

In this lecture

We will learn how to create basic plots using matplotlib library

- Scatter plot
- Histogram
- Bar plot

Data Visualization

- Data visualization allows us to quickly interpret the data and adjust different variables to see their effect
- Technology is increasingly making it easier for us to do so Why visualize data?
 - Observe the patterns
 - Identify extreme values that could be anomalies
 - Easy interpretation

Popular plotting libraries in Python

Python offers multiple graphing libraries that offers diverse features

 matplotlib 	 to create 2D graphs and plots
• pandas visualization	 easy to use interface, built on Matplotlib
• seaborn	 provides a high-level interface for drawing attractive and informative statistical graphics
• ggplot	 based on R's ggplot2, uses Grammar of Graphics
• plotly	 can create interactive plots

Matplotlib

- Matplotlib is a 2D plotting library which produces good quality figures
- Although it has its origins in emulating the MATLAB graphics commands, it is independent of MATLAB
- It makes heavy use of NumPy and other extension code to provide good performance even for large arrays

Scatter plot

Scatter Plot

What is a scatter plot?

 A scatter plot is a set of points that represents the values obtained for two different variables plotted on a horizontal and vertical axes

When to use scatter plots?

- Scatter plots are used to convey the relationship between two numerical variables
- Scatter plots are sometimes called correlation plots because they show how two variables are correlated

Importing data into Spyder

Importing necessary libraries

Importing data into Spyder

Importing data

Removing missing values from the dataframe

cars_data.dropna(axis = 0, inplace=True)

Scatter plot

```
plt.scatter(cars_data['Age'], cars_data['Price'], c='red')

plt.title('Scatter plot of Price vs Age of the cars')

plt.xlabel('Age (months)')

plt.ylabel('Price (Euros)')

plt.show()
```

Scatter plot

• The price of the car decreases as age of the car increases

What is a histogram?

- It is a graphical representation of data using bars of different heights
- Histogram groups numbers into ranges and the height of each bar depicts the frequency of each range or bin

When to use histograms?

 To represent the frequency distribution of numerical variables

Python for Data Science


```
plt.hist(cars_data['KM'],
        color = 'green',
        edgecolor = 'white',
        bins = 5)
plt.title('Histogram of Kilometer')
plt.xlabel('Kilometer')
plt.ylabel('Frequency')
plt.show()
```


• Frequency distribution of kilometre of the cars shows that most of the cars have travelled between 50000 - 100000 km and there are only few cars with more distance travelled

What is a bar plot?

 A bar plot is a plot that presents categorical data with rectangular bars with lengths proportional to the counts that they represent

When to use bar plot?

- To represent the frequency distribution of categorical variables
- A bar diagram makes it easy to compare sets of data between different groups


```
counts = [979, 120, 12]
fuelType = ('Petrol', 'Diesel', 'CNG')
index = np.arange(len(fuelType))
            height of the bars
plt.bar(index, counts, color=['red', 'blue', 'cyan'])
plt.title('Bar plot of fuel types')
plt.xlabel('Fuel Types')
plt.ylabel('Frequency')
plt.show()
```


Frequency distribution of fuel type


```
counts = [979, 120, 12]
fuelType = ('Petrol', 'Diesel', 'CNG')
index = np.arange(len(fuelType))
              height of the bars
plt.bar(index, counts, color=['red', 'blue', 'cyan'])
plt.title('Bar plot of fuel types')
plt.xlabel('Fuel Types')
plt.ylabel('Frequency')
plt.xticks(index, fuelType,rotation = 90)
plt.show()
                      Set the labels of the xticks
                   Set the location of the xticks
```


 Bar plot of fuel type shows that most of the cars have petrol as fuel type

Summary

We have learnt how to create basic plots using matplotlib library

- Scatter plot
- Histogram
- Bar plot

```
peration == "MIRROR_X":
              . r or _object
mirror_mod.use_x = True
mirror_mod.use_y = False
mirror_mod.use_z = False
 _operation == "MIRROR_Y"|
irror_mod.use_x = False
lrror_mod.use_y = True
 mirror_mod.use_z = False
  operation == "MIRROR_Z":
  rror_mod.use_x = False
  rror mod.use y = False
  Irror mod.use z = True
   ob.select= 1
   er ob.select=1
   ntext.scene.objects.active
  "Selected" + str(modifier
   ata.objects[one.name].sel
  Int("please select exaction
```

THANK YOU