ABSTRACT

Lab Report: EEE 458

In this experiment, we have learnt to use the Cadence virtuoso software. We have simulated MOS transitor to get its I-V characteristics. We also have determined threshold voltage for MOS transistor. We have used different design corners TT, FF, FS & SS and observed the differences in their performances.

Keywords

- 1. I-V Characteristics of MOS
- 2. Virtuoso
- 3. Threshold Voltage
- 4. gpdk090
- 5. Subthreshold Current

Table of Contents

Al	bstract	2
Κŧ	eywords	2
Ta	ble of Contents	3
Li	st of Figures	4
Li	st of Tables	4
1	Introduction	5
2	THEORY 2.1 MOSFETs	5 5 6 6 6 6 6 8
4	Procedure	8
5	RESULTS 5.1 I-V Characteristics for NMOS1V & PMOS1V 5.2 I-V Characteristics for NMOS2V & PMOS2V 5.3 Threshold voltage determination for NMOS1V 5.4 Threshold voltage determination for NMOS2V	9 9 11 12 14
6	Conclusion	15
Re	eferences	16

List of	Figures
---------	----------------

	1	Schematic of a MOS structure	5
	2	MOS IV characteristics	7
	3	Determination of Threshold Voltage	7
	4	Schematic of simulation	9
	5	I-V Characteristics for the TT corner NMOS1V & PMOS1V	9
	6	I-V Characteristics for the FF corner NMOS1V & PMOS1V	10
	7	I-V Characteristics for the FS corner NMOS1V & PMOS1V	10
	8	I-V Characteristics for the SS corner NMOS1V & PMOS1V	11
	9	I-V Characteristics for the FF corner NMOS2V & PMOS2V	11
	10	I-V Characteristics for the SS corner NMOS2V & PMOS2V	12
	11	Threshold voltage for the TT corner <i>NMOS1V</i>	12
	12	Threshold voltage for the FF corner $NMOS1V$	13
	13	Threshold voltage for the FS corner <i>NMOS1V</i>	13
	14	Threshold voltage for the SS corner <i>NMOS1V</i>	14
	15	Threshold voltage for the FF corner $NMOS2V$	14
	16	Threshold voltage for the SS corner <i>NMOS2V</i>	15
L	ist (of Tables	
	1	Critical parameters for different types of MOS transistors	8
	2	Threshold voltages for different types of MOS	15

1 Introduction

This experiment has been designed to make us introduced to the Cadence software. We created a new directory in the Cadence Server and used the Cadence virtuoso software to simulate the I-V characteristics of MOS transistor using the generic PDK 90nm process.

We have analyzed the current-voltage relationship of MOS in different design corner (SS, TT, FF & FS). We also found the threshold voltages for differnt MOS design. Non-linear effects such as channel length modulation and subthreshold current have also been observed.

These observations are very useful in designing practical circuits.

2 THEORY

2.1 MOSFETs

The metal-oxidesemiconductor field-effect transistor (MOSFET) is a transistor used for amplifying or switching electronic signals. In MOSFETs, a voltage on the oxide-insulated gate electrode can induce a conducting channel between the two other contacts called source and drain. The channel can be of n-type or p-type and is accordingly called an nMOSFET or a pMOSFET (also commonly nMOS, pMOS). It is by far the most common transistor in both digital and analog circuits

Figure 1: Schematic of a MOS structure

2.2 I-V characteristics

Any MOS transistor has three regions of operation depending upon the terminal voltages :

- 1. Cutoff or subthreshold region ($V_{GS} < V_{th}$)
- 2. Triode mode or linear region $(V_{GS} > V_{th})$ and $V_{DS} < (V_{GS} V_{th})$
- 3. Saturation or active mode $(V_{GS} > V_{th} \text{ and } V_{DS} > (V_{GS} V_{th}))$

2.2.1 Cutoff or subthreshold region

When $V_{GS} < V_{th}$ the MOS is in cutoff region. Ideally there will be no current flow. But practically a small subthreshold current is found which will increase exponentially with drain to source voltage.

2.2.2 Triode mode or linear region

When $V_{GS} > V_{th}$ and $V_{DS} < (V_{GS} - V_{th})$ the MOS is in triode or linear region. The drain current in this region can be modeled as:

$$I_{Dlin} = \mu_n C_{ox} \frac{W}{L} \left((V_{GS} - V_{th})^2 V_{DS} - \frac{1}{2} V_{DS}^2 \right)$$
 (1)

2.2.3 Saturation or active region

When $V_{GS} > V_{th}$ and $V_{DS} > (V_{GS} - V_{th})$ the MOS is in Saturation or active region. The drain current in this region can be modeled as:

$$I_{Dsat} = \frac{1}{2} \mu_n C_{ox} \frac{W}{I} (V_{GS} - V_{th})^2$$
 (2)

The characteristics curve is shown in figure 2 at page 7

2.3 Threshold voltage

To determine the threshold voltage we have to plot the $\sqrt{I_D}$ vs. V_{GS} curve and determine the x-axis intercept of the curve while maintaining $V_{GS} = V_{DS}$ as shown in figure 3 at page 7.

