

ZJU-UIUC Institute

Zhejiang University / University of Illinois at Urbana-Champaign Institute

ECE 486 Control Systems

Lecture 15: Control Design with Frequency Response: Pl and lag, PID and lead-lag

Liangjing Yang Assistant Professor, ZJU-UIUC Institute liangjingyang@intl.zju.edu.cn

Checklist

Wk	Topic Ref.	
1	✓ Introduction to feedback control ✓ State-space models of systems; linearization	Ch. 1 Sections 1.1, 1.2, 2.1- 2.4, 7.2, 9.2.1
2	✓ Linear systems and their dynamic response	Section 3.1, Appendix A
Modeling	✓ Transient and steady-state dynamic response with arbitrary initial conditions	Section 3.1, Appendix A
3	✓ National Holiday Week	
4	✓ System modeling diagrams; prototype second-order system	Sections 3.1, 3.2, lab manual
Analysis	✓ Transient response specifications	Sections 3.3, 3.14, lab manual
5	✓ Effect of zeros and extra poles; Routh- Hurwitz stability criterion	Sections 3.5, 3.6
	✓ Basic properties and benefits of feedback control; Introduction to Proportional- Integral-Derivative (PID) control	Section 4.1-4.3, lab manual
6	✓ Review A	
	✓ Term Test A	
7	✓ Introduction to Root Locus design method	Ch. 5
	✓ Root Locus continued; introduction to dynamic compensation	Root Locus
8	✓ Lead and lag dynamic compensation	Ch. 5
	✓ Introduction to frequency-response design method	Sections 5.1-5.4, 6.1

			Root Locus	
Modeling	Analysis	Design		:
<u> </u>			Frequency Respor	nse i
		1 1 1 1	State-Space	

Wk	Topic	Ref.
9	Bode plots for three types of transfer functions	Section 6.1
	Stability from frequency response; gain and phase margins	Section 6.1
10	Control design using frequency response: PD and Lead	Ch. 6
	Control design using frequency response continued; PI and lag, PID and lead-lag	Frequency Response
11	Nyquist stability criterion	Ch. 6
	Nyquist stability criterion continued; gain and phase margins from Nyquist plots	Ch. 6
12	Review B	
	Term Test B	
13	Introduction to state-space design	Ch. 7
	Controllability, stability, and pole-zero cancellations; similarity transformation; conversion of controllable systems to Controller Canonical Form	Ch. 7
14	Pole placement by full state feedback	Ch. 7
	Observer design for state estimation	01 7
15	Joint observer and controller design by dynamic output feedback; separation principle	State-Space Ch. 7
	In-class review	Ch. 7
16	END OF LECTURES: Revision Week	
	Final	

Recap: Stability Example

$$KG(s) = \frac{K}{s(s^2 + 2s + 2)}$$

Characteristic equation:

Here, the closed-loop system is stable if and only if 0 < K < 4.

Let's see what we can read off from the Bode plots.

$$KG(s) = \frac{K}{s(s^2 + 2s + 2)}$$

Recap: Stability Example 5-10

$$KG(s) \neq \frac{K}{s(s^2 + 2s + 2)}$$

Characteristic equation:

Here, the closed-loop system is stable if and only if 0 < K < 4.

Let's see what we can read off from the Bode plots.

$$KG(s) = \frac{K}{s(s^2 + 2s + 2)}$$

Bode form:

Plot the magnitude first:

Recap: Stability Example

$$KG(s) = \frac{K}{s(s^2 + 2s + 2)}$$

Characteristic equation:

$$1 + \frac{K}{s(s^2 + 2s + 2)} = 0$$
$$s(s^2 + 2s + 2) + K = 0$$
$$s^3 + 2s^2 + 2s + K = 0$$

Recall the necessary & sufficient condition for stability for a 3rd-degree polynomial $s^3 + a_1s^2 + a_2s + a_3$:

$$a_1, a_2, a_3 > 0, \qquad a_1 a_2 > a_3.$$

Here, the closed-loop system is stable if and only if 0 < K < 4. Let's see what we can read off from the Bode plots.

Plot the magnitude first:

- ▶ Type 1 (low-frequency) asymptote: $\frac{K/2}{i\omega}$ $K_0 = K/2$, $n = -1 \implies \text{slope} = -1$, passes through $(\omega = 1, M = K/2)$
- ► Type 3 (complex pole) asymptote: break-point at $\omega = \sqrt{2} \implies$ slope down by 2
- $\zeta = \frac{1}{\sqrt{2}} \implies$ no reasonant peak

The magnitude hits its peak value (for $\zeta < 1/\sqrt{2} \approx 0.707$) occurs when $\omega = \omega_r$, where

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2} < \omega_n$$

For small enough ζ (below $1/\sqrt{2}$), the magnitude of

$$\frac{1}{\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta\frac{j\omega}{\omega_n} + 1}$$

has a resonant peak at the resonant frequency

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}.$$

Likewise, the magnitude of

$$\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta\frac{j\omega}{\omega_n} + 1$$

has a resonant dip at ω_r .

