Basics

Notations

- $\binom{V}{k} := \{A : A \subseteq V \land |A| = k\}$ • $[n] := \{1, \dots, n\} \subset \mathbb{N}$ • Power set $2^X := \{A : A \subseteq X\}$
- Graphs
- **Definition**: G = (V, E) with $E \subseteq V^2$, $V \cap E = \emptyset$
- Vertex: $v \in V$ for graph G = (V, E)
- $\circ \ \ v \ incident \ with \ e \Longleftrightarrow v \in e$
- $\circ v_1, v_2$ ends of $e \Leftrightarrow e = v_1 v_2$
- $\circ v_1, v_2 \ adjacent/neighbors \iff v_1v_2 \in E$
- Edge: $e = \{x, y\} \in E$ for graph G = (V, E) (short e = xy)
- \circ e edge at $v \Leftrightarrow v$ incident with e
- \circ e joins $v_1, v_2 \Leftrightarrow e = v_1 v_2$
- $\circ \ \ xy \text{ is X-Y-edge} \Longleftrightarrow x \in X \land y \in Y$
- $\circ \ e_1, e_2 \ \textit{adjacent/neighbors} \Leftrightarrow \ \exists \ v : v \in e_1 \ \land \ v \in e_2$
- Vertex sets:
- $\circ V(G) = V \text{ for graph } G = (V, E)$
- o $\ X \in V(G)$ independent \Leftrightarrow no $x_1, x_2 \in X$ are adjacent
- neighborhood of $v \in V(G)$: $N(v) = \{u \in V(G) : uv \in E(G)\}$
- - \circ E(G) = E for graph G = (V, E)
 - E(X,Y): set of edges between $X \subset V(G)$ and $Y \subset V(G)$
 - E(x, Y): set of edges between vertex $x \in V(G)$ and $Y \in V(G)$
- E(v): set of edges at $v \in V(G)$
- Order: = |V(G)|, short |G|
- Size: = |E(G)|, short ||G||
- Trivial graph: graph of order 0 or 1
- Incidence graph of $G: IG = (V \cup E, \{\{v, e\} : v \in e, e \in E\})$
- Isomorphic (G_1 to another graph G_2 , write $G_1 \cong G_2$ or even $G_1 = G_2$): $\exists \ \text{bijection} \ f: V_1 \to V_2: \{u,v\} \in E_1 \Leftrightarrow \{f(u),f(v)\} \in E_2$ • Graph union: $G \cup G' = (V(G) \cup V(G'),E(G) \cup E(G'))$

- Graph intersection: $G \cap G' = (V(G) \cap V(G'), E(G) \cap E(G'))$ Graph multiplication: G * G': join all $v \in G$ with all $v' \in G'$ (with $V(G) \cap V(G') = \emptyset$)
- Subgraph G' of G (write $G' \subseteq G$): if $V(G') \subseteq V(G)$ and $E(G') \subseteq E(G)$
- G contains G
- o G' proper subgraph of G: if $G' \subseteq G$ and $G' \neq G$ o G' induced subgraph of G: $G' \subseteq G$ and E(G') contains all edges of G with both ends in V(G'), V(G') induces G', write G' = G[X] (with X = V(G'))
- o $\mathit{Edge\text{-}induced}$ $\mathit{subgraph}$: subgraph induced by $X \subseteq E(G)$, note G[X]
- \circ G' spanning subgraph of G: V(G') = V(G)
- Supergraph: G of G
 (write G ⊇ G
): as above.
 Vertex cover: V
 ⊆ V(G) s.t. any e ∈ E(G) is incident to a vertex in V
- · Graph subtraction:
- $\circ G U = G[V(G) \setminus U]$ for some vertex set U
- $\circ \ G v = G[V(G) \setminus \{v\}] \text{ for some vertex } v$ $\circ \ G G' = G[V(G) \setminus V(G')] \text{ for some graph } G'$
- Edge addition: $G + F = (V(G), V(E) \cup F)$ for some $F \subseteq V(G)^2$
- Complement: $\overline{G} = (V(G), V^2 \setminus E(G))$
- Line graph of $G: L(G) = (E(G), \{xy \in E(G)^2 : x, y \text{ adjacent in } G\})$ Complete graph: (X, X^2) with vertex set X
- $\circ K_n$: complete graph on n vertices

