

Negative voltage regulators

Features

- Output current up to 1.5 A
- Output voltages: -5, -8, -12, and -5 V
- Thermal overload protection
- · Short-circuit protection
- Output SOA protection
- Output tolerance 2% (AC version) or 4% (C version) at 25 °C

Description

The L79 series of three-terminal negative regulators is available in TO-220, TO-220FP and D²PAK packages and several fixed output voltages, making it useful in a wide range of applications.

These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation; furthermore, having the same voltage option as the L78 positive standard series, they are particularly suited for split power supplies. If adequate heat sinking is provided, they can deliver over 1.5 A output current.

Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Maturity status link

L79

1 Diagram

Figure 1. Schematic diagram

DS0428 - Rev 24 page 2/29

Pin configuration

Figure 2. Pin connections (top view)

DS0428 - Rev 24 page 3/29

3 Maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter		Value	Unit
VI	DC input voltage		-35	V
Io	Output current	Output current		
P _D	Power dissipation		Internally limited	
T _{STG}	Storage temperature range		-65 to 150	°C
T _{OP}	Operating junction temperature range	for L79xxC	0 to 150	°C
I Ob	Operating junction temperature range	for L79xxAC	0 to 125	C

Note: Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2. Thermal data

Symbol	Parameter	D ² PAK	TO-220	TO-220FP	Unit
R _{thJC}	Thermal resistance junction-case	3	5	5	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	50	60	°C/W

DS0428 - Rev 24 page 4/29

4 Test circuit

Figure 3. Test circuit

DS0428 - Rev 24 page 5/29

5 Electrical characteristics

Short circuit current

Short circuit peak current

 I_{sc}

I_{scp}

Refer to the test circuits, T_J = 0 to 125 °C, V_I = -10 V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified.

Test conditions **Symbol Parameter** Min. Max. Unit Тур. V_{O} $T_J = 25$ °C Output voltage -4.9 -5 -5.1 V I_O = -5 mA to -1 A, $P_O \le 15$ W V_{O} ٧ Output voltage -4.8 -5 -5.2 $V_1 = -8 \text{ to } -20 \text{ V}$ V_I = -7 to -25 V, T_J = 25 °C 100 $\Delta V_O\ ^{(1)}$ Line regulation mV V_I = -8 to -12 V, T_J = 25 °C 50 I_O = 5 mA to 1.5 A, T_J = 25 °C 100 $\Delta V_O^{\ (1)}$ Load regulation mV I_O = 250 to 750 mA, T_J = 25 °C 50 Quiescent current T_{.1} = 25 °C I_d 3 mA I_O = 5 mA to 1 A 0.5 ΔI_d Quiescent current change $\mathsf{m}\mathsf{A}$ $V_1 = -8 \text{ to } -25 \text{ V}$ 1.3 $\Delta V_O/\Delta VT$ Output voltage drift $I_O = 5 \text{ mA}$ mV/°C -0.4 B = 10 Hz to 100 kHz, T_J = 25 °C 100 eN Output noise voltage μV $\Delta V_1 = 10 \text{ V, f} = 120 \text{ Hz}$ SVR Supply voltage rejection 54 60 dΒ I_O = 1 A, T_J = 25 °C, ΔV_O = 100 V_d ٧ Dropout voltage 1.4

Table 3. Electrical characteristics of L7905AC

1.8

1.8

Α

Α

Refer to the test circuits, T_J = 0 to 125 °C, V_I = -10 V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified.

 $T_J = 25$ °C

Table 4. Electrical characteristics of L7905C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	-4.8	-5	-5.2	V
Vo	Output voltage	I_{O} = -5 mA to -1 A, $P_{O} \le 15$ W V_{I} = -8 to -20 V	-4.75	-5	-5.25	٧
ΔV _O ⁽¹⁾	Line regulation	V_I = -7 to -25 V, T_J = 25 °C			100	mV
Δν0 τ	Line regulation	V_I = -8 to -12 V, T_J = 25 °C			50	IIIV
ΔV _O ⁽¹⁾	Load regulation	I_O = 5 mA to 1.5 A, T_J = 25 °C			100	mV
7,0	Load regulation	I_{O} = 250 to 750 mA, T_{J} = 25 °C			50	IIIV
I _d	Quiescent current	T _J = 25 °C			3	mA

