Stochastic Finance (M3, 2016–17) Mid-term Exam Mar 23, 2017

BM stands for Brownian motion. **RN** and **RV** stand for random number and random variable respectively.

1. [4 points] Standard BM

If B_t is a standard BM, determine whether each of the followings is a standard BM or not. Provide a brief reason for your answer.

- (a) $4B_{t/2}$ Answer: No. $Var(4B_{t/2}) = 16 \times t/2 = 8t \neq t$.
- (b) $tB_{1/t}$ with $B_0 = 1$ **Answer: No**. B_0 should be 0.
- (c) $2(B_{1+t/4} B_1)$ Answer: Yes. $B_{1+t/4} B_1$ is equivalent to $B_{t/4}$ and $2B_{t/4}$ is equivalent to B_t .
- (d) $\sqrt{t}Z$ for a standard normal RV Z **Answer:** No. For any value of Z, $\sqrt{t}Z$ is not a stochastic process. For example, $\sqrt{s}Z$ and $(\sqrt{t} \sqrt{s})Z$ for s < t are correlated.

2. [2 points] Martingale related to BM

If B_t is a standard BM, find the value of the coefficient λ in order for each of the following expressions to be a martingale.

- (a) $B_{at}^2 \lambda t$ Answer: $\lambda t = E(B_{at}^2) = at$. Therefore, $\lambda = a$.
- (b) $\exp(-B_{at} + \lambda t)$ **Answer:** $\sqrt{a}B_t$ is a BM equivalent to $-B_{at}$. Therefore, $\lambda = -a/2$.

3. [3 pts] Average of BM path

If B_t for $0 \le t \le 1$ is a standard BM, what is the distribution of the average of the BM values observed at three different times, T = 1/3, 2/3 and 1,

$$A = \frac{1}{3} \left(B_{\frac{1}{3}} + B_{\frac{2}{3}} + B_1 \right)?$$

Please make sure to provide the mean and the standard deviation of the distribution.

Answer

$$\operatorname{Var}\left(\frac{1}{3}(B_{1/3} + B_{2/3} + B_1)\right) = \frac{1}{9}E\left((B_{1/3} + B_{2/3} + B_1)^2\right)$$
$$= \frac{1}{9}E\left(B_{1/3}^2 + B_{2/3}^2 + B_1^2 + 2B_{1/3}(B_{2/3} + B_1) + 2B_{2/3}B_1\right)$$
$$= \frac{1}{9}\left(\frac{1}{3} + \frac{2}{3} + 1 + 2 \cdot \frac{1}{3} \cdot 2 + 2 \cdot \frac{2}{3}\right) = \frac{1}{9}\frac{14}{3} = \frac{14}{27}.$$

4. [8 points] Generating RNs for correlated BMs

Throughout this problem, assume that X_t and Y_t are two independent standard BMs.

(a) Other than the examples we covered in the class, there are many ways to create standard BMs. A linear combination of the two BMs with the coefficients a and b,

$$W_t = aX_t + bY_t$$

is also a BM. (No need to prove it.) What is the condition for a and b under which W_t is a **standard** BM.

- (b) What is the correlation between X_t and W_t ? We have not defined the correlation of two BMs yet, so simply compute the correlation of the two distributions of the BMs at t = 1, i.e, X_1 and W_1 . (In fact, the correlation is same for any time t.) You do not have to use the answer of (a).
- (c) Assume that $\{z_k\}$ for $k=1,2,\cdots$ is a sequence of standard normal RVs, i.e., N(0,1), which are generated from computer (e.g., using Box-Muller algorithm). Use $\{z_k\}$ to generate RNs for X_t for a fixed time t.
- (d) Assume that we have two standard BMs, X_t and W_t , which have correlation ρ . How can you generate the pairs of RNs for X_t and W_t for a fixed time t?

Answer

(a) $\operatorname{Var}(W_t) = a^2 \operatorname{Var}(X_t) + b^2 \operatorname{Var}(Y_t) = (a^2 + b^2)t$ should be t. Therefore, $a^2 + b^2 = 1$.

