

LPC2129 ARM7TDMI-S

Philips Implementation

ARMSchool 2005 Bitfire Workshop, Gothenburg 2005-10-25

Philips LPC2xxx family

- Shared system architecture
 - 32-bit ARM7TDMI-S core
 - E-ICE RTM™ to support real-time debugging
 - ETM[™] to perform real-time tracing of the code being executed
 - Vectored Interrupt Controller (ARM Prime CellTM)
- All derivatives share
 - high-bandwidth 128-bit Flash and on-chip programming interface
 - memory map and interrupt structure
 - ARM PrimeCellTM and Philips peripheral IP
 - low-cost, high-volume production packages

Philips LPC2xxx family

Philips LPC2xxx family

- Some common features
 - ARM7TDMI-S core with E-ICE RTM™ / ETM™
 - Operation up to 60MHz
 - 32-bit timers
 - 2 (4 capture and 4 compare channels each)
 - PWM (6 outputs)
 - RTC
 - Watchdog
 - 2 UARTs (16C550)
 - I²C (400kb/s)

*Flash size:	LPC2119	128KB	
	LPC2129	256KB	
	LPC2194	256KB	

LPC2119, LPC2129, LPC2194

Memory Map

4.0 GB **AHB Peripherals** 3.75 GB **OxEFFF FFFF VPB** Peripherals 0xE000 0000 3.5 GB 0xC000 0000 Reserved for External Memory 3.0 GB 0x8000 0000 2.0 GB **Boot Block (re-mapped from On-Chip Flash)** 0x7FFF E000 Reserved for On-Chip Memory 0x4000 nnnn* 16 / 32 / 64 KB On-Chip Static RAM 0x4000 0000 1.0 GB 0x3FFF FFFF Reserved for On-Chip Memory 0x000m FFFF** 128 ... 512 KB On-Chip Non-Volatile Memory 0x0000 0000 0.0 GB

Memory blocks not drawn to scale!

*: nnnn	RAM
FFFF	64KB
7FFF	32KB
3FFF	16KB

**: m	Flash
1	128KB
3	256KB
7	512KB

Flash

256KB	
8K Boot Block	0x3FFFF
Sector 16 8K	
Sector 15 8K	
Sector 14 8K	
Sector 13 8K	
Sector 12 8K	
Sector 11 8K	
Sector 10 8K	
Sector 9 64K	
Sector 8 64K	
Sector 7 8K	
Sector 7 8K Sector 6 8K	
Sector 6 8K	
Sector 6 8K Sector 5 8K	
Sector 6 8K Sector 5 8K Sector 4 8K	
Sector 6 8K Sector 5 8K Sector 4 8K Sector 3 8K	

WDV

SRAM

LPC2119

LPC2129

 16KB SRAM
 0x40003FFF

 0x4000003F
 0x40000000

 SRAM Interrupt Vectors
 0x40000000

SRAM Interrupt Vectors

System Control

- Includes a number of important system features
 - Power Control
 - Memory mapping configuration
 - Oscillator
 - PLL
 - VPB divider
 - Reset (active low)
 - Wakeup Timer
 - External Interrupts

Boot Block

- The uppermost Flash sector contains the Boot Loader
 - controls physical interface for programming and erasing the Flash
 - supports ISP mode for initial programming of customer code
 - supports In-Application Programming in a running system under the control of customer software
 - buffers an entire Flash line (512 bytes) at once to keep programming time to a minimum
- The Boot Loader is automatically run following reset
 - checks for a "Valid User Program" key to prevent running code on incorrectly programmed devices

Memory Mapping Control

- Re-mapping of Exception Vectors
 - always appear to begin at 0x0000 0000
 - but can be mapped from different sources

On-chip Flash Memory

Active Exception Vectors

Ox0000 003F
0x0000 0000

Memory Mapping Control

- Boot Loader Always executed after reset. Exception Vectors re-mapped from Boot Block

Memory Mapping Overview

Phase Locked Loop

VPB Divider Register

• VPB Divider Register [VPBDIV – 0xE01FC100]

R/W

VPBDIV 1:0	VPBDIV	cclk / pclk ratio	00: 4
			01: 1
			10: 2

On-chip Memory with 0-wait States

- ARM7TDMI-S is a 1-clock core
 - CPI of ~1.9, but many instructions execute in 1 cycle
 - CPU requires one instruction per clock cycle

