微积分 A (2)

姚家燕

第 10 讲

第9讲回顾

1. 一致连续函数:

- 定义, 否定表述, 与连续函数的关系.
- 判别方法: 定义, 有界闭集上的连续函数.
- 否定性判别: 函数 f 在 Ω 上非一致连续当且 仅当存在 $\varepsilon_0 > 0$ 以及 Ω 中点列 $\{X_k\}$, $\{Y_k\}$ 使得 $\lim_{k \to +\infty} ||X_k Y_k|| = 0$, 但 $\forall k \ge 1$, 却有 $|f(X_k) f(Y_k)| \ge \varepsilon_0$.
- 极限与极限次序可交换性.

2. 含参变量常义积分及其性质

- 极限与积分次序可交换性 (被积函数连续).
- 积分与积分次序可交换性 (被积函数连续).
- 求导与积分次序可交换性 (被积函数连续, 偏导函数连续).
- 变上、下限含参积分的导数 (被积函数连续, 偏导函数连续, 上、下限可导).

第 10 讲

例 2. 计算 $I = \int_0^1 \frac{x^b - x^a}{\log x} dx \ (a, b > 0)$.

解: 方法 1. 由积分与积分次序可交换性可知

$$I = \int_0^1 \frac{x^b - x^a}{\log x} dx = \int_0^1 \left(\int_a^b x^y dy \right) dx$$

$$= \int_a^b \left(\int_0^1 x^y dx \right) dy = \int_a^b \left(\frac{x^{y+1}}{y+1} \Big|_0^1 \right) dy$$

$$= \int_a^b \frac{dy}{y+1} = \log(y+1) \Big|_a^b$$

$$= \log \frac{b+1}{a+1}.$$

方法 2. 固定 a > 0. $\forall b > 0$, 定义

$$I(b) = \int_0^1 \frac{x^b - x^a}{\log x} \, \mathrm{d}x.$$

则 I(a) = 0 且由求导与积分次序可交换性得

$$I'(b) = \int_0^1 \frac{\partial}{\partial b} \left(\frac{x^b - x^a}{\log x} \right) dx = \int_0^1 x^b dx = \frac{1}{b+1}.$$

由此立刻可得

$$I(b) = \int_{a}^{b} I'(t) dt = \int_{a}^{b} \frac{dt}{t+1} = \log \frac{b+1}{a+1}.$$

例 3. $\forall y > 0$, $\Leftrightarrow I(y) = \int_y^{y^2} \frac{\sin(yx)}{x} dx$, 求 I'(y).

解: 由求导与积分次序可交换性知

$$I'(y) = \int_{y}^{y^{2}} \frac{\partial}{\partial y} \left(\frac{\sin(yx)}{x} \right) dx + \frac{\sin(y \cdot y^{2})}{y^{2}} \cdot (y^{2})'$$

$$- \frac{\sin(y \cdot y)}{y} \cdot (y)' = \int_{y}^{y^{2}} \cos(yx) dx + \frac{2\sin y^{3}}{y} - \frac{\sin y^{2}}{y}$$

$$= \frac{1}{y} \sin(yx) \Big|_{y}^{y^{2}} + \frac{2\sin y^{3}}{y} - \frac{\sin y^{2}}{y} = \frac{1}{y} (3\sin y^{3} - 2\sin y^{2}).$$

作业题: 第 2.2 节第 109 页第 2 题第 (1) 小题,

第 110 页第 3, 4 题, 其中将 u(x) 改成 u(x,t).

回顾: 广义积分的定义及其性质

定义 1. 设 $a \in \mathbb{R}$, $\omega \in (a, +\infty]$, $f : [a, \omega) \to \mathbb{R}$ 使得 $\forall A \in (a, \omega)$, 函数 f 在 [a, A] 上均为可积. 定义 f 在 $[a, \omega)$ 上的广义积分为

$$\int_{a}^{\omega} f(x) dx = \lim_{A \to \omega^{-}} \int_{a}^{A} f(x) dx.$$

若上述极限存在, 称广义积分 $\int_a^\omega f(x) dx$ 收敛, 否则称之发散. 广义积分也称为反常积分.

