Capstone project

Vira, Shulha

22/12/2022

The important difference between CRPC from PC is highly regulated by ${\rm EDN3}$

Abstract

In my project, I want to discover features of castration-resistant prostate cancer and in particular to find the genes which are distinguished from the corresponding genes in untreated prostate cancer.

Introduction

Castration-resistant prostate cancer is type of a prostate cancer which continues to progress despite androgen depletion therapy. This type of prostate cancer has a high mortality rate. I make analysis using data with RNA-Seq reads to counts for 21990 genes from 43 samples. There are two groups of samples: castration-resitant prostate cancer (13 samples) and untreated prostate cancer (30 samples). So we need to make a research about which genes regulate sastration-resistant prostate cancer taking into account expressions of genes from untreated prostate cancer.

Results

Data preparation The general view of the data before preparation is shown in on Table 1 (note that not all samples are represented, first 10 genes).

Table 1: Original count matrix

symbols	$CRPC_261$	$CRPC_278$	CRPC_305	PC_14670	PC_15194	PC_15420
A1BG	1.0298e + 02	43.3380	457.1700	64.2090	99.7040	169.4800
A1CF	1.7075e + 03	212.0400	38.3880	0.0000	2.7954	20.8140
A2M	1.1650e + 05	16085.0000	0.0000	54377.0000	31455.0000	85668.0000
A2ML1	$2.2751e{+01}$	36.5340	66.3070	115.7600	85.7270	228.9500
A2MP1	2.3949e+01	1.4609	127.9600	2.7130	2.7954	4.9556
A3GALT2	0.0000e+00	1.9221	0.0000	0.0000	0.0000	0.0000
A4GALT	6.8134e+02	252.4200	459.4900	1513.0000	907.5800	1426.2000
A4GNT	4.7897e + 00	2.5628	2.3265	5.4261	0.0000	0.0000
AAAS	2.3829e+03	2759.2000	3043.1000	2768.2000	1752.7000	2059.6000
AACS	2.9097e+03	2111.2000	1905.4000	3014.2000	1621.4000	1892.1000

After I have done my filtering, normalization and transformation steps, I got the data which is shown on Table 2 (note that not all samples are represented).

Table 2: Count matrix after preparation step

symbols	CRPC_261	CRPC_278	CRPC_305	PC_14670	PC_15194	PC_15420
TSPAN6	10.956099	10.958149	9.001003	12.956206	11.958109	11.932288
DPM1	10.956099	9.961954	11.001226	10.962943	10.961600	11.932288
SCYL3	10.956099	11.954344	12.001337	10.962943	9.965091	10.937930
C1orf112	9.960090	10.958149	11.001226	9.966312	9.965091	9.943573
FGR	8.964081	5.977172	8.000891	6.976418	6.975564	7.954858
CFH	9.960090	9.961954	13.001449	10.962943	10.961600	9.943573
FUCA2	11.952108	10.958149	11.001226	12.956206	11.958109	11.932288
GCLC	11.952108	11.954344	10.001114	9.966312	10.961600	9.943573
NFYA	11.952108	11.954344	11.001226	10.962943	10.961600	10.937930
STPG1	8.964081	8.965758	9.001003	8.969681	9.965091	9.943573

Also at the end of the data preparation a made a boxplot which is shown on Figure 1. We can see the similar type of unusual behaviour at CRPC 541, CRPC 543, CRPC 697 relatively to the others.

Figure 1: Boxplot of the prepared data

Hierarchial clustering I made a hierarchial clustering using a complete linkage method and a minkowski distance method. So I got the dendogram on Figure 2. We can see some kind of outliers for which I want to pay more attention further: CRPC_530, CRPC_278, PC_6864, PC_9324, PC_22392.

Dimensionality reduction After dimensionality reduction is done, we can plot 2D graph of first two principal components for each sample. At first, I made graph with colored clusters which is represented on Figure 3 and then for detecting particular samples there is PCA 2D graph with labeled points on Figure 4. From Figure 3 we alreade can see there are outliers for both clusters so let's detect which one by looking at Figure 4. Now we can see that for CRPC (red) cluster there are at least 2 outliers: CRPC_530 and CRPC_278. These CRPC outliers have already detected at previous step (hierarchial clusterin). For PC (green) cluster we can see exact outlier PC_6864 and the ejecta-like – PC_9324. Again, I can see that they were seen at the last step.

