

CLAIMS

What is claimed is:

1 1. A structure in an integrated circuit, said
2 structure extending from a conductive surface through
3 a channel having inner walls extending above said
4 conductive surface, said structure comprising:

5 a layer of a refractory metal residing on said
6 conductive surface and said inner walls of said
7 channel; and

8 a layer of a metal nitride residing on said layer
9 of said refractory metal, wherein said layer of said
10 metal nitride has a thickness extending from said layer
11 of said refractory metal of less than 130 Å.

(B)

1 2. The structure of claim 1, wherein said layer
2 of said metal nitride has a thickness in the range of
3 25 to 75 Å.

1 3. The structure of claim 1, wherein said layer
2 of said refractory metal and said layer of said metal
3 nitride have a combined thickness extending from said
4 inner walls of said channel of less than 200 Å.

1 4. The structure of claim 1, wherein said
2 structure has a width that is less than or equal to

3 3,000 Å.

1 5. The structure of claim 1, wherein a ratio of
2 a height of said structure to a width of said structure
3 is greater than or equal to 3.33.

1 6. The structure of claim 1, wherein said layer
2 of said refractory metal has a thickness extending from
3 said inner walls of said channel in a range of 25 to
4 100 Å.

1 7. The structure of claim 1, wherein said
2 refractory metal is a metal selected from the group
3 consisting of titanium, tantalum, cobalt and
4 molybdenum.

1 8. The structure of claim 1, wherein said metal
2 nitride has a resistivity of less than 600 $\mu\Omega\text{-cm}$.

1 9. The structure of claim 1, wherein said metal
2 nitride includes a metal selected from the group
3 consisting of titanium, zirconium, hafnium, tantalum,
4 molybdenum and tungsten.

1 10. The structure of claim 1, further including:
2 a layer of a metal residing on said layer of said

3 metal nitride.

1 11. The structure of claim 10 wherein said metal
2 nitride is adhesive to said metal.

1 12. The structure of claim 10, wherein said metal
2 is tungsten.

1 13. The structure of claim 10, wherein said
2 structure has a resistance less than or equal to 3.0 Ω .

1 14. The structure of claim 13, wherein said
2 channel has an aspect ratio grater than or equal to
3 3.33.

1 15. A structure in an integrated circuit, said
2 structure extending from a conductive surface
3 surrounded by a channel having inner walls extending
4 from said conductive surface, said structure
5 comprising:

6 a layer of a refractory metal having a thickness in
7 a range of about 25 to 100 \AA residing on said
8 conductive surface and said inner walls of said
9 channel; and

10 a layer of a metal nitride residing on said layer
11 of said refractory metal, wherein said layer of said

(B)

12 metal nitride has a thickness extending from said layer
13 of said refractory metal of less than 130 Å.

1 16. The structure of claim 15, wherein said layer
2 of said metal nitride has a thickness in the range of
3 25 to 75 Å.

1 17. The structure of claim 15, wherein said layer
2 of said refractory metal and said layer of said metal
3 nitride have a combined thickness extending from said
4 inner walls of said channel of less than 175 Å.

1 18. The structure of claim 15, wherein said
2 channel has an aspect ratio greater than or equal to
3 3.33.

B

1 19. The structure of claim 15, wherein said
2 refractory metal is a metal selected from the group
3 consisting of titanium, tantalum, cobalt, and
4 molybdenum.

1 20. The structure of claim 15, wherein said metal
2 nitride includes a metal selected from the group
3 consisting of titanium, zirconium, hafnium, tantalum,
4 molybdenum and tungsten.

1 21. A method for forming a structure in an
2 integrated circuit, said structure extending from a
3 conductive surface through a channel having inner walls
4 extending above said conductive surface, said method
5 including the steps of:

6 (a) depositing a layer of a refractory metal on
7 said conductive surface and said inner walls of said
8 channel; and

9 (b) forming a layer of a metal nitride on said
10 layer of said refractory metal, wherein said layer of
11 said metal nitride has a thickness extending from said
12 layer of said refractory metal of less than 130 Å.

1 22. The method of claim 21, wherein said layer of
2 said metal nitride has a thickness in the range of 25
3 to 75 Å.

1 23. The method of claim 21, wherein said layer of
2 said refractory metal and said layer of said metal
3 nitride have a combined thickness extending from said
4 inner walls of said channel of less than 200 Å.

1 24. The method of claim 21, wherein said step (b)
2 includes the steps of:

3 depositing said metal nitride on said layer of said
4 refractory metal; and

5 plasma annealing said metal nitride.

1
2
3
4
5
6
7

25. The method of claim 24, wherein said step of plasma annealing includes the steps of:
exposing said metal nitride to an environment containing ions; and electrically biasing said layer of said metal nitride to cause said ions from said environment to impact said metal nitride.

1 26. The method of claim 25, wherein said step of exposing said metal nitride to said environment containing ions includes the steps of:
providing a gas; and providing a first rf signal to a first electrode on a first side of a wafer on which said structure is being formed to provide energy to said gas.

1 27. The method of claim 26, wherein said gas contains at least one gas selected from the group consisting of nitrogen, hydrogen, argon, helium, and ammonia.

