MODUL SISTEM OPERASI

Pengenalan Sistem Operasi

-Pengantar Sistem Operasi-

KERNEL

File

User Interface

KERNEL

Suatu perangkat lunak (kumpulan program) yang membentuk sistem dan memiliki tugas melayani bermacam program aplikasi untuk mengakses perangkat keras komputer secara aman dan terkendali.

KERNEL

Monolitich Kernel

 Kernel yang menyediakan abstraksi hardware yang kaya dan powerful

Microkernel

 Kernel yang menyediakan hanya sekumpulan kecil abstraksi hardware sederhana dan menggunakan aplikasi-aplikasi yang disebut sebagai server untuk menyediakan fungsi-fungsi lainnya.

Hybrid

 Mirip dengan mikrokernel tetapi Hybrid memasukkan beberapa kode tambahan di kernel agar menjadi lebih cepat

Exokernel

 Kernel yang tidak menyediakan abstraksi hardware, tetapi menyediakan library sebagai fungsi akses ke hardware secara langsung

FILE

File-file yang dibentuk dan dijalankan oleh sistem operasi (Sistem/File Berkas & File System).

File Berkas adalah entitas dari data yang disimpan dalam sistem berkas yang dapat diakses/diatur oleh pengguna.

File System adalah metoda untuk memberi nama pada berkas dan meletakkannya pada media penyimpanan

USER INTERFACE (SHELL)

Command Line Interface / Command Line Interpreter

CLI memberikan tampilan dalam mode teks ke user, dengan background satu warna dan tampilan teks yang juga satu atau beberapa warna dasar.

Graphical User Interface (GUI)

GUI memberikan tampilan yang lebih interaktif dan nyaman digunakan oleh user, resolusi gambar dan jumlah warna yang dihasilkan lebih banyak.

Sistem Operasi Sederhana

- Program tunggal, satu user, satu mesin komputer (CPU): komputer generasi pertama, awal mesin PCs, controller: lift, Playstation etc.
- ☐ No problems, no bad people, no bad programs => interaksi sederhana
- ☐ Problem: terbatas pemakaiannya;

Simple Batch System

- Memakai seorang operator
 - ✓ User ≠ operator
- ► Menambahkan card reader
- Mengurangi waktu setup: batch jobs yang mirip/sama
- Automatic job sequencing secara otomatis kontrol akan di transfer dari satu job ke job yang lain.
 - ✓ Bentuk OS primitif
- ➤ Resident monitor
 - ✓ Fungsi monitor: awal (initial) melakukan kontrol
 - ✓ Transfer control ke job (pertama)
 - ✓ Setelah job selesai, control kembali ke monitor
 - Control cards: mengatur batch jobs

Multiprogrammed Batch System

Beberapa jobs disimpan di **memori** pada saat bersamaan, dan CPU melakukan multiplexing ke jobsjobs tersebut

Fitur OS yang Dibutuhkan dalam Multiprogramming

- I/O rutin dikendalikan dan diatur oleh sistim
- Memory management sistim harus mengalokasikan memori untuk beberapa jobssekaligus
- CPU scheduling sistim harus memilih jobs mana yang telah siap akan dijalankan
- Alokasi dari I/O devices untuk jobs dan proteksi bagi I/O devices tersebut

Sistim menjadi => complex

 Bagaimana kalau program "loops terus menerus",going mad etc. => proteksi

Time Sharing System

- ☐ CPU melakukan multiplex pada beberapa jobs yang berada di memory (dan disk)
- ☐ CPU hanya dialokasikan kepada jobs yang telah siap dan berada di memori
- ☐ Besar memori masih sangat terbatas:
 - Pada job dilakukan swapped in dan out dari memory ke disk.

