CARLINGFORD HIGH SCHOOL

DEPARTMENT OF MATHEMATICS

Year 12 Mathematics 2U

Term1 Half-Yearly HSC 2014

Time allowed:	2 hours		
Name:		_ Class:	

Lobejko / White / Fardouly / Lego / Wilson

Instructions:

- All questions should be attempted.
- Show ALL necessary working on your own paper.
- Marks may not be awarded for careless or badly arranged work.
- Only board-approved calculators may be used.
- Start each question on a new page and only write on one side of each sheet of paper.

	MC	Q1	Q2	Q3	Q4	Q5	TOTAL
Н3		/13	/6	. /4	/5	/2	/30
H4			/7			/5	/12
H5				/9	/8	/6	/23
TOTAL	/10	/13	/13	/13	/13	/13	/75

Section A: Multiple Choice (10 marks)

	Questions
1.	Evaluate, correct to 3 significant figures, $\sqrt[3]{\frac{64.93 \times 13.4}{8.62 + 4.69}}$
	A. 4.02 B. 4.027 C. 4.028 D. 4.03
2.	Solve for x , $ 2x + 1 = 7$
	A. $x = -3, x = 4$ B. $x = -3, x = -4$ C. $x = 3, x = -4$ D. $x = 3, x = 4$
3.	Find the value of x if $\sqrt{75} + \sqrt{27} = \sqrt{x}$
	A. 3 B. √3 C. 24 D. 192
4.	Solve for x , if $\frac{10x+1}{4} = x+1$
	A. 0 B. $\frac{1}{2}$ C. $\frac{4}{9}$ D. 2
5.	The volume of a cylinder is given as $V=\pi r^2 h$. Find r , its radius, if the volume is $905cm^3$ and the height is $18~cm$.
	A. 4 cm B. 16 cm C. 72 cm D. 5185 cm
6.	The line l passes through the point $P(2,6)$ and has a gradient of $-\frac{1}{3}$. The equation of l is written in general form as:
	A. $3y = 20 - x$ B. $y = -\frac{1}{3}x + 6\frac{2}{3}$ C. $x + 3y - 16 = 0$ D. $x + 3y - 20 = 0$
7.	The domain and range for the function $y = \sqrt{7-x}$ is
	A. $x \le 7$; $y \ge 0$ B. $0 \le x \le 7$; $y \ge 0$
	C. $x \ge 0$; $y \ge 0$ D. All real x , All real y .
8.	What is the expression, $10x - 4x^2 + 24$, when fully factorised?
	A. $2(5x - 2x^2 + 12)$ B. $-2(-5x + 2x^2 - 12)$ C. $2(3 - 2x)(4 - x)$ D. $2(3 + 2x)(4 - x)$

		Questions
9.	Simplify $(\cot \theta + \csc \theta)$ $(\cos \theta)$	$sec \theta - cot \theta$).
	A. $\cos \theta - \sin \theta$	B. $\cos \theta + \sin \theta$
	C. $\cos^2\theta - \sin^2\theta$	D. $\cos^2\theta + \sin^2\theta$
10.	The perpendicular distance from Find the possible value(s) of k .	(k, 1) to $3x + 4y = 1$ is 3 units.
;	A. $k = 4$ C. $k = 4$ or $k = -6$	B. $k = -6$ D. $k = \frac{10}{3}$ or $k = -\frac{20}{3}$

End of Section A

Section B: Short responses

Question 1: Begin a new booklet (13 marks)

	Questions	Marks			
a)	a) Given the parabola $x^2 - 6x = 8y + 23$				
	(i) By completing the square, write the equation in the form $(x-h)^2=4a(y-k).$	2			
	(ii) Find the coordinates of the vertex and focus.	2			
	(iii) Write the equation of the axis of symmetry of the parabola.	1			
	(iv) Draw a neat sketch of the parabola showing the above information.	2			
b)	The coordinates of E and F are $(-2,1)$ and $(-3,-2)$ respectively. Find the equation of the locus of all points $P(x,y)$ such that $PF=3\times PE$.	2			
c)	A $(-1,3)$ and B $(3,1)$ are two points on the number plane.				
	(i) Find the locus of a point $P(x, y)$ such that PA is perpendicular to PB .	2			
	(ii) Show algebraically that the locus of P is a circle and state its centre and radius.	2			

