Better Online Deterministic Packet Routing on Grids

Számítógép-hálózatok és osztott rendszerek

Kádár Tamás Csaba, Kedves Nándor November 28, 2016

Tartalomjegyzék

- 1. Bevezetés
- 2. Modell és probléma
- 3. Algoritmus
- 4. Konklúzió

Bevezetés

Alapmodell

Hálózatunkat a következő modellel írjuk le, melyet [1] cikk alapján építünk fel:

- G = (V, E) irányított gráf
- B bufferméret, c élek kapacitása, ahol B, c > 0

A hálózat topológiája irányított lineáris gráf, amely n vertexből áll $V = \{v_0, v_1, \dots, v_{n-1}\}, E = \{(v_{i-1}, v_i) \mid 0 < i < n\}$

Figure 1: Lineáris hálózatmodell

Kérés (Request)

A kérést egy számhármassal adhatjuk meg, $r = (a_i, b_i, t_i)$

- a_i a forráscsomópont
- b_i a célcsomópont
- t_i az időpont, amikor a kérés érkezik

, ahol $a_i,b_i\in V,t_i\in\mathbb{N}$

Minden time stepben a routing algoritmus:

- törli a célba érkezett csomagokat
- minden más csomagra, beleértve az éppen beérkezőket is, eldönti, hogy:
 - törli
 - tárolja az aktuális csomópont bufferjében
 - továbbküldi a következő vertexnek

Modell és probléma

A lineáris modelltől a rácsmodellig

Kiindulunk a már említett modellből és a következő modellt építjük fel:

- $G^{st}=(V^{st},E^{st})$ irányított aciklikus végtelen gráf, amiben $c^{st}(e)$ az élek kapacitása. $V^{st}:=V\times\mathbb{N}$, ahol minden $v\in V$ vertexnek végtelenszámú másolata van a G^{st} -ben, melyet a $(v,t)\in V^{st}$ azonosít. $E^{st}:=E_0\cup E_1$, ahol az E_0 tartalmazza a csomópontok közötti éleket, melyek c kapacitással rendelkeznek és az e1 az ugyanazon csomópont time steppek közötti élét tartalmazza, mely kapacitása e3
- a kérés a következőképpen alakul $r_i^{st} = ((a_i, t_i), row(b_i))$, ahol a $row(b_i)$ a célcsomópont sorát jelöli

A lineáris modelltől a rácsmodellig

Figure 2: Döntött rácsos hálózatmodell [2]

A lineáris modelltől a rácsmodellig

Figure 3: Nem döntött rácsos hálózatmodell [2]

Rácsmodelltől a vázlatgráfig

Felépítjük a *sketch gráfot*, mely egy durvább megközelítése a rácsmodellnek. Felépítéséhez úgynevezett *tilingokat* használunk. Tiling

- $\ell_h \times \ell_v$ részrács, ahol $\ell_h = \left\lceil \frac{6k}{5c'} \right\rceil$ és $\ell_v = \left\lceil \frac{6k}{5B'} \right\rceil$ ($c' = \lfloor c/5 \rfloor$, $B' = \lfloor B/5 \rfloor$ és $k = log(1 + 3 \cdot p_{max})$)
- ϕ_X és ϕ_Y 2 offset paraméter segítségével határozzuk meg $((\phi_X + i \cdot \ell_h, \phi_Y + j \cdot \ell_V)$, ahol $i, j \in \mathbb{N})$

A cikk által feldolgozott algoritmus alapján négy tilingot hozunk létre, $(\phi_x,\phi_y)\in\{-\ell_h/2.0\}\times\{-\ell_v/2.0\}$, ezeket nevezzük T_1,\ldots,T_4 -nek.

Rácsmodelltől a vázlatgráfig

Figure 4: Sketch gráf

Utak a csempében

Figure 5: A befele és kifele mutató utak a csempében

Sketch gráf

Definíció

Az $r_i = (a_i, b_i, t_i)$ kérés SW_j -ben található, ha a forrásvertex (a_i, t_i) a T_j csempe délnyugati részéhez tartozik.

Egy sketch gráfot indukál a T_j , melyet jelöljük $S_j := (V(S_j), E(S_j))$, ahol a $V(S_j)$ egy csempehalmaz a T_j -ből és amelyhez $(s_1, s_2) \in E(S_j)$ tartozik, ha $s_1 \neq s_2$ és $E^{st} \cap (s_1 \times s_2) \neq \emptyset$. Minden élhez egy egységkapacitást rendelünk.

Online Packing of Paths

- A sketch gráfot használjuk fel az path packing probléma megoldásához. Intuitíve a path packing modell hasonlít a packet routing modellhez, kivéve hogy ott nincsenek bufferek és hogy minden link e különböző kapacitással rendelkezik, melyet jelöljünk c(e)-vel.
- Formálisan egy kérés (a_i, D_i) alakban írható fel a G gráfban (a_i, D_i) , ahol $a_i \in V$ a forrásvertex és a $D_i \subseteq V$ célrészhalmaz.
- Jelölje $P(r_i)$ azon pathek halmazát, melyek kiszolgálják a r_i kérést. Minden $p \in P(r_i)$ az a_i vertexel kezdődik és a vége a D_i halmazban található.

