt;sup>1</sup>a rook domain is a corner of a square, cube or a hypercube along with the sides forming it.

## The Riemann-Stiletjes Integral

Notations:

- 1.  $f, g, \alpha, \beta, \ldots$  are all bounded in the compact interval [a, b].
- 2.  $P = \{x_0, x_1, \dots, x_n\}$
- 3. A partition P' of [a, b] is said to be finer than P (or a refinement of P) if  $P \subseteq P'$ .
- 4.  $\Delta \alpha_k = \alpha(x_k) \alpha(x_{k-1})$
- 5. The norm of a partition P is the length of the largest subinterval of P and is denoted by ||P||.
- 6.  $\alpha \nearrow \text{ on } [a, b] = \alpha \text{ is increasing on } [a, b].$

**Definition 30.** Let  $P = \{x_0, x_1, \dots, x_n\}$  be a partition of [a, b] and let  $t_k$  be a point in the subinterval  $[x_{k-1}, x_k]$ . A sum of the form

$$S(P, f, \alpha) = \sum_{k=1}^{n} f(t_k) \Delta \alpha_k$$

is called a Riemann-Stieltjes sum off with respect to  $\alpha$ . We say f is Riemann-Stieltjes integrable with respect to  $\alpha$  in [a,b], and we write " $f \in R(\alpha)$  in [a,b]" if there exists a number A having the following property. For every  $\varepsilon > 0$  there exists a partiton  $P_{\varepsilon}$  of [a,b] such that for every partion P that is finer than  $P_{\varepsilon}$  and for every choice of points  $t_k \in [x_{k-1}, x_k]$ , we have  $|S(P, f, \alpha) - A| < \varepsilon$ .

For  $\alpha(x) = x$ , we usually omit  $\alpha$  from notations.

**Theorem 64.** If  $f \in R(\alpha)$  and if  $g \in R(\alpha)$  on [a,b], then  $c_1 f + c_2 g \in R(\alpha)$  on [a,b] (for any two constants  $c_1$  and  $c_2$ ) and we have

$$\int_a^b (c_1 f + c_2 g) d\alpha = c_1 \int_a^b f d\alpha + c_2 \int_a^b g d\alpha$$

**Theorem 65.** If  $f \in R(\alpha)$  and  $f \in R(\beta)$  on [a,b], then  $f \in R(c_1\alpha + c_2\beta)$  on [a,b] (for any two constants  $c_l$  and  $c_2$ ) and we have

$$\int_a^b f \ d(c_1 \alpha + c_2 \beta) = c_1 \int_a^b f \ d\alpha + c_2 \int_a^b f \ d\beta$$

**Theorem 66.** Assume that  $c \in (a,b)$ . If two of the three integrals in (1) exist, then the third also exists and we have

$$\int_{a}^{c} f \, d\alpha + \int_{a}^{b} f \, d\alpha = \int_{a}^{b} f \, d\alpha.$$

**P.P**: The sum of the areas under f from a to c and c to b equals that from a to b.

**Definition 31.** If a < b, we define  $\int_b^a f \ d\alpha = -\int_a^b f \ d\alpha$  whenever  $\int_a^b f \ d\alpha$  exists. We also define  $\int_a^a f \ d\alpha = 0$ 

**Theorem 67.** If  $f \in R(\alpha)$  on [a,b], then  $a \in R(f)$  on [a,b] and we have

$$\int_{a}^{b} f(x) d\alpha(x) + \int_{a}^{b} \alpha(x) df(x) = f(b)\alpha(b) - f(a)\alpha(a)$$

**Theorem 68.** Let  $f \in R(\alpha)$  on [a,b] and let g be a strictly monotonic continuous function defined on an interval S having endpoints c and d. Assume that a=g(c) and b=g(d). Let h and  $\beta$  be the composite functions defined as follows:

$$h(x) = f(g(x)),$$
  $\beta(x) = \alpha(g(x))$ 

if  $x \in S$ . Then

$$\int_{a}^{b} f \, d\alpha = \int_{a}^{d} h \, d\beta.$$

**P.P**: The summands  $f\Delta\alpha_k$  (in [a,b]) and  $h\Delta\beta_k$  (in [c,d]) are identical.

**Theorem 69.** Assume  $f \in R(\alpha)$  on [a,b] and assume that  $\alpha$  has a continuous derivative  $\alpha'$  on [a,b]. Then the Riemann integral  $\int_a^b f(x)\alpha'(x) dx$  exists, and we have:

$$\int_{a}^{b} f(x) d\alpha(x) = \int_{a}^{b} f(x)\alpha'(x) dx$$

**P.P**:  $d\alpha(x) = \alpha'(x)dx$ 

**Theorem 70.** Given a < c < b. Define a on [a, b] as follows: The values  $\alpha(a), \alpha(c), \alpha(b)$  are arbitrary;

$$\alpha(x) = \alpha(a)$$
 if  $a \le x < c$ ,

and

$$\alpha(x) = \alpha(b)$$
 if  $c < x \le c$ .

Let f be defined on [a,b] in such a way that at least one of the functions f or  $\alpha$  is continuous from the left at c and at least one is continuous from the right at c. Then  $f \in R(\alpha)$  on [a,b] and we have

$$\int_{a}^{b} f d\alpha = f(c)(\alpha(c+) - \alpha(c-))$$

**P.P**: Total area under the graph of f is  $w\ell = [\alpha(c+) - \alpha(c-)]f(c)$ . If both f is discontinuous at c, there are two cases:

- If  $\alpha$  is continuous everywhere in [a,b] then  $\Delta \alpha_k = 0$  for all  $x_k, x_{k+1} \in P$ , making  $S(P,f,\alpha) = 0$ .
- if  $\alpha$  is not continuous at c then  $\alpha(c+) \alpha(c-) \neq 0$ . Hence the length of the rectangle does not exist.

**Definition 32.** A function, f, a defined on [a, b] is called a step function if there is a partition

$$a = x_1 < \cdots < x_n = b$$

such that  $\alpha$  is constant on each open subinterval  $(x_{k-1}, x_k)$ . The number  $\alpha(x_k+) - \alpha(x_k-)$  is called the jump at  $x_k$  if 1 < k < n. The jump at  $x_1$  is  $\alpha(x_1+) - \alpha(x_1)$ , and the jump at  $x_n$  is  $\alpha(x_n) - \alpha(x_n-)$ .

**Theorem 71.** Let  $\alpha$  be a step function defined on [a,b] with jump  $\alpha_k$  at  $x_k$ , where  $x_1,\ldots,x_n$  are as described in Definition 32. Let f be defined on [a,b] in such a way that not both f and  $\alpha$  are discontinuous from the right or from the left at each  $x_k$ . Then  $\int_a^b f d\alpha$  exists and we have

$$\int_{a}^{b} f d\alpha = \sum_{k=1}^{n} f(x_k) \alpha_k$$

P.P: follows from theorem 66 and 70.

**Theorem 72.** Every finite sum can be written as a Riemann-Stieltjes integral. In fact, given a sum  $\sum_{k=1}^{n} a_k$ , define f on [0, n] as follows:

$$f(x) = a_k$$
 if  $k - 1 < x \le k$   $(k = 1, 2, ..., n)$ ,  $f(0) = 0$ .

Then

$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{n} f(k) = \int_0^n f(x) \ d[x].$$

where [x] is the greatest integer  $\leq x$ 

**Theorem 73.** If f has a continuous derivative f' on [a, b], then we have

$$\sum_{a \le n \le b} f(n) = \int_a^b f(x) \, dx + \int_a^b (x - [x]) f'(x) \, dx + f(a)((a - [a])) - f(b)((b - [b])).$$

**Definition 33.** Let P be a partition of [a, b] and let

$$M_k(f) = \sup\{f(x) : x \in [x_{k-1}, x_k]\}$$

$$m_k(f) = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$$

The numbers

$$U(P,f,\alpha) = \sum_{k=1}^n M_k(f) \Delta \alpha_k \quad \text{ and } \quad L(P,f,\alpha) = \sum_{k=1}^n m_k(f) \Delta \alpha_k$$

are called, respectively, the upper and lower Stieltjes sums of f with respect to  $\alpha$  for the partition P.

**Theorem 74.** Assume  $\alpha \nearrow on [a, b]$ . Then:

1. If P' is finer than P, we have

$$U(P', f, \alpha) < U(P, f, \alpha)$$
 and  $L(P', f, \alpha) > L(P, f, \alpha)$ 

2. For any two partitions  $P_1$  and  $P_2$ , we have

$$L(P_1, f, \alpha) < U(P_2, f, \alpha)$$

**P.P**: (1)  $2 \sup A \cup B \le \sup A + \sup B$ . (2)  $\sum m_k(f) \Delta \alpha_k \le M_k(f) \sum \Delta \alpha_k$ 

**Definition 34.** Assume that  $\alpha \nearrow on [a,b]$ . The upper Stieltjes integral of f with respect to  $\alpha$  is defined as follows:

$$\overline{I}(f,\alpha) = \int_{a}^{b} f d\alpha = \inf\{U(P,f,\alpha) : P \in (P)[a,b]\}$$

The lower Stieltjes integral is similarly defined:

$$\underline{I}(f,\alpha) = \int_{a_{-}}^{b} f d\alpha = \sup\{L(P, f, \alpha) : P \in (P)[a, b]\}$$

**Theorem 75.** Assume that  $\alpha \nearrow on [a, b]$ . Then  $\underline{I}(f, \alpha) \leq \overline{I}(f, \alpha)$ .

**P.P**:  $m_k \le f(t_k) \le M_k$ .

**Theorem 76.** Assume that  $\alpha \nearrow on [a,b]$  and  $c \in (a,b)$ . Then:

$$\overline{\int_a^b}(f+g)\ d\alpha \le \overline{\int_a^b}f\ d\alpha + \overline{\int_a^b}g\ d\alpha$$

and

$$\underline{\int_a^b (f+g)\; d\alpha} \geq \underline{\int_a^b f\; d\alpha} + \underline{\int_a^b g\; d\alpha}$$

**P.P**: This happens because  $\sup\{s+t\} \le \sup\{s\} + \sup\{t\}$ 

**Definition 35.** We say that f satisfies **Riemann's condition** with respect to  $\alpha$  on [a,b] if, for every  $\varepsilon > 0$ , there exists a partition  $P_{\varepsilon}$ , such that P finer than  $P_{\varepsilon}$  implies

$$0 \le U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$$

**Theorem 77.** lim Assume that  $\alpha \nearrow on [a, b]$ . Then the following three statements are equivalent:

- 1.  $f \in R(\alpha)$  on [a, b]
- 2. f satisfies Riemann's condition with respect to  $\alpha$  on [a,b].
- 3.  $\overline{I}(f,\alpha) = \underline{I}(f,\alpha)$ .

**Theorem 78.** Assume that  $\alpha \nearrow on [a,b]$ . If  $f \in R(\alpha)$  and  $g \in R(\alpha)$  on [a,b] and if  $f(x) \leq g(x)$  for all x in [a,b], then we have

$$\int_{a}^{b} f(x) \ d\alpha(x) \le \int_{a}^{b} g(x) \ d\alpha(x)$$

**Theorem 79.** Assume that  $\alpha \nearrow on [a,b]$ . If  $f \in R(\alpha)$  on [a,b], then  $|f| \in R(\alpha)$  on [a,b] and we have the inequality

$$\left| \int_{a}^{b} f(x) \, d\alpha(x) \right| \leq \int_{a}^{b} |f(x)| \, d\alpha(x)$$

**P.P**: The area of |f| is The area of f above the x-axis + |the area of f under the x-axis|. Thus  $|f| \in R(\alpha)$ .  $\int |f|$  is greater because no terms of |f| are bound to cancel out each other as opposed to the terms of |f|

**Theorem 80.** Assume that  $\alpha \nearrow on [a, b]$ . If  $f \in R(\alpha)$  on [a, b], then  $f^2 \in R(\alpha)$  on [a, b].

**Theorem 81.** Assume that  $\alpha \nearrow on [a,b]$ . If  $f,g \in R(\alpha)$  on [a,b], then  $fg \in R(\alpha)$  on [a,b].

**P.P**: The limit of  $\sum fg \cdot \Delta \alpha_k$  should exist as the side fg is finite and approaches a certain value as both  $f, g \in R(\alpha)$ , meaning each approaches a certain value.

**Theorem 82.** Assume that  $\alpha$  is of bounded variation on [a,b]. Let V(x) denote the total variation of  $\alpha$  on [a,x] if  $a < x \le b$ , and let V(a) = 0. Let f be defined and bounded on [a,b]. If  $f \in R(\alpha)$  on [a,b], then  $f \in R(V)$  on [a,b].

**P.P**: Since  $\alpha$  is of bounded variation the sum  $\sum f|\alpha_k|$  does not blow up.

**Theorem 83.** Let  $\alpha$  be of bounded variation on [a,b] and assume that  $f \in R(\alpha)$  on [a,b]. Then  $f \in R(\alpha)$  on every subinterval [c,d] of [a,b].

**P.P**: Because the area under f in [a, b] is the sum of some constant + area under f in [c, d].

**Theorem 84.** Assume  $f \in R(\alpha)$  and  $g \in R(\alpha)$  on [a, b], where  $\alpha \nearrow$  on [a, b]. Define

$$F(x) = \int_{a}^{x} f(t) \, d\alpha(t)$$

and

$$G(x) = \int_{a}^{x} g(t) \ d\alpha(t).$$

Then  $f \in R(G)$ ,  $g \in R(F)$ ,  $f \cdot g \in R(\alpha)$  on [a, b] and we have,

$$\int_a^b f(x)g(x) \ d\alpha(x) = \int_a^b f(x) \ dG(x) = \int_a^b g(x) \ dF(x).$$

**P.P**:  $d\int_a^x g\ d\alpha$  means  $\int_a^x g\ d\alpha - \int_a^{x-\varepsilon} g\ d\alpha$ , where  $\varepsilon$  is a very small number. This value approaches the area of the rectangle  $g(x)d\alpha(x)$ .

**Theorem 85.** If f is continuous on [a, b] and if  $\alpha$  is of bounded variation on [a, b], then  $f \in R(\alpha)$  on [a, b].

**P.P**: If  $\alpha$  is of bounded variation, then  $\sum f \Delta \alpha_k$  does not blow up since f is bounded and  $f(t_k) \xrightarrow[t_k \in [x_{k-1}, x_k]]{} f(x_k) = f(x_{k-1})$  if f is continuous.

