REPORT SUMMARY

PATIENT AND SAMPLE INFORMATION	2
VARIANT(S) WITH CLINICAL RELEVANCE	2
THERAPEUTIC IMPLICATIONS	3
REPORT DETAILS	
VARIANT INTERPRETATION	5
US FDA-APPROVED DRUG(S)	10
ONGOING CLINICAL TRIALS	19
DETAILED TEST RESULTS	20
HOTSPOT GENOTYPES	22
TEST DETAILS	24
ACTOnco®+ GENE LIST	28
DISCLAIMER	29
APPENDIX	
SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS	31
DEEDENICES	2/

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

PATIENT AND SAMPLE INFORMATION

PATIENT SPECIMEN ORDERING PHYSICIAN

Name: 許獻聰Type: FFPE tissueName: 顏厥全醫師Gender: MaleDate received: Dec 01, 2021Facility: 臺北榮總Date of Birth: Nov 21, 1963Collection site: Left pelvicTel: 886-228712121

Patient ID: 45100274 Specimen ID: S11031648A Address: 臺北市北投區石牌路二段 201 號

Diagnosis: Chondrosarcoma Lab ID: AA-21-05913

D/ID: NA

VARIANT(S) WITH CLINICAL RELEVANCE

Only variant(s) with clinical significance are listed. See the "DETAILED TEST RESULTS" section for full details.

SINGLE NUCLEOTIDE AND SMALL INDEL VARIANTS				
Gene	Amino Acid Change	Coverage	Allele Frequency	COSMIC ID
IDH1	R132S	1094	28.0%	COSM28748
TP53	R248Q	1065	50.7%	COSM10662

COPY NUMBER VARIANTS (CNVS)

Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on <u>44%</u> tumor purity.

Amplification (Copy number ≥ 8)

Chr	Gene	Copy Number
ND	ND	ND

Homozygous deletion (Copy number=0)

Chr

chr22

Cili	GCIIC	
ND	ND	
Heterozygous deletion (Copy number=1)		
Chr	Gene	
chr9	CDKN2A	
chr17	NF1	

Gana

CHEK2, NF2

ND, Not Detected

TUMOR MUTATIONAL BURDEN (TMB)

MICROSATELLITE INSTABILITY (MSI)

1.9 muts/Mb

Microsatellite stable (MSS)

Muts/Mb, mutations per megabase

Note:

TMB was calculated by using the sequenced regions of ACTOnco $^{\circ}$ + to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at \geq 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

Variant Analysis:

醫檢師黃靖婷 博士 Ching-Ting Huang Ph.D. 檢字第 016511 號 CTHUANG

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號 Jehn-

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 2 of 43

許獻聰

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

THERAPEUTIC IMPLICATIONS **TARGETED THERAPIES Therapies** Effect **Genomic Alterations** Level 3A **IDH1** R132S Ivosidenib sensitive Level 3B sensitive **CDKN2A** Heterozygous deletion Abemaciclib, Palbociclib, Ribociclib CHEK2 Heterozygous deletion Niraparib, Rucaparib sensitive sensitive **NF1** Heterozygous deletion Selumetinib Level 4 **IDH1** R132S Dasatinib, Sunitinib, Bevacizumab sensitive CHEK2 Heterozygous deletion Olaparib sensitive NF2 Heterozygous deletion sensitive Everolimus **NF1** Heterozygous deletion Everolimus, Trametinib sensitive Afatinib, Erlotinib, Gefitinib, Lapatinib, Vemurafenib, **NF1** Heterozygous deletion resistant Cetuximab, Trastuzumab

Note: Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence.

Lev	/el	Description
1	l	FDA-recognized biomarker predictive of response to an FDA approved drug in this indication
2	2	Standard care biomarker (recommended as standard care by the NCCN or other expert panels) predictive of response to an FDA approved drug in this indication
3	Α	Biomarkers that predict response or resistance to therapies approved by the FDA or professional societies for a different type of tumor
	В	Biomarkers that serve as inclusion criteria for clinical trials
4	1	Biomarkers that show plausible therapeutic significance based on small studies, few case reports or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 3 of 43

[‡] Refer to "ONGOING CLINICAL TRIALS" section for detailed trial information.

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

IMMUNE CHECKPOINT INHIBITORS (ICI) THERAPIES

Genomic markers and alterations that are associated with response to ICI therapies

Positive Biomarker	Negative Biomarker
TMB-H: ND	EGFR aberration: ND
MSI-H: ND	MDM2/MDM4 amplification: ND
MMR biallelic inactivation: ND	STK11 biallelic inactivation: ND
PBRM1 biallelic inactivation: ND	PTEN biallelic inactivation: ND
SERPINB3/SERPINB4 mutation: ND	B2M biallelic inactivation: ND
\ \ \ \	JAK1/2 biallelic inactivation: ND

MMR, mismatch repair; ND, not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES				
Therapies	Genomic Alterations	Effect	Gene / Variant Level Evidence	Cancer Type
Platinum- and taxane- based regimens	TP53 R248Q	less sensitive	Clinical	Ovarian cancer

HORMONAL THERAPIES				
Therapies	Genomic Alterations	Effect	Gene / Variant Level Evidence	Cancer Type
Tamoxifen	NF1 Heterozygous deletion	less sensitive	Clinical	Breast cancer

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

Page 4 of 43

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: service@actgenomics.com T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05)

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

VARIANT INTERPRETATION

IDH1 R132S

Biological Impact

IDH1 encodes the isocitrate dehydrogenase 1 (IDH1), an enzyme that catalyzes the conversion of isocitrate to alpha-ketoglutarate (alpha-KG), a crucial step in the tricarboxylic acid (TCA) cycle. Mutations in IDH1 convert alpha-KG to 2-HG, which is an oncogenic metabolite^[1]. Missense mutations of IDH1/2, including the substitution of the amino acids arginine 132 in IDH1 and arginine 172 or 140 in IDH2, leads to accumulate intracellular D-2-hydroxyglutarate (D-2HG) and alter epigenetic regulation, cancer cell differentiation and metabolism^{[2][3][4][5]}. Mutations in IDH1 and IDH2 have been reported a wide range of cancers, including prostate cancer^[6], chondrosarcoma^[7], glioma^[8], cholangiocarcinoma^[9] and acute myeloid leukemia (AML)^[10].

Therapeutic and prognostic relevance

Ivosidenib, the IDH1 inhibitor has been approved by the U.S. Food and Drug Administration (U.S. FDA) for the treatment of adult patients with relapsed or refractory acute myeloid leukemia (AML) carrying a susceptible IDH1 mutation (R132C, R132H, R132G, R132S, and R132L) as detected by an FDA-approved test. Results of a Phase I clinical study showed that IDH305 and AG-120 (Ivosidenib), inhibitors explicitly targeting the mutated IDH1, demonstrate efficacy in patients AML harboring IDH1 R132 mutations^[11]. In another clinical study (n=63), glioma patients harboring IDH1 R132 mutations showed favorable overall survival when treated with bevacizumab or sunitinib^[12]. Of note, in August. 2021, U.S. FDA has also approved ivosidenib for the treatment of adult patients with locally advanced or metastatic cholangiocarcinoma with IDH1 mutation (R132C, R132H, R132G, R132S, and R132L) based on the results of Study AG120-C-005 (NCT02989857)^[13].

A combination therapy consists of vandetanib, a multi-tyrosine kinase inhibitor, temozolomide, and radiotherapy demonstrated a significant increased PFS and OS in glioblastoma patients harboring IDH1 R132H compared to glioblastoma patients without IDH1 R132H^[14].

Preclinical studies in intrahepatic cholangiocarcinoma, glioma, sarcoma, and AML also demonstrated the sensitivity of R132C/H-mutant tumors to multi-kinase inhibitors such as saracatinib and dasatinib^[15], PARP inhibitors^{[16][17]}, as well as IDH1 inhibitor AGI-5198^{[18][19]}. Small molecule inhibitors of IDH1, which have shown activity in the preclinical settings in IDH1-mutant glioma and leukemia cells, are currently in clinical trials^{[18][4]}.

TP53 R248Q

Biological Impact

TP53 encodes the p53 protein, a crucial tumor suppressor that orchestrates essential cellular processes including cell cycle arrest, senescence and apoptosis^[20]. TP53 is a proto-typical haploinsufficient gene, such that loss of a single copy of TP53 can result in tumor formation^[21].

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

R248Q is a missense mutation located in the DNA-binding domain (DBD) of the p53 protein (UniProtKB). This mutation causes oncogenic gain-of-function phenotypes in a breast cancer cell line^[22] and has been reported to target the proteasome activator REG gamma to promote endometrial cancer progression^[23].

Therapeutic and prognostic relevance

Despite having a high mutation rate in cancers, there are currently no approved targeted therapies for TP53 mutations. A phase II trial demonstrated that Wee1 inhibitor (AZD1775) in combination with carboplatin was well tolerated and showed promising anti-tumor activity in TP53-mutated ovarian cancer refractory or resistant (< 3 months) to standard first-line therapy (NCT01164995)^[24].

In a retrospective study (n=19), advanced sarcoma patients with TP53 loss-of-function mutations displayed improved progression-free survival (208 days versus 136 days) relative to patients with wild-type TP53 when treated with pazopanib^[25]. Results from another Phase I trial of advanced solid tumors (n=78) demonstrated that TP53 hotspot mutations are associated with better clinical response to the combination of pazopanib and vorinostat^[26].

Advanced solid tumor and colorectal cancer patients harboring a TP53 mutation have been shown to be more sensitive to bevacizumab when compared with patients harboring wild-type TP53^{[27][28][29]}. In a pilot trial (n=21), TP53-negative breast cancer patients demonstrated increased survival following treatment with bevacizumab in combination with chemotherapy agents, Adriamycin (doxorubicin) and Taxotere (docetaxel)^[30]. TP53 mutations were correlated with poor survival of advanced breast cancer patients receiving tamoxifen or primary chemotherapy^{[31][32]}. In a retrospective study of non-small cell lung cancer (NSCLC), TP53 mutations were associated with high expression of VEGF-A, the primary target of bevacizumab, offering a mechanistic explanation for why patients exhibit improved outcomes after bevacizumab treatment when their tumors harbor mutant TP53 versus wild-type TP53^[33].

