Telco Churn Prediction using ANN

In [1]:

```
#importing required Library
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import Sequential #builds neural networks
from tensorflow.keras.layers import Dense,Flatten,Dropout
```

Reading the data

In [2]:

```
df=pd.read_csv("WA_Fn-UseC_-Telco-Customer-Churn.csv")
df
```

Out[2]:

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	Multipl
0	7590- VHVEG	Female	0	Yes	No	1	No	No
1	5575- GNVDE	Male	0	No	No	34	Yes	
2	3668- QPYBK	Male	0	No	No	2	Yes	
3	7795- CFOCW	Male	0	No	No	45	No	No
4	9237- HQITU	Female	0	No	No	2	Yes	
7038	6840- RESVB	Male	0	Yes	Yes	24	Yes	
7039	2234- XADUH	Female	0	Yes	Yes	72	Yes	
7040	4801-JZAZL	Female	0	Yes	Yes	11	No	No
7041	8361- LTMKD	Male	1	Yes	No	4	Yes	
7042	3186-AJIEK	Male	0	No	No	66	Yes	
7043 r	rows × 21 co	lumns						
4								•
1								-

Understanding the data

In [3]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 7043 entries, 0 to 7042 Data columns (total 21 columns):

Data	COTUMNIS (COCAT ZI	COTUMNIS).	
#	Column	Non-Null Count	Dtype
0	customerID	7043 non-null	object
1	gender	7043 non-null	object
2	SeniorCitizen	7043 non-null	int64
3	Partner	7043 non-null	object
4	Dependents	7043 non-null	object
5	tenure	7043 non-null	int64
6	PhoneService	7043 non-null	object
7	MultipleLines	7043 non-null	object
8	InternetService	7043 non-null	object
9	OnlineSecurity	7043 non-null	object
10	OnlineBackup	7043 non-null	object
11	DeviceProtection	7043 non-null	object
12	TechSupport	7043 non-null	object
13	StreamingTV	7043 non-null	object
14	StreamingMovies	7043 non-null	object
15	Contract	7043 non-null	object
16	PaperlessBilling	7043 non-null	object
17	PaymentMethod	7043 non-null	object
18	MonthlyCharges	7043 non-null	float64
19	TotalCharges	7043 non-null	object
20	Churn	7043 non-null	object
dtype	es: float64(1), int	t64(2), object(1	8)

memory usage: 1.1+ MB

Descriptive Statistics

In [4]:

df.describe(include="all").T

Out[4]:

	count	unique	top	freq	mean	std	min	25%	50%
customerID	7043	7043	7590- VHVEG	1	NaN	NaN	NaN	NaN	NaN
gender	7043	2	Male	3555	NaN	NaN	NaN	NaN	NaN
SeniorCitizen	7043.0	NaN	NaN	NaN	0.162147	0.368612	0.0	0.0	0.0
Partner	7043	2	No	3641	NaN	NaN	NaN	NaN	NaN
Dependents	7043	2	No	4933	NaN	NaN	NaN	NaN	NaN
tenure	7043.0	NaN	NaN	NaN	32.371149	24.559481	0.0	9.0	29.0
PhoneService	7043	2	Yes	6361	NaN	NaN	NaN	NaN	NaN
MultipleLines	7043	3	No	3390	NaN	NaN	NaN	NaN	NaN
InternetService	7043	3	Fiber optic	3096	NaN	NaN	NaN	NaN	NaN
OnlineSecurity	7043	3	No	3498	NaN	NaN	NaN	NaN	NaN
OnlineBackup	7043	3	No	3088	NaN	NaN	NaN	NaN	NaN
DeviceProtection	7043	3	No	3095	NaN	NaN	NaN	NaN	NaN
TechSupport	7043	3	No	3473	NaN	NaN	NaN	NaN	NaN
StreamingTV	7043	3	No	2810	NaN	NaN	NaN	NaN	NaN
StreamingMovies	7043	3	No	2785	NaN	NaN	NaN	NaN	NaN
Contract	7043	3	Month-to- month	3875	NaN	NaN	NaN	NaN	NaN
PaperlessBilling	7043	2	Yes	4171	NaN	NaN	NaN	NaN	NaN
PaymentMethod	7043	4	Electronic check	2365	NaN	NaN	NaN	NaN	NaN
MonthlyCharges	7043.0	NaN	NaN	NaN	64.761692	30.090047	18.25	35.5	70.35
TotalCharges	7043	6531		11	NaN	NaN	NaN	NaN	NaN
Churn	7043	2	No	5174	NaN	NaN	NaN	NaN	NaN
4									•

