SI 201 Project 1

The name of the dataset: Sample Superstore Dataset

Collaborators: Xiwen Mark, Chih-Hsiang Chang

GenAl: We might need to use generative Al for later implementation process

Columns: Sales, profits, discount, subcategory, category

Questions and Calculations:

Load_csv():

a. Output: cat dict: dict{category: {subcat:[sales, discount, profits]}}

Get function: total sales, profits and discount

- a. **Function name:** get_total_sales_discount_profits(cat_dict)
- b. Input: dict{category: {subcat:[sales, discount, profits]}} [cat dict]
- c. Output: dict{category: {subcat:[total sales, total discount, total profits]} [cat total dict]

Get function: total entries of category

- a. Function name: get_total_entires(cat_dict)
- b. Input: dict{category: {subcat:[sales, discount, profits]}}[cat_dict]
- c. Output: dict{category: total_entires(int)]}

1. What is the profit margin of Technology? (Chih-Hsiang Chang)

- a. **Function name**: profit_margin(cat_dict, category)
- b. Input: Input: dict{category: {subcat:[total_profits, total_sales, total_discount]} [get function 1], category (string)
- c. Output: profit margin (float)

2. What is the most profitable subcategory in Technology? (Chih-Hsiang Chang)

- a. **Function name**: most_profitable_subcategory_in_category(cat_dict, category)
- b. Input: dict{category: {sub:[profits, sales, discount]}}, category(string)
- c. Output: subcategory (string)
 - i. Sum up profits in each sub category, and compute the highest profit

3. What is the average sales for Technology? (Xiwen Mark)

- a. **Function name**: calc average sales(cat dict, total entires category, category)
- b. Input: dict{category: {subcat:[total_profits, total_sales, total_discount]} [get function 1], total entries of category [get function 2], category(string)
- c. Output: average sales (float)
 - i. total sales / n

4. What is the average discount rate for Technology? (Xiwen Mark)

- a. **Function name**: avg_discount(cat_dict, total_entires_category, category)
- b. Input: dict{category: {subcat:[total_profits, total_sales, total_discount]} [get function1], dict{category: total_entires(int)]} [get function 2], category(string)
- c. Output: average discount (float)
 - i. total discount / n

main()

Runs the program and calls the functions in a logical sequence

load_csv(csv_file)

Read CSV and transform to Python Data Structures

Input: csv_file
Output:cat_dict(nested dicts)

get_total_sales_ profits_discount (categories)

Create a dictionary containing all categories with their total sales, total profit, and total discount. Input: Categories (nested dictionaries) Output: total (dictionary)

get_total_entires_category (Category)

Count the total number of entries in that category
Input: Categories (list of dictionaries)
Output: total_entries(dictionary)

profit_margin_of_category (total_dict, category)

Calculates the profit margin of the subcategories under the category of technology, returns the profit margin

Input: categories (nested dicts), category (string)

Output: profit_margin (float)

most_profitable_subcategory_in_category (cat_dict, category)

Finds the most profitable subcategory under the main category of tech, returns the most profitable sub-category Input: cat_aic(rested dicts), category (string) Output: highest_profit_sub (string)

calc_average_sales (total_dict, total_entires_dict, category)

Calculates average discount for items in that category, returns total sales Input: total_salict (nested dicts), total_entires_dict (nested dicts)
Output: averages_sales (float)

avg_discount_rate(total_dict, total_entires_dict, category)

Finds the average discount in category, returns average discount Input: categories (list of dicts), category (string), total_entires_category (int) Output: avg_discount_rate (float)

generate _report(profit_margin, most_profitable_sub, average_sales, average discount)