УЛК 665.622.43.0666

Э. А. Галиуллин, Р. З. Фахрутдинов, Р. Джимасбе

ОБЕЗВОЖИВАНИЕ НЕФТЕШЛАМОВ ТЕРМОМЕХАНИЧЕСКИМ МЕТОДОМ

Ключевые слова: нефть, нефтешлам, деэмульгирование.

Экспериментально исследовался процесс обезвоживания нефтешламов методом термомеханического воздействия. Проведены анализы получаемых продуктов, дана оценка возможностям технологии.

Keywords: oil, oil sludge, deemulsification.

The processes of dewatering sludge by thermomechanical impact was studied. The analysis of the resulting products was made,

Введение

Нефтешламы представляют собой разнообразные по составу отходы. По составу это сложные физико-химические смеси, которые состоят из стойкой водонефтяной эмульсии с суспендированными механическими примесями (глины, окислов металлов, песка). Соотношение составляющих нефтешлам элементов может быть самым различным. Их примерный состав: вода -30-85 %, нефтепродукты - 10-55 %, твердые примеси - 0-45 % [1].

В зависимости от способа образования и, соответственно, физико-химического состава нефтяные шламы подразделяются на несколько групп или видов:

- нефтешламы, образующиеся в процессе добычи (промысловые), подготовки, транспортировки (трубные) и хранения (резервуарные) нефти, а также очистки сточных вод нефтяных заводов. Содержат многочисленные соли, выпавшие твёрдые углеводороды, механические примеси (в том числе и частицы горных пород). Данный тип отходов представляет большую опасность для окружающей среды и подлежит захоронению или переработке.
- нефтешламы, образующиеся в результате ликивидации всевозможных аварий (разливов). Выделяют придонные, собранные со дна различных водоёмов после произошедшего разлива нефти, и грунтовые, являющиеся продуктом соединения почвы и пролившейся на неё нефти, а также нефтешламы, собранные с поверхности морей и океанов. При позднем обнаружении или масштабной аварии природе может быть нанесён огромный ущерб.

Нефтешламы собираются и накапливаются и на специально отведенных местах - шламонакопителях (площадках, бункерах, амбарах) с целью дальнейшей утилизации [2].

Утилизация нефтешламов

Переработка и утилизация нефтешламов - это важная экологическая и экономическая задача, решение которой необходимо для защиты окружающей среды и повышения экономической целесообразности производства нефтепродуктов. Из нефтешламов получают много полезных продуктов, в частности товарную нефть, топливо для котельных установок, некоторые строительные материалы, а также очищенную воду.

Первой стадией утилизации нефтешламов выступает отделение механических примесей (фильтрация,

осаждение, и пр.). Затем следует стадия обезвоживания, которая может быть реализована различными механическими (отстаивание, центрифугирование, сушка, вымораживание) термическими и химическими методами, а также их комбинациями.

Неразделяемые эмульсии, которые нельзя регенерировать, подвергаются сжиганию в многоподовых и барабанных печах с утилизацией выделяемого тепла [3].

Обезвоживание нефтешламов

Нефтешламы представляют собой трудноразделимые нефтяные эмульсии, их обезвоживание представляет собой сложную задачу. Непрерывная (внешняя, сплошная) фаза образует дисперсионную среду, а диспергированная в ней жидкость образует дисперсную (внутреннюю) фазу. Характерной особенностью эмульсий является сферическая форма частиц (капелек, глобул) дисперсной фазы, так как такая форма имеет наименьшую поверхность и наименьшую свободную энергию. Нефтешламы, как правило, относятся к эмульсиям второго рода, то есть представляют собой эмульсии типа В/М. В настоящее время считается, что основными стабилизаторами таких эмульсий являются коллоиднодиспергированные в нефти в виде мицелл асфальтосмолистые вещества. Коллоидные частицы, участвующие в образованив мицелл, накапливаются на поверхности раздела фаз нефть-вода и образуют механически прочную пленку [4].

Процесс разрушения нефтяных эмульсий можно разбить на 3 элементарные стадии:

- 1. Столкновение взвешенных водяных капелек.
- 2. Слияние их в более крупные.
- 3. Осаждение укрупнившихся капель.

