Vecteurs du plan et de l'espace

1 Concepts basiques

Définition 1. Un vecteur dans le plan ou dans l'espace est schématisé par une flêche. Il est déterminé par son support (droite qui le porte), sa longueur (ou norme), et son sens.

Exemple 1. Soient deux points A et B. La notation \overrightarrow{AB} désigne le vecteur d'origine A et d'extrémité B.

- · Sa longueur est la distance $AB = \|\overrightarrow{AB}\|$ de $A \ge B$,
- · son support est la droite (AB),
- \cdot son sens est de A vers B.

Remarques.

- 1. Deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux si ABDC est un parallélogramme.
- 2. Lorsqu'on connaît l'origine A d'un vecteur et son extrémité B, on note celui-ci \overline{AB} . Lorsqu'on ne connaît pas l'origine et l'extrémité, alors on utilise une lettre minuscule.

Définition 2 (Opérations algébriques).

- 1. Addition vectorielle. La somme de deux vecteurs \vec{u} et \vec{v} est la diagonale du parallélogramme de côtés \vec{u} et \vec{v} .
- 2. Produit par un réel. Pour tout réel λ et tout vecteur \vec{u} , le produit $\lambda.\vec{u}$ est un vecteur de même direction que \vec{u} , de norme $|\lambda| \times ||\vec{u}||$ et de même sens que \vec{u} si $\lambda > 0$ et de sens opposé si $\lambda < 0$.

Définition 3.

- 1. On dit que les deux vecteurs \vec{u} et \vec{v} sont colinéaires s'il existe un réel λ tel que $\vec{u} = \lambda \vec{v}$.
- 2. On dit qu'un vecteur \vec{w} est une combinaison linéaire des vecteurs \vec{u} et \vec{v} s'il existe deux réels λ et μ tels que

$$\vec{w} = \lambda \vec{u} + \mu \vec{v}$$
.

3. On dit que trois vecteurs sont coplanaires si l'un des trois est une combinaison linéaire des deux autres.

Exemple 2. Soit ABC un triangle. On considère les points K et L tels que $\overrightarrow{AK} = 2\overrightarrow{AB}$ et $\overrightarrow{AL} = 2\overrightarrow{AC}$. Montrer que les vecteurs \overrightarrow{KL} et \overrightarrow{BC} sont colinéaires.

2 Vecteurs dans le plan

2.1 Repères et coordonnées cartésiennes

Définition 4. Un repère du plan est un triplet $(O, \vec{\imath}, \vec{\jmath})$ où O est un point arbitrairement choisi comme origine et $(\vec{\imath}, \vec{\jmath})$ deux vecteurs non colinéaires. Le repère $(O, \vec{\imath}, \vec{\jmath})$ est dit

- · orthogonal si les vecteurs \vec{i} et \vec{j} sont perpendiculaires,
- · orthonormé s'il est orthogonal et si $\|\vec{\imath}\| = \|\vec{\jmath}\| = 1$.

Proposition 1 (définition). Soit $\mathcal{R} = (O, \vec{\imath}, \vec{\jmath})$ un repère cartésien du plan.

 \odot Pour tout vecteur \vec{u} du plan il existe un unique couple de réels (x,y) tel que :

$$\vec{u} = x\vec{\imath} + y\vec{\jmath}$$
.

On appelle (x,y) les coordonnées de \vec{u} dans le repère \mathscr{R} . On note parfois $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$.

 \odot Pour tout point M du plan il existe un unique couple de réels (x,y) tel que :

$$\overrightarrow{OM} = x\vec{\imath} + y\vec{\jmath}.$$

On appelle (x,y) les coordonnées de M dans le repère \mathscr{R} . On note M(x,y).

Exemple 3. Dans le repère $(O, \vec{\imath}, \vec{\jmath})$, on a donc $\vec{\imath} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $\vec{\jmath} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Règles de calculs. Si $\vec{u} = a\vec{i} + b\vec{j}$ et $\vec{v} = c\vec{i} + d\vec{j}$ sont des vecteurs du plan, alors

$$\lambda \vec{u} = (\lambda a)\vec{i} + (\lambda b)\vec{j}$$
 et $\vec{u} + \vec{v} = (a+c)\vec{i} + (b+d)\vec{j}$.

Pour un vecteur \overrightarrow{AB} défini par deux points A(a,b) et B(c,d), on a :

$$\overrightarrow{AB} = (c-a)\overrightarrow{i} + (d-b)\overrightarrow{j}.$$

Exemple 4. Dans le plan muni d'un repère (O, \vec{i}, \vec{j}) , on considère les points A(-3, 5), B(3, 2) et C(117, -55). Montrer que \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires. Que dire des points A, B et C?

2.2 Norme d'un vecteur

Le résultat clé qui justifie la formule donnant la norme d'un vecteur ou la distance entre deux points est le théorème de Pythagore.

