Funciones automatizadas para visualizar las barras de abundancia, diversidades alfa y beta; a diferentes niveles taxonomicos

Camila Silva

2023-04-18

```
library("phyloseq")
library("ggplot2")
library("vegan")

## Loading required package: permute

## Loading required package: lattice

## This is vegan 2.6-4

library("RColorBrewer")
library("stringi")
```

Cargado de datos originales

```
setwd("/home/camila/GIT/Tesis_Maestria/Data/fresa_solena/Data1")
outpath = "/home/camila/GIT/Tesis_Maestria/Analisis_Comparativo/Fresa_Solena/Results_img"

fresa_kraken <- import_biom("fresa_kraken.biom")
colnames(fresa_kraken@tax_table@.Data) <- c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "fresa_kraken@tax_table@.Data <- substr(fresa_kraken@tax_table@.Data,4,100)
colnames(fresa_kraken@otu_table@.Data) <- substr(colnames(fresa_kraken@otu_table@.Data),1,6)
metadata_fresa <- read.csv2("/home/camila/GIT/Tesis_Maestria/Data/fresa_solena/Data1/metadata.csv",head
fresa_kraken@sam_data <- sample_data(metadata_fresa)
fresa_kraken@sam_data$Sample<-row.names(fresa_kraken@sam_data)
colnames(fresa_kraken@sam_data)<-c('Treatment','Samples')
samples_to_remove <- c("MP2079","MP2080","MP2088","MP2109","MP2137")
fresa_kraken_fil <- prune_samples(!(sample_names(fresa_kraken) %in% samples_to_remove), fresa_kraken)
percentages_fil <- transform_sample_counts(fresa_kraken_fil, function(x) x*100 / sum(x) )
percentages_df <- psmelt(percentages_fil)</pre>
```

Subconjunto de "Eukaryota"

```
merge_Eukaryota<-subset_taxa(fresa_kraken_fil,Kingdom=="Eukaryota")</pre>
```

Subconjunto de "Bacteria"

```
merge_Bacteria<-subset_taxa(fresa_kraken_fil,Kingdom=="Bacteria")</pre>
```

Funciones

glomToGraph

Crea los subconjuntos de datos necesarios para más adelante

input phy <- es el objeto phyloseq base tax <- rango taxonomico al que queremos recortar output glom <- objeto phyloseq ya recortado percentages <- objeto phyloseq de porcentages sobre el glom percentages_df <- data frame de porcentages sobre el glom

```
glomToGraph<-function(phy,tax){
    ## creamos el subconjunto dependiendo del linaje taxonomico deseado
    glom <- tax_glom(phy, taxrank = tax)
    ## sacamos los porcentajes
    percentages <- transform_sample_counts(glom, function(x) x*100 / sum(x) )
    percentages_df <- psmelt(percentages)
    return(list(glom,percentages,percentages_df))
}</pre>
```

Graficar abundancias (stackbar)

```
Abundance_barras <- function(phy,tax,attribute,abundance_percentage){
  ##llamar funcion de datos
  Data <- glomToGraph(phy,tax)</pre>
  glom <- Data[[1]] #phyloseq</pre>
  percentages <- Data[[2]] #phyloseq</pre>
  percentages_df <- Data[[3]] # dataframe</pre>
  ## Graficamos para cada subconjunto las barras de abundancia
  plot_barras <- ggplot(data=percentages_df, aes_string(x='Sample', y='Abundance', fill=tax ,color=attr
    scale_colour_manual(values=c('white','black')) +
    geom_bar(aes(), stat="identity", position="stack") +
    labs(title = "Abundance", x='Sample', y='Abundance', color = tax) +
    theme(legend.key.size = unit(0.2, "cm"),
          legend.key.width = unit(0.25, "cm"),
          legend.position = "bottom",
          legend.direction = "horizontal",
          legend.title=element_text(size=8, face = "bold"),
          legend.text=element_text(size=6),
          text = element_text(size=12),
          axis.text.x = element_text(angle=90, size=5, hjust=1, vjust=0.5))
  percentages_df$tax<-percentages_df[,ncol(percentages_df)]</pre>
```

```
percentages_df$tax[percentages_df$Abundance < abundance_percentage] <- "Others"
percentages_df$tax <- as.factor(percentages_df$tax)
plot_percentages <- ggplot(data=percentages_df, aes_string(x='Sample', y='Abundance', fill='tax',col
    scale_colour_manual(values=c('white','black')) +
    geom_bar(aes(), stat="identity", position="stack") +
    labs(title = "Abundance", x='Sample', y='Abundance', color = tax) +
    theme(legend.key.size = unit(0.3, "cm"),
        legend.key.width = unit(0.5, "cm"),
        legend.position = "bottom",
        legend.direction = "horizontal",
        legend.title=element_text(size=10, face = "bold"),
        legend.text=element_text(size=8),
        text = element_text(size=12),
        axis.text.x = element_text(angle=90, size=5, hjust=1, vjust=0.5))
return(list(plot_barras,plot_percentages))
}</pre>
```

