UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2015/2 Prova da área II

1-6	7	8	Total

Nome:	Cartão:	

${\bf Regras\ Gerais:}$

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

COORDENADAS CILÍNDRICAS E ESFÉRICAS

a) Coordenadas cilíndricas : ρ,φ,z

b) Coordenadas esféricas : r, θ, ϕ

Tabela do operador $\vec{\nabla}$:

f=f(x,y,z) e g=g(x,y,z) são funções escalares; $\vec{F}=\vec{F}(x,y,z)$ e $\vec{G}=\vec{G}(x,y,z)$ são funções vetoriais.

1. $\vec{\nabla} (f+g) = \vec{\nabla} f + \vec{\nabla} g$	
$\vec{\nabla} \cdot \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \cdot \vec{F} + \vec{\nabla} \cdot \vec{G}$	
3. $\vec{\nabla} \times (\vec{F} + \vec{G}) = \vec{\nabla} \times \vec{F} + \vec{\nabla} \times \vec{F}$	$ec{G}$
4. $\vec{\nabla} (fg) = f \vec{\nabla} g + g \vec{\nabla} f$	
$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right) \cdot \vec{F} + f \left(\vec$	$ec{F}ig)$
6. $\vec{\nabla} \times (f\vec{F}) = \vec{\nabla} f \times \vec{F} + f\vec{\nabla} \times$	$ec{F}$
7. $\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} $	$\frac{\partial^2 f}{\partial z^2}$,
onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operad	or laplaciano
8. $\vec{\nabla} \times (\vec{\nabla} f) = 0$	
9. $\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$	
10. $\vec{\nabla} \times (\vec{\nabla} \times \vec{F}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{F}) - \vec{\nabla}$	$^2ec{F}$
11. $\vec{\nabla} \cdot (\vec{F} \times \vec{G}) = G \cdot (\vec{\nabla} \times \vec{F}) - F \cdot (\vec{G} \times \vec{F}) - F \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F}) = G \cdot (\vec{G} \times \vec{F}) - G \cdot (\vec{G} \times \vec{F})$	$ec{ abla} imes ec{G} \Big)$
12. $\vec{\nabla} \times (\vec{F} \times \vec{G}) = (\vec{G} \cdot \vec{\nabla}) \vec{F} - \vec{G} (\vec{\nabla} \cdot \vec{F}) - (\vec{F} \cdot \vec{F})$	$ \vec{\nabla} \vec{G} + \vec{F}(\vec{\nabla} \cdot \vec{G}) $
13. $\vec{\nabla} (\vec{F} \cdot \vec{G}) = (\vec{G} \cdot \vec{\nabla}) \vec{F} + (\vec{F} \cdot \vec{\nabla}) \vec{G} + \vec{F} \times (\vec{\nabla} \times \vec{G}) \vec{G} + \vec{F} \cdot \vec{G} \vec{G} = \vec{G} \cdot \vec{G} \cdot \vec{G} \vec{G} + \vec{G} \cdot \vec{G} \vec{G} \vec{G} + \vec{G} \cdot \vec{G} \vec{G} \vec{G} \vec{G} \vec{G} \vec{G} \vec{G} \vec{G}$	$\vec{G} + \vec{G} \times (\vec{\nabla} \times \vec{F})$

- Questão 1 (1.0 ponto) A vetor normal unitário em um ponto da curva $\vec{r} = \cos(t)\vec{i} + \sin(t)\vec{j}$, $0 \le t \le 2\pi$ é:
 - $(\quad) \ \, \vec{N} = \cos(t)\vec{i} + \sin(t)\vec{j}.$
 - () $\vec{N} = -\cos(t)\vec{i} + \sin(t)\vec{j}$..
 - (X) $\vec{N} = -\cos(t)\vec{i} \sin(t)\vec{j}$..
 - () $\vec{N} = \cos(t)\vec{i} \sin(t)\vec{j}$..
 - () $\vec{N} = \operatorname{sen}(t)\vec{i} + \cos(t)\vec{j}$.
 - () $\vec{N} = -\sin(t)\vec{i} \cos(t)\vec{j}$.

- Questão 2 (1.0 ponto) Dado um campo escalar f(r), $r=\sqrt{x^2+y^2+z^2}$, e o campo vetorial $\vec{F}(\vec{r})=f(r)\hat{r}$, podemos afirmar que
 - () $\vec{\nabla} \cdot \vec{F} = 0$
 - () $\vec{\nabla}^2 f = f''(r)$.
 - () $\vec{\nabla}f = \vec{0}$
 - (X) $\vec{\nabla} \times \vec{F} = \vec{0}$
 - $(\quad) \quad \vec{\nabla}^2 \vec{F} = f''(r)\hat{r}.$
 - $(\)\ \vec{\nabla}\left(\vec{\nabla}\cdot\vec{F}\right) \neq \vec{\nabla}^2\vec{F}.$

• Questão 3 (1.0 ponto) Dado o campo conservativo $\vec{F} = (e^y + ye^x)\vec{i} + (xe^y + e^x)\vec{j} + \vec{k}$, a função potencial é.