**Theorem 86.** Assume that  $\alpha \nearrow on [a,b]$  and let a < c < b. Assume further that both  $\alpha$  and f are discontinuous from the right at x = c; that is, assume that there exists an  $\varepsilon > 0$  such that for every  $\delta > 0$  there are values of x and y in the interval  $(c, c + \delta)$  for which

$$|f(x) - f(c)| \ge \varepsilon \& |\alpha(y) - \alpha(c)| \ge \varepsilon$$

Then the integral  $\int_a^b f \, d\alpha$  cannot exist. The integral also fails to exist if  $\alpha$  and f are discontinuous from the left at c.

**P.P**:  $f(t_k)\Delta\alpha_k \to f(c-)(\alpha(c) - \alpha(c-)) \neq 0$  and  $f(t_{k+1})\Delta\alpha_{k+1} \nearrow f(c-)(\alpha(c) - \alpha(c-))$ . In other words, the limit fails to exist because there would be two rectangles with varing area in the neighbourhood of  $\alpha(c)$ ,  $f(c-)(\alpha(c) - \alpha(c-))$  and  $f(c)(\alpha(c) - \alpha(c-))$ .

**Theorem 87.** Assume that  $\alpha \nearrow$  and let  $f \in R(\alpha)$  on [a,b]. Let M and m denote, respectively, the sup and inf of the set  $\{f(x) : x \in [a,b]\}$ . Then there exists a real number c satisfying  $m \le c \le M$  such that

$$\int_{a}^{b} f(x) d\alpha(x) = c \int_{a}^{b} d\alpha = c[\alpha(b) - \alpha(a)].$$

In particular, if f is continuous on [a, b], then  $c = f(x_0)$  for some  $x_0$  in [a, b].

**P.P**: The area of rectangle  $M[\alpha(b) - \alpha(a)] > \text{Area under } f$  and the area of rectangle  $m[\alpha(b) - \alpha(a)] < \text{Area under } f$ . So there should be a c that satisfies the equation in the theorem.

**Theorem 88.** Assume that a is continuous and that  $f \nearrow on [a, b]$ . Then there exists a point  $x_0$  in [a, b] such that

$$\int_a^b f(x) \, d\alpha(x) = f(a) \int_a^{x_0} f(x) d\alpha(x) + f(b) \int_{x_0}^b f(x) \, d\alpha(x)$$

**Theorem 89.** Let  $\alpha$  be of bounded variation on [a,b] and assume that  $f \in R(\alpha)$  on [a,b]. Define F by the equation

$$F(x) = \int_{-\infty}^{x} f \, d\alpha \, \text{if } x \in [a, b].$$

Then we have:

- 1. F is of bounded variation on [a, b],
- 2. Every point of continuity of  $\alpha$  is also a point of continuity of F.
- 3. If  $\alpha \nearrow$  on [a,b], the derivative F'(x) exists, at each point x in (a,b) where a'(x) exists and f is continuous. For such x, we have

$$F'(x) = f(x)\alpha'(x)$$

**P.P**: (1) follows from  $\sum_{(P)} |\int_{x_{k-1}}^{x_k} f \ d\alpha| \le \int_{x_{k-1}}^{x_k} |f| \ d\alpha$ . which is bounded (Note  $\alpha$  is bounded). (2) follows because if  $\Delta \alpha_k$  gets infinitesimally smaller and smaller, F(y) - F(x) approaches the area of a line which is 0. (3) follows from the reduction of  $\int f \ d\alpha$  to the Riemann integral.

**Theorem 90.** Assume  $f \in \mathbb{R}$  on [a,b]. Let  $\alpha$  be a function which is continuous on [a,b] and whose derivative  $\alpha'$  is Riemann integrable on [a,b]. Then the following integrals exist and are equal:

$$\int_a^b f(x) \ d\alpha(x) = \int_a^b f(x) \alpha'(x) \ dx.$$

**Theorem 91.** (Change of variable in a Riemann integral). Assume that g has a continuous derivative g' on an interval [c,d]. Let f be continuous on g([c,d]) and define F by the equation

$$F(x) = \int_{g(c)}^{x} f(t) dt$$

Then, for each x in [c,d] the integral  $\int_{c}^{x} f[g(t)]g'(t)dt$  exists and has the value F[g(x)].

**P.P**: when g is decreasing, g' < 0.

**Theorem 92.** (Second MVT) Let g be continuous and assume that  $f \nearrow on [a, b]$ . Let A and B be two real numbers satisfying the inequalities

$$A \le f(a+)$$
 &  $B \ge f(b-)$ 

Then there exists a point  $x_0$  in [a,b] such that

- 1.  $\int_a^b f(x)g(x) dx = A \int_a^{x_0} g(x)dx + B \int_{x_0}^b g(x) dx$
- 2. In particular if  $f(x) \ge 0$ , we have  $\int_a^b f(x)g(x) dx = B \int_{x_0}^b g(x) dx$ .

**P.P**:  $\int B > \int f$  whatsoever. Hence there should be an optimal  $x_0$ .

**Theorem 93.** Let f be continuous at each point (x, y) of a rectangle

$$Q = \{(x, y) : a \le x \le b, c \le y \le d\}.$$

Assume that  $\alpha$  is of bounded variation on [a,b] and let F be the function defined on [c,d] by the equation

$$F(y) = \int_{a}^{b} f(x, y) \, d\alpha(x).$$

Then F is continuous on [c, d]. In other words, if  $y_0 \in [c, d]$ , we have

$$\lim_{y \to y_0} \int_a^b f(x, y) \, d\alpha = \int_a^b \lim_{y \to y_0} f(x, y) \, d\alpha$$
$$= \int_a^b f(x, y_0) \, d\alpha$$

**P.P**:  $f(x,y) = g_x(y)$  and limit is distributive over addition.

**Theorem 94.** Let  $Q = \{(x,y) : a \le x \le b, \ c \le y \le d\}$ . Assume that  $\alpha$  is of bounded variation on [a,b] and, for each fixed y in [c,d], assume that the integral

$$F(y) = \int_{a}^{b} f(x, y) \, d\alpha$$

exists. If the partial derivative  $D_2f$  is continuous on Q, the derivative F(y) exists for each y in (c,d) and is given by

$$F'(y) = \int_a^b D_2 f(x, y) \, d\alpha(x)$$

**Theorem 95.** Let  $Q = \{(x,y) : a \le x \le b, c \le y \le d\}$ . Assume that  $\alpha$  is of bounded variation on [a,b],  $\beta$  is of bounded variation on [c,d], and f is continuous on Q. If (x,y) a Q, define

$$F(y) = \int_a^b f(x, y) \, d\alpha(x), \qquad G(x) = \int_a^d f(x, y) \, d\beta(y).$$

Then  $F \in R(\beta)$  on [c,d],  $G \in R(\alpha)$  on [a,b], and we have

$$\int_{a}^{d} F(y) d\beta(y) = \int_{a}^{b} G(x) d\alpha(x).$$

**P.P**: The order of integration can be reversed.

**Definition 36.** A set S of real numbers is said to have **measure zero** if, for every  $\varepsilon > 0$ , there is a countable covering of S by open intervals, the sum of whose lengths is less than  $\varepsilon$ .

This means a set S has measure zero if  $S = \bigcup_k (a_k, b_k)$  and  $\sum_k b_k - a_k < \varepsilon$ 

**Theorem 96.** Let F be a countable collection of sets in  $\mathbb{R}$ , say  $F = \{F_1, F_2, \dots\}$ , each of which has measure zero. Then their union

$$S = \bigcup_{k=1}^{\infty} F_k$$

also has a measure zero.