Graficar diversidad beta

```
Beta_diversity <- function(phy,tax,attribute,distance){
  Data <- glomToGraph(phy,tax)
  glom <- Data[[1]]
#CREAR UN GLOM AL 10%

percentages <- Data[[2]]
percentages_df <- Data[[3]]
## Beta diversidad
meta_ord <- ordinate(physeq = percentages, method = "NMDS", distance = distance)
plot_beta <- plot_ordination(physeq = percentages, ordination = meta_ord, color = attribute) +
    geom_text(mapping = aes(label = colnames(phy@otu_table@.Data)), size = 3, vjust = 1.5)
    return(plot_beta)
}</pre>
```

Graficar diversidad alfa

```
Alpha_diversity <- function(phy,tax,attribute){
    ## llamamos la funcion que crea los dataset
    Data <- glomToGraph(phy,tax)
    glom <- Data[[1]]

percentages <- Data[[2]]
    percentages_df <- Data[[3]]
    ## Alfa diversidad
    plot_alpha <- plot_richness(physeq = glom, measures = c("Observed", "Chao1", "Shannon", "simpson"), x = areturn(plot_alpha)
}</pre>
```

Graficas

Graficamos las barras de abundancia, las barras de abundancia aglomerando el 10% menos abundantes, alfa y beta diversidad para los siguientes niveles taxonomicos.

```
##——Eukarya by Phylum
```

```
Barras_Phylum <- Abundance_barras(merge_Eukaryota, 'Phylum', 'Treatment', 10.0)
```

```
## Warning: 'aes_string()' was deprecated in ggplot2 3.0.0.
## i Please use tidy evaluation ideoms with 'aes()'
```

```
Barras_Phylum[1] # normal
```

[[1]]

Barras_Phylum[2]

