

Ganeti @ GRNET

George Kargiotakis

kargig@grnet.gr

whoami

Supervising "servers and services team" @ GRNET

Working at GRNET for 5+ years

What is GRNET?

GRNET manages fiber & IP networks, datacenters, servers and services

Provides services to Universities, Research Institutions and Government

- > 100 Points of Presence in Greece
- ~ 10.000km private fiber
- ▶ 2 DCs
- > 300 Servers
- > 8000 VMs

NOC+Dev teams @ GRNET

- NOC Servers team manages Ganeti clusters + ~700VMs with various services
 - From DNS servers to Virtualization platforms and web-applications
- Developers team... develops :)
 - Multiple projects, synnefo/~okeanos is just one of them
 - Open-source (GPL-licensing)

GRNET Ganeti clusters

- Currently running clusters in 5 locations
- 2 large DCs and 3 smaller locations
- 2 distinct Virtualization platforms based on Ganeti
 - ViMa
 - ~okeanos

ViMa - clusters

- ▶ ~1600 VMs
- ▶ ~130 Nodes
 - ~90 x Fujitsu PRIMERGY RX200 S5
 - ~20 x Dell PowerEdge R430/R630
 - ▶ 12 x HP ProLiant BL460c G1/G6
 - 8 x HP ProLiant DL380 G7
 - 5 x Dell PowerEdge R710/R720
 - ▶ 5 x Dell PowerEdge 1950/2950
 - 2 x IBM ThinkServer RD350
 - ▶ 2 x IBM System x3550 -[7978B1G]-
- ~20 Node Groups (>12 non-default Node Groups)
- ▶ 14 clusters (from 1 to 35 hardware nodes)
- 5 locations

~okeanos - clusters

- ▶ ~7000 VMs
- ▶ 180+ Nodes
 - ► ~180 x HP ProLiant DL385 G7
 - ▶ 2 x Dell PowerEdge R72
- ▶ 13 clusters on 14 full racks
- ▶ 1 location

Ganeti storage backends

...it's complicated

#Clusters	s Ganeti	Storage
1	2.12	Shared block over FC (NetApp)
3	2.12	NFS (EMC)
13	2.10	DRBD + Archipelago (RADOS)
2	2.12	DRBD
1	2.12	DRBD + NFS (EMC)
1	2.15	iSCSI ExtStorage (NetApp)
1	2.12	DRBD + iSCSI
5	2.12	special purpose clusters (single machine or dual machine clusters, even cross-DC)

Some clusters have >2 VGs for DRBD w/ hardware or software raid

SSD/15k/10k RPM disks

Versions

Debian Version	Kernel	Ganeti	qemu-kvm
Wheezy	linux-image-3.2	snf-ganeti 2.10 (heavily patched)	2.1 (bpo)
Wheezy	linux-image-3.16 (bpo)	ganeti 2.12 (bpo)	1.1.2
Jessie	linux-image-3.16	ganeti 2.12	2.1
Jessie	linux-image-3.16	ganeti 2.15 (bpo)	2.1

ViMa - ganetimgr

ViMa - Virtual Machines

- GRNET VPS platform
- Moderated instance applications (no quotas)
- Used by GRNET NOC + other knowledgable users (university NOCs, government, research)
- Manual cluster selection for instance creation:
 - Multiple clusters: satisfy different needs using different hardware
 - No billing/accounting → every user asks for max resources
 - Some consulting w/ clients needed
 - NOC approves applications and places instances to the appropriate cluster
- Communicates with all ganeti clusters except ~okeanos

ganetimgr - the software

- Django 1.4 application*
- No database of VM information as "stateless" as possible regarding instances/networks/nodes
 - Database knows users/groups/clusters
 - Link users with VMs using tags
- Communicates with Ganeti over RAPI
 - No ConfD support yet (patches welcome!)
- Lots of caching using redis
- Asynchronous jobs using beanstalk
- Admin-oriented UI

*Django 1.7 patches almost ready for merging...

ganetimgr notable features

Users can

- Boot instance from CD image over HTTP + Boot device selection
- Change network adapter/hard disk type (Paravirtualized or not)
- Add others as co-admins of an instance
- See actions log
- Use VNC over websockets to manage instance
- See resource usage statistics (management use mostly)

