# **Tree-Based Methods**

#### Jessica VanElls

November 29, 2018

The purpose of this document is to explore tree-based methods using the Ames, Iowa housing data set. I will focus on both predictive accuracy and model interpretation.

### Data

The following section will deal with data transformation. Here, I used the same methods as in the midterm.

```
train <- read.csv("train.csv", na.strings="placeholder") # some of the categorical variables ha
ve value "NA" but it doesn't mean null
test <- read.csv("test.csv", na.strings="placeholder")
house <- rbind(train, data.frame(test, SalePrice=rep(1, nrow(test))))</pre>
```

## Dealing with NA's

Because there were also strings that were "NA" as part of some scales, I noted which columns shouldn't contain the string "NA", and I change those strings to a true NA.

```
## Store all columns that can have "NA" as a valid entry
na_names = c("Alley", "BsmtQual", "BsmtCond", "BsmtExposure", "BsmtFinType1", "BsmtFinType2", "F
ireplaceQu", "GarageType", "GarageQual", "GarageCond", "PoolQC", "Fence", "MiscFeature", "MasVnr
Type")

## Replace "NA" strings with true NA in training data
for (j in 1:ncol(house)) {
   if (sum(colnames(house)[j]==na_names)==0) { # if the column shouldn't contain "NA"...
   for (i in 1:nrow(house)) {
     if (house[i,j]=="NA") {
        house[i,j] <- NA # if the column shouldn't contain NA but the cell is "NA", then give i
   t a null
     }
   }
}</pre>
```

## Checking and Changing Data Types

I will be converting scales to factors (e.g., quality) because they describe a condition, not a quantity. There are mixed opinions on how these should be handled, but I am chosing to use the "nominal categorical" method. Years will be treated as integers; months will be treated as factors.

```
## Scales / Factors
house$MSSubClass <- as.factor(house$MSSubClass)</pre>
house$MSZoning <- as.factor(house$MSZoning)</pre>
house$Street <- as.factor(house$Street)</pre>
house$Alley <- as.factor(house$Alley)</pre>
house$LotShape <- as.factor(house$LotShape)</pre>
house$LandContour <- as.factor(house$LandContour)</pre>
house$Utilities <- as.factor(house$Utilities)</pre>
house$LotConfig <- as.factor(house$LotConfig)</pre>
house$LandSlope <- as.factor(house$LandSlope)</pre>
house$Neighborhood <- as.factor(house$Neighborhood)</pre>
house$Condition1 <- as.factor(house$Condition1)</pre>
house$Condition2 <- as.factor(house$Condition2)</pre>
house$BldgType <- as.factor(house$BldgType)</pre>
house$HouseStyle <- as.factor(house$HouseStyle)</pre>
house$OverallQual <- as.factor(house$OverallQual)</pre>
house$OverallCond <- as.factor(house$OverallCond)</pre>
house$RoofStyle <- as.factor(house$RoofStyle)</pre>
house$RoofMatl <- as.factor(house$RoofMatl)</pre>
house$Exterior1st <- as.factor(house$Exterior1st)</pre>
house$Exterior2nd <- as.factor(house$Exterior2nd)</pre>
house$MasVnrType <- as.factor(house$MasVnrType)</pre>
house$ExterQual <- as.factor(house$ExterQual)</pre>
house$ExterCond <- as.factor(house$ExterCond)</pre>
house$Foundation <- as.factor(house$Foundation)</pre>
house$BsmtQual <- as.factor(house$BsmtQual)</pre>
house$BsmtCond <- as.factor(house$BsmtCond)</pre>
house$BsmtExposure <- as.factor(house$BsmtExposure)</pre>
house$BsmtFinType1 <- as.factor(house$BsmtFinType1)</pre>
house$BsmtFinType2 <- as.factor(house$BsmtFinType2)</pre>
house$Heating <- as.factor(house$Heating)</pre>
house$HeatingQC <- as.factor(house$HeatingQC)</pre>
house$CentralAir <- as.factor(house$CentralAir)</pre>
house$Electrical <- as.factor(house$Electrical)</pre>
house$KitchenQual <- as.factor(house$KitchenQual)</pre>
house$Functional <- as.factor(house$Functional)</pre>
house$FireplaceQu <- as.factor(house$FireplaceQu)</pre>
house$GarageType <- as.factor(house$GarageType)</pre>
house$GarageFinish <- as.factor(house$GarageFinish)</pre>
house$GarageQual <- as.factor(house$GarageQual)</pre>
house$GarageCond <- as.factor(house$GarageCond)</pre>
house$PavedDrive <- as.factor(house$PavedDrive)</pre>
house$PoolQC <- as.factor(house$PoolQC)</pre>
house$Fence <- as.factor(house$Fence)</pre>
house$MiscFeature <- as.factor(house$MiscFeature)</pre>
house$SaleType <- as.factor(house$SaleType)</pre>
house$SaleCondition <- as.factor(house$SaleCondition)</pre>
## Should be numeric...
house$LotFrontage <- as.integer(house$LotFrontage)</pre>
house$LotArea <- as.integer(house$LotArea)</pre>
house$MasVnrArea <- as.integer(house$MasVnrArea)</pre>
house$BsmtFinSF1 <- as.integer(house$BsmtFinSF1)</pre>
```

```
house$BsmtFinSF2 <- as.integer(house$BsmtFinSF2)</pre>
house$BsmtUnfSF <- as.integer(house$BsmtUnfSF)</pre>
house$TotalBsmtSF <- as.integer(house$TotalBsmtSF)</pre>
house$X1stFlrSF <- as.integer(house$X1stFlrSF)</pre>
house$X2ndF1rSF <- as.integer(house$X2ndF1rSF)</pre>
house$LowQualFinSF <- as.integer(house$LowQualFinSF)</pre>
house$GrLivArea <- as.integer(house$GrLivArea)</pre>
house$BsmtFullBath <- as.integer(house$BsmtFullBath)</pre>
house$BsmtHalfBath <- as.integer(house$BsmtHalfBath)</pre>
house$FullBath <- as.integer(house$FullBath)</pre>
house$HalfBath <- as.integer(house$HalfBath)</pre>
house$BedroomAbvGr <- as.integer(house$BedroomAbvGr)</pre>
house$KitchenAbvGr <- as.integer(house$KitchenAbvGr)</pre>
house$TotRmsAbvGrd <- as.integer(house$TotRmsAbvGrd)</pre>
house$Fireplaces <- as.integer(house$Fireplaces)</pre>
house$GarageCars <- as.integer(house$GarageCars)</pre>
house$GarageArea <- as.integer(house$GarageArea)</pre>
house$WoodDeckSF <- as.integer(house$WoodDeckSF)</pre>
house$OpenPorchSF <- as.integer(house$OpenPorchSF)</pre>
house$EnclosedPorch <- as.integer(house$EnclosedPorch)</pre>
house$X3SsnPorch <- as.integer(house$X3SsnPorch)</pre>
house$ScreenPorch <- as.integer(house$ScreenPorch)</pre>
house$PoolArea <- as.integer(house$PoolArea)</pre>
house$MiscVal <- as.integer(house$MiscVal)</pre>
## Dates: years as integers, months as factors
house$YearBuilt <- as.integer(house$YearBuilt)</pre>
house$YearRemodAdd <- as.integer(house$YearRemodAdd)</pre>
house$GarageYrBlt <- as.integer(house$GarageYrBlt)</pre>
house$MoSold <- as.factor(house$MoSold)</pre>
house$YrSold <- as.integer(house$YrSold)</pre>
```

#### NA Revisited

Change the string "NA" to "N/A" for variables that are allowed to have "NA" as a value (e.g., Alley). I don't change the "NA" strings to NA here (I did it earlier) because otherwise the change of class insert interpolated values instead of NAs.

```
## Store all columns that can have "NA" as a valid entry
na_names = c("Alley", "BsmtQual", "BsmtCond", "BsmtExposure", "BsmtFinType1", "BsmtFinType2", "F
ireplaceQu", "GarageType", "GarageQual", "GarageCond", "PoolQC", "Fence", "MiscFeature", "MasVnr
Type")

## Re-level "NA" columns
for (j in 1:ncol(house)) {
   if (sum(colnames(house)[j]==na_names)!=0) { # if the column can contain "NA" as a string in t
   he training data...
        levels(house[,j])[levels(house[,j])=="NA"] <- "N/A"
   }
}</pre>
```

#### Remove NA Columns

Remove columns from both sets which have too many NAs in the training set, and then remove rows from the training set with NAs left.

```
## Remove NA columns
ct_na <- rep(0, length=ncol(house))
for (j in 1:ncol(house)) {
  ct_na[j] <- sum(is.na(house[,j]))
}
house <- house[-c(1:80)[ct_na>50]]
```

