Mapping Class Groups

D. Zack Garza

Wednesday $30^{\rm th}$ September, 2020

Contents

1	1 Setup		1	
	1.1	The Compact-Open Topology	2	
		1.1.1 Mapping Spaces	2	
	1.2	Aside on Analysis	2	
		1.2.1 Application in Analysis	3	
	1.3	Aside on Number Theory	3	
2	Path	Spaces	4	
	2.1	Homotopy and Isotopy in Terms of Path Spaces	4	
		2.1.1 Proof	4	
	2.2	Iterated Path Spaces	5	
3	Defining the Mapping Class Group			
	3.1	Isotopy	6	
	3.2	Self-Homeomorphisms	6	
	3.3	Definitions in Several Categories	6	
	3.4	Easy Results	6	
	3.5	The Alexander Trick	6	
	3.6	Some Easy Results	7	
4	Deh	n Twists	7	

1 | Setup

- All manifolds:
 - Connected
 - Oriented
 - 2nd countable (countable basis)
 - Hausdorff (separate with disjoint neighborhoods, uniqueness of limits)
- Weakly Hausdorff: every continuous image of a compact Hausdorff space into it is closed.

- Compactly generated: sets are closed iff their intersection with every compact subspace is closed.
- For X, Y topological spaces, consider

$$Y^X = C(X,Y) = \mathrm{hom}_{\mathrm{Top}}(X,Y) \coloneqq \left\{ f : X \to Y \mid f \text{ is continuous} \right\}.$$

1.1 The Compact-Open Topology

- General idea: cartesian closed categories, require exponential objects or internal homs: i.e. for every hom set, there is some object in the category that represents it
 - Slogan: we'd like homs to be spaces.
- Can make this work if we assume WHCG: weakly Hausdorff and compactly generated.
- Topologize with the compact-open topology \mathcal{O}_{CO} :

$$U \in \mathcal{O}_{\mathrm{CO}} \iff \forall f \in U, \quad f(K) \subset Y \text{ is open for every compact } K \subseteq X.$$

1.1.1 Mapping Spaces

• So define

$$\operatorname{Map}(X,Y) := (\operatorname{hom}_{\operatorname{Top}}(X,Y), \mathcal{O}_{\operatorname{CO}})$$
 where $\mathcal{O}_{\operatorname{CO}}$ is the compact-open topology.

- Can immediately define interesting derived spaces:
 - Homeo(X,Y) the subspace of homeomorphisms
 - $-\operatorname{Imm}(X,Y)$, the subspace of immersions (injective map on tangent spaces)
 - Emb(X,Y), the subspace of embeddings (immersion + diffeomorphic onto image)
 - $-C^{k}(X,Y)$, the subspace of $k\times$ differentiable maps
 - $-C^{\infty}(X,Y)$ the subspace of smooth maps
 - Diffeo(X,Y) the subspace of diffeomorphisms
 - $-C^{\omega}(X,Y)$ the subspace of analytic maps
 - $\operatorname{Isom}(X,Y)$ the subspace of isometric maps (for Riemannian metrics)
 - -[X,Y] homotopy classes of maps

1.2 Aside on Analysis

• If Y = (Y, d) is a metric space, this is the topology of "uniform convergence on compact sets": for $f_n \to f$ in this topology iff

$$||f_n - f||_{\infty,K} := \sup \left\{ d(f_n(x), f(x)) \mid x \in K \right\} \stackrel{n \to \infty}{\to} 0 \quad \forall K \subseteq X \text{ compact.}$$

- In words: $f_n \to f$ uniformly on every compact set.
- If X itself is compact and Y is a metric space, C(X,Y) can be promoted to a metric space with

$$d(f,g) = \sup_{x \in X} (f(x), g(x)).$$

1 SETUP 2

1.2.1 Application in Analysis

• Useful in analysis: when does a family of functions

$$\mathcal{F} = \{f_{\alpha}\} \subset \hom_{\mathrm{Top}}(X, Y)$$

form a compact subset of Map(X, Y)?

• Essentially answered by:

Theorem 1.1(Ascoli).

If X is locally compact Hausdorff and (Y,d) is a metric space, a family $\mathcal{F} \subset \text{hom}_{\text{Top}}(X,Y)$ has compact closure $\iff \mathcal{F}$ is equicontinuous and $F_x \coloneqq \{f(x) \mid f \in \mathcal{F}\} \subset Y$ has compact closure.

Corollary 1.2(Arzela).

If $\{f_n\} \subset \hom_{\text{Top}}(X,Y)$ is an equicontinuous sequence and $F_x := \{f_n(x)\}$ is bounded for every X, it contains a uniformly convergent subsequence.

1.3 Aside on Number Theory

- Useful in Number Theory / Rep Theory / Fourier Series:
 - Can take ${\cal G}$ to be a locally compact abelian topological group and define its Pontryagin dual

$$\widehat{G} := \hom_{\mathrm{TopGrp}}(G, S^1)$$

where we consider $S^1 \subset \mathbb{C}$.

