Table of Contents

	1
System Constants	
Configuration Variables (Figure 1a)	
Define numerical values / vectors (cases (i) and (ii))	
1(a)	
1(b)	
1(b)	
1(d)	
1(e)	
Lagrangian	
Equations of Motion (LHS)	
Numerical Matricies	
D matrix	
C matrix	
G matrix	7
B matrix	8
Problem 2 - Change of Coordinates	. 8
2(a) (Handwritten portion included at end of document)	8
2(b) (Handwritten portion included at end of document)	
2(c)	
2(d)	
Configuration Variables	
Kinematics	
Kinetic Energy	
Potential Energy	
Lagrangian	
Equations of Motion (LHS)	
Derive the dynamics in terms of the Robot Manipulator Dynamics	
Numerical Matricies	
D_tild matrix	
C_tild matrix	
G_tild matrix	
B_tild matrix	
2(e) (Handwritten portion included at end of document)	14
2(f) (Handwritten portion included at end of document)	15
% Lagrangian dynamics of three link robot (HW01)	
clc	
close all	
clear all	
clear all	

System Constants

Configuration Variables (Figure 1a)

```
syms x y q1 q2 q3 dx dy dq1 dq2 dq3 d2x d2y d2q1 d2q2 d2q3 real
% Generalized Coordinates
q = [x; y; q1; q2; q3];
% Generalized Velocities
dq = [dx; dy; dq1; dq2; dq3];
% Generalized Acceleration
d2q = [d2x; d2y; d2q1; d2q2; d2q3];
```

Define numerical values / vectors (cases (i) and (ii))

```
qi = [0.5, 0.5*sqrt(3), 150*pi/180, 120*pi/180, 30*pi/180]';
dqi = [-0.8049, -0.4430, 0.0938, 0.9150, 0.9298]';
qii = [0.3420, 0.9397, 170*pi/180, 20*pi/180, 30*pi/180]';
dqii = [-0.1225, -0.2369, 0.5310, 0.5904, 0.6263]';

L_torso_num = 1/2; L_leg1_num = 1; L_leg2_num = 1;
m_torso_num = 10; m_leg1_num = 5; m_leg2_num = 5;
I_torso_num = 1; I_leg1_num = 1/2; I_leg2_num = 1/2;
g_num = 9.81;
```

1(a)

Positions

```
p_{torso} = [L_{torso.*sin(q3)/2} + x; L_{torso.*cos(q3)/2} + y];
p_leg1 = [L_leg1.*sin(q1 + q3)/2 + x; L_leg1.*cos(q1 + q3)/2 + y];
p_leg2 = [L_leg2.*sin(q2 + q3)/2 + x; L_leg2.*cos(q2 + q3)/2 + y];
P_sym = [p_torso, p_leg1, p_leg2];
Pi = subs(P_sym, q, qi);
Pi = subs(Pi, [L_torso, L_leg1, L_leg2, m_torso, m_leg1, m_leg2],...
     [L torso num, L leq1 num, L leq2 num, m torso num,...
     m_leg1_num, m_leg2_num]);
Pi = vpa(Pi,4) % m
Pii = subs(P_sym, q, qii);
Pii = subs(Pii, [L_torso, L_leg1, L_leg2, m_torso, m_leg1, m_leg2],...
     [L_torso_num, L_leg1_num, L_leg2_num, m_torso_num,...
     m_leg1_num, m_leg2_num]);
Pii = vpa(Pii,4) % m
Pi =
[ 0.625, 0.5, 0.75]
[ 1.083, 0.366, 0.433]
```

```
Pii =
[ 0.467, 0.171, 0.725]
[ 1.156, 0.4699, 1.261]
```

1(b)

