# Análise de Sentimentos em comentários no Twitter

Danilo Silva Bentes Gabriel Augusto De Vito D'Abmauia Guimarães

2018, v-1.3

## 1 Introdução

A análise de sentimentos, também conhecida como mineração de opiniões, refere-se ao uso de *Processamento de Linguagem Natural* para identificar, extrair, quantificar e estudar o estado afetivo e subjetivo da informação.

Este é um recurso muito importante, principalmente para empresas que desejam saber qual é a opinião que as pessoas estão tendo sobre seus produtos lançados no mercado.

A Web é um excelente meio de se extrair dados e de se retirar informações importantes, tanto por meio das redes sociais quanto por sites de notícias, blogs ou outras plataformas. É incontestável que a Web é palco de opiniões de usuários sobre produtos, críticas, elogios, comentários, etc.

## 2 Objetivo

Nosso objetivo com este artigo é demonstrar como o método probabilístico *Naive Bayes* (explicado na seção 3.2) pode ser útil para determinar a polaridade de uma frase ou comentário, tendo como aprendizado uma base de dados previamente classificada. Ou seja, determinar qual é a eficácia deste método em dizer se uma determinada frase tem cunho **positivo**, **negativo** ou **neutro** dada uma tabela de dados previamente classificada.

## 3 Desenvolvimento

#### 3.1 Base de dados

Necessitamos de uma base de dados classificada a fim de "treinarmos" o nosso modelo. O objetivo é que o algoritmo que desenvolvermos possa ler esta base e "aprender" qual palavra é 'positiva', 'negativa', ou 'neutra'.

Utilizamos uma base de dados composta por 8199 linhas contendo comentários diversos retirados de tweets do Twitter. Esta base de dados foi retirada do sítio (MINERANDO..., ), e possui duas colunas principais: A frase propriamente dita e a sua classificação.

### 3.2 Pré-processamento

O pré-processamento inicia-se quando os dados são coletados e organizados na forma de um conjunto de dados. Existem diversos objetivos nesta fase e um deles é solucionar os possíveis problemas com a base com que estamos trabalhando, tais como identificar atributos irrelevantes, valores desconhecidos, possíveis caracteres em lugares errados ou que irão atrapalhar a análise do algoritmo.

Nós utilizamos os seguintes recursos de pré-processamento:

- Tokenização: É utilizada em decompor cada o documento em cada termo que o compõe. Utilizamos espaços em branco para separar palavra por palavra de cada frase existente no documento.
- 2. Limpeza: Foram removidas as vírgulas, aspas, dois pontos, arrobas e outros símbolos que estavam sujando a análise. Portanto, deixamos, para cada token, apenas palavras que contenham letras de A-Z, a-z, acentuações básicas e números. Devemos lembrar que a nossa base de dados é composta por tweets e a tokenização separando as palavras por espaços em branco podem causar problemas. Por exemplo: a palavra 'amor' é diferente de 'amor:' ou '@amor'. Portanto, a limpeza é fundamental para o bom funcionamento do método.

Observação: A remoção de stopwords é um recurso muito utilizado no préprocessamento de dados. Porém, não o utilizamos, pois afetaria de forma negativa os nossos resultados. Há frases em que remover as stopwords faria com que a sua polaridade mudasse completamente. Um exemplo seria: "Eu não gostei deste governante, não votaria nele novamente" (negativa). Após removermos a stopword "não", a frase tornaria-se positiva.

## 3.3 Naive Bayes

Utilizaremos o algoritmo *Naive Bayes*, que supõe que exista uma independência entre as palavras (features) do modelo.

Trata-se de um modelo puramente probabilístico, e não se baseia de redes neurais artificiais para fazer predições.

O algoritmo recebe o nome de ingênuo (naive), pois para se classificar uma sentença como positiva, negativa ou neutra, ele faz a classificação palavra por palavra.

Caso o número de palavras classificadas como positiva dentro de uma sentença seja maior do que o número de palavras classificadas como negativa, então essa sentença é considerada positiva. Do contrário, se a frase possui mais palavras negativas do que positivas, ela é considerada uma frase negativa. Caso o número de palavras

positivas seja igual ao número de palavras negativas, então essa frase é taxada como neutra.

#### Um exemplo mais concreto de como o algoritmo funciona

Utilizando um exemplo simples, podemos mostrar, passo-a-passo, como funciona o algoritmo  $Naive\ Bayes$ :

A partir de uma base de dados, como a que temos no nosso projeto, suponha que exista um trecho desta base com as seguintes classificações:

Tabela 1 – Exemplo fictício de uma base de dados com a classificação de cada palavra

| Palavra  | Classe   |  |
|----------|----------|--|
| cachorro | positivo |  |
| amor     | negativo |  |
| mau      | negativo |  |
| amor     | positivo |  |
| amor     | positivo |  |
| cachorro | positivo |  |
| casa     | positivo |  |
| gato     | positivo |  |
| gato     | negativo |  |
| gato     | negativo |  |
| amor     | negativo |  |
| casa     | positivo |  |
| amor     | positivo |  |

Agora que temos uma base de dados classificada, o próximo passo é criarmos uma tabela de frequência, mostrando, para cada palavra, quantas vezes ela apareceu como positiva ou negativa nessa base de dados.

