Distance Measures and Clustering Group T4-2

1.0

Generated by Doxygen 1.9.1

1	Description	1
	1.1 Frontend	1
	1.2 Documentation	1
	1.3 Dependencies and Sources	1
	1.4 Authors	2
2	Namespace Index	3
	2.1 Namespace List	3
3	Hierarchical Index	5
	3.1 Class Hierarchy	5
4	Class Index	7
	4.1 Class List	7
5	File Index	9
	5.1 File List	9
6	Namespace Documentation	11
	6.1 clustering Namespace Reference	11
	6.2 comparison_plots Namespace Reference	11
	6.2.1 Variable Documentation	12
	6.2.1.1 all_dist	12
	6.2.1.2 all_k	12
	6.2.1.3 all_kalgos	12
	6.2.1.4 all_kalgos_df	13
	6.2.1.5 all_kalgos_int	13
	6.2.1.6 ax	13
	6.2.1.7 bbox_to_anchor	13
	6.2.1.8 borderaxespad	13
	6.2.1.9 c	13
	6.2.1.10 cluster	13
	6.2.1.11 clustered_data	14
	6.2.1.12 clusters	14
	6.2.1.13 d	14
	6.2.1.14 data	14
	6.2.1.15 datasets	14
	6.2.1.16 distances	14
	6.2.1.17 fig	14
	6.2.1.18 figsize	14
	6.2.1.19 hue	15
	6.2.1.20 l1	15
	6.2.1.21 index	15
	6.2.1.22 index_ext_eval	15

6.2.1.23 index_int_eval	 . 15
6.2.1.24 index_score	 . 15
6.2.1.25 index_scores	 . 15
6.2.1.26 k	 . 16
6.2.1.27 kalgoclass	 . 16
6.2.1.28 kalgos	 . 16
6.2.1.29 kind	 . 16
6.2.1.30 labels	 . 16
6.2.1.31 legend	 . 16
6.2.1.32 loc	 . 16
6.2.1.33 num_of_classes	 . 17
6.2.1.34 predicted	 . 17
6.2.1.35 results	 . 17
6.2.1.36 s	 . 17
6.2.1.37 seed	 . 17
6.2.1.38 stuff	 . 17
6.2.1.39 style	 . 17
6.2.1.40 title	 . 17
6.2.1.41 x	 . 18
6.2.1.42 y	 . 18
6.3 dbscan Namespace Reference	 . 18
6.4 dbscan_comparision_plots Namespace Reference	 . 18
6.4.1 Function Documentation	 . 18
6.4.1.1 plot_kdist()	 . 18
6.4.2 Variable Documentation	 . 19
6.4.2.1 datasets	 . 19
6.4.2.2 distances	 . 19
6.4.2.3 heu	 . 19
6.4.2.4 kdists	 . 19
6.5 dbscan_heuristic Namespace Reference	 . 19
6.6 dbscan_solutions Namespace Reference	 . 19
6.6.1 Function Documentation	 . 20
6.6.1.1 save_score()	 . 20
6.6.2 Variable Documentation	 . 20
6.6.2.1 alg	 . 20
6.6.2.2 best_results	 . 20
6.6.2.3 centers	 . 20
6.6.2.4 clustered_data	 . 21
6.6.2.5 clusters	 . 21
6.6.2.6 datasets	 . 21
6.6.2.7 distances	 . 21
6.6.2.8 external	 . 21

6.6.2.9 indices	21
6.6.2.10 internal	21
6.6.2.11 score	21
6.6.2.12 seed	22
6.7 heuristic_web Namespace Reference	22
6.7.1 Variable Documentation	22
6.7.1.1 cluster_dist	22
6.7.1.2 cluster_dist_desc	23
6.7.1.3 col1	23
6.7.1.4 col2	23
6.7.1.5 dataset	23
6.7.1.6 df	23
6.7.1.7 heu	23
6.7.1.8 k	24
6.7.1.9 kdist	24
6.7.1.10 key	24
6.7.1.11 line	24
6.7.1.12 nearest	24
6.7.1.13 page_icon	24
6.7.1.14 page_title	24
6.7.1.15 points	25
6.7.1.16 reverse	25
6.7.1.17 rules	25
6.7.1.18 selectors	25
6.7.1.19 submit_button	25
6.7.1.20 text	25
6.7.1.21 textp	25
6.7.1.22 use_container_width	26
6.7.1.23 yaxis	26
6.8 indices Namespace Reference	26
6.9 kmeans Namespace Reference	26
6.10 kmedians Namespace Reference	26
6.11 kmedoids Namespace Reference	26
6.12 make_timing_table Namespace Reference	27
6.12.1 Variable Documentation	27
6.12.1.1 axis	27
6.12.1.2 dataset_cluster	27
6.12.1.3 datasets	27
6.12.1.4 dbscan_comb	27
6.12.1.5 distances	28
6.12.1.6 kalgoclass	28
6.12.1.7 kalgos	28

6.12.1.8 table_array	 28
6.12.1.9 timing_results	 28
6.12.1.10 timing_table	 28
6.13 result_calculation Namespace Reference	 28
6.13.1 Variable Documentation	 29
6.13.1.1 alg	 29
6.13.1.2 c	 29
6.13.1.3 centers	 29
6.13.1.4 clusters	 29
6.13.1.5 d	 29
6.13.1.6 datasets	 29
6.13.1.7 distances	 29
6.13.1.8 eps	 30
6.13.1.9 k	 30
6.13.1.10 kalgoclass	 30
6.13.1.11 kalgos	 30
6.13.1.12 m	 30
6.13.1.13 minpts	 30
6.13.1.14 results	 30
6.13.1.15 s	 31
6.13.1.16 seed	 31
6.14 results Namespace Reference	 31
6.15 SessionState Namespace Reference	 31
6.15.1 Function Documentation	 31
6.15.1.1 get()	 32
6.16 timing Namespace Reference	 32
6.16.1 Variable Documentation	 32
6.16.1.1 after	 33
6.16.1.2 alg	 33
6.16.1.3 before	 33
6.16.1.4 centers	 33
6.16.1.5 clusters	
6.16.1.6 dataset_cluster	 33
6.16.1.7 dbscan_comb	 33
6.16.1.8 distances	 34
6.16.1.9 kalgoclass	 34
6.16.1.10 kalgos	 34
6.16.1.11 n	 34
6.16.1.12 time	 34
6.16.1.13 timing	 34
6.17 web_frontend Namespace Reference	 34
6.17.1 Function Documentation	 36

6.17.1.1 clustering()	
6.17.1.2 create_cluster()	36
6.17.1.3 plotting()	37
6.17.2 Variable Documentation	37
6.17.2.1 add_result	37
6.17.2.2 base	37
6.17.2.3 cluster	37
6.17.2.4 cluster_algo	
6.17.2.5 cluster_algo_class	
6.17.2.6 cluster_dist	
6.17.2.7 cluster_dist_desc	
6.17.2.8 clusterset	
6.17.2.9 col1	
6.17.2.10 col2	
6.17.2.11 data_select	39
6.17.2.12 dataexpander	39
6.17.2.13 dataset	39
6.17.2.14 datasetinformation	39
6.17.2.15 datasets	39
6.17.2.16 desc	39
6.17.2.17 desc_list	39
6.17.2.18 df	40
6.17.2.19 df_for	40
6.17.2.20 dfclusterdata	40
6.17.2.21 epsilon	40
6.17.2.22 fig1	40
6.17.2.23 fig2	40
6.17.2.24 l1	40
6.17.2.25 index_eval	41
6.17.2.26 indices_data	41
6.17.2.27 k_value	41
6.17.2.28 labels	41
6.17.2.29 minpts	41
6.17.2.30 page_icon	41
6.17.2.31 page_title	41
6.17.2.32 params	42
6.17.2.33 perp	42
6.17.2.34 precalc	42
6.17.2.35 predicted	42
6.17.2.36 reset_tmp	42
6.17.2.37 resulthandler	42
6.17.2.38 results	42

6 17 2 20 coord		40
6.17.2.39 score		42
6.17.2.40 seaplots		43
6.17.2.41 seed		43
6.17.2.42 seeded		43
6.17.2.43 session_state		43
6.17.2.44 stats		43
6.17.2.45 title		43
6.17.2.46 use_container_width		43
6.17.2.47 val	٠.	43
7 Class Documentation		45
7.1 clustering.Clustering Class Reference		45
7.1.1 Detailed Description		46
7.1.2 Constructor & Destructor Documentation		46
7.1.2.1 <u>init</u> ()		46
7.1.3 Member Function Documentation		46
7.1.3.1 cluster()		47
7.1.3.2 house load()		47
7.1.3.3 load_data()		47
7.1.3.4 pyc_metric()		47
7.1.4 Member Data Documentation		48
7.1.4.1 data		48
7.1.4.2 datadf		48
7.1.4.3 dataset		48
7.1.4.4 labels		48
7.1.4.5 metric		49
7.1.4.6 seed		49
7.2 dbscan.DBSCANClustering Class Reference		49
7.2.1 Detailed Description		50
7.2.2 Constructor & Destructor Documentation		50
7.2.2.1init()		50
7.2.3 Member Function Documentation		50
7.2.3.1 cluster()		50
7.2.3.2 package()		51
7.2.4 Member Data Documentation		51
7.2.4.1 data		51
7.2.4.2 dataset		51
7.2.4.3 labels		51
7.2.4.4 metric		52
7.3 dbscan heuristic.DBSCANHeuristic Class Reference		52 52
		52 52
7.3.1 Detailed Description		52 52
7.3.2 Constructor & Destructor Documentation		<u>ی</u> ح

7.3.2.1init()	53
7.3.3 Member Function Documentation	53
7.3.3.1 kdist()	53
7.3.3.2 plot_kdist()	53
7.3.3.3 set_dataset()	53
7.3.3.4 set_metric()	54
7.3.4 Member Data Documentation	54
7.3.4.1 clustering	54
7.3.4.2 k	54
7.3.4.3 metric	54
7.4 indices.Indices Class Reference	55
7.4.1 Detailed Description	55
7.4.2 Constructor & Destructor Documentation	55
7.4.2.1init()	55
7.4.3 Member Function Documentation	56
7.4.3.1 index_external()	56
7.4.3.2 index_internal()	56
7.4.4 Member Data Documentation	56
7.4.4.1 cluster_calc	56
7.4.4.2 cluster_label	57
7.5 kmeans.kmeansClustering Class Reference	57
7.5.1 Detailed Description	57
7.5.2 Constructor & Destructor Documentation	58
7.5.2.1init()	58
7.5.3 Member Function Documentation	58
7.5.3.1 cluster()	58
7.5.4 Member Data Documentation	58
7.5.4.1 data	59
7.5.4.2 dataset	59
7.5.4.3 labels	59
7.5.4.4 metric	59
7.5.4.5 seed	59
7.6 kmedians.kmediansClustering Class Reference	60
7.6.1 Detailed Description	60
7.6.2 Constructor & Destructor Documentation	60
7.6.2.1init()	60
7.6.3 Member Function Documentation	61
7.6.3.1 cluster()	61
7.6.4 Member Data Documentation	61
7.6.4.1 data	61
7.6.4.2 dataset	61
7.6.4.3 labels	62

7.6.4.4 metric	62
7.6.4.5 seed	62
7.7 kmedoids.kmedoidsClustering Class Reference	. 62
7.7.1 Detailed Description	63
7.7.2 Constructor & Destructor Documentation	63
7.7.2.1init()	63
7.7.3 Member Function Documentation	63
7.7.3.1 cluster()	64
7.7.3.2 package()	64
7.7.4 Member Data Documentation	64
7.7.4.1 data	64
7.7.4.2 dataset	65
7.7.4.3 labels	65
7.7.4.4 metric	65
7.7.4.5 seed	65
7.8 results.Results Class Reference	65
7.8.1 Detailed Description	66
7.8.2 Constructor & Destructor Documentation	66
7.8.2.1init()	66
7.8.3 Member Function Documentation	66
7.8.3.1 get_path()	67
7.8.3.2 load_set()	67
7.8.3.3 save_set()	
7.8.3.4 set_exists()	68
7.8.4 Member Data Documentation	
7.8.4.1 parent	
7.9 SessionState.SessionState Class Reference	69
7.9.1 Constructor & Destructor Documentation	
7.9.1.1init()	69
8 File Documentation	71
8.1 clustering.py File Reference	71
8.1.1 Detailed Description	71
8.2 comparison_plots.py File Reference	71
8.2.1 Detailed Description	
8.3 dbscan.py File Reference	73
8.3.1 Detailed Description	73
8.4 dbscan_comparision_plots.py File Reference	73
8.5 dbscan_heuristic.py File Reference	73
8.5.1 Detailed Description	74
8.6 dbscan_solutions.py File Reference	74
8.7 heuristic_web.py File Reference	74

Index	83
8.18 /home/nordegraf/Uni/8.Semester/DataSciencel/datascience1_group42/README.md File Referen	ce 82
8.17.1 Detailed Description	82
8.17 web_frontend.py File Reference	80
8.16 timing.py File Reference	80
8.15.1.1 Usage	79
8.15.1 Detailed Description	79
8.15 SessionState.py File Reference	79
8.14.1 Detailed Description	79
8.14 results.py File Reference	78
8.13 result_calculation.py File Reference	78
8.12.1 Detailed Description	78
8.12 make_timing_table.py File Reference	77
8.11.1 Detailed Description	77
8.11 kmedoids.py File Reference	77
8.10.1 Detailed Description	77
8.10 kmedians.py File Reference	76
8.9.1 Detailed Description	76
8.9 kmeans.py File Reference	76
8.8.1 Detailed Description	76
8.8 indices.py File Reference	75
8.7.1 Detailed Description	75

Description

This is a group project done for the Lecture "Data Science 1" at the Goethe University Frankfurt exploring the effects of different distance measures on distance-based clustering algorithms.

1.1 Frontend

The web frontend is accessible here.

A user manual can be looked up here

1.2 Documentation

The doxygen Documentation of the codebase can be accessed here.

A PDF Documentation is also available in the docs directory (file: documentation.pdf)

1.3 Dependencies and Sources

The SessionState.py is directly taken from a <code>gist</code> by Thiago Teixeira, user <code>tvst</code> on github. We take absolutly no credit for it!

