SORTING IN LINEAR TIME

Juan Mendivelso

CONTENTS

- 1. Lower Bounds for Sorting
- 2. Counting Sort
- 3. Radix Sort
- 4. Bucket Sort

1. LOWER BOUNDS FOR SORTING

Comparison Sorts

- Sorting algorithms that are based on comparisons between the input elements.
- Comparison sorts include
 - Insertion Sort
 - Merge Sort
 - Quicksort
 - Heapsort
- The worst case of Merge Sort and Heapsort is O(n lg n).
- The average case of Quicksort is O(n lg n).
- A comparison sort requires $\Omega(n \lg n)$.

The Decision-Tree Model

- We can view comparison sorts abstractly in terms of decision trees.
- A **decision tree** is a full binary tree that represents the comparisons between elements that are performed by a particular sorting algorithm operating on an input of a given size.
- Control, data movement and all other aspects of the algorithm are ignored.

The Decision-Tree Model

- In each internal node, a_i:a_j, 1 ≤ i, j, ≤ n, represents a comparison.
- The left (right) subtree indicates that $a_i \le a_j$ ($a_i > a_j$).
- Each leaf represents a permutation $\pi(1)$, $\pi(2)$,..., $\pi(n)$ that indicates the sorted order of the input, i.e. $a_{\pi(1)} \le a_{\pi(2)} \le ... \le a_{\pi(n)}$.
- Each of the n! permutations must appear as leaves.

Decision tree of Insertion Sort on array $A=a_1a_2a_3$ of size 3.

Example with 6,8,5:

Bound for the Worst Case

- The length of the longest path from the root to a leaf is the number of comparisons in the worst case, i.e. the height of the decision tree.
- A bound on such height is a bound on any comparison sort.

Decision tree of Insertion Sort on array $A=a_1a_2a_3$ of size 3.

Example with 6,8,5:

Bound for the Worst Case

Theorem: Any comparison sort requires $\Omega(n \mid g \mid n)$ comparisons in the worst case.

Proof:

- Let h be the height of a decision tree to sort n elements.
- There must be at least n! leaves that correspond to the permutations.
- Because it is a binary tree, the number of leaves is at most 2^h.

$$n! \le 2^h$$

 $\lg(n!) \le h$
 $h = \Omega(n \lg n)$
 $\lg(n!) = \Theta(n \lg n)$

Corollary: Merge Sort and Heapsort are asymptotically optimal.

Sorting in linear time

- However, depending on the range or distribution on the input, we can sort arrays in linear time.
- With Counting Sort, we can sort in linear time if the range [0,k] of the values sorted is smaller than the number n of elements to be sorted., i.e. k =O(n).
- With Radix Sort, we can sort records of information that are keyed by multiple fields in linear time.
- With Bucket Sort, we can sort numbers drawn from a uniform distribution in linear time.

2. COUNTING SORT

Counting Sort

- The n input elements are integers in [0,k].
- If k=O(n), the algorithm runs in O(n).
- Idea: For each value x, determine how many elements < x there are.
 For instance, if there are 5 elements < x, there must be an x at position 5.
- In case several elements have the same value, we consider how many elements in A are ≤ x. We denote this by C[x].
- Then, we traverse A from right to left. Whenever a value x is found, we know there is an x at position C[x]. Then, we decrement C[x] to place other occurrences of x in previous positions.

Arrays Used

- We use the following arrays:
 - A[1..n]: Input array.
 - C[0..k]: At first, C[i] contains how many times i occurs at A. Then, it contains how many elements in A are ≤ i. It is decremented as soon as an occurrence of i is reached.
 - B[1..n]: Output array: same elements from A but sorted.

Pseudocode

```
COUNTING-SORT(A, B, k)
1 let C[0..k] be a new array
2 for i = 0 to k
C[i] = 0
4 for j = 1 to A. length
5 C[A[j]] = C[A[j]] + 1
6 // C[i] now contains the number of elements equal to i.
7 for i = 1 to k
       C[i] = C[i] + C[i-1]
   //C[i] now contains the number of elements less than or equal to i.
   for j = A. length downto 1
11 	 B[C[A[j]]] = A[j]
12 C[A[j]] = C[A[j]] - 1
```

Example

Presentation made by Juan Mendivelso. Contents and figures extracted from the book: Introduction to Algorithms, Third Edition. Cormen, Leiserson, Rivests and Stein. The MIT Press. 2009.

