E2

NUCLEIC ACID ENCODING PYRUVATE CARBOXYLASE FROM CORYNEFORM GLUTAMICUM

SPECIFICATION

FIELD OF THE INVENTION

5

The invention relates to a method of microbial production of amino acids of the aspartate family and/or of the glutamate family, to the pyruvate-carboxylase gene and to gene structures, vectors and transformed cells containing the pyruvate carboxylate gene.

10

15

20

BACKGROUND OF THE INVENTION

Amino acids are of considerable economic interest since amino acids have many uses: thus, for example, L-lysine and L-threonine, L-methionine and L-tryptophan are necessary as fodder additives, L-glutamate as an additive to suppress L-isoleucine and L-tyrosine in the pharmaceutical industry, L-arginine and L-isoleucine as medicaments or L-glutamate, L-aspartate and L-phenylalanine as starting substances for the synthesis of fine chemicals.

A preferred method of producing these different amino acids is the biotechnical production by means of microorganisms such that in this manner the biologically-effective and

10

15

20

optically-active forms of the respective amino acids are obtained and simple and inexpensive raw materials can be used. As microorganisms, for example, Corynebacterium glutamicum and its derivatives ssp. Flavum and ssp. Lactofermentum (Liebl et al., Int J System Bacteriol 1991, 41: 255 to 260) in addition to These bacteria Escherichia coli and related bacteria are used. normally produce the amino acids but only in amounts required for growth so that no surplus amino acids are formed and can be recovered. This is because in the cells the biosynthesis of amino acids is controlled in many ways. As a consequence, there are already known various processes to increase the product formation by cutting out the control mechanisms. processes, for example, amino acid analogs are introduced to switch off the effective regulation of the biosynthesis. For example, a process has been used which is resistant to L-tyrosine analogs and L-phenylalanine analogs (JP 19037/1976 and 39517/1978). The processes also have been described in which bacteria resistant to L-lysine analogs or L-phenylalanine analogs have been used to suppress the control mechanisms (EP 0 205 849, GB 2 152 509).

Furthermore, microorganisms which have been constructed also by recombinant DNA-techniques obviate regulation of biosynthesis in that the gene which is coded in the no-longer feedback-inhibited key enzyme is cloned and expressed. For

10

15

20

example, the recombinant L-lysine-producing bacterium with plasmid-coded feedback-resistant aspartate kinase is known (EP 0 381 527). In addition, a recombinant L-phenylalanine-producing bacterium with feedback-resistant prephenate dehydrogenase is described (JP 123475/1986, EP 0 488 424).

In addition, by overexpression of genes which do not code for feedback-sensitive enzymes in amino acid synthesis, increased amino acid yields are obtainable. Thus, for example, lysine formation can be improved by increased synthesis of the dihydrodipicolinate synthesis (EP 0 197 335). Increasingly, by increased synthesis of the threoninedehydratease, improved isoleucine formation is achieved (EP 0 436 886).

Further investigations in increasing amino acid production have been targeted on the improved availability of the cellular primary metabolites of central metabolism. Thus it is known that, by recombinant techniques, over-expression of the transketolase can bring about an improved product formation of L-tryptophan or L-tyrosine or L-phenylalanine (EP 0 600 463). Furthermore, a reduction of the phosphoenolpyruvate-carboxylase activity in Corynebacterium leads to improved formation of aromatic amino acids (EP 0 3331 145) whereas by contrast an increase in the phosphoenolpyruvate-carboxylase activity in Corynebacterium leads to increased recovery of amino acids of the aspartate family (EP 0 358 940).

10

15

20

During the growth and especially under amino acid production conditions, the tricarboxylic acid cycle must continuously and effectively be supplemented with C4 compounds, for example, oxalic acetate to replace intermediate products withdrawn for the amino acid biosynthesis. Until recently it has been thought that phosphoenolpyruvate-carboxylase was responsible for these so-called anaplerotic functions in Corynebacterium (Kinoshita, Biology of Industrial Micro-organisms 1985: 115 to 142, Benjamin/Cummings Publishing Company, London; Liebl, The Prokaryotes II, 1991 to 1171, Springer Verlag N.Y.; Vallino and Stephanopoulos, Biotechnol Bioeng 1993, 41: 633 to 646).

