Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Συστήματα Μικροϋπολογιστών

Σειρά Ασκήσεων 3	Θανάσουλας Γρηγόριος ΑΜ: 03114131
	Μόνου Σταματίνα ΑΜ: 03114077

Άσκηση 1i

START: LDA 2000H ; Διάβασμα θύρας εισόδου

LXI Η,3000Η ; Φόρτωση πόρτας εξόδου

CPI 00H ; Αν όλα σβηστά

JZ TURN OFF

ΜΟΥ Β,Α ; Αποθήκευση του Α στον Β

ΑΝΙ 01Η ; Μάσκα ψηφίου 0

CPI 01H ; Σύγκριση

JZ TURN_ON_0

MOV A,B

ΑΝΙ 02Η ; Μάσκα ψηφίου 1

CPI 02H

JZ TURN ON 1

MOV A,B

ΑΝΙ 04Η ; Μάσκα ψηφίου 2

CPI 04H

JZ TURN ON 2

MOV A,B

ΑΝΙ 08Η ; Μάσκα ψηφίου 3

CPI 08H

JZ TURN_ON_3

MOV A,B

ΑΝΙ 10Η ; Μάσκα ψηφίου 4

CPI 10H

JZ TURN_ON_4

MOV A,B

ΑΝΙ 20Η ; Μάσκα ψηφίου 5

CPI 20H

JZ TURN ON 5

MOV A,B

ΑΝΙ 40Η ; Μάσκα ψηφίου 6

CPI 40H

JZ TURN_ON_6

MOV A,B

ANI 80H ; Μάσκα ψηφίου MSB 7

CPI 80H

JZ TURN ON 7

TURN_ON_0: MVI M,00H ; ON των αντιστοίχων LEDS

JMP START

TURN ON 1: MVI M,01H

JMP START

TURN_ON_2: MVI M,03H

JMP START

TURN ON 3: MVI M,07H

JMP START

TURN_ON_4: MVI M,0FH

JMP START

TURN ON 5: MVI M,1FH

JMP START

TURN ON 6: MVI M,3FH

JMP START

TURN ON 7: MVI M,7FH

JMP START

TURN_OFF: MVI M,FFH

JMP START

END

Άσκηση 1ii

LXI Η,3000Η ; Φόρτωση της διεύθυνσης εξόδου

MVI M,FFH ; Αρχική απενεργοποίηση LEDS

START: CALL KIND ; Κλήση ρουτίνας Key Input

CPI 01H ; Κουμπί 1

JZ ON_1 ; Ενεργοποίηση LED 1

CPI 02H ; Κουμπί 2

JZ ON_2 ; Ενεργοποίηση LED 2

CPI 03H ; Κουμπί 3

JZ ON_3 ; Ενεργοποίηση LED 3

CPI 04H ; Κουμπί 4

JZ ON_4 ; Ενεργοποίηση LED 4

CPI 05H ; Κουμπί 5

JZ ON_5 ; Ενεργοποίηση LED 5

CPI 06H ; Κουμπί 6

JZ ON_6 ; Ενεργοποίηση LED 6

CPI 07H ; Κουμπί 7

JZ ON_7 ; Ενεργοποίηση LED 7

CPI 08H ; Κουμπί 8

JZ ON_8 ; Ενεργοποίηση LED 8

JMP START

ON_1: MVI M,FEH

JMP START

ON 2: MVI M,FDH

JMP START

ON 3: MVI M,FBH

JMP START

ON_4: MVI M,F7H

JMP START

ON 5: MVI M,EFH

JMP START

ON 6: MVI M,DFH

JMP START

ON 7: MVI M,BFH

JMP START

ON 8: MVI M,7FH

JMP START

END

Άσκηση 1iii

IN 10H

MVI A,10H ; Κενό στα δεξιότερα 7-Segments STA 0B00H STA 0B01H STA 0B02H STA 0B03H STA 0B04H STA 0B05H LXI D,0B00H **CALL STDM** CALL DCD START: MOV H.A READ LN 0: MVI A,FEH ; 1111 1110 CALL READ COLS CPI 06H ; 110 JZ DIS IN ST ; Εμφάνιση κατάλληλου κωδικού CPI 05H ; 101 JZ DIS_F_PC; Display Fetch PC READ_LN_1: MVI A,FDH ; 1111 1101 CALL READ_COLS CPI 06H ; 110 JZ DIS RUN CPI 05H ; 101 JZ DIS FETC REG CPI 03H ; 011 JZ DIS FETC ADR READ LN 2: MVI A,FBH ; 1111 1011 CALL READ COLS CPI 06H ; 110 JZ DIS 0 CPI 05H ; 101 JZ DIS ST INC CPI 03H ; 011 JZ DIS_INCR

```
READ_LN_3: MVI A,F7H ; 1111 0111
            CALL READ COLS
            CPI 06H
                       ; 110
            JZ DIS 1
            CPI 05H
                       ; 101
            JZ DIS 2
