Name

CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CHEMISTRY 9701/04

Paper 4 Structured Questions

May/June 2003

1 hour

Candidates answer on the Question Paper. Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, Centre number and candidate number in the spaces provided at the top of this page. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs, or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. You may lose marks if you do not show your working or if you do not use appropriate units.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
TOTAL	

This document consists of 12 printed pages.

Answer **all** the questions in the spaces provided.

1 (a)	Wh	at do you understand by the term standard electrode potential?
		[2]
(b)	eled	e following cell was set up between a copper electrode and an unknown metal ctrode $M^{2+}(aq)/M(s)$. The standard cell potential was found to be 0.76 V, and the per foil was the positive electrode.
		direction of electron flow
unknow wire		copper foil
M ²⁺ (′	1 mol	dm ⁻³) CuSO ₄ (1 mol dm ⁻³)
	(i)	Use the Data Booklet to calculate the standard electrode potential of the $M^{2+}(aq)/M(s)$ system.
	(ii)	Draw an arrow over the voltmeter symbol in the above diagram to show the direction of electron flow through the voltmeter.
	(iii)	Predict the outcomes of the following situations. Describe what you might see and write ionic equations for any reactions that occur.
	I	A rod of metal M is dipped into a solution of 1 mol dm ⁻³ CuSO ₄ .

II	Dilute sulphuric acid is added to a beaker containing a powdered sample of metal <i>M</i> .
	[6]

- **(c)** Because of its increased scarcity, cheaper copper ornaments are no longer made from the solid metal, but from iron that has been copper plated.
 - (i) Complete the following diagram showing the set-up for a copper electroplating process. Show clearly the polarity (+/–) of the power source, and suggest a suitable electrolyte.

required to deposit a mass of 0.500 g of copper on to the ornament.	Э
	•
15	.1

[Total : 13]

2 (a) Barium ions are poisonous. Patients with digestive tract problems are sometimes given an X-ray after they have swallowed a 'barium meal', consisting of a suspension of $BaSO_4$ in water. The $[Ba^{2+}(aq)]$ in a saturated solution of $BaSO_4$ is too low to cause problems of toxicity. Write an expression for the solubility product, K_{sp} , for BaSO₄, including its units. The numerical value of $K_{\rm sp}$ is 1.30×10^{-10} . Calculate [Ba²⁺(aq)] in a saturated solution of BaSO₄. The numerical value of $K_{\rm sp}$ for BaCO $_3$ (5 \times 10⁻¹⁰) is not significantly higher than that for BaSO $_4$, but barium carbonate is **very** poisonous if ingested. Suggest a reason why this might be so. [3] (b) A useful commercial source of magnesium is sea water, where [Mg²⁺(aq)] is 0.054 mol dm⁻³. The magnesium is precipitated from solution by adding calcium hydroxide. $Mg^{2+}(aq) + Ca(OH)_2(s) \longrightarrow Ca^{2+}(aq) + Mg(OH)_2(s)$ Write an expression for the $K_{\rm sp}$ of ${\rm Mg(OH)}_2$, including its units. The numerical value for $K_{\rm sp}$ is 2.00 x 10⁻¹¹. Calculate [Mg²⁺(aq)] in a saturated solution of $Mg(OH)_2$.

	(iii)		e the maximum is method can ex	. •	original magnesium in the
					[5]
(c)	The	magnesium ions	s in seawater are	mainly associated w	rith chloride ions.
	(i)	Use the following reaction.	ng $\Delta H_{\mathrm{f}}^{\Theta}$ values to	calculate a value	for the ΔH^{Φ} of the following
		Mę	$gCl_2(s) \longrightarrow$	Mg ²⁺ (aq) + 2C <i>l</i> ⁻ (a	q)
			species	∆H _f oh had by the second of	
			MgCl ₂ (s)		
		•	Mg ²⁺ (aq)	-467	
			Cl- (aq)	-167	
		·			
	(ii)	Use your answe	r to explain why N	${ m MgC}l_2$ is very soluble	e in water.
					[2]
(d)	ΔII t	he chlorides of G	Group II elements	are soluble in water	The same is not true of their
(u)				e as the group is des	
	-	-	the variation in roup from magnes		ulphates of the elements in
					[2]

[Total : 12]

3 (a) The melting points of some oxides of Group IV elements are given below.

oxide	melting point/°C
CO ₂	-78
SiO ₂	1610
SnO ₂	1630

Describe the bonding in each oxide, and how it relates to its melting point.