The code for the altair chart used for displaying the DBSCAN heuristic is based heavily upon the multiline tooltip example from the altair example gallery (Link).

The project depends on following python libraries:

- matplotlib
- numpy
- pandas
- pyclustering
- scikit-learn
- scikit-learn-extra
- seaborn
- streamlit
- altair

2 Description

1.4 Authors

- Niklas Conen
- Jonas Elpelt
- Franziska Hicking
- Julian Rummel

So long, and thanks for all the fish

Namespace Index

2.1 Namespace List

Here is a list of all namespaces with brief descriptions:

clustering	11
comparison_plots	11
dbscan	18
dbscan_comparision_plots	18
dbscan_heuristic	19
dbscan_solutions	19
heuristic_web	
indices	26
kmeans	
kmedians	
kmedoids	
make_timing_table	
result_calculation	28
results	
SessionState	
timing	32
web frontend	34

4 Namespace Index

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

ıstering.Clustering	45
dbscan.DBSCANClustering	. 49
kmeans.kmeansClustering	. 57
kmedians.kmediansClustering	. 60
kmedoids.kmedoidsClustering	. 62
scan_heuristic.DBSCANHeuristic	52
dices.Indices	55
ject	
SessionState.SessionState	. 69
sults.Results	65

6 Hierarchical Index

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

clustering.Clustering	
Base Class for all subsequent clustering algorithms	
implements all functions needed for running the different	
cluster algorithms	45
dbscan.DBSCANClustering	
Implements DBSCAN Clustering	
uses the scikit-learn DBSCAN implementation	49
dbscan_heuristic.DBSCANHeuristic	
Implements the DBSCAN heuristic proposed in the original DBSCAN paper:	52
indices.Indices	
Calculates Indices for computed cluster labels uses the scikit library	55
kmeans.kmeansClustering	
Class implementing k-Means Clustering	
uses the pyclustering k-means implementation	
centers can be initialised using the k++ or the random initialiser	57
kmedians.kmediansClustering	
Implements k-Medians Clustering uses the pyclustering k-medians implementation centers are	
initialised using the random initialiser	60
kmedoids.kmedoidsClustering	
Implements k-Medians Clustering	
uses the scikit-learn-extra k-medoids implementation	
centers are set using the k++ initialiser if not set differently	62
results.Results	
Class for easily saving and loading already calculated clustering results	
every dataset has a folder containing subfolders for every clustering algorithm containing	
more subfolders for every distance measure	65
SessionState.SessionState	69

8 Class Index

File Index

5.1 File List

Here is a list of all files with brief descriptions:

clustering.py	
Clustering base class	71
comparison_plots.py	
Script for generating plots for comparing different parameters	71
dbscan.py	
Implementation of the DBSCAN algorithm	73
dbscan_comparision_plots.py	73
dbscan_heuristic.py	
Implementation of DBSCAN parameter estimation heuristic	73
dbscan_solutions.py	74
heuristic_web.py	
Webfrontend for the DBSCAN heuristic impslemented using streamlit	74
indices.py	
Evaluation Modul to compare clustering results	75
kmeans.py	
Implementation of the k-means algorithm	76
kmedians.py	
Implementation of the k-medians algorithm	76
kmedoids.py	
Implementation of the k-medoids algorithm	77
make_timing_table.py	
Script for generating latex tables for timing results	77
result_calculation.py	78
results.py	
Handler for saving and loading results	78
SessionState.py	
<pre>Taken from https://gist.github.com/tvst/036da038ab3e999a64497f42de9 79</pre>	166a92
timing.py	80
web_frontend.py	
Webfrontend for project	80

10 File Index

Namespace Documentation

6.1 clustering Namespace Reference

Classes

· class Clustering

Base Class for all subsequent clustering algorithms implements all functions needed for running the different cluster algorithms.

6.2 comparison plots Namespace Reference

Variables

```
• list kalgos = ['kmeans', 'kmedians', 'kmedoids']
• dictionary kalgoclass = {'kmeans': kmeansClustering, 'kmediansClustering, 'kmediansCluster
       : kmedoidsClustering}
• list distances = ["euclidean", "manhattan", "chebyshev", "cosine"]
• list datasets = ["iris", "wine", "diabetes", "housevotes"]
• list index_ext_eval = ["ARI", "AMI", "Completeness Score", "Homogeneity Score"]
• list index_int_eval = ["Silhouette Score"]
• list num_of_classes = [3,3,2,2]
• int seed = 42
results = Results("./code/results")
all_kalgos = np.zeros((3,4, 9,len(index_ext_eval)))
• all kalgos int = pd.DataFrame(columns=['k', 'Distance (Silhouette Score)', 'Distance (Clustering)', 'sil score',
       'kalgo'])
• all dist = np.zeros((4, 9,len(index ext eval)))
• all_k = np.zeros((9,len(index_ext_eval)))
· clusters

    stuff

• C
• d
```

dictionary cluster = kalgoclass[c](d, s, seed)

- clustered_data = np.zeros(len(cluster.data))
- dictionary labels = cluster.labels.tolist()
- predicted = clustered_data.tolist()
- I1 = Indices(predicted, labels)
- index_scores = np.zeros_like(index_ext_eval, dtype=float)
- index_score = I1.index_internal(index=index_int_eval[0], points=cluster.data.tolist(), metric=di)
- index
- fig = plt.figure(figsize=(15, 10))
- bbox_to_anchor
- loc
- borderaxespad
- ax
- · figsize
- data
- X
- y
- hue
- style
- legend
- all_kalgos_df = pd.DataFrame(all_kalgos[:,:,num_of_classes[isx]-2,i], columns=distances, index=kalgos)
- kind
- title

6.2.1 Variable Documentation

6.2.1.1 all_dist

```
comparison_plots.all_dist = np.zeros((4, 9,len(index_ext_eval)))
```

6.2.1.2 all_k

```
comparison_plots.all_k = np.zeros((9,len(index_ext_eval)))
```

6.2.1.3 all_kalgos

```
comparison_plots.all_kalgos = np.zeros((3,4, 9,len(index_ext_eval)))
```

6.2.1.4 all_kalgos_df

comparison_plots.all_kalgos_df = pd.DataFrame(all_kalgos[:,:,num_of_classes[isx]-2,i], columns=distances,
index=kalgos)

6.2.1.5 all_kalgos_int

comparison_plots.all_kalgos_int = pd.DataFrame(columns=['k', 'Distance (Silhouette Score)',
'Distance (Clustering)', 'sil_score', 'kalgo'])

6.2.1.6 ax

comparison_plots.ax

6.2.1.7 bbox_to_anchor

 ${\tt comparison_plots.bbox_to_anchor}$

6.2.1.8 borderaxespad

comparison_plots.borderaxespad

6.2.1.9 c

comparison_plots.c

6.2.1.10 cluster

dictionary comparison_plots.cluster = kalgoclass[c](d, s, seed)

6.2.1.11 clustered_data

```
comparison_plots.clustered_data = np.zeros(len(cluster.data))
```

6.2.1.12 clusters

 ${\tt comparison_plots.clusters}$

6.2.1.13 d

comparison_plots.d

6.2.1.14 data

comparison_plots.data

6.2.1.15 datasets

```
list comparison_plots.datasets = ["iris", "wine", "diabetes", "housevotes"]
```

6.2.1.16 distances

```
comparison_plots.distances = ["euclidean", "manhattan", "chebyshev", "cosine"]
```

6.2.1.17 fig

```
comparison_plots.fig = plt.figure(figsize=(15, 10))
```

6.2.1.18 figsize

 ${\tt comparison_plots.figsize}$

6.2.1.19 hue

comparison_plots.hue

6.2.1.20 I1

comparison_plots.I1 = Indices(predicted, labels)

6.2.1.21 index

comparison_plots.index

6.2.1.22 index_ext_eval

list comparison_plots.index_ext_eval = ["ARI", "AMI", "Completeness Score", "Homogeneity Score"]

6.2.1.23 index_int_eval

list comparison_plots.index_int_eval = ["Silhouette Score"]

6.2.1.24 index_score

6.2.1.25 index_scores

comparison_plots.index_scores = np.zeros_like(index_ext_eval, dtype=float)

6.2.1.26 k

 ${\tt comparison_plots.k}$

6.2.1.27 kalgoclass

```
dictionary comparison_plots.kalgoclass = {'kmeans': kmeansClustering, 'kmedians': kmediansClustering}
'kmedoids': kmedoidsClustering}
```

6.2.1.28 kalgos

```
list comparison_plots.kalgos = ['kmeans', 'kmedians', 'kmedoids']
```

6.2.1.29 kind

comparison_plots.kind

6.2.1.30 labels

dictionary comparison_plots.labels = cluster.labels.tolist()

6.2.1.31 legend

comparison_plots.legend

6.2.1.32 loc

comparison_plots.loc

6.2.1.33 num_of_classes

list comparison_plots.num_of_classes = [3,3,2,2]

6.2.1.34 predicted

comparison_plots.predicted = clustered_data.tolist()

6.2.1.35 results

comparison_plots.results = Results("./code/results")

6.2.1.36 s

comparison_plots.s

6.2.1.37 seed

int comparison_plots.seed = 42

6.2.1.38 stuff

comparison_plots.stuff

6.2.1.39 style

comparison_plots.style

6.2.1.40 title

comparison_plots.title

6.2.1.41 x

```
comparison_plots.x
```

6.2.1.42 y

comparison_plots.y

6.3 dbscan Namespace Reference

Classes

class DBSCANClustering

implements DBSCAN Clustering uses the scikit-learn DBSCAN implementation

6.4 dbscan_comparision_plots Namespace Reference

Functions

def plot_kdist (kdists, dataset)
 plots the sorted kdist graph using matplotlib

Variables

```
• list distances = ["euclidean", "manhattan", "chebyshev", "cosine"]
```

- list datasets = ["iris", "wine", "diabetes", "housevotes"]
- heu = DBSCANHeuristic()
- list kdists = []

6.4.1 Function Documentation

6.4.1.1 plot_kdist()

plots the sorted kdist graph using matplotlib

Parameters

k-dist	list containing the k-distances for every point of the dataset
K GISt	ist containing the K distances for every point of the dataset

6.4.2 Variable Documentation

6.4.2.1 datasets

```
list dbscan_comparision_plots.datasets = ["iris", "wine", "diabetes", "housevotes"]
```

6.4.2.2 distances

```
list dbscan_comparision_plots.distances = ["euclidean", "manhattan", "chebyshev", "cosine"]
```

6.4.2.3 heu

```
dbscan_comparision_plots.heu = DBSCANHeuristic()
```

6.4.2.4 kdists

```
list dbscan_comparision_plots.kdists = []
```

6.5 dbscan_heuristic Namespace Reference

Classes

• class DBSCANHeuristic

implements the DBSCAN heuristic proposed in the original DBSCAN paper:

6.6 dbscan_solutions Namespace Reference

Functions

• def save_score (key, score, m, e)

Variables

```
list distances = ["euclidean", "manhattan", "chebyshev", "cosine"]
list datasets = ["iris", "wine", "diabetes", "housevotes"]
int seed = 42
list external = ["ARI", "AMI", "Completeness Score", "Homogeneity Score"]
list internal = ["Silhouette Score"]
dictionary best_results = {}
alg = DBSCANClustering(d, s, seed)
clusters
centers
clustered_data = np.zeros(len(alg.data))
indices = Indices(clustered_data.tolist(), alg.labels.tolist())
```

6.6.1 Function Documentation

• score = indices.index_external(ind)

6.6.1.1 save score()

```
def dbscan_solutions.save_score (
    key,
    score,
    m,
    e )
```

6.6.2 Variable Documentation

6.6.2.1 alg

```
dbscan_solutions.alg = DBSCANClustering(d, s, seed)
```

6.6.2.2 best_results

```
dictionary dbscan_solutions.best_results = {}
```

6.6.2.3 centers

```
dbscan_solutions.centers
```

6.6.2.4 clustered_data

```
dbscan_solutions.clustered_data = np.zeros(len(alg.data))
```

6.6.2.5 clusters

dbscan_solutions.clusters

6.6.2.6 datasets

```
list dbscan_solutions.datasets = ["iris", "wine", "diabetes", "housevotes"]
```

6.6.2.7 distances

```
list dbscan_solutions.distances = ["euclidean", "manhattan", "chebyshev", "cosine"]
```

6.6.2.8 external

```
list dbscan_solutions.external = ["ARI", "AMI", "Completeness Score", "Homogeneity Score"]
```

6.6.2.9 indices

```
dbscan_solutions.indices = Indices(clustered_data.tolist(), alg.labels.tolist())
```

6.6.2.10 internal

```
list dbscan_solutions.internal = ["Silhouette Score"]
```

6.6.2.11 score

dbscan_solutions.score = indices.index_external(ind)

6.6.2.12 seed

```
int dbscan_solutions.seed = 42
```

6.7 heuristic_web Namespace Reference

Variables

- · page_title
- · page_icon
- key
- · col1
- col2
- dataset = col1.selectbox('Choose a beautiful dataset',['iris', 'wine', 'diabetes', 'housevotes'])
- dictionary cluster_dist_desc
- cluster_dist = col1.selectbox('Choose an awesome distance measure',list(cluster_dist_desc.keys()))
- k = col2.slider("Choose a nice value for k", min_value=1, max_value=20, step=1, value=4)
- submit_button = st.form_submit_button(label='Calculate kdist Graph')
- heu = DBSCANHeuristic()
- kdist = heu.kdist(k)
- · reverse
- df
- nearest = alt.selection(type='single', nearest=True, on='mouseover', fields=['points'], empty='none')
- yaxis = alt.Y("dist", axis=alt.Axis(title=f"{k}-dist"))
- line
- selectors = alt.Chart(df).mark_point().encode(x='points', opacity=alt.value(0)).add_selection(nearest)
- points = line.mark_point(color="red").encode(opacity=alt.condition(nearest, alt.value(1), alt.value(0)))
- text = line.mark_text(align='left', dx=5, dy=-5, color="red").encode(text=alt.condition(nearest, "label:N", alt. walue(' '))).transform_calculate(label=f"distance: " + format(datum.dist, ".2f")')
- textp = line.mark_text(align='left', dx=5, dy=-15, color="red").encode(text=alt.condition(nearest, "label:N", alt.value(' '))).transform_calculate(label=f'format((1 (datum.points-1) / {len(kdist)}) * 100, ".2f") + "% core points"')
- rules = alt.Chart(df).mark_rule(color='gray').encode(x="points").transform_filter(nearest)
- · use_container_width

