Mètodes Numèrics I Probabilístics

Pràctica 3: Generació de variables aleatòries a \mathbb{S}^n

Grau: Matemàtica Computacional i Analítica de Dades

Assignatura: Mètodes Numèrics i Probabilístics

NIUs dels estudiants: 1600959, 1544112

Noms dels estudiants: Pau Blasco Roca, Alberto Real Quereda

Índex

1	Imp	lementació del treball	1
2	Fun	ncions d' "aleatori.c" 1 Funció generaUniforme	
	2.1	Funció generaUniforme	2
	2.2	Funció generaNormal	2
	2.3	Funció muller	3
3	Manual d'utilització		4
4	Anà	lisi dels resultats	4

1 Implementació del treball

El programa principal anomenat "arrels" utilitza les següents llibreries:

- <stdio.h>
- <stdlib.h>
- "aleatori.h"

El header "aleatori.h" conté les funcions: "generaUniforme", "generaNormal" i "muller".

El programa principal repeteix 7 milions de vegades l'aloritme muller, i compta cuants polinomis hi ha de cada tipus, (0 arrels reals, 2 arrels reals o 4 arrels reals).

2 Funcions d' "aleatori.c"

Aquest arxiu conté les funcions:

- generaUniforme
- generaNormal
- muller

2.1 Funció generaUniforme

- generaUniforme(float **a**, float **b**, float* **r**):
 - a: nombre real que defineix l'inici de l'interval.
 - **b**: nombre real que defineix el final de l'interval.
 - *r: apuntador a una llista de dimensió 2 on guardarem els nombres aleatoris.

PROCÉS:

La funció guardarà a * \mathbf{r} dos nombres de l'interval [a, b] seleccionats pseudoaleatoriament.

2.2 Funció generaNormal

- generaNormal(float mu, float sigma):
 - mu: nombre real que defineix la mitjana a una distribució normal.
 - sigma: nombre real que defineix la desviació estàndar a una distribució normal.

PROCÉS:

La funció crida a "generaUniforme(-1,1,**r**)" per generar dos nombres aleatoris dins de l'interval [-1,1] i repeteix aquest procés mentre que la suma d'aquests nombres al quadrat sigui més gran que 1. Una vegada aconseguim dos valors vàlids calculem **n1** i **n2** de la següent manera:

$$n_1 = u\sqrt{\frac{-2\log s}{s}} \qquad n_2 = v\sqrt{\frac{-2\log s}{s}}$$

I fem:

$$n_1 = n_1 \cdot \sigma + \mu$$
 $n_2 = n_2 \cdot \sigma + \mu$

per tal d'ajustar aquests valors a la distribució normal amb la qual volem treballar.

2.3 Funció muller

- muller(double *v):
 - v: apuntador a una variable on guardarem el vector x normalitzat.

PROCÉS:

La funció crea el vector x, de dimensió 5 on guardem 5 nombres aleatoris que segueixen una distribució normal, amb paramentres ($\mu=0,\,\sigma=1$). Normalitzem el vector x i el guardem a l'apuntador v.

3 Manual d'utilització

Per fer servir aquest programa primer l'hem de compilar amb:

gcc -c aleatori.c -Wall -o aleatori.o

gcc -c arrels.c -Wall -o arrels.o

gcc aleatori.o arrels.o -lm -o arrels -static

Una vegada hem compilat només hem de cridar al programa de la següent manera:

./arrels

Fent aquesta crida es mostra per pantalla la proporció de polinomis de cada tipus.

4 Anàlisi dels resultats

En el nostre cas les proporcions que trobem son les següents:

c0:0.085675 c2:0.670093 c4:0.244231

on:

 c_0 són els polinomis amb 0 arrels reals

 c_2 són els polinomis amb 2 arrels reals

 c_4 són els polinomis amb 4 arrels reals

(La resta de casos es donen quan a=0, que virtualment no pasarà mai).