RIFASAMENTO

Relatore: Ing. Gianmario Trezzi

Libero professionista dal 1988

Docente formatore in sicurezza ed elettrotecnica
Iscritto all'Albo dei C.T.U. del Tribunale di Como
Albo dei verificatori e collaudatori impianti L 46/90 – DM 6/4/2000
Esperto elettrotecnico in Commissioni Vigilanza Pubblico Spettacolo Comunali

Tel. 335 6116295 - e-mail: corsielettrotecnica@libero.it

INCONTRO TECNICO

- Natura dei carichi elettrici,
- II cos(fi),
- Cosa vuol dire rifasare,
- Inserzione di un rifasatore,
- Sistemi di inserzione,
- Vari tipi di rifasamento
- Cenni di regole fondamentali

Nota importante

Le seguenti slide,
predisposte per la presentazione del seminario,
possono contenere imprecisioni o omissioni
(ad esempio di battitura, di trascrizione o altro),
quindi prima di applicare in modo automatico e acritico
quanto riportato nelle pagine seguenti
si deve fare sempre riferimento a quanto indicato
nelle rispettive norme e disposizioni di legge.

Natura dei carichi elettrici

Un carico elettrico può essere

U in fase con I ϕ =0 cos ϕ =1

I=Ic

U in anticipo rispetto a I ϕ =90° cos ϕ =0

Capacitivo

U in ritardo rispetto a I φ=90° cos φ=0 La corrente I_c ha verso opposto rispetto alla corrente I_L

Nella realtà, i carichi elettrici sono, per la maggior parte, di tipo misto (resistivo/induttivo)

Consideriamo il caso di tre carichi (motori) con stessa potenza attiva P 10kW (quindi stessa I_R) ma con diversa componente induttiva. La corrente necessaria aumenta all'aumentare della parte induttiva. La corrente I_R poichè risulta in fase con U (ϕ =0) produce energia e lavoro utile (E_U - P)

Nei tre casi il lavoro utile (L_U) , la potenza attiva (P) e la corrente resistiva (I_R) rimangono gli stessi, ma all'aumentare della componente induttiva aumenta la corrente totale e quindi anche la potenza totale A.

Corrente totale $I = \sqrt{(I_R^2 + I_1^2)}$ parte resistiva $I_R = I^* \cos \varphi$ parte induttiva $I_1 = I^* \sin \varphi$

Potenza attiva

Potenza reattiva

Potenza apparente

$$P = k * U * I * cos \varphi$$

$$P = k * U * I * cosφ$$
 $Q = k * U * I * senφ$ $A = k * U * I$ $k=1$ sistemi F $k=\sqrt{3}$ sistemi $3F$

L'impianto elettrico (cavi, interruttori, trasformatori, ecc.) va dimensionato con la potenza apparente A e la corrente totale I.

a parità di potenza attiva necessaria (P), aumentando la potenza reattiva (Q), [aumento dell'angolo di sfasamento (φ) tra (U) e (I) e minor valore di cos(φ)], risulta maggiore la corrente totale (I) e la potenza apparente (A).

Per fornire una potenza attiva P ad una tensione U occorre una corrente pari a

Aumentando (φ), diminuisce cos(φ), aumenta la corrente totale necessaria I.

Aumentando la corrente totale (I) aumentano le perdite per effetto Joule ($P_1 = R^*I^2$) e aumenta la caduta di tensione $\Delta U = k^*I^*(R^*\cos\varphi + X^*\sin\varphi)$

Il cos(φ)

Il cos(φ) è il valore numerico che fornisce l'indicazione dell'induttività di un carico o di un impianto ed anche l'indice dello sfasamento tra corrente (I) e tensione (U)

- fdp = $cos(\phi)$ nel caso teorico in assenza di armoniche
- Nel caso di presenza significativa di armoniche va considerata anche una potenza definita come potenza distorcente (D). La nuova relazione tra le potenze diventa

$$S^2 \sim P^2 + Q^2 + D^2$$

Il coseno

Valori caratteristici, «elettrici»

Appr				A := := :
Appr.	φ			Appr.
φ	(gradi)	cos φ	tan φ	$tan \varphi = \frac{Q}{P} \frac{E_L}{E_A}$
0°	0°	1	0	$\frac{1}{1}$ P E_A
18°	18° 11'	0,95	0,328	0,33
26°	25° 50'	0,9	0,484	0,5
37°	36° 52'	0,8	0,75	0,75
45°	45° 34'	0,7	1,02	1 Q
				E
				P E _A

$\|\cos(\varphi)\|$

Carichi ideali e carichi reali

Carico puramente resistivo:
 I in fase con U
 φ = 0 cos(φ) = 1

2) Carico puramente induttivo:
 I in ritardo rispetto a U φ = -90 cos(φ) = 0

3) Carico puramenteCapacitivo:I in anticipo rispetto a Uφ = 90 cos(φ) = 0

$$| = \sqrt{\left(|_{\mathsf{R}}^2 + |_{\mathsf{L}}^2\right)}$$

$$I = I_R / \cos (\phi)$$

$$I = I_{\perp} / sen(\phi)$$

4) Situazione più comune: carico induttivo-resistivo: $0 < \phi < 90$ $1 > \cos(\phi) > 0$

Cosa vuol dire rifasare

L'installazione di una batteria di condensatori:

- aumenta il cos(φ) dell'impianto
- riduce la corrente assorbita.

Situazione iniziale sfasata

Carico molto induttivo non rifasato

Questa è anche la Situazione finale che rimane sfasata a valle del rifasatore Situazione durante il rifasamento a monte del rifasatore

Rifasamento (a monte del rifasatore)

Situazione finale rifasata a monte del rifasatore col rifasatore inserito

Effetto del rifasamento (a monte del rifasatore)

Cosa vuol dire rifasare

Situazione iniziale sfasata,

$$Q_0 = P * tg(\varphi_0)$$

Andiamo a rifasare a $cos(\phi) = 0.95$ a cui corrisponde un angolo $\phi = 18^{\circ}$

Cosa vuol dire rifasare

Rifasamento a $cos(\phi) = 0.95$

 $\varphi = 18^{\circ}$

Rifasamento (a monte del rifasatore)

$$\frac{1}{l_c} = \frac{1}{l_{rif}} - \frac{1}{l_{rif}}$$

$$Q_0 = P * tg(\varphi_0)$$
 $Q_1 = P * tg(\varphi_1)$

$$Q_{rif} = Q_0 - Q_1 = P * (tg(\phi_0) - tg(\phi_1))$$

Il rifasatore automatico misura il $cos(\phi)$ e la potenza da correggere e poi inserisce il carico capacitivo necessario alla correzione nel punto di inserimento stesso.