P.P:

$$\sum_{k=1}^{\infty} \frac{\varepsilon}{2^k} = \varepsilon$$

**Definition 37.** Let f be defined and bounded on an interval S. If  $T \subseteq S$ , the number

$$\Omega_f(T) = \sup\{f(x) - f(y) : x, y \in T\}$$

is called the oscillation of f on T. The oscillation of f at x is defined to be the number

$$\omega_f(x) = \lim_{h \to 0^+} \Omega_f(B(x; h) \cap S).$$

;

**Theorem 97.** Let f be defined and bounded on [a,b], and let  $\varepsilon > 0$  be given. Assume that  $\omega_f(x) < \varepsilon$  for every x in [a,b]. Then there exists a  $\delta > 0$  (depending only on  $\varepsilon$ ) such that for every closed subinterval  $T \subseteq [a,b]$ , we have  $\omega(T) < \varepsilon$  whenever the length of T is less than  $\delta$ .

**P.P**: If the maximum jump of f in  $[a,b] < \varepsilon$ , then the span of  $f < \varepsilon$  for every sufficiently small subinterval of [a,b].

**Theorem 98.** Let f be defined and bounded on [a,b]. For each  $\varepsilon > 0$  define the set  $J_{\varepsilon}$  as follows:

$$J_{\varepsilon} := \{x : x \in [a, b], \ \omega_f(x) \ge \varepsilon\}.$$

Then  $J_{\varepsilon}$  is a closed set.

The 'endpoints' of the interval of discontinuity are in  $J_{\varepsilon}$ .

**Theorem 99.** (Lebesgue's criterion for Riemann-integrability). Let f be defined and bounded on [a,b] and let D denote the set of discontinuities of f in [a,b]. Then  $f \in R$  on [a,b] if, and only if, D has measure zero.

**P.P**: A bounded function f on a compact interval [a,b] is Riemann-integrable on [a,b] if, and only if, f is continuous almost everywhere on [a,b]. This is the case because if there are enough discontinuities, they can prevent Riemann's condition on integrability from holding: the sum  $\sum (M_k - m_k) \Delta x_k = S_1 + S_2$ , where  $S_1$  contains points of discontinuities, and  $S_1 \geq \sum$  jump of  $f \times$  measure of D.

#### More from the exercise

$$\int_a^b f(x)g(x) \ d\alpha(x) = f(a) \int_a^{x_0} g(x) \ d\alpha(x) + f(b) \int_{x_0}^b g(x) \ d\alpha(x).$$

Cauchy-Schwartz: For  $\alpha \nearrow$  we have

$$\left(\int_a^b f(x)g(x) \ dx\right)^2 \le \int_a^b [f(x)]^2 \ dx \int_a^b [g(x)]^2 \ dx$$
$$\Lambda_{\mathbf{f}}(a,b) = \int_a^b \|\mathbf{f}'(t)\| \ dt$$

If  $f \in R$  and  $g \in R$  then it doesn't necessarily follow that  $f \circ g \in R$ . Example

$$g(x) = \begin{cases} 0 \text{ if } x \text{ is irrational} \\ 1/n \text{ if } x = m/n \text{ is rational} \end{cases} \qquad f(x) = \begin{cases} 0 \text{ if } x = 0 \\ 1 \text{ if otherwise} \end{cases}$$

## **Infinite Series and Infinite products**

**Definition 38.** Let  $\{a_n\}$  be a sequence of real numbers. Suppose there is a real number U satisfying the following two conditions:

1. For every  $\varepsilon > 0$  there exists an integer N such that n > N implies

$$a_n < U + \varepsilon$$
.

2. Given  $\varepsilon > 0$  and given m > 0, there exists an integer n > m such that

$$a_n > U - \varepsilon$$
.

Then U is called the limit superior (or upper limit) of  $\{a_n\}$  and we write

$$U = \limsup_{n \to \infty} a_n$$

Statement (1) implies that the set  $\{a_l, a_2, \dots\}$  is bounded above. If this set is not bounded above, we define

$$\lim\sup_{n\to\infty}a_n=+\infty.$$

If the set is bounded above but not bounded below and if  $\{a_n\}$  has no finite limit superior, then we say  $\limsup_{n\to\infty}a_n=-\infty$ . The limit inferior (or lower limit) of  $\{a_n\}$  is defined as follows:

$$\liminf_{n \to \infty} a_n = -\limsup_{n \to \infty} -a_n$$

**P.P**: Statement (1) means that ultimately *all* terms of the sequence lie to the left, of  $U + \varepsilon$ . Statement (2) means that *infinitely many* terms lie to the right of  $U - \varepsilon$ . The given definition of lim inf follows from the fact that the maximum(sup) of  $a_n$  is the minimum of  $-a_n$ . In fact let  $\limsup -a_n = -L$ . Then from the definition  $-L - \varepsilon < -a_n < -L + \varepsilon \implies L - \varepsilon < a_n$  for ultimately all terms and  $a_n < L + \varepsilon$  for infinitely many terms.

**Theorem 100.** *1.*  $\liminf a_n \leq \limsup a_n$ .

- 2. The sequence  $\{a_n\}$  converges if, and only if,  $\limsup a_n$  and  $\liminf a_n$  are both finite and equal, in which case  $\liminf a_n = \limsup a_n = \lim a_n$ .
- 3. The sequence diverges to  $\infty$  if, and only if,  $\liminf a_n = \limsup a_n = \infty$ .
- 4. The sequence diverges to  $-\infty$  if, and only if,  $\liminf a_n = \limsup a_n = -\infty$ .
- 5. Assume that  $a_n \leq b_n$  for each  $n = 1, 2, \ldots$  Then we have

$$\limsup a_n \le \limsup b_n \& \liminf a_n \le \liminf b_n$$

**Definition 39.** Let  $\{a_n\}$  be a sequence of real numbers. We say the sequence is increasing and we write  $a_n \neq if$   $a_n \leq a_{n+1}$  for  $n=1,2,\ldots$  If  $a_n \geq a_{n+1}$  for all n, we say the sequence is decreasing and we write  $a_n \searrow A$  sequence is called monotonic if it is increasing or if it is decreasing.

**Theorem 101.** A monotonic sequence converges if, and only if, it is bounded.

**Definition 40.** The ordered pair of sequences  $(\{a_n\}), \{s_n\})$  is called an infinite series. The number  $s_n$  is called the nth partial sum of the series. The series is said to converge or to diverge according as  $\{s_n\}$  is convergent or divergent.

**Theorem 102.** Let  $a = \sum a_n$  and  $b = \sum b_n$  be convergent series. Then, for every pair of constants  $\alpha$  and  $\beta$ , the series  $\sum \alpha a_n + \beta b_n$  converges to the sum  $\alpha a + \beta b$ .

**P.P**: 
$$\sum_{k=1}^{n} \alpha a_k + \beta b_k = \alpha \sum_{k=1}^{n} a_k + \beta \sum_{k=1}^{n} b_k$$
.

**Definition 41.** Let p be a function whose domain is the set of positive integers and whose range is a subset of the positive integers such that

$$p(n) < p(m)$$
 if  $n < m$ .

Let  $\sum a_n$  and  $\sum b_n$  be related as follows:

$$b_1 = a_1 + \dots + a_{p(1)},$$

$$b_{n+1} = a_{p(n)+1} + \dots + a_{p(n+1)}.$$

Then we say we obtain  $\sum b_n$  from  $\sum a_n$  by inserting parentheses and  $\sum a_n$  is obtained from  $\sum b_n$  by removing parentheses.