DS0428 - Rev 24 page 6/29

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Δl _d	Ouisseent current change	I _O = 5 mA to 1 A			0.5	m 1
Δid	Quiescent current change	V _I = -8 to -25 V			1.3	mA
ΔV _O /ΔΤ	Output voltage drift	I _O = 5 mA		-0.4		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25 °C		100		μV
SVR	Supply voltage rejection	ΔV _I = 10 V, f = 120 Hz	54	60		dB
V _d	Dropout voltage	I_{O} = 1 A, T_{J} = 25 °C, ΔV_{O} = 100 mV		1.4		V
I _{sc}	Short circuit current			1.8		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Refer to the test circuits, T_J = 0 to 125 °C, V_I = -14 V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified.

Table 5. Electrical characteristics of L7908C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	-7.7	-8	-8.3	V
Vo	Output voltage	$I_O = -5 \text{ mA to } -1 \text{ A, P}_O \le 15 \text{ W}$ $V_I = -11.5 \text{ to } -23 \text{ V}$	-7.6	-8	-8.4	V
A)/ (1)	Line negulation	V _I = -10.5 to -25 V, T _J = 25 °C			160	
ΔV _O ⁽¹⁾	Line regulation	V _I = -11 to -17 V, T _J = 25 °C			80	mV
A)/ (1)	Lood nonviolation	I _O = 5 mA to 1.5 A, T _J = 25 °C			160	
ΔV _O ⁽¹⁾	Load regulation	I _O = 250 to 750 mA, T _J = 25 °C			80	mV
I _d	Quiescent current	T _J = 25 °C			3	mA
Δ1.	Ovisses and summent observe	I _O = 5 mA to 1 A			0.5	Δ
Δl _d	Quiescent current change	V _I = -11.5 to -25 V			1	mA
ΔV _O /ΔΤ	Output voltage drift	I _O = 5 mA		-0.6		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25 °C		175		μV
SVR	Supply voltage rejection	ΔV _I = 10 V, f = 120 Hz	54	60		dB
V _d	Dropout voltage	I_{O} = 1 A, T_{J} = 25 °C, ΔV_{O} = 100 mV		1.1		V
I _{sc}	Short circuit current			1.5		Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

DS0428 - Rev 24 page 7/29

Refer to the test circuits, T_J = 0 to 125 °C, V_I = -19 V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified.

Table 6. Electrical characteristics of L7912AC

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	-11.75	-12	-12.25	V
V _O	Output voltage	$I_O = -5 \text{ mA to } -1 \text{ A, P}_O \le 15 \text{ W}$ $V_I = -15.5 \text{ to } -27 \text{ V}$	-11.5	-12	-12.5	V
ΔV _O ⁽¹⁾	Line regulation	$V_{\rm I}$ = -14.5 to -30 V, $T_{\rm J}$ = 25 °C			240	mV
Δνο	Line regulation	V _I = -16 to -22 V, T _J = 25 °C			120	IIIV
ΔV _O ⁽¹⁾	Load regulation	I_O = 5 mA to 1.5 A, T_J = 25 °C			240	mV
Δν _Ο ()	Load regulation	I_{O} = 250 to 750 mA, T_{J} = 25 °C			120	IIIV
I _d	Quiescent current	T _J = 25 °C			3	mA
۸۱	Outroport surrout shows	I _O = 5 mA to 1 A			0.5	A
Δl _d	Quiescent current change	V _I = -15 to -30 V			1	mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-0.8		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25 °C		200		μV
SVR	Supply voltage rejection	ΔV _I = 10 V, f = 120 Hz	54	60		dB
V _d	Dropout voltage	$I_O = 1 \text{ A}, T_J = 25 \text{ °C},$ $\Delta V_O = 100 \text{ mV}$		1.1		V
I _{sc}	Short circuit current			1.0		Α
I _{scp}	Short circuit peak current	T _J = 25 °C, V _I = -10 V		1.8		А

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Refer to the test circuits, T_J = 0 to 125 °C, V_I = -19 V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified.

