Reinforcement Learning

강화학습

랩 세미나(18.06.01) 민 세 웅

Machine learning

- ◆ 지도학습
 - 예측(Regression)
 - 분류(Classificaiton)
- ◆ 비지도학습
 - 차원 감소(Dimension Reduction)
 - 분류(Clustering)
- ◆ 강화학습
 - Game
 - Robot control

Reinforcement Learning

■ 파블로프의 개

- ◆ 기본적인 컨셉
 - 잘한 행동에 대해서 보상을 주자 (Positive Reinforcement)
 - 못한 행동에 대해서 벌을 주자 (Negative Reinforcement)

Reinforcement Learning

observation

◆ Agent

- 어떤 행동을 하는 개체
- 정책에 따른 액션
- 상태(환경) 감지
- **♦** Environment
 - 행동에 따른 상태 변경
 - 리워드 전달
- ◆ Episode
 - 강화학습의 보상을 주는 한 Cycle (예) 게임에서 죽기 전까지의 1번의 플레이

Reinforcement Learning

- 구글 딥마인드(2013, 2015 논문)
 - 기존의 강화학습를 딥러닝과 접목(DQN)
 - CNN과 DQN 접목
- Human-level control through deep reinforcement learning (Nature 26 Feb. 2015)
- 말파고(2016)

Application

Autonomous vehicle

Resource allocation

Reinforcement Learning

Game Test

Advertisement

- ◆ Robotics : Torque at joints
- ◆ Business operations
 - Inventory management
 - Resource allocation
- ◆ Finance
 - Investment decisions
 - Portfolio design
- ◆ E-commerce/media
 - What ads to present to users

Q-learning & Open Al Gym

Frozen Lake

Open Al Gym

(1) Action (Right, Left, Up, Down) Н Agent Environment (2) State, Reward

```
import gym
env = gym.make("FrozenLake-v0")
observation = env.reset()
For _ in range(1000):
    env.render()
    action = env.action_space.sample()
    observation, reward, done, info = env.step(action)
```

Open Al Gym


```
import gym
env = gym.make("FrozenLake-v0")
observation = env.reset()
For _ in range(1000):
    env.render()
    action = env.action_space.sample()
    observation, reward, done, info = env.step(action)
```

Open Al Gym

(1) Action (Right, Left, Up, Down) Agent Environment (2) State, Reward

```
import gym
env = gym.make("FrozenLake-v0")
observation = env.reset()
For _ in range(1000):
    env.render()
    action = env.action_space.sample()
    observation, reward, done, info = env.step(action)
```

Q-function (action-value function)

Q(state, action)

Policy using Q-function

State-action value function

Q(s1, LEFT) : 0

Q(s1, RIGHT): 0.5

Q(s1, UP): 0

Q(s1, DOWN): 0.3

 $\max_{\{a\}} Q(S1, a)$ RIGHT <-arg max Q(S1, a)

Optimal Policy with Q

Max Q = $max_{\{a'\}}Q(s,a')$ $\Pi^*(s) = arg \max_{\{a\}}Q(s,a)$

Assume Q in s' exists!

- ◆ My condition
 - I am in s
 - When I do action a, I'll go to s'
 - When I do action a, I'll get reward r
 - Q in s', Q(s', a') exist!
- ightharpoonup Q(s, a) = r + maxQ(s', a')

Learning Q(s,a): Q-table(16x4)16 states and 4 actions (up, down, left, right)

0	0	0	0
0 > 0	0 >< 0	0 > 0	0 0
0	0	0	0
0	0	0	0
0 0	0 >< 0	0 >< 0	0 >< 0
0	0	0	0
		<u>s</u>	7
0	0	0	0
0 0	0 0	0 0 0	0 0 0
			0 0 0
0 0	0 0	0 0	
0 0	0 0	0 0	0

Assume Q in s' exists!

- ◆ My condition
 - I am in s
 - When I do action a, I'll go to s'
 - When I do action a, I'll get reward r
 - Q in s', Q(s', a') exist!
- ightharpoonup Q(s, a) = r + maxQ(s', a')

Learning Q(s,a): Q-table(16x4)16 states and 4 actions (up, down, left, right)

0	0	0	0
0 / 1	0 >< 1	0 0	0 0
0	0	1	0
0	0	0	0 /
0 >< 0	0 >< 0	0 > 0	0 >< 0
0	0	1	0
0	0	0	\bigcirc 0 \bigcirc
0 0		1 0 0	0 0
			0 0 0
0 0	0 0	1 0	
0 0	0 0 1	1 0	0

For each s, a initialize table entry $\hat{Q}(s,a)$ <-0 Observe current state s Do forever:

- Select an action a and execute it
- Receive immediate reward r
- Observe the new state s'
- Update the table entry for $\hat{Q}(s, a)$ as follows:

$$\widehat{Q}(s,a) \leftarrow r + \max_{\{a'\}} \widehat{Q}(s',a')$$

• $s \leftarrow s'$

Exploit VS Exploration: E-greedy

Learning Q(s,a)

Is it a optimal solution?


```
E - greedy
e = 0.1
if rand < e:
   a = random
else
   a = argmax(Q(s,a))
Decaying E - greedy
 for i in range(1000)
    e = 0.1 / (i+1)
    if rand < e:
       a = random
    else
       a = argmax(Q(s,a))
```

Exploit VS Exploration

Add random noise

Up Q: 0.3 + 0.4

Left

Q: 0.1 + 0.8

Right

Q: 0.7 + 0.5

Down

Q: 1 + 0.1

Add random noise

 $a = argmax(Q(s,a) + random_values)$

a = argmax([0.1, 1, 0.7, 0.3] + [0.8, 0.1, 0.5, 0.4])

Decaying add random noise

for i in range(1000)

 $a = argmax(Q(s,a) + random_values/(i+1))$

Discounted future reward

Discounted future reward

$$\hat{Q}(s,a) \leftarrow r + \gamma \max_{\{a'\}} \hat{Q}(s',a')$$

보통 $\gamma = 0.9$ 정도 사용

Discounted future reward

0.53	0.59	0.66	0
0.53 0.59	0.53 0.66	0.59 0.59	0.66 0
0.59	0	0.73	0
0.53	0	0.66	0
0.59 0	0 >< 0	0 >< 0	70 >< 0
0.66	/ 0 \	0.81	0
0.59	0	0.73	0
0.66 0.73	0.66 0.81	0.73	0 >< 0
0	0.81	0.9	0
0	0.73	0.81	0 /
0 0	0.9	0.81 1	0 0
0	0.81	0.9	0

Discounted future reward

$$\hat{Q}(s,a) \leftarrow r + \gamma \max_{\{a'\}} \hat{Q}(s',a')$$

보통 $\gamma = 0.9$ 정도 사용

Convergence

- \hat{Q} converges to Q
- In deterministic worlds
- In finite states

Stochastic(non-deterministic) world

MDP(Markov Decision Process))

Learning incrementally

Learning rate, α

• $\alpha = 0.1$

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha[r + \gamma \max_{\{a'\}} Q(s',a')]$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{\{a'\}} Q(s',a') - Q(s,a)]$$

Convergence

 \hat{Q} converges to Q

• Can still prove convergence of \hat{Q} to Q [Watkins and Dayan, 1992]

EX(State-Value function)

Learning incrementally

Learning rate, α

• $\alpha = 0.1$

$$Q(s,a) \leftarrow (1 - \alpha)Q(s,a) + \alpha[r + \gamma \max_{\{a'\}} Q(s',a')]$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{\{a'\}} Q(s',a') - Q(s,a)]$$

Convergence

 \hat{Q} converges to Q

Can still prove convergence of \hat{Q} to Q [Watkins and Dayan, 1992]