# How are stocks connected? Evidence from an emerging market

S.M. Aghajanzadeh M. Heidari M. Mohseni

Tehran Institute for Advanced Studies

November, 2021

### Table of Contents

- Motivation
  - - Main Effect
- - Pair composition
  - Measuring Common-ownership

  - Controls
- - Normalized Rank-Transformed
  - High level of common ownership
  - All pairs
  - - Turnover
    - Institutional Imbalance

- Stock return co-movement is caused by direct or indirect common ownership?
  - common ownership:
    - ullet We connect stocks through the common ownership by blockholders (ownership > 1%) for direct common ownership
    - We connect stocks through the ultimate owner for indirect common ownership
  - We focus on excess return co-movement for a pair of the stocks
  - We use common ownership to forecast cross-sectional variation in the realized correlation of four-factor + industry residuals
  - We demonstrate that correlated trading can be a channel of co-movement

# Why does it matter?

- Covariance
  - Covariance is a key component of risk in many financial applications.
     (Portfolio selection, Risk management, Hedging and Asset pricing)
  - Covariance is a significant input in risk measurement models (Such as Value-at-Risk)
- Return predictability
  - If it's valid, we can build a profitable buy-sell strategy

## Table of Contents

- Motivation
- LiteratureMain Effect
  - Empirical Studies
    - Pair composition
    - Measuring Common-ownership
    - Correlation Calculation
    - Controls
  - 4 Methodology
- Results
  - Normalized Rank-Transformed
  - High level of common ownership
  - All pairs
  - Evidence for correlated trading
    - Turnover
    - Institutional Imbalance
- 7 Conclusion

Comovement effect











Common-ownership









### Our work

- We use daily records of block-holder ownership for firms
- We are not restricted to mutual funds ownership
- Furthermore, 80% of market belongs to the business groups
  - Would business groups be able to raise the co-movement of stock returns?
    - Cho and Mooney (2015):
       The strong co-movement between group returns and firm returns is explained by correlated fundamentals.
    - Kim et al. (2015):
       The increase in correlation appears to be driven more by non-fundamental factors such as correlated trading, rather than fundamental factors such as related-party transactions
  - Common ownership or business group (indirect common ownership) ?
  - Through which channel?

### Table of Contents

- Motivation
- Literature
  - Main Effect
- Empirical Studies
  - Pair composition
  - Measuring Common-ownership
  - Correlation Calculation
  - Controls
  - Methodology
- Results
  - Normalized Rank-Transformed
  - High level of common ownership
  - All pairs
- 6 Evidence for correlated trading
  - Turnover
  - Institutional Imbalance
- Conclusion

# Pair composition

• Firms with at least one common owner



- In a business group, how can one pair be defined?
  - What is the business group?

**Business Group** 

Ultimate Owner

**Business Group** 



**Business Group** 



Pair in the Business Group



Pair in the Business Group



## **Data Summary**

- $\bullet$  We use blockholders' data from 2014/03/25 (1393/01/06) to 2020/03/18 (1398/12/28)
  - Includes of 72 Months
  - Consists of 618 firm inculding 562 firm with common owners

| Year                                | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
|-------------------------------------|------|------|------|------|------|------|
| No. of Firms                        | 365  | 376  | 447  | 552  | 587  | 618  |
| No. of Blockholders                 | 777  | 803  | 984  | 1297 | 1454 | 1458 |
| No. of Groups                       | 38   | 41   | 43   | 44   | 40   | 43   |
| No. of Firms in Groups              | 249  | 268  | 300  | 336  | 346  | 375  |
| Ave. Number of group Members        | 7    | 7    | 7    | 8    | 9    | 9    |
| Ave. ownership of each Blockholders | 21   | 22   | 22   | 21   | 22   | 23   |
| Med. ownership of each Blockholders | 7    | 8    | 8    | 8    | 8    | 9    |
| Ave. Number of Owners               | 5    | 5    | 5    | 5    | 5    | 5    |
| Ave. Block. Ownership               | 76   | 77   | 75   | 75   | 75   | 71   |

# Pair Composition

- Pairs consist of two firms with at least one common owner
  - 93442 unique pairs which is 25% of possible pairs ( $\frac{612*611}{2} = 373932$ )

|                        | mean  | min   | Median | max   |
|------------------------|-------|-------|--------|-------|
| Number of unique paris | 24139 | 13272 | 23024  | 45795 |

| Year                               | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  |
|------------------------------------|-------|-------|-------|-------|-------|-------|
| No. of Pairs                       | 20876 | 21187 | 27784 | 41449 | 47234 | 67232 |
| No. of Pairs not in Groups         | 11452 | 11192 | 15351 | 26530 | 29182 | 43433 |
| No. of Pairs not in the same Group | 7962  | 8731  | 10971 | 12916 | 15366 | 20745 |
| No. of Pairs in the same Group     | 923   | 955   | 1099  | 1260  | 1536  | 1774  |
| Ave. Number of Common owner        | 1     | 1     | 1     | 1     | 1     | 1     |

# Common-ownership measurements

#### Model based measures

- HJL $_I^A(A,B) = \sum_{i \in I^{A,B}} \frac{\alpha_{i,B}}{\alpha_{i,A} + \alpha_{i,B}}$ Harford et al. (2011)
- Top5  $_j=\frac{1}{n-1}\sum_i^5\sum_{j\neq k}\nu_{ik}$  Antón et al. (2020)
- $\kappa_{ij} = \cos(\nu_i, \nu_j) \cdot \sqrt{\frac{IHHI_j}{IHHI_i}}$ Backus et al. (2020)
- GGL<sup>A</sup>(A, B) =  $\sum_{i=1}^{I} \alpha_{i,A} g(\beta_{i,A}) \alpha_{i,B}$ Gilje et al. (2020), Lewellen and Lewellen (2021)
- MHHI<sub>Delta</sub> =  $\sum_{j=1}^{J} \sum_{k\neq j}^{K} \frac{\sum_{i=1}^{N} w_j * w_k * \mu_{i,j} * \mu_{i,k}}{\sum_{i=1}^{N} \mu_{i,j} * \mu_{i,k}}$ Lewellen and Lowry (2021)

## Common-ownership measurements

#### Model based measures

- HJL $_I^A(A,B) = \sum_{i \in I^A,B} \frac{\alpha_{i,B}}{\alpha_{i,A} + \alpha_{i,B}}$ Harford et al. (2011)
- lacktriangledown  $\operatorname{Top5}_j = rac{1}{n-1} \sum_i^5 \sum_{j 
  eq k} 
  u_{ik}$  Antón et al. (2020)
- $\kappa_{ij} = \cos(\nu_i, \nu_j) \cdot \sqrt{\frac{IHHI_j}{IHHI_i}}$ Backus et al. (2020)
- GGL<sup>A</sup>(A, B) =  $\sum_{i=1}^{I} \alpha_{i,A} g(\beta_{i,A}) \alpha_{i,B}$ Gilje et al. (2020), Lewellen and Lewellen (2021)
- MHHI<sub>Delta</sub> =  $\sum_{j=1}^{J} \sum_{k \neq j}^{K} \frac{\sum_{i=1}^{N} w_j * w_k * \mu_{i,j} * \mu_{i,k}}{\sum_{i=1}^{N} \mu_{i,j} * \mu_{i,k}}$ Lewellen and Lowry (2021)