In [5]:

sns.heatmap(df.corr(),annot=True)

Out[5]:

<Axes: >

Converting to correct data type to check for any missing value

In [6]:

```
df['TotalCharges'] = pd.to_numeric(df['TotalCharges'], errors='coerce')
```

In [7]:

```
df.isnull().sum()
```

Out[7]:

customerID 0 gender 0 SeniorCitizen 0 Partner 0 Dependents 0 tenure 0 PhoneService 0 MultipleLines 0 InternetService 0 OnlineSecurity 0 OnlineBackup 0 DeviceProtection 0 TechSupport 0 StreamingTV 0 StreamingMovies 0 Contract 0 PaperlessBilling 0 PaymentMethod 0 MonthlyCharges 0 TotalCharges 11 Churn 0 dtype: int64

Imputing missing values

In [8]:

```
from sklearn.impute import SimpleImputer
si=SimpleImputer(missing_values=np.nan,strategy="mean")
df[["TotalCharges"]]=si.fit_transform(df[["TotalCharges"]])
```

In [9]:

df.isna().sum()

Out[9]:

0 customerID gender 0 SeniorCitizen 0 Partner 0 0 Dependents tenure 0 0 PhoneService MultipleLines 0 InternetService 0 OnlineSecurity 0 OnlineBackup 0 DeviceProtection 0 TechSupport 0 0 StreamingTV StreamingMovies 0 Contract 0 PaperlessBilling 0 PaymentMethod 0 MonthlyCharges 0 0 TotalCharges Churn 0 dtype: int64

In [10]:

df.describe(include="all").T

Out[10]:

	count	unique	top	freq	mean	std	min	25%
customerID	7043	7043	7590- VHVEG	1	NaN	NaN	NaN	NaN
gender	7043	2	Male	3555	NaN	NaN	NaN	NaN
SeniorCitizen	7043.0	NaN	NaN	NaN	0.162147	0.368612	0.0	0.0
Partner	7043	2	No	3641	NaN	NaN	NaN	NaN
Dependents	7043	2	No	4933	NaN	NaN	NaN	NaN
tenure	7043.0	NaN	NaN	NaN	32.371149	24.559481	0.0	9.0
PhoneService	7043	2	Yes	6361	NaN	NaN	NaN	NaN
MultipleLines	7043	3	No	3390	NaN	NaN	NaN	NaN
InternetService	7043	3	Fiber optic	3096	NaN	NaN	NaN	NaN
OnlineSecurity	7043	3	No	3498	NaN	NaN	NaN	NaN
OnlineBackup	7043	3	No	3088	NaN	NaN	NaN	NaN
DeviceProtection	7043	3	No	3095	NaN	NaN	NaN	NaN
TechSupport	7043	3	No	3473	NaN	NaN	NaN	NaN
StreamingTV	7043	3	No	2810	NaN	NaN	NaN	NaN
StreamingMovies	7043	3	No	2785	NaN	NaN	NaN	NaN
Contract	7043	3	Month-to- month	3875	NaN	NaN	NaN	NaN
PaperlessBilling	7043	2	Yes	4171	NaN	NaN	NaN	NaN
PaymentMethod	7043	4	Electronic check	2365	NaN	NaN	NaN	NaN
MonthlyCharges	7043.0	NaN	NaN	NaN	64.761692	30.090047	18.25	35.5
TotalCharges	7043.0	NaN	NaN	NaN	2283.300441	2265.000258	18.8	402.225
Churn	7043	2	No	5174	NaN	NaN	NaN	NaN
4								•

