Text Preprocessing

Lecture 1

Text Normalization

- Every NLP task needs to do text normalization:
 - 1. Segmenting/tokenizing words in running text
 - 2. Normalizing word formats
 - 3. Segmenting sentences in running text

How many words?

- I do uh main- mainly business data processing
 - Fragments, filled pauses
- Seuss's cat in the hat is different from other cats!
 - Lemma: same stem, part of speech, rough word sense
 - cat and cats = same lemma
 - Wordform: the full inflected surface form
 - cat and cats = different wordforms

How many words?

they lay back on the San Francisco grass and looked at the stars and their

- **Type**: an element of the vocabulary.
- Token: an instance of that type in running text.
- How many?
 - 15 tokens (or 14)
 - 13 types (or 12) (or 11?)

How many words?

N = number of tokens

V = vocabulary = set of types|V| is the size of the vocabulary

	Tokens = N	Types = V
Switchboard phone conversations	2.4 million	20 thousand
Shakespeare	884,000	31 thousand
Google N-grams	1 trillion	13 million

Issues in Tokenization

 Finland's capital → Finland Finlands Finland's ? • what're, I'm, isn't \rightarrow What are, I am, is not \rightarrow Hewlett Packard? Hewlett-Packard state-of-the-art \rightarrow state of the art ? → lower-case lowercase Lowercase lower case ? • San Francisco→ one token or two?

m.p.h., PhD.

Tokenization: language issues

- French
 - **L'ensemble** \rightarrow one token or two?
 - L?L'?Le?
 - Want l'ensemble to match with un ensemble

- German noun compounds are not segmented
 - Lebensversicherungsgesellschaftsangestellter
 - 'life insurance company employee'
 - German information retrieval needs compound splitter

Tokenization: language issues

- Chinese and Japanese no spaces between words:
 - **莎拉波娃**现在**居住在美国**东南部的佛罗里达。
 - **莎拉波娃** 现在 居住 在 美国 东南部 的 佛罗里达
 - Sharapova now lives in US southeastern Florida
- Further complicated in Japanese, with multiple alphabets intermingled
 - Dates/amounts in multiple formats

Word Tokenization in Chinese

- Also called Word Segmentation
- Chinese words are composed of characters
 - Characters are generally 1 syllable and 1 morpheme.
 - Average word is 2.4 characters long.
- Standard baseline segmentation algorithm:
 - Maximum Matching (also called Greedy)

Max-match segmentation illustration

Thecatinthehat

the cat in the hat

Thetabledownthere

the table down there

Doesn't generally work in English! theta bled own there

- But works astonishingly well in Chinese
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
- Modern probabilistic segmentation algorithms even better

Stopping

- Function words (determiners, prepositions)
 have little meaning on their own
- High occurrence frequencies
- Treated as stopwords (i.e. removed)
 - reduce index space, improve response time, improve effectiveness
- Can be important in combinations
 - e.g., "to be or not to be"

Stopwords

Noun	IS	Verb	s	Adje	ctives	Prep	ositions	Other	rs
1.	time	1.	be	1.	good	1.	to	1.	the
2.	person	2.	have	2.	new	2.	of	2.	and
3.	year	3.	do	3.	first	3.	in	3.	а
4.	way	4.	say	4.	last	4.	for	4.	that
5.	day	5.	get	5.	long	5.	on	5.	I
6.	thing	6.	make	6.	great	6.	with	6.	it
7.	man	7.	go	7.	little	7.	at	7.	not
8.	world	8.	know	8.	own	8.	by	8.	he
9.	life	9.	take	9.	other	9.	from	9.	as
10.	hand	10.	see	10.	old	10.	up	10.	you
11.	part	11.	come	11.	right	11.	about	11.	this
12.	child	12.	think	12.	big	12.	into	12.	but
13.	eye	13.	look	13.	high	13.	over	13.	his
14.	woman	14.	want	14.	different	14.	after	14.	they
15.	place	15.	give	15.	small	15.	beneath	15.	her
16.	work	16.	use	16.	large	16.	under	16.	she
17.	week	17.	find	17.	next	17.	above	17.	or
18.	case	18.	tell	18.	early			18.	an
19.	point	19.	ask	19.	young			19.	will
20.	government	20.	work	20.	important			20.	my
21.	company	21.	seem	21.	few			21.	one
22.	number	22.	feel	22.	public			22.	all
23.	group	23.	try	23.	bad			23.	would
24.	problem	24.	leave	24.	same			24.	there
25 .	fact	25.	call	25.	able			25.	their

