BWD AGWB

Generated by Doxygen 1.10.0

1	Namespace Index	1
	1.1 Package List	1
2	Class Index	3
	2.1 Class List	3
2	File Index	5
•	3.1 File List	5
1	Namespace Documentation	7
•	4.1 Create_z_at_value Namespace Reference	7
	4.1.1 Function Documentation	7
	4.1.1.1 main()	7
	4.2 GWB Namespace Reference	7
	4.2.1 Function Documentation	8
	4.2.1.1 main()	8
	4.2.2 Variable Documentation	8
	4.2.2.1 action	8
	4.2.2.2 category	8
	4.2.2.3 fontsize	8
	4.2.2.4 labelsize	8
	4.2.2.5 s_in_Myr	8
	4.2.2.6 size	8
	4.2.2.7 titlesize	8
	4.3 modules Namespace Reference	9
	4.4 modules.add_birth Namespace Reference	9
	4.4.1 Function Documentation	9
	4.4.1.1 add birth()	9
	4.5 modules.add_bulk Namespace Reference	9
		10
	4.5.1 Function Documentation	10
	4.6 modules.add_merge Namespace Reference	10
		10
	4.6.1 Function Documentation	10
	4.6.1.1 add_merge()	11
	4.7.1 Function Documentation	
		11
	4.7.1.1 calc_parabola_vertex()	11
	4.7.1.2 determine_upper_freq()	12
	4.7.1.3 get_bin_factors()	12
	4.7.1.4 get_width_z_shell_from_z()	12
	4.7.1.5 make_Omega_plot_unnorm()	13
	4.7.1.6 Omega()	13
	4.7.1.7 parabola()	14

4.7.1.8 tau_syst()	14
4.7.2 Variable Documentation	14
4.7.2.1 s_in_Myr	14
4.8 modules.physics Namespace Reference	15
4.8.1 Function Documentation	15
4.8.1.1 a_min()	15
4.8.1.2 chirp()	15
4.8.1.3 K()	16
4.8.1.4 Kepler()	16
4.8.1.5 Period()	16
4.8.1.6 WD_radius()	17
4.9 modules.RedshiftInterpolator Namespace Reference	17
4.10 modules.SFH Namespace Reference	17
4.10.1 Function Documentation	18
4.10.1.1 representative_SFH()	18
4.10.1.2 SFH2()	18
4.10.1.3 SFH3()	18
4.10.1.4 SFH4()	19
4.10.1.5 SFH_MD()	19
4.11 modules.SimModel Namespace Reference	19
4.12 num_syst Namespace Reference	20
4.12.1 Function Documentation	20
4.12.1.1 determine_upper_freq()	20
4.12.1.2 get_width_z_shell_from_z()	21
4.12.1.3 get_z_fast()	21
4.12.1.4 main()	21
4.12.1.5 num_merge_bins()	21
4.12.1.6 representative_SFH()	21
4.12.1.7 SFH()	21
4.12.1.8 tau_syst()	22
4.12.2 Variable Documentation	22
4.12.2.1 fontsize	22
4.12.2.2 interp_age	22
4.12.2.3 interp_z	22
4.12.2.4 labelsize	22
4.12.2.5 s_in_Myr	22
4.12.2.6 size	22
4.12.2.7 titlesize	22
4.12.2.8 z_at_val_data	23
4.13 RedshiftInterpolator Namespace Reference	23
4.13.1 Detailed Description	23
4.14 SeBa_pre_process Namespace Reference	23

4.14.1 Function Documentation	23
4.14.1.1 main()	23
4.15 SimModel Namespace Reference	23
4.15.1 Detailed Description	23
5 Class Documentation	25
5.1 modules.RedshiftInterpolator.RedshiftInterpolator Class Reference	25
5.1.1 Detailed Description	25
5.1.2 Constructor & Destructor Documentation	25
5.1.2.1init()	25
5.1.3 Member Function Documentation	26
5.1.3.1 get_z_fast()	26
5.1.4 Member Data Documentation	26
5.1.4.1 interp_age	26
5.1.4.2 interp_z	26
5.2 num_syst.sim_model Class Reference	26
5.2.1 Detailed Description	27
5.2.2 Constructor & Destructor Documentation	27
5.2.2.1init()	27
5.2.3 Member Function Documentation	27
5.2.3.1 calculate_cosmology()	27
5.2.3.2 calculate_f_bins()	28
5.2.3.3 calculate_z_bins()	28
5.2.4 Member Data Documentation	28
5.2.4.1 ages	28
5.2.4.2 f_bins	28
5.2.4.3 f_plot	28
5.2.4.4 log_f_high	28
5.2.4.5 log_f_low	28
5.2.4.6 max_z	28
5.2.4.7 N	28
5.2.4.8 N_z	29
5.2.4.9 SFH_num	29
5.2.4.10 z_bins	29
5.2.4.11 z_list	29
5.2.4.12 z_time_since_max_z	29
5.2.4.13 z_widths	29
5.3 modules.SimModel.SimModel Class Reference	29
5.3.1 Detailed Description	30
5.3.2 Constructor & Destructor Documentation	31
5.3.2.1init()	31
5.3.3 Member Function Documentation	31

5.3.3.1 calculate_cosmology_from_T()	31
5.3.3.2 calculate_cosmology_from_z()	31
5.3.3.3 calculate_f_bins()	32
5.3.3.4 calculate_T_bins()	32
5.3.3.5 calculate_z_bins()	32
5.3.3.6 set_mode()	32
5.3.4 Member Data Documentation	32
5.3.4.1 ages	32
5.3.4.2 DEBUG	33
5.3.4.3 dT	33
5.3.4.4 f_bin_factors	33
5.3.4.5 f_bins	33
5.3.4.6 f_plot	33
5.3.4.7 INTEG_MODE	33
5.3.4.8 light_speed	33
5.3.4.9 log_f_high	
5.3.4.10 log_f_low	33
5.3.4.11 max_z	
5.3.4.12 N_freq	34
5.3.4.13 N_int	
5.3.4.14 SAVE_FIG	
5.3.4.15 SFH_num	34
5.3.4.16 TO	
5.3.4.17 T_bins	
5.3.4.18 T_list	
5.3.4.19 T_range	
5.3.4.20 TEST_FOR_ONE	34
5.3.4.21 z_bins	35
5.3.4.22 z_list	
5.3.4.23 z_time_since_max_z	
5.3.4.24 z_widths	35
6 File Documentation	37
6.1 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/Create_z_at value.py File Reference	37
6.1.1 Detailed Description	37
6.2 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/GWB.py File	
Reference	37
6.2.1 Detailed Description	38
6.3 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/ ← initpy File Reference	38
6.4 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/addbirth.py File Reference	38

	6.4.1 Detailed Description	39
6.5 /	/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/add	
	_bulk.py File Reference	39
	6.5.1 Detailed Description	39
6.6 /	/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/add merge.py File Reference	40
	6.6.1 Detailed Description	40
6.7 /h	home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/auxiliary. File Reference	. <mark>py</mark> 40
	6.7.1 Detailed Description	41
6.8/	home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/physics.p	ру 42
6.9	/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/ \leftarrow RedshiftInterpolator.py File Reference	42
6.10	/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/← SFH.py File Reference	42
	6.10.1 Detailed Description	43
6.11	/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/← SimModel.py File Reference	43
6.12	/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/num_syst.py File Reference	44
6.13	/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/SeBa_pre_← process.py File Reference	44
	6.13.1 Detailed Description	45
Index		47

