

WINTER - 12 EXAMINATION

Subject Code: 12021 (Section I) Page No: 1/17 **Model Answer**

Que.	Sub.	Stepwise Solution	Marks	Total
No. 1)	Que.	Formula	1	Marks
		Answer with unit	1	2
		$Q_{1} = Q_{2} = 1C$		
		k=1		
		d=1m		
		F = ?		
		Formula		
		$F = 9 \times 10^9 \frac{Q_1 Q_2}{kd^2}$		
		$F = 9 \times 10^9 \frac{Q_1 Q_2}{kd^2}$ $F = 9 \times 10^9 \frac{(1)(1)}{(1)(1)^2}$		
		$F = 9 \times 10^9 N$		
	b)	Chalamant	2	2
	,	Statement		
		The force of attraction or repulsion between any two electric charges is directly proportional to the product of the strength of the two charges and inversely proportional to the square of distance between them.		
	c)	Definition		
		Any Two factors	1 1	2
		Dielectric Strength:	_	
		The magnitude of electric field at which dielectric breakdown		
		occurs in an insulating material is called dielectric strength.		
		Dielectric strength depends upon:		
		Nature of material		
		2) Time for which electric field is applied		
		, 1		
		4) Humidity		
		5) Magnitude of field.		

Subject Code: 12021 (Section I) Page No: 2/17

Ouo	Cub			Total
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
1)	d)	Formula Answer with unit	1 1	2
		$Abs.Potential(V) = \frac{Work}{Ch \arg e}$ $V = \frac{W}{C} = \frac{1600}{25}$ $V = 64 \text{ J/C} \qquad \text{OR} \text{volt}$		
	e)	Definition Unit	1 1	2
		Capacitance Capacitance is defined as the ratio of charge on conductor to its potential. OR It is also defined as the amount of charge given to a conductor to increase its potential by 1 volt or unity. $C = \frac{Q}{V}$ S. I. unit is Farad (coulomb/volt)		
	f)	Formula Answer	1 1	2
		Given $\mu_{core} = 1.50$ $\mu_{cladding} = 1.46$ $\therefore N.A. = \sqrt{\mu_{core}^2 - \mu_{cladding}^2}$		
		$= \sqrt{(1.50)^2 - (1.46)^2}$ $= \sqrt{2.25 - 2.13}$		
		$=\sqrt{0.12}$		
		= 0.346 $= 0.35$		

Subject Code: 12021 (Section I) Page No: 3/17

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
1)	g)	Applications of Optical Fiber (Any Two)	2	2
		 To carry telephone signals. To carry telex signal. To carry fax signal. Used in internet to carry signal. To carry TV cable signal. Fiber sensors are used to measure temperature, pressure. For transmission of digital data. Note: Any other relevant application to be considered.		
	h)	Effect of temperature on resistance of semiconductor:	2	2
		As temperature of semiconductor increases its resistance		
		decreases.		
	i)	Definition of conduction band:	1	
		The range of energies possessed by conducting electrons is		
		known as conduction band		
		OR		
		The band above the valence band is known as conduction		
		band.		
		Definition of valence band:	1	2
		The range of energies possessed by valence electrons is		_
		known as valence band		
		OR		
		The band formed by group of energy levels of valence electrons is called valence band.		
		electrons is called valence band.		

Subject Code: 12021 (Section I) Page No: 4/17

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
1)	j)	Nanotechnology	2	2
		The design, characterization, production and application structures, devices and systems by controlled manipulation at nanometer scale (atomic, molecular) that produces structures with at least one novel/ superior		
		OR Nanotechnology is the science of engineering matter at the atomic and molecule scale. It is the manipulation precision placement, measurement modeling or manufacture of less than 100 nm scale matter.		
		OR		
		Nanotechnology consists of manipulating matter on atom by atom or molecule by molecule basis to attain the design configuration.		
		OR		
		(Any other Related definition)		
	k)	Any 2 of the following.	2	2
		 Advantages of optical fibre over conventional one In case of optical fibre light is signal carrier and in case of ordinary cable communications electricity is signal carrier. Optical fibre communication is electrically insulated or protected since light carries signal Light has high band width. (10GHz) i.e. many signal carries or can be sending through single optical fibre. Optical fibre due to their light weight and flexibility it can be handled easily. Longer life, easy maintenance, temperature resists. There is no signal leakage and hence cross talk between neighboring fibres is almost absent. Ordinary cables are metallic hence it picks up electromagnetic waves but optical fibres are not metallic do not pick up electromagnetic waves. 		

