개정3판

Local Area Network

컴퓨터 네트워크

정진욱 · 안성진 · 김현철 · 조감홍 · 유수현 공지

이 장을 시작하며...

Key Sentence...

- ◈ LAN에 대한 기본적인 정의와 표준안
- ◈ LAN의 토폴로지, 전송매체 및 매체접근제어방식에 따른 LAN의 분류 및 종류
- ◈ LAN의 매체 접근 제어 방식: CSMA/CD, 토큰 링과 토큰 버스

Content

강의명 : 컴퓨터 네트워크

1. LAN의 개요

강의명 : 컴퓨터 네트워크

1) 개요

LAN(Local Area Network, 근거리 통신망)의 개요

1970년대 초 Xerox사의 PARC(Palo Alto Research Center)에서 로버트 맷칼프에 의해 고안된 후, 1985년 IEEE(전기전자 기술자 협회)의 표준화 위원회에서 표준으로 제정된 통신 시스템.

① LAN의 정의

- 제한된 거리에 있는 다수의 독립된 컴퓨터 기기들이 상호 간에 통신이 가능하도록 하는 데이터 통신 시스템
- ➤ Kenneth J. Thurber와 Harvey A. Freeman의 정의
 - 단일 기관의 소유일 것
 - 수마일 범위 이내에 지역적으로 한정되어 있을 것
 - 어떤 종류의 스위칭 기술을 갖고 있을 것
 - 원거리 네트워크의 경우보다 높은 통신 속도를 가질 것

1) 개요

LAN(Local Area Network, 근거리 통신망)의 개요

② LAN의 특징

▶ LAN의 이점

- Plug-In 연결만으로 네트워크의 확장, 단말 장치의 이동 및 변경이 가능하다.
- 다양한 응용을 수용할 수 있으며, 많은 수의 단말을 연결할 수 있다.
- 상대적으로 낮은 비용이 드는 매체로 높은 대역폭을 제공할 수 있다.
- 게이트웨이, 브리지, 라우터 등의 네트워킹 장비들을 이용하여 다른 네트워크와 연동이 가능하다.
- 중앙에 집중되어 있는 컴퓨팅 자원을 가장 편리한 장소에 분배하여 위치시킬 수 있다.
- 하나의 중앙 지점에서 네트워크에 대한 모니터링이 가능하기 때문에 네트워크의 이용률이나 가용성 등을 보장하기 위한 네트워크 관리가 용이한 편이다.
- 오랜 기간의 사용으로 LAN 기술 자체가 검증되었으며, 숙련된 LAN 기술자가 많기 때문에 구축 및 운영, 유지가 편리하다.

➤ LAN의 단점

- LAN은 짧은 거리에서의 통신만을 지원하므로, 거리를 확장하기 위해서는 리피터, 허브 혹은 브리지와 같은 네트워킹 장비를 사용해야한다.
- 매체에 대한 접근제어방식으로 CSMA/CD를 사용할 경우에는 한 매체에 연결되는 스테이션의 수가 한정된다.

1. LAN의 개요

강의명 : <mark>컴퓨터 네트워크</mark>

1) 개요

LAN(Local Area Network, 근거리 통신망)의 개요

③ IEEE 802 표준

많은 네트워크 장비 공급 업체들로부터 출시되는 관련 장비들간의 호환성 및 장비간 연동을 위하여 IEEE(전기 전자 전문가 협회)는 802 위원회를 조직하여, LAN에 관한 표준화를 추진하였다.

1) 개요

LAN(Local Area Network, 근거리 통신망)의 개요

③ IEEE 802 표준

> LLC (Logical Link Control)

 상위 계층인 네트워크 계층과 LAN의 MAC 계층을 연결해 주는 인터페이스

SAP	Assignment						
00	Null						
04	IBM SNA (station operations)						
05	IBM SNA (group operations)						
06	Internet Protocol (IP of TCP/IP)						
80	Xerox Networking Services (XNS)						
E0	Novell NetWare						
F0	IBM NetBIOS						
F4	LAN management (station)						
F5	LAN management (group)						
F8	IBM Remote Program Load (RPL)						
FE	Open System Interconnect (OSI) network layer						
FF	Global						

1) 개요

LAN(Local Area Network, 근거리 통신망)의 개요

③ IEEE 802 표준

> MAC (Medium Access Control)

