

Multi-Resource Fairness for Correlated and Elastic Demands

Mosharaf Chowdhury, Zhenhua Liu

Ali Ghodsi, Ion Stoica

How to share the links between multiple tenants to provide

- I. optimal performance guarantees and
- 2. maximize utilization?

Single-Resource Max-Min Fairness

1. Optimal Isolation Guarantee

Single-Resource Max-Min Fairness

Tenant-A wants half of it
Tenant-B wants all of it

Progress (M) of a tenant is its demand-normalized allocation

Isolation Guarantee is the minimum progress across all

Single-Resource Max-Min Fairness

Tenant-A wants half of it
Tenant-B wants all of it

Optimal Isolation Guarantee Work Conservation

No Tradeoff for Single Resource

- 1. Optimal Isolation Guarantee
- 2. Work Conservation
- 3. Strategyproof

Congestion-Less Core L_2 L_{N+2} L_3 L_{N+3} L_{I} L_{N+I} L_N L_{2N}

 M_3

Tenants have different

I. placements,

2. communication patterns,

 M_{I}

 M_2

3. demand correlations,

4. ..

 M_N

Per-Flow Fairness For Multiple Resources

Low

- 1. Optimal Isolation Guarantee
- 2. Work Conservation
- 3. Strategyproof

Isolation Guarantee

Elastic Demands¹

Tenant-A wants **all** of L_1 and **all** of L_2

Tenant-B wants **all** of L_1 and **all** of L_2

Tenant-Level Max-Min Fairness (PS-P)

Tenant-A wants **all** of L_1 and **all** of L_2

Tenant-B wants **all** of L_1 and **all** of L_2

Tenant-Level Max-Min Fairness (PS-P)

- 1. Suboptimal Isolation Guarantee
- 2. Work Conservation

Isolation Guarantee

Correlated Demands

Tenant-A wants some of L_1 and all of L_2

Tenant-B wants **some** of L_2 and **all** of L_1

Dominant Resource Fairness (DRF)

Tenant-A wants exactly half unit of L_1 for each of L_2

Tenant-B wants **exactly** 1/6 unit of L_2 for **each** of L_1

$$\mathbf{d_{A}} = \langle 1/2, 1 \rangle \quad \mathbf{a_{A}} = \langle 1/3, 2/3 \rangle \quad \mathbf{M_{A}} = \min\left(\frac{\mathbf{a_{A}^{i}}}{\mathbf{d_{A}^{i}}}\right) = 2/3$$

$$\mathbf{d_{B}} = \langle 1, 1/6 \rangle \quad \mathbf{a_{B}} = \langle 2/3, 1/9 \rangle \quad \mathbf{M_{B}} = \min\left(\frac{\mathbf{a_{B}^{i}}}{\mathbf{d_{B}^{i}}}\right) = 2/3$$

$$\mathbf{Min(M_{A}, M_{B})} = 2/3$$

Dominant Resource Fairness (DRF)

- 1. Optimal Isolation Guarantee
- 2. Arbitrarily Low Utilization
- 3. Strategyproof

Isolation Guarantee

For elastic and correlated demands, can we simultaneously achieve optimal isolation guarantee and maximum utilization?

For elastic and correlated demands, can we simultaneously achieve optimal isolation guarantee and maximum utilization?

1. Why not?

2. What's the best we can achieve?

3. How can we achieve that?

4. Does it matter?

1. Why not?

2. What's the best we can achieve?

3. How can we achieve that?

4. Does it matter?

Isolation Guarantee

Elastic and Correlated Demands

Tenant-A wants at least half unit of L_1 for each of L_2

Tenant-B wants at least 1/6 unit of L_2 for each of L_1

$$d_A = \langle 1/2, 1 \rangle$$
 $a_A = \langle 1/3, 2/3 \rangle$ $M_A = 2/3$
 $d_B = \langle 1, 1/6 \rangle$ $a_B = \langle 2/3, 1/9 \rangle$ $M_B = 2/3$ $M_B = 2/3$

Elastic and Correlated Demands

Tenant-A wants at least half unit of L_1 for each of L_2

Who gets this?

Tenant-B wants at least 1/6 unit of L₂ for each of L₁

$$\mathbf{d_A} = \langle 1/2, 1 \rangle \quad \mathbf{d_A} = \langle 1/3, 2/3 \rangle \quad \mathbf{M_A} = 2/3$$

$$d_B = \langle 1, 1/6 \rangle$$
 $d_B = \langle 2/3, 1/9 \rangle$ $M_B = 2/3$

$$Min(M_A, M_B) = 2/3$$

Work Conservation Doesn't Work!

Tenant-A **lies** and asks for **one** unit of L_1 for **each** of L_2

Tenant-B wants at least 1/6 unit of L_2 for each of L_1

$$d'_A = \langle |, | \rangle$$
 $a'_A = \langle |/_2, |/_2 \rangle$

$$\mathbf{d_B} = \langle 1, 1/6 \rangle$$
 $\mathbf{d_B} = \langle 1/2, 1/12 \rangle$

Work Conservation Doesn't Work!