Subject Code: 12021 (Section I) Page No: 5/17

Que.	Sub.			Total
No.	Que.	Stepwise Solution	Marks	Marks
2)	a)	Formula	1	
		Answer with unit	1	
		Given		
		r = 10cm = 0.1m		
		$Q = 1000 \mu\text{C} = 1000 \times 10^{-6} \text{C}$		
		d = 12cm = 0.12m		
		k = 1		
		V = ?		
		i) Electrical Potential on the surface of Sphere		
		$V = 9 \times 10^9 \frac{Q}{kr}$		
		1.000×10^{-6}		
		$V = 9 \times 10^9 \frac{1000 \times 10^{-6}}{(1)(0.1)}$		
		$V = 90000 \times 10^3$		
		$V = 9 \times 10^7$ J/C OR volt		
		Formula	1	
		Answer with unit	1	4
		ii) Electrical Potential at point 12cm from the center		
		$V = 9 \times 10^9 \frac{Q}{kd}$		
		$V = 9 \times 10^9 \frac{1000 \times 10^{-6}}{(1)(0.12)}$		
		$V = 75000 \times 10^3$		
		$V = 7.5 \times 10^7$ J/C OR volt		
	b)	Statement	1	
		Well Labeled Diagram	1 1	
		Explanation & Substitution	1	4
		Final Expression		_
		Statement: - Reciprocal of equivalent capacitance of the series combination is equal to the sum of reciprocals of capacitances of the condensers in series.		
				L

Subject Code: 12021 (Section I) Page No: 6/17

Que. Sub. No. Que.	Stepwise Solution	N /1	Total
110. Quc.	_	Marks	Marks
Resultant Series: Consider between When consider across ear which deserved and across ear which deserved across ear which	at Capacitance when Condensers are Connected in series two points A and B with potential difference of V voltondensers are connected in series the total charge or indenser remains the same and the potential difference ach condenser gets divided into three parts V ₁ , V ₂ & V ₃ expends on values of capacitor $V = V_1 + V_2 + V_3$ $C = \frac{Q}{C}$ $V = \frac{Q}{C}$		Marks

Subject Code: 12021 (Section I) Page No: 7/17

	C 1			TT (1
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
2)	b)	$\therefore \frac{Q}{C_s} = \frac{Q}{C_1} + \frac{Q}{C_2} + \frac{Q}{C_3}$		
		$\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$		
	c)	Each Definition	1	
		Units	1	4
		i) Electric field:		
		It is defined as the space around the charge in which electric effects such as attraction or repulsion due to a charge can be observed. OR		
		Electric field of a charge is the space around the charge where force of attraction or repulsion due to a charge is present.		
		Unit:- No unit		
		ii) Electric Flux:		
		The total number of electric lines of force originating from a charged body is called electric flux of that charged body.		
		Unit:- coulomb		
		iii) Electric Flux Density:		
		The number of electric lines of force crossing unit area held perpendicular to electric lines of force which pass through center of area.		
		OR		
		The number of electric lines of force passing normally per unit surface area.		
		Unit:- C/m ²		

