

Predicting Conversion from Self-Monitoring of Blood Glucose to Continuous Glucose Monitoring using clinical and demographic characteristics

Project committee:
Dr. Ebrahim Tarshizi
Capstone Instructor

Dr. Tyler Smith University Advisor National University

Mr. Hunter Aune Industry Advisor

<u>Team members:</u> Kornkanok Somkul

Peter Cao

Shashi Bala Lnu

MS in Data Science School of Engineering and Computing

May 21st, 2019

Our objective is to obtain insightful and actionable information to shape the diabetic industry

Our objective is to obtain insightful and actionable information to shape the diabetic industry

In the last few decades, there have been significant technological leaps in glucose monitoring

There are pros and cons for each current method of glucose monitoring

Majority of suggests that the CGM is superior to SMBG in many ways

Source: Chamberlain, Dopita, Gilgen, & Neuman (2015)

Source: Burge, Mitchell, Sawyer, & Schade (2008)

Adapted from Ref. 15.

There are a few crucial factors for the likelihood of adopting a CGM device

Cross Hatch = Likely Stripe = Unlikely + Definitely Not

Source: Engler, Routh, & Lucisano (2018)

The scope of our methodology is outlined in 8 steps

Data was gathered from diabetic patients across the U.S. and will be generated for the analyses in our project

These are the essential tools and techniques we will use to analyze the factors of glucose monitoring conversion

Incomplete, noisy, and inconsistent data will be changed into quality data, which can lead to significant improvement in the model's predictive performance

insurance_2	Frequency	Percent	Cumulative Frequency	Cumulative Percent
GOVERNMENT INS	25235	51.64	25235	51.64
COMMERCIAL INS	23490	48.07	48725	99.71
N/A	141	0.29	48866	100.00

Incomplete, noisy, and inconsistent data will be changed into quality data, which can lead to significant improvement in the model's predictive performance

There should be minimal or no multicollinearity among the independent variables. A variance inflation factor (VIF) value of more than 4 is an alarming value that the variables may be confounding.

Chi-square analyses were performed to determine bivariate associations between categorical variables

Bivariate Associations of Demographic and Clinical Characteristics of 47,968 Diabetic Patients from ADS by Referrals

Variable	Population N = 47,968 ^a (100%)	Agent N=13,772 (28.71%)	Commercial N=23,312 (48.60%)	Healthcare administration N=10,884 (22.69%)	p-value ^b
Gender				- Australia	
Female	26,620 (55.5%)	8,520 (61.9%)	12,136 (52.1%)	5,964 (54.8%)	
Male	21,348 (44.5%)	5,252 (38.5%)	11,176 (48.0%)	4,920 (45.2%)	< 0.0001
Medicare jurisdie	ction				
Jurisdiction A	4,921 (10.2%)	685 (5.0%)	3,708 (15.9%)	528 (4.8%)	
Jurisdiction B	5,202 (10.9%)	1,825 (13.2%)	2,881(12.4%)	496 (4.6%)	
Jurisdiction C	19,668 (41.0%)	9,960 (72.3%)	7,996 (34.3%)	1,712 (15.7%)	
Jurisdiction D	18,177 (37.9%)	1,302 (9.4%)	8,727 (37.4%)	8,148 (74.9%)	< 0.0001
Age Children and young adult (1-26)	4,197 (8.7%)	7 (0.1%)	4,123 (17.7%)	67 (0.6%)	
Adult (27-64)	11,867 (24.7%)	3,528 (25.6%)	6,370 (27.3%)	1,969 (18.1%)	
Senior (65+)	31,904 (66.5%)	10,237 (74.3%)	12,819 (55.0%)	8,848 (81.3%)	< 0.0001
Diabetes type					
TID	11,237 (23.4%)	536 (3.9%)	10,128 (43.5%)	573 (5.3%)	
T2D	36,731 (76.6%)	13,236 (96.1%)	13,184 (56.5%)	10,311 (94.7%)	< 0.0001
Eligibility waive	r				
Not on waiver	42,074 (87.7%)	10,370 (75.3%)	21,456 (92.0%)	10,248 (94.2%)	
On waiver	5,894 (12.3%)	3,402 (24.7%)	1,856 (8.0%)	636 (5.8%)	< 0.0001
Patient reorder o	pportunity offer				
Compliant	34,420 (71.8%)	9,749 (70.8%)	17,035 (73.1%)	7,636 (70.2%)	
Non-compliant	13,548 (28.2%)	4,023 (29.2%)	6,277 (26.9%)	3,248 (29.8%)	< 0.0001
Insurance					
Commercial	23166 (48.3%)	9,671 (70.2%)	9,303 (39.9%)	4,192 (38.5%)	
Government	24802 (51.7%)	4,101 (29.8%)	14,009 (60.1%)	6,692 (61.5%)	< 0.0001

