12 הרצאה

רשתות זרימה

אלגוריתם אדמונדס קרפ, שידוך בגרף דו צדדי

תזכורת

האלגוריתם הגנרי של פורד פלקרסון:

- $e \in E$ לכל $f(e) \leftarrow 0$ מציבים מציבים .1
- (G_f,s,t,c_f) כל עוד יש מסלול שיפור ברשת השיורית .2
- (א) מציבים בf את הזרימה המשופרת לפי למת שיפור הזרימה
 - f את פולטים את

ראינו שאלגוריתם זה אינו פולינומי אפילו כאשר כל הקיבולים שלמים (ואף במקרה הכללי הוא אינו עוצר כלל).

אלגוריתם אדמונדס קרפ

מקרה פרטי של אלגוריתם זה הוא האלגוריתם של אדמונדס וקרפ:

- $e \in E$ לכל $f(e) \leftarrow 0$ מציבים .1
- (G_f, s, t, c_f) כל עוד יש מסלול שיפור ברשת השיורית .2
 - t-ל s-מסלול קצר ביותר מ-P איהי (א)
- הזרימה שיפור לפי למת שיפור הזרימה המשופרת לבי הזרימה לבי f והצב ב-f
 - f מולטים את 3

כעת נראה שאלגוריתם זה הוא פולינומי ללא תלות בפונקציית הקיבול.

s מהצומת v מהצומת של הצוחק את המרחק אל הביה, וב- $d_{f_i}(v)$ את המרחק של הצומת שמחשב האלגוריתם בכל איטרציה, וב- $d_{f_i}(v)$ את המרחק של הצומת v מהצומת ברשת השיורית.

 $d_{f_i}(v) \leq d_{f_{i+1}}(v)$ -טענה 1. לכל i ולכל v מתקיים ש

 $.G_{f_{i+1}}$ -ם s-ם מ-s- מהמחק של - המרחק על באינדוקציה נוכיח באינדוקציה נוכיח נוכיח ישל נתון, נוכיח באינדוקציה א

k=0 טריוויאלי. k=0

 $s=v_0,\ldots,v_k,v_{k+1}=v$ מתקיים (לפי הנחת במרחק k+1 מרחק לפי במרחק צעד: עבור צומת אינדוקציה) ש:

$$d_{f_i}(v_k) \le d_{f_{i+1}}(v_k)$$

. אז סיימנו ב- G_{f_i} קיימת קיימת ער $v_k v_{k+1}$ אז סיימנו

אחרת במסלול השיפור ב- G_{f_i} קיימת הקשת אחרת ומכאן:

$$d_{f_i}(v_{k+1}) = d_{f_i}(v_k) - 1 \le d_{f_{i+1}}(v_k) - 1 = d_{f_{i+1}}(v_{k+1}) - 2$$

 $f_i(v) \leq f_j(v)$ מסקנה 1. לכל v ולכל i < j ולכל

 $d_{f_{i+1}}(v) \geq d(f_i(v)) + 2$ או $uv \notin E_{f_i}$ י $uv \in E_{f_{i+1}}$ אם כסקנה 2. אם

הגדרה 1 (קשת קריטית). בהינתן מסלול P נגיד שקשת e במסלול היא קריטית אם הקיבול שלה הוא הפיניפלי פבין כל הקשתות במסלול.

 $e
otin E_{fi+1}$ אז מסלול שיפור ב- G_{f_i} ו- $e
otin G_{f_i}$ אז מסלול שיפור ב-P מסלול שיפור ב-

הוכחה. נובע ישירות מהגדרת הרשת השיורית.

מסקנה 3. בעהלך ריצת האלגוריתם, קשת uv יכולה להיות קריטית $\frac{|V|}{2}$ פעעים לכל היותר.