Reti di Calcolatori

Il livello di rete

Università degli Studi di Verona Dipartimento di Informatica

Docente: Damiano Carra

Acknowledgement

☐ Credits

- Part of the material is based on slides provided by the following authors
 - Jim Kurose, Keith Ross, "Computer Networking: A Top Down Approach," 4th edition, Addison-Wesley, July 2007
 - Douglas Comer, "Computer Networks and Internets," 5th edition, Prentice Hall
 - Behrouz A. Forouzan, Sophia Chung Fegan, "TCP/IP Protocol Suite," McGraw-Hill, January 2005

Network level

Introduzione

Visione generale

- ☐ Trasporto dei segmenti dall' host sorgente all' host destinazione
- Lato sorgente, i segmenti vengono incapsulati in datagrammi
- ☐ Lato destinazione, i datagrammi vengono consegnati al livello di trasporto
- ☐ Il livello di rete e' presente in ogni end-host e ogni apparato intermedio (router)
- ☐ I router esaminano i campi dell' header presenti nei datagrammi IP

5

Funzioni chiave del livello di rete

□ Routing

- Determina il percorso che i pacchetti devono seguire dalla sorgente alla destinazione
- → Algoritmi di routing
 - Analogia: processo di pianificazione di un viaggio, dalla partenza all'arrivo

□ Forwarding

- Dato un router, trasferisce i pacchetti da una porta di input alla porta di out appropriata
 - Analogia: nel caso di un viaggio, passaggio attraverso un incrocio, in cui si deve scegliere quale strada prendere
- Queste funzioni richiedono un componente fondamentale
 - l'indirizzamento (Addressing)

Interazione tra Routing e Forwarding

Architettura di un Router: Overview

☐ Funzionalita' chiave:

- Eseguire gli algoritmi e i protocolli di routing (RIP, OSPF, BGP)
- Trasferire (commutare) datagrammi dalla porta di input alla porta di output

8

Funzioni delle porte di Input

Esempi di tipologie di matrice di commutazione

Commutazione basata su memorie

☐ Prima generazione di router:

- computer tradizionali con commutazione controllata dalla CPU
- pacchetto copiato nella memoria di sistema
- velocita' limitata dalla velocita' della memoria

11

Commutazione via Bus

- ☐ Comunicazione tra porte di input e output tramite bus condiviso
- ☐ Contesa del bus: velocita' di commutazione data dalla velocita' del bus

- Cisco 5660 con bus a 32 Gbps
- Sufficiente per reti aziendali e router di accesso

Commutazione utilizzando una rete interconnessa

- ☐ Risolve i limiti dell' architettura a bus
- ☐ Reti di Banyan
 - reti di interconnessione sviluppate per connettere processori in architetture multiprocessore
- ☐ Architetture avanzate
 - frammetazione dei datagrammi in celle di lunghezza fissa, commutate successivamente in matrici ottimizzate
- Esempio
 - Cisco 12000: commutazione a 60 Gbps attraverso reti di interconnesione

13

Porte di Output

- Buffering: necessario quando la velocita' di arrivo dei datagrammi e' superiore alla velocita' di trasmissione
- □ Scheduling: utilizzato per determinare l'ordine di trasmissione dei datagrammi in coda nel buffer

Perché è necessario un buffer sulla porta di output

- ☐ Velocita' di arrivo alla porta di output superiore alla velocita' di trasmissione
- ☐ Il ritardo di coda e le perdite sono spesso dovute all' overflow di tale buffer

15

Protocollo IP

Il datagramma IP

- □ Nello stack TCP/IP si utilizza il termine "datagramma IP" per riferirsi ad un pacchetto
- ☐ Ciascun datagramma e' formato da un header
 - lungo da 20 a 60 bytes, contenente informazioni esseziali per l'instradamento e la consegna del datagramma stesso
- ☐ seguito dai dati (payload)
 - La dimensione dei dati non e' fissa, ma e' determinata dall'applicazione che invia i dati
 - Un datagramma puo' contenere un solo byte o fino a 64K byte

17

Il formato dell' header del datagramma IP

- ☐ Cosa contiene l'header del datagramma IP?
 - Contiene informazioni utili per trasferire il datagramma stesso
- ☐ Le informazioni dell' header includono:
 - l'indirizzo della sorgente (chi ha inviato inizialmente il datagramma)
 - l'indirizzo della destinazione (a chi va consegnato)
 - un campo che specifica il tipo di dati trasportato nel payload
- ☐ Gli indirizzo negli header sono *indirizzi IP*
 - formato standard che vedremo successivamente
- ☐ Ciascun campo dell' header ha una dimensione fissa
 - in tal modo il processing dell'header puo' essere fatto in maniera efficiente

