การทดลองที่ 2 การใช**้**งาน GPIO

วัตถุประสงค์

- 1 เพื่อให้นักศึกษาเขียนโปรแกรมควบคุมการทำงานของ GPIO ได้
- 2 เพื่อให้นักศึกษาเขียนโปรแกรมเพื่อรับอินพุตจากสวิตช์บนบอร์ดและสวิตช์ภายนอกได้

1. Switch และ LED

บนบอร์ด Nucleo-F767ZI มีสวิตช์ 1 ปุ่ม และ LED 3 ดวง ที่ผู้ใช้สามารถใช้งานได้ สวิตช์ B1 สีน้ำเงินซึ่งเชื่อมต่อกับ ขา PC13 เมื่อกดจะมีสถานะลอจิก 1 เมื่อปล่อยจะมีสถานะลอจิก 0 ดังรูปที่ 1.1 ส่วน LED 3 ดวง ได้แก[่] LD1 LD2 และ LD3 เชื่อมต่อกับขา PB0 PB7 และ PB14 ตามลำดับ โดยจะติดสว่างเมื่อป้อนลอจิก 1

รูปที่ 1.1 การเชื่อมต่อสวิตช์เข้ากับขา PC13

นอกจากสวิตช์และ LED ที่มีมาให้บนบอร์ดอยู่แล้ว ผู้ใช้สามารถเชื่อมต่อสวิตช์และ LED เพิ่มเติมได้ทางตัวเชื่อมต่อ (Connector) บนบอร์ด ซึ่งเชื่อมต่อกับขา GPIO ของไมโครคอนโทรลเลอร์ดังรูปที่ 1.2

รูปที่ 1.2 การเชื่อมต่อขา GPIO ของไมโครคอนโทรลเลอร์ไปยังตัวเชื่อมต่อตำแหน่งต่างๆ

การเชื่อมต่อสวิตช์ต้องต่อตัวต้านทานเพื่อจำกัดกระแส โดยต่อได้ 2 แบบ คือ แบบ pull-up ดังรูปที่ 1.3 (a) และ แบบ pull-down ดังรูปที่ 1.3 (b)

รูปที่ 1.3 การต่อสวิตช์แบบต่างๆ

- (a) Pull-up resistor
- (b) Pull-down resistor

2. การอ่านค่าอินพุต

การเริ่มต้นใช้งาน GPIO นั้นต้องมีการจ่ายสัญญาณนาฬิกาไปยังพอร์ตที่ต้องการใช้งาน พร้อมทั้งกำหนดโหมดการ ทำงานให้กับแต่ละขาว่าจะให้เป็นอินพุตหรือเอาต์พุตประเภทใด อีกทั้งยังสามารถกำหนดความเร็ว (speed) เมื่อทำหน้าที่ เป็นเอาต์พุตได้ว่าจะให้มีความเร็ว LOW, MEDIUM, HIGH หรือ VERY HIGH

หากต้องการเขียนโปรแกรมเพื่อตรวจสอบว่าเมื่อกดสวิตช[์] B1 ทำให้ LD1 ติดนาน 1 วินาทีแล้วดับ มีขั้นตอนดังนี้

- 1) ใช้โปรแกรม STM32CubeMX สร้างโปรเจ็คขึ้นมาเช่นเดียวกับการทดลองที่ 1 แต่ใช้ขา GPIO ดังรูปที่ 2.1
- 2) พิมพ์โค้ดใน while loop ดังรูปที่ 2.2

รูปที่ 2.1 การกำหนด GPIO ที่ต้องการใช้งาน

- (a) Pinout Configuration
- (b) Pinout Configuration
- (c) GPIO Configuration

```
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
    //Check whether button is pressed
    if (HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_13) == GPIO_PIN_SET)
    {
        //Turn on LD1 at PB0
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_SET);

        //Delay 1,000 milliseconds
        HAL_Delay(1000);

        //Turn off LD1 at PB0
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_RESET);
    }
}
/* USER CODE END 3 */
```

รูปที่ 2.2 โค้ดใน while loop ในฟังก์ชัน main

3. อธิบายการทำงาน

ฟังก์ชัน MX GPIO init ()

- เป็นฟังก์ชันที่โปรแกรม STM32CubeMX สร้างขึ้นมา เพื่อตั้งค่า GPIO บนไมโครคอนโทรลเลอร์ให้ สอดคล้องกับที่กำหนดไว้ในโปรแกรม
- เริ่มต้นด้วยการ Enable สัญญาณนาฬิกาให้ GPIOC (สำหรับสวิตช์ B1) และ GPIOB (สำหรับ LED)

```
__HAL_RCC_GPIOC_CLK_ENABLE();
HAL_RCC_GPIOB_CLK_ENABLE();
```

กำหนดให้ PC13 ซึ่งเชื่อมต่ออยู่กับสวิตช์ B1 เป็นอินพุตแบบ Floating

```
GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL GPIO Init(GPIOC, &GPIO InitStruct);
```

• กำหนดให้ PB0 ซึ่งเชื่อมต่อกับ LD1 เป็นเอาต์พุต Push Pull ที่มีความเร็วแบบ Low

```
GPIO_InitStruct.Pin = GPIO_PIN_0
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL GPIO Init(GPIOB, &GPIO InitStruct);
```

ฟังก์ชัน main ()

- เริ่มต้นการทำงานด้วยฟังก์ชัน HAL_Init(), SystemClock_Config() และ MX_GPIO_Init();
- อ่านสถานะของสวิตซ์ B1 โดยใช้คำสั่ง

 HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_13)
- ตรวจสอบเงื่อนไขเพื่อดูว่าสวิตช์ถูกกดหรือไม่ ด้วยคำสั่ง
 HAL GPIO ReadPin (GPIOC, GPIO_PIN_13) == GPIO_PIN_SET

สามารถศึกษารายละเอียดฟังก์ชันที่สามารถใช้งานกับโมดูล GPIO เพิ่มเติมได้จากไฟล์เอกสาร HAL Driver

4. การทดลอง

- 1. จงเขียนโปแกรมที่มีการทำงานดังนี้ <u>เมื่อสวิตช[์] B1 ถูกกด ให้ LED LD1 ติดสว่างนาน 1 วินาที แล้วดับ</u>
- 2. จงแก้ไขโปรแกรมในการทดลองข้อ 1 ให้ทำงานได้ดังนี้ ต่อสวิตช์จากวงจรภายนอกตามรูปที่ 1.3 (a) เชื่อมต่อกับ ไมโครคอนโทรลเลอร์ที่<u>ขา PA0</u> แทนการใช้สวิตช์ B1 และต่อ LED ภายนอกที่<u>ขา PC8</u> แทนการใช้ LD2 จากนั้นให้เปิด โปรแกรม STM32CubeMX เพื่อ<u>แก้ไขการตั้งค่า</u>ให้สอดคล้องกับการทดลองในข้อนี้ สั่ง Generate Code ใหม่ แล้วแก้ไข โค้ดใน while loop ให้ถูกต้อง
 - 3. จงเขียนคำสั่งเพื่อตรวจสอบว่า LED ในการทดลองข้อ 2 **ติด**อยู่หรือไม่

4. จงต่อโมดูล LED 8 ดวงเข้ากับไมโครคอนโทรลเลอร์ โดยให้เชื่อมต่อที่ขา D0 ถึง D7 แล้วเขียนโปรแกรมให้ทำงาน ดังตารางที่ 4.1

ตารางที่ 4.1 การแสดงผลด้วย LED เมื่อกดสวิตช์ต่างๆ

Switch	การทำงานของ LED
B1	เมื่อกดสวิตช์ B1 ให้ LED ติดค้างทีละดวง และเมื่อกดสวิตช์ B1 อีกครั้งให้ LED ดวงถัดไปติดแทน ถ้า
	หากไม่มี LED ดวงใดติดอยู่เลยให้เริ่มต้นที่ LED0 ที่ขา D0 แล้วขยับไปยัง LED1 ที่ขา D1 จนกระทั่ง
	ถึง LED7 ที่ขา D7 แล้ววนไปที่ LED0 อีกครั้ง
	เริ่มต้น กดสวิตช์ B1 -> LED0 ติดค้าง -> กดสวิตช์ B1 -> LED0 ดับ และ LED1 ติดค้าง -> กดสวิตช์
	B1 -> LED1 ดับ และ LED2 ติดค้าง กดสวิตช์ B1 -> LED7 ดับ และ LED0 ติดค้าง
PA0 Switch	LED จะไล่ติดแล้วดับทีละดวงเริ่มตั้งแต่ LED7 จนถึง LED0 โดยอัตโนมัติ 1 รอบ กำหนดให้ใช
	delay time 0.5 วินาที

ใบตรวจการทดลองที่ 2

Microcontroller Application and Development 2566

	วัน/เดือน/ปี	24/กรกฎาคม/2566	กลุ่มที่8	
1. รหัสนักศึกษา	64010131	ชื่อ-นามสกุล	ฉัฐตะวัน ฮาคร	
2. รหัสนักศึกษา	64010315	ชื่อ-นามสกุล	ธนธร แตงอ่อน	
3. รหัสนักศึกษา	64010441	ชื่อ-นามสกุล	นิภาภัทร คำมั่น	
ลายเซ็นผู้ตรวจ				
การทดลองข้อ 2&3 ผุ้	ุ์ตรวจ	วันที่ตรวจ 🛚 W	☐ W+1	
การทดลองข้อ 4 ผุ้	jัตรวจ	วันที่ตรวจ 🛚 W	☐ W+1	
คำถามท้ายการทดลอ) 4			
1. จงเขียนคำสั่งเพีย	ง 1 คำสั่งที่ทำให้ เ	FD0 FD1 และ FD2 ที่ๆ	า PC8, PC9 และ PC10 ติดพร้อมกัน	
			IN_9 GPIO_PIN_10 ,GPIO_PIN_S	SET)
		ED2 ที่ขา PC8 ,PC9 แล		
			ากโค้ดใน while loop เป็นดังโค้ดด้านล่าง	
		ภา PC10 PC9 และ PC8 ห	ากเคตเน while toop เบนตั้งเคตตานลาง	แสดง
ว่าโปรแกรมนี้ทำง				
uint8_t	n;			
while (1)			
fo	or (n=0; n<=2	2; n++)		
	{ GPI	IOC -> BSRR = 0x0	7000000;	
		L_Delay(500);	,	
		IOC -> BSRR = 0x0 L_Delay(500);	0000400 >> n;	
}	}			
GPIOC -> BSRF	R = 0x07000000	0:		
	•		C 10 ,9 ,8 แต่ไฟ LED จะยังไม่ติด	
GPIOC -> BSRF			, , ,	
			C 10 ,9 ,8 แล้ว Shift กันจนทำให้ ไฟ	
		ı เริ่มจากไฟที่ขาของ P(