

Factors are considered for selecting of the materials of the spring wire

- > The load acting on the spring
- > The range of stress through which the spring operates
- > The expected fatigue life
- ➤ The environmental conditions in which the spring will operate such as temperature & corrosive atmosphere
- > The severity of deformation encountered while making the spring
- > The limitation on mass & volume of spring.

Steel wire for spring	% C	Remarks	CI
Cold drawn (or hard drawn) spring steel	0.85-0.95%		1
Oil-tempered & hardened spring steel	0.55-0.75%		1.5
Music wire (hard drawn spring steel)	0.80-0.95%		3.5
Oil-tempered & hardened spring steel (alloyed)	0.55-0.75%		
Alloy steel: Chromium-vanadium Chromium-silicon			4.0
Stainless steel			8.5

			Spring Materials	Table 13-2 Preferred Wire Dia		
_			opining materials	U.S. (in)	SI (mm)	
able 13-1	Common Spring Source: Reference 2			0.004 0.005 0.006 0.008 0.010	0.10 0.12 0.16 0.20 0.25	
ASTM #	Material	SAE#	Description	0.012 0.014	0.30	
A227	Cold-drawn wire ("hard-drawn")	1066	Least expensive general-purpose spring wire. Suitable for static loading but not good for fatigue or impact. Temperature range 0°C to 120°C (250°F).	0.016 0.018 0.020 0.022 0.022 0.024 0.026	0.40 0.45 0.50 0.55 0.60 0.65	
A228	Music wire	1085	Toughest, most widely used material for small coil springs. Highest tensile and fatigue strength of all spring wire. Temperature range 0°C to 120°C (250°F).	0.028 0.030 0.035 0.038 0.042 0.042	0.70 0.80 0.90 1.00 1.10	
A229	Oil-tempered wire	1065	General-purpose spring steel. Less expensive and available in larger sizes than music wire. Suitable for static loading but not good for fatigue or impact. Temperature range 0°C to 180°C (350°F).	0.048 0.051 0.055 0.059 0.063 0.067	1.40 1.60 1.80	
A230	Oil-tempered wire	1070	Valve-spring quality—suitable for fatigue loading.	0.076 0.081	2.00	
A232	Chrome vanadium	6150	Most popular alloy spring steel. Valve-spring quality—suitable for fatigue loading. Also good for shock and impact loads. For temperatures to 220°C (425°F). Available annealed or pretempered.	0.085 0.092 0.098 0.105 0.112 0.125 0.135	2.20 2.50 2.80 3.50 3.50	
A313 (302)	Stainless steel	30302	Suitable for fatigue applications.	0.148 0.162 0.177	4.00	
A401	Chrome silicon	9254	Valve-spring quality—suitable for fatigue loading. Second highest strength to music wire and has higher temperature resistance to 220°C (425°F).	0.177 0.192 0.207 0.225 0.250 0.281 %	5.0 5.5 6.0 6.5 7.0	
B134, #260	Spring brass	CA-260	Low strength—good corrosion resistance.	0.312 X 0.343	8.0	
B159	Phosphor bronze	CA-510	Higher strength than brass—better fatigue resistance—good corrosion resistance. Cannot be heat treated or bent along the grain.	0.343 0.362 0.375 0.406 0.437	10.0	
B197	Beryllium copper	CA-172	Higher strength than brass—better fatigue resistance—good corrosion resistance. Can be heat treated and bent along the grain.	0.469 0.500 0.531 0.562	12. 13. 14. 15.	
	Inconel X-750		Corrosion resistance.	0.625	16.	

Step 4 Design Analysis

A helical compression spring that is too long compared to the mean coil diameter, acts as a flexible column and may buckle at a comparatively low axial force. The spring should be preferably designed as buckle-proof. Compression springs, which cannot be designed buckle-proof, must be guided in a sleeve or over an arbor. The thumb rules for provision of guide are as follows:

 $\frac{\text{free length}}{\text{mean coil diameter}} \le 2.6 \qquad \text{[Guide not necessary]}$ $\frac{\text{free length}}{\text{mean coil diameter}} > 2.6 \qquad \text{[Guide required]}$

However, provision of guide results in friction between the spring and the guide and this may damage the spring in the long run.

