MA5204 Homework 3

Nguyen Ngoc Khanh - A0275047B

May 20, 2025

Problem 1 (chapter 8 problem 2)

Let \boldsymbol{A} be a Noetherian ring. Prove that the following are equivalent

- $1. \ A$ is Artinian
- 2. Spec A is discrete and finite
- 3. Spec A is discrete

Proof.

 $(1 \implies 2)$ A is Artinian then every prime ideal is maximal and it has finitely many maximal ideals, so $\operatorname{Spec} A$ is finite. Moreover, every maximal ideal in $\operatorname{Spec} A$ is closed, so any subset of $\operatorname{Spec} A$ is finite hence closed. $\operatorname{Spec} A$ admits the discrete topology

 $(2 \implies 3)$ by definition

(3 \Longrightarrow 1) Suppose $\mathfrak{p} \subsetneq \mathfrak{m}$ be a prime ideal that is properly contained in a maximal ideal \mathfrak{m} in A. As $\operatorname{Spec} A$ is discrete, $\{\mathfrak{p}\}$ is closed, hence $\{\mathfrak{p}\}=V(\mathfrak{a})$ for some ideal in A, hence $\mathfrak{a} \subseteq \mathfrak{p} \subseteq \mathfrak{m}$, so $\mathfrak{m} \in V(\mathfrak{a})$, contradiction. So every prime ideal in A is maximal, $\dim(A)=0$. Since A is Noetherian, A is also Artinian

Problem 2 (chapter 8 problem 3)

Let k be a field and A be a finite-type k-algebra. Prove that the following are equivalent

- 1. A is Artinian
- 2. A is a finite k-algebra (finitely generated as k-module)

Proof.

 $(2 \implies 1)$ If A is a finite k-algebra then A is a k-vector space of finite dimension. Any ideal in A is a vector subspaces. Since A is of finite dimension, any decending chain stablizes. A is Artinian

(1 \Longrightarrow 2) A is Artinian, then $A \cong \prod_{i=1}^m A_i$ for some Artinian local ring A_i . A is finite-type k-algebra, then there exists a surjection $k[x_1,...,x_n] \twoheadrightarrow A$. Hence, each A_i is also finite-type k-algebra by the composition $k[x_1,...,x_n] \twoheadrightarrow A \twoheadrightarrow A_i$. Note that each A_i is Artinian, moreover if each A_i is a finite k-algebra then A is also a finite k-algebra by taking all generators in $\{A_i\}$.

Without loss of generality, assume (A, \mathfrak{m}) is Artinian local. Let $K = A/\mathfrak{m}$ be the residue field, again $k[x_1, ..., x_n] \twoheadrightarrow A \twoheadrightarrow K$, so K is finite-type k-algebra. Since A is Artinian, $l_A(A) = n$ finite, there exists a finite chain of submodules

$$0 = M_0 \subsetneq M_1 \subsetneq \dots \subsetneq M_n = A$$

so that each $M_i/M_{i-1}=A/\mathfrak{m}$ for some maximal ideal \mathfrak{m} of A. Since A is local, each $M_i/M_{i-1}=K$. Moreover,

$$A \cong \bigoplus_{i=1}^{n} M_i / M_{i-1}$$

Hence, A is finite K-algebra. Together with Nullstellensatz, K a finite algebraic extension of k. So A is a finite k-algebra.

Problem 3 (chapter 9 problem 2)

Let A be a Dedekind domain. If $f = a_0 + a_1x + ... + a_nx^n$ is a polynomial with coefficients in A, the content of f is the ideal $c(f) = (a_0, ..., a_n)$ in A. Prove Gauss's lemma that c(fg) = c(f)c(g)

Lemma 4 (being equal submodules is local)

Let M and N be submodule of an A-module, if $M_{\mathfrak{m}}=N_{\mathfrak{m}}$ for every maximal ideal \mathfrak{m} of A then M=N.

Proof of Lemma 4. Note that, $M \subseteq N$ if and only if (M+N)/N=0. Localize at every maximal ideal \mathfrak{m} , $M_{\mathfrak{m}} \subseteq N_{\mathfrak{m}}$ implies $((M+N)/N)_{\mathfrak{m}} = (M_{\mathfrak{m}} + N_{\mathfrak{m}})/N_{\mathfrak{m}} = 0$ (localization commutes with sum and quotient of submodules). Since being zero is local, so $M \subseteq N$. The other direction is the same.