**P.P**: Literally! 
$$\sum a_n = (a_1 + \cdots + a_{p(1)}) + (a_{p(1)+1} + \cdots + a_{p(2)}) + \cdots$$

**Theorem 103.**  $\sum a_n$  converges to s, every series  $\sum b_n$  obtained from  $\sum a_n$  by inserting parentheses also converges to s.

**P.P**: Inserting parentheses is slightly different from the rearrangement of terms.

**Theorem 104.** Let  $\sum a_n$ ,  $\sum b_n$  be related as in Definition 41. Assume that there exists a constant M > 0 such that p(n+1) - p(n) < M for all n, and assume that  $\lim a_n = 0$ . Then  $\sum a_n$  converges if, and only if,  $\sum b_n$  converges, in which case they have the same sum.

**P.P**: Let 
$$\sum b_n = t_n \to t$$
. Then  $\sum a_n - s \le t_m - t + |a_i| + \cdots + |a_k|$ 

**Theorem 105.** If  $\{a_n\}$  is a decreasing sequence converging to 0, the alternating series  $\sum (-1)^{n+1}a_n$  converges. If s denotes its sum and  $s_n$  its nth partial sum, we have the inequality

$$0 < (-1)^n (s - s_n) < a_{n+1}$$
.

**P.P**: 
$$(-1)^n(s-s_n) = a_{n+1} - (a_{n+2} - a_{n+3}) - \dots$$

**Definition 42.** A series  $\sum a_n$  is called absolutely convergent if  $\sum |a_n|$  converges. It is called conditionally convergent if  $\sum a_n$  converges but  $\sum |a_n|$  diverges.

**Theorem 106.** Absolute convergence of  $\sum a_n$  implies convergence.

**Theorem 107.** Let  $\sum a_n$  be a given series with real terms, and define

$$p_n = \frac{|a_n| + a_n}{2}, \qquad p_n = \frac{|a_n| - a_n}{2}$$

Then:

- 1. If  $\sum a_n$  is conditionally convergent, both  $\sum p_n$  and  $\sum q_n$  diverge.
- 2. If  $\sum |a_n|$  converge, both both  $\sum p_n$  and  $\sum q_n$  converge, and we have

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} p_n - \sum_{n=1}^{\infty} q_n$$

**P.P**:  $p_n$  are the positive terms of  $a_n$  while  $q_n$  are the negative terms. Also  $a_n = p_n - q_n$  and  $|a_n| = p_n + q_n$ .

**Theorem 108.** (Comparison Test). If  $a_n > 0$  and  $b_n > 0$  for n = 1, 2, ..., and if there exist positive constants c and N such that

$$a_n < cb_n$$
 for  $n > N$ 

Then the convergence of  $\sum b_n$  implies that of  $\sum a_n$ .

**P.P**:  $\sum a_n < \text{finite sum} + c(\sum b_n - \text{finite sum}).$ 

**Theorem 109.** (Limit comparison test) Assume that  $a_n > 0$  and  $b_n > 0$  for n = 1, 2, ..., and suppose that

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 1.$$

Then  $\sum a_n$  converges iff  $\sum b_n$  converges.

**P.P**: If  $a_n$  and  $b_n$  tend to be equal over the long run, the two sums both tend to converge or both to diverge.

**Theorem 110.** (Integral test). Let f be a positive decreasing function defined on  $[1, +\infty)$  such that  $\lim_{x \to \infty} f(x) = 0$ . For  $n = 1, 2, \ldots$  define

$$s_n = \sum_{k=1}^n f(k)$$
  $t_n = \int_1^n f(t) dt$   $d_n = s_n - t_n$ .

Then we have:

- 1.  $0 < f(n+1) \le d_{n+1} \le d(n) \le f(1)$
- 2.  $\lim d_n$  exsists
- 3.  $\{s_n\}$  converges iff  $\{t_n\}$  converges.
- 4.  $0 \le d_k d_\infty \le f(k)$

**P.P**: Draw the graph, then observe that  $d_n$  are the upper part of the rectangles.

**Definition 43.** Given two sequences  $\{a_n\}$  and  $\{b_n\}$ ,  $b_n \ge 0$  for all n = 1, 2, ... we write

$$a_n = O(b_n)$$

if there exists a constant M>0 such that  $|a_n|\leq Mb_n$  for all n. We write

$$a_n = o(b_n)$$
 as  $n \to \infty$ 

if  $\lim_{n\to\infty} a_n/b_n = 0$ 

**Theorem 111.** (Ratio test) Given a series  $\sum a_n$  non-zero complex terms, let

$$r = \liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|, \qquad R = \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

Then:

- 1.  $\sum a_n$  converges absolutely if R < 1.
- 2.  $\sum a_n$  diverges if r > 1.
- 3. the test is inconclusive if  $r \leq 1 \leq R$ .

**P.P**:  $r, R \neq 1$  means the terms are sufficiently not close to each other.

**Theorem 112.** Given a series  $\sum a_n$  of complex terms, let

$$\rho = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$$

Then:

- 1.  $\sum a_n$  absolutely converges if  $\rho < 1$ .
- 2.  $\sum a_n$  diverges if  $\rho > 1$ .
- 3. the test is inconclusive if  $\rho = 1$ .

**P.P**: If the terms are big enough to diverge the series the *n*th root tends to be 1 or greater. This relationship between convergence and *n*th root is due to the fact that series with terms  $a_n \to \infty$  that diverge, tend to have greater *n*th root than the terms themselves.

**Theorem 113.** Let  $\{a_n\}$  and  $\{b_n\}$  be two sequences of complex numbers, define

$$A_n = a_1 + \cdots + a_n$$
.

Then we have the identity

$$\sum_{k=1}^{n} a_k b_k = A_{n+1} b_{n+1} - \sum_{k=1}^{n} A_k (b_{k+1} - b_k).$$

**P.P**: Let  $c_k = b_{k+1} - b_k$ . Then plot  $a_k$  vs  $c_k$  graph. The following two test follow from this identity.

**Theorem 114.** (*Dirichlet's test*) Let  $\sum_n a_n$  be a series with partial sums forming bounded sequence and  $\{b_n\}$  be a decreasing sequence which converges to 0. Then  $\sum a_n b_n$  converges.

**Theorem 115.** (Abel's test)  $\sum a_n b_n$  converges if  $\sum a_n$  converges and if  $\{b_n\}$  is monotonic convergent.

**Theorem 116.** For every real  $x \neq 2\pi m$ , we have

$$\sum_{k=1}^{n} e^{ikx} = \frac{\sin(nx/2)}{\sin(x/2)} e^{i(n+1)} x$$

From this theorem the following relations can be proved

$$\left| \sum_{k=1}^{n} e^{ikx} \right| \leq \frac{1}{|\sin(x/2)|}$$

$$\cdot \sum_{k=1}^{n} \cos kx = -\frac{1}{2} + \frac{1}{2} \sin(2n+1) \frac{x}{2} / \sin \frac{x}{2}$$

$$\sum_{k=1}^{n} \sin(2k-1)x = \frac{\sin^{2} nx}{\sin x}$$

**Definition 44.** Let  $f: \mathbb{Z}^+ \to \mathbb{Z}^+$  be a one-to-one function. Let  $\sum a_n$  and  $\sum b_n$  be two series such that

$$b_n = a_{f(n)}$$
 for  $n = 1, 2, ...$ 

Then  $\sum_n b_n$  is called the rearrangement of  $\sum_n a_n$ 

**Theorem 117.** Let  $\sum_n a_n$  be an absolutely convergent series having sum s. Then every rearrangement of  $\sum b_n$  also converges absolutely and has sum s.

