Análise de Algoritmos

Prof. Marcelo Keese Albertini

Faculdade de Computação - Universidade Federal de Uberlândia Lista de exercícios 4: Teorema Mestre

1. Resolva as seguintes recorrências usando Teoremas Mestres (dê preferência àquele com notação mais precisa) ou indicando porque não é possível usar um. Assuma sempre a condição inicial $a_n = 1$ para $n \le 1$.

1.
$$a_n = a_{n/3} + 1$$

2.
$$a_n = 2a_{n/2} + 3n$$

3.
$$a_n = 2a_{n/2} + 10n$$

4.
$$a_n = 2a_{n/2} + \Theta(n)$$

5.
$$a_n = 2a_{n/2} - n/3$$

6.
$$a_n = 2a_{n/2} + \log n$$

7.
$$a_n = 2a_{n/2} + n \log n$$

8.
$$a_n = a_{n/5} + O(\log n)$$

9.
$$a_n = 9a_{n/3} + n$$

10.
$$a_n = a_{n/2} + n^2$$

11.
$$a_n = a_{n/3} + a_{n/3} + n^2$$

12.
$$a_n = a_{n/2} + a_{n/3} + 1$$

13.
$$a_n = 3a_{n/4} + n \log n$$

14.
$$a_n = 8a_{n/2} + n \log n$$

15.
$$a_n = 8a_{n/2} + n(\log n)^2$$

16.
$$a_n = 8a_{n/2} + n^2(\log n)^4$$

17.
$$a_n = 8a_{n/2} + n^3(\log n)^4$$

18.
$$a_n = na_{n/3} + 1$$

19.
$$a_n = 7a_{n/8} + n^2$$

20.
$$a_n = \alpha a_{n/\alpha^2} + O(n^{1/2-\epsilon}), \ \epsilon > 0$$
 constante

21.
$$a_n = \alpha a_{n/\alpha^2} + O(n^{1/2})$$

22.
$$a_n = \alpha a_{n/\alpha^2} + \Omega(n^{1/2+\epsilon}), \epsilon > 0$$
 constante