Algebra: Matrices II - Determinants

Tang Wee Kee

Nanyang Technological University

Determinants of 2 x 2 Matrices

Recall that a 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible if and only if $ad - bc \neq 0$.

This special number ad - bc is known as the determinant of the 2×2 square matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

It is denoted by the symbol det(A).

Determinants of n x n Matrices

For a general $n \times n$ square matrix A, where $n \ge 3$, we shall compute the det(A) inductively via Cofactor Expansion.

What are cofactors?

Cofactor of a Matrix

Definition

The (i,j)-minor of A is defined to be the determinant of the submatrix that remains after the ith-row and the jth-column are deleted from A. It is denoted by M_{ij}

Definition

The (i,j)th cofactor of A, denoted by C_{ij} , is the product of number $(-1)^{i+j}$ and the determinant M_{ij} of the submatrix that remains after the ith-row and the jth-column are deleted from A. That is,

$$C_{ij}=(-1)^{i+j}M_{ij}.$$

Note: The number M_{ii} is called the (i, j)th minor of A.

Example

Consider the matrix

$$A = \left[\begin{array}{rrr} 1 & 5 & 0 \\ -3 & 2 & 1 \\ 1 & 2 & 1 \end{array} \right]$$

- (a) Find the (1,1)th cofactor and (2,3)th cofactor of A.
- (b) Calculate C_{12} and C_{31} .

Determinants via Cofactors

Cofactors are used in the evaluation of determinants in an inductive way.

We begin with determinants of matrices of sizes 1×1 and 2×2 .

The determinant of a 1×1 matrix [a] is a, i.e., det([a]) = a.

Determinants of 2 x 2 Matrices

The determinant of the 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is ad - bc. We write it as

$$\left| egin{array}{ccc} a & b \\ c & d \end{array} \right| = ad - bc, \ \ ext{or} \ \ \det(A) = ad - bc,$$

which can be obtained by computing the sum of the products on the rightward arrow and subtracting the products in the leftward arrow.

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

Determinants of n x n Matrices, n > 2

The determinant of an $n \times n$ matrix A can be found by summing the products of terms in the first row with the corresponding cofactors:

$$\det(A) = a_{11}C_{11} + a_{12}C_{12} + \cdots + a_{1n}C_{1n}.$$

Example

Find the determinant of
$$A = \begin{bmatrix} 1 & 5 & 0 \\ -3 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

Example

Find the determinant of
$$A = \begin{bmatrix} 1 & 5 & 0 \\ -3 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

•
$$C_{11} = (-1)^{1+1} \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} = 0$$
, $C_{12} = (-1)^{1+2} \begin{vmatrix} -3 & 1 \\ 1 & 1 \end{vmatrix} = 4$, $C_{13} = (-1)^{1+3} \begin{vmatrix} -3 & 2 \\ 1 & 2 \end{vmatrix} = -8$

Example

Find the determinant of $A = \begin{bmatrix} 1 & 5 & 0 \\ -3 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix}$

•
$$C_{11} = (-1)^{1+1} \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} = 0$$
, $C_{12} = (-1)^{1+2} \begin{vmatrix} -3 & 1 \\ 1 & 1 \end{vmatrix} = 4$, $C_{13} = (-1)^{1+3} \begin{vmatrix} -3 & 2 \\ 1 & 2 \end{vmatrix} = -8$

So.

$$det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$
$$= 1(0) + 5(4) + 0(-9)$$
$$= 20$$

Determinants of $n \times n$ Matrices, n > 2

We may also calculate the determinant by cofactor expansion along other rows.

• Suppose we perform cofactor expansion along the *i*th-row. Say the entries on the *i*th row are:

$$a_{i1}$$
 a_{i2} \cdots a_{ik} \cdots a_{in}

- ② Multiply each entry a_{ik} with its corresponding cofactor C_{ik} , i.e., $a_{ik}C_{ik}$.
- Add all the resulting products obtained in the last step gives the determinant of A, i.e.,

$$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in} = \sum_{k=1}^{n} a_{ik}C_{ik}.$$

By cofactor expansion along the second row, find the determinant of the matrix

$$A = \left[\begin{array}{rrr} 1 & 5 & 0 \\ -3 & 2 & 1 \\ 1 & 2 & 1 \end{array} \right].$$

$$\det(A) = \left| \begin{array}{rrrr} 1 & 5 & 0 \\ -3 & 2 & 1 \\ 1 & 2 & 1 \end{array} \right|$$

$$= (-3)(-1)^{2+1} \begin{vmatrix} 5 & 0 \\ 2 & 1 \end{vmatrix} + (2)(-1)^{2+2} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} + (1)(-1)^{2+3} \begin{vmatrix} 1 & 5 \\ 1 & 2 \end{vmatrix}$$
$$= (-3)(-5) + (2)(1) + (1)(3) = 20.$$

'Checkerboard' matrix

• The 3 by 3 matrix S

$$S = \left[\begin{array}{rrr} +1 & -1 & +1 \\ -1 & +1 & -1 \\ +1 & -1 & +1 \end{array} \right].$$

• The 4 by 4 matrix S

$$S = \begin{bmatrix} +1 & -1 & +1 & -1 \\ -1 & +1 & -1 & +1 \\ +1 & -1 & +1 & -1 \\ -1 & +1 & -1 & +1 \end{bmatrix}.$$

Are called 'Checkerboard' matrices.