In [11]:

df=df.iloc[:,1:] #removing customer id

DATA CLEANING

```
In [12]:
```

```
for i in df.select dtypes(object).columns:
 print(f"{i} : {df[i].unique()}")
gender : ['Female' 'Male']
Partner: ['Yes' 'No']
Dependents: ['No' 'Yes']
PhoneService : ['No' 'Yes']
MultipleLines : ['No phone service' 'No' 'Yes']
InternetService : ['DSL' 'Fiber optic' 'No']
OnlineSecurity : ['No' 'Yes' 'No internet service']
OnlineBackup : ['Yes' 'No' 'No internet service']
DeviceProtection : ['No' 'Yes' 'No internet service']
TechSupport : ['No' 'Yes' 'No internet service']
StreamingTV : ['No' 'Yes' 'No internet service']
StreamingMovies : ['No' 'Yes' 'No internet service']
Contract : ['Month-to-month' 'One year' 'Two year']
PaperlessBilling : ['Yes' 'No']
PaymentMethod : ['Electronic check' 'Mailed check' 'Bank transfer (automat
ic)'
 'Credit card (automatic)']
Churn: ['No' 'Yes']
```

Some of the columns have no service and no separately which can be classified in a single category no

In [13]:

```
df.replace("No internet service","No",inplace=True)
df.replace("No phone service","No",inplace=True)
```

In [14]:

```
for i in df.select_dtypes(object).columns:
    print(f"{i} : {df[i].unique()}")
```

```
gender : ['Female' 'Male']
Partner: ['Yes' 'No']
Dependents : ['No' 'Yes']
PhoneService : ['No' 'Yes']
MultipleLines : ['No' 'Yes']
InternetService : ['DSL' 'Fiber optic' 'No']
OnlineSecurity : ['No' 'Yes']
OnlineBackup : ['Yes' 'No']
DeviceProtection : ['No' 'Yes']
TechSupport : ['No' 'Yes']
StreamingTV : ['No' 'Yes']
StreamingMovies : ['No' 'Yes']
Contract : ['Month-to-month' 'One year' 'Two year']
PaperlessBilling : ['Yes' 'No']
PaymentMethod : ['Electronic check' 'Mailed check' 'Bank transfer (automat
ic)'
 'Credit card (automatic)']
Churn: ['No' 'Yes']
```

Exploratory Data Analysis

Churn Ratio

In [15]:

```
(df["Churn"].value_counts()).plot(kind="bar")
plt.title("Churn Count")
plt.xlabel("Churn ")
plt.ylabel("No. of customers")
plt.show()
```


Gender Distribution

In [16]:

```
df["gender"].value_counts()/df.shape[0]*100
```

Out[16]:

Male 50.47565 Female 49.52435

Name: gender, dtype: float64

In [17]:

```
plt.pie(df["gender"].value_counts()*100/df.shape[0],labels=df["gender"].unique(),colors=
plt.title("Gender Distribution in %")
plt.show()
```

Gender Distribution in %

Gender wise Distribution of senior citizen

In [18]:

```
sns.countplot(x=df["SeniorCitizen"],hue=df["gender"])
plt.title("Gender wise Distribution of senior citizen")
plt.xlabel("Senior citizens")
plt.ylabel("Number of people")
plt.show()
```

Gender wise Distribution of senior citizen

Gender wise churn

In [19]:

```
sns.countplot(x=df["gender"],hue=df["Churn"])

plt.title("Gender wise Distribution of Churn")
plt.xlabel("Gender")
plt.ylabel("Number of people")
plt.show()
```

Gender wise Distribution of Churn

Distribution of contract type

In [20]:

```
plt.pie(df["Contract"].value_counts(),labels=df["Contract"].unique(),autopct="%1.1f%%",e
plt.title("Contract Types")
plt.show()
```

Contract Types

Churn distribution of customer in various sectors

In [21]:

service=df.select_dtypes(object).columns[3:-4]

In [22]:

```
fig,axes=plt.subplots(nrows=3,ncols=3,figsize=(15,10))

for i,j in enumerate(service):
    if i<3:
        sns.countplot(x=df[j],hue=df["Churn"],ax=axes[i,0])
    elif i>=3 and i<6:
        sns.countplot(x=df[j],hue=df["Churn"],ax=axes[i-3,1])
    elif i<9:
        sns.countplot(x=df[j],hue=df["Churn"],ax=axes[i-6,2])</pre>
```


Relation between features and target

In [23]:

sns.pairplot(df,hue="Churn")

Out[23]:

<seaborn.axisgrid.PairGrid at 0x7fd99ce29d00>

Data Encoding

In [24]:

```
from sklearn.preprocessing import OrdinalEncoder
oe=OrdinalEncoder()
catcol=df.select_dtypes(object).columns
df[catcol]=oe.fit_transform(df[catcol])
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 20 columns):
```

```
Column
                       Non-Null Count
#
                                       Dtype
    _____
_ _ _
                                        float64
0
    gender
                       7043 non-null
    SeniorCitizen
                       7043 non-null
                                        int64
1
2
    Partner
                       7043 non-null
                                        float64
                                       float64
3
                       7043 non-null
    Dependents
4
    tenure
                       7043 non-null
                                        int64
5
    PhoneService
                       7043 non-null
                                        float64
    MultipleLines
                       7043 non-null
                                        float64
6
7
                                        float64
    InternetService
                       7043 non-null
                                        float64
8
    OnlineSecurity
                       7043 non-null
9
    OnlineBackup
                       7043 non-null
                                        float64
10 DeviceProtection 7043 non-null
                                        float64
                       7043 non-null
                                        float64
    TechSupport
12
    StreamingTV
                       7043 non-null
                                        float64
    StreamingMovies
                       7043 non-null
                                        float64
14 Contract
                       7043 non-null
                                        float64
    PaperlessBilling 7043 non-null
                                        float64
    PaymentMethod
                       7043 non-null
                                        float64
    MonthlyCharges
                       7043 non-null
                                        float64
17
                                        float64
18
    TotalCharges
                       7043 non-null
19
    Churn
                       7043 non-null
                                        float64
```

dtypes: float64(18), int64(2)

memory usage: 1.1 MB

In [25]:

```
df["Churn"]=df["Churn"].astype(int)
```

Splitting the features and target

```
In [26]:
```

```
x=df.iloc[:,:-1]
x
```

Out[26]:

	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	Inter
0	0.0	0	1.0	0.0	1	0.0	0.0	
1	1.0	0	0.0	0.0	34	1.0	0.0	
2	1.0	0	0.0	0.0	2	1.0	0.0	
3	1.0	0	0.0	0.0	45	0.0	0.0	
4	0.0	0	0.0	0.0	2	1.0	0.0	
7038	1.0	0	1.0	1.0	24	1.0	1.0	
7039	0.0	0	1.0	1.0	72	1.0	1.0	
7040	0.0	0	1.0	1.0	11	0.0	0.0	
7041	1.0	1	1.0	0.0	4	1.0	1.0	
7042	1.0	0	0.0	0.0	66	1.0	0.0	

7043 rows × 19 columns

→

In [27]:

```
y=df.iloc[:,-1].values
y
```

Out[27]:

array([0, 0, 1, ..., 0, 1, 0])

Splitting training and testing data

In [28]:

```
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.2,random_state=1)
```

Checking if the data is balanced

In [29]:

```
df["Churn"].value_counts()/df.shape[0]*100
```

Out[29]:

0 73.4630131 26.536987

Name: Churn, dtype: float64

This is an IMBALANCED DATA so performing SMOTE Technique

```
In [30]:
```

```
from imblearn.over_sampling import SMOTE
```

