BIG HOMEWORK

The dataset I selected is publicly available, has various data types (numeric, categorical, graphical, etc.) and has hundreds of rows.

The datasets are:

The Boston Housing Dataset Congressional Voting Record MNIST

1. The Boston Housing Dataset

This dataset type is numeric

Data introduction:

- CRIM per capita crime rate by town
- ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- INDUS proportion of non-retail business acres per town
- CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)
- NOX nitric oxides concentration (parts per 10 million)
- RM average number of rooms per dwelling
- AGE proportion of owner-occupied units built prior to 1940
- DIS weighted distances to five Boston employment centres
- RAD index of accessibility to radial highways
- TAX full-value property-tax rate per \$10,000
- PTRATIO pupil-teacher ratio by town
- B 1000(Bk 0.63)² where Bk is the proportion of blacks by town
- LSTAT % lower status of the population

binarization strategy:

We first calculate the average price of house prices

Then we divide the prices into high and low (1 and 0)

CRIM	ZN	I	NDUS	CHAS	NO	X	RM	A	GE	DIS	RAD	TAX		PIRATIO	В		LSTAT	Degree	
0.006	32	18	2. 31		0	0. 538		6. 575	65. 2	4. 0	9	1	296	15.	3	396. 9	4. 98	3	1
0.027	31	0	7.07	7	0	0.469		6. 421	78.9	4. 967	1	2	242	17.	8	396. 9	9.14	1	0
0.027	29	0	7. 07	7	0	0.469		7. 185	61. 1	4. 967	1	2	242	17.	8	392.83	4. 03	3	1
0.032	37	0	2. 18	3	0	0.458		6.998	45.8	6. 062	2	3	222	18.	7	394.63	2. 94	1	1
0 170	04	12.5	7 87	7	0	0 524		6 004	85 9	6 592	1	5	311	15	2	386, 71	17 1		0

Then we use the lazyfca method to process the data

Finally we use Kfold cross-validation and then adjust and find the best alpha value

Unadjusted alpha code and accuracy:

```
In [3]: import fcalc
    ...: import pandas as pd
    ...: import numpy as np
    ...: from sklearn.model_selection import train_test_split
In [4]: df = pd.read_csv('data_sets/boston.csv',
    ...: names=['CRIM','ZN','INDUS','CHAS','NOX','RM','AGE','DIS','RAD','TAX','PIRATIO','B','LSTAT','Degree'])
    ...: df['Degree'] = [x == '1' for x in df['Degree']]
    ...: df.sample(10)
Out[4]:
            CRIM ZN INDUS CHAS
                                                   NOX
                                                                                     DIS RAD TAX PIRATIO \
                                                                        AGE
                                                                      83.3
73.4
94.1
                              2.46
4.05
18.1
                                               0.488 7.765
                                                                                                              17.8
16.6
20.2
160 0.06588
                                                                                 2.741
                                                                                                   193
157 0.05425
407 9.51363
                                               0.51
0.713
                                                           6.315
6.728
                                                                                3.3175
2.4961
                                           0 0.631
0 0.631
0 0.624
0 0.401
0 0.74
324
         9.2323
                              18.1
                                                           6.216
                                                                        100
                                                                                1.1691
                                                                                             24
                                                                                                   666
                                                                                                               20.2
       0.19073 22 5.86
0.97617 0 21.89
0.01439 60 2.93
                                                           6.718
5.757
6.604
6.461
                                                                      17.5
98.4
                                                                                                               19.1
21.2
224
                                                                                7.8265
                                                                                                    330
                                                                                  2.346
                                                                                                   437
265
                                                                                6.2196 2.0026
174
389
                                                                      18.8
                                                                                                               15.6
                             2.93
       14.4208
                        0
                                                                      93.3
414
168
       3.69311
0.12579
                                              0.713
0.437
                                                           6.376
                                                                      88.4
29.1
                                                                                2.5671
4.5667
                              Degree
True
True
       395.56
                      7.56
6.29
157
        395.6
497
           6 68
                   18.71
                                  False
       366.15
393.74
                      9.53
114
       262.76
                    17.31
                                 False
174
389
         376.7
27.49
                    4.38
18.05
        391.43
414
168
                    14.65
                                 False
       382.84
                      4.56
In [5]: X = df.iloc[:,:-1]
     ...: y = df['Degree']
...: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
In [6]: pat cls = fcalc.classifier.PatternBinaryClassifier(X train.values, y train.to numpy())
 In [7]: pat_cls.predict(X_test.values)
In [8]: from sklearn.metrics import accuracy_score, f1_score
    ...: print("accuracy:",round(accuracy_score(y_test, pat_cls.predictions),4))
    ...: print("f1 score:",round(f1_score(y_test, pat_cls.predictions),4))
accuracy: 0.6423
```