Calculating Determinants via 'Checkerboard' matrix

Using the 'checker-board' matrix, we may compute determinant of smaller size matrices easily. For example, the determinant of A, say along third row:

$$det(A) = \begin{vmatrix} 1 & 5 & 0 \\ -3 & 2 & 1 \\ 1 & 2 & 1 \end{vmatrix}$$
$$= (1) \begin{vmatrix} 5 & 0 \\ 2 & 1 \end{vmatrix} - (2) \begin{vmatrix} 1 & 0 \\ -3 & 1 \end{vmatrix} + (1) \begin{vmatrix} 1 & 5 \\ -3 & 2 \end{vmatrix}$$
$$= 5 - 2 + 17 = 20$$

Determinant of Transpose

From theory of determinants, both matrices A and its transpose A^T have the same determinants.

$$\det(A) = \det(A^T).$$

Therefore, instead of performing cofactor expansion along a selected row, we may also evaluate the determinant of A by cofactor expansion along a selected column.

Determinant of via Cofactors along Column

- Select a column of A, say jth column. (So, we say that we perform cofactor expansion along the jth-column.)
- ② Multiply each entry a_{kj} of the selected row by its corresponding cofactor C_{kj} , i.e., $a_{kj}C_{kj}$.
- Add all the resulting products obtained in the last step gives us the determinant of A, i.e.,

$$\det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \cdots + a_{nj}C_{nj} = \sum_{k=1}^{n} a_{kj}C_{kj}.$$

Example

Find the determinant using cofactor expansion along the second column.

$$det(A) = \left| \begin{array}{rrrr}
1 & 5 & 0 \\
-3 & 2 & 1 \\
1 & 2 & 1
\end{array} \right|$$

Solution

$$= -(5) \begin{vmatrix} -3 & 1 \\ 1 & 1 \end{vmatrix} + (2) \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} - (2) \begin{vmatrix} 1 & 0 \\ -3 & 1 \end{vmatrix}$$

$$= (-5)(-4) + (2)(1) - 2(1) = 20.$$

Determinant of 3 x 3 Matrices

The determinant of the
$$3 \times 3$$
 matrix $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ is (cofactor expansion along first row)

$$\det(A) = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
$$= a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33}$$
$$+ a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31}.$$

Determinant of 3 x 3 Matrices

An easy way to help us in computing the determinant of 3×3 matrix (ONLY) is by recopying the first and second columns next to the third column of A and followed by computing the sum of the products on the rightward arrows and subtracting the products in the leftward arrows.

a ₁₁	a ₁₂	a 13	a_{11}	a 12
a 21	a 22	a 23	a 21	a 22
a 31	a 32	a 33	a 31	a 32

(a)
$$\begin{vmatrix} -2 & 1 & 4 & -2 & 0 \\ 3 & 5 & -7 & 3 & 5 & -7 \\ 1 & 6 & 2 & 0 & 6 & 6 \end{vmatrix}$$

(b)
$$\begin{vmatrix} -2 & 7 & 6 \\ 5 & 1 & -2 \\ 3 & 8 & 4 \end{vmatrix}$$

Example

Find the determinant of the matrix B by cofactor expansion

$$B = \left[\begin{array}{rrrr} 1 & 1 & 5 & 0 \\ 0 & -3 & 2 & 1 \\ 0 & 1 & 2 & 1 \\ -1 & 0 & 0 & 1 \end{array} \right].$$

In general, one strategy for evaluating a determinant by cofactor expansion is to expand along a row or column having the largest number of zeros.

Example

Compute
$$\begin{vmatrix} 3 & 1 & 2 & 2 \\ 1 & 0 & -2 & 1 \\ 1 & 0 & 5 & -1 \\ 2 & 0 & 0 & 1 \end{vmatrix}.$$

Some Useful Theorem

Theorem

- (a) Suppose that A is a square matrix with a row of zeros, then $\det A = 0$.
- (b) Suppose that A has two rows (or columns) such that one is a multiple of the other, then $\det A = 0$.
- (c) Suppose that A is a triangular matrix, then $\det A = \text{product of }$ the diagonal terms.

