APA 254 Data Structures

Lecture 4.1 (Array and Matrices)

Dept. of Information Systems
Hanyang University

Introduction

- Data is often available in tabular form
- Tabular data is often represented in arrays
- Matrix is an example of tabular data and is often represented as a 2-dimensional array
 - Matrices are normally indexed beginning at 1 rather than 0
 - Matrices also support operations such as add, multiply, and transpose, which are NOT supported by C++'s
 2D array

Introduction

- It is possible to reduce time and space using a customized representation of multidimensional arrays
- This chapter focuses on
 - Row- and column-major mapping and representations of multidimensional arrays
 - the class Matrix
 - Special matrices
 - ✓ Diagonal, tridiagonal, triangular, symmetric, sparse

1D Array Representation in C++

Memory

- 1-dimensional array x = [a, b, c, d]
- map into contiguous memory locations
- location(x[i]) = start + i

2D Arrays

The elements of a 2-dimensional array a declared as: int a[3][4];

```
may be shown as a table
```

```
a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]
```

Rows of a 2D Array

$$a[0][0]$$
 $a[0][1]$ $a[0][2]$ $a[0][3]$ \rightarrow row 0
 $a[1][0]$ $a[1][1]$ $a[1][2]$ $a[1][3]$ \rightarrow row 1
 $a[2][0]$ $a[2][1]$ $a[2][2]$ $a[2][3]$ \rightarrow row 2

Columns of a 2D Array

column 0 column 1 column 2 column 3

2D Array Representation in C++

2-dimensional array x a, b, c, d e, f, g, h i, j, k, 1 view 2D array as a 1D array of rows x = [row0, row1, row 2]row 0 = [a, b, c, d]row 1 = [e, f, g, h]row 2 = [i, j, k, l]and store as 4 1D arrays

2D Array Representation in C++

space overhead = overhead for 4 1D arrays

Array Representation in C++

- This representation is called the array-of-arrays representation.
- Requires contiguous memory of size 3, 4, 4, and 4 for the 4 1D arrays.
- 1 memory block of size number of rows and number of rows blocks of size number of columns

Row-Major Mapping

Example 3 x 4 array:

```
abcd
efgh
ijkl
```

- Convert into 1D array y by collecting elements by rows.
- Within a row elements are collected from left to right.
- Rows are collected from top to bottom.
- We get y[] = {a, b, c, d, e, f, g, h, i, j, k, l}

row 0 row	1 row 2	• • •	row i		
-----------	---------	-------	-------	--	--

Locating Element x[i][j]

row 0 row 1 row 2 ... row i

- assume x has r rows and c columns
- each row has c elements
- i rows to the left of row i
- so ic elements to the left of x[i][0]
- x[i][j] is mapped to position

ic + j of the 1D array

Column-Major Mapping

```
abcd
efgh
ijkl
```

- Convert into 1D array y by collecting elements by columns.
- Within a column elements are collected from top to bottom.
- Columns are collected from left to right.
- We get y = {a, e, i, b, f, j, c, g, k, d, h, l}

Row- and Column-Major Mappings

2D Array int a[3][6];

```
a[0][0] a[0][1] a[0][2] a[0][3] a[0][4] a[0][5] a[1][0] a[1][1] a[1][2] a[1][3] a[1][4] a[1][5] a[2][0] a[2][1] a[2][2] a[2][3] a[2][4] a[2][5]
```

```
      0
      1
      2
      3
      4
      5
      0
      3
      6
      9
      12
      15

      6
      7
      8
      9
      10
      11
      1
      4
      7
      10
      13
      16

      12
      13
      14
      15
      16
      17
      2
      5
      8
      11
      14
      17
```

(a) Row-major mapping (b) Column-major mapping

Row- and Column-Major Mappings

Row-major order mapping functions

$$map(i_1,i_2) = i_1u_2+i_2$$
 for 2D arrays $map(i_1,i_2,i_3) = i_1u_2u_3+i_2u_3+i_3$ for 3D arrays

What is the mapping function for Figure 7.2(a)?

$$map(i_1,i_2) = 6i_1+i_2$$

 $map(2,3) = ?$

Column-major order mapping functions

Irregular 2D Arrays

Irregular 2-D array: the length of rows is not required to be the same.

