Name (Roll Number):

No extra sheet will be provided or collected, Time 20 mins., Max. Marks: 15.

 \mathcal{L} . Suppose a finite Markov Chain with state space $\{1, 2, \ldots, M\}$ have the following transition probability matrix; $\mathbf{P} = ((p_{ij}))$, where $p_{ij} = \frac{1}{M}$, for $1 \leq i, j \leq M$. (a) Find the equivalent classes. (b) Find the period of each state. (c) Find $\sum_{n=2}^{\infty} f_{11}^n$. (d) Find $\lim_{n\to\infty} p_{11}^n$. (2+2+2+2=8)

Solution: Observe $P^n = P$. Since $p_{ij} > 0$, for all $1 \le i, j \le M$, hence all the states communicate with each other, and each has period one. $\lim_{n\to\infty} p_{11}^n = 1/M$. All the states are recurrent, hence $\sum_{n=2}^{\infty} f_{11}^n = 1 - 1/M$

2. Suppose a finite Markov Chain with state space $\{1, 2, \ldots, M\}$, where M > 2, have the following transition probability matrix;

Find the recurret and transient states. Find $\lim_{n\to\infty} p_{kk}^n$, for $k=1,\ldots,M$.

Solution: Note that $p_{kk}^n = 1/(M-k+1)^n$, for $k=1,\ldots,M$. Hence, all the states are transient except the state 'M', as $\sum_{n=1}^{\infty} p_{kk}^n < \infty$, for $k=1,\ldots,M-1$, and $\sum_{n=1}^{\infty} p_{MM}^n = \infty$. $\lim_{n\to\infty} p_{kk}^n = 0$ if $k = 1, \dots, M-1$, and it is 1, for k = M.

-Let us calculate (172) $f_{22} = \frac{1}{M-1}; f_{22} = 2-i - \frac{1}{M-2}$ $f_{22} = \frac{1}{M-1}; f_{22} = 2-i - \frac{1}{M-2}$ $f_{22} = \frac{1}{M-1}; f_{22} = 2-i - \frac{1}{M-2}$ $f_{11} = \frac{1}{M-2}; f_{22} = \frac{1}{M-2$