Mixture-of-ITEs

François G

May 2023

1 The nonparametric model

Let X denote a random vector of pretreatment covariates, and Y the random variable denoting the individualized treatment effect (ITE). Let the random vector $(C_1, \ldots, C_K)^T$ denote a one-hot encoded identifier for the cluster $k = 1, \ldots, K$ an observation belongs to. We assume the following nonparametric data generating process.

Denoting $\rho_1(X) \stackrel{\text{def}}{=} \mathbb{E}[C_1|X], \ldots, \quad \rho_K(X) \stackrel{\text{def}}{=} \mathbb{E}[C_K|X]$, the probability of an observation belonging to cluster $1, \ldots, K$ respectively, we have

$$(C_1,\ldots,C_K)^T|X \sim Multinomial(n=1,k=K,p=(\rho_1(X),\ldots,\rho_K(X))^T).$$

Denoting $q_k(X) \stackrel{\text{def}}{=} \mathbb{E}[Y|X, C_k = 1]$, and assuming these functions exist for all k = 1, ..., K, we have

$$\mathbb{E}[Y|X] = \sum_{k=1}^{K} \mathbb{P}(C_k = 1|X) \,\mathbb{E}[Y|X, C_k = 1]$$
$$= \sum_{k=1}^{K} \rho_k(X) q_k(X).$$

We assume that given X, the random variable Y is sampled from a probability density $f_{Y|X}(y|x)$ with expected value $\mathbb{E}[Y|X=x] = \sum_{k=1}^K \rho_k(x)q_k(x)$. Consistent with the terminology of Jacobs et al. [1] and Jordan and Jacobs [2] we call "expert networks" the functions $q_k(\cdot)$, $k=1,\ldots,K$ and "gating network" the function $\{\rho(\cdot)\}_{k=1}^K$.

2 Fitting algorithm

To estimate $\{\rho_k(\cdot)\}_{k=1}^K$ we need posit a density for $f_{Y|X,K}(y|x,k)$. In the fitting algorithm below we posit that $f_{Y|X,K}(y|x,k)$ is a normal distribution.

Algorithm 1 The nonparametric EM-like procedure for estimating $\{\rho_k(\cdot)\}_{k=1}^K$.

Input: Data $(X_i, Y_i)_{1 \le i \le n}$, and $K \in \mathbb{N}$ the numbers of clusters.

Initialize the prior probabilities associated with the nodes of the tree as

$$g_{k,i} \leftarrow 1/K$$
 for $k = 1, \dots, K$,

and use the shorthand

$$G = \begin{bmatrix} g_{1,1} & \dots & g_{1,K} \\ \dots & \dots & \dots \\ g_{n,1} & \dots & g_{n,K} \end{bmatrix}.$$

Initialize the individual predictions from the expert networks e.g.,

$$\mu_{k,i} \sim \mathcal{U}_{[-1,1]}$$
 for $k = 1, \dots, K$.

Iterate until convergence on *G*:

Compute individual contributions to each expert's likelihood as

$$L_{k,i} \leftarrow \mathcal{N}_{\mathcal{L}}(Y_i|\mu = \mu_{k,i}, \sigma^2 = 1)$$
 for $k = 1, \dots, K$.

Compute the posterior probabilities associated with the nodes of the tree as

▷ E-step

$$h_{k,i} \leftarrow \frac{g_{k,i}L_{k,i}}{\sum_{l=1}^{K}g_{l,i}L_{l,i}}$$
 for $k = 1, \dots, K$.

For each expert network fit $\hat{q}_k(\cdot), k=1,\ldots,K$ separately with a weighted nonparametric classifier with features X_i , labels Y_i and weights $h_{k,i}$.

For the gating network jointly fit $\{\hat{p}_k(\cdot)\}_{k=1}^K$ as a multiclass classification problem with features X_i and labels $(h_i, h_{K'})$

features X_i , and labels $(h_{1,i}, \dots, h_{K,i})$. Update the predictions from the expert networks as

$$\mu_{k,i} \leftarrow \hat{q}_k(X_i)$$
 for $k = 1, \dots, K$.

Update the prior probabilities associated with the nodes of the tree as

$$g_{k,i} \leftarrow \hat{\rho}_k(X_i)$$
 for $k = 1, \dots, K$.

Return: $\{\hat{\rho}_k(\cdot)\}_{k=1}^K$

References

- [1] Robert A Jacobs et al. "Adaptive mixtures of local experts". In: *Neural computation* 3.1 (1991), pp. 79–87.
- [2] Michael I Jordan and Robert A Jacobs. "Hierarchical mixtures of experts and the EM algorithm". In: *Neural computation* 6.2 (1994), pp. 181–214.