здесь надо сильно больше определений

Тут определение по сути такое же как и раньше, дифференциал имеет символический смысл.

Определение 1. Определим «шаровую» окрестность комплексного числа как $\{z \mid |z-a| < \varepsilon\}$, проколотую окрестность как $\{z\mid 0<|z-a|<\varepsilon\}$. Дальше можно уже рассмотреть базу таких окрестностей и ввести топологию как в \mathbb{R}^2 . Аналогично вводятся пределы и непрерывности.

Определение 2. Пусть $G\subset \mathbb{C}$ — область, $f\colon G\to C$, непрерывна, $f=f_1+if_2$, $\omega(z,\mathrm{d}z)=f(z)\mathrm{d}z$ — комплексная дифференциальная форма. Пусть $\Gamma \subset G$ — кривая, γ — её параметризация, $\gamma = \gamma_1 + i\gamma_2$

Тогда

$$\int\limits_{\gamma}:=\int\limits_{a}^{b}f(\gamma(t))\dot{\gamma}(t)\,\mathrm{d}t:=\int\limits_{a}^{b}(f_{1}(\gamma(t))\gamma_{1}(t)-f_{2}(\gamma(t))\gamma_{2})\mathrm{d}t+\int\limits_{a}^{b}(f_{1}(\gamma(t))\gamma_{2}(t)+f_{2}(\gamma(t))\gamma_{1})\mathrm{d}t$$

Свойства:

Утверждение 1. см??

Утверждение 2. Пусть $\{t_i\}$ — разбиение отрезка [a;b], $z_i=\gamma(t_i)$, $\Delta z_i=z_{i+1}-zi$, $\tau_i\in[t_i,t_{i+1}]$, $\xi_i=\gamma(\tau_i)$. Пусть ещё

$$\sigma = \sum_{i=0}^{n-1} f(\xi_i) \Delta z_i$$
$$r = \max |\Delta z_i|$$

Тогда

$$\int_{\gamma} f(z) \, \mathrm{d}z = \lim_{r \to 0} \sigma$$

Следует из вещественной теоремы Римана

Следствие 1. Пусть $|f(z)| \leq M \ \forall z \in \Gamma$

$$\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \leqslant M \cdot \ell(\Gamma)$$

$$|\sigma| \leqslant \sum_{i} |f(\xi_i)| \cdot |\Delta z_i| \leqslant M \cdot \sum_{i} |\Delta z_i|$$

А дальше просто предельный переход в неравенстве.

{censored by galactic vimperor}

§ 30 Свойства дробно-линейного отображения

Определение 1 (Дробно-линейное отображение). $f(z) = \frac{az+b}{cz+d}$, $ad \neq bc$ В ∞ определим её как a/c, а в -d/c как ∞ .

Утверждение 1. Дробно-линейное отображение — гомеоморфизм $\overline{\mathbb{C}}$ в $\overline{\mathbb{C}}$.

Определение 2. Углом между двумя путями на бесконечности называется угол между образами утих путей при отображении $z\mapsto \frac{1}{z}$

Замечание. Геометрическая мотивировка связана с углами между путями через северный полюс сферы Римана.

Утверждение 2. Дробно-линейное отображение конформно во всех точках $\overline{\mathbb{C}}$

Утверждение 3. Дробно-линейные отображения образуют группу.

Утверждение 4. Дробно-линейные отображения переводят обобщённые окружности (прямые или окружности) в обобщённые окружности.

▼

Дробно-линейное — композиция линейного и инверсии (с отражением относительно вещественной оси). С линейными всё ясно, а с инверсией надо доказывать. Окружность можно записать уравнением

$$(z-a)(\bar{z}-\bar{a})=R^2$$

А прямую

$$(z-a)(\bar{z}-\bar{a})=(z-b)(\bar{z}-\bar{b})\Leftrightarrow \overline{(a-b)}z+(a-b)\bar{z}+|b|^2-|a|^2=0$$

Посмотрим, прообразом чего она является

$$(w^{-1} - a)(\bar{w}^{-1} - \bar{a}) = \frac{(1 - aw)(1 - \bar{a}\bar{w})}{|w|^2} = R^2 \Leftrightarrow (|a|^2 - 1)|w|^2 - a\bar{w} - \bar{a}w + 1 = 0$$

Дальше есть два случая:

|a|=1: Это уравнение прямой с $|b| \neq |a|$. А такие прямые не проходят через 0. Ну, точки на одной окружности равноудалены от её центра. А центр у неё в 0.

