Topología II David García Curbelo

Ejercicio 37. ¿Es todo retracto de un espacio X un retracto de deformación de X?

Claramente el enunciado no es cierto. Para la construcción del contraejemplo basta con tomar un espacio topológico X con grupo fundamental no trivial y el conjunto A como cualquier punto suyo. Tomemos un ejemplo particular:

Consideremos $X = \mathbb{S}^1$ y $A = \{x_0\}$, con $x_0 \in X$ cualquier punto de la circunferencia. Consideremos también la aplicación

$$r: X \longrightarrow A$$

$$x \longmapsto x_0$$

la cual vemos fácilmente que es continua, ya que se trata de la aplicación constante que asigna a todo punto de X el único punto del conjunto A. Además, considerando la aplicación inclusión $i_A:A\hookrightarrow X$ tenemos

$$(r \circ i_A)(x_0) = r(i_A(x_0)) = r(x_0) = x_0 \implies r \circ i_A = 1_A$$

Con lo que concluimos que nuestra aplicación r es una retracción.

Supongamos ahora que A es un retracto de deformación de X. Si esto fuera así, tendríamos para todo elemento $a \in A$ el isomorfismo dado por

$$(i_A)_*:\Pi_1(A,a)\longrightarrow\Pi_1(X,a)$$

Y así tendríamos que $\Pi_1(X, a)$ y $\Pi_1(A, a)$ son isomorfos. Luego, de la misma manera, como $A = \{x_0\}$, tenemos que

$$\Pi_1(X, x_0) \stackrel{iso}{\cong} \Pi_1(A, x_0)$$

Pero esto no es verdad, ya que

$$\Pi_1(X, x_0) \stackrel{iso}{\cong} \Pi_1(\mathbb{S}^1, x_0) \stackrel{iso}{\cong} \mathbb{Z}$$
 $\Pi_1(A, x_0) \stackrel{iso}{\cong} \Pi_1(\{x_0\}, x_0) \stackrel{iso}{\cong} \{1\}$

Luego hemos llegado a una contradicción, que está motivada por la única suposición que hemos hecho: $A \subset X$ es un retracto de deformación. Queda así probado que no todo retracto de X tiene por qué ser un retracto de deformación de X.