Cryptanalysis of Clyde and Shadow July 3rd, 2019

Horst Görtz Institut für IT Sicherheit, Ruhr-Universität Bochum Gregor Leander, and *Friedrich Wiemer*

RUB

Overview

- 1 Invariant Attacks Round Constants
- 2 Subspace Trails
- 3 Division Property
- 4 Results

Main Idea: Invariant Subspaces

Main Idea: Invariant Subspaces

Main Idea: Invariant Subspaces

Invariant Subspace Attacks [Lea+11] (CRYPTO'11)

Let $U \subseteq \mathbb{F}_2^n$, $c, d \in U^{\perp}$, and $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then U is an *invariant subspace* (IS) if and only if F(U+c) = U+d and all round keys in U+(c+d) are weak keys.

A Short History

Proving Resistance

Goal: Apply security argument from

C. Beierle, A. Canteaut, G. Leander, and Y. Rotella. "Proving Resistance Against Invariant Attacks: How to Choose the Round Constants". In: CRYPTO 2017, Part II. 2017. doi: 10.1007/978-3-319-63715-0_22. iacr: 2017/463.

What do we get from this?

Non-existence of invariants for both parts of the round function (S-box and linear layer)

Issues

- Other partitionings of the round function might allow invariants (Christof B. found examples)
- Not clear how to prove the general absence of invariant attacks (best we can currently prove)
- All known attacks exploit exactly this structure (splitting in S-box and linear layer)

Recap Security Argument (I)

Observation

- Invariants for the linear layer L and round key addition have to contain special linear structures.
- Denote by $c_1, ..., c_t$ the round constant differences for rounds with the same round key.
- Then the linear structures of any invariant have to contain $W_L(c_1,...,c_t)$.

Invariant Attacks Recap Security Argument (I)

Observation

- Invariants for the linear layer L and round key addition have to contain special linear structures.
- Denote by $c_1, ..., c_t$ the round constant differences for rounds with the same round key.
- Then the linear structures of any invariant have to contain $W_L(c_1,...,c_t)$.

Linear Structures

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$. Then its *linear structures* are

$$LS := \{a \mid f(x) + f(x+a) \text{ is constant}\}.$$

The smallest L-invariant subspace

 $W_L(c_1,\ldots,c_t)$ is the smallest L-invariant subspace of \mathbb{F}_2^n containing all c_i

$$\Leftrightarrow \forall x \in W_L(c_1, \dots, c_t) : L(x) \in W_L(c_1, \dots, c_t)$$

Invariant Attacks Recap Security Argument (I)

Observation

- Invariants for the linear layer
 L and round key addition have to contain special linear structures.
- Denote by $c_1, ..., c_t$ the round constant differences for rounds with the same round key.
- Then the linear structures of any invariant have to contain $W_L(c_1,...,c_t)$.

Linear Structures

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$. Then its *linear structures* are

$$LS := \{a \mid f(x) + f(x+a) \text{ is constant}\}.$$

The smallest L-invariant subspace

 $W_L(c_1,\ldots,c_t)$ is the smallest L-invariant subspace of \mathbb{F}_2^n containing all c_i

$$\Leftrightarrow \forall x \in W_L(c_1, \dots, c_t) : L(x) \in W_L(c_1, \dots, c_t)$$

The simple case

If $W_L(c_1, ..., c_t) = \mathbb{F}_2^n$, only trivial invariants for L and key addition are possible (constant 0 and 1 function).

Invariant Attacks Recap Security Argument (II)

Application to Clyde

Find the important round constant differences: (the differences where the same tweakey is added)

Invariant Attacks Recap Security Argument (II)

RUB

Application to Clyde

■ Find the important round constant differences: (the differences where the same tweakey is added)

RUB

Invariant Attacks Recap Security Argument (II)

Application to Clyde

■ Find the important round constant differences: (the differences where the same tweakey is added)

$$D = D_{\mathrm{TK}(0)} \cup D_{\mathrm{TK}(1)} \cup D_{\mathrm{TK}(2)} \cup D_0$$

Recap Security Argument (II)

