EJERCICIOS PARA PRACTICAR

- (1) Dibuja los vectores $\vec{u}=(4,1)$ y $\vec{w}=(-2,2)$, $\vec{u}+\vec{v}$ y $\vec{u}-\vec{v}$ en un mismo plano xy.
- (2) Si $\vec{v} + \vec{w} = (3,1)$ y $\vec{v} \vec{w} = (1,3)$ calcula y dibuja \vec{v} y \vec{w} .
- (3) Si $\vec{v} = (2,1)$ y $\vec{w} = (1,2)$ calcula las coordenadas de $3\vec{v} + \vec{w}$ y $\vec{v} 3\vec{w}$.
- (4) Dibuja en el plano xy las 9 combinaciones lineales de

$$c \begin{bmatrix} 3 \\ 1 \end{bmatrix} + d \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

siendo $c = 0,1 \circ 2 \text{ y d} = 0, 1 \circ 2.$

- (5) Dibuja todos los paralelogramos posibles que tengan las siguientes esquinas: (1, 1), (4, 2) y (1, 3).
- (6) ¿Qué combinación de los vectores (1,2) y (3,1) da lugar a (4,8)?
- (7) a) Calcula los productos escalares $\vec{u} \cdot \vec{v}$, $\vec{u} \cdot \vec{w}$, $\vec{v} \cdot \vec{w}$ y $\vec{w} \cdot \vec{v}$, siendo $\vec{u} = (-6, 8)$, $\vec{v} = (3, 4)$ y $\vec{w} = (4, 3)$.
 - b) Calcula también sus longitudes.
 - c) Calcula vectores unitarios en la dirección de \vec{u} , \vec{v} y \vec{w} .
- (8) Calcula un vector unitario en la dirección de $\vec{v} = (3, 1)$. Calcula también un vector normal unitario.
- (9) Sabiendo que \overrightarrow{u} es un vector unitario calcula $\overrightarrow{u} \cdot \overrightarrow{-u}$.
- (10) Calcula el ángulo que forman:

a)
$$\vec{u} = (1, \sqrt{3}) \text{ y } \vec{v} = (1, 0)$$

c)
$$\vec{u} = (3,1) \text{ y } \vec{v} = (-1,-2).$$

b)
$$\vec{u} = (1, \sqrt{3}) \text{ y } \vec{v} = (-1, \sqrt{3})$$

- (11) Las pendientes de los vectores $\vec{v}=(v_1,v_2)$ y $\vec{w}=(w_1,w_2)$ son $\frac{v_2}{v_1}$ y $\frac{w_2}{w_1}$. Si su producto $\frac{v_2w_2}{v_1w_1}$ es -1, demuestra que $\vec{v}\cdot\vec{w}=0$ y que, por tanto, son perpendiculares.
- (12) Dibuja los vectores $\vec{v} = (1, 2)$ y $\vec{w} = (-2, 1)$. Multiplica sus pendientes. ¿Cómo son los vectores?
- (13) Dados $\vec{u} = (1,1)$ y $\vec{v} = (1,5)$ elige un número c para que $\vec{v} c\vec{u}$ sea perpendicular a \vec{u}
- (14) **Reto.** ¿Pueden existir 3 vectores en el plano tales que $\vec{u} \cdot \vec{v} < 0$, $\vec{u} \cdot \vec{w} < 0$ y $\vec{v} \cdot \vec{w} < 0$?
- (15) ¿Cuáles son los cosenos de los ángulos α y β que forma el vector $\vec{v} = (3,1)$ con los vectores unitarios i y j? Comprueba que $\cos^2 \alpha + \cos^2 \beta = 1$

- (16) Sea $\overrightarrow{v} = (v_x, v_y)$ un vector cualquiera y α y β los ángulos que forman con los vectores unitarios i y j. Demuestra que $\cos^2 \alpha + \cos^2 \beta = 1$
- (17) Dado un segmento de extremos A(3,5) y B(6,15) calcula las coordenadas de los puntos C, D y E que lo dividen en 4 partes iguales.
- (18) Calcula el producto escalar de \overrightarrow{a} y \overrightarrow{b} sabiendo que

a)
$$a = 3, b = 8 \text{ y } \theta = \frac{\pi}{2}$$

b)
$$a = 4$$
, $b = 2$ y $\theta = 1$ radianes.

siendo θ el ángulo que forman entre si los dos vectores.

(19) Calcula $\overrightarrow{a} \cdot \overrightarrow{b}$ siendo

a)
$$\vec{a} = (5, -1), \ \vec{b} = (-2, -3)$$

a)
$$\vec{a} = (5, -1), \vec{b} = (-2, -3)$$
 b) $\vec{a} = (-2, -3), \vec{b} = (-6, -2)$