CHENG, WENZHENG

+1 4435702555 | MD, USA | Email: wcheng31@jh.edu | Github: https://wilsoncheng561.github.io/

Research Interests: Surgical Computer Vision | Multimodal Learning | LLMS | Digital Twins | Robot learning

Education

Johns Hopkins University (JHU)

MD, USA

M.S. in Robotics

Sep 2024-Present

Tianjin University (TJU)

Tianjin, China

B.S. in Software Engineering

Sep 2020-Jun 2024

Publications

- H Ding, Y Zhang, W Cheng. Towards Robust Algorithms for Surgical Phase Recognition via Digital Twin Representation.arXiv preprint arXiv:2410.20026, 2024.
- Zhang, H. & W Cheng. (2023). DeepHEN: quantitative prediction essential lncRNA genes and rethinking essentialities
 of lncRNA genes. arXiv preprint 2309.10008.
- W Cheng. (2023). Application and analysis of residual blocks in galaxy classification. ACE Vol. 21: 143-152. DOI: 10.54254/2755-2721/21/20231135.

Research Experience

Digital Twin Representation-based Surgical Phase Recognition (DT-SPR)

MD, USA

Graduate Researcher, Johns Hopkins University (LCSR), advised by Mathias Unberath

12/2024-03/2025

- Co-author on DT-SPR, accepted oral at DT4H@MICCAI 2025; released a corrupted-data benchmark & auto point-prompting pipeline (DINO/Depth → SAM2)
- Improved top-1 accuracy by +3 percentage points via: Multimodal fusion redesign separate PatchEmbed for RGB and mask+depth to form two token streams; per-stream self-attention, then mid/late cross-attention for token exchange; Enhanced data augmentation and training strategies

Multimodal Robust SPR & Auto-Labeling (extensions of DT-SPR)

MD, USA

Graduate Researcher, Johns Hopkins University (LCSR), advised by Mathias Unberath

03/2025-Present

- DINOv2 feature incorporation into DT-Former (frozen patch tokens + cross-modal fusion) improved SPR accuracy by
 8 pp in ablations; maintained OOD robustness
- Prototyped LLM-based surgical triplets(tool, action, target) extraction (GPT-4 prompting with CoT/memory/RAG + BERT embedding); after evaluation, concluded limited gains and de-scoped for production
- Designed a zero-shot point-proposal pipeline for SAM2: DINOv2 attention × Depth-Anything v2 → region proposals→ multi-strategy key-point picking. Outperforms the few-shot memory-bank baseline NO-TIME-TO-TRAIN
- Extended "point + image → SAM2 → frozen features + small head" classifier to automate tool presence classification; built eval harness targeting 90% test accuracy.
- Curated an out-of-distribution benchmark for SPR by collecting and annotating 80 YouTube surgical videos, enabling rigorous robustness validation

SurgiPose: Monocular Pose Estimation for Imitation Learning

MD, USA

Graduate Researcher, Johns Hopkins University (LCSR), advised by Axel Krieger

05/2025-Present

- Computed the camera intrinsic matrix from consecutive, differently-angled surgical tool frames
- Improved the initial pose-estimation loss function, achieving ~60% reduction in optimization loss.
- Curated additional OOD datasets (YouTube, SurgVu 2024) and generated masks with SAM2 for training/evaluation..

Fast Diffusion-GAN based model for Medical Image Augmentation

Tianjin, China

Cooperated with Tianchi Lu, Collaboration between TJU and HKU

11/2023-8/2024

Developed a novel image generation model by combining diffusion-based generator with a GAN discriminator,
 improving image quality and stability compared to state-of-the-art models such as IDDPM, DDGAN, and Score-SDE

- Integrated an autoencoder for dimensionality reduction of input images, accelerated the diffusion process by replacing the 1000-step Markov chain with 4-step fast inference method, significantly improving training efficiency and generation speed
- Applied traditional data augmentation methods to our model, training with CT and MRI datasets. Evaluating the augmented data using ResNet's classification accuracy and area under curve.

Cross-modal MRI Translation via Adversarial Diffusion (Undergraduate Thesis)

Tianjin, China

Undergraduate Researcher, advised by Xuebin Sun, TJU

06/2023-04/2024

- Implemented Medical Diffusion GAN (MDG) for unpaired, bidirectional MRI synthesis (T2↔PD; FLAIR↔T2) using fast conditional diffusion with an adversarial projector and cycle consistency between diffusion and non-diffusion branches.
- Introduced an adversarial projector + cross-branch cycle-consistent coupling to stabilize unpaired training across diffusion and non-diffusion modules.
- Benchmarked on IXI and BRATS: MDG outperformed DDPM & Cycle-GAN (evaluated with PSNR/SSIM/FID).

DeepHEN: Predicting Essential IncRNA Genes and Rethinking Their Essentialities

Tianjin, China

2-person Project, advised by Pufeng Du, TJU

06/2023-11/2023

- Quantitatively estimated long non-coding RNA (lncRNA) gene essentialities
- Constructed a lncRNA-protein-protein reaction network and utilized variational graph auto-encoders (VGAE) and graph information passing to obtain feature vectors for each lncRNA gene
- Employed the dna2vec model to generate sequence feature vectors
- Proposed a method based on semi-supervised clustering to select negative samples, addressing the scarcity of known essential human lncRNAs and the absence of defined non-essential lncRNAs
- Validated the effectiveness of negative sample selection strategy through genome-level enrichment analysis

Selected Course Projects

Development of a Java-web Project "Ele.me" Food Delivery App

Tianjin, China

Leader of 4 -person Project, Practice for Programming Courses

08/2022-04/2023

- Implemented CRUD operations and managed primary and foreign key relationships using JDBC encapsulation
- Developed enterprise-level front-end static pages with HTML5, CSS3, and JavaScript
- Utilized front-end and back-end separation architecture with Vue and Servlet, incorporating AJAX, Session management, and MVC encapsulation
- Implemented separation architecture application based on SpringBoot, integrating SpringMVC, Spring, and MyBatis
- Developed Internet application using Vue and SpringCloud based on microservices architecture, involving service registration and discovery, load balancing, and service degradation, etc.

Professional Experience

AutoBrain Tianjin, China

Algorithm Research Intern

04/2023-06/2023

- Conducted an extensive literature review to research point cloud segmentation and semantic occupancy perception models and their applications
- Implemented point cloud processing methods (filtering, clustering, merging) using PCL and Open3D
- Utilized LabelCloud to annotate point cloud segmentation dataset and generated the annotation results in KITTI format
- Proposed a method to calibrate the extrinsic parameters between a camera and a LiDAR, and used Autoware tools to implement this calibration

Skills

- Programming: •Python Java C •Matlab SQL HTML/CSS JavaScript HDL Linux LaTeX
- Core Courses: Computer Integrated Surgery, Computer Vision, Algorithms for Sensor-Based Robotics, Machine
 Learning: Deep Learning, Advanced Practice for Programming, Data warehouse and data mining, Artificial Intelligence