Question 2: Begin a new booklet (13 marks)

	Questions	Marks
a)	Evaluate $\sum_{n=2}^{5} 3 + 2^{n-1}$	2
b)	The third term of an arithmetic sequence is 8 and the sixteenth term is 47	<i>7</i> .
	(i) Find the first term and the common difference.	2
	(ii) Find the sum of the first 40 terms of the series.	2

		Questions	Marks
с)	Gay con	le invests in a superannuation fund which pays 5% p.a. interest apounded annually. She pays \$12 000 into the fund on 1 st July each year.	
	(i)	What is the value of Gayle's investment on 30 th June, one year after she makes her first payment?	1
	(ii)	What is the value of the investment on the 30 th June, ten years after she made her first payment?	3
	(iii)	After making her tenth payment, Gayle considers increasing her annual payment to M dollars each year. Show that if Gayle does this, the value of her investment twenty years after her first payment of \$12 000 was made would be approximately equal to $13.2068 \ (12\ 000 \times 1.05^{10} + M)$.	3

Question 3: Begin a new booklet (13 marks)

Questions	Marks
a) Differentiate the following :	
(i) $2x^3 - 5 + \frac{3}{x}$	1
(ii) $\sqrt{4x+1}$	1
(iii) $\frac{2x+4}{x+1}$	2
b) For the curve $y = 4x^3 - 12x + 2$	
(i) Find the coordinates of the two stationary points.	2
(ii) Determine the nature of the stationary points.	2
(iii) Determine any points of inflexion.	2
(iv) Sketch the curve, clearly marking all important features, for the domain $-3 \le x \le 3$.	2
(v) What is the minimum value of $4x^3 - 12x + 2$ in the domain $-3 \le x \le 3$	1

Question 4: Begin a new booklet (13 marks)

Questions	Marks
a) Find the primitive of	
(i) $\int \sqrt{x} \ dx$	1
(ii) $\int \frac{3x^3 - 2x^2 + x^{-1}}{x^2} dx$	2
b) Evaluate $\int_{-1}^{2} (2x-2)^4 dx$	2
c) Consider the function $y = \frac{x}{x+1}$	
(i) Copy and complete the following table.	2
x 0 2 4 6 8 y 1 1 1	
(ii) Apply Simpson's Rule with 5 function values to find an approximation for	
$\int_{0}^{8} \frac{x}{x+1} \ dx$	
Give your answer correct to one decimal place.	3
d) Find y in terms of x if $\frac{d^2y}{dx^2} = 3x$ given $y = 12$ and $\frac{dy}{dx} = 9$ when $x = 2$.	3

Question 5: Begin a new booklet (13 marks)

	Questions	Marks
c)	A grain silo has a cylindrical shaped wall and a cone shaped roof as in the diagram. Let the radius of the base of the silo be r metres, the height of the cylinder be x metres and the height of the cone be $2x$ metres.	
	NOT TO SCALE	
	2.x	
	(i) Show that if the length of the slant side of the cone is 20 metres, then $r^2 = 20^2 - 4x^2$.	1
	(ii) Show that the volume, V , of the silo is given by $V = \frac{20}{3}\pi(100x - x^3)$	2
	(iii) Find the exact height of the silo so that it holds the maximum amount of grain.	3

Name:	 	_	
Class: _			

Teacher: Mr White Mrs Lobejko Mr Fardouly Mrs Lego Mr Wilson

Year 12 Half Yearly 2014

Mathematics

Multiple Choice Sheet

Select the alternative A, B, C, or D that best answers the question. Fill in the response oval completely, using blue or black pen. Mark **only one** oval per question.