Subject Code: 12021 (Section I) Page No: 8/17

Que. No.	Sub.	Stepwise Solution	Marks	Total Marks
2)	Que.	Nanoparticle is a particle having dimensions less than 100 nm.Properties that differentiate Nanoparticles from the bulk material are happening below scale of 100nm. At this nanoscale the colour, melting point, chemical properties, strength, resistance etc. of material changes.	4	4
		Ex. If we take a cube of gold its colour is yellow but if we consider gold particle in nano-size its colour changes. Thus size of particles is the important feature that differentiates nanoparticles from bulk material.		
	e)	Well Labeled Diagram Explanation A pure semiconductor are called intrinsic semiconductor. An intrinsic semiconductor (like Silicon or Germanium) has four electrons in its outermost orbit of its atoms. In order to fill the valence shell each atom requires four more electrons which is done by sharing one electron from each of the four neighboring atoms as shown fig.	2 2	4
		Si Si Si Si Core (Si) Si Si Si Si Valence electrons		
		A covalent bond consist of 2 electrons one from each adjacent atom. Both electrons are shared by two atoms. At absolute zero temperature all valance electrons are tightly bound to the parent atoms. Thus there are no free electrons available for electrical conduction. Thus semiconductor behaves as a perfect insulator at absolute zero temperature.		
	f)	Principle: Total Internal Reflection (TIR) is the principle of optical fibre.	1	4

Subject Code: 12021 (Section I) Page No: 9/17

Que. No.	Sub. Que.	Stepwise	e Solution	Marks	Total Marks
2)	f)	rarer medium or source medium whose refraction 2) The angle of incidence be greater than the critical in contact. OR	in the denser medium should ical angle for the pair of media st travel from media of high R.I.	3	
3)	a)	Any Four Points		4	4
		Multimode step index	Multimode graded index		
		fiber	fiber		
		This type of fiber carries	This type of fiber carries		
		many modes of step index	many modes of graded		
		fiber	index fiber		
		More modal dispersion	Less modal dispersion		
			Refractive index of core		
		Define ations in day, of some is	varies with radial distance		
		Refractive index of core is	from axis. The refractive		
		uniform throughout its thickness	index is maximum at axis of		
		unckriess	core and decreases gradually		
			towards the older edges		
		Light propagates in zigzag	Light propagates in curved		
		fashion	fashion		

Subject Code: 12021 (Section I) Page No: 10/17

Que.	Sub.			Total
No.	Que.	Stepwise Solution	Marks	Marks
3)	b)	Definition	1	
		Types	1	
		A semiconductor obtained by doping is called Extrinsic		
		Semiconductor		
		Types of Extrinsic Semiconductor		
		P - Type Semiconductor		
		N – Type Semiconductor		
		Any two of the following.	2	
		P – Type Semiconductor:	2	4
		1) When a small amount of trivalent impurity is added to a pure semiconductor it is called as P-type semiconductor.		
		2) In p-type majority charge carries are holes.		
		3) The impurity used is called accepter impurity.4) The doping give rise to vacancy (Short of electron) in a		
		covalent band		
		5) e.g. Indium, Boron, Aluminum etc.		
		6) Diagram of P- type		
		N – type Semiconductor:		
		1) When a small amount of pentavalent impurity is added to a pure semiconductor it is called as N-type		
		semiconductor. 2) In n-type majority charge carries are electrons		
		3) The impurity used is called doner impurity.		
		4) The doping give rise to presence of free electrons5) e.g. Arsenic, Phosphorous, antimony etc		
		6) Diagram of N- type		
		o, Diagram of it type		

Subject Code: 12021 (Section I) Page No: 11/17

Que.	Sub.	Stepwise Solution	Marks	Total
No. 3)	Que.	Equivalent capacitance of two identical condensers in series	1	Marks
,		combination		
		$c_s = \frac{c^2}{2c} (1)$ [Where, $C_1 = C_2 = C$]		
		Similarly Equivalent capacitance of two identical condensers	1	
		in parallel combination	_	
		$c_p = 2c (2)$		
		Four times of equivalent capacitance in series combination, that is	1	
		$4c_s = 4\left(\frac{c^2}{2c}\right)$		
		$4c_s = 2c (3)$	1	4
		Comparing eq (2) & eq (3) we get		
		$c_p = 4c_s$		
		Hence proof.		
	d)	Diagram	1	4
		Derivation	3	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		Consider a point charge Q. 'A' is any point in the electric field of charge Q. Let r = Distance of 'A' from Q. X = Distance of 'B' from Q.		
		ε_0 = Permittivity of free space. Strength of the electric field at point 'A' due to Q is,		
		$E_A = \frac{1}{4\pi\varepsilon_0 k} \frac{Q}{r^2}$		
		Similarly, intensity at point 'B' due to Q is, $E_B = \frac{1}{4\pi\varepsilon_0 k} \frac{Q}{x^2}$		
		In order to move a unit positive charge by a very small distance dx		

