

REPORT

HW1

과목명 : 컴퓨터구조론 (2분반)

교 수 : 남재현 교수님 소속학과: 소프트웨어학과

학 번 : 32190192 이 름 : 구영민

마 감 : 2024.04.15 (월요일까지)

목 차

- 1. Instruction
- 2. Background
- 3. Design
- 4. Implementation
- 5. Test
- 6. Lesson

1. Instruction

● 과제 목표

RISC중 하나인 MIPS 어셈블리어를 통한 계산기를 직접 코딩해보는 과제입니다. 파일 입출력으로 어셈블리어로 코딩 된 텍스트파일을 읽어와 파싱하여 연산 후 결과를 출력 해주는 프로그램을 c언어로 구현하는 것 입니다.

● 요구사항 분석

- 1. 구현해야하는 연산에는 산술연산(add, sub, mul, div), 조건연산(BEQ, BNE, SLT), JMP, NOP, LW(레지스터로 가져오는 연산) 총 10가지의 연산을 구현하면 됩니다.
- 2. 레지스터: MIPS 아키텍처에서는 총 32개의 레지스터가 있습니다. 이 과제에서는 10개의 임시저장 레지스터 (t0 ~ t9)와 변수를 가져올 때 사용되는 8개의 레지스터 (s0 ~ s7)를 지원합니다. 또한, 반환 값을 위한 레지스터 v0를 사용하고 0은 zero레지스터를 이용합니다.

● 예외처리

- 1. 16진수가 아닐 때 예외처리를 해줘야합니다.
- 2. DIV instruction에서 0으로 나눌 때 예외처리가 필요합니다.
- 3. 명령어 당 token 개수가 맞지 않으면 예외처리를 해주어야합니다.
- 4. 레지스터 검증 예외 처리를 해주어야합니다. EX) LW에는 s레지스터만 올 수 있다.
- 5. 파일이 1000줄 넘어갔을 대 예외처리를 해주어야합니다.

- 구현 시 주의 해야 할 점
- 1. r0을 v0으로 변경한다.
- 2. 파일을 다 읽으면 v0값을 출력 후 프로그램을 종료한다.
- 3. 한라인에 인스트럭션은 하나이다.
- 4. 0x로 시작하면 16진수로 취급한다.
- 5. [value from string]은 원래 메모린데 상수값이 있으며 상수 값을 읽어와 처리할 것이다.

2. Background

MIPS

MIPS(Microprocessor without Interlocked Pipeline Stages) 아키텍처는 RISC(Reduced Instruction Set Computer) 아키텍처의 하나로, 단순하고 효율적인 명령어 집합을 갖추고 있습니다.

MIPS Register

zero 레지스터는 Register[0]을 사용하고

v0레지스터는 Register[2]

t0 ~ t9 레지스터는 Register[8] ~ Register[15]

s0 ~ s7 레지스터는 Register[16] ~ Register[23] 를 사용합니다.

Offset

이 과제를 수행하기 위해 가장 중요하다고 생각하는 개념은 offset개념입니다.

offset개념을 사용하여 t, r, zero ,v0레지스터를 Register[32]라는 하나의 배열에 사용하여 레
지스터를 효율적으로 사용할 수 있었고 코드의 재사용성을 높일 수 있었습니다.

MIPS instruction의 역할

ADD t1 s2 s3 : t1에 s2 + s3의 값을 저장합니다.

SUB t1 s2 s3 : t1에 s2 - s3의 값을 저장합니다.

MUL t1 s2 s3 : t1에 s2 x s3의 값을 저장합니다.

DIV t1 s2 s3 : t1에 s2 / s3의 값을 저장합니다.

NOP: 빈공간입니다.

JMP [line number]: [line number]로 점프합니다.

LW: 메모리에서 레지스터로 가져오는 명령어입니다.

BEQ [SRC1] [SRC2] [line number] : SRC1과 SRC2가 같으면 [line number]로 점프합니다.

BNE [SRC1] [SRC2] [line number] : SRC1과 SRC2가 다르면 [line number]로 점프합니다.

SLT [DST1] [SRC1] [SRC2] : SRC1이 SRC2보다 작으면 1을 작지 않으면 0을 DST1에 저장합니

다.

파일 입출력

C프로그래밍에서 파일 입출력을 통해 프로그램은 외부 파일에 데이터를 쓰거나 파일에서 데이터를 읽을 수 있습니다. 이를 통해 프로그램은 외부 데이터와 상호작용할 수 있습니다.

