3. Europ

ข้อเสนอโครงงานวิศวกรรมไฟฟ้า วิชา 2102490

วงจรแปลงผันสำหรับแผ่นพื้นเก็บพลังงานด้วยระบบขับเคลื่อนเครื่องจักรไฟฟ้า ซิงโครนัส

A Power Converter for Energy-Harvesting Floor using Synchronous

Machine Drive System

นายคณัสนันท์ จันทร์ภักดี เลขประจำตัว 6030062521 อาจารย์ที่ปรึกษา รศ.ดร.สุรพงศ์ สุวรรณกวิน

ภาควิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์
จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2563

สารบัญ

1.	J,	ทนำ	. 1
	1.1	ที่มาและความสำคัญของโครงงาน	. 1
		วัตถุประสงค์ของโครงงาน	
2.	ห	ลักการและทฤษฎีที่เกี่ยวข้อง	.3
	2.1	ข้อมูลรายละเอียดเบื้องต้นและการสร้างแบบจำลองโดยใช้โปรแกรม MATLAB/Simulink ของแผ่นทั้	เ ใน
	เก็บ	พลังงาน Genpath	.3
	2.2	การสร้างแบบจำลองของเครื่องจักรไฟฟ้าซิงโครนัสชนิดแม่เหล็กถาวรโดยใช้โปรแกร	เม
	MA	rLAB/Simulink	.5
	2.3	หลักการเบื้องต้นเกี่ยวกับขั้นตอนวิธีการติดตามจุดทำงานสูงสุด (Maximum Power Point Trackin	ıg;
	MPF	PT) สำหรับวงจรการกักเก็บพลังงาน	.8
	2.4	หลักการเบื้องต้นเกี่ยวกับเทคนิคการปรับความกว้างพัลส์ที่ควบคุมสวิตช์ (Pulse Width Modulatio	n)
	และ	วงจรแปลงผันสามเฟส	LΟ
3.	Мí	ลลัพธ์จากการดำเนินการเบื้องต้น	۱2
	3.1	ผลการสร้างแบบจำลองเครื่องจักรไฟฟ้าซิงโครนัสชนิดแม่เหล็กถาวรด้วยโปรแกร	ม
	MA	ΓLAB/Simulink	12
	3.2	ผลการทดลองใช้งานอัลกอรีทีมการติดตามจุดทำงานสูงสุดร่วมกับแบบจำลองของระบบรวม	ί4
	3.3	ผลการทดลองที่เกี่ยวข้องกับการสร้างแรงดันด้วยวงจรแปลงผันสามเฟสจากเทคนิคการปรับความกว้	าง
	พัลส์		16
		3.3.1 ผลการจำลองการทำงานของวงจรแปลงผันสามเฟสด้วยเทคนิคการปรับความกว้างพัลส์	17
		3.3.2 ผลการจำลองการทำงานของวงจรแปลงผันสามเฟสด้วยเทคนิคการปรับความกว้างพัส	าส์
		ร่วมกับอัลกอรีทึมการติดตามจุดทำงานสูงสุดและแบบจำลองส่วนอื่น ๆ ของระบบ	8
4.	ส'	รุปรายละเอียดโครงงาน	20
	4.1	ขอบเขตของโครงงาน	20
	4.2	ผลลัพธ์ที่คาดหวังจากโครงงาน	20
	4.3	แผนการดำเนินการ	20
	4.4	ปัญหา อุปสรรค และแนวทางแก้ไข	21
5.	રિ	กสารอ้างอิง	21
6.	ภ	าคผนวก	22
	6.1	ภาคผนวก ก	22

1. บทน้ำ

1.1 ที่มาและความสำคัญของโครงงาน

เนื่องจากนวัตกรรมโดยส่วนใหญ่มีความจำเป็นต้องใช้พลังงานไฟฟ้าในการขับเคลื่อน จึงส่งผลให้ใน ปัจจุบันความต้องการใช้ไฟฟ้าจึงเพิ่มสูงขึ้น ซึ่งสะท้อนถึงค่าใช้จ่ายของผู้ใช้งานที่มากขึ้นเช่นกัน จึงมีแนวคิดใน การแปรรูปพลังงานไฟฟ้าจากพลังงานรูปแบบอื่น ๆ ซึ่งเกิดขึ้นอย่างเป็นประจำและไม่มีค่าใช้จ่าย เช่น พลังงาน แสงอาทิตย์, พลังงานลม เป็นต้น จึงส่งผลให้เกิดการพัฒนาโครงงานแผ่นพื้นเก็บพลังงาน Genpath ขึ้น ซึ่ง เป็นการอาศัยพลังงานในรูปแบบของพลังงานกลจากแรงเหยียบของมนุษย์ นำมาแปรรูปเป็นพลังงานไฟฟ้าด้วย เครื่องจักรไฟฟ้ากระแสตรงและมีกลไกการทำงานเบื้องต้นดังรูปที่ 1 แม้ว่าพลังงานไฟฟ้าที่เกิดขึ้นจะมีปริมาณ ไม่มาก (ประมาณ 350 มิลลิจูล [1]) แต่เพียงพอสำหรับการใช้งานในอุปกรณ์อิเล็กทรอนิกส์ขนาดเล็ก รวมถึง เป็นการใช้พลังงานจากแรงกระทำของมนุษย์ ซึ่งเกิดขึ้นเป็นปกติให้เกิดประโยชน์มากขึ้น

เนื่องจากแรงกดที่ได้จากการเหยียบของมนุษย์มีค่าค่อนข้างน้อย (ประมาณ 500 – 1000 นิวตัน [1]) ดังนั้นพลังงานไฟฟ้าที่ได้จาก Genpath จึงมีค่าไม่สูงนักดังที่กล่าวไปข้างต้น ส่งผลให้โครงงานในปีการศึกษา 2562 มีการพัฒนาการออกแบบทางไฟฟ้าและทางกลเพื่อปรับปรุงประสิทธิภาพของ Genpath ให้สูงขึ้น เช่น การออกแบบวงจรแปลงผันโดยใช้มอสเฟต (MOSFET) แทนสวิตช์กำลังเพื่อลดแรงดันสูญเสียของระบบ [1] แต่อย่างไรก็ตามในโครงงานปีการศึกษา 2562 ไม่ได้มีการพัฒนาในส่วนของการติดตามจุดทำงานสูงสุด (Maximum Power Point Tracking; MPPT) ซึ่งจะเข้ามาช่วยลดกำลังสูญเสียชึ่งมีผลมาจากความเหนี่ยวนำ ภายในของเครื่องจักรไฟฟ้า อันเนื่องมาจากแรงในการเหยียบที่ไม่คงที่ส่งผลให้แรงดันขาออกมีลักษณะ เป็น สัญญาณกระแสสลับดังรูปที่ 2 ดังนั้นจึงส่งผลให้ค่าอิมพีแดนซ์ภายในของเครื่องจักรไฟฟ้ามีค่าสูงขึ้น [1] โครงงานฉบับนี้จึงมุ่งเน้นในการพัฒนาอัลกอริทึม MPPT เพื่อควบคุมการทำงานของวงจรแปลงผันในการสร้าง แรงดันเพื่อชดเชยผลของขดลวดเหนี่ยวนำภายในของเครื่องจักรไฟฟ้า รวมถึงในโครงงานฉบับนี้ได้พัฒนานำ เครื่องจักรไฟฟ้าซิงโครนัสมาใช้แทนเครื่องจักรไฟฟ้ากระแสตรง เนื่องจากเครื่องจักรไฟฟ้าซิงโครนัสมีความเร็ว รอบที่ต่ำกว่าเครื่องจักรไฟฟ้ากระแสตรง ซึ่งส่งผลให้พลังงานสูญเสียทางกลของระบบมีค่าลดลง