Il formato dell' header del datagramma IP

0	4	8	16	19	24	31
VERS	H. LEN	SERVICE TYPE	TOTAL LENGTH			
IDENTIFICATION			FLAGS FRAGMENT OFFSE		MENT OFFSET	
TIME TO LIVE TYPE			Н	IEADER C	HECKSUM	
SOURCE IP ADDRESS						
DESTINATION IP ADDRESS						
	IP OPTIONS (MAY BE OMITTED) PADDING					
BEGINNING OF PAYLOAD (DATA BEING SENT)						

19

Il formato dell' header del datagramma IP

□ VERS

- 4 bit che specificano la versione del protocollo

☐ H.LEN (header length)

- 4-bit utilizzati per specificare la dimensione dell'header (numero totale di byte / 4)
- Es.: se non ci sono opzioni, il valore e' 5 (20 byte totali / 4 = 5)

☐ SERVICE TYPE

- 8-bit che identificano la classe di servizio del datagramma (usato raramente)

☐ TOTAL LENGTH

- intero a 16-bit che specifica il numero totale di byte del datagrammintero (header + payload)

Il formato dell' header del datagramma IP (cont)

□ IDENTIFICATION

- numero di 16-bit (di solito sequenziale) assegnato al datagramma
 - utilizzato per ricomporre un datagramma nel caso in cui venga frammentato

☐ FLAGS

- 3-bit, dove ciascun bit specifica se il datagramma e' un frammento o meno, ed eventualmente se e' l'ultimo frammento

□ FRAGMENT OFFSET

- 13-bit che specificano l'offset del frammento rispetto al datagramma originale
- il valore del campo deve essere moltiplicato per 8 per ottenere il vero offset

21

Il formato dell' header del datagramma IP(cont)

☐ TIME TO LIVE

- intero a 8-bit inizializzato dalla sorgente
- viene decrementato da ciascun router attraversato dal datagramma
- se raggiunge il valore 0, il datagramma viene scartato e un messaggio di errore viene inviato alla sorgente

□ TYPE

- 8-bit che specificano il tipo di dati trasportato nel payload

☐ HEADER CHECKSUM

16-bit checksum dell' header

☐ SOURCE IP ADDRESS

- indirizzo Internet di 32 bit della sorgente

Il formato dell'header del datagramma IP(cont)

■ DESTINATION IP ADDRESS

- indirizzo Internet di 32 bit della destinazione

☐ IP OPTIONS

- Campi opzionali (non necessariamente presenti) con informazioni addizionali

□ PADDING

- Se il campo"Options" e' presente e la sua dimensione non e' un multiplo di 32 bit, vengono messi degli "0" per raggiungere il multiplo di 32 bit

23

Frammentazione IP

MTU e Frammentazione del datagramma

- ☐ A seconda della tecnologia hardware, i diversi tratti di rete possono trasportare trame con una lughezza massima predefinita
 - Il limite e' noto come Maximum Transmission Unit (MTU)
- ☐ L'hardware di rete non e' in grado di accettare o gestire trame piu' grandi della MTU
- ☐ Internet e' composto da un insieme eterogeneo di segmenti di rete
 - La restrizione sulla MTU puo' dunque creare problemi
- ☐ Un router puo' connettere reti con MTU diverse
 - Un datagramma ricevuto da un' interfaccia potrebbe essere troppo grande da spedire sull' interfaccia successiva

25

MTU per alcune tecnologie

Protocol	MTU
Hyperchannel	65,535
Token Ring (16 Mbps)	17,914
Token Ring (4 Mbps)	4,464
FDDI	4,352
Ethernet	1,500
X.25	576
PPP	296

MTU e Frammentazione del datagramma

- \square Esempio: un router (R₁) interconnette due reti con valori di MTU di 1500 e 1000 byte rispettivamente
 - Gli host H_1 e H_2 sono connessi ad una rete con MTU = 1500 byte
 - I datagrammi inviati da H_1 a H_2 possono passare attraverso la rete Net 2 che ha MTU = 1000 byte
 - Su tale rete non si possono inviare o ricevere datagrammi di dimensione maggiore a 1000 byte
 - Se l'host H₁ invia un datagramma di 1500 byte all'host H₂
 - il router R non riesce a inviare il datagramma a destinazione

27

MTU e Frammentazione del datagramma

- ☐ Quando la dimensione di un datagramma e' superiore alla massima MTU della rete verso cui deve essere inviato
 - il router divide il datagramma in pezzi piu' piccoli chiamati "frammenti"
 - e invia ciascun frammento in modo indipendente
- ☐ Un frammento ha lo stesso formato degli altri datagrammi
 - un bit nel campo dei FLAG dell'header indica se il datagramma e' un frammento o un datagramma completo
- ☐ Vengono utilizzati altri campi dell' header per trasportare informazioni utili a riassemblare i frammenti a destinazione
 - in modo da ottenere il datagramma originale
- ☐ Ad. es., il campo FRAGMENT OFFSET specifica in che punto frammento va riposizionato

