Concours commun Mines-Ponts

PREMIÈRE ÉPREUVE. FILIÈRE MP

A. Etude d'une norme sur $\mathcal{L}(E)$

$$\textbf{1)} \ \mathrm{On} \ \mathrm{pose} \ A = \left\{ \frac{\|u(x)\|}{\|x\|}, \ x \in E \setminus \{0\} \right\} \ \mathrm{et} \ B = \{\|u(x)\|, \ x \in E, \ \|x\| = 1\}.$$

L'application $\mathfrak u$ est continue sur l'espace vectoriel normé $(E, \| \|)$ car $\mathfrak u$ est linéaire sur l'espace de dimension finie E. Donc, il existe un réel positif M tel que pour tout $x \in E$, $\|\mathfrak u(x)\| \leqslant M\|x\|$.

Puisque $E \neq \{0\}$, A est une partie non vide de \mathbb{R} , majorée par M. On en déduit que A admet une borne supérieure dans \mathbb{R} .

Ensuite, $B \subset A$ car si x est un élément de E de norme 1, alors $x \neq 0$ et $\|u(x)\| = \frac{\|u(x)\|}{\|x\|}$. D'autre part, pour tout $x \neq 0$,

$$\frac{\|\mathbf{u}(\mathbf{x})\|}{\|\mathbf{x}\|} = \left\|\mathbf{u}\left(\frac{1}{\|\mathbf{x}\|}\mathbf{x}\right)\right\| \in \mathbf{B}$$

 $\operatorname{car} \left\| \frac{1}{\|x\|} x \right\| = \frac{\|x\|}{\|x\|} = 1. \text{ Ceci montre que } A \subset B \text{ puis que } A = B. \text{ En particulier, } \operatorname{Sup}(A) = \operatorname{Sup}(B).$

- 2) D'après la question précédente, ||| ||| est une application de $\mathscr{L}(\mathsf{E})$ dans $\mathbb{R}.$
- Soit $u \in \mathcal{L}(E)$. Soit $x_0 \in E \setminus \{0\}$. $||u|| \ge \frac{||u(x_0)||}{||x_0||} \ge 0$.

On a montré que : $\forall u \in \mathcal{L}(E), |||u||| \ge 0$ (positivité).

• Soit $u \in \mathcal{L}(E)$.

$$\begin{aligned} |||u||| &= 0 \Rightarrow \forall x \in E \setminus \{0\}, \ \frac{\|u(x)\|}{\|x\|} \leqslant 0 \Rightarrow \forall x \in E \setminus \{0\}, \ \|u(x)\| = 0 \Rightarrow \forall x \in E \setminus \{0\}, \ u(x) = 0 \\ &\Rightarrow \forall x \in E, \ u(x) = 0 \ (\mathrm{car} \ u \ \mathrm{lin\'eaire}) \\ &\Rightarrow u = 0. \end{aligned}$$

On a montré que : $\forall u \in \mathcal{L}(E)$, ($|||u||| = 0 \Rightarrow u = 0$) (axiome de séparation).

• Soient $u \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$. Pour tout $x \neq 0$, $\frac{\|(\lambda u)(x)\|}{\|x\|} = |\lambda| \frac{\|u(x)\|}{\|x\|} \leqslant |\lambda| \|\|u\|\|$. Donc, $|\lambda| \|\|u\|\|$ est un majorant de $\left\{\frac{\|(\lambda u)(x)\|}{\|x\|}, x \in E \setminus \{0\}\right\}$. Puisque $\|\|\lambda u\|\|$ est le plus petit de ces majorants, on a montré que $\|\|\lambda u\|\| \leqslant |\lambda| \|\|u\|\|$.

On suppose de plus $\lambda \neq 0$. On applique ce qui précède à $\lambda' = \frac{1}{\lambda}$ et $\mathfrak{u}' = \lambda \mathfrak{u}$. On obtient $||\mathfrak{u}|| = ||\lambda'\mathfrak{u}'|| \leqslant |\lambda'| ||\mathfrak{u}'|| = \frac{1}{|\lambda|} |||\lambda\mathfrak{u}||$ et donc $|\lambda| |||\mathfrak{u}|| \leqslant ||\lambda\mathfrak{u}||$ puis $|||\lambda\mathfrak{u}|| = |\lambda| |||\mathfrak{u}||$.

Cette dernière égalité reste vraie quand $\lambda = 0$ car dans ce cas les deux membres de l'égalité sont nuls. On a montré que

$$\forall \ \mathfrak{u} \in \mathscr{L}(\mathsf{E}), \ \forall \lambda \in \mathbb{K}, \ |||\lambda \mathfrak{u}||| = |\lambda \ |||\mathfrak{u}||| \ (\mathrm{homog\acute{e}n\acute{e}it\acute{e}}).$$

• Soit $(u,v) \in (\mathcal{L}(E))^2$. Pour tout $x \neq 0$, $\frac{\|(u+v)(x)\|}{\|x\|} \leqslant \frac{\|u(x)\|}{\|x\|} + \frac{\|v(x)\|}{\|x\|} \leqslant \|\|u\|\| + \|\|v\|\|$. Donc, $\|\|u\|\| + \|\|v\|\|$ est un majorant de $\left\{\frac{\|(u+v)(x)\|}{\|x\|}, \ x \neq 0\right\}$. Puisque $\|\|u+v\|\|$ est le plus petit de ces majorants, on a donc $\|\|u+v\|\| \leqslant \|\|u\|\| + \|\|v\|\|$.