Example

The determinants of the following matrices are zero.

$$\begin{bmatrix} 4 & 9 & 8 & 5 \\ -5 & -2 & 0 & 7 \\ 0 & 0 & 0 & 0 \\ 3 & 4 & \pi & \frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix} 4 & 9 & 8 & 5 \\ -5 & -2 & 0 & 7 \\ 0 & 0 & 0 & 0 \\ 3 & 4 & \pi & \frac{1}{2} \end{bmatrix}, \qquad \begin{bmatrix} 4 & 9 & 8 & 5 \\ -5 & -2 & 0 & 7 \\ 6 & 8 & 2\pi & 1 \\ 3 & 4 & \pi & \frac{1}{2} \end{bmatrix}.$$

(a)
$$\det((I_n) = 1$$

(b)
$$\begin{vmatrix} 4 & 0 & 0 & 5 \\ 0 & -2 & 0 & 7 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & \frac{1}{2} \end{vmatrix} = 4(-2)(3)(\frac{1}{2}) = -12$$

Determinant of Product

Theorem

For two $n \times n$ matrices A and B,

$$det(AB) = det(A)det(B).$$

Determinant and Invertibility

Theorem

Let A be an $n \times n$ square matrix. Then A is invertible if and only if $det(A) \neq 0$. Moreover, if $det(A) \neq 0$, then

$$det(A^{-1}) = \frac{1}{det(A)}.$$

(Equivalently, the matrix A is singular if and only if det(A) = 0.)

Determinant and Invertibility (Proof)

 (\Rightarrow) If A is invertible then we have $AA^{-1}=I$. Taking determinants of matrices on both sides, we have

$$\det(AA^{-1}) = \det(I),$$

i.e.,
$$det(A) det(A^{-1}) = 1$$
.

Hence $det(A) \neq 0$ and we have

$$\det(A^{-1}) = \frac{1}{\det(A)}.$$

Determinant and Invertibility (Proof)

(⇐) follows from

Theorem

$$Aadj(A) = det(A)I$$
.

from Linear Algebra. (Proof omitted).

Cramer's Rule

For a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ whose coefficient matrix A is invertible, there is a formula for its solution.

The formula is known as Cramer's rule. It is useful for studying the mathematical properties of a solution without the need for solving the system.

Linear Equations vs Non-linear Equations

Linear equations:

$$x_1 - 2x_2 = 3$$

 $\sqrt{2}a + \frac{1}{3}b - 5c = 199$
 $x + 6y - 10z + 4w = 8$

Non-linear equations:

$$\sqrt{x} + 6y - 10z + 4w = 8$$

$$xy + 6y - 10z + 4w = 8$$

$$x + 6\sin y - 10z + 4w = 8$$

System of Linear Equations

- a system of linear equation where there are a finite number of linear equations.

Example: 2 equations in 3 unknowns.

$$\begin{cases} 7x_1 - 2x_2 + 5x_3 = 3 \\ 3x_1 + x_2 - 4x_3 = -2 \end{cases}$$

which can be expressed as a matrix equation:

$$\left(\begin{array}{ccc} 7 & -2 & 5 \\ 3 & 1 & -4 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 3 \\ -2 \end{array}\right).$$

System of Linear Equations

The linear system

is equivalent to

$$\begin{pmatrix} 2 & -1 & 1 \\ 1 & 1 & -3 \\ 5 & -4 & 9 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ 4 \end{pmatrix}.$$

Cramer's Rule

Theorem (Cramer's Rule)

If $\mathbf{A}\mathbf{x} = \mathbf{b}$ is a system of n linear equations in n unknowns such that $det(A) \neq 0$, then the system has a unique solution, namely

$$x_j = \frac{det(A_j)}{det(A)}, j = 1, 2, \dots, n$$

where A_j is the matrix

Cramer's Rule

$$A_{j} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j-1} \\ a_{21} & a_{22} & \cdots & a_{2j-1} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nj-1} \\ \end{bmatrix}, \quad \begin{array}{c} b_{1} & a_{1j+1} \cdots & a_{1n} \\ b_{2} & a_{2j+1} \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ b_{n} & a_{nj+1} \cdots & a_{nn} \\ \end{array} \right],$$

the matrix obtained by replacing the intries in the jth column of $\bf A$ by the entries in the matrix

$$\mathbf{b} = \left[egin{array}{c} b_1 \ b_2 \ dots \ b_n \end{array}
ight]$$

Example

For each of the following linear systems, determine whether Cramer's Rule is applicable. If so, solve the linear system.
(a)

Example (a)

[Solution] Note that
$$A = \begin{pmatrix} 7 & -2 \\ 3 & 1 \end{pmatrix}$$
, and $\det(A) = 13 \neq 0$. Thus, Cramer's Rule applies.

$$A_1 = \begin{pmatrix} 3 & -2 \\ 5 & 1 \end{pmatrix}$$
, $\det(A_1) = 13$; $x_1 = \frac{\det(A_1)}{\det(A)} = 1$. $A_2 = \begin{pmatrix} 7 & 3 \\ 3 & 5 \end{pmatrix}$, $\det(A_2) = 26$; $x_2 = \frac{\det(A_2)}{\det(A)} = 2$.

Example (b)

$$2a + 4b = 3$$

 $3a + 6b = 5$