 $|a| \neq 1$ Поделим на $|a|^2 - 1$.

$$\left(w - \frac{a}{|a|^2 - 1}\right)\overline{\left(w - \frac{a}{|a|^2 - 1}\right)} = \frac{|a|^2}{|a|^2 - 1} - 1 = \frac{1}{|a|^2 - 1}$$

а сие есть уравнение окружности.

Ну, оставшиеся случаи разбираются аналогично. Разве что прямая через начало координат проще задаётся как

$$(e^{-ia} - e^{-ib})z + (e^{ia} - e^{ib})\bar{z} = 0$$

Ну и видно что не будет членов с $|w|^2$ — выйдет прямая.

▲

Утверждение 5. Дробно-линейное отображение сохраняет ангармоническое отношение:

$$[z_1, z_2, z_3, z_4] = \frac{z_1 - z_2}{z_1 - z_3} / \frac{z_4 - z_2}{z_4 - z_4}$$

Утверждение 6. Дробно-линейное отображение однозначно задаётся 3 точками и их образами.

{censored by galactic vimperor}

§ 42 Классификация изолированных особых точек

Определение 1. Особой точкой функции f называется точка, где f не голоморфна или не определена.

Определение 2. Изолированной особой точкой функции f называется особая точка, в некоторой окрестности которой нет других особых точек.

§ 46 Вычисление вычетов в полюсах

Определение 1. Пусть f имеет в a полюс. Порядком полюса называется наименьшая отрицательная степень в разложении f в ряд Лорана в кольце с центром в a.

Теорема 1. Пусть а — полюс первого порядка функции f . Тогда

$$\operatorname{Res}_a f = \lim_{z \to a} f(z)$$

Теорема 2. Пусть а — ноль первого порядка для ψ , $\varphi(a) \neq 0$, φ , ψ голоморфны в U(a), $f = \frac{\varphi}{\psi}$. Тогда

$$\operatorname{Res}_{a} f = \frac{\varphi(a)}{\psi'(a)}$$

Теорема 3. Пусть а — полюс р-го порядка функции f. Тогда

Res_a
$$f = \frac{1}{(p-1)!} \left((z-a)^p f(z) \right)_{z=a}^{(p-1)}$$

§ 47 Вычисление интегралов с помощью вычетов

I) Интеграл по периоду от периодической функции.

Пусть $f: \mathbb{R} \to \mathbb{C}$. Тогда

$$f=2\pi i \sum_{a_k} \operatorname{Res}_{a_k} g,$$

где a_k — вычеты функции g(z), внутри единичной окружности. В функции $g\sin/\cos 3$ аменены на $\frac{1}{2}(z\pm z^{-1})$

 $|\mathsf{II}\rangle$ Интеграл от рациональной функции на $\mathbb R$

Пусть $R(x) = \frac{P(x)}{Q(x)}$, $P,Q \in \mathbb{R}[x]$, $\deg P \leqslant \deg Q - 2$. Тогда

$$\int_{-\infty}^{\infty} R(x) dx = 2\pi i \sum_{\text{Im } a_k > 0} \text{Res}_{a_k} R(z)$$

$$|II| \rangle \int_{-\infty}^{\infty} f(z) e^{i\lambda z} dz = I$$

Пусть $f(z) \xrightarrow[z \to \infty]{} 0$, голоморфна всюду кроме $\{a_k\}$, нету особых точек на $\mathbb R$. Тогда

$$I = 2\pi i \sum_{\operatorname{Im} a_k > 0} \operatorname{Res}_{a_k} f(z) e^{i\lambda z}$$

Лемма 1 (Жордана). Пусть f голоморфна всюду кроме счётного числа особых точек, $f(z) \xrightarrow[z \to \infty]{} 0$. Тогда

$$\int_{\Gamma_R} f(z) e^{i\lambda z} dz \xrightarrow[R \to \infty]{} 0$$

§ 55 Классические односвязные области. Теорема Римана

Определение 1. Комплексным изоморфизмом областей G и H называется однолистное конформное отображение $f: G \to H$. Область G и H тогда называются и конформно эквивалентными (изоморфными).

 \mathcal{S} амечание. $f: G \to G$ при условиях выше — автоморфизм.