Si deve considerare attentamente dove si inserisce il TA (che corrisponde al punto di lettura dello sfasamento) e dove si collega il rifasatore per inserire la potenza reattiva.

Il metodo più completo sarebbe riportare tutte e tre i valori delle correnti I e delle tensioni U, considerando anche un eventuale squilibrio tra le varie fasi, ovviamente i costi salirebbero molto.

Il rifasatore «fisso» inietta la potenza capacitiva nel punto in cui è collegato.

Il beneficio del punto di inserimento del rifasatore si sente solo a monte del punto in cui è inserito

Supponiamo di avere questa situazione con quattro carichi induttivi ed un rifasatore del tipo fisso.

Il rifasatore automatico

- a) calcola il $cos(\phi)$ nel punto dell'impianto in cui è installato il TA esterno
- b) inserisce la sua potenza reattiva nel punto dell'impianto in cui è collegato

In questo esempio si legge col TA lo sfasamento introdotto dai quattro carichi A, B, C e D e si inserisce la potenza reattiva nel punto X, rifasando il ramo a monte del punto.

Il ramo XY rischia di essere in zona capacitiva poiché si inserisce una potenza elevata per poter rifasare tutti i quattro i carichi.

Mentre il ramo CD-Y rimane sfasato.

In questo esempio si legge col TA lo sfasamento introdotto dai quattro carichi A, B, C e D e si inserisce la potenza reattiva nel punto X, rifasando il ramo a monte del punto.

Il ramo XY rischia di essere in zona capacitiva poiché si inserisce una potenza elevata per poter rifasare tutti i quattro i carichi.

Mentre il ramo AB-Y rimane sfasato.

In questo esempio si legge col TA lo sfasamento introdotto dai due carichi C e D e si inserisce la potenza reattiva nel punto X, rifasando il ramo a monte del punto X.

Ovviamente i due carichi A e B non sono rifasati.

- Come e dove installare una batteria di rifasamento dipende dai seguenti fattori:
 - 1) topologia dell'impianto (geometria dei carichi da rifasare, posizione dei quadri elettrici, delle linee, ecc..)
 - 2) tipologia dei carichi (il valore delle Potenze attive e reattive, lo sfasamento)
 - 3) considerazioni anche non elettriche (geometrie dell'edificio, inserimento dei carichi continuo o intermittenza, ecc..)

Si possono scegliere varie tipologie di impianto di rifasamento:

- Rifasamento centralizzato (inserzione in un punto con un unico rifasatore)
- Rifasamento distribuito (più punti di inserzione con più rifasatori)
- Rifasamento per gruppi (alcuni punti di inserzione che raggruppano vari carichi)
- Rifasamento su più livelli di tensione (es: MT e BT)
- Rifasamento misto

- Ciascuna tipologia di inserzione ha "vantaggi" e "svantaggi" tecnico/economici.
- Ricordiamo che l'inserimento del rifasatore permette il rifasamento e la riduzione della corrente solo a monte del punto in cui è inserito nella rete lo stesso rifasatore.

Consideriamo questo esempio con quattro carichi A, B, C e D

Consideriamo questo esempio con i quattro carichi A, B, C e D.

Supponiamo che solo il carico B abbia uno sfasamento importante che rende sfasato il ramo indicato in rosso.

Quindi rifasiamo solo il carico B.

Installiamo un rifasatore fisso.

Per rifasare solo B, installiamo un rifasatore fisso (Rif), nel punto X.

Tutto il ramo (colore verde) a monte del punto di inserzione X rimane rifasato.

Per rifasare solo B, installiamo un rifasatore fisso (Rif), nel punto X.

Tutto il ramo (colore verde) a monte del punto di inserzione X rimane rifasato.

La parte di ramo rossa rimane sfasata. Gli altri carichi non necessitano di essere rifasati.

Per rifasare solo B, installiamo un rifasatore fisso (Rif), nel punto X.

Tutto il ramo (colore verde) a monte del punto di inserzione X rimane rifasato.

La parte di ramo rossa rimane sfasata, mentre la parte di ramo XY potrebbe essere in zona capacitiva (sovrarifasata).

Per rifasare solo B, installiamo un rifasatore fisso (Rif), nel punto X.

Tutto il ramo (colore verde) a monte del punto di inserzione X rimane rifasato.

La parte di ramo rossa rimane sfasata, mentre la parte di ramo XY potrebbe essere in zona capacitiva (sovrarifasata).

Per rifasare solo B, installiamo un rifasatore fisso (Rif), nel punto X.

Tutto il ramo (colore verde) a monte del punto di inserzione X rimane rifasato.

La parte di ramo rossa rimane sfasata.

Rifasamento centralizzato per rifasare più carichi

– Vantaggi:

Riduzione dei costi del rifasamento Un solo rifasatore inserito in un punto Posso rifasare vari carichi che vengono inseriti in orari differenti

Svantaggi

Necessità di installare un sistema automatico che risulta più costoso

Manutenzione necessaria più gravosa Dimensionamento più gravoso dei conduttori e delle apparecchiature di manovra e protezione dell'impianto, poiché rimane tutto sfasato.

Rifasamento distribuito

Vantaggi:

Ottimizzazione dei conduttopri e degli interruttori, poiché tuttio i rami sono rifasati. Possibilità di utilizzare rifasatori fissi essendo collegati ad un singlo carico, quindi risultano più economici

Svantaggi:

Necessità di installare un maggior numero di rifasatori, uno per ogni carico.

