

Exploring Joint Embedding Architectures and Data Augmentations for Self-Supervised Representation Learning

Sami Barchid¹

José Mennesson¹²

Chaabane Djéraba¹

¹ Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL ² IMT Nord Europe, Institut Mines-Telecom, Centre for Digital Systems ¹² F-59000 Lille, France

Many event-based datasets have a limited number of labeled samples

It presents challenges for the development of event vision algorithms

Self-Supervised Representation Learning (SSRL) is a good solution for reducing the reliance on labeled data

Contributions

Event-based

SSRL framework

Evaluation

protocols

Study on **EDA**s (Event Data Augmentation)

Analysis of learned features

Event-Based SSRL Framework

Joint embedding architecture

Three types of ConvEncs: 2D-CNN, 3D-CNN, CSNN

Twins Variants

Student-Teacher

Study on Event Data Augmentations

EventCopy (ours)

How to design an effective EDA Distribution for pretraining?

Incremental experiments: we keep the best-performing EDA configuration from the previous stage

- More common EDAs
- Strictly one Geometric and one Drop-based
- OneOf functions (e.g., EventCopyDrop, StatDynGeo,...)

Evaluation Protocols

Dataset	Protocol	CSNN	2D	3D	$CSNN_{2D}$	$CSNN_{3D}$
DVSGesture	Linear	70.83	87.12	89.39	76.89	76.52
	SemiSup-10%	60.98	<u>75.52</u>	81.44	66.67	69.31
	SemiSup-25%	75.00	87.12	90.15	76.14	80.30
N-Caltech101	Linear	64.29	64.39	69.46	62.34	65.67
	SemiSup-10%	56.72	64.64	62.80	53.96	53.50
	SemiSup-25%	66.02	72.79	71.64	62.22	59.93
ASL-DVS	Linear	95.32	99.38	98.68	97.87	97.30
	SemiSup-05%	95.66	97.06	96.62	93.54	95.66
	SemiSup-10%	99.51	99.64	99.70	99.48	99.48

Metric: classification accuracy (%)

Transfer learning protocol

Datasets						
Pretrain	Linear	CSNN	2D	3D	$CSNN_{2D}$	$CSNN_{3D}$
DVSGesture	DailyAction-DVS	77.93	88.28	84.83	91.03	87.59
ASL-DVS	N-CARS	92.81	94.61	95.64	93.30	93.35

Analysis of Learned Features

Uniformity - Tolerance Trade-Off

Assumption from frame-based vision: balanced values of Uniformity and Tolerance result in optimal representation quality

- The original assumption does not prevail
- Student-Teacher variant increases the tolerance of the CSNNs
 - 2 Linear CKA for Similarity Assessment

- The divergence increases with deeper layers
- The impact of Student-Teacher variants on the learned features of CSNNs

Conclusion

The evaluation protocols established in this study emphasize the efficiency and transferability of the learned features, as well as the reduced dependence on labeled data facilitated by our framework

Our method creates exciting possibilities for designing future event-based vision applications that do not require large-scale training sets