On a montré que : $\forall (u,v) \in (\mathscr{L}(E))^2$, $|||u+v||| \leqslant |||u||| + |||v|||$ (inégalité triangulaire).

Finalement, ||| ||| est une norme sur $\mathcal{L}(\mathsf{E})$.

3) Par définition de $\|\| \|$, pour tout $u \in \mathcal{L}(E)$, pour tout $x \in E$, $\|u(x)\| \leq \|\|u\|\| \|x\|$.

Soit $(\mathfrak{u}, \mathfrak{v}) \in (\mathscr{L}(\mathsf{E}))^2$. Pour tout $x \in \mathsf{E} \setminus \{0\}$,

$$\|uv(x)\| = \|u(v(x))\| \le \|\|u\|\| \|v(x)\| \le \|\|u\|\| \|\|v\|\| \|x\|\|$$

et donc (puisque $\|x\| > 0$) $\frac{\|uv(x)\|}{\|x\|} \le \|\|u\|\| \|\|v\|\|$. Ainsi, $\|\|u\|\| \|\|v\|\|$ est un majorant de $\left\{\frac{\|uv(x)\|}{\|x\|}, x \ne 0\right\}$. Puisque $\|\|uv\|\|$ est le plus petit de ces majorants, on a donc $\|\|uv\|\| \le \|\|u\|\| \|\|v\|\|$. On a montré que $\|\|\|\|$ est une norme sous-multiplicative.

$$\begin{split} &\mathrm{Soit}\ u\in\mathscr{L}(E).\ |||u^0|||=|||Id|||=\mathrm{Sup}\left\{\frac{\|x\|}{\|x\|},\ x\neq 0\right\}=1\leqslant |||u||^0.\\ &\mathrm{D'autre\ part,\ pour}\ k\in\mathbb{N}^*,\ |||u^k|||\leqslant \underbrace{|||u|||\times\ldots\times|||u|||}_{k\ \mathrm{facteurs}}=|||u|||^k.\ \mathrm{Finalement,} \end{split}$$

$$\forall k \in \mathbb{N}, \ |||u^k||| \leqslant |||u|||^k.$$

B. Etude de la stabilité en 0 du système linéaire

4) Posons $\chi_{\mathfrak{a}} = \prod_{i=1}^{r} (X - \lambda_{i})^{\mathfrak{m}_{i}}$ où $r \in \mathbb{N}^{*}$, les λ_{i} sont des complexes deux à deux distincts et les \mathfrak{m}_{i} sont des entiers naturels non nuls de somme \mathfrak{n} .

Puisque les polynômes $(X - \lambda_i)^{\mathfrak{m}_i}$ sont deux à deux premiers entre eux car deux à deux sans racine commune dans \mathbb{C} , le théorème de décomposition des noyaux permet d'affirmer que $\operatorname{Ker}(\chi_A(\mathfrak{a})) = \bigoplus_{i=1}^r \operatorname{Ker}\left((\mathfrak{a} - \lambda_i \operatorname{Id}_{\mathbb{C}^n})^{\mathfrak{m}_i}\right)$. Mais $\chi_{\mathfrak{a}}(\mathfrak{a}) = 0$ d'après le théorème de Cayley-Hamilton et donc

$$E = \bigoplus_{i=1}^r \operatorname{Ker} \left(\alpha - \lambda_i \operatorname{Id}_{\mathbb{C}^n} \right)^{m_i}.$$

5) Soit $i \in [1, r]$. Soit $u \in \mathcal{L}(E_i)$. $q_i u p_i$ est une application linéaire de \mathbb{C}^n dans lui-même ou encore un endomorphisme de \mathbb{C}^n . Pour $x \in \mathbb{C}^n$, $q_i u p_i(x) = q_i u(x_i) = u(x_i)$ car $u(x_i) \in E_i$. Mais alors, pour tout $x \in \mathbb{C}^n$,

$$\|q_i u p_i(x)\| = \|u(x_i)\| \leqslant \|u\|_i \|x_i\| = \|q_i p_i(x)\| \|\|u\|_i \leqslant \||q_i p_i\||_c \|\|u\|_i \|x\|.$$

 $\mathrm{Ainsi,\ pour\ tout\ } x \neq 0,\ \frac{\|q_i u p_i(x)\|}{\|x\|} \leqslant \||q_i p_i\||_c \||u||_i \ \mathrm{et\ donc\ } ||q_i u p_i||_c \leqslant C_i |||u|||_i \ \mathrm{où\ } C_i = \||q_i p_i||_c.$

- 6) Soit $i \in [1,r]$. Deux polynômes en α commutent et en particulier α et $(\alpha \lambda_i Id_{\mathbb{C}^n})^{m_i}$ commutent. On sait alors que α laisse stable $\operatorname{Ker}(\alpha \lambda_i Id_{\mathbb{C}^n})^{m_i} = E_i$.
- 7) Soit $(i, j) \in [1, r]^2$.

