NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

Semester 1 (2003/2004) MA4253 Mathematical Programming Tutorial 1

Solution to selected questions

Q1. Let y, z be any two points of S. Then for any $\lambda \in [0,1]$, we have

$$||A(\lambda y + (1 - \lambda)z) - b||$$

$$= ||\lambda(Ay - b) + (1 - \lambda)(Az - b)||$$

$$\leq \lambda ||Ay - b|| + (1 - \lambda)||Az - b||$$

$$< \lambda + (1 - \lambda) = 1.$$

Therefore, $\lambda y + (1 - \lambda)z \in S$ for all $\lambda \in [0, 1]$. This shows that S is a convex set.

Q2. (a) S is a polyhedral set. Assume that a_1 and a_2 are linearly independent (it is much simpler if they are linearly dependent).

Case 1): n = 1. Trivial.

 $\overline{\text{Case 2})}$: n=2. The set S is the enclosed part of the following four line segments

$$[a_1 + a_2, a_1 - a_2], [a_2 + a_1, a_2 - a_1], [-a_1 + a_2, -a_1 - a_2] \text{ and } [-a_2 - a_1, -a_2 + a_1].$$

We need to find four hyperplanes containing these four line segments respectively. We take $L_1 := [a_1 + a_2, a_1 - a_2]$ as an example. We choose $u_1 = a_1 + \theta_1 a_2$ such that u_1 is on L_1 and $u_1^T a_2 = 0$, where θ_1 is a scalar defined by

$$\theta_1 = -\frac{a_1^T a_2}{\|a_2\|^2}.$$

Then, u_1 is on L_1 and is perpendicular to L_1 . Define the following hyperplane

$$h_1 = \{ x \in \Re^n \, | \, u_1^T x \, = \, \|u_1\|^2 \, = \, \|a_1\|^2 - \frac{(a_1^T a_2)^2}{\|a_2\|^2} \, \}.$$

Obviously, L_1 is contained in h_1 .

Similarly, let

$$u_2 = a_2 - \frac{a_2^T a_1}{\|a_1\|^2} a_1$$
, $u_3 = -a_1 + \frac{a_1^T a_2}{\|a_2\|^2} a_2$, $u_4 = -a_2 + \frac{a_2^T a_1}{\|a_1\|^2} a_1$

and define three more hyperplanes

$$h_i = \{x \in \Re^n \mid u_i^T x = ||u_i||^2\}, i = 2, 3, 4,$$

respectively. The set S is the intersection of the four halfspaces $\{x \in \Re^n \mid u_i^T x \leq ||u_i||^2\}$, i = 1, 2, 3, 4, i.e.,

$$S = \{x \in \Re^n \mid u_i^T x \le ||u_i||^2, i = 1, 2, 3, 4\}.$$

<u>Case 3):</u> $n \geq 3$. This case is similar to Case 2) except that S must stay in the intersection of hyperplanes

$$h_d = \{ x \in \Re^n \, | \, d^T x = 0 \, \}$$

for any nonzero vector $d \in \mathbb{R}^n$ such that $d^T a_1 = d^T a_2 = 0$ (for n=2, no such d exists). Let

$$\mathcal{N} = \{ d \in \Re^n \, | \, d^T a_1 = d^T a_2 = 0 \, \}.$$

Let d_1, \ldots, d_{n-2} be n-2 linearly independent vectors in \mathcal{N} . Then

$$\bigcap_{d \in \mathcal{N}} h_d = \bigcap_{i=1,\dots,n-2} h_{d_i}.$$

Therefore,

$$S = \{x \in \Re^n \mid d_j^T x = 0, j = 1, \dots, n - 2, u_i^T x \le ||u_i||^2, i = 1, 2, 3, 4\},\$$

where h_i , i = 1, 2, 3, 4 are defined as in Case 2).