**P.P**: If  $a_n$  is absolutely convergent, rearrangement of the terms doesn't change the sum as addition is commutative.

$$\longrightarrow \longrightarrow \longleftarrow \equiv \longrightarrow \longleftarrow \longrightarrow \equiv \longrightarrow$$

**Theorem 118.** Let  $\sum a_n$  be a conditionally convergent series with real-valued terms. Let x and y be given numbers in the closed interval  $[-\infty,\infty]$ , with  $x\leq y$ . Then there exists a rearrangement  $\sum b_n$  of  $\sum a_n$  such that

$$\liminf_{n \to \infty} t_n = x \qquad \qquad \& \qquad \qquad \limsup_{n \to \infty} t_n = y,$$

where  $t_n = b_1 + \dots b_n$ .

P.P: https://demonstrations.wolfram.com/RiemannsTheoremOnRearrangingConditionallyConvergentSeries/

**Definition 45.** Let f be a function  $\mathbb{Z}^+$  and whose range is an infinite subset of  $\mathbb{Z}^+$ , and assume that f is one-to-one on  $\mathbb{Z}^+$ . Let  $\sum a_n$  and  $\sum b_n$  be two series such that  $b_n = a_{f(n)}, \quad \text{if } n \in \mathbb{Z}^+$ . Then  $\sum b_n$  is said to be a subseries of  $\sum a_n$ .

$$b_n = a_{f(n)},$$
 if  $n \in \mathbb{Z}^+$ . Then  $\sum b_n$  is said to be a subseries of  $\sum a_n$ .

**Theorem 119.** If  $\sum a_n$  is absolutely convergent then every subseries  $\sum b_n$  of  $\sum a_n$  is also absolutely convergent. Moreover we have

$$\left|\sum_{n=1}^{\infty} b_n\right| \le \sum_{n=1}^{\infty} |b_n| \le \sum_{n=1}^{\infty} |a_n|.$$

**P.P**: The fact that  $\sum |b_n|$  is bounded implies absolute convergence and  $\sum |b_n| \leq \sum^{\max f} |a_n|$ .

**Theorem 120.** Let  $\{f_1, f_2, \ldots$  be a countable collection of functions, each defined on  $\mathbb{Z}^+$ , having the following properties

- Each  $f_n$  is one-to-one on  $\mathbb{Z}^+$ .
- The range  $f_n(\mathbb{Z}^+)$  is a subset  $Q_n$  of  $\mathbb{Z}^+$ .
- $\{Q_1, Q_2, \dots\}$  is a collection of disjoint sets whose union is  $\mathbb{Z}^+$ .

Let  $\sum a_n$  be absolutely convergent series and define

$$b_k(n) = a_{f_k(n)}, \quad \text{if } n, k \in \mathbb{Z}^+.$$

Then

- 1. For each k,  $\sum_{n} b_k(n)$  is absolutely convergent.
- 2. If  $s_k = \sum_n b_k(n)$ , then the series  $\sum s_n$  converges absolutely and has the same sum as  $\sum a_n$ .

**P.P**:  $\sum s_n$  is infinity-sized rearrangement of  $\sum a_n$ . Treat each  $s_n$  as a single terms of  $\sum a_n$ . (1) says every subseries of  $\sum a_n$  converge absolutely. (2) says the sum of "disjoint" subseries of  $\sum a_n$ is  $\sum a_n$ .

**Definition 46.** A function f whose domain is  $\mathbb{Z}^+ \times \mathbb{Z}^+$  is called a double sequence.

**Definition 47.** If  $a \in \mathbb{C}$ , we write  $\lim_{p,q\to\infty} f(p,q) = a$  and we say that the double sequence f converges to a, provieded that the following condition is satisfied: For every  $\varepsilon > 0$ , there exists an N such that  $|f(p,q)-a|<\varepsilon$  whenever both p>N and q>N.

**Theorem 121.** Assume that  $\lim_{p,q\to\infty} f(p,q) = a$ . For each fixed p. assume that  $\lim_{q\to\infty} f(p,q)$  exists. Then the  $\lim_{p\to\infty}(\lim_{q\to\infty}f(p,q))$  also exists and has value  $a.\ F(p):=f(p,\infty)$ . Then F(p) and a get closer and closer infinitesimally as  $p \to \infty$ 

**Definition 48.** Let f be a double sequence and let s be the double sequence defined by the equation

$$s(p,q) = \sum_{m=1}^{p} \sum_{n=1}^{q} f(m,n).$$

The pair (f,s) is called a double series and is denoted by the symbol  $\sum_{m,n} f(m,n)$  or, more briefly, by  $\sum f(m,n)$ . The double series is said to converge to the sum a if

$$\lim_{p,q \to \infty} s(p,q) = a.$$

**Definition 49.** Let f be a double sequence and let g be a one-to-one function defined on  $\mathbb{Z}^+$  with range  $\mathbb{Z}^+ \times \mathbb{Z}^+$ . Let G be the sequence defined by

$$G(n) = f[g(n)].$$

Then g is said to be an arrangement of the double sequence f into G.

**Theorem 122.** Let  $\sum f(m,n)$  be given double series and let g be an arrangment of the double sequence f into a sequence G. Then

- $\sum G(n)$  converges absolutely iff  $\sum f(m,n)$  converges absolutely. noindent  $Assuming \sum f(m,n)$  does converge absolutely, with sum S, we have further:  $\sum G(n) = S$ .
- $\sum_{n=1}^{\infty} f(m,n)$  and  $\sum_{m=1}^{\infty} f(m,n)$  both converge absolutely.
- If  $A_m = \sum_{n=1}^{\infty} f(m,n)$  and  $B_n = \sum_{m=1}^{\infty} f(m,n)$ , both series  $\sum A_m$  and  $\sum B_n$  converge absolutely and both have sum S.

P.P: These are special cases of the theorems under the rearrangement of a "normal" series.

The arrangement/rearrangement of a series does not change the convergence point when no infinite sums are involve since addition is commutative.

**Theorem 123.** Let f be a complex-valued double sequence. Assume that  $\sum_{n=1}^{\infty}$  converges absolutely for each fixed m and that

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |f(m,n)|,$$

converges. Then:

- 1. The double series  $\sum_{m,n} f(m,n)$  converges absolutely.
- 2. The series  $\sum_{m=1}^{\infty} f(m,n)$  converges absolutely for each n.

3.

$$\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}f(m,n)=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}f(m,n)=\sum_{m,n}^{\infty}f(m,n)$$

**Theorem 124.** Let  $\sum a_m$  and  $\sum b_n$  be two absolutely convergent series with sums A and B. respectively. Let f be the double sequence defined by

$$f(m,n) = a_m b_n$$

Then  $\sum_{m,n} f(m,n)$  converges and has sum AB.

**Definition 50.** Given two series  $\sum a_n$  and  $\sum b_n$ , define  $c_n = \sum_{k=0}^n a_k b_{n-k}$  for  $n \ge 0$ . The series  $\sum c_n$  is called the Cauchy product of  $\sum a_n$  and  $\sum b_n$ .

**Theorem 125.** Let  $\sum a_n$  and  $\sum b_n$  be two absolutely convergent series with sums A and B respectively. Then their Cauchy product  $\sum c_n$  converge and has the sum AB.

