Milk Quality Prediction

Group 2 Kulaphong Jitareerat Nijiati Abulizi

Introduction:

- Exploratory Data Analysis
- Methods
 - Modelling Flow
 - Data Preprocessing
- Performance Evaluation
- Recommendation

Data Set

Quantitative

- **pH** (3 to 9.5)
- Temperature (34°C to 90°C)
- Color (240 to 255)

Qualitative

- Taste (0/Bad or 1/Good)
- Odor (0/Bad or 1/Good)
- Fat (0/Low or 1/High)
- **Turbidity** (0/Low or 1/High)
- Grade (Target: Low/Bad or Medium/Moderate, High/Good) / Target

No Missing Data Points Found

Categorical and Numerical Data Distributions

Turbidity is Correlated with Odor

Check Multicollinearity

Variable	VIF
Turbidity	1.426035
Fat	1.368393
Odor	1.359784
Taste	1.190560
Temprature	1.126956
рН	1.110007
Colour	1.096751

Method: Modelling Flow Training Models CV Performance **5-Folds Cross** Validation and The Best Splitted Data Training **Parameters** Train: 80% Data Test: 20% Training Data Data Test Raw Data Performance **Preprocessing** Train Performance **Testing Dataset** Data

Data Scaling and PCA Transformation for Sensitive Models

Algorithm	Multicollinearity	Scaling	Reasons for Multicollinearity	Reasons for Scaling
Quadratic Discriminant Analysis	High	High	Assumes normality and independence; highly sensitive to correlated predictors.	Involves calculation of covariance matrices; benefits from consistent feature scales.
Logistic Regression	High	High	Linear model; sensitive to correlated predictors; assumption of independence.	Log-odds interpretation; coefficients sensitive to feature scales.
Linear Discriminant Analysis	High	High	Assumes normality and independence; sensitive to multicollinearity.	Involves covariance matrices; benefits from consistent feature scales.
Support Vector Machine	Low	High	Kernel-based; sensitive to distance metrics; benefits from scaled features.	Relies on distance metrics; improves convergence and performance with scaled features.
Naive Bayes	Low	Low	Conditional independence assumption; less affected by correlated features.	Probability-based; robust to feature scales, but may not benefit from scaling.
AdaBoost	Low	Low	Boosting ensemble; relatively robust to multicollinearity.	Weak learners compensate for issues; scaling may not be critical.
K-Nearest Neighbors	Moderate	High	High sensitivity to distances; affected by feature correlations.	Distance-based algorithm; requires normalized feature scales.
Random Forest	Moderate	Moderate	Ensemble method; less sensitive, but may still be affected by correlated features.	Decision trees are less sensitive to feature scales; minimal impact.

Why we used "F1-Score" metric

- Imbalance in each grade
- Interested in both
 Precision and Recall

Performance of Models after Scaling

Multicollinearity Consideration for Sensitive Models (LDA, QDA, Logistic Regression)

93% of Variance Retained While Reducing Collinearity

The Best of Each Model

model	score_cv	score_train	score_test	best_params
K-Nearest Neighbors	0.998962	1.000000	0.994492	{'n_neighbors': 21, 'p': 1, 'weights': 'distance'}
Random Forest	0.998962	1.000000	0.994492	$\label{lem:continuous} \mbox{\colored} \{\mbox{\colored} \mbox{\colored} \mbo$
Support Vector Machine	0.996550	1.000000	0.994492	{'C': 1, 'gamma': 1, 'kernel': 'poly'}
Quadratic Discriminant Analysis (PCA 93%)	0.983481	0.993745	0.986466	{'reg_param': 0.0}
NaiveBayes	0.925870	0.931992	0.916258	{'var_smoothing': 0.1}
AdaBoost	0.917615	0.917543	0.903386	{'learning_rate': 0.01, 'n_estimators': 100}
Logistic Regression	0.851933	0.848336	0.839155	{'C': 10, 'max_iter': 50, 'penalty': 'l1', 'solver': 'liblinear'}
Linear Discriminant Analysis	0.750690	0.728673	0.701511	{'shrinkage': None, 'solver': 'svd'}

Compare PCA vs Non-PCA

best_params	score_test	score_train	score_cv	model
{'max_depth': 10, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 50}	0.994773	1.000000	0.997913	Random Forest (PCA 93%)
{'C': 1, 'gamma': 1, 'kernel': 'poly'}	0.994492	1.000000	0.996550	Support Vector Machine (PCA 93%)
{'C': 1, 'gamma': 1, 'kernel': 'poly'}	0.994492	1.000000	0.996550	Support Vector Machine
$ \{ \verb 'max_depth ': 10, \verb 'min_samples_leaf ': 1, \verb 'min_samples_split ': 2, \verb 'n_estimators ': 10 \} $	0.994492	1.000000	0.998962	Random Forest
{'n_neighbors': 21, 'p': 1, 'weights': 'distance'}	0.994492	1.000000	0.998962	K-Nearest Neighbors
{'n_neighbors': 33, 'p': 2, 'weights': 'distance'}	0.989199	1.000000	0.998962	K-Nearest Neighbors (PCA 93%)
{'reg_param': 0.0}	0.986466	0.993745	0.983481	Quadratic Discriminant Analysis (PCA 93%)
{'learning_rate': 0.1, 'n_estimators': 50}	0.975131	0.975955	0.943173	AdaBoost (PCA 93%)
{'reg_param': 0.010101010101010102}	0.928274	0.938947	0.944525	Quadratic Discriminant Analysis
{'var_smoothing': 0.1}	0.916258	0.931992	0.925870	NaiveBayes
{'learning_rate': 0.01, 'n_estimators': 100}	0.903386	0.917543	0.917615	AdaBoost
{'var_smoothing': 0.001}	0.864846	0.889880	0.899199	NaiveBayes (PCA 93%)
{'C': 10, 'max_iter': 50, 'penalty': 'l1', 'solver': 'liblinear'}	0.839155	0.848336	0.851933	Logistic Regression
{'C': 0.001, 'max_iter': 50, 'penalty': None, 'solver': 'saga'}	0.748371	0.798774	0.799986	Logistic Regression (PCA 93%)
{'shrinkage': None, 'solver': 'svd'}	0.701511	0.728673	0.750690	Linear Discriminant Analysis
{'shrinkage': 'auto', 'solver': 'lsqr'}	0.693585	0.714251	0.736745	Linear Discriminant Analysis (PCA 93%)

The incorrect prediction

Recommendation

Random Forest

Pros

- Insights into the importance of each feature
- Robustness against overfitting

Cons

- Interpretability might still be a challenge due to the ensemble of trees

K-Nearest Neighbors

Pros

- Simple and quick to implement
- Interpretability

Cons

- Scalability as the dataset grows
- Sensitive to outliers

Insight from Random Forest Model

Thank You Questions?

slidesgo