Mediation: Controlled Direct Effects

lan Lundberg Soc 212C2

April 28, 2025

Learning goals for today

At the end of class, you will be able to:

- 1. Define controlled direct effects
- 2. Connect them to longitudinal treatments
- 3. Built intuition for a new estimator: sequential g-estimation

Treatment A

Total Effect

 $\longrightarrow Y$ Outcome

Treatment $A \xrightarrow{\text{Indirect}} M \xrightarrow{\text{Effect}} Y$ Outcome

Mediator

Direct Effect

Before formally defining direct effects, we need a new tool

Richardson & Robins 2013

SWIGs help in at least two settings:

- 1. When causal assumptions differ for each potential outcome
- 2. When we want to focus on a particular intervention

SWIGs help (1): When causal assumptions differ for each
potential outcome

Suppose an unobserved *U* affects the treatment *A*

Suppose an unobserved U affects the treatment A

Suppose U affects Y^1

Suppose an unobserved U affects the treatment A

Suppose U affects Y^1 But U does not affect Y^0 $\begin{matrix} U \\ A & | 1 \end{matrix} \qquad \begin{matrix} V \\ A & | 0 \end{matrix} \qquad \begin{matrix} Y^0 \end{matrix}$

Suppose an unobserved U affects the treatment A

In this case, $E(Y^1)$ is not identified but $E(Y^0)$ is identified.

Suppose an unobserved $\it U$ affects the treatment $\it A$

Suppose U affects Y^1 But U does not affect Y^0

In this case, $E(Y^1)$ is not identified but $E(Y^0)$ is identified.

▶ The ATC E($Y^1 - Y \mid A = 0$) is not identified

Suppose an unobserved U affects the treatment A

Suppose U affects Y^1 But U does not affect Y^0

In this case, $E(Y^1)$ is not identified but $E(Y^0)$ is identified.

- ▶ The ATC E($Y^1 Y \mid A = 0$) is not identified
- ► The ATT $E(Y Y^0 \mid A = 1)$ is identified

SWIGs help (2): When we want to focus on a particular intervention

SWIGs help (2): When we want to focus on a particular intervention

SWIGs help (2): When we want to focus on a particular intervention

Controlled direct effect (CDE)

Controlled direct effect (CDE)

Definition: Controlled Direct Effect

$$\tau(m) = \mathsf{E}\left(Y^{1,m} - Y^{0,m}\right)$$

The effect of an intervention to set treatment A=1 vs A=0 while also intervening to set the mediator to M=m

You are an elementary school principal

You are an elementary school principal

Kids Read Books

You are an elementary school principal

Librarian Visits Class A Υ Kids Read Books

You are an elementary school principal

You are an elementary school principal

You are an elementary school principal

Experiment for the Total Effect

You are an elementary school principal

Experiment for the Total Effect

1) Librarian visits random classes

You are an elementary school principal

Experiment for the Total Effect

- 1) Librarian visits random classes
- 2) Measure the outcome

You are an elementary school principal

Experiment for the Direct Effect
$$\tau(0) = E\left(Y^{10} - Y^{00}\right)$$

Experiment for the Direct Effect
$$\tau(1) = E(Y^{11} - Y^{01})$$

You are an elementary school principal

Experiment for the Direct Effect
$$\tau(0) = E(Y^{10} - Y^{00})$$

1) Librarian visits random classes

Experiment for the Direct Effect $\tau(1) = E\left(Y^{11} - Y^{01}\right)$

1) Librarian visits random classes

You are an elementary school principal

Experiment for the Direct Effect
$$\tau(0) = E(Y^{10} - Y^{00})$$

- 1) Librarian visits random classes
- 2) You close the school library

Experiment for the Direct Effect $\tau(1) = E\left(Y^{11} - Y^{01}\right)$

1) Librarian visits random classes

CDE in an experiment

You are an elementary school principal

Experiment for the Direct Effect
$$\tau(0) = E(Y^{10} - Y^{00})$$

- 1) Librarian visits random classes
- 2) You close the school library

Experiment for the Direct Effect $\tau(1) = E\left(Y^{11} - Y^{01}\right)$

- 1) Librarian visits random classes
- 2) You make every kid visit the library

CDE in an experiment

You are an elementary school principal

Experiment for the Direct Effect $\tau(0) = E(Y^{10} - Y^{00})$

- 1) Librarian visits random classes
- 2) You close the school library
- 3) Measure the outcome

Experiment for the Direct Effect $\tau(1) = E\left(Y^{11} - Y^{01}\right)$

- 1) Librarian visits random classes
- 2) You make every kid visit the library
- 3) Measure the outcome

CDE in an experiment

You are an elementary school principal

Note

These two estimands are **not** the same.

There are **two** direct effects.

Experiment for the Direct Effect $\tau(0) = E(Y^{10} - Y^{00})$

- 1) Librarian visits random classes
- 2) You close the school library
- 3) Measure the outcome

Experiment for the Direct Effect $\tau(1) = E(Y^{11} - Y^{01})$

- 1) Librarian visits random classes
- 2) You make every kid visit the library
- 3) Measure the outcome

It is hard to study mediators that occur inside a person's head

It is hard to study mediators that occur inside a person's head

ightharpoonup Psychological stimulus ightarrow Stress ightarrow Test performance

It is hard to study mediators that occur inside a person's head

- ightharpoonup Psychological stimulus ightarrow Stress ightarrow Test performance
- lacktriangle Exposure to racial outgroup ightarrow Racial resentment ightarrow Voting

It is hard to study mediators that occur inside a person's head

- ▶ Psychological stimulus → Stress → Test performance
- $\blacktriangleright \ \, \mathsf{Exposure} \ \, \mathsf{to} \ \, \mathsf{racial} \ \, \mathsf{outgroup} \to \mathsf{Racial} \ \, \mathsf{resentment} \to \mathsf{Voting}$
- lacktriangle Father incarcerated ightarrow Mother depressed ightarrow Child behavior

It is hard to study mediators that occur inside a person's head

- ightharpoonup Psychological stimulus ightarrow Stress ightarrow Test performance
- lacktriangle Exposure to racial outgroup ightarrow Racial resentment ightarrow Voting
- lacktriangle Father incarcerated ightarrow Mother depressed ightarrow Child behavior

No experiment could manipulate these mediators

It is hard to study mediators that occur inside a person's head

- ightharpoonup Psychological stimulus ightarrow Stress ightarrow Test performance
- lacktriangle Exposure to racial outgroup ightarrow Racial resentment ightarrow Voting
- lacktriangle Father incarcerated ightarrow Mother depressed ightarrow Child behavior

No experiment could manipulate these mediators

Mediators outside a person's head are easier to study

► Example: Require every kid to visit the school library

An experiment might randomize the treatment A

But the mediator M is not randomized

By adjusting for the collider M, researchers open a backdoor path $A \to M \leftarrow U \to Y$

By adjusting for the collider M, researchers open a backdoor path $A \to M \leftarrow U \to Y$

We can solve this problem by measuring the confounders Z

Text here will tell the story for those reading these slides online.

Estimating $\tau(0) = \mathsf{E}(Y^{10} - Y^{00})$

Treatment variable A.

You can think of this as randomized, or you can take this entire story to take place within subgroups of \vec{X} sufficient to yield exchangeability.

Librarian does not visit class	
<i>A</i> = 0	
Librarian visits class	
<i>A</i> = 1	

A affects an intermediate confounder Z

Librarian does not visit class	I'd rather play $Z=0$
A = 0	
	Z=1
Librarian visits class	Z = 0
A=1	Z=1

Z affects the mediator M

Librarian	I'd rather play	Visits playground
does not		M=0
visit class	Z=0	101 — 0
	2 = 0	Visits library
A=0		M=1
	I want a book!	M=0
	Z=1	
	2 – 1	M=1
Librarian		
visits class	Z=0	M=0
	2 - 0	
		M=1
A = 1		
A - 1		M=0
	<i>7</i> = 1	IVI — 0
	2 - 1	
		M=1
		ivi = 1