TP53 oncomorphic mutations, including P151S, Y163C, R175H, L194R, Y220C, R248Q, R248W, R273C, R273H, R273L and R282W have been shown to predict resistance to platinum- and taxane-based chemotherapy in advanced serous ovarian carcinoma patients^[34].

CDKN2A Heterozygous deletion

Biological Impact

The Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) gene encodes the p16 (p16INK4a) and p14 (ARF) proteins. p16INK4a binds to CDK4 and CDK6, inhibiting these CDKs from binding D-type cyclins and phosphorylating the retinoblastoma (RB) protein^{[35][36]} whereas p14 (ARF) blocks the oncogenic activity of MDM2 by inhibiting MDM2-induced degradation of p53^[37]. CDKN2A has been reported as a haploinsufficient tumor suppressor with one copy loss that may lead to weak protein expression and is insufficient to execute its original physiological functions^[38]. Loss of CDKN2A has been frequently found in human tumors that result in uncontrolled cell proliferation^{[39][40]}.

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

Therapeutic and prognostic relevance

Intact p16-Cdk4-Rb axis is known to be associated with sensitivity to cyclin-dependent kinase inhibitors^{[41][42]}. Several case reports also revealed that patients with CDKN2A-deleted tumors respond to the CDK4/6-specific inhibitor treatments^{[43][44][45]}. However, there are clinical studies that demonstrated CDKN2A nuclear expression, CDKN2A/CDKN2B co-deletion, or CDKN2A inactivating mutation was not associated with clinical benefit from CDK4/6 inhibitors, such as palbociclib and ribociclib, in RB-positive patients^{[46][47][48]}. However, CDKN2A loss or mutation has been determined as an inclusion criterion for the trial evaluating CDK4/6 inhibitors efficacy in different types of solid tumors (NCT02693535, NCT02187783).

Notably, the addition of several CDK4/6 inhibitors to hormone therapies, including palbociclib in combination with letrozole, ribociclib plus letrozole, and abemaciclib combines with fulvestrant, have been approved by the U.S. FDA for the treatment of ER+ and HER2- breast cancer^{[42][49][50]}.

In a Phase I trial, a KRAS wild-type squamous non-small cell lung cancer (NSCLC) patient with CDKN2A loss had a partial response when treated with CDK4/6 inhibitor abemaciclib^[44]. Administration of combined palbociclib and MEK inhibitor PD-0325901 yield promising progression-free survival among patients with KRAS mutant non-small cell lung cancer (NSCLC) (AACR 2017, Abstract CT046). Moreover, MEK inhibitor in combination with CDK4/6 inhibitor demonstrates significant anti-KRAS-mutant NSCLC activity and radiosensitizing effect in preclinical models^[51].

A retrospective analysis demonstrated that concurrent deletion of CDKN2A with EGFR mutation in patients with non-small cell lung cancer (NSCLC), predicts worse overall survival after EGFR-TKI treatment^[52].

CHEK2 Heterozygous deletion

Biological Impact

The checkpoint kinase 2 (CHEK2 or CHK2) gene encodes a serine/threonine protein kinase involved in transducing DNA damage signals that are required for both the intra-S phase and G2/M checkpoints^[53]. CHEK2 heterozygosity has been shown to cause haploinsufficient phenotypes that can contribute to tumorigenesis through inappropriate S phase entry, accumulation of DNA damage during replication, and failure to restrain mitotic entry^{[54][55]}. CHEK2 aberrations are associated with glioblastoma, breast, ovarian, prostate, colorectal, gastric, thyroid, and lung cancers^{[56][57][58][59][60]}.

Therapeutic and prognostic relevance

In May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate^[61].

Project ID: C21-M001-01392 Report No.: AA-21-05913 ONC Date Reported: Dec 13, 2021

In addition, CHEK2 has been determined as an inclusion criterion for the trials evaluating rucaparib efficacy in ovarian cancer^[62] or prostate cancer^[63] (NCT03533946), niraparib efficacy in melanoma (NCT03925350), pancreatic cancer (NCT03553004), prostate cancer (NCT02854436), and any malignancy, except prostate (NCT03207347), and talazoparib efficacy in HER2-negative breast cancer (NCT02401347), prostate cancer (NCT03148795), and lung cancer (NCT03377556), respectively.

In a phase 2 trial, two prostate cancer patients harboring CHEK2 homozygous deletion was enrolled. One of the two patients had a response to olaparib^[64].

NF1 Heterozygous deletion

Biological Impact

The neurofibromin 1 (NF1) gene encodes a GTPase activating protein (GAP) which is an important negative regulator of the Ras cellular proliferation pathways [65][66][67][68]. Besides, NF1 also physically interacts with the Nterminal domain of focal adhesion kinase (FAK) and involves in the regulation of cell adhesion, growth, and other pathways^{[69][70]}. NF1 is considered a classical haploinsufficient tumor suppressor gene with loss of one allele through inherited or acquired mutation may lead to reduced protein expression and is insufficient to execute normal cellular functions contributing to tumor development^{[71][72][73][74][75]}. NF1 syndrome is a germline condition resulting in a predisposition to several types of cancer such as neurofibromas, melanoma, lung cancer, ovarian cancer, breast cancer, colorectal cancer, hematological malignancies[76][77][78]. Meanwhile, sporadic NF1 mutations have been observed in multiple cancer types^[79], including myelodysplastic syndromes, melanomas, colon cancer^[80], glioblastomas^[81], lung cancer^[82], ovarian cancer, and breast cancer^[76].

Therapeutic and prognostic relevance

In April 2020, the U.S. FDA has approved selumetinib for pediatric patients 2 years of age and older with neurofibromatosis type 1 (NF1) who have symptomatic, inoperable plexiform neurofibromas (PN).

A phase II trial (NCT02664935, NLMT) demonstrated that selumetinib in combination with docetaxel resulted in a confirmed ORR of 28.5% (4/14), durable clinical benefit (DCB) rate of 50% (7/14), and mPFS of 5.3 months in lung adenocarcinoma patients harboring NF1 loss^[83].

NF1 loss has been determined as an inclusion criterion for the trials evaluating selumetinib efficacies in lung cancer (NCT02664935) and NF1-associated tumors (NCT03326388).

A case study had reported that MEK inhibitor, trametinib, was effective in a treatment-refractory neurofibromatosis type I-associated glioblastoma^[84]. Various preclinical data had also supported the activity of MEK and mTOR inhibitors in NF1-deficient tumors $^{[85][86][87][88][89][90]}$.

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

In an NGS-based study, patients harboring mutations in the mTOR pathway, including mTOR, TSC1, TSC2, NF1, PIK3CA, and PIK3CG responded to everolimus^[91].

NF1 depletion has been associated with drug resistance to RAF and EGFR inhibitors, tamoxifen, and retinoic acid^{[79][92]}. For example, loss of NF1 was identified in patients with lung adenocarcinomas or colorectal cancer who presented resistance to anti-EGFR treatment, including erlotinib, gefitinib, afatinib, and cetuximab, respectively^{[93][94][95]}. Notably, preclinical studies further revealed that the addition of a MEK inhibitor could restore the sensitivity to erlotinib^[93].

In a liquid biopsy-based ctDNA profiling study of HER2-positive metastatic gastric cancer, NF1 loss (either induced by mutation or deletion) was suggested as a novel mechanism contributes to trastuzumab resistance. The cell-based study also showed that the trastuzumab resistance could be overcome with a combination of HER2 and MEK/ERK inhibitors^[96].

Loss of NF1 in patients with BRAF-mutated melanomas was suggested conferring resistance to BRAF inhibitors^{[97][98][99][100]}.

NF2 Heterozygous deletion

Biological Impact

The neurofibromin (NF2) gene encodes the protein Merlin, a tumor suppressor that functions as a negative regulator of the PI3K/AKT/mTOR pathway^{[101][102][103]}. NF2 is a haploinsufficient tumor suppressor gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^[104]. Inactivation germline mutations in the NF2 are associated with the hereditary neurofibromatosis type 2, a disorder characterized by the growth of noncancerous tumors in the nervous system^{[101][105]}. Somatic mutations or deletion of NF2 are frequently observed in human cancers, including 20-50% of pleural mesotheliomas^[106], 6% papillary renal cell carcinoma, 5% pancreas cancer, and 4% melanoma (cbioPortal; June 2015), and less frequently in other cancers^[107].

Therapeutic and prognostic relevance

Genomic alterations with activating effects on the mTOR signaling pathway have been identified to confer sensitivity to everolimus across multiple cancer types^{[108][109][110][91]}. There are at least two case studies indicating the clinical efficacy of everolimus in bladder cancer^[111] and urothelial carcinoma^[112], both harboring NF2 truncating mutations. Preclinical evidence has shown the efficacy of MEK1/2 inhibitor selumetinib in KRAS-mutant thyroid cancer model with NF2 loss^[113].

Analysis of afatinib-plus-cetuximab-resistant biopsy specimens revealed a loss-of-function alteration in genes that modulate mTOR signaling pathway, including NF2 and TSC1^[114].

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

US FDA-APPROVED DRUG(S)

Abemaciclib (VERZENIO)

Abemaciclib is a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor. Abemaciclib is developed and marketed by Eli Lilly under the trade name VERZENIO.

FDA Approval Summary of Abemaciclib (VERZENIO)

•	Breast cancer (Approved on 2021/10/12)
monarchE	HR-positive, HER2-negative
NCT03155997	Abemaciclib + tamoxifen/aromatase inhibitor vs. Tamoxifen/aromatase inhibitor
	[IDFS at 36 months(%): 86.1 vs. 79.0]
	Breast cancer (Approved on 2018/02/26)
MONARCH 3 ^[115]	HR-positive, HER2-negative
NCT00246621	Abemaciclib + anastrozole/letrozole vs. Placebo + anastrozole/letrozole
	[PFS(M): 28.2 vs. 14.8]
	Breast cancer (Approved on 2017/09/28)
MONARCH 1 ^[116]	HR-positive, HER2-negative
NCT02102490	Abemaciclib
	[ORR(%): 19.7 vs. 17.4]
	Breast cancer (Approved on 2017/09/28)
MONARCH 2 ^[50]	HR-positive, HER2-negative
NCT02107703	Abemaciclib + fulvestrant vs. Placebo + fulvestrant
	[PFS(M): 16.4 vs. 9.3]

Bevacizumab (AVASTIN)

Bevacizumab is a recombinant humanized monoclonal antibody that blocks angiogenesis by inhibiting VEGF-A. Bevacizumab is developed and marketed by Genentech/Roche under the trade name AVASTIN.