6.7.1 Variable Documentation

6.7.1.1 cluster_dist

heuristic_web.cluster_dist = coll.selectbox('Choose an awesome distance measure',list(cluster← _dist_desc.keys()))

6.7.1.2 cluster_dist_desc

dictionary heuristic_web.cluster_dist_desc

Initial value:

6.7.1.3 col1

heuristic_web.col1

6.7.1.4 col2

heuristic_web.col2

6.7.1.5 dataset

```
heuristic_web.dataset = coll.selectbox('Choose a beautiful dataset',['iris', 'wine', 'diabetes',
'housevotes'])
```

6.7.1.6 df

heuristic_web.df

Initial value:

```
1 = pd.DataFrame(
2     [[i+1, kdist[i]] for i in range(len(kdist))],
3     columns=["points", "dist"])
```

6.7.1.7 heu

```
heuristic_web.heu = DBSCANHeuristic()
```

6.7.1.8 k

 $\label{lem:heuristic_web.k} heuristic_web.k = col2.slider("Choose a nice value for k", min_value=1, max_value=20, step=1, value=4)$

6.7.1.9 kdist

heuristic_web.kdist = heu.kdist(k)

6.7.1.10 key

heuristic_web.key

6.7.1.11 line

heuristic_web.line

Initial value:

```
1 = alt.Chart(df).mark_line().encode(x="points", y=yaxis).properties(
2 title=f"DBSCAN Heuristic k={k}, {cluster_dist} distance")
```

6.7.1.12 nearest

heuristic_web.nearest = alt.selection(type='single', nearest=True, on='mouseover', fields=['points'],
empty='none')

6.7.1.13 page_icon

 ${\tt heuristic_web.page_icon}$

6.7.1.14 page_title

heuristic_web.page_title

6.7.1.15 points

```
heuristic_web.points = line.mark_point(color="red").encode(opacity=alt.condition(nearest,
alt.value(1), alt.value(0)))
```

6.7.1.16 reverse

heuristic_web.reverse

6.7.1.17 rules

```
\label{lem:heuristic_web.rules = alt.Chart(df).mark_rule(color='gray').encode(x="points").transform\_ \\ \leftarrow \\ \mbox{filter(nearest)}
```

6.7.1.18 selectors

```
heuristic_web.selectors = alt.Chart(df).mark_point().encode(x='points', opacity=alt.value(0)).add↔
_selection(nearest)
```

6.7.1.19 submit_button

```
heuristic_web.submit_button = st.form_submit_button(label='Calculate kdist Graph')
```

6.7.1.20 text

```
\label{lem:heuristic_web.text} $$ = \lim_{mark_t} (align='left', dx=5, dy=-5, color="red").encode(text=alt.$\leftarrow$ condition(nearest, "label:N", alt.value(' '))).transform_calculate(label=f'"distance: " + format(datum.dist, ".2f")') $$
```

6.7.1.21 textp

```
\label{lem:new_solution} $$ \text{heuristic\_web.textp} = \text{line.mark\_text(align='left', dx=5, dy=-15, color="red").encode(text=alt.$$ \leftarrow $$ \text{condition(nearest, "label:N", alt.value(' '))).transform\_calculate(label=f'format( (1 - (datum.$$$ \leftarrow $$ \text{points-1}) / {len(kdist)}) * 100, ".2f") + "% core points"') }
```

6.7.1.22 use_container_width

heuristic_web.use_container_width

6.7.1.23 yaxis

heuristic_web.yaxis = alt.Y("dist", axis=alt.Axis(title=f"{k}-dist"))

6.8 indices Namespace Reference

Classes

· class Indices

calculates Indices for computed cluster labels uses the scikit library

6.9 kmeans Namespace Reference

Classes

· class kmeansClustering

Class implementing k-Means Clustering uses the pyclustering k-means implementation centers can be initialised using the k++ or the random initialiser.

6.10 kmedians Namespace Reference

Classes

· class kmediansClustering

implements k-Medians Clustering uses the pyclustering k-medians implementation centers are initialised using the random initialiser

6.11 kmedoids Namespace Reference

Classes

· class kmedoidsClustering

implements k-Medians Clustering uses the scikit-learn-extra k-medoids implementation centers are set using the k++ initialiser if not set differently

6.12 make timing table Namespace Reference

Variables

```
• list kalgos = ['kmeans', 'kmedians', 'kmedoids']
```

- dictionary kalgoclass = {'kmeans': kmeansClustering, 'kmedians': kmediansClustering, 'kmedoids' ← : kmedoidsClustering}
- list distances = ["euclidean", "manhattan", "chebyshev", "cosine"]
- list datasets = ["iris", "wine", "diabetes", "housevotes"]
- dictionary dataset_cluster = {"iris": 3, "wine" : 3, "diabetes" : 2, "housevotes" : 2}
- · dictionary dbscan_comb
- timing_results = json.load(f)
- table array = np.zeros((4,4))
- timing_table = pd.DataFrame(table_array, columns=["Euclidean", "Manhattan", "Chebyshev", "Cosine"], index=['K-Means', 'K-Medians', 'K-Medoids']+['DBSCAN'])
- axis

6.12.1 Variable Documentation

6.12.1.1 axis

make_timing_table.axis

6.12.1.2 dataset cluster

```
dictionary make_timing_table.dataset_cluster = {"iris": 3, "wine" : 3, "diabetes" : 2,
"housevotes" : 2}
```

6.12.1.3 datasets

```
list make_timing_table.datasets = ["iris", "wine", "diabetes", "housevotes"]
```

6.12.1.4 dbscan_comb

dictionary make_timing_table.dbscan_comb

Initial value:

```
1 = {"euclideaniris" : {"minpts" : 3, "eps" : 0.4}, "euclideanwine" : {"minpts" : 18, "eps" : 2.4},
2 "euclideandiabetes" : {"minpts" : 3, "eps" : 0.1}, "euclideanhousevotes" : {"minpts" : 18, "eps" : 2.5},
3
4 "manhattaniris" : {"minpts" : 1, "eps" : 1.2}, "manhattanwine" : {"minpts" : 18, "eps" : 6.9},
5 "manhattandiabetes" : {"minpts" : 2, "eps" : 0.3}, "manhattanhousevotes" : {"minpts" : 18, "eps" : 6.0},
6
7 "chebysheviris" : {"minpts" : 1, "eps" : 0.7}, "chebyshevwine" : {"minpts" : 17, "eps" : 1.3},
8 "chebyshevdiabetes" : {"minpts" : 1, "eps" : 0.1}, "chebyshevhousevotes" : {"minpts" : 4, "eps" : 0.1},
9
10 "cosineiris" : {"minpts" : 1, "eps" : 0.1}, "cosinewine" : {"minpts" : 16, "eps" : 0.3},
11 "cosinediabetes" : {"minpts" : 10, "eps" : 0.2}, "cosinehousevotes" : {"minpts" : 18, "eps" : 0.2},
12 }
```

6.12.1.5 distances

```
list make_timing_table.distances = ["euclidean", "manhattan", "chebyshev", "cosine"]
```

6.12.1.6 kalgoclass

```
dictionary make_timing_table.kalgoclass = {'kmeans': kmeansClustering, 'kmedians': kmediansClustering,
'kmedoids': kmedoidsClustering}
```

6.12.1.7 kalgos

```
list make_timing_table.kalgos = ['kmeans', 'kmedians', 'kmedoids']
```

6.12.1.8 table_array

```
make_timing_table.table_array = np.zeros((4,4))
```

6.12.1.9 timing_results

```
make_timing_table.timing_results = json.load(f)
```

6.12.1.10 timing_table

```
make_timing_table.timing_table = pd.DataFrame(table_array, columns=["Euclidean", "Manhattan",
    "Chebyshev", "Cosine"], index=['K-Means', 'K-Medians', 'K-Medoids']+['DBSCAN'])
```

6.13 result_calculation Namespace Reference

Variables

- list kalgos = ['kmeans', 'kmedians', 'kmedoids']
- dictionary kalgoclass = {'kmeans': kmeansClustering, 'kmedians': kmediansClustering, 'kmedoids' ← : kmedoidsClustering}
- list distances = ["euclidean", "manhattan", "chebyshev", "cosine"]
- list datasets = ["iris", "wine", "diabetes", "housevotes"]
- int seed = 42
- results = Results("./code/results")
- **s**
- C
- d
- k
- dictionary alg = kalgoclass[c](d, s, seed)
- clusters
- centers
- · minpts
- m
- eps

6.13.1 Variable Documentation

6.13.1.1 alg

```
result_calculation.alg = kalgoclass[c](d, s, seed)
```

6.13.1.2 c

result_calculation.c

6.13.1.3 centers

result_calculation.centers

6.13.1.4 clusters

 ${\tt result_calculation.clusters}$

6.13.1.5 d

result_calculation.d

6.13.1.6 datasets

```
list result_calculation.datasets = ["iris", "wine", "diabetes", "housevotes"]
```

6.13.1.7 distances

```
list result_calculation.distances = ["euclidean", "manhattan", "chebyshev", "cosine"]
```

6.13.1.8 eps

result_calculation.eps

6.13.1.9 k

result_calculation.k

6.13.1.10 kalgoclass

```
dictionary result_calculation.kalgoclass = {'kmeans': kmeansClustering, 'kmedians': kmediansClustering}
'kmedoids': kmedoidsClustering}
```

6.13.1.11 kalgos

```
list result_calculation.kalgos = ['kmeans', 'kmedians', 'kmedoids']
```

6.13.1.12 m

result_calculation.m

6.13.1.13 minpts

result_calculation.minpts

6.13.1.14 results

```
result_calculation.results = Results("./code/results")
```

6.13.1.15 s

result_calculation.s

6.13.1.16 seed

int result_calculation.seed = 42

6.14 results Namespace Reference

Classes

• class Results

class for easily saving and loading already calculated clustering results

every dataset has a folder containing subfolders for every clustering algorithm containing more subfolders for every distance measure.

6.15 SessionState Namespace Reference

Classes

• class SessionState

Functions

def get (**kwargs)

Gets a SessionState object for the current session.

6.15.1 Function Documentation

6.15.1.1 get()

```
def SessionState.get (
    ** kwargs )
```

Gets a SessionState object for the current session.

```
Parameters
------
**kwargs : any
    Default values you want to add to the session state, if we're creating a new one.

Example
------
>>> session_state = get(user_name='', favorite_color='black')
>>> session_state.user_name
''
>>> session_state.user_name = 'Mary'
>>> session_state.favorite_color
'black'

Since you set user_name above, next time your script runs this will be the result:
>>> session_state = get(user_name='', favorite_color='black')
>>> session_state = get(user_name='', favorite_color='black')
>>> session_state.user_name
'Mary'
```

6.16 timing Namespace Reference

Variables

```
list kalgos = ['kmeans', 'kmedians', 'kmedoids']
dictionary kalgoclass = {'kmeans': kmeansClustering, 'kmedians': kmediansClustering, 'kmedoids'← : kmedoidsClustering}
list distances = ["euclidean", "manhattan", "chebyshev", "cosine"]
dictionary dataset_cluster = {"iris": 3, "wine" : 3, "diabetes" : 2, "housevotes" : 2}
dictionary timing = {}
int n = 10
int time = 0
dictionary alg = kalgoclass[c](d, s)
before = datetime.now()
clusters
centers
after = datetime.now()
dictionary dbscan_comb
```

6.16.1 Variable Documentation

6.16.1.1 after

```
timing.after = datetime.now()
```

6.16.1.2 alg

```
timing.alg = kalgoclass[c](d, s)
```

6.16.1.3 before

```
timing.before = datetime.now()
```

6.16.1.4 centers

timing.centers

6.16.1.5 clusters

timing.clusters

6.16.1.6 dataset_cluster

```
dictionary timing.dataset_cluster = {"iris": 3, "wine" : 3, "diabetes" : 2, "housevotes" :
2}
```

6.16.1.7 dbscan_comb

dictionary timing.dbscan_comb

Initial value:

```
1 = {"euclideaniris" : {"minpts" : 3, "eps" : 0.4}, "euclideanwine" : {"minpts" : 18, "eps" : 2.4},
2 "euclideandiabetes" : {"minpts" : 3, "eps" : 0.1}, "euclideanhousevotes" : {"minpts" : 18, "eps" : 2.5},
3
4 "manhattaniris" : {"minpts" : 1, "eps" : 1.2}, "manhattanwine" : {"minpts" : 18, "eps" : 6.9},
5 "manhattandiabetes" : {"minpts" : 2, "eps" : 0.3}, "manhattanhousevotes" : {"minpts" : 18, "eps" : 6.0},
6
7 "chebysheviris" : {"minpts" : 1, "eps" : 0.7}, "chebyshevwine" : {"minpts" : 17, "eps" : 1.3},
8 "chebyshevdiabetes" : {"minpts" : 1, "eps" : 0.1}, "chebyshevhousevotes" : {"minpts" : 4, "eps" : 0.1},
9
10 "cosineiris" : {"minpts" : 1, "eps" : 0.1}, "cosinewine" : {"minpts" : 16, "eps" : 0.3},
11 "cosinediabetes" : {"minpts" : 10, "eps" : 0.2}, "cosinehousevotes" : {"minpts" : 18, "eps" : 0.2},
```

6.16.1.8 distances

```
list timing.distances = ["euclidean", "manhattan", "chebyshev", "cosine"]
```

6.16.1.9 kalgoclass

```
dictionary timing.kalgoclass = {'kmeans': kmeansClustering, 'kmedians': kmediansClustering,
'kmedoids': kmedoidsClustering}
```

6.16.1.10 kalgos

```
list timing.kalgos = ['kmeans', 'kmedians', 'kmedoids']
```

6.16.1.11 n

```
int timing.n = 10
```

6.16.1.12 time

```
int timing.time = 0
```

6.16.1.13 timing

```
dictionary timing.timing = {}
```

6.17 web_frontend Namespace Reference

Functions

- def create_cluster (cluster_algo, cluster_dist, dataset, seed)
 creates a cluster algorithm instance.
- def clustering (cluster, params, cluster_algo)
 calculates clustering results.
- def plotting ()

generates the plots for the frontend.

