1. Read the CSV file & Apply the summary command)

Dt<-read.csv(file="C:\\Users\\tejve\\Desktop\\Arrowsmith.csv",head=TRUE,sep=",",skip = 4) attach(Dt)

summary(Dt)

The command will give all the statistical Parameters of all the variables in Data Frame. (Missing values) & Outliers (Boxplot)

```
> summary(Dt)
                             Arrowsmith.search
                                                  A.lit.size
                                                                 C.lit.size
                                                                                      B.term
                                                                                                      target
APP vs reelin
                                      :1003
                                                Min.
                                                      : 786
                                                               Min.
                                                                      : 493
                                                                                            6
                                                                                                 Min.
                                                                                                        :-2.0000
                                                                               abnormal
                                                1st Qu.:3352
                                                               1st Qu.:2562
Calpain vs PSD
                                       :3131
                                                                               acid
                                                                                                 1st Qu.:-1.0000
magnesium vs migraine
                                       :1879
                                                Median:3352
                                                               Median :2562
                                                                               activation:
                                                                                                 Median :-1.0000
mGluR5 vs lewy bodies
                                                      :3935
                                                                                                       :-0.9714
                                      : 820
                                                Mean
                                                               Mean
                                                                      :2970
                                                                               active
                                                                                                 Mean
NO and mitochondria vs PSD
                                                               3rd Qu.:3205
                                                                                                 3rd Qu.:-1.0000
                                       : 584
                                                3rd Qu.:5122
                                                                               activity
retinal detachment vs aortic aneurysm:2294
                                                       :6238
                                                                               adult
                                                                                                        : 3.0000
                                                                               (Other)
                                                                                         :9675
                                      nof.MeSH.in.common nof.semantic.categories cohesion.score
                                                                                                      n.in.MEDLINE
                                                                 : 0.0
                              1.000
                                                                                   Min.
Min.
           1.00
                   Min.
                                      Min.
                                                   0
                                                          Min.
                                                                                          :0.03532
                                                                                                     Min.
                                                          1st Qu.: 1.0
                                                                                   1st Qu.:0.08257
                                                                                                     1st Qu.:
                                                                                                               1484
1st Qu.:
           1.00
                   1st Qu.:
                              1.000
                                      1st Qu.:
                                                   0
           2.00
Median :
                   Median :
                              2.000
                                      Median :
                                                   2
                                                          Median: 1.0
                                                                                   Median :0.12299
                                                                                                      Median :
                                                                                                               7184
          12.56
7.00
                                             : 7882
Mean
                   Mean
                              8.502
                                      Mean
                                                          Mean
                                                                 : 1.5
                                                                                   Mean
                                                                                         :0.13407
                                                                                                     Mean
                                                                                                            : 27299
                                                          3rd Qu.: 2.0
3rd Qu.:
                   3rd Qu.:
                              5.000
                                                                                   3rd Qu.:0.17463
                                                                                                     3rd Qu.: 26387
                                      3rd Qu.:
       :5120.00
                          :5686.000
                                              :99999
                                                                 :14.0
                                                                                   Max.
                                                                                          :0.99990
                                                                                                             :932232
Max.
                   Max.
                                      Max.
                                                          Max.
                                                                                                     Max.
```

```
X1st.year.in.MEDLINE
                                           on.medium.stoplist. on.long.stoplist.
                           pAC
                     Min.
                             :0.0000000
Min.
       :1902
                                           Min.
                                                  :0.0000
                                                                Min.
                                                                       :0.0000
                                                                                   Μ
1st Qu.:1947
                      1st Qu.:0.0000294
                                           1st Qu.:0.0000
                                                                1st Qu.:0.0000
                                                                                   N
Median :1949
                      Median :0.0236043
                                           Median :0.0000
                                                                Median :1.0000
       :1950
Mean
                      Mean
                             :0.2745940
                                           Mean
                                                  :0.4548
                                                                Mean
                                                                       :0.6568
3rd Qu.:1952
                      3rd Qu.:0.5521481
                                           3rd Qu.:1.0000
                                                                3rd Qu.:1.0000
                             :1.0000000
Max.
       :9999
                      Max.
                                           Max.
                                                  :1.0000
                                                                Max.
                                                                       :1.0000
```

Summary Statistics: (Before Transformation)

#1.