FDA Approval Summary of Bevacizumab (AVASTIN)

	Hepatocellular carcinoma (Approved on 2020/05/29)
IMbrave150	-
NCT03434379	Atezolizumab plus bevacizumab vs. Sorafenib
	[PFS(M): 6.8 vs. 4.3, OS(M): NR vs. 13.2]
	Peritoneal carcinoma, Ovary epithelial cancer, Fallopian tube cancer (Approved
GOG-0213 ^[117] NCT00565851	on 2016/12/06)
	-
	Bevacizumab + carboplatin + paclitaxel vs. Carboplatin + paclitaxel
	[OS(M): 42.6 vs. 37.3]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: service@actgenomics.com T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 10 of 43

許獻聰

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

	Peritoneal carcinoma, Ovary epithelial cancer, Fallopian tube cancer (Approved
OCEANS ^[118]	on 2016/12/06)
NCT00434642	-
140100434042	Bevacizumab + carboplatin + gemcitabine vs. Carboplatin + gemcitabine
	[PFS(M): 12.4 vs. 8.4]
	Peritoneal carcinoma, Ovary epithelial cancer, Fallopian tube cancer (Approved
AURELIA [119]	on 2014/11/14)
NCT00976911	
	Bevacizumab + chemotherapy vs. Chemotherapy
	[PFS(M): 6.8 vs. 3.4]
	Cervical cancer (Approved on 2014/08/14)
GOG-0240 ^[120]	- (
NCT00803062	Bevacizumab + chemotherapy vs. Chemotherapy
	[OS(M): 16.8 vs. 12.9]
	Colorectal cancer (Approved on 2013/01/23)
ML18147 ^[121]	-
NCT00700102	Bevacizumab + chemotherapy vs. Chemotherapy
	[OS(M): 11.2 vs. 9.8]
	Renal cell carcinoma (Approved on 2009/07/31)
BO17705 ^[122]	-
NCT00738530	Bevacizumab + IFN- α 2a vs. IFN- α 2a
	[PFS(M): 10.2 vs. 5.4]
AN (TO TO) [123]	Glioblastoma multiforme (Approved on 2009/05/06)
AVF3708g ^[123]	
NCT00345163	Bevacizumab + irinotecan vs. Bevacizumab
	[ORR(%): 25.9]
E4599 ^[124]	Non-small cell lung carcinoma (Approved on 2006/10/11)
NCT00021060	Bevacizumab + paclitaxel + carboplatin vs. Paclitaxel + carboplatin
NC100021000	[OS(M): 12.3 vs. 10.3]
	Colorectal cancer (Approved on 2006/06/20)
	-
E3200 ^[125]	Bevacizumab + oxaliplatin + fluorouracil + leucovorin vs. Oxaliplatin + fluorouracil
NCT00025337	+ leucovorin
	[OS(M): 13 vs. 10.8]
	[55(), 25 (5) 25(6)

Project ID: C21-M001-01392

Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

	Colorectal cancer (Approved on 2004/02/26)	
AVF2107g ^[126]	-	
NCT00109070	Bevacizumab + irinotecan+5-FU + leucovorin vs. Irinotecan + 5-FU + leucovorin	
	[OS(M): 20.3 vs. 15.6]	

Dasatinib (SPRYCEL)

Dasatinib is an oral Bcr-Abl tyrosine kinase inhibitor (inhibits the "Philadelphia chromosome") and Src family tyrosine kinase inhibitor. Dasatinib is produced by Bristol-Myers Squibb and sold under the trade name SPRYCEL.

FDA Approval Summary of Dasatinib (SPRYCEL)

Drivippioval Gallinary of Basactino (Strice 2)	
	Chronic myeloid leukemia (Approved on 2010/10/28)
DASISION ^[127]	- ()
NCT00481247	Dasatinib vs. Imatinib
	[ORR(%): 76.8 vs. 66.2]
	Chronic myeloid leukemia (Approved on 2007/11/08)
[128]	-
NCT00123474	Dasatinib
	[ORR(%): 63.0]
	Acute lymphocytic leukemia (Approved on 2006/06/28)
[129]	-
NCT00123487	Dasatinib
	[ORR(%): 38.0]

Everolimus (AFINITOR)

Everolimus, a derivative of sirolimus, works as an inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and blocks mTORC1-mediated downstream signals for cell growth, proliferation, and survival. Everolimus is developed and marketed by Novartis under the trade name AFINITOR.

FDA Approval Summary of Everolimus (AFINITOR)

	Lung or gastrointestinal neuroendocrine tumor (Approved on 2016/02/26)
RADIANT-4 ^[130]	-
NCT01524783	Everolimus vs. Placebo
	[PFS(M): 11 vs. 3.9]
	Breast cancer (Approved on 2012/07/20)
BOLERO-2 ^[131]	ER+/HER2-
NCT00863655	Everolimus + exemestane vs. Placebo + exemestane
	[PFS(M): 7.8 vs. 3.2]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

許獻聰

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

	Pancreatic neuroendocrine tumor (Approved on 2011/05/05)
RADIANT-3 ^[132]	-
NCT00510068	Everolimus vs. Placebo
	[PFS(M): 11 vs. 4.6]
	Subependymal giant cell astrocytoma (Approved on 2010/10/29)
EXIST-1 ^[133]	-
NCT00789828	Everolimus vs. Placebo
	[ORR(%): 35.0]
	Renal cell carcinoma (Approved on 2009/05/30)
RECORD-1 ^[134]	-
NCT00410124	Everolimus vs. Placebo
	[PFS(M): 4.9 vs. 1.9]

Ivosidenib (TIBSOVO)

Ivosidenib is an isocitrate dehydrogenase-1 (IDH1) inhibitor. Ivosidenib is developed and marketed by Agios under the trade name TIBSOVO.

FDA Approval Summary of Ivosidenib (TIBSOVO)

	Cholangiocarcinoma (Approved on 2021/08/25)
Study AG120-C-005 ^[13]	IDH1 mutation (R132C/H/G/S/L)
NCT02989857	Ivosidenib vs. Placebo
	[PFS(M): 2.7 vs. 1.4]
	Acute myeloid leukemia (Approved on 2018/07/20)
AG120-C-001 ^[11]	IDH1 mutation (R132C/H/G/S/L)
NCT02074839	Ivosidenib
	[pCR(%): 42.9]

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

FDA Approval Summary of Niraparib (ZEJULA)

QUADRA ^[135] NCT02354586	Ovarian cancer (Approved on 2019/10/23)
	HRD-positive (defined by either a deleterious or suspected deleterious BRCA
	mutation, and/or genomic instability)
	Niraparib
	[ORR(%): 24.0, DOR(M): 8.3]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

AG4-QP4001-02(05) Page 13 of 43

許獻聰

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

NOVA ^[136] NCT01847274	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on
	2017/03/27)
	gBRCA+ CR/PR to platinum-based chemotherapy
	Niraparib vs. Placebo
	[PFS(M): 21 vs. 5.5]
NOVA^[136] NCT01847274	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on
	2017/03/27)
	gBRCA- CR/PR to platinum-based chemotherapy
	Niraparib vs. Placebo
	[PFS(M): 9.3 vs. 3.9]

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

FDA Approval Summary of Olaparib (LYNPARZA)

PROfound^[61] NCT02987543	Prostate cancer (Approved on 2020/05/19)
	ATMm, BRCA1m, BRCA2m, BARD1m, BRIP1m, CDK12m, CHEK1m, CHEK2m,
	FANCLm, PALB2m, RAD51Bm, RAD51Cm, RAD51Dm, RAD54Lm
	Olaparib vs. Enzalutamide or abiraterone acetate
	[PFS(M): 5.8 vs. 3.5]
	Ovarian cancer (Approved on 2020/05/08)
DA OLA 4 [137]	HRD-positive (defined by either a deleterious or suspected deleterious BRCA
PAOLA-1 ^[137]	mutation, and/or genomic instability)
NCT02477644	Olaparib + bevacizumab vs. Placebo + bevacizumab
	[PFS(M): 37.2 vs. 17.7]
	Pancreatic adenocarcinoma (Approved on 2019/12/27)
POLO ^[138]	Germline BRCA mutation (deleterious/suspected deleterious)
NCT02184195	Olaparib vs. Placebo
	[ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on
SOLO-1 ^[139] NCT01844986	2018/12/19)
	Germline or somatic BRCA-mutated (gBRCAm or sBRCAm)
	Olaparib vs. Placebo
	[PFS(M): NR vs. 13.8]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

許獻聰

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

Page 15 of 43

	Breast cancer (Approved on 2018/02/06)
OlympiAD ^[140]	Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative
NCT02000622	Olaparib vs. Chemotherapy
	[PFS(M): 7 vs. 4.2]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on
SOLO 3/FNCOT 0.21[141]	2017/08/17)
SOLO-2/ENGOT-Ov21 ^[141] NCT01874353	gBRCA+
NC101874555	Olaparib vs. Placebo
	[PFS(M): 19.1 vs. 5.5]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on
C*d1 0[142]	2017/08/17)
Study19 ^[142]	- ()
NCT00753545	Olaparib vs. Placebo
	[PFS(M): 8.4 vs. 4.8]
	Ovarian cancer (Approved on 2014/12/19)
Study 42 ^[143]	Germline BRCA mutation (deleterious/suspected deleterious)
Study 42 ^[143] NCT01078662	Germline BRCA mutation (deleterious/suspected deleterious) Olaparib

Palbociclib (IBRANCE)

Palbociclib is an oral, cyclin-dependent kinase (CDK) inhibitor specifically targeting CDK4 and CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Palbociclib is developed and marketed by Pfizer under the trade name IBRANCE.

