### 対話的洗面台による生活習慣の改善

### 産業技術大学院大学

毎田 定弘, 江口 佳紀, 寺田 佳代子, 飛田 博章

# 研究背景

#### 日本における独居者へのヘルスケアの重要性の高まり

東京都での独居世帯の割合

2016年: 45%を超えている

2030年: 50%まで増加と予測[1]

社会的孤立 29% 孤独感 26%

1人暮らし 32%

死亡リスク が高まる[2]



独居者に孤独感を感じさせない見守る仕組みが必要

<sup>[1]</sup> 東京都 世帯数の予測概要 平成26年3月 ,http://www.toukei.metro.tokyo.jp/syosoku/sy14rf0006.pdf

<sup>[2]</sup> J. Holt-Lunstad et al. Loneliness and Social Isolation as RiskFactors for Mortality:

A Meta-Analytic Review , Perspectives on Psychological Science 2015, Vol.10 (2), pp 227–231, 2015

## 問題

#### 独居者への「見守りサービス」

### 人手を介したサービス

データの取得

人的状況把握







多くが生活を見守ることを意識

### サービスに対話性を持たせる

システム状況把握



生活改善、孤独感の解消へ直接アプローチ

## 関連研究 - データの取得 -

①[J.Chen&A.H.Kam,2005]

Bathroomでのトイレや シャワーなどで発生する 生活音を取得、認識し、 1日の行動記録を要約する システム



②[根岸&河口,2007]

マイクとなる圧電素子を 家具や日用品に貼り付け 生活音を認識させる研究

- ・水道水から水が流れる音
- ・引き戸を占める音
- ・IHクッキングヒータの加熱動作音



# 提案

### 「洗面台」に着目

**生活音の認識:**生活リズムの把握

音声合成 : 直接的な発話



対話的システムによる 生活の改善・独居者の孤独感解消へ

# システム概要

# デバイスの構成





参考: TEALION[吉川ら, 2016]

● 特長

プライバシーを考慮し[杉原ら, 2010] デバイスが目につかないよう配慮

U字管につながるマイクより生活音を集音



洗面台のボール部分を振動板として発話

### 処理の流れ



WAVファイル : 3秒区切り

学習モデル : SVM

ソフトウェア : OpenJTalk

発話内容:「石鹸を使いましょう」,「節水しましょう」

声のトーン : 親しみを持てるように複数のトーンを設定可能

### 分類器の作成

#### ● 認識させる生活音

- 計8つを分類器のクラスとする

「水流音1」・「水流音2」 ・ 「手洗い音」

「石鹸音」・「顔洗い音」・「声」

「無音」 · 「うがい音」

#### ● 音声データ取得(理想環境)

- 理想環境:洗面台の使用以外はほぼ無音状態である集音環境
- クラスごとに16ファイル(.wav)用意 8クラス × 16ファイル = 128データ準備

### 理想環境での分類器の評価

|      | 水流音1 | 水流音2 | 手洗い音 | 石鹸音  | 顔洗い音 | 声    | 無音   | うがい  | accuracy |
|------|------|------|------|------|------|------|------|------|----------|
| 水流音1 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00     |
| 水流音2 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00     |
| 手洗い音 | 0.00 | 0.09 | 0.71 | 0.00 | 0.18 | 0.00 | 0.01 | 0.00 | 0.71     |
| 石鹸音  | 0.00 | 0.00 | 0.00 | 0.77 | 0.00 | 0.02 | 0.21 | 0.00 | 0.77     |
| 顔洗い音 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00     |
| 声    | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.81 | 0.00 | 0.15 | 0.81     |
| 無音   | 0.00 | 0.00 | 0.00 | 0.13 | 0.00 | 0.04 | 0.84 | 0.00 | 0.84     |
| うがい  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.13 | 0.00 | 0.87 | 0.87     |
|      |      |      |      |      |      |      |      |      | 0.07     |

ıvg 0.87

- ホールドアウト法を用いてSVMによる学習、検証を実施
  - 訓練データ:80データ, テストデータ:48データ
- 計10回の学習の平均を混合行列によって表し、正確性を評価

### 音声合成による発話



- 発話シナリオシステム稼働時に「手洗い音」を検出後
  - ① 10秒以上「石鹸音」が検出されない場合, 「石鹸を使いましょう」と発話
  - ②「水流音1」,「水流音2」が30秒以上続いた場合,「節水しましょう」と発話
- 音声のトーン
  - ①発話者の性別:「男」 or 「女」
  - ②ニュアンス:「明るい声」等の選択が可能

# 考察

### 理想環境と疑似実環境の比較(1/2)

#### ● 環境場所(計6か所)

○ 洗面台:理想環境,換気扇を回した状態,洗濯機をかけている状態

○台所 : 理想環境,換気扇を回した状態,音楽が流れている状態

#### ● 環境の定義

- 理想環境 : ノイズの考慮を必要としない洗面台の集音環境

- 疑似実環境 : すべての環境を合わせた集音環境

#### ● 認識させる生活音

- 「水流音」,「手洗い音」,「石鹸音」,「声」,「顔洗い音」,「無音」,「うがい音」
- 7クラス×16ファイル×6環境 = 672データ準備

### 理想環境と疑似実環境の比較(2/2)

#### ● 疑似実環境

|      | 水流音  | 手洗い音 | 石鹸音  | 顔洗い音 | 声    | 無音   | うがい  | accuracy |
|------|------|------|------|------|------|------|------|----------|
| 水流音  | 0.59 | 0.19 | 0.01 | 0.09 | 0.00 | 0.09 | 0.02 | 0.59     |
| 手洗い音 | 0.06 | 0.66 | 0.00 | 0.18 | 0.01 | 0.00 | 0.09 | 0.66     |
| 石鹸音  | 0.00 | 0.00 | 0.75 | 0.00 | 0.11 | 0.12 | 0.02 | 0.75     |
| 顔洗い音 | 0.15 | 0.16 | 0.01 | 0.67 | 0.00 | 0.00 | 0.00 | 0.67     |
| 声    | 0.01 | 0.05 | 0.10 | 0.04 | 0.57 | 0.07 | 0.16 | 0.57     |
| 無音   | 0.00 | 0.00 | 0.19 | 0.01 | 0.07 | 0.70 | 0.02 | 0.70     |
| うがい  | 0.02 | 0.00 | 0.01 | 0.09 | 0.10 | 0.04 | 0.74 | 0.74     |

avg

0.67

理想環境: 0.87

- 雑音下での認識精度の大幅な低下が見られる
  - 水流が「ある」場合と「ない」場合の認識精度は高い
  - 細かな分類において、認識精度が落ちている

### 考察

### 特長

- 設置デバイスが視覚に入らないため、システムへの意識をある程度回避
- 設置に関して取り付け・取り外ししやすく,利用者の負担とならない

### ・問題点

- 理想環境にて、「石鹸音」と「無音」、 「声」と「うがい音」 といった性質の似通ったクラスが、誤認識されやすい
- 雑音下での生活音検出が難しく、認識精度は環境に依存する

### まとめ・今後の課題

#### ・まとめ

- 対話的な洗面台により、独居者への生活の改善・孤独感解消を 目指したシステムを提案
  - ✓デザインのシステムが生活音の認識に使えることが分かった
  - ✓洗面台のボールからの音声発話を行った

### ・今後の課題

- 性質の似通ったクラスの認識精度を上げる方法を検討する
- 雑音下における認識精度を向上させ、実環境下での使用を可能とする