L. Mereu – A. Nanni Calcolo differenziale

11. Convessità, concavità, flessi

Sia f una funzione derivabile quante volte occorre in (a;b), sia $x_0 \in (a;b)$ e $P(x_0;f(x_0))$ il punto corrispondente sulla curva grafico di f.

Definizione

Si dice che la funzione f è **convessa** (o che volte la concavità verso l'alto) nel punto x_0 se esiste un intorno I di x_0 in cui il grafico non è mai al di sotto della retta t tangente alla curva in $P(x_0; f(x_0))$. (fig a)

Si dice che la funzione f è **concava** (o che volte la concavità verso il basso) nel punto x_0 se esiste un intorno I di x_0 in cui il grafico non è mai al di sopra della retta t tangente alla curva in $P(x_0; f(x_0))$. (fig b)

Fig. a Fig. b

Calcolo differenziale L. Mereu – A. Nanni

Definizione

Si dice che la curva grafico della funzione f ha in $P(x_0; f(x_0))$ un **punto** di **flesso** se in P la curva attraversa la retta tangente, cioè nell'intorno sinistro di x_0 la curva sta sopra la retta tangente e nell'intorno destro si trova al di sotto o viceversa. Vedi fig. c e d.

Fig. c Fig. d

Teorema

Dall'esame della derivata seconda di una funzione nel punto x_0 si ricava:

a) se
$$f''(x_0) > 0$$

la funzione è **convessa** in x_0

b) se
$$f''(x_0) < 0$$

la funzione è **concava** in x_0

c) se
$$f''(x_0) = 0$$
 e $f'''(x_0) \neq 0$

c) se $f''(x_0) = 0$ e $f'''(x_0) \neq 0$ $P(x_0; f(x_0))$ è un **punto** di **flesso**

Una funzione è convessa (concava) in (a; b), o meglio volge la concavità verso l'alto (verso il basso) se lo è in ogni punto di (a; b).

Lo studio della convessità, concavità e flessi di una funzione consiste nello studio degli zeri e del segno della derivata seconda.

L. Mereu – A. Nanni Calcolo differenziale

Determinare gli intervalli di concavità, convessità e gli eventuali flessi delle seguenti funzioni:

Esempio

$$f(x) = \frac{1}{2}x^2 + \log(x - 1).$$

La funzione è dotata di derivate di qualunque ordine $\forall x \in (1; +\infty)$

Si ha

$$f'(x) = x + \frac{1}{x-1} > 0 \quad \forall x \in (1; +\infty)$$

$$f''(x) = 1 - \frac{1}{(x-1)^2} \begin{cases} < 0 & \forall x \in (1; 2) \\ = 0 & per \ x = 2 \\ > 0 & \forall x \in (2; +\infty) \end{cases}$$

$$\frac{1}{f''} - \frac{2}{0} + \frac{x}{f}$$

$$f \quad \text{concava} \quad \text{convessa}$$

Perciò x=2 è l'ascissa di un punto di flesso. Essendo f(2)=2 il flesso ha coordinate (2;2).

Esercizi

(gli esercizi con asterisco sono avviati)

Determinare i punti in cui le seguenti funzioni volgono la concavità verso l'alto

(sono convesse), verso il basso (sono concave) e gli eventuali punti di flesso.

1)
$$f(x) = 4 - x^3$$

3)
$$f(x) = x^3 - 6x^2 + 3x + 1$$

5)
$$f(x) = \frac{1}{x^2+4}$$

$$7) f(x) = \frac{8x^3 + 1}{x}$$

9)
$$f(x) = (x+1)e^{-x}$$

*11)
$$f(x) = log^3(x)$$

*2)
$$f(x) = x(x+1)^2$$

4)
$$f(x) = \frac{1}{6}x^3 + \frac{1}{2}x^2 + \frac{1}{2}x + 1$$

*6)
$$f(x) = \frac{3x}{4+x^2}$$

*8)
$$f(x) = e^{2x-x^2}$$

*10)
$$f(x) = (2 - x)e^{-\frac{x}{2}}$$

12)
$$f(x) = -2\log x - \frac{1}{12}x^4 + \frac{1}{2}x^2 - \frac{2}{3}$$

L. Mereu – A. Nanni Calcolo differenziale

Soluzioni

1.S. convessa in $(-\infty; 0)$, concava in $(0; +\infty)$, flesso a tangente orizzontale (0;4);

