Roll Number:

Thapar Institute of Engineering and Technology, Patiala

School of Mathematics

B.E. (Second Year)	AUXILIARY EXAMINATION	
2.2. (Second Teal)	Course Code: UMA007	
Feb 28, 2020	Course Name: Numerical analysis	
Time: 3 Hours, M. Marks: 100	M. CD	
	Name of Faculty: Dr. Sapna Sharma, Meenu Rani	

Note: Attempt all the problems. Please attempt all the parts of a problem at one place and start next problem from a new page. Calculator without graphing mode and alphanumeric memory is permitted

1. a. Let floating point representation of a real number is $x = (0.a_1 a_2 a_3 \dots a_n a_{n+1} \dots)_{\beta} \times \beta_{\epsilon}, \ a_1 \neq 0.$ Let f(x) be its machine approximation with n significant digits by chopping then obtain a bound for

absolute relative error

Consider the stability (by calculating the condition number) of $\sqrt{1+x}-1$ when x is near zero. b. Rewrite the expression to rid it of subtractive cancellation

2.a. Find the first four iterations obtained by the Secant method applied to the given equation

 $g(x) = 2^{-x}$ has unique fixed point in $\left[\frac{1}{3},1\right]$. Use fixed point iteration to find an **b.** Show that approximation to the fixed point accurate to within 10^{-2} and initial guess $x_0 = 0.5$.

3.a Starting with $X^{(0)} = [0,0,0]^T$ and working with four decimal digits rounding arithmetic, Perform three iterations of Gauss-Seidel method for the following system of linear equation:

$$4x + y - z = 3$$

 $2x + 7y + z = 19$
 $x - 3y + 12z = 31$.

b. Find the largest eigen value correct to three significant digits for the matrix

$$\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$$

using power method by taking initial approximation $X^{(0)} = [1,0,0]^T$. Also find the corresponding [10+8]

4.a Determine a constant a, b, c that will produce a quadrature formula

$$\int_{0}^{2} f(x) dx = af(0) + bf(1) + cf(2),$$

with degree of precision 2.

b. Approximate the given integral using the trapezoidal rule $_{-0.25}$ with 4 subintervals. Hence find a bound for the error using the error formula..

[8+8]

5.a Suppose that $x_0, x_1, x_2, \dots, x_n$ are distinct number in [a,b] and $f \in C^{n+1}[a,b]$. Let $P_n(x)$ be the unique polynomial of degree $\leq n$ that passes through n+1 nodal points then prove that $\forall x \in [a,b], \exists \xi(x) \in (a,b)$ such that $f(x) - P_n(x) = \frac{(x - x_0).....(x - x_n)}{(n+1)!} f^{n+1}(\xi)$

b. Find the second degree polynomial by least square method for the following data

Х	-3.0	-1.0	1.0	3.0
y	15.0	5.0		5.0

[10+8]

6.a. Solve the initial value problem by the forth-order Runge Kutta method for x = 0.2 by taking step size h=0.2

$$\frac{dy}{dx} = 2xy^2, \qquad y(0) = 1,$$

b. Show that the initial value problem $\frac{dy}{dx} = y \cos x$, $0 \le x \le 1$ y(0) = 1, has a unique solution