Abundance

Beta_diversity(merge_Eukaryota , 'Phylum' , 'Treatment', 'bray')

```
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.01148681
## Run 1 stress 6.23341e-05
## ... New best solution
## ... Procrustes: rmse 0.03466421 max resid 0.09090798
## Run 2 stress 9.924012e-05
## ... Procrustes: rmse 8.498182e-05 max resid 0.0002174451
## ... Similar to previous best
## Run 3 stress 7.520819e-05
## ... Procrustes: rmse 3.260399e-05 max resid 6.156092e-05
## ... Similar to previous best
## Run 4 stress 8.237494e-05
## ... Procrustes: rmse 3.867383e-05 max resid 0.0001013529
## ... Similar to previous best
## Run 5 stress 9.056216e-05
## ... Procrustes: rmse 3.679735e-05 max resid 0.0001188962
## ... Similar to previous best
## Run 6 stress 9.561394e-05
## ... Procrustes: rmse 0.000151102 max resid 0.0003710265
## ... Similar to previous best
## Run 7 stress 0.0004646677
## ... Procrustes: rmse 0.001372413 max resid 0.003604997
```

```
## ... Similar to previous best
## Run 8 stress 9.29825e-05
## ... Procrustes: rmse 0.0001070232 max resid 0.0002624821
## ... Similar to previous best
## Run 9 stress 9.912037e-05
## ... Procrustes: rmse 0.0001078595 max resid 0.0002706643
## ... Similar to previous best
## Run 10 stress 9.98074e-05
## ... Procrustes: rmse 0.0001723485 max resid 0.0004470798
## ... Similar to previous best
## Run 11 stress 9.90852e-05
## ... Procrustes: rmse 0.0002715707 max resid 0.0007077103
## ... Similar to previous best
## Run 12 stress 9.798793e-05
## ... Procrustes: rmse 7.601213e-05 max resid 0.0001963665
## ... Similar to previous best
## Run 13 stress 8.745481e-05
## ... Procrustes: rmse 3.325777e-05 max resid 8.220807e-05
## ... Similar to previous best
## Run 14 stress 9.958365e-05
## ... Procrustes: rmse 0.0002838867 max resid 0.0007370116
## ... Similar to previous best
## Run 15 stress 0.0002053957
## ... Procrustes: rmse 0.0006058763 max resid 0.001579662
## ... Similar to previous best
## Run 16 stress 9.924389e-05
## ... Procrustes: rmse 0.0001228828 max resid 0.0003199078
## ... Similar to previous best
## Run 17 stress 0.000107705
## ... Procrustes: rmse 0.0003169315 max resid 0.0008220986
## ... Similar to previous best
## Run 18 stress 0.00071692
## Run 19 stress 9.300725e-05
## ... Procrustes: rmse 9.651243e-05 max resid 0.000248036
## ... Similar to previous best
## Run 20 stress 9.965288e-05
## ... Procrustes: rmse 0.0001697613 max resid 0.0004489988
## ... Similar to previous best
## *** Best solution repeated 18 times
## Warning in metaMDS(veganifyOTU(physeq), distance, ...): stress is (nearly) zero:
## you may have insufficient data
```



```
Alpha_diversity(merge_Eukaryota , 'Phylum' , 'Treatment')
```

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


##——Eukarya by Family

Barras_Species <- Abundance_barras(merge_Eukaryota, 'Family', 'Treatment', 10.0)
Barras_Species[1]</pre>

Beta_diversity(merge_Eukaryota , 'Family' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1089081
## Run 1 stress 0.10892
## ... Procrustes: rmse 0.003469475 max resid 0.01752379
## Run 2 stress 0.1090929
  ... Procrustes: rmse 0.005544936 max resid 0.02829244
## Run 3 stress 0.1088917
  ... New best solution
## ... Procrustes: rmse 0.001874879 max resid 0.009516901
## ... Similar to previous best
## Run 4 stress 0.1090933
## ... Procrustes: rmse 0.005791372 max resid 0.02850908
## Run 5 stress 0.1266812
## Run 6 stress 0.1088977
## ... Procrustes: rmse 0.001797222 max resid 0.009009046
## ... Similar to previous best
## Run 7 stress 0.1088875
## ... New best solution
## ... Procrustes: rmse 0.0009644059 max resid 0.005579993
## ... Similar to previous best
## Run 8 stress 0.108929
## ... Procrustes: rmse 0.008413825 max resid 0.05469496
## Run 9 stress 0.1088966
```

```
## ... Procrustes: rmse 0.001701053 max resid 0.008977046
```

... Similar to previous best

Run 10 stress 0.1088927

... Procrustes: rmse 0.001100288 max resid 0.006369565

... Similar to previous best

Run 11 stress 0.1088875

... New best solution

... Procrustes: rmse 0.0003458743 max resid 0.001444601

... Similar to previous best

Run 12 stress 0.1090814

... Procrustes: rmse 0.007447257 max resid 0.04382634

Run 13 stress 0.1088878

... Procrustes: rmse 0.0004233376 max resid 0.001630264

... Similar to previous best

Run 14 stress 0.1089302

... Procrustes: rmse 0.008407645 max resid 0.05481049

Run 15 stress 0.1089293

... Procrustes: rmse 0.008404887 max resid 0.05474606

Run 16 stress 0.1273453

Run 17 stress 0.1089711

... Procrustes: rmse 0.008789917 max resid 0.05386247

Run 18 stress 0.1265348

Run 19 stress 0.1089491

... Procrustes: rmse 0.008086409 max resid 0.05430937

Run 20 stress 0.1089299

... Procrustes: rmse 0.008484859 max resid 0.0545113

*** Best solution repeated 2 times


