

Implementation of genetic gain assessment using the BRRI data

Overview

Two datasets

- Aman & Boro
- → Get mean yield for each genotype at each environment

Genetic gain assessment

- 1. Incorporating regression terms in basic MET mixed model
 - Genetic trend: βr_i
 - Per group
 - Agronomic trend: γt_k

Two datasets

• Aman & Boro

Data

Original

SL	Year	Location	Year of release	Rep	Variety	Group	Yield
1	2001	Barisal	1980	1	BR10	Long	3.5
2	2001	Comilla	1980	1	BR10	Long	5.01104651
3	2001	Gazipur	1980	1	BR10	Long	4.28023256
4	2001	Rajshahi	1980	1	BR10	Long	4.48

Original

SL	Year	Location	Year of release	Rep	Variety	Group	Yield
1	2001	Barisal	1980	1	BR10	Long	3.5
2	2001	Comilla	1980	1	BR10	Long	5.01104651
3	2001	Gazipur	1980	1	BR10	Long	4.28023256
4	2001	Rajshahi	1980	1	BR10	Long	4.48

Formatted

				. 1	_			_		V2 - T -1
	Y	t.k		L	Env		G	Rep	Group	
1:	2001	2001	1980	Barisal	2001-Barisal	ВІ	R10	1	Long	3.500000
2:	2001	2001	1980	Comilla	2001-Comilla	ВІ	R10	1	Long	5.011047
3:	2001	2001	1980	Gazipur	2001-Gazipur	ВІ	R10	1	Long	4.280233
4:	2001	2001	1980	Rajshahi	2001-Rajshahi	ВІ	R10	1	Long	4.480000
5:	2001	2001	1980	Rangpur	2001-Rangpur	ВІ	R10	1	Long	3.176419
7631:	2015	2015	2014	Comilla	2015-Comilla	BRRI dha	n66	3	Stress	5.219160
7632:	2015	2015	2014	Gazipur	2015-Gazipur	BRRI dha	n66	3	Stress	1.988598
7633:	2015	2015	2014	Rajshahi	2015-Rajshahi	BRRI dha	n66	3	Stress	4.926488
7634:	2015	2015	2014	Rangpur	<u> </u>			3	Stress	2.200000
7635:	2015	2015	2014	Satkhira	2015-Satkhira	BRRI dha	n66	3	Stress	3.820000

Numeric

New columns

Table: Number of unique entries per column

An	nan	Boro				
	number		number			
Υ	15	Υ	15			
t.k	15	t.k	15			
r.i	18	r.i	16			
L	9	L	10			
Env	116	Env	137			
G	29	G	31			
Rep	3	Rep	3			
Group	5	Group	3			

Table: Number of unique entries per column

An	nan	Boro				
Y t.k r.i L	number 15 15 18 9	Y t.k r.i L	number 15 15 16 10			
Env G Rep Group	116 29 3 5	Env G Rep Group	137 31 3 3			

Basic model for long-term MET data

$$y_{ijk} = \mu + G_i + L_j + Y_k + (LY)_{jk} + (GL)_{ij} + (GY)_{ik} + (GLY)_{ijk}$$
(1)

 y_{ijk} = mean yield of the *i*-th genotype in the *j*-th location and *k*-th year

.. a..a.all m

Two datasets

- Aman & Boro
- → Get mean yield for each genotype at each environment

GxE means

Goal: Obtain yield per genotype and environment averaged over replicates

Option 1: Arithmetic means

```
dat[, ari.mean := mean(Yield), by=c("Env","G")]
```

Goal: Obtain yield per genotype and environment averaged over replicates

Option 1: Arithmetic means

```
dat[, ari.mean := mean(Yield), by=c("Env","G")]
```

Option 2: Adjusted means

For each environment separately:

- 1. Fit simple linear model: $y_{ij} = \mu + g_i + rep_j + e_{ij}$
- 2. Calculate adj. means per genotype
- 3. Calculate Smith's weights (Smith et al., 2001)

