BÀI TẬP CHƯƠNG 2

A BÀI TẬP LÝ THUYẾT

C âu 1. Tìm các số nguyên dương m sao cho c	ác biểu thức dưới đây là đúng.
$ (1) 27 \equiv 5 \mod m; $	$ 2) 103 \equiv 6 \mod m;$
$ (3) 1000 \equiv 1 \mod m;$	$\textcircled{4} \ 1331 \equiv 0 \ \operatorname{mod} m.$
C âu 2. Đồng hồ kim chỉ mấy giờ?	
a) 29 tiếng sau khi nó chỉ lúc 11 giờ;	
b) 100 tiếng sau khi nó chỉ 2 giờ;	
c) 50 tiếng trước khi nó chỉ 6 giờ.	
C âu 3. Tìm số nguyên không âm nhỏ nhất là	đồng dư của các số sau trong mod 13.
1) 22;	2 100;
③ 1001;	4) -1;
(5) -100:	(6) -1000.

GVLT: NGUYỄN VĂN THÌN		LÝ THUYẾT SỐ
•••••		
•••••		•••••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
	• • • • • • • • • • • • • • • • • • • •	
Câu 4. Tìm số nguyên dươ	ng nhỏ nhất đồng dư với các so	ố sau trong mod 47.
$(1) 2^{32};$	$2^{47};$	\mathfrak{Z}^{200} .
,	<i></i>	
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••		
Câu 5. Tìm số nguyên dươ	ng nhỏ nhất đồng dư với:	
① $3^{10} \mod 11$;	(2) $2^{12} \mod 13$;	$3 5^{22} \mod 23.$
•••••		
		•••••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
••••		•••••
		• • • • • • • • • • • • • • • • • • • •
•••••		•••••
	• • • • • • • • • • • • • • • • • • • •	•••••
	•••••	•••••

C âu 6. Tìm số nguyên dương nhỏ nhất đồng dư với:			
① 10! mod 11;	② 12! mod 13;	③ 16! mod 17.	
		•••••	
C âu 7. Tìm phần tử khả nghịc	h của \overline{m} trong vành \mathbb{Z}_n . Với:		
(1) $m = 4, n = 27;$	(2) $m = 15, n = 77;$	$\mathfrak{F}(3)$ $m = 7, n = 1001.$	
		•••••	
		•••••	
	• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
		•••••	
C âu 8. Giải các phương trình s			
	$ (2) 6x \equiv 3 \mod 9;$	(3) $17x \equiv 14 \mod 21$;	
4 $15x \equiv 9 \mod 25$;	(5) $128x \equiv 833 \mod 1001$;	6 $987x \equiv 610 \mod 1597$.	
		•••••	
		•••••	
		•••••	
		•••••	

GVLT: NGUYỄN VĂ	ÁN THÌN		LÝ THUYẾT SỐ
Câu 9. Cho a_0 là m	nột phần tử khả nghịch ${\mathfrak a}$ ng ${\mathfrak a}_0 b_0$ là một phần tử	của a trong \mathbb{Z}_n , b_0 là m a	ột phần tử khả nghịch của b trong
		• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •		•••••	
• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •
Câu 10. Tìm tất cả	giá trị của x thoả mãn:		
			$\int x \equiv 0 \mod 2$
(4 11	$\int x \equiv$	1 mod 11	
	$\stackrel{1}{-};$ $\stackrel{2}{(2)} \begin{cases} x \equiv$	= −1 mod 13;	
$x \equiv 3 \mod 1$	$x \equiv x$	1 mod 17	
	($x \equiv 6 \mod 7$
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •	
Câu 11. Tính:			
	② $\phi(10)$;	$(3) \phi(1000);$	4 $\phi(13013)$
$\Psi(I)$	\mathcal{L} ψ (10),	$\mathbf{\varphi}(1000),$	Φ ψ (10010)
		• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	
		•••••	•••••

GVLI: NGUIEN VA	111111		LI IIIUIEI SO
•••••			
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •		
Câu 12. Tính:			
\bigcirc σ (7);	\bigcirc $\sigma(10)$;	3 $\sigma(1000)$;	4 $\sigma(13013)$
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
Câu 13. Tính:			
(1) ~(7).	(10)	$\mathfrak{3}\ \tau(1000);$	$(4) \tau(13013)$
\bigcirc $\tau(7);$	② $\tau(10)$;	(1000);	4) <i>t</i> (13013)
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •		
•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •
O^ 11 T/	0 40 41 10 17	•••••	• • • • • • • • • • • • • • • • • • • •
Cau 14. Rut gon 8.	$9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \mod 7.$		
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •

GVLT: NGUYỄN VĂN THÌN	LÝ THUYẾT SỐ
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
Câu 15. Rút gọn 2 ⁴³²¹⁰ mod 101.	
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	•••••
	•••••
	•••••
	• • • • • • • • • • • • • • • • • • • •
Cân 16 Hãu thu 2 ab 3 aế tân như 2 3 a 7803	•••••
Câu 16. Hãy tìm 3 chữ số tận cùng của 7 ⁸⁰³ .	
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	•••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
Câu 17. Cho a,b là các số nguyên và p là số nguyên tố thoả $a^p \equiv b^p \mod p$. Chứng minh rằng: $a^p \equiv b^p \mod p^2$.	
00.	
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •

•••••	
• • • • • • • • • • • • • • • • • • • •	•••••
	• • • • • • • • • • • • • • • • • • • •
Câu 18. Cho a,b là các số nguyên dươ trình $ax \equiv b \mod p$ là x thoả $x \equiv a^{p-2}b$ máp dụng, giải các phương trình đồn	
$ (1) 7x \equiv 12 \mod 17;$	$ (2) \ 4x \equiv 11 \mod 19 $
• • • • • • • • • • • • • • • • • • • •	•••••
• • • • • • • • • • • • • • • • • • • •	•••••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
Câu 19. Cho p là một số nguyên tố lẻ, q	chứng minh rằng: $2(p-3)! \equiv -1 \mod p$.
	• • • • • • • • • • • • • • • • • • • •
	•••••
	•••••
	•••••
	phân biệt, chứng minh rằng: $p^{q-1} + q^{p-1} \equiv 1 \mod pq$
	•••••
	•••••

GVLT: NGUYỄN VĂN THÌN

LÝ THUYẾT SỐ

GVLT: NGUYỄN VĂN THÌN	LÝ THUYẾT SỐ
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
Câu 21. Cho p là một số nguyên tố và a là một số nguyên thỏa $p \nmid a$. Chứng minh r phần tử khả nghịch của a trong \mathbb{Z}_p .	$ \overset{\circ}{\text{ang:}} a^{p-2} \overset{\circ}{\text{là một}} $
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
Câu 22. Chứng minh rằng:	
a) $\tau(n)$ là một số nguyên lẻ nếu và chỉ nếu n là một số chính phương.	
b) $\sigma(n)$ là một số nguyên lẻ nếu và chỉ nếu n là một số chính phương hoặc bằn chính phương.	g hai lần một số
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •

Câu 23. Giả sử n là một số nguyên dương không có ước chính phương. Chứng minh rằng: $\tau(n) = 2^r$, với r là số các ước nguyên tố của n .		
Câu 24. Cho k là một số nguyên, hàm f xác định bởi: $f(n) = n^k$. Chứng minh rằng: f là hàm nhân		
tính.		
Câu 25. Gọi f và g là các hàm nhân tính thỏa mãn $f(p^k) = g(p^k)$ với mọi p là số nguyên tố và $k \ge 1$. Chứng minh rằng: $f = g$.		
••••••		

Câu 26. Với mọi số nguyên dương n , chứng minh rằng:			
		$\sum_{d n} \frac{n}{d} \sigma(d) = \sum_{d n} d\tau(d).$	
	• • • • • • • • • • • • • • • • • • • •		
		• • • • • • • • • • • • • • • • • • • •	
	• • • • • • • • • • • • • • • • • • • •		
Câu 27. Tìm cấp của các số ng	nivên 2. 3 và 5:		
	_	(a) 100	
① mod 17;	② mod 19;	3 mod 23.	
	• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •		
•••••	• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •		
•••••	• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
	-	• • • • • • • • • • • • • • • • • • • •	
Câu 28. Chứng minh rằng $\phi(2)$	n – 1) là bội của n với mọ	i n > 1.	
	• • • • • • • • • • • • • • • • • • • •		
•••••	• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •		
•••••	• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
	•••••		
	•••••		
	• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •		
	•••••		

Câu 29. Cho số nguyên a có cấp $3 \mod p$, với p là một số nguyên tố lẻ. Chứnng minh rằng: $a+1$ có cấp $6 \mod p$.
••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••
••••••••••••••••••••••••••••••
Câu 30.
Cau 50.
a) Chứng minh rằng mọi ước nguyên tố lẻ của n^2+1 đều có dạng là $4k+1$;
b) Chứng minh rằng có vô số số nguyên tố có dạng $4k+1$.
•••••••••••••••••••••••••
•••••••••••••••••••••••••••••••
Câu 31. Kiểm tra xem 2 có là nghiệm nguyên thủy của 19 hay không, có là nghiệm nguyên thủy của 17 không?
•••••••••••••••••••••••••••••••••••••••

GVLT: NGUYỄN VĂN THÌN	LÝ THUYẾT SỐ
Câu 32. Gọi r là một nghiệm nguyên thủy của n . Chứng minh rằng r^k là ngh n nếu và chỉ nếu $(k,\phi(n))=1$.	niệm nguyên thủy của
	•••••
	•••••
	•••••
	•••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
Câu 33.	
a) Tìm hai nghiệm nguyên thủy của 10;	
b) Biết rằng 3 là một nghiệm nguyên thủy của 17. Tìm 8 nghiệm nguyên th	nủy của 17.
	•••••
	•••••
	•••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	•••••
	•••••
Câu 34.	
a) Biết rằng 2 là một nghiệm nguyên thủy của 19. Tìm tất cả các thặng dư	bình phương của 19;
b) Tìm các thặng dư của 29 và 31.	
	•••••
	•••••