รูปที่ 1 กลไกการทำงานโดยรวมของ Genpath [1]

รูปที่ 2 แรงดันขาออกจาก Genpath ซึ่งมีลักษณะคล้ายสัญญาณกระแสสลับ [1]

รูปที่ 3 แผนภาพรวมของโครงงาน

รูปที่ 3 แสดงแผนภาพรวมของโครงงานซึ่งสามารถแบ่งได้เป็น 4 ส่วน ได้แก่ Genpath model, Synchronous machine dynamic model, Maximum Power Point Tracking Algorithm และ Power converter (Pulse Width Modulation และ Inverter control) โดยหลักการทำงานโดยคร่าวของระบบเป็น ดังนี้ เริ่มต้นจาก Genpath ส่งผ่านแรงจากการเหยียบของมนุษย์มายังเครื่องจักรไฟฟ้าซึงโครนัสเพื่อแปรรูป เป็นพลังงานไฟฟ้า โดยในระหว่างการทำงานจะมีการตรวจจับกระแสและนำไปประมวลผลโดยใช้หลักการ ติดตามจุดทำงานสูงสุด (MPPT) เพื่อนำไปพิจารณาหาค่าแรงดันขาออกที่ทำให้กำลังขาออกมีค่าสูงที่สุด และ ส่งสัญญาณเพื่อควบคุมการทำงานของวงจรแปลงผันในการสร้างแรงดันดังกล่าวผ่านหลักการควบคุมโดยการ ปรับความกว้างพัลส์ที่ควบคุมสวิตซ์ (Pulse Width Modulation; PWM) และกักเก็บพลังงานไปยังแบตเตอรี่ เป็นลำดับถัดไป

1.2 วัตถุประสงค์ของโครงงาน

- 1. เพื่อศึกษาแบบจำลองทางคณิตศาสตร์และสร้างแบบจำลองพลวัตของระบบแผ่นพื้นเก็บพลังงานด้วย โปรแกรม MATLAB/Simulink เพื่อตรวจสอบผลลัพธ์ที่ได้ก่อนนำไปประยุกต์ใช้กับอุปกรณ์จริง
- 2. เพื่อพัฒนาและสร้างอัลกอรีทึมการติดตามจุดทำงานสูงสุดเพื่อชดเชยผลของความเหนี่ยวนำภายใน ของเครื่องจักรไฟฟ้า ซึ่งส่งผลให้กำลังขาออกมีค่าสูงที่สุด
- 3. เพื่อออกแบบวิธีการสร้างแรงดันขาออกที่ต้องการด้วยการควบคุมการทำงานของวงจรแปลงผันสาม เฟสด้วยหลักการควบคุมโดยการปรับความกว้างพัลส์ที่ควบคุมสวิตช์

2. หลักการและทฤษฎีที่เกี่ยวข้อง

ในหัวข้อนี้จะอธิบายถึงข้อมูลทางทฤษฎีที่เกี่ยวข้องกับโครงงานฉบับนี้โดยมี 4 หัวข้อ ดังนี้

- 1. ข้อมูลรายละเอียดเบื้องต้นและการสร้างแบบจำลองโดยใช้โปรแกรม MATLAB/Simulink ของแผ่น พื้นเก็บพลังงาน Genpath
- 2. การสร้างแบบจำลองของเครื่องจักรไฟฟ้าซิงโครนัสชนิดแม่เหล็กถาวรโดยใช้โปรแกรม MATLAB/Simulink
- 3. หลักการเบื้องต้นเกี่ยวกับขั้นตอนวิธีการติดตามจุดทำงานสูงสุด (Maximum Power Point Tracking; MPPT) สำหรับการกักเก็บพลังงาน
- 4. หลักการเบื้องต้นเกี่ยวกับเทคนิคการปรับความกว้างพัลส์ที่ควบคุมสวิตช์ (Pulse Width Modulation) และวงจรแปลงผันสามเฟส

2.1 ข้อมูลรายละเอียดเบื้องต้นและการสร้างแบบจำลองโดยใช้โปรแกรม MATLAB/Simulink ของ แผ่นพื้นเก็บพลังงาน Genpath

หลักการทำงานของ Genpath เริ่มต้นจากรับแรงจากการเหยียบของมนุษย์และส่งผ่านไปยังเกลียวนำ (Lead screw) ซึ่งทำหน้าที่เปลี่ยนแนวการเคลื่อนที่จากการเคลื่อนที่เชิงเส้นไปยังการเคลื่อนที่เชิงหมุนใน ทิศทางของการหมุนรอบแนวแกนตั้ง และไปยังกลไกเพิ่มเติมซึ่งทำหน้าที่ในการเปลี่ยนทิศทางการหมุนเป็นการ หมุนรอบแนวแกนนอนเพื่อนำไปขับเครื่องจักรไฟฟ้า ดังที่แสดงในรูปที่ 4 และภายหลังจากการเหยียบเสร็จสิ้น กลไกสปริงซึ่งอยู่ทั้งสี่มุมของ Genpath จะทำหน้าที่ในการสร้างแรงต้านเพื่อทำให้แผ่นเหยียบกลับคืนสภาพไป ยังตำแหน่งเริ่มต้นก่อนเกิดการเหยียบ [1]

เนื่องจากขอบเขตของโครงงานฉบับนี้จะเป็นการมุ่งเน้นไปที่การจำลองระบบโดยใช้โปรแกรม MATLAB/Simulink เป็นหลัก ดังนั้นในส่วนถัดไปจะเป็นข้อมูลเกี่ยวกับการสร้างแบบจำลองของ Genpath โดยทางผู้จัดทำได้รับความกรุณาจากภาควิศวกรรมเครื่องกลในการส่งแบบจำลองของ Genpath มาให้ปรับใช้ ซึ่งมีแผนภาพไดอะแกรมแสดงไว้ในรูปที่ 5(ก) และ 5(ข) และมีค่าตัวแปรที่เกี่ยวข้องแสดงไว้ในตารางที่ 1

รูปที่ 4 กลใกทางกลของ Genpath [1]

```
function [Fs, test] = fcn(x, dx, k, d, Fin)

if x >-0.015

Fs = k*x+d*dx;

test = 1;

else

Fs = Fin+d*dx;

test = 0;

end

if Fin == 0

Fs = k*x+d*dx;

test = 2;

end

(1)
```

รูปที่ 5 (ก) รูปแบบจำลองของ Genpath โดยใช้โปรแกรม MATLAB/Simulink (ข) เงื่อนไขของฟังก์ชัน fcn ภายในแบบจำลองของ Genpath

ตารางที่ 1 ตารางแสดงค่าตัวแปรทางกลที่เกี่ยวข้องกับแผ่นพื้นเก็บพลังงาน [1]

ตัวแปร	ปริมาณ
Thrust Bearing Diameter (Dthrust)	8 mm
Lead (l)	1 cm
Mass (m)	2.16 kg
Moment of inertia of bevel gear (1ea) (Jg)	8.6756x10 ⁻⁷ kgm ²
Moment of inertia of lead screw (Jl)	2.5536x10 ⁻⁷ kgm ²
Lead angle	45 degree
Spring Coefficient (k)	40,000 N/m
Damping Coefficient (d)	2,000 Ns/m
Friction Coefficient (µ)	0.21

