Khôlles de Mathématiques - Semaine 2

George Ober

17 avril 2024

1 Montrer qu'une composée d'applications inj/surj/bij est inj/surj/bij

Démonstration. Soient $u: E \to F$ et $v: F \to G$

 \Diamond Supposons u et v injectives.

Soient $(x_1, x_2) \in E^2$ fq tels que $(v \circ u)(x_1) = (v \circ u)(x_2)$.

Alors $v(u(x_1)) = v(u(x_2))$, mais v est injective donc, $u(x_1) = u(x_2)$ mais u est injective donc $x_1 = x_2$. Ainsi $v \circ u$ est injective.

 \Diamond Supposons u et v surjectives Soit $y \in G$ fixé quelconque.

v est surjective donc $\exists t \in F : v(t) = y$

u est surjective, donc $\exists x \in E : u(x) = t$ Ainsi,

$$(v \circ u)(x) = v(u(x)) = v(t) = y$$

Donc $v \circ u$ est surjective.

 \Diamond Supposons u et v bijectives.

Le fait que $v \circ u$ est une bijection est une conséquence des deux points précédents.

2 Montrer que, si u est une application de E dans F, si v est une application de F dans E telle que $v \circ u = \mathrm{Id}_E$ et $u \circ v = \mathrm{Id}_F$ alors u est bijective (v aussi) et sa bijection réciproque est v

Démonstration. Soient $(u, v) \in \mathcal{F}(E, F) \times \mathcal{F}(F, E)$ qui satisfont les conditions de l'énnoncé.

 $\Diamond u$ est injective

Soient $(x_1, x_2) \in E^2$ fixés quelconques tels que $u(x_1) = u(x_2)$. Alors $v(u(x_1)) = v(u(x_2))$. Donc $x_1 = x_2$ puisque $v \circ u = \mathrm{Id}_E$

 $\Diamond\ u$ est surjective Soit $y\in F$ fixé quelconque. Posons t=v(y). Ainsi, u(t)=u(v(y))=y car $u\circ v=\mathrm{Id}_F$

Ainsi, u est bijective, notons u^{-1} sa bijection réciproque

$$u^{-1} \circ (u \circ v) = (u^{-1} \circ u) \circ v$$
$$u^{-1} \circ \operatorname{Id}_F = \operatorname{Id}_E \circ v$$
$$u^{-1} = v$$

3 Montrer que $v \circ u$ injective implique u injective + montrer que cela n'implique pas v injective.

Démonstration. Soient $(u, v) \in \mathcal{F}(E, F) \times \mathcal{F}(F, G)$.

Supposons $v \circ u$ est injective Soient $(x_1, x_2) \in E^2$ fixés quelconques tels que $u(x_1) = u(x_2)$. Composons par v à gauche : $v \circ u(x_1) = v \circ u(x_2)$ Puisque $v \circ u$ est injective, cela implique que $x_1 = x_2$.

FIGURE 1 – Ici, $v \circ u$ est injective, on a montré que cela impliquait u injective. Pourtant, v n'est pas injective.

4 Montrer que $v \circ u$ surjective implique v surjective + montrer que cela n'implique pas u surjective.

Démonstration. Soient $(u, v) \in \mathcal{F}(E, F) \times \mathcal{F}(F, G)$.

Supposons $v \circ u$ est surjective Soit $y \in G$ fixé quelconque. Puisque $v \circ u$ est surjective, $\exists x \in E : (v \circ u)(x) = y$ Donc v(u(x)) = y. Donc, en posant t = u(x), on a v(t) = y. Ainsi, v est surjective.

FIGURE 2 – Ici, $v \circ u$ est surjective, on a montré que cela impliquait v surjective. Pourtant, u n'est pas surjective.

Remarque : Les deux contre contre-exemples exhibés ici sont les mêmes, mais il y en a bien d'autres où $v \circ u$ n'est pas bijective.

5 Soit u une application de E dans F. Si A et A' sont des parties de E, y'a-t-il égalité entre $u(A \cap A')$ et $u(A) \cap u(A')$? (On justifiera les réponses aux deux inclusions suggérées par la question)

 $\label{eq:definition} \textit{D\'emonstration}. \text{ Soit } u \in \mathcal{F}(E,F) \text{ fix\'ee quelconque, } (A,A') \in \mathcal{P}(E)^2, \text{ deux parties de } E.$

 $\lozenge \text{ Soit } y \in u(A \cap A') \text{ fix\'e quel$ $conque. Par d\'efinition } \exists x \in (A \cap A') : u(x) = y. \text{ Ainsi, } x \in A \implies u(x) \in u(A) \ x \in A' \implies u(x) \in u(A')$

$$\left. \begin{array}{l} u(x) \in u(A) \\ u(x) \in u(A') \end{array} \right\} \implies u(x) \in u(A) \cap u(A')$$

Donc $u(A \cap A') \subset u(A) \cap u(A')$.

♦ En revanche l'inclusion réciproque est fausse : considérons

$$\begin{array}{c|cccc} & \{1,2,3,4\} & \rightarrow \{a,b,c,d\} \\ 1 & \mapsto a \\ 2 & \mapsto b \\ 3 & \mapsto a \\ 4 & \mapsto d \end{array}$$

Si on choisit $A = \{1, 2\}$ et $A' = \{2, 3\}$.

П

Alors,
$$u(A) = \{a, b\}$$
, et $u(A') = \{a, b\}$ $u(A \cap A') = u(\{2\}) = \{b\}$ et $u(A) \cap u(A') = \{a, b\} \not\subset \{b\}$

6 Montrer que, si u est une application de E dans F. Si B est une partie de F, alors $u^{-1}(F \setminus B) = E \setminus u^{-1}(B)$.

Démonstration. Soit $x \in u^{-1}(F \setminus B)$. Raisonnons par équivalences.

$$x \in u^{-1}(F \setminus B) \iff u(x) \in F \setminus B$$
$$\iff \operatorname{non}(u(x) \in B)$$
$$\iff \operatorname{non}(x \in u^{-1}(B))$$
$$\iff x \in E \setminus u^{-1}(B)$$

7 Montrer que, parmi les entiers ne s'écrivant qu'avec des 7, il existe au moins un multiple de 61.

Démonstration. Posons s la suite des entiers tels que $\forall n \in \mathbb{N}^*, s_n = \underbrace{7 \dots 7}_{n \text{ fois}}$. Considérons les 62 premiers termes de la suite.

Puisqu'il y a 61 classes de congruences modulo 61, le principe des tiroirs de Dirichlet nous permet d'affirmer que $\exists (k,l) \in [\![1,62]\!]^2, k < l : s_k \equiv s_l[61]$.

Remarquons maintenant que $s_l - s_k \equiv 0$ [61], autrement dit que 61 | $s_l - s_k$. Cependant,

$$s_l - s_k = \underbrace{7 \dots 7}_{l \text{ fois}} - \underbrace{7 \dots 7}_{k \text{ fois}} = \underbrace{7 \dots 7}_{l - k \text{ fois}} \underbrace{0 \dots 0}_{k \text{ fois}} = s_{l-k} \times 10^k$$

Donc $61 \mid 10^k \times s_{l-k}$, mais $\operatorname{pgcd}(61, 10^k) = 1$ donc le théorème de Gauss donne $61 \mid s_{l-k}$. Ainsi, parmi les entiers ne s'écrivant qu'avec des 7, il existe au moins un multiple de 61.