Чтобы обеспечить возможно большее число столкновений водяных капелек увеличивают скорость их движения в нефти различными способами: перемешиванием в специальных смесителях, при помощи ультразвука, электрического поля, подогрева и т. п. Все существующие способы по типу энергии, прилагаемой для обезвоживания нефтешламов, можно разделить на следующие группы:

- 1. Механические фильтрация, центрифугирование, обработка ультразвуком, магнитным полем [5].
- 2. Термические подогрев и отстаивание при атмосферном давлении и под избыточным давлением, промывка горячей водой, криодеэмульгирование [6].

- 3. Физико-химические обработка эмульсии различными (чаще всего поверхностно-активными) реагентами-деэмульгаторами.
- 4. Электрические обработка эмульсии в постоянном или переменном электрическом поле.

Ввиду того, что эффективность деэмульсации определяется множеством факторов, на практике ни один из перечисленных способов в чистом виде не применяется. В промышленности нашли применение сочетания различных способов, или комбинированные методы разрушения нефтяных эмульсий [7]. Не существует одного универсального метода деэмульсации, в каждом отдельном случае подбирается наиболее эффективный.

Нефтяные эмульсии, образующиеся в нефтешламах представляют собой состаренные эмульсии, характеризующиеся прочным адсорбционно-сольватным слоем на поверхности глобул воды, который препятствует их коалесценции. Такие эмульсии поддаются разрушению с большим трудом, требуется тщательный подбор реагентов. Решение данной задачи является актуальной проблемой в современной нефтяной промышленности. В работах [8-13] предлагаются различные способы отделения воды от нефтешламов.

Описание эксперимента

Для исследования процесса обезвоживания нефтешлама термомеханическим способом с применением центробежной форсунки был проведен эксперимент. В качестве сырья был использован нефтешлам без механических примесей, содержащий около 40% масс. воды и 8,7 г/л солей. Принципиальная схема установки приведена на рис.1.

Рис. 1 - Принципиальная схема установки обезвоживания нефтешлама

Сырье из обогреваемой емкости Е-1 подается насосом Н-1 в подогреватель П-1, где нагревается до температуры 150-200°С, а затем направляется в сепаратор С-1, оснащенный центробежной форсункой. Паронефтяная эмульсия двигается с высокой скоростью по тангенциальному каналу форсунки, что позволяет мелко диспергировать сырьевую смесь. При этом происходит разрушение "бронирующего" слоя на глобулах воды за счет механического распыления и испарения. В С-1 происходит разделение потока на тяжелую неиспаряющуюся часть и паровую фазу. Паровая фаза направляется в конденсатор Х-1, а затем в сепаратор С-2, где происходит разделение конденсата на легкую органическую часть и воду.

Таким образом, в вышеописанном методе сочетается механический (диспергирование в форсунке) и термический (испарение) приемы разделения водонефтяных эмульсий. Метод имеет ограничения по сырью - в

нем недопустимо присутствие мехпримесей, поскольку они вызовут засорение форсунки.

Материальный баланс эксперимента приведен в таблице 1.

Таблица 1 - Материальный баланс эксперимента

Приход			Расход		
Сырье	ΚΓ	%мас.	Продукт	ΚΓ	%мас.
Нефтешлам	0,528	100	Легкая	0,064	12
			часть		
			Тяжелая	0,248	47
			часть		
			Вода	0,216	41
Итого	0,528	100	Итого	0,528	100

Результаты анализов полученных продуктов и их обсуждение

Для полученных продуктов был проведен ряд анализов.

Для тяжелой части:

- определение содержания воды по методу Дина-Старка (ГОСТ 2477-65);
- определение содержания солей электрометрическим методом (ASTM D 3230-89);
- определение содержания общей серы методом спектрометрии (ГОСТ Р 51947-2002).

Для легкой части:

- определение плотности ареометром (ГОСТ 51069-97);
- фракционный состав (атмосферная разгонка, ГОСТ 2177-99);
- определение содержания общей серы методом спектрометрии (ГОСТ Р 51947-2002).

Результаты анализов для тяжелой и легкой частей приведены в табл. 2. Фракционный состав легкой части представлены на рис.2.

