Universität Konstanz



## **Illustrative Computer Graphics**

#### Week 9

3D Lines II – Mathematics of Line

Lecturers:
Oliver Deussen
KC Kwan

## **Important Lines**

- Silhouette lines
- Near silhouette lines (suggestive contours)
- Geometry-based lines
- View-dependent lines





## **Chapter 9.1 – Line Definitions**

Based on SIGGRAPH 2008 Class: Line Drawings from 3D Model

### **Overview**



## **Three Types of Definitions**

Object-based



High quality

X High cost

Object-based / Ray-based



High quality

Moderate cost

Image-based



Quality limited by resolution

Low cost

View-Independent

View-dependent

## **Image-based Lines**

Based on the color / intensity of the rendered scene

- Pros: Intuitive; good for GPU
- Cons: Difficult to stylize; resolution dependences

#### Isophote



http://users.csc.calpoly.edu/~zwoo d/teaching/csc471/finalW16\_1/lcha ng07/index.html

Edge



By Simpsons contributor @ Wikipedia

#### Ridges &Valley



Apparent Ridges for Line Drawing

Based on the geometry of the objects

- Pros: Intrinsic properties of shape; can be precomputed
- Cons: Complex; can be misinterpreted as markings



#### Topo lines:



https://gisgeography.com/contour-lines-topographic-map/

Creases: infinitely sharp folds



#### Ridges and valleys (crest lines)

- Local maxima of curvature
- Sometimes effective, sometimes not





## **Ray-based Lines**

Based on the geometry from current view

- Pros: Seem to be perceived as conveying shape
- Cons: recompute per frame





## **Ray-based Lines**

#### Perpendicular normal

- Add line if the normal is perpendicular to the view
  - Dot product = 0



## **Ray-based Lines**

#### Depth discontinuous

Add line if there is sudden change of depth



## **Three Types of Definitions**

Object-based



High quality

X High cost

Object-based / Ray-based



High quality

Moderate cost

Image-based



Quality limited by resolution

Low cost

View-Independent

View-dependent

## **Chapter 9.2 – More Maths**

## Differential Geometry

Many shape-conveying lines based on surface differentials

First-order: surface normals

 Example: occluding contours occur where normal perpendicular to view direction

Other lines need higher-order derivatives

## Differential Geometry

#### Many lines based on curvatures

- Second-order differential properties of surface
- For a curve: reciprocal of radius of circle that best approximates it locally



- For a surface: ?

### **Surface Curvature**

- Normal Curvature K<sub>n</sub>
- Radial Curvature K<sub>r</sub>
- Principle Curvature K<sub>1</sub> K<sub>2</sub>
- Gaussian Curvature K
- Mean Curvature H

## **Normal Curvature**

### Curvature of a normal curve



## Radial Curvature $\kappa_r$

Curvature in projected view direction, w:



## Curvature on a Surface

Normal curvature varies with direction, but for a smooth surface satisfies

$$\kappa_n = \begin{pmatrix} s & t \end{pmatrix} \begin{pmatrix} e & f \\ f & g \end{pmatrix} \begin{pmatrix} s \\ t \end{pmatrix}$$
$$= \begin{pmatrix} s & t \end{pmatrix} \mathbf{II} \begin{pmatrix} s \\ t \end{pmatrix}$$



for a direction (s,t) in the tangent plane and a symmetric matrix **II** 

## Principal Curvatures and Directions

Can always rotate coordinate system so that II is diagonal:

$$\mathbf{II} = \mathbf{R}^{\mathrm{T}} \begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix} \mathbf{R}$$

 $\kappa_1$  and  $\kappa_2$  are *principal curvatures*, and are minimum and maximum of normal curvature

Associated directions are principal directions
Eigenvalues and eigenvectors of II

## Gaussian and Mean Curvature

The Gaussian curvature  $K = \kappa_1 \kappa_2$ 

The mean curvature  $H = \frac{1}{2} (\kappa_1 + \kappa_2)$ 

Equal to the determinant and half the trace, respectively, of the curvature matrix

Enable qualitative classification of surfaces

## **Assumption**

Curvature

Positive → Convex (to the top)

Negative → Concave (to the bottom)

Zero → Flat



# Positive Gaussian Curvature: Elliptic Points



Convex/concave depending on sign of *H*Tangent plane intersects surface at 1 point

## **Explanation**

Gaussian curvature  $K = K_1 \times K_2$ If K is positive:

K<sub>1</sub> and K<sub>2</sub> are both positive



All are convex

K<sub>1</sub> and K<sub>2</sub> are both negative



All are concave

# Negative Gaussian Curvature: Hyperbolic Points



Tangent plane intersects surface along 2 curves

# Zero Gaussian Curvature: Parabolic Points



Tangent plane intersects surface along 1 curve

### **Historical Note**

Mathematician Felix Klein was convinced that parabolic lines held the secret to a shape's aesthetics, and had them drawn on the Apollo of Belvedere...