Figure 2: Dendogram with hierarchial clustering

Figure 3: PCA 2D plot with colored clusters

Figure 4: PCA 2D plot with labeled points

Differential expression analysis For differential expression analysis I made ttest, wilcox test and deseq2. After extracting significant genes (5% significance level) for every approach I got a venn diagram on Figure 5. Also, volcano plot with p-value criterion and effect size criterion was made and it's shown on Figure 6. The table of genes which satisfies both tests (wilcox and ttest) and its corresponding statistics is shown at supplementary 1.

Heat map of differentially expressed genes The heat map of differentially expressed genes is shown on Figure 7. From the heat map we can see the differentially expressed genes for both 2 clusters. Thus this genes also create clusters and explicitly express regulation of a cancer type (CRPC or PC). In order to better view the graph, I created another one using the library pheatmap which is shown on Figure 8. Since this graph has a more convenient scale, we can again can detect highlighting of result for CRPC_530.

KEGG pathway enrichment analysis After kegg pathway enrichment analysis I made pathview with it using mean between two groups. So we can use this schemes for further research. One of them (Amoebiasis, 05146) is shown on Figure 9. The table with enriched pathways and its p-values is shown at Supplementary 2.

DESeq differential expression analysis (optional) As extra I made DESeq differential expression analysis at differential expression analysis step. So there is a table with first 10 significant differentially expressed genes on Table 3.

Table 3: Significant differentially expressed genes after DESeq

symbol	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
EDN3	6.011705	-1.966588	0.3103401	-6.336881	0.0e+00	0.0000039
DPYS	5.873357	-1.752365	0.2935244	-5.970082	0.0e + 00	0.0000196
RPE65	4.879579	-1.973896	0.3430967	-5.753177	0.0e + 00	0.0000481
CCK	6.357685	-1.393759	0.2606985	-5.346249	1.0e-07	0.0003702
PDIA2	4.435601	1.384267	0.2771131	4.995315	6.0 e - 07	0.0019375

symbol	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
SLC34A2	6.171374	-1.301071	0.2639560	-4.929121	8.0e-07	0.0022704
LYG1	4.113188	1.138623	0.2374300	4.795613	1.6e-06	0.0034513
CPNE6	5.801938	-1.283277	0.2692826	-4.765542	1.9e-06	0.0034513
CPNE6	5.801938	-1.283277	0.2692826	-4.765542	1.9e-06	0.0034513
ITIH2	3.649578	1.203570	0.2560399	4.700713	2.6e-06	0.0041408

Summarize So intersecting results from all differential expression test (DESeq, ttest, wilcox) I got table of top-10 differentially expressen genes on Table 4.

Table 4: Significant differentially expressed genes after intersecting results from DESeq, ttest, wilcox

symbol	$_{ m dm}$	ttest_p_adj	wilcox_p_adj	deseq_p_adj
DPYS	-5.246751	1.00e-07	0.0007490	0.0000196
EDN3	-5.775923	5.00e-07	0.0007490	0.0000039
RPE65	-4.692050	1.30e-06	0.0007490	0.0000481
$_{\rm CKM}$	-3.794097	2.50e-06	0.0007490	0.0123292
LSMEM1	3.339219	3.00e-06	0.0011805	0.0162271
CCK	-4.846305	4.40e-06	0.0007490	0.0003702
NA	3.609848	4.40e-06	0.0007490	0.0162271
KIAA1210	-4.820291	4.40e-06	0.0007608	0.0041408
IL6	-4.292674	5.40e-06	0.0007608	0.0065973
SLC7A4	-3.773609	1.28e-05	0.0007608	0.0127197

Updated summarize I decided to remove samples-outliers which were detected previously from count matrix with differentially expressed genes and make differentially expression analysis again. The intersecting of the results of ttest, wilcox, DESeq are shown on Table 5.

