Shallow Parsing, Named Entities, and Machine Learning

Adam Meyers
New York University

Outline

- Shallow Parsing
- What is a Named Entity?
- Converting Shallow Parsing Tasks to Sequence Labeling Tasks (like POS tagging)
- Applying Machine Learning Packages to Sequence Labeling Tasks

Shallow or Partial Parsing

- Finding constituents in a sentence, but not parsing the whole sentence
- Shallow Parsing identifies "short phrases":
 - Noun Group and Verb Group Chunking
 - NE tagging
 - Identifying Time Expressions
 - Identifying other phrases in text

What is a Named Entity?

- Definition 1: A single or multi-word expression that meets any of the following criteria:
 - is a proper noun phrase phrase
 - Adam L. Meyers, PhD.
 - Professor Meyers
 - *New York University*
 - is a proper adjective phrase, e.g., Latin American
 - has external distribution of NP, but different internal structure
 - January 3, 2012
 - Five Hundred Thirty
 - waffles@cs.nyu.edu
- Definition 2: A class of words and multi-word expressions defined by specifications tuned to information extraction tasks (can conflict with 1 by including "normal" nouns)
 - http://nlp.cs.nyu.edu/ene/ is a large NE hierarchy following definition 2.

Annotating Names in Sample Documents

- Sample Documents to be annotated with Mae with name.dtd
 - State of the Union addresses by Obama and Trump
 - Einstein's Theory of Relativity
- Named Entity Definitions
 - GPE = location with government or set of GPEs
 - PER = person or set of people
 - ORG = organization, club, society, etc. set of people with (governing)
 structure
 - Other = Word sequence widely recognized as name (not a good definition)
- Attempts at annotation of samples illustrate:
 - Difficulty of applying these criteria
 - Suggests need for more detailed specifications
 - Specifications may be influenced by goal of research, e.g., is the "name" of a scientific theory a type of "name"?

What is a Proper Noun (Phrase)?

- Definition: A name of something that is (in English) capitalized even in non-initial position, typically representing a unique individual object. Proper nouns don't typically take determiners.
- What's unique?
 - Is *Adam Meyers* a proper NP even though there are more than one person with that name?
 - Are *Thursday* or *September 3* proper NPs even though there are more than one instance of these days?
 - What about car models such as the *Fiesta* which represent a type of objects rather than a specific object?
 - Color terms, e.g., azure, salmon, peach, ... identify unique types, just like car models, yet they are not technically proper nouns
- Capitalization can be inconsistent
 - fields of study (like *computer science*) are capitalized inconsistently
 - different languages use different capitalization conventions

Internal Structure of Person Names

- NP → First_Name
- NP → (TitleP)?(First_Name)? (Middle_Name|Initial)?Last_Name (Post_Honorific)?
- TitleP \rightarrow (Mod)* Title
- Mod → vice | assistant | assist. | deputy, ...
- Title $\rightarrow Mr$. | Ms. | Mrs. | Miss | Master | Dr. | President, ...
- First_Name → Adam | Jenny | Joshua | Nurit | Giancarlo | Ralph | Cristina | Satoshi | Heng | Xiang | Shasha | Wei | Ang | Bonan | ...
- Last_Name → Meyers | Matuk | Lee | Grishman | Mota | Sekine | Ji | Li | Liao | Xu | Min | ...
- Post_Honorific \rightarrow Esq. | Jr. | Sr. | I | II | III | PhD. | ...
- Note: specifications vary about whether titles and Post_Honorifics are or are not part of the name (ACE excludes titles, but includes post-honorifics)

Structure of Organization/Location/... Names

- Many Different Structures Possible
 - Advanced Micro Devices (ORG, normal NP)
 - Council of Indian Nations (ORG, normal NP)
 - Yucatan Pennisula (LOC, normal NP)
 - United States of America (GPE, normal NP)
 - *Ford Motors, Inc.* (ORG, NP plus right modifier)
 - Alcoholics Anonymous (ORG, NP plus right modifier)
 - Head, Heart, Hands, Health (list of nouns)
 - Alfac (ORG, newly coined single word)
 - Addis Abba (GPE, two foreign words)
 - Merrill Lynch (ORG, Person name structure)
 - Nobody Can Beat the Wiz (ORG, normal S)
 - Hi Ho (SONG, idiom)
- Unambiguous (like fixed phrases)
 - Name of ORG: Advanced Micro Devices (Advanced modifies Devices)
 - [Advanced biology] textbook vs. Advanced [biology textbook]

Some Other Entities

- Numbers and Quantities
 - twenty five thousand, five hundred fifty eight
 - \$200 million
- Times and Dates (not always names)
 - January 3, 2011
 - Ten o'clock
 - -10:30
 - last Thursday
 - St. Valentine's Day
- Addresses (street, email, url, ...)
 - 1313 Mockingbird Lane, New York, NY 10003
 - hm1313@cs.nyu.edu
 - http://nlp.cs.nyu.edu/people/meyers.html

