Korean Patent Abstracts

Document Code:

Publication No.: 1999-55201 Publication Date: July 15, 1999

Application No.: 1997-75113 Application Date: December 27, 1997

Abstract

There is provided a method for forming a capacitor including a high dielectric material in order to prevent a junction region from diffusing due to a high temperature of above 800° C during a RTN process for a bottom electrode of the capacitor. An oxidation blocking layer is formed between the bottom electrode and a dielectric film of Ta_2O_5 at a low temperature of about 150 to about 500° C. A conductive film for the bottom electrode is formed on a predetermined underlying layer. A surface of the conductive film is treated using plasma generated from a gas including nitrogen at the temperature of about 150 to about 500° C. The dielectric film of Ta_2O_5 is forming on the conductive film.

(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51) Int. CI. ⁶ H01L 27/108	(11) 공개번호 특1999-0055201 (43) 공개일자 1999년07월15일		
(21) 출원번호 (22) 출원일자	10-1997-0075113 1997년 12월 27일		
(71) 출원인	현대전자산업 주식회사 김영환		
(72) 발명자	경기도 이천시 부발읍 아미리 산 136-1 김경민		
	경기도 안양시 만안구 안양5동 708 현대아파트 101-1112		
	임찬		
	경기도 이천시 대월면 사동리 현대산업개발 5차아파트 502-1702		
	박기선		
(74) 대리인	경기도 이천시 창전동 성환빌라 나동 303호 박해천, 원석희		
<u>심사청구 : 없음</u>			

<u>(54) 반도체 장치의 고유전체 캐패시터 제조방법</u>

요약

본 발명은 반도체 장치의 고유전체 캐패시터 제조 공정에 관한 것으로, 통상적인 하부전극의 RTN(Rapid Thermal Nitrification) 처리시 고온(800℃ 이상)에 따른 접합 영역의 확산을 방지하기 위하여, 저온 공정(150℃~500℃)을 통해 하부 전극과 Ta₂0₅ 유전체막의 경계면에 산화방지막을 형성할 수 있는 고유전체 캐패시터 제조방법을 제공하는데 그 목적이 있다. 이를 위하여 본 발명으로부터 제공되는 특징적인 반도체 장치의 고유전체 캐패시터 제조방법은 소정의 하부층 상부에 하부 전극 형성을 위한 전도막을 형성하는 제1 단계; 150℃ 내지 500℃의 온도에서 질소를 포함하는 가스를 사용하여 상기 전도막의 표면을 플라즈마 처리하는 제2 단계; 및 상기 전도막 상부에 유전체로서 Ta₂0₅막을 형성하는 제3 단계를 포함하여 이루어진다.

명세서

발명의 상세한 설명

발명의 목적

발명이 속하는 기술 및 그 분야의 종래기술

본 발명은 반도체 제조 분야에 관한 것으로, 특히 반도체 장치의 고유전체 캐패시터 제조 공정에 관한 것이다.

DRAM을 비롯한 반도체 장치의 고집적화에 따라 반도체 장치의 리프레시(refresh) 특성 등의 동작 특성이 큰 문제로 부각되었으며, 이를 해결하는 하나의 방안으로서 캐패시터의 하부 전국인 전하저장 전국의 표면적을 증가시키는 기술에 대한 많은 연구·개발이 진행되어 왔다. 그러나, 역시 고집적화에 따른 공정마진의 확보를 위해서 전하저장 전국의 표면적을 증가시키는데는 한계가 있다.

이러한 한계를 고려하여, Ta_2O_5 등의 고유전체를 사용하는 캐패시터에 대한 관심이 증대되고 있는데, 이는 캐패시터의 정전용량이 유전율(ϵ)에 비례하는 원리를 적용한 것이다.

일반적으로, Ta_2O_5 캐패시터는 폴리실리콘 하부 전국 상에 유전체로서 Ta_2O_5 막을 증착하고, TiN막 또는 TiN/폴리실리콘막 구조의 상부 전국을 사용한다.

