DSAIMini Project

E Commerce Customer Service Satisfaction

GROUP 4

YUN TAT RUGMA SAAD

Target Company

Shopzilla, now known as Connexity, is a company focused on online retail and ecommerce.

It provides a platform for online shopping, connecting shoppers with retailers and offering a wide range of products The company primarily serves the ecommerce industry. It was founded in 1996 and is based in Los Angeles, California.

About Our Dataset

The dataset captures customer satisfaction scores, along with multiple variables involving handling customer queries and disputes, for a one-month period at Shopzilla.

Problem Statement

How does the different features of an item and the nature of interaction with the client affect the ultimate satisfaction rating of the customer in ecommerce shopping?

Significance of the problem

Customer Reviews are crucial to the success of a business.

- Psychologically, we place significant value on others' opinions and behaviors.
- Decision-making is often influenced by the choices of others.

Customer reviews act as personal testimonials.

- They engage readers in a dialogue with the reviewer and indirectly with the brand.
- Reviews offer insights into product or service experiences.
- They influence decision-making through affective forecasting.

Data Cleaning & Exploration

Dataset Columns

- Category
- Issue_reported at
- Issue_responded
- Tenure Bucket
- Agent Shift
- Channel_name

- Sub-category
- Customer_City
- Product_category
- Item_price
- Agent_name
- Supervisor
- Manager

Checking for Missing Values

We chose those columns that do not have many missing values as it would be difficult and not beneficial to do exploratory analysis on variables with a lot of missing values.

```
cleaned_data_frame = df[important_columns]
   missing values = cleaned data frame.isnull().sum()
   print(missing values)
category
Issue reported at
issue responded
Tenure Bucket
Agent Shift
CSAT Score
Sub-category
Customer City
                      68828
Product_category
                      68711
Item price
                     68701
Supervisor 5 4 1
Manager
dtype: int64
```

Dataset Columns

- Category
- Issue_reported at
- Issue_responded
- Tenure Bucket
- Agent Shift
- Channel_name

- Sub-category
- Customer_City
- Product_category
- Item_price
- Agent_name
- Supervisor
- Manager

New Variable

Time of issue responded- Time of Issue reported

Statistical Summary

- 1) Numeric Variables like Response time **mean, standard deviation** etc.
- 2) Categorical Variables check the **count to display the unique values** for each of the categorical variables under the cleaned dataset.

Dropping more variables

- Customer city, Agent name and Supervisor (due to too many categorical values & would be too insignificant to include them)
- Item_price (no proper currency specified)

category	27,000,000
Returns	3971
Order Related	2471
Refund Related	518
Cancellation	346
Feedback	218
Offers & Cashback	35
Payments related	31
Others	14
Shopzilla Related	14
Product Queries	6
Name: count, dtype	: int64

Tenure Bucket	
>90	3018
31-60	1351
On Job Training	1324
0-30	1171
61-90	760
Name: count, dtype	e: int64

Supervisor	
Elijah Yamaguchi	412
Carter Park	396
Noah Patel	386
Nathan Patel	337
Emma Park	310
Zoe Yamamoto	306
William Park	295
Madison Kim	294
Mia Patel	294
Evelyn Kimura	285
Aiden Patel	276
Scarlett Chen	276
Logan Lee	263
Jackson Park	236
Brayden Wong	221
Lily Chen	210
Emily Yamashita	193
Ava Wong	188
Olivia Wang	184
Mason Gupta	169
Landon Tanaka	165
Amelia Tanaka	159
Sophia Sato	146
Olivia Suzuki	145
 Carbin Chan	10
Sophia Chen	10
Name: count, dtype:	1nt64

```
count
          7624.000000
          10697.920121
mean
          27111.619772
std
min
              0.000000
25%
             2.000000
50%
             8.000000
75%
            140.250000
        177097.000000
max
```

Name: Response time, dtype: float64

Dataset Columns

- Category
- Issue_reported at
- Issue_responded
- Tenure Bucket
- Agent Shift
- Channel_name
- Response time ***

- Sub-category
- Customer_City
- Product_category
- Item_price
- Agent_name
- Supervisor
- Manager

Category against CSAT Scores

- Half of the category plot interquartile range spreads over from 1 to 5 CSAT Score.
- Only returns, refund related, payment related, offers and cashback are more uniform and show a high csat score of 4 to 5.

Tenure Bucket vs CSAT

- The tenure bucket indicates the duration of the employees at the company, varying from 30 days to more than 90 days or on-the-job training.
- For the tenure bucket vs CSAT scores, the median CSAT score lies from 4 to 5 indicating a general positive satisfaction level across all shifts.

Agent shift vs CSAT

- The agent shift refers to the time period which the agent is working.
- We can infer from the plot that majority of the shift lies in the csat scores of 4 to 5.

Channel vs CSAT

 The interquartile range for both the inbound and outcall is tightly clustered and between 4 and 5 whereas for emails there is a broader spread of satisfaction scores.