[Alternatively, by assuming that a_1 and a_2 are linearly independent you may work in this way: let

$$B = [a_1 \ a_2 \ d_1 \ \dots \ d_{n-2}].$$

Then $B \in \Re^{n \times n}$ is nonsingular (check it!). By letting $C = B^{-1}$, we have

$$S = \{x \in \Re^n \mid x = a_1 \times y_1 + a_2 \times y_2 + d_1 \times 0 + \dots + d_{n-2} \times 0, -1 \le y_1, y_2 \le 1\}$$

$$= \{x \in \Re^n \mid x = B[y_1, y_2, 0, \dots, 0]^T, -1 \le y_1, y_2 \le 1\}$$

$$= \{x \in \Re^n \mid Cx = [y_1, y_2, 0, \dots, 0]^T, -1 \le y_1, y_2 \le 1\}$$

$$= \{x \in \Re^n \mid -1 \le c_1^T x \le 1, -1 \le c_2^T x \le 1, c_i^T x = 0, i = 3, \dots, n\},$$

where c_i^T is the *i*th row of C, i = 1, ..., n.

- (b) Obviously, S is a polyhedral set.
- (c) S is not a polyhedral set except n=1. For $n=1, S=\{x\in\Re\,|\,0\le x\le 1\}$. For $n\ge 2$, we have

$$S = \{x \in \Re^n \mid x^T y \le 1 \ \forall \ y \text{ with } ||y|| = 1\} \cap \{x \in \Re^n \mid x \ge 0\}$$
$$= \{x \in \Re^n \mid ||x|| \le 1\} \cap \{x \in \Re^n \mid x \ge 0\}$$
$$= \{x \in \Re^n \mid ||x|| \le 1, \ x \ge 0\}.$$

(d) S is not a polyhedral set because $S = \emptyset$. For $n \ge 2$, we have

$$S = \{x \in \Re^n \, | \, x^T y \ge 1 \, \forall \, y \text{ with } ||y|| = 1\} \cap \{x \in \Re^n \, | \, x \ge 0\}$$
$$= \emptyset \cap \{x \in \Re^n \, | \, x \ge 0\} = \emptyset.$$

(e) S is a polyhedral set and

$$\begin{split} S &=& \{x \in \Re^n \, | \, x \geq 0, x^T y \leq 1 \, \, \forall \, y \, \, \text{with} \, \, \sum_i |y_i| = 1 \} \\ &=& \{x \in \Re^n \, | \, x^T y \leq 1 \, \, \forall \, y \, \, \text{with} \, \, \sum_i |y_i| = 1 \} \cap \{x \in \Re^n \, | \, x \geq 0 \, \} \\ &=& \{x \in \Re^n \, | \, -1 \leq x_i \leq 1, i = 1, \ldots, n \} \cap \{x \in \Re^n \, | \, x \geq 0 \, \} \\ &=& \{x \in \Re^n \, | \, 0 \leq e_i^T x \leq 1, \, i = 1, \ldots, n \} \, . \end{split}$$

- (f) $S = \emptyset$, which is not a polyhedral set.
- **Q3.** There are five inequality constraints. For $x \in \Re^3$ to be an extreme point we need x to satisfy all these five constraints and there are three linearly independent active constraints. These points are

$$(5/2,0,0)^T$$
, $(0,0,8/5)^T$, $(23/14,0,2/7)^T$, $(19/8,1/4,0)^T$.

Q4.

$$(1/2, 0, 1/2)^T$$
, $(0, 0, 1)^T$.

Q5. Suppose tha x^* is a basic feasble solution (bfs) of $P = \{x \in \mathbb{R}^n \mid Ax = b, \ x \geq 0\}$. Then, by the definition of bfs, $x^* \in P$ and there are n linearly independent active constraints. These n linearly independent active constraints come from two parts. The first part has $p(\leq m)$ active constraints coming from $Ax^* = b$ and the rest q(= n - p) active constraints coming from those constraints $x \geq 0$ such that $x_i^* = e_i^T x^* = 0$, $i = 1, \ldots, n$. Therefore, we obtain

$$a_{p(j)}^T x^* = b_{p(j)}, \ j = 1, \dots, p,$$

 $e_{q(j)}^T x^* = 0, \ j = 1, \dots, q,$

and that the matrix

$$M = \begin{bmatrix} a_{p(1)}^T \\ \vdots \\ a_{p(p)}^T \\ e_{q(1)}^T \\ \vdots \\ e_{q(q)}^T \end{bmatrix}$$

is nonsingular.