评注

• 通常 $\omega = +\infty$, 或者 $\omega \in \mathbb{R}$ 但函数 f 在 ω 的 邻域内无界, 此时称 ω 为 f 的奇点, 相应的 广义积分被称为无穷限积分或瑕积分.

• $\forall c \in [a, \omega)$, 我们有

$$\int_{a}^{\omega} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{\omega} f(x) dx.$$

故 $\int_a^{\omega} f(x) dx$ 的敛散性仅与函数 f 在 ω 的 邻域内的性质有关.

• 如果 $\omega \in \mathbb{R}$ 且 $f \in \mathcal{R}[a,\omega]$,则f在 $[a,\omega]$ 的任意闭子区间上均可积,并且

$$\int_{a}^{\omega} f(x) dx = \lim_{A \to \omega^{-}} \int_{a}^{A} f(x) dx.$$

此时正常的定积分与广义积分一致.

• 若 $b \in \mathbb{R}$, $\omega \in \mathbb{R} \cup \{-\infty\}$ 使得 $\omega < b$, 而且 $f: (\omega, b] \to \mathbb{R}$ 在 $(\omega, b]$ 的任意的闭子区间上可积, 则我们可以类似地定义广义积分

$$\int_{\omega}^{b} f(x) dx = \lim_{B \to \omega^{+}} \int_{B}^{b} f(x) dx.$$

• 假设 ω_1, ω_2 ($\omega_1 < \omega_2$) 为 f 的奇点, 而函数 f 在 (ω_1, ω_2) 的任意的闭子区间上可积. 固定 $a \in (\omega_1, \omega_2)$, 并定义

$$\int_{\omega_1}^{\omega_2} f(x) dx = \int_{\omega_1}^a f(x) dx + \int_a^{\omega_2} f(x) dx.$$

可证明该定义不依赖点 a 的选择.

• 如果 $a, b \in \mathbb{R}$ (a < b), 而 $\omega \in (a, b)$ 使得 f 在 $[a, b] \setminus \{\omega\}$ 的任意闭子区间上可积, 定义:

$$\int_a^b f(x) dx = \int_a^\omega f(x) dx + \int_\omega^b f(x) dx.$$

• 更一般地, 若函数 f 有多个奇点, 此时将整个 区间分割成若干个小的区间使得 f 在每一个 小区间上只有一个奇点并且该点为小区间的 端点, 随后在每一个小区间上定义广义积分, 再将如此定义的广义积分之和定义为函数 f在原来那个大区间上的广义积分, 有鉴于此.. 再通过坐标变换, 我们总可以将问题归结为 研究形如 $\int_a^\omega f(x) dx$ 这样的广义积分.

回顾: 广义积分小结

- 各种形式的广义积分的定义, 奇点.
- •广义积分的性质:与定积分的完全类似.
- <mark>敛散性: Cauchy 准则, 比较法 (绝对收敛), Abel-Dirichlet 准则 (变号积分, 条件收敛).</mark>
- 重要的比较函数: $\frac{1}{x^p}$, $\log x$, $\frac{\log x}{x^p}$.
- 绝对收敛与条件收敛: 二者关系.
- •Γ函数与 Beta 函数: 递推, 余元, 二者关系.

§2. 广义含参变量积分

广义含参变量积分的收敛性与一致收敛性

定义 1. 假设 $f:[a,\omega)\times[c,d]\to\mathbb{R}$ 为连续函数, 其中 $\omega\in\mathbb{R}\cup\{+\infty\}$. 若 $y_0\in[c,d]$ 使广义积分

$$\int_{a}^{\omega} f(x, y_0) dx = \lim_{A \to \omega^{-}} \int_{a}^{A} f(x, y_0) dx$$

收敛,则称广义含参变量积分 $\int_a^\omega f(x,y) \, \mathrm{d}x$ 在点 y_0 处收敛,否则则称之在该点发散.

