CORRECTNESS OF THE CODE

MAKOTO SUWAMA

This note is the correctness of spTest.jl, namely that it will pick up all cycles for base b when low= 0 and high= b-1.

Let f_b be a map where $f_b([x, y, z]_b) = [\max(x, y), \min(x, y), z]_b$, and \leq_b an ordering where $[x_0, x_1, x_2]_b \leq_b [y_0, y_1, y_2]_b$ if and only if

$$f_b([x_0, x_1, x_2]_b) \le f_b([y_0, y_1, y_2]_b).$$

Now suppose n_1, \ldots, n_k be a cycle of length k such that n_1 is minimal respect to \leq_b . (Note that n_i 's have at most 3 digits so the above ordering make sense on n_i 's). Moreover, we know that at least one n_i has at most two digits and so n_1 has only two digits. So let $n_1 = [u, v]_b$, and $x_0 = \max(u, v)$ and $y_0 = \min(u, v)$.

Firstly we have $[u, v]_b = n_1 \le_b n_2 = u^2 + v^2 = x_0^2 + y_0^2$ by the minimality of n_1 , and since $f_b(n) \le n$, we have

$$x_0 + by_0 = [x_0, y_0, 0] = f_b([u, v, 0]) \le f_b(n_2) \le n_2 = x_0^2 + y_0^2.$$

And so

$$x_0 + by_0 \le x_0^2 + y_0^2$$
$$y_0(b - y_0) \le x_0^2 - x_0$$
$$y_0(b - y_0) + \frac{1}{4} \le \left(x_0 - \frac{1}{2}\right)^2$$
$$\frac{1}{2} + \sqrt{y_0(b - y_0) + \frac{1}{4}} \le x_0$$

And so in line 71 in spTest.jl, the for loop

for
$$x=max(y,ceil(Int,sqrt(y*b-y^2+1/4)+1/2)):b-1$$

will eventually hit $y = y_0$ and $x = x_0$.

And now suppose $[x_0, y_0, 0]_b$ has already been seen. Then by the ordering of the for loop, we must have reached $[x_0, y_0, 0]_b$ from some $[x'_0, y'_0, 0]_b$ with $x'_0 \geq y'_0$ and $[x_0, y_0, 0]_b \geq [x'_0, y'_0, 0]_b$. So now we know we have reached $[x_0, y_0, 0]_b$ in the while loop at line 79 where we started at $[x'_0, y'_0, 0]_b$ (which may or may not be $[x_0, y_0, 0]_b$). We also note that $f_b([x_0, y_0, 0]_b) = [x_0, y_0, 0]_b$ and $f_b([x'_0, y'_0, 0]_b) = [x'_0, y'_0, 0]_b$, and so $[x'_0, y'_0, 0]_b \leq_b [x_0, y_0, 0]_b$ as well. Finally, we will not break out of the while loop prematurely at line 85 since the inequality is exactly the \leq_b ordering, and we picked n_1 to be the minimal n_i in the cycle and $[x'_0, y'_0, 0]_b \leq_b [x_0, y_0, 0]_b$. If $f(n_1) = n_1$, then eventually we will hit $n = n_1$ again, and otherwise we will hit $n = n_2$ again and we will detect this loop.