Admins can

- Email owners of VMs using template syntax
- See per node instance CPU/Network graphs
- (network) Isolate + lock instances from modifications (handle abuse)
- See all users action log

ganetimgr recent changes

since Ganeticon 2015 (v1.5 \rightarrow v1.6)

- snf-image integration (thanks to Brian Candler)
- NoVNC transfer commands from text area
- Improved search filter (CPU, RAM, Cluster, Network, etc)
- Admins can now create instances without having to review their own applications
- OAuth2.0 API providing a user's list of VMs
 - Used by external application (Archiving As A Service TBA)
- Email notifications archive
- Easier branding
- fabric deployment script

~okeanos - synnefo

əkeanos

~okeanos

- IaaS / cloud service (Compute + Storage)
- PaaS: e.g. Hadoop cluster deployment
- Import images from Bitnami (ICaaS Image Creation aaS)
- Object Store service with block-based deduplication (Pithos)
 - Backup As a Service for client sync (Agkyra)
- Resource management via Projects
- Fancy UI geared towards users
- Used by thousand end-users for both personal servers and lab-scale infrastructure

synnefo

- Applications based on Django 1.4*
- OpenStack-inspired VM/Volume/ObjectStore API + GRNET extensions
- CLI and Web UI interface
- Multiple authentication backends (local password, shibboleth, LDAP, more)
- Supports multiple ganeti backends
- Ganeti queue monitor agent
- Admin interface

* Django 1.6 & 1.7 upcoming

synnefo notable features

- Batch instance creation/deletion via API
- {Physical,Virtual}-to-virtual snf-image-creator tool
- CLI (kamaki) and Web interface
- VM customization at boot (disk resize, ssh-keys, passwords, network) via snf-image
- Thin provisioning over Ceph/RADOS (Archipelago)
- User-creatable private networks via snf-network+nfdhcpd
- Swap disks between VMs (hotplugging)
- Floating IP(v4) for VMs
- Console support by proxying VNC
- Helpdesk can manage users/Projects

synnefo

Major software changes since last year v0.17

Released: Thu Apr 28 12:35:46 EEST 2016

- Cyclades shared resources among members of a project.
- Cyclades support for detachable volumes
- Brand new pithos UI web application
- Support LDAP authentication in Astakos service

synnefo

Major software changes since last year v0.18

Released: Wed 7 Sep 16:50:30 EEST 2016

- Improved project management and quota policy enforcement
- Performance optimizations of Pithos object listing queries
- Support for modifying user e-mails from the Admin Panel
- Various admin panel enhancements
- Support for multiple eventd instances and automatic ganeti master failover detection
- Support for Sentry

Operations

Installation and Management (or coping, or surviving)

- Debian packages (thanks Apollon!)
- Puppet + Hiera
 - Puppet ENC tells nodes in which cluster they belong
 - Separate Puppet classes per cluster
 - Networks/NFS backend information in hiera
 - DC awareness through API calls to Servermon

Day to Day

- CLI
- hbal
- Mcollective
- evac-gnt-node
- Clustertool

Monitoring 1/3

Icinga plugins

Plugin name	Comment
check_ganeti	check gnt-cluster verify output for errors
check_ganeti_balance	check hbal dry-run improvement score
check_ganeti_freemem	check for memory starving nodes in gnt-node list output
check_ganeti_ippool	check number of free IPs in public pools
check_ganeti_joblist	check number of queued jobs
check_ganeti_nodes	check for DRAINED or OFFLINE nodes w/o special maintenance
	tags
check_ganeti_queue	check for failed jobs in queue
check_ganeti_watcher	check whether watcher is left paused for too long

TODO: many checks must be rewritten to use ConfD

Monitoring 2/3

ELK/Graphite/Grafana dashboards

- Log-courier to Logstash
- Logstash parses {jobs, node-daemon, rapi-daemon, wconf-daemon}.log *
- Logstash sends duration and execution times data to Graphite
- Grafana dashboard
 - Time per VM creation/deletion
 - Duration of Cluster verify

TODO: use check_graphite icinga check for outliers

* Ganeti logfile parsing hell (more about this later)

