«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Институт информационных технологий, математики и механики Кафедра: Математическое обеспечение и суперкомпьютерные технологии

Выпускная квалификационная работа бакалавра

Исследование возможностей объяснимого искусственного интеллекта в задаче ранней диагностики стресса растений

Выполнила:

студентка гр. 381706-1 Максимова И. И.

Научный руководитель:

проф. каф. МОСТ, д-р техн. наук Турлапов В.Е.

Нижний Новгород, 21 июня 2021

Современная диагностика

Сбор информации:

- Беспилотные летательные аппараты
- Датчики на с/х транспортных средствах

Методы диагностики:

- Алгоритмы машинного обучения
- Нейронные сети

Проблемы:

- Сложность обработки ошибок
- Необъяснимость решений

Цель: Создание простых XAI-блоков для ранней диагностики стрессовых состояний растений

Два этапа:

- I. Поиск эффективных моделей МО для ранней диагностики стресса растений
- **II. Создание ХАІ-блока** на базе самой эффективной модели

Инструменты исследования:

1. Поиск эффективных моделей МО

Описание датасета и признаков

Обзор возможностей методов МО проводился на примере задачи классификации болезней листьев томатов.

Признаки:

- STAT {mean, std, min, max};
- HIST бины квантованной гистограммы
- GLCM текстурные признаки
- ALL = STAT + HIST + GLCM

Способ извлечения признаков:

- Локальный (17х17)
- Глобальный

«Источники» признаков:

- Изображения в красным канале
- NDVI_G образы:

$$NDVI_{G} = \frac{GREEN - RED}{GREEN + RED}$$

PlantVillage (6К изображений)

Примеры изображений 6-ти классов больных листьев томатов

Изображение листа, больного Bacterial Spot в RGB, Red и NDVI_G каналах

Отражение хлорофиллом разных длин волн

1. Поиск эффективных моделей МО

Результаты классификации

DT - Дерево решений KNN - К-ближайших соседей RF - Случайный лес LDF - Линейный дискриминант Фишера SVM - Мультиклассовый метод опорных векторов SLP - Одноуровневый персептрон

ННГУ, 2021

2. Создание XAI-блока Прикладная задача и SLP-решение

- Задачи ранней диагностики засухи у растений пшеницы, регистрируемой сенсорами двух типов (тепловым TIR и RGB): детектирование стресса и прогнозирование продолжительности стресса.
- В качестве исходных данных использованы две группы изображений в градациях серого NDVI (нормализованный разностный индекс растительности): на основе Thermal IR; на основе RGB.
- Классификатор SLP и регрессор SLP используются в качестве инструментов для анализа эффективности признаков стресса. SLP-модели анализируются и оптимизируются как XAI-модели.

Высокое разрешение RGB

HHГУ, 2021

5

Направления в XAI, взятые для исследования проблемы ранней диагностики стресса растений

- 1. Использование классических методов машинного обучения и методов глубокого обучения для решения прикладных задач
- 2. Интерпретация узлов сети как семантических понятий
- 3. Использование методов глубокого обучения в XAI.
 - а. Визуализация внутренних нейронов
 - в. Комплексное упрощение сети
 - с. Контрастирование узлов сети как семантических понятий
- 4. Быстрая неитеративная коррекция ошибок

Комплексное упрощение сети и интерактивность

- Простая базовая структура. В качестве простой базовой структуры был выбран однослойный перцептрон SLP(N) с произвольным числом нейронов N на скрытом слое. Использованы две его модели: классификатор $SLP_{C}(N)$ и регрессор $SLP_{R}(N)$.
- Для достижения интерактивности обучение на изображениях заменено обучением на векторах признаков изображений. Это позволило сократить время обучения классификатора до долей секунды, а для регрессора - до единиц секунд. → Быстрое обучение, оптимизация, быстрая коррекция ошибок.
- Узлы SLP как семантически понятия. Вектор признаков включает в себя результаты типовой и специальной обработки изображений. Типовая обработка представлена двумя группами признаков: **STAT** {mean, std, min, max}; **HIST** - значения квантованной гистограммы. Специальная - группой **GLCM** (gray-level co-occurrence matrix), формализующей текстурные признаки.

 Узлы как понятия

ННГУ, 2021

Архитектура SLP_C(N) для детектирования стрессовых состояний пшеницы

Функция активации - ReLU

Архитектура SLP_R(N) для предсказания дня засухи пшеницы

Интерпретация узлов SLP как семантических понятий Визуализация внутренних нейронов

Анализ весов SLP(N)-классификатора засухи

- Вектор признаков включает в себя результаты типовой и специальной обработки изображений.
- Типовая обработка представлена двумя группами признаков: STAT {mean, std, min, max}; HIST - значения квантованной гистограммы. → Узлы как общие понятия
- Специальная группой GLCM, формализующей текстурные признаки. → Узлы как специальные понятия
- Визуализация весов. SLP-модели оснащены инструментами для анализа и визуализации весов компонентов вектора признаков.