Rifasamento per gruppi

– Vantaggi:

- Può essere un valido compromesso delle tipologie precedenti
- Porre attenzione affinchè il rifasatore più a valle sia più veloce di quello a monte, per evitare che si rimbalzino i carichi induttivi-capacitivi
- Non "mischiare" rifasatori con e senza induttanze di blocco delle armoniche

Rifasamento misto

– Vantaggi:

 Gli stessi visti nel caso del rifasamento per gruppi.

Rifasamento su diversi livelli di tensione

- Vantaggi:
 - •Per impianti con fabbisogni elevati di potenza reattiva

Rifasamento su diversi livelli di tensione

– Vantaggi:

 Per impianti con fabbisogni elevati di potenza reattiva, e con fattore di contemporaneità basso.

Regole fondamentali

Nella stessa maglia BT, i rifasatori fissi e automatici devono essere tutti della stessa tipologia (o con reattanze di blocco o senza).

Non è possibile cioè fare la cosiddetta «inserzione mista».

A volte vengono installati rifasatori automatici «con reattanze di blocco» per i carichi dell'impianto, e rifasatori fissi «senza» per il rifasamento a vuoto del trafo.

Questo non è corretto.

Attenzione ai condensatori posti «a bordo macchina» che potrebbero essere con o senza reattanze di blocco.

Se due rifasatori automatici «vedono» anche parzialmente lo stesso carico, le loro tempistiche di intervento devono essere opportunamente distanziate per evitare che si rimpallino il carico.

Questa valutazione deve essere effettuata partendo dai punti in cui sono installati i rispettivi TA

Regole fondamentali

In questo caso il rifasatore Rif1 deve essere più lento rispetto al rifasatore Rif2. Rif1 Rif2

Regole fondamentali

In questo caso il rifasatore Rif1 non legge i carichi del Rif2. Si può considerare l'inserimento dei rifasatori

corretto

INCONTRO TECNICO

- Rifasamento ed efficienza energetica,
- il fattore di potenza,
- delibere dell'autorità e penali,

Nota importante

Le seguenti slide,
predisposte per la presentazione del seminario,
possono contenere imprecisioni o omissioni
(ad esempio di battitura, di trascrizione o altro),
quindi prima di applicare in modo automatico e acritico
quanto riportato nelle pagine seguenti
si deve fare sempre riferimento a quanto indicato
nelle rispettive norme e disposizioni di legge.

Rifasamento e delibera dell'Autorità per l'energia elettrica, il gas ed il sistema idrico.

L'energia elettrica prodotta nelle centrali, percorre le reti di trasmissione e di distribuzione fino all'utilizzatore, dove viene utilizzata in altra forma (termica, meccanica, etc). Questa energia si definisce "energia attiva".

Una parte viene persa in rete (dissipazione joule nei cavi, nei trasformatori, etc).

centrale di produzione

infrastrutture di distribuzione

Gli impianti elettrici degli utenti industriali necessitano di un'altra forma di energia che è l'energia "reattiva".

Questa energia non viene consumata, ma viene continuamente "scambiata" tra la centrale di produzione e l'utenza. Durante il doppio percorso sulla rete ("andata" e "ritorno"), causa anch'essa delle ulteriori perdite di energia.

L'energia reattiva può essere scambiata anche localmente con opportuni dispositivi da installare nell'impianto dell'utente, e che funzionano da "scambiatori locali" di energia reattiva: i rifasatori.

I rifasatori riducono le perdite di rete dovute al transito di energia reattiva: la rete è più efficiente e le centrali di produzione possono dedicarsi alla sola energia attiva.

- l'energia consumata in Italia è circa 350.000 GWh/anno. il FdP naturale della rete elettrica italiana è ~0,7: avremmo perdite joule relative al trasporto dell'energia pari almeno al 3% di quella consumata (10.000GWh/anno).
- la normativa imponeva un FdP=0,9:
 le perdite si riducono del 40%, con un risparmio di ~4000 GWh/anno (pari a ~2 milioni di tonnellate di CO₂).
- ora abbiamo la nuova imposizione del FdP=0,95
 si ha un'ulteriore riduzione delle perdite del 10% (1.000 GWh/anno) ovvero ~0,5 milioni di tonnellate di CO, in meno.

Effetti del basso fdp nell'impianto utente

A pari potenza attiva "P" impegnata, un impianto elettrico con basso cos φ porta una corrente più elevata:

maggiori perdite di energia per effetto Joule (riscaldamento di cavi, sbarre, trasformatori, etc)

ad es. per sistemi trifasi

$$I = \frac{P}{\sqrt{3} U^* \cos(\varphi)}$$

- maggiore caduta di tensione lungo le linee elettriche,
- necessità di sovradimensionamento dei componenti (cavi, barre, organi di manovra e protezione, trasformatori...)

$$A^2 = P^2 + Q^2$$

Esempio: trasformatore da 100kVA

Fattore di potenza	P attiva erogata (kW)
0,6	60
0,7	70
0,8	80
0,9	90
1	100

Caso di una utenza puramente resistiva quindi solo la potenza attiva (P)

$$COS(\varphi) = Fdp = \frac{P}{\sqrt{P^2 + Q^2}} = \frac{P}{A}$$

$$COS(\phi) = 1$$

 $\phi = 0$

$$P_J = R^*I^2 \longrightarrow P_J \propto \frac{1}{fdp^2}$$

1) Carico puramente resistivo:
 I in fase con U
 φ = 0 cos(φ) = 1

Caso di una utenza con potenza reattiva (Q) pari alla metà della potenza attiva (P)

$$COS(\varphi) = Fdp = \frac{P}{\sqrt{P^2 + Q^2}} = \frac{P}{A}$$

Q = 50% P

$$COS(\phi) = 0.9$$
 $\phi = 26^{\circ}$

$$\varphi = 26^{\circ}$$

$$P_J = R^*I^2 \longrightarrow P_J \propto \frac{1}{fdp^2}$$

Caso di una utenza con potenza reattiva (Q) pari a tre quarti della potenza attiva (P)

