Vecteurs et coordonnées

VECTEURS ET COORDONNÉES

DÉFINITIONS

Un **repère** du plan est déterminé par un point quelconque O, appelé **origine** du repère, et deux vecteurs \vec{i} et \vec{j} non colinéaires.

DÉFINITIONS

On dit que le repère $\left(O; \vec{i}, \vec{j}\right)$ est :

- orthogonal : si les vecteurs \vec{i} et \vec{j} sont orthogonaux
- **orthonormé** ou **orthonormal** : si le repère est orthogonal et si les vecteurs \vec{i} et \vec{j} ont la même norme.

Repère orthonormé

Vecteurs et coordonnées

DÉFINITIONS

Soit $(O; \vec{i}, \vec{j})$ un repère du plan.

On dit que M a pour **coordonnées** (x; y) si et seulement si :

$$\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j}$$

On dit que \vec{u} a pour **coordonnées** $\begin{pmatrix} x \\ y \end{pmatrix}$ si et seulement si :

$$\vec{u} = x\vec{i} + y\vec{j}$$

Par la suite, on considère que le plan P est muni d'un repère $(O; \vec{i}, \vec{j})$.

PROPRIÉTÉ

Deux vecteurs \vec{u} et \vec{v} sont **égaux** si et seulement si ils ont les **mêmes coordonnées**.

PROPRIÉTÉ

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$. Le vecteur \overrightarrow{AB} a pour coordonnées $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$

EXEMPLE

Soient A(1;1), B(4;2), C(5;0), D(2;-1)

Les coordonnées de \overrightarrow{AB} sont $\begin{pmatrix} 4-1\\2-1 \end{pmatrix} = \begin{pmatrix} 3\\1 \end{pmatrix}$

Les coordonnées de \overrightarrow{DC} sont $\begin{pmatrix} 5-2\\0-(-1) \end{pmatrix} = \begin{pmatrix} 3\\1 \end{pmatrix}$

 $\overrightarrow{AB} = \overrightarrow{DC}$ donc \overrightarrow{ABCD} est un parallélogramme. (voir Généralités sur les vecteurs \mathbf{z})

PROPRIÉTÉS

Soient deux vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

- Le vecteur $\vec{u} + \vec{v}$ a pour coordonnées $\begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$
- Le vecteur $k\vec{u}$ a pour coordonnées $\begin{pmatrix} kx \\ ky \end{pmatrix}$

Vecteurs et coordonnées

PROPRIÉTÉ

Colinéarité

Deux vecteurs non nuls $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ sont colinéaires si et seulement si :

$$xy'-yx'=0$$

PROPRIÉTÉ

Milieu d'un segment

Si $A(x_A; y_A)$ et $B(x_B; y_B)$, le milieu M de [AB] a pour coordonnées :

$$M\left(\frac{x_A+x_B}{2};\frac{y_A+y_B}{2}\right)$$

PROPRIÉTÉ

Norme et distance

Soit un vecteur $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$. Alors:

$$||\vec{u}|| = \sqrt{x^2 + y^2}$$

On en déduit si $A(x_A; y_A)$ et $B(x_B; y_B)$:

$$AB = ||\overrightarrow{AB}|| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

EXEMPLE

Soient A(1;0), B(3;1), C(0;2). Que peut-on dire du triangle ABC?

$$AB = \sqrt{2^2 + 1^2} = \sqrt{5}$$

$$AC = \sqrt{(-1)^2 + 2^2} = \sqrt{5}$$

$$BC = \sqrt{(-3)^2 + 1^2} = \sqrt{10}$$

Donc AB = AC

De plus :

$$AB^2 + AC^2 = 5 + 5 = 10$$

$$BC^2 = 10$$

Le triangle ABC est donc rectangle en A (réciproque du théorème de Pythagore) et isocèle.