Vertex degrees

- Degree of $v \in V$: $d(v) = \deg(v) = |N(v)|$
- $v \in V(G)$ isolated: d(v) = 0
- $v \in V(G)$ leaf: d(v) = 1
- $\circ \;$ number of vertices of odd degree is even
- Minimum degree of graph $G: \delta(G) = \min\{d(v) : v \in V(G)\}$
- Maximum degree of graph $G: \Delta(G) = \max\{d(v) : v \in V(G)\}$
- Degree sum: $\sum_{v \in V(G)} \deg(v) = 2|E(G)|$
- Average degree of graph $G: d(G) = \frac{1}{|G|} \sum_{v \in V} d(v)$
- $\circ \ \delta(G) \le d(G) \le \Delta(G)$
- k-regular graph: $\forall v \in V(G) : d(v) = k$
- o cubic graph: 3-regular graph
- Vertex-Edge-ratio of graph $G: \varepsilon(G) = \frac{||G||}{|G|}$
- $\circ \ \varepsilon(G) = \frac{1}{2}d(G)$
- every graph with $||G|| \ge 1$ has $H \subseteq G$ with $\delta(H) > \varepsilon(H) \ge \varepsilon(G)$

Paths

- Path: $(\{v_1,\ldots,v_n\},\{\{v_1,v_2\},\ldots,\{v_{n-1},v_n\}\})$ (read: v_0v_n -path)
 - \circ shorthand: $v_1 \dots v_n$
 - $\circ v_0, v_n$ linked by path
 - $\circ \ v_0$, v_n end-vertices/ends of path
 - $\circ v_1, \ldots, v_{n-1}$ inner vertices of path
- Length: $|E(P)| \neq |V(P)|$
- Shorthands $(0 \le i \le j \le k)$:
- $P = x_0 \dots x_k, \mathring{P} = x_1 \dots x_{k-1}$
- $\circ \ Px_i = x_0 \dots x_i, P\mathring{x_i} = x_0 \dots x_{i-1}$
- $\circ \ x_i \overset{.}{P} = x_i \dots x_k, \mathring{x_i} P = x_{i+1} \dots x_k$
- $\circ \ x_i P x_j = x_i \dots x_j, \mathring{x_i} P \mathring{x_j} = x_{i+1} \dots x_{j-1}$
- Path concatenation: $Px \cap xQy \cap yR = PxQyR$ • A-B-path: $V(P) \cap A = \{x_0\} \wedge V(P) \cap B = \{x_n\}$
- H-path: graph H, P meets H exactly in its ends
- **Independent**: two ab-paths are independent \Leftrightarrow they only share a and b
- Path existence: Every G with $\delta(G) \ge 2$ contains path of length $\delta(G)$
- Distance: $d_G(x,y) = \min(\{k : \exists x-y\text{-path of length } k\} \cup \{\infty\})$
- Central: $v \in V(G)$ where cen = $\max\{d_G(v,x) : v \neq x \in V(G)\}$ is minimal
- Radius: $\operatorname{rad}(G) = \operatorname{minimal cen} = \operatorname{min}_{x \in V(G)} \operatorname{max}_{y \in V(G)} d_G(x,y)$
- Diameter of G: diam $(G) = \max\{d_G(x,y) : x,y \in V(G)\}$
- o radius-diameter-relation: $rad(G) \le diam(G) \le 2rad(G)$
- o radius-degree-vertex-restriction:

$$\operatorname{rad}(G) \leq k \wedge \Delta(G) \leq d \geq 3 \Rightarrow |G| \leq \frac{d}{d-2}(d-1)^k$$
• Walk: alternating sequence $v_0 e_0 \dots e_{k-1} v_k$ s.t. $e_i = v_i v_{i+1} \ (\forall i < k)$

- \circ closed walk: $v_k = v_0$
- o walk-path-relation: all vertices in walk distinct → path
- \circ walk-path-induction: $\exists v_0 v_k$ -walk $\Rightarrow \exists v_0 v_k$ -path

