Lecture 3: PWMs and other models for regulatory elements in DNA

- -Sequence motifs
- -Position weight matrices (PWMs)
- -Learning PWMs combinatorially, or probabilistically
 - -Learning from an alignment
 - -Ab initio learning: Baum-Welch & Gibbs sampling
- -Visualization of PWMs as sequence logos
- -Search methods for PWM occurrences
- -Cis-regulatory modules

Regulatory motifs of DNA

Measuring gene activity ('expression') with a microarray

Motif?

- Definition: Motif is a pattern that occurs (unexpectedly) often in a string or in a set of strings
- The problem of finding repetitions is similar

cgccgagtgacagagacgctaatcagg ctgtgttctcaggatgcgtaccgagtg ggagacagcagcacgaccagcggtggc agagacccttgcagacatcaagctctt tgggaacaagtggagcaccgatgatgt acagccgatcaatgacatttccctaat gcaggattacattgcagtgcccaagga gaagtatgccaagtaatacctccctca cagtg...

Longest repeat?

Example: A 50 million bases long fragment of human genome. We found (using a suffix-tree) the following repetitive sequence of length 2559, with one occurrence at 28395980, and other at 28401554r

Representations of motifs

- pattern
 - substring
 - substring with gaps
 - string in generalized alphabet (e.g., IUPAC)
 - finite automaton
 - Hidden Markov Model
 - binding affinity matrix
 - cluster of binding affinity matrices
 - ... (= the hidden structure to be learned from data)

Types of occurrences

- occurrence
 - exact
 - approximate
 - with high probability
 - **—** ...

Subsequence motifs with approximate occurrences

Motif finding problem

- Given: a set of sequences $S = x^{(1)}, x^{(2)}, ..., x^{(n)}$ from alphabet Σ , and a motif length m
- Find the best motif of length m that occurs in the training data S
- · Best? Occurs?
- Combinatorial approach: motif = sequence of length m
 - Approximate occurrences defined using Hamming distance (= number of mismatches)
- Probabilistic approach: motif = PWM (position weight matrix) of length m
 - Approximate occurrences defined using the probability distribution

Combinatorial approach

- d(W,x⁽ⁱ⁾) = minimum Hamming distance between W and any subsequence of x⁽ⁱ⁾ of length m
- $d(W,S) = \sum_i d(W,x^{(i)})$

Combinatorial approach: a patterndriven algorithm

- 1. For all sequences W ϵ Σ^m of length m do Find d(W,S)
- 2. Report $W^* := arg min_W (d(W,S))$

For DNA, the trivial implementation has running time $O(mN4^m)$. Why? Explain! (N = total length of the sequences in S)

Combinatorial approach: a sampledriven algorithm

 For all subsequences W of length m from S do

Find d(W,S)

2. Report $W^* := arg min_W(d(W,S))$

For DNA, the trivial implementation has running time $O(mN^2)$. Why? Explain! (N = total length of sequences in S)

Probabilistic approach

- Learn Position Weight Matrices (PWMs) from data
- Probabilistic model (in fact, a simple HMM)

Positionally weighted pattern

- Weighted pattern $w = (w_{ij})$ of length m in alphabet Σ : $|\Sigma| \times m$ matrix of real-valued scores
- Also called as: position weight matrix (PWM), positionspecific scoring matrix (PSSM), profile(-HMM), motif, ... (Stormo et al 1980, Gribskov et al 1987, Henikoff et al 1990,...)
- Public collections of PWMs: TRANSFAC, JASPAR

	1	2	3	4	5	6
Α	0.3	0.0	0.1	0.2	1.0	0.3
С	0.1	0.8	0.5	0.2	0.0	0.4
G	0.2	0.0	0.4	0.3	0.0	0.0
Т	0.4	0.2	0.0	0.3	0.0	0.3

Construction of PWM from an alignment

- Given:
 - aligned set of binding sites (= sequences of length m)
 - background distribution q_a for $a \in \Sigma$
- PWM construction algorithm:
 - 1. Construct count matrix (N_{ij}) : N_{ij} := the number of symbols i $\in \Sigma$ on column j of the alignment
 - 2. Add pseudocounts:
 - N_{ij} := N_{ij} + 1 (= Laplace rule), or
 - $N_{ij} := N_{ij} + \beta q_i$ where β is a scaling parameter that determines the total number of pseudocounts in an alignment column
 - 3. Construct probability matrix (f_{ij}) by normalizing the (pseudo)counts: $f_{ij} := N_{ij} / \sum_i N_{ij}$
 - 4. Construct log-odds of signal vs background: $w_{ij} := \log(f_{ij}/q_i)$ (= weighted pattern w)