- 물리 네트워크에 대한 접근 제어를 담당
- MAC 어드레싱(Addressing)
 네트워크에 연결된 각 호스트의 그룹 혹은 모든 호스트로 표현가능
- 프레임형태 인식
 - 해당 프레임이 어떤 형식의 프레임 인지에 대한 구분을 가능
- 프레임 제어
 - 미리 정의된 비트열인 프리엠블을 통하여 각각의 프레임 제어
 - FCS을 통하여 수신한 프레임의 에러 유무를 제어
- 프레임복사
 - 이더넷 카드 내의 버퍼 공간으로 프레임을 옮겨 놓는 과정

강의명 : 컴퓨터 네트워크

2) 분류

LAN(Local Area Network, 근거리 통신망)의 분류

LAN의 분류 방법에는 토폴로지(Topology)에 의한 분류, 전송매체에 의한 분류, 전송 신호 및 매체 접근 방법에 따른 분류 등으로 분류되어진다.

① 토폴로지 (Topology)

- 네트워크에서 스테이션들을 연결하는 케이블의 구조, 방법 혹은 기하학적인 모양
- 다양한 방식으로 구성되는 네트워크의 구성 방법에 따라 성형(Star Topology), 버스형(Bus Topology), 트리형(Tree Topology), 링형(Ring Topology)으로 구부되다.

강의명 : 컴퓨터 네트워크

2) 분류

LAN(Local Area Network, 근거리 통신망)의 분류

① 토폴로지 (Topology) - 성형 (Star Topology)

- > 각 스테이션(station)이 허브(Hub)라고 불리는 중앙 전송 제어 장치와 점대점(Point-to-Point) 링크에 의해 접속되어 있는 형태
- ▶ 장점
 - 고장 발견이 쉽고 유지 보수가 용이함
 - 한 스테이션의 고장이 전체 네트워크에 영향을 미치지 않음
 - 한 링크가 떨어져도 다른 링크는 영향을 받지 않음
 - 확장이 용이함
- ▶ 단점
 - 중앙 전송 제어 장치가 고장이 나면 네트워크는 동작이 불가능
 - 설치 시에 케이블링에 많은 노력과 비용이 듦
 - 통신 량이 많은 경우 전송 지연이 발생함

강의명 : 컴퓨터 네트워크

2) 분류

LAN(Local Area Network, 근거리 통신망)의 분류

① 토폴로지 (Topology) - 버스형 (Bus Topology)

하나의 긴 케이블이 네트워크상의 모든 장치를 연결하는 중추 네트워크의 역할을 하는 형태

▶ 장점

- 설치하기가 용이함
- 케이블에 소요되는 비용이 최소
- 각 스테이션의 고장이 네트워크내의 다른 부분에 아무런 영향을 주지 않음
- ▶ 단점
 재구성이나 결합 분리의 어려움
 - 탭에서 일어나는 신호의 반사는 신호의 질을 저하시킴
 - 기저대역 전송 방식을 사용할 경우 거리에 민감하여 거리가 멀어지면 중계기가 필요함
 - 버스 케이블에 결함이 발생하면 전체 스테이션은 모든 전송을 함 수 없음
 - 스테이션의 수가 증가하면 처리 능력은 급격히 감소함
 - 네트워크에 부하가 많으면 응답시간이 늦어짐

강의명 : 컴퓨터 네트워크

2) 분류

LAN(Local Area Network, 근거리 통신망)의 분류

- ① 토폴로지 (Topology) 트리형 (Tree Topology)
- > 성형의 변형으로 트리에 연결된 스테이션은 중앙 전송 제어 장치(1차허브)에 연결되어 있지만 모든 장치가 중앙 전송 제어장치에 연결되어 있지 않은 형태
- 특징은 스타형과 비슷하며 아래 그림과 같이 2차 허브를 위치시킴으로써 다음과 같은 장점을 얻음
 - 하나의 1차 허브에 더 많은 스테이션을 연결함
 - 각 스테이션간의 신호의 이동 거리를 증가시킴

강의명 : 컴퓨터 네트워크

2) 분류

LAN(Local Area Network, 근거리 통신망)의 분류

① 토폴로지 (Topology) - 링형 (Ring Topology)

- ▶ 닫힌 루프 형태로 각 스테이션이 단지 자신의 양쪽 스테이션과 전용으로 점 대점으로 연결된 형태
- > 장점
 - 단순하며 설치와 재 구성이 쉬움
 - 장애가 발생한 스테이션을 쉽게 찾음
 - 스테이션의 수가 늘어나도 네트워크의 성능에는 별로 영향을 미치지 않음
 - 성형보다 케이블링에 드는 비용이 적음

