

CSCE 670 - Information Storage and Retrieval

Lecture 17: Contextualized Language Models, BERT

Yu Zhang

yuzhang@tamu.edu

October 23, 2025

Course Website: https://yuzhang-teaching.github.io/CSCE670-F25.html

Recap: Limitations of word2vec-based Ranking

Word embeddings are applied in a context-free manner!

• Is it possible to have different vectors of the same word given different contexts?

Transformer [Vaswani et al., NIPS 2017]

Attention Is All You Need

Attention is all you need

<u>A Vaswani, N Shazeer, N Parmar</u>... - Advances in neural ... 2017 - proceedings.neurips.cc

... to attend to **all** positions in the decoder up to and including **We need** to prevent ... **We** implement this inside of scaled do **attention** by masking out (setting to $-\infty$) ...

☆ Cited by 199331 Related articles >>>

Ashish Vaswani*

Google Brain avaswani@google.com

Noam Shazeer*

Google Brain noam@google.com

Niki Parmar*

Google Research nikip@google.com

.Jakob Uszkoreit*

Google Research usz@google.com

Llion Jones*

Google Research llion@google.com

Aidan N. Gomez* †

University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser*

Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡

illia.polosukhin@gmail.com

Transformer as a Black Box

- Transformer is a neural network
- It has two types of architecture: encoder and decoder
- In this lecture, we focus on the Transformer encoder
- Input to a Transformer encoder can be a piece of text:
 - A sequence of words $w_1, w_2, ..., w_L$
 - Represented by their corresponding embeddings e_{w_1} , e_{w_2} , ..., e_{w_L}
- Then, the output is a sequence of contextualized word vectors h_{w_1} , h_{w_2} , ..., h_{w_L}
 - The output vector h_{w_i} captures the meaning of w_i by considering the entire input sequence as w_i 's context
 - $h_{w_i} = \text{Transformer}(e_{w_i}|e_{w_1}, e_{w_2}, ..., e_{w_L})$

Transformer as a Black Box

• $\boldsymbol{h}_{w_i} = \text{Transformer}(\boldsymbol{e}_{w_i}|\boldsymbol{e}_{w_1},\boldsymbol{e}_{w_2},...,\boldsymbol{e}_{w_L})$

Transformer as a Black Box

• $h_{w_i} = \text{Transformer}(e_{w_i}|e_{w_1}, e_{w_2}, ..., e_{w_L})$

How does the model transform the input into the output?

- "(Self-)Attention": weigh the importance of different words in a sequence when processing a specific word
 - When I am looking at this word, which other words should I pay attention to in order to understand it better?

Self-Attention: A Simplified Example

- $\boldsymbol{h}_{w_i} = \sum_{j=1}^{L} a_{ij} \boldsymbol{e}_{w_j}$
- a_{ij} : attention score, where $\sum_{j=1}^{L} a_{ij} = 1$

Self-Attention: A Simplified Example

•
$$\mathbf{h}_{w_i} = \sum_{j=1}^{L} \operatorname{Softmax}(\mathbf{e}_{w_i}^T \mathbf{e}_{w_j}) \cdot \mathbf{e}_{w_j}$$

• Softmax
$$\left(\boldsymbol{e}_{w_i}^T \boldsymbol{e}_{w_j}\right) = \frac{\exp(\boldsymbol{e}_{w_i}^T \boldsymbol{e}_{w_j})}{\sum_{k=1}^L \exp(\boldsymbol{e}_{w_i}^T \boldsymbol{e}_{w_k})}$$

The weight is determined by the similarity between the context word and the center word.

self-attention distribution

Self-Attention: Query, Key, Value

- Each word in self-attention is represented by three different vectors
- Query (Q): Represent the current word for which information is being sought
- Key (K): Represent the reference (context) used for comparison with the query
- Value (V): Represent the actual content of each token, which will be aggregated into the final output

Extended Content (will not appear in quizzes or the exam)

Self-Attention in Transformer: Learning Three Matrices

- Input word vector: e_{w_i}
- Learn a query matrix W^Q : $q_i = e_{w_i}W^Q$
- Learn a key matrix W^K : $k_i = e_{w_i}W^K$
- Learn a value matrix W^V : $v_i = e_{w_i}W^V$
- Compute attention scores with query and key: $a_{ij} = \operatorname{Softmax}\left(\frac{q_i^T k_j}{\sqrt{d}}\right)$
 - The dot product of two vectors usually has an expected magnitude proportional to \sqrt{d} , where d is the dimensionality of q_i and k_j
 - Divide the attention score by \sqrt{d} to avoid extremely large values in $Softmax(\cdot)$
- Sum the value vectors weighted by attention scores: $\mathbf{z}_i = \sum_{j=1}^L a_{ij} \mathbf{v}_j$

Self-Attention in Transformer: Visualization

 $h_{w_i} = FFN(z_i)$:
output of one
Transformer layer

z_i: output of self-attention

 x_i : input vector (i.e., e_{w_i})

Self-Attention in Transformer: Visualization

Let's assume these q_i and k_j vectors are 64-dimensional

Position Encoding

• What will happen to the output if I swap "Thinking" and "Machines"?