Test optimal alpha parameters:

```
step1: start, step2: end, step3:length
b=[]
for j in np.arange(step1, step2, step3):
    sum = 0.0
    for i, (train_index, test_index) in enumerate(kf.split(X,y)):
        print(f"Fold {i}:")
        X_train=X.iloc[train_index]
        y_train=y.iloc[train_index]
        X_test=X.iloc[test_index]
        y_test=y.iloc[test_index]
        pat_cls = fcalc.classifier.PatternBinaryClassifier(X_train.values, y_train.to_numpy(), alpha=j)
        pat_cls.predict(X_test.values)
        acc=accuracy_score(y_test, pat_cls.predictions)
        print(acc)
        sum += acc
    print(f"alpha={j}: average_accuracy={sum/10}")
    num = sum/10
    a.append(j)
    b.append(num)
import matplotlib.pyplot as plt
plt.plot(a, b)
#添加坐标轴标签
plt.xlabel('Alpha')
plt.ylabel('Accuracy')
#显示图形
plt.show()
```

Result graph:

Decision tree:

```
11 # 将房价转化为分类标签
12 data['Price_Category'] = pd.cut(data['PRICE'], bins=[0, data['PRICE'].median(), data['PRICE'].max()])
13
14 # 划分特征和目标变量
15  X = data.drop(['PRICE', 'Price_Category'], axis=1)
16  y = data['Price_Category']
17
18 # 将目标变量编码为数字
19  y = pd.factorize(y)[0]
20
21 # 划分数据集
22 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
23
24 # 使用 Decision Tree Classifier
    dt_classifier = DecisionTreeClassifier()
27 # 定义 F1 分数作为评估指标
28 f1_scorer = make_scorer(f1_score)
29
30 # 交叉验证调整模型参数并评估 F1 分数
31 cv_scores = cross_val_score(dt_classifier, X_train, y_train, cv=5, scoring=f1_scorer)
32
    # 输出交叉验证的 F1 分数
33
34 print("Cross-Validation F1 Scores:", cv_scores)
35
36 # 输出平均 F1 分数
37
    print("Average F1 Score:", np.mean(cv_scores))
39 # 训练模型
40 dt_classifier.fit(X_train, y_train)
41
42 # 在数据集上进行预测
43  y_pred = dt_classifier.predict(X_test)
44
45 # 输出最准确的分类结果
46 print("Most Accurate Predictions:")
47 print(pd.DataFrame({'Actual': y_test, 'Predicted': y_pred}).head(10))
```

Random forest:

```
11 # 将房价转化为分类标签
12
    data['Price_Category'] = pd.cut(data['PRICE'], bins=[0, data['PRICE'].median(), data['PRICE'].max()])
13
    # 划分特征和目标变量
14
    X = data.drop(['PRICE', 'Price_Category'], axis=1)
15
16  y = data['Price_Category']
18 # 将目标变量编码为数字
19 y = pd.factorize(y)[0]
20
21 # 划分数据集
22 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
23
24 # 使用 Random Forest Classifier
25
   rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
26
    # 定义 F1 分数作为评估指标
27
28
    f1_scorer = make_scorer(f1_score)
    # 交叉验证调整模型参数并评估 F1 分数
30
31
    cv_scores = cross_val_score(rf_classifier, X_train, y_train, cv=5, scoring=f1_scorer)
32
33
    # 输出交叉验证的 F1 分数
    print("Cross-Validation F1 Scores:", cv_scores)
34
35
36
    # 输出平均 F1 分数
   print("Average F1 Score:", np.mean(cv_scores))
37
38
   # 训练模型
39
40 rf_classifier.fit(X_train, y_train)
42
    # 在数据集上进行预测
43
    y_pred = rf_classifier.predict(X_test)
44
45 # 输出最准确的分类结果
46 print("Most Accurate Predictions:")
    print(pd.DataFrame({'Actual': y_test, 'Predicted': y_pred}).head(10))
```