Chapter 1

Namespace Index

1.1 Package List

Here are the packages with brief descriptions (if available):

Create_z_at_value
GWB 7
modules
modules.add_birth
modules.add_bulk
modules.add_merge
modules.auxiliary
modules.physics
modules.RedshiftInterpolator
modules.SFH
modules.SimModel
num_syst
RedshiftInterpolator
This module contains the class RedshiftInterpolator
SeBa_pre_process
SimModel
This module contains the class SimModel

2 Namespace Index

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

modules.RedshiftInterpolator.RedshiftInterpolator	
This class is used to quickly determine the redshift at a given age of the Universe	25
num_syst.sim_model	
MODEL CLASS #########	26
modules.SimModel.SimModel	
! This class contains information about the run that needs to be shared over the different sub-	
routines	29

4 Class Index

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/Create_z_at_value.py This program creates a list of redshift values at a list of ages of the Universe, that can be saved	
and used to interpolate in the main code	37
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White Dwarf AGWB/src/GWB.py	07
This program calculates the GWB based on the method described in my thesis, using uniform	
redshift bins	37
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/num_syst.py	44
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/SeBa_pre_process.py	
This program takes the output of the SeBa population synthesis code and calculates other values	
from it. The results are saved in a dataframe that can be used in the main code	44
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/initpy	
38	
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/add_birth.py	
This file contains a routine that adds the contribution of the 'birth bins' to the bulk GWB	38
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/add_bulk.py	
This file contains a routine that calculates the majority of the GWB, what is referred to in my	
thesis as the 'generic case'	39
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/add_merge.p	у
This file contains a routine that adds the contribution of the 'merger bins' due to Kepler max to	40
the bulk+birth GWB	40
This module contains auxiliary functions that are used in the main code	40
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White Dwarf AGWB/src/modules/physics.py	40
42	
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/RedshiftInter	polator.pv
42	polatop
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White Dwarf AGWB/src/modules/SFH.py	
This file contains the functions to determine the star formation rate	42
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/SimModel.py	•
43	

6 File Index

Chapter 4

Namespace Documentation

4.1 Create_z_at_value Namespace Reference

Functions

• None main ()

Function to create list of z-values at given ages of the Universe.

4.1.1 Function Documentation

4.1.1.1 main()

```
None Create_z_at_value.main ( )
```

Function to create list of z-values at given ages of the Universe.

4.2 GWB Namespace Reference

Functions

• main ()

Main function.

Variables

- action
- category
- size
- titlesize
- labelsize
- fontsize
- tuple s_in_Myr = (u.Myr).to(u.s)

4.2.1 Function Documentation

4.2.1.1 main()

```
GWB.main ( )
```

Main function.

The main functions sets the details of the simulation and runs the three main parts of the program.

4.2.2 Variable Documentation

4.2.2.1 action

GWB.action

4.2.2.2 category

GWB.category

4.2.2.3 fontsize

GWB.fontsize

4.2.2.4 labelsize

GWB.labelsize

4.2.2.5 s_in_Myr

```
tuple GWB.s_in_Myr = (u.Myr).to(u.s)
```

4.2.2.6 size

GWB.size

4.2.2.7 titlesize

GWB.titlesize

4.3 modules Namespace Reference

Namespaces

- · namespace add birth
- namespace add bulk
- namespace add_merge
- · namespace auxiliary
- · namespace physics
- namespace RedshiftInterpolator
- namespace SFH
- namespace SimModel

4.4 modules.add_birth Namespace Reference

Functions

None add_birth (sm.SimModel model, pd.DataFrame data, ri.RedshiftInterpolator z_interp, str tag)
 This routine adds the contribution of the 'birth bins' to the bulk GWB.

4.4.1 Function Documentation

4.4.1.1 add_birth()

This routine adds the contribution of the 'birth bins' to the bulk GWB.

Parameters

model	instance of SimModel, containing the necessary information for the run.
z_interp	instance of RedshiftInterpolator, used in the SFH calculations.
data	dataframe containing the binary population data.
tag	tag to add to the output files.

Returns

Saves a dataframe that contains the GWB at all frequencies, and a dataframe that has the breakdown for the different redshift bins.

4.5 modules.add_bulk Namespace Reference

Functions

None add_bulk (sm.SimModel model, pd.DataFrame data, ri.RedshiftInterpolator z_interp, str tag)

This routine calculates the majority of the GWB, what is referred to in my thesis as the 'generic case'.

4.5.1 Function Documentation

4.5.1.1 add_bulk()

```
None modules.add_bulk.add_bulk (
    sm.SimModel model,
    pd.DataFrame data,
    ri.RedshiftInterpolator z_interp,
    str tag )
```

This routine calculates the majority of the GWB, what is referred to in my thesis as the 'generic case'.

Parameters

model	instance of SimModel, containing the necessary information for the run.
z_interp	instance of RedshiftInterpolator, used in the SFH calculations.
data	dataframe containing the binary population data.
tag	tag to add to the output files.

Returns

Saves a dataframe that contains the GWB at all frequencies, and a dataframe that has the breakdown for the different redshift bins.

4.6 modules.add_merge Namespace Reference

Functions

• None add_merge (sm.SimModel model, pd.DataFrame data, ri.RedshiftInterpolator z_interp, str tag)

This routine adds the contribution of the 'merger bins' due to Kepler max to the bulk+birth GWB.

4.6.1 Function Documentation

4.6.1.1 add_merge()

```
None modules.add_merge.add_merge (
    sm.SimModel model,
    pd.DataFrame data,
    ri.RedshiftInterpolator z_interp,
    str tag )
```

This routine adds the contribution of the 'merger bins' due to Kepler max to the bulk+birth GWB.

Parameters

model	instance of SimModel, containing the necessary information for the run.
z_interp	instance of RedshiftInterpolator, used in the SFH calculations.
data	dataframe containing the binary population data.
tag	tag to add to the output files.

Generated by Doxygen

Returns

Saves a dataframe that contains the GWB at all frequencies, and a dataframe that has the breakdown for the different redshift bins.

4.7 modules.auxiliary Namespace Reference

Functions

- tuple calc_parabola_vertex (float x1, float y1, float x2, float y2, float x3, float y3)
 - Calculate the coefficients of a parabola given three points.
- float parabola (float x, float a, float b, float c)
 - Calculate the value of a parabola given the coefficients.
- np.array get_bin_factors (np.array freqs, np.array bins)
 - Determine bin factors that often recur in the calculation to store them.
- np.array get_width_z_shell_from_z (np.array z_vals)
 - Returns the widths of the redshift shells in Mpc.
- np.array Omega (float Omega_ref, float f_ref, np.array freq)
 - Create a $f^{(2)}$ spectrum line.
- None make_Omega_plot_unnorm (np.array f, np.array Omega_sim, bool save=False, str save_name="void", bool show=False)
 - Make a plot showing Omega for BWD.
- float tau_syst (float f_0, float f_1, float K)
 - Calculates tau, the time it takes a binary with K to evolve from f_0 to f_1 (GW frequencies).
- float determine_upper_freq (float nu_low, float evolve_time, float K, bool DEBUG=False)
 - Determines upper ORBITAL frequency for a binary with K, starting from nu_0, evolving over evolve_time.