Tenant-A **lies** and asks for **one** unit of L_1 for **each** of L_2

Tenant-B wants at least 1/6 unit of L_2 for each of L_1

$$\mathbf{d''_A} = \langle |, | \rangle$$
 $\mathbf{a''_A} = \langle |/_2, |/_2 \rangle$ $\mathbf{a''_A} = \langle |/_2, | |/| | 2 \rangle$ $\mathbf{M''_A} = | |//| 2$

$$\mathbf{d_B} = \langle |, |/6 \rangle \quad \mathbf{a_B} = \langle |/_2, |/| | 2 \rangle$$
 $\mathbf{M''_B} = |/2$

Prisoner's Dilemma

Doesn't Lie Lies

Doesn't Lie
$$\frac{2}{3}$$
, $\frac{2}{3}$ \longrightarrow $\frac{11}{12}$, $\frac{1}{2}$

Lies $\frac{1}{2}$, $\frac{3}{4}$ \longrightarrow $\frac{1}{2}$, $\frac{1}{2}$

1. Why not?

Optimal isolation guarantee depends on being strategyproof, but work conservation cannot coexist with strategyproof-ness

1. Why not?

2. What's the best we can achieve?

3. How can we achieve that?

4. Does it matter?

Isolation Guarantee

HUG in Non-Cooperative Setting

- 1. Optimal Isolation Guarantee
- 2. Highest Utilization
- 3. Strategyproof

Isolation Guarantee

Highest Utilization with the Optimal Isolation Guarantee

Restrict a tenant's allocation in any link to its allocation in the bottleneck link

Tenant-A Lied

Tenant-A **lies** and asks for **one** unit of L_1 for **each** of L_2

Tenant-B wants at least 1/6 unit of L_2 for each of L_1

$$\mathbf{d''_A} = \langle |, | \rangle$$
 $\mathbf{a''_A} = \langle |/_2, |/_2 \rangle$ $\mathbf{a''_A} = \langle |/_2, | |/| | 2 \rangle$ $\mathbf{M''_A} = |/_2$
 $\mathbf{d_B} = \langle |, |/_6 \rangle$ $\mathbf{a_B} = \langle |/_2, |/| | 2 \rangle$ $\mathbf{M''_B} = |/_2$

Everyone is Forced to Tell the Truth

Tenant-A wants at least half unit of L₁ for each of L_2

Tenant-B wants at least 1/6 unit of L₂ for each of L_I

$$d_A = < 1/2, 1> a_A = < 1/3, 2/3>$$

$$M_A = 2/3$$

$$d_B = \langle 1, 1/6 \rangle$$
 $d_B = \langle 2/3, 1/9 \rangle$ $d_B'' = \langle 2/3, 1/3 \rangle$ $M_B = 2/3$

$$a''_{B} = <2/3, 1/3>$$

$$M_B = 2/3$$

Highest Utilization with the Optimal Isolation Guarantee

- 1. Tenants update correlation vectors through an API
- 2. Operators calculate HUG centrally and enforce it locally

1. Why not?

2. What's the best we can achieve?

3. How can we achieve that?

4. Does it matter?

Isolation Guarantee

Evaluation

O Per-Flow FairnessDRFPS-PHUG

- 100 concurrent tenants
- 3000 machines with 3Tbps total capacity
- Original placement and communication patterns from the Facebook trace

Isolation Guarantee

Bursty Demands

Periodic demand bursts in Spark streaming

Long-Term Guarantees

Predictable performance guarantees over time

#**3**

Decentralized Algorithms

Survive master failures and enable low response times

Highest Utilization with the Optimal Isolation Guarantee

- Generalizes single- and multi-resource fairness schemes
- Optimal worst-case performance guarantees for tenants
- Highest utilization for operators

HUG in Cooperative Setting

- 1. Optimal Isolation Guarantee
- 2. Work Conservation

Isolation Guarantee

Evaluation

A 3000-machine trace-driven simulation based on a snapshot of Facebook production trace

- I. Does it provide isolation guarantee?
- 2. Does it improve utilization?
- 3. Is it practical?

Optimal Progress for ALL

	Per-Flow Fairness	PS-P ²	DRF ³	HUG
Max	1	1	0.74	0.74
Min	0.0001	0.10	0.74	0.74
Max-to-Min Progress Ratio	10000X	10X	1X	1X

^{1. 100} tenants in this particular snapshot. The unit of progress is Gbps.

Higher Network Utilization

	Per-Flow Fairness	PS-P ²	DRF ³	HUG
Total Utilization (Tbps)	2.21	2.20	1.42	2.00
Max-to-Min Progress Ratio	10000X	10X	1X	1X

^{1. 100} tenants in this particular snapshot. The unit of progress is Gbps.

^{2.} FairCloud: Sharing the Network in Cloud Computing, SIGCOMM'12

^{3.} Dominant Resource Fairness: Fair Allocation of Multiple Resource Types, NSDI'll

Long-Term Performance

	Average Time
Per-flow Fairness	1.49X
PS-P	1.14X
DRF	1.14X
HUG	IX
Varys ¹	0.69X

Coordination Overheads and Scalability

Computation overheads

- Less than 5 µs for 100machine cluster
- Less than 10 ms for 100,000 machines

Communication overheads

- Less than 10 ms for 100machine cluster
- Less than I second for 100,000 machines

Optimal Progress for ALL

	Max/Min Ratio
Per-flow Fairness	10000X
PS-P	10X
DRF	IX
HUG	IX

Higher Utilization

	Max/Min Ratio
Per-flow Fairness	3240000X
PS-P	2590X
DRF	196X
HUG	340X