Potenzen

Gesetze

$a^n \cdot a^m = a^{n+m}$	$a^n:a^m=a^{n-m}$	$a^n \cdot b^n = (a \cdot b)^n$	$\frac{a^n}{b^n} = (\frac{a}{b})^n$	$(a^n)^m = a^{n \cdot m}$
$a^{-n} = \frac{1}{a^n}$	$\sqrt[n]{a} = a^{\frac{1}{n}}$	$\sqrt[n]{a^m} = (\sqrt[n]{a})^m = a^{\frac{m}{n}}$	$-a^n = -(a^n)$	$(-a)^n = (-1)^n \cdot a^n$

Additionstheoreme

Sätze

- $sin(\alpha + \beta) = sin(\alpha) \cdot cos(\beta) + cos(\alpha) \cdot sin(\beta)$
- $sin(\alpha \beta) = sin(\alpha) \cdot cos(\beta) cos(\alpha) \cdot sin(\beta)$
- $cos(\alpha + \beta) = cos(\alpha) \cdot cos(\beta) + sin(\alpha) \cdot sin(\beta)$
- $sin(\alpha \beta) = cos(\alpha) \cdot cos(\beta) sin(\alpha) \cdot sin(\beta)$

Trigonometrische Funktionen

Definition

 $sin(x) = cos(x) \cdot tan(x)$ $cos(x) = \frac{sin(x)}{tan(x)}$ $tan(x) = \frac{sin(x)}{cos(x)}$

Bogenmass eines Winkels

Länge des zugehörigen Bogens im Einheitskreis.

$$\alpha=90^{\circ} \leftrightarrow \alpha=\frac{\Pi}{2}$$

Dreiecke

Anwendung in der Schwingungslehre

Allgemein:

- 1. Streckung in y-Richtung mit Faktor a \Rightarrow Wertebereich [-a,a]
- 2. Streckung in x-Richtung mit Faktor $\frac{1}{b}\Rightarrow$ neue Periode $\frac{alte\ Periode}{b},$ also bei sin/cos z.B.: $\frac{2\Pi}{b}$
- 3. Verschiebung in x-Richtung um $-\frac{\varphi}{b}$

$$y = a \cdot f[b \cdot (x - c)] + d$$

Beispiel:

$$y = 3 \cdot \sin\left[\frac{1}{2} \cdot x + \frac{\Pi}{4}\right] = 3 \cdot \sin\left[\frac{1}{2} \cdot \left(x + \frac{\Pi}{2}\right)\right]$$

Amplitude = 3 Kreisfrequenz = $\frac{1}{2}$ \Rightarrow Neue Periode = $\frac{2\Pi}{w} = \frac{2\Pi}{\frac{1}{2}} = 4\Pi$ Verschiebung in x-Richtung = $-\frac{\Pi}{2}$

Exponetial- und Logarithmusfunktion

Jede Exponentielle Funktion lässt sich mit der Basis e schreiben:

$$y = b^x = (e^{\ln(b)})^x$$

Wachstums- und Zerfallfunktion

Allgemein:

$$a$$
=Wert für $t^0,$ "Startwert" b =Wachstumsfaktor pro Zeiteinheit t =Zeiteinheit Δt =Zeitdifferenz z.B. t^2-t^1

$$y = a \cdot b^t$$

Wachstumsfunktion: b > 1, Zerfallsfunktion: 0 < b < 1

Umformungen:

$$b^{\Delta t} = \frac{f(t_2)}{f(t_1)} \Rightarrow b = \sqrt[\Delta t]{\frac{f(t_2)}{f(t_1)}}$$

Halbwertszeit:

$$b^{\Delta t} = \frac{1}{2} \Rightarrow \Delta t \cdot ln(b) = ln(\frac{1}{2}) \Rightarrow \Delta t = \frac{ln(\frac{1}{2})}{ln(b)}$$

Verdoppelungszeit:

$$b^{\Delta t} = 2 \Rightarrow \Delta t \cdot ln(b) = ln(2) \Rightarrow \Delta t = \frac{ln(2)}{ln(b)}$$

Logarithmusfunktion

Rechenregeln:

$$log_a(u \cdot v) = log_a(u) + log_a(v)$$

$$log_a(\frac{u}{v}) = log_a(u) - log_a(v)$$

$$log_a(u^k) = k \cdot log_a(u)$$

$$log_a(\sqrt[n]{u}) = \frac{1}{n} \cdot log_a(u)$$

Allgemein:

$$y = a^x \Rightarrow ln(y) = x \cdot ln(a) \Rightarrow x = \frac{ln(y)}{ln(a)}$$

$$y = a^x \Rightarrow log_a(y) = x \cdot log_a(a) \Rightarrow x = log_a(y)$$

Umkehrfunktion:

$$y = log_a(x)$$

Basiswechsel:

$$log_a(x) = \frac{log_{10}(x)}{log_{10}(a)} = \frac{ln(x)}{ln(a)}$$

Umformungsbeispiele:

$log_{10}(x) = -4.0404$	\Rightarrow	$x = 10^{-4.0404} = \frac{1}{10^{4.0404}}$
ln(x) = -9.0907	\Rightarrow	$x = e^{-9.0907} = \frac{1}{e^{9.0907}}$
$log_3(x) = 5$	\Rightarrow	$x = 3^5 = 243$