Predicting Bacterial Pathogeny

Random Forest with k-mers and Chaos Game Representation Features

Introduction

Overview

- In this project, we aim to predict the pathogenicity of bacterial species using machine learning techniques applied to DNA sequences.
- Pathogenic bacteria are microorganisms that have the capability to cause disease in humans, animals, or plants.

Introduction

Importance

• Accurate prediction of bacterial pathogenicity is crucial for various fields including medicine, agriculture, and environmental science.

Introduction

Methods

• We employ the Random Forest algorithm along with k-mers and frequency Chaos Game Representation (fCGR) as feature extraction techniques for DNA sequence analysis.

Data Wrangling

Scraping Process

- Bacteria species names were scraped from Wikipedia and PubMed.
- Pathogenic bacteria species labels were scraped from Wikipedia.

- Libraries used:
 - BeautifulSoup

Data Wrangling

Data Collection

- We instantiated a bot that collects NCBI accession ID's of the respective bacterial species from GTDB.
- Only GTDB representative sequences with < 5% contamination and > 95% completeness were considered.
- We downloaded the sequences using command-line scripts.

- Libraries used:
 - Selenium
 - Curl

Data Engineering

Data Cleaning

• We cleaned the sequences by removing N's and converted DNA sequences into appropriate formats for further analysis.

Data Engineering

Data Preprocessing

- For each species, we created a representative fasta file which is ~500,000 bp long.
- This was done by either sampling a portion from the longest contig, or by concatenating shorter contigs until reaching the desired length.

Data Engineering

K-mers

- K-mers are subsequences of length k extracted from DNA sequences, providing insights into genetic patterns.
- Bacterial DNA sequences were preprocessed to extract k-mers (k=7) as features for classification.

Exploratory Data Analysis CGR plots

- We generated CGR plots to explore patterns in each species.
- We found that species within a genus share very similar CGR patterns.
- Below is a portion of the CGR plots:

- Libraries used:
 - NumPy
 - Matplotlib

Exploratory Data Analysis PCA

• We applied Principal Component Analysis (PCA) to explore interesting findings in literature.

Exploratory Data Analysis c+G%

• We found that there was a correlation between the first component of the PCA and the C+G% content.

Exploratory Data Analysis A+T%

• Similarly, we found that there was a negative correlation between the first component of the PCA and the A+T% content.

Exploratory Data Analysis 6+T%

• On the contrary, there was no correlation between the other combinations of letters such as G+T.

Exploratory Data Analysis

Further Questions

- What causes the C+G% plot and the A+T% plot to appear as mirror images of each other?
- Reverse complement (A—>T and C—>G)?

Machine Learning Model

Overview

- We employed the Random Forest Classifier for binary classification.
- Generated fCGR plots (images) were used as feature vectors.

- Libraries Used:
 - Scikit-learn
 - OpenCV

1. [0.99215686, 0.99215686, 0.99215686, ..., 1. , 0.99607843, 0.99215686], ..., [0.41176471, 0.41176471, 0.39607843, ..., 0.25490196, 0.29411765, 0.31764706], [0.37647059, 0.37647059, 0.36078431, ..., 0.14117647, 0.20784314, 0.24705882], [0.37647059, 0.37647059, 0.36078431, ..., 0.14117647, 0.20784314, 0.24705882]])

Matrix representation

Normalized matrix

Machine Learning Model

10 Folds

- We can see that the model accuracy ranges between 75% 100%.
- The mean accuracy is 88%
- Further questions:
 - Why is the accuracy range so high?

Fold 1	75%
Fold 2	83%
Fold 3	92%
Fold 4	92%
Fold 5	100%
Fold 6	83%
Fold 7	92%
Fold 8	92%
Fold 9	83%
Fold 10	92%

Machine Learning Model

Training

- After evaluation, we split the model into Training (80%) and Testing (20%) datasets.
- The model correctly identified pathogenic bacteria 88% of the time.

Conclusion Summary

- Our model predicted the pathogeny of bacteria using its fCGR with ~88% accuracy.
- This may suggest that pathogeny of bacteria may be associated with their genomic fingerprint fCGR in this project.

Limitations

Dataset

- In this project, the size of the pathogenic dataset is roughly three times larger than the non-pathogenic dataset, which might introduce bias in the model.
- The model is trained on a subset of bacteria, including more genera could increase the reliability of the model.
- There is no agreement among scientists on the pathogeny of some species included in the dataset.

Future Work

Improvement

- Using a larger, more representative dataset to verify the model results.
- Exploring other significant features, such as k-mer variability within each pathogeny class.
- Exploring other numerical methods, such as Discrete Fourier Transform.