

DASAR PEMROGRAMAN

TIM AJAR
ALGORITMA DAN STRUKTUR DATA
2023/2024

PEMILIHAN

 Pemilihan(selection)adalah instruksi untuk yang dipakai untuk memilih satu kemungkinan dari beberapa kondisi

Kondisi: suatu pernyataan atau ekspresi (pernyataan logika)

PEMILIHAN

- CONTOH:
 - **IF** your name starts with a 'J'
 - **THEN** raise your right hand
 - **ELSE** sit down

BENTUK SINTAKS PEMILIHAN

Sintaks Pemilihan if

```
if (Kondisi)
{
   Pernyataan;
}
```

```
if (nilai < 70 ) {
    Print("harus remidi")
}</pre>
```


Sintaks Pemilihan if...else

```
if (Kondisi)
{
    Pernyataan-1;
}
else
{
    Pernyataan-2;
}
```

```
if (nilai < 70 ) {
    Print("harus remidi")
}
else{
    Print("tidak remidi")
}</pre>
```


Pemilihan if...else if...else

```
If (kondisi 1)
       pernyataan-1;
else if (kondisi 2)
       pernyataan-2;
else if (kondisi 3)
       pernyataan-3;
else if (kondisi X)
       pernyataan-X;
Else
       pernyataan;
```


Pemilihan if...else if...else

```
print("excellent")
se if(nilai>70) {
  print("good")
  print("poor")
```


Switch case

```
switch(platNomor)
       case 'L': print("Surabaya");
       break;
       case 'B': print("Jakarta");
       break;
       case 'D': printf("Bandung");
       break;
       default: printf("Karakter tidak diketahui");
```


Pemilihan Bersarang

```
(kondisi 1) {
     if (kondisi 2) {
            pernyataan 1;
            if (kondisi n) {
     pernyataan 2;
            } else {
                   pernyataan 3;
      else
            pernyataan n;
else {
     pernyataan x;
```


Contoh flowchart Pemilihan

PERULANGAN

 Perintah perulangan atau iterasi (loop) adalah perintah untuk mengulang satu atau lebih statement sebanyak beberapa kali

MONSTER pada gambar berikut harus mencapai tempat NANAS

Instruksi yang dapat dilakukan:

Banyak symbol yang diulang? Bagaimana jika symbol yang diulang dituliskan dengan satu icon symbol?

Perulangan For

- Loop yang memiliki awal, akhir, dan perubahan nilai
- inisialisasi: deklarasi dan inisialisasi variabel counter (variabel pengontrol perulangan)
- kondisi: batas atau syarat agar perulangan tetap dieksekusi
- update: perubahan nilai variabel counter pada setiap putaran perulangan (increment atau decrement)

Perulangan while

Syntax dari perintah while():

```
inisialisasi
while (kondisi) {
    //statement yang diulang
    update
}
```


- Syarat perulangan adalah syarat yang harus dipenuhi agar perulangan tetap dilakukan
- Perulangan while akan terus dijalankan selama syarat perulangan bernilai TRUE

Perulangan Do-while

 perintah do-while() akan menjalankan statementnya sebanyak satu kali, meskipun syarat pengulangan tidak terpenuhi.

```
inisialisasi
do {
    //statement yang akan diulang
    ...
    update
} while (kondisi);
```


Contoh

```
int x;
for (x=4; x<=10; x+=2) {

System.out.println(x);
}
```

```
int x=4;
while (x<=10) {
System.out.println(x);
x+=2
}</pre>
```


Perulangan Bersarang (1)

"for bersarang"

Perulangan Bersarang (2)

"while bersarang"

Perulangan Bersarang (3)

"do-while bersarang"

```
Outer loop
     int i = 0;
              // loop level 1
          int j = 0;
                  // loop level 2 -
                                             Inner loop
              // statement
              1++;
          // pengecekan loop. Selama kondisi (j < n) bernilai true, loop terus berjalan
10
          } while (i < n);</pre>
11
          1++;
12
     // pengecekan loop. Selama kondisi (i < n) bernilai true, loop terus berjalan
      } while (i < n);</pre>
```


Array Satu Dimensi

deklarasi

```
type namaArrray[];
Atau

type[] namaArrray;
Contoh: int a[]; int[] a;
```

- Type adalah tipe data dari array yang akan dibuat.
- > namaArray adalah nama dari array yang akan dibuat.

