

Math93.com

Primitives et équations différentielles

Terminale Spécialité

Les ROC, (Restitutions Organisées de Connaissances), sont les démonstrations du cours à connaître. Elle sont indiquées explicitement dans le nouveau programme de terminale Spécialité Mathématiques entré en vigueur à la rentrée

Ce chapitre compte 2 ROC sur les 19 du programme de terminale. (Tous les ROC sur : www.math93.com).

Primitives d'une fonction

Équation différentielle y' = f

Définition 1

Soit f une fonction définie sur un intervalle I de \mathbb{R} .

On dit que la fonction g est une solution de l'équation différentielle y' = f sur I si et seulement si g est dérivable sur I et pour tout réel x de I on a :

$$g'(x) = f(x)$$

Exemple

Soit l'équation différentielle y'=2x, pour tout éléments x de \mathbb{R} . La fonction g définie et dérivable sur \mathbb{R} telle que pour tout réel x:

$$g(x) = x^2$$
 et $g'(x) = 2x$

Donc g est UNE solution sur \mathbb{R} de cette équation différentielle.

Une autre solution de cette équation différentielle est par exemple la fonction h, définie sur \mathbb{R} par :

$$h(x) = x^2 + 5$$
 car on a aussi $h'(x) = 2x$.

Exercice 1

1. Soit l'équation différentielle $y'=x^3$, pour tout éléments x de \mathbb{R} .

La fonction g définie sur \mathbb{R} par :

$$q(x) = \cdots$$

est dérivable sur \mathbb{R} et $g'(x) = x^3$ pour tout réel x.

Donc q est UNE solution sur \mathbb{R} de cette équation différentielle.

Une autre solution de cette équation différentielle est par exemple la fonction h, définie sur $\mathbb R$ par

$$h(x) = \cdots$$

2. Soit l'équation différentielle $y' = x^2 + x + 1$, pour tout éléments x de \mathbb{R} .

La fonction g définie sur \mathbb{R} par :

$$q(x) = \cdots$$

est dérivable sur \mathbb{R} et $q'(x) = x^2 + x + 1$ pour tout réel x.

Donc g est UNE solution sur \mathbb{R} de cette équation différentielle.

Une autre solution de cette équation différentielle est par exemple la fonction h, définie sur \mathbb{R} par

$$h(x) = \cdots$$

3. Soit l'équation différentielle $y' = x e^{x^2}$, pour tout éléments x de \mathbb{R} .

La fonction q définie sur \mathbb{R} par :

$$g(x) = \cdots$$

est dérivable sur \mathbb{R} et $g'(x) = x e^{x^2}$ pour tout réel x.

Donc g est UNE solution sur $\mathbb R$ de cette équation différentielle.

Une autre solution de cette équation différentielle est par exemple la fonction h, définie sur \mathbb{R} par

$$h(x) = \cdots$$

Définition 2 (Équation différentielle du premier ordre)

Une équation différentielle du premier ordre est une équation dans laquelle interviennent une fonction dérivable f, sa dérivée f' et la variable x.

Attention, **l'inconnue** de cette équation est **la fonction** f elle-même (et pas x).

$$y' = x^3 + 1$$
 ou $xy' + 2y = e^x$ ou $2y' - y = 1$.

Exercice 2

- 1. Soit (E_1) l'équation différentielle y' = 4x 3, pour x réel. Déterminer UNE solution de (E_1) puis une autre solution de (E_1) qui s'annule en 0.
- **2.** Soit (E_2) l'équation différentielle y' 2y = 4, pour x réel. Montrer que la fonction g définie sur \mathbb{R} par $g(x) = e^{2x} - 2$ est UNE solution de (E_2) .
- 3. Soit (E_3) l'équation différentielle xy' + y = 6x + 1, pour x réel. Déterminer les réels a et b de façon que la fonction $h: x \mapsto ax + b$ soit UNE solution de (E_3) .

I.2 Primitives d'une fonction

Définition 3

Soit f une fonction définie sur un intervalle I de \mathbb{R} .

On dit qu'une fonction F est UNE primitive de la fonction f sur I si, pour tout réel x de I on a :

$$F'(x) = f(x)$$

Exemple

Soit f définie sur \mathbb{R} par f(x) = 2x. Alors la fonction F définie sur \mathbb{R} par $F(x) = x^2$ est UNE primitive de $f \operatorname{sur} \mathbb{R} \operatorname{car} F' = f.$

Mais la fonction $x \mapsto x^2 + 5$ est une autre primitive de f sur \mathbb{R} , ou $x \mapsto x^2 - 7$ ou plus généralement $x \longmapsto x^2 + k \text{ (avec } k \in \mathbb{R}).$

2/9 www.math93.com / M. Duffaud

Exercice 3

1. Soit f définie sur \mathbb{R} par $f(x) = x^2$. Alors la fonction F définie sur \mathbb{R} par $F(x) = \cdots$ est UNE primitive de f sur \mathbb{R} car F' = f.