28

MTU e Frammentazione del datagramma

- ☐ Un router usa i valori di MTU e di dimensione dell' header per calcolare
 - la dimensione massima dei dati che possono essere inviati in ciascun frammento
 - e il numero di frammenti necessario
- ☐ Il router crea i frammenti
 - Usa i campi dell' header originale per creare l' header del frammento
 - Ad es., il router copia gli indirizzi IP sorgente e destinazione dall' header del datagramma all' header del frammento
 - Copia la porzione di dati dal datagramma originale al frammento
 - Trasmette il risultato

29

Campo con Flags

D: Do not fragment M: More fragments

Esempio di frammetazione

31

Esempio di frammetazione

Domande

- ☐ Un pacchetto ha il flag M pari a 0. Si tratta del primo segmento, l'ultimo segmento o un segmento intermedio? Si puo' dire se il pacchetto e' stato frammentato?
 - Se il flag M e' pari a 0, vuol dire che non ci sono ulteriori frammenti, per cui il frammento e' l'ultimo; con la sola informazione su M non possiamo dire se il pacchetto originale e' stato frammentato (serve anche l'offset).
- ☐ Un pacchetto ha il flag M pari a 1. Si tratta del primo segmento, l'ultimo segmento o un segmento intermedio? Si puo' dire se il pacchetto e' stato frammentato?
 - Se il flag M e' pari a 1, allora esiste almeno un altro frammento, quindi questo frammento puo' essere il primo o un segmento intermedio -- non si puo' dire quale perche' serve altra informazione, ovvero l'offset

33

Domande

- ☐ Un pacchetto ha il flag M pari a 1 e un offset di frammentazione pari a zero. Si tratta del primo segmento, l'ultimo segmento o un segmento intermedio?
 - Essendo il flag M pari a 1, allora si tratta del primo segmento o di uno intermedio; poiche' l'offset e' pari a 0, allora si tratta del primo segmento
- ☐ Un pacchetto ha il campo offset posto a 100. Qual'e' il numero del primo byte (rispetto al datagramma originale)? E' possibile risalire al numero totale di byte del datagramma originale?
 - Per trovare il numero del primo byte, basta moltiplicare l'offset per 8, ottenendo 800. Con le informazioni fornite, non e' possibile affermare altro. Se il campo M fosse 0, sapremmo che si tratta dell'ultimo frammento; se, in aggiunta, conoscessimo la dimensione totale del frammento, potremmo ricostruire la dimensione originale sommando all'offset la dimensione del segmento.

Riassemblaggio di un datagramma dai frammenti

- ☐ Esempio: pacchetti inviati da H₁ a H₂
 - se l'host H_1 manda datagrammi da 1500 byte, il router R_1 li divide in due frammenti, che vengono spediti a R_2
 - Il router R₂ non riassembla i frammenti
 - R₂ utilizza l'indirizzo IP di destinazione per inviare i frammenti come datagrammi a se' stanti
 - Solo la destinazione finale, l'host H₂, memorizza i frammenti e li riassembla per ottenere il datagramma originale

35

Riassemblaggio di un datagramma dai frammenti

- ☐ Far riassemblare i datagrammi a destinazione ha due vantaggi:
 - riduce la quantita' di dati da memorizzare nei router
 - Per l'operazione di forwarding, un router non ha bisogno di sapere se il datagramma e' intero o e' un frammento
 - permette di far cambiare percorso ai datagrammi in maniera dinamica
 - se ci fosse un router intermedio che fa riassemblaggio, tutti i frammenti dovrebbero passare necessariamente da quel router
- ☐ Rimandando il riassemblaggio alla destinazione
 - il protocollo IP e' libero di far percorrere ai diversi frammenti il percorso piu' opportuno in quel momento

Perdita dei frammenti

- ☐ Si inizia a riassemblare un datagramma solo quando tutti i frammenti sono presenti
- ☐ La destinazione deve salvare (in un buffer) i frammenti
 - poiche' i diversi frammenti potrebbero avere ritardi diversi
 - tuttavia, i frammenti non possono essere memorizzati per sempre
- ☐ IP specifica un tempo massimo di memorizzazione dei frammenti
 - Quando arriva il primo frammento di un datagramma, la destinazione fa partire un timer
- ☐ Se tutti i frammenti di un datagramma arrivano prima che il timer scada
 - la destinazione cancella il timer e riassembla il datagramma
- ☐ Viceversa, i frammenti arrivati vengono scartati

37

Perdita dei frammenti

- L'utilizzo di un timer per il riassemblaggio implica una politica "tutto o niente":
 - o tutti i rammenti arrivano e il datagramma viene ricostruito,
 - oppure il datagramma incompleto viene scartato
- Non ci sono meccanismi per far si che la destinazione comunichi i frammenti arrivati
 - La sorgente non ha informazioni riguardo alla frammentazione
- ☐ Se la sorgente ritrasmette il datagramma, il percorso seguito potrebbe essere diverso dal precedente
 - ovvero, possono essere attraversate porzioni differenti di reti
 - e non ci sono garanzie che il datagramma ritrasmesso venga frammentato nello stesso modo del precedente

