



# Survival Analysis in Customer Relationship Management

Verena Pflieger
Data Scientist at INWT Statistics







#### Advantages survival model

- less aggregation
- allows us to model when an event takes place
- no arbitrarily set timeframe
- deeper insights into customer relations







#### Data for Survival Analysis

```
Classes 'tbl df', 'tbl' and 'data.frame': 5311 obs. of 11 variables:
                   : Factor w/ 7043 levels "0002-0RFB0", "0003-MKNFE", ...: 2565 ...
 $ customerID
                   : Factor w/ 2 levels "Female", "Male": 2 2 1 1 2 ...
 $ gender
                   : Factor w/ 2 levels "No", "Yes": 1 1 1 1 1 ...
 $ SeniorCitizen
                   : Factor w/ 2 levels "No", "Yes": 1 1 1 1 2 ...
 $ Partner
                   : Factor w/ 2 levels "No", "Yes": 1 1 1 1 1 ...
 $ Dependents
 $ tenure
                   : num 2 45 2 8 22 28 62 13 16 58 ...
 $ StreamingMovies : Factor w/ 3 levels "No", "No internet service",..: 1 1 1 ...
 $ PaperlessBilling: Factor w/ 2 levels "No", "Yes": 2 1 2 2 1 ...
 $ PaymentMethod
                   : Factor w/ 4 levels "Bank transfer (automatic)", ...: 4 2 ...
 $ MonthlyCharges
                   : num 53.9 42.3 70.7 99.7 89.1 ...
 $ churn
                   : num 1 0 1 1 0 1 0 0 0 0 ...
```





#### Tenure Time







## Let's practice!





# Survival Curve Analysis by Kaplan-Meier

Verena Pflieger
Data Scientist at INWT Statistics



#### Survival Object I

```
cbind(dataSurv %>% select(tenure, churn),
     surv = Surv(dataSurv$tenure, dataSurv$churn)) %>% head(10)
  tenure churn surv
      34
             0 34+
                 2
      45
           0 45+
      22
             0 22+
      10
             0 10+
      28
                28
      16
10
                16+
```

#### Survival function





#### **Cumulative hazard function**





#### Survival function





#### Kaplan-Meier Analysis



#### Printing the Survfit Object

```
> print(fitKM)
Call: survfit(formula = Surv(dataSurv$tenure, dataSurv$churn) ~ 1,
    type = "kaplan-meier")
    n events median 0.95LCL 0.95UCL
5311 1869 70 68 72
```

plot(fitKM)





#### Kaplan-Meier with Categorial Covariate

```
plot(fitKMstr, lty = 2:3)
legend(10, .5, c("No", "Yes"), lty = 2:3)
```







## Let's practice!





## Cox PH Model with Constant Covariates

Verena Pflieger
Data Scientist at INWT Statistics



#### Model Assumptions

Model definition:  $\lambda(t|x) = \lambda(t) * exp(x'\beta)$ 

No shape of underlying hazard  $\lambda(t)$  assumed

Relative hazard function  $exp(x'\beta)$  constant over time



#### Fitting a Survival Model



#### Summary of Survival Model

```
Cox Proportional Hazards Model
  cph(formula = Surv(tenure, churn) ~ gender + ..., data = dataSurv,
 x = TRUE, y = TRUE, surv = TRUE, time.inc = 1)
                     Model Tests
                                        Discrimination
                                           Indexes
                  LR chi2
 0bs
          5311
                             1366.98
                                        R2
                                                 0.228
                                                 0.496
 Events
          1869
                  d.f.
                                  11
                                        Dxy
 Center -0.3964
                                                 1.125
                  Pr(> chi2) 0.0000
                                        g
                  Score chi2 1355.12
                                                 3.082
                                        qr
                   Pr(> chi2) 0.0000
                                        Wald Z Pr(>|Z|)
                                 S.E.
                         Coef
 gender=Male
                          -0.0326 0.0464 -0.70 0.4817
 SeniorCitizen=Yes
                          0.2066 0.0556 3.71 0.0002
 Partner=Yes
                         -0.7433 0.0545 -13.65 <0.0001
 Dependents=Yes
                         -0.2072 0.0681 -3.04 0.0023
 StreamMov=NoIntServ
                         -1.4504 0.1168 -12.41 <0.0001
                         -0.4139 0.0556 -7.44 < 0.0001
 StreamMov=Yes
 PaperlessBilling=Yes
                        0.4056 0.0563 7.21 < 0.0001
 PayMeth=CreditCard(auto) -0.0889 0.0905 -0.98 0.3264
 PayMeth=ElektCheck
                       1.1368 0.0712 15.97 < 0.0001
 PayMeth=MailedCheck
                      0.7800 0.0875 8.92 < 0.0001
 MonthlyCharges
                          -0.0058 0.0013
                                         -4.45 < 0.0001
```