Mais la fonction $x \longmapsto \cdots \cdots$ est une autre primitive de f sur $\mathbb R$ ou plus généralement $x \longmapsto \cdots \cdots$ (avec $k \in \mathbb{R}$).

2. Soit g définie sur \mathbb{R}_+ par $g(x) = \frac{1}{x+1}$. Alors la fonction G définie sur \mathbb{R} par $G(x) = \cdots$ est UNE primitive de g sur \mathbb{R} car G' = g.

Mais la fonction $x \longmapsto \cdots \cdots$ est une autre primitive de f sur \mathbb{R} ou plus généralement $x \longmapsto$ $\cdots \cdots$ (avec $k \in \mathbb{R}$).

Propriété 1 (ROC)

- 1. (Admis) Toute fonction continue sur I admet des primitives sur I.
- 2. (ROC) Soit f une fonction continue sur I. Deux primitives de f sur I ne diffèrent que d'une constante.

ROC 1 : Exigible

Soit F et G deux primitives de la fonction f sur I.

- Alors pour tout réel x de I on a : F'(x) = f(x) et G'(x) = f(x).
- On en déduit que tout réel x de I on a :

$$F'(x) = G'(x) \iff F'(x) - G'(x) = 0 \iff (F - G)' = 0 \text{ sur } I$$

- La fonction $x \mapsto F(x) G(x)$ a une dérivée nulle sur I, elle y est donc constante.
- Nommons k cette constante réelle. On a alors pour tout réel x de I:

$$F(x) - G(x) = k$$
 \iff $F(x) = G(x) + k$

Propriété 2

Soit f une fonction admettant F comme primitive sur I.

Alors la fonction $x \mapsto F(x) + k$ est une autre primitive de f sur I et toutes les primitives de f sur I sont de cette forme.

Soit f définie sur \mathbb{R} par f(x) = 2x. Alors la fonction F définie sur \mathbb{R} par $F(x) = x^2$ est UNE primitive de $f \operatorname{sur} \mathbb{R} \operatorname{car} F' = f.$

TOUTES les primitives de f sur \mathbb{R} sont de la forme $x \longmapsto x^2 + k$ (avec k réel).

Exercice 4

1. Soit f définie sur \mathbb{R} par $f(x) = x^2$. Alors la fonction F définie sur \mathbb{R} par $F(x) = \cdots$ est UNE primitive de f sur \mathbb{R} car F' = f. TOUTES les primitives de f sur \mathbb{R} sont de la forme $x \mapsto \cdots \cdots \cdots \cdots \cdots (a \text{vec } k \text{ réel})$.

3/9 www.math93.com / M. Duffaud

- 5. Soit l définie sur \mathbb{R} par $l(x)=\frac{x}{x^2+1}$. Alors la fonction L définie sur \mathbb{R} par $L(x)=\cdots\cdots$ est UNE primitive de l sur \mathbb{R} car L'=l. TOUTES les primitives de l sur \mathbb{R} sont de la forme $x\longmapsto\cdots\cdots\cdots$ (avec k réel).

II Recherche des primitives d'une fonction

II.1 Primitives des fonctions usuelles

f est définie sur I par	Une primitive F est donnée par	Validité
$f(x) = a (a \text{ est un r\'eel})$	F(x) = ax	sur ℝ
f(x) = x	$F(x) = \frac{1}{2}x^2$	sur R
$f(x) = x^n$ $n \text{ entier différent de } (-1) \text{ et } 0$	$F(x) = \frac{x^{n+1}}{n+1}$	$ \sup \mathbb{R} \text{ si } n > 0 $ $ \sup \mathbb{R}^* \text{ si } n \leqslant -2 $
$f(x) = \frac{1}{x}$	$F(x) = \ln(x)$	$\operatorname{sur}]0 ; +\infty[$
$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x}$	$\operatorname{sur}]-\infty\;;\;0[\;\operatorname{ou}\;\operatorname{sur}\;]0\;;\;+\infty[$
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x}$	$\operatorname{sur}]0 ; +\infty[$
$f(x) = e^x$	$F(x) = e^x$	sur ℝ
$f(x) = \ln x$ (un classique à connaître)	$F(x) = x \ln x - x$	sur \mathbb{R}_+^*
$f(x) = \sin x$	$F(x) = -\cos x$	sur ℝ
$f(x) = \cos x$	$F(x) = \sin x$	sur R

