

H504N3A Eletromagnetismo EE

MIEInformática – 2º ano

Universidade do Minho

Teste 1-2^aparte (duração: 1h20)

30 Março 2019

Nome: Nome:

1) Preencha o cabeçalho (com o seu nome, número e curso) antes de iniciar o teste.

2) <u>Justifique todas</u> as suas respostas.

$$K = \frac{1}{4\pi G} = 9 \times 10^9 \, N \cdot m^2 \cdot C^{-2}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} (SI)$$

 $K_m = \frac{\mu_0}{4\pi} = 10^{-7} T \cdot m \cdot A^{-1}$

Carga elementar: $e = 1.6 \times 10^{-19} \text{ C}$;

massa do protão: $m_p = 1.67 \times 10^{-27}$ kg;

massa do electrão: m_e =9.1×10⁻³¹ kg

1. (2.2 valores) Três cargas, $\,Q_1=-Q$, $\,Q_2=+2Q\,$ e $\,Q_3=+2Q\,$, estão dispostas conforme mostra a figura.

Tomando $Q=-10~\mu C$, a=18cm e b=24cm, calcule:

- a) O vector campo eléctrico (em função dos vectores unitários $\hat{\imath}$, \hat{j} , \hat{k}) no ponto médio do rectângulo, O.
- b) O potencial no ponto, P, tomando como referência o potencial nulo no infinito.
- c) O trabalho realizado pelo campo eléctrico ao deslocar a carga -Q desde a sua posição inicial até ao vértice livre, P.

- **2.** (1.8 valores) Uma haste fina, muito longa, tem uma densidade linear de carga de $\lambda_1=2~\mu\text{C/m}$ (figura a).
 - a) Partindo da lei de Gauss, determine o campo eléctrico (módulo, direcção e sentido) num ponto A a uma distância de 3 cm da haste.
 - b) Em volta da haste (figura b) coloca-se uma casca condutora cilíndrica com 4.5cm de raio interno, 5.0cm de raio externo e 50cm de comprimento, com carga de $q_2=-1~\mu\text{C}$.
 - i) A partir da lei de Gauss calcule o campo eléctrico (magnitude, direcção e sentido) no ponto *B* a 15 *cm* da haste.
 - ii) Faça um esquema com a distribuição de cargas, por metro de comprimento, na superfície interna e na superfície externa do cilindro. Desenhe as linhas de campo eléctrico em todo o espaço.

Nota: Resolva o problema usando a lei de Gauss. Indique claramente a(s) superfície(s) de Gauss que utiliza e apresente todos os passos da resolução.

Nome:	Nº:	Lic ·
NOTITE.	14	LIC

3. (2 Valores) Considere o circuito apresentado, onde $\varepsilon=100V$, $C_1=20\mu F$, $C_2=15\mu F$, $C_3=10\mu F$ e $C_4=10\mu F$. Após atingir o equilíbrio, qual a carga armazenada em cada condensador e qual a diferença de potencial aos seus terminais?

Faça uma tabela usando a quadrícula anexa (Nesta, o nº de linhas disponível é aleatório). Apresente todos os cálculos.

	C ()	Q ()	ΔV (V)
C ₁			
C ₂			
C ₃			
C ₄			

