# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

# ОТЧЕТ

по лабораторной работе №7 по дисциплине «Машинное обучение»

| Студенты гр. 6304 | Тимофеев А.А. |
|-------------------|---------------|
| Преподаватель     | Жангиров Т.Р. |

Санкт-Петербург 2020

# Цель работы

Ознакомиться с методами классификации модуля Sklearn

# Ход работы

# Загрузка данных

- 1. Был создан датафрейм Pandas на основе загруженного датасета (<a href="https://archive.ics.uci.edu/ml/datasets/iris">https://archive.ics.uci.edu/ml/datasets/iris</a>)
- 2. Были выделены данные и их метки, тексты меток были преобразованы к числам при помощи *LabelEncoder*.
- 3. Выборка была разбита на обучающую и тестовую при помощи *train\_test\_split*.

# Байесовские методы

1. Была проведена классификация данных методом *GaussianNB*, выведено количество неправильно классифицированных наблюдений (представлено на рисунке 1).

Wrong classified: 3

Рисунок 1 – Количество неправильно классифицированных наблюдений

- 2. С помощью метода *score* была получена точность классификации, которая составила 96%.
- 3. Описание атрибутов метода *GaussianNB* представлено в таблице 1. Таблица 1 Описание атрибутов метода *GaussianNB*

| Название     | Описание           | Тип возвращаемого |  |
|--------------|--------------------|-------------------|--|
|              |                    | значения          |  |
| class_count_ | Количество         | ndarray of shape  |  |
|              | наблюдений в       | (n_classes,)      |  |
|              | обучающих выборках |                   |  |
|              | для каждого класса |                   |  |

| class_prior_ | Вероятность         | встречи | ndarray                 | of | shape |
|--------------|---------------------|---------|-------------------------|----|-------|
|              | наблюдения для      |         | (n_classes,)            |    |       |
|              | каждого класса      |         |                         |    |       |
| classes_     | Метки               | класса  | ndarray                 | of | shape |
|              | известные           |         | (n_classes,)            |    |       |
|              | классификатору      |         |                         |    |       |
| epsilon_     | Величина аддитивной |         | float                   |    |       |
|              | дисперсии           |         |                         |    |       |
| sigma_       | Дисперсия           | каждого | ndarray                 | of | shape |
|              | признака по классу  |         | (n_classes, n_features) |    |       |
| theta_       | Среднее             | каждого | ndarray                 | of | shape |
|              | признака по классу  |         | (n_classes, n_features) |    |       |

4. Были построены графики зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки для метода *GaussianNB*. Графики представлен на рисунке 2.



Рисунок 2 – Графики для метода GaussianNB

Точность классификации не падает с увеличением тестовой выборки вплоть до 90% от всей выборки. Скорее всего такая хорошая классифицируемость данных связана с их распределением в выборке.

5. Была проведена классификация другими байесовскими классификаторами, представленными в модуле Sklearn. Лучшие результаты классификации представлены в таблице 2.

| Метод         | Размер тестовой | Кол-во        | Точность |
|---------------|-----------------|---------------|----------|
|               | выборки         | неправильно   |          |
|               |                 | класс. данных |          |
| GaussianNB    | 0.7             | 6             | 0.94     |
| MultinomialNB | 0.25            | 1             | 0.97     |
| ComplementNB  | 0.2             | 9             | 0.7      |
| BernoulliNB   | 0.8             | 80            | 0.33     |

Наилучший результат показал метод MultinomialNB.

В методе *MultinomialNB* распределение для каждого класса параметризуется векторами, содержащими вероятности вхождения признаков в элемент выборки, соответствующий данному классу.

Метод ComplementNB — это адаптация стандартного полиномиального наивного байесовского алгоритма (MNB), который особенно подходит для несбалансированных наборов данных. В частности, CNB использует статистику из дополнения каждого класса для вычисления весов модели.

BernoulliNB реализует наивные байесовские алгоритмы для данных, которые распределяются согласно многомерному распределению Бернулли; предполагается, что каждый признак является двоичной (логической) переменной.

# Классифицирующие деревья

1. Была проведена классификация данных методом *DecisionTreeClassifier*, выведено количество неправильно классифицированных наблюдений (представлено на рисунке 3).

Wrong classified: 4

Рисунок 3 – Количество неправильно классифицированных наблюдений

- 2. С помощью метода *score* была получена точность классификации, которая составила 95%.
- 3. Были выведены количество листьев и глубина с помощью функций *get n leaves* и *get depth* соответственно (представлено на рисунке 4).

Num of leaves: 6 Depth: 4

Рисунок 4 – Количество листьев и глубина

4. Было выведено изображение полученного дерева (представлено на рисунке 5).



Рисунок 5 – Изображение дерева

Для каждого узла на самой верхней строке указывается условие для разбиения. Далее на каждом листе следует значение примеси Джини, количество наблюдений в узле/листе, а также распределение узлов по

классам. Чем больше объектов в узле/листе принадлежит одному классу, тем насышеннее его пвет.

5. Были построены графики зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки для метода *DecisionTreeClassifier*. Графики представлен на рисунке 6.



Рисунок 6 – Графики для метода DecisionTreeClassifier

Слабая зависимость результатов классификации от размера тестовой выборки как и в случае с байесовским классификатором подтверждает хорошую классифицируемость данных выборки.

6. Была исследована работа классифицирующего алгоритма при различных значениях параметров *criterion*, *splitter*, *max\_depth*, *min\_samples\_split*, *min\_samples\_leaf*.

#### a. Criterion

Отвечает за функцию для измерения качества разбиения. Критерием может быть или примесь Джини, или энтропия. Для обоих значений получились идентичные результаты классификации.

#### b. Splitter

Отвечает за стратегию, используемую для выбора разделения в каждом узле. Можно выбрать или наилучшее разбиение, или наилучшее случайное разбиение. Результаты классификации при обоих значениях примерно равны (учитываю нестабильность метода).

# c. Max depth

Отвечает за максимальную глубину дерева. При значении 1 результат классификации заметно ухудшился, так как такой глубины недостаточно для классификации выборки. При значении 2 и выше были показаны идентичные результаты классификации.

# d. Min\_samples\_split

Отвечает за минимальное число наблюдений необходимых для разбиения внутреннего узла. С увеличением значения наблюдается ухудшение классификации, однако оно не значительно в виду того, что данные выборки хорошо классифицируемы, а также для классификации достаточно небольшого количества уровней дерева.

# e. Min\_samples\_leaf

Отвечает за минимальное число наблюдение, требующееся для конечного узла. Рост значения сильно сказывается на результате классификации, так как параметр начинает сильно влиять на процесс разделения, заставляя оставлять в конечных узлах большее количество наблюдений.

#### Выводы

В ходе выполнения данной лабораторной работы было произведено знакомство с методами классификации модуля Sklearn. Классификация производилась с помощью методов GaussianNB, MultinomialNB, ComplementNB, BernoulliNB и DecisionTreeClassifier.