FDA Approval Summary of Palbociclib (IBRANCE)

	Breast cancer (Approved on 2017/03/31)
PALOMA-2 ^[144]	ER+, HER2-
NCT01740427	Palbociclib + letrozole vs. Placebo + letrozole
	[PFS(M): 24.8 vs. 14.5]
	Breast cancer (Approved on 2016/02/19)
PALOMA-3 ^[145]	ER+, HER2-
NCT01942135	Palbociclib + fulvestrant vs. Placebo + fulvestrant
	[PFS(M): 9.5 vs. 4.6]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

Ribociclib (KISQALI)

Ribociclib is a cyclin-dependent kinase (CDK) inhibitor specifically targeting cyclin D1/CDK4 and cyclin D3/CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Ribociclib is developed by Novartis and Astex Pharmaceuticals and marketed by Novartis under the trade name KISQALI.

FDA Approval Summary of Ribociclib (KISQALI)

	Breast cancer (Approved on 2017/03/13)
MONALEESA-2 ^[49]	HR+, HER2-
NCT01958021	Ribociclib vs. Letrozole
	[PFS(M): NR vs. 14.7]

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

FDA Approval Summary of Rucaparib (RUBRACA)

111 7 -	Tracapania (Tobritori)
	Prostate cancer (Approved on 2020/05/15)
TRITON2	gBRCA+, sBRCA
NCT02952534	Rucaparib
	[ORR(%): 44.0, DOR(M): NE]
ARIEL3 ^[62]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on
	2018/04/06)
	All HRD tBRCA
NCT01968213	Rucaparib vs. Placebo
	[PFS (AII)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS (tBRCA)(M): 16.6 vs. 5.4]
	Ovarian cancer (Approved on 2016/12/19)
ARIEL2 ^[146]	Germline and/or somatic BRCA mutation
NCT01482715, NCT01891344	Rucaparib
	[ORR(%): 54.0]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 16 of 43

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

Selumetinib (KOSELUGO)

Selumetinib is a kinase inhibitor. Selumetinib is developed and marketed by AstraZeneca under the trade name KOSELUGO.

FDA Approval Summary of Selumetinib (KOSELUGO)

	Plexiform neurofibromas (Approved on 2020/04/10)
SPRINT	Neurofibromatosis type 1
NCT01362803	Selumetinib
	[ORR(%): 66.0]

Sunitinib (SUTENT)

Sunitinib is an oral, small molecule, multi-kinase inhibitor that targets receptor tyrosine kinase including platelet-derived growth factor receptor- α , - β (PDGFR- α , - β), vascular endothelial growth factor receptors-1, -2, -3 (VEGFR-1, -2, -3), c-kit, Fms-like tyrosine kinase-3 (FLT3), colony stimulating factor receptor type 1 (CSF-1R), and the glial cell-line derived neurotrophic factor receptor (RET), thereby inhibiting angiogenesis. Sunitinib is developed and marketed by Pfizer under the trade name SUTENT.

FDA Approval Summary of Sunitinib (SUTENT)

FDA Approvai Sullillary C	of Sumumo (50 iEivi)
	Pancreatic cancer (Approved on 2011/05/20)
[147][148][149]	-
NCT00428597	Sunitinib vs. Placebo
	[PFS(M): 10.2 vs. 5.4]
	Renal cell carcinoma (Approved on 2007/02/02)
[150][151][152]	-
NCT00077974	Sunitinib
	[ORR(%): 34.0]
	Renal cell carcinoma (Approved on 2007/02/02)
[151][152]	-
NCT00054886	Sunitinib
	[ORR(%): 36.5]
	Renal cell carcinoma (Approved on 2007/02/02)
[153][152]	-
NCT00083889	Sunitinib vs. IFN-α
	[PFS(W): 47.3 vs. 22]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

	Gastrointestinal stromal tumor (Approved on 2006/01/26)
[154]	-
NCT00075218	Sunitinib vs. Placebo
	[TTP(W): 27.3 vs. 6.4]

Trametinib (MEKINIST)

Trametinib is an anti-cancer inhibitor which targets MEK1 and MEK2. Trametinib is developed and marketed by GlaxoSmithKline (GSK) under the trade name MEKINIST.

FDA Approval Summary of Trametinib (MEKINIST)

TEA Approval Sammary	or transeumb (WEKINIST)
	Anaplastic thyroid cancer (Approved on 2018/05/04)
BRF117019 ^[155]	BRAF V600E
NCT02034110	Dabrafenib + trametinib
	[ORR(%): 61.0]
	Non-small cell lung cancer (Approved on 2017/06/22)
BRF113928 ^[156]	BRAF V600E
NCT01336634	Trametinib + dabrafenib vs. Dabrafenib
	[ORR(%): 63.0 vs. 27.0, DOR(M): 12.6 vs. 9.9]
	Melanoma (Approved on 2014/01/10)
COMBI-d ^[157]	BRAF V600E/K
NCT01584648	Trametinib + dabrafenib vs. Dabrafenib + placebo
	[PFS(M): 9.3 vs. 8.8]
	Melanoma (Approved on 2013/05/29)
METRIC ^[158]	BRAF V600E/K
NCT01245062	Trametinib vs. Dacarbazine or paclitaxel
	[PFS(M): 4.8 vs. 1.5]

d=day; w=week; m=month

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

ONGOING CLINICAL TRIALS

Clinical trials shown below were selected by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

AG4-QP4001-02(05) Page 19 of 43

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

DETAILED TEST RESULTS

SINGLE NUCLEOTIDE AND SMALL INDEL VARIANTS

Gene	Chr	Exon	Accession Number	cDNA Change	Amino Acid Change	Coverage	Allele Frequency	COSMIC ID	
ADAMTS16	5	19	NM_139056	c.2870G>A	R957Q	767	53.1%	-	
ADGRA2	8		NM_032777	c.719-3C>T	Splice region	614	38.8%	-	
FANCA	16	43	NM_000135	c.4294G>T	V1432L	733	50.8%	-	
FLT3	13	3	NM_004119	c.190G>A	G64R	1862	29.4%	COSM3786160	
IDH1	2	4	NM_005896	c.394C>A	R132S	1094	28.0%	COSM28748	
JAK1	1	22	NM_002227	c.2989C>T	R997W	1637	29.9%	COSM3790207	
KMT2C	7	43	NM_170606	c.10063A>G	13355V	1441	51.7%	-	
MAP3K1	5	17	NM_005921	c.4019C>G	A1340G	805	14.2%	-	
MEN1	11	10	NM_130802	c.1813_1814del	L605fs	515	24.5%	-	
MUC16	19	19	NM_024690	c.37181T>A	F12394Y	1916	50.0%	-	
MUC16	19	3	NM_024690	c.30688C>T	P10230S	1151	47.1%	-	
NOTCH2	1	-	NM_024408	c.2480-4C>G	Splice region	788	49.2%	-	
NSD1	5	23	NM_022455	c.7421A>C	Q2474P	945	49.0%	-	
PRKDC	8	27	NM_006904	c.3089G>T	G1030V	1473	41.5%	-	
SYNE1	6	48	NM_182961	c.7168G>A	E2390K	773	70.8%	COSM9354463	
TAP2	6	11	NM_018833	c.1932C>T	Splice region	1956	46.3%	-	
TP53	17	7	NM_000546	c.743G>A	R248Q	1065	50.7%	COSM10662	

Mutations with clinical relevance are highlighted in red.

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

COPY NUMBER VARIANTS (CNVS)

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

許獻聰

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

HOTSPOT GENOTYPES

Listed variants are biomarkers or hotspots that are recommended as standard care by the NCCN or other expert panels and not necessarily FDA-recognized for a particular indication. The genotypes have been manually checked to ensure sufficient coverage for each hotspot of the target gene.

Gene	Variant	Genotype Detected
BRAF	V600X	Not detected
EGFR	A763_Y764insFQEA, E709K, E709_T710delinsD, Exon 19 deletion, Exon 19 insertion, Exon 20 insertion, G719A/C/D/S, L747P, L833V, L858R, L861Q/R, S768I, T790M	Not detected
IDH2	R140Q, R172G/K/M/S	Not detected
KIT	A502_Y503dup, D419del, D579del, D816F/V/Y, D820A/E/G/Y, E554_I571del, E554_K558del, E554_V559del, Exon 11 mutation, F522C, H697Y, I563_L576del, I653T, K550_W557del, K558N, K558_E562del, K558_V559del, K558delinsNP, K642E, M552_W557del, N505I, N564_Y578del, N822H/I/K/Y, P551_M552del, P573_D579del, P577_D579del, P577_W582delinsPYD, P838L, Q556_K558del, T417_D419delinsI, T417_D419delinsRG, T574_Q575insTQLPYD, V530I, V555_L576del, V555_V559del, V559A/C/D/G, V559_V560del, V559del, V560D/G, V560del, V569_L576del, V654A, W557G/R, W557_K558del, Y553N, Y553_K558del, Y570H, Y578C	Not detected
KRAS	A146T/V/P, G12X, G13X, Q61X	Not detected
MET	D1028H/N/Y	Not detected
NRAS	G12X, G13X, Q61X	Not detected
PDGFRA	A633T, C450_K451insMIEWMI, C456_N468del, C456_R481del, D568N, D842I/V, D842_H845del, D842_M844del, D846Y, E311_K312del, G853D, H650Q, H845Y, H845_N848delinsP, I843del, N659K/R/S, N848K, P577S, Q579R, R560_V561insER, R748G, R841K, S566_E571delinsR, S584L, V469A, V536E, V544_L545insAVLVLLVIVIISLI, V561A/D, V561_I562insER, V658A, W559_R560del, Y375_K455del, Y555C, Y849C/S	Not detected
PIK3CA	C420R, E542K/V, E545A/D/G/K, H1047X, Q546E/R	Not detected

V600X= any mutation in the valine (V) at amino acid 600 being replaced by a different amino acid. G12X = any mutation in the glycine (G) at amino acid 12 being replaced by a different amino acid. G13X= any mutation in the glycine (G) at amino acid 13 being replaced by a different amino acid. Q61X = any mutation in the glutamine (Q) at amino acid 61 being replaced by a different amino acid. H1047X = any mutation in the histidine (H) at amino acid 1047 being replaced by a different amino acid.

Gene	Copy Number Detected
CDK4	2
EGFR	2
ERBB2	1
MET	2

Copy number ≥ 8 is considered amplification

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

許獻聰 Project ID: C21-M001-01392

Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

Other known alterations that are associated with sensitivity, resistance, and toxicity to therapies.

