Congratulations! You passed!

Grade received 80.55% To pass 80% or higher

Go to next item

AutoML	
Total points 9	
1. Can Neural Architecture Search (NAS) be seen as a subfield of AutoML? Yes No	1/1 point
 Correct Exactly NAS can be seen as a subfield of AutoML and has significant overlap with hyperparameter optimization and meta-learning. 	
2. Which of the following are dimensions of the Neural Architecture Search (NAS) technique? (Select all that apply) Performance Estimation Strategy	1/1 point
 Correct You got it! The objective of NAS is typically to find an architecture with the highest predictive performance. 	
✓ Search Space	
⊙ Correct Right! The search space defines the range of architectures that can be represented.	
☐ Training and Validation of the Architecture	
✓ Search Strategy	
 Correct Keep it up! The search strategy details how to explore the search space. 	
3. What does the search space allow in Neural Architecture Search (NAS)? (Select all that apply)	0.25 / 1 point
Restricting unbounded search spaces to have a maximum depth.	
 Correct Great job! It gives rise to search spaces with (potentially many) conditional dimensions. 	
Defining which neural architectures we might discover in principle.	
Reducing the size of the search space incorporating prior knowledge about well-suited properties.	
✓ Defining how we explore the search space.	
This should not be selected Not quite. Finding the strategy corresponds to a later stage of Neural Architectures Search (NAS).	
 4. In the chain-structured Neural Network Architecture (NNA), space is parametrized by (Select all that apply): Whyperparameters associated with the operation. 	0.75 / 1 point
 Correct Well done! Search space is related to the number of units for fully connected networks. 	
 ☐ The multiple branches with additional layers types and skip connections. ✓ The operation every layer can execute. 	

Correct
 Excellent!. Among the most common operations are pooling, convolution, and more advanced layers.

A number of n sequentially fully-connected layers.

You didn't select all the correct answers

5.	Wh	at are the main features of Automated Machine Learning (AutoML)? (Select all that apply)	0.25 / 1 point
		AutoML technologies democratize AI with customized state-of-the-art machine learning.	
	V	AutoML is the process of automating architecture engineering and finding the design of machine learning models.	
		This should not be selected Not really. Nowadays, some researchers mistakenly equate AutoML with neural architecture search (NAS). However, a clear distinction is required, as the process of automating architecture engineering is strictly called NAS.	
		AutoML aims to automate the decision-making in a data-driven and objective way.	
	~	AutoML aims to automate the end-to-end process of machine learning to produce simpler and faster solutions.	
	(Correct Indeed! AutoML enables developers -even those with minimal experience in machine learning- to readily produce simple, optimal solutions.	
6.	Wh	at are the two main types of search spaces?	1/1 point
	•	Macro and Micro	
	\circ	Complex and Simple	
		Big and Small	
	0	Long and Short	
	O	Edigund short	
	(Ornect Good job! Although their names are kind of backwards, that's what they're called.	
7.		neasuring AutoML efficacy, several strategies have been proposed to reduce performance cost estimation, luding (Select all that apply):	1/1 point
		Reinforcement learning	
	V	Learning Curve Extrapolation	
	(Correct Nicely donel Extrapolation is a sensitive and valid choice based on the assumption that the learning curve can be reliably predicted.	
	V	Lower fidelity estimates	
	(Orrect Yes! Lower fidelity estimates try to reduce the training time by reframing the problem.	
	~	Weight Inheritance/ Network Morphisms	
	(Correct Nailed it! Using network morphism, the weights of novel architectures are initialized based on the weights in previously trained architectures.	
8.	The	e lower fidelity estimates are a performance estimation strategy that allows (Select all that apply):	1/1 point
	V	Training on lower-resolution	
	(Orrect That's it! The lower fidelity reduces the computational cost as a result.	
	V	Training on a subset of the data	
	(Correct Correct! It also reduces training times.	
		Training for a few epochs	
	~	Training with less filters per layer	

Correct Way to go! The lower fidelity estimates strategy uses fewer filters per layer and fewer cells.	
9. Can network morphism modify an architecture while leaving the network's function unchanged?	1/1 point
○ No No Yes	
 Correct Exactly! This property increases the network's capacity retaining a high performance as a result. 	
,	