#### Interpretation of Coefficients

```
> exp(fitCPH1$coefficients)
             gender=Male
                                 SeniorCitizen=Yes
               0.9679156
                                         1.2294357
                                    Dependents=Yes
             Partner=Yes
               0.4755412
                                         0.8128759
     StreamMov=NoIntServ
                                     StreamMov=Yes
                                         0.6610708
               0.2344695
    PaperlessBilling=Yes PayMeth=CreditCard(auto)
               1.5001646
                                         0.9149822
      PayMeth=ElektCheck
                               PayMeth=MailedCheck
               3.1168997
                                         2.1814381
          MonthlyCharges
               0.9942395
```



#### Survival Probabilities by MonthlyCharges

survplot(fitCPH1, MonthlyCharges, label.curves = list(keys = 1:5))





#### Survival Probabilities by Partner

survplot(fitCPH1, Partner)



#### Visualization of Hazard Ratios

plot(summary(fitCPH1), log = TRUE)







## Let's practice!





# Checking Model Assumptions and Making Predictions

Verena Pflieger
Data Scientist at INWT Statistics



#### Test of PH Assumption

```
testCPH1 <- cox.zph(fitCPH1)</pre>
print(testCPH1)
                                   chisq
                             rho
gender=Male
                          0.0317
                                   1.884 1.70e-01
SeniorCitizen=Yes
                          0.0587
                                   6.507 1.07e-02
Partner=Yes
                          0.0752
                                  10.116 1.47e-03
Dependents=Yes
                          0.0131
                                   0.314 5.75e-01
                         -0.0448
StreamMov=NoIntServ
                                   3.588 5.82e-02
StreamMov=Yes
                          0.0827 12.174 4.85e-04
PaperlessBilling=Yes
                          0.0180
                                   0.611 4.34e-01
                                  1.198 2.74e-01
PayMeth=CreditCard(auto)
                          0.0253
PayMeth=ElektCheck
                         -0.0427 3.427 6.41e-02
PayMeth=MailedCheck
                                  13.069 3.00e-04
                         -0.0851
MonthlyCharges
                                  25.778 3.83e-07
                          0.1268
GLOBAL
                              NA 217.172 0.00e+00
```



#### Proportional Hazards for Partner

```
plot(testCPH1, var = "Partner=Yes")
```





#### Proportional Hazards for MonthlyCharges

plot(testCPH1, var = "MonthlyCharges")





#### General Remarks on Tests

- cox.zph()-test conservative
- sensitive to number of observations
- different gravity of violations



#### What if PH Assumption is Violated?

stratified analysis

time-dependent coefficients



#### Validating the Model



#### Probability not to Churn at Certain Timepoint

```
oneNewData <- data.frame(gender = "Female",</pre>
                             SeniorCitizen = "Yes",
                             Partner = "No",
                             Dependents = "Yes",
                             StreamMov = "Yes",
                             PaperlessBilling = "Yes",
                             PayMeth = "BankTrans(auto)",
                             MonthlyCharges = 37.12)
> str(survest(fitCPH1, newdata = oneNewData, times = 3))
List of 5
 $ time : num 3
 $ surv : num 0.905
 $ std.err: num 0.0136
 $ lower : num 0.881
 $ upper : num 0.93
```



#### Survival Curve for new Customer





#### Predicting Expected Time until Churn



#### Learnings

|          |                                                                 | Learnings about survival analyis                  |  |
|----------|-----------------------------------------------------------------|---------------------------------------------------|--|
| You have |                                                                 | to visualize the tenure times of customers        |  |
| learned  |                                                                 |                                                   |  |
|          |                                                                 | to model the time to an event and extract factors |  |
|          |                                                                 | influencing it                                    |  |
|          |                                                                 | how to validate the model                         |  |
|          |                                                                 | how to make prodictions                           |  |
|          | Lear                                                            | nings from the model                              |  |
| You have | that being senior citizen increases the probability to churn by |                                                   |  |
| learned  | 23%                                                             |                                                   |  |
|          | that a one-unit increase in monthly charges decreases the       |                                                   |  |
|          | ha                                                              | hazard of churning by about 1%                    |  |
|          |                                                                 |                                                   |  |



#### It is up to you now!