COUNTING-SORT(A, B, k)

C[i] = 0

2 for i = 0 to k

let C[0..k] be a new array

14

- Lines 1- 3: $\theta(k)$
- Lines 4 6: $\theta(n)$
- Lines 7 9: $\theta(k)$
- Lines 10-12: $\theta(n)$
- Total Complexity: θ(n+k)
- Note that if k = O(n), then the time complexity is $\theta(n)$.

```
COUNTING-SORT(A, B, k)

1 let C[0..k] be a new array

2 for i = 0 to k

3 C[i] = 0

4 for j = 1 to A.length

5 C[A[j]] = C[A[j]] + 1

6 //C[i] now contains the number of elements equal to i.

7 for i = 1 to k

8 C[i] = C[i] + C[i - 1]

9 //C[i] now contains the number of elements less than or equal to i.

10 for j = A.length downto 1

11 B[C[A[j]]] = A[j]

12 C[A[j]] = C[A[j]] - 1
```

Stability

- Is this algorithm in-place?
- Is this algorithm stable?
- What happens if we traverse from 1 to A.length in line 10?
- Counting-Sort is actually stable, i.e. numbers with the same value appear in the output array in the same order as they do in the input array.
- This property is important when satellite data are carried around with the element being sorted.
- Its stability is also relevant so it can be used by the radix sort algorithm.

```
COUNTING-SORT (A, B, k)

1 let C[0..k] be a new array

2 for i = 0 to k

3 C[i] = 0

4 for j = 1 to A.length

5 C[A[j]] = C[A[j]] + 1

6 // C[i] now contains the number of elements equal to i.

7 for i = 1 to k

8 C[i] = C[i] + C[i - 1]

9 // C[i] now contains the number of elements less than or equal to i.

10 for j = A.length downto 1

11 B[C[A[j]]] = A[j]

12 C[A[j]] = C[A[j]] - 1
```

3. RADIX SORT

Introduction to Radix Sort

- What is the birthdate of a group of people?
- How can we sort them?

Radix Sort

- It allows to sort records of information that are keyed by multiple fields in linear time.
- Particularly, we can sort n records of d digits where the first digit is the least significant and the d-th digit is the most significant.

Material Curso de Algoritmos – Julio López

Radix Sort

 Radix Sort proposes to sort the records on ascending order of the significance of their digits.

329		720		720		329
457		355		329		355
657		436		436		436
839	mij)b-	457	jjj)	839	j))))-	457
436		657		355		657
720		329		457		720

Pseudocode & Complexity

RADIX-SORT(A, d)

- 1 **for** i = 1 **to** d
- 2 use a stable sort to sort array A on digit i

Lemma 1: Given n numbers of d digits in which each digit can take k possible values, Radix Sort can sort them in $\theta(d(n+k))$.

Lemma 2: Given n numbers of b bits and some positive integer $r \le b$, Radix Sort can sort them in $\theta((b/r)(n+2^r))$.

Proof: Let r be the number of bits assigned to each digit. Then, there are $d = \left\lceil \frac{b}{r} \right\rceil$ digits and each of them can represent numbers in [0, 2^r-1], i.e. k=2^r.

4. BUCKET SORT

Bucket Sort

- It assumes that the input is drawn from a uniform distribution.
- Its average-case running time is O(n).
- It is assumed that the input is generated by a random process that distributes elements uniformly and independently over the Interval [0,1).
- If the input is of size n, we use an array B[0..n-1] of buckets.
- The elements in the array are distributed into the buckets.
- Because the distribution of the data is uniform, we expect that each bucket receives one bucket.
- However, if it's not the case, the elements in each bucket are sorted with Insertion Sort.

