Отбор информативных признаков в методе опорных векторов

Андрющенко Анастасия Михайловна, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: Коробейников А.И. Рецензент: к.ф.-м.н., д. Алексеева Н.П.

Санкт-Петербург 2010г.

Введение

Задача отбора информативных признаков в задачах классификации способствует:

- уменьшению ошибки предсказания;
- определению значимых признаков;
- уменьшению размерности данных.

В работе используется модификация метода опорных векторов (support vector machines, SVM (Vapnik, 1995)).

SVM. Задача классификации

Данные:

Метки: $x_i o y_i \in \{\pm 1\}$

Задача классификации:

построить
$$f:\quad f(oldsymbol{x}_i)=y_i\quad orall i=1\dots m_i$$

Задача отбора признаков

$$(X_1,\ldots,X_m)\to(X_{i_1},\ldots,X_{i_l})$$

SVM. Задача классификации

Данные:

Метки: $oldsymbol{x}_i
ightarrow y_i \in \{\pm 1\}$

Задача классификации:

построить
$$f: f(x_i) = y_i \quad \forall i = 1 \dots m.$$

Задача отбора признаков

$$(X_1,\ldots,X_m)\to(X_{i_1},\ldots,X_{i_l})$$

SVM. Задача классификации

Данные:

Метки: $oldsymbol{x}_i
ightarrow y_i \in \{\pm 1\}$

Задача классификации:

построить
$$f: \quad f(\boldsymbol{x}_i) = y_i \quad \forall i = 1 \dots m.$$

Задача отбора признаков:

$$(X_1,\ldots,X_m)\to(X_{i_1},\ldots,X_{i_l})$$

Линейные SVM

Целевая функция SVM:

$$f_{\sigma}(x) = \operatorname{sign}(\langle w, x \rangle - b).$$

Параметры (\boldsymbol{w},b) получены решением:

$$\frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^n \xi_i \longrightarrow \min_{\boldsymbol{w}, b, \boldsymbol{\xi}}$$
$$y_i (\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle - b) \geqslant 1 - \xi_i,$$
$$\xi_i \geqslant 0, \quad i = 1, \dots, n.$$

Рис.: Гиперплоскость.

Нелинейные SVM

Данные не всегда отделимы в исходном пространстве \Rightarrow они рассматриваются в спрямляющем:

$$\phi: \mathbb{R}^m \to \mathcal{H}$$

Нелинейные SVM. Kernel trick

Введем ядро:

$$K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \langle \phi(\boldsymbol{x}_i), \phi(\boldsymbol{x}_j) \rangle_{\mathcal{H}}.$$

Целевая функция SVM:

$$f_{\sigma}(\boldsymbol{x}) = \operatorname{sign}(\langle \boldsymbol{w}, \phi_{\sigma}(\boldsymbol{x}) \rangle_{\mathcal{H}} - b) = \operatorname{sign}\left(\sum_{i=1}^{n_s} \alpha_i y_i K_{\sigma}(\boldsymbol{s}_i, \boldsymbol{x}) - b\right).$$

Примеры ядер:

- Линейное: $K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle$.
- Полиномиальное: $K_{\gamma,r,d}\left(\boldsymbol{x}_{i},\boldsymbol{x}_{j}\right)=\left(\gamma\left\langle \boldsymbol{x}_{i},\boldsymbol{x}_{j}\right
 angle +r\right)^{d},\ \gamma>0.$
- ullet Экспоненциально-радиальное (RBF radial basis function): $K_{\gamma}\left(m{x}_i, m{x}_j
 ight) = e^{-\gamma \|m{x}_i m{x}_j\|^2}.$

SVM. Отбор признаков

Рассматриваются ядра:

$$K(\boldsymbol{x}, \boldsymbol{z}) = \ell \left(\|\boldsymbol{\sigma}(\boldsymbol{x} - \boldsymbol{z})\|^2 \right) = \ell \left(\sum_{k=1}^m \sigma_k^2 (x_k - z_k)^2 \right),$$

где ℓ — монотонная функция. Масштабирующие коэффициенты $\{\sigma_k\}_{k=1}^m$ отражают степень влияния признака на результат классификации.

Задача

- Реализация алгоритма пересчета масштабирующих коэффициентов (Grandvalet, Canu, 2003) на R.
- 2 Проверка и исследование на модельных данных
- ③ Анализ реальных данных из кардиологии.

SVM. Отбор признаков

Рассматриваются ядра:

$$K(\boldsymbol{x}, \boldsymbol{z}) = \ell \left(\|\boldsymbol{\sigma}(\boldsymbol{x} - \boldsymbol{z})\|^2 \right) = \ell \left(\sum_{k=1}^m \sigma_k^2 (x_k - z_k)^2 \right),$$

где ℓ — монотонная функция. Масштабирующие коэффициенты $\{\sigma_k\}_{k=1}^m$ отражают степень влияния признака на результат классификации.

Задача:

- Реализация алгоритма пересчета масштабирующих коэффициентов (Grandvalet, Canu, 2003) на R.
- 2 Проверка и исследование на модельных данных.
- 3 Анализ реальных данных из кардиологии.

SVM. Отбор признаков

Параметры классификатора: C, σ_0 .