#### Ad-hoc measures

- Overlap<sub>AP</sub>(A, B) =  $\sum_{i \in I^{A,B}} \alpha_{i,A} \frac{\bar{\nu}_{A}}{\bar{\nu}_{A} + \bar{\nu}_{B}} + \alpha_{i,B} \frac{\bar{\nu}_{B}}{\bar{\nu}_{A} + \bar{\nu}_{B}}$ Anton and Polk (2014)
- Overlap  $Count}(A, B) = \sum_{i \in I^A, B} 1$ He and Huang (2017), He et al. (2019)
- Overlap<sub>Min</sub>(A, B) =  $\sum_{i \in I^{A,B}} \min\{\alpha_{i,A}, \alpha_{i,B}\}$ Newham et al. (2018)
- Overlap<sub>HL</sub> $(A, B) = \sum_{i \in I^{A,B}} \alpha_{i,A} \times \sum_{i \in I^{A,B}} \alpha_{i,B}$ Hansen and Lott Jr (1996) , Freeman (2019)

# Common-ownership measurements

#### Model based measures

- HJL $_I^A(A,B) = \sum_{i \in I^A,B} \frac{\alpha_{i,B}}{\alpha_{i,A} + \alpha_{i,B}}$ Harford et al. (2011)
- $\bullet \quad \mathsf{Top5}_j = \tfrac{1}{n-1} \sum_i^5 \sum_{j \neq k} \nu_{ik}$  Antón et al. (2020)
- $\kappa_{ij} = \cos(\nu_i, \nu_j) \cdot \sqrt{\frac{IHHI_j}{IHHI_i}}$ Backus et al. (2020)
- GGL<sup>A</sup>(A, B) =  $\sum_{i=1}^{I} \alpha_{i,A} g(\beta_{i,A}) \alpha_{i,B}$ Gilje et al. (2020), Lewellen and Lewellen (2021)

#### Ad-hoc measures

- Overlap  $_{AP}(A,B)=\sum_{i\in I^{A},B}\alpha_{i,A}\frac{\bar{\nu}_{A}}{\bar{\nu}_{A}+\bar{\nu}_{B}}+\alpha_{i,B}\frac{\bar{\nu}_{B}}{\bar{\nu}_{A}+\bar{\nu}_{B}}$ Anton and Polk (2014)
- Overlap<sub>Count</sub> $(A, B) = \sum_{i \in I^{A,B}} 1$ He and Huang (2017), He et al. (2019)
- Overlap<sub>Min</sub>(A, B) =  $\sum_{i \in I^{A,B}} \min\{\alpha_{i,A}, \alpha_{i,B}\}$ Newham et al. (2018)
- Overlap<sub>HL</sub> $(A, B) = \sum_{i \in I^{A,B}} \alpha_{i,A} \times \sum_{i \in I^{A,B}} \alpha_{i,B}$ Hansen and Lott Jr (1996) , Freeman (2019)

#### Selected measure

We need a pair-level measure, which is bi-directional, so we use the AP measure.



# Measuring Common-ownership

Anton and Polk (2014)

**SQRT** 

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t} P_{i,t} + S_{j,t} P_{j,t}}$$

# Measuring Common-ownership

Anton and Polk (2014)

SQRT

$$FCAP_{ij,t} = rac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t} P_{i,t} + S_{j,t} P_{j,t}}$$

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t} P_{i,t} + S_{j,t} P_{j,t}} \left[ MFCAP_{ij,t} = \left[ \frac{\sum_{f=1}^{F} (\sqrt{S_{i,t}^{f} P_{i,t}} + \sqrt{S_{j,t}^{f} P_{j,t}})}{\sqrt{S_{i,t} P_{i,t}} + \sqrt{S_{j,t} P_{j,t}}} \right]^{2} \right]$$

#### Intuition

If for a pair of stocks with n mutual owners, all owners have even shares of each firm's market cap, then the proposed indexes will be equal to n. Proof

# MFCAP vs. FCAP Summary

| FCAP   |       |            |                | MFCAP         |                   |        |            |                |               |                   |
|--------|-------|------------|----------------|---------------|-------------------|--------|------------|----------------|---------------|-------------------|
| subset | All   | Same Group | Not Same Group | Same Industry | Not Same Industry | All    | Same Group | Not Same Group | Same Industry | Not Same Industry |
| mean   | 0.144 | 0.346      | 0.072          | 0.207         | 0.140             | 0.158  | 0.474      | 0.087          | 0.274         | 0.150             |
| std    | 0.166 | 0.265      | 0.102          | 0.215         | 0.161             | 0.234  | 0.478      | 0.154          | 0.383         | 0.217             |
| min    | 0.002 | 0.004      | 0.003          | 0.003         | 0.002             | 0.002  | 0.005      | 0.003          | 0.003         | 0.002             |
| 25%    | 0.030 | 0.081      | 0.020          | 0.041         | 0.029             | 0.031  | 0.096      | 0.020          | 0.044         | 0.030             |
| 50%    | 0.077 | 0.321      | 0.037          | 0.120         | 0.074             | 0.079  | 0.367      | 0.038          | 0.126         | 0.077             |
| 75%    | 0.193 | 0.561      | 0.078          | 0.314         | 0.187             | 0.191  | 0.691      | 0.087          | 0.351         | 0.183             |
| max    | 1.000 | 1.000      | 0.998          | 0.999         | 1.000             | 12.650 | 6.174      | 6.184          | 6.262         | 12.650            |

### Results

- By the proposed measurement, common ownership increases
- Common ownership is greater in pairs that are in the same business group and insutry

# MFCAP vs. FCAP Distributions

Monthly



# MFCAP vs. FCAP Distributions

#### Monthly





## MFCAP vs. FCAP Distributions

#### Monthly







## Correlation Calculation

#### 4 Factor + Industry

Frist Step:

Estimate each of these models on periods of three month:

• CAPM + Industry (2 Factor):

$$R_{i,t} = \alpha_i + \beta_{mkt,i} R_{M,t} + \beta_{Ind,i} R_{Ind,t} + \boxed{\varepsilon_{i,t}}$$

• 4 Factor :

$$\begin{split} R_{i,t} &= \alpha_i + \beta_{\textit{mkt},i} R_{\textit{M},t} + \\ &+ \beta_{\textit{HML},i} \textit{HML}_t + \beta_{\textit{SMB},i} \textit{SMB}_t + \beta_{\textit{UMD},i} \textit{UMD}_t + \boxed{\varepsilon_{i,t}} \end{split}$$

• 4 Factor + Industry (5 Factor) :

$$\begin{split} R_{i,t} &= \alpha_i + \beta_{\textit{mkt},i} R_{\textit{M},t} + \beta_{\textit{Ind},i} R_{\textit{Ind},t} \\ &+ \beta_{\textit{HML},i} \textit{HML}_t + \beta_{\textit{SMB},i} \textit{SMB}_t + \beta_{\textit{UMD},i} \textit{UMD}_t + \boxed{\varepsilon_{i,t}} \end{split}$$

Second Step: Calculate monthly correlation of each stock pair's daily abnormal returns (residuals)

### Correlation Calculation Results

|                     | mean  | std   | min  | median | max |
|---------------------|-------|-------|------|--------|-----|
| CAPM + Industry     | 0.021 | 0.200 | -1.0 | 0.016  | 1.0 |
| 4 Factor            | 0.032 | 0.202 | -1.0 | 0.025  | 1.0 |
| 4 Factor + Industry | 0.016 | 0.199 | -1.0 | 0.010  | 1.0 |

### Conclusion

We use the 4 Factor + Industry model to control for exposure to systematic risk because it almost captures all correlations between two firms in each pair.