Table 5: Significant differentially expressed genes without samplesoutliers after intersecting results from DESeq, ttest, wilcox

symbol	dm	$ttest_p_adj$	$wilcox_p_adj$	$\operatorname{deseq}_{p}\operatorname{adj}$
EDN3	-5.810799	0.0000000	0.0034382	0.0000130
KIAA1210	-4.572201	0.0000017	0.0034382	0.0198922
RPE65	-4.654309	0.0000024	0.0034382	0.0002564
CCK	-4.922401	0.0000076	0.0034382	0.0007393
C1orf220	3.078482	0.0000508	0.0056024	0.0419264
LTF	-5.112801	0.0000517	0.0062358	0.0499327
ITIH2	3.373457	0.0000685	0.0065311	0.0122343
PDIA2	4.861776	0.0001060	0.0172625	0.0079840
NPY	-5.779212	0.0006354	0.0248593	0.0226172

Discussion

From the analysis done, we can notice the general appearance of clusters of different types of cancer (CRPC and PC). We can also notice that samples-otliers can greatly affect the result. At first, data preparation was performed, with the help of which the matrix began to look so that the values became more comparable (without which it is impossible to conduct an analysis). It is also important to note the filtration stage, which

Figure 5: Venn diagram for ttest, deseq2, wilcox test

Figure 6: Volcano plot

Figure 7: Heat map

Figure 8: Pheat map

Figure 9: Pathview Amoebiasis (05146)

got rid of a certain amount of outliers (genes). Next, clustering (dendogram) was performed, with the help of which we were able for the first time to get acquainted with the division of samples into groups and which ones are more dependent on each other. The next step was to reduce the data dimension to further explore the clusters at graph. Tests were also carried out to check the expression of genes between the two groups. Then a hit map was drawn and a kegg enrichment analysis was made.

It should be noticed the importance of the p-value adjustment and doing several tests (not only one), which very significantly affects the result. Thus there are genes that are present in both summerize and summerise final tables: EDN3, KIAA1210, RPE65 and CCK.

To validate the result, we need counts of more samples of two groups with a large set of genes present (almost like it was). But it is also possible to perform the analysis with a smaller part of the samples for each of the groups and then do the same analysis with another part for each of the groups, and finally compare the results.

As a follow-up study, we can look at the GO annotations in detail, consider in detail the processes from the obtained view of enriched kegg pathways, conduct more statistical tests to identify different expressions of genes between these groups.

Material and methods

There are 21990 genes for 13 samples of CRPC and 30 samples of PC. At the data preparation step filtering by 25 quantile was made. Then I made log2 transformation of counts. Also, the normalization using DESeq was made. After all these preparations the total number of 16492 genes for both groups remains.

At hierarchical clustering step I decided to use complete linkage method and minkowski distance metric because after comparing results of all linkage methods and distance metrics I found out it the most presentable. For the heat map I chose the same linkage method as for hierarchical clustering but another distance metric – spearman (since it is best to see the separation of groups).

At the differential expression analysis section I wanted to use as many tests as possible (ttest, wilcox test, DESeq2) to intersect their results. For the enrichment analysis I counted annotations of all genes and of genes considered interesting (differentially expressed) and the numbers of genes of selected annotation were also counted (for both: all and differentially expressed). Then p-values for every kegg pathway were calculated and the most expressed were chosen (at the result I got 4 enriched kegg pathways).

The list of used R packages and its versions: org.Hs.eg.db (3.14.0), DESeq2 (1.34.0), ggplot2 (3.4.0), genefilter (1.76.0), gplots (3.1.3), pheatmap (1.0.12), pathview (1.34.0) (for report: writexl (1.4.1), readxl (1.4.1)).