Application to Clyde

■ Find the important round constant differences: (the differences where the same tweakey is added)

$$D = D_{TK(0)} \cup D_{TK(1)} \cup D_{TK(2)} \cup D_0$$
$$D_{TK(0)} = \{0 + W(5), 0 + W(11), W(5) + W(11)\}$$

Recap Security Argument (II)

Application to Clyde

■ Find the important round constant differences: (the differences where the same tweakey is added)

W(8)W(10)

$$D = D_{TK(0)} \cup D_{TK(1)} \cup D_{TK(2)} \cup D_0$$

$$D_{TK(0)} = \{0 + W(5), 0 + W(11), W(5) + W(11)\}$$

$$D_{TK(1)} = \{W(1) + W(7)\}$$

Recap Security Argument (II)

Application to Clyde

■ Find the important round constant differences: (the differences where the same tweakey is added)

W(8)W(10)

$$D = D_{TK(0)} \cup D_{TK(1)} \cup \frac{D_{TK(2)}}{D_{TK(2)}} \cup D_0$$

$$D_{TK(0)} = \{0 + W(5), 0 + W(11), W(5) + W(11)\}$$

$$D_{TK(1)} = \{W(1) + W(7)\}$$

$$D_{TK(2)} = \{W(3) + W(9)\}$$

Recap Security Argument (II)

Application to Clyde

 Find the important round constant differences: (the differences where the same tweakey is added)

TK(0) TK(1) TK(2)

$$x \rightarrow \bigoplus R \rightarrow$$

$$\begin{split} D &= D_{\text{TK}(0)} \cup D_{\text{TK}(1)} \cup D_{\text{TK}(2)} \cup \frac{D_0}{D_0} \\ D_{\text{TK}(0)} &= \{0 + W(5), 0 + W(11), W(5) + W(11)\} \\ D_{\text{TK}(1)} &= \{W(1) + W(7)\} \\ D_{\text{TK}(2)} &= \{W(3) + W(9)\} \\ D_0 &= \{a + b \mid a, b \in D', a \neq b\} \\ D' &= \{W(0), W(2), W(4), W(6), W(8), W(10)\} \end{split}$$

Application to Clyde

- Computing W_L is efficiently doable (takes ≈ 10 seconds on my laptop).
- For the round constants chosen for Clyde, dim $W_L(D) = 128 = n$.
- Thus, we can apply:

Proposition 2 [Bei+17]

Suppose that the dimension of $W_L(D)$ is n. Then any invariant g is constant (and thus trivial).

 \blacksquare We conclude that we cannot find any non-trivial g for Clyde which is at the same time invariant for the S-box layer and for the linear layer.

Improvable?

Bounding the dimension of W_L , [Bei+17, Theorem 1]

Given a linear layer L. Denote by Q_i its invariant factors. Then

$$\max_{c_1,\ldots,c_t\in\mathbb{F}_2^n}\dim W_L(c_1,\ldots,c_t)=\sum_{i=1}^t\deg Q_i\;.$$

Improvable?

Bounding the dimension of W_L , [Bei+17, Theorem 1]

Given a linear layer L. Denote by Q_i its invariant factors. Then

$$\max_{c_1,\ldots,c_t\in\mathbb{F}_2^n}\dim W_L(c_1,\ldots,c_t)=\sum_{i=1}^t\deg Q_i.$$

Application to Clyde

- Compute invariant factors of linear layer:
- This gives a lower bound on the number of rounds:

Improvable?