Librarian does not visit class	I'd rather play $Z=0$	Visits playground $M=0$	Reads books $oldsymbol{ar{Y}}$
A = 0	2 — 0	Visits library $M=1$	Ÿ
	I want a book!	M=0	\bar{Y}
	Z=1	M=1	$ar{Y}$
Librarian visits class	Z=0	M=0	$ar{Y}$
		M = 1	$ar{Y}$
A = 1	Z=1	M=0	$ar{Y}$
		M=1	Ÿ

	I		
Librarian	I'd rather play	Visits playground	Reads books
does not visit class	Z=0	M = 0	$ar{Y}$
	2 – 0	Visits library	-
A = 0		M=1	Y
	I want a book!	M=0	\bar{Y}
	Z=1	M=1	$ar{Y}$
Librarian visits class	Z=0	M=0	$ar{Y}$
		M = 1	Ÿ
A = 1	Z=1	M=0	$ar{Y}$
		M = 1	Ϋ́

Librarian does not visit class	I'd rather play $Z=0$	Proportion reading be anyone from visiting t $E(Y^{00} \mid A =$	the library $(M=0)$
A=0			
	I want a book!	M=0	Y
	Z = 1	M=1	$ar{Y}$
Librarian visits class	Z = 0	M=0	$ar{Y}$
		M=1	$ar{Y}$
A = 1	Z = 1	M=0	$ar{Y}$
		M=1	Ÿ

	ı	I	
Librarian does not	I'd rather play	Proportion reading be anyone from visiting t	
visit class	Z = 0	E(Y ⁰⁰ A =	=0, Z=0)
A=0			
	I want a book!	= (> (00)	. 7 . 1)
	Z=1	$= E(Y^{00} \mid A =$	=0, Z=1)
Librarian visits class	7 0	M = 0	$ar{Y}$
	Z=0		_
		M=1	Y
A=1	Z=1	M=0	$ar{Y}$
		M=1	$ar{Y}$

Librarian does not visit class	I'd rather play	Proportion reading be anyone from visiting to $E(Y^{00} \mid A =$	the library $(M = 0)$
	Z=0	E(Y A =	=0, Z=0)
A=0			
	I want a book!	E() (00 A	0.7 1)
	Z=1	E(Y ⁰⁰ A =	=0, 2=1)
Librarian			
visits class	Z=0	E(Y ¹⁰ A =	= 1, Z = 0)
A 1			
A=1	Z=1	M=0	$ar{Y}$
		M=1	$ar{Y}$
			,

Librarian does not visit class	I'd rather play $Z=0$	Proportion reading books if we prevent anyone from visiting the library $(M=0)$ $E(Y^{00} \mid A=0,Z=0)$
A=0		
	I want a book! $Z=1$	$E(Y^{00} \mid A = 0, Z = 1)$
Librarian visits class	Z=0	$E(Y^{10} \mid A=1, Z=0)$
A = 1	<i>Z</i> = 1	$E(Y^{10} \mid A=1, Z=1)$

To focus on the effect of A, we now ignore Z.

Librarian does not visit class A=0Librarian visits class A = 1

Proportion reading books if we prevent anyone from visiting the library
$$(M=0)$$
 $E(Y^{00} \mid A=0, Z=0)$
$$E(Y^{00} \mid A=0, Z=1)$$

$$E(Y^{10} \mid A=1, Z=0)$$

$$E(Y^{10} \mid A=1, Z=1)$$

Estimating
$$\tau(0) = \mathsf{E}(Y^{10} - Y^{00})$$

To focus on the effect of A, we now ignore Z.

We have a weighted average over $Z \mid A = a$ for each a.

Because the effect of A is identified, $(Z \mid A = a)$

A = 1

Proportion reading books if we prevent anyone from visiting the library (M=0) $E(Y^{00} \mid A=0,Z=0)$

$$\mathsf{E}(Y^{10} \mid A=1, Z=0)$$

 $E(Y^{00} \mid A = 0, Z = 1)$

$$\mathsf{E}(Y^{10} \mid A = 1, Z = 1)$$

Estimating $\tau(0) = \mathsf{E}(Y^{10} - Y^{00})$

To focus on the effect of A, we now ignore Z.