Proof. Let $g = b_0 + b_1 x + ... + b_m x^m$, then

$$fg = \sum_{l=0}^{m+n} \left(\sum_{i=0}^{l} a_i b_{l-i} \right) x^l$$

Localize at every maximal ideal \mathfrak{m} of A, if we can show that

$$c(fg)A_{\mathfrak{m}} = c(f)A_{\mathfrak{m}} \cdot c(g)A_{\mathfrak{m}} = c(f)c(g)A_{\mathfrak{m}}$$

Then Lemma 4 implies c(fg) = c(f)c(g). Note that, each $A_{\mathfrak{m}}$ is a DVR.

Without loss of generality, assume (A,v) is a DVR with uniformizer $y \in A$, v(y) = 1. Let $c(f) = (y^s)$ and $c(g) = (y^t)$ for some $s,t \geq 1$, then $c(f)c(g) = (y^{s+t})$. Since $(y^s) = (a_0,...,a_n)$, then y^s is a A-linear combination of $\{a_0,a_1,...,a_n\}$, then $s = v(y^s) \geq v(a_0)$, but $a_0 \in (y^s)$, so $v(a_0) \geq s$. Hence, $v(a_0) = s$. Similarly, $v(b_0) = t$. Hence, one of the coefficient of c(fg) is a_0b_0 has valuation $v(a_0b_0) = s + t$, so $c(f)c(g) = (y^{s+t}) \subseteq c(fg)$. The other direction is shown above. Hence $c(f)c(g) = (y^{s+t}) = c(fg)$

Problem 5 (chapter 9 problem 3)

A valuation ring (other than a field) is Noetherian if and only if it is a discrete valuation ring.

Definition 6

A domain A is a valuation ring if every nonzero $x \in K = \operatorname{Frac}(A)$, it is either $x \in A$ or $x^{-1} \in A$

Lemma 7 (some facts about valuation ring)

If A is a valuation ring

- 1. there is a total ordering in A by divisibility
- 2. there is a total ordering of ideals in \boldsymbol{A} by inclustion
- 3. A is local
- 4. every finitely generated ideal is principal
- 5. every ideal \mathfrak{a} in A, if $\mathfrak{a} \subsetneq \mathfrak{m}^k$ then $\mathfrak{a} \subseteq \mathfrak{m}^{k+1}$ for any $k \geq 1$
- 6. (is this true?) every (prime) ideal in A is of the form \mathfrak{m}^n

Proof of Lemma 7.

(1) For any nonzero $x, y \in A$, either $x/y \in A$ or $y/x \in A$. If $x/y \in A$, let z/1 = x/y for $z \in A$. So t(zy - x) = 0 for some nonzero $t \in A$. Since A is a domain, x = zy. So either x divides y or y divides x

- (2) Let $\mathfrak{a}, \mathfrak{b}$ be ideals in A. Suppose there exist $x \in \mathfrak{a} \mathfrak{b}$ and $y \in \mathfrak{b} \mathfrak{a}$ ($\mathfrak{a} \mathfrak{b}$ is set elements in \mathfrak{a} and not in \mathfrak{b}). (1) induces a contradiction.
- (3) If A is not local, then two distinct maximal ideals $\mathfrak{m}, \mathfrak{n}$ must have $\mathfrak{m} \subsetneq \mathfrak{n}$ or $\mathfrak{n} \subsetneq \mathfrak{m}$. contradiction.
- (4) Let $\mathfrak{a} = (a_1, ..., a_n)$ be ideal in A, then there exists a generator a_i that divides every other generator, hence $\mathfrak{a} = (a_i)$
- (5) Let $\mathfrak{a} \subsetneq \mathfrak{m}^k$ be any ideal in A for some $k \geq 1$, let $x \in \mathfrak{a}$ and $y \in \mathfrak{m}^k \{a\}$. Since A is a valuation ring and $y \notin \mathfrak{a}$, x = ay for some $a \in A$. Moreover, if $a \notin \mathfrak{m}$, that is a is a unit, then $a^{-1}x = y$ contradicts with $y \notin A$. Hence, x = ay for some $x \in \mathfrak{m}$. So, $x \in \mathfrak{m}^{k+1}$, $\mathfrak{a} \subseteq \mathfrak{m}^{k+1}$

$$\Box$$

Main Proof.