파일 입출력 함수

fopen()

fopen 함수는 파일을 열기 위해 사용됩니다. 파일을 열 때모드에는 읽기 모드(r), 쓰기 모드(w), 추가 모드(a) 등이 있습니다.

fgets()

fgets 함수는 파일에서 한 줄씩 데이터를 읽어옵니다. 문자열 포인터와 최대 읽을 문자 개수, 그리고 파일 포인터를 인자로 받습니다. 파일에서 한 줄씩 읽어올 때에는 개행 문자 ('\n')를 만날 때까지 읽습니다.

strtok()

strtok 함수는 문자열을 특정 구분자(delimiter)를 기준으로 토큰으로 분할합니다. 첫 번째 호출 시 문자열 포인터와 구분자를 인자로 받습니다. 이후 호출 시에는 NULL을 전달하여 이전 호출에서 반환된 문자열의 다음 부분을 처리합니다.

EOP(End of File)

파일의 끝(End of File)을 나타내는 것으로, 파일을 읽을 때 파일의 끝을 나타내는 신호입니다. 파일을 읽을 때 fgets 함수가 NULL을 반환하면서 파일의 끝에 도달했음을 나타냅니다.이를 이용하여 파일의 끝을 인식하고 파일 읽기를 종료합니다.

3. Design

- 프로그램 구조
- 1. 코드는 main 함수를 중심으로 구성되어 있습니다. Main 함수에서는 파일을 읽어들이고 파싱한 후에 명령어를 실행하고 결과를 출력합니다.
- 2. 각 명령어에 대한 처리는 별도의 함수로 분리되어 있습니다. ADD, SUB, MUL, DIV, LW, NOP, JMP, BEQ, BNE, SLT 함수가 각각의 명령어를 처리합니다.
- 3. 마지막에는 동적으로 할당한 메모리를 해제해주는 memory_free() 함수가 존재합니다.

● 파일 파싱

- 1. 파일은 한 줄씩 읽어들여 명령어를 파싱하고, 이를 2차원 배열(arr)에 저장합니다.
 JMP를 구현할 때 strtok으로 파싱한 값을 일차원 배열로 사용하기보단 2차원 배열로 사용해야 row를 이용하여 JMP를 쉽게 구현할 수 있을 것 같아서 2차원배열을 사용하였습니다.
- 2. 예외처리를 할 때 필요한 Instruction당 operand의 수를 저장하기 위해 row_cnt배열에 operand의 수를 저장합니다.

● 명령어 처리

- 명령어를 파싱하면 해당하는 명령어 처리 함수를 호출하도록 설계하였습니다. 이때,
 각 명령어에 따라 필요한 오퍼랜드를 사용하여 동작을 수행합니다.
- 2. 각 명령어 함수에서 연산이 필요하면 base_pointer() + move_offset()으로 offset 위 치를 설정한 후 연산을 수행합니다.
- 3. 명령어 함수가 조건문이면 먼저 참 거짓을 판별한 후 결과에 따른 JMP함수를 호출

합니다.

- 레지스터 및 메모리 관리
- 1. 코드에서 Register 배열은 32bit 레지스터입니다.

zero = Register[0]

v0 = Register[2]

 $t0 \sim t9 = Register[8] \sim Register[15]$

 $s0 \sim s7 = Register[16] \sim Register[23]$

- 2. 코드에서 base_pointer() 함수는 명령어에서 사용된 레지스터가 어느 범위에 해당하지 base_pointer위치를 잡아줍니다.
- 3. 코드에서 move_offset() 함수는 명령어에서 사용된 레지스터의 오프셋 값을 계산합니다. 명령어에서 사용된 레지스터 이름의 두 번째 문자를 정수로 변환하여 오프셋 값을 구합니다.
- 예외처리 및 예외 상황
- 1. 16진수가 아닐 때 예외처리를 해주었습니다.
- 2. DIV instruction에서 0으로 나눌 때 예외 처리를 해주었습니다.
- 3. row_cnt배열을 사용하여 한 줄 당 명령어 개수를 저장해주어 명령어 개수가 맞지 않을 때 예외처리를 해주는 로직을 작성하였습니다.
- 4. 레지스터 검증 예외처리 EX) LW에는 S레지스터만 올 수 있다.
- 5. 파일이 1000줄이 넘어갔을 때 예외처리를 해주었습니다.
- 기타
- 1. hex_string_to_int() 함수는 16진수를 10진수로 바꿔주는 함수입니다.

