Cálculo Teste 1

Nome Completo Número

JUSTIFIQUE CUIDADOSAMENTE TODAS AS SUAS RESPOSTAS.

(5 valores)

Relativamente às questões deste grupo indique se a afirmação é verdadeira ou falsa.

1. Seja f uma função real de uma variável real, definida para qualquer número real.

A função g definida por g(x) = f(x) + f(-x) é uma função par.

2. Seja f uma função, real de uma variável real.

$$\lim_{x \longrightarrow 3} f(x) = 5 \Longleftrightarrow \text{quando } 0 < |x-3| < 1, \text{se tem } |f(x)-5| < \frac{1}{10}.$$

- **3.** Os domínios das funções definidas por f(x) = arcsen x e g(x) = arctg x são iguais.
- **4.** A equação $6x^4 7x + 1 = 0$ tem, quando muito, duas raízes reais distintas.

5.
$$\left[\int f(x) \, dx \right]' = \int f'(x) \, dx, \quad \forall x \in I \subseteq \mathbb{R}.$$

1. (3 valores)

Considere a função $f:]-1,0][\ \cup\]1,3] \longrightarrow \mathbb{R}$ cujo gráfico está representado na figura. No intervalo [-1,0] o gráfico da função f coincide com o gráfico da função exponencial.

- (a) Qual o contradomínio da função f.
- (b) A função f é injetiva?
- (c) Quais os pontos onde a função f é descontínua?
- (d) Quais os pontos onde a função f não é derivável?
- (e) Defina, analiticamente, um prolongamento contínuo da função f ao intervalo $\left[-1,3\right]$.

2. (2,5 valores)

Encontre os valores de K para os quais é contínua em todo o seu domínio a função f definida por

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \rightsquigarrow f(x) = \begin{cases} K^2 x^2 & \text{se } x \leq 2\\ (1 - K)x & \text{se } x > 2 \end{cases}$$

3. (2 valores)

Defina, se existir, (ou mostre que não existe) uma reta tangente à função f, no ponto de coordenadas (1,1), sabendo que $f: \mathbb{R} \longrightarrow \mathbb{R}$

$$x \mapsto f(x) = \begin{cases} x^2 & \text{se } x \le 1 \\ x & \text{se } x > 1 \end{cases}$$

4. (2,5 valores)

Seja $P_{3,0}(x)=1+2x+3x^2+4x^3$ o polinómio de Taylor de ordem 3 em torno de 0 de uma função $f:\mathbb{R}\longrightarrow\mathbb{R}$. Nestas condições defina o polinómio de Taylor de ordem 2 em torno de 0 da função f'.

5. (1 valor)

Defina uma função F, no intervalo [0,2], sabendo que $F''(x)=x^2-x$, F'(1)=0 e F(0)=1

6. (4 valores)

Calcule as seguintes primitivas

(a)
$$\int \frac{x^4 + 1}{x^5} dx$$

(b)
$$\int \frac{g(x)f'(x) - g'(x)f(x)}{[g(x)]^2} dx$$
 (c)
$$\int \operatorname{arctg} x \ dx$$

x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	π	$3\pi/2$
$\operatorname{sen} x$	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1	0	-1
$\cos x$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0	-1	0

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$
 $\sin^2 x = \frac{1 - \cos(2x)}{2}$