Анализ влияния группы GLCM-признако для 4 углов при расстоянии = 1

NDVI_т-изображения. Индивидуальные веса для каждого элемента вектора признаков засухи, полученные после обучения SLP_c(3)-классификатора засухи. Вектор признаков включает 5 скаляров на основе GLCM (контраст, однородность, энергия, корреляция, энтропия) для каждого из 4 углов поворота.

C

Интерпретация узлов SLP как семантических понятий Визуализация внутренних нейронов (2)

Анализ точности SLP_C(N)-классификатора засухи (в терминах F-score)

- SLP-узлы, представляющие общие понятия (как понятие группы или как понятие отдельного признака): STAT, HIST
- SLP-узлы, представляющие специальные понятия (как понятие группы или как понятие отдельного признака): GLCM
- Визуализация. SLP-модели оснащены инструментами для анализа и визуализации эффективности компонентов вектора признаков.
 SLP-модели можно исследовать и оптимизировать по группам признаков → неитеративное упрощение структуры систем после обучения

Результаты упрощения SLP_C(N) при фиксированном квантовании (L=4): NDVI_T данные. N=2, для любой граппы признаков, абсолютный max F-score=1. **NDVI_G данные**. N=1, для GLCM (специальных) и ALL (полная группа) признаков, абсолютный max F-score=0.9

Эффективность всех групп признаков: STAT, STAT+HIST, GLCM, ALL для SLP_C(N) при числе уровней квантования L=4 для NDVI_C и NDVI_C

ННГУ, 2021

Интерпретация узлов SLP как семантических понятий Визуализация внутренних нейронов (3)

Анализ точности SLP_R(N)-регрессора (в терминах RMSE дня засухи)

 Визуализация и анализ. SLP-модели оснащены инструментами для анализа и визуализации эффективности компонентов вектора признаков → неитеративное упрощение структуры систем после обучения

Анализ. Анализируя поведение кривой ALL в сравнении с STAT+HIST и GLCM можно увидеть, что концептуальные группы признаков, STAT+HIST и GLCM, работают как антагонисты.

Результаты упрощения SLP_R(N) при фиксированном квантовании (L=4):

NDVI_т данные. N=3, STAT+HIST, RMSE=0.8.

Абсолютный min RMSE=0.67 для N=27, STAT+HIST.

NDVI_G данные. N=2, ALL, абсолютным min RMSE=3.

Эффективность всех групп признаков: STAT, STAT+HIST, GLCM, ALL для $SLP_R(N)$ при числе уровней квантования L=4 для $NDVI_T$ и $NDVI_G$

ННГУ, 2021 ¹⁰

Упрощение структуры SLP-регрессора в ходе обучения при оптимизации точности (1)

- Упрощения структуры SLP-регрессора при оптимизации точности осуществляется за счет вариативности числа уровней квантования (L), которое формирует признаки: бины гистограммы и уровни серого для GLCM.
- Используются две схемы квантования, ориентированные на свойства наборов данных после их нормализации.

Схема 1 (для $NDVI_T$)

	Число уровней (L)	Границы квантования (σ)
thy ght	4	(-2, -1, 0, 1, 2)
	6	(-2, -1, -0.5 , 0, 0.5, 1, 2)
	8	(-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2)
	10	(-2, -1.5, -1, -0.5, -0.25 , 0, 0.25, 0.5, 1, 1.5, 2)

Результаты упрощения SLP_R(N) с применением схемы 1:

NDVI_т данные. N=3 при L=10, STAT+ HIST (типовые), абсолютный min RMSE=0.617 **NDVI_G данные**. N=1, при L=10, GLCM (специальные), абсолютный min RMSE=2.83

Эффективность всех групп признаков: STAT, STAT+HIST, GLCM, ALL для ${\rm SLP_R}(N)$ при разном способе квантования L (схема 1) для ${\rm NDVI_T}$ и ${\rm NDVI_G}$

1

Выводы

- 1. Всесторонне решена проблема диагностики ранней засухи растений с помощью простых моделей однослойного перцептрона (SLP).
- 2. Специальные интерактивные SLP-классификатор и SLP-регрессор: построены и оснащены инструментами XAI.
- з. Изображения датасета заменены на векторы признаков, состоящие из групп STAT, HIST и GLCM.
- 4. SLP-узлы интерпретированы как семантические понятия в терминах групп признаков:
 - а. **STAT**; **HIST** как общие понятия SLP-узлов (как группа в целом, так и отдельные признаки)
 - в. GLCM как специальные понятия SLP-узлов (как группа в целом, так и отдельные признаки)
- 5. Для SLP-классификатора и SLP-регрессора, как XAI моделей, были реализованы:
 - **а. Визуализация внутренних нейронов** после обучения (веса и точность для каждого количества нейронов)
 - в. Комплексное упрощение сети (по количеству нейронов и семантическим концепциям)
 - с. Контрастирование узлов SLP как семантических концепций (и через уменьшение интервала квантования HIST)
- 6. Использование таких оптимизированных SLP-моделей возможно для быстрой неитеративной коррекции ошибок
- 7. XAI-возможности SLP-моделей исследованы и эффективно использованы для решения проблемы ранней диагностики засухи растений.