

Un organisme d'Industrie Canada

EXPRESS MAIL NO. EV889128890US

An agency of Industry Canada CA 2438921 A1 2002/08/29

(21) 2 438 921

(12) DEMANDE DE BREVET CANADIEN CANADIAN PATENT APPLICATION

(13) A1

(86) Date de dépôt PCT/PCT Filing Date: 2002/02/21

(87) Date publication PCT/PCT Publication Date: 2002/08/29

(85) Entrée phase nationale/National Entry: 2003/08/20

(86) N° demande PCT/PCT Application No.: CA 2002/000207

(87) N° publication PCT/PCT Publication No.: 2002/066650

(30) Priorité/Priority: 2001/02/21 (60/269,840) US

- (51) Cl.Int.⁷/Int.Cl.⁷ C12N 15/31, A61K 39/09, A61P 31/00, A61P 17/00, C07K 14/315, C12N 15/63, C07K 19/00, G01N 33/569
- (71) Demandeur/Applicant: SHIRE BIOCHEM INC., CA
- (72) Inventeurs/Inventors: MARTIN, DENIS, CA; RIOUX, STEPHANE, CA: BRODEUR, BERNARD R., CA; HAMEL, JOSEE, CA; RHEAULT, PATRICK, CA

(74) Agent: SMART & BIGGAR

(54) Titre: POLYPEPTIDES DE STREPTOCOCCUS PYOGENES ET FRAGMENTS D'ADN CORRESPONDANTS (54) Title: STREPTOCOCCUS PYOGENES POLYPEPTIDES AND CORRESPONDING DNA FRAGMENTS

T	MKKHPKIAT	TLTTVSVVTH	NOEALSTAKE	PILKQTQASS	SISGADYAES	SGKSKLKINE
61	TSGPVDDTVT	DLFSDKRTTP	EKIKDNLAKG	PREQELKAVT	ENTESEKQIT	SGSQLEQSKE
121	SLSLNKTVPS	TSNWEICDFI	TKGNTLVGLS	KSGVEKLSQT	DHLVLPSQAA	DGTQLIQVAS
181	FAFTPDKKTA	IAEYTSRAGE	NGEISQLDVD	GKEIINEGEV	FNSYLLKKVT	IPTGYKHIGQ
241	DAFVDNKNIA	EVNLPESLET	ISDYAFAHLA	LKQIDLPDNL	KAIGELAFFD	NQITGKLSLP
			FRGNSLKVIG			
			GLATENTYVN			
			QHNGVTITEI			
			LEEIKEGAFM			
541	LPESVQEIGR	SAFRQNGANN	LIFMGSKVKT	LGEMAFLSNR	LEHLDLSEQK	QLTEIPVQAF
			AFKKNHLKQL			
			LSSTIVDLEK			
			FFLGRVDLDK			
781	AYNNSAIKKA	NVKRLEKELD	LLTGLVEGKG	PLAQATMVQG	VYLLKTPLPL	PEYYIGLNVY
			QKDAYGNPIL			
			GIFQAIQNAA			ESANSKDRGL
961	QSNPKTNRGR	HSAILPRTGS	KGSFVYGILG	YTSVALLSLI	TAIKKKKY*	

1 MYVUI YMVAI TITTUGUTTU NOEUPGIUVE DII VOTOACC CICCADVAEC CCUCUI VINE

(57) Abrégé/Abstract:

The present invention relates to antigens, more particularly antigens of Streptococcus pyogenes (also called group A Streptococcus (GAS)) bacterial pathogen which are useful as vaccine component for prophylaxis, therapy and/or diagnostic.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 29 August 2002 (29.08.2002)

PCT

(10) International Publication Number WO 02/066650 A3

- (51) International Patent Classification⁷: C12N 15/31, 15/63, C07K 14/315, 19/00, Λ61K 39/09, Λ61P 17/00, 31/00, G01N 33/569
- (21) International Application Number: PCT/CA02/00207
- (22) International Filing Date: 21 February 2002 (21.02.2002)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/269,840

21 February 2001 (21.02.2001) US

- (71) Applicant (for all designated States except US): SHIRE BIOCHEM INC. [CA/CA]; 275 Armand Frappier Boulevard, Laval, Quebec H7V 4A7 (CA).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): MARTIN, Denis [CA/CA]; 4728-G, rue Gaboury, St-Augustin-de-Desmaures, Quebec G3A 1E9 (CA). RIOUX, Stéphane [CA/CA]; 869 Avenue Des Pinsons, Beauport, Québec G1E 1J3 (CA). BRODEUR, Bernard, R. [CA/CA]; 2401 Maritain, Sillery, Quebec G1T 1N6 (CA). HAMEL, Josée [CA/CA]; 2401 Maritain, Sillery, Quebec G1T 1N6 (CA). RHEAULT, Patrick [CA/CA]; 44 rue Bélair, St-Etienne-de-Lauzon, Québec G6J 1P9 (CA).

- (74) Agents: MORROW, Joy, D. et al.; Smart & Biggar, P.O. Box 2999, Station D, 900-55 Metcalfe Street, Ottawa, Ontario K1P 5Y6 (CA).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

[Continued on next page]

(54) Title: STREPTOCOCCUS PYOGENES POLYPEPTIDES AND CORRESPONDING DNA FRAGMENTS

(SEQ ID NO:2)

1 MKKHLKTVAL TLTTVSVVTH NQEVFSLVKE PILKQTQASS SISGADYAES SGKSKLKINE 61 TSGPVDDTVT DLFSDKRTTP EKIKDNLAKG PREQELKAVT ENTESEKQIT SGSOLEOSKE 121 SLSLNKTVPS TSNWEICDF1 TKGNTLVGLS KSGVEKLSQT DHLVLPSQAA DGTQLIQVAS 181 FAFTPDKKTA IAEYTSRAGE NGEISQLDVD GKEIINEGEV FNSYLLKKVT IPTGYKHIGQ 241 DAFVDNKNIA EVNLPESLET ISDYAFAHLA LKQIDLPDNL KAIGELAFFD NQITGKLSLP 301 RQLMRLAERA FKSNHIKTIE FRGNSLKVIG EASFQDNDLS QLMLPDGLEK IESEAFTGNP 361 GDDHYNNRVV LWTKSGKNPS GLATENTYVN PDKSLWQESP EIDYTKWLEE DFTYOKNSVT 421 GFSNKGLQKV KRNKNLEIPK QHNGVTITEI GDNAFRNVDF QNKTLRKYDL EEVKLPSTIR 481 KIGAFAFQSN NLKSFEASDD LEEIKEGAFM NNRIETLELK DKLVTIGDAA FHINHIYAIV 541 LPESVQEIGR SAFRQNGANN LIFMGSKVKT LGEMAFLSNR LEHLDLSEQK QLTEIPVQAF 601 SDNALKEVLL PASLKTIREE AFKKNHLKQL EVASALSHIA FNALDDNDGD EQFDNKVVVK 661 THHNSYALAD GEHFIVDPDK LSSTIVDLEK ILKLIEGLDY STLROTTOTO FROMTTAGKA 721 LLSKSNLRQG EKQKFLQEAQ FFLGRVDLDK AIAKAEKALV TKKATKNGQL LERSINKAVL 781 AYNNSAIKKA NVKRLEKELD LLTGLVEGKG PLAQATMVQG VYLLKTPLPL PEYYIGLNVY 841 FDKSGKLIYA LDMSDTIGEG QKDAYGNPIL NVDEDNEGYH ALAVATLADY EGLDIKTILN 901 SKLSQLTSIR QVPTAAYHRA GIFQAIQNAA AEAEQLLPKP GTHSEKSSSS ESANSKDRGL 961 QSNPKTNRGR HSAILPRTGS KGSFVYGILG YTSVALLSLI TAIKKKKY*

(57) Abstract: The present invention relates to antigens, more particularly antigens of <u>Streptococcus pyogenes</u> (also called group A <u>Streptococcus</u> (GAS)) bacterial pathogen which are useful as vaccine component for prophylaxis, therapy and/or diagnostic.

CA 02438921 2003-08-20

(88) Date of publication of the international search report: 31 October 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

STREPTOCOCCUS PYOGENES POLYPEPTIDES AND CORRESPONDING DNA FRAGMENTS

5 FIELD OF THE INVENTION

The present invention is related to polypeptides of Streptococcus pyogenes (Group A Streptococcus) which may be used to prevent, diagnose and/or treat streptococcal infection.

10

BACKGROUND OF THE INVENTION

Streptococci are gram (+) bacteria which are differentiated by group specific carbohydrate antigens A through O which are found at the cell surface. S. pyogenes isolates are further 15 distinguished by type-specific M protein antigens. M proteins are important virulence factors which are highly variable both in molecular weights and in sequences. Indeed, more than 80-M protein types have been identified on the basis of antigenic differences.

20

- S. pyogenes is responsible for many diverse infection types, including pharyngitis, erysipelas and impétigo, scarlet fever, and invasive diseases such as bacteremia and necrotizing fasciitis. A resurgence of invasive disease in recent years has 25 been documented in many countries, including those in North America and Europe. Although the organism is sensitive to antibiotics, the high attack rate and rapid onset of sepsis results in high morbidity and mortality.
 - 30 To develop a vaccine that will protect hosts from <u>S. pyogenes</u> infection, efforts have focused on virulence factors such as the type-specific M proteins. However, the amino-terminal portion of M proteins was found to induce cross-reactive antibodies which reacted with human myocardium, tropomyosin, myosin, and 35 vimentin, which might be implicated in autoimmune diseases. Others have used recombinant techniques to produce complex hybrid proteins containing amino-terminal peptides of M proteins from different serotypes. However, a safe vaccine containing all

<u>s. pyogenes</u> serotypes will be highly complex to produce and standardize.

In addition to the serotype-specific antigens, other <u>S. pyogenes</u> 5 proteins have generated interest as potential vaccine candidates. The C5a peptidase, which is expressed by at least <u>S. pyogenes</u> 40 serotypes, was shown to be immunogenic in mice, but its capacity to reduce the level of nasopharyngeal colonization was limited. Other investigators have also focused on the 10 streptococcal pyrogenic exotoxins which appear to play an important role in pathogenesis of infection. Immunization with these proteins prevented the deadly symptoms of toxic shock, but did not prevent colonization.

15 The University of Oklahoma has set up a genome sequencing project for <u>S. pyogenes</u> strain M1 GAS (http://dnal.chem.ou.edu/strep.html).

Therefore there remains an unmet need for <u>S. pyogenes</u> antigens 20 that may be used vaccine components for the prophylaxis and/or therapy of <u>S. pyogenes</u> infection.

SUMMARY OF THE INVENTION

- 25 According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 70% identity to a second polypeptide comprising SEQ ID No : 2 or fragments or analogs thereof.
 - 30 According to one aspect, the present invention relates to polypeptides which comprise an amino acid sequence SEQ ID No : 2 or fragments or analogs thereof.

In other aspects, there are provided polypeptides encoded by 35 polynucleotides of the invention, pharmaceutical compositions, vectors comprising polynucleotides of the invention operably linked to an expression control region, as well as host cells transfected with said vectors and processes for producing polypeptides comprising culturing said host cells under 40 conditions suitable for expression.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 represents the DNA sequence of <u>BVH-P7</u>
gene from serotype M1 <u>S. pyogenes</u> strain ATCC700294; SEQ ID
NO: 1. The underlined portion of the sequence represents
the region coding for the leader peptide.

Figure 2 represents the amino acid sequence BVH-P7 protein from serotype M1 <u>S. pyogenes</u> strain ATCC700294; SEQ ID NO: 2. The underline sequence represents the 21 amino acid residues leader peptide.

- Figure 3 depicts the comparison of the predicted amino acid sequences of the BVH-P7 open reading frames from Spy74 (SEQ ID NO: 3), Spy70 (SEQ ID NO: 4), Spy69 (SEQ ID NO: 5), Spy68 (SEQ ID NO: 6), Spy 60 (SEQ ID NO: 7), ATCC12357 (SEQ ID NO: 8), ATCC700294 (SEQ ID NO: 2),
- S. pyogenes strains by using the program Clustal W from MacVector sequence analysis software (version 6.5).
 Underneath the alignment, there is a consensus line where * and . characters indicate identical and similar amino acid residues, respectively.

20 DETAILED DESCRIPTION OF THE INVENTION

The present invention provides purified and isolated polynucleotides, which encode Streptococcal polypeptides that may be used to diagnose, prevent, and/or treat Streptococcal infection.

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 70% identity to a second polypeptide comprising SEQ ID NO: 2 or fragments or analogs or thereof.

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 80% identity to a second polypeptide comprising SEQ ID NO: 2 or fragments or analogs or thereof.

According to one aspect of the present invention, 5 there is provided an isolated polypeptide comprising a polypeptide chosen from: (a) a polypeptide comprising SEQ ID NO: 2; (b) a polypeptide comprising an antigenic or immunogenic fragment having at least 10 contiguous amino 10 acid residues of the polypeptide of (a); (c) a polypeptide comprising an antigenic or immunogenic analog having at least 70% identity to the polypeptide of (a) or (b); (d) a polypeptide comprising an antigenic or immunogenic analog having at least 95% identity to the polypeptide of (a) or (b); (e) a polypeptide capable of generating antibodies having binding specificity for the polypeptide of any one of (a), (b), (c) and (d); (f) an epitope bearing portion of the polypeptide of any one of (a), (b), (c) and (d); (g) the polypeptide of any one of (a), (b), (c), (d) $\frac{1}{2}$ (e) and (f) 20 wherein the N-terminal Met residue is deleted; and (h) the polypeptide of any one of (a), (b), (c), (d), (e), (f) and

According to another aspect of the present invention, there is provided an isolated polypeptide comprising a polypeptide chosen from: (a) a polypeptide comprising SEQ ID NO: 2; (b) a polypeptide having at least 70% identity to the polypeptide of (a); (c) a polypeptide having at least polypeptide capable of generating antibodies having

binding specificity for the polypeptide of (a); (e) an epitope bearing portion of the polypeptide of (a); (f) the

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least

90% identity to a second polypeptide comprising SEQ ID NO: 2 or fragments or analogs or thereof.

According to one aspect, the present invention provides an 5 isolated polynucleotide encoding a polypeptide having at least 95% identity to a second polypeptide comprising SEQ ID NO: 2 or fragments or analogs or thereof.

According to one aspect, the present invention relates to 10 polypeptides characterized by the amino acid sequence comprising SEQ ID NO: 2 or fragments or analogs or thereof.

According to one aspect, the present invention provides a polynucleotide encoding an epitope bearing portion of a 15 polypeptide comprising SEQ ID NO: 2 or fragments or analogs or thereof.

According to one aspect, the present invention relates to epitope bearing portions of a polypeptide comprising SEQ ID NO: 20 2 or fragments or analogs or thereof.

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 70% identity to a second polypeptide comprising SEQ ID NO: 2.

But the term of the property of the second property of the second

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 80% identity to a second polypeptide comprising SEQ ID NO: 2.

30 According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 90% identity to a second polypeptide comprising SEQ ID NO: 2.

According to one aspect, the present invention provides an 35 isolated polynucleotide encoding a polypeptide having at least 95% identity to a second polypeptide comprising SEQ ID NO: 2.

According to one aspect, the present invention relates to polypeptides characterized by the amino acid sequence comprising 40 SEQ ID NO: 2.

According to one aspect, the present invention provides a polynucleotide encoding an epitope bearing portion of a polypeptide comprising SEQ ID NO: 2.

5

20

40

According to one aspect, the present invention relates to epitope bearing portions of a polypeptide comprising SEQ ID NO: 2.

- 10 According to one aspect, the present invention provides an isolated polynucleotide comprising a polynucleotide chosen from:
 - (a) a polynucleotide encoding a polypeptide having at least 70% identity to a second polypeptide comprising a sequence chosen from: SEQ ID NO: 2 or fragments or analogs thereof;
- 15 (b) a polynucleotide encoding a polypeptide having at least 95% identity to a second polypeptide comprising a sequence chosen from: SEQ ID NO: 2 or fragments or analogs thereof;
 - (c) a polynucleotide encoding a polypeptide comprising a sequence chosen from: SEQ ID NO: 2 or fragments or analogs thereof;
 - (d) a polynucleotide encoding a polypeptide capable of generating antibodies having binding specificity for a polypeptide comprising a sequence chosen from: SEQ ID NO: 2 or fragments or analogs thereof;
- 25 (e) a polynucleotide encoding an epitope bearing portion of a polypeptide comprising a sequence chosen from SEQ ID NO: 2 or fragments or analogs thereof;
 - (f) a polynucleotide comprising a sequence chosen from SEQ ID NO: 1 or fragments or analogs thereof;
 - 30 (g) a polynucleotide that is complementary to a polynucleotide in (a), (b), (c), (d), (e) or (f).

According to one aspect, the present invention provides an isolated polynucleotide comprising a polynucleotide chosen from:

- 35 (a) a polynucleotide encoding a polypeptide having at least 70% identity to a second polypeptide comprising a sequence chosen from: SEQ ID NO: 2;
 - (b) a polynucleotide encoding a polypeptide having at least 95% identity to a second polypeptide comprising a sequence chosen from: SEQ ID NO: 2;

- (c) a polynucieotide encoding a polypeptide comprising a sequence chosen from: SEQ ID NO: 2;
- (d) a polynucleotide encoding a polypeptide capable of raising antibodies having binding specificity for a polypeptide
- 5 comprising a sequence chosen from: SEQ ID NO: 2;
 - (e) a polynucleotide encoding an epitope bearing portion of a polypeptide comprising a sequence chosen from SEQ ID NO: 2;
 - (f) a polynucleotide comprising a sequence chosen from SEQ ID NO: 1;
- 10 (g) a polynucleotide that is complementary to a polynucleotide in (a), (b), (c), (d), (e) or (f).

According to one aspect, the present invention provides an isolated polypeptide comprising a polypeptide chosen from:

- 15 (a) a polypeptide having at least 70% identity to a second polypeptide comprising SEQ ID NO: 2, or fragments or analogs thereof;
 - (b) a polypeptide having at least 95% identity to a second polypeptide comprising SEQ ID NO: 2, or fragments or analogs thereof;
 - (c) a polypeptide comprising SEQ ID NO: 2, or fragments or analogs thereof;
 - (d) a polypeptide capable of raising antibodies having binding specificity for a polypeptide comprising SEQ ID NO: 2, or
- 25 confragments or analogs thereof;

20

- (e) an epitope bearing portion of a polypeptide comprising SEQ ID NO: 2, or fragments or analogs thereof;
 - (f) the polypeptide of (a), (b), (c), (d), (e) or (f) wherein the N-terminal Met residue is deleted;
- 30 (g) the polypeptide of (a), (b), (c), (d), (e) or (f) wherein the secretory amino acid sequence is deleted.

According to one aspect, the present invention provides an isolated polypeptide comprising a polypeptide chosen from:

- 35 (a) a polypeptide having at least 70% identity to a second polypeptide comprising SEQ ID NO: 2;
 - (b) a polypeptide having at least 95% identity to a second polypeptide comprising SEQ ID NO: 2;
 - (c) a polypeptide comprising SEQ ID NO: 2;

(a) a polypeptide capable of raising antibodies having binding specificity for a polypeptide comprising SEQ ID NO: 2;

- (e) an epitope bearing portion of a polypeptide comprising SEQ ID NO: 2;
- 5 (f) the polypeptide of (a), (b), (c), (d), (e) or (f) wherein the N-terminal Met residue is deleted;
 - (g) the polypeptide of (a), (b), (c), (d), (e) or (f) wherein the secretory amino acid sequence is deleted.
- 10 Those skilled in the art will appreciate that the invention includes DNA molecules, i.e. polynucleotides and their complementary sequences that encode analogs such as mutants, variants, homologues and derivatives of such polypeptides, as described herein in the present patent application. The
- 15 invention also includes RNA molecules corresponding to the DNA molecules of the invention. In addition to the DNA and RNA molecules, the invention includes the corresponding polypeptides and monospecific antibodies that specifically bind to such polypeptides.

20

In a further embodiment, the polypeptides in accordance with the present invention are antigenic.

In a further embodiment, the polypeptides in accordance with the 25 present invention are immunogenic.

In a further embodiment, the polypeptides in accordance with the present invention can elicit an immune response in a host.

- 30 In a further embodiment, the present invention also relates to polypeptides which are able to raise antibodies having binding specificity to the polypeptides of the present invention as defined above.
- 35 An antibody that "has binding specificity" is an antibody that recognizes and binds the selected polypeptide but which does not substantially recognize and bind other molecules in a sample, e.g., a biological sample. Specific binding can be measured using an ELISA assay in which the selected polypeptide is used 40 as an antigen.

