Πίνακας 1: Καρτεσιανό, κυλινδρικό και σφαιρικό σύστημα συντεταγμένων

Καμπυλόγραμμες συντεταγμένες		u_1, u_2, u_3						$\hat{u}_1, \hat{u}_2, \hat{u}_3$									
Σφαιρικές συντεταγμένες	galos-é (g) (g) (g) (g) (g) (g) (g) (g)	$r, (0 \le r < \infty)$	θ , $(0 \le \theta \le \pi)$	φ , $(0 \le \varphi < 2\pi)$	$r = \sigma \tau \alpha \theta$: $\sigma \varphi \alpha i \rho \alpha$	$\theta = \sigma \tau \alpha \theta$: $\kappa \dot{\omega} vo \varsigma$	$\varphi = \sigma \tau \alpha \theta$: $\eta \mu \iota \varepsilon \pi \iota \pi \varepsilon \delta o$	$\hat{r},\hat{\theta},\hat{\varphi}$	$r\sin\theta\cos\varphi$	$r \sin \theta \sin \varphi$	$r\cos\theta$	$r\sin\theta$	ϕ	$r\cos\theta$	<i>'</i> .	o 9-	
Κυλινδρικές συντεταγμένες	Z=GTGB	$r_{\mathrm{T}}, \left(0 \le r_{\mathrm{T}} < \infty\right)$ (*)	φ , $(0 \le \varphi < 2\pi)$	$z, (-\infty < z < \infty)$	$r_{\mathrm{T}} = \sigma au lpha heta$: $\kappa \dot{v} \lambda \iota \nu \delta ho o arsigns$	φ = σταθ : ημιεπίπεδο	$z=\sigma aulpha heta$: $arepsilon\pi$ i $\piarepsilon\delta$ o	$\hat{r}_{ ext{T}},\hat{oldsymbol{\phi}},\hat{z}$	$r_{\mathrm{T}}\cos\phi$	$r_{\mathrm{T}}\sin\varphi$	z	F_{T}	φ	И	$\sqrt{{r_{\rm T}}^2+z^2}$	$\tan^{-1}\left(r_{\mathrm{T}}/z\right)$	9
Καρτεσιανές συντεταγμένες 2	x x = 0.000	$x, (-\infty < x < \infty)$	y , $(-\infty < y < \infty)$	$z, (-\infty < z < \infty)$	$x = \sigma \tau \alpha \theta$: $\varepsilon \pi i \pi \varepsilon \delta o$	$y = \sigma \tau \alpha \theta$: $\varepsilon \pi i \pi \varepsilon \delta o$	$z = \sigma \tau \alpha \theta$: $\varepsilon \pi i \pi \varepsilon \delta o$	$\hat{x}, \hat{y}, \hat{z}$	x	\mathcal{V}	z	$\sqrt{x^2 + y^2}$	$\tan^{-1}(\nu/x)$, , , , , , , , , , , , , , , , , , ,	$\sqrt{x^2 + y^2 + z^2}$	$\tan^{-1}\left(\sqrt{x^2+y^2}/z\right)$	$\tan^{-1}\left(v/x\right)$
			Συντεταγμένες			επιφάνειας		Μοναδιαία διανύσματα				Σχέσεις	v (S)	συντεταγμένων	I		

