NoSQL

Limites des systèmes classiques de gestion de bases de données

SGBD relationnels classiques: forces et faiblesses

Systèmes NoSQL

Systèmes NewSQL

- No SQL ou Not Only SQL
- ► SGBD avec d'autres compromis que ceux faits par les systèmes classiques
- Écosystème très varié
- ► Fonctionnalités recherchées : modèle de données différent. passage à l'échelle, performances extrêmes
- ► Fonctionnalités abandonnées : ACID, (parfois) requêtes complexes

1/5

Requêtes complexes, modèle de données non relationnel

Туре	Organisation	Requêtes	Exemples de systèmes

SGBD relationnels classiques: forces et faiblesses

Limites des systèmes classiques de gestion de bases de données

Systèmes NoSQL

Systèmes NewSQL

Requêtes complexes, modèle de données non relationnel

Туре	Organisation	Requêtes	Exemples de systèmes
XML	Données arbores- centes, hiérarchiques	XQuery	BASE e istdb

Limites des systèmes classiques de gestion de bases de données

SGBD relationnels classiques: forces et

Systèmes NoSQL

Systèmes NewSQL

Requêtes complexes, modèle de données non relationnel

Туре	Organisation	Requêtes	Exemples de systèmes
XML	Données arbores- centes, hiérarchiques	XQuery	BASE e istdb
Objet	Données complexes, avec propriétés et	OQL, VQL	(2) TED CANT

Limites des systèmes classiques de gestion de bases de données

SGBD relationnels classiques: forces et faiblesses

Systèmes NoSQL

Systèmes NewSQL

méthodes

VERSANT

Requêtes complexes, modèle de données non relationnel

arêtes, propriétés

Туре	Organisation	Requêtes	Exemples de systèmes
XML	Données arbores- centes, hiérarchiques	XQuery	e istdb
Objet	Données complexes, avec propriétés et méthodes	OQL, VQL	VERSANT
Graphe	Graphe avec nœuds,	Cypher, Gremlin	Neo4j

Limites des systèmes classiques de gestion de bases de données

SGBD relationnels classiques: forces et faiblesses

Systèmes NoSQL

Systèmes NewSQL

the graph database

Requêtes complexes, modèle de données non relationnel

Graphe avec nœuds,

Triplets RDF du Web

arêtes, propriétés

sémantique

Type	Organisation	Requêtes	Exemples de systèmes
XML	Données arbores- centes, hiérarchiques	XQuery	e istdb
Objet	Données complexes, avec propriétés et méthodes	OQL, VQL	

Cypher, Gremlin

SPARQL

Systèmes NoSQL

faiblesses

SGBD relationnels classiques : forces et

Limites des systèmes classiques de gestion de bases de données

Systèmes NewSQL

Graphe

Triplets

Neo4i

the graph database

Limites des systèmes classiques de gestion de bases de données

SGBD relationnels classiques : forces et faiblesses

Systèmes NoSQL

Systèmes NewSQL

Systèmes clef-valeur

► Requêtes très simples :

get récupère la valeur associée à une clef put ajoute un nouveau couple clef/valeur

- ► Accent mis sur le passage à l'échelle transparent, une faible latence, un débit très élevé
- ► Exemple d'implémentation : table de hachage distribuée

Chord

MemcacheDB

Limites des systèmes classiques de gestion de bases de données

SGBD relationnels classiques : forces et faiblesses

Systèmes NoSQL

Systèmes NewSQL

Systèmes orientés document

Requêtes toujours très simples :

get récupère le document (JSON, XML, YAML...) associé à une clef

put ajoute un nouveau document associé à une clef

- Des index additionnels permettant de récupérer les documents contenant tel mot-clef, ayant telle propriété, etc.
- Documents organisés en collections, gestion de méta-données (versions, dates), etc.
- ► Accent mis sur la simplicité de l'interface, la facilité de manipulation dans un langage de programmation

Limites des systèmes classiques de gestion de bases de données

SGBD relationnels classiques : forces et faiblesses

Systèmes NoSQL

Systèmes NewSQL

Systèmes orientés colonnes

- ► Au lieu de stocker les données ligne par ligne, les stocker colonne par colonne
- Organisation plus riche que dans les systèmes clef-valeur (plusieurs colonnes par objet stocké)
- ► Rend plus efficace l'agrégation ou le parcours des valeurs d'une même colonne
- ▶ Distribution transparente, passage à l'échelle grâce à des arbres de recherche distribués ou des tables de hachages distribuées

