Function Scope and Recursion

Part 1 Variable Scope

For the given code below, what are the outputs printed?

```
Code
                                               Output
x = 0
def foo_printx():
      print(x)
foo_printx()
print(x)
x = 0
y = 999
def foo_printx(y):
      print(y)
foo_printx(x)
print(x)
x = 0
def foo_printx():
      x = 999
      print(x)
foo_printx()
print(x)
```

Part 2 Nested Functions

Expressions	Output
<pre>x = 1 y = 2 def foo(y): def bar(x): return x+y return bar(y) print(foo(x))</pre>	
<pre>x = 1 y = 2 def foo(x): def bar(x): return x+y return bar(y) print(foo(x))</pre>	

Part 3 Recursion

Recap from previous tutorial that we can create a customized burger. We have the price list for each ingredient reproduced below for convenience:

Ingredient	Price
'B' stands for a piece of bun	\$0.5
'C' stands for cheese	\$0.8
'P' stands for patty	\$1.5
'V' stands for veggies	\$0.7
'O' stands for onions	\$0.4
'M' stands for mushroom	\$0.9

You task last week was to write a function burgerPrice(burger) to take in a string of customized burger and return a total sum for the price. Your current task is to write the same function burgerPrice(burger) in recursion.

Part 4 Recursion vs Iteration

- A. Sum Problem: Given a positive number n, the sum of all digits is obtained by adding the digit one-by-one. For example, the sum of 52634 is 5 + 2 + 6 + 3 + 4 = 20. Write a **recursive** and **iterative** function sum(n) to compute the sum of all the digits in n. You may assume that n > 0.
- B. Factorial: Given a positive number n, the value of factorial of n (written as n!) is defined as $n! = n \times (n-1)!$. Additionally, the value of 0! is 1. Write a **recursive** and **iterative** function fact(n) that computes the value of n!.

Part 5 Challenge

- A. Final Sum: Given a positive number n, the final sum is obtained by repeatedly computing the sum of n until the sum is a single digit. For example, sum(52634) = 20, which is not a single digit. We then continue with sum(20) = 2. Therefore, $final_sum(52634) = 2$. Write a *recursive* and *iterative* function $final_sum(n)$ to compute the final sum of n.
- B. Euler Constant: The value of e^x can be approximated using the formula $e^x = \frac{x^0}{0!} + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$. Write a recursive and iterative function find_e(x, n) to find the approximation of e^x up to n+1 steps. In other words, the last value in the approximation will be $\frac{x^n}{n!}$.