Gene	Variant	Genotype Detected
AKT1	E17K	Not detected
ALK	C1156Y, D1203N, G1202R, L1152R, S1206Y, T1151_L1152insT	Not detected
BRAF	K601E, L597V/Q/R/S	Not detected
DPYD	D949V, I560S, splice-site mutation	Not detected
EGFR	A750P, C797S/Y, S492R	Not detected
ERBB2	V659E	Not detected
ESR1	D538G, E380Q, L469V, L536H/P/Q/R, S432L, S463P, V422del, V534E, Y537C/N/S	Not detected
FGFR3	G370C, G380R, K650E/N/R/M/T/Q, R248C, S249C, S371C, Y373C	Not detected
IDH1	R132C/G/H/L/Q/S	R132S
MAP2K1	D67N, E203K, F53L, K57E/N, P124S, Q56P, Q56_V60del, R47Q, R49L, S222D	Not detected
PTEN	R130*/fs/G/L/P/Q	Not detected
TPMT	A154T, Y240C	Not detected

Gene	Copy Number Detected						
FGFR1	2						
MDM2	2						
MDM4	2						

Copy number ≥ 8 is considered amplification

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 23 of 43

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

TEST DETAILS

ABOUT ACTOnco®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (INDELs) (≤ 15 nucleotides) and large-scale genomic alterations like copy number variations (CNVs).

See ACTOnco®+ Gene List' Section for details of gene sequenced.

DATABASE USED

- Reference genome: human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210208)
- ACT Genomics in-house database

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted genomic DNA was amplified using four pools of primer pairs targeting coding exons of analyzed genes. Amplicons were ligated with barcoded adaptors. Quality and quantity of amplified library were determined using the fragment analyzer (AATI) and Qubit (Invitrogen). Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system (Thermo Fisher Scientific) according to the Ion PI Hi-Q Chef Kit protocol (Thermo Fisher Scientific). Sequencing was performed on the Ion Proton or Ion S5 sequencer (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite (version 5.10). Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (INDELs) were identified using the Torrent Variant Caller plug-in (version 5.10). The coverage was down-sampled to 4000. VEP (Variant Effect Predictor) (version 100) was used to annotate every variant using databases from Clinvar (version 20210208), COSMIC v.92 and Genome Aggregation database r2.1.1. Variants with coverage \geq 25, allele frequency \geq 5% and actionable variants with allele frequency \geq 2% were retained.

This test provides uniform coverage of the targeted regions, enabling target base coverage at $100x \ge 85\%$ with a mean coverage $\ge 500x$.

Variants reported in Genome Aggregation database r2.1.1 with > 1% minor allele frequency (MAF) were

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number variations (CNVs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations from samples in ACT Genomics in-house database.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco $^{\circ}$ + to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to \geq 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

STANDARD OPERATING PROCEDURES (SOPS)

Standard operating procedures (SOPs) are shown below:

- AG2-QP-15 Specimen Management Procedure
- AG3-QP16-03 SOP of Cancer Cell DNA and RNA Extraction
- AG3-QP16-07 SOP of Nucleic Acid Extraction with QIAsymphony SP
- AG3-QP16-08 SOP of FFPE Nucleic Acid Extraction
- AG3-QP16-10 SOP of HE Staining
- AG3-QP16-13 SOP of Library Construction and Preparation
- AG3-QP16-17 SOP of DNA Quantification with Qubit Fluorometer
- AG3-QP16-20 SOP of CE-Fragment Analysis
- AG3-QP16-22 SOP of Variant Calling
- AG3-QP16-24 SOP of Ion Torrent System Sequencing Reaction
- AG3-QP16-26 SOP of Ion Chef Preparation

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

ACTOnco® + Report

- AG3-QP16-35 SOP of Variant Annotation
- AG3-QP16-96 SOP of Manual Inspection for SNVIndel Variant
- AG3-QP16-95 SOP of Manual Inspection for Copy Number Variant
- AG3-QP40-08 (02) Standard protocol for variant interpretation, curation and classification
- AG3-QP16-41 SOP of The user manual for clinical report system (CRS)

LIMITATIONS

This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.

NOTES

We do not exclude the possibility that pathogenic variants may not be reported by one or more of the tools and the parameters used.

PATHOLOGY EVALUATION

H&E-stained section No.: <u>S11031648A</u>

• Collection site: <u>Left pelvic</u>

Examined by: <u>Dr. Yeh-Han Wang</u>

• Estimated neoplastic nuclei (whole sample): The percentage of viable tumor cells in total cells in the whole slide (%): 60%

The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 60%

The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%

The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%

Additional comment: NA

Manual macrodissection: <u>Not performed</u>

The outline highlights the area of malignant neoplasm annotated by a pathologist.

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

SPECIMEN PHOTO(S)

• Collection date: Oct 2021

● Facility retrieved: 臺北榮總

RUN QC

Panel: <u>ACTOnco®+</u>Mean Depth: <u>907x</u>

• Target Base Coverage at 100x: 94%

許獻聰

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

ACTOnco®+ GENE LIST

ABCB1*	AURKB	CBL	CDKN2B	E2F3	FAT1	GRIN2A	JAK2	MED12	NOTCH4	PMS1	RAD51D	SLCO1B3*	TNFRSF14
ABCC2*	AXIN1	CCNA1	CDKN2C	EGFR	FBXW7	GSK3B	JAK3	MEF2B	NPM1	PMS2	RAD52	SMAD2	TNFSF11
ABCG2*	AXIN2	CCNA2	CEBPA*	EP300	FCGR2B	GSTP1*	JUN*	MEN1	NQ01*	POLB	RAD54L	SMAD3	TOP1
ABL1	AXL	CCNB1	CHEK1	EPCAM	FGF1*	GSTT1*	KAT6A	MET	NRAS	POLD1	RAF1	SMAD4	TP53
ABL2	B2M	CCNB2	CHEK2	ЕРНА2	FGF10	HGF	KDM5A	MITF	NSD1	POLE	RARA	SMARCA4	TPMT*
ADAMTS1	BAP1	ССМВЗ	CIC	ЕРНА3	FGF14	HIF1A	крм5С	MLH1	NTRK1	PPARG	RB1	SMARCB1	TSC1
ADAMTS13	BARD1	CCND1	CREBBP	ЕРНА5	FGF19*	HIST1H1C*	KDM6A	MPL	NTRK2	PPP2R1A	RBM10	SMO	TSC2
ADAMTS15	BCL10	CCND2	CRKL	ЕРНА7	FGF23	HIST1H1E*	KDR	MRE11	NTRK3	PRDM1	RECQL4	SOCS1*	TSHR
ADAMTS16	BCL2*	CCND3	CRLF2	ЕРНВ1	FGF3	HNF1A	KEAP1	MSH2	PAK3	PRKAR1A	REL	SOX2*	TYMS
ADAMTS18	BCL2L1	CCNE1	CSF1R	ERBB2	FGF4*	HR	КІТ	MSH6	PALB2	PRKCA	RET	SOX9	U2AF1
ADAMTS6	BCL2L2*	CCNE2	CTCF	ERBB3	FGF6	HRAS*	КМТ2А	MTHFR*	PARP1	PRKCB	RHOA	SPEN	UBE2A*
ADAMTS9	BCL6	ССПН	CTLA4	ERBB4	FGFR1	HSP90AA1	кмт2С	MTOR	PAX5	PRKCG	RICTOR	SPOP	UBE2K
ADAMTSL1	BCL9	CD19	CTNNA1	ERCC1	FGFR2	HSP90AB1	KMT2D	MUC16	PAX8	PRKCI	RNF43	SRC	UBR5
ADGRA2	BCOR	CD274	CTNNB1	ERCC2	FGFR3	HSPA4	KRAS	MUC4	PBRM1	PRKCQ	ROS1	STAG2	UGT1A1*
ADH1C*	BIRC2	CD58	CUL3	ERCC3	FGFR4	HSPA5	LCK	мис6	PDCD1	PRKDC	RPPH1	STAT3	USH2A
AKT1	BIRC3	CD70*	CYLD	ERCC4	FH	IDH1	LIG1	митүн	PDCD1LG2	PRKN	RPTOR	STK11	VDR*
AKT2	BLM	CD79A	CYP1A1*	ERCC5	FLCN	IDH2	LIG3	МҮС	PDGFRA	PSMB8	RUNX1	SUFU	VEGFA
АКТ3	BMPR1A	CD79B	CYP2B6*	ERG	FLT1	IFNL3*	LMO1	MYCL	PDGFRB	PSMB9	RUNX1T1	SYK	VEGFB
ALDH1A1*	BRAF	CDC73	CYP2C19*	ESR1	FLT3	IGF1	LRP1B	MYCN	PDIA3	PSME1	RXRA	SYNE1	VHL
ALK	BRCA1	CDH1	CYP2C8*	ESR2	FLT4	IGF1R	LYN	MYD88	PGF	PSME2	SDHA	TAF1	WT1
AMER1	BRCA2	CDK1	CYP2D6	ETV1	FOXL2*	IGF2	MALT1	NAT2*	РНОХ2В*	PSME3	SDHB	TAP1	XIAP
APC	BRD4	CDK12	CYP2E1*	ETV4	FOXP1	IKBKB	MAP2K1	NBN	PIK3C2B	РТСН1	SDHC	TAP2	XPO1
AR	BRIP1	CDK2	CYP3A4*	EZH2	FRG1	IKBKE	MAP2K2	NEFH	PIK3C2G	PTEN	SDHD	ТАРВР	XRCC2
ARAF	BTG1*	CDK4	CYP3A5*	FAM46C	FUBP1	IKZF1	МАР2К4	NF1	РІКЗСЗ	PTGS2	SERPINB3	ТВХЗ	ZNF217
ARID1A	BTG2*	CDK5	DAXX	FANCA	GATA1	IL6	МАРЗК1	NF2	PIK3CA	PTPN11	SERPINB4	TEK	
ARID1B	ВТК	CDK6	DCUN1D1	FANCC	GATA2	IL7R	МАРЗК7	NFE2L2	РІКЗСВ	PTPRD	SETD2	TERT	
ARID2	BUB1B	CDK7	DDR2	FANCD2	GATA3	INPP4B	МАРК1	NFKB1	PIK3CD	PTPRT	SF3B1	TET1	
ASXL1	CALR	CDK8	DICER1	FANCE	GNA11	INSR	МАРКЗ	NFKBIA	PIK3CG	RAC1	SGK1	TET2	
ATM	CANX	CDK9	DNMT3A	FANCF	GNA13	IRF4	MAX	NKX2-1*	PIK3R1	RAD50	SH2D1A*	TGFBR2	
ATR	CARD11	CDKN1A	DOT1L	FANCG	GNAQ	IRS1	MCL1	NOTCH1	PIK3R2	RAD51	SLC19A1*	TMSB4X*	
ATRX	CASP8	CDKN1B	DPYD	FANCL	GNAS	IRS2*	MDM2	NOTCH2	PIK3R3	RAD51B	SLC22A2*	TNF	
AURKA	CBFB	CDKN2A	DTX1	FAS	GREM1	JAK1	MDM4	NOTCH3	PIM1	RAD51C	SLCO1B1*	TNFAIP3	

^{*}Analysis of copy number alteration not available.