Reti di Calcolatori

L' indirizzamento nel livello di rete

Universtità degli studi di Verona Facoltà di Scienze MM.FF.NN. Laurea in Informatica

Docente: Damiano Carra

Funzioni chiave del livello di rete

■ Routing

- Determina il percorso che o pacchetti devono prendere dalla sorgente alla destinazione
- → Algoritmi di routing
 - Analogia: processo di pianificazione di un viaggio, dalla partenza all'arrivo

□ Forwarding

- Dato un router, trasferisce i pacchetti da una porta di input all porta di out appropriata
 - Analogia: nel caso di un viaggio, passaggio attraverso un incrocio, in cui si deve scegliere quale strada prendere
- ☐ Queste funzioni richiedono un componente fondamentale
 - l'indirizzamento (Addressing)

Indirizzi per Internet

- ☐ L'indirizzamento e' un componente fondamentale di Internet
- ☐ Tutti gli host devono utilizzare uno schema di indirizzamento comune
 - una coppia arbitraria di applicativi piu' comunicare senza preoccuparsi del tipo di hardware di rete utilizzato
- ☐ Ciascun indirizzo deve essere unico
- ☐ Gli indirizzi MAC (livello Data Link) non possono essere usati perche'
 - Internet puo' contenere diverse tecnologie di rete
 - a ciascuna tecnologia puo' avere il suo indirizzo MAC (con formati diversi)
- ☐ Gli indirizzi IP sono assegnati da un protocollo in software
 - Non sono "hard-coded" nella tecnologia utilizzata

41

Lo schema di indirizzamento IP

- ☐ A ciascun host viene assegnato un numero unico di 32 bit
 - noto come "indirizzo IP" o "indirizzo Internet" dell' host
- ☐ Quando un host vuole inviare un pacchetto in Internet, la sorgente deve specificare:
 - il proprio indirizzo IP (indirizzo sorgente)
 - e l'indirizzo IP della destinazione

Notazione decimale puntata

- ☐ Per semplificare la gestione degli indirizzi (da parte degli utenti), invece di indicare il valore dei 32 bit, si utilizza un' altra notazione
- ☐ Tale notazione, nota come "dotted decimal notation" (notazione decimale puntata), prevede di:
 - dividere i 32 bit in 4 sezioni, ciascuna da 8 bit
 - esprimere ciascuna sezione nel corrispondente valore decimale
 - dividere con un punto le diverse sezioni
- ☐ La notazione considera ogni sezione (8 bit = 1 byte) come un intero senza segno
 - il valore piu' piccolo e' 0
 - tutti gli 8 bit hanno valore zero (0)
 - il valore piu' grande e' 255
 - tutti gli 8 bit hanno valore uno (1)
 - Il range dei valori e' costituito dai seguenti estremi

da 0.0.0.0 fino a 255.255.255.255

43

Notazione decimale puntata: esempi

32-bit Binary Number	Equivalent Dotted Decima	
10000001 00110100 00000110 00000000	129.52.6.0	
11000000 00000101 00110000 00000011	192.5.48.3	
00001010 00000010 00000000 00100101	10.2.0.37	
10000000 00001010 00000010 00000011	128.10.2.3	
10000000 10000000 11111111 00000000	128 . 128 . 255 . 0	

Gerarchia degli indirizzi IP

- ☐ Gli indirizzo IP sono divisi concettualmente in due parti:
- ☐ Un prefisso → identifica la rete fisica a cui l'host e' connesso (noto anche come NetID)
 - A ciascuna rete in Internet viene assegnato un unico numero di rete
- ☐ Un suffisso → identifica un host specifico all' interno di una rete (noto anche come HostID)
 - A ciascun host su una data rete viene assegnato un suffisso unico
- ☐ Lo schema degli indirizzi IP garantisce due proprieta':
 - A ciascun host viene assegnato un indirizzo unico
 - L'assegnazione dei numeri di rete (prefissi) viene coordinata globalmente
 - I suffissi vengono assegnati localmente, senza bisogno di coordinazione globale

45

Indirizzamento Classful

Classi di indirizzi IP: tradeoff dei bit

- ☐ Problema: quanti bit usare per il prefisso e il suffisso?
 - Il prefisso ha bisogno di un numero di bit sufficientemente grande per identificare tutte le possibili reti fisiche in Internet
 - Il suffisso ha bisogno di un numero di bit sufficientemente grande da poter specificare tutti i possibili host connessi ad una data rete
- ☐ Non esiste una scelta semplice per l'allocazione dei bit!
 - Utilizzando tanti bit per il prefisso si possono specificare molte reti
 - ma ciascuna rete avra' dimensione limitata
 - Utilizzando tanti bit per il suffisso si possono avere molti host su una data rete
 - ma il numero totale di reti sara' limitato