2.2 การสร้างแบบจำลองของเครื่องจักรไฟฟ้าซิงโครนัสชนิดแม่เหล็กถาวรโดยใช้โปรแกรม MATLAB/Simulink

เนื่องจากโครงงานฉบับนี้มุ่งเน้นไปในส่วนของการจำลองผลการทดลองโดยใช้โปรแกรม MATLAB/Simulink เป็นหลัก ดังนั้นในส่วนถัดไปจะเกี่ยวข้องกับการสร้างแบบจำลองของเครื่องจักรไฟฟ้า ซิงโครนัสชนิดแม่เหล็กถาวรโดยใช้โปรแกรม MATLAB/Simulink

เนื่องจากค่าความเหนี่ยวนำภายในและฟลักซ์แม่เหล็กของเครื่องจักรไฟฟ้าซิงโครนัสชนิดแม่เหล็ก ภาวร มีค่าเปลี่ยนแปลงตามค่ามุมของโรเตอร์ ดังนั้นเพื่อความสะดวกในการพิจารณาแบบจำลอง จึงใช้แกน อ้างอิงเป็นการอ้างอิงแบบหมุนซึ่งหมุนด้วยความเร็วเดียวกันกับความเร็วโรเตอร์เพื่อให้ค่าต่าง ๆ ไม่ขึ้นอยู่กับ ค่ามุมของโรเตอร์ โดยสามารถแปลงภาพระบบไปยังแกนอ้างอิงแบบหมุนได้โดยการใช้วงจรสมมูลสองเฟสดีคิว (Two-phase (d-q) equivalent circuit) โดยเริ่มต้นพิจารณาความสัมพันธ์ระหว่างแรงดันจากสมการที่ 1 [2]

$$\begin{bmatrix} v_{un} \\ v_{vn} \\ v_{wn} \end{bmatrix} = R_s \begin{bmatrix} i_u \\ i_v \\ i_w \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \Psi_u \\ \Psi_v \\ \Psi_w \end{bmatrix}$$
 (1)

เมื่อ

 v_{un}, v_{vn}, v_{wn} คือ แรงดันเฟสขาออกของเฟส น, \vee และ \vee ตามลำดับ

 i_u , i_v , i_w คือ กระแสของเฟส u, v และ w ตามลำดับ

 $\Psi_{u}, \Psi_{v}, \Psi_{w}$ คือ ฟลักซ์คล้อง (Flux linkage) ของเฟส u, v และ w ตามลำดับ

โดยฟลักซ์คล้องของเครื่องจักรไฟฟ้าซิงโครนัสชนิดแม่เหล็กถาวรเกิดจากปัจจัย 2 ประการ ได้แก่ ฟลักซ์แม่เหล็กอันเนื่องมาจากมีกระแสไหลในขดลวดเหนี่ยวนำซึ่งประกอบไปด้วยผลจากความเหนี่ยวนำตัวเอง (Self-inductance) และความเหนี่ยวนำร่วม (Mutual-inductance) และสามารถเกิดจากฟลักซ์แม่เหล็กของ แม่เหล็กถาวรของเครื่องจักรไฟฟ้าเองร่วมด้วย ดังนั้นจึงสามารถเขียนสเปซเวกเตอร์ของฟลักซ์คล้องได้ดัง สมการที่ 2 [2]

$$\begin{bmatrix} \Psi_{u} \\ \Psi_{v} \\ \Psi_{w} \end{bmatrix} = \begin{bmatrix} l + L & -\frac{1}{2}L & -\frac{1}{2}L \\ -\frac{1}{2}L & l + L & -\frac{1}{2}L \\ -\frac{1}{2}L & -\frac{1}{2}L & l + L \end{bmatrix} \begin{bmatrix} i_{u} \\ i_{v} \\ i_{w} \end{bmatrix} + \lambda' \begin{bmatrix} \cos \theta \\ \cos (\theta - 120^{o}) \\ \cos (\theta - 240^{o}) \end{bmatrix}$$
(2)

เมื่อ

l คือ ความเหนี่ยวนำตัวเอง

L คือ ความเหนี่ยวนำร่วม

 λ' คือ ฟลักซ์แม่เหล็กของแม่เหล็กถาวร

heta คือ มุมของโรเตอร์

โดยการแปลงภาพไปยังแกนอ้างอิงหมุนจะประกอบไปด้วยการแปลงภาพสองส่วน ได้แก่ การแปลง ภาพจากระบบสามเฟสไปยังระบบสองเฟสด้วยการแปลงภาพของคลาก (Clark's Transformation) และการ แปลงภาพจากแกนอ้างอิงนิ่งเป็นแกนอ้างอิงหมุนด้วยการแปลงภาพของปาร์ค (Park's Transformation)

เมื่อแทนสมการที่ 2 ลงในสมการที่ 1 และนำไปผ่านการแปลงภาพจากระบบสามเฟสไปยังระบบสอง เฟสด้วยของการแปลงภาพคลากดังสมการที่ 3 [3] จะได้ผลดังสมการที่ 4 [2]

$$\begin{bmatrix} i_x \\ i_y \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} i_u \\ i_v \\ i_w \end{bmatrix}$$
(3)

$$\overrightarrow{v_S} = R_S \overrightarrow{\iota_S} + L_S \frac{d}{dt} \overrightarrow{\iota_S} + \omega_e \overrightarrow{\lambda}$$
 (4)

เมื่อกำหนดให้
$$\overrightarrow{v_s} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}$$
 $\overrightarrow{\iota_s} = \begin{bmatrix} i_x \\ i_y \end{bmatrix}$ $\overrightarrow{\lambda} = \sqrt{\frac{3}{2}} \begin{bmatrix} -\lambda' \sin \theta \\ \lambda' \cos \theta \end{bmatrix}$ $L_s = \left(l + \frac{3}{2}L\right)$

จากนั้นนำสมการที่ 4 ไปผ่านการแปลงภาพจากแกนอ้างอิงนิ่งเป็นแกนอ้างอิงหมุนด้วยการแปลงภาพ ของปาร์คจะได้ผลดังสมการที่ 5 [2,4]

$$\begin{bmatrix} v_d \\ v_q \end{bmatrix} = R_s \begin{bmatrix} i_d \\ i_q \end{bmatrix} + L_s \frac{d}{dt} \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \omega_e L_s \begin{bmatrix} i_d \\ -i_q \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_e \psi_{PM} \end{bmatrix}$$
 (5)

เมื่อกำหนดให้ $L_S = \begin{bmatrix} L_d & 0 \\ 0 & L_q \end{bmatrix}$ และสามารถพิจารณาแรงบิดแม่เหล็ก (Electromagnetic force ; T_e) ได้จากสมการที่ 6 [4]

$$T_e = \frac{3}{2}p(\psi_{PM}i_q + (L_d - L_q)i_di_q$$
 (6)

โดยที่

 v_d และ v_q คือ แรงดันเฟสที่ขั้วขาออกของขดลวดสเตเตอร์บนแกนอ้างอิงดีและคิว

 i_d และ i_q คือ กระแสสเตเตอร์บนแกนอ้างอิงดีและคิว

 L_d และ L_q - คือ สเปซเวกเตอร์ของความเหนี่ยวนำของขดลวดสเตเตอร์บนแกนอ้างอิงดีและคิว