 $p_{i}q_{j}\in\mathcal{L}\left(E_{j},E_{i}\right).\text{ Si }j\neq i,\text{ pour tout }x_{j}\in E_{j},\text{ }p_{i}\left(q_{j}\left(x_{j}\right)\right)=p_{i}\left(x_{j}\right)=0\text{ (car les }E_{k}\text{ sont supplémentaires)}.\text{ Donc, si }j\neq i,\\p_{i}q_{j}\text{ est l'application nulle de }E_{j}\text{ dans }E_{i}.$

Si i = j, pour tout $x_j \in E_j$, $p_j(q_j(x_j)) = p_j(x_j) = x_j$ et donc $p_jq_j = Id_{E_i}$.

Ensuite, pour tout $i \in [\![1,r]\!]$, q_ip_i est un endomorphisme de \mathbb{C}^n puis, pour tout $x \in \mathbb{C}^n$, pour tout $i \in [\![1,r]\!]$, $q_ip_i(x) = q_i(x_i) = x_i$. Mais alors, pour tout $x \in \mathbb{C}^n$, $\sum_{i=1}^r q_ip_i(x) = \sum_{i=1}^r x_i = x$. Par suite, $\sum_{i=1}^r q_ip_i = Id_{\mathbb{C}^n}$.

8) Soit $i \in [1, r]$, $q_i a_i p_i$ est bien défini et est un endomorphisme de \mathbb{C}^n . Ensuite, pour tout $x \in \mathbb{C}^n$,

$$q_i a_i p_i(x) = q_i p_i a q_i p_i(x) = q_i p_i (a(x_i)) = a(x_i)$$

car E_i est stable par a. Mais alors, pour tout $x \in \mathbb{C}^n$,

$$\sum_{i=1}^{r} q_{i} \alpha_{i} p_{i}(x) = \sum_{i=1}^{r} \alpha(x_{i}) = \alpha\left(\sum_{i=1}^{r} x_{i}\right) = \alpha(x).$$

On a montré que $\mathfrak{a} = \sum_{i=1}^r q_i \mathfrak{a}_i p_i$.

- 9) Montrons par récurrence que pour tout $k \in \mathbb{N}$, $a^k = \sum_{i=1}^r q_i a^k p_i$.
 - $\bullet \sum_{i=1}^r q_i \alpha_i^0 p_i = \sum_{i=1}^r q_i p_i = \mathrm{Id}_{\mathbb{C}^n} = \mathfrak{a}^0 \text{ d'après la question 7}). \text{ L'égalité est vraie quand } k = 0.$
 - Soit $k \ge 0$. Supposons que $a^k = \sum_{i=1}^r q_i a^k p_i$. Alors

$$\begin{split} \boldsymbol{\alpha}^{k+1} &= \boldsymbol{\alpha}^k \boldsymbol{\alpha} = \left(\sum_{i=1}^r p_i \alpha_i^k q_i\right) \left(\sum_{j=1}^r q_j \alpha_j p_j\right) \text{ (par hypothèse de récurrence)} \\ &= \sum_{(i,j) \in [\![1,r]\!]^2} q_i \alpha_i^k p_i q_j \alpha_j p_j = \sum_{i=1}^r q_i \alpha_i^k \alpha_i p_i \text{ (d'après la question 7))} \\ &= \sum_{i=1}^r q_i \alpha_i^{k+1} p_i. \end{split}$$

Le résultat est démontré par récurrence. On en déduit que pour $t \in \mathbb{R}$ et $N \in \mathbb{N}$,

$$\sum_{k=0}^{N}\frac{1}{k!}(t\alpha)^{k}=\sum_{i=1}^{r}q_{i}\left(\sum_{k=0}^{N}\frac{1}{k!}\left(t\alpha_{i}\right)^{k}\right)p_{i}.$$

 $\begin{array}{lll} \text{Maintenant, pour tout } i \in \llbracket 1,r \rrbracket, \text{ l'application} & \phi_i : \mathscr{L}(E_i) & \to \mathscr{L}(\mathbb{C}^n) & \text{est continue sur } \mathscr{L}(E_i) \text{ car linéaire sur } h & \mapsto & q_i h p_i \\ \text{l'espace de dimension finie } \mathscr{L}(E_i). \text{ On en déduit que pour } t \in \mathbb{R}, \end{array}$

$$\begin{split} e^{t\alpha} &= \lim_{N \to +\infty} \sum_{k=0}^N \frac{1}{k!} (t\alpha)^k = \lim_{N \to +\infty} \sum_{i=1}^r \phi_i \left(\sum_{k=0}^N \frac{1}{k!} \left(t\alpha_i \right)^k \right) \\ &= \sum_{i=1}^r \phi_i \left(\lim_{N \to +\infty} \sum_{k=0}^N \frac{1}{k!} \left(t\alpha_i \right)^k \right) = \sum_{i=1}^r \phi_i \left(e^{t\alpha_i} \right) \\ &= \sum_{i=1}^r q_i e^{t\alpha_i} p_i. \end{split}$$