47

Classi di indirizzi IP: soluzione originale

- ☐ Internet contiene poche reti molto grandi e molte reti piccole
 - i progettisti hanno scelto uno schema che permettesse la convivenza di combinazioni di reti grandi e piccole
- ☐ L' indirizzamento IP originale, chiamato classful, divideva lo spazio di indirizzamento in 3 classi primarie
 - ciascuna classe aveva una dimensione del prefisso / suffisso differente
- ☐ I primi 4 bit di un indirizzo IP determinavano la classe di indirizzamento di appartenenza
 - specificavano come il resto dell' indirizzo doveva essere diviso tra prefisso e suffisso

NOTA: In questa slide (e in tutte quelle relative allo schema di indirizzamento classful) viene usato il tempo al passato

Classi di indirizzi IP: soluzione originale

bits	01234	8	1	16	24		31
Class A	0 prefix			suffix			
Class B	10	prefix			suffix		
Class C	1 1 0		prefix			suffix	
Class D	1 1 1 0		multi	cast addres	s		
Class E	1 1 1 1		reserved	d (not assigr	ned)		

49

Divisione dello spazio di indirizzamento

Address Class	Bits In Prefix	Maximum Number of Networks	Bits In Suffix	Maximum Number Of Hosts Per Network
Α	7	128	24	16777216
В	14	16384	16	65536
С	21	2097152	8	256

Divisione dello spazio di indirizzamento

- ☐ Lo schema classful divideva lo spazio di indirizzamento in porzioni di dimensione non uguali tra loro
- ☐ I progettisti scelsero questa soluzione per poter includere diversi scenari
 - Meta' degli indirizzi IP disponibli appartengono alla classe A
 - Il numero di reti di classe A e' pero' limitato a 128
 - Lo scopo era permettere ai principali ISP di creare ciascuno una grande rete che connettesse milioni di host
 - In maniera analoga, la classe C e' stata creata per permettere ad una piccola organizzazione di connettere alcuni calcolatori ad una LAN

51

Autorita' per gli indirizzi

- ☐ E' stata creata un'autorita' per l'assegnazione degli indirizzi e gestire le relative dispute
 - Internet Corporation for Assigned Names and Numbers (ICANN)
- ☐ ICANN non assegna direttamente i prefissi
 - ma autorizza un insieme di registrars ufficiali a farlo
- ☐ I Registrars assegnano i blocchi di indirizzi agli ISP
 - Gli ISP forniscono gli indirizzi ai loro utenti
- ☐ Per ottenere un prefisso, una compagnia / societa' contatta di solito un ISP

Indirizzamento Classless

Subnet e indirizzamento classless

- ☐ Con l'espansione di Internet lo schema classful originale si e' rivelato limitante
- ☐ Tutti chiedevano indirizzi di classe A o B
 - In modo da poter avere un numero sufficiente di indirizzi per eventuali espansioni
 - conseguente sottoutilizzo di indirizzi all'interno di ogni classe
- ☐ Sono stati proposti due meccanismi correlati per risolvere tali limitazioni
 - Subnet
 - Indirizzamento Classless
- ☐ Invece di avere un insieme ristretto di lunghezze per i prefissi / suffissi, la scelta della lunghezza viene resa arbitraria

Subnet e indirizzamento classless: Motivazioni

- ☐ Si consideri un ISP che distribuisce prefissi. Si assuma che un cliente chieda un prefisso per una rete che ha 55 host
- ☐ In caso di indirizzamento classful:
 - Si dovrebbe assegnare una classe C (254 indirizzi host)
 - Sarebbero sufficienti 6 bit per rappresentare tutti valori degli host
 - 190 indirizzi su 254 non sarebbero usati
 - La maggior parte dello spazio di indirizzamento sarebbe sprecato
- ☐ In caso di indirizzamento classles:
 - L'ISP puo' assegnare liberamente la dimensione del prefisso
 - Ad es., 26 bit per il prefisso
 - e 6 bit per il suffisso

55

Subnet e indirizzamento classless: Esempio

	24 bits of prefix		
0 1 2		24	31
1 1 0	х		
	(a)		
	26 bits of prefix		
1 1 0	х	00	
1 1 0	x	0 1	
1 1 0	x	1 0	
1 1 0	x	1 1	
	(b)		