Subject Code: 12021 (Section I) Page No: 12/17

Outo	Cub			Total
No.	Que.	Stepwise Solution	Marks	Marks
Que. No. 3)	Sub. Que. d)	Stepwise Solution Against the field, some work is required. Let the work done be dw which is given by Work done = Force on unit positive charge x Displacement $dw = -\left(\frac{1}{4\pi\varepsilon_0 k}\frac{\mathcal{Q}}{x^2}\right)dx$ Negative sign indicates that work is done against the electric field. Thus if unit positive charge is moved in very small steps from B to A then total work done is $W = dw_1 + dw_2 + dw_3 +$ This can be done by integration method. $V = \int dw$ We know that, potential at point 'A' is the total work done in bringing unit positive charge from ∞ to point 'A'. Putting the limits i.e. r to ∞ , $V = \int_{\infty}^{r} dw$ $V = \int_{\infty}^{r} -\left(\frac{1}{4\pi\varepsilon_0 k}\frac{\mathcal{Q}}{x^2}\right) dx$	Marks	Total
		$V = -\left(\frac{Q}{4\pi\varepsilon_0 k}\right)_{\infty}^{r} x^{-2} dx$ $V = -\left(\frac{Q}{4\pi\varepsilon_0 k}\right) \left[-\frac{1}{x}\right]_{\infty}^{r}$ $V = \frac{Q}{4\pi\varepsilon_0 k} \frac{1}{r} - 0$ $V = \frac{Q}{4\pi\varepsilon_0 k} \frac{1}{r}$ $V = 9 \times 10^9 \frac{Q}{kr}$		

Subject Code: 12021 (Section I) Page No: 13/17

Que.	Sub.	Stepwise Solution	Marks	Total Marks
No. 3)	Que.	Formula	1	Marks
3)		Substitution		
			1	
		Ans. With unit	2	4
		$d = 10^{-3} m$		
		k = 7		
		$A = 3.21m^2$		
		$\varepsilon_0 = 8.9 \times 10^{-12} SI$		
		k = ?		
		Formula:		
		$c = \frac{\varepsilon_0 kA}{d}$		
		$c = \frac{8.9 \times 10^{-12} \times 7 \times 3.21}{10^{-3}}$		
		$c = 199.98 \times 10^{-12} \times 10^{3}$		
		$c = 199.98 \times 10^{-9} F$		
	f)	Formula	1	
		Substitution	1	
			1	4
		Ans. With unit	2	4
		+16C		
		Q_1 Q_2 Q_2 Q_2 Q_2		
		н .08 x _ ы н (0.08 + x) н		
		$E_1 = 9 \times 10^9 \frac{Q_1}{k(0.08 + x)^2}$		
		$E_2 = 9 \times 10^9 \frac{Q_2}{kx^2}$		
		ret		
		Now E1 + E2 = 0 9×10^9 16 9×10^9 (-9)		
		$\frac{9 \times 10^9}{k} \frac{16}{(0.08 + x)^2} + \frac{9 \times 10^9}{k} \frac{(-9)}{(x^2)} = 0$		
		16 9 0		
		$\frac{16}{(0.08+x)^2} - \frac{9}{x^2} = 0$		

Subject Code: 12021 (Section I) Page No: 14/17

Que.	Sub.	C	34 1	Total
No.	Que.	Stepwise Solution	Marks	Marks
		$\frac{16}{(0.08+x)^2} = \frac{9}{x^2}$		
		$\frac{4}{(0.08+x)} = \frac{3}{x}$		
		4x = 0.24 + 3x		
		$x = 0.24 \mathrm{m}$		
		The point is 0.24 m from a charge of -9C.		
		Important Instructions for Examiners 1) The definitions given herein are just sample definition format and not to be treated as standard format. Student may write definition in the other words. Such definitions are to be considered and give appropriate marks. Wherever labeled diagrams are asked in the question, marks to be given for the neat-labeled diagram. If, in case, student has drawn only the diagram without labeling, appropriate marks to be deducted.		