Lecture 4

Logistic (Regression) classification

Dong Kook Kim

Regression: Recap

x1 (hours)	x2 (attendance)	y (score)
10	5	90
9	5	80
3	2	50
2	4	60
11	1	40

• Hypothesis: H(X) = WX

• Cost: $cost(W) = \frac{1}{m}\sum (WX - y)^2$

• Gradient decent:

$$W \coloneqq W - \alpha \frac{\partial}{\partial W} \operatorname{cost}(W)$$

Step I: Binary Classification Data

• Target: 0 or I (Binary)

x1 (hours)	x2 (attendance)	y (P or F)	y (target)
10	5	Pass (90)	1
9	5	Pass (80)	1
3	2	Fail (50)	0
2	4	Fail (60)	0
11	1	Fail (40)	0

Target: 0, I encoding

Target: 0 or I (binary)

- Spam Detection: Spam (I) or Ham (0)
- Tumor Detection: Malignant(I) or Not (0)
- Facebook feed: show(1) or hide(0)
- Credit Card Fraudulent Transaction detection: legitimate(0) or fraud (1)

Linear Regression Model

Logistic Regression

We know y is 0 or 1

$$H(x) = Wx + b$$
: linear regression

- Hypothesis can give values larger than I or less than 0
- A nonlinear function is need to represent 0 or 1 hypothesis

Nonlinear function : Step function

Nonlinear function: Sigmoid function

Step 2: Logistic Regression Model

$$z = Wx + b H(x) = g(z)$$

Sigmoid Function

- Logistic function or Sigmoid function
- Curved in two directions, liked the letter 'S'

$$y = \sigma(x) = \frac{1}{1 + e^{-x}}$$

Step 2: Logistic Regression Model

$$H(X) = \sigma(Wx + b) = \frac{1}{1 + e^{-(Wx+b)}}$$

Loss Function: LR

$$cost(W,b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2 \text{ when } H(x) = Wx + b$$

Loss Function: MSE

$$cost(W,b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2$$

$$H(x) = Wx + b$$

$$H(x) = Wx + b$$
 $H(X) = \frac{1}{1 + e^{-W^T X}}$

Step 3: New Loss Function for Logistic

$$cost(W,b) = \frac{1}{m} \sum c(H(x),y)$$

$$C(H(x),y) = \begin{cases} -\log(H(x)) & : y = 1\\ -\log(1 - H(x)) & : y = 0 \end{cases}$$

Cross – entropy function

Understanding Loss Function

$$C(H(x), y) = \begin{cases} -\log(H(x)) & : y = 1\\ -\log(1 - H(x)) & : y = 0 \end{cases}$$

If
$$y = 1$$
, $C(H(x), y) = -\log(H(x))$

If
$$y = 0$$
, $C(H(x), y) = -\log(1 - H(x))$

$$H(x) = 1 \rightarrow cost = 0$$

 $H(x) = 0 \rightarrow cost = \infty$

$$H(x) = 1 \rightarrow cost = \infty$$

 $H(x) = 0 \rightarrow cost = 0$

Step 3: Loss Function - Cross-Entropy

$$cost(W,b) = \frac{1}{m} \sum c(H(x),y)$$

$$C(H(x),y) = \begin{cases} -\log(H(x)) &: y = 1\\ -\log(1 - H(x)) &: y = 0 \end{cases}$$

$$C(H(x),y) = -y\log(H(x)) - (1 - y)\log(1 - H(x))$$

Step 4: Optimization – GD algorithm

$$cost(W,b) = -\frac{1}{m} \sum ylog(H(x)) + (1-y)log(1-H(x))$$
$$W := W - \alpha \frac{\partial}{\partial W} cost(W)$$

Derivative cost(W) wrt W

$$\frac{\partial}{\partial W}cost(W,b) = \sum (y - H(x))x$$

Optimization – GD algorithm

$$cost(W,b) = -\frac{1}{m} \sum ylog(H(x)) + (1-y)log(1-H(x))$$

$$W \coloneqq W - \alpha \frac{\partial}{\partial W} cost(W)$$

```
# cost function
cost = tf.reduce_mean(-tf.reduce_sum(Y*tf.log(hypothesis) + (1-Y)*tf.log(1-hypothesis)))
# Minimize
a = tf.Variable(0.1) # Learning rate, alpha
optimizer = tf.train.GradientDescentOptimizer(a)
train = optimizer.minimize(cost)
```

Step 5: Testing - Decision Boundary

$$H(x) = \frac{1}{1 + e^{-(Wx + b)}}$$

Decision : *if* H(x) > 0.5, y = 1, *else* y = 0

Graph for Logistic Regression

- x : n-dim vector, y : scalar
- W:n-dim vector, b:scalar

$$y = H(X) = \sigma(Wx + b)$$

$$y = H(X) = \sigma(Wx + b) \qquad \sigma(a) = \frac{1}{1 + \exp(-a)}$$

Sigmoid function

Keras : Dense(I, input_dim=n, activation='sigmoid')

Logistic Regression: Summary

• Muti-variate Input/Scalar Target:

Data Set :	$x^{(i)}, y^{(i)}, i = 1,, m$	Input vector & scalar target (0 or 1)
Model:	$H(X) = \frac{1}{1 + e^{-(Wx+b)}}$	Linear model W : weight vector b : bias
Cost Function	$cost(W,b) = -\frac{1}{m} \sum ylog(H(x)) + (1$	CE
Optimization	$W \coloneqq W - \alpha \frac{\partial cost(W, b)}{\partial W}$	GD
Testing	Given $x \& W$, b decide $y = 1$ if $H(x) > 0.5$, else $y = 0$	Metric : Accuracy

Exercise 03-1.

tf2-03-1-logistic_classification.py

Exercise 03-1.

- Data: input and target

- Classification results

Exercise 03-2.

tf2-03-2-imdb_classification.py

- movie review classification

Exercise 03-2.

- Training & validation loss

Training and validation loss Training loss Validation loss 0.6 0.5 0.3 0.2 0.1 0.0 -2.5 5.0 7.5 10.0 12.5 15.0 17.5 Epochs

- Training & validation accuracy