Table 7. Electrical characteristics of L7912C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	-11.5	-12	-12.5	V
Vo	Output voltage	$I_O = -5 \text{ mA to } -1 \text{ A}, P_O \le 15 \text{ W}$ $V_I = -15.5 \text{ to } -27 \text{ V}$	-11.4	-12	-12.6	V
ΔV _O ⁽¹⁾	Line regulation	$V_I = -14.5 \text{ to } -30 \text{ V}, T_J = 25 ^{\circ}\text{C}$			240	mV
Δν0 τ	Line regulation	V_{I} = -16 to -22 V, T_{J} = 25 °C			120	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{\rm O}$ = 5 mA to 1.5 A, $T_{\rm J}$ = 25 °C			240	mV
Δνο (7)	Load regulation	I _O = 250 to 750 mA, T _J = 25 °C			120	IIIV
I _d	Quiescent current	T _J = 25 °C			3	mA

DS0428 - Rev 24 page 8/29

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Δ1.	Ouisseent current change	I _O = 5 mA to 1 A			0.5	m 1
Δl _d	Quiescent current change	V _I = -15 to -30 V			1	mA mA
ΔV _O /ΔΤ	Output voltage drift	I _O = 5 mA		-0.8		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25 °C		200		μV
SVR	Supply voltage rejection	ΔV _I = 10 V, f = 120Hz	54	60		dB
V _d	Dropout voltage	I_{O} = 1 A, T_{J} = 25 °C, ΔV_{O} = 100 mV		1.1		V
I _{sc}	Short circuit current			1.0		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Refer to the test circuits, T_J = 0 to 125 °C, V_I = -23 V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified.

Table 8. Electrical characteristics of L7915AC

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	-14.7	-15	-15.3	V
Vo	Output voltage	$I_O = -5 \text{ mA to } -1 \text{ A, } P_O \le 15 \text{ W}$ $V_I = -18.5 \text{ to } -30 \text{ V}$	-14.4	-15	-15.6	V
ΔV _O ⁽¹⁾	Line regulation	V_I = -17.5 to -30 V, T_J = 25 °C			300	mV
ΔνΟ	Line regulation	V _I = -20 to -26 V, T _J = 25 °C			150	IIIV
AV. (1)	I and an audation	I_O = 5 mA to 1.5 A, T_J = 25 °C			300	\ /
$\Delta V_{O}^{(1)}$	Load regulation	I _O = 250 to 750 mA, T _J = 25 °C			150	mV
I _d	Quiescent current	T _J = 25 °C			3	mA
Δ1.	Outre and assessed about a	I _O = 5 mA to 1 A			0.5	A
ΔI_d	Quiescent current change	V _I = -18.5 to -30 V			1	mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-0.9		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25 °C		250		μV
SVR	Supply voltage rejection	ΔV _I = 10 V, f = 120 Hz	54	60		dB
V _d	Dropout voltage	$I_O = 1 \text{ A}, T_J = 25 \text{ °C},$ $\Delta V_O = 100 \text{ mV}$		1.1		V
I _{sc}	Short circuit current			0.7		Α
I _{scp}	Short circuit peak current	T _J = 25 °C, V _I = -10 V		1.8		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

DS0428 - Rev 24 page 9/29

Refer to the test circuits, T_J = 0 to 125 °C, V_I = -23 V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified.

Table 9. Electrical characteristics of L7915C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	-14.4	-15	-15.6	V
V _O	Output voltage	$I_O = -5 \text{ mA to } -1 \text{ A, P}_O \le 15 \text{ W}$ $V_I = -18.5 \text{ to } -30 \text{ V}$	-14.3	-15	-15.7	V
ΔV _O ⁽¹⁾	Line regulation	V _I = -17.5 to -30 V, T _J = 25 °C			300	mV
Δν _Ο (7	Line regulation	V _I = -20 to -26 V, T _J = 25 °C			150	IIIV
ΔV _O ⁽¹⁾	Lood regulation	I_O = 5 mA to 1.5 A, T_J = 25 °C			300	mV
Δν _Ο (γ	Load regulation	I_{O} = 250 to 750 mA, T_{J} = 25 °C			150	IIIV
I _d	Quiescent current	T _J = 25 °C			3	mA
Δl _d	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA
Δid	Quiescent current change	V _I = -18.5 to -30 V			1	IIIA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-0.9		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25 °C		250		μV
SVR	Supply voltage rejection	ΔV _I = 10 V, f = 120 Hz	54	60		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25 °C, ΔV _O = 100 mV		1.1		V
I _{sc}	Short circuit current			0.7		Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

DS0428 - Rev 24 page 10/29

6 Application information

Figure 4. Fixed output regulator

Note: C_l is required for stability. For value given, capacitor must be solid tantalum. If aluminium electrolytic are used, at least ten times value should be selected. C_0 is required if regulator is located an appreciable distance from power supply filter. To improve transient response. If large capacitors are used, a high current diode from input to output (1N4001 or similar) should be introduced to protect the device from momentary input short circuit.

