Home Archives a Q

Totoro97

Miao!Le!Ge!Ji!

2016-01-19

寒假作业

有事没事更一发(要是没有寒假作业我会堕落至死)

CODE

ASC7 A

构造水题0 0.....

ASC7 B

无脑直接上线段树,另外吐槽为什么前面交了几发都是MLE,过几个小时交竟然就好了。

ASC7 C

关键是找到a,b对应的a+b

hash可以O(1)

总复杂度 $O(n^2)$

稍微有点卡空间,改成short型就好了

ASC7 D

搜索会TLE

虽然是长得奇怪的六边形,后面想了一下还是可以状压DP的。

每一层就是一个锯齿样的东西,有锯齿突出为1,没有为0。 另外由于对称性,只需要dp前面一半就好了,这样会好写一点。

ASC7 E

题目大意:给定p, n,已知 $A_i = p^{A_{i-1}}$

求 A_i 的极限值

无非就是要找到一个b,使得 $b = p^b \pmod{n!}$

一开始考虑了p和n!互质的情况,设 $b = p^x$

即 $p^{p^x} - p^x = 0 \pmod{n!}$ 即 $(p^{p^x - x} - 1) \times p^x = 0 \pmod{n!}$

可以让 $p^{p^x-x} \mod n! = 1$,由欧拉公式想到 $(p^x - x) \mod phi(n!) = 0$

是个子问题,可以递归做

然而不互质就不会做了,想了下应该是类似的吧。。。发现phi收敛到1的速度是很快的(对数级别)是不是可以直接模拟暴力搞。

写了然后tle了。。。java高精度喜闻乐见地坚挺到了第22个测试点。

看题解。

得一公式: $a^{phi(n)+b \mod phi(n)} = a^b \pmod{n}$ (这公式高中见过两次,我高中OI白搞了)

问题就变成: 求一个b > phi(n!), 使得 p^b 与b在phi(n!)下同余。

子问题,递归。

(ps:公式的适用范围:a,n可以不互质,b大于等于phi(n))

.....

ASC7 F

题目大意: 求矩形和圆的面积交

一开始想了个奇葩的方法:

把矩形拆成两个三角形,对于三角形的面积交:

2016-01-23 13-20-33屏幕截图.png

可以用(圆的面积-被三条边切掉的面积+每个顶点上应该补回的面积)来算面积交然而后面有一种奇葩的情况(三角形与圆相离)是需要特判的,而且超麻烦.. 然后就tj了

后面想了想。。求多边形的面积是用有向线段与一点的有向面积算的。

类比:

对于每条有向线段,只需要求有向线段与圆心组成的三角形与圆的有向面积交 然后加起来,取绝对值。

一条线段的情况就好写多了。(还是有些边界条件有点坑) 这种方法可以推广到任意多边形与圆的交

ASC7 G

题目大意:求单位割边的最小割

老题了

分数规划,二分(比率问题一般都可以这么搞),每次二分后然后跑最小割 遇到的问题:

这个是我自己傻×:"负边怎么最小割。。。",竟然还想了好久。。。最后还是看题解。。。 尼玛负边直接割掉啊反正是负的

另外:

"网络流一定要加优化!"

"网络流一定要加优化!"
"网络流一定要加优化!" 几百的数据都能把不加优化的dinic卡成翔。
プレロログダスが自由的にプログル(ループログロCTTIC 下がXがM。
ASC7 H
贪心
ASC7 I
就是求个GCD & JAVA大法好
ASC8 A
ASCO A
ASC8 B
找规律大法
n维空间的答案多项式次数就是n
n维空间的前n刀都是 2^k
然后就可以高斯消元求系数了
ASC8 C
提供一个 $O(n)$ 的解法
建立后缀自动机
考虑后缀自动机每个节点的实质是一个right集合,这个right集合内只有长度最大的那个字符串是满
足"left-branching"的,然后我们只需要利用该节点的出度判定这个字符串是不是"right-branching"。
4550 B
ASC8 D
ASC8 E
模意义下斐波那契数列的周期,这个是有 <mark>结论</mark> 的
答案不会很大,bsgs或者按照结论做都可以
ASC8 F
简单dp

ASC8 G

打表找规律

ASC8 H

考虑补图

猜个结论:最优解的补图一共有m-1个连通块,且每个联通块都是完全图

然后就可以dp求出补图的最少边数

ASC8 J

一开始想把红球和彩球的碰撞极角弄出来转化成区间问题,后面发现自己想得太简单了,有一类奇 怪的情况处理不了

然后就不知道做了

然后弃疗乱搞

暴力枚举10000个极角,然后判断该角度是否可行。

结果过了。。。。

#ACM

● 評論 → 分享到

辻亚弥乃演唱?!

大概知道现在需要干什么了

0条评论

最新 最早 最热

还没有评论,沙发等你来抢

王鹏 🔷 帐号管理

说点什么吧...

totoro97正在使用多说

標簽

ACM (5)

CodeForces (3)

contest (1)

个人 (1)

个人小记 (4)

流水账 (1)

解题报告 (5)

標簽雲

ACM CodeForces contest 个人 个人小记 流水账 解题报告

歸檔

January 2016 (3)

December 2015 (4)

October 2015 (2)

September 2015 (1)

July 2015 (5)

近期文章

2016_ICPCCamp

辻亚弥乃演唱?!

寒假作业

大概知道现在需要干什么了

题目叫什么

友情鏈接

Fateud

© 2016 Totoro97

Powered by Hexo . Theme by Landscape-plus