Velocities

```
dp_torso = jacobian(p_torso, q) * dq ;
dp_leg1 = jacobian(p_leg1, q) * dq ;
dp_leg2 = jacobian(p_leg2, q) * dq ;
V_sym = [dp_torso, dp_leg1, dp_leg2] ;
Vi = subs(V_sym, q, qi);
Vi = subs(Vi, dq, dqi);
Vi = subs(Vi, [L_torso, L_leg1, L_leg2, m_torso, m_leg1, m_leg2],...
     [L_torso_num, L_leg1_num, L_leg2_num, m_torso_num,...
     m_leg1_num, m_leg2_num]);
Vi = vpa(Vi,4) % m/s
Vii = subs(V_sym, q, qii);
Vii = subs(Vii, dq, dqii);
Vii = subs(Vii, [L_torso, L_leg1, L_leg2, m_torso, m_leg1, m_leg2],...
     [L_torso_num, L_leg1_num, L_leg2_num, m_torso_num,...
     m_leg1_num, m_leg2_num]);
Vii = vpa(Vii,4) % m/s
Vi =
[-0.6036, -1.317, -1.604]
[-0.5592, -0.443, -0.9042]
Vii =
[ 0.0131, -0.6663, 0.2685]
[-0.3152, -0.03899, -0.7029]
```

1(c)

Kinetic Energy

```
KE_torso = 1/2 * dp_torso' * m_torso * dp_torso + 1/2 * I_torso *...
   ( jacobian(q3, q) * dq )^2;
KE_leg1 = 1/2 * dp_leg1' * m_leg1 * dp_leg1 + 1/2 * I_leg1 *...
   ( jacobian(q3 + q1, q) * dq )^2;
```

```
KE_{leg2} = 1/2 * dp_{leg2}' * m_{leg2} * dp_{leg2} + 1/2 * I_{leg2} * ...
    ( jacobian(q3 + q2, q) * dq )^2 ;
KE_sym = KE_torso + KE_leg1 + KE_leg2 ;
KE_i = subs(KE_sym, q, qi);
KE_i = subs(KE_i, dq, dqi);
KE_i = subs(KE_i, [L_torso, L_leg1, L_leg2, m_torso, m_leg1,
 m_leg2,...
    I_torso, I_leg1, I_leg2], [L_torso_num, L_leg1_num, L_leg2_num,...
    m_torso_num, m_leg1_num, m_leg2_num, I_torso_num, I_leg1_num,...
    I_leg2_num]);
KE i = vpa(KE i, 4) % Joules
KE_ii = subs(KE_sym, q, qii);
KE_ii = subs(KE_ii, dq, dqii);
KE_ii = subs(KE_ii, [L_torso, L_leg1, L_leg2, m_torso, m_leg1,
m_{leg2,...}
    I_torso, I_leg1, I_leg2], [L_torso_num, L_leg1_num, L_leg2_num,...
    m_torso_num, m_leg1_num, m_leg2_num, I_torso_num, I_leg1_num,...
    I_leg2_num]);
KE_ii = vpa(KE_ii,4) % Joules
KE_i =
18.23
KE ii =
3.928
```

1(d)

Potential Energy

```
m_leg1_num, m_leg2_num, L_torso_num, L_leg1_num, L_leg2_num,
g_num]);
PE_ii = vpa(PE_ii,4) % Joules

PE_i =

145.4

PE_ii =

198.3
```

1(e)

Lagrangian

```
L = KE_sym - PE_sym ;
```

Equations of Motion (LHS)

```
% State vector
x = [q;
     dq];
% Time-derivative of State
dx = [dq ;
      d2q];
EOM = jacobian(jacobian(L, dq), x) * dx - jacobian(L, q)';
EOM = simplify(EOM);
% Derive the dynamics in terms of the Robot Manipulator Dynamics
 D(q) d2q + C(q, dq) dq + G(q) = B(q) u 
% set actuated coordinates
q_act = [q1; q2];
[D, C, G, B] = LagrangianDynamics(KE_sym, PE_sym, q, dq, q_act);
% Check if both sets of equations give the same results:
% The following expression below should give you zero.
simplify(D*d2q + C*dq + G - EOM)
ans =
 0
 0
 0
```

