	 1 1	 			
Reg. No.			W.V	- H	

MANIPAL UNIVERSITY

FOURTH SEMESTER B.E. (COMPUTER) DEGREE EXAMINATION – DECEMBER 2007 SUBJECT: THEORY OF COMPUTATION (CSE 202) (CREDIT SYSTEM)

Saturday, December 15, 2007

Time: 3 Hrs.

Max. Marks: 100

Answer any FIVE full questions.

- 1A. Explain the concept of
 - i) Deterministic finite accepter.
 - ii) Grammar by giving one example for each.
- 1B. Define regular language and show that the language $L = \{awa \mid w \in \{a,b\}^*\}$ is regular.

$$((5+5)+(2+8) = 20 \text{ marks})$$

2A. Write down the procedure to convert a non deterministic finite accepter to deterministic finite accepter and hence do the same for the nfa given in the following table.

Note: q₀ is the initial state.

q₁ is the final state.

States	0	1	
$\rightarrow q_0$	$\{q_0,q_1\}$	$\{q_1\}$	
q_1	{q ₂ }	$\{q_2\}$	
q_2	{φ}	{q ₂ }	

2B. Use induction on n to show that

$$|v^n| = n |v|$$
 for all strings v and all n.

((6+6)+8 = 20 marks)

- 3A. i) Give an nfa that accepts the language L((a+b)*b(a+bb)*).
 - ii) Find dfa that accept the following language L(ab(a+ab)*(a+aa)).
- 3B. Prove that language generated by a right linear grammar is regular.

$$((5+5)+10 = 20 \text{ marks})$$

4A. State pumping lemma for regular languages and use it to show that the language. $L = \{a^p | p \text{ is prime}\}\$ is not regular.

4B. Explain the concept of exhaustive search parsing by giving one example.

$$((2+8)+10 = 20 \text{ marks})$$

5A. Let G = (V, T, S, P) be a context free grammar, suppose that P contains a production of the form $A \rightarrow x_1 B x_2$. Assume that A and B are different variables and that

- $B \rightarrow y_1 | y_2 | \dots | y_n$ is the set of all productions in P which have B as the left side. Let $\hat{G} = (V, T, S, \hat{P})$ be the grammar in which \hat{P} is constructed by deleting $A \rightarrow x_1 B x_2$ from P, and adding to it $A \rightarrow x_1 y_1 x_2 | x_1 y_2 x_2 | \dots | x_1 y_n x_2$. Then prove that $L(\hat{G}) = L(G)$.
- 5B. Let G = (V, T, S, P) be any context free grammar without λ productions. Then prove that there exists a context free grammar. $\hat{G} = (\hat{V}, \hat{T}, S, \hat{P})$ that does not have any unit productions and that is equivalent to G.

(10+10 = 20 marks)

6A. Construct an npda (non deterministic pushdown accepter) for the language.

$$L = \{ w \ w^R | \ w \in \{a, b\}^+ \}$$

6B. Design a Turing machine that computes the function.

$$f(x,y) = \begin{cases} x+y & \text{if } x \ge y \\ 0 & \text{if } x < y \end{cases}$$

(10+10 = 20 marks)

- 7A. Prove that the family of context free languages is closed under union and concatenation.
- 7B. i) Discuss the concept of a universal Turing Machine.
 - ii) Let S be an infinite countable set. Then prove that its power set 2^S is not countable.

(8+6+6=20 marks)

