Machine Learning

MY TRACKER

Деревья решений

(регрессия)

	Х	у
	1	0
→	2	1
→	3	1
→	4	0
→	5	1
→	6	1
→	7	0
→	8	1
→	9	1

	X	у
	1	0
→	2	1
	3	1
→	4	0
>	5	1
	6	1
→	7	0
>	8	1
	9	1

	X	у
>	1	0
	2	1
_	3	1
→	4	0
	5	1
_	6	1
>	7	0
→	8	1
	9	1

	Х	у
>	10	0
	21	1
>	37	1
→	42	0
	54	1
>	69	1
→	71	0
	83	1
	95	1

	X	у
>	1	0
	2	1
_	3	1
→	4	0
	5	1
_	6	1
→	7	0
→	8	1
	9	1
1		

	Х	у	
>	10	0	15.5
	21	1	13.0
_	37	1	39.5
→	42	0	48
	54	1	40
→	69	1	70
	71	0	70
	83	1	
	95	1	

Оранжевые:
$$p_1 = \frac{9}{20}$$

Синие:
$$p_2 = \frac{11}{20}$$

Оранжевые:
$$p_1 = \frac{9}{20}$$
 Синие: $p_2 = \frac{11}{20}$ $S_0 = -\frac{9}{20} \log_2(\frac{9}{20}) - \frac{11}{20} \log_2(\frac{11}{20}) = 0.993$

$$S_1 = -\frac{5}{13} \log_2(\frac{5}{13}) - \frac{8}{13} \log_2(\frac{8}{13}) = 0.96$$

$$S_2 = -\frac{1}{7} \log_2(\frac{1}{7}) - \frac{6}{7} \log_2(\frac{6}{7}) = 0.59$$

$$IG("X \le 12") = S_0 - \frac{13}{20}S_1 - \frac{7}{20}S_2 = 0.163$$

Алгоритм

Обходим все варианты и находим разбиение с наибольшим Information Gain (IG). После того повторяем операцию для каждого из разбиений, пока все объекты из разбиения не будут одного класса.

ID	feature	target	
1	1	3	
2	2	6	
3	3	6	
4	5	6	
5	5	4	
6	7	3	
7	8	3	
8	9	3	
9	12	6	

	ID	feature	target	
	1	1	3	
	2	2	6	
_	3	3	6	
	4	5	6	
_	5	5	4	
	6	7	3	
	7	8	3	
	8	9	3	
	9	12	6	

ID	feature	target	
1	1	3	2.09
2	2	6	2.42
3	3	6	2.42
4	5	6	2.42
5	5	4	0.2
6	7	3	2.09
7	8	3	2.09
8	9	3	2.09
9	12	6	2.42

Выборочная дисперсия

$$S_n^2 = rac{1}{n} \sum_{i=1}^n ig(X_i - ar{X} ig)^2 = rac{1}{n} \sum_{i=1}^n X_i^2 - \left(rac{1}{n} \sum_{i=1}^n X_i
ight)^2$$

ID	feature	target	
1	1	3	2.09
2	2	6	2.42
3	3	6	2.42
4	5	6	2.42
5	5	4	0.2
6	7	3	2.09
7	8	3	2.09
8	9	3	2.09
9	12	6	2.42

Выборочная дисперсия

$$S_n^2 = rac{1}{n} \sum_{i=1}^n ig(X_i - ar{X} ig)^2 = rac{1}{n} \sum_{i=1}^n X_i^2 - \left(rac{1}{n} \sum_{i=1}^n X_i
ight)^2$$

$$egin{aligned} S_{top}^2 &= rac{2.09 + 2.42 + 2.42 + 2.42 + 0.2}{5} = 1.91 \ S_{bottom}^2 &= rac{2.09 + 2.09 + 2.09 + 2.42}{4} = 2.17 \ S_{all}^2 &= 2.03 \end{aligned}$$

 $IG_5 = S_{all}^2 - \frac{5}{9}S_{ton}^2 - \frac{4}{9}S_{bottom}^2 = 0.0044$

Алгоритм

Обходим все варианты и находим разбиение с наибольшим Information Gain (IG). После того повторяем операцию для каждого из разбиений, пока все объекты из разбиения не будут одного класса.

	ID	feature	target	
	1	1	3	2.09
	2	2	6	2.42
_	3	3	6	2.42
	4	5	6	2.42
	5	5	4	0.2
	6	7	3	2.09
	7	8	3	2.09
_	8	9	3	2.09
	9	12	6	2.42

Выборочная дисперсия

$$S_n^2 = rac{1}{n} \sum_{i=1}^n ig(X_i - ar{X} ig)^2 = rac{1}{n} \sum_{i=1}^n X_i^2 - \left(rac{1}{n} \sum_{i=1}^n X_i
ight)^2$$

$$IG_1 = 0.0022$$

$$IG_3 = 0.0$$

$$IG_5 = 0.0044$$

$$IG_8 = 0.0011$$

Алгоритм

Обходим все варианты и находим разбиение с наибольшим Information Gain (IG). После того повторяем операцию для каждого из разбиений, пока все объекты из разбиения не будут одного класса.

