Homework 4

(x)

	# Units	# Weights	# Connections
Convolution Layer 1	290 400	34 84 8	105415 200
Convolution Layer 2	186 624	614400	447897600
Convolution Layer 3	64 89b	884736	149 520 384
Convolution Layer 4	64 89b	1327104	224180 S76
Convolution Layer 5	43264	884736	149 520 384
Fully Connected Layer 1	4096	177 209344	177 209344
Fully Connected Layer 2	4096	16777216	16 777 116
Output Layer	(000	4096000	4046000

(P)

in Fully Connected Layers.

ii. we can reduce the number of kernels.

(f)

(a)
$$P(y=k|x,n,6) = \frac{P(y=k) \cdot P(x|y=k,n,6)}{P(x|x,n,6)}$$

$$= \frac{P(y=k) \cdot P(x|y=k,n,6)}{P(x|y=k,n,6)}$$

$$= \frac{\sum_{j=1}^{k} P(x,y=j|n,6)}{\sum_{j=1}^{k} P(x,j=j|n,6)} \exp(-\frac{\sum_{j=1}^{k} J_{6}^{2}(x_{1}-n_{k})}{\sum_{j=1}^{k} J_{1}^{2}(x_{1}-n_{k})})$$

$$= \frac{\sum_{j=1}^{k} J_{1}^{2}(x_{1}-n_{k})}{\sum_{j=1}^{k} J_{1}^{2}(x_{1}-n_{k})} \exp(-\frac{\sum_{j=1}^{k} J_{6}^{2}(x_{1}-n_{k})}{\sum_{j=1}^{k} J_{1}^{2}(x_{1}-n_{k})})$$

(b)
$$((A, D) = -\log \frac{N}{11} p(x^{(n)}|y^{(n)}, A) \cdot p(y^{(n)})$$

 $= -\log \frac{N}{11} \int_{N=1}^{N} L(y^{(n)} = \hat{v}) \left(\frac{D}{11} + \frac{N}{6d} \right)^{-N/2} \exp(-\frac{S}{2} + \frac{N}{26d} \sum_{n=1}^{N} (x^{(n)} - u_{y^{m}d})^{\frac{1}{2}})$
 $= -\frac{1}{2} \int_{N=1}^{N} L(y^{(n)} = \hat{v}) \log d\hat{v} + \frac{N}{2} \int_{d=1}^{N} \frac{N}{26d} \left(x^{(n)} - u_{y^{m}d} \right)^{\frac{1}{2}}$
 $= -\frac{1}{2} \int_{N=1}^{N} L(y^{(n)} = \hat{v}) \log d\hat{v} + \frac{N}{2} \int_{d=1}^{N} \log x \pi \cdot 6d + \frac{N}{2} \int_{d=1}^{N} \frac{N}{26d} \left(x^{(n)} - u_{y^{m}d} \right)^{\frac{1}{2}}$

(c)
$$\frac{\partial L}{\partial u_{kd}} = -\frac{1}{6d} \sum_{n=1}^{\infty} \frac{(\chi_{kn}^{(n)} - u_{kd})}{(\chi_{kn}^{(n)} - u_{kd})}$$

$$= -\frac{1}{6d} (\sum_{n=1}^{\infty} \chi_{kn}^{(n)} - u_{kd})$$

$$= -\frac{1}{6d} (\sum_{n=1}^{\infty} \chi_{kn}^{(n)} - u_{kd$$

$$(d) = \frac{1}{2^{k}} di - 1 = 0 \text{ (constraint)}$$

$$\Rightarrow \frac{1}{2^{k}} di - 1 = 0 \text{ (constraint)}$$

$$\Rightarrow \frac{1}{2^{k}} di - 1$$

Considering constraint, we get X = -N $\implies MLEd_{k} = N$