

gereon.kremer@cs.rwth-aachen.de https://ths.rwth-aachen.de/teaching/

Satisfiability Checking - WS 2016/2017 Series 4

Exercise 1

In this exercise, we give some more details on the concept of *logical theory* and how it is related to axioms.

We fix an arbitrary signature Σ and an arbitrary structure S over Σ . In the following, all sentences are over Σ and Φ^1 is a set of sentences. We use the following notation:

- $\mathcal{S} \models \varphi$: \mathcal{S} is a model of a sentence φ .
- $\mathcal{S} \models \Phi$: \mathcal{S} is a model of all sentences φ from the set Φ .

Definitions:

- A sentence φ is a consequence of Φ ($\Phi \models \varphi$) iff $\mathcal{S} \models \varphi$ for each model $\mathcal{S} \models \Phi$.
- $\Phi^{\models} := \{ \varphi \mid \Phi \models \varphi \}$ denotes the **set of consequences of** Φ .
- Φ is called **consistent** if there is no sentence φ with $\Phi \models \varphi$ and $\Phi \models \neg \varphi$.
- A satisfiable set of sentences T is called a **theory** if for all sentences φ

$$T \models \varphi \iff \varphi \in T.$$

• A theory T is **complete** iff for all sentences φ

either
$$\varphi \in T$$
 or $\neg \varphi \in T$.

Prove the following three statements.

- 1. Each theory T is consistent.
- 2. Let Φ be a set of sentences. Φ is consistent iff Φ^{\models} is a theory.
- 3. The set $\mathsf{Th}(\mathcal{S}) := \{ \varphi \mid \mathcal{S} \models \varphi \}$ is a theory. It is called the **theory of** \mathcal{S} .
- 4. Th(S) is complete.
- 5. Let $\Sigma = \{+, \cdot, \leq, =\}$. Give one example each:
 - (a) a complete Σ -theory T_1 ,
 - (b) an incomplete Σ -theory T_2 .

Hint: You can use different ways to define a theory.

 $^{^{1}}$ Imagine Φ to be a (finite) set of axioms.