In [31]:

```
#Applying smote to training data
st=SMOTE(random_state=1)
xtrain_new,ytrain_new=st.fit_resample(xtrain,ytrain)
```

Feature Scaling

In [32]:

```
from sklearn.preprocessing import MinMaxScaler
mn=MinMaxScaler()

xtrain_new=mn.fit_transform(xtrain_new)
xtest=mn.transform(xtest)
```

Early stopping for overcoming Overfitting issue

In [33]:

```
from tensorflow.keras.callbacks import EarlyStopping
```

In [34]:

```
early_stop=EarlyStopping(monitor="val_loss", mode="min", verbose=1, min_delta=1, patience=25
```

Building Neural Network

In [43]:

```
#Step 1: Initialize the model
ann=Sequential()
#Step 2: Add Layers into the model
# 1st Hidden Layer
ann.add(Dense(units=128,activation="relu"))
# Drop out Layer for 1st hidden layer
ann.add(Dropout(rate=0.2))
# 2nd hidden Layer
ann.add(Dense(units=128,activation="relu"))
# Drop out Layer for 2nd hidden layer
ann.add(Dropout(rate=0.1))
#Output Layer
ann.add(Dense(units=1,activation="sigmoid"))
                                             #since its binary classification
#Step 3: Establish connection between layers
ann.compile(optimizer="adam",loss="binary_crossentropy",metrics="accuracy")
#Step 4:Train the model
ann.fit(xtrain_new,ytrain_new,validation_data=(xtest,ytest),epochs=800,verbose=1,callbac
```

```
Epoch 1/800
curacy: 0.7552 - val_loss: 0.4916 - val_accuracy: 0.7445
Epoch 2/800
258/258 [============== ] - 1s 2ms/step - loss: 0.4688 - ac
curacy: 0.7784 - val_loss: 0.4387 - val_accuracy: 0.7729
Epoch 3/800
258/258 [============== ] - 1s 2ms/step - loss: 0.4548 - ac
curacy: 0.7818 - val_loss: 0.4832 - val_accuracy: 0.7530
Epoch 4/800
258/258 [============== ] - 1s 2ms/step - loss: 0.4439 - ac
curacy: 0.7905 - val_loss: 0.4524 - val_accuracy: 0.7693
Epoch 5/800
258/258 [============= ] - 1s 2ms/step - loss: 0.4364 - ac
curacy: 0.7941 - val_loss: 0.4966 - val_accuracy: 0.7381
Epoch 6/800
258/258 [============== ] - 1s 3ms/step - loss: 0.4282 - ac
curacy: 0.8044 - val_loss: 0.4520 - val_accuracy: 0.7679
Epoch 7/800
curacy: 0.8057 - val_loss: 0.4402 - val_accuracy: 0.7850
Epoch 8/800
258/258 [============ ] - 1s 3ms/step - loss: 0.4161 - ac
curacy: 0.8023 - val_loss: 0.4637 - val_accuracy: 0.7722
Epoch 9/800
258/258 [============== ] - 1s 2ms/step - loss: 0.4080 - ac
curacy: 0.8147 - val_loss: 0.4355 - val_accuracy: 0.7928
Epoch 10/800
258/258 [============== ] - 1s 2ms/step - loss: 0.3991 - ac
curacy: 0.8151 - val_loss: 0.4464 - val_accuracy: 0.7828
Epoch 11/800
curacy: 0.8175 - val_loss: 0.4610 - val_accuracy: 0.7672
Epoch 12/800
258/258 [================ ] - 1s 2ms/step - loss: 0.3914 - ac
curacy: 0.8221 - val_loss: 0.4922 - val_accuracy: 0.7566
Epoch 13/800
258/258 [============== ] - 1s 2ms/step - loss: 0.3828 - ac
curacy: 0.8280 - val_loss: 0.4787 - val_accuracy: 0.7729
Epoch 14/800
curacy: 0.8274 - val loss: 0.4482 - val accuracy: 0.7906
Epoch 15/800
curacy: 0.8292 - val_loss: 0.4947 - val_accuracy: 0.7594
Epoch 16/800
curacy: 0.8355 - val_loss: 0.4377 - val_accuracy: 0.7942
Epoch 17/800
258/258 [============= ] - 1s 4ms/step - loss: 0.3646 - ac
curacy: 0.8388 - val_loss: 0.4379 - val_accuracy: 0.7949
Epoch 18/800
258/258 [============== ] - 1s 3ms/step - loss: 0.3628 - ac
curacy: 0.8392 - val_loss: 0.4377 - val_accuracy: 0.7970
Epoch 19/800
258/258 [============== ] - 1s 2ms/step - loss: 0.3626 - ac
curacy: 0.8366 - val_loss: 0.4713 - val_accuracy: 0.7736
Epoch 20/800
258/258 [============= ] - 1s 2ms/step - loss: 0.3499 - ac
curacy: 0.8438 - val loss: 0.4657 - val accuracy: 0.7850
Epoch 21/800
```

```
curacy: 0.8395 - val_loss: 0.4618 - val_accuracy: 0.7821
Epoch 22/800
curacy: 0.8487 - val loss: 0.4749 - val accuracy: 0.7807
Epoch 23/800
258/258 [================ ] - 1s 2ms/step - loss: 0.3464 - ac
curacy: 0.8457 - val_loss: 0.4830 - val_accuracy: 0.7679
Epoch 24/800
258/258 [============ ] - 1s 3ms/step - loss: 0.3414 - ac
curacy: 0.8471 - val_loss: 0.4706 - val_accuracy: 0.7750
Epoch 25/800
258/258 [============ ] - 1s 3ms/step - loss: 0.3403 - ac
curacy: 0.8545 - val_loss: 0.4501 - val_accuracy: 0.7928
Epoch 26/800
258/258 [========== ] - 1s 3ms/step - loss: 0.3349 - ac
curacy: 0.8530 - val_loss: 0.4382 - val_accuracy: 0.7942
Epoch 26: early stopping
```