+20V0 L7815 0.1μF 1N4001 (*)

-20V0 L7915 0.15V

Figure 5. Split power supply (±15 V - 1 A)

DS0428 - Rev 24 page 11/29

^{*} Against potential latch-up problems

Figure 6. Circuit for increasing output voltage

^{*} C3 Optional for improved transient response and ripple rejection.

Figure 7. High current negative regulator (-5 V / 4 A with 5 A current limiting)

DS0428 - Rev 24 page 12/29

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

7.1 TO-220 (single gauge) package information

Figure 8. TO-220 (single gauge) package outline

DS0428 - Rev 24 page 13/29

Table 10. TO-220 (single gauge) package mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
E	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	0.51		0.60
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
ФР	3.75		3.85
Q	2.65		2.95

DS0428 - Rev 24 page 14/29

7.2 TO-220 (dual gauge) package information

Figure 9. TO-220 type A package outline

DS0428 - Rev 24 page 15/29

Table 11. TO-220 type A package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øΡ	3.75		3.85
Q	2.65		2.95

DS0428 - Rev 24 page 16/29

7.3 TO-220FP package information

Figure 10. TO-220FP package outline

7012510_Rev_12_B

DS0428 - Rev 24 page 17/29

Table 12. TO-220FP package mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
Α	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

DS0428 - Rev 24 page 18/29

7.4 D²PAK (TO-263) type A package information

Figure 11. D²PAK (TO-263) type A package outline

DS0428 - Rev 24 page 19/29

Table 13. D²PAK (TO-263) type A package mechanical data

Dim.	mm		
Biiii.	Min.	Тур.	Max.
A	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50	7.75	8.00
D2	1.10	1.30	1.50
E	10.00		10.40
E1	8.30	8.50	8.70
E2	6.85	7.05	7.25
е		2.54	
e1	4.88		5.28
Н	15.00		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.40	
V2	0°		8°

DS0428 - Rev 24 page 20/29

9.75 16.9 2.54 5.08

Figure 12. D²PAK (TO-263) recommended footprint (dimensions are in mm)

Footprint

DS0428 - Rev 24 page 21/29

7.5 D²PAK packing information

Figure 13. D²PAK tape outline

AM08852v1

DS0428 - Rev 24 page 22/29

Figure 14. D²PAK reel outline

AM06038v1

Table 14. D²PAK tape and reel mechanical data

Таре		Reel			
Dim.	mm		Dim.	mm	
Diiii.	Min.	Max.	Dim.	Min.	Max.
A0	10.5	10.7	А		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base quantity		1000
P2	1.9	2.1	Bulk quantity		1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

DS0428 - Rev 24 page 23/29

8 Device summary

Table 15. Order codes

TO-220	TO-220	D²PAK	TO-220FP	Output voltages
(single gauge)	(dual gauge)	DIFAR	10-220FF	Output voitages
L7905ACV	L7905ACV-DG	L7905ACD2T-TR		-5 V
L7905CV	L7905CV-DG	L7905CD2T-TR	L7905CP	-5 V
L7908CV	L7908CV-DG			-8 V
L7912ACV	L7912ACV-DG			-12 V
L7912CV	L7912CV-DG	L7912CD2T-TR	L7912CP	-12 V
L7915ACV	L7915ACV-DG			-15 V
L7915CV	L7915CV-DG		L7915CP	-15 V