# Future Correlation via FCA



# Controls

- **SameGroup**: Dummy variable for whether the two stocks belong to the same business group.
- **SameIndustry**: Dummy variable for whether the two stocks belong to the same Industry.
- SameSize: The negative of absolute difference in percentile ranking of size across a pair
- SameBookToMarket :The negative of absolute difference in percentile ranking of the book to market ratio across a pair
- **CrossOwnership**: The maximum percent of cross-ownership between two firms

# Industry & Business group

|                          | Yes    | No      |
|--------------------------|--------|---------|
| SameIndustry             | 4541   | 74837   |
|                          | (5.7%) | (94.3%) |
| SameGroup                | 1834   | 27157   |
|                          | (6.3%) | (93.7%) |
| SameGroup & SameIndustry | 696    | 79378   |
|                          | (0.9%) | (99.1%) |



# Business group

#### Pairs' characteristic



# Summary of Controls

Variables' distribution

|                  | mean  | std  | min   | median | max   |
|------------------|-------|------|-------|--------|-------|
| Size1            | 0.58  | 0.23 | 0.01  | 0.58   | 1.00  |
| Size2            | 0.30  | 0.20 | 0.00  | 0.25   | 0.99  |
| SameSize         | -0.29 | 0.20 | -0.97 | -0.24  | -0.00 |
| BookToMarket1    | 0.54  | 0.25 | 0.00  | 0.57   | 1.00  |
| BookToMarket2    | 0.55  | 0.24 | 0.00  | 0.56   | 1.00  |
| SameBookToMarket | -0.32 | 0.20 | -0.99 | -0.27  | -0.00 |
| CrossOwnership   | 0.14  | 2.59 | 0.00  | 0.00   | 95.77 |

# Table of Contents

- Motivation
  - Main Effect
    - Wall Elicet
- Empirical Studies
  - Pair compositionMeasuring Common-ownership
  - Correlation Calculation
  - Controls
  - Methodology
- Results
  - Normalized Rank-Transformed
  - High level of common ownership
  - All pairs
  - Evidence for correlated trading
    - Turnover
    - Institutional Imbalance
- Conclusion

# Fama-MacBeth Estimation

- Fama-MacBeth regression analysis is implemented using a two-step procedure.
  - The first step is to run periodic cross-sectional regression for dependent variables using data of each period.
  - The second step is to analyze the time series of each regression coefficient to determine whether the average coefficient differs from zero.

# Fama-MacBeth (1973)

- Two Step Regression
  - First Step

$$Y_{i1} = \delta_{0,1} + \delta_{1,1}^{1} X_{i,1}^{1} + \dots + \delta_{k,1}^{k} X_{i,1}^{k} + \varepsilon_{i,1}$$

$$\vdots$$

$$Y_{iT} = \delta_{0,1} + \delta_{1,T}^{1} X_{i,T}^{1} + \dots + \delta_{k,T}^{k} X_{i,T}^{k} + \varepsilon_{i,T}$$

Second Step

$$\begin{bmatrix} \bar{Y}_1 \\ \vdots \\ \bar{Y}_T \end{bmatrix}_{T \times 1} = \begin{bmatrix} 1 & \delta_1^0 & \delta_1^1 & \dots & \delta_1^k \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & \delta_T^0 & \delta_T^1 & \dots & \delta_T^k \end{bmatrix}_{T \times (k+2)} \times \begin{bmatrix} \lambda \\ \lambda_0 \\ \lambda_1 \\ \vdots \\ \lambda_k \end{bmatrix}_{(k+2) \times 1}$$

• Fama-MacBeth technique was developed to account for correlation between observations on different firms in the same period

# Calculating standard errors

- In most cases, the standard errors are adjusted following Newey and West (1987).
  - Newey and West (1987) adjustment to the results of the regression produces a new standard error for the estimated mean that is adjusted for autocorrelation and heteroscedasticity.
  - Only input is the number of lags to use when performing the adjustment

$$Lag = 4(T/100)^{\frac{2}{9}}$$

where T is the number of periods in the time series

# Table of Contents

- Motivation
- Literature
  - Main Effect
- Empirical Studies
  - Pair composition
  - Measuring Common-ownership
  - Correlation Calculation
  - Controls
  - Methodology
- Results
  - Normalized Rank-Transformed
  - High level of common ownership
  - All pairs
  - 6 Evidence for correlated trading
    - Turnover
    - Institutional Imbalance
- Conclusion

# Future Correlation via FCA

#### Normalized Rank-Transformed





# Estimation model

Use Fama-MacBeth to estimate this model

$$\begin{split} \rho_{ij,t+1} &= \beta_0 + \beta_1 * \mathsf{MFCAP}^*_{ij,t} + \beta_2 * \mathsf{SameGroup}_{ij} \\ &+ \beta_3 * \mathsf{MFCAP}^*_{ij,t} \times \mathsf{SameGroup}_{ij} \\ &+ \sum_{k=1}^n \alpha_k * \mathsf{Control}_{ij,t} + \varepsilon_{ij,t+1} \end{split} \tag{1}$$

- Estimate the model on a monthly frequency
- Adjust standard errors by Newey and West adjustment with 4 lags  $(4(70/100)^{\frac{2}{9}}=3.69\sim4)$

# Model Estimation

#### Normalized Rank-Transformed

|                  |           | Dependent \ | √ariable: Fut | ure Pairs's o | co-movemen | t        |
|------------------|-----------|-------------|---------------|---------------|------------|----------|
|                  | (1)       | (2)         | (3)           | (4)           | (5)        | (6)      |
| MFCAP*           | 0.00150** | 0.00112*    |               |               | 0.000736   | 0.000308 |
|                  | (2.90)    | (2.11)      |               |               | (1.33)     | (0.60)   |
| Same Group       |           |             | 0.0166***     | 0.0153***     | 0.0147***  | 0.0164** |
|                  |           |             | (8.54)        | (7.90)        | (6.97)     | (8.68)   |
| Observations     | 1665996   | 1665996     | 1665996       | 1665996       | 1665996    | 1665996  |
| Sub-sample       | All       | All         | All           | All           | All        | All      |
| Group Effect     | No        | No          | No            | No            | No         | No       |
| Controls         | No        | Yes         | No            | Yes           | Yes        | Yes      |
| PairType Control | No        | No          | No            | No            | No         | Yes      |
| $R^2$            | 0.000170  | 0.000652    | 0.000180      | 0.000637      | 0.000804   | 0.00120  |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