### Interpolate NA values in the data

```
## Note which columns need to have NAs interpolated
ct_na <- rep(0, length=ncol(house))
for (j in 1:ncol(house)) {
   ct_na[j] <- sum(is.na(house[,j]))
}
ct_na</pre>
```

```
na_boo <- ifelse(ct_na!=0, T, F)
colnames(house)[na_boo]</pre>
```

```
[1] "MSZoning"
                    "Utilities"
                                   "Exterior1st"
                                                   "Exterior2nd"
[5] "MasVnrArea"
                    "BsmtFinSF1"
                                   "BsmtFinSF2"
                                                   "BsmtUnfSF"
 [9] "TotalBsmtSF"
                    "Electrical"
                                   "BsmtFullBath" "BsmtHalfBath"
[13] "KitchenQual"
                    "Functional"
                                   "GarageCars"
                                                   "GarageArea"
[17] "SaleType"
```

```
## Choose most common factor
house$MSZoning[is.na(house$MSZoning)] <- "RL"</pre>
house$Utilities[is.na(house$Utilities)] <- "AllPub"</pre>
house$Exterior1st[is.na(house$Exterior1st)] <- "VinylSd"</pre>
house$Exterior2nd[is.na(house$Exterior2nd)] <- "VinylSd"</pre>
house$Electrical[is.na(house$Electrical)] <- "SBrkr"</pre>
house$KitchenQual[is.na(house$KitchenQual)] <- "TA"</pre>
house$Functional[is.na(house$Functional)] <- "Typ"</pre>
house$SaleType[is.na(house$SaleType)] <- "WD"</pre>
for (i in 1:nrow(house)) {
  ## Check Logic on Masonry veneer
  if (is.na(house$MasVnrArea[i])) {
    if (house$MasVnrType[i] == "None") {
      house$MasVnrArea[i] <- 0 # if there isn't any masonry veneer, then the NA should be repla
ced with 0
    } else {
      house$MasVnrArea[i] <- mean(house$MasVnrArea, na.rm=T) # if there is veneer, replace with
 the average
    }
  }
  ## Basement
  if (is.na(house$BsmtFinSF1[i])) {
    if (house$BsmtQual[i] != "N/A") {
      # if there is a basement, then use the average
      house$BsmtFinSF1[i] <- mean(house$BsmtFinSF1, na.rm=T)</pre>
    } else {
      # if there isn't a basement, use 0
      house$BsmtFinSF1[i] <- 0
    }
  }
  if (is.na(house$BsmtFinSF2[i])) {
    if (house$BsmtQual[i]!="N/A") {
      house$BsmtFinSF2[i] <- mean(house$BsmtFinSF2, na.rm=T)</pre>
    } else {
      house$BsmtFinSF2[i] <- 0
    }
  }
  if (is.na(house$BsmtUnfSF[i])) {
    if (house$BsmtQual[i]!="N/A") {
      house$BsmtUnfSF[i] <- mean(house$BsmtUnfSF, na.rm=T)</pre>
    } else {
      house$BsmtUnfSF[i] <- 0
    }
  if (is.na(house$TotalBsmtSF[i])) {
    if (house$BsmtQual[i]!="N/A") {
      house$TotalBsmtSF[i] <- mean(house$TotalBsmtSF, na.rm=T)</pre>
    } else {
      house$TotalBsmtSF[i] <- 0
    }
  }
```

```
if (is.na(house$BsmtFullBath[i])) {
    if (house$BsmtQual[i]!="N/A") {
      house$BsmtFullBath[i] <- mean(house$BsmtFullBath, na.rm=T)</pre>
      house$BsmtFullBath[i] <- 0
    }
  }
  if (is.na(house$BsmtHalfBath[i])) {
    if (house$BsmtQual[i]!="N/A") {
      house$BsmtHalfBath[i] <- mean(house$BsmtHalfBath, na.rm=T)</pre>
    } else {
      house$BsmtHalfBath[i] <- 0
    }
  }
  ## Garage
  if (is.na(house$GarageCars[i])) {
    if (house$GarageType[i] != "N/A") {
      # if there is a garage, then use the average
      house$GarageCars[i] <- mean(house$GarageCars, na.rm=T)</pre>
    } else {
      # if there isn't a basement, use 0
      house$GarageCars[i] <- 0
    }
  }
  if (is.na(house$GarageArea[i])) {
    if (house$GarageType[i] != "N/A") {
      # if there is a garage, then use the average
      house$GarageArea[i] <- mean(house$GarageArea, na.rm=T)</pre>
    } else {
      # if there isn't a basement, use 0
      house$GarageArea[i] <- 0
    }
}
## Note which columns need to have NAs interpolated
ct_na <- rep(0, length=ncol(house))</pre>
for (j in 1:ncol(house)) {
  ct_na[j] <- sum(is.na(house[,j]))</pre>
}
ct_na
```

```
na_boo <- ifelse(ct_na!=0, T, F)
colnames(house)[na_boo] # all set!</pre>
```

```
character(0)
```

## **Split**

The following code splits the data back into the training and testing sets.

```
train <- house[1:1460,]
test <- house[1461:2919,]
```

## **Linear Diagnostics**

The following section will look at linear diagnostics to evaluate any other data changes that need to be made.

```
lin_fit <- lm(SalePrice~.-Id, data=train)
plot(lin_fit)</pre>
```









Based on the warning message, points 121, 186, 250, 325, 332, 346, 375, 398, 532, 582, 594, 664, 808, 819, 941, 945, 998, 1006, 1182, 1225, 1264, 1269, 1291, 1314, 1363, 1378 should be removed. Points 1171 and 1424 also have high leverage, so they will be removed. The residuals vs. fitted plot looks pretty good (so the data is reasonably linear and tere is a fairly constant variance of the error terms). The outliers (826, 524) are removed because they are also high leverage points.

```
train <- train[-c(121,186,250,325,332,346,375,398,524,532,582,594,664,808,819,826,941,945,998,10 06,1171,1182,1225,1264,1269,1291,1314,1363,1378,1424),]
```

After removing the statistically "bad" points, the variable Utilities can be removed because they all have the same value

```
train <- train[,-9]; test <- test[,-9]</pre>
```

It was discussed during the midterm that models may fit better when the response is log-transformed.

Here, I set a seed for reproducibility.

```
set.seed(1)
```

#### **Decision Trees**

In this section, I will explore a very large tree and then prune the tree down. I will try this using both the response as-is and the log-transformed response.

Decision trees require the tree library.

```
library(tree)
```

### Big Tree

```
tree.log.model <- tree(log(SalePrice)~.-Id, data=train)
print(tree.log.model); print(summary(tree.log.model))</pre>
```

```
node), split, n, deviance, yval
      * denotes terminal node
 1) root 1430 227.500 12.02
   2) OverallQual: 1,2,3,4,5,6 892 72.990 11.81
    4) Neighborhood: BrDale, BrkSide, Edwards, IDOTRR, MeadowV, OldTown 299 26.700 11.60
       8) GrLivArea < 1112.5 123 10.110 11.43
       16) OverallQual: 1,2,3 13
                                   1.177 11.01 *
       17) OverallQual: 4,5,6 110
                                  6.259 11.48 *
       5) Neighborhood: Blueste, ClearCr, CollgCr, Crawfor, Gilbert, Mitchel, NAmes, NPkVill, NridgHt, NWAm
es, Sawyer, SawyerW, Somerst, SWISU, Timber, Veenker 593 26.720 11.91
      10) GrLivArea < 1151 228
                                6.000 11.76 *
      11) GrLivArea > 1151 365 12.170 12.01
       22) Neighborhood: Blueste, Mitchel, NAmes, NPkVill, Sawyer, SawyerW, SWISU 205
                                                                                 5.301 11.92 *
       23) Neighborhood: ClearCr,CollgCr,Crawfor,Gilbert,NridgHt,NWAmes,Somerst,Timber,Veenker
     3.363 12.12 *
160
   3) OverallQual: 7,8,9,10 538 49.010 12.37
    6) OverallQual: 7 316 14.100 12.22
      12) GrLivArea < 1822 214 6.778 12.15 *
      13) GrLivArea > 1822 102
                                3.728 12.38 *
    7) OverallQual: 8,9,10 222 17.920 12.58
      14) OverallQual: 8 165 8.658 12.49 *
      15) OverallQual: 9,10 57 4.142 12.84 *
```

```
Regression tree:

tree(formula = log(SalePrice) ~ . - Id, data = train)

Variables actually used in tree construction:

[1] "OverallQual" "Neighborhood" "GrLivArea"

Number of terminal nodes: 10

Residual mean deviance: 0.03953 = 56.14 / 1420

Distribution of residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.122000 -0.109600 0.007322 0.000000 0.119000 0.734800
```

The "big" tree fit to the log-transformed response has 11 terminal nodes using OverallQual, Neighborhood, GrLivArea, and CentralAir as key predictors.

The following code creates the plot.

```
plot(tree.log.model, type="uniform")
text(tree.log.model, pretty=0, cex=0.6)
```



The following code creates the prediction using the big-tree model.

```
tree.log.prediction <- exp(predict(tree.log.model, newdata=test)) # exp to return to actual pri
ce instead of log price
write.csv(data.frame(Id=test$Id, SalePrice=tree.log.prediction), "Tree_Log_Prediction.csv", row.
names=F)</pre>
```

The Kaggle score for this model was **0.22102**.

The following code uses cross-validation to predict the error.

```
set.seed(428) # consistency of k-fold validation breaks
fold.index <- cut(sample(1:nrow(train)), breaks=10, labels=FALSE) # split data into 10 folds

out <- c()
for (i in 1:10) {
    train.cv <- train[fold.index!=i,]
    test.cv.X <- train[fold.index==i,-77]
    test.cv.y <- train[fold.index==i,77]

    tree.log.model.cv <- tree(log(SalePrice)~.-Id, data=train.cv)
    tree.log.prediction.cv <- exp(predict(tree.log.model.cv, newdata=test.cv.X))
    tree.log.rmsle.cv <- sqrt(mean((log(tree.log.prediction.cv)-log(test.cv.y))^2))
    out <- c(out, tree.log.rmsle.cv)
}
mean(out)</pre>
```

```
[1] 0.2091555
```

The estimated RMSLE is 0.2091555 for the (unpruned) decision tree method; this is quite close to the true test RMSLE.

#### **Pruned Tree**

The following code performs cross-validation to determine the optimal tree size, then prunes the tree to that size.

```
set.seed(428) # set seed for consistency
cv.tree.log.model <- cv.tree(tree.log.model, FUN=prune.tree, K=10)
tree.prune.log.size <- cv.tree.log.model$size[which.min(cv.tree.log.model$dev)]
tree.prune.log.model <- prune.tree(tree.log.model, best=tree.prune.log.size)</pre>
```

The following code describes the pruned tree.

```
tree.prune.log.model
```

```
node), split, n, deviance, yval
      * denotes terminal node
 1) root 1430 227.500 12.02
   2) OverallQual: 1,2,3,4,5,6 892 72.990 11.81
    4) Neighborhood: BrDale, BrkSide, Edwards, IDOTRR, MeadowV, OldTown 299 26.700 11.60
      8) GrLivArea < 1112.5 123 10.110 11.43
       16) OverallQual: 1,2,3 13
                                   1.177 11.01 *
       17) OverallQual: 4,5,6 110
                                  6.259 11.48 *
      5) Neighborhood: Blueste, ClearCr, CollgCr, Crawfor, Gilbert, Mitchel, NAmes, NPkVill, NridgHt, NWAm
es, Sawyer, SawyerW, Somerst, SWISU, Timber, Veenker 593 26.720 11.91
      10) GrLivArea < 1151 228
                                6.000 11.76 *
      11) GrLivArea > 1151 365 12.170 12.01
       22) Neighborhood: Blueste, Mitchel, NAmes, NPkVill, Sawyer, SawyerW, SWISU 205
                                                                                 5.301 11.92 *
       23) Neighborhood: ClearCr,CollgCr,Crawfor,Gilbert,NridgHt,NWAmes,Somerst,Timber,Veenker
160
     3.363 12.12 *
   3) OverallQual: 7,8,9,10 538 49.010 12.37
    6) OverallQual: 7 316 14.100 12.22
      12) GrLivArea < 1822 214 6.778 12.15 *
     13) GrLivArea > 1822 102
                                3.728 12.38 *
    7) OverallQual: 8,9,10 222 17.920 12.58
      14) OverallQual: 8 165 8.658 12.49 *
      15) OverallQual: 9,10 57 4.142 12.84 *
```

plot(tree.prune.log.model, type="uniform"); text(tree.prune.log.model, pretty=0, cex=0.6)



```
summary(tree.prune.log.model)
```

```
Regression tree:

tree(formula = log(SalePrice) ~ . - Id, data = train)

Variables actually used in tree construction:

[1] "OverallQual" "Neighborhood" "GrLivArea"

Number of terminal nodes: 10

Residual mean deviance: 0.03953 = 56.14 / 1420

Distribution of residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.122000 -0.109600 0.007322 0.000000 0.119000 0.734800
```

The pruned tree has 10 nodes and uses the predictors OverallQual, Neighborhood, and GrLivArea; this pruned tree no longer uses CentralAir as a predictor.