> ▶단점

- 링을 제어하기 위한 절차가 복잡하여 기본적인 지연이 존재함
- 단 방향 전송이기 때문에 링에 결함이 발생하면 전체 네트워크를 사용할 수 없기 때문에 이를 해결하기 위해 이중링을 사용함
- 새로 스테이션을 추가하기 위해서는 물리적으로 링을 절단하고 스테이션을 추가 해야함

2) 분류

LAN(Local Area Network, 근거리 통신망)의 분류

② 전송매체 – 광케이블 (Fiber Optic Cable)

- > 데이터 신호의 빛에 의해 전송
- > 전자기파의 간섭에 무관하며, 트위스티드 페어나 동축케이블에서 지원할 수 없는 높은 속도를 제공
- > 철저한 보안이 요구되는 경우에 사용
- ▶ 케이블에 스테이션을 접속하기가 어렵기 때문에 허브, 고속의 링 또는 점 대점 구성에 이용
- > LAN에서 현재 FDDI(Fiber Distributed Data Interface)와 DQDB(Distributed-Queue, Dual-bus), 기가 비트 고속 이더넷 등에서 사용

강의명: 컴퓨터 네트워크

2) 분류

LAN(Local Area Network, 근거리 통신망)의 분류

- ② 전송매체 트위스티드 페어케이블 (Twisted Pair Cable)
- > 두 줄의 도선을 쌍으로 꼬아서 만든 케이블로 어느 정도의 잡음에 대한 내성을 가지고 있는 케이블
- > 비 차폐 트위스티드 페어(Unshielded Twisted Pair, UTP)
 - 기존의 전화 시스템에 사용되는 매체이기 때문에 별도의 설치 비용이 들지 않음
 - 전송 속도에 제한이 있어 비교적 소규모의 LAN 환경에 쓰임
 - CATEGORY 3(~16Mbps), CATEGORY 4(~20Mbps),
 CATEGORY 5(~100Mbps), CATEGORY 6(~200Mbps, ~250Mbps)
- > >차폐 트위스티드 페어(Shielded Twisted Pair, STP)
 - UTP의 간섭과 잡음의 영향을 줄인 것
 - 비용이 비싸고 작업하기 어려움

2. LAN의 분류

강의명 : 컴퓨터 네트워크

2) 분류

LAN(Local Area Network, 근거리 통신망)의 분류

② 전송매체 – 동축케이블 (Coaxial Cable)

- 우수한 주파수 특성을 가지고 있으므로 높은 주파수와 빠른 데이터 전송이 가능
- 기저대역 전송 방식의 동축케이블
 - 디지털 신호를 그대로 전송하는 경우
 - 광대역 방식의 동축케이블에 비해 비용이 저렴함
 - 주파수 분할 다중화 방식을 이용하여 다중 채널을 사용할 수 없음
 주로 버스 토폴로지에서 사용
- > 광대역 전송 방식의 동축케이블
 - 아날로그 신호로 전송하며 해당 대역폭을 할당하여 사용
 - 주파수 분할 다중화를 통해 독립적인 채널을 가짐
 - 여러 개의 빌딩간 또는 대규모의 공장 등에서 많이 사용

강의명 : 컴퓨터 네트워크

2) 분류

LAN(Local Area Network, 근거리 통신망)의 분류

2. LAN의 분류

강의명 : 컴퓨터 네트워크

2) 분류

LAN(Local Area Network, 근거리 통신망)의 분류

③ 전송신호

> 기저대역(Baseband) 전송방식

- 디지털 신호를 그대로 전송하는 방식
- 10Mbps 혹은 이 보다 높은 전송률을 가지는 하나의 전송 채널을 사용
- 보통 이진데이터를 맨체스터 혹은 차등(differential) 맨체스터 부호화 방식을 사용
- 버스 토폴로지에 주로 사용
- 최대 1km로 거리에 제한
- 멀티포인트(Multipoint) 혹은 멀티드롭(Multidrop) 구성상에서 시간 분할 다중화 방식(TDM)을 사용하여 데이터를 전송

> 광대역(Broadband) 전송방식

- 아날로그 신호로 변조하여 전송하는 방식
- 디지털 신호에 비해 먼 거리로의 전송이 가능
- 한번에 한 방향으로만 전송이 가능
- 여러 개의 채널을 사용하기 위해 주파수 분할 다중화 방식 (FDM)을 사용: RF(Radio Frequency) 모템

강의명: 컴퓨터 네트워크

2) 분류

LAN(Local Area Network, 근거리 통신망)의 분류

④ 매체 접근 제어 방식

- > 공유하고 있는 전송매체에 대한 채널의 할당에 대한 문제를 해결하는 방식
- ▶ CSMA/CD (반송파 감지 다중 접속 및 충돌탐지, Carrier Sense multiple Access with Collision Detection)
 - 스테이션이 채널의 상태를 미리 감지해 충돌을 피하는 방식
- ➤ 토큰 링 (Token Ring)
 - 토큰이라는 짧은 프레임을 사용하여 데이터를 보낼 권리를 정하여 데이터를 정하는 방식
- ▶ 토큰 버스 (Token Bus)
 - 토큰 링 방식과 이더넷이 결합된 형태로 물리적으로는 버스 형태를 띄지만 논리적으로는 토큰 링 방식을 사용하는 매체 접근 제어 방식

3. LAN 구성 장비

강의명 : 컴퓨터 네트워크

3) 장비

LAN(Local Area Network, 근거리 통신망)을 구성하기 위한 장비

LAN에서는 매체의 특성에 의한 거리의 제한을 극복하기 위하여 다양한 종류의 장비들 (리피터, 브리지, 라우터 및 게이트웨이 등)이 사용된다.

① 리피터 (Repeater)

- OSI 모델에서 물리계층에서 동작하는 장비
- 동일 LAN에서 그 거리의 연장이나 접속 시스템의 수를 증가시키기 위한 장비
- 전송 신호를 원래의 신호로 재생하여 이를 다시 전송

3) 장비

LAN(Local Area Network, 근거리 통신망)을 구성하기 위한 장비

② 허브 (Hub)

- 차 바퀴의 중심부분과 같이 각 컴퓨터들의 중앙 연결지점을 제공하는 네트워크 장비
- 단순히 하나의 스테이션에서 수신한 신호를 정확히 재생하여 다른 쪽으로 내보내는 장치
- > 더미 허브(Dumb Hub)
 - 단지 네트워크에 있는 컴퓨터들 간의 중계 역할 만을 담당하는 장비
 - 일반적으로 네트워크의 전체 대역폭을 각 스테이션이 분할하여 쓰는 방식
 - 허브에 연결된 스테이션이 어느 정도 이상 증가하게 되면 네트워크의 시각한 속도 저하가 발생
 - 보통 10대 정도의 소규모 네트워크 환경에서 주로 사용

3) 장비

LAN(Local Area Network, 근거리 통신망)을 구성하기 위한 장비

② 허브 (Hub)

➤ 스위칭 허브(Switching Hub)

- 스위칭 기능을 가지고 있는 허브로 스테이션들을 각각 점-대-점으로 접속시키는 장비
- 전 이중 방식으로의 통신
- CSMA/CD 방식의 네트워크에서도 충돌이 발생하지 않기 때문에 더미 허브보다 훨씬 우수한 전송 속도를 보장

> 스태커블 허브(Stackable Hub)

- 네트워크가 계속 확장될 때 허브와 허브 사이를 연결하는 장비
- 스태커블 허브끼리는 케스케이드(Cascade) 케이블이라고 하는 전용 케이블을 사용
- 허브와 허브를 일반 허브로 연결하면 전송 속도의 저하가 일어날 수 있지만 스테커블 허브를 사용하면 그런 현상이 일어나지 않음

3. LAN 구성 장비

강의명: 컴퓨터 네트워크

3) 장비

LAN(Local Area Network, 근거리 통신망)을 구성하기 위한 장비

③ 브리지 (Bridge)

- ▶ 복수의 LAN을 결합하기 위한 장비로 데이터 링크 계층에서 작동하는 네트워킹 장비
- ▶ 전체프레임을 수신할 때까지 전송하지 않지만, 프레임의 내용을 변경하지 않음
- > 브리지의 역학
 - 서로 다른 LAN을 목적에 따라 서로 연결함으로써 LAN를 간의 상호 작용성을 높임
 - 전체 네트워크에 대한 스테이션의 수 혹은 거리를 확장
 - 네트워크에 연결된 많은 수의 스테이션에 의해 야기되는 트래픽 병목현상을 줄임
 - 네트워크를 분산적으로 구성함으로써 보안성을 높임

3) 장비

LAN(Local Area Network, 근거리 통신망)을 구성하기 위한 장비

③ 브리지 (Bridge)

- > 투명 브리지(Transparent Bridge, Spanning Tree Bridge)
 - 비 연결 형으로서 각 프레임을 다른 프레임들로부터 독립적으로 필터링하는 브리지
 - 설치 초기에 자동적으로 구성되며 어떤 네트워크 관리도 필요하지 않음
- > 소스 라우팅 브리지(Source Routing Bridge)
 - 연결 형으로서 발견 프레임(Discovery Frame)으로 필터링 테이블을 만들고 이를 이용하여 필터링
 - 각 스테이션은 브리지 방식을 완전히 알아야 하며 초기 설치 시 수동적으로 관리자가 설치
 - 최적의 필터링

