₁ 0.1 3 Residual Contributors Included in Fit

- This section presents our final results, for which three residual contributors were
- assumed. These three contributors include: $(\Sigma^0 K, \Xi^0 K, \Xi^- K) \to \Lambda K$. The figures
- 4 presented do contain supplemental information to that presented in Sec. ??, but are
- being to the cases of including 10 (App. ??) and
- 6 no (App. ??) residual contributors.

Figure 0.1: 3 residual correlations in ΛK fits. Extracted fit $R_{\rm inv}$ parameters as a function of pair transverse mass $(m_{\rm T})$ for various pair systems over several centralities. The ALICE published data [?] are shown with transparent, open symbols. The new ΛK results are shown with opaque, filled symbols. The $m_{\rm T}$ value for the ΛK system is an average of those for the ΛK^+ , $\bar{\Lambda} K^-$, and $\Lambda K^0_{\rm S}$ systems.

Figure 0.2: Extracted fit parameters for the case of 3 residual contributors for all of our ΛK systems. [Top]: $\Im f_0$ vs. $\Re f_0$, together with d_0 to the right. [Bottom]: λ vs. Radius for the 0-10% (blue), 10-30% (green), and 30-50% (red) centrality bins. In the fit, all ΛK systems share common radii. The color scheme used in the panel are to be consistent with those in Fig. 0.1. The cyan ([A] = Ref. [?]) and magenta ([B] = Ref. [?]) points show theoretical predictions made using chiral perturbation theory.

Figure 0.3: Fit results, with 3 residual correlations included, for the ΛK^+ and $\bar{\Lambda} K^-$ data. The ΛK^+ data is shown in the left column, the $\bar{\Lambda} K^-$ in the right, and the rows differentiate the different centrality bins (0-10% in the top, 10-30% in the middle, and 30-50% in the bottom).

Figure 0.4: Fit results with the 3 residual contributions shown, for the ΛK^+ and $\bar{\Lambda} K^-$ data. The ΛK^+ data is shown in the left column, the $\bar{\Lambda} K^-$ in the right, and the rows differentiate the different centrality bins (0-10% in the top, 10-30% in the middle, and 30-50% in the bottom).

Figure 0.5: Fit results, with 3 residual correlations included, for the ΛK^- and $\bar{\Lambda} K^+$ data. The ΛK^- data is shown in the left column, the $\bar{\Lambda} K^+$ in the right, and the rows differentiate the different centrality bins (0-10% in the top, 10-30% in the middle, and 30-50% in the bottom).

Figure 0.6: Fit results with the 3 residual contributions shown, for the ΛK^- and $\bar{\Lambda} K^+$ data. The ΛK^- data is shown in the left column, the $\bar{\Lambda} K^+$ in the right, and the rows differentiate the different centrality bins (0-10% in the top, 10-30% in the middle, and 30-50% in the bottom).

Figure 0.7: Fit results, with 3 residual correlations included, for the ΛK_S^0 and $\bar{\Lambda} K_S^0$ data. The ΛK_S^0 data is shown in the left column, the $\bar{\Lambda} K_S^0$ in the right, and the rows differentiate the different centrality bins (0-10% in the top, 10-30% in the middle, and 30-50% in the bottom).

Figure 0.8: Fit results with the 3 residual contributions shown, for the ΛK_S^0 and $\bar{\Lambda} K_S^0$ data. The ΛK_S^0 data is shown in the left column, the $\bar{\Lambda} K_S^0$ in the right, and the rows differentiate the different centrality bins (0-10% in the top, 10-30% in the middle, and 30-50% in the bottom).