

A Hands-On Introduction to Machine Learning

Wintersession 2025 January 15-17,21

> Julian Gold Gage DeZoort

With materials from:

Brian Arnold, Gage DeZoort, Julian Gold, Jonathan Halverson, Christina Peters, Savannah Thias, Amy Winecoff

Mini-Course Outline

Date	Topic	Instructor
Wed. 1/15	Machine Learning Overview and Simple Models	Julian Gold
Thu. 1/16	Model Evaluation and Improving Performance	Julian Gold
Fri. 1/17	Introduction to Neural Networks	Gage DeZoort
Tue. 1/21	Survey of Neural Network Architectures	Gage DeZoort
Wed.+Thu. 1/22-1/23	Getting Started with LLMs with PLI	Simon Park, Abhishek Panigrahi
Wed. 1/22	Graph Neural Networks for Your Research	Gage DeZoort
Wed. 1/22	Machine Learning for the Physical Sciences	C. Jespersen, R. Pastrana, Q. Gallagher, H. Johnson

Agenda

- K-nearest Neighbors
 - Regression and classification
- Clustering with K-means
- Evaluation paradigms and improving performance

Intro to K-nearest neighbors (KNN)

- simple but powerful
- can be used for classification *or* regression!
- algorithm
 - 1. for a given test sample (yellow dot), find the K nearest training samples in feature space
 - 2a. for classification, assign label by majority vote
 - 2b. for regression, assign value by mean of neighbors

K is a tunable parameter!

• choose value that gives better predictions on test data

Coding in Python!

https://github.com/PrincetonUniversity/intro_machine_learning/tree/main/day2
https://jdh4.github.io/intro-ml

Google Colab

1. Open notebook (.ipynb):

JupyterLite

- Download notebook (.ipynb)from left.
- 2. Open JupyterLite:

3. Upload the notebook and open:

K-Means Clustering Visualization

Figure credit: Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning.

Overview of Machine Learning Process

1. Define the problem to be solved.

Datasets? Input features? Targets? Evaluation metrics?

- 2. Split the data into train / validation / test.
- 3. Run the validation loop:
 - a. Choose a set of models.
 - b. Train each model by optimizing its parameters on the training set.
 - c. Evaluate the performance of each model on the validation set.
 - d. Repeat until performance is satisfactory.
- 4. Evaluate final performance on the test set.