3) 장비

LAN(Local Area Network, 근거리 통신망)을 구성하기 위한 장비

④ 라우터 (Router)

- 인터넷에서 IP 네트워크들 간을 연결하거나 IP 네트워크와 인터넷을 연결하기 위해 사용하는 장비
- > 네트워크 계층에서 동작
- ▶ 라우터의 기능
 - 이 기종 LAN 간 및 LAN을 WAN에 연결하는 기능
 - 효율적인 경로를 선택하는 라우팅 기능
 - 에러 패킷에 대한 폐기 등의 기능 등
- > 라우팅 테이블의 관리 기법에 따른 라우터의 분류
 - 정적 라우팅(Static Routing) 라우터 상에서 관리자가 수동적인 방법으로 라우팅 테이블을 관리
 - 동적 라우팅(Dynamic Routing)
 라우팅 정보의 교환을 통하여 라우팅
 테이블을 자동적으로 관리

강의명 : 컴퓨터 네트워크

4) 구동 방식

CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

CSMA/CD (반송파 감지 다중 접속 및 충돌탐지, Carrier Sense multiple Access with Collision Detection)

개요

- 많은 스테이션의 사용자가 하나의 회선에 동시에 접근하면 신호가 겹쳐서 신호가 손상되거나 신호 자체가 소실될 가능성이 생김
- 충돌을 피하면서 많은 양의 프레임을 전송하기 위해서는 매체 접근 제어 메커니즘이 필요
- CSMA/CD (Carrier Sense Multiple Access/Collision Detection): IEEE 802.3
- ▶ 이더넷 (Ethernet)

강의명 : <mark>컴퓨터 네트워크</mark>

4) 구동 방식

CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

- ② 정의 및 발전과정
- ▶ 정의
- 스테이션이 채널의 상태를 감지해 충돌을 피하는 매체 접근 방식
- ➤ CSMA/CD의 발전과정

4) 구동 방식

CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

③ 802.2/802.3과 이더넷의 프레임 형식

> 802.2/802.3 프레임 필드

- 프리엠블(Preamble)
- 시작 프레임 지시자(Start Frame Delimiter; SFD)
- 목적지 주소(Destination Address; DA)
- 송신지 주소(Source Address; SA)
- PDU 길이/유형
- PDU
- CRC(Cyclic Redundancy Check)

> 이더넷 프레임 필드

- 프리엠블
- 시작 프레임 지시자
- 목적지 주소
- 송신지 주소
- 타입(Type)
- PDU
- CRC

Data Frame

Ethernet Frame(RFC 894)

8byte						4
Preamble	dest addr	src addr	type	data	padding	FCS

IEEE 802.3 Frame(RFC 1042)

Preamble: 10101010 10101010 10101010 10101010 10101010 10101010 10101010 10101010 SOF.Start-Of-Frame: 10101011

Type:0x0800-IP, 0x0806-ARP Request/Reply, 0x0835-RARP Request/Reply FCS,Frame Check Sequence,CRC

강의명 : <mark>컴퓨터 네트워크</mark>

4) 구동 방식 CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

강의명 : <mark>컴퓨터 네트워크</mark>

4) 구동 방식

CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

⑤ 충돌 윈도우 (Collision Window)

- > 각 스테이션이 데이터를 전송하고 나서 충돌을 감지하는데 까지 걸리는 시간
- > 충돌윈도우의 크기에 따라서 LAN 세그먼트의 길이와 함께 최소 프레임 크기가 정해짐
- ▶ IEEE 802.3에서는 최대 LAN 세그먼트의 길이가 2,500m 로 규정
- ⇒ 프레임의 크기는 최소한 51.2us(64바이트)의 전송시간이 되어야 함

⑥ 재전송 알고리즘

- ▶ i번의 충돌이 발생하였다면, 0과 2¹ 1사이의 임의의 수를 선택하여 그만큼의 슬롯 타임 동안 대기
- 프레임 전송 중 충돌이 발생하면 슬롯 타임(slot time)의 임의의 정수 배만큼 대기한 후 재정송

슬롯타임 = 2 * 전송지연시간 + 여유마진

4. LAN 구동 방식

강의명 : 컴퓨터 네트워크

4) 구동 방식

CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

⑦ 채널 획득 방법

> Non-persistent 방식

- 프레임 전송 전 채널 검사
 - 채널 idle 상태
 - 프레임 전송
 - 채널 busy 상태
 - 채널의 상태를 계속적으로 검사하지 않고 임의의 시간이 지난 후 채널의 상태를 검사, 프레임을 전송한다.