통상적으로, 플리실리콘막 증착후, 후속 산소 분위기에서의 열처리시 폴리실리콘 하부 전국과 Ta_2O_5 막의 경계면에서 산화막이 형성되는 것을 억제하기 위하여, RTN(Rapid Thermal Nitrification) 처리를 실시하게 된다.

그러나, 이러한 RTN 처리시 온도를 800℃ 이상으로 올려주어야 하므로 하부에 형성된 접합 영역(junction region)에서 확산이 일어나 접합 깊이에 변화를 가져오는 문제점이 있었다.

발명이 이루고자하는 기술적 과제

본 발명은 저온 공정(150℃~500℃)을 통해 하부 전극과 Ta₂O₅ 유전체막의 경계면에 산화방지막을 형성할

수 있는 고유전체 캐패시터 제조방법을 제공하는데 그 목적이 있다.

발명의 구성 및 작용

본 발명으로부터 제공되는 특징적인 반도체 장치의 고유전체 캐패시터 제조방법은 소정의 하부층 상부에 하부 전극 형성을 위한 전도막을 형성하는 제1 단계; 150℃ 내지 500℃의 온도에서 질소를 포함하는 가스를 사용하여 상기 전도막의 표면을 플라즈마 처리하는 제2 단계; 및 상기 전도막 상부에 유전체로서 Ta₂0₅막을 형성하는 제3 단계를 포함하여 이루어진다.

이하, 본 발명을 상술한다.

우선, 소정의 하부총 공정을 마친 기판 상에 캐패시터의 하부 전극 형성을 위한 폴리실리콘막을 증착한다. 이때, 폴리실리콘막의 전도성 확보를 위해 인-시츄(in-situ) 또는 이온주입 방식의 전도성 불순물도핑을 실시한다.

계속하여, 150℃~500℃의 온도를 유지하면서 NH₃ 가스 또는 N₂ 가스에 플라즈마를 여기시켜 폴리실리콘 막 표면을 질화시킨다.

여기서, 상기 플라즈마 처리시 압력은 10mtorr∼9torr 범위로 조절하며, NH₃ 가스 또는 N₂ 가스의 유량을 1slm∼5slm로 하고, 100W∼500W의 고주파(RF) 전원을 사용하여 0.5분∼5분간 실시한다. 또한, RF 전극과 기판과의 거리를 0.5㎝∼5㎝로 조절하며, RF 전원 인가시 기판을 접지로 처리하여 플라즈마에 의한 기판 손상을 줄일 수 있으며, RF 플라즈마 소오스 이외에 원격 ECR 플라즈마 소오스를 사용할 수 있다.

다음으로, 그 표면이 질화된 폴리실리콘막 상부에 유전체막인 Ta_2O_5 막을 소정 두께로 형성한다. 이때, Ta_2O_5 막의 형성은 다음과 같은 통상적인 방법을 사용할 수 있다. 즉, Ta_2O_5 막을 증착하고, $300 \, ^{\circ} \sim 450 \, ^{\circ}$ 범위의 온도에서 O_2 플라즈마 또는 N_2O 플라즈마 처리를 실시하여 Ta_2O_5 내의 결함을 제거한다. 계속하여, $800 \, ^{\circ} \sim 10$ 이상의 고온에서 O_2 또는 N_2O 가스 분위기에서 열처리를 실시하여 Ta_2O_5 막의 결정화를 이룬다.

이후, 캐패시터의 상부 전극 형성 등의 후속 공정을 진행한다.

아래의 표 1은 동일한 증착 조건하에서 각각 RTN 처리 없이 증착한 경우(A), RTN 처리한 경우(B) 및 N_2 가스를 사용한 플라즈마 처리한 경우(C), Si 기판상에 증착되는 Ta_2O_5 막의 두께(다시 말해, Ta_2O_5 막 및 형성된 산화막의 두께)를 측정한 실험 데이터를 나타낸 것이다.