	Population	Not convert	Converted	p-value ^b	
Variable	$N = 47,968^a$	N = 42,599	N = 5,369		
	(100%)	(88.81%)	(11.19%)		
Referral type					
Agent	13,772 (28.7%)	13,709 (32.2%)	63 (1.2%)		
Commercial	23,312 (48.6%)	18,742 (44.0%)	4,570 (85.1%)		
HCA	10,884 (22.7%)	10,148 (23.8%)	736 (13.7%)	< 0.000	
Gender					
Female	26,620 (55.5%)	23,936 (56.2%)	2,684 (50.0%)		
Male	21,348 (44.5%)	18,663 (43.8%)	2,685 (50.0%)	< 0.000	
Medicare jurisdiction					
Jurisdiction A	4,921 (10.3%)	3,904 (9.2%)	1,017 (18.9%)		
Jurisdiction B	5,202 (10.8%)	4,250 (10.0%)	952 (17.7%)		
Jurisdiction C	19,668 (41.0%)	18,379 (43.1%)	1,289 (24.0%)		
Jurisdiction D	18,177 (37.9%)	16,066 (37.7%)	2,111 (39.3%)	< 0.000	
Age					
Child and young adult	4,197 (8.8%)	4,187 (9.8%)	10 (0.2%)		
(1-26)	4,127 (0.070)	4,107 (2.070)	10 (0.276)		
Adult (27-64)	11,867 (24.7%)	10,772 (25.3%)	1,095 (20.4%)		
Senior (65+)	31,904 (66.5%)	27,640 (64.9%)	4,264 (79.4%)	< 0.000	
Diabetes type					
TID	11,237 (23.4%)	10,093 (23.7%)	1,144 (21.3%)		
T2D	36,731 (76.6%)	32,506 (76.3%)	4,225 (78.7%)	< 0.000	
Eligibility waiver					
Not on waiver	42,074 (87.7%)	37,253 (87.5%)	4,821 (89.8%)		
On waiver	5,894 (12.3%)	5,346 (12.5%)	548 (10.2%)	< 0.000	
Patient reorder opportunit	ty offer				
Compliant	34,420 (71.8%)	30,130 (70.7%)	4,290 (79.9%)		
Non-compliant	13,548 (28.2%)	12,469 (29.3%)	1,079 (20.1%)	< 0.000	
Insurance					
Commercial	23,166 (48.3%)	22,661 (53.2%)	505 (9.4%)		
Government	24,802 (51.7%)	19,938 (46.8%)	4,864 (90.6%)	< 0.000	

Chi-square analyses were performed to determine if there is an association between the variable of interest (referrals) and each control variable

There is an association between referrals (VOI) and insurance type

Chi-square analysis was performed to determine if there is an association between the dependent variable (CGM conversion) and referrals

There is an association between converting patients (DV) and referrals

The train/test data split operation was done in the ratio of 3:1 to validate our results properly

