PalGAN: Image Colorization with Palette Generative Adversarial Networks

Introduction

Key Challenges

- Multimodal ambiguity
- Color bleeding

Our method PalGAN

- > Palette estimation
 - Predict a probabilistic palette from a gray image
 - Conduct color assignment based on the palette
- Chromatic attention (CA): study color affinities by considering semantic and intensity correlation.

The performance of PalGAN:

- ➤ It gets SOTA quantitative results in ImageNet / COCO.
- ➤ It gives diverse, contrastive, and edge-preserving appearances.

Motivation

 incorporates both semantic and low-level affinities into constructing color relations. Components: global interaction & local delineation

Ablation studies of chromatic attention (CA). (a) input, (b) wo CA, (c) w Global, (d) w Local, (e) full CA. Please zoom in.

Yi Wang¹, Menghan Xia², Lu Qi³, Jing Shao⁴, and Yu Qiao¹

¹Shanghai Al Laboratory ²Tencent Al Lab ³UC Merced ⁴SenseTime Research

Framework

- > Our PalGAN formulates colorization as a palette prediction and assignment problem.
- A palette generator E: estimates the global palette probabilities from the given gray image
- A palette assignment generator G: conducts color assignment task via conditional image generation.
 - Chromatic attention
- A color discriminator D: improves the result from adversarial training

Visual Quality

Experiment

Quantitative results on the validation sets from different methods.

Method		ImageNet (ctest10k)			ImageNet (val50k)			COCO-Stuff					
	ا	PSNR ↑	`SSIM ↑	LPIPS .	↓FID ↓	PSNR ↑	`SSIM ↑	LPIPS .	↓FID ↓	PSNR 1	`SSIM ↑	LPIPS	↓FID ↓
CIColor [5	54]	22.30	0.902	0.221	12.20	22.26	0.902	0.221	9.39	21.84	0.895	0.234	22.32
UGColor [56]	24.26	0.918	0.174	7.49	24.26	0.919	0.173	4.60	24.34	0.924	0.165	14.74
Lei et. al. [[26]	24.52	0.917	0.202	12.60	24.03	0.918	0.189	6.35	24.59	0.922	0.191	23.10
Deoldify [2]	23.54	0.914	0.187	5.78	22.97	0.911	0.185	3.87	23.98	0.939	0.161	12.75
ColTrans [2	23]	21.81	0.892	0.218	6.37	22.12	0.894	0.216	3.81	22.11	0.898	0.210	11.65
Ours^1		24.19	0.917	0.161	4.60	24.25	0.917	0.161	2.78	24.56	0.924	0.148	7.70
Ours ²		24.66	0.920	0.170	5.24	24.54	0.920	0.168	3.62	24.72	0.944	0.156	8.93
InstColor*	[38]	23.03	0.909	0.191	7.35	23.06	0.910	0.190	4.94	22.35	0.838	0.238	12.24
GPColor* [[49]	21.66	0.871	0.230	5.46	21.81	0.880	0.230	3.62	N/A	N/A	N/A	N/A
Ours*		27.75	0.932	0.110	4.20	27.53	0.913	0.118	2.42	28.28	0.936	0.105	7.21
		•	•			•	•	•					· ·

Visualizations of palettes (1st row, shown in jet colormap) and how they work on colorization (2nd row). (a) Input, (b) the ground truth, (c)-(e) reference-based colorization, (f) automatic colorization

Ablation studies of chromatic attention (CA). (a) input, (b) wo CA, (c) w Global, (d) w Local, (e) full CA. Please zoom in.

User study. Each entry gives the percentage of cases where colorization results are favored compared with GT.

Method Ours Coltrans GPCol InstCol Deoldify UGCol Rate | **47.20**% 41.50% 39.25% 37.50% 41.13% 42.50%

Quantitative results on COCO-Stuff using different structures.

Structure	PSNR ↑	SSIM ↑	$LPIPS \downarrow$	FID ↓
AE	25.89	0.928	0.146	14.15
VAE	23.21	0.905	0.179	11.76
$UGC \le CA$	24.52	0.923	0.162	11.38
PalGAN w rand ref	20.88	0.883	0.240	9.64
PalGAN w SA	22.68	0.892	0.175	9.02
PalGAN w PatchD [19,41]	23.07	0.895	0.183	8.44
PalGAN w BN	22.36	0.895	0.209	9.97
PalGAN w SPADE [35]	24.06	0.916	0.167	7.90
PalGAN wo $E(\mathbf{\hat{h}})$	24.58	0.924	0.149	8.17
PalGAN	24.56	0.924	0.148	7.70

Quantitative results on COCO-Stuff by ablating chromatic attention.

G L	PSNR ↑	SSIM ↑	LPIPS ↓	FID .
XX	21.93	0.902	0.203	9.90
X ✓	24.52	0.924	0.146	9.97
/ X	23.32	0.907	0.174	8.34
/ /	24.56	$\boldsymbol{0.924}$	0.148	7.70