### Accepted Manuscript

Deep Learning: Evolution and Expansion

Ritika Wason

PII: S1389-0417(17)30354-6

DOI: https://doi.org/10.1016/j.cogsys.2018.08.023

Reference: COGSYS 709

To appear in: Cognitive Systems Research

Received Date: 22 December 2017

Revised Date: 3 April 2018 Accepted Date: 24 August 2018



Please cite this article as: Wason, R., Deep Learning: Evolution and Expansion, *Cognitive Systems Research* (2018), doi: https://doi.org/10.1016/j.cogsys.2018.08.023

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

# Deep Learning: Evolution and Expansion

Dr. Ritika Wason of Co Associate Professor, Bharati Vidyapeeth's Institute of Computer

# Deep Learning: Evolution and Expansion

#### **Abstract**

This paper historically attempts to map the significant success of deep neural networks in notably varied classification problems and application domains with near human-level performance. The paper also addresses the various doubts surrounding the acceptance of deep learning as a science of future. The manuscript attempts to unveil the hidden capabilities of deep neural networks in enabling machines perform the human way tasks which can be learned through what we call observation and experience.

### **Keywords**

Deep Learning; Multi-Layer Neural Networks;

#### 1. INTRODUCTION

Enabling computing systems to what human's term intelligence has been researcher's aspiration for over half a century. Late 1950's Rosenblatt et. al. aimed to create some brain analogue useful for analytical tasks[1]. This marked the inception of the research in the field of enabling machines to learn and classify the human way. The primary requirement of any such system shall be twofold: firstly, the ability to recognize and process complex patterns of related information from every dimension just as the human brain. Secondly, to achieve human-like intelligence a machine shall require access to large volume of information [2]. A system that could operate with some of the above notions, named perceptron[1] was suggested in [1]. This perceptron went on to be the basis for creating multi-layer learning networks which have formed the basis of what is popularly called Deep Learning[2], [3].

Deep Learning has lately emerged as the science of choice to learn convoluted structures in large, real-world data sets. Heavily researched in academia to study intelligence and industry to create intelligent systems, it applies back-propagation algorithm to determine how a machine should alter its parameters to correctly compute the output in each layer from the previous layer. The technology has succeeded in making breakthrough impact in varied domains like image, video, speech and audio processing[4]. At its simplest, deep learning is an application of neural networks with several layers of nodes(4 or more) between input and output[3].

Traditional machine learning mechanisms had confined ability of processing real data in its actual raw form. Hence, constructing a feature extractor involved decades of hard work and expertise to transform raw data to its suitable representation or feature vector from which the learner machine could classify patterns in the input[4]. The multiple layers between input and output are used to perform feature identification and processing through a series of stages like the human brain[3].

Deep Learning methods are a kind of representation learning methods where non-linear modules are organized into multiple layers to transform the representation at a lower layer to a slightly higher abstract level. Such compositions of transformations are capable of learning complex functions [4]. The noticeable feature of deep learning is that the feature layers are not designed or determined by humans but are learned automatically through some generalised learning procedure [2]. Through this ability of itself, deep learning has achieved significant success over counterpart machine learning and AI technologies in varied fields of human endeavour [3], [5].

In this paper, we aim to present a comprehensive survey of the growth and expansion of deep learning. The rest of the paper is organized as follows. Section II highlights the current research applications of deep learning. It is important to gain an insight into how one unified science has succeeded in expanding itself to varied domains utilizing varied volume, velocity and veracity of data. Section III highlights the characteristics of deep learning algorithms that have led to their widespread applications. Section IV, discusses the current challenges faced by Deep Learning. Section V concludes with an analysis of this whole discussion.

### 2. THE DEEP LEARNING REVOLUTION

In the last decade deep learning has been successfully applied to various technologies and mechanisms that require large volumes of digital data for training and providing useful information[6]. Table 1 below lists some considerable applications of deep learning:

**Table 1: Deep Learning Application Domains** 

| S. | Ref.         | Application                                | Description                                                                              | Application Domain                     |
|----|--------------|--------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------|
| No | [7]          | 77 035 144 7                               | A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                  | Ø 1 7 1 1                              |
| 1  | [7]          | Use of Multi-Layered                       | A novel method combining expertise of                                                    | Speaker-Independent                    |
|    | 1989         | Networks for Coding                        | neural networks with speech recognition is                                               | Speech Recognition                     |
|    |              | Speech with Phonetic                       | used to realize a speech recognition system.                                             |                                        |
|    | 101          | Features                                   | A I I I I I I I I I I I I I I I I I I I                                                  | D                                      |
| 2  | [8]          | Local Feedback                             | Analyzes the limitations and characteristics                                             | Recurrent Networks                     |
|    | 1992         | Multilayered Networks                      | of a local feedback multi-layered network                                                |                                        |
|    |              |                                            | with feedback connections allowed only                                                   |                                        |
| 2  | [0]          | C P (D )                                   | from neurons to itself.                                                                  | TT d'('                                |
| 3  | [9]          | Gradient-Based                             | Multilayer neural network trained through                                                | Handwriting                            |
|    | 1998         | Learning Applied to                        | backpropogation algorithm applied to create                                              | Recognition                            |
|    |              | <b>Document Recognition</b>                | a complex decision surface to classify high-                                             |                                        |
|    |              |                                            | dimensional patterns like handwritten                                                    |                                        |
| 4  | [10]         | A Fast Learning                            | characters.  Complimentary Priors applied to eliminate                                   | Deep-Belief                            |
| 4  | 2006         | A Fast Learning Algorithm for Deep         | the explaining effects that make presumption                                             | Network                                |
|    | 2000         | Belief Nets                                | complicated in densely linked belief nets                                                | INCLWOLK                               |
|    |              | Benef Nets                                 | with numerous hidden layers.                                                             |                                        |
| 5  | [11]         | Reducing the                               | High –Dimensional Data converted to low-                                                 | Autoencoders                           |
|    | 2006         | Dimensionality of Data                     | dimensional codes through training a MNN.                                                | rutoeneoders                           |
|    | 2000         | with Neural Networks                       | annonsissim educa un dugir urunning ur mir m                                             |                                        |
| 6  | [12]         | Stacked Denoising                          | Innovative framework of comprehending a                                                  | Autoencoders                           |
|    | 2010         | Autoencoders: Learning                     | deep neural network through layers of                                                    |                                        |
|    |              | <b>Useful Representations</b>              | denoising encoders trained to denoise                                                    |                                        |
|    |              | in a Deep Network with                     | corrupted versions of their inputs                                                       |                                        |
|    |              | a Local Denoising                          |                                                                                          |                                        |
|    |              | Criterion                                  |                                                                                          |                                        |
| 7  | [13]         | ImageNet Classification                    | Breakthrough testimony that applied                                                      | Object Classification                  |
|    | 2012         | with Deep                                  | convolutional nets to halve the error rate for                                           |                                        |
|    |              | Convolutional Neural                       | object recognition, resulting in brisk                                                   |                                        |
|    |              | Networks                                   | implementation of deep learning by the                                                   |                                        |
|    |              |                                            | computer vision commune.                                                                 |                                        |
| 8  | [14]         | Large Scale Distributed                    | DistBelief software framework developed to                                               | Speech Recognition                     |
|    | 2012         | Deep Networks                              | train large, distributed models. Obtains                                                 | service at both                        |
|    |              |                                            | significant results about large-scale non-                                               | moderate and large-                    |
|    | F1 #3        | D M                                        | convex optimizations.                                                                    | scale level                            |
| 9  | [15]         | Deep Neural Networks                       | Utilizes a feed-forward neural network for                                               | Acoustic Modeling                      |
|    | 2012         | for Acoustic Modeling                      | speech recognition.                                                                      |                                        |
| 10 | [16]         | in Speech Recognition                      | Property of Developed Leadly connected this                                              | High Lavel Class                       |
| 10 | [16]<br>2012 | Building High-level                        | Prepares a 9- layered locally connected thin autoencoder with pooling and local contrast | High Level, Class-<br>Specific Feature |
|    | 2012         | Features Using Large<br>Scale Unsupervised | normalization on a large dataset of images.                                              | Detectors                              |
|    |              | Learning                                   | normanzation on a large dataset of images.                                               | Detectors                              |
| 11 | [17]         | Improving Neural                           | Reduces Overfitting on large feed-forward                                                | Speech and Object                      |
| 11 | 2012         | networks by preventing                     | neural networks through randomly omitting                                                | Recognition Model                      |
|    | 2012         | networks by preventing                     | near an networks unough randomly offitting                                               | Recognition Model                      |