Variables

```
• tuple s in Myr = (u.Myr).to(u.s)
```

4.7.1 Function Documentation

4.7.1.1 calc_parabola_vertex()

```
tuple modules.auxiliary.calc_parabola_vertex (
    float x1,
    float y1,
    float x2,
    float y2,
    float x3,
    float y3 )
```

Calculate the coefficients of a parabola given three points.

Parameters

x1,y1	x and y coordinates of the first point.
x2,y2	x and y coordinates of the second point.
x3,y3	x and y coordinates of the third point.

Returns

A, B, C: coefficients of the parabola.

4.7.1.2 determine_upper_freq()

Determines upper ORBITAL frequency for a binary with K, starting from nu_0, evolving over evolve_time.

Parameters

nu_low	initial orbital frequency.
evolve_time	time it takes to evolve in Myr.
K	constant depending on the binary.

Returns

nu_upp: upper orbital frequency.

4.7.1.3 get_bin_factors()

Determine bin factors that often recur in the calculation to store them.

Parameters

freqs	central frequencies.
bins	frequency bin edges.

Returns

factors: factors to multiply the contributions with.

4.7.1.4 get_width_z_shell_from_z()

Returns the widths of the redshift shells in Mpc.

Parameters

z_vals	redshift values.
--------	------------------

Returns

shells: shell widths in Mpc.

4.7.1.5 make_Omega_plot_unnorm()

Make a plot showing Omega for BWD.

Parameters

f	frequency array.
Omega_sim	Omega array.
save	save the figure.
save_name	name of the saved figure.
show	show the figure.

4.7.1.6 Omega()

```
np.array modules.auxiliary.Omega ( float \ \textit{Omega\_ref,} float \ \textit{f\_ref,} np.array \ \textit{freq} )
```

Create a $f^{(2)}$ spectrum line.

Parameters

Omega_ref	reference Omega value.
f_ref	reference frequency.
freq	frequency array.

Returns

Omega: Omega array.

4.7.1.7 parabola()

Calculate the value of a parabola given the coefficients.

Parameters

X	x value.
a,b,c	coefficients of the parabola.

Returns

y: y value.

4.7.1.8 tau_syst()

```
float modules.auxiliary.tau_syst (
          float f_0,
          float f_1,
          float K )
```

Calculates tau, the time it takes a binary with K to evolve from f_0 to f_1 (GW frequencies).

Parameters

f⇔	initial frequency.
_←	
0	
f⇔	final frequency.
_←	
1	
K	constant depending on the binary.

Returns

tau: time in Myr.

4.7.2 Variable Documentation

4.7.2.1 s_in_Myr

```
tuple modules.auxiliary.s_in_Myr = (u.Myr).to(u.s)
```

4.8 modules.physics Namespace Reference

Functions

• float chirp (float m1, float m2)

Calculate the chirp mass in solar masses.

• float WD_radius (float m)

Calculate the radius of a white dwarf of mass m.

• float a_min (float m1, float m2)

Calculate minimum separation between two WDs of masses m1 and m2 (solar units).

• float Kepler (float m1, float m2)

Calculate the orbital frequency of a binary with separation a_min and masses m1, m2.

float K (float M)

Calculate the factor K.

• np.array Period (float a, float m1, float m2)

Calculate the orbital period of a binary system from Kepler's law.

4.8.1 Function Documentation

4.8.1.1 a_min()

```
float modules.physics.a_min ( \label{float m1} \mbox{float } m1, \\ \mbox{float } m2 \mbox{ )}
```

Calculate minimum separation between two WDs of masses m1 and m2 (solar units).

Parameters

m1	mass of the first WD in solar masses.
m2	mass of the second WD in solar masses.

Returns

The minimal separation in solar radii.

4.8.1.2 chirp()

Calculate the chirp mass in solar masses.

Parameters

m1	mass of the first object in solar masses.
m2	mass of the second object in solar masses.

Returns

The chirp mass in solar masses.

4.8.1.3 K()

```
float modules.physics.K ( float M )
```

Calculate the factor K.

Parameters

```
M chirp mass in solar masses.
```

Returns

The factor K.

4.8.1.4 Kepler()

```
float modules.physics.Kepler ( \label{float m1} \mbox{float } m1, \\ \mbox{float } m2 \mbox{ )}
```

Calculate the orbital frequency of a binary with separation a_min and masses m1, m2.

Parameters

m1	mass of the first WD in solar masses.
m2	mass of the second WD in solar masses.

Returns

the orbital frequency in Hz.

4.8.1.5 Period()

```
np.array modules.physics.Period (  \mbox{float $a$,} \\ \mbox{float $m1$,} \\ \mbox{float $m2$ )}
```

Calculate the orbital period of a binary system from Kepler's law.

Parameters

а	separation in solar radii.
m1	mass of the first WD in solar masses.
m2	mass of the second WD in solar masses.

Returns

The orbital periods in years.

4.8.1.6 WD_radius()

Calculate the radius of a white dwarf of mass m.

Parameters

m mass of the white dwarf in solar masses.

Eggleton 1986 fit to Nauenberg for high m and ZS for low m.

Returns

the radius in solar radii.

4.9 modules.RedshiftInterpolator Namespace Reference

Classes

· class RedshiftInterpolator

This class is used to quickly determine the redshift at a given age of the Universe.

4.10 modules.SFH Namespace Reference

Functions

• representative_SFH (float age, ri.RedshiftInterpolator redshift_interpolator, float Delta_t=0., int SFH_num=1, float max_z=8.)

Determines an appropriate value for the star formation rate at a given age.

float SFH_MD (float z)

Star formation history from [Madau, Dickinson 2014].

float SFH2 (float z)

Made up star formation history.

• float SFH3 (float z)

Made up star formation history.

• float SFH4 (float z)

Made up star formation history.

4.10.1 Function Documentation

4.10.1.1 representative_SFH()

Determines an appropriate value for the star formation rate at a given age.

The function looks for a representative value of the star formation rate given the age of the system, and takes into account an optional additional time delay.

Parameters

age	age of the system in Myr.
redshift_interpolator	RedshiftInterpolator object that interpolates the redshift at a given age.
Delta_t	time delay due to formation of binary or time required to reach the correct frequency bin, in Myr.
SFH_num	which star formation history to select. 1: Madau & Dickinson 2014, 2-4: made up, 5: constant 0.01.
max_z	maximum redshift.

Returns

SFR: star formation rate. Units: solar mass / yr / Mpc^3.

4.10.1.2 SFH2()

```
float modules.SFH.SFH2 ( {\tt float} \ z \ )
```

Made up star formation history.

Parameters

```
z redshift.
```

Returns

SFR: star formation rate. Units: solar mass / yr / Mpc $^{\wedge}$ 3.

4.10.1.3 SFH3()

```
float modules.SFH.SFH3 ( \label{eq:float_z} \texttt{float}\ z\ \texttt{)}
```

Made up star formation history.

Parameters

```
z redshift.
```

Returns

SFR: star formation rate. Units: solar mass / yr / Mpc^3.

4.10.1.4 SFH4()

```
float modules.SFH.SFH4 ( {\tt float}\ z\ )
```

Made up star formation history.

Parameters

```
z redshift.
```

Returns

SFR: star formation rate. Units: solar mass / yr / Mpc $^{\wedge}$ 3.

4.10.1.5 SFH_MD()

```
float modules.SFH.SFH\_MD ( float z )
```

Star formation history from [Madau, Dickinson 2014].