1,	10		0	
	AC	80		00
3.	$A \bigcirc$	80	(()	00
4.	AC	BCS		0 (
5.	AO			00
6.	AC		CO	0 6
7.	AC	80	$c \Leftrightarrow$	
8.	AO	8 (3)	C <	
9.	A CO	8 ($c \circ$	
10.	$A \bigcirc$	8 (3)	CCS	

YIZ H/Y SO/h. HC (10 marks)

1) (1)
$$x^2 - 6x = 8y + 23$$

 $(x^2 - \frac{6}{2}x + (-3)^2) = 8y + 23 + 9 \bigcirc$

$$(x-3)^2 = 8y+32$$

 $(x-3)^2 = 8(y+4)$

(ii) vertex
$$(3, -4)$$
 O focus $(3, -2)$ O

$$\frac{7}{2}$$

$$\frac{2}{2}$$

$$\frac{3}{2}$$

$$\frac{3}$$

b)
$$PF = 3 \times PE$$

$$\int (x+3)^2 + (y+2)^2 = 3 \times \sqrt{(x+2)^2 + (y-1)^2}$$

$$(x+3)^2 + (y+2)^2 = q \left[(x+1)^2 + (y-1)^2 \right]$$

$$x^{2} + 6x + 9$$

$$x^{2} + 36x$$

$$x^{2} + 6x + 9$$

$$x^{3} + 9x + 4y + 4$$

$$x^{4} + 9x + 19x + 19$$

O convect simplification (1) correct expansion

c. (1) m of PA = 3-3
<u>4-3</u>
PAH PB 8 4-3 × 4-1 = -1
4 - 4 4 + 3 = -1
x2-2x-3
$\mu^{2} - 4 \mu + 3 = -(\chi^{2} - 2 \chi - 3)$
y 2 - 4 4 + 3 = - x 2 + 2 x + 3
x - 2x + y - 4y = 0
$(i,) \qquad (\chi^2 - 2\chi + (-1)^2) + (\chi^2 - 4\chi + (-2)^2) = 0 + (-1)^2 + (-2)^2$

ļ	<u>+</u>	
	3+2	
	m.	
	+ 3+2	
	7 7 + 5	
	5+2+3	
	ొ	=
	۲۰ ۱۱	
2	ا +	
shon	wW Ww	ч
Que	િં	

·· radius = 15 units

7.4.2) T3=8 T6=47	a+2d=8 a+15d=47	Q + 15 0 = 47
	7 12	9+2	
	b) (i)		

$$a = \lambda$$

=13.2067	01 NO
= 158481	9
A 20 = 158481 = 158481	(i) value after 2 yrs: 12000 (1.05)2+ (2000 (1.05)
A12 = 158481.	c i) A= P(1+r)" = 12000 (1+0.05) =\$12600
(ii) A = 158481.	$(a) S_{h} = \frac{h}{2} (2a + (h - 1)d)$ $= \frac{40}{2} (4 + 39.3)$ $= 2420$

(iii) A+ 20 WS.	+ of (1.05) to object	+ M (1.05) + + M (1.05)