It has, however, now been found that phosphoenolpyruvate-carboxylase-negative mutants grow equally by comparison to the respective starting strains on all media (Peters-Wendisch et al., FEMS Microbiology Letters 1993, 112: 269 to 274; Gubler et al., Appl Microbiol Biotechnol 1994, 40: 857 to 863). These results indicate that the phosphoenolpyruvate-carboxylase is not essential for the growth and plays no role or only a small role for the anaplerotic reactions. Furthermore the aforementioned results indicate that in Corynebacterium another enzyme must be provided which is responsible for the synthesis of oxalacetate which is required for growth. Recently, indeed, a pyruvate-carboxylase activity has been found in permeablized cells of Corynebacterium glutamicum (Peters-Wendisch et al.,

10

15

20

Microbiology 1997, 143: 1095 to 1103). This enzyme is effectively inhibited by AMP, ADP and acetyl coenzyme A and in the presence of lactate as a carbon source is formed in increased quantities. Since one must conclude that this enzyme is answerable primarily for the satisfaction of the tricarboxylic acid cycle of growth, it was to be expected that an increase in the gene expression or the enzymatic activity would either give rise to no increase in the amino acids belonging to the aspartate or yield only an increase therein. Furthermore, it was to be expected that an increase in the gene expression or the enzymatic activity of the pyruvate-carboxylase would also have no influence on the production of amino acids of other families.

SUMMARY OF THE INVENTION

It has surprisingly been found that an increase in the pyruvate-carboxylase activity by genetic modification of the enzyme and/or by increasing the pyruvate-carboxylase gene expression, the microbial production of amino acids of the aspartate and/or the glutamate families can be increased. It has been found that especially strains with increased copy numbers of the pyruvate-carboxylase gene can produce about 50% more lysine, 40% more threonine and 150% more homoserine in the culture medium. It has been found further that, surprisingly, the

10

15

20

glutamate production is also significantly increased (compare especially the example under 6. Table 4).

The genetic alteration of the pyruvate-carboxylase to increase the enzyme activity is effected preferably by mutation of the endogenous gene. Such mutation can either be achieved by classical methods like, for example, by UV irradiation or by mutation triggering the chemicals or targeted by means of gene technological methods like deletion, insertion and/or nucleotide exchange.

The pyruvate-carboxylase gene expression is increased by increasing the gene copy number and/or by reinforcing regulatory factors which positively influence the expression of the gene. Thus a reinforcement of regulatory elements, preferably on the transcription plane can be effected in that especially the transcription signals are increased. This can be effected, for example, by varying the promoter sequence of the promoter preceding the structure gene to enhance its effectiveness or by replacing the promoter completely by more effective promoters. A reinforcement of the transcription can also be effected by a corresponding influence on a regulator gene associated with the pyruvate-carboxylase gene. This can be achieved, for example, by mutation of a regulatory gene sequence to influence the effectivity of the binding of a regulator protein to the DNA of the pyruvate-carboxylase gene which is

10

15

20

regulated so that the transcription is thereby enhanced and thus the gene expression is increased. Furthermore the pyruvate-carboxylase gene can also be associated with a so-called "enhancer" as a regulatory sequence and which by means of an improved interchange between RNA polymerase and DNA also effects an increased pyruvate-carboxylase gene expression. However, a reinforcement of translations is also possible in that, for example, the stability of the m-RNA is improved.

For increasing the gene copy number the pyruvatecarboxylase gene is built into a gene construct or vector. gene construct contains especially the regulatory sequences associated with the pyruvate-carboxylase gene, preferably those which reinforce the gene expression. For the incorporation of the pyruvate-carboxylase gene in a gene construct, the gene is progressively isolated from a microorganism strain of the Corynebacterium variety and is transformed in an amino-acid producing microorganism strain, especially Corynebacterium or in Escherichia coli or serratia marcenscens. For the process of the invention, especially genes from C. glutamicum or C. glutamicum ssp. flavum or C. glutamicum ssp. lactofermentum are suitable. After isolation of the gene and in the in vitro recombination with known vectors (see for example Simon et al., Bio/Technology 1983, 1: 784 to 791; Eikmanns et al., Gene 1991, 102: 93 to 98), the transformation is effected in the amino-acid producing strain

10

15

20

by electroporation (Liebl et al., FEMS Microbiology Letters 1991, 65: 299 to 304) or conjugation (Schäfer et al., J. Baceriol 1990, 172: 1663 to 1666).

