

CHEMISTRY

AmAlIAmEsArOS

WHY CHEMISTRY ???

- ✓ engineering systems are made of materials;
- ✓ engineering systems, solid-state devices present properties that can be tailored by carefully controlling their chemical compositions, morphological and structural characteristics;
- ✓ the design or optimization of processes in the chemical industry involve chemical reactions that take place in different solvents or in the air.

CHEMISTRY

- ✓ THE SCIENCE OF MATTER
- ✓ THE CENTER OF SCIENCE

✓ A SCIENCE AT THREE LEVELS

Q: LEGO OR PUZZLE ???

Symbolic level

- the expression of chemical phenomena in terms of chemical symbols and mathematical equations

Macroscopic level

 the level dealing with the properties of large, visible objects

Microscopic level

- an underworld of change at the level of atoms and molecules.

Microbiology Genetics

Thermodynamics Thermochemistry Electrochemistry Chemical kinetic

Physical Chemistry

The study of chemical in terms of using the principles of physics.

Over 6 million compounds Almost everything we encounter

Organic Chemistry

The study of carbon and its compounds

Green chemistry

Prevention, atom economy, less hazardous chemical syntheses, design of safer chemicals, design for energy efficiency, catalysis, design for degradation, use of renewable feedstocks.

BioChemistry

The study of reactions and various chemical processes that occur in the living systems

Branches of CHEMISTRY

Water analysis Drugs analysis (Acid-base or redox titration)

Analytical Chemistry

Chemical composition determination -Elemental analysis.

Inorganic Chemistry

The study of compounds not-covered by organic chemistry (free of C-H bond)

Making microchips for computers or in a mine recover metals.

Materials Chemistry

Nanochemistry

Things from a Tiny World The bottom-up approach Atom - quantum dot cluster - nanoparticle.

OUTLINE

- ✓ Periodic system of the elements
- √ Atomic structure
- √ Chemical bonds
- ✓ Molecular shapes and structures
- ✓ Gases, liquids and solids
- √ Thermodynamics: the first, second and third laws
- ✓ Chemical and aqueous equilibria/Acids and bases pH and pOH
- ✓ Electrochemistry
- ✓ Chemical kinetics

Advanced materials: polymers, ceramics, semiconductors, insulators, superconductors, metamaterials...

Materials chemistry

SYLLABUS!

Bibliography

Course

- P. W. Atkins, L. Jones, Chemical Principles, W. H. Freeman & Company, 2007 ISBN-13: 978-0-7167-7355-9
- 2. M.-L. Ungureşan, D. M. Gligor, General Chemistry, Ed. UTPRESS, Cluj-Napoca, 2012, ISBN: 978-973-662-707-1

Laboratory

- ✓ A. Mesaroş, L. Bolunduţ, M.-L. Ungureşan, Experimente de Chimie Generală, Ed. Galaxia Gutenberg, Colecţia Tehne 5, ISBN: 978-973-141-228-3, 2010
- ✓ L. Bolunduţ, A. Mesaroş, M.-L. Ungureşan, Electrochimia prin experimente, Ed. Galaxia Gutenberg, Colecţia Tehne 1, 2009
- ✓ M.-L. Ungureşan, L. Jantschi, D. M. Gligor, Aplicaţii Educaţionale de Chimie pe Calculator, Ed. Mediamira, Cluj-Napoca, 2004. 4.
- ✓ On-line references: http://mihaela.academicdirect.ro/free/Indrumator_laborator.pdf

Final EXAM:

- 2 hours
- Time and location will be set later
- Final GRADE COMPOSITION:
 - 20% Laboratory individual work
 - 80% Final written EXAM

Permissible aids:

- ✓ notes
- √ periodic table
- √ table of constants
- ✓ pocket calculator

- + Extra points :
 - 1 point at least 3 assignments
 - 1 point short ppt presentation for a specific topic related to chemistry

MATERIALS CHEMISTRY

studies the relationship between the structure/morphology and the properties of materials.