Example

Magnitude Plot

$$\begin{split} KG(s) &= \frac{K}{s(s^2 + 2s + 2)} \\ \text{Bode form:} \quad KG(j\omega) &= \frac{K}{2j\omega \left(\left(\frac{2kz}{\sqrt{2}}\right)^2 + j\omega + \right.} \end{split}$$

- Type 1 (low-frequency) asymptote: K/2 K₀ = K/2, n = −1 ⇒ slope = −1, passes through $(\omega = 1, M = K/2)$
- Type 3 (complex pole) asymptote: break-point at ω = √2 ⇒ slope down by 2
- $\zeta = \frac{1}{\sqrt{2}} \implies$ no reasonant peak

Example

Phase Plot

Crossover Frequency & Stability

Crossover Frequency and Stability Definition: The frequency at which M=1 is called the crossover frequency and denoted by ω_{co} .

for critical K, $\angle G(j\omega_c) = 180^{\circ}$

Effect of Varying K

Changing the value of K moves the crossover frequency $\omega_c!!$

Equivalently, we may define ω_{180° as the frequency at which

Then, in this example*

 $|KG(j\omega_{180^{\circ}})| < 1 \iff \text{stability}$ $|KG(j\omega_{180^{\circ}})| > 1 \iff \text{instabilit}$

* Not a general rule; conditions will

ary depending on the system, must

Jn+Wn2 /W ' + 129

Where we left off

Stability from Frequency Response

Consider this unity feedback configuration:

Suppose that the *closed-loop* system, with transfer function

Question: Can we use the Bode plot to determine how far from instability we are?

Two important characteristics: gain margin (GM) and phase margin (PM).

Gain Margin

Back to our example: $G(s) = \frac{1}{s(s^2 + 2s + 2)}$, K = 2 (stable)

Gain margin (GM) is the factor by which K can be multiplied before we get M = 1 when $\phi = 180^{\circ}$

Since varying K doesn't change $\omega_{180^{\circ}}$, to find GM we need to inspect M at $\omega = \omega_{180^{\circ}}$

Consider gain K = 1, which gives closed-loop transfer function

$$\begin{split} \frac{KG(s)}{1+KG(s)} &= \frac{\frac{\omega_n^2}{s^2+2\zeta\omega_n s}}{1+\frac{\omega_n^2}{s^2+2\zeta\omega_n s}} \\ &= \frac{\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2} & \qquad -\text{prototype 2nd-order response} \end{split}$$

Question: what is the gain margin at K = 1?

Answer: $GM = \infty$

$$G(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n j\omega} = \frac{\omega_n}{2\zeta j\omega \left(\frac{j\omega}{2\zeta\omega_n} + 1\right)}$$

Let's look at the phase plot:

- ▶ starts at -90° (Type 1 term with n = -1)
- ▶ goes down by −90° (Type 2 pole)

Recall: to find GM, we first need to find $\omega_{180^{\circ}}$, and here there is no such $\omega \Longrightarrow$ no GM.

Example

So, at K = 1, the gain margin of

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s} = \frac{\omega_n^2}{s(s + 2\zeta\omega_n)}$$

is equal to ∞ — what does that mean?

It means that we can keep on increasing K indefinitely without ever encountering instability.

But we already knew that: the characteristic polynomial is

$$p(s) = s^2 + 2\zeta \omega_n s + \omega_n^2,$$

which is always stable.

What about phase margin?

$$G(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n j\omega} = \frac{\omega_n}{2\zeta j\omega \left(\frac{j\omega}{2\zeta\omega_n} + 1\right)}$$

Let's look at the magnitude plot:

- ▶ low-frequency asymptote slope -1 (Type 1 term, n = -1)
- ▶ slope down by 1 past the breakpt. $\omega = 2\zeta \omega_n$ (Type 2 pole)
- \Longrightarrow there is a finite crossover frequency $\omega_c!!$

