Machine Learning in Go

Decision Tree and Random Forest

we'll start simple

In machine learning and statistics, classification is the problem of identifying to which of a set of categories (sub-populations) a new observation belongs, on the basis of a training set of data containing observations (or instances) whose category membership is known.

Statistical classification - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Statistical_classification Wikipedia •

classification examples

- spam/not-spam
- fraud/not-fraud
- OCR
- iris flower species (setosa, versicolor, virginica)

workflow

Training Data

Species	Sepal Length	Sepal Width	***
setosa	5.4	3.9	•••
versicolor	5.5	2.6	
virginica	6.3	2.5	

machine learning algo

New Data

Species	Sepal Length	Sepal Width	
?	5.4	3.9	
?	5.5	2.6	

classification rule(s)

Predicted Labels

Species	Sepal Length	Sepal Width	• • •
versicolor	5.4	3.9	
setosa	5.5	2.6	

popular classification algos

- Naive Bayes (the "hello world!" of machine learning)
- Logistic Regression
- Decision Tree
- Support Vector Machine (SVM)
- Random Forest
- Gradient Boosted Tree (GBT/GBM)
- Neural Networks/Deep Learning

Decision Tree

function $\operatorname{BuildDEcisionTree}(\mathcal{L})$ Create node t from the learning sample $\mathcal{L}_t = \mathcal{L}$ if the stopping criterion is met for t then $\widehat{y}_t = \operatorname{some} \operatorname{constant} \operatorname{value}$ else

Find the split on \mathcal{L}_t that maximizes impurity decrease

$$s^* = \arg\max_{s \in \Omega} \Delta i(s, t)$$

Partition \mathcal{L}_t into $\mathcal{L}_{t_L} \cup \mathcal{L}_{t_R}$ according to s^* $t_L = \mathrm{BuildDecisionTree}(\mathcal{L}_L)$ $t_R = \mathrm{BuildDecisionTree}(\mathcal{L}_R)$ end if return t end function

stopping rules

- all output values are equal
- all input variables are constant
- node size < minSamplesSplit
- depth > maxDepth
- split value < minImpurityDecrease

impurity metric

• Entropy, or deviance:

$$\mathbb{H}\left(\hat{\boldsymbol{\pi}}\right) = -\sum_{c=1}^{C} \hat{\pi}_c \log \hat{\pi}_c \tag{16.10}$$

Gini index

$$\sum_{c=1}^{C} \hat{\pi}_c (1 - \hat{\pi}_c) = \sum_{c} \hat{\pi}_c - \sum_{c} \hat{\pi}_c^2 = 1 - \sum_{c} \hat{\pi}_c^2$$
 (16.14)

This is the expected error rate. To see this, note that $\hat{\pi}_c$ is the probability a random entry in the leaf belongs to class c, and $(1 - \hat{\pi}_c)$ is the probability it would be misclassified.

impurity metric (in English)

How mixed up are the labels in the node?