(i)	CO ₂	
(ii)	SiO ₂	
(iii)	SnO ₂	
		 [3]

(b)		r in their reactions with
	(i)	NaOH(aq),
	(ii)	HCl(aq).
		[4]
(c)		last oxide in Group IV, ${\rm PbO}_2$, reacts with concentrated hydrochloric acid liberating prine gas.
		the $\it Data\ Booklet$ to calculate the $\it E_{cell}^{ e}$ and to write a balanced equation for this ction.
		[2]
		[Total : 9]

4	Chloroacetophenone (compound D, below) was formerly the most widely used tear gas,
	under the codename CN. It was used in warfare and in riot control. It can be synthesised
	from ethylbenzene, A , by the following route.

$CH_2CH_3 \xrightarrow{I}$	CHCICH ₃ -	► CH(OH)CH ₃ III	-COCH ₃	COCH₂CI
Α	В		С	D

(a)	Suggest	reagents	and	conditions	for	step	I.
-----	---------	----------	-----	------------	-----	------	----

.....[1]

(b) Suggest reagents and conditions for converting ethylbenzene into compound **E**, an isomer of **B**.

$$Cl$$
— CH_2CH_3

Е

.....[1

(c) Draw the structure of the product obtained by heating ethylbenzene with KMnO₄.

[1]

(d) Describe a test (reagents and observations) that would distinguish compound **C** from compound **F**.

F

reagents

observation with C

observation with F

(e)	of th	e efficiency of a tear gas is expressed by its 'intolerable concentration', I.C. The I.C. ne tear gas <i>CN</i> has been measured as 0.030 g m ⁻³ of air. In many moles of chloroacetophenone need to be sprayed into a room of volume m ³ in order to achieve this concentration?
		[2]
(f)	Res	sidues of CN can be destroyed by hydrolysis with an aqueous alkali.
		\bigcirc $-$ COCH ₂ C l + OH $^ \longrightarrow$ \bigcirc $-$ COCH ₂ OH + C l $^-$
		D
	Cor	mpounds G and H are isomers of compound D .
		Cl — $COCH_3$
		G H
	(i)	Arrange the three isomers D , G and H in order of increasing ease of hydrolysis.
	(ii)	Explain the reasoning behind your choice.
		[3]

[Total : 10]

5 (a) Acyl chlorides are useful intermediates for making various acid derivatives. The following reaction scheme shows some of the reactions of ethanoyl chloride.

(i) Suggest a reagent for step I.

K

(ii) Write an equation showing the reaction between phenol and NaOH(aq), the reagents in step II.

.....

(iii) Draw the structural formulae of products ${\bf J}$ and ${\bf K}$ in the boxes above.

[4]

(b)	The	diacid	L occurs	naturally	and	is	used	as	а	${\sf food}$	additive	to	enhance	the	acidic
	flavour in some fruit drinks.														

$$\begin{array}{c} \mathrm{HO_2CCH_2CH_2CO_2H} \\ \mathbf{L} \end{array}$$

When the diacyl chloride of ${\bf L}$ is reacted with HOCH $_2$ CH $_2$ OH, a polymer is formed.

(i) What type of polymerisation is occurring here?

(ii)	Write an equation showing the reaction between one mole of the diacyl chloride of
	L and two moles of HOCH ₂ CH ₂ OH.

[3]

(c) The following formula represents a section of another polymer.

(i) What type of polymer is this?

(ii) Draw the structural formula of each of the monomers that make up this polymer.

[3]

[Total : 10]

6	(a)	stre	Titanium is an important transition metal. The metal itself is a component of many high strength low-weight alloys, and its oxide is used as an opaque agent in many paints and pigments.					
		(i)	Write out the electronic configuration of the titanium atom.					
		<i>(</i> 11)						
		(ii)	Titanium forms two chlorides. Suggest possible formulae for them.					
			[2]					
	(b)	Anh	ydrous copper sulphate, CuSO ₄ (s), is a white powder that readily dissolves in water.					
		(i)	Describe and explain what is seen when CuSO ₄ (s) is stirred with water.					
		(ii)	Describe and explain the final colour change seen when an excess of $\rm NH_3(aq)$ is added to $\rm CuSO_4(aq).$					
			[4]					
			[Total : 6]					