Cycles

- Cycle: C = P + $x_{k-1}x_0$ with path P = $x_0 \dots x_{k-1}$ (k \geq 3)
- \circ shorthand: $x_0 \dots x_{k-1} x_0$
- Length: = |C| = ||C||
- **k-cycle**: C_k = cycle of length k
- Girth of graph $G: g(G) = \min (\{k : G \text{ contains } C_k\} \cup \{\infty\})$
 - \circ girth-diameter-relation: $g(G) \le 2 \operatorname{diam}(G) + 1$
- girth-vertex-relation: $\delta(G) \ge 3 \Rightarrow g(G) < 2\log|G|$
- Circumference of graph G: = $\max (\{k : G \text{ contains } C_k\} \cup \{0\})$
- Chord of cycle $C \subseteq G$: = $xy \in E(G)$ with $xy \notin E(C)$, but $x, y \in V(C)$
- Induced cycle: induced subgraph of G that is a cycle (= cycle in G with no chords)
- Cycle existence: Every G with $\delta(G) \ge 2$ contains cycle of length $\ge \delta(G) + 1$
- Odd closed walk, odd cycle: G has odd closed walk $\Rightarrow G$ has odd cycle

Connectivity

- Connected graph $G: \forall x, y \in V(G): \exists xy$ -path
- connected subset $U \subseteq V(G)$: if G[U] is connected
- Vertex enumeration: G connected \Rightarrow vertices can be enumerated v_1, \ldots, v_n s.t. $G_i := G[v_1, \dots, v_i]$ is connected $(\forall i \leq n)$
- · Component: maximal connected subgraph
 - graph partitioning: components partition G
- Subgraph separation: $X \subset V(G)$ separates $A, B \subset V(G) \Leftrightarrow$ any A-B-pathhas vertex in X
- Cut-Vertex: vertex separating two other vertices of the component
- Bridge: edge separating its ends (= edges of component not lying on any cycle)
- **k-connected**: if $|G| > k \land G X$ is connected $\forall X \subseteq V(G)$ with |X| < k
- ightharpoonup no two vertices in G are separated by fewer than k other vertices \rightarrow any two vertices can be joined by k independent paths
- **k-linked**: if for any 2k vertices $(s_1,\ldots,s_k,t_1,\ldots,t_k)$ \exists pairwise disjoint s_it_i paths (note: k-connected $\Rightarrow k$ -linked)
- Connectivity: $\kappa(G) = \max\{k : G \text{ is } k\text{-connected}\}$
- 1-edge-connected: if $|G| > 1 \land G F$ is connected $\forall F \subseteq E(G)$ with |F| < l
- Edge-connectivity: $\kappa'(G) = \lambda(G) = \max\{l : G \text{ is } l\text{-edge-connected}\}$
- Connectivity and smallest degree: $\kappa(G) \leq \kappa'(G) \leq \delta(G)$
- Connectivity and average degree: $d(G) \ge 4k \Rightarrow G$ has k-connected subgraph
- Menger's theorem: for $A, B \subseteq V(G)$:
 - \min # of vertices separating A and $B = \max$ # of disjoint A-B-paths
 - \circ edge corollary: minimum number of edges separating a and b = maximum number of edge-disjoint a-b-paths
- · Menger global:
 - k-connected $\iff \forall a, b \in V(G) \exists k$ pairwise independent ab-paths
 - o k-edge-connected $\Leftrightarrow \forall a, b \in V(G) \exists k$ pairwise edge-disjoint ab-paths

Trees and forests

- Forest: Graph with no cycle as subgraph
- · Tree: Graph that is connected and acyclic
- \Leftrightarrow G is connected and $\forall e \in E(G) : G e$ is disconnected (minimal-connected)
- $\Leftrightarrow G$ is acyclic and $\forall xy \notin E(G) : G \cup xy$ has cycle (maximal-acyclic)
- \Leftrightarrow G is connected and 1-degenerate $(\forall G' \subseteq G : \delta(G') \le 1)$
- $\Leftrightarrow G \text{ is connected and } ||G|| = |G| 1$
- \Leftrightarrow G is acyclic and ||G|| = |G| 1
- $\Leftrightarrow \forall u, v \in V(G) \exists \text{ unique } uv\text{-path}$
- · Special trees: path, star, spider, caterpillar, broom
- Leaf existence: Tree T, $|T| \ge 2 \Rightarrow T$ has leaf
- Edge count: Tree T, $|T| = n \Rightarrow ||T|| = n 1$