code

```
func (t *Tree) buildTree(X [][]float64, Y []int, depth int) *Node {
 n := t.makeNode(Y)
  if t.shouldStop(Y, n, depth) {
   return makeLeaf(n)
  gain, splitVar, splitVal := t.findBestSplit(X, Y)
  if gain < 1e-7 {
   return makeLeaf(n)
  n.SplitVar = splitVar
  n.SplitVal = splitVal
 XLeft, XRight, YLeft, YRight := partitionOnFeatureVal(X, Y, splitVar, splitVal)
  n.Left = t.buildTree(XLeft, YLeft, depth+1)
  n.Right = t.buildTree(XRight, YRight, depth+1)
 return n
```

```
func (t *Tree) findBestSplit(X [][]float64, Y []int) (float64, int, float64) {
 var (
   bestFeature int
   bestVal float64
   bestGain float64
  initialImpurity := giniImpurity(Y, len(t.ClassNames))
 for feature := range X[0] {
   gain, val, nLeft := findSplitOnFeature(X, Y, feature, len(t.ClassNames), initialImpurity)
   if nLeft < t.MinSamplesLeaf || len(X)-nLeft < t.MinSamplesLeaf {</pre>
      continue
   if gain > bestGain {
     bestGain = gain
     bestFeature = feature
     bestVal = val
 return bestGain, bestFeature, bestVal
```

```
func findSplitOnFeature(X [][]float64, Y []int, feature int, nClasses int, initialImpurity float64)
(float64, float64, int) {
  sortByFeatureValue(X, Y, feature)
 var (
   bestGain, bestVal float64
    nLeft
                  int
  for i := 1; i < len(X); i++ {
    if X[i] [feature] \leftarrow X[i-1] [feature] +1e-7 { // can't split on locally constant val
      continue
    gain := impurityGain(Y, i, nClasses, initialImpurity)
    if gain > bestGain {
      bestGain = gain
      bestVal = (X[i][feature] + X[i-1][feature]) / 2.0
      nLeft = i
 return bestGain, bestVal, nLeft
```

```
func impurityGain(Y []int, i int, nClasses int, initImpurity float64) float64 {
  // initImpurity := giniImpurity(Y, nClasses)
  impurityLeft := giniImpurity(Y[:i], nClasses)
  impurityRight := giniImpurity(Y[i:], nClasses)
  fracLeft := float64(i) / float64(len(Y))
  fracRight := 1.0 - fracLeft
  return initImpurity - fracLeft*impurityLeft - fracRight*impurityRight
func giniImpurity(Y []int, nClasses int) float64 {
  classCt := countClasses(Y, nClasses)
 var gini float64
  for , ct := range classCt {
   p := float64(ct) / float64(len(Y))
   gini += p * p
 return 1.0 - gini
```

pros

- interpretable output
- mixed categorical and numeric data (not in the example shown though)
- robust to noise, outliers, mislabeled data
- account for complex interactions between input variables (limited by depth of tree)
- fairly easy to implement

CONS

- prone to overfitting
- not particularly fast
- sensitive to input data (high variance)
- tree learning is NP-Complete (practical algos are typically greedy)

Random Forest

Condorcet's Jury Theorem

If each voter has an independent probability p > 0.5 of voting for the correct decision, then adding more voters increases the probability that the majority decision is correct.

the idea

Improve on vanilla decision trees by averaging the predictions of many trees.

the catch

The predictions of each tree must be independent of the predictions of all the other trees.

the "random" in random forest

Decorrelate the trees by introducing some randomness in the learning algorithm.

- fit each tree on a random sample of the training data (bagging/bootstrap aggregating)
- only evaluate sa random subset of the input features when searching for the best split

```
func (t *Tree) findBestSplit(X [][]float64, Y []int) (float64, int, float64) {
 var
   bestFeature int
   bestVal float64
   bestGain float64
  initialImpurity := giniImpurity(Y, len(t.ClassNames))
  for feature := randomSample(t.K, t.NFeatures) {
    gain, val := findSplitOnFeature(X, Y, feature, len(t.ClassNames), initialImpurity)
   if gain > bestGain {
     bestGain = gain
     bestFeature = feature
     bestVal = val
  return bestGain, bestFeature, bestVal
```

```
func (f *Forest) Fit(X [][]float64, Y []string) {
  for i := 0; i < f.NTrees; i++ {
    x, y := bootstrapSample(X, Y)
    t := NewTree().Fit(x, y)
    f.Trees = append(f.Trees, t)
  }
}</pre>
```

some MI libraries

- Scikit-Learn (python)
- R
- Vowpal Wabbit (C++)
- MLlib (Spark/Scala)
- GoLearn (Go)
- CloudForest (Go)

parting thoughts

Take inspiration from the Scikit-Learn API:

```
from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier(min_samples_split=20)

clf.fit(X,Y)
```

Compare to the signature for a similar model in GoLearn:

```
func (t *ID3DecisionTree) Fit(on base.FixedDataGrid) error
```

resources

- 1.An Introduction to Statistical Learning
- 2. Artificial Intelligence: A Modern Approach
- 3. The Elements of Statistical Learning
- 4. Machine Learning: A Probabilistic Perspective
- 5. Understanding Random Forests: From Theory to Practice

thanks.