Basics of Differential Geometry

Maxime Willaert

August 26, 2024

Contents

	Topology	3
1	Intro 1.1 Things left to learn	4
2	Topological spaces2.1 Basic definitions2.2 Maps between topological spaces2.3 Generating topologies2.4 Metrizable spaces and convergence	7 8
п	Manifolds	12

Part I Topology

Chapter 1

Intro

Main references are [6, 5].

1.1 Things left to learn

The different sets of axioms one can use to define a topological space, as in [1]. A topological space is most commonly defined by specifying its open sets. But one can also define a topology in the following ways:

- (i) By specifying its neighborhoods or closed sets.
- (ii) By specifying the interior, closure, exterior, boundary or 'derived set' operators.
- (iii) Through nets or filters (which are equivalent).

The notions of **nets** and **filters**, their equivalence and their relationship with the notion of a topology, should be explored (see [3]). The different notions of convergence that can be defined in a topology, and the degree to which they determine this topology is also an interesting question [4, 2].

General topology (more set-theoretic than algebraic, and not focused on finite-dimensional topological manifolds) as in [6].

Chapter 2

Topological spaces

2.1 Basic definitions

Definition 2.1.1 (Topology). A **topology** on a set X is a collection τ of subsets of X such that

- (i) τ contains \emptyset and X;
- (ii) The union of the elements of any subset of τ is again in τ ;
- (iii) The intersection of the elements of any finite subset of τ is again in τ .

A topological space is a pair (X, τ) consisting of a set X together with a topology τ on X. The elements of τ are called the **open sets** of (X, τ) .

Given two topological spaces (X, τ) , (X', τ') , a map $f: (X, \tau) \to (X', \tau')$ is said to be **continuous** if for any $U \in \tau'$, $f^{-1}(U) \in \tau$. In most instances we can omit τ when referring to the topological space (X, τ) with no risk of confusion.

Definition 2.1.2 (Neighborhoods). Let X be a topological space.

- (i) Let K be a subset of X, another subset N of X is said to be a **neighborhood** of K if there exists an open subset U of X such that $K \subseteq U \subseteq N$. An **open neighborhood** of K is an open subset of X that contains K.
- (ii) Let x be a point of X. An (open) neighborhood of x is an (open) neighborhood of the singleton $\{x\}$.

Definition 2.1.3 (Closed subsets). A subset F of X is said to be **closed** if its complement X - F is open.

Proposition 2.1.1. Let X be a topological space.

- (i) \emptyset and X are closed.
- (ii) Any intersection of closed subsets of X is closed.

(iii) A finite unions of closed subsets of X is closed.

Proposition 2.1.2. A map between topological spaces is continuous if and only the preimage of any closed subset is closed.

Proof. This is because for any map $f: X \to Y$ and any subset $A \subseteq Y$, $f^{-1}(Y - A) = X - f^{-1}(A)$.

Definition 2.1.4 (Closure and interior). Let A be a subset of a topological space X.

(i) The **closure** of A, denoted \bar{A} is the smallest closed subset containing A.

$$\bar{A} := \bigcap \{ F \subseteq X | S \text{is closed and } A \subseteq F \}.$$

(ii) The **interior** of A, denoted Int(A) is the largest open subset contained in A.

$$\operatorname{Int}(A) := \bigcup \{ U \subseteq X | U \text{ is open and } U \subseteq A \}.$$

- (iii) The **exterior** of A, denoted by $\operatorname{Ext}(A)$, is defined to by $\operatorname{Ext}(A) := X \bar{A}$, it is the complement of the closure, that is the largest open that does not overlap with A.
- (iv) The **boundary** of A, denoted by ∂A is defined by $\partial A := \bar{A} \operatorname{Int}(A)$.

Proposition 2.1.3. Let A be a subset of an topological space X.