Variables

```
· page_title
· page_icon

    session state = SessionState.get(indices data=pd.DataFrame())

• seeded = st.checkbox('Use precalculated results (with random seed for reproduction).', value=True)

    seaplots = st.checkbox('Use interactive charts', value=True)

resulthandler = Results("./code/results")

    col2

    dataset = col1.selectbox('Choose a beautiful dataset', ['iris', 'wine', 'diabetes', 'housevotes'])

    dictionary cluster dist desc

    cluster_dist = col1.selectbox('Choose an awesome distance measure', list(cluster_dist_desc.keys()))

    dictionary cluster_algo_class = {'kmeans': kmeansClustering, 'kmedians': kmediansClustering, 'kmedoids':

  kmedoidsClustering, 'DBSCAN': DBSCANClustering}

    cluster algo = col2.selectbox('Choose a lovely clustering algorithm', list(cluster algo class.keys()))

dictionary params = {}
• epsilon = col2.slider("Choose a nice value for epsilon", min value=0.1, max value=20.0, step=0.1)
• minpts = col2.slider("Choose a minimal number of nearest points", min_value=1, max_value=20, step=1,
• k value = col2.slider("Choose a nice value for k (number of clusters)", min value=2, max value=10, step=1,
  value=3)

    def cluster = create cluster(cluster algo, cluster dist, dataset, seed)

    datasetinformation = st.beta expander("dataset information")

    perp = col1.slider("Perplexity for t-SNE", 5, 50, 25)

• dfclusterdata = pd.DataFrame()

    fig1

    fig2

· use container width

    clusterset = set(clustered_data)

dataexpander = st.beta_expander("data")
• add result = col1.button('Add')
reset tmp = col2.button('Reset')
· indices data
string val = "epsilon="+str(epsilon)+", np="+str(minpts)
• df = session_state.indices_data
• def labels = cluster.labels.tolist()
predicted = clustered_data.tolist()
• list precalc = []

    list index eval = ["ARI", "AMI", "Completeness Score", "Homogeneity Score", "Silhouette Score"]

• I1 = Indices(predicted, labels)
score = I1.index_external(index_eval[i])
list datasets = []
• list results = [[1, "maximum reference value"]]
• list desc list = []
desc = np.array(desc_list)
• stats = np.zeros(len(results))

    df for = pd.DataFrame(results, columns=["Score","Data"])

• data_select = alt.selection_multi(fields=["Data"], name="Datapoint")
• string title = "Index:" + " " + index eval + "," + " " + "Dataset:" + " " + datasets[0]

    base
```

6.17.1 Function Documentation

6.17.1.1 clustering()

calculates clustering results.

uses the streamlit caching decorator

Parameters

cluster	cluster algorithm object	
params	dictionary containing parameters needed for the cluster algorithm, either k or minpts and eps	

Returns

cluster results, cluster centers, clustered data

6.17.1.2 create_cluster()

creates a cluster algorithm instance.

takes all parameters needed for creating such instance. uses the streamlit caching decorator

Parameters

cluster_algo	string containing name of cluster algorithm used ("kmeans", "kmedians", "kmedoids", "DBSC	
cluster_dist	string containing the distance measure used ("euclidean", "manhattan", "chebyshev", "cosine")	
dataset	string containing the datasets name ("iris", "wine", "diabetes", "housevotes")	
seed	seed for cluster algorithm, None if a random seed should be used	

Returns

cluster results, cluster centers, clustered data

6.17.1.3 plotting()

```
def web_frontend.plotting ( )
```

generates the plots for the frontend.

uses the streamlit chacheing decorator

Returns

TSNE and PCA projections of clustering results either as seaborn or altair plots

6.17.2 Variable Documentation

6.17.2.1 add_result

```
web_frontend.add_result = coll.button('Add')
```

6.17.2.2 base

web_frontend.base

Initial value:

```
1 = alt.Chart(
           df_for, width=(len(results)*120), height=500).mark_bar().configure(
           lineBreak = ",
4
      ).properties(
5
           title = title
      ).encode(
6
           x = alt.X("Data", axis=alt.Axis(labelAngle=0)),
y = alt.Y("Score:Q"),
tooltip = ("Data", "Score"),
9
           opacity=alt.condition(data_select, alt.value(1), alt.value(0.0)),
color=alt.Color("Data", legend=None)
10
    color=alt.Col
11
12
            data_select
13
     ).configure_view(
15
            strokeOpacity=0
      ).interactive()
16
```

6.17.2.3 cluster

```
def web_frontend.cluster = create_cluster(cluster_algo, cluster_dist, dataset, seed)
```

6.17.2.4 cluster_algo

```
web_frontend.cluster_algo = col2.selectbox('Choose a lovely clustering algorithm', list(cluster←
   _algo_class.keys()))
```

6.17.2.5 cluster_algo_class

```
dictionary web_frontend.cluster_algo_class = {'kmeans': kmeansClustering, 'kmedians': kmediansClustering,
'kmedoids': kmedoidsClustering, 'DBSCANC!: DBSCANClustering}
```

6.17.2.6 cluster_dist

```
web_frontend.cluster_dist = coll.selectbox('Choose an awesome distance measure', list(cluster
_dist_desc.keys()))
```

6.17.2.7 cluster_dist_desc

dictionary web_frontend.cluster_dist_desc

Initial value:

6.17.2.8 clusterset

```
web_frontend.clusterset = set(clustered_data)
```

6.17.2.9 col1

web_frontend.col1

6.17.2.10 col2

web_frontend.col2

6.17.2.11 data_select

```
web_frontend.data_select = alt.selection_multi(fields=["Data"], name="Datapoint")
```

6.17.2.12 dataexpander

```
web_frontend.dataexpander = st.beta_expander("data")
```

6.17.2.13 dataset

```
web_frontend.dataset = coll.selectbox('Choose a beautiful dataset',['iris', 'wine', 'diabetes',
    'housevotes'])
```

6.17.2.14 datasetinformation

```
web_frontend.datasetinformation = st.beta_expander("dataset information")
```

6.17.2.15 datasets

```
list web_frontend.datasets = []
```

6.17.2.16 desc

```
web_frontend.desc = np.array(desc_list)
```

6.17.2.17 desc_list

```
list web_frontend.desc_list = []
```

6.17.2.18 df

web_frontend.df = session_state.indices_data

6.17.2.19 df_for

web_frontend.df_for = pd.DataFrame(results, columns=["Score","Data"])

6.17.2.20 dfclusterdata

web_frontend.dfclusterdata = pd.DataFrame()

6.17.2.21 epsilon

web_frontend.epsilon = col2.slider("Choose a nice value for epsilon", min_value=0.1, max_ \leftarrow value=20.0, step=0.1)

6.17.2.22 fig1

web_frontend.fig1

6.17.2.23 fig2

web_frontend.fig2

6.17.2.24 I1

web_frontend.I1 = Indices(predicted, labels)

6.17.2.25 index_eval

web_frontend.index_eval = ["ARI", "AMI", "Completeness Score", "Homogeneity Score", "Silhouette
Score"]

6.17.2.26 indices_data

web_frontend.indices_data

6.17.2.27 k_value

web_frontend.k_value = col2.slider("Choose a nice value for k (number of clusters)", min_{\leftarrow} value=2, $max_value=10$, step=1, value=3)

6.17.2.28 labels

def web_frontend.labels = cluster.labels.tolist()

6.17.2.29 minpts

web_frontend.minpts = col2.slider("Choose a minimal number of nearest points", min_value=1,
max_value=20, step=1, value=5)

6.17.2.30 page_icon

web_frontend.page_icon

6.17.2.31 page_title

web_frontend.page_title

6.17.2.32 params

```
dictionary web_frontend.params = {}
```

6.17.2.33 perp

```
web_frontend.perp = coll.slider("Perplexity for t-SNE", 5, 50, 25)
```

6.17.2.34 precalc

```
list web_frontend.precalc = []
```

6.17.2.35 predicted

```
web_frontend.predicted = clustered_data.tolist()
```

6.17.2.36 reset_tmp

```
web_frontend.reset_tmp = col2.button('Reset')
```

6.17.2.37 resulthandler

```
web_frontend.resulthandler = Results("./code/results")
```

6.17.2.38 results

```
list web_frontend.results = [[1, "maximum reference value"]]
```

6.17.2.39 score

```
web_frontend.score = I1.index_external(index_eval[i])
```

6.17.2.40 seaplots

```
web_frontend.seaplots = st.checkbox('Use interactive charts', value=True)
```

6.17.2.41 seed

int web_frontend.seed = None

6.17.2.42 seeded

web_frontend.seeded = st.checkbox('Use precalculated results (with random seed for reproduction).',
value=True)

6.17.2.43 session state

web_frontend.session_state = SessionState.get(indices_data=pd.DataFrame())

6.17.2.44 stats

web_frontend.stats = np.zeros(len(results))

6.17.2.45 title

string web_frontend.title = "Index:" + " " + index_eval + "," + " " + "Dataset:" + " " + datasets[0]

6.17.2.46 use_container_width

 ${\tt web_frontend.use_container_width}$

6.17.2.47 val

string web_frontend.val = "epsilon="+str(epsilon)+", np="+str(minpts)

Chapter 7

Class Documentation

7.1 clustering.Clustering Class Reference

Base Class for all subsequent clustering algorithms implements all functions needed for running the different cluster algorithms.

Inheritance diagram for clustering. Clustering:

Public Member Functions

- def __init__ (self, metric, dataset, seed=None)
- def pyc_metric (self, metric)

returns a distance metric which is usable by the pyclustering algorithms

• def load_data (self)

loads in a dataset, standardises it and sets it as self.data attribute

• def house_load (self, path, skip=1)

loads the housevotes dataset and encodes it using One-Hot-Encoding democrats are labeled as 1, republicans as 0

def cluster (self)

does nothing in the meta class.

Public Attributes

· metric

metric name as string or pyclustering distance_metric object

dataset

dataset name as string

data

data that gets clustered

· labels

expected cluster values

seed

seed for initializer, None if no seed is used

· datadf

dataset as pandas frame.

7.1.1 Detailed Description

Base Class for all subsequent clustering algorithms implements all functions needed for running the different cluster algorithms.

7.1.2 Constructor & Destructor Documentation

```
7.1.2.1 __init__()

def clustering.Clustering.__init__ (
```

```
self,
metric,
dataset,
seed = None )
```

constructor

Parameters

metric	metric description as string. allowed: "euclidean", "manhattan", "chebyshev", "cosine"
dataset	dataset given as string. allowed: "diabetes", "iris", "wine", "housevotes"

Reimplemented in kmedoids.kmedoidsClustering, kmedians.kmediansClustering, kmeans.kmeansClustering, and dbscan.DBSCANClustering.

7.1.3 Member Function Documentation

7.1.3.1 cluster()

```
\begin{tabular}{ll} $\operatorname{def \ clustering.cluster \ (} \\ & self \ ) \end{tabular}
```

does nothing in the meta class.

needs to be implemented in the inheriting cluster algorithm classes

7.1.3.2 house_load()

loads the housevotes dataset and encodes it using One-Hot-Encoding democrats are labeled as 1, republicans as 0

Parameters

path	filepath to the dataset
skip	number of lines that get skipped when reading in a file

Returns

One-Hot-Encoded housevotes dataset and labels as array of 1s and 0s

7.1.3.3 load_data()

```
\begin{tabular}{ll} $\tt def clustering.Clustering.load\_data ( \\ & self ) \end{tabular}
```

loads in a dataset, standardises it and sets it as self.data attribute

7.1.3.4 pyc_metric()

returns a distance metric which is usable by the pyclustering algorithms

Parameters

distance	metric string.	allowed: "euclidean",	"manhattan",	"chebyshev", "cosine"	
----------	----------------	-----------------------	--------------	-----------------------	--

Returns

pyclustering distance_metric object, None when distance is not supported

7.1.4 Member Data Documentation

7.1.4.1 data

clustering.Clustering.data

data that gets clustered

7.1.4.2 datadf

clustering.Clustering.datadf

dataset as pandas frame.

needed for web frontend later

7.1.4.3 dataset

clustering.Clustering.dataset

dataset name as string

7.1.4.4 labels

clustering.Clustering.labels

expected cluster values

7.1.4.5 metric

clustering.Clustering.metric

metric name as string or pyclustering distance_metric object

7.1.4.6 seed

clustering.Clustering.seed

seed for initializer, None if no seed is used

The documentation for this class was generated from the following file:

· clustering.py

7.2 dbscan.DBSCANClustering Class Reference

implements DBSCAN Clustering uses the scikit-learn DBSCAN implementation

Inheritance diagram for dbscan.DBSCANClustering:

Public Member Functions

- def __init__ (self, metric, dataset, seed=None)
 constructor, seed can be given but is not used.
- def cluster (self, eps, minpts)

clustering method.

• def package (self, labels)

rearranges the result to a format similar to the one of the pyclustering algorithms allows for easier access in the streamlit interface

Public Attributes

· metric

metric name as string

dataset

dataset name as string

• data

data that gets clustered

labels

expected cluster values

7.2.1 Detailed Description

implements DBSCAN Clustering uses the scikit-learn DBSCAN implementation

7.2.2 Constructor & Destructor Documentation

7.2.2.1 init ()

constructor, seed can be given but is not used.

its passing is allowed to simplfy the code in the web frontend

Parameters

metric	metric description as string. allowed: "euclidean", "manhattan", "chebyshev", "cosine	
dataset	dataset given as string. allowed: "diabetes", "iris", "wine", "housevotes"	

Reimplemented from clustering. Clustering.

7.2.3 Member Function Documentation

7.2.3.1 cluster()

```
def dbscan.DBSCANClustering.cluster ( self, \\ eps, \\ minpts )
```

clustering method.

