

Минская городская олимпиада по физике 2003 год

<u>9 класс.</u>

1. «Погоня»

Точка ${\bf A}$ движется по окружности радиуса R с постоянной по модулю скоростью V. Точка ${\bf B}$ начинает двигаться из произвольного положения с постоянной по модулю скоростью U $\left(\left|\vec{U}\right| < V\right)$, причем вектор скорости точки ${\bf B}$, все время направлен на точку ${\bf A}$. По какой траектории будет двигаться точка ${\bf B}$ по прошествии достаточного

длительного промежутка времени? Как будет выглядеть эта траектория в системе отсчета, связанной с точкой \mathbf{A} ? Чему будет равно расстояние между точками? Чему будет равна скорость точки \mathbf{B} относительно точки \mathbf{A} ?

2. «Комната»

Поддержание нормальной температуры воздуха в жилых помещениях является очень важной проблемой как для жильцов, так и для работников жилищно-коммунального хозяйства. Для изучения этой проблемы проведен следующий модельный эксперимент. Внутри закрытого сосуда с воздухом разместили нагреватель, который поддерживается при постоянной температуре t_0 . Температура наружного воздуха равна t_1 . Проведены измерения зависимости температуры воздуха внутри сосуда t от наружной температуры t_1 , при двух различных значениях температуры нагревателя t_0 . Результаты этих измерений представлены на графиках.

- а) Сделайте разумные предположения о процессах теплопередачи, объясняющие полученные зависимости;
- б) постройте график зависимости температуры воздуха внутри сосуда t от наружной температуры t_1 , при температуре нагревателя $t_0 = 70^{\circ}\,C$;

в) постройте график зависимости температуры воздуха внутри сосуда t от наружной температуры t_1 , при температуре нагревателя $t_0=70^{\circ}\,C$, для такого же сосуда, но толщина стенок которого увеличена в два раза.

3. «Линзы»

Оптическая система состоит из двух тонких линз, главные оптические оси которых совпадают. Радиус первой линзы $r_1=1,0cm$, радиус второй $r_2=3,0cm$, фокусное расстояние первой $f_1=10cm$, а второй $f_2=15cm$. Линзы расположены на расстоянии |BC|=a=5,0cm друг от друга. На оптической оси системы на расстоянии |AB|=l=10cm от первой линзы расположен изотропный точечный источник света \mathbf{A} , с другой стороны на расстоянии |CD|=b=10cm от второй линзы расположен экран. Укажите, какие части экрана будут освещены. Как изменятся освещенные области экрана, если второю линзу сместить на расстояние x=1,0cm перпендикулярно оптической оси?

4. «Доски».

Две одинаковых доски лежат на горизонтальной поверхности, одна на другой. Масса каждой доски равна m, коэффициент трения между досками и между нижней доской и горизонтальной поверхностью равен μ . Доски связаны невесомой нерастяжимой нитью, переброшенной через легкий неподвижный блок, закрепленный на неподвижной стенке. Какую минимальную

горизонтально направленную силу следует приложить к нижней доске, чтобы сдвинуть ее с места?

А какую минимальную горизонтально направленную силу следует приложить к верхней доске, чтобы сдвинуть ее с места?

Минская городская олимпиада по физике (2003 год)

10 класс.

1. «Сифон»

Узкая трубка с площадью поперечного сечения s длиной l и массы m с помощью короткого гибкого шланга ${\bf A}$ соединена с горизонтально расположенной трубой такого же поперечного сечения. На нижнем конце трубы закреплена насадка ${\bf B}$ (масса которой m_0), изменяющая направление движения жидкости на 90° . По трубе пропускают жидкость плотности ρ , движущуюся внутри трубы со скоростью V. Найдите угол отклонения трубки от вертикали при движении жидкости.

2. «Шарики»

Небольшие металлические шарики могут скользить без трения по длинному непроводящему тонкому стержню. Масса каждого шарика равна m.

- 1. Двум шарикам сообщили одинаковые положительные заряды +q, нижний шарик закрепили, а верхний отпустили. На каком расстоянии z_0 расположатся шарики?
- 2. Двум шарикам сообщили заряды $\pm q$ одинаковые по величине, но противоположные по знаку. Верхний, положительно заряженный закрепили, а нижний отпустили. На каком расстоянии z_1 расположатся шарики?
- 3. Три шарика (заряды двух, верхних равны +q, а нижнего -q) расположили на расстоянии z_0 (см. п.1) руг от друга. Центральный закрепили, а крайние отпустили. На каких расположатся шарики?

расстояниях

3. «Электролит»

В кювету, имеющую форму параллелепипеда высотой $h = 10c_M$ и толщиной $a = 1.0c_M$, вдоль ее боковых стенок поместили две металлические пластинки высотой $h_0 = 7.0 cm$, подключенные к источнику постоянного Затем напряжения U = 220B. кювету полностью водой, находящейся заполнили при температуре $t_0 = 20^{\circ}\,C$. Постройте графики зависимостей от времени а)температуры воды; б) высоты уровня воды в кювете.

Удельное электрическое сопротивление налитой воды равно $\gamma = 2.0 \cdot 10^2 \ Om \cdot M$

и не зависит от температуры, плотность воды $\rho = 1.0 \cdot 10^3 \, \frac{\kappa z}{M^3}$, ее удельная

теплоемкость $c = 4.2 \cdot 10^3 \frac{\text{Дж}}{\kappa z \cdot z \, pad}$, удельная теплота парообразования

 $\lambda = 2.3 \cdot 10^6 \frac{\text{Дж}}{\text{кг}}$, атмосферное давление нормальное, испарением воды до начала кипения можно пренебречь.

