

Abstract Mathematics 101 Bootcamp Lecture 7 (PART B) Introduction to Metric Topology

Bambordé Baldé

Quantum Formalism (QF) Free Bootcamp Brought to you by Zaiku Group.

<u>QF's CORE MISSION:</u> Make Abstract Mathematics Accessible.

QF Academy Program

Bootcamp Overview

Lecture 7A Recap

- Metric spaces
- Open sets in metric spaces

Proposition (1.1 in Lecture 7A)

Given any metric space (M, d), the following properties hold:

- lacktriangledown and M are open.
- ② If U_1, U_2, \ldots, U_k are open subsets of M, then their intersection $U_1 \cap U_2 \cap \cdots \cap U_k$ is open.
- **③** If $\{U_i\}_{i\in I}$ is an arbitrary collection of open subsets of M, then the union over the collection $\bigcup_{i\in I} U_i$ is open.

Closed Sets in Metric Spaces

Definition 1.0

Let (M, d) be a metric space. We say that a subset $A \subseteq M$ is closed in respect to the metric d if A^c is open.

Curiosity question (homework): Let $M = \mathbb{R}$ and d the Euclidean metric. Is it true that the intervals [a, b] and $(-\infty, 0)$ are closed?

Closed Sets in Metric Spaces

Proposition 1.0

Given any metric space (M, d), the following properties hold:

- \bullet \emptyset and M are closed.
- ② If C_1, C_2, \ldots, C_k are closed subsets of M, then their union $C_1 \cup C_2 \cup \cdots \cup C_k$ is closed.
- **③** If $\{C_i\}_{i\in I}$ is an arbitrary collection of closed subsets of M, then the interesection over the collection $\bigcap_{i\in I} C_i$ is closed.

Question: The properties above are the same as the closed sets in point-set topology right?

The Metric Topology

Proposition 1.1

Given a metric space (M, d), the following collection of subsets is a topology on M:

$$\mathcal{T}_d = \{ U \subseteq M \mid U \text{ is open with respect to } d \}.$$

Proof: Homework (trivial if you already proved the properties of open subsets)!

• \mathcal{T}_d is called a metric topology on M, i.e. the topology induced by the metric d. Hence, we'll write (M, \mathcal{T}_d) to denote the topological space induced by d.

The Standard Topology

Definition 1.1

When $M = \mathbb{R}^n$ and d is the Euclidean metric, then \mathcal{T}_d is called the 'standard topology' on \mathbb{R}^n .

- Most topological spaces of interest in applied subjects such as physics will be subspaces of $(\mathbb{R}^n, \mathcal{T}_d)$.
- From now on, always assume \mathcal{T}_d to be the standard topology whenever $M \subseteq \mathbb{R}^n$.
- When the metric is understood from the context, we'll also just write M for the underlying topology instead (M, \mathcal{T}_d) .

Homework Exercises (i)

- Consider the circle $S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Show that the subspace topology induced by the standard topology on \mathbb{R}^2 makes S^1 into a topological space.
- Show that the real line interval [0,1] equipped with the subspace topology from the standard topology on \mathbb{R} is a topological space.

Important note: [0,1] is a very important topological space as it will help construct 'Path-Connected' topological spaces. Not to be mistaken with 'Connected' topological spaces!

Homework Exercises (ii)

- Consider the topological spaces X = (-1, 1) and Y = (0, 5) constructed from the standard topology on \mathbb{R} . Let $f: X \longrightarrow Y$ be defined as $f(x) = \frac{5}{2}(x+1)$. Is f a homeomorphism?
- ② Consider now the topological spaces X = (-1, 1) and $Y = \mathbb{R}$ again constructed from the standard topology on \mathbb{R} . Let $f: X \longrightarrow Y$ be defined as $f(x) = \tan\left(\frac{\pi x}{2}\right)$. Is f a homeomorphism?
- **③** Prove or disprove whether the circle $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ is homeomorphic to X = [0, 1].

Congratulations for making it this far!

