Revisión de Supuestos Estadísticos e Introducción a Análisis Espacial

Métodos Cuantitativos en Estudios Urbanos II - MEU UTDT

Ricardo Pasquini

11 de julio de 2025

Repaso

Estadístico T es la base del Test de Hipótesis

$$t = \frac{\hat{\beta} - \beta_0}{SE(\hat{\beta})} = \frac{\hat{\beta} - \beta_0}{\sqrt{\hat{\sigma}^2 (X'X)^{-1}}}$$

Donde:

- $ightharpoonup \hat{\beta}$ es el coeficiente estimado
- $ightharpoonup eta_0$ es el valor bajo la hipótesis nula
- $ightharpoonup SE(\hat{\beta})$ es el error estándar del coeficiente
- $\hat{\sigma}^2$ es la varianza estimada de los errores
- ► Este estadístico tiene una distribución T-student. Sin embargo, este resultado se construye sobre varios supuestos:
 - Los errores tienen una varianza constante
 - Los errores son independientes
 - Los errores tienen una distribución Normal

Heteroscedasticidad

Varianza no constante en los errores del modelo En el modelo homoscedástico (ideal):

$$Var(\epsilon_i) = \sigma^2$$
 para todo i

En presencia de heteroscedasticidad:

$$Var(\epsilon_i) = \sigma_i^2$$
 varía con i

- La dispersión de los residuos varía según los valores de X o Y
- Puede surgir por:
 - Datos agrupados con diferentes niveles de variabilidad
 - Relaciones no lineales subyacentes
 - Errores de medición que varían con la magnitud de las variables

Heteroscedasticidad - Visualización

Figura: Residuos vs. Valores Ajustados: Homoscedástico (izq.) vs. Heteroscedástico (der.)

Consecuencias de la Heteroscedasticidad

- Estimadores OLS siguen siendo insesgados
- Errores estándar incorrectos
- Intuición del problema:
 - ightharpoonup En OLS, asumimos que cada observación tiene la misma varianza (σ^2)
 - Cuando hay heteroscedasticidad, algunas observaciones son más ruidosas" que otras
 - La fórmula tradicional del error estándar:

$$SE(\hat{\beta}) = \sqrt{\hat{\sigma}^2 (X'X)^{-1}}$$

asume incorrectamente que todas las observaciones tienen el mismo peso

- En realidad, deberíamos dar:
 - Menor peso a observaciones con alta varianza
 - Mayor peso a observaciones con baja varianza

Soluciones para la Heteroscedasticidad

- Uso de errores estándar robustos (HC0 White)
 - En Python (statsmodels):
 import statsmodels.formula.api as smf
 model = smf.ols('precio ~ superficie + habitaciones', data=df)
 results = model.fit(cov_type='HCO')
 - ► En R: coeftest(model, vcov = vcovHC(model, type = "HCO"))
- Otras correcciones de errores estándar robustos:
 - HC1: Corrección adicional para muestras pequeñas
 - ► HC2: Considera el leverage de las observaciones (el leverage es una medida de la importancia de la observación particular en el fit del modelo)
 - ► HC3: Más conservador, mejor para muestras muy pequeñas

Soluciones para la Heteroscedasticidad (cont.)

- Transformación de variables:
 - Transformación logarítmica cuando la varianza aumenta con el nivel
- Modelado explícito de la varianza:
 - Mínimos Cuadrados Ponderados (WLS)
 - ► Se asignan pesos inversamente proporcionales a la varianza estimada
 - Requiere conocer o poder modelar la estructura de la varianza

Normalidad de los Residuos

Figura: Distribución de Residuos: Normal vs. Sesgada

Normalidad de los Residuos - Q-Q Plot

Figura: Q-Q Plots: Residuos Normales vs. Sesgados

Consecuencias e Importancia de la No-Normalidad

- Menos crucial cuando n es grande (Teorema asintótica)
- Las pruebas t y F son robustas con muestras grandes
- Mayor preocupación en muestras pequeñas
- Soluciones:
 - Transformaciones de la variable dependiente
 - Logarítmica
 - Raíz cuadrada
 - Identificar y tratar valores atípicos

Independencia de las Observaciones

- ► Tipos de Autocorrelación:
 - Temporal
 - Común en series de tiempo
 - Patrones sistemáticos en el tiempo
 - Observaciones cercanas en el tiempo están relacionadas
 - Espacial
 - Frecuente en estudios urbanos
 - "Todo está relacionado con todo, pero las cosas cercanas están más relacionadas entre sí"
 - Dependencia basada en la ubicación geográfica

Autocorrelación Temporal

Figura: Comparación: Residuos con Autocorrelación Temporal (izq.) vs. Residuos Independientes (der.)

