JSim Quick Reference v0.1

Iterators

	Syntax	Effect
duplication	A#5	AAAA
buses	A[4:0]	A4 A3 A2 A1 A0
	A[11:10]	A11 A10
	A1[1:0] // DANGER!	A11 A10 // DANGER! Same as above!
	A1_[1:0] // SAFE	A1_1 A1_0
	A[1:0]#2	A1 A0 A1 A0
	A[7:0:2]	A7 A5 A3 A1
	A[2:0][1:0]	A21 A20 A11 A10 A01 A00
subcircuits	Xfoo A[2:0] B[1:0] Q Z[2:0] and2	Xfoo#0 A2 B1 Z2 and2 Xfoo#1 A1 B0 Z1 and2 Xfoo#2 A0 Q Z0 and2
connect (WRONG)	.connect A[1:0] B[1:0] // WRONG	.connect A1 A0 // Probably not .connect A1 B1 // what you .connect A1 B0 // wanted
connect (RIGHT)	<pre>.subckt S T join .connect S T .ends XjAB A[1:0] B[1:0] join</pre>	.connect A1 B1 .connect A0 B0 // Much better!

Device Statements

Subcircuit	Xid nodes subname				
Capacitor	Cid n+ n- capacitance				
Inductor	Lid n+ n- inductance				
Resistor	Rid n+ n- resistance				
Current Source	<pre>Iid n+ n- {{DC=}dcvalue} {tran}</pre>				
Voltage Source	Source Vid n+ n- {{DC=}dcvalue} {tran}				
	// tran options:				
	<pre>pulse(vA,vB,tdelay,tAtoB,tBtoA,tstable) // for clocks, starts at vA for tdelay, period is 2*tstable + tAtoB + tBtoA</pre>				
	<pre>pwl(t1 v1, t2 v2, t3 v3) // for reset signals, signal transitions linearly from v1 at t1 to v2 at t2</pre>				
MOSFET	Mid ndrain ngate nsource nbulk model L=meters W=meters {params} // a MOSFET exactly specified by L and W				
MOSFET (Scaled)	Mid ndrain ngate nsource nbulk model SL=integer SW=integer {params} // a MOSFET specified by SL*SCALE and SW*SCALE // requires the .option SCALE=meters statement, defined in nominal.jsim				
	// model is NENH or PENH, defined in stdcell.jsim				
VCVS	Eid n+ n- ctl+ ctl- gain // voltage-controlled voltage source				
CCCS	Fid n+ n- ctl+ ctl- gain // current-controlled current source				
VCCS	Gid n+ n- ctl+ ctl- gain // voltage-controlled current source				
CCVS	Hid n+ n- ctl+ ctl- gain // current-controlled voltage source				
Digital Waveform	Wid nodes nrz(vlow,vhigh,tperiod,tdelay,trise,tfall) data				
Memory	Xid ports \$memory width=w nlocations=nloc options // each port has: oe clk wen $a_{naddr-1}$ a_0 d_{w-1} d_0 // option file="filename" path is relative to jsim.jar location				

Control Statements

.connect	.connect nodes			
	// connect all nodes together			
.dc	.dc Vds 0 5 .1 Vgs 0 5 1			
	// dc analysis with voltage supplies			
	// sweep Vds 0-5V in 0.1V steps			
	// one plot each for Vgs 0-5V in 1V steps			
.global	.global vdd			
	// node vdd is now accessible when creating subcircuits			
.include	.include "filename"			
	// the contents of filename are included in the current file			
	// path is relative to the including file			
.option	.option SCALE=35nm			
1	// set value of option SCALE to 35nm			
.plot	.plot A analog signal or bus			
·F	.plot b(B[3:0]) format a bus as unsigned binary			
	.plot d() format a bus as unsigned decimal			
	.plot I(Vid) current into n+ of a voltage source			
	.plot L() format a bus as unsigned hexadecimal			
	.plot o() format a bus as unsigned octal			
	.plot sd() format a bus as signed decimal			
	.plot x() format a bus as unsigned hexadecimal, same as L()			
.plotdef	.plotdef Snakes Cobra Mamba Copperhead Sidewinder			
	// when used with .plot Snakes(A[1:0]), displays snake names			
	// zero value name first, case sensitive			
.subckt	.subckt subname nodes			
	.ends			
	// create a subcircuit named subname			
.temp	.temp 100			
	// set circuit temperature to 100C			
.tran	.tran 100us			
	// transient simulation for 100us			

Numbers

All jsim numbers are in SI units: meters, Farads, Henries, Volts, etc. Take care not to declare capacitors that are 8 meters wide.

A number may be an integer (12, -44), a floating point number (3.14159), an integer or floating point number followed by an integer exponent (1E-14, 2.65E3), or an integer or a floating point number followed by a scale factor.