R scripts

```
library(org.Hs.eg.db)
# read matrix
count_matrix = readRDS('RNA_expressions.RDS')

# for report
count_matrix_file = count_matrix[1:10,c(1:3, 17:19)]
count_matrix_file$symbols = mapIds(org.Hs.eg.db, keys = row.names(count_matrix_file), keytype = "ENSEMB.count_matrix_file = count_matrix_file[,c(7, 1:6)]
write_xlsx(count_matrix_file,"original_count_matrix.xlsx")

# removing low expressed genes (including zero expressed genes) (week 2, remove low expressed with mediration medians = apply(count_matrix, 1, median)
```

```
treshhold_q_25 = quantile(row_medians, 0.25)
count_matrix_filtered = count_matrix[row_medians > treshhold_q_25,]
count_matrix_filtered = round(count_matrix_filtered)
count_matrix_filtered = count_matrix_filtered[order(row.names(count_matrix_filtered)),]
# adding ones and making log2 transformation (week 1, log2 transformation)
count_matrix_filtered_non_zero = count_matrix_filtered + rep(1, dim(count_matrix_filtered)[[1]] * dim(c
count matrix log2 = log2(count matrix filtered non zero)
count_matrix_log2 = round(count_matrix_log2)
# normalization
library(DESeq2)
column_names = colnames(count_matrix_log2)
sample_types = matrix(sub(pattern="_.*",
                                                     replacement="",
                                                     column names))
rownames(sample_types) = column_names
colnames(sample_types) = c("Type")
## creating the data set expected by DESeq2
dataset <- DESeqDataSetFromMatrix(countData=count matrix log2,</pre>
                                                                     colData=sample_types,
                                                                     design=~1)
dataset <- estimateSizeFactors(dataset)</pre>
count matrix filtered mor normed <- counts(dataset,</pre>
                                                                                        normalized=TRUE)
count_matrix_filtered_mor_normed[1:10, 1:5]
# for report
count_matrix_prep = as.data.frame(count_matrix_filtered_mor_normed[1:10,c(1:3, 17:19)])
count_matrix_prep$symbols = mapIds(org.Hs.eg.db, keys = row.names(count_matrix_prep), keytype = "ENSEMB"
count_matrix_prep = count_matrix_prep[,c(7, 1:6)]
write_xlsx(count_matrix_prep,"prep_count_matrix.xlsx")
par(las = 2, cex.axis = 0.8)
boxplot(count_matrix_filtered_mor_normed, cex.names = 0.5)
# we can see special behaviour of CRPC_541 and CRPC_543 and CRPC_697 and another group with another typ
# mapping symbols to ensembl ids
library(org.Hs.eg.db)
count_matrix_filtered_mor_normed_df = as.data.frame(count_matrix_filtered_mor_normed)
count_matrix_filtered_mor_normed_df$symbol = mapIds(org.Hs.eg.db, keys = row.names(count_matrix_filtered_mor_normed_df$symbol = row.names(count_matrix_filtered_mor_normed_df$symbol = row.names(count_matrix_filtered_mor_normed_df$symbol = row.names(count_matrix_filtered_mor_normed_df$symbol = row.names(
count_matrix_filtered_mor_normed_df = count_matrix_filtered_mor_normed_df[, c(44, 1:43)]
count_matrix_filtered_mor_normed_df
```

```
plot(hclust(dist(t(count_matrix_filtered_mor_normed), method = "minkowski"), method = "complete"), ann=
```

Analysis 3

```
pca_result = prcomp(t(count_matrix_filtered_mor_normed), center = TRUE, scale. = TRUE)
pca result$rotation[1:5, 1:3]
points = t(t(pca result$rotation[,1:2]) %*% count matrix filtered mor normed)
plot(points, col = 'green')
points(points[1:13,], col = 'red')
pca result.var = pca result$sdev^2
pca_result.var.per = round(pca_result.var / sum(pca_result.var) * 100, 1)
library(ggplot2)
pca result.data = data.frame(Sample=rownames(pca result$x),
                             X=pca result$x[,1],
                             Y=pca result$x[,2])
ggplot(pca_result.data, aes(x=X, y=Y, label=Sample)) +
  geom_text() +
  xlab(paste('PC1 - ', pca_result.var.per[1], '%', sep='')) +
  ylab(paste('PC2 - ', pca_result.var.per[2], '%', sep='')) +
  theme_bw() +
  ggtitle('PCA analysis of Prostate cancer gene expression data')
# we can see outliers (with 2 types): PC_6864 (1 type: it's located in another cluster), PC_9324 (2 typ
# t-test DE
library(genefilter)
CRPC_PC_factor = factor(sub("_[0-9]*", "", colnames(count_matrix_filtered_mor_normed)))
ttest_results = rowttests(count_matrix_filtered_mor_normed, fac=CRPC_PC_factor)
sum(ttest_results$p.value < 0.05)</pre>
ttest_results$p.value.adj = p.adjust(ttest_results$p.value, method='BH')
sum(ttest_results$p.value.adj < 0.05)</pre>
# using p adj we got 2 times less number of significant differentially expressed gened with level 5%
ttest_results_ordered = ttest_results[order(ttest_results$p.value.adj),]
ttest_results_ordered$symbol = mapIds(org.Hs.eg.db, keys = row.names(ttest_results_ordered), keytype =
ttest results ordered
#wilcox test
my_wilcox = function(v, group1, group2) {
```