He soon abandoned the idea...



# Zeros of $\kappa_r$ , H, and K







$$\kappa_r = 0$$

$$H = 0$$

$$K = 0$$

# Zeros of $\kappa_r$ , H, and K (with derivative tests)







$$H = 0$$

$$D_w H > 0$$



$$K = 0$$

$$D_w K > 0$$

## Line Drawings with Shading



from Frank Miller's Sin City (1991)

## Line Drawings with Shading





from Frank Miller's Sin City (1991)

# Intensity Ridges in Images







## Intensity Ridges in Images

#### Assume:

- Light at camera
- Lambertian material

## What lines on the surface correspond to intensity ridges?

- Depends on how a ridge is defined
   (Saint-Venant, principal curvature extrema, ...)
- Exact answer very messy

## Surface Coordinates: w and w

w is the projected viewing direction



 $w_{\perp} = n \times w$  (comes out of the screen)

#### Highlight Lines

#### Suggestive highlights

– Maxima of  $n \cdot v$  along w

#### Principal highlights

– Maxima of  $n \cdot v$  along  $w_{\perp}$ 



#### Lines are drawn in white

In practice only draw strong maxima

### **Explanation**

A dot B



It is maxima if the angle is small

### **Explanation**

• Is this normal have most similar direction to the view vector compared to other normal along  $w_{\perp}$ 



(Strong) maxima of  $n \cdot v$  along  $w_{\perp}$ 

$$-D_{\mathbf{w}_{\perp}} n \cdot \mathbf{v} \sim \tau_r$$
 (radial torsion)

– Zeros of  $\tau_r$  occur where

w and  $w_{\perp}$  are principal directions



### **Explanation**

• Zeros of  $\tau_r$  radial torsion





• Non-zeros of  $\tau_r$  radial torsion







(Strong) maxima of  $n \cdot v$  along  $w_{\perp}$ 

$$-D_{w_{\perp}} n \cdot v \sim \tau_{r}$$
 (radial torsion)

- Zeros of  $au_r$  occur where

w and  $w_{\perp}$  are principal directions



(Strong) maxima of  $n \cdot v$  along  $w_{\perp}$ 

$$-D_{w_{\perp}} n \cdot v \sim \tau_{r}$$
 (radial torsion)

- Zeros of  $au_r$  occur where





(strong maxima)

Points where  $w \cdot e_1 = 0$  and  $D_{w\perp} \tau_r < 0$ 

- equivalent to Saint-Venant creases in depth
- classify based on sign of  $K_1$



$$\kappa_1 < 0 \Rightarrow \text{valley}$$

$$\kappa_1 > 0 \Rightarrow \text{ridge}$$

#### Results







Suggestive Contour (SC) + Principal Highlight (PH)

#### **Important**

- Examination
  - 10 Feb 2022 (Thu) whole day
  - 11 Feb 2022 (Fri) whole day
- You need to register examination on Zeus!
- A form to select your timeslot for oral examination
  - Please pack together :)
  - Only morning (currently)
- If you cannot sign the timeslot in lecture, please phone call our secretary: Ingrid Baiker +49 07531 88-4233

#### Sketch 10

#### Sketch 10

- Task:
  - Find pixels with normal perpendicular to view vector
  - Combine with depth buffer-based lines and toon shading
- Use the mouse position to modify the parameters that find more or less points (normal threshold)



#### **Sketch 10 Hints**

- Use epsilon = mouseX / width
  - Warning: mouseX is an Integer!
- Get the normal n from the RGB image
- The view Vector is (0, 0, 1)
- PVector.dot() gives you the dot product of two vectors, which is related to their angle
- Depending on the angle, color each pixel
- Make sure your window actually has focus
  - If you get no output, fix epsilon to 0.5 for debugging.

#### Sketch 10



Move your mouse to change the result!