如果广义含参变量积分 $\int_a^\omega f(x,y) dx$ 在 [c,d] 的每点均收敛, 我们则称之在 [c,d] 上收敛, 由此得到 [c,d] 上的函数 $I(y) = \int_a^\omega f(x,y) dx$.

注: (1) 广义含参变量积分 $\int_a^\omega f(x,y) \, \mathrm{d}x$ 在 [c,d] 上 收敛到函数 I(y) 当且仅当 $\forall y \in [c,d]$ 以及 $\forall \varepsilon > 0$, $\exists M \in [a,\omega)$ 使得 $\forall A \in [M,\omega)$, 我们均有

$$\left| \int_{a}^{A} f(x, y) \, \mathrm{d}x - I(y) \right| < \varepsilon.$$

(2) 由 Cauchy 判别准则知, 广义含参变量积分 $\int_a^\omega f(x,y) \, \mathrm{d}x$ 在 [c,d] 上收敛当且仅当 $\forall y \in [c,d]$

以及
$$\forall \varepsilon > 0$$
, $\exists M \in [a, \omega)$ 使得 $\forall A', A'' \in [M, \omega)$,

$$\left| \int_{A'}^{A''} f(x,y) \, \mathrm{d}x \right| = \left| \int_{a}^{A''} f(x,y) \, \mathrm{d}x - \int_{a}^{A'} f(x,y) \, \mathrm{d}x \right| < \varepsilon.$$

典型例子:

Gamma 函数: $\Gamma(s) = \int_0^{+\infty} x^{s-1} e^{-x} dx$.

Beta 函数: $B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$.

定义 2. 若 $\forall \varepsilon > 0$, $\exists M \in [a, \omega)$ 使 $\forall A \in [M, \omega)$ 以及 $\forall y \in [c, d]$, 均有

$$\left| \int_{a}^{A} f(x, y) \, \mathrm{d}x - I(y) \right| < \varepsilon,$$

则我们称广义含参变量积分 $\int_a^\omega f(x,y) \, \mathrm{d}x$ 在区间 [c,d] 上一致收敛到函数 I(y).

注: 一致收敛性蕴含收敛性, 但反之不成立.

定理 1. (Cauchy 准则) $\int_a^\omega f(x,y) dx$ 在 [c,d] 上 为一致收敛当且仅当 $\forall \varepsilon > 0$, $\exists M \in [a, \omega)$ 使得 $\forall A', A'' \in [M, \omega), \ \forall y \in [c, d], \ \left| \int_{A'}^{A''} f(x, y) \, \mathrm{d}x \right| < \varepsilon.$ 否定形式: $\int_a^\omega f(x,y) dx$ 在 [c,d] 上非一致收敛 当且仅当 $\exists \varepsilon_0 > 0$ 使 $\forall M \in [a, \omega)$, $\exists A', A'' \in [M, \omega)$, $\exists y \in [c,d]$ 使得 $\left| \int_{A'}^{A''} f(x,y) \, \mathrm{d}x \right| \geqslant \varepsilon_0$; 这等价于 $\exists A_n', A_n'' \in [a, \omega)$, $\exists y_n \in [c, d]$ 使得我们有

$$\lim_{n \to \infty} A'_n = \lim_{n \to \infty} A''_n = \omega, \left| \int_{A'_n}^{A''_n} f(x, y_n) \, \mathrm{d}x \right| \geqslant \varepsilon_0.$$

例 1. 求证: $\int_a^{+\infty} y e^{-xy} dx$ 关于 $y \in [0, +\infty)$ 收敛 但非一致收敛.

证明: 当 y = 0 时,被积函数恒为零,因此广义积分收敛. 当 y > 0 时,我们则有

$$\int_{a}^{+\infty} y e^{-xy} \, \mathrm{d}x = -e^{-xy} \Big|_{a}^{+\infty} = e^{-ay}$$

也收敛. 又 $\lim_{n\to\infty} n = \lim_{n\to\infty} 2n = +\infty$, 而 $\forall n \geq 1$, $\int_n^{2n} \frac{1}{n} e^{-\frac{x}{n}} dx = -e^{-\frac{x}{n}} \Big|_n^{2n} = \frac{1}{e} - \frac{1}{e^2} > 0$, 由此得证.

