Package 'BoundaryStats'

October 25, 2024

Type Package				
Title Boundary Overlap Statistics				
Version 2.2.0				
Description Analysis workflow for finding geographic boundaries of ecological or land-scape traits and comparing the placement of geographic boundaries of two traits. If data are trait values, trait data are transformed to boundary intensities based on approximate first derivatives across latitude and longitude. The package includes functions to create custom null models based on the input data. The boundary statistics are described in: Fortin, Drapeau, and Jacquez (1996) <doi:10.2307 3545584="">.</doi:10.2307>				
License GPL (>= 3)				
Encoding UTF-8				
LazyData true				
Imports sf, terra, pdqr, methods, ggplot2, tibble, dplyr, magrittr, igraph, fields, scales				
Depends R (>= $4.1.0$)				
Suggests knitr, rmarkdown				
VignetteBuilder knitr				
RoxygenNote 7.2.3				
NeedsCompilation no				
Author Amy Luo [aut, cre, cph] (https://orcid.org/0000-0002-9197-4673), Elizabeth Derryberry [ths] (https://orcid.org/0000-0002-8248-9748)				
Maintainer Amy Luo <aluo@vols.utk.edu></aluo@vols.utk.edu>				
Repository CRAN				
Date/Publication 2024-10-20 04:00:02 UTC				
Contents				
A.delicatus_crs A.delicatus_ext A.delicatus_matrix				

2 A.delicatus_crs

iucx		
ndex	_	29
	T.cristatus_matrix	
	T.cristatus_ext	
	T.cristatus_crs	
	sobel_operator	
	random_raster_sim	
	plot_boundary	
	Oxy	
	Ox	
	overlap_null_distrib	20
	Odirect	
	mod_random_clust_sim	
	max_subgraph	
	lisa_clusters	
	L.flavomaculatus_matrix	
	L.flavomaculatus_ext	
	L.flavomaculatus_crs	
	L.concolor_matrix	
	L.concolor_ext	
	L.concolor_crs	
	grassland_matrix	
	grassland_ext	
	grassland_crs	
	gauss_random_field_sim	
	ecoregions_matrix	
	ecoregions_ext	
	ecoregions_crs	
	define_boundary	
	categorical_boundary	
	boundary_null_distrib	
	A.sylvaticus_matrix	
	A.sylvaticus_ext	
	A.sylvaticus_crs	4

Description

Projection for A.delicatus_matrix

Usage

data(A.delicatus)

A.delicatus_ext 3

Format

Projection crs object

Source

```
doi:10.5061/dryad.315km76
```

References

Barratt et al. (2013) Molecular Ecology 27:4289-4308

A.delicatus_ext

Afrixalus delicatus genetic groups extent

Description

Extent for A.delicatus_matrix

Usage

```
data(A.delicatus)
```

Format

Numeric vector of length length 4

Source

doi:10.5061/dryad.315km76

References

A.sylvaticus_crs

A.delicatus_matrix

Afrixalus delicatus genetic groups

Description

Raster data representing interpolated genetic group assignments for Afrixalus delicatus based on analyses in Barratt et al. 2018.

Usage

```
data(A.delicatus)
```

Format

A matrix to be converted into a SpatRaster object with a EPSG:4210 projection.

Source

```
doi:10.5061/dryad.315km76
```

References

Barratt et al. (2013) Molecular Ecology 27:4289-4308

A.sylvaticus_crs

Afrixalus sylvaticus genetic groups projection

Description

Projection for A.sylvaticus_matrix

Usage

```
data(A.sylvaticus)
```

Format

Projection crs object

Source

doi:10.5061/dryad.315km76

References

A.sylvaticus_ext 5

A.sylvaticus_ext

Afrixalus sylvaticus genetic groups extent

Description

Extent for A.sylvaticus_matrix

Usage

data(A.sylvaticus)

Format

Numeric vector of length length 4

Source

doi:10.5061/dryad.315km76

References

Barratt et al. (2013) Molecular Ecology 27:4289-4308

A.sylvaticus_matrix

Afrixalus sylvaticus genetic groups

Description

Raster data representing interpolated genetic group assignments for Afrixalus sylvaticus based on analyses in Barratt et al. 2018.

Usage

```
data(A.sylvaticus)
```

Format

A matrix to be converted into a SpatRaster object with a EPSG:4210 projection.