- 2. Parse() 함수는 파일에서 읽어온 값을 파싱 하여 한 줄 씩 2차원배열에 저장하는 함수입니다.
- 3. memory_free() 함수는 동적으로 할당된 메모리를 해제해주는 함수입니다

4. Implementation

● 모든 instruction 구현 완료 하였습니다.

instruction	구현 여부
ADD	0
SUB	0
MUL	0
DIV	0
NOP	0
LW	0
JMP	0
BEQ	0
BNE	0
SLT	О

5. Test

[Testcase1]: LW, ADD instruction 테스트 케이스입니다.

[Testcase2]: LW, MUL instruction 테스트 케이스입니다.

```
≡ testcase2.txt ×
:estcase7.txt
                                                                                                                                                                               ≡ testcase1.txt

≡ testcase8

    testcase2.txt
    testcase2.txt
    in tes
                         1
                                             LW s0 0x2
                         2
                                                LW s1 0x4
                                                MUL v0 s0 s1
                                                                  OUTPUT DEBUG CONSOLE
             PROBLEMS
                                                                                                                                                                                                  TERMINAL
     koicloud@ca-32190192:~/vscode$ gcc -o 32190192 32190192.c
     • koicloud@ca-32190192:~/vscode$ ./32190192 testcase2.txt
               (line 1) LW s0 0x2
              32190192> Loaded 2 to s0
               (line 2) LW s1 0x4
               32190192> Loaded 4 to s1
               (line 3) MUL v0 s0 s1
              32190192> Multiplied s0(2) to s1(4) and changed v0 to 8
               32190192> v0 is 8
    ○ koicloud@ca-32190192:~/vscode$
```


[Testcase3]: SUB instruction 테스트 케이스입니다.

```
≡ testcase6.txt
                                    ≡ testcase7.txt
                                                     \equiv test
  ≡ testcase3.txt
        LW s0 0x1
   1
   2
       LW s1 0x2
       LW s2 0x3
   3
   4
       LW s3 0x4
   5
       ADD t0 s0 s1
     ADD t1 s2 s3
     SUB v0 t0 t1
   7
 PROBLEMS
           OUTPUT
                    DEBUG CONSOLE
                                   TERMINAL
                                             PORTS
koicloud@ca-32190192:~/vscode$ gcc -o 32190192 32190192.c
koicloud@ca-32190192:~/vscode$ ./32190192 testcase3.txt
  (line 1) LW s0 0x1
  32190192> Loaded 1 to s0
  (line 2) LW s1 0x2
 32190192> Loaded 2 to s1
  (line 3) LW s2 0x3
 32190192> Loaded 3 to s2
  (line 4) LW s3 0x4
  32190192> Loaded 4 to s3
  (line 5) ADD t0 s0 s1
 32190192> Added s0(1) to s1(2) and changed t0 to 3
  (line 6) ADD t1 s2 s3
 32190192> Added s2(3) to s3(4) and changed t1 to 7
  (line 7) SUB v0 t0 t1
 32190192> Subtracted t0(3) to t1(7) and changed v0 to -4
 32190192> v0 is -4
○ koicloud@ca-32190192:~/vscode$
```


[Testcase4]: JMP instruction 테스트 케이스입니다.

```
    testcase4.txt X

                                 ≡ testcase2.txt
:estcase7.txt

    testcase1.tx

    testcase4.txt
    testcase4.txt

         LW s0 0x5
    1
        LW s1 0xA
    2
    3
        ADD to so s1
         JMP 0x8
    4
    5
        LW s0 0x1
        LW s1 0x2
    7
        ADD to so s1
         LW s2 0x3
         MUL v0 t0 s2
    9
  PROBLEMS
             OUTPUT
                      DEBUG CONSOLE
                                     TERMINAL
                                                PORTS
koicloud@ca-32190192:~/vscode$ gcc -o 32190192 32190192.c
koicloud@ca-32190192:~/vscode$ ./32190192 testcase4.txt
  (line 1) LW s0 0x5
  32190192> Loaded 5 to s0
  (line 2) LW s1 0xA
  32190192> Loaded 10 to s1
  (line 3) ADD t0 s0 s1
  32190192> Added s0(5) to s1(10) and changed t0 to 15
  (line 4) JMP 0x8
  32190192> jumped to line 8
  (line 8) LW s2 0x3
  32190192> Loaded 3 to s2
  (line 9) MUL v0 t0 s2
  32190192> Multiplied t0(15) to s2(3) and changed v0 to 45
  32190192> v0 is 45
o koicloud@ca-32190192:~/vscode$
```