作业题: 第 2.1 节第 104 页第 8 题.

定理 2. (Weierstrass 判别法或比较法则)

假设 $f:[a,\omega)\times[c,d]\to\mathbb{R}$ 为连续函数, 而函数 $F:[a,\omega)\to[0,+\infty)$ 使 $\forall (x,y)\in[a,\omega)\times[c,d]$, 我们均有 $|f(x,y)|\leqslant F(x)$. 若 $\int_a^\omega F(x)\,\mathrm{d}x$ 收敛, 则 $\int_a^\omega f(x,y)\,\mathrm{d}x$ 关于 $y\in[c,d]$ 一致收敛.

证明: 因 $\int_a^\omega F(x) \, \mathrm{d}x$ 收敛, 则由 Cauchy 准则知, $\forall \varepsilon > 0$, $\exists M \in [a, \omega)$ 使得 $\forall A', A'' \in [M, \omega)$, 均有 $|\int_{A'}^{A''} F(x) \, \mathrm{d}x| < \varepsilon$. 则 $\forall y \in [c, d]$, 我们有

$$\left| \int_{A'}^{A''} f(x,y) \, \mathrm{d}x \right| \leqslant \left| \int_{A'}^{A''} |f(x,y)| \, \mathrm{d}x \right| \leqslant \left| \int_{A'}^{A''} F(x) \, \mathrm{d}x \right| < \varepsilon,$$

从而由 Cauchy 判别准则可知所证结论成立.

例 2. 求证: 广义含参变量积分

$$\int_0^{+\infty} e^{-xy} \sin x \, \mathrm{d}x$$

关于 $y \in [c, +\infty)$ 一致收敛, 其中 c > 0.

证明:
$$\forall x \ge 0$$
 及 $\forall y \ge c$, 均有 $|e^{-xy}\sin x| \le e^{-cx}$. 又 $\int_0^{+\infty} e^{-cx} dx = -\frac{e^{-cx}}{c} \Big|_0^{+\infty} = \frac{1}{c}$ 收敛, 于是由

Weierstrass 判别法可知所证结论成立.

作业题: 第 2.1 节第 103 页第 4 题第 (2) 小题,

其中将 $\cos yx$ 改为 $\cos(yx)$.

定理 3. 设 $f,g:[a,\omega)\times[c,d]\to\mathbb{R}$ 为函数使得 $\forall y\in[c,d],\,f(\cdot,y),g(\cdot,y)$ 在 $[a,\omega)$ 的任意的闭子 区间上均可积.

- (1) (Abel) 如果 $\int_{a}^{\omega} f(x,y) \, dx$ 关于 $y \in [c,d]$ 一致收敛, 而 g 有界并且关于第一个变量单调, 那么 $\int_{a}^{\omega} f(x,y)g(x,y) \, dx$ 关于 $y \in [c,d]$ 一致收敛.
- (2) (Dirichlet) $\forall y \in [c,d]$ 以及 $\forall A \in [a,\omega)$, 定义 $F(A,y) = \int_a^A f(x,y) \, \mathrm{d}x$. 若 F 有界, g 关于第一个 变量单调且 $\lim_{x \to \omega^-} g(x,y) = 0$ 关于 $y \in [c,d]$ 一致 成立, 则 $\int_a^\omega f(x,y) g(x,y) \, \mathrm{d}x$ 关于 $y \in [c,d]$ 一致收敛.