In accordance with the present invention, "protection" in the biological studies is defined by a significant increase in the survival curve, rate or period. Statistical analysis using the 5 Log rank test to compare survival curves, and Fisher exact test to compare survival rates and numbers of days to death, respectively, might be useful to calculate P values and determine whether the difference between the two groups is statistically significant. P values of 0.05 are regarded as not 10 significant.

In an additional aspect of the invention there are provided antigenic/immunogenic fragments of the polypeptides of the invention, or of analogs thereof.

15

The fragments of the present invention should include one or more such epitopic regions or be sufficiently similar to such regions to retain their antigenic/immunogenic properties. Thus, for fragments according to the present invention the degree of 20 identity is perhaps irrelevant, since they may be 100% identical to a particular part of a polypeptide or analog thereof as described herein. The present invention further provides fragments having at least 10 contiguous amino acid residues from the polypeptide sequences of the present invention. In one 25 embodiment, at least 15 contiguous amino acid residues. In one embodiment, at least 20 contiguous amino acid residues.

The key issue, once again, is that the fragment retains the antigenic/immunogenic properties.

30

The skilled person will appreciate that analogs of the polypeptides of the invention will also find use in the context of the present invention, i.e. as antigenic/immunogenic material. Thus, for instance proteins or polypeptides which 35 include one or more additions, deletions, substitutions or the like are encompassed by the present invention.

As used herein, "fragments", "analogs" or "derivatives" of the polypeptides of the invention include those polypeptides in 40 which one or more of the amino acid residues are substituted

with a conserved or non-conserved amino acid residue (preferably conserved) and which may be natural or unnatural. embodiment, derivatives and analogs of polypeptides of the invention will have about 70% identity with those sequences 5 illustrated in the figures or fragments thereof. That is, 70% of the residues are the same. In a further embodiment, polypeptides will have greater than 80% identity. In a further embodiment, polypeptides will have greater than 85% identity. In a further embodiment, polypeptides will have greater than 90% 10 identity. In a further embodiment, polypeptides will have 95% greater than identity. In a further embodiment, polypeptides will have greater than 99% identity. In a further embodiment, analogs of polypeptides of the invention will have than about 20 amino acid residue substitutions, . 15 modifications or deletions and more preferably less than 10.

These substitutions are those having a minimal influence on the secondary structure and hydropathic nature of the polypeptide. Preferred substitutions are those known in the art as 20 conserved, i.e. the substituted residues share physical or chemical properties such as hydrophobicity, size, charge or functional groups. These include substitutions such as those described by Dayhoff, M. in Atlas of Protein Sequence and Structure 5, 1978 and by Argos, P. in EMBO J. 8, 779-785, 1989.

25 For example, amino acids, either natural or unnatural, belonging to one of the following groups represent conservative changes:

ala, pro, gly, gln, asn, ser, thr, val;

cys, ser, tyr, thr;

val, ile, leu, met, ala, phe;

30 lys, arg, orn, his;

and phe, tyr, trp, his.

The preferred substitutions also include substitutions of D-enantiomers for the corresponding L-amino acids.

35 In an alternative approach, the analogs of the polypeptides of the invention comprise the substitutions disclosed in Figure 3.

In an alternative approach, the analogs could be fusion proteins, incorporating moieties which render purification 40 easier, for example by effectively tagging the desired

polypeptide. It may be necessary to remove the "tag" or it may be the case that the fusion polypeptide itself retains sufficient antigenicity to be useful.

5 The percentage of homology is defined as the sum of the percentage of identity plus the percentage of similarity or conservation of amino acid type.

In one embodiment, analogs of polypeptides of the invention will 10 have about 70% identity with those sequences illustrated in the figures or fragments thereof. That is, 70% of the residues are the same. In a further embodiment, polypeptides will have greater than 75% homology. In a further embodiment, polypeptides will have greater than 80% homology. In a further 15 embodiment, polypeptides will have greater than 85% homology. In a further embodiment, polypeptides will have greater than 90% homology. In a further embodiment, polypeptides will have greater than 95% homology. In a further embodiment, polypeptides will have greater than 99% homology. In a further 20 embodiment, analogs of polypeptides of the invention will have fewer than about 20 amino acid residue substitutions, modifications or deletions and more preferably less than 10.

One can use a program such as the CLUSTAL program to compare

25 amino acid sequences. This program compares amino acid
sequences and finds the optimal alignment by inserting spaces in
either sequence as appropriate. It is possible to calculate
amino acid identity or similarity (identity plus conservation of
amino acid type) for an optimal alignment. A program like

30 BLASTX will align the longest stretch of similar sequences and
assign a value to the fit. It is thus possible to obtain a
comparison where several regions of similarity are found, each
having a different score. Both types of identity analysis are
contemplated in the present invention.

35

In an alternative approach, the analogs or derivatives could be fusion polypeptides, incorporating moieties which render purification easier, for example by effectively tagging the desired protein or polypeptide, it may be necessary to remove

the "tag" or it may be the case that the fusion polypeptide itself retains sufficient antigenicity to be useful.

It is well known that is possible to screen an antigenic 5 polypeptide to identify epitopic regions, i.e. those regions which are responsible for the polypeptide's antigenicity or immunogenicity. Methods for carrying out such screening are well known in the art. Thus, the fragments of the present invention should include one or more such epitopic regions or be 10 sufficiently similar to such regions to retain their antigenic/immunogenic properties.

Thus, for fragments according to the present invention the degree of identity is perhaps irrelevant, since they may be 100% 15 identical to a particular part of a polypeptide, analog as described herein.

Thus, what is important for analogs, derivatives and fragments is that they possess at least a degree of the 20 antigenicity/immunogenicity of the protein or polypeptide from which they are derived.

Also included are polypeptides which have fused thereto other compounds which alter the polypeptides biological or 25 pharmacological properties i.e. polyethylene glycol (PEG) to increase half-life; leader or secretory amino acid sequences for ease of purification; prepro- and pro- sequences; and (poly) saccharides.

- 30 Furthermore, in those situations where amino acid regions are found to be polymorphic, it may be desirable to vary one or more particular amino acids to more effectively mimic the different epitopes of the different <u>streptococcus</u> strains.
- 35 Moreover, the polypeptides of the present invention can be modified by terminal -NH, acylation (eg. by acetylation, or thioglycolic acid amidation, terminal carboxy amidation, e.g. with ammonia or methylamine) to provide stability, increased hydrophobicity for linking or binding to a support or other 40 molecule.

Also contemplated are hetero and homo polypeptide multimers of the polypeptide fragments and analogues. These polymeric forms include, for example, one or more polypeptides that have been as 5 cross-linked with cross-linkers such avidin/biotin, gluteraldehyde or dimethylsuperimidate. Such polymeric forms also include polypeptides containing two or more tandem or inverted contiguous sequences, produced from multicistronic mRNAs generated by recombinant DNA technology. In a further 10 embodiment, the present invention also relates to chimeric polypeptides which comprise one or more polypeptides or fragments or analogs thereof as defined in the figures of the present application.

15 In a further embodiment, the present invention also relates to chimeric polypeptides comprising two or more polypeptides having a sequence chosen from SEQ ID NO: 2, or fragments or analogs thereof; provided that the polypeptides are linked as to formed a chimeric polypeptide.

20

In a further embodiment, the present invention also relates to chimeric polypeptides comprising two or more polypeptides having a sequence chosen from SEQ ID NO: 2 provided that the polypeptides are linked as to formed a chimeric polypeptide.

- Preferably, a fragment, analog or derivative of a polypeptide of the invention will comprise at least one antigenic region i.e. at least one epitope.
 - 30 In order to achieve the formation of antigenic polymers (i.e. synthetic multimers), polypeptides may be utilized having bishaloacetyl groups, nitroarylhalides, or the like, where the reagents being specific for thio groups. Therefore, the link between two mercapto groups of the different polypeptides may be 35 a single bond or may be composed of a linking group of at least
 - two, typically at least four, and not more than 16, but usually not more than about 14 carbon atoms.

In a particular embodiment, polypeptide fragments and analogs of 40 the invention do not contain a methionine (Met) starting

residue. Preterably, polypeptides will not incorporate a leader or secretory sequence (signal sequence). The signal portion of a polypeptide of the invention may be determined according to established molecular biological techniques. In general, the 5 polypeptide of interest may be isolated from a streptococcal culture and subsequently sequenced to determine the initial residue of the mature protein and therefore the sequence of the mature polypeptide.

10 It is understood that polypeptides can be produced and/or used without their start codon (methionine or valine) and/or without their leader peptide to favor production and purification of recombinant polypeptides. It is known that cloning genes without sequences encoding leader peptides will restrict the 15 polypeptides to the cytoplasm of E. coli and will facilitate their recovery (Glick, B.R. and Pasternak, J.J. (1998) Manipulation of gene expression in prokaryotes. In "Molecular biotechnology: Principles and applications of recombinant DNA", 2nd edition, ASM Press, Washington DC, p.109-143).

20

According to another aspect of the invention, there are also provided (i) a composition of matter containing a polypeptide of the invention, together with a carrier, diluent or adjuvant; (ii) a pharmaceutical composition comprising a polypeptide of 25 the invention and a carrier, diluent or adjuvant; (iii) a vaccine comprising a polypeptide of the invention and a carrier, diluent or adjuvant; (iv) a method for inducing an immune response against Streptococcus, in a host, by administering to the host, an immunogenically effective amount of a polypeptide 30 of the invention to elicit an immune response, e.g., a protective immune response to Streptococcus; and particularly, (v) a method for preventing and/or treating a Streptococcus infection, by administering a prophylactic or therapeutic amount of a polypeptide of the invention to a host in need.

35

According to another aspect of the invention, there are also provided (i) a composition of matter containing a polynucleotide of the invention, together with a carrier, diluent or adjuvant; (ii) a pharmaceutical composition comprising a polynucleotide of 40 the invention and a carrier, diluent or adjuvant; (iii) a method

for inducing an immune response against streptococcus, in a host, by administering to the host, an immunogenically effective amount of a polynucleotide of the invention to elicit an immune response, e.g., a protective immune response to Streptococcus; 5 and particularly, (iv) a method for preventing and/or treating a Streptococcus infection, by administering a prophylactic or therapeutic amount of a polynucleotide of the invention to a host in need.

10 Before immunization, the polypeptides of the invention can also be coupled or conjugated to carrier proteins such as tetanus toxin, diphtheria toxin, hepatitis B virus surface antigen, poliomyelitis virus VP1 antigen or any other viral or bacterial toxin or antigen or any suitable proteins to stimulate the 15 development of a stronger immune response. This coupling or conjugation can be done chemically or genetically. A more detailed description of peptide-carrier conjugation is available in Van Regenmortel, M.H.V., Briand J.P., Muller S., Plaué S., «Synthetic Polypeptides as antigens» in Laboratory Techniques in 20 Biochemistry and Molecular Biology, Vol. 19 (ed.) Burdou, R.H. & Van Knippenberg P.H. (1988), Elsevier New York.

According to another aspect, there are provided pharmaceutical compositions comprising one or more Streptococcal polypeptides 25 of the invention in a mixture with a pharmaceutically acceptable adjuvant. Suitable adjuvants include (1) oil-in-water emulsion formulations such as MF59m, SAFm, Ribim; (2) Freund's complete or incomplete adjuvant; (3) salts i.e. AlK(SO,),, AlNa(SO,),, silica, kaolin; (4) $A1NH_{A}(SO_{A})_{A}$, $A1(OH)_{A}$, $A1PO_{A}$, 30 derivatives such as Stimulon™ or particles generated therefrom such as ISCOMs (immunostimulating complexes); (5) cytokines such as interleukins, interferons, macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF); (6) other substances such as carbon polynucleotides i.e. poly IC and poly 35 AU, detoxified cholera toxin (CTB) and E.coli heat labile toxin for induction of mucosal immunity. A more detailed description of adjuvant is available in a review by M.Z.I Khan et al. in Pharmaceutical Research, vol. 11, No. 1 (1994) pp2-11, and also in another review by Gupta et al., in Vaccine, Vol. 13, No. 14, 40 pp1263-1276 (1995) and in WO 99/24578, which are herein

incorporated by reference. Freierred adjuvants include QuilA^m, QS21 m , Alhydrogel m and Adjuphos m .

Pharmaceutical compositions of the invention may be administered 5 parenterally by injection, rapid infusion, nasopharyngeal absorption, dermoabsorption, or buccal or oral.

Pharmaceutical compositions of the invention are used for the treatment or prophylaxis of streptococcal infection and/or 10 diseases and symptoms mediated by streptococcal infection as described in P.R. Murray (Ed, in chief), E.J. Baron, M.A. Pfaller, F.C. Tenover and R.H. Yolken. Manual of Clinical Microbiology, ASM Press, Washington, D.C. sixth edition, 1995, 1482p which are herein incorporated by reference. In one 15 embodiment, pharmaceutical compositions of the present invention are used for the prophylaxis or treatment of pharyngitis, erysipelas and impetigo, scarlet fever, and invasive diseases such as bacteremia and necrotizing fasciitis and also toxic shock. In one embodiment, pharmaceutical compositions of the 20 invention are used for the prophylaxis or treatment of Streptococcus infection and/or diseases and symptoms mediated by Streptococcus infection, in particular group A Streptococcus (Streptococcus pyogenes), group B Streptococcus (GBS S.agalactiae), S.pneumoniae, S.dysgalactiae, S.uberis, 25 <u>S. nocardia</u> as well as <u>Staphylococcus aureus</u>. In a further embodiment, the <u>Streptococcus</u> infection is <u>S. pyogenes</u>.

In a further embodiment, the invention provides a method for prophylaxis or treatment of <u>Streptococcus</u> infection in a host 30 susceptible to Streptococcus infection comprising administering to said host a therapeutic or prophylactic amount of a composition of the invention.

As used in the present application, the term "host" includes 35 mammals. In a further embodiment, the mammal is human.

In a particular embodiment, pharmaceutical compositions are administered to those hosts at risk of <u>streptococcus</u> infection such as infants, elderly and immunocompromised hosts.

Pharmaceutical compositions are preferably in unit dosage form of about 0.001 to 100 $\mu g/kg$ (antigen/body weight) and more preferably 0.01 to 10 $\mu g/kg$ and most preferably 0.1 to 1 $\mu g/kg$ 1 to 3 times with an interval of about 1 to 6 week intervals 5 between immunizations.

Pharmaceutical compositions are preferably in unit dosage form of about 0.1 μg to 10 mg and more preferably 1 μg to 1 mg and most preferably 10 to 100 μg 1 to 3 times with an interval of about 1 10 to 6 week intervals between immunizations.

According to another aspect, there are provided polynucleotides encoding polypeptides characterized by the amino acid sequence comprising SEQ ID NO: 2 or fragments or analogs thereof.

15

- In one embodiment, polynucleotides are those illustrated in SEQ ID No: 1 which may include the open reading frames (ORF), encoding the polypeptides of the invention.
- 20 It will be appreciated that the polynucleotide sequences illustrated in the figures may be altered with degenerate codons yet still encode the polypeptides of the invention. Accordingly the present invention further provides polynucleotides which hybridize to the polynucleotide sequences herein above described
- 25 (or the complement sequences thereof) having 50% identity between sequences. In one embodiment, at least 70% identity between sequences. In one embodiment, at least 75% identity between sequences. In one embodiment, at least 80% identity between sequences. In one embodiment, at least 85% identity
 - 30 between sequences. In one embodiment, at least 90% identity between sequences. In a further embodiment, polynucleotides are hybridizable under stringent conditions i.e. having at least 95% identity. In a further embodiment, more than 97% identity.
 - 35 Suitable stringent conditions for hybridation can be readily determined by one of skilled in the art (see for example Sambrook et al., (1989) Molecular cloning: A Laboratory Manual, 2nd ed, Cold Spring Harbor, N.Y.; Current Protocols in Molecular

Biology, (פעענ) Edited by Ausubel F.M. et al., John Wiley & Sons, Inc., N.Y.).

- In a further embodiment, the present invention provides 5 polynucleotides that hybridize under stringent conditions to either
 - (a) a DNA sequence encoding a polypeptide or
 - (b) the complement of a DNA sequence encoding a polypeptide;
- 10 wherein said polypeptide comprises SEQ ID NO: 2, or fragments or analogs thereof.
- In a further embodiment, the present invention provides polynucleotides that hybridize under stringent conditions to 15 either
 - (a) a DNA sequence encoding a polypeptide or
 - (b) the complement of a DNA sequence encoding a polypeptide;

wherein said polypeptide comprises SEQ ID NO: 2.

20

- In a further embodiment, the present invention provides polynucleotides that hybridize under stringent conditions to either
 - (a) a DNA sequence encoding a polypeptide or
- polypeptide;

wherein said polypeptide comprises at least 10 contiguous amino acid residues from a polypeptide comprising SEQ ID NO: 2, or fragments or analogs thereof.

30

- In a further embodiment, the present invention provides polynucleotides that hybridize under stringent conditions to either
 - (a) a DNA sequence encoding a polypeptide or
- 35 (b) the complement of a DNA sequence encoding a polypeptide;

wherein said polypeptide comprises at least 10 contiguous amino acid residues from a polypeptide comprising SEQ ID NO: 2.

in a further embodiment, polynucleotides are those encoding polypeptides of the invention illustrated in SEQ ID NO: 2 or fragments or analogs thereof.

5 In a further embodiment, polynucleotides are those illustrated in SEQ ID NO: 1 encoding polypeptides of the invention or fragments or analogs thereof.

In a further embodiment, polynucleotides are those encoding 10 polypeptides of the invention illustrated in SEQ ID NO: 2.

In a further embodiment, polynucleotides are those illustrated in SEQ ID NO: 1 encoding polypeptides of the invention.

15 As will be readily appreciated by one skilled in the art, polynucleotides include both DNA and RNA.

The present invention also includes polynucleotides complementary to the polynucleotides described in the present 20 application.

In a further, aspect, polynucleotides encoding polypeptides of the invention, or fragments, analogs or derivatives thereof, may be used in a DNA immunization method. That is, they can be 25 incorporated into a vector which is replicable and expressible upon injection thereby producing the antigenic polypeptide in vivo. For example polynucleotides may be incorporated into a plasmid vector under the control of the CMV promoter which is functional in eukaryotic cells. Preferably the vector is 30 injected intramuscularly.

According to another aspect, there is provided a process for producing polypeptides of the invention by recombinant techniques by expressing a polynucleotide encoding said 35 polypeptide in a host cell and recovering the expressed polypeptide product. Alternatively, the polypeptides can be produced according to established synthetic chemical techniques i.e. solution phase or solid phase synthesis of oligopeptides which are ligated to produce the full polypeptide (block 40 ligation).

General methods for obtention and evaluation of polynucleotides and polypeptides are described in the following references: Sambrook et al, Molecular Cloning: A Laboratory Manual, 2nd ed, 5 Cold Spring Harbor, N.Y., 1989; Current Protocols in Molecular Biology, Edited by Ausubel F.M. et al., John Wiley and Sons, Inc. New York; PCR Cloning Protocols, from Molecular Cloning to Genetic Engineering, Edited by White B.A., Humana Press, Totowa, New Jersey, 1997, 490 pages; Protein Purification, Principles and Practices, Scopes R.K., Springer-Verlag, New York, 3rd Edition, 1993, 380 pages; Current Protocols in Immunology, Edited by Coligan J.E. et al., John Wiley & Sons Inc., New York which are herein incorporated by reference.

15 For recombinant production, host cells are transfected with vectors which encode the polypeptide, and then cultured in a nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the genes. vectors are those that are viable and replicable in the chosen 20 host and include chromosomal, non-chromosomal and synthetic DNA sequences e.g. bacterial plasmids, phage DNA, baculovirus, yeast plasmids, vectors derived from combinations of plasmids and phage DNA. The polypeptide sequence may be incorporated in the vector at the appropriate site using restriction enzymes such 25 that it is operably linked to an expression control region comprising a promoter, ribosome binding site (consensus region or Shine-Dalgarno sequence), and optionally an operator (control element). One can select individual components of expression control region that are appropriate for a given host 30 and vector according to established molecular biology principles (Sambrook et al, Molecular Cloning: A Laboratory Manual, 2nd ed, Cold Spring Harbor, N.Y., 1989; Current Protocols in Molecular Biology, Edited by Ausubel F.M. et al., John Wiley and Sons, Inc. New York incorporated herein by reference). 35 promoters include but are not limited to LTR or SV40 promoter, E.coli lac, tac or trp promoters and the phage lambda P. promoter. Vectors will preferably incorporate an origin of replication as well as selection markers i.e. ampicilin resistance gene. Suitable bacterial vectors include pET, pQE70, 40 pQE60, pQE-9, pD10 phagescript, psiX174, pbluescript SK, pbsks,

pnhsa, pnhioa, pnhisa, pnhioa, ptroya, pkk233-3, pkk233-3, pproperty, pproperty, property, prope

Upon expression of the polypeptide in culture, cells are typically harvested by centrifugation then disrupted by physical 10 or chemical means (if the expressed polypeptide is not secreted into the media) and the resulting crude extract retained to isolate the polypeptide of interest. Purification of the polypeptide from culture media or lysate may be achieved by established techniques depending on the properties of the 15 polypeptide i.e. using ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, hydroxylapatite chromatography and lectin chromatography. Final purification may be achieved using 20 HPLC.

