CHANDIGARH UNIVERSITY UNIVERSITY INSTITUTE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Submitted By: Rajiv Paul	Submitted To: Parveen Badoni
Subject Name	Machine Learning Lab
Subject Code	20CSP-317
Branch	BE-CSE
Semester	5th

LAB INDEX

Sr.	Program	Date		E	Evalu	ation	Sign
No			LW (12)	VV (8)	F W (10	Tot al (30	
1.1							
1.2							
1.3							
2.1							
2.2							
2.3							
2.4							
3.1							
3.2	To Implement Principal Component Analysis.	02/11/22					
3.3							

EXPERIMENT – 9

Student Name: Rajiv Paul UID: 20BCS1812

Branch: CSE Section/Group: 20BCS_WM-702A Semester: 5th Date of Performance: 01/11/2022

Subject Name: Machine Learning Lab Subject Code: 20CSP-317

1. AIM OF THE EXPERIMENT:

To Implement Principal Component Analysis.

2. TASK TO BE DONE:

We will create a method named PCA to implement Principal Component Analysis on a dataset (i.e. iris).

3. PROGRAM CODE & OUTPUT:

i) Importing libraries

- import numpy as np
- import matplotlib.pyplot as plt
- import pandas as pd
- import seaborn as sb

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
```


ii) Creating a method for PCA.

```
def PCA(X , num_components):
    X_meaned = X - np.mean(X , axis = 0)
    cov_mat = np.cov(X_meaned , rowvar = False)
    eigen_values , eigen_vectors = np.linalg.eigh(cov_mat)
    sorted_index = np.argsort(eigen_values)[::-1]
    sorted_eigenvalue = eigen_values[sorted_index]
    sorted_eigenvectors = eigen_vectors[:,sorted_index]
    eigenvector_subset =
    sorted_eigenvectors[:,0:num_components]
    X_reduced = np.dot(eigenvector_subset.transpose() ,
    X_meaned.transpose() ).transpose()
    return X_reduced
```

```
def PCA(X , num_components):
       #Step-1
       X_{meaned} = X - np.mean(X, axis = 0)
       cov_mat = np.cov(X_meaned , rowvar = False)
9
       #Step-3
10
       eigen_values , eigen_vectors = np.linalg.eigh(cov_mat)
11
12
       #Step-4
13
       sorted_index = np.argsort(eigen_values)[::-1]
       sorted_eigenvalue = eigen_values[sorted_index]
14
15
       sorted_eigenvectors = eigen_vectors[:,sorted_index]
16
17
       #Step-5
18
       eigenvector subset = sorted eigenvectors[:,0:num components]
19
20
       #Step-6
21
       X_reduced = np.dot(eigenvector_subset.transpose() , X_meaned.transpose() ).transpose()
22
       return X_reduced
```


iii) Importing Dataset (i.e. iris).

- url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
- data = pd.read_csv(url, names=['sepal length','sepal width','petal length','petal width','target'])
- pd.DataFrame(data)

1 2 3	url = "http data = pd.r pd.DataFran	read_csv(ur			
	sepal length	sepal width	petal length	petal width	target
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica
150 ו	rows × 5 colur	mns			

iv) Separating target column from the data.

- x = data.iloc[:,0:4]
- target = data.iloc[:,4]
- print(target)


```
x = data.iloc[:,0:4]
 2 target = data.iloc[:,4]
 3 print(target)
         Iris-setosa
         Iris-setosa
         Iris-setosa
         Iris-setosa
         Iris-setosa
           . . .
145
      Iris-virginica
146
      Iris-virginica
      Iris-virginica
147
      Iris-virginica
148
      Iris-virginica
Name: target, Length: 150, dtype: object
```

```
1 mat_reduced = PCA(x , 2)
    pd.DataFrame(mat_reduced)
     2.684207
              0.326607
     2.715391 -0.169557
     2.889820 -0.137346
     2.746437 -0.311124
     2.728593
              0.333925
    -1.944017 0.187415
    -1.525664 -0.375021
     -1.764046
              0.078519
    -1.901629
               0.115877
    -1.389666 -0.282887
150 rows x 2 columns
```

vi) Creating a Pandas DataFrame of reduced Dataset.

- principal_df = pd.DataFrame(mat_reduced , columns = ['PC1','PC2'])
- print(principal_df)

v)

```
principal_df = pd.DataFrame(mat_reduced , columns = ['PC1', 'PC2'])
 print(principal_df)
         PC1
    2.684207 0.326607
    2.715391 -0.169557
    2.889820 -0.137346
    2.746437 -0.311124
    2.728593 0.333925
       . . . .
145 -1.944017 0.187415
146 -1.525664 -0.375021
147 -1.764046 0.078519
148 -1.901629 0.115877
149 -1.389666 -0.282887
                                                                      omplete
[150 rows x 2 columns]
```

- principal_df = pd.concat([principal_df , pd.DataFrame(target)] , axis = 1)
- print(principal df)

viii) Visualizing predicted values of iris dataset.

- plt.figure(figsize = (6,6))
- plt.title("Kinshuk Chauhan \n 20BCS4917")
- sb.scatterplot(data = principal_df, x = 'PC1', y='PC2', hue='target', s=60, palette='icefire')

