P1. Vega of a Digital $V(+) = e^{-r(T-t)} N(\phi d_2)$	
where $d_2 = d_1 - \sigma_n T - t = \frac{\ln \frac{F(t,T)}{K}}{\sigma_n T - t} - \frac{1}{2} \sigma_n T - t$	
$\partial_{\sigma} d_{2} = \frac{-\ln \frac{H(t_{1})}{ t }}{\sigma^{2} \sqrt{\tau - t}} - \frac{1}{2} \sqrt{\tau - t} = \frac{-d_{1}}{\sigma}$ $D = \partial_{\sigma} V = e^{-r(\tau - t)} N'(\phi d_{2}) \partial_{\sigma}(\phi d_{2})$	
$= e^{-r(T-t)} N'(\phi dz) \xrightarrow{\Phi} d_1$ $= -e^{-r(T-t)} N'(\phi dz) \xrightarrow{\Phi} d_1$	
where $\phi = 1$ for call, $\phi = -1$ for put	
For $V>0$, $d_1>0$, $\frac{(n\frac{F(t,T)}{K}+\frac{1}{2}\sigma(T-t)/2}{\sigma(T-t)/2}$ $F>Ke^{-\sigma^2(T-t)/2}$ $V>0$, $V=0$ is positive	
$F < Ke^{-\sigma^2(\tau-t)/2}$, ν is negative short digital put:	
For $v > 0$, $d_1 < 0$ $F > \kappa e^{-\sigma^2(\tau-t)/2}, v \text{ is negative}$ $F < \kappa e^{-\sigma^2(\tau-t)/2}, v \text{ is positive.}$	
$F < Ke^{-\sigma^{-}(1-\sigma)/2}$, v is partive.	

Ρ2.	Theta VCt) = Where	e-r	ćτ-t),	V(pdz)) <u>1</u> ~ {	r-t						
									+ o , -			
			=	<u> In</u>	<u> </u>	+ -2	+ τ-t	44 T-t		र-र ्ट		
=	- ટા પલ	= ,	_r(T-	€)[rN	(\$d2) +	φη'(i	pd2) (In 20	E(t,T) (T-t) (T-t)	2 + 5-r		(T-t)]	$(n\frac{F}{k} = \sigma dT + di)$
		= (_r(T-	[}	1(td2) +	ф и'(ф	dz) (<u>a</u>	+	9-h 0-17-t)		₽ P	$\ln \frac{F}{K} = \sigma \sqrt{T - t} dt$ $- \frac{1}{5} \sigma^2 (T - t)$