Array Satu Dimensi

- Instansiasi objek array:
 - Ketika sebuah array dideklarasikan, hanya referensi dari array yang dibuat. untuk alokasi memori dilakukan dengan menggunakan kunci kata *new*
 - Cara Instansiasi variabel array:

```
namaArray = new tipe[jumlah elemen];
contoh: a = new int[10];
```


Array Satu Dimensi

Deklarasi dan instansiasi objek array dapat digabungkan dalam sebuah instruksi sbb.:

```
type[] namaArrray = new type[jumlah_elemen];
    atau

type namaArrray[] = new type[jumlah_elemen];
```

Contoh:

```
int[] a = new int[10]; atau
int a[] = new int[10];
```


Contoh Array


```
public static void main(String[] args) {
   int[] numbers = {1,2,3,4,5};
   int sum = 0;
   for (int i = 0; i < numbers.length; i++) {
      sum += numbers[i];
   }
   System.out.println(sum);
}</pre>
```


Array 2 Dimensi(2)

- Array 2 dimensi adalah sebuah array yang penomoran indeknya menggunakan 2 angka, satu untuk baris dan satu lagi untuk kolom
- Contoh

	•	,		
	0	1	2	3
0	4	3	4	4
1	1	1	2	3
2	1	2	3	4

Mendeklarasikan Array 2D

- Untuk mendeklarasikan variable array 2D, sama dengan array 1D. Hanya berbeda dengan jumlah kurung sikunya "[]"
- Bentuk umumnya

```
data_type[][] array_name = new data_type[x][y];
x = jumlah baris
Y = jumlah kolom
Contoh
int[][] arr = new int[10][20];
```

Contoh Flowchart

 Buatlah flowchart untuk menghitung rata-rata rating yang diberikan setiap penonton pada Array 2
 Dimensi pada tabel rating film yang terdiri dari 3 baris (penonton pemberi rating) dan 4 kolom (judul film)!

FUNGSI

```
static TypeDataKembalian namaFungsi() {
// statement
//statement
}
```

Keterangan:

Static: Jenis fungsi yang dibuat bersifat static, agar dapat secara langsung di panggil di fungsi main yang juga bersifat static

TypeDataKembalian: tipe data dari nilai yang dikembalikan (*output*) setelah fungsi dieksekusi

Contoh Fungsi:

Pembuatan Fungsi:

```
static void beriSalam() {
    System.out.println("Halo! Selamat Pagi");
}
```

Pemanggilan Fungsi:

```
public static void main(String[] args) {
    beriSalam();
}
```


Fungsi

- Fungsi void tidak memerlukan return.
- > Fungsi yang memiliki tipe data fungsi selain void memerlukan return.
- Nilai yang di-return-kan dari suatu fungsi harus sesuai dengan tipe data fungsi.
- Variabel Lokal: vriabel yang dideklarasikan dalam suatu fungsi, dan hanya bisa diakses atau dikenali dari dalam fungsi itu sendiri.
- Variabel Global: Variabel yang dideklarasikan di luar blok fungsi, dan bisa diakses atau dikenali dari fungsi manapun.

Fungsi yang mengembalikan Nilai

Pembuatan Fungsi dengan parameter dan return value:

```
static int luasPersegi(int sisi) {
   int luas = sisi * sisi;
   return luas;
}
```

Pemanggilan Fungsi dan memberi nilai parameter:

```
System.out.println("Luas Persegi dengan sisi 5 = " + luasPersegi(5));
int luasan = luasPersegi(6);
```

Contoh Fungsi

Buatlah flowchart untuk menghitung luas persegi dan volume balok menggunakan fungsi.

Flowchart : main()

Flowchart: hitungLuas (int pj, int lb)

Flowchart: hitungVolume (int pj, int lb, int ti)

Fungsi Rekursif

- > Biasanya sebuah fungsi akan dipanggil (di-CALL) oleh fungsi lain
- Pada fungsi rekursif, di dalam sebuah fungsi terdapat perintah untuk memanggil fungsi itu sendiri (dirinya sendiri). Dengan demikian, proses pemanggilan fungsi akan terjadi secara berulang-ulang
- Bentuk umum:

```
static tipe_data_kembalian nama_fungsi
(parameter) {
    ...
    nama_fungsi(...)
    ...
}
```


Contoh Fungsi Rekursif

Fungsi faktorial

- \rightarrow Base case: n = 0
- > Recursion call: f(n) = n * f(n-1)


```
public class faktorial {
    public static void main(String[] args) {
        System.out.println(faktorialRekursif(5));
    static int faktorialRekursif(int n) {
        if (n == 0) {
            return (1);
        } else {
            return (n * faktorialRekursif(n - 1));
```


LATIHAN

Buatlah flowchart/pseudocode untuk menyelesaikan permasalahan berikut ini :

 Menampilkan deretan bilangan dari angka 1 sampai 15 kecuali angka 6 dan 10, angka ganjil dicetak dengan asterik "*", angka genap dicetak sesuai bilangan aslinya.

Contoh: * 2 * 4 * * 8 * * 12 * 14 *

- Permasalahan dibawah ini menggunakan konsep fungsi :
 - Menghitung rata-rata rating untuk setiap movie
 - Mencari movie yang memiliki rata-rata rating paling tinggi dan paling rendah

Penonton (baris)

Rating

Film(kolom)

	0	1	2	3
0	4	3	4	4
1	1	1	2	3
2	1	2	3	4