Infrared Molecular Absorption Cross-sections

The folder IR-XSect contains files of infrared cross-sections. The definition and units have been described in articles about the HITRAN compilation. Each molecule is placed in a single file. Within that file are sets of temperature and pressure pairs. The sets have a header that provides information to programs reading the data and also points to a reference for that observation. The sets contain absorption cross-sections that are in equal wavenumber (cm⁻¹) increments, and the invervals can be determined by the minimum and maximum wavenumber and the number of points, namely

$$\Delta v = \frac{v_{\text{max}} - v_{\text{min}}}{npts - 1}$$

where v_{max} is the maximum (final) wavenumber of the set, v_{min} is the minimum (initial) wavenumber of the set, and *npts* is the number of points in the set. The format of the header is given below.

	Cross-section Header Format										
	Chemical symbol	Waver Min	number Max	No. Pts.	Temp [K]	Press [torr]	Max X-section	Res.	Common Name	Not B	r Ref No
20		10	10	7	7	6	10	5	15	4 3	3
	10	20	30	40	50		60	70	80	90	

Note: **Chemical Symbol** is right adjusted; **Res**. is resolution in cm⁻¹ for FTS measurements, and in milli-Angstroms for grating measurements in the UV (xxxmÅ), and **Br** indicates any broadening gas, such as air.

A summary of the molecules represented with their temperature and pressures ranges and spectral coverage is given in the table on the following pages:

Summary of Molecules Represented by Infrared Cross-section Data in HITRAN

Molecule	Common Name	Temperature Range (K)	Pressure Range (torr)	Number of T,P sets	Spectral Coverage (cm ⁻¹)
SF ₆	SF ₆ Sulfur hexafluoride		20-760	32	925-955
J	Chlorine nitrate	180-295 189-297	0-117	25	750-830
ClONO ₂		189-297	0-117	25	1260-1320
		213-296	0	2	1680-1790
CCl ₄	Carbon tetrachloride	208-297	8-760	32	750-812
N_2O_5	Dinitrogen pentoxide	205-293	0	5	540-1380
HNO_4	Peroxynitric acid	220	0	1	780-830
G.F.	Hexafluoroethane,	181-296	25-760	43	1061-1165
C_2F_6	CFC-116	181-296	25-760	43	1220-1285
GGI F	CTC 11	190-296	8-760	55	810-880
CCl ₃ F	CFC-11	190-296	8-760	55	1050-1120
CCLE	CEC 12	190-296	8-760	52	850-950
CCl_2F_2	CFC-12	190-296	8-760	52	1050-1200
		203-293	0	6	765-805
CClF ₃	CFC-13	203-293	0	6	1065-1140
		203-293	0	6	1170-1235
CF ₄	CFC-14	180-296	8-761	55	1250-1290
$C_2Cl_2F_3$	CFC-113	203-293	0	6	780-995
2 2 3		203-293	0	6	1005-1232
		203-293 203-293	0	6 6	815-860
$C_2Cl_2F_4$	CFC-114	203-293	0	6	870-960 1030-1067
		203-293	0	6	1095-1285
	CFC-115	203-293	0	6	955-1015
C ₂ ClF ₅		203-293	ő	6	1110-1145
22223		203-293	0	6	1167-1260
CHCl ₂ F	HCFC-21	296	1	1	785-840
	HCFC-22	181-297	0-765	29	760-860
CHClF ₂		181-296	22-761	31	1070-1195
CHCIF ₂		253-287	0	3	1060-1210
		253-287	0	3	1275-1380
CHCl ₂ CF ₃	HCFC-123	253-287	0	3	740-900
CHC12C13	1101 0-123	253-287	0	3	1080-1450

	HCFC-124	287	0	1	675-715
CHClFCF ₃		287	0	1	790-920
		287	0	1	1035-1430
	HCFC-141b	253-287	0	3	710-790
CH ₃ CCl ₂ F		253-287	0	3	895-1210
_		253-287	0	3	1325-1470
	HCFC-142b	253-287	0	3	650-705
CH ₃ CClF ₂		253-287	0	3	875-1265
3 2		253-287	0	3	1360-1475
CHICL CE CE	HCFC-225ca	253-287	0	3	695-865
CHCl ₂ CF ₂ CF ₃		253-287	0	3	1010-1420
CCIF ₂ CF ₂ CHCIF	HCFC-225cb	253-287	0	3	715-1375
	HEC 22	203-297	0-750	17	995-1236
CH_2F_2	HFC-32	203-297	0-750	17	1385-1475
		287	0	1	700-745
CHF ₂ CF ₃	HFC-125	287	0	1	840-890
- 2- 3		287	0	1	1060-1465
CHF ₂ CHF ₂	HFC-134	203-297	0-750	9	600-1700
- 2- 2	HFC-134a	253-287	0	3	815-865
CELL CE		190-296	20-760	32	1035-1130
CFH ₂ CF ₃		190-296	20-760	33	1135-1340
		253-287	0	3	935-1485
		203-297	0-750	9	580-630
CF ₃ CH ₃	HFC-143a	203-297	0-750	9	750-1050
		203-297	0-750	9	1100-1500
	HFC-152a	253-287	0	3	840-995
CH ₃ CHF ₂		253-287	0	3	1050-1205
		253-287	0	3	1320-1490
	Trifluoromethyl sulfur pentafluoride	213-323	760	5	599-624
		213-323	760	5	676-704
SF ₅ CF ₃		213-323	760	5	740-766
51 501 3		213-323	760	5	860-920
		213-323	760	5	1150-1280
		213-323	760	5	1280-2600

Note: These data are in the main directory. Additional redundant data for CFC-11 and CFC-12 are stored in a supplemental sub-directory.