Matrices

- *m x n* matrix is a table with *m* rows and *n* columns.
- M(i,j) denotes the element in row i and column j.
- Common matrix operations

row 1

row 2

row 3

row 4

row 5

_	transpose
	"anopooo

- addition
- multiplication

col 1	col 2	col 3	col 4
7	2	0	9
0	1	0	5
6	4	2	0
8	2	7	3
1	4	9	6

Matrix Operations

Transpose

The result of transposing an m x n matrix is an n x m matrix with property:

$$M^{T}(j,i) = M(i,j), 1 <= i <= m, 1 <= j <= n$$

Addition

- The sum of matrices is only defined for matrices that have the same dimensions.
- The sum of two m x n matrices A and B is an m x n matrix with the property:

$$C(i,j) = A(i,j) + B(i,j), 1 \le i \le m, 1 \le j \le n$$

Matrix Operations

Multiplication

- The product of matrices A and B is only defined when the number of columns in A is equal to the number of rows in B.
- Let A be m x n matrix and B be a n x q matrix. A*B will produce an m x q matrix with the following property:

$$C(i,j) = \Sigma(k=1...n) \ A(i,k) * B(k,j)$$

where $1 <= i <= m$ and $1 <= j <= q$

Read Example 7.2

A Matrix Class

 There are many possible implementations for matrices.

```
// use a built-in 2 dimensional array
T matrix[m][n]
// use the Array2D class
Array2D<T> matrix(m,n)
// or flatten the matrix into a one-dimensional array
template<class T>
class Matrix {
    private:
                  int rows, columns;
                  T *data;
```

Shortcomings of using a 2D Array for a Matrix

- Indexes are off by 1.
- C++ arrays do not support matrix operations such as add, transpose, multiply, and so on.
 - Suppose that x and y are 2D arrays. Cannot do x + y,
 x -y, x * y, etc. in C++.
- We need to develop a class matrix for object-oriented support of all matrix operations.
- See Programs 7.2-7.7
- Read Sections 7.1-7.2

Special Matrices

- A square matrix has the same number of rows and columns.
- Some special forms of square matrices are

Diagonal:
$$M(i,j) = 0$$
 for $i \neq j$
 Tridiagonal: $M(i,j) = 0$ for $|i-j| < 1$
 Lower triangular: $M(i,j) = 0$ for $i < j$
 Upper triangular: $M(i,j) = 0$ for $i > j$

Symmetric M(i,j) = M(j,i) for all i and j

See Figure 7.7

Special Matrices

2 0 0 0 0 1 0 0 0 0 4 0 0 0 0 6

2 1 0 0 3 1 3 0 0 5 2 7 0 0 9 0

(a) Diagonal (b) Tridiagonal (c) Lower triangular

2 1 3 0 0 1 3 8 0 0 1 6 0 0 0 0

2 4 6 0 4 1 9 5 6 9 4 7

0 5 7 0

(d) Upper triangular (e) Symmetric

Special Matrices

- Why are we interested in these "special" matrices?
 - We can provide more efficient implementations for specific special matrices.
 - Rather than having a space complexity of O(n²), we can find an implementation that is O(n).
 - We need to be clever about the "store" and "retrieve" operations to reduce time.
- Read Examples 7.4 & 7.5

Diagonal Matrix

- Naive way to represent n x n diagonal matrix
 - T d[n][n]
 - d[i-1][j-1] for D(i,j)
 - requires n² x sizeof(T) bytes of memory
- Better way
 - T d[n]
 - d[i-1] for D(i,j) where i = j0 for D(i,j) where $i \neq j$
 - requires n x sizeof(T) bytes of memory
- See Program 7.8 for the class diagonalMatrix

Tridiagonal Matrix

```
2 1 0 0
3 1 3 0
0 5 2 7
0 0 9 0
```

- Nonzero elements lie on one of three diagonals:
 - main diagonal: i = j
 - diagonal below main diagonal: i = j+1
 - diagonal above main diagonal: i = j-1
- 3n-2 elements on these three diagonals: T t[3n-2]
- Mappings of Figure 7.2(b)

```
- by row [2,1,3,1,3,5,2,7,9,0]
```

