В этом тесте присутствуют вопросы только с множественным выбором. Такие вопросы засчитываются, только если вы отметили все правильные варианты и не отметили все неправильные. Частичных баллов по таким заданиями нет

Линейная регрессия: Отклики означают значения зависимой (предсказываемой переменной). Линейная регрессия без дополнительных формулировкой означает, что применяем её к исходным (нетрансформированным признакам), а вектор коэффициентов ищем методом наименьших квадратов. L2 регуляризация означает, что дополнительно штрафуется квадрат L2 нормы вектора коэффициентов с некоторым коэффициентом. Если упоминается метод с регуляризацией, то подразумевается, что коэффициент при регуляризаторе строго больше нуля.

В тестовых заданиях первая галочка — правильный ответ, вторая галочка — выбранный ответ. Цвет обозначает, правильно ли в данном пункте поставлена галочка. Если все пункты верные (галочки совпадают / все пункты зеленые), то за задание ставится полный балл, в противном случае ставится 0 баллов.

1. Одна итерация стохастического градиентного спуска с одним объектом (x,y), и шагом $\varepsilon>0$ для экспоненциальной ф-ции потерь будет ($[u]_+=\max(0,u),\,\mathbb{I}[condition]=1,\,$ если выполнено условие condition, иначе ноль):

$$egin{aligned} \mathcal{L}_{exp}(M) &= e^{-M} & \mathcal{L}_{perceptron}(M) &= [-M]_+ \ \mathcal{L}_{hinge}(M) &= [1-M]_+ & \mathcal{L}_{log}(M) &= \log_2\left(1+e^{-M}
ight) \end{aligned}$$

- $lacksquare w = w arepsilon e^{-w^Txy}xy$
- $lacksquare w = w + arepsilon e^{-w^Txy}$
- $lacksquare w = w arepsilon e^{-w^Txy}$
- $lacksquare w := w + arepsilon e^{-w^Txy}xy$

Балл: 2.0

Комментарий к правильному ответу:

2.	. Рассмотрим задачу оптимизации f(x).
	Градиент функции по х показывает в
	пространстве х локальное направление

- 🔲 📗 в область максимально неизменных значений функции
- не связан ни с одним из этих понятий
- максимального уменьшения функции

	максимального увеличения функции
	Балл: 2.0
	Комментарий к правильному ответу:
3.	Рассмотрим минимизацию функции методом
	градиентного спуска. Пусть шаг (learning rate)
	выбран некоторой положительной
	константой. Достаточно ли такого шага для
	сходимости к локальному минимуму при
	стремлении числа итераций до
	бесконечности?
	🔲 🔲 да, независимо от величины этой константы
	🔲 🔲 нет, нужно динамически увеличивать размер шага
	Да, если эта константа достаточно мала
	🔲 🔲 нет, нужно динамически уменьшать размер шага
	да, если эта константа достаточно велика
	Балл: 2.0
	Комментарий к правильному ответу:
4.	Граница между классами бинарного
	линейного классификатора
	Всегда линейная гиперплоскость
	может быть нелинейной поверхностью
	Балл: 2.0
	Комментарий к правильному ответу:
5.	Решается задача линейной регрессии над
	описаниями пациентов, в обучающей
	выборке присутствуют мужчины и женщины,
	но доля мужчин существенно меньше.
	Известно, что при реальном использовании
	полученной модели вероятности применения
	к описанию мужчины и женщины будут равны.
	Как следует провести процедуру обучения
	линейной регрессии в этом случае:
	увеличить вес объектов, отвечающих мужчинам
	🦳 🔲 увеличить вес объектов, отвечающих женщинам

Комментарий к правильному ответу:

6.	Среди представленных функций потерь для
	настройки линейного бинарного
	классификатора выберите те, которые
	перестанут менять веса классификатора, как
	только он обеспечит 100% точность
	классификации на обучающей выборке
	(независимо от степени уверенности
	классификации, измеряемой отступами,
	$[u]_+=\max(0,u)$)

$$egin{aligned} \mathcal{L}_{exp}(M) &= e^{-M} & \mathcal{L}_{perceptron}(M) &= [-M]_+ \ \mathcal{L}_{hinge}(M) &= [1-M]_+ & \mathcal{L}_{log}(M) &= \log_2\left(1+e^{-M}
ight) \end{aligned}$$

- exp
- perceptron
- log
- hinge

Балл: 2.0

Комментарий к правильному ответу:

- 7. Рассмотрим минимизацию невыпуклой функции потерь. Запуск метода градиентного спуска из разных начальных приближений будет в пределе (с точностью до погрешности вычислений) приводить к нахождению
 - 🗹 🗌 разных решений, в зависимости от начального приближения
 - □ ✓ одинакового решения

Балл: 0

Комментарий к правильному ответу:

- 8. Пусть число объектов больше числа признаков. Выберите верное утверждение для аналитической оценки коэффициентов линейной регрессии без регуляризации:
 - 🔽 🗌 оценка определена только в случае линейно независимых признаков
 - 🗌 🗹 оценка определена для любых данных

Балл: 0

Комментарий к правильному ответу: