Chapitre 12 Produit scalaire

12.1 Coordonnées d'un vecteur dans une base

Définition 12.1 Soit trois points non alignés O, I et J.

Les vecteurs $\overrightarrow{OI} = \overrightarrow{i}$ et $\overrightarrow{OJ} = \overrightarrow{j}$ ne sont pas colinéaires et forment une base.

Si on muni le plan du repère (O~;~I~,~J) (noté encore $(O~;~\overrightarrow{OI}~,~\overrightarrow{OJ})$ ou $(O~;~\overrightarrow{\imath}~,~\overrightarrow{\jmath})$) alors :

Tout vecteur \vec{u} admet un unique couple de coordonnées $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ dans la *base* $(\vec{\imath} \; ; \; \vec{\jmath})$ tel que $\vec{u} = x \vec{\imath} + y \vec{\jmath}$

Figure 12.1 – Décomposition de vecteurs dans la base $(\vec{\imath}~;~\vec{\jmath})~\overrightarrow{OP}=2\vec{\imath}+6\vec{\jmath}$ et $\vec{u}=4\vec{\imath}+3\vec{\jmath}$

12.2 Norme d'un vecteur

Définition 12.2 — Norme.

Soit \overrightarrow{u} un vecteur de l'espace, et soit A et B deux points tel que $\overrightarrow{AB} = \overrightarrow{u}$.

La norme $\|\vec{u}\|$ est la longueur du segment [AB] et on note $\|\vec{u}\| = \|\overrightarrow{AB}\| = AB$.

Définition 12.3 — Repère orthonormé.

Le repère $(O\,;\,\vec{\imath}\,,\,\vec{\jmath})$ est orthonormé si, en posant $\vec{\imath}=\overrightarrow{OI}$ et $\vec{\jmath}=\overrightarrow{OJ}$ on a :

— (OI), (OJ) sont perpendiculaires.

$$-\|\vec{\imath}\| = \|\vec{\jmath}\| = 1$$

Théorème 12.1

Pour tout vecteur $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ de l'espace muni d'un repère $(O\,;\,\vec{\imath}\,,\,\vec{\jmath}\,,\,\vec{k})$ orthonormé :

$$\|\overrightarrow{u}\| = \sqrt{x^2 + y^2}$$

12.2.1 Approche géométrique du produit scalaire

Définition 12.4 — formule trigonométrique.

Pour deux vecteurs \vec{u} et \vec{v} non nuls. Le produit scalaire est le réel noté $\vec{u} \cdot \vec{v}$ tel que :

$$\overrightarrow{u} \cdot \overrightarrow{v} = \|\overrightarrow{u}\| \times \|\overrightarrow{v}\| \times \cos(\overrightarrow{u}, \overrightarrow{v})$$

[formule trigonometrique]

Si $\vec{u} = \vec{0}$ ou $\vec{v} = \vec{0}$ alors le produit scalaire est $\vec{u} \cdot \vec{v} = 0$.

R Pour l'angle orienté $(\overrightarrow{u}~;~\overrightarrow{v})$ on prendra des représentants de \overrightarrow{u} et de \overrightarrow{v} de même origine.

Figure 12.2 – Si H est le projeté orthogonal de A sur (OB), alors $\|\overrightarrow{u}\|\cos\theta = \overline{OH}$

(a)
$$\vec{u} \cdot \vec{v} > 0$$
 avec $\vec{u} \cdot \vec{v} = OH \times OB$

(b)
$$\vec{u} \cdot \vec{v} < 0$$
 avec $\vec{u} \cdot \vec{v} = -OH \times OB$

Exemple 12.1 Déterminer $\vec{u} \cdot \vec{v}$ dans la figure ci-contre.

solution.

Par la formule trigonométrique Par lecture graphique $\vec{u} \begin{pmatrix} 4 \\ 0 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 3 \\ 3 \end{pmatrix}$.

$$\|\vec{u}\| = 4$$
, $\|\vec{v}\| = \sqrt{3^2 + 3^2} = 3\sqrt{2}$, et $(\vec{u} \; ; \; \vec{v}) = \frac{\pi}{4} = 45^{\circ}$.

