Matrix Norm Essentials

- Matrix norms have vector norm properties:
 - $\circ \|A\| \ge 0$ and $\|A\| = 0 \implies \hat{A} = 0$
 - $\circ \|A + B\| \le \|A\| + \|B\|$
 - $\circ \|\alpha A\| = |\alpha| \|A\|$
- Induced norms, and the Frobenius norm, have additional multiplicative property
 - $\circ \|AB\| \le \|A\| \|B\|$
- Only four norms to know:

$$\|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_{\infty}, \|\cdot\|_{\text{Frob}}$$

- Three have easy-to-compute formulas $(1, \infty, \text{Frob})$.
- Three are induced from vector norms $(1, 2, \infty)$.
- Induced norms have $\rho(A) \leq ||A||$.
 - ∘ But expect $\rho(A) < ||A||$ in general, and sometimes $\rho(A) \ll ||A||$.
- $\|\cdot\|_2$ norm best for Euclidean ideas and hermitian/normal matrices. Reasons:
 - $|QA|_2 = ||A||_2$ if Q is unitary $(Q^*Q = I)$.
 - $\circ \ \sigma_1(A) = ||A||_2.$
 - \circ If $A^* = A$ then $\rho(A) = ||A||_2$.
- Iteration v, Av, A^2v, \ldots converges if and only if $\rho(A) < 1$.
 - \circ Thus if ||A|| < 1 then convergence. Not conversely!