#Literature sizes should be comparable.

```
y_equals_x <- function(x) {x}
y_equals_x_by_2 <- function(x) {x/2}</pre>
```

Plot literature C size vs literature A size.

lit_A_size <- tapply(A.lit.size, Arrowsmith.search, mean)</pre>

lit_C_size <- tapply(C.lit.size, Arrowsmith.search, mean)</pre>

plot(lit_A_size,lit_C_size,xlim = c(0,7000), ylim = c(0,7000), xlab = "Literature A size", ylab= "Literature C size",pch = 16, main = "Literature A size vs Literature C size")

curve(y_equals_x,from = 0, to = 7000, add = TRUE)

curve(y_equals_x_by_2,from = 0, to = 7000, add = TRUE)

#The literature (A and C) sizes are not comparable as we can see

#2.
#Number of B terms for each standard:

barplot(tapply(B.term,Arrowsmith.search,length),main="Number of B terms for each standard")

#There is quite a deep variation in number of B-terms for each standard

■ PIOL ZOOTI

#3. #Nof Mesh Terms in common:

hist(nof.MeSH.in.common,probability = TRUE, main = "Density histogram for number of common MeSH terms",xlab = "Number of common Mesh terms")

hist(log10(nof.MeSH.in.common),probability = TRUE, main = "Density histogram for number of common MeSH terms log10 scaled.",xlab = "log10(Number of common MeSh terms)")

boxplot(nof.MeSH.in.common,ylab="nof.MeSH.in.common")

#From the Box-plot we see that term has outliers.(points which outside the 1.5 times the Interquartile Range)

It also has missing values(99999)

#4. nof.semantic.categories

boxplot(nof.semantic.categories,ylab="nof.semantic.categories")

#From the boxplot The variable nof.semantic.Categories has outliers.(points which outside the 1.5 times the Interquartile Range)

5. Exploring cohesion score

hist(cohesion.score, main = "Cohesion score histogram",xlab = "Cohesion score")

As seen in the histogram, number of values above 0.3 is very few. Hence, that might be the motive choosing 0.3 as the upper limit.

boxplot(cohesion.score,ylab="cohesion.score")

#From the boxplot we see that the variable has significant outliers.(points which outside the 1.5 times the Interquartile Range)

The variable cohesion.score has missing values(0.99990)

#6. n.in.MEDLINE

boxplot(n.in.MEDLINE,ylab="n.in.MEDLINE")

From the boxplot we see the variable n.in.MEDLINE has outlier.(points which outside the 1.5 times the Interquartile Range)

#7.
#Pairwise scatter plots.
plot(Dt[1:13])

#There was no relation found among any pairs of variables, but just literature A and literature C size. However, these two are not used to calculate two different features.

#8 (Na)

boxplot(nA,ylab="nA")

From the boxplot the "nA" variable has outlier.(points which outside the 1.5 times the Interquartile Range)

boxplot(nC,ylab="nC")

From the boxplot the "nC" variable has outlier.(points which outside the 1.5 times the Interquartile Range)

10. A new feature. x_new

x_new <- -abs((nA/A.lit.size) -(nC/C.lit.size))</pre>

I think that none of the features capture intuition that if a B-term occurs a lot frequently in A but not in C or vice-versa, then it is less relevant. In other words, number of articles containing B-term should be in both literatures should be comparable.

The number of occurences in MEDLINE is a similar feature but that only captures that very common and very rare words in MEDLINE are less relevant. It doesn't capture the intuition that a B-term very frequent in one literature but very rare in other literature will mostly likely be irrelevant.

