

Tutorium 11

Algorithmen I SS 14

Union-Find Datenstruktur

Union-Find ist eine Partition einer Menge so, dass folgende Operationen effizient durchführbar sind:

union(x,y) Vereinigt die Menge mit x mit der Menge mit y

find(x) Gibt den Repräsentanten der Menge mit x zurück

Herausfinden ob x in der selben Menge wie y: find(x) == find(y)

Repräsentation der Mengen als Bäume: Repräsentanten sind Wurzel

Beispiel Union-Find

Zu Beginn: Die Partition besteht aus n ein-elementigen Mengen

Beispiel Union-Find

union(4,6)

find(4) == find(6): true find(1) == find(3): false

find(5) == find(3): false

Beispiel Union-Find

union(1,3)

find(4) == find(6): true find(1) == find(3): true find(5) == find(2): false

Optimierungen

- find() Alle traversierte Knoten direkt an die Wurzel gehängt:
 - → Reduziert Baumhöhe.
- union() Der kleine Baum wird an den Größeren gehängt

Laufzeit

- Amortisierte Laufzeit pro Operation: $\mathcal{O}(\alpha(n))$
 - \bullet $\alpha(n)$ ist die Inverse Ackermannfunktion
 - sehr langsam wachsend:

$$\alpha(2^{2^{10^{19/92}}}) < 5$$

Aufgabe: Bottleneck Shortest Path

Sei G=(V,E) ein zusammenhängender ungerichteter gewichteter Graph und $s,t\in V$. Ein kreisfreier Pfad P zwischen s und t heiße ein Bottleneck Shortest Path (BSP) für s und t, wenn das größte in P auftretende Kantengewicht minimal ist für alle Pfade zwischen s und t

- Zeigen Sie: Ist T ein MST in G, dann ist der in T eindeutige Pfad P zwischen zwei Knoten $s, t \in V$ ein BSP in G für s und t.
- 2 Geben Sie einen Algorithmus an, der für gegebenen G=(V,E), gegebene $s,t\in V$ und einen gegebenen MST T in G einen BSP P zwischen s und t ausgibt. Die Laufzeit soll dabei in $\mathcal{O}(|P|)$ liegen. Nehmen Sie an T liege in Form des Array *parent* vor.
- 3 Argumentieren Sie kurz warum ihr Algorithmus korrekt und die geforderte Laufzeit hat.

Aufgabe Kürzeste Wege

d. Wieviele kürzeste Wege von a nach f enthält folgender gerichtete gewichtete Graph? Begründen Sie kurz. [2 Punkte]

Aufgabe Kürzeste Wege

d. Wieviele kürzeste Wege von a nach f enthält folgender gerichtete gewichtete Graph? Begründen Sie kurz. [2 Punkte]

Unendlich viele kürzeste Wege. Der kürzeste Distanz von a nach f ist 6. Wegen dem Zyklus $a \to b \to d \to e \to c \to a$, der das Gesamtgewicht 0 hat, gibt es aber unendlich viele Pfade von a nach d mit Gewicht 3.

Kreativaufgabe: Streaming MST

Gegeben sei ein zusammenhängender Graph mit n Knoten und m Kanten. Die Knoten sind lokal gespeichert, während die Kanten über eine Netzwerkverbindung gestreamt werden. Sie können nicht lokal gespeichert werden, da nur $\mathcal{O}(n)$ Speicherplatz vorhanden ist.

Aufgabe 1: Gib einen Algorithmus an, der einen MST von G unter diesen Einschränkungen bestimmt.

Aufgabe 2: Verbessere diesen Algorithmus so, dass er nur $\mathcal{O}(m\log n)$ Rechenzeit benötigt.