Donc $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos(\vec{u}, \vec{v})$

$$=4\times3\sqrt{2}\times\cos\left(\frac{\pi}{4}\right)=12$$

Par la projection

■ Exemple 12.2 On peut prendre le projeté scalaire d'un vecteur \vec{u} le long de \vec{v} même si les représentants choisis sont d'origine différentes :

$$\overrightarrow{AB} \cdot \overrightarrow{CD} = \overrightarrow{AB} \cdot \overrightarrow{C'D'} = \overline{AB} \times \overline{C'D'}$$

Figure 12.3 – C' et D' sont les projetés orthogonaux de C et D perpendiculairement sur la droite (AB).

- (a) Le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{CD} = \overline{AB} \times \overline{C'D'}$ est positif si $\overrightarrow{C'D'}$ est du même sens que \overrightarrow{AB} .
- **(b)** Le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{CD} = \overrightarrow{AB} \times \overrightarrow{C'D'}$ est négatif si $\overrightarrow{C'D'}$ et \overrightarrow{AB} sont de sens contraire.

Définition 12.5 — orthogonalité de vecteurs.

Deux vecteurs \vec{u} et \vec{v} sont dit *orthogonaux* (notation $\vec{u} \perp \vec{v}$) si le produit scalaire $\vec{u} \cdot \vec{v} = 0$:

$$\vec{u} \perp \vec{v} \iff \vec{u} \cdot \vec{v} = 0 \iff \begin{cases} (\vec{u} \; ; \; \vec{v}) = \pm \frac{\pi}{2} \\ \text{ou } \vec{u} = \vec{0} \text{ ou } \vec{v} = \vec{0} \end{cases}$$

En particulier, le vecteur $\vec{0}$ est orthogonal à tous les autres vecteurs.

Démonstration.

$$0 = \vec{u} \cdot \vec{v}$$

$$\iff 0 = \|\vec{u}\| \|\vec{v}\| \cos(\vec{u}, \vec{v})$$

$$\iff \|\vec{u}\| = 0 \text{ ou } \|\vec{v}\| = 0 \text{ ou } \cos(\vec{u}, \vec{v}) = 0$$

Corollaire 12.2 — perpendicularité de droites.

Deux droites du plan sont *perpendiculaires* si et seulement si elles sont dirigées selon deux vecteurs *orthogonaux*.

$$(AB) \perp (CD) \iff \overrightarrow{AB} \cdot \overrightarrow{CD} = 0$$

3

12.2.2 Propriétés du produit scalaire

Propriétés 12.3 — admis.

(PS1) Le produit scalaire est symétrique :

$$\forall \vec{u}, \ \forall \vec{v} \qquad \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

(PS2) Le produit scalaire est défini positif:

$$\forall \vec{u}$$
 $\vec{u}^2 = \vec{u} \cdot \vec{u} = ||\vec{u}||^2 \geqslant 0$ avec égalité $\vec{u} \cdot \vec{u} = 0 \iff \vec{u} = \vec{0}$

(PS3) Le produit scalaire est bilinéaire :

$$\forall \vec{u}, \ \vec{v}, \ \vec{w} \qquad \vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} \qquad \qquad \text{[distributif pour l'addition]}$$

$$(\vec{v} + \vec{w}) \cdot \vec{u} = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} \qquad \qquad \text{[distributivit\'e à droite]}$$

$$\forall c \in \mathbb{R}, \qquad \vec{u} \cdot (c\vec{v}) = c(\vec{u} \cdot \vec{v}) = (c\vec{u}) \cdot \vec{v} \qquad \qquad \text{[multiplication par un r\'eel]}$$

Ainsi il n'a pas d'ambiguïté dans l'écriture $c\vec{u}\cdot\vec{v}$ et on peut écrire :

$$\overrightarrow{u} \cdot (a\overrightarrow{v} + b\overrightarrow{w}) = a\overrightarrow{u} \cdot \overrightarrow{v} + b\overrightarrow{u} \cdot \overrightarrow{w}$$

■ Exemple 12.3

Sachant que $\vec{u} \cdot \vec{v} = 3$, $\vec{v} \cdot \vec{w} = 5$, $\vec{u} \cdot \vec{w} = -1$ et $||\vec{u}|| = 4$, déterminer $(\vec{u} + 2\vec{v}) \cdot (-3\vec{u} + 4\vec{w})$.

solution.
$$(\vec{u} + 2\vec{v}) \cdot (-3\vec{u} + 4\vec{w}) = -3\vec{u} \cdot \vec{u} + 4\vec{u} \cdot \vec{w} - 6\vec{v} \cdot \vec{u} + 8\vec{v} \cdot \vec{w}$$

$$= -3||\vec{u}||^2 + 4\vec{u} \cdot \vec{w} - 6\vec{v} \cdot \vec{u} + 8\vec{v} \cdot \vec{w}$$

$$= 3 \times 4^2 + 4 \times (-1) - 6 \times 3 + 8 \times 5 = -30$$

Démonstration.

(PS1) $(\vec{v}; \vec{u}) = -(\vec{u}; \vec{v})$, et la fonction cos est paire, donc $\cos(\vec{u}; \vec{v}) = \cos(\vec{v}; \vec{u})$.

(PS2)
$$\vec{u} \cdot \vec{u} = \|\vec{u}\| \|\vec{u}\| \cos(\vec{u}, \vec{u}) = \|\vec{u}\|^2 \cos(0) = \|\vec{u}\|^2$$

(PS3) Illustration de la ditributivité sur la figure 12.4

$$\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{AB} \cdot \overrightarrow{CD} = \overrightarrow{AB} \cdot (\overrightarrow{AC} + \overrightarrow{CD}) = \overrightarrow{AB} \cdot \overrightarrow{AD}$$

Illustration de la multiplication par un réel sur la figure 12.5:

$$\overrightarrow{AB} \cdot (k\overrightarrow{CD}) = \|\overrightarrow{AB}\| \times \|k\overrightarrow{CD}\| \cos(\overrightarrow{AB} \ ; \ k\overrightarrow{CD})$$

$$= \|\overrightarrow{AB}\| \times |k| \|\overrightarrow{CD}\| \cos(\overrightarrow{AB} \ ; \ \overrightarrow{CE})$$

$$\text{si } k > 0 = \|\overrightarrow{AB}\| \times k \|\overrightarrow{CD}\| \cos(\theta) \qquad \text{si } k < 0 = \|\overrightarrow{AB}\| \times (-k) \|\overrightarrow{CD}\| \cos(\theta + \pi)$$

$$= k\overrightarrow{AB} \cdot \overrightarrow{CD} \qquad = \|\overrightarrow{AB}\| \times (-k) \|\overrightarrow{CD}\| \times (-1) \cos(\theta)$$

$$= k\overrightarrow{AB} \cdot \overrightarrow{CD}$$

Figure 12.4 – Cas où $\overline{AC'}$, $\overline{C'D'}$ et \overline{AB} sont de même signe

(a)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{AB} \cdot \overrightarrow{CD} = \overline{AC'} \times \overline{AB} + \overline{C'D'} \times \overline{AB}$$

$$= (\overline{AC'} + \overline{C'D'}) \times \overline{AB}$$

$$= \overline{AD} \times \overline{AB}$$

(b)
$$\overrightarrow{AB} \cdot \overrightarrow{AD} = \overrightarrow{AD} \times \overrightarrow{AB}$$

Figure 12.5 – Illustration de l'identité $k\overrightarrow{CD} = \overrightarrow{CE}$.

(a)
$$k > 0$$
, alors $(\overrightarrow{AB} \; ; \; k\overrightarrow{CD}) = (\overrightarrow{AB} \; ; \; \overrightarrow{CD}) = \theta$

(b)
$$k < 0$$
 alors $(\overrightarrow{AB} ; k\overrightarrow{CD}) = \theta + \pi$.

12.3 Approche analytique du produit scalaire

On se place dans un plan muni d'un repère orthonormé $(O\,;\,\vec{\imath}\,,\,\vec{\jmath})$:

- Les vecteurs \vec{i} et \vec{j} sont orthogonaux : $\vec{i} \cdot \vec{j} = 0$;
- Les vecteurs $\vec{\imath}$ et $\vec{\jmath}$ sont unitaires : $\|\vec{\imath}\| = 1$ et $\|\vec{\jmath}\| = 1$

Théorème 12.4 On se place dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

Pour les vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix} = x\vec{i} + y\vec{j}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix} = x'\vec{i} + y'\vec{j}$, on a : $\vec{u} \cdot \vec{v} = xx' + yy'$

Démonstration.
$$\overrightarrow{u} \cdot \overrightarrow{v} = (x \overrightarrow{\imath} + y \overrightarrow{\jmath}) \cdot (x' \overrightarrow{\imath} + y' \overrightarrow{\jmath})$$

$$= xx' \overrightarrow{\imath} \cdot \overrightarrow{\imath} + xy' \overrightarrow{\imath} \cdot \overrightarrow{\jmath} + yx' \overrightarrow{\jmath} \cdot \overrightarrow{\imath} + yy' \overrightarrow{\jmath} \cdot \overrightarrow{\jmath}$$

$$= xx' + yy'$$

$$= xx' + yy'$$

$$par bilnéarité (PS3)$$

$$(\overrightarrow{\imath}, \overrightarrow{\jmath}) \text{ est une base orthonormée}$$

■ Exemple 12.4 Calculer $\vec{u} \cdot \vec{v}$ pour $\vec{u} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

solution. $\overrightarrow{u} \cdot \overrightarrow{v} = 1 \times 3 + 1 \times 2 = 5$.

■ Exemple 12.5 Montrer que $\vec{v}\binom{3}{2}$ et $\vec{v}\binom{-1}{\frac{3}{2}}$ sont orthogonaux.

solution. $\overrightarrow{u} \cdot \overrightarrow{v} = 3 \times (-1) + 2 \times \frac{3}{2} = 0$.

Propriété 12.5 — calculer un angle. \vec{u} et \vec{v} sont deux vecteurs non nuls. Si $\theta = (\vec{u} \; ; \; \vec{v})$ alors :

$$\cos(\theta) = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\| \|\overrightarrow{v}\|}$$

■ Exemple 12.6 Soit \vec{u} et \vec{v} tel que $\|\vec{u}\| = 2$, $\|\vec{v}\| = \sqrt{3}$ et $\vec{u} \cdot \vec{v} = \sqrt{6}$. Déterminer $(\vec{u}; \vec{v})$

solution.

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos(\vec{u} \; ; \; \vec{v})$$

$$\sqrt{6} = 2 \times \sqrt{3} \times \cos(\vec{u} \; ; \; \vec{v})$$

$$\cos(\vec{u} \; ; \; \vec{v}) = \frac{\sqrt{6}}{2\sqrt{3}} = \frac{\sqrt{2}}{2}$$

$$(\vec{u} ; \vec{v}) = \arccos\left(\frac{\sqrt{2}}{2}\right) = \dots$$

■ Exemple 12.7 — calculer un angle entre deux vecteurs.

On se place dans un repère orthonormé $(O; \vec{\imath}, \vec{\jmath})$.