证明: (1) 由于函数 g 有界, 因此 $\exists K > 0$ 使得

 $\forall (x,y) \in [a,\omega) \times [c,d]$, 我们均有 |g(x,y)| < K. 又 $\int_a^\omega f(x,y) \, \mathrm{d}x$ 关于 $y \in [c,d]$ 一致收敛, 于是

由 Cauchy 淮则, $\forall \varepsilon > 0$, $\exists M \in [a, \omega)$ 使 $\forall y \in [c, d]$, $\forall A_1, A_2 \in [M, \omega)$, 我们有 $\left| \int_{A_1}^{A_2} f(x, y) \, \mathrm{d}x \right| < \frac{\varepsilon}{2K}$.

由积分第二中值定理, 存在 ξ 介于 A_1, A_2 使得

 $\int_{A_1}^{A_2} f(x,y)g(x,y) dx = g(A_1,y) \int_{A_1}^{\xi} f(x,y) dx + g(A_2,y) \int_{\xi}^{A_2} f(x,y) dx,$

由此立刻可得

$$\left| \int_{A_1}^{A_2} f(x, y) g(x, y) \, \mathrm{d}x \right|$$

$$\leq |g(A_1, y)| \left| \int_{A_1}^{\xi} f(x, y) \, \mathrm{d}x \right| + |g(A_2, y)| \left| \int_{\xi}^{A_2} f(x, y) \, \mathrm{d}x \right|$$

$$\leq K \cdot \frac{\varepsilon}{2K} + K \cdot \frac{\varepsilon}{2K}$$

于是由 Cauchy 判别准则可知所证结论成立.

(2) 由题设, $\exists K > 0$ 使得 $\forall (A, y) \in [a, \omega) \times [c, d]$,

|F(A,y)| < K. 同时由于 $\lim_{x \to \omega^{-}} g(x,y) = 0$ 关于 $y \in [c,d]$ 一致成立, 则 $\forall \varepsilon > 0$, $\exists M \in [a,\omega)$ 使得

 $\forall x \in [M, \omega)$ 以及 $\forall y \in [c, d]$, 均有 $|g(x, y)| < \frac{\varepsilon}{4K}$.

又 $\forall A_1, A_2 \in [M, \omega)$, 由积分第二中值定理可知, 存在 ξ 介于 A_1, A_2 之间使得

 $\int_{A_1}^{A_2} f(x, y)g(x, y) dx = g(A_1, y) \int_{A_1}^{\xi} f(x, y) dx + g(A_2, y) \int_{\xi}^{A_2} f(x, y) dx.$

由此立刻可得

$$\left| \int_{A_1}^{A_2} f(x, y) g(x, y) \, \mathrm{d}x \right|$$

$$\leqslant |g(A_1, y)| \cdot |F(\xi, y) - F(A_1, y)|$$

$$+ |g(A_2, y)| \cdot |F(A_2, y) - F(\xi, y)|$$

$$\leqslant \frac{\varepsilon}{4K} \cdot (2K) + \frac{\varepsilon}{4K} \cdot (2K) = \varepsilon.$$

于是由 Cauchy 判别准则可知所证结论成立.

注: 在上述定理中可将 [c,d] 换成任意集合.

例 3. 求证: 广义含参积分 $\int_1^{+\infty} \frac{\sin(tx)}{x} dx$ 关于 $t \in [c, +\infty)$ 一致收敛, 其中 c > 0.

证明: $\forall (x,t) \in [1,+\infty) \times [c,+\infty)$, 我们定义函数 $f(x,t) = \sin(tx)$, $g(x,t) = \frac{1}{x}$, 那么 g 关于 x 单调, 且 $\lim_{x \to +\infty} g(x,t) = 0$ 关于 $t \in [c,+\infty)$ 一致成立. $\forall A > 1, \ |\int_{1}^{A} \sin(tx) \, dx| = \frac{1}{t} |\cos t - \cos(At)| \leq \frac{2}{c},$ 由 Dirichlet 判别准则可知 $\int_1^{+\infty} \frac{\sin(tx)}{x} dx$ 关于 $t \in [c, +\infty)$ 一致收敛.

例 4. 求证: 广义含参变量积分 $\int_0^{+\infty} e^{-xy} \frac{\sin x}{x} dx$ 关于 $y \in [0, +\infty)$ 一致收敛.