|    |              | Co-Adaptation of                   | half feature detectors on each training set.                             | Development         |
|----|--------------|------------------------------------|--------------------------------------------------------------------------|---------------------|
|    |              | Feature Detectors                  | Overcomes complex co-adaptations for                                     | Development         |
|    |              | Teature Detectors                  | many routine tasks in speech and object                                  |                     |
|    |              |                                    | recognition.                                                             |                     |
| 12 | [18]         | Speech-Recognition with            | Train Deep Long Short-term Memory RNN                                    | Speech Recognition  |
|    | 2013         | Deep Recurrent Neural              | on the TIMIT phoneme recognition                                         |                     |
|    |              | Networks                           | benchmark for speech recognition.                                        |                     |
| 13 | [19]         | Visualizing and                    | Network by Zeiler et. al., winner of ILSVRC                              | Deconvolutional     |
|    | 2013         | Understanding                      | 2013 achieved top 5 error rate of 11.2%.                                 | network             |
|    |              | Convolutional Neural               | More of AlexNet fine tuning to improve                                   |                     |
|    |              | network                            | performance. Examined different feature                                  |                     |
|    |              |                                    | activations and their relations to the input                             |                     |
|    |              |                                    | space.                                                                   |                     |
| 14 | [20]         | Learning Hierarchical              | Applied convolutional nets to scene label                                | Scene Labelling     |
|    | 2013         | Features for Scene                 | through multi-scale convolutional nets. The                              |                     |
|    |              | Labelling                          | method succeeded in extracting an optimal                                |                     |
|    |              |                                    | set of segmentation components that could                                |                     |
|    |              |                                    | best explain a scene.                                                    |                     |
| 15 | [21]         | Generating Sequences               | Long-Short Term Memory Recurrent Neural                                  | Handwriting         |
|    | 2013         | with Recurrent Neural              | Networks are applied to produce complex                                  | Synthesis           |
|    |              | Networks                           | sequences with long range structures by                                  |                     |
|    |              |                                    | predicting one data point at a time.                                     |                     |
| 16 | [22]         | Multiframe Deep Neural             | Achieves reduction of the neural network                                 | Acoustic Modeling   |
|    | 2013         | Networks for Acoustic              | computational cost using speech signal                                   |                     |
|    |              | Modeling                           | stationarity for tying neural network                                    |                     |
|    |              |                                    | parameters across frames.                                                |                     |
| 17 | [23]         | On the Importance of               | Stochastic Gradient Descent with                                         | Model Optimization  |
|    | 2013         | Initialization and                 | Momentum applied to train DNNs as well as                                |                     |
|    |              | Momentum in Deep                   | RNNs on datasets with long term                                          |                     |
|    |              | learning                           | dependencies to achieve considerable                                     |                     |
|    |              |                                    | performance.                                                             |                     |
| 18 | [24]         | Learning Phrase                    | Utilizes two recurrent neural networks to                                | Sequence-to-        |
|    | 2014         | Representations using              | maximize the conditional probability of a                                | Sequence Modelling  |
|    |              | RNN encoder-decoder                | target sequence given a source sequence.                                 |                     |
|    |              | for statistical machine            |                                                                          |                     |
| 10 | [25]         | translation Simula Way             | OCuting in a second of the second                                        | Madaloudadadada     |
| 19 | [25]<br>2014 | Dropout: A Simple Way              | Overfitting is a grave concern in deep neural                            | Model Optimizations |
|    | 2014         | to Prevent Neural<br>Networks from | nets with huge amount of parameters.  Dropout technique uses random unit |                     |
|    |              | Overfitting                        | dropping during training to avoid co-                                    |                     |
|    |              | Overniting                         | adaption. These resultant thinned networks                               |                     |
|    |              |                                    | optimize neural net performance on                                       |                     |
|    |              |                                    | supervised learning tasks in vision, speech                              |                     |
|    |              |                                    | recognition, document categorization as well                             |                     |
|    |              |                                    | as computational biology.                                                |                     |
| 20 | [26]         | Very Deep Convolution              | 19-layer CNN using 3X3 filters with stride                               | ImageNet            |
|    | 2014         | Networks for Large-                | and pad of 1 as compared to 11X11 of                                     |                     |
|    |              | Scale Image Recognition            | Alexnet and 7X7 of ZFNet.Reinforced                                      |                     |
|    |              | - said manage metodimental         | notion that CNNs apply deep-layered                                      |                     |
|    |              |                                    | network.                                                                 |                     |
| 21 | [27]         | One BillionWord                    | Proposes a novel benchmark for estimating                                | Language Modeling   |
|    | 2014         | Benchmark for                      | progress in statistical language modelling.                              |                     |
|    |              | Measuring Progress in              |                                                                          |                     |
|    |              | Statistical Language               |                                                                          |                     |
|    |              | Modeling                           |                                                                          |                     |
| 22 | [28]         | Joint Training of a                | Proposes novel hybrid framework through a                                | Human Pose          |
|    | 2014         | Convolutional Network              | deep convolutional network and Markov                                    | Identification      |
|    |              | and a                              | Random Field. The framework is applied for                               |                     |
|    |              | Graphical Model for                | human pose evaluation in monocular images.                               |                     |
|    |              | Human Pose Estimation              |                                                                          |                     |
|    | ·            |                                    |                                                                          | l .                 |

