MAT2440, Classwork15, Spring2025

ID:

- 1. The Second Method: A Proof by Contradiction
- (a) To prove a statement p is **true**, we first find a <u>contradition</u> q such that $\neg p \rightarrow q$ is TYPU. Since q is false and $\neg p \rightarrow q$ is true, it concludes that $\neg p$ is $\neg p$ which implies p is $tr(\iota Q)$.
- (b) To prove a statement $p \to q$ is **true**, we first **assume** p and $\neg q$ are $\underline{\text{true}}$. Then using $\neg q$ shows $\neg p$ is $\underline{\text{true}}$. Because p and $\neg p$ are both $\underline{\text{true}}$, we have a $\underline{\text{contradition}}$. It implies the *assumption* " $\neg q$ is true" is wrong which means q is $\underline{\text{true}}$.
- 2. Give a contradiction proof of the theorem "If n^2 is an odd integer, then n is odd."

Assume n2 is odd and n is even (7 Qcns)

Then N=2k which implies $n^2=(2k)^2=4k^2$ and it is even Here we get a contradition since n^2 cannot both even and Therefore, n is odd.

3. Rational and Irrational numbers:

The real number r is rational if there exist integers a and b with $b \neq 0$ such that

$$r = \frac{a}{b}.$$

A real number that is not rational is called __ivational. .

4. Prove that a product of a non-zero rational number and an irrational number is irrational.

Assume "the product of a votional number and an irrational is retional"

 $\frac{a}{b} \cdot i = \frac{c}{d}$ (a,b,c,d are non-zero integers) Then $\ddot{c} = \frac{c}{d} \cdot \frac{b}{a} = \frac{cb}{da} \Rightarrow \ddot{c}$ is a rational number. Here is a contradition that \ddot{c} is both rational and irrational

Which implies the assumption is wrong, and

a product of a non-zono rational number and an irrational one

5. The Third Method: A Proof by Contraposition

Proofs by Control make use of the fact that the conditional statement $p \to q$ is **equivalent** to its contrapositive $\frac{7}{7} \stackrel{?}{\rightarrow} \frac{7}{7} \stackrel{?}{\rightarrow} \frac{7}{7}$. This means that $p \rightarrow q$ can be proved by showing $\neg q \rightarrow \neg p$ is true.

6. Give a proof by Contraposition of the theorem "If
$$n^2$$
 is an odd integer, then n is odd."

In this theorm, p is " n^2 is odd" and q is " n is odd"

Assume $7q$: n is Not odd \Rightarrow n is even

Let $n=2k$, then $n^2=(2k)^2=4k^2=2$ ($2k^2$)

Which implies n^2 is an even number and this is the $7p$ proposition.

We proved that $7q \Rightarrow 7p$, implies $p \Rightarrow q$

7. Mistakes in Proofs: An Example

What is wrong with this famous supposed "proof" that 1 = 2?

Proof: We use these steps, where a and b are two equal positive integers.

Step

(1).
$$a = b$$

(2).
$$a^2 = ab$$

(3).
$$a^2 - b^2 = ab - b^2$$

$$(a - b)(a + b) = b(a - b)$$

$$(4). (a - b)(a + b) = b(a - b)$$

$$\checkmark(5). \ a+b=b$$

(6).
$$2b = b$$

$$(7). 2 = 1$$

Reason

Given

Multiply both sides of (1) by a

Subtract b^2 from both sides of (2)

Factor both sides of (3)

Divide both sides of (4) by a - b

Replace a by b in (5) since a = b

Divide both sides of (6) by b

since $a=b \Rightarrow a-b=0$, then we can not cancel (a-6) on both sides in (4)