Définition 5. Soit $(O, \vec{\imath}, \vec{\jmath})$ un repère orthonormé du plan. La norme du vecteur $\vec{u} = a\vec{\imath} + b\vec{\jmath}$ est

$$\|\vec{u}\| = \sqrt{a^2 + b^2}.$$

Et la distance d'entre les points A(a,b) et B(c,d) est

$$d = \|\overrightarrow{AB}\| = \sqrt{(c-a)^2 + (d-b)^2}.$$

Soit M le point de coordonnées (a, b) et H le point de coordonnées (a, 0), on a :

$$\|\vec{u}\| = OM$$
, $OH = |a|$ et $HM = |b|$.

Or, le triangle OMH est rectangle en H.

Donc, d'après le théorème de Pythagore,

$$OM^2 = OH^2 + HM^2.$$

D'où :
$$\|\vec{u}\| = \sqrt{OH^2 + HM^2} = \sqrt{a^2 + b^2}$$
.

Exemple 5. Calculer la distance entre les points A(2,1) et B(6,-2).

2.3 Coordonnées polaires

Le plan est muni d'un repère orthonormé $(O, \vec{\imath}, \vec{\jmath})$. A tout couple de réels (r, θ) , avec r strictement positif et θ quelconque, on associe un unique point M de la façon suivante.

On trace le cercle $\mathscr C$ de centre O et de rayon r et on note I le point de coordonnées (r,0). Le point M est obtenu en se déplaçant d'une longueur $r|\theta|$ sur $\mathscr C$ à partir du point I:

- · dans le sens direct si θ est positif,
- · dans le sens indirect si θ est négatif.

On retiendra que $\|\overrightarrow{OM}\| = r$ et qu'une mesure en radians de l'angle orienté $(\overrightarrow{OI}, \overrightarrow{OM})$ est θ .

L'angle θ est positif

L'angle θ est négatif

On dira que le repère $(O, \vec{\imath}, \vec{\jmath})$ est direct si une mesure en radians de l'angle orienté défini par le couple de vecteurs $(\vec{\imath}, \vec{\jmath})$ est $\frac{\pi}{2}$.

Définition 6. En gardant les notations ci-dessus, le cosinus et le sinus du réel θ sont définis par

$$\cos \theta = \frac{a}{r}$$
 et $\sin \theta = \frac{b}{r}$.

Réciproquement, soit $\vec{u} = a\vec{i} + b\vec{j}$ un vecteur non nul. On note

$$r = \|\vec{u}\| = \sqrt{a^2 + b^2}$$
 et $\theta = (\widehat{\vec{i}, \vec{u}}).$

D'après la définition du cosinus et du sinus :

$$\begin{cases}
\cos \theta &= \frac{a}{\|\vec{u}\|} \\
\sin \theta &= \frac{b}{\|\vec{u}\|},
\end{cases}$$

on obtient : $a = \|\vec{u}\| \cos \theta$ et $b = \|\vec{u}\| \sin \theta$. Ainsi le vecteur \vec{u} s'écrit sous la forme

$$\vec{u} = ||\vec{u}|| (\cos \theta \vec{\imath} + \sin \theta \vec{\jmath}).$$

Théorème 1 (Coordonnées polaires). Soit $\mathcal{R} = (O, \vec{\imath}, \vec{\jmath})$ un repère orthonormé direct. Pour tout vecteur \vec{u} , il existe un couple $(r, \theta) \in \mathbb{R}^+ \times \mathbb{R}$ tel que

$$\vec{u} = r (\cos \theta \vec{\imath} + \sin \theta \vec{\imath})$$
.

On appelle (r, θ) les coordonnées polaires de \vec{u} par rapport au repère \mathscr{R} .

Remarque.

- Un couple de coordonnées polaires du vecteur nul est $(0,\theta)$ où θ est un réel quelconque.
- Si $\vec{u} = a\vec{i} + b\vec{j}$ est un vecteur non nul, un couple de coordonnées polaires de \vec{u} est le couple (r,θ) défini par

$$r = \sqrt{a^2 + b^2}$$
 et
$$\begin{cases} \cos \theta = \frac{a}{r} \\ \sin \theta = \frac{b}{r}. \end{cases}$$

- Un système de coordonnées polaires du point M est, par définition, un système de coordonnées polaires du vecteur \overrightarrow{OM} .

Exemple 6. Déterminer un système de coordonnées polaires pour chacun des points suivants :

1.
$$M(1,-1)$$
 2. $M(-\sqrt{3},1)$ 3. $M(-1,-\sqrt{3})$.

2.4 Produit scalaire

Définition 7. Soit $(O, \vec{\imath}, \vec{\jmath})$ un repère orthonormé du plan. Le produit scalaire des vecteurs $\vec{u} = a\vec{\imath} + b\vec{\jmath}$ et $\vec{v} = c\vec{\imath} + d\vec{\jmath}$ est donné par

$$\vec{u}.\vec{v} = ac + bd.$$

Exemple 7. Dans le plan muni d'un repère orthonormé $(O, \vec{\imath}, \vec{\jmath})$, on a :

1.
$$(2\vec{\imath} - 3\vec{\jmath}) \cdot (4\vec{\imath} + 5\vec{\jmath}) = 2 \times 4 + (-3) \times 5 = 8 - 15 = -7.$$

2.
$$(2\vec{\imath} - 3\vec{\imath}) \cdot (3\vec{\imath} - 2\vec{\imath}) = 2 \times 3 + (-3) \times 2 = 6 - 6 = 0$$
.