For highest performance:

32 bits needed with every clock

Memory access time < 17ns @ 60MHz

General Purpose I/O

Pins available for GPIO:

48-pin devices: 32

- 64-pin devices: 46

144 pin devices:76 (with external memory)

112 (w/o external memory)

- Shared with
 - Alternate functions of all peripherals
 - Data/address bus and strobe signals for external memories

General Purpose I/O

- Direction control of individual bits
- Separate set and clear registers
- Pin value and output register can be read separately
- Slew rate controlled outputs (10 ns)
- 5 registers used to control I/Os

General Purpose I/O

Register

IOPIN

IOSET

IOCLR

IODIR

PINSEL

Vectored Interrupt Controller

- ARM PrimeCell™
- 32 interrupt request inputs
- 16 IRQ interrupts can be auto-vectored
 - Single instruction vectoring to ISR
 - Dynamic software priority assignment
- 16 non-vectored interrupts
- Software interrupts

Vectored Interrupt Controller

Powering the Supply Chain. SM

WDW

Interrupt Latency

• FIQ: 200ns @ 60MHz (worst case 12 cycles)

• IRQ: 416ns @ 60MHz (worst case 25 cycles)

A/D Converter

Features

- 10 bit successive approximation analog to digital converter
- Multiplexed inputs

```
4 pins (64-pin devices)8 pins (144-pin devices)
```

- Power down mode
- Measurement range 0V ... 3V
- Minimum 10 bit conversion time: 2.44 μS
- Burst conversion mode for single or multiple inputs
- Optional conversion on transition on input pin or Timer Match signal
- Programmable divider to generate required 4.5MHz from VPB clock

UARTs

- UART 0, UART 1
 - 16 byte Receive and Transmit FIFOs
 - PC UART 16C550 "look-alike"
 - Built-in baud rate generator
 - Supports 6 modem control signals
 - CTS, RTS, DCD, DSR, DTR and RI functions are selectable
 - Note:

UART 0 has Tx and Rx pins only

I²C Bus

- Fast-I²C compliant bus interface
 - Configurable as Master, Slave, or both
 - Multi-master bus
 - Bi-directional data transfer between masters and slaves
 - Up to 400kb/s
 - Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
 - Serial clock synchronization allows devices with different bit rates to communicate via one serial bus
 - Programmable clock rate

SPI Bus

- Compliant with Serial Peripheral Interface (SPI) specification
- Combined SPI master and slave function
- Maximum data bit rate of 1/8 of the peripheral clock rate
- Programmable clock polarity and phase for data transmit/receive operations
- No. of SPI channels:
 - 1 (48-pin devices)
 - 2 (64/144-pin devices)

CAN Bus

- CAN (Controller Area Network) features
 - Serial communications protocol
 - Efficiently supports distributed real-time control
 - Very high level of security
 - Application domain: high speed networks to low cost multiplex wiring
- LPC2xxx with CAN have 2 or 4 CAN channels
 - Can be used as gateway, switch or router among CAN buses
 - Industrial or automotive applications

CAN Bus

- Data rates to 1 Mbit/s on each bus
- 32-bit register and RAM access
- Compatible with CAN specification 2.0B, ISO 11898-1
- Global Acceptance Filter recognizes 11- and 29-bit Rx Identifiers for all CAN buses
- Acceptance Filter can provide FullCAN-style automatic reception for selected Standard Identifiers
- No. of CAN channels
 - 2 on LPC2119, LPC2129, LPC2290, LPC2292
 - 4 on LPC2194, LPC2294

Timer 0 and 1

- 32-bit Timer
- 32-bit Capture Registers and Capture Pins
 - Four on each timer (48-pin devices three on Timer 0 and four on Timer 1)
 - Capture event can optionally trigger an interrupt
- 32-bit Match Registers and Match Pins
 - Four on each timer (48-pin devices three on Timer 0 and four on Timer 1)
 - Interrupt, timer reset or timer halt on match
 - Match output can toggle, go high, go low or do nothing

Timer Capture

Timer Compare

Real Time Clock

- Full Clock/Calendar function with alarms
 - Generates its own 32.768 kHz reference clock from any crystal frequency
 - Counts seconds, minutes, hours, day of month, month, year, day of week and day of year
 - Can generate an interrupt or set an alarm flag for any combination of the counters

Real Time Clock

Fragit?

