Exercice 1. Contre-exemples Pour chacune des assertions ci-dessous, démontrer qu'elle est fausse à l'aide d'un contre-exemple.

- 1. Une suite bornée converge
- 2. Une suite convergeant vers 0 est de signe constant à partir d'un certain rang (à pcr).
- 3. Si $u_n \to 0$, alors $\sum_{k=1}^n u_k$ converge.
- 4. Une fonction dérivable $f: \mathbb{R}^{+*} \to \mathbb{R}$ est lipshitzienne.
- 5. Une fonction $f: \mathbb{R} \to \mathbb{R}$ est continue en au moins 1 point.
- 6. Si une fonction $f: \mathbb{R} \to \mathbb{R}$ respecte le TVI, alors elle est continue.
- 7. Si une fonction $f: \mathbb{R} \to \mathbb{R}$ est dérivable, alors f' est continue.

Exercice 2. Continuité au sens de Darboux des dérivées On dit qu'une fonction g est continue au sens de Darboux si elle respecte le TVI (càd que si J est un intervalle, alors g[J] est un intervalle).

Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable.

- 1. Soit $a < b \in \mathbb{R}$ avec f'(a)f'(b) < 0. Montrer $\exists c \in [a, b]$ avec f'(c) = 0.
- 2. Montrer que f' est continue au sens de Darboux.

Indication: Pour la première question, on pourra faire une disjonction de cas pour s'aider à mieux visualiser.

Exercice 3. Fonctions continues dans \mathbb{Z} Montrer qu'une fonction continue à valeurs dans \mathbb{Z} est constante.

Exercice 4. Introduction à la topologie Une partie $U \subseteq \mathbb{R}$ est dite ouverte si $\forall x \in U, \exists \delta > 0, [x - \delta, x + \delta] \subseteq U.$

Une partie $F \subseteq \mathbb{R}$ est dite fermée si $\overline{F} = F$

- 1. Déterminer si les ensembles suivants sont ouverts et/ou fermés : \emptyset , \mathbb{R} , [0,1], [0,1[, [0,1[, \mathbb{R}^+ , \mathbb{Q} .
- 2. Soit $f \in C^0(\mathbb{R})$. Montrer que si F fermé, alors $f^{-1}[F]$ fermé. Puis monter que si U ouvert, alors $f^{-1}[U]$ ouvert.
- 3. Montrer que X est fermé ssi $\mathbb{R}\backslash X$ est ouvert.

Exercice 5. Points fixes Soit a < b deux réels et $f : [a, b] \to \mathbb{R}$ continue.

- 1. Montrer que si $f([a,b]) \subseteq [a,b]$, alors f a (au moins) un point fixe.
- 2. Montrer que si $[a, b] \subseteq f([a, b])$, alors f a (au moins) un point fixe.

Exercice 6. Annulation des dérivées Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable n fois.

Montrer que si f s'annule n+1 fois, alors $f^{(n)}$ s'annule.

Indication: Ne pas faire de dessin est ici criminel!

Exercice 7. Fonctions continues surjectives Soit $f: \mathbb{R}^+ \to \mathbb{R}$ C^0 surjective.

Montrer que f prend chaque valeur une infinité de fois.