Support Vector Machine using Bill Authentication Dataset

Part B Assignment 6

Name: Ayan Gadpal

1 svm data.head()

Roll No. 43308

A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems. After giving an SVM model sets of labeled training data for each category, they're able to categorize new text.

	Variance	Skewness	Curtosis	Entropy	Class
0	3.62160	8.6661	-2.8073	-0.44699	0
1	4.54590	8.1674	-2.4586	-1.46210	0
2	3.86600	-2.6383	1.9242	0.10645	0
3	3.45660	9.5228	-4.0112	-3.59440	0
4	0.32924	-4 4552	4 5718	-0.98880	0

Our task is to predict whether a bank currency note is **authentic or not** based upon four attributes of the note i.e. skewness of the wavelet transformed image, variance of the image, entropy of the image, and curtosis of the image. This is a **binary classification problem and I will use SVM algorithm** to solve this problem. The rest of the section consists of standard machine learning steps.

Preparing Features and Target Variable

```
1 X = svm_data.drop('Class', axis=1)
2 y = svm_data['Class']
```

Splitting the Dataset for training and testing

▼ Apply SVM using the linear kernel

Prediction

```
1 y pred = svclassifier.predict(X test)
```

▼ Confusion Matrix

```
1 from sklearn.metrics import classification_report, confusion_matrix
2 print(confusion_matrix(y_test,y_pred))
3
    [[138     3]
      [ 0 134]]
```

1 print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0 1	1.00 0.98	0.98 1.00	0.99 0.99	141 134
accuracy macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99 0.99	275 275 275