Web Data Mining

Lecture 6: Social Network Analysis

Jaroslav Kuchař & Milan Dojčinovski

jaroslav.kuchar@fit.cvut.cz, milan.dojchinovski@fit.cvut.cz

Czech Technical University in Prague - Faculty of Information Technologies - Software and Web Engineering

Summer semester 2019/2020 Humla v0.3

Overview

- Introduction
- Graph Theory
- The Small-World Phenomenon
- Measures of Centrality
- Strong and Weak Ties
- Network Level Characteristics

Social Network Analysis

- SNA is not a buzzword attributed to Facebook or Twitter, it is a methodology well known for decades.
 - A pioneering book: J. Moreno. "Who shall survive?: A new approach to the problem of human interrelations". Nervous and Mental Disease Publishing Co, 1934.
- Study of human relationships by means of graph theory.
- Analysis of relationships to understand people and groups.
 - Relationships
 - → Binary and Valued Relationships
 - \rightarrow A follows B on Twitter
 - \rightarrow A retweeted 4 tweets from B
 - \rightarrow A talked to B 5 times last week
 - → Symmetric and Asymmetric Relationships
 - → teacher/student, followers
 - \rightarrow friends, romantic relationships
 - → Multimode Relationships
 - → student studies at the university

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

-3-

Example: Karate Club

• NetworkX implementation:

• Visualization:

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

-4-

Example: Karate Club (cont.)

• Wayne Zachary. An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33(4):452–473, 1977.

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 5 -

Applications

- Businesses
 - analyze and improve communication flow in organization, partners, customers
- Law enforcement agencies (army)
 identify criminal and terrorist networks, key players
- Web Sites
 - identify and recommend potential friends
- Organizations
 - uncover conflicts of interests (government, lobbies, businesses)

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 6 -

Network datasets

- Collaboration Graphs
 - who works with whom
- Who-talks-to-Whom Graphs
 IM, *call graphs*
- Information Linkage Graphs
 pages and links, citations
- Technological Networks
 - computers, power grid
- Networks in the Natural World
 - food webs, cascading extinctions, neural connections

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 7 -

Types of Social Network Analysis

- Sociocentric whole network analysis
 - emerged in sociology
 - involves quantification of interaction among a socially welldefined group of people
 - focus on identifying global structural patterns
- Egocentric personal (local) network analysis
 - emerged in anthropology and psychology
 - involves quantification of interactions between an individual (called ego) and all other persons (called alters) related (directly or indirectly) to ego
- Knowledge Based Network Analysis
 - emerged in Computer Science
 - involves quantification of interaction between individuals, groups and other entities

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

-8-

Overview

- Introduction
- Graph Theory
- The Small-World Phenomenon
- Measures of Centrality
- Strong and Weak Ties
- Network Level Characteristics

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

Graphs

- A graph is a way of specifying relationships among a collection of items
- Objects
 Nodes Alice, Bob, ...
 - Edges
 - \rightarrow undirected knows, ...
 - \rightarrow directed follows, ...
 - Values weights, distances, scores, 0-5 scale, ...
 - Attributes name, time, ...
- Mathematical models and network structures

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 10 -

Graph Representations

• Adjacency Matrices

			С	D	
Α	0	2	0	5	5
В	2	0	0	1	0
С	0	0	0	3	4
D	5	1	3	0	0
Е	5	0	4	0	0

• Edge-Lists and Adjacency Lists

from	to	value
А	В	2
А	D	5
	•••	

from	edges
А	(B 2), (D 5), (E 5)

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 11 -

Graph Theory

Graph Theory

- "terminological jungle, in which any newcomer may plant a tree"
 → John A. Barnes. Social Networks. Number 26 in Modules in Anthropology. Addison Wesley, 1972.

Walk

- sequence of nodes connected by edges
- open, closed, length

Path

- open sequence of nodes connected by edges

Cycles

- path with at least three edges, first and last nodes are the same

Connectivity

- if exists path between nodes

Length

- number of edges in the sequence

Distance

- shortest path between nodes

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 12 -

Graph Theory

- Shortest path (unweighted graph)
- Cost-based shortest path (weighted graph)
- Depth-first search
- Breadth-first search

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

– 13 **–**

Overview

- Introduction
- Graph Theory
- The Small-World Phenomenon
- Measures of Centrality
- Strong and Weak Ties
- Network Level Characteristics

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 14 -

The Small-World Phenomenon

- The idea that the world looks "small"
 - How short a path of friends it takes to get from you to almost anyone else
- Six degrees of separation
 - John Guare. Six Degrees of Separation: A Play. Vintage Books, 1990
 - \rightarrow "I read somewhere that everybody on this planet is separated by only six other people. Six degrees of separation between us and everyone else on this planet."
 - There are no more then six connections between any two people on this planet.