Position Encoding

- What if there are two sentences?
 - "a dog bites a man"
 - "a man bites a dog"
- The order does not affect the output vector of each word!
- But language is order-sensitive!
- Solution: Add a learnable position encoding vector p_i

input	$\boldsymbol{e}_{\mathrm{a}}+\boldsymbol{p}_{\mathrm{1}}$	$e_{\text{dog}} + p_2$	$e_{\text{bites}} + p_3$	$\boldsymbol{e}_{\mathrm{a}}+\boldsymbol{p}_{\mathrm{4}}$	$e_{\rm man} + p_5$
word	а	dog	bites	а	man

input	$\boldsymbol{e}_{\mathrm{a}}+\boldsymbol{p}_{\mathrm{1}}$	$e_{\rm man} + p_2$	$e_{\text{bites}} + p_3$	$\boldsymbol{e}_{\mathrm{a}}+\boldsymbol{p}_{\mathrm{4}}$	$e_{\mathrm{dog}} + p_{5}$
word	а	man	bites	а	dog

Position Encoding: Visualization

Tokenization: Handling Out-of-Vocabulary Words

- Byte-Pair Encoding (BPE)
- Intuition: start with a character-level vocabulary and iteratively merge the most frequent pairs of tokens
- Step I (Initialization): let vocabulary be the set of all individual characters: {A, B, C, D, ..., a, b, c, d,}
- Step 2 (Frequency counting): count all adjacent symbol pairs (could be a single character or a previously merged pair) in the training corpus
- Step 3 (Pair merging): merge the most frequent pair of symbols (e.g., "t", "h" \rightarrow "th")
- Step 4 (Update corpus): replace all instances of the merged pair in the corpus with the new token & update the frequency of pairs
- Step 5 (Repeat): repeat the process of counting, merging, and updating until a predefined number of merges (or vocabulary size) is reached

- Suppose we have the following corpus:
 - "set new new renew reset renew"

Special "begin-of-word" character (distinguish between subword units vs. whole word)

vocabulary

∟, e, n, r, s, t, w

- Suppose we have the following corpus:
 - "set new new renew reset renew"

corpus

corpus

vocabulary

_, e, n, r, s, t, w

vocabulary

_, e, n, r, s, t, w, ne

- Suppose we have the following corpus:
 - "set new new renew reset renew"

corpus

vocabulary

_, e, n, r, s, t, w, ne

vocabulary

_, e, n, r, s, t, w, ne, new

- Suppose we have the following corpus:
 - "set new new renew reset renew"

corpus

- 2 ∟ new
- 2 ∟re new
- 1 set
- 1 _reset

vocabulary

_, e, n, r, s, t, w, ne, new

vocabulary

_, e, n, r, s, t, w, ne, new, _r, _re

- Suppose we have the following corpus:
 - "set new new renew reset renew"
- If we continue, the next merges are:

merge current vocabulary

```
(_, new) _, e, n, r, s, t, w, ne, new, _r, _re, _new
(_re, new) _, e, n, r, s, t, w, ne, new, _r, _re, _new, _renew
(s, e) _, e, n, r, s, t, w, ne, new, _r, _re, _new, _renew, se
(se, t) _, e, n, r, s, t, w, ne, new, _r, _re, _new, _renew, se, set
```

- Given a new sentence, how to tokenize it?
 - Just run (greedily based on training data frequency) on the merge rules we have learned from the training data on the new sentence

Still many missing details in the Transformer!

- Multi-head attention
- Feedforward network
- Layer normalization
- Residual connection
- Refer to: https://web.stanford.edu/~jurafsky/slp3/8.pdf

Training Transformers with Self-Supervision

(Required content begins from this slide, which may appear in quizzes and the exam!)

Information in Raw Texts

- Verb: the task is to all the structured chemical reactions from papers
- Preposition: a liquid handler equipped two microplates
- Time: the Transformer paper was published in
- Location: data from the University of MD Anderson Cancer Center
- Math: the sequence goes 1, 1, 2, 3, 5, 8, 13, 21,
- Chemistry: sugar is composed of carbon, hydrogen, and
- ...
- How to harvest underlying patterns, structures, and semantic knowledge from raw texts?
 - Train the model to predict masked tokens given their contexts

Information in Raw Texts

• Verb: the task is to extract all the structured chemical reactions from papers

• Preposition: a liquid handler equipped with two microplates

• Time: the Transformer paper was published in 2017

• Location: data from the University of Texas MD Anderson Cancer Center

• *Math*: the sequence goes 1, 1, 2, 3, 5, 8, 13, 21, <u>34</u>

• Chemistry: sugar is composed of carbon, hydrogen, and oxygen

• ...

