CS152-Homework5

Hongchen Cao 2019533114

2020.10.14

1

Suppose same(X, X') = j

For both CBC and CFB mode:

In the first turn, since $y_1 = y_1'$ and using same key and IV, we have $x_1 = x_1'$.

In subsequent turns, for $i^{th}(i \leq j)$ turn, since $x_{i-1} = x'_{i-1}$, $y_i = y'_i$ and using same key, we have $x_i = x'_i$. Until i = j + 1, since $y_{j+1} \neq y'_{j+1}$, we have $x_{j+1} \neq x'_{j+1}$.

Thus, adversary get same(X, X') = j.

$\mathbf{2}$

For ECB and OFB mode:

Suppose y_j is incorrect, corresponding x_j must be incorrect after decryption.

However, when decrypting other y_i , corresponding x_i just related to y_i and key k_i but have nothing to do with y_i, x_j .

Thus, equal to one.

For CBC and CFB mode:

Suppose y_j is incorrect, corresponding x_j must be incorrect after decryption. Now consider x_{j+1} , it depends on y_{j+1} , k_{j+1} and y_j . However y_j is incorrect, so y_{j+1} is incorrect.

When decrypting other $y_i (i \neq j, j + 1)$, corresponding x_i related to y_i , k_i and y_{i-1} but have nothing to do with y_j , x_j , x_{j+1} .

Thus, equal to two.

3

Res:

[0 0 0 0 1 1 1] [0 0 1 1 1 1 0] [0 1 0 1 1 0 1] [0 1 1 0 1 0 0]

 $[1\ 0\ 0\ 1\ 0\ 1\ 1]$

 $[1\ 0\ 1\ 0\ 0\ 1\ 0]$

```
\begin{bmatrix} 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \end{bmatrix} \\ \begin{bmatrix} 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \end{bmatrix}
```

Code:

```
import numpy as np

def getPreimages(hashMatrix, image):
    res = list()
    for i in range(pow(2, 7)):
        preimage = np.array([int(j) for j in list('{:07b}'.format(i))]) % 2
        tempImage = np.matmul(preimage, hashMatrix) % 2

    if (tempImage == image).all():
        res.append(preimage)
    return res

if __name__ == '__main__':
    A = np.array([[1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [1, 1, 1, 1], [0, 1, 1, 1], [0, 0, 0, 1]])
    image = np.array([0, 1, 0, 1])
    for arr in getPreimages(A, image):
        print(arr)
```

4

Suppose,

$$\nexists \hat{x} \neq x : h(x) = h(\hat{x}) \Rightarrow \forall \hat{x} \in \{0,1\}^m : \hat{x} \neq x \Rightarrow h(x) \neq h(\hat{x}) \Rightarrow f(x' \oplus x'') \neq f(\hat{x}' \oplus \hat{x}'')$$
 (1)

Since f is bijection, we have

$$f(x' \oplus x'') \neq f(\hat{x}' \oplus \hat{x}'') \Rightarrow x' \oplus x'' \neq \hat{x}' \oplus \hat{x}'', \forall x, \hat{x} \in \{0, 1\}^m$$
(2)

However, we can easily find a counterexample like x = 10100010 and $\hat{x} = 01101100$. So we have:

$$x' \oplus x'' = 1010 \oplus 0010 = 1000 \tag{3}$$

$$\hat{x}' \oplus \hat{x}'' = 0100 \oplus 1100 = 1000 \tag{4}$$

Thus, contradiction happens so we proved h is not second preimage resistant.