Spring 2015: Real Analysis Graduate Exam

Peter Kagey

January 9, 2018

Problem 1. Prove that for almost all $x \in [0,1]$, there are at more finitely many rational numbers with reduced form p/q such that $q \ge 2$ and $|x - p/q| < 1/(q \log q)^2$. (Hint: consider intervals of length $2/(q \log q)^2$ centered at rational points p/q.)

Proof.

Problem 2. Suppose that the real-valued function $f(x)$ is nondecreasing on the interval [0, 1]. Problem 2. Suppose that the real-valued function $f_n(x)$ such that $f_n \to f$ pointwise on this interval.	ove that
Proof.	

Problem 3. Let (X, μ) be a finite measure space. Assume that a sequence of integrable functions f_n satisfies $f_n \to f$ in measure, where f is measurable. Assume that f_n satisfies the following property: For every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$\mu(E) \le \delta \Longrightarrow \int_E |f_n| d\mu \le \varepsilon.$$

Prove that f is integrable and that

$$\lim_{n} \int_{X} |f_n - f| d\mu = 0.$$

Proof.

Problem 4. Consider the following two statements about a function $f:[0,1]\to\mathbb{R}$:

- (i) f is continuous almost everywhere
- (ii) f is equal to a continuous function g almost everywhere.

Does (i) imply (ii)? Prove or give a counterexample. Does (ii) imply (i)? Prove or give a counterexample.

Proof.