Example

Magnitude Plot

$$G(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n j\omega} = \frac{\omega_n}{2\zeta j\omega \left(\frac{j\omega}{2\zeta\omega_n} + 1\right)}$$

$$M = 1$$

$$\log_{\omega_c} \log_{\omega_c} \log$$

It can be shown that, for this system,

$$\text{PM}\Big|_{K=1} = \tan^{-1}\left(\frac{2\zeta}{\sqrt{4\zeta^4 + 1} - 2\zeta^2}\right)$$

— for PM < 70°, a good approximation is PM $\approx 100 \cdot \zeta$

Phase Margin

$$G(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n j\omega} = \frac{\omega_n}{2\zeta j\omega \left(\frac{j\omega}{2\zeta\omega_n} + 1\right)}$$

$$\text{PM}\Big|_{K=1} = \tan^{-1}\left(\frac{2\zeta}{\sqrt{4\zeta^4 + 1} - 2\zeta^2}\right) \approx 100 \cdot \zeta$$

Conclusions:

 $\begin{array}{ccc} \text{larger PM} & \Longleftrightarrow & \text{better damping} \\ \text{(open-loop quantity)} & \text{(closed-loop characteristic)} \end{array}$

Thus, the overshoot $M_p = \exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right)$ and resonant peak $M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}} - 1$ are both related to PM through $\zeta!!$

Example

Magnitude Plot

$$G(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n j\omega} = \frac{\omega_n}{2\zeta j\omega \left(\frac{j\omega}{2/\omega_n} + 1\right)}$$

$$M = 1$$

$$\log_c = -1$$

$$\log_c = -2$$

It can be shown that, for this system,

$$\text{PM}\Big|_{K=1} = \tan^{-1}\left(\frac{2\zeta}{\sqrt{4\zeta^4 + 1} - 2\zeta^2}\right)$$

— for PM $< 70^{\circ}$, a good approximation is PM $\approx 100 \cdot \zeta$

$$G(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n j\omega} = \frac{\omega_n}{2\zeta j\omega \left(\frac{j\omega}{2\zeta\omega_n} + 1\right)}$$

$$\text{PM}\Big|_{K=1} = \tan^{-1}\left(\frac{2\zeta}{\sqrt{4\zeta^4 + 1} - 2\zeta^2}\right) \approx 100 \cdot \zeta$$

Conclusions:

 $\begin{array}{ccc} & \operatorname{larger} \, \operatorname{PM} & \Longleftrightarrow & \operatorname{better} \, \operatorname{damping} \\ (\operatorname{open-loop} \, \operatorname{quantity}) & & (\operatorname{closed-loop} \, \operatorname{characteristic}) \end{array}$

Thus, the overshoot $M_p = \exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right)$ and resonant peak $M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}} - 1$ are both related to PM through $\zeta!!$

Control Design using Frequency Response

Bode's Gain-Phase Relationship suggests that we can shape the time response of the *closed-loop* system by choosing K (or, more generally, a dynamic controller KD(s)) to tune the Phase Margin.

In particular, from the quantitative Gain-Phase Relationship,

Magnitude slope(
$$\omega_c$$
) = -1 \Longrightarrow Phase(ω_c) $\approx -90^{\circ}$

— which gives us PM of 90° and consequently good damping.

Control Design: Example

Let
$$G(s) = \frac{1}{s^2}$$
 (double integrator)

Objective: design a controller KD(s) (K= scalar gain) to give

- stability
- good damping (will make this more precise in a bit)
- $\triangleright \omega_{\rm BW} \approx 0.5$ (always a closed-loop characteristic)

Strategy:

- ▶ from Bode's Gain-Phase Relationship, we want magnitude slope = -1 at $\omega_c \Longrightarrow PM = 90^\circ \Longrightarrow good damping;$
- if PM = 90°, then $\omega_c = \omega_{\rm BW} \Longrightarrow \text{want } \omega_c \approx 0.5$

Control Design: Example- Attempt 1

Let's try proportional feedback:

Let's try
$$pD(s) = 1 \implies KD(s)G(s) = \frac{K}{s^2}$$

This is not a good idea: slope = -2 everywhere, so no PM.

We already know that P-gain alone won't do the job:

$$K + s^2 = 0$$
 (imag. poles)

Example - Attempt 2

Let's try proportional-derivative feedback:

$$KD(s) = K(\tau s + 1),$$
 where $K = K_P, K\tau = K_D$

Open-loop transfer function:
$$KD(s)G(s) = \frac{K(\tau s + 1)}{s^2}$$
.

Bode plot interpretation: PD controller introduces a Type 2 term in the numerator, which pushes the slope up by 1

— this has the effect of pushing the M-slope of KD(s)G(s) from -2 to -1 past the break-point ($\omega = 1/\tau$).