Source

doi:10.5061/dryad.315km76

References

boundary_null_distrib Null distribution for overlap statistics

Description

Creates custom probability distributions for two boundary statistics (number of subgraphs and length of the longest subgraph). Given a SpatRaster object, simulates n iterations of random raster surfaces from a neutral model.

Usage

```
boundary_null_distrib(
    X,
    convert = FALSE,
    cat = FALSE,
    threshold = 0.2,
    n_iterations = 10,
    model = "random",
    p = 0.5,
    progress = TRUE
)
```

Arguments

Х	A SpatRaster object.
convert	TRUE if x contains numeric trait data that needs to be converted to boundary intensities. default = FALSE.
cat	TRUE if the input SpatRaster contains a categorical variable. default = FALSE.
threshold	A value between 0 and 1. The proportion of cells to keep as boundary elements. $default = 0.2$.
n_iterations	An integer indicating the number of iterations for the function. A value of 100 or 1000 is recommended to produce sufficient resolution for downstream statistical tests. default = 10.
model	Neutral model to use. Options: 'random' (stochastic), 'gaussian' (Gaussian random field), and 'random_cluster' (modified random clusters method)
p	If using modified random clusters, proportion of cells to be marked in percolated raster. Higher values of p produce larger clusters. Default: $p = 0.5$
progress	If progress = TRUE (default) a progress bar will be displayed.

Value

A list of two probability distribution functions for boundary statistics.

Author(s)

Amy Luo

categorical_boundary 7

References

Saura, S. & Martínez-Millán, J. (2000). Landscape patterns simulation with a modified random clusters method. Landscape Ecology, 15:661-678.

Examples

```
data(T.cristatus)
T.cristatus <- terra::rast(T.cristatus_matrix, crs = T.cristatus_crs)
terra::ext(T.cristatus) <- T.cristatus_ext

T.crist_bound_null <- boundary_null_distrib(T.cristatus, cat = TRUE, n_iterations = 100, model = 'random_cluster')</pre>
```

categorical_boundary

Define the boundary elements of a SpatRaster with categorical data

Description

Creates boundary element cells where patches of two categories meet.

Usage

```
categorical_boundary(x)
```

Arguments

Х

A SpatRaster object.

Value

A SpatRaster object with cell values 1 for boundary elements and 0 for other cells

Author(s)

Amy Luo

Examples

```
data(grassland)
grassland <- terra::rast(grassland_matrix, crs = grassland_crs)
terra::ext(grassland) <- grassland_ext
grassland_boundaries <- categorical_boundary(grassland)</pre>
```

8 define_boundary

define_boundary	Define the boundary elements of a SpatRaster with numeric data or boundary intensities

Description

Defines boundaries in a SpatRaster object by keeping a proportion of the cells with the highest boundary intensity values. If the SpatRaster contains trait values, the values can be converted to boundary/edge values (convert = T) using a Sobel-Feldman operator.

Usage

```
define_boundary(x, threshold = 0.2, convert = FALSE)
```

Arguments

x A SpatRaster object.

threshold A value between 0 and 1. The proportion of cells to keep as boundary elements.

default = 0.2.

convert logical. If TRUE, convert values of each cell from trait values to boundary

intensities. default = FALSE.

Value

A SpatRaster object with cell values 1 for boundary elements and 0 for other cells

Author(s)

Amy Luo

References

Fortin, M.J. et al. (2000) Issues related to the detection of boundaries. Landscape Ecology, 15, 453-466. Jacquez, G.M., Maruca, I S. & Fortin M.-J. (2000) From fields to objects: A review of geographic boundary analysis. Journal of Geographical Systems, 3, 221, 241.

Examples

```
data(grassland)
grassland <- terra::rast(grassland_matrix, crs = grassland_crs)
terra::ext(grassland) <- grassland_ext
grassland_boundaries <- define_boundary(grassland, 0.1)</pre>
```

ecoregions_crs 9

ecoregions_crs

Ecoregion data for East Africa projection

Description

Projection for ecoregions_matrix

Usage

data(ecoregions)

Format

Projection crs object

Source

doi:10.5061/dryad.315km76

References

Barratt et al. (2013) Molecular Ecology 27:4289-4308

ecoregions_ext

Ecoregion data for East Africa extent

Description

Extent for ecoregions_matrix

Usage

data(ecoregions)

Format

Numeric vector of length length 4

Source

doi:10.5061/dryad.315km76

References

ecoregions_matrix

Ecoregion data for East Africa

Description

Raster data of ecoregions in East Africa

Usage

```
data(ecoregions)
```

Format

A matrix to be converted into a SpatRaster object with a EPSG:4210 projection.