Numerical Matricies

D matrix

```
case (i)
Di = subs(D, q, qi);
Di = subs(Di, [L_torso, L_leg1, L_leg2, m_torso, m_leg1, m_leg2,...
    I_torso, I_leg1, I_leg2], [L_torso_num, L_leg1_num, L_leg2_num,...
   m_torso_num, m_leg1_num, m_leg2_num, I_torso_num, I_leg1_num,...
    I_leg2_num]);
Di = vpa(Di, 4)
% case (ii)
Dii = subs(D, q, qii);
Dii = subs(Dii, [L_torso, L_leg1, L_leg2, m_torso, m_leg1, m_leg2,...
    I_torso, I_leg1, I_leg2], [L_torso_num, L_leg1_num, L_leg2_num,...
   m_torso_num, m_leg1_num, m_leg2_num, I_torso_num, I_leg1_num,...
    I_leg2_num]);
Dii = vpa(Dii,4)
Di =
   20.0,
            0, -2.5, -2.165, -2.5]
      0, 20.0, 0, -1.25,
                              -2.51
            0, 1.75,
                        0, 1.75]
   -2.5,
[-2.165, -1.25, 0,
                      1.75, 1.75]
  -2.5, -2.5, 1.75,
                      1.75, 5.125]
Dii =
   20.0,
              0, -2.349, 1.607, 1.423]
      0, 20.0, 0.8551, -1.915, -2.31]
[-2.349, 0.8551,
                   1.75,
                             0, 1.75]
 1.607, -1.915,
                      0,
                           1.75, 1.75]
[ 1.423, -2.31, 1.75, 1.75, 5.125]
```

C matrix

```
case(i)

Ci = subs(C, [q, dq], [qi dqi]);
Ci = subs(Ci, [L_torso, L_leg1, L_leg2, m_torso, m_leg1, m_leg2],...
      [L_torso_num, L_leg1_num, L_leg2_num, m_torso_num,...
      m_leg1_num, m_leg2_num]);
Ci = vpa(Ci,4);
display(Ci)
```

```
% case (ii)
Cii = subs(C, [q, dq], [qii dqii]);
Cii = subs(Cii, [L_torso, L_leg1, L_leg2, m_torso, m_leg1, m_leg2],...
     [L_torso_num, L_leg1_num, L_leg2_num, m_torso_num,...
    m_leg1_num, m_leg2_num]);
Cii = vpa(Cii,4);
display(Cii)
Ci =
[0, 0, -2.306, -3.468]
[ 0, 0, 2.559, 3.994,
                       4.54]
[ 0, 0,
          0,
                   0,
                           0]
[ 0, 0,
          0,
                   0,
                           0]
[ 0, 0,
          0,
                   0,
                           01
Cii =
[ 0, 0, 0.9895, -2.33, -2.123]
[ 0, 0, 2.719, -1.955, -0.5924]
[ 0, 0,
           0,
                   0,
[ 0, 0,
            0,
                             0]
                    0,
[ 0, 0,
            0,
                   0,
                             0]
```

G matrix

```
case (i)
Gi = subs(G, [q, dq], [qi dqi]);
Gi = subs(Gi, [L_torso, L_leg1, L_leg2, m_torso, m_leg1, m_leg2,
g],...
     [L_torso_num, L_leg1_num, L_leg2_num, m_torso_num,...
     m_leg1_num, m_leg2_num, g_num]);
Gi = vpa(Gi, 4);
display(Gi)
% case (ii)
Gii = subs(G, [q, dq], [qii dqii]);
Gii = subs(Gii, [L_torso, L_leg1, L_leg2, m_torso, m_leg1, m_leg2,
g],...
     [L_torso_num, L_leg1_num, L_leg2_num, m_torso_num,...
     m_leg1_num, m_leg2_num, g_num]);
Gii = vpa(Gii,4);
display(Gii)
Gi =
      0
  196.2
```

```
0
-12.26
-24.53
Gii =
0
196.2
8.388
-18.79
-22.66
```

B matrix

```
case (i)
Bi = B;
display(Bi)
% case (ii)
Bii = B;
display(Bii)
Bi =
[ 0, 0]
[ 0, 0]
[ 1, 0]
[ 0, 1]
[ 0, 0]
Bii =
[ 0, 0]
[ 0, 0]
[ 1, 0]
[ 0, 1]
[ 0, 0]
```

Problem 2 - Change of Coordinates 2(a) (Handwritten portion included at end of document)

```
d = [0;0;-pi;-pi;0];
```