Parameters

```
z redshift.
```

Returns

SFR: star formation rate. Units: solar mass / yr / Mpc $^{\wedge}$ 3.

4.11 modules.SimModel Namespace Reference

Classes

class SimModel

! This class contains information about the run that needs to be shared over the different subroutines.

4.12 num syst Namespace Reference

Classes

· class sim model

MODEL CLASS ##########.

Functions

• get_width_z_shell_from_z (z_vals)

AUXILIARY FUNCTIONS ############.

• SFH (z)

Star formation history from [Madau, Dickinson 2014].

tau_syst (f_0, f_1, K)

Calculates tau, the time it takes a binary with K to evolve from f_0 to f_1 (GW frequencies).

• representative_SFH (age, Delta_t, SFH_num, max_z)

Looks for a representative value of the SFH given the age of the system, and an additional time delay in reaching the bin.

- get_z_fast (age)
- determine_upper_freq (nu_low, evolve_time, K)

Determines upper ORBITAL frequency for a binary with K, starting from nu 0, evolving over evolve time.

- num_merge_bins (model1, model2, data, tag)
- main ()

ACTUAL MAIN FUNCTION ############.

Variables

- size
- titlesize
- labelsize
- fontsize
- tuple $s_{in}Myr = (u.Myr).to(u.s)$
- z_at_val_data = pd.read_csv("../Data/z_at_age.txt", names=["age", "z"], header=1)

LOAD Z_AT_VALUE FILE ###########.

- interp_age
- interp_z

4.12.1 Function Documentation

4.12.1.1 determine_upper_freq()

Determines upper ORBITAL frequency for a binary with K, starting from nu 0, evolving over evolve time.

Takes evolve_time in Myr, so needs to be converted.

4.12.1.2 get_width_z_shell_from_z()

```
\label{eq:continuous_syst} $$ num_syst.get_width_z_shell_from_z ($$ z_vals )$
```

AUXILIARY FUNCTIONS ###########.

Returns the widths of the z_shells in Mpc.

4.12.1.3 get_z_fast()

4.12.1.4 main()

```
num_syst.main ( )
```

ACTUAL MAIN FUNCTION ##########.

The actual main function. Combines the three different components

4.12.1.5 num_merge_bins()

4.12.1.6 representative_SFH()

Looks for a representative value of the SFH given the age of the system, and an additional time delay in reaching the bin.

age and Delta_t should be given in Myr.

4.12.1.7 SFH()

```
\label{eq:continuous_syst.SFH} \mbox{ (} \\ \mbox{$z$ )}
```

Star formation history from [Madau, Dickinson 2014].

Units: solar mass / yr / Mpc^3

4.12.1.8 tau_syst()

```
num_syst.tau_syst ( f\_0, \\ f\_1, \\ K )
```

Calculates tau, the time it takes a binary with K to evolve from f_0 to f_1 (GW frequencies).

Returns tau in Myr.

4.12.2 Variable Documentation

4.12.2.1 fontsize

```
num_syst.fontsize
```

4.12.2.2 interp_age

```
num_syst.interp_age
```

4.12.2.3 interp_z

```
num_syst.interp_z
```

4.12.2.4 labelsize

```
num_syst.labelsize
```

4.12.2.5 s_in_Myr

```
tuple num_syst.s_in_Myr = (u.Myr).to(u.s)
```

4.12.2.6 size

num_syst.size

4.12.2.7 titlesize

num_syst.titlesize

4.12.2.8 z_at_val_data

```
num_syst.z_at_val_data = pd.read_csv("../Data/z_at_age.txt", names=["age", "z"], header=1)
LOAD Z_AT_VALUE FILE ###########.
```

4.13 RedshiftInterpolator Namespace Reference

This module contains the class RedshiftInterpolator.

4.13.1 Detailed Description

This module contains the class RedshiftInterpolator.

The class RedshiftInterpolator is used to quickly determine the redshift at a given age of the Universe.

Author

Seppe Staelens

Date

2024-07-24

4.14 SeBa_pre_process Namespace Reference

Functions

· None main ()

4.14.1 Function Documentation

4.14.1.1 main()

```
None SeBa_pre_process.main ( )
```

4.15 SimModel Namespace Reference

This module contains the class SimModel.

4.15.1 Detailed Description

This module contains the class SimModel.

The class SimModel contains information about the run that needs to be shared over the different subroutines.

Author

Seppe Staelens

Date

2024-07-24

Chapter 5

Class Documentation

5.1 modules.RedshiftInterpolator.RedshiftInterpolator Class Reference

This class is used to quickly determine the redshift at a given age of the Universe.

Public Member Functions

```
    None __init__ (self, str z_at_age_file)
    Initializes the RedshiftInterpolator object.
```

float get_z_fast (self, float age)

Quickly determine the redshift at a given age of the Universe.

Public Attributes

• interp_age

The age of the Universe at which the redshift is determined.

interp_z

The redshift at the given age of the Universe.

5.1.1 Detailed Description

This class is used to quickly determine the redshift at a given age of the Universe.

5.1.2 Constructor & Destructor Documentation

```
5.1.2.1 __init__()
```

```
None modules.RedshiftInterpolator.RedshiftInterpolator.__init__ ( self, \\ str \ z\_at\_age\_file \ )
```

Initializes the RedshiftInterpolator object.

26 Class Documentation

Parameters

z_at_age_file file containing the redshift at a given age of the Univers
--

5.1.3 Member Function Documentation

5.1.3.1 get_z_fast()

Quickly determine the redshift at a given age of the Universe.

Parameters

```
age age of the Universe in Myr.
```

Returns

redshift at the given age of the Universe.

5.1.4 Member Data Documentation

5.1.4.1 interp_age

```
modules.RedshiftInterpolator.RedshiftInterpolator.interp_age
```

The age of the Universe at which the redshift is determined.

5.1.4.2 interp z

```
{\tt modules.RedshiftInterpolator.RedshiftInterpolator.interp\_z}
```

The redshift at the given age of the Universe.

The documentation for this class was generated from the following file:

/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/RedshiftInterpolator.py

5.2 num_syst.sim_model Class Reference

MODEL CLASS ##########.

Public Member Functions

```
• None __init__ (self, N=50, N_z=20, max_z=8, SFH_num=1, log_f_low=-5, log_f_high=0)
```

calculate_f_bins (self)

Calculates the f bins and the bin factors.

• calculate z bins (self)

Calculates the z bins.

· calculate_cosmology (self)

Public Attributes

- N
- N z
- max_z
- SFH_num
- log_f_low
- log_f_high
- f_plot
- f_bins
- z_list
- z_bins
- z_widths
- z_time_since_max_z
- ages

5.2.1 Detailed Description

MODEL CLASS ##########.

This class contains information about the run that needs to be shared over the different subroutines.

5.2.2 Constructor & Destructor Documentation

5.2.2.1 __init__()

5.2.3 Member Function Documentation

5.2.3.1 calculate_cosmology()

```
\label{eq:num_syst.sim_model.calculate_cosmology} \mbox{ (} \\ self \mbox{ )}
```

28 Class Documentation

5.2.3.2 calculate_f_bins()

```
\label{eq:continuous} \begin{split} & \text{num\_syst.sim\_model.calculate\_f\_bins (} \\ & self \ ) \end{split}
```

Calculates the f bins and the bin factors.