10) Soit $t \in \mathbb{R}$. Soit $i \in [1, r]$. Les endomorphismes $t(a_i - \lambda_i Id_{E_i})$ et $t\lambda_i Id_{E_i}$ (de E_i) commutent. Donc

$$\begin{split} e^{t\alpha_i} &= e^{t\left(\alpha_i - \lambda_i I d_{E_i}\right) + t\lambda_i I d_{E_i}} = e^{t\left(\alpha_i - \lambda_i I d_{E_i}\right)} e^{t\lambda_i I d_{E_i}} \\ &= e^{t\lambda_i} \sum_{k=0}^{+\infty} \frac{1}{k!} \left(t \left(\alpha_i - \lambda_i I d_{E_i}\right)\right)^k \\ &= e^{t\lambda_i} \sum_{k=0}^{m_i - 1} \frac{t^k}{k!} \left(\alpha_i - \lambda_i I d_{E_i}\right)^k \ \left(\operatorname{car} E_i = \operatorname{Ker} \left(\left(\alpha_i - \lambda_i I d_{\mathbb{C}^n}\right)^{m_i}\right). \end{split}$$

Puisque $\| \| \|_{\mathbf{i}}$ est une norme, sous-multiplicative, sur $\mathcal{L}(\mathsf{E}_{\mathbf{i}})$

$$|||e^{t\alpha_i}|||_i \leqslant \left|e^{t\lambda_i}\right| \sum_{k=0}^{m_i-1} \frac{|t|^k}{k!} |||a_i - \lambda_i Id_{E_i}|||_i^k.$$

 $\textbf{11)} \ \mathrm{On} \ \mathrm{pose} \ C = \mathrm{Max}\{C_{\mathfrak{i}}, \ \mathrm{I} \in \llbracket 1, r \rrbracket\} \ \mathrm{et} \ M = \mathrm{Max}\big\{|||\alpha_{\mathfrak{i}} - \lambda_{\mathfrak{i}} \mathrm{Id}_{E_{\mathfrak{i}}}|||_{\mathfrak{i}}^{k}, \ 1 \leqslant \mathfrak{i} \leqslant r, \ \mathfrak{0} \leqslant k \leqslant \mathfrak{m}_{\mathfrak{i}} - 1\big\}.$

Soit $t \in \mathbb{R}$.

$$\begin{split} |||e^{t\alpha}|||_{c} &\leqslant \sum_{i=1}^{r} |||q_{i}e^{t\alpha_{i}}p_{i}|||_{c} \leqslant \sum_{i=1}^{r} C_{i}|||e^{t\alpha_{i}}|||_{i} \; (\text{d'après la question 5}) \\ &\leqslant \sum_{i=1}^{r} C_{i} \left|e^{t\lambda_{i}}\right| \sum_{k=0}^{m_{i}-1} \frac{|t|^{k}}{k!} |||\alpha_{i} - \lambda_{i} Id_{E_{i}}|||_{i}^{k} \\ &\leqslant CM \sum_{i=1}^{r} e^{\operatorname{Re}(t\lambda_{i})} \sum_{k=0}^{m_{i}-1} \frac{|t|^{k}}{k!} \\ &\leqslant CM \sum_{k=0}^{n} \frac{|t|^{k}}{k!} \sum_{i=1}^{r} e^{t\operatorname{Re}(\lambda_{i})}. \end{split}$$

Le polynôme $P = CM \sum_{k=0}^{n} \frac{X^k}{k!}$ est un polynôme tel que pour tout réel t,

$$|||e^{t\alpha}|||_c \leqslant P(|t|) \sum_{i=1}^r e^{t\operatorname{Re}(\lambda_i)}.$$

12) Soit $t \in \mathbb{R}$. Pour tout $x \in \mathbb{R}^n \setminus \{0\}$,

$$\frac{\|e^{tu_{A}}(x)\|}{\|x\|} = \frac{\|e^{tv_{\alpha}}(x)\|}{\|x\|} \leqslant \||e^{tv_{A}}\||_{c}.$$

 $|||e^{t\nu_A}|||_c \text{ est un majorant de } \left\{\frac{\|e^{tu_A}(x)\|}{\|x\|}, \ x \in \mathbb{R}^n \setminus \{0\}\right\}. \text{ Puisque } |||e^{tu_A}|||_r \text{ est le plus petit de ces majorants, on a donc } |||e^{tu_A}|||_r \leqslant |||e^{t\nu_A}|||_c. \text{ On a montré que } ||e^{t\nu_A}||_c$

$$\forall A \in \mathcal{M}_n(\mathbb{R}), \ \forall t \in \mathbb{R}, \ |||e^{tu_A}|||_r \leqslant |||e^{tv_A}|||_c.$$

13) On note que $u = u_A$.

On sait que pour tout réel t, $g_{x_0}(t) = e^{tu}(x_0)$.

• Supposons que pour tout $x_0 \in \mathbb{R}^n$, $\lim_{t \to +\infty} \|g_{x_0}(t)\| = 0$. Soit λ une valeur propre de A dans \mathbb{C} puis $Z \in \mathcal{M}_n(\mathbb{C}) \setminus \{0\}$ un vecteur propre associé. On note encore z le vecteur de \mathbb{C}^n canoniquement associé à Z et on pose $z = x_0 + ix_1$ où x_0 et x_1 sont deux éléments de \mathbb{R}^n .

