

In the Claims

This listing of claims will replace all prior versions and listings of claims in the application:

1 1. (Currently Amended) A method for distributed device identifier
2 number assignment and device counting in a serially connected chain
3 of devices, comprising:
4 initializing a first and a second memory locations both to a
5 value that is equal to a maximum allowed number of devices in the
6 serially connected chain;
7 receiving a first sequence of received pulses;
8 determining a unique device identifier based upon the first
9 sequence received of pulses by
10 counting a number of pulses in the first sequence of
11 received pulses, and
12 subtracting the number of pulses from the value stored in
13 the first memory location;
14 transmitting a first sequence of transmitted pulses;
15 receiving a second sequence of received pulses;
16 transmitting a second sequence of transmitted pulses; and
17 determining a total device count based upon the first and
18 second sequences of received pulses.

2 to 4. (Canceled)

1 5. (Original) The method of claim 4, wherein the unique device
2 identifier is stored back to the first memory location.

1 6. (Currently Amended) The A method of claim 1, wherein for
2 distributed device identifier number assignment and device counting
3 in a serially connected chain of devices, comprising the
4 determining a total device count comprises:

5 initializing a first and a second memory locations both to a
6 value that is equal to a maximum allowed number of devices in the
7 serially connected chain;
8 receiving a first sequence of received pulses;
9 determining a unique device identifier based upon the first
10 sequence received of pulses;
11 transmitting a first sequence of transmitted pulses;
12 receiving a second sequence of received pulses;
13 transmitting a second sequence of transmitted pulses; and
14 determining a total device count based upon the first and
15 second sequences of received pulses by
16 counting the number of pulses in the second sequence of
17 received pulses;
18 subtracting the number of pulses from the value stored in
19 the second memory location to obtain a difference; and
20 adding the value stored in the first memory location and
21 the difference.

1 7. (Original) The method of claim 6, further comprising
2 incrementing the result of adding the value stored in the first
3 memory location and the difference by one (1.0).

1 8. (Previously Presented) A method for distributed device
2 identifier number assignment and device counting in a serially
3 connected chain of devices, comprising:
4 receiving a first sequence of received pulses;
5 determining a unique device identifier based upon the first
6 sequence received of pulses;
7 transmitting a first sequence of transmitted pulses, the first
8 sequence of transmitted pulses being a sequence of pulses with one
9 pulse less than the number of pulses in the first sequence of
10 received pulses;

11 receiving a second sequence of received pulses;
12 transmitting a second sequence of transmitted pulses; and
13 determining a total device count based upon the first and
14 second sequences of received pulses.

1 9. (Previously Presented) A method for distributed device
2 identifier number assignment and device counting in a serially
3 connected chain of devices, comprising:
4 receiving a first sequence of received pulses;
5 determining a unique device identifier based upon the first
6 sequence received of pulses;
7 transmitting a first sequence of transmitted pulses;
8 receiving a second sequence of received pulses;
9 transmitting a second sequence of transmitted pulses, the
10 second sequence of transmitted pulses being a sequence of pulses
11 with one pulse less than the number of pulses in the second
12 sequence of received pulses; and
13 determining a total device count based upon the first and
14 second sequences of received pulses.

10 and 11. (Canceled)

1 12. (Previously Presented) A method for distributed device
2 identifier number assignment and device counting in a serially
3 connected chain of devices, comprising:
4 receiving a first sequence of received pulses;
5 determining a unique device identifier based upon the first
6 sequence received of pulses;
7 transmitting a first sequence of transmitted pulses;
8 receiving a second sequence of received pulses;
9 transmitting a second sequence of transmitted pulses;

10 determining a total device count based upon the first and
11 second sequences of received pulses; and
12 the steps of receiving first received sequence and
13 transmitting second transmitted sequence are received and
14 transmitted over the same input/output connection.

13 to 22. (Canceled)

1 23. (Previously Presented) A system comprising:
2 a processor, coupled to a sequence of least one codec, adapted
3 to processing digital data;
4 a controller, coupled to the sequence of at least one codec,
5 adapted to controlling communications between the processor and the
6 sequence of at least one codec;
7 the sequence of at least one codec, each codec comprising:
8 a port coupled to the processor and the controller; and
9 a semiconductor device for distributed device identifier
10 number assignment and device counting coupled to the port, the
11 semiconductor device comprising:
12 a counter, coupled to an input/output node, the
13 counter for counting a number of pulses in a sequence of pulses
14 received at the input/output node;
15 a first storage location to store a first count
16 result; and
17 a pulse generator, for generating a specified length
18 sequence of pulses, the specified length being one less than the
19 number of pulses in the sequence of pulses received at the
20 input/output node.

24. (Canceled)

1 25. (Previously Presented) A system comprising:

2 a processor, coupled to a sequence of least one codec, adapted
3 to processing digital data;
4 a controller, coupled to the sequence of at least one codec,
5 adapted to controlling communications between the processor and the
6 sequence of at least one codec;
7 the sequence of at least one codec, each codec comprising:
8 a port coupled to the processor and the controller; and
9 a semiconductor device for distributed device identifier
10 number assignment and device counting coupled to the port; and
11 wherein a FSD signal line of a final codec in the sequence of
12 at least one codec is connected to an external pulse generator.

1 26. (Original) The system of claim 23, wherein the semiconductor
2 device operates each time the system is reset.

1 27. (Original) The system of claim 23, wherein the semiconductor
2 device operates each time the system is powered-up.

28 to 47. (Canceled)

1 48. (Previously Presented) The system of claim 25, wherein the
2 semiconductor device operates each time the system is reset.

1 49. (Previously Presented) The system of claim 25, wherein the
2 semiconductor device operates each time the system is powered-up.