

Índice

H	Introdução	Introdução à Dengue e sua transmissão pelo mosquito Aedes aegypti.
©	Objetivo do estudo	Previsão da incidência de casos de Dengue na cidade de Bambuí-MG.
<u></u>	Importância da Previsão	Redução de futuros casos. Auxílio nas ações de controle e prevenção.
8	Metodologia	Descrição da Rede Neural Artificial (RNA) como modelo preditivo. Coleta dos dados e preparação para o treinamento da RNA. Avaliação do modelo.
<u>ll.</u>	Resultados	Apresentação dos gráficos obtidos. Discussão dos resultados e suas implicações.
Ø	Conclusões	Sumarização dos principais pontos. Possíveis trabalhos futuros.

Introdução

A Dengue é uma doença viral transmitida pelo mosquito Aedes aegypti, apresentando-se como um sério problema de saúde pública em diversas regiões tropicais e subtropicais, incluindo Bambuí, MG. O Aedes aegypti, vetor responsável pela transmissão, representa uma ameaça significativa, reproduzindo-se em pequenas quantidades de água parada em áreas urbanas.

O estudo busca prever a incidência de casos de Dengue em Bambuí, utilizando uma Rede Neural Artificial (RNA) para implementar medidas preventivas e reduzir o impacto da doença. Através da análise da transmissão da Dengue e aplicação de técnicas de inteligência artificial, espera-se contribuir para um ambiente mais saudável e seguro para a comunidade local.

Objetivo do Estudo

- Previsão da incidência de casos de Dengue na cidade de Bambuí-MG.
- Utilização de uma Rede Neural Artificial (RNA) como modelo preditivo.
- Antecipar o surgimento de casos de Dengue.
- Proporcionar informações para implementação de medidas preventivas eficazes.
- Contribuir para a redução do impacto da doença na comunidade.

Importância da Previsão

Redução de futuros casos

- A previsão da incidência de casos de Dengue permite antecipar o aumento ou diminuição das infecções.
- Isso possibilita uma resposta rápida e eficiente das autoridades de saúde.
- Medidas preventivas específicas podem ser implementadas em áreas de major risco.
- Campanhas de conscientização, ações de controle de vetores e mobilização da comunidade são algumas das medidas que contribuem para a redução dos casos futuros de Dengue.

Auxílio nas ações de controle e prevenção

- A previsão auxilia na melhor alocação de recursos e estratégias para o combate à doença.
- Permite direcionar esforços de forma mais eficiente, priorizando regiões com maior probabilidade de surtos.
- Isso possibilita a adoção oportuna de medidas preventivas, como intensificação da eliminação de criadouros do mosquito Aedes aegypti e implementação de estratégias de controle integrado.
- A resposta mais efetiva resultante da previsão contribui para minimizar o impacto da doença na saúde pública.

Softwares e bibliotecas utilizadas

- IDE: Visual Studio Code (versão 1.79.2)
- Linguagem de programação: Python (versão 3.10.10)
- Bibliotecas: TensorFlow (versão 3.2.2) e Pandas (versão 1.16.0)

Dados

- Dataset: 15 anos de dados de Dengue em Bambuí, Minas Gerais
- Informações: Semana da notificação e por faixa etária (10 faixas etárias) + total de casos por semana

Município Notificação: 310510 Bambuí Período: 2019	•	-									
Semana epidemiológica notific.	<1 Ano	1-4	5-9	10-14	15-19	20-34	35-49	50-64	65-79	80 e+	Total
TOTAL	3	3	13	25	69	157	120	104	66	15	575
Semana 01		-				1					1
Semana 02							2	2			4
Semana 03		1		1		6	1	1			10
Semana 04		-	-		1	3	1		1		6
Semana 06					1	1	2	1			5
Semana 07				1		3	4		1		9
Semana 08						1	2	1			4
Semana 09		-	-		1	3	2				6
Semana 10									1		1

Pré-processamento

- Plotagem dos dados (Figura ao lado)
- Normalização dos dados entre 0 e 1
 - Utilização da função MinMaxScaler da biblioteca sklearn.preprocessing
- Separação dos dados em treino, teste e validação
 - Utilização do método train_test_split da biblioteca sklearn.model_selection
 - Janela utilizada: Tamanho 4, prevendo a seguinte de tamanho 1