# Model Estimation

#### Normalized Rank-Transformed

|                              | Depe       | ndent Variable | : Future Pair | s's co-moven | nent      |
|------------------------------|------------|----------------|---------------|--------------|-----------|
|                              | (1)        | (2)            | (3)           | (4)          | (5)       |
| MFCAP*                       | 0.00936*** | -0.0000113     | -0.0000771    | -0.000175    | -0.000175 |
|                              | (6.75)     | (-0.02)        | (-0.14)       | (-0.34)      | (-0.34)   |
| Same Group                   |            |                | 0.00750***    | 0.00684**    | 0.00684** |
|                              |            |                | (3.53)        | (2.96)       | (2.96)    |
| $(MFCAP^*) \times SameGroup$ |            |                | 0.0105***     | 0.0109***    | 0.0109*** |
| ,                            |            |                | (6.72)        | (7.02)       | (7.02)    |
| Observations                 | 58337      | 1607659        | 1665996       | 1665996      | 1665996   |
| Sub-sample                   | SameGroup  | Others         | All           | All          | All       |
| Group Effect                 | No         | No             | No            | Yes          | Yes       |
| Controls                     | Yes        | Yes            | Yes           | Yes          | Yes       |
| PairType Control             | Yes        | Yes            | Yes           | Yes          | Yes       |
| $R^2$                        | 0.0174     | 0.000942       | 0.00130       | 0.00605      | 0.00605   |

t statistics in parentheses

 $<sup>^*</sup>$  p < 0.05,  $^{**}$  p < 0.01,  $^{***}$  p < 0.001

# Future Correlation via FCA

### Discontinuity





# 4 Factor + Industry Future Correlation via FCA\*

#### Discontinuity & Business Groups





# Forth quarter summary



# Fama-MacBeth Estimation

#### Discontinuity (sub-sample)

|                      |           | Dep       | endent Varia | ble: Future l | Pairs's co-mov | vement     |            |
|----------------------|-----------|-----------|--------------|---------------|----------------|------------|------------|
|                      | (1)       | (2)       | (3)          | (4)           | (5)            | (6)        | (7)        |
| Same Group           | 0.0287*** | . ,       | 0.0293***    | 0.0270***     | 0.0261***      | -0.0280**  | -0.0252*   |
|                      | (9.98)    |           | (10.54)      | (9.96)        | (9.66)         | (-2.81)    | (-2.38)    |
| MFCAP*               |           | 0.00949** | -0.000569    | -0.00119      | -0.00100       | -0.00407   | -0.00353   |
|                      |           | (2.81)    | (-0.17)      | (-0.35)       | (-0.29)        | (-1.15)    | (-1.02)    |
| (MFCAP*) × SameGroup |           |           |              |               |                | 0.0363***  | 0.0340***  |
|                      |           |           |              |               |                | (5.03)     | (4.33)     |
| SameIndustry         |           |           |              | 0.00643**     | 0.00540**      | 0.00492*   | 0.00547*   |
|                      |           |           |              | (3.34)        | (2.76)         | (2.48)     | (2.50)     |
| SameSize             |           |           |              |               | 0.00676*       | 0.00588*   | 0.00465    |
|                      |           |           |              |               | (2.39)         | (2.11)     | (1.57)     |
| SameBook ToMarket    |           |           |              |               | 0.00917***     | 0.00909*** | 0.00925*** |
|                      |           |           |              |               | (3.88)         | (3.87)     | (3.93)     |
| CrossOwnership       |           |           |              |               | 0.0321*        | 0.0378*    | 0.0417**   |
| •                    |           |           |              |               | (2.16)         | (2.45)     | (2.65)     |
| Observations         | 417377    | 417377    | 417377       | 417377        | 417377         | 417377     | 417377     |
| Group FE             | No        | No        | No           | No            | No             | No         | Yes        |
| PairType Control     | Yes       | Yes       | Yes          | Yes           | Yes            | Yes        | Yes        |
| $R^2$                | 0.00212   | 0.000961  | 0.00236      | 0.00279       | 0.00358        | 0.00388    | 0.0146     |

t statistics in parentheses

 $<sup>^{*}</sup>$   $\rho<$  0.05,  $^{**}$   $\rho<$  0.01,  $^{***}$   $\rho<$  0.001

# All non-common owner pairs

regression

|                              |           | Dependent Variable: Future Pairs' co-movement |           |            |            |             |            |  |  |  |
|------------------------------|-----------|-----------------------------------------------|-----------|------------|------------|-------------|------------|--|--|--|
|                              | (1)       | (2)                                           | (3)       | (4)        | (5)        | (6)         | (7)        |  |  |  |
| SameGroup                    | 0.0156*** |                                               | 0.0158*** |            |            | 0.0138***   | 0.0131***  |  |  |  |
|                              | (9.84)    |                                               | (10.22)   |            |            | (8.27)      | (7.68)     |  |  |  |
| MFCAP*                       |           | -0.0000723                                    | -0.000277 | 0.00169    | -0.000322* | -0.000390** | -0.000427* |  |  |  |
|                              |           | (-0.44)                                       | (-1.80)   | (1.42)     | (-2.19)    | (-2.70)     | (-2.29)    |  |  |  |
| $(MFCAP^*) \times SameGroup$ |           |                                               |           |            |            | 0.00313**   | 0.00364**  |  |  |  |
|                              |           |                                               |           |            |            | (2.80)      | (3.34)     |  |  |  |
| Observations                 | 6018646   | 6018646                                       | 6018646   | 114526     | 5904120    | 6018646     | 6018646    |  |  |  |
| Sub Sample                   | Total     | Total                                         | Total     | SameGroups | Others     | Total       | Total      |  |  |  |
| Group Effect                 | No        | No                                            | No        | No         | No         | No          | Yes        |  |  |  |
| Controls                     | Yes       | Yes                                           | Yes       | Yes        | Yes        | Yes         | Yes        |  |  |  |
| $R^2$                        | 0.000765  | 0.000700                                      | 0.000803  | 0.0121     | 0.000629   | 0.000829    | 0.00354    |  |  |  |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

# Table of Contents

- Motivation
- Literature
  - Main Effect
- 3 Empirical Studies
  - Pair composition
  - Measuring Common-ownership
  - Correlation Calculation
  - Controls
  - Methodology
- Results
  - Normalized Rank-Transformed
  - High level of common ownership
  - All pairs
  - Evidence for correlated trading
    - Turnover
    - Institutional Imbalance
- Conclusio

## **TrunOver**

• Koch et al. (2016)

$$\Delta \mathsf{TurnOver} = \mathsf{In}(\frac{\mathsf{TurnOver}_{i,t}}{\mathsf{TurnOver}_{i,t-1}}) = \mathsf{In}(\frac{\mathsf{volume}_{i,t}}{\mathsf{MarketCap}_{i,t}}) - \mathsf{In}(\frac{\mathsf{volume}_{i,t-1}}{\mathsf{MarketCap}_{i,t-1}})$$