Théorème 2 (Propriétés algébriques). Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs. Alors

1.
$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$
 2. $\vec{u} \cdot \vec{u} = ||\vec{u}||^2$

3.
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

On peut aussi calculer le produit scalaire à l'aide de la formule suivante :

Théorème 3. Soit \vec{u} et \vec{v} deux vecteurs non nuls, et θ l'angle entre \vec{u} et \vec{v} . Alors

$$\vec{u}.\vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos \theta.$$

 $D\acute{e}monstration$. Soit (O, \vec{i}, \vec{j}) un repère orthonormé. On suppose que \vec{u} est porté par l'axe des abscisses et on exprime \vec{u} et \vec{v} en coordonnées polaires. Donc

$$\vec{u} = \|\vec{u}\| \cdot \vec{i}$$
 et $\vec{v} = (\|\vec{v}\| \cos \theta) \vec{i} + (\|\vec{v}\| \sin \theta) \vec{j}$.

Ainsi

$$\vec{u}.\vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos \theta.$$

Corollaire 1 (Applications).

- 1. Deux vecteurs non nuls \vec{u} et \vec{v} sont orthogonaux si, et seulement si, $\vec{u}.\vec{v} = 0$.
- 2. Le triplet (O, \vec{u}, \vec{v}) est un repère orthonormé du plan si, et seulement si,

$$\|\vec{u}\| = \|\vec{v}\| = 1$$
 et $\vec{u}.\vec{v} = 0$.

2.5 Déterminant

Définition 8. Soit $(O, \vec{\imath}, \vec{\jmath})$ un repère orthonormé direct. Le déterminant des vecteurs $\vec{u} = a\vec{\imath} + b\vec{\jmath}$ et $\vec{v} = c\vec{\imath} + d\vec{\jmath}$ est le réel

$$\det(\vec{u}, \vec{v}) = \begin{vmatrix} a & c \\ b & d \end{vmatrix} = ad - bc.$$

On peut aussi calculer le déterminant de \vec{u} et \vec{v} à l'aide de l'expression suivante.

Théorème 4. Soit \vec{u} et \vec{v} deux vecteurs non nuls, et θ une mesure de l'angle orienté de \vec{u} à \vec{v} . Alors

$$\det(\vec{u}, \vec{v}) = ||\vec{u}|| \times ||\vec{v}|| \times \sin \theta.$$

 $D\'{e}monstration$. On note \vec{u}^{\perp} l'orthogonal direct de \vec{u} , si $\vec{u} = a\vec{i} + b\vec{j}$, alors $\vec{u}^{\perp} = -b\vec{i} + a\vec{j}$. Le déterminant de \vec{u} et \vec{v} n'est autre que le produit scalaire de \vec{u}^{\perp} et \vec{v} . Donc

$$\det(\vec{u}, \vec{v}) = \vec{u}^{\perp} \cdot \vec{v} = \|\vec{u}\| \times \|\vec{v}\| \times \cos\left(\frac{\pi}{2} - \theta\right) = \|\vec{u}\| \times \|\vec{v}\| \times \sin\theta.$$

Corollaire 2 (Applications géométriques).

- 1. Deux vecteurs \vec{u} et \vec{v} , non nuls, sont colinéaires si, et seulement si, $\det(\vec{u}, \vec{v}) = 0$.
- 2. Le couple (\vec{u}, \vec{v}) est une base orthonormée directe si, et seulement si, (\vec{u}, \vec{v}) est une base orthonormée et si, en plus, $\det(\vec{u}, \vec{v}) = 1$.
- 3. $|\det(\vec{u}, \vec{v})|$ est l'aire du parallélogramme de côtés \vec{u} et \vec{v} .

En effet, l'aire de ce parallélogramme est :

$$A = \|\vec{u}\| \times h = \|\vec{u}\| \times \|\vec{v}\| \times |\sin \theta|.$$
 Or, $\det(\vec{u}, \vec{v}) = \|\vec{u}\| \times \|\vec{v}\| \times \sin \theta$. Donc
$$A = |\det(\vec{u}, \vec{v})| = |ad - bc|.$$

Exemple 8. Le déterminant de $\vec{u} = 2\vec{i} - 3\vec{j}$ et $\vec{v} = \vec{i} + 4\vec{j}$ est

$$\det(\vec{u}, \vec{v}) = \begin{vmatrix} 2 & 1 \\ -3 & 4 \end{vmatrix} = 2 \times 4 - (-3) \times 1 = 8 + 3 = 11.$$

Exemple 9. Montrer que les points A(-1,-1), B(2,3) et C(3,-3) ne sont pas alignés et calculer l'aire du triangle ABC.