xGboost:

```
# 将房价转化为分类标签
11
    data['Price_Category'] = pd.cut(data['PRICE'], bins=[0, data['PRICE'].median(), data['PRICE'].max()
12
13
14 # 划分特征和目标变量
    X = data.drop(['PRICE', 'Price_Category'], axis=1)
15
   y = data['Price_Category']
16
17
18
   # 将目标变量编码为数字
19
    y = pd.factorize(y)[0]
20
21 # 划分数据集
22 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
23
24 # 使用 XGBoost Classifier
   xgb_classifier = XGBClassifier(random_state=42)
25
26
27 # 定义 F1 分数作为评估指标
28 f1_scorer = make_scorer(f1_score)
29
30 # 交叉验证调整模型参数并评估 F1 分数
31 cv_scores = cross_val_score(xgb_classifier, X_train, y_train, cv=5, scoring=f1_scorer)
32
   # 输出交叉验证的 F1 分数
33
34 print("Cross-Validation F1 Scores:", cv_scores)
35
36
    # 输出平均 F1 分数
    print("Average F1 Score:", np.mean(cv_scores))
37
38
39 # 训练模型
40
    xgb_classifier.fit(X_train, y_train)
41
42 # 在数据集上进行预测
43  y_pred = xgb_classifier.predict(X_test)
44
45 # 输出最准确的分类结果
46 print("Most Accurate Predictions:")
    print(pd.DataFrame({'Actual': y_test, 'Predicted': y_pred}).head(10))
```

k-NN:

```
# 将房价转化为分类标签
11
12 data['Price_Category'] = pd.cut(data['PRICE'], bins=[0, data['PRICE'].median(), data['PRICE'].max()])
13
14 # 划分特征和目标变量
15  X = data.drop(['PRICE', 'Price_Category'], axis=1)
16  y = data['Price_Category']
17
18 # 将目标变量编码为数字
19  y = pd.factorize(y)[0]
20
21 # 划分数据集
22 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
23
24 # 使用 k-NN 分类器
25
   knn_classifier = KNeighborsClassifier()
26
27 # 定义 F1 分数作为评估指标
28 f1_scorer = make_scorer(f1_score)
30 # 交叉验证调整模型参数并评估 F1 分数
   cv_scores = cross_val_score(knn_classifier, X_train, y_train, cv=5, scoring=f1_scorer)
31
33
   # 打印交叉验证的 F1 分数
34 print("Cross-Validation F1 Scores:", cv_scores)
35
36 # 打印平均 F1 分数
37 print("Average F1 Score:", np.mean(cv_scores))
38
39
40 knn_classifier.fit(X_train, y_train)
41
42 # 在数据集上进行预测
43  y_pred = knn_classifier.predict(X_test)
44
45 # 打印最准确的分类结果
46 print("Most Accurate Predictions:")
   print(pd.DataFrame({'Actual': y_test, 'Predicted': y_pred}).head(10))
```

Naive Bayes:

```
# 将房价转化为分类标签
   data['Price_Category'] = pd.cut(data['PRICE'], bins=[0, data['PRICE'].median(), data['PRICE'].max()])
12
13
    # 划分特征和目标变量
15  X = data.drop(['PRICE', 'Price Category'], axis=1)
16  y = data['Price_Category']
17
18 # 将目标变量编码为数字
19
   y = pd.factorize(y)[0]
20
    # 划分数据集
21
22
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
23
    # 使用 Naive Bayes 分类器
24
25
    nb_classifier = GaussianNB()
    # 定义 F1 分数作为评估指标
27
    f1_scorer = make_scorer(f1_score)
28
29
30
    # 交叉验证调整模型参数并评估 F1 分数
    cv_scores = cross_val_score(nb_classifier, X_train, y_train, cv=5, scoring=f1_scorer)
31
32
33
    # 打印交叉验证的 F1 分数
    print("Cross-Validation F1 Scores:", cv_scores)
34
35
    # 打印平均 F1 分数
36
    print("Average F1 Score:", np.mean(cv_scores))
38
    # 训练模型
39
40     nb_classifier.fit(X_train, y_train)
42
    # 在数据集上进行预测
    y_pred = nb_classifier.predict(X_test)
43
44
45 # 打印最准确的分类结果
    print("Most Accurate Predictions:")
46
    print(pd.DataFrame({'Actual': y_test, 'Predicted': y_pred}).head(10))
47
```