The polypeptides may be expressed with or without a leader or secretion sequence. In the former case the leader may be removed using post-translational processing (see US 4,431,739; 25 US 4,425,437; and US 4,338,397 incorporated herein by reference) or be chemically removed subsequent to purifying the expressed polypeptide.

According to a further aspect, the streptococcal polypeptides of 30 the invention may be used in a diagnostic test for <u>Streptococcus</u> infection, in particular <u>S. pyogenes</u> infection. Several diagnostic methods are possible, for example detecting <u>Streptococcus</u> organism in a biological sample, the following procedure may be followed:

a) obtaining a biological sample from a host;

35

b) incubating an antibody or fragment thereof reactive with a <u>Streptococcus</u> polypeptide of the invention with the biological sample to form a mixture; and

c) detecting specifically bound antibody or bound fragment in the mixture which indicates the presence of Streptococcus.

- 5 Alternatively, a method for the detection of antibody specific to a <u>Streptococcus</u> antigen in a biological sample containing or suspected of containing said antibody may be performed as follows:
 - a) obtaining a biological sample from a host;

15

30

35

- b) incubating one or more <u>Streptococcus</u> polypeptides of the invention or fragments thereof with the biological sample to form a mixture; and
 - c) detecting specifically bound antigen or bound fragment in the mixture which indicates the presence of antibody specific to <u>Streptococcus</u>.

One of skill in the art will recognize that this diagnostic test may take several forms, including an immunological test such as an enzyme-linked immunosorbent assay (ELISA), a radioimmunoassay 20 or a latex agglutination assay, essentially to determine whether antibodies specific for the protein are present in an organism.

The DNA sequences encoding polypeptides of the invention may also be used to design DNA probes for use in detecting the 25 presence of Streptococcus in a biological sample suspected of containing such bacteria. The detection method of this invention comprises:

- a) obtaining the biological sample from a host;
- b) incubating one or more DNA probes having a DNA sequence encoding a polypeptide of the invention or fragments thereof with the biological sample to form a mixture; and
 - c) detecting specifically bound DNA probe in the mixture which indicates the presence of <u>Streptococcus</u> bacteria.

The DNA probes of this invention may also be used for detecting circulating <u>Streptococcus</u> i.e. <u>S. pyogenes</u> nucleic acids in a sample, for example using a polymerase chain reaction, as a method of diagnosing <u>Streptococcus</u> infections. The probe may be 40 synthesized using conventional techniques and may be immobilized

on a solid phase, or may be labelled with a detectable label. A preferred DNA probe for this application is an oligomer having a sequence complementary to at least about 6 contiguous nucleotides of the <u>S. pyogenes</u> polypeptides of the invention.

5

10

15

Another diagnostic method for the detection of <u>Streptococcus</u> in a host comprises:

a) labelling an antibody reactive with a polypeptide of the invention or fragment thereof with a detectable label;

- b) administering the labelled antibody or labelled fragment to the host; and
- c) detecting specifically bound labelled antibody or labelled fragment in the host which indicates the presence of <u>Streptococcus</u>.

According to one aspect, the present invention provides the use of an antibody for treatment and/or prophylaxis of streptococcal infections.

20

A further aspect of the invention is the use Streptococcus polypeptides of the invention as immunogens for the production of specific antibodies for the diagnosis and in particular the treatment of streptococcus infection. 25 antibodies may be determined using appropriate screening methods, for example by measuring the ability of a particular antibody to passively protect against streptococcus infection in a test model. One example of an animal model is the mouse model described in the examples herein. The antibody may be a whole 30 antibody or an antigen-binding fragment thereof and may belong to any immunoglobulin class. The antibody or fragment may be of animal origin, specifically of mammalian origin and more specifically of murine, rat or human origin. It may be a natural antibody or a fragment thereof, or if desired, a 35 recombinant antibody or antibody fragment. The term recombinant antibody or antibody fragment means antibody or antibody fragment which was produced using molecular biology techniques. The antibody or antibody fragments may be polyclonal, or preferably monoclonal. It may be specific for a number of

epitopes associated with the \underline{s} , pyogenes polypeptides but is preferably specific for one.

A further aspect of the invention is the use of the antibodies 5 directed to the polypeptides of the invention for passive immunization. One could use the antibodies described in the present application.

A further aspect of the invention is a method for immunization, 10 whereby an antibody raised by a polypeptide of the invention is administered to a host in an amount sufficient to provide a passive immunization.

In a further embodiment, the invention provides the use of a 15 pharmaceutical composition in the manufacture of a medicament for the prophylactic or therapeutic treatment of streptococcal infection.

In a further embodiment, the invention provides a kit comprising 20 a polypeptide of the invention for detection or diagnosis of streptococcal infection.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one 25 of ordinary skill in the art to which this invention belongs. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the 30 materials, methods, and examples are illustrative only and not intended to be limiting.

EXAMPLE 1

35 This example illustrates the cloning and molecular characteristics of BVH-P7 gene and corresponding polypeptide.

The coding region of <u>S. pyogenes BVH-P7</u> (SEQ ID NO: 1) gene was amplified by PCR (Robocycler Gradient 96 Temperature cycler, 40 Stratagene, LaJolla, CA) from genomic DNA of serotype M1 <u>S.</u>

- pyogenes strain ATCC700294 using the following
 oligonucleotide primers that contained base extensions for
 the addition of restriction sites NdeI (CATATG) and NotI
 (GCGGCCGC): DMAR293 (SEQ ID NO: 9) and DMAR294
- 5 (SEQ ID NO: 10), which are presented in Table 1. PCR products were purified from agarose gel using a QIAquick gel extraction kit from QIAgen following the manufacturer's instructions (Chatsworth, CA), and digested with NdeI and NotI (Amersham Pharmacia Biotech Inc, Baie D'Urfé, Canada).
- The pET-21b(+) vector (Novagen, Madison, WI) was digested with NdeI and NotI and purified from agarose gel using a QIAquick gel extraction kit from QIAgen (Chatsworth, CA). The NdeI-NotI PCR products were ligated to the NdeI-NotI pET-21b(+) expression vector. The ligated products were
- transformed in E. coli strain DH5•[Φ80dlacZΔM15 Δ(lacZYA-argF)U169 endA1 recA1 hsdR17(r_K-m_K+) deoR thi-1 supE44 λ⁻gyrA96 relA1] (Gibco BRL, Gaithersburg, MD) according to the method of Simanis (Hanahan, D. DNA Cloning, 1985, D.M. Glover (ed), pp. 109-135). Recombinant pET-21b(+) plasmid
- 20 (rpET21b(+)) containing BVH-P7 gene was purified using a QIAgen plasmid kit (Chatsworth, CA) and DNA insert was sequenced (Taq Dye Deoxy Terminator Cycle Sequencing kit, ABI, Foster City, CA).

Table 1. Oligonucleotide primers used for PCR amplifications of <u>S. pyogenes</u> BVH-P7 gene

Genes	Primers	Restriction	Vector	Sequence
	I.D.	site		
	(SEQ ID			
	NO)		{	
BVH-P7	DMAR293	NdeI	pET21b	5'-
	(3)			GTAGTCACCCACCATATGGAAGTTTTTAG-
	(SEQ ID			3'
1	NO: 9)			
BVH-P7	DMAR294	NotI	pET21b	5'~
	(4)			TTTTTTTTTGCGGCCGCAGTTATTAGT-
	(SEQ ID			31
	NO: 10)			
BVH-P7	DMAR480a	BamHI	pCMV-	5'-GGGGATCCCACCCACAATCAGG-3'
	(5)		GH	
	(SEQ ID	 -		
	NO: 11)			
BVH-P7	DMAR481a	Sall	pCMV-	5'-
	(6)		GH	GGTTGTCGACAGTAAAGCAACGCTAGTG-
	(SEQ ID			3'
	NO: 12)	* ******	tan yan en	

It was determined that the 3027-bp including a

5 stop codon (TAA) open reading frame (ORF) of BVH-P7 encodes
a 1008 amino-acid-residues polypeptide with a predicted pI
of 6.18 and a predicted molecular mass of 111,494.44 Da.
Analysis of the predicted amino acid residues sequence (SEQ
ID NO: 2) using the PSORTII software (Real World Computing

10 Partnership (http://psort.nibb.ac.jp) suggested the
existence of a 21 amino acid residues signal peptide
(MKKHLKTVALTLTTVSVVTHN), which ends with a cleavage site

situated between an asparagine and a glutamine residues. Analysis of the amino-acid-residues sequence revealed the presence of a cell wall anchoring motif (LPXTGX) located between residues 974 and 981.

5 To confirm the presence by PCR amplification of BVH-P7 (SEQ ID NO: 1) gene, the following 4 serologically distinct S. pyogenes strains were used: the serotype M1 S. pyogenes strain ATCC700294 and the serotype M3 S. pyogenes strain ATCC12384 were obtained from the American 10 Type Culture Collection (Rockville, MD); the serotype M6 S. pyogenes SPY67 clinical isolate was provided by the Centre de recherche en infectiologie du Centre hospitalier de l'université Laval, Sainte-Foy; and S. pyogenes strain B514 which was initially isolated from a mouse was provided 15 by Susan Hollingshead, from University of Alabama, The E. coli strain XL1-Blue MRF' was used in these experiments as negative control. Chromosomal DNA was isolated from each S. pyogenes strain as previously described (Jayarao BM et al. 1991. J. Clin. Microbiol. 29:2774-2778). BVH-P7 (SEQ ID NO: 1) gene was amplified by PCR (Robocycler Gradient 96 Temperature cycler, Stratagene, LaJolla, CA) from the genomic DNA purified from the 4 S. pyogenes strains, and the control E. coli strain using the oligonucleotide primers DMAR293 (SEQ ID NO: 9) and 25 DMAR294 (SEQ ID NO: 10) (Table 1). PCR was performed with 30 cycles of 45 sec at 95°C, 45 sec at 50°C and 2 min at 72°C and a final elongation period of 7 min at 72°C. PCR products were size fractionated in 1% agarose gels and were visualized by ethidium bromide staining. The results 30 of these PCR amplifications are presented in Table 2. analysis of the amplification products revealed that BVH-P7 (SEQ ID NO: 1) gene was present in the genome of all of the

4 S. pyogenes strains tested. No such product was detected

when the control \underline{E} . $\underline{\operatorname{coli}}$ DNA was submitted to identical PCR amplifications with these oligonucleotide primers.

Table 2. Identification of <u>S. pyogenes BVH-P7</u> gene by PCR amplification in the genome of four serologically distinct <u>S. pyogenes</u> strains

Strain Identification	Identification of BVH-P7 gene
ATCC700294 (M1)	+
ATCC12384 (M3)	+
SPY67 (M6)	+
B514*	+
E. coli XL1 Blue MRF'	-

^{*} Mouse isolate

EXAMPLE 2

This example illustrates the cloning of S.

10 pyogenes BVH-P7 gene in CMV plasmid pCMV-GH.

The DNA coding region of <u>S. pyogenes</u> protein was inserted in phase downstream of a human growth hormone (hGH) gene which was under the transcriptional control of the cytomegalovirus (CMV) promotor in the plasmid vector pCMV-GH (Tang et al., Nature, 1992, 356:152). The CMV promotor is a non functional plasmid in <u>E. coli</u> cells but active upon administration of the plasmid in eukaryotic cells. The vector also incorporated the ampicillin resistance gene.

The coding regions of BVH-P7 (SEQ ID NO: 1) gene without its leader peptide region was amplified by PCR (Robocycler Gradient 96 Temperature cycler, Stratagene, LaJolla, CA) from genomic DNA of serotype M1 S. pyogenes strain ATCC700294 using oligonucleotide primers DMAR480a (SEQ ID NO: 11) and DMAR481a (SEQ ID NO: 12) that contained base extensions for the addition of restriction sites BamHI (GGATCC) and SalI (GTCGAC) which are described in Table 1. The PCR products were purified from agarose gel using a 10 QIAquick gel extraction kit from QIAgen (Chatsworth, CA), digested with restriction enzymes (Amersham Pharmacia Biotech Inc, Baie d'Urfé, Canada). The pCMV-GH vector (Laboratory of Dr. Stephen A. Johnston, Department of Biochemistry, The University of Texas, Dallas, Texas) was 15 digested with BamHI and SalI and purified from agarose gel using the QIAquick gel extraction kit from QIAgen (Chatsworth, CA). The BamHI-SalI DNA fragment was ligated to the BamHI-SalI-pCMV-GH vector to create the hGH-BVH-P7 fusion protein under the control of the CMV promoter. 20 ligated product was transformed into E. coli strain DH5•[\$00dlacZΔM15 Δ(lacZYA-argF)U169 endA1 recA1 hsdR17(r_K-m_K+) deoR thi-1 supE44 λ gyrA96 relA1] (Gibco BRL, Gaithersburg, MD) according to the method of Simanis (Hanahan, D. DNA Cloning, 1985, D.M. Glover (ed), pp. 109-The recombinant pCMV plasmid was purified using a 25 135). QIAgen plasmid kit (Chatsworth, CA) and the nucleotide sequence of the DNA insert was verified by DNA sequencing.

EXAMPLE 3

This example illustrates the use of DNA to elicit an immune response to \underline{S} . pyogenes BVH-P7 protein antigen.

Groups of 8 female BALB/c mice (Charles River, St-Constant, Québec, Canada) were immunized by intramuscular injection of 100 μ l three times at two- or three-week intervals with 50 μ g of

recombinant pcmv-GH encoding <u>BVH-P7</u> (SEQ 1D NO: 1) gene in presence of 50 μg of granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing plasmid pCMV-GH-GM-CSF (Laboratory of Dr. Stephen A. Johnston, Department of Biochemistry, The 5 University of Texas, Dallas, Texas). As control, groups of mice were injected with 50 μg of pCMV-GH in presence of 50 μg of pCMV-GH-GM-CSF. Blood samples were collected from the orbital sinus prior to each immunization and seven days following the third injection and serum antibody responses were determined by 10 ELISA using the BVH-P7 His-tagged labeled <u>S. pyogenes</u> recombinant protein as coating antigen. The production and purification of this BVH-P7 His-tagged labeled <u>S. pyogenes</u> recombinant protein is presented in Example 4.

15

EXAMPLE 4

This example illustrates the production and purification of \underline{S} . $\underline{\text{pyogenes}}$ BVH-P7 recombinant protein.

- 20 The recombinant pET-21b(+)plasmid with <u>BVH-P7</u> (SEQ ID NO: 1) gene was used to transform by electroporation (Gene Pulser II apparatus, BIO-RAD Labs, Mississauga, Canada) <u>E. coli</u> strain Tuner (DE3) (FompT hsdS_B (r'_Em'_B) gal dcm lacYI (DE3)) (Novagen, Madison, WI). In this strain of <u>E. coli</u>, the T7 promotor
- 25 controlling expression of the recombinant protein is specifically recognized by the T7 RNA polymerase (present on the λDE3 prophage) whose gene is under the control of the lac promotor which is inducible by isopropyl-β-d-thiogalactopyranoside (IPTG). The transformants Tuner (DE3)/rpET21
 - 30 (+) were grown at 37°C with agitation at 250 rpm in LB broth (peptone 10g/L, yeast extract 5g/L, NaCl 10g/L) containing 100 μ g of carbenicillin (Sigma-Aldrich Canada Ltd., Oakville, Canada) per ml until the A_{600} reached a value of 0.6. In order to induce the production of BVH-P7 His-tagged S. pyogenes
 - 35 recombinant protein, the cells were incubated for 3 additional hours in the presence of IPTG at a final concentration of 0.1 mM. Induced cells from a 500 ml culture were pelleted by centrifugation and frozen at -70°C.

The purification of the BVH-P7 His-tagged recombinant protein

the non-soluble rraction of IPTG-induced rrom (DE3)/rpET21b(+) was done by affinity chromatography based on the properties of the His • Tag sequence (6 consecutive histidine residues) to bind to divalent cations (Ni2+) immobilized on the 5 His Bind metal chelation resin. Briefly, the pelleted cells obtained from a 500 mL culture induced with IPTG was resuspended in lysis buffer (20 mM Tris, 500 mM NaCl, 10 mM imidazole, pH 7.9) containing 6M Guanidine-HCl, sonicated and centrifuged at 12,000 X g for 20 min to remove debris. The supernatant was 10 incubated with Ni-NTA agarose resin (Qiagen, Mississauga, Ontario, Canada) for 45 min at 4°C. The BVH-P7 His-tagged S. pyogenes recombinant protein was eluted from the resin with a solution containing 6M Guanidine-HCl and 250 mM imidazole-500mM NaCl-20 mM Tris, pH 7.9. The removal of the salt and imidazole 15 from the samples was done by dialysis against 10mM Tris and 0.9% NaCl, pH 7.9 overnight at 4°C. The amount of recombinant protein was estimated by MicroBCA (Pierce, Rockford, Illinois).

20 EXAMPLE 5

This example illustrates the reactivity of the BVH-P7 His-tagged <u>S. pyogenes</u> recombinant protein with human sera and sera collected from mice after immunization with <u>S. pyogenes</u> antigenic preparations.

As shown in Table 3, purified His-tagged BVH-P7 recombinant protein was recognized in immunoblots by the antibodies present in the pool of normal sera. This is an important result since it clearly indicates that human which are normally in contact with 30 S. pyogenes do develop antibodies that are specific to that protein. These particular human antibodies might be implicated in the protection against S. pyogenes infection. In addition, immunoblots also revealed that sera collected from mice immunized with S. pyogenes antigenic preparations enriched 35 membrane proteins which protected mice against lethal challenge also developed antibodies that recognized BVH-P7 His-tagged recombinant protein. This result indicates that this protein was present in S. pyogenes antigenic preparation that protected mice against infection and that this streptococcal protein induced

antipodies that reacted with the corresponding His-tagged recombinant protein.

5 Table 3. Reactivity in immunoblots of human sera and sera collected from mice after immunization with <u>S. pyogenes</u> antigenic preparations with BVH-P7 His-tagged recombinant protein.

Purified	Apparent	Reactivity in i	immunoblots with
recombinant protein I.D.	molecular weight (kDa) ²		
		Human sera'	Mouse sera
BVH-P7	110	+ .	+

¹BVH-P7 His-tagged recombinant protein produced and purified as 10 described in Example 7 was used to perform the immunoblots.

'Molecular weight of the BVH-P7 His-tagged recombinant protein was estimated after SDS-PAGE.

'Two sera collected from healthy human volunteers were pooled together and diluted 1/500 to perform the immunoblots.

15 Mouse sera collected after immunization with <u>S. pyogenes</u> antigenic preparations enriched memorane proteins were pooled and diluted 1/500 to perform the immunoblots. These mice were protected against a lethal <u>S. pyogenes</u> challenge.

20

EXAMPLE 6

This example illustrates the accessibility to antibodies of the \underline{S} . $\underline{pyogenes}$ BVH-P7 protein at the surface of intact streptococcal cells.

25

Bacteria were grown in Tood Hewitt (TH) broth (Difco Laboratories, Detroit, MI) with 0.5% Yeast extract (Difco Laboratories) and 0.5% peptone extract (Merck, Darmstadt, Germany) at 37°C in a 8% CO₂ atmosphere to give an OD_{490nm} of 0.600 30 (~10° CFU/ml). Dilutions of anti-BVH-P7 or control sera were then added and allowed to bind to the cells, which were incubated for 2 h at 4°C. Samples were washed 4 times in blocking buffer [phosphate-buffered saline (PBS) containing 2% bovine serum albumin (BSA)], and then 1 ml of goat fluorescein (FITC)-

conjugated anti-mouse lgG + LgM diluted in blocking buffer was added. After an additional incubation of 60 min at room temperature, samples were washed 4 times in blocking buffer and fixed with 0.25 % formaldehyde in PBS buffer for 18-24 h at 4°C. 5 Cells were washed 2 times in PBS buffer and resuspended in 500 $\mu 1$ of PBS buffer. Cells were kept in the dark at 4°C until analyzed by flow cytometry (Epics® XL; Beckman Coulter, Inc.). Ten thousands intact S. pyogenes cells were analyzed per sample and the results were expressed as percentage of labeled cells 10 and fluorescence index. The fluorescence index was calculated as the median fluorescence value obtained after labeling the streptococcal cells with an immune serum divided by the fluorescence value obtained for a control mouse serum. fluorescence value of 1 indicated that there was no binding of 15 antibodies at the surface of intact streptococcal cells.