3 Vecteur dans l'espace

3.1 Repères et coordonnées cartésiennes

Définition 9. Un repère de l'espace est quadruplet $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$ où O est un point arbitrairement choisi comme origine et $(\vec{\imath}, \vec{\jmath}, \vec{k})$ trois vecteurs non coplanaires. Le repère $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$ est dit

- · orthogonal si les vecteurs $(\vec{\imath}, \vec{\jmath}, \vec{k})$ sont deux à deux perpendiculaires,
- · orthonormé s'il est orthogonal et si $\|\vec{\imath}\| = \|\vec{\jmath}\| = \|\vec{k}\| = 1$.

Proposition 2 (définition). Soit $\mathcal{R} = (O, \vec{\imath}, \vec{\jmath}, \vec{k})$ un repère cartésien de l'espace.

 \odot Pour tout vecteur \vec{u} du plan il existe un unique triplet de réels (x, y, z) tel que :

$$\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}.$$

On appelle (x, y, z) les coordonnées de \vec{u} dans le repère \mathscr{R} . On note parfois $\vec{u} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

 \odot Pour tout point M de l'espace il existe un unique triplet de réels (x, y, z) tel que :

$$\overrightarrow{OM} = x\vec{\imath} + y\vec{\jmath} + z\vec{k}.$$

On appelle (x, y, z) les coordonnées de M dans le repère \mathscr{R} . On note M(x, y, z).

Règles de calculs. Si $\vec{u} = a\vec{i} + b\vec{j} + c\vec{k}$ et $\vec{v} = d\vec{i} + e\vec{j} + f\vec{k}$ sont des vecteurs de l'espace, alors

$$\lambda \vec{u} = (\lambda a)\vec{i} + (\lambda b)\vec{j} + (\lambda c)\vec{k} \quad \text{et} \quad \vec{u} + \vec{v} = (a+d)\vec{i} + (b+e)\vec{j} + (c+f)\vec{k}.$$

Pour un vecteur \overrightarrow{AB} défini par deux points A(a,b,c) et B(d,e,f), on a :

$$\overrightarrow{AB} = (d-a)\overrightarrow{i} + (e-b)\overrightarrow{j} + (f-c)\overrightarrow{k}.$$

Tout comme pour les vecteurs du plan, le théorème de Pythagore permet d'établir la formule suivante donnant la norme d'un vecteur.

Définition 10. Soit $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$ un repère orthonormé de l'espace. La norme du vecteur $\vec{u} = a\vec{\imath} + b\vec{\jmath} + c\vec{k}$ est

$$\|\vec{u}\| = \sqrt{a^2 + b^2 + c^2}.$$

Et la distance d'entre les points A(a,b,c) et B(d,e,f) est

$$d = \|\overrightarrow{AB}\| = \sqrt{(d-a)^2 + (e-b)^2 + (f-c)^2}.$$

3.2 Produit scalaire, produit vectoriel

Orientation de l'espace. Les repères de l'espace se répartissent en deux catégories : les repères directs et les repères indirects. On pourra utiliser la règle des trois doigts pour les différencier. Le repère $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$ est dit

- · direct si l'index, le majeur et le pouce de la main droite sont disposés respectivement suivant \vec{i}, \vec{j} et \vec{k}
- · indirect si ce sont les trois doigts de la main gauche qui sont disposés suivant ces directions.

Définition 11. Soit $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$ un repère orthonormé. Le produit scalaire des vecteurs $\vec{u} = a_1 \vec{\imath} + b_1 \vec{\jmath} + c_1 \vec{k}$ et $\vec{v} = a_2 \vec{\imath} + b_2 \vec{\jmath} + c_2 \vec{k}$ est donné par

$$\vec{u} \cdot \vec{v} = a_1 a_2 + b_1 b_2 + c_1 c_2$$
.

Définition 12. Soit $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$ un repère orthonormé direct. Le produit vectoriel des vecteurs $\vec{u} = a_1 \vec{\imath} + b_1 \vec{\jmath} + c_1 \vec{k}$ et $\vec{v} = a_2 \vec{\imath} + b_2 \vec{\jmath} + c_2 \vec{k}$ est le vecteur $\vec{u} \wedge \vec{v}$ dont les coordonnées sont

$$\begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix} \wedge \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix} = \begin{pmatrix} \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} \\ - \begin{vmatrix} a_1 & a_2 \\ c_1 & c_2 \end{vmatrix} \\ \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \end{pmatrix} = \begin{pmatrix} b_1c_2 - c_1b_2 \\ c_1a_2 - a_1c_2 \\ a_1b_2 - b_1a_2 \end{pmatrix}.$$

Remarque.

- 1. Le produit scalaire vérifie les mêmes propriétés que dans le plan.
- 2. Le vecteur $\vec{u} \wedge \vec{v}$ est orthogonal à la fois à \vec{u} et à \vec{v} .
- 3. Le produit vectoriel est bilinéaire antisymétrique : Pour tout réel λ , on a :
 - (a) $\vec{u} \wedge (\lambda \vec{v} + \vec{w}) = \lambda \vec{u} \wedge \vec{v} + \vec{u} \wedge \vec{w}$.
 - (b) $(\lambda \vec{u} + \vec{v}) \wedge \vec{w} = \lambda \vec{u} \wedge \vec{w} + \vec{v} \wedge \vec{w}$
 - (c) $\vec{u} \wedge \vec{v} = -\vec{v} \wedge \vec{u}$. En particulier, $\vec{u} \wedge \vec{u} = \vec{0}$.

