Linear Algebra and Matrix Computation (LAMC) notes

Soumitra Samanta

September 23, 2022

Contents

1	Mo	tivation, Prerequisites and Resources	5	
	1.1	Motivation	5	
	1.2	Prerequisites:	5	
	1.3	Tentative syllabus:	5	
	1.4	Related books	7	
	1.5	Computational tools	8	
	1.6	Datasets repository	8	
	1.7	For recent updates on LAMC you can follow the arXiv	8	
2	Vec	tor space and Subspace	9	
	2.1	Suggested reading	9	
3	Spa	n, Linearly dependent and independent, Basis	11	
	3.1	Suggested reading	11	
4	Din	nension of a vector space and related problems	13	
	4.1	Suggested reading	13	
5	Line	ear maps/transformation	15	
	5.1	Suggested reading	15	
6	Nul	l space, range of linear maps and rank-nullity theorem	17	
	6.1	Suggested reading	17	
7	Matrix, Linear map represent by a matrix, and introduction			
	to s	ystem of linear equations and relation with linear map	19	
	7.1	Suggested reading	19	

CONTENTS

8	Invertibility and Isomorphic Vector Spaces	
	8.1 Suggested reading	21

Motivation, Prerequisites and Resources

1.1 Motivation

Please go through the class slides.

1.2 Prerequisites:

Student should have some knowledge in

- Basic concept on algebra, vectors and co-ordinate geometry
- Computer programming: Any one from C/C++/Python(recommended for the class assignments/project)/MATLAB/Octave

1.3 Tentative syllabus:

- Introduction to vectors
 - Vectors and its geometry
 - Operation on vectors: addition, multiplication by a scalar, dot production, length
- Vector space

6 LECTURE 1. MOTIVATION, PREREQUISITES AND RESOURCES

- Vector space
- Subspace
- Basis and dimension
- Change of basis

• Linear transformations

- Rank-Nullity theorem
- Matrix of a linear transformation
- Linear operators and isomorphism
- Linear functionals

• Matrix algebra

- Matrix addition and multiplication, transpose, inversion
- Special matrices
- Row rank and column rank of a matrix
- Determinant of a matrix and its geometric interpretation
- Cramer's rule to solve system of linear equations
- Various matrix decompositions

• Eigenvalues and Eigenvectors

- Introduction to eigenvalues and eigenvectors of matrices
- Characteristic polynomial
- Cayley-Hamilton theorem
- Algebraic and geometric multiplicities of eigenvalues
- Matrix diagonalization
- Positive (semi-) definite matrices
- Solving linear recurrences

• Normed linear spaces

- Normed spaces

- Cauchy-Schwarz inequality and triangle inequality
- Projection
- Gram-Schmidt orthogonalization
- Hermitian operators
- The Spectral theorem
- Matrix Computations
 - Floating point numbers and operations, Error Analysis
 - Solving system of linear equations:
 - * Direct methods: Gaussian elimination, LU factorization
 - * Iterative methods: Jacobi method, Gauss-Seidel method
 - Solving least square problems:
 - * QR decomposition
 - * Gram-Schmidt orthogonalisation
 - * Singular value-decomposition (SVD)
 - Solving Eigenvalue problems:
 - * Tridiagonal QR iteration, Jacobi method
 - Some practical applications (if time permit)

1.4 Related books

We will follow these books:

- [1] Sheldon Axler. Linear Algebra Done Right. Springer, 3rd edition, 2015. [sample chapter online]
- [2] Kenneth Hoffman and Ray Kunze. *Linear Algebra*. Prentice Hall of India, 2nd edition, 1971. [library] or [online]
- [3] Gilbert Strang. *Introduction to linear algebra*. Wellesley-Cambridge Press, 5th edition, 2016. [sample chapter online] and [online]
- [4] Gene H. Golub and Charles F. Van Loan. *Matrix Computations*. Hindustan Book Agency, 4th edition, 2015. [library] and [online (3rd ed.)]

[5] Holger Wendland. Numerical linear algebra: an introduction. Cambridge University Press, Cambridge texts in applied mathematics, 2018. [library]

1.5 Computational tools

Here are some popular LAMC tools:

- Numpy (python) https://numpy.org/
- Octave https://octave.org/
- CLAPAC (C) https://netlib.org/clapack/
- Matlab https://in.mathworks.com/
- PyTorch (Python and GPU support) https://pytorch.org/
- . . .

1.6 Datasets repository

You can find some datasets to evaluate yous programming assignment in UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets.php)

1.7 For recent updates on LAMC you can follow the arXiv

You can go to Mathematics section in arXiv and under that you can find Numerical Analysis

• NA - https://arxiv.org/list/math.NA/recent

Vector space and Subspace

2.1 Suggested reading

Please read *Chapter-1* of Axler's book [1] or *Chapter-2* of Hoffman and Kunze's [2] book.

Span, Linearly dependent and independent, Basis

3.1 Suggested reading

Please read Chapter-2 of Axler's book [1] or Chapter-2 of Hoffman and Kunze's [2] book.

Dimension of a vector space and related problems

4.1 Suggested reading

Please read Chapter-2 of Axler's book [1] or Chapter-2 of Hoffman and Kunze's [2] book.

14LECTURE 4. DIMENSION OF A VECTOR SPACE AND RELATED PROBLEMS

Linear maps/transformation

5.1 Suggested reading

Please read *Chapter-3* of Axler's book [1] or *Chapter-3* of Hoffman and Kunze's [2] book.

Null space, range of linear maps and rank-nullity theorem

6.1 Suggested reading

Please read Chapter-3 of Axler's book [1] or Chapter-3 of Hoffman and Kunze's [2] book.

18LECTURE 6. NULL SPACE, RANGE OF LINEAR MAPS AND RANK-NULLITY THEO

Matrix, Linear map represent by a matrix, and introduction to system of linear equations and relation with linear map

7.1 Suggested reading

For representation of *Linear map* by a matrix in *Chapter-3*, *Section 3.C* of Axler's book [1] or *Chapter-3*, *Section 3.4* of Hoffman and Kunze's [2] book. Also, read surrounding sections in each book's.

20LECTURE 7. MATRIX, LINEAR MAP REPRESENT BY A MATRIX, AND INTRODUC

Invertibility and Isomorphic Vector Spaces

8.1 Suggested reading

Please read Chapter-3 of Axler's book [1] or Chapter-3 of Hoffman and Kunze's [2] book.

22LECTURE 8. INVERTIBILITY AND ISOMORPHIC VECTOR SPACES

Bibliography

- [1] Sheldon Axler. Linear Algebra Done Right. Springer, 3rd edition, 2015.
- [2] Kenneth Hoffman and Ray Kunze. *Linear Algebra*. Prentice Hall of India, 2nd edition, 1971.