4. «Каток»

Машина для уплотнения грунта состоит и корпуса и двух одинаковых однородных цилиндрических катков. Масса корпуса (с имеющимся внутри оборудованием) равна M, масса каждого катка m, радиус катка - R, расстояние между осями катков - L, центр масс корпуса находится на середине расстояния между осями катков, на высоте равной радиусу катков от их осей. В ходе сборки машины была допущена ошибка, в результате которой оказалось, что катки вращаются в противоположные стороны (направление вращения можно переключать). Угловая скорость вращения катков постоянна и равна ω_0 . Коэффициент трения между катками и поверхностью постоянен и равен μ .

а. Машина расположили на горизонтальной поверхности, на корпус установили небольшой груз (например, водитель) массы m_0 , на расстоянии x от оси машины. Найдите закон движения машины.

б. Машину разместили на склон, составляющей малый угол α с горизонтом, так что оси катков горизонтальны. При каких условиях машина сможет подниматься по склону?

в. Машина оказалась на длинном склоне, составляющем угол малый горизонтом, так, что оси колес направлены вдоль склона. В результате через некоторый промежуток времени машина начала соскальзывать c постоянной скоростью. Определите эту скорость.

Минская городская олимпиада по физике (2003 год)

11 класс.

1. «Фототок» . Длинная плоская пластинка длиной l и шириной a, сопротивление которой равно R_0 , включена последовательно в электрическую цепь, содержащую источник постоянного напряжения U_0 и два одинаковых резистора сопротивлениями R. Пластинка освещается параллельным монохроматическим

световым потоком с длиной волны λ , интенсивность которого равна I_0 . Под действием этого излучения происходит фотоэффект, квантовая эффективность которого равна η . Найдите силы токов через каждый резистор. Внутренним сопротивлением источника пренебречь; считать, что плотность фототока постоянна на всей пластине, и вылетевшие электроны на пластину не возвращаются. Емкость источника можно считать бесконечно большой.

Примечания: - под **интенсивностью света** в данном случае понимается энергия, переносимая световым потоком в единицы времени через площадку единичной площади, расположенную перпендикулярно световому потоку; **квантовая эффективность фотоэффекта** - отношение числа электронов, вылетевших из пластины, к числу фотонов, попавших на пластину.

2. «Застой». Хорошо известно, что для большинства трущихся поверхностей коэффициент трения покоя превышает коэффициент трения скольжения. Увеличение силы трения покоя по сравнению с силой терния скольжения носит название «явление застоя». Это явление приводит к ряду интересных последствий, например, его наличием объясняется скрип дверных петель, звучание струны скрипки и др.

Для изучения явления застоя создана следующая установка. На движущуюся с постоянной скоростью горизонтальную ленту транспортера помещен брусок, прикрепленный с помощью лекгорастяжимой пружины к неподвижному упору. При этом брусок совершает незатухающие колебания.

- А). Объясните механизм возникновения незатухающих колебаний.
- Б). Найдите максимальную и минимальную деформации пружины в процессе движения бруска.
- В). Определите период колебаний бруска.
- Γ). Найдите закон движения бруска x(t) и постройте его график (в качестве координаты x используйте деформацию пружины).

<u>Параметры установки:</u> масса бруска $m = 100 \, \varepsilon$; коэффициент жесткости

пружины
$$k=10\frac{H}{_M}$$
; скорость движения ленты транспортера $v_0=5.0\frac{c_M}{c}$;

коэффициент трения скольжения бруска о ленту $\mu = 0.25$; коэффициент трения покоя бруска о ленту $\mu_0 = 0.30$.

пластинами находится мелкая металлическая пыль. Каждую пылинка представляет собой металлический шарик радиуса r и массы m, средняя концентрация пылинок между пластинами равна n.

- А) Найдите значение силы тока в цепи.
- Б) Оцените время, в течение которого напряжение между пластинами уменьшится на $\eta = 1\%$ после размыкания цепи.

Действием силы тяжести пренебречь, воздух между пластинами отсутствует. Удары пылинок о пластины считать абсолютно неупругими.

4. «Двойная интерференция»

Плоская монохроматическая световая волна с длиной волны λ падает нормально на непрозрачный экран в котором проделаны две узкие параллельные щели, находящиеся на расстоянии $2h_1$. На расстоянии l_1 от первого экрана расположен второй непрозрачный экран, в котором также проделаны две параллельных щели, находящиеся на расстоянии $2h_2$ друг от друга, причем эти щели параллельны щелям в первом экране. На расстоянии l_2 от второго экрана расположен экран, на котором наблюдают интерференционную картину. Все экраны параллельны друг другу, щели расположены симметрично относительно оси системы.

- А) Найдите распределение освещенности на света на последнем экране, как функцию координаты x расстояния от оси системы.
- Б) Допустим, что оптическая система используется для измерения длины волны падающего света, для чего проводится измерение зависимости света на последнем экране в фиксированной точке x в зависимости от расстояния $2h_2$ между щелями во втором экране. В какой точке x вы бы рекомендовали проводить такие измерения, чтобы, с одной стороны, погрешность определения длины волны была минимальна, а с другой, интерпретация результатов была не слишком сложна?

При расчетах учитывайте, что расстояния между щелями составляют доли миллиметра, а расстояния между экранами - несколько метров.