Proposition 3. Soit \vec{u} et \vec{v} deux vecteurs non nuls de l'espace. Alors

$$\|\vec{u} \wedge \vec{v}\|^2 + (\vec{u}.\vec{v})^2 = \|\vec{u}\|^2 \|\vec{v}\|^2.$$

Si on note θ l'angle entre \vec{u} et \vec{v} alors

$$\vec{u}.\vec{v} = \|\vec{u}\| \times \|\vec{v}\| \times \cos\theta \quad et \quad \|\vec{u} \wedge \vec{v}\| = \|\vec{u}\| \times \|\vec{v}\| \times |\sin\theta|.$$

Proposition 4 (Interprétation géométrique). Soit \vec{u} et \vec{v} deux vecteurs de l'espace.

- 1. \vec{u} et \vec{v} sont orthogonaux si, et seulement si, $\vec{u}.\vec{v} = 0$
- 2. \vec{u} et \vec{v} sont colinéaires si, et seulement si, $\vec{u} \wedge \vec{v}$ est nul.
- 3. $\|\vec{u} \wedge \vec{v}\|$ est l'aire du parallélogramme engendré par \vec{u} et \vec{v} .
- 4. Le quadruplet $(O, \vec{u}_1, \vec{u}_2, \vec{u}_3)$ est un repère orthonormé de l'espace si, et seulement si,

$$\|\vec{u}_1\| = \|\vec{u}_2\| = \|\vec{u}_3\| = 1$$
 et $\vec{u}_1 \cdot \vec{u}_2 = \vec{u}_1 \cdot \vec{u}_3 = \vec{u}_2 \cdot \vec{u}_3 = 0.$

Exemple 2. Avec $\vec{u} = 2\vec{i} - 3\vec{j} + 5\vec{k}$ et $\vec{v} = \vec{i} + 4\vec{j} - 6\vec{k}$. Le produit scalaire est

$$\vec{u} \cdot \vec{v} = 2 \times 1 + (-3) \times 4 + 5 \times (-6) = 2 - 12 - 30 = -40.$$

Les coordonnées du produit vectoriel sont :

$$\begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix} \wedge \begin{pmatrix} 1 \\ 4 \\ -6 \end{pmatrix} = \begin{pmatrix} \begin{vmatrix} -3 & 4 \\ 5 & -6 \end{vmatrix} \\ -\begin{vmatrix} 2 & 1 \\ 5 & -6 \end{vmatrix} \\ \begin{vmatrix} 2 & 1 \\ -3 & 4 \end{vmatrix} \end{pmatrix} = \begin{pmatrix} -2 \\ 17 \\ 11 \end{pmatrix}.$$

Ce qui donne $\vec{u} \wedge \vec{v} = -2\vec{\imath} + 17\vec{\jmath} + 11\vec{k}$.

3.3 Produit mixte ou déterminant

Définition 13. Soit $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$ un repère orthonormé direct. Le déterminant des vecteurs

$$\vec{u} = a_1 \vec{i} + b_1 \vec{j} + c_1 \vec{k}, \qquad \vec{v} = a_2 \vec{i} + b_2 \vec{j} + c_2 \vec{k}, \qquad \vec{w} = a_3 \vec{i} + b_3 \vec{j} + c_3 \vec{k}$$

est le réel det $(\vec{u}, \vec{v}, \vec{w}) = \vec{u} \cdot (\vec{v} \wedge \vec{w})$ ou, tenons compte de la définition du produit vectoriel,

$$\det(\vec{u}, \vec{v}, \vec{w}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & a_3 \\ c_2 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}.$$

Théorème 5 (Applications).

- Le triplet $(\vec{u}, \vec{v}, \vec{w})$ est une base si, et seulement si, $\det(\vec{u}, \vec{v}, \vec{w}) \neq 0$.
- Le triplet $(\vec{u}, \vec{v}, \vec{w})$ est une base orthonormée directe si, et seulement si, $(\vec{u}, \vec{v}, \vec{w})$ est une base orthonormée et si, de plus, $\det(\vec{u}, \vec{v}, \vec{w}) = 1$.
- $Si\ \vec{u}\ et\ \vec{v}\ sont\ unitaires\ orthogonaux,\ alors\ (\vec{u},\vec{v},\vec{u}\wedge\vec{v})\ est\ une\ base\ orthonormée.$
- $|\det(\vec{u}, \vec{v}, \vec{w})|$ est le volume du parallélépipède de côtés \vec{u} , \vec{v} et \vec{w} .

Exemple 10. On considère les points A(1,1,1), B(1,-1,1) et C(1,1,-1).

- 1. Montrer que les points O, A, B et C ne sont pas coplanaires.
- 2. Calculer le volume du parallélipipède de côtés \overrightarrow{OA} , \overrightarrow{OB} et \overrightarrow{OC} .

