Prsteni i polja

Definicija 1 Neka je R neprazan skup, $a+i\cdot binarne operacije skupa <math>R$. Uređena trojka $(R,+,\cdot)$ je **prsten** ako je

- (R,+) komutativna grupa;
- (R, \cdot) je polugrupa (asocijativan grupoid);
- operacija · je distributivna u odnosu na operaciju +, tj. za sve x,y,z ∈ R važe leva distributivnost: x(y+z) = xy + xz, desna distributivnost: (y+z)x = yx + zx.

Definicija 2 *Prsten* $(R, +, \cdot)$ *je:*

- komutativan ako je operacija · komutativna;
- prsten sa jedinicom ako postoji neutralni element za operaciju · ;
- domen integriteta (ili integralni domen) ako je komutativan prsten sa jedinicom u kome ne postoje delitelji nule, tj. u kome važi

$$(a \neq 0 \land b \neq 0) \implies ab \neq 0$$
,

gde je sa 0 označena nula prstena, tj. neutralni element operacije +;

- **polje** ako je prsten $(R, +, \cdot)$ u kojem je $(R \setminus \{0\}, \cdot)$ komutativna grupa.
- ★ Uobičajeno je da se simbolom 0 označava nula prstena, a simbolom 1 jedinica prstena, ako postoji.

Tvrđenje 1 Svako polje je domen integriteta. Svaki konačan domen integriteta je i polje, ali za beskonačne to ne mora da važi.

Zadatak 1 Koje od sledećih algebarskih struktura su prsteni, domeni integriteta ili polja?

- 1. $(\mathbb{N}, +, \cdot)$ 2. $(\mathbb{Z}, +, \cdot)$ 3. $(\{3k \mid k \in \mathbb{Z}\}, +, \cdot)$ 4. $(\mathbb{Q}, +, \cdot)$ 5. $(\mathbb{R} \setminus \{0\}, +, \cdot)$
- 6. $(\mathbb{C}, +, \cdot)$ 7. $(\mathbb{Z}_6, +, \cdot)$ 8. $(\mathbb{Z}_7, +, \cdot)$ 9. $(\mathbb{Z}_n, +, \cdot)$ 10. $(\mathbb{Z}_6 \setminus \{0\}, +, \cdot)$

Rešenje:

- 1. nije prsten jer $(\mathbb{N}, +)$ nije grupa;
- 2. prsten i domen integriteta, nije polje jer $(\mathbb{Z} \setminus \{0\}, \cdot)$ nije grupa;
- 3. prsten, nije domen interiteta jer nema jedinicu;
- 4. polje;
- 5. nije prsten jer ($\mathbb{R} \setminus \{0\}$, +) nije ni grupoid;
- 6. polje;
- 7. komutativan prsten sa jedinicom, nije domen integriteta jer ima delitelje nule;
- 8. domen integriteta, pa samim tim i polje (jer je konačan, vidi Tvrđenje 1);

9. komutativan prsten sa jedinicom za svako n, polje ako i samo ako je n prost broj;

10. nije prsten jer ($\mathbb{Z}_6 \setminus \{0\}, +$) nije ni grupoid.

***** Komutativan prsten sa jedinicom $(\mathbb{Z}_n, +, \cdot)$ je polje ako i samo ako je *n* prost broj.

Zadatak 2 *U skupu* \mathbb{Z}^2 *definisane su operacije* \oplus *i* \star *sa* \forall (*a*,*b*),(*c*,*d*) \in \mathbb{Z}^2

$$(a,b) \oplus (c,d) = (a+c,b+d)$$
 i $(a,b) \star (c,d) = (a \cdot c,b \cdot d).$

- (a) Dokazati da je $(\mathbb{Z}^2, \oplus, \star)$ komutativan prsten sa jedinicom.
- (b) Ispitati da li je $(\mathbb{Z}^2, \oplus, \star)$ domen integriteta.
- (c) Ispitati da li je $(\mathbb{Z}^2, \oplus, \star)$ polje.

Rešenje:

- (a) Da bi dokazali da je $(\mathbb{Z}^2, \oplus, \star)$ komutativan prsten sa jedinicom treba da pokažemo:
 - (\mathbb{Z}^2, \oplus) je Abelova grupa.

<u>zatvorenost</u>: Treba pokazati da za svaka dva (a,b) i (c,d) elementa skupa \mathbb{Z}^2 važi

$$(a,b)\oplus(c,d)\in\mathbb{Z}^2$$
.

Ako su $(a,b),(c,d) \in \mathbb{Z}^2$, to znači da su $a,b,c,d \in \mathbb{Z}$. Pošto važi zatvorenost sabiranja celih brojeva, sledi da su i $a+c,b+d \in \mathbb{Z}$, odakle je $(a,b) \oplus (c,d) = (a+c,b+d) \in \mathbb{Z}^2$.

asocijativnost: Treba pokazati da za svaka tri (a,b),(c,d) i (e,f) elementa skupa \mathbb{Z}^2 važi

$$((a,b)\oplus(c,d))\oplus(e,f)=(a,b)\oplus((c,d)\oplus(e,f)).$$

Ovo sledi direktno iz asocijativnosti sabiranja celih brojeva:

$$((a,b)\oplus(c,d))\oplus(e,f) = (a+c,b+d)\oplus(e,f)$$

$$= ((a+c)+e,(b+d)+f)$$

$$= (a+(c+e),b+(d+f))$$

$$= (a,b)\oplus(c+e,d+f)$$

$$= (a,b)\oplus((c,d)\oplus(e,f)).$$

neutralni element Treba pokazati da postoji $(e_1,e_2) \in \mathbb{Z}^2$ takav da za svaki $(a,b) \in \mathbb{Z}^2$ važi

$$(e_1,e_2) \oplus (a,b) = (a,b) \oplus (e_1,e_2) = (a,b).$$

Po definiciji operacije \oplus , poslednje jednakosti su tačne za $e_1 = e_2 = 0$, pa je neutralni element $(e_1, e_2) = (0, 0)$.

<u>inverzni elementi</u>: Treba pokazati da za svaki $(a,b) \in \mathbb{Z}^2$ postoji $(a',b') \in \mathbb{Z}^2$ takav da važi

$$(a,b) \oplus (a',b') = (a',b') \oplus (a,b) = (0,0).$$

Rešavanjem poslednje jednačine po a' i b' dobijamo a' = -a i b' = -b. Odavde zaključujemo da je za (a,b) inverzni element (-a,-b), koji takođe pripada skupu \mathbb{Z}^2 jer iz $a,b\in\mathbb{Z}$ sledi $-a,-b\in\mathbb{Z}$.

komutativnost: Treba pokazati da za svaka dva $(a,b),(c,d)\in\mathbb{Z}^2$ važi

$$(a,b) \oplus (c,d) = (c,d) \oplus (a,b).$$

Ovo sledi direktno iz komutativnosti sabiranja celih brojeva:

$$(a,b) \oplus (c,d) = (a+c,b+d) = (c+a,d+b) = (c,d) \oplus (a,b).$$

 $-(\mathbb{Z}^2,\star)$ je komutativan monoid.

zatvorenost: Za svaka dva $(a,b),(c,d) \in \mathbb{Z}^2$ imamo da važi

$$(a,b) \star (c,d) = (a \cdot c, b \cdot d) \in \mathbb{Z}^2$$
,

jer ako su $a,b,c,d \in \mathbb{Z}$ onda su i $a \cdot c,b \cdot d \in \mathbb{Z}$.

asocijativnost: Sledi direktno iz asocijativnosti množenja celih brojeva, a dokaz je analogan dokazu asocijativnosti operacije ⊕.

<u>neutralni element</u>: Treba pokazati da postoji $(e',e'') \in \mathbb{Z}^2$ takav da za svaki $(a,b) \in \mathbb{Z}^2$ važi

$$(e',e'') \star (a,b) = (a,b) \star (e',e'') = (a,b).$$

Odavde je neutralni element $(e', e'') = (1, 1) \in \mathbb{Z}^2$.

<u>komutativnost</u>: Sledi direktno iz komutativnosti množenja celih brojeva, a dokaz je analogan dokazu komutativnosti operacije \oplus .

- <u>distributivnost</u> operacije ★ prema ⊕. Treba pokazati da za svaka tri $(a,b),(c,d),(e,f) \in \mathbb{Z}^2$ važi

leva distributivnost: $(a,b) \star ((c,d) \oplus (e,f)) = ((a,b) \star (c,d)) \oplus ((a,b) \star (e,f)),$ desna distributivnost: $((c,d) \oplus (e,f)) \star (a,b) = ((c,d) \star (a,b)) \oplus ((e,f) \star (a,b)).$

Leva distributivnost sledi direktno iz leve distributivnosti množenja prema sabiranju celih brojeva:

$$(a,b) \star ((c,d) \oplus (e,f)) = (a,b) \star (c+e,d+f)$$

$$= (a \cdot (c+e), b \cdot (d+f))$$

$$= (ac+ae,bd+bf)$$

$$= (ac,bd) \oplus (ae,bf)$$

$$= ((a,b) \star (c,d)) \oplus ((a,b) \star (e,f)).$$

Desna distributivnost sledi iz leve i komutativnosti operacije ★.

(b) Da bi $(\mathbb{Z}^2, \oplus, \star)$ bio domen integriteta potrebno je još da dokažemo da nema delitelje nule, tj. da za svaka dva $(a,b),(c,d) \in \mathbb{Z}^2$ različita od nula elementa (0,0) (neutralnog elementa u odnosu na operaciju \oplus) važi $(a,b)\star(c,d)\neq(0,0)$. Ova osobina nije ispunjena, jer, recimo, imamo $(1,0)\star(0,1)=(0,0)$. Dakle, $(\mathbb{Z}^2,\oplus,\star)$ nije domen integriteta jer ima delitelje nule.

(c) Kontrapozicijom Tvrđenja 1 dobijamo da $(\mathbb{Z}^2, \oplus, \star)$ nije polje jer nije domen integriteta.

Zadatak 3 Koje od sledećih algebarskih struktura su prsteni?

1.
$$(\mathbb{N}, +, \cdot)$$

$$2. (\mathbb{Z}, +, \cdot)$$

3.
$$(\mathbb{Z} \setminus \{1\}, +, \cdot)$$

4.
$$(\mathbb{Q}, +, \cdot)$$

5.
$$(\mathbb{C}, +, \cdot)$$

6.
$$(\mathbb{C}\setminus\{0\},+,\cdot)$$

7.
$$(\mathbb{Z}_4, +, \cdot)$$

8.
$$(\mathbb{Z}_3, +, \cdot)$$

9.
$$(\mathbb{R}[t], +, \cdot)$$

10.
$$(\mathbb{R} \setminus \{0\}, \cdot, +)$$

11.
$$(\mathbb{R}^{\mathbb{R}}, +, \circ)$$

Rešenje:

1. NE:
$$(\mathbb{N}, +)$$
 nije grupa;

3. NE: + nije zatvorena, npr.
$$2 + (-1) = 1$$
;

6. NE: + nije zatvorena, npr.
$$1 + (-1) = 0$$
;

11. NE: ne važi distributivnost, npr. za $f(x) = \sin x$ i g(x) = h(x) = x imamo

$$(f \circ (g+h))(x) = f(g(x)+h(x)) = \sin 2x \quad i$$

$$((f \circ g) + (f \circ h))(x) = f(g(x)) + f(h(x)) = 2\sin x.$$

Zadatak 4 Koje od sledećih algebarskih struktura su domeni integriteta?

1.
$$(\mathbb{Z}, +, \cdot)$$

$$2.(\mathbb{Z},\cdot,+)$$

3.
$$(\mathbb{Q}^+, +, \cdot)$$

4.
$$(\mathbb{Z}_3, +, \cdot)$$

5.
$$(\mathbb{Z}_4, +, \cdot)$$

6.
$$(\mathbb{Z}_4 \setminus \{0\}, +, \cdot)$$

7.
$$(\mathbb{R}[t], +, \cdot)$$

8.
$$(\mathbb{Q}, +, \cdot)$$

9.
$$(\{-1,0,1\},+,\cdot)$$

10.
$$(\mathbb{R}, +, \cdot)$$

11.
$$(\mathbb{Q} \setminus \{0\}, +, \cdot)$$

12.
$$((-1,1),+,\cdot)$$

13. $(\mathcal{M}_{2\times 2}, +, \cdot)$,

ako je $\mathcal{M}_{2\times 2}$ skup svih kvadratnih matrica nad \mathbb{R} reda 2.

Rešenje:

2. NE:
$$(\mathbb{Z}, \cdot)$$
 nije grupa;

3. NE:
$$(\mathbb{Q}^+,+)$$
 nije grupa;

5. NE: ima delitelje nule
$$(2 \cdot 2 = 0)$$
;

6. NE:
$$(\mathbb{Z}_4 \setminus \{0\}, +)$$
 nije grupoid;

11. NE:
$$(\mathbb{Q} \setminus \{0\}, +)$$
 nije grupoid;

12. NE:
$$((-1,1), +)$$
 nije grupoid;

13. NE: ne važi komutativnost.

Zadatak 5 Koje od sledećih algebarskih struktura su komutativni prsteni?

1.
$$(\mathbb{Z}, +, \cdot)$$

2.
$$(\mathbb{Z}_4, +, \cdot)$$

6. $(\mathbb{R}[t], +, \cdot)$

3.
$$(\mathbb{Q}, +, \cdot)$$

7. $(\mathbb{R}^+, +, \cdot)$

4.
$$(\mathbb{Z}_3, +, \cdot)$$

5.
$$(\mathbb{N}, +, \cdot)$$

5. NE:
$$(\mathbb{N}, +)$$
 nije grupa;

7. NE:
$$(\mathbb{R}^+,+)$$
 nije grupa.

Zadatak 6 Koje od sledećih algebarskih struktura su polja?

1.
$$(\mathbb{Z}_4, +, \cdot)$$

2.
$$(\mathbb{Z}_4 \setminus \{0\}, +, \cdot)$$

3.
$$(\mathbb{Z}_3, +, \cdot)$$

3.
$$(\mathbb{Z}_3, +, \cdot)$$
 4. $(\mathbb{R}[t], +, \cdot)$

5.
$$(V, +, \cdot)$$

6.
$$(\{\rho e^{i\theta} | \rho \in [0, \infty), \theta \in \mathbb{R}\}, +, \cdot)$$

7.
$$(\mathbb{R}, +, \cdot)$$

8.
$$(\mathbb{C}, +, \cdot)$$

9.
$$(\mathbb{Q}, +, \cdot)$$

10.
$$(\{e^{i\theta} | \theta \in \mathbb{R}\}, +, \cdot)$$

gde je V skup svih slobodnih vektora.

Rešenje:

- 1. NE: nije domen integriteta;
- 2. NE: nije ni prsten;
- 3. DA;

- 4. NE: nema inverzne elemente;
- 5. NE: operacija · nije binarna operacija skupa V;
 - 8. DA; 9. DA;
- 6. DA: ovo je polje kompleksnih bojeva;
- 7. DA;
- 10. NE: recimo, za $\theta = 0$ imamo $e^{i \cdot 0} + e^{i \cdot 0} = 2$, a 2 ne pripada datom skupu.

Zadatak 7 Koje od sledećih algebarskih struktura su prsteni, a nisu polja?

1.
$$(\mathbb{Z}, +, \cdot)$$

2.
$$(\mathbb{Z}_4, +, \cdot)$$

3.
$$(\mathbb{Q}, +, \cdot)$$

4.
$$(\mathbb{Z}_3, +, \cdot)$$

5.
$$(\mathbb{N}, +, \cdot)$$

6.
$$(\mathbb{C}, +, \cdot)$$

7.
$$(\mathbb{R}[t], +, \cdot)$$

8.
$$((0, \infty), +, \cdot)$$

Rešenje:

- 1. DA: domen integriteta i nije polje; 2. DA: prsten i nije domen integriteta (a ni polje);
- 3. NE: polje;
- 4. NE: polie;
- 5. NE: nije prsten;
- 6. NE: polje;

- 7. DA: domen integriteta i nije polje;
- 8. NE: nije prsten.

Zadatak 8 *U skupu* \mathbb{R}^2 *definisane su operacije* \oplus *i* \otimes *sa* \forall $(a,b),(c,d) \in \mathbb{R}^2$

$$(a,b) \oplus (c,d) = (a+c,b+d)$$

$$(a,b) \oplus (c,d) = (a+c,b+d)$$
 i $(a,b) \otimes (c,d) = (ac-bd,bc+ad).$

Dokazati da je $(\mathbb{R}^2, \oplus, \otimes)$ polje i da je ono izomorfno polju kompleksnih brojeva $(\mathbb{C}, +, \cdot)$.

Zadatak 9 Neka je A = (A, +) proizvoljna Abelova (tj. komutativna) grupa, neka je

$$\mathcal{F} = \{ f : A \to A \mid f \text{ je homomorfizam} \},$$

i neka je \oplus binarna operacija skupa $\mathcal F$ definisana sa

$$(f \oplus g)(x) = f(x) + g(x), x \in A,$$

za sve $f,g \in \mathcal{F}$. Dokazati da je $\mathbf{F} = (\mathcal{F}, \oplus, \circ)$ prsten sa jedinicom.

Rešenje: Proveravamo redom aksiome.