# **TrunOver**

• Koch et al. (2016)

$$\Delta \mathsf{TurnOver} = \mathsf{In}(\frac{\mathsf{TurnOver}_{i,t}}{\mathsf{TurnOver}_{i,t-1}}) = \mathsf{In}(\frac{\mathsf{volume}_{i,t}}{\mathsf{MarketCap}_{i,t}}) - \mathsf{In}(\frac{\mathsf{volume}_{i,t-1}}{\mathsf{MarketCap}_{i,t-1}})$$

|                                       |          | Dep      | endent Varia   | ble: ΔTurn(    | Over;    |          |
|---------------------------------------|----------|----------|----------------|----------------|----------|----------|
|                                       | (1)      | (2)      | (3)            | (4)            | (5)      | (6)      |
| ΔTurnOver <sub>Market</sub>           | 0.431*** | 0.453*** | 0.287***       | 0.321***       | 0.288*** | 0.321*** |
|                                       | (14.56)  | (14.49)  | (8.23)         | (14.03)        | (6.92)   | (14.14)  |
| $\Delta$ TurnOver <sub>Group</sub>    |          |          | 0.245***       | 0.234***       | 0.284*** | 0.273*** |
|                                       |          |          | (6.31)         | (7.15)         | (6.02)   | (7.19)   |
| $\Delta$ TurnOver <sub>Industry</sub> | 0.155*** | 0.169*** | 0.174*         | 0.118***       | 0.152    | 0.0430   |
|                                       | (6.53)   | (6.99)   | (2.08)         | (3.68)         | (1.47)   | (1.19)   |
| Observations                          | 626813   | 623759   | 305563         | 301329         | 305563   | 301329   |
| Weight                                | -        | -        | $MC \times CR$ | $MC \times CR$ | MC       | MC       |
| Control                               | No       | Yes      | No             | Yes            | No       | Yes      |
| R <sup>2</sup>                        | 0.141    | 0.180    | 0.242          | 0.282          | 0.236    | 0.277    |

t statistics in parentheses



<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

# High Beta Group

|                                  | Dependent | Variable: Fu | uture Pairs's | co-movement |
|----------------------------------|-----------|--------------|---------------|-------------|
|                                  | (1)       | (2)          | (3)           | (4)         |
| Same Group                       | 0.0180*** | 0.0180***    | 0.0137***     | 0.0138***   |
|                                  | (8.45)    | (8.50)       | (4.80)        | (4.77)      |
| HighBetaGroup                    |           | -0.000248    | -0.000596     | 0.000440    |
|                                  |           | (-0.34)      | (-0.77)       | (0.40)      |
| $HighBetaGroup \times SameGroup$ |           |              | 0.00791       | 0.00714     |
|                                  |           |              | (1.74)        | (1.56)      |
| Observations                     | 1665996   | 1665996      | 1665996       | 1665996     |
| Group Effect                     | No        | No           | No            | Yes         |
| Pair Size FE                     | Yes       | Yes          | Yes           | Yes         |
| Sub-sample                       | Total     | Total        | Total         | Total       |
| Controls                         | Yes       | Yes          | Yes           | Yes         |
| $R^2$                            | 0.00120   | 0.00133      | 0.00142       | 0.00597     |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

# Pairwise correlations in turnover

|                                         | Dep                 | oendent Va         | riable: Futur        | e Monthly (         | Correlation o       | f Delta turn         | over                 |
|-----------------------------------------|---------------------|--------------------|----------------------|---------------------|---------------------|----------------------|----------------------|
|                                         | (1)                 | (2)                | (3)                  | (4)                 | (5)                 | (6)                  | (7)                  |
| Same Group                              | 0.0334***<br>(7.65) | 0.0178**<br>(2.97) |                      |                     | 0.0216***<br>(5.09) | 0.0161***<br>(3.74)  | 0.0167***<br>(3.89)  |
| MFCAP*                                  |                     |                    | -0.000261<br>(-0.30) | -0.00284<br>(-1.50) | -0.00356<br>(-1.91) | -0.00389*<br>(-2.09) | -0.00391*<br>(-2.33) |
| $\left(MFCAP^*\right) \times SameGroup$ |                     |                    |                      |                     |                     | 0.00567<br>(1.92)    | 0.00555<br>(1.69)    |
| Observations                            | 1447955             | 1341445            | 1447955              | 1341445             | 1341445             | 1341445              | 1341445              |
| Group Effect                            | No                  | No                 | No                   | No                  | No                  | No                   | Yes                  |
| Controls                                | No                  | Yes                | No                   | Yes                 | Yes                 | Yes                  | Yes                  |
| $R^2$                                   | 0.000573            | 0.00303            | 0.000317             | 0.00307             | 0.00337             | 0.00349              | 0.0147               |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

# Turn over and Comovement

|                                                            | Dep        | endent Varial | ole: Future Pa | irs's co-move | ment       |
|------------------------------------------------------------|------------|---------------|----------------|---------------|------------|
|                                                            | (1)        | (2)           | (3)            | (4)           | (5)        |
| Same Group                                                 | 0.0263***  | 0.0250***     | 0.0380***      | 0.0244**      | 0.0256***  |
|                                                            | (3.79)     | (3.55)        | (5.82)         | (3.33)        | (4.02)     |
| $\rho(\Delta TurnOver)_t$                                  | 0.00475*** | 0.00419***    | 0.00474***     | 0.00383***    | 0.00493*** |
|                                                            | (9.75)     | (8.55)        | (4.65)         | (4.64)        | (4.66)     |
| $\rho_t$                                                   | 0.0249***  | 0.0248***     | 0.0248***      | 0.0252***     | 0.0243***  |
|                                                            | (11.12)    | (11.10)       | (11.03)        | (10.64)       | (8.58)     |
| SameGroup $\times \rho(\Delta TurnOver)_t$                 |            | 0.0172***     | -0.00936       | 0.0224***     | -0.0114    |
| ,                                                          |            | (3.63)        | (-0.84)        | (4.42)        | (-1.04)    |
| BigGroup                                                   |            |               | -0.00186       |               |            |
|                                                            |            |               | (-1.99)        |               |            |
| BigGroup × SameGroup                                       |            |               | -0.0151*       |               |            |
|                                                            |            |               | (-2.43)        |               |            |
| $BigGroup \times \rho(\Delta TurnOver)_t$                  |            |               | -0.000833      |               |            |
| , , ,                                                      |            |               | (-0.53)        |               |            |
| $BigGroup \times SameGroup \times \rho(\Delta TurnOver)_t$ |            |               | 0.0317*        |               |            |
|                                                            |            |               | (2.64)         |               |            |
| Observations                                               | 1459585    | 1459585       | 1459585        | 957316        | 502269     |
| Controls                                                   | Yes        | Yes           | Yes            | Yes           | Yes        |
| Pari Size FE                                               | Yes        | Yes           | Yes            | Yes           | Yes        |
| SubSample                                                  | All        | All           | All            | Big Groups    | Others     |
| $R^2$                                                      | 0.00244    | 0.00255       | 0.00302        | 0.00307       | 0.00396    |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

# Ins Imbalance

• Seasholes and Wu (2007)

$$Imbalance_{ins} = \frac{Buy_{ins} - Sell_{ins}}{Buy_{ins} + Sell_{ins}}$$

| Grouped              | $Group \times Month$ | mean          | std            | min | 25%              | 50% | 75%            | max        |
|----------------------|----------------------|---------------|----------------|-----|------------------|-----|----------------|------------|
| Ungrouped<br>Grouped | 20198<br>12022       | 0.01<br>-0.04 | 0.630<br>0.581 |     | -0.474<br>-0.462 |     | 0.479<br>0.341 | 1.0<br>1.0 |

# Ins Imbalance std

| Grouped              | $Group \times Month$ | mean           | std            | min | 25%            | 50% | 75%            | max            |
|----------------------|----------------------|----------------|----------------|-----|----------------|-----|----------------|----------------|
| Ungrouped<br>Grouped | 72<br>2057           | 0.624<br>0.503 | 0.054<br>0.251 |     | 0.601<br>0.337 |     | 0.655<br>0.647 | 0.735<br>1.414 |



