

Multiciclo e pipeline Arquitetura de Computadores

Bruno Prado

Departamento de Computação / UFS

- A grande maioria dos computadores são síncronos
 - Um oscilador de cristal de quartzo gera uma frequência para operação de todo o circuito
 - Todas as operações ocorrem em ciclos de relógio

- Ciclo de execução de um processador
 - 1. Cálculo do PC para próxima instrução (BPI)
 - 2. Decodificação da instrução (DEC)
 - 3. Busca dos operandos (BOP)
 - 4. Execução da instrução (EXE)
 - 5. Acesso à memória (MEM)

- Analogia com produção de veículos personalizados
 - 1. Definição do modelo que será fabricado (DEF)
 - 2. Leitura das especificações do pedido do veículo (LEV)
 - 3. Busca de peças e ferramentas necessárias (BPF)
 - 4. Montagem das partes mecânicas e elétricas (MME)
 - 5. Teste de qualidade e entrega do veículo (TQE)

- Analogia com produção de veículos personalizados
 - A produção em série de cada veículo na linha de montagem utiliza todos os recursos da fábrica

Fluxo de produção

- Execução em ciclo único
 - Todas as instruções do processador são executadas sequencialmente em um ciclo único de relógio

Fluxo de execução

- Execução em ciclo único
 - Devido ao comportamento sequencial, cada etapa do ciclo de execução depende da etapa anterior

- Execução em ciclo único
 - Devido ao comportamento sequencial, cada etapa do ciclo de execução depende da etapa anterior
 - Como apenas uma etapa é executada por vez, em 80% do tempo os recursos de hardware ficam ociosos

- Projetos multiciclo e pipeline
 - As instruções são implementadas em múltiplos ciclos de relógio para reaproveitamento dos componentes de hardware entre as etapas de execução

- Projetos multiciclo e pipeline
 - As instruções são implementadas em múltiplos ciclos de relógio para reaproveitamento dos componentes de hardware entre as etapas de execução
 - Multiciclo: compartilhamento dos recursos de hardware em cada ciclo (otimização do hardware)

- Projetos multiciclo e pipeline
 - As instruções são implementadas em múltiplos ciclos de relógio para reaproveitamento dos componentes de hardware entre as etapas de execução
 - Multiciclo: compartilhamento dos recursos de hardware em cada ciclo (otimização do hardware)
 - Pipeline: aumento do desempenho pela execução sobreposta de instruções (taxa de execução)

- Analogia com produção de veículos personalizados
 - Cada etapa da fabricação possui um prazo determinado para ser realizada, compartilhando os recursos da fábrica, como ferramentas e funcionários

Fluxo de produção

- Execução em multiciclo
 - Cada etapa de execução é executada em ciclos distintos de relógio, possibilitando que os recursos de hardware sejam realocados em cada etapa

Fluxo de execução

- Comparativo entre ciclo único e multiciclo
 - Implementação em ciclo único de uma instrução hipotética que calcula $f(x) = x^8$

- Comparativo entre ciclo único e multiciclo
 - ► Implementação em ciclo único de uma instrução hipotética que calcula $f(x) = x^8$

4 registradores 3 multiplicadores

- Comparativo entre ciclo único e multiciclo
 - Implementação em multiciclo de uma instrução hipotética que calcula $f(x) = x^8$

- Comparativo entre ciclo único e multiciclo
 - Implementação em multiciclo de uma instrução hipotética que calcula $f(x) = x^8$

- Comparativo entre ciclo único e multiciclo
 - Implementação em multiciclo de uma instrução hipotética que calcula $f(x) = x^8$

- Comparativo entre ciclo único e multiciclo
 - Implementação em multiciclo de uma instrução hipotética que calcula $f(x) = x^8$

2 registradores I multiplicador

- Execução em multiciclo
 - Vantagens
 - ✓ Melhor aproveitamento dos recursos de hardware
 - ✓ Quantidade reduzida de operações por ciclo
 - √ Maior frequência de relógio

- Execução em multiciclo
 - Vantagens
 - ✓ Melhor aproveitamento dos recursos de hardware
 - Quantidade reduzida de operações por ciclo
 - √ Maior frequência de relógio
 - Desvantagens
 - X Não reduz o tempo para execução das instruções
 - X Mesma taxa de execução do ciclo único

- ▶ O que é uma execução em pipeline?
 - Sobreposição das etapas de execução das instruções

- O que é uma execução em pipeline?
 - Sobreposição das etapas de execução das instruções
 - Aumentar a taxa de execução das operações

- O que é uma execução em pipeline?
 - Sobreposição das etapas de execução das instruções
 - Aumentar a taxa de execução das operações
 - Possibilitar o aproveitamento completo dos recursos

- Analogia com produção de veículos personalizados
 - Cada etapa do processo de fabricação possui um prazo determinado para ser completada
 - As etapas de produção são sobrepostas, executando concorrentemente em diferentes veículos

