

Introdução à Ciência da Computação - 113913

Prova 2

Questão B

Observações:

- As provas também serão corrigidas por um **corretor automático**, portanto é necessário que as entradas e saídas do seu programa estejam conforme o padrão especificado em cada questão (exemplo de entrada e saída). Por exemplo, não use mensagens escritas durante o desenvolvimento do seu código como "Informe a primeira entrada". Estas mensagens não são tratadas pelo corretor, portanto a correção irá resultar em resposta errada, mesmo que seu código esteja correto.
- Serão testadas várias entradas além das que foram dadas como exemplo, assim como as listas.
- Assim como as listas, as provas devem ser feitas na versão Python 3 ou superior.
- Cada questão (A e B) vale 50% da nota da prova 2.
- Leia com atenção e faça exatamente o que está sendo pedido.

Questão B - Algoritmos de Compactacao

Uma imagem possui muita redundância espacial, inclusive imagens feitas com caracteres da tabela ASCII. Para diminuir o tamanho dos arquivos com estas imagens, alguém inventou a seguinte codificação. Quando um caracter aparecer de forma seguida (na mesma linha) na imagem, ele será substituido por um número que deve ser a quantidade de vezes seguidas que o caractere aparece na imagem seguido do caracter propriamente dito.

A sequência "@@@!!!!!))AAAA" por exemplo, pode ser resumida para "3@5!2)4A".

Entrada

Imagem em caracteres ASCII. A imagem termina quando a palavra "fim" aparece isolada em uma linha (ultima linha).

Saída

A imagem compactada, linha por linha. A quantidade de vezes que o caracter aparece seguido pelo próprio caracter.

Entrada	Saida
###O### ##O#O## #O###O# ##O#O## ###O### fim	3#103# 2#101#102# 1#103#101# 2#101#102# 3#103#
OOOOOO AAAAAA CCCCCC DDDDDD AEAEAE fim	6O 6A 6C 6D 1A1E1A1E1A1E
(((O))) ((OO)) (OOO) OOOO fim	3(1O3) 2(2O2) 1(3O1) 4O

Boa Prova!