Monitoring 3/3

System metrics/graphs

- Munin shows per node statistics
- Ganglia shows cluster-wide metrics

VM metrics/graphs

- vima-grapher
 - collectd python plugin + python wsgi

vima-grapher

Ganeti Networking

3+1 Modes

- Bridged
- ▶ "Routed"
- Open vSwitch
- MAC-filtered

Public Networking Modes

- Bridged networks (currently only used by GRNET NOC)
- Routed networks with nfdhcpd
 - ARP/ND requests of VMs stay inside the hardware node (arp-proxy, proxy-ndp)
 - Provides DHCP, RAs (SLAAC) and Other Config for DHCPv6
 - Ganeti hooks create files about tap devices configuration (bindings)
 - nfdhcpd listens on NFQUEUE, reads bindings and receives/sends packets on tap devices

Private Networking Modes

- Bridged networks
 - Usecase: L2VPNs from research institutions/labs
 - Every new one needs provisioning from network team (slow)
 - Network equipment does not like >XXX vlans per port for thousands of DC switch ports
 - Limited number or real vlans (how can we go above >4096 vlans?)
- MAC-filtered "private VLANs" for synnefo/~okeanos
 - Assign MAC-address prefix per user
 - One (real) VLAN carries all traffic
 - ebtables filtering on tap for user prefix
 - Warning! Performance penalties noticed (at least with Wheezy/Wheezy-bpo kernels)
 - Not recommended for clusters with a lot of VMs/traffic
- Open vSwitch for private and cross-dc networks of VMs (ganeti-ovsd)

Ganeti + Open vSwitch

Why: We need *cross-DC, cross-cluster* private networks with the least possible dependency on vendor specific solutions

Considerations

- Ganeti supports Open vSwitch link type
- OVSDB is faster that querying RAPI
- Ganeti does not provide an external event handler
 - Difficult to scale ganeti hooks for every event

Our approach

- Use topological changes seen by switch instead of using ganeti hooks
- Create a dedicated ovs bridge with single VXLAN tunnel port
- Modify kvm-vif-bridge to add special tags to OVSDB external_ids

ganeti-ovsd Design doc 1/3

- Add a new instance tag for every openvswitch link (tap)
 - external_ids: grnet_private_lan=iface:ethX:lan_id:1234
 - lan_id is VXLAN VNI
- Learning:
 - Use Nicira Learn OpenFlow extension to learn MAC addresses
 - Local MAC addresses: learn input port and associate with the instance's private LAN, encoded in the tunnel_id flow parameter
 - Remote MAC addresses: the switch also learns the tunnel endpoint (IP)

ganeti-ovsd Design doc 2/3

Pipeline

- stage 0: Filtering
 - Drop unwanted traffic (eg multicast source mac)
- stage 1: Port-based LAN classification
 - One can assign physical ports to a VNI
- stage 2: Learning
 - Learn per-MAC tunnel endpoints from VXLAN traffic
 - Learn about locally connected MACs
- stage 3: Output pre-processing
 - Always flood multicast/broadcast traffic directly
 - Try learned rules, flood otherwise
- stage 4: Output port selection

ganeti-ovsd Design doc 3/3

Handling Broadcast, Unknown, Multicast instance traffic

- ▶ Flood (BUM) traffic using multicast
 - VXLAN is UDP
 - easy mapping of adminstratively scoped IP multicast block (RFC2365) (239.192.0.0/16 → 65535 private networks)
 - VNI 10 → 239.192.0.10
 - VNI 20 → 239.192.0.20
 - No need for OpenFlow controller

Another approach

- ▶ Flood (BUM) traffic using unicast
 - Would lead to traffic amplification
 - Needs OpenFlow controller to keep track which node has VMs for which VNIs

ganeti-ovsd

Implementation

- kvm-vif-bridge adds tap to ovs switch and sets external_ids
- ganeti-ovsd daemon in python
 - Creates initial flow rules for ovs switch
 - Monitors OVSDB for port change events + changes in external_ids
 - Subscribes to multicast groups for each private lan ID (VNI)
- Simple and effective
 - No Ganeti modifications needed
- Currently only supports IPv4 multicast groups
- Bonus: VM tap rate limiting on ovs switch using classifier tags
- Code soon on github

Written by Apollon Oikonomopoulos

Security considerations: Cross-DC setups need to protect multicast traffic from leaking outside of the network

New DCs

- 3 new datacenters to be deployed
 - VMC (= VM Container) + SC (= Storage Container) + Traditional Storage
- ~700 New compute nodes
 - ~600 VMCs (20 cores, 192Gb RAM, 2x300Gb SAS disks)
 - ~100 enhanced VMCs (20 cores, 384Gb RAM, 2x300Gb SAS + 4x900Gb SSD disks)
- ~140 SCs (16 cores, 128Gb RAM, 2x300Gb SAS + 6x200Gb SSD + 12x4TB SATA disks)
 - probably for RADOS (userspace RBD using ExtStorage)
- 2 DCs w/ additional NetApp Storage
- ▶ 1 DC w/ only distributed storage

We want to run Ganeti there as well!

but...

will it scale?

