Funciones

Profesores del curso:

LUIS ROCA ¹
JOHNNY VALVERDE ¹
FÉLIX VILLANUEVA ¹
OSWALDO VELÁSQUEZ ¹

¹Universidad Nacional de Ingeniería, Lima, Perú

7 de junio de 2020

Paridad de funciones

Definición 1 (Función par, impar)

Sea $A \subset \mathbb{R}$, $f : A \to \mathbb{R}$ con $\mathsf{Dom}(f) = A$. La función f es

1. par si, para cada $x \in A$, se cumple que $-x \in A$ y

$$f(-x)=f(x).$$

2. impar si, para cada $x \in A$, se cumple que $-x \in A$ y

$$f(-x)=-f(x).$$

Fijado un entero $k \geq 0$, sea $f_k : \mathbb{R} \to \mathbb{R}$ dada por

$$f_k(x)=x^k$$
.

Entonces

- Si k es par, entonces f_k es una función par
- Si k es impar, entonces f_k es una función impar

Periodicidad de funciones

Definición 2 (Función periódica)

Sea $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ con $\mathsf{Dom}(f) = A$. La función f es periódica de periodo $T \neq 0$ si para todo $x \in A$, se cumple que $x + T \in A$ y

$$f(x+T)=f(x).$$

El número T se denomina entonces periodo de la función f. Si existe un valor mínimo de T>0 con esta propiedad, se denomina a T periodo fundamental para f.

Periodicidad de funciones

Definición 2 (Función periódica)

Sea $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ con $\mathsf{Dom}(f) = A$. La función f es periódica de periodo $T \neq 0$ si para todo $x \in A$, se cumple que $x + T \in A$ y

$$f(x+T)=f(x).$$

El número T se denomina entonces periodo de la función f. Si existe un valor mínimo de T>0 con esta propiedad, se denomina a T periodo fundamental para f.

- Las funciones sen, cos : $\mathbb{R} \to \mathbb{R}$ son periódicas de periodo fundamental 2π .
- La función $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = x - [x]$$

es periódica.

Funciones inyectivas, sobreyectivas y biyectivas

Definición 3

Sea $A \subset \mathbb{R}$, $B \subset \mathbb{R}$, $f : A \to B$ con $\mathsf{Dom}(f) = A$ (f es una aplicación). La función f es

1. inyectiva si

$$\forall x \in A, \forall y \in A, f(x) = f(y) \Rightarrow x = y.$$

2. sobreyectiva si

$$\forall y \in B, \exists x \in A, y = f(x).$$

Equivalentemente, Ran(f) = B.

3. biyectiva si es inyectiva y biyectiva a la vez.

¿Cuál es el criterio gráfico para determinar que una función es inyectiva o sobreyectiva?

Definición 4

Sea $A \subset \mathbb{R}$, $B \subset \mathbb{R}$, $f : A \to B$ una función. Dado $y \in B$, la imagen inversa de y por f es el conjunto

$$f^{-1}(y) = \{x \in A : y = f(x)\}.$$

Por ejemplo

■ $f^{-1}(y) \neq \emptyset$ si y solo si $y \in \text{Ran}(f)$. Luego, f es sobreyectiva si y solo si

$$\forall y \in B, f^{-1}(y) \neq \emptyset.$$

■ Para $y \in \text{Ran}(f)$, f invectiva significa que $f^{-1}(y) = \{x\}$ posee un solo punto.

¿Qué significa esto gráficamente? ¿Cómo visualizo los puntos de $f^{-1}(y)$ en general?

Definición 4

Sea $A \subset \mathbb{R}$, $B \subset \mathbb{R}$, $f : A \to B$ una función. Dado $y \in B$, la imagen inversa de y por f es el conjunto

$$f^{-1}(y) = \{x \in A : y = f(x)\}.$$

Por ejemplo

■ $f^{-1}(y) \neq \emptyset$ si y solo si $y \in Ran(f)$. Luego, f es sobreyectiva si y solo si

$$\forall y \in B, f^{-1}(y) \neq \emptyset.$$

■ Para $y \in \text{Ran}(f)$, f inyectiva significa que $f^{-1}(y) = \{x\}$ posee un solo punto.

¿Qué significa esto gráficamente? ¿Cómo visualizo los puntos de $f^{-1}(y)$ en general?

Definición 4

Sea $A \subset \mathbb{R}$, $B \subset \mathbb{R}$, $f : A \to B$ una función. Dado $y \in B$, la imagen inversa de y por f es el conjunto

$$f^{-1}(y) = \{x \in A : y = f(x)\}.$$

Por ejemplo

■ $f^{-1}(y) \neq \emptyset$ si y solo si $y \in Ran(f)$. Luego, f es sobreyectiva si y solo si

$$\forall y \in B, f^{-1}(y) \neq \emptyset.$$

■ Para $y \in Ran(f)$, f inyectiva significa que $f^{-1}(y) = \{x\}$ posee un solo punto.

¿Qué significa esto gráficamente? ¿Cómo visualizo los puntos de $f^{-1}(y)$ en general?

Función inversa

El hecho de que para un dado valor de $y \in B$ exista un único valor de x en $f^{-1}(y)$, nos indica que la asignación de tal valor de x a y es una función. Es la función inversa

Definición 5

Sea $A \subset \mathbb{R}$, $B \subset \mathbb{R}$, $f : A \to B$ una función. Si f es inyectiva^a, definimos la función inversa de f, $f^* : B \to A$, de modo que

$$y = f^*(x)$$
 si y solo si $x = f(y)$.

af no requiere ser aplicación para definir inyectividad ni sobreyectividad

Nótese que

$$Dom(f^*) = Ran(f), Ran(f^*) = Dom(f),$$

de modo que si f es sobreyectiva, entonces f^* resulta ser una aplicación, y si f es una aplicación, entonces f^* resulta sobreyectiva. En particular, si f es una aplicación biyectiva, entonces f^* también lo es.

Crecimiento de funciones

Definición 6

Sea $f:I\to\mathbb{R}$ una función definida en un intervalo. Decimos que f es

- 1. creciente en I si para todo par $x_1, x_2 \in I$, $x_1 < x_2$ implica $f(x_1) \le f(x_2)$;
- 2. estrictamente creciente en I si para todo par $x_1, x_2 \in I$, $x_1 < x_2$ implica que $f(x_1) < f(x_2)$;
- 3. decreciente en I si para todo par $x_1, x_2 \in I$, $x_1 < x_2$ implica $f(x_2) \le f(x_2)$;
- 4. estrictamente decreciente en I si para todo par $x_1, x_2 \in I$, $x_1 < x_2$ implica que $f(x_2) < f(x_1)$.

En cualquiera de estos casos, diremos que f es monótona sobre I, siendo estrictamente monótona si es estrictamente creciente o decreciente.^a

^aalgunos autores utilizan los términos no decreciente y creciente en lugar de los respectivos crecience y estrictamente creciente, y del mismo modo para el decrecimiento

Los siguientes son ejemplos de funciones monótonas.

- 1. La función $f : \mathbb{R} \to \mathbb{R}$ definida por f(x) = x es estrictamente creciente, cumpliendo trivialmente la definición.
- 2. La función $f:]-\infty,0] \to \mathbb{R}$ definida por $f(x)=x^2$ es estrictamente decreciente.
- 3. La función $f: [0, +\infty[\to \mathbb{R} \text{ definida por } f(x) = x^2 \text{ es estrictamente creciente.}$
- 4. Toda función constante es creciente y decreciente a la vez.

¿Relación entre monotonía e inyectividad?