On sait que, pour tout réel t, $e^{tv_A}(z) = e^{\lambda t}z$. On en déduit que pour tout réel t,

$$\begin{aligned} \left\| e^{\lambda t} z \right\| &= \left\| e^{t \nu_{\Lambda}}(z) \right\| = \left\| e^{t \nu_{\Lambda}}(x_0) + i e^{t \nu_{\Lambda}}(x_1) \right\| = \left\| e^{t u}(x_0) + i e^{t u}(x_1) \right\| = \left\| g_{x_0}(t) + i g_{x_1}(t) \right\| \\ &\leq \left\| g_{x_0}(t) \right\| + \left| i \right| \left\| g_{x_1}(t) \right\| = \left\| g_{x_0}(t) \right\| + \left\| g_{x_1}(t) \right\|. \end{aligned}$$

D'autre part, pour tout réel t, $\|e^{\lambda t}z\| = \left|e^{\lambda t}\right|\|z\| = e^{t\operatorname{Re}(\lambda)}\|z\|$. Puisque $\lim_{t\to +\infty} (\|g_{x_0}(t)\| + \|g_{x_1}(t)\|) = 0$, on en déduit que $\lim_{t\to +\infty} e^{t\operatorname{Re}(\lambda)}\|z\| = 0$ puis que $\lim_{t\to +\infty} e^{t\operatorname{Re}(\lambda)} = 0$ car $\|z\| \neq 0$ et enfin on en déduit que $\operatorname{Re}(\lambda) < 0$.

 $\mathrm{Ainsi},\,\mathrm{si}\,\,\mathrm{pour}\,\,\mathrm{tout}\,\,x_0\in\mathbb{R}^n,\,\lim_{t\to+\infty}\|g_{x_0}(t)\|=0,\,\mathrm{alors}\,\,\mathrm{Sp}(A)\subset\mathbb{R}_-^*+\mathfrak{i}\mathbb{R}.$

• Supposons que $\operatorname{Sp}(A) \subset \mathbb{R}_-^* + i\mathbb{R}$. On note $\lambda_1, \ldots, \lambda_r$, les valeurs propres deux à deux distinctes de A dans \mathbb{C} . D'après la question 11, il existe un polynôme P tel que pour tout réel t, $|||e^{t\nu_A}|||_c \leqslant P(|t|) \sum_{i=1}^r e^{t\operatorname{Re}(\lambda_i)}$.

Soit $x_0 \in \mathbb{R}^n$. Pour tout réel t,

$$\begin{split} \|g_{x_0}(t)\| &= \left\|e^{tu}\left(x_0\right)\right\| \leqslant \|e^{tu}\|_r \, \|x_0\| \\ &\leqslant \|e^{t\nu_A}\|_c \, \|x_0\| \, \left(\text{d'après la question 12}\right) \\ &\leqslant \|x_0\| \, P(|t|) \sum_{i=1}^r e^{t \operatorname{Re}(\lambda_i)}. \end{split}$$

Puisque pour tout $i \in [1,r]$, $\operatorname{Re}(\lambda_i) < 0$, on a $\lim_{t \to +\infty} \|x_0\| \, P(|t|) \sum_{i=1}^r e^{t\operatorname{Re}(\lambda_i)} = 0$ d'après un théorème de croissances comparées. On en déduit que $\lim_{t \to +\infty} \|g_{x_0}(t)\| = 0$.

 $\mathrm{Ainsi},\,\mathrm{si}\,\operatorname{Sp}(A)\subset\mathbb{R}_-^*+i\mathbb{R},\,\mathrm{alors}\;\mathrm{pour}\;\mathrm{tout}\;\chi_0\in\mathbb{R}^n,\,\lim_{t\to+\infty}\|g_{\kappa_0}(t)\|=0.$

14) On suppose que la numérotation des valeurs propres de A a été effectuée de sorte que $\operatorname{Re}\left(\lambda_{1}\right)\leqslant\ldots\leqslant\operatorname{Re}\left(\lambda_{r}\right)<0.$ On pose $\alpha=-\frac{1}{2}\operatorname{Re}\left(\lambda_{r}\right)$ de sorte que $\alpha>0.$ Pour tout réel t,

$$e^{\alpha t} |||e^{tu}|||_r \leqslant e^{\alpha t} |||e^{t\nu_A}|||_c \leqslant P(|t|) e^{\alpha t} \sum_{i=1}^r e^{t \operatorname{Re}(\lambda_i)} \leqslant r P(|t|) e^{t\alpha} e^{t \operatorname{Re}(\lambda_r)} = r P(|t|) e^{\frac{t \operatorname{Re}(\lambda_r) t}{2}}.$$

D'après un théorème de croissances comparées, $\lim_{t\to +\infty} rP(|t|)e^{\frac{t\operatorname{Re}(\lambda_r)\,t}{2}}=0$. Puisque d'autre part, la fonction $t\mapsto rP(|t|)e^{\frac{t\operatorname{Re}(\lambda_r)\,t}{2}}$ est continue sur $[0,+\infty[$, cette fonction est en particulier bornée sur $[0,+\infty[$. Donc, il existe $C_2>0$ tel que, pour tout réel positif $t,\,rP(|t|)e^{\frac{t\operatorname{Re}(\lambda_r)\,t}{2}}\leqslant C_2$ puis pour tout réel $t,\,e^{\alpha t}||e^{tu}||_r\leqslant C_2$ et finalement, pour tout réel $t,\,||e^{tu}||_r\leqslant C_2e^{-\alpha t}$.

