Application 1

Diagramme entropique du fréon

Le fréon est un fluide frigorigène utilisé dans les machines frigorifiques (cf. H-Prépa, Thermodynamique, I^{re} année, chapitre 8). Le document 4 donne le diagramme entropique (T, s) du fréon pour la transition de phase liquide-vapeur.

1) Identifier les différentes grandeurs dont la lecture est possible grâce à ce diagramme.

Doc. 4. Diagramme entropique (T, s) du fréon, h en kJ.kg⁻¹, P en bar (10^5 Pa) .

2) Compléter alors le tableau suivant (doc. 5)

t (°C)	P _s (bar)	h_ℓ kJ.kg $^{-1}$	$h_{ m v}$ kJ.kg $^{-1}$	Δh kJ.kg ⁻¹	s _ℓ kJ.kg ⁻¹ .K ⁻¹	s _v kJ.kg ⁻¹ .K ⁻¹	Δs kJ.kg ⁻¹ .K ⁻¹	<i>T∆s</i> kJ.kg ⁻¹
- 30								
- 20								
60								
85								
95								

Doc. 5. p_s : pression de vapeur saturante, h_ℓ : enthalpie massique du liquide saturant, h_v enthalpie massique de la vapeur saturante, $\Delta h = h_v - h_\ell$: entropie massique du liquide saturant, s_v de la vapeur saturante, $\Delta s = s_v - s_\ell$.

En déduire une relation traduisant l'équilibre entre le fréon liquide et le fréon gazeux pour une température donnée.

Que peut-on déduire par la variation de l'enthalpie libre massique du fréon.

1) Ce diagramme permet de lire la température t (°C) en ordonnée et l'entropie massique s (kJ \cdot kg⁻¹ \cdot K⁻¹) en abscisse.

Les courbes isobares et isenthalpiques permettent de lire la pression P (bar) et l'enthalpie massique h (kJ·kg⁻¹).

Les courbes isotitres, présentes à l'intérieur de la courbe de saturation, permettent d'accéder à la fraction massique en vapeur du fréon.

- 2) Les résultats sont indiqués dans le document 6.
- Les valeurs de *h* sont déterminées par extrapolation des courbes du *document* 5.
- $P_s(t)$ est constante tout le long de l'équilibre liquidevapeur (palier de pression).
- Les valeurs relatives à la phase liquide sont lues sur la courbe de liquide saturé et celles relatives à la phase vapeur sur la courbe vapeur saturée, à la température donnée.
- Pour le calcul de $T\Delta s$, il faut exprimer la température en kelvins.

Remarquons que Δh et Δs tendent vers 0 lorsque l'on se rapproche du point critique. Nous reviendrons sur ce résultat au § 2.3.

3) La dernière colonne du *document* 6 montre que, aux erreurs de lecture près, $T\Delta s = \Delta h$, soit : $\Delta h - T\Delta s = 0$ et donc puisque T est constante sur le palier de changement d'état, $\Delta(h - Ts) = \Delta g = 0$.

L'écart maximum entre Δh et $T\Delta s$ est inférieur à 2 % (pour P = 30 bar).

Contrairement aux fonctions h(T, P) et s(T, P), l'enthalpie libre massique g = h - Ts, du fréon est continue au cours du changement d'état.

Ce résultat peut donc s'exprimer par :

$$\Delta g = g_{\ell}(T, P) - g_{v}(T, P) = 0,$$

soit $g_{\ell}(T, P) = g_{v}(T, P)$.

Cette relation traduit l'existence simultanée, pour une température T et une pression P, de la phase liquide et de la phase vapeur.

Nous démontrerons la validité de cette relation pour tout corps pur au § 1.2.2.

<u>Remarque</u>

Le lecteur vérifiera à titre d'exercice la validité de cette relation pour l'eau en utilisant les données figurant dans le document 3.

t (°C)	P _s (bar)	h_ℓ k J .k g $^{-1}$	$h_{ m v}$ kJ.kg $^{-1}$	Δh kJ.kg ⁻¹	s _ℓ kJ.kg ⁻¹ .K ⁻¹	s _v kJ.kg ⁻¹ .K ⁻¹	Δ <i>s</i> kJ.kg ⁻¹ .K ⁻¹	T∆s kJ.kg ⁻¹
-30	1	10	175	165	0,04	0,72	0,68	165,2
-20	1,5	19	177	158	0,08	0,71	0,63	159,4
60	15	97	210	113	0,34	0,68	0,34	113,2
85	25	127	213	86	0,42	0,66	0,24	85,9
95	30	140	215	75	0,45	0,65	0,20	73,6

Doc. 6.

I.2. Évolution et équilibre

Nous venons de voir dans l'*application* 1 que l'enthalpie libre semble jouer un rôle important dans l'étude du corps pur sous deux phases.

Rappelons quelques résultats du *chapitre* 4, relatif aux potentiels thermodynamiques : pour une transformation isotherme et isobare de système fermé, soumis uniquement à des forces de pression, le potentiel thermodynamique adapté est l'**enthalpie libre** *G*. Nous savons alors que :

- l'évolution spontanée du système se traduit par la relation dG < 0;
- l'état d'équilibre du système est caractérisé par dG = 0.