Backward Propagation in RNN

Steps in Backward Propagation

Calculate the loss by comparing ŷ (prediction) and y (ground truth)

Steps in Backward Propagation

- Calculate the loss by comparing $\hat{\mathbf{y}}$ (prediction) and \mathbf{y} (ground truth)
- Compute gradients with respect to weight matrices U, V, and W

Steps in Backward Propagation

- Calculate the loss by comparing $\hat{\mathbf{y}}$ (prediction) and \mathbf{y} (ground truth)
- Compute gradients with respect to weight matrices U, V, and W
- Update weight matrices U, V, and W by using the gradients

Weights: V, W, and U

Weights: V, W, and U

• **Gradients:** $\partial L/\partial V$, $\partial L/\partial W$, and $\partial L/\partial U$

al/av = ?

•
$$\partial L/\partial V = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial V)$$

•
$$\partial L/\partial V = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial V)$$

Let L =
$$\frac{1}{2}(y - \hat{y})^2$$

•
$$\partial L/\partial V = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial V)$$

Let L =
$$\frac{1}{2}(y - \hat{y})^2$$

Then $\partial L/\partial \hat{y} = (\hat{y} - y)$

•
$$\partial L/\partial V = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial V)$$

= $(\hat{y} - y) \cdot (\partial \hat{y}/\partial V)$

$$\hat{y} = k(VH_3)$$

•
$$\partial L/\partial V = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial V)$$

= $(\hat{y} - y) \cdot (\partial \hat{y}/\partial V)$

$$\hat{y} = k(VH_3)$$

Assuming Linear activation function

$$\hat{y} = VH_3$$

•
$$\partial L/\partial V = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial V)$$

= $(\hat{y} - y) \cdot (\partial \hat{y}/\partial V)$

$$\hat{y} = k(VH_3)$$

Assuming Linear activation function

$$\hat{y} = VH_3$$

$$\partial \hat{y}/\partial V = H_3$$

•
$$\partial L/\partial V = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial V)$$

= $(\hat{y} - y) \cdot (H_3)$

•
$$\partial L/\partial V = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial V)$$

= $(\hat{y} - y) \cdot (H_3)$

• $\partial L/\partial W = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial H_3) \cdot (\partial H_3/\partial W)$

•
$$\partial L/\partial V = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial V)$$

= $(\hat{y} - y) \cdot (H_3)$

• $\partial L/\partial W = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial H_3) \cdot (\partial H_3/\partial W)$

$$\hat{y} = VH_3$$

•
$$\partial L/\partial V = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial V)$$

= $(\hat{y} - y) \cdot (H_3)$

• $\partial L/\partial W = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial H_3) \cdot (\partial H_3/\partial W)$

$$\hat{y} = VH_3$$

$$\partial \hat{y}/\partial H_3 = V$$

•
$$\partial L/\partial V = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial V)$$

= $(\hat{y} - y) \cdot (H_3)$

• $\partial L/\partial W = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial H_3) \cdot (\partial H_3/\partial W)$ = $(\hat{y} - y) \cdot V \cdot ?$

$$\bullet \quad H_3 = g(WH_2 + Ux_3)$$

•
$$H_3 = g(WH_2 + Ux_3) = g(z_3)$$

•
$$H_3 = g(WH_2 + Ux_3) = g(z_3)$$

•
$$\partial H_3/\partial W = (\partial g(z_3)/\partial z_3) \cdot (\partial z_3/\partial W)$$

•
$$H_3 = g(WH_2 + Ux_3) = g(z_3)$$

•
$$\partial H_3/\partial W = (\partial g(z_3)/\partial z_3) \cdot (\partial z_3/\partial W)$$

•
$$H_3 = g(WH_2 + Ux_3) = g(z_3)$$

•
$$\partial H_3/\partial W = (\partial g(z_3)/\partial z_3) \cdot (\partial z_3/\partial W)$$

=
$$(\partial g(z_3)/\partial z_3)[H_2 + W(\partial H_2/\partial W)]$$

•
$$H_3 = g(WH_2 + Ux_3) = g(z_3)$$

•
$$\partial H_2/\partial W = (\partial g(z_2)/\partial z_2)[H_1 + W(\partial H_1/\partial W)]$$
 ...where $z_2 = WH_1 + Ux_2$

- $H_3 = g(WH_2 + Ux_3) = g(z_3)$

- $\partial H_2/\partial W = (\partial g(z_2)/\partial z_2)[H_1 + W(\partial H_1/\partial W)]$...where $z_2 = WH_1 + Ux_2$
- $\partial H_1/\partial W = (\partial g(z_1)/\partial z_1)[H_0 + W(\partial H_0/\partial W)]$...where $z_1 = WH_0 + Ux_1$


```
• H_3 = g(WH_2 + Ux_3) = g(z_3)

• \partial H_3/\partial W = (\partial g(z_3)/\partial z_3) \cdot (\partial z_3/\partial W)

= (\partial g(z_3)/\partial z_3)[H_2 + W((\partial g(z_2)/\partial z_2)[H_1 + W((\partial g(z_1)/\partial z_1)[H_0 + W(\partial H_0/\partial W)])])]
```


