

### **CSEN 703 - Analysis and Design of Algorithms**

Lecture 2 - Asymptotic Analysis

#### Dr. Nourhan Ehab

nourhan.ehab@guc.edu.eg

Department of Computer Science and Engineering Faculty of Media Engineering and Technology



### Outline



Motivation

- Asymptotic Notations
- Recap

#### In the Previous Lecture



- Analyzing algorithms is mostly about predicting their computational time.
- Using the RAM model, we can count how many steps any algorithm takes on any given input instance.





(c) Nourhan Ehab

# **Analyzing Running Time**



 We can determine the exact running time, but the extra precision is usually not worth the effort of computing it.

## **Analyzing Running Time**



- We can determine the exact running time, but the extra precision is usually not worth the effort of computing it.
- As n grows, the multiplicative constants and lower order terms are dominated by higher order terms.

# **Analyzing Running Time**



- We can determine the exact running time, but the extra precision is usually not worth the effort of computing it.
- As n grows, the multiplicative constants and lower order terms are dominated by higher order terms.
- Asymptotic Analysis allows us to study how the running time increases as the input size increases without bounds ignoring levels of detail that do not impact our comparison of algorithms.

### Growth Rates of Common Functions



| n             | $\lg n$         | n                    | $n \lg n$            | $n^2$        | 2 <sup>n</sup>                 | n!                               |
|---------------|-----------------|----------------------|----------------------|--------------|--------------------------------|----------------------------------|
| 10            | $0.003~\mu s$   | $0.01~\mu s$         | $0.033~\mu s$        | $0.1~\mu s$  | $1 \mu s$                      | 3.63  ms                         |
| 20            | $0.004 \ \mu s$ | $0.02~\mu s$         | $0.086 \ \mu s$      | $0.4~\mu s$  | 1 ms                           | 77.1 years                       |
| 30            | $0.005 \ \mu s$ | $0.03~\mu s$         | $0.147 \ \mu s$      | $0.9~\mu s$  | 1 sec                          | $8.4 \times 10^{15} \text{ yrs}$ |
| 40            | $0.005 \ \mu s$ | $0.04~\mu s$         | $0.213 \ \mu s$      | $1.6~\mu s$  | 18.3 min                       | -                                |
| 50            | $0.006 \ \mu s$ | $0.05~\mu s$         | $0.282~\mu { m s}$   | $2.5~\mu s$  | 13 days                        |                                  |
| 100           | $0.007 \ \mu s$ | $0.1~\mu s$          | $0.644~\mu s$        | $10 \ \mu s$ | $4 \times 10^{13} \text{ yrs}$ |                                  |
| 1,000         | $0.010 \ \mu s$ | $1.00~\mu s$         | $9.966~\mu s$        | 1 ms         | 1000                           |                                  |
| 10,000        | $0.013 \ \mu s$ | $10 \ \mu s$         | $130~\mu s$          | 100  ms      |                                |                                  |
| 100,000       | $0.017 \ \mu s$ | $0.10 \mathrm{\ ms}$ | $1.67 \mathrm{\ ms}$ | 10 sec       |                                |                                  |
| 1,000,000     | $0.020 \ \mu s$ | 1  ms                | 19.93  ms            | 16.7 min     |                                |                                  |
| 10,000,000    | $0.023 \ \mu s$ | $0.01  \mathrm{sec}$ | $0.23  \mathrm{sec}$ | 1.16 days    |                                |                                  |
| 100,000,000   | $0.027 \ \mu s$ | $0.10  \mathrm{sec}$ | $2.66  \mathrm{sec}$ | 115.7 days   |                                |                                  |
| 1,000,000,000 | $0.030 \ \mu s$ | 1 sec                | $29.90  \sec$        | 31.7 years   |                                |                                  |

Figure: How long algorithms that use f(n) operations take to run on a fast computer, where each operation costs one nanosecond.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

### Outline



1 Motivation

2 Asymptotic Notations

3 Recap

# Big-Oh Notation - Asymptotic Upper Bound





### Definition

 $O(g(n)) = \{f(n) \mid \text{ there exist } + \text{ve constants } c, n_0 \text{ such that } \}$  $0 \le f(n) \le c g(n)$  for all  $n \ge n_0$  }.



### **Big-Oh Notation**



#### Key Takeaway

The statement f(n) = O(g(n)) means that the growth rate of f(n) is no more than the growth rate of g(n). It is useful for analyzing the worst case.

### Big-Oh Notation



#### Key Takeaway

The statement f(n)=O(g(n)) means that the growth rate of f(n) is no more than the growth rate of g(n). It is useful for analyzing the worst case.

#### Big-Oh Rule

f(n) = O(g(n)) where g(n) is f(n) after dropping lower-order terms and constant factors.

### **Big-Oh Notation**





### Alternative Big O notation:

8:10 PM · 06 Apr 19 · Twitter for Android

$$O(1) = O(yeah)$$
  
 $O(log n) = O(nice)$   
 $O(n) = O(ok)$   
 $O(n^2) = O(my)$   
 $O(2^n) = O(no)$   
 $O(n!) = O(mg!)$ 



### Example

• Is 2n + 10 = O(n)?



### Example

• Is 2n + 10 = O(n)?

$$2n + 10 \le cn$$
$$2 + \frac{10}{n} \le c$$



### Example

• Is 2n + 10 = O(n)?

$$2n + 10 \le cn$$
$$2 + \frac{10}{n} \le c$$

Choose 
$$c = 3$$
 and  $n_0 = 10$ 

• Is 
$$3 \log(n) + 5 = O(\log(n))$$
?



#### Example

• Is 2n + 10 = O(n)?

$$2n + 10 \le cn$$
$$2 + \frac{10}{n} \le c$$

Choose 
$$c = 3$$
 and  $n_0 = 10$ 

• Is  $3 \log(n) + 5 = O(\log(n))$ ?

$$3 \log(n) + 5 \le c \log(n)$$
$$3 + \frac{5}{\log(n)} \le c$$



#### Example

• Is 2n + 10 = O(n)?

$$2n + 10 \le cn$$
$$2 + \frac{10}{n} \le c$$

Choose 
$$c = 3$$
 and  $n_0 = 10$ 

• Is  $3 \log(n) + 5 = O(\log(n))$ ?

$$3 \log(n) + 5 \le c \log(n)$$
$$3 + \frac{5}{\log(n)} \le c$$

Choose 
$$c = 8$$
 and  $n_0 = 2$ 



### Example

• Is  $n^2 = O(n)$ ?



### Example

• Is  $n^2 = O(n)$ ?

$$n^2 \leq cn$$

$$n \le c$$



### Example

• Is  $n^2 = O(n)$ ?

$$n^2 \leq cn$$

$$n \leq c$$

Impossible to satisfy since c must be a constant!

## Big-Omega Notation - Asymptotic Lower Bound 🤂 🔾





### Definition

 $\Omega(g(n)) = \{f(n) \mid \text{ there exist } + \text{ve constants } c, n_0 \text{ such that } 0 \le c \ g(n) \le f(n) \text{ for all } n \ge n_0 \ \}.$ 

< ロ ト → 何 ト → 三 ト → 三 ・ り Q (~)

### Big-Omega Notation



#### Key Takeaway

The statement  $f(n) = \Omega(g(n))$  means that the growth rate of f(n) is not less than the growth rate of g(n). It is useful for analyzing the best case.

# Big-Omega Examples



### Example

• Is  $2n^2 + 1 = \Omega(n)$ ?

# Big-Omega Examples



#### Example

• Is  $2n^2 + 1 = \Omega(n)$ ?

$$2n^2 + 1 \ge cn$$
$$2n + \frac{1}{n} \ge c$$

## Big-Omega Examples



#### Example

• Is  $2n^2 + 1 = \Omega(n)$ ?

$$2n^2 + 1 \ge cn$$
$$2n + \frac{1}{n} \ge c$$

Choose c=3 and  $n_0=1$ 

# Big-Theta Notation - Asymptotic Tight Bound





#### Definition

 $\Theta(g(n)) = \{f(n) \mid \text{ there exist +ve constants } c_1, c_2, n_0 \text{ such that } 0 \le c_2 \ g(n) \le f(n) \le c_1 \ g(n) \text{ for all } n \ge n_0 \ \}.$ 



### Big-Theta Notation



#### Key Takeaway

The statement  $f(n) = \Theta(g(n))$  means that the growth rate of f(n) is equal to the growth rate of g(n).

### **Big-Theta Notation**



#### Key Takeaway

The statement  $f(n) = \Theta(g(n))$  means that the growth rate of f(n) is equal to the growth rate of g(n).

#### Observation

If  $f(n) = \Theta(g(n))$  then f(n) = O(g(n)) and  $f(n) = \Omega(g(n))$ .





### Example

• Is  $5n^2 = \Theta(n^2)$ ?



### Example

• Is  $5n^2 = \Theta(n^2)$ ?

We need to show that  $5n^2 = O(n^2)$  and  $5n^2 = \Omega(n^2)$ .



### Example

• Is  $5n^2 = \Theta(n^2)$ ?

We need to show that  $5n^2=O(n^2)$  and  $5n^2=\Omega(n^2).$   $5n^2\leq cn^2$   $5\leq c$ 



### Example

• Is  $5n^2 = \Theta(n^2)$ ?