- (←) DVR is PID, PID is Noetherian since every ideal is generated by finitely many elements.
- (\Longrightarrow) The valuation ring A is Noetherian, then it is local with the unique maximal ideal \mathfrak{m} . Since every ideal in A is finitely generated, it is also principal, that is A is PID. A is a Noetherian, local domain with the unique maximal ideal being principal, it suffices to prove that dimension of A is A, that is, every prime ideal is maximal.

Let $\mathfrak{m}=(y)$ and (x) be a nonzero prime ideal in A, suppose that $(x)\subsetneq (y)$, that means $y\notin (x)$. We must have x=ay for some $a\in\mathfrak{m}$ (using the argument in Lemma 7). Since (x) is prime, and $y\notin (x)$, $a\in (x)$, write a=bx for some nonzero $b\in A$. So

$$x = byx$$

Since A is a domain, using left cancellation, by = 1 that makes y a unit, contradiction.

Problem 8 (chapter 9 problem 5)

Let M be a finitely generated module over a Dedekind domain. Prove that M is flat $\iff M$ is torsion-free

Definition 9

Let M be a module over a domain A, M is torsion-free if for every nonzero $x \in M$ and nonzero $a \in A$, $ax \neq 0$

Lemma 10 (chapter 3 exercise 13)

Let M be a module over a domain A, then M being torsion-free is a local property.

Lemma 11 (chapter 7 exercise 16)

Let M be a finitely generated module over a Noetherian ring A, then M is flat if and only if $M_{\mathfrak{m}}$ is a free $A_{\mathfrak{m}}$ -module for every maximal ideal \mathfrak{m}

Lemma 12

free module of finite rank over a domain is torsion free

Proof of Lemma 12. Let $M=A^n$, then every nonzero $m\in M$ can be written as $m=(a_1,...,a_n)\in A^n$ for some $a_1,...,a_n\in A$ and some $a_i\neq 0$. If nonzero $r\in A$ such that $0=rm=(ra_1,...ra_n)$, then $ra_i=0$, contradicts the premise A being a domain. \Box

Lemma 13 (Fundamental Theorem, Existence: Invariant Factor Form - Dummit Foote - chapter 12, section 12.1, theorem 5)

Let A be a PID, and M be a finitely generated A-module, then M is torsion-free implies M is free.

Proof. TODO

Main Proof.

Localize at a maximal ideal $\mathfrak{m} \subseteq A$

(\Longrightarrow) A is Dedekind domain, so A is Noetherian. Since M is finitely generated and flat, $M_{\mathfrak{m}}$ is a free $A_{\mathfrak{m}}$ -module of finite rank. By Lemma 12, $M_{\mathfrak{m}}$ is torsion-free. Lemma 10 implies M is torsion-free.

(\iff) A is a domain, so $M_{\mathfrak{m}}$ is also torsion-free as $A_{\mathfrak{m}}$ -module. Moreover, A is Dedekind domain, then $A_{\mathfrak{m}}$ is a DVR which is PID. By Lemma 13, $M_{\mathfrak{m}}$ is free. By Lemma 11

Problem 14 (chapter 9 problem 7)

Let A be a Dedekind domain and nonzero ideal $\mathfrak a$ in A. Show that every ideal in $A/\mathfrak a$ is principal. Deduce that every ideal in A can be generated by at most two elements

Proof. Every ideal a in Dedekind domain admits a unique decomposition

$$\mathfrak{a}=\mathfrak{p}_{1}^{e_{1}}...\mathfrak{p}_{n}^{e_{n}}$$

for some prime ideals \mathfrak{p}_i . In dimension 1 domain A, every prime ideal is maximal, by chinese remainder theorem

$$A/\mathfrak{a}=A/\mathfrak{p}_1^{e_1}\times \ldots \times A/\mathfrak{p}_n^{e_n}$$

Every ideal in A/\mathfrak{a} is a Cartesian product of ideals in $A/\mathfrak{p}_i^{e_i}$, so it suffices to show that ideals in $A/\mathfrak{p}_i^{e_i}$ are principal. Let \mathfrak{p}^e be one of $\mathfrak{p}_1^{e_1},...,\mathfrak{p}_n^{e_n}$. Localize each A/\mathfrak{p}^e as quotient of A-modules at $\mathfrak{p}\subseteq A$, we have

$$(A/\mathfrak{p}^e)_{\mathfrak{p}} = A_{\mathfrak{p}}/\mathfrak{p}^e A_{\mathfrak{p}}$$

