Определение местоположения с помощью инерционных датчиков

Макаров М., Зайнулина Э., Киселёва Е., Фатеев Д., Божедомов Н., Толканев А., Ночевкин В., Протасов В., Рябов А.

Московский физико-технический институт

Курс: Численные методы обучения по прецедентам (практика, В. В. Стрижов)/Группа 694, весна 2019

Цель работы: повысить точность геопозиционирования

Задача

Позиционирование телефона в помещениях при условиях, когда глобальная навигационная система не может быть задействована, используя только инерционные датчики и данные о расположении телефона.

Проблема

Значение инерциальных измерительных модулей (IMU) неточно, поэтому двойное интегрирование сигнала даёт траекторию, значительно отклоняющуюся от истинной.

Метод решения

Использовать априорные знания о расположении телефона для регрессии векторов скорости.

Траектория движения носителя телефона

Литература

Базовое решение

Hang Yan, Qi Shan, and Yasutaka Furukawa. Ridi: Robust imu double integration. CoRR, abs/1712.09004, 2017.

Вычислительные эксперименты

Boyuan Wang, Xuelin Liu, Baoguo Yu, Ruicai Jia, and Xingli Gan. Pedestrian dead reckoning based on motion mode recognition using a smartphone. Sensors, 18(6):1811, 2018.

Постановка задачи

Структура данных

 $\mathbf{x} \in \mathbb{R}^{N \times T}$ — признаки объекта — угловые скорости и линейные ускорения в стабилизированной системе координат датчиков. Частота снятия данных — 200 Гц

 $\mathbf{y} \in \mathbb{R}^{2 \times T}$ — траектория пешехода, $\mathbf{v}(t)$ — скорость пешехода, $p(t) \in P = \{0,1,2,3\}$ — рука, нога, сумка, туловище — положение телефона.

В подзадачах классификации и регрессии x разбивается на перекрывающиеся отрезки времени x_i длины windowsize (200) которые играют роль признаков, а v_i , p_i — класс и положение в конечный момент отрезка x_i — объектов.

Постановка задачи

Подзадачи

- **1** Определить класс p положения телефона моделью f_1 .
- $oldsymbol{\circ}$ С помощью модели $f_2(\cdot,p)$ найти скорости.
- 3 Скорость интегрируется для получения траектории

Оценка качества модели

- Точность предсказания класса
- Сумма квадратов отклонений предсказанных скоростей от истинных

Базовый эксперимент

Цель

Сравнить поведение различных моделей в каждой из подзадач. Подобрать оптимальные гиперпапаметры.

Данные

Данные взяты из a . Траектории сняты при 4 различных положениях телефона и с нескольких людей.

Также используются свои данные, снятые с другой модели телефона, но без истинной траектории.

^aHang Yan, Qi Shan, and Yasutaka Furukawa. Ridi: Robust imu double integration. CoRR, abs/1712.09004, 2017.

Рассматриваемые модели

Метод, используемый в базовом решении

- SVM-классификатор и SVM-регрессор с гауссовским ядром
- Использовалась предобученная модель.

Метод ближайших соседей

- kNN-классификатор и kNN-регрессор
- Метрика l_1 , число соседей 5, веса расстояние.

Свёрточные нейронные сети

- Классификация 3 свёрточных слоя, 2 полносвязных
- Регрессия 3 свёрточных слоя, 4 полносвязных

Сравнение моделей

Таблица: Точность классификации и среднеквадратичная ошибка регрессии скорости на валидации

Модель	Точность	Ошибка	Размер, в мб	
			классификатор	регрессоры
SVM	0.379	0.085	30	130
kNN	0.372	0.027	260	260
CNN	0.381	0.013	0.006	0.2

Заметьте, что средняя скорость движения $\sim 1.1 \; \text{м/c}.$

Своя выборка

В отличие от остальных моделей на нашей выборке SVM показывает хороший результат.

Выводы

Выводы

- Все модели обладают невысокой точностью классификации, что скорее всего вызвано недостатком данных.
- Также несмотря на то, что среднеквадратичная ошибка регрессии у CNN и kNN ниже, качество восстановленной траектории значительно хуже, чем у SVM. Это означает, что она не подходит для сравнения моделей.

Дальнейшее развитие

- Собрать больше данных для увеличения качества.
- Придумать способы генерации синтетических данных из существующих