PWM construction: example

CTCACACGTGGG
TCACACGTGGGA
ATTAGCACGTTTT
TTAGCACGTTTCGC
CGCTGCACGGGGCC

 (N_{ij}) : 4 5 0 5 0 0 0 0 С 0 5 0 5 0 0 0 3 0 3 G 0 0 5 0 2

Visualisation of PWMs: sequence logo

- PWM probability matrix (f_{aj}): f_{aj} = probability of symbol a in motif position j
- Entropy of column j: $H_{j} = -\sum_{a \in \Sigma} f_{aj} \log_{2} f_{aj}$
- Information present in column j:
 I_i = log₂ |Σ| H_i [DNA: I_i ≤ 2]

Sequence logo: an example

A 11 51 1 C 16 19 0 0 25 G 5 1 2 0 17 0 21

Ab initio construction of PWMs

- No alignment given, just the training sequences $S = x^{(1)}, \, ..., \, x^{(N)}$
- Find from S all m-long words
- Assume each word comes either from motif or from background (don't care about overlaps!)
- Find the most likely
 - motif model (PWM),
 - background model, and
 - classification of the m-long words of S into motif and background instances

HMM for mixture of multinomials

PWM

PWM by the EM algorithm

- Train the mixture model using EM algorithm by iterating
 - E step
 - M step
- Training data: all m-words from S
- For more details, see:
 - T.L. Bailey & C. Elkan: The value of prior knowledge in discovering motifs with MEME
 - Other papers on MEME

Ab initio motif finding: Gibbs sampling

- Another popular probabilistic algorithm for motif (PWM) discovery
- Local search algorithm

Gibbs sampling: basic idea

Current motif = PWM formed by circled substrings

Gibbs sampling: basic idea

Delete one substring

Gibbs sampling: basic idea

Try a replacement: Compute its score, and accept the replacement depending on the score.

Gibbs sampling: basic idea

New current motif

Repeat many times!

PWM by Gibbs sampling

- Goal: Find most probable pattern by sampling from motif probabilities to maximize the ratio of model to background
- Given:
 - Training data $S = X^{(1)}, ..., X^{(N)}$, and background distribution (q_a)
 - motif length m
- Notation & algorithm idea:
 - Model (f_{ii})
 - Start positions a_1, \ldots, a_N of current m-segments of $X^{(1)}, \ldots, X^{(N)}$, respectively; model is obtained from the current segments
 - Y = randomly selected sequence from S
 - The algorithm updates a_Y to improve the current (f_{ij}); the new a_Y is sampled from the positions of Y according to the current odds

Gibbs sampling algorithm

Empirical comparison of PWM learning tools

 M. Tompa, N. Li, T. Bailey et al.: Assessing computational tools for the discovery of transcription factor binding sites. *Nature Biotechnology*, 23:137-144, 2005.

Search methods to find good occurrences of PWMs

Segment score by a PWM w

	1	2	3	4	5	6
Α	0.3	0.0	0.1	0.2	1.0	0.3
С	0.1	8.0	0.5	0.2	0.0	0.4
G	0.2	0.0	0.4	0.3	0.0	0.0
Т	0.4	0.2	0.0	0.3	0.0	0.3

$$Score = \sum_{i=1}^{m} w[s_i, i]$$

Significance thresholding

- Assume that we have evaluated the score by w for every m-segment of a sequence S. When is a segment score significant?
- Background distribution of K-segments u = u₁...u_m:
 Prob(u) = q(u₁)...q(u_m)
- Statistical testing: for a p-value p, the corresponding score threshold k = k(p) is a value such that in the background distribution Prob(u : Score_w(u) ≥ k) = p

• If $Score_w(u) \ge k$, then the score of u differs from the background on significance level p