Will execute clustering on the data saved in self.data with the metric given in self.metric params are the same as in the DBSCAN paper

Parameters

eps	Distance for the Eps-Neighbourhood
minPts	Minmal number of points in a cluster

Returns

formatted clustered data

7.2.3.2 package()

```
\begin{tabular}{ll} $\operatorname{def dbscan.DBSCANClustering.package} & ( & self, \\ & labels \end{tabular}
```

rearranges the result to a format similar to the one of the pyclustering algorithms allows for easier access in the streamlit interface

Parameters

labels | cluster labels DBSCAN assigns to a point

Returns

clusters as list of lists of indices of points and noise as list of indices of points

7.2.4 Member Data Documentation

7.2.4.1 data

dbscan.DBSCANClustering.data

data that gets clustered

7.2.4.2 dataset

dbscan.DBSCANClustering.dataset

dataset name as string

7.2.4.3 labels

dbscan.DBSCANClustering.labels

expected cluster values

7.2.4.4 metric

```
dbscan.DBSCANClustering.metric
```

metric name as string

The documentation for this class was generated from the following file:

· dbscan.py

7.3 dbscan heuristic.DBSCANHeuristic Class Reference

implements the DBSCAN heuristic proposed in the original DBSCAN paper:

Public Member Functions

```
    def __init__ (self)
```

constructor.

def set_metric (self, metric)

setter for the metric

• def set_dataset (self, dataset)

sets and loads the dataset using the DBSCANClustering objects load_data() function

· def kdist (self, k)

calculates all k-distances for the dataset

def plot kdist (self, kdist)

plots the sorted kdist graph using matplotlib

Public Attributes

clustering

DBSCANClustering object for loading datasets.

· metric

metric as string ("euclidean", "cosine", "manhattan", "chebyshev")

• k

variable k used in the k-dist calculation

7.3.1 Detailed Description

implements the DBSCAN heuristic proposed in the original DBSCAN paper:

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD'96, page 226–231. AAAI Press, 1996.

7.3.2 Constructor & Destructor Documentation

7.3.2.1 __init__()

```
\label{lem:def_def} \mbox{def dbscan\_heuristic.DBSCANHeuristic.\__init} \hgparbox{ } ( \\ self \end{subscript{total_self}} \hfill \hfil
```

constructor.

uses a DBSCANClustering object for loading the datasets

7.3.3 Member Function Documentation

7.3.3.1 kdist()

```
def dbscan_heuristic.DBSCANHeuristic.kdist ( self, \\ k \ )
```

calculates all k-distances for the dataset

Parameters

k variable for the k-dist. Natural Number.

7.3.3.2 plot_kdist()

```
def dbscan_heuristic.DBSCANHeuristic.plot_kdist ( self, \\ kdist \ )
```

plots the sorted kdist graph using matplotlib

Parameters

k-dist list containing the k-distances for every point of the dataset

7.3.3.3 set_dataset()

```
\begin{tabular}{ll} $\operatorname{def dbscan\_heuristic.DBSCANHeuristic.set\_dataset} & \\ & self, \\ & dataset \end{tabular} \label{eq:dbscan\_heuristic.dataset}
```

sets and loads the dataset using the DBSCANClustering objects load_data() function

Parameters

```
dataset string with name of the dataset used ("iris", "wine", "diabetes", "housevotes")
```

7.3.3.4 set_metric()

setter for the metric

Parameters

metric string containing name of the metric ("euclidean", "cosine", "manhattan", "chebyshev")

7.3.4 Member Data Documentation

7.3.4.1 clustering

dbscan_heuristic.DBSCANHeuristic.clustering

DBSCANClustering object for loading datasets.

7.3.4.2 k

```
dbscan_heuristic.DBSCANHeuristic.k
```

variable k used in the k-dist calculation

7.3.4.3 metric

```
{\tt dbscan\_heuristic.DBSCANHeuristic.metric}
```

metric as string ("euclidean", "cosine", "manhattan", "chebyshev")

The documentation for this class was generated from the following file:

· dbscan_heuristic.py

7.4 indices.Indices Class Reference

calculates Indices for computed cluster labels uses the scikit library

Public Member Functions

```
    def __init__ (self, cluster_calc, cluster_label)
    constructor
```

• def index_external (self, index)

Function to calculate external index scores
ARI, AMI, Homogeneity Score and Completeness Score @params index string with name of index used ("ARI", "AMI",
"Homogeneity Score", "Completeness Score")

• def index_internal (self, index, points, metric)

Function to calculate internal index scores

Public Attributes

· cluster calc

calculated clustering results

· cluster label

expected cluster results

7.4.1 Detailed Description

calculates Indices for computed cluster labels uses the scikit library

7.4.2 Constructor & Destructor Documentation

7.4.2.1 __init__()

constructor

Parameters

cluster_calc	calculated clustering results
cluster_label	expected cluster results

7.4.3 Member Function Documentation

7.4.3.1 index_external()

Function to calculate external index scores

ARI, AMI, Homogeneity Score and Completeness Score @params index string with name of index used ("ARI", "AMI", "Homogeneity Score", "Completeness Score")

7.4.3.2 index_internal()

Function to calculate internal index scores

Parameters

index	string with name of index used ("Silhouette Score")
points data points of the selected dataset	
metric	metric used for calculation of silhouette score

7.4.4 Member Data Documentation

7.4.4.1 cluster_calc

 $\verb|indices.Indices.cluster_calc||\\$

calculated clustering results

7.4.4.2 cluster_label

indices.Indices.cluster_label

expected cluster results

The documentation for this class was generated from the following file:

· indices.py

7.5 kmeans.kmeansClustering Class Reference

Class implementing k-Means Clustering uses the pyclustering k-means implementation centers can be initialised using the k++ or the random initialiser.

Inheritance diagram for kmeans.kmeansClustering:

Public Member Functions

- def __init__ (self, metric, dataset, seed=None)
 constructor
- def cluster (self, k, plusplus=True) clustering method.

Public Attributes

• metric

metric name as pyclustering distance_metric object

· dataset

dataset name as string

• data

data that gets clustered

labels

expected cluster values

seed

seed for initializer, None if no seed is used

7.5.1 Detailed Description

Class implementing k-Means Clustering uses the pyclustering k-means implementation centers can be initialised using the k++ or the random initialiser.

7.5.2 Constructor & Destructor Documentation

7.5.2.1 __init__()

constructor

Parameters

metric	metric description as string. allowed: "euclidean", "manhattan", "chebyshev", "cosin	
dataset	dataset given as string. allowed: "diabetes", "iris", "wine", "housevotes"	

Reimplemented from clustering. Clustering.

7.5.3 Member Function Documentation

7.5.3.1 cluster()

```
def kmeans.kmeansClustering.cluster ( self, \\ k, \\ plusplus = True )
```

clustering method.

Will execute clustering on the data saved in self.data with the metric given in self.metric

Parameters

k	number of clusters that are generated
plusplus	will use k++ initialiser if true

Returns

clusters as list of lists of indices of points and final cluster centers

7.5.4 Member Data Documentation

7.5.4.1 data

 ${\tt kmeans.kmeansClustering.data}$

data that gets clustered

7.5.4.2 dataset

 ${\tt kmeans.kmeansClustering.dataset}$

dataset name as string

7.5.4.3 labels

kmeans.kmeansClustering.labels

expected cluster values

7.5.4.4 metric

kmeans.kmeansClustering.metric

metric name as pyclustering distance_metric object

7.5.4.5 seed

kmeans.kmeansClustering.seed

seed for initializer, None if no seed is used

The documentation for this class was generated from the following file:

• kmeans.py

7.6 kmedians.kmediansClustering Class Reference

implements k-Medians Clustering uses the pyclustering k-medians implementation centers are initialised using the random initialiser

Inheritance diagram for kmedians.kmediansClustering:

```
clustering.Clustering
kmedians.kmediansClustering
```

Public Member Functions

```
    def __init__ (self, metric, dataset, seed=None)
        constructor
    def cluster (self, k, plusplus=True)
        clustering method.
```

Public Attributes

· metric

metric name as pyclustering distance_metric object

dataset

dataset name as string

• data

data that gets clustered

labels

expected cluster values

seed

seed for initializer, None if no seed is used

7.6.1 Detailed Description

implements k-Medians Clustering uses the pyclustering k-medians implementation centers are initialised using the random initialiser

7.6.2 Constructor & Destructor Documentation

Parameters

metric	metric description as string. allowed: "euclidean", "manhattan", "chebyshev", "cosine"
dataset	dataset given as string. allowed: "diabetes", "iris", "wine", "housevotes"

Reimplemented from clustering. Clustering.

7.6.3 Member Function Documentation

7.6.3.1 cluster()

```
\begin{tabular}{ll} $\operatorname{def kmedians.kmediansClustering.cluster} & ( & self, & \\ & & k, & \\ & & plusplus = \mathit{True} \end{tabular} \label{eq:lusplus}
```

clustering method.

Will execute clustering on the data saved in self.data with the metric given in self.metric

Parameters

k number of clusters that are generated

Returns

clusters as list of lists of indices of points and final cluster medians

7.6.4 Member Data Documentation

7.6.4.1 data

kmedians.kmediansClustering.data

data that gets clustered

7.6.4.2 dataset

kmedians.kmediansClustering.dataset

dataset name as string

62 Class Documentation

7.6.4.3 labels

kmedians.kmediansClustering.labels

expected cluster values

7.6.4.4 metric

 ${\tt kmedians.kmediansClustering.metric}$

metric name as pyclustering distance_metric object

7.6.4.5 seed

kmedians.kmediansClustering.seed

seed for initializer, None if no seed is used

The documentation for this class was generated from the following file:

· kmedians.py

7.7 kmedoids.kmedoidsClustering Class Reference

implements k-Medians Clustering uses the scikit-learn-extra k-medoids implementation centers are set using the k++ initialiser if not set differently

Inheritance diagram for kmedoids.kmedoidsClustering:

Public Member Functions

- def __init__ (self, metric, dataset, seed=None)
 constructor
- def cluster (self, k, init="k-medoids++")
 clustering method.
- def package (self, labels)

rearranges the result to a format similar to the one of the pyclustering algorithms allows for easier access in the streamlit interface

Public Attributes

· metric

metric name as string

dataset

dataset name as string

• data

data that gets clustered

· labels

expected cluster values

seed

seed for initializer, None if no seed is used

7.7.1 Detailed Description

implements k-Medians Clustering uses the scikit-learn-extra k-medoids implementation centers are set using the k++ initialiser if not set differently

7.7.2 Constructor & Destructor Documentation

```
7.7.2.1 __init__()
```

constructor

Parameters

metric	metric description as string. allowed: "euclidean", "manhattan", "chebyshev", "cosine"
dataset	dataset given as string. allowed: "diabetes", "iris", "wine", "housevotes"

Reimplemented from clustering. Clustering.

7.7.3 Member Function Documentation

64 Class Documentation

7.7.3.1 cluster()

```
def kmedoids.kmedoidsClustering.cluster ( self, \\ k, \\ init = "k-medoids++" )
```

clustering method.

Will execute clustering on the data saved in self.data with the metric given in self.metric

Parameters

k	number of clusters that are generated
init	initialisation parameter. Default: "k-medoids++"

Returns

clusters as list of lists of indices of points, final cluster centers

7.7.3.2 package()

```
def kmedoids.kmedoidsClustering.package ( self, \\ labels \; )
```

rearranges the result to a format similar to the one of the pyclustering algorithms allows for easier access in the streamlit interface

Parameters

labels	labels returned from the KMedoids algorithm
--------	---

Returns

clusters formated similarly to the pyclustering algorithms

7.7.4 Member Data Documentation

7.7.4.1 data

 ${\tt kmedoids.kmedoidsClustering.data}$

data that gets clustered

7.7.4.2 dataset

kmedoids.kmedoidsClustering.dataset

dataset name as string

7.7.4.3 labels

 ${\tt kmedoids.kmedoidsClustering.labels}$

expected cluster values

7.7.4.4 metric

 ${\tt kmedoids.kmedoidsClustering.metric}$

metric name as string

7.7.4.5 seed

kmedoids.kmedoidsClustering.seed

seed for initializer, None if no seed is used

The documentation for this class was generated from the following file:

· kmedoids.py

7.8 results.Results Class Reference

class for easily saving and loading already calculated clustering results

every dataset has a folder containing subfolders for every clustering algorithm containing more subfolders for every distance measure.

66 Class Documentation

Public Member Functions

```
    def __init__ (self, parentpath)
        constructor.
```

def get_path (self, dataset, algorithm, metric, **kwargs)

builds and returns the filepath to the json file fitting the given parameters

• def set_exists (self, dataset, algorithm, metric, **kwargs)

checks if a file for a result defined by the parameters exists

def load_set (self, dataset, algorithm, metric, **kwargs)

loads results fitting the given parameters from a json file

• def save_set (self, dataset, algorithm, metric, clusters, centers, **kwargs)

saves cluster results in a json file

Public Attributes

· parent

7.8.1 Detailed Description

class for easily saving and loading already calculated clustering results

every dataset has a folder containing subfolders for every clustering algorithm containing more subfolders for every distance measure.

Clustering results are saved as json files in their respective folders.