$$COS(\varphi) = Fdp = \frac{P}{\sqrt{P^2 + Q^2}} = \frac{P}{A}$$

 $P_J = R^*I^2 \longrightarrow P_J \propto \frac{1}{fdp^2}$

Q = 75% P

$$COS(\phi) = 0.8 \qquad \phi = 37^{\circ}$$

Caso di una utenza con potenza reattiva (Q) pari alla della potenza attiva (P)

$$COS(\varphi) = Fdp = \frac{P}{\sqrt{P^2 + Q^2}} = \frac{P}{A}$$

 $P_J = R^*I^2 \longrightarrow P_J \propto \frac{1}{fdp^2}$

Q = 100% P

$$COS(\phi) = 0.7$$
 $\phi = 45^{\circ}$

Le penali per basso cos φ

Nella maggior parte dei Paesi industrializzati le autorità di regolamentazione del mercato elettrico impongono penali per chi "consuma" energia reattiva oltre i limiti fissati, oppure obbligano a rifasare entro determinati valori di $cos(\phi)$.

Ciò per orientare l'utente verso un atteggiamento "elettricamente virtuoso" che offre più benefici al sistema elettrico di quanti l'utente possa vedere nel suo impianto.

- L'AEEG con la delibera 654/15/R/EEL del 23 dicembre 2015, ha regolamentato il periodo 2016/2023.
- Riportiamo alcune parti della delibera.

Allegato A titolo 5

Corrispettivi per i prelievi di energia elettrica:

Art. 23

Disposizioni generali in materia di prelievi di energia reattiva nei punti di prelievo nella titolarità di clienti finali bassa e media tensione

- 23.1 Nei punti di prelievo nella titolarità di clienti finali il livello minimo del fattore di potenza istantaneo in corrispondenza del massimo carico per prelievi nelle fasce orarie F1 ed F2 è pari a 0,9.
- 23.2 Nei punti di prelievo nella titolarità di clienti finali il livello minimo del fattore di potenza medio mensile è 0,7.
- 23.3 Non è consentita l'immissione in rete di energia reattiva nei punti di prelievo nella titolarità di clienti finali.
- 23.4 Nei casi in cui non siano rispettate le disposizioni di cui ai precedenti commi 23.1, 23.2 e 23.3, il gestore di rete competente può chiedere l'adeguamento degli impianti, pena la sospensione del servizio.

Articolo 24

Corrispettivi per prelievi di energia reattiva nei punti di prelievo nella titolarità di clienti finali in bassa e media tensione

- 24.1 Ciascuna impresa distributrice nel caso di punti di prelievo nella disponibilità di clienti finali non domestici connessi in bassa tensione con potenza disponibile superiore a 16,5 kW e nel caso dei punti di prelievo nella disponibilità di clienti finali non domestici connessi in media tensione applica i corrispettivi di cui alla tabella 4.
- 24.2 I corrispettivi di cui alla tabella 4 si applicano all'energia reattiva mensile prelevata in ciascuna fascia oraria.

Articolo 25

Aggiornamento dei corrispettivi per prelievi di energia reattiva nei punti di prelievo nella titolarità di clienti finali in bassa e media tensione

25.1 I corrispettivi per prelievi di energia reattiva sono aggiornati annualmente dall'Autorità, in corrispondenza con l'aggiornamento delle tariffe per i servizi di trasmissione e distribuzione dell'energia elettrica.

Obblighi:

Il livello minimo del fattore di potenza «istantaneo» in corrispondenza del massimo carico, è pari a 0,9.

Cosa significa "istantaneo" in corrispondenza del massimo carico?

Poichè, nella maggior parte dei casi, i contatori leggono i valori ogni 15' (minuti),
il significato di "istantaneo" va riferito all'intervallo minimo di lettura del contatore (in questo caso 15').

Nell'intervallo di 15' in cui si preleva la potenza massima deve risultare un valore di FdP almeno di 0,9.

Il livello minimo del fattore di potenza medio mensile è pari a 0,7.

Questa indicazione si ricava dalla bolletta elettrica, rilevando il valore del cosφ dalla bolletta stessa, oppure calcolandone il valore dai dati della bolletta quali Ea e Er.

Non è consentita l'immissione in rete di energia reattiva

Non è possibile rifasare oltre il fattore 1, o meglio la I (corrente) totale non può essere in anticipo rispetto ad U (tensione), si deve stare nel quadrante induttivo, non si può invadere il quadrante capacitivo.

Questi obblighi sono indipendenti dalle penali economiche, se non rispettati danno la facoltà al fornitore di energia elettrica di chiedere l'adeguamento, pena il distacco dalla fornitura elettrica.

Penali:

 Vengono calcolate con i coefficienti di tabella, considerando che l'energia reattiva (ER) prelevata è gratuita fino al 33% di quella attiva (EA).

cos φ	Er/Ea %				
0,95	33		0	,8≤ cos φ <0,95	cos φ <0,8
0,80	75			Anno	2020
0,70	100		Fasce orarie	Energia reattiva compresa tra il 33%	Energia reattiva eccedente il 75% dell'energia attiva centesimi di euro/kVArh
Punti di prel	ievo di clienti	finali in hassa	F1	0,744	0,959
tensione	ic vo di chenti	man m vassa	F2 F3	0,744 0,000	0,959 0,000

IMPIANTO EFFICIENTE
Non necessita alcun intervento

IMPIANTO POCO EFFICIENTE Prevedere un rifasamento

IMPIANTO NON EFFICIENTE Rischio di distacco se Er>Ea (Q>P) serve rifasamento

Carichi solo resistivi -Es: forni elettrici

 $Cos \varphi = 0$

Carichi solo induttivi -Es: fotovoltaico con consumo in loco e allaccio alla rete da cui si preleva Q ER

 $Cos \phi < 0.7$

Carichi molto induttivi

Si ribadisce l'importanza della trasparenza delle bollette e l'evidenza delle penali per energia reattiva (per clienti in BT).