• Can integrate with respect to the Haar measure μ , define L^p spaces, and for $f \in L^p(G)$ define a Fourier transform $\widehat{f} \in L^p(\widehat{G})$.

$$\widehat{f}(\chi) := \int_G f(x) \overline{\chi(x)} d\mu(x).$$

1 SETUP 3

2 | Path Spaces

• Can immediately consider some interesting spaces via the functor Map (\cdot, Y) :

$$\begin{split} X &= \{ \mathrm{pt} \} \leadsto & \mathrm{Map}(\{ \mathrm{pt} \}, Y) \cong Y \\ X &= I \leadsto & \mathcal{P}Y \coloneqq \{ f : I \to Y \} = Y^I \\ X &= S^1 \leadsto & \mathcal{L}Y \coloneqq \left\{ f : S^1 \to Y \right\} = Y^{S^1}. \end{split}$$

• Adjoint property: there is a homeomorphism

$$\operatorname{Map}(X \times Z, Y) \leftrightarrow_{\cong} \operatorname{Map}(Z, Y^X)$$

$$H: X \times Z \to Y \iff \tilde{H}: Z \to \operatorname{Map}(X, Y)$$

$$(x, z) \mapsto H(x, z) \iff z \mapsto H(\cdot, z).$$

- Categorically, hom $(X, \cdot) \leftrightarrow (X \times \cdot)$ form an adjoint pair in Top.
- A form of this adjunction holds in any cartesian closed category (terminal objects, products, and exponentials)

2.1 Homotopy and Isotopy in Terms of Path Spaces

- Can take basepoints to obtain the base path space PY, the based loop space ΩY .
- Importance in homotopy theory: the path space fibration

$$\Omega Y \hookrightarrow PY \xrightarrow{\gamma \mapsto \gamma(1)} Y$$

- Plays a role in "homotopy replacement", allows you to assume everything is a fibration and use homotopy long exact sequences.
- Fun fact: with some mild point-set conditions (Locally compact and Hausdorff),

$$\pi_0 \operatorname{Map}(X, Y) = \{ [f], \text{ homotopy classes of maps } f : X \to Y \},$$

i.e. two maps f,g are homotopic \iff they are connected by a path in $\mathrm{Map}(X,Y)$.

Picture!

2.1.1 Proof

$$\mathcal{P}\operatorname{Map}(X,Y) = \operatorname{Map}(I,Y^X) \cong \operatorname{Map}(X \times I,Y),$$

and just check that $\gamma(0) = f \iff H(x,0) = f$ and $\gamma(1) = g \iff H(x,1) = g$.

• Interpretation: the RHS contains homotopies for maps $X \to Y$, the LHS are paths in the space of maps.

2.2 Iterated Path Spaces

• Now we can bootstrap up to play fun recursive games by applying the pathspace endofunctor $\operatorname{Map}(I, \cdot)$:

$$\begin{split} \mathcal{P}\mathrm{Map}(X,Y) &\coloneqq \mathrm{Map}(I,Y^X) \\ \mathcal{P}^2\mathrm{Map}(X,Y) &\coloneqq \mathcal{P}\mathrm{Map}(I,Y^X) = \mathrm{Map}(I,(Y^X)^I) = \mathrm{Map}(I,Y^{XI}) \\ &\vdots \\ \mathcal{P}^n\mathrm{Map}(X,Y) &\coloneqq \mathcal{P}^{n-1}\mathrm{Map}(I,Y^{XI}) = \mathrm{Map}(X,Y^{XI^n}). \end{split}$$

• Can interpret

$$\mathcal{P}^2 \operatorname{Map}(X, Y) = \mathcal{P} \operatorname{Map}(X \times I, Y).$$

as the space of paths between homotopies.

• Interpretation: we can consider paths in the *space* of paths, and paths between homotopies, and homotopies between homotopies, ad infinitum!

This in fact defines a *monad* on spaces: an endofunctor that behaves like a monoid.

Picture, link to infinity categories.

3 | Defining the Mapping Class Group

3.1 Isotopy

- Define a homotopy between $f, g: X \to Y$ as a map $F: X \times I \to Y$ restricting to f, g on the ends
 - Equivalently: a path, an element of Map(I, C(X, Y)).
- Isotopy: require the partially-applied function $F_t: X \to Y$ to be homeomorphisms for every t.
 - Equivalently: a path in the subspace of homeomorphisms, an element of Map(I, Homeo(X, Y))

3.2 Self-Homeomorphisms

3.3 Definitions in Several Categories

3.4 Easy Results

• $MCG_{Top}(\mathbb{R}^2) = 0$: for any $f: \mathbb{R}^2 \to \mathbb{R}^2$, take the straight-line homotopy:

$$F: \mathbb{R}^2 \times I \to \mathbb{R}^2$$
$$F(x,t) = tf(x) + (1-t)x.$$

Picture: parameterize line between x and f(x) and flow along it over time.

3.5 The Alexander Trick

• $MCG_{Top}(\overline{\mathbb{D}}^2) = 0$: for any $f : \overline{\mathbb{D}}^2 \to \overline{\mathbb{D}}^2$ such that $f|_{\partial \overline{\mathbb{D}}^2} = id$, take

$$\begin{split} F: \overline{\mathbb{D}}^2 \times I \to \overline{\mathbb{D}}^2 \\ F(x,t) &\coloneqq \begin{cases} tf\bigg(\frac{x}{t}\bigg) & \|x\| \in [0,t) \\ x & \|x\| \in [1-t,1] \end{cases}. \end{split}$$

- This is an isotopy from f to the identity.
- Interpretation: "cone off" your homeomorphism over time:

Figure 1: Image

- Note that this won't work in the smooth category: singularity at origin

3.6 Some Easy Results

• $MCG_{Top}(\mathbb{D}^2 \setminus \{p_1\}) = 0$ Follows from the fact that $\mathbb{D}^2 \setminus \{p_1\} \cong_{Top}$.

4 Dehn Twists