

DAC600

DEMO BOARD AVAILABLE

12-Bit 256MHz Monolithic DIGITAL-TO-ANALOG CONVERTER

FEATURES

- 12-BIT RESOLUTION
- 256MHz UPDATE RATE
- ◆ ~73dB HARMONIC DISTORTION AT 10MHz
- LASER TRIMMED ACCURACY: 1/ZLSB
- -5.2V SINGLE POWER SUPPLY
- **EDGE-TRIGGERED LATCH**
- LOW GLITCH: 5.6pVs
- WIDEBAND MULTIPLYING REFERENCE INPUT
- 50Ω OUTPUT IMPEDANCE

DESCRIPTION

The DAC600 is a monolithic, high performance digital-to-analog converter for high frequency waveform generation. The internal segmentation and latching minimize output glitch energy and maximizes AC performance. Resistor laser trimming provides for excellent DC linearity.

The ECL compatibility provides for low digital noise at high update rates. The complementary 50Ω outputs and low output capacitance simplifies transmission line design and filtering at the output.

The DAC600 combines precision thin film and bipolar technology to create a high performance, cost effective solution for modern waveform synthesis.

APPLICATIONS

- DIRECT DIGITAL SYNTHESIS
- ARBITRARY WAVEFORM GENERATION
- HIGH RESOLUTION GRAPHICS
- COMMUNICATIONS LOCAL OSCILLATORS
 Spread Spectrum/Frequency Hopping Base Stations
 Digitally Tuned Receivers

international Airport Industrial Park - Mailing Address: PO Box 11400, Tucton, AZ 85734 - Street Address: 8730 S. Tucton Bird., Tucton, AZ 85706 - Tel: (\$20) 748-1111 - Ten: 910-452-1111 - International Park - Mailine: (\$100) \$48-6133 (US/Canada Only) - Cable: (\$100) \$48-6132 - FAX: (\$20) \$48-6136 - FAX: (\$

SPECIFICATIONS

ELECTRICAL

At +25°C V_{REF} = +1.0V, V_{EEA} = V_{EED} = =5.2V, unloss otherwise noted.

PARAMETER	CONDITIONS	TEMP	MIN	DACGOO!	MAX	MIN			
DIGITAL INPUTS		1 55,000	- HUN	1 112	MAX	MIN	TYP	MAX	UNIT
Logic	12 Parallel Input Lines, ECL		1	ľ		ı			1
Resolution	Habit Philos, COE			1	40	l	i	1	
ECL Logic input Levels: Vit.	Lonic "O"	Full	-1.48	-1.85	12	Ι.	1 .	##	Bils
In.	1	Full	71.70	71.83	2	*	*	*	V
v _™	Logic "1"	Full	-1.1	-0.75			1 .	*	JIA.
4 4	La Sancia	Full	-1.1	-0.75	0	*	18	**	v
DIGITAL TIMING		1 100		ļ	200			神	μΑ
Input Data Rate	1	1		1		1			
CLK Pulse Width High or Low		Full	DC		258	#		*	MHz
Sel-up Time	1	Full	1.95	١	1	*	ł		ns
Hold Time (Referred to CLK)	1	Full Full	1.5	1.0	İ	*	*	ļ	ns
Propagation Delay	l .	Full	1.9	1.7	i	741	*		กร
ANALOG DUTPUT		FUI	<u> </u>	2	<u> </u>		#		ns.
Bipolar Output Current		l	l .	1					
Output Resistance	R ^r → 0Ω	Full	19	20	21	**	±±	15:	mA
Output Capacitance		Full	47.5	50	52.5	49	#	51	Ω
CONTROL AMPLIFIER		Full	<u> </u>	15	j	i .	12:	1	PF.
Input Resistance	1			1			Γ	1	
Full Power Bandwidth		Full	į .	800	}	1	#	1	م ا
Officel	-340	Full	Ì	10		l	*	I	MHz
Input Reference Range		+25°C		0	±1	l	Ö	±0.5	mv
		Full	100mV		±1.25	*	1	*	v
TRANSFER CHARACTERISTICS	l ———	1					1	$\overline{}$	<u> </u>
Integral Linearity Error ⁽¹⁾ : V _{OUT NOT}	Best Fil Straight Line	+25°C	l	±0.012	±0.024		±0.006	±0.012	4
V _{OUT NOT}	1	Full .		±0.024	+0.036		±0.012	±0.012	%F68
Vout	}	+25°C		10.01	±0.1		10.012	±0.1	%FSF
Differential Linearity Error(1): VOLT NO	i	+25°C	}		±0.024			±0.1 ±0.012	%FSF
V _{OUT NOT}		Full	l	l	±0.038		ì	±0.024	%FSF
V _{DUI}		+25°C	l	1	±0.1%		ſ	±0.1%	%FSF
12-Bit Monotonicity		+25°C	1 .	Suarantee			i Guaranteed		761-51
		Full		Typical	•		Guaranteed		
Output Offset Current: Vour HOT	Bila 1-12 HiGH	+25°C		75	1 150		50	l 100	μΔ.
V _{OU7 NOT}		Fui		57	150		50	100	μA
Gain Error ⁽²⁾		+25°C		±0.5	±1.5		±0.5	±1.0	36
		Full		±1.3	±2.0		±1.1	±2.0	%
Output Leakage Current	VALEY OV, BIRS 1-12 LOW, VOLT NOT	+25°C		10	75		5	50	μÃ
TIME DOMAIN PERFORMANCE									
Glitch Energy	Мајог Свлу	+25°C		5.6			*		ρVs
Fall Time	90% to 10%	+25°C		510			**		pvs
Rise Time	10% to 90%	+25°C		770			*		D8
Settling Time(7)					i !				Po
±0.1% FSR	Major Carry, 1 LSB Change	Fu≎		4			28		na.
±0.024% FSR		Fut		15			*		ПВ
DYNAMIC PERFORMANCE	-								110
Spurious Free Dynamic Range (4)			į						
6 = 1MHz	T _{GLOCK} ₩ 50MHz	+25°C		74		70	77	I	dBFsp
fo = 10MHz	f _{GLOCK} = 50MHz	+25°C		71		64	73	I	dBFS
(o = 1MHz	fcapcx = 100MHz	+25°C		72	1	70	75	l	dBFS
to = 10MHz	f _{CLOCK} = 100MHz	+25°C		68	- 1	66	70	- 1	d8FS
(_o = 20MHz	f _{closex} = 100MHz	+25°C		61	- 1	58	82	i	dBFS
to = 10MHz	f _{CLOCK} = 200MHz	+25°C		33		66	70		dBFS
(₀ = 20MHz	f _{C2.00K} = 200MHz	+25°C		58		62	67]	dBF\$
fo + 50MHz	falock = 200MMz	+25°C		52	Į.	50	55	I	dBFS
Output Noise	Bits 1-12 HIGH	+25°C	1	10.6			*	- 1	nVNH2
POWER SUPPLIES									
Supply Voltages; V _{EE}	l	Full	- 4,5	-5.2	-6.5	ж	*	أيد	
Supply Currents: I _{EEA}	Pins 33 and 34	Full	30	48	80	*	*	*	
leep	Pins 5 and 55	Ful)	110	150	190	**	1		mA
Power Consumption	Operating	Fut	'	800mW	1.3	Ψ	*	*	mA
TEMPERATURE RANGE				5501111			#	-	w
Specification: DAC600AN, BN	Amblent	Futi	⊸ 0	- 1			- 1		
θ ₁ Α	Annan II	rus	→0	30	+85	#		*	-CW

it Same as specification for DAC600AN.

NOTES: (1) Linearity tests are measured into a virtual ground (op pmp). (2) Gain error in % is calculated by: GE (%) =
\[
\frac{V_{NEARURED}}{V_{IDEAL}} \frac{(FS) - V_{IDEAL}}{(FS)} \times 100
\]

(3) Settling time is influenced by the load due to fast edge speeds. Use good transmission line techniques for best results. (4) Spurious free dynamic range is measured from the fundamental frequency to any harmonic or non-harmonic spurs within the bandwidth folial values otherwise specified.

ORDERING INFORMATION

T		
PRODUCT	DESCRIPTION	TEMPERATURE RANGE (AMBIENT)
DAC600AN, BN	68-Pin Plastic QUAD	-40°C to +85°C

ABSOLUTE MAXIMUM RATINGS

V	
Vera U.3 to	-7
——————————————————————————————————————	
A COLUMN TO THE PARTY OF THE PA	
TOTAL OF THE PROPERTY AND THE PROPERTY A	
Case Temperature	TIA
Junction Temperature	°C
Storage Temperature+150	-C
Last Temperature (netded - 401	·C
Lead Temperature (soldering, 10x)+300	rC
Stresses above these ratings may permanently demans the device	

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER(!)
DACGODAN, BN	68-Pin Plastic QUAD	312-1
NOTE: (1) Eas date		1 4/2-1

NOTE: (1) For detailed drawing and dimension table, please see end of data short, or Appendix C of Burr-Brown IC Data Book.