logistic regression:

```
11
   # 将房价转化为分类标签
    data['Price Category'] = pd.cut(data['PRICE'], bins=[0, data['PRICE'].median(), data['PRICE'].max()
13
14 # 划分特征和目标变量
15  X = data.drop(['PRICE', 'Price_Category'], axis=1)
16
    y = data['Price_Category']
17
18 # 将目标变量编码为数字
19  y = pd.factorize(y)[0]
20
21 # 划分数据集
22 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
23
24 # 使用 Logistic Regression 分类器
25 lr_classifier = LogisticRegression()
26
27
    # 定义 F1 分数作为评估指标
28 f1_scorer = make_scorer(f1_score)
29
    # 交叉验证调整模型参数并评估 F1 分数
30
31
    cv_scores = cross_val_score(lr_classifier, X_train, y_train, cv=5, scoring=f1_scorer)
32
33 # 打印交叉验证的 F1 分数
   print("Cross-Validation F1 Scores:", cv_scores)
34
35
36 # 打印平均 F1 分数
37 print("Average F1 Score:", np.mean(cv_scores))
38
   # 训练模型
39
40 lr_classifier.fit(X_train, y_train)
41
   # 在数据集上进行预测
42
43
    y_pred = lr_classifier.predict(X_test)
44
45
    # 打印最准确的分类结果
    print("Most Accurate Predictions:")
46
    print(pd.DataFrame({'Actual': y_test, 'Predicted': y_pred}).head(10))
```

2. Congressional Voting Record

This dataset type is categorical

Data introduction:

- Class Name: 2 (democrat, republican)
- handicapped-infants: 2 (y,n)
- water-project-cost-sharing: 2 (y,n)
- adoption-of-the-budget-resolution: 2 (y,n)
- physician-fee-freeze: 2 (y,n)
- el-salvador-aid: 2 (y,n)
- religious-groups-in-schools: 2 (y,n)
- anti-satellite-test-ban: 2 (y,n)
- aid-to-nicaraguan-contras: 2 (y,n)
- mx-missile: 2 (y,n)
- immigration: 2 (y,n)
- synfuels-corporation-cutback: 2 (y,n)
- education-spending: 2 (y,n)
- superfund-right-to-sue: 2 (y,n)
- crime: 2 (y,n)
- duty-free-exports: 2 (y,n)
- export-administration-act-south-africa: 2 (y,n)

binarization strategy:

From data observation we can know that voting is divided into two categories

We first deal with the one-hot method

Then we can get the relationship between the two voting

1	handicapp	water-pro	adoption-	physician	el-salvac	religious	anti-sate	aid-to-ni	mx-missil	immigrat:	synfuels-	education	superfund	crime	duty-free	export-	ac Class
2	n	У	n	У	У	У	n	n	n	у	?	У	у	У	n	У	republican
3	n	у	n	у	у	у	n	n	n	n	n	у	у	у	n	?	republican
4	?	у	у	?	у	у	n	n	n	n	у	n	у	у	n	n	democrat
5	n	v	v	n	?	v	n	n	n	n	v	n	v	n	n	v	democrat

Then we use the lazyfca method to process the data

Finally we use Kfold cross-validation and then adjust and find the best alpha value

Unadjusted alpha code and accuracy:

```
el-salvador-aid
                         religious-groups-in-schools
religious-groups-in-schools
                                                           anti-satellite-test-ban \
                                                           anti-satellite-test-ban
    el-salvador-aid
                                    mx-missile
    aid-to-nicaraguan-contras
                                                   immigration
    aid-to-nicaraguan-contras
                                    mx-missile
                                                   immigration
                                              n
                                n
                                              n
                                                               n
    synfuels-corporation-cutback
                                       education-spending
     superfund-right-to-sue
    superfund-right-to-sue
                                 crime
                                          duty-free-exports
                                                            n
    export-administration-act-south-africa
     export-administration-act-south-africa
                                                  False
                                                  False
                                                   True
                                                   True
In [6]: X = pd.get_dummies(df[column_names[:-1]], prefix=column_names[:-1]).astype(bool)
...: y = dff'class']
    ...: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
In [7]: bin_cls = fcalc.classifier.BinarizedBinaryClassifier(X_train.values, y_train.to_numpy(), method="standard-support")
In [8]: bin_cls.predict(X_test.values)
In [9]: from sklearn.metrics import accuracy_score, f1_score
...:
...: print(accuracy_score(y_test, bin_cls.predictions))
...: print(f1_score(y_test, bin_cls.predictions))
0.9312977099236641
```