Bipartite graphs

- **r-partite** graph G:V(G) allows partitioning in r classes s.t. $\forall e=xy\in E(G)$: \boldsymbol{x} and \boldsymbol{y} are in different classes
- · Bipartite graph: 2-partite graph
- $\iff G$ contains no cycles of odd length
- \circ complete bipartite: $K_{m,n} = (A \cup B, \{a,b\} : a \in A, b \in B)$

Contraction and minors

- **Subdivision** of graph G: any graph obtained from G by subdividing edges
- Topological minor: H is topological minor if $TH \subseteq G$ where TH is built from H by subdividing edges
- $\circ \ \mathit{branch\ vertices}$: original vertices of H
- o *subdividing vertices*: vertices placed on edges joining branch vertices
- MH: $G \stackrel{(\star)}{=} MH$ is minor of H if
- $\circ \ V(G) = V_1 \stackrel{\cdot}{\cup} \cdots \stackrel{\cdot}{\cup} V_n \text{ with } n = |H|$
- $\circ \ \ G[V_i] \ \text{connected} \ (\forall i=1,\ldots,n)$
- o If $V(H) = \{v_1, \dots, v_n\}$ and $v_i v_j \in E(H)$, then \exists edge between V_i and V_i (\star): Notation abuse: MH is class of graphs
- Branch sets: V_i 's from above
- · Extended branch graph: Branch set together with incident edges
- **Minor** (H of G, noted $H \preceq G$): $\iff MH \subseteq G$
- \rightarrow $H \leq G \iff H$ can be obtained by edge/vertex deletions + **contractions**.
- Note: $TH \subseteq MH$
- Edge contraction:

$$G \circ xy = ((V \setminus \{x,y\}) \cup v_{xy},$$

$$(E \setminus \{e : x \in E \lor y \in e\}) \cup \{v_{xy}z : z \in (N_G(x) \cup N_G(y)) \setminus \{x,y\}\})$$
 th $xy \in E(G)$

• De-contraction: if $\exists xy \in E(G) : \kappa(G \circ xy) \ge 3$ (for G with $\kappa(G) \ge 3$, $|G| \ge 5$)

Euler tours

- Definition: closed walk with
- \circ no edges of G are repeatedly used
- all edges of G are used
- Eulerian graph: graph containing an Euler tour $\Leftrightarrow \forall v \in V(G) : d(v)$ even

Algebraic assets

• Adjacency matrix: $A(G) = \mathbb{R}^{n \times n} \ni A_{i,j} = \begin{cases} 1, & ij \in E \\ 0, & \text{else} \end{cases}$

Other graph notions

- Digraph: G = (V, E) with vertex set V and edge set $E \subseteq \{(u, v) : u, v \in V\}$
- Multigraph: G = (V, E) with vertex set V and multiset E of V-pairs
- Multigraph: G = (V, E) with vertex set V and edge set $E \subseteq 2^V = \{A : A \subseteq A \subseteq A \}$

Matching, Covering, Packing

Matching in bipartite graphs

• Vertex cover: $U \subseteq V(G)$ s.t. all edges in G are incident to a vertex $\in U$

- Matching M: set of independent edges in a graph
 - matching graph: $\delta(G) = \Delta(G) = 1$
- saturating: $G = (A \cup B, E)$ has matching saturating A
- $\Leftrightarrow \forall S \subseteq A : N(S) \geq |S| \ \ (N(S) \coloneqq \{b \in B : ab \in E, a \in S\})$ \circ nearly: $G = (A \cup B, E), \forall S \subseteq A : |N(S)| \ge |S| - d \quad (d \ge 1).$
- ⇒ ∃ matching M saturating all but at most d vertices of A • k-factor: k-regular spanning subgraph
- Matching vs vertex cover: size of largest matching = size of smallest vertex cover (Königs theorem)
- · Matching existence:
- neighbor-based: $G = (A \cup B, E)$ contains matching of $A \Leftrightarrow |N(S)| \ge |S|$
- o regular + bipartite: G is k-regular + bipartite ($k \ge 1$) $\implies G$ has 1-factor
- o 2k-regular: graph 2k-regular ($k \ge 1$) \Longrightarrow has 2-factor
- · Marriages: make matchings based on preferences
- o preferences: family $(\leq_v)_{v \in V}$ of linear orderings \leq_v on E(v)
- stable matching M:
 - $\forall e \in E \setminus M \; \exists \; f \in M : e \text{ and } f \text{ have common vertex } v \text{ with } e <_v f$
- o stable matching existence: For every set of preferences, G has stable matching
- **f-factor**: spanning subgraph $H \subseteq G$ with $\deg_H(v) = f(v)$,
- $f: V(G) \to \{0, 1, \dots\} \text{ with } f(v) \le \deg(v) \quad (\forall v \in V)$
- **H-factor** (aka perfect H-packing): spanning subgraph s.t. each component is $\cong H$ • existence: if $\delta(G) \ge \left(1 - \frac{1}{k}|V(G)|\right)$ and k divides |G|, then G has K_k -factor