[Testcase5]: BEQ instruction 테스트 케이스입니다.

```
≡ testcase5.txt × ≡ slt.txt
                                  ≡ add2.txt
                                                                 ≡ testcase3.txt
  ≡ testcase5.txt
   1
        LW s0 0x5
         LW s1 0xA
        BEQ s0 s1 0x6
   3
         ADD v0 s0 zero
        JMP 0x7
   5
   6
         ADD v0 s1 zero
        NOP
                                                         PROBLEMS
          OUTPUT
                  DEBUG CONSOLE
                                  TERMINAL
                                             PORTS
• koicloud@ca-32190192:~/vscode$ gcc -o 32190192 32190192.c
koicloud@ca-32190192:~/vscode$ ./32190192 testcase5.txt
 (line 1) LW s0 0x5
 32190192> Loaded 5 to s0
 (line 2) LW s1 0xA
 32190192> Loaded 10 to s1
 (line 3) BEQ s0 s1 0x6
 32190192> Checked if s0(5) is not equal to s1(10) and didn't jumped to line 6
 (line 4) ADD v0 s0 zero
 32190192> Added s0(5) to zero(0) and changed v0 to 5
 (line 5) JMP 0x7
 32190192> jumped to line 7
 (line 7) NOP
 32190192> No operation
 32190192> v0 is 5
○ koicloud@ca-32190192:~/vscode$
```

[Testcase6]: BNE instruction 테스트 케이스입니다.

[Testcase7] : SLT instruction 테스트 케이스입니다.

≡ testcase7.tx	rt X	≡ add2.txt	≣ bne.txt	≡ testcase3.txt	≡ testc
≡ testcase	7.txt				
1 L	W s0	0x5			
2 L	W s1	0xA			
3 S	LT to	s0 s1			
4 B	NE to	zero 0x7			
5 A	DD v0	s0 zero			
6 Ј	MP 0x	8			
7 A	DD v0	s1 zero			
8 N	OP				
• koicloud@ (line 1) 321901923 (line 2) 321901923 (line 3) 321901923 (line 7) 321901923 (line 8) 321901923 321901923	Check ADD Adde NOP No of the Norm of the N	190192:~/vscode s0 0x5 led 5 to s0 s1 0xA led 10 to s1 t0 s0 s1 ked if s0(5) is t0 zero 0x7 ked if t0(1) is v0 s1 zero ed s1(10) to zero	not equal to zer	case7.txt and set 1 to t0 co(0) and jumped to	o line 7

[Testcase8]: NOP 테스트 케이스입니다.

```
= testcase2.txt

≡ testcase4.txt ×
testcase8.txt ×
                                                   = testcase
  LW s0 0x2
   1
            s1 0x10
         LW
         ADD v0 s0 s1
         NOP
   4
 PROBLEMS
           OUTPUT
                    DEBUG CONSOLE
                                   TERMINAL
                                              PORTS
▶ koicloud@ca-32190192:~/vscode$ gcc -o 32190192 32190192.c
koicloud@ca-32190192:~/vscode$ ./32190192 testcase8.txt
 (line 1)
          LW s0 0x2
 32190192> Loaded 2 to s0
 (line 2) LW s1 0x10
 32190192> Loaded 16 to s1
  (line 3) ADD v0 s0 s1
 32190192> Added s0(2) to s1(16) and changed v0 to 18
 (line 4) NOP
 32190192> No operation
 32190192> v0 is 18
○ koicloud@ca-32190192:~/vscode$
                                         Ln 3, Col 7 Spaces: 4
```

[Testcase9]: DIV 테스트 케이스입니다.

Testcase1 ~ Testcase8은 HW1 pdf에 있는 테스트 케이스이고 뒤로는 추가로 작성한 테스트 케이스들 입니다.