Time Sharing System

- ☐ Komunikasi on-line (interaktif) antara user dan sistim: jika OS telah selesai mengeksekusi satu perintah, menunggu perintah berikut bukan dari "card reader", tapi dari terminal user
 - On-line system harus tersedia bagi user yang akan mengakses data dan kode

Desktop System

- ☐ Personal computers sistim komputer
 yang dirancang khusus untuk single user
- ☐ I/O devices keyboards, mice, display screens, small printers.
- User mendapatkan kemudahan dalam penyesuaian.

Desktop System

- ☐ Fungsi dasar mirip (adopsi) dari OS pada sistim yang besar
 - Sederhana: tidak terlalu fokus pada utilisasi CPU dan proteksi
 - Contoh: MS-DOS untuk PC banyak mengambil features dari UNIX, minus proteksi dan CPU scheduler yang rumit.

Parallel System

- ☐ Sistim multiprosesor: lebih dari satu CPU yang terhubung secara dekat satu sama lain
- □ Symmetric multiprocessing (SMP)
 - Setiap prosesor menjalankan "identical copy" dari OS
 - Banyak proses dapat berjalan serentak murni dengan menggunakan resources pada masing-masing CPU
 - Banyak modern operating systems mendukung SMP

Parallel System

- ☐ Asymmetric multiprocessing
 - Setiap prosesor telah ditentukan untuk menjalankan task tertentu
 - Master processor mengontrol, menjadwalkan dan mengalokasikan task ke slave processors
 - Banyak digunakan oleh sistemyang besar (main-frame)

Real-time System

- ☐ Digunakan sebagai control device untuk aplikasi khusus (misalkan medical imaging systems, industrial control process dll).
- Kemampuan untuk beroperasi, response dalam batasan "waktu tertentu" => OS harus sederhana, cepat, dan dapat memenuhi jadwal task (scheduling dll).

Real-time System

Hard real-time system.

- ✓ Secondary storage sangat terbatas atau tidak ada (menggunakan ROM, flash RAM).
- ✓ Task dapat diprediksi/ditentukan: waktu selesai dan response.

Soft real-time system

- ✓ Lebih leluasa batasan waktu dari "hard real-time system".
- ✓ Lebih umum digunakan di industri, aplikasi multimedia (video streaming, virtual reality).

Distributed System

- Distribusikan kemampuan komputasi dan "resources" ke berbagai komputer di jaringan.
- Loosely coupled system
 - Setiap prosessor memiliki lokal memori
 - Komunikasi prosessor satu dengan yang lain melalui beragam jalur komunikasi, contoh : high-speed buses dan jalur telepon.

Distributed System

- Manfaat distributed systems.
 - Resources Sharing
 - Waktu komputasi cepat- load sharing
 - Reliability
 - Komunikasi
- Membutuhkan Infrastruktur jaringan.
- ☐ Local Area Networks (LAN) atau Wide Area Networks (WAN)
- Sistem bisa berbentuk client-server atau peer-to-peer.

Clustered System

- Clustering memungkinkan dua atau lebih sistem melakukan share strorage
- Memiliki realibilitas yang tinggi.
- □ Asymmetric clustering: satu sertver menjalankan
 aplikasi sementara server lain dalam keadaan standby.
- ☐ *Symmetric clustering*: semual N host menjalankan aplikasi.

Handled System

- Personal Digital Assistants (PDAs)
- ☐ Telepon seluler
 - ☐ Issues:
 - Memori yang terbatas
 - Prosessor yang lambat
 - Display screen yang kecil.

MIGRASI SISTEM OPERASI – SISTEM KOMPUTER

LINGKUNGAN KOMPUTASI

- ☐ Komputasi Tradisional
- ☐ Komputasi berbasis Web (Web-Based Computing)
- ☐ Komputasi pada Embedded System (Embedded Computing)

KUIS

1. Jelaskan apa yang dimaksud dengan Komputasi berbasis Web (Web-Based Computing) dan Komputasi pada Embedded System (Embedded Computing)? Serta berikan contohnya?