2(b) (Handwritten portion included at end of document)

```
Work shown on paper
```

```
dT = T;
dd = zeros(5,1);
ddT = T;
ddd = dd;
```

2(c)

```
qi_tild = T*qi + d
dqi_tild = dT*dqi + dd
qii_tild = T*qii + d
dqii_tild = dT*dqii + dd
qi_tild =
    0.5000
    0.8660
   -0.5236
    0.5236
dqi_tild =
   -0.8049
   -0.4430
    1.0236
    1.8448
    0.9298
qii_tild =
    0.3420
    0.9397
    0.3491
   -2.2689
    0.5236
dqii_tild =
   -0.1225
```

```
-0.2369
1.1573
1.2167
0.6263
```

2(d)

Configuration Variables

```
syms x y th1 th2 th3 dx dy dth1 dth2 dth3 d2x d2y d2th d2th d2th real
% Generalized Coordinates
q_tild = [x; y; th1; th2; th3];
% Generalized Velocities
dq_tild = [dx; dy; dth1; dth2; dth3];
% Generalized Acceleration
d2q_tild = [d2x; d2y; d2th; d2th; d2th];
```

Kinematics

Positions

```
p_torso_tild = [ L_torso.*sin(th3)/2 + x; L_torso.*cos(th3)/2 + y];
p_leg1_tild = [ - L_leg1.*sin(th1)/2 + x; - L_leg1.*cos(th1)/2 + y];
p_leg2_tild = [ - L_leg2.*sin(th2)/2 + x; - L_leg2.*cos(th2)/2 + y];
% Velocities
dp_torso_tild = jacobian(p_torso_tild, q_tild) * dq_tild;
dp_leg1_tild = jacobian(p_leg1_tild, q_tild) * dq_tild;
dp_leg2_tild = jacobian(p_leg2_tild, q_tild) * dq_tild;
```

Kinetic Energy

```
KE_torso_tild = 1/2 * dp_torso_tild' * m_torso * dp_torso_tild +
1/2*...
    I_torso * ( jacobian(th3, q_tild) * dq_tild )^2 ;
KE_leg1_tild = 1/2 * dp_leg1_tild' * m_leg1 * dp_leg1_tild + 1/2 *
I_leg1 *...
    ( jacobian(th1, q_tild) * dq_tild )^2 ;
KE_leg2_tild = 1/2 * dp_leg2_tild' * m_leg2 * dp_leg2_tild + 1/2 *
I_leg2 *...
    ( jacobian(th2, q_tild) * dq_tild )^2 ;
KE_sym_tild = KE_torso_tild + KE_leg1_tild + KE_leg2_tild ;
```

Potential Energy

```
PE_torso_tild = m_torso * g * [0 1] * p_torso_tild ;
PE_leg1_tild = m_leg1 * g * [0 1] * p_leg1_tild ;
PE_leg2_tild = m_leg2 * g * [0 1] * p_leg2_tild ;
PE_sym_tild = PE_torso_tild + PE_leg1_tild + PE_leg2_tild ;
```

Lagrangian

```
L_tild = KE_sym_tild - PE_sym_tild ;
```

Equations of Motion (LHS)