Autocorrelación Espacial

Figura: Residuos con Autocorrelación Espacial vs. Aleatorios

Análisis de Autocorrelación Espacial

Figura: Diagramas de Moran: Patrón Espacial vs. Aleatorio

Consecuencias de la Autocorrelación

- Estimadores OLS ineficientes
- Errores estándar sesgados
- Inferencia estadística no válida
- Predicciones subóptimas
- Soluciones:
 - Modelos con rezagos temporales (AR, MA, ARIMA)
 - Modelos espaciales
 - Rezago espacial (Spatial Lag)
 - Error espacial (Spatial Error)
 - Modelos mixtos espaciales
 - Corrección de errores estándar por clusters

Análisis Espacial

- ▶ ¿Qué hace que un análisis sea espacial?
 - Tanto la ubicación como los atributos importan
 - Los resultados cambian cuando cambia la disposición espacial
 - Contrasta con el análisis no espacial donde la ubicación es irrelevante
- Dimensiones de la econometría espacial:
 - Especificar la estructura de la dependencia espacial
 - Testear su presencia
 - Estimar modelos con efectos espaciales
 - Precaución: Los efectos espaciales podrían no cambiar las conclusiones

Desafíos Clave en el Análisis Espacial

- Falacia Ecológica
 - ▶ No se puede inferir comportamiento individual de datos agregados
 - Se debe mantener el nivel apropiado de interpretación
- ▶ Problema de la Unidad de Área Modificable (MAUP)
 - Los resultados dependen de la escala de agregación
 - Los resultados dependen de la zonificación/agrupación de unidades
 - Ejemplo: Distritos electorales y gerrymandering
- Problema de Cambio de Soporte
 - Mezcla de datos de diferentes escalas espaciales
 - Ejemplo: Datos puntuales vs. datos de área
 - Soluciones: agregar a una escala común, interpolar

Matriz de Pesos Espaciales (W)

- Propósito: Formaliza las relaciones espaciales entre observaciones
- Características:
 - ightharpoonup Matriz N x N (N = número de observaciones)
- ► Mayormente dispersa (99 %cerostípicamente)Elementosdiagonales = 0(sinauto vecinos)
- Tipos Comunes:
 - Basados en Contigüidad
 - Rook (bordes comunes)
 - Queen (bordes + esquinas)
 - Bishop (solo esquinas)
 - Basados en Distancia
 - Bandas de distancia
 - K vecinos más cercanos
 - Funciones de distancia

Estadístico I de Moran

Fórmula:

$$I = \frac{N}{W} \frac{\sum_{i} \sum_{j} z_{i} z_{j} \cdot w_{i,j}}{\sum_{i} z_{i}^{2}}$$

donde:

- $ightharpoonup z_i = y_i \bar{y}$ (desviación de la media)
- N es el número de unidades espaciales
- W es la suma de pesos
- Limitaciones:
 - Funciona como estadístico de mala especificación
 - Detecta correlación espacial, pero también:
 - Heteroscedasticidad
 - No linealidad

Introducción a la Regresión Espacial

- Desafío clave:
 - ▶ No se pueden modelar todas las interacciones con datos de corte transversal
 - ▶ N observaciones pero N² interacciones potenciales
 - ► Solución: Simplificar usando matriz de pesos espaciales

Variables Espacialmente Rezagadas

- Concepto básico: Promedio ponderado de observaciones vecinas
- Características:
 - Similar al rezago distribuido en series de tiempo
 - Suaviza la variabilidad (menor varianza)
 - Excluye auto-vecinos (diagonal de W es cero)

Modelo de Rezago Espacial

- Incluye la variable dependiente espacialmente rezagada (WY)
- Forma básica:

$$y = \rho Wy + X\beta + \epsilon$$

donde:

- ightharpoonup
 ho es el coeficiente de autocorrelación espacial
- Wy es el rezago espacial de la variable dependiente
- $ightharpoonup X\beta$ son las variables explicativas y sus coeficientes
- Características:
 - Modela interacción espacial directa
 - Tiene efectos multiplicadores (bucles de retroalimentación)
 - Su omisión lleva a sesgo e ineficiencia