- (i) A point is in Int(A) if and only if it has a neighborhood contained in A.
- (ii) A point is in Ext(A) if and only if it has a neighborhood contained in X-A.
- (iii) A point is in ∂A if and only if any neighborhood of it contains both a point of A and a point of X A.
- (iv) A point is in \bar{A} if and only if any neighborhood of it contains a point of A.
- (v) The following are equivalent:
 - A is open.
 - A = Int(A).
 - A contains none of its boundary points (hence the 'open terminology').
 - Any point of A has a neighborhood contained in A.
- (vi) The following are equivalent:
 - A is closed.
 - $A = \bar{A}$.

- A contains all of its boundary points (hence the 'closed' terminology).
- Any point of X A has a neighborhood contained in X A.

Definition 2.1.5 (Limit and isolated points). Let A be a subset of a topological space X.

- (i) A point $p \in X$ (not necessarily in A) is a **limit point** of A if any neighborhood of p contains a point of A other than p. Limit points are also called **cluster points** and **accumulation** points.
- (ii) A point $p \in A$ is **isolated in** A if p has a neighborhood N such that $N \cap A = \{p\}$. Observe that any point of A is either isolated in A or a limit point of A.

Proposition 2.1.4. A set is closed if and only if it contains all of its limit points.

Definition 2.1.6 ((Nowhere) dense sets). A subset A of a topological space X is said to be **dense** in X if $\bar{A} = X$. Given a subset S of X, A is said to be dense in S if $A \cap S$ is dense in S (with the subset topology). It is said to be **nowhere dense** or **rare** in X if \bar{A} has empty interior. Equivalently A is rare if it is not dense in any nonempty open subset of X. Equivalently, A is rare if its exterior is dense in X.

2.2 Maps between topological spaces

Proposition 2.2.1. Some basic properties of continuous maps.

- (i) A constant map is continuous.
- (ii) Compositions of continuous maps are continuous.
- (iii) Let X and Y be two topological spaces. A map $f: X \to Y$ is continuous if and only if for any open subset U of X, $f|_U$ is continuous. In particular the restriction of a continuous map to any open subset is continuous.

Definition 2.2.1. Let $f: X \to Y$ be a map between two topological spaces.

- (i) f is **closed** if it takes closed subsets of X to closed subsets of Y.
- (ii) f is **open** if it takes open subsets of X to open subsets of Y.
- (iii) f is a homeomorphism if f is a continuous bijection whose inverse is continuous.
- (iv) f is a **local homeomorphism** if any point of X admits an open neighborhood U such that $f|_U:U\to f(U)$ is a homeomorphism. Clearly a homeomorphism is a local homeomorphism.

Proposition 2.2.2 (Properties of local homeomorphisms). Let $f: X \to Y$ be a local homeomorphism.

- (i) f is open and closed.
- (ii) If f is bijective, then f is a homeomorphism.

Proposition 2.2.3 (Characterization of homeomorphism). Let $f: X \to Y$ be a bijective continuous map. The following are equivalent:

- (i) f is a homeomorphism.
- (ii) f is open.
- (iii) f is cosed.

Proposition 2.2.4 (Characterizing maps). Let $f: X \to Y$ be a map between two topological spaces.

- (i) f is continous if and only if $f(\bar{A}) \subseteq \overline{f(A)}$ for all $A \subseteq X$.
- (ii) f closed if and only if $f(\bar{A}) \supseteq \overline{f(A)}$ for all $A \subseteq X$.
- (iii) f is continous if and only if $f^{-1}(IntB) \subseteq Int(f^{-1}(B))$ for all $B \subseteq Y$.
- (iv) f is open if and only if $f^{-1}(IntB) \supseteq Int(f^{-1}(B))$ for all $B \subseteq Y$.

Proof. (i) Assume that f is continuous. Then $f^{-1}(\overline{f(A)})$ is closed and contains A, so it must contain \overline{A} and $f(\overline{A}) \subseteq \overline{f(A)}$. Conversely, assume that f satisfies the condition given in (i). For $F \subseteq Y$ closed, set $A := f^{-1}(F)$. Then

$$f(\bar{A}) \subseteq \overline{f(A)} \subseteq F$$

which implies $\bar{A} \subseteq f^{-1}(F) = A$, so A is closed.