as $A_{\mathfrak{p}}$ modules. Since A is a Dedekind domain, $A_{\mathfrak{p}}$ is a DVR. In $A_{\mathfrak{p}}$, $\mathfrak{p}A_{\mathfrak{p}}$ is the unique maximal ideal that is principal. So the the unique maximal ideal $\mathfrak{p}A_{\mathfrak{p}}\cap A_{\mathfrak{p}}/\mathfrak{p}^eA_{\mathfrak{p}}\subseteq A_{\mathfrak{p}}/\mathfrak{p}^eA_{\mathfrak{p}}$ is principal. It remains to show that $A_{\mathfrak{p}}/\mathfrak{p}^eA_{\mathfrak{p}}$ is Artinian. It is straightforward since every ideal in DVR $A_{\mathfrak{p}}$ is a power of its maximal ideal $\mathfrak{p}A_{\mathfrak{p}}$, any chain of ideals in $A_{\mathfrak{p}}$ of the form

$$\mathfrak{p}A_{\mathfrak{p}}\supseteq\ldots\supseteq\mathfrak{p}^eA_{\mathfrak{p}}$$

is of length at most e. So any chain of ideals in $A_{\mathfrak{p}}/\mathfrak{p}^e A_{\mathfrak{p}}$ is of length at most e

Let $\mathfrak{b}\subseteq A$ be an ideal generated by more than one element. Let $a\in\mathfrak{b}$, then $(a)\subsetneq\mathfrak{b}$. So $\mathfrak{b}/(a)$ is a nonzero ideal in A/(a), hence must be principal. Let $\mathfrak{b}/(a)$ generated by \bar{b} for some $b\in\mathfrak{b}$. Then for any $x\in\mathfrak{b}$, $\mathfrak{b}/(a)$ is principal ideal generated by \bar{b} , so $\bar{x}=\bar{y}\bar{b}$ for some $y\in A$, so x=yb+za for some $z\in A$. Hence, $\mathfrak{b}=(a,b)$

Problem 15 (chapter 9 problem 8)

Let $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ be three ideals in a Dedekind domain. Prove that

$$\mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}) = (\mathfrak{a} \cap \mathfrak{b}) + (\mathfrak{a} \cap \mathfrak{c})$$

$$\mathfrak{a} + (\mathfrak{b} \cap \mathfrak{c}) = (\mathfrak{a} + \mathfrak{b}) \cap (\mathfrak{a} + \mathfrak{c})$$

Proof. Localization commutes with finite intersection and sum of submodules, it suffices to prove for the case of DVR. Let $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ be ideals of a DVR (A, v) with uniformizer (y). Let $\mathfrak{a} = (y^a), \mathfrak{b} = (y^b), \mathfrak{c} = (y^c)$, then either case b = c or $b \neq c$,

$$\mathfrak{b} + \mathfrak{c} = (y^b) + (y^c) = (y^{\min(b,c)})$$
$$\mathfrak{b} \cap \mathfrak{c} = (y^b) \cap (y^c) = (y^{\max(b,c)})$$

It is equivalent to show

$$\max(a, \min(b, c)) = \min(\max(a, b), \max(a, c))$$
$$\min(a, \max(b, c)) = \max(\min(a, b), \min(a, c))$$

Assuming $b \le c$, then $\max(a, b) \le \max(a, c)$ and $\min(a, b) \le \min(a, c)$. We're done.

Problem 16 (Krull-Akizuki)

Let A be a Dedekind domain with fractional field K. Let L/K be a finite degree field extension and let B be the integral closure of A in L. Prove that B is a Dedekind domain.

Lemma 17 (equivalent formulation for Dedekind domain)

A ring A is a Dedekind domain if and only if it is a dimension 1 Noeatherian integrally closed domain

Proof of Lemma 17. this follows from Proposition 5.13: for a domain A being integrally closed is local.

Main Proof. L is a finite degree field extension of K which is a vector of finite dimension over K. $B \subseteq L$ is the integral closure of the ring extension $A \hookrightarrow L$

$$A \hookrightarrow B \hookrightarrow L$$

1. (Any ideal I of B intersects A nontrivially) Let nonzero $I \subseteq B$ be an ideal of B, let nonzero $x \in I$, then x satisfies a monic polynomial of minimal degree

$$p(x) = x^{n} + a_{1}x^{n-1} + \dots + a_{n-1}x - a_{n} = 0$$

for some $a_1,...,a_n \in A$. Since p is of minimal degree, $a=a_n$ is a nonzero element of the ideal $I \cap A$.