Maschere

- ☐ Come puo' un router consocere la lunghezza del prefisso?
 - Le decisioni di routing si prendono solo analizzando il prefisso, che indica la rete di appartenenza
 - Con l'indirizzamento classful, i primi bit indicavano la classe e quindi la lunghezza del prefisso
- ☐ Nel caso di indirizzamento classless, serve aggiungere un pezzo di informazione
 - la suddivisione tra prefisso e suffisso
- ☐ Invece di aggiungere la dimensione del prefisso esplicitamente, si preferisce usare un'altra tecnica nota come maschera di indirizzo o maschera di subnet
 - Una maschera non e' altro che un valore a 32 bit in cui sono posti a 1 tutti i bit fino a raggiungere la lunghezza del prefisso
 - Le maschere rendono il processing piu' efficiente

57

Maschere

- ☐ Un router mantiene in memoria una serie di
 - reti di destinazione (prefissi di rete)
 - e le corrispondenti maschere
- Quando arriva un pacchetto con indirizzo IP generico
 - il router confronta l'indirizzo di destinazione con i prefissi in memoria
 - fa il forward del pacchetto in base alla destinazione
- ☐ Il confronto non viene fatto su tutti i 32 bit
 - per ogni destinazione (prefisso), si considera la maschera
 - viene fatto l'AND bit a bit tra maschera e indirizzo IP del pacchetto
 - si confronta il risultato con il prefisso in memoria
 - se sono uguali, allora e' stata determinata la destinazione del pacchetto

Maschere: Esempio

☐ Si considerino i prefissi e le relative maschere memorizzate in un router: NetA 10000000 00001010 00000000 00000000 \rightarrow 128.10.0.0 MaskA 11111111 11111111 00000000 00000000 → 255.255.0.0 01000000 00001010 00000010 00000000 NetB → 64.10.2.0 MaskB 11111111 11111111 11111111 00000000 \rightarrow 255.255.255.0 ☐ Il router analizza un pacchetto con il seguente indirizzo IP IP addr 10000000 00001010 00000010 00000011 → 128.10.2.3 ☐ Il router applica le diverse maschere al pacchetto e confronta il risultato con i prefissi IP & MaskA 10000000 00001010 00000000 00000000 \rightarrow 128.10.0.0 IP & MaskB 10000000 00001010 00000010 00000000 → 128.10.2.0 ☐ Essendo (IP & MaskA) = NetA, allora il pacchetto ha come destinazioni 59 la rete NetA

Notazione CIDR

- ☐ Classless Inter-Domain Routing (CIDR)
- L'utilizzo di maschere per specificare la dimensione del prefisso viene fatta per questioni di efficienza
 - operazioni di AND bit a bit molto veloci in hardware
- ☐ Tuttavia, per facilitare la gestione da parte degli utenti, si utilizza una notazione piu' semplice e diretta
 - viene specificata la dimensione del prefisso
- ☐ In particolare, la notazione CIDR prevede la seguente forma:

ddd.ddd.ddd/m

- ddd e' il valore decimale nella notazione decimale puntata
- m di bit del prefisso
- ☐ Nell'esempio precedente, il router ha memorizzato due reti:

NetA: 128.10.0.0/16NetB: 64.10.2.0 /24

CIDR: indirizzi per gli host

- ☐ Dopo aver ricevuto il prefisso CIDR da un ISP, un cliente puo' assegnare liberamente gli indirizzi di host ai propri utenti
- ☐ Svantaggi dell' indirizzamento classless
 - maggiore informazione da memorizzare nei router, e conseguenti operazioni da svolgere per il processing di un pacchetto
 - poiche' la divisione tra prefisso e suffisso e' arbitraria, usando la notazione decimale puntanta non e' sempre facile riuscire a leggere gli indirizzi

61

Indirizzi IP speciali

Indirizzi IP speciali

- ☐ Il protocollo IP definisce un insieme di indirizzi IP speciali che sono riservati
 - gli indirizzi IP speciali non possono essere assegnati agli host

☐ Esempi:

- Indirizzi di rete
- Indirizzi di "Directed Broadcast"
- Indirizzi di "Limited Broadcast"
- Indirizzo "Questo Host"
- Indirizzo di Loopback

63

Indirizzo di rete

- ☐ E' utile avere un indirizzo che denota il solo prefisso assegnato ad una rete
- ☐ L' indirizzo IP con host address a zero viene riservato
 - e utilizzato per identificare la rete
- ☐ Quindi, l'indirizzo 128.211.0.16/28 identifica una rete
 - poiche' i bit oltre il 28-esimo sono posti a zero
 - <u>10000000 11010011 00000000 0001</u>0000
- ☐ Un indirizzo di rete non deve mai comparire come indirizzo di destinazione di un pacchetto

Indirizzi di "Directed Broadcast"

- ☐ Serve per semplificare il broadcasting (invio a tutti)
 - Viene definito un indirizzo di broadcast diretto diverso per ciascuna rete
- ☐ Quando viene inviato un pacchetto con indirizzo di broadcast diretto
 - un solo pacchetto viaggia su Internet, finche' non raggiunge la rete specificata
 - il pacchetto viene poi consegnato a tutti gli host della rete specificata
- ☐ L' indirizzo di broadcast diretto e' costruito ponendo a 1 tutti i bit del suffisso
 - <u>10000000 11010011 00000000 0001</u>1111