| 22 | [20]                         | NII Tr                                                                                                                                                                                          | Emand a soul a stread, soughilities by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Basic Future                                              |
|----|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 23 | [29]<br>2014                 | Neural Turing Machines                                                                                                                                                                          | Expand neural network capabilities by coupling them to external memory resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                           |
|    | 2014                         |                                                                                                                                                                                                 | through attentional processes. System is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Computer Prototype                                        |
|    |                              |                                                                                                                                                                                                 | analogous to a Turing machine but end-to-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |
|    |                              |                                                                                                                                                                                                 | end differentiable. Efficient training with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |
|    |                              |                                                                                                                                                                                                 | gradient descent possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                           |
| 24 | [30]                         | Going Deeper with                                                                                                                                                                               | GoogLeNet a 22-layer CNN, winner of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ImageNet                                                  |
| 24 | 2014                         | Convolutions                                                                                                                                                                                    | ILSVRC 2014 with 6.7% error rate. Utilized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Imagervet                                                 |
|    | 2014                         | Convolutions                                                                                                                                                                                    | 9 inception modules with over 100 layers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |
|    |                              |                                                                                                                                                                                                 | No sequential stacking of layers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |
| 25 | [31]                         | DRAW: A Recurrent                                                                                                                                                                               | Deep Recurrent Attentive Writer (DRAW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Deep Image                                                |
|    | 2015                         | Neural Network for                                                                                                                                                                              | utilizing spatial attention mechanism to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Generative Model                                          |
|    |                              | Image Generation                                                                                                                                                                                | mimic the foveation of human eye with a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           |
|    |                              |                                                                                                                                                                                                 | sequential variational auto-encoding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |
|    |                              |                                                                                                                                                                                                 | framework to construct complex images.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           |
| 26 | [32]                         | End-to-End Memory                                                                                                                                                                               | Neural Network with recurrent attention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           |
|    | 2015                         | Networks                                                                                                                                                                                        | model over a large external memory. A type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                           |
|    |                              |                                                                                                                                                                                                 | of memory network trained end-to-end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |
|    |                              |                                                                                                                                                                                                 | possibly without supervision. Can be applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|    |                              |                                                                                                                                                                                                 | for a diverse variety of tasks from question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|    |                              |                                                                                                                                                                                                 | answering to language modelling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                           |
| 27 | [33]                         | A Neural                                                                                                                                                                                        | Approach for conversational modelling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Natural Language                                          |
|    | 2015                         | Conversational Model                                                                                                                                                                            | based on sequence to sequence framework.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Interception                                              |
|    |                              |                                                                                                                                                                                                 | Used to predict the next sentence in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           |
| 20 | F2.41                        | D D '1 11 '                                                                                                                                                                                     | conversation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T NI                                                      |
| 28 | [34]                         | Deep Residual Learning                                                                                                                                                                          | Microsoft ResNet, a 152-layer network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ImageNet                                                  |
|    | 2015                         | for Image Recognition                                                                                                                                                                           | architecture winner of ILSVRC 2015 with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           |
|    |                              |                                                                                                                                                                                                 | error rate 3.6%. An ultra-deep network spatial size compression from 224X224 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           |
|    |                              |                                                                                                                                                                                                 | 56X56 right after first two layers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           |
| 29 | [35]                         | Deep Visual-Semantic                                                                                                                                                                            | Aligns natural language descriptions of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inter-modal                                               |
| 23 | 2015                         | Alignments for                                                                                                                                                                                  | images and their regions. Learns inter-modal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | correspondence                                            |
|    | 2010                         | Generating Image                                                                                                                                                                                | correspondence between language and visual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | between Language                                          |
|    |                              | Descriptions                                                                                                                                                                                    | data through convolutional neural networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and Visual Data                                           |
|    |                              | 1                                                                                                                                                                                               | over image parts and bidirectional recurrent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|    |                              |                                                                                                                                                                                                 | neural networks over sentences.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           |
| 30 | [36]                         | Algorithmic                                                                                                                                                                                     | Artificial neural networks are trained on a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Automated Music                                           |
|    | 2015                         | Composition of                                                                                                                                                                                  | large range of melodies to be capable of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Composers                                                 |
|    |                              | Melodies with Deep                                                                                                                                                                              | reproducing long-range temporal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           |
|    | 1                            |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           |
|    |                              | Recurrent Neural                                                                                                                                                                                | dependencies typical of music.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           |
| 31 |                              | Networks                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           |
| 1  | [37]                         | Networks Deep Speech 2: End-to                                                                                                                                                                  | End-to-End Deep learning approach applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Baidu Speech                                              |
|    | [37]<br>2015                 | Networks Deep Speech 2: End-to End Speech Recognition                                                                                                                                           | End-to-End Deep learning approach applied to recognize either English/Mandarin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Baidu Speech<br>Recognition System                        |
|    |                              | Networks Deep Speech 2: End-to End Speech Recognition in English and                                                                                                                            | End-to-End Deep learning approach applied to recognize either English/Mandarin Chinese speech. Applied HPC techniques to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           |
|    |                              | Networks Deep Speech 2: End-to End Speech Recognition                                                                                                                                           | End-to-End Deep learning approach applied to recognize either English/Mandarin Chinese speech. Applied HPC techniques to iterate quickly to identify superior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |
|    | 2015                         | Networks Deep Speech 2: End-to End Speech Recognition in English and Mandarin                                                                                                                   | End-to-End Deep learning approach applied to recognize either English/Mandarin Chinese speech. Applied HPC techniques to iterate quickly to identify superior architecture and algorithms.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Recognition System                                        |
| 32 | [38]                         | Networks Deep Speech 2: End-to End Speech Recognition in English and Mandarin  Net2Net: Accelerating                                                                                            | End-to-End Deep learning approach applied to recognize either English/Mandarin Chinese speech. Applied HPC techniques to iterate quickly to identify superior architecture and algorithms.  Proposes techniques for rapidly transferring                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           |
|    | 2015                         | Networks Deep Speech 2: End-to End Speech Recognition in English and Mandarin  Net2Net: Accelerating Learning via Knowledge                                                                     | End-to-End Deep learning approach applied to recognize either English/Mandarin Chinese speech. Applied HPC techniques to iterate quickly to identify superior architecture and algorithms.  Proposes techniques for rapidly transferring information from one neural net to another in                                                                                                                                                                                                                                                                                                                                                           | Recognition System                                        |
|    | [38]                         | Networks Deep Speech 2: End-to End Speech Recognition in English and Mandarin  Net2Net: Accelerating                                                                                            | End-to-End Deep learning approach applied to recognize either English/Mandarin Chinese speech. Applied HPC techniques to iterate quickly to identify superior architecture and algorithms.  Proposes techniques for rapidly transferring information from one neural net to another in order to accelerate training of a significantly                                                                                                                                                                                                                                                                                                           | Recognition System                                        |
| 32 | [38]<br>2015                 | Networks Deep Speech 2: End-to End Speech Recognition in English and Mandarin  Net2Net: Accelerating Learning via Knowledge Transfer                                                            | End-to-End Deep learning approach applied to recognize either English/Mandarin Chinese speech. Applied HPC techniques to iterate quickly to identify superior architecture and algorithms.  Proposes techniques for rapidly transferring information from one neural net to another in order to accelerate training of a significantly large neural net.                                                                                                                                                                                                                                                                                         | Recognition System  Model Improvement                     |
|    | [38]<br>2015                 | Networks Deep Speech 2: End-to End Speech Recognition in English and Mandarin  Net2Net: Accelerating Learning via Knowledge                                                                     | End-to-End Deep learning approach applied to recognize either English/Mandarin Chinese speech. Applied HPC techniques to iterate quickly to identify superior architecture and algorithms.  Proposes techniques for rapidly transferring information from one neural net to another in order to accelerate training of a significantly large neural net.  Novel NN architecture to learn the                                                                                                                                                                                                                                                     | Recognition System                                        |
| 32 | [38]<br>2015                 | Networks Deep Speech 2: End-to End Speech Recognition in English and Mandarin  Net2Net: Accelerating Learning via Knowledge Transfer                                                            | End-to-End Deep learning approach applied to recognize either English/Mandarin Chinese speech. Applied HPC techniques to iterate quickly to identify superior architecture and algorithms.  Proposes techniques for rapidly transferring information from one neural net to another in order to accelerate training of a significantly large neural net.                                                                                                                                                                                                                                                                                         | Recognition System  Model Improvement                     |
| 32 | [38]<br>2015                 | Networks Deep Speech 2: End-to End Speech Recognition in English and Mandarin  Net2Net: Accelerating Learning via Knowledge Transfer                                                            | End-to-End Deep learning approach applied to recognize either English/Mandarin Chinese speech. Applied HPC techniques to iterate quickly to identify superior architecture and algorithms.  Proposes techniques for rapidly transferring information from one neural net to another in order to accelerate training of a significantly large neural net.  Novel NN architecture to learn the conditional probability of an output sequence on elements that are discrete tokens to                                                                                                                                                               | Recognition System  Model Improvement                     |
| 32 | [38]<br>2015<br>[39]<br>2015 | Networks Deep Speech 2: End-to End Speech Recognition in English and Mandarin  Net2Net: Accelerating Learning via Knowledge Transfer  Pointer Networks                                          | End-to-End Deep learning approach applied to recognize either English/Mandarin Chinese speech. Applied HPC techniques to iterate quickly to identify superior architecture and algorithms.  Proposes techniques for rapidly transferring information from one neural net to another in order to accelerate training of a significantly large neural net.  Novel NN architecture to learn the conditional probability of an output sequence on elements that are discrete tokens to positions in an input sequence.                                                                                                                               | Recognition System  Model Improvement  Model Optimization |
| 32 | [38]<br>2015                 | Networks Deep Speech 2: End-to End Speech Recognition in English and Mandarin  Net2Net: Accelerating Learning via Knowledge Transfer  Pointer Networks  Achieving Human                         | End-to-End Deep learning approach applied to recognize either English/Mandarin Chinese speech. Applied HPC techniques to iterate quickly to identify superior architecture and algorithms.  Proposes techniques for rapidly transferring information from one neural net to another in order to accelerate training of a significantly large neural net.  Novel NN architecture to learn the conditional probability of an output sequence on elements that are discrete tokens to positions in an input sequence.  Computes the error rate on NIST 2000 test                                                                                    | Recognition System  Model Improvement                     |
| 32 | [38]<br>2015<br>[39]<br>2015 | Networks Deep Speech 2: End-to End Speech Recognition in English and Mandarin  Net2Net: Accelerating Learning via Knowledge Transfer  Pointer Networks                                          | End-to-End Deep learning approach applied to recognize either English/Mandarin Chinese speech. Applied HPC techniques to iterate quickly to identify superior architecture and algorithms.  Proposes techniques for rapidly transferring information from one neural net to another in order to accelerate training of a significantly large neural net.  Novel NN architecture to learn the conditional probability of an output sequence on elements that are discrete tokens to positions in an input sequence.                                                                                                                               | Recognition System  Model Improvement  Model Optimization |
| 32 | [38]<br>2015<br>[39]<br>2015 | Networks Deep Speech 2: End-to End Speech Recognition in English and Mandarin  Net2Net: Accelerating Learning via Knowledge Transfer  Pointer Networks  Achieving Human Parity in Convolutional | End-to-End Deep learning approach applied to recognize either English/Mandarin Chinese speech. Applied HPC techniques to iterate quickly to identify superior architecture and algorithms.  Proposes techniques for rapidly transferring information from one neural net to another in order to accelerate training of a significantly large neural net.  Novel NN architecture to learn the conditional probability of an output sequence on elements that are discrete tokens to positions in an input sequence.  Computes the error rate on NIST 2000 test set to conform if automated system has                                             | Recognition System  Model Improvement  Model Optimization |
| 32 | [38]<br>2015<br>[39]<br>2015 | Networks Deep Speech 2: End-to End Speech Recognition in English and Mandarin  Net2Net: Accelerating Learning via Knowledge Transfer  Pointer Networks  Achieving Human Parity in Convolutional | End-to-End Deep learning approach applied to recognize either English/Mandarin Chinese speech. Applied HPC techniques to iterate quickly to identify superior architecture and algorithms.  Proposes techniques for rapidly transferring information from one neural net to another in order to accelerate training of a significantly large neural net.  Novel NN architecture to learn the conditional probability of an output sequence on elements that are discrete tokens to positions in an input sequence.  Computes the error rate on NIST 2000 test set to conform if automated system has achieved human parity. First recognition of | Recognition System  Model Improvement  Model Optimization |