DS0428 - Rev 24 page 24/29

Revision history

Table 16. Document revision history

Date	Revision	Changes
22-Jun-2004	9	Order codes updated Table 3.
31-Aug-2005	10	Add new order codes (TO-220 E Type) on Table 3.
19-Jan-2007	11	D²PAK mechanical data updated and add footprint data.
06-Jun-2007	12	Order codes updated.
25-Oct-2007	13	Modified: Figure 3, Figure 4, Figure 6 and Figure 7.
05-Dec-2007	14	Modified: Table 1.
18-Feb-2008	15	Modified: Table 1 on page 1.
15-Jul-2008	16	Modified: Table 1 on page 1.
19-Jan-2010	17	Modified: Table 11 on page 14, added: Figure 8 on page 16, Figure 9 on page 17, Figure 10 and Figure 11 on page 18.
26-May-2010	18	Modified: VI parameter Table 2 on page 5.
12-Nov-2010	19	Modified: R _{thJC} value for TO-220 Table 3 on page 5.
18-Nov-2011	20	Added: order codes L7905CV-DG, L7912CV-DG and L7915CV-DG Table 1 on page 1.
15-May-2012	21	Added: order codes L7908CV-DG Table 1 on page 1.
		Part numbers L79xxC and L79xxAC changed to L79.
		Updated the features and the description in cover page.
04-Jun-2014	22	Updated Table 1: Device summary, Section 3: Maximum ratings, Section 4: Test circuit, Section 5: Electrical characteristics, Section 6: Application information, Section 7: Package mechanical data.
		Added Section 8: Packaging mechanical data.
		Minor text changes.
		In Table 4: "Electrical characteristics of L7905AC":
		- updated lsc and lscp Typ. Values
		In Table 5: "Electrical characteristics of L7905C":
		- updated lsc Typ. Values
		In Table 7: "Electrical characteristics of L7912AC":
		- updated lsc Typ. Value
		- updated Iscp Test conditions and Typ. Value
27-Sep-2017	23	In Table_8Electrical_characteristics_of_L
		- updated Isc Typ. Value
		In Table 9: "Electrical characteristics of L7915AC":
		- updated lsc Typ. Value
		- updated Iscp Test conditions and Typ. Value
		In Table 10: "Electrical characteristics of L7915C"
		- updated Isc Typ. Value
45 1 0010	0.4	Updated Section 7: "Package information"
15-Jan-2019	24	Updated: Section 5 Electrical characteristics.

DS0428 - Rev 24 page 25/29

Contents

1	Dia	gram	2
2	Pin	configuration	3
3		kimum ratings	
4	Tes	t circuit	5
5	Elec	ctrical characteristics	6
6	App	olication information	11
7	Pac	kage information	13
	7.1	TO-220 (single gauge) package information	13
	7.2	TO-220 (dual gauge) package information	14
	7.3	TO-220FP package information	16
	7.4	D²PAK (TO-263) type A package information	18
	7.5	D²PAK packing information	21
8	Ord	lering information	24
Rev	ision	history	25
Con	tents	S	26
List	of ta	ıbles	27
List	of fi	aures	28

List of tables

Table 1.	Absolute maximum ratings	4
Table 2.	Thermal data	4
Table 3.	Electrical characteristics of L7905AC	6
Table 4.	Electrical characteristics of L7905C	6
Table 5.	Electrical characteristics of L7908C	7
Table 6.	Electrical characteristics of L7912AC	
Table 7.	Electrical characteristics of L7912C	8
Table 8.	Electrical characteristics of L7915AC	9
Table 9.	Electrical characteristics of L7915C	. 10
Table 10.	TO-220 (single gauge) package mechanical data	. 14
Table 11.	TO-220 type A package mechanical data	. 16
Table 12.	TO-220FP package mechanical data	. 18
Table 13.	D ² PAK (TO-263) type A package mechanical data	. 20
Table 14.	D ² PAK tape and reel mechanical data	. 23
Table 15.	Order codes	. 24
Table 16.	Document revision history	. 2

List of figures

Figure 1.	Schematic diagram	. 2
Figure 2.	Pin connections (top view)	. 3
Figure 3.	Test circuit	. 5
Figure 4.	Fixed output regulator	11
Figure 5.	Split power supply (±15 V - 1 A)	11
Figure 6.	Circuit for increasing output voltage	12
Figure 7.	High current negative regulator (-5 V / 4 A with 5 A current limiting)	12
Figure 8.	TO-220 (single gauge) package outline	13
Figure 9.	TO-220 type A package outline	15
Figure 10.	TO-220FP package outline	17
Figure 11.	D ² PAK (TO-263) type A package outline	19
Figure 12.	D ² PAK (TO-263) recommended footprint (dimensions are in mm)	21
Figure 13.	D ² PAK tape outline	22
Figure 14.	D ² PAK reel outline	23

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DS0428 - Rev 24 page 29/29