	Καρτεσιανές συντεταγμένες	Κυλινδρικές συντεταγμένες	Σφαιρικές συντεταγμένες	Καμπυλόγραμμες συνεταγμένες
	x	$\hat{r}_{\mathrm{T}}\cos{\phi} - \hat{\varphi}\sin{\phi}$	$\hat{r}\sin\theta\cos\phi + \hat{\theta}\cos\theta\cos\phi - \hat{\phi}\sin\phi$	
	ŷ	$\hat{r}_{\mathrm{T}} \sin \varphi + \hat{\varphi} \cos \varphi$	$\hat{r}\sin\theta\sin\varphi + \hat{\theta}\cos\theta\sin\varphi + \hat{\varphi}\cos\varphi$	
	4N	Φ	$\hat{r}\cos\theta - \hat{\theta}\sin\theta$	
Σχέσεις	$\hat{x}\cos\varphi + \hat{y}\sin\varphi$	$\hat{r_{ m T}}$	$\hat{r}\sin\theta + \hat{\theta}\cos\theta$	
μεταξύ των	$-\hat{x}\sin\varphi + \hat{y}\cos\varphi$	$\hat{\phi}$	Ŷ	
μοναδιαίων διανυσμάτων	Ф	¢N	$\hat{r}\cos\theta - \hat{\theta}\sin\theta$	
	$\hat{x}\sin\theta\cos\varphi + \hat{y}\sin\theta\sin\varphi + \hat{z}\cos\theta$	$\hat{r}_{\mathrm{T}} \sin \theta + \hat{z} \cos \theta$	Ŷ.	
	$\hat{x}\cos\theta\cos\varphi + \hat{y}\cos\theta\sin\varphi - \hat{z}\sin\theta$	$\hat{r}_{\mathrm{T}}\cos\theta - \hat{z}\sin\theta$	$\hat{\theta}$	
	$-\hat{x}\sin\phi + \hat{y}\cos\phi$	$\hat{\phi}$	$\hat{\phi}$	
Παρατηρήσεις		Στα σημεία του άξονα z είναι $r_{\mathrm{T}}=0$. Δεν	Στα σημεία του άξονα z είναι $r_{ m T}=0$. Δεν $ \Sigma$ την αρχή των αξόνων (σημείο Ο) είναι $r=0$.	
		ορίζονται σ' αυτά η γωνία ϕ , το $\hat{r}_{\mathtt{T}}$ και το	ορίζονται σ' αυτά η γωνία φ , το $\hat{r}_{\mathtt{T}}$ και το	
		ô .	μοναδιαία διανύσματα $\hat{r}, \hat{\theta} $ και $ \hat{\phi} $. Στα σημεία	
			του θετικού (αρνητικού) ημιάξονα Ζ είναι	
		(*) Στον πίνακα αυτόν η κυλινδρική	$(*)$ Στον πίνακα αυτόν η κυλινδρική $ heta=0$ $(heta=\pi)$. Δεν ορίζονται εκεί η γωνία ϕ	
		συντεταγμένη r παριστάνεται με $r_{ m T}$ και τα $\hat{m{ heta}}$ και $\hat{m{ heta}}$.	και τα $\hat{\theta}$ και $\hat{\phi}$.	
		(T=Transverse) για να μην υπάρχει σύγχυση		
		he ill oparpiril onvieta/hevil / .		

Πίνακας 2: Στοιχειώδη μήκη, εμβαδά και όγκοι σε ορθογώνια συστήματα συντεταγμένων

