Övningsbank: Algebra och Funktioner Matematik 3b

Instruktioner

Denna övningsbank innehåller uppgifter inom följande områden:

- Polynom och polynomekvationer
- Rationella uttryck
- Gränsvärden

Uppgifterna är märkta med svårighetsgrad (E, C, A) och är baserade på tidigare nationella prov samt det centrala innehållet i Matematik 3b enligt GY25.

1 Polynom och Polynomekvationer

Uppgift P1 (E)

Bestäm graden och koefficienten för den högsta gradtermen i polynomet

$$p(x) = 3x^4 - 2x^3 + 5x - 7$$

Uppgift P2 (E)

Givet polynomet $p(x) = x^3 - 4x^2 + x + 6$.

- a) Beräkna p(2).
- b) Är x = 2 ett nollställe till p(x)? Motivera ditt svar.

Uppgift P3 (E)

Lös ekvationen $x^3 - 8 = 0$ genom att faktorisera med konjugatregeln.

Uppgift P4 (C)

Lös polynomekvationen $x^3 + 2x^2 - 5x - 6 = 0$ fullständigt, givet att x = -1 är en rot.

Uppgift P5 (C)

Ett polynom p(x) av tredje graden har nollställena x = -2, x = 1 och x = 3. Dessutom gäller att p(0) = 12.

- a) Skriv polynomet på faktoriserad form.
- b) Bestäm polynomet på standardform.

Uppgift P6 (C)

Polynomet $p(x) = x^3 + ax^2 + bx - 12$ har nollställena x = 1 och x = -3. Bestäm konstanterna a och b.

Uppgift P7 (C)

Lös ekvationen $2x^4 - 8x^2 = 0$ fullständigt.

Uppgift P8 (A)

Visa att polynomet $p(x) = x^4 - 3x^3 + 2x^2 + 2x - 4$ är delbart med $x^2 - 3x + 2$. Utför sedan polynomdivisionen och ange kvoten.

Uppgift P9 (A)

Ett polynom p(x) av fjärde graden har nollställena x=-1 (dubbel rot), x=2 och x=4. Polynomet går genom punkten (0,8).

- a) Bestäm polynomet.
- b) Beskriv polynomets beteende vid nollställena.

2 Rationella Uttryck

Uppgift R1 (E)

Förenkla uttrycket

$$\frac{x^2 - 16}{x + 4}$$

Uppgift R2 (E)

För vilket värde på x är uttrycket $\frac{2x+5}{x-3}$ inte definierat?

Uppgift R3 (E)

Förenkla uttrycket

$$\frac{3x+6}{x^2+2x}$$

Uppgift R4 (C)

Förenkla uttrycket

$$\frac{x^2 + 5x + 6}{x^2 - 9}$$

Uppgift R5 (C)

Beräkna

$$\frac{2}{x+1} + \frac{3}{x-2}$$

och skriv svaret som ett enda rationellt uttryck.

Uppgift R6 (C)

Förenkla uttrycket

$$\frac{x^2 - 4}{x^2 + 4x + 4} \cdot \frac{x + 2}{x - 2}$$

Uppgift R7 (C)

Lös ekvationen

$$\frac{3}{x-1} = \frac{2}{x+2}$$

Uppgift R8 (A)

Bestäm konstanterna A och B så att likheten

$$\frac{5x-1}{x^2-4} = \frac{A}{x-2} + \frac{B}{x+2}$$

gäller för alla x där uttrycken är definierade.

Uppgift R9 (A)

Förenkla uttrycket

$$\frac{1}{x} - \frac{1}{x+h}$$

och skriv svaret som ett enda rationellt uttryck.

Uppgift R10 (A)

Lös ekvationen

$$\frac{x+1}{x-1} - \frac{x-1}{x+1} = \frac{8}{x^2-1}$$

3 Gränsvärden

Uppgift G1 (E)

Bestäm gränsvärdet

$$\lim_{x \to 3} (2x + 5)$$

Uppgift G2 (E)

Bestäm gränsvärdet

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

Uppgift G3 (E)

Bestäm gränsvärdet

$$\lim_{x \to \infty} \frac{4x+3}{2x-1}$$

Uppgift G4 (C)

Bestäm gränsvärdet

$$\lim_{x \to -1} \frac{x^2 + 3x + 2}{x + 1}$$

Uppgift G5 (C)

Bestäm gränsvärdet

$$\lim_{x \to \infty} \frac{3x^2 - 5x + 1}{x^2 + 2}$$

Uppgift G6 (C)

Funktionen f(x) är definierad som

$$f(x) = \begin{cases} x^2 + 1 & \text{om } x < 2\\ 5 & \text{om } x = 2\\ 3x - 1 & \text{om } x > 2 \end{cases}$$

- a) Bestäm $\lim_{x\to 2^-} f(x)$ och $\lim_{x\to 2^+} f(x)$.
- b) Existerar $\lim_{x\to 2} f(x)$? Motivera ditt svar.
- c) Är funktionen kontinuerlig i x=2? Motivera ditt svar.

Uppgift G7 (C)

Bestäm gränsvärdet

$$\lim_{x\to\infty}\frac{5x^3+2x}{2x^3-x^2+1}$$

Uppgift G8 (A)

Bestäm gränsvärdet

$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1}$$

Uppgift G9 (A)

En funktion g(x) är definierad som

$$g(x) = \frac{x^2 - 9}{x - 3}$$

för $x \neq 3$.

- a) Bestäm $\lim_{x\to 3} g(x)$.
- b) Kan funktionen göras kontinuerlig i x=3 genom att definiera g(3) på lämpligt sätt? I så fall, vilket värde ska g(3) ha?

Uppgift G10 (A)

Bestäm gränsvärdet

$$\lim_{h\to 0}\frac{(x+h)^2-x^2}{h}$$

4 Blandade Uppgifter och Problemlösning

Uppgift B1 (C)

En rektangel har ena sidan x cm och den andra sidan (10 - x) cm.

- a) Skriv ett uttryck för rektangelns area A(x).
- b) För vilket värde på x blir arean maximal? (Lös algebraiskt utan digitala verktyg)

Uppgift B2 (C)

Summan av två tal är 20. Produkten av talen är 75. Vilka är talen? Ställ upp en ekvation och lös den.

Uppgift B3 (A)

En öppen låda ska tillverkas genom att klippa bort kvadrater med sidan x cm från varje hörn av en rektangulär plåt med måtten $20 \text{ cm} \times 30 \text{ cm}$, och sedan vika upp sidorna.

- a) Skriv ett uttryck för lådans volym V(x).
- b) Bestäm definitionsmängden för V(x).
- c) För vilket värde på x blir volymen maximal? (Använd digitala verktyg)

Uppgift B4 (A)

En parabel $y = ax^2 + bx + c$ går genom punkterna (0,3), (1,0) och (3,0).

- a) Bestäm konstanterna a, b och c.
- b) Bestäm parabelns vertex.