

Lista 3 - Espaço Vetorial, Bases e Mudança de Base.

- 1) Seja V = Z, isto é, V é o conjunto dos números inteiros. Verificar se V é espaço vetorial.
- 2) Seja V = conjunto dos polinômios de grau 3, com as operações usuais de adição e multiplicação por escalar. Verificar se V é espaço vetorial.
- 3) Seja $V = M_{m \times n}$, com as operações usuais de adição de matrizes e multiplicação de um escalar por uma matriz. Verificar que V é espaço vetorial.
- 4) Para os conjuntos apresentados a seguir, determinar quais são espaços vetoriais em relação às operações indicadas. Para os que não forem espaços vetoriais, relacionar pelo menos uma das condições que não se verificam.
 - 1. O conjunto Q dos números racionais, com as operações usuais de adição e multiplicação.
 - 2. O conjunto de todos os pares de números reais da forma: $(u_1,0)$ com as operações usuais do \Re^2
- 5) Seja $V = M_{n \times n}$, isto é, V é o espaço vetorial das matrizes de ordem n, com as operações usuais de adição e multiplicação por escalar. Seja W = conjunto das matrizes triangulares superiores de ordem n. Verificar que W é subespaço vetorial de V.
- 6) Seja $V = K_n(x)$, isto é, V é o espaço vetorial dos polinômios de grau menor ou igual a n, com as operações usuais de adição e multiplicação por escalar. Seja $W = \text{conjunto dos polinômios de grau menor ou igual a <math>n$ que só tem termos de grau par, mais o polinômio nulo. Verificar que W é subespaço vetorial de V.
- 7) Sejam $V = \Re^4$ com as operações usuais e

$$W = \{(u_1, u_2, u_3, u_4) \in \Re^4 / u_2 = u_1 + u_3, u_4 = 0\}$$
(1)

Verifique se W é um subespaço vetorial de V.

8) Seja $V=K_3(x)$ com as operações usuais. Verifique se W é um subespaço vetorial de V, nos seguintes casos.

1.

$$W = \left\{ \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}; a_1, a_2, a_3, a_4 \in \Re/a_1 + a_4 = 0 \right\}$$
 (2)

2.

$$W = \{ A \in M_{2 \times 2} / det(A) = 0 \}$$
 (3)

9) Seja $V = \Re^3$. Verificar quais dos seguintes vetores:

1.
$$u = (3, 3, 3)$$

2.
$$v = (-2, -8, 6)$$

podem ser escritos como combinação linear dos vetores:

$$v_1 = (1, -1, 3) e v_2 = (2, 3, 0)$$

10) Seja $V = \Re^3$. Expressar os seguintes vetores:

1.
$$u = (5, 9, 5)$$

$$v = (2, 0, 6)$$

como combinação linear dos vetores:

$$v_1 = (2, 1, 4), v_2 = (1, -1, 3) e v_3 = (3, 2, 5).$$

- 11) Seja $V = K_2(x)$. Expressar os seguintes polinômios:
 - 1. $P_2(x) = 5x^2 + 9x + 5$
 - 2. $L_2(x) = 6x^2 + 2$

como combinação linear dos polinômios:

$$Q_2(x) = 4x^2 + x + 2$$
, $R_2(x) = 3x^2 - x + 1$ e $S_2(x) = 5x^2 + 2x + 3$.

- 12) Em cada item, determinar se o conjunto de vetores apresentado gera o \Re^3 .
 - 1. u = (1, 1, 1), v = (2, 2, 0) e w = (3, 0, 0)
 - 2. u = (1, 1, 2), v = (1, 0, 1) e w = (2, 1, 3)
 - 3. u = (1, 2, -1), v = (1, 3, 0) e w = (-2, 0, 0)
- 13) Verificar se o conjunto de polinômios:

$$P_0(t) = 1$$
, $P_1(t) = 1 - t$, $P_0(t) = (1 - t)^2$ e $P_0(t) = (1 - t)^3$

gera $K_3(t)$

- 14) Quais dos seguintes conjunto constituem base para o \Re^2 ?.
 - a) $v_1 = (2,1)$ e $v_2 = (3,0)$
 - b) $v_1 = (4,1)$ e $v_2 = (-7,-8)$
 - c) $v_1 = (0,0)$, $v_2 = (1,3)$ e $v_3 = (-4,-12)$
- 15) Quais dos seguintes conjuntos constituem base para o \Re^3 ?.
 - 1. $v_1 = (1,0,0)$, $v_2 = (2,2,0)$ e $v_3 = (3,3,3)$
 - 2. $v_1 = (3, 1, -4)$, $v_2 = (2, 5, 6)$ e $v_3 = (1, 4, 8)$
 - 3. $v_1 = (2, 3, -1)$, $v_2 = (4, 4, 1)$ e $v_3 = (0, 7, -1)$
 - 4. $v_1 = (1, 6, 4)$, $v_2 = (2, 4, -1)$ e $v_3 = (-1, 2, 5)$
- 16) Quais dos segintes conjuntos consitutem base para $M_{2\times 2}$:
 - 1. $E_1 = \begin{pmatrix} 3 & 6 \\ 3 & -6 \end{pmatrix}$, $E_2 = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & -8 \\ -12 & -4 \end{pmatrix}$ e $E_4 = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$
 - 2. $E_1 = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$, $E_2 = \begin{pmatrix} 0 & 1 \\ 2 & 4 \end{pmatrix}$ e $E_3 = \begin{pmatrix} 4 & -2 \\ 0 & -2 \end{pmatrix}$
- 17) Seja $V = \Re^4$. Determine:
 - a) se $W = \{(1,1,1,1), (1,2,3,2), (2,5,6,4), (2,6,8,5)\}$ gera o \Re^4
 - b) a dimensão do subespaço gerado por [W] e uma base para [W]
- 18) Seja v = (2,3) na base $\{(3,5), (1,2)\}$. Calcular as coordenadas de v na base $\{(1,-1), (1,4)\}$.
- 19) Considere $V=\Re^2$. Seja v=(2,4) na base $\{(1,2),(2,3)\}$. Calcular as coordenadas de v na base $\{(1,3),(1,4)\}$.
- 20) Considere $V = \Re^3$. Seja v = (2,3,4) na base canônica do \Re^3 . Calcular as coordenadas de v na base: $\{(1,1,1),(1,1,0),(1,0,0)\}.$