Next, we shall show that p = m, i.e, we can take all equations from $Ax^* = b$. Suppose on the contrary that that p < m and that there is some $i \notin \{p(1), \dots, p(p)\}$ $(1 \le i \le m)$. Then, since

$$\operatorname{span}\{(a_{p(j)}^T)_{j=1}^p, (e_{q(j)}^T)_{j=1}^q\} = \Re^n,$$

 a_i^T is a linear combination of $\{(a_{p(j)}^T)_{j=1}^p,\ (e_{q(j)}^T)_{j=1}^q\}$. Hence, there is a nonzero vector $\alpha \in \Re^n$ such that

$$a_i^T = \alpha_1 a_{p(1)}^T + \dots + \alpha_p a_{p(p)}^T + \alpha_{p+1} e_{q(1)}^T + \dots + \alpha_n e_{q(q)}^T.$$
 (1)

On the other hand, from the assumption that A is of full row rank, we know that a_i^T is not a linear combination of $\{(a_{p(j)}^T)_{j=1}^p\}$. Therefore, there exists some $\alpha_j \neq 0$ for some $j \geq p+1$. Without loss of generality, we assume that

$$\alpha_{p+1} \neq 0$$
.

Then, from (1), we get

$$-\alpha_{p+1}e_{q(1)}^T = \alpha_1 a_{p(1)}^T + \dots + \alpha_p a_{p(p)}^T + \alpha_{p+2}e_{q(2)}^T + \dots + \alpha_n e_{q(q)}^T - a_i^T,$$

i.e.,

$$e_{q(1)}^T = -\alpha_{p+1}^{-1} [\alpha_1 a_{p(1)}^T + \dots + \alpha_p a_{p(p)}^T + \alpha_{p+2} e_{q(2)}^T + \dots + \alpha_n e_{q(q)}^T - a_i^T].$$

This, together with the fact that span $\{(a_{p(j)}^T)_{j=1}^p,\ (e_{q(j)}^T)_{j=1}^q\}=\Re^n,$ implies that

$$\mathrm{span}\{(a_{p(j)}^T)_{j=1}^p,\ (e_{q(j)}^T)_{j=2}^q,\ a_i^T\}\ =\ \Re^n.$$

Thus, $\{(a_{p(j)}^T)_{j=1}^p,\ (e_{q(j)}^T)_{j=2}^q,\ a_i^T\}$ are linearly independent. By repeating the above process we can conclude that

$$\{(a_j^T)_{j=1}^m,\ (e_{q(j)}^T)_{j=m-p+1}^q\}$$

are linearly independent.

Let

$$\mathcal{N} = \{q(m-p+1), \dots, q(q)\}\$$

and

$$\mathcal{B} = \{1, \dots, n\} \backslash \mathcal{N}.$$

Then, from $Ax^* = b$ we get

$$Bx_{\mathcal{B}}^* + Nx_{\mathcal{N}}^* = 0,$$

where

$$B = [A_{\mathcal{B}(1)} \dots A_{\mathcal{B}(m)}], \quad N = [A_{\mathcal{N}(1)} \dots A_{\mathcal{N}(n-m)}].$$

By noting that for any $i \in \mathcal{N}$, $x_i^* = 0$, we obtain

$$Bx_{\mathcal{B}}^* = b.$$

Since the matrix

$$\begin{bmatrix} A \\ e_{\mathcal{N}(1)}^T \\ \vdots \\ e_{\mathcal{N}(n-m)}^T \end{bmatrix}$$

is nonsingular, it follows that B is nonsingular. Therefore,

$$x_{\mathcal{B}}^* = B^{-1}b.$$

It is obvious $B^{-1}b \ge 0$ because $x^* \ge 0$. The proof is complete. \Box