(a) (\mathcal{F}, \oplus) je Abelova grupa.

zatvorenost: neka je $f, g \in \mathcal{F}$; očigledno je $f \oplus g : A \to A$, a pošto za sve $x, y \in A$ važi

$$(f \oplus g)(x+y) = f(x+y) + g(x+y)$$

$$= (f(x) + f(y)) + (g(x) + g(y))$$

$$= (f(x) + g(x)) + (f(y) + g(y))$$

$$= (f \oplus g)(x) + (f \oplus g)(y),$$

sledi da je $f \oplus g$ i homomorfizam grupe A, tj. $f \oplus g \in \mathcal{F}$.

asocijativnost: sledi iz asocijativnosti operacije +; naime, za proizvoljne $f, g, h \in \mathcal{F}$ važi da je za svako $x \in A$

$$(f \oplus (g \oplus h))(x) = f(x) + (g \oplus h)(x)$$

$$= f(x) + (g(x) + h(x))$$

$$= (f(x) + g(x)) + h(x)$$

$$= (f \oplus g)(x) + h(x)$$

$$= ((f \oplus g) \oplus h)(x),$$

odakle sledi $(f \oplus (g \oplus h)) = ((f \oplus g) \oplus h)$.

<u>neutralni element</u>: je funkcija $\mathbb{O}(x) = 0$, $x \in A$, gde je sa 0 označen neutralni element operacije +. Važi $\mathbb{O} \in \mathcal{F}$ jer $\mathbb{O} : A \to A$ i \mathbb{O} je homomorfizam jer je za sve $x, y \in A$

$$\mathbb{O}(x+y) = 0 = 0 + 0 = \mathbb{O}(x) + \mathbb{O}(y).$$

<u>inverzni elementi</u>: označimo sa -x inverzni element elementa $x \in A$ u grupi **A**. Za $f \in \mathcal{F}$ je inverzni element funkcija $f' \in \mathcal{F}$ definisana sa f'(x) = -f(x), $x \in A$. Naime, imamo da je

$$(f'\oplus f)(x)=-f(x)\oplus f(x)=0=\mathbb{O}(x)=(f\oplus f')(x).$$

Takođe, f' je homomorfizam jer za sve $x, y \in A$ važi

$$f'(x+y) = -f(x+y) = -(f(x)+f(y)) = -f(x)+(-f(y)) = f'(x)+f'(y).$$

<u>komutativnost</u>: sledi iz komutativnosti operacije +. Naime, za proizvoljne $f,g\in\mathcal{F}$ važi da je za svako $x\in A$

$$(f \oplus g)(x) = f(x) + g(x) = g(x) + f(x) = (g \oplus f)(x),$$

odakle sledi $(f \oplus g) = (g \oplus f)$.

(b) (\mathcal{F}, \circ) je monoid (polugrupa sa neutralnim elementom).

zatvorenost: neka je $f,g \in \mathcal{F}$; očigledno je $f \circ g : A \to A$, a pošto za sve $x,y \in A$ važi

$$(f \circ g)(x+y) = f(g(x+y))$$

$$= f(g(x) + g(y))$$

$$= f(g(x)) + f(g(y))$$

$$= (f \circ g)(x) + (f \circ g)(y),$$

sledi da je $f \circ g$ i homomorfizam grupe A, te sledi $f \circ g \in \mathcal{F}$.

asocijativnost: kompozicija funkcija je uvek asocijativna operacija.

<u>neutralni element</u>: je identička funkcija $i_A \in \mathcal{F}$ skupa A koja jeste homomorfizam jer za sve $x, y \in A$ važi

$$i_A(x + y) = x + y = i_A(x) + i_A(y).$$

- (c) distributivnost: \circ prema \oplus .
 - (l) Za sve $f, g, h \in \mathcal{F}$ i svako $x \in A$ važi

$$(f \circ (g \oplus h))(x) = f((g \oplus h)(x))$$

$$= f(g(x) + h(x))$$

$$= f(g(x)) + f(h(x))$$

$$= (f \circ g)(x) + (f \circ h)(x)$$

$$= ((f \circ g) \oplus (f \circ h))(x),$$

odakle sledi $(f \circ (g \oplus h))x = ((f \circ g) \oplus (f \circ h)).$

(d) Za sve $f, g, h \in \mathcal{F}$ i svako $x \in A$ važi

$$((g \oplus h) \circ f)(x) = (g \oplus h)(f(x))$$

$$= g(f(x)) + h(f(x))$$

$$= (g \circ f)(x) + (h \circ f)(x)$$

$$= ((g \circ f) \oplus (h \circ f))(x),$$

odakle sledi $(g \oplus h) \circ f = (g \circ f) \oplus (g \circ f)$.