RNA (Rede Neural Artificial)

- Tipo de RNA: LSTM (Rede Neural Recorrente)
- Modelo: Stacked LSTM com 3 camadas LSTM (32, 64, 32 neurônios)
- Camada de dropout (20%) na primeira e segunda camadas LSTM
- Camada bidirecional para permitir a passagem de informação para frente e para trás
- Camada Dense (16 neurônios) antes da camada de saída
- Camada de saída Dense com 11 neurônios (número de variáveis de saída)
- Função de ativação: Tanh
- Inicializador: Glorot Uniform
- Total de parâmetros: 56,523 (Figura 3)

x_treino	InputLayer	[lstm	LSTM		dropout	Dropout		lstm_1	LSTM		dropout_1	Dropout		bidirectional(lstm_2)	Bidirectional(LSTM)		dense	Dense		dense_1	Dense
input:	output:	—▶	input:	output:	-	input:	output:		input:	output:	-	input:	output:	├	input:	output:		input:	output:		input:	output:
[(None, 4, 11)]	[(None, 4, 11)]	[(None, 4, 11)	(None, 4, 32)		(None, 4, 32)	(None, 4, 32)		(None, 4, 32)	(None, 4, 64)		(None, 4, 64)	(None, 4, 64)		(None, 4, 64)	(None, 64)		(None, 64)	(None, 16)		(None, 16)	(None, 11)

Treinamento

- Método fit da biblioteca tensorflow.keras
- Hiperparâmetros:
 - Máximo de 500 épocas
 - Batch size de 4
 - Otimizador Adam com learning rate de 0.001
 - Função de perda: Mean Squared Error (MSE)
- Utilização de EarlyStopping para evitar overfitting
- Utilização de ModelCheckpoint para salvar o modelo com menor função de perda
- Gráfico de histórico de perda (Figura ao lado)

Previsão

- Utilização do método predict da biblioteca tensorflow.keras para fazer a previsão.
- Previsão realizada para o todas as colunas, focaremos em total de casos.
- Reversão do pré-processamento para obter a previsão no formato original.
- E plotagem do gráfico de comparação no y_teste

Avaliação e Resultados

- Métrica MAE (Mean Absolute Error) para a previsão do total de casos: 2.565
 - Quanto menor o valor, melhor a previsão
- Métrica R2 (R-squared) para a previsão do total de casos: 0.749
 - Quanto mais próximo de 1, melhor a previsão

MAE	MSE	RMSE	R2
2,649	56,075	7,488	0,749

Resultados

- A RNA teve um desempenho geral satisfatório na previsão dos casos totais de Dengue.
- Algumas limitações foram identificadas, como dificuldade em prever picos e ligeiro atraso nas previsões.
- Não focado no trabalho, mas dificuldades em prever algumas faixas etárias específicas.
- O gráfico mostra todo o período dos dados e a previsão, que estava a oculta da rede (casos totais).

Referências

- CANTANE, Daniela Renata et al. O Desenvolvimento da População do Aedes aegypti Aplicado ao Modelo de Otimização no Controle da Dengue. 2015. Acesso em: junho de 2023.
- Mittelmann, M.; Soares, D. G. Previsão de Casos de Dengue no Município de Guarulhos com Redes Neurais Artificiais Multicamadas e Recorrentes. Revista de Informática Aplicada, v. 13, n. 2, 2017. Acesso em: junho de 2023.
- Ministério da Saúde. Boletim Epidemiológico 20. Secretaria de Vigilância em Saúde: Ministério da Saúde, volume 53, maio 2022.
- Soares, Wilson Rogério, and Carlos Renato Lisboa Francês Silva.
 "Monitoramento de epidemia de dengue na Amazônia usando Redes Neurais Artificiais." (2017).
- Bambuí está com alto risco de infestação de Dengue. Prefeitura Municipal de Bambuí, Bambuí, 2023. Acesso em: junho 2023.
- MINISTÉRIO DA SAÚDE. Dengue. Gov.br: Ministério da Saúde. Acesso em: junho 2023.
- TensorFlow. Biblioteca de código aberto para aprendizado de máquina. Versão 3.2.2. Disponível em: https://www.tensorflow.org/. Acesso em: junho 2023.

OBRIGADO