(b)

$$Corr(W_t, X_t) = \frac{Cov(X_t, W_t)}{\sqrt{Var(X_t)Var(W_t)}} = \frac{at}{\sqrt{t \cdot (a^2 + b^2)t}} = \frac{a}{\sqrt{a^2 + b^2}}$$

- (c) $\{\sqrt{t} z_k\}$ is the RNs for X_t .
- (d) We can rewrite W_t as $W_t = \rho X_t + \sqrt{1 \rho^2} Y_t$. Therefore, the random numbers for X_t and W_t can be generated as

$$(\sqrt{t} z_1, \ \rho \sqrt{t} z_1 + \sqrt{1 - \rho^2} \sqrt{t} z_2)$$

$$(\sqrt{t} z_3, \ \rho \sqrt{t} z_3 + \sqrt{1 - \rho^2} \sqrt{t} z_4)$$

$$\cdots$$

$$(\sqrt{t} z_{2k-1}, \ \rho \sqrt{t} z_{2k-1} + \sqrt{1 - \rho^2} \sqrt{t} z_{2k})$$

5. [3 points] Wald's equation

When $\{X_k\}$ are independent identically distributed random variable and N is a random variable taking positive integer values, Wald's equation says

$$E(X_1 + X_2 + \cdots + X_N) = E(N) E(X_1)$$

if either (i) N is independent from $\{X_k\}$ or (ii) N is a stopping time with respect to $\{X_k\}$.

Consider an example where $X_k = 0$ or 1 with 50% and 50% probability and N is given as

$$N = X_2 + 1$$
.

Obviously, $E(X_k) = 1/2$ and E(N) = 1/2 + 1 = 3/2. Find $E(X_1 + X_2 + \cdots + X_N)$ and explain why Wald's equation does not hold in this example. If N is given instead as

$$N = X_1 + 1,$$

does Wald's equation hold? Is N a stopping time?

Answer

Branching on the value of X_2 :

$$N = \begin{cases} 1 & (X_2 = 0, & \text{Prob} = 1/2) \\ 2 & (X_2 = 1, & \text{Prob} = 1/2), \end{cases}$$

we compute

$$E(X_1 + X_2 + \dots + X_N) = \frac{1}{2}E(X_1) + \frac{1}{2}E(X_1 + 1)$$
$$= \frac{1}{2}(\frac{1}{2} + \frac{1}{2} + 1) = 1 \neq E(X_k)E(N) = \frac{3}{4}.$$

Wald's equation does not hold because $N = X_1 + X_2 + 1$ is

(i) not independent from $\{X_k\}$ as N is defined via X_2 and (ii) not a stopping time w.r.t. $\{X_k\}$ because we need future information X_2 in order to determine N (X_1 is not enough to tell N=1 or not.)

If $N = X_1 + 1$, N is a stopping time. Based on X_1 we can tell whether N = 1 or not: N = 1 if $X_1 = 0$ and $N \neq 1$ (in fact, N = 2) if $X_1 = 1$. Therefore Wald's inequality should hold. We can directly verify that

$$E(X_1 + X_2 + \dots + X_N) = \frac{1}{2}E(X_1) + \frac{1}{2}E(X_1 + X_2) = \frac{1}{2}(\frac{1}{2} + \frac{1}{2} + \frac{1}{2}) = \frac{3}{4}.$$

- 6. [5 points] Please circle the most appropriate item to you in each of the following questions.
 - (a) The difficulty of this course is (i) easy (ii) appropriate (iii) difficult.
 - (b) Compared to the other required courses in the 1st year, the load of this course is (i) lower (ii) similar (iii) higher.
 - (c) If this course was **not** a required course, you would (i) still register (ii) not register.
 - (d) Professor's preparation for the course and communication with students are (i) satisfactory (ii) acceptable (iii) unsatisfactory.
 - (e) To your opinion (not professor's), this course is going to be (i) useful (ii) not useful for your future career path.