Source

```
doi:10.5061/dryad.315km76
```

References

Barratt et al. (2013) Molecular Ecology 27:4289-4308

```
gauss_random_field_sim
```

Gaussian random field neutral model

Description

Simulates a gaussian random field as a neutral landscape of the same extent and resolution as the input raster, using the same spatial autocorrelation range as the input

Usage

```
gauss_random_field_sim(x, corr_range)
```

Arguments

x A SpatRaster object.

corr_range The range of spatial autocorrelation to simulate. Can be estimated using the

lisa_clusters function.

Value

A SpatRaster object with boundary elements.

grassland_crs 11

Author(s)

Amy Luo

References

James, P. M. A., Fleming, R.A., & Fortin, M.-J. (2010) Identifying significant scale-specific spatial boundaries using wavelets and null models: Spruce budworm defoliation in Ontario, Canada as a case study. Landscape Ecology, 6, 873-887.

Examples

```
#' data(grassland)
grassland <- terra::rast(grassland_matrix, crs = grassland_crs)
terra::ext(grassland) <- grassland_ext

corr <- lisa_clusters(grassland)
simulation <- gauss_random_field_sim(grassland, corr)
terra::plot(simulation)</pre>
```

grassland_crs

Grassland land cover projection

Description

Projection for grassland_matrix

Usage

```
data(grassland)
```

Format

Projection crs object

Source

```
doi:10.5061/dryad.bk3j9kdhz
```

References

Cox et al. (2023) Conservation Genetics Radoux et al. (2019) Remote Sens 11:354.

12 grassland_matrix

grassland_ext

Grassland land cover extent

Description

Extent for grassland_matrix

Usage

data(grassland)

Format

Numeric vector of length length 4

Source

doi:10.5061/dryad.bk3j9kdhz

References

Cox et al. (2023) Conservation Genetics Radoux et al. (2019) Remote Sens 11:354.

grassland_matrix

Grassland land cover

Description

Raster land cover data from the LifeWatch Wallonia-Brussels ecotope database and used in Cox et al. 2023. Downsampled to match T. cristatus raster

Usage

```
data(grassland)
```

Format

A matrix to be converted into a SpatRaster object with a EPSG:4326 projection.

Source

doi:10.5061/dryad.bk3j9kdhz

References

Cox et al. (2023) Conservation Genetics Radoux et al. (2019) Remote Sens 11:354.

L.concolor_crs 13

 $L.concolor_crs$

Leptopelis concolor genetic groups projection

Description

Projection

Usage

data(L.concolor)

Format

Projection crs object

Source

doi:10.5061/dryad.315km76

References

Barratt et al. (2013) Molecular Ecology 27:4289-4308

L.concolor_ext

Leptopelis concolor genetic groups extent

Description

Extent for L.concolor_matrix

Usage

data(L.concolor)

Format

Numeric vector of length length 4

Source

doi:10.5061/dryad.315km76

References

L.flavomaculatus_crs

L.concolor_matrix

Leptopelis concolor genetic groups

Description

Raster data representing interpolated genetic group assignments for Leptopelis concolor based on analyses in Barratt et al. 2018.

Usage

```
data(L.concolor)
```

Format

A matrix to be converted into a SpatRaster object with a EPSG:4210 projection.

Source

```
doi:10.5061/dryad.315km76
```

References

Barratt et al. (2013) Molecular Ecology 27:4289-4308

Description

Projection for L.flavomaculatus_matrix

Usage

```
data(L.flavomaculatus)
```

Format

Projection crs object

Source

```
doi:10.5061/dryad.315km76
```

References

L.flavomaculatus_ext 15

Description

Extent for L.flavomaculatus_ext

Usage

```
data(L.flavomaculatus)
```

Format

Numeric vector of length length 4

Source

```
doi:10.5061/dryad.315km76
```

References

Barratt et al. (2013) Molecular Ecology 27:4289-4308

L.flavomaculatus_matrix

Leptopelis flavomaculatus genetic groups

Description

Raster data representing interpolated genetic group assignments for Leptopelis flavomaculatus based on analyses in Barratt et al. 2018.

