Регрессионный анализ, часть 2

Математические методы в зоологии - на R, осень 2013

Марина Варфоломеева Каф. Зоологии беспозвоночных, СПбГУ

Когда и какую регрессию можно применять

- Условия применимости регрессионного анализа
- Мощность линейной регрессии
- · Регрессия по I и II модели

Вы сможете

- Проверить условия применимости простой линейной регрессии
- Рассчитать мощность линейной регрессии
- · Объяснить, какие данные подходят для рассчета регрессии по I и II модели
- Отличать случаи, когда обычная регрессия методом наименьших квадратов применима к данным, собранным для II модели
- Рассчитывать коэффициенты регрессии по II модели методом RMA (Ranged Major Axis), их стандартные ошибки, и записывать их в виде уравнения.

Пример: усыхающие личинки мучных хрущаков

Как зависит потеря влаги личинками малого мучного хрущака Tribolium confusum от влажности воздуха? (Nelson, 1964)

```
# Внимание, установите рабочую директорию,
# или используйте полный путь к файлу
setwd("C:/mathmethr/week2")
## из .xlsx
library(XLConnect)
wb <- loadWorkbook("./data/nelson.xlsx")
nelson <- readWorksheet(wb, sheet = 1)
## или из .csv
# nelson <- read.table(file="./data/nelson.csv",
header = TRUE, sep = "\t",
dec = ".")
```


Как зависит потеря веса от влажности? График рассеяния.

```
library(ggplot2)
theme_set(theme_classic()) # устанавливаем понравившуюся тему до конца сессии
p_nelson <- ggplot(data=nelson, aes(x = humidity, y = weightloss)) +
    geom_point() +
    geom_smooth(method = "lm", colour = "red") +
    labs(x = "Относительная влажность, %", y = "Потеря веса, мг")
p_nelson</pre>
```


Проверяем, есть ли зависимость потери веса от влажности с помощью линейной регрессии

```
# линейная регрессия из прошлой лекции
nelson_lm <- lm(weightloss ~ humidity, nelson)
summary(nelson_lm)
```

```
##
## Call:
## lm(formula = weightloss ~ humidity, data = nelson)
## Residuals:
      Min
             10 Median
                            30
                                  Max
## -0.4640 -0.0344 0.0167 0.0746 0.4524
## Coefficients:
             Estimate Std. Error t value
                                          Pr(>|t|)
## (Intercept) 8.70403 0.19156 45.4 0.000000000065 ***
## humidity
             ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.297 on 7 degrees of freedom
                                                                          6/45
## Multiple R-squared: 0.974, Adjusted R-squared: 0.971
```

Зависимость потери веса от влажности можно описать уравнением

Для этого подставим коэффициенты в уравнение линейной регрессии $y=b_0+b_1x$

```
coef(nelson_lm) # Коэффициенты регрессии
```

```
## (Intercept) humidity
## 8.7040 -0.0532
```

 $weightloss = 8.7 - 0.05 \ humidity$

Чаще более академические обозначения:

$$y = 8.7 - 0.05 x, R^2 = 0.974$$

Потеря веса мучными хрущаками в результате высыхания достоверно зависит от относительной влажности ($\beta_1 = -0.05 \pm 0.01, \, p < 0.01$)

Насколько можно доверять оценкам коэффициентов, которые мы получили?

Условия применимости простой линейной регрессии и анализ остатков

Условия применимости простой линейной регрессии

должны выполняться, чтобы тестировать гипотезы

- 1. Независимость
- 2. Линейность
- 3. Нормальное распределение
- 4. Гомогенность дисперсий

1. Независимость

- \cdot Значения y_i должны быть независимы друг от друга
 - берегитесь псевдоповторностей
 - берегитесь автокорреляций (например, временных)
- Контролируется на этапе планирования
- Проверяем на графике остатков

10/45

2. Линейность связи

- проверяем на графике рассеяния исходных данных
- проверяем на графике остатков

11/45

Вот, что бывает, если неглядя применять линейную регрессию

<u>Квартет Энскомба</u> - примеры данных, где регрессии одинаковы во всех случаях (Anscombe, 1973)

$$y_i = 3.0 + 0.5x_i$$

$$r^2 = 0.68$$
,

$$H_0: \beta_1 = 0, t = 4.24, p = 0.002$$

3. Нормальное распределение

Нужно, т.к. в модели $Y_i = eta_0 + eta x_i + \epsilon_i$

$$Y \sim N(0,\sigma^2)$$

 \cdot К счастью, это значит, что $\epsilon_i \sim N(0,\sigma^2)$

- Нужно для тестов параметров, а не для подбора методом наименьших квадратов
- Тесты устойчивы к небольшим отклонениям от нормального распределения

4. Гомогенность дисперсий

Нужно, т.к. в модели $Y_i = eta_0 + eta x_i + \epsilon_i$

$$Y \sim N(0,\sigma^2)$$
,

и дисперсии $\sigma_1^2=\sigma_2^2=\ldots=\sigma_i^2$ для каждого Y_i

· К счастью, поскольку $\epsilon_i \sim N(0,\sigma^2)$, можно проверить равенство дисперсий остатков ϵ_i

- Нужно и важно для тестов параметров
- . Проверяем на графике остатков по отношению к предсказанным значениям
- Можно сделать Кокрана тест Puc(honchran watk) nstee at . Ozteoko capc 71/13, Hanck on the ko значений у для каждого х

Диагностика регрессии по графикам остатков

Рисунок из кн. Logan, 2010, стр. 174, рис. 8.5 🕅

- условия:
 - а все выполнены
 - b разброс остатков разный (wedge-shaped pattern)
 - c разброс остатков одинаковый, но нужны дополнительные предикторы
 - d к нелинейной зависимости применили линейную регрессию

Скажите,

- какой регрессии соответствует какой график остатков?
- все ли условия применимости регрессии здесь выполняются?
- · назовите случаи, в которых можно и нельзя применить линейную регрессию?

Какие наблюдения влияют на ход регрессии больше других?

Влиятельные наблюдения, выбросы, outliers

- большая абсолютная величина остатка
- близость к краям области определения (leverage рычаг, "сила"; иногда называют hat)
- 1 не влияет
- · 2 умеренно влияет (большой остаток, малая сила влияния)
- 3 очень сильно влияет (большой остаток, большая сила влияния)

Как оценить влиятельность наблюдений

Расстояние Кука (Cook's d) (Cook, 1977)

 Учитывает одновременно величину остатка и близость к краям области определения (leverage)

- Условное пороговое значение: выброс, если $d \geq 4/(N-k-1)$, где N объем выборки, k число предикторов.
- Дж. Фокс советует не обращать внимания на пороговые значения (Fox, 1991).
- Что делать с влиятельными точками?
 - Проверить, не ошибка ли это. Если это не ошибка, не удалять -

Рисунок № 1447 Ж. Heough, 2002, стр. 96, рис. 5.8

PARRONIET 1170 KUROT 00814 14V

18/45

Что делать с выбросами?

- Проверить, не ошибка ли это.
 Если это не ошибка, не удалять обсуждать!
- Проверить, что будет, если их исключить из модели

19/45

Проверим условия применимости

Проверьте линейность связи,

постройте для этого график рассеяния

```
ggplot()
aes()
geom_point()
```

Для анализа остатков выделим нужные данные в новый датафрейм

```
# нам нужна линейная регрессия из прошлой лекции
nelson_lm <- lm(weightloss ~ humidity, nelson) # линейная регрессия
# library(ggplot2) # функция fortify() находится в пакете ggplot2
nelson_diag <- fortify(nelson_lm)
names(nelson_diag) # названия переменных
```

```
## [1] "weightloss" "humidity" ".hat" ".sigma" ".cooksd"
## [6] ".fitted" ".resid" ".stdresid"
```

- · Kpome weightloss и humidity нам понадобятся
 - . cooksd расстояние Кука
 - .fitted предсказанные значения
 - .resid остатки
 - .stdresid стандартизованные остатки

Постройте график зависимости остатков от предиктора,

ИСПОЛЬЗУЯ ДАННЫЕ ИЗ nelson_diag

- · humidity относительная влажность (наш предиктор)
- · .resid остатки

```
names()
ggplot()
aes()
geom_point()
```

· По абсолютным остаткам сложно сказать, большие они или маленькие. Нужна стандартизация

Постройте график зависимости стандартизованных остатков от предсказанных значений

