A09 Vibration calculator Assignment

NAME: Rohith D S

ROLL NO: 181ME268

SDOF Free and forced vibration calculator

Single Degree of Freedom (SDOF) Vibration Calculator to calculate mass-spring-damper natural frequency, circular frequency, time period of oscillation, damping factor, Q factor, critical damping, damped natural frequency, damped natural angular frequency and transmissibility (if forced vibration) for a harmonic input.

- At first it takes the option for free or forced vibration.
- Later the inputs for mass, stiffness, damping ratio and Harmonic input frequency (if forced vibration) is taken along with the specified units
- If the input is not a number or it is blank, then the default value of mass is 1 unit, stiffness is 3600-unit, damping ratio is 0.1 and Harmonic input frequency is 10 Hz.

Free vibration:

- The output is given. I.e. natural frequency, circular frequency, time period of oscillation, damping factor, Q factor, critical damping, damped natural frequency, Damped natural angular frequency
- For mass = 5-gram, stiffness = 5 N/mm, damping ratio = 0.01,

The result obtained is below;

• If no input is given or the input is not a number then the output is given below;

	Single Degree of Freedom Vibration Calculator:	
← Free vibration	C Forced vibration	<submit< td=""></submit<>
Parameters:		
* Mass [m]: (Default value = 1 unit)		kg 😅
* Spring rate (Stiffness) [k]: (Default value = 1 unit)		N/m —
* Damping ratio (coefficient) [ζ]: (Default value = 0.1)		
Harmonic input	input frequency = 0	
Result:give calculate>>>>	Calculate	

Output will be displayed with default values in SI unit;

• The same output will be there if the vibration is forced vibration with input harmonic frequency = 10 Hz

Forced vibration:

- The output is given. I.e. mass-spring-damper natural frequency, circular frequency, time period of oscillation, damping factor, Q factor, critical damping, damped natural frequency, Damped natural angular frequency and transmissibility for a harmonic input.
- A loglog graph of transmissibility vs frequency ratio is plotted.
- For mass = 5 lb, stiffness = 5 lbf/in, damping ratio = 0.1, harmonic input frequency = 20 Hz,

The result obtained is below;

- The graph obtained is:
 - 1. Loglog graph of transmissibility vs frequency ratio
 - 2. Graph of magnification factor vs frequency ratio
 - 3. Graph of phase angle vs frequency ratio

Process of programming:

- All coding is done in python language
- I have used python tkinter. Tkinter is a Python binding to the Tk GUI toolkit. It is the standard Python interface to the Tk GUI toolkit, and is Python's de facto standard GUI.
- The libraries required to run this program are tkinter, NumPy, math, matplotlib
- The code of this program(calc.py) and the video file (SDOF CAL GUI.mp4) is uploaded.
- The pdfs of all the pages is uploaded