 $R_{\mathbf{s}}$ คือ ความต้านทานของขดลวดสเตเตอร์

 $\psi_{\scriptscriptstyle PM}$ คือ สเปซเวกเตอร์ของฟลักซ์แม่เหล็กของแม่เหล็กถาวร

 ω_e คือ ความเร็วเชิงมุมของโรเตอร์

p คือ จำนวนคู่ขั้วของมอเตอร์

และในส่วนของระบบเชิงกลของเครื่องจักรไฟฟ้าซิงโครนัสสามารถพิจารณาได้จากสมการที่ 7 [1]

$$\ddot{\theta} = \frac{1}{aJ_{eq}} \left(\tau_{prime} - \tau_e \right) \tag{7}$$

เมื่อ

 $\ddot{ heta}$ คือ อนุพันธ์อันดับสองของมุมโรเตอร์

a คือ ค่าคงตัวเชิงกล (ค่าระบุในตารางที่ 1)

 J_{eq} คือ ค่าความเฉื่อยเชิงกลของเครื่องจักรไฟฟ้า (ค่าระบุในตารางที่ 1)

 au_{prime} คือ แรงบิดจากแผ่นพื้น Genpath

 au_e คือ แรงบิดแม่เหล็กจากเครื่องจักรไฟฟ้า

โดยแผนภาพไดอะแกรมของแบบจำลองของเครื่องจักรไฟฟ้าซิงโครนัสชนิดแม่เหล็กถาวรแสดงไว้ใน หัวข้อที่ 3.1 โดยในการนำแบบจำลองไปประยุกต์ใช้กับระบบจะใช้ค่าตัวแปรที่เกี่ยวข้องของเครื่องจักรไฟฟ้า ซิงโครนัสชนิดแม่เหล็กถาวรแสดงดังตารางที่ 2 โดยสามารถอ่านรายละเอียดขั้นตอนและวิธีการตรวจวัดค่าตัว แปรได้ในภาคผนวกที่ ก

ตารางที่ 2 ตารางแสดงค่าตัวแปรที่เกี่ยวข้องของเครื่องจักรไฟฟ้าซิงโครนัสชนิดแม่เหล็กถาวร

ตัวแปร	ปริมาณ
ค่าความต้านทานของขดลวดสเตเตอร์ (Rs)	32.23 Ω
ค่าความเหนี่ยวนำของขดลวดสเตเตอร์ (Ls)	11.3 mH
ค่าความเหนี่ยวนำของขดลวดสเตเตอร์บนแกนอ้างอิงดี (Ld)	16 mH
ค่าความเหนี่ยวนำของขดลวดสเตเตอร์บนแกนอ้างอิงคิว (Lq)	16 mH
ฟลักซ์แม่เหล็กของแม่เหล็กภาวร	0.009 Wb
จำนวนคู่ขั้ว	6 คู่

2.3 หลักการเบื้องต้นเกี่ยวกับขั้นตอนวิธีการติดตามจุดทำงานสูงสุด (Maximum Power Point Tracking; MPPT) สำหรับวงจรการกักเก็บพลังงาน

วงจรสมมูลของวงจรการกักเก็บพลังงานสามารถเขียนได้ดังรูปที่ 6 ซึ่งประกอบไปด้วยแหล่งกำเนิด แรงดันและอิมพีแดนซ์ขาออก โดยจะประกอบไปด้วยค่าความต้านทานสมมูลขาออกและค่าความเหนี่ยวนำ สมมูลขาออก

รูปที่ 6 รูปวงจรสมมูลของวงจรการกักเก็บพลังงาน [5]

เมื่อพิจารณากำลังขาออก (P_{out}) โดยใช้ทฤษฎีการถ่ายโอนกำลังไฟฟ้าสูงสุด (Maximum Power Transfer ; MPT) ของวงจรสมมูลดังกล่าวเมื่อโหลดเป็นอิมพีแดนซ์ใด ๆ จะได้ดังสมการที่ 8

$$S = \frac{|V_S|^2}{Z^*} \tag{8}$$

$$S = \frac{|V_S|^2}{(R_S + R_L) - j(X_S + X_L)}$$

$$P_{out} = Re(S) = \frac{|V_S|^2 R_L}{(R_S + R_L)^2 + (X_S + X_L)^2}$$
(9)

เมื่อ S คือ กำลังปรากฏ

จากสมการที่ 9 จะเห็นได้ว่าค่า P_{out} จะมีค่าสูงที่สุดเมื่อพจน์ $(R_S+R_L)^2+(X_S+X_L)^2$ มีค่าต่ำ ที่สุด เนื่องจากค่ารีแอคแทนสามารถมีค่าน้อยกว่าศูนย์ได้จึงพิจารณาให้ $X_L=-X_S$ และพิจารณาสมการที่ 9 ร่วมกับเงื่อนไขข้างต้นจะได้ดังสมการที่ 10

$$P_{out} = \frac{|V_S|^2 R_L}{(R_S + R_L)^2} \tag{10}$$

และจากสมการที่ 10 จะเห็นได้ว่าค่า P_{out} จะมีค่าสูงที่สุดเมื่อ $\frac{R_L}{(R_S + R_L)^2}$ มีค่าสูงที่สุด ดังนั้นจึงพิจารณาหาค่า RL ที่ส่งผลให้พจน์ดังกล่าวมีค่าสูงสุดด้วยสมการที่ 11

$$\frac{d}{dR_L} \left(\frac{R_L}{(R_S + R_L)^2} \right) = 0 \tag{11}$$

$$R_L = R_S \tag{12}$$

ดังนั้นจากสมการที่ 12 จึงสามารถสรุปได้ว่าได้ว่า P_{out} จะมีค่าสูงที่สุดเมื่อ $R_L=R_S$ และ $X_L=-X_S$ หรือสามารถพิจารณาในรูปของแรงดันได้ว่าค่าความต่างศักย์ตกคร่อมโหลดจะต้องมีค่าเท่ากับสัง ยุคของค่าแรงดันตกคร่อมอิมพีแดนซ์สมมูลขาออกของวงจร

ในลำดับถัดมาจะเป็นการขยายขอบเขตจากทฤษฎีการถ่ายโอนพลังงานสูงสุดสู่การติดตามจุดทำงาน สูงสุดโดยพิจารณาจุดทำงานจากค่ากระแสที่เปลี่ยนแปลงตามเวลา เนื่องจากแบบจำลองของเครื่องจักรไฟฟ้า ซึงโครนัสถูกพิจารณาบนแกนอ้างอิงหมุน ดังนั้นเพื่อความสะดวกจึงพิจารณาอัลกอริทึมการติดตามจุดทำงาน สูงสุดด้วยแกนอ้างอิงหมุนเช่นกัน และเนื่องจากหลักการจากทฤษฎีการถ่ายโอนพลังงานสูงสุดคือ การชดเชย ผลของความเหนี่ยวนำภายในเครื่องจักรไฟฟ้าซึ่งได้แก่ค่า L_d และ L_q ดังนั้นเมื่อพิจารณาจากสมการที่ 5 จะ ได้ว่าแรงดันขาออกที่ทำให้เกิดการชดเชยผลของค่าความเหนี่ยวนำดังกล่าวตามหลักของทฤษฎีการถ่ายโอน พลังงานสูงสุดจะเป็นไปดังสมการที่ 13 และ 14

