学院	姓名	学号	任课老师	张晓伟	考场教室	选课号/座位号
	密	封线	·以······内	答·		······效······

电子科技大学 2014-2015 学年第 <u>1</u> 学期期 <u>末</u> 考试 <u>B</u> 卷

课程名称: <u>最优化方法</u> 考试形式: <u>闭卷</u> 考试日期: 20<u>14</u>年 <u>12</u>月 <u>29</u>日 考试时长: <u>120</u>分钟 课程成绩构成: 平时 <u>30</u>%, 期中 <u>%</u>, 实验 <u>%</u>, 期末 <u>70</u>% 本试卷试题由 <u></u> 部分构成, 共 <u> 页</u>。

题号	_	=	Ξ	四	五	六	七	八	合计
得分									

注意: 试卷中 $X \in R^n$, $b \in R^n$, $c \in R$, $B = B^T$.

一、(10 分) $m{D}\subset m{R^n}$ 是凸集的充要条件是 $m{D}$ 中任意 $m{m}$ 个点 $m{X^i}(m{i}=1,\cdots,m{m})$ 的凸组合 仍属于 $m{D}$ 。

得分 二、(15 分)证明方程组 $(B + \mu I)X = -b$, $\|X\|_2 = \rho$. 的解是约束优化问题 min $q(X) = \frac{1}{2}X^TBX + b^TX + c$, $s.t. \|X\|_2 \le \rho$. 的最优解。这里, $\rho > 0$, $\mu > 0$,

 $\boldsymbol{B} + \mu \boldsymbol{I}$ 半正定。

学院	姓名	_学号	任课老师	张晓伟	考场教室	选课号/座位号
	密	·封······线······	·以······内	答	题无	·····效······

得 分

三、(15分)考虑线性规划:

$$\begin{split} \max & \ \, \boldsymbol{x}_1 - 2\boldsymbol{x}_2 + \boldsymbol{x}_3 \\ s.t. & \ \, \boldsymbol{x}_1 + \boldsymbol{x}_2 \leq 6 \\ & \ \, \boldsymbol{x}_1 + \boldsymbol{x}_3 \leq 12 \\ & \ \, 3\boldsymbol{x}_2 + \boldsymbol{x}_3 \leq 6 \\ & \ \, \boldsymbol{x}_i \geq 0, \, i = 1, 2, 3. \end{split}$$

(1) 写出上面线性规划的对偶线性规划;(2)用单纯形法求解上面线性规划的最优解。

学院	姓名	_学号	任课老师	张晓伟	考场教室	_选课号/座位号
	密	·封·······线······	以内	·······答·	题无	

四、(10分)用牛顿法求解下面问题,这里 $X^0 = (0,1)^T$ 。

 $\min \ {\pmb f}({\pmb X}) = ({\pmb x}_1 - 3)^2 + (2{\pmb x}_1 - {\pmb x}_2)^2.$

得分 五、(15 分)用 FR 共轭梯度法求解 $\min f(X) = x_1^2 + 2x_2^2$ 的最优解,这里

 $\pmb{X}^{\mathsf{0}} = (5,5)^{\pmb{T}}$.

得 分

学院	_姓名	_学号	_任课老师	张晓伟	考场教室	选课号/座位号
	密	·封······线······	以内	答	题	·无·······效······

 $x^2 \geq 0$

 $x+1\geq 0$

得分 七、(10分)考虑约束优化问题

 $\begin{aligned} & \min & \ \, \boldsymbol{f}(\boldsymbol{X}) = -\boldsymbol{x}_1 + \boldsymbol{x}_2 \\ & \boldsymbol{s.t.} & \ \, \boldsymbol{c}_1(\boldsymbol{X}) = -\boldsymbol{x}_1 - 2\boldsymbol{x}_2 + 2 \geq 0 \\ & \ \, \boldsymbol{c}_2(\boldsymbol{X}) = \boldsymbol{x}_1 \geq 0 \\ & \ \, \boldsymbol{c}_3(\boldsymbol{X}) = \boldsymbol{x}_2 \geq 0 \end{aligned}$

(1) 分别确定在 ${m X}^1=(0,0)^{m T}$, ${m X}^2=(0,1)^{m T}$ 处的可行方向; (2) 求出这些点处的下降可行方向,并