% split	75%	25%		
	Train set	Test set		
	Frequency (%)	Frequency (%)	Total	
Non-event	32,568 (89%)	10,856 (89%)	43,424	
Event	1,360 (11%)	4,082 (11%)	5,442	
Total event	35,481	11,826	48,866	

Multiple multivariate analyses account for other variables at the same time, and can be utilized for predictive modeling

Linear discriminant analysis

Source: Thatcher T. (2015)

Logistic regression

Source: (Banga, 2016)

Decision tree

Random forest

Gradient boosting

Logistic regression

Association of Predicted	Probabilities an	d Observed Re	sponses
Percent Concordant	84.6	Somers' D	0.701
Percent Discordant	14.5	Gamma	0.707
Percent Tied	0.9	Tau-a	0.139
Pairs	128662650	c	0.850

ı		Partiti	on for the Ho	smer and L	emeshow Te	st
ı			CGM_Con	version = 1	CGM_Con	version = 0
۱	Group	Total	Observed	Expected	Observed	Expected
	1	1225	2	0.98	1223	1224.02
	2	1049	3	1.52	1046	1047.48
ı	3	1182	2	3.02	1180	1178.98
ı	4	1303	17	14.82	1286	1288.18
ı	5	1322	36	40.97	1286	1281.03
ı	6	1339	96	100.75	1243	1238.25
ı	7	1181	120	130.82	1061	1050.18
ı	8	1340	350	326.31	990	1013.69
١	9	1331	409	404.44	922	926.56
ı	10	719	306	317.37	413	401.63

Hosmer and Lemesh	now Good	ness-of-Fit Test
Chi-Square	DF	Pr > ChiSq
8.1120	8	0.4226

Analysis of Maximum Likelihood Estimates								
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Standardized Estimate	
Intercept		-1	-4.8684	0.2622	344,7626	<.0001		
referral_type2	COMMERCIAL	- 1	3.6975	0.2558	208.8606	<.0001	1.0185	
referral_type2	HCA	.1	2.5450	0.2667	91,1230	<.0001	0.5918	
gender	male	1	0.1946	0.0643	9,1496	0.0025	0.0533	
MEDIJURI	A	1	0.6130	0.0908	45.5474	<,0001	0.1040	
MEDUURI	8	- 1	0.9297	0.0987	88.6579	<.0001	0.1621	
MEDUURI	c	- 1	0.1559	0.0853	3.3382	0.0677	0.0422	
age_sat	1	-1	4.8391	1.0017	23.3361	<.0001	-0.7466	
age_cat	2	1	-0.0120	0.0839	0.0206	0.8859	-0.00287	
insurance 2	COMMERCIAL INS	1	-1.8577	0.1057	309.0088	<.0001	-0.5120	

gender male vs female 1.0000 1.215 1.071 1.378 MEDIJURI A vs D 1.846 1,545 2.206 1.0000 MEDIJURI B vs D 1.0000 2.534 2.088 3.075 MEDIJURI C vs D 1.0000 1.169 0.989 1.382 age_cat 1 vs 3 1.0000 0.008 0.001 0.056 age_cat 2 vs 3 1.0000 0.988 0.838 1.165

Odds Ratio Estimates and Wald Confidence Intervals

Unit Estimate

40.347

12.751

0.156

1.0000

1.0000

95% Confidence Limits

66.616

21.505

0.192

24,437

7.561

0.127

Effect

referral_type2 COMMERCIAL vs AGENT

insurance 2 COMMERCIAL INS vs GOVERNMENT INS 1.0000

referral_type2 HCA vs AGENT

19

The referral variable did indeed have the highest impact in both the unadjusted and adjusted analyses

Commercial (10): ADS Marketing, ADS employee, Insurance company, DEXCOM, trade show, DME, gas card referral, manufacturer, internet, patient referral

Agents(5): UHC Agent, ICA Agent, EDC Agent, managed care broker, insurance broker

Other(3): miscellaneous, unknown, acquisition

<u>Healthcare administrations</u>(17): Home health, hospital, pharmacy, pharmacy partner, blind center, managed care, LTC, assisted living, CA Medical groups, medical group, clinic, medicaid, medi-cal, endocrinologist, health professional, physician, CDE

As expected, none of the SMBG patients converted without being prompted; but when there were prompted, almost all of them converted!