# Low Ins Imbalance Group

|                                      | Future Monthly Corr. of 4F+Ind. Residuals |           |            |            |
|--------------------------------------|-------------------------------------------|-----------|------------|------------|
|                                      | (1)                                       | (2)       | (3)        | (4)        |
| Same Group                           | 0.0166***                                 | 0.0167*** | 0.00786*** | 0.00786*** |
|                                      | (9.38)                                    | (9.31)    | (3.90)     | (3.90)     |
| Low Imbalance std                    |                                           | 0.00104   | 0.000192   | 0.000192   |
|                                      |                                           | (1.03)    | (0.19)     | (0.19)     |
| Low Imbalance std $\times$ SameGroup |                                           |           | 0.0240***  | 0.0240***  |
|                                      |                                           |           | (6.90)     | (6.90)     |
| Observations                         | 1665996                                   | 1665996   | 1665996    | 1665996    |
| Group Effect                         | No                                        | No        | No         | No         |
| Pair Size FE                         | Yes                                       | Yes       | Yes        | Yes        |
| Sub-sample                           | Total                                     | Total     | Total      | Total      |
| Controls                             | Yes                                       | Yes       | Yes        | Yes        |
| R <sup>2</sup>                       | 0.00105                                   | 0.00117   | 0.00129    | 0.00129    |

t statistics in parentheses

 $<sup>^{\</sup>ast}$  p < 0.05,  $^{\ast\ast}$  p < 0.01,  $^{\ast\ast\ast}$  p < 0.001

# Table of Contents

- Motivation
- Literature
  - Main Effect
- 3 Empirical Studies
  - Pair composition
  - Measuring Common-ownership
  - Correlation Calculation
  - Controls
  - Methodology
- Results
  - Normalized Rank-Transformed
  - High level of common ownership
  - All pairs
  - Evidence for correlated trading
    - Turnover
    - Institutional Imbalance
- Conclusion

# Conclusion

- We derive a measure that captures the extent of common ownership distribution.
- Direct common ownership can affect firms' co-movement
- Firms in the business groups co-move more than other pairs
- Direct common ownership only matters for firms in the business groups
- Firms in the same business group trade in one way

# References I

- Antón, M., Ederer, F., Giné, M., and Schmalz, M. C. (2020). Common ownership, competition, and top management incentives. Ross School of Business Paper, (1328).
- Anton, M. and Polk, C. (2014). Connected stocks. The Journal of Finance, 69(3):1099-1127.
- Azar, J., Schmalz, M. C., and Tecu, I. (2018). Anticompetitive effects of common ownership. The Journal of Finance, 73(4):1513–1565.
- Backus, M., Conlon, C., and Sinkinson, M. (2020). Theory and measurement of common ownership. In AEA Papers and Proceedings, volume 110, pages 557–60.
- Barberis, N. and Shleifer, A. (2003). Style investing. Journal of financial Economics, 68(2):161-199.
- Barberis, N., Shleifer, A., and Wurgler, J. (2005). Comovement. Journal of financial economics, 75(2):283-317.
- Boubaker, S., Mansali, H., and Rjiba, H. (2014). Large controlling shareholders and stock price synchronicity. *Journal of Banking & Finance*, 40:80–96.
- Cho, C. H. and Mooney, T. (2015). Stock return comovement and korean business groups. Review of Development Finance, 5(2):71–81.
- David, J. M. and Simonovska, I. (2016). Correlated beliefs, returns, and stock market volatility. *Journal of International Economics*, 99:S58–S77.
- Freeman, K. (2019). The effects of common ownership on customer-supplier relationships. *Kelley School of Business Research Paper*, (16-84).
- Gilje, E. P., Gormley, T. A., and Levit, D. (2020). Who's paying attention? measuring common ownership and its impact on managerial incentives. *Journal of Financial Economics*, 137(1):152–178.
- Greenwood, R. and Thesmar, D. (2011). Stock price fragility. Journal of Financial Economics, 102(3):471-490.
- Grullon, G., Underwood, S., and Weston, J. P. (2014). Comovement and investment banking networks. *Journal of Financial Economics*, 113(1):73–89.
- Hameed, A. and Xie, J. (2019). Preference for dividends and return comovement. *Journal of Financial Economics*, 132(1):103–125.

## References II

- Hansen, R. G. and Lott Jr, J. R. (1996). Externalities and corporate objectives in a world with diversified shareholder/consumers. Journal of Financial and Quantitative Analysis, pages 43–68.
- Harford, J., Jenter, D., and Li, K. (2011). Institutional cross-holdings and their effect on acquisition decisions. *Journal of Financial Economics*, 99(1):27–39.
- He, J. and Huang, J. (2017). Product market competition in a world of cross-ownership: Evidence from institutional blockholdings. The Review of Financial Studies, 30(8):2674–2718.
- He, J., Huang, J., and Zhao, S. (2019). Internalizing governance externalities: The role of institutional cross-ownership. *Journal of Financial Economics*, 134(2):400–418.
- Khanna, T. and Thomas, C. (2009). Synchronicity and firm interlocks in an emerging market. *Journal of Financial Economics*, 92(2):182–204.
- Kim, M.-S., Kim, W., and Lee, D. W. (2015). Stock return commonality within business groups: Fundamentals or sentiment? Pacific-Basin Finance Journal, 35:198–224.
- Koch, A., Ruenzi, S., and Starks, L. (2016). Commonality in Liquidity: A Demand-Side Explanation. The Review of Financial Studies. 29(8):1943–1974.
- Lewellen, J. W. and Lewellen, K. (2021). Institutional investors and corporate governance: The incentive to be engaged. *Journal of Finance, Forthcoming.*
- Lewellen, K. and Lowry, M. (2021). Does common ownership really increase firm coordination? Journal of Financial Economics.
- Newham, M., Seldeslachts, J., and Banal-Estanol, A. (2018). Common ownership and market entry: Evidence from pharmaceutical industry.
- Pantzalis, C. and Wang, B. (2017). Shareholder coordination, information diffusion and stock returns. Financial Review, 52(4):563–595.
- Seasholes, M. S. and Wu, G. (2007). Predictable behavior, profits, and attention. Journal of Empirical Finance, 14(5):590-610.
- Shiller, R. J. (1989). Comovements in stock prices and comovements in dividends. The Journal of Finance, 44(3):719-729.

# Table of Contents

8 Appendix I

- Appendix I
  - Synchronicity and firm interlocks
  - Large controlling shareholder and stock price synchronicity
  - Connected Stocks
  - Measures' Detail

# Measuring Common Ownership

- If two stocks in pair have n mutual owner, which total market cap divides them equally, the mentioned indexes equal n.
  - Each holder owns 1/n of each firm.
  - Firm's market cap is  $\alpha_1$  and  $\alpha_2$ :
  - So for each holder of firms we have  $S_{i,t}^f P_{i,t} = \alpha_i$
  - SQRT

$$\left[\frac{\sum_{f=1}^{n} \sqrt{\alpha_1/n} + \sum_{f=1}^{n} \sqrt{\alpha_2/n}}{\sqrt{\alpha_1} + \sqrt{\alpha_2}}\right]^2 = \left[\frac{\sqrt{n}(\sqrt{\alpha_1} + \sqrt{\alpha_2})}{\sqrt{\alpha_1} + \sqrt{\alpha_2}}\right]^2 = n$$

Quadratic

$$\left[\frac{\sum_{f=1}^{n} (\alpha_1/n)^2 + \sum_{f=1}^{n} (\alpha_2/n)^2}{\alpha_1^2 + \alpha_2^2}\right]^{-1} = \left[\frac{\alpha_1^2 + \alpha_2^2}{n(\alpha_1^2 + \alpha_2^2)}\right]^{-1} = n$$