• Encoder-based language models (e.g., BERT) – predict a token from all other tokens in the input sequence

chatgpt learns from vast amounts of text data and generates responses ...

• Decoder-based language models (e.g., ChatGPT) – predict a token from all previous tokens chatgpt learns from vast amounts of text data and generates responses ...

Two Types of Transformer Architecture

every token attends to all tokens

Bidirectional Self-Attention

every token attends to its previous tokens

Unidirectional Self-Attention

ղ1•k1	-8	8	-8
2∙k1	q2•k2	-8	-8
q3∙k1	q3·k2	q3·k3	-∞
q4∙k1	q4•k2	q4•k3	q4•k4

Encoder vs. Decoder

- Encoder:
 - Each token can attend to all other tokens to better learn its representation vector
 - Suitable for natural language understanding (NLU) tasks
- Decoder:
 - Each token can only attend to previous tokens to predict the next token
 - Suitable for natural language generation (NLG) tasks

BERT [Devlin et al., NAACL 2019]

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Ming-Wei Chang Kenton Lee Kristina Toutanova **Jacob Devlin** Google AI Language

{jacobdevlin, mingweichang, kentonl, kristout}@google.com

Abstract

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left and might context in all larges. Ac-

ing pre-trained language r aclanthology.org stream tasks: feature-base ... deep bidirectionality of BERT by evaluating two pretraining obj feature-based approach, et al., 2018a), uses task-sr is trained using the "masked LM" (MLM) ... include the pre-trained r \(\frac{1}{2} \) Cited by 146893 Related articles \(\infty \) tional features. The fine-tuning approach, such as the Generative Pre-trained Transformer (OpenAI GPT) (Radford et al., 2018), introduces minimal

Bert: Pre-training of deep bidirectional

BERT Pre-training

• Task 1 – Masked Language Modeling (MLM): With 15% words randomly masked, the model learns bidirectional contextual information to predict the masked words.

BERT Pre-training

• Task 2 – Next Sentence Prediction (NSP): The model is presented with pairs of sentences. It is trained to predict whether each pair consists of an actual pair of adjacent sentences from the training corpus or a pair of unrelated sentence.

Immediate Impact of BERT

- In 2018, BERT came out and largely outperformed most previous methods on common NLP tasks (e.g., sentiment classification, natural language inference, question answering).
- BERT got the best paper award at the NAACL 2019 conference.

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

- "Open AI GPT": GPT-2
- "BERT-Base": 12 Transformer encoder layers; ~110M parameters
- "BERT-Large": 24 Transformer encoder layers; ~340M parameters

Improving BERT: RoBERTa [Liu et al., arXiv 2019]

- Next Sentence Prediction (NSP) is not helpful!
- Only use Masked Language Modeling (MLM)
- Pretrain on longer sequences
- Pretrain the model for longer, with bigger batches
- Pretrain over more data
- Dynamically change the masking patterns applied to the training data in each epoch

Model	SQuAD 1.1/2.0	MNLI-m	SST-2	RACE			
Our reimplementation (with NSP loss):							
SEGMENT-PAIR	90.4/78.7	84.0	92.9	64.2			
SENTENCE-PAIR	88.7/76.2	82.9	92.1	63.0			
Our reimplementation (without NSP loss):							
FULL-SENTENCES	90.4/79.1	84.7	92.5	64.8			
DOC-SENTENCES	90.6/79.7	84.7	92.7	65.6			

Model	data	bsz	steps	SQuAD (v1.1/2.0) MNLI-m		SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8 K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8 K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4

Improving BERT: ELECTRA [Clark et al., ICLR 2020]

- Use a small MLM as an auxiliary generator (discarded after pretraining)
- Pretrain the main model as a discriminator
- The small auxiliary MLM and the main discriminator are jointly trained.
- The main model's pretraining task becomes more and more challenging in pretraining.

How to use BERT for retrieval?

- Encode query and document separately
- The output vector of the [CLS] token serves as query / document embedding

Python Implementation to Encode a Query / Document

```
Copy code
python
from transformers import BertTokenizer, BertModel
import torch
# Load pre-trained BERT-base model and tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from pretrained('bert-base-uncased')
# Input text
text = "Cardiac injury is common in critical cases of COVID-19"
# Tokenize and encode input
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
# Forward pass (no gradient needed)
with torch.no_grad():
   outputs = model(**inputs)
# Extract [CLS] token embedding
cls_embedding = outputs.last_hidden_state[:, 0, :] # shape: [1, 768]
```

How to use BERT for retrieval?

- Concatenate the query and document into a single input sequence
- Get the representation of the entire sequence and perform binary classification

Thank You!

Course Website: https://yuzhang-teaching.github.io/CSCE670-F25.html