• Матрица ошибок (Confusion matrix)

	$y_{true}=1$	$y_{true}=0$
$y_{pred}=1$	True Positive (TP)	False Positive (FP)
$y_{pred}=0$	False Negative (FN)	True Negative (TN)

• Матрица ошибок (Confusion matrix)

	$y_{true}=1$	$y_{true}=0$
$y_{pred}=1$	True Positive (TP)	Ошибка 2 рода (FP)
$y_{pred}=0$	Ошибка 1 рода (FN)	True Negative (TN)

• Матрица ошибок (Confusion matrix)

	$y_{true}=1$	$y_{true}=0$
$y_{pred}=1$	True Positive (TP)	False Positive (FP)
$y_{pred}=0$	False Negative (FN)	True Negative (TN)

Accuracy

$$accuracy = rac{TP+TN}{TP+TN+FP+FN}$$

Матрица ошибок (Confusion matrix)

Пусть 10 писем спам и 100 писем не спам

	$y_{true}=1$	$y_{true}=0$
$y_{pred}=1$	5 (TP)	10 (FP)
$y_{pred}=0$	5 (FN)	90 (TN)

Accuracy

$$accuracy = rac{TP+TN}{TP+TN+FP+FN} = rac{5+90}{5+90+10+5} = 86.4$$

Матрица ошибок (Confusion matrix)

Пусть 10 писем спам и 100 писем не спам

	$y_{true}=1$	$y_{true}=0$
$y_{pred}=1$	0 (TP)	0 (FP)
$y_{pred}=0$	10 (FN)	100 (TN)

Accuracy

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN} = \frac{5 + 90}{5 + 90 + 10 + 5} = 86.4$$

Если предсказывать всегда не спам:

$$accuracy = rac{TP + TN}{TP + TN + FP + FN} = rac{0 + 100}{0 + 100 + 0 + 10} = 90.9$$

• Матрица ошибок (Confusion matrix)

	$y_{true}=1$	$y_{true}=0$
$y_{pred}=1$	True Positive (TP)	False Positive (FP)
$y_{pred}=0$	False Negative (FN)	True Negative (TN)

Precision (точность)

$$precision = rac{TP}{TP+FP}$$

Recall (полнота)

$$recall = rac{TP}{TP + FN}$$

• F-мера

$$f_score = 2rac{precision*recall}{precision+recall} = (eta^2+1)rac{precision*recall}{eta^2precision+recall}$$

Матрица ошибок (Confusion matrix)

Пусть 10 писем спам и 100 писем не спам

	$y_{true}=1$	$y_{true}=0$
$y_{pred}=1$	5 (TP)	10 (FP)
$y_{pred}=0$	5 (FN)	90 (TN)

$$egin{align*} precision &= rac{TP}{TP+FP} = rac{5}{5+10} = 0.33 \ recall &= rac{TP}{TP+FN} = rac{5}{5+5} = 0.5 \ f_score &= 2rac{precision*recall}{precision+recall} = 2rac{0.33*0.5}{0.33+0.5} = 0.39 \ \end{array}$$

Матрица ошибок (Confusion matrix)

Пусть 10 писем спам и 100 писем не спам

	$y_{true}=1$	$y_{true}=0$
$y_{pred}=1$	5 (TP)	10 (FP)
$y_{pred}=0$	5 (FN)	90 (TN)

True Positive Rate

$$TPR=rac{TP}{TP+FN}=rac{5}{5+5}=0.5$$

False Positive Rate

$$FPR = rac{FP}{FP + TN} = rac{10}{10 + 90} = 0.1$$

ID	Вероятность	
1	0.99	
2	0.9	
3	0.51	
4	0.49	
5	0.44	

True Positive Rate

$$TPR = rac{TP}{TP + FN}$$

False Positive Rate

$$FPR = rac{FP}{FP + TN}$$

ID	Вероятность	
1	0.99	
2	0.9	
3	0.51	
4	0.49	
5	0.44	

ID	Вероятность	
1	0.99	
2	0.9	
3	0.51	
4	0.49	
5	0.44	

ID	Вероятность	
1	0.99	
2	0.9	
3	0.51	
4	0.49	
5	0.44	

True Positive Rate

$$TPR = rac{TP}{TP + FN}$$

False Positive Rate

$$FPR = rac{FP}{FP + TN}$$

- Построение ROC AUC
 - a. Для каждого порога посчитать TPR и FPR
 - b. Построить график в осях TPR/FPR
- Кривая на графике:
 ROC curve
- Площадь под кривой:
 ROC AUC

ID	Вероятность	Ответ
1	0.99	1
2	0.9	0
3	0.51	1
4	0.49	1
5	0.44	0

$$TPR = rac{TP}{TP + FN}$$

$$FPR = rac{FP}{FP + TN}$$

ID	Вероятность	Ответ
1	0.99	1
2	0.9	0
3	0.51	1
4	0.49	1
5	0.44	0

$TPR = rac{TP}{TP + FN}$		
	FPR =	$rac{FP}{FP+TN}$

ID	Вероятность	Ответ
1	0.99	1
2	0.9	0
3	0.9	1
4	0.51	1
5	0.49	1
6	0.44	0
7	0.3	0

$$FPR = rac{FP}{FP + TN}$$

Что делать если классов несколько?