- by column [2,3,1,1,5,3,2,9,7,0]
- by diagonal [3,5,9,2,1,2,0,1,3,7]
 - ✓ more on diagonal mapping on the next page

Tridiagonal Matrix

Mapping by diagonals beginning with the lowest

```
D(2,1) -> t[0]
D(3,2) -> t[1]
D(n,n-1) -> t[n-2]
D(1,1) -> t[n-1]
D(2,2)
          -> t[n]
D(n, n) -> t[(n-2)+n] = t[2n-2]
D(1,2)
          -> t[2n-1]
D(2,3)
          -> t[2n]
D(n-1,n) -> t[(2n-2)+(n-1)] = t[3n-3]
```

```
switch (i - j) {
  case 1: // lower diagonal
   return t[i - 2];
  case 0: // main diagonal
  return t[n + i - 2];
  case -1: // upper diagonal
  return t[2 * n + i - 2];
  default: return 0;
}
```

See Program 7.11

Triangular Matrix

 Nonzero elements lie in the region marked "nonzero" in the figure below

• $1+2+...+n = \Sigma(i=1..n) = n(n+1)/2$ elements in the nonzero region

Triangular Matrix

 Both triangular matrices may be represented using 1-D array → T t[n(n+1)/2]

- Mappings
 - by row?→ [2,5,1,0,3,1,4,2,7,0]
 - by column? \rightarrow [2,5,0,4,1,3,2,1,7,0]

Lower Triangular Matrix

Mapping by row

```
L(i,j) = 0 if i < j

L(i,j) = t[1+2+...+(i-1)+(j-1)] if i \ge j

= t[i(i-1)/2 + j-1]
```

 See Program 7.12 for the method lowerTriangularMatrix<T>::set

Upper Triangular Matrix

Mapping by column

$$\Rightarrow$$
 [2, 1, 1, 3, 3, 1, 0, 8, 6, 0]
 $L(i,j) = ?$ if $i > j$
 $L(i,j) = ?$

 Exercise: Write the method for upperTriangularMatrix<T>::set 2 1 3 0 0 1 3 8 0 0 1 6

Symmetric Matrix

- An n x n matrix can be represented using 1-D array of size n(n+1)/2 by storing either the lower or upper triangle of the matrix
- Use one of the methods for a triangular matrix
- The elements that are not explicitly stored may be computed from those that are stored
 - How do we compute this?

2 4 6 0 4 1 9 5 6 9 4 7 0 5 7 0

Sparse Matrix

- A matrix is sparse if many of its elements are zero
- A matrix that is not sparse is dense
- The boundary is not precisely defined
 - Diagonal and tridiagonal matrices are sparse
 - We classify triangular matrices as dense
- Two possible representations
 - array
 - linked list

Read Example 7.6

Array Representation of Sparse Matrix

- The nonzero entries may be mapped into a 1D array in row-major order
- To reconstruct the matrix structure, need to record the row and column each nonzero comes from

0 0 0 2 0 0 1 0	a[] [0 1 2 3 4 5 6 7 8
0 6 0 0 7 0 0 3	row 1112223344
$0\ 0\ 0\ 9\ 0\ 8\ 0\ 0$	col 4 7 2 5 8 4 6 2 3
0 4 5 0 0 0 0 0	row 1 1 2 2 2 3 3 4 4 col 4 7 2 5 8 4 6 2 3 value 2 1 6 7 3 9 8 4 5

(b) Its representation

(a) A 4×8 matrix

Array Representation of Sparse Matrix

```
template<class T>
class Term {
private:
        int row, col;
        T value;
```

```
template<class T>
class sparseMatrix {
private:
       int rows, cols,
        int terms;
        Term<T> *a;
        int MaxTerms;
public:
       //___
```

 See Programs 7.13~7.17 for the class definition and methods of sparseMatrix

Linked Representation of Sparse Matrix

- A shortcoming of the 1-D array of a sparse matrix is that we need to know the number of nonzero terms in each of the sparse matrices when the array is created
- A linked representation can overcome this shortcoming

Linked Representation of Sparse Matrix

 See Program 7.18 for linked representation of sparse matrix

Read Chapter 7