Usage

```
data(L.flavomaculatus)
```

Format

A matrix to be converted into a SpatRaster object with a EPSG:4210 projection.

Source

```
doi:10.5061/dryad.315km76
```

References

16 max_subgraph

lisa_clusters

Identify LISA clusters

Description

Uses local Moran's I and Monte Carlo simulations to identify LISA clusters

Usage

```
lisa_clusters(x)
```

Arguments

Х

A SpatRaster object.

Value

An sf polygons object with LISA clusters

Author(s)

Amy Luo

References

Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis, 27(2), 93–115.

max_subgraph

Length of the longest subgraph

Description

Statistical test for the length of the longest subgraph, or set of contiguous boundary elements.

Usage

```
max_subgraph(x, null_distrib)
```

Arguments

x A SpatRaster object with boundary elements.

 $\verb|null_distrib| A list of probability functions output from boundary_null_distrib|().$

Value

The length of the longest subgraph and a p-value.

Author(s)

Amy Luo

References

Jacquez, G.M., Maruca, I S. & Fortin M.-J. (2000) From fields to objects: A review of geographic boundary analysis. Journal of Geographical Systems, 3, 221, 241.

Examples

```
data(T.cristatus)
T.cristatus <- terra::rast(T.cristatus_matrix, crs = T.cristatus_crs)
terra::ext(T.cristatus) <- T.cristatus_ext

Tcrist_boundaries <- categorical_boundary(T.cristatus)
T.crist_bound_null <- boundary_null_distrib(T.cristatus, cat = TRUE, n_iterations = 100, model = 'random_cluster')

max_subgraph(Tcrist_boundaries, T.crist_bound_null)</pre>
```

Description

Simulates a neutral landscape of the same extent and resolution as the input raster, with the same distribution of values.

Usage

```
mod_random_clust_sim(x, p)
```

Arguments

x A SpatRaster object.

p The proportion of cells to be marked in percolated raster. Higher values of p produce larger clusters.

Value

A SpatRaster object with boundary elements.

Author(s)

Amy Luo

n_subgraph

References

Saura, S. & Martínez-Millán, J. (2000) Landscape patterns simulation with a modified random clusters method. Landscape Ecology, 15, 661 – 678.

Examples

```
data(grassland)
grassland <- terra::rast(grassland_matrix, crs = grassland_crs)
terra::ext(grassland) <- grassland_ext

simulation <- mod_random_clust_sim(grassland, p = 0.6)
terra::plot(simulation)</pre>
```

n_subgraph

Number of subgraphs

Description

Statistical test the for number of subgraphs, or sets of contiguous boundary elements, in the data.

Usage

```
n_subgraph(x, null_distrib)
```

Arguments

x A SpatRaster object with boundary elements.null_distrib A list of probability functions output from boundary_null_distrib().

Value

The number of subgraphs in the raster and a p-value.

Author(s)

Amy Luo

References

Jacquez, G.M., Maruca, I S. & Fortin M.-J. (2000) From fields to objects: A review of geographic boundary analysis. Journal of Geographical Systems, 3, 221, 241.

Odirect 19

Examples

```
data(T.cristatus)
T.cristatus <- terra::rast(T.cristatus_matrix, crs = T.cristatus_crs)
terra::ext(T.cristatus) <- T.cristatus_ext

T.crist_boundaries <- categorical_boundary(T.cristatus)
T.crist_bound_null <- boundary_null_distrib(T.cristatus, cat = TRUE, n_iterations = 100, model = 'random_cluster')
n_subgraph(T.crist_boundaries, T.crist_bound_null)</pre>
```

Odirect

Direct overlap between boundary elements.

Description

Statistical test for the number of directly overlapping boundary elements of two traits.

Usage

```
Odirect(x, y, null_distrib)
```

Arguments

x A SpatRaster object with boundary elements.

y A SpatRaster object with boundary elements.

null_distrib A list of probability functions output from overlap_null_distrib().

Value

The number of directly overlapping boundary elements and a p-value.

Author(s)

Amy Luo

References

Jacquez, G.M., Maruca, I.S. & Fortin, M.-J. (2000) From fields to objects: A review of geographic boundary analysis. Journal of Geographical Systems, 3, 221, 241. Fortin, M.-J., Drapeau, P. & Jacquez, G.M. (1996) Quantification of the Spatial Co-Occurrences of Ecological Boundaries. Oikos, 77, 51-60.