[# 1]				
기판 처리 상태	LA	В	С	
Ta ₂ 0 ₅ 막의 두께(Å)	137	123	129	

Ta₂0₅막의 두께(Å) 137 123 129

어지지만, RTN 처리를 실시하지 않은 경우(A)에 비해서는 월등한 산화막 형성 억제 효과가 있다. 상기한 일실시예에서는 폴리실리콘막을 하부 전극으로 사용하는 단순 스택형 캐패시터를 일례로 하여 설 명하였으나, 본 발명은 실린더형, 핀형, 반구형 폴리실리콘 캐패시터 등 캐패시터의 하부 전극의 형상

상기한 표 1에 도시된 바와 같이 RTN 처리한 경우(B)와 N₂ 가스를 사용한 플라즈마 처리한 경우(C)를 비 교하면 6Å 정도의 Ta₂O₅막 증착 두께 차이는 있지만, 즉 산화막 억제 효과가 RTN 처리시보다는 다소 떨

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.

발명의 효과

및 재질에 관계없이 적용할 수 있다.

이상에서와 같이 본 발명은 고유전체 캐패시터의 유전체막인 Ta₂O₅막 형성전, 하부 전극 표면에 상대적으로 저온(150℃~500℃)에서 NH₃ 또는 N₂ 플라즈마 처리함으로써 고온(800℃ 이상)의 열처리에 따른 접합 깊이의 변화를 감소시킬 수 있으며, 이로 인하여 반도체 장치의 신뢰성 향상을 기대할 수 있다.

(57) 청구의 범위

청구항 1

소정의 하부층 상부에 하부 전극 형성을 위한 전도막을 형성하는 제1 단계;

150℃ 내지 500℃의 온도에서 질소를 포함하는 가스를 사용하여 상기 전도막의 표면을 플라즈마 처리하는 제2 단계; 및

상기 전도막 상부에 유전체로서 Ta₂O₅막을 형성하는 제3 단계

를 포함하여 이루어진 반도체 장치의 고유전체 캐패시터 제조방법.

청구항 2

제 1 항에 있어서,

상기 질소를 포함하는 가스가

NHa 가스 또는 N₂ 가스인 반도체 장치의 고유전체 캐패시터 제조방법.

청구항 3

제 1 항 또는 제 2 항에 있어서,

상기 전도막이

폴리실리콘막을 포함하여 이루어진 반도체 장치의 고유전체 캐패시터 제조방법.

청구항 4

제 1 항 또는 제 2 항에 있어서.

상기 제2 단계가

10mtorr 내지 9torr의 압력 및 100w 내지 500w의 고주파(RF) 전원을 사용하여 수행되는 반도체 장치의 고유전체 캐패시터 제조방법.

청구항 5

제 2 항에 있어서,

상기 제2 단계에서

사용되는 상기 NH3 가스 또는 N₂ 가스의 유량이 1slm 내지 5slm인 반도체 장치의 고유전체 캐패시터 제조 방법.

청구항 6

제 1 항 또는 제 2 항에 있어서,

상기 제2 단계가

0.5분 내지 5분간 수행되는 반도체 장치의 고유전체 캐패시터 제조방법.

청구항 7

제 4 항에 있어서.

상기 제2 단계에서

상기 고주파 전원 인가시 기판을 접지로 처리하는 반도체 장치의 고유전체 캐패시터 제조방법.

청구항 8

제 1 항 또는 제 2 항에 있어서,

상기 제3 단계 수행후

상기 전도막 상부에 상기 Ta₂O₅막을 증착하는 제4 단계와,

열처리를 실시하여 상기 Ta₂O₅막을 결정화하는 제5 단계를 더 포함하여 이루어진 반도체 장치의 고유전체 캐패시터 제조방법.

청구항 9

제 8 항에 있어서,

상기 제4 단계 및 제5 단계가

인-시츄 방식으로 수행되는 반도체 장치의 고유전체 캐패시터 제조방법.