

Practical Relative Order Attack in Deep Ranking

Mo Zhou¹ Le Wang¹ Zhenxing Niu² Qilin Zhang³ Yinghui Xu² Nanning Zheng¹ Gang Hua⁴

¹ Xi'an Jiaotong University

² Alibaba Group

² Alibaba Group ⁴ Wormpex Al Research

Introduction

[Background]

▶ Deep Ranking Models are *vulnerable to adversarial attacks*, where an imperceptible perturbation can trigger dramattic changes in the ranking result.

[Insight]

Previous attempts focus on manipulating absolute ranks of certain candidates, but the possibility of adjusting their relative order remains under-explored.

[Order Attack]

▷ In this paper, we formulate Order Attack, which covertly alters the relative order among a selected set of candidates according to an attacker-specified permutation, with limited interference to other unrelated candidates.

[White-box Order Attack]

Order Attack under the white-box assumption is implemented as a triplet-style loss imposing an inequality chain to reflect the specified permutation.

[Black-box Approximation]

▶ To make Order Attack applicable in real-world black-box attack scenario, we propose a Short-range Ranking Correlation metric as a surrogate objective to approximate the white-box method.

[Quantitative Experiments]

▶ Both the white-box and black-box Order Attack are evaluated on Fashion-MNIST and Stanford-Online-Products datasets.

[Efficacy on Real-world E-commerce API]

▷ Black-box Order Attack is also successfully implemented on a major e-commerce platform through its API.

Order Attack

 $A \prec B \prec C \prec D \prec E \prec$ Top-1 Result

Ranking Result w.r.t. Perturbed Query

 \Rightarrow A < E < D < C < B <

Changed the relative order into the specified permutation [1, 5, 4, 3, 2].

Impacts the Click-Through Rate (CTR) hence indirectly influence the sales.

White-Box Order Attack

Order Attack finds an adversarial perturbation

³HERE Technologies

$$r\left(\|r\|_{\infty}\leqslant\varepsilon \text{ and } \tilde{q}=q+r\in\mathcal{I}\right)$$

so that the adversarial query \tilde{q} results in $c_{p_1} \prec c_{p_2} \prec \cdots \prec c_{p_k}$ based on the attacker-specified permutation $\mathbf{p} = [p_1, p_2, \ldots, p_k]$

The inequality chain prescribed by the permutation

$$f(\tilde{\boldsymbol{q}}, \boldsymbol{c}_{p_1}) < f(\tilde{\boldsymbol{q}}, \boldsymbol{c}_{p_2}) < \cdots < f(\tilde{\boldsymbol{q}}, \boldsymbol{c}_{p_k})$$

can be decomposed into a series of inequalities, i.e.,

$$f(\tilde{q}, c_{p_i}) < f(\tilde{q}, c_{p_j}), i, j=1, 2, ..., k, i < j.$$

ightharpoonup Reformulation of the inequalities into triplet loss form leads to the relative order loss function k

$$L_{\text{ReO}}(\tilde{\boldsymbol{q}}; \mathbb{C}, \mathbf{p}) = \sum_{i=1}^{n} \sum_{j=i}^{n} \left[f(\tilde{\boldsymbol{q}}, \boldsymbol{c}_{p_i}) - f(\tilde{\boldsymbol{q}}, \boldsymbol{c}_{p_j}) \right]_{+}.$$

which can be combined with a previously proposed semantics-preserving loss term to keep the selected candidates within the topmost part of ranking.

Black-Box Order Attack

- Gradient is inaccessible in Black-box attack scenario. Thus white-box attack is infeasible.
- ▶ We propose "Short-range ranking correlation" metric to measure the alignment between desired order and the actual order, in order to approximate the white-box loss. It is inspired by Kendall's tau.
- This metric can be used as a surrogate objective for black-box order attack.
- Can be optimized by various black-box optimization methods, such as PSO, NES, and SPSA.