Algoritmus

Packet routing algoritmus pszeudokód

- 1. Let R_t be a list of new requests, sorted by source-destination distance.
- 2. For each vertex v, let $R'_t(v)$ the first B' + c' requests in R_t whose source is v. // filter requests
- 3. **for** each request $r_i \in \bigcup_{\nu} R'_t(\nu)$ **do**
- 4. **if** $r_i \in Near$ **then** ROUTE-NEAR(r_i)
- 5. **else**
- 6. Let $j \in \{1, ..., 4\}$ be s.t. $r_i \in SW_j$ // classify r_i
- 7. $sketch_i \leftarrow IPP(S_j, accepted_j, r_i) // lengths bounded by <math>p_{max}$

Packet routing algoritmus pszeudokód

```
8.  init<sub>i</sub> ← INITIAL-ROUTE(accepted<sub>j</sub> , r<sub>i</sub>)
9.  if sketch<sub>i</sub> ≠ REJECT and init<sub>i</sub> ≠ REJECT then
10.  add r<sub>i</sub> to accepted<sub>j</sub>
11.  DETAILED-ROUTE(r<sub>i</sub>; init<sub>i</sub>; sketch<sub>i</sub>) // update routes
12.  else Reject ri
13.  end if
14.  end if
15.  end for
```

Kérések rendezése és szűrése

Az algoritmus hatékonyságának növelése érdekében a *t* időben érkező kéréseket megszűrjük a következő módon:

- $R_t = t$ időben érkezett kérések
- R'_t = kérések kezdőpont-végpont közötti távolság szerint rendezve
- input = minden v csomópont esetében az első B'+C' kérés R_t' -ből, ahol a kérés kezdőpontja v

Near vagy Far

A kéréseket két csoportba soroljuk:

- NEAR kérés, abban az esetben ha a kezdőpont és a végpont is egy csempében van, vagyis $b_i a_i \le l_v$
- FAR kérés, ha a kérés két végpontja különböző csempékbe tartozik

Amennyiben FAR kérésről van szó, kiválasztjuk a megfelelő sketch gráfot, aminek a SW kvadrantjába esik ez az r_i request.

IPP (Integral Path Packing) algoritmus

Az IPP algoritmus [3] vagy elutasítja a r_i kérést, vagy egy utat ad vissza csempék egy szekvenciáján a kezdőcsempéből a célcsempébe.

Figure 6: IPP algoritmus

Initial-Route algoritmus

Az Initial-Route algoritmus egy FAR típusú kérés esetében hajtódik végre.

Célja, hogy egy egyenes mentén a kérést továbbítsa egy s csempe SW negyedéből.

Ha nem tudtuk egy egyenes mentén megtenni csak tárolással vagy továbbküldéssel, a kérést eldobjuk.

Csomag eldobása

Egy FAR típusú kérést csak az IPP és az Initial-Route algoritmusok dobhatnak el.

Ha mindkét algoritmus megtartotta r_i -t, akkor biztosak lehetünk, hogy a csomag eljut a kezdőpontból a végpontba.

Detailed-Route algoritmus

Céja, hogy az előző két algoritmus eredményeit felhasználva meghatározza a tényleges utat G^{st} -ben.

Megjegyezzük, hogy a leképezés során biztosak lehetünk, hogy lesz szabad út a kezdőpont és a végpont között.

Detailed-Route algoritmus

A nyugatról érkező kérések addig maradnak a bufferben, amíg el nem érjük az átlót, majd eszakra indulnak, míg a délről érkező kérések keletre fordulnak.

Figure 7: Crossbar routing

Konklúzió

Összefoglaló

Bemutattunk egy determinisztikus packet routing algoritmust, mely megoldott egy nyitott kérdést. Számos más kérdés azóta is megválaszolatlan. Például, hogy mi történik nem centralizált esetben?

Ref.	Dim.	Comp. Ratio	Determ?	B, c
[4, 5, 6]	1	$O(\log(n))$	Yes	$B, c > logn, B/c = n^{O(1)}$
[7]	1	$O(\log^3(n))$	No	B ≥ 2, c = 1
[8]	1	$O(\log^2(n))$	No	B ≥ 2, c = 1
[4, 6]	1	O(log(n))	No	$B \in [1, \mathit{logn}], c \geq 1$
[5, 6]	1	$O(\log^5(n))$	Yes	[3, O(logn)]
[5, 6]	d	$O(\log^{d+4}(n))$	Yes	[5, <i>O</i> (<i>logn</i>)]
[1]	1	O(log(n))	Yes	[5, <i>O</i> (<i>logn</i>)]

Table 1: Összehasonlítás más algoritmusokkal

References I

- Guy Even, Moti Medina, and Boaz Patt-Shamir.
 Better online deterministic packet routing on grids.
 CoRR, abs/1501.06140, 2015.
- [2] Guy Even and Moti Medina.
 Online packet-routing in grids with bounded buffers.
 Algorithmica, pages 1–50, 2016.
- [3] Niv Buchbinder and Joseph Naor.
 Improved bounds for online routing and packing via a primal-dual approach.

In 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06). 2006.

References II

[4] Guy Even and Moti Medina.

An o (logn)-competitive online centralized randomized packet-routing algorithm for lines.

International Colloquium on Automata, Languages, and Programming, pages 139–150, 2010.

- [5] Guy Even and Moti Medina.
 Online packet-routing in grids with bounded buffers.
 In Proceedings of the twenty-third annual ACM symposium on Parallelism in algorithms and architectures, pages 215–224. 2011.
- [6] Guy Even and Moti Medina.
 Online packet-routing in grids with bounded buffers.
 CoRR, abs/1407.4498, 2014.

References III

[7] Stanislav Angelov, Sanjeev Khanna, and Keshav Kunal.
The network as a storage device: Dynamic routing with bounded buffers.

Algorithmica, 55:71-94, 2009.

[8] Yossi Azar and Rafi Zachut.

Packet routing and information gathering in lines, rings and trees.

In European Symposium on Algorithms, pages 484–495. 2005.

Kérdések?

Köszönjük a figyelmet!