

b) For any x ∈ S, n= d(2, (a, 2)) - n works my y ∈ B (2, no), d(yr(a,102)) & d(yrx) + d(xr(a,102))

=100+d(x,a,502) d(2, a) & d(y, 6, 1921) + d(2, 41, 42) d(y, 2) 4 d (y, (a, 2) + no 1 (y, (a1,42)) > 12 neither closed non open on chosen st b1-2 ([a1,b1) 261-13 m30 for any n>0 B(car, an), n) contains (az-n, 1an-n) & S Oclosed Sc = B(0,1) U (B(0,1)) is open

Ø A=[h] ← R
$B(k,1) \cap [n] = \phi \cdot k \in [n]$
So no point is a limit point of the set.
A-11-1-711/1-1-1-7
A= 1= 1= 1= 1= 1= 1= 1= 1= 1= 1= 1= 1= 1=
- L14 = +87 + (n-2), 3
□{0, 1,2, (n-1)}
2 + K -> K / SO K0,2, (n-1) 3 are 173
limit points, We'll show those we the only
limit points n 21,
take any $\frac{1}{2^n} + k$, $B\left(\frac{1}{2^n} + k\right) \frac{1}{2^{n+2}} \cap A = \emptyset$
15 not a limit point.
(O3) An = [0,1-1] nnz,2
An = [0) 1 1 1 2
An = 0 > 1 - +]

(t=)) F=YMA, A is closed in (X1d) YIF= YI(YOA) = X (YAA) AY Since YEX = (X)A) 1 Y (X (A) is open in (X,d) SO Ype YIF, pe (XIA) ∃ 7,70 s.f. B(P, 7p) ≤ XVA B(p,rp)nY = (X)A)nY By (p, np) =>Y/F is open in (Y)dy) (=> F is closed in (Yody)

(S6) A=4P3
4770 B(p,77) () A /4p3 = \$\phi\$ 150 p is not
almit point, in fact, A has no limit
points.
So A is closed vacuosty.
(87)
W= Ou = A°
WEA
Mopen
A°SU since Yze & A°, by defn, z is
an interior point, IB(2, n) & A
$\exists \gamma x \in B(x, r) \subseteq JU$
QUEA QUEA
Wint A ? Mopen
Sps & & Wint, Will+ & DU St.
ze U and U SA
But Wopen is an open noh of every
So IB(x, T) CU > 2 is an interior
PREAD. POINT OF A

Now Ig st ge (x, x') = (2+, 2+) We are done since for any B(2,71) we can find Nst. $B(x, 1) \subseteq B(x, n)$ and q ∈ B(x, 1) (22).