Articolo 4

Periodo di riferimento della fatturazione e consumi

- 4.1 La bolletta evidenzia:
 - a) il periodo cui si riferisce la fatturazione, i termini di emissione e di scadenza del pagamento;
 - b) le letture rilevate o le eventuali autoletture valide ai fini della fatturazione ai sensi del contratto di fornitura, eventualmente articolate per fasce orarie;
 - c) i consumi rilevati per il periodo di riferimento, eventualmente articolati per fasce orarie;
 - d) i consumi fatturati per il periodo di riferimento, eventualmente articolati per fasce orarie;
 - e) l'energia reattiva fatturata, ove il contratto lo preveda.

Le direttive AEEG: delibera 167/10

Nell'Allegato A, vengono definite le grandezze che compaiono nelle bollette di energia elettrica (utenti BT) e gas.

Fascia F1 (ore di punta)	Dal lunedì al venerdì: dalle ore 8.00 alle ore 19.00, escluse
	le festività nazionali.
Fascia F2 (ore intermedie)	Dal lunedì al venerdì: dalle ore 7.00 alle ore 8.00 e dalle ore
	19.00 alle ore 23.00, escluse le festività nazionali.
	Il sabato: dalle ore 7.00 alle ore 23.00, escluse le festività
	nazionali.
Fascia F3 (ore fuori punta)	Dal lunedì al sabato: dalle ore 00.00 alle ore 7.00 e dalle ore
	23.00 dalle ore 24.00.
	La domenica e festivi: tutte le ore della giornata.
Fascia F2+F3 (o F23)	Dalle 19.00 alle 8.00 di tutti i giorni feriali, tutti i sabati,
	domeniche e giorni festivi. Questa fascia oraria comprende
	cioè tutte le ore incluse nelle due fasce F2 e F3.

Il rifasamento: direttiva AEEG 654/15

I coefficienti risultano ridotti. Le penali risultano ridotte

Il rifasamento: direttiva AEEG 654/15

Le penali indicate sono in centesimi di euro al kVAr h I coefficienti e le penali diminuiscono di molto nei primi due anni (2016 e 2017) ma dal 2018 incominciano ad aumentare per poi stabilizzarsi nel 2020

Dimensionamento del rifasamento

Dimensionamento del rifasamento dai dati dell'impianto

- Se sul quadro generale dell'impianto c'è un multimetro, o meglio uno strumento che registra i dati, si può stimare il cos(φ):
 - consultare il $cos(\phi)$ misurato (meglio se valore medio della settimana o del mese)
 - consultare i dati di energia attiva e reattiva memorizzati

Rifasamento dai dati della fattura elettrica

- Nel caso non si abbia un misuratore sul quadro dell'impianto si deve rilevare il tutto dalle bollette elettriche
- Vediamo alcuni fornitori di energia elettrica come forniscono le bollette e come si possono rilevare i dati, che purtroppo non sempre sono di facile lettura.

Bolletta 1 - (En-Tu)

CONSUMI FATTURATI E DETTAGLIO LETTURE Consumo annuo Totale consumo annuo in kWh 28763 Consumo effettivo da inzio fornitura Consumi rilevati e fatturati Energia Attiva **Energia Reattiva** Potenza Data Tipo Massima F1 F2 F1 F2 F3 F3 1019 dal 31.12.2015 al 31.01.2016 8576 352 8288 993 213 63,0 reale

I consumi in fattura, sono attribuiti sulla base delle letture rilevate dal distributore e/o autoletture comunicate dal cliente e/o da eventuali stime

5458

656

63,0

trioraria

ore fuori punta

352

Consumo Fatturato in base alla tariffa applicata

ore di punta

8576

ore intermedie

1019

Dettaglio delle letture

consumo fatturato

dal 31.12.2015 al 31.01.2016

Data	Ener	Energia attiva			Energia reattiva			Cosfi			Potenza		Tipo
Data	F1	F2	F3	F1	F2	F3	F1	F2	F3	F1	F2	F3	ripe
31.12.15	15921	4112	1868	16717	3224	1071		1120					eale
31.01.16	24497	5131	2220	25005	4217	1284	0,719	0,716	0,856	6	3 56	13	reale

Abbiamo calcolato questa bolletta tenendo conto delle letture sopra esposte. Gli importi relativi a eventuali letture stimate saranno aggetto di successivo ricalcolo.

Bolletta 2 - (En-Li)

Bolletta 3 - (Est)

Potenza impegnata	90,00 kW	Data attivazione fornitura	01.08.2016	
Potenza disponibile	90,00 kW	Decorrenza prezzo	01.08.2016	
Tensione di alimentazione	BASSA TENSIONE	Consumo da inizio fornitura (kWh)	Fascia F1	84.529
Tipologia cliente	ALTRI USI		Fascia F2	23.893
			Fascia F3	8.622
			TOTALE	117.044

1 TUOI CONSUMI DAL 01.03.2017 AL 31.03.2017

TOTALE kWh 26.383

Letture (kWh)	Data	F0	F1	F2	F3
Rilevata	28.02.2017	0	0	0	0
Rilevata cessazione	31.03.2017	0	16.911	6.445	3.027
Consumi (kWh)	Periodo di riferimento	F0	F1	F2	F3
Effettivi	01.03.2017 - 31.03.2017	0	16.911	6.445	3.027
Fatturati		0	16.911	6.445	3.027
Energia reattiva (kvarh)	Data	F0	F1	F2	F3 -
Rilevata	28.02.2017	0	0	. 0	C
Rilevata cessazione	31.03.2017	0	9.045	3.052	1.399
Consumi eccedenti il 33%		0	3.464	925	C

Bolletta 4 - (Gs-Nat)

Data Lettura	Tipo Lettura	F1	F2	F3	
Energia attiva					
30/04/2017	Reale	0	0	0	
09/05/2017	Reale	3.714	1.188	765	
1/05/2017	Reale	14.478	3.959	1.693	
nergia reattiv	a				
09/05/2017		2.070	581	366	
31/05/2017		7.658	1.958	869	7
Potenza					
09/05/2017		124	93	92	
31/05/2017		124	92	93	
Consumi		F1	F2	F3	Totale
Rilevato (kWh)		3.714	1.188	765	5.667
Rilevato (kWh)		14.478	3.959	1.693	20.130
Rilevato (%)		71%	20%	9%	100%
Fatturato (kWh)	18.192	5.147	2.458	25.797
Consumo annu	io (kWh)	30.689	9.930	5.520	46.139

