Artificial Intelligence

Lecture 4

Search Strategies

Reading: Russell's Chapter 3

Search strategies

- A search strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
 - completeness: does it always find a solution if one exists?
 - Time complexity: number of nodes generated/expanded
 - space complexity: maximum number of nodes in memory
 - optimality: does it always find a least-cost/optimal solution?
- Time and space complexity are measured in terms of
 - b: maximum branching factor of the search tree
 - d: depth of the least-cost solution
 - *m*: maximum depth of the state space

Types of Search strategies

- Uninformed search strategies
- Informed search strategies

Uninformed search strategies

- Uninformed/blind search strategies use only the information available in the problem definition
- Generate successors and distinguish a goal state from a non goal state

Uninformed search strategies

- All search strategies are distinguished by the order in which nodes are expanded
 - 1. Breadth-first search
 - 2. Uniform-cost search
 - 3. Depth-first search
 - 4. Depth-limited search
 - 1. Iterative deepening search

1. Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
 - fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
 - fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
 - fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
 - fringe is a FIFO queue, i.e., new successors go at end

Properties of breadth-first search

- Complete? Yes (if b is finite), BFS will eventually find it after expanding all shallower nodes
- $\underline{\text{Time?}} \ 1 + b + b^2 + b^3 + \dots + b^d + (b^{d+1} b) = O(b^{d+1})$
- Space? $O(b^{d+1})$ (keeps every node in memory)
- Optimal? Yes (if cost = 1 per step)
- Space is the bigger problem

generalSearch(problem, queue)

of nodes tested: 0, expanded: 0

expnd. node	Frontier list
	{S}

generalSearch(problem, queue)

of nodes tested: 1, expanded: 1

expnd. node	Frontier list
	{S}
S not goal	{A,B,C}

generalSearch(problem, queue)

of nodes tested: 2, expanded: 2

expnd. node	Frontier list
	{S}
S	{A,B,C}
A not goal	{B,C, <mark>D,E</mark> }

generalSearch(problem, queue)

of nodes tested: 3, expanded: 3

expnd. node	Frontier list
	{S}
S	{A,B,C}
A	{B,C,D,E}
B not goal	{C,D,E,G}

generalSearch(problem, queue)

of nodes tested: 4, expanded: 4

expnd. node	Frontier list
	{S}
S	{A,B,C}
A	{B,C,D,E}
В	{C,D,E,G}
C not goal	{D,E,G,F}

generalSearch(problem, queue)

of nodes tested: 5, expanded: 5

expnd. node	Frontier list
	{S}
S	{A,B,C}
A	$\{B,C,D,E\}$
В	{C,D,E,G}
С	{D,E,G,F}
D not goal	{E,G,F,H}

generalSearch(problem, queue)

of nodes tested: 6, expanded: 6

expnd. node	Frontier list
	{S}
S	{A,B,C}
A	{B,C,D,E}
В	{C,D,E,G}
С	{D,E,G,F}
D	{E,G,F,H}
E not goal	{G,F,H,G}

generalSearch(problem, queue)

of nodes tested: 7, expanded: 6

expnd. node	Frontier list
	{S}
S	{A,B,C}
A	{B,C,D,E}
В	{C,D,E,G}
С	{D,E,G,F}
D	{E,G,F,H}
E	{G,F,H,G}
G goal	{F,H,G} no expand

generalSearch(problem, queue)

of nodes tested: 7, expanded: 6

expnd. node	Frontier list
	{S}
S	{A,B,C}
A	{B,C,D,E}
В	{C,D,E,G}
С	{D,E,G,F}
D	{E,G,F,H}
E	{G,F,H,G}
G	{F,H,G}