Fluxo de produção

- Analogia com produção de veículos personalizados
 - Cada etapa do processo de fabricação possui um prazo determinado para ser completada
 - As etapas de produção são sobrepostas, executando concorrentemente em diferentes veículos

Fluxo de produção

- Analogia com produção de veículos personalizados
 - Modelo de fabricação em série das linhas de montagem (segunda revolução industrial)

- Analogia com produção de veículos personalizados
 - Modelo de fabricação em série das linhas de montagem (segunda revolução industrial)
 - Cada veículo individualmente continua sendo produzido no mesmo tempo e recursos

- Analogia com produção de veículos personalizados
 - Modelo de fabricação em série das linhas de montagem (segunda revolução industrial)
 - Cada veículo individualmente continua sendo produzido no mesmo tempo e recursos
 - A taxa de produção aumenta de 1 veículo a cada 5 meses para 1 veículo por mês (duração dos estágios)

- Execução em pipeline
 - Cada etapa da instrução é executada em um ciclo relógio, de forma sobreposta e concorrente

Fluxo de execução

- ► Execução em pipeline
 - Cada etapa da instrução é executada em um ciclo relógio, de forma sobreposta e concorrente

Fluxo de execução

Pipeline não é paralelismo!

- Execução em pipeline
 - Cada instrução continua gastando 5 ns para ser executada individualmente, assim como nas implementações de ciclo único e multiciclo

- Execução em pipeline
 - Cada instrução continua gastando 5 ns para ser executada individualmente, assim como nas implementações de ciclo único e multiciclo
 - A taxa de execução é aumentada em 5 vezes, permitindo que o processador execute 1 instrução a cada 1 ns ao invés de 1 instrução a cada 5 ns

- Execução em pipeline
 - Cada instrução continua gastando 5 ns para ser executada individualmente, assim como nas implementações de ciclo único e multiciclo
 - A taxa de execução é aumentada em 5 vezes, permitindo que o processador execute 1 instrução a cada 1 ns ao invés de 1 instrução a cada 5 ns
 - Este incremento de desempenho é resultante do melhor aproveitamento dos recursos já existentes, mantendo o mesmo comportamento sequencial

- Projeto de pipeline
 - Cada etapa da execução de um pipeline é chamada de estágio e, em condições ideais, a quantidade e o tempo de processamento dos estágios definem a taxa de execução

Profundidade de n estágios

- Projeto de pipeline
 - Cada etapa da execução de um pipeline é chamada de estágio e, em condições ideais, a quantidade e o tempo de processamento dos estágios definem a taxa de execução

Profundidade de n estágios

Tempo de instrução = $T = n \times T_S ns$ Taxa de execução = $\frac{n}{T}$ instruções/ns

- Projeto de pipeline
 - Aumento de desempenho do processador
 - Decorrente do aumento da taxa de execução, com melhor aproveitamento dos recursos de hardware
 - Por executarem sequencialmente, não existe redução do tempo execução individual das instruções

- ► Projeto de pipeline
 - Aumento de desempenho do processador
 - Decorrente do aumento da taxa de execução, com melhor aproveitamento dos recursos de hardware
 - Por executarem sequencialmente, não existe redução do tempo execução individual das instruções
 - Simplificação do projeto
 - Poucas variações nos formatos das instruções
 - Todas as instruções devem ter o mesmo tamanho

- Representação gráfica dos estágios de pipeline
 - Formato U

- Representação gráfica dos estágios de pipeline
 - Formato F

- Representação gráfica dos estágios de pipeline
 - Formato S


```
1  // R1 = 12358
2  mov r1, 12358
3  // R2 = 0x40
4  addi r2, r0, 0x40
5  // Desvio incondicional
6  bun 0
7  // MEM[0x100] = 12358
8  s32 [r2], r1
9  // Fim
10  int 0
```


Ciclo 2

Cido 3

Execução de programa em pipeline com 5 estágios

Cido 4

Cido 5

Ciclo 6

Ciclo 7

Ciclo 8

Ciclo 9

- ► Comparativo entre multiciclo e pipeline
 - ▶ Ciclo de relógio de 1 ns

	Multiciclo	Pipeline
# Instruções	5	5
Tempo (ns)	25	9

- ► Comparativo entre multiciclo e pipeline
 - Ciclo de relógio de 1 ns

	Multiciclo	Pipeline
# Instruções	5	5
Tempo (ns)	25	9

Cerca de 3 vezes mais rápido!

Exercício

- Execute o código abaixo no pipeline de 5 estágios
 - O comportamento deve ser igual ao multiciclo
 - Represente graficamente os estágios do pipeline

```
1  // R1 = 0x3C
2  mov r1, 0x3C
3  // R2 = R1
4  add r2, r0, r1
5  // R3 = R2 + 4
6  addi r3, r2, 4
7  // R4 = MEM[0x100]
8  l32 r4, [r3]
9  // Fim
10  int 0
```