Subcategory vs CSAT

- For the subcategory variable there are many subdivisions like delayed, services centres related, installation/demo, etc.
- The plotted figures shows us that each subdivisions spread across the CSAT scores non uniformly.
 There are quite a lot of subdivisions in the csat score from 1 to 5. While there are some others in the 3 to 5 range.

Manager vs CSAT

- Half of the managers indicated high csat score which spans over from 4 to 5 whereas the rest is more spread between csat scores 3 and 5 and.
- The data is too spread out for any meaningful trend.

Response Time vs CSAT Scores

 The response time scatter plot is spread out all over the plot, indicating weak relation between the 2 variables.

Principal Component Analysis

dimensionality reduction technique used to simplify complex datasets by transforming them into a lower-dimensional space while preserving most of the essential information.

- 1) Data Transformation
- 2) Dimensionality Reduction
- 3) Variance Retention

Principal Component Variables

PC1

- Largest Variance
- Main patterns or trends

PC2

- Second largest Variance
- Orthogonal to PC1
- Additional patterns or trends in data not captured by PC1

ONE HOT ENCODER OPTIMISATION

Categorical -> Numerical

```
# One-hot encode categorical variables
encoder = OneHotEncoder()
X encoded = encoder.fit transform(X)
```

Explained Variance of PCA Variables

0.19% 0.16% PC1

PC2

Why use it?

 This test assesses whether there is a significant association between two categorical variables.

Components

- Cramér's V
- P Value

Optimisation Results

Variable 1: category, Loading: 0.05593541602491599

Variable 3: Agent Shift, Loading: 0.026606387301456154

Variable 5: Sub-category, Loading: 0.019780536082372485

Variable 7: Manager, Loading: 0.056432505412546775

Principal Component 2:

Variable 1: category, Loading: 0.038793199256909494

Variable 2: Tenure Bucket, Loading: -0.15474403881870283

Validable D. Agent Shift, Luauing. To.0000000002002200720

Variable 5: Sub-category, Loading: -0.006802693793666027

Variable 7: Manager, Loading: -0.09869730175459725

Variable 8: Response time, Loading: 0.14686548748630412

Correlation between Response time and CSAT Score: -0.0660021752867596

Chi-Square Test of Independence for category:

Cramér's V: 0.04 p-value: 0.0262

Cramér's V: 0.02 p-value: 0.3710

Chi-Square Test of Independence for Agent Shift:

Cramér's V: 0.03 p-value: 0.1772

Chi-Square Test of Independence for channel name:

Cramér's V: 0 02

D-Value. 0.4003

Chi-Square Test of Independence for Sub-category:

Cramér's V: 0.08 p-value: 0.0226

Cramér's V: 0.03 p-value: 0.4577

Chi-Square Test of Independence for Manager:

Cramér's V: 0.03 p-value: 0.3636

Explained Variance of PCA Variables

1.29% 1.18% PC1

PC2

Dataset Columns

- Category
- Issue_reported at
- Issue_responded
- Tenure Bucket
- Agent Shift
- Channel_name
- Response time ***

- Sub-category
- Customer_City
- Product_category
- Item_price
- Agent_name
- Supervisor
- Manager

F1 Score & Accuracy

Accuracy:

- Measures correct predictions out of total predictions.
- Provides an overall indication of model performance across all classes.

F1 Score:

- Harmonic mean of precision and recall.
- Balances precision (true positive predictions out of all positive predictions) and recall (true positive predictions out of all actual positive instances).

F1 Score & Accuracy

The PCA trained prediction model did slightly better than if we were to just use a multivariate prediction model of the decision tree.

PCA:

F1 Score: 0.7129765164158266

Accuracy: 0.735966735966736

Non-PCA:

F1 Score: 0.7014626783699713

Accuracy: 0.7182952182952183

The PCA Decision tree model has a good prediction of the CSAT SCORE at about 70% accuracy and a good F1 score of also about 0.71.

- good balance performance between precision & recall in a classification task

Why are PCA Decision Tree predictions better than the multivariate ones?

Dimensionality reduction:

- PCA reduces feature space
- Transforms variables into fewer principal components
- Results in simpler and more predictable decision trees.

Noise reduction:

- PCA removes noise and redundancy
- Focuses on capturing significant data variability
- Results in robust and generalizable decision trees

Improved interpretability:

- PCA variables combines original variables
- Helps decision trees reveal interpretable feature target relationships.

CONCLUSION

2 variables that are most significant in capturing and influencing final **CSAT scoreS** are:

- **Response Time** (negative correlation)
- Channel Name (inbound, outcall, email etc), with a positive correlation.

Response Time

- Clear and logical
- Duration proportional to efficiency
- Quick responses boost csat

Channel Name

- Inbound and Outbound calls have higher csat
- Calls are more personal and faster
- Emails have more spread out csat
- Emails are more formal and slower

Thank You!

