Homework 1: Real numbers (Due February 3^{rd})

- **1.** a) Prove that the axiom " $0 \le x$ and $0 \le y$ implies $0 \le xy$ " is equivalent to " $x \le y$ and $z \ge 0$ implies $xz \le yz$.
- b) Prove that if the above axiom is replaced by " $0 \le x$ and $0 \ge y$ implies $0 \le xy$ " in the ordered field axiomatic, it follows that a) $x^2 \le 0$, b) 1 < 0. How do the rules of signs change?
- **2.** In the axioms of \mathbb{R} assumed that $0 \neq 1$ to avoid the trivial situation of a one-element field. Prove that one can equivalently impose the condition that there is some element different from 0.
- **3.** Let A be a non-empty subset of an ordered set. Let α be a lower bound and β be an upper bound for A. Prove that $\alpha \leq \beta$.
- **4.** Let A be a non-empty subset or \mathbb{R} which is bounded below. Let $-A := \{-x : x \in A\}$. Prove that

$$\inf A = -\sup(-A).$$

5. a) Given two subsets of real numbers, $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$, define their sum as

$$A + B := \{x + y : (x \in A) \land (y \in B)\}$$

Prove that $\sup(A+B) = \sup A + \sup B$.

b) If we define the product of A and B to be

$$AB := \{xy : (x \in A) \land (y \in B)\},\$$

is it true that $\sup(AB) = \sup A \sup B$? Prove it if true or give a counterexample if false.

6. Use the Archimedean property to show that

$$(x\geq 0) \wedge (\forall n \in \mathbb{N}, \ x<\frac{1}{n}) \Longrightarrow x=0$$

- **7.** Prove that there is always a rational number between two given different real numbers. **Hint.** Use the Archimedean property or Ex. 6.
- **8.** Define the **absolute value** of a real number x as $|x| = \max\{x, -x\}$. Prove the triangle inequality:

$$|x+y| \le |x| + |y|,$$

for any $x, y \in \mathbb{R}$. When does the equality hold?

9. Use induction on n to prove the generalized triangle inequality

$$|x_1 + x_2 + \dots x_n| \le |x_1| + |x_2| + \dots + |x_n|,$$

1

for arbitrary real numbers $x_1, x_2, x_3, \ldots x_n$

10. Ex. 9 page 45 from Pugh.