PIN DEFINITIONS

PIN#	DESIGNATION	DESCRIPTION	PIN#	DESIGNATION		
1	DYPASS	Disables Latching of Date	35		DESCRIPTION	
2	CŁK	CLOCK		V _{REP2}	Analog Reference Voltage Center Top	
3	CLIONOT	CLOCKNOT	36	NC NC	1	
4	DGND	Digital Ground	37	NC		
5	DVEE(1)	-5.2V Supply	38	V _{Rdr}	Analog Reference Voltage	
8	Bit 9	-3.2V Supply	39	VREF	Analog Reference Voltage	
7	Bh 10	1	40	NÇ	-ar vivialion vollaga	
8 1	Bh 11		41	NC		
9	Dit 12	LSB	42	ROPPEET	Ottset Compensation	
10	NC	LSB	45	NC		
11	NC	1	44	Bypass	0.1µF Bypasa to Ground	
12	NC	1	45	NC		
13	Vout	2122	48	NC	}	
14	V _{OLI7}	DAC Output	47	ALTCOMPC	Control Amp PTAT Reference Compensation	
15	LGND	DAC Output	48	AGND	Analog Signal Ground	
16	LGND	Ladder Ground	49	NC	Aum Solding Glocing	
17		Ladder Ground	50	LDIAS	Loddor Blog Attomate Communication	
18	Voutnot	DAC Output Complement	51	NC	Lndder Blas Alternate Compensation(2)	
19	VOUTHOT	DAC Output Complement	62	NC	İ	
20	NC .	1	53	NC	İ	
21	AGND	Analog Ground	54	Bit 1		
22	-NC	1	55	DVer	MSB	
23	NC	1	56	CHADO	Digital -5.2V Supply	
24	NC		57	DGND	Digital Signal Ground	
25	NC	<u>j</u>	58	Bit 2	Digital Signal Ground	
	NC		59	BH 3		
28	BYPASS	0.1µF Dypass to Ground	60	Bit 4		
27	NC		61	NC		
28	ALTCOMPIB	PTAT-IB Reference Compensation(2)	62	Bh s		
29	AGND	Analog Ground	63	DGND		
30	AGND	Analog Ground	84		Digital Ground	
31	NC	1	65	Bit 6		
32	LOOPCRNT	DAC Reference Alt. Loop Current	68	Bit 7		
[(Connect to AGND)	67	DGND	Digital Ground	
33	V _{EE} (≀ı	-6.2V Supply	68	Bit 8		
34	∧ <mark>e⊭</mark> u)	~5.2V Supply	50	NC		

NOTE; (1) Pins 5 and 55 typically draw 150mA of current, Pins 33 and 34 combined typically draw 46mA. (2) Connect bypese cepediar to V_{EE}.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for insecuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to enty of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or womant any BURR-BROWN product for use in life support devices and/or systems.

DICE INFORMATION

DAC600 DIE TOPOGRAPHY

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS		
Die Size Die Thickness Min. Ped Size	160 x 140 ±5 20 ±3 4 x 4	4.08 x 3.58 ±0.13 0.51 ±0.08 0.10 x 0.10		
Backing Motelitzation	Gotd Gold			

PAD	FUNCTION	PAD	FUNCTION		
1	Bypass	36	NC		
2	CLK	37	Vitter		
3	CLKNOT	38	Vace		
4	DGND	39	NC		
5	DVee	40	NC.		
6	Bh s	41	Roffzei		
7	NC	42	NC		
8	B# 10	43	NC		
9	BN 11	44	NC		
10	Bit 12	45	NC.		
11	Vour	48	ALTCOMPC		
12	Vour	47	AGND		
13	LGND	48	NC		
14	LGND	49	LBIAS		
15	Voutnot	50	NC NC		
16	VOUTNOT	51	NC		
17	NC	52	NC		
18	AGND	53	Bit 1 (MSB)		
19	NC	54	DVEE		
20	NC	55	DGND		
21	NC	58	DGND		
22	NC	57	Bit 2		
23	NC	58	DH 3		
24	NC NC	59	Bit 4		
25	NC I	60	NC I		
28	NC	01	NC		
27	ALTCOMPIB	62	· NC		
28	AGNO	63	Bit 5		
29	AGND	64	DGND		
30	NC	85	Bit 6		
31	LOOPCRNT	66	Bit 7		
32	AVEE	87	DGND		
33	AVGG	68	DHA		
34	Vicerz	69	NC		
35	NC				

Substrate Blas: Negative Supply =V_{CC}-NC = Do not connect.

