Rank pt. 1

John Hohman

Table of Contents

3	Outer Product	/	Linear Subspace
4	Kronecker Product	9	Practice
6	Use of Rank	12	Next Week

Outer Product

Let

$$\mathbf{u} = egin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}, \quad \mathbf{v} = egin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

Then the outer product is:

$$\mathbf{u}\otimes\mathbf{v}=\mathbf{u}\mathbf{v}^T=egin{bmatrix}u_1\u_2\u_3\end{bmatrix}egin{bmatrix}v_1&v_2\end{bmatrix}=egin{bmatrix}u_1v_1&u_1v_2\u_2v_1&u_2v_2\u_3v_1&u_3v_2\end{bmatrix}=A$$

The outer product captures pairwise multiplicative interactions

Kronecker Product

Let

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

Then the Kronecker product is:

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{12} \\ a_{11}b_{21} & a_{11}b_{22} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{12} \\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \end{bmatrix}$$

Indepth

Feature	Outer Product $\mathbf{u}\mathbf{v}^T$	Kronecker Product $\mathbf{A} \otimes \mathbf{B}$
Inputs	Two vectors u , v	Two matrices A, B
Output	Matrix capturing pairwise scalar inter-	Larger matrix capturing block-wise
	actions	interactions
Size	$m \times n \text{ (if } \mathbf{u} \in \mathbb{R}^m, \mathbf{v} \in \mathbb{R}^n)$	$(m \cdot p) \times (n \cdot q)$ (if $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{p \times q}$)
Interpretation	Forms rank-1 matrix; captures scalar-	Tensor-like product; encodes interac-
	level pairings	tions between matrix structures
Applications	Rank-1 approximations, covariance ma-	Tensor algebra, system modeling,
	trices, basic interactions	multi-task learning, structured matrix
		equations
Notation	$\mathbf{u} \otimes \mathbf{v} = \mathbf{u} \mathbf{v}^T$ (vector case)	$\mathbf{A} \otimes \mathbf{B}$

Use of rank

Linear Subspace

Let V be a linear vector space over the scalars \mathbb{R} . $W \subset V$ is a a subspace if and only if W satisfies the following conditions:

1. The zero vector is in the subspace:

$$0 \in W$$

2. The subspace is closed under vector addition:

If
$$\mathbf{v}_1 \in W$$
 and $\mathbf{v}_2 \in W$, then $\mathbf{v}_1 + \mathbf{v}_2 \in W$

3. The subspace is closed under scalar multiplication:

If
$$\mathbf{v} \in W$$
 and $\lambda \in \mathbb{R}$, then $\lambda \mathbf{v} \in W$

Let solve a few!

lmage by juicy_fish on Freepik

Next Week - Rank

Reinforcement Learning

Goal: Continue Notebook 3 in https://github.com/fastai/numerical-linear-algebra/blob/master/README.md