5.2.3.3 calculate_z_bins()

```
\label{eq:condition} \begin{split} & \text{num\_syst.sim\_model.calculate\_z\_bins (} \\ & self ) \end{split}
```

Calculates the z bins.

5.2.4 Member Data Documentation

5.2.4.1 ages

```
{\tt num\_syst.sim\_model.ages}
```

5.2.4.2 f bins

```
num_syst.sim_model.f_bins
```

5.2.4.3 f_plot

```
num_syst.sim_model.f_plot
```

5.2.4.4 log_f_high

```
num_syst.sim_model.log_f_high
```

5.2.4.5 log_f_low

```
num_syst.sim_model.log_f_low
```

5.2.4.6 max_z

```
num_syst.sim_model.max_z
```

5.2.4.7 N

num_syst.sim_model.N

5.2.4.8 N_z

```
num_syst.sim_model.N_z
```

5.2.4.9 SFH num

num_syst.sim_model.SFH_num

5.2.4.10 z_bins

num_syst.sim_model.z_bins

5.2.4.11 z list

num_syst.sim_model.z_list

5.2.4.12 z_time_since_max_z

num_syst.sim_model.z_time_since_max_z

5.2.4.13 z_widths

num_syst.sim_model.z_widths

The documentation for this class was generated from the following file:

/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White Dwarf AGWB/src/num syst.py

5.3 modules.SimModel.SimModel Class Reference

! This class contains information about the run that needs to be shared over the different subroutines.

Public Member Functions

• None __init__ (self, str INTEG_MODE, int z_interp, int N_freq=50, int N_int=20, float max_z=8, int SFH_num=1, float log_f_low=-5, float log_f_high=0)

Initializes the SimModel object.

None calculate_f_bins (self)

Calculates the f bins and the bin factors.

None calculate_z_bins (self)

Calculates the z bins.

• None calculate_T_bins (self)

Calculates the T bins.

None calculate_cosmology_from_z (self)

Calculations depending on the cosmology, starting from redshift bins.

• None calculate_cosmology_from_T (self, ri.RedshiftInterpolator z_interpolator)

Calculations depending on the cosmology, starting from cosmic time bins.

None set_mode (self, bool SAVE_FIG, bool DEBUG, bool TEST_FOR_ONE)

Sets the mode of the simulation.

30 Class Documentation

Public Attributes

- N_freq
- N_int
- max z
- SFH_num
- log_f_low
- log_f_high
- INTEG_MODE
- f plot

The frequencies at which we will plot.

• f_bins

The frequency bins.

• f bin factors

The frequency bin factors that appear in the calculation.

z_list

The central values of the redshift bins.

• z bins

The redshift bins.

- T0
- T_range
- T list
- T_bins
- dT
- z_widths

The width of the redshift bins in Mpc.

• z_time_since_max_z

The time since the maximum redshift

• ages

The age of the universe at each redshift.

- SAVE_FIG
- DEBUG
- TEST_FOR_ONE

Static Public Attributes

• float light_speed = 0.30660139

The speed of light in units of Mpc/Myr.

5.3.1 Detailed Description

! This class contains information about the run that needs to be shared over the different subroutines.

5.3.2 Constructor & Destructor Documentation

5.3.2.1 __init__()

Initializes the SimModel object.

Parameters

N_freq	number of frequency bins.
N_int	number of integration bins (z or T).
max_z	maximum redshift.
SFH_num	which star formation history to select. 1: Madau & Dickinson 2014, 2-4: made up, 5: constant 0.01.
log_f_low	lower bound of the frequency bins in log10 space.
log_f_high	upper bound of the frequency bins in log10 space.

Returns

instance of SimModel, with frequency and redshift bins calculated, and cosmology set.

5.3.3 Member Function Documentation

5.3.3.1 calculate_cosmology_from_T()

```
None modules.SimModel.Calculate_cosmology_from_T ( self, {\tt ri.RedshiftInterpolator}\ z\_interpolator\ )
```

Calculations depending on the cosmology, starting from cosmic time bins.

Calculates the redshifts, the time since the maximum redshift, and the ages of the universe at each time.

5.3.3.2 calculate_cosmology_from_z()

```
None modules.SimModel.SimModel.calculate_cosmology_from_z ( self \ )
```

Calculations depending on the cosmology, starting from redshift bins.

Sets the widths of the z bins and the time since max z, as well as the age of the universe at each redshift.

32 Class Documentation

5.3.3.3 calculate_f_bins()

```
None modules.SimModel.SimModel.calculate_f_bins ( self \ )
```

Calculates the f bins and the bin factors.

5.3.3.4 calculate_T_bins()

```
None modules.SimModel.SimModel.calculate_T_bins ( self \ )
```

Calculates the T bins.

5.3.3.5 calculate_z_bins()

```
None modules.SimModel.SimModel.calculate_z_bins ( self \ )
```

Calculates the z bins.

5.3.3.6 set_mode()

```
None modules.SimModel.SimModel.set_mode ( self, bool SAVE_FIG, bool DEBUG, bool TEST_FOR_ONE )
```

Sets the mode of the simulation.

Parameters

SAVE_FIG	whether to save the figures.
DEBUG	whether to print more output.
TEST_FOR_ONE	whether to test for only one system.
INT_MODE	whether to integrate over redshift or time.

5.3.4 Member Data Documentation

5.3.4.1 ages

```
modules.SimModel.SimModel.ages
```

The age of the universe at each redshift.

5.3.4.2 **DEBUG**

modules.SimModel.SimModel.DEBUG

5.3.4.3 dT

modules.SimModel.SimModel.dT

5.3.4.4 f_bin_factors

modules.SimModel.SimModel.f_bin_factors

The frequency bin factors that appear in the calculation.

5.3.4.5 f_bins

modules.SimModel.f_bins

The frequency bins.

5.3.4.6 f_plot

modules.SimModel.f_plot

The frequencies at which we will plot.

5.3.4.7 INTEG_MODE

modules.SimModel.SimModel.INTEG_MODE

5.3.4.8 light_speed

float modules.SimModel.SimModel.light_speed = 0.30660139 [static]

The speed of light in units of Mpc/Myr.

5.3.4.9 log_f_high

modules.SimModel.log_f_high

5.3.4.10 log_f_low

 ${\tt modules.SimModel.SimModel.log_f_low}$

34 Class Documentation

5.3.4.11 max_z

 ${\tt modules.SimModel.SimModel.max_z}$

5.3.4.12 N_freq

modules.SimModel.SimModel.N_freq

5.3.4.13 N_int

modules.SimModel.N_int

5.3.4.14 SAVE_FIG

modules.SimModel.SimModel.SAVE_FIG

5.3.4.15 SFH_num

modules.SimModel.SFH_num

5.3.4.16 T0

modules.SimModel.SimModel.T0

5.3.4.17 T_bins

modules.SimModel.SimModel.T_bins

5.3.4.18 T_list

 ${\tt modules.SimModel.SimModel.T_list}$

5.3.4.19 T_range

modules.SimModel.SimModel.T_range

5.3.4.20 TEST_FOR_ONE

modules.SimModel.SimModel.TEST_FOR_ONE

5.3.4.21 z_bins

modules.SimModel.SimModel.z_bins

The redshift bins.

5.3.4.22 z_list

modules.SimModel.z_list

The central values of the redshift bins.