The following code creates the prediction using the pruned-tree model.

```
tree.prune.log.prediction <- exp(predict(tree.prune.log.model, newdata=test))
write.csv(data.frame(Id=test$Id, SalePrice=tree.prune.log.prediction), "Tree_Prune_Log_Prediction.csv", row.names=F)</pre>
```

The Kaggle score for this model was **0.22102**. This method performed the same as the big decision tree, which had one more terminal node than the pruned tree.

The following code uses cross-validation to predict the error.

```
set.seed(428) # consistency of k-fold validation breaks
fold.index <- cut(sample(1:nrow(train)), breaks=10, labels=FALSE) # split data into 10 folds
out <- c()
for (i in 1:10) {
  train.cv <- train[fold.index!=i,]</pre>
  test.cv.X <- train[fold.index==i,-77]</pre>
  test.cv.y <- train[fold.index==i,77]</pre>
  tree.log.model.cv <- tree(log(SalePrice)~.-Id, data=train.cv)</pre>
  tree.log.model.cv.cv <- cv.tree(tree.log.model.cv, FUN=prune.tree, K=10)</pre>
  tree.log.model.size.cv <- tree.log.model.cv.cv$size[which.min(tree.log.model.cv.cv$dev)]</pre>
  tree.prune.log.model.cv <- prune.tree(tree.log.model.cv, best=tree.log.model.size.cv)</pre>
  tree.prune.log.prediction.cv <- exp(predict(tree.prune.log.model.cv, newdata=test.cv.X))</pre>
  tree.prune.log.rmsle.cv <- sqrt(mean((log(tree.prune.log.prediction.cv)-log(test.cv.y))^2))</pre>
  out <- c(out, tree.prune.log.rmsle.cv)</pre>
}
mean(out)
```

```
[1] 0.2091555
```

The estimated RMSLE is 0.2091555 for the pruned decision tree method; this is fairly close to the true test RMSLE.

## Big Tree

```
tree.model <- tree(SalePrice~.-Id, data=train)
print(tree.model); print(summary(tree.model))</pre>
```

```
node), split, n, deviance, yval
      * denotes terminal node
 1) root 1430 8.916e+12 180200
   2) OverallQual: 1,2,3,4,5,6,7 1208 2.934e+12 157500
     4) Neighborhood: Blueste, BrDale, BrkSide, Edwards, IDOTRR, MeadowV, Mitchel, NAmes, NPkVill, OldTow
n, Sawyer, SWISU 699 8.244e+11 131500
       8) X1stFlrSF < 1050.5 406 3.222e+11 118000 *
       9) X1stFlrSF > 1050.5 293 3.252e+11 150200 *
     5) Neighborhood: Blmngtn,ClearCr,CollgCr,Crawfor,Gilbert,NoRidge,NridgHt,NWAmes,SawyerW,Som
erst, StoneBr, Timber, Veenker 509 9.861e+11 193300
      10) GrLivArea < 1719 343 3.729e+11 176500
        20) GrLivArea < 1120 59 2.058e+10 134000 *
        21) GrLivArea > 1120 284 2.233e+11 185400 *
      11) GrLivArea > 1719 166 3.188e+11 227800
        22) BsmtFinSF1 < 860.5 136 1.647e+11 216600 *
        23) BsmtFinSF1 > 860.5 30 5.937e+10 278700 *
   3) OverallQual: 8,9,10 222 1.970e+12 303800
     6) OverallQual: 8 165 6.560e+11 273500
      12) GrLivArea < 1971.5 102 2.195e+11 248000 *
      13) GrLivArea > 1971.5 63 2.625e+11 314800 *
     7) OverallQual: 9,10 57 7.230e+11 391600
      14) GrLivArea < 2229 34 7.566e+10 340000 *
      15) GrLivArea > 2229 23 4.229e+11 467900
        30) Exterior2nd: Stucco, VinylSd, Wd Sdng, Wd Shng 17 1.956e+11 423000 *
        31) Exterior2nd: CmentBd, HdBoard, ImStucc 6 9.585e+10 595100 *
```

```
Regression tree:
tree(formula = SalePrice ~ . - Id, data = train)
Variables actually used in tree construction:
[1] "OverallQual" "Neighborhood" "X1stFlrSF"
                                                 "GrLivArea"
[5] "BsmtFinSF1"
                   "Exterior2nd"
Number of terminal nodes: 11
Residual mean deviance: 1.384e+09 = 1.964e+12 / 1419
Distribution of residuals:
   Min. 1st Qu. Median
                           Mean 3rd Qu.
                                           Max.
-263000 -20000
                  -1833
                                  17250 223200
```

The "big" tree fit to the log-transformed response has 12 terminal nodes using OverallQual, Neighborhood, 1stFlrSF, GrLivArea, BsmtFinSf1, MoSold, and MasVnrArea as key predictors. This includes more and different predictors than the log-transformed response, but in this case CentralAir was left out as a predictor.

The following code creates the plot.

```
plot(tree.model, type="uniform")
text(tree.model, pretty=0, cex=0.6)
```



The following code creates the prediction using the big-tree model.

```
tree.prediction <- predict(tree.model, newdata=test)
write.csv(data.frame(Id=test$Id, SalePrice=tree.prediction), "Tree_Prediction.csv", row.names=F)</pre>
```

The Kaggle score for this model was **0.24409**. This big tree performed worse than the big tree that had a log-transformed response.

The following code uses cross-validation to predict the error.

```
set.seed(428) # consistency of k-fold validation breaks
fold.index <- cut(sample(1:nrow(train)), breaks=10, labels=FALSE) # split data into 10 folds

out <- c()
for (i in 1:10) {
    train.cv <- train[fold.index!=i,]
    test.cv.X <- train[fold.index==i,-77]
    test.cv.y <- train[fold.index==i,77]

    tree.model.cv <- tree(SalePrice~.-Id, data=train.cv)
    tree.prediction.cv <- predict(tree.model.cv, newdata=test.cv.X)
    tree.rmsle.cv <- sqrt(mean((log(tree.prediction.cv)-log(test.cv.y))^2))
    out <- c(out, tree.rmsle.cv)
}
mean(out)</pre>
```

```
[1] 0.2245694
```

The estimated RMSLE is 0.2245694 for the (unpruned) decision tree method; this is fairly close to the true test RMSLE.

#### **Pruned Tree**

The following code performs cross-validation to determine the optimal tree size, then prunes the tree to that size.

```
set.seed(428) # set seed for consistency
cv.tree.model <- cv.tree(tree.model, FUN=prune.tree, K=10)
tree.prune.size <- cv.tree.model$size[which.min(cv.tree.model$dev)]
tree.prune.model <- prune.tree(tree.model, best=tree.prune.size)</pre>
```

The following code describes the pruned tree.

```
tree.prune.model
```

```
node), split, n, deviance, yval
      * denotes terminal node
 1) root 1430 8.916e+12 180200
   2) OverallQual: 1,2,3,4,5,6,7 1208 2.934e+12 157500
     4) Neighborhood: Blueste, BrDale, BrkSide, Edwards, IDOTRR, MeadowV, Mitchel, NAmes, NPkVill, OldTow
n, Sawyer, SWISU 699 8.244e+11 131500
       8) X1stFlrSF < 1050.5 406 3.222e+11 118000 *
       9) X1stFlrSF > 1050.5 293 3.252e+11 150200 *
     5) Neighborhood: Blmngtn,ClearCr,CollgCr,Crawfor,Gilbert,NoRidge,NridgHt,NWAmes,SawyerW,Som
erst, StoneBr, Timber, Veenker 509 9.861e+11 193300
      10) GrLivArea < 1719 343 3.729e+11 176500
        20) GrLivArea < 1120 59 2.058e+10 134000 *
        21) GrLivArea > 1120 284 2.233e+11 185400 *
      11) GrLivArea > 1719 166 3.188e+11 227800
        22) BsmtFinSF1 < 860.5 136 1.647e+11 216600 *
        23) BsmtFinSF1 > 860.5 30 5.937e+10 278700 *
   3) OverallOual: 8,9,10 222 1.970e+12 303800
     6) OverallQual: 8 165 6.560e+11 273500
      12) GrLivArea < 1971.5 102 2.195e+11 248000 *
      13) GrLivArea > 1971.5 63 2.625e+11 314800 *
     7) OverallQual: 9,10 57 7.230e+11 391600
      14) GrLivArea < 2229 34 7.566e+10 340000 *
      15) GrLivArea > 2229 23 4.229e+11 467900
        30) Exterior2nd: Stucco, VinylSd, Wd Sdng, Wd Shng 17 1.956e+11 423000 *
        31) Exterior2nd: CmentBd, HdBoard, ImStucc 6 9.585e+10 595100 *
```

```
plot(tree.prune.model, type="uniform"); text(tree.prune.model, pretty=0, cex=0.6)
```



```
Regression tree:
tree(formula = SalePrice ~ . - Id, data = train)
Variables actually used in tree construction:
[1] "OverallQual" "Neighborhood" "X1stFlrSF" "GrLivArea"
[5] "BsmtFinSF1" "Exterior2nd"
Number of terminal nodes: 11
Residual mean deviance: 1.384e+09 = 1.964e+12 / 1419
Distribution of residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
```

The pruned tree has 12 nodes and uses the predictors OverallQual, Neighborhood, 1stFlrSF, GrLivArea, BsmtFinSF1, and MoSold. This tree is the same as the unpruned model, so there is no need to go farther.