이 1-Persistent: 채널이 idle 상태이면 곧바로 전송

XIIId Busy

미리 정의된 지연 시간

Non-Persistent: 일정 시간 후 채널이

> 1-persistent 방식

- 프레임 전송 전 채널 검사
- 채널 idle 상태
- 프레임 전송
 채널 busy 상태
 - 채널이 idle 상태가 될 때까지 대기한 후 idle 상태가 되면 프레임을 저송하다
 - 프레임 전송 중 충돌이 발생하면 임의의 시간 동안 대기한 후 다시 채널을 검사한다.
 - 세글을 검사한다. 이 방식은 채널이 idle 상태일 때마다 1의 확률을 가지고 프레임을 전송하므로 1-persistant 방식이라 한다.

4) 구동 방식

CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

⑦ 채널 획득 방법

> P-persistent 방식

- 이 방식은 채널이 슬롯으로 나뉜 슬롯 채널에서 주로 사용된다.
- 프레임 전송 전 채널 검사
- 채널 idle 상태
 - P의 확률을 가지고 프레임 전송
 - 확률 q=1-p를 가지고 다음 슬롯까지 기다린다.
 - 그 후 채널의 상태에 따라 다시 p확률로 전송하거나 q확률로 기다린다. 이러한 과정은 프레임이 전송되거나 다른 스테이션이 전송을 시작할 때까지 반복된다.
 - 다른 스테이션이 전송 중일 때에는 마치 충돌이 있었던 것처럼 임의의 시간 동안 대기한 후 다시 전송한다.

강의명 : 컴퓨터 네트워크

4) 구동 방식

CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

⑧ 네트워크 구성

➤ 트랜시버(Transceiver)

- 트랜스미터(Transmitter)와 리시버(Receiver)의 합성어로 물리적인 확장 장비로 네트워크 어댑터와 같은 역할을 하는 이더넷 장비
- > MAU(Medium Attachment Unit)
- > 트랜시버와 MAU의 역할
 - 시스템 내의 디지털 정보를 연결되어 있는 물리매체에 맞는 전기적인 형태로 바꾸는 것
 - 신호를 송신 및 수신하는 기능, 충돌감지 기능 등
 - 네트워크의 확장을 위해서 리피터, 브리지, 라우터 등의 장비를 이용

강의명 : 컴퓨터 네트워크

4) 구동 방식

CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

- ⑨ IEEE 802.3과 이더넷의 차이점
- 두 프레임 형식의 가장 큰 차이점은 프레임, 네트워크, 네트워크 프로토콜 등을 구분하는 이더넷의 타입 필드이다.
- ▶ 또한, 전송 케이블 배선이 서로 틀리다.

Туре	Assignment
0800	Department of Defense Internet Protocol(IP)
0806	Address Resolution Protocol(ARP)
0807	Xerox XNS network protocol
0BAD	Banyan Systems network protocol
6000-6009	Digital Equipment Corporation protocols
6010-6014	3Com network protocols
8137-8138	Novell network protocols

[이더넷의 타입 필드]

4. LAN 구동 방식

강의명 : <mark>컴퓨터 네트워크</mark>

4) 구동 방식

CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

⑨ IEEE 802.3과 이더넷의 차이점

Pin	IEEE 802.3	이더넷	
1	Control In Ground	Ground	
2	Control In A	Collision Presence +	
3	Data Out A	Transmit +	Et
4	Data In Ground		
5	Data In A	Receive +	
6	Voltage Common		16
7	Control Out A		
8	Control Out Ground		
9	Control In B	Collision Presence -	Ξ,
10	Data Out B	Transmit -	
11	Data Out Ground		
12	Data In B	Receive -	
13	Power		
14	Power Ground		
15	Control Out B		

3 tyte		6 Byte	6 Byte	2 Byts		46 - 15	00 byte		4.0	
Preamble		Destination Address	Source Address	Туре	Type Data					
11111			TTTTTTTTTTT						\rightarrow	
3 Frame Head	er .				1 1102		Vectors			
	18	Destination	Source							
Preemble	8	Address	Address	Length	a a CHI	Date		P		
	-			-	11		111111			
		800.5			8002				-	
3 Frome Head										
3 Frame Read	er wa	IN SNAP		2	1 1107		2	Various		
Presmble	100	Destination Address	Source Address	Length	D II CH.	ou	Туре	Date	,	