	Καρτεσιανές συντεταγμένες	Κυλινδρικές συντεταγμένες	Σφαιρικές συντεταγμένες	Ορθογώνιες καμπυλόγραμμες συντεταγμένες
	Xp dp zp zp zp dp zp zp zp dp zp	dS = rdrdq	dq r sin θ dq r sin θ dq dq r sin θ dq dq r sin θ dq dq dq r sin θ dq dq dq dq dq r dd dq r dd dq r dd dq r dd er r dd dq r dd dq r dd dq r r dd dq r r r dd dq r r r dd r dd r r r dd r dd r r r dd r r r r dd r r r r dd r r r r r dd r r r r r r r r r r r r r r r r r r r	u ₃ +du ₄ u ₃ +du ₅ u ₃ +du ₅ u ₃ +du ₅ u ₃ +du ₅ u ₄ -du ₅ u ₅ -du ₅ u ₇ -du ₆ u ₇ -du ₆ u ₇ -du ₇ du
Διάνυσμα Θέσης	$\vec{r} = x\hat{x} + y\hat{y} + z\hat{z}$	$\vec{r} = r_{\rm T} \hat{r}_{\rm T} + z \hat{z} \tag{*}$	$\vec{r} = r\hat{r}$	
Μετρικοί συντελεστές	$h_x = 1, h_y = 1, h_z = 1$	$h_r = 1, h_\varphi = r, h_z = 1$	$h_r = 1$, $h_\theta = r$, $h_\varphi = r \sin \theta$	$h_i = \sqrt{\left(\frac{\partial x}{\partial u_i}\right)^2 + \left(\frac{\partial y}{\partial u_i}\right)^2 + \left(\frac{\partial z}{\partial u_i}\right)^2}, i = 1, 2, 3$
Στοιχειώδης μετατόπιση	$d\vec{\ell} = d\vec{r} = dx\hat{x} + dy\hat{y} + dz\hat{z}$	$d\vec{\ell} = d\vec{r} = dr\hat{r} + rd\varphi\hat{\varphi} + dz\hat{z}$	$d\vec{\ell} = d\vec{r} = dr\hat{r} + rd\theta\hat{\theta} + r\sin\theta d\varphi\hat{\varphi}$	$d\vec{\ell} = d\vec{r} = h_1 du_1 \hat{u}_1 + h_2 du_2 \hat{u}_2 + h_3 du_3 \hat{u}_3$
Στοιχειώδη ιιήκη	$d\ell_x = dx$, $d\ell_y = dy$, $d\ell_z = dz$	$d\ell_r = dr$, $d\ell_{\varphi} = rd\varphi$, $d\ell_z = dz$	$d\ell_r = dr$, $d\ell_\theta = rd\theta$, $d\ell_\varphi = r\sin\theta d\varphi$	$d\ell_1 = h_1 du_1, \ d\ell_2 = h_2 du_2, \ d\ell_3 = h_3 du_3$
Στοιχειώδη	$dS_x = d\ell_y d\ell_z = dy dz$	$dS_r = d\ell_{\varphi} d\ell_z = r d\varphi dz$	$dS_r = d\ell_{\theta} d\ell_{\varphi} = r^2 \sin \theta d\theta d\varphi$	$dS_1 = d\ell_2 d\ell_3 = h_2 h_3 du_2 du_3$
nondria	$dS_y = d\ell_x d\ell_z = dx dz$	$dS_{\varphi} = d\ell_r d\ell_z = dr dz$	$dS_{\theta} = d\ell_{r}d\ell_{\varphi} = r \sin\theta dr d\varphi$	$dS_2 = d\ell_1 d\ell_3 = h_1 h_3 du_1 du_3$
	$dS_z = d\ell_x d\ell_y = dx dy$	$dS_z = d\ell_r d\ell_\varphi = r dr d\varphi$	$dS_{\varphi} = d\ell_r d\ell_{\theta} = rdrd\theta$	$dS_3 = d\ell_1 d\ell_2 = h_1 h_2 du_1 du_2$
Στοιχειώδεις όγκοι	$dV = d\ell_x d\ell_y d\ell_z = dx dy dz$	$dV = d\ell_r d\ell_\varphi d\ell_z = r dr d\varphi dz$	$dV = d\ell_r d\ell_\theta d\ell_\varphi = r^2 \sin\theta dr d\theta d\varphi$	$dV = d\ell_1 d\ell_2 d\ell_3 = h_1 h_2 h_3 du_1 du_2 du_3$

Πίνακας 3: Εκφράσεις των διαφορικών τελεστών στα τρία βασικά συστήματα συντεταγμένων