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 15 -

Myth or not?

- Watts and Strogatz
 - the average path length between two nodes in a random network $\rightarrow \frac{\ln(N)}{\ln(K)}$, where N = total nodes and K = acquaintances per node

 - $\rightarrow K = 30, N = 300,000,000 (90\% \text{ of the US population}) = 19.5 / 3.4 = 5.7$
 - \rightarrow K = 30, N = 6,000,000,000 (90% of the World population) 22.5 / 3.4 = 6.6
- Dunbar
 - on average, every person has 150 friends or acquaintances
 - within 6 degrees of separation is $150^6 = 11$ trillion
 - more then the overall number of people in the world \rightarrow no overlap
 - real networks overlap factor is quite high \rightarrow not enough
- Generally
 - many experiments
 - exact degree of separation of our society remains unknown
 - online networks represent a specific part of our population

not constant in time

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 16 -

First experimental study

- Stanley Milgram 1960s \$680 budget
- Experiment
 - 296 random starters

 - → Forward letter to target person
 → Stockbroker who lived in a suburb of Boston
 - → Given personal information about target
 - → Forward to someone the knew
 - → Same instructions

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 17 -

Instant Messaging

- Microsoft Instant Messenger
 - an edge joining two users if they communicated at least once during a month-long observation period
 - 240 million active user accounts
 - average distance of 6.6

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 18 -

Facebook

- Facebook
 - 2008: 5.28 2011: 4.74 2016: 3.57

https://research.fb.com/three-and-a-half-degrees-of-separation/

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 19 -

Paul Erdös

- Itinerant mathematician
- 1500 papers
- Erdös number
 - the distance from him or her to Erdös 4 or 5
 - − *Albert Einstein* − 2
 - Enrico Fermi 3
 - James Watson 6

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 20 -

Kevin Bacon

- Movie actors and actress
 - His or her distance in this graph to Kevin Bacon
 - Average = 2.9
- "I found an incredibly obscure 1928 Soviet pirate film, Plenniki Morya, starring P. Savin with a Bacon number of 7, and whose supporting cast of 8 appeared nowhere else"

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 21 -

Overview

- Introduction
- Graph Theory
- The Small-World Phenomenon
- Measures of Centrality
- Strong and Weak Ties
- Network Level Characteristics

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 22 -

Measures of Centrality

- A variety of different measures exist to measure the importance, popularity, or social capital of a node in a social network.
 - Measure power, influence, or other individual characteristics of people (based on their connection patterns).
- Question:
 - Who is more important in this network?
 - Who has the power? ...it depends.
- Answer:
 - Degree centrality
 - Closeness centrality
 - Betweeness centrality
 - Eigenvector centrality
 - **—** ...

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 23 -

Degree Centrality

- (in-) or (out-) degree is the number of edges that lead into or out of the node.
 - $-Dc_x = deg(x)$
 - determines the nodes that can quickly spread information to a localized area.

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 24 -

Degree Centrality - Example

• Dreaded hairball

```
import networkx as nx
from networkx.drawing.nx_agraph import graphviz_layout
import matplotlib.pyplot as plt
G=nx.binomial_graph(500,0.014, seed=5)
pos = graphviz_layout(G)
nx.draw(G, pos, with_labels=False, node_size=10)
```


Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 25 -

Closeness Centrality

- The mean length of all shortest paths from a node to all other nodes.
 - *Measure of reach, distance to others.*
 - Horizon of observability (Gossipmongers).
- Also defined as the inverse of the farness $-Cc_x = \frac{I}{\sum_y distance(y,x)}$

$$-Cc_{x} = \frac{1}{\sum_{y} distance(y, x)}$$

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 26 -

Betweeness Centrality

- The number of shortest paths that pass through a node divided by all shortest paths.
 - Communication Bottlenecks and/or Community Bridges.
 - Boundary spanners people that act as bridges between two or more communities that otherwise would not be able to communicate to each other.

