Modern Methods of Data Analysis

Homework 1, Vitaliy Pozdnyakov

Task 1.1

(1) Show that U_A is indeed a positive measure

• Check that $\mu(\emptyset) = 0$

$$U_A(\emptyset) = \frac{\lambda_d(A \cap \emptyset)}{\lambda_d(A)} = \frac{\lambda_d(\emptyset)}{\lambda_d(A)} = \frac{0}{\lambda_d(A)} = 0$$

• Check the countable additivity $\mu(A_1 \cup A_2 \cup \ldots) = \mu(A_1) + \mu(A_2) + \ldots$

$$\begin{split} U_A(B_1 \cup B_2 \cup \ldots) &= \frac{\lambda_d(A \cap [B_1 \cup B_2 \cup \ldots])}{\lambda_d(A)} = \frac{\lambda_d([A \cap B_1] \cup [A \cap B_2] \cup \ldots)}{\lambda_d(A)} \\ &= \frac{\lambda_d(A \cap B_1)}{\lambda_d(A)} + \frac{\lambda_d(A \cap B_2)}{\lambda_d(A)} + \cdots = U_A(B_1) + U_A(B_2) + \ldots \end{split}$$

• Check the monotonicity $\mu(B) \leq \mu(C)$ where $B, C \in \mathcal{S}$ and $B \subset C$

Denote $C=B\cup \bar{B}$, then $U_A(C)=U_A(B\cup \bar{B})=U_A(B)+U_A(\bar{B})$

 $U_A \ge 0$, thereby $U_A(B) \le U_A(C)$

(2) Show that $U_A \ll \lambda_d$

Chose *B* such that $\lambda_d(B) = 0$

Obviously, $(A \cap B) \subseteq B$, then via monotonicity $\lambda_d(A \cap B) \le \lambda_d(B)$

Thereby

$$U_A(B) = \frac{\lambda_d(A \cap B)}{\lambda_d(A)} = \frac{0}{\lambda_d(A)} = 0$$

(3) Show that both U_A and λ_d are σ -finite measures

Def. The measure μ is called a σ -finite if there exists subsets $\{S_n\}_{n\geq 1}$ such that $S_n \in \mathcal{S}, S_n \subset S_{n+1}, \cup_n S_n = S$ and $\mu(S_n) < +\infty$.

• Consider λ_d

Let $S_n = (-n, n)^d$ where $0 \le n < +\infty$.

Then $S_n \in \mathcal{B}(\mathbb{R}^d)$, $S_n \subset S_{n+1}$, $\cup_n S_n = \mathbb{R}^d$ and $\lambda_d(S_n) = (2n)^d < +\infty$

• Consider $U_{\scriptscriptstyle A}$

Let $A = (-m, m)^d$ and $B_n = (-n, n)^d$ where $0 \le n \le m < +\infty$.

Then $B_n \in \mathcal{B}(R^d), \, B_n \subset B_{n+1}, \, \cup_n B_n = (-m,m)^d$ and

$$U_A(B_0) = \frac{\lambda_d(A \cap B_0)}{\lambda_d(A)} = \frac{0}{\lambda_d(A)} = 0$$

$$U_A(B_m) = \frac{\lambda_d(A \cap B_m)}{\lambda_d(A)} = \frac{\lambda_d(A)}{\lambda_d(A)} = 1$$

$$0 \le U_A(B_n) \le 1 < +\infty$$

(4) Give the expression of the density of U_A with respect to λ_d

$$\frac{dU_A}{d\lambda_d} := f \Rightarrow U_A(B) = \int_B f d\lambda_d$$

Consider $\lambda_d(A \cap B)$

$$\lambda_d(A \cap B) = \int_{A \cap B} f d\lambda_d = \int_B \mathbb{1}_A d\lambda_d$$

Then

$$U_A(B) = \frac{\lambda_d(A \cap B)}{\lambda_d(A)} = \frac{\int_B \mathbb{1}_A d\lambda_d}{\lambda_d(A)} = \int_B \frac{\mathbb{1}_A}{\lambda_d(A)} d\lambda_d$$

Thereby

$$f = \frac{\mathbb{1}_A}{\lambda_d(A)}$$

Check:

$$U_A(B) = \int_B \frac{\mathbb{1}_A}{\lambda_d(A)} d\lambda_d = \int_S \frac{\mathbb{1}_A \mathbb{1}_B}{\lambda_d(A)} d\lambda_d = \frac{\lambda_d(A \cap B)}{\lambda_d(A)}$$

(5) Suppose that d=2 and that set A is of the form $A=T([0,1]^2)=\{T(x):x\in[0,1]^2\}$ where $T:R^2\to R^2$ is defined, for all $x=(x_1,x_2)\in R^2$, by $T(x)=(\alpha(x_1\cos\theta+x_2\sin\theta),\alpha(x_2\cos\theta-x_1\sin\theta))$, for some $\theta\in[0,2\pi)$ and $\alpha>0$. Give the explicit form of the density of U_A with respect to λ_d .

Consider the transformation T

$$T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \alpha \cos \theta & \alpha \sin \theta \\ -\alpha \sin \theta & \alpha \cos \theta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = MX$$

$$\det M = \alpha^2(\cos^2\theta + \sin^2\theta) = \alpha^2$$

Then

$$\lambda_d(T([0,1]^2)) = |\det M|\lambda_d([0,1]^2) = \alpha^2(1-0)\cdot(1-0) = \alpha^2$$

And consequently

$$\frac{dU_A}{d\lambda_d} = \frac{\mathbb{1}_A}{\lambda_d(A)} = \frac{\mathbb{1}_A}{\alpha^2}$$

where $A = T([0, 1]^2)$

(6) Recall that the counting measure η on $(R^d,\mathcal{B}(R^d))$ is defined for any $A\in\mathcal{B}(R^d)$ by $\eta(A)=card(A)$ (i.e. $\eta(A)$ is the number of elements in A). Show that η is not σ -finite.

Consider the sequence S_1, S_2, \ldots where $S_n \subset S_{n+1}$. If $S_1 \cup S_2 \cup \cdots = R^d$, then at least one S_i is open or closed segment and $\eta(S_i) = +\infty$. Thereby $\eta(A)$ is not σ -finite.

Show that $\lambda_d \ll \eta$.

$$\eta(B) = 0$$
 iff $B = \emptyset$ and $\lambda_d(\emptyset) = 0$, then $\lambda_d \ll \eta$

Show that λ_d does not have a density with respect to η : there exists no measurable and positive function $f:R^d\to R^+$ such that

$$\lambda_d(A) = \int_A f d\eta$$

Suppose that λ_d have a density with respect to η . Consider arbitrary point $x \in R^d$

$$\lambda_d(\lbrace x\rbrace) = 0 \Rightarrow \lambda_d(\lbrace x\rbrace) = \int_{\lbrace x\rbrace} f d\eta = \int_{R^d} \mathbb{1}_{\lbrace x\rbrace} f d\eta = 0 \Rightarrow f = 0$$

But it means that for all $A \in \mathcal{B}(R^d)$

$$\lambda_d(A) = 0$$

and it is contradition.

Thereby λ_d does not have a density with respect to η .