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

DISCLAIMER

Legal Statement

This test was developed by ACT Genomics and its performing characteristics were determined by ACT Genomics. This test result is to be used for clinical consultative purposes only and is not intended as a substitute for a clinical guidance of your doctor or another qualified medical practitioner. It should not be regarded as investigational or used for research.

The detection of genomic alterations does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; the detection of no genomic alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Treatment Decisions are the Responsibility of the Physician

Decisions on clinical care and treatment should be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, including physical examinations, information from other diagnostics tests and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this test, or the information contained in this report.

In terms of consulting a different treating physician, the patient must file an application and fulfill the listed criteria for ACT Genomics to provide the patient's report to the assigned physician. The report may not be copied or reproduced except in its totality.

Genetic Alterations and Drugs Not Presented in Ranked Order

In this report, neither any biomarker alteration nor any drug associated with a potential clinical benefit (or potential lack of clinical benefit), are ranked in order of potential or predicted efficacy.

Level of Evidence Provided

Drugs with a potential clinical benefit (or potential lack of clinical benefit) are evaluated for level of published evidence with at least one clinical efficacy case report or preclinical study. We endeavor to keep the information in the report up to date. However, customers must be aware that scientific understanding and technologies change over time, and we make no warranty as to the accuracy, suitability or currency of information provided in this report at any time.

No Guarantee of Clinical Benefit

This report makes no promises or guarantees about the effectiveness of a particular drug or any treatment procedure in any disease or in any patient. This report also makes no promises or guarantees that a drug without an association of reportable genomic alteration will, in fact, provide no clinical benefit.

Liability

ACT Genomics is not affiliated with any medical facility or medical practitioner. We provide information for informational purposes only, therefore, ACT Genomics and their employees cannot be held responsible for any direct, indirect, special, incidental or consequential damages that may arise from the use of information provided in the report.

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

免責聲明

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。 本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關 專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因, 行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依 照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05)

Page 30 of 43

許獻聰

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

許獻聰

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

1: Olaparib, Niraparib, Rucaparib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05)

Page 32 of 43

許獻聰

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

1: Everolimus; 2: Trametinib, Selumetinib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: service@actgenomics.com T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 33 of 43

Project ID: C21-M001-01392 Report No.: AA-21-05913 ONC Date Reported: Dec 13, 2021

REFERENCES

- PMID: 23999441; 2013, J Clin Invest;123(9):3672-7 1. Isocitrate dehydrogenase mutations in leukemia.
- 2. PMID: 21130701; 2010, Cancer Cell;18(6):553-67 Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation.
- PMID: 22343901; 2012, Nature; 483(7390): 474-8 3. IDH mutation impairs histone demethylation and results in a block to cell differentiation.
- 4. PMID: 23558173; 2013, Science; 340(6132): 622-6 Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation.
- 5. PMID: 27956631; 2016, Proc Natl Acad Sci U S A;113(52):15084-15089 The IDH2 R172K mutation associated with angioimmunoblastic T-cell lymphoma produces 2HG in T cells and impacts lymphoid development.
- 6. PMID: 19378339; 2009, Int J Cancer;125(2):353-5 Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers.
- 7. PMID: 21598255; 2011, J Pathol; 224(3): 334-43 IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours.
- PMID: 19246647; 2009, Am J Pathol;174(4):1149-53 8. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas.
- 9. PMID: 22180306; 2012, Oncologist;17(1):72-9 Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broadbased tumor genotyping.
- PMID: 19657110; 2009, N Engl J Med;361(11):1058-66 Recurring mutations found by sequencing an acute myeloid leukemia genome.
- PMID: 29860938; 2018, N Engl J Med;378(25):2386-2398 Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML.
- 12. PMID: 22199315; 2011, Anticancer Res;31(12):4457-63 Correlation between IDH1 gene mutation status and survival of patients treated for recurrent glioma.
- PMID: 32416072; 2020, Lancet Oncol;21(6):796-807 13. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study.
- PMID: 25910950; 2015, Clin Cancer Res;21(16):3610-8 A Multicenter, Phase II, Randomized, Noncomparative Clinical Trial of Radiation and Temozolomide with or without Vandetanib in Newly Diagnosed Glioblastoma Patients.
- PMID: 27231123; 2016, Cancer Discov;6(7):727-39 Isocitrate Dehydrogenase Mutations Confer Dasatinib Hypersensitivity and SRC Dependence in Intrahepatic Cholangiocarcinoma.
- PMID: 28148839; 2017, Sci Transl Med;9(375): 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

AG4-QP4001-02(05) Page 34 of 43

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Project ID: C21-M001-01392 Report No.: AA-21-05913 ONC Date Reported: Dec 13, 2021

ACTOnco® + Report

PARP inhibitor sensitivity.

- PMID: 29339439; 2018, Clin Cancer Res; 24(7):1705-1715 <i>IDH1/2</i> Mutations Sensitize Acute Myeloid Leukemia to PARP Inhibition and This Is Reversed by IDH1/2-Mutant Inhibitors.
- 18. PMID: 23558169; 2013, Science; 340(6132):626-30 An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells.
- 19. PMID: 28232670; 2017, Leukemia; 31(10): 2020-2028 Pan-mutant-IDH1 inhibitor BAY1436032 is highly effective against human IDH1 mutant acute myeloid leukemia in vivo.
- PMID: 24739573; 2014, Nat Rev Cancer;14(5):359-70 Unravelling mechanisms of p53-mediated tumour suppression.
- 21. PMID: 21125671; 2011, J Pathol;223(2):137-46 Haplo-insufficiency: a driving force in cancer.
- PMID: 26703669; 2015, Int J Environ Res Public Health;13(1):ijerph13010022 22. Hot Spot Mutation in TP53 (R248Q) Causes Oncogenic Gain-of-Function Phenotypes in a Breast Cancer Cell Line Derived from an African American patient.
- 23. PMID: 25697482; 2015, Cancer Lett; 360(2): 269-79 Mutant p53 (p53-R248Q) functions as an oncogene in promoting endometrial cancer by up-regulating REGy.
- 24. PMID: 27998224; 2016, J Clin Oncol;34(36):4354-4361 Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months.
- 25. PMID: 26646755; 2016, Ann Oncol;27(3):539-43 TP53 mutational status is predictive of pazopanib response in advanced sarcomas.
- 26. PMID: 25669829; 2015, Ann Oncol;26(5):1012-8 Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation.
- 27. PMID: 27466356; 2016, Mol Cancer Ther;15(10):2475-2485 TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics.
- 28. PMID: 23670029; 2013, Oncotarget; 4(5):705-14 P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-containing therapy.
- 29. PMID: 17145525; 2006, Semin Oncol;33(5 Suppl 10):S8-14 Bevacizumab in combination with chemotherapy: first-line treatment of patients with metastatic colorectal cancer.
- PMID: 21399868; 2011, Int J Oncol;38(5):1445-52 30. p53, HER2 and tumor cell apoptosis correlate with clinical outcome after neoadjuvant bevacizumab plus chemotherapy in breast cancer.
- 31. PMID: 20549698; 2011, Int J Cancer;128(8):1813-21 p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines.
- 32. PMID: 10786679; 2000, Cancer Res;60(8):2155-62 Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer.

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

ACTOnco® + Report

33. PMID: 25672981; 2015, Cancer Res;75(7):1187-90
VEGF-A Expression Correlates with TP53 Mutations in Non-Small Cell Lung Cancer: Implications for Antiangiogenesis Therapy.

34. PMID: 25385265; 2015, Int J Oncol;46(2):607-18

TP53 oncomorphic mutations predict resistance to platinum- and taxane-based standard chemotherapy in patients diagnosed with advanced serous ovarian carcinoma.

35. PMID: 17055429; 2006, Cell;127(2):265-75 The regulation of INK4/ARF in cancer and aging.

36. PMID: 8521522; 1995, Cell;83(6):993-1000

Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest.

37. PMID: 9529249; 1998, Cell;92(6):725-34

ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.

38. PMID: 16115911; 2005, Clin Cancer Res;11(16):5740-7

Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype.

39. PMID: 7550353; 1995, Nat Genet;11(2):210-2 Frequency of homozygous deletion at p16/CDKN2 in primary human tumours.

40. PMID: 24089445; 2013, Clin Cancer Res;19(19):5320-8

The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma.

41. PMID: 27849562; 2017, Gut;66(7):1286-1296

Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma.

42. PMID: 25524798; 2015, Lancet Oncol;16(1):25-35

The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study.

43. PMID: 28283584; 2017, Oncologist; 22(4):416-421

Clinical Benefit in Response to Palbociclib Treatment in Refractory Uterine Leiomyosarcomas with a Common CDKN2A Alteration.

44. PMID: 27217383; 2016, Cancer Discov;6(7):740-53

Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non-Small Cell Lung Cancer, and Other Solid Tumors.

45. PMID: 26715889; 2015, Curr Oncol;22(6):e498-501 Does CDKN2A loss predict palbociclib benefit?

46. PMID: 25501126; 2015, Clin Cancer Res; 21(5):995-1001

CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment.

47. PMID: 27542767; 2016, Clin Cancer Res;22(23):5696-5705

A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas.