We need to show that  $5n^2=O(n^2)$  and  $5n^2=\Omega(n^2)$ .

$$5n^2 \leq cn^2$$

$$5 \le c$$

Choose c = 5 and  $n_0 = 1$ 

$$5n^2 \ge cn^2$$

$$5 \ge c$$



### Example

• Is  $5n^2 = \Theta(n^2)$ ?

We need to show that  $5n^2 = O(n^2)$  and  $5n^2 = \Omega(n^2)$ .

$$5n^2 \le cn^2$$

$$5 \le c$$

Choose c = 5 and  $n_0 = 1$ 

$$5n^2 \ge cn^2$$

$$5 \ge c$$

Choose c = 5 and  $n_0 = 1$ 

# Properties of Asymptotic Notations



- 1 Transitivity.
  - If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).
  - If  $f(n) = \Omega(g(n))$  and  $g(n) = \Omega(h(n))$ , then  $f(n) = \Omega(h(n))$ .
  - If  $f(n) = \Theta(g(n))$  and  $g(n) = \theta(h(n))$ , then  $f(n) = \Theta(h(n))$ .

(c) Nourhan Ehab

# Properties of Asymptotic Notations



- 1 Transitivity.
  - If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).
  - If  $f(n) = \Omega(g(n))$  and  $g(n) = \Omega(h(n))$ , then  $f(n) = \Omega(h(n))$ .
  - If  $f(n) = \Theta(g(n))$  and  $g(n) = \theta(h(n))$ , then  $f(n) = \Theta(h(n))$ .
- 2 Reflexivity.
  - f(n) = O(f(n)).
  - $f(n) = \Omega(f(n))$ .
  - $f(n) = \Theta(f(n))$ .

18/30

# Properties of Asymptotic Notations



- 1 Transitivity.
  - If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).
  - If  $f(n) = \Omega(g(n))$  and  $g(n) = \Omega(h(n))$ , then  $f(n) = \Omega(h(n))$ .
  - If  $f(n) = \Theta(g(n))$  and  $g(n) = \theta(h(n))$ , then  $f(n) = \Theta(h(n))$ .
- 2 Reflexivity.
  - f(n) = O(f(n)).
  - $f(n) = \Omega(f(n))$ .
  - $f(n) = \Theta(f(n))$ .
- **3** Symmetry.
  - $f(n) = \Theta(g(n))$  iff  $g(n) = \Theta(f(n))$ .

# Properties of Asymptotic Notations



- 1 Transitivity.
  - If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).
  - If  $f(n) = \Omega(g(n))$  and  $g(n) = \Omega(h(n))$ , then  $f(n) = \Omega(h(n))$ .
  - If  $f(n) = \Theta(g(n))$  and  $g(n) = \theta(h(n))$ , then  $f(n) = \Theta(h(n))$ .
- 2 Reflexivity.
  - f(n) = O(f(n)).
  - $f(n) = \Omega(f(n))$ .
  - $f(n) = \Theta(f(n))$ .
- **3** Symmetry.
  - $f(n) = \Theta(g(n))$  iff  $g(n) = \Theta(f(n))$ .
- 4 Complementarity.
  - f(n) = O(g(n)) iff  $g(n) = \Omega(f(n))$ .



# Other Asymptotic Notations



### Definition (Little-Oh Notation)

 $o(g(n)) = \{f(n) \mid \text{ for any } + \text{ve constant } c, \text{ there is a } + \text{ve constant } n_0 \text{ such that } 0 \leq f(n) < c \ g(n) \text{ for all } n \geq n_0 \ \}.$ 

### Definition (Little-Omega Notation)

 $\omega(g(n)) = \{f(n) \mid \text{ for any } + \text{ve constant } c, \text{ there is an } n_0 \text{ such that } 0 \leq f(n) > c \ g(n) \text{ for all } n \geq n_0 \ \}.$ 

# Little-Oh and Little-Omega



### Key Takeaway

- The statement f(n) = o(g(n)) means that the growth rate of f(n) is less than the growth rate of g(n).
- The statement  $f(n) = \omega(g(n))$  means that the growth rate of f(n) is more than the growth rate of g(n).

# Little-Oh and Little-Omega



### Key Takeaway

• The statement f(n) = o(g(n)) means that the growth rate of f(n) is less than the growth rate of g(n).

Asymptotic Notations

• The statement  $f(n) = \omega(g(n))$  means that the growth rate of f(n) is more than the growth rate of g(n).

### Example

 $2n^2 = O(n^2)$  and  $2n^2 = \Omega(n^2)$  but  $2n^2 \neq o(n^2)$  and  $2n^2 \neq \omega(n^2)$ .

(C) Nourhan Ehab

## Little-Oh and Little-Omega



#### Key Takeaway

- The statement f(n) = o(g(n)) means that the growth rate of f(n) is less than the growth rate of g(n).
- The statement  $f(n) = \omega(g(n))$  means that the growth rate of f(n) is more than the growth rate of g(n).

