- 1. Let $C \subseteq \mathbb{R}^n$ be a convex set, with $\mathbf{x}_1, ..., \mathbf{x}_k \in C$, and let $\theta_1, ..., \theta_k \in \mathbb{R}$ satisfy $\theta_i \geq 0, \ \theta_1 + ... + \theta_k = 1$. Show that $\theta_1 \mathbf{x}_1 + ... + \theta_k \mathbf{x}_k \in C$.
- 2. A set C is midpoint convex if whenever two points \mathbf{a} , \mathbf{b} are in C, the average or midpoint $(\mathbf{a} + \mathbf{b})/2$ is in C. Prove that if C is closed and midpoint convex, then C is convex.
- 3. Which of the following sets S are polyhedra? If possible, express S in the form $S = \{\mathbf{x} | \mathbf{A}\mathbf{x} \leq \mathbf{b}, \ \mathbf{F}\mathbf{x} = \mathbf{g}\}.$
- (a) $S = \{y_1 \mathbf{a}_1 + y_2 \mathbf{a}_2 | -1 \le y_1 \le 1, -1 \le y_2 \le 1\}$, where $\mathbf{a}_1, \mathbf{a}_2 \in \mathbb{R}^n$.
- (b) $S = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{x} \geq \mathbf{0}, \ \mathbf{1}^T \mathbf{x} = 1, \sum_{i=1}^n x_i a_i = b_1, \sum_{i=1}^n x_i a_i^2 = b_2 \}$, where $a_1, ..., a_n \in \mathbb{R}$ and $b_1, b_2 \in \mathbb{R}$.
- (c) $S = {\mathbf{x} \in \mathbb{R}^n | \mathbf{x} \succeq \mathbf{0}, \mathbf{x}^T \mathbf{y} \leq 1 \text{ for all } \mathbf{y} \text{ with } ||\mathbf{y}||_2 = 1}.$
- (d) $S = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{x} \succeq \mathbf{0}, \mathbf{x}^T \mathbf{y} \leq 1 \text{ for all } \mathbf{y} \text{ with } \sum_{i=1}^n |y_i| = 1 \}.$

- 4. Which of the following sets are convex?
- (a) A slab, i.e., a set of the form $\{\mathbf{x} \in \mathbb{R}^n | \alpha \leq \mathbf{a}^T \mathbf{x} \leq \beta\}$.
- (b) A wedge, i.e., $\{\mathbf{x} \in \mathbb{R}^n | \mathbf{a}_1^T \mathbf{x} \leq b_1, \mathbf{a}_2^T \mathbf{x} \leq b_2\}.$
- (c) The set of points closer to a given point than a given set, i.e., $\{\mathbf{x} | \|\mathbf{x} \mathbf{x}_0\|_2 \le \|\mathbf{x} \mathbf{y}\|_2$ for all $\mathbf{y} \in S\}$ where $S \subseteq \mathbb{R}^n$.
- (d) The set of points closer to one set than another, i.e., $\{\mathbf{x}|\mathbf{dist}(\mathbf{x},S) \leq \mathbf{dist}(\mathbf{x},T)\}$, where $S,T \subseteq \mathbb{R}^n$, and

$$\mathbf{dist}(\mathbf{x}, S) = \inf\{\|\mathbf{x} - \mathbf{z}\|_2 | \mathbf{z} \in S\}.$$

- (e) The set $\{\mathbf{x}|\mathbf{x}+S_2\subseteq S_1\}$, where $S_1,S_2\subseteq \mathbb{R}^n$ with S_1 convex.
- (f) The set of points whose distance to **a** does not exceed a fixed fraction θ of the distance to **b**, i.e., the set $\{\mathbf{x}|\|\mathbf{x}-\mathbf{a}\|_2 \leq \theta \|\mathbf{x}-\mathbf{b}\|_2\}$ ($\mathbf{a} \neq \mathbf{b}$ and $0 \leq \theta \leq 1$).

- 5. Find the convex hull of the set $\{\mathbf{u}\mathbf{u}^T | \|\mathbf{u}\| = 1\}$.
- 6. Consider the set of rank-k outer products, defined as $\{\mathbf{X}\mathbf{X}^T|\mathbf{X} \in \mathbb{R}^{n \times k}, \text{rank}\mathbf{X} = k\}$. Describe its conic hull in simple terms.
- 7. Give an expression $\bigcap_{\alpha \in \mathcal{A}} S_{\alpha}$ for the unit ball $\{\mathbf{X} | ||\mathbf{X}||_2 \leq 1\}$.

8. Give an explicit description of the positive semidefinite cone \mathbb{S}^n_+ , in terms of the matrix coefficients and ordinary inequalities, for n=1,2,3. To describe a general element of \mathbb{S}^n , for n=1,2,3, use the notation

$$x_1, \left[egin{array}{ccc} x_1 & x_2 \ x_2 & x_3 \end{array}
ight], \left[egin{array}{ccc} x_1 & x_2 & x_3 \ x_2 & x_4 & x_5 \ x_3 & x_5 & x_6 \end{array}
ight].$$

- 9. Suppose $K \subseteq \mathbb{R}^2$ is a closed convex cone.
- (a) Give a simple description of K in terms of the polar coordinates of its elements $(\mathbf{x} = r(\cos\phi, \sin\phi)^T \text{ with } r \geq 0)$.
- (b) When is K pointed?
- (c) When is K proper (hence, defines a generalized inequality)? Draw a plot illustrating what $\mathbf{x} \leq_K \mathbf{y}$ means when K is proper.