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 36 of 43

Project ID: C21-M001-01392 Report No.: AA-21-05913 ONC Date Reported: Dec 13, 2021

ACTOnco® + Report

48. PMID: 24797823; 2014, Oncologist;19(6):616-22

Enabling a genetically informed approach to cancer medicine: a retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel.

- 49. PMID: 27717303; 2016, N Engl J Med;375(18):1738-1748 Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer.
- 50. PMID: 28580882; 2017, J Clin Oncol;35(25):2875-2884 MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy.
- 51. PMID: 26728409; 2016, Clin Cancer Res;22(1):122-33 Coadministration of Trametinib and Palbociclib Radiosensitizes KRAS-Mutant Non-Small Cell Lung Cancers In Vitro and In Vivo.
- 52. PMID: 31401335; 2019, Transl Oncol;12(11):1425-1431 Concomitant Genetic Alterations are Associated with Worse Clinical Outcome in EGFR Mutant NSCLC Patients Treated with Tyrosine Kinase Inhibitors.
- 53. PMID: 21088254; 2011, Clin Cancer Res;17(3):401-5 Tumor suppressor CHK2: regulator of DNA damage response and mediator of chromosomal stability.
- 54. PMID: 15261141; 2004, Cancer Cell;6(1):45-59 Chk1 is haploinsufficient for multiple functions critical to tumor suppression.
- 55. PMID: 15539958; 2005, Cell Cycle;4(1):131-9 Chk1 is essential for tumor cell viability following activation of the replication checkpoint.
- 56. PMID: 23296741; 2013, Fam Cancer;12(3):473-8 The risk of gastric cancer in carriers of CHEK2 mutations.
- PMID: 24713400; 2014, Hered Cancer Clin Pract;12(1):10 A risk of breast cancer in women - carriers of constitutional CHEK2 gene mutations, originating from the North - Central Poland.
- 58. PMID: 25583358; 2015, Int J Cancer;137(3):548-52 CHEK2 mutations and the risk of papillary thyroid cancer.
- 59. PMID: 12052256; 2002, Breast Cancer Res;4(3):R4 Mutation analysis of the CHK2 gene in breast carcinoma and other cancers.
- 60. PMID: 15125777; 2004, Mol Cancer;3():14 CHK2 kinase expression is down-regulated due to promoter methylation in non-small cell lung cancer.
- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102 61. Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- PMID: 28916367; 2017, Lancet; 390(10106): 1949-1961 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- PMID: 32086346; 2020, Clin Cancer Res;26(11):2487-2496 Non-BRCA DNA Damage Repair Gene Alterations and Response to the PARP Inhibitor Rucaparib in Metastatic Castration-Resistant Prostate Cancer: Analysis From the Phase II TRITON2 Study.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

AG4-QP4001-02(05) Page 37 of 43

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

ACTOnco® + Report

- 64. PMID: 26510020; 2015, N Engl J Med;373(18):1697-708

 DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer.
- 65. PMID: 8563751; 1996, Nat Genet;12(2):144-8
 Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells.
- 66. PMID: 1946382; 1991, Proc Natl Acad Sci U S A;88(21):9658-62 Identification of the neurofibromatosis type 1 gene product.
- 67. PMID: 2116237; 1990, Cell;62(3):599-608
 The neurofibromatosis type 1 gene encodes a protein related to GAP.
- 68. PMID: 2121370; 1990, Cell;63(4):843-9

 The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21.
- 69. PMID: 14502561; 2003, J Cell Physiol;197(2):214-24
 NF1 modulates the effects of Ras oncogenes: evidence of other NF1 function besides its GAP activity.
- 70. PMID: 19479903; 2009, Mol Carcinog;48(11):1005-17

 Neurofibromin physically interacts with the N-terminal domain of focal adhesion kinase.
- 71. PMID: 28680740; 2017, Adv Med Biol;118():83-122 Haploinsufficient tumor suppressor genes.
- 72. PMID: 10442636; 1999, Oncogene;18(31):4450-9
 Haploinsufficiency for the neurofibromatosis 1 (NF1) tumor suppressor results in increased astrocyte proliferation.
- 73. PMID: 16288202; 2006, Oncogene;25(16):2297-303 Nf1 haploinsufficiency augments angiogenesis.
- 74. PMID: 18089636; 2008, Hum Mol Genet;17(7):936-48
 Rac1 mediates the osteoclast gains-in-function induced by haploinsufficiency of Nf1.
- 75. PMID: 7920653; 1994, Nat Genet;7(3):353-61
 Tumour predisposition in mice heterozygous for a targeted mutation in Nf1.
- 76. PMID: 25026295; 2014, Oncotarget;5(15):5873-92 The NF1 gene revisited from bench to bedside.
- 77. PMID: 29892687; 2018, Gynecol Oncol Rep;23():41-44
 Clonal lineage of high grade serous ovarian cancer in a patient with neurofibromatosis type 1.
- 78. PMID: 29926297; 2018, Breast Cancer Res Treat;171(3):719-735

 Breast cancer in women with neurofibromatosis type 1 (NF1): a comprehensive case series with molecular insights into its aggressive phenotype.
- 79. PMID: 28637487; 2017, Hum Genomics;11(1):13
 The NF1 somatic mutational landscape in sporadic human cancers.
- 80. PMID: 15840687; 2005, Gut;54(8):1129-35
 NF1 gene loss of heterozygosity and expression analysis in sporadic colon cancer.
- 81. PMID: 20129251; 2010, Cancer Cell;17(1):98-110 Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1.

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

ACTOnco® + Report

- 82. PMID: 27158780; 2016, Nat Genet;48(6):607-16
 Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas.
- 83. PMID: 32669708; 2020, Nature;583(7818):807-812
 The National Lung Matrix Trial of personalized therapy in lung cancer.
- 84. PMID: 26936308; 2016, J Clin Pharm Ther;41(3):357-359
 Prolonged disease control with MEK inhibitor in neurofibromatosis type I-associated glioblastoma.
- 85. PMID: 22573716; 2012, Cancer Res;72(13):3350-9
 Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin 1 deficiency.
- 86. PMID: 19727076; 2009, Nature;461(7262):411-4
 Response and resistance to MEK inhibition in leukaemias initiated by hyperactive Ras.
- 87. PMID: 23858101; 2013, Mol Cancer Ther;12(9):1906-17
 NF1 deletion generates multiple subtypes of soft-tissue sarcoma that respond to MEK inhibition.
- 88. PMID: 23221341; 2013, J Clin Invest;123(1):340-7
 MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors.
- 89. PMID: 18483311; 2008, Mol Cancer Ther;7(5):1237-45
 Effective in vivo targeting of the mammalian target of rapamycin pathway in malignant peripheral nerve sheath tumors.
- 90. PMID: 23209032; 2013, Clin Cancer Res;19(2):450-61
 Prognostic significance of AKT/mTOR and MAPK pathways and antitumor effect of mTOR inhibitor in NF1-related and sporadic malignant peripheral nerve sheath tumors.
- 91. PMID: 26859683; 2016, Oncotarget;7(9):10547-56

 Next-generation sequencing reveals somatic mutations that confer exceptional response to everolimus.
- 92. PMID: 21482774; 2012, Proc Natl Acad Sci U S A;109(8):2730-5 Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen.
- 93. PMID: 24535670; 2014, Cancer Discov;4(5):606-19
 Reduced NF1 expression confers resistance to EGFR inhibition in lung cancer.
- 94. PMID: 29703253; 2018, BMC Cancer;18(1):479

 SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer patients.
- 95. PMID: 30858928; 2019, Oncotarget;10(14):1440-1457

 CRISPR-induced RASGAP deficiencies in colorectal cancer organoids reveal that only loss of NF1 promotes resistance to EGFR inhibition.
- 96. PMID: 30269082; 2019, Gut;68(7):1152-1161
 Liquid biopsies to track trastuzumab resistance in metastatic HER2-positive gastric cancer.
- 97. PMID: 24576830; 2014, Cancer Res;74(8):2340-50
 Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence.
- 98. PMID: 23171796; 2013, Cancer Discov;3(3):338-49 Elucidating distinct roles for NF1 in melanomagenesis.

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 39 of 43

Project ID: C21-M001-01392 Report No.: AA-21-05913 ONC Date Reported: Dec 13, 2021

ACTOnco® + Report

- 99. PMID: 23288408; 2013, Cancer Discov;3(3):350-62 A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition.
- 100. PMID: 24265153; 2014, Cancer Discov;4(1):94-109 The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma.
- 101. PMID: 25893302; 2016, Oncogene; 35(5):537-48 Role of Merlin/NF2 inactivation in tumor biology.
- 102. PMID: 19451229; 2009, Mol Cell Biol;29(15):4235-49 Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling.
- 103. PMID: 19451225; 2009, Mol Cell Biol;29(15):4250-61 NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth.
- 104. PMID: 17655741; 2007, Brain Pathol;17(4):371-6 Role of NF2 haploinsufficiency in NF2-associated polyneuropathy.
- 105. PMID: 19545378; 2009, Orphanet J Rare Dis;4():16 Neurofibromatosis type 2 (NF2): a clinical and molecular review.
- 106. PMID: 21642991; 2011, Nat Genet; 43(7):668-72 The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma.
- 107. PMID: 24393766; 2014, Oncotarget;5(1):67-77 NF2/merlin in hereditary neurofibromatosis 2 versus cancer: biologic mechanisms and clinical associations.
- 108. PMID: 27091708; 2016, J Clin Oncol;34(18):2115-24 Molecular Alterations and Everolimus Efficacy in Human Epidermal Growth Factor Receptor 2-Overexpressing Metastatic Breast Cancers: Combined Exploratory Biomarker Analysis From BOLERO-1 and BOLERO-3.
- 109. PMID: 26503204; 2016, J Clin Oncol;34(5):419-26 Correlative Analysis of Genetic Alterations and Everolimus Benefit in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: Results From BOLERO-2.
- 110. PMID: 24833916; 2014, Breast Cancer (Dove Med Press);6():43-57 Use of mTOR inhibitors in the treatment of breast cancer: an evaluation of factors that influence patient outcomes.
- 111. PMID: 22923433; 2012, Science; 338(6104):221 Genome sequencing identifies a basis for everolimus sensitivity.
- 112. PMID: 25630452; 2015, Eur Urol;67(6):1195-1196 Exceptional Response on Addition of Everolimus to Taxane in Urothelial Carcinoma Bearing an NF2 Mutation.
- 113. PMID: 26359368; 2015, Cancer Discov;5(11):1178-93 NF2 Loss Promotes Oncogenic RAS-Induced Thyroid Cancers via YAP-Dependent Transactivation of RAS Proteins and Sensitizes Them to MEK Inhibition.
- 114. PMID: 24813888; 2014, Cell Rep;7(4):999-1008 Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

