Решение задач для 10 класса.

1. В изображенной на рисунке системе пружины имеют жесткости $k_1 = 100$ H/м и $k_2 = 200$ H/м. К нижнему блоку подвешивают груз массой M = 8 кг. Найти смещение нижнего блока после того, как система придет в равновесие. Пружины, нити и блоки считать невесомыми, а нити нерастяжимыми. Ускорение свободного падения g = 10 м/с².

Решение

Рассмотрим положение равновесия данной системы. На нижний блок действует вес груза Mg, направленный вниз, и две силы натяжения нити T, направленные вверх. Поскольку блок находится в равновесии, то T = Mg/2. Следовательно, пружина 2 растянута на величину $x_2 = Mg/2k_2$. Аналогично, пружина 1 растянута с силой Mg/4, и ее удлинение равно $x_1 = Mg/4k_1$.

Поскольку пружина 1 удлинилась на x_1 , верхний блок опустился на $x_1/2$. Далее, поскольку верхний блок опустился на $x_1/2$, а пружина 2 удлинилась на x_2 , то смещение нижнего блока составляет $h = (x_1/2 + x_2)/2 = x_1/4 + x_2/2$. Подставляя выражения для величин x_1 и x_2 , получаем искомое смещение $h = Mg/16k_1 + Mg/4k_2$.

Ответ: h = 15 см.

2. Два одинаковых проводящих проволочных кольца радиуса L соединили в диаметрально противоположных точках О и О' как показано на рисунке. Сопротивление единицы длины проволоки равно ρ . Дуги АО и ВО равны, и их длина x. Найти зависимость сопротивления между точками A и B от величины x.

Решение

Обозначим сопротивление полукольца величиной $R = \rho \pi L$, а сопротивление дуги длиной x через $r = \rho x$. Нарисуем эквивалентную схему (см. рис. 1).

Так как точки О и О' лежат на оси симметрии схемы, потенциал в них одинаковый, и ток по параллельным сопротивлениям R течь не будет. Это позволяет убрать сопротивления R из цепи и перерисовать схему в следующем виде (см. рис. 2). Теперь нетрудно вычислить ее полное сопротивление.

$$R_{AB} = \left(\frac{1}{2r} + \frac{1}{2(R-r)}\right)^{-1} = \frac{2r(R-r)}{R} = \frac{2\rho x(\pi L - x)}{\pi L}.$$
 Otbet: $R_{AB} = \frac{2\rho x(\pi L - x)}{\pi L}$.

3. В цилиндрический сосуд с площадью основания $S = 100 \text{ см}^2$, наливают 1л соленой воды плотностью $\rho = 1,15 \ e/cm^3$ и опускают льдинку из пресной воды. Масса льдинки m = 1 кг. Определите, как изменится уровень воды в сосуде, если половина льдинки растает. Считать, что при растворении соли в воде объем жидкости не изменяется.

Решение

Вначале лед, масса которого m, вытесняет объем воды $V_1 = m/\rho_1$, где ρ_1 – начальная плотность воды. После того, как лед массы m/2 растаял, вытесняется объем воды $V_2 = m/(2\rho_2)$, где ρ_2 – конечная плотность воды. Объем добавившейся воды равен $V' = m/(2\rho)$, где ρ – плотность пресной воды. Изменение уровня воды в сосуде равно $\Delta h = \frac{V_2 + V' - V_1}{S} = \frac{m}{S} \left(\frac{1}{2\rho_2} + \frac{1}{2\rho} - \frac{1}{\rho_1} \right)$.

Конечная плотность воды ρ_2 равна отношению полной массы воды $\rho_1 V + m/2$ к полному объему $V + m/(2\rho)$, то есть $\rho_2 = \rho_1 \frac{V + m/(2\rho_1)}{V + m/(2\rho)}$, где V = 1 л – начальный объем воды.

Подставляя числовые значения, получим $\rho_2 = 1,1$ г/см³ и $\Delta h \approx 0,85$ см. Таким образом, уровень воды в сосуде повысится.

Ответ: уровень воды в сосуде повысится на $\Delta h \approx 0.85$ см.

4. Плоское зеркало расположено справа от линзы на фокусном расстоянии f. Найти, на каком расстоянии от линзы будет находиться изображение предмета, расположенного слева от линзы на расстоянии a (a > f).

Решение

В данной задаче необходимо рассматривать два варианта: a>2f и f< a<2f .

1) В случае a > 2f изображение будет создаваться лучами, отраженными от зеркала и находиться между линзой и зеркалом (см рис.)