2.3 Generating topologies

Definition 2.3.1 (Comparing topologies). Let τ , τ' be topologies on a set X. When $\tau \subseteq \tau'$ we say that τ is **coarser** (or **smaller**) than τ' , or that τ' is **finer** (or **larger**) than τ . We say that τ and τ' are **comparable** if $\tau \subseteq \tau'$ or $\tau' \subseteq \tau$.

Example 2.3.1. The finest topology on a set X is the **discrete topology** $\tau = \mathcal{P}(X)$ (all subsets of X are open for the discrete topology). The coarsest topology on a set X is the **trivial** or **indiscrete topology** $\tau := \{\emptyset, X\}$.

Proposition 2.3.1. Let $(\tau_i)_{i\in I}$ be a family of topologies on a set X. Then the intersection $\tau := \bigcap_{i\in I} \tau_i$ is a topology on X.

Remark. The empty intersection would yield the discrete topology.

Definition 2.3.2 (Preorder). A binary relation \leq on a set A is a **preorder** if it is **reflexive** and **transitive**, meaning that for all $a, b, c \in A$

- (i) (Reflexivity) $a \leq a$;
- (ii) (Transivity) $a \le b$ and $b \le c$ implies $a \le c$.

We'll often use the word 'preorder' to refer to a pair (A, \leq) consisting of a set A and a preorder \leq on A.

Definition 2.3.3 (Partial order). A partial order on a set A is a preoder \leq on A which is **antisymmetric** meaning that for all $a, b \in A$, $a \leq b$ and $b \leq a$ implies a = b. A **partially ordered set** or **poset** is a set together with a partial order (sometimes required to be nonempty).

See personal notes on lattices [7]. Given a subset S of a poset (P, \leq) , the supremum of S is sometimes called its **join**, while the **infimum** of S is sometimes called its **meet**.

Now let $\operatorname{Top}(X)$ denote the set of topologies on X, which becomes a poset when equipped with the inclusion relation \subseteq . $(\operatorname{Top}(X), \subseteq)$ admits top and bottom elements in the form of the discrete and indiscrete topologies. Furthermore, by proposition 2.3.1, $(\operatorname{Top}(X), \subseteq)$ admits arbitrary meets (infima), which automatically implies that $(\operatorname{Top}(X), \subseteq)$ admits arbitrary joins (the supremum of a subset S of $\operatorname{Top}(X)$ will be obtained as the infinimum of the upper bounds of S, see [7]). Thus we see that $(\operatorname{Top}(X), \subseteq)$ is a complete lattice.

Proposition 2.3.2. $(Top(X), \subseteq)$ is a complete lattice.

- (i) Its upper bound is $\mathcal{P}(X)$, its lower bound is $\{\emptyset, X\}$.
- (ii) The infimum of a family $(\tau_i)_{i\in I}$ of topologies on X is given by their intersection $\bigcap_{i\in I} \tau_i$.
- (iii) The supremum $\bigvee_{i \in I} \tau_i$ of a family $(\tau_i)_{i \in I}$ of topologies on X is the infimum of its upperbounds, i.e.

$$\bigvee_{i \in I} \tau_i = \bigcap \{ \tau \in Top(X) | \tau_i \subseteq \tau \text{ for all } i \in I \}.$$

Here the \bigvee notation is warranted because $\bigvee_{i \in I} \tau_i$ will not coincide with $\bigcup_{i \in I} \tau_i$ in general.

Definition 2.3.4 (Generated topology). Let ξ be a collection of subsets of X. The **topology generated by** ξ , denoted by $\langle \xi \rangle$, is defined to be the coarsest topology containing ξ , i.e.

$$\langle \xi \rangle = \bigcap \{ \tau \in \text{Top}(X) | \xi \subseteq \tau \}.$$

Given a topology τ on X, a collection ξ of subsets of X that generates τ in the above sense is called a **subbasis** of τ .

Proposition 2.3.3. The topology generated by ξ is the collection of all unions of finite (possibly empty) intersections of elements of ξ .