As the host strain preferably such amino-acid producers are used which have been deregulated in the synthesis of the corresponding amino acid and/or show an increased export carrier activity for the corresponding amino acid. Furthermore, such strains are preferred which contain an increased number of such central metabolism metabolites as anticipated in the synthesis of the corresponding amino acid and/or strains which contain a reduced proportion of the central metabolism metabolites which do not participate in the synthesis of the corresponding amino acid, especially metabolites which tolerate competitive reactions; i.e. such strains are preferred in which synthesis paths competitive with the corresponding amino acid biosynthesis path run with reduced activity. Thus, especially a Coryne-former microorganism strain with reduced citrate synthase activity is suitable as a strain resistant to L-asparaginic-acid- β -methylester (AME) (EP 0 551 614).

After isolation, the pyruvate-carboxylase gene is obtained with nucleotide sequences which code for the amino acid sequence given under SEQ ID NO. 2 or their allele variations or the nucleotide sequence of nucleotides 165 to 3587 according to SEQ ID NO. 1 or a substantially identically-effective DNA

10

15

20

sequence. The gene further contains a protein promoter of the nucleotide sequence of nucleotides 20 to 109 according to SEQ ID NO. 1, a substantially identically effective DNA sequence. Allele variations or identically effective DNA sequences encompass especially functional derivations which are corresponding nucleotide sequences formed by deletions, insertions and/or substitutions of nucleotides whereby the enzyme activity or function remains or can even be increased. This pyruvate-carboxylase gene is preferably used in the process of the invention.

The pyruvate-carboxylase gene with or without the preceding promoter or with or without the associated regulator gene can be preceded by and/or followed by one or more DNA sequences so that the gene is contained in a gene structure.

The pyruvate-carboxylase gene is preferably preceded by the tac-promoter ($lacI^q$ -Gen) which is associated especially with regulatory sequences.

By cloning the pyruvate-carboxylase gene, plasmids are obtained which contain the gene and are suitable for transformation to an amino acid producer. The cells obtained by transformation which preferably correspond to transformed cells of Corynebacterium, contain the gene in replicatable form, i.e. in additional copies on the chromosome, whereby the gene copies

10

15

20

are integrated by recombination at optional sites in the genome and/or on a plasmid or vector.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a physical map and restriction analysis of the cloned pyruvate carboxylase encoding gene from C. Glutamicum ATCC 13032 in pUC18 resulting in the vector pUCpyc.

Figure 2 is a physical map of the expression vector pUWEX1 containing the pyruvate carboxylase encoding gene from C. glutamicum 13032. Abbreviations: pvc = pyruvate carboxylase, Ptac-IPTG-inducibe synthetic promoter of trp - (-35 box) and lac-promoter (-10 box) regions; laclq-gene encoding the repressor of lac operon, kan-gene encoding the resistance to kananycin.

Example

1. Cloning the Pyruvate-Carboxylase Gene of Corvnebacterium Glutamicum

Starting from conserved regions of all prior known pyruvate-carboxylase-(pyc-) genes of Saccharomyces cerevisiae (J Biol Chem 1988, 263: 11493-11497; Mol Gen Genet 1991, 229: 307-315), Mensch (Biochem Biophys Acta 1994, 1227: 46-52), Maus (Proc Natl Acad Sci, USA 1993, 90: 1766-1770), Aedes aegypti (EMBL-GeneBank: Accession Nr. L36530) and from Mycobacterium tuberculosis (EMBL-GeneBank: Accession Nr. U00024), PCR primer is

10

15

20

synthesized (MWG Biotech). The primer corresponds to the bases 810 to 831 and 1015 to 1037 of the pyc gene from M. tuberculosis. With this primer, by means of PCR according to the standard method of Innis et al (PCR protocols. A Guide to Methods and Applications, 1990, Academic Press) for nongenerated homologous primer, a fragment of about 200 bp of chromosomal DNA of C. glutamicum ATCC 13032 as has been described by Eikmanns et al. (Microbiology 1994, 140: 1817-1828) is isolated following amplification. The size of 200 bp corresponds to the expectation for the pyc gene. The PCR product as described by Sanger et al (Proc Natl Acad Sci USA 1977, 74: 5463-5467) was sequenced. The sequencing was carried out with fluorescence-marked ddNTPs with an automatic DNA sequencing apparatus (Applied Biosystems).

Starting from this DNA fragment of C. glutamicum, the following homologous oligonucleotides are produced:

pyc 1 5'- CGTCTTCATCGAAATGAAC-3' SEQ ID NO:3

PYC 2 5'- ACGGTGGTGATCCGGCACT-3' SEQ ID NO:4

The oligonucleotide is used as a PCR primer for isolating the probe for the gene of pyruvate-carboxylase (pyc) from C. glutamicum. The primer is introduced into a PCR reaction with chromosomal DNA from C. glutamicum and digoxygenine-marked nucleotides. The reaction is carried out in accordance with the instructions of the "PCR DIG Labeling Kits" of the firm Boehringer Mannheim. With this approach, a digoxygenine-marked

10

15

20

DNA fragment is amplified which corresponds to the expected size of about 200 bp. The thus produced pyc probe is then used to identify, utilizing Southern-blot-hybridization, A DNA fragment in the chromosomal DNA of C. glutamicum on which the pyc gene is localized. For this purpose each 2 to 5 μg of chromosomal DNA from C. glutamicum WT is cleaved with the restriction enzyme HindIII, SphI, SalI, DdraI, EcoRI and BamHI and the obtained DNA fragments are correspondingly separated by size over 16 hours at 20 volts gel-electrophoretically in an 0.8% agarose gel. fragments found in the agarose gel are denatured by the Southern blot (J Mol Biol 1975, 98: 503-517) and subjected to the vacuumsupported separation with the VacuGene Blot Apparatus of Pharmacia LKB (Uppsala, Sweden) from the gene matrix transferred onto a nylon membrane (Nytran N13 of Schleicher and Schüll, Dassel, Switzerland), immobilized and the digoxygenine marker detected by means of NBT/X phosphate conversion with alkali phosphatizes in this manner. The following chromosomal fragments hybridized with the pyc-DNA-probe can be detected: a 17 kb HindIII-fragment, a 6.5 kb SalI fragment and a 1.35 kb EcoRI fragment.

The 17 kb HindIII fragment was isolated and subcloned. For this purpose a cosmid gene bank of chromosomal DNA from C. glutamicum in cosmid pH C79 was used which represented the genome of C. glutamicum to 99% (Mol Microbiol 1992, 6: 317-326). The

10

15

20

E. coli strain DH5 α was transformed with this gene bank by means of the CaCl₂ method of Sambrook et al (Molecular Cloning, A Laboratory Manual, 1989, Cold Spring Harbor Laboratory Press) and plated out to about 300 colonies per LB-agar plate with 50 μ g/l kanamycin (a total of 5000 colonies). Then the obtained transformed product was transferred on a nytran N13 filter and incubated for 5 minutes for alkali lysis of the cells and denaturing of the DNA on Whatmann paper soaked with 0.5 M NaOH and 1.5 M NaCl. The subsequent neutralization is effected with 1 M Tris/HCl pH 7.5 and 1.5 M NaCl. The subsequent neutralization is effected with 1 M Tris/HCl pH 7.5 and 1.5 M NaCl.

After incubation of the filter in 2 x SSC, the liberated DNA is fixed by UV radiation at 366 nm on the filter. Then the remaining cell fragments are removed by shaking in 3 x SSC, 0.1% SDS at 50°C. The filter in this form is used for the hybdridiza-tion with a specific pyc probe as described by Southern (J Mol Biol 1975, 98: 503-517).

The 3 transformands were identified from the pyc probe hybridization. From these transformands the cosmid DNA was isolated by means of plasmid proportion in accordance with the alkali lysis method of Birnboim (Meth Enzymol 1983, 100: 243-255) and then tested by restriction and Southern blot analysis for the presence of the HINDIII fragments. The cosmid pH C79-10 which contains a 40 kb HINDIII transmission completely and was further

10

15

20

analyzed. It showed that also after the restriction with the endonucleosis SaII and EcoRI the same hybridized fragments as in the chromosomal DNA, i.e. a 6.5 kb SaII- fragment and a 1.35 kb EcRI-fragment. The 17 kb HindIII-fragment was isolated by restriction from the cosmid and is ligated in the *E. coli* vector pUC 18, which is also cleaved with HindIII. A restriction analysis of the fragments in the resulting vector pUC pyc was carried out. The physical mapping of the fragments is shown in FIG. 1.

