Data Link Layer: Protokol High level Data Link Control (HDLC)

Data Link Services

- Connection-oriented services: memberikan pengiriman paket terurut bebas error
 - setting-up koneksi: setting up variables dan alokasi buffer
 - transfer paket: paket 'dikemas' dlm frame data link
 - penutupan koneksi
- Connectionless service
 - acknowledged service
 - unacknowledged service

Sejarah DLL Protocols

- SDLC Synchronous Data Link Control (IBM)
- HDLC High-level Data Link Control (ISO & CCITT)
- ADCCP Advanced Data Communications Control Protocol (ANSI)
- LLC Logical Link Control (IEEE 802.2)
- ISO 33009, ISO 4335 Data Link Control

Tipe Station HDLC

- Primary station
 - mengontrol operasi link
 - frame yg dibangkitkan disebut command
 - menjaga link logik terpisah ke masing-masing station secondary
- Secondary station
 - dibawah kontrol primary station
 - frame yg dibangkitkan disebut respons
- Combined station
 - dapat membangkitkan command dan respons

Mode Transfer HDLC

- · Normal Response Mode (NRM)
 - Konfigurasi unbalanced
 - Primary menginitialisasi transfer ke secondary
 - Secondary hanya boleh transmit data sebagai respond thd command dari primary
 - Digunakan pada multi drop lines
 - Host computer sebagai primary
 - Terminal sebagai secondary

Mode Transfer HDLC

- · Asynchronous Balanced Mode (ABM)
 - Konfigurasi balanced
 - Kedua macam station dapat menginisiasi transmisi tanpa menerima persetujuan
 - Paling luas digunakan
 - Tidak ada overhead polling

Mode Transfer HDLC

- Asynchronous Response Mode (ARM)
 - Konfigurasi unbalanced
 - Secondary dapat menginisiasi transmisi tanpa izin dari primary
 - Primary bertanggung jawab thd saluran
 - Jarang digunakan

Format Frame HDLC

Flag	Address	Control	Information	FCS	Flag
------	---------	---------	-------------	-----	------

- Flag (8 bit): 01111110
- · Address (8 bit extendable 16 bit):
 - Konfigurasi unbalanced → address secondary
 - Konfigurasi balanced
 - Frame command \rightarrow address receiving station
 - Frame response ightarrow address dari station pengirim
- · Control field (8 extendable 16 bit)
- · Information field (variabel): berisi informasi user
- FCS: CRC 16 bit atau 32 bit dikalkulasi pd field control, address dan informasi

Bit Stuffing

- Bit stuffing digunakan untuk mencegah kemunculan pola flag didalam frame HDLC
- Pengirim akan menyisipkan ekstra "0" setiap ditemui lima deretan "1" yg berturutan
- * Penerima mencari lima deretan biner "1" berturutan, jika diiukuti "0" berarti bit stuffing \rightarrow bit dihilangkan
- · Contoh:
 - Deretan data informasi: 0110111111111100
 - Setelah bit stuffing: 011011111011111000

Control Field HDLC **Information Frame** 5 6-8 N(S) N(R) P/F **Supervisory Frame** N(R) 0 S S P/F **Unnumbered Frame** 1 M M P/F M M M