|    |              | C4142 T 124                  | tusining dimental manual materials for an islat                                          |                     |
|----|--------------|------------------------------|------------------------------------------------------------------------------------------|---------------------|
|    |              | Synthetic Ingredients        | training directed neural networks for weight updates. In such scenario, network layers   |                     |
|    |              |                              | remain locked till weight updation is                                                    |                     |
|    |              |                              | completed. Work proposes a model for                                                     |                     |
|    |              |                              | future computation of network graph.                                                     |                     |
| 36 | [42]         | Binarized Neural             | Proposes a scheme to train a BNN using                                                   | Model Improvement   |
| 30 | 2016         | Networks: Training           | binary weights and activations at runtime                                                | iviouer improvement |
|    | 2010         | Neural Networks with         | and when computing the parameters gradient                                               |                     |
|    |              | Weights and Activation       | at train-time. Torch7 and Theano framework                                               |                     |
|    |              | Constrained to +1 and -      | used to train BNN on MNIST, CIFAR-10                                                     |                     |
|    |              | 1                            | and SVHN.                                                                                |                     |
| 37 | [43]         | Network Morphism             | Analyzes morphing a well-trained neural                                                  | Model improvement   |
|    | 2016         |                              | network to a novel one in order to preserve                                              |                     |
|    |              |                              | its network function. Enables child network                                              |                     |
|    |              |                              | to inherit parent knowledge and grow to be a                                             |                     |
| 20 | E4.43        | D' 1D (N. 1                  | more powerful one.                                                                       | T C '               |
| 38 | [44]         | Pixel Recurrent Neural       | DNN that sequentially predicts raw pixels in                                             | Image Generation    |
| 39 | 2016<br>[45] | Networks Deep Learning for   | an image along the two-dimensional space.  Proposes application of Deep Learning to      | Social Media        |
| 39 | 2016         | Social Media Analytics       | extract text related features and patterns from                                          | Analytics           |
|    | 2010         | in Crises Situations         | crises related social media posts for use in                                             | 7 marytics          |
|    |              | III CIIDOD DICUACIONS        | handling crises situations.                                                              |                     |
| 40 | [46]         | Deep Learning                | Investigates role of Deep Learning in                                                    | Big data Analytics  |
|    | 2016         | Techniques in Big Data       | addressing Big Data Analytics issues like,                                               | 8                   |
|    |              | Analytics                    | mining composite patterns from substantial                                               |                     |
|    |              | •                            | volumes of data, semantic indexing, data                                                 |                     |
|    |              |                              | tagging, rapid information reclamation, and                                              |                     |
|    |              |                              | shortening discriminative tasks.                                                         |                     |
| 41 | [47]         | Mobile Big Data              | Executes distributed deep learning as an                                                 | Big data Analytics  |
|    | 2016         | Analytics using Deep         | iterative MapReduce on multiple Spark co-                                                |                     |
|    |              | Learning and Apache spark    | workers. Each worker is trained on a partial model and a master deep model is then built |                     |
|    |              | spark                        | through parameter averaging of all partial                                               |                     |
|    |              |                              | models.                                                                                  |                     |
| 42 | [48]         | Development and              | Applies deep learning to propose an                                                      | HealthCare          |
|    | 2016         | Validation of a Deep         | algorithm for automated detection of diabetic                                            |                     |
|    |              | Learning Algorithm for       | retinopathy and diabetic retinal fundus                                                  |                     |
|    |              | <b>Detection of Diabetic</b> | photographs.                                                                             |                     |
|    |              | Retinopathy in Retinal       |                                                                                          |                     |
|    | E403         | Fundus Photographs           |                                                                                          | A 11 , XX1 *        |
| 43 | [49]         | Synthesizing Obama:          | A Recurrent Neural Network trained to map                                                | Audio to Visual     |
|    | 2017         | Learning Lip Sync from       | raw audio characteristics to mouth shapes.                                               | Speech Synthesis    |
|    |              | Audio Output Obama<br>Video  | High Quality video of President Barack<br>Obama generated from his audio.                |                     |
| 44 | [50]         | Enabling large-scale         | Trains a deep neural network with a                                                      | Viscoelastic        |
|    | 2017         | viscoelastic                 | computationally able illustration of                                                     | Calculations        |
|    | 2017         | calculations via neural      | viscoelastic solutions, at any time,                                                     | Calculations        |
|    |              | network acceleration         | location, and for a huge array of                                                        |                     |
|    |              | HULWULK ALLEHEL ALIUH        | rheological structures.                                                                  |                     |
| 45 | [51]         | Using Deep Learning          | Mechanism to determine socio-economic                                                    | Demographic         |
| 43 | 2017         | and Google Street            | trends from almost 50 million images of                                                  | Prediction          |
|    | 2017         | View to Estimate the         | street scenes collected from across 200                                                  | 1 ICUICUUII         |
|    |              |                              | American cities.                                                                         |                     |
|    |              | De- mographic                | American cities.                                                                         |                     |
| 46 | [52]         | Makeup of the US             | Proposes Alpho Zoro algorithm that ass                                                   | Como Dlovino        |
| 40 | [52]         | Mastering Chess and          | Proposes AlphaZero algorithm that can                                                    | Game Playing        |
|    | 2017         | Shogi by Self-Play           | achieve, tabula rasa, superhuman                                                         |                     |
|    |              | with a General               | performance in many challenging games                                                    |                     |
|    |              | Reinforcement                | like Chess, Shogi and Go.                                                                |                     |

