#### Reconhecimento de Padrões

Artigo: Large Margin Gaussian Mixture Classifier With a Gabriel Graph Geometric

Representation of Data Set Structure

Luiz C. B. Torres, Cristiano L. Castro, Frederico Coelho, and Antônio P. Braga, Member, IEEE

Aluno: Leonam Rezende Soares de Miranda

Professor: Antônio de Pádua Braga

### Support Vector Machine (SVM)

Algoritmo de aprendizado supervisionado, cujo objetivo é classificar determinado conjunto de pontos de dados que são mapeados para um espaço de características multidimensional usando uma função kernel



### Introdução

- O hiperplano de margem máxima também pode ser obtido a partir da geometria do conjunto de dados;
- Algoritmo proposto não requer parâmetros do usuário e não é baseado num algoritmo de otimização.



Fonte: TORRES, L. C. B. et al

#### Grafo de Gabriel

#### A. Gabriel Graph Formulation

Considering the data set  $S = \{x_i, y_i\}_{i=1}^N$  with  $x_i \in \mathbb{R}^n$  and  $y_i \in \{C_1, C_2\}$ , the Gabriel graph  $\ddot{G}$  of S is defined as the graph with a set of vertices  $V = \{x_i\}_{i=1}^N$  and edges E that obeys the following definition. An edge connecting the vertices  $x_i$  and  $x_j$  from V belongs to E only, and only if

$$\|\mathbf{x}_i - \mathbf{x}_j\|^2 \le (\|\mathbf{x}_i - \mathbf{x}_k\|^2 + \|\mathbf{x}_j - \mathbf{x}_k\|^2)$$
 (1)

 $\forall \mathbf{x}_k \in V$  and  $i \neq j \neq k$ , where  $\|\cdot\|$  is the Euclidean distance between vertices. Fig. 2(a) shows an example of graph resulting from the previous definition.



# Support Edges (SEs)

São as arestas localizadas na região de separação



### Class Overlapping

$$q(\mathbf{x}_i) = \frac{|\hat{\mathcal{D}}(\mathbf{x}_i)|}{|\mathcal{D}(\mathbf{x}_i)|}$$
(2)

- 1) For all  $\mathbf{x}_i \in \ddot{G}$ , compute  $q(\mathbf{x}_i)$  according to (2).
- 2) Group  $q(\mathbf{x}_i)$  per class such that  $\mathcal{Q}^+$  and  $\mathcal{Q}^-$  holds the membership measures for the patterns with labels +1 and -1, respectively. In other words,  $\mathcal{Q}^+$  is the set of all  $q(\mathbf{x}_i)$  belonging to class +1 and  $\mathcal{Q}^-$  for class -1.
- 3) Compute the class thresholds  $t^+$  and  $t^-$  as the mean of the membership measures belonging to  $Q^+$  and  $Q^-$

$$t^{+} = \frac{\sum_{q(\mathbf{x}_{i}) \in \mathcal{Q}^{+}} q(\mathbf{x}_{i})}{|\mathcal{Q}^{+}|}, \quad t^{-} = \frac{\sum_{q(\mathbf{x}_{i}) \in \mathcal{Q}^{-}} q(\mathbf{x}_{i})}{|\mathcal{Q}^{-}|}.$$
 (3)

4) Remove from  $\ddot{G}$  all vertices whose  $q(\mathbf{x}_i)$  are less than  $t^+$  and  $t^-$ .



Fig. 3. Data set with overlapping.

Fonte: TORRES, L. C. B. et al.

# Class Overlapping



#### Mistura de Gaussianas

- Cada vértice das arestas de suporte (SE) se torna o centro de uma gaussiana.
- Desvio padrão de  $3\sigma$  representa 99,73% das amostras.

$$R = 3\sigma, \quad \sigma = \frac{R}{3}$$
 (8)

$$R = \frac{1}{2} \|\mathbf{c} - \mathbf{m}\| = \frac{1}{2} \|\mathbf{d} - \mathbf{m}\| \tag{9}$$

$$\mathbf{m} = \frac{1}{2}(\mathbf{c} + \mathbf{d}), \quad (\mathbf{c}, \mathbf{d}) \in \mathcal{SE}$$
 (10)



Fig. 5. Two multivariate normal distributions and a midpoint separator in the lower density region.

Fonte: TORRES, L. C. B. et al.

#### Mistura de Gaussianas

$$P(\mathbf{x}|S_1,\cdots,S_p) = \sum_{k=1}^p \pi_k \frac{1}{\sqrt{(2\pi)^n |\mathbf{\Sigma}_k|}} \exp\left(-\frac{1}{2}(\mathbf{x}_k - \boldsymbol{\mu}_k)^{\mathrm{T}} \mathbf{\Sigma}_k^{-1} (\mathbf{x}_k - \boldsymbol{\mu}_k)\right)$$

$$f(\mathbf{x}_i) = \begin{cases} +1, & \text{if } \tilde{p}(\mathbf{x}_i, \theta_1 | C_1) P(C_1) \ge \tilde{p}(\mathbf{x}_i, \theta_2 | C_2) P(C_2) \\ -1, & \text{if } \tilde{p}(\mathbf{x}_i, \theta_1 | C_1) P(C_1) < \tilde{p}(\mathbf{x}_i, \theta_2 | C_2) P(C_2) \end{cases}$$

where  $\tilde{p}(\mathbf{x}_i, \theta_1|C_1)$  and  $\tilde{p}(\mathbf{x}_i, \theta_1|C_2)$  are the likelihoods of the positive and negative classes, respectively, estimated with SV only,  $\theta_1$  and  $\theta_2$  their vectors of parameters.

Fonte: TORRES, L. C. B. et al.

## Resultados



# Duas Espirais



$$N_1 = N_2 = 200$$

# Duas Espirais



# Duas Espirais – Removendo Sobreposição





### Resultados

TABLE I

AVERAGE VALUES OF AUC, TRAINING TIME, AND CHARACTERISTICS OF THE DATA SETS

|                                  | New Method        |        |          | SVM-RBF           |        |        | SVM-Poly          |        |         | SVM-Linear        |         |          | $N_d$ | N     | $N^+$ | $N^{-}$ |
|----------------------------------|-------------------|--------|----------|-------------------|--------|--------|-------------------|--------|---------|-------------------|---------|----------|-------|-------|-------|---------|
| Data Set                         | AUC               | Ngv    | T(s)     | AUC               | Nsv    | T(s)   | AUC               | Nsv    | T(s)    | AUC               | Nsv     | T(s)     |       |       |       |         |
| Appendicitis                     | $0.792 \pm 0.165$ | 8      | 0.002    | $0.712\pm0.226$   | 50.7   | 56.04  | $0.766\pm0.193$   | 32.5   | 168.5   | $0.652\pm0.203$   | 31.2    | 45.66    | 7     | 106   | 21    | 85      |
| Stalog Australian Credit         | $0.836\pm0.040$   | 251.9  | 0.118    | $0.864\pm0.040$   | 312    | 105.2  | $0.872\pm0.048$   | 298.2  | 571.66  | $0.857 \pm 0.038$ | 198.4   | 63.95    | 14    | 690   | 307   | 383     |
| Banknote Authentication          | $0.997 \pm 0.005$ | 177.8  | 0.177    | $1.000\pm0.000$   | 193.3  | 111.8  | $0.999 \pm 0.003$ | 195.9  | 986.0   | $0.991\pm0.011$   | 69.1    | 58.29    | 4     | 1372  | 610   | 762     |
| The Wisconsin Breast Cancer      | $0.959\pm0.019$   | 51.7   | 0.047    | $0.968 \pm 0.020$ | 262.3  | 96.99  | $0.967\pm0.021$   | 83.7   | 361.7   | $0.960\pm0.028$   | 46.2    | 51.40    | 9     | 683   | 444   | 239     |
| Breast Cancer Hess Probes        | $0.814 \pm 0.115$ | 45.7   | 0.047    | $0.736\pm0.176$   | 75.2   | 62.02  | $0.670\pm0.165$   | 60.8   | 211.08  | $0.555\pm0.110$   | 47.4    | 47.56    | 30    | 133   | 99    | 34      |
| Climate Model Simulation Craches | $0.704\pm0.173$   | 235.2  | 0.195    | $0.510\pm0.032$   | 112.3  | 113.0  | $0.759 \pm 0.172$ | 85.9   | 364.78  | $0.751\pm0.100$   | 56.3    | 53.27    | 18    | 540   | 494   | 46      |
| Pima Indian Diabetes             | $0.727 \pm 0.056$ | 213.5  | 0.067    | $0.717\pm0.065$   | 424.3  | 116.6  | $0.706\pm0.052$   | 393.2  | 606.25  | $0.717\pm0.050$   | 361.5   | 59.72    | 8     | 768   | 500   | 268     |
| EEG Eye State                    | $0.802 \pm 0.014$ | 4805.5 | 44.26    | $0.797\pm0.036$   | 6629.2 | 401.9  | $0.643\pm0.062$   | 8732.2 | 2494.02 | $0.581\pm0.015$   | 11637.5 | 307.05   | 14    | 14980 | 6723  | 8257    |
| Fertility                        | $0.643 \pm 0.282$ | 34.9   | 0.004    | $0.500\pm0$       | 39.1   | 56.39  | $0.500\pm0$       | 34.2   | 1.94    | $0.5\pm0$         | 35.3    | 46.06    | 9     | 100   | 12    | 88      |
| Stalog German Credit             | $0.676\pm0.049$   | 459.4  | 0.966    | $0.649\pm0.046$   | 564.2  | 202.03 | $0.662\pm0.046$   | 516.4  | 1266.05 | $0.668\pm0.054$   | 477.7   | 98.34    | 24    | 1000  | 700   | 300     |
| Glass Identification             | $0.924 \pm 0.106$ | 26.8   | 0.007    | $0.880\pm0.103$   | 72.5   | 60.34  | $0.896\pm0.097$   | 30.1   | 193.11  | $0.874\pm0.175$   | 19.3    | 46.68    | 9     | 214   | 29    | 185     |
| Haberman's Survival              | $0.550\pm0.118$   | 56.7   | 0.010    | $0.534\pm0.052$   | 165.1  | 65.14  | $0.497\pm0.007$   | 147.4  | 249.38  | $0.494\pm0.010$   | 149.7   | 48.80    | 3     | 306   | 225   | 81      |
| Stalog Heart                     | $0.804\pm0.103$   | 95     | 0.032    | $0.828 \pm 0.075$ | 133.9  | 66.15  | $0.831 \pm 0.087$ | 140    | 250.50  | $0.824\pm0.097$   | 88.9    | 49.37    | 13    | 270   | 150   | 120     |
| Indian Liver Patient             | $0.622 \pm 0.083$ | 146.2  | 0.035    | $0.498 \pm 0.011$ | 356.6  | 97.71  | $0.497 \pm 0.008$ | 315.9  | 542.03  | $0.499\pm0.004$   | 323.3   | 58.26    | 10    | 579   | 414   | 165     |
| Ionosphere                       | $0.893 \pm 0.049$ | 105.3  | 0.045    | $0.938 \pm 0.039$ | 153.6  | 80.94  | $0.886 \pm 0.049$ | 90.4   | 351.64  | $0.831 \pm 0.066$ | 77.4    | 53.45    | 33    | 351   | 225   | 126     |
| Parkinsons                       | $0.792\pm0.125$   | 31.5   | 0.008    | $0.790\pm0.151$   | 89     | 63.99  | $0.867 \pm 0.114$ | 56.9   | 223.69  | $0.753\pm0.063$   | 58      | 48.16    | 22    | 195   | 147   | 48      |
| Breast Cancer WP                 | $0.566 \pm 0.162$ | 76.9   | 0.036    | $0.493 \pm 0.015$ | 115.5  | 67.38  | $0.594 \pm 0.127$ | 92.1   | 257.28  | $0.591 \pm 0.112$ | 78.1    | 54.10    | 33    | 194   | 46    | 148     |
| Letter Recognition A Vs All      | $0.956\pm0.22$    | 1985   | 123.055  | $0.956\pm0.030$   | 391.5  | 2600   | $0.990\pm0.009$   | 226.8  | 485.91  | $0.925\pm0.023$   | 469.0   | 879.03   | 16    | 20000 | 789   | 19211   |
| Mnist 0 Vs All                   | $0.982 \pm 0.01$  | 847.3  | 10516.18 | $0.992 \pm 0.002$ | 1574.9 | 1160.9 | $0.992 \pm 0.001$ | 976.2  | 206.86  | $0.967 \pm 0.007$ | 1802.0  | 1679.01  | 40    | 70000 | 6903  | 63097   |
| Staglog Shuttlest                | $0.962 \pm 0.02$  | 355    | 2497.32  | $0.998 \pm 0.001$ | 653.6  | 202.23 | $0.974\pm0.012$   | 3165.1 | 148.13  | $0.952\pm0.001$   | 4903.3  | 270.0124 | 9     | 58000 | 45586 | 12414   |
| Av. Rank                         | 1.9750            |        |          | 2.175             |        |        | 2.575             |        |         | 3.275             |         |          |       |       |       |         |

Fontes: M. Lichman(2013),

J. Alcalá-Fdez, et al.,

K. R. Hess et al.,

#### Conclusão

- O método do artigo performa melhor em conjunto de dados menores quando comparado ao SVM. A construção do grafo de Gabriel possui complexidade  $O(dn^3)$ ;
- Nem sempre é positivo aplicar a remoção de sobreposição, pois quando há vértices sem uma vizinhança povoada, estes são removidos;

## Referências Bibliográficas

- TORRES, Luiz CB et al. Large Margin Gaussian Mixture Classifier With a Gabriel Graph Geometric Representation of Data Set Structure. IEEE Transactions on Neural Networks and Learning Systems, 2020.
- M. Lichman. (2013). *UCI Machine Learning Repository*. [Online]. Available: http://archive.ics.uci.edu/ml
- J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, and S. García, "KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework," *J. Multiple-Valued Logic Soft Comput.*, vol. 17, nos. 2–3, pp. 255–287, 2011.
- K. R. Hess *et al.*, "Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer," *J. Clin. Oncol.*, vol. 24, no. 26, pp. 4236–4244, 2006.