Bolletta 5 - (Gs-Wy)

Servizio: Energia Elettrica

LETTURE E CONSUM	l .				
DETTAGLIO LETTURE ENERGIA ATTIVA (kWh)					
Periodo	Consumo ,	F1	F2	F3	TOT
Dal 01/05/17 al 31/05/17	Rilevato	2.805	1.739	1.683	
TOTALE		2.805	1.739	1.683	6.227
ENERGIA REATTIVA (kVAI	Rh)				
Periodo	Consumo	F1	F2	F3	TOT
Dal 01/05/17 al 31/05/17	Rilevato	585	470	1.089	
TOTALE		585	470	. 1.089	2.144
POTENZA (kW)					
Periodo	Consumo	F1	F2	F3	
Dal 01/05/17 al 31/05/17	Rilevato	22	23	19	
QUADRO DI DETTAGLIO					
CONSUMI FATTURATI		F4	FO	F3	TOT
	(1) w w w w 1	F1	F2	0.765053	
ENERGIA ATTIVA	kWh	2.805	1.739	1.683	6.227
POTENZA	kW				23)

Bolletta 6 - (GK)

Potenza impegnata 90,00 kW Potenza disponibile 90,00 kW Tensione 380 Tipo contatore EU Consumo annuo 26.812 kW Fascia F1 21.062 kW Fascia F2 4.660 kW ascia F3 1.090 kW

Riepilogo letture

	T(1-1)		Energia at	tiva		Energia reattiva				
Data	Tipologia	F0 kWh	F1 kWh	F2 kWh	F3 kWh	F0 kVAh	F1 kVAh	F2 kVAh	F3 kVAh	
30/11/2015	reali					0	0	0	0	
31/12/2015	reali		1.929	472	134	0	1.297	297	65	
31/01/2016	stimate		3.034	927	762					

Valore letto

Riepilogo consumi

Periodo		Tipo		Energia at	tiva			Energia rea	attiva	
dal	al	consumo	F0kWh	F1kWh	F2kWh	F3kWh	F0kVAh	F1kVAh	F2kVAh	F3kVAh
01/12/2015	31/12/2015	reali		1.929	472	134	0	333	61	0
01/01/2016	31/01/2016	stimate		1.105	455	628				
Totale consumi	reali nel periodo			1.929	472	134	0	333	61	0
Totale consumi	stimati nel period	do*		1.105	455	628				
Totale consumi	fatturati nel perio	odo		3.034	927	762	0	333	61	0

Valore fatturato

Gli importi fatturati per letture stimate saranno oggetto di successivo ricalcolo

	Ene	rgia	F1 (kWh)	F2 (kWh)	F3 (kWh)	totale (kW
	april	e 2017	10.476	2.037	393	12.90
	magg	gio 2017	12.669	2.090	475	15.23
)-II-44-7 (D D)	glugr	o 2017				
Bolletta 7 - (R-P)	luglio	2017				
	agosi	o 2017				
tensione bassa (380 V)	sette	mbre 2017				
potenza disponibile 105 kW	ottol	re 2017			er.	
consumo annuo da apr 2017 a mag 2017	nove	mbre 2017				
F1 23.145 kWh	dicer	nbre 2017				
F2 4.127 kWh		aio 2018				
F3 868 kWh		aio 2018				
28.140 kWh		0 2018	and the	•		
	·	le (kWh)	23.145	4.127	868	28.14
Servizi di vendita	intità	ic (kill)	23.143	4.127	000	20.14
Quota energia		a giornaliera	F1 (kWh)	F2 (kWh)	F3 (kWh)	media (kW
	12.669 kWh aprile	2017	349	68	13	43
energia F2 (staffetta) - Prezzo Fisso	2.090 kWh magg	io 2017	409	67	15	49
energia F3 (staffetta) - Prezzo Fisso	475 kWh delta	kWh)	- 60		2	
Oneri di dispacciamento	15.234 kWh	(COM)		W.		
Perdite di rete in BT	15.234 kWh	nza	F1 (kW)	E2 (LW)	E2 (1340)	
Quota fissa				F2 (kW)	F3 (kW)	max (kV
PCV1 (remunerazione attività di vendita)	1 111636	2017	76	76	76	7
DISPbt (parte fissa)	32,000,000	io 2017	74	74	74	7
conguagli dei mesi precedenti		2017		*		
Quota energia		2017				
dal 01/04/2017 al 30/04/2017		0 2017				
Oneri di dispacciamento Oneri di dispacciamento	12 004 1115	mbre 2017				
	Ottob	re 2017				
totale	IJ.ZJT KIIII	nbre 2017		*		
		bre 2017				
Servizi di rete		io 2018			5.0	
Quota fissa	45 224 1445	aio 2018				
Quota energia Quota potenza	74 kW marzo	2018				
totale	max	(kW)	76	76	76	7
	Cosq		F1	F2	F3	medi
Energia reattiva		2017				
F1 - tra 33% e 75% di energia attiva F1 - tra 76% e 100% di energia attiva			0,780	0,760	0,811	0,77
F2 - tra 33% e 75% di energia attiva		o 2017	0,769	0,742	0,763	0,76
F2 - tra 76% e 100% di energia attiva	333 11/101		•			**
-	tugtio			3(*3)		
totale	agosto				2	
		nbre 2017				3.5
		e 2017				(4)
		bre 2017		á (*)	2	
		bre 2017	•			3.
		io 2018				(*)
	febbra	io 2018		(40)		120

media

0,774

0,751

0,785

0,771

Bolletta 8 - (AA)

