Abstract Harmonic Analysis

Ikhan Choi

November 9, 2023

Contents

I		2
1	Locally compact groups	3
	1.1 Haar measures	3
	1.2 Group algebras	3
	1.3 Pontryagin duality	5
	1.4 Structure theorems	5
	1.5 Spectral synthesis	5
2	Representation theory	6
3	Compact groups	7
	3.1 Peter-Weyl theorem	7
	3.2 Tannaka-Krein duality	7
	3.3 Example of compact Lie groups	7
4	Mackey machine	8
	4.1 Example of non-compact Lie groups	8
5	Kac algebras	9
II	Topological quantum groups	10
6	Compact quantum groups	11
7	Locally compact quantum groups	12
	7.1 Multiplicative unitaries	12
III	Tensor categories	13

Part I

Locally compact groups

1.1 Haar measures

- 1.1 (Non- σ -finite measures). Following technical issues are important
 - (a) The Fubini theorem
 - (b) The Radon-Nikodym theorem
 - (c) The dual space of L^1 space
- 1.2 (Existence of the Haar measure).
- 1.3 (Left and right uniformities).
- 1.4 (Modular functions).
- **1.5** (Uniformly continuous functions). G acts on $C_{lu}(G)$ and $L^1(G)$ continuously with respect to the point-norm topology. A function on G is left uniformly continuous if and only if it is written as f * x for some $f \in L^1(G)$ and $x \in L^\infty(G)$. $g \in C_c(G)$ is two-sided uniformly continuous.

1.2 Group algebras

1.6 (Convolution inequalities).

Justification of the following?

$$\lambda(f) = \int f(s)\lambda_s \, ds.$$

- **1.7** (Convolution action). Let *G* be a locally compact group.
 - (a) $L^1(G)$ has a two-sided approximate unit.
 - (b) $\alpha: G \to \operatorname{Aut}(L^1(G))$ is point-norm continuous.
 - (c) $\lambda: G \to U(L^2(G))$ and $\lambda: L^1(G) \to B(L^2(G))$ are strongly continuous.

Proof. Let (U_{α}) be a directed set of open neighborhoods of the identity e of G. By Urysohn lemma, there is $e_{\alpha} \in C_c(U)^+$ such that $||e_{\alpha}||_1 = 1$ for each α . We claim that e_{α} is a left approximate unit for $L^1(G)$.

Suppose $g \in C_c(G)$, which is two-sided uniformly continuous. For any $\varepsilon > 0$, take α_0 such that $\|g - \lambda_s g\| < \varepsilon$ and $\|g - \rho_s g\| < \varepsilon$ for all $s \in U_\alpha$ for $\alpha \succ \alpha_0$. Then, we have

$$\begin{aligned} \|e_{\alpha} * g - g\|_{1} &= \int |e_{\alpha} * g(t) - g(t)| dt \le \iint e_{\alpha}(s) |g(s^{-1}t) - g(t)| ds dt \\ &= \int e_{\alpha}(s) \|\lambda_{s} g - g\|_{1} ds < \varepsilon \int e_{\alpha}(s) ds \le \varepsilon, \end{aligned}$$

and

$$\begin{split} \|g*e_{\alpha}-g\|_{1} &= \int |g*e_{\alpha}(s)-g(s)| \, ds \leq \iint |g(t)-g(s)| e_{\alpha}(t^{-1}s) \, dt \, ds \\ &= \iint |g(t)-g(ts)| e_{\alpha}(s) \, dt \, ds = \int \|g-\rho_{s}g\|_{1} e_{\alpha}(s) \, ds < \varepsilon \int e_{\alpha}(s) \, ds \leq \varepsilon, \end{split}$$

and they imply $\lim_{\alpha} \|e_{\alpha} * g - g\|_1 = \lim_{\alpha} \|g * e_{\alpha} - g\|_1 = 0$. For general $f \in L^1(G)$, by taking $g \in C_c(G)$ such that $\|f - g\|_1 < \varepsilon$, we have

$$||e_{\alpha} * f - f||_1 \le ||e_{\alpha} * (f - g)||_1$$

Note that we have

$$\begin{split} |\langle \lambda(\xi)\eta, \zeta \rangle|^2 &= |\int \int \xi(t)\eta(t^{-1}s)\overline{\zeta(s)} \, ds \, dt|^2 \\ &\leq \int \int |\xi(t)||\eta(t^{-1}s)|^2 \, ds \, dt \cdot \int \int |\xi(t)||\zeta(s)|^2 \, ds \, dt \\ &= ||\xi||_1^2 ||\eta||_2^2 ||\zeta||_2^2 \end{split}$$

and

$$\begin{split} |\langle \rho(\xi)\eta, \zeta \rangle|^2 &= | \iint \eta(t)\xi(t^{-1}s)\overline{\zeta(s)} \, ds \, dt |^2 \\ &\leq \iint |\xi(t^{-1}s)||\eta(t)|^2 \, ds \, dt \cdot \iint |\xi(t^{-1}s)||\zeta(s)|^2 \, ds \, dt \\ &= \|\xi\|_1 \|F\xi\|_1 \|\eta\|_2^2 \|\zeta\|_2^2 \end{split}$$

imply

$$\|\lambda(\xi)\|_{2\to 2} \le \|\xi\|_1, \qquad \|\rho(\xi)\|_{2\to 2} \le \sqrt{\|\xi\|_1 \|F\xi\|_1}.$$

The equalities do not hold, consider $\|\lambda(\xi)\| = \|\hat{\xi}\|_{\infty}$ if $G = \mathbb{R}$.

- 1.8 (Group algebras).
- 1.9 (Fell absorption principle).
- 1.10 (Fourier algebra).
- 1.11 (Fourier-Stieltjes algebra). positive definite functions, Bochner theorem
- **1.12** (GNS construction for locally compact groups). Let G be a locally compact group. By a state of $C^*(G)$, we could construct the GNS representation of G. An analog of GNS construction for $L^1(G)$ without completion is doable, when given a function of positive type on G, instead of a state.

1.3 Pontryagin duality

- **1.13** (Dual group).
- 1.14 (Fourier inversion theorem).
- 1.15 (Plancherel's theorem).

1.4 Structure theorems

1.5 Spectral synthesis

Representation theory

- 2.1 (Schur's lemma).
- 2.2 (Operator-valued Fourier transform).

Since it is not easy to introduce the quantum dual of G for now, we cannot discuss $L^1(G)$ as the Fourier algebra, the predual of the quantum group von Neumann algebra. $(A(G) = L(G)_* = L^1(\widehat{G})$ and also is the closed linear span of matrix coefficients of the left regular representation.)

Compact groups

- 3.1 Peter-Weyl theorem
- 3.2 Tannaka-Krein duality
- 3.3 Example of compact Lie groups

Mackey machine

4.1 Example of non-compact Lie groups

Wigner classification

Kac algebras

Part II Topological quantum groups

Compact quantum groups

Locally compact quantum groups

7.1 Multiplicative unitaries

Part III Tensor categories