17250 223200

## Bagging

-263000 -20000

-1833

```
library(randomForest)
bag.mtry <- ncol(train)-2 # split candidate count; don't include response or ID</pre>
```

This next section, like the previous, will try to fit the bagging model to both the log-transformed response and the response as-is. The maximum number of trees that provided good computational time was <a href="https://ntransformed.ncm">ntree=500</a>.

 $\verb|bag.log.model <- randomForest(log(SalePrice) \sim .- Id, data = train, mtry = bag.mtry, importance = T, ntree = 500)|$ 

The results of the bagged model on the log-transformed response are as follows:

varImpPlot(bag.log.model)

bag.log.model



sort(importance(bag.log.model)[,1], decreasing=T)

| OverallQual  | GrLivArea    | Neighborhood | TotalBsmtSF  | BsmtFinSF1    |
|--------------|--------------|--------------|--------------|---------------|
| 80.2568505   | 74.1464945   | 49.3642776   | 35.3044672   | 24.7068498    |
| X1stFlrSF    | MSSubClass   | GarageCars   | GarageArea   | OverallCond   |
| 20.8831759   | 19.8807514   | 17.8485055   | 17.8042704   | 16.2326745    |
| LotArea      | BsmtFinType1 | YearBuilt    | GarageType   | YearRemodAdd  |
| 15.5972094   | 14.8024530   | 14.7196887   | 13.9204147   | 13.0125633    |
| X2ndFlrSF    | KitchenQual  | OpenPorchSF  | BsmtFullBath | Exterior2nd   |
| 12.4164566   | 11.8860807   | 10.2478527   | 9.8406122    | 9.2371837     |
| BsmtUnfSF    | FullBath     | HalfBath     | FireplaceQu  | BsmtQual      |
| 8.6472302    | 7.9665978    | 7.4115755    | 7.0821273    | 6.9504196     |
| ExterQual    | CentralAir   | HeatingQC    | BsmtCond     | BsmtExposure  |
| 6.8658701    | 6.7048432    | 6.6808736    | 6.6475488    | 6.5754705     |
| MSZoning     | Exterior1st  | BedroomAbvGr | GarageQual   | Fireplaces    |
| 6.5517306    | 6.3700609    | 6.2273754    | 6.0551870    | 5.9941007     |
| TotRmsAbvGrd | Foundation   | KitchenAbvGr | MasVnrArea   | HouseStyle    |
| 5.9910296    | 5.6435642    | 5.4878444    | 5.2533658    | 4.9638154     |
| BldgType     | MasVnrType   | LotShape     | WoodDeckSF   | ExterCond     |
| 4.8920739    | 4.0728051    | 3.8862704    | 3.5293644    | 3.1987301     |
| ScreenPorch  | GarageCond   | YrSold       | MoSold       | Functional    |
| 2.6276770    | 2.0243622    | 1.9455294    | 1.9265431    | 1.6616402     |
| BsmtFinSF2   | LandSlope    | BsmtHalfBath | RoofStyle    | EnclosedPorch |
| 1.6217148    | 1.4821513    | 1.2408883    | 0.6996978    | 0.6059462     |
| PavedDrive   | MiscFeature  | Condition1   | LowQualFinSF | SaleCondition |
| 0.5865199    | 0.5677298    | 0.5221729    | 0.4219599    | 0.3774627     |
| X3SsnPorch   | SaleType     | PoolArea     | LandContour  | BsmtFinType2  |
| 0.2309159    | 0.2162236    | 0.0000000    | -0.1656398   | -0.3928575    |
| RoofMatl     | MiscVal      | LotConfig    | PoolQC       | Condition2    |
| -0.5406951   | -0.6167683   | -0.6515625   | -0.8167276   | -1.0010015    |
| Street       | Alley        | Fence        | Heating      | Electrical    |
| -1.0156620   | -1.2605710   | -1.2942645   | -2.0672752   | -2.1663978    |
|              |              |              |              |               |

sort(importance(bag.log.model)[,2], decreasing=T)

```
OverallQual Neighborhood
                              GrLivArea
                                          TotalBsmtSF
                                                         GarageCars
1.172607e+02
             2.597052e+01
                           2.348575e+01
                                         6.993373e+00
                                                       6.475515e+00
  X1stFlrSF
               GarageArea
                             BsmtFinSF1
                                               MoSold
                                                         MSSubClass
5.035382e+00 4.678298e+00
                           3.391889e+00
                                         3.347425e+00
                                                       2.857895e+00
OverallCond
                                          Exterior2nd
                   LotArea
                             CentralAir
                                                         GarageType
1.961702e+00 1.585453e+00
                                         1.418408e+00
                                                       1.343719e+00
                           1.460481e+00
Exterior1st YearRemodAdd
                              YearBuilt
                                         BsmtFinType1
                                                           MSZoning
                           1.230820e+00
1.275285e+00
             1.241484e+00
                                         1.186984e+00
                                                       8.938785e-01
   BsmtUnfSF
                X2ndFlrSF
                               BsmtQual
                                          OpenPorchSF
                                                       TotRmsAbvGrd
8.488568e-01 8.471809e-01 7.941423e-01
                                                       5.725768e-01
                                         6.328579e-01
FireplaceQu SaleCondition
                            KitchenQual
                                            ExterCond
                                                         GarageQual
5.474854e-01
             5.341282e-01
                           5.221640e-01
                                         4.364415e-01
                                                       4.079064e-01
   HeatingQC
             BsmtExposure
                               BsmtCond
                                           WoodDeckSF
                                                           FullBath
3.904911e-01
             3.513144e-01
                           3.505551e-01
                                         3.368362e-01
                                                       3.189838e-01
BsmtFullBath
                 ExterQual EnclosedPorch
                                           Functional
                                                         MasVnrArea
3.018443e-01 3.010762e-01
                           2.914297e-01
                                         2.677537e-01 2.625416e-01
BedroomAbvGr
                   YrSold
                             GarageCond
                                           Fireplaces
                                                              Fence
2.565523e-01 2.445999e-01
                           2.283211e-01
                                         1.956824e-01
                                                       1.953176e-01
LandContour
               Condition1
                           BsmtFinType2
                                            LotConfig
                                                         Foundation
1.768634e-01 1.707095e-01
                           1.551138e-01
                                         1.545689e-01
                                                       1.534291e-01
 PavedDrive
                    Alley
                               HalfBath
                                             SaleType
                                                         HouseStyle
1.517248e-01 1.381025e-01
                           1.316029e-01
                                         1.301482e-01
                                                       1.274957e-01
   LotShape
              ScreenPorch
                             MasVnrType
                                            RoofStyle
                                                         Electrical
1.231767e-01 1.217964e-01 1.154393e-01
                                         1.150495e-01 1.075517e-01
   BldgType
                LandSlope
                             BsmtFinSF2
                                              Heating KitchenAbvGr
7.196176e-02 7.101699e-02 5.173483e-02
                                         5.003869e-02 4.995252e-02
LowQualFinSF
             BsmtHalfBath
                             X3SsnPorch
                                              MiscVal
                                                       MiscFeature
3.143547e-02 2.302697e-02
                           2.148498e-02 2.065335e-02 1.875217e-02
    RoofMatl
                   PoolQC
                             Condition2
                                               Street
                                                           PoolArea
1.688381e-02 1.452383e-02 1.231950e-02 3.625610e-03 2.237532e-03
```

In terms of both prediction accuracy [,1] and purity [,2], the three most important variables are <code>OverallQual</code>, <code>GrLivArea</code>, and <code>Neighborhood</code>; this is consistent with the results from the decision trees. <code>TotalBsmtSF</code> is also a somewhat important predictor (more in terms of prediction accuracy than purity), which is consistent with the results for the non-log-transformed response decision tree model.

The following code creates a prediction using the bagging model.

```
bag.log.prediction <- exp(predict(bag.log.model, newdata=test))
write.csv(data.frame(Id=test$Id, SalePrice=bag.log.prediction), "Bagging_Log_Prediction.csv", ro
w.names=F)</pre>
```

The Kaggle score for this model was **0.15489**. This shows significant improvement over the decision tree method.

The following code uses cross-validation to predict the error.

```
set.seed(428) # consistency of k-fold validation breaks
fold.index <- cut(sample(1:nrow(train)), breaks=10, labels=FALSE) # split data into 10 folds

out <- c()
for (i in 1:10) {
    train.cv <- train[fold.index!=i,]
    test.cv.X <- train[fold.index==i,-77]
    test.cv.y <- train[fold.index==i,77]

bag.log.model.cv <- randomForest(log(SalePrice)~.-Id, data=train.cv, mtry=bag.mtry, importance
=T, ntree=500)
    bag.log.prediction.cv <- exp(predict(bag.log.model.cv, newdata=test.cv.X))
    bag.log.rmsle.cv <- sqrt(mean((log(bag.log.prediction.cv)-log(test.cv.y))^2))
    out <- c(out, bag.log.rmsle.cv)
}
mean(out)</pre>
```

```
[1] 0.1427881
```

The estimated RMSLE is 0.1427881 for the bagging method; this is fairly close to the true test RMSLE.