2. Sequencing of the Pyruvate-Carboxylase Gene

In further subcloning steps a 0.85 kb SalI-EcoRI-fragment was isolated from the plasmid pUC pyc by restriction with corresponding restriction enzymes as a 1.35 kb EcoRI-fragment, a 1.6 kb EcoRI-EcoRI-StuI-fragment as well as a 1.6 kb ClaI-fragment, that overlapped with 0.85 kb SalI-EcoRI-fragment. By ligation the fragments were cloned correspondingly in the restricting vector pUC 18 and then sequenced as described above according to Sanger et al. In (Proc Natl Acad Sci USA 1977, 74: 5463-5467) the nucleotide sequences obtained were analyzed. The program package HUSAR (Release 3.0) of the German zone for cancer research (Heidelberg). The sequence analysis of the fragments gave a continuously open reading raster of 3576 bp which coded for a protein sequence of 1140 amino acids. Comparison of the

10

15

20

protein sequence with the EMBL gene data bank (Heidelberg) gave similarities to all known pyruvate carboxylases. The highest identity (62%) was to the putative pyruvate-carboxylase from Mycobacterium tuberculosis (EMBL-GeneBank: Accession No. U00024). The similarity amounted to 76% when conserved amino acid exchange was followed. A comparison with the pyruvate-carboxylase of other organisms yielded an identity of 46 to 47% identical and 64 to 65% similar amino acids (Gene 1997, 191: 47-50; J Bacteriol 1996, 178: 5960-5970; Proc Natl Acad Sci USA 1993, 990: 1766-1770; Biochem J 1996, 316: 631-637; EMBL-GenBank: Accession No. L36530; J Biol Chem 1988, 263: 11493-11497; Mol Gen Genet 1991, 229: 307-315). From these results it could be concluded that the cloned fraction base was the gene for the pyruvate-carboxylase from C. glutamicum. The nucleotide sequence of the gene is given under SEQ ID NO: 1 and the corresponding amino acid sequence under SEQ ID NO: 2.

3. Overexpression of the Pyruvate-Carboxylase

For the overexpression of the gene for pyruvate-carboxylase from C. glutamicum, the gene was cloned from the plasmid pUCpyc as the 6.2 kb Sspl-Scal-fragment in the E. coliglutamicum swing vector pEKO (Gene 1991, 102: 93-98) which was cleaved with the restriction endonucleosis EcoRI and PstI. By means of Klenow-polymerase treatment the overhanging ends were

10

15

20

ligated to smooth ends by filling the EcoRI or linking PstI and the linearized vector was ligated with the 6.2 kb Sspl-Scal-fragment. The resulting construct pEKOpyc was additionally transformed in the *E. coli* strain DH5 α , the plasmid DNA was isolated on the resulting transformand and the correctness of the inserts controlled by restriction. The DNA was then introduced in the strain SP 733 by electroporation (FEMS Microbiol Lett 1989, 65: 299-304).

This strain is a mutant of the restriction negative C. glutamicum strain R 127 (Dechema Biotechnology Conference 1990, 4: 323-327, Verlag Chemie) which was obtained by chemical mutagenesis and was characterized in that it cannot be grown on a minimal medium with pyruvate and lactate as single carbon sources (Microbiology 1997, 143: 1095-1103). This phenotype is recognized as a defect in the pyruvate-carboxylase and can be complemented by introducing the pyruvate-carboxylase gene from C. glutamicum, i.e. the strain which is carried by the plasmid pEKOpyc and was by contrast to the starting strain able to grow again in the presence of minimal medium with lactate as a single carbon source. This was a verification that the gene was coded for a functional pyruvate- carboxylase.

Furthermore, the plasmid pEK0pyc was transformed in the C. glutamicum wild type ATCC 13032 by electroporation. The resulting strain WT (pEK0pyc) was investigated by comparison to

10

15

20

the wild type ATCC 13032 with respect to its pyruvate-carboxylase activity. The strain was cultured in a complex medium (Luria-Bertani, Molecular Cloning, A laboratory manual, 1989, Cold Spring Harbor Laboratory Press) with 0.5% lactate and on minimal medium with 2% lactate or 4% glucose and the pyruvate-carboxylase test was carried out corresponding to the method as described by Peters-Wendisch et al (Microbiology 1997, 143: 1095-1103). The results of the analysis (Table 1) showed that the pyruvate-carboxylase activity in the pEKO-pyc-carrying strain was about 4 times higher than in the starting strain.