Bounding the dimension of W_L , [Bei+17, Theorem 1]

Given a linear layer L. Denote by Q_i its invariant factors. Then

$$\max_{c_1,\ldots,c_t\in\mathbb{F}_2^n}\dim W_L(c_1,\ldots,c_t)=\sum_{i=1}^t\deg Q_i\;.$$

Application to Clyde

■ Compute invariant factors of linear layer:

$$4 \times (x^{32} + 1)$$

■ This gives a lower bound on the number of rounds:

3 steps/6 rounds

Bounding the dimension of W_L , [Bei+17, Theorem 1]

Given a linear layer L. Denote by Q_i its invariant factors. Then

$$\max_{c_1,\ldots,c_t\in\mathbb{F}_2^n}\dim W_L(c_1,\ldots,c_t)=\sum_{i=1}^t\deg Q_i\;.$$

Application to Clyde

Compute invariant factors of linear layer:

$$4 \times (x^{32} + 1)$$

■ This gives a lower bound on the number of rounds:

■ 3 stps/6 rnds: dim $W_L(c_1,...,c_4) = 96$

■ 5 stps/10 rnds: dim
$$W_L(c_1, ..., c_{13}) = 128$$

■ 4 stps/8 rnds: dim $W_L(c_1,...,c_8) = 128$

■ 6 stps/12 rnds: dim
$$W_L(c_1,...,c_{20}) = 128$$

Probability 1 Truncated Differentials

Main Idea: Subspace Trails

Main Idea: Subspace Trails

Main Idea: Subspace Trails

Subspace Trail Cryptanalysis [GRR16] (FSE'16)

Let $U_0, \ldots, U_r \subseteq \mathbb{F}_2^n$, and $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then these form a subspace trail (ST), $U_0 \xrightarrow{F} \cdots \xrightarrow{F} U_r$, iff

$$\forall a \in U_i^{\perp} : \exists b \in U_{i+1}^{\perp} : \qquad F(U_i + a) \subseteq U_{i+1} + b$$

Given a starting subspace U, we can efficiently compute the corresponding longest subspace trail.

Lemma

Given a starting subspace U, we can efficiently compute the corresponding longest subspace trail.

Lemma

Given a starting subspace U, we can efficiently compute the corresponding longest subspace trail.

Lemma

Given a starting subspace U, we can efficiently compute the corresponding longest subspace trail.

Lemma

Given a starting subspace U, we can efficiently compute the corresponding longest subspace trail.

Lemma

Let $U \xrightarrow{F} V$ be a ST. Then for all $u \in U$ and all $x: F(x) + F(x+u) \in V$.

Computing the subspace trail

■ To compute the next subspace, we have to compute the image of the derivatives.

Computing Subspace Trails Algorithm

Compute Subspace Trails

Input: A nonlinear, bijective function $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ and a subspace U. **Output:** The longest ST starting in U over F.

```
1 function Compute \operatorname{Trail}(F,U)

2 if \dim(U) = n then

3 return U

4 V \leftarrow \emptyset

5 for u_i basis vectors of U do

6 for enough x \in_{\mathbb{R}} \mathbb{F}_2^n do \triangleright e. g. n+20 x's are enough

7 V \leftarrow V \cup \Delta_{u_i}(F)(x) \triangleright \Delta_a(F)(x) \coloneqq F(x) + F(x+a)

8 V \leftarrow \operatorname{span}(V)

9 return the subspace trail U \rightarrow \operatorname{Compute\ Trail}(F,V)
```

Subspace Trails Proving Resistance

Goal: Apply security argument from

G. Leander, C. Tezcan, and F. Wiemer. "Searching for Subspace Trails and Truncated Differentials". In: ToSC 2018.1 (2018). doi: 10.13154/tosc.v2018.i1.74-100.

What do we get from this?

■ (Tight) upper bound on the length of any ST for an SPN construction

Why is the Compute Trail algorithm not enough?

Exhaustively checking all possible starting points is to costly.

Subspace TrailsHow to bound the length of any subspace trail

How to bound the length of any subspace trail

Observation

Algorithm Idea

Compute the subspace trails for any starting point $W_{i,a} \in \mathcal{W}$, with

$$W_{i,\alpha} := (\underbrace{0,\ldots,0}_{i-1},\alpha,0,\ldots,0)$$

Complexity (Size of \mathcal{W})

For an S-box layer $S: \mathbb{F}_2^{kn} \to \mathbb{F}_2^{kn}$ with k S-boxes, each n-bit: $|\mathcal{W}| = k \cdot (2^n - 1)$

Algorithm

Generic Subspace Trail Search

Input: A linear layer matrix $M: \mathbb{F}_2^{n \cdot k \times n \cdot k}$, and an S-box $S: \mathbb{F}_2^n \to \mathbb{F}_2^n$.

