Coreset Technique

(Part 1 - Exercises)

Let P be a set of N points in a metric space (M, d), and let $T \subseteq P$ be a coreset of |T| > k points such that for each $x \in P$ we have $d(x,T) \leq \epsilon \Phi_{\text{keepter}}^{\text{opt}}(P,k)$, for some $\epsilon \in (0,1)$. Let S be the set of k centers obtained by running the Farthest-First Traversal algorithm on T. Prove an upper bound to $\Phi_{\text{kcenter}}(P, S)$ as a function of ϵ and $\Phi_{\text{kcenter}}^{\text{opt}}(P,k)$.

$$\begin{aligned} \forall x \in P : & J(x,s) \in J(\epsilon) \ \varphi_{\text{leasury}}^{\text{tor}}(P,k) \\ \text{let } tx \text{ be the closest paint to } x \text{ in } T \\ \text{let } sx \text{ be the closest paint to } tx \text{ in } S \\ & J_{\text{def}} = J_{\text{torogeter}}^{\text{torogeter}} = J_{\text{torogeter}}^{\text{torogeter}} \\ & J_{\text{def}} = J_{\text{torogeter}}^{\text{torogeter}} = J_{\text{torogeter}}^{\text{torogeter}} \\ & \leq \epsilon \varphi_{\text{leasure}}^{\text{torogeter}}(P,k) + 2 \varphi_{\text{leasure}}^{\text{torogeter}}(P,k) + 2 \varphi_{\text{leasure}}^{\text{torogeter}}(P,k) = (2+\epsilon) \varphi_{\text{lec}}^{\text{torogeter}}(P,k) \\ & \leq \epsilon \varphi_{\text{leasure}}^{\text{torogeter}}(P,k) + 2 \varphi_{\text{leasure}}^{\text{torogeter}}(P,k) = (2+\epsilon) \varphi_{\text{lec}}^{\text{torogeter}}(P,k) \\ & = J_{\text{lec}}^{\text{torogeter}}(P,k) + 2 \varphi_{\text{leasure}}^{\text{torogeter}}(P,k) = (2+\epsilon) \varphi_{\text{lec}}^{\text{torogeter}}(P,k) \\ & = J_{\text{lec}}^{\text{torogeter}}(P,k) + J_{\text{lec}}^{\text{torogeter}}(P,k) \\ & = J_{\text{lec}}^{\text{torogeter}}(P,k) + J_{\text{lec}}^{\text{t$$

Let P be a set of points in a metric space (M, d), and let $T \subseteq P$. For any k < |T|, |P|, show that $\Phi_{\text{kcenter}}^{\text{opt}}(T, k) \leq 2\Phi_{\text{kcenter}}^{\text{opt}}(P, k)$. Is the bound tight?

or each chister telle of point - T'

φ or (T, k) ≤ φ(T, T)

Lo set permoted

by toling k permo

3) Remove old points not in T

12									

Let P be a set of N points in a metric space (M,d), and let $\mathcal{C} = (C_1, C_2, \ldots, C_k; c_1, c_2, \ldots, c_k)$ be a k-clustering of P. Initially, each point $q \in P$ is represented by a pair $(\mathsf{ID}(q), (q, c(q)))$, where $\mathsf{ID}(q)$ is a distinct key in [0, N-1] and $c(q) \in \{c_1, \ldots, c_k\}$ is the center of the cluster of q.

- Design a 2-round MapReduce algorithm that for each cluster center c_i determines the most distant point among those belonging to the cluster C_i (ties can be broken arbitrarily).
- **2** Analyze the local and aggregate space required by your algorithm. Your algorithm must require o(N) local space and O(N) aggregate space.

14									

15									

Let P be a set of N bicolored points from a metric space, partitioned into k clusters C_1, C_2, \ldots, C_k . Each point $x \in P$ is initially represented by the key-value pair $(ID_x, (x, i_x, \gamma_x))$, where ID_x is a distinct key in [0, N-1], i_x is the index of the cluster which x belongs to, and $\gamma_x \in \{0, 1\}$ is the color of x.

- 1 Design a 2-round MapReduce algorithm that for each cluster C_i checks whether all points of C_i have the same color. The output of the algorithm must be the k pairs (i, b_i) , with $1 \le i \le k$, where $b_i = -1$ if C_i contains points of different colors, otherwise b_i is the color common to all points of C_i .
- **2** Analyze the local and aggregate space required by your algorithm. Your algorithm must require o(N) local space and O(N) aggregate space.

20									

21										

										T
22										F

23										