解析学及び演習 A 理解度確認試験

2025 年 7 月 25 日 第 3 時限施行 担当 水野 将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず.

88 86	かのな	田田、、	.)っ炊.	ニュ
问呓	次の各	[ii] V	いに合ん	えよ

(1) 集合 Ω に対し, $\Sigma \subset 2^{\Omega}$ が Ω 上の σ -加法族であることの定義を書け.

(2) 可測空間 (Ω, Σ) に対し, $\mu: \Sigma \to [0, \infty]$ が Ω 上の測度であることの定義を書け.

(3) 測度空間 (Ω, Σ, μ) が σ -有限であることの定義を書け.

(4) 測度空間 (Ω, Σ, μ) の測度 μ が完備であることの定義を書け.

(5) $\mu^*: 2^\Omega \to [0,\infty]$ が集合 Ω 上の (Carathèodory の) 外測度であることの定義を書け.

- (6) 集合 Ω 上の外測度 μ^* が与えられたとき, $A \subset \Omega$ が外測度 μ^* について可測集合 であることの定義を書け.
- (7) 測度空間 (Ω, Σ, μ) 上の関数 $f: \Omega \to \mathbb{R}$ が可測関数であることの定義を書け.
- (8) 測度空間 (Ω, Σ, μ) 上の非負値可測関数 $f: \Omega \to \mathbb{R}$ の測度 μ に関する (Lebesgue) 積分の定義を書け.
- (9) 測度空間 (Ω, Σ, μ) 上の積分の順序保存性に関する主張を書け.

(10) 測度空間 (Ω, Σ, μ) 上の積分の線形性に関する主張を書け.

- (16) \mathbb{R}^2 の部分集合 $A \subset \mathbb{R}^2$ に対して, (2 次元)Lebesgue 外測度 $m_2^*(A)$ の定義を書け.
- (17) 次が正しいか正しくないかを答えよ.
 - (a) 可測空間 $(\mathbb{R}, 2^{\mathbb{R}})$ 上の計数測度 μ に対し, $\mu(\{x \in \mathbb{Z} : -3 \le x \le 5\}) = 3$.
 - (b) 可測空間 $(\mathbb{R}, 2^{\mathbb{R}})$ 上の $\sqrt{3} \in \mathbb{R}$ を台にもつ Dirac のデルタ測度 $\delta_{\sqrt{3}}$ に対し, $\delta_{\sqrt{3}}(\mathbb{Q}) = 0$.
 - (c) 一次元 Lebesgue 測度 m_1 に対して, $m_1(\mathbb{Q}) = 0$.
- (18) m_2 を 2 次元 Lebesgue 測度とするとき, $m_2 \left(\bigcup_{k=1}^{\infty} \left(\left(k, k + \frac{1}{2^k} \right) \times \left(k, k + \frac{1}{3^k} \right) \right) \right)$ を求めよ.

- (19) 次が正しいか正しくないかを答えよ.
 - (a) ℝの部分集合 (-1,1] は Borel 集合である.
 - (b) \mathbb{R} 上の非負値可積分関数列 $\{f_n\}_{n=1}^{\infty}$ は、すべての $x \in \mathbb{R}$ に対して、 $f_n(x) \to 0$ $(n \to \infty)$ をみたすとする.このとき、 $\int_{\mathbb{R}} f_n(x) \, dx \to 0 \quad (n \to \infty)$ が成り立つ.
 - (c) $(\Omega_1, \Sigma_1, \mu_1)$, $(\Omega_2, \Sigma_2, \mu_2)$ を σ -有限な測度空間とし, $S \in \Sigma_1 \times \Sigma_2$ とする. このとき, $y \in \Omega_2$ に対して, $S_y := \{x \in \Omega_1 : (x, y) \in S\}$ とすると, $S_y \in \Sigma_2$ となる.

(20)
$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \frac{1 - e^{-nx^2} \sin nx + e^{-nx^4} \cos(x^2)}{1 + x^2} dx$$
 を求めよ.