### Example

$$2n^2=O(n^2)$$
 and  $2n^2=\Omega(n^2)$  but  $2n^2\neq o(n^2)$  and  $2n^2\neq \omega(n^2)$ .

#### Observation

If f(n)=o(g(n)), then f(n)=O(g(n)). If  $f(n)=\omega(g(n))$ , then  $f(n)=\Omega(g(n))$ .



(C) Nourhan Ehab

## The Limit Test



### Asymptotic Notations and the Limit Test

If 
$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$

### The Limit Test



### Asymptotic Notations and the Limit Test

If  $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ 

- **1** = 0, then f(n) = o(g(n)).
- $2 = \infty$ , then f(n) = w(g(n)).
- $3 = c \in \mathbb{R}^+$ , then  $f(n) = \Theta(g(n))$ .

### The Limit Test



### Asymptotic Notations and the Limit Test

If  $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ 

- **1** = 0, then f(n) = o(g(n)).
- $2 = \infty$ , then f(n) = w(g(n)).
- $3 = c \in \mathbb{R}^+$ , then  $f(n) = \Theta(g(n))$ .
- $4 \neq \infty$ , then f(n) = O(g(n)).
- **5**  $\neq 0$ , then  $f(n) = \Omega(g(n))$ .



#### Example

Show using the limit test that  $4n^3+3n^2=O(n^4)$  and  $4n^3+3n^2=\Omega(n^2)$ .



### Example

Show using the limit test that  $4n^3 + 3n^2 = O(n^4)$  and  $4n^3 + 3n^2 = \Omega(n^2)$ .

$$\lim_{n \to \infty} \frac{4n^3 + 3n^2}{n^4}$$
$$\lim_{n \to \infty} \frac{4}{n} + \frac{3}{n^2}$$
$$= 0$$

$$\lim_{n \to \infty} \frac{4n^3 + 3n^2}{n^2}$$
$$\lim_{n \to \infty} 4n + 3$$
$$= \infty$$



### Example

Show using the limit test that  $log_{10}(n) = \Theta(ln(n))$ .





#### Example

Show using the limit test that  $log_{10}(n) = \Theta(ln(n))$ .

$$\lim_{n \to \infty} \frac{\log_{10}(n)}{\ln(n)} = \lim_{n \to \infty} \frac{\frac{1}{n \ln(10)}}{\frac{1}{n}}$$
$$= \frac{1}{\ln(10)} = 0.434 \in \mathbb{R}^+.$$

# Useful Logarithmic Identities



- $log(n) = log_2(n)$
- $ln(n) = log_e(n)$
- $log^k(n) = (log(n))^k$
- $log_c(ab) = log_c(a) + log_c(b)$
- $log_c(\frac{a}{b}) = log_c(a) log_c(b)$
- $log_b(a^n) = nlog_b(a)$
- $a^{log_b(c)} = c^{log_b(a)}$
- $log_b(a) = \frac{log_c(a)}{log_c(b)}$
- $\frac{d}{dn}ln(n) = \frac{1}{n}$ .
- $\frac{d}{dn}log_b(n) = \frac{1}{n \ ln(b)}$ .



# Final Exercises (1/2)



### Example

Algorithm A is in  $O(n \log n)$  and algorithm B is in  $\Omega(n^2)$ . Your friend then claims that given the same input, A always takes less time to run than B. Is your friend right?

# Final Exercises (1/2)



#### Example

Algorithm A is in  $O(n \ log \ n)$  and algorithm B is in  $\Omega(n^2)$ . Your friend then claims that given the same input, A always takes less time to run than B. Is your friend right?

### Key Takeaway

Larger asymptotic bound does not always mean faster!



# Asympotic Analysis and Running Time





# Final Exercises (2/2)



#### Example

A student has an algorithm which he proved (correctly) runs in  $O(2^n)$ . He coded the algorithm correctly, yet he was surprised when it ran quickly on inputs of size up to a million. What are possible explanations of this behavior?



## Outline



Motivation

Asymptotic Notations

3 Recap

## Points to Take Home



Recap

- Asymptotic notations.
- 2 The limit test.
- 3 Reading Material:
  - The Algorithm Design Manual, Chapter 2: Sections 2.1, 2.2, 2.3, and 2.4.
  - Introduction to Algorithms, Chapter 3: Section 3.1.

Next Lecture: Divide and Conquer I



### **Due Credits**



#### The presented material is based on:

- Previous editions of the course at the GUC due to Dr. Wael Aboulsaadat, Dr. Haythem Ismail, Dr. Amr Desouky, and Dr. Carmen Gervet.
- 2 Stony Brook University's Analysis of Algorithms Course.
- **3** MIT's Introduction to Algorithms Course.
- 4 Stanford's Design and Analysis of Algorithms Course.

(C) Nourhan Ehab