Can we reach 30-40.000 manageable VMs?

2000-5000 VMs per cluster feasible?

Need to explore options

- Queue concurrency
- Lots of clusters vs fewer clusters and more node-groups?
- Smarter allocator/interactions with external APIs for CPU load/IOPS weight
 - We could use cgoups in tags but is there any planned cgroup support by Ganeti?
- Distributed storage handling (RBD or what ?)

Problems with Ganeti

Documentation

- Lack of good documentation
 - HOWTO guides
 - Whitepapers for specific setups
- Status of design doc implementation is not clear
 - at least without looking at the code
- Object UUIDs frequently exposed to errors, cli instead of friendly names

Automation

- ▶ Hard to manage cluster settings in an automated way
 - Anyone has cluster settings in puppet/chef/salt?

Upgrades

(Gnu)TLS issues when upgrading from 2.12 → 2.15 (Yeap, it's Debian specific but that's Ganeti's most used platform)

Anyone who has upgraded knows what I'm talking about.

- Most painful upgrade so far
- More testing definitely needed, can we help somehow?

Default cluster init values

Not good enough for modern (10GbE) networking

- Sloooow migrations / DRBD sync / replace-disks
 - Can be amazingly improved by adding/changing 3 lines in the config
- New qemu-kvm migration algorithms are available
 - Why not automatically switch to them when possible?
- [Feature req] Ability to override cluster migration_* settings per node group and fallback to cluster values when migrating VMs from one node group to the other
- [Feature req] Networking Profiles for hardware nodes

Locking/Scheduler concurrency

- Has definitely improved but...
- Long running jobs delay tens of minor ones from starting
 - Predictive scheduler looks very promising!
- ▶ Detected death of job iSSU€

DRBD timeouts

- DRBD sometimes fails to release devices
- ▶ Error 28: Operation timed out after 900433 milliseconds with 0 out of -1 bytes received
- Further investigation needed

Mixed logging format

- ▶ HTTP like logs + RunCmd + other info + multi-line exceptions in same file
 - really painful parsing
- Huge json validating hv kvm lines in logs
 - node-daemon.log is chaotic
- Sometimes INFO is too talkative w/o being informative for the operators
 - notable example is wconf-daemon.log
- JobFile with subjobs parsing
 - A job with subjobs writes the json of the completed subops constantly on a new event. Anyone who monitors the file gets "duplicate" entries.
 - [Feature req] Separate the jsons of each subjob or split to different file

node-group awareness

A node needs to know its node-group so to expose it to puppet and get from Hiera the proper storage backend

- Our implementation: cron in cluster master writes a file to each node via ssh (meh)
 - Time to use ConfD maybe

Clearing OS parameters

- Cannot re-install VM using different OS provider because of different image properties
 - [Feature req] Remove image properties
 - [Feature req] Optional reset of image properties on reinstall

Our TODO list

- RBD ExtStorage Driver
 - Bypass Ganeti's pipeline that needs an existing block device
 - Flexibility
- Unfork/rename snf-* Ganeti-related packages
 - Make them easier to be used by vanilla Ganeti setups
 - Make them more open → get more contributors
- Public image directory to be used by snf-image installations
- cgroups
 - We need resource pools, at least for I/O and CPU
- Accounting
 - Better/More precise resource usage statistics
 - Take advantage of monitoring-daemon

Most needed features

- Many clients ask for small-fast OS disk and huge-slower data disk
 - If we give them two slow disks they are not happy
 - If we give them two fast disks we are not happy
- Instance with multiple disks from different pools of the same storage backend
 - Multiple DRBD on different VGs works (metavg though...)
 - Multiple NFS pools with ExtStorage should work
- Instance with multiple disks from different storage backends
 - much much needed
 - DRBD for OS + NFS/RBD for data?:)
- We're still waiting for gnt-disk and macvtap support to be finalized/reviewed/merged...

Thank you! Questions?