|    |      | Learning Algorithm          |                                            |                                         |
|----|------|-----------------------------|--------------------------------------------|-----------------------------------------|
| 47 | [53] | CheXNet:                    | Algorithm applying 121-layer CNN to        | Detection                               |
| '' | 2017 | Radiologist-Level           | detect pneumonia from chest x-rays         | Betection                               |
|    | 2017 | Pneumonia Detection         | proposed. Algorithm tested and found to    |                                         |
|    |      | on Chest X-Rays with        | exceed average radiologist performance     |                                         |
|    |      | Deep Learning               | on pneumonia detection.                    |                                         |
| 48 | [54] | Improving Palliative        | Deep Learning amalgamated with             | Healthcare                              |
|    | 2017 | Care with Deep              | Electronic Health Record Data to guess     | monitoring                              |
|    | 2017 | Learning                    | patients that are to be benefitted by      | momeoring                               |
|    |      | Zeur ming                   | palliative care. Enables palliative care   |                                         |
|    |      |                             | team to proactively reach out to patients. |                                         |
| 49 | [55] | VoxelNet: End-to-End        | Generic 3D detection network for           | Object Detection                        |
|    | 2017 | Learning for Point          | efficient 3D detection of pedestrians and  | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
|    | ,    | Cloud-Based 3D              | cyclists.                                  | 1                                       |
|    |      | Object Detection            |                                            |                                         |
| 50 | [56] | Asymmetric Actor            | Deep Reinforcement Learning offers         | Robotics                                |
|    | 2017 | Critic for Image-           | significant challenges in robotics. Actor  |                                         |
|    |      | Based robot Learning        | critic training algorithm applied to train |                                         |
|    |      |                             | robots on tasks like picking, pushing and  |                                         |
|    |      |                             | moving a block.                            |                                         |
| 51 | [57] | A Hybrid DSP/DEEP           | A hybrid DSP/deep learning approach        | Speech Signal                           |
|    | 2017 | Learning Approach to        | proposed for noise suppression             | Processing                              |
|    |      | Real-Time Full-Band         |                                            |                                         |
|    |      | Speech Enhancement          |                                            |                                         |
| 52 | [58] | Globally Normalized         | Extractive Question Answering used as      |                                         |
|    | 2017 | Reader                      | an iterative search problem to reduce the  |                                         |
|    |      |                             | space of each search step. The             |                                         |
|    |      |                             | representation is proved to be viable and  |                                         |
|    |      |                             | more learning efficient.                   |                                         |
| 53 | [59] | Dermatologist-level         | Applies single CNN for classification of   | Diagnostic                              |
|    | 2017 | Classification of Skin      | skin lesions. The tests were performed     | Healthcare                              |
|    |      | Cancer with Deep            | for identification of most common          |                                         |
|    |      | Neural Networks             | cancers to the most malignant cancers.     |                                         |
|    |      |                             | CNN achieved performance on par with       |                                         |
|    |      |                             | all experts across both cases.             |                                         |
| 54 | [60] | <b>Emergent Translation</b> | Communication game where two native        | Robotics                                |
|    | 2018 | in Multi-Agent              | speakers of a language jointly learn to    |                                         |
|    |      | Communication               | solve a visual referential problem.        |                                         |