PERIODO			LETTURA	TIPO DI	LETTURA	TIPO DI			TIPO DI	Tipologia contatore
dal	al	ENERGIA ATTIVA	INIZIALE	LETTURA	FINALE	LETTURA	6 0	CONSUMO	CONSUMO	Elettronico gestito per fasce
31.05.2017	30.05.2017	Fascia oraria F1	18.148	Reale	18.417	Reale		269 kWh	Rilevato	Periodicità di fatturazione
31.05.2017	30.05.2017	Fascia oraria F2	6.294	Reale	6.387	Reale		93 kWh	Rilevato	
31.05.2017	30.06.2017	Fascia orarla F3	478	Reale	481	Reale		3 kWh	Rilevato	Mensile
PERIODO			LETTURA	TIPO DI	LETTURA	TIPO DI			TIPO DI	Tensione di alimentazione
dal	al	ENERGIA REATTIVA	INIZIALE	LETTURA	FINALE	LETTURA		CONSUMO	CONSUMO	380 Volt
31.05.2017	30.06.2017	Fascia oraria F1	19.869	Reate	20.178	Reale		309 kvarh	Rilevato	
31.05.2017	30.06.2017	Fascia oraria F2	6.859	Reale	6.968	Reale		109 kverh	Rileva to	Potenza impegnana
31.05.2017	30.06.2017	Fascia oraria F3	322	Reale	324	Reale		2 kvarh	Rilleva to	20,00 kW
PERIODO			LETTURA	TIPO OI	LETTURA	TIPO DI	M.		TIPO DI	Potenza disponibile
dal	al	POTENZA	INIZIALE	LETTURA	FINALE	LETTURA	/	CONSUMO	CONSUMO	22,00 kW
31.05.2017	30.06.2017	Fascia oraria F1				FOR MESS		4,692 kW	Rileva to	
31.05.2017	30.06.2017	Fascia oraria F2						3,770 kW	Rillevato	Consumo annuo
31.05.2017	30.06.2017	Fascia oraria F3		NE WOLL				0,403 kW	Rileva to	Fascia F1: 2.689 kWh
				Fascia :		Fascia 2		Fascia 3	Totale	Fascia F2: 858 kWh
Totale cons	umo rilevato	di energia attiva		269	kWh	93 kWl	1	3 kWh	365 kWh	Fascia F3: 46 kWh
Totale cons	umo fattura	to di energia attiva		269	kWh	93 kWh	1	3 kWh	365 kWh	Data attivazione della fornitura
Cos(fi) F1 =	0,656 dal 01	.06.2017 al 30.06.	2017	PERMIT						01/08/2016
Cos(fi) F2 =	0,649 dal 01	.06.2017 al 30.06.	2017	mahi.						Deposito cauzionale versato

Lettura dei dati della fattura elettrica

Bolletta 9 - (Ge)

Inizio fornitura 01/11/2014, Tensione di alimentazione 400 V Bassa Tensione, Potenza Impegnata 62,0 kW, Tipo mercato Altri usi, Classe misuratore Contatore elettronico a fasca, Potenza disponibile 62.0 kW, Formula Energia Stabile

Matricola: 00027562	kWh F1	kWh F2	kWh F3	kvarh F1	kvarh F2	kvarh F3	kW F1	kW F2	kW F3
Lettura Eseguita al 01-08-2017	0	0	0	0	0	0	0	0	0
Lettura Eseguita al 01-09-2017	4801	3318	5845	3934	2641	4404	33	0	0
Glorni: 31 Consumo:	4801	3318	5845	3934	2641	4404	33	0	0
Lettura Eseguita al 01-07-2017	0	0	0	0	0	0	0	0	0
Lettura Eseguita al 01-08-2017	4382	3529	5827	3521	2879	4539	32	0	0
Gloml: 31 Consumo:	4382	3529	5827	3521	2879	4539	32	0	0

Una volta che sono stati rilevati dalla bolletta dell'energia i dati necessari, (almeno Energia Attiva e Reattiva), si procede al calcolo:

I valori come abbiamo visto risultano suddivisi per fascia oraria (F1-F2-F3)

Fascia F1 Ea_{F1} (68.344 kWh) Er_{F1} (75.864 kVarh)

Fascia F2 Ea_{F2} (45.684 kWh) Er_{F2} (44.952 kVarh)

Fascia F3 Ea_{F2} (12.568 kWh) Er_{F2} (10.741 kVarh)

I valori della fascia F3 non sono considerati poiché non viene applicata alcuna penale

$$\cos(\varphi)_{FI} = \frac{E_a}{\sqrt{E_r^2 + E_a^2}} = \frac{68344}{\sqrt{75864^2 + 68344^2}} \approx 0.67$$

$$\cos(\varphi)_{F2} = \frac{E_a}{\sqrt{E_r^2 + E_a^2}} = \frac{45684}{\sqrt{44952^2 + 45684^2}} \simeq 0.71$$

Fascia F1

Rilevato il valore dello sfasamento $cos(\phi)$, nel caso di valore inferiore a 0,95, si procede al calcolo delle penali che risultano uguali per la fascia F1 e F2 (nella fascia F3 non si generano penali):

I valori dell'Energia reattiva (Er) risultano suddivisi, oltre che per fascia oraria (F1 – F2), anche per fascia di grandezza

(Er)" (= Er > 0.75*Ea)

Fascia F2 (Er)"_{F2} = parte di Er > 0,75*Ea =
$$Er_{F2}$$
 - 0,75*(Ea)_{F2} (Er)'_{F2} = parte di Er compresa tra 0,33*Ea e 0,75*Ea = Er_{F2} - 0,33*(Ea)_{F2} - (Er)"_{F2}

Riprendiamo i valori dell'esempio precedente, ed eseguiamo i calcoli:

```
Fascia F1 (Er)"<sub>F1</sub> = parte di Er > 0,75*Ea = 75.864 - 0,75*(68.344) = (24.606)"<sub>F1</sub> kVarh

(Er)'<sub>F1</sub> = parte di Er tra 0,33*Ea e 0,75*Ea = 75.864 - 0,33*(68.344) - (24.606)"<sub>F1</sub> = (28.704)'<sub>F1</sub> kVarh

Fascia F2 (Er)"<sub>F2</sub> = parte di Er > 0,75*Ea = 44.952 - 0,75*(45.684) = (10.689)"<sub>F1</sub> kVarh

(Er)'<sub>F2</sub> = parte di Er tra 0,33*Ea e 0,75*Ea = 44.952 - 0,33*(45.684) - (10.689)"<sub>F2</sub> = (19.187)'<sub>F2</sub> kVarh
```