Sera collected from eight mice immunized with BVH-P7 His-tagged recombinant protein were analyzed by cytofluorometry and the results are presented in Table 4. All of the sera collected 20 from mice immunized with purified BVH-P7 His-tagged protein contained BVH-P7-specific antibodies that efficiently recognized their corresponding surface exposed epitopes on the heterologous (ATCC12384; serotype M3) S. pyogenes strain tested. fluorescence index varied from 10 to 18. It was determined that 25 more than 97 % of the 10,000 <u>S. pyogenes</u> cells analyzed were labeled with the antibodies present in the BVH-P7 specific anti-These sera were also pooled and reacted with the following S. pyogenes strains: serotype M1 S. pyogenes strain ATCC 700294, serotype M3 and serotype M18 S. pyogenes strain 30 ATCC12357 were obtained from the American Туре Collection (Rockville, MD, USA); the serotype M6 S. pyogenes SPY69 and M2 S. pyogenes SPY68 clinical isolates were provided the Centre de recherche en infectiologie du hospitalier de l'université Laval, Sainte-Foy. The BVH-P7-35 specific antibodies present in the pool of sera collected after immunization with the purified His-tagged recombinant BVH-P7 protein attached at the bacterial surface of each of these streptococcal strains with fluorescence index between 4 up to 9. On the contrary, no labeling of the streptococcal cells were

noted when pools or sera collected from unimmunized or sham-immunized mice were used. These observations clearly demonstrate that the BVH-P7 protein is accessible at the surface where it can be easily recognized by antibodies. Anti-S. pyogenes 5 antibodies were shown to play an important role in the protection against S. pyogenes infection.

Table 4. Evaluation of the attachment of BVH-P7-specific 10 antibodies at the surface of intact cells of <u>S. pyogenes</u> ATCC12384 strain (serotype M3).

Serum Identification	Fluorescence Index2	% of labeled cells ³
S1 ¹	11	97
S2	11	97
S3	13	98
S4	16	99
S5	10	97
S6	12	97
S7	13 .	98
S8	18.	99
Pool of negative	1	9
control sera		
Positive control serum ⁵	12	98

The mice S1 to S8 were injected subcutaneously three times at three-week intervals with 20 μg of purified BVH-P7 recombinant protein mixed with 10 μg of QuilA adjuvant (Cedarlane l5 Laboratories, Hornby, Canada). The sera were diluted 1/50.

- The fluorescence index was calculated as the median fluorescence value obtained after labeling the streptococcal cells with an immune serum divided by the fluorescence value obtained for a control mouse serum. A fluorescence value of 1 indicated that there was no binding of antibodies at the surface
- 20 indicated that there was no binding of antibodies at the surface of intact streptococcal cells.
 - '% of streptococcal labeled cells out of the 10,000 cells analyzed.
- 'Sera collected from unimmunized or sham-immunized mice were 25 pooled diluted 1/50 and used as negative controls for this assay.

serum optained from a mouse immunized with 20 μg of purified streptococcal recombinant M protein, a well known surface protein, was diluted 1/200 and was used as a positive control for the assay.

5

EXAMPLE 7

This example illustrates the protection against fatal <u>S.</u> <u>pyogenes</u> infection induced by passive immunization of mice with 10 rabbit hyper-immune sera.

New Zealand rabbits (Charles River laboratories, St-Constant, Canada) were injected subcutaneously at multiple sites with 50 μg and 100 μg of the BVH-P7 His-tagged recombinant protein that 15 was produced and purified as described in Example 4 and adsorbed to Alhydrogel adjuvant (Superfos Biosector a/s). Rabbits were immunized three times at three-week intervals with the BVH-P7 His-tagged recombinant protein. Blood samples were collected three weeks after the third injection. The antibodies present 20 in the serum were purified by precipitation using 40% saturated ammonium sulfate. Groups of 10 female CD-1 mice (Charles River) were injected intravenously with 500 μ l of purified serum collected from rabbits immunized with the BVH-P7 His-tagged recombinant protein, or rabbits immunized with an unrelated 25 control recombinant protein. Eighteen hours later the mice were challenged with approximately 2x107 CFU of the type 3 S. pyogenes strain ATCC12384. Samples of the S. pyogenes challenge inoculum were plated on blood agar plates to determine the CFU and to verify the challenge dose. Deaths were recorded for a period of 30 5 days.

EXAMPLE 8

This example illustrates the protection of mice against fatal <u>S.</u> 35 <u>pyogenes</u> infection induced by immunization with purified recombinant BVH-P7 protein.

Groups of 8 female Balb/c mice (Charles River, St-Constant, Québec, Canada) were immunized subcutaneously three times at 40 two-week intervals with 20 μg of affinity purified BVH-P7 His-

tagged recombinant protein in presence of 10 µg of Quila adjuvant (Cedarlane Laboratories Ltd, Hornby, Canada) or, as control, with Quila adjuvant alone in PBS. Blood samples were collected from the orbital sinus on day 1, 14 and 28 prior to 5 each immunization and two weeks (day 42) following the third injection. One week later the mice were challenged with approximately 3x10⁶ CFU of the type 3 S. pyogenes strain ATCC 12384. Samples of the S. pyogenes challenge inoculum were plated on blood agar plates to determine the CFU and to verify 10 the challenge dose. Deaths were recorded for a period of 7 days. Four of eight mice immunized with purified recombinant BVH-P7 protein were protected against the lethal challenge, compared to only 12 % (1/8) of mice which received the adjuvant alone (Table 1).

15

Table 5. Ability of recombinant BVH-P7 protein to elicit protection against GAS strain ATCC 12384 (Type 3).

the entropy will be the complete of the complete the entropy and the complete probability of the complete and pro-

Immunogen	No. mice surviving	% survival
20 μg BVH-P7 + 10% QuilA	4/8	50
QuilA adjuvant alone in PBS	1/8	1,2

SEQUENCE LISTING

```
<110> Shire Biochem Inc.
        Streptococcus pyogenes polypeptides and corresponding DNA fragments
 <130>
        74872-76
 <140> PCT/CA02/00207
 <141>
        2002-02-21
 <150>
        USSN 60/269,840
 <151>
        2001-02-21
 <160>
        1.2
 <170> PatentIn version 3.0
 <210>
 <211>
       3027
 <212>
       DNA
 <213>
       Streptococcus pyogenes strain ATCC700294
<400> 1
atgaagaaac atcttaaaac agttgccttg accctcacta cagtatcggt agtcacccac
                                                                       60
aatcaggaag titttagitt agicaaagag ccaattotta aacaaactca agettottca
                                                                       120
togatttotg gogotgacta ogoagaaagt agoggtaaaa goaagttaaa gattaatgaa
                                                                       180
acttetggee etgttgatga tacagteact gaettatttt eggataaaeg tactaeteet
                                                                      240
gaaaaaataa aagataatet tgetaaaggt eegagagaac aagagttaaa ggeagtaaca
                                                                       300
gagaatacag aatcagaaaa gcagatcact totggatoto aactagaaca atcaaaagag
                                                                       360
tetetttett taaataaaac agtgeeatca aegtetaatt gggagatttg tgattttatt
                                                                      420
actaagggga ataccettgt tggtetttca aaatcaggtg ttgaaaagtt atetcaaact
                                                                      480
gatcatctcg tattgcctag tcaagcagca gatggaactc aattgataca agtagctagt
                                                                      540
tttgctttta ctccagataa aaagacggca attgcagaat ataccagtag ggctggagaa
                                                                      600
aatggggaaa taagccaact agatgtggat ggaaaagaaa ttattaacga aggtgaggtt
                                                                      660
tttaattett atetaetaaa gaaggtaaca ateceaactg gttataaaca tattggtcaa
                                                                      720
gatgottttg tggacaataa gaatattgot gaggttaato ttootgaaag ootogagact
                                                                      780
atttctgact atgcttttgc tcacctagct ttgaaacaga tcgatttgcc agataattta
                                                                      840
aaagcgattg gagaattagc tttttttgat aatcaaatta caggtaaact ttctttgcca
                                                                      900
cgtcagttaa tgcgattagc agaacgtgct tttaaatcaa accatatcaa aacaattgag
                                                                      960
tttagaggaa atagtotaaa agtgataggg gaagotagtt ttcaagataa tgatotgagt
                                                                     1020
caactaatgc tacctgacgg tettgaaaaa atagaatcag aagettttac aggaaateca
                                                                     1080
ggagatgatc actacaataa ccgtgttgtt ttgtggacaa aatctggaaa aaatccttct
                                                                     1140
ggtcttgcta ctgaaaatac ctatgttaat cctgataagt cactatggca ggaaagtcct
                                                                     1200
gagattgatt atactaaatg gttagaggaa gattttacct atcaaaaaaa tagtgttaca
                                                                     1260
ggtttttcaa ataaaggctt acaaaaagta aaacgtaata aaaacttaga aattccaaaa
                                                                     1320
cagcacaatg gtgttactat tactgaaatt ggtgataatg cttttcgcaa tgttgatttt
                                                                     1380
caaaataaaa ctttacgtaa atatgatttg gaagaagtaa agcttccctc aactattcgg
                                                                     1440
aaaataggtg cttttgcttt tcaatctaat aacttgaaat cttttgaagc aagtgacgat
                                                                     1500
ttagaagaga ttaaagaggg agcctttatg aataatcgta ttgaaacctt ggaattaaaa
                                                                     1560
gataaattag ttactattgg tgatgcggct ttccatatta atcatatta tgccattgtt
                                                                     1620
cttccagaat ctgtacaaga aatagggcgt tcagcatttc ggcaaaatgg tgcaaataat
                                                                     1680
cttattttta tgggaagtaa ggttaagacc ttaggtgaga tggcattttt atcaaataga
                                                                     1740
cttgaacatc tggatctttc tgagcaaaaa cagttaacag agattcctgt tcaagccttt
                                                                     1800
tcagacaatg ccttgaaaga agtattatta ccagcatcac tgaaaacgat tcgagaagaa
                                                                     1860
goottcaaaa agaatcattt aaaacaactg gaagtggcat ctgccttgtc ccatattgct
                                                                     1920
tttaatgctt tagatgataa tgatggtgat gaacaatttg ataataaagt ggttgttaaa
                                                                     1980
acgcatcata attoctacgc actagcagat ggtgagcatt ttatcgttga tccagataag
```

```
ttatcttcta caatagtaga ccttgaaaag attttaaaac taatcgaagg tttagattat
totacattac gtcagactac tcaaactcag tttagagaca tgactactgc aggtaaagcg
                                                                     2100
ttgttgtcaa aatctaacct ccgacaagga gaaaaacaaa aattccttca agaagcacaa
                                                                     2160
                                                                     2220
tttttccttg gccgcgttga tttggataaa gccatagcta aagctgagaa ggctttagtg
accaagaagg caacaaagaa tggtcagttg cttgaaagaa gtattaacaa agcggtatta
                                                                     2280
gettataata atagegetat taaaaaaget aatgttaage gettggaaaa agagttagae
                                                                     2340
                                                                     2400
ttgctaacag gattagttga gggaaaagga ccattagcgc aagctacaat ggtacaagga
gtttatttat taaagacgcc tttgccattg ccagaatatt atatcggatt gaacgtttat
                                                                     2460
tttgacaagt ctggaaaatt gatttatgca cttgatatga gtgatactat tggcgaggga
                                                                     2520
caaaaagacg cttatggtaa tootatatta aatgttgacg aggataatga aggttatcat
                                                                     2580
                                                                     2640
gccttggcag ttgccacttt agctgattat gaggggctcg acatcaaaac aattttaaat
agtaagetta gteaattaae atetattegt caggtacega etgeageeta teatagagee
                                                                     2700
ggtattttcc aagctatcca aaatgcagcg gcagaagcag agcagttatt gcctaaacca
                                                                     2760
ggtacgcact ctgagaagtc aagctcaagt gaatctgcta actctaaaga tagaggattg
                                                                     2820
                                                                     2880
caatcaaacc caaaaacgaa tagaggacga cactctgcaa tattgcctag gacagggtca
aaaggcaget ttgtctatgg aatettaggt tacactageg ttgctttact gtcactaata
                                                                     2940
                                                                     3000
actgctataa aaaagaaaaa atattaa
                                                                     3027
```

<210> 2 <211> 969

<212> PRT

<213> Streptococcus pyogenes strain ATCC700294

<400> 2

Val Lys Glu Pro Ile Leu Lys Gln Thr Gln Ala Ser Ser Ser Ile Ser 1 5 10 15

Gly Ala Asp Tyr Ala Glu Ser Ser Gly Lys Ser Lys Leu Lys Ile Asn 20 25 30

Glu Thr Ser Gly Pro Val Asp Asp Thr Val Thr Asp Leu Phe Ser Asp 35 40 45

Lys Arg Thr Thr Pro Glu Lys Ile Lys Asp Asn Leu Ala Lys Gly Pro
50 55 60

Arg Glu Gln Glu Leu Lys Ala Val Thr Glu Asn Thr Glu Ser Glu Lys
65 70 75 80

Gln Ile Asn Ser Gly Ser Gln Leu Glu Gln Ser Lys Glu Ser Leu Ser 85 90 95

Leu Asn Lys Arg Val Pro Ser Thr Ser Asn Trp Glu Ile Cys Asp Phe
100 105 110

Ile Thr Lys Gly Asn Thr Leu Val Gly Leu Ser Lys Ser Gly Val Glu 115 120 125

Lys Leu Ser Gln Thr Asp His Leu Val Leu Pro Ser Gln Ala Ala Asp 130 135 140

Gly Thr Gln Leu Ile Gln Val Ala Ser Phe Ala Phe Thr Pro Asp Lys 150 155 160

Lys Thr Ala Ile Ala Glu Tyr Thr Ser Arg Ala Gly Glu Asn Gly Glu 165 170 175

Ile Ser Gln Leu Asp Val Asp Gly Lys Glu Ile Ile Asn Glu Gly Glu 180 185 190

Val	Phe	Asn	Ser	Tyr	Leu	Leu	Lys	Lys	Va1	Thr	Ile	Pro	Thr	Gly	Tyr	
		195					200					205		•	-2-	

Lys His Ile Gly Gln Asp Ala Phe Val Asp Asn Lys Asn Ile Ala Glu 210 215 220

Val Asn Leu Pro Glu Ser Leu Glu Thr Ile Ser Asp Tyr Ala Phe Ala 225 230 235 240

His Leu Ala Leu Lys Gln Ile Asp Leu Pro Asp Asn Leu Lys Ala Ile 245 250 255

Gly Glu Leu Ala Phe Phe Asp Asn Gln Ile Thr Gly Lys Leu Ser Leu 260 265 270

Pro Arg Gln Leu Met Arg Leu Ala Glu Arg Ala Phe Lys Ser Asn His 275 280 285

Ile Lys Thr Ile Glu Phe Arg Gly Asn Ser Leu Lys Val Ile Gly Glu 290 295 300

Ala Ser Phe Gln Asp Asn Asp Leu Ser Gln Leu Met Leu Pro Asp Gly 305 310 315 320

Leu Glu Lys Ile Glu Ser Glu Ala Phe Thr Gly Asn Pro Gly Asp Asp 325 330 335

His Tyr Asn Asn Arg Val Val Leu Trp Thr Lys Ser Gly Lys Asn Pro 340 345 350

Tyr Gly Leu Ala Thr Glu Asn Thr Tyr Val Asn Pro Asp Lys Ser Leu 355 360 365

Trp Gln Glu Ser Pro Glu Ile Asp Tyr Thr Lys Trp Leu Glu Glu Asp 370 380

Phe Thr Tyr Gln Lys Asn Ser Val Thr Gly Phe Ser Ser Lys Gly Leu 385 390 395 400

Gln Lys Val Lys Arg Asn Lys Asn Leu Glu Ile Pro Lys Gln His Asn 405 410 415

Phe Gln Asn Lys Thr Leu Arg Lys Tyr Asp Leu Glu Glu Val Lys Leu 435

Pro Ser Thr Ile Arg Lys Ile Gly Ala Phe Ala Phe Gln Ser Asn Asn 450 455 460

Leu Lys Ser Phe Glu Ala Ser Asp Asp Leu Glu Glu Ile Lys Glu Gly 465 470 475 480

Ala Phe Met Asn Asn Arg Ile Glu Thr Leu Glu Leu Lys Asp Lys Leu
485 490 495

Val Thr Ile Gly Asp Ala Ala Phe His Ile Asn His Ile Tyr Ala Ile 500 505 510

Val Leu Pro Glu Ser Val Gln Glu Ile Gly Arg Ser Ala Phe Arg Gln 520 Asn Gly Ala Asn Asn Leu Ile Phe Met Gly Ser Lys Val Lys Thr Leu 535 Gly Glu Met Ala Phe Leu Ser Asn Arg Leu Glu His Leu Asp Leu Ser 545 550 Glu Gln Lys Gln Leu Thr Glu Ile Pro Val Gln Ala Phe Ser Asp Asn 570 Ala Leu Lys Glu Val Leu Leu Pro Ala Ser Leu Lys Thr Ile Arg Glu 585 Glu Ala Phe Lys Lys Asn His Leu Lys Gln Leu Glu Val Ala Ser Ala Leu Ser His Ile Ala Phe Asn Ala Leu Asp Asp Asn Asp Gly Asp Glu Gln Phe Asp Asn Lys Val Val Lys Thr His His Asn Ser Tyr Ala Leu Ala Asp Gly Glu His Phe Ile Val Asp Pro Asp Lys Leu Ser Ser 650 Thr Ile Val Asp Leu Glu Lys Ile Leu Lys Leu Ile Glu Gly Leu Asp Tyr Ser Thr Leu Arg Gln Thr Thr Gln Thr Gln Phe Arg Asp Met Thr 680 Thr Ala Gly Lys Ala Leu Leu Ser Lys Ser Asn Leu Arg Gln Gly Glu 690 februarie e e e e e e e 695 februarie e 700 februarie e e Lys Gln Lys Phe Leu Gln Glu Ala Gln Phe Phe Leu Gly Arg Val Asp 705 710 Leu Asp Lys Ala Ile Ala Lys Ala Glu Lys Ala Leu Val Thr Lys Lys Ala Thr Lys Asn Gly Gln Leu Leu Glu Arg Ser Ile Asn Lys Ala Val 745 Leu Ala Tyr Asn Asn Ser Ala Ile Lys Lys Ala Asn Val Lys Arg Leu Glu Lys Glu Leu Asp Leu Leu Thr Gly Leu Val Glu Gly Lys Gly Pro Leu Ala Gln Ala Thr Met Val Gln Gly Val Tyr Leu Leu Lys Thr Pro 790 Leu Pro Leu Pro Glu Tyr Tyr Ile Gly Leu Asn Val Tyr Phe Asp Lys Ser Gly Lys Leu Ile Tyr Ala Leu Asp Met Ser Asp Thr Ile Gly Glu 825

. . .