Стандартизованные остатки $\frac{y_i - \hat{y}_i}{\sqrt{MS_e}}$

- можно сравнивать между регрессиями
- можно сказать, какие остатки большие, какие нет
 - < 2SD обычные
 - >3SD редкие

Использйте данные из nelson_diag

- · .fitted предсказанные значения
- · .resid остатки

График станет информативнее, если кое-что добавить

```
ggplot(data = nelson_diag, aes(x = .fitted, y = .stdresid)) + geom_point(aes(size = .cooksd)) + # расстояние Кука geom_smooth(method="loess", se = FALSE) + # линия тренда, сглаживание локальной регрессией geom_hline(yintercept = \theta) # горизонтальная линия на уровне y = \theta
```


25/45

Какие выводы можно сделать по графику остатков?

- Стандартизованные остатки умеренной величины (в пределах двух стандартных отклонений), их разброс почти одинаков
- · Мало точек, чтобы надежно оценить наличие трендов среди остатков

Нормально-вероятностный график стандартизованных остатков

```
mean_val <- mean(nelson_diag$.stdresid)
sd_val <- sd(nelson_diag$.stdresid)
quantile_plot <- ggplot(nelson_diag, aes(sample = .stdresid)) +
geom_point(stat = "qq") +
geom_abline(intercept = mean_val, slope = sd_val) + # на эту линию должны ложиться значения
labs(x = "Квантили стандартного нормального распределения", y = "Квантили набора данных")
quantile_plot
```


Используется, чтобы оценить форму распределения.

Если точки лежат на одной прямой - нормальное распределение.

- Небольшие отклонения от нормального распределения, но мало точек, чтобы

Мощность линейной регрессии

Величина эффекта из общих соображений

```
library(pwr)
cohen.ES(test="f2",size="large")
```

```
##
## Conventional effect size from Cohen (1982)
##
## test = f2
size = large
## effect.size = 0.35
```

Величину эффекта можно оценить по \mathbb{R}^2

$$f^2=\frac{R^2}{1-R^2}$$

 R^2 - коэффициент детерминации

Посчитайте

какой нужен объем выборки, чтобы с вероятностью 0.8 обнаружить зависимость при помощи простой линейной регрессии, если ожидается $R^2=0.6$?

$$f^2=\frac{R^2}{1-R^2}$$

pwr.f2.test()

Регрессия по I и II модели

Регрессия по I и II модели

- Імодель
 - x_i фиксированные факторы, заранее заданные значения
 - предсказывать можно только для существующих в модели значений x_i
- используется
 - метод наименьших квадратов (Ordinary Least Squares, **OLS**)

 Предсказания и тесты гипотез по I модели иногда применимы и к случайным факторам (Quinn Keough 2002).

- II модель
 - x_i случайные факторы, значения неизвестны заранее
 - предсказывать можно для любых значений x_i
- используется
 - метод главных осей (Major Axis, **MA**)
 - метод сжатых главных осей (Ranged Major Axis, **RMA**)

 Если главная цель точные оценки коэффициентов и их сравнение, обязательно II модель.

Сравнение OLS, MA и RMA регрессии

Пример: морфометрия поссумов

```
wb <- loadWorkbook("./data/possum-small.xls")
possum <- readWorksheet(wb, sheet = 1)
## или из .csv
# possum <- read.table(file="./data/possum-small.csv", header = TRUE,
# sep = "\t", dec = ".")
```

```
str(possum)
```

Зависит ли длина головы поссумов от общей длины тела?

ggplot(data = possum, aes(x = totall, y = headl)) + geom_point()

· Общая длина тела (headl) - случайная переменная,

RMA-регрессия (Ranged Major Axis Regression, RMA)

```
##
## Model II regression
##
## Call: lmodel2(formula = headl ~ totall, data = possum, range.v =
## "relative", range.x = "relative", nperm = 100)
## n = 104 r = 0.691
                         r-square = 0.478
## Parametric P-values:
                        2-tailed = 4.68e-16
                                                1-tailed = 2.34e-16
## Angle between the two OLS regression lines = 20.4 degrees
##
## Permutation tests of OLS, MA, RMA slopes: 1-tailed, tail corresponding to sign
## A permutation test of r is equivalent to a permutation test of the OLS slope
## P-perm for SMA = NA because the SMA slope cannot be tested
## Regression results
    Method Intercept
                                Angle (degrees) P-perm (1-tailed)
                         Slope
## 1
       0LS
                42.7
                         0.573
                                            29.8
                                                            0.0099
## 2
       MA
                26.1
                         0.764
                                           37.4
                                                            0.0099
                         0.829
## 3
       SMA
                20.4
                                           39.7
## 4
       RMA
                27.9
                         0.743
                                            36.6
                                                            0.0099
```

Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope

53.0

38.9

0.455

0.617

0.691

0.934

38/45

32.45

11.25

Confidence intervals

0LS

МΔ

1

2

Подставим коэффициенты в уравнение линейной регрессии

$$y = b_0 + b_1 x$$

possum_rma\$regression.results # Коэффициенты регрессии, нас интересует RMA

```
Method Intercept
                        Slope Angle (degrees) P-perm (1-tailed)
## 1
       0LS
                42.7
                        0.573
                                          29.8
                                                          0.0099
## 2
       MA
                26.1
                        0.764
                                          37.4
                                                          0.0099
                                         39.7
## 3
       SMA
                20.4
                        0.829
                                                             NA
## 4
       RMA
                27.9
                        0.743
                                          36.6
                                                          0.0099
```

headl = 27.89 + 0.74 totall

или в более академических обозначениях:

$$y = 27.89 + 0.74 x, R^2 = 0.478$$

Длина головы достоверно зависит от общей длины туловища (RMA-регрессия, $\beta_1=0.74\pm0.15,\,p<0.01)$

График RMA-регрессии

```
plot(possum_rma, "RMA", main = "",
xlab = "Общая длина, см", ylab = "Длина головы, мм")
```


40/45

График RMA-регрессии

```
source(url("http://varmara.github.io/mathmethr-2013/w3-regression2/int_slope_lmodel2.R"))
reg_lines <- int_slope_lmodel2(possum_rma)
rma_plot <- ggplot(possum, aes(x = totall, y = headl)) + geom_point() +
    geom_abline(data = reg_lines, aes(intercept = intercept, slope = slope,
        colour = c("blue", "red", "red")), show_guide = TRUE) +
    scale_color_discrete(name = "", labels = c("RMA-perpeccus", "95% дов. инт. RMA-perpeccuu")) +
    labs(x = "Общая длина, см", y = "Длина головы, мм") + theme(legend.position = 'bottom')
rma_plot</pre>
```


41/45

Для сравнения - RMA- и обычная регрессия

```
rma plot + qeom smooth(method = 'lm', se = FALSE, aes(colour = 'green'), show quide = FALSE) +
  scale colour discrete(name = "Линии:",
   labels = c("RMA-регрессия", "OLS-регрессия", "95% дов. инт. RMA-регрессии"))
```


А можно ли использовать метод наименьших квадратов (OLS), если данные собраны по II модели,?

- Можно, если:
 - Ошибка в оценке $y_i >>$ ошибки в оценке x_i
 - Распределение у и х не многомерное нормальное
 - Зависимость у от х линейная

- Если цель предсказание у для х, то :
 - можно использовать OLS-оценки коэффициентов
 - нельзя стандартные ошибки, доверительные интервалы, тесты параметров

Legendre, P., 2013. Imodel2: Model II Regression. R package version 1.7-1. http://CRAN.R-project.org/package=Imodel2

Take home messages

- Условия применимости простой линейной регрессии должны выполняться, чтобы тестировать гипотезы
 - 1. Независимость
 - 2. Линейность
 - 3. Нормальное распределение
 - 4. Гомогенность дисперсий
- · Мощность линейной регрессии можно рассчитать как мощность F-критерия. Величину эффекта можно оценить по \mathbb{R}^2
- · I модель. Фиксированные факторы, заранее заданные значения x_i , метод наименьших квадратов (OLS)
- \cdot II модель. Случайные факторы, значения x_i неизвестны заранее, метод главных осей (MA), метод сжатых главных осей (RMA)
- Предсказания и тесты гипотез по I модели иногда применимы и к случайным факторам (Quinn Keough 2002). Но если главная цель точные оценки коэффициентов и их

Дополнительные ресурсы

- · Logan, 2010, pp. 170-207
- · Quinn, Keough, 2002, pp. 92-104
- · Open Intro to Statistics, pp. 315-353.