Input: Selected candidates $\mathbb{C} = \{ \boldsymbol{c}_1, \boldsymbol{c}_2, \dots, \boldsymbol{c}_k \},$ permutation vector $\mathbf{p} = [p_1, p_2, \dots, p_k],$ top-N retrieval $\mathbb{X} = \{ \boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_N \}$ for $\tilde{\boldsymbol{q}}$. Note that $\mathbb{C} \subset \mathbb{D}$, $\mathbb{X} \subset \mathbb{D}$, and $N \geqslant k$. Output: SRC coefficient τ_S . Permute candidates as $\mathbb{C}_{\mathbf{p}} = \{ \boldsymbol{c}_{p_1}, \boldsymbol{c}_{p_2}, \dots, \boldsymbol{c}_{p_k} \};$ Initialize score matrix S = 0 of size $k \times k$; for $i \leftarrow 1, 2, \ldots, k$ do for $j \leftarrow 1, 2, ..., i - 1$ do if $c_i \notin \mathbb{X}^1$ or $c_i \notin \mathbb{X}$ then // out-of-range else if $[R_{\mathbb{C}_{\mathbf{p}}}(\boldsymbol{c}_i) > R_{\mathbb{C}_{\mathbf{p}}}(\boldsymbol{c}_j)$ and $R_{\mathbb{X}}(\boldsymbol{c}_i) > R_{\mathbb{X}}(\boldsymbol{c}_j)]$ or $\left[R_{\mathbb{C}_{\mathbf{p}}}(\boldsymbol{c}_i) < R_{\mathbb{C}_{\mathbf{p}}}(\boldsymbol{c}_j) \text{ and } R_{\mathbb{X}}(\boldsymbol{c}_i) < R_{\mathbb{X}}(\boldsymbol{c}_j)\right]$ concordant else if $[R_{\mathbb{C}_{\mathbf{p}}}(\boldsymbol{c}_i) > R_{\mathbb{C}_{\mathbf{p}}}(\boldsymbol{c}_j)$ and $R_{\mathbb{X}}(\boldsymbol{c}_i) < R_{\mathbb{X}}(\boldsymbol{c}_j)]$ or $[R_{\mathbb{C}_{\mathbf{p}}}(\boldsymbol{c}_i) < R_{\mathbb{C}_{\mathbf{p}}}(\boldsymbol{c}_j)$ and $R_{\mathbb{X}}(\boldsymbol{c}_i) > R_{\mathbb{X}}(\boldsymbol{c}_j)]$ discordant return $\tau_{\mathcal{S}} = \sum_{i,j} S_{i,j}/\binom{k}{2}$

Algorithm 1: Short-range Ranking Correlation τ_S

Practical Order Attack

- ➤ To illustrate the viability of the **black-box OA in practice**, we showcase successful attacks against the "JingDong SnapShop", a major retailing e-commerce platform based on content-based image retrieval.
- ▶ The following are qualitative results on JingDong Snapshop API:

The following are quantitative results on JD Snapshop API and Microsoft Bing Visual Search API (both are real-world search-by-image APIs):

Algorithm	ε	$\mid k \mid$	Q	Τ	Mean $ au_{\mathcal{S}}$	Stdev $\tau_{\mathcal{S}}$	$ $ Max $\tau_{\mathcal{S}}$	$\min au_{\mathcal{S}}$	Median $\tau_{\mathcal{S}}$
SPSA	1/255	5	100	204	0.390	0.373	1.000	-0.600	0.400
SPSA	1/255	10	100	200	0.187	0.245	0.822	-0.511	0.200
SPSA	1/255	25	100	153	0.039	0.137	0.346	-0.346	0.033

Table 6: Quantitative (k, 50)-OA Results on JD Snapshop.

Algorithm	ε	$\mid k \mid$	Q	Τ	Mean $ au_{\mathcal{S}}$	Stdev $\tau_{\mathcal{S}}$	$ $ Max $\tau_{\mathcal{S}}$	$ $ Min $ au_{\mathcal{S}}$	Median $ au_{\mathcal{S}}$
SPSA	8/255	5	100	105	0.452 0.152 0.001	0.379	1.000	-0.400	0.600
SPSA	8/255	10	100	95	0.152	0.217	0.733	-0.378	0.156
SPSA	8/255	25	100	93	0.001	0.141	0.360	-0.406	0.010
	•				•		•		

Table 7: (k, 50)-OA Results on Bing Visual Search API.