2. (I/aB is of finite length as an A-module) Now, $I/aB \subseteq B/aB$ as R-modules. It suffices to show that length B/aB is of finite length. If aB = B = I, there is nothing to show. Suppose a is not a unit in B

If we can show that $a^nB\subseteq a^{n+1}B+A$ for some n, then

$$\frac{B}{aB} \cong \frac{a^n B}{a^{n+1} B} \subseteq \frac{a^{n+1} B + A}{a^{n+1} B} \cong \frac{A}{a^{n+1} B \cap A}$$

The left isomorphism is from first isomorphism theorem of the map $a^n(-): B \to a^n B/a^{n+1}B$ with $\ker a^n(-) = aB$ and the right isomorphism is the second isomorphism theorem for submodules over A. $A/(a^{n+1}B\cap A)$ is Artinian since $a^{n+1}B\cap A$ is nonzero, so B/aB is of finite length as an A-module, hence I/aB is of finite length

3. $(a^n B \subseteq a^{n+1} B + A \text{ for some } n)$ Using the argument in Lemma 4, inclusion of submodules is a local, We can assume that A is a DVR with uniformizer \mathfrak{m} .

For any nonzero $y \in B$, consider the "fractional ideal" $y^{-1}A = \{z \in L : zy \in A\} \subseteq L$ intersecting A nontrivally using the same argument as above for integral element y^{-1} over A. Since A is a DVR, the ideal $Ay^{-1} \cap A$ of A contains large power of \mathfrak{m} . Since $a \in \mathfrak{m}$, we choose smallest $N_1 \in \mathbb{N}$ so that $a^ny \in A$ for every $n \geq N_1$

Consider the chain of ideals $I_n=a^nB\cap A+aA$ in A/aA. A/aA is Artinian since aA is nonzero, so it must stablize. Let $N_2\in\mathbb{N}$ so that $I_n=I_{N_2}$ for every $n\geq N_2$.

Note that, N_1 is dependent on y and N_2 is indepdent of y. We claim that $N_1 \leq N_2 + 1$ for every $y \in B$. Suppose the contrary that if $N_2 + 1 < N_1$, let $n = N_1 - 1$, then $I_{n+1} = I_n = I_{n-1}$, then $a^n y \notin A$ and $a^{n+1} y \in A$. Since $a^{n+1} y \in I_{n+1} = I_n = I_{n-1}$, then there exists $z \in B$ and $t \in A$ so that $a^{n-1} z \in A$ and

$$a^{n+1}y = a^nz + at \in a^{n-1}B \cap A + aA$$

Hence, left cancellation implies $a^ny=a^{n-1}z+t\in A$, contradiction. Choose $n=N_2+1$, then $I_n=I_{n+1}$ and $a^nB\subseteq A$. Hence

$$a^n B \subseteq I_n = I_{n+1} \subseteq a^{n+1} B + A$$

4. (B is Noetherian) I/aB is of finite length as an A-module, if I is not finitely generated as an ideal in B, then let $I=(a,i_1,i_2,...)$ for $i_1,i_2,...\in B$, so the decending chain of ideals containing aB in B which is also a decending chain of submodule of I/aB as an A-module

$$(a, i_1, i_2, i_3, ...) \supseteq (a, i_2, i_3, ...) \supseteq ... \supseteq (a) \supseteq (0)$$

has infinitely many strict inclusions, contradiction.

- 5. (B is of dimension 1) $A \hookrightarrow B$ is an integral ring extension with A being a domain, by going-down theorem, any chain of prime ideals of strict inclusions in B has a corresponding chain of prime ideals of strict inclusions in A by contraction. Since A is of dimension 1, by going-up theorem, all chain of prime ideals of strict inclusions in B cannot be longer than 2. Hence, since B is subring of field A, B is domain, A is of dimension 1
- 6. (B is integrally closed) $\operatorname{Frac}(B) \subseteq L$. Any $x \in \operatorname{Frac}(B)$ is integral over B is also integral over A, so $x \in B$. Hence, B is integrally closed.

Problem 18 (optional)

In the notation of the previous problem, if in addition L/K is a separable extension, we can always write L=K(x) for some $x \in L$. Find an example where L/K is separable but we CANNOT write B=A[x] for some $x \in B$

Problem 19 (optional)

Is the ring $A = \mathbb{C}[x,y]/(y^2 - x^3 - x - 1)$ a PID?