F.E. (Semester – II) (RC 2007-08) Examination, May/June 2018 APPLIED MATHEMATICS – II

Du	ratio	on: 3 Hours Total Marks: 10	00
	Ins	structions: 1) Attempt any five questions, at least one from each Module. 2) Assume suitable data, if necessary.	
		MODULE – I	
1.	a)	Assuming the validity of differentiation under integral sign rule evaluate the following integrals : $\int_0^1 \frac{x^\alpha-1}{\log x} dx .$	7
		Find the length of astroid $x = a \cos^3 t$, $y = a \sin^3 t$. Find the area of lemniscate $r^2 = a^2 \cos 2\theta$.	6 7
2.	a)	Show that $\overline{r}(t) = A(e^{2t})i + B e^{-3t}j$ satisfies $\frac{d^2r}{dt^2} + \frac{dr}{dt} - 6r = 0$.	6
		For the following curve $\overline{r} = \cos t i + \sin t j + t k$, find curvature and torsion. The acceleration of a particle at any time is given by $a = e^{-t} i - 6(t+1)j + 3 \sin t k$. Find velocity V and displacement r at any time 't' given that $V = 0$ when $t = 0$ and $r = 0$ when $t = 0$.	6
		MODULE - II	
3.	a)	Evaluate the integral $\int_0^1 \int_0^x xx^2 + y^2 dxdy$	6
	b)	Change the order of integration and evaluate $\int_3^5 \int_0^{\frac{4}{x}} (xy) dy dx$	6
	c)	Using double integration find the area bounded by the parabolas $x = y^2$, $x = 2y - y^2$.	8
4.	a)	Evaluate $\int_0^1 \int_{y^2}^1 \int_0^{1-x} x dz dx dy$	6
			6
	c)	Evaluate $\int_0^{\frac{\pi}{2}} \int_0^{a\cos\theta} \int_0^{\sqrt{a^2-r^2}} r dz dr d\theta$.	8.0.

MODULE - III

5. a) Find the maximum directional derivative of xy (x - y + 2z) at (1, 1, 0). 7 b) If $\overline{F} = (4x + 3y + az)i + (bx - y + z)j + (2x + cy + z)k$ is irrotational, find constants a, b, c. 6 c) Find the work done in moving a particle from A(1, 0, 1) to B(2, 1, 2) along a straight line AB in the force field $\overline{F} = x^2i + (x - y)i + (y + z)k$. 7 6. a) Verify Greens theorem in plane for $\oint \left| \left(\frac{1}{v} \right) dx + \left(\frac{1}{x} \right) dy \right|$ where C is the region bounded by x = 1, x = 4, $y = \sqrt{x}$. b) Verify Stoke's theorem for $\overline{F} = (x^2 - y^2)i + 2xyj$ in the xy plane and region bounded by y = 0, x = 2, y = x. 12 MODULE - IV Solve the following differential equations. a) $\frac{dy}{dx} = 1 + x^2 + y^2 + x^2y^2$. 5 b) $x \sin\left(\frac{y}{x}\right) dy = \left[y \sin\left(\frac{y}{x}\right) - x\right] dx$. 5 c) $\frac{dy}{dx} = \frac{2y - x - 4}{y - 3x + 3}$ 5 d) $\frac{dy}{dx} + \tan x = \cos y \cos^3 x$ 5 8. Solve the following differential equations. a) $\frac{d^2y}{dx^2} + 9y = x \cos 2x$ 5 b) $\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} - 6\frac{dy}{dx} = x^2$. 5

c) $(D^2 - 3D + 2)y = e^{4x} + \sin 3x + x^2$.

d) $x^2 \frac{d^2y}{dy^2} + 4x \frac{dy}{dy} + 2y = e^x$

5

5