Econ 301 - Microeconomic Theory 2

Winter 2018

Lecture 3: January 10, 2018

Lecturer: Jean Guillaume Forand Notes By: Harsh Mistry

3.1 Consumer Choice Continued

- Given a preference relation \succeq on \mathbb{R}^2_* ,
 - The strict preference relation \succ on \mathbb{R}^2_* is defined such that x > y if an only if $x \succeq y$ but not $y \succeq x$
 - The indifference relation \sim on \mathbb{R}^2_* is defined such that $x \sim y$ iff $x \succeq y$ and $y \succeq x$
 - Having as primitives the weak preference relation is equivalent to having as primitives the strict preference and indifference relations
- An arbitrary preference relation need not correspond to preferences we find interesting or reasonable

Example 3.1 Fix pref. rel. \succeq on \mathbb{R}^2_*

- 1. Say \succeq such that not $x \succeq y$ for all $x, y \in \mathbb{R}^2_*$
 - Consumer is **not** indifferent between all bundles, but incapable of stating preferences
- 2. Say \succeq is such that there exists $x, y, z \in \mathbb{R}^2_*$ with $x \succ y \succ z$ and $z \succ x$
 - Ranking of bundles x and z are inconsistent when,
 - * compared through y, x is best
 - * compared directly, z is best

Definition 3.2 The preference relation \succeq on \mathbb{R}^2_* is

- 1. Complete if, for all $x, y \in \mathbb{R}^2_*$, either $x \succeq y$ or $y \succ x$ (or both)
- 2. <u>Transitive</u> if, for all $x, y, z \in \mathbb{R}^2_*$ such that $x \succeq y \succeq z$, we have $x \succeq z$
- These are rationality assumptions
- Completeness assumes that DM has capacity to reflect on his preferences
- Transitivity
 - is critical theoretically (without it, optimal choices need not exists)
 - is problematic empirically
 - * Say good 1 is beer, good 2 is cigarettes

$$x = (2,0)$$
 $y = (0,0),$ $z = (2,1)$

Definition 3.3 Given a preference relation succest on \mathbb{R}^2_* and a bundle z, the indifference curve of z is the set of $\{x \in \mathbb{R}^2_* : x \sim z\}$

• Indifference curves need not be line segments

Example 3.4 Say \succeq on \mathbb{R}^2_* such that $x \succeq y$ for all $x, y \in \mathbb{R}^2_*$

• Indifference curves need not be downward sloping.

Example 3.5 Say \succeq on \mathbb{R}^2_* such that there exists bundle \hat{x} such that $x \succeq y$ iff x is lower to \hat{x} than y is

- \hat{x} is the "bliss point"

• Indifference curves need not be smooth or differentiable

Example 3.6 Perfect complements, i.e \succeq on \mathbb{R}^2_* such that $x \succeq y$ iff $min\{x_1, x_2\} \geq min\{y_1, y_2\}$