Variables to find d/dt (partial L / partial dq) State vector

Derive the dynamics in terms of the Robot Manipulator Dynamics

Numerical Matricies

D_tild matrix

case (i)

```
Di_tild = subs(D_tild, q_tild, qi_tild);
Di tild = subs(Di tild, dq tild, dqi tild);
Di_tild = subs(Di_tild, [L_torso, L_leg1, L_leg2, m_torso, m_leg1, ...
    m_leg2, I_torso, I_leg1, I_leg2], [L_torso_num, L_leg1_num,...
    L_leg2_num, m_torso_num, m_leg1_num, m_leg2_num, I_torso_num,...
    I_leg1_num, I_leg2_num]);
Di_tild = vpa(Di_tild,4)
% case (ii)
Dii_tild = subs(D_tild, q_tild, qii_tild);
Dii_tild = subs(Dii_tild, dq_tild, dqii_tild);
Dii_tild = subs(Dii_tild, [L_torso, L_leg1, L_leg2, m_torso,
 m leg1, ...
    m_leg2, I_torso, I_leg1, I_leg2 ], [L_torso_num, L_leg1_num,...
    L_leg2_num, m_torso_num, m_leg1_num, m_leg2_num, I_torso_num,...
    I_leg1_num, I_leg2_num]);
Dii_tild = vpa(Dii_tild,4)
Di_tild =
            0, -2.5, -2.165, 2.165]
    20.0,
      0, 20.0, 0, -1.25, -1.25]
    -2.5,
             0, 1.75,
                        0,
[-2.165, -1.25, 0,
                      1.75,
                                  0]
 2.165, -1.25,
                  0,
                      0, 1.625]
Dii_tild =
   20.0,
              0, -2.349, 1.607, 2.165]
      0, 20.0, 0.8551, -1.915, -1.25]
[-2.349, 0.8551,
                 1.75,
                             0,
                         1.75,
[ 1.607, -1.915,
                   0,
                                     01
[2.165, -1.25,
                     0,
                         0, 1.625]
```

C_tild matrix

```
m_leg2, I_torso, I_leg1, I_leg2 ], [L_torso_num, L_leg1_num,...
    L leg2 num, m torso num, m leg1 num, m leg2 num, I torso num,...
    I_leg1_num, I_leg2_num]);
Cii_tild = vpa(Cii_tild,4)
Ci_tild =
           0, -2.306, -1.162]
[ 0, 0,
[ 0, 0, 2.559, 3.994, -2.013]
[ 0, 0,
           0,
                    0,
                            01
            0,
                    0,
                            01
[ 0, 0,
[ 0, 0,
            0,
                    0,
                            0]
Cii_tild =
[ 0, 0, 0.9895, -2.33, -0.7829]
[ 0, 0, 2.719, -1.955, -1.356]
[ 0, 0,
           0,
                  0,
                              0]
[ 0, 0,
             0,
                     0,
                              0]
[ 0, 0,
             0,
                     0,
                              01
```

G_tild matrix

```
case (i)
Gi_tild = subs(G_tild, q_tild, qi_tild);
Gi_tild = subs(Gi_tild, dq_tild, dqi_tild);
Gi_tild = subs(Gi_tild, [L_torso, L_leg1, L_leg2, m_torso, m_leg1, ...
    m_leg2, I_torso, I_leg1, I_leg2, g], [L_torso_num, L_leg1_num,...
    L_leg2_num, m_torso_num, m_leg1_num, m_leg2_num, I_torso_num,...
    I_leg1_num, I_leg2_num, g_num]);
Gi_tild = vpa(Gi_tild,4)
% case (ii)
Gii_tild = subs(G_tild, q_tild, qii_tild);
Gii_tild = subs(Gii_tild, dq_tild, dqii_tild);
Gii_tild = subs(Gii_tild, [L_torso, L_leg1, L_leg2, m_torso,
 m_leg1, ...
    m_leg2, I_torso, I_leg1, I_leg2, g], [L_torso_num, L_leg1_num,...
    L_leg2_num, m_torso_num, m_leg1_num, m_leg2_num, I_torso_num,...
    I_leg1_num, I_leg2_num, g_num]);
Gii_tild = vpa(Gii_tild,4)
Gi tild =
      0
  196.2
 -12.26
 -12.26
```

```
Gii_tild =

0
196.2
8.388
-18.79
-12.26
```

B_tild matrix

```
case (i)
Bi_tild = B_tild
% case (ii)
Bii_tild = B_tild
Bi_tild =
[ 0, 0]
[ 0, 0]
[ 1, 0]
[ 0, 1]
[-1, -1]
Bii_tild =
 0, 0]
[ 0, 0]
[ 1, 0]
 0, 1]
[-1, -1]
```

