

Návrh optimální turistické trasy

Autor: Bc. Tomáš Benda

Vedoucí: Ing. Jakub Kůdela, Ph.D.

Brno, 13.06.2022

Návrh optimální turistické trasy

- Cíle práce
- Návrh optimální turistické trasy.
- Team Orienteering Problem with Time Windows
- Iterované lokální prohledávání
- Iterované lokální prohledávání kombinované se simulovaným žíháním
- Ant Colony System
- Mobilní aplikace
- Testování aplikace

Cíle práce

Cílem práce je implementace vybraných algoritmů pro návrh optimální turistické trasy. V rešeršní části se práce zabývá rozborem daného problému a popsáním existujících přístupů a algoritmů.

Návrh optimální turistické trasy

- Tourist Trip Design Problem (TTDP)
- Návrh posloupnosti zájmových bodů na základě osobních preferencí uživatele
- Omezení: časová, peněžní rozpočet
- Modely:
 - Profitable Tour Problem (PTP)
 - Prize Collecting Travelling Salesman Problem (PCTSP)
 - Orienteering Problem (OP)

Team Orienteering Problem with Time Windows

- Model celočíselného programování
- M dní
- Sada uzlů N = {1,..., | N | }
 - Užitek P_i
 - Časové okno $[O_i, C_i]$
- Počáteční a koncový uzel N = 1, resp. N = |N|
 - Užitek $P_i = 0$
 - Časové okno $[0, T_{max}]$
- Rozhodovací proměnné y_{im} , x_{ijm}
- Účelová funkce: max $\sum_{m=1}^{M} \sum_{i=2}^{|N|-1} P_i y_{im}$

Iterované lokální prohledávání (ILS)

- Konstrukce počátečního řešení pomocí hladové heuristiky
- Lokální prohledávání
 - Swap1, Swap2, 2-Opt, Move, Insert, Replace
- Perturbace
 - ExchangePath, Shake

Iterované lokální prohledávání (pokrač.)

Swap1

2-Opt

Swap2

Move

3

Iterované lokální prohledávání (pokrač.)

Replace Insert

13.06.2022

Iterované lokální prohledávání kombinované se simulovaným žíháním (SAILS)

- Hybridizace lokálního prohledávání se simulovaným žíháním
- Díky simulovanému žíhání lze snadněji uniknout z lokálního minima

Ant Colony System (ACS)

- Algoritmus inspirovaný chováním mravenců při hledání potravy
- Vytváření řešení na základě feromonových stop
- Lokální prohledávání
 - Použity operátory stejné jako u ILS
- SAILS+ACS
 - Počáteční řešení získané pomocí ACS

Mobilní aplikace

- Programovací jazyk
 - C#
- Framework
 - Xamarin
- Mapové API
 - Bing Maps
- Informace o místech zájmu
 - Foursquare API

Mobilní aplikace (pokrač.)

Data od uživatele:

- město
- počáteční bod cesty
- koncový bod cesty
- kategorie míst zájmu
 - délka návštěvy dané kategorie
- délka cesty pro každý den

Seznam bodů zájmu

možnázměnaohodnoceníuživatelem

Návrh turistické trasy

Mobilní aplikace (pokrač.)

Testování aplikace

- Aplikace testována na vzorovém příkladě
 - Město: Brno
 - Startovní/koncový bod: hlavní vlakové nádraží
 - Délka výletu pro každý den: 10:00-18:00
 - Kategorie míst zájmu: Museum, Planetarium, Public Art, ZOO, Aquarium, Art Gallery, Spiritual Center, Landmark and Outdoors
 - Doba návštěvy míst zájmu: 60 minut
 - Třídenní/čtyřdenní návštěva města

Testování aplikace – zobrazení míst zájmu

Testování aplikace – výsledky (návštěva 3 dny)

čas výpočtu [s]	algoritmus	průměr	nejlepší	nejhorší	průměr/den
5	ILS	145.06	147.20	141.00	48.35
	SAILS	144.95	146.50	143.00	48.32
	ACS	145.92	149.90	143.20	48.64
	SAILS+ACS	145.17	147.30	142.60	48.39
15	ILS	146.62	147.40	144.50	48.87
	SAILS	146.71	147.80	145.70	48.90
	ACS	146.70	148.40	144.70	48.90
	SAILS+ACS	146.32	148.20	144.70	48.77
30	ILS	147.30	148.40	146.20	49.10
	SAILS	147.54	148.50	146.70	49.18
	ACS	147.44	150.40	146.20	49.15
	SAILS+ACS	147.39	149.00	145.70	49.13

Testování aplikace – výsledky (návštěva 4 dny)

čas výpočtu [s]	algoritmus	průměr	nejlepší	nejhorší	průměr/den
5	ILS	181.71	185.00	180.10	45.43
	SAILS	181.49	183.90	180.40	45.37
	ACS	185.77	186.70	185.00	46.44
	SAILS+ACS	183.00	186.20	180.50	45.75
15	ILS	182.12	185.50	179.10	45.53
	SAILS	182.30	184.50	181.50	45.58
	ACS	186.49	189.20	184.40	46.62
	SAILS+ACS	183.29	186.20	181.20	45.82
30	ILS	183.16	185.30	180.30	45.79
	SAILS	185.36	186.60	183.90	46.34
	ACS	186.85	187.70	185.90	46.71
	SAILS+ACS	183.08	185.50	180.50	45.77

Testování aplikace – výsledky (návštěva 3 dny)

Návrh optimální turistické trasy

Děkuji za pozornost.

1. V práci řešíte profit z turistické trasy z pohledu individuálního turisty. V praxi však návštěvu atraktivního místa většinou plánují páry lidí či dokonce větší skupiny, jejichž osobní preference se mohou lišit. Bylo by možné (v kladném případě, jakým způsobem) tyto odlišné priority agregovat a získat "optimální trasu" pro pár či celou skupinu?

- Možnost přidání dalších uživatelů
 - Vlastní ohodnocení kategorie 0-10
 - Vlastní ohodnocení míst zájmu 0-10
- Původní ohodnocení místa zájmu:

$$rating = rating_u$$

Nové ohodnocení míst zájmu:

$$rating = \frac{1}{U} \sum_{u=1}^{U} rating_u * \frac{1}{U} \sum_{u=1}^{U} catRating_u$$