I am not sure if this will prove to be a useful parameter. It is even difficult to test because we are not provided with any test data. The best evaluation I can do is check for statistical significance based on the p-value

#After Transformation:

```
1.
\#X1 = 1 if (nA > 1 or A-lit size < 1000) and (nC > 1 or C-lit size < 1000), 0 otherwise
X1<-ifelse((nA > 1 | A.lit.size < 1000) & (nC > 1 | C.lit.size < 1000),1,0)
    2. Nof Mesh
X2 = 1 if nof MeSH > 0 and < 99999, 0.5 if nof MeSH = 99999, 0 otherwise
X2<-c()
for (i in 1:length(nof.MeSH.in.common)) {
if (nof.MeSH.in.common[i] > 0 & nof.MeSH.in.common[i] < 99999) {
 X2 < -append(X2,1)
} else if (nof.MeSH.in.common[i] == 99999) {
 X2<-append(X2,0.5)
} else { X2<-append(X2,0) }
}
# The variable nof.mesh.in.common has missing values before transformation, after transformation(X2)
there are no missing values.
boxplot(X2,ylab="nof.mesh.in.common")
#From the boxplot we see that there are no outliers. (points which outside the 1.5 times the
Interquartile Range)
```


3. Nof Semantic Categories

#X3 = 1 if nof semantic categories > 0, 0 otherwise

X3<-ifelse(nof.semantic.categories>0,1,0)

The variable nof.semantic.categories have outliers before transformation but after transformation it does not have.

boxplot(X3,ylab="nof.semantic.categories")

#From the boxplot we see that there are outliers.(points which outside the 1.5 times the Interquartile Range)

4. Cohesion score

#X4 = cohesion score if cohesion score < 0.3, 0.3 otherwise

X4<-ifelse(cohesion.score<0.3,cohesion.score,0.3)

##The variable cohesion.score has missing values before transformation but after transformation there are no missing values.

boxplot(X4,ylab="cohesion.score")

#From the box plot we see that it does not have outliers.(points which outside the 1.5 times the Interquartile Range)

5.

N in MEDLINE

#X5 = -|log10(n in MEDLINE) - 3|

X5<--abs(log10(n.in.MEDLINE)-3)

boxplot(X5,ylab="n.in.MEDLINE")

#From the box plot we see that n.in.MEDILINE has outliers.(points which outside the 1.5 times the Interquartile Range)

6. 1st year in MEDLINE

#X6 = max(min(1st year in MEDLINE,2005),1950)

X6<- pmax(pmin(X1st.year.in.MEDLINE,2005),1950)

boxplot(X6,ylab="1st year in MEDLINE")

#From the boxplot we see that it has too many outliers.(points which outside the 1.5 times the Interquartile Range)

7.pAC

#X7 = min(8, -log10(pAC+0.000000001))

X7<-pmin(8,-log10(pAC+0.00000001))

boxplot(X7,ylab="pAC")

#From the box plot we see that X7 does not have any outliers.(points which outside the 1.5 times the Interquartile Range)


```
8.
```

The following are research literatures (A and C)

#I1 = 1 if Arrowsmith search = 'retinal detachment', 0 otherwise

I1<-ifelse(Arrowsmith.search=='retinal detachment vs aortic aneurysm',1,0)

12<-ifelse(Arrowsmith.search=='NO and mitochondria vs PSD',1,0)

13<-ifelse(Arrowsmith.search=='mGluR5 vs lewy bodies',1,0)</pre>

14<-ifelse(Arrowsmith.search=='magnesium vs migraine',1,0)</pre>

15<-ifelse(Arrowsmith.search=='Calpain vs PSD',1,0)</pre>

16<-ifelse(Arrowsmith.search=='APP vs reelin',1,0)</pre>

9.