Table 1 above is not a comprehensive summary of the different applications of deep learning. However, it is a sneak peek into the different domains into which deep learning has been successfully applied to extract useful insights from the large volumes of available data. What is interesting to note from the above table is the fact that deep learning has been successfully applied to a variety of domains only in a very recent span of let's say the past five-six years. Before2006, though deep learning existed researchers were sceptical about its viability and success[61]–[63].

#### 3. DEEP LEARNING EXPANSION

The rapidly emerging science of deep learning is an excellent resource for many powerful, future strategies and domains. As can be noticed from Table 1 in the previous section, many strategies and technologies have effectively used deep learning for attaining volume, variety and veracity in extracting useful information from data and making a machine self-reliant to mimic some human task.

However, the scene for deep architectures has never been the same since inception. Notably before 2006, attempts at training such architectures failed. In 2006, certain considerable work on deep belief nets spearheaded by Hinton [63], [64], [61] changed the scenario. 2006 thus was a remarkable year in the field of deep learning as since then a plethora of work has been undertaken in the domain[2]. The strong points of deep learning that have further promoted its widespread application in a number of domains are:

- i. They can work in a noisy environment to filter and extract information hidden within noise.
- ii. The algorithms train through examples to identify patterns and integrate the information into some sort of visual analytics displays.
- iii. Deep Learning Algorithms can apply discrimination to data to reveal patterns and valuable information.
- iv. Can easily classify unstructured as well as structured data through strategies like Deep Belief Method (DBM) or Convolutional Neural Networks (CNN) etc [6]. It applies a combination of un-supervised training and supervised fine-tuning to construct models.
- v. They mimic the human brain through artificial neural networks and progressively learn how to solve a given problem the human way.

#### 4. CHALLENGES OF DEEP LEARNING

The present decade is a remarkable one for the human race. Not only are we progressing towards a smarter universe we are also generating and accumulating vast data repository whose number shall soon outgrow our computational range[65]. In such a scenario to avoid the data chaos deep learning is being projected as the science capable of handling this vast data and putting it to effective use.

Despite its widespread application, Deep Learning science is still in its nascent stages. However, it has quickly become a primary research interest for developing and realizing smart, intelligent, autonomous machines. As per Table 1 above, almost all AI applications irrespective of the field or domain are driven by Deep Learning. However, the science is not all that rosy and still far from being flawless. There are still significant challenges of deep learning that we need to overcome effectively[6], [66]–[69].

- i. Big Data: As per National Security Agency [6] world processes more than 1.8 Exabytes of data per day. Further the amount of data being generated by the human race across the globe is expanding at an exponential rate each day. Deep Learning when used with Big Data etc has the potential to manage and analyze this large amount of supervised or unsupervised information in a short time. However, training deep learning algorithms on such massive amounts of data with a single processor is a challenging task. Hence, clusters of CPU or graphic processing unit (GPUs) have been applied to increase the training speed of deep learning algorithms. However, though many optimizations have been achieved, the complete process is still time consuming and requires high data processing capabilities.
- ii.Massive Datasets[67], [70]:Deep learning has found successful application in varied domains like computer vision, natural language processing, robotics etc. However, notably the number of data samples for an efficient learning should be 10X the number of parameters in deepnet. Hence, large volume of data is a pre-requisite for the success of such networks.
- iii. Neural Network Over fitting: There can be a significant difference in error reported in training data set and error encountered in real data set. This can be a common issue in large networks with multiple parameters thus affecting model efficacy.
- iv. Hyper-Parameter Optimization: there are certain parameters whose values are defined prior to commencement of learning. Such parameters are called as hyper-parameters. A minor change in value of these parameters can lead to a significant change in model performance.
- v. Trial-and-Error Learning (How much depth is sufficient?): Neural networks by nature are a black box as their operations are opaque to the humans[70]. Deep Learning creates computational models composed of multiple processing layers to learn data representation through multi-level abstraction. However, notably in this case the layer of abstractions are not decided by some human engineer but are learned from data through some generic learning algorithm. Hence, deep nets process inputs in a layered, non-linear mechanism to initialize hidden layer nodes to learn generic structures and representations. These representations are then submitted to a supervised layer to fine tune the deep net through backpropogation algorithm towards optimized representations for desired task.
- vi. Brittle Nature: Deep learning networks are brittle in the sense that a trained network can only perform on the task it is trained for and performs poorly on any new task.
- vii. Ex post High-Dimensional Path Attribution: Deep Learning takes raw data as an input and the machine learns from it how to achieve the desirable outcome. This is a deeper challenge that involves linking series of actions over time and synthesizing them into useful lessons. This link

between the attribution of actions (ex: hiding, movement etc) and outcomes is based on complex temporal relationships and objective functions.

Many different systems are being worked upon to overcome the above limitations [70]–[73].