Output: A bound on the length of all STs over $F = M \circ S^k$.

- 1 **function** Generic Subspace Trail Length(M, S)
- 2 empty list L
- for possible initial subspaces represented by $W_{i,\alpha} \in \mathcal{W}$ do
- 4 L.append(Compute Trail($S^k \circ M, \{W_{i,\alpha}\}$))
- 5 **return** max $\{len(t) | t \in L\}$

- ightharpoonup Overall $k \cdot (2^n 1)$ iterations
 - $\triangleright S^k$ denotes the S-box layer

Overall Complexity

Division Property

Division Property

Goal: Apply security argument from

Z. Xiang, W. Zhang, Z. Bao, and D. Lin. "Applying MILP Method to Searching Integral Distinguishers Based on Division Property for 6 Lightweight Block Ciphers". In: ASIACRYPT 2016, Part I. 2016. doi: 10.1007/978-3-662-53887-6_24. iacr: 2016/857.

What do we get from this?

bla

Approach

Model division trail propagations as MILP, find solutions for this over increasing number of rounds.

Results

RUB

Results

Thanks for your attention!

Number of rounds

Technique	Clyde	Shadow
Invariants	6	_
Subspace Trails	2 (+1)	4 (+1)
Division Property	8	_

Future Work/Cryptanalysis

- Cryptagraph [HV18]
- Post cryptanalysis results on mailinglist?
- Eprint Write-Up?

References I

- [Lea+11] G. Leander, M. A. Abdelraheem, H. AlKhzaimi, and E. Zenner. "A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack". In: CRYPTO 2011. 2011. doi: 10.1007/978-3-642-22792-9_12.
- [LMR15] G. Leander, B. Minaud, and S. Rønjom. "A Generic Approach to Invariant Subspace Attacks: Cryptanalysis of Robin, iSCREAM and Zorro". In: EUROCRYPT 2015, Part I. 2015. doi: 10.1007/978-3-662-46800-5_11.
- [GRR16] L. Grassi, C. Rechberger, and S. Rønjom. "Subspace Trail Cryptanalysis and its Applications to AES". In: ToSC 2016.2 (2016). doi: 10.13154/tosc.v2016.i2.192-225.
- [Guo+16] J. Guo, J. Jean, I. Nikolic, K. Qiao, Y. Sasaki, and S. M. Sim. "Invariant Subspace Attack Against Midori64 and The Resistance Criteria for S-box Designs". In: ToSC 2016.1 (2016). doi: 10.13154/tosc.v2016.i1.33-56.
- [TLS16] Y. Todo, G. Leander, and Y. Sasaki. "Nonlinear Invariant Attack Practical Attack on Full SCREAM, iSCREAM, and Midori64". In: ASIACRYPT 2016, Part II. 2016. doi: 10.1007/978-3-662-53890-6_1.
- [Xia+16] Z. Xiang, W. Zhang, Z. Bao, and D. Lin. "Applying MILP Method to Searching Integral Distinguishers Based on Division Property for 6 Lightweight Block Ciphers". In: ASIACRYPT 2016, Part J. 2016. doi: 10.1007/978-3-662-53887-6_24.iacr: 2016/857.
- [Bei+17] C. Beierle, A. Canteaut, G. Leander, and Y. Rotella. "Proving Resistance Against Invariant Attacks: How to Choose the Round Constants". In: CRYPTO 2017, Part II. 2017. doi: 10.1007/978-3-319-63715-0_22. iacr: 2017/463.
- [HV18] M. Hall-Andersen and P. S. Vejre. "Generating Graphs Packed with Paths". In: ToSC 2018.3 (2018). doi: 10.13154/tosc.v2018.i3.265-289.
- [LTW18] G. Leander, C. Tezcan, and F. Wiemer. "Searching for Subspace Trails and Truncated Differentials". In: ToSC 2018.1 (2018). doi: 10.13154/tosc.v2018.i1.74-100.