Skin Cancer Detection

Prajna P Prabhu 200968010 Section-A Batch-1

Define the problem statement

Skin cancer is one of the most dangerous forms of cancer. Skin cancer can be cured if early detected, but only highly-trained specialists are capable of accurately diagnosing skin cancer early. There is a severe shortage of experts and tools that can medically diagnose skin cancer accurately, so the innovation of computer-aided systems that can detect skin cancer could help in saving more lives at a low cost. Considering the seriousness of these issues, it's important to develop different skin cancer detection techniques.

Meta data of Data set

Dataset: ISIC Skin Cancer Challenge 2019

Domain - Computer Vision, Machine Learning
Sub-Domain - Deep Learning, Image Recognition

Techniques - Deep Convolutional Neural Network, XceptionNet

Application - Image Recognition, Image Classification, Medical Imaging

Dataset Details:

Dataset Name : ISIC Skin Cancer Images (Basal Cell Carcinoma vs

Melanoma vs Nevus)

Number of class : 3

Number/Size of Images: Total: 12445 (555 MB)

Training: 12295

Testing: 150

Distribution of images in training data for each class:

- 1. Basal Cell Carcinoma (3273)
- 2. Melanoma (4472)
- 3. Nevus (4550)

Sample images of Basal cell Carcinoma, Melanoma and Nevus are below

Model Selection: MobileNetV2

Confusion Matrix:

Model Report

Performance Metrics	
Test Accuracy	97.47%
Precision	97%
Sensitivity(BCC)	100%
Sensitivity(Melanoma)	96%
Sensitivity(Nevus)	98%
F1-score	98%
AUC	0.99

ROC

Preprocessing pipeline specific to data

Preprocessing, such as normalisation, image resizing, and data argumentation, needs to be done to eradicate the different biases in the dataset amid various classes.

Define Project Objective

Objective is to build a web application and leverage the Transfer

Learning based deep CNN for detecting 3 major classes of skin cancer : Basal

Cell Carcinoma, Nevus.