八、滞后变量模型

目录

- 滞后变量模型
- ② 有限分布滞后模型及其估计
- ③ 几何分布滞后模型
- 4 自回归模型的估计
- 5 代码输出结果分析

滞后变量模型概述

- ▶ 滞后现象及其产生的原因
 - 含义: 因变量受其自身或其他经济变量前期水平影响的现象
 - 产生原因:

经济变量自身的原因;

决策者心理上的原因;

技术上的原因;

制度的原因

滞后变量模型概述

- ▶滞后变量和滞后变量模型
 - 滞后变量是指过去时期、对当前因变量产生影响的变量,分为滞后 解释变量、滞后因变量
 - 滞后变量模型:

$$y_t = a + b_0 x_t + b_1 x_{t-1} + \dots + b_k x_{t-k} + \gamma_1 y_{t-1} + \dots + \gamma_p y_{y-p} + u_t;$$

其中, y_{t-p} 为被解释变量 y_t 的第 p 阶滞后, x_{t-p} 为解释变量 x_t 的第 k 阶滞后,也称为自回归分布滞后模型 (ADL)

• 分布滞后模型: $y_t = a + b_0 x_t + b_1 x_{t-1} + \dots + b_k x_{t-k} + u_t$; 其中没有滞后因变量, b_0 是短期影响乘数 (短期乘数), b_i 是延期过渡性乘数 (中期乘数、动态乘数), $\sum b_i$ 是长期影响乘数 (长期乘数),乘数也称为边际效应

滞后变量模型概述

▶滞后变量和滞后变量模型

- 自回归模型: $y_t = a + b_0 x_t + \gamma_1 y_{t-1} + \cdots + \gamma_p y_{y-p} + u_t$; 其中仅包括因变量的若干期滞后与自变量的当期值,p是自回归模型的阶数, b_0 是短期影响乘数 (短期乘数), b_i 是延期过渡性乘数 (中期乘数、动态乘数), $\sum b_i$ 是长期影响乘数 (长期乘数),乘数也称为边际效应
- 滞后变量模型的作用:

更加全面、客观地描述经济现象,提高模型的拟合度; 反映过去的经济活动对现期经济行为的影响,描述了经济系统的运动过程,使静态模型成为动态模型; 模拟分析经济系统的变化和调整过程

5/14

有限分布滞后模型及其估计

▶有限分布滞后模型

• 有限分布滞后模型用 OLS 法估计的困难: 损失自由度;产生多重共线性;滞后长度难以确定

• 估计方法:

经验加权法: 递减滞后结构: 权数递减,认为滞后解释变量对因变量的影响随时间的推移而减小:

不变滞后结构: 权数不变, 认为滞后解释变量对因变量的影响不随时间而变化;

A型滞后结构: 权数先递增后递减;

经验加权法简单易行、不损失自由度、避免多重共线性,但主观随意性较大,一般多选几组权数,通过各种检验来选择最佳方程

有限分布滞后模型及其估计

▶ 有限分布滞后模型

• 估计方法:

阿尔蒙法 (Almon 法): 对
$$y_t = a + b_0 x_t + b_1 x_{t-1} + \dots + b_k x_{t-k} + u_t$$
 中的 b_i 用 m 次多项式逼近,则 $y_t = a + \alpha_0 z_{0t} + \alpha_1 z_{1t} + \dots + \alpha_m z_{mt} + u_t$; 其中 $z_{0t} = x_t + x_{t-1} + \dots + x_{t-k}, z_{jt} = x_{t-1} + 2^j x_{t-2} + \dots + k^j x_{t-k}$; 用 OLS 法估计出 y_t 与 z_{jt} 的关系后, $b_i = \alpha_0 + \alpha_1 i + \alpha_2 i^2 + \dots + \alpha_m i^m$; 检验:相关系数; \bar{R}^2 ,值越大,拟合优度越好;施瓦茨准则 SC = $\ln \frac{RSS}{n} + \frac{k+2}{n} \ln n$;

几何分布滞后模型

▶ 几何分布滞后模型

• 无限分布滞后模型: $y_t = a + b_0 x_t + b_1 x_{t-1} + \dots + u_t$; 令 $b_i = b_0 \lambda^i$, 则 $y_t = a + b_0 (x_t + \lambda x_{t-1} + \dots) + u_t$; 其中 λ 为分布滞后衰减率 (决定滞后衰减速度,越接近 0,速度越快), $1 - \lambda$ 为调整速度, b_0 是短期影响乘数, $b_i = b_0 \lambda^i$ 是过渡性影响乘数, $\sum b_i = \frac{b_0}{1 - \lambda}$ 是长期影响乘数

• 有限分布滞后模型 (库伊克模型):

$$y_t = a + b_0 x_t + b_1 x_{t-1} + \dots + b_k x_{t-k} u_t;$$

令 $b_i = b_0 \lambda^i$, 则 $y_t = a(1 - \lambda) + b_0 x_t + \lambda y_{t-1} + u_t^*$, 其中 $u_t^* = u_t - \lambda u_{t-1};$
 b_0 是短期边际消费倾向, $\frac{b_0}{1 - \lambda}$ 是长期边际消费倾向