Soit les vecteurs $\vec{u} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -1 \\ 0 \end{pmatrix}$. Déterminer une mesure de l'angle $\theta = (\vec{u} \; ; \; \vec{v})$.

solution.

$$\overrightarrow{u}\cdot\overrightarrow{v}=\|\overrightarrow{u}\|\|\overrightarrow{v}\|\cos(\theta)$$

$$2(-1) + 3(0) = \sqrt{2^2 + 3^2} \sqrt{(-1)^2 + 0^2} \cos(\theta)$$

$$\cos(\theta) = \frac{-2}{\sqrt{13}}$$

$$\theta = \arccos\left(\frac{-2}{\sqrt{13}}\right) \approx 99^{\circ}$$

12.3.1 Exercices

Exercice 12.1

1. Représenter dans le repère orthonormé les vecteurs suivants :

a) le vecteur $\overrightarrow{AB} \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ d'origine A(2; 5) b) le vecteur $\overrightarrow{CD} \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ d'origine C(3; -2)

2. Lire les coordonnées des vecteurs : $\vec{v}\left(\begin{array}{c} \\ \\ \end{array}\right)$; $\vec{v}\left(\begin{array}{c} \\ \\ \end{array}\right)$; $\vec{v}\left(\begin{array}{c} \\ \\ \end{array}\right)$; $\vec{q}\left(\begin{array}{c} \\ \\ \end{array}\right)$; $\vec{r}\left(\begin{array}{c} \\ \\ \end{array}\right)$

Exercice 12.2

Calculer les coordonnées du vecteur demandé :

1.
$$\overrightarrow{AB}$$
 avec $A(2;3)$, $B(4;7)$

3.
$$\overrightarrow{BA}$$
 avec $A(2;5)$, $B(3;0)$

2.
$$\overrightarrow{AB}$$
 avec $A(3; -1)$, $B(1; 4)$

4.
$$\overrightarrow{BA}$$
 avec $A(0;4)$, $B(6;-1)$

12.3.2 Exercices : Produit scalaires, les définitions

Exercice 12.3

À l'aide de la formule trigonométrique, déterminer $\vec{u} \cdot \vec{v}$ pour chaque cas :

1.
$$\|\vec{u}\| = 5$$
, $\|\vec{v}\| = \sqrt{3}$ et $(\vec{u}; \vec{v}) = 135^{\circ}$.

$$|3. ||\vec{u}|| = 2, ||\vec{v}|| = 2 \text{ et } (\vec{u}; \vec{v}) = 120^{\circ}.$$

2.
$$\|\vec{u}\| = 2$$
, $\|\vec{v}\| = 2$ et $(\vec{u}; \vec{v}) = -60^{\circ}$.

Exercice 12.4

À l'aide de la formule du projeté, déterminer les produits scalaires suivants :

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = \dots \qquad | \overrightarrow{OA} \cdot \overrightarrow{MN} = \dots$$

$$\overrightarrow{OA} \cdot \overrightarrow{OA} = \dots$$
 $\overrightarrow{OA} \cdot \overrightarrow{UV} = \dots$

$$\overrightarrow{OA} \cdot \overrightarrow{CD} = \dots$$
 $\overrightarrow{OA} \cdot \overrightarrow{KL} = \dots$

$$\overrightarrow{OA} \cdot \overrightarrow{EF} = \dots \qquad \overrightarrow{UV} \cdot \overrightarrow{PQ} = \dots$$

$$\overrightarrow{OA} \cdot \overrightarrow{GH} = \dots$$
 $\overrightarrow{OB} \cdot \overrightarrow{PQ} = \dots$

Exercice 12.5

Dans chaque cas, utiliser les propriétés du produit scalaire pour déterminer :

- 1. Si $\vec{u} \cdot \vec{v} = 2$, $\vec{u} \cdot \vec{w} = -3$, $\vec{w} \cdot \vec{v} = 0$, $\|\vec{u}\| = 1$, $\|\vec{v}\| = 2$ et $\|\vec{w}\| = 3$ alors:
 - a) $(-2\vec{u}) \cdot \vec{w} = \dots$
 - b) $(3\vec{v}) \cdot \vec{v} = \dots \vec{v} \cdot \vec{v} = \dots \| \dots \|^{\dots} = \dots$
 - c) $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \dots + \dots$
 - d) $(\vec{u} 3\vec{v}) \cdot (2\vec{w}) = \dots$
 - e) $(\vec{u} \vec{v}) \cdot (\vec{u} + \vec{v}) = \dots$
- 2. Si $\|\vec{u}\| = 3$, $\|\vec{v}\| = 5$ et $\vec{u} \cdot \vec{v} = 12$, alors :
 - a) $\vec{u} \cdot (\vec{u} + \vec{v}) = \vec{u} \cdot \vec{u} + \vec{u} \cdot \vec{v} = ||\vec{u}||^2 + \dots = \dots$
 - b) $2\vec{u} \cdot (-3\vec{v}) = \dots$
 - c) $\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v})^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \dots$
 - =......
- 3. Si $\|\vec{u}\| = 2$, $\|\vec{v}\| = 3$ et $\vec{u} \cdot \vec{v} = -4$, alors :