test_result = wilcox.test(x=v[group1], y=v[group2], exact=FALSE)

p.value = test_result\$p.value

```
names(p.value) = "p.value"
  return(c(test_result$statistic, p.value))
wilcox_results = apply(count_matrix_filtered_mor_normed, 1, my_wilcox, group1=1:13, group2=14:43)
wilcox_results_df = as.data.frame(t(wilcox_results))
wilcox_results_df$p.value.adj = p.adjust(wilcox_results_df$p.value, method = 'BH')
sum(wilcox_results_df$p.value < 0.05)</pre>
sum(wilcox_results_df$p.value.adj < 0.05)</pre>
# after adjustment two times less significant p-values with level 5%
wilcox_results_ordered = wilcox_results_df[order(wilcox_results_df$p.value.adj),]
wilcox results ordered$symbol = mapIds(org.Hs.eg.db, keys = row.names(wilcox results ordered), keytype
wilcox_results_ordered
# it's part of Analysis 7 (optional)
# DESeq differential expression analysis
library(DESeq2)
coldata = data.frame(row.names = colnames(count_matrix_filtered_mor_normed), CRPC_PC_factor)
dds = DESeqDataSetFromMatrix(countData = as.data.frame(round(count_matrix_filtered_mor_normed)), colDat
dds = DESeq(dds)
vsdata = vst(dds, blind = FALSE)
res_deseq = results(dds, contrast = c('CRPC_PC_factor', 'CRPC', 'PC'))
res_deseq = res_deseq[order(res_deseq$pvalue),]
res_deseq$symbol = mapIds(org.Hs.eg.db, keys = row.names(res_deseq), keytype = "ENSEMBL", column = "SYM
res_deseq = res_deseq[, c(7, 1:6)]
res_deseq_enriched = res_deseq[res_deseq$padj < 0.05,]</pre>
res_deseq_enriched
# for report
res_deseq_file = res_deseq[res_deseq$padj < 0.05,]</pre>
res_deseq_file = res_deseq_file[1:10,]
write_xlsx(as.data.frame(res_deseq_file), "deseq_result.xlsx")
# volcano plot + conditions
p_val_below_ttest = ttest_results_ordered$p.value.adj < 0.05</pre>
p_val_below_wilcox = wilcox_results_ordered$p.value.adj < 0.05</pre>
dm_greater = abs(ttest_results_ordered$dm) > 1
both_pvals = p_val_below_ttest & p_val_below_wilcox
both = both_pvals & dm_greater
plot(ttest_results_ordered[!both, 2], -log10(ttest_results_ordered[!both, 4]), col = "black")
points(ttest_results_ordered[both_pvals, 2], -log10(ttest_results_ordered[both_pvals, 4]), col = "green
points(ttest_results_ordered[dm_greater, 2], -log10(ttest_results_ordered[dm_greater, 4]), col = "blue"
points(ttest_results_ordered[both, 2], -log10(ttest_results_ordered[both, 4]), col = "red")
gene_satisfied = data.frame(dm = ttest_results_ordered$dm[both], ttest.p.value.adj = ttest_results_ordered$dm[both]
gene_satisfied$symbol = mapIds(org.Hs.eg.db, keys = row.names(gene_satisfied), keytype = "ENSEMBL", col
gene_satisfied = gene_satisfied[order(gene_satisfied$ttest.p.value.adj),]
gene_satisfied = gene_satisfied[,c(4, 1:3)]
```