#The output (In logistic Regression)

#Y = 1 if target = 0 or 2, 0 otherwise

Y<-ifelse(target==0 | target==2,1,0)

10. Combining all the variables above:

new_frame<data.frame(X1=X1,X2=X2,X3=X3,X4=X4,X5=X5,X6=X6,X7=X7,I1=I1,I2=I2,I3=I3,I4=I4,I5=I5,I6=I6,Y=Y)

summary(new_frame)

```
> summary(new_Trame)
      X1
                       X2
                                       X3
                                                       X4
                                                                        X5
      :0.0000
                                       :0.000
                                                                         :-2.9695240
                       :0.000
                                                       :0.03532
                 Min.
                                 Min.
                                                                                              :1950
Min.
                                                 Min.
                                                                  Min.
                                                                                       Min.
1st Qu.:0.0000
                 1st Qu.:0.000
                                 1st Qu.:1.000
                                                 1st Ou.:0.08257
                                                                  1st Qu.:-1.4628917
                                                                                       1st Qu.:1950
Median :1.0000
                 Median :1.000
                                 Median :1.000
                                                 Median :0.12299
                                                                  Median :-0.9739126
                                                                                       Median:1950
Mean
      :0.5092
                 Mean
                        :0.661
                                 Mean
                                       :0.788
                                                 Mean
                                                       :0.13353
                                                                  Mean
                                                                         :-1.0124482
                                                                                       Mean
                                                                                              :1955
3rd Qu.:1.0000
                 3rd Qu.:1.000
                                 3rd Qu.:1.000
                                                 3rd Qu.:0.17463
                                                                  3rd Qu.:-0.4933186
                                                                                       3rd Qu.:1952
                                                       :0.30000
Max.
       :1.0000
                 Max.
                        :1.000
                                 Max.
                                        :1.000
                                                 Max.
                                                                  Max. :-0.0004341
                                                                                       Max.
                                                                                              :2005
      X7
                       11
                                       12
                                                         I3
                                                                           14
                                                                                           I5
      :0.0000
                        :0.0000
                                                          :0.00000
                                                                                             :0.0000
                                        :0.00000
                                                                            :0.0000
Min.
                                  Min.
                 Min.
                                                   Min.
                                                                     Min.
                                                                                      Min.
1st Qu.:0.2579
                 1st Qu.:0.0000
                                  1st Qu.:0.00000
                                                   1st Qu.:0.00000
                                                                     1st Qu.:0.0000
                                                                                      1st Qu.:0.0000
Median :1.6270
                 Median :0.0000
                                  Median :0.00000
                                                   Median :0.00000
                                                                     Median :0.0000
                                                                                      Median :0.0000
Mean
      :2.7400
                 Mean
                       :0.2362
                                  Mean
                                        :0.06014
                                                   Mean
                                                          :0.08444
                                                                     Mean
                                                                            :0.1935
                                                                                      Mean
                                                                                             :0.3224
3rd Qu.:4.5316
                 3rd Qu.:0.0000
                                  3rd Qu.:0.00000
                                                    3rd Qu.:0.00000
                                                                     3rd Qu.:0.0000
                                                                                      3rd Qu.:1.0000
Max. :8.0000
                 Max. :1.0000
                                  Max.
                                        :1.00000
                                                   Max.
                                                          :1.00000
                                                                     Max.
                                                                            :1.0000
                                                                                      Max.
                                                                                             :1.0000
```

```
16
Min.
       :0.0000
                  Min.
                         :0.00000
1st Qu.:0.0000
                  1st Qu.:0.00000
Median :0.0000
                  Median :0.00000
Mean
       :0.1033
                  Mean
                         :0.03357
                  3rd Qu.:0.00000
3rd Qu.:0.0000
Max.
       :1.0000
                  Max.
                         :1.00000
```

#Logistic Regression

1.

Checking for assumptions:

Independence: As sample size is quite large, assuming that all observations are independent from each other.

Multicollinearity: I checked for corelation by pairs command (Scatter plot). There was none found .Hence, it can be concluded that there is no multicollinearity.

plot(new_frame[1:14])

2.

Weights' interpretation:

All weights are interpreted as how much would log(odds) change with one unit change in that feature provided everything else is constant.

For binary features, weight is interpreted as how much log(odds) will change if that feature is true.