•
$$Bc_x = \sum_{s \neq x \neq t} \frac{\sigma_{sxt}}{\sigma_{st}}$$

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 27 -

Eigenvector centrality

- A node with high eigenvector centrality is connected to other nodes with high eigenvector centrality. – Similar to Google PageRank.

 - Who is connected to the most connected nodes.
- Can reveal "Gray Cardinals" e.g. Don Corleone
 "by knowing well-connected people, they can exploit this information and information
 - asymmetry to further their own plans, while staying largely in the shadows"

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 28 -

Eigenvector centrality - Algorithm

- Generally
 - weight each of the links by the degree of the node at the other end of the link
 - recursive version of degree centrality
- Algorithm
 - 1. Start by assigning a centrality score of 1 to all Nodes.
 - 2. Recompute the scores of each node as a weighted sum of centralities of all nodes in a node's neighborhood:

$$v_i = \sum x_{i,j} * v_j$$

- 3. Normalize ^{N}v by dividing each value by the largest value.
- 4. Repeat steps 2 and 3 until the values of v stop changing.

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 29 -

Centralities - Example

```
data= {"B":["A","E"], "C":["A", "B", "D", "E"], "E":["F","G"]}
G=nx.from_dict_of_lists(data)
pos = graphviz_layout(G, prog="fdp")
centralities = [nx.degree_centrality, nx.closeness_centrality,
nx.betweenness_centrality, nx.eigenvector_centrality]
region=220
for centrality in centralities:
    region+=1
    plt.subplot(region)
    plt.title(centrality.__name__)
    nx.draw(G, pos, labels={v:str(v) for v in G},
    cmap = plt.get_cmap("bwr"), node_color=[centrality(G)[k] for k in centrality(G)])
plt.savefig("centralities.png")
plt.show()
```


Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 30 -

Overview

- Introduction
- Graph Theory
- The Small-World Phenomenon
- Measures of Centrality
- Strong and Weak Ties
- Network Level Characteristics

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 31 -

Strong and Weak Ties

- Each edge can influence the network in different way
 - How information flows through a social network.
 - How different nodes can play structurally distinct roles.
 - Shape the evolution of the network.
- Weight of Edge
 - Frequency of interaction, number of exchanged items, strength of relationship.

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 32 -

Dunbar Number and Weak Ties

• Average size of a human social network is 150.

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 33 -

Triadic Closure

- Dyad
 - -a pair of actors (connected by a relationship) in the network
- Triad
 - a subset of three actors or nodes connected to each other by the social relationship

• "If two people in a social network have a friend in common, then there is an increased likelihood that they will become friends themselves at some point in the future"

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 34 -

The Clustering Coefficients

- Defined as:
 - Probability that two randomly selected friends are friends with each other.
 - Fraction of pairs of friends that are connected to each other by edges.
- Vertex v_i has k_i neighbors, $k_i(k_i 1)/2$ edges can exist.

$$C_i = \frac{2 \, \| \, \{e_{jk}\} \, \|}{k_i(k_i - 1)} : v_j, v_k \in N_i, e_{ij} \in E$$

• Locally indicates how concentrated the neighborhood of a node is, globally indicates level of clustering in a graph.

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 35 -

The Clustering Coefficients - Examples

- A first figure
 - -coefficient = 1/6
 - only C-D from all possible (C-D,D-E, B-E, B-C,C-E,D-B)
- A second figure
 - coefficient = 2/6 = 1/3
 - C-D and B-C from all possible (C-D,D-E, B-E, B-C,C-E,D-B)

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 36 -

Bridge and Local Bridges

Bridge

- If deleting the edge would cause A and B to lie in two different components. In other words, this edge is literally the only route between its endpoints, the nodes A and B.
- Extremely rare!

Local bridge

- If its endpoints A and B have no friends in common in other words, if deleting the edge would increase the distance between A and B to a value strictly more than two.
- When it does not form a side of any triangle in the graph.