•
$$\partial L/\partial V = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial V)$$

= $(\hat{y} - y) \cdot (H_3)$

•
$$\partial L/\partial W = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial H_3) \cdot (\partial H_3/\partial W)$$

= $(\hat{y} - y) \cdot V \cdot ?$

•
$$\partial L/\partial V = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial V)$$

= $(\hat{y} - y) \cdot (H_3)$

•
$$\partial L/\partial W = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial H_3) \cdot (\partial H_3/\partial W)$$

= $(\hat{y} - y) \cdot V \cdot (\partial g(z_3)/\partial z_3)$
[$H_2 + W(\partial H_2/\partial W)$]

Recursive

•
$$\partial L/\partial V = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial V)$$

= $(\hat{y} - y) \cdot (H_3)$

•
$$\partial L/\partial W = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial H_3) \cdot (\partial H_3/\partial W)$$

= $(\hat{y} - y) \cdot V \cdot (\partial g(z_3)/\partial z_3)$
 $[H_2 + W(\partial H_2/\partial W)]$

•
$$\partial L/\partial U = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial H_3) \cdot (\partial H_3/\partial U)$$

= $(\hat{y} - y) \cdot V \cdot ?$

•
$$H_3 = g(WH_2 + Ux_3) = g(z_3)$$

•
$$H_3 = g(WH_2 + Ux_3) = g(z_3)$$

•
$$\partial H_3/\partial U = (\partial g(z_3)/\partial z_3) \cdot (\partial z_3/\partial U)$$

=
$$(\partial g(z_3)/\partial z_3)[x_3 + U(\partial x_3/\partial U) + (\partial WH_2/\partial U)]$$

•
$$H_3 = g(WH_2 + Ux_3) = g(z_3)$$

•
$$\partial H_3/\partial U = (\partial g(z_3)/\partial z_3) \cdot (\partial z_3/\partial U)$$

=
$$(\partial g(z_3)/\partial z_3)[x_3 + (\partial WH_2/\partial U)]$$

•
$$H_3 = g(WH_2 + Ux_3) = g(z_3)$$

•
$$\partial H_3/\partial U = (\partial g(z_3)/\partial z_3) \cdot (\partial z_3/\partial U)$$

= $(\partial g(z_3)/\partial z_3)[x_3 + (\partial WH_2/\partial U)]$

•
$$\partial WH_2/\partial U = W(\partial H_2/\partial U)$$

= $W(\partial g(z_2)/\partial z_2) \cdot (\partial z_2/\partial U) \dots \text{where } z_2 = WH_1 + Ux_2$
= $W(\partial g(z_2)/\partial z_2) \cdot [x_2 + (\partial WH_1/\partial U)]$

- $H_3 = g(WH_2 + Ux_3) = g(z_3)$
- $\partial H_3 / \partial U = (\partial g(z_3) / \partial z_3) \cdot (\partial z_3 / \partial U)$

=
$$(\partial g(z_3)/\partial z_3)[x_3 + (\partial WH_2/\partial U)]$$

- $\partial WH_2/\partial U = W (\partial g(z_2)/\partial z_2) \cdot [x_2 + (\partial WH_1/\partial U)]$
- $\partial WH_1/\partial U = W (\partial g(z_1)/\partial z_1) \cdot [x_1 + (\partial WH_0/\partial U)]$


```
• H_3 = g(WH_2 + Ux_3) = g(z_3)

• \partial H_3/\partial U = (\partial g(z_3)/\partial z_3) \cdot (\partial z_3/\partial U)

= (\partial g(z_3)/\partial z_3)[x_3 + (W(\partial g(z_2)/\partial z_2) \cdot [x_2 + (W(\partial g(z_2)/\partial z_3))]
```

 $(\overline{W} (\partial g(z_1)/\partial z_1) \cdot [x_1 +$

 $(9MH^{0}/90)$])]

•
$$\partial L/\partial U = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial H_3) \cdot (\partial H_3/\partial U)$$

= $(\hat{y} - y) \cdot V \cdot (\partial g(z_3)/\partial z_3)$
 $[x_3 + (\partial WH_2/\partial U)]$
Recursive

Thank You

•
$$\partial L/\partial U = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial H_3) \cdot (\partial H_3/\partial U)$$

= $(\hat{y} - y) \cdot V \cdot ?$

•
$$\partial L/\partial U = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial H_3) \cdot (\partial H_3/\partial U)$$

= $(\hat{y} - y) \cdot V \cdot (\partial g(z_3)/\partial z_3)$
[$x_3 + (\partial WH_2/\partial U)$]

$$s_1 = [43, 96, 2, 78, 43]$$

$$s_1 = [43, 96, 2, 78, 43]$$

$$s_{1p} = [43, 96, 2, 78, 43, 0, 0]$$
 (after padding)

$$s_1 = [43, 96, 2, 78, 43]$$

 $s_{1p} = [43, 96, 2, 78, 43, 0, 0]$ (after padding)


```
max_len = 7
```

$$s_1 = [43, 96, 2, 78, 43]$$

 $s_{1p} = [43, 96, 2, 78, 43, 0, 0]$ (after padding)

$$s_2 = [11, 51, 9, 52, 6, 1, 75, 29]$$