20 overlap_null_distrib

Examples

```
data(T.cristatus)
T.cristatus <- terra::rast(T.cristatus_matrix, crs = T.cristatus_crs)
terra::ext(T.cristatus) <- T.cristatus_ext

data(grassland)
grassland <- terra::rast(grassland_matrix, crs = grassland_crs)
terra::ext(grassland) <- grassland_ext

Tcrist_ovlp_null <- overlap_null_distrib(T.cristatus, grassland, rand_both = FALSE,
    x_cat = TRUE, n_iterations = 100, x_model = 'random_cluster')
Tcrist_boundaries <- categorical_boundary(T.cristatus)
grassland_boundaries <- define_boundary(grassland, 0.1)

Odirect(Tcrist_boundaries, grassland_boundaries, Tcrist_ovlp_null)</pre>
```

overlap_null_distrib
Null distribution for boundary overlap statistics

Description

Creates custom probability distributions for three boundary overlap statistics (directly overlapping boundary elements, minimum distance between boundary elements in x to y, and minimum distance between elements in x and y). Given two SpatRaster objects with the same extent, projection, and resolution, simulates n iterations of random raster surfaces from neutral model(s).

Usage

```
overlap_null_distrib(
 х,
 у,
  rand_both,
  x_{convert} = FALSE,
 y_{convert} = FALSE,
  x_cat = FALSE,
  y_cat = FALSE,
  threshold = 0.2,
  n_{iterations} = 10,
  x_{model} = "random",
 y_model = "random",
 px = 0.5,
 py = 0.5,
  progress = TRUE
)
```

overlap_null_distrib 21

Arguments

X	A SpatRaster object. If rand_both = FALSE, only this raster will be modeled.		
у	A SpatRaster object. If rand_both = FALSE, this raster does not change.		
rand_both	TRUE if distribution of traits in x and y should be modeled.		
x_convert	TRUE if x contains numeric trait data that needs to be converted to boundary intensities. default = FALSE.		
y_convert	TRUE if y contains numeric trait data that needs to be converted to boundary intensities. default = FALSE.		
x_cat	TRUE if x contains a categorical variable. $default = FALSE$.		
y_cat	TRUE if y contains a categorical variable. default = FALSE.		
threshold	A value between 0 and 1. The proportion of cells to keep as boundary elements. Default = 0.2 .		
n_iterations	An integer indicating the number of iterations for the function. A value of 100 or 1000 is recommended to produce sufficient resolution for downstream statistical tests. default = 10 .		
x_model	Neutral model to use. Options: 'random' (stochastic), 'gaussian' (Gaussian random field), and 'random_cluster' (modified random clusters method)		
y_model	Neutral model to use for y.		
px	If using modified random clusters for x, proportion of cells to be marked in percolated raster. Higher values of p produce larger clusters. Default = 0.5		
ру	If using modified random clusters for y, proportion of cells to be marked in percolated raster. Higher values of p produce larger clusters. Default = 0.5		
progress	If progress = TRUE (default) a progress bar will be displayed.		

Value

A list of probability distribution functions for boundary overlap statistics.

Author(s)

Amy Luo

References

Saura, S. & Martínez-Millán, J. (2000). Landscape patterns simulation with a modified random clusters method. Landscape Ecology, 15:661-678.

Examples

```
data(T.cristatus)
T.cristatus <- terra::rast(T.cristatus_matrix, crs = T.cristatus_crs)
terra::ext(T.cristatus) <- T.cristatus_ext

data(grassland)
grassland <- terra::rast(grassland_matrix, crs = grassland_crs)</pre>
```

22 Ox

```
terra::ext(grassland) <- grassland_ext

Tcrist_ovlp_null <- overlap_null_distrib(T.cristatus, grassland, rand_both = FALSE,
    x_cat = TRUE, n_iterations = 100, x_model = 'random_cluster')</pre>
```

0x

Average minimum distance from x boundary elements to nearest y boundary element.

Description

Statistical test for the average minimum distance between each boundary element in raster x and the nearest boundary element in raster y. Uses Euclidean distance. The boundaries of trait x depend on the boundaries of trait y.

Usage

```
0x(x, y, null_distrib)
```

Arguments

x A SpatRaster object with boundary elements.

y A SpatRaster object with boundary elements.

null_distrib A list of probability functions output from overlap_null_distrib().

Value

The average minimum distance and a p-value.