Matchings in general graphs

- Perfect matching: spanning + matching subgraph of G (aka 1-factor)
- existence (Tutte): G has perfect matching $\Leftrightarrow \forall S \subseteq V(G) : q(G-S) \leq S$ (Tutte's condition, q(G) = number of components in G with odd order)
- existence (Petersen): G bridgeless + cubic $\Rightarrow G$ has 1-factor

Connectivity

2-connected graphs and subgraphs

- 2-connected construction: G is 2-connected \Leftrightarrow it can be constructed by successively adding paths to a cycle (removing those paths: ear-decomposition)
- Block: maximal 2-connected subgraph or bridge
- o share < 1 vertices with another
- \circ cycles of G = cycles of its blocks
- bounds of G = minimal cuts of its blocks
- · Block-cut-vertex graph
- $\circ V = \text{set of blocks} \cup \text{set of vertices}$
- $\circ E = \{\{v, B\} : v \in V(B), \text{ cut-vertex } v, \text{ block } B\}$
- o block-cut-vertex graph of connected graph is tree

Structure of 3-connected graphs

- 3-connected + decontraction: all 3-connected graphs can be built by iteratively de-contracting vertices of K_4
- 3-connected + contraction: 3-connected $\iff \exists$ separate G_0,\ldots,G_k with $G_0 = K_4, G_k = G, G_i = G_{i+1} \circ xy$ with $deg(x), deg(y) \ge 3$

Rest

- Degree sequence: multiset of degrees of vertices in V(G)
- \circ graphic: deg. seq. (d_1,\ldots,d_n) , iff

 - 1. $d_1 + \cdots + d_n$ even 2. $\sum_{i=1}^k d_i \le k(k-1) + \sum_i i = k+1^n \min(d_i, k)$ $(\forall 1 \le k \le n)$

Planar graphs

Basic definitions

- · Plane graph: graph drawn without intersecting edges
- Planar graph: graph that can be dran as plane graph
- Homeomorphism: $f: \mathbb{R}^n \to \mathbb{R}^n$ continuous s.t. f^{-1} is also continuous
- Arc: homeomorphic image of [0,1] in \mathbb{R}^2 under f
 - endpoints: f(0) and $f(1) \rightarrow$ arc "joins" endpoints
 - o polynomial arc: arc that is union of finitely many straight line segments

- Region $Y \subseteq \mathbb{R}^2 \setminus X$: any two points $\in Y$ could be joined by arc and Y is maximal $(X \subseteq \mathbb{R}^2)$
- Boundary of $X \subseteq \mathbb{R}^2$:

 $\delta X = \{y \mid \forall \varepsilon > 0 : B(y, \varepsilon) \text{ contains points of } X \text{ and not of } X\}$

• Jordan curve theorem: If $X \subseteq \mathbb{R}^2$ and homeomorphic to $\{\overline{x} : \text{dist}(\overline{x}, 0) = 1\}$ (unit circle), then $\mathbb{R}^2 \setminus X$ has two regions R_1 , R_2 and $\delta R_1 = X = \delta R_2$.

