

Multifunction voltage regulator for car radio

Features

- Four outputs:
 - 8.5 V @ 500 mA
 - 5 V @ 300 mA permanent
 - 5 V @ 800 mA
 - 3.3 V @ 800 mA
- 2 A high side driver
- Reset function
- Ignition comparator
- Load dump protection
- Thermal shutdown
- Overcurrent limitation
- All pins ESD protected

Description

The L5956 contains a triple voltage regulator and a power switch.

The IC includes a monitoring circuit for detection.

The IC features a very low quiescent under standby.

Table 1. Device summary

Order code	Package	Packing
L5956	Multiwatt 15 (vertical)	Tube
L5956PD	PowerSO20	Tube
L5956PDTR	PowerSO20	Tape and reel

Contents L5956

Contents

1	Bloc	ck diagram and pins description5
	1.1	Block diagram
	1.2	Pins description
2	Elec	trical specifications 6
	2.1	Absolute maximum ratings 6
	2.2	Thermal data 6
	2.3	Electrical characteristics
3	Timi	ng diagrams
4	Pack	κage information
5	Revi	ision history16

List of tables

List of tables

	Device summary	
Table 2.	Absolute maximum ratings	6
Table 3.	Thermal data	6
Table 4.	Electrical characteristics	6
Table 5.	Document revision history	6

List of figures L5956

List of figures

Figure 1.	Block diagram	5
Figure 2.	Pins connection (top view)	5
Figure 3.	Typical application circuit	. 10
Figure 4.	Maximum ESR for stability valid for all the regulators outputs	. 10
Figure 5.	Timing diagram of regulators and power switch	. 11
Figure 6.	Backup and reset diagram	. 11
Figure 7.	Hold and thermal protection	. 12
Figure 8.	Ignition buffer diagram	
Figure 9.	Protection of the power switch	. 12
Figure 10.	Short circuit diagram	. 13
Figure 11.	PowerSO20 (slug-up) mechanical data and package dimensions	. 14
Figure 12	Multiwatt 15 (vertical) mechanical data and package dimensions	

Block diagram and pins description

1.1 **Block diagram**

Figure 1. **Block diagram**

1.2 **Pins description**

Figure 2. Pins connection (top view)

2 Electrical specifications

2.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{SDC}	DC operating supply voltage	30	V
V _{STR}	Transient supply voltage	50	V
I _O	Output current	internally limited	
T _{op}	Operating temperature range	-40 to 85	°C
T _{stg}	Storage temperature	-55 to 150	°C
Tj	Junction temperature	-55 to 150	°C
P _d	Power dissipation at T _{case} = 85 °C	43	W

2.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	PowerSO	Multiwatt	Unit
R _{th j-case}	Thermal resistance junction-to-case Max.	1.5	1.8	°C/W

2.3 Electrical characteristics

 V_S = 14.4 V; T_{amb} = 25 °C; unless otherwise specified.

Table 4. Electrical characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
INPUT SUPPI	LIES					
V _{in1}	Input supply voltage 1	Operating	9	-	18	V
V _{in2}	Input supply voltage 2	Operating	6	-	18	V
V _{in1}	Input supply voltage 1	Reverse polarity	Non operating ⁽¹⁾			
V _{in2}	Input supply voltage 2	Reverse polarity		Non ope	rating ⁽¹⁾	
		Standby (-20° C to 85 °C) IGN _{IN} = 5 V	-	-	60	μΑ
I_q	Total quiescent current	REGx = 5 V, REGsw = 5 V, IGN _{IN} = 5 V	-	5	-	mA
		Standby (-20 °C to 85 °C) IGN _{IN} = 5 V, V _{CC} = 18 V	-	100	170	μΑ

