EE5327 Optimization

Anshika Chaurasia Razat Shanker

EE18MTECH11017 EE18MTECH11016

21 Feb 2019

Linear Programming

Definition

Linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints.

$$\min_{x} c^{T}x$$

subject to
$$Ax \le b$$
 and $x \ge 0$

Question 5.1

Q. Graphically obtain a solution to the following

$$\max_{x} 6x_1 + 5x_2$$

with constraints

$$x_1 + x_2 \le 5$$

 $3x_1 + 2x_2 \le 12$
where $x_1, x_2 \ge 0$

Graphical Solution

vertex of feasible	
region	corresponding value
	of $\max_{x} 6x_1 + 5x_2$
(0,0)	0
(0,5)	25
(4,0)	24
(2,3)	27

Question 5.2

Q. Use cvxopt to obtain a solution to problem 5.1.

$$\min_{x} c^{T}x$$

subject to
$$Ax \leq b$$

$$c = \begin{bmatrix} -6 \\ -5 \end{bmatrix}, A = \begin{bmatrix} 1 & 1 \\ 3 & 2 \\ -1 & 0 \\ 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 5 \\ 12 \\ 0 \\ 0 \end{bmatrix}$$

Solution

Code:

```
from cvxopt import matrix
from cvxopt import solvers
A = matrix([[1.0, 3.0, -1.0, 0], [1.0, 2.0, 0, -1.0]])
b = matrix([5.0, 12.0, 0.0, 0.0])
c = matrix([-6.0, -5.0])
sol = solvers.lp(c, A, b)
print(sol['x'])
 Optimal solution found.
 [ 2.00e+00]
 [ 3.00e+00]
```