1、分别画出"1001"、"1101"序列检测器的原始状态图。

参考解答:

2、化简下面的原始状态表:

现态	次态/	输出
	X=0	X=1
Α	E/0	B/0
В	A/0	D/1
С	F/0	D/0
D	A/0	B/1
Е	C/0	A/0
F	A/0	C/0

B₊	No				
C.	EF/BD.	No₽			
D∉	No	Yes	No		
E∉	CE/AB	No₽	CE/AD	No	
F	AE/BC	No	AF/CD	No	AC
ę.	A	B	C	D	E.

参考解答:

等效对: (A, C)、(B, D)、(E, F)

最大等效类: (A, C)、(B, D)、(E, F)

如果用 X 代替 A、C, 用 Y 代替 B、D, 用 Z 代替 E、F,

可以得到最简状态表:

3、用 J-K 触发器设计下面 2 进制状态表确定的电路。

输入	现	态	次	态	输出
X	Q1	Q0	Q1*	Q0*	Y
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	d	d	d

参考解答: J-K 触发器的特征方程为 $Q^{n+1} = J\bar{Q}^n + \bar{K}Q^n$

逻辑电路略!

自启动:输入1时,无效状态11的次态为10.可以自启动。

输出检查: 无效状态下的输出为 0, 不会产生错误输出。 逻辑电路略!

4、用T触发器设计题3要求的电路。

参考解答:输出函数 Y 不变

T1 的卡诺图: T0 的卡诺图: \

	Q1Q0.	004	01	11	104	Ç
X						
0.		0.	0.	1.	1,	Ç
1.		0.	1	d	0.	Ç

	H 2 W	ш.	<u> </u>		
	Q1Q0	00.	01₊	11₽	10.
X					
0.		0.	1.	1.	0.
1.		1.	1,	d,	0.

自启动检查:输入1时,无效状态11的次态为00.可以 自启动!

输出检查: 无效状态下的输出为 0, 不会产生错误输出。

5、用 D 触发器设计一个带进位输出的 6 进制加 1 计数 器。

参考解答: D 触发器的特征方程为 $Q^{n+1} = D$

2进制状态图

现态。	次态。	输出。
000	001	0.0
001	010	0.0
010	011	0.0
011	100	0.0
100	101	0.
101	000	1.

2进制状态表

$Q_2Q_{1^{4}}$	00	01	11	10	Ą
$Q_{0^{\wp}}$					
0.	T.	ą.	d	ą.	ته
1.	ą.	ą.	d	\odot	47

输出
$$Z = Q_2 \overline{Q}_1 Q_0$$

Q_2Q_{14}	00	01	11	10	*
$Q_{0^{\wp}}$					
0.	¥	1.	d٠	A	4
1₽	¢	ą.	d₽	₽	*

次态
$$Q_0^{n+1} = \overline{Q}_0$$

Q_2Q_1	00	01	11	10
$Q_{0^{\wp}}$				
0.	ą.	Ų	ð	ą.
1.	1	ą.	d₽	ą.

次态
$$Q_1^{n+1} = Q_1 \bar{Q}_0 + \bar{Q}_2 \bar{Q}_1 Q_0$$

次态
$$Q_2^{n+1} = Q_2 \overline{Q}_0 + Q_1 Q_0$$

驱动方程:

$$D_0 = Q_0^{n+1} = \overline{Q}_0$$
 ,

$$D_1 = Q_1^{n+1} = Q_1 \overline{Q}_0 + \overline{Q}_2 \overline{Q}_1 Q_0$$
 ,

$$D_2 = Q_2^{n+1} = Q_2 \overline{Q}_0 + Q_1 Q_0$$
 ,

自启动检查: 无效状态 110 的次态为无效状态 111, 而

无效状态 111 的次态为有效状态 100, 故具备自启动能力。

输出检查: 无效状态下的输出为 0, 不会产生错误输出。

逻辑电路: 略!