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 37 -

Neighborhood overlap

- Helps identify local bridges
- Local Bridge -NO = 0

 $NO = \frac{number\ of\ neighbors\ of\ both\ A\ and\ B}{number\ of\ neighbors\ of\ at\ least\ one\ of\ A\ or\ B}$

• Example:

- Edge Å-F: 1/6, Edge A-B: 0/8

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 38 -

Embeddedness

- Embeddedness of an edge
 number of common neighbors the two endpoints have
- Local bridges has embeddedness = 0
- Signifficant embeddedness

 easier trust, confidence (social, economic)

Example:

 \rightarrow Common E and F

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 39 -

Structural hole

- Characteristics
 - Access information from non-interacting parts
 - Interface
 - Novel ideas
 - Gatekeeping

Example – *Node B*

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 40 -

Overview

- Introduction
- Graph Theory
- The Small-World Phenomenon
- Measures of Centrality
- Strong and Weak Ties
- Network Level Characteristics

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 41 -

Density

- The ratio of the number of edges over the total number of possible edges
- Total number
 - Undirected n(n-1)/2
 - -Directed n(n-1)

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 42 -

Reciprocity

- Oriented graphs
- Edge in both directions
- The ration of the number of relations which are reciprocated over the total number of relations

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 43 -

Components

- Components
 - group of nodes, which are connected
 - → every node has a path to every other
 - \rightarrow the group is not part of some larger group
 - Giant Components
 - → connected component that contains a significant fraction of all the nodes
 - Singletons
 - \rightarrow who have no connections and are least central
 - Middle region
 - → isolated groups which interact amongst themselves, forming isolated stars

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 44 -

Components - example

```
import networkx as nx
from networkx.drawing.nx_agraph import graphviz_layout
import matplotlib.pyplot as plt
G = nx.random_partition_graph([30,10,5,5,1], 0.15, 0.001, seed=5)
pos = graphviz_layout(G)
ns.draw(G, pos, with_labels=False, node_size=10)
plt.show()

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

-45-
```

Giant Component Example

• http://www.facebook.com/note.php?note_id=469716398919

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 46 -

Power-Law Distribution

- Degree distribution follows a power law
 - Scale-free networks
 - Some nodes have high number of connections, most nodes have small number of connections
 - Characteristics:
 - → robust against accidental failures
 - → vulnerable to coordinated attacks

```
import networkx as nx
import matplotlib.pyplot as plt

G=nx.karate_club_graph()
plt.hist(list(G.degree().values()))

plt.show()
```


Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 47 -

Preferential Attachment

• The great majority of new edges are to nodes with an already high degree.

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 48 **-**

Homophily

- The principle that we tend to be similar to our friends
 - Plato
 - → "similarity begets friendship"
 - Aristotle
 - \rightarrow people "love those who are like themselves"
 - Generally
 - → "birds of a feather flock together"
- Similarities
 - racial, ethnic, age, place, occupation, affluence, interest, opinions, ...

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 49 -

Homophily - Politics

• Network of senators created by a group in the Human-computer Interaction Lab at the University of Maryland

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 50 -

Homophily - High School

Homophily: race (different colors of nodes), friendships of students
 - James Moody: "Race, school integration, and friendship segregation in America," American Journal of Sociology 107, 679-716 (2001)

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 51 -

Measuring Homophily

- Two classes/similarities *e.g.* male *and* female
- p or q fraction of all that correspond to the first or second class
 - e.g. male or female
- Probability that for a random edge in a random network both end nodes are of the same class e.g. same gender $-P_s = p^2$, q^2
- Probability of different classes e.g. cross-gender $-P_c = 2 \times p \times q$
- Homophily Test
 - If the fraction of cross-gender edges is significantly less than 2pq, then there is evidence for homophily.

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 52 -

Measuring Homophily - Example

- Example: 5 of 18 cross-gender, p=2/3, q=1/3
 - -2pq = 4/9 = 8/18

 - $\begin{array}{l}
 \text{ Test} \\
 \rightarrow 5/18 < 8/18
 \end{array}$

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 53 -

Transitivity

- If there is a tie between A and B and one between B and C, in transitive network A and C will also be connected
- Transitivity and homophily together lead to the formation of cliques (fully connected clusters)

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 54 -

Homophily vs. Curiosity

- Two people are not very similar but not so different as to limit their ability to find topics for conversation
- Boredom trap
 - Person who is exactly the same as you in every aspect provides no new information or stimulation

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 55 -

Motifs

- - Local property of networks

 Defined as recurrent and statistically significant sub-graphs or patterns.
 - Networks differ/share specific motifs
- Useful concept to uncover structural design principles of complex networks.
- Detection is computationally challenging!

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 56 -

Motifs - Example

• A. Paranjape, A. R. Benson, and J. Leskovec: Motifs in Temporal Networks. To appear in WSDM, 2017. http://snap.stanford.edu/temporal-motifs/

Lecture 6: Social Network Analysis - Jaroslav Kuchař & Milan Dojčinovski

- 57 -