- 30. The nucleic acid molecule of claim 29, comprising nucleotides 73 to 1251 of SEQ ID NO:3.
- 31. The nucleic acid molecule of claim 27, comprising a polynucleotide encoding an amino acid sequence at least 90% identical to amino acids 1 to 417 of SEQ ID NO:4.
- 32. The nucleic acid molecule of claim 31, comprising a polynucleotide encoding an amino acid sequence at least 95% identical to amino acids 1 to 417 of SEQ ID NO:4.
- 33. The nucleic acid molecule of claim 32, comprising a polynucleotide encoding amino acids 1 to 417 of SEQ ID NO:4.
- 34. The nucleic acid molecule of claim 33, comprising nucleotides 1 to 1251 of SEQ ID NO:3.
- 35. The nucleic acid molecule of claim 27, further comprising a heterologous polynucleotide.
- 36. The nucleic acid molecule of claim 35, wherein said heterologous polynucleotide encodes a heterologous polypeptide.
- 37. A method of producing a vector which comprises inserting the nucleic acid molecule of claim 27 into a vector.

(h)

- 38. A vector comprising the nucleic acid molecule of claim 27.
- 39. The vector of claim 38, wherein said nucleic acid molecule is operably associated with a heterologous regulatory polynucleotide.
 - 40. A host cell comprising the nucleic acid molecule of claim 27.
- 41. The host cell of claim 40, wherein said nucleic acid molecule is operably associated with a heterologous regulatory polynucleotide.
- 42. A method of producing a polypeptide which comprises culturing the host cell of plaim 41 under conditions such that said polypeptide is expressed, and recovering said polypeptide.
- 43. An isolated nucleic acid molecule comprising a polynucleotide encoding an amino acid sequence at least 90% identical to the mature amino acid sequence encoded by the cDNA clone in ATCC Deposit No. 97757.
- 44. The nucleic acid molecule of claim 43, comprising a polynucleotide encoding an amino acid sequence at least 95% identical to the mature amino acid sequence encoded by the cDNA clone in ATCC Deposit No. 97757.

ha M

- 45. The nucleic acid molecule of claim 44, comprising a polynucleotide encoding the mature amino acid sequence encoded by the cDNA clone in ATCC Deposit No. 97757.
- 46. The nucleic acid molecule of claim 43, comprising a polynucleotide encoding an amino acid sequence at least 90% identical to the complete amino acid sequence encoded by the cDNA clone in ATCC Deposit No. 97757.
- 47. The nucleic acid molecule of claim 46, comprising a polynucleotide encoding an amino acid sequence at least 95% identical to the complete amino acid sequence encoded by the cDNA clone in ATCC Deposit No. 97757.

M?

- 48. The nucleic acid molecule of claim 47, comprising a polynucleotide encoding the complete amino acid sequence encoded by the cDNA clone in ATCC Deposit No. 97757.
- 49. The nucleic acid molecule of claim 43, further comprising a heterologous polynucleotide.
- 50. The nucleic acid molecule of claim 49, wherein said heterologous polynucleotide encodes a heterologous polypeptide.
- 51. A method of producing a vector which comprises inserting the nucleic acid molecule of claim 43 into a vector.
 - 52. A vector comprising the nucleic acid molecule of claim 43.

- The vector of claim 52, wherein said nucleic acid molecule is operably associated 53. with a heterologous regulatory polynucleotide.
 - 54. A host cell comprising the nucleic acid molecule of claim 43.
- The host cell of claim 54, wherein said nucleic acid molecule is operably 55. associated with a heterologous regulatory polynucleotide.

A method of producing a polypeptide which comprises culturing the host cell of claim 55 under conditions such that said polypeptide is expressed, and recovering said polypeptide.

- An isolated nucleic acid molecule comprising a polynucleotide encoding an amino 57. acid sequence selected from the group consisting of:
 - amino adids 1 to 22 in SEQ ID NO:2; (a)
 - amino acids 33 to 56 in SEQ ID NO:2; (b)
 - amino açids/59 to 82 in SEQ ID NO:2; and (c)
 - amino acids 95 to 112 in SEQ ID NO:2. (d)
- The nucleic acid molecule of claim 57, which comprises a polynucleotide 58. encoding amino acids 1 to 22 of SEQ ID NO:2.

- 59. The nucleic acid molecule of claim 57, which comprises a polynucleotide encoding amino acids 33 to 56 of SEQ ID NO:2.
- 60. The nucleic acid molecule of claim 57, which comprises a polynucleotide encoding amino acids 59 to 82 of SEQ ID NO:2.
- 61. The nucleic acid molecule of claim 57, which comprises a polynucleotide encoding amino acids 95 to 112 of SEQ ID NO:2.
- 62. The nucleic acid molecule of claim 57, further comprising a heterologous polynucleotide.
- 63. The nucleic acid molecule of claim 62, wherein said heterologous polynucleotide encodes a heterologous polypeptide.
- 64. A method of producing a vector which comprises inserting the nucleic acid molecule of claim 57 into a vector.
 - 65. A vector comprising the nucleic acid molecule of claim 57.
- 66. The vector of claim 65, wherein said nucleic acid molecule is operably associated with a heterologous regulatory polynucleotide.
 - 67. A host cell comprising the nucleic acid molecule of claim 57.

DZ

- 68. The host cell of claim 67, wherein said nucleic acid molecule is operably associated with a heterologous regulatory polynucleotide.
- 69. A method of producing a polypeptide which comprises culturing the host cell of claim 68 under conditions such that said polypeptide is expressed, and recovering said polypeptide.
 - 70. An isolated nucleic acid molecule comprising a polynucleotide encoding an amino acid sequence selected from the group consisting of:
 - (a) amino acids 179 to 190 in SEQ ID NO:2; and
 - (b) amino acids 196 to 205 in SEQ ID NO:2.
 - 71. The nucleic acid molecule of claim 70, which comprises a polynucleotide encoding amino acids 179 to 190 of SEQ ID NO:2.
 - 72. The nucleic acid molecule of claim 70, which comprises a polynucleotide encoding amino acids 196 to 205 of SEQ ID NO:2.
 - 73. The nucleic acid molecule of claim 70, further comprising a heterologous polynucleotide.
 - 74. The nucleic acid molecule of claim 73, wherein said heterologous polynucleotide encodes a heterologous polypeptide.

my.

- 75. A method of producing a vector which comprises inserting the nucleic acid molecule of claim 70 into a vector.
 - 76. A vector comprising the nucleic acid molecule of claim 70.
- 77. The vector of claim 76, wherein said nucleic acid molecule is operably associated with a heterologous regulatory polynucleotide.
 - 78. A host cell comprising the nucleic acid molecule of claim 70.
- 79. The host cell of claim 78, wherein said nucleic acid molecule is operably associated with a heterologous regulatory polynucleotide.
- 80. A method of producing a polypeptide which comprises culturing the host cell of claim 79 under conditions such that said polypeptide is expressed, and recovering said polypeptide.
- 81. An isolated nucleic acid molecule comprising a polynucleotide encoding an amino acid sequence which is at least 95% identical to a reference amino acid sequence selected from the group consisting of:
 - (a) amtrao acids 25 to 201 in SEQ ID NO:4;
 - (b) amino acids 202 to 224 in SEQ ID NO:4;
 - (c) amino acids 225 to 417 in SEQ ID NO:4; and

My.

- (d) amino acids 342 to 408 in SEQ ID NO:4.
- 82. The nucleic acid molecule of claim 81, which comprises a polynucleotide encoding an amino acid sequence at least 95% identical to the amino acid sequence of (a).
- 83. The nucleic acid molecule of claim 82, which comprises a polynucleotide encoding the amino acid sequence of (a).
- 84. The nucleic acid molecule of claim 83, which comprises nucleotides 73 to 603 of SEQ ID NO:3.
- 85. The nucleic acid molecule of claim 81, which comprises a polynucleotide encoding an amino acid sequence at least 95% identical to the amino acid sequence of (b).
- 86. The nucleic acid molecule of claim 85, which comprises a polynucleotide encoding the amino acid sequence of (b).
- 87. The nucleic acid molecule of claim 86, which comprises nucleotides 604 to 672 of SEQ ID NO:3.
- 88. The nucleic acid molecule of claim 81, which comprises a polynucleotide encoding an amino acid sequence at least 95% identical to the amino acid sequence of (c).

My

- 89. The nucleic acid molecule of claim 88, which comprises a polynucleotide encoding the amino acid sequence of (c).
- 90. The nucleic acid molecule of claim 89, which comprises nucleotides 673 to 1251 of SEQ ID NO:3.
- 91. The nucleic acid molecule of claim 81, which comprises a polynucleotide encoding an amino acid sequence at least 95% identical to the amino acid sequence of (d).
- 92. The nucleic acid molecule of claim 91, which comprises a polynucleotide encoding the amino acid sequence of (d).
- 93. The nucleic acid molecule of claim 92, which comprises nucleotides 1024 to 1224 of SEQ ID NO:3.
- 94. The nucleic acid molecule of claim 81, further comprising a heterologous polynucleotide.
- 95. The nucleic acid molecule of claim 94, wherein said heterologous polynucleotide encodes a heterologous polypeptide.
- 96. A method of producing a vector which comprises inserting the nucleic acid molecule of claim 81 into a vector.