*2.S.
$$f'(x)=(x+1)(3x+1)$$
, $x=-1$ punto di max. rel. , $x=-\frac{1}{3}$ punto di min. rel. ; $f''(x)=6x+4$, concava in $\left(-\infty;-\frac{2}{3}\right)$, convessa in $\left(-\frac{2}{3};+\infty\right)$, flesso $\left(-\frac{2}{3};-\frac{2}{27}\right)$;

- **3.S.** concava in $(-\infty; 2)$, convessa in $(2; +\infty)$, flesso (2; -9);
- **4.5.** concava in $(-\infty; -1)$, convessa in $(-1; +\infty)$, flesso $(-1; \frac{5}{6})$;
- **5.S.** convessa in $\left(-\infty; -\frac{2}{\sqrt{3}}\right) \cup \left(\frac{2}{\sqrt{3}}; +\infty\right)$, concava in $\left(-\frac{2}{\sqrt{3}}; +\frac{2}{\sqrt{3}}\right)$, flessi $\left(\pm\frac{2}{\sqrt{3}}; \frac{3}{16}\right)$;
- *6.S. $f'(x) = \frac{3(4-x^2)}{(4+x^2)^2}$, x = -2 punto di minimo relativo, x = 2 punto di massimo relativo ;

$$f''(x)=rac{6x(x^2-12)}{(4+x^2)^3}$$
 , concava in $\left(-\infty;-2\sqrt{3}
ight)\cup\left(0;2\sqrt{3}
ight)$,

convessa in
$$\left(-2\sqrt{3};0\right) \cup \left(2\sqrt{3};+\infty\right)$$
 , flessi: $(0;0)$, $\left(\pm 2\sqrt{3};\pm \frac{3\sqrt{3}}{8}\right)$;

- **7.S.** convessa in $\left(-\infty; -\frac{1}{2}\right) \cup (0; +\infty)$, concava in $\left(-\frac{1}{2}; 0\right)$, flesso $\left(-\frac{1}{2}; 0\right)$;
- **8.S.** $f'(x) = 2(1-x)e^{2x-x^2}$; x = 1 punto di massimo relativo ;

$$f''(x) = 2e^{2x-x^2}(2x^2 - 4x + 1)$$

convessa in
$$\left(-\infty; \frac{2-\sqrt{2}}{2}\right) \cup \left(\frac{2+\sqrt{2}}{2}; +\infty\right)$$
, concava in $\left(\frac{2-\sqrt{2}}{2}; \frac{2+\sqrt{2}}{2}\right)$, flessi $\left(\frac{2\pm\sqrt{2}}{2}; e^{\frac{1}{2}}\right)$;

- **9.S.** concava in $(-\infty; 1)$, convessa in $(1; +\infty)$, flesso $(1; \frac{2}{e})$;
- *10. S. $f'(x) = \frac{1}{2}e^{-\frac{x}{2}}(x-4)$, x=4 punto di min . relativo,

$$f''(x) = \frac{1}{4}e^{-\frac{x}{2}}(6-x)$$
, convessa in $(-\infty; 6)$, concava in $(6; +\infty)$, flesso $(6; -4e^{-3})$;

*11.S. $f'(x) = \frac{3}{x} log^2(x)$, (1; 0) punto di flesso a tangente orizzontale;

$$f''(x) = \frac{3}{x^2}(2logx - log^2x)$$
, convessa in $(1; e^2)$, concava in $(0; 1) \cup (e^2; +\infty)$, flessi $(1; 0)$, $(e^2; 8)$;

12.S. convessa $(0; \sqrt{2})$, concava in $(\sqrt{2}; +\infty)$; flesso $(\sqrt{2}; -log2)$;