INSTITUT de FINANCEMENT du DEVELOPPEMENT du MAGHREB ARABE

CONCOURS DE RECRUTEMENT de la XXXVII PROMOTION (Banque)

Samedi 27 Août 2016 Epreuve de Méthodes Quantitatives Durée : 1h30 Nombre de pages :02

Aucun document n'est autorisé*

Exercice 1 : (10 points : partie1 : 5 points (2+1+1+1); partie 2 : 5 points (1+1+1+2)

Cet exercice est constitué de deux parties indépendantes Partie 1 :

On considère deux variables aléatoires X_1 et X_2 normales centrées :

 $E(X_i) = 0$, réduites : $Var(X_i) = 1$ ayant une covariance égale à c :

$$Cov(X_1, X_2) = c.$$

On pose $Y_1 = X_1 + X_2$ et $Y_2 = X_1 + 2X_2$

- 1- Calculer les espérances mathématiques et les variances de Y₁ et de Y₂
- 2- Déterminer la matrice de variance-covariance du vecteur $Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$
- 3- Pour quelle valeur de c les variables Y_1 et Y_2 sont elles indépendantes ? justifier votre réponse
- 4- Pour cette valeur de c, calculer la variance de Y_1 . Prouver que cette variable est certaine.

Partie 2:

On considère la matrice $A=\begin{bmatrix} 1 & \alpha \\ 1 & 2 \end{bmatrix}$ où α est un paramètre inconnu

- 1- Calculer la matrice $B = A^2 3A + (2 \alpha)I$ où I est la matrice identité. Vérifier que B est indépendante de la valeur de α
- 2- Calculer A^{-1} l'inverse de la matrice A en précisant la condition qu'il faut imposer sur α pour que A^{-1} existe
 - 3- Comparer A^{-1} à la matrice C définie par C = A 3I
- 4- On suppose dans cette question que $\alpha=2$. Prouver que pour tout entier n supérieur ou égal à 1 ($n \ge 1$) que $A^n = \lambda^n A$ avec λ un scalaire à déterminer

Exercice 2: (10 points: 1.5+1.5+1.5+1.5+2+2)

On considère la régression entre le chiffre d'affaires y et le niveau d'investissement x observés sur un ensemble de n=20 entreprises:

$$y_i = ax_i + b + \epsilon_i$$
, pour $i = 1, 2, \dots, 20$

où ϵ_i sont des termes aléatoires identiquement et indépendamment distribués selon une loi normale d'espérance mathématique nulle et de variance σ^2 , a et b sont des paramètres à estimer. On dispose des statistiques suivantes: $\sum_{i=1}^{20} y_i = 198$;

$$\sum_{i=1}^{20} x_i = 210 \text{ et } \sum_{i=1}^{20} (x_i - \bar{x})^2 = 665; \text{ où } \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \text{ est la moyenne empirique de } x.$$

Par ailleurs, \hat{a} l'estimation de a par la méthode des moindres carrés ordinaires et de sa variance $V(\hat{a})$ sont égales à $\hat{a} = 0.8$ et $\widehat{V(\hat{a})} = (0.01)^2$

- **1.** Rappeler les expressions mathématiques de \widehat{a} et de \widehat{b} , les estimations de a et b par la méthode des moindres carrés ordinaires. En déduire la valeur de \widehat{b} ,
- **2.** Prouver que \widehat{a} peut s'écrire sous forme linéaire $\widehat{a} = \sum_{i=1}^{i=n} \alpha_i y_i$ avec α_i des pondérations vérifiant $\sum_{i=1}^{i=n} \alpha_i = 0$ et $\sum_{i=1}^{i=n} \alpha_i x_i = 1$
 - **3.** En déduire que la variance de \widehat{a} est $V(\widehat{a}) = \frac{\sigma^2}{\sum_{i=1}^{n} (x_i \overline{x})^2}$
- **4.** Tester la significativité de la variable x à un niveau 95% de significativité. Interpréter ce résultat. On rappelle que pour S une variable de Student, la probabilité P[-2 < S < 2] est approximativement égale à 0.95
- **5.** Déterminer la valeur de $\sum_{i=1}^{20} (x_i \bar{x})(y_i \bar{y})$ ainsi que l'estimation de σ l'écart type de ϵ_i
- **6.** En déduire la somme des carrés des résidus $\sum_{i=1}^{20} \widehat{\epsilon_i}^2$ ainsi que le coefficient de détermination de la régression.