ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Отчёт по лабораторной работы 4.3.1 ИЗУЧЕНИЕ ДИФРАКЦИИ СВЕТА

Выполнил студент:

Сериков Василий Романович

группа: Б03-102

Аннотация

Цель работы:

Исследовать явления дифракции Френеля и Фраунгофера на одной и двух щелях.

В работе используется:

Оптическая скамья, ртутная лампа, монохроматор, щели с регулируемой шириной, рамка с вертикальной нитью, двойная щель, микроскоп на поперечных салазках с микрометрическим винтом, зрительная труба.

Теория:

А. Дифракция Френеля

Рис. 1: Схема установки 1.

Схема установки представлена на Рис. 1. Световые лучи освещают щель S_2 и испытывают на ней дифракцию. Дифракционная картина рассматривается с помощью микроскопа M, сфокусированного на некоторую плоскость наблюдения Π . Щель S_2 освещается параллельным пучком монохроматического света с помощью коллиматора, образованного объективом O_1 и щелью S_1 , находящейся в его фокусе. На S_1 сфокусированно изображение спектральной линии, выделенной из спектра ртутной лампы Π при помощи монохроматор C, в котором используется призма прямого зрения.

Распределение интенсивности света в плоскости Π рассчитаем с помощью зон Френеля. При освещении S_2 параллельным пучком лучей (плоская зона) зоны Френеля представляют собой плоскости, параллельные краям щели. Результирующая амплитуда в точке наблюдения определеяется суперпозицией колебаний от тех зон Френеля, которые не перекрыты створками щели. Графическое определение результирующей амплитуды производится с помощью векторной диаграммы — спирали Корню. Суммарная ширина m зон Френеля z_m определяется соотношение

$$z_m = \sqrt{am\lambda},\tag{1}$$

где a – расстояние от щели до плоскости Π . Вид наблюдаемой картины определяется uucnom $\Phi penens$ Φ :

 $\Phi^2 = \frac{D}{\sqrt{a\lambda}}$

— число зон Френеля, которые укладываются в ширине щели $D. p = \frac{1}{\Phi^2}$ называется волновым параметром. Дифракционной картины нет, когда Π совпадает с плоскостью щели. При малом удалении от щели $\Phi \gg 1$ и картина наблюдается в узкой убласти на границе света и тени у краёв экрана. При последующих удалениях две группы дифракционных полос перемещаются независимо и каждая образует картину дифракции Френеля на экране. Распределение интенсивности может быть найдено с помощью спирали Корню. При дальнейшем увеличении a две системы полос сближаются и накладываются друг на друга, распределение интенсивности определяется числом зон Френеля в полуширине щели. Если их m, то будет набюдаться m-1 тёмная полоса.

Б. Дифракция Фраунгофера на щели

Для выкладок ниже нам потребуется знать $npunuun\ \Gamma m irenca-\Phi penena$. Он формулируется следующим образом:

Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Теперь рассмотрим первое применение этого принципа, получившее название $мето \partial$ зон Φ ренеля

Для этого рассмотрим действие световой волны действующей от точки A в какой-то точке B. В этом случае можно, взяв точку

 M_0 в качестве центра (см. рис. 1), построить ряд концентрических сфер, радиусы которых начинаются с b и увеличиваются каждый раз на половину длины волны $\frac{\lambda}{2}$. При пересечении с плоским фронтом волны F эти сферы дадут концентрические окружности. Таким образом, на фронте волны появятся кольцевые зоны (зоны Френеля) с радиусами r_1, r_2 и т. д.

Из геометрических соображений посчитав, можно получить, что

$$r_i = i\sqrt{a\lambda} \tag{2}$$

Картина дифракции упрощается, когда ширина щели становится значительно меньше ширины первой зоны Френеля, т.е. если

$$D \ll \sqrt{a\lambda} \tag{3}$$

Рис. 3: К фазовым соотношениям при дифракции Фраунгофера

 $D\sin\Theta$

Π

Это условие всегда выполняется при достаточно большом a. В этом случае говорят, что $\partial u\phi pa\kappa uus \Phi payнгo\phi epa$. Дифракционную кар-

тину в этом случае называются $\partial u\phi pa\kappa uueu \Phi paynro\phi epa$. При выполнении пункта (2) у нас упрощаются фазовые соотношения, что поясняет рис. 2, в итоге с хорошим приближением можно считать, что разность хода между крайними лучами, приходящими от щели в точке наблюдения P, с хорошим приближением равна

$$\Delta = r_2 - r_1 \approx D \sin \theta \approx D \cdot \theta \tag{4}$$

Здесь предполагается, что θ достаточно мал. Дифракцию Фраунгофера можно наблюдать на установке Рис. 1, но для удобства к подобной установке добавляется объектив O_2 .