Table 4. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Load dump V _{in1}	Battery overvoltage	V _{in1}	18	20	22	٧
Load dump V _{in2}	Battery overvoltage	V _{in2}	18	20	22	V
REGULATOR 1	l					
V _{o (REG 1)}	Output voltage 8.5 V	-	8	8.5	9	V
ΔV	Line regulation	V _{in1} = 10 to 18 V; I = 500 mA	-	-	50	mV
ΔV	Line regulation	V _{in1} = 9.3 to 18 V; I = 10 mA	-	-	50	mV
ΔVi	Load regulation	I _{reg1} = 1 to 500 mA	-	-	100	mV
Iq	Quiescent current	I _{reg1} = 10 mA	-	-	5	mA
PSRR	Supply voltage ripple rejection	f = 1 kHz; V _{in1} = 1.5 Vpp; I _o = 500 mA	50	-	-	dB
V _{drop}	Drop out voltage	I _{reg1} = 500 mA ⁽²⁾	-	-	0.6	V
I _m	Current limit	$R_{short} = 0.5 \Omega$	0.6	-	1.2	Α
REGULATOR 2	2	,				ı
V _{o (ST BY)}	Output voltage 5 V	-	4.75	5	5.25	V
ΔV	Line regulation	V _{in1} = 7 to 18 V; I = 300 mA	-	-	50	mV
ΔV	Line regulation	V _{in1} = 6 to 18 V; I = 10 mA	-	-	50	mV
ΔVi	Load regulation	I _{reg2} = 1 to 300 mA	-	-	100	mV
Iq	Quiescent current	I _{reg2} = 10 mA	-	-	3	mA
PSRR	Supply voltage ripple rejection	f = 1 kHz; V _{in1} = 1.5 Vpp; I _o = 300 mA	50	-		dB
V _{drop}	Drop out voltage	I _{reg2} = 300 mA ⁽²⁾	-	-	1.5	V
V _{drop}	Drop out voltage	I _{reg2} = 100 mA ⁽²⁾	-	-	0.6	V
I _m	Current limit	$R_{short} = 0.5 \Omega$	400	-	800	mA
REGULATOR 3	3					
V _{o (REG 3)}	Output voltage 5V	-	4.75	5	5.25	V
ΔV	Line regulation	V _{in2} = 7 to 18 V; I = 800 mA	-	-	50	mV
ΔV	Line regulation	V _{in2} = 6 to 18 V; I = 10 mA	-	-	50	mV
ΔVi	Load regulation	I _{reg3} = 1 to 800 mA	-	-	100	mV
Iq	Quiescent current	I _{reg3} = 10 mA	-	-	5	mA
PSRR	Supply voltage ripple rejection	f = 1 kHz; V _{in1} = 1.5 Vpp; I _o = 800 mA	50	-	-	dB
V _{drop}	Drop out voltage	I _{reg3} = 800 mA ⁽²⁾	-	-	1.5	V
I _m	Current limit	$R_{short} = 0.5 \Omega$	1	-	2	Α

Table 4. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
REGULATOR 4	i					
V _{o (REG 4)}	Output voltage 3.3 V	-	3.15	3.3	3.45	V
ΔV	Line regulation	V _{in2} = 6 to 18 V; I = 800 mA	-	-	50	mV
ΔV	Line regulation	V _{in2} = 6 to 18 V; I = 10 mA	-	-	50	mV
ΔVi	Load regulation	I _{reg4} = 1 to 800 mA	-	-	100	mV
Iq	Quiescent current	I _{reg4} = 10 mA	-	-	5	mA
PSRR	Supply voltage ripple rejection	f = 1 kHz; V _{in1} = 1.5 Vpp; I _o = 800 mA	50	-	-	dB
V _{drop}	Drop out voltage	$I_{reg4} = 800 \text{ mA}^{(2)}$	-	-	2.5	٧
I _m	Current limit	$R_{short} = 0.5 \Omega$	1	-	2	Α
POWER SWITC	СН	1	,	l		
V _{dropSW}	Drop voltage power switch	I _{dcSW} = 1.8A max.	-	-	0.5	V
I _{pSW1}	Peak current power switch	Peak time < 15 ms	2	-	3.5	Α
I _{pSW2}	Peak current power switch	Peak time > 40 ms	1	-	2	Α
SW _{DEL}	Delay protection	-	15	-	40	ms
RESET BUFFE	R (with push-pull buffer)				I	I
RES	RES falling	Vreg2 = 5 V	4.6	4.7	4.8	V
RES	RES rising	Vreg2 = 5 V	4.65	4.8	4.95	V
V _{HYS(RES)}	Hysteresis of reset buffer	-	50	100	200	mV
IH _{source (RES)}	High level source current	Reset = 0 V	1000	1300	1600	μΑ
IL _{sink (RES)}	Low level sink current	Reset = 5 V	14	16	18	mA
RES _{delay}	Cres = 47nF	-	10	-	60	ms
ΔTRES	Reset rise and fall time	R = 10 kΩ, C = 15 pF	-	-	50	μs
I _{Charge}	Charge current	C _{RES} = 0 V	3	5	10	μΑ
I _{Discharge}	Discharge current	C _{RES} = 5 V	1	-	3	mA
V _{TH(F)}	Falling voltage threshold	-	1	1.2	1.4	V
V _{TH(R)}	Rising voltage threshold	-	2.5	2.8	3.5	V
V _{ol}	Low level	I _{SINK(RES)} = 1 mA	-	0.3	0.5	V
V _{oh}	High level	-	4.5	Vreg2	5.5	V
HOLD SIGNAL						
V _{lowl}	Hold output low for V _{in1} low	Low detection	-	-	9	V
V _{lowh}	Hold output high for V _{in1} normal	Normal high detection	10	-	18	٧
V _{lowl}	Hold output low for V _{in1} high	low detection	22	-	-	V