0

Frame-	HDLC Commands and Responses				
Frame	Name	Function	Description		
rrame	Information (I)	C/R	Exchange user data		
HDLC	Supervisory (S)	C/R	Positive acknowledgment; ready to receive I-frame		
HULC	Receive Ready (RR)				
	Receive Not Ready (RNR)	C/R	Positive acknowledgment; not ready to receive		
	Reject (REJ)	C/R	Negative acknowledgment; go back N		
	Selective Reject (SRE)) Unnumbered (U)	C/R	Negative acknowledgment; selective reject		
	Set Normal Response/ Extended Mode (SNRM/SNRME)	С	Set mode; extended = two-octet control field		
	Set Asynchronous Response/ Extended Mode (SARM/SARME)	C	Set mode; extended = two-octet control field		
	Set Asynchronous Balanced/ Extended Mode (SABM/SABME)	C	Set mode; extended = two-octet control field		
	Set Initialization Mode (SIM)	С	Initialize link control functions in addressed station		
	Disconnect (DISC)	С	Terminate logical link connection		
	Unnumbered Acknowledgment (UA)	R	Acknowledges acceptance of one of the above set-mode commands		
	Disconnected Mode (DM)	R	Secondary is logically disconnected		
	Request Disconnect (RD)	R	Request for DISC command		
	Request Initialization Mode (RIM)	R	Initialization needed; request for SIM command		
	Unnumbered Information (UI)	C/R	Used to exchange control information		
	Unnumbered Poll (UP)	C /	Used to solicit control information		
	Reset (RSET)	C	Used for recovery; resets N(R), N(S)		
	Exchange Identification (XID)	C/R	Used to request/report identity and status		
	Test (TEST)	C/R	Exchange identical information fields for testing		
	Frame Reject (FRMR)	R	Reports receipt of unacceptable frame		

Operasi HDLC

- Pertukaran frame-frame: informasi, supervisory dan unnumbered
- · Tiga phase:
 - Inisialisasi
 - Transfer data
 - Penutupan

Operasi pada Asynchronous Balanced Mode

Protocol DLC Lainnya

- · Link Access Procedure, Balanced (LAPB)
 - Bagian dari X.25 (ITU-T)
 - Subset dari HDLC (ABM)
 - Link point-to-point antara sistem dan node packet switching
- · Link Access Procedure, D-Channel (LAPD)
 - ISDN (ITU-T)
 - ABM
 - Sequence number selalu 7 bit (tidak 3 bit)
 - Field address 16 bit terdiri dari dua sub-addresses
 - satu utk device dan satu lagi utk user (layer diatas)

Protocol DLC Lainnya

- Logical Link Control (LLC): umumnya utk "shared medium networks" (broadcast media)
 - IEEE 802
 - Frame format berbeda
 - Link control dibagi dua antara medium access layer (MAC) dan LLC (di atas MAC)
 - Tidak ada primary dan secondary (semua station adalah peer)
 - Dua addresses diperlukan:
 - · pengirim dan penerima

Protocol DLC Lainnya

- PPP (Point-to-Point Link Protocol)
- · Layout frame utk PPP:

In-Class Excersise

Pd gb di bawah, primary station A berkomunikasi dengan secondary station B, C dan D menggunakan protokol data link standar (misalnya HDLC) pada saluran dua-arah half-duplex. Gambar (b) memperlihatkan urutan transmisi data antara A dan B, C serta D dengan menggunakan notasi singkat A Y N(5) N(R) P/F (A:Address, Y:Command/Response, N(5): Sequence number pengirim, N(R):Sequence number penerima, P/F:Poll/Final). Pada gambar isi harga A,YN(5)N(R),P/F

In-Class Excersise

- 2. Kejadian (event) berikut terjadi antara primary station A dan dua secondary station B dan C pada saluran multidrop half-duplex bebas error menggunakan protokol HDLC. Event e_1 , e_2 , e_3 , e_4 adalah:
 - e1 = A mengaktifkan link dg B dan C menggunakan normal response mode
 - e2 = A mem-pool B utk trafik, B merespons dg mengirimkan 4 frame I, kemudian A meng-aknowledge B tanpa memberikan tambahan hak utk transmit
 - e_3 = A mem-poll C untuk trafik dan C hanya meng-acknowledge A
 - e₄ = A mengirimkan 3 frame ke B dan memberikan hak B untuk transmit. B merespons dg mengirimkan 5 tambahan frame dan A meng-acknowledge
 - a. Perlihatkan pertukaran frame antara primary station A dan dua secondary station B dan C.
 - b. Sekarang asumsikan terjadi transmsisi error pada frame pertama dari 5 frame yang dikirimkan oleh B ke A pada event e₄. Perlihatkan dua kemungkinan prosedur untuk error recovery. Juga asumsikan bahwa ukuran window adalah 7. (Cat. Gunakan notasi A,YN(S)N(R),P/F)