                       ; 011
            CPI 03H
            JZ DIS 3
READ_LN_4: MVI A,EFH ; 1110 1111
            CALL READ_COLS
            CPI 06H
                       ; 110
            JZ DIS 4
            CPI 05H
                       ; 101
            JZ DIS 5
            CPI 03H
                       ; 011
            JZ DIS 6
READ_LN_5: MVI A,DFH ; 1101 1111
            CALL READ COLS
            CPI 06H
                       ; 110
            JZ DIS 7
            CPI 05H
                       ; 101
            JZ DIS_8
            CPI 03H
                       ; 011
            JZ DIS 9
READ LN 6: MVI A,BFH ; 1011 1111
            CALL READ_COLS
            CPI 06H
                       ; 110
            JZ DIS A
            CPI 05H
                       ; 101
            JZ DIS B
            CPI 03H
                       ; 011
            JZ DIS_C
READ LN 7: MVI A,7FH ; 0111 1111
            CALL READ COLS
            CPI 06H
                       ; 110
            JZ DIS D
            CPI 05H
                       ; 101
            JZ DIS E
            CPI 03H
                       ; 011
            JZ DIS F
```

MOV A,H

JMP KEEP_DISPLAY

READ_COLS:; Διαβάζει τις στήλες της γραμμής που έχει οριστεί στον Α

; Αποθηκεύει τα 3 ψηφία στον Α

STA 2800H ; Ενεργοποίηση Γραμμής

LDA 1800H ; Ανάγνωση στηλών MVI B,07H ; Μάσκα 0000 0111

ΑΝΑ Β ; Αποθηκεύσει στον Α τα τρία ψηφία

CONT: RET

DIS_IN_ST: MVI A,86H

JMP DISPLAY

DIS_F_PC: MVI A,85H

JMP DISPLAY

DIS RUN: MVI A,84H

JMP DISPLAY

DIS_FETC_REG: MVI A,80H

JMP DISPLAY

DIS_FETC_ADR: MVI A,82H

JMP DISPLAY

DIS_ST_INC: MVI A,83H

JMP DISPLAY

DIS INCR: MVI A,81H

JMP DISPLAY

DIS 0: MVI A,00H

JMP DISPLAY

DIS 1: MVI A,01H

JMP DISPLAY

DIS_2: MVI A,02H

JMP DISPLAY

DIS_3: MVI A,03H

JMP DISPLAY

DIS_4: MVI A,04H

JMP DISPLAY

DIS_5: MVI A,05H

JMP DISPLAY

DIS 6: MVI A,06H

JMP DISPLAY

DIS 7: MVI A,07H

JMP DISPLAY

DIS_8: MVI A,08H

JMP DISPLAY

DIS 9: MVI A,09H

JMP DISPLAY

DIS A: MVI A,0AH

JMP DISPLAY

DIS B: MVI A,0BH

JMP DISPLAY

DIS C: MVI A,0CH

JMP DISPLAY

DIS_D: MVI A,0DH

JMP DISPLAY

DIS E: MVI A,0EH

JMP DISPLAY

DIS F: MVI A,0FH

JMP DISPLAY

DISPLAY: MOV B,A ; Δημιουργία αντιγράφου

RRC ; Απομόνωση MSB HEX ψηφίου

RRC RRC RRC

ANI 0FH ; Μάσκα 0000 1111

STA 0B05H ; Αποθήκευση αριστερότερου ψηφίου

MOV A,B ; Απομόνωση LSB HEX ψηφίου

ANI 0FH ; Μάσκα 0000 1111

STA 0B04H LXI D,0B00H CALL STDM CALL DCD MOV A,B JMP START

KEEP DISPLAY: LXI D,0B00H

CALL STDM CALL DCD JMP START

END

Άσκηση 1 iv

IN 10H

EQU SYM_0,C0H EQU SYM_1,F9H EQU SYM_2,A4H EQU SYM_3,B0H EQU SYM_4,99H EQU SYM_5,92H EQU SYM_6,82H EQU SYM_7,F8H EQU SYM_8,80H EQU SYM_9,90H EQU SYM_A,88H EQU SYM_B,83H