AG4-QP4001-02(05) Page 40 of 43

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

ACTOnco® + Report

- 115. PMID: 28968163; 2017, J Clin Oncol;35(32):3638-3646
 MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer.
- 116. PMID: 28533223; 2017, Clin Cancer Res;23(17):5218-5224

 MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2- Metastatic Breast Cancer.
- 117. PMID: 28438073; 2018, Cogn Emot;32(7):1499-1513

 The meaning profiles of anxiety and depression: similarities and differences in two age groups.
- 118. PMID: 22529265; 2012, J Clin Oncol;30(17):2039-45

 OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer.
- 119. PMID: 24637997; 2014, J Clin Oncol;32(13):1302-8
 Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: The AURELIA open-label randomized phase III trial.
- 120. PMID: 24552320; 2014, N Engl J Med;370(8):734-43 Improved survival with bevacizumab in advanced cervical cancer.
- 121. PMID: 23168366; 2013, Lancet Oncol;14(1):29-37 Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial.
- 122. PMID: 18156031; 2007, Lancet; 370(9605): 2103-11

 Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial.
- 123. PMID: 19720927; 2009, J Clin Oncol;27(28):4733-40

 Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma.
- 124. PMID: 17167137; 2006, N Engl J Med;355(24):2542-50 Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer.
- 125. PMID: 17442997; 2007, J Clin Oncol;25(12):1539-44

 Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200.
- 126. PMID: 15175435; 2004, N Engl J Med;350(23):2335-42
 Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer.
- 127. PMID: 20525995; 2010, N Engl J Med;362(24):2260-70

 Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia.
- 128. PMID: 18541900; 2008, J Clin Oncol;26(19):3204-12 Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia.
- 129. PMID: 17496201; 2007, Blood;110(7):2309-15

 Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study.
- 130. PMID: 26703889; 2016, Lancet;387(10022):968-977

 Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study.

AG4-QP4001-02(05) Page 41 of 43

COLLEGE of AMERICA

ACTOnco® + Report

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

- 131. PMID: 22149876; 2012, N Engl J Med;366(6):520-9
 Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer.
- 132. PMID: 21306238; 2011, N Engl J Med;364(6):514-23 Everolimus for advanced pancreatic neuroendocrine tumors.
- 133. PMID: 23158522; 2013, Lancet; 381(9861):125-32
 Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial.
- 134. PMID: 18653228; 2008, Lancet; 372(9637): 449-56
 Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial.
- 135. PMID: 30948273; 2019, Lancet Oncol;20(5):636-648

 Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial.
- 136. PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164
 Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.
- 137. PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428
 Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.
- 138. PMID: 31157963; 2019, N Engl J Med;381(4):317-327

 Maintenance Olaparib for Germline <i>BRCA</i>-Mutated Metastatic Pancreatic Cancer.
- 139. PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505

 Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- 140. PMID: 28578601; 2017, N Engl J Med;377(6):523-533
 Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
- 141. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284
 Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.
- 142. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589

 Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.
- 143. PMID: 25366685; 2015, J Clin Oncol;33(3):244-50
 Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation.
- 144. PMID: 27959613; 2016, N Engl J Med;375(20):1925-1936 Palbociclib and Letrozole in Advanced Breast Cancer.
- 145. PMID: 26030518; 2015, N Engl J Med;373(3):209-19
 Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer.
- 146. PMID: 27908594; 2017, Lancet Oncol;18(1):75-87 Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial.
- 147. PMID: 27924459; 2016, Target Oncol;11(6):815-824
 Patient-Reported Outcomes and Quality of Life with Sunitinib Versus Placebo for Pancreatic Neuroendocrine Tumors:
 Results From an International Phase III Trial.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Project ID: C21-M001-01392 Report No.: AA-21-05913_ONC Date Reported: Dec 13, 2021

ACTOnco® + Report

- 148. PMID: 27836885; 2017, Ann Oncol;28(2):339-343
 Sunitinib in pancreatic neuroendocrine tumors: updated progression-free survival and final overall survival from a phase III randomized study.
- 149. PMID: 21306237; 2011, N Engl J Med;364(6):501-13
 Sunitinib malate for the treatment of pancreatic neuroendocrine tumors.
- 150. PMID: 16757724; 2006, JAMA;295(21):2516-24 Sunitinib in patients with metastatic renal cell carcinoma.
- 151. PMID: 25577718; 2015, Eur Urol;67(5):952-8

 Depth of remission is a prognostic factor for survival in patients with metastatic renal cell carcinoma.
- 152. PMID: 27238653; 2016, Eur Urol;70(6):1006-1015
 Early Tumour Shrinkage: A Tool for the Detection of Early Clinical Activity in Metastatic Renal Cell Carcinoma.
- 153. PMID: 17227905; 2007, Oncologist;12(1):107-13
 Food and Drug Administration drug approval summary: Sunitinib malate for the treatment of gastrointestinal stromal tumor and advanced renal cell carcinoma.
- 154. PMID: 17046465; 2006, Lancet;368(9544):1329-38
 Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial.
- 155. PMID: 29072975; 2018, J Clin Oncol;36(1):7-13

 Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer.
- 156. PMID: 27080216; 2016, Lancet Oncol;17(5):642-50
 Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial.
- 157. PMID: 25265492; 2014, N Engl J Med;371(20):1877-88 Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma.
- 158. PMID: 22663011; 2012, N Engl J Med;367(2):107-14 Improved survival with MEK inhibition in BRAF-mutated melanoma.

Project ID: C21-M001-01392 Report No.: AA-21-05913_FUSION Date Reported: Dec 13, 2021

ACTFusion[™] Report

PATIENT							
Name: 許獻聰	Patient ID: 45100274						
Date of Birth: Nov 21, 1963	Gender: Male						
Diagnosis: Chondrosarcoma							
ORDERING PHYSICIAN							
Name: 顏厥全醫師	Tel: 886-228712121						
Facility: 臺北榮總							
Address: 臺北市北投區石牌路二段 201 號							
SPECIMEN							
Specimen ID: S11031648A Collection site: Left pelvic	Date received: Dec 01, 2021						
Lab ID: AA-21-05913 Type: FFPE tissue	D/ID: NA						

ABOUT ACTFusion™

The test is a next-generation sequencing (NGS) based in vitro diagnostic assay to detect fusion transcripts of 13 genes, including ALK, BRAF, EGFR, FGFR1, FGFR2, FGFR3, MET, NRG1, NTRK1, NTRK2, NTRK3, RET, and ROS1.

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page 1 of 7

Project ID: C21-M001-01392 Report No.: AA-21-05913_FUSION Date Reported: Dec 13, 2021

ACTFusion[™] Report

THERAPEUTIC IMPLICATION

Not Applicable.

VARIANT INTERPRETATION

Not Applicable.

US FDA-APPROVED DRUG(S)

Not Applicable.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page 2 of 7

Project ID: C21-M001-01392 Report No.: AA-21-05913_FUSION Date Reported: Dec 13, 2021

ACTFusion[™] Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page 3 of 7

Project ID: C21-M001-01392 Report No.: AA-21-05913_FUSION Date Reported: Dec 13, 2021

ACTFusion[™] Report

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

3110-31648	S110-31648	S110-31648	S110-31648	S110-31648	S110-31648	S110-31648	S110-31648
AA-21 05913	AA-21 05913	AA-21 05913	AA-21 05913	AA-21 05913	AA-21 🕍	05913 VOHTPE	AA-21 05913
4							

Collection date: Oct 2021Facility retrieved: 臺北榮總

H&E-stained section No.: S11031648A

- Collection site: Left pelvic

Examined by: Dr. Yeh-Han Wang

- 1. The percentage of viable tumor cells in total cells in the whole slide (%): 60%
- 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 60%
- 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
- 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
- 5. Additional comment: NA
- Manual macrodissection: Not performed
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

- Panel: ACTFusion™
- Total reads: 503940
- Average unique RNA Start Sites per control GSP2: 140

LIMITATIONS

This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-503

AG4-QP4006-04(02) page 4 of 7

Project ID: C21-M001-01392 Report No.: AA-21-05913 FUSION Date Reported: Dec 13, 2021

ACTFusion[™] Report

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX.

STANDARD OPERATING PROCEDURES (SOPs)

- AG2-QP-15 Specimen Management Procedure
- AG3-QP16-08 SOP of FFPE Nucleic Acid Extraction
- AG3-QP16-10 SOP of HE Staining
- AG3-QP16-17 SOP of DNA Quantification with Qubit Fluorometer
- AG3-QP16-20 SOP of CE-Fragment Analysis
- AG3-QP16-24 SOP of Ion Torrent System Sequencing Reaction
- AG3-QP16-26 SOP of Ion Chef Preparation
- AG3-QP40-08 (02) Standard protocol for variant interpretation, curation and classification
- AG3-QP16-94 (01) SOP of ACTFusion v3 Library Construction and Preparation
- AG3-QP16-36(02) SOP of Fusion Gene Detection
- AG3-QP16-41 SOP of The user manual for clinical report system (CRS)

DATABAES USED

Quiver Gene Fusion Database version 5.1.18

GENE LIST

ALK	BRAF	EGFR	FGFR1	FGFR2	FGFR3	MET	NRG1
NTRK1	NTRK2	NTRK3	RFT	ROS1			

Variant Analysis:

醫檢師黃靖婷 博士 Ching-Ting Huang Ph.D. 檢字第 016511 號

CT Huang

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page 5 of 7

Project ID: C21-M001-01392 Report No.: AA-21-05913_FUSION Date Reported: Dec 13, 2021

ACTFusion[™] Report

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告 移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page 6 of 7

Project ID: C21-M001-01392 Report No.: AA-21-05913_FUSION Date Reported: Dec 13, 2021

ACTFusion[™] Report

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page **7** of **7**