Утверждение 1. Все автоморфизмы области G с операцией композиции образуют группу Aut G.

морфности с сюръективностью, ведь из однолистности производная нигде не обращается в 0

▼

Пусть $f, g, h \in \operatorname{Aut} G$. Тогда $f \circ g \colon G \to G$, композиция биекций — биекция. Так что операция задана корректно.

- $(f \circ (g \circ h))(x) = f(g(h(x))) = ((f \circ g) \circ h)(x)$
- $\forall f \; \exists \; f^{-1}$, обратное голоморфно и биекция, \Rightarrow конформно и однолистно.
- id: $G \to G$ конформно и однолистно.

Классические области

- $1. \overline{\mathbb{C}}$
- 2. C
- 3. $\mathbb{D} = \{z \mid |z| < 1\}$

Теорема 2 (Римана). Пусть область $G \subset \overline{\mathbb{C}}$. Тогда $G \cong$ одной из классических областей

- 1. $G = \overline{\mathbb{C}} \Rightarrow G \cong \overline{\mathbb{C}}$
- 2. $G = \overline{\mathbb{C}} \setminus \{a\} \Rightarrow G \cong \mathbb{C}$
- 3. $G = \overline{\mathbb{C}} \setminus U \Rightarrow G \cong \mathbb{D}, |U| > 1$

§ 56 Лемма Шварца

§ 57 Лемма о подгруппе группы автоморфизмов

Определение 1. Пусть $\Gamma < \operatorname{Aut} G$. Тогда говорят, что Γ — транзитивна, если

$$\forall z_1, z_2 \in G \ \exists f \in \Gamma \colon f(z_1) = z_2$$

3амечание. Лучше конечно говорить, что действие группы автоморфизмов на G транзитивно.

Лемма 1. Пусть область $G \subset \overline{\mathbb{C}}$, Γ — транзитивна. Пусть к тому же $\exists z_0$: $\mathsf{Stab}(z_0) < \Gamma$. Тогда $\Gamma = \mathsf{Aut}\,G$.

▼

Выберем произвольный $f \in \operatorname{Aut} G$, пусть $z_1 = f(z_0)$. Из транзитивности $G \exists \gamma \in \Gamma \colon \gamma(z_1) = z_0$. Тогда $h = \gamma \circ f \in \operatorname{Stab}(z_0)$. Но из второго условия $\operatorname{Stab}(z_0) < \Gamma \Rightarrow h \in \Gamma$. Но тогда

$$\forall f \in \operatorname{Aut} G \ f = \underbrace{\gamma^{-1}}_{\in \Gamma} \circ \underbrace{h}_{\in \Gamma} \in \Gamma$$

§ 58 Автоморфизмы классических областей

Здесь всё константы по умолчанию $\in \mathbb{C}$.

Теорема 1. Aut
$$\overline{\mathbb{C}} = \{ f \mid f(z) = \frac{az+b}{cz+d}, ad-bc \neq 0 \}$$

□ Пусть

$$\Gamma = f \mid f(z) = \frac{az+b}{cz+d}, \Gamma < \operatorname{Aut} \overline{\mathbb{C}}$$

Композиция дробно-линейных — дробно-линейна, обратное — тоже дробно-линейно. Так что подгруппа.

Она транзитивна, для $\mathbb C$ хватит и линейного (сдвиг), а как отправить что-то в бесконечность, понятно. Давайте посмотрим, чему равен $\operatorname{Stab} \infty$. Нам нужно чтобы $\infty \mapsto \infty$. А значит $\mathbb C \mapsto \mathbb C$. Но из теоремы 0.58.2 это линейные функции. А они явно входят в дробно-линейные. Так что $\operatorname{Stab} \infty < \Gamma$. А тогда по лемме 0.57.1 $\Gamma = \operatorname{Aut} \overline{\mathbb C}$

Теорема 2. Aut
$$\mathbb{C} = \{ f \mid f(z) = az + b, a \neq 0 \}$$

 \square Пусть $A = U(\infty)$. Бесконечность — явно особая точка, надо подумать только какая.

Пусть ∞ — существенно особая точка. Но тогда по теореме Сохоцкого f(A) всюду плотно в \mathbb{C} . А значит в $U(0) \subset \mathbb{C} \setminus U(\infty)$ есть точка из f(A) — проблемы с однолистностью (она же инъективность).

