

Animation for Computer Games COMP 477/6311

Prof. Tiberiu Popa

Time integration A lot of math

- Newton's Law: F = ma
- $\ddot{x} = M^{-1}F$ (eq 1)
- $x \in \mathbb{R}^{3 \times n}$
- $M \in \mathbb{R}^{n \times n}$, diagonal with the mass of each particle/vertex on diagonal
- $F \in \mathbb{R}^{3 \times n}$

- $\ddot{x} = M^{-1}F$ (eq 1)
- Just need to solve this equation... easy peasy lemon squeezy
- Not quite \rightarrow but can appreciate that nearly everything in physics animation starts with one equation

- $\ddot{x} = M^{-1}F$ (eq 1)
- *x*
 - variable that we solve for
 - function of time
- *F*
 - Assumed known → this is how we control the animation → will talk about types of forces in great detail
 - Also a function of time
- *M*
 - Generaly constant
 - Assumed known
 - Depends on the geometry

- $\ddot{x} = M^{-1}F$ (eq 1)
- What kind of equation is this?
 - Differential equations
 - ODE vs. PDE
 - Our equation is an ODE
 - Second order
 - Initial value problem (IVP)
 - We know the position and velocity at the beginning

- $\ddot{x} = M^{-1}F$ (eq 1)
- IVP, second order ODE
- Solving differential equations is a field in itself as they are very very popular in physics
- Lots of tools available → we will explore some of them
- Second order ODE are difficult?
- What can we do to simplify it?

- $\ddot{x} = M^{-1}F$ (eq 1)
- IVP, second order ODE
- Solving differential equations is a field in itself as they are very very popular in physics
- Lots of tools available → we will explore some of them
- Second order ODE are difficult?
- What can we do to simplify it?

•
$$y = \begin{pmatrix} x \\ v \end{pmatrix}$$

- $\ddot{x} = M^{-1}F$ (eq I) becomes
- $\dot{y} = \begin{pmatrix} v \\ M^{-1}F \end{pmatrix}$ (eq 2)
- IVP, Ist order PDE
- What next?

• Taylor series:

•
$$y(t + \Delta t) = \sum_{i=0}^{\infty} \frac{y^{(i)}(t)(\Delta t^i)}{i!} = y(t) + \dot{y}(t)\Delta t + \frac{\ddot{y}(t)(\Delta t^2)}{2} + \cdots$$

- If Δt is small, terms of the series decrease and are \rightarrow to 0
- If Δt is small we can approximate the series by truncating it
- We cannot compute the true function
- Estimate it at discrete numerical intervals:
- $y_k \approx y(t_k)$
- $t_k = t_0 + k \cdot \Delta t$
- $k \ge 0$

Taylor series:

•
$$y(t + \Delta t) = \sum_{i=0}^{\infty} \frac{y^{(i)}(t)(\Delta t^i)}{i!} = y(t) + \dot{y}(t)\Delta t + \frac{\ddot{y}(t)(\Delta t^2)}{2} + \cdots$$

•
$$y_k = {x_k \choose v_k} \approx y(t_0 + k \cdot \Delta t)$$

- Explicit schemes:
 - I^{st} order truncate after the second term \dot{y} ,
 - 2nd order truncate after third term etc.

Explicit/Forward Euler (Ist order)

- $\dot{y} = \begin{pmatrix} v \\ M^{-1}F \end{pmatrix}$ (eq 2)
- $y_{k+1} = y_k + \dot{y}_k \Delta t$ (eq 3)
- $\binom{x_{k+1}}{v_{k+1}} = \binom{x_k}{v_k} + \Delta t \binom{v_k}{M^{-1}F_k}$ (eq 4)
- Easy?
- YES \rightarrow iterate from t_0 in steps of size Δt computing $x, v \rightarrow$ everything to the right of the eq3 or eq4 are known!!!!
- Don't forget → IVP
- $y(t_0) = {x(t_0) \choose v(t_0)}$ assumed known

Explicit Euler (Ist order)

- $y_{k+1} = y_k + \dot{y}_k \Delta t$ (eq 3)
- Easiest scheme but
 - Error accumulates
 - Unstable unless tiny time steps

Explicit Euler (Ist order)

- $y_{k+1} = y_k + \dot{y}_k \Delta t$ (eq 3)
- Easiest scheme but
 - Error accumulates
 - Unstable unless tiny time steps
 - How to improve?
 - Higher order
 - Heun
 - Midpoint
 - Runge-Kutta
 - Implicit methods
 - Implicit/Backward Euler

•
$$y = \begin{pmatrix} x \\ y \end{pmatrix}$$

•
$$\dot{y} = \begin{pmatrix} v \\ M^{-1}F \end{pmatrix}$$
 (eq 2)

•
$$y_{k+1} = y_k + \dot{y}_k \Delta t + \frac{\ddot{y}_k}{2} \Delta t^2$$
 (eq 5)

• Use definition of derivative:

•
$$\ddot{y}(t) = \lim_{\Delta t \to 0} \frac{\dot{y}(t+\Delta t)-\dot{y}(t)}{\Delta t}$$
 (eq 6)

• Combine eq 5 and eq 6:

•
$$y_{k+1} = y_k + \dot{y}_k \Delta t + \frac{\dot{y}_{k+1} - \dot{y}_k}{2} \Delta t$$

•
$$y_{k+1} = y_k + \frac{\dot{y}_{k+1} + \dot{y}_k}{2} \Delta t \text{ (eq 7)}$$

• We don't know yet \dot{y}_{k+1}

- $y_{k+1} = y_k + \frac{\dot{y}_{k+1} + \dot{y}_k}{2} \Delta t$ (eq 7)
- We don't know yet \dot{y}_{k+1}
- We can estimate using Explicit Euler → need to clean up notation
- $y = \begin{pmatrix} x \\ y \end{pmatrix}$, $\dot{y} = \begin{pmatrix} v \\ M^{-1}F \end{pmatrix}$ (eq 2) \rightarrow rewrite
- Solve for y s.t.