EQU SYM_C,C6H

EQU SYM_D,A1H

EQU SYM E,86H

EQU SYM_F,8EH

EQU SYM_OFF,FFH

MVI C,SYM_OFF MVI B,SYM_OFF

START:

READ_LN_0: MVI A,FEH ; 1111 1110

CALL READ_COLS CPI 06H ; 110

JZ DIS_IN_ST ; Εμφάνιση κατάλληλου κωδικού

CPI 05H ; 101

JZ DIS F PC; Display Fetch PC

READ_LN_1: MVI A,FDH ; 1111 1101

CALL READ_COLS

CPI 06H ; 110

JZ DIS RUN

CPI 05H ; 101
JZ DIS_FETC_REG
CPI 03H ; 011
JZ DIS_FETC_ADR

READ_LN_2: MVI A,FBH ; 1111 1011

CALL READ COLS

CPI 06H ; 110

JZ DIS_0

CPI 05H ; 101

JZ DIS_ST_INC

CPI 03H ; 011

JZ DIS_DCR

READ LN 3: MVI A,F7H ; 1111 0111

CALL READ COLS

CPI 06H ; 110

JZ DIS_1

CPI 05H ; 101

JZ DIS_2

CPI 03H ; 011

JZ DIS_3

READ_LN_4: MVI A,EFH ; 1110 1111

CALL READ_COLS

CPI 06H ; 110

JZ DIS 4

CPI 05H ; 101

JZ DIS 5

CPI 03H ; 011

JZ DIS 6

READ_LN_5: MVI A,DFH ; 1101 1111

CALL READ_COLS

CPI 06H ; 110

JZ DIS 7

CPI 05H ; 101

JZ DIS 8

CPI 03H ; 011

JZ DIS_9

READ LN 6: MVI A,BFH ; 1011 1111

CALL READ COLS

CPI 06H ; 110

JZ DIS A

CPI 05H ; 101

JZ DIS B

CPI 03H ; 011

JZ DIS C

READ LN 7: MVI A,7FH ; 0111 1111

CALL READ_COLS

CPI 06H ; 110

JZ DIS D

CPI 05H ; 101

JZ DIS E

CPI 03H ; 011

JZ DIS_F

JMP DISPLAY

READ_COLS:; Διαβάζει τις στήλες της γραμμής που έχει οριστεί στον Α

; Αποθηκεύει τα 3 ψηφία στον Α

STA 2800H ; Ενεργοποίηση Γραμμής LDA 1800H ; Ανάγνωση στηλών MVI D,07H ; Μάσκα 0000 0111

ΑΝΑ D ; Αποθηκεύσει στον Α τα τρία ψηφία

CONT: RET

DIS_IN_ST: MVI B,SYM_8

MVI C,SYM_6 JMP DISPLAY

DIS_F_PC: MVI B,SYM_8

MVI C,SYM_5 JMP DISPLAY

DIS RUN: MVI B,SYM 8

MVI C,SYM_4 JMP DISPLAY

DIS_FETC_REG: MVI B,SYM_8

MVI C,SYM_0 JMP DISPLAY

DIS FETC ADR: MVI B,SYM 8

MVI C,SYM_2 JMP DISPLAY

DIS_ST_INC: MVI B,SYM_8

MVI C,SYM_3 JMP DISPLAY

DIS DCR: MVI B,SYM 8

MVI C,SYM_1 JMP DISPLAY

DIS 0: MVI B,SYM 0

MVI C,SYM_0 JMP DISPLAY

DIS 1:

MVI B,SYM_0 MVI C,SYM_1 JMP DISPLAY

DIS 2: MVI B,SYM 0

MVI C,SYM 2

JMP DISPLAY

DIS_3: MVI B,SYM_0 MVI C,SYM_3 JMP DISPLAY

DIS_4: MVI B,SYM_0 MVI C,SYM_4 JMP DISPLAY

DIS_5: MVI B,SYM_0 MVI C,SYM_5 JMP DISPLAY

DIS_6: MVI B,SYM_0 MVI C,SYM_6 JMP DISPLAY

DIS_7: MVI B,SYM_0 MVI C,SYM_7 JMP DISPLAY

DIS_8: MVI B,SYM_0 MVI C,SYM_8 JMP DISPLAY

DIS_9: MVI B,SYM_0 MVI C,SYM_9 JMP DISPLAY

DIS_A: MVI B,SYM_0 MVI C,SYM_A JMP DISPLAY

DIS_B: MVI B,SYM_0 MVI C,SYM_B JMP DISPLAY

DIS_C: MVI B,SYM_0 MVI C,SYM_C JMP DISPLAY

DIS_D: MVI B,SYM_0 MVI C,SYM_D JMP DISPLAY DIS_E: MVI B,SYM_0

MVI C,SYM_E JMP DISPLAY

DIS_F: MVI B,SYM_0

MVI C,SYM_F JMP DISPLAY

DISPLAY: ; Προβολή 1ου ψηφίου

MVI A,20H

STA 2800H ; Ορισμός αριστερότερου segment MOV A,B ; Εμφάνιση του ψηφίου που έχει ο B

STA 3800H

MVI A,FFH ; CLEAR

STA 3800H

; Προβολή 2ου ψηφίου

MVI A,10H

STA 2800H ; Ορισμός επόμενου αριστερότερου segment

ΜΟΥ Α, С ; Εμφάνιση του ψηφίου που έχει ο Β

STA 3800H

MVI A,FFH ; CLEAR

STA 3800H

JMP START

END

Άσκηση 5

Κώδικας μΥΣ-1

START:

MVI A,00H ; SOD στέλνει 0

SIM

MVI B,FFH ; Μετρητής B = 255 MVI A,C0H ; A = 1100 0000

SIM ; SOD1 = 1.

CHECK1: RIM ; Ανάγνωση θύρας SID1

ANI 80H ; Απομόνωση MSB CPI 80H ; Σύγκριση με 1000 0000

JNZ CHECK1 ; Αν δεν αναγνωρίστηκε ακμή, μείνε στο CHECK

SEND DATA: MVI A,40H

SIM ; SOD1 = 0

ΜΟΥ Α,Μ ; Φόρτωση περιεχομένου μνήμης

OUT DATA1 ; Αποστολή δεδομένων στην πόρτα DATA!

INR Η ; Αύξηση διεύθυνσης κατά 1

DCR B ; Counter--

JM END ; Aν counter < 0, Τέλος JMP START ; Επόμενη επανάληψη

END

Κώδικας μΥΣ-2

MVI C,FFH ; Αρχικοποίηση C για το μικρότερο δεδομένο στη μέγιστη τιμή

CHECK2A: RIM ; Έλεγχος τιμής SID2

ANI 80H ; Απομόνωση MSB

CPI 80H ; Σύγκριση με 1000 0000, αν SID2 = 1

JNZ CHECK2A ; Αναμονή μέχρι SID2 = 1

MVI A,C0H ; Προετοιμασία ώστε SOD2 = 1, A = 1100 0000

SIM ; SOD2 = 1

CHECK2B: RIM ; Έλεγχος τιμής SID2

ANI 80H ; Απομόνωση MSB

CPI 00H ; Σύγκριση με 0000 0000, αν SID2 = 0

JNZ CHECK2B ; Αναμονή μέχρι SID2 = 0

READ2: IN DATA2 ; Ανάγνωση δεδομένων

ΜΟΥ Μ,Α ; Αποθήκευση δεδομένων στη μνήμη

INR Η ; Αύξηση διεύθυνσης μνήμης

SUB C ; A - CJP NEXT ; Av A > C

ΜΟΥ C,Α ; Ορισμός νέου μικρότερου

NEXT: MVI A,40H ; Μηδενισμός SOD2

SIM

JMP CHECK2A ; Επαναφορά σε κατάσταση αναμονής για δεδομένα

END

Άσκηση 6

Τα chips της RAM 8KB χρειάζονται ως είσοδο 13 ψηφία διεύθυνσης A12-A0.