- micro-метрики
 - Считаем общую матрицу ошибок
 - По ним вычисляем метрики
- macro-метрики
 - Вычисляем метрики на каждом классе "1 против всех"
 - Берем среднее
- weighted-метрики
 - Вычисляем метрики на каждом классе "1 против всех"
 - Берем средневзвешенное по классам
 - o Проблема: F-мера может не лежать между Precision и Recall

Пусть у нас есть 4 класса:

- Kласс 1. TP = 1, FN = 1
- Класс 2. TP = 1, FN = 2
- Kласс 3. TP = 5, FN = 1
- Kласс 4. TP = 5, FN = 5

$$recall = rac{TP}{TP + FN}$$

$$egin{aligned} recall_{micro} &= rac{1+1+5+5}{2+3+6+10} = 0.57 \ recall_{macro} &= rac{0.5+0.33+0.83+0.5}{4} = 0.54 \ recall_{weighted} &= 0.095*0.5+0.143*0.33 \ + 0.286*0.83+0.476*0.5 = 0.57 \end{aligned}$$

LogLoss

Определение. Вероятностью отнесения объекта к положительному классу будем рассчитывать по формуле:

$$p_+(x_i)=P(y_i=1|x_i)=p_i$$

LogLoss

Определение. Вероятностью отнесения объекта к положительному классу будем рассчитывать по формуле:

$$p_+(x_i)=P(y_i=1|x_i)=p_i$$

Определение. Вероятностью отнесения объекта к отрицательному классу будем рассчитывать по формуле:

$$p_-(x_i) = P(y_i = 0 | x_i) = 1 - p_+(x_i) = 1 - p_i$$

Определение. Вероятностью отнесения объекта к своему классу будем рассчитывать по формуле:

$$p(x_i) = p_i^{y_i} (1-p_i)^{1-y_i}$$

LogLoss

Определение. Вероятностью отнесения объекта к положительному классу будем рассчитывать по формуле:

$$p_+(x_i)=P(y_i=1|x_i)=p_i$$

Определение. Вероятностью отнесения объекта к отрицательному классу будем рассчитывать по формуле:

$$p_-(x_i) = P(y_i = 0 | x_i) = 1 - p_+(x_i) = 1 - p_i$$

Определение. Вероятностью отнесения объекта к своему классу будем рассчитывать по формуле:

$$p(x_i) = p_i^{y_i} (1-p_i)^{1-y_i}$$

$$LogLoss(x_i) = -log(\prod_i p(x_i))$$

- ullet $MAE = rac{\sum_i |y_i ar{y_i}|}{n}$
- ullet $MSE = rac{\sum_i \left(y_i ar{y_i}
 ight)^2}{n}$
- ullet $RMSE = \sqrt{rac{\sum_i \left(y_i ar{y_i}
 ight)^2}{n}} = \sqrt{MSE}$

$$ullet$$
 $MAE=rac{\sum_i |y_i - ar{y_i}|}{n}$

$$ullet \ MSE = rac{\sum_i \left(y_i - ar{y_i}
ight)^2}{n}$$

•
$$MSE = rac{\sum_i \left(y_i - ar{y_i}
ight)^2}{n}$$
 $MAE \leq RMSE \leq MAE\sqrt{n}$

$$ullet$$
 $RMSE = \sqrt{rac{\sum_i \left(y_i - ar{y_i}
ight)^2}{n}}$

$$ullet$$
 $MAE = rac{\sum_i |y_i - ar{y_i}|}{n}$

$$ullet$$
 $MSE = rac{\sum_i \left(y_i - ar{y_i}
ight)^2}{n}$

$$MAE \leq RMSE \leq MAE\sqrt{n}$$

•
$$RMSE = \sqrt{rac{\sum_i \left(y_i - ar{y_i}
ight)^2}{n}}$$

•
$$MAPE = \sum_i |\frac{y_i - y_i}{y_i}|$$

$$ullet$$
 $SMAPE=rac{2}{n}\sum_irac{|y_i-ar{y_i}|}{(y_i+ar{y_i})}$

$$ullet$$
 $MAE = rac{\sum_i |y_i - ar{y_i}|}{n}$

$$ullet$$
 $MSE=rac{\sum_i \left(y_i - ar{y_i}
ight)^2}{n}$

$$MAE \leq RMSE \leq MAE\sqrt{n}$$

•
$$RMSE = \sqrt{rac{\sum_i \left(y_i - ar{y_i}
ight)^2}{n}}$$

•
$$MAPE = \sum_i |\frac{y_i - y_i}{y_i}|$$

$$ullet$$
 $SMAPE=rac{2}{n}\sum_irac{|y_i-ar{y_i}|}{(y_i+ar{y_i})}$