• Questão 4 (1.0 ponto) O trabalho realizado pelo campo do exercício 3 a
o longo da curva $C: \vec{r} = t^3 \vec{i} + t^2 \vec{j} + t \vec{k}$ desde a origem até o ponto P(1,1,1) é

- $(\)\ 1+e.$
- (X) 1 + 2e.
- () 1+3e.
- () 1 e.
- () 1-2e.
- () 1-3e.

- Questão 5 (1.0 ponto) O fluxo do campo $\vec{F} = y\vec{i} x\vec{j} + z\vec{k}$ através da superfície dada pelo parabolóide $z = 1 x^2 y^2$, $z \ge 0$ orientada • Questão 5 (1.0 ponto) O fino sentido côncavo-convexo é $(X) \frac{\pi}{2}.$ () $\frac{\pi}{4}.$ () $\frac{\pi}{6}.$ () $-\frac{\pi}{6}.$ () $-\frac{\pi}{4}.$ () $-\frac{\pi}{2}.$

• Questão 6 (1.0 ponto) Na figura abaixo é dada uma curva representada por um pedaço de uma hélice elíptica conectada a um segmento de reta. É correto afirmar que:

- () A curva é regular, isto é, $\vec{r}'(t)$ está bem definido em todos os pontos.
- () Não é possível saber o sinal da torção em nenhum ponto da curva, pois o sentido positivo não é informado.
- () A curva possui torção negativa e curvatura positiva em todos os pontos.
- () A curva possui torção positiva e curvatura positiva em todos os pontos.
- () A torção é sempre estritamente negativa, exceto em um único ponto.
- (X) A curvatura é nula em um conjunto infinito de pontos.

• Questão 7 (2.0 pontos) Considere o campo vetorial \vec{F} dado na figura 1 e marque verdadeiro, falso ou não sei. Observação: item respondido corretamente vale 0.2, item respondido incorretamente vale -0.2 e item marcado como não sei vale 0.0.

Figure 1: Campo vetorial \vec{F}

- i) Dado que os eixos $x,\,y$ e z obedecem a regra da mão direita, $\left(\vec{\nabla}\times\vec{F}(0.1,0.1)\right)\cdot\vec{k}>0$.
- ii) Se C é a reta que liga os pontos (0,0)e (1,0),então $\int_C \vec{F} \cdot d\vec{r} = 0$.
- iii) $\vec{\nabla} \cdot \vec{F}(0.5, 0) > 0.$
- iv) \vec{F} é um campo central da forma $\vec{F} = f(r)\hat{r}$, onde $r = \sqrt{x^2 + y^2}$.
- v) O campo \vec{F} é da forma $\vec{F} = f(x)\vec{i} + g(y)\vec{j}$, onde $f(x) \geq 0$ e $g(y) \leq 0$.
- vi) Se y=0, então $\vec{F}(x,0)=f(x)\vec{j}$, onde f é crescente e f(0)=0.
- vii) Seja Q o quadrado no plano $y=0,\;-1\leq x\leq 1,\;-1\leq z\leq 1$ e suponha que \vec{F} tenha componente na direção \vec{k} nula. Então $\iint_{C} \vec{F} \cdot \vec{n} dS = 0.$
- viii) Sejam C_1 e C_2 circunferências centradas na origem, orientadas no sentido anti-horário e de raios 0.5 e 1.0, respectivamente. Então $\int_{C_1} \vec{F} \cdot d\vec{r} > \int_{C_2} \vec{F} \cdot d\vec{r}$
- ix) $\|\vec{F}(1,1)\| < \|\vec{F}(-0.1,-0.1)\|$.
- x) A integral de linha $\int_C \vec{F} \cdot d\vec{r}$, onde C é uma curva que liga os pontos (0,0) e (1,1), independe de C.

	Verdadeiro	Falso	Não Sei
i)	X		
ii)	X		
iii)		X	
iv)		X	
v)		X	

	Verdadeiro	Falso	Não Sei
vi)	X		
vii)	X		
viii)		X	
ix)		X	
x)		X	

• Questão 8 (2.0 pontos): Considere o campo vetorial dado por

$$\vec{F} = z^2 \vec{k}$$

e a região V limitada superiormente por z=1 e inferiormente por $x^2+y^2-z^2=0$. Calcule o fluxo de \vec{F} através da superfície S que limita V, orientada para fora, usando o Teorema da Divergência. solução: Primeiro, observamos que $\vec{\nabla} \cdot \vec{F} = 2z$. Pelo teorema da divergência,

$$\phi = \iint_{S} \vec{F} \cdot \vec{n} dS$$

$$= \iiint_{V} \vec{\nabla} \cdot \vec{F} dV$$

$$= \int_{0}^{2\pi} \int_{0}^{1} \int_{r}^{1} 2zrdzdrd\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{1} \left[z^{2}\right]_{r}^{1} rdzdrd\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{1} r - r^{3}dzdrd\theta$$

$$= \int_{0}^{2\pi} \left[\frac{r^{2}}{2} - \frac{r^{4}}{4}\right]_{0}^{1} dzdrd\theta$$

$$= \frac{\pi}{2}.$$