CGM method

Finger-prick method

The multivariate analysis indicated that only five variables were viable for predicting CGM conversion: referral type, region, age, gender and health insurance

Referral type

Gender

Region

Health insurance

Age

Patients device type profile by state in United States

Other insights on clinical factors that had a significant impact on CGM conversion were people on eligibility waivers, if they were compliant, and their insurance

Type II patients

Compliant patients

Diabetic type II patients are more likely to convert to CGM compared to diabetic type I patients

Above 65 years age group patients are more likely to convert to CGM

Patients have high probability to convert within three to four months after they become a member of ADS

T-tests for continuous variables revealed that patients on the CGM method regularly test more often than those on the SMBG method

CGM_Conversion	Method	Mean	95% C	L Mean	Std Dev	95% CL	Std Dev
0		2.1513	2.1375	2.1651	1.4414	1.4316	1.4512
1		4.3649	4.3319	4.3979	1.2384	1.2155	1.2622
Diff (1-2)	Pooled	-2.2136	-2.2538	-2.1734	1.4195	1.4105	1,4286
Diff (1-2)	Satterthwaite	-2.2136	-2.2494	-2.1778			

Current research suggests that socio-economic and emotional factors play large roles in conversion as well

1. Generalizability

1970

Educational attainment

Income level

Occupation

3. Emotional factors

Future studies will need to be conducted on emotional/social variables, expansion and financial administration with insurance coverage

Source: Inkwood research (2019)

versus

Thank you for viewing our presentation!

References

- •Medi-Cal reimbursing for advance care planning, uses same codes as Medicare. (2016, June 15). Retrieved April 23, 2019, from Coalition for Compassionate Care of California website: https://coalitionccc.org/2016/06/medi-cal-reimburses-advance-care-planning/
- •Medicare Expansion Steps Into the Political Limelight. (2018, September 30). Retrieved April 23, 2019, from Managed Care magazine website: https://www.managedcaremag.com/archives/2018/10/medicare-expansion-steps-political-limelight
- McCrimmon, R. J., & Sherwin, R. S. (2010). Hypoglycemia in Type 1 Diabetes. Diabetes, 59(10), 2333–2339. https://doi.org/10.2337/db10-0103
- •Weighing Options Bilder, arkivbilder og. Retrieved April 23, 2019, from https://www.shutterstock.com/nb/search/weighing+options
- •2b. ZestGluco "Silver" Strips & Lancets Pack 100 each. (n.d.). Retrieved April 23, 2019, from ZestGluco website: https://zestgluco.co.nz/products/3-zestgluco-silver-strips-lancets-pack-100-each
- •2016-2017 Board of Governors Fee Waiver Program ELIGIBILITY REQUIREMENTS. (n.d.). Retrieved April 23, 2019, from studylib.net website: https://studylib.net/doc/12982432/2016-2017-board-of-governors-fee-waiver-program-eligibili...
- •Types of health insurance plans. (2018, November 14). Retrieved April 23, 2019, from insurance website: https://thefamilyhouse.org/types-of-health-insurance-plans/
- •Continuous Glucose Measuring Smartwatch, K'Watch Glucose, Expected Soon. (2018, November 28). Retrieved April 23, 2019, from Medgadget website: https://www.medgadget.com/2018/11/continuous-glucose-measuring-smartwatch-kwatch-glucose-expected-soon.html
- •Type 2 Diabetes Not Linked To Weight Gain. (2014, February 11). Retrieved April 23, 2019, from Medical Daily website: https://www.medicaldaily.com/type-2-diabetes-not-linked-weight-gain-onset-diabetes-happens-differently-depending-patient-269108