007강 내장 텍스쳐

-블렌더에 내장된 절차적 텍스쳐들 -천 재질을 만들어봅시다

Procedural Texture - 수학적 방법으로 생성된 텍스쳐

블렌더 기본 텍스쳐들

...혹은 그것들을 연결하여 만든 텍스쳐

Brick Texture, Checker Texture

벽돌 무늬를 만듭니다.

Offset, Squash로 패턴을 조절할 수 있습니다.

체크 무늬를 만듭니다.

이것은 3차원 텍스쳐입니다

좌표의 3차원을 모두 사용합니다

3차원 공간에 연속적으로 존재하기 때문에, UV - 이미지텍스쳐 사용시 생기는 Seam이 발생하지 않습니다 ※하지만 필요에 따라 2차원으로도 사용할 수 있습니다.

Noise Texture

Detail : 1씩 올라갈 때마다 복잡도가 2배씩 증가합니다.

Roughness : 작은 노이즈 패턴을 얼마나 섞을 지 결정합니다. 0이 되면 Detail을 무시합니다.

텍스쳐를 눈으로 확인하는 여러 방법

이미지 미리보기

Greater than

Bump

2차원 그래프

텍스쳐를 눈으로 확인하는 여러 방법

블렌더에서 y=f(x)를 만들면 2차원 그래프를 볼 수 있습니다.

Wave Texture, Gradient Texture

주기함수를 생성합니다. ※범위는 항상 0에서 1 사이입니다.

Detail, Detail Scale, Detail Roughness 모두 Distortion이 만드는 노이즈에 대한 수치입니다.

여러 모양의 그라데이션을 생성합니다.

※범위는 0에서 1 사이로 클리핑됩니다.

※Spherical, Quadratic Sphere, Radial의 중심은 (0,0,0)입니다. 따라서 Object 좌표를 사용할 때 제대로 나타납니다.

Musgrave Texture (1)

노이즈 텍스쳐와 비슷하지만..

노이즈와 달리 출력값이 1차원입니다.

범위는 '대체로' -1에서 1 사이이지만 그 이상으로도 넘어갑니다 경우에 따라 Map range 노드를 활용하는 편이 좋습니다

Detail은 Noise texture에서와 같은 뜻이지만, 노이즈 '옥타브'를 조절하는 방식이 다릅니다.

Dimension : 옥타브 간 진폭 차이를 조절합니다. 정확한 공식은

$$Amplitude = \frac{1}{Lacunarity^{Octave \times Dimension}}$$

입니다만..

Lacunarity : 옥타브 간 스케일 차이를 조절합니다.

Musgrave Texture (2) 효과적인 조합들

fBM

Dimension 1.4, Lacunarity 2.0

Multifractal

Dimension 1.4, Lacunarity 2.0

Hybrid Multifractal

Dimension 0.1, Lacunarity 3.0 Offset 0.45, Gain 0.63

Rigid Multifractal

Dimension 0.1, Lacunarity 3.0 Offset 0.5, Gain 5.0

Dimension 0.1, Lacunarity 3.0 Offset -0.06 Gain 5.0

Hetero Terrain

Dimension 1.0, Lacunarity 3.0 Offset 0.3

Dimension 1.0, Lacunarity 3.0 Offset -0.3

White Noise Texture

이게..텍스쳐?

입력값에 따라 0에서 1 사이의 랜덤한 숫자를 내보냅내다.

※입력값이 비슷해도 완전히 다른 값을 내놓습니다.

예컨대 입력값 1.1과 1.101에 대하여, 각각 0.943, 0.792 의 완전히 다른 값을 내놓습니다. 오로지 <mark>같은</mark> 입력값에 대해서만 같은 출력값을 내놓습니다.

Voronoi Texture

Distance : 공간에 균일하게 분포한 점으로부터의 거리를 나타냅니다.

가장 가까운 점이 무엇이냐에 따라서 경계가 만들어집니다. 그렇게 생긴 구역마다 임의의 색을 칠한 것이 Color출력입니다.

Position은 각 점의 위치값을 출력합니다.

일반적으로 가장 가까운 점까지의 거리를 나타내지만 (F1) 아래와 같이 옵션을 바꿀 수 있습니다.

F2: '두번째로' 가까운 점으로부터의 거리를 출력합니다.

Smooth F1: 구역의 경계가 부드러워집니다.

Distance to Edge : 점까지의 거리가 아니라 '경계로부터' 의 거리를 잽니다.

N Sphere Radius : 정의상으로는 점을 중심으로 경계에 내접하는 구의 반지름입니다.

쉽게 말해서 각 구역마다, 점에서 경계까지의 최소거리를 출력합니다.

잘 쓰이지는 않습니다.

Voronoi Texture (2)

Euclidean, Manhattan, Chebyshev, Mincowski : 거리를 재는 방법을 바꿉니다

Mincowski (e=0.3)

Mincowski (e=10)

Magic Texture

싸이키델릭한 텍스쳐 (공식 매뉴얼 표현)

많이 쓰이지는 않지만, 규칙적이면서 단조롭지 않은 패턴을 만들 때 유용합니다.

