Cognome:	Nome:	Matricola:	Punti:			

Analisi Matematica 2, Ing. Informatica e Telecomunicazioni Esame del 16 febbraio 2021

Durata: 90 minuti

Pagina 1: Esercizio 1 - Tempo consigliato: 20 minuti

Tutte le domande in questa pagina ammettono una o più risposte corrette.

Sia f(x) la funzione 2π -periodica, dispari, definita su $[0,\pi]$ da

$$f(x) = \begin{cases} \pi - x & x \in (0, \pi] \\ 0 & x = 0 \end{cases}$$

e sia $a_0 + \sum_{n=1}^{+\infty} (a_n \cos(nx) + b_n \sin(nx))$ la sua serie di Fourier.

- (1) (2 punti) Tale serie:
 - \square converge puntualmente alla funzione f in ogni $x\in\mathbb{R}$
 - \square converge puntualmente per ogni $x \in \mathbb{R}$
 - \square converge to talmente in tutto $\mathbb R$
 - \square converge totalmente a f in [-1,1]
 - \square converge in media quadratica ad f nell'intervallo $[-\pi, \pi]$
- (2) (3 punti) Calcolando i coefficienti di Fourier di f si ottiene

$$\square \ b_n = \frac{1}{n} \text{ per ogni } n \ge 1$$

$$\Box \ a_0 = 0$$

$$\Box \ a_n = 0 \text{ per ogni } n \ge 1$$

$$\Box b_1 = 2$$

$$\square \ a_n = \frac{2}{n} \text{ per ogni } n \geq 1$$

(2) (3 punti) Scritta la serie di Fourier per f, possiamo dedurre che

- \Box dall'identità di Parseval discende $\sum_{n=1}^{+\infty}\frac{1}{n^4}=\frac{\pi^4}{90}$
- \Box calcolando la serie di Fourier di f in $x=\frac{\pi}{2}$ otteniamo $\sum_{n=1}^{+\infty}\frac{2}{n}=\frac{\pi}{2}$
- $\Box\,$ dall'identità di Parseval discende $\sum_{n=1}^{+\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$
- \Box calcolando la serie di Fourier di f in $x=\frac{\pi}{2}$ otteniamo $2\sum_{k=0}^{+\infty}\frac{(-1)^k}{2k+1}=\frac{\pi}{2}$
- \Box calcolando la serie di Fourier di f in x=0 otteniamo $\sum_{n=1}^{+\infty}\frac{1}{n}=+\infty$

Pagina 2: Esercizio 2. Tempo consigliato: 25 minuti

Tutte le domande in questa pagina ammettono una o più risposte corrette.

Viene assegnata la funzione $f(x,y) = x^3 - 2xy + y^2$. Tale funzione, considerata nel suo insieme di definizione.

- (1) **(2 punti)** Si ha
 - □ possiede esattamente due punti critici liberi
 - \square possiede un punto critico libero di tipo sella
 - □ possiede un minimo relativo
 - \square possiede esattamente un solo punto critico libero
 - □ possiede un massimo relativo
- (2) (3 punti) Per quanto riguarda i valori di massimo e di minimo assoluto di f nel quadrato $Q = [-1, 1] \times [-1, 1]$, assunti per il teorema di Weierstrass,
 - \square uno di essi è assunto su $\partial Q,$ l'altro nell'interno di Q
 - □ il minimo assoluto è strettamente negativo
 - $\Box\,$ il minimo assoluto è 0
 - \square essi vengono assunti entrambi su ∂Q
 - □ il massimo assoluto è strettamente positivo
- (3) (2 punti) Sia D la regione limitata di piano compresa tra la parabola di equazione $y=x^2$ e la retta orizzontale y = 1.

Si ha
$$\iint_D f(x,y) dxdy =$$

- $\Box \frac{3}{5}$ $\Box \frac{4}{7}$
- $\Box \int_{x^2}^1 \left(\int_{-1}^1 f(x,y) \, dx \right) dy$
- $\Box \int \left(\int_{x^2}^1 f(x,y) \, dy \right) dx$

Pagina 3: Esercizio 3. Tempo consigliato: 20 minuti

Tutte le domande in questa pagina ammettono una o più risposte corrette.

Si consideri l'equazione differenziale omogenea y''(x) - 2y'(x) + 2y(x) = 0.