TYPICAL PERFORMANCE CURVES

At Tobe = *25°C, V_{REF} = +1.0V, measured at V_{OUT NOT}. Spurious free dynamic range includes all harmonic or non-harmonic apure in the bandwidth f_{OLX}/2, unloss otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

AlT_{Cuts} × +25°C, V_{ret} = +1.0V, measured at V_{ournor}. Spurious free dynamic range includes all harmonic or non-harmonic spurs in the bandwidth f_{our}/2, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

At Trace = +25°C, Vher = +1.0V, measured at Vour Not. Spurious free dynamic range includes all harmonic or non-harmonic spurs in the bandwidth (cur/2, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

At $T_{CASE} = +2.5^{\circ}C$, $V_{REF} = +1.0V$, measured at $V_{OUT\ NOT}$. Spurious tree dynamic range includes all harmonic or non-harmonic spurs in the bandwidth $t_{CLK}/2$, unless obtain.

V_{REF} Amplitude +0.75V DC 100mVp-p AC (All Bits on, 47pF Pin 35)

THEORY OF OPERATION

The DAC600 employs a familiar architecture where input bits switch on the appropriate current sources (Figure 1.) Bits 1-4 are decoded into 15 segments after the first set of latches. The edge triggered master-slave latches are driven by an internal clock buffer. Current sources for bits 5 and 6 are scaled down in binary fashion. These current sources are switched directly to the output of the R-2R ladder. Bits 7-12 are properly scaled and fed to the laser trimmed R-2R ladder.

Decoding of bits 1-4 into 15 segments and synchronizing the data with a master/slave register reduces glitching. If the BYPASS input is low, data is transferred to the output on the positive going edge of the clock. If BYPASS is high, data is transferred to the output regardless of clock state. All digital inputs are ECL compatible.

The output current sees 50Ω of output impedance from the equivalent resistance of a R-2R ladder. With all of the current sources off, the output voltage is at 0V. With all current sources on (-20mA), the output voltage is at -1V. Transfer function information is given in Tables I and II.

FIGURE 1. Basic DAC600 Architecture.

INPUT BITS											OUTPUT VOLTAGES		
1	2	3	4	5	6	7	8	9	10	11	12	Volt	NV _{OUT}
٥	0	0	0	0	0	٥	۵	0	Q	O	0	ov.	-0.999758V
a	0	Đ	0	0	0	0	0	0	0	٥	1	−244μV	0.999512V
•													
٠													
•													
1	0	0	0	Ô	0	0	0	0	0	0	0	-0.5	-0.499756
1	1	1	1	1	1	1	1	1	1	1	1	-0.999756V	0

TABLE I. Input Code vs Output Voltage Relationships.

BIT	VOLTAGE (No External Load, Vour)
1	-0.5
2	-0.25
3	-0.125
4	-82.5mV
5	-31.25mV
8	-15.825mV
7	-7.8125mV
8	~3.9063mV
9	-1.9531mV
10	– 9 76μ∨
11	-488μ∨
12 (LSB)	–244µV

TABLE IL Nominal Bit Weight Values.

There is also a complementary $V_{OUT\ NOT}$ output that allows for a differential output signal. The full scale complementary outputs (V_{OUT} and $V_{OUT\ NOT}$) can be simply modeled as -20mA in parallel with 50Ω . This gives an output swing of 0.5Vp-p with an external 50Ω load.

REFERENCE/GAIN ADJUSTMENT

The V_{RIP} pin should be supplied by a +1.0V reference that is capable of supplying a nominal current of 1.25mA. An alternative would be the use of a 1.25mA current source. A low drift reference will minimize gain drift. A recommended reference circuit is given in Figure 2 as shown in the Typical Performance Curves, lowering the reference voltage to +0.8V will typically improve the Spurious Free Dynamic Range by a few dB.

FIGURE 2. A Low Drift External Reference Circuit.

A low-cost alternative reference circuit is shown in Figure 3. This circuit uses the Burr-Brown REF1004-2.5 micropower voltage reference. Gain drift is dependent upon the temperature coefficient of the $1.2 \mathrm{k}\Omega$ resistor. A TC of < 10ppm/°C is recommended.

FIGURE 3. Low Cost External Reference Circuit,

DAC600

The DAC600 can also accept a wideband multiplying reference input. The full power bandwidth of this reference is approximately 30MHz. Care must be taken not to exceed the minimum and maximum input reference voltage levels which are 100mV and +1.25V respectively (refer to the absolute maximum ratings section). In the multiplying reference mode, the $0.4\mu F$ bypass capacitor on LBIAS and the $0.1\mu F$ on pln 35 need to be removed. A 47pF capacitor to ground needs to be connected to pin 35 (Figure 4.)