	. + 1.059)
(+ 1.05 4)	(1+1.05+
-05" (1+1.05 +	+ M ×1.05
* 12000 x 1	

(HSO: + GO: X OOOC) (-30:) =		= 12.57789 x 1.05 (12006 x 1.05 0 + H)	= 13.2068 (12000 × 1.05 10 + M)	
	•			

	920		
03	at x=-1 x <0 max	eshor 4	(1) h = 4
a) (i) d = 6x - 5x	(-1, 10)		
4. 2 (47+1) -2. 4		= 2/x3 + C.	A * 3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
dz	(iii) pt of inf. when dxx = 0	m	+2f(4)
= 74341		2 2	7 (8) 7
	34 x = 0	(ij) $\begin{pmatrix} 3x^2 - \frac{ix}{x^2} + \frac{x}{x^2} & dx \end{pmatrix}$	
$(ii) d = (x+1) \cdot 2 - (2x+4) \cdot 1$	Ω = γ		+ 2(3)[
+ x)	2 = h	= 3x - 2 + x - 3 dx	- 1
		7	£ 5.7
$= 2 \times + 2 - 2 \times - 4$	· 4.5	= 3x - 2x + 2x + C	
$(\chi + 1)^2$	× ×		d) any = 3x
ŀ	124 - WE 0 + WE	= 2 - 2x - 2x2 + c	**
- (+ c)			
	change in sign, pt		9= 3(2) + C
h), 4×3 - 12x+2	ion at	b) $((2x-2)^{+}dx$	9= 12+C
du 12 x 2 - (2		, I	2 = 8
1	(iv)	(22-2)5 =	The state of the s
0 " x 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	(-1,10)		dy = 3x2 +3
12×			1
(2 (2-1) = 0		$=$ $\left(\frac{2}{10}\right) - \left(\frac{4}{10}\right)$	U = 3/2 · 3/4 + 5x + C
$O = (1 - \chi) (1 + \chi) \chi$. 8-		= 3x3 + 3x + C
= x - = x		= 1053	~
Ø1 =			$(2 = \frac{3(4)}{6} + 3(2) + C$
 		9 h	
(-1 10) and (1,-6)	1 (21 (2)	4 0 73 45 67 89	12 = 4+6+C
			2 = -C
×#6 = 10 (ii)	(V) minimum Value 15 - 70		
	. at x = -3.		:. y= 2 + 3x + 2
at x=1 ax >0 min at			
(1,-6)			

$\frac{3}{4\pi} > V = \pi / (8x - x^2)^2 - \pi / (5x)^2 dx$ $= \pi / (64x^3 + x^5 - 16x^4)^3$ $- \pi / (25x^3)^3$	$= 143 \% \times \pi$ $= 451.13 \text{ Luis}^{3}$ $= 451.13 \text{ Luis}^{3}$ $(3x)^{2} + r^{2} = 20^{2}$ $(1) $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \frac{x^2 - 3x = 0}{x(x-3) = 0} $ $ \frac{x(x-3) = 0}{x(x-3) = 0} $ $ \frac{y \ge 0}{y \ge 0} x = 3 $ $ \frac{y \ge 0}{y \ge 0} y = 15 $ $ \frac{y \ge 0}{y$	- Contraction of the Contraction
	$a + x = \frac{10}{3}$	
cylindex: V = Pr2h T × (30²-4x²) × x = x T (20²-4x²)	$\frac{1}{3} \frac{\sqrt{6} \sin 6}{3} : \frac{1}{3} \left(20^{2} - 44x^{2} \right)$ $= \frac{2x\pi}{3} \left(20^{2} - 4x^{2} \right)$ $= \frac{5x\pi}{3} \left(20^{2} - 4x^{2} \right)$ $= \frac{5x\pi}{3} \left(400 - 4x^{2} \right)$ $= \frac{5x\pi}{3} \left(400 - 4x^{2} \right)$ $= \frac{5x\pi}{3} \left(400 - 4x^{2} \right)$ $= \frac{5x\pi}{3} \left(1000 \times - x^{3} \right)$ $= \frac{5x\pi}{3} \left(1000 \times - x^{3} \right)$ $= \frac{5x\pi}{3} \left(1000 \times - x^{3} \right)$ $= \frac{5x\pi}{3} \left(1000 \times - x^{2} \right)$ $= \frac{1000}{3} \times \frac{2\pi}{3} \left(1000 - 3x^{2} \right)$ $= \frac{1000}{3} \times \frac{2\pi}{3} \left(1000 - 3x^{2} \right)$ $= \frac{1000}{3} \times \frac{2\pi}{3} \times \frac{2\pi}{3}$ $= \frac{1000}{3} \times \frac{2\pi}{3} \times \frac{2\pi}{3}$	

V of cylinder = $\pi/2h$ = π (30 ² = $\times \pi$ (30 V of silo = $\frac{2\times\pi}{53\pi}$ (20 ² - $\frac{4}{53\pi}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	but χ is height positive. $\chi = \sqrt{3}$ at $n = \sqrt{\frac{100}{3}}$, $\frac{d^{100}}{d^{100}}$, $d^$