Exercices

Vecteurs dans le plan. Le plan est muni d'un repère orthonormé $\mathcal{R} = (O, \vec{i}, \vec{j})$.

Exercice 1. Déterminer les coordonnées polaires du point A dans les cas suivants :

- 1. A(2,2) 2. $A(1,\sqrt{3})$, 3. $A(-\sqrt{3},1)$ 4. $A(1,-\sqrt{3})$

- 5. A(-2,2) 6. A(2,-2), 7. $A(-\sqrt{3},-1)$ 8. A(-1,-1).

Exercice 2.

- 1. Soit A le point dont les coordonnées polaires sont $\left(2, \frac{\pi}{6}\right)$. Déterminer les coordonnées cartésiennes de A.
- 2. Soit A le point dont les coordonnées cartésiennes sont (-2,2). Déterminer les coordonnées polaires de A.

Exercice 3. On considère les vecteurs $\vec{u} = \vec{i} + \vec{j}$ et $\vec{v} = \vec{i} - \vec{j}$.

- 1. Représenter graphiquement les vecteurs \vec{u} et \vec{v} .
- 2. Calculer le produit scalaire $\vec{u}.\vec{v}$. Que dire des vecteurs \vec{u} et \vec{v} ?
- 3. Calculer les produit scalaires $\vec{u}.\vec{u}$ et $\vec{v}.\vec{v}$. En déduire $||\vec{u}||$ et $||\vec{v}||$.

Exercice 4. Soient A(1,0), B(-1,-2) et C(-1,2).

- 1. Calculer les distances d(A, B), d(A, C) et d(B, C). En déduire que le triangle ABCest isocèle.
- 2. Calculer le produit scalaire $\overrightarrow{AB}.\overrightarrow{AC}$. En déduire la nature exacte du triangle ABC.

Exercice 5. Calculer le produit scalaire $\vec{u}.\vec{v}$ et le déterminant $\det(\vec{u},\vec{v})$ dans les cas suivants :

1.
$$\vec{u} = 2\vec{i} - 3\vec{j}$$
 et $\vec{v} = 2\vec{i} - 3\vec{j}$

2.
$$\vec{u} = 5\vec{i} + 6\vec{j}$$
 et $\vec{v} = 4\vec{i} - 3\vec{j}$

3.
$$\vec{u} = \sqrt{2} \ \vec{i} + \vec{j} \ \text{et} \ \vec{v} = \vec{i} + \sqrt{2} \ \vec{j}$$
 4. $\vec{u} = 2\vec{i} - 2\vec{j} \ \text{et} \ \vec{v} = -2\vec{i} + 2\vec{j}$

4.
$$\vec{u} = 2\vec{\imath} - 2\vec{\imath}$$
 et $\vec{v} = -2\vec{\imath} + 2\vec{\imath}$

5.
$$\vec{u} = 2\vec{i} + \sqrt{3}\vec{j}$$
 et $\vec{v} = 2\vec{i} - \sqrt{3}\vec{j}$

5.
$$\vec{u} = 2\vec{i} + \sqrt{3}\vec{j}$$
 et $\vec{v} = 2\vec{i} - \sqrt{3}\vec{j}$ 6. $\vec{u} = 5\vec{i} + \sqrt{6}\vec{j}$ et $\vec{v} = 2\vec{i} - \sqrt{6}\vec{j}$

7.
$$\vec{u} = \sqrt{2} \ \vec{i} + \sqrt{3} \ \vec{j} \text{ et } \vec{v} = \sqrt{3} \ \vec{i} + \sqrt{2} \ \vec{j}$$

7.
$$\vec{u} = \sqrt{2} \vec{i} + \sqrt{3} \vec{j}$$
 et $\vec{v} = \sqrt{3} \vec{i} + \sqrt{2} \vec{j}$ 8. $\vec{u} = \sqrt{2} \vec{i} - \sqrt{2} \vec{j}$ et $\vec{v} = -\sqrt{3} \vec{i} + \sqrt{3} \vec{j}$

9.
$$\vec{u} = 2\vec{\imath} + 5\vec{\jmath}$$
 et $\vec{v} = 7\vec{\imath} - 2\vec{\jmath}$

10.
$$\vec{u} = 5\vec{i} + \sqrt{2} \ \vec{j} \text{ et } \vec{v} = \sqrt{2} \ \vec{i} - 5\vec{i}$$
.

Exercice 6. On considère les vecteurs $\vec{u} = \sqrt{3} \ \vec{i} + \vec{i}$ et $\vec{v} = \vec{i} + \sqrt{3} \ \vec{i}$.

- 1. Calculer les produits scalaires $\vec{u}.\vec{u}$ et $\vec{v}.\vec{v}$, et en déduire $||\vec{u}||$ et $||\vec{v}||$.
- 2. Déterminer les angles $(\widehat{\vec{\imath},\vec{u}})$ et $(\widehat{\vec{\imath},\vec{v}})$, et en déduire $(\widehat{\vec{u},\vec{v}})$.
- 3. Calculer par deux méthodes différentes le produit scalaire $\vec{u}.\vec{v}$.