Gly Gln Lys Asp Ala Tyr Gly Asn Pro Ile Leu Asn Val Asp Glu Asp 835 840 845

Asn Glu Gly Tyr His Ala Leu Ala Val Ala Thr Leu Ala Asp Tyr Glu 850 855 860

Gly Leu Asp Ile Lys Thr Ile Leu Asn Ser Lys Leu Ser Gln Leu Thr 865 870 875 880

Ser Ile Arg Gln Val Pro Thr Ala Ala Tyr His Arg Ala Gly Ile Phe 885 890 895

Gln Ala Ile Gln Asn Ala Ala Ala Glu Ala Glu Gln Leu Leu Pro Lys 900 905 910

Pro Gly Thr His Ser Glu Lys Ser Ser Ser Ser Glu Ser Ala Asn Ser 915 920 925

Lys Asp Arg Gly Leu Gln Ser Asn Pro Lys Thr Asn Arg Gly Arg His 930 935 940

Ser Ala Ile Leu Pro Arg Thr Gly Ser Lys Gly Ser Phe Val Tyr Gly 945 955 960

Ile Leu Gly Tyr Thr Ser Val Ala Leu 965

<210> 3

<211> 951

<212> PRT

<213> Streptococcus pyogenes strain Spy74

<400> 3

Asp Tyr Ala Glu Ser Ser Gly Lys Ser Lys Leu Lys Ile Asn Glu Thr 1 5 10 15

Ser Gly Pro Val Asp Asp Thr Val Thr Asp Leu Phe Ser Asp Lys Arg

Thr Thr Pro Glu Lys Ile Lys Asp Asn Leu Ala Lys Gly Pro Arg Glu 35 40 45

Gln Glu Leu Lys Ala Val Thr Glu Asn Thr Glu Ser Glu Lys Gln Ile 50 55 60

Thr Ser Gly Ser Gln Leu Glu Gln Ser Lys Glu Ser Leu Ser Leu Asn 75

Lys Arg Val Pro Ser Thr Ser Asn Trp Glu Ile Cys Asp Phe Ile Thr 85 90 95

Lys Gly Asn Thr Leu Val Gly Leu Ser Lys Ser Gly Val Glu Lys Leu 100 105 110

Ser Gln Thr Asp His Leu Val Leu Pro Ser Gln Ala Ala Asp Gly Thr

Gln Leu Ile Gln Val Ala Ser Phe Ala Phe Thr Pro Asp Lys Lys Thr 130 135 140

Ala 14!	a Il	e Al	a G l	u Ty:	r Thi	: Se:	r Arç	g Ala	a Gly	y Gl: 159		ı Gly	/ Glu	ı Ile	e Ser 160
Glı	ı Le	u As	p Va	l Ası 16	o Gly	/ L ys	s Glu	ı Ile	170		ı Glu	Gly	Glu	1 Va]	Phe
Ası	ı Se:	r Ty	r Le:	ı Let D	а Ьув	Lys	val	Th: 185		Pro	Thr	Gly	Tyr 190		His
Il€	: Gl	/ Gl:	n Asp	Ala	a Phe	· Va]	Asp 200		Lys	a Asr	Ile	Ala 205		Val	Asn
Leu	210	Gli	u Sei	: Leu	ı Glu	Thr 215	: Ile	: Ser	: Asp	туг	Ala 220	Phe	Ala	His	Leu
Ala 225	Leu	ı Lys	s Glr	ıle	230	Leu	Pro	Asp	naA o	Leu 235		Ala	Ile	Gly	Glu 240
				245	i				250					255	
			260		Ala			265					270		
Thr	Ile	Glu 275	Phe	Arg	Gly	Asn	Ser 280	Leu	Lys	Val	Ile	Gly 285	Glu	Ala	Ser
Phe	Gln 290	Asp	naA o	Asp	Leu	Ser 295	Gln	Leu	Met	Leu	Pro 300	Asp	Gly	Leu	Glu
Lys 305	Ile	Glu	Ser	Glu	Ala 310	Phe	Thr	Gly	Asn	Pro 315	Gly	Asp	Asp	His	Tyr 320
Asn	Asn	Arg	Val	Val 325	Leu	Trp	Thr	Lys	Ser 330	Gly	Lys	Asn	Pro	Tyr 335	Gly
			340			•		345		•		•	350		
		355			qaA		360					365			
	370				Val	375					380				
385					Asn 390					395					400
Thr	Ile	Thr	Glu	Ile 405	Gly	Asp	Asn	Ala	Phe 410	Arg	Asn	Val	Asp	Phe 415	Gln
			420		Lys			425					430		
Thr	Ile	Arg 435	ГУв	Ile	Gly	Ala	Phe 440	Ala	Phe	Gln		Asn 445	Asn	Leu	Lys
Ser	Phe 450	Glu	Ala	Ser	Asp	Asp 455	Leu	Glu	Glu		Lys	Glu	Gly .	Ala	Phe

Ме 4 б	t A:	sn .	Asr	ı Ax	g Il	e Gl 47	u Th O	ır Le	u Gl	u Le	u Ly 47	/s As /5	р Ьу	s Le	u Va	1 Thr 480
11	e G	ly .	Asp	Al	a Al 48	a Ph 5	e Hi	s Il	e As	n Hi 49	s Il O	е Ту	r Al	a Il	e Va 49	l Leu 5
Pr	o G]	lu :	Ser	Va 50	1 Gl: 0	n Gl	u Il	e Gl	y Ar 50	g Se 5	r Al	a Ph	e Ar	g Gl: 51		n Gly
Al	a As	n A	Asn 515	Le	u Il	e Ph	e Me	t Gl; 52	y Se 0	г Ьу	s Va	l Ly	5 Th:		e Gl	y Glu
Me	t Al 53	a I	?he	Lei	ı Ser	r Ası	53.	g Let 5	u Gl	u Hi	s Le	u Ası 540) Let	ı Se	r Glı	ı Gln
Ly: 54!	s Gl	n I	eu	Thi	Glu	1 Ile 550	e Pro	∨a:	l Glı	a Ala	a Ph 55.	e Sei 5	: Asr) Ası	ı Ala	Leu 560
Ly	s Gl	u V	al.	Let	1 Let 565	ı Pro	Ala	a Sei	Let	ь Б уя 570	Th:	r Ile	e Arg	Glu	Glu 575	Ala
₽h€	è	s L	ıγs	Asn 580	His	Lev	Lys	3 Glr	Let 585	ı Glı	ı Va.	l Ala	Ser	Ala 590		Ser
		3	93					600					605			Phe
	01.						010	•				620				
023						630					635					640
Val	Asr	L	eu	Glu	Lys 645	Ile	Leu	Lys	Leu	Ile 650	Glu	Gly	Leu	Asp	Tyr 655	Ser
			•	.000		٠.	•		665			Asp		670		
		Φ,	, 3					680				Gln	685			
	0.50						695					Arg 700				_
,05						710					715	Thr				720
					125					730		Lys			735	
			,	7 7 0					745			ГÀв		750		
		, _	J					760				Lys	765			
Gln	Ala 770	Th	r M	let	Val	Gln	Gly 775	Val	Tyr	Leu	Leu	Lys 780	Thr	Pro	Leu	Pro

Leu Pro Glu Tyr Tyr Ile Gly Leu Asn Val Tyr Phe Asp Lys Ser Gly 785 790 795 800

Lys Leu Ile Tyr Ala Leu Asp Met Ser Asp Thr Ile Gly Glu Gly Gln 805 815

Lys Asp Ala Tyr Gly Asn Pro Ile Leu Asn Val Asp Glu Asp Asn Glu 820 825 830

Gly Tyr His Ala Leu Ala Val Ala Thr Leu Ala Asp Tyr Glu Gly Leu 835 840 845

Asp Ile Lys Thr Ile Leu Asn Ser Lys Leu Ser Gln Leu Thr Ser Ile 850 855 860

Arg Gln Val Pro Thr Ala Ala Tyr His Arg Ala Gly Ile Phe Gln Ala 865 870 875 880

Ile Gln Asn Ala Ala Ala Glu Ala Glu Gln Leu Leu Pro Lys Pro Gly 885 890 895

Thr His Ser Glu Lys Ser Ser Ser Glu Ser Ala Asn Ser Lys Asp 900 905 910

Arg Gly Leu Gln Ser Asn Pro Lys Thr Asn Arg Gly Arg His Ser Ala 915 920 925

Ile Leu Pro Arg Thr Gly Ser Lys Gly Ser Phe Val Tyr Gly Ile Leu 930 935 940

Gly Tyr Thr Ser Val Ala Leu 945 950

<210> 4

<211> 970

<212> PRT

<213> Streptococcus pyogenes strain Spy70

<400> 4

Leu Val Lys Glu Pro Ile Leu Lys Gln Thr Gln Ala Ser Ser Ser Ile

1 10 15

Ser Gly Ala Asp Tyr Ala Glu Ser Ser Gly Lys Ser Lys Leu Lys Ile 20 25 30

Asn Glu Thr Ser Gly Pro Val Asp Asp Thr Val Thr Asp Leu Phe Ser 35

Asp Lys Arg Thr Thr Pro Glu Lys Ile Lys Asp Asn Leu Ala Lys Gly 50 55 60

Pro Arg Glu Gln Glu Leu Lys Ala Val Thr Glu Asn Thr Glu Ser Glu

Lys Gln Ile Asn Ser Gly Ser Gln Leu Glu Gln Ser Lys Glu Ser Leu 85 90 95

Ser Leu Asn Lys Arg Val Pro Ser Thr Ser Asn Trp Glu Ile Cys Asp

Phe	Ile	Th:	: Lys	gl)	/ Asn	Th:	r Lei 120		l Gly	y Lei	ı Sei	Ly:		r Gly	/ Val
Glu	Lys 130	Let	Sei	Glr	1 Thr	Asp 135		Let	ı Val	l Lei	2 Pro		c Gli	n Ala	a Ala
Asp 145	Gly	Thr	Gln	Leu	1le 150	Glr	ı Val	. Ala	Ser	Phe 155		Phe	Th:	Pro	Asp 160
Lys	Lys	Thr	Ala	Ile 165	Ala	Glu	Tyr	Thr	Ser 170		j Ala	Gly	/ Glu	175	Gly
Glu	Ile	Ser	Gln 180	Leu	Asp	Val	. Asp	Gly 185		Glu	Ile	: Ile	190		Gly
Glu	Val	Phe 195	Asn	Ser	Tyr	Leu	Leu 200		ГУe	Val	Thr	Il∈ 205		Thr	Gl ^A
Tyr	Lys 210	His	Ile	Gly	Gln	Asp 215	Ala	Phe	Val	Aap	Asn 220		Asn	Ile	Ala
Glu 225	Val	Asn	Leu	Pro	Glu 230	Ser	Leu	Glu	Thr	1le 235	Ser	Asp	Tyr	Ala	Phe 240
Ala	His	Leu	Ala	Leu 245	ГÀЗ	Gln	Ile	Asp	Leu 250		Asp	Asn	Leu	Lys 255	Ala
			260		Phe			265					270		
Leu		275					280					285			
His	Ile 290	Lys	Thr	Ile	Glu	Phe 295	Arg	Gly	Asn	Ser	Leu 300	Lys	Val	Ile	Gly
Glu . 305	Ala	Ser	Phe	Gln	310	Asn	Asp	Leu	Ser	Gln 315	Leu	Met	Leu	Pro	Asp 320
Gly :	Leu	Glu	Lys	Ile 325	Glu	Ser	Glu	Ala	Phe 330	Thr	Gly	Asn	Pro	Gly 335	Asp
Asp 1	His	Tyr	Asn 340	Asn	Arg	Val	Val	Leu 345	Trp	Thr	ГЛВ	Ser	Gly 350	Lys	Asn
Pro 1	Tyr	Gly 355	Leu	Ala	Thr	Gl u	Asn 360	Thr	Tyr	Val	Asn	Pro 365	Aap	Lys	Ser
Leu 3	Frp (Gln	Glu.	Ser	Pro	Glu 375	Ile	Asp	Tyr	Thr	780 780	Trp	Leu	Glu	Glu
Asp I 385	he '	Thr	Tyr	Gln	Ъув 390	Asn	Ser	Val	Thr	Gly 395	Phe	Ser	Ser	Lys	Gly 400
Leu C	ln 1	ГÀЗ	Val	Lys 405	Arg .	Asn	Lys		Leu 410	Glu	Ile	Pro	Lys	Gln 415	His
Asn G	ily v	/al	Thr 420	Ile	Thr	Glu	Ile	Gly 425	Asp	Asn	Ala	Phe	Arg 430	Asn	Val

Asr) Phe	Gl: 435		ı Lys	s Thr	Lev	440		з Туг	: Ası	Lev	Glu 445		val	Lys
Leu	450	Sei	Thi	: Ile	e Arg	Lуз 455		Gly	Ala	Phe	Ala 460		Glr	Ser	Asn
Asn 465	Leu ;	. Ьув	Ser	Phe	9 Glu 470		Ser	Asp) Asp	475		Glu	ılle	Lys	Glu 480
Gly	'Ala	Phe	Met	485	Asn	. Arg	Ile	Glu	Thr 490		Glu	Leu	Lys	Asp 495	_
Leu	Val	Thr	500	Gly	Asp	Ala	Ala	Phe 505		Ile	Asn	His	Ile 510		Ala
		515	i		Ser		520					525			
	530				Asn	535					540			-	
545					Phe 550					555				-	560
				565					570					575	
			580		Val			585					590		
		595			ГÀЗ		600					605			
	61.0	٠			Ala	6.15	•. • •				620	٠. ٠	٠		,
625					Lys 630					635				٠	640
				645	Glu				650					655	
			660		Leu			665					670	-	
		675			Arg		680					685		_	
	690				Ala	695					700				
705					Leu 710					715		•			720
				725	Ile				730					735	_
Lys	Ala	Thr	Lуs 740	Asn	Gly	Gln	Leu	Leu 745	Glu	Arg	Ser	Ile	Asn 750	ГХв	Ala

Val Leu Ala Tyr Asn Asn Ser Ala Ile Lys Lys Ala Asn Val Lys Arg
755 760 765

Leu Glu Lys Glu Leu Asp Leu Leu Thr Gly Leu Val Glu Gly Lys Gly 770 780

Pro Leu Ala Gln Ala Thr Met Val Gln Gly Val Tyr Leu Leu Lys Thr 785 790 795 800

Pro Leu Pro Leu Pro Glu Tyr Tyr Ile Gly Leu Asn Val Tyr Phe Asp 805 810 815

Lys Ser Gly Lys Leu Ile Tyr Ala Leu Asp Met Ser Asp Thr Ile Gly 820 825 830

Glu Gly Gln Lys Asp Ala Tyr Gly Asn Pro Ile Leu Asn Val Asp Glu 835 840 845

Asp Asn Glu Gly Tyr His Ala Leu Ala Val Ala Thr Leu Ala Asp Tyr 850 850 860

Glu Gly Leu Asp Ile Lys Thr Ile Leu Asn Ser Lys Leu Ser Gln Leu 865 870 875

Thr Ser Ile Arg Gln Val Pro Thr Ala Ala Tyr His Arg Ala Gly Ile 885 890 895

Phe Gln Ala Ile Gln Asn Ala Ala Glu Ala Glu Gln Leu Leu Pro 900 905 910

Lys Ala Gly Thr His Ser Glu Lys Ser Ser Ser Glu Ser Ala Asn 915 920 925

Ser Lys Asp Arg Gly Leu Gln Ser Asn Pro Lys Thr Asn Arg Gly Arg

His Ser Ala Ile Leu Pro Arg Thr Gly Ser Lys Gly Ser Phe Val Tyr 945 950 955 960

Gly Ile Leu Gly Tyr Thr Ser Val Ala Leu 965 970

<210> 5

<211> 963

<212> PRT

<213> Streptococcus pyogenes strain Spy69

<400> 5

Lys Gln Thr Gln Ala Ser Ser Ser Ile Ser Gly Ala Asp Tyr Ala Glu 1 5 10 15

Ser Ser Gly Lys Ser Lys Leu Lys Ile Asn Glu Thr Ser Gly Pro Val 20 25 30

Asp Asp Thr Val Thr Asp Leu Phe Ser Asp Lys Arg Thr Thr Pro Glu
35 40 45

Lys Ile Lys Asp Asn Leu Ala Lys Gly Pro Arg Glu Gln Glu Leu Lys 50 60

Ala Val Thr Glu Asn Thr Glu Ser Glu Lys Gln Ile Asn Ser Gly Ser Gln Leu Glu Gln Ser Lys Glu Ser Leu Ser Leu Asn Lys Arg Val Pro 90 Ser Thr Ser Asn Trp Glu Ile Cys Asp Phe Ile Thr Lys Gly Asn Thr Leu Val Gly Leu Ser Lys Ser Gly Val Glu Lys Leu Ser Gln Thr Asp His Leu Val Leu Pro Ser Gln Ala Ala Asp Gly Thr Gln Leu Ile Gln Val Ala Ser Phe Ala Phe Thr Pro Asp Lys Lys Thr Ala Ile Ala Glu 150 Tyr Thr Ser Arg Ala Gly Glu Asn Gly Glu Ile Ser Gln Leu Asp Val 170 Asp Gly Lys Glu Ile Ile Asn Glu Gly Glu Val Phe Asn Ser Tyr Leu 185 Leu Lys Lys Val Thr Ile Pro Thr Gly Tyr Lys His Ile Gly Gln Asp 200 Ala Phe Val Asp Asn Lys Asn Ile Ala Glu Val Asn Leu Pro Glu Ser Leu Glu Thr Ile Ser Asp Tyr Ala Phe Ala His Leu Ala Leu Lys Gln 230 Ile Asp Leu Pro Asp Asn Leu Lys Ala Ile Gly Glu Leu Ala Phe Phe Asp Asn Gln Ile Thr Gly Lys Leu Ser Leu Pro Arg Gln Leu Met Arg 260 265 Leu Ala Glu Arg Ala Phe Lys Ser Asn His Ile Lys Thr Ile Glu Phe 280 Arg Gly Asn Ser Leu Lys Val Ile Gly Glu Ala Ser Phe Gln Asp Asn 295 Asp Leu Ser Gln Leu Met Leu Pro Asp Gly Leu Glu Lys Ile Glu Ser 310 Glu Ala Phe Thr Gly Asn Pro Gly Asp Asp His Tyr Asn Asn Arg Val 325 Val Leu Trp Thr Lys Ser Gly Lys Asn Pro Tyr Gly Leu Ala Thr Glu Asn Thr Tyr Val Asn Pro Asp Lys Ser Leu Trp Gln Glu Ser Pro Glu Ile Asp Tyr Thr Lys Trp Leu Glu Glu Asp Phe Thr Tyr Gln Lys Asn 370 375

Ser 385	Val	. Thr	Gly	Phe	Ser 390		. Lya	Gly	Leu	Gln 395		Val	Lys	Arg	Asn 400	
Lys	Asn	. Leu	Glu	1le 405		Lys	Gln	His	410		Val	Thr	Ile	Thr 415	Glu	
Ile	Gly	Asp	Asn 420		Phe	Arg	Asn	Val 425		Phe	Gln	Asn	Lys 430		Leu	
Arg	Lys	Tyr 435		Leu	Glu	Glu	Val 440	ГЛЗ	Leu	Pro	Ser	Thr 445		Arg	Lys	
Ile	Gly 450	Ala	Phe	Ala	Phe	Gln 455		Asn	Asn	Leu	Lys 460	Ser	Phe	Glu	Ala	
Ser 465	Asp	Asp	Leu	Glu	Glu 470	Ile	Lys	Glu	Gly	Ala 475	Phe	Met	Asn	Asn	Arg 480	
Ile	Glu	Thr	Leu	Glu 485	Leu	Lys	Asp	Lys	Leu 490	Val	Thr	Ile	Gly	Asp 495	Ala	
		His	500					505					510			
		Ile 515					520					525				
	530	Met				535					540					
545		Arg			550					555					560	
	••••		• . •	565	• • • • •	٠			570			· · ·	٠	575		
• • •		Ala	580		•			585	٠.	•			590		•	
		Lys 595					600					605				
	610					615					620					
625		Lys			630					635			-		640	
		Val		645					650					655		
		Leu	660					665					670			
		Gln 675		•			680					685				
Leu	Ser 690	гĀŝ	Ser	Asn		Arg 695	Gln	Gly	Glu		Gln 700	Lys	Phe	Leu	Gln	

Glu Ala Gln Phe Phe Leu Gly Arg Val Asp Leu Asp Lys Ala Ile Ala Lys Ala Glu Lys Ala Leu Val Thr Lys Lys Ala Thr Lys Asn Gly Gln Leu Leu Glu Arg Ser Ile Asn Lys Ala Val Ser Ala Tyr Asn Asn Ser 745 Ala Ile Lys Lys Ala Asn Val Lys Arg Leu Glu Lys Glu Leu Asp Leu 760 Leu Thr Gly Leu Val Glu Gly Lys Gly Pro Leu Ala Gln Ala Thr Met 775 Val Gln Gly Val Tyr Leu Leu Lys Thr Pro Leu Pro Leu Pro Glu Tyr 795 Tyr Ile Gly Leu Asn Val Tyr Phe Asp Lys Ser Gly Lys Leu Ile Tyr Ala Leu Asp Met Ser Asp Thr Ile Gly Glu Gly Gln Lys Asp Ala Tyr 825 Gly Asn Pro Ile Leu Asn Val Asp Glu Asp Asn Glu Gly Tyr His Ala 840 Leu Ala Val Ala Thr Leu Ala Asp Tyr Glu Gly Leu Asp Ile Lys Thr 855 Ile Leu Asn Ser Lys Leu Ser Gln Leu Thr Ser Ile Arg Gln Val Pro 870 875 Thr Ala Ala Tyr His Arg Ala Gly Ile Phe Gln Ala Ile Gln Asn Ala Ala Ala Glu Ala Glu Gln Leu Leu Pro Lys Pro Gly Thr His Ser Glu 900 905 Lys Ser Ser Ser Ser Glu Ser Ala Asn Ser Lys Asp Arg Gly Leu Gln Ser Asn Pro Lys Thr Asn Arg Gly Arg His Ser Ala Ile Leu Pro Arg Thr Gly Ser Lys Gly Ser Phe Val Tyr Gly Ile Leu Gly Tyr Thr Ser 950 Val Ala Leu <210> 6 <211> 971 <212> PRT <213> Streptococcus pyogenes strain Spy68 <400> 6 Leu Val Lys Glu Pro Ile Leu Lys Gln Thr Gln Ala Ser Ser Ile

