ORBIFOLDS & LIE GROUPOIDS

§1. The classical definition. (Satake, Thurston)

Def An orbifold chart is (U, [, 4) s.t.

- 1 U = R open
- 2 7 finite group 2 U
- 3 4 : ~/r = \ \ ≤ X

Def An embedding of orbifold durts (U, Ta, Pa) -> (Up, Tp, Pp) consists of

م اس م الم

2 Û_a — Û_b p-equivariant

Def An orbifold is a space X w/ an atlas {(Ux, \(\tau_1, \phi_2, \phi_2)\)} st.

 $\chi \in \mathcal{U}_{a} \cap \mathcal{U}_{\beta} \Rightarrow \exists \gamma \text{ and } (\widetilde{\mathcal{U}}_{a}, \Gamma_{a}, \phi_{y}) \xrightarrow{(\widetilde{\mathcal{U}}_{a}, \Gamma_{a}, \phi_{a})} (\widetilde{\mathcal{U}}_{\beta}, \Gamma_{\beta}, \phi_{\beta}) \text{ s.t. } \chi \in \mathcal{U}_{\gamma}$

Def For $n \in X$ in a chart (\tilde{U}_{α} , Γ_{α} , φ_{α}), the isotropy group is $\operatorname{Stab}_{\Gamma_{\alpha}}(\tilde{x})$

Ex (Billiands table)

Ex (Quotients) If G2M is effective, proper, almost free my orbifold [X/G]

Ex [1R3/Th] (by reflection) is not a topological mfld

Ex (Moduli spaces of J-hol curves) Mreg. (M,J) is an orbifold

Problem How do we define morphisms, vector budles etc.?

Ex let V be a Γ -rep, $W=V^{\aleph}$ for some $\Re \in \Gamma$? Then $C_{G}(g) \cong W$. If $K=\operatorname{Stab}_{G}(W)$, $C_{G}(g)/K \cong W$. How do we define a morphism $[W/(C_{G}(g)/K)] \longrightarrow [V/G]$?

§ 2. Lie groupoids

Def A Lie groupoid is a groupoid $G_i \rightrightarrows G_o$ where

- 1) The shucture maps are smooth
- ② The source ξ target maps $s, k: G, \rightarrow G_0$ are submersions

Ex (Manifolds) M => M for any mfld M

Ex (Action groupoids) PQM ~~> PxM => M

Ex (Cover groupoids) {Un} open cover of M ~> IIUm = IIUm

Def G is proper if (s,t): G, - Go x Go is proper

Def G is étale if s, t are local diffeos

Ex PxM ⇒ M proper & étale ← T is finite

K 2 IR2 by translation is not étale:

<u>ز</u> ژوئي

Prop [proper étale ⇒ Vx ∈ Go, Findhal U st. Glu=[W]

 $\underline{Def} G \xrightarrow{f} H$ is a weak equivalence if

 $\underline{\mathsf{E}_{\mathsf{X}}}$ ($\coprod \mathsf{U}_{\mathsf{up}} \Rightarrow \coprod \mathsf{U}_{\mathsf{u}}$) \longrightarrow ($\mathsf{M} \Rightarrow \mathsf{M}$) is a weak equiv.

<u>Def</u> G, H are Monita equiv. if $\exists G \leftarrow_{\text{w.e.}} K \xrightarrow{\text{w.e.}} H$

Def An orbifold is a groupoid Monita equiv. to a proper étale grad

§3. Bibundles

dea Category of orbifolds = invert weak equivalences in cat. of Lie grpds

Def A left action G2M consists of

- ① An anchor map $a: M \rightarrow G_{\bullet}$
- ② An action $G_i \times_{SG_0,a} M \longrightarrow M_s$ $(?,m) \mapsto ? \cdot m$ s.t.

- 1 16(x)·x-x
- 2 $\alpha(\gamma \cdot \kappa) = \xi(\gamma)$

Ex An action of (17=3 *) is a 17-action

EX TT,(X) 2 universal cover X

Ex If E → D is a Zz-equiv. vector hadde ~ (Zz×D=D) 2 E

 $\overline{\mathsf{Ex}}$ An action $(P \times N \Rightarrow N) \supseteq M$ is a P-equiv. map $M \longrightarrow N$

Def A right action is defined similarly:

$$\underbrace{\mathsf{Ex}}_{\mathsf{X}} \ \mathsf{H}_{\mathsf{I}} \circ \mathsf{H} \qquad \underbrace{\mathsf{Ex}}_{\mathsf{X}} \ \mathsf{H}_{\mathsf{I}} \circ \mathsf{H}$$

Det A principal H-bundle is a surj. subm. τ: P → B s.t. PDH and

① τι is H-inut
② H acts freely & transitively on the fibers of M.

Orbits = fibers

Ex A principal ([] =>) is a principal [-burdle

Def A (G,H)-bibundle is a nfld P wl SG2P given by al, PDH given by ar, s.t.

- ① $a_L: P \longrightarrow G$, is a principal H-bundle
- 2 ar Is G-invt
- 3 the actions commute
- \sqsubseteq H, is a (H,H)-bibundle. If $f:G \rightarrow H$,

$$f^*H_1 = \left\{ (x, \gamma) \mid \underset{x}{\longrightarrow} \underset{f(x)}{\downarrow_{\gamma}} \right\}$$
 is a (G, H) -bibundle.

区

Fact Bibundles induce maps on underlying spaces:

<u>Def</u> Given $G \xrightarrow{P} H \xrightarrow{a} K$,

$$Q \circ P = P \times_{H_0} Q / H = \left\{ \begin{array}{c} P_0 \\ O_R^{p}(p) = A_L^{a}(p) \end{array} \right\} / H$$

<u>Def</u> (Hilsum-Skandalis)

- 1 Bi = weak 2-category of Lie grads & bibundles
- @ HL= Ho(Bi