Pattern Matching Problem

- Text S in alphabet Σ, length n
- |Σ| x m weighted pattern w
- Score threshold k = k(p)
- Problem: Find all positions i of S such that the score given by pattern w for the msegment starting at i is above the threshold k

Example: k = 2

S = CGTACACTCGGTA

Score = 2.1

	1	2	3	4	5	6
Α	0.3	0.0	0.1	0.2	1.0	0.3
С	0.1	0.8	0.5	0.2	0.0	0.4
G	0.2	0.0	0.4	0.3	0.0	0.0
Т	0.4	0.2	0.0	0.3	0.0	0.3

Match at pos 2

Two basic algorithms

- Naive algorithm (NA): O(mn)
- Lookahead scoring:
 - For each column of w, precompute the maximum possible score that can be accumulated after the column ('lookahead score')
 - Stop checking the current m-segment as soon as it is clear that k cannot be achieved (i.e., if current score + lookahead < k)
- Permuted lookahead scoring [Wu 2000] (PLS):
 - evaluate the columns of *M* in the order of decreasing expected loss

$$L_{j} = \max_{a} w(a, j) - \mathbf{E}_{q}(w(a, j))$$

Cis-regulatory modules: a Higher-Order Motif Finding Problem

- Usually more than one motif is involved in regulation. Also, there are many regulatory proteins that control the expression of a gene, and the set of regulatory proteins involved is different under different situations.
- Cross-species sequence alignment (phylogenetic footprinting)

Some vague remarks

- Gene expression regulation in multicellular organisms is controlled in combinatorial fashion by transcription factors (TFs)
- Transcription factors bind to DNA cis-elements on enhancer modules (promoters)
- Multiple factors need to bind to activate the module
- In mammals, the modules are few and far
- The problem: Locate functional regulatory modules, that is, find interesting patterns of TF binding sites in DNA.

Characterization of a regulatory module?

- A regulatory module (cis-regulatory module) is a collection of TF binding sites on DNA; no precise definition available
- properties of a module:
 - consists of several good binding sites of TFs
 - the sites are spatially <u>clustered</u> together
 - the pattern of sites is conserved

Simple sliding-window approach

- Find all good-enough hits of the PWMs in the DNA
- Find windows of DNA that have a relatively high number of hits of interesting PWMs

Phylogenetic footprinting: find conserved motifs of binding sites

- looking at one (human) genome gives too many positives
- comparative approach (phylogenetic footprinting):
 - take (say) the 200 kbp regions surrounding the same genes (paralogs and orthologs) of different organisms: human, mouse, chicken, ...
 - find conserved clusters (subsequence motifs) of binding sites
- Smith-Waterman type algorithm with a novel scoring function

Smith-Waterman

 find the best local alignment of strings A and B: subsequence X of A and subsequence Y of B such that X and Y have the best scoring pairwise alignment

Dynamic programming

$$D_{ij} = \begin{cases} \text{max } \{ \lambda w_{ij}, \ D_{k,l} + \lambda w_{ij} - F(p_i - q_k, p_j' - q_l') \mid \\ 0 < p_i - q_k < 1000, \ 0 < p_j' - q_l' < 1000 \}, \\ \text{if } f_i = f_j' \text{ (i.e., the same TF aligned)} \\ -\infty, \text{ otherwise} \end{cases}$$

 $O(n^4)$

 w_{ij} = sum of the binding affinities of the sites of the TF at i and j in the two sequences

 $F(\Delta i, \Delta j)$ = penalty for the non-conservation and the length of the distances between adjacent sites

Wet-lab verification

- Selected predicted cismodules for wet-lab verification
- Fused 1kb DNA segment containing the predicted enhancer to a marker gene (LacZ) with a minimal promoter and generated transgenic embryos.

Summary of the EEL protocol

- input: +- 100 kb sequences of orthologous pairs of genes from human and mouse; TF affinity matrices
- find all good enough TF binding sites from the sequences
- find the best local alignments of the binding sites using the EEL scoring function
- output: the sequences in good local alignments; these are the putative enhancers
- Post-processing: an expert biologist selects most promising predictions for wet lab verification; hopefully he/she has good luck!
- paper: Hallikas, Palin et al, Genome-wide prediction ..., Cell 124,1 (Jan 13, 2006), 47-59.