Author(s)

Amy Luo

References

Jacquez, G.M., Maruca, I S. & Fortin, M.-J. (2000) From fields to objects: A review of geographic boundary analysis. Journal of Geographical Systems, 3, 221, 241. Fortin, M.-J., Drapeau, P. & Jacquez, G.M. (1996) Quantification of the Spatial Co-Occurrences of Ecological Boundaries. Oikos, 77, 51-60.

Oxy 23

Examples

```
data(T.cristatus)
T.cristatus <- terra::rast(T.cristatus_matrix, crs = T.cristatus_crs)
terra::ext(T.cristatus) <- T.cristatus_ext

data(grassland)
grassland <- terra::rast(grassland_matrix, crs = grassland_crs)
terra::ext(grassland) <- grassland_ext

Tcrist_ovlp_null <- overlap_null_distrib(T.cristatus, grassland, rand_both = FALSE,
    x_cat = TRUE, n_iterations = 100, x_model = 'random_cluster')
Tcrist_boundaries <- categorical_boundary(T.cristatus)
grassland_boundaries <- define_boundary(grassland, 0.1)

Ox(Tcrist_boundaries, grassland_boundaries, Tcrist_ovlp_null)</pre>
```

Оху

Average minimum distance between boundary elements of two variables

Description

Statistical test for the average minimum distance between boundary elements in two raster layers. Uses Euclidean distance. Boundaries for each trait affect one another reciprocally (x affects y and y affects x).

Usage

```
Oxy(x, y, null_distrib)
```

Arguments

x A SpatRaster object with boundary elements.

y A SpatRaster object with boundary elements.

null_distrib A list of probability functions output from overlap_null_distrib().

Value

p-value

Author(s)

Amy Luo

24 plot_boundary

References

Jacquez, G.M., Maruca, I S. & Fortin, M.-J. (2000) From fields to objects: A review of geographic boundary analysis. Journal of Geographical Systems, 3, 221, 241. Fortin, M.-J., Drapeau, P. & Jacquez, G.M. (1996) Quantification of the Spatial Co-Occurrences of Ecological Boundaries. Oikos, 77, 51-60.

Examples

```
data(T.cristatus)
T.cristatus <- terra::rast(T.cristatus_matrix, crs = T.cristatus_crs)
terra::ext(T.cristatus) <- T.cristatus_ext

data(grassland)
grassland <- terra::rast(grassland_matrix, crs = grassland_crs)
terra::ext(grassland) <- grassland_ext

Tcrist_ovlp_null <- overlap_null_distrib(T.cristatus, grassland, rand_both = FALSE,
    x_cat = TRUE, n_iterations = 100, x_model = 'random_cluster')
Tcrist_boundaries <- categorical_boundary(T.cristatus)
grassland_boundaries <- define_boundary(grassland, 0.1)

Oxy(Tcrist_boundaries, grassland_boundaries, Tcrist_ovlp_null)</pre>
```

plot_boundary

Map the boundary elements of two raster layers

Description

This is a wrapper function for ggplot2 that will produce a map of boundary elements for two traits and show where boundary elements intersect.

Usage

```
plot_boundary(x, y, color = NA, trait_names = NA)
```

Arguments

X	A SpatRaster object with boundary elements.
У	A SpatRaster object with boundary elements.
color	Optional. A character vector of up to three colors (x boundary, y boundary, and overlapping elements).
trait_names	Optional. A character vector with up to two elements (legend name for x and legend name for y).

random_raster_sim 25

Value

A ggplot2 object.

Author(s)

Amy Luo

Examples

```
data(T.cristatus)
T.cristatus <- terra::rast(T.cristatus_matrix, crs = T.cristatus_crs)
terra::ext(T.cristatus) <- T.cristatus_ext

data(grassland)
grassland <- terra::rast(grassland_matrix, crs = grassland_crs)
terra::ext(grassland) <- grassland_ext

Tcrist_boundaries <- categorical_boundary(T.cristatus)
grassland_boundaries <- define_boundary(grassland, 0.1)

plot_boundary(Tcrist_boundaries, grassland_boundaries)</pre>
```

random_raster_sim

Stochastic neutral landscape model

Description

Simulates a spatially stochastic neutral landscape of the same extent and resolution as the input raster, with the same distribution of values.

Usage

```
random_raster_sim(x)
```

Arguments

Х

A SpatRaster object.

Value

A SpatRaster object with boundary elements.