- (1) (2 punti) Quali affermazioni sono corrette?
 - \Box L'integrale generale di tale equazione è generato dalle funzioni $y_1(x) = e^x$, $y_2(x) = e^{-x}$
 - \Box L'integrale generale di tale equazione è generato dalle funzioni $y_1(x) = e^x$, $y_2(x) = xe^x$
 - ☐ L'origine è una sella per il sistema differenziale autonomo equivalente
 - \Box L'integrale generale di tale equazione è generato dalle funzioni $y_1(x) = e^x \cos x$, $y_2(x) = e^x \sin x$
 - □ L'origine è un nodo a due tangenti per il sistema differenziale autonomo equivalente
- (2) (2 punti) Si consideri ora l'equazione differenziale

$$y''(x) - 2y'(x) + 2y(x) = x^2.$$

Si ha:

- $\Box y(x) = \frac{1}{2}x^2 + x + \frac{1}{2}$ è una soluzione particolare di tale equazione
- \Box le soluzioni di tale equazione costituiscono uno spazio vettoriale di dimensione 2
- $\Box y(x) = x^2 + x$ è una soluzione particolare di tale equazione
- $\Box\,$ ciascuna soluzione di tale equazione è somma di una soluzione particolare e di un elemento di uno spazio vettoriale di dimensione 2
- $\Box \ y(x) = x^3 + x^2 1$ è una soluzione particolare di tale equazione
- (3) (3 punti) Si consideri infine il problema di Cauchy

$$\begin{cases} y''(x) - 2y'(x) + 2y(x) = x^2 \\ y(0) = 1 \\ y'(0) = -1 \end{cases}$$

e si denoti con Y la sua soluzione. Si ha:

- $\square Y'(-\pi) = 0$
- $\square \ Y'(\pi) > 0$
- $\square Y(\pi) = \pi^2$
- $\Box Y''(0) < 0$
- $Y(-\pi) = \frac{\pi^2 + 1 e^{-\pi}}{2} \pi$

Pagina 4: Domande di teoria. Tempo consigliato: 15 minuti

Le domande 1 e 2 ammettono una o più risposte corrette.

Domanda 1 (3 punti)

Pagina 5: Domande di teoria. Tempo consigliato: 10 minuti

Tutte le domande in questa pagina ammettono una e una sola risposta corretta.

Domanda 4 (1 punto)

Si consideri il sistema differenziale in \mathbb{R}^2

$$\begin{cases} x'(t) = ax(t) + by(t) \\ y'(t) = cx(t) + dy(t) \end{cases}$$

con $a, b, c, d \in \mathbb{R}$. Si ha:

\square se det ($\begin{pmatrix} a & b \\ c & a \end{pmatrix}$	$\left(\cdot \right)$	> 0, le soluzioni	del	sistema	sono	periodiche
--------------------	--	------------------------	-------------------	-----	---------	------	------------

	esiste ur	ı valore	delle	costanti	a, b.	c, d	tale	che	x(t)	$=\cos(t).$	y(t)	$=e^t$	è so	luzione.
_	COLO CC		CLUIIC	CODUCTION	\sim	\sim	CCL	0110	~ (' ')	000(0)	9 ()	_	0 20	TOLLIOTE .

\Box se gli autovalori della matrice ($\begin{pmatrix} a \\ c \end{pmatrix}$	$\begin{pmatrix} b \\ d \end{pmatrix}$	sono	entrambi	reali,	le	soluzioni	del	sistema	sono
periodiche	`	,								

 \square tutte le soluzioni di tale sistema sono definite per ogni $t \in \mathbb{R}$

Domanda 5 (1 punto)

Sia $\varphi:[a,b]\subset\mathbb{R}\to\mathbb{R}^n$ una curva regolare a tratti e sia $\psi:[c,d]\subset\mathbb{R}\to\mathbb{R}^n$ una sua riparametrizzazione. Allora:

\Box	(0	e 1/2	hanno	necessariamente	10	stesso	verso	di	percorrenza
ш	φ	$e^{-\omega}$	паши	necessariamente	10	20220	VELSO	uı	Dercorrenza

 $\Box \ \varphi$ e ψ hanno necessariamente la stessa lunghezza

$$\square \varphi$$
 e ψ hanno, punto per punto, vettori tangenti aventi uguale norma

 \square il sostegno di φ non coincide necessariamente con il sostegno di ψ

Domanda 6 (1 punto)

Il teorema di Fermat afferma che, per una funzione $f:\mathbb{R}^2 \to \mathbb{R}$ ovunque derivabile,

$$\square$$
 se $\nabla f(x_0,y_0)=(0,0),$ allora (x_0,y_0) è punto di estremo relativo per f

$$\square$$
 se $(x_0, y_0) \in \mathbb{R}^2$ è punto di estremo relativo per f , allora $\nabla f(x_0, y_0) = (0, 0)$

$$\square$$
 se $(x_0, y_0) \in \mathbb{R}^2$ è punto di estremo relativo per f , allora l'Hessiana $H_f(x_0, y_0)$ ha determinante non nullo

 \square se $(x_0, y_0) \in \mathbb{R}^2$ è punto di minimo relativo per f, l'Hessiana $H_f(x_0, y_0)$ possiede autovalori tutti strettamente positivi