5.3.4.23 z_time_since_max_z

modules.SimModel.Z_time_since_max_z

The time since the maximum redshift

5.3.4.24 z_widths

modules.SimModel.SimModel.z_widths

The width of the redshift bins in Mpc.

The documentation for this class was generated from the following file:

 $\bullet \ / home/seppe/Documents/data/Papers/AnA.683.A139 (2024)/White_Dwarf_AGWB/src/modules/SimModel.py$

36 Class Documentation

Chapter 6

File Documentation

6.1 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_ Dwarf_AGWB/src/Create_z_at_value.py File Reference

This program creates a list of redshift values at a list of ages of the Universe, that can be saved and used to interpolate in the main code.

Namespaces

• namespace Create_z_at_value

Functions

• None Create_z_at_value.main ()

Function to create list of z-values at given ages of the Universe.

6.1.1 Detailed Description

This program creates a list of redshift values at a list of ages of the Universe, that can be saved and used to interpolate in the main code.

Date

2024-07-29

Author

Seppe Staelens

6.2 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_← Dwarf AGWB/src/GWB.py File Reference

This program calculates the GWB based on the method described in my thesis, using uniform redshift bins.

Namespaces

namespace GWB

Functions

• GWB.main ()

Main function.

Variables

- GWB.action
- · GWB.category
- · GWB.size
- · GWB.titlesize
- · GWB.labelsize
- · GWB.fontsize
- tuple GWB.s_in_Myr = (u.Myr).to(u.s)

6.2.1 Detailed Description

This program calculates the GWB based on the method described in my thesis, using uniform redshift bins.

Date

2024-07-26

The program calculates the GWB based on the method described in my thesis, using uniform redshift bins. It is divided into three main parts: the bulk part, the birth part, and the merger part. The bulk part calculates the majority of the GWB, what is referred to in my thesis as the 'generic case'. The birth part adds the contribution of the 'birth bins' to the bulk GWB. The merger part adds the contribution of the 'merger bins' due to Kepler max to the bulk GWB. The program saves a dataframe with all the essential information.

Author

Seppe Staelens

- 6.3 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_
 Dwarf_AGWB/src/modules/__init__.py File Reference
- 6.4 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_

 Dwarf_AGWB/src/modules/add_birth.py File Reference

This file contains a routine that adds the contribution of the 'birth bins' to the bulk GWB.

/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/add_bulk.py File Reference

Namespaces

- · namespace modules
- namespace modules.add_birth

Functions

None modules.add_birth.add_birth (sm.SimModel model, pd.DataFrame data, ri.RedshiftInterpolator z_
interp, str tag)

This routine adds the contribution of the 'birth bins' to the bulk GWB.

6.4.1 Detailed Description

This file contains a routine that adds the contribution of the 'birth bins' to the bulk GWB.

Author

Seppe Staelens

Date

2024-07-24

6.5 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_ Dwarf_AGWB/src/modules/add_bulk.py File Reference

This file contains a routine that calculates the majority of the GWB, what is referred to in my thesis as the 'generic case'.

Namespaces

- · namespace modules
- namespace modules.add_bulk

Functions

None modules.add_bulk.add_bulk (sm.SimModel model, pd.DataFrame data, ri.RedshiftInterpolator z_interp, str tag)

This routine calculates the majority of the GWB, what is referred to in my thesis as the 'generic case'.

6.5.1 Detailed Description

This file contains a routine that calculates the majority of the GWB, what is referred to in my thesis as the 'generic case'.

Author

Seppe Staelens

Date

2024-07-24

6.6 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_← Dwarf_AGWB/src/modules/add_merge.py File Reference

This file contains a routine that adds the contribution of the 'merger bins' due to Kepler max to the bulk+birth GWB.

Namespaces

- · namespace modules
- namespace modules.add_merge

Functions

None modules.add_merge.add_merge (sm.SimModel model, pd.DataFrame data, ri.RedshiftInterpolator z
 __interp, str tag)

This routine adds the contribution of the 'merger bins' due to Kepler max to the bulk+birth GWB.

6.6.1 Detailed Description

This file contains a routine that adds the contribution of the 'merger bins' due to Kepler max to the bulk+birth GWB.

Author

Seppe Staelens

Date

2024-07-24

6.7 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_ Dwarf_AGWB/src/modules/auxiliary.py File Reference

This module contains auxiliary functions that are used in the main code.

Namespaces

- · namespace modules
- · namespace modules.auxiliary

/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/auxiliary.py File Reference 4:

Functions

• tuple modules.auxiliary.calc_parabola_vertex (float x1, float y1, float x2, float y2, float x3, float y3)

Calculate the coefficients of a parabola given three points.

• float modules.auxiliary.parabola (float x, float a, float b, float c)

Calculate the value of a parabola given the coefficients.

• np.array modules.auxiliary.get_bin_factors (np.array freqs, np.array bins)

Determine bin factors that often recur in the calculation to store them.

np.array modules.auxiliary.get_width_z_shell_from_z (np.array z_vals)

Returns the widths of the redshift shells in Mpc.

• np.array modules.auxiliary.Omega (float Omega_ref, float f_ref, np.array freq)

Create a $f^{\setminus}\{2/3\}$ spectrum line.

• None modules.auxiliary.make_Omega_plot_unnorm (np.array f, np.array Omega_sim, bool save=False, str save_name="void", bool show=False)

Make a plot showing Omega for BWD.

float modules.auxiliary.tau_syst (float f_0, float f_1, float K)

Calculates tau, the time it takes a binary with K to evolve from f_0 to f_1 (GW frequencies).

• float modules.auxiliary.determine_upper_freq (float nu_low, float evolve_time, float K, bool DEBUG=False)

Determines upper ORBITAL frequency for a binary with K, starting from nu_0, evolving over evolve_time.

Variables

• tuple modules.auxiliary.s in Myr = (u.Myr).to(u.s)

6.7.1 Detailed Description

This module contains auxiliary functions that are used in the main code.

This module contains auxiliary physics functions that are used to pre-process the population synthesis data.

Author

Seppe Staelens

Date

2024-07-24

Author

Seppe Staelens

Date

2024-07-29

6.8 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_← Dwarf_AGWB/src/modules/physics.py File Reference

Namespaces

- · namespace modules
- · namespace modules.physics

Functions

• float modules.physics.chirp (float m1, float m2)

Calculate the chirp mass in solar masses.

• float modules.physics.WD_radius (float m)

Calculate the radius of a white dwarf of mass m.

• float modules.physics.a_min (float m1, float m2)

Calculate minimum separation between two WDs of masses m1 and m2 (solar units).

float modules.physics.Kepler (float m1, float m2)

Calculate the orbital frequency of a binary with separation a_min and masses m1, m2.

• float modules.physics.K (float M)

Calculate the factor K.

np.array modules.physics.Period (float a, float m1, float m2)

Calculate the orbital period of a binary system from Kepler's law.

6.9 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_← Dwarf_AGWB/src/modules/RedshiftInterpolator.py File Reference

Classes

· class modules.RedshiftInterpolator.RedshiftInterpolator

This class is used to quickly determine the redshift at a given age of the Universe.

Namespaces

- namespace modules
- · namespace modules.RedshiftInterpolator
- · namespace RedshiftInterpolator

This module contains the class RedshiftInterpolator.

6.10 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_← Dwarf_AGWB/src/modules/SFH.py File Reference

This file contains the functions to determine the star formation rate.