Out[43]:

<keras.callbacks.History at 0x7fd9906b63a0>

In [48]:

```
lossdata=pd.DataFrame(ann.history.history)
plt.figure(figsize=(2,2))
lossdata.plot()
plt.title("Loss Representation over epochs")
plt.xlabel("Epochs")
plt.ylabel(" Monitoring values")
plt.show()
```

<Figure size 200x200 with 0 Axes>

Loss Representation over epochs

In [49]:

```
#Step 5 : Predicting
ypred=ann.predict(xtest)
ypred
45/45 [========= ] - 0s 941us/step
Out[49]:
array([[0.08973236],
      [0.0286712],
      [0.446712],
      [0.00239313],
      [0.05342298],
      [0.5621679 ]], dtype=float32)
```

These are probablistic values so converting them in binary format by specifing the threshold value

```
In [50]:
```

```
ypred=np.where(ypred>0.5,1,0)
ypred
```

Out[50]:

Actual VS predicted values

In [51]:

```
pd.DataFrame({"Actual Value":ytest,"Predicted Value":ypred.flatten()})
```

Out[51]:

	Actual Value	Predicted Value
0	0	0
1	0	0
2	0	0
3	1	0
4	0	0
1404	1	0
1405	0	0
1406	0	0
1407	0	0
1408	1	1

1409 rows × 2 columns

Evaluation of model

In [52]:

Accuracy: 0.794180269694819

 $\label{lem:confusion_matrix} from sklearn.metrics import accuracy_score, classification_report, confusion_matrix print(f"Accuracy:{accuracy_score(ytest,ypred)}\n{confusion_matrix(ytest,ypred)}\n{classimport} from the confusion_matrix from the confusi$

[[927 134] [156 192]] precision recall f1-score support 0 0.86 0.87 0.86 1061 1 0.59 0.55 0.57 348 0.79 1409 accuracy 0.72 0.71 0.72 1409 macro avg 0.79 weighted avg 0.79 0.79 1409

In []: