8. Complejidad Computacional

Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber

Grado Ingeniería Informática Teoría de Autómatas y Lenguajes Formales

- En la Teoría de la Computación, los tres siguientes áreas:
 - Autómata,
 - Complejidad y
 - Computación

están relacionados por la siguiente pregunta:

- ¿Cuáles son las capacidades y limitaciones de los ordenadores?
- Sin embargo, esta pregunta se interpreta de forma diferente en cada una de las 3 áreas.

Teoría de Autómatas:

- Se encarga de las definiciones y propiedades de los modelos matemáticos de computación (esenciales en áreas aplicadas de la informática).
- Uno de estos modelos son los Autómatas Finitos, utilizados en:
 - Procesamiento de textos
 - Compiladores
 - Diseño Hardware.
- Otro modelo son las Gramáticas Libres de Contexto, usadas en:
 - Lenguajes de programación
 - Inteligencia Artificial.

Teoría de la Complejidad:

- Se basa en tratar de dar respuesta a la siguiente pregunta:
 - ¿Qué hace a algunos problemas computacionalmente difíciles y a otros sencillos?
- Tiene como finalidad la creación de mecanismos y herramientas capaces de describir y analizar la complejidad de un algoritmo y la complejidad intrínseca de un problema.

Teoría de la Computabilidad:

- Está muy relacionado con la teoría de la Complejidad, ya que introduce varios de los conceptos que esta área utiliza.
- Su finalidad principal es la clasificación de diferentes problemas, así como formalizar el concepto de computar.
- Así, estudia qué lenguajes son decidibles con diferentes tipos de "máquinas" y diferentes modelos formales de computación.

Complejidad Computacional

- Estudia el orden de complejidad de un algoritmo que resuelve un problema decidible.
- Para ello, considera los 2 tipos de recursos requeridos durante el cómputo para resolver un problema:
 - Tiempo: Número de pasos base de ejecución de un algoritmo para resolver un problema.
 - Espacio: Cantidad de memoria utilizada para resolver un problema.

Complejidad Computacional

- La complejidad de un algoritmo se expresa como función del tamaño de la entrada del problema, n.
- Se refiere al ratio de crecimiento de los recursos con respecto a *n*:
 - Ratio del Tiempo de ejecución (Temporal): T(n).
 - Ratio del espacio de almacenamiento necesario (Espacial): S(n).

- En base a dos criterios:
 - Teoría de la Computabilidad
 - Decidible.
 - Parcialmente Decidible (reconocible).
 - No Decidible.
 - Teoría de la Complejidad Computacional
 - Conjuntos de Clase de Complejidad (Clase L, NL, P, P-Completo, NP, NP-Completo, NP-Duro...).

Un problema de decisión es aquel en el que en el que las respuestas posibles son Si o No

Considerando la Teoría de la Computabilidad un problema de decisión podrá ser:

- Decidible (o resoluble algorítmicamente):
 - Si existe un procedimiento mecánico (MT) que lo resuelva.
 - Además, la MT debe detenerse para cualquier entrada.
- Parcialmente Decidible (Reconocible):
 - Si existe un procedimiento mecánico (MT) que lo resuelva.
 - Además, la MT debe detenerse para aquellas entradas que son una solución correcta al problema.
- No Decidible
 - Si NO es decidible

Considerando la Teoría de la Complejidad Computacional un problema de decisión podrá ser:

 Conjuntos de Clase de Complejidad (Clase L, NL, P, P-Completo, NP, NP-Completo, NP-Duro...).

En este caso, nos

Sin embargo, para esta distinción es necesa modelo teórico de las **Máquinas de Turing**.

centraremos únicamente en necesario considerar el los problemas denominados **Turing**. P, NP y NP-Completo.

Además, debemos distinguir entre:

- MT Determinista (Para cada par *(estado, símbolo),* existe como máximo una transición a otro estado).
- MT No Determinista (Existe al menos un par *(estado, símbolo)*, con más de una transición a estados diferentes).

Considerando la Teoría de la Complejidad Computacional un problema de decisión podrá ser:

- Clase P (Polynomial-time)
 - Contiene aquellos problemas de decisión que una MT Determinista puede resolver en tiempo polinómico.
 - Los problemas de complejidad polinómica son tratables, es decir en la práctica se pueden resolverse en tiempo *razonable*.
 - La mayoría de los problemas *corrientes* (ordenación, búsqueda...) pertenecen a esta clase.

Considerando la Teoría de la Complejidad Computacional un problema de decisión podrá ser:

- Clase NP (Non-Deterministic Polynomial-time)
 - Contiene aquellos problemas de decisión que una MT No Determinista puede resolver en tiempo polinómico.

Como toda MTD es un caso particular de una MTND:

 $P \subseteq NP$

Clase NP

Clase P

Saber si P=NP o P≠NP es todavía un problema abierto en computación teórica!!

Tan importante es demostrar que estas clases son distintas, que es uno de los *problemas* premiados con 1.000.000 \$.

Dedicated to increasing and disseminating mathematical knowledge

http://www.claymath.org/millennium/P vs NP/

Considerando la Teoría de la Complejidad Computacional un problema de decisión podrá ser:

- Clase NP-Completo
 - Un problemas de decisión es NP-Completo sii:
 - Es NP
 - Todos los demás problemas de NP se pueden se pueden <u>reducir</u> a él en tiempo polinómico.

Reducir de un problema:

Es una manera de convertir un problema en otro de tal forma que la solución al segundo problema se puede utilizar para resolver el primero.

8. Complejidad Computacional

Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber

Grado Ingeniería Informática Teoría de Autómatas y Lenguajes Formales

