[Case i] The following error bounds hold true for some M > 0.

- (i-1) $0 \leq \mathbb{E}[h(\hat{x}_{\eta})] h^* \leq \mathbf{Err}_{\eta} + \eta M.$
- $(i-2) \quad \frac{\mu_f}{2} \mathbb{E}[\|\hat{x}_{\eta} x^*\|^2] \|\nabla f(x^*)\| \, \mathbb{E}[\operatorname{dist}(\hat{x}_{\eta}, X_h^*)] \leq \mathbb{E}[f(\hat{x}_{\eta})] f^* \leq \frac{1}{n} \operatorname{Err}_{\eta}.$
- (i-3) If $\mu_f > 0$, then $\mathbb{E}[\|\hat{x}_{\eta} x^*\|^2] \leq \frac{2}{\mu_f} \left(\|\nabla f(x^*)\| \mathbb{E}[\operatorname{dist}(\hat{x}_{\eta}, X_h^*)] + \frac{1}{\eta} \operatorname{Err}_{\eta} \right)$. [Case ii] Suppose X_h^* is α -weak sharp with order $\kappa \geq 1$. Then, the following holds for some M > 0.

- (ii-1) $0 \leq \mathbb{E}[h(\hat{x}_{\eta})] h^* \leq Err_{\eta} + \eta M$.
- (ii-2) $\frac{\mu_f}{2}\mathbb{E}[\|\hat{x}_{\eta} x^*\|^2] \|\nabla f(x^*)\| \sqrt[\kappa]{\frac{1}{\alpha}(Err_{\eta} + \eta M)} \leq \mathbb{E}[f(\hat{x}_{\eta})] f^* \leq \frac{1}{n}Err_{\eta}.$
- (i-3) If $\mu_f > 0$, then $\mathbb{E}[\|\hat{x}_{\eta} x^*\|^2] \leq \frac{2}{\mu_f} \left(\|\nabla f(x^*)\| \sqrt[\kappa]{\frac{1}{\alpha} (\textit{Err}_{\eta} + \eta M)} + \frac{1}{\eta} \textit{Err}_{\eta}\right)$. [Case iii] If X_h^* is α -weak sharp with order $\kappa = 1$ and $\eta \leq \frac{\alpha}{2\|\nabla f(x^*)\|}$, then the following holds.

- $\begin{array}{ll} (iii\text{-}1) & 0 \leq \mathbb{E}[h(\hat{x}_{\eta})] h^* \leq 2 \, \textit{Err}_{\eta}. \\ (iii\text{-}2) & \frac{\mu_f}{2} \mathbb{E}[\|\hat{x}_{\eta} x^*\|^2] \frac{2\|\nabla f(x^*)\|}{\alpha} \, \textit{Err}_{\eta} \leq \mathbb{E}[f(\hat{x}_{\eta})] f^* \leq \frac{1}{\eta} \textit{Err}_{\eta}. \\ (iii\text{-}3) & \text{If } \mu_f > 0, \text{ then } \mathbb{E}[\|\hat{x}_{\eta} x^*\|^2] \leq \frac{2}{\eta \mu_f} \textit{Err}_{\eta}. \end{array}$

Proof. (i-1) In view of the definition of Err_{η} and f_{η} , we have $\mathbb{E}[h(\hat{x}_{\eta}) + \eta f(\hat{x}_{\eta})] - f_{\eta}^* \leq \text{Err}_{\eta}$. Also, from the definition of f_{η}^* , we have $f_{\eta}^* \leq f_{\eta}(x^*) = h^* + \eta f^*$. From the preceding two relations, we obtain

$$\mathbb{E}[h(\hat{x}_{\eta})] - h^* + \eta(\mathbb{E}[f(\hat{x}_{\eta})] - f^*) \le \operatorname{Err}_{\eta}. \tag{2}$$

By invoking Assumption 1, we have $\mathbb{E}[f(\hat{x}_{\eta})] > -\infty$. Therefore, there exists some M > 0 such that $f^* - \mathbb{E}[f(\hat{x}_{\eta})] < M$. As a result, we obtain $\mathbb{E}[h(\hat{x}_{\eta})] - h^* \leq \text{Err}_{\eta} + \eta M$. From $\hat{x}_{\eta} \in X$, we also have $\mathbb{E}[h(\hat{x}_{\eta})] - h^* \geq 0$. This completes the proof of (i-1).

(i-2) The upper bound holds in view of (2) and that $\mathbb{E}[h(\hat{x}_{\eta})] - h^* \geq 0$. To show the lower bound, from the convexity of f, we may write

$$\frac{\mu_f}{2} \mathbb{E}[\|\hat{x}_{\eta} - x^*\|^2] + \nabla f(x^*)^{\top} \mathbb{E}[(\hat{x}_{\eta} - x^*)] \le \mathbb{E}[f(\hat{x}_{\eta})] - f^*,$$

where the expectation is taken with respect to the random variables generated in the method \mathcal{M} . Note that $\nabla f(x^*)^{\top} \mathbb{E}[(\hat{x}_{\eta} - x^*)]$ is not necessarily nonnegative. We may write

$$\frac{\mu_f}{2} \mathbb{E}[\|\hat{x}_{\eta} - x^*\|^2] + \nabla f(x^*)^{\top} \mathbb{E}[(\hat{x}_{\eta} - \Pi_{X_t^*}[\hat{x}_{\eta}] + \Pi_{X_t^*}[\hat{x}_{\eta}] - x^*)] \leq \mathbb{E}[f(\hat{x}_{\eta})] - f^*.$$

In view of $\Pi_{X_h^*}[\hat{x}_{\eta}] \in X_h^*$, we have $\nabla f(x^*)^{\top} \mathbb{E}\left[\left(\Pi_{X_h^*}[\hat{x}_{\eta}] - x^*\right)\right] \geq 0$. We obtain

$$\frac{\mu_f}{2} \mathbb{E}[\|\hat{x}_{\eta} - x^*\|^2] + \nabla f(x^*)^{\top} \mathbb{E}\left[\left(\hat{x}_{\eta} - \Pi_{X_h^*}[\hat{x}_{\eta}]\right)\right] \le \mathbb{E}[f(\hat{x}_{\eta})] - f^*$$

Invoking the Cauchy-Schwarz inequality, we obtain

$$\frac{\mu_f}{2} \mathbb{E}[\|\hat{x}_{\eta} - x^*\|^2] - \|\nabla f(x^*)\| \|\mathbb{E}\left[\hat{x}_{\eta} - \Pi_{X_h^*}[\hat{x}_{\eta}]\right]\| \leq \mathbb{E}[f(\hat{x}_{\eta})] - f^*.$$

Invoking the Jensen's inequality, we obtain

$$\frac{\mu_f}{2} \mathbb{E}[\|\hat{x}_{\eta} - x^*\|^2] - \|\nabla f(x^*)\| \mathbb{E}\left[\|\hat{x}_{\eta} - \Pi_{X_h^*}[\hat{x}_{\eta}]\|\right] \le \mathbb{E}[f(\hat{x}_{\eta})] - f^*.$$

Noting that $\mathbb{E}[\operatorname{dist}(\hat{x}_{\eta}, X_h^*)] = \mathbb{E}\left[\left\|\hat{x}_{\eta} - \Pi_{X_h^*}[\hat{x}_{\eta}]\right\|\right]$, we obtain the lower bound in (i-2).

- (i-3) This result follows directly from (i-2).
- (ii-1) This result is identical to (i-1).