Le penali indicate sono in centesimi di euro al kVAr h, va scelto l'anno di riferimento

Calcoliamo il valore economico delle penali, che risultano uguali sia per F1 che per F2 (nella fascia F3 non si generano penali):

Riprendiamo i valori dell'esempio precedente, ed eseguiamo i calcoli:

Fascia F1 (Pen)" =
$$(k_2")$$
 * $(Er)"_{F1}$ = $(0,00960)$ " * $(24.606)"_{F1}$ = $236,22 \in$ (Pen)" = $(k_2")$ * $(Er)"_{F1}$ = $(0,00744)$ " * $(28.704)"_{F1}$ = $213,56 \in$ Fascia F2 (Pen)" = $(k_2")$ * $(Er)"_{F2}$ = $(0,00960)$ " * $(10.689)"_{F2}$ = $102,61 \in$ (Pen)" = $(k_2")$ * $(Er)"_{F2}$ = $(0,00744)$ " * $(19.187)"_{F2}$ = $142,75 \in$

Il totale delle penali calcolate in questo esempio risulta elevato = 695,14 €

Per calcolare la dimensione del rifasatore da inserire nel nostro impianto, procediamo nel seguente modo:

Questi sono i valori che servono per eseguire il calcolo:

- Lo sfasamento dell'impianto $cos(\phi_0)$ da rifasare,
- Il valore dello sfasamento a cui va rifasato l'impianto cos(φ₁)
- La potenza dell'impianto P,
- Eventualmente la potenza reattiva non rifasata Q

Metodo di calcolo 1) Utilizzare le tabelle

Metodo di calcolo 2) Utlizzare le formule

Metodo di calcolo 1) Utilizzare le tabelle

Nel caso dell'esempio considerato avevamo i seguenti valori:

- P = 100kW
$$\cos(\phi_0) = 0.67$$
 $\cos(\phi_1) = 0.95$

Fattore di	Fattore di potenza finale									
potenza iniziale	0,9	0,91	0,92	0,93	0,94	0.95	0,96	0,97	0,98	
0,64	0,716	0,745	0,775	0,805	0,838	0,872	0,909	0,950	0,998	
0,65	0,685	0,714	0,743	0,774	0,806	0,840	0,877	0,919	0,966	
0,66	0,654	0,683	0,712	0,743	0,775	0,810	0,847	0,888	0,935	
0,67	0,624	0,652	0,682	0,713	0,745	0,779	0,816	0,857	0,905	
0,68	0,594	0,623	0,652	0,683	0,715	0/750	0,787	0,828	0,875	
0,69	0,565	0,593	0,623	0,654	0,686	0,720	0,757	0,798	0,846	
0,70	0,536	0,565	0,594	0,625	0,657	0,692	0,729	0,770	0,817	
0,71	0,508	0,536	0,566	0,597	0,629	0,663	0,700	0,741	0,789	
0,72	0,480	0,508	0,538	0,569	0,601	0,635	0,672	0,713	0,761	
0,73	0,452	0,481	0,510	0,541	0,573	0,608	0,645	0,686	0,733	
0,74	0,425	0,453	0,483	0,514	0,546	0,580	0,617	0,658	0,706	
0,75	0,398	0,426	0,456	0,487	0,519	0,553	0,590	0,631	0,679	
0,76	0,371	0,400	0,429	0,460	0,492	0,526	0,563	0,605	0,652	
					<i>\</i>					

$$Q_{rif} = P \times k = 100 \times 0,779 = 77,9 \text{ kVAr}$$

k = 0,779

$$Q_0 = P * tg(\varphi_0)$$
 $Q_1 = P * tg(\varphi_1)$

$$Q_{rif} = Q_0 - Q_1 = P^* [tg(\varphi_0) - tg(\varphi_1)]$$

Metodo di calcolo 2) Utilizzare le formule Nell'esempio considerato i valori erano:

$$-P = 100 \text{ kW}$$

- si considera il valore di fdp minore

$$cos(\phi_0) = 0.67$$
 $(\phi_0) = 48^{\circ}$ $tg(\phi_1) = 1.11$

$$-\cos(\phi_1) = 0.95$$
 $(\phi_1) = 18^{\circ}$ $tg(\phi_1) = 0.33$

$$Q_{rif} = (100) * [(1,11) - (0,33)] = 100 * 0,78 = 78 kVAr$$

- Nel dimensionamento si deve tener conto di eventuali rifasatori già presenti, nel caso che vengano sostituiti.
- Bisogna determinarne la vera potenza erogata, e non fidarsi dei dati di targa (ove presente!).

Scelta rifasatore

Elementi da considerare:

- THDI % e THDV % (percentuale di armoniche in corrente e tensione)

THD%=
$$\frac{\sqrt{\sum_{n=2}^{\infty} (|I_n|^2)}}{|I_n|}$$
 ovvero $\frac{\text{Valore efficace di tutte le armoniche}}{\text{Valore efficace della fondamentale}}$

- Rischio di risonanza
- Cicli di lavoro e i tempi di inserzione dei vari carichi
- Le condizioni termiche del luogo d'installazione
- La presenza di carichi rapidi (miscelatori, frantoi, mulini, saldatori ad arco..)

Scelta rifasatore

- Se l'impianto non ha problemi di armoniche,
 si può scegliere un rifasatore con condensatori standard (Un= 415V)
- Se l'impianto ha problemi di armoniche, meglio scegliere un rifasatore con condensatori rinforzati (Un= 460V, oppure Un= 550V)
- Se l'impianto ha gravi problemi di armoniche e/o rischi di risonanze, meglio scegliere un rifasatore con induttanze di blocco

Scelta rifasatore

Impianti con elevato stress elettrico e termico:
 utilizzare rifasatori con condensatori in carta bimetallizzata

 Impianti con carichi rapidi: utilizzare rifasatori con inseritori elettronici (che risultano veloci) al posto dei contattori meccanici (che risultano lenti).