2(e) (Handwritten portion included at end of document)

```
% Linear algebra is on paper, final expression for D_tild_alt is
% implimented below
D_tild_alt = inv(T')*D*inv(T);

% Double check that the two versions of D_tild are equivalent by inputting
% numeric values into D_tild_alt for case (i). Then compare to the
% vector obtained from computing Lagrangian dynamics.

Di_tild_alt = subs(D_tild_alt, q, qi);
```

```
Di_tild_alt = subs(Di_tild_alt, dq, dqi);
Di tild alt = subs(Di tild alt, [L torso, L leg1, L leg2, m torso,
m leg1, ...
   m leg2, I torso, I leg1, I leg2], [L torso num, L leg1 num,...
   L_leg2_num, m_torso_num, m_leg1_num, m_leg2_num, I_torso_num,...
    I_leg1_num, I_leg2_num]);
Di_tild_alt = vpa(Di_tild_alt,4)
% This vector should output zeros
disp(Di_tild_alt - Di_tild)
Di_tild_alt =
   20.0, 0, -2.5, -2.165, 2.165]
      0, 20.0,
                 0, -1.25, -1.25]
             0, 1.75,
                           0,
[-2.165, -1.25, 0,
                       1.75,
                                  01
[ 2.165, -1.25,
                  0,
                       0, 1.625]
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
```

2(f) (Handwritten portion included at end of document)

```
% Linear algebra is on paper, final expressions for C_tild_alt,
G tild alt,
% and B tild alt are implemented below
C tild alt = inv(T')*C*inv(T);
G_tild_alt = inv(T')*G ;
B tild alt = inv(T')*B;
% Double check that the two versions of B tild alt, G tild alt,
% and C tild alt are equivalent by inputting
% numeric values into each matrix for case (i). Then compare to the
% vectors obtained from computing Lagrangian dynamics.
Ci tild alt = subs(C tild alt, q, qi);
Ci_tild_alt = subs(Ci_tild_alt, dq, dqi);
Ci_tild_alt = subs(Ci_tild_alt, [L_torso, L_leg1, L_leg2, m_torso,
 m_leg1, ...
    m_leg2, I_torso, I_leg1, I_leg2 ], [L_torso_num, L_leg1_num,...
    L_leg2_num, m_torso_num, m_leg1_num, m_leg2_num, I_torso_num,...
    I leg1 num, I leg2 num]);
Ci_tild_alt = vpa(Ci_tild_alt,4)
```

```
Gi_tild_alt = subs(G_tild_alt, q, qi);
Gi tild alt = subs(Gi tild alt, dq, dqi);
Gi_tild_alt = subs(Gi_tild_alt, [L_torso, L_leg1, L_leg2, m_torso,
m_leg1, ...
    m_leg2, I_torso, I_leg1, I_leg2, g], [L_torso_num, L_leg1_num,...
    L_leg2_num, m_torso_num, m_leg1_num, m_leg2_num, I_torso_num,...
    I_leg1_num, I_leg2_num, g_num]);
Gi_tild_alt = vpa(Gi_tild_alt,4)
Bi_tild_alt = B_tild_alt
% These vectors should output all zeroes
display(Ci_tild - Ci_tild_alt)
display(Gi_tild - Gi_tild_alt)
display(Bi_tild - Bi_tild_alt)
Ci_tild_alt =
[ 0, 0,
          0, -2.306, -1.162]
[ 0, 0, 2.559, 3.994, -2.013]
[ 0, 0, 0,
                   0,
                            0]
[ 0, 0,
          0,
                    0,
                            0]
[ 0, 0,
                            0]
          0,
                   0,
Gi_tild_alt =
      0
  196.2
      0
 -12.26
 -12.26
Bi_tild_alt =
[ 0, 0]
  0, 0]
[ 1, 0]
[ 0, 1]
[-1, -1]
ans =
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
ans =
```

ans =

[0, 0] [0, 0] [0, 0] [0, 0]

Published with MATLAB® R2019a

2(a). From comparing the geometries of Figure 1a and Figure 16,

 $Q(1) = \widetilde{Q}(1) = X$, $Q(2) = \widetilde{Q}(2) = Y$, $Q(5) = \widetilde{Q}(5) = \Theta_3 = Q_3$ However, 9(3) $\neq \tilde{q}(3)$ and $2(4) \neq \tilde{q}(4)$, but we can relate these variables by,

 $\Theta_1 = 9, + 93 - T$ and $\Theta_2 = 92 + 93 - T$

· To incorperate all of these equations, we can write a configuration variable transformation as,