The following code fits a bagging model to the data, but doesn't log-transform the response.

```
bag.model <- randomForest(SalePrice~.-Id, data=train, mtry=bag.mtry, importance=T, ntree=500)</pre>
```

The results of the bagged model on the non-transformed response are as follows:

```
varImpPlot(bag.model)
```

### bag.model



sort(importance(bag.model)[,1], decreasing=T)

|   | GrLivArea    | OverallQual           | Neighborhood | MSSubClass   | TotalBsmtSF   |
|---|--------------|-----------------------|--------------|--------------|---------------|
|   | 60.59333181  | 45.56003186           | 40.77695762  | 23.51591799  | 22.48447993   |
|   | BsmtFinSF1   | X1stFlrSF             | GarageArea   | YearBuilt    | BsmtFinType1  |
|   | 19.75802191  | 17.07995720           | 14.86325499  | 12.82823353  | 12.11719882   |
|   | KitchenQual  | GarageCars            | OverallCond  | X2ndFlrSF    | CentralAir    |
|   | 11.71784324  | 11.51966091           | 10.32519420  | 9.67328940   | 9.54093634    |
|   | GarageType   | LotArea               | BsmtCond     | YearRemodAdd | BsmtQual      |
|   | 9.44476465   | 9.23649323            | 8.45687129   | 8.43123347   | 7.92733398    |
|   | BldgType     | ExterQual             | Exterior2nd  | PavedDrive   | Foundation    |
|   | 6.39258024   | 6.15360767            | 5.95786129   | 5.56192681   | 5.51650740    |
|   | WoodDeckSF   | FullBath              | BsmtUnfSF    | OpenPorchSF  | HalfBath      |
|   | 5.31849287   | 5.09475229            | 5.01636612   | 4.98216961   | 4.96414058    |
|   | Exterior1st  | ${\tt SaleCondition}$ | BsmtExposure | HeatingQC    | BsmtFullBath  |
|   | 4.94346234   | 4.94298649            | 4.54575661   | 4.52457009   | 4.40732476    |
|   | KitchenAbvGr | GarageQual            | BedroomAbvGr | MasVnrArea   | HouseStyle    |
|   | 4.30151434   | 4.23303423            | 4.23119925   | 4.16400913   | 3.57077600    |
|   | MSZoning     | GarageCond            | FireplaceQu  | Alley        | MasVnrType    |
|   | 3.42821109   | 3.28666239            | 3.22181886   | 3.18176753   | 2.92654394    |
|   | RoofStyle    | TotRmsAbvGrd          | SaleType     | BsmtHalfBath | Condition1    |
|   | 2.92276087   | 2.76536017            | 2.74270194   | 2.33162797   | 2.09235311    |
|   | BsmtFinType2 | LotShape              | ScreenPorch  | ExterCond    | EnclosedPorch |
|   | 2.05110208   | 1.98227115            | 1.68520462   | 1.62243625   | 1.49222777    |
|   | BsmtFinSF2   | LowQualFinSF          | Functional   | Fireplaces   | X3SsnPorch    |
|   | 1.20855229   | 1.16475005            | 1.10937156   | 1.10718105   | 0.62630478    |
|   | LandContour  | RoofMatl              | LandSlope    | Heating      | Street        |
|   | 0.34855960   | 0.20559750            | 0.13557436   | 0.01558379   | 0.00000000    |
|   | PoolArea     | Fence                 | Electrical   | MiscFeature  | MoSold        |
|   | 0.00000000   | -0.05765457           | -0.29640174  | -0.42829702  | -0.62043243   |
|   | MiscVal      | LotConfig             | PoolQC       | Condition2   | YrSold        |
|   | -0.83300242  | -0.90464039           | -1.00100150  | -1.41252541  | -1.62138434   |
| ı |              |                       |              |              |               |

sort(importance(bag.model)[,2], decreasing=T)

```
OverallQual Neighborhood
                                           TotalBsmtSF
                                GrLivArea
                                                            X1stFlrSF
                            9.161547e+11
4.576966e+12
              1.001657e+12
                                          3.563538e+11 2.449930e+11
   X2ndFlrSF
                BsmtFinSF1
                              GarageArea
                                             GarageCars
                                                               MoSold
                             1.249908e+11
 2.092046e+11
              2.016263e+11
                                          1.224555e+11
                                                         1.212271e+11
  MSSubClass
              TotRmsAbvGrd
                                  LotArea
                                           Exterior2nd
                                                             FullBath
7.264862e+10
              7.129839e+10
                                          5.199145e+10
                                                         5.051469e+10
                             6.625353e+10
 Exterior1st
                   BsmtQual
                            YearRemodAdd
                                             BsmtUnfSF
                                                            YearBuilt
 4.526345e+10 4.485674e+10
                            4.291098e+10
                                          3.993900e+10
                                                         3.311773e+10
    ExterQual
               KitchenQual
                             OverallCond
                                             WoodDeckSF
                                                         BsmtFinType1
3.131083e+10
             3.062799e+10
                            2.872770e+10
                                          2.496277e+10
                                                         2.471658e+10
 OpenPorchSF
              BsmtExposure
                              MasVnrArea
                                             GarageType
                                                          FireplaceQu
 2.368344e+10
                                          2.004585e+10
                                                         1.637433e+10
              2.293845e+10
                            2.030680e+10
SaleCondition
                CentralAir
                             BedroomAbvGr
                                              LotConfig
                                                             SaleType
 1.461987e+10
              1.312680e+10
                             9.270183e+09
                                          8.936029e+09
                                                         8.506967e+09
      YrSold
                MasVnrType
                             BsmtFullBath
                                               BsmtCond
                                                          ScreenPorch
8.482592e+09 8.375514e+09
                             7.826875e+09
                                          7.620512e+09
                                                        7.562020e+09
  Fireplaces
                 HeatingQC
                                 HalfBath
                                               LotShape EnclosedPorch
7.379051e+09
              7.156644e+09
                             6.560922e+09
                                          6.421534e+09
                                                         6.090483e+09
 LandContour
                 RoofStyle
                              GarageQual
                                             GarageCond
                                                             MSZoning
                            4.321954e+09
 5.333845e+09
              5.213701e+09
                                          4.043866e+09
                                                         3.993117e+09
  Functional
                Condition1
                                    Alley
                                             HouseStyle
                                                           Foundation
 3.820424e+09
              3.557361e+09
                             3.396950e+09
                                          3.383651e+09
                                                         3.381264e+09
    ExterCond
              BsmtFinType2
                                BldgType
                                             PavedDrive
                                                           BsmtFinSF2
 3.189091e+09
              3.015736e+09
                            2.706814e+09 2.549077e+09
                                                         2.186420e+09
                   RoofMatl
                               LandSlope
                                          KitchenAbvGr
                                                          Electrical
        Fence
 2.059356e+09
              2.050341e+09
                            1.994604e+09
                                          1.435246e+09
                                                        1.326879e+09
    PoolArea
              LowQualFinSF
                             BsmtHalfBath
                                            X3SsnPorch
                                                               PoolQC
1.167374e+09 1.067953e+09
                            1.015859e+09
                                          7.485637e+08
                                                        5.869585e+08
     Heating
                    MiscVal
                             MiscFeature
                                             Condition2
                                                               Street
 5.483117e+08 3.006778e+08
                            1.829275e+08 6.508716e+07
                                                        1.763133e+07
```

In terms of both prediction accuracy [,1] and purity [,2], the two three most important variables are OverallQual and Neighborhood; this is consistent with the results from the decision trees. In terms of prediction accuracy, the variable GrLivArea is the number one predictor, but it is ranked third for node purity.

The following code creates a prediction using the bagging model.

```
bag.prediction <- predict(bag.model, newdata=test)
write.csv(data.frame(Id=test$Id, SalePrice=bag.prediction), "Bagging_Prediction.csv", row.names=
F)</pre>
```

The Kaggle score for this model was **0.15402**. This shows significant improvement over the decision tree method and is even better than the log-transformed bagging model.

The following code uses cross-validation to predict the error.

```
set.seed(428) # consistency of k-fold validation breaks
fold.index <- cut(sample(1:nrow(train)), breaks=10, labels=FALSE) # split data into 10 folds

out <- c()
for (i in 1:10) {
    train.cv <- train[fold.index!=i,]
    test.cv.X <- train[fold.index==i,-77]
    test.cv.y <- train[fold.index==i,77]

bag.model.cv <- randomForest(SalePrice~.-Id, data=train.cv, mtry=bag.mtry, importance=T, ntree =500)
    bag.prediction.cv <- predict(bag.model.cv, newdata=test.cv.X)
    bag.rmsle.cv <- sqrt(mean((log(bag.prediction.cv)-log(test.cv.y))^2))
    out <- c(out, bag.rmsle.cv)
}
mean(out)</pre>
```

```
[1] 0.1463885
```

The estimated RMSLE is 0.1463885 for the bagging method on the non-transformed response; this is fairly close to the true test RMSLE.

#### Random Forest

```
library(randomForest)

rf.mtry <- round(sqrt(ncol(train)-2)) # split candidate count; don't include response or ID</pre>
```

This next section, like the previous, will try to fit the random forest model to both the log-transformed response and the response as-is. The maximum number of trees that provided good computational time was <a href="https://next-section.org/like-next-section">ntree=500</a>.

```
rf.log.model <- randomForest(log(SalePrice)~.-Id, data=train, mtry=rf.mtry, importance=T, ntree= 500)
```

The results of the random forest model on the log-transformed response are as follows:

```
varImpPlot(rf.log.model)
```

