Дубовицкий Н. А. Вариант 5

Метод ЦПТ							
======= Объем выборки: 1000							
Число участков разбиения: 25							
mene y lactices passwellm. 20							
Математическое ожидание (выборочное): 4.280927							
Дисперсия (выборочная):							
ГИСТОГРАММА РАСПРЕДЕЛЕНИЯ							
Интервал	Количество	Норм.частота	Меньше или равно				
[1.472 - 1.698)							
[1.698 - 1.924)							
[1.924 - 2.150)		0.0000					
[2.150 - 2.377)		0.0010	0.0010				
[2.377 - 2.603)			0.0070				
[2.603 - 2.829)			0.0230				
[2.829 - 3.055)			0.0480				
[3.055 - 3.282)			0.0870				
[3.282 - 3.508)			0.1550				
[3.508 - 3.734)		0.0770	0.2320				
[3.734 - 3.961)			0.3450				
[3.961 - 4.187)			0.4570				
[4.187 - 4.413)			0.5570				
[4.413 - 4.639)	127		0.6840				
[4.639 - 4.866)	106	0.1060	0.7900				
[4.866 - 5.092)	68	0.0680	0.8580				
[5.092 - 5.318)	69	0.0690	0.9270				
[5.318 - 5.545)	38	0.0380	0.9650				
[5.545 - 5.771)	14	0.0140	0.9790				
[5.771 - 5.997)	11	0.0110	0.9900				
[5.997 - 6.223)	5	0.0050	0.9950				
[6.223 - 6.450)	2 2	0.0020	0.9970 0.9990				
[6.450 - 6.676) [6.676 - 6.902)	0	0.0020 0.0000	0.9990				
			· ·				
[6.902 - 7.128)	1	0.0010	1.0000				

No Figure 1 − □ X

Метод ЦПТ: гистограмма и теоретическая плотность N(4.3, 0.5)

4

х

5

3

☆ ◆ → | + Q **=** | 🖺

7

1. Методы, основанные на Центральной предельной теореме (ЦПТ)

Согласно ЦПТ, сумма большого числа независимых равномерных случайных величин стремится к нормальному распределению.

Практически это выражается в формуле:

$$Z = \sum_{i=1}^{n} U_i - \frac{n}{2} \approx N(0,1)$$

где $U_i \sim U(0,1)$.

Для генерации нормальной величины с параметрами $N(\mu, \sigma^2)$ используют преобразование:

$$X = \mu + \sigma Z$$

Метод прост в реализации и достаточно точен при $n \ge 12$, однако не обеспечивает строго нормальной формы и даёт лишь приближение.

2. Методы функционального преобразования

Эти методы используют аналитические преобразования равномерных случайных чисел в нормальные.

• Метод Бокса-Маллера

Пары равномерных чисел U_1 , U_2 преобразуются в независимые нормальные величины по формулам:

$$Z_1 = \sqrt{-2\ln U_1}\cos(2\pi U_2), Z_2 = \sqrt{-2\ln U_1}\sin(2\pi U_2)$$

Затем $X = \mu + \sigma Z$.

Метод обеспечивает высокую точность и теоретически строгое соответствие нормальному закону.

• Полярная модификация Бокса-Маллера (Метод Марсальи)

Избегает вычисления тригонометрических функций, что ускоряет генерацию:

$$Z = V_1 \sqrt{rac{-2 \ln S}{S}}$$
,где $S = V_1^2 + V_2^2 < 1$

3. Методы обратного преобразования (инверсии функции распределения)

Используют обратную функцию стандартной нормальной CDF:

$$Z = \Phi^{-1}(U)$$

где Φ^{-1} — обратная функция к интегральной функции нормального распределения. Этот метод точен, но требует вычислений, связанных с интегралом ошибок (erf), что может быть ресурсоёмким. На практике реализуется через численные аппроксимации (например, алгоритмы Бевингтона, Морриса, или реализация в библиотеке SciPy norm.ppf).

4. Таблично-аппроксимационные и рекуррентные методы

Используют заранее вычисленные или аппроксимированные функции плотности и распределения:

- **Методы зонов (Ziggurat algorithm)** делят плотность на прямоугольные участки для ускорения выборки;
- **Методы отбрасывания (rejection sampling)** генерируют точки под кривой плотности и принимают те, что попадают в зону под графиком функции f(x).

5. Методы моделирования коррелированных нормальных векторов

Для многомерных случаев используют линейные преобразования стандартных нормальных векторов с заданной ковариационной матрицей, например:

$$X = \mu + LZ$$

где L- матрица Холецкого. Этот подход применяется в задачах многомерного моделирования и Монте-Карло.