GVLT: NGUYỄN VĂN THÌN		LÝ THUYẾT SỐ
Câu 35. Tính các kí hiệu Legendre sau		r 1
$\textcircled{1}\begin{bmatrix}8\\11\end{bmatrix}; \qquad \qquad \textcircled{2}\begin{bmatrix}11\\23\end{bmatrix};$	$\mathfrak{B}\begin{bmatrix} 6 \\ 31 \end{bmatrix};$	$\textcircled{4}\begin{bmatrix}71\\73\end{bmatrix};$
	(7) $\begin{bmatrix} 1234 \\ 4567 \end{bmatrix}$;	
	•••••	
Câu 36. Tính các kí hiệu Jacobi sau:		
$\textcircled{1}\begin{bmatrix}5\\21\end{bmatrix};$	$ \begin{bmatrix} 27 \\ 201 \end{bmatrix}; $	$egin{aligned} egin{bmatrix} 21 \ 221 \end{bmatrix}; \end{aligned}$
$(4)\begin{bmatrix}111\\1001\end{bmatrix};$ (5)	$ \begin{bmatrix} 215 \\ 253 \end{bmatrix}; $	$\left[egin{matrix} 1009 \ 2307 \end{matrix} ight].$
	•••••	

Câu 37. Cho p là số nguyên tố thỏa $p \equiv 7 \mod 8$, chứng minh rằng: $p \mid 2^{(p-1)/2-1}$.		
Câu 38. Cho số nguyên tố p thỏa $p \equiv 1 \mod 4$, chứng minh rằng:		
$\sum_{a=1}^{(p-1)/2} \begin{bmatrix} a \\ p \end{bmatrix} = 0.$		
$\sum_{a=1}^{\infty} p = 0.$		
w 1 [-]		
•••••••••••••••••••••••••••••••••••••••		
Câu 39. Cho n là số nguyên dương lẻ không có ước chính phương. Chứng minh tồn tại số nguyên		
a thỏa mãn $(a,n) = 1$ và $\begin{bmatrix} a \\ n \end{bmatrix} = -1$		
$\lfloor n \rfloor$		

GVLT: NGUYỄN VĂN THÌN	LÝ THUYẾT SỐ
Câu 40. Cho n là số nguyên dương lẻ. Chứng minh rằng: $\begin{bmatrix} n \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ n \end{bmatrix}$.	
••••••	• • • • • • • • • • • • • • • • • • • •

B BÀI TẬP THỰC HÀNH

Dưới đây là một số lưu ý khi nộp bài.

① Yêu cầu viết bằng Python 3. Khi nộp bài, chỉ nộp lại file có đuôi .py theo định dạng sau: "n_MSSV.py".

Trong đó, *n* là số thứ tự bài tập, MSSV là mã số sinh viên.

Ví dụ, bạn có MSSV là 1712000 làm câu 1, thì đặt tên file là: "1_1712000.py".

2 Yêu cầu sử dụng thư viện **argv** để khai báo biến. Tức là, đầu mỗi file .py, các bạn thực hiện khai báo như dưới đây trước khi thực hành. from sys import argv script, input = argv

Câu 1. Viết chương trình thực hiện các yêu cầu sau:

- Đọc file input.txt với 10 bộ test, mỗi bộ test trên một dòng (theo thứ tự $a \ b \ c \ n$). Trong đó, các số trên là hệ số của phương trình đồng dư $ax + b \equiv c \mod n$.
- Xuất ra file 1_MSSV.txt gồm 10 dòng mỗi dòng là các nghiệm của phương trình đồng dư trên trong \mathbb{Z}_n (theo thứ tự từ nhỏ đến lớn). Nếu vô nghiệm thì in ra x.

Ví dụ 1: Input: 12 44 10 92. Output: x

Ví dụ 2: Input: 15 –36 29 85. Output: 10,27,44,61,78

Câu 2. Viết chương trình thực hiện các yêu cầu sau:

- Đọc file input.txt với 10 bộ test, mỗi bộ test trên một dòng ((gồm 1 số n). Trong đó, n là một số tư nhiên.
- Xuất ra file 2_MSSV.txt gồm 10 dòng mỗi dòng lần lượt là giá trị của $\phi(n)$, $\sigma(n)$, $\tau(n)$. $Vi~d\mu$: Input: 10. Output: 4,18,4

Câu 3. Viết chương trình thực hiện các yêu cầu sau:

- Đọc file input.txt với 10 bộ test, mỗi bộ test trên một dòng (theo thứ tự a b). Trong đó a, b là các số tự nhiên.
- Xuất ra file 3_MSSV.txt gồm 10 dòng mỗi dòng là kết quả của kí hiệu Jacobi $\begin{bmatrix} a \\ b \end{bmatrix}$.

Ví dụ: Input: 37 1231. Outpur: −1