MY

- 97. A vector comprising the nucleic acid molecule of claim 81.
- 98. The vector of claim 97, wherein said nucleic acid molecule is operably associated with a heterologous regulatory polynucleotide.
 - 99. A host cell comprising the nucleic acid molecule of claim 81.
- 100. The host cell of claim 99, wherein said nucleic acid molecule is operably associated with a heterologous regulatory polynucleotide.
- 101. A method of producing a polypeptide which comprises culturing the host cell of claim 100 under conditions such that said polypeptide is expressed, and recovering said polypeptide.
- 102. An isolated nucleic acid molecule comprising a first polynucleotide which hybridizes to the complement of a second polynucleotide consisting of the nucleotide sequence of the coding region of SEQ ID NO:1 under the following conditions:
- (a) incubating overnight at 42 °C in a solution consisting of 50% formamide, 5x SSC, 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and $20~\mu g/ml$ denatured, sheared salmon sperm DNA; and
- (b) washing at 65°C in a solution consisting of 0.1x SSC; wherein said first polynucleotide encodes at least 50 contiguous amino acids of SEQ ID NO:2.

- 103. The nucleic acid molecule of claim 102, further comprising a heterologous polynucleotide.
- 104. The nucleic acid molecule of claim 103, wherein said heterologous polynucleotide encodes a heterologous polypeptide.
- 105. A method of producing a vector which comprises inserting the nucleic acid molecule of claim 102 into a vector.
 - 106. A vector comprising the nucleic acid molecule of claim 102.
- 107. The vector of claim 106, wherein said nucleic acid molecule is operably associated with a heterologous regulatory polynucleotide.
 - 108. A host cell comprising the nucleic acid molecule of claim 102.
- 109. The host cell of claim 108, wherein said nucleic acid molecule is operably associated with a heterologous regulatory polynucleotide.
- 110. A method of producing a polypeptide which comprises culturing the host cell of claim 109 under conditions such that said polypeptide is expressed, and recovering said polypeptide.

MV

- 111. An isolated nucleic acid molecule comprising a first polynucleotide which hybridizes to the complement of a second polynucleotide consisting of the nucleotide sequence of the coding region of SEQ ID NO:1 under the following conditions:
- (a) incubating overnight at 42 °C in a solution consisting of 50% formamide, 5x SSC, 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and $20~\mu g/ml$ denatured, sheared salmon sperm DNA; and
 - (b) washing at 65°C in a solution consisting of 0.1x SSC; wherein said first polynucleotide encodes an active death domain.
- 112. The nucleic acid molecule of claim 111, further comprising a heterologous polynucleotide.
- 113. The nucleic acid molecule of claim 112, wherein said heterologous polynucleotide encodes a heterologous polypeptide.
- 114. A method of producing a vector which comprises inserting the nucleic acid molecule of claim 111 into a vector.
 - 115. A vector comprising the nucleic acid molecule of claim 111.
- 116. The vector of claim 115, wherein said nucleic acid molecule is operably associated with a heterologous regulatory polynucleotide.
 - 117. A host cell comprising the nucleic acid molecule of claim 111.

pa

118. The host cell of claim 117, wherein said nucleic acid molecule is operably associated with a heterologous regulatory polynucleotide.

119. A method of producing a polypeptide which comprises culturing the host cell of claim 118 under conditions such that said polypeptide is expressed, and recovering said polypeptide.--

Remarks

After cancellation of claims 1-21 and 23-26 and entry of the claims set out above, claims 22 and 27-119 will be pending in the captioned application, with claims 22, 27, 43, 57, 70, 81, 102, and 111 being the independent claims.

I. The Restriction Requirement

The Examiner has restricted the originally filed claims into the following groups:

- Claims 1 to 21, drawn to an isolated nucleic acid, classified in class 435, subclass69.1.
- II. Claim 22, drawn to an isolated protein, classified in class 530, subclass 350.
- III. Claim 23, drawn to an antibody, classified in class 530, subclass 388.22.
- IV. Claim 24, in so far as it is drawn to a method of treatment by administering a receptor protein, classified in class 514, subclass 2.
- V. Claim 24, in so far as it is drawn to a method of treatment by administering a compound of unspecified constitution which is an agonist of a receptor protein, classification undeterminable.