### rf.log.model



sort(importance(rf.log.model)[,1], decreasing=T)

|   | GrLivArea    | Neighborhood  | MSSubClass   | X1stFlrSF    | GarageArea            |
|---|--------------|---------------|--------------|--------------|-----------------------|
|   | 28.36224031  | 22.81789224   | 19.94558169  | 19.94332924  | 19.90581675           |
|   | TotalBsmtSF  | BsmtFinSF1    | X2ndFlrSF    | OverallQual  | LotArea               |
|   | 19.67691724  | 18.99868114   | 18.69139341  | 18.19503084  | 17.42745315           |
|   | TotRmsAbvGrd | GarageCars    | FireplaceQu  | YearBuilt    | YearRemodAdd          |
|   | 14.09743014  | 13.70646365   | 13.40304880  | 12.80275066  | 12.47056247           |
|   | ExterQual    | KitchenQual   | HouseStyle   | FullBath     | Fireplaces            |
|   | 12.22211287  | 12.12921767   | 11.78761741  | 11.67534322  | 11.65998577           |
|   | BsmtQual     | BedroomAbvGr  | BsmtFinType1 | OverallCond  | Exterior2nd           |
|   | 11.59073561  | 10.98417797   | 10.63594861  | 10.56450616  | 10.39036593           |
|   | GarageType   | Exterior1st   | BsmtFullBath | HalfBath     | OpenPorchSF           |
|   | 10.12993186  | 10.07684335   | 9.90834210   | 9.73551136   | 9.42306410            |
|   | BsmtExposure | BsmtUnfSF     | MSZoning     | WoodDeckSF   | BsmtCond              |
|   | 9.39609108   | 9.12703080    | 8.12511175   | 7.95330764   | 7.63416768            |
|   | MasVnrType   | CentralAir    | MasVnrArea   | BldgType     | Foundation            |
|   | 7.37055417   | 7.33006907    | 7.19279288   | 6.91560078   | 6.84643202            |
|   | HeatingQC    | GarageCond    | GarageQual   | LotShape     | PavedDrive            |
|   | 6.31540620   | 4.94448394    | 4.93184295   | 4.83587169   | 4.43981396            |
|   | RoofStyle    | KitchenAbvGr  | ScreenPorch  | Functional   | Alley                 |
|   | 4.26709697   | 4.07829513    | 3.61443221   | 3.44963209   | 3.35126552            |
|   | BsmtHalfBath | MoSold        | Condition1   | BsmtFinType2 | LandContour           |
|   | 2.74128207   | 2.66523533    | 2.51699389   | 2.17735756   | 2.08767506            |
|   | LotConfig    | SaleType      | LandSlope    | Fence        | ExterCond             |
|   | 1.68313887   | 1.68078709    | 1.67777698   | 1.43357549   | 1.25135543            |
|   | Heating      | SaleCondition | YrSold       | RoofMatl     | ${\tt EnclosedPorch}$ |
|   | 0.85070108   | 0.36670738    | 0.32819385   | 0.20688505   | 0.20020511            |
|   | LowQualFinSF | BsmtFinSF2    | Electrical   | X3SsnPorch   | MiscFeature           |
|   | -0.01251876  | -0.03509582   | -0.13909719  | -0.45617523  | -0.77758538           |
|   | MiscVal      | Street        | Condition2   | PoolQC       | PoolArea              |
|   | -0.95563121  | -1.09997036   | -1.26432578  | -1.30250643  | -1.69486498           |
| l |              |               |              |              |                       |

sort(importance(rf.log.model)[,2], decreasing=T)

| OverallQual   | Neighborhood | GrLivArea    | ExterQual    | TotalBsmtSF   |
|---------------|--------------|--------------|--------------|---------------|
| 24.83596007   | 22.62475246  | 19.32069311  | 11.81594283  | 10.87100246   |
| KitchenQual   | BsmtQual     | YearBuilt    | GarageCars   | GarageArea    |
| 10.10644517   | 9.73600447   | 8.79617596   | 8.77585509   | 8.76498222    |
| X1stFlrSF     | FullBath     | MSSubClass   | GarageType   | FireplaceQu   |
| 7.92088992    | 6.44733891   | 5.44965625   | 5.40150922   | 5.24195411    |
| YearRemodAdd  | Fireplaces   | BsmtFinSF1   | LotArea      | X2ndFlrSF     |
| 4.37390383    | 3.65900051   | 3.65238416   | 3.52052440   | 3.50110679    |
| TotRmsAbvGrd  | Foundation   | MoSold       | Exterior1st  | BsmtFinType1  |
| 3.37650100    | 3.13896440   | 2.33126920   | 2.29720186   | 2.11665782    |
| OverallCond   | Exterior2nd  | CentralAir   | OpenPorchSF  | MSZoning      |
| 1.89906652    | 1.74586713   | 1.57445226   | 1.46279817   | 1.46211046    |
| GarageCond    | BsmtUnfSF    | BedroomAbvGr | HeatingQC    | HouseStyle    |
| 1.25203737    | 1.21612355   | 1.17700375   | 0.99353949   | 0.91484798    |
| MasVnrArea    | GarageQual   | BsmtExposure | WoodDeckSF   | HalfBath      |
| 0.86923178    | 0.77339696   | 0.74066482   | 0.71582734   | 0.60877926    |
| SaleCondition | RoofStyle    | MasVnrType   | PavedDrive   | BsmtCond      |
| 0.60687610    | 0.51585462   | 0.51083626   | 0.49342828   | 0.49241031    |
| BsmtFullBath  | YrSold       | BldgType     | LotShape     | Functional    |
| 0.44306119    | 0.39830241   | 0.39518445   | 0.37332705   | 0.36950494    |
| ExterCond     | SaleType     | Fence        | Condition1   | EnclosedPorch |
| 0.35774111    | 0.33857377   | 0.33731129   | 0.32305960   | 0.30771238    |
| LandContour   | BsmtFinType2 | LotConfig    | Electrical   | Heating       |
| 0.29695915    | 0.28203933   | 0.27231419   | 0.24265664   | 0.21178362    |
| LandSlope     | ScreenPorch  | Alley        | KitchenAbvGr | BsmtFinSF2    |
| 0.18166543    | 0.16425319   | 0.15618629   | 0.14068760   | 0.12629211    |
| RoofMatl      | BsmtHalfBath | MiscVal      | MiscFeature  | LowQualFinSF  |
| 0.08142267    | 0.06951679   | 0.06433990   | 0.06121385   | 0.03673125    |
| Street        | PoolQC       | PoolArea     | X3SsnPorch   | Condition2    |
| 0.03512957    | 0.03284057   | 0.02423484   | 0.02342917   | 0.02194812    |
|               |              |              |              |               |

In terms of both prediction accuracy [,1] and purity [,2], the three most important variables include GrLivArea, and Neighborhood; this is consistent with the results from the decision trees and the bagging. GrLivArea is an important predictor of accuracy, but OverallQual is more important for node purity.

The following code creates a prediction using the random forest model.

```
rf.log.prediction <- exp(predict(rf.log.model, newdata=test))
write.csv(data.frame(Id=test$Id, SalePrice=rf.log.prediction), "RandomForest_Log_Prediction.csv"
, row.names=F)</pre>
```

The Kaggle score for this model was **0.15158**. This shows significant improvement over the decision tree method. This shows improvement over the bagging-log model.

The following code uses cross-validation to predict the error.

```
set.seed(428) # consistency of k-fold validation breaks
fold.index <- cut(sample(1:nrow(train)), breaks=10, labels=FALSE) # split data into 10 folds

out <- c()
for (i in 1:10) {
    train.cv <- train[fold.index!=i,]
    test.cv.X <- train[fold.index==i,-77]
    test.cv.y <- train[fold.index==i,77]

    rf.log.model.cv <- randomForest(log(SalePrice)~.-Id, data=train.cv, mtry=rf.mtry, importance=T
    , ntree=500)
    rf.log.prediction.cv <- exp(predict(rf.log.model.cv, newdata=test.cv.X))
    rf.log.rmsle.cv <- sqrt(mean((log(rf.log.prediction.cv)-log(test.cv.y))^2))
    out <- c(out, rf.log.rmsle.cv)
}
mean(out)</pre>
```

```
[1] 0.1401211
```

The estimated RMSLE is 0.1401211 for the random forest method; this is fairly close to the true test RMSLE.

The following code fits a random forest model to the data, but doesn't log-transform the response.

```
rf.model <- randomForest(SalePrice~.-Id, data=train, mtry=rf.mtry, importance=T, ntree=500)
```

The results of the random forest model on the non-transformed response are as follows:

```
varImpPlot(rf.model)
```

#### rf.model



sort(importance(rf.model)[,1], decreasing=T)

| GrLivArea     | Neighborhood  | OverallQual  | MSSubClass   | X2ndFlrSF    |
|---------------|---------------|--------------|--------------|--------------|
| 24.407833439  | 18.786510041  | 18.298926905 | 15.858835769 | 15.815107546 |
| X1stFlrSF     | GarageArea    | GarageCars   | LotArea      | TotalBsmtSF  |
| 14.857228866  | 14.779432268  | 14.040723759 | 13.924158779 | 13.536590962 |
| ExterQual     | YearBuilt     | BsmtQual     | MSZoning     | FireplaceQu  |
| 12.356967406  | 12.246369156  | 11.519464583 | 11.405106250 | 10.819013546 |
| FullBath      | KitchenQual   | GarageType   | CentralAir   | BsmtFinType1 |
| 10.657171769  | 10.173005447  | 9.749147527  | 9.559419804  | 9.131549702  |
| Fireplaces    | HouseStyle    | HalfBath     | YearRemodAdd | TotRmsAbvGrd |
| 9.059714866   | 9.053625326   | 8.147758708  | 8.079483513  | 8.061258953  |
| BldgType      | GarageQual    | Exterior1st  | Exterior2nd  | BsmtFinSF1   |
| 7.603351215   | 7.505558872   | 7.181561112  | 7.123575865  | 7.038382770  |
| GarageCond    | MasVnrArea    | WoodDeckSF   | Foundation   | BedroomAbvGr |
| 6.460677847   | 6.207951652   | 5.921768083  | 5.897797472  | 5.872605922  |
| BsmtFullBath  | HeatingQC     | PavedDrive   | MasVnrType   | KitchenAbvGr |
| 5.779828089   | 5.637735665   | 5.247971352  | 5.185586252  | 4.770191362  |
| OverallCond   | BsmtExposure  | OpenPorchSF  | BsmtUnfSF    | Condition1   |
| 4.518228723   | 4.472455242   | 4.378727492  | 3.807177909  | 3.728498997  |
| BsmtCond      | BsmtFinType2  | LandSlope    | Fence        | LotShape     |
| 3.719308768   | 3.038352194   | 2.695272465  | 2.526889216  | 2.318786083  |
| SaleType      | SaleCondition | RoofStyle    | ExterCond    | LandContour  |
| 2.291253179   | 2.167520077   | 2.014403190  | 1.801280039  | 1.742212581  |
| EnclosedPorch | MiscVal       | BsmtFinSF2   | Condition2   | MoSold       |
| 1.740709008   | 1.649672187   | 1.559518710  | 1.520969687  | 1.520887242  |
| BsmtHalfBath  | LowQualFinSF  | Alley        | Functional   | ScreenPorch  |
| 1.496359179   | 1.119864523   | 1.095481353  | 1.067982067  | 0.672632462  |
| MiscFeature   | Electrical    | LotConfig    | Street       | YrSold       |
| 0.412877636   | 0.411877339   | 0.182849425  | -0.003339891 | -0.156259920 |
| X3SsnPorch    | RoofMatl      | PoolQC       | PoolArea     | Heating      |
| -0.950233261  | -1.390621164  | -1.594905414 | -1.801798405 | -2.293417511 |
|               |               |              |              |              |