Test optimal alpha parameters:

```
step1: start, step2: end, step3:length
b=[]
for j in np.arange(step1, step2, step3):
    sum = 0.0
    for i, (train_index, test_index) in enumerate(kf.split(X,y)):
        print(f"Fold {i}:")
        X_train=X.iloc[train_index]
        y_train=y.iloc[train_index]
        X_test=X.iloc[test_index]
        y_test=y.iloc[test_index]
        pat_cls = fcalc.classifier.PatternBinaryClassifier(X_train.values, y_train.to_numpy(), alpha=j)
        pat_cls.predict(X_test.values)
         acc=accuracy_score(y_test, pat_cls.predictions)
        sum += acc
    print(f"alpha={j}: average_accuracy={sum/10}")
    num = sum/10
    a.append(j)
    b.append(num)
import matplotlib.pyplot as plt
plt.plot(a, b)
#添加坐标轴标签
plt.xlabel('Alpha')
plt.ylabel('Accuracy')
#显示图形
plt.show()
```

Result graph:

Accuracy:

Decision tree: 0.8870 Random forest: 0.9357

xGboost: 0.9265 k-NN: 0.9325

Naive Bayes: 0.9080

logistic regression: 0.9271

3. MNIST

This dataset type is graphical

Data introduction:

The MNIST database is a large database of handwritten digits commonly used to train various image processing systems. The database is also widely used for training and testing in the field of machine learning.

Data preprocessing:

Compared to the previous two data sets, we first need to process these images We need to change the data into csv format

4	RR	RS	RT	RU	RV	RW	RX	RY	RZ	SA	SB	SC	SD	SE	SF	SG	SH	SI	SJ	SK	SL	SM	SN	SO
1	18x10	18x11	18x12	18x13	18x14	18x15	18x16	18x17	18x18	18x19	18x20	18x21	18x22	18x23	18x24	18x25	18x26	18x27	18x28	19x1	19x2	19x3	19x4	19x5
2	()	0)	0	0 1	126	254	182	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	253	3 25	3 17	3 1	2	0 1) 0	0	()	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	()	0	12	0 25	4 15	9 0	0	(0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	25		0)	0	0 1) 0	144	25	1 2	51 2	251 2	21	61	0	0	0	0	0	0	0	0	0	0
6	245	25	2 25	2 25	2 25	2 23	231	251	252	2 2	52	9	0	0	0	0	0	0	0	0	0	0	0 .	0

Class: (number)

ADE	
Class	
	7
	2
	1
	0
	4
	1
	4
	9

Split the dataset: (2000 rows)

```
In [7]: file = open("data_sets/mnist.csv")
In [8]: data_train = pd.read_csv(file)
In [9]: data_train = data_train.head(2000)
```

Show all pictures under data:

```
plt.show()
       else:
          plt.imshow(x)
plt.show()
In [17]: show_img(x_train) 2000
 10
 20
                                    0
 0
             0
                         0
 10
 20
                         0
             0
                                    0
 0 -
                        10
                                    10 -
 10
            10
 10
```

Show x_test pictures under data:

in [21]: show_img(x_test)

Finally, we turned the image into matrix information through preprocessing and saved it in csv

binarization strategy:

We perform two classifications based on the image labels of the csv

We classify based on numbers, for example: 0 and non-0

Then we use the lazyfca method to process the data

Finally we use Kfold cross-validation and then adjust and find the best alpha value

```
In [12]: df = df.head(2000)
In [13]: print(df)
       1x1
             1x2
                   1x3
                          1x4
                                1x5
                                      1x6
                                            1x7
                                                  1x8
                                                         1x9
                                                               1x10
                                                                             28x20
                                                                                     28x21
                                                                      . . .
0
         0
                0
                      0
                            0
                                  0
                                         0
                                               0
                                                     0
                                                           0
                                                                                  0
                                                                                          0
                                                                      . . .
1
         0
                0
                      0
                            0
                                  0
                                         0
                                               0
                                                     0
                                                           0
                                                                   0
                                                                                  0
                                                                                          0
                                                                      ...
2
         0
                0
                      0
                            0
                                  0
                                        0
                                               0
                                                     0
                                                           0
                                                                   0
                                                                                  0
                                                                                          0
                                                                       ...
3
         0
                                  0
                0
                      0
                            0
                                        0
                                               0
                                                     0
                                                           0
                                                                   0
                                                                                  0
                                                                                          0
                                                                       ...
4
         0
                            0
                                  0
                                        0
                                                     0
                                                           0
                                                                                          0
                0
                      0
                                               0
                                                                   0
                                                                                  0
                                                                       . . .
                                                                       . . .
                                                                                        . . .
1995
         0
                0
                      0
                            0
                                  0
                                        0
                                               0
                                                     0
                                                           0
                                                                   0
                                                                                          0
                                                                                  0
                                                                       . . .
1996
         0
                                  0
                                         0
                                                           0
                                                                                          0
                0
                      0
                            0
                                               0
                                                     0
                                                                   0
                                                                                  0
                                                                       ...
1997
         0
                0
                      0
                            0
                                  0
                                         0
                                               0
                                                     0
                                                           0
                                                                   0
                                                                                  0
                                                                                          0
                                                                       ...
1998
         0
                0
                      0
                            0
                                  0
                                         0
                                               0
                                                     0
                                                           0
                                                                   0
                                                                                  0
                                                                                          0
                                                                       ...
                                                                                          0
1999
         0
                            0
                                  0
                                               0
                                                     0
                                                                                  0
                                                                       . . .
       28x22
                28x23
                        28x24
                                 28x25
                                          28x26
                                                  28x27
                                                           28x28 Class
0
                     0
                             0
                                      0
                                               0
                                                       0
            0
                     0
                             0
                                      0
                                               0
                                                       0
                                                                0
                                                                         0
1
2
            0
                     0
                             0
                                      0
                                               0
                                                       0
                                                                0
                                                                         0
3
            0
                                                                         0
                     0
                             0
                                      0
                                               0
                                                       0
                                                                0
4
            0
                     0
                             0
                                      0
                                               0
                                                       0
                                                                0
                                                                         0
          . . .
                           ...
1995
            0
                    0
                             0
                                      0
                                               0
                                                       0
                                                                0
                                                                         1
1996
            0
                    0
                             0
                                      0
                                               0
                                                       0
                                                                0
                                                                         1
1997
            0
                     0
                             0
                                      0
                                               0
                                                       0
                                                                0
                                                                         1
1998
            0
                     0
                             0
                                      0
                                               0
                                                       0
                                                                0
                                                                         1
                                                                         1
1999
            0
                     0
                                      0
                                               0
                                                       0
                                                                0
```

[2000 rows x 785 columns]

Unadjusted alpha code and accuracy:

Test optimal alpha parameters:

```
step1: start, step2: end, step3:length
for j in np.arange(step1, step2, step3):
    sum = 0.0
    for i, (train_index, test_index) in enumerate(kf.split(X,y)):
        print(f"Fold {i}:")
        X_train=X.iloc[train_index]
        y_train=y.iloc[train_index]
        X_test=X.iloc[test_index]
        y_test=y.iloc[test_index]
        pat_cls = fcalc.classifier.PatternBinaryClassifier(X_train.values, y_train.to_numpy(), alpha=j)
        pat_cls.predict(X_test.values)
        acc=accuracy_score(y_test, pat_cls.predictions)
        sum += acc
    print(f"alpha={j}: average_accuracy={sum/10}")
    num = sum/10
    a.append(j)
    b.append(num)
import matplotlib.pyplot as plt
plt.plot(a, b)
#添加坐标轴标签
plt.xlabel('Alpha')
plt.ylabel('Accuracy')
#显示图形
plt.show()
```

Accuracy:

Decision tree: 0.8697 Random forest: 0.8823 xGboost: 0.8883

k-NN: 0.9721

Naive Bayes: 0.8386

logistic regression: 0.9175

Summarize:

Dataset	Lazy	Lazy (adjusted)	Decision tree	Random Forest	XGBoost	k-NN	Naive Bayes	Logistic
Boston	0.64	0.77	0.73	0.82	0.83	0.72	0.74	0.84
Vote	0.93	0.95	0.88	0.94	0.92	0.93	0.90	0.92
Mnist	0.81	0.85	0.87	0.88	0.89	0.96	0.83	0.91

-	•	

 $https://github.com/LeKo888/osda_hm.git$