

Indian Institute of Technology, Mandi

School of Computing and Electrical Engineering (SCEE)

Course: Deep Learning (CS-671)

AITECH Hackathon 2025

Powered by HCLTech

Group - 4

A Report Submitted for

Truth or Trap – Fake Speech Detection Using Deep Learning (PS-8)

May 4, 2025

Group Members

Siddharth Rajesh Tiwari - S24035

Pradyumn Singh Sikharwar - S24047

Himanshi - S24038

Shiv Bhaskar - S24024

Samiran Datta - S24037

Shweta Sharma - S24044

Contents

1	Metho	odology	1
	1.1	Overview of SSL Anti-Spoofing Architecture	1
	1.2	Advantages Over Conventional CNNs	1
	1.3	Why We Chose This Model	1
2	Evalua	ation Metrics and Results	3
	2.1	Confusion Matrix	3
	2.2	Classification Report	4
	2.3	Training and Validation Loss	4
	2.4	t-SNE Embedding Visualization	5
	2.5	Root Cause Analysis	5
3	Concli	usion and Observations	6

1 Methodology

1.1 Overview of SSL Anti-Spoofing Architecture

To address the challenge of fake speech detection, we implemented an advanced anti-spoofing model that combines:

- A pre-trained wav2vec 2.0 XLSR model for feature extraction
- A hybrid graph-based deep learning architecture for classification

1.2 Advantages Over Conventional CNNs

- 1. **Self-Supervised Learning Features:** The wav2vec 2.0 XLSR model leverages large-scale unlabeled speech corpora to extract rich contextual audio representations.
- 2. **Dual-path Spectral and Temporal Processing:** Separate modeling paths for spectral and temporal domains allow detection of unique inconsistencies in fake speech.
- 3. **Graph Attention Networks (GAT):** GAT layers learn complex intra-frame relationships in the speech signal.
- 4. **Heterogeneous Graph Attention (HtrGAT):** Enables information exchange between spectral and temporal frames, improving robustness.
- 5. **Generalization and Performance:** The architecture achieves state-of-the-art results on ASVspoof 2021 LA and DF benchmarks.

1.3 Why We Chose This Model

Compared to traditional CNNs, our approach provides:

- Better generalization using wav2vec features
- Resilience to spoofing attacks across modalities
- Stronger temporal-spectral fusion via graph attention

Fake Speech Detection

Figure 1: Pictorial Pipeline of Proposed Fake Speech Detection Method

2 Evaluation Metrics and Results

2.1 Confusion Matrix

Figure 2: Confusion Matrix – all samples predicted as "Fake"

Inference:

- All 2048 fake samples were correctly identified.
- All 2264 real samples were misclassified as fake.

2.2 Classification Report

Figure 3: Precision, Recall, and F1-Score

Inference:

■ **Fake Class**: Precision = 0.47, Recall = 1.00, F1 = 0.64

• Real Class: All metrics are zero

2.3 Training and Validation Loss

Class	Precision	Recall	F1-Score	Support
Fake	0.47	1.00	0.64	2048
Real	0.00	0.00	0.00	2264
Accuracy			0.47	4312
Macro Avg	0.24	0.50	0.32	4312
Weighted Avg	0.23	0.47	0.31	4312

Figure 4: Training and Validation Loss per Epoch

Inference:

- Losses converge rapidly
- Model collapses to single class output

2.4 t-SNE Embedding Visualization

Figure 5: t-SNE Visualization of Real vs Fake Embeddings

Inference:

- Moderate separation in feature space
- Embedding quality not fully exploited by classifier

2.5 Root Cause Analysis

- Class imbalance
- Lack of regularization
- No use of weighted loss functions

3 Conclusion and Observations

- Training Success, Inference Failure: Despite low loss, generalization is poor.
- Bias Observed: The model predicts everything as Fake.
- Suggestions for Improvement:
 - Apply Focal Loss or Class-Balanced Cross-Entropy
 - Add data augmentation
 - Improve sampling strategies
- **Gradio Interface**: A live web-based testing interface has been deployed using Gradio.