Namespaces

- namespace modules
- · namespace modules.SFH

Functions

• modules.SFH.representative_SFH (float age, ri.RedshiftInterpolator redshift_interpolator, float Delta_t=0., int SFH num=1, float max z=8.)

Determines an appropriate value for the star formation rate at a given age.

float modules.SFH.SFH_MD (float z)

Star formation history from [Madau, Dickinson 2014].

• float modules.SFH.SFH2 (float z)

Made up star formation history.

• float modules.SFH.SFH3 (float z)

Made up star formation history.

float modules.SFH.SFH4 (float z)

Made up star formation history.

6.10.1 Detailed Description

This file contains the functions to determine the star formation rate.

Date

2024-07-24

The file contains the functions to determine the star formation rate. The function representative_SFH determines an appropriate value for the star formation rate at a given age. It allows for an optional additional time delay, due to a delay in formation of the binary, or if time is required to move to the correct frequency bin. The functions SFH_MD, SFH2, SFH3, and SFH4 are star formation histories that can be selected.

Author

Seppe Staelens

6.11 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_← Dwarf_AGWB/src/modules/SimModel.py File Reference

Classes

· class modules.SimModel.SimModel

! This class contains information about the run that needs to be shared over the different subroutines.

Namespaces

- · namespace modules
- namespace modules.SimModel
- namespace SimModel

This module contains the class SimModel.

6.12 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_← Dwarf_AGWB/src/num_syst.py File Reference

Classes

Namespaces

· namespace num_syst

Functions

num_syst.get_width_z_shell_from_z (z_vals)

AUXILIARY FUNCTIONS ###########

• num syst.SFH (z)

Star formation history from [Madau, Dickinson 2014].

num_syst.tau_syst (f_0, f_1, K)

Calculates tau, the time it takes a binary with K to evolve from f_0 to f_1 (GW frequencies).

num_syst.representative_SFH (age, Delta_t, SFH_num, max_z)

Looks for a representative value of the SFH given the age of the system, and an additional time delay in reaching the bin

- num_syst.get_z_fast (age)
- num_syst.determine_upper_freq (nu_low, evolve_time, K)

Determines upper ORBITAL frequency for a binary with K, starting from nu_0, evolving over evolve_time.

- num_syst.num_merge_bins (model1, model2, data, tag)
- num_syst.main ()

ACTUAL MAIN FUNCTION ############.

Variables

- num_syst.size
- · num syst.titlesize
- num_syst.labelsize
- num_syst.fontsize
- tuple num_syst.s_in_Myr = (u.Myr).to(u.s)
- num_syst.z_at_val_data = pd.read_csv("../Data/z_at_age.txt", names=["age", "z"], header=1)

LOAD Z_AT_VALUE FILE ###########.

- num_syst.interp_age
- num_syst.interp_z

6.13 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_← Dwarf AGWB/src/SeBa pre process.py File Reference

This program takes the output of the SeBa population synthesis code and calculates other values from it. The results are saved in a dataframe that can be used in the main code.

/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/SeBa_pre_process.py File Reference 45

Namespaces

• namespace SeBa_pre_process

Functions

• None SeBa_pre_process.main ()

6.13.1 Detailed Description

This program takes the output of the SeBa population synthesis code and calculates other values from it. The results are saved in a dataframe that can be used in the main code.

Date

2024-07-29

Author

Seppe Staelens

Index

```
/home/seppe/Documents/data/Papers/AnA.683.A139(2024) And bitete Documents/data/Papers/AnA.683.A139(2024) And bitete Documents/AnA.683.A139(2024) AnA.683.A139(2024) AnA.683.A139(2024) AnA.683.A139(2024) AnA.683.A139(2024) AnA.683.A139(2024) AnA.683.A139(2024) AnA.683(2024) A
                                                                                                                                                                                                               modules.SimModel, 31
/home/seppe/Documents/data/Papers/AnA.683.A139(2024) A Whitete Documents/data/Papers/AnA.683.A139(2024) A Whitete Documents/data/Papers/AnA.683.A139(2024) A Whitete Documents/data/Papers/AnA.683.A139(2024) A Whitete Documents/AnA.683.A139(2024) A Whitete Documents/AnA.683(2024) A Whitete Documents/AnA.683(2024) A Whitete Documents/AnA.683(2024) A Whitete Documents/AnA.683(2024) A Whitete Documents/AnA.683
                                                                                                                                                                                                               modules.SimModel, 31
/home/seppe/Documents/data/Papers/AnA.683.A139(2024) AMbitateDiwbithsAGWB/src/SeBa_pre_process.py,
                                                                                                                                                                                                               modules.SimModel.SimModel, 31
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/WhitenDwyst.sA@WiB/det/\@odules/RedshiftInterpolator.py,
                                 42
                                                                                                                                                                                             calculate T bins
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/Whiteocolvesr:SiAtaWbests/imblotudes/SFH.py,
                                                                                                                                                                                              calculate z bins
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/WhiteoddweerSiAGWWBestSimbfoddel.pv.
                                                                                                                                                                                                              num syst.sim model, 28
/home/seppe/Documents/data/Papers/AnA.683.A139(2024) AM Higher Dwarf_AGWB/src/modules/__init__.py,
                                                                                                                                                                                                               GWB, 8
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)// Mybite Dwarf AGWB/src/modules/add birth.py,
                                                                                                                                                                                                               modules.physics, 15
/home/seppe/Documents/data/Papers/AnA.683.A139(2024) hd/aiie_zData_rfa_lAG,WB/src/modules/add_bulk.py,
                                                                                                                                                                                                               main, 7
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/add_merge.py,
                                                                                                                                                                                              DEBUG
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/Whfte two-seppe/Documents/data/Papers/AnA.683.A139(2024)/Whfte two-seppe/Documents/data/Papers/AnA.683.A139(2024)/Whfte two-seppe/Documents/data/Papers/AnA.683.A139(2024)/Whfte two-seppe/Documents/data/Papers/AnA.683.A139(2024)/Whfte two-seppe/Documents/data/Papers/AnA.683.A139(2024)/Whfte two-seppe/Documents/data/Papers/AnA.683.A139(2024)/Whfte two-seppe/Documents/data/Papers/AnA.683.A139(2024)/Whfte two-seppe/Documents/data/Papers/AnA.683.A139(2024)/Whfte two-seppe/Documents/data/Papers/AnA.683.A139(2024)/Whfte two-seppe/Documents/AnA.683.A139(2024)/Whfte two-seppe/Documents/AnA.683.A139(2024)/Whfte two-seppe/Documents/AnA.683.A139(2024)/Whfte two-seppe/Documents/AnA.683.A139(2024)/Whfte two-seppe/Documents/AnA.683.A139(2024)/Whfte two-seppe/Documents/AnA.683.A139(2024)/Whfte two-seppe/Documents/AnA.683.A139(2024)/Whfte two-seppe/Documents/AnA.683.A139(2024)/Whfte two-seppers/AnA.683.A139(2024)/Whfte two-seppers/AnA.683(2024)/Whfte two-seppers/AnA.683(2024)/Whfte two-seppers/AnA.683(2024)/Whfte two-seppers/AnA.683(2024)/White two-seppers/AnA.683(2024)/White two-seppers/AnA.683(2024)/White two-seppers/AnA.683(2024)/White two-seppers/AnA.683(2024)/White two-sep
                                                                                                                                                                                             determine_upper_freq
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White dwas a Law By die modules / physics.py,
                                                                                                                                                                                                               num syst, 20
/home/seppe/Documents/data/Papers/AnA.683.A139(2024) White Dwarf AGWB/src/num syst.py,
                                                                                                                                                                                                              modules.SimModel, 33
    init
                                                                                                                                                                                             f bin factors
                modules.RedshiftInterpolator.RedshiftInterpolator,
                                                                                                                                                                                                              modules.SimModel, 33
                                                                                                                                                                                             f bins
                modules.SimModel, 31
                                                                                                                                                                                                              modules.SimModel.SimModel, 33
                num syst.sim model, 27
                                                                                                                                                                                                              num_syst.sim_model, 28
                                                                                                                                                                                             f_plot
a min
                                                                                                                                                                                                              modules.SimModel, 33
                 modules.physics, 15
                                                                                                                                                                                                              num syst.sim model, 28
action
                                                                                                                                                                                              fontsize
                 GWB, 8
                                                                                                                                                                                                              GWB, 8
add birth
                                                                                                                                                                                                              num_syst, 22
                modules.add birth, 9
add_bulk
                                                                                                                                                                                             get_bin_factors
                modules.add_bulk, 10
                                                                                                                                                                                                               modules.auxiliary, 12
add merge
                                                                                                                                                                                             get width z shell from z
                modules.add_merge, 10
                                                                                                                                                                                                              modules.auxiliary, 12
ages
                                                                                                                                                                                                              num_syst, 20
                 modules.SimModel, 32
                                                                                                                                                                                              get_z_fast
                num syst.sim model, 28
                                                                                                                                                                                                              modules.RedshiftInterpolator.RedshiftInterpolator,
calc parabola vertex
                                                                                                                                                                                                              num syst, 21
                 modules.auxiliary, 11
                                                                                                                                                                                              GWB, 7
calculate_cosmology
                                                                                                                                                                                                              action, 8
                num_syst.sim_model, 27
```

