Зачет по дисциплине "Программирование на языке высокого уровня"

Вариант 1.

1. Ввести x, y, z. Вычислить значение выражения:

$$a = \frac{\sqrt{|x-1|} - \sqrt{y}}{1 + \frac{z^2}{2} + \frac{y^2}{4}}$$

2. Написать программу, которая для заданного n позволяет определить, сколько целых чисел между 1 и n делятся одновременно на 37 и 13.

Вариант 2.

1. Ввести x, y, z. Вычислить значение выражения:

$$b = x(\arctan(z) + y)$$

2. Вычислить для заданного n:

$$\sum_{k=1}^{n} \frac{(-1)^k}{k^2(k+2)^2}$$

Вариант 3.

1. Ввести x, y, z. Вычислить значение выражения:

$$a = \frac{2 + exp(2)}{1 + x^2|y - tg(z)|}$$

2. Написать программу, которая для заданного n вычисляет сумму:

$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \ldots + \frac{(-1)^{n-1}}{n^2}$$

Вариант 4.

1. Ввести x, y, z. Вычислить значение выражения:

$$b = 1 + |z - x| + \frac{(y - x)^2}{2} + \frac{(x - y)^2}{3}$$

2. Написать программу, которая для заданного n вычисляет сумму:

$$\sum_{k=1}^{n} \frac{(-1)^k}{k(k+1)(3k+1)(3k+2)}$$

Вариант 5.

1. Ввести x, y, z. Вычислить значение выражения:

$$a = (1+y) \cdot \frac{x + \frac{y^2}{x^2 + 4}}{exp(2) + \frac{1}{x^2 + 4}}$$

2. Написать программу, которая для заданного n вычисляет сумму:

$$\sum_{k=1}^{n} (-1)^k \cdot k(k+4)(k+8)$$

Вариант 6.

1. Ввести x, y, z. Вычислить значение выражения:

$$b = \frac{1 + \cos^3(y - x)}{\frac{x^2}{2} + \sin^2(z)}$$

2. Написать программу, которая для заданного n позволяет определить, сколько целых чисел между 1 и n не делятся на 11 или на 5.

Вариант 7.

1. Ввести x, y, z. Вычислить значение выражения:

$$a = y + \frac{x}{z^2 + |\frac{x^2}{y + x^2}|}$$

2. Написать программу, которая для заданного n позволяет определить, сколько целых чисел между 1 и n не делятся на 3 и 7, но делятся на 5.

Вариант 8.

1. Ввести x, y, z. Вычислить значение выражения:

$$b = \left(1 + \operatorname{tg}^2\left(\frac{z+y}{2}\right)\right)^2 \cdot x$$

2. Реализовать функцию, которая для заданного n получает число из цифр числа n, записанных в обратном порядке.

Вариант 9.

1. Ввести x, y, z. Вычислить значение выражения:

$$a = \frac{2\cos^4(x - \frac{\pi}{6})}{\frac{z}{2} + \sin^2(y)}$$

2. Реализовать функцию, которая для заданного n получает число из его цифр, чередующихся через нуль. Например, если n=123, то функция должна выдавать 102030.

Вариант 10.

1. Ввести x, y, z. Вычислить значение выражения:

$$b = 1 + \frac{z^2}{3 + \frac{x^2}{5}} \cdot y$$

2. Для заданного n вычислить сумму

$$1+2-3-4+5+6-7-\ldots+(-)n$$

Вариант 11.

1. Ввести x, y, z. Вычислить значение выражения:

$$a = \frac{\sqrt{|x-1|} - \sqrt{|y|}}{1 + \frac{x^2}{2} + \frac{y^2}{4}}$$

2. Реализуйте программу, вычисляющую для заданного n разность:

$$\sum_{i=1}^{n} \frac{1}{i} - \ln(n)$$

Убедитесь, что эта разность сходится к некоторой постоянной (она называется постоянной Эйлера-Машерони). Определите эту постоянную с точностью до 6 знака.

Вариант 12.

1. Ввести x, y, z. Вычислить значение выражения:

$$b = x^3 \cdot (\arctan^3(z) + y)$$

2. Разработать программу аутентификации пользователя: вводится пароль. Если пароль неверен, выдается сообщение «Невереный пароль» и пароль вводится снова. Повтор допускается до 5 раз. Если правильный пароль так и не будет введен, выдается сообщение «Неудача», если пароль подобран, то выдается сообщение «Вошли»

Вариант 13.

1. Ввести x, y, z. Вычислить значение выражения:

$$a = \frac{1 + \sin^2(x+y)}{2 + |x - \frac{2x}{1 + x^2y^2}|} + x$$

2. Команда из n судей принимает решение большинством голосов. Каждый судья должен проголосовать, ответив «Да» (1), или «Нет» (0). Реализовать программу, которая помогает судьям принять окончательное решение.

Вариант 14.

1. Ввести x, y, z. Вычислить значение выражения:

$$b = \ln\left(y - \sqrt{|x|}\right) \left(x - \frac{y}{z + \frac{x^2}{4}}\right)$$

2. Задана функция $y(x) = x - \ln(x)$. Вычислить значения этой функции на отрезке от 0,01 до 10 с шагом 0.5, вывести результат на экран с точностью 4 знаков, найти минимальное значение функции.

Вариант 15.

1. Ввести x, y, z. Вычислить значение выражения:

$$a = \frac{x^2}{8 + \frac{z^2}{3} + \frac{y^2}{6}}$$

2. Для заданного n вычислить произведение

$$\prod_{k=1}^{n} \left(1 + \frac{(-1)^k}{k^2} \right)$$

Вариант 16.

1. Ввести x, y, z. Вычислить значение выражения:

$$b = x \cdot (\cos^3(y+z) + 1)$$

2. Для заданного n вычислить произведение

$$\prod_{k=1}^{n} \left(1 + \frac{(-1)^k}{2k+1} \right)$$

Вариант 17.

1. Ввести x, y, z. Вычислить значение выражения:

$$a = \frac{5 - 2x}{1 + x^2(y - \text{tg}(z))}$$

2. Убедитесь в справедливости второго замечательного предела:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

Для этого определите, какое нужно взять n, чтобы получить число e с точностью до 4 знаков.

Вариант 18.

1. Ввести x, y, z. Вычислить значение выражения:

$$b = |y - 4| + \frac{(z - x)^2}{6} + \frac{(x - y)^2}{7}$$

2. Реализовать функцию, которая для заданного числа n определяет, что все его цифры следуют в неубывающем порядке. Например, для числа n=1489 - это так, а для n=4632 - нет.

Вариант 19.

1. Ввести x, y, z. Вычислить значение выражения:

$$a = (2+x) \cdot \frac{1 + \frac{y}{(x^2+3)}}{y^2 + \frac{1}{z^2+4}}$$

2. Найти все числа, не превосходящие заданного n и делящиеся на две своих последних цифры.

Вариант 20.

1. Ввести x, y, z. Вычислить значение выражения:

$$b = \frac{4\sin(x - \frac{\pi}{3})}{\frac{z}{3} + \cos^2(y)}$$

2. Найти все числа от 1 до 1000, которые совпадают с последними разрядами своих квадратов. Например, $25^2=625,76^2=5676$