On a montré que si toutes les valeurs propres de A ont une partie réelle strictement négative, il existe deux réels strictement positifs C_2 et α tels que

$$\forall t \in [0, +\infty[, |||e^{tu}|||_r \leq C_2 e^{-\alpha t}.$$

Soit alors $x_0 \in \mathbb{R}^n$. Pour tout réel positif t, $\|g_{x_0}(t)\| = \|e^{tu}(x_0)\| \le \|e^{tu}\|_r \|x_0\| \le C_2 \|x_0\| e^{-\alpha t}$.

C. Démonstration du théorème de Liapounov

15) • Soit $(x,y) \in (\mathbb{R}^n)^2$. Avec les notations de la partie précédente, pour tout réel t, $e^{t\alpha}(x) = g_x(t)$ et donc la fonction $t \mapsto e^{t\alpha}(x)$ est continue sur $[0, +\infty[$. De plus, puisque \mathbb{R}^n est de dimension finie, on sait que l'application \langle , \rangle est continue sur $(\mathbb{R}^n)^2$. Finalement, l'application $t \mapsto \langle e^{t\alpha}(x), e^{t\alpha}(y) \rangle$ est continue sur $[0, +\infty[$.

D'après la question 14), il existe $C_2>0$ et $\alpha>0$ tels que, pour tout $t\geqslant 0$, $|||e^{t\alpha}|||_r\leqslant C_2e^{-\alpha t}$. Pour $t\geqslant 0$, d'après l'inégalité de CAUCHY-SCHWARZ,

$$\left|\left\langle e^{\mathbf{t}\alpha}(x), e^{\mathbf{t}\alpha}(y)\right\rangle\right| \leqslant \left\|e^{\mathbf{t}\alpha}(x)\right\| \left\|e^{\mathbf{t}\alpha}(y)\right\| \leqslant \|x\| \|y\| \|e^{\mathbf{t}\alpha}\|_{r}^{2} \leqslant \|x\| \|y\| C_{2}^{2}e^{-2\alpha t}.$$

Puisque $\alpha>0$, on en déduit que $|\langle e^{t\alpha}(x),e^{t\alpha}(y)\rangle| = o\left(\frac{1}{t^2}\right)$ d'après un théorème de croissances comparées. La fonction $t\mapsto \langle e^{t\alpha}(x),e^{t\alpha}(y)\rangle$ est donc intégrable sur $[0,+\infty[$ puis b(x,y) existe dans $\mathbb R$.

Ainsi, b est bien une application de $(\mathbb{R}^n)^2$ dans \mathbb{R} .

- b est symétrique, linéaire par rapport à sa première variable par linéarité de $x \mapsto e^{t\alpha}(x)$ et bilinéarité de $\langle \ , \ \rangle$, puis bilinéaire par symétrie.
- $\bullet \ \mathrm{Soit} \ x \in \mathbb{R}^n. \ b(x,x) = \int_0^{+\infty} \left\| e^{t\alpha}(x) \right\|^2 \ dt \geqslant 0 \ (\mathrm{par} \ \mathrm{positivit\acute{e}} \ \mathrm{dell}' \mathrm{int\acute{e}gration}) \ \mathrm{puis}$

$$\begin{split} b(x,x) &= 0 \Rightarrow \int_0^{+\infty} \left\| e^{t\alpha}(x) \right\|^2 \ dt \\ &\Rightarrow \forall t \geqslant 0, \ \left\| e^{t\alpha}(x) \right\|^2 = 0 \ (\text{fonction continue, positive, d'intégrale nulle}) \\ &\Rightarrow \forall t \geqslant 0, \ e^{t\alpha}(x) = 0 \\ &\Rightarrow e^{0\alpha}(x) = 0 \Rightarrow Id_{\mathbb{R}^n}(x) = 0 \Rightarrow x = 0. \end{split}$$

Finalement, b est une forme bilinéaire, symétrique, définie, positive sur \mathbb{R}^n et donc, b est un produit scalaire sur \mathbb{R}^n .

16) Soit $x \in \mathbb{R}^n$. Pour tout $h \in \mathbb{R}^n$,

$$q(x + h) = b(x + h, x + h) = b(x, x) + 2b(x, h) + b(h, h) = q(x) + 2b(x, h) + q(h).$$

Ensuite, puisque b est bilinéaire en dimension finie, on sait qu'il existe C>0 tel que, pour tout $(h,k)\in(\mathbb{R}^n)^2$, $|b(h,k)|\leqslant C\|h\|\|k\|$ et en particulier, pour tout $h\in\mathbb{R}^n$, $|q(h)|\leqslant C\|h\|^2$ (on peut aussi utiliser le fait que \sqrt{q} est une norme, équivalente à $\|\ \|$). On en déduit que q(h)=0 o(h). Mais alors

$$q(x + h) = q(x) + 2b(x, h) + o(h).$$

Puisque l'application $h \mapsto 2b(x, h)$ est linéaire, ceci montre que q est différentiable en x et que la différentielle de q en x est l'application $h \mapsto 2b(x, h)$. En particulier, (en notant dq_x plutôt que dq(x) la différentielle de q en x),