```
Alpha_diversity(merge_Eukaryota , 'Family' , 'Treatment')
```

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


##——Eukarya by Genero

Barras_Species <- Abundance_barras(merge_Eukaryota, 'Genus', 'Treatment', 10.0)
Barras_Species[1]</pre>

Beta_diversity(merge_Eukaryota , 'Genus' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.110709
## Run 1 stress 0.1119812
## Run 2 stress 0.1236311
## Run 3 stress 0.111981
## Run 4 stress 0.1236303
## Run 5 stress 0.1107095
## ... Procrustes: rmse 0.001124574 max resid 0.006442219
## ... Similar to previous best
## Run 6 stress 0.1107093
## ... Procrustes: rmse 0.001076297 max resid 0.006272975
## ... Similar to previous best
## Run 7 stress 0.1119791
## Run 8 stress 0.1119828
## Run 9 stress 0.1119787
## Run 10 stress 0.1235026
## Run 11 stress 0.1119789
## Run 12 stress 0.1107095
## ... Procrustes: rmse 0.0001517755 max resid 0.0008446115
## ... Similar to previous best
## Run 13 stress 0.1235017
## Run 14 stress 0.1107131
## ... Procrustes: rmse 0.001836109 max resid 0.0104769
```

```
## Run 15 stress 0.1119814
## Run 16 stress 0.1223846
## Run 17 stress 0.1107091
## ... Procrustes: rmse 0.0009946872 max resid 0.005695889
## ... Similar to previous best
## Run 18 stress 0.110709
## ... New best solution
## ... Procrustes: rmse 0.0009753471 max resid 0.005535792
## ... Similar to previous best
## Run 19 stress 0.1107098
## ... Procrustes: rmse 0.001230246 max resid 0.00696057
## ... Similar to previous best
## Run 20 stress 0.1107099
## ... Procrustes: rmse 0.000266941 max resid 0.001569549
## ... Similar to previous best
## *** Best solution repeated 3 times
```


Alpha_diversity(merge_Eukaryota , 'Genus' , 'Treatment')

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
```

We recommended that you find the un-trimmed data and retry.

##——Eukarya by Species

Barras_Species <- Abundance_barras(merge_Eukaryota, 'Species', 'Treatment', 10.0)
Barras_Species[1]</pre>

Abundance

Beta_diversity(merge_Eukaryota , 'Species' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1226512
## Run 1 stress 0.1350917
## Run 2 stress 0.1226512
## ... New best solution
## ... Procrustes: rmse 0.0008641234 max resid 0.004244483
## ... Similar to previous best
## Run 3 stress 0.1226506
## ... New best solution
## ... Procrustes: rmse 0.0006123831 max resid 0.003005903
## ... Similar to previous best
## Run 4 stress 0.1218541
## ... New best solution
## ... Procrustes: rmse 0.0201598 max resid 0.1286162
## Run 5 stress 0.1218545
## ... Procrustes: rmse 0.0002024207 max resid 0.00101306
## ... Similar to previous best
## Run 6 stress 0.1227526
## Run 7 stress 0.1218547
## ... Procrustes: rmse 0.0002533211 max resid 0.001299704
## ... Similar to previous best
## Run 8 stress 0.1218542
## ... Procrustes: rmse 0.000541007 max resid 0.002711941
```

```
## ... Similar to previous best
## Run 9 stress 0.1278288
## Run 10 stress 0.1272837
## Run 11 stress 0.1272842
## Run 12 stress 0.1272836
## Run 13 stress 0.1218539
## ... New best solution
## ... Procrustes: rmse 0.0001043452 max resid 0.0005420929
## ... Similar to previous best
## Run 14 stress 0.1218546
## ... Procrustes: rmse 0.0003174537 max resid 0.001568472
## ... Similar to previous best
## Run 15 stress 0.1218543
## ... Procrustes: rmse 0.0002324318 max resid 0.001171843
## ... Similar to previous best
## Run 16 stress 0.1272842
## Run 17 stress 0.1346961
## Run 18 stress 0.1346963
## Run 19 stress 0.121854
## ... Procrustes: rmse 7.964564e-05 max resid 0.0003900365
## ... Similar to previous best
## Run 20 stress 0.1218546
## ... Procrustes: rmse 0.0006061658 max resid 0.002981664
## ... Similar to previous best
## *** Best solution repeated 5 times
```