$$v_d = -R_s i_d + L_d \frac{d}{dt} i_d - \omega_e L_q i_q \tag{13}$$

$$v_q = -R_s i_q + L_q \frac{d}{dt} i_q + \omega_e L_d i_d \tag{14}$$

นอกจากนั้นต้องคำนึกถึงข้อควรระวังของการใช้ตัวอนุพันธ์ด้วย อันเนื่องมาจากตัวอนุพันธ์มีกราฟผล การตอบสนองเชิงความถี่ดังรูปที่ 7 ซึ่งจะเห็นได้ว่าตัวอนุพันธ์จะมีพฤติกรรมเหมือนตัวขยายสัญญาณ ดังนั้น หากมีสัญญาณรบกวนที่มีความถี่สูง ตัวอนุพันธ์อาจทำให้สัญญาณรบกวนดังกล่าวมีขนาดเพิ่มมากขึ้น [5] และ อาจทำให้เกิดความเสียหายต่ออุปกรณ์ได้ ดังนั้นจึงแก้ไขปัญหาดังกล่าวโดยการจำกัดขอบเขตช่วงความถี่ของ ตัวอนุพันธ์ด้วยตัวปฏิยานุพันธ์ ซึ่งจะมีฟังก์ชันส่งผ่าน (Transfer function) ดังสมการที่ 15 และจะได้กราฟ ผลตอบสนองเชิงความถี่ที่เปลี่ยนไปดังรูปที่ 8 จะเห็นได้ว่าที่ความถี่ค่าหนึ่งอัตราขยายจะไม่เพิ่มขึ้น

$$H(s) = \frac{s}{s + \omega_H} \tag{15}$$

โดยที่ ω_H คือ ความถี่ขอบบนที่ต้องการจำกัดอัตราขยายของตัวอนุพันธ์

รูปที่ 8 กราฟผลตอบสนองเชิงความถี่ของตัวอนุพันธ์ซึ่งถูกจำกัดขอบเขตความถี่โดยตัวปฏิยานุพันธ์

2.4 หลักการเบื้องต้นเกี่ยวกับเทคนิคการปรับความกว้างพัลส์ที่ควบคุมสวิตช์ (Pulse Width Modulation) และวงจรแปลงผันสามเฟส

เมื่อทราบค่าแรงดันขาออกที่ทำให้ได้พลังงานขาออกสูงที่สุดจากอัลกอรีทีมการติดตามจุดทำงานสูงสุด แล้ว ในส่วนนี้จะเป็นการสร้างแรงดันดังกล่าวโดยควบคุมการทำงานของวงจรแปลงผันด้วยหลักการควบคุม โดยการปรับความกว้างพัลส์ที่ควบคุมสวิตช์ (PWM)

วงจรแปลงผัน (Inverter) คือวงจรที่ใช้สำหรับการสร้างแรงดันกระแสสลับจากแหล่งจ่ายแรงดัน กระแสตรง เมื่อพิจารณาวงจรแปลงผันเฟสเดียวกึ่งบริดจ์ดังรูปที่ 9ก หลักการทำงานของวงจรดังกล่าวคือ สวิตช์ S1 และ S2 จะสลับกันทำงานสวิตช์ละครึ่งวัฏจักรงาน โดยเมื่อสวิตช์ S1 ปิดวงจรแรงดันขาออกจะมีค่า เท่ากับ $\frac{V_{DC}}{2}$ และเมื่อสวิตช์ S2 ปิดวงจรแรงดันขาออกจะมีค่าเท่ากับ $-\frac{V_{DC}}{2}$ ดังรูปที่ 9ข ซึ่งจะเห็นได้ว่า

แรงดันขาออกที่ได้จากวงจรแปลงผันจะมีลักษณะรูปคลื่นเป็นรูปคลื่นสี่เหลี่ยมเท่านั้น ดังนั้นจึงมีการนำเทคนิค การปรับความกว้างพัลส์หรือ PWM เข้ามาทำงานร่วมด้วยเพื่อทำให้วงจรแปลงผันสามารถสร้างสัญญาณที่มี รูปคลื่นใด ๆ ได้

รูปที่ 9 ก) รูปวงจรแปลงผันเฟสเดียวกึ่งบริดจ์ [6] ข) รูปแรงดันขาออกของวงจรแปลงผันเฟสเดียวกึ่งบริดจ์ [6]

เทคนิค PWM คือเทคนิคการสร้างสัญญาณที่ต้องการโดยการควบคุมช่วงเวลาในการเปิด-ปิดสวิตช์ ของวงจรแปลงผัน โดยสัญญาณที่ใช้ในการควบคุมสวิตช์ดังกล่าวเกิดจากการเปรียบเทียบระหว่างสัญญาณ อ้างอิงที่ต้องการและสัญญาณพาหะมีความถี่สูง [6] หากพิจารณาวงจรแปลงผันเฟสเดียวกึ่งบริดจ์ดังรูปที่ 9ก เมื่อสัญญาณพาหะมีค่าสูงกว่าสัญญาณอ้างอิง สวิตช์ S1 จะเปิดวงจรและสวิตช์ S2 จะเปิดวงจร และเมื่อ สัญญาณพาหะมีค่าต่ำกว่าสัญญาณอ้างอิง สวิตช์ S1 จะเปิดวงจรและสวิตช์ S2 จะปิดวงจร ดังนั้นหาก สัญญาณอ้างอิงมีค่าไม่คงที่ สวิตช์ S1 และ S2 จะถูกเปิดและปิดในเวลาที่แตกต่างกันออกไปตามค่าของ สัญญาณอ้างอิงที่ต้องการดังรูปที่ 10ก โดยในโครงานฉบับนี้ได้มีการนำเครื่องจักรไฟฟ้าซิงโครนัสเข้าใช้แทน เครื่องจักรไฟฟ้ากระแสตรงซึ่งต้องการแรงดันขาออกสามเฟส ดังนั้นจึงต้องใช้วงจรแปลงผันสามเฟสในการ สร้างสัญญาณที่แรงดันต้องการ โดยมีหลักการเช่นเดียวกันกับวงจรข้างต้น เพียงแต่มีสวิตช์ทั้งหมดสามคู่ สำหรับสัญญาณอ้างอิงแต่ละเฟสดังรูปที่ 10ข

รูปที่ 10 ก) รูปการณ์เปรียบเทียบระหว่างสัญญาณอ้างอิงและสัญญาณพาหะ [6]
ข) รูปวงจรแปลงผันสามเฟส [6]

โดยก่อนทำการเปรียบเทียบระหว่างสัญญาณอ้างอิงและสัญญาณพาหะดังที่กล่าวไปข้างต้น จะต้องมี การทำควอนไตเซชัน (Quantization) ของสัญญาณอ้างอิงด้วยความถี่เดียวกับความถี่ของสัญญาณพาหะ [6] เพื่อทำให้สัญญาณอ้างอิงมีค่าที่คงที่ในขณะที่ทำการเปรียบเทียบ โดยในส่วนของแผนภาพไดอะแกรมการสร้าง แบบจำลองของวงจรแปลงผันสามเฟสและอัลกอริทีมของเทคนิค PWM จะแสดงไว้ในหัวข้อที่ 3.3

3. ผลลัพธ์จากการดำเนินการเบื้องต้น

ในหัวข้อนี้จะกล่าวถึงผลลัพธ์จากการดำเนินงานซึ่งแบ่งเป็น 3 หัวข้อดังนี้

- 3.1 ผลการสร้างแบบจำลองเครื่องจักรไฟฟ้าซิงโครนัสชนิดแม่เหล็กถาวรด้วยโปรแกรม MATLAB/Simulink
 - 3.2 ผลการทดลองใช้งานอัลกอรีทีมการติดตามจุดทำงานสูงสุดร่วมกับแบบจำลองของระบบอื่น ๆ
- 3.3 ผลการทดลองที่เกี่ยวข้องกับการสร้างแรงดันด้วยวงจรแปลงผันสามเฟสจากเทคนิคการปรับความ กว้างพัลส์

