Simple FSI Training Track for OpenFOAM

Directory structure

Location of the course - https://github.com/unicfdlab/TrainingTracks /

Folder simpleFsi-OF3.0.0 for OpenFOAM 3.0.0 version of the course

The folder contains next sub-directories:

No.	Name	Description
1.	cases	
2.	geometry	
3.	papers	Papers, that were used in this case. If paper is present in open space, then it's PDF is placed, if not — only reference is written in file
4.	simpleFsiFunctionObject	

Brief of the course

Case definitions

Main case (turbulent)

Validation case (laminar)

References

[1] Robert D. Blevins, Charles S. Coughran, 2009 «Experimental Investigation of Vortex-Induced Vibration in One and Two Dimensions With Variable Mass, Damping, and Reynolds Number». J. Fluids Eng 131(10), 101202 (Sep 30, 2009) (7 pages), doi:10.1115/1.3222904

[2] B.S. Carmo, S.J. Sherwin, P.W. Bearman, R.H.J. Willden «Flow-induced vibration of a circular cylinder subjected to wake interference at low Reynolds number»