$$dq_x(a(x)) = 2b(x, a(x)).$$

Ensuite, $2b(x, \alpha(x)) = \int_0^{+\infty} 2\langle e^{t\alpha}(x), e^{t\alpha}(\alpha(x)) \rangle dt$. On sait que l'application $\phi: t \mapsto e^{t\alpha}$ est dérivable sur \mathbb{R} et que si f est une application dérivable sur \mathbb{R} à valeurs dans \mathbb{R}^n , l'application $t \mapsto \|f(t)\|^2$ est dérivable sur \mathbb{R} , de dérivée l'application $t \mapsto 2\langle f(t), f'(t) \rangle$. Donc, l'application $t \mapsto \langle e^{t\alpha}(x), e^{t\alpha}(x) \rangle$ est dérivable sur \mathbb{R} , de dérivée la fonction $t \mapsto 2\langle e^{t\alpha}(x), e^{t\alpha}(\alpha(x)) \rangle$. Par suite,

$$\begin{split} 2b(x,\alpha(x)) &= \int_0^{+\infty} 2\langle e^{t\alpha}(x), e^{t\alpha}(\alpha(x))\rangle \ dt = \left[\langle e^{t\alpha}(x), e^{t\alpha}(x)\rangle\right]_0^{+\infty} \\ &= \lim_{t\to +\infty} \left\|e^{t\alpha}(x)\right\|^2 - \left\|Id_{\mathbb{R}^n}(x)\right\|^2 = \lim_{t\to +\infty} \left\|g_x(t)\right\|^2 - \left\|x\right\|^2 \\ &= -\|x\|^2 \ (d\text{`après la question 14}). \end{split}$$

On a montré que

$$\forall x \in \mathbb{R}^n, \ dq_x(\alpha(x)) = 2b(x, \alpha(x)) = -\|x\|^2.$$

17) Pour tout réel positif t, $q(f_{x_0}(t)) = b(f_{x_0}(t), f_{x_0}(t))$. Puisque f_{x_0} est une fonction dérivable sur \mathbb{R}^+ , il en est de même de la fonction $t \mapsto q(f_{x_0}(t))$ et pour $t \geqslant 0$,

$$\begin{split} \left(q\circ f_{x_0}\right)'(t) &= 2b\left(f_{x_0}(t),f_{x_0}'(t)\right) = 2b\left(f_{x_0}(t),\phi\left(f_{x_0}(t)\right)\right) = 2b\left(f_{x_0}(t),\alpha\left(f_{x_0}(t)\right) + \epsilon\left(f_{x_0}(t)\right)\right) \\ &= 2b\left(f_{x_0}(t),\alpha\left(f_{x_0}(t)\right)\right) + 2b\left(\epsilon\left(f_{x_0}(t),f_{x_0}(t)\right)\right) \\ &= -\left\|f_{x_0}(t)\right\|^2 + 2b\left(f_{x_0}(t),\epsilon\left(f_{x_0}(t)\right)\right) \ \, (d'après \ \, la \ \, question \ \, précédente). \end{split}$$

18) Puisque b est un produit scalaire, l'application $x \mapsto \sqrt{q(x), q(x)}$ est une norme sur \mathbb{R}^n . Puisque \mathbb{R}^n est de dimension finie, cette norme est équivalente à la norme $\| \|$ et il existe donc deux réels strictement positifs γ et δ telles que, pour tout $x \in \mathbb{R}^n$, $\gamma \|x\| \leqslant \sqrt{q(x,x)} \leqslant \delta \|x\|$.

On a déjà pour tout réel t, $-\|f_{x_0}(t)\|^2 \leqslant -\frac{1}{\delta^2}q(f_{x_0}(t))$. Ensuite, d'après l'inégalité de CAUCHY-SCHWARZ,

$$\left|2b\left(f_{x_{0}}(t),\epsilon\left(f_{x_{0}}(t)\right)\right)\right|\leqslant2\sqrt{q\left(f_{x_{0}}(t)\right)}\sqrt{q\left(\epsilon\left(f_{x_{0}}(t)\right)\right)}.$$

Pour tout réel positif t, $\epsilon\left(f_{x_0}(t)\right) = \phi\left(f_{x_0}(t)\right) - \alpha\left(f_{x_0}(t)\right) = \phi\left(f_{x_0}(t)\right) - \phi(0) - d\phi_0\left(f_{x_0}(t)\right)$. Puisque ϕ est de classe C^1 sur \mathbb{R}^n ,

$$\varepsilon(y) = \varphi(y) - \varphi(0) - d\varphi_0(y) = 0$$

Donc, puisque \sqrt{q} est une norme sur \mathbb{R}^n , il existe $\alpha'>0$ tel que pour tout $y\in\mathbb{R}^n$, si $\sqrt{q(y)}\leqslant\alpha'$, alors $\sqrt{q(\epsilon(y))}\leqslant\frac{1}{4\delta^2}\sqrt{q(y)}$. Soit $\alpha=\alpha'^2>0$.