Problem based on Design Analysis

Ex#1 A helical compression spring, made of circular wire, is subjected to an axial force, which varies from 2.5 kN to 3.5 kN. Over this range of force, the deflection of the spring should be approximately 5 mm. The spring index can be taken as 5. The spring has square and ground ends. The spring is made of patented and cold-drawn steel wire with ultimate tensile strength of 1050 N/mm² and modulus of rigidity of 81370 N/mm². The permissible shear stress for the spring wire should be taken as 50% of the ultimate tensile strength. Design the spring and calculate

- (i) wire diameter;
- (ii) mean coil diameter;
- (iii) number of active coils;
- (iv) total number of coils;
- (v) solid length of the spring;
- (vi) free length of the spring;
- (vii) required spring rate; and
- (viii) actual spring rate

Solution

Given data

$$P = 2.5 \text{ to } 3.5 \text{ kN}$$

 $\delta = 5 \text{ mm}$ $C = 5$

Material: Cold drawn steel

 $S_{ut} = 1050 \text{ N/mm}^2$ $G = 81 370 \text{ N/mm}^2$

The permissible shear stress for the spring is given by

 $\tau = 0.5 S_{ut} = 0.5 (1050) = 525 \text{ N/mm}^2$

Step 1: Calculation of wire diameter

$$K = \frac{4C - 1}{4C - 4} + \frac{0.615}{C} = \frac{4(5) - 1}{4(5) - 4} + \frac{0.615}{5} = 1.3105$$

$$\tau = K \left(\frac{8PC}{\pi d^2} \right) \text{ or } 525 = (1.3105) \left\{ \frac{8(3500)(5)}{\pi d^2} \right\}$$

d = 10.55 or 11 mm

Determine Loads acting on element

The strain energy absorbed by the two springs is equal to the kinetic energy of the wagon. Therefore,

$$(150 P) = 1687.5 \times 10^3$$

 $P = 11250 N$

Calculation of wire diameter

The permissible shear stress for the spring wire is given by, $\tau = 0.5 (1250) = 625 \text{ N/mm}^2$

$$K = \frac{4C - 1}{4C - 4} + \frac{0.615}{C} = \frac{4(6) - 1}{4(6) - 4} + \frac{0.615}{6}$$

$$\tau = K \left(\frac{8PC}{\pi d^2} \right)$$
 or $625 = (1.2525) \left\{ \frac{8(11250)(6)}{\pi d^2} \right\}$

10 F

d = 18.56 or 20 mm

Maakina Dasisuu

Calculation of mean coil diameter

Mean coil diameter

$$D = Cd = 6$$
 (20) = 120 mm

Calculation of no. of coils

$$\delta = \frac{8PD^3 N}{Gd^4}$$
 or $150 = \frac{8(11250)(120)^3 N}{(81370)(20)^4}$

N = 12.56 or 13 coils

Step 4: Calculation of solid length & Free length of the spring

It is assumed that the springs have square and ground ends. The number of inactive coils is 2. Therefore,

$$N_t = N + 2 = 13 + 2 = 15$$
 coils

Solid length = $N_{p}d = 15(20) = 300 \text{ mm}$

10 February 2023

Machine Design

$$\delta = \frac{8PD^3N}{Gd^4} = \frac{8(11250)(120)^3(13)}{(81370)(20)^4} = 155.29 \text{ mm}$$
It is assumed that there will be a gap of 2 mm between adjacent coils when the spring is subjected to the maximum force of 11250 N. Since the total number of coils is 15, the total axial gap will be $(15-1) \times 2 = 28 \text{ mm}$.

Free length = solid length + total axial gap + δ = 300 + 28 + 155.29

Pitch of coil = $\frac{\text{free length}}{(N_t - 1)} = \frac{485}{(15-1)} = 34.64 \text{ mm}$