T

* Note that T is invertible and q=T-1q-T-d 2(b). To find mapping between a and a, differentiate the equations from 2(a) and find that, $\dot{q}(1) = \ddot{q}(1) = \dot{x}, \ \dot{q}(2) = \dot{q}(2) = \dot{y}, \ \dot{q}(5) = \ddot{q}(5) = \dot{\theta}_{3} = \dot{q}_{3}$ and, $\Theta_1 = 9, + 93, \Theta_2 = 92 + 93$

- · q=Tq+d where T is the same as 2(a) and d = [0;0,0,0,0]
- · Now differentiate again to find, $\ddot{q}(1) = \ddot{q}(1) = \ddot{x}, \ \ddot{q}(2) = \ddot{\tilde{q}}(2) = \ddot{\tilde{q}}(5) = \ddot{\tilde{q}}(5) = \ddot{\tilde{q}}(5) = \ddot{\tilde{q}}_3$ $\dot{\Theta}_1 = \dot{q}_1 + \dot{q}_3$, $\dot{\Theta}_2 = \dot{q}_1 + \dot{q}_3$

: ? = Ti+d where T is the Same as 2(a) and d=[0,0,0,0,0]

ME 292 B HW # 1

Zce). Start with given equation,

· Plug in expression For 2,

· Distribute transpose,

· Isolate terms inbetween 9 T and 9 For each side of the equation

$$D(2) = T^{\top} \widetilde{D}(\widetilde{2}) T$$

. Multiply by inverse OF TT and T

$$(TT)^{-1}D(q)T^{-1}=(T)^{-1}T^{-1}D(\widetilde{q})TT^{-1}$$

$$\vdots \left[\widetilde{D}(\widetilde{\mathfrak{A}}) = (T^{T})^{-1} \cdot D(\mathfrak{A}) \cdot T^{-1}\right]$$

2(F). Start by rearranging equation (2) as,

$$D(a)\dot{a} = B(a) - C(a, \dot{a})\dot{a} - G(a)$$

· Next, introduce equation (4) with results From 2(e) plugget in,

$$((T^{T})^{-1}\cdot D(n)\cdot T^{-1})\ddot{q} + \tilde{c}\ddot{q} + \tilde{c} = \tilde{c}u$$

· introduce expressions for \tilde{q} and \tilde{q} ,

$$((T^{\dagger})^{-1},D(n),\overline{T}^{-1})(\overline{T}_{2})+\overline{c}(\overline{T}_{3})+\overline{G}=\overline{B}u$$

· Rearrage,

$$(T^{T})^{-1} \cdot D(9) \dot{g} = -\overline{C}(T\dot{g}) - \widetilde{G} + \widetilde{B}u$$

. Multiply by TT,

$$D(a)\dot{a} = T^{T}(-\tilde{c}(T\dot{a}) - \tilde{G} + \tilde{B}u)$$

· Continued ...

· Now set egtn (2) and modified egtn (4) equal to another, eliminating their left hand terms,

 $B(q)u-C(q,\dot{q})\dot{q}-G(q)=T^{T}(-\tilde{c}(T\dot{q})-\tilde{q}+\tilde{g}u)$

. Multiply by (TT) and distribute,

 $(T^{T})^{-1} \cdot B(q)u - (T^{T})^{-1} \cdot C(q,q)\dot{q} - (T^{T})^{-1} \cdot G(q)$ $= -\widetilde{C}(T\dot{q}) - \widetilde{G} + \widetilde{G}u$

· By setting \hat{q} terms equal, we get, $-(T^T)^-C\hat{q} = -\tilde{c}T\hat{q}$

or equivalently,

$$\mathcal{C} = (\mathsf{T}^\mathsf{T})^{-1} \cdot \mathsf{C} \cdot \mathsf{T}^{-1}$$

. By setting singular (4) tems equal, we get, $-(T^{\dagger})^{-1}(G(9) = -\widetilde{G}$

or equivalently,

. By setting u tems equal, we get, $(T^{\dagger})^{-1} \cdot B \cdot u = \widetilde{B} u$

or equivalently,