}

```
gene_satisfied
# prepare file for supplement
gene_satisfied_file = gene_satisfied
gene_satisfied_file = gene_satisfied
gene_satisfied_file = gene_satisfied_file[1:40,c(5, 1:4)]
library(writexl)
write_xlsx(as.data.frame(gene_satisfied_file), "gene_satisfied.xlsx")

# it's also part of Analysis 7 but it should be in DE analysis part
deseq_and_tests_ensembl = intersect(row.names(gene_satisfied), row.names(res_deseq_enriched))
deseq_and_tests = data.frame(symbol = ttest_results_ordered[deseq_and_tests_ensembl,]$symbol, dm = ttesdeseq_and_tests
venn_data = list(ttest = rownames(ttest_results)[ttest_results$p.value.adj < 0.05], wilcox = rownames(w library(gplots)
venn(venn_data)</pre>
```

```
#heatmap
library(pheatmap)
correlation_dist = function(x, method="spearman"){
    corr_distance = as.dist((1 - cor(t(x), method=method))/2) ## note the t()
    return(corr_distance)
}
cluster_find = function(x, method='complete'){
    hcluster = hclust(x, method=method)
    return(hcluster)
}
count_matrix_de = count_matrix_filtered_mor_normed[row.names(deseq_and_tests),]
res_heatmap = heatmap(count_matrix_de, distfun = correlation_dist, hclustfun = cluster_find, labRow = F.
res_heatmap
pheatmap(count_matrix_de, show_rownames = F)
#strange result for crpc_530
```

```
# kegg pathway enrichment
library(org.Hs.eg.db)
map_ke <- as.list(org.Hs.egPATH)</pre>
# mapping an ensembl id to entrez id for all genes from the count matrix
all_ensembl2entrez = as.data.frame(mapIds(org.Hs.eg.db, keys = row.names(count_matrix_filtered_mor_norm
colnames(all_ensembl2entrez) = c("ENTREZID")
# mapping every entrez id from the count matrix to kegg pathway
all_kegg_entrez_pathways = map_ke[!is.na(match(all_ensembl2entrez$ENTREZID, names(map_ke)))]
# return back to ensembl ids but with corresponding pathway
all_ensembl2kegg_pathways = list()
for (i in 1:nrow(all_ensembl2entrez)) {
  temp = all_kegg_entrez_pathways[as.character(all_ensembl2entrez$ENTREZID[i])]
  if (!is.na(names(temp))){
   all_ensembl2kegg_pathways[row.names(all_ensembl2entrez)[i]] = temp
 }
}
# counting the total number of annotations for all genes from the count matrix
N = sum(!is.na(unlist(all_ensembl2kegg_pathways)))
# the total number of genes (table) for every kegg annotation
ns = table(unlist(all_ensembl2kegg_pathways))
# mapping every ensembl id to entrez id for all genes considered interesting
# (from previos analysis)
de ensembl2entrez = as.data.frame(mapIds(org.Hs.eg.db, keys = row.names(deseq and tests), keytype = "EN
colnames(de ensembl2entrez) = c("ENTREZID")
# mapping every entrez id from the list of interesting genes to kegg pathway
de_kegg_entrez_pathways = map_ke[!is.na(match(de_ensembl2entrez$ENTREZID, names(map_ke)))]
# return back to ensembl id but with keqq pathways for the list of interesting genes
de_ensembl2kegg_pathways = list()
for (i in 1:nrow(deseq_and_tests)) {
 temp = de_kegg_entrez_pathways[as.character(de_ensembl2entrez$ENTREZID[i])]
  if (!is.na(names(temp))){
    de_ensembl2kegg_pathways[row.names(de_ensembl2entrez)[i]] = temp
 }
}
# counting the total number of annotations for the interesting genes list
M = sum(!is.na(unlist(de_ensembl2kegg_pathways)))
# counting the total number of interesting genes for every kegg pathway
ks = rep(0, length(ns))
names(ks) = names(ns)
ks[names(table(unlist(de_ensembl2kegg_pathways)))] = table(unlist(de_ensembl2kegg_pathways))
```

```
p_vals_kegg_pathways = sort(1 - phyper(ks - 1, M, N - M, ns))
enriched_kegg_pathways = names(p_vals_kegg_pathways)[p_vals_kegg_pathways < 0.05]
enriched_kegg_pathways

# prepare for supplementary
p_vals_kegg_pathways_file = as.data.frame(p_vals_kegg_pathways[p_vals_kegg_pathways < 0.05])
colnames(p_vals_kegg_pathways_file) = c("p-value")
p_vals_kegg_pathways_file$kegg_pathways = row.names(p_vals_kegg_pathways_file)
p_vals_kegg_pathways_file = p_vals_kegg_pathways_file[,c(2,1)]

write_xlsx(p_vals_kegg_pathways_file,"enriched_kegg_pathways.xlsx")</pre>
```

```
library(pathview)
count_matrix_mean_diff = apply(count_matrix_filtered_mor_normed[,14:43], 1, mean) - apply(count_matrix_pathview_names = c("Amoebiasis", "Protein digestion and absorption", "ECM-receptor interaction", "Focal

for (i in seq_along(enriched_kegg_pathways)){
   pathview(gene.data = as.data.frame(count_matrix_mean_diff), out.suffix = pathview_names[i], limit = 1
}
```