Plane graphs

- **Definition**: graph such that E(G) is set of arcs in \mathbb{R}^2 and endpoints of arcs in E(G) are vertices and:
 - $\forall e, e' \in E, e \neq e' : e \text{ and } e' \text{ have distinct sets of edge sets}$
- o $\forall e \in E, \mathring{e} = e \setminus \{\text{endpoints}\}\ \text{doesn't contain any vertices and points from}$
- Faces: regions of $\mathbb{R}^2 \setminus \left(\bigcup_{e \in E} e \cup V\right)$
- face set of graph G: F(G)
- · Maximally plane: no edges can be added without breaking planarity
- o *plane triangulation*: every face is bounded by triangle ⇔ graph is maximally plane
- Edge limitation 1: Plane graph: $|G| \ge 3 \Rightarrow ||G|| \le 3n 6$
- **Edge limitation 2**: Plane graph with no \triangle : $||G|| \le 2|G| 4$
- **Properties**: Let G be plane graph and $H \subseteq G$.
- face inheritance: $\forall f \in F(G) \exists f' \in F(H) : f' \supseteq f$ border inheritance: $\delta f \subseteq H \Rightarrow f' = f$
- $\circ \ \textit{edge-border relations} : e \in E(G), f \in F(G) \Rightarrow e \subseteq \delta f \vee \delta f \cap \mathring{e} = \varnothing$
- o edges in circles:
 - $e \in E(G)$ is edge of a cycle $\Rightarrow e$ is on boundary of exactly 2 faces

not edge of a cycle $\Rightarrow e$ is on boundary of exactly 1 face

- faces in cycles: $f_1, f_2 \in F(G)$. $f_1 \neq f_2 \land \delta f_1 = \delta f_2 \Rightarrow G$ is cycle
- cyclic boundaries: $\kappa(G) \ge 2 \Rightarrow$ each face is bounded by cycle
- o plane forests: plane forests have exactly 1 face
- 2-connected: 2-connected plane graph $\Rightarrow \forall f \in F(G)$ bounded by cycle
- o 3-connected: boundaries of 3-connected plane graph = its non-separating indu-
- o order ≥ 3: plane graph of order ≥ 3 maximally plane \Leftrightarrow is plane triangulation
- Euler's formula: If G is connected plane graph with f faces, then

|G| - ||G|| + f = 2

- **Dual multigraph**: Given plane G:
- 1. Insert vertex in each face
- 2. Put edge \tilde{e} between vertices if respective faces share e (s.t. \tilde{e} and e cross once)
- 3. Result: Dual graph G' of G (plane multigraph)
- \rightarrow faces of G properly k-colored $\Leftrightarrow \exists$ proper k-coloring of vertices of G'

Planar graphs

- **Definition**: graph s.t. \exists plane graph G' and bijection $f:V(G)\to V(G')$ s.t. $\forall u, v \in V(G), uv \in E(G) : f(u), f(v)$ are endpoints of arc in G'
- Planar embedding of G: f from the definition
- Planar because of minors: The following statements are equivalent:
- \circ G is planar
- \circ $G \not\supseteq MK_5 \land G \not\supseteq MK_{3,3}$
- \circ $G \not\supseteq TK_5 \land G \not\supseteq TK_{3,3}$
- $\delta(G)$ limitation: Planar graph $\delta(G) \leq 5$
- Non-planar graphs: K_5 and $K_{3,3}$ are not planar
- Kuratowski's lemmas:
- 1. $(TK_5 \subseteq G \vee TK_{3,3} \subseteq G) \Longleftrightarrow MK_5 \subseteq G \vee MK_{3,3} \subseteq G$
- 2. $\kappa(G) \ge 3 \land MK_5 \not\subseteq G \land MK_{3,3} \not\subseteq G \Rightarrow G$ is planar
- 3. $\kappa(G) \geq 3$, G edge-maximal wrt not containing TX. If S is vertex-cut of G, $|S| \le 2 \land G = G_1 \cup G_2, S = V(G_1) \cap V(G_2)$, then G_i is edge-maximal with no TX and S induces an edge
- 4. $|G| \ge 3$, G edge-maximal wrt not containing TK_5 and $TK_{3,3} \Rightarrow \kappa(G) \ge 3$
- 2-cell (embedding of ${\cal G}$ on surface ${\cal S}$): any closed simple curve in any region of S-G is continuously contractible into a point
- Euler characteristic: G embedded on surface $S \Rightarrow n-e+f$ = Euler characteristic
- Euler genus: $n e + f = 2 2\gamma \Rightarrow$ Euler genus 2γ of S
- $\frac{7+\sqrt{1+48\gamma}}{2}$ • Heawood's formula: $\chi(G) \leq$

 $f(\gamma), {\it Heawoods\ number} \label{eq:formula}$ (for G embedded on S with Euler char $2-2\gamma)$

