Naïve Bayes

<u>Classification Model For Salary Train and Test Dataset</u>

Structure of data

```
30161 obs. of 14 variables:

: int 39 50 38 53 28 37 49 52 31 42 ...

: Factor w/ 7 levels "Federal-gov",..: 6 5 3 3 3 3 5 3 3 .
data.frame':
 $ age
 $ workclass
                   : Factor w/ 16 levels " 10th", " 11th", ...: 10 10 12 2 10 13 7
 $ education
12 13 10 ...
 $ educationno : int 13 13 9 7 13 14 5 9 14 13
 $ maritalstatus: Factor w/ 7 levels " Divorced", " Married-AF-spouse",..: 5 3
1 3 3 3 4 3 5 3 ...
                   : Factor w/ 14 levels " Adm-clerical",..: 1 4 6 6 10 4 8 4 10
 $ occupation
 $ relationship : Factor w/ 6 levels " Husband"," Not-in-family",..: 2 1 2 1
6 6 2 1 2 1 ...
                    : Factor w/ 5 levels " Amer-Indian-Eskimo",..: 5 5 5 3 3 5 3
 $ race
5 5 5 ...
$ sex
                    : Factor w/ 2 levels "Female", "Male": 2 2 2 2 1 1 1 2 1 2 .
capitalgain : int 2174 0 0 0 0 0 0 14084 5178 ...
capitalloss : int 0 0 0 0 0 0 0 0 0 ...
hoursperweek : int 40 13 40 40 40 16 45 50 40 ...
native : Factor w/ 40 levels " Cambodia", " Canada", ...: 38 38 38 38 5
$ capitalgain
38 22 38 38 38 ...
                  : Factor w/ 2 levels " <=50K"," >50K": 1 1 1 1 1 1 2 2 2 ...
 $ Salary
```

From the above structure it is seen that, data contains 9 factor and 5 numeric variables, so we have to create dummy variable to normalize the data.

From the above boxplot, data is imbalanced.

Boxplot of Numerical Variables In Test Dataset After Normalization

From the above boxplot, lots of outlier are in the data but we are not going to remove them as we may lose a lot of information.

So we will create model with normalized dummy data.

Model without Laplace smoothing →

<pre>summary(model_1)</pre>				
	Length	Class	Mode	
apriori	2		numeric	
tables	102	-none-		
levels	2	-none-	character	
isnumeric	102	-none-	logical	
call	3	-none-	call	

<u>Accuracy</u> → 0.7837317

Confusion Matrix

Predicted				
Actual	<=50K	>50K		
<=50K	10753	607		
>50K	2650	1050		

Model with Laplace smoothing →

```
summary(model_2)
Length Class Mode
apriori 2 table numeric
tables 102 -none- list
levels 2 -none- character
isnumeric 102 -none- logical
call 4 -none- call
```

Accuracy → 0.7837317

Confusion Matrix

Predicted Actual <=50K >50K <=50K 10753 607 >50K 2650 1050

Model without laplace and with laplace smoothing giving same results.