Codage des nombres non entiers

M. Combacau combacau@laas.fr

11 novembre 2024

Objectif

Savoir coder un nombre non entier en base 2 Connaître la précision d'un code Comprendre les arrondis et les erreurs de codage

Principe du codage en virgule flottante (1)

- Mot code constitué de trois champs : signe, exposant, mantisse

b_{n-1}	b_{n-2}	b_p	b_{p-1}		b_0
signe	exposant		ma	ntisse	9

- Valeur du code : $(-1)^{b_{n-1}} \times (1 \text{ ou } 0)$, mantisse $\times 2^{exposant}$
- Le 1 devant la mantisse n'est pas représenté dans le code
- Signe : $b_{n-1} = 0 \leftrightarrow \text{positif}, \ b_{n-1} = 1 \leftrightarrow : \text{négatif}$
- Exposant : peut être négatif (ca2 ou biaisé)
- Mantisse : virgule fixe avec partie entière = 1 ou 0
 1 valeur normalisée, 0 hors norme (cas particuliers)

Principe du codage en virgule flottante (2)

- Exemple: -12.06.
- Le bit de signe du code est à 1.
- Valeur de l'exposant déduite du nombre de divisions nécessaires pour ramener le nombre à coder sous la forme 1, mantisse.

$$12,06 = 1.5075 \times 2^3$$

- le nombre -12.06 sera donc codé par

La suite dépend des caractéristiques du code utilisé

Précision du code en virgule flottante

Rappel:

b_{n-1}	b_{n-2}	b_p	b_{p-1}		<i>b</i> ₀
signe	exposant =	exp+biais	ma	ntisse	9

- Précision absolue : $Pa=2^{-p} \times 2^{exp}$ dépend du nombre
- Précision relative :

$$Pr = \frac{2^{-p} \times 2^{\text{exp}}}{1, \, \text{mantisse} \times 2^{\text{exp}}} = \frac{2^{-p}}{1, \, \text{mantisse}}$$

La mantisse varie entre 1 et $2 \Rightarrow Pr \in [2^{-p-1}, 2^{-p}]$ La précision relative varie peu sur l'intervalle de codage

Caractéristiques du codage IEEE p754 (1)

- Bit de signe : sans commentaire
- Exposant sur e bits biaisé de $2^{e-1} 1$
- Mantisse est sur m bits, sous la forme (1 ou 0), mantisse
- Conventions pour limites et indéterminations
 - **1** Exposant = 0, mantisse \neq 0, nombre dénormalisé valeur= $(-1)^{b_{n-1}} \times 0$, mantisse $\times 2^{-(2^{e-1}-1)}$
 - **2** Exposant = 0 et mantisse = 0, code de 0
 - **3** Exposant = [1..1] et mantisse = 0, code de ∞
 - 4 Exposant = [1..1] et $mantisse \neq 0$ code de NaN
 - * Deux codes de 0 et de ∞ en fonction du bit de signe
 - * NaN (Not a Number) : résultat de 0/0, $\infty \times 0$ ou encore $\sqrt{-1}$
 - * $exposant = 0 \Rightarrow$ nombre voisin de 0, limite du code
- Codage utilisé par le compilateur libre gcc

Caractéristiques du codage IEEE p754 (2)

Trois formats existent : simple, double et long double

- Simple précision (32 bits), biais exposant : 127

b_{31}	b ₃₀		b_{23}	b ₂₂		b_0
signe	exposant			m	antiss	se

- Précision relative : $Pr \approx 2^{-23} \approx 1,2 \times 10^{-7}$
- Plus petit nombre codé (dénormalisé) : exposant = 0, $mantisse = 2^{-23}$, $valeur = 2^{-23} \times 2^{-127} \approx 7.10^{-46}$
- Plus grand nombre codé : $mantisse=1,1...1=2-2^{-23}\approx 2$, exposant=128 $valeur\approx 2\times 2^{128}=2^{129}\approx 6.8\times 10^{38}$

Caractéristiques du codage IEEE p754 (3)

- Double précision (64 bits), biais exposant : 1023

b ₆₃	b ₆₂		b_{52}	b ₅₁		b_0
signe	exposant		m	antiss	ie .	

- Précision relative : $Pr \approx 2^{-52} \approx 2, 2 \times 10^{-16}$
- Plus petit nombre codé (dénormalisé) : exposant = 0, $mantisse = 2^{-53}$, $valeur = 2^{-53} \times 2^{-1023} \approx 7,7.10^{-326}$

Caractéristiques du codage IEEE p754 (4)

- Double précision étendue (80 bits), biais exposant : 16383

b_{79}	b ₇₈		b ₆₄	b ₆₃		b_0
signe	exposant		m	antiss	se	

- Précision relative : $Pr \approx 2^{-64} \approx 5, 4 \times 10^{-20}$
- Plus petit nombre codé (dénormalisé) : exposant = 0, $mantisse = 2^{-64}$, $valeur = 2^{-64} \times 2^{-16383} \approx 9, 1.10^{-4952}$
- Plus grand nombre codé : $mantisse = 1, 1...1 = 2 - 2^{-64} \approx 2$, exposant = 16384 $valeur \approx 2 \times 2^{16384} = 2^{16385} \approx 2.8 \times 10^{4932}$

Exemple ilustratif - Simple précision

- Code de 1
 - le bit de signe vaut 0
 - la mantisse vaut 0
 - \blacksquare l'exposant vaut 0+127=127
 - d'où le code [0 01111111 0..0]
- 2 code de -12, 125
 - le bit de signe vaut 1
 - Retour à un codage de la forme 1, *mantisse* $12,125 \times 2^{-3} = 1,515625$ (*exposant* = 127 + 3 = 130)
 - code de l'exposant 130 = 10000010
 - code de 1.515625 = 1,100001 d'où *mantisse* = 1000010...0
 - d'où enfin le code [1 10000010 100010...0]

Exemple ilustratif - Double précision

- 1 Code de 124,356
 - Le bit de signe vaut 0
 - Retour à un codage de la forme 1, mantisse $124,356 \times 2^{-6} = 1,9430625$ (exposant = 1023 + 6 = 1029)
 - Code de l'exposant 1029 = 10000000101

 - D'où le code qui tient difficilement sur la page!!!

Je compte sur vous pour vérifier!

Exemple ilustratif - Simple précision - Décodage

- Soit le code $5C000000_{16}$ à décoder en simple précision
 - Code Binaire

5	C(12)	0	0	0	0	0	0	l
0101	1100	0000	0000	0000	0000	0000	0000	l

- Bit de signe =0 : nombre positif
- Code exposant = 10111000
- Valeur exposant biaisé : 184, d'où exposant =184-127=57
- Code de la *mantisse* = 1,0 (valeur 1)
- D'où la valeur du code $2^{57} \approx 1.44 \times 10^{17}$

