```
In [1]: import pandas as pd
In [25]: df=pd.read csv("D:/AIML/Iris.csv")
In [26]: df.head(2)
Out[26]:
             Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                        Species
          0 1
                          5.1
                                        3.5
                                                     1.4
                                                                  0.2 Iris-setosa
           1 2
                          4.9
                                        3.0
                                                     1.4
                                                                  0.2 Iris-setosa
In [27]: | df.isna().sum()
Out[27]: Id
                            0
         SepalLengthCm
                            0
         SepalWidthCm
                            0
          PetalLengthCm
                            0
          PetalWidthCm
                            0
         Species
                            0
         dtype: int64
```

Out[28]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	0
1	2	4.9	3.0	1.4	0.2	0
2	3	4.7	3.2	1.3	0.2	0
3	4	4.6	3.1	1.5	0.2	0
4	5	5.0	3.6	1.4	0.2	0
145	146	6.7	3.0	5.2	2.3	2
146	147	6.3	2.5	5.0	1.9	2
147	148	6.5	3.0	5.2	2.0	2
148	149	6.2	3.4	5.4	2.3	2
149	150	5.9	3.0	5.1	1.8	2

150 rows × 6 columns

```
In [29]: import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(8,4))
sns.heatmap(df.corr(), annot=True, cmap='cubehelix_r')
plt.show()
```


In [30]: df.drop("Id", axis=1, inplace = True)

```
In [36]: from sklearn.model selection import train test split
         train,test=train test split(df,test size=0.2)
         print(train.shape)
         print(test.shape)
         (120, 5)
         (30, 5)
In [39]: train x=train[["SepalLengthCm", "SepalWidthCm", "PetalLengthCm", "PetalWidthCm"]]
         train y=train.Species
         test x=train[["SepalLengthCm","SepalWidthCm","PetalLengthCm","PetalWidthCm"]]
         test y=train.Species
In [47]: train x.head(1)
Out[47]:
              SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
          71
                        6.1
                                    2.8
                                                  4.0
                                                               1.3
In [46]: test x.head(1)
Out[46]:
              SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
          71
                        6.1
                                    2.8
                                                              1.3
                                                  4.0
In [45]: train y.head(1)
Out[45]: 71
                1
         Name: Species, dtype: int8
```

```
In [91]: from sklearn import svm
         model=svm.SVC()
         model.fit(train x,train y)
         prediction1 = model.predict(train x)
         from sklearn.metrics import accuracy score
         accuracy = accuracy score(test y,prediction1)
         print("Accuracy: {:.2f}%".format(accuracy * 100))
         Accuracy: 96.67%
In [80]: from sklearn.linear model import LogisticRegression
         from sklearn.model selection import train test split
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn import svm
         from sklearn import metrics
         from sklearn.tree import DecisionTreeClassifier
In [98]: |model=LogisticRegression()
         model.fit(train x,train y)
         prediction2=model.predict(train x)
         accuracy = accuracy score(test y,prediction2)
         print("Accuracy: {:.2f}%".format(accuracy*100))
         Accuracy: 96.67%
In [95]: model = DecisionTreeClassifier()
         model.fit(train x, train y)
         prediction3 = model.predict(train x)
         accuracy = accuracy score(test y,prediction3)
         print("Accuracy: {:.2f}%".format(accuracy*100))
         Accuracy: 100.00%
```

localhost:8888/notebooks/Classification model -checkpoint.ipynb

```
In [96]: model = KNeighborsClassifier(n_neighbors=3)
    model.fit(train_x, train_y)
    prediction4 = model.predict(test_x)
    accuracy = accuracy_score(test_y,prediction4)
    print("Accuracy: {:.2f}%".format(accuracy*100))
```

Accuracy: 95.83%

In [99]: df.isnull()

Out[99]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	False	False	False	False	False
1	False	False	False	False	False
2	False	False	False	False	False
3	False	False	False	False	False
4	False	False	False	False	False
145	False	False	False	False	False
146	False	False	False	False	False
147	False	False	False	False	False
148	False	False	False	False	False
149	False	False	False	False	False

150 rows × 5 columns