# Measuring Common-ownership

Anton and Polk (2014)

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t} P_{i,t} + S_{j,t} P_{j,t}}$$

# Measuring Common-ownership

# Anton and Polk (2014)

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$$

**SQRT** 

$$[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}]^{2}$$

$$\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}\left[\frac{\sum_{f=1}^{F}[(S_{i,t}^{f}P_{i,t})^{2}+(S_{j,t}^{f}P_{j,t})^{2}]}{(S_{i,t}P_{i,t})^{2}+(S_{j,t}P_{j,t})^{2}}\right]^{-1}$$

Anton and Polk (2014)

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$$

**SQRT** 

Quadratic

$$\frac{\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}$$

$$\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}\left[\frac{\sum_{f=1}^{F}[(S_{i,t}^{f}P_{i,t})^{2}+(S_{j,t}^{f}P_{j,t})^{2}]}{(S_{i,t}P_{i,t})^{2}+(S_{j,t}P_{j,t})^{2}}\right]^{-1}$$

#### Intuition

If for a pair of stocks with n mutual owners, all owners have even shares of each firm's market cap, then the proposed indexes will be equal to n. Proof

#### Example



### Example



For better observation, assume that

- $\alpha + \beta = 100$
- both firm have equal market cap

#### Example



For better observation, assume that

- $\alpha + \beta = 100$
- both firm have equal market cap



Comparison of three methods for calculating common ownership

Example of three common owner

Firm Y

Firm X

Example of three common owner

Common owner 1

Firm Y

Common owner 2

 $\mathsf{Firm}\ \mathsf{X}$ 

Common owner 3

Example of three common owner



Common owner 3

#### Example of three common owner



Example of three common owner

| Ownership  | Type I | Type II | Type III | Type IV | Type V | Type VI | Type VII |
|------------|--------|---------|----------|---------|--------|---------|----------|
| $\alpha_1$ | 1/3    | 20      | 10       | 20      | 10     | 5       | 1        |
| $\beta_1$  | 1/3    | 10      | 10       | 20      | 10     | 5       | 1        |
| $\alpha_2$ | 1/3    | 10      | 80       | 20      | 10     | 5       | 1        |
| $\beta_2$  | 1/3    | 20      | 80       | 20      | 10     | 5       | 1        |
| $\alpha_3$ | 1/3    | 70      | 10       | 20      | 10     | 5       | 1        |
| $eta_3$    | 1/3    | 70      | 10       | 20      | 10     | 5       | 1        |
| SQRT       | 3      | 2.56    | 2.33     | 1.8     | 0.9    | 0.45    | 0.09     |
| SUM        | 1      | 1       | 1        | 0.6     | 0.3    | 0.15    | 0.03     |
| Quadratic  | 3      | 1.85    | 1.52     | 8.33    | 33.33  | 133.33  | 3333.33  |

#### Comparison

- For better comparison we relax previous assumptions:
  - Two Firms with different market caps.

|                                                  | $(\alpha_1,\beta_1),(\alpha_2,\beta_2)$ |         |                     |      |      |                 |  |  |
|--------------------------------------------------|-----------------------------------------|---------|---------------------|------|------|-----------------|--|--|
|                                                  | (10,40)                                 | (10,40) | 40) (15,35),(15,35) |      |      | (20,30),(20,30) |  |  |
| MarketCap <sub>x</sub><br>MarketCap <sub>y</sub> | SQRT                                    | SUM     | SQRT                | SUM  | SQRT | SUM             |  |  |
| 1                                                | 0.90                                    | 0.50    | 0.96                | 0.50 | 0.99 | 0.50            |  |  |
| 2                                                | 0.80                                    | 0.40    | 0.89                | 0.43 | 0.96 | 0.47            |  |  |
| 3                                                | 0.75                                    | 0.35    | 0.85                | 0.40 | 0.94 | 0.45            |  |  |
| 4                                                | 0.71                                    | 0.32    | 0.83                | 0.38 | 0.92 | 0.44            |  |  |
| 5                                                | 0.69                                    | 0.30    | 0.81                | 0.37 | 0.91 | 0.43            |  |  |
| 6                                                | 0.67                                    | 0.29    | 0.80                | 0.36 | 0.91 | 0.43            |  |  |
| 7                                                | 0.65                                    | 0.28    | 0.79                | 0.35 | 0.90 | 0.43            |  |  |
| 8                                                | 0.64                                    | 0.27    | 0.78                | 0.34 | 0.90 | 0.42            |  |  |
| 9                                                | 0.63                                    | 0.26    | 0.77                | 0.34 | 0.89 | 0.42            |  |  |
| 10                                               | 0.62                                    | 0.25    | 0.76                | 0.34 | 0.89 | 0.42            |  |  |

#### Comparison



Comparison of two methods for calculating common ownership

#### Conclusion

We use the SQRT measure because it has an acceptable variation and has fair values at a lower level of aggregate common ownership.

## Common Ownership measure

|                                      | Dependent Variable: Future Monthly Correlation of 4F+Industry Residuals |           |           |           |            |            |            |            |            |            |
|--------------------------------------|-------------------------------------------------------------------------|-----------|-----------|-----------|------------|------------|------------|------------|------------|------------|
|                                      | (1)                                                                     | (2)       | (3)       | (4)       | (5)        | (6)        | (7)        | (8)        | (9)        | (10)       |
| Common Ownership Measure             | 0.00177***                                                              | 0.00150** | 0.00133** | 0.00102   | 0.000936   | 0.000663   | 0.000536   | 0.000377   | -0.0000197 | -0.0000113 |
|                                      | (3.93)                                                                  | (2.90)    | (2.76)    | (1.87)    | (1.90)     | (1.17)     | (1.06)     | (0.65)     | (-0.04)    | (-0.02)    |
| Same Group                           |                                                                         |           | 0.0156*** | 0.0157*** | 0.00774*** | 0.00813*** | 0.00575*   | 0.00624**  | 0.00503*   | 0.00549*   |
|                                      |                                                                         |           | (7.32)    | (7.44)    | (3.61)     | (3.71)     | (2.62)     | (2.81)     | (2.11)     | (2.27)     |
| Common Ownership Measure × SameGroup |                                                                         |           |           |           | 0.0103***  | 0.00935*** | 0.0110***  | 0.00992*** | 0.0119***  | 0.0107***  |
|                                      |                                                                         |           |           |           | (7.76)     | (6.72)     | (7.47)     | (6.49)     | (7.94)     | (6.97)     |
| SameIndustry                         |                                                                         |           |           |           |            |            | -0.000364  | -0.000312  | 0.000286   | 0.000339   |
| ,                                    |                                                                         |           |           |           |            |            | (-0.21)    | (-0.19)    | (0.17)     | (0.21)     |
| SameSize                             |                                                                         |           |           |           |            |            | 0.0133***  | 0.0135***  | 0.0131***  | 0.0132***  |
|                                      |                                                                         |           |           |           |            |            | (4.48)     | (4.56)     | (4.61)     | (4.68)     |
| SameBookToMarket                     |                                                                         |           |           |           |            |            | 0.00772*** | 0.00772*** | 0.00893*** | 0.00893*** |
|                                      |                                                                         |           |           |           |            |            | (4.55)     | (4.58)     | (5.05)     | (5.09)     |
| CrossOwnership                       |                                                                         |           |           |           |            |            | 0.0280*    | 0.0260     | 0.0303*    | 0.0283*    |
|                                      |                                                                         |           |           |           |            |            | (2.07)     | (1.93)     | (2.27)     | (2.14)     |
| Observations                         | 1665996                                                                 | 1665996   | 1665996   | 1665996   | 1665996    | 1665996    | 1665996    | 1665996    | 1665996    | 1665996    |
| Group FE                             | No                                                                      | No        | No        | No        | No         | No         | No         | No         | Yes        | Yes        |
| Measurement                          | Sum                                                                     | Quadratic | Sum       | Quadratic | Sum        | Quadratic  | Sum        | Quadratic  | Sum        | Quadratic  |
| R <sup>2</sup>                       | 0.000171                                                                | 0.000170  | 0.000348  | 0.000349  | 0.000443   | 0.000437   | 0.000898   | 0.000898   | 0.00575    | 0.00575    |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