Remark. Allowing for empty intersections of elements of ξ is of crucial importance, as X (the empty intersection) belongs to the generated topology.

Definition 2.3.5 (Basis for a given topology). Let τ be a topology on a set X. A basis for τ is a subcollection $\beta \subseteq \tau$ such that any open of τ is a union of elements of β (note that the empty union is the empty set). In that case it is easy to see that τ is the topology generated by β .

Proposition 2.3.4. $\beta \subseteq \tau$ is a basis of τ if and only if for any open U and any point $p \in U$ there exists $B \in \beta$ such that $p \in B \subseteq U$.

A criterion that determines whether a collection of subsets is the basis of some topology.

Proposition 2.3.5. Let β be a collection of subsets of X. Then β is the basis of the topology $\langle \beta \rangle$ it generates if and only if

- (i) β covers X, meaning that $X = \bigcup \beta$;
- (ii) For any pair $A, B \in \beta$ and any point $p \in A \cap B$ there exists $C \in \beta$ such that $p \in C \subseteq A \cap B$.

2.4 Metrizable spaces and convergence

Definition 2.4.1 (Convergence). Let X be a topological space. A sequence $(x_n)_{n\in\mathbb{N}}$ in X converges to a point $x\in X$ if $(x_n)_n$ is **eventually** in any neighborhood of x, i.e. if for any open neighborhood U of x, there exists $N\in\mathbb{N}$ such that $x_m\in U$ for all $m\geq N$. We then write $\lim_{n\to\infty}x_n=x$ or $x_n\to x$.

Definition 2.4.2 (Metric). A **metric** on a set X is a map $d: X \times X \to \mathbb{R}$ with the following property:

- (i) (Positivity) $d(x,y) \ge 0$ for all $x,y \in X$ and d(x,y) = 0 if and only if x = y;
- (ii) (Symmetry) d(x,y) = d(y,x) for all $x, y \in X$;
- (iii) (Triangle inequality) $d(x, z) \le d(x, y) + d(y, z)$ for all $x, y, z \in X$.

A **metric space** is a set equipped with a metric.

Definition 2.4.3 (Induced topology). Let (X, d) be a metric space.

(i) For r > 0 and $x \in X$, the open ball of radius r around x is the set

$$B_r(x) := \{ y \in X | d(x, y) < r \}.$$

(ii) For $r \geq 0$ and $x \in X$, the closed ball of radius r around x is the set

$$\bar{B}_r(x) := \{ y \in X | d(x, y) \le r \}.$$

(iii) The topology on X induced by d is the topology generated by the open balls, which form a basis for that topology. In other words, a subset of X is open for the induced topology if it contains an open ball around each of its points.

Definition 2.4.4 (Metrizable space). A topology τ on a set X is said to be **metrizable** if it there exists a metric on X that induces τ .

Proposition 2.4.1. A sequence $(x_n)_n$ in a metric space (X, d) converges to x if and only if for any $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $d(x_m, x) < \epsilon$ for all $m \geq N$.

Part II Manifolds

Bibliography

- [1] Wikipedia contributors. Axiomatic foundations of topological spaces. 2024. URL: https://en.wikipedia.org/w/index.php?title=Axiomatic_foundations_of_topological_spaces&oldid=1237268389 (visited on 08/25/2024).
- [2] Wikipedia contributors. Convergence spaces. 2024. URL: https://en.wikipedia.org/w/index.php?title=Convergence_space&oldid=1240724450 (visited on 08/25/2024).
- [3] Wikipedia contributors. Filters in topology. 2024. URL: https://en.wikipedia.org/w/index.php?title=Filters_in_topology&oldid=1238941858 (visited on 08/25/2024).
- [4] Wikipedia contributors. Sequential space. 2024. URL: https://en.wikipedia.org/w/index.php?title=Sequential_space&oldid=1237307585 (visited on 08/25/2024).
- [5] John M. Lee. Introduction to Topological Manifolds. 2nd ed. Springer, 2010.
- [6] James Munkres. Topology. 2nd ed. Pearson, 2014.
- [7] Maxime Willaert. Lattices. 2022-2023.