Definições

Seja (X_1,X_2,\ldots,X_n) um conjunto de variáveis aleatórias de uma distribuição X. Definimos:

$$S_n = X_1 + X_2 + \ldots + X_n$$
 $\overline{X} = rac{S_n}{n} = rac{X_1 + X_2 + \ldots + X_n}{n}$

Propriedades da Distribuição Normal

Se $X_1 \sim N(\mu_1, \sigma_1^2)$ e $X_2 \sim N(\mu_2, \sigma_2^2)$ são independentes, então qualquer combinação linear: $X = aX_1 + bX_2$ também terá distribuição normal.

$$aX_1 + bX_2 \sim N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2)$$

Se $X_i \sim N(\mu, sigma^2)$

$$S_n \sim N(n\mu, n\sigma^2)$$

$$\overline{X} \sim N(\mu, rac{\sigma^2}{n})$$

Se X_1, X_2, \ldots, X_n são i.i.d com $X_i \sim N(\mu, \sigma^2)$

$$rac{S_n - n \mu}{\sqrt{n} \sigma} \sim N(0,1)$$

$$rac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$$

• Propriedades para S_n

$$E(S_n)=n\mu$$

$$Var(S_n)=n\sigma^2$$

$$\sigma(S_n) = \sqrt{n}\sigma$$

• Propriedades para \overline{X}

$$E(\overline{X}) = \mu$$

$$Var(\overline{X}) = rac{\sigma^2}{n}$$

$$\sigma(X) = \frac{\sigma}{\sqrt{n}}$$

Se $E(X) = \mu$ e $\sigma(X) = \sigma$, então para qualquer k > 0:

$$Pr(|x-\mu|>k\sigma)\leq rac{1}{k^2}$$

Lei dos Grandes Números (LGN)

Quanto maior o número n de variáveis aleatórias, $E(\overline{X})$ permanece constante, mas $Var(\overline{X})$ se aproxima de 0. Então a distribuição de \overline{X} fica cada vez mais concentrada em E(X).

Para qualquer $\epsilon > 0$ fixo:

$$Pr(|\overline{X} - \mu| \geq \epsilon) o 0$$

quando $n o \infty$

$$Pr(|\overline{X} - \mu| < \epsilon) o 1$$

Colocando \overline{X} na desigualdade de Chebyshev e substituindo $E(\overline{X})$ por $E(X) = \mu$ e $\sigma(\overline{X})$ por σ/\sqrt{n}

$$0 < Pr(|\overline{X} - \mu \geq \frac{k\sigma}{\sqrt{n}}|) \leq \frac{1}{k^2}$$

Escolhendo $k = \epsilon \sqrt{n}/\sigma$

$$0 < Pr(|\overline{X} - \mu \geq \epsilon) \leq rac{\sigma^2}{n\epsilon^2}$$

Teorema Central do Limite (TCL)

Sejam X_1, X_2, \ldots, X_n amostras independentes de uma densidade com valor esperado μ e variância σ^2

$$X^* = \sqrt{n}rac{\overline{X} - \mu}{\sigma} = rac{S_n - n\mu}{\sigma\sqrt{n}}$$

$$\lim_{n o\infty} Pr(a\leq X^*\leq b) = \int_a^b \phi(x) dx$$

$$X \sim Bin\left(n,p\right) \Rightarrow \Pr\left(a \le X \le b\right) \simeq \text{NormalDist}\left(\frac{b+\frac{1}{2}-np}{\sqrt{npq}}\right) - \text{NormalDist}\left(\frac{a-\frac{1}{2}-np}{\sqrt{npq}}\right)$$

Se
$$n$$
 é grande e $X \sim NegBin(n,p)$, então $X \approx N\left(\frac{n}{p}, \frac{nq}{p^2}\right)$

Se
$$\lambda$$
 é grande e $X \sim Poi(\lambda)$, então $X \approx N(\lambda, \lambda)$

Se n é grande e $X \sim Gamma(n, \lambda)$, então $X \approx N\left(\frac{n}{\lambda}, \frac{n}{\lambda^2}\right)$