Alpha_diversity(merge_Eukaryota , 'Species' , 'Treatment')

##——Bacteria by Phylum

Barras_Species <- Abundance_barras(merge_Bacteria, 'Phylum', 'Treatment', 10.0)
Barras_Species[1]</pre>


```
Beta_diversity(merge_Bacteria , 'Phylum' , 'Treatment', 'bray')
```

tax Actinobacteria Firmicutes Others Proteobacteria

```
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.1520004
## Run 1 stress 0.1674646
## Run 2 stress 0.1691779
## Run 3 stress 0.1610424
## Run 4 stress 0.1654743
## Run 5 stress 0.1697232
## Run 6 stress 0.1592903
## Run 7 stress 0.1656345
## Run 8 stress 0.1614665
## Run 9 stress 0.1686077
## Run 10 stress 0.1592034
## Run 11 stress 0.1519726
## ... New best solution
## ... Procrustes: rmse 0.008432635 max resid 0.04770606
## Run 12 stress 0.1524008
## ... Procrustes: rmse 0.04929327 max resid 0.3150102
## Run 13 stress 0.1573638
## Run 14 stress 0.1614019
## Run 15 stress 0.1619357
## Run 16 stress 0.1601871
## Run 17 stress 0.157849
```

Phylum healthy wilted

```
## Run 18 stress 0.1722158
## Run 19 stress 0.1657873
## Run 20 stress 0.1513902
## ... New best solution
## ... Procrustes: rmse 0.01172811 max resid 0.05381454
## *** Best solution was not repeated -- monoMDS stopping criteria:
## 20: stress ratio > sratmax
```


Alpha_diversity(merge_Bacteria , 'Phylum' , 'Treatment')

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
```

We recommended that you find the un-trimmed data and retry.

##——Bacteria by Familia

Barras_Species <- Abundance_barras(merge_Bacteria, 'Family', 'Treatment', 10.0)
Barras_Species[1]</pre>

Abundance

Beta_diversity(merge_Bacteria , 'Family' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1412073
## Run 1 stress 0.1402351
## ... New best solution
## ... Procrustes: rmse 0.0294344 max resid 0.1450997
## Run 2 stress 0.1418149
## Run 3 stress 0.1396507
## ... New best solution
## ... Procrustes: rmse 0.01731879 max resid 0.08105936
## Run 4 stress 0.1728168
## Run 5 stress 0.1412067
## Run 6 stress 0.1825783
## Run 7 stress 0.1521891
## Run 8 stress 0.1400278
## ... Procrustes: rmse 0.0191409 max resid 0.07897066
## Run 9 stress 0.1735308
## Run 10 stress 0.1575206
## Run 11 stress 0.1720444
## Run 12 stress 0.1371727
## ... New best solution
## ... Procrustes: rmse 0.05360706 max resid 0.3267978
## Run 13 stress 0.1518195
## Run 14 stress 0.1370387
```

```
## ... New best solution
## ... Procrustes: rmse 0.0125958 max resid 0.05755869
## Run 15 stress 0.1398013
## Run 16 stress 0.1687823
## Run 17 stress 0.1371929
## ... Procrustes: rmse 0.0113669 max resid 0.05681366
## Run 18 stress 0.1550932
## Run 19 stress 0.1647356
## Run 20 stress 0.1824082
## *** Best solution was not repeated -- monoMDS stopping criteria:
## 7: no. of iterations >= maxit
## 13: stress ratio > sratmax
```


Alpha_diversity(merge_Bacteria , 'Family' , 'Treatment')

##——Bacteria by Genero

Barras_Species <- Abundance_barras(merge_Bacteria, 'Genus', 'Treatment', 10.0)
Barras_Species[1]</pre>