Figure 2: MOS IV characteristics

Figure 3: Determination of Threshold Voltage

Lab Report: EEE 458

3 Lab Handout Question

Question: Observe the BSIM3v3 MOS models of the different MOS transistors available in the gpdk090 technology library and try to understand the meaning of different parameters. In a table summarize the values of the critical parameters for different types of MOS transistors.

Parameter	Description	Default value	unit
t_{ox}	Gate oxide thickness	150×10^{-10}	m
X_j	Junction depth	0.15×10^{-6}	m
N _{gate}	Polygate doping concentration	0	cm^{-3}
V_{th0}	Threshold at $V_{SB} = 0$ and small V_{DS}	0.7 NMOS, -0.7 PMOS	V
N_{sub}	Substrate doping concentration	6×10^{16}	cm^{-3}
x_t	Doping depth	1.55×10^{-7}	m
θ	Drain induced barrier lowering coeff.	0.02	V^{-1}
t_{nom}	Parameters measurement temperature	-	С
pclm	Carrier saturation velocity at t_{nom}	9.58×10^4	m
v_{sat}	Channel length modulation coeff.	1.3	-
r_s	Source resistance	0	Ω
c_{gdo}	Gate-drain overlap capacitance	-	F/m
c_j	Zero-bias junction bottom capacitance density	5×10^{-4}	F/m
C _{jsw}	Zero-bias junction sidewall capacitance density	5×10^{-10}	F/m

Table 1: Critical parameters for different types of MOS transistors

4 Procedure

- Created a new directory to make a new design
- Added the gpdk090 library to this library path
- Used Cadence virtuoso to create a cellview named 'MOS_IV'
- Used dc analysis and parametric sweep to vary two variables at a time
- Created Netlist and ran Simulation using Spectre

The schematic of the circuit is shown in figure 4 at page 9

Figure 4: Schematic of simulation

5 Results

5.1 I-V Characteristics for *NMOS1V* & *PMOS1V*

Figure 5: I-V Characteristics for the TT corner NMOS1V & PMOS1V

Figure 6: I-V Characteristics for the FF corner NMOS1V & PMOS1V

Figure 7: I-V Characteristics for the FS corner NMOS1V & PMOS1V

Figure 8: I-V Characteristics for the SS corner NMOS1V & PMOS1V

5.2 I-V Characteristics for *NMOS2V* & *PMOS2V*

Figure 9: I-V Characteristics for the FF corner NMOS2V & PMOS2V

Figure 10: I-V Characteristics for the SS corner NMOS2V & PMOS2V

5.3 Threshold voltage determination for NMOS1V

Figure 11: Threshold voltage for the TT corner NMOS1V

Figure 12: Threshold voltage for the FF corner NMOS1V

Figure 13: Threshold voltage for the FS corner NMOS1V

Figure 14: Threshold voltage for the SS corner NMOS1V

5.4 Threshold voltage determination for NMOS2V

Figure 15: Threshold voltage for the FF corner NMOS2V

Figure 16: Threshold voltage for the SS corner NMOS2V

MOS Model	Design Corner	Threshold voltage(in V)
NMOS1V	TT	0.2
NMOS1V	FF	0.2
NMOS1V	FS	0.2
NMOS1V	SS	0.2
NMOS2V	FF	0.45
NMOS2V	SS	0.45

Table 2: Threshold voltages for different types of MOS

6 Conclusion

It is found that current increases with the speed of the transistor models. Saturation drain current (I_{Dsat}) is maximum for FF (Fast-Fast) design corner and minimum for SS (Slow-Slow) design corner.

But the threshold voltages do not change significantly with the variation in design corners. To find the threshold voltage we had to extrapolate the linear portion of the $\sqrt{I_D}$ vs. V_{GS} curve to get the x-axis intercept as there was subthreshold conduction.

For the high nominal voltage MOS transistors (*nmos2v* and *pmos2v*) the current and threshold voltages ate greater than those of lower nominal voltage MOS transistors (*nmos1v* and *pmos1v*).

References

- [1] Neil H. E. Weste, David Harris and Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective," Third Edition, Chapter 2, Section 2, Pearson Education, 2005
- [2] Robert F. Pierret, "Semiconductor Device Fundamentals," First Edition, Part 3, Chapter 17, Section 2, Pearson Education, 2006