Table 4. Electrical characteristics (continued)

Symbol	ol Parameter Test condition				Max.	Unit		
V _{HOLD R}	DR Low V _{IN1} threshold V _{IN1} Low TH.			9.5	10	V		
V _{HYS (HOLD_L)}	Hysteresis low TH.	-	50	150	200	mV		
V _{HOLD F}	High V _{IN1} threshold	V _{IN1} High TH.	18	20	22	V		
V _{HYS (HOLD_M)}	Hysteresis high TH.	-	200		500	mV		
IGNITION BUF	FER (push-pull with Schmidt t	rigger)						
IGN _{IN}	IGN _{out falling}	-	1.03	1.17	1.28	V		
IGN _{IN}	IGN _{out rising}	-	1.18	1.27	1.33	V		
V _{hys(IGNout)}	GNout) Hysteresis of ignition buffer -		-	50	-	mV		
IH _{source(IGNout)}	High level source current	I _{GNout} = 0 V	1000	1500	2000	μΑ		
IL _{sink(IGNout)}	Low level sink current	I _{GNout} = 5 V	10	15	20	mA		
V _{ol}	Low level	IL _{sink (IGNout)} = 1 mA	-	0.3	0.5	V		
V _{oh}	High level	-	4.5	Vreg2	5.5	V		
IGN _{RISE}	Rising time	C = 15 pF	-	-	10	μs		
IGN _{FALL}	Fall time	C = 15 pF	-	-	10	μs		
I _{CLAMP}	Input clamp current	V _{CC} < V _{IGN} < 50 V	-	-	2	mA		
IGN _{IN}	Input voltage	Operative	0	-	50	V		
ENABLE INPU	ENABLE INPUT (regulators 1,3,4 and power switch)							
V _{TH}	Voltage threshold	-	1.3	1.8	2.3	V		
EN _{IN}	Input voltage	Operative	0	-	5	V		

 [&]quot;Non operating" should be intended as a condition outside the absolute maximum ratings defined for the IC. As such, if the
device is operated under such conditions, it is not guaranteed that the electrical parameters are inside the specification
range.

^{2.} Drop condition means that the supply voltage drop down to 100 mV from the regulated output and the regulator is sourcing its maximal load current.

Figure 3. Typical application circuit

L5956 **Timing diagrams**

Timing diagrams 3

Figure 6. Backup and reset diagram

Timing diagrams L5956

Figure 7. Hold and thermal protection

Figure 8. Ignition buffer diagram

Figure 9. Protection of the power switch

L5956 Timing diagrams

Figure 10. Short circuit diagram

Package information L5956

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com.

 $\mathsf{ECOPACK}^{(\! R \!)}$ is an ST trademark.

Figure 11. PowerSO20 (slug-up) mechanical data and package dimensions

GAPGPS0003

L5956 Package information

Figure 12. Multiwatt 15 (vertical) mechanical data and package dimensions

DIM*		mm			inch		
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	OUTLINE AND
A5						0.197	MECHANICAL DATA
В			2.65			0.104	
С			1.6			0.063	
D		1			0.039		
E	0.49		0.55	0.019		0.022	
F	0.66		0.75	0.026		0.030	
G	1.02	1.27	1.52	0.040	0.050	0.060	
G1	17.53	17.78	18.03	0.690	0.700	0.710	
H1	19.6			0.772			
H2			20.2			0.795	
L	21.9	22.2	22.5	0.862	0.874	0.886	
L1	21.7	22.1	22.5	0.854	0.87	0.886	I I walke.
L2	17.65		18.1	0.695		0.713	
L3	17.25	17.5	17.75	0.679	0.689	0.699	
L4	10.3	10.7	10.9	0.406	0.421	0.429	
L7	2.65		2.9	0.104		0.114	
М	4.25	4.55	4.85	0.167	0.179	0.191	
M1	4.73	5.08	5.43	0.186	0.200	0.214	
S	1.9		2.6	0.075		0.102	Multiwatt15 (Vertical)
S1	1.9		2.6	0.075		0.102	<u>J2</u>
Dia1	3.65		3.85	0.144		0.152	
	-	A	<u>c</u>		71	1	HI S S S S S S S S S S S S S S S S S S S
	E	M	<u>а</u> ↓	<u>-</u>	7		GI GI

Revision history L5956

5 Revision history

Table 5. Document revision history

Date	Revision	Changes
29-Aug-2007	1	Initial release.
08-Jan-2010	2	Updated Figure 1, 2, 3, 5 and 7. Added Figure 4: Maximum ESR for stability valid for all the regulators outputs on page 10.
27-Jun-2011 3		Added Note 1 on page 9.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

