

Ayudantía 7 - Relaciones de orden

Héctor Núñez, Paula Grune, Manuel Irarrázaval

Ejercicios

1. Pregunta 1

(a) Sea \prec una relación sobre $\mathbb{N} \times \mathbb{N}$ definida de la siguiente forma. Para cada $(a,b), (c,d) \in \mathbb{N} \times \mathbb{N}$, se tiene que $(a,b) \prec (c,d)$ si y solo si $a \leq c$ y $b \leq d$, donde < es la relación de orden usual sobre los naturales. Demuestre que \prec es un orden parcial pero no un orden total sobre $\mathbb{N} \times \mathbb{N}$.

Solución:

- Reflexividad: Para cualquier $(a, b) \in \mathbb{N} \times \mathbb{N}$, se tiene que $a \leq a$ y $b \leq b$, por lo tanto, $(a, b) \prec (a, b)$.
- Antisimetría: Supongamos que $(a,b) \prec (c,d)$ y $(c,d) \prec (a,b)$. Entonces, $a \leq c$, $c \leq a, b \leq d$, y $d \leq b$. Esto implica a = c y b = d.
- Transitividad: Si $(a, b) \prec (c, d)$ y $(c, d) \prec (e, f)$, entonces $a \leq c \leq e$ y $b \leq d \leq f$, por lo que $(a, b) \prec (e, f)$.

Para demostrar que no es un orden total, consideramos (1,2) y (2,1). No se cumple ni $(1,2) \prec (2,1)$ ni $(2,1) \prec (1,2)$, mostrando que no todos los elementos son comparables.

(b) Sea \leq una relación sobre $\mathbb{N} \times \mathbb{N}$ definida de la siguiente forma. Para cada $(a,b), (c,d) \in \mathbb{N} \times \mathbb{N}$, se tiene que $(a,b) \leq (c,d)$ si y solo si (a < c) o $(a = c \text{ y } b \leq d)$, donde < es la relación de orden usual sobre los naturales. Demuestre que \leq es un orden total sobre $\mathbb{N} \times \mathbb{N}$.

Solución:

Para probar que \leq es un orden total, necesitamos verificar la reflexividad, antisimetría, transitividad y totalidad:

• **Reflexividad:** Es directo.

- Antisimetría: Si $(a, b) \leq (c, d)$ y $(c, d) \leq (a, b)$, entonces a = c y b = d.
- Transitividad: Es directo de la transitividad de $< y \le$.
- Conexidad: Sean $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}$, por tricotomía de los números naturales, necesariamente o a < c, o c < a o a = c. Dado esto, se tiene que la relación es conexa.
- (c) Generalice la definición de la relación \leq definida en (b) para el caso \mathbb{N}^k , con $k \geq 3$. Demuestre que la relación resultante es un orden total sobre \mathbb{N}^k .

Definimos la relación \leq sobre \mathbb{N}^k por:

$$(a_1, a_2, \ldots, a_k) \leq (b_1, b_2, \ldots, b_k)$$

Solución:

si existe un índice $j \le k$ tal que $a_i = b_i$ para todo i < j y $a_j \le b_j$. Analizamos las propiedades de esta relación:

- Reflexividad: Para cualquier $(a_1, a_2, ..., a_k) \in \mathbb{N}^k$, siempre es cierto que $a_i = a_i$ para todo i, y por lo tanto, $(a_1, a_2, ..., a_k) \leq (a_1, a_2, ..., a_k)$.
- Antisimetría: Supongamos que $(a_1, a_2, \ldots, a_k) \leq (b_1, b_2, \ldots, b_k)$ y $(b_1, b_2, \ldots, b_k) \leq (a_1, a_2, \ldots, a_k)$. Entonces debe existir un j tal que $a_i = b_i$ para todo i < j y $a_j \leq b_j$, y un j' tal que $b_i = a_i$ para todo i < j' y $b_{j'} \leq a_{j'}$. Como ambos son ciertos y se mantienen para todos los índices, esto implica que $a_i = b_i$ para todo i, demostrando la antisimetría.
- Transitividad: Si $(a_1, a_2, ..., a_k) \leq (b_1, b_2, ..., b_k)$ y $(b_1, b_2, ..., b_k) \leq (c_1, c_2, ..., c_k)$, entonces para algún j tenemos que $a_i = b_i$ para todo i < j y $a_j \leq b_j$, y también para algún j' tenemos que $b_i = c_i$ para todo i < j' y $b_{j'} \leq c_{j'}$. La transitividad se mantiene porque se preservan las igualdades y las desigualdades correspondientes se propagan, lo que implica que $(a_1, a_2, ..., a_k) \leq (c_1, c_2, ..., c_k)$.
- Conexidad: Para cualquier par $(a_1, a_2, ..., a_k), (b_1, b_2, ..., b_k) \in \mathbb{N}^k$, la relación garantiza que siempre es posible establecer una comparación. Si en algún punto $a_i \neq b_i$, el orden se decide en el primer índice donde difieren; si son iguales en todas las dimensiones, son iguales bajo \preceq .

Pregunta 2

Sea A un conjunto. Una relación binaria \prec sobre A se dice orden estricto si es asimétrica y transitiva.

(a) Demuestre que si \prec es un orden estricto, entonces \prec^{-1} es un orden estricto.

(b) Definimos

$$\preceq := \prec \cup I_A$$
, $\succeq := \prec^{-1} \cup I_A$, $I_A = \{(x, x) \mid x \in A\}$.

Demuestre las siguientes afirmaciones (dado que \prec es conexo):

- $(I) \prec^{-1} \subsetneq \succeq .$
- (II) $\preceq \cap \succeq = I_A$.
- (III) $\prec \cup \prec^{-1} = (A \times A) \setminus I_A$.

(a) \prec^{-1} es orden estricto.

Supongamos que \prec es asimétrica y transitiva. Queremos ver que \prec^{-1} también lo es.

Asimetría. Si $a \prec^{-1} b$, entonces por definición $b \prec a$. Como \prec es asimétrica, de $b \prec a$ se sigue $\neg(a \prec b)$, y por tanto $\neg(b \prec^{-1} a)$. Concluimos que no hay pares (a,b) tales que $a \prec^{-1} b$ y $b \prec^{-1} a$.

Transitividad. Si $a \prec^{-1} b$ y $b \prec^{-1} c$, entonces $b \prec a$ y $c \prec b$. Por transitividad de \prec se obtiene $c \prec a$, es decir $a \prec^{-1} c$. Así \prec^{-1} es transitiva.

(b)

$$(I) \prec^{-1} \subsetneq \succeq :$$

Tomemos un $x \in A$, dada la definición de \succeq , $(x,x) \in \succeq$. Además, dado que \prec^{-1} es asimetrico, $((x,x) \in \prec^{-1} \Longrightarrow (x,x) \not\in \prec^{-1})$, por lo que $(x,x) \not\in \prec^{-1}$.

(II)
$$\leq \cap \succeq = I_A$$
.

$$\preceq \cap \succeq = \prec \cup \preceq^{-1} \cup I_A$$

Pero, como ≺ es asimetrico:

$$a \prec b \implies b \not\prec a \implies a \not\prec^{-1} b \implies \prec \cup \preceq^{-1} = \emptyset$$

(III)
$$\prec \cup \prec^{-1} = (A \times A) \setminus I_A$$
.

Asumiendo que \prec es orden estricto **total**:

$$\forall a, b \in A.a \prec b \lor b \prec a \implies \forall a, b \in A.a \prec b \lor a \prec^{-1} b$$

Pregunta 3

a) Sea $S \subseteq A$ con n elementos. Mostraremos que $\sup(S)$ e $\inf(S)$ existen y pertenecen a S por inducción simple sobre n.

BI: Sea n = 1. En este caso $S = \{s\}$, con $s \in A$. Por un lado, dado que (A, \preceq) es un orden total, obtenemos que $s \preceq s$, y como s es el único elemento de S, se tiene que es cota inferior y superior. Por otro lado, dada una cota superior c, como $s \in S$ se tiene que $s \preceq c$ y por lo tanto $s = \sup(S)$. De manera análoga podemos concluir que $s = \inf(S)$.

HI: Suponemos que para todo $S \subseteq A$ con n elementos, tanto $\sup(S)$ como $\inf(S)$ existen y pertenecen a S.

TI: Sea $S \subseteq A$ con n+1 elementos: $A = \{s_1, \ldots, s_n, s_{n+1}\}$. Sea $A' = \{s_1, \ldots, s_n\}$, el cual tiene n elementos. Por HI A' está acotado y sup (A'), ínf $(A') \in A'$. Sin pérdida de generalidad, asumimos que ínf $(A') = s_1 y \sup (A') = s_n$. Tenemos 2 casos:

- I) Si $s_n \leq s_{n+1}$ entonces $s_i \leq s_{n+1}$ para todo $i \in 1 \dots n$ (dado que $s_n = \sup(A')$). Además, como $s_{n+1} \leq s_{n+1}$ obtenemos que s_{n+1} es cota superior de A. Por otro lado, como $s_{n+1} \in A$ concluimos que $s_{n+1} = \sup(A)$.
- II) Si $s_{n+1} \leq s_n$ entonces $s_i \leq s_n$ para todo $i \in 1 \dots n+1$. Por lo tanto, s_n es cota superior de A y como $s_n \in A$ se tiene que $s_n = \sup(A)$.

De manera análoga se puede mostrar el resultado para el ínfimo de A.

- **b)** Debemos mostrar que el supremo de S_1 es también supremo de S_2 . Para esto mostraremos que sup (S_1) es cota superior de S_2 (I) y que para toda cota superior c de S_2 se tiene que sup $(S_1) \leq c$ (II).
 - I) Sea c una cota superior de S_1 . Para todo $x \in S_1$ se cumple que $x \preceq c$. Como $S_2 \subsetneq S_1$, si $x' \in S_2$ entonces $x \in S_1$, y por lo tanto $x' \preceq c$. Luego, toda cota superior de S_1 es también una cota superior de S_2 . En particular, sup (S_1) es una cota superior de S_1 , y por ende también lo debe ser para S_2 .
 - II) Por contradicción, sea c una cota superior de S_2 tal que $c \leq \sup(S_1)$. Luego, c no puede ser cota superior de S_1 ya que es menor que su supremo. Entonces, debe existir un $x \in S_1$ tal que $c \leq x$. Luego, por la propiedad del conjunto S_2 , debe existir un $y \in S_2$ tal que $x \leq y$. Finalmente, por transitividad obtenemos que $c \leq y$ lo que contradice el hecho de que c es cota superior de c. Concluimos que sup c0 sup c1.