Sensors

Course Code: ELEE1146

Course Name: Mobile Applications for Engineers

Credits: 15

Module Leader: Seb Blair BEng(H) PGCAP MIET MIEEE MIHEEM FHEA

Sensors 101

- A sensor is any device that measures an event or change in an environment and transforms it into an electronic signal that can be read and computed.
- Measuring some phenomena
- Passive (require and external signal)
- Active (require an external signal)
- Analogue (produce an anlaogue output; ie a continous signal)
- Digital (work with discrete, digital data)

Android SensorManager

- The is an abstract class that extends the Object class.
- Lets you access the device's sensors
- Sensor are their own class that also extends Object
- Sensor.getSensorList gets you all the available sensors.
- SensorEventListener used for receiving notifications from the SensorManager when there is new sensor data.

Source Code

The source code is written in c and sits on the Linux Kernel that has been modified for the Android OS.

 https://android.googlesource.com/platform/hardware/libhardware/+/master/include/ hardware/sensors.h

```
#define SENSOR_STRING_TYPE_ACCELEROMETER
#define SENSOR_STRING_TYPE_MAGNETIC_FIELD
#define SENSOR_STRING_TYPE_ORIENTATION
#define SENSOR_STRING_TYPE_GYROSCOPE
#define SENSOR_STRING_TYPE_LIGHT
#define SENSOR_STRING_TYPE_PRESSURE
#define SENSOR_STRING_TYPE_PRESSURE
#define SENSOR_STRING_TYPE_TEMPERATURE
```

Motion Sensors

The sensors' possible architectures vary by sensor type:

Software/Hardware

- Gravity,
- linear acceleration,
- rotation vector,
- significant motion,
- step counter,
- step detector sensors

Hardware Only

accelerometer

Motion Examples

TYPE_STEP_COUNTER is derived from TYPE_ACCELEROMETER via software

Sensor	Sensor event data	Description Units of measure	Туре
TYPE_ACCELEROMETER	SensorEvent.values[0]	Acceleration force along the x axis (including gravity). $m/s2$	Hardware
	SensorEvent.values[1]	Acceleration force along the y axis (including gravity).	
	SensorEvent.values[2]	Acceleration force along the z axis (including gravity).	
TYPE_STEP_COUNTER	SensorEvent.values[0]	Number of steps taken by the user since the last reboot while the sensor was activated. Steps	Sofware

Position sensors

- Two sensors that let you determine the position of a device:
 - Geomagnetic field sensor
 - geomagnetic field strength values for each of the three coordinate axes during a single sensor event
 - Accelerometer (we have seen this before)
 - measures the acceleration applied to the device during a sensor event

Position Examples

Sensor	Sensor event data	Description	Units
TYPE_GEOMAGNETIC_ROTATION_VECTOR	SensorEvent.values[0]	Rotation vector x axis ($x*sin(\frac{\theta}{2})$).	Unitless
	SensorEvent.values[1]	Rotation vector y axis ($y*sin(rac{ heta}{2})$)	
	SensorEvent.values[2]	Rotation vector z axis ($z*sin(rac{ heta}{2})$)	
TYPE_MAGNETIC_FIELD	SensorEvent.values[0]	Geomagnetic field strength along the x axis.	μT
	SensorEvent.values[1]	Geomagnetic field strength along the y axis	
	SensorEvent.values[2]	Geomagnetic field strength along the z axis	

Environment Sensors

- Four sensors that let you monitor various environmental properties:
 - Tempeature
 - Humidity
 - Pressure
 - light
- All hardware based sensors and are available only if a device manufacturer has built them into a device.
 - Exception is the light sensor which used to control screen brightness

Environment Examples

Sensor	Sensor event data	Units of measure	Data description
TYPE_AMBIENT_TEMPERATURE	<pre>event.values[0]</pre>	°C	Ambient air temperature.
TYPE_LIGHT	<pre>event.values[0]</pre>	lx	Illuminance
TYPE_PRESSURE	<pre>event.values[0]</pre>	hPa or mbar	Ambient air pressure.
TYPE_RELATIVE_HUMIDITY	<pre>event.values[0]</pre>	%	Ambient relative humidity.
TYPE_TEMPERATURE	<pre>event.values[0]</pre>	°C	Device temperature

Sensors - Emulator Extended Controls

Sensor Field's

- There are numerous variables that provide information about a sensor.
- accessible through functions like...

```
fun getFifoReservedEventCount(): Int {
  return android.hardware.Sensor.mFifoMaxEventCount
}
```

In the lab will be using Fields to always get the same data from each sensor

StringBuilder Class

- a **mutable** sequence of characters.
- String Class in Java creates an immutable sequence of characters,
- Constructs a string builder with no characters in it and an initial capacity of 16 characters

```
val stringBuilder = StringBuilder()

stringBuilder.append("Hello");
stringBuilder.append("World!");
// print string
println("String = " + str.toString());
```

► Output?

Pattern Class

- is class used in regular expression(regex)
- is a type of object that is used to help you extract information from any string data by searching through text to find what you need
- you will with high probabilty encounter regex many times in your career and by then this daunting set of characters grouped together will be a breeze:

$$(\b[A-Z][a-z]*\s*\b)+$$
\$

► Means?

Pattern Class

► Output?