 $\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v})^2 = \dots$

=.....

4. Si $\|\vec{u}\| = 3$, $\|\vec{v}\| = 4$ et $\vec{u} \cdot \vec{v} = -6$, alors :

 $\|\vec{u} - \vec{v}\|^2 = (\vec{u} - \vec{v})^2 = \dots$ $= \dots$

Le plan est muni d'un repère orthonormé $(O; \vec{\imath}, \vec{\jmath})$:

Exercice 12.6

Calculer les produits scalaires demandés:

1.
$$\vec{u} \cdot \vec{v}$$
 avec $\vec{u} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -1 \\ 5 \end{pmatrix}$.

2.
$$\vec{u} \cdot \vec{v}$$
 avec $\vec{u} \begin{pmatrix} 15 \\ -8 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 6 \\ 9 \end{pmatrix}$.

3.
$$\vec{u} \cdot \vec{v}$$
 avec $\vec{u} \begin{pmatrix} -1 \\ -3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 4 \\ -4 \end{pmatrix}$

3.
$$\overrightarrow{u} \cdot \overrightarrow{v}$$
 avec $\overrightarrow{u} \begin{pmatrix} -1 \\ -3 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} 4 \\ -4 \end{pmatrix}$
4. $\overrightarrow{AB} \cdot \overrightarrow{CD}$ avec $A(5; 6), B(-1; 4), C(3; 7), D(8; 9)$

Exercice 12.7

Déterminer si les vecteurs \vec{u} et \vec{v} sont orthogonaux.

1.
$$\vec{u} \begin{pmatrix} 4 \\ 5 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 10 \\ -8 \end{pmatrix}$.

1.
$$\vec{u} \begin{pmatrix} 4 \\ 5 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 10 \\ -8 \end{pmatrix}$. $\left| 2. \vec{u} \begin{pmatrix} -2 \\ 7 \end{pmatrix} \right|$ et $\vec{v} \begin{pmatrix} -14 \\ -4 \end{pmatrix}$. $\left| 3. \vec{u} \begin{pmatrix} a \\ b \end{pmatrix} \right|$ et $\vec{v} \begin{pmatrix} -b \\ a \end{pmatrix}$. $\left| 4. \vec{u} \begin{pmatrix} a \\ b \end{pmatrix} \right|$ et $\vec{v} \begin{pmatrix} 3b \\ -3a \end{pmatrix}$.

3.
$$\vec{u}\binom{a}{b}$$
 et $\vec{v}\binom{-b}{a}$.

4.
$$\vec{u}\binom{a}{b}$$
 et $\vec{v}\binom{3b}{-3a}$

Exercice 12.8

Soit P(3;4), Q(-5;1), M(7;3), and N(4;11). Montrer que les droites (PQ) et (MN) sont perpendiculaires.

Exercice 12.9

Dans chaque cas donner les valeurs possibles de $(\overrightarrow{AB}; \overrightarrow{AC})$. Arrondir au degré près.