**Tabela 2** – Tabela de frequência

| Palavra  | Positivo | Negativo |
|----------|----------|----------|
| cachorro | 2        | 0        |
| amor     | 3        | 2        |
| mau      | 0        | 1        |
| gato     | 1        | 3        |
| casa     | 2        | 0        |
| Total    | 8        | 6        |

Tendo em mãos a tabela de frequência, podemos criar uma tabela de probabilidades para, então, podermos calcular qual é a probabilidade de uma determinada palavra ser *positiva* ou *negativa* no nosso 'treino'.

O algoritmo de Naive Bayes consegue calcular a probabilidade de cada palavra ser positiva ou negativa seguindo o seguinte exemplo:

**Tabela 3** – Tabela de Probabilidades

| Palavra  | Positivo               | Negativo               | Frequência                                          |
|----------|------------------------|------------------------|-----------------------------------------------------|
| cachorro | 2                      | 0                      | $\frac{2}{14} = 0.142$                              |
| amor     | 3                      | 2                      | $\frac{5}{14} = 0.357$                              |
| mau      | 0                      | 1                      | $\frac{1}{14} = 0.071$                              |
| gato     | 1                      | 3                      | $\frac{4}{14} = 0.285$                              |
| casa     | 2                      | 0                      | $\frac{\frac{4}{14} = 0.285}{\frac{2}{14} = 0.142}$ |
| Total    | 8                      | 6                      |                                                     |
|          | $\frac{8}{14} = 0.571$ | $\frac{6}{14} = 0.428$ |                                                     |

$$P(positivo|'amor') = \frac{P('amor'|positivo) * P(positivo)}{P('amor')}$$
(1)

$$P(positivo|'amor') = \frac{P('amor'|positivo) * P(positivo)}{P('amor')}$$

$$P(negativo|'amor') = \frac{P('amor'|negativo) * P(negativo)}{P('amor')}$$
(2)

Realizando os cálculos necessários para computar a probabilidade da palavra 'amor' ser positiva e negativa, temos:

$$P('amor') = \frac{5}{14} = 0.357 \tag{3}$$

$$P('amor'|positivo) = \frac{3}{8} = 0.375 \tag{4}$$

$$P('amor'|negativo) = \frac{2}{6} = 0.33 \tag{5}$$

$$P(positivo) = \frac{8}{14} = 0.571$$
 (6)

$$P(negativo) = \frac{6}{14} = 0.428$$
 (7)

$$P(positivo|'amor') = \frac{0.375 * 0.571}{0.357} = \mathbf{0.599}$$

$$P(negativo|'amor') = \frac{0.33 * 0.428}{0.357} = \mathbf{0.395}$$
(8)

$$P(negativo|'amor') = \frac{0.33 * 0.428}{0.357} = \mathbf{0.395}$$
(9)

Facilmente percebemos que a probabilidade da palavra 'amor' ser positiva é maior do que a probabilidade dela ser negativa.

Portanto, sempre que a palavra 'amor' aparecer em uma frase de teste, devemos contabilizá-la como positiva dentro desta frase.

Fazendo esta classificação com todas as palavras deste exemplo, temos uma outra tabela, denominada tabela de classificação, contendo a palavra e a classificação (label) que o algoritmo determinou para cada palavra.

#### 3.4 Teste do algoritmo

Tendo em mãos a tabela 4, podemos começar um exemplo de teste. O teste consiste em frases contendo palavras conhecidas na classificação ou não. Percorremos essas

**Tabela 4** – Tabela de Classificação

| Palavra  | Classificação |  |
|----------|---------------|--|
| cachorro | Positivo      |  |
| amor     | Positivo      |  |
| mau      | Negativo      |  |
| casa     | Positivo      |  |
| gato     | Negativo      |  |

frases e, para cada frase, contabilizamos quantas palavras desta frase são positivas, negativas e neutras.

Caso o número de palavras positivas seja superior ao número de palavras negativas e neutras, então essa frase é classificada como positiva. A mesma regra é utilizada para frases que possuem maior número de palavras negativas ou neutras.

Caso a frase contenha uma ou mais palavras desconhecidas, elas serão descartadas na contagem. Este é um problema do algoritmo e está citado na seção 5 (melhorias a serem feitas), pois se uma frase contém 80% das palavras desconhecidas, não é justo classificá-la baseada em 20% das palavras que a compõe.

Caso nenhuma palavra da frase possua classificação, então essa frase receberá a classificação de maior frequência no treino.

