DQN Reinforcement Learning

Advancing Deep Q-Networks for Optimal Navigation in Frozen Lake: Evaluating Adaptability and Performance in Dynamic Environments

Aviv Salomon Ben Gornizky

TABLE OF CONTENTS

01 02 03

Introduction Architecture Articles

04 05 06

Environment Methodology Project Plans

History

1992 Q-learning algorithm introduced by Watkins

2013 DQN introduced by DeepMind in the paper

'Playing Atari with Deep Reinforcement Learning'

at NIPS

2015 Comprehensive DQN paper 'Human-level control

through deep reinforcement learning' published in

Nature

2018 Rainbow DQN algorithm introduced,

combining several improvements

Google DeepMind is a research company owned by Google that focuses on artificial intelligence (AI) and machine learning.

DQN In A Nutshell

DQN is a reinforcement learning algorithm that combines Q-Learning with deep neural networks to learn how to act in an environment.

- Key Concepts:
 - States: Environment configurations.
 - Actions: Possible moves.
 - Rewards: Feedback signals.
- **Applications:** Video games (Atari), robotics, finance (trading strategies).
- Advantages: Handles high-dimensional state spaces, effective for complex policy learning.
- Challenges: Requires extensive training data, tuning for stability.
- **Purpose:** It aims to enable an agent to make decisions that maximize cumulative rewards over time.

RL agents policy (Π) :

In each State the Agent know which Action to do, based on Q-Table to achieve the maximum Reward

DQN:

The DQN Replace Q-Table with NN prediction.

Performing with more robust and scalable solution rather than using a big action-state table

Agent & NN

- 1. Input Layer:
 - State representation (game screen pixels)
- 2. Convolutional Neural Networks (CNNs):
 - Extract spatial features from inputs
- 3. Fully Connected Layers:
 - Combine features to predict Q-values
 - ReLU Activation function
- 4. Output Layer:
 - Q-values for each possible action

Optimal Q action-value function

s - state (observation)

a - action

r - reward

t - index for step

y - discount

 π - policy P(action|state)

$Q^*(s,a) = \max_{\pi} \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots | s_t = s, \ a_t = a, \ \pi]$

The data for the NN

The data is the states and actions that were happened in the environment

e - experience

t - index for step

Dt - collection of e, data set

$$e_t = (s_t, a_t, r_t, s_{t+1})$$

 $D_t = \{e_1, ..., e_t\}$

Loss function

```
i - index for iteration
```

 θ - weights

U(D) - unified the data set

a' - action, a - previous action

r - reward

y - discount

Q - action-value function

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim \mathrm{U}(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

Optimization algorithm

SGD - stochastic gradient descent

Articles

Human-level control through deep reinforcement learning

doi:10.1038/nature14236

Human-level control through deep reinforcement learning

Volodymyr Mnih¹*, Koray Kavukcuoglu¹*, David Silver¹*, Andrei A. Rusu¹, Joel Veness¹, Marc G. Bellemare¹, Alex Graves¹, Martin Riedmiller¹, Andreas K. Fidjeland¹, Georg Ostrovski¹, Stig Petersen¹, Charles Beattie¹, Amir Sadik¹, Ioannis Antonoglou¹, Helen King¹, Dharshan Kumaran¹, Daan Wierstra¹, Shane Leag² & Demis Hassabis¹

Playing Atari with Deep Reinforcement Learning

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou

Daan Wierstra Martin Riedmiller

DeepMind Technologies

Froze Lake

1. Game Description:

 Frozen Lake is a grid-based game where an agent must navigate from a start point to a goal point on a slippery surface, avoiding holes.

2. Environment Setup:

- Grid Layout: Typically an $n \times n$ grid (4x4 or 8x8)
 - S: Start point
 - o G: Goal point
 - H: Holes (fall into one, and the game is over)
 - F: Frozen surface (safe to walk on)

3. Borders:

- The grid is bounded, meaning the agent cannot move outside the grid.
- Actions attempting to move out of bounds result in no movement.

Froze Lake

4. States and Actions:

- States (S): Each cell in the grid represents a unique state.
- Actions (A): Four possible actions left, right, up, down.
- Rewards (R):
 - +1 for reaching the goal.
 - 0 for all other transitions (including falling into a hole).

5. Slippery Surface Dynamics:

• **Slippery Nature:** Due to the slippery surface, actions do not always result in moving to the intended adjacent cell. Instead, there is a chance the agent will slide to an unintended cell, adding randomness to the game and increasing the complexity of navigation.

Project Goal

Train an Al agent using Deep Q-Networks (DQN) to navigate the Frozen Lake environment and successfully reach the goal state while avoiding falling into holes.

Торіс	OBJECTIVE
Problem Definition	Train DQN agent to navigate Frozen Lake, reaching goal while avoiding holes.
Environment Setup	Define Frozen Lake grid with start, goal, holes, and frozen surfaces.
State and Action Representation	States: Agent's grid position; Actions: Left, right, up, down movements.
DQN Implementation	Use neural network for Q-function approximation.
Training Process	Implement DQN model
Evaluation and Testing	Assess agent's performance: average reward, success rate.
Hyperparameter Tuning	Optimize parameters like learning rate, discount factor.

Project Stages

Implement RL: DQN model and Environment

Stage 1

Train and Test RL Model

Stage 2

Collect and Analyze Results

Stage 3

Thanks

Aviv Salomon avivsalo@gmail.com

Ben Gornizky bengornizky@gmail.com