3.1 ผลการสร้างแบบจำลองเครื่องจักรไฟฟ้าซิงโครนัสชนิดแม่เหล็กถาวรด้วยโปรแกรม MATLAB/Simulink

พิจารณาสมการพลวัตของเครื่องจักรไฟฟ้าซิงโครนัสชนิดแม่เหล็กถาวรจากสมการที่ 5 และสมการ แรงบิดจากสมการที่ 6 เพื่อนำมาสร้างเป็นแบบจำลองในส่วนของไฟฟ้าด้วยโปรแกรม MATLAB/Simulink จะ ได้แผนภาพไดอะแกรมดังรูปที่ 11 และจากสมการที่ 7 เมื่อนำมาสร้างเป็นแบบจำลองในส่วนของเชิงกลจะได้ แผนภาพไดอะแกรมดังรูปที่ 12

และขั้นตอนต่อมาเป็นการนำแบบจำลองของเครื่องจักรไฟฟ้าซิงโครนัสชนิดแม่เหล็กถาวรมาทำงาน ร่วมกับแบบจำลองทางกลของ Genpath จากหัวข้อ 2.1 ซึ่งมีหลักการดังนี้ เริ่มจาก Genpath จะรับสัญญาณ แรงกด และส่งต่อให้กับแบบจำลองเครื่องจักรไฟฟ้าซิงโครนัสในรูปของแรงบิด (Tprime) จึงทำให้เกิดกระแส ในแบบจำลองของเครื่องจักรไฟฟ้าซิงโครนัสและเหนี่ยวนำให้เกิดแรงแม่เหล็กไฟฟ้า (Te) ในทิศทางสวนทาง กับ Tprime รวมถึงมีการส่งกลับค่าอัตราเร็วเชิงมุมทางกล (ω_m) กลับไปสู่แบบจำลอง Genpath เช่นกัน ซึ่ง สามารถเขียนเป็นแผนภาฟไดอะแกรมได้ดังรูปที่ 13

รูปที่ 11 แผนภาพไดอะแกรมของแบบจำลองพลวัตทางไฟฟ้า ของเครื่องจักรไฟฟ้าซึงโครนัสชนิดแม่เหล็กถาวร

รูปที่ 12 แผนภาพไดอะแกรมของแบบจำลองเชิงกลของเครื่องจักรไฟฟ้าซิงโครนัสชนิดแม่เหล็กถาวร

รูปที่ 13 แผนภาพโดยรวมการทำงานร่วมกันของแบบจำลองเครื่องจักรไฟฟ้าซิงโครนัส ชนิดแม่เหล็กถาวรและแบบจำลอง Genpath

3.2 ผลการทดลองใช้งานอัลกอรีทีมการติดตามจุดทำงานสูงสุดร่วมกับแบบจำลองของระบบรวม

จากสมการที่ 13 และ 14 จะสามารถนำมาสร้างเป็นอัลกอริทึมการติดตามจุดทำงานสูงสุดได้ดังรูปที่ 14 และเมื่อนำมาพิจารณาร่วมกับส่วนอื่น ๆ ของระบบจะได้ลักษณะภาพรวมดังรูปที่ 15 โดยหลักการโดย คร่าวคือนำกระแสขาออกของแบบจำลองเครื่องจักรไฟฟ้าซิงโครนัสมาพิจารณาผ่านอัลกอริทึมการติดตามจุด ทำงานสูงสุด เพื่อคำนวณสัญญาณแรงดันขาออกที่เหมาะสมและส่งกลับไปเป็นสัญญาณแรงดันให้แก่ แบบจำลองเครื่องจักรไฟฟ้าซิงโครนัส ซึ่งจะทำให้ได้กำลังงานขาออกสูงที่สุด

รูปที่ 14 แผนภาพไดอะแกรมของอัลกอรีทีมการติดตามจุดทำงานสูงสุดบนแกนอ้างอิงหมุน

รูปที่ 15 แผนภาพไดอะแกรมการทำงานร่วมกันระหว่างอัลกอร์ทีมการติดตามจุดทำงานสูงสุดและระบบอื่น ๆ

เมื่อทดลองทำการทดสอบแบบจำลอง จะได้ว่ากำลังขาออกเมื่อมีการใช้อัลกอรีทีมการติดตามจุด ทำงานสูงสุดมีลักษณะดังรูปที่ 16 (กำลังขาออกมีค่าเป็นลบเนื่องจากนิยามของทิศทางกระแสของแบบจำลอง เครื่องจักรไฟฟ้าซิงโครนัสมีทิศทางเปรียบเสมือนเครื่องจักรกำลังทำหน้าที่เป็นมอเตอร์) และเมื่อนำไป เปรียบเทียบกับกำลังขาออกเมื่อไม่มีการใช้อัลกอรีทีมการติดตามจุดทำงานสูงสุด จะได้ผลต่างของกำลังขาออก ของทั้งสองกรณีดังรูปที่ 17 ซึ่งจะเห็นได้ว่ากรณีที่มีการใช้อัลกอรีทีมการติดตามจุดทำงานสูงสุด ดังนั้นจึงสามารถสรุปว่าอัลกอริทีมการ ติดตามจุดทำงานสูงสุด สามารถทำให้กำลังขาออกมีค่าที่สูงขึ้นได้จริง

รูปที่ 16 กราฟแสดงกำลังขาออกเมื่อใช้อัลกอรีทีมการติดตามจุดทำงานสูงสุด

รูปที่ 17 กราฟแสดงผลต่างของกำลังขาออกระหว่างกรณีที่มีการใช้และไม่ใช้อัลกอรีทึม การติดตามจุดทำงานสูงสุด

3.3 ผลการทดลองที่เกี่ยวข้องกับการสร้างแรงดันด้วยวงจรแปลงผันสามเฟสจากเทคนิคการปรับ ความกว้างพัลส์

เมื่อพิจารณาหลักการทำงานของวงจรแปลงผันสามเฟสร่วมกับเทคนิคการสร้างสัญญาณโดยการปรับ ความกว้างพัลส์จากหัวข้อที่ 2.4 จะสามารถนำมาสร้างแบบจำลองด้วยโปรแกรม MATLAB/Simulink ได้ดัง รูปที่ 18 และ 19 โดยสัญญาณ PWM_pulses จากรูปที่ 18 จะทำหน้าที่เป็นสัญญาณซึ่งใช้ในการควบคุม สวิตช์ของวงจรแปลงผันสามเฟสในรูปที่ 19 เพื่อนำมาสร้างสัญญาณแรงดันที่ต้องการ

รูปที่ 18 แผนภาพไดอะแกรมการทำงานของอัลกอรีทึมเทคนิคการสร้างสัญญาณโดยการปรับความกว้างพัลส์