### 5. CONCLUSION

Deep Learning science has been existing for decades and its genesis can be traced back to artificial neural networks (ANN) way back from the late 50's[1]. However, it was grounded in deep sceptics at inception. However, it overcame rose above all uncertainties to be a technology applied to many significant domains of human life. The tremendous progress made by deep systems in a short span of a decade proves beyond doubt that the impact of this science is actually not overhyped[74]. However, the science is still young and there are a number of challenges to be overcome. Expecting deep learning combined with improved data processing being a solution to computers gaining generic human-like intelligence (human equivalent AI) is still a distant dream.

#### **BIBLIOGRAPHY**

- [1] F. Rosenblatt, "The Perceptron A Perceiving and Recognizing Automaton," *Report 85, Cornell Aeronautical Laboratory*. pp. 460–1, 1957.
- [2] Y. Bengio, "Learning Deep Architectures for AI," *Found. Trends*® *Mach. Learn.*, vol. 2, no. 1, pp. 1–127, 2009.
- [3] I. Arel, D. C. Rose, and T. P. Karnowski, "Deep Machine Learning A New Frontier in Artificial Intelligence Research," *IEEE Comput. Intell. Mag.*, vol. 5, no. 4, pp. 13–18, 2010.
- [4] Y. Lecun, Y. Bengio, and G. Hinton, "Deep learning," *Nature*, vol. 521, no. 7553, pp. 436–444, 2015.
- [5] T. Chen, R. Xu, Y. He, and X. Wang, "Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN," *Expert Syst. Appl.*, vol. 72, pp. 221–230, 2017.
- [6] Xue-Wen Chen and Xiaotong Lin, "Big Data Deep Learning: Challenges and Perspectives," *IEEE Access*, vol. 2, pp. 514–525, 2014.
- [7] "Đ Đ  $\square$  'a ä íUí Å m‡Yqu(ø ...  $\mathbb{D}^{3}/P$ "f Y f P u T TM‡¦ R f ' (&."
- [8] P. Frasconi, M. Gori, and G. Soda, "Local Feedback Multilayered Networks," *Neural Comput.*, vol. 4, no. 1, pp. 120–130, 1992.
- [9] "lecun- at el Gradient-based learning applied to document."
- [10] G. E. Hinton, S. Osindero, and Y. W. Teh, "A fast learning algorithm for deep belief nets.," *Neural Comput.*, vol. 18, no. 7, pp. 1527–54, 2006.
- [11] A. J. Holden, D. J. Robbins, W. J. Stewart, D. R. Smith, S. Schultz, M. Wegener, S. Linden, C. Hormann, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, D. Schurig, D. R. Smith, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, A. J. Taylor, C. Highstrete, M. Lee, R. D. Averitt, S. Schultz, P. Markos, C. M. Soukoulis, D. Mcpeake, S. A. Ramakrishna, J. B. Pendry, V. M. Shalaev, M. Maksimchuk, D. Umstadter, W. Chen, Y. R. Shen, and J. V Moloney, "Science," vol. 313, no. July, pp. 504–507, 2006.
- [12] P. Vincent PASCALVINCENT and H. Larochelle LAROCHEH, "Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion Pierre-Antoine Manzagol," *J. Mach. Learn. Res.*, vol. 11, pp. 3371–3408, 2010.
- [13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," *Adv. Neural Inf. Process. Syst.*, pp. 1–9, 2012.
- [14] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V Le, M. Z. Mao, M. A. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, "Large Scale Distributed Deep Networks," *NIPS 2012 Neural Inf. Process. Syst.*, pp. 1–11, 2012.
- [15] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, "Deep Neural Networks for Acoustic Modeling in Speech Recognition," *IEEE Signal Process. Mag.*, vol. 29, no. 6, pp. 82–97, 2012.
- [16] Q. V. Le, M. A. Ranzato, M. Devin, G. S. Corrado, and A. Y. Ng, "Building High-level Features Using Large Scale Unsupervised Learning," *Arxiv*, vol. 28, no. 4, pp. 61–76, 2012.

- [17] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors," pp. 1–18, 2012.
- [18] A. Graves, A. Mohamed, and G. Hinton, "Speech Recognition with Deep Recurrent Neural Networks," no. 3, 2013.
- [19] M. D. Zeiler and R. Fergus, "Visualizing and Understanding Convolutional Networks arXiv:1311.2901v3 [cs.CV] 28 Nov 2013," Comput. Vision–ECCV 2014, vol. 8689, pp. 818– 833, 2014.
- [20] M. Mohri and A. Rostamizadeh, "Perceptron Mistake Bounds," *arXiv Prepr. arXiv1305.0208*, 2013.
- [21] A. Graves, "Generating Sequences With Recurrent Neural Networks," pp. 1–43, 2013.
- [22] V. Vanhoucke, M. Devin, and G. Heigold, "Multiframe deep neural networks for acoustic modeling," *ICASSP*, *IEEE Int. Conf. Acoust. Speech Signal Process. Proc.*, pp. 7582–7585, 2013.
- [23] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, "On the importance of initialization and momentum in deep learning," *Jmlr W&Cp*, vol. 28, no. 2010, pp. 1139–1147, 2013.
- [24] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation," 2014.
- [25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A Simple Way to Prevent Neural Networks from Overfitting," *J. Mach. Learn. Res.*, vol. 15, pp. 1929–1958, 2014.
- [26] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," pp. 1–14, 2014.
- [27] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and T. Robinson, "One billion word benchmark for measuring progress in statistical language modeling," *Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH*, pp. 2635–2639, 2014.
- [28] J. Tompson, A. Jain, Y. LeCun, and C. Bregler, "Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation," *Adv. Neural Inf. Process. Syst.*, pp. 1799-1807, 2014.
- [29] A. Graves, G. Wayne, and I. Danihelka, "Neural Turing Machines," pp. 1–26, 2014.
- [30] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, C. Hill, and A. Arbor, "Going Deeper with Convolutions," pp. 1–9, 2014.
- [31] K. Gregor, I. Danihelka, A. Graves, and D. Wierstra, "DRAW: A Recurrent Neural Network For Image Generation," *Icml-2015*, pp. 1–16, 2014.
- [32] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, "End-To-End Memory Networks," pp. 1–9, 2015.
- [33] O. Vinyals and Q. Le, "A Neural Conversational Model," vol. 37, 2015.
- [34] S. Wu, S. Zhong, and Y. Liu, "Deep residual learning for image steganalysis," *Multimed. Tools Appl.*, pp. 1–17, 2017.
- [35] A. Karpathy and F. F. Li, "Deep visual-semantic alignments for generating image

- descriptions," Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2015.
- [36] F. Colombo, S. P. Muscinelli, A. Seeholzer, J. Brea, and W. Gerstner, "Algorithmic Composition of Melodies with Deep Recurrent Neural Networks," 2016.
- [37] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel, L. Fan, C. Fougner, T. Han, A. Hannun, B. Jun, P. LeGresley, L. Lin, S. Narang, A. Ng, S. Ozair, R. Prenger, J. Raiman, S. Satheesh, D. Seetapun, S. Sengupta, Y. Wang, Z. Wang, C. Wang, B. Xiao, D. Yogatama, J. Zhan, and Z. Zhu, "Deep Speech 2: End-to-End Speech Recognition in English and Mandarin," pp. 1–28, 2015.
- [38] T. Chen, I. Goodfellow, and J. Shlens, "Net2Net: Accelerating Learning via Knowledge Transfer," pp. 1–12, 2015.
- [39] O. Vinyals, M. Fortunato, and N. Jaitly, "Pointer Networks," pp. 1–9, 2015.
- [40] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, and G. Zweig, "Achieving Human Parity in Conversational Speech Recognition," 2016.
- [41] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves, D. Silver, and K. Kavukcuoglu, "Decoupled Neural Interfaces using Synthetic Gradients," vol. 1, 2016.
- [42] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, "Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1," 2016.
- [43] T. Wei, C. Wang, Y. Rui, and C. W. Chen, "Network Morphism," 2016.
- [44] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, "Pixel Recurrent Neural Networks," vol. 48, 2016.
- [45] M. Ben Lazreg and O. Granmo, "Deep Learning for Social Media Analysis in Crises Situations," no. June, pp. 1–6, 2016.
- [46] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, and E. Muharemage, "Deep Learning Techniques in Big Data Analytics," in *Big Data Technologies and Applications*, Cham: Springer International Publishing, 2016, pp. 133–156.
- [47] M. A. Alsheikh, D. Niyato, S. Lin, H. Tan, and Z. Han, "Mobile big data analytics using deep learning and apache spark," *IEEE Netw.*, vol. 30, no. 3, pp. 22–29, May 2016.
- [48] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros, R. Kim, R. Raman, P. C. Nelson, J. L. Mega, and D. R. Webster, "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs," *JAMA J. Am. Med. Assoc.*, vol. 316, no. 22, pp. 2402–2410, 2016.
- [49] S. Suwajanakorn, S. M. Seitz, and I. Kemelmacher-Shlizerman, "Synthesizing Obama: Learning Lip Sync from Audio Output Obama Video," *ACM Trans. Graph. Artic.*, vol. 36, no. 95, 2017.
- [50] P. M. R. DeVries, T. Ben Thompson, and B. J. Meade, "Enabling large-scale viscoelastic calculations via neural network acceleration," *Geophys. Res. Lett.*, vol. 44, no. 6, pp. 2662–2669, 2017.
- [51] T. Gebru, J. Krause, Y. Wang, D. Chen, J. Deng, E. L. Aiden, and L. Fei-Fei, "Using Deep Learning and Google Street View to Estimate the Demographic Makeup of the US," pp. 1–41,

2017.

- [52] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, "Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm," pp. 1–19, 2017.
- [53] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, K. Shpanskaya, M. P. Lungren, and A. Y. Ng, "CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning," 2017.
- [54] A. Avati, K. Jung, S. Harman, L. Downing, A. Ng, and N. H. Shah, "Improving Palliative Care with Deep Learning," 2017.
- [55] Y. Zhou and O. Tuzel, "VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection," 2017.
- [56] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel, "Asymmetric Actor Critic for Image-Based Robot Learning," 2017.
- [57] J.-M. Valin, "A Hybrid DSP/Deep Learning Approach to Real-Time Full-Band Speech Enhancement," 2017.
- [58] J. Raiman and J. Miller, "Globally Normalized Reader," 2017.
- [59] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, "Dermatologist-level classification of skin cancer with deep neural networks," *Nature*, vol. 542, no. 7639, pp. 115–118, 2017.
- [60] J. Lee, K. Cho, J. Weston, and D. Kiela, "Emergent Translation in Multi-Agent Communication," pp. 1–16, 2017.
- [61] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy Layer-Wise Training of Deep Networks," *Adv. Neural Inf. Process. Syst.*, vol. 19, no. 1, p. 153, 2007.
- [62] G. E. Hinton, S. Osindero, and Y.-W. Teh, "A Fast Learning Algorithm for Deep Belief Nets," *Neural Comput.*, vol. 18, no. 7, pp. 1527–1554, 2006.
- [63] M. A. Ranzato, C. Poultney, S. Chopra, and Y. Lecun, "Efficient Learning of Sparse Representations with an Energy-Based Model," *Adv. Neural Inf. Process. Syst.*, vol. 19, pp. 1137–1134, 2007.
- [64] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, *Continuous control with deep reinforcement learning*, vol. 2, no. 1. 2015.
- [65] J. Gantz and D. Reinsel, "The Digital Universe Decade Are You Ready?," *Idc*, vol. 2009, no. May, p. 16, 2010.
- [66] V. Dhar, "The Scope and Challenges for Deep Learning," *Big Data*, vol. 3, no. 3, pp. 127–129, 2015.
- [67] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, "Deep learning for healthcare: review, opportunities and challenges," *Brief. Bioinform.*, no. December 2016, pp. 1–11, 2017.
- [68] P. Angelov and A. Sperduti, "Challenges in Deep Learning," *Eur. Symp. Artif. Neural Networks, Comput. Intell. Mach. Learn.*, no. April, pp. 27–29, 2016.
- [69] G. Mesnil, Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio, I. J. Goodfellow, E. Lavoie, X. Muller, G. Desjardins, D. Warde-Farley, P. Vincent, A. Courville, and J. Bergstra, "Unsupervised and

- Transfer Learning Challenge: a Deep Learning approach," *JMLR W& CP Proc. Unsupervised Transf. Learn. Chall. Work.*, vol. 27, pp. 97–110, 2012.
- [70] M. Garnelo, K. Arulkumaran, and M. Shanahan, "Towards Deep Symbolic Reinforcement Learning," pp. 1–13, 2016.
- [71] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R Pascanu, and R. Hadsell, "Progressive Neural Networks," 2016.
- [72] R. M. Seraj, "Multi-task Learning," 2014.

- [73] L. Kaiser, A. N. Gomez, N. Shazeer, A. Vaswani, N. Parmar, L. Jones, and J. Uszkoreit, "One Model To Learn Them All," 2017.
- [74] A. Nguyen, J. Yosinski, and J. Clune, "Deep neural networks are easily fooled: High confidence predictions for unrecognizable images," *Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.*, vol. 07–12–June, pp. 427–436, 2015.