			_		
lex flavores	Desulfatibasillum	Labrenzia		Parenicipacier	Subtercola
flexum	Desulfatibacillum	Labrys		Paroceanicella	Succinivibrio
habitans	Desulfitobacterium	Laceyella		Parolsenella	Suicoccus
luna	Desulfobacca	Lachnoanaerobaculum		Parvibaculum	Sulfidibacter
marina	Desulfobacter	Lachnoclostridium		Parvimonas	Sulfitobacter
ncola	Desulfobacula	Lachnospira		Parvularcula	Sulfuricaulis
rhabdus	Desulfobulbus	Lacibacter		Pasteurella	Sulfuricella
rufa	Desulfocapsa	Lacimicrobium		Paucibacter	Sulfuricurvum
salimonas	Desulfococcus	Lacinutrix		Paucilactobacillus	Sulfuriferula
salinus	Desulfocurvibacter	Lacipirellula		Pauljensenia	Sulfuriflexus
sediminimonas	Desulfofarcimen	Lacrimispora		Pectinatus	Sulfurifustis
sphaera	Desulfoglaeba	Lacticaseibacillus		Pectobacterium	Sulfurihydrogenibium
talea	Desulfohalobium	Lactiplantibacillus		Pediococcus	Sulfurimicrobium
iibacter	Desulfoluna	Lactobacillus		Pedobacter	Sulfurimonas
hidicoccus	Desulfolutivibrio	Lactococcus		Pedococcus	Sulfuriroseicoccus
hnia	Desulfomarina	Lacunisphaera		Pelagerythrobacter	Sulfuritalea
nobacterium	Desulfomicrobium	Lancefieldella	_	Pelagibacterium	Sulfuritortus
angium	Desulfomonile	Lapidilactobacillus	_	Pelagovum	Sulfurivermis
bacter	Desulfonema	Laribacter		Pelistega	Sulfurospirillum
cibacterium	Desulforamulus	Larkinella		Pelobacter	Sulfurovum
ibacter	Desulforapulum	Latilactobacillus		Pelodictyon	Sutcliffiella
imonas	Desulfosarcina	Lautropia		Pelolinea	Sutterella
natoleum	Desulfoscipio	Lawsonella		Pelosinus	Suttonella
nicicoccus	Desulfosediminicola	Lawsonia		Pengzhenrongella	Swingsia
nophonus	Desulfosporosinus	Leadbetterella		Peptacetobacter	Symbiobacterium
obacter	Desulfosudis	Leclercia		Peptoclostridium	Sýmmachiella
a	Desulfotalea	Lederbergia		Peptoniphilus	Synechococcus
cacaulis	Desulfotomaculum	Leeuwenhoekiella		Peribacillus	Synechocystis
lassotoga	Desulfovibrio	Legionella		Periweissella	Syntrophobacter
ntibacter	Desulfurispirillum	Leifsonia		Permianibacter	Syntrophobotulus
obium	Desulfurivibrio	Leisingera		Persephonella	Syntrophomonas
acter	Desulfurobacterium	Lelliottia		Persicimonas	Syntrophotalea
ntiacibacter	Desulfuromonas	Leminorella		Peteryoungia	Syntrophothermus
	Devosia	Lentibacillus		Petrimonas	
ntimicrobium					Syntrophus
ntimonas	Devriesea	Lentilactobacillus		Petrocella	Tabrizicola
ticoccus	Dialister	Lentilitoribacter		Petrotoga	Tamlana Tamlana
imonas	Diaminobutyricimonas	Lentzea		Phaeobacter	<u>Tannerella</u>
liella	Diaphorobacter	Leptodesmis		Phascolarctobacterium	Tardibacter
idibacter	Dichelobacter	Leptolyngbya		Phenylobacterium	Tardiphaga
wickia	Dickeya	Leptospira		Phnomibacter	Tateyamaria
acterium	Dictyóglomus	Leptospirillum		Phocaeicola	Tatlóckia
ircus	■ Dietzia	 Leptothermofonsia 		Phoenicibacter	Tatumella
hizobium	Dinoroseobacter	Leptothrix		Photobacterium	Tautonia
pira	Dissulfurimicrobium	Leptotrichia		Photorhabdus	Taylorella
pirillum	Dissulfurispira	Leucobacter		Phototrophicus	Teĺmatocola
obacter	■ Dokdonella	Leuconostoc		Phreatobacter	Tenacibaculum
llus	Dokdonia	Levilactobacillus		Phycicoccus	Tenuifilum
erioplanes	Dolichospermum	Liberibacter		Phycisphaera	Tepidanaerobacter
eriovorax	Dolosigranulum	Lichenicola		Phyllobacterium	Tepidibacter
eroides	Dongshaea	Lichenihabitans		Phytobacter	Tepidibacter
duia	Dorea	Ligilactobacillus		Phytohabitans	Tepidimonas
esiella	Draconibacterium	Lignipirellula		Pigmentiphaga	Tepiditoga
onella	Duganella	Limihaloglobus		Pikeienuella	Terasakiella
ia	Duncaniella	Limnobacter		Pimelobacter	Teredinibacter
lea	Dyadobacter	Limnobaculum		Pirellula	Terribacillus
lovibrio	Dyella	Limnochorda		Pirellulimonas	<u>Terricaulis</u>
jiatoa	Dysgonomonas	Limnoglobus		Piscirickettsia	Terriglobus Terribabitans
írinckia	- Divenemohacter	 I imnohahitane 		Dietricoccue	- Iarrihahitane