### Table of Contents

8 Appendix

- Appendix II
  - Synchronicity and firm interlocks
  - Large controlling shareholder and stock price synchronicity
  - Connected Stocks
  - Measures' Detail

### Main Effect

#### Common-ownership and comovement effect

[Anton and Polk (2014)]

Stocks sharing many common investors tend to comove more strongly with each other in the future than otherwise similar stocks.

#### Common-ownership and liquidity demand

[Koch et al. (2016), Pastor and Stambaugh (2003), Acharya and Pedersen (2005)] Commonality in stock liquidity is likely driven by correlated trading among a given stock's investors. Commonality in liquidity is important because it can influence expected returns

#### • Trading needs and comovement

[Greenwood and Thesmar (2011)]

If the investors of mutual funds have correlated trading needs, the stocks that are held by mutual funds can comove even without any portfolio overlap of the funds themselves

#### Stock price synchronicity and poor corporate governance

[Boubaker et al. (2014), Khanna and Thomas (2009), Morck et al. (2000)] Stock price synchronicity has been attributed to poor corporate governance and a lack of firm-level transparency. On the other hand, better law protection encourages informed trading, which facilitates the incorporation of firm-specific information into stock prices, leading to lower synchronicity



# Synchronicity and firm interlocks

JFE-2009-Khanna

- Three types of network
  - Equity network
  - 2 Director network
  - Owner network
- Dependent variables

Using deterended weekly return for calculation

- **1** Pairwise returns synchronicity =  $\frac{\sum_{\mathbf{t}} (n_{i,j,\mathbf{t}}^{\text{ups}}, n_{i,j,\mathbf{t}}^{\text{down}})}{T_{i,j}}$
- 2 Correlation =  $\frac{Cov(i,j)}{\sqrt{Var(i).Var(j)}}$
- Tobit estimation of

$$f_{i,j}^d = \alpha I_{i,j} + \beta (1 * N_{i,j}) + \gamma Ind_{i,j} + \varepsilon_{i,j}$$

being in the same director network has a significant effect

# Large controlling shareholder and stock price synchronicity JBF-2014-Boubaker

• Stock price synchronicity:

$$SYNCH = \log(\frac{R_{i,t}^2}{1 - R_{i,t}^2})$$

where  $R_{i,t}^2$  is the R-squared value from

$$\textit{RET}_{\textit{i},\textit{w}} = \alpha + \beta_1 \textit{MKRET}_{\textit{w}-1} + \beta_2 \textit{MKRET}_{\textit{w}} + \beta_3 \textit{INDRET}_{\textit{i},\textit{w}-1} + \beta_4 \textit{INDRET}_{\textit{i},\textit{w}} + \varepsilon_{\textit{i},\textit{w}}$$

OLS estimation of

$$\begin{aligned} \textit{SYNCH}_{i,t} &= \beta_0 + \beta_1 \textit{Excess}_{i,t} + \beta_2 \textit{UCF}_{i,t} + \sum_k \beta_k \textit{Control}_{i,t}^k \\ &+ \textit{IndustryDummies} + \textit{YearDummies} + \varepsilon_{i,t} \end{aligned}$$

- Stock price synchronicity increases with excess control
- Firms with substantial excess control are more likely to experience stock price crashes

## Connected Stocks

#### JF-2014-Anton Polk

- Common active mutual fund owners
- Measuring Common Ownership

• 
$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$$

- ullet Using normalized rank-transformed as  $FCAP_{ij,t}^*$
- $\rho_{ij,t}$ : within-month realized correlation of each stock pair's daily four-factor returns

q

$$ho_{ij,t+1} = a + b_f \times FCAPF_{ij,t}^* + \sum_{k=1}^{n} CONTROL_{ij,t,k} + \varepsilon_{ij,t+1}$$

Estimate these regressions monthly and report the time-series average as in Fama-MacBeth

## Commonownership measurements

#### Model-based measures

• 
$$\mathsf{HJL}^A_I(A,B) = \sum_{i \in I^A,B} \frac{\alpha_{i,B}}{\alpha_{i,A} + \alpha_{i,B}}$$
 Harford et al. (2011)

- Bi-directional
- Pair-level measure of common ownership
- Its potential impact on managerial incentives
- Measure not necessarily increases when the relative ownership increases
- Accounts only for an investor's relative holdings
- $\bullet \quad \mathsf{MHHI} = \sum_j \sum_k \mathsf{s}_j \mathsf{s}_k \frac{\sum_i \mu_{ij} \nu_{ik}}{\sum_i \mu_{ij} \nu_{ij}} \text{ Azar et al. (2018)}$ 
  - Capture a specific type of externality
  - Measured at the industry level
  - Assumes that investors are fully informed about the externalities
- $\operatorname{\mathsf{GGL}}^A(A,B) = \sum_{i=1}^I \alpha_{i,A} g(\beta_{i,A}) \alpha_{i,B}$  Gilje et al. (2020)
  - Bi-directional
  - Less information
  - Not sensitive to the scope
  - Measure increases when the relative ownership of firm A increases



## Commonownership measurements

#### Ad hoc common ownership measures

- Overlap<sub>Count</sub> $(A, B) = \sum_{i \in I^{A,B}} 1$ He and Huang (2017), He et al. (2019)
- Overlap<sub>Min</sub> $(A, B) = \sum_{i \in I^{A,B}} min\{\alpha_{i,A}, \alpha_{i,B}\}$ Newham et al. (2018)
- Overlap\_AP(A, B) =  $\sum_{i \in I^{A,B}} \alpha_{i,A} \frac{\bar{\nu}_A}{\bar{\nu}_A + \bar{\nu}_B} + \alpha_{i,B} \frac{\bar{\nu}_B}{\bar{\nu}_A + \bar{\nu}_B}$ Anton and Polk (2014)
- Overlaph  $(A, B) = \sum_{i \in I^{A,B}} \alpha_{i,A} \times \sum_{i \in I^{A,B}} \alpha_{i,B}$ Hansen and Lott Jr (1996), Freeman (2019)
- Unappealing properties
  - Unclear is whether any of these measures represents an economically meaningful measure of common ownership's impact on managerial incentives.
  - Both Overlap<sub>Count</sub> and Overlap<sub>AP</sub> are invariant to the decomposition of ownership between the two firms, which leads to some unappealing properties.