Ονομασία - Τελεστής	Ορισμός	Καρτεσιανές συντεταγμένες	Κυλινδρικές συντεταγμένες	Σφαιρικές συντεταγμένες
	$\nabla \Phi = \frac{\partial \Phi}{\partial n} \hat{n}$	$\frac{\partial \Phi}{\partial x} \hat{x} + \frac{\partial \Phi}{\partial y} \hat{y} + \frac{\partial \Phi}{\partial z} \hat{z}$	$\frac{\partial \Phi}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial \Phi}{\partial \phi} \hat{\phi} + \frac{\partial \Phi}{\partial z} \hat{z}$	$\frac{\partial \Phi}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial \Phi}{\partial \theta} \hat{\theta} + \frac{1}{r \sin \theta} \frac{\partial \Phi}{\partial \varphi} \hat{\varphi}$
Klon: $\nabla \Phi = grad\Phi$	ν φ ν φ ο ο ταθ			
	$(\hat{n} = \mu o v α διαίο διάνυσμα κάθετο στις επιφάνειες με Φ$			
	σταθερό, με φορά προς τα αυξανόμενα Φ).			
Anóklanı: $\nabla \cdot \vec{A} = div\vec{A}$	$\nabla \cdot \vec{\mathbf{A}} = \lim_{\Delta V \to 0} \frac{\hat{\boldsymbol{\phi}}_{\Delta N} \vec{\mathbf{A}} \cdot d\vec{S}}{\Delta V}$	$\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$	$\frac{1}{r}\frac{\partial}{\partial r}(rA_r) + \frac{1}{r}\frac{\partial A_{\varphi}}{\partial \varphi} + \frac{\partial A_{\bar{z}}}{\partial z}$	$\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_\theta) + \frac{1}{r \sin \theta} \frac{\partial A_{\varphi}}{\partial \varphi}$
Περιστροφή: $\nabla \times \vec{A} = rot \vec{A} = cur \ell \vec{A}$	$(\nabla \times \vec{A})_n = \lim_{\Delta S \to 0} \frac{\vec{o}_{\Delta K} \vec{A} \cdot d\vec{\ell}}{\Delta S}$	$\left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right)\hat{x} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right)\hat{y} + $	$\left(\frac{1}{r}\frac{\partial A_z}{\partial \varphi} - \frac{\partial A_\varphi}{\partial z}\right)\hat{r} + \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}\right)\hat{\varphi} +$	$\frac{1}{r\sin\theta} \left[\frac{\partial}{\partial\theta} \left(\sin\theta A_{\varphi} \right) - \frac{\partial A_{\theta}}{\partial\varphi} \right] \hat{r} +$
	- + To	$+\left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right)\hat{z}$	т	$+ \left[\frac{1}{r \sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{1}{r} \frac{\partial}{\partial r} (r A_{\varphi})\right] \hat{\theta} + \left[\frac{1}{r} \frac{\partial}{\partial r} (r A_{\vartheta}) - \frac{1}{r} \frac{\partial A_r}{\partial \theta}\right] \hat{\phi}$
$Λαπλασιανή$ $βαθμωτής$ συνάρτησης: $∇^2Φ$	$\nabla^2 \Phi \equiv \nabla \cdot (\nabla \Phi)$	$\frac{\partial^2 \mathbf{\Phi}}{\partial x^2} + \frac{\partial^2 \mathbf{\Phi}}{\partial y^2} + \frac{\partial^2 \mathbf{\Phi}}{\partial z^2}$	$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\Phi}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2\Phi}{\partial q^2} + \frac{\partial^2\Phi}{\partial z^2}$	$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{r^2} \frac{\partial^2 \Phi}{\sin^2 \theta} \frac{\partial}{\partial \phi^2}$
* $Λαπλασιανή$ διανυσματικής $α$	$\nabla^2 \vec{\mathbf{A}} \equiv \nabla \left(\nabla \cdot \vec{\mathbf{A}} \right) - \nabla \times \left(\nabla \times \vec{\mathbf{A}} \right)$	$(\bar{A}) - \nabla \times (\nabla \times \bar{A}) \qquad \nabla^2 A_x \hat{x} + \nabla^2 A_y \hat{y} + \nabla^2 A_z \hat{z}$	$\left(\nabla^2 A_r - \frac{2}{r^2} \frac{\partial A_{\varphi}}{\partial \varphi} - \frac{A_r}{r^2}\right) \hat{r} +$	$\left(\nabla^2 A_r - \frac{2A_r}{r^2} - \frac{2\cot\theta}{r^2} A_\theta - \frac{2}{r^2} \frac{\partial A_\theta}{\partial \theta} - \frac{2}{r^2} \frac{\partial A_\theta}{\sin\theta} \frac{\partial}{\partial \phi} \right) \hat{r} +$
ovaprijolij; v A			$+\left(\nabla^{2}A_{\varphi}+\frac{2}{r^{2}}\frac{\partial A_{r}}{\partial \varphi}-\frac{A_{\varphi}}{r^{2}}\right)\hat{\varphi}+\left(\nabla^{2}A_{z}\right)\hat{z}$	$+\left(\nabla^2 A_{\varphi} + \frac{2}{r^2} \frac{\partial A_r}{\partial \varphi} - \frac{A_{\varphi}}{r^2}\right) \hat{\varphi} + \left(\nabla^2 A_z\right) \hat{z} \left[+\left(\nabla^2 A_{\varphi} + \frac{2}{r^2} \frac{\partial A_r}{\partial \theta} - \frac{A_{\theta}}{r^2 \sin^2 \theta} - \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial A_{\varphi}}{\partial \varphi} \right] \hat{\varphi} + \frac{2}{r^2 \sin^2 \theta} \frac{\partial A_{\varphi}}{\partial \varphi} + \frac{2}{r^2 \cos^2 \theta}$
				$+ \left(\nabla^2 A_{\varphi} + \frac{2}{r^2 \sin \theta} \frac{\partial A_r}{\partial \varphi} - \frac{A_{\varphi}}{r^2 \sin^2 \theta} + \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial A_{\theta}}{\partial \varphi} \right) \hat{\varphi}$

 * O(Nathamanné; $abla^2 \lambda_{\mu}$ (supremoné; onvatións), $abla^2 \lambda_{\mu}$ (supremoné), $abla^2 \lambda_{\mu}$ (supremoné), a