Рис. 4: Схема установки 2.

Дифракционная картина здесь наблюдается в фокальной плоскости объектива O_2 . Каждому значению θ соответствует в этой плоскости точка, отстоящая от оптической оси на расстоянии

$$X = f_2 \tan \theta \approx f_2 \theta. \tag{5}$$

Объектив не вносит разности хода между интерферирующими лучам, поэтому в его фокальной плоскости наблюдается неискажённая дифракционная картина. При $\theta=0$ разность хода между лучами нулевая, поэтому в центре поля зрения дифракционный максимум. Первый минимум соответствует θ_1 такому, что в точке наблюдения разность хода пробегаем все значения от 0 до 2π . Аналогично рассуждая, для m-й полосы

$$\theta_m = \frac{m\lambda}{D} \tag{6}$$

Расстояние X_m тёмной полосы от оптической оси из (5) и (6)

$$X_m = f_2 m \frac{\lambda}{D} \tag{7}$$

В. Дифракция Фраунгофера для двух щелей

Для наблюдения дифракции Фраунгофера на двух щелях S_2 заменим экраном Θ с двумя щелями. При этом для оценки влияния ширины входной щели на чёткость вместо S_1 поставим щель с микрометрическим винтом. Два дифракционных изображения входной щели, одно из которых

Рис. 5: Схема установки 3.

образовано лучами, прошедшими через левую, а другое – через правую щели, накладываются друг на друга. Если входная щель достаточно узка, то дифракционная картина в плоскости П

подобна той, что получалась при дифракции на одной щели, однако вся картинка испещерена рядом дополнительных узких полос, наличие которых объясняется суперпозицией световых волн через разные щели. Светлая интерфереционная полоса наблюдается в случаях, когда разность хода равна целому числу длин волн. Таким образом, угловая координата максимума порядка m равна

 $\theta_m = \frac{m\lambda}{d},\tag{8}$

где d — расстояние между щелями. Отсюда расстояние между соседними интерфереционными полосами в плоскости Π равно

$$\delta x = f_2 \frac{\lambda}{d} \tag{9}$$

Число интерференционных полос укладывающихся в области центрального максимума равна отношению ширины главного максимума $\frac{2\lambda f_2}{D}$ к расстоянию между соседними полосами:

$$n = \frac{2\lambda f_2}{D} \frac{1}{\delta f} = \frac{2d}{D}. (10)$$

При дифракции света на двух щелях чёткая система интерференционных полос наблюдается только при достаточно узкой ширине входной щели S. При увеличении ширины картинка пропадает и появляется вновь, но полосы при этом сильно размыты и видны плохо.

Г. Влияние дифракции на разрешающую способность оптического инструмента

Рис. 6: Схема установки 4.

В отсутствие щели S_2 линзы O_1 и O_2 создают на плоскости Π изоюражение щели S_1 и это изображение рассматриваются микроскопом M. Таким образом, установку можно рассматривать как оптический инструмент, предназначенные для получения изображения предмета. Если перед O_2 расположить S_2 , то изображение объекта будет искажено из-за дифракции. Чем меньше ширина щели, тем сильнее искажение. Качественной характеристикой этого искажения может служить φ_{min} — минимальное угловое расстояние между объектами (источниками), которые всё ещё воспринимаются как раздельные. Поместим вместо S_1 экран Θ с двумя щелями с расстоянием d. Тогда на S_2 будут падать два пучка света с углом

$$\varphi = \frac{d}{f_1} \tag{11}$$

Из геометрии расстояние l между изображениями щелей в плоскости Π равно

$$l = \varphi f_2 = d \frac{f_2}{f_1}. \tag{12}$$

Ширина $\Delta \varphi$ определяется дифракцией на S_2 . Условия, при которых изображения различимы разные для разных наблюдателей, поэтому используют критерий Рэлея — максимум одного дифракционного пятна должен совпадать с минимумом другого. В наших условиях это значит, что угловая полуширина $\frac{\lambda}{D}$ равна угловому расстоянию $\frac{l}{f_2}$.