7.8.2 Constructor & Destructor Documentation

7.8.2.1 init ()

constructor.

needs the filepath to the parent directory where the json files are suposed to be saved

Parameters

parentpath | filepath to the parent directory

7.8.3 Member Function Documentation

7.8.3.1 get_path()

builds and returns the filepath to the json file fitting the given parameters

Parameters

dataset	string with the name of the dataset ("iris", "wine", "diabetes", "DBSCAN")
algorithm	string with the name of the algorithm ("kmeans", "kmedians", "kmedoids", "DBSCAN")
metric	string with the name of the distance measure ("euclidean", "cosine", "chebyshev", "manhattan")
**kwargs	algorithm specific parameters. Needs to be either "k" or "minpts" and "eps"

Returns

filepath to the correct json file

7.8.3.2 load_set()

loads results fitting the given parameters from a json file

Parameters

dataset	string with the name of the dataset ("iris", "wine", "diabetes", "DBSCAN")
algorithm	string with the name of the algorithm ("kmeans", "kmedians", "kmedoids", "DBSCAN")
metric	string with the name of the distance measure ("euclidean", "cosine", "chebyshev", "manhattan")
**kwargs	algorithm specific parameters. Needs to be either "k" or "minpts" and "eps"

Returns

loaded clustering results (clusters and centers)

68 Class Documentation

7.8.3.3 save_set()

saves cluster results in a json file

Parameters

dataset	string with the name of the dataset ("iris", "wine", "diabetes", "DBSCAN")
algorithm	string with the name of the algorithm ("kmeans", "kmedians", "kmedoids", "DBSCAN")
metric	string with the name of the distance measure ("euclidean", "cosine", "chebyshev", "manhattan")
**kwargs	algorithm specific parameters. Needs to be either "k" or "minpts" and "eps"

7.8.3.4 set_exists()

checks if a file for a result defined by the parameters exists

Parameters

dataset	string with the name of the dataset ("iris", "wine", "diabetes", "DBSCAN")
algorithm	string with the name of the algorithm ("kmeans", "kmedians", "kmedoids", "DBSCAN")
metric	string with the name of the distance measure ("euclidean", "cosine", "chebyshev", "manhattan")
**kwargs	algorithm specific parameters. Needs to be either "k" or "minpts" and "eps"

Returns

True if file exists, False if not

7.8.4 Member Data Documentation

7.8.4.1 parent

```
results.Results.parent
```

The documentation for this class was generated from the following file:

results.py

7.9 SessionState.SessionState Class Reference

Inheritance diagram for SessionState.SessionState:

Public Member Functions

```
    def __init__ (self, **kwargs)
    A new SessionState object.
```

7.9.1 Constructor & Destructor Documentation

A new SessionState object.

```
Parameters
-----
**kwargs : any
    Default values for the session state.

Example
-----
>>> session_state = SessionState(user_name='', favorite_color='black')
>>> session_state.user_name = 'Mary'
','
>>> session_state.favorite_color
'black'
```

The documentation for this class was generated from the following file:

SessionState.py

70 Class Documentation

Chapter 8

File Documentation

8.1 clustering.py File Reference

contains the clustering base class

Classes

· class clustering. Clustering

Base Class for all subsequent clustering algorithms implements all functions needed for running the different cluster algorithms.

Namespaces

clustering

8.1.1 Detailed Description

contains the clustering base class

8.2 comparison_plots.py File Reference

script for generating plots for comparing different parameters

Namespaces

• comparison_plots

Variables

- list comparison_plots.kalgos = ['kmeans', 'kmedians', 'kmedoids']
- dictionary comparison_plots.kalgoclass = {'kmeans': kmeansClustering, 'kmedians': kmediansClustering, 'kmedians': kmediansClustering}
- list comparison_plots.distances = ["euclidean", "manhattan", "chebyshev", "cosine"]
- list comparison_plots.datasets = ["iris", "wine", "diabetes", "housevotes"]
- list comparison_plots.index_ext_eval = ["ARI", "AMI", "Completeness Score", "Homogeneity Score"]
- list comparison plots.index int eval = ["Silhouette Score"]
- list comparison_plots.num_of_classes = [3,3,2,2]
- int comparison plots.seed = 42
- comparison plots.results = Results("./code/results")
- comparison plots.all kalgos = np.zeros((3,4, 9,len(index ext eval)))
- comparison_plots.all_kalgos_int = pd.DataFrame(columns=['k', 'Distance (Silhouette Score)', 'Distance (Clustering)', 'sil score', 'kalgo'])
- comparison plots.all dist = np.zeros((4, 9,len(index ext eval)))
- comparison_plots.all_k = np.zeros((9,len(index_ext_eval)))
- · comparison plots.clusters
- comparison_plots.stuff
- · comparison_plots.s
- · comparison_plots.c
- · comparison plots.d
- · comparison plots.k
- dictionary comparison_plots.cluster = kalgoclass[c](d, s, seed)
- comparison plots.clustered data = np.zeros(len(cluster.data))
- dictionary comparison plots.labels = cluster.labels.tolist()
- comparison plots.predicted = clustered data.tolist()
- comparison plots.11 = Indices(predicted, labels)
- comparison plots.index scores = np.zeros like(index ext eval, dtype=float)
- comparison_plots.index_score = I1.index_internal(index=index_int_eval[0], points=cluster.data.tolist(), metric=di)
- · comparison_plots.index
- comparison plots.fig = plt.figure(figsize=(15, 10))
- · comparison plots.bbox to anchor
- · comparison plots.loc
- · comparison_plots.borderaxespad
- comparison_plots.ax
- · comparison plots.figsize
- · comparison plots.data
- · comparison_plots.x
- comparison_plots.y
- · comparison_plots.hue
- comparison_plots.style
- · comparison_plots.legend
- comparison_plots.all_kalgos_df = pd.DataFrame(all_kalgos[:,:,num_of_classes[isx]-2,i], columns=distances, index=kalgos)
- · comparison_plots.kind
- · comparison_plots.title

8.2.1 Detailed Description

script for generating plots for comparing different parameters

8.3 dbscan.py File Reference

implementation of the DBSCAN algorithm.

Classes

· class dbscan.DBSCANClustering

implements DBSCAN Clustering uses the scikit-learn DBSCAN implementation

Namespaces

• dbscan

8.3.1 Detailed Description

implementation of the DBSCAN algorithm.

8.4 dbscan_comparision_plots.py File Reference

Namespaces

· dbscan_comparision_plots

Functions

def dbscan_comparision_plots.plot_kdist (kdists, dataset)
 plots the sorted kdist graph using matplotlib

Variables

- list dbscan_comparision_plots.distances = ["euclidean", "manhattan", "chebyshev", "cosine"]
- list dbscan_comparision_plots.datasets = ["iris", "wine", "diabetes", "housevotes"]
- dbscan_comparision_plots.heu = DBSCANHeuristic()
- list dbscan_comparision_plots.kdists = []

8.5 dbscan_heuristic.py File Reference

implementation of DBSCAN parameter estimation heuristic

Classes

• class dbscan_heuristic.DBSCANHeuristic

implements the DBSCAN heuristic proposed in the original DBSCAN paper:

Namespaces

· dbscan_heuristic

8.5.1 Detailed Description

implementation of DBSCAN parameter estimation heuristic

8.6 dbscan_solutions.py File Reference

Namespaces

· dbscan solutions

Functions

• def dbscan_solutions.save_score (key, score, m, e)

Variables

- list dbscan_solutions.distances = ["euclidean", "manhattan", "chebyshev", "cosine"]
- list dbscan_solutions.datasets = ["iris", "wine", "diabetes", "housevotes"]
- int dbscan solutions.seed = 42
- list dbscan_solutions.external = ["ARI", "AMI", "Completeness Score", "Homogeneity Score"]
- list dbscan solutions.internal = ["Silhouette Score"]
- dictionary dbscan_solutions.best_results = {}
- dbscan_solutions.alg = DBSCANClustering(d, s, seed)
- · dbscan solutions.clusters
- · dbscan solutions.centers
- dbscan_solutions.clustered_data = np.zeros(len(alg.data))
- dbscan_solutions.indices = Indices(clustered_data.tolist(), alg.labels.tolist())
- dbscan_solutions.score = indices.index_external(ind)

8.7 heuristic_web.py File Reference

webfrontend for the DBSCAN heuristic impslemented using streamlit.

Namespaces

heuristic_web

Variables

- · heuristic_web.page_title
- · heuristic_web.page_icon
- · heuristic web.key
- · heuristic_web.col1
- · heuristic web.col2
- heuristic_web.dataset = col1.selectbox('Choose a beautiful dataset',['iris', 'wine', 'diabetes', 'housevotes'])
- · dictionary heuristic_web.cluster_dist_desc
- heuristic_web.cluster_dist = col1.selectbox('Choose an awesome distance measure',list(cluster_dist_desc. ← keys()))
- heuristic_web.k = col2.slider("Choose a nice value for k", min_value=1, max_value=20, step=1, value=4)
- heuristic web.submit button = st.form submit button(label='Calculate kdist Graph')
- heuristic web.heu = DBSCANHeuristic()
- heuristic_web.kdist = heu.kdist(k)
- · heuristic web.reverse
- · heuristic web.df
- heuristic_web.nearest = alt.selection(type='single', nearest=True, on='mouseover', fields=['points'], empty='none')
- heuristic_web.yaxis = alt.Y("dist", axis=alt.Axis(title=f"{k}-dist"))
- · heuristic_web.line
- heuristic_web.selectors = alt.Chart(df).mark_point().encode(x='points', opacity=alt.value(0)).add_←
 selection(nearest)
- heuristic_web.points = line.mark_point(color="red").encode(opacity=alt.condition(nearest, alt.value(1), alt.
 value(0)))
- heuristic_web.text = line.mark_text(align='left', dx=5, dy=-5, color="red").encode(text=alt.condition(nearest, "label:N", alt.value(' '))).transform_calculate(label=f"distance: " + format(datum.dist, ".2f")')
- heuristic_web.textp = line.mark_text(align='left', dx=5, dy=-15, color="red").encode(text=alt.condition(nearest, "label:N", alt.value(' '))).transform_calculate(label=f'format((1 (datum.points-1) / {len(kdist)}) * 100, ".2f") + "% core points")
- heuristic_web.rules = alt.Chart(df).mark_rule(color='gray').encode(x="points").transform_filter(nearest)
- · heuristic web.use container width

8.7.1 Detailed Description

webfrontend for the DBSCAN heuristic impslemented using streamlit.

uses altair charts for displaying the chart

8.8 indices.py File Reference

Evaluation Modul to compare clustering results.

Classes

· class indices.Indices

calculates Indices for computed cluster labels uses the scikit library

Namespaces

· indices

8.8.1 Detailed Description

Evaluation Modul to compare clustering results.

8.9 kmeans.py File Reference

implementation of the k-means algorithm.

Classes

· class kmeans.kmeansClustering

Class implementing k-Means Clustering uses the pyclustering k-means implementation centers can be initialised using the k++ or the random initialiser.

Namespaces

kmeans

8.9.1 Detailed Description

implementation of the k-means algorithm.

8.10 kmedians.py File Reference

implementation of the k-medians algorithm.

Classes

· class kmedians.kmediansClustering

implements k-Medians Clustering uses the pyclustering k-medians implementation centers are initialised using the random initialiser

Namespaces

· kmedians

8.10.1 Detailed Description

implementation of the k-medians algorithm.

8.11 kmedoids.py File Reference

implementation of the k-medoids algorithm.

Classes

· class kmedoids.kmedoidsClustering

implements k-Medians Clustering uses the scikit-learn-extra k-medoids implementation centers are set using the k++ initialiser if not set differently

Namespaces

kmedoids

8.11.1 Detailed Description

implementation of the k-medoids algorithm.

8.12 make_timing_table.py File Reference

script for generating latex tables for timing results

Namespaces

· make_timing_table

Variables

- list make_timing_table.kalgos = ['kmeans', 'kmedians', 'kmedoids']
- dictionary make_timing_table.kalgoclass = {'kmeans': kmeansClustering, 'kmedians': kmediansClustering, 'kmedians': kmediansClustering}
- list make_timing_table.distances = ["euclidean", "manhattan", "chebyshev", "cosine"]
- list make_timing_table.datasets = ["iris", "wine", "diabetes", "housevotes"]
- dictionary make_timing_table.dataset_cluster = {"iris": 3, "wine": 3, "diabetes": 2, "housevotes": 2}
- dictionary make_timing_table.dbscan_comb
- make timing table.timing results = json.load(f)
- make timing table.table array = np.zeros((4,4))
- make_timing_table.timing_table = pd.DataFrame(table_array, columns=["Euclidean", "Manhattan", "Chebyshev", "Cosine"], index=['K-Means', 'K-Medians', 'K-Medoids']+['DBSCAN'])
- make_timing_table.axis

8.12.1 Detailed Description

script for generating latex tables for timing results

8.13 result_calculation.py File Reference

Namespaces

· result calculation

Variables

- list result_calculation.kalgos = ['kmeans', 'kmedians', 'kmedoids']
- dictionary result_calculation.kalgoclass = {'kmeans': kmeansClustering, 'kmedians': kmediansClustering, 'kmedoids': kmedoidsClustering}
- list result_calculation.distances = ["euclidean", "manhattan", "chebyshev", "cosine"]
- list result_calculation.datasets = ["iris", "wine", "diabetes", "housevotes"]
- int result_calculation.seed = 42
- result_calculation.results = Results("./code/results")
- · result calculation.s
- · result_calculation.c
- · result calculation.d
- · result_calculation.k
- dictionary result_calculation.alg = kalgoclass[c](d, s, seed)
- result_calculation.clusters
- result_calculation.centers
- · result_calculation.minpts
- result_calculation.m
- result_calculation.eps

8.14 results.py File Reference

handler for saving and loading results.

Classes

· class results.Results

class for easily saving and loading already calculated clustering results

every dataset has a folder containing subfolders for every clustering algorithm containing more subfolders for every distance measure.

Namespaces

· results

8.14.1 Detailed Description

handler for saving and loading results.

8.15 SessionState.py File Reference

taken from https://gist.github.com/tvst/036da038ab3e999a64497f42de966a92.

Classes

• class SessionState.SessionState

Namespaces

SessionState

Functions

def SessionState.get (**kwargs)
 Gets a SessionState object for the current session.

8.15.1 Detailed Description

taken from https://gist.github.com/tvst/036da038ab3e999a64497f42de966a92.

Please refer to this gist and its original author

Hack to add per-session state to Streamlit.

8.15.1.1 Usage

```
import SessionState session_state = SessionState.get(user_name=", favorite_color='black') session \leftarrow _state.user_name
```

session_state.user_name = 'Mary' session_state.favorite_color

'black'

Since you set user_name above, next time your script runs this will be the result:

```
session\_state = get(user\_name=", favorite\_color="black") \ session\_state.user\_{\leftarrow} \\ name
```

'Mary'

8.16 timing.py File Reference

Namespaces

timing

Variables

- list timing.kalgos = ['kmeans', 'kmedians', 'kmedoids']
- list timing.distances = ["euclidean", "manhattan", "chebyshev", "cosine"]
- dictionary timing.dataset_cluster = {"iris": 3, "wine" : 3, "diabetes" : 2, "housevotes" : 2}
- dictionary timing.timing = {}
- int timing.n = 10
- int timing.time = 0
- dictionary timing.alg = kalgoclass[c](d, s)
- timing.before = datetime.now()
- · timing.clusters
- · timing.centers
- timing.after = datetime.now()
- · dictionary timing.dbscan_comb

8.17 web_frontend.py File Reference

webfrontend for project.