Soit t un réel positif tel que $q(f_{x_0}(t)) \leqslant \alpha$. Alors, $\sqrt{q(f_{x_0}(t))} \leqslant \alpha'$ puis $\sqrt{q(\epsilon(f_{x_0}(t)))} \leqslant \frac{1}{4\delta^2} \sqrt{q(f_{x_0}(t))}$ et donc

$$\begin{split} -\left\|f_{x_{0}}(t)\right\|^{2} + 2b\left(f_{x_{0}}(t),\epsilon\left(f_{x_{0}}(t)\right)\right) \leqslant -\frac{1}{\delta^{2}}q\left(f_{x_{0}}(t)\right) + \frac{1}{2\delta^{2}}\left|b\left(f_{x_{0}}(t),\epsilon\left(f_{x_{0}}(t)\right)\right)\right| \\ = -\frac{1}{2\delta^{2}}q\left(f_{x_{0}}(t)\right). \end{split}$$

Le réel $\beta = \frac{1}{2\delta^2} > 0$ convient.

19) Montrons que si $q(f_{x_0}(0)) = q(x_0) < \alpha$, alors pour tout $t \ge 0$, $q(f_{x_0}(t)) \le \alpha$.

 $\mathscr{E} = \{t \in [0, +\infty[/\,\forall u \in [0,t], \; q\,(f_{x_0}(u)) \leqslant \alpha\} \text{ est une partie non vide } [0, +\infty[\; (\operatorname{car} \, 0 \in \mathscr{E}) \text{ et admet donc une borne supérieure } T \; \operatorname{dans} \, \overline{\mathbb{R}}. \text{ Supposons par l'absurde que } T \in [0, +\infty[.$

Déjà, puisque $q(f_{x_0}(0)) = q(x_0) < \alpha$, par continuité de $q \circ f_{x_0}$ en 0, il existe t > 0 tel que pour tout $u \in [0,t]$, $q(f_{x_0}(u)) \leqslant \alpha$. On a alors $T \geqslant t > 0$.

Ensuite, il existe une suite $(t_n)_{n\in\mathbb{N}}$ d'éléments de \mathscr{E} , convergente de limite T. Par continuité de $q\circ f_{x_0}$ en T, $q\left(f_{x_0}(T)\right)=\lim_{n\to+\infty}q\left(f_{x_0}\left(t_n\right)\right)$ et donc $q\left(f_{x_0}(T)\right)\leqslant\alpha$ ou encore $T=\operatorname{Max}\left(\mathscr{E}\right)$.

Ensuite, pour tout réel $t \in [0,T]$, d'après les deux questions précédentes, $(q \circ f_{x_0})'(t) \leqslant -\beta q (f_{x_0}(t)) \leqslant 0$.

Si $q \circ f_{x_0}(T) = 0 < \alpha$, par continuité de $q \circ f_{x_0}$ en T, pour t au voisinage de T à droite, on a $q \circ f_{x_0}(t) \leqslant \alpha$, ce qui contredit la définition de T.

Sinon, $q \circ f_{x_0}(T) > 0$ puis $(q \circ f_{x_0})'(T) < 0$. Par continuité de $(q \circ f_{x_0})'$ en T, $(q \circ f_{x_0})'$ est strictement négative sur un voisinage de T à droite puis $q \circ f_{x_0}$ est décroissante sur un voisinage de T à droite. Mais alors, encore une fois pour t au voisinage de T à droite, on a $q \circ f_{x_0}(t) \leq \alpha$, ce qui contredit la définition de T.

Donc, $T = +\infty$ ou encore, $\forall t \in [0, +\infty[$, $q(f_{x_0}(t)) \leq \alpha$. D'après les deux questions précédentes, on a alors

$$\forall t \in [0, +\infty[, (q \circ f_{x_0})'(t) \leqslant -\beta q (f_{x_0}(t)).$$

On en déduit que pour tout $t \in [0,+\infty[$, $e^{\beta t} (q \circ f_{x_0})'(t) + \beta e^{\beta t} q (f_{x_0}(t)) \leqslant 0$ ou encore, pour tout $t \in [0,+\infty[$, $\left(e^{\beta t} q \circ f_{x_0}\right)'(t) \leqslant 0$. La fonction $t \mapsto e^{\beta t} q (f_{x_0}(t))$ est donc décroissante sur $[0,+\infty[$. Par suite, pour tout réel $t \in [0,+\infty[$, $e^{\beta t} q (f_{x_0}(t)) \leqslant e^0 q (f_{x_0}(0))$ ou encore $q (f_{x_0}(t)) \leqslant e^{-\beta t} q (x_0)$.

20) La fonction q est continue en 0 et q(0) = 0. Donc, il existe $\widetilde{\alpha} > 0$ tel que, pour tout $x_0 \in B(0, \widetilde{\alpha})$, $q(x_0) < \alpha$. On a alors pour tout $t \ge 0$, $q(f_{x_0}(t)) \le e^{-\beta t} q(x_0)$ puis $\sqrt{q(f_{x_0}(t))} \le \sqrt{e^{-\beta t} q(x_0)} = e^{-\frac{\beta}{2}t} \sqrt{q(x_0)}$.

Avec les notations du début de la question 18, pour tout $t \ge 0$,

$$\|f_{x_0}(t)\| \leqslant \frac{1}{\gamma} \sqrt{q\left(f_{x_0}(t)\right)} \leqslant \frac{1}{\gamma} e^{-\frac{\beta}{2}t} \sqrt{q\left(x_0\right)} \leqslant \frac{\delta}{\gamma} e^{-\frac{\beta}{2}t} \|x_0\|.$$

Le nombre $C = \frac{\delta}{\gamma} > 0$ convient.