AEEM 3042 – Integrated Aircraft Engineering

Aircraft Performance Equations of Motion Takeoff and Landing

The aircraft takeoff maneuver can be divided up into three distinct phases:

- Ground all landing gear on the ground
 - brake release to start of rotation
- Rotation pilot inputs an elevator