예외 테스트

Exception 1:16진수가 아닐 때 예외 테스트

```
≡ exception1.txt ×
                     ≡ jmp.txt
                                     ≡ testcase5.txt
                                                       ≡ slt.tx
  ≡ exception1.txt
   1
         LW s0 0x2
   2
         LW s1 10
   3
         ADD v0 s0 zero
 PROBLEMS
            OUTPUT
                     DEBUG CONSOLE
                                               PORTS
                                    TERMINAL
• koicloud@ca-32190192:~/vscode$ gcc -o 32190192 32190192.c
• koicloud@ca-32190192:~/vscode$ ./32190192 exception1.txt
  (line 1) LW s0 0x2
 32190192> Loaded 2 to s0
 (line 2) LW s1 10
 exception! 10는 16진수가 아닙니다.
o koicloud@ca-32190192:~/vscode$
```

Exception 2:0으로 나눌 때 예외 테스트

```
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS

• koicloud@ca-32190192:~/vscode$ gcc -o 32190192 32190192.c

• koicloud@ca-32190192:~/vscode$ ./32190192 exception2.txt
(line 1) LW s0 0x2
32190192> Loaded 2 to s0
(line 2) DIV v0 s0 zero
exception! 0으로 나눌수 없습니다.

• koicloud@ca-32190192:~/vscode$
```


Exception 3: token 개수가 맞지 않을 때 예외 테스트

```
≡ exception3.txt ×
                    ≡ exception4.txt
                                        ≡ exception2.txt
  ≡ exception3.txt
   1
         LW s0 0x2
   2
         LW s1 0x4
   3
         ADD v0 s0 zero s1
 PROBLEMS
            OUTPUT
                     DEBUG CONSOLE
                                    TERMINAL
                                               PORTS
• koicloud@ca-32190192:~/vscode$ gcc -o 32190192 32190192.c
koicloud@ca-32190192:~/vscode$ ./32190192 exception3.txt
 (line 1) LW s0 0x2
 32190192> Loaded 2 to s0
 (line 2) LW s1 0x4
 32190192> Loaded 4 to s1
 (line 3) ADD v0 s0 zero s1
 exception! ADD OPERAND SIZE는 3입니다.
o koicloud@ca-32190192:~/vscode$ |
```

Exception 4: 레지스터가 올바르지 않을 때 예외 테스트

```
    ≡ exception2.txt

 \equiv exception4.txt \times \equiv exception3.txt

≡ exception4.txt

         LW s0 0x2
    2
         LW t1 0x4
    3
         ADD v0 s0 zero
 PROBLEMS
            OUTPUT
                      DEBUG CONSOLE
                                     TERMINAL
                                                PORTS
• koicloud@ca-32190192:~/vscode$ gcc -o 32190192 32190192.c
koicloud@ca-32190192:~/vscode$ ./32190192 exception4.txt
 (line 1) LW s0 0x2
 32190192> Loaded 2 to s0
 (line 2) LW t1 0x4
 exception! LW의 레지스터는 s만 사용 가능합니다.
o koicloud@ca-32190192:~/vscode$
```


추가! while문 테스트

위의 코드를 어셈블리어로 변환하여 JMP instruction이 위로도 점프가 가능한지 테스트 케이스를 만들어보았습니다. -> 위로 점프도 정확하게 출력되는 결과를 얻을 수 있었습니다.

```
= exception4.txt
            X ≡ exception3.txt
                                                    ≡ exception2.txt

    while.txt

    while.txt

        LW s0 0x2
        LW s1 0x1
       ADD t1 s1 zero
       BEQ s0 s2 0x8
       ADD t0 s2 zero
       ADD s2 t0 t1
   6
        JMP 0x4
       ADD v0 s2 zero
                                                           ■ bash + ∨ □ 1
 PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL
                                             PORTS
koicloud@ca-32190192:~/vscode$ gcc -o 32190192 32190192.c
koicloud@ca-32190192:~/vscode$ ./32190192 while.txt
  (line 1) LW s0 0x2
 32190192> Loaded 2 to s0
 (line 2) LW s1 0x1
 32190192> Loaded 1 to s1
 (line 3) ADD t1 s1 zero
 32190192> Added s1(1) to zero(0) and changed t1 to 1
  (line 4) BEQ s0 s2 0x8
 32190192> Checked if s0(2) is not equal to s2(0) and didn't jumped to line 8
 (line 5) ADD t0 s2 zero
 32190192> Added s2(0) to zero(0) and changed t0 to 0
 (line 6) ADD s2 t0 t1
 32190192> Added t0(0) to t1(1) and changed s2 to 1
  (line 7) JMP
               0x4
 32190192> jumped to line 4
 (line 4) BEQ s0 s2 0x8
 32190192> Checked if s0(2) is not equal to s2(1) and didn't jumped to line 8
 (line 5) ADD t0 s2 zero
 32190192> Added s2(1) to zero(0) and changed t0 to 1
  (line 6) ADD s2 t0 t1
 32190192> Added t0(1) to t1(1) and changed s2 to 2
 (line 7) JMP 0x4
 32190192> jumped to line 4
 (line 4) BEQ s0 s2 0x8
 32190192> Checked if s0(2) is equal to s2(2) and jumped to line 8
  (line 8) ADD v0
                   s2 zero
 32190192> Added s2(2) to zero(0) and changed v0 to 2
 32190192> v0 is 2
○ koicloud@ca-32190192:~/vscode$
```