Busines

강의명 : 컴퓨터 네<u>트워크</u>

4) 구동 방식

CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

⑩ 물리적인 규격

▶ <데이터 전송속도(Mbps단위)> <신호> <사용할 수 있는 최대 거리(100m단위)>

	10BASE5	10BASE2	10BASE-T	10BROD36	10BASE-FP
전송매체	동축케이블 (50 ohm)	동축케이블 (50 ohm)	비 차폐 트위스티드 페어	동축케이블 (50 ohm)	광케이블
신호방식	기저대역 (맨체스터)	기저대역 (맨체스터)	기저대역 (맨체스터)	광대역 (DPSK)	맨체스터 (ON/OFF)
토폴로지	버스	버스	성형	버스/트리	성형
세그먼트 최대길이(m)	500	185	100	3600	500
세그먼트 당 노드의 수	100	30	-	-	33

Busines

강의명 : 컴퓨터 네트워크

4) 구동 방식

CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

※[미니강의] IEEE 802.3 표준화 현황

표준화 명	표준화 년도	내 용	
802.3a	1985	10Base-2 (Thin Ethernet)	
802.3c	1986	10Mb/s Repeater Specifications	
802.3d	1987	FOIRL (Fiber Link)	
802.3i	1990	10Base-T (Twisted Pair Cable)	
802.3j	1993	10Base-F (Fiber optic Cable)	
802.3u	1995	100Base-T (Fast Ethernet and Auto-Negotiation)	
802.3x	1997	Full Duplex	
802.3z	1998	1000Base-X (Gigabit Ethernet)	
802.3ab	1999	1000Base-T (Gigabit Ethernet over Twisted Pair)	
802.3ac	1998	VLAN Tag (Frame Size Extension to 1522Bytes)	
802.3ad	2000	Parallel Links (Link Aggregation)	
802.3ae	2002	10Gigabit Ethernet	
802.3as	2005	Frame Expansion	
802.3at	2005	Power over Ethernet Plus	

4. LAN 구동 방식

강의명 : 컴퓨터 네트워크

4) 구동 방식

토큰 링 (Token Ring)

① 개요 및 정의

▶ 개요

- 각 스테이션이 교대로 데이터를 보내게 함으로써 공유 매체의 충돌 방지
- IEEE 802.5

> 정의

- 링 형태로 네트워크를 구성하고, 토큰 패싱 방식을 사용하여 매체를 접근하는 방식
- 토큰(Token)이라는 짧은 길이의 프레임을 사용하여 데이터를 보낼 수 있는 자격을 한정하며 스테이션은 자신의 차례가 되어서야 데이터를 전송

4) 구동 방식 토큰 링 (Token Ring)

- ② IEEE 802.5와 IBM의 프레임 형식
- > 데이터 프레임
- > 토큰 프레임
- ▶ 중지 프레임

1 byte 1 byte 6 bytes 6 bytes ~ 4500 bytes 4 bytes 1 byte 1 byte 1 byte

SD AC FC DA SA DSAP SSAP Control Info CRC ED FS

a. 일반적인 데이터 프레잌 형식

1 byte 1 byte 1 byte 1 byte 1 byte

AC SD ED SD ED

b. 토큰 프레임 형식 c. 중지 프레임 형식

강의명 : 컴퓨터 네<u>트워크</u>

Data(A->F)

4) 구동 방식

토큰 링 (Token Ring)

free token

③ 토큰 패싱 (Token Passing)

> 네트워크에서의 토큰 순환을 조절하는 메커니즘

E C F

D D LE로 관승합 데이터를 가지고 있는 8가 free token 순종 등 free token 순종 등 Free token를 잡고, 데이터를 돈로 관승합

Data(A->E) free token

4. LAN 구동 방식

강의명 : 컴퓨터 네트워크

4) 구동 방식

토큰 링 (Token Ring)

④ 특징

▶ 특징

- 이더넷과 마찬가지로 NIC의 6바이트 주소를 이용해 주소를 지정
- 차등 맨체스터 디지털 부호화 방식을 사용
- 4Mbps에서 최고 16Mbps까지의 데이터 전송률을 지원

> 우선순위와 예약

- 사용자가 정의하거나 높은 우선순위를 갖는 스테이션이 더욱 많이 네트워크를 사용할 수 있게 하기 위해 우선순위를 부여함
- 동작원리
 - ① 높은 우선 순위를 가진 스테이션은 낮은 우선순위 예약을 삭제하고, 자신의 우선 순위로 대체
 - ② 동일한 우선 순위를 갖는 스테이션들 간에는 먼저 예약한 스테이션이 토큰을 확보
 - ③ 예약을 한 스테이션은 'free' 토큰이 생기면 전송