Computational Linguistics
Lecture 6
2018

ACE Named Entities

- ACE Specifications online (name mentions only)
 - https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-entities-guidelines-v6.6.pdf
- GPE location with a government
 - city, state, county, country
 - people, physical location, government
 - US, New York City, Queens, Greenwich Village
 - The US attacked Sweden
 - The US likes quacamole
 - The US is in North America
- Location geographical location
 - lake, mountain, natural structure
 - Hudson River, Mt. McKinley, the Grand Canyon

ACE Named Entities 2

- Facility man-made structure
 - bridge, street, building
 - The Brooklyn Bridge, 12 Street, The Forbes building
- Person person or group of people
 - Adam Meyers, The Smiths (meaning a group of people with the last name Smith)
- Organization group of people with structure
 - commercial, government, club, non-profit
 - New York University, the Glee Club, the NYU Fencing Team, New York Police Department, Alphabet, Inc., Google, Inc., The Dungeons and Dragons Club

The ACE Task

- 2000-2008 Government-sponsored shared tasks (or bake-offs)
- Full Entity task
 - Annotation of mentions
 - Names, common noun, pronoun phrases that fall into the semantic classes (ultimately a superset of previous slide)
 - Coreference
 - Entity = Sets of mentions that refer to the same thing
- Other tasks
 - Relations: between two entities
 - located, part-whole, family, employment, ...
 - Events: entities are arguments of predicates
 - Movement, attack, be_born, marry, die, business_merge, declare_backruptcy, ...
- Languages: English, Chinese, Arabic, (plus limited Spanish)

Some Historical Notes

- Before ACE, NEs were introduced in 1995 as part of the MUC6 government task
 - http://www.cs.nyu.edu/cs/faculty/grishman/muc6.html
- The ACE task and several other NE tasks extended MUC6 in various ways.
- Other NE tasks, both government and SIG sponsored:
 - CONLL 2002-2003: English, Dutch, German, Spanish
 - IREX 1998-1999: Japanese (co-chairs: Sekine at NYU and Isahara at CRL)
 - SIGHan 2006: Chinese
 - TAC/KBP 2009 Present: English (NIST)
- For NE for final projects
 - NYUClasses (Resources) or Linguistic Data Consortium

BIO Tagging and HMM

- HW 3 used an HMM to identify POS tags
- Property of POS tagging:
 - Each token has exactly one Tag
- BIO Tags (see also limits_of_sequence_labeling slides)
 - Provide a way to analyze short phrases using one tag per token
 - Example with Noun Group Identification
 - The/B-NG blue/I-NG book/I-NG is/O in/O the/B-NG box/I-NG ./O
 - BGs from annotated sentence: "*The blue book*" & "*the box*"
 - B-X = Beginning X, I-X = Inside X, O = Outside of constituent (or other)
 - Tags can be specific to phrase type: B-Per, I-Per, B-GPE, I-GPE, ... etc.

More Examples of BIO Tags

- NE Annotation:
 - Adam/B-PER Meyers/I-PER is/O at/O New/B-ORG York/I-ORG University/I-ORG ./O
- Noun Group Chunking:
 - He/B-NG teaches/O NLP/B-NG in/O the/B-NGDepartment/I-NG of/O Computer/B-NG Science/I-NG ./O
- Time Expressions
 - It/O was/O 10/B-TMP o'clock/I-TMP on/O Saturday/B-TMP.
- Typically, only 1 task is covered at a time

Shallow Parsing as Sequence Labeling

- POS tagging is a sequence labeling task
 - Assigning labels to tokens in a sequence
- We used an HMM for POS tagging
 - HMM uses the following "features" to predict POS:
 - Previous POS
 - Current word
- BIO tags (like POS) are labels on individual words
- Can we use an HMM or something like it to predict BIO tags and therefore short phrases?

Features that May Predict Short Phrases

- Previous BIO Tag
- Word Related: Previous word (or Beg_Sentence), 2 words previous, Current Word, Following Word (or End Sentence), 2 words ahead, etc.
- Previous POS, POS of 2 words previous, Current POS, Next POS, etc.
- Captial or lowercase properties, last letter of current word, class in dictionary class, member of word list, etc.

Can we use lots of features in an HMM, like our POS tagger?