Пусть ∞ — устранимая особая точка. Но тогда в кольце $U(\infty)$

$$f(z) = \frac{c_{-k}}{z^k} + \dots + c_0$$

Ho $f \in \operatorname{Aut} G \Rightarrow f$ голоморфна в 0. Беда

Выхода нет — в ∞ — полюс. Но тогда f(z) — какой-то полином, ведь для полюса нужно ограниченное число членов в главной части ряда Лорана. Но любой полином степени n имеет в $\mathbb C$ ровно n корней. А у нас функция однолистная. Так что подходят полиномы лишь первой степени. Константу тоже нельзя, проблемы с однолистностью. \blacksquare

Теорема 3. Aut
$$\mathbb{D}=\{f\mid f(z)=e^{i\theta}\frac{z-a}{1-\bar{a}z}, \theta\in\mathbb{R}, |a|<1\}$$

 \square Опять рассмотрим Γ как в условии и покажем, что $\Gamma = \operatorname{Aut} \mathbb{D}$. Надо сначала показать хотя бы, что $\Gamma < \operatorname{Aut} \mathbb{D}$.

$$\left| e^{i\theta} \, \frac{z - a}{1 - \bar{a}z} \right|$$

Проще всего домножить на сопряжённое

$$\left|\frac{z-a}{1-\bar{a}z}\right|^2 = \frac{(z-a)(\bar{z}-\bar{a})}{(1-\bar{a}z)(1-a\bar{z})} = \frac{|z|^2 - a\bar{z} - z\bar{a} + |a|^2}{1-\bar{a}z - a\bar{z} + |a|^2|z|^2} < 1 \Leftrightarrow |z|^2 + |a|^2 < 1 + |a|^2|z|^2 \Leftrightarrow (|a|^2 - 1)(|z|^2 - 1) > 0$$

Так что при $|z| < 1 \land |a| < 1$ это верно.

Все утверждения про полюс в бесконечности можно получить, рассмотрев $f(^1\!/_z)$ в U(0)

Дальше легко найти обратное к $\gamma(z)=w$

$$\gamma^{-1}(w) = rac{w - e^{i heta}}{war{a} - e^{i heta}} = e^{i heta_1} rac{a_1 - z}{1 - ar{a}_1 z} \ \left(a_1 = e^{i heta} a \in \mathbb{D}
ight)$$

С композицией тоже несложно разобраться

$$f_{1}(z) = \frac{z - a_{1}}{1 - \bar{a}_{1}z}$$

$$f_{2}(z) = \frac{z - a_{2}}{1 - \bar{a}_{2}z}$$

$$a = \frac{a_{1}e^{-i\theta} + a_{2}}{1 + a_{1}\bar{a}_{2}e^{-i\theta}}$$

$$f_{2}(f_{1}(z)) = e^{i\theta_{2}} \frac{e^{i\theta}z - e^{i\theta}a_{2} - a_{1} + a_{1}\bar{a}_{2}z}{1 + \bar{a}_{1}a_{2}e^{i\theta} - \bar{a}_{1}e^{i\theta}z - \bar{a}_{2}z} = \frac{z - a}{1 - \bar{a}z}$$

$$|a| = |e^{-i\theta}f_{1}(-a_{2}e^{i\theta})| < 1$$

Осталось показать оба условия из леммы 0.57.1

1. Пусть $z_1, z_2 \in \mathbb{D}$. Будем строить так: $z_1 \mapsto 0 \mapsto z_2$

$$f_1(z) = \frac{z - z_1}{1 - \bar{z}_1 z}$$
 $f_2^{-1}(z) = \frac{z - z_2}{1 - \bar{z}_2 z}$ $f = f_2 \circ f_1$

2. Посмотрим на $f\in \operatorname{Stab} 0$. По лемме Шварца $\forall\,z\in D\,|f(z)|\leqslant |z|$. Поскольку $\operatorname{Stab} 0$ — группа, $\exists\,f^{-1}$ и

$$|z| = |f^{-1}(f(z))| \le |f(z)| \Rightarrow |f(z)| = |z|.$$

А тогда по второму пункту леммы Шварца f(z)=cz, $|c|=1\Rightarrow c=e^{i\theta}$. Следовательно, Stab $0<\Gamma$. Тогда по уже упомянутой лемме $\Gamma=\operatorname{Aut}\mathbb D$