รูปที่ 19 แบบจำลองวงจรแปลงผันสามเฟสโดยใช้โปรแกรม MATLAB/Simulink

3.3.1 ผลการจำลองการทำงานของวงจรแปลงผันสามเฟสด้วยเทคนิคการปรับความกว้างพัลส์

ในขั้นตอนนี้จะเป็นการทดสอบการทำงานของแบบจำลองวงจรแปลงผันสามเฟสและเทคนิค การปรับความกว้างพัลส์ โดยให้ทำการสร้างสัญญาณอ้างอิงดังสมการ 16, 17 และ 18 เมื่อความถี่ใน การควอนไทเซชันและความถี่ของคลื่นพาหะและมีค่าเท่ากับ 4050 Hz

$$v_1 = 220\sqrt{2}\sin(2\pi 50t) \tag{16}$$

$$v_2 = 220\sqrt{2}\sin\left(2\pi 50t + \frac{2\pi}{3}\right) \tag{17}$$

$$v_3 = 220\sqrt{2}\sin\left(2\pi 50t + \frac{4\pi}{3}\right) \tag{18}$$

โดยวัดแรงดันเฟสขาออกผ่านวงจรกรองตัวเหนี่ยวนำและตัวเก็บประจุ (LC filter) ดังรูปที่ 20 และนำมาเปรียบเทียบกับสัญญาณอ้างอิง ดังรูปที่ 21 จะเห็นได้ว่าแรงดันขาออกของวงจรแปลง ผัน (เส้นปะ) มีค่าใกล้เคียงกับสัญญาณอ้างอิงที่ต้องการ (เส้นทึบ) ทั้งในส่วนของขนาดและความถี่ ดังนั้น จึงสามารถยืนยันได้ว่า แบบจำลองของวงจรแปลงผันสามเฟสและอัลกอรีทึมการทำงานของเทคนิค PWM สามารถนำมาสร้างสัญญาณอ้างอิงที่ต้องการได้

รูปที่ 20 รูปวงจรแปลงผันสามเฟสและวงจร LC filter (L = 2.96 mH, C = 53.3 µF)

รูปที่ 21 รูปเปรียบเทียบระหว่างแรงดันอ้างอิง (เส้นทึบ) และแรงดันเฟสขาออก (เส้นปะ) ของเฟส น ของวงจรแปลงผันสามเฟสเมื่อใช้เทคนิค PWM

3.3.2 ผลการจำลองการทำงานของวงจรแปลงผันสามเฟสด้วยเทคนิคการปรับความกว้างพัลส์ ร่วมกับอัลกอรีทึมการติดตามจุดทำงานสูงสุดและแบบจำลองส่วนอื่น ๆ ของระบบ

ในส่วนนี้จะเป็นการนำเทคนิคการปรับความกว้างพัลส์และวงจรแปลงผันสามเฟสมาสร้าง แรงดันทางด้านขั้วขาออกของเครื่องจักรไฟฟ้าซึ่งได้จากการคำนวณด้วยอัลกอรีทึมการติดตามจุด ทำงานสูงสุด ซึ่งมีหลักการการทำงานดังที่กล่าวไปในหัวข้อ 2.4 โดยเมื่อนำมาทำงานร่วมกันจะ สามารถเขียนเป็นแผนภาพของระบบโดยรวมได้ดังรูปที่ 22 ซึ่งมีหลักการในการทำงานดังนี้ เริ่มจาก ส่วนอัลกอรีทึมการติดตามจุดทำงานสูงสุดจะส่งค่าแรงดันขาออกที่ต้องการสร้างไปเป็นสัญญาณ อ้างอิงให้แก่ส่วนอัลกอรีทึม PWM ซึ่งจะทำการแปลผลเป็นข้อมูลประเภทบูลีนซึ่งสามารถมีได้ 2 ค่า คือ 0 (สวิตช์เปิดวงจร) และ 1 (สวิตช์ปิดวงจร) และส่งไปยังวงจรแปลงผันสามเฟสเพื่อควบคุมการ ทำงานของสวิตช์และสร้างแรงสัญญาณแรงดันขาออกที่ต้องการกลับมาสู่แบบจำลองเครื่องจักรไฟฟ้า ซิงโครนัส

รูปที่ 22 แผนภาพไดอะแกรมภาพรวมของระบบ

รูปที่ 23 การเปรียบเทียบรูปคลื่นแรงดันขาออกที่ต้องการระหว่างค่าสัญญาณอ้างอิงซึ่งได้จากการคำนวณ (เส้นปะ) และค่าสัญญาณขาออกซึ่งได้จากการสร้างด้วยวงจรแปลงผันสามเฟสและเทคนิค PWM (เส้นทึบ)

จากผลการเปรียบเทียบดังรูปที่ 23 จะเห็นได้ว่าค่าสัญญาณแรงดันขาออกที่ได้จากการ คำนวณและได้จากการสร้างด้วยวงจรแปลงผันสามเฟสและเทคนิค PWM จะเห็นได้ว่ามีรูปคลื่นที่ ใกล้เคียงกันมากทั้งในส่วนของขนาดและความถี่ ดังนั้นจึงสามารถสรุปได้ว่าแรงดันขาออกซึ่งได้จากอัล กอรีทึมการติดตามจุดทำงานสูงสุดสามารถถูกสร้างได้โดยใช้วงจรแปลงผันสามเฟสร่วมกับเทคนิค PWM

4. สรุปรายละเอียดโครงงาน

4.1 ขอบเขตของโครงงาน

- 1. ในช่วงต้นของโครงงานนี้จะพิจารณาระบบภายใต้แบบจำลองด้วยโปรแกรม MATLAB/Simulink และ พัฒนาต่อไปยังอุปกรณ์จริงในลำดับถัดไป
- 2. แรงเหยียบที่กระทำต่อแผ่นพื้นมีค่าอยู่ที่ประมาณ 500 1000 นิวตัน
- 3. อัลกอรีทีมการติดตามจุดทำงานสูงสุดถูกพิจารณาบนแกนอ้างอิงแบบหมุน

4.2 ผลลัพธ์ที่คาดหวังจากโครงงาน

- 1. กำลังขาออกมีค่าเพิ่มขึ้นภายหลักการพิจารณาอัลกอรีทึมการติดตามจุดทำงานสูงสุด
- 2. สามารถประยุกต์ใช้ผลจากการจำลองระบบด้วยโปรแกรม MATLAB/Simulink กับอุปกรณ์จริงได้
- 3. แผ่นพื้นเก็บพลังงานสามารถนำไปใช้ได้ในทางปฏิบัติได้จริง

4.3 แผนการดำเนินการ

ตารางที่ 3 แผนการดำเนินงาน

ขั้นตอนการดำเนินงาน -	เดือน								
		ก.ย.	ต.ค.	พ.ย.	ธ.ค.	ม.ค.	ก.พ.	มี.ค.	เม.ย.
1. ศึกษาความรู้ที่เกี่ยวข้องกับหัวข้อ									
โครงงาน									
2. ศึกษา Genpath Mechanical Model									
(MATLAB Simulink)									
3. ศึกษา Synchronous machine dymamic									
model (MATLAB Simulink)									
4. ศึกษาและสร้าง Algorithms ในการ									
จำลองแรงดันเพื่อชดเชยความเหนี่ยวนำ									
ภายในของ machine (MATLAB Simulink)									
และวิเคราะห์ผลการจำลอง									
5. ศึกษา PWM เพื่อควบคุมการทำงานของ									
inverter ในการสร้างแรงดันจากผล									
การศึกษาในขั้นตอนที่ 4									
6. ศึกษา Hardware ที่เกี่ยวข้องเพื่อนำมา									
ทดสอบใน Hardware ต่อไป									

7. ทดลองประสิทธิภาพของ Genpath และ					
วิเคราะห์ผล					
8. วิเคราะห์และปรับปรุงส่วนต่าง ๆ เพื่อให้					
ได้ประสิทธิภาพที่ดีขึ้น					
9. เขียนรายงาน					