## 4 O algoritmo desenvolvido

#### 4.1 Treino

Com posse de nossa base de dados citada em 3.1, desenvolvemos um algoritmo em Python, que percorre as 7000 primeiras frases desta base e, para cada frase, monta a tabela de frequência igual à tabela 2, a armazena na memória e calcula a probabilidade de cada palavra ser positiva, negativa ou neutra, baseando-se na equação 1, tendo como resultado uma tabela semelhante à tabela 4, porém com a classificação de cada palavra da base.

Utilizamos apenas 7000 frases, e não todas, para forçarmos que nosso teste tenha algumas palavras desconhecidas, a fim de fazermos com que nosso modelo se aproxime mais de um modelo real.

Ao executarmos o nosso algoritmo, vimos que a nossa tabela 4 tem

Desta maneira, o algoritmo passa a ter posse de 115111 palavras classificadas, das quais 26.84% foram classificadas como positivas, 37.67% como negativas e 35,49% neutras. O tempo de execução foi 10.46 segundos. A imagem 1 mostra a etapa de treino sendo executada em um processador core i5.

Não utilizamos toda a base de dados para treinar a classificação pois desejamos que algumas palavras no teste sejam desconhecidas, para dar um comportamento mais realista para o nosso modelo.

Figura 1 – Execução da parte de treino do algoritmo

```
Python 3.6.3 Shell
                                                                           File Edit Shell Debug Options Window Help
Python 3.6.3 (v3.6.3:2c5fed8, Oct
                                   3 2017, 17:26:49) [MSC v.1900 32 bit (Intel)]
on win32
Type "copyright", "credits" or "license()" for more information.
RESTART: C:\Users\Gabriel\Google Drive\UFG\13 Periodo\Eng. Sistemas de Informaç
ão\Trabalho\Implementação\Análise de Sentimentos\main.py
Treinando...
Treino finalizado.
Total de palavras positivas:
Total de palavras negativas:
Total de palavras neutras: 40838
Total de paalvras classificadas:
Tempo de execução: 10.468048334121704 segundos
```

Fonte – Próprio autor

#### 4.2 Teste

O teste é a parte mais importante do algoritmo. Buscamos, dentro desta mesma base de dados, 1700 frases **aleatórias** para testarmos. Devido ao caráter aleatório das frases, a cada instância de execução do teste teremos resultados distintos. Portanto, faremos uma média de execução.

O teste consiste em:

- 1. Carregar as frases de teste na memória.
- 2. Para cada palavra de cada frase do teste, verificar a classificação desta palavra na instância de treino (na tabela 4) e somar as contribuições positivas, negativas e neutras de cada palavra dentro desta frase.
- 3. Caso o número de palavras positivas em uma frase seja maior do que o número de palavras negativas e neutras, então esta frase deve ser classificada como positiva. Repetir a mesma lógica para palavras negativas e neutras.
- 4. Comparar a classificação do teste com a classificação da base de dados. Caso sejam iguais, então significa que o algoritmo *acertou* o resultado. Caso sejam diferentes, classificar este teste como *erro*.

Uma consideração importante sobre o teste: caso uma palavra no teste não seja reconhecida, ou seja, ainda não tenha sido lida na fase de treino ou não está classificada, **não é atribuída a ela nenhuma classificação**. A classificação desta palavra é **descartada**.

Como citado acima, o caráter aleatório do nosso algoritmo nos força a testar mais de uma vez para termos uma média de erros e acertos. Realizamos, portanto,

dez testes como o ilustrado na figura 2. A tabela 5 mostra os resultados desses testes, bem como a **média de acertos** e **média de erros**.

Figura 2 – Execução de um dos testes



Fonte - Próprio autor

 ${\bf Tabela~5}-{\bf Resultados~dos~testes~realizados}$ 

| Teste | Acertos % | Erros % | Tempo(s)% |
|-------|-----------|---------|-----------|
| 1     | 85.00     | 15.0    | 15.82     |
| 2     | 84.05     | 15.94   | 9.24      |
| 3     | 80.82     | 19.17   | 12.89     |
| 4     | 83.41     | 16.58   | 14.24     |
| 5     | 82.67     | 17.23   | 13.09     |
| 6     | 83.41     | 16.58   | 12.52     |
| 7     | 81.76     | 18.23   | 12.49     |
| 8     | 83.76     | 16.23   | 12.48     |
| 9     | 82.23     | 17.76   | 12.35     |
| 10    | 83.47     | 16.53   | 12.45     |
| Média | 83.06     | 16.92   | 12.45     |

# 5 Melhorias a serem desenvolvidas

Ao longo do desenvolvimento deste artigo, percebemos que algumas alterações no método ou no código poderiam ser desenvolvidas.

# Referências

A Comparison of Event Models for Naive Bayes Text Classification. <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.9324&rep=rep1&type=pdf">http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.9324&rep=rep1&type=pdf</a>>. Accessed: 2018-07-10. Nenhuma citação no texto.

MINERANDO Dados. <a href="http://minerandodados.com.br/index.php/2017/03/15/">http://minerandodados.com.br/index.php/2017/03/15/</a> analise-de-sentimentos-twitter-como-fazer/>. Accessed: 2018-07-10. Citado na página 2.