Méthode

En pratique il suffit de bien connaître les dérivées des fonctions usuelles. On ajuste ensuite les coefficient multiplicateurs avec la formule

(ku)' = ku', où u dérivable et k réel

Par exemple si $f(x) = 7x^3$ sur \mathbb{R} , on a une primitive $F(x) = 7 \times \frac{x^4}{4}$.

www.math93.com / M. Duffaud 4/9

Soit u une fonction dérivable sur I.

f de la forme	Une primitive F est donnée par	Validité
$u' e^u$	e ^u	
$u'u^n$	$\frac{u^{n+1}}{n+1}$	u ne s'annulant pas sur I si $n < 0$
$\frac{u'}{u^2}$	$-\frac{1}{u}$	$u(x) \neq 0 \text{ sur } I$
$\frac{u'}{2\sqrt{u}}$	\sqrt{u}	u(x) > 0 sur I
$\frac{u'}{u}$	$\ln u$	u(x) > 0 sur I

II.2 Linéarité

Théorème 1

- Si F et G sont des primitives respectives des fonctions f et g sur un intervalle I, alors F+G est une primitive de f+g sur I.
- Si F est une primitive de la fonction f sur un intervalle I et α un réel, alors αF est une primitive de αf sur I.

Prenve

Si F et G sont des primitives respectives des fonctions f et g sur I, alors F+G et αF sont dérivables sur I.

- (F+G)' = F' + G' = f + g donc F+G est une primitive de f+g sur I.
- $(\alpha F)' = \alpha F' = \alpha f$ donc αF est une primitive de αf sur I.

Exemple 1

Soit f la fonction définie sur $I =]0; +\infty[$ par $f(x) = x^2 - \frac{3}{x}$.

• La fonction u définie par $u(x) = x^2$ admet comme primitive la fonction U définie par $U(x) = \frac{x^3}{3}$ car :

$$U'(x) = x^2 = u(x)$$

• Sur l'intervalle $I=]0;+\infty[$ la fonction $x\mapsto \frac{1}{x}$ admet pour primitive la fonction $x\mapsto \ln x$ car sur I:

$$(\ln x)' = \frac{1}{x}$$

- Donc sur l'intervalle $]0; +\infty[$ la fonction v définie par $v(x)=-\frac{3}{x}$ admet comme primitive la fonction V définie par $V(x)=-3\ln x$.
- Donc la fonction f = u + v admet comme primitive la fonction F = U + V définie par

$$F(x) = \frac{x^3}{3} - 3\ln x$$

www.math93.com / M. Duffaud

Point Bac

Les exercices du bac ne proposent pas toujours de calculer une primitive. Il suffit souvent de montrer qu'une fonction donnée F est la primitive d'une autre f. La méthode dans ce cas est de dériver F et de montrer que l'on retrouve f.

Exemple 2 (Comme au Bac (à connaître))

On considère la fonction définie sur $I=]0\,;\,+\infty]$ par : $f(x)=\ln x$. Montrer que la fonction F définie ci-dessous est une primitive de f sur $I:F(x)=x\ln x-x$.

La fonction F est définie et dérivable sur I. Elle est de la forme uv-w donc de dérivée u'v+uv'-w' avec pour tout réel x de I:

$$u(x) = x \qquad u'(x) = 1$$

$$v(x) = \ln x \qquad v'(x) = \frac{1}{x}$$

$$w(x) = x \qquad w'(x) = 1$$

Pour tout réel x de I:

$$F'(x) = 1 \times \ln x + x \times \frac{1}{x} - 1 = \ln x + 1 - 1$$
$$F'(x) = \ln x = f(x)$$

La dérivée de F sur I est donc f ce qui prouve que la fonction F est une primitive de f sur I.

Remarque

Il existe des fonctions continues dont on ne connait pas de forme explicite de primitive. Par exemple la fonction

$$x \longmapsto e^{-x^2}$$

est continue donc admet des primitives mais on ne sait pas les exprimer sous forme explicite.

www.math93.com / M. Duffaud 6/9

Équations différentielles y' = ay et y' = ay + fIII

III.1 Équations différentielles y' = ay

Propriété 3 (ROC
$$y' = ay$$
)

Soit a un réel.