- Nymble: an HMM-style NE tagger
 - Replaces words with sets of features about orthography
 of word, e.g., TwoDigitNum, ContainsDigitandAlpha, allCaps, firstWord, initCap, ...
 - Different probabilities for beginning, ending and inside elements of NE differently
 - OOV model based on 20% sample from corpus
- Bikel, et. al. (1996). *Nymble: A High-performance Learning Name-finder*. in ANPL 1997

If Lots of Evidence, Do Machine Learning

- Suppose you want to combine lots of features together and take advantage of any correlation to predict outcomes
- Methods for doing this fall into the area called machine learning
- HMM (and Nymble's approach) are ways of doing machine learning, but now we will discuss machine learning more generally
- Algorithm Used for Homework 5: *Maximum Entropy*
- Supervised or Unsupervised
 - Supervised: Methods in which statistical models are "trained" based on manually annotated text.
 - We will focus on these.
 - Unsupervised: Methods in which statistical models are based on assumptions about un-annotated data
 - Semi-supervised: Methods that combine supervised and Unsupervised

High Level Description of Supervised ML

- Input = Data correctly annotated with observable set of features
 - Training Corpus
 - Development Corpus
 - Test Corpus
- Machine Learning Algorithms
 - Methods for combining evidence and making predictions
- Tookits for Multiple Machine Learning Algorithms
 - JAVA
 - OpenNLP maxent package: http://maxent.sourceforge.net/howto.html
 - Default for HW5
 - WEKA: http://www.cs.waikato.ac.nz/ml/weka/
 - MALLET: http://mallet.cs.umass.edu/
 - Python
 - NLTK's classication package (Chapter 6)
 - Scikit-learn: http://scikit-learn.org/stable/

Making and Tuning ML Systems

- Experiment with Different ML Algorithms
 - Use the same set of features
 - Toolkits make switching easy
 - May help to understand differences between algorithms
 - Speed/complexity → limit size of training data
 - Assumptions about Feature Independence
 - Tweaking features, making new algorithms and making new more efficient versions of current ML algorithms
- Experiment with Different Sets of Features
 - Keep algorithm fixed
 - Vary features
 - Easy to explain success if you use features that can be expected to make a prediction
 - May be more effective to use as many features as possible (regardless of expectations)
 - When these systems work, it cannot always be explained why
- Possible to make an excellent ML system while treating algorithms as black boxes

Regression Analysis (Used in many ML Algorithms)

- Represent features as dimensions in a graph
- Approximate correlations using a figure with fewer dimensions
- 2 dimensions/features approximate with a line (a 1 dimensional representation)
 - 1 feature "predicts" the other, e.g., height predicts shoe size
- 3 dimensions/features
 - approximate with a plane (2 dimensions) or
 - 2 features (height and age) predicts a 3rd feature (shoe size)
 - a line (1 dimension)
 - 1 feature (age) predicts 2 features (height and shoe size)
- Correlations Used to Predict Values in ML

Scatter Plot for 2 Features approximated by Regression Line:

Scatter Plot with 3 features approximated with a Regression plane

Machine Learning Algorithms

- Naive Bayes: Assumes that all features are independent of each other. Basically the probabilities of features in each category are multiplied together.
- Maximum Entropy: Combines features using weights that are adjusted via "smoothing".
 - Normalizes result to a number between 0 and 1.
 - MEMM: Viterbi algorithm w/ Maximum entropy
- Other "traditional": Support Vector Machines,
 Regression, Kernels, Conditional Random Fields, etc.
- Deep Learning: CNN, RNN, ...

Summary

- Named Entities: Classifications of names and sometimes other special noun phrases
- BIO Tags: Encoding Phrases as tags on tokens
- Supervised Machine Learning: Means of predicting a class in test data, given observed co-occurring features in training data

HW 5

- https://cs.nyu.edu/courses/spring23/CSCI-UA.0480-057/homework5.html
- Due night of the 7th (Graduate) or 15th (Undergraduate) class

Final Project (Undergraduate): Chunking

- Extend Methods in HW 5
 - Experiment with more ML algorithms
 - Versions of MEMM
 - Experiment with feature combinations
 - Incorporate Word Embeddings?
- Extend to additional types of Chunks
 - Extend Dataset start with full parsed Penn Treebank and determine Chunks heuristically
 - Verb Groups, Preposition Groups, etc.
- Compare with previous work (cite)
- Evaluation
 - Split into training, development test
 - Use similar scoring as HW5

Final Project: Build a NE Recognizer (Undergraduate)

- Use an annotated data set (e.g., ACE, BioNLP)
- Divide data into training, development & test sets
- Carefully orchestrated experiments to test
 - Different ML algorithms with same/similar features
 - Test particular features
 - Use manual rules
- Compare your work to cited work (academic papers)
- Do error analysis on your development set
 - Try to explain results and suggest ideas for future work

Final Project (Undergraduate): Annotation

- Choose corpus
 - Licensing considerations
 - How do NEs apply to this data?
 - Research Questions: NEs in particular genre or NEs for a particular task
- Write specifications → test specifications → repeat
 - More than 1 annotator
 - Test for inter-annotator agreement
- Compare work to previous (cited) work
- Who will annotate:
 - expert annotators (NLP students)?
 - crowd source (Amazon Turk)?
- Pilot Project may not have time for lots of annotation (unless Crowd Source)
- Evaluation:
 - inter annotator agreement
 - Precision and Recall vs. Adjudicated Results

Computational Linguistics
Lecture 6
2018