		Υ	L	Env	t.k	r.i	Group		G	G.ari.mean	G.adj.mean	w.G
	1:	2001	Barisal	2001-Barisal	2001	1980	Long		BR10	3.873333	3.873333	58.926346
	2:	2001	Barisal	2001-Barisal	2001	1980	Medium		BR11	3.743333	3.743333	58.926346
	3:	2001	Barisal	2001-Barisal	2001	1988	Long		BR22	4.236667	4.236667	58.926346
	4:	2001	Barisal	2001-Barisal	2001	1988	Long		BR23	4.710000	4.710000	58.926346
	5:	2001	Barisal	2001-Barisal	2001	1992	Medium		BR25	4.086667	4.086667	58.926346
25	42:	2015	Sonagazi	2015-Sonagazi	2015	2011	Short	BRRI	dhan57	2.372395	2.372395	15.605064
25	43:	2015	Sonagazi	2015-Sonagazi	2015	2011	Stress	BRRI	dhan57	2.372395	2.372395	15.605064
25	44:	2015	Sonagazi	2015-Sonagazi	2015	2013	Short	BRRI	dhan62	2.784334	2.784334	7.802532
25	45:	2015	Sonagazi	2015-Sonagazi	2015	2014	Short	BRRI	dhan66	3.523763	3.523763	15.605064

3.523763

3.523763 15.605064

2546: 2015 Sonagazi 2015-Sonagazi 2015 2014 Stress BRRI dhan66

Aman

Boro

- 2909: 2015-2016 Sonagazi 2015-2016-Sonagazi 2015 2014 Short BRRI dhan63 3.930000 3.930000 4.818834 2910: 2015-2016 Sonagazi 2015-2016-Sonagazi 2015 2014 Long BRRI dhan64 6.000000 6.000000 4.818834
- 2911: 2015-2016 Sonagazi 2015-2016-Sonagazi 2015 2014 Stress BRRI dhan67 3.956667 3.956667 4.818834 2912: 2015-2016 Sonagazi 2015-2016-Sonagazi 2015 2014 Short BRRI dhan68 6.056667 6.056667 4.818834 2913: 2015-2016 Sonagazi 2015-2016-Sonagazi 2015 2014 Long BRRI dhan69 5.140000 5.140000 4.818834

Genotype-by-environment means from aman dataset.

Genetic gain assessment

1. Incorporating regression terms in basic MET mixed model

Genetic gain assessment

Genetic trend: βr_i Agronomic trend: γt_k

Basic model for long-term MET data $y_{iik} = \mu + G_i + L_i + Y_k + (LY)_{ik} + (GL)_{ii} + (GY)_{ik} + (GLY)_{iik}$ (1) = mean yield of the i-th genotype in the j-th location and k-th year y_{iik} = overall mean μ = main effect of the *i*-th genotype = main effect of the j-th location = main effect of the k-th year = jk-th location × year interaction $(LY)_{ik}$ = ij-th genotype × location interaction = ik-th genotype × year interaction $(GLY)_{iik}$ = residual comprising both genotype × location × year interaction as well as the error of a mean

Genetic gain assessment

Genetic trend per group: βr_{il} Agronomic trend: γt_k

Basic model for long-term MET data $y_{ijk} = \mu + G_i + L_j + Y_k + (LY)_{jk} + (GL)_{ij} + (GY)_{ik} + (GLY)_{ijk} \qquad (1)$ $y_{ijk} = \text{mean yield of the } i\text{-th genotype in the } j\text{-th location and } k\text{-th year}$ $\mu = \text{overall mean}$ $G_i = \text{main effect of the } i\text{-th genotype}$ $L_j = \text{main effect of the } j\text{-th location}$ $Y_k = \text{main effect of the } k\text{-th year}$ $(LY)_{jk} = jk\text{-th location} \times \text{year interaction}$ $(GL)_{ij} = ij\text{-th genotype} \times \text{location interaction}$ $(GY)_{ik} = ik\text{-th genotype} \times \text{year interaction}$ $(GLY)_{ijk} = \text{residual comprising both genotype} \times \text{location} \times \text{year interaction}$ $(GLY)_{ijk} = \text{residual comprising both genotype} \times \text{location} \times \text{year interaction}$ $(GLY)_{ijk} = \text{residual comprising both genotype} \times \text{location} \times \text{year interaction}$ $(GLY)_{ijk} = \text{residual comprising both genotype} \times \text{location} \times \text{year interaction}$

Summary: Genetic gain assessment

Dataset	Group	Genetic Trend	Agronomic Trend		
aman	Aromatic	0.0053 (p=0.562)			
	Long	0.0059 (p=0.520)			
	Medium	0.0059 (p=0.523)	0.0192 (p=0.353)		
	Short	0.0057 (p=0.527)			
	Stress	0.0057 (p=0.529)			
boro	Long	0.0124 (p<0.001)			
	Short	0.0123 (p<0.001)	0.0189 (p=0.779)		
	Stress	0.0123 (p<0.001)			