1 28. The method of claim 26, wherein said metal nitride includes at least one material selected from the group consisting of titanium, tantalum, tungsten,

4 hafnium, molybdenum, and zirconium.

1 29. The method of claim 26, wherein said gas
2 includes a noble gas.

1 29. The method of claim 24, wherein said step of
2 depositing said metal nitride and said step of plasma
3 annealing are both performed in a single chamber and
4 without removing a wafer on which said structure is
5 being formed from the chamber between beginning said
6 step of depositing said metal nitride and completion of
7 said step of plasma annealing.

Mark 32

1 31. The method of claim 24, wherein said step of
2 depositing said metal nitride is performed using
3 chemical vapor deposition.

1 32. The method of claim 24, wherein said step of
2 plasma annealing includes the steps of:
3 performing a first plasma annealing of said metal
4 nitride; and
5 performing a second plasma annealing of said metal
6 nitride after performing said first plasma annealing.

1 33. The method of claim 32, wherein said step of
2 performing said first plasma annealing includes the

3 steps of:

4 exposing said metal nitride to a first environment
5 containing ions; and

6 electrically biasing said metal nitride to cause
7 said ions from said first environment to impact said
8 metal nitride.

1 34. The method of claim 33, wherein said step of
2 performing said second plasma annealing includes the
3 steps of:

4 exposing said metal nitride to a second environment
5 containing ions; and

6 electrically biasing said metal nitride to cause
7 said ions from said second environment to impact said
8 layer of said metal nitride.

1 35. The method of claim 34, wherein said step of
2 exposing said metal nitride to a first environment
3 containing ions includes the steps of:

4 providing a first gas, and

5 providing energy to said first gas to generate a
6 first plasma, and

7 wherein said step of exposing said metal nitride to
8 a second environment containing ions includes the steps
9 of:

10 providing a second gas, and

11 providing energy to said second gas to generate a
12 second plasma.

1 36. The method of claim 35, wherein said first gas
2 contains at least one gas selected from the group
3 consisting of nitrogen, hydrogen, argon, helium, and
4 ammonia.

1 37. The method of claim 35, wherein said second gas
2 contains at least one gas selected from the group
3 consisting of nitrogen, helium, neon, and argon.

1 38. The method of claim of claim 32, wherein said
2 step of depositing said metal nitride is performed
3 using chemical vapor deposition.

1 39. The method of claim 32, wherein said step of
2 depositing said metal nitride and said step of plasma
3 annealing are both performed in a chamber without
4 removing a wafer on which said structure is being
5 formed from the chamber between initiating said step of
6 depositing said metal nitride and completing said step
7 of plasma annealing.

1 40. The method of claim 21, wherein said channel
2 has a width less than or equal to 3,000 Å.

1 41. The method of claim 21, wherein said channel
2 has an aspect ratio that is greater than or equal to
3 3.33.

1 42. The method of claim 21, wherein said
2 refractory metal is deposited in said step (a) by
3 physical vapor deposition.

1 43. The method of claim 21, wherein said
2 refractory metal is deposited in said step (a) by
3 chemical vapor deposition.

1 44. The method of claim 43, wherein said
2 refractory metal is a metal selected from the group
3 consisting of titanium, tantalum, cobalt, and
4 molybdenum.

1 45. The method of claim 21, further including the
2 step following said step (b) of:

3 (c) depositing a layer of a metal on said layer
4 of said metal nitride.

1 46. The method of claim 45, wherein said metal is
2 tungsten.

1 47. The method of claim 46, further including the
2 step following said step (c) of:

3 (d) etching said layer of said refractory metal,
4 said layer of said metal nitride, and said layer of
5 said metal to decompose portions of said layer of said
6 refractory metal, said layer of said metal nitride, and
7 said layer of said metal that reside outside of said
8 channel.

1 48. A method for forming a barrier layer over a
2 conductive surface surrounded by a channel having inner
3 walls extending above said conductive surface, said
4 method including the steps of:

5 (a) depositing a layer of a refractory metal on
6 said conductive surface and said inner walls of said
7 channel to a thickness in a range of about 25 to 100 Å;

8 (b) depositing a layer of a metal nitride on said
9 layer of said refractory metal; and

10 (c) plasma annealing said layer of said metal
11 nitride, wherein said layer of said metal nitride has
12 a thickness extending from said layer of said
13 refractory metal of less than 130 Å after completing
14 said step (c).

1 49. The method of claim 48, wherein said step (c)
2 includes the steps of:

3 providing a gas;
4 providing energy to said gas to generate an
5 environment containing ions; and
6 electrically biasing said metal nitride to cause
7 said ions from said environment to impact said metal
8 nitride.

1 50. The method of claim 49, wherein said metal
2 nitride includes at least one material selected from
3 the group consisting of titanium, tantalum, tungsten,
4 hafnium, molybdenum, and zirconium.

1 51. The method of claim 48, wherein said step (c)
2 includes the steps of:
3 performing a first plasma annealing of said metal
4 nitride; and
5 performing a second plasma annealing of said metal
6 nitride after performing said first plasma annealing.

1 52. The method of claim 48, wherein said channel
2 has a width less than or equal to 3,000 Å.

1 53. The method of claim 52, wherein said channel
2 has an aspect ratio that is greater than or equal to
3 3.33.