Abundance

Beta_diversity(merge_Bacteria , 'Genus' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1467945
## Run 1 stress 0.1432834
## ... New best solution
## ... Procrustes: rmse 0.08893595 max resid 0.3293612
## Run 2 stress 0.1432845
## ... Procrustes: rmse 0.0009707145 max resid 0.004281232
## ... Similar to previous best
## Run 3 stress 0.1469874
## Run 4 stress 0.1473387
## Run 5 stress 0.1528047
## Run 6 stress 0.1437863
## Run 7 stress 0.1437853
## Run 8 stress 0.1432832
## ... New best solution
## ... Procrustes: rmse 0.0001931802 max resid 0.0009023473
## ... Similar to previous best
## Run 9 stress 0.1458083
## Run 10 stress 0.1455706
## Run 11 stress 0.1437864
## Run 12 stress 0.1579725
## Run 13 stress 0.1438141
## Run 14 stress 0.1479572
```

```
## Run 15 stress 0.1438153

## Run 16 stress 0.1499361

## Run 17 stress 0.1477432

## Run 18 stress 0.1514192

## Run 19 stress 0.1438482

## Run 20 stress 0.1451995

## *** Best solution repeated 1 times
```


Alpha_diversity(merge_Bacteria , 'Genus' , 'Treatment')

##——Bacteria by Species

Barras_Species <- Abundance_barras(merge_Bacteria, 'Species', 'Treatment', 10.0)
Barras_Species[1]</pre>

Abundance

Beta_diversity(merge_Bacteria , 'Species' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1597841
## Run 1 stress 0.1710249
## Run 2 stress 0.1602923
## Run 3 stress 0.1710683
## Run 4 stress 0.1571545
## ... New best solution
## ... Procrustes: rmse 0.05851399 max resid 0.2993421
## Run 5 stress 0.1633308
## Run 6 stress 0.1603458
## Run 7 stress 0.1568651
## ... New best solution
## ... Procrustes: rmse 0.01116618 max resid 0.05529493
## Run 8 stress 0.1702595
## Run 9 stress 0.1614495
## Run 10 stress 0.1571296
## ... Procrustes: rmse 0.01084661 max resid 0.05428821
## Run 11 stress 0.1630772
## Run 12 stress 0.158739
## Run 13 stress 0.1600774
## Run 14 stress 0.1920147
## Run 15 stress 0.1590775
## Run 16 stress 0.1582729
```

```
## Run 17 stress 0.1755464
## Run 18 stress 0.1582612
## Run 19 stress 0.1746779
## Run 20 stress 0.1710691
## *** Best solution was not repeated -- monoMDS stopping criteria:
## 6: no. of iterations >= maxit
## 14: stress ratio > sratmax
```


Alpha_diversity(merge_Bacteria , 'Species' , 'Treatment')