Обучающий критерий:

$$\frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^n \xi_i \longrightarrow \min_{\boldsymbol{\sigma}, \boldsymbol{w}, b, \boldsymbol{\xi}},$$

$$y_i(\langle \boldsymbol{w}, \phi_{\boldsymbol{\sigma}} (\boldsymbol{x}_i) \rangle_{\mathcal{H}} - b) \geqslant 1 - \xi_i,$$

$$\xi_i \geqslant 0, \quad i = 1, \dots, n,$$

$$\frac{1}{m} \sum_{k=1}^m \sigma_k^2 = \sigma_0^2.$$

Подход к решению

Вместо сложной задачи итерационно решается несколько более простых:

- $oldsymbol{0}$ Зафиксировать $oldsymbol{\sigma}$ и построить SVM.
- 2 Метод позволяет получить $m{w}, \; \sum\limits_{i=1}^n \xi_i \;$ и $\partial \; \sum\limits_{i=1}^n \xi_i/\partial m{\sigma} \;$ в виде функций от $m{\sigma}$:

$$g(\boldsymbol{\sigma}) = \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^{n} \xi_i.$$
$$g(\boldsymbol{\sigma}) \to \min_{\boldsymbol{\sigma}}.$$

 $m{3}$ На шаге l, начиная с $m{\sigma}^{(l)}$, вычислить оптимальные $(\hat{m{w}}(m{\sigma}^{(l)}), \hat{b}(m{\sigma}^{(l)}))$. $m{\sigma}^{(l+1)}$ определяется с помощью метода сопряженных градиентов.

Модельные данные

Данные:

 Координаты двух спиралей. Значимость признаков одинакова.

Модельные данные

Данные:

- Координаты двух спиралей. Значимость признаков одинакова.
- Данные из (Chapelle, Vapnik, 2002).
 - Линейно отделимые данные. 6 признаков из 10 значимы, остальные шум.
 - Линейно не отделимые данные. 2 признака из 10 значимы, остальные шум.

Полученные масштабирующие коэффициенты σ соответствуют характеру данных.

Реальные данные

Данные о 422 пациентах, перенесших операцию на открытом сердце.

Значимые признаки определялись для следующих задач:

- бинарная классификация: пациенты с наличием или отсутствием ПКТС;
- тернарная классификация: ПКТС отсутствует/ранний/ поздний.

50 признаков: 22 количественных, 28 категориальных.

	Возр.	ТМИ	Кардиопл.	ΦВ	Эозин.	Л1	Л7	
1	67	23	13.50	68	0	8.70	7.10	
2	57	20	6.30	68	1	9.90	6.70	
3	54	37	9.50	64	1	14.70	7.00	
4	57	28	13.50	69	0	17.20	10.40	

Результаты

Бинарная задача

Всего 34 значимых признака:

- 14 количественных;
- 17 категориальных;
- 3 градации у двух категориальных признаков.

Адреналин 0.04* Дренир.1 Возраст 0.22 Дренир.2 Аллергия 0.16 Дренир.3 Анемия 0.01* Дренир.пот. Антиког.тер. 0.08* Дренир.вр. Переж.аорты 0.14 Фр.выброса Арт.шунт 0.05* Эозинофилы Аутоимунные 0.01* COЭ ИМТ 0.24 EuroSCORE Число шунтов 0.09* EuroSCORE2 Кардиоплегия 0.08* ССН Коронарогр. 0.28 Гиперглик.	0.21 0.13 0.09* 0.19 0.05* 0.17 0.24 0.19 0.09* 0.14 0.16	Тип опер.2 Тип опер.3 Тип опер.4 Тип опер.5 Тип опер.6 Веноз.застой Темп.прайм. МНО Апп.иск.кр. Реперфузия Дыхат.недост. Наруш.ритма	0.11 0.07* 0.02* 0.01* 0.06* 0.13 0.19 0.06* 0.14 0.07* 0.13 0.11
--	---	--	--

. . .

Значимые признаки, * не значимые.

Результаты

Тернарная задача

Рассматривались 3 бинарные задачи. Для каждой из них получены масштабирующие коэффициенты.

Признак	n-el	l-ne	e-nl	Признак	n-el	l-ne	e-nl
Адреналин	0.01*	0.68	0.78	СОЭ	0.01*	0.01*	0.51
Возраст	0.01*	0.99	0.98	EuroSCORE	1.77	0.34	0.37
Переж.аорты	0.01*	0.25	0.01*	EuroSCORE2	1.15	0.45	0.61
ИМТ	3.16	1.02	1.18	Ин.поддержка	0.01*	0.01*	0.07*
Число шунтов	0.01*	0.31	0.19	Лейк.д.1	1.05	0.65	0.68
Кардиоплегия	0.01*	0.16	0.25	Лейк.д.7	2.35	0.63	0.18
Хрон.серд.нед.	0.01*	0.04	0.21	Мезатон	0.01*	0.01*	0.01*
Дрен.потери	0.01*	0.94	0.97	Темп.прайм.	0.01*	0.49	0.32
Дренир.вр.	3.31	0.41	0.69	MHO	1.29	0.18	0.43
Фр.выброса	4.64	0.97	0.71	Апп.иск.кр.	3.41	0.74	1.01
Эозинофилы	0.01*	0.34	0.49	Реперфузия	0.01*	0.27	0.46

Значимые признаки, * не значимые.

Заключение

Итоги:

- Реализован алгоритм отбора информативных признаков на языке R.
- Его работа проверена и исследована на модельных данных.
- Осуществлен анализ реальных данных.

Перспективы:

- Создание приложения.
- Комбинирование алгоритма с другими методами.