sort(importance(rf.model)[,2], decreasing=T)

| OverallQual   | Neighborhood | GrLivArea     | GarageCars   | TotalBsmtSF  |
|---------------|--------------|---------------|--------------|--------------|
| 979058081116  | 793109647816 | 686748045621  | 553171578513 | 494374287911 |
| ExterQual     | YearBuilt    | X1stFlrSF     | GarageArea   | KitchenQual  |
| 453572722717  | 430319702783 | 423327208688  | 383970294306 | 369667452572 |
| BsmtQual      | BsmtFinSF1   | FullBath      | X2ndFlrSF    | LotArea      |
| 339491067555  | 246300352602 | 208463968461  | 200706280239 | 174186325699 |
| TotRmsAbvGrd  | MSSubClass   | FireplaceQu   | YearRemodAdd | Fireplaces   |
| 157260420220  | 157204284778 | 147911175356  | 139950841210 | 94813396787  |
| GarageType    | MoSold       | Exterior1st   | Foundation   | Exterior2nd  |
| 94161165692   | 91030302503  | 90913538142   | 76322181888  | 72642754718  |
| BsmtFinType1  | OpenPorchSF  | BsmtUnfSF     | MasVnrArea   | BsmtExposure |
| 72166739714   | 57669082874  | 54800115810   | 48393662203  | 48194098559  |
| HeatingQC     | OverallCond  | WoodDeckSF    | BedroomAbvGr | HalfBath     |
| 45509407553   | 42885189736  | 42849704259   | 35960855124  | 35239254644  |
| HouseStyle    | MasVnrType   | SaleCondition | RoofStyle    | BsmtFullBath |
| 33078843544   | 26014860998  | 22230381576   | 22097890742  | 19660950316  |
| MSZoning      | LotShape     | SaleType      | PoolArea     | YrSold       |
| 19658053635   | 18149440847  | 17164626271   | 15629537433  | 15279879351  |
| LotConfig     | BldgType     | LandContour   | GarageCond   | RoofMatl     |
| 14937851583   | 14561159582  | 14302248429   | 13063225770  | 12442626411  |
| CentralAir    | Fence        | GarageQual    | ScreenPorch  | BsmtFinType2 |
| 12097751832   | 11877522500  | 11559575480   | 10036877022  | 9936521971   |
| PoolQC        | Condition1   | Functional    | BsmtCond     | BsmtFinSF2   |
| 9620031262    | 9195177611   | 8552821916    | 8035882410   | 7555540624   |
| EnclosedPorch | LandSlope    | BsmtHalfBath  | ExterCond    | PavedDrive   |
| 7553914207    | 7017754923   | 6916243562    | 5997453255   | 5196589926   |
| KitchenAbvGr  | Alley        | Heating       | Electrical   | MiscVal      |
| 4300887731    | 3077008413   | 2887161154    | 2795320287   | 1124496999   |
| LowQualFinSF  | X3SsnPorch   | MiscFeature   | Condition2   | Street       |
| 1101853833    | 1095568355   | 992773684     | 607914546    | 209313441    |
|               |              |               |              |              |

In terms of both prediction accuracy [,1] and purity [,2], the two three most important variables are GrLivArea, OverallQual and Neighborhood (though not in the same overder for both); this is consistent with the results from the decision trees and bagging. In terms of prediction accuracy, the variable GrLivArea is the number one predictor, but it is ranked third for node purity.

The following code creates a prediction using the random forest model.

```
rf.prediction <- predict(rf.model, newdata=test)
write.csv(data.frame(Id=test$Id, SalePrice=rf.prediction), "RandomForest_Prediction.csv", row.na
mes=F)</pre>
```

The Kaggle score for this model was **0.15819**. This shows significant improvement over the decision tree method, but not the non-transformed bagging model, and it is worse than the log-transformed response random forest model.

The following code uses cross-validation to predict the error.

```
set.seed(428) # consistency of k-fold validation breaks
fold.index <- cut(sample(1:nrow(train)), breaks=10, labels=FALSE) # split data into 10 folds

out <- c()
for (i in 1:10) {
    train.cv <- train[fold.index!=i,]
    test.cv.X <- train[fold.index==i,-77]
    test.cv.y <- train[fold.index==i,77]

    rf.model.cv <- randomForest(SalePrice~.-Id, data=train.cv, mtry=rf.mtry, importance=T, ntree=5

00)
    rf.prediction.cv <- predict(rf.model.cv, newdata=test.cv.X)
    rf.rmsle.cv <- sqrt(mean((log(rf.prediction.cv)-log(test.cv.y))^2))
    out <- c(out, rf.rmsle.cv)
}
mean(out)</pre>
```

```
[1] 0.1445637
```

The estimated RMSLE is 0.1445637 for the random forest method on the non-transformed response; this is fairly close to the true test RMSLE.

# **Boosting**

This next section, like the previous, will try to fit the boosting model to both the log-transformed response and the response as-is. It will also choose the parameters (number of trees, interaction depth, and shrinkage) using cross-validation.

```
library(gbm)
```

Using cross-validation, I will check what combination of B,  $\lambda$ , and d results in the smallest estimated test error. I use common values for  $\lambda$  and d, as discussed in class.

```
boost.trees.params <- seq(25, 250, 25)
boost.lambda.params \leftarrow c(0.1, 0.01)
boost.depth.params \leftarrow c(1, 2, 4, 8)
boost.log.cv.rmsle.array <- array(NA, dim=c(length(boost.trees.params), length(boost.lambda.para
ms), length(boost.depth.params)), dimnames=list(boost.trees.params, boost.lambda.params, boost.d
epth.params))
set.seed(428) # consistency of k-fold validation breaks
fold.index <- cut(sample(1:nrow(train)), breaks=10, labels=FALSE) # split data into 10 folds
for (i in 1:length(boost.trees.params)) {
  for (j in 1:length(boost.lambda.params)) {
    for (k in 1:length(boost.depth.params)) {
      out <- c()
      for (1 in 1:10) {
        train.cv <- train[fold.index!=1,]</pre>
        test.cv.X <- train[fold.index==1,-77]
        test.cv.y <- train[fold.index==1,77]</pre>
        tmp.log.model <- gbm(log(SalePrice)~.-Id, data=train.cv, distribution='gaussian', n.tree</pre>
s=boost.trees.params[i], interaction.depth=boost.depth.params[k], shrinkage=boost.lambda.params
[j])
        tmp.prediction <- exp(predict(tmp.log.model, newdata=test.cv.X, n.trees=boost.trees.para</pre>
ms[i]))
        out[1] <- mean((log(tmp.prediction)-log(test.cv.y))^2)</pre>
         print(paste0("i=",i,",j=",j,",k=",k,",l=",l))
#
      boost.log.cv.rmsle.array[i,j,k] <- mean(out)</pre>
    }
  }
}
which(boost.log.cv.rmsle.array==min(boost.log.cv.rmsle.array), arr.ind=T)
```

```
dim1 dim2 dim3
25 1 1 4
```

The best is 1,1,4 which is 25 trees, 0.1 shrinkage, and depth of 8. (est. RMSLE is 0.06577063).

The following code creates using these parameter values.

```
boost.log.model <- gbm(log(SalePrice) \sim .- Id, data=train, distribution='gaussian', n.trees=25, interaction.depth=8, shrinkage=0.1)
```

The following code looks at the important variables in the boosting model.

```
summary(boost.log.model)
```



|               | var           | rel.inf     |
|---------------|---------------|-------------|
| OverallQual   | OverallQual   | 38.25347319 |
| Neighborhood  | Neighborhood  | 17.22999859 |
| GrLivArea     | GrLivArea     | 13.19123359 |
| KitchenQual   | KitchenQual   | 4.68158201  |
| X1stFlrSF     | X1stFlrSF     | 2.91643242  |
| TotalBsmtSF   | TotalBsmtSF   | 2.76603209  |
| BsmtFinSF1    | BsmtFinSF1    | 2.63552937  |
| ExterQual     | ExterQual     | 2.63501792  |
| GarageArea    | GarageArea    | 2.58183522  |
| GarageCars    | GarageCars    | 2.55178974  |
| MSSubClass    | MSSubClass    | 1.89101920  |
| OverallCond   | OverallCond   | 1.71693349  |
| YearRemodAdd  | YearRemodAdd  | 1.16258282  |
| CentralAir    | CentralAir    | 1.09524442  |
| YearBuilt     | YearBuilt     | 0.89759245  |
| FireplaceQu   | FireplaceQu   | 0.59745792  |
| GarageType    | GarageType    | 0.49614564  |
| BsmtFinType1  | BsmtFinType1  | 0.34801108  |
| GarageCond    | GarageCond    | 0.33537529  |
| LotArea       | LotArea       | 0.29106458  |
| SaleCondition | SaleCondition | 0.28711105  |
| X2ndFlrSF     | X2ndFlrSF     | 0.19217645  |
| WoodDeckSF    | WoodDeckSF    | 0.19199986  |
| PavedDrive    | PavedDrive    | 0.18773832  |
| TotRmsAbvGrd  | TotRmsAbvGrd  | 0.14767040  |
| MoSold        | MoSold        | 0.14298958  |
| BsmtQual      | BsmtQual      | 0.13800055  |
| Functional    | Functional    | 0.08102707  |
| HalfBath      | HalfBath      | 0.06823329  |
| Condition1    | Condition1    | 0.05815569  |
| OpenPorchSF   | OpenPorchSF   | 0.05295882  |
| Exterior2nd   | Exterior2nd   | 0.05008979  |
| KitchenAbvGr  | KitchenAbvGr  | 0.04982033  |
| BsmtExposure  | BsmtExposure  | 0.03923786  |
| Foundation    | Foundation    | 0.03843995  |
| MSZoning      | MSZoning      | 0.00000000  |
| Street        | Street        | 0.00000000  |
| Alley         | Alley         | 0.00000000  |
| LotShape      | LotShape      | 0.00000000  |
| LandContour   | LandContour   | 0.00000000  |
| LotConfig     | LotConfig     | 0.00000000  |
| LandSlope     | LandSlope     | 0.00000000  |
| Condition2    | Condition2    | 0.00000000  |
| BldgType      | BldgType      | 0.00000000  |
| HouseStyle    | HouseStyle    | 0.00000000  |
| RoofStyle     | RoofStyle     | 0.00000000  |
| RoofMatl      | RoofMatl      | 0.00000000  |
| Exterior1st   | Exterior1st   | 0.00000000  |
| MasVnrType    | MasVnrType    | 0.00000000  |
| MasVnrArea    | MasVnrArea    | 0.00000000  |
| ExterCond     | ExterCond     | 0.00000000  |
| BsmtCond      | BsmtCond      | 0.00000000  |
| DameCond      | DameColla     | 0.0000000   |

```
BsmtFinType2
               BsmtFinType2
                            0.00000000
BsmtFinSF2
                 BsmtFinSF2
                            0.00000000
BsmtUnfSF
                  BsmtUnfSF
                            0.00000000
Heating
                    Heating
                            0.00000000
HeatingQC
                 HeatingQC
                            0.00000000
Electrical
                 Electrical 0.00000000
               LowQualFinSF
LowQualFinSF
                            0.00000000
BsmtFullBath
               BsmtFullBath
                            0.00000000
BsmtHalfBath
               BsmtHalfBath 0.00000000
FullBath
                   FullBath 0.00000000
BedroomAbvGr
               BedroomAbvGr
                            0.00000000
Fireplaces
                 Fireplaces
                            0.00000000
GarageQual
                 GarageQual
                            0.00000000
EnclosedPorch EnclosedPorch
                            0.00000000
X3SsnPorch
                X3SsnPorch
                            0.00000000
                ScreenPorch 0.00000000
ScreenPorch
PoolArea
                   PoolArea 0.00000000
PoolQC
                     PoolQC 0.00000000
Fence
                      Fence 0.00000000
MiscFeature
                MiscFeature 0.00000000
MiscVal
                    MiscVal
                            0.00000000
YrSold
                     YrSold
                            0.00000000
SaleType
                   SaleType 0.00000000
```

