DSC 255 - MACHINE LEARNING FUNDAMENTALS

THE LANDSCAPE OF MACHINE LEARNING

SANJOY DASGUPTA, PROFESSOR

COMPUTER SCIENCE & ENGINEERING

HALICIOĞLU DATA SCIENCE INSTITUTE

Three learning modalities

- Supervised learning
 For solving prediction problems
- 2 Unsupervised learning
 For finding good representations
- 3 Learning through interaction E.g., reinforcement learning

Prediction problems: Inputs and outputs

Basic terminology:

- The input space, \mathcal{X} . E.g., 32 x 32 RGB images of animals.
- The output space, \mathcal{Y} . E.g., Names of 100 animals.

y: "bear"

Prediction problems: Inputs and outputs

Basic terminology:

- The input space, \mathcal{X} . E.g., 32 x 32 RGB images of animals.
- The output space, \mathcal{Y} . E.g., Names of 100 animals.

y: "bear"

After seeing a bunch of examples (x, y), pick a mapping that accurately recovers the input-output pattern of the examples.

$$f: \mathcal{X} \longrightarrow \mathcal{Y}$$

Prediction problems: Inputs and outputs

Basic terminology:

- The input space, \mathcal{X} . E.g., 32 x 32 RGB images of animals.
- The output space, \mathcal{Y} . E.g., Names of 100 animals.

y: "bear"

After seeing a bunch of examples (x, y), pick a mapping that accurately recovers the input-output pattern of the examples.

$$f: \mathcal{X} \longrightarrow \mathcal{Y}$$

Prediction problems can be categorized by the type of **output space:** (1) discrete, (2) continuous, or (3) probability values.

Discrete output space: classification

Binary classification

E.g., Spam detection

```
X = \{\text{email messages}\}\
```

 $y = \{\text{spam, not spam}\}$

Discrete output space: classification

Binary classification

E.g., Spam detection

$$X = \{\text{email messages}\}\$$

 $Y = \{\text{spam, not spam}\}\$

Multiclass

E.g., News article classification

```
\mathcal{X}= {news articles}
\mathcal{Y} = {politics; business; sports,...}
```

Discrete output space: classification

Binary classification

E.g., Spam detection

$$X = \{\text{email messages}\}\$$

 $Y = \{\text{spam, not spam}\}\$

Structured outputs

E.g., Parsing

$$X = \{\text{sentences}\}\$$

 $Y = \{\text{parse trees}\}\$

Multiclass

E.g., News article classification

$$\mathcal{X}$$
 = {news articles}
 \mathcal{Y} = {politics; business; sports,...}

 \mathcal{X} : "John hit the ball"

Continuous output space: regression

Pollution level prediction

■ Predict tomorrow's air quality index in my neighborhood $\mathcal{Y}=[0,\infty)$ (< 100: okay, > 200: dangerous)

Insurance company calculations

• What is the expected life expectancy of this person? y = [0, 120]

What are suitable predictor variables (χ) in each case?

Probability estimation

$$\mathcal{Y}$$
= [0, 1] represents **probabilities**

Example: Credit card transactions:

- \mathcal{X} = details of a transaction
- y = probability this transaction is fraudulent

Probability estimation

$$\mathcal{Y}$$
= [0, 1] represents **probabilities**

Example: Credit card transactions:

- \mathcal{X} = details of a transaction
- y = probability this transaction is fraudulent

Why not just treat this as a binary classification problem?

Three learning modalities

Supervised learning

Nearest neighbor, generative models for prediction, linear regression, logistic regression, support vector machines, kernel methods, decision trees, boosting, random forests, neural nets

- 2 Unsupervised learning
 - Clustering, projection, manifold learning, embedding, generative modeling
- **3** Learning through interaction