หมายเหตุ สีเทา คือ ความก้าวหน้าที่วางแผนไว้

สีดำ คือ ความก้าวหน้าปัจจุบัน

4.4 ปัญหา อุปสรรค และแนวทางแก้ไข

ในส่วนของอัลกอรีทึมการติดตามจุดทำงานสูงสุดยังถูกพิจารณาบนแกนอ้างอิงแบบหมุน ซึ่งเป็นไปได้ ยากในทางปฏิบัติเนื่องจากต้องมีการตรวจวัดค่ามุมโรเตอร์เพื่อนำมาใช้ในการแปลงภาพกลับมายังแกนอ้างอิง นิ่ง แต่สามารถทำได้ง่ายและไม่ซับซ้อน ดังนั้นจึงมีแนวทางในการแก้ปัญหาโดยการนำส่วนดังกล่าวไปศึกษา และพัฒนาต่อในอนาคต เพื่อให้สามารถพิจารณาอัลกอรีทึมการติดตามจุดทำงานสูงสุดบนแกนอ้างอิงนิ่งได้ และไม่จำเป็นต้องมีการติดตั้งเครื่องตรวจวัดมุมโรเตอร์เพิ่มเติม

5. เอกสารอ้างอิง

- [1] ชนุตม์ อยู่เวียงไชย, พัสกร กรีโภค และพิมพ์ศลิษา เชษฐชาตรี, "แผ่นพื้นเก็บพลังงาน," ปริญญานิพนธ์ ปริญญามหาบัณฑิต, จุฬาลงกรณมหาวิทยาลัย, 2562.
- [2] Asst. Prof. Surapong Suwankawin, Ph.D. "Chapter 4 Modeling and Control of Surface Permanent Magnet Synchronous Motor," presented to 2102-543, Faculty of Engineering, Chulalongkorn University. [PowerPoint slides].
- [3] Asst. Prof. Surapong Suwankawin, Ph.D. "Chapter 3 Space Vector Representation," presented to 2102-543, Faculty of Engineering, Chulalongkorn University. [PowerPoint slides].
- [4] S. P. Koko, K. Kusakana, and H. J. Vermaak, "Permanent magnet synchronous generator model," in *Micro-hydrokinetic river system modelling and analysis as compared to wind system for remote rural electrification*. Central University of Technology, [online document], 2015. Available: ScienceDirect, http://www.sciencedirect.com [Accessed: Sep 21, 2020].

- [5] K. Tse and H. Chung, "MPPT for Electromagnetic Energy Harvesters Having Nonnegligible Output Reactance Operating Under Slow-Varying Conditions", *IEEE Transactions on Power Electronics*, vol. 35, no. 7, pp. 7110-7122, 2020. [Accessed: Sep 25, 2020].
- [6] Asst. Prof. Surapong Suwankawin, Ph.D. "Chapter 3 DC-AC Converter (Inverter)," presented to 2102-446, Faculty of Engineering, Chulalongkorn University. [*PowerPoint* slides].
- [7] V. Bobek, "PMSM Electrical Parameters Measurement", *Nxp.com*, 2020. [Online]. Available: https://www.nxp.com/docs/en/application-note/AN4680.pdf. [Accessed: Nov 16, 2020].

6. ภาคผนวก

6.1 ภาคผนวก ก.

ในส่วนนี้จะเป็นข้อมูลเบื้องต้นเกี่ยวกับการวัดค่าตัวแปรต่าง ๆ ที่เกี่ยวข้องของเครื่องจักรไฟฟ้า ซึงโครนัสชนิดแม่เหล็กถาวรเพื่อใช้ประกอบในการวิเคราะห์แบบจำลอง โดยมีตัวแปรที่สำคัญ ได้แก่ ขั้วของ เครื่องจักรไฟฟ้าและรูปคลื่นของแรงเคลื่อนเหนี่ยวนำภายใน, ความต้านทานขดลวดสเตเตอร์, สเปซเวกเตอร์ ของความเหนี่ยวนำขดลวดสเตเตอร์บนแกนอ้างอิงดีคิวและค่าคงตัวของแรงเคลื่อนเหนี่ยวนำภายใน

2.2.2.1 ขั้วของเครื่องจักรไฟฟ้าและรูปคลื่นของแรงเคลื่อนเหนี่ยวนำภายใน

สามารถระบุได้โดยตรวจจับรูปคลื่นแรงดันขาออกระหว่างขั้วขาออกของเครื่องจักรไฟฟ้าในการหมุน ตัวต้นกำลัง 1 รอบและนำมาวิเคราะห์ เนื่องจากบริเวณขั้วของแม่เหล็กถาวรจะเป็นบริเวณที่มีค่าฟลักซ์ แม่เหล็กสูงที่สุด ซึ่งค่าแรงเคลื่อนเหนี่ยวนำภายในจะมีค่าสูงสุดด้วยเช่นกัน จึงสามารถตรวจสอบขั้วของ เครื่องจักรไฟฟ้าได้จากจำนวนยอดลูกคลื่นของรูปคลื่นแรงดันที่ตรวจวัดได้พร้อมกับสามารถระบุรูปคลื่นของ แรงเคลื่อนเหนี่ยวนำภายในได้เช่นกัน ผลการทดสอบได้ว่าแรงดันมีรูปคลื่นเป็นคลื่นรูปไซน์และมีจุดที่แรงดันมี ค่าสูงที่สุดและต่ำที่สุดอยู่ 12 จุด ดังนั้นจึงสรุปได้ว่าเครื่องจักรไฟฟ้าซิงโครนัสเครื่องนี้มีจำนวนคู่ขั้ว 6 คู่และมี แรงเคลื่อนเหนี่ยวนำเป็นคลื่นรูปไซน์

2.2.2.2 ความต้านทานขดลวดสเตเตอร์

สามารถทำได้โดยวัดค่าความต้านขดลวดสเตอร์ระหว่างขั้วขาออกของเครื่องจักรไฟฟ้า และเนื่องจาก เป็นความต้านทานที่วัดได้ระหว่างเฟส ดังนั้นค่าที่ได้จึงมีค่าเป็นสองเท่าของความต้านทานขดลวดสเตเตอร์

2.2.2.3 สเปซเวกเตอร์ของความเหนี่ยวนำขดลวดสเตเตอร์บนแกนอ้างอิงดีคิว

เนื่องจากค่า Ld และ Lq ประกอบไปด้วยผลของค่าความเหนี่ยวนำสองส่วนได้แก่ ค่าความเหนี่ยวนำ ตัวเองและค่าความเหนี่ยวนำร่วม ดังนั้นเพื่อพิจารณาผลของค่าความเหนี่ยวร่วม จึงทำลัดวงจรระหว่างสองเฟส และทำการวัดใช้มิเตอร์วัดค่า (RLC meter) ทำการวัดระหว่างจุดที่ลัดวงจรดังกล่าวกับอีกหนึ่งเฟสที่เหลืออยู่

และเนื่องจากพิจารณาว่าเครื่องกำเนิดไฟฟ้าเป็นชนิดโรเตอร์ทรงกระบอก (Non-salient pole) ซึ่งจะมีค่า Ld และ Lq ที่เท่ากัน

2.2.2.4 ค่าคงตัวของแรงเคลื่อนเหนี่ยวนำภายใน

ผู้จัดทำทำการหาค่าโดยประมาณของค่าคงตัวของแรงเคลื่อนเหนี่ยวนำภายในของเครื่องจักรไฟฟ้า จากข้อมูลของเครื่องกำเนิดไฟฟ้าจากผู้จัดจำหน่าย โดยสามารถคำนวณได้จากสมการที่ 19

$$K = \frac{V_{out,max,peak}}{\sqrt{3}\omega_{e,max}} \tag{19}$$