Таблица 2 - Результаты анализов органической части нефтешлама

Продукт	Результаты анализа					
	w воды,	w co-	Плотность	W		
	% мас.	лей,	при 20°C,	серы,		
		г/л.	г/см3	%		
				мас.		
Тяжелая	0.06	18,43	-	3,51		
часть						
Легкая	отсутст.	отсутст.	0,846	1,99		
часть						

Рис. 2 - Результаты атмосферной фракционной разгонки (ИТК) легкой части

Исходя из проведенных анализов, можно судить о подготовленности обезвоженного продукта. По степени подготовки нефти на промыслах разделяют на 3 группы [14]. Массовая доля воды в тяжелой части обезвоженного нефтешлама составила 0,06 % мас., что удовлетворяет требованиям стандарта (1-я группа подготовки). При этом концентрация хлористых солей в тяжелой части составила 18,43 г/л., что недопустимо. Во избежание накопления хлористых солей в органической части, нефтешлам предварительно необходимо промыть пресной водой. В легкой части вода и соли отсутствуют.

Массовое содержание серы в тяжелой и легкой частях составило 3,51 и 1,99 % масс. соответственно. Согласно стандарту тяжелая часть относится к особо высокосернистой, а легкая часть к высокосернистой. Плотность легкой части составила 846 кг/м³, что соответствует 1-му типу. Фракционная разгонка иллюстрирует сравнительно невысокий (ок. 10% мас.) выход фракций с температурой выкипания до 300.

Таким образом, описанный выше процесс позволяет эффективно разрушать "состаренные" эмульсии и отделять воду от нефтешламов. При этом получаемую легкую и тяжелую органические части можно смешать или перерабатывать раздельно. Выделенная вода не содержит солей и растворенных газов и может быть использована в технологических целей.

Литература

- 1. https://ru.wikipedia.org/wiki/Нефтешламы.
- Мазлова Е.А., Мещеряков С.В. Проблемы утилизации нефтешламов и способы их переработки. Монография. Издательский дом «Ноосфера», 2001. 56с.

- 3. Тимофеева С.С., Тимофеев С.С. Современные технологии переработки нефтешламов // Успехи современного естествознания. 2009. Ne 8 C. 10-11
- 4. Левченко Д.Н., Бергштейн Н.В., Худякова А.Д., Николаева Н.М. Эмульсии нефти с водой и методы их разрушения. М., Химия, 1967.
- 5. Ермеев А. М., Елпидинский А. А. Вестник Казан. технол. ун-та, 16, 2, 170-173 (2013)
- 6. Ермеев А. М., Елпидинский А. А. Вестник Казан. технол. ун-та, 17, 20, 293-295 (2014)
- 7. Заббаров Р. Р., Хуснутдинов И. Ш. Вестник Казан. технол. ун-та, 14, 9, 222-223 (2011)
- Установка для обезвреживания нефтяного шлама: пат. 57428. Федерация. №2006112618/22, заявл. 18.04.2006; опубл. 10.10.2006
- 9. Установка для обезвреживания нефтяного шлама: пат. 100186 Рос. Федерация. №2009148645/03, заявл. 29.12.2009; опубл. 10.12.2010. 3 с.
- 10. Механизированный комплекс по переработке нефтешламов: пат. 28685 Рос. Федерация. №2002135116/20; заявл. 27.12.2002, опубл. 10.04.2003. 3с.
- 11. Линия по обезвреживанию нефтесодержащего шлама: пат. 82208 Рос. Федерация, заявл. 29.12.08, опубл. 20.04.2009. 4 с.
- 12. Способ обезвреживания нефтесодержащего шлама: Пат. 2395466 Рос. Федерация. №2008147569; заявл. 02.12.2008; опубл. 27.07.2010. 7 с.
- Жаров О.А., Лавров В.А. Современные методы переработки нефтешламов // Экология производства. 2004.
 №5. С. 43-51.
- 14. ГОСТ 51858-2002 Нефть. Общие технические требования
- © Э. А. Галиуллин, аспирант каф. химической технологии переработки нефти и газа КНИТУ, edward@ingehim.ru; Р. З. Фахрутдинов, проф. каф. химической технологии переработки нефти и газа КНИТУ, frz07@mail.ru; Р. Джимасбе, магистрант той же кафедры.
- © E. A. Galiullin, of "Chemical technology of petroleum and gas processing" department of KNRTU, edward@ingehim.ru; R. Z. Fakhrutdinov, professor of "Chemical technology of petroleum and gas processing" department of KNRTU, frz07@mail.ru; R. Djimasbe, undergraduate student of "Chemical technology of petroleum and gas processing" department of KNRTU.