We have a weighted average over $Z \mid A = a$ for each a.

Because the effect of A is identified, $(Z \mid A = a)$ \sim (Z^a)

Estimating $\tau(0) = E(Y^{10} - Y^{00})$

To focus on the effect of A, we now ignore Z.

We have a weighted average over $Z \mid A = a$ for each a.

Because the effect of A is identified, $(Z \mid A = a)$ \sim $(Z \mid A = a)$

The difference is the CDE $\tau(0)$!

High-level overview:

1. Estimate the effect of the mediator

- 1. Estimate the effect of the mediator
 - ► Model Y given X, A, Z, M

- 1. Estimate the effect of the mediator
 - ► Model Y given X, A, Z, M
- 2. Construct \tilde{Y} with the effect of the mediator removed

- 1. Estimate the effect of the mediator
 - ► Model Y given X, A, Z, M
- 2. Construct \tilde{Y} with the effect of the mediator removed
 - $\tilde{Y} = Y [E(Y^M \mid X, A, Z) E(Y^0 \mid X, A, Z)]$

High-level overview:

- 1. Estimate the effect of the mediator
 - ► Model Y given X, A, Z, M
- 2. Construct \tilde{Y} with the effect of the mediator removed

$$\tilde{Y} = Y - \left[\mathsf{E}(Y^M \mid X, A, Z) - \mathsf{E}(Y^0 \mid X, A, Z) \right]$$

3. Estimate treatment effect on the de-mediated outcome

- 1. Estimate the effect of the mediator
 - ightharpoonup Model Y given X, A, Z, M
- 2. Construct \tilde{Y} with the effect of the mediator removed

- 3. Estimate treatment effect on the de-mediated outcome
 - ightharpoonup Model \tilde{Y} given X, A

Step 1: What outcome would have been realized at each M = m?

Step 1: What outcome would have been realized at each M = m?

$$\mathsf{E}(Y^m\mid X,A,Z)=\mathsf{E}(Y\mid X,A,Z,M=m)$$

because $M \rightarrow Y$ is identified given $\{X, A, Z\}$

Step 2: Construct a de-mediated outcome

Step 2: Construct a de-mediated outcome

$$\tilde{Y} = Y - \gamma(X, A, M)$$

where the de-mediation function γ is

$$\underbrace{\gamma(X,A,M)}_{\text{Not a function of }Z} = \underbrace{\mathsf{E}(Y\mid X,A,Z,M) - \mathsf{E}(Y\mid X,A,Z,M=0)}_{\text{Causal effect of the factual mediator value }M \text{ vs }0$$

Step 2: Construct a de-mediated outcome

$$\tilde{Y} = Y - \gamma(X, A, M)$$

where the de-mediation function γ is

$$\underbrace{\gamma(X,A,M)}_{\text{Not a function of }Z} = \underbrace{\mathsf{E}(Y\mid X,A,Z,M) - \mathsf{E}(Y\mid X,A,Z,M=0)}_{\text{Causal effect of the factual mediator value }M \text{ vs }0$$

New assumption: No $Z \times M$ interactions (simplifies estimation)

- ▶ The effect $M \rightarrow Y$ does not depend on Z
- \blacktriangleright By this assumption, γ is not a function of Z

Step 3: Estimate the treatment effect on the de-mediated outcome

$$\mathsf{E}(Y^{\mathsf{a},0}\mid X) = \mathsf{E}(\tilde{Y}\mid X, A = \mathsf{a})$$

- 1. Estimate the effect of the mediator
 - ightharpoonup Model Y given X, A, Z, M
- 2. Construct \tilde{Y} with the effect of the mediator removed

- 3. Estimate treatment effect on the de-mediated outcome
 - ightharpoonup Model \tilde{Y} given X, A

Learning goals for today

At the end of class, you will be able to:

- 1. Define controlled direct effects
- 2. Connect them to longitudinal treatments
- 3. Built intuition for a new estimator: sequential g-estimation