2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

TAMAGNY Louis Note: 15/20 (score total : 55/72)

+306/1/2+

THLR Contrôle (35 questions), Septembre 2016

Nom et prénom, lisibles :	Identifiant (de haut en bas) :
TAMAGNY	□0 □1 □2 □3 □4 □5 圖6 □7 □8 □9
Louis	
	■0 □1 □2 □3 □4 □5 □6 □7 □8 □9
A-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0.	
Q.2 Soit <i>L</i> un langage sur l'alphabet Σ . Si $\overline{L} = \emptyset$ alc	ors
\Box $L=\emptyset$ \Box	$L = \{\varepsilon\}$ $L = \Sigma^*$
Q.3 Pour tout langage L , le langage $L^+ = \bigcup_{i>0} L^i$	
peut contenir ε mais pas forcement	\square ne contient pas ε \square contient toujours ε
Q.4 Que vaut $L \cdot \emptyset$?	
■ 0 □ ε	□ L □ {ε}
Q.5 Que vaut Suff({ab, c}):	
	$\{ab,b,c,\varepsilon\}$ \square $\{b,c,\varepsilon\}$ \square \emptyset
Q.6 Que vaut Suff({a}{b}*)	
•	* $\Box \{a,b\}^*\{b\}\{a,b\}^*$ $\Box \{a\}\{b\}^*\{a\}$
Q.7 Pour toute expression rationnelle e , on a $e \cdot e =$	
a faux	
•	
faux	
Q.9 Pour toutes expressions rationnelles e, f , simply	
$\Box e^*f^* \qquad \Box e^*+f \qquad \blacksquare$	$(e+f)^*$ \Box $e+f^*$ \Box e^*+f^*
Q.10 Soit Σ un alphabet. Pour tout $A, L_1, L_2 \subseteq \Sigma^*$,	on a $A \cdot L_1 = A \cdot L_2 \implies L_1 = L_2$.
□ vrai	faux
Q.11 L'expression Perl'[-+]?[0-9]+(,[0-9]+)?	(e[-+]?[0-9]+)' n'engendre pas :
☐ '42,4e42' ☐ '42e42'	
Q.12 Un automate fini ne reconnaît que des langa	ages finis

2/2	peut avoir une intersection non vide avec son complémentaire Q.19 Si un automate de n états accepte a^n , alors il accepte
2/2	
2/2	 Q.20 Quelle séquence d'algorithmes teste l'appartenance d'un mot au langage d'une expression rationnelle? ☐ Thompson, déterminisation, Brzozowski-McCluskey. ☑ Thompson, élimination des transitions spontanées, déterminisation, minimisation, évaluation. ☐ Thompson, déterminisation, élimination des transitions spontanées, évaluation. ☐ Thompson, déterminimisation, évaluation.
	Q.21 Déterminiser cet automate :
2/2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Q.22 & Quelle(s) opération(s) préserve(nt) la rationnalité?
2/2	 ☑ Union ☑ Différence ☑ Différence symétrique ☑ Aucune de ces réponses n'est correcte.
	Q.23 Soit <i>Rec</i> l'ensemble des langages reconnaissables par DFA, et <i>Rat</i> l'ensemble des langages définissables par expressions rationnelles.
2/2	\square Rec $\not\subseteq$ Rat \square Rec \subseteq Rat \square Rec \supseteq Rat \square Rec $=$ Rat
	Q.24 & Quelle(s) opération(s) préserve(nt) la rationnalité?
2/2	Sous – mot 📓 Transpose 📓 Pref 📓 Fact 📓 Suff 🗌 Aucune de ces réponses n'est correcte.
	Q.25 On peut tester si un automate nondéterministe reconnaît un langage non vide.
-1/2	🛛 oui, toujours 🗌 rarement 🌘 jamais 🗌 souvent
	Q.26 En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il
2/2	accepte le mot vide accepte un langage infini a des transitions spontanées est déterministe
	Q.27 Si L_1, L_2 sont rationnels, alors:
2/2	$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) \text{ aussi} \qquad \qquad \square \qquad \bigcup_{n \in \mathbb{N}} L_1^n \cdot L_2^n \text{ aussi} \qquad \qquad \square \qquad L_1 \subseteq L_2 \text{ ou } L_2 \subseteq L_1$ $\square \qquad \overline{L_1 \cap L_2} = \overline{L_1} \cap \overline{L_2}$
	Q.28 Combien d'états a l'automate minimal qui accepte le langage $\{a, b, c, \dots, y, z\}^+$?
2/2	☐ Il en existe plusieurs! ☐ 52 ☐ 26 2 ☐ 1
	Q.29 Combien d'états a l'automate minimal qui accepte le langage {a, b}+?

•	
2/2	☐ Il en existe plusieurs! ☐ 2 ☐ 3 ☐ 1
	Q.30 Il est possible de déterminer si une expression rationnelle et un automate correspondent au même langage.
2/2	☐ faux en temps fini ☐ vrai en temps constant ☐ faux en temps infini ☐ vrai en temps fini
	Q.31 Considérons \mathcal{P} l'ensemble des <i>palindromes</i> (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.
-1/2	☐ Il existe un ε -NFA qui reconnaisse $\mathcal P$ ☐ Il existe un NFA qui reconnaisse $\mathcal P$ ☐ $\mathcal P$ ne vérifie pas le lemme de pompage
	Q.32 Quels états peuvent être fusionnés sans changer le langage reconnu.
0/2	□ 0 avec 1 et avec 2 □ 3 avec 4 □ 1 avec 3 □ 2 avec 4 □ Aucune de ces réponses n'est correcte.
	Q.33
	a b c Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :
-1/2	
	Q.34 Sur $\{a,b\}$, quel est le complémentaire de b ?
-1/2	$\square \xrightarrow{c} \stackrel{a,b}{\longrightarrow} \qquad \qquad$
	Q.35 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de \xrightarrow{a} ?
2/2	$\square \xrightarrow{a \to b} \xrightarrow{b \to a} a$ a,b a,b

Q.36

2/2

+306/6/57+