Letters immediately following a number that are not scale factors are ignored and letters immediately following a scale factor are ignored. Integers can be entered in binary, octal or hexadecimal notation by using the appropriate prefix:

0b1011101110100	6004 in binary ("0b" prefix)
013564	6004 in octal ("0" prefix)
0x1774	6004 in hex ("0x" prefix)

Scale Factor	Pronounced	Multiplier			
T, t	tera	1E12			
G, g	giga	1E9			
MEG, meg	mega	1E6			
K, k	kilo	1E3			
M, m	milli	1E-3			
U, u	micro	1E-6			
MIL, mil		25.4E-6			
N,n	nano	1E-9			
P, p	pico	1E-12			
F, f	femto	1E-15			

Useful Advice

- "0" is ground.
- Don't end bus names with numbers. See above.
- Ctrl+S doesn't save, you must use the save button.
- You can add plots after you simulate, just type a plot command in the white boxes.
- Plot "0", it will be easier to see the time on a plot of "0".

Standard Cell Library from nominal.jsim

Netlist	Function	t_{CD} (ns)	t_{PD} (ns)	t _R (ns/pf)	t _F (ns/pf)	load (pf)	size (µ²)
Xid z constant0	Z=0			——————————————————————————————————————	——————————————————————————————————————	(PJ)	0
Xid z constant1	Z=1	_	_	_	_	_	0
Xid a z inverter		.005	.02	2.3	1.2	.007	10
Xid a z inverter_2	_	.009	.02	1.1	.6	.013	13
Xid a z inverter_4	Z = A	.009	.02	.56	.3	.027	20
Xid a z inverter_8	-	.02	.11	.28	.15	.009	56
Xid a z buffer		.02	.08	2.2	1.2	.003	13
Xid a z buffer_2	Z = A	.02	.07	1.1	.6	.005	17
Xid a z buffer_4	Z - H	.02	.07	.56	.3	.01	30
Xid a z buffer-8	-	.02	.07	.28	.15	.02	43
Xid e a z tristate		.03	.15	2.3	1.3	.004	23
Xid e a z tristate_2	Z = A when $e=1$.03	.13	1.1	.6	.006	30
Xid e a z tristate_4	else Z not driven	.02	.12	.6	.3	.011	40
Xid e a z tristate_8	-	.02	.11	.3	.17	.02	56
Xid a b z and2	$Z = A \cdot B$.03	.12	4.5	2.3	.002	13
Xid a b c z and3	$Z = A \cdot B \cdot C$.03	.15	4.5	2.6	.002	17
Xid a b c d z and4	$Z = A \cdot B \cdot C \cdot D$.03	.16	4.5	2.5	.002	20
Xid a b z nand2	$Z = \overline{A \cdot B}$.01	.03	4.5	2.8	.004	10
Xid a b c z nand3	$Z = \overline{A \cdot B \cdot C}$.01	.05	4.2	3.0	.005	13
Xid a b c d z nand4	$Z = \overline{A \cdot B \cdot C \cdot D}$.01	.07	4.4	3.5	.005	17
Xid a b z or2	Z = A + B	.03	.15	4.5	2.5	.002	13
Xid a b c z or3	Z = A + B + C	.04	.21	4.5	2.5	.003	17
Xid a b c d z or4	Z = A + B + C + D	.06	.29	4.5	2.6	.003	20
Xid a b z nor2	$Z = \overline{A + B}$.01	.05	6.7	2.4	.004	10
Xid a b c z nor3	$Z = \overline{A + B + C}$.02	.08	8.5	2.4	.005	13
Xid a b c d z nor4	$Z = \overline{A + B + C + D}$.02	.12	9.5	2.4	.005	20
Xid a b z xor2	$Z = A \oplus B$.03	.14	4.5	2.5	.006	27
Xid a b z xnor2	$Z = \overline{A \oplus B}$.03	.14	4.5	2.5	.006	27
Xid a1 a2 b z aoi21	$Z = \overline{(A1 \cdot A2) + B}$.02	.07	6.8	2.7	.005	13
Xid a1 a2 b z oai21	$Z = \overline{(A1 + A2) \cdot B}$.02	.07	6.7	2.7	.005	17
Xid s d0 d1 z mux2	Z = D0 when $S = 0Z = D1$ when $S = 1$.02	.12	4.5	2.5	.005	27
Xid s0 s1 d0 d1 d2 d3 z mux4 (Note order of s0 and s1!)	Z=D0 when S ₀ =0, S ₁ =0 Z=D1 when S ₀ =1, S ₁ =0 Z=D2 when S ₀ =0, S ₁ =1	.04	.19	4.5	2.5	.006	66
Xid d clk q dreg + = 15 + = 0	Z=D3 when $S_0=1$, $S_1=1$ D $\rightarrow Q$ on CLK \uparrow	.03	.19	4.3	2.5	.002	56
$t_{setup} = .15$, $t_{hold} = 0$ Xid d clk q dlatch (do not use)	D→Q while CLK↑	.03	.19	4.3	2.5	.002	36