Example- Attempt 2 (PD Control)

Open-loop transfer function:
$$KD(s)G(s) = \frac{K(10s+1)}{s^2}$$

▶ Want $\omega_c \approx 0.5$

Example - Attempt 2 (PD Control)

Open-loop transfer function: $KD(s)G(s) = \frac{K(10s+1)}{s^2}$

- ▶ Want $\omega_c \approx 0.5$
- ▶ This means that

$$M(j0.5) = 1$$

$$|KD(j0.5)G(j.05)|$$

$$= \frac{K|5j+1|}{0.5^2}$$

$$= 4K\sqrt{26} \approx 20K$$

$$\implies K = \frac{1}{20}$$

PD Control- Evaluation

What have we accomplished?

- ▶ PM $\approx 90^{\circ}$ at $\omega_c = 0.5$
- still need to check in Matlab and iterate if necessary

Trade-offs:

- ▶ want ω_{BW} to be large enough for fast response (larger $\omega_{\text{BW}} \longrightarrow \text{larger } \omega_n \longrightarrow \text{smaller } t_r$), but not too large to avoid noise amplification at high frequencies
- ▶ PD control increases slope \longrightarrow increases $\omega_c \longrightarrow$ increases $\omega_{\text{BW}} \longrightarrow$ faster response
- usual complaint: D-gain is not physically realizable, so let's try lead compensation

Lead Compensation: Bode Plot

$$KD(s) = K \frac{s+z}{s+p}, \qquad p \gg z$$

In Bode form:

$$KD(s) = \frac{Kz\left(\frac{s}{z} + 1\right)}{p\left(\frac{s}{p} + 1\right)}$$

or, absorbing z/p into the overall gain, we have

$$KD(s) = \frac{K\left(\frac{s}{z} + 1\right)}{\left(\frac{s}{p} + 1\right)}$$

Break-points:

- ▶ Type 1 zero with break-point at $\omega = z$ (comes first, $z \ll p$)
- ▶ Type 1 pole with break-point at $\omega = p$

$$KD(s) = \frac{K\left(\frac{s}{z} + 1\right)}{\left(\frac{s}{p} + 1\right)}$$

▶ magnitude levels off at high frequencies ⇒ better noise suppression

adds phase, hence the term "phase lead"

Lead Compensation & Phase Margin

$$KD(s) = \frac{K\left(\frac{s}{z} + 1\right)}{\left(\frac{s}{p} + 1\right)}$$

For best effect on PM, ω_c should be halfway between z and p (on log scale):

$$\log \omega_c = \frac{\log z + \log p}{2}$$
or $\omega_c = \sqrt{z \cdot p}$

— geometric mean of z and p

Trade-offs: large p-z means

- ▶ large PM (closer to 90°)
- ▶ but also bigger M at higher frequencies (worse noise suppression)

Back to example of double integrators

Objectives (same as before):

- stability
- ▶ good damping
- \triangleright $\omega_{\rm BW}$ close to 0.5

$$KG(s) = \frac{K}{s^2}$$
 (w/o lead):

after adding lead:

— adding lead will increase $\omega_c!!$

Back to example of double integrators

After adding lead with K = 1/4, what do we see?

- ▶ adding lead increases ω_c
- ightharpoonup PM $< 90^{\circ}$
- $\blacktriangleright \implies \omega_{\rm BW} \text{ may be } > \omega_c$

To be on the safe side, we choose a new value of K so that

$$\omega_c = \frac{\omega_{\rm BW}}{2}$$

(b/c generally $\omega_c \leq \omega_{\rm BW} \leq 2\omega_c$)

Thus, we want

$$\omega_c = 0.25 \implies K = \frac{1}{16}$$

Next, we pick z and p so that ω_c is approximately their geometric mean:

e.g.,
$$z = 0.1$$
, $p = 2$
 $\sqrt{z \cdot p} = \sqrt{0.2} \approx 0.447$

Resulting lead controller:

$$KD(s) = \frac{1}{16} \frac{\frac{s}{0.1} + 1}{\frac{s}{2} + 1}$$

(may still need to be refined using Matlab)

Lead Controller Design Using Frequency Response General Procedure

- 1. Choose K to get desired bandwidth spec w/o lead
- 2. Choose lead zero and pole to get desired PM
 - in general, we should first check PM with the K from 1, w/o lead, to see how much more PM we need
- 3. Check design and iterate until specs are met.

This is an intuitive procedure, but it's not very precise, requires trial & error.

Next Lecture

- Lag Compensation Bode Plot
- Nyquist Plot