Namespaces

· web_frontend

Functions

- def web_frontend.create_cluster (cluster_algo, cluster_dist, dataset, seed)
 creates a cluster algorithm instance.
- def web_frontend.clustering (cluster, params, cluster_algo)
 calculates clustering results.
- def web_frontend.plotting ()

generates the plots for the frontend.

Variables

- · web frontend.page title
- web_frontend.page_icon
- web_frontend.session_state = SessionState.get(indices_data=pd.DataFrame())
- web_frontend.seeded = st.checkbox('Use precalculated results (with random seed for reproduction).', value=True)
- web_frontend.seed = None
- web_frontend.seaplots = st.checkbox('Use interactive charts', value=True)
- web_frontend.resulthandler = Results("./code/results")
- · web_frontend.col1
- · web frontend.col2
- web_frontend.dataset = col1.selectbox('Choose a beautiful dataset',['iris', 'wine', 'diabetes', 'housevotes'])
- dictionary web_frontend.cluster_dist_desc
- web_frontend.cluster_dist = col1.selectbox('Choose an awesome distance measure', list(cluster_dist_desc. ← keys()))
- dictionary web_frontend.cluster_algo_class = {'kmeans': kmeansClustering, 'kmedians': kmediansClustering, 'kmedians': kmediansClustering, 'DBSCANC! DBSCANClustering}
- web_frontend.cluster_algo = col2.selectbox('Choose a lovely clustering algorithm', list(cluster_algo_class. ← keys()))
- dictionary web_frontend.params = {}
- web_frontend.epsilon = col2.slider("Choose a nice value for epsilon", min_value=0.1, max_value=20.

 0, step=0.1)
- web_frontend.minpts = col2.slider("Choose a minimal number of nearest points", min_value=1, max_
 value=20, step=1, value=5)
- web_frontend.k_value = col2.slider("Choose a nice value for k (number of clusters)", min_value=2, max_
 value=10, step=1, value=3)
- def web_frontend.cluster = create_cluster(cluster_algo, cluster_dist, dataset, seed)
- web_frontend.datasetinformation = st.beta_expander("dataset information")
- web_frontend.perp = col1.slider("Perplexity for t-SNE", 5, 50, 25)
- web_frontend.dfclusterdata = pd.DataFrame()
- web_frontend.fig1
- web_frontend.fig2
- · web frontend.use container width
- web_frontend.clusterset = set(clustered_data)
- web_frontend.dataexpander = st.beta_expander("data")
- web_frontend.add_result = col1.button('Add')
- web_frontend.reset_tmp = col2.button('Reset')
- · web frontend.indices data
- string web frontend.val = "epsilon="+str(epsilon)+", np="+str(minpts)
- web_frontend.df = session_state.indices_data
- def web frontend.labels = cluster.labels.tolist()
- web_frontend.predicted = clustered_data.tolist()
- list web frontend.precalc = []
- list web_frontend.index_eval = ["ARI", "AMI", "Completeness Score", "Homogeneity Score", "Silhouette Score"]
- web_frontend.l1 = Indices(predicted, labels)
- web_frontend.score = I1.index_external(index_eval[i])
- list web frontend.datasets = []
- list web_frontend.results = [[1, "maximum reference value"]]
- list web frontend.desc list = []
- web frontend.desc = np.array(desc list)
- web_frontend.stats = np.zeros(len(results))
- web_frontend.df for = pd.DataFrame(results, columns=["Score","Data"])
- web_frontend.data_select = alt.selection_multi(fields=["Data"], name="Datapoint")
- string web_frontend.title = "Index:" + " " + index_eval + "," + " " + "Dataset:" + " " + datasets[0]
- web_frontend.base

8.17.1 Detailed Description

webfrontend for project.

implemented using streamlit. displays parameter selection, clustering results, data and the evaluation module. Charts can be displayed using seaborn or altair

8.18 /home/nordegraf/Uni/8.Semester/DataSciencel/datascience1_- group42/README.md File Reference

Index

```
/home/nordegraf/Uni/8.Semester/DataSciencel/datascienceenteroup42/README.md,
                                                              dbscan solutions, 20
 init
                                                              result calculation, 29
    clustering. Clustering, 46
                                                              timing, 33
     dbscan.DBSCANClustering, 50
                                                         cluster
    dbscan heuristic.DBSCANHeuristic, 52
                                                              clustering. Clustering, 46
    indices.Indices, 55
                                                              comparison plots, 13
    kmeans.kmeansClustering, 58
                                                              dbscan.DBSCANClustering, 50
     kmedians.kmediansClustering, 60
                                                              kmeans.kmeansClustering, 58
     kmedoids.kmedoidsClustering, 63
                                                              kmedians.kmediansClustering, 61
     results. Results, 66
                                                              kmedoids.kmedoidsClustering, 63
     SessionState.SessionState, 69
                                                              web frontend, 37
                                                         cluster_algo
add result
                                                              web_frontend, 37
     web_frontend, 37
                                                         cluster algo class
after
                                                              web_frontend, 38
     timing, 32
                                                         cluster_calc
alg
                                                              indices.Indices, 56
     dbscan_solutions, 20
                                                         cluster dist
     result_calculation, 29
                                                              heuristic_web, 22
     timing, 33
                                                              web frontend, 38
all_dist
                                                         cluster dist desc
     comparison_plots, 12
                                                              heuristic web, 22
all k
                                                              web frontend, 38
     comparison plots, 12
                                                         cluster label
all kalgos
                                                              indices. Indices, 56
     comparison_plots, 12
                                                         clustered data
all_kalgos_df
                                                              comparison_plots, 13
     comparison plots, 12
                                                              dbscan_solutions, 20
all_kalgos int
                                                         clustering, 11
     comparison_plots, 13
                                                              dbscan heuristic.DBSCANHeuristic, 54
ax
                                                              web frontend, 36
     comparison plots, 13
                                                         clustering. Clustering, 45
axis
                                                               __init___, 46
     make timing table, 27
                                                              cluster, 46
                                                              data, 48
base
                                                              datadf, 48
    web frontend, 37
                                                              dataset, 48
bbox to anchor
                                                              house_load, 47
     comparison plots, 13
                                                              labels, 48
before
                                                              load data, 47
     timing, 33
                                                              metric, 48
best results
                                                              pyc metric, 47
    dbscan_solutions, 20
                                                              seed, 49
borderaxespad
                                                         clustering.py, 71
     comparison_plots, 13
                                                         clusters
                                                              comparison_plots, 14
С
                                                              dbscan_solutions, 21
     comparison plots, 13
                                                              result calculation, 29
     result calculation, 29
```

timing, 33	data
clusterset	clustering.Clustering, 48
web_frontend, 38	comparison_plots, 14
col1	dbscan.DBSCANClustering, 51
heuristic web, 23	kmeans.kmeansClustering, 58
web frontend, 38	kmedians.kmediansClustering, 61
col2	G,
	kmedoids.kmedoidsClustering, 64
heuristic_web, 23	data_select
web_frontend, 38	web_frontend, 38
comparison_plots, 11	datadf
all_dist, 12	clustering.Clustering, 48
all_k, 12	dataexpander
all_kalgos, 12	web_frontend, 39
all_kalgos_df, 12	dataset
all_kalgos_int, 13	clustering.Clustering, 48
ax, 13	dbscan.DBSCANClustering, 51
bbox_to_anchor, 13	heuristic_web, 23
borderaxespad, 13	kmeans.kmeansClustering, 59
c, 13	kmedians.kmediansClustering, 61
cluster, 13	kmedoids.kmedoidsClustering, 64
clustered_data, 13	web_frontend, 39
clusters, 14	dataset_cluster
d, 14	make_timing_table, 27
data, 14	timing, 33
datasets, 14	datasetinformation
distances, 14	web_frontend, 39
fig, 14	datasets
figsize, 14	comparison_plots, 14
hue, 14	dbscan_comparision_plots, 19
l1, 15	dbscan_solutions, 21
index, 15	make_timing_table, 27
index_ext_eval, 15	result_calculation, 29
index_int_eval, 15	web_frontend, 39
index_score, 15	dbscan, 18
index_scores, 15	dbscan.DBSCANClustering, 49
k, 15	init, 50
kalgoclass, 16	cluster, 50
kalgos, 16	data, 51
kind, 16	dataset, 51
labels, 16	labels, 51
legend, 16	metric, 51
loc, 16	package, 51
num_of_classes, 16	dbscan.py, 73
predicted, 17	dbscan comb
results, 17	make_timing_table, 27
s, 17	timing, 33
seed, 17	dbscan_comparision_plots, 18
stuff, 17	datasets, 19
style, 17	distances, 19
title, 17	heu, 19
x, 17	kdists, 19
y, 18	plot_kdist, 18
comparison_plots.py, 71	dbscan_comparision_plots.py, 73
create_cluster	dbscan_heuristic, 19
web_frontend, 36	dbscan_heuristic.DBSCANHeuristic, 52
	init, 52
d	clustering, 54
comparison_plots, 14	k, 54
result_calculation, 29	, -

kdist, 53	results.Results, 66
metric, 54	results. results, 00
plot_kdist, 53	heu
set_dataset, 53	dbscan_comparision_plots, 19
set_metric, 54	heuristic_web, 23
dbscan_heuristic.py, 73	heuristic_web, 22
dbscan_solutions, 19	cluster_dist, 22
alg, 20	cluster_dist_desc, 22
best_results, 20	col1, 23
centers, 20	col2, 23 dataset, 23
clustered_data, 20	df, 23
clusters, 21	heu, 23
datasets, 21 distances, 21	k, 23
external, 21	kdist, 24
indices, 21	key, 24
internal, 21	line, 24
save_score, 20	nearest, 24
score, 21	page_icon, 24
seed, 21	page_title, 24
dbscan_solutions.py, 74	points, 24
desc	reverse, 25
web_frontend, 39	rules, 25
desc_list	selectors, 25
web_frontend, 39	submit_button, 25
df	text, 25
heuristic_web, 23	textp, 25 use_container_width, 25
web_frontend, 39	yaxis, 26
df_for	heuristic_web.py, 74
web_frontend, 40 dfclusterdata	house load
web frontend, 40	clustering.Clustering, 47
distances	hue
comparison_plots, 14	comparison_plots, 14
dbscan_comparision_plots, 19	
dbscan_solutions, 21	I1
make_timing_table, 27	comparison_plots, 15
result_calculation, 29	web_frontend, 40
timing, 33	index
	comparison_plots, 15
eps	index_eval web_frontend, 40
result_calculation, 29	index ext eval
epsilon	comparison_plots, 15
web_frontend, 40 external	index_external
dbscan_solutions, 21	indices.Indices, 56
abstan_solutions, 21	index_int_eval
fig	comparison_plots, 15
comparison_plots, 14	index_internal
fig1	indices.Indices, 56
web_frontend, 40	index_score
fig2	comparison_plots, 15
web_frontend, 40	index_scores
figsize	comparison_plots, 15
comparison_plots, 14	indices, 26
get	dbscan_solutions, 21
get SessionState, 31	indices.Indices, 55
get_path	init, 55 cluster_calc, 56
2~_L~	ciusiei_caic, 30

cluster_label, 56	data, 64
index_external, 56	dataset, 64
index_internal, 56	labels, 65
indices.py, 75	metric, 65
indices_data	package, 64
web_frontend, 41	seed, 65
internal	kmedoids.py, 77
	killedolds.py, 77
dbscan_solutions, 21	labels
k	clustering.Clustering, 48
comparison_plots, 15	comparison plots, 16
dbscan_heuristic.DBSCANHeuristic, 54	. –
	dbscan.DBSCANClustering, 51
heuristic_web, 23	kmeans.kmeansClustering, 59
result_calculation, 30	kmedians.kmediansClustering, 61
k_value	kmedoids.kmedoidsClustering, 65
web_frontend, 41	web_frontend, 41
kalgoclass	legend
comparison_plots, 16	comparison_plots, 16
make_timing_table, 28	line
result_calculation, 30	heuristic_web, 24
timing, 34	load data
kalgos	clustering.Clustering, 47
comparison_plots, 16	load_set
make_timing_table, 28	results.Results, 67
result_calculation, 30	loc
timing, 34	comparison_plots, 16
kdist	companson_piots, ro
dbscan_heuristic.DBSCANHeuristic, 53	m
heuristic web, 24	result_calculation, 30
_ :	make_timing_table, 27
kdists	
dbscan_comparision_plots, 19	axis, 27
key	dataset_cluster, 27
heuristic_web, 24	datasets, 27
kind	dbscan_comb, 27
comparison_plots, 16	distances, 27
kmeans, 26	kalgoclass, 28
kmeans.kmeansClustering, 57	kalgos, <mark>28</mark>
init, 58	table_array, 28
cluster, 58	timing_results, 28
data, 58	timing_table, 28
dataset, 59	make_timing_table.py, 77
labels, 59	metric
metric, 59	clustering.Clustering, 48
seed, 59	dbscan.DBSCANClustering, 51
kmeans.py, 76	dbscan_heuristic.DBSCANHeuristic, 54
kmedians, 26	kmeans.kmeansClustering, 59
kmedians.kmediansClustering, 60	kmedians.kmediansClustering, 62
<u> </u>	kmedoids.kmedoidsClustering, 65
init, 60	_
cluster, 61	minpts
data, 61	result_calculation, 30
dataset, 61	web_frontend, 41
labels, 61	n
metric, 62	n
seed, 62	timing, 34
kmedians.py, 76	nearest
kmedoids, 26	heuristic_web, 24
kmedoids.kmedoidsClustering, 62	num_of_classes
init, 63	comparison_plots, 16
cluster, 63	

