Examen final (11 mai 2023)

Exercice 1. Considérons la série entière

$$f(z) = \sum_{n=0}^{\infty} z^{n!}$$

- a) Montrer que le rayon de convergence de f(z) vaut 1.
- b) Supposons qu'il existe un ouvert connexe D avec $D \cap B_1(0) \neq \emptyset$ et $D \setminus B_1(0) \neq 0$, ainsi qu'une fonction $g \in \mathcal{O}(D)$ avec $f_{|B_1(0) \cap D} = g_{B_1(0) \cap D}$.
 - 1) Soit $z = e^{i\varphi} \in D \cap \partial B_1(0)$. Montrer que la limite

$$\lim_{\substack{r \to 1 \\ r < 1}} f(re^{i\varphi})$$

existe

2) Montrer que l'ensemble $E:=\{e^{2i\pi q}\mid q\in\mathbb{Q}\}$ est dense dans $\partial B_1(0)$ et en déduire qu'il existe $k,\ell\in\mathbb{Z}$, $k\neq 0$ tels que la limite

$$\lim_{\substack{r \to 1 \\ r < 1}} f(re^{2i\pi\frac{\ell}{k}})$$

existe.

3) Fixons dans la suite $\varphi = \frac{\ell}{k} \in \mathbb{Q}$ pour $k, \ell \in \mathbb{Z}$ et $k \neq 0$ tel que la limite

$$\lim_{\substack{r \to 1 \\ r < 1}} f(re^{2i\pi\frac{\ell}{k}})$$

existe. Montrer que

$$\forall r \in]0,1[, \left| \sum_{\nu=0}^{k-1} (re^{2i\pi\varphi})^{\nu!} \right| \leqslant k$$

4) Justifier que $(e^{2i\pi\varphi})^{\nu!}=1$ pour $\nu\geqslant k$. En considérant des sommes partielles, montrer que

$$\forall m > k, \lim \inf_{\substack{r \to 1 \\ r < 1}} \left(\sum_{\nu = k}^{\infty} (re^{2i\pi\varphi})^{\nu!} \right) \geqslant m - k + 1.$$

En déduire que D ne peut pas exister.

c) Trouver le rayon de convergence de

$$\sum_{\nu=0}^{\infty} \left(\frac{1}{1-a} \right)^{\nu+1} (z-a)^{\nu}$$

pour un complexe a avec $a \neq 1$. En déduire qu'il existe un ouvert connexe D avec $D \cap B_1(0) \neq \emptyset$ et $D \setminus B_1(0) \neq \emptyset$, et une fonction $h \in \mathcal{O}(D)$ avec $h(z) = \sum_{\nu=0}^{\infty} z^{\nu}$ si $z \in D \cap B_1(0)$.

Exercice 2. Soient U un ouvert simplement connexe de \mathbb{C} , $g \in \mathcal{O}(U)$, et f une fonction méromorphe sur U. Soit également γ un lacet dans U tel que $|\gamma|$ ne contient aucun pôle de f et aucun zéro de f.

- a) Utiliser la compacité de $|\gamma|$ pour montrer qu'il existe un ouvert V dont l'adhérence \overline{V} est un compact dans U et tel que $|\gamma| \subset V$. En déduire qu'il existe un ensemble fini de points $b_1, \ldots, b_m \in V$ tel que $f \in \mathcal{O}(V \setminus \{b_1, \ldots, b_m\})$, et puis, de plus $f^{-1}(0) = \{a_1, \ldots, a_n\}$, c'est à dire que f n'a qu'un nombre fini de zéros a_1, \ldots, a_n de f dans V.
- b) Si a est un zéro d'ordre $k =: \sigma_a(f)$ de f, montrer que la fonction $g\frac{f'}{f}$ possède ou bien une singularité enlevable en a ou bien un pôle simple en a.
- c) Montrer que

$$\operatorname{res}_a\left(g\frac{f'}{f}\right) = kg(a).$$

d) Si b est un pôle d'ordre $k =: \nu_b(f)$ de f, montrer que

$$\operatorname{res}_b\left(g\frac{f'}{f}\right) = -kg(b).$$

e) Montrer que

$$\frac{1}{2i\pi} \int_{\gamma} g(z) \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{m} \sigma_{a_k}(f) g(a_k) \operatorname{ind}_{\gamma}(a_k) - \sum_{j=1}^{n} \nu_{b_j}(f) g(b_j) \operatorname{ind}_{\gamma}(b_j)$$

où $\{a_1,\ldots,a_n\}=f^{-1}(0)\cap\operatorname{Int}(\gamma)$ et $\{b_1,\ldots,b_m\}$ est l'ensemble des pôles de f dans $\operatorname{Int}(\gamma)$.

f) Montrer que $f \circ \gamma$ est un lacet avec $0 \notin |f \circ \gamma|$. En déduire

$$\operatorname{ind}_{f \circ \gamma}(0) = \frac{1}{2i\pi} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{m} \sigma_{a_k}(f) \operatorname{ind}_{\gamma}(a_k) - \sum_{j=1}^{n} \nu_{b_j}(f) \operatorname{ind}_{\gamma}(b_j)$$

g) Que vaut la formule de e) si γ est le bord d'un disque? Évaluer le cas particulier $f(z) = (z-1)^n + \frac{1}{(z+1)^n}$ pour tout entier $n \in \mathbb{Z}$ et $\gamma = \partial B_3(0)$.