CLASS EXERCISE, March 16, 2023

- 1. Let us assume that we explore the ACF plot of some time series and see that the only significant AC is at lag 2 and is positive. Which of the following are true?
 - (a) $Corr(D_t, D_{t-1})$ is close to zero Solution: This is true since the plot reports statistically significant AC at lag 2.
 - (b) If D_t is lower than average than D_{t+1} is likely to be higher than average.

 Solution: Falso, Because there is no significant AC except at less

Solution: False. Because there is no significant AC except at lag 2.

- (c) D_t should not have any trend Solution: True. If there had been trend, we would have seen significant and high AC at all lags.
- (d) D_t may have strong seasonality Solution: False. If there had been seasonality, we would have seen the seasonaly cycle with high AC at seasonal lags.
- 2. Consider the data series Y_t (annual number of significant earthquakes in the world, source: https://online.stat.psu.edu/stat510/lesson/1/1.2). Which staments are true?
 - (a) A reasonable model for Y_t is $Y_t = c + \epsilon_t$ Solution: False. This model does not consider AC but there is significant AC in the series.
 - (b) A reasonable model for Y_t is $Y_t = a_0 + a_1 Y_{t-1} + \epsilon_t$ Solution: This might be plausible. There appears to be a geometric decay in the AC starting from lag 1.
 - (c) Number of earthquakes in consecutive years are positively correlated

Solution: True.

- (d) There might be a strong trend for the series Y_t Solution: False. With strong trend we would have seen higher AC at all lags.
- (e) There might be a strong seasonality in the series Y_t Solution: False. With strong trend we would have seen the seasonal cycle.
- (f) Y_t does not have statistically significant correlation with Y_{t-6} Solution: True.