Se	r Gl	y Ala	a As _j 20	р Туг	r Ala	a Glu	ı Ser	: Sei 25	: Gly	/ Lys	s Ser	. Lys	Lei 30	ı Lyı	s Ile
Ası	n Glu	1 Th: 35	r Se	r Gl	/ Pro	Va]	Asp 40) Asp	Thi	· Val	. Thr	As <u>r</u> 45	Let	ı Phe	e Ser
Asj	50	a Arg	g Thi	Th:	Pro	61u 55	Lys	Ile	b y e	as _E	Asn 60	Lev	ı Ala	і Гує	Gly
Pro 65	Arg	g Glı	ı Glı	ı Glu	Leu 70	Lys	Thr	Val	Thr	75	naA	Thr	Glu	. Ser	Glu 80
Lys	Glr.	ı Ile	e Thi	Ser 85	Gly	Ser	Gln	Leu	Glu 90	Gln	Ser	. T Às	Glu	Ser 95	Leu
Ser	Leu	Asr	100	Thr	· Val	Pro	Ser	Thr 105		Asn	Trp	Glu	11e		Asp
Phe	Ile	Thr 115	Lys	Gly	. Asn	Thr	Leu 120	Val	Gly	Leu	Ser	Lys 125		Gly	Val
Glu	Lys 130	Leu	Ser	Gln	Thr	Asp 135	His	Leu	Val	Leu	Pro 140	Ser	Gln	Ala	Ala
Asp 145	Gly	Thr	Gln	Leu	Ile 150	Gln	Val	Ala	Ser	Phe 155	Ala	Phe	Thr	Pro	Asp 160
Lys	Lys	Thr	Ala	Ile 165	Ala	Glu	Tyr	Thr	Ser 170	Arg	Ala	Gly	Glu	Asn 175	Gly
Glu	Ile	Ser	Gln 180	Leu	Asp	Val	Asp	Gly 185	Lys	Glu	Ile	Ile	Asn 190	Glu	Gly
Glu	Val	Phe 195	Asn	Ser	Tyr	Leu	Leu 200	Lys	Lys	Val	Thr	Ile 205	Pro	Thr	Gly
Тут	Lys 210	His	Ile	Gly	Gln	Asp 215	Ala	Phe	Val	Asp	Asn 220	Lys	Asn	Ile	Ala
Glu 225	Val	Asn	Leu	Pro	Glu 230	Ser	Leu	Glu	Thr	Ile 235	Ser	qaA	Tyr	Ala	Phe 240
Ala	His	Leu	Ala	Leu 245	Гув	Gln	Ile	Asp	Leu 250	Pro	qaA	Asn	Leu	Lys 255	Ala
Ile	Gly	Glu	Leu 260	Ala	Phe	Phe	Asp	Asn 265	Gln	Ile	Thr	Gly	Lys 270	Leu	Ser
Leu	Pro	Arg 275	Gln	Leu	Met	Arg	Leu . 280	Ala	Glu	Arg		Phe 285	Lys	Ser	Asn
His	Ile 290	Lys	Thr	Ile	Glu	Phe 295	Arg	Gly	Asn	Ser	Leu 300	Γλa	Val.	Ile	Gly
Glu 305	Ala	Ser	Phe	Gln	Asp . 310	Asn .	Asp :	Leu		Gln 315	Leu	Met	Leu	Pro	Asp 320
Gly	Leu	Glu	ГÀЗ	Ile 325	Glu :	Ser	Glu i		Phe 330	Thr	Gly .	Asn		Gly 3 3 5	Asp

Asp His Tyr Asn Asn Arg Val Val Leu Trp Thr Lys Ser Gly Lys Asn 345 Pro Tyr Gly Leu Ala Thr Glu Asn Thr Tyr Val Asn Pro Asp Lys Ser Leu Trp Gln Glu Ser Pro Glu Ile Asp Tyr Thr Lys Trp Leu Glu Glu 375 Asp Phe Thr Tyr Gln Lys Asn Ser Val Thr Gly Phe Ser Asn Lys Gly 390 395 Leu Gln Lys Val Lys Arg Asn Lys Asn Leu Glu Ile Pro Lys Gln His Asn Gly Val Thr Ile Thr Glu Ile Gly Asp Asn Ala Phe Arg Asn Val 425 Asp Phe Gln Asn Lys Thr Leu Arg Lys Tyr Asp Leu Glu Glu Val Lys 440 Leu Pro Ser Thr Ile Arg Lys Ile Gly Ala Phe Ala Phe Gln Ser Asn Asn Leu Lys Ser Phe Glu Ala Ser Asp Asp Leu Glu Glu Ile Lys Glu 470 475 Gly Ala Phe Met Asn Asn Arg Ile Glu Thr Leu Glu Leu Lys Asp Lys Leu Val Thr Ile Gly Asp Ala Ala Phe His Ile Asn His Ile Tyr Ala 505 Ile Val Leu Pro Glu Ser Val Gln Glu Ile Gly Arg Ser Ala Phe Arg Gln Asn Gly Ala Asn Asn Leu Ile Phe Met Gly Ser Lys Val Lys Thr 530 535 540 Leu Gly Glu Met Ala Phe Leu Ser Asn Arg Leu Glu His Leu Asp Leu 550 Ser Glu Gln Lys Gln Leu Thr Glu Ile Pro Val Gln Ala Phe Ser Asp 565 Asn Ala Leu Lys Glu Val Leu Leu Pro Ala Ser Leu Lys Thr Ile Arg 585 Glu Glu Ala Phe Lys Lys Asn His Leu Lys Gln Leu Glu Val Ala Ser Ala Leu Ser His Ile Ala Phe Asn Ala Leu Asp Asp Asn Asp Gly Asp 615 Glu Gln Phe Asp Asn Lys Val Val Lys Thr His His Asn Ser Tyr Ala Leu Ala Asp Gly Glu His Phe Ile Val Asp Pro Asp Lys Leu Ser 645

Ser Thr Met Ile Asp Leu Glu Lys Ile Leu Lys Leu Ile Glu Gly Leu 665 Asp Tyr Ser Thr Leu Arg Gln Thr Thr Gln Thr Gln Phe Arg Asp Met 680 Thr Thr Ala Gly Lys Ala Leu Leu Ser Lys Ser Asn Leu Arg Gln Gly Glu Lys Gln Lys Phe Leu Gln Glu Ala Gln Phe Phe Leu Gly Arg Val Asp Leu Asp Lys Ala Ile Ala Lys Ala Glu Lys Ala Leu Val Thr Lys Lys Ala Thr Lys Asn Gly Gln Leu Leu Glu Arg Ser Ile Asn Lys Ala 745 Val Leu Ala Tyr Asn Asn Ser Ala Ile Lys Lys Ala Asn Val Lys Arg Leu Glu Lys Glu Leu Asp Leu Leu Thr Gly Leu Val Glu Gly Lys Gly Pro Leu Ala Gln Ala Thr Met Val Gln Gly Val Tyr Leu Leu Lys Thr 790 Pro Leu Pro Leu Pro Glu Tyr Tyr Ile Gly Leu Asn Val Tyr Phe Asp 810 Lys Ser Gly Lys Leu Ile Tyr Ala Leu Asp Met Ser Asp Thr Ile Gly 825 Glu Gly Gln Lys Asp Ala Tyr Gly Asn Pro Ile Leu Asn Val Asp Glu Asp Asn Glu Gly Tyr His Ala Leu Ala Val Ala Thr Leu Ala Asp Tyr 855 860 Glu Gly Leu Asp Ile Lys Thr Ile Leu Asn Ser Lys Leu Ser Gln Leu Thr Ser Ile Arg Gln Val Pro Thr Ala Ala Tyr His Arg Ala Gly Ile 890 Phe Gln Ala Ile Gln Asn Ala Ala Glu Ala Glu Gln Leu Leu Pro Lys Pro Gly Met His Ser Glu Lys Ser Ser Ser Ser Glu Ser Ala Asn 920 Ser Lys Asp Arg Gly Leu Gln Ser His Pro Lys Thr Asn Arg Gly Arg 935 His Ser Ala Ile Leu Pro Arg Thr Gly Ser Lys Gly Ser Phe Val Tyr Gly Ile Leu Gly Tyr Thr Ser Val Ala Leu Leu 965

<21 <21 <21 <21	L1> L2>	7 971 PRT Str		cocci	<i>r</i> a aı	/oger	oes (stra	in S	nv60					
			•			-5		, o		D) 00					
<40 Leu 1		7 l Ly:	s Gl	u Pro) Ile	e Leu	t Lys	s Gli	n Th:	r Glı	n Ala	a Se:	r Sei	s Se:	r Ile
Ser	Gl)	/ Al:	a Ası 20	туг	: Ala	Glu	Sei	Sei 25	r Gly	у Гу	s Ser	Ly	3 Let	ı Ly	s Ile
Asn	Glu	1 Thi 35	c Sei	gly	Pro	Val	Asp 40	Asp	Thi	c Val	Thr	Asp 45	Lev	Phe	e Ser
Asp	Lys 50	arg	y Thr	Thr	Pro	Glu 55	Lys	Ile	Lys	s Asp	Asn 60	Lei	ı Ala	Lys	s Gly
Pro 65	Arg	g Glu	Gln	Glu	Leu 70	Lys	Ala	. Val	. Thr	Glu 75	Asn	Thr	Glu	Ser	Glu 80
ГЛЗ	Gln	Ile	Thr	Ser 85	Gly	Ser	Gln	Leu	Glu 90	Gln	. Ser	Lys	Glu	Ser 95	Leu
Ser	Leu	Asn	Lys 100	Thr	Val	Pro	Ser	Thr 105	Ser	Asn	Trp	Glu	11e		de V
Phe	Ile	Thr 115	Lys	Gly	Asn	Thr	Leu 120	Val	Gly	Leu	Ser	Lys 125		Gly	. Val
Glu	Lys 130	Leu	Ser	Gln	Thr	Asp 135	His	Leu	Val	Leu	Pro 140	Ser	Gln	Ala	Ala
Asp 145	Gly	Thr	Gln	Leu	Ile 150	Gln	Val	Ala	Ser	Phe 155	Ala	Phe	Thr	Pro	Asp 160
			Ala		Ala	Glu	Tyr	Thr	Ser		Ala	Gly	Glu		Gly
Glu	Ile	Ser	Gln 180	Leu	Asp	Val	Asp	Gly 185	Lys	Glu	Ile	Ile	Asn 190	Glu	Gly
Glu	Val	Phe 195	Asn	Ser	Tyr	Leu	Leu 200	ГЛЗ	Lys	Val	Thr	Ile 205	Pro	Thr	Gly
Tyr	Lys 210	His	Ile	Gly	Gln	Asp 215	Ala	Phe	Val	Asp	Asn 220	Lys	Asn	Ile	Ala
Glu 225	Val	Asn	Leu	Pro	Glu 230	Ser	Leu	Glu	Thr	Ile 235	Ser	Авр	Tyr	Ala	Phe 240
Ala	His	Leu	Ala	Leu 245	Lys	Gln	Ile	Asp	Leu 250	Pro	Asp	Asn	Leu	Lys 255	
Ile (Gly	Glu	Leu 260	Ala	Phe	Phe i	Asp	Asn 265	Gln	Ile	Thr	Gly	Lys 270	Leu	Ser
Leu 1	Pro	Arg 275	Gln	Leu I	Met 1	Arg :	Leu 280	Ala	Glu	Arg		Phe 285	Lys	Ser	Asn

Hi	s Il 29	.e L 90	ys T	hr 1	le	Glı	ı Ph 29	e Ar 5	g G	ly,	Asn	Se:	r Le		s Va	ıl II	e Gly
Gl: 30!	u Al 5	a S	er P	he G	ln	Asp 310	As	n As	p Le	eu	Ser	Gl:		u Me	t Le	u Pr	o Asp 320
Gly	y Le	u G	lu L	3 YB I	1e 25	Glu	ı Se	r Gl	u Al	la	Phe 330	Thi	Gly	y As	n Pr	o Gl 33	у А ар 5
Ası	Hi,	s Ty	/r A	sn A 40	sn	Arg	Va:	l Va	l Le 34	:u :5	Trp	Thi	. Lys	s Se	r Gl 35		s Asn
Pro	Se:	r G] 35	.у Le 55	eu A	la	Thr	Glı	1 Ası 360	n Th	ır '	Tyr	Va]	. Asr	36!		р Ьу	s Ser
Leu	370	p Gl O	n G	lu S	er	Pro	Gl: 379	ı Ile	e As	ָ מַ	Гуг	Thr	380 Lys) Le	u Gl	u Glu
Asp 385	Ph€	e Th	r Ty	rr G	ln	Ъув 390	Ası	ı Ser	· Va	1 :	Thr	Gly 395	Phe	Se:	: Ası	ı Ly	3 Gly 400
				4 (15					4	110					415	
			74	•					42.	5					430)	ı Val
		40	J					440		•				445	1		Lys
	450						455						460				Asn
403		٠	٠	٠٠.	4	± 70		٠	٠.٠٠	٠٠,	٠.	475		٠.٠.	. • •	• . • •	Glu 480
	•			48	5	,			•	4	90	•			. •	495	
			501	,				•	505						510		Ala
		212	,					520						525			Arg
	200					•	535	Ile					540				
Leu 545					5	50					į	555					560
Ser				505	,					57	/0					575	
Asn .			560						585						590		
Glu (Glu	Ala 595	Phe	Lys	L	ys Æ	lsn	His 600	Leu	ΤУ	rs G	ln 1		Glu 605	Val	Ala	Ser

Al	a Le 61	u Se 0	er H	is I	le A	la :	Phe 615	Ası	n Al	a Le	u.	Asp	Asj 62		n As	p Gl	у.	Asp
Gl: 62!	u Gl 5	n Pb	ie As	sp A	sn L	ys 1	Val	Va:	l Va	1 ьу	8	Thr 635	Hi	s Hi	s As	n Se		Гут 640
Ala	a Le	u Al	a As	p G:	ly G 15	lu 1	lis	Phe	e Il	e Va 65	1 1	Asp	Pro	As;	р Lу	s Le 65		Ser
Ser	Th	r Il	e Va 66	l As	sp L	en (lu	Lys	66!	e Le 5	u I	ŗys	Leu	ıIle	e Gl: 67:		уІ	Leu
Asp	Туг	r Se 67	r Th 5	r Le	eu Ar	rg G	ln	Thr 680	Thi	r Gl	n 7	Chr	Gln	Phe 685	e Arg	j As	Į q	let
Thr	Th: 690	: Al.	a Gl	у Ьу	rs Al	la I	eu 95	Leu	Sei	r Ly	6 9	Ser	Asn 700		ı Arç	g Gl	n G	ly
Glu 705	. Lys	; Gl	n Ly	s Ph	e Le 71	u G .0	ln	Glu	Ala	Gl:	n F	he 15	Phe	Leu	Gl _y	/ Ar		al 20
Asp	Leu	ı Ası	р Гу	s Al 72	a Il 5	e A	la	Гув	Ala	730	ı I	ys	Ala	Leu	ı Va]	Th:		ys
Гув	Ala	Tha	74	s As	n Gl	уG	ln	Leu	Leu 745	Glı	ı A	rg	Ser	Ile	Asr 750		зА	la
Val	Leu	Ala 755	ту:	r As:	n As	n S	er	Ala 760	Ile	Lys	s L	ys	Ala	Asn 765	. Val	Lys	A	rg
Leu	Glu 770	Lys	Gl:	ı Le	u As	р Lo 7'	eu 75	Leu	Thr	Gly	L	eu	Val 780	Glu	Gly	Lys	G	ly
Pro 785	Leu	Ala	Gli	ı Ala	79	r Me	et	Val	Gln	Gly	7:	al 95	Туг	Leu	Leu	Lys	T)	hr 00
Pro	Leu	Pro	Leu	809	0 Gl	и Ту	/ r '	Tyr	Ile	Gly 810	L	eu	Asn	Val	Tyr	Phe 815		вр
Lys	Ser	Gly	Lys 820	Leu	ı Ile	e Tj	nr i	Ala	Leu 825	Авр	Me	et	Ser	qaA	Thr 830	Ile	G]	ly
Glu	Gly	Gln 835	Lys	Asp	Ala	а Ту	r (31y 840	Asn	Pro	IJ	le :	Leu	Asn 845	Val	Asp	G]	Lu
As p	Asn 850	Glu	Gly	Тут	His	8 Al	a 1 5	Leu	Ala	Val	A		Thr 860	Leu	Ala	Asp	Ту	'r
31u 365	Gly	Leu	Asp	Ile	Lys 870	Th	r I	[le	Leu	Asn	Se 87	er] 75	Ľув	Leu	Ser	Gln	Le 88	
Thr	Ser	Ile	Arg	Gln 885	Val	Pr	r o	hr .	Ala	Ala 890	Ту	T I	lis	Arg	Ala	Gly 895	Il	e
he (Gln	Ala	Ile 900	Gln	Asn	. Al	a A	ala :	Ala 905	Glu	Al	a C	lu ·	Gln	Leu 910	Leu	Pr	0
ys i	Pro	Gly 915	Thr	His	Ser	Gl	u L 9	ys :	Ser	Ser	Se	r s		Glu 925	Ser	Ala	As	n