Τα chips της ROM 16KB χρειάζονται ως είσοδο 14 ψηφία διεύθυνσης A13-A0, συνεπώς για να επιλέξει το κελί της, θα δίνεται ένας αριθμός εσωτερικά από το 00 0000 0000 0000 έως το 11 1111 1111. Στην περίπτωση που βρισκόμαστε στο δεύτερο μισό της ROM τότε πρέπει αν αλλάξουμε την αντιστοίχηση των διευθύνσεων που στέλνει ο 8085 ώστε εσωτερικά να αντιστοιχούν στο δεύτερο μισό της ROM.

Επειδή το Α15 στο χάρτη μνήμης μας έχει την τιμή 0, δίνεται ως είσοδος στην επίτρεψη Ε1' του αποκωδικοποιητή μας (ενεργή χαμηλά επίτρεψη).

HEX	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DOM OH: Oh and
1FFF	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	ROM Chip Shared
2000	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	RAM Chip 1
2FFF	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	RAW Chip I
3000	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	RAM Chip 2
3FFF	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	RAW Chip 2
4000	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DAM Chin 2
4FFF	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	RAM Chip 3
5000	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	DOM Chin Charad
6FFF	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	ROM Chip Shared
7000	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	Memory Map Output

Δηλαδή το παρακάτω τμήμα

5000	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	ROM Chip Shared
6FFF	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	ROW Chip Shared

θα πρέπει να μετατρέπεται στο κάτωθι:

5000	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	ROM Chip Shared
6FFF	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	KOM Chip Shared

Με βάση τον πίνακα αληθείας που βλέπουμε παρακάτω, και έχοντας λάβει υπόψιν ότι το chip select οδηγείται από τον αποκωδικοποιητή οπότε έχουμε την δυνατότητα να προσθέσουμε απροσδιόριστες καταστάσεις X στον πίνακα, βρίσκουμε ότι **NEWA13 = A14** και **NEWA12 = A14' * A12 + A13**

N	Λ εταβλητέ	Συναρτήσεις					
A14	A13	A12	NEW A13	NEW A12			
0	0	0	0	0			
0	0	1	0	1			
0	1	0	X	X			
0	1	1	X	X			
1	0	0	X	X			
1	0	1	1	0			
1	1	0	1	1			
1	1	1	X	X			

Η ROM θα είναι ενεργή όταν θα έχουν επιλεγεί από το αποκωδικοποιητή οι γραμμές Y0, Y1, Y5, Y6, και επιπλέον, θα δίνεται ως είσοδος στο 12ο και 13ο pin της ROM η τιμή NEW12 και NEW13 που προκύπτει από την υλοποίηση της λογικής συνάρτησης.

Άσκηση 7

; Ο Q παίρνει τις τιμές A, B, C, D, H, L, Μ. Αν δώσει όρισμα Μ εναλλάσει το περιεχόμενο της μνήμης.

SWAP MACRO Q

PUSH A

MOV A,Q

; Φόρτωση του περιεχομένου στον A ; Εναλλαγή κάνοντας 4 φορές RLC

RLC

RLC

RLC

RLC

MOV Q,A

POP A

ENDM

FILL MACRO ADDR,L,K

PUSH Η ; Τοποθέτηση καταχωρητών στη στοίβα

PUSH B

MVI C,L ; Τοποθέτηση μήκους στον C LXI H,ADDR ; Φόρτωση αρχικής διεύθυνσης

LOOP_1: MVI M,K ; Εγγραφή σταθεράς στη διεύθυνση μνήμης

INX H ; ADDRESS++ DCR C ; Μείωση C

JNZ LOOP

ΡΟΡ Β ; Επαναφορά καταχωρητών

POP H

ENDM

Σημείωση: Αν L=0, τότε θα γίνει

RHLL MACRO n

PUSH A PUSH B

MOV Β,η ; Φόρτωση πλήθους στον Β

LOOP_2: ΜΟV Α,L ; Φόρτωση του L στον Α

RAL MOV L,A MOV A,H RAL MOV H,A DCR B

JNZ LOOP_2 ; Επανάληψη

POP B POP A

END