MATERIALS

SCIENCE

MATERIALS

ENGINEERING

Structure

Morphology

Properties

Three thin disk specimens of Al₂O₃

Fe, O

<u>Iron (II) oxide:</u> <u>wüstite</u> (FeO)

Iron (II, III) oxides: <u>magnetite</u> (Fe_3O_4)

 Fe_4O_5 Fe_5O_6 Fe_5O_7 $Fe_{25}O_{32}$ $Fe_{13}O_{19}$

Iron (III) oxide: (Fe₂O₃)

alpha phase, hematite (a-Fe₂O₃) beta phase, (β -Fe₂O₃) gamma phase, maghemite (γ -Fe₂O₃) epsilon phase, (ϵ -Fe₂O₃)

Synthesis of the Fe_3O_4 nanoparticles by solvothermal decomposition method

$Y_2O_3 - Ta_2O_5$

Compound	Y ₂ O ₃ :Ta ₂ O ₅ ratio	Name	Structure
УТа ₇ О ₁₉	1:7	Polytantalate	tetragonal
УТа ₃ О ₉	1:3	Metatantalate	cubic - perovskite ortorombic
YTaO ₄	1:1	Orthotantalate	monoclinic - fergusonite (M) monoclinic - fergusonite (M') tetragonal - scheelite (T') tetragonal - scheelite (T')
У ₃ ТаО ₇	3:1	Paratantalate	cubic - fluorit orthorombic -weberit
Y ₁₀ Ta ₄ O ₂₅	5:2	-	orthorombic

YTaO₄

_	yonal T' uorite)	Monoclinic M' (fergusonite)	Tetragonal T 1325°C → (scheelite) răcire	Monoclinic M → (fergusonite)
a (Å)	3,648	5,292	7,732	<i>5,326</i>
b (Å)	3,648	5,451	7,732	10,931
((Å)	5,466	5,110	11,490	5,050
в (°)	90	96,44	90	95,50
V (ų)	69,152	146,480	686,920	292,65

Powders -

 $Y_{1-x}RE_xTa_{1-y}Nb_yO_4$

RE: Tb

 $YTa_{1-x}Nb_xO_4$

Thin Films

✓ Pulse Laser **Deposition**

✓ Chemical Solution **Deposition**

$YTa_{1-x}Nb_xO_4$ powders

T7 (Li₂SO₄ / 1200°C)

 $T8 (Li_2SO_4 - Na_2SO_4 / 1200^{\circ}C)$

 $T9 (Na_2SO_4/1200^{\circ}C)$

Pulsed Laser Deposition

Chemical Solution Deposition

Spin / spray / dip / printing / Chemical bath

What is matter?

- √ Substance
- √ Physical properties
- ✓ Chemical properties
- ✓ Energy

Chemical species ions molecules

Chemical compound

Inorganic compounds

- Compounds that consist primarily of elements other than carbon and hydrogen;
- Include both covalent and ionic compounds;
- Formulas are written when the component elements are listed beginning with the one farthest to the left in the periodic table with those in the same group listed alphabetically.

Organic compounds

- Covalent compounds that contain predominantly carbon and hydrogen;
- Formulas of organic compounds written with carbon first, followed by hydrogen and then by other elements in alphabetical order.

Molecular formula

- Gives the elemental composition of molecules

Structural formula

- Shows which atoms are bonded to one another and the approximate arrangement in space;
- Enables chemists to create a three-dimensional model that provides information about the physical and chemical properties of the compound;
- A single bond, in which a single pair of electrons are shared, is represented by a single line (-)
- A double bond, in which two pairs of electrons are shared, is indicated by two lines (=)
- A triple bond, in which three pairs of electrons are shared, is indicated by three lines (\equiv)

Chemical nomenclature

Greek prefixes for the first ten numbers

Number Prefix

One Mono-Two Di-Three Tri-

Four Tetra-Five Penta-

Six Hexa-

Seven Hepta-

Eight Octa-Nine Nona-

Ten Deca-

Nitrogen forms a number of binary compounds with oxygen.

Dinitrogen oxide, N₂O

Nitrogen dioxide, NO₂

Dinitrogen tetroxide, N₂O₄

Dinitrogen pentoxide, N₂O₅