•
$$\begin{cases} \dot{y}(t) = f(t, y) \\ \dot{y}(t_0) = y_0 \end{cases}$$
 (eq 8)

where
$$f(t, y) = f\left(t, \begin{pmatrix} x(t) \\ v(t) \end{pmatrix}\right) = \begin{pmatrix} v(t) \\ M^{-1}F(t) \end{pmatrix}$$
 (eq 9)

•
$$\begin{cases} \dot{y}(t) = f(t, y) \\ \dot{y}(t_0) = y_0 \end{cases} \text{ (eq 8)}$$

where
$$f(t,y) = f\left(t, {x(t) \choose v(t)}\right) = {v(t) \choose M^{-1}F(t)}$$
 (eq 9)

With this new notation, Explicit Euler becomes:

$$y_{k+1} = y_k + f(t_k, y_k) \Delta t \text{ (eq 10)}$$

- $y_{k+1} = y_k + \frac{\dot{y}_{k+1} + \dot{y}_k}{2} \Delta t$ (eq 7)
- $\dot{y}(t) = f(t, y)$ by definition in eq 8
- $\hat{y}_{k+1} = y_k + \Delta t \cdot f(t_k, y_k)$ (eq 10) by applying explicit Euler
- Rewrite eq 7: $y_{k+1} = y_k + \frac{f(t_{k+1}, \hat{y}_{k+1}) + f(t_k, y_k)}{2} \Delta t$ (eq II)
- Everything on the right-hand side is known once again

$$\bullet \quad {x_{k+1} \choose v_{k+1}} = {x_k \choose v_k} + \frac{\Delta t}{2} \left({v_k + \Delta t \cdot M^{-1} \cdot F_k \choose M^{-1} \cdot \widehat{F}_k} + {v_k \choose M^{-1} \cdot F_k} \right)$$

Heun's method

- $y_{k+1} = y_k + \frac{\dot{y}_{k+1} + \dot{y}_k}{2} \Delta t$ (eq 7)
- $\dot{y}(t) = f(t, y)$ by definition in eq 8
- $\hat{y}_{k+1} = y_k + \frac{\Delta t}{2} \cdot f(t_k, y_k)$ (eq 10) by applying explicit Euler
- Rewrite eq 7: $y_{k+1} = y_k + \frac{f(t_{k+1}, \hat{y}_{k+1}) + f(t_k, y_k)}{2} \Delta t$ (eq 11)
- Everything on the right-hand side is known once again

$$\bullet \quad {x_{k+1} \choose v_{k+1}} = {x_k \choose v_k} + \frac{\Delta t}{2} \left(v_k + \frac{\Delta t}{2} \cdot M^{-1} \cdot F_k \choose M^{-1} \cdot \widehat{F}_k + \frac{\Delta t}{2} \cdot \widehat{F}_k \right) + {v_k \choose M^{-1} \cdot F_k}$$

Mid-point method

Implicit Euler

- Review explicit Euler: $y_{k+1} = y_k + \dot{y}_k \Delta t$ (eq 3)
- Easiest scheme but
 - Not accurate
 - Unstable

https://www.youtube.com/watch?v=rN6XUM4KOYo

Implicit Euler (Ist order)

- Explicit Euler: $y_{k+1} = y_k + f(t_k, y_k) \Delta t$ (eq 10)
- Implicit Euler: $y_{k+1} = y_k + f(t_{k+1}, y_{k+1}) \Delta t$ (eq 12)
- Also called Backward Euler
- Small change

 unconditionally stable
- Why?

Implicit Euler (Ist order)

- Implicit Euler: $y_{k+1} = y_k + f(t_{k+1}, y_{k+1}) \Delta t$ (eq 12)
- No free lunch
- RHS unknown
- The idea is to not estimate it from current state
- Rather to add it as a variable in the system
- Solve for y_{k+1}
- Typically a non-linear system
- Newton-Raphson method to solve (will be shown in the lab)

Implicit Euler (Ist order)

• Implicit Euler: $y_{k+1} = y_k + f(t_{k+1}, y_{k+1}) \Delta t$ (eq 12)

•
$$f(t,y) = f\left(t, {x(t) \choose v(t)}\right) = {v(t) \choose M^{-1}F(t)}$$
 (eq 9)

•
$$\binom{x_{k+1}}{v_{k+1}} = \binom{x_k}{v_k} + \binom{v_{k+1}}{M^{-1}F_{k+1}} \Delta t$$
 (eq 13)

Looks easier than it is: forces can be non-linear in the variables

Time integration example

On the whiteboard