4. Increased Accumulation of Lysine by Overexpression of the Pyruvate-Carboxylase Gene in the Strain C-glutamicum DG 52-5.

To investigate the effect of the overexpression of the gene for the pyruvate-carboxylase in the lysine-producing strain DG 52-5 (J Gen Microbiol 1988,134: 3221-3229), the expression vector pvwex1 is used to promote an IPTG-inducible expression.

In this vector, the pyc gene was promotorlessly cloned. For that purpose, initially PCT-Primer (Primer 1 = Postion 112 - 133; Primer 2 = Position 373 to 355 in the nucleotide sequence according to SEQ ID NO. 1), is synthesized and 261 bp of the promotorless starting region of the pyruvate-carboxylase gene was amplified by means of PCR. The primer was so selected that Primer I enabled a PstI cleavage site and Primer 2 a BamHI

10

15

20

cleavage site. After the PCR, the 274 bp PCR product was isolated, ligated to concatemers and then cleaved with the restriction enzymes PstI and BamHI. The restriction product was concentrated by ethanol precipitation and then ligated with the PstI-BamHI cleaved vector pvWEX1. The resulting construct pvWEXi-PCR was tested by restriction. The end region of the pyc gene was isolated by RcaI-Klenow-SalI treatment from the vector pEKOpyc and ligated in the BamHI-Klenow-SalI during vector PvWEX1-PCR. The resulting construct pvWEX1pyc was analyzed by restriction mapping. Physical mapping of the plasmid is shown in FIG. 2.

The plasmid was introduced by electroporation in the C. glutamicum strain DG 52-5. As a control, the strain DG 52-5 was transformed with the vector pVWEX1 without insert and the L-lysine precipitation of three different transformands was compared. For this purpose (DG 52-5 (pVWEX1pyc) 3,4 and (2xTY; Molecular Cloning, A laboratory manual, 1989, Cold Spring Harbor Laboratory Press with 50 μ g/I kanamycin) and the respective fermentation medium in each case from the preculture was separately inoculated. The medium contained additional kanamycin to maintain the plasmid stable. In each case two parallel tests were run whereby one flask of 200 μ g IPTG/ml was added while the second flask contained no IPTG. After cultivation for 48 hours at 30°C on a rotation shaker at 120 RPM, the accumulated lysine

10

15

20

quantity in the medium was determined. The determination of the amino acid concentration was effected by means of high-pressure liquid chromatography (J Chromat 1983, 266; 471-482).

The results of the fermentation are shown in Table 2 whereby the values given are mean values each from three experiments with different clones. It shows that the overexpression of the pyruvate-carboxylase gene results in a 50% increased accumulation of lysine in the medium. Thus the use of the covered and described gene for the anapleurotic enzyme pyruvate-carboxylase enables a process of lysine formation to be significantly improved.

5. Increased Accumulation of Threonine and Homoserine by Overexpression of the Pyruvate-Carboxylase Gene in the Strain C. glutamicum DM 368-3

Analogously to the experiment in L-lysine formation, the accumulation of threonine in the culture supernatant by overexpression of the gene for pyruvate-carboxylase was also investigated for this purpose, as has been described under point 4, the threonine production strain C. glutamicum DM 368-3 (Degussa AG) was transformed with the plasmid pVWEX1pyc with control by the plasmid pVWEX1 and the threonine separation was investigated with each of three different transformands. For this purpose DM 368-3 (pVWEX1) 2 and 3 and DM 368-3 (pVWEX1pyc)

10

15

1, 2 and 3 in complex medium (2xTY with 50 μ g/l kanamycin) were cultured and the fermentation medium CGXII (J Bacteriol 1993, 175: 5595-5603) in each case was separately inoculated from the preculture. The medium contained additional kanamycin to hold the plasmid stable. Two parallel sets of tests were carried out whereby 200 μ g IPTG/ml was added to one flask while the second flask contained no IPTG. After culturing for 48 hours at 30°C on a rotation shaker at 120 RPM, the threonine quantities accumulated in the medium were determined. The determination of the amino acid concentration was effected also by means of highpressure liquid chromatography (J Chromat 1983, 266: 471-482). The results of the fermentation are shown in Table 3 whereby the values given are mean values from each of three experiments with different clones. It shows that the overexpression of the pyruvate-carboxylase gene gave about a 40% increase in the The use of the covered threonine concentration in the medium. and described gene for anapleurotic enzyme pyruvate-carboxylase in a process for L-threonine formation significantly improves the latter.