SS 1 - 57 (0) - 15 (0

65

Indirizzi di "Limited Broadcast"

- ☐ Broadcast limitato si riferisce al broadcast verso gli host connessi direttamente alla rete a cui e' connesso l'host che invia il pacchetto
 - Utilizzato durante lo startup del sistema, quando l'host non conosce ancora l'indirizzo di rete
- ☐ L'indirizzo e' formato ponendo a 1 tutti i 32 bit
 - 11111111 11111111 11111111 11111111
- ☐ Il pacchetto raggiungera' tutti gli host appartenenti alla stessa rete locale del nodo che ha originato il pacchetto

Indirizzo "Questo Host"

- ☐ Un host deve conoscere il proprio indirizzo IP
 - prima di ricevere o inviare pacchetti su Internet
- ☐ Lo stack TCP/IP contiene dei protocolli che possono essere utilizzati per ottenere un indirizzo IP automaticamente all'accensione dell'host
 - ... ma il protocollo di startup utilizza il protcollo IP per comunicare
- ☐ Durante lo startup
 - un host non puo' indicare un indirizzo di sorgente corretto (non lo possiede ancora)
 - a tale scopo, l'indirizzo formato da tutti 0 viene riservato per indicare "questo host"
 - **→** 00000000 00000000 00000000 00000000
 - Vedremo nelle prossime lezioni nel dettaglio la sequenza dei messaggi di startup

67

Indirizzo di Loopback

- ☐ L'indirizzo di Loopback e' usato per testare applicaz. di rete
 - ad es., per il debugging di applicazioni di rete in fase di sviluppo
- ☐ Un programmatore deve avere due applicazioni che comunicano attraverso una rete
- ☐ Invece di eseguire ciascun programma su host separati
 - il programmatore fa girare entrambi i programmi su un solo host
 - e configura tali programmi per utilizzare gli indirizzi di loopback per comunicare
- ☐ Quando un' applicazione invia dati ad un' altra
 - i dati viaggiano lungo lo stack protocollare fino al livello IP
 - il livello IP rigira il pacchetto, passando di nuovo attraverso lo stagali altra applicazione

50

Indirizzo di Loopback (cont.)

- ☐ IP riserva il prefisso 127.0.0.0/8 per il loopback
- ☐ L'indirizzo di host (suffisso) e' irrilevante
 - di solito si utilizza il primo host disponibile, ovvero 127.0.0.1
- ☐ Durante il testing con uso di loopback, nessun pacchetto di fatto viene trasmesso
 - e' lo strato software che gestisce il protocollo IP che rigira i pacchetti da un' applicazione ad un' altra
- ☐ L' indirizzo di loopback non appare mai nei pacchetti che viaggiano su qualsiasi rete (locale, WAN, ...)

1011:57001 1011:5700 1011:57001 1011:5700 1011:57001 1011:5700 1011:57001 1011:57001 1011:57001 1011:57001 1011:57001 1011:5700 1

69

Indirizzi IP speciali: schema riassuntivo

Prefix	x Suffix Type Of Address		Purpose	
all-0s	all-0s	this computer	used during bootstrap	
network	all-0s	network	identifies a network	
network	all-1s	directed broadcast	broadcast on specified net	
all-1s	all-1s	limited broadcast	broadcast on local net	
127/8	any	loopback	testing	

Router e il principio di indirizzamento

- ☐ A ciascun router vengono assegnati 2 o piu' indirizzi IP
 - un indirizzo per ciascuna rete a cui il router e' connesso
- ☐ Per comprenderne il motivo, occorre ricordare che:
 - un router ha connessione verso piu' reti fisiche
 - ciascun indirizzo IP contiene un prefisso che specifica una rete fisica
- ☐ Un solo indirizzo IP non e' sufficiente per un router
 - perche' ciascun router connette diverse reti
 - e ciascuna rete ha un prefisso unico
- ☐ Lo schema degli indirizzi IP puo' essere riassunto con un principio:
 - Un indirizzo IP non identifica un computer specifico: esso identifica la connessione tra un computer e la rete
 - Un computer con piu' di una connessione di rete (ad es., un router) deve avere piu' di un indirizzo IP, uno per ogni connessione

71

Routers and the IP Addressing Principle

Reti di Calcolatori

Esercizi su indirizzamento IP

Universtità degli studi di Verona Facoltà di Scienze MM.FF.NN. Laurea in Informatica

Docente: Damiano Carra

Esercizio 1

Trasformare i seguenti indirizzi IP nella notazione decimale puntata.