4) 구동 방식

토큰 링 (Token Ring)

⑤ 링 관리

	-11		
프레임 종류	기능		
Duplicate address test(DAT)	토큰링 네트워크를 초기화하는 과정에서 자신의 주소를 네트워 크의 다른 스테이션들이 사용하고 있지 않은지를 판단할 때 사용한다.		
Standby monitor present(SMP)	DAT와 같이 토큰링 네트워크를 초기화하는 과정에 사용되는 것 으로 토큰링 네트워크 내에서 논리적인 자신의 이전 스테이션 (Success)를 찾는다.		
Active monitor present(AMP)	이러한 종류의 프레임은 현재 액티브 모니터에 의해 정해진 시간 에 전송되는 것으로 각 스테이션은 이러한 메시지를 계속적으로 감시함으로써 정상 동작 여부를 판단하게 된다.		
Claim token(CT)	토큰이나 AMP 프레임이 주기적으로 감지되지 않을 때 토큰을 요 구할 때 사용되는 토큰으로 새로운 액티브 모니터를 결정할 때 사용된다.		
Purge(PRG)	새로운 액티브 모니터가 모든 스테이션을 초기화할 때 사용된다.		
Beacon(BCN)	링에서 케이블이 절단되는 등의 심각한 장애가 발생했을 때 사용된다.		

4) 구동 방식

토큰 링 (Token Ring)

⑥ IEEE 802.5 물리 매체 규격

전송 속도(Mbps)	4 Mbps	16 Mbps	100 Mbps
전송 매체	UTP, STP, Fiber	UTP, STP, Fiber	UTP, STP, Fiber
전송 신호 방식	Differential Manchester	Differential Manchester	MLT-3 Or 4B5B/NRZI
프레임의 최대 크기(Byte)	4550	18,200	18,200
MAC	TP 혹은 DTR	TP 혹은 DTR	DTR

[TP: 토큰 패싱, DTR: Dedicated 토큰 링]

⑦ IBM의 토큰 링과 IEEE 802.5의 차이점

> 연결할 수 있는 스테이션의 수

▶ IBM은 브리지를 이용한 소스 라우팅 기능이 있는 반면, IEEE 802.5는 가지고 있지 않다.

4) 구동 방식

토큰 버스 (Token Bus)

① 개요 및 정의

> 이더넷과 토큰 링의 특징을 결합한 형태

- 물리적으로는 버스 접속형태이지만 논리적으로는 토큰 패싱 방식을 사용하여 매체를 제어하는 방식
- ▶ 스테이션들은 논리적인 링 형태로 구성
- ▶ 실시간(real-time) 처리가 요구되는 공장 자동화와 같은 응용에 적용

② 특징

- > 주로 동축케이블을 전송매체로 사용
- ▶ 기저대역 모드나 캐리어 대역 모드(Carrier Band Mode)에서 동작

4. LAN 구동 방식

강의명 : 컴퓨터 네트워크

4) 구동 방식 토큰 버스 (Token Bus)

② 특징

▶ 캐리어 대역 모드

이진수 1 의미없는 데이터

1 bit time

이진수 0

경상적인 데이터

1 bit time

1 bit time

③ 프레임 형식

1-bytes 1 byte 1 byte 6 bytes 6 bytes -8191 bytes 4 bytes 1 byte

Preamble SD FC DA SA DSAP SSAP Control Info CRC ED

성균관대학교

4) 구동 방식

토큰 버스 (Token Bus)

④ 동작과정

- ① 이전 스테이션으로부터 토큰을 수신한 스테이션은 정의된 제한 시간 동안 대기한 후 프레임 전송한다.
- ② 프레임 전송이 끝난 스테이션은 다음 스테이션으로 토큰을 넘긴다.
- ③ 각 스테이션은 토큰을 전달한 다음 이전 스테이션의 주소를 알고 있어야 한다.
- ④ 토큰 전달에 실패하면 다음 스테이션을 찾는 회복 과정을 수행한다.
- ⑤ 다음 스테이션을 찾지 못할 경우 네트워크 초기화 과정을 수행하거나 또는 네트워크 관리 행위를 수행한다.

A B C
P-E P-C P-A
S-C S-D S-B

P = Predecessor S = Successor

S - A S - 1
E D

컴퓨터 네트워크

점진목 · 안성진 · 김현철 · 조감홍 · 유수현 공지

