Pergunta 1

Considere a função $z(x,t) = x + at + e^{x-at}$, com $a \in \mathbb{R}$ constante. Então, para qualquer $(x,t) \in \mathbb{R}^2$,

$$\bigcirc \text{ I. } \frac{\partial^2 z}{\partial t \partial x} \neq \frac{\partial^2 z}{\partial x \partial t}$$

$$\frac{\partial^2 z}{\partial t^2} = \frac{\partial^2 z}{\partial x^2} + a^2.$$

$$\bigcirc \text{ III. } \frac{\partial z}{\partial t} = a^2 \frac{\partial z}{\partial x}.$$

$$\frac{\text{O IV.}}{\partial t^2} = a^2 \frac{\partial^2 z}{\partial x^2}$$

Pergunta 2

Seja $z = g(x,y) \operatorname{com} x = s + t \operatorname{e} y = s - t$. Usando a regra de derivação da função composta, podemos mostrar que

$$\bigcirc I. \quad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial s}.$$

$$\frac{\partial II.}{\partial s} \cdot \frac{\partial z}{\partial t} = \left(\frac{\partial z}{\partial x}\right)^2.$$

$$\bigcirc III. \frac{\partial z}{\partial s} + \frac{\partial z}{\partial t} = 0$$

$$\bigcirc \text{ IV. } \frac{\partial z}{\partial s} + \frac{\partial z}{\partial t} = 2 \frac{\partial z}{\partial x}$$

Pergunta 3

A equação $e^{XY} + y = x$ define implicitamente y como função de x no ponto

O I.
$$P = (0,0)$$
 e temos $\frac{dy}{dx}(0) = 0$.

O II.
$$P = (1,0) \text{ e temos } \frac{dy}{dx}(1) = 0.$$

O III.
$$P = (0, -1)$$
 e temos $\frac{dy}{dx}(0) = \frac{1}{2}$

O IV.
$$P = (0, -1)$$
 e temos $\frac{dy}{dx}(0) = 2$.

Pergunta 4

Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = x^2y^3 + x^2y + y$. Para qualquer ponto $(x,y) \in \mathbb{R}^2$, \bigcirc I. a função f é crescente na direção do vetor \overrightarrow{V} =(2,0). \bigcirc II. a função f é decrescente na direção do vetor \vec{V} =(0,2). ○ III, a taxa de variação de f na direção do eixo dos VV é positiva. \bigcirc IV, a taxa de variação de f na direção do eixo dos XX é negativa. Pergunta 5 Suponha que o potencial elétrico Vno ponto (x,y,z) de uma certa região do espaço é dado por $V(x,y,z)=2y^2-4zy+xyz^3$. A derivada direcional de V no ponto P=(1,1,0) é \bigcirc I. máxima na direção do vetor $\vec{v}=(0,4,-4)$ e igual a $||\vec{v}||$. \bigcirc II. mínima na direção do vetor $\vec{v} = (0,4,-4)$ e igual a $-||\vec{v}||$ \bigcirc III. nula na direção do vetor $\vec{V} = (0,4,-4)$. \bigcirc IV. máxima na direção do vetor $\vec{v} = (0, 1, -1)$ e igual a $||\vec{v}||$. Pergunta 6 Seja a curva de equação, curva de nível da função. O ponto O I, pertence à curva de nível e o vetor é ortogonal a no ponto . O II, pertence à curva de nível mas não existe reta tangente a esta curva no ponto . O III, pertence à curva de nível e o vetor é tangente a no ponto . O IV, não pertence à curva de nível . Pergunta 7 Seja definida por . () I, é um ponto minimizante de e é um ponto maximizante de .

 \bigcirc II. (-3, -2) é um ponto de sela de $f_e(3, -2)$ é um ponto minimizante de .

 \bigcirc III. (-3,-2) e (3,-2) são pontos críticos de f mas não são pontos extremantes.

 \bigcirc IV. $_{\rm e}$ (3,-2) são pontos críticos de f e são ambos pontos de mínimo local.

Considere o problema de determinação dos valores extremos de uma funcão $f:\mathbb{R}^2 \to \mathbb{R}$ sujeita à condição g(x,y)=k, com k constante, e tal que $\nabla g \neq \mathbf{0}$. Supondo que existem, estes extremos condicionados ocorrem nos pontos onde os vetores $\nabla f\in \nabla g$ são

[○] III, paralelos e têm sentidos opostos

[∩] IV. paralelos

Pergunta 9

Seja C a curva em \mathbb{R}^2 constituída pela arco da parábola $y=x^2+1$, z=0, de x=0 para x=3, e pelo segmento de reta que une o ponto (3,10,0) ao ponto (3,10,2) no sentido ascendente. A função r, $[0,5] o \mathbb{R}^3$ definida a seguir é uma parametrização da curva C.

- $\mathbf{r}(t) = \begin{cases} (t^2, t^4 + 1, 0), & 0 \le t < 3 \\ (3, 10, t 3), & 3 \le t \le 5 \end{cases}$
- $r(t) = \begin{cases} (t, t^2 + 1, 0), & 0 \le t < 3 \\ (3, 10, 3 t), & 3 \le t \le 5 \end{cases}$
- $\mathbf{r}(t) = \begin{cases} (t^2, t^4 + 1, 0), & 0 \le t < \sqrt{3} \\ (3, 10, t^2 3), & \sqrt{3} \le t \le 5 \end{cases}$
- $r(t) = \begin{cases} (t, t^2 + 1, 0), & 0 \le t < 3 \\ (3, 10, t 3), & 3 \le t \le 5 \end{cases}$

Pergunta 10

Considere a curva parametrizada pela função $r(t) = (2\cos t, 3\sin t), t \in [0, 2\pi]$. Os vetores velocidade e aceleração

- \bigcirc I. são ortogonais nos pontos (2,0), (0,3), (-2,0) e (0, -3).
- \bigcirc II. são ortogonais apenas nos pontos (0,3) e (0,-3).
- O III, são ortogonais em todos os pontos da curva.
- O IV. não são ortogonais, qualquer que seja o ponto da curva.

Pergunta 11

Uma partícula em movimento encontra-se no instante t=2 na posição $\mathbf{r}(2)=(14,5,2)$ e a sua velocidade é dada por $\mathbf{v}(t)=(6t,2t,t)$, em cada instante $t\geq 0$.

- a. Determine a posição $\emph{\textbf{r}}(t)$ em cada instante t e a posição inicial da partícula.
- b. Calcule o comprimento da curva percorrida entre os instantes $t=0\,\mathrm{e}\,t=2\,$
- c. Calcule a curvatura em cada instante t.
- d. Determine as equações da reta tangente e do plano normal à curva no instante t=1.

Nota: Caso não tenha respondido à alínea (a), resolva as restantes alíneas para $\mathbf{r}(t) = (2t^2, t^2, -t^2)$.