FIGURE 4. Connections for a Multiplying Reference Input.

TIMING

The DAC600 has an internal latch that is triggered on the rising edge of the clock when the BYPASS pin is set LOW. This master-slave mode of operation will assure that the 12 bits will arrive at the current sources with a minimum of data skew. Therefore, this mode is recommended for the vast majority of applications. Observing the minimum set-up and hold time recommendations will ensure proper data latching, refer to Figure 5 for complete timing specifications.

When BYPASS is set HIGH, the DAC600 will operate in the transparent mode. In this mode, both the master and slave registers are transparent and changes in input data ripple directly to the output. Since the four MSBs have a decoder delay, these bits arrive at the output approximately 600 picoseconds later than the lower 8 LSBs. Because this data skew causes glitch, this mode is not recommended for optimum AC performance.

The DAC600 has a differential ECL clock input. This clock input can also be driven by a single ended clock if desired by trying the CLKNOT input to an external voltage of -1.3V. Using a differential clock provides much improved digital feedthrough immunity, however.

DRIVING THE DAC600

The DAC600 inputs will most likely be driven by high speed ECL gate outputs. These outputs should be terminated using standard high speed transmission line techniques. Consult an ECL handbook for proper methods of termination.

Termination resistors should not be connected to the analog ground plane close to the DAC600. The fast changing digital bit currents will cause noise in the analog ground plane under this layout scheme. These fast changing digital currents should be steered away from the sensitive DAC600

FIGURE 5. Timing Diagram.

annlog ground plane. For speeds of up to 256MHz, series termination with 47Ω resistors will be adequate (Figure 6). This termination technique will greatly lessen the issue of termination currents coupling into the analog ground plane. This is shown in the typical DAC600 connection diagram (Figure 7.)

FIGURE 6. Series Bit Termination.

LAYOUT AND POWER SUPPLIES

A multilayer PC board with a solid ground and power planes is recommended. All of the ground pins (both analog and digital) should be connected directly to the analog ground plane at the DAC600.

Wide busses for the power paths are recommended as good general practice. External bypassing is recommended. A 10µF ceramic capacitor in parallel with a 0.01µF chip capacitor will be sufficient in most applications.

ALTCOMPB and ALTCOMPC should be bypassed with $0.1\mu F$ capacitors connected to $V_{E\!P\!A}.$ When not used in the multiplying mode LBIAS should be bypassed with a 0.4µF capacitor connected to V_{B2A} . The heat spreader (pins 26 and 44) should be bypassed with a 0.1μF capacitor.

MAXIMIZING PERFORMANCE

In addition to optimizing the layout and ground of the DAC600, there are other important issues to consider when optimizing the performance of this DAC in various AC applications.

The DAC600 includes an internal 50Ω output impedance to simplify output interfacing to a 50Ω load. Because some loads may be a complex impedance, care must be taken to match the output impedance with the load. Mismatching of impedances can cause reflections which will affect the measured AC performance parameters such as settling time, harmonic distortion, rise/fall times, etc. Often complex impedances can be matched by placing a variable 3 to 10pF capacitor at the output of the DAC to ground. Also, probing the output of the DAC can present a complex impedance.

The typical performance curves of Spurious Free Dynamic Range vs various combinations of clock rate and/or input frequency should give a general idea of the spectral performance of the DAC under system specific clock and output frequencies. For variable frequency DDS and ARB applications, having a programmable frequency bandpass (smart) filter at the output of the DAC can greatly improve system

spur and noise performance by filtering out unwanted spur and noise spectra. Even with a programmable bandpass filter, care should be taken to update the DAC at greater than 4 times per cycle to (1) minimize the 2nd and 3rd harmonic magnitudes by having the output slew excessively between any successive clock and (3) to keep the 2nd harmonic and other even order harmonics from folding back close to the fundamental under the condition $f_{OUT} = 1/3 f_{CLK}$ and (3) to keep the 3rd harmonic and other harmonics from folding back close to the fundamental under the condition

 $f_{\rm OUT}=1/4~f_{\rm CLK}$. The making use of the high update rate of the DAC600 helps to lessen the problems of large harmonics "folding back" into the passband.

For DDS applications, often the DAC itself is the limit in Spurious Free Dynamic Range (SFDR) performance. However, due to the high linearity of the DAC600, low frequency spurious performance may be limited by the digital truncation error of the phase accumulator/ROM combination. Most vendors supplying a combination of phase accumulator and ROM specify the SFDR of their digital algorithm.

FIGURE 7. Typical DAC600 Connection Diagram.