The three most important variables in this model are <code>OverallQual</code>, <code>GrLivArea</code>, and <code>Neighborhood</code>; this is consistent with the other models.

The following code makes the prediction using the model.

```
boost.log.prediction <- exp(predict(boost.log.model, newdata=test, n.trees=25))
write.csv(data.frame(Id=test$Id, SalePrice=boost.log.prediction), "Boosting_Log_Prediction.csv",
row.names=F)</pre>
```

The Kaggle score for this model was **0.15386**. This shows improvement over the decision trees and the bagging model for the log-transformed response; it was slightly worse than the random forest model.

Using cross-validation, I will check what combination of B,  $\lambda$ , and d results in the smallest estimated test error. I use common values for  $\lambda$  and d, as discussed in class.

```
boost.trees.params <- seq(25, 250, 25)
boost.lambda.params \leftarrow c(0.1, 0.01)
boost.depth.params \leftarrow c(1, 2, 4, 8)
boost.cv.rmsle.array <- array(NA, dim=c(length(boost.trees.params), length(boost.lambda.params),</pre>
 length(boost.depth.params)), dimnames=list(boost.trees.params, boost.lambda.params, boost.dept
h.params))
set.seed(428) # consistency of k-fold validation breaks
fold.index <- cut(sample(1:nrow(train)), breaks=10, labels=FALSE) # split data into 10 folds
for (i in 1:length(boost.trees.params)) {
  for (j in 1:length(boost.lambda.params)) {
    for (k in 1:length(boost.depth.params)) {
      out <- c()
      for (1 in 1:10) {
        train.cv <- train[fold.index!=1,]</pre>
        test.cv.X <- train[fold.index==1,-77]
        test.cv.y <- train[fold.index==1,77]</pre>
        tmp.model <- gbm(SalePrice~.-Id, data=train.cv, distribution='gaussian', n.trees=boost.t</pre>
rees.params[i], interaction.depth=boost.depth.params[k], shrinkage=boost.lambda.params[j])
        tmp.prediction <- predict(tmp.model, newdata=test.cv.X, n.trees=boost.trees.params[i])</pre>
        out[1] <- mean((log(tmp.prediction)-log(test.cv.y))^2)</pre>
       # print(paste0("i=",i,",j=",j,",k=",k,",l=",l))
      boost.cv.rmsle.array[i,j,k] <- mean(out)</pre>
  }
}
which(boost.cv.rmsle.array==min(boost.cv.rmsle.array), arr.ind=T)
```

```
dim1 dim2 dim3
250 10 2 4
```

```
min(boost.cv.rmsle.array)
```

```
[1] 0.06348275
```

The best is 10,2,4 which is 250 trees, 0.01 shrinkage, and depth of 8. (est. RMSLE is 0.06348275).

The following code creates using these parameter values.

```
boost.model <- gbm(SalePrice~.-Id, data=train, distribution='gaussian', n.trees=250, interactio
n.depth=8, shrinkage=0.01)</pre>
```

The following code looks at the important variables in the boosting model.



|               | var           | rel.inf      |
|---------------|---------------|--------------|
| OverallQual   | OverallQual   | 44.096681012 |
| GrLivArea     | GrLivArea     | 13.994997808 |
| Neighborhood  | Neighborhood  | 12.600573523 |
| TotalBsmtSF   | TotalBsmtSF   | 5.245596080  |
| BsmtFinSF1    | BsmtFinSF1    | 3.584458928  |
| GarageCars    | GarageCars    | 3.527772055  |
| X1stFlrSF     | X1stFlrSF     | 2.598287178  |
| BsmtQual      | BsmtQual      | 1.741792078  |
| KitchenQual   | KitchenQual   | 1.715727798  |
| GarageArea    | GarageArea    | 1.661308979  |
| ExterQual     | ExterQual     | 1.362820113  |
| MSSubClass    | MSSubClass    | 0.947343005  |
| TotRmsAbvGrd  | TotRmsAbvGrd  | 0.860829097  |
| LotArea       | LotArea       | 0.645812516  |
| X2ndFlrSF     | X2ndFlrSF     | 0.637333283  |
| FullBath      | FullBath      | 0.628645227  |
| YearRemodAdd  | YearRemodAdd  | 0.550973830  |
| MoSold        | MoSold        | 0.384643990  |
| YearBuilt     | YearBuilt     | 0.371673520  |
| GarageType    | GarageType    | 0.341880711  |
| FireplaceQu   | FireplaceQu   | 0.334185281  |
| OverallCond   | OverallCond   | 0.308187638  |
| CentralAir    | CentralAir    | 0.298608622  |
| BsmtExposure  | BsmtExposure  | 0.279018063  |
| Exterior2nd   | Exterior2nd   | 0.179847940  |
| SaleType      | SaleType      | 0.176825626  |
| BsmtFinType1  | BsmtFinType1  | 0.137084260  |
| Exterior1st   | Exterior1st   | 0.122709233  |
| OpenPorchSF   | OpenPorchSF   | 0.079142138  |
| SaleCondition | SaleCondition | 0.069946226  |
| GarageQual    | GarageQual    | 0.066298775  |
| HalfBath      | HalfBath      | 0.065411616  |
| BsmtFullBath  | BsmtFullBath  | 0.059522641  |
| MSZoning      | MSZoning      | 0.032786493  |
| Condition1    | Condition1    | 0.030806597  |
| Fireplaces    | Fireplaces    | 0.030385378  |
| WoodDeckSF    | WoodDeckSF    | 0.027607354  |
| BedroomAbvGr  | BedroomAbvGr  | 0.026753123  |
| BsmtCond      | BsmtCond      | 0.026192187  |
| HeatingQC     | HeatingQC     | 0.024527728  |
| GarageCond    | GarageCond    | 0.019997262  |
| BsmtUnfSF     | BsmtUnfSF     | 0.019078693  |
| ExterCond     | ExterCond     | 0.013392422  |
| ScreenPorch   | ScreenPorch   | 0.012673556  |
| KitchenAbvGr  | KitchenAbvGr  | 0.012267710  |
| MasVnrArea    | MasVnrArea    | 0.011832283  |
| HouseStyle    | HouseStyle    | 0.006897067  |
| LotShape      | LotShape      | 0.006656396  |
| MasVnrType    | MasVnrType    | 0.006320278  |
| LandContour   | LandContour   | 0.005283731  |
| Functional    | Functional    | 0.004133535  |
| LandSlope     | LandSlope     | 0.003465416  |
| 24.1451000    | Lanastope     | 0.000-00-10  |

```
LotConfig
                 LotConfig 0.003004004
Street
                    Street 0.000000000
Alley
                     Alley 0.000000000
Condition2
                Condition2 0.000000000
BldgType
                  BldgType 0.000000000
RoofStyle
                 RoofStyle 0.000000000
RoofMat1
                  RoofMatl 0.000000000
Foundation
                Foundation 0.000000000
BsmtFinType2
              BsmtFinType2 0.000000000
BsmtFinSF2
                BsmtFinSF2 0.000000000
Heating
                   Heating 0.000000000
Electrical
                Electrical 0.000000000
LowQualFinSF
              LowQualFinSF 0.000000000
BsmtHalfBath
              BsmtHalfBath 0.000000000
PavedDrive
                PavedDrive 0.000000000
EnclosedPorch EnclosedPorch 0.0000000000
                X3SsnPorch 0.000000000
X3SsnPorch
PoolArea
                  PoolArea 0.000000000
PoolQC
                    PoolQC 0.000000000
Fence
                     Fence 0.000000000
               MiscFeature 0.000000000
MiscFeature
MiscVal
                   MiscVal 0.000000000
YrSold
                    YrSold 0.000000000
```

The three most important variables in this model are <code>OverallQual</code>, <code>GrLivArea</code>, and <code>Neighborhood</code>; this is consistent with the other models.

The following code makes the prediction using the model.

```
boost.prediction <- predict(boost.model, newdata=test, n.trees=250)
write.csv(data.frame(Id=test$Id, SalePrice=boost.prediction), "Boosting_Prediction.csv", row.nam
es=F)</pre>
```

The Kaggle score for this model was **0.17266**. This shows improvement over the decision tree, but not over anything else.