# The Extraordinary Properties of Water



#### Water

· A water molecule (H<sub>2</sub>O), is made up of three atoms --- one oxygen and two hydrogen.





#### Water is Polar

- In each water molecule, the oxygen atom attracts more than its "fair share" of electrons
- · The oxygen end "acts" negative
- · The hydrogen end "acts" positive
- · Causes the water to be POLAR
- However, Water is neutral (equal number of e- and p+) --- Zero Net Charge

### Hydrogen Bonds Exist Between Water Molecules

 Formed between a highly Electronegative atom of a polar molecule and a Hydrogen

 One hydrogen bond is weak, but many hydrogen bonds are strong



# Interaction Between Water Molecules

Negative Oxygen end of one water molecule is attracted to the Positive Hydrogen end of another water molecule to form a HYDROGEN BOND



What are
the
Properties
of Water?



• At sea level, pure water boils at 100 °C and freezes at 0 °C.

• The boiling temperature of water decreases at higher elevations (lower atmospheric pressure).

· For this reason, an egg will take longer to boil at higher altitudes



· Cohesion

- · Cohesion
- · Adhesion

- · Cohesion
- · Adhesion
- · High Specific Heat

- · Cohesion
- · Adhesion
- · High Specific Heat
- · High Heat of Vaporization

- · Cohesion
- · Adhesion
- · High Specific Heat
- · High Heat of Vaporization
- · Less Dense as a Solid

#### Cohesion

- Attraction between particles of the same substance (why water is attracted to itself)
- Results in Surface tension (a measure of the strength of water's surface)
- Produces a surface film on water that allows insects to walk on the surface of water



### Cohesion ....







Helps insects walk across water

#### Adhesion

- Attraction between two different substances
- Water will make hydrogen bonds with other surfaces such as glass, soil, plant tissues, and cotton.
- Capillary action-water molecules will "tow" each other along when in a thin glass tube.
- Example: transpiration process which plants and trees remove water from the soil, and paper towels soak up water.

# Adhesion Causes Capillary Action

Which gives water the ability to "climb" structures



# Adhesion Also Causes Water to ...





Form spheres & hold onto plant leaves



Attach to a silken spider web

### High Specific Heat

 Amount of heat needed to raise or lower 1g of a substance 1° C.

 Water resists temperature change, both for heating and cooling.

 Water can absorb or release large amounts of heat energy with little change in actual temperature.

### High Heat of Vaporization

- · Amount of energy to convert 1g or a substance from a liquid to a gas
- In order for water to evaporate, hydrogen bonds must be broken.
- As water evaporates, it removes a lot of heat with it.

### High Heat of Vaporization

- Water's heat of vaporization is 540 cal/g.
- In order for water to evaporate, each gram must GAIN 540 calories (temperature doesn't change --- 100°C).
- As water evaporates, it removes a lot of heat with it (cooling effect).

- Water vapor forms a kind of global "blanket" which helps to keep the Earth warm.
- · Heat radiated from the sun warmed surface of the earth is

absorbed and held by the vapor.



# Water is Less Dense as a Solid

- Ice is less dense as a solid than as a liquid (ice floats)
- Liquid water has hydrogen bonds that are constantly being broken and reformed.
- Frozen water forms a crystal-like lattice whereby molecules are set at fixed distances.

# Water is Less Dense as a Solid

·Which is ice and which is water?





# Water is Less Dense as a Solid

Water Ice





#### Homeostasis

- Ability to maintain a steady state despite changing conditions
- Water is important to this process because:
  - a. Makes a good insulator
  - b. Resists temperature change
  - c. Universal solvent
  - d. Coolant
  - e. Ice protects against temperature extremes (insulates frozen lakes)

## Solutions & Suspensions

- · Water is usually part of a mixture.
- There are two types of mixtures:
  - Solutions
  - Suspensions

#### Solution

- Ionic compounds disperse as ions in water
- · Evenly distributed
- · SOLUTE
  - Substance that is being dissolved
- SOLVENT
  - Substance into which the solute dissolves

## Solution



## Suspensions

- Substances that don't dissolve but separate into tiny pieces.
- Water keeps the pieces suspended so they don't settle out.



## Acids, Bases and pH

One water molecule in 550 million naturally dissociates into a Hydrogen Ion (H+) and a Hydroxide Ion (OH-)



## The pH Scale

- Indicates the concentration of H<sup>+</sup> ions
- · Ranges from 0 14
- pH of 7 is neutral
- pH 0 up to 7 is acid ... H<sup>+</sup>
- pH above 7 14 is basic... OH
- Each pH unit represents a factor of 10X change in concentration
- pH 3 is  $10 \times 10 \times 10$  (1000) stronger than a pH of 6

#### Acids

- Strong
   Acids
   have a pH
   of 1-3
- Produce
   lots of
   H\* ions



#### Bases

- Strong
   Bases have
   a pH of 11
   to 14
- Contain

   lots of OH ions and
   fewer H+
   ions



### Buffers

- Weak acids or bases that react with strong acids or bases to prevent sharp, sudden changes in pH (neutralization).
- Produced naturally by the body to maintain homeostasis



Weak Acid



Weak Base