48 INDEX

category, 8	Omega, 13
fontsize, 8	parabola, 13
labelsize, 8	s_in_Myr, 14
main, 8	tau_syst, 14
s_in_Myr, 8	modules.physics, 15
size, 8	a_min, 15
titlesize, 8	chirp, 15
INITEO MODE	K, 16
INTEG_MODE	Kepler, 16
modules.SimModel.SimModel, 33	Period, 16
interp_age	WD_radius, 17
modules.RedshiftInterpolator.RedshiftInterpolator,	modules.RedshiftInterpolator, 17
26	modules.RedshiftInterpolator.RedshiftInterpolator, 25
num_syst, 22	init, 25
interp_z	get_z_fast, 26
modules.RedshiftInterpolator.RedshiftInterpolator,	interp_age, 26
26	interp_z, <mark>26</mark>
num_syst, 22	modules.SFH, 17
IZ	representative_SFH, 18
K	SFH2, 18
modules.physics, 16	SFH3, 18
Kepler	SFH4, 19
modules.physics, 16	SFH_MD, 19
lab alaina	modules.SimModel, 19
labelsize	modules.SimModel.SimModel, 29
GWB, 8	init, 31
num_syst, 22	ages, 32
light_speed	calculate_cosmology_from_T, 31
modules.SimModel.SimModel, 33	calculate_cosmology_from_z, 31
log_f_high	calculate_f_bins, 31
modules.SimModel, 33	calculate_T_bins, 32
num_syst.sim_model, 28	calculate_z_bins, 32
log_f_low	DEBUG, 32
modules.SimModel.SimModel, 33	dT, 33
num_syst.sim_model, 28	f_bin_factors, 33
	f_bins, 33
main	f_plot, 33
Create_z_at_value, 7	INTEG_MODE, 33
GWB, 8	light_speed, 33
num_syst, 21	log f high, 33
SeBa_pre_process, 23	log_f_low, 33
make_Omega_plot_unnorm	max_z, 33
modules.auxiliary, 13	N_freq, 34
max_z	N_int, 34
modules.SimModel,SimModel, 33	SAVE FIG, 34
num_syst.sim_model, 28	set_mode, 32
modules, 9	SFH num, 34
modules.add_birth, 9	T0, 34
add_birth, 9	T_bins, 34
modules.add_bulk, 9	T_list, 34
add_bulk, 10	T_range, 34
modules.add_merge, 10	_ •
add_merge, 10	TEST_FOR_ONE, 34
modules.auxiliary, 11	z_bins, 34
calc_parabola_vertex, 11	z_list, 35
determine_upper_freq, 12	z_time_since_max_z, 35
get_bin_factors, 12	z_widths, 35
get_width_z_shell_from_z, 12	N
make_Omega_plot_unnorm, 13	num_syst.sim_model, 28

INDEX 49

N_freq	modules.auxiliary, 14
modules.SimModel.SimModel, 34	num_syst, 22
N_int	SAVE_FIG
modules.SimModel, 34	modules.SimModel, 34
N_z	SeBa_pre_process, 23
num_syst.sim_model, 28	main, 23
num_merge_bins	set_mode
num_syst, 21	modules.SimModel.SimModel, 32
num_syst, 20	SFH
determine_upper_freq, 20	num_syst, 21
fontsize, 22 get_width_z_shell_from_z, 20	SFH2 modules.SFH, 18
get_violit_z_sheii_from_z, 20 get_z_fast, 21	SFH3
interp_age, 22	modules.SFH, 18
interp_age, 22	SFH4
labelsize, 22	modules.SFH, 19
main, 21	SFH MD
num_merge_bins, 21	modules.SFH, 19
representative_SFH, 21	SFH num
s in Myr, 22	modules.SimModel.SimModel, 34
SFH, 21	num_syst.sim_model, 29
size, 22	SimModel, 23
tau_syst, 21	size
titlesize, 22	GWB, 8
z_at_val_data, 22	num_syst, 22
num_syst.sim_model, 26	
init, 27	T0
ages, 28	modules.SimModel.SimModel, 34
calculate_cosmology, 27	T_bins
calculate_f_bins, 27	modules.SimModel.SimModel, 34
calculate_z_bins, 28	T_list
f_bins, 28	modules.SimModel.SimModel, 34 T_range
f_plot, 28	modules.SimModel.SimModel, 34
log_f_high, 28	tau_syst
log_f_low, 28 max_z, 28	modules.auxiliary, 14
N, 28	num_syst, 21
N z, 28	TEST_FOR_ONE
SFH_num, 29	modules.SimModel.SimModel, 34
z bins, 29	titlesize
z list, 29	GWB, 8
z_time_since_max_z, 29	num_syst, 22
z_widths, 29	
	WD_radius
Omega	modules.physics, 17
modules.auxiliary, 13	z at val data
navahala	z_at_val_data num_syst, 22
parabola modulos auxiliaru 12	z_bins
modules.auxiliary, 13	modules.SimModel.SimModel, 34
Period	num_syst.sim_model, 29
modules.physics, 16	z_list
RedshiftInterpolator, 23	modules.SimModel.SimModel, 35
representative_SFH	num_syst.sim_model, 29
modules.SFH, 18	z_time_since_max_z
num_syst, 21	modules.SimModel.SimModel, 35
	num_syst.sim_model, 29
s_in_Myr	z_widths
GWB, 8	modules.SimModel.SimModel, 35

50 INDEX

num_syst.sim_model, 29