ALGEBRA PER INFORMATICA 2020-21

FOGLIO DI ESERCIZI 10

Esercizio 1. Si consideri l'insieme $A = \{a, b, c\}$ dotato della seguente operazione:

$$a*a = a, \quad a*b = b, \quad a*c = c,$$

$$b*a = b, b*b = b, b*c = c,$$

$$c*a = c, c*b = b, c*c = a.$$

Si verifichi che * è un'operazione non associativa e non commutativa, ma dotata di un elemento neutro. Si determini tale elemento.

Esercizio 2. Dato il gruppo $(\mathbb{C}^*, \cdot, 1)$, e fissato un intero $n \ge 1$ si consideri l'insieme delle radici n-esime dell'unità:

$$U_n = \{ z \in \mathbb{C} : z^n = 1 \}.$$

Si verifichi che U_n è un sottogruppo di $(\mathbb{C}^*, \cdot, 1)$.

Esercizio 3. Si consideri \mathbb{Z}_{100} .

- (1) E' vero che se $\overline{7} \cdot \overline{x} = \overline{7} \cdot \overline{y}$ allora $\overline{x} = \overline{y}$?
- (2) E' vero che se $\overline{6} \cdot \overline{x} = \overline{6} \cdot \overline{y}$ allora $\overline{x} = \overline{y}$?

Esercizio 4. Si consideri \mathbb{Z}_{169} .

- (1) Determinare, se esiste, l'inverso di $\overline{15}$.
- (2) Determinare, se esistono, due elementi distinti \bar{x}, \bar{y} tali che $\overline{12} \cdot \bar{x} = \overline{12} \cdot \bar{y}$.
- (3) Determinare, se esistono, due elementi distinti \bar{x}, \bar{y} tali che $\overline{13} \cdot \bar{x} = \overline{13} \cdot \bar{y}$.

Esercizio 5. Calcolare la funzione di Eulero $\varphi(n)$ per n = 26, 32, 69, 96, 343, 777.

Esercizio 6. Calcolare $\overline{9}^{101}$ e $\overline{7}^{1000}$ in \mathbb{Z}_{26} .

Esercizio 7. Provare che l'equazione $\bar{x}^2 + \bar{y}^2 = \bar{3}$ non ha soluzioni in \mathbb{Z}_4

Esercizio 8. Provare che per ogni numero intero dispari n si ha $n^2 \equiv 1 \mod 8$.

Esercizio 9. Calcolare le potenze ottave di tutti gli elementi invertibili di \mathbb{Z}_{15} .

Esercizio 10. Provare che $\overline{5}$ è invertibile in \mathbb{Z}_{48} e determinare il suo inverso.

Esercizio 11. Calcolare il resto della divisione di 13⁹⁸ per 17.

Esercizio 12. Sia $f: \mathbb{Z}_{1000} \to \mathbb{Z}_{1000}$ la funzione definita da $f(\bar{x}) = \overline{7} \cdot \bar{x}$. Provare che f è surgettiva.

Esercizio 13. Si consideri il gruppo $(\mathbb{Z}, +, 0)$. Il sottoinsieme $10\mathbb{Z} \cup 15\mathbb{Z}$ è un sottogruppo? E il sottoinsieme $10\mathbb{Z} \cap 15\mathbb{Z}$?

Esercizio 14. Dati due interi a, b > 0 definiamo

$$a\mathbb{Z} + b\mathbb{Z} := \{ n \in \mathbb{Z} : n = ar + bs \operatorname{con} r, s \in \mathbb{Z} \}.$$

Provare che $a\mathbb{Z} + b\mathbb{Z}$ è un sottogruppo di $(\mathbb{Z}, +, 0)$ e provare che $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$ dove d = MCD(a, b).

Esercizio 15. Sia G il gruppo delle applicazioni bigettive da \mathbb{Z} a \mathbb{Z} (l'operazione è la composizione). Si consideri il sottoinsieme $H = \{ f \in G : f(n) \ge n \ \forall n \in \mathbb{Z} \}$. Stabilire se H è un sottogruppo di G.

Esercizio 16. Provare che l'insieme delle applicazioni $f: \mathbb{R} \to \mathbb{R}$ che si possono scrivere come f(x) = ax + b per qualche $a, b \in \mathbb{R}$, $a \neq 0$ forma un sottogruppo delle applicazioni bigettive da \mathbb{R} a \mathbb{R} (con l'operazione di composizione).