package	get_path, 66
dbscan.DBSCANClustering, 51	load_set, 67
kmedoids.kmedoidsClustering, 64	parent, 68
page_icon	save_set, 67
heuristic_web, 24	set_exists, 68
web_frontend, 41	reverse
page_title	heuristic_web, 25
heuristic_web, 24	rules
web_frontend, 41	heuristic_web, 25
params	
web_frontend, 41	S
parent	comparison_plots, 17
results.Results, 68	result_calculation, 30
perp	save_score
web_frontend, 42	dbscan_solutions, 20
plot_kdist	save_set
dbscan_comparision_plots, 18	results.Results, 67
dbscan heuristic.DBSCANHeuristic, 53	score
plotting	dbscan_solutions, 21
web frontend, 36	web_frontend, 42
-	seaplots
points	web_frontend, 42
heuristic_web, 24	. —
precalc	seed
web_frontend, 42	clustering.Clustering, 49
predicted	comparison_plots, 17
comparison_plots, 17	dbscan_solutions, 21
web_frontend, 42	kmeans.kmeansClustering, 59
pyc_metric	kmedians.kmediansClustering, 62
clustering.Clustering, 47	kmedoids.kmedoidsClustering, 65
3	result_calculation, 31
reset_tmp	web_frontend, 43
web_frontend, 42	seeded
WCD HOHIOHA, IL	
	web frontend 43
result_calculation, 28	web_frontend, 43
result_calculation, 28 alg, 29	selectors
result_calculation, 28 alg, 29 c, 29	selectors heuristic_web, 25
result_calculation, 28 alg, 29 c, 29 centers, 29	selectors heuristic_web, 25 session_state
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29	selectors heuristic_web, 25 session_state web_frontend, 43
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79 SessionState.SessionState, 69
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29 k, 30	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79 SessionState.SessionState, 69init, 69
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29 k, 30 kalgoclass, 30	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79 SessionState.SessionState, 69init, 69 set_dataset dbscan_heuristic.DBSCANHeuristic, 53
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29 k, 30 kalgoclass, 30 kalgos, 30 m, 30	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79 SessionState.SessionState, 69init, 69 set_dataset dbscan_heuristic.DBSCANHeuristic, 53 set_exists
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29 k, 30 kalgoclass, 30 kalgos, 30 m, 30 minpts, 30	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79 SessionState.SessionState, 69init, 69 set_dataset dbscan_heuristic.DBSCANHeuristic, 53 set_exists results.Results, 68
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29 k, 30 kalgoclass, 30 kalgos, 30 m, 30 minpts, 30 results, 30	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79 SessionState.SessionState, 69init, 69 set_dataset dbscan_heuristic.DBSCANHeuristic, 53 set_exists results.Results, 68 set_metric
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29 k, 30 kalgoclass, 30 kalgos, 30 m, 30 minpts, 30 results, 30 s, 30	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79 SessionState.SessionState, 69init, 69 set_dataset dbscan_heuristic.DBSCANHeuristic, 53 set_exists results.Results, 68 set_metric dbscan_heuristic.DBSCANHeuristic, 54
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29 k, 30 kalgoclass, 30 kalgos, 30 m, 30 minpts, 30 results, 30 s, 30 seed, 31	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79 SessionState.SessionState, 69init, 69 set_dataset dbscan_heuristic.DBSCANHeuristic, 53 set_exists results.Results, 68 set_metric dbscan_heuristic.DBSCANHeuristic, 54 stats
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29 k, 30 kalgoclass, 30 kalgos, 30 m, 30 minpts, 30 results, 30 s, 30 seed, 31 result_calculation.py, 78	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79 SessionState.SessionState, 69init, 69 set_dataset dbscan_heuristic.DBSCANHeuristic, 53 set_exists results.Results, 68 set_metric dbscan_heuristic.DBSCANHeuristic, 54 stats web_frontend, 43
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29 k, 30 kalgoclass, 30 kalgos, 30 m, 30 minpts, 30 results, 30 s, 30 seed, 31 result_calculation.py, 78 resulthandler	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79 SessionState.SessionState, 69init, 69 set_dataset dbscan_heuristic.DBSCANHeuristic, 53 set_exists results.Results, 68 set_metric dbscan_heuristic.DBSCANHeuristic, 54 stats web_frontend, 43 stuff
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29 k, 30 kalgoclass, 30 kalgos, 30 m, 30 minpts, 30 results, 30 s, 30 seed, 31 result_calculation.py, 78 resulthandler web_frontend, 42	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79 SessionState.SessionState, 69init, 69 set_dataset dbscan_heuristic.DBSCANHeuristic, 53 set_exists results.Results, 68 set_metric dbscan_heuristic.DBSCANHeuristic, 54 stats web_frontend, 43 stuff comparison_plots, 17
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29 k, 30 kalgoclass, 30 kalgos, 30 m, 30 minpts, 30 results, 30 s, 30 seed, 31 result_calculation.py, 78 resulthandler web_frontend, 42 results, 31	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79 SessionState.SessionState, 69init, 69 set_dataset dbscan_heuristic.DBSCANHeuristic, 53 set_exists results.Results, 68 set_metric dbscan_heuristic.DBSCANHeuristic, 54 stats web_frontend, 43 stuff comparison_plots, 17 style
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29 k, 30 kalgoclass, 30 kalgos, 30 m, 30 minpts, 30 results, 30 seed, 31 result_calculation.py, 78 resulthandler web_frontend, 42 results, 31 comparison_plots, 17	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79 SessionState.SessionState, 69init, 69 set_dataset dbscan_heuristic.DBSCANHeuristic, 53 set_exists results.Results, 68 set_metric dbscan_heuristic.DBSCANHeuristic, 54 stats web_frontend, 43 stuff comparison_plots, 17 style comparison_plots, 17
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29 k, 30 kalgoclass, 30 kalgos, 30 m, 30 minpts, 30 results, 30 s, 30 seed, 31 result_calculation.py, 78 resulthandler web_frontend, 42 results, 31	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79 SessionState.SessionState, 69init, 69 set_dataset dbscan_heuristic.DBSCANHeuristic, 53 set_exists results.Results, 68 set_metric dbscan_heuristic.DBSCANHeuristic, 54 stats web_frontend, 43 stuff comparison_plots, 17 style
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29 k, 30 kalgoclass, 30 kalgos, 30 m, 30 minpts, 30 results, 30 seed, 31 result_calculation.py, 78 resulthandler web_frontend, 42 results, 31 comparison_plots, 17	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79 SessionState.SessionState, 69init, 69 set_dataset dbscan_heuristic.DBSCANHeuristic, 53 set_exists results.Results, 68 set_metric dbscan_heuristic.DBSCANHeuristic, 54 stats web_frontend, 43 stuff comparison_plots, 17 style comparison_plots, 17
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29 k, 30 kalgoclass, 30 kalgos, 30 m, 30 minpts, 30 results, 30 s, 30 seed, 31 result_calculation.py, 78 resulthandler web_frontend, 42 results, 31 comparison_plots, 17 result_calculation, 30	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79 SessionState.SessionState, 69init, 69 set_dataset dbscan_heuristic.DBSCANHeuristic, 53 set_exists results.Results, 68 set_metric dbscan_heuristic.DBSCANHeuristic, 54 stats web_frontend, 43 stuff comparison_plots, 17 style comparison_plots, 17 submit_button
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29 k, 30 kalgoclass, 30 kalgos, 30 m, 30 minpts, 30 results, 30 s, 30 seed, 31 result_calculation.py, 78 resulthandler web_frontend, 42 results, 31 comparison_plots, 17 result_calculation, 30 web_frontend, 42	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79 SessionState.SessionState, 69init, 69 set_dataset dbscan_heuristic.DBSCANHeuristic, 53 set_exists results.Results, 68 set_metric dbscan_heuristic.DBSCANHeuristic, 54 stats web_frontend, 43 stuff comparison_plots, 17 style comparison_plots, 17 submit_button
result_calculation, 28 alg, 29 c, 29 centers, 29 clusters, 29 d, 29 datasets, 29 distances, 29 eps, 29 k, 30 kalgoclass, 30 kalgos, 30 m, 30 minpts, 30 results, 30 s, 30 seed, 31 result_calculation.py, 78 resulthandler web_frontend, 42 results, 31 comparison_plots, 17 result_calculation, 30 web_frontend, 42 results.py, 78	selectors heuristic_web, 25 session_state web_frontend, 43 SessionState, 31 get, 31 SessionState.py, 79 SessionState.SessionState, 69init, 69 set_dataset dbscan_heuristic.DBSCANHeuristic, 53 set_exists results.Results, 68 set_metric dbscan_heuristic.DBSCANHeuristic, 54 stats web_frontend, 43 stuff comparison_plots, 17 style comparison_plots, 17 submit_button heuristic_web, 25

text	epsilon, 40
heuristic_web, 25	fig1, 40
textp	fig2, 40
heuristic_web, 25	I1, 40
time	index_eval, 40
timing, 34	indices data, 41
timing, 32	k value, 41
after, 32	labels, 41
alg, 33	minpts, 41
before, 33	page_icon, 41
centers, 33	page title, 41
clusters, 33	params, 41
dataset_cluster, 33	•
	perp, 42
dbscan_comb, 33	plotting, 36
distances, 33	precalc, 42
kalgoclass, 34	predicted, 42
kalgos, 34	reset_tmp, 42
n, 34	resulthandler, 42
time, 34	results, 42
timing, 34	score, 42
timing.py, 80	seaplots, 42
timing_results	seed, 43
make_timing_table, 28	seeded, 43
timing_table	session_state, 43
make_timing_table, 28	stats, 43
title	title, 43
comparison_plots, 17	use_container_width, 43
web_frontend, 43	val, 43
,	web_frontend.py, 80
	, , , , , ,
use container width	
use_container_width heuristic_web, 25	X
heuristic_web, 25	x comparison plots, 17
	x comparison_plots, 17
heuristic_web, 25	comparison_plots, 17
heuristic_web, 25 web_frontend, 43 val	comparison_plots, 17
heuristic_web, 25 web_frontend, 43	comparison_plots, 17 y comparison_plots, 18
heuristic_web, 25 web_frontend, 43 val	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 43 web_frontend, 34	comparison_plots, 17 y comparison_plots, 18
heuristic_web, 25 web_frontend, 43 val web_frontend, 43 web_frontend, 34 add_result, 37	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 43 web_frontend, 34 add_result, 37 base, 37	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 43 web_frontend, 34 add_result, 37 base, 37 cluster, 37	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 43 web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 43 web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37 cluster_algo_class, 38	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 43 web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37 cluster_algo_class, 38 cluster_dist, 38	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 43 web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37 cluster_algo_class, 38 cluster_dist, 38 cluster_dist_desc, 38	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 43 web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37 cluster_algo_class, 38 cluster_dist, 38 cluster_dist_desc, 38 clustering, 36	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 43 web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37 cluster_algo_class, 38 cluster_dist, 38 cluster_dist_desc, 38 clustering, 36 clusterset, 38	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 43 web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37 cluster_algo_class, 38 cluster_dist, 38 cluster_dist_desc, 38 clustering, 36 clusterset, 38 col1, 38	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37 cluster_algo_class, 38 cluster_dist, 38 cluster_dist_desc, 38 clustering, 36 clusterset, 38 col1, 38 col2, 38	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37 cluster_algo_class, 38 cluster_dist_desc, 38 cluster_dist_desc, 38 clusterset, 38 colusterset, 38 col1, 38 col2, 38 create_cluster, 36	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37 cluster_algo_class, 38 cluster_dist, 38 cluster_dist_desc, 38 clustering, 36 clusterset, 38 col1, 38 col2, 38 create_cluster, 36 data_select, 38	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37 cluster_algo_class, 38 cluster_dist, 38 cluster_dist_desc, 38 clustering, 36 clusterset, 38 col1, 38 col2, 38 create_cluster, 36 data_select, 38 dataexpander, 39	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37 cluster_algo_class, 38 cluster_dist, 38 cluster_dist_desc, 38 clustering, 36 clusterset, 38 col1, 38 col2, 38 create_cluster, 36 data_select, 38 dataexpander, 39 dataset, 39	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37 cluster_algo_class, 38 cluster_dist, 38 cluster_dist_desc, 38 clustering, 36 clusterset, 38 col1, 38 col2, 38 create_cluster, 36 data_select, 38 dataexpander, 39 datasetinformation, 39	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37 cluster_algo_class, 38 cluster_dist, 38 cluster_dist_desc, 38 clustering, 36 clusterset, 38 col1, 38 col2, 38 create_cluster, 36 data_select, 38 dataexpander, 39 dataset, 39	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37 cluster_algo_class, 38 cluster_dist, 38 cluster_dist_desc, 38 clustering, 36 clusterset, 38 col1, 38 col2, 38 create_cluster, 36 data_select, 38 dataexpander, 39 datasetinformation, 39	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37 cluster_algo_class, 38 cluster_dist_desc, 38 cluster_dist_desc, 38 clustering, 36 clusterset, 38 col1, 38 col2, 38 create_cluster, 36 data_select, 38 dataexpander, 39 dataset, 39 datasets, 39 datasets, 39	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37 cluster_algo_class, 38 cluster_dist, 38 cluster_dist_desc, 38 clustering, 36 clusterset, 38 col1, 38 col2, 38 create_cluster, 36 data_select, 38 dataexpander, 39 dataset, 39 datasets, 39 desc, 39	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37 cluster_algo_class, 38 cluster_dist_desc, 38 cluster_dist_desc, 38 clusterset, 38 col1, 38 col2, 38 col2, 38 create_cluster, 36 data_select, 38 dataexpander, 39 dataset, 39 datasets, 39 desc, 39 desc_list, 39	comparison_plots, 17 y comparison_plots, 18 yaxis
heuristic_web, 25 web_frontend, 43 val web_frontend, 34 add_result, 37 base, 37 cluster, 37 cluster_algo, 37 cluster_algo_class, 38 cluster_dist, 38 cluster_dist_desc, 38 clustering, 36 clusterset, 38 col1, 38 col2, 38 create_cluster, 36 data_select, 38 dataexpander, 39 dataset, 39 datasets, 39 desc_list, 39 desc_list, 39 df, 39	comparison_plots, 17 y comparison_plots, 18 yaxis