Author(s)

Amy Luo

26 sobel_operator

References

James, P. M. A., Fleming, R.A., & Fortin, M.-J. (2010) Identifying significant scale-specific spatial boundaries using wavelets and null models: Spruce budworm defoliation in Ontario, Canada as a case study. Landscape Ecology, 6, 873-887.

Examples

```
data(grassland)
grassland <- terra::rast(grassland_matrix, crs = grassland_crs)
terra::ext(grassland) <- grassland_ext
simulation <- random_raster_sim(grassland)
terra::plot(simulation)</pre>
```

sobel_operator

Sobel-Feldman operator for edge detection

Description

Uses a Sobel-Feldman operator (3x3 kernel) to detect internal edges in a SpatRaster object.

Usage

```
sobel_operator(x)
```

Arguments

Х

A SpatRaster object.

Value

A SpatRaster object with boundary values.

Author(s)

Amy Luo

Examples

```
data(T.cristatus)
T.cristatus <- terra::rast(T.cristatus_matrix, crs = T.cristatus_crs)
terra::ext(T.cristatus) <- T.cristatus_ext
edges <- sobel_operator(T.cristatus)
terra::plot(edges)</pre>
```

T.cristatus_crs 27

T.cristatus_crs

Triturus cristatus genetic groups projection

Description

Projection for T.cristatus_matrix

Usage

```
data(T.cristatus)
```

Format

```
ces Barratt et al. (2013) Molecular Ecology 27:4289–4308
Projection ers object
```

Source

doi:10.5061/dryad.bk3j9kdhz

References

Cox et al. (2023) Conservation Genetics

T.cristatus_ext

Triturus cristatus genetic groups extent

Description

Extent for T.cristatus_matrix

Usage

```
data(T.cristatus)
```

Format

Numeric vector of length length 4

Source

doi:10.5061/dryad.bk3j9kdhz

References

Cox et al. (2023) Conservation Genetics

28 T.cristatus_matrix

T.cristatus_matrix

Triturus cristatus genetic groups

Description

Raster data representing interpolated genetic group assignments for Triturus cristatus based on analyses in Cox et al. 2023

Usage

```
data(T.cristatus)
```

Format

A matrix to be converted into a SpatRaster object with a EPSG:4326 projection.

Source

doi:10.5061/dryad.bk3j9kdhz

References

Cox et al. (2023) Conservation Genetics

Index

* datasets	grassland_crs,11				
A.delicatus_crs, 2	grassland_ext, 12				
A.delicatus_ext, 3	grassland_matrix, 12				
A.delicatus_matrix,4					
A.sylvaticus_crs,4	L.concolor_crs, 13				
A.sylvaticus_ext, 5	L.concolor_ext, 13				
A.sylvaticus_matrix,5	L.concolor_matrix, 14				
ecoregions_crs, 9	L.flavomaculatus_crs, 14				
ecoregions_ext, 9	L.flavomaculatus_ext, 15				
ecoregions_matrix, 10	L.flavomaculatus_matrix, 15				
grassland_crs, 11	lisa_clusters, 16				
<pre>grassland_ext, 12</pre>					
grassland_matrix, 12	max_subgraph, 16				
L.concolor_crs, 13	<pre>mod_random_clust_sim, 17</pre>				
L.concolor_ext, 13	n aubananh 10				
L.concolor_matrix, 14	n_subgraph, 18				
L.flavomaculatus_crs, 14	Odirect, 19				
L.flavomaculatus_ext, 15	overlap_null_distrib, 20				
L.flavomaculatus_matrix, 15	0x, 22				
T.cristatus_crs, 27	0xy, 23				
T.cristatus_ext, 27	0Ay, 23				
T.cristatus_matrix, 28	plot_boundary, 24				
	, – 3,				
A.delicatus_crs, 2	random_raster_sim, 25				
A.delicatus_ext, 3					
A.delicatus_matrix,4	sobel_operator, 26				
A.sylvaticus_crs, 4					
A.sylvaticus_ext, 5	T.cristatus_crs, 27				
A.sylvaticus_matrix, 5	T.cristatus_ext, 27				
	T.cristatus_matrix,28				
boundary_null_distrib,6					
categorical_boundary,7					
define_boundary, 8					
ecoregions_crs, 9					
ecoregions_ext, 9					
ecoregions_matrix, 10					
ccor egrons_matrix, ro					
<pre>gauss_random_field_sim, 10</pre>					