Example of a Double Inclusion Proof

1. Let

$$A = \{ m \in \mathbb{Z} \mid m = 2a \text{ for some } a \in \mathbb{Z} \}$$

$$B = \{ n \in \mathbb{Z} \mid n = 2b - 2 \text{ for some } b \in \mathbb{Z} \}$$

Show A = B

Lemma 1: $A \subseteq B$

Proof.

Let $x \in A$. Then x = 2a for some $a \in \mathbb{Z}$.

Let b = a + 1 (note that $b \in \mathbb{Z}$)

Subtracting 1 from both sides we have a = b - 1.

Then

$$x = 2a$$

$$= 2(b-1)$$

$$= 2b-2$$

Hence $x \in B$

Since every element in A is a element in $B, A \subseteq B$.

Lemma 2: $B \subseteq A$

Proof.

Let $y \in B$. Then y = 2b - 2 for some $b \in \mathbb{Z}$.

Let a = b - 1 (note that $a \in \mathbb{Z}$)

Adding 1 to both sides we have b = a + 1.

Then

$$y = 2b - 2$$

= $2(a+1) - 2$
= $2a + 2 - 2$
= $2a$

Hence $x \in A$

Since every element in B is a element in A, $B \subseteq A$.

Claim: A = B

Proof.

By Lemma 1, $A \subseteq B$

By Lemma 2, $B \subseteq A$

A = B