# Studio di algoritmi per la rappresentazione di dati geografici con multi risoluzione

Pietralberto Mazza

27 Ottobre 2016

#### Indice

- Introduzione
- Stato dell'arte
- Obiettivo della tesi
- 4 Realizzazione
- 6 Risultati
- 6 Conclusioni e sviluppi futuri



- Vengono compiute simulazioni d'acqua su mappe geografiche (batimetrie)
- Ogni punto della mappa esprime l'altezza del terreno

#### Mappa e Poligono



- Una mappa è composta da più tavolette
- Sulla mappa viene definita un'area su cui compiere la simulazione

#### Rappresentazione dei livelli di risoluzione



Per ogni livello di risoluzione viene utilizzata una bitmask

#### Rappresentazione in multi risoluzione



Le mappe vengono rappresentate in multi risoluzione per ridurre l'impatto in memoria

II programma viene eseguito su GPU (Graphics Processing Unit)

Matrice a multi risoluzione





Una matrice a multi risoluzione è una matrice di blocchi codificati che vengono ordinati in base al numero

#### Stato dell'arte



Viene allocata troppa memoria

#### Obiettivo della tesi

## Ridurre l'impatto in memoria

- Bitmask dell'immagine
- Matrice a multi risoluzione
- Caricare i dati delle altezze allocando memoria solo per una tavoletta

#### Bounding box



Viene individuata la sottomatrice di tavolette in cui cade il poligono

Generazione multi risoluzione

#### immagine

La multi risoluzione viene generata partendo dai punti che interpolano i segmenti del poligono

#### Divisione fra punti interni ed esterni



- Vengono identificati i blocchi in cui sono contenuti i seed points
- La divisione viene eseguita utilizzando due code ed esplorando i vicini

#### Caricamento delle altezze

## load\_data()

```
for each slab in bounding_box
   for each height in slab
        p = real_point(height)
        b = find_block_in_grid_multi(p)
        b.value += height
        ++c[b]
   end
end

for each b in grid_multi
   if c[b] != 0
        b.value /= c[b]
```

#### Differenze fra le due versioni

- Le dimensioni della matrice a multi risoluzione dipendono dal poligono
- Bitmask dell'immagine in multi risoluzione
- Per ogni cella sul bordo di un blocco il vicino può essere a risoluzione diversa



#### Risultati



Passaggi della suddivisione fra punti interni ed esterni di un bounding block

#### Conclusioni

Livello 3

| Bounding box    | Celle originali | Celle multires | Memoria |
|-----------------|-----------------|----------------|---------|
| pol1.bln        | 9072000         | 212992         | 31MB    |
| pol2.bln        | 5292000         | 131072         | 24MB    |
| pol3.bln        | 12096000        | 278528         | 35MB    |
| pol4.bln        | 567000          | 32768          | 17MB    |
| bln_secchia.bln | 18900000        | 409600         | 46MB    |
| bln_stretto.bln | 2646000         | 73728          | 20MB    |

Livello 2

| Bounding box    | Celle originali | Celle multires | Memoria |  |
|-----------------|-----------------|----------------|---------|--|
| pol1.bln        | 9072000         | 409600         | 46MB    |  |
| pol2.bln        | 5292000         | 253952         | 34MB    |  |
| pol3.bln        | 12096000        | 475984         | 51MB    |  |
| pol4.bln        | 567000          | 90112          | 21MB    |  |
| bln_secchia.bln | 18900000        | 638976         | 63MB    |  |
| bln_stretto.bln | 2646000         | 163840         | 27MB    |  |

ldealmente la matrice a multi risoluzione può pesare 12GB (memoria della GPU), ovvero  $7,5*10^9$  celle rappresentanti un'area di  $86*86~km^2$ 

### Sviluppi futuri

- Integrazione del progetto nel sistema già esistente
- Caricare i dati solo per i punti interni al poligono
- Aggiungere e adattare nella nuova versione l'algoritmo per l'eliminazione dei punti con 3 vicini esterni
- Aggiungere le condizioni di muro

# Grazie per l'attenzione