Quiz 1

Part I (10 points). You will get 1 point for each correct answer, 0 points for each blank answer, and -1 point for each incorrect answer. The minimum possible score for this section is 0.

- (1) If V is a vector space over **R**, and we have $u, v \in V$ and a nonzero $\lambda \in \mathbf{R}$ such **T** F that $\lambda u = \lambda v$, then u = v.
- (2) The set $\{(a,b,c) \in \mathbf{R}^3 : a+2b+c=4\}$ is a subspace of \mathbf{R}^3 .
- (3) The set $\{(a,b,c) \in \mathbf{R}^3 : a^2 = b^2\}$ is a subspace of \mathbf{R}^3 .
- (4) Suppose U is a subspace of a vector space V such that $U + W = \{0\}$ for some \mathbf{T} F subspace W. Then $U = \{0\}$.
- (5) The set of functions $f : \mathbf{R} \to \mathbf{R}$ such that f(0) = b is a subspace of $\mathbf{R}^{\mathbf{R}}$ if and \mathbf{T} F only if b = 0.
- (6) The set of functions $f: \mathbf{R} \to \mathbf{R}$ such that f(a) = 0 is a subspace of $\mathbf{R}^{\mathbf{R}}$ if and \mathbf{T} only if a = 0.
- (7) Let $U = \{(x, y, x + y, x y) \in \mathbf{R}^4 : x, y \in \mathbf{R}\}$. Then U is a subspace of \mathbf{R}^4 , \mathbf{T} F and there exist subspaces W_1 and W_2 , neither of which equals $\{0\}$, such that $\mathbf{R}^4 = U \oplus W_1 \oplus W_2$.
- (8) Let E be the subset of even¹ functions in $\mathbb{R}^{\mathbb{R}}$ and B the subset of bounded² T **F** functions. Then E and B are subspaces of $\mathbb{R}^{\mathbb{R}}$, and the sum E + B is direct.
- (9) Let $V = \{(a, b) : a, b \in \mathbf{R}\}$. Define addition on V coordinate-wise, and define a T scalar multiplication operation @ by the formula

$$\lambda@(a,b) = (\lambda a,0)$$

for all $(a, b) \in V$ and $\lambda \in \mathbf{R}$. Then V, equipped with these operations, is a vector space over \mathbf{R} .

(10) Let $V = \{a \in \mathbf{R} : a > 0\}$ be the set of positive real numbers. Define an addition \mathbf{T} F operation # and a scalar multiplication operation @ on V by the formulas

$$a\#b=ab$$
 and $\lambda@a=a^{\lambda}$

where $a, b \in V$ and $\lambda \in \mathbf{R}$. Then V, equipped with these two operations, is a vector space over \mathbf{R} .

¹A function $f: \mathbf{R} \to \mathbf{R}$ is said to be even if f(x) = f(-x) for all $x \in \mathbf{R}$.

²A function $f: \mathbf{R} \to \mathbf{R}$ is said to be bounded if there exists some C such that $|f(x)| \leq C$ for all $x \in \mathbf{R}$.

Part II (10 points). Consider the following subspaces of \mathbf{F}^3 .

$$U = \{(x, 2x, y) \in \mathbf{F}^3 : x, y \in \mathbf{F}\} \text{ and } W = \{(x, y, 0) \in \mathbf{F}^3 : x, y \in \mathbf{F}\}$$

(11) Prove that $U + W = \mathbf{F}^3$.

Any element $(x, y, z) \in \mathbf{F}^3$ can be written as a sum

$$(x, y, z) = (0, 0, z) + (x, y, 0),$$

where clearly $(0,0,z) \in U$ and $(x,y,0) \in W$.

(12) Is it true that $U \oplus W = \mathbf{F}^3$? Prove your assertion.

No, it is not true. Observe that

$$U \cap W = \{(x, 2x, 0) \in \mathbf{F}^3 : x \in \mathbf{F}\} \neq \{0\}.$$

Alternatively, note that

$$0 = (1, 2, 0) + (-1, -2, 0)$$

where $(1,2,0) \in U$ and $(-1,-2,0) \in W$, so 0 can be written in a nontrivial way as a sum of an element of U and an element of W.