Analysis 8

```
deseq_and_tests[1:10,]
# for report
deseq_and_tests_file = deseq_and_tests[1:10,]
write_xlsx(deseq_and_tests_file,"deseq_and_tests.xlsx")
```

```
# removing strange samples
samples_to_remove = c("PC_6864", "PC_9324", "CRPC_530")

remain_count_matrix_filtered_mor_normed = count_matrix_filtered_mor_normed[,(!colnames(count_matrix_filtered_mor_normed[,(!colnames(count_matrix_filtered_mor_normed],)]

# new ttest
CRPC_PC_factor_remain = factor(sub("_[0-9]*", "", colnames(remain_count_matrix_filtered_mor_normed)))

remain_ttest_results = rowttests(remain_count_matrix_filtered_mor_normed, fac=CRPC_PC_factor_remain))

remain_ttest_results$p.value.adj = p.adjust(remain_ttest_results$p.value, method='BH')

sum(remain_ttest_results_p.value.adj < 0.05)

remain_ttest_results_ordered = remain_ttest_results[order(remain_ttest_results$p.value.adj),]

remain_ttest_results_ordered$symbol = mapIds(org.Hs.eg.db, keys = row.names(remain_ttest_results_ordered*symbol = mapIds(org.Hs.eg.db, keys = row.names(remain_ttest_results_ordered*)

# new wilcox test</pre>
```

```
remain_wilcox_results = apply(remain_count_matrix_filtered_mor_normed, 1, my_wilcox, group1=1:11, group
remain_wilcox_results_df = as.data.frame(t(remain_wilcox_results))
remain_wilcox_results_df$p.value.adj = p.adjust(remain_wilcox_results_df$p.value, method = 'BH')
sum(remain_wilcox_results_df$p.value.adj < 0.05)</pre>
# after adjustment two times less significant p-values with level 5%
remain_wilcox_results_ordered = remain_wilcox_results_df[order(remain_wilcox_results_df$p.value.adj),]
remain_wilcox_results_ordered$symbol = mapIds(org.Hs.eg.db, keys = row.names(remain_wilcox_results_ordered$symbol = mapIds(org.Hs.eg.db, keys = row.names(remain_wilcox_results_ordered).
# select significant after both tests
p_val_below_remain_ttest = remain_ttest_results_ordered$p.value.adj < 0.05</pre>
p_val_below_remain_wilcox = remain_wilcox_results_ordered$p.value.adj < 0.05
dm greater remain = abs(remain ttest results ordered$dm) > 1
both_pvals_remain = p_val_below_remain_ttest & p_val_below_remain_wilcox
both_remain = both_pvals_remain & dm_greater_remain
gene_satisfied_remain = data.frame(dm = remain_ttest_results_ordered$dm[both], ttest.p.value.adj = rema
gene_satisfied_remain$symbol = mapIds(org.Hs.eg.db, keys = row.names(gene_satisfied_remain), keytype =
gene_satisfied_remain = gene_satisfied_remain[order(gene_satisfied_remain$ttest.p.value.adj),]
gene_satisfied_remain = gene_satisfied_remain[,c(4, 1:3)]
gene_satisfied_remain
# new deseq
coldata_remain = data.frame(row.names = colnames(remain_count_matrix_filtered_mor_normed), CRPC_PC_fact
dds_remain = DESeqDataSetFromMatrix(countData = as.data.frame(round(remain_count_matrix_filtered_mor_no.
dds_remain = DESeq(dds_remain)
vsdata remain = vst(dds remain, blind = FALSE)
res_deseq_remain = results(dds_remain, contrast = c('CRPC_PC_factor_remain', 'CRPC', 'PC'))
res_deseq_remain = res_deseq_remain[order(res_deseq_remain$pvalue),]
res_deseq_remain$symbol = mapIds(org.Hs.eg.db, keys = row.names(res_deseq_remain), keytype = "ENSEMBL",
res_deseq_remain = res_deseq_remain[, c(7, 1:6)]
res_deseq_enriched_remain = res_deseq_remain[res_deseq_remain$padj < 0.05,]</pre>
res_deseq_enriched_remain
# compare new tests and deseq
deseq_and_tests_ensembl_remain = intersect(row.names(gene_satisfied_remain), row.names(res_deseq_enrich
deseq_and_tests_remain = data.frame(symbol = remain_ttest_results_ordered[deseq_and_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ensembl_remain_tests_ens
deseq and tests
deseq_and_tests_remain
final_res = deseq_and_tests_remain[row.names(deseq_and_tests_remain)[1:10] %in% row.names(deseq_and_tests_remain)[1:10] %in% row.names(deseq_and_tests_remai
final_res
# for report
write_xlsx(final_res, "final_res.xlsx")
```