Exercice 7. On considère les vecteurs $\vec{u} = \sqrt{2} \vec{i} + \sqrt{2} \vec{j}$ et $\vec{v} = -\vec{i} + \vec{j}$.

- 1. Calculer $\|\vec{u}\|$ et $\|\vec{v}\|$.
- 2. Déterminer les angles $(\widehat{\vec{i}}, \vec{u})$ et $(\widehat{\vec{i}}, \vec{v})$, et en déduire $(\widehat{\vec{u}}, \vec{v})$.
- 3. Calculer par deux méthodes différentes le produit scalaire $\vec{u}.\vec{v}$.
- 4. Calculer par deux méthodes différentes le déterminant $\det(\vec{u}, \vec{v})$.

Exercice 8. On considère les vecteurs $\vec{u} = \vec{i} + \sqrt{3} \ \vec{j}$ et $\vec{v} = -\vec{i} + \sqrt{3} \ \vec{j}$.

- 1. Calculer $\|\vec{u}\|$ et $\|\vec{v}\|$.
- 2. Déterminer les angles $(\widehat{\vec{i}}, \overrightarrow{\vec{u}})$ et $(\widehat{\vec{i}}, \overrightarrow{\vec{v}})$, et en déduire $(\widehat{\vec{u}}, \overrightarrow{\vec{v}})$.
- 3. Calculer par deux méthodes différentes le produit scalaire $\vec{u}.\vec{v}$.
- 4. Calculer par deux méthodes différentes le déterminant $\det(\vec{u}, \vec{v})$.

Exercice 9. Calculer l'aire du parallélogramme de côtés \vec{u} et \vec{v} dans les cas suivants :

1.
$$\vec{u} = 3\vec{i} + 2\vec{j}$$
 et $\vec{v} = \vec{i} + 2\vec{j}$

2.
$$\vec{u} = \vec{i} + \vec{j}$$
 et $\vec{v} = \vec{i} - \vec{j}$.

Exercice 10. Calculer l'aire du triangle de sommets A(-1,-1), B(2,3) et C(3,-3).

Exercice 11. Soient A(3,2), B(1,2) et C(4,4) des points du plan.

- 1. Montrer que \overrightarrow{OC} est la diagonale du parallélogramme de côtés \overrightarrow{OA} et \overrightarrow{OB} .
- 2. Calculer l'aire du parallélogramme de sommets O(0,0), A(3,2), B(1,2) et C(4,4).

Exercice 12. On considère le vecteur $\vec{u} = \vec{i} + \vec{j}$.

1. Donner un vecteur unitaire \vec{u}_1 de même sens et de même direction que \vec{u} .

- 2. Déterminer un vecteur \vec{v}_1 de sorte que (\vec{u}_1, \vec{v}_1) soit une base orthonormée directe.
- 3. Exprimer le vecteur $\vec{v} = \vec{i} + 3\vec{j}$ dans la base (\vec{u}_1, \vec{v}_1) .

Vecteurs dans l'espace. L'espace est muni d'un repère orthonormé $\mathcal{R} = (O, \vec{\imath}, \vec{k})$.

Exercice 13. Calculer le produit scalaire $\vec{u}.\vec{v}$ dans les cas suivants :

1.
$$\vec{u} = 2\vec{\imath} - 3\vec{\jmath} + 5\vec{k}$$
 et $\vec{v} = 2\vec{\imath} - 3\vec{\jmath} + 2\vec{k}$ 2. $\vec{u} = 5\vec{\imath} + 6\vec{\jmath} - 2\vec{k}$ et $\vec{v} = 4\vec{\imath} - 3\vec{\jmath} + \vec{k}$

2.
$$\vec{u} = 5\vec{i} + 6\vec{i} - 2\vec{k}$$
 et $\vec{v} = 4\vec{i} - 3\vec{i} + \vec{k}$

3.
$$\vec{u} = 2\vec{\imath} - 2\vec{\jmath} + 2\vec{k}$$
 et $\vec{v} = 2\vec{\imath} - 2\vec{\jmath} - 2\vec{k}$ 4. $\vec{u} = \vec{\imath} + \vec{\jmath} + 2\vec{k}$ et $\vec{v} = \vec{\imath} + 2\vec{\jmath} - \vec{k}$

4.
$$\vec{u} = \vec{i} + \vec{j} + 2\vec{k}$$
 et $\vec{v} = \vec{i} + 2\vec{i} - \vec{k}$

5.
$$\vec{u} = 2\vec{i} + \sqrt{3}\vec{j} - \vec{k}$$
 et $\vec{v} = 2\vec{i} - \sqrt{3}\vec{j} + \vec{k}$ 6. $\vec{u} = 5\vec{i} + \sqrt{6}\vec{j} + \vec{k}$ et $\vec{v} = 2\vec{i} - \sqrt{6}\vec{j} - \vec{k}$.

6.
$$\vec{u} = 5\vec{i} + \sqrt{6}\vec{j} + \vec{k}$$
 et $\vec{v} = 2\vec{i} - \sqrt{6}\vec{j} - \vec{k}$.