证明: $\forall (x,y) \in (0,+\infty) \times [0,+\infty)$, 我们定义函数 $f(x,y) = \frac{\sin x}{x}$, $g(x,y) = e^{-xy}$. 则 $\int_0^{+\infty} f(x,y) \, \mathrm{d}x$ 关于 $y \in [0,+\infty)$ 一致收敛, 而 g 关于 x 单调 且 $|g| \leq 1$, 由 Abel 判别准则知 $\int_0^{+\infty} e^{-xy} \frac{\sin x}{x} \, \mathrm{d}x$ 关于 $y \in [0,+\infty)$ 一致收敛.

作业题: 第 2.1 节第 103 页第 4 题第 (7) 小题.

广义含参变量积分的分析性质

定理 4. 设 $f:[a,\omega)\times[c,d]\to\mathbb{R}$ 为连续函数.

(1) 极限与积分可交换性:

若广义含参变量积分

$$I(y) = \int_{a}^{\omega} f(x, y) \, \mathrm{d}x$$

关于 $y \in [c,d]$ 一致收敛,则 I 在 [c,d] 上连续.

(2) 求导与积分可交换性:

若 $I(y) = \int_a^\omega f(x,y) \, \mathrm{d}x$ 在区间 [c,d] 上收敛, 偏导函数 $\frac{\partial f}{\partial y}$ 在 $[a,\omega) \times [c,d]$ 上连续并且使得广义含参积分 $\int_a^\omega \frac{\partial f}{\partial y}(x,y) \, \mathrm{d}x$ 关于 $y \in [c,d]$ 为一致收敛, 则 I 在 [c,d] 上连续可导且

$$I'(y) = \int_a^\omega \frac{\partial f}{\partial y}(x, y) \, \mathrm{d}x.$$

注: 在上述结论中, 均可将 [c,d] 换成开区间.

(3) 积分与积分可交换性:

若 $I(y) = \int_a^\omega f(x,y) \, \mathrm{d}x$ 关于 $y \in [c,d]$ 一致收敛,则 I 在 [c,d] 上可积且

$$\int_{c}^{d} \left(\int_{a}^{\omega} f(x, y) \, \mathrm{d}x \right) \mathrm{d}y = \int_{a}^{\omega} \left(\int_{c}^{d} f(x, y) \, \mathrm{d}y \right) \mathrm{d}x.$$

注: 也可以考虑 $[a,\omega) \times [c,\eta)$ 上的函数而探讨 二重的广义积分, 如 $\int_{c}^{+\infty} \left(\int_{a}^{+\infty} f(x,y) \, \mathrm{d}x \right) \mathrm{d}y$.

在一定条件下,上述结论依然成立.

证明: (1) 任取 $y_0 \in [c,d]$. 因 $\int_a^\omega f(x,y) \, \mathrm{d}x$ 关于 $y \in [c,d]$ 一致收敛, 那么 $\forall \varepsilon > 0$, 均 $\exists M \in [a,\omega)$ 使得 $\forall A \in [M,\omega)$, $\forall y \in [c,d]$, 我们有

$$\left|\int_A^\omega f(x,y)\,\mathrm{d}x\right|<\frac{\varepsilon}{3}.$$
 又 f 在 $[a,A]\times[c,d]$ 上连续, 因此为一致连续,

于是 $\exists \delta > 0$ 使得 $\forall (x,y), (x',y') \in [a,A] \times [c,d]$, 当 $\sqrt{(x-x')^2 + (y-y')^2} < \delta$ 时,我们均有 $|f(x,y) - f(x',y')| < \frac{\varepsilon}{3(A-a+1)},$