Ход работы:

- А. Дифракция Френеля
- 1. Снимем зависимость координаты х микроскопа от числа n, ширину z_m m зоны Френеля вычислим по формуле (1). Полученные данные занесем в таблицу 1.

m	х, см	z_m , MKM
1	5,35	171
2	3,0	181
3	2,4	198
4	2,0	209
5	1,7	215
6	1,55	225
7	1,3	227

Таблица 1: Полученные значения положения и ширины m зон Френеля. $\sigma_x=0.05~{\rm cm},~\sigma_{z_m}=10~{\rm mkm}$

2. Сравним значение ширины щели измеренной по шкале щели с $2z_0$.

$$D = 307 \pm 5$$
mkm $<=> 2z_0 = 320 \pm 20$ mkm

- Б. Дифракция Фраунгофера на щели
- 3. Измерим с помощью винта поперечного перемещения микроскопа координаты x_m нескольких дифракционных минимумов (от -m до +m)

m	δx , mm
1	0,10
2	0,24
3	0,36
4	0,48
5	0,61

Таблица 2: Полученные значения положения дифракционных минимумов

4. Построим график, откладывая по горизонтали номер минимума m, а по вертикали — его координату x_m (от -m до +m). По углу наклона прямой определим среднее расстояние Δx между соседними минимумами; рассчитаем ширину щели D по формуле (7) и сравним с измеренной.

Рис. 7: График зависимости $\delta x(m)$.

$$\delta x = f_2 \frac{m\lambda}{D} <=> D = f_2 \frac{\lambda}{k} = 370 \pm 20$$
 мкм

 $D = 309 \pm 5$ мкм, расчет по шкале щели

- В. Дифракция Фраунгофера для двух щелей
- 5. Измерим ширину центрального максимума и количество интерференционных максимумов, которые помещаются в него. Определим ширину щели с помощью формулы (9) и сравним с измеренной по микроскопу величиной.

$$\delta x = f_2 \frac{\lambda}{d} \Longrightarrow d = f_2 \frac{\lambda}{\delta x} = 1, 6 \pm 0, 1$$
mm

 $D=1,28\pm 0,02$ мм, измерено по микроскопу

6. Определим ширину щели S_2 с помощью формулы $\frac{b}{f_1} = \frac{\lambda}{D}$ и сравним с величиной измеренной микрометром на щели

$$b = \frac{\lambda f_1}{D} = 59 \pm 3 \text{ MKM}$$

 $b = 63 \pm 1$ мкм, измерено с помощью микрометра

- Г. Влияние дифракции на разрешающую способность оптического инструмента
- 7. Проверим разрешающею способность по критерию Рэлея, для этого сравним ширину измеренную по микрометру щели с расчетом по формуле $\frac{\lambda}{b} < \frac{d}{f_1}$

$$\frac{b}{\lambda} > \frac{f_1}{d} = > b > 59 \pm 3$$
 мкм

Обсуждение результатов и выводы:

	Френель	Фраунгофер 1 щель	Фраунгофер 2 щели
Расчет	$D = 307 \pm 5 \text{ мкм}$	$D = 370 \pm 20 \text{ MKM}$	$D_1 = 1,6\pm 1$ мкм
			$b = 59 \pm 3$ мкм
Измерения	$D = 320 \pm 20 \text{ MKM}$	$D = 309 \pm 5 \text{ MKM}$	$D_1 = 1,28 \pm 0,02$ мкм
			$b=63\pm1$ мкм

Таблица 3: Сравнительная таблица. D - ширина щели $S_2,\, D_1$ - расстояние между щелями экрана, b - ширина щели S_2

В данной работе мы исследовали 2 вида дифракции на щели: Френеля и Фраунгофера. По полученным результатам видно, что теория с практикой сходится не во всех опытах. Можно попробовать объяснить это тем, что система может быть плохо отцентрирована или некачественно сняты показания приборов. Также имеет место качество используемых измерительных приборов.