Supplement

Supplemet 1 (table gene_satisfied)

Table 6: List of genes with test statistics which satisfied both conditions ${\bf c}$

ensembl	symbol	dm	ttest.p.value.adj	wilcox.test.p.value.adj
ENSG00000147647	DPYS	-5.246751	1.00e-07	0.0007490
ENSG0000007707	SELE	-3.576468	3.00e-07	0.0007490
ENSG0000001300	EDN3	-5.775923	5.00e-07	0.0007490
ENSG00000121200	EGR2	-2.737002	9.00e-07	0.0007490
ENSG000000122011	CD38	-3.825779	1.30e-06	0.0007490
ENSG00000100003	SEC14L2	-2.287805	1.30e-06	0.0007490
ENSG00000116745	RPE65	-4.692050	1.30e-06	0.0007490
ENSG00000120129	DUSP1	-2.676617	1.30e-06	0.0007490
ENSG00000153234	NR4A2	-3.035316	1.30e-06	0.0007490
ENSG00000104879	CKM	-3.794097	2.50e-06	0.0007490
ENSG00000184588	PDE4B	-1.892216	2.50e-06	0.0007490
ENSG00000198393	ZNF26	1.474174	2.60e-06	0.0007490
ENSG00000181016	LSMEM1	3.339219	3.00e-06	0.0007490
ENSG00000103550	KNOP1	1.318113	3.20 e-06	0.0007490
ENSG00000068976	PYGM	-2.081580	4.40e-06	0.0007490
ENSG00000073756	PTGS2	-2.575249	4.40e-06	0.0007490
ENSG00000079134	THOC1	1.201832	4.40 e-06	0.0007490
ENSG00000079308	TNS1	-1.703444	4.40 e-06	0.0007490
ENSG00000167280	ENGASE	1.117973	4.40 e-06	0.0007490
ENSG00000187094	CCK	-4.846305	4.40 e-06	0.0007490
ENSG00000232931	NA	3.609848	4.40 e-06	0.0007490
ENSG00000250423	KIAA1210	-4.820291	4.40 e-06	0.0007490
ENSG00000136244	IL6	-4.292674	5.40 e-06	0.0007490
ENSG00000100302	RASD2	-1.973565	5.90e-06	0.0007490
ENSG00000142178	SIK1	-2.395341	5.90e-06	0.0007490
ENSG00000104356	POP1	1.247921	6.80e-06	0.0007490
ENSG00000121454	LHX4	3.038432	9.00e-06	0.0007490
ENSG00000138778	CENPE	2.097656	9.60e-06	0.0007490
ENSG00000148841	ITPRIP	-1.747020	9.60e-06	0.0007490
ENSG00000167281	RBFOX3	-3.510936	9.60e-06	0.0007490
ENSG00000087258	GNAO1	-2.002636	9.60e-06	0.0007490
ENSG00000156804	FBXO32	-1.159180	9.60e-06	0.0007490
ENSG00000249992	TMEM158	-2.545068	1.01e-05	0.0007490
ENSG00000088002	SULT2B1	-2.194935	1.28e-05	0.0007608
ENSG00000099960	SLC7A4	-3.773609	1.28e-05	0.0007608
ENSG00000144214	LYG1	3.625121	1.28e-05	0.0007608
ENSG00000169116	PARM1	-2.042934	1.28e-05	0.0007608
ENSG00000171223	JUNB	-4.490890	1.28e-05	0.0007608
ENSG00000176402	GJC3	-2.870610	1.28e-05	0.0007608
ENSG00000179094	PER1	-1.931253	1.28e-05	0.0007608

Supplement 2 (table with enriched kegg pathways)

Table 7: Enriched kegg pathways

kegg_pathways	p-value
05146	0.00e+00
04974	0.00e+00

kegg_pathways	p-value
04512	1.00e-07
04510	2.56e-05