Pseudocode

• Because $0 \le A[i] < 1$, we can assign into the bucket $B[\lfloor nA[i] \rfloor]$.

```
BUCKET-SORT(A)
   let B[0...n-1] be a new array
2 \quad n = A.length
  for i = 0 to n - 1
        make B[i] an empty list
   for i = 1 to n
        insert A[i] into list B[|nA[i]|]
   for i = 0 to n - 1
        sort list B[i] with insertion sort
   concatenate the lists B[0], B[1], \ldots, B[n-1] together in order
```

Example

Correctness

```
BUCKET-SORT(A)

1 let B[0..n-1] be a new array

2 n = A.length

3 for i = 0 to n - 1

4 make B[i] an empty list

5 for i = 1 to n

6 insert A[i] into list B[\lfloor nA[i] \rfloor]

7 for i = 0 to n - 1

8 sort list B[i] with insertion sort

9 concatenate the lists B[0], B[1], \ldots, B[n-1] together in order
```

- Consider two elements A[i] and A[j].
- Assume $A[i] \leq A[j]$.
- Since $\lfloor nA[i] \rfloor \leq \lfloor nA[j] \rfloor$, either A[i] goes into the same bucket as A[j] or it goes in a bucket with a lower index.
- In the former case, lines 7-8 sorts them.
- In the latter case, line 9 puts them in the proper order.

```
BUCKET-SORT(A)

1 let B[0..n-1] be a new array

2 n = A.length

3 for i = 0 to n - 1

4 make B[i] an empty list

5 for i = 1 to n

6 insert A[i] into list B[\lfloor nA[i] \rfloor]

7 for i = 0 to n - 1

8 sort list B[i] with insertion sort

9 concatenate the lists B[0], B[1], \ldots, B[n-1] together in order
```

- Lines 3-4, 5-6 and 9 take $\theta(n)$.
- Line 6 depends on the size of the bucket i, denoted n_i.
- Then, the complexity of the algorithm is

$$T(n) = \theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$$

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$$

We now analyze the average-case running time:

$$E[T(n)] = E\left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)\right]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} E\left[O(n_i^2)\right]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} O\left(E\left[n_i^2\right]\right) \qquad E\left[n_i^2\right] = 2 - 1/n$$

$$= \Theta(n) + n \cdot O(2 - 1/n) = \Theta(n).$$

$$\mathrm{E}\left[n_i^2\right] = 2 - 1/n$$

 Each bucket I has the same value of E[n_i²] since each input of the input array A is equally likely to fall in any bucket.

$$X_{ij} = I\{A[j] \text{ falls in bucket } i\} \text{ for } i = 0, 1, ..., n-1 \text{ and } j = 1, 2, ..., n.$$

$$n_i = \sum_{j=1}^n X_{ij}$$

$$n_i = \sum_{j=1}^n X_{ij}$$

$$E[n_i^2] = E\left[\left(\sum_{j=1}^n X_{ij}\right)^2\right]$$

$$= E\left[\sum_{j=1}^n \sum_{k=1}^n X_{ij} X_{ik}\right]$$

$$= E\left[\sum_{j=1}^n X_{ij}^2 + \sum_{1 \le j \le n} \sum_{\substack{1 \le k \le n \\ k \ne j}} X_{ij} X_{ik}\right]$$

$$= \sum_{j=1}^n E[X_{ij}^2] + \sum_{1 \le j \le n} \sum_{\substack{1 \le k \le n \\ k \ne j}} E[X_{ij} X_{ik}],$$

$$E[X_{ij}^2] = 1^2 \cdot \frac{1}{n} + 0^2 \cdot \left(1 - \frac{1}{n}\right)$$
$$= \frac{1}{n}.$$

When $k \neq j$, the variables X_{ij} and X_{ik} are independent, and hence

$$E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}]$$

$$= \frac{1}{n} \cdot \frac{1}{n}$$

$$= \frac{1}{n^2}.$$

$$E[n_i^2] = \sum_{j=1}^n \frac{1}{n} + \sum_{1 \le j \le n} \sum_{\substack{1 \le k \le n \\ k \ne j}} \frac{1}{n^2}$$

$$= n \cdot \frac{1}{n} + n(n-1) \cdot \frac{1}{n^2}$$

$$= 1 + \frac{n-1}{n}$$

$$= 2 - \frac{1}{n},$$

30

BIBLIOGRAPHY

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to Algorithms, Third Edition. The MIT Press. 2009.
- Images of Julio Cesar Lopez.