

Context-Free Path Querying with Structural Representation of Result

Автор: Semyon Grigorev

Saint-Petersburg University Programming Languages and Tools Lab JetBrains

July 7, 2017

Биоинформатика

- Множество задач, связанных с обработкой и пониманием биологических данных
- Одна из задач поиск организмов в метагеномных сборках

Геном

- Геном длинная последовательность нуклеотидов
- На деле строка над алфавитом {A, C, G, U}

Получение данных

- Из биологического материала читаются короткие строчки
- Эти кусочки склеиваются в более длинные строки
- Множество строчек сборка
- Данных очень много, поэтому строится граф, сожержащий множество полученных строк

GCTATCAGGCTACGTTACAGTGCTGCATACACGTAGCTATACG

Метагеномная сборка

- Данные из окружающей среды
- Изучаем набор генов всех микроорганизмов в образце

Что ищем

- Хочется понять что у нас в сборке
- Такие последовательности как тРНК, рРНК позволяют провести классификацию организма
- У этих последовательностей есть вторичная структура, которая может быть описана КС-грамматикой

GGAAGAUCG...GCA... =>

Грамматика для кусочка тРНК

AACCGUGGG AGCGUGGGACGCUCAGG 3'm Thermus thermophilus small subunit ribosomal RNA

Вторичная структура 16s pPHK

Graph parsing

• Задача поиска линейных цепочек, удовлетворяющих КС-грамматике, в графе

YaccConstructor

- В лаборатории созданы алгоритмы
- Реализован инструмент, основанный на алгоритме GLL
- Умеет решать задачу поиска линейных цепочек в графе, удовлетворяющих КС-грамматике

Цель и задачи

Цель работы — научиться классифицировать организмы в метагеномной сборке **Задачи**:

- Адаптировать существующий алгоритм под специфику задачи
- Провести экспериментальные исследования работы алгоритма

GLL

- Разбор осуществляется при помощи дескрипторов
- Дескриптор четвёрка (слот, позиция во входе, дерево, вершина стека)
- На каждом шаге достаём дескриптор из очереди и разобрав очередной символ создаём новые дескрипторы

Подготовка сборки

Метагеномные сборки довольно большие, поэтому их необходимо предварительно обрабатывать

- Infernal позволяет распознавать структуры в линейном входе
- Рёбра, длиннее искомых структур можно делить на части и проверять с помощью Infernal
- После фильтрации рёбер граф распадается на компоненты связности, на которых алгоритм можно запускать анализатор независимо

Отказ от построения дерева

- Синтаксический анализатор возвращает лишь границы и длину найденных цепочек
- Восстановление цепочки идёт путём извлечения подграфа, состоящего из путей заданной длины
- Ложные фильтруются с помощью Infernal

Преобразование грамматики

- Грамматика для 16s рРНК сильно неоднозначная и довольно большая
- Из-за этого количество слотов в грамматике очень много
- В процессе разбора создаётся огромное количество дескрипторов

Преобразование грамматики к автомату

Грамматика

Минимизация автомата

Изначальный автомат

Минимизированый автомат

Эксперименты

Результаты работы на сборке, состоящей из 59000 вершин и 87000 рёбер и грамматике кусочка 16s pPHK, длиной около 300 символов

	начальная	мин. автомат		
	грамматика			
Время работы	10 ч.	3 ч. 40 мин.		
Кол-во слотов	41	17		
/состояний				

Эксперименты проводились на машине с 32 ГБ RAM и CPU core i7-4790

Направление работ

[b]0.4

 $0: S \rightarrow subClassOf^{-1} S subClassOf$

1: $S \rightarrow type^{-1} S type$

2 : $S \rightarrow subClassOf^{-1} subClassOf$

 $3: S \rightarrow type^{-1} type$

Рис.: Grammar for query 1

[b]0.4

 $0: S \rightarrow B \ subClassOf$

 $0: S \rightarrow subClassOf$

1: $B \rightarrow subClassOf^{-1} B subClassOf$

2: $B \rightarrow subClassOf^{-1} subClassOf$

Рис.: Grammar for query 2

Направление работ

Таблица: Evaluation results for Query 1 and Query 2

Ontology	#triples	Query 1		Query	
		time(ms)	#results	time(ms)	
skos	252	10	810	1	
generations	273	19	2164	1	
travel	277	24	2499	1	
univ-bench	293	25	2540	11	
foaf	631	39	4118	2	
people-pets	640	89	9472	3	
funding	1086	212	17634	23	
atom-primitive	425	255	15454	66	
biomedical-measure-primitive	459	261	15156	45	
pizza	1980	697	56195	29	
wine	1839	819	66572	8	