1.
$$AB = 6$$
, $AC = 2\sqrt{3}$ et $\overrightarrow{AB} \cdot \overrightarrow{AC} = 18$

1.
$$AB = 6$$
, $AC = 2\sqrt{3}$ et $\overrightarrow{AB} \cdot \overrightarrow{AC} = 18$ | 3. $AB = 1$, $AC = 3$ et $\overrightarrow{AB} \cdot \overrightarrow{AC} = -3$

2.
$$AB = \sqrt{6}$$
, $AC = \sqrt{2}$ et $\overrightarrow{AB} \cdot \overrightarrow{AC} = 5$ 4. $AB = 2$, $AC = \frac{1}{2}$ et $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$

4.
$$AB = 2$$
, $AC = \frac{1}{2}$ et $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$

Exercice 12.10 — entrainement.

Déterminer \widehat{BAC} au degré près dans les cas suivants.

1.
$$A(-3; 2)$$
, $B(3; 0)$ et $C(0; 6)$

1.
$$A(-3;2)$$
, $B(3;0)$ et $C(0;6)$ | 2. $A(-2;2)$, $B(3;1)$ et $C(-1;2)$ | 3. $A(1;3)$, $B(0;-2)$ et $C(1;-2)$

12.3.3 Applications géométriques directes

■ Exemple 12.8 — Applications aux équations cartésiennes de droites.

La droite D passant par $P(x_0,y_0)$ et de vecteur normal $\overrightarrow{n}(\frac{a}{b})$ est l'ensemble des points M(x,y)du plan tel que $\overrightarrow{n} \cdot \overrightarrow{PM} = 0$.

$$M(x,y) \in D \iff \overrightarrow{n} \begin{pmatrix} a \\ b \end{pmatrix} \cdot \overrightarrow{PM} \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix} = 0$$

$$\iff a(x - x_0) + b(y - y_0) = 0$$

$$\iff ax + by \underbrace{-ax_0 - by_0}_{c} = 0$$

$$\iff ax + by + c = 0$$

On dit que D: ax + by + c = 0 est une équation cartésienne de la droite D.

Exercice 12.11

Déterminer une équation cartésienne de la droite d passant par $A(-6\;;\;-4)$ et de vecteur normal

9

Exercice 12.12

Soit A(-1; 3), B(2; 6) et C(17; 1).

Déterminer une équation cartésienne de la droite d passant par A et perpendiculaire à (BC).

Exercice 12.13 — nature d'un triangle.

Soit J(6; 1), K(2; 4), L(1; -5) et $M(-\frac{5}{2}; -2)$.

- 1. Le triangle JKL est-il rectangle en J?
- 2. Montrer que JKM est rectangle.

Exercice 12.14 — nature d'un quadrilatère.

Soit F(-2; -3), A(-8; 4), K(-29; -14) et E(-23; -21).

- 1. Montrer que $\overrightarrow{FA} = \overrightarrow{EA}$. Que peut-on en déduire?
- 2. Montrer que les droites (FA) et (FE) sont perpendiculaires. Que peut-on en déduire?

Exercice 12.15 — entrainement.

Soit T(-3; 8), R(8; 0), U(16; 11) et E(5; 19).

- 1. Montrer que TRUE est un parallélogramme.
- 2. Montrer que TRUE est un parallélogramme rectangle.
- 3. Montrer que TRUE est un parallélogramme carré.

Exercice 12.16 — entrainement.

Soit C(2; -9), H(5; -21), E(8; -9) et F(5; 3). Montrer que CHEF est un losange.

Exercice 12.17 — révision.

Déterminer si les vecteurs \vec{u} et \vec{v} sont colinéaires.

1.
$$\vec{u} \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 3 \\ -\frac{9}{2} \end{pmatrix}$.
2. $\vec{u} \begin{pmatrix} 7 \\ -2 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 14 \\ 4 \end{pmatrix}$.

3.
$$\overrightarrow{u} \begin{pmatrix} 6a \\ 3b \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} 4a \\ 2b \end{pmatrix}$.
4. $\overrightarrow{u} \begin{pmatrix} 3a \\ -a \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} -15a \\ 5a \end{pmatrix}$.

Exercice 12.18 — revision.

Soit P(-3; 1), Q(6; 4), M(2; -2), and N(5; -1). Montrer que (PQ)//(MN).