6. Lesson

구조적 설계

과제를 듣고 맨 처음 든 생각이 시작할 때 구조를 신중하게 설계하는 것이 매우 중요하다고 생각했습니다.

- 1. Jmp 명령어를 처리하기 위해 1차원 배열보단 2차원 배열(arr)을 사용하여 명령어와 해당 오퍼랜드를 쉽게 저장하고 접근할 수 있었습니다.
- 2. 레지스터를 다룰 때, s, t, zero, v0레지스터를 따로 배열로 분리하려고 했지만 코드 가 하드코딩될 우려가 있어서 offset 개념을 활용하여 하나의 배열로 관리했습니다.
- 3. 한 줄당 명령어 개수를 체크하기 위해서 row_cnt배열을 사용하여 파싱할 때 미리 배열에 저장해두어 예외처리를 쉽게 할 수 있었습니다. 이러한 접근은 코드의 가독 성을 높이고 유지보수를 쉽게 해주었습니다.
- 4. base_pointer() 함수, move_offset()함수처럼 중복되는 로직들을 함수화 시켜 함수의 재샤용성을 높여주었으며 코드가 가독성이 좋아지고 불필요한 코드를 제거할 수 있었습니다.

구조를 설계하는 데 많은 시간이 소요되었지만, 처음에 구조를 잘 설계하고 시작했기 때문에 구현은 비교적 빨리 진행될 수 있었습니다. 이 경험을 통해 앞으로도 문제에 직면했을때 코드를 바로 작성하는 것이 아니라 구조를 깊게 고려하고 완벽하게 설계된 후에 코드를 작성하는 습관을 들여야 한다는 것을 배웠습니다.

MIPS에 대한 이해

구조 설계뿐만이 아니라 코드를 작성하면서 단순히 코드를 작성하는 것 이상으로, MIPS 아키텍처와 프로그램이 동작하는 방식에 대한 깊은 이해를 얻었습니다. 초기에는 고급 언어를 사용하여 프로그래밍하는 것이 보통이었지만, 이 프로젝트를 통해 어셈블리어를 통해 컴퓨터가 더 로우 레벨에서 동작하는 원리를 직접 이해하게 되었습니다.

예외처리의 필요성

평소에는 예외처리를 하지 않고 구현을 했지만, 이 과제를 할 때 예외 처리를 구현하며 코딩하는 경험을 했습니다. 이는 실제로 프로그래밍 과정을 매우 개선시킬 수 있다는 것을 깨달았습니다.

예외 처리 코드를 구현하면서 발견한 가장 큰 이점은 디버깅 과정에서의 편의성이었습니다. 이전에는 코드에서 오류가 발생했을 때 그 원인을 찾기 위해 많은 시간을 소비했었습니다. 하지만 예외 처리를 추가하고 나서는 오류가 발생했을 때 바로 그 위치를 찾아낼 수 있었습 니다. 이는 디버깅 과정을 훨씬 빠르고 효율적으로 만들어주었습니다..

또한, 예외 처리를 통해 코드의 가독성과 유지보수성도 향상됩니다. 코드에 예외 처리를 명시적으로 추가하면 코드의 흐름이 명확해지고 각 예외 상황에 대한 처리 방법이 명시적으로 드러나기 때문입니다. 또한, 이를 통해 다른 개발자가 코드를 이해하고 수정하는 데도 도움이 됩니다.

이러한 경험을 토대로 저는 앞으로도 예외 처리를 고려하여 코딩하는 습관을 들일 것입니다.