于是
$$\forall y \in [c,d]$$
, 当 $|y-y_0| < \delta$ 时,我们有
$$|I(y)-I(y_0)| = \left| \int_a^\omega f(x,y) \, \mathrm{d}x - \int_a^\omega f(x,y_0) \, \mathrm{d}x \right|$$

$$\leq \left| \int_a^A f(x,y) \, \mathrm{d}x - \int_a^A f(x,y_0) \, \mathrm{d}x \right| + \left| \int_A^\omega f(x,y) \, \mathrm{d}x \right|$$

$$+ \left| \int_A^\omega f(x,y_0) \, \mathrm{d}x \right| \leq \int_a^A |f(x,y) - f(x,y_0)| \, \mathrm{d}x + \frac{2}{3}\varepsilon$$

$$\leq \frac{\varepsilon}{3(A-a+1)} \cdot (A-a) + \frac{2}{3}\varepsilon < \varepsilon,$$

因此 I 在点 y_0 处连续, 进而在 [c,d] 上也连续.

(2) $\forall A \in (a, \omega)$ 以及 $\forall y \in [c, d]$, 定义

$$I_A(y) = \int_a^A f(x, y) dx, \ J(y) = \int_a^\omega \frac{\partial f}{\partial y}(x, y) dx,$$

则 $J \in \mathscr{C}[c,d]$ 并且 $\forall \varepsilon > 0$, 由题设条件及常义 积分的求导与积分次序可交换性, $\exists M \in (a, \omega)$ 使得 $\forall A \in (M, \omega)$ 以及 $\forall y \in [c, d]$, 我们均会有 $|I_A'(y)-J(y)|<rac{arepsilon}{d-c+1}$, 由此可得 $\left| \int_a^y I_A'(t) dt - \int_a^y J(t) dt \right| \leqslant \int_a^y |I_A'(t) - J(t)| dt < \varepsilon.$

而这正意味着, $\forall y \in [c,d]$, 我们有

$$\int_{c}^{y} J(t) dt = \lim_{A \to \omega^{-}} \int_{c}^{y} I'_{A}(t) dt$$
$$= \lim_{A \to \omega^{-}} \left(I_{A}(y) - I_{A}(c) \right) = I(y) - I(c).$$

又 $J \in \mathcal{C}[c,d]$, 故 I 在 [c,d] 上连续可导且

$$I'(y) = J(y) = \int_{a}^{\omega} \frac{\partial f}{\partial y}(x, y) dx.$$

关于 (3), 其证明与正常含参积分的证明类似.

例 5. 求 $\int_0^{+\infty} \frac{e^{-ax} - e^{-bx}}{x} dx$, 其中 $b \ge a > 0$.

解: 由题设可知

$$\int_0^{+\infty} \frac{e^{-ax} - e^{-bx}}{x} dx = \int_0^{+\infty} \left(\int_a^b e^{-xy} dy \right) dx.$$

又 $\forall x \geqslant 0$ 以及 $\forall y \in [a, b]$,我们有 $|e^{-xy}| \leqslant e^{-ax}$,另外 $\int_0^{+\infty} e^{-ax} \, \mathrm{d}x = \frac{1}{a}$ 收敛,于是由 Weierstrass 判别法知广义含参变量积分 $\int_0^{+\infty} e^{-xy} \, \mathrm{d}x$ 关于 $y \in [a, b]$ 一致收敛.

从而由积分与积分次序可交换性可得

$$\int_0^{+\infty} \frac{e^{-ax} - e^{-bx}}{x} dx = \int_0^{+\infty} \left(\int_a^b e^{-xy} dy \right) dx$$

$$= \int_a^b \left(\int_0^{+\infty} e^{-xy} dx \right) dy$$

$$= \int_a^b \left(\frac{-e^{-xy}}{y} \Big|_0^{+\infty} \right) dy$$

$$= \int_a^b \frac{dy}{y}$$

$$= \log y \Big|_a^b$$

$$= \log \frac{b}{-}.$$

例 6. 设 a > 0. $\forall y \in \mathbb{R}$, 计算

$$I(y) = \int_0^{+\infty} e^{-ax^2} \cos(yx) \, \mathrm{d}x.$$

解: $\forall x \ge 0$, $\forall y \in \mathbb{R}$, $\diamondsuit f(x,y) = e^{-ax^2} \cos(yx)$.