• Klein bottle: $K_{f(\gamma)}$ is embeddable on S, unless S is klein bottle

Coloring

Base definitions

- Vertex coloring: map $c: V(G) \to S$ with $c(v) \neq c(w)$ for adjacent v, w color set S
 - \circ k-coloring: coloring $c:V(G)\to S$ with |S|=k
- (Vertex) chromatic number: = $\chi(G) := \min\{k \in \mathbb{N} : G \text{ has } k\text{-coloring}\}\$
 - $\circ \ \chi(G) \ge \omega(G)$
- $\circ \ \chi(G) \ge \frac{|G|}{\alpha(G)}$
- $\circ \chi(G) \leq \Delta(G) + 1$ (greedy coloring)
- o G connected, not complete, no odd cycles $\Rightarrow \chi(G) \leq \Delta(G)$
- k-chromatic graph: $\chi(G) = k$
- k-colorable graph: $\chi(G) \leq k$
- Color classes: partitions of V(G) with same color
- Equitable coloring: proper coloring + color classes have almost (± 1) equal size • existence: any graph has equitable coloring in $(\Delta(G) + 1)$ colors
- ij-flip: $c':V(G) \to [k]$ is ij-flip at $v \in V(G)$
- $\Leftrightarrow c'$ obtained by flipping colors i and j in max. conn. component containing v
- Edge coloring: map $c: E(G) \to S$ with $c(e) \neq c(f)$ for adjacent e, f
- \circ edge coloring of $G \Leftrightarrow$ vertex coloring of L(G)
- k-edge-coloring: edge-coloring $c: E(G) \to S$ with |S| = k
- Edge chromatic number: = $\chi'(G) \coloneqq \min\{k \in \mathbb{N} : G \text{ has } k\text{-edge-coloring}\}$

Coloring maps and planar graphs

- 4-color-theorem: every planar graph is 4-colorable
- 3-color-theorem: every triangle-free planar graph is 3-colorable

Coloring vertices

- Chromatic number upper bound: $\chi(G) \leq \frac{1}{2} + \sqrt{2||G||} + \frac{1}{4}$
- Greedy coloring: sort vertices v_1,\ldots,v_n , color them with the smallest possible color starting at v_1
 - \rightarrow never uses more than $\Delta(G) + 1$ colors
- coloring number of graph G: col(G) := smallest k s.t. G has vertex enumeration where each vertex is preceded by < k neighbors

Coloring edges

- Vizing's theorem: for every graph $G, \chi'(G) \in \{\Delta(G), \Delta(G) + 1\}$
- Bipartite graphs: $\chi'(G) = \Delta(G)$

Perfect graph

- **Definition**: $\forall H \subseteq_{\text{ind}} G : \chi(H) = \omega(H)$
- Perfect complement: G is perfect $\Leftrightarrow \overline{G}$ is perfect
- Perfect graph conjecture: G is perfect \Leftrightarrow $C_{2k+1} \not\subseteq G$ for $k \ge 2 \land \overline{C_{2k+1}} \not\subseteq G$

Posets

- **Definition**: antisymmetric, reflexive, transitive relation on X(write $x \le y$ instead of (x, y))
- Incidence poset of G: poset whose cover diagram is represented by IG with vertices all below the edges
- Poset dimension: $\dim(R)$ = smallest $k \in \mathbb{N} : R$ is intersection of k total orders
- Poset dimension in planar graphs: G planar $\Leftrightarrow \dim(\text{incidence poset}) \leq 3$

List-colorings

- L-list-colorable: if $\exists c: V \to \mathbb{N} \ \forall v \in V : c(v) \in L(v)$ (for *list of colors* $L(v) \subseteq \mathbb{N}$ for each vertex, adjacent vertices receive different colors)
- **k-list-colorable**/-**choosable**: if G is L-list-colorable for each list L
- List chromatic number: $\chi_l(G) = \operatorname{ch}(G)$
 - $= \min \left\{ k : G \text{ is } L\text{-colorable } \forall L : V \to 2^{\mathbb{N}} : |L(v)| = k \forall v \in V(G) \right\}$
- $\chi_l(G) \ge \chi(G)$ because we can choose $L(v) = \{1, \dots, k\} (\forall v \in V(G))$
- $\circ \ \text{ often } \chi_l(G) \gg \chi(G) \, (\text{see } K_{m,n} \colon \chi = 2, \chi_l \approx \log n)$
- Planar graphs: $\chi_l(G) \leq 5$
- Locally planar graphs: $\chi_l(G) \leq 5$