3.

Model evalation techniques used:

- # 1. Check p-values of all estimates.
- # 2. Check null deviance of the model

4.

 $fit_model < glm(formula = Y^X1 + X2 + X3 + X4 + X5 + X6 + X7 + I1 + I2 + I3 + I4 + I5 + I6, family = binomial, data = new_frame)$

summary(fit_model)

#I saw from the summary(fit_model) command ,all the weights related to my feature (x1 to x7) are related to the model described in Table S2 (in the supplemental data file) in the research paper.

```
Call:
 glm(formula = Y \sim X1 + X2 + X3 + X4 + X5 + X6 + X7 + I1 + I2 +
     I3 + I4 + I5 + I6, family = binomial, data = new_frame)
 Deviance Residuals:
     Min
               1Q
                    Median
                                  3Q
                                          Max
                                       3.7272
          -0.2108 -0.1116
                            -0.0611
 -1.7965
 Coefficients: (1 not defined because of singularities)
              Estimate Std. Error z value Pr(>|z|)
                                   -8.018 1.07e-15 ***
 (Intercept) -86.14907
                         10.74423
 X1
               0.73220
                          0.15558
                                   4.706 2.52e-06 ***
 X2
               0.98770
                          0.24633
                                    4.010 6.08e-05 ***
 X3
                                     5.102 3.35e-07 ***
               1.31738
                          0.25819
                                   11.041 < 2e-16 ***
 X4
              13.76594
                          1.24677
                                     5.115 3.13e-07 ***
                          0.11460
 X5
               0.58621
                                     7.207 5.71e-13
                                                    ***
 Х6
               0.03957
                          0.00549
X7
              0.18873
                         0.02509
                                   7.521 5.45e-14 ***
Ι1
              0.92686
                         0.23316
                                   3.975 7.03e-05 ***
Ι2
              1.38271
                         0.24258
                                   5.700 1.20e-08 ***
Ι3
                         0.22672
                                   4.218 2.46e-05 ***
              0.95634
Ι4
              0.68351
                         0.25120
                                   2.721 0.00651 **
I5
             -1.10016
                         0.21004
                                  -5.238 1.63e-07 ***
16
                   NA
                              NA
                                      NA
                                               NA
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 2853.9
                           on 9710
                                    degrees of freedom
                                    degrees of freedom
Residual deviance: 1997.5 on 9698
AIC: 2023.5
```

#The null deviance decrease from 2853.9 to 1997.5, so the model is better fitted by logistic regression.

#I saw from the summary(fit_model) command ,all the weights related to my feature (x1 to x7) are related to the model described in Table S2 (in the supplemental data file) in the research paper.

All the P -values of the features(estimate) (X1 to X7) is less than 0.05, so the model is statistically significant. There is a relationship between output (Y) and the features (X1 to X7).

The estimate(Weight) of X1 is "0.73220"->binary feature, weight is interpreted as how much log(odds) will change if that feature is true

#The estimate (Weight) of X2 is "0.98770"->log(odds) change with one unit change in that feature provided everything else is constant.

#The estimate (Weight) of X3 is "1,31738"->binary feature, weight is interpreted as how much log(odds) will change if that feature is true

#The estimate (Weight) of X4 is "13.76594"->log(odds) change with one unit change in that feature provided everything else is constant.

#The estimate (Weight) of X5 is "0.58621"->log(odds) change with one unit change in that feature provided everything else is constant.

#The estimate (Weight) of X6 is "0.03957"->log(odds) change with one unit change in that feature provided everything else is constant.

#The estimate (weight) of X7 is "0.18873"->log(odds) change with one unit change in that feature provided everything else is constant.

#The intercept is (-86.14907) ,it means when the features predicting the output has zero value , then we will get this output(log(odds))

6. Logistic Regression Plots

plot(fit_model)

#Residual vs Fitted model

Above Plot (Square Root of Y-axis: So that outliers are clearly visible)

Residual vs Leverage points