则
$$\frac{\partial f}{\partial y}(x,y) = -xe^{-ax^2}\sin(yx), |f(x,y)| \leqslant e^{-ax^2},$$

 $\left|\frac{\partial f}{\partial y}(x,y)\right| \leqslant xe^{-ax^2}.$ 但 $\int_0^{+\infty} e^{-ax^2} dx$, $\int_0^{+\infty} xe^{-ax^2} dx$

均收敛,则由 Weierstrass 判别法可知

$$\int_0^{+\infty} f(x,y) dx, \quad \int_0^{+\infty} \frac{\partial f}{\partial y}(x,y) dx$$

关于 $y \in \mathbb{R}$ 一致收敛, 从而由求导与积分次序

可交换性知 I 连续可导, 并且 $\forall y \in \mathbb{R}$, 均有

$$I'(y) = -\int_0^{+\infty} x e^{-ax^2} \sin(yx) dx$$

$$= \int_0^{+\infty} \frac{\sin(yx)}{2a} d(e^{-ax^2})$$

$$= \frac{e^{-ax^2}}{2a} \sin(yx) \Big|_0^{+\infty} - \frac{1}{2a} \int_0^{+\infty} e^{-ax^2} d(\sin(yx))$$

$$= -\frac{y}{2a} \int_0^{+\infty} e^{-ax^2} \cos(yx) dx = -\frac{y}{2a} I(y),$$

则 $I(y) = Ce^{\int (-\frac{y}{2a}) dy} = Ce^{-\frac{y^2}{4a}}$, 其中 C 为常数.

又由定义可知

$$C = I(0) = \int_0^{+\infty} e^{-ax^2} dx \stackrel{u=ax^2}{=} \int_0^{+\infty} e^{-u} d\sqrt{\frac{u}{a}}$$
$$= \frac{1}{2\sqrt{a}} \int_0^{+\infty} u^{-\frac{1}{2}} e^{-u} du = \frac{1}{2\sqrt{a}} \Gamma(\frac{1}{2}) = \frac{1}{2} \sqrt{\frac{\pi}{a}},$$

由此立刻可得 $I(y) = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-\frac{y^2}{4a}}$.

作业题: 第 2.2 节第 110 页第 5 题, 第 2.3 节第 115 页第 1 题第 (1), (2) 小题 (不要用例 5 和例 6 的结论, 用其方法), 其中将 $\sin yx$ 换成 $\sin(yx)$, 第 2 题第 (2) 小题 (右边分母中缺 2).

第2章小结

1. 一致连续函数:

- 定义, 否定表述, 与连续函数的关系.
- 判别方法: 定义, 有界闭集上的连续函数.
- 否定性判别: 函数 f 在 Ω 上非一致连续当且 仅当存在 $\varepsilon_0 > 0$ 以及 Ω 中点列 $\{X_k\}$, $\{Y_k\}$ 使得 $\lim_{k \to +\infty} ||X_k Y_k|| = 0$, 但 $\forall k \ge 1$, 却有 $|f(X_k) f(Y_k)| \ge \varepsilon_0$.
- 极限与极限次序可交换性.

2. 含参变量常义积分及其性质

- 极限与积分次序可交换性 (被积函数连续).
- 积分与积分次序可交换性 (被积函数连续).
- 求导与积分次序可交换性 (被积函数连续, 偏导函数连续).
- 变上、下限含参积分的导数 (被积函数连续, 偏导函数连续, 上、下限可导).

3. 广义含参变量积分及其性质

- 一致收敛的定义及准则: 定义, Cauchy 准则, Weierstrass 判别法, Abel-Dirichlet 判别法.
- 极限与积分可交换性: 被积函数连续, 广义 含参变量积分一致收敛.
- 积分与积分可交换性: 被积函数连续, 广义 含参变量积分一致收敛.
- 求导与积分可交换性:被积函数连续,广义含参变量积分收敛,而关于参数的偏导函数连续且其广义含参变量积分一致收敛.

谢谢大家!