L'ensemble des solutions dans \mathbb{R} de l'équation différentielle y'=ay est l'ensemble des fonctions, où C est

$$x \longmapsto C e^{ax}$$

ROC 2 : Exigible

- Sens direct: montrons que $x \longmapsto C$ e ax est solution de l'équation différentielle y' =
 - Soit la fonction f définie sur \mathbb{R} par f(x) = C e ax , où C est un réel. On a pour tout réel x:

$$f'(x) = C \times a e^{ax} \iff f'(x) = a \times \underbrace{C e^{ax}}_{f(x)} \iff f'(x) = a f(x)$$

- De ce fait f est UNE solution de l'équation différentielle y' = ay.
- · Réciproquement : montrons que si une fonction est solution de l'équation différentielle $\overline{y'=ay}$, alors elle est de la forme $x\longmapsto C$ e ax .
 - Soit f une solution de l'équation différentielle y'=ay et soit g la fonction définie sur $\mathbb R$ $par g(x) = e^{-ax} \times f(x).$
 - La fonction g est dérivable sur \mathbb{R} et :

$$g'(x) = -a \times e^{-ax} \times f(x) + e^{-ax} \times f'(x)$$

- Or f est une solution de l'équation différentielle y' = ay donc f' = af soit en remplaçant dans l'égalité précédente :

$$\begin{cases} g'(x) = -a e^{-ax} f(x) + e^{-ax} f'(x) \\ f' = af \end{cases} \implies g'(x) = -a e^{-ax} f(x) + a e^{-ax} f(x) = 0$$

– La fonction g est donc constante. Pour tout réel x on a :

$$g(x) = e^{-ax} \times f(x) = C \iff f(x) = \frac{C}{e^{-ax}} = C e^{ax}$$

• Soit l'équation différentielle y' = 2y, pour x réel.

L'ensemble des solutions de cette équation est l'ensemble des fonctions de la forme :

$$x \longmapsto C e^{2x}$$
 , $C \in R$

7/9 www.math93.com / M. Duffaud

III.2 Équations différentielles y' = ay + b

Propriété 4
$$(y' = ay + b)$$

Soit a et b des réels avec a non nul.

L'ensemble des solutions dans $\mathbb R$ de (E) l'équation différentielle y'=ay+b est l'ensemble des fonctions, où C est une constante réelle :

$$x\longmapsto f(x)+f_0(x)$$
 ou
$$\begin{cases} f \text{ solution générale de } y'=ay \\ f_0=-rac{b}{a} \text{ la solution particulière constante de } (E) \end{cases}$$

Remarque

(E) l'équation différentielle y'=ay+b a toujours une solution particulière constante. En effet, la fonction f_0 définie sur $\mathbb R$ par $f_0(x)=-\frac{b}{a}$ est une solution de (E) puisque :

$$\begin{cases} f_0'(x) = 0 & \text{et} \\ af_0(x) + b = a \times \left(-\frac{b}{a}\right) + b = -b + b = 0 \end{cases}$$

Exemple

Soit (E) l'équation différentielle y' = 2y + 6, pour x réel.

• La solution particulière constante de (E) est $f_0(x)=-\frac{6}{2}=-3$ puisque

$$\begin{cases} f_0'(x) = 0 \text{ et} \\ 2f_0(x) + 6 = 2 \times (-3) + 6 = 0 \end{cases}$$

- f définie par $f(x) = C e^{2x}$ est solution général de y' = 2y.
- Donc l'ensemble des solutions de (E) l'équation différentielle y'=2y+6, est l'ensemble des fonctions de la forme : $x\longmapsto C\ \mathrm{e}^{\,2x}-3 \qquad , \quad C\in R$

III.3 Équations différentielles
$$y' = ay + f$$

Propriété 5
$$(y' = ay + f \text{ (Admis)})$$

Soit a un réel et f une fonction définie sur un intervalle I.

L'ensemble des solutions dans \mathbb{R} de (E) l'équation différentielle y'=ay+f est l'ensemble des fonctions, où C est une constante réelle :

$$x \longmapsto f(x) + f_0(x)$$
 ou
$$\begin{cases} f \text{ solution générale de } y' = ay \\ f_0 \text{ une solution particulière de } (E) \end{cases}$$

www.math93.com / M. Duffaud 8/9

Exemple

Soit (E) l'équation différentielle $y' - 2y = e^x$, pour x réel.

• Une solution particulière constante de (E) est $f_0(x) = -e^x$ puisque

$$\begin{cases} f_0'(x) = -\operatorname{e}^x & \text{et} \\ f_0'(x) - 2f_0(x) = -\operatorname{e}^x + 2\operatorname{e}^x = \operatorname{e}^x \end{cases}$$

- f définie par $f(x) = C e^{2x}$ est solution générale de y' = 2y.
- Donc l'ensemble des solutions de (E) l'équation différentielle y'=2y+6, est l'ensemble des fonctions de la forme : $x \longmapsto C \ \mathrm{e}^{\,2x} \mathrm{e}^{\,x} \qquad , \quad C \in R$

www.math93.com / M. Duffaud 9/9