Stopping

- Stopword list can be created from highfrequency words or based on a standard list
- Lists are customized for applications, domains, and even parts of documents
 - e.g., "click" is a good stopword for anchor text
- Best policy is to index all words in documents, make decisions about which words to use at query time

Normalization

- Convert different forms of a word to normalized form in the vocabulary
 - U.S.A -> USA, St. Louis -> Saint Louis
- Solution
 - Rule-based
 - Delete periods and hyphens
 - All in lower case
 - Dictionary-based
 - Construct equivalent class
 - Car -> "automobile, vehicle"
 - Mobile phone -> "cellphone"

Case folding

- Applications like IR: reduce all letters to lower case
 - Since users tend to use lower case
 - Possible exception: upper case in mid-sentence?
 - e.g., General Motors
 - Fed vs. fed
 - SAIL vs. sail
- For sentiment analysis, MT, Information extraction
 - Case is helpful (*US* versus *us* is important)

Morphology

Morphemes:

- The small meaningful units that make up words
- Stems: The core meaning-bearing units
- Affixes: Bits and pieces that adhere to stems
 - Often with grammatical functions

Stemming

- Reduce terms to their stems in information retrieval
- Stemming is crude chopping of affixes
 - language dependent
 - e.g., automate(s), automatic, automation all reduced to automat.

for example compressed and compression are both accepted as equivalent to compress.

for exampl compress and compress ar both accept as equival to compress

Porter Stemmer

- Algorithmic stemmer used in IR experiments since the 70s
- Consists of a series of rules designed to the longest possible suffix at each step
- Produces stems not words
- Makes a number of errors and difficult to modify

Porter's algorithm The most common English stemmer

Step 1a sses \rightarrow ss caresses \rightarrow caress ies \rightarrow i ponies \rightarrow poni ss \rightarrow ss caress \rightarrow caress $s \rightarrow \phi$ cats \rightarrow cat Step 1b (*v*)ing $\rightarrow \phi$ walking \rightarrow walk $sing \rightarrow sing$

(*v*)ed $\rightarrow \phi$ plastered \rightarrow plaster

Porter's algorithm

Step 2 (for long stems)

```
ational\rightarrow ate relational\rightarrow relate izer\rightarrow ize digitizer \rightarrow digitize ator\rightarrow ate operator \rightarrow operate
```

Step 3 (for longer stems)

```
al \rightarrow \phi revival \rightarrow revival able \rightarrow \phi adjustable \rightarrow adjust ate \rightarrow \phi activate \rightarrow activ
```

Viewing morphology in a corpus

- Given the description you saw on earlier slides, the Porter stemmer would stem the word 'aching' as
- A. aching
- B. ach
- C. ache
- D. aches

Viewing morphology in a corpus

 Given the description you saw on earlier slides, the Porter stemmer would stem the word 'aching' as

A. aching

B. ach

C. ache

D. aches

Answer: B

Basic Text Processing

Sentence Segmentation and Decision Trees

Sentence Segmentation

- !, ? are relatively unambiguous
- Period "." is quite ambiguous
 - Sentence boundary
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3
- Build a binary classifier
 - Looks at a "."
 - Decides EndOfSentence/NotEndOfSentence
 - Classifiers: hand-written rules, regular expressions, or machine-learning

Determining if a word is end-ofsentence: a Decision Tree

More sophisticated decision tree features

- Case of word with ".": Upper, Lower, Cap, Number
- Case of word after ".": Upper, Lower, Cap, Number
- Numeric features
 - Length of word with "."
 - Probability(word with "." occurs at end-of-s)
 - Probability(word after "." occurs at beginning-of-s)

Implementing Decision Trees

- A decision tree is just an if-then-else statement
- The interesting research is choosing the features
- Setting up the structure is often too hard to do by hand
 - Hand-building only possible for very simple features, domains
 - Instead, structure usually learned by machine learning from a training corpus

Decision Trees and other classifiers

- We can think of the questions in a decision tree as features that could be exploited by any kind of classifier
 - Logistic regression
 - SVM
 - Neural Nets
 - etc.

Slide Credits

 Lecture Notes, Natural Language Processing by Christopher Manning and Daniel Jurafsky, Stanford University