**P.P**: 
$$\sum_{n=0}^{N} c_n = B \sum_{n=0}^{N} a_n - \operatorname{error}_B \sum_{n=0}^{N} a_n$$
.  $N \to \infty \implies \operatorname{error} A \to 0$ .

**Definition 51.** Let  $s_n$  denote the nth partial sum of the series  $\sum a_n$ , and let  $\{\sigma_n\}$  be the sequence of the arithmetic means defined by

$$\sigma_n = \frac{s_1 + \dots + s_n}{n}, \quad if \, n = 1, 2 \dots$$

The series  $\sum a_n$  is said to be Cesaro summable(or (C,1) summable) if  $\{\sigma_n\}$  converges. If  $\lim_{n\to\infty} \sigma_n = S$ , then S is called the Cesaro sum (or (C,1) sum) of  $\sum a_n$ , and we write

$$\sum a_n = S \qquad (C, 1).$$

Cesaro sum is the "average" of all partial sums of  $\sum a_n$ .

**Theorem 126.** If a series is convergent with sum S, then it is also (C, 1) summable with Cesaro sum S.

**P.P**: As the number of terms increase the number of  $s_n$  close to S increase  $\implies$  average  $(\sigma_n) \to S$ .

**Definition 52.** Given a sequence  $\{u_n\}$  of real or complex numbers, let

$$p_1 = u_1,$$
  $p_n = u_1 \cdots u_n = \prod_{k=1}^n u_k.$ 

The ordered pair  $(\{u_n\}, \{p_n\})$  is called an infinite product (or simply a product). The number  $p_n$  is called the nth partial product and  $u_n$  is called the nth factor of the product. The following symbols are used to denote the product defined by the above equalities:

$$u_1u_2\cdots u_n\cdots, \qquad \prod_{n=1}^{\infty}u_n$$

**Definition 53.** Given an infinite product  $\prod u_n$ , let  $p_n = \prod_{k=1}^n u_k$ .

- 1. If infinitely many factors  $u_n$  are zero, we say the product diverges to 0.
- 2. If no factor  $u_n$  is zero, we say the product converges if there exists  $p \neq 0$  such that  $\{p_n\}$  converges to p. In this case, p is called the value of the product and we write  $p = \prod_{n=1}^{\infty} u_n$ . If  $\{p_n\}$  converges to zero, we say the product diverges to zero.
- 3. If there exists an N such that n > N implies  $u_n \neq 0$ , we say  $\prod u_n$  converges provided that  $\prod_{n=N+1}^{\infty}$  converges as described in (2). In this case the value of the product  $\prod u_n$  is

$$u_1u_2\ldots u_N\prod_{n=N+1}^{\infty}u_n.$$

4.  $\prod u_n$  is called divergent if it does not converge as described in (2) or (3).

**Theorem 127.** The infinite product  $\prod u_n$  converges iff for every  $\varepsilon > 0$ , there is a constant N such that n > N implies:

$$|u_{n+1}\cdots u_{n+k}-1|<\varepsilon$$
 for  $k=1,2\ldots$ 

**P.P**: This follows from Cauchy's condition for convergence of a sequence. This theorem says the factors don't get small enough to make the product converge to 0, nor do they get large enough to make the product blow up.

**Theorem 128.** Assume  $a_n > 0$  The product  $\prod (1 + a_n)$  converges iff the series  $\sum a_n$  converges.

**P.P**: The partial product stays in the threshold of theorem 127 if  $a_n \to 0$  since  $\prod_n (1 + a_n) = 1 + \sigma_1(a_i) + \sigma_2(a_i) + \dots$  The convergence of  $\sum a_n$  makes the symmetric polynomials  $\to 0$ .

**Definition 54.** The product  $\prod (1+a_n)$  is said to be absolutely convergent if  $\prod (1+|a_n|)$  converges.

**Theorem 129.** Absolute convergence of  $\prod (1 + a_n)$  implies its convergence.

**P.P**: If  $|a_n|$  is not large enough to diverge the product to  $\infty$ , then  $a_n$  can not be small enough to diverge the product to 0.

**Theorem 130.** Assume  $a_n \geq 0$ . Then the product  $\prod (1 - a_n)$  converges iff  $\sum a_n$  converges.

## **Sequences of Functions**

**Definition 55.** A sequence of functions  $\{f_n\}$  is said to converge uniformly to f on a set S, if, for every  $\varepsilon > 0$ , there is an integer N such that n > N implies

$$|f_n(x) - f(x)| < \varepsilon$$
 for every  $x \in S$ .

We denote this by  $f_n \to f$  uniformly on the set S.

**P.P**:  $|f_n(x) - f(x)| < \varepsilon \implies f(x) - \varepsilon \le f_n(x) \le f(x) + \varepsilon$  for all n > N: a  $f_{n > N}$  lie with in a band of length  $2\varepsilon$ .

**Theorem 131.** Assume  $f_n \to f$  uniformly on S. If each  $f_n$  is continuous at a point  $c \in S$ , then the limit function f is also continuous at point c.

**P.P**:  $|f(x) - f(c)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(c)| + |f_n(c) - f(c)|$ . In other words the **band** can get as small as needed and  $f_n$  can get as close to  $f_n(c)$ .

**Theorem 132.** Let  $\{f_n\}$  be a sequence of functions defined on S. Then there is a function f such that  $f_n \to f$  uniformly on S iff the following condition is satisfied: for every  $\varepsilon > 0$ , there is an integer N such that n, m > N implies

$$|f_m(x) - f_n(x)| < \varepsilon$$
 for every  $x \in S$ .

P.P: Extension of Cauchy's condition.

**Definition 56.** Given a sequence of functions  $\{f_n\}$  defined S, let

$$s_n := \sum_{k=1}^n f_k(x).$$

If there is a function f such that  $s_n \to f$  uniformly on S, we say the series  $\sum f_n(x)$  converges uniformly on S and we write

$$\sum_{n=1}^{\infty} f_n(x) = f(x).$$

**Theorem 133.** The infinite series  $\sum f_n(x)$  converges uniformly on S, iff, for  $\varepsilon > 0$  there is N such that

$$\left| \sum_{k=n+1}^{n+p} f_k(x) \right| < \varepsilon \qquad \text{for every } p = 1, 2 \dots \text{ and } x \in S.$$

**Theorem 134.** (Weierstrass M-test). Let  $\{M_n\}$  be a sequence of non-negative number such that

$$0 \le |f_n(x)| \le M_n$$
  $n = 1, 2 \dots$  and  $x \in S$ .

Then  $\sum f_n$  converges uniformly if  $\sum M_n$  converges uniformly.

**Theorem 135.** Assume  $\sum f_n(x) = f(x)$ . If each  $f_n$  is continuous at a point  $x_0 \in S$ , then f is continuous at  $x_0$ .

**P.P**: Continuity of  $f_n \implies$  Continuity of  $s_n$ .

**Theorem 136.** Let  $\alpha$  be of bounded variation on [a,b]. Assume each term of the sequence  $\{f_n\}$  be a real-valued function such that  $f_n \in R(\alpha)$  on [a,b] for each n. Assume  $f_n \to f$  uniformly on [a,b] and define  $g_n(x) = \int_a^x f_n(t) \, d\alpha(t)$  for  $x \in [a,b]$ . Then:

- 1.  $f \in R(\alpha)$  on [a, b].
- 2.  $g_n \to g$  uniformly on [a,b] where  $g(x) = \int_a^x f(t) d\alpha(t)$ .