20

Furthermore, the amino acid concentration determination shows surprisingly that the strain with the overexpressed pyruvate-carboxylase gene also yields 150% more homoserine in the medium than the strain with the nonoverexpressed gene.

Corresponding results are shown in Table 3. They make clear that

10

15

20

in the process according to the invention the threonine yield like the homoserine yield can be significantly improved.

6. Increased Accumulation of Glutamate by
Overexpression of the Pyruvate-Carboxylase Gene in C. glutamicum
Wild Type

Analogous to the experiments for L-lysine, L-threonine and L-homoserine formation (see above, the 4. and 5.), accumulation of glutamate in the culture supernatant, overexpression of the gene for pyruvate-carboxylase was also investigated. For this purpose, as described, the point 4 wild type C-glutamicum ATCC 13032 with the plasmid pVWEX1 pyc was transformed in addition to the control with the plasmid pVWEX1 and the glutamate separation determined from each of two different transformands. Thus C. glutamicum ATCC 13032 pVWEX1pyc) D1 and D2 as well as C. glutamicum ATCC 13032 (pVWEX1 pyc) 1 and 2 were cultured in the complex medium (2xTY with 50 μ g/l kanamycin) and the fermentation medium CGXII (J Bacteriol 1993, 175: 5595-5603) in each case was separately inoculated from the preculture period. The medium contained additional kanamycin to stabilize the plasmid. To induce glutamate separation, 25 mg Tween 60 was added per ml to the medium about 6 hours after the inoculation. Two parallel sets of tests were carried out whereby in one, 200 µg IPTG/ml is added to the flask while the second

5

10

flask contained no IPTG. After culturing for 48 hours at 30°C on a rotation shaker at 120 RPM, the glutamate quantity accumulated in the medium was determined. The determination of the amino acid concentration was effected also by means of high-pressure liquid chromatography (J Chromat 1983, 266; 471-482). The results of the fermentation are shown in Table 4 whereby values given are averages with each two experiments with different clones. It shows that the overexpression of the pyruvate-carboxylase gene gave rise to up to 500% increase of the glutamate concentration in the medium. The use of the covered and described gene for the anapleurotic enzyme pyruvate-carboxylase improved the glutamate formation significantly.

Strain	IPTG [µg/ml]	PyruvateCarboxylase [nmol min ⁻¹ mg Dry Weight -1]	
13032(pEK0pyc)	0	75 ± 13	
ATCC 13032	0	19 ± 4	
DG52-5(pVWEX1pyc)	200	88 ± 13	
	0	11 ± 2	
DG52-5(pVWEX1)	200	5 ± 2	
	0	6 ± 1	
DM368-3(pVWEX1pyc)	200	76 ± 10	
	0	12 ± 3	
DM368-3(pVWEX1)	200	10 ± 1	
	0	11 ± 2	

Table 1

Strain	iPTG [µg/ml]	Lysin e [mM]
DG52-5(pVWEX1pyc)	200	35.4 ± 2.6
	0	23,6 ± 2.9
DG52-5(pVWEX1)	200	23.3 ± 2.9
	0	22.1 ± 4.0

Table 2

-Strain	IPTG [µg/ml]	Threonin e [mM]	Homoserine [mM]
DM368-3(pVWEX1pyc)	200	10,2 ± 0.5	14,4 ± 1,2
	0	7 . 9 ± 1.0	5,6 ± 0,2
DM368-3(pVWEX1)	200	8.0 ± 0.5	5.8 ± Q,7
	0	7-5 ± 0.8	6,1 ± 1,0

Tab le 3

St rain	IPTG [µg/ml]	Glutamate [mM]
ATCC 13032	200	11 ± 2
ATCC 13032	0	13 ± 2
ATCC 13032(pVWEX1-pyc)	200	67 ± 4
ATCC 13032(pVWEX1-pyc)	0	32 ± 4

Table 4