Exercice 14. On considère les vecteurs $\vec{u} = 2\vec{\imath} - 2\vec{\jmath} + \vec{k}$ et $\vec{v} = \vec{\imath} - 2\vec{\jmath} + 2\vec{k}$.

- 1. Déterminer les vecteurs $\vec{s} = \vec{u} + \vec{v}$ et $\vec{w} = 2\vec{u} \vec{v}$.
- 2. Calculer les produits scalaires $\vec{u}.\vec{v}, \vec{u}.\vec{w}$ et $\vec{s}.\vec{w}$.
- 3. Calculer $\vec{u}.\vec{u}$ et $\vec{v}.\vec{v}$. En déduire $||\vec{u}||$ et $||\vec{v}||$.

Exercice 15. Calculer les produits vectoriels suivants :

$$\vec{\imath} \wedge \vec{\imath}; \quad \vec{\jmath} \wedge \vec{\jmath}; \quad \vec{k} \wedge \vec{k}; \quad \vec{\imath} \wedge \vec{\jmath}; \quad \vec{\jmath} \wedge \vec{\imath}; \quad \vec{\jmath} \wedge \vec{k}; \quad \vec{k} \wedge \vec{\imath}; \quad \vec{\imath} \wedge \vec{k}; \quad \vec{k} \wedge \vec{\jmath}.$$

Exercice 16. Calculer le produit scalaire $\vec{u} \wedge \vec{v}$ dans les cas suivants :

1.
$$\vec{u} = 2\vec{\imath} - 3\vec{\jmath} + 5\vec{k}$$
 et $\vec{v} = 2\vec{\imath} - 3\vec{\jmath} + 2\vec{k}$

1.
$$\vec{u} = 2\vec{\imath} - 3\vec{\jmath} + 5\vec{k}$$
 et $\vec{v} = 2\vec{\imath} - 3\vec{\jmath} + 2\vec{k}$ 2. $\vec{u} = 5\vec{\imath} + 6\vec{\jmath} - 2\vec{k}$ et $\vec{v} = 4\vec{\imath} - 3\vec{\jmath} + \vec{k}$

3.
$$\vec{u} = 2\vec{i} - 2\vec{j} + 2\vec{k}$$
 et $\vec{v} = 2\vec{i} - 2\vec{j} - 2\vec{k}$ 4. $\vec{u} = \vec{i} + \vec{j} + 2\vec{k}$ et $\vec{v} = \vec{i} + 2\vec{j} - \vec{k}$

4.
$$\vec{u} = \vec{i} + \vec{j} + 2\vec{k}$$
 et $\vec{v} = \vec{i} + 2\vec{j} - \vec{k}$

5.
$$\vec{u} = 2\vec{i} + \sqrt{3}\vec{j} - \vec{k}$$
 et $\vec{v} = 2\vec{i} - \sqrt{3}\vec{j} + \vec{k}$ 6. $\vec{u} = 5\vec{i} + \sqrt{6}\vec{j} + \vec{k}$ et $\vec{v} = 2\vec{i} - \sqrt{6}\vec{j} - \vec{k}$

6.
$$\vec{u} = 5\vec{i} + \sqrt{6}\vec{j} + \vec{k}$$
 et $\vec{v} = 2\vec{i} - \sqrt{6}\vec{j} - \vec{k}$

7.
$$\vec{u} = 2\vec{i} - \vec{j} + 3\vec{k}$$
 et $\vec{v} = \vec{i} - 3\vec{j}$

8.
$$\vec{u} = 2\vec{\imath} - 5\vec{\jmath} - \vec{k}$$
 et $\vec{v} = \vec{\imath} + 2\vec{\jmath} - 3\vec{k}$.

Exercice 17. Calculer $\|\vec{u}\|$, $\|\vec{v}\|$, $\vec{u}.\vec{v}$, $\vec{u} \wedge \vec{v}$ et $\|\vec{u} \wedge \vec{v}\|$ dans les cas suivants :

1.
$$\vec{u} = \vec{i} + \vec{j}$$
 et $\vec{v} = -\vec{i} - \vec{j} + \sqrt{6}\vec{k}$

2.
$$\vec{u} = \sqrt{3} \ \vec{i} + \ \vec{j} + 2\vec{k}$$
 et $\vec{v} = \ \vec{i} + \sqrt{3} \ \vec{j} + 2\vec{k}$.

Exercice 18. Montrer que les vecteurs suivants forment une base orthonormée :

$$\vec{a} = \frac{1}{3} \left(\vec{i} + 2 \vec{j} - 2 \vec{k} \right) \; ; \qquad \vec{b} = \frac{1}{3} \left(2 \vec{i} + \vec{j} + 2 \vec{k} \right) \; ; \qquad \vec{c} = \frac{1}{3} \left(-2 \vec{i} + 2 \vec{j} + \vec{k} \right) \; .$$

Exercice 19. Dans l'espace, on considère les points A(3, -2, 5), B(3, 2, 4) et C(1, 3, 4).

- 1. Montrer qu'ils ne sont pas alignés et calculer l'aire du triangle ABC.
- 2. Reprendre la même question avec les points A(1,0,2), B(-1,1,1) et C(2,1,0).