- a. 10000001 00001011 00001011 11101111
- b. 11000001 10000011 00011011 11111111
- c. 11100111 11011011 10001011 01101111
- d. 11111001 10011011 11111011 00001111

Soluzione

- a. 129.11.11.239
- b. 193.131.27.255
- c. 231.219.139.111
- d. 249.155.251.15

Trasformare i seguenti indirizzi IP nella notazione binaria.

- a. 111.56.45.78
- b. 221.34.7.82
- c. 241.8.56.12
- d. 75.45.34.78

Soluzione

- a. 01101111 00111000 00101101 01001110
- b. 11011101 00100010 00000111 01010010
- c. 11110001 00001000 00111000 00001100
- d. 01001011 00101101 00100010 01001110

75

Esercizio 3

Trovare l'errore, se esiste, nei seguenti indirizzi IP:

a. 111.56.045.78

b. 221.34.7.8.20

c. 75.45.301.14

d. 11100010.23.14.67

Soluzione

- a. Non si antepongono zeri nella notazione decimale puntata (045).
- b. Non si possono avere piu' di 4 sezioni nella notazione decimale puntata.
- c. Nella notazione decimale puntata, ciascun numero deve essere inferiore o uguale a 255; 301 e' fuori range.
- d. Non e' permesso mescolare notazione decimale puntata e binaria

Qual e' l'indirizzo di rete se uno degli indirizzi e' 167.199.170.82/27?

Soluzione

La lunghezza del prefisso e' 27 bit, per cui si mantengono fissi i primi 27 bit e si pongono a zero i rimanenti 5

Indirizzo in binario: 10100111 11000111 10101010 01010010
Ultimi 5 bit a zero: 10100111 11000111 10101010 01000000
Risultato in notazione CIDR: 167.199.170.64/27

77

Esercizio 5a e 5b

Qual e'il numero di indirizzi (inclusi gli indirizzi riservati) del blocco se uno degli indirizzi e'140.120.84.24/20.

Soluzione

Il prefisso e' lungo 20 bit, quindi il blocco ha $2^{32-20} = 2^{12} = 4096$ indirizzi.

Qual e' l'indirizzo di rete se uno degli indirizzi e' 140.120.84.24/20?

Soluzione

L'indirizzo di rete e' 140.120.80.0/20.

Esercizio 6a e 6b

Si trovi il blocco CIDR se uno degli indirizzo e' 190.87.140.202/29.

Soluzione

Il numero di indirizzi e' $2^{32-29} = 8$. L'indirizzo di rete e' 190.87.140.200/29, l'indirizzo di broadcast e' 190.87.140.207/29

Si mostri una configurazione di rete per il blocco del precedente esempio.

Soluzione

Ci sono due indirizzi speciali che non possono essere usati per gli host: l'indirizzo di rete (bit dell'HostID tutti a 0) e l'indirizzo di broadcast limitato (bit dell'HostID tutti a 1). Si veda la prossima slide

79

Esercizio 6b (cont)

Indirizzi speciali
Indirizzo di rete → 190.87.140.200 / 29
Indirizzo di Broadcast → 190.87.140.207 / 29

- ☐ Al sito rappresentato e' stato assegnato il blocco CIDR 165.5.1.0/24
 - si assegnino gli indirizzi di rete alle tre LAN partizionando il blocco in modo che ciascuna LAN possa contenere lo stesso numero di stazioni (massimizzando tale numero)
 - per ogni LAN si specifichi l'indirizzo di broadcast spiegando come si ottiene
 - si assegni il primo (o i primi) indirizzo(i) disponibile(i) per ogni LAN all'interfaccia del router ad essa collegato

81

Esercizio 7 - Soluzione

- ☐ Al sito rappresentato e' stato assegnato il blocco CIDR 165.5.1.0/24
 - si assegnino gli indirizzi di rete alle tre LAN partizionando il blocco in modo che ciascuna LAN1 e LAN2 possano contenere almeno 32 stazioni ciascuna, mentre LAN3 ne possa contenere almeno 64
 - per ogni LAN si specifichi l'indirizzo di broadcast spiegando come si ottiene
 - si assegni il primo (o i primi) indirizzo(i) disponibile(i) per ogni LAN all'interfaccia del router ad essa collegato

83

Esercizio 8 - Soluzione

☐ Con riferimento alla figura:

- Si scriva il blocco CIDR a dimensione minima contenente gli indirizzi 101.75.79.255 e 101.75.80.0.
- Si utilizzi il blocco calcolato al punto precedente per assegnare il piano di indirizzamento alle reti LAN1/2/3/4/5 rispettando i seguenti vincoli:
 - LAN 1 ha netmask /21,
 - · LAN 2 deve ospitare 1000 host,
 - LAN 3 ha netmask /23,

85

- LAN 4 deve ospitare 400 host,
- LAN 5 ha a disposizione metà dell'intero blocco di indirizzi.

Esercizio 9 - Soluzione