Ser Lys Asp Arg Gly Leu Gln Ser Asn Pro Lys Thr Asn Arg Gly Arg 930 935 940

His Ser Ala Ile Leu Pro Arg Thr Gly Ser Lys Gly Ser Phe Val Tyr 945 950 950 960

Gly Ile Leu Gly Tyr Thr Ser Val Ala Leu Leu 965 970

<210> 8

<211> 969

<212> PRT

<213> Streptococcus pyogenes strain ATCC12357

<400> 8

Val Lys Glu Pro Ile Leu Lys Gln Thr Gln Ala Ser Ser Ser Ile Ser 1 5 10 15

Gly Ala Asp Tyr Ala Glu Ser Ser Gly Lys Ser Lys Leu Lys Ile Asn 20 25 30

Glu Thr Ser Gly Pro Val Asp Asp Thr Val Thr Asp Leu Phe Ser Asp 35 40 45

Lys Arg Thr Thr Pro Glu Lys Ile Lys Asp Asn Leu Ala Lys Gly Pro 50 55 60

Arg Glu Gln Glu Leu Lys Ala Val Thr Glu Asn Thr Glu Ser Glu Lys 65 70 75 80

Gln Ile Asn Ser Gly Ser Gln Leu Glu Gln Ser Lys Glu Ser Leu Ser 85 90 95

Leu Asn Lys Arg Val Pro Ser Thr Ser Asn Trp Glu Ile Cys Asp Phe
100 105 110

Ile Thr Lys Gly Asn Thr Leu Val Gly Leu Ser Lys Ser Gly Val Glu
115 120 125

Lys Leu Ser Gln Thr Asp His Leu Val Leu Pro Ser Gln Ala Ala Asp 130 135 140

Gly Thr Gln Leu Ile Gln Val Ala Ser Phe Ala Phe Thr Pro Asp Lys
145 150 155 160

Lys Thr Ala Ile Ala Glu Tyr Thr Ser Arg Ala Gly Glu Asn Gly Glu 165 170 175

Ile Ser Gln Leu Asp Val Asp Gly Lys Glu Ile Ile Asn Glu Gly Glu 180 185 190

Val Phe Asn Ser Tyr Leu Leu Lys Lys Val Thr Ile Pro Thr Gly Tyr
195 200 205

Lys His Ile Gly Gln Asp Ala Phe Val Asp Asn Lys Asn Ile Ala Glu 210 215 220

Val Asn Leu Pro Glu Ser Leu Glu Thr Ile Ser Asp Tyr Ala Phe Ala 225 230 235 240

His Leu Ala Leu Lys Gln Ile Asp Leu Pro Asp Asn Leu Lys Ala Ile 245 250 255

Gly Glu Leu Ala Phe Phe Asp Asn Gln Ile Thr Gly Lys Leu Ser Leu 260 265 270

Pro Arg Gln Leu Met Arg Leu Ala Glu Arg Ala Phe Lys Ser Asn His 275 280 285

Ile Lys Thr Ile Glu Phe Arg Gly Asn Ser Leu Lys Val Ile Gly Glu 290 295 300

Ala Ser Phe Gln Asp Asn Asp Leu Ser Gln Leu Met Leu Pro Asp Gly 315 310

Leu Glu Lys Ile Glu Ser Glu Ala Phe Thr Gly Asn Pro Gly Asp Asp 325 330 335

His Tyr Asn Asn Arg Val Val Leu Trp Thr Lys Ser Gly Lys Asn Pro 340 345 350

Tyr Gly Leu Ala Thr Glu Asn Thr Tyr Val Asn Pro Asp Lys Ser Leu 355 360 365

Trp Gln Glu Ser Pro Glu Ile Asp Tyr Thr Lys Trp Leu Glu Glu Asp 370 375 380

Phe Thr Tyr Gln Lys Asn Ser Val Thr Gly Phe Ser Ser Lys Gly Leu 395 400

Gln Lys Val Lys Arg Asn Lys Asn Leu Glu Ile Pro Lys Gln His Asn 405 410 415

Gly Val Thr Ile Thr Glu Ile Gly Asp Asn Ala Phe Arg Asn Val Asp
420 425 430

Phe Gln Asn Lys Thr Leu Arg Lys Tyr Asp Leu Glu Glu Val Lys Leu 435 440 445

Pro Ser Thr Ile Arg Lys Ile Gly Ala Phe Ala Phe Gln Ser Asn Asn 450 455 460

Leu Lys Ser Phe Glu Ala Ser Asp Asp Leu Glu Glu Ile Lys Glu Gly
465 470 475 480

Ala Phe Met Asn Asn Arg Ile Glu Thr Leu Glu Leu Lys Asp Lys Leu 485 490 495

Val Thr Ile Gly Asp Ala Ala Phe His Ile Asn His Ile Tyr Ala Ile 500 505 510

Val Leu Pro Glu Ser Val Gln Glu Ile Gly Arg Ser Ala Phe Arg Gln 515 520 525

Asn Gly Ala Asn Asn Leu Ile Phe Met Gly Ser Lys Val Lys Thr Leu 530 540

Gly Glu Met Ala Phe Leu Ser Asn Arg Leu Glu His Leu Asp Leu Ser 545 550 555 560

Glu Gln Lys Gln Leu Thr Glu Ile Pro Val Gln Ala Phe Ser Asp Asn 565 570 575

Ala Leu Lys Glu Val Leu Leu Pro Ala Ser Leu Lys Thr Ile Arg Glu 580 585 590

Glu Ala Phe Lys Lys Asn His Leu Lys Gln Leu Glu Val Ala Ser Ala 595 600 605

Leu Ser His Ile Ala Phe Asn Ala Leu Asp Asp Asn Asp Gly Asp Glu 610 615 620

Gln Phe Asp Asn Lys Val Val Val Lys Thr His His Asn Ser Tyr Ala 625 630 635 640

Leu Ala Asp Gly Glu His Phe Ile Val Asp Pro Asp Lys Leu Ser Ser 645 650 655

Thr Ile Val Asp Leu Glu Lys Ile Leu Lys Leu Ile Glu Gly Leu Asp
660 665 670

Tyr Ser Thr Leu Arg Gln Thr Thr Gln Thr Gln Phe Arg Asp Met Thr 675 680. 685

Thr Ala Gly Lys Ala Leu Leu Ser Lys Ser Asn Leu Arg Gln Gly Glu 690 700

Lys Gln Lys Phe Leu Gln Glu Ala Gln Phe Phe Leu Gly Arg Val Asp 705 710 715 720

Leu Asp Lys Ala Ile Ala Lys Ala Glu Lys Ala Leu Val Thr Lys Lys 725 730 735

Ala Thr Lys Asn Gly Gln Leu Leu Glu Arg Ser Ile Asn Lys Ala Val
740 745 750

Leu Ala Tyr Asn Asn Ser Ala Ile Lys Lys Ala Asn Val Lys Arg Leu
755 760 765

Glu Lys Glu Leu Asp Leu Leu Thr Gly Leu Val Glu Gly Lys Gly Pro
770 775 780

Leu Ala Gln Ala Thr Met Val Gln Gly Val Tyr Leu Leu Lys Thr Pro

Leu Pro Leu Pro Glu Tyr Tyr Ile Gly Leu Asn Val Tyr Phe Asp Lys

Ser Gly Lys Leu Ile Tyr Ala Leu Asp Met Ser Asp Thr Ile Gly Glu 820 825 830

Gly Gln Lys Asp Ala Tyr Gly Asn Pro Ile Leu Asn Val Asp Glu Asp 835 840 845

Asn Glu Gly Tyr His Ala Leu Ala Val Ala Thr Leu Ala Asp Tyr Glu 850 855 860

Gly Leu Asp Ile Lys Thr Ile Leu Asn Ser Lys Leu Ser Gln Leu Thr 865 870 875 880

```
Ser Ile Arg Gln Val Pro Thr Ala Ala Tyr His Arg Ala Gly Ile Phe
                                                                                                                           890
    Gln Ala Ile Gln Asn Ala Ala Glu Ala Glu Gln Leu Leu Pro Lys
                                            900
                                                                                                             905
   Pro Gly Thr His Ser Glu Lys Ser Ser Ser Ser Glu Ser Ala Asn Ser
   Lys Asp Arg Gly Leu Gln Ser Asn Pro Lys Thr Asn Arg Gly Arg His
                 930
                                                                                  935
   Ser Ala Ile Leu Pro Arg Thr Gly Ser Lys Gly Ser Phe Val Tyr Gly
                                                                                                                                       955
   Ile Leu Gly Tyr Thr Ser Val Ala Leu
                                                        965
  <210> 9
   <211> 29
   <212> DNA
  <213> Artificial/Unknown
  <220>
  <221> misc_feature
  <222> (1)..(29)
  <223> primer
  <400> 9
 gtagtcaccc accatatgga agtttttag
                                                                                                                                                                                                                                         29
  <210> 10
  <211> 28
                                                                             that the transfer compared one personal properties and the contract of the con
  <212> DNA
 <213> Artificial/Unknown
 <220>
<221> misc_feature <222> (1)..(28)
 <223> primer
 <400> 10
ttttttttt geggeegeag ttattagt
                                                                                                                                                                                                                                       28
<210> 11
<211> 22
<212> DNA
<213> Artificial/Unknown
<220>
<221> misc_feature
<222> (1)..(22)
<223> primer
<400> 11
ggggatccca cccacaatca gg
```

<210> 12
<211> 28
<212> DNA
<213> Artificial/Unknown
<220>
<221> misc_feature
<222> (1)..(28)
<223> primer
<400> 12
ggttgtcgac agtaaagcaa cgctagtg

CA 02438921 2003-08-20

LANGE FOR THE STATE OF THE SECOND SEC

CLAIMS:

13-05-2003 ^{15:50}

- An isolated polypeptide comprising a polypeptide l. chosen from:
 - a polypeptide comprising SEQ ID NO: 2;
- 5 a polypeptide comprising an antigenic or (b) immunogenic fragment having at least 10 configuous amino acid residues of the polypeptide of -(a);
- a polypeptide comprising an antigenic or immunogenic analog having at least 70% identity to the -- lo--polypeptide of (a) or (b);
 - a polypeptide comprising an antigenic or immunogenic analog having at least 95% identity to the polypeptide of (a) or (b);
- a polypeptide capable of generating 15 antibodies having binding specificity for the polypeptide of any one of (a), (b), (c) and (d);
 - an epitope bearing portion of the polypeptide of any one of (a), (b), (c) and (d);
- the polypeptide of any one of '(a), (b), (c), (d), (e) and (f) wherein the N-terminal Met residue is deleted; and
 - (h) the polypeptide of any one of (a), (b), (c), (d), (e), (f) and (g) wherein the secretory amino acid sequence is deleted.
- 25 An isolated polypeptide comprising a polypeptide chosen from:
 - a polypeptide comprising SEQ ID NO: 2;

- a polypeptide having at least 70% identity to the polypeptide of (a);
- (c) a polypeptide having at least 95% identity to the polypeptide of (a);
- 5 a polypeptide capable of generating antibodies having binding specificity for the polypeptide of (a);
 - an epitope bearing portion of the polypeptide of (a);
- ______(f) the polypeptide of any one of (a), (b), (c), (d) and (e) wherein the N-terminal Met residue is deleted; and
 - the polypeptide of any one of (a), (b), (c), (d), (e) and (f) wherein the secretory amino acid sequence is deleted.
 - A chimeric polypeptide comprising two or more of the polypeptide according to claim 1 or claim 2, provided that the polypeptides are linked so as to form a chimeric polypeptide.
- 20 An isolated polynucleotide comprising a polynucleotide chosen from:
 - a polynucleotide comprising SEQ ID NO: 1;
 - a polynucleotide encoding the polypeptide of claim 1; and
- 25 a polynucleotide that is complementary to the polynucleotide in (a) or (b).

- 5. An isolated polynucleotide comprising a polynucleotide chosen from:
 - (a) a polynucleotide comprising SEQ ID NO: 1;
 - (b) a polynucleotide encoding the polypeptide of claim 2; and
 - (c) a polynucleotide that is complementary to the polynucleotide in (a) or (b).
 - 6. The polynucleotide of claim 4 or claim 5, wherein said polynucleotide is DNA.
 - 7. The polynucleotide of claim 4 or claim 5, wherein said polynucleotide is RNA.
 - 8. The polynucleotide of claim 4 that hybridizes under stringent conditions to either
 - (a) a DNA sequence encoding a polypeptide or
 - (b) the complement of a DNA sequence encoding a polypeptide;

wherein said polypeptide comprises SEQ ID NO: 2, or an antigenic or immunogenic fragment or an antigenic or immunogenic analog thereof.

- 20 9. The polynucleotide of claim 5 that hybridizes under stringent conditions to either
 - (a) a DNA sequence encoding a polypeptide or
 - (b) the complement of a DNA sequence encoding a polypeptide;
- wherein said polypeptide comprises SEQ ND NO: 2.

CA 02438921 2003-08-20

- 10. The polynucleotide of claim 4 that hybridizes under stringent conditions to either
 - (a) a DNA sequence encoding a polypeptide or
 - (b) the complement of a DNA sequence encoding a 5 polypeptide;

wherein said polypeptide comprises at least 10 contiguous amino acid residues from a polypeptide comprising SEQ ID NO: 2, or an antigenic or immunogenic fragment or an antigenic or immunogenic analog thereof.

- The polynucleotide of claim 5 that hybridizes under stringent conditions to either
 - (a) a DNA sequence encoding a polypertide or
 - (b) the complement of a DNA sequence encoding a polypeptide;
 - wherein said polypeptide comprises at least 10 contiguous amino acid residues from a polypeptide comprising SEQ ID NO: 2.
 - 12. A vector comprising the polynucleotide of claim 4 or claim 5, wherein said DNA is operably linked to an expression control region.
 - 13. A host cell transfected with the vector of claim 12.
 - 14. A process for producing a polypeptide comprising culturing a host cell according to claim 13 under conditions
 25 suitable for expression of said polypeptide.
 - 15. A pharmaceutical composition comprising the polypeptide according to claim 1 or claim 2 or the chimeric

Material Control of Material Control of Cont

polypeptide according to claim 3 and a pharmace-utically acceptable carrier, diluent or adjuvant.

- A method for prophylactic or therapeutic treatment 16: of pharyngitis, erysipelas and impetigo, scarlet fever, and invasive diseases such as bacteremia and necrotizing fasciitis in a host susceptible to pharyngitis, erysipelas and impetigo, scarlet fever, and invasive diseases such as bacteremia and necrotizing fasciitis and also toxic shock comprising administering to said host a prophylactic or 10 therapeutic amount of a composition according to claim 15.
- 17. A method for prophylactic or therapeutic treatment of Streptococcus pyogenes bacterial infection in a host susceptible to Streptococcus pyogenes infection comprising administering to said host a prophylactic or therapeutic amount of a composition according to claim 15.
 - A method according to claim 16 or claim 17 wherein 18. the host is an animal.
 - A method for diagnosis of streptococcal infection 19. in a host susceptible to streptococcal infection comprising
 - 20 (a) obtaining a biological sample from the host;
 - (b) incubating an antibody or functional fragment thereof reactive with a polypeptide of any one of claims 1 to 3 with the biological sample to form a mixture; and
 - detecting specifically bound antibody or 25 bound functional fragment in the mixture which indicates the presence of streptococcal infection.
 - A method for detection of antibody specific to Streptococcus antigen in a biological sample comprising

(a) obtaining a biological sample from a host;

akai ke nerahabahan katan ketan meladahan mendada mendada mendada mendada berahan kendada ketahan ban ban dala

- (b) incubating one or more polypeptides of any one of claims 1 to 3 with the biological sample to form a mixture; and
- 5 (c) detecting specifically bound antigen in the mixture which indicates the presence of antibody specific to Streptococcus.
 - 21. Use of the polypeptide according to any one of claims 1 to 3 in the manufacture of a medicament for the
- 10 prophylactic or therapeutic treatment of streptococcal infection.
 - 22. Use of the polypeptide according to any one of claims 1 to 3 for the prophylactic or therapeutic treatment of streptococcal infection.
- 15 23. Kit comprising a polypeptide according to any one of claims 1 to 3 for detection or diagnosis of screptococcal infection.

SMART & BIGGAR OTTAWA, CANADA

PATENT AGENTS

ì

Figure 1 (SEQ ID NO:1)

 $\label{eq:constraints} (x_1, x_2, \dots, x_n) = (x_1, \dots, x_n) + (x_1, \dots, x_n)$

_						
	ATGAAGAAAC					
	AATCAGGAAG					
	TCGATTTCTG					
	ACTTCTGGCC					
	GAAAAAATAA					
	GAGAATACAG	•				
361		TAAATAAAAC				
	ACTAAGGGGA					
	GATCATCTCG					
	TTTGCTTTTA					
601	AATGGGGAAA					
661		ATCTACTAAA				
	GATGCTTTTG					
	ATTTCTGACT					
841	AAAGCGATTG					
901	CGTCAGTTAA	TGCGATTAGC	AGAACGTGCT	TTTAAATCAA	ACCATATCAA	AACAATTGAG
961	TTTAGAGGAA	ATAGTCTAAA	AGTGATAGGG	GAAGCTAGTT	TTCAAGATAA	TGATCTGAGT
1021	CAACTAATGC	TACCTGACGG	TCTTGAAAAA	ATAGAATCAG	AAGCTTTTAC	AGGAAATCCA
1081	GGAGATGATC	ACTACAATAA	CCGTGTTGTT	TTGTGGACAA	AATCTGGAAA	AAATCCTTCT
1141	GGTCTTGCTA	CTGAAAATAC	CTATGTTAAT	CCTGATAAGT	CACTATGGCA	GGAAAGTCCT
1201	GAGATTGATT	ATACTAAATG	GTTAGAGGAA	GATTTTACCT	ATCAAAAAAA	TAGTGTTACA
1261	GGTTTTTCAA	ATAAAGGCTT	ACAAAAAGTA	AAACGTAATA	AAAACTTAGA	AATTCCAAAA
1321	CAGCACAATG	GTGTTACTAT	TACTGAAATT	GGTGATAATG	CTTTTCGCAA	TGTTGATTTT
1381	CAAAATAAAA	CTTTACGTAA	ATATGATTTG	GAAGAAGTAA	AGCTTCCCTC	AACTATTCGG
1441	AAAATAGGTG	CTTTTGCTTT	TCAATCTAAT	AACTTGAAAT	CTTTTGAAGC	AAGTGACGAT
1501	TTAGAAGAGA	TTAAAGAGGG	AGCCTTTATG	AATAATCGTA	TTGAAACCTT	GGAATTAAAA
1561	GATAAATTAG	TTACTATTGG	TGATGCGGCT	TTCCATATTA	ATCATATTTA	TGCCATTGTT
1621	CTTCCAGAAT	CTGTACAAGA	AATAGGGCGT	TCAGCATTTC	GGCAAAATGG	TGCAAATAAT
1681	CTTATTTTTA	TGGGAAGTAA	GGTTAAGACC	TTAGGTGAGA	TGGCATTTTT	ATCAAATAGA
	CTTGAACATC					
1801	TCAGACAATG	CCTTGAAAGA	AGTATTATTA	CCAGCATCAC	TGAAAACGAT	TCGAGAAGAA
1861	GCCTTCAAAA	AGAATCATTT	AAAACAACTG	GAAGTGGCAT	CTGCCTTGTC	CCATATTGCT
	TTTAATGCTT					
1981	ACGCATCATA	ATTCCTACGC	ACTAGCAGAT	GGTGAGCATT	TTATCGTTGA	TCCAGATAAG
2041	TTATCTTCTA	CAATAGTAGA	CCTTGAAAAG	ATTTTAAAAC	TAATCGAAGG	TTTAGATTAT
2101	TCTACATTAC					
2161	TTGTTGTCAA	AATCTAACCT	CCGACAAGGA	GAAAAACAAA	AATTCCTTCA	AGAAGCACAA
	TTTTTCCTTG					
2281	ACCAAGAAGG	CAACAAAGAA	TGGTCAGTTG	CTTGAAAGAA	GTATTAACAA	AGCGGTATTA
	GCTTATAATA					
2401	TTGCTAACAG	GATTAGTTGA	GGGAAAAGGA	CCATTAGCGC	AAGCTACAAT	GGTACAAGGA
2461	GTTTATTTAT					
2521		CTGGAAAATT				
2581	CAAAAAGACG					
	GCCTTGGCAG					
	AGTAAGCTTA					
	GGTATTTTCC					
	GGTACGCACT					
	CAATCAAACC					
	AAAGGCAGCT					
	ACTGCTATAA					
		- ·				

Figure 2 (SEQ ID NO:2)