В соответствии с формулой линзы $\frac{1}{a} + \frac{1}{d} = \frac{1}{f}$ изображение, в отсутствии зеркала, находилось бы на расстоянии $d = \frac{af}{a-f} < 2f$ от линзы. Значит, после отражения лучей от зеркала изображение будет находиться на расстоянии d-f < f слева от него, и на расстоянии x = f - (d-f) = 2f - d от линзы. Подставив выражение для d, получим ответ $x = \frac{f(a-2f)}{a-f}$.

2) В случае f < a < 2f изображение будет создаваться лучами, отраженными от зеркала и прошедшими второй раз через линзу, и находиться с той же стороны от линзы, где и предмет (см рис.)

В соответствии с формулой линзы $\frac{1}{a} + \frac{1}{d} = \frac{1}{f}$ изображение, в отсутствии зеркала, находилось бы на расстоянии $d = \frac{af}{a-f} > 2f$ от линзы. Значит, после отражения лучей от зеркала изображение будет находиться на расстоянии d-f>f слева от него, но это область

слева от линзы, что означает, вторичное преломление лучей в линзе. Без линзы изображение было бы на расстоянии x=d-2f слева от линзы. Запишем формулу линзы для второго преломления $\dfrac{1}{-(d-2f)}+\dfrac{1}{x}=\dfrac{1}{f}$, откуда, подставив выражение для d, получим ответ x=2f-a .

Примечание. В первом случае может возникнуть вопрос о наблюдаемости полученного изображения. Тогда, если наблюдатель находиться левее предмета, то лучи попадут к нему также после повторного преломления в линзе и численно ответ получится такой же, как во втором случае. Отличие будет в том, что изображение получится мнимым, тогда как во втором случае – действительным.

Ответ: В случае
$$f < a < 2f$$
 расстояние будет $x = 2f - a$, а для $a > 2f - x = \frac{f(a - 2f)}{a - f}$.

5. Из пушки, стоящей на наклонной плоскости, производится выстрел. В момент выстрела пушка срывается с креплений и начинает соскальзывать вниз с нулевой начальной скоростью. Ядро вылетает и попадает в соскальзывающую пушку (см. рисунок). Коэффициент трения скольжения пушки о плоскость равен μ . Пренебрегая сопротивлением воздуха, определить под каким углом к наклонной плоскости вылетело ядро из пушки.

Решение

Обозначим угол наклона плоскости через α , начальную скорость ядра — через v, массу пушки — через m.

Введем систему координат, связанную с наклонной плоскостью (рис. 3), а именно, начало координат O совместим с первоначальным положением пушки, ось Ox направим вдоль наклонной плоскости, а ось Oy – перпендикулярно ей.

Будем описывать движение ядра и пушки в этой системе координат.

Сначала рассмотрим движение пушки после выстрела. Силы, действующие на соскальзывающую пушку, обозначены на рис. 4. Запишем второй закон Ньютона для пушки в проекциях на оси:

$$Ox: -F_{\partial \check{\sigma}} + mg \sin \alpha = ma;$$
 $Oy: N - mg \cos \alpha = 0;$

Поскольку $F_{\delta\delta} = \mu N$, то выразив N из второго соотношения и подставив в первое для ускорения пушки получим: $a = g(\sin \alpha - \mu \cos \alpha)$.

Рис. 3

Рис. 4

Рассмотрим теперь движение ядра. В выбранной системе координат движение ядра происходит равноускоренно вдоль обеих осей. Из рис. З видно, что проекции ускорения ядра на соответствующие оси равны $g_1 = -g \cos \alpha$ и $g_2 = g \sin \alpha$. Уравнения описывающие движение ядра имеют вид:

$$y(t) = vt \sin \beta + \frac{g_1 t^2}{2};$$
 $x(t) = vt \cos \beta + \frac{g_2 t^2}{2}.$

Из первого уравнения находим время полета ядра из условия y(T) = 0. Тогда $T = \frac{2v}{g} \frac{\sin \beta}{\cos \alpha}$.

В этот момент времени ядро окажется в точке на наклонной плоскости с координатой

$$x(t) = v \frac{2v}{g} \frac{\sin \beta}{\cos \alpha} \cos \beta + \frac{g_2}{2} \left(\frac{2v}{g} \frac{\sin \beta}{\cos \alpha} \right)^2,$$

а пушка скатится вниз на расстояние S равное $S = \frac{aT^2}{2} = \frac{2(\sin\alpha - \mu\cos\alpha)v^2\sin^2\beta}{g\cos^2\alpha}$.

Приравнивая x(T) и S получаем: $-\cos\beta = \mu\sin\beta$, откуда получаем искомый угол $\cot\beta = -\mu$. Замети, что так как $\mu > 0$, то угол β всегда будет превосходить $\pi/2$.

Ответ: Угол вылета снаряда $\beta = \operatorname{arcctg}(-\mu)$.