**P.P**: From  $|f_n - f| < \varepsilon$ , we have  $f_n - \varepsilon < f(x) < f_m + \varepsilon \implies -\varepsilon + \int f_n \le \int f \le \varepsilon + \int f_n$ . However, uniform convergence is not necessary for Riemann-Integrablity; if  $f_n$  is boundedly convergent on [a, b] (uniformly bounded and converges to f), then  $\int f$  exists.

**Theorem 137.** Let  $\{f_n\}$  be a sequence of real-valued function, with each term having a finite derivative on each point  $c \in (a,b)$ . Assume there is at least one point  $x_0 \in (a,b)$  such that the sequence  $\{f_n(x_0)\}$  converges and that there is a function g such that  $f'_n \to g$  uniformly on [a,b]. Then:

- 1. There exists a function f such that  $f_n \to f$  uniformly on (a,b).
- 2. For each  $x \in (a, b)$ , f'(x) exists and equals g(x).

**P.P**: 
$$f_n \to g \implies \int f_n \to \int g = f \implies g = f'$$
.

**Theorem 138.** Let  $F_n(x)$  be the nth partial sum of the series  $\sum f_n(x)$ , where  $f_n$  is complex valued defined on the set S. Assume the sequence  $\{F_n\}$  is bounded on S. Let  $\{g_n\}$  be a sequence of functions that satisfy  $g_{m+1}(x) \leq g_m(x)$  for all  $x \in S$  and for all m. Assume further that  $g_n \to 0$  uniformly on S. Then the  $\sum f_n g_n$  converges uniformly on S.

**P.P**: Dirichlet's test for sequence of functions.

**Definition 57.** Let  $\{f_n\}$  be a sequence of Riemann-Intergrable functions on [a,b]. Assume  $f \in R$  on [a,b]. Then we say  $f_n$  converges in the mean to f, and we write

$$\lim_{n \to \infty} f_n = f \qquad on \ [a, b]$$

if

$$\lim_{n \to \infty} \int_a^b |f_n(t) - f(t)|^2 dt = 0.$$

**P.P**: Converges in the mean means the average of all  $f_n$  in  $[a,b] \to$ the average of f in [a,b].

**Theorem 139.** Assume l.i.m. $_{n\to\infty}$  on [a,b]. If  $g\in R$ , define

$$h(x) = \int_a^x f(t)g(t) dt \qquad h_n(x) = \int_a^x f_n(t)g(t) dt.$$

if  $x \in [a, b]$ . Then  $h_n \to h$  uniformly on [a, b].

**P.P**:  $f_n$  converges to f,  $\int f_n$  converges almost uniformly  $\int f$ .

**Theorem 140.** Assume  $\text{l.i.m.}_{n\to\infty}f_n=f$  and  $\text{l.i.m.}_{n\to\infty}g_n=g$  on [a,b]. Define

$$h(x) = \int_a^x f(t)g(t) dt \qquad h_n(x) = \int_a^x f_n(t)g_n(t) dt.$$

if  $x \in [a, b]$ . Then  $h_n \to h$  uniformly on [a, b].

**Theorem 141.** Given a power series  $\sum_{n=1}^{\infty} a_n(z-z_0)^n$ , let  $\lambda = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$ ,  $r = \frac{1}{\lambda}$ . Then the series  $\sum_{n=1}^{\infty} a_n(z-z_0)^n$  converges absolutely if  $|z-z_0| < r$ , and diverges for  $|z-z_0| > r$ . r is called the radius of convergence of  $\sum a_n(z-z_0)^n$ . Furthermore,  $\sum a_n(z-z_0)^n$  converges uniformly in every compact subset of the disk of converges.

**Theorem 142.** Assume the power series  $\sum a_n(z-z_0)^n$  converges for all  $z \in B(z_0;r)$ . Suppose the equation  $f(z) = \sum_{n=1}^{\infty} a_n(z-z_0)^n$  is known to be valid for every open subset S of  $B(z_0;r)$ . Then for each  $z_1 \in S$ , there exists a neighbourhood  $B(z_1;R)$  in S such that f has a power series expansion of the form

$$f(z) = \sum_{n=0}^{\infty} b_n (z - z_1)^n$$

for all  $z \in B(z_1; R)$ , where

$$b_k = \sum_{n=k}^{\infty} \binom{n}{k} a_n (z_1 - z_0)^{n-k}.$$

**Theorem 143.** Assume the power series  $\sum a_n(z-z_0)^n$  converges for every z in  $B(z_0;r)$ . Then the function defined by  $f(z) = \sum_{n=1}^{\infty} a_n(z-z_0)^n$  in  $B(z_0;r)$  has a derivative at each point in  $B(z_0;r)$  represented by  $f'(z) = \sum_{n=1}^{\infty} na_n(z-z_0)^n - 1$ .

For a power series two power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \qquad g(z) = \sum_{n=0}^{\infty} b_n z^n$$

that converge in  $B(0; r_f)$  and  $B(0; r_g)$  resp. we have the following properties

- 1. The product  $fg(z) = \sum c_n z^n$  for  $z \in B(0; r_f) \cap B(0; r_g)$  where  $\sum c_n$  is the Cauchy product of  $\sum a_n$  and  $\sum b_n$ .
- 2. The substitution  $f(g(z)) = \sum c_n z^n$  where  $c_n = \sum a_n b_n(k)$  and  $g^k(z) = \sum b_n(k) z^n$  for  $|g(z)| < r_f$  and  $|z| < r_g$ .
- 3. The reciprocal of f(z), q(z) has its own power series expansion with q(0) = 1/f(0).

**Definition 58.** Let f be a real-valued function defined on an interval  $I \subset \mathbb{R}$ . If f has derivatives of every order at each point of I, we write  $f \in C^{\infty}$  on I.

If  $f \in C^{\infty}$ , the series

$$\sum_{n=0}^{\infty} \frac{f^{(k)}(c)(x-c^n)}{n!}$$

is called **the Taylor series generated about** c **by** f and we can write

$$f(x) \sim \sum_{n=0}^{\infty} \frac{f^{(k)}(c)(x-c)^n}{n!}$$

However, for an interval containing a real number c on whose neighbourhood f is defined on, it can be proved that

$$\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x-c)^{k} + E_{n}(x).$$

Where  $E_n$  is an error function given by the integral

$$E_n(x) = \frac{1}{n!} \int_c^x (x-t)^n f^{(n+1)}(t) dt = \frac{(x-c)^{n+1}}{n!} \int_0^1 u^n f^{(n+1)}[x+(c-x)u] du$$

This error representation can be used to prove the following result:

**Theorem 144.** (Bernstein) Assume all n+1 derivatives of f are non-negatives for  $b \le x < r$ . Then for these values of x:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(b)}(c)(x-b)^n}{n!}$$

**Theorem 145.** Assume that we have

$$f(x) = \sum_{n=0}^{\infty} a_n x^n \qquad -r < x < r$$

If the series also converges at x=r, then the limit  $\lim_{x\to r^-} f(x)$  exists and we have

$$\lim_{x \to r^{-}} f(x) = \sum_{n=0}^{\infty} a_n r^n.$$

**Theorem 146.** Let  $f(x) = \sum_{n=0}^{\infty} for -1 < x < 1$ , and assume that  $\lim_{n\to\infty} na_n = 0$ . If  $f(x) \to S$  as  $x \to 1^-$ , then  $\sum_{n=0}^{\infty} a_n$  converges and has sum S.