Lecture 10

Michael Brodskiy

Professor: A. Ali

October 17, 2024

- Types of Buses
 - Slack Bus (always one)
 - * Known: Voltage magnitude V and the phase angle θ
 - * Unknown: Net powers P and Q
 - $-\ PV$ (Generator) Buses (there are n_{PV} such buses)
 - * Known: Voltage magnitude V and real power P
 - · Net powers are:

$$P = P_G - P_D$$

$$Q = Q_G - Q_D$$

- * Unknown: Phase angle θ and reactive power Q
- PQ (Load) Buses (there are n_{PQ} such buses)
 - * Known: Real and reactive powers P and Q
 - · Net powers are:

$$P = -P_D$$

$$Q = -Q_D$$

- * Unknown: Voltage magnitude V and phase angle θ
- Note: for these buses P and Q refers to the net injected power (e.g. If a generator supplies P_G and power P_D is dissipated, then P refers to $P_G P_D$)
- Working with Buses
 - Given that $\hat{S}_k = \hat{V}_k \hat{I}_k^*$ and $Y_{bus} \cdot V = I$, we may write:

$$\hat{I}_k = \sum_{m=1}^n Y_{bus}^*(k, m) \cdot \hat{V}_m^*$$

- This gives us:

$$\hat{S}_k = \hat{V}_k \sum_{m=1}^n Y_{bus}^*(k, m) \cdot \hat{V}_m^*$$

- Considering a system with n buses (where $n = 1 + n_{PV} + n_{PQ}$):
 - The total number of equations matches the total number of unknowns
 - The equations are non-linear and therefore requires solutions of nonlinear algebraic equations
 - Unknown voltages and phases may be written as:

$$X^{T} = \underbrace{[\theta_{2}, \theta_{3}, \cdots, \theta_{n}]}_{n-1} \underbrace{V_{n_{PV}+2}, \cdots, V_{n}}_{n_{PO}}$$

- For a given bus k:

$$P_k = P_G - P_D = V_k \sum_{m} V_m (G_{bus} \cos(\theta_{bus}) + B_{bus} \sin(\theta_{km}) - P_k^{sch} = 0 \quad \text{(for } PQ \text{ and } PV \text{ buses)}$$

$$Q_k = V_k \sum V_m (G_{bus} \sin(\theta_{bus}) - B_{bus} \cos(\theta_{km}) - Q_k^{sch} = 0 \quad \text{(for } PQ \text{ buses)}$$

- * We see that the solutions to these equations may be represented by a non-linear vector X, which solves X^T from above
- Solving Non-linear Algebraic Equations
 - We will use the Newton-Raphson method
 - Scalar case (F(x)) is a non-linear function, and x is a single variable):
 - * We may begin by Taylor expanding around some value x_o such that:

$$F(x) \approx F(x_o) + \frac{\partial F}{\partial x} \Big| (x - x_o) + \frac{\text{higher order terms we ignore}}{\dots}$$

* We let $\frac{\partial F}{\partial x} = F_x$ and plug in the value to get:

$$F_x(x - x_o) + F(x_o) \approx 0$$
$$x \approx x_o - F_x^{-1} F(x_o)$$

* A k-iteration counter allows us to write:

$$x^{k+1} \approx x^k - (F_x^k)^{-1} F(x^k)$$

* Starting with $x^1 = x_o$, continue updating x^k until $|x^{k+1} - x^k| \le \varepsilon$ (the ε is known as the termination threshold)

* We may define the Jacobian to rewrite the above formula as:

$$\bar{x}^{k+1} = \bar{x}^k - [J(x^k)]^{-1}F(x^k)$$

- Applying this to the case of the power flow problem
 - Assume \hat{x}^o and iterate until $\underbrace{||F^{k+1}||}_{\text{norm}|F_j(x)|} < \varepsilon$ (typically $10^{-4}[p.u.]$)
 - Taking the transpose, we may write:

$$[F(\bar{x})]^T = \left[\underbrace{P_2(x) - P_2^{sch}, P_3(x) - P_3^{sch}, \cdots, P_n(x) - P_n^{sch}}_{n}\right]$$

$$\left[\underbrace{Q_{n_{PQ}+2}(x) - Q_{n_{PQ}+2}^{sch}, \cdots, Q_n(x) - Q_n^{sch}}_{n_{PQ}}\right]$$

* The Jacobian matrix will be quite sparse