1	MKKHLKTVAL	TLTTVSVVTH	NQEVFSLVKE	PILKQTQASS	SISGADYAES	SGKSKLKINE
61	TSGPVDDTVT	DLFSDKRTTP	EKIKDNLAKG	PREQELKAVT	ENTESEKQIT	SGSQLEQSKE
121	SLSLNKTVPS	TSNWEICDFI	TKGNTLVGLS	KSGVEKLSQT	DHLVLPSQAA	DGTQLIQVAS
181	FAFTPDKKTA	IAEYTSRAGE	NGEISQLDVD	GKEIINEGEV	FNSYLLKKVT	IPTGYKHIGQ
241	DAFVDNKNIA	EVNLPESLET	ISDYAFAHLA	LKQIDLPDNL	KAIGELAFFD	NQITGKLSLP
301	RQLMRLAERA	FKSNHIKTIE	FRGNSLKVIG	EASFQDNDLS	QLMLPDGLEK	IESEAFTGNP
361	GDDHYNNRVV	LWTKSGKNPS	GLATENTYVN	PDKSLWQESP	EIDYTKWLEE	DFTYQKNSVT
421	GFSNKGLQKV	KRNKNLEIPK	QHNGVTITEI	GDNAFRNVDF	QNKTLRKYDL	EEVKLPSTIR
481	KIGAFAFQSN	NLKSFEASDD	LEEIKEGAFM	NNRIETLELK	DKLVTIGDAA	FHINHIYAIV
541	LPESVQEIGR	SAFRQNGANN	LIFMGSKVKT	LGEMAFLSNR	LEHLDLSEQK	QLTEIPVQAF
601	SDNALKEVLL	PASLKTIREE	AFKKNHLKQL	EVASALSHIA	FNALDDNDGD	EQFDNKVVVK
661	THHNSYALAD	GEHFIVDPDK	LSSTIVDLEK	ILKLIEGLDY	STLRQTTQTQ	FRDMTTAGKA
721	LLSKSNLRQG	EKQKFLQEAQ	FFLGRVDLDK	AIAKAEKALV	${\tt TKKATKNGQL}$	LERSINKAVL
781	AYNNSAIKKA	NVKRLEKELD	LLTGLVEGKG	PLAQATMVQG	VYLLKTPLPL	PEYYIGLNVY
841	FDKSGKLIYA	LDMSDTIGEG	QKDAYGNPIL	NVDEDNEGYH	ALAVATLADY	EGLDIKTILN
901	SKLSQLTSIR	QVPTAAYHRA	GIFQAIQNAA	AEAEQLLPKP	GTHSEKSSSS	ESANSKDRGL
961	QSNPKTNRGR	HSAILPRTGS	KGSFVYGILG	YTSVALLSLI	TAIKKKKY*	

```
Clustal W(1.4) multiple sequence alignment
7 Sequences Aligned.
                              Alignment Score = 118839
                              Conserved Identities = 936
Gaps Inserted = 0
Pairwise Alignment Mode: Fast
Pairwise Alignment Parameters:
                                 Top Diagonals = 5
                                                   Window Size = 5
    ktup = 1 Gap Penalty = 3
Multiple Alignment Parameters:
    Open Gap Penalty = 10.0
                            Extend Gap Penalty = 0.1
    Delay Divergent = 40%
                              Gap Distance = 8
    Similarity Matrix: blosum
Processing time: 12.9 seconds
                                                             DYAES
                                                                     5
Spy74_M3
              1
                                          LVKEPILKQTQASSSISGADYAES
                                                                     24
Spy70_M5
               1
Spy69 M6
                                                 KQTQASSSISGADYAES
                                                                     17
              1
Spy68_M2
                                          LVKEPILKQTQASSSISGADYAES
              1.
Spy60 M1
                                          LVKEPILKQTQASSSISGADYAES
              1
12357 M18
                                           VKEPILKQTQASSSISGADYAES
                                                                     23
              1 MKKHLKTVALTLTTVSVVTHNQEVFSLVKEPILKQTQASSSISGADYAES
700294 M1
              6 SGKSKLKINETSGPVDDTVTDLFSDKRTTPEKIKDNLAKGPREQELKAVT
                                                                     55
Spy74_M3
             25 SGKSKLKINETSGPVDDTVTDLFSDKRTTPEKIKDNLAKGPREQELKAVT
                                                                     74
 Spy70_M5
             18 SGKSKLKINETSGPVDDTVTDLFSDKRTTPEKIKDNLAKGPREQELKAVT
                                                                     67
 Spy69_M6
 Spy68_M2
             25 SGKSKLKINETSGPVDDTVTDLFSDKRTTPEKIKDNLAKGPREQELKTVT
                                                                     74
 Spy60_M1
             25 SGKSKLKINETSGPVDDTVTDLFSDKRTTPEKIKDNLAKGPREQELKAVT
                                                                     74
12357 M18 24 SGKSKLKINETSGPVDDTVTDLFSDKRTTPEKIKDNLAKGPREQELKAVT
                                                                     73
             51 SGKSKLKINETSGPVDDTVTDLFSDKRTTPEKIKDNLAKGPREQELKAVT
                                                                    100
 700294 M1
                 **************
             56 ENTESEKQITSGSQLEQSKESLSLNKRVPSTSNWEICDFITKGNTLVGLS
 Spy74 M3
             75 ENTESEKQINSGSQLEQSKESLSLNKRVPSTSNWEICDFITKGNTLVGLS
 Spy70_M5
 Spy69 M6
             68 ENTESEKQINSGSQLEQSKESLSLNKRVPSTSNWEICDFITKGNTLVGLS
 Spy68_M2
             75 ENTESEKQITSGSQLEQSKESLSLNKTVPSTSNWEICDFITKGNTLVGLS
 Spy60_M1
             75 ENTESEKOITSGSOLEOSKESLSLNKTVPSTSNWEICDFITKGNTLVGLS
 12357 M18
             74 ENTESEKQINSGSQLEQSKESLSLNKRVPSTSNWEICDFITKGNTLVGLS
             101 ENTESEKQITSGSQLEQSKESLSLNKTVPSTSNWEICDFITKGNTLVGLS
 700294 M1
                 ******* *********** *******
             106 KSGVEKLSQTDHLVLPSQAADGTQLIQVASFAFTPDKKTAIAEYTSRAGE 155
 Spy74 M3
 Spy70_M5
            125 KSGVEKLSQTDHLVLPSQAADGTQLIQVASFAFTPDKKTAIAEYTSRAGE
                                                                   174
            118 KSGVEKLSQTDHLVLPSQAADGTQLIQVASFAFTPDKKTAIAEYTSRAGE
                                                                   167
 Spy69_M6
 Spy68 M2
            125 KSGVEKLSQTDHLVLPSQAADGTQLIQVASFAFTPDKKTAIAEYTSRAGE
                                                                   174
 Spy60_M1
            125 KSGVEKLSQTDHLVLPSQAADGTQLIQVASFAFTPDKKTAIAEYTSRAGE
 12357_M18
             124 KSGVEKLSQTDHLVLPSQAADGTQLIQVASFAFTPDKKTAIAEYTSRAGE
                                                                    173
.700294_M1
             151 KSGVEKLSQTDHLVLPSQAADGTQLIQVASFAFTPDKKTAIAEYTSRAGE
                                                                    200
```

FIG. 3 SUBSTITUTE SHEET (RULE 26)

4/6

Spy74_M3 Spy70_M5 Spy69_M6 Spy68_M2 Spy60_M1 12357_M18 700294_M1	175 168 175 175	NGEISQLDVDGKEIINEGEVFNSYLLKKVTIPTGYKHIGQDAFVDNKNIA NGEISQLDVDGKEIINEGEVFNSYLLKKVTIPTGYKHIGQDAFVDNKNIA NGEISQLDVDGKEIINEGEVFNSYLLKKVTIPTGYKHIGQDAFVDNKNIA NGEISQLDVDGKEIINEGEVFNSYLLKKVTIPTGYKHIGQDAFVDNKNIA NGEISQLDVDGKEIINEGEVFNSYLLKKVTIPTGYKHIGQDAFVDNKNIA NGEISQLDVDGKEIINEGEVFNSYLLKKVTIPTGYKHIGQDAFVDNKNIA NGEISQLDVDGKEIINEGEVFNSYLLKKVTIPTGYKHIGQDAFVDNKNIA ************************************	205 224 217 224 224 223 250
Spy74 M3	206	EVNLPESLETISDYAFAHLALKQIDLPDNLKAIGELAFFDNQITGKLSLP	255
Spy70_M5	225	EVNLPESLETISDYAFAHLALKQIDLPDNLKAIGELAFFDNQITGKLSLP	274
Spy69_M6		${\tt EVNLPESLETISDYAFAHLALKQIDLPDNLKAIGELAFFDNQITGKLSLP}$	267
Spy68_M2		EVNLPESLETISDYAFAHLALKQIDLPDNLKAIGELAFFDNQITGKLSLP	274
Spy60_M1		EVNLPESLETISDYAFAHLALKQIDLPDNLKAIGELAFFDNQITGKLSLP	274
12357_M18		EVNLPESLETISDYAFAHLALKQIDLPDNLKAIGELAFFDNQITGKLSLP	273
700294_M1	251	EVNLPESLETISDYAFAHLALKQIDLPDNLKAIGELAFFDNQITGKLSLP	300

Spy74 M3	256	RQLMRLAERAFKSNHIKTIEFRGNSLKVIGEASFQDNDLSQLMLPDGLEK	305
Spy70 M5	275	ROLMRLAERAFKSNHIKTIEFRGNSLKVIGEASFQDNDLSQLMLPDGLEK	324
Spy69 M6	268	RQLMRLAERAFKSNHIKTIEFRGNSLKVIGEASFQDNDLSQLMLPDGLEK	317
Spy68 M2	275	RQLMRLAERAFKSNHIKTIEFRGNSLKVIGEASFQDNDLSQLMLPDGLEK	324
Spy60_M1	275	RQLMRLAERAFKSNHIKTIEFRGNSLKVIGEASFQDNDLSQLMLPDGLEK	324
12357_M18	274		323
700294_M1	301	RQLMRLAERAFKSNHIKTIEFRGNSLKVIGEASFQDNDLSQLMLPDGLEK	350

Spy74 M3	306	IESEAFTGNPGDDHYNNRVVLWTKSGKNPYGLATENTYVNPDKSLWQESP	355
Spy70 M5	325	IESEAFTGNPGDDHYNNRVVLWTKSGKNPYGLATENTYVNPDKSLWQESP	374
Spy69_M6	318	IESEAFTGNPGDDHYNNRVVLWTKSGKNPYGLATENTYVNPDKSLWQESP	367
Spy68_M2	325	IESEAFTGNPGDDHYNNRVVLWTKSGKNPYGLATENTYVNPDKSLWQESP	374
Spy60_M1	325	IESEAFTGNPGDDHYNNRVVLWTKSGKNPSGLATENTYVNPDKSLWQESP	374
12357_M18	324	IESEAFTGNPGDDHYNNRVVLWTKSGKNPYGLATENTYVNPDKSLWQESP	373
·700294 <u>·</u> M1	351		4.00

Spy74 M3	356	EIDYTKWLEEDFTYQKNSVTGFSSKGLQKVKRNKNLEIPKQHNGVTITEI	405
Spy70_M5	375	EIDYTKWLEEDFTYQKNSVTGFSSKGLQKVKRNKNLEIPKQHNGVTITEI	424
Spy69_M6	368	EIDYTKWLEEDFTYQKNSVTGFSSKGLQKVKRNKNLEIPKQHNGVTITEI	417
Spy68_M2	375	EIDYTKWLEEDFTYQKNSVTGFSNKGLQKVKRNKNLEIPKQHNGVTITEI	424
Spy60_M1		EIDYTKWLEEDFTYQKNSVTGFSNKGLQKVKRNKNLEIPKQHNGVTITEI	424
12357_M18		EIDYTKWLEEDFTYQKNSVTGFSSKGLQKVKRNKNLEIPKQHNGVTITEI	423
700294_M1	401	EIDYTKWLEEDFTYQKNSVTGFSNKGLQKVKRNKNLEIPKQHNGVTITEI	450

Spy74_M3	406	GDNAFRNVDFQNKTLRKYDLEEVKLPSTIRKIGAFAFQSNNLKSFEASDD	455
Spy70_M5	425	GDNAFRNVDFQNKTLRKYDLEEVKLPSTIRKIGAFAFQSNNLKSFEASDD	474
Spy69_M6	418	GDNAFRNVNFQNKTLRKYDLEEVKLPSTIRKIGAFAFQSNNLKSFEASDD	467
Spy68_M2		${\tt GDNAFRNVDFQNKTLRKYDLEEVKLPSTIRKIGAFAFQSNNLKSFEASDD}$	474
Spy60_M1		${\tt GDNAFRNVDFQNKTLRKYDLEEVKLPSTIRKIGAFAFQSNNLKSFEASDD}$	474
12357_M18		${\tt GDNAFRNVDFQNKTLRKYDLEEVKLPSTIRKIGAFAFQSNNLKSFEASDD}$	473
700294_M1	451	GDNAFRNVDFQNKTLRKYDLEEVKLPSTIRKIGAFAFQSNNLKSFEASDD	500

FIG. 3 (continued)

SUBSTITUTE SHEET (RULE 26)

5/6

Spy74_M3 Spy70_M5 Spy69_M6 Spy68_M2 Spy60_M1 12357_M18 700294_M1	456 475 468 475 475 474 501	LEEIKEGAFMNNRIETLELKDKLVTIGDAAFHINHIYAIVLPESVQEIGR LEEIKEGAFMNNRIETLELKDKLVTIGDAAFHINHIYAIVLPESVQEIGR LEEIKEGAFMNNRIETLELKDKLVTIGDAAFHINHIYAIVLPESVQEIGR LEEIKEGAFMNNRIETLELKDKLVTIGDAAFHINHIYAIVLPESVQEIGR LEEIKEGAFMNNRIETLELKDKLVTIGDAAFHINHIYAIVLPESVQEIGR LEEIKEGAFMNNRIETLELKDKLVTIGDAAFHINHIYAIVLPESVQEIGR LEEIKEGAFMNNRIETLELKDKLVTIGDAAFHINHIYAIVLPESVQEIGR ************************************	505 524 517 524 524 523 550
Spy74_M3 Spy70_M5 Spy69_M6 Spy68_M2 Spy60_M1 12357_M18 700294_M1		SAFRQNGANNLIFMGSKVKTIGEMAFLSNRLEHLDLSEQKQLTEIPVQAF SAFRQNGANNLIFMGSKVKTLGEMAFLSNRLEHLDLSEQKQLTEIPVQAF SAFRQNGANNLIFMGSKVKTLGEMAFLSNRLEHLDLSEQKQLTEIPVQAF SAFRQNGANNLIFMGSKVKTLGEMAFLSNRLEHLDLSEQKQLTEIPVQAF SAFRQNGANNLIFMGSKVKTLGEMAFLSNRLEHLDLSEQKQLTEIPVQAF SAFRQNGANNLIFMGSKVKTLGEMAFLSNRLEHLDLSEQKQLTEIPVQAF SAFRQNGANNLIFMGSKVKTLGEMAFLSNRLEHLDLSEQKQLTEIPVQAF	555 574 567 574 574 573 600
Spy74_M3 Spy70_M5 Spy69_M6 Spy68_M2 Spy60_M1 12357_M18 700294_M1	556 575 568 575 575 574 601	SDNALKEVLLPASLKTIREEAFKKNHLKQLEVASALSHIAFNALDDNDGD SDNALKEVLLPASLKTIREEAFKKNHLKQLEVASALSHIAFNALDDNDGD SDNALKEVLLPASLKTIREEAFKKNHLKQLEVASALSHIAFNALDDNDGD SDNALKEVLLPASLKTIREEAFKKNHLKQLEVASALSHIAFNALDDNDGD SDNALKEVLLPASLKTIREEAFKKNHLKQLEVASALSHIAFNALDDNDGD SDNALKEVLLPASLKTIREEAFKKNHLKQLEVASALSHIAFNALDDNDGD SDNALKEVLLPASLKTIREEAFKKNHLKQLEVASALSHIAFNALDDNDGD SDNALKEVLLPASLKTIREEAFKKNHLKQLEVASALSHIAFNALDDNDGD	605 624 617 624 624 623 650
Spy74_M3 Spy70_M5 Spy69_M6 Spy68_M2 Spy60_M1 12357_M18 700294_M1	606 625 618 625 625 624	EQFDNKVVVKTHHNSYALADGEHFIVDPDKLSSTMVDLEKILKLIEGLDY EQFDNKVVVKTHHNSYALADGEHFIVDPDKLSSTIVDLEKILKLIEGLDY EQFDNKVVVKTHHNSYALADGEHFIVDPDKLSSTIVDLEKILKLIEGLDY EQFDNKVVVKTHHNSYALADGEHFIVDPDKLSSTMIDLEKILKLIEGLDY EQFDNKVVVKTHHNSYALADGEHFIVDPDKLSSTIVDLEKILKLIEGLDY EQFDNKVVVKTHHNSYALADGEHFIVDPDKLSSTIVDLEKILKLIEGLDY EQFDNKVVVKTHHNSYALADGEHFIVDPDKLSSTIVDLEKILKLIEGLDY ************************************	655 674 667 674 674 673 700
Spy74_M3 Spy70_M5 Spy69_M6 Spy68_M2 Spy60_M1 12357_M18 700294_M1	675 668 675 675 674	STLRQTTQTQFRDMTTAGKALLSKSKLRQGEKQKFLQEAQFFLGRVDLDK STLRQTTQTQFRDMTTAGKALLSKSNLRQGEKQKFLQEAQFFLGRVDLDK STLRQTTQTQFRDMTTAGKALLSKSNLRQGEKQKFLQEAQFFLGRVDLDK STLRQTTQTQFRDMTTAGKALLSKSNLRQGEKQKFLQEAQFFLGRVDLDK STLRQTTQTQFRDMTTAGKALLSKSNLRQGEKQKFLQEAQFFLGRVDLDK STLRQTTQTQFRDMTTAGKALLSKSNLRQGEKQKFLQEAQFFLGRVDLDK STLRQTTQTQFRDMTTAGKALLSKSNLRQGEKQKFLQEAQFFLGRVDLDK ***********************************	705 724 717 724 724 723 750
Spy74_M3 Spy70_M5 Spy69_M6 Spy68_M2 Spy60_M1 12357_M18 700294_M1	725 718 725 725 724	AIAKAEKALVTKKATKNGQLLGRSINKAVLAYNNSAIKKANVKRLEKELD AIAKAEKALVTKKATKNGQLLERSINKAVLAYNNSAIKKANVKRLEKELD AIAKAEKALVTKKATKNGQLLERSINKAVSAYNNSAIKKANVKRLEKELD AIAKAEKALVTKKATKNGQLLERSINKAVLAYNNSAIKKANVKRLEKELD AIAKAEKALVTKKATKNGQLLERSINKAVLAYNNSAIKKANVKRLEKELD AIAKAEKALVTKKATKNGQLLERSINKAVLAYNNSAIKKANVKRLEKELD AIAKAEKALVTKKATKNGQLLERSINKAVLAYNNSAIKKANVKRLEKELD AIAKAEKALVTKKATKNGQLLERSINKAVLAYNNSAIKKANVKRLEKELD	755 774 767 774 774 773 800

FIG. 3 (continued)

SUBSTITUTE SHEET (RULE 26)

Spy74 M3	756	LLTGLVEGKGPLAQATMVQGVYLLKTPLPLPEYYIGLNVYFDKSGKLIYA	805
Spy70 M5		LLTGLVEGKGPLAQATMVQGVYLLKTPLPLPEYYIGLNVYFDKSGKLIYA	824
Spy69 M6	768	LLTGLVEGKGPLAQATMVQGVYLLKTPLPLPEYYIGLNVYFDKSGKLIYA	817
Spy68 M2	775	LLTGLVEGKGPLAQATMVQGVYLLKTPLPLPEYYIGLNVYFDKSGKLIYA	824
Spy60 M1		LLTGLVEGKGPLAQATMVQGVYLLKTPLPLPEYYIGLNVYFDKSGKLIYA	824
12357 M18		LLTGLVEGKGPLAQATMVQGVYLLKTPLPLPEYYIGLNVYFDKSGKLIYA	823
700294 M1	801	LLTGLVEGKGPLAQATMVQGVYLLKTPLPLPEYYIGLNVYFDKSGKLIYA	850

Spy74 M3	806	LDMSDTIGEGQKDAYGNPILNVDEDNEGYHALAVATLADYEGLDIKTILN	855
Spy70 M5		LDMSDTIGEGQKDAYGNPILNVDEDNEGYHALAVATLADYEGLDIKTILN	874
Spy69 M6	818	LDMSDTIGEGOKDAYGNPILNVDEDNEGYHALAVATLADYEGLDIKTILN	867
Spy68 M2		LDMSDTIGEGQKDAYGNPILNVDEDNEGYHALAVATLADYEGLDIKTILN	874
Spy60 M1		LDMSDTIGEGOKDAYGNPILNVDEDNEGYHALAVATLADYEGLDIKTILN	874
12357 M18		LDMSDTIGEGQKDAYGNPILNVDEDNEGYHALAVATLADYEGLDIKTILN	873
700294 M1		LDMSDTIGEGOKDAYGNPILNVDEDNEGYHALAVATLADYEGLDIKTILN	900

Spy74 M3	856	SKLSQLTSIRQVPTAAYHRAGIFQAIQNAAAEAEQLLPKPGTHSEKSSSS	905
Spy70 M5	875	· · · · · · · · · · · · · · · · · · ·	924
Spy69_M6	868		917
Spy68 M2		SKLSQLTSIRQVPTAAYHRAGIFOAIONAAAEAEOLLPKPGMHSEKSSSS	924
Spy60 M1		SKLSQLTSIRQVPTAAYHRAGIFQAIQNAAAEAEQLLPKPGTHSEKSSSS	924
12357 M18		SKLSQLTSIRQVPTAAYHRAGIFQAIQNAAAEAEOLLPKPGTHSEKSSSS	923
700294 M1		SKLSQLTSIRQVPTAAYHRAGIFQAIQNAAAEAEQLLPKPGTHSEKSSSS	950
e in e ja 📆 ja		*********	
		·	
Spy74 M3	906	ESANSKDRGLQSNPKTNRGRHSAILPRTGSKGSFVYGILGYTSVAL	951
Spy70 M5		ESANSKDRGLQSNPKTNRGRHSAILPRTGSKGSFVYGILGYTSVAL	970
Spy69 M6		ESANSKDRGLQSNPKTNRGRHSAILPRTGSKGSFVYGILGYTSVAL	963
Spy68 M2		ESANSKDRGLQSHPKTNRGRHSAILPRTGSKGSFVYGILGYTSVALL	971
Spy60 M1		ESANSKDRGLQSNPKTNRGRHSAILPRTGSKGSFVYGILGYTSVALL	971
12357 M18		ESANSKDRGLQSNPKTNRGRHSAILPRTGSKGSFVYGILGYTSVAL	969
700294 M1		ESANSKDRGLOSNPKTNRGRHSAILPRTGSKGSFVYGILGYTSVALLSLI	1000
_		**********	
Spy74 M3	952	951 (SEQ ID NO:3)	
Spy70 M5	971	970 (SEQ ID NO:4)	
Spy69 M6	964	963 (SEQ ID NO:5)	
Spy68 M2	972	971 (SEQ ID NO:6)	
Spy60 M1	972	971 (SEQ ID NO:7)	
12357 M18	970	969 (SEQ ID NO:8)	
700294 M1		TAIKKKKY 1008 (SEQ ID NO:2)	

FIG. 3 (continued)

AMENDED SHEET