几何分布滞后模型

▶ 几何分布滞后模型

• 自适应预期模型: $y_t = a + bx_{t+1}^* + u_t$, 令 $x_{t+1}^* = x_t^* + \gamma(x_t - x_t^*)$, 即 $x_{t+1}^* - x_t^* = \gamma(x_t - x_t^*)$, 则 $y_t = a\gamma + b\gamma x_t + (1 - \gamma)y_{t-1} + u_t$; 也可以推广成无限分布滞后模型 $y_t = a + b\gamma x_t + b\gamma(1 - \gamma)x_{t-1} + b\gamma(1 - \gamma)^2 x_{t-2} + \cdots + u_t$; $b\gamma$ 是短期影响乘数, $b\gamma(1 - \gamma)^i$ 是延期过渡性影响乘数,b 是长期影响乘数

几何分布滞后模型

▶ 几何分布滞后模型

• 局部调整模型:
$$y_t^* = a + bx_t + u_t$$
, 令 $y_t - y_{t-1} = \delta(y_t^* - y_{t-1})$, 则 $y_t = a\delta + b\delta x_t + (1 - \delta)y_{t-1} + u_t$; 也可以推广成无限分布滞后模型 $y_t = a\delta + b\delta x_t + b\delta(1 - \delta)x_{t-1} + b\delta(1 - \delta)^2 x_{t-2} + \dots + u_t$; $b\delta$ 是短期影响乘数, $b\delta(1 - \delta)^i$ 是延期过渡性影响乘数, b 是长期影响乘数

自回归模型的估计

- ▶ 自回归模型估计中的问题
 - 库伊克模型: $u_t^* = u_t \lambda u_{t-1}$, $Cov(u_t^*, u_{t-1}^*) \neq 0$, $Cov(y_{t-1}, u_t^*) \neq 0$
 - 自适应预期模型: $u_t^* = u_t (1 \lambda)u_{t-1}$, $Cov(u_t^*, u_{t-1}^*) \neq 0$, $Cov(y_{t-1}, u_t^*) \neq 0$
 - 局部调整模型: $u_t^* = \delta u_t$, $Cov(u_t^*, u_{t-1}^*) = 0$, $Cov(y_{t-1}, u_t^*) = 0$, 可以 OLS 法直接估计
 - $Cov(u_t^*, u_{t-1}^*) \neq 0$ 可以用广义差分法消除自相关性的影响; $Cov(y_{t-1}, u_t^*) \neq 0$ 可以用工具变量法
 - 库伊克变换模型和自适应预期模型需用工具变量法进行估计

自回归模型的估计

▶ 自相关性的检验

• 德宾 h 检验: $y_t = a^* + b_0^* x_t + b_1^* y_{t-1} + u_t^*$, $H_0: \rho = 0, H_1: \rho \neq 0$ 统计量为 $h = \left(1 - \frac{\mathrm{DW}}{2}\right) \sqrt{\frac{n}{1 - n \mathrm{Var}(\hat{b}_1^*)}} \to N(0, 1);$ $|h| > z_{\alpha/2}$, 拒绝 H_0 , 认为存在一阶自相关; $|h| \leq z_{\alpha/2}$, 接受 H_0 , 认为不存在一阶自相关

• LM 检验:

$$y_t = a + b_0 x_t + b_1 x_{t-1} + \dots + b_k x_{t-k} + \gamma_1 y_{t-1} + \dots + \gamma_p y_{y-p} + u_t$$
, $u_t = \rho_1 u_{t-1} + \rho_2 u_{t-2} + \dots + \rho_q u_{t-q} + v_t$, $H_0: \rho_1 = \rho_2 = \dots = \rho_q = 0, H_1: \rho_1, \rho_2, \dots, \rho_q$ 不全为 0; 检验量 $LM(q) = nR^2 \to \chi^2(q); \ LM(q) > \chi^2_{\alpha}(q), \ 拒绝 H_0, \ 认为存在自相关性; $LM(q) < \chi^2_{\alpha}(q), \ 接受 H_0, \ 认为不存在自相关性$$

代码输出结果分析

▶ 回归分析结果

同第二章:

常数和解释变量	参数估计值	参数标准误差	t统计量	双侧概率
$C(b_0)$	331.5264	57.16954	5.799003	0.0000
$PI(b_1)$	0.692812	0.006279	110.3337	0.0000
决定系数	0.997297	被解释变量均值		4662.514
调整的决定系数	0.997215	被解释变量标准差		4659.100
回归标准误差	245.8925	赤池信息准则		13.90311
残差平方和	1995283.	施瓦兹信息准则		13.99199
对数似然函数	-241.3044	汉南准则		13.93379
F统计量	12173.53	DW统计量		0.180221
F统计量的概率	0.000000			

代码输出结果分析

▶ 各种检验的输出结果分析

同第四章:

英文	含义	英文	含义
Heterpskedasticity	检验方法	F-statistic	回归模型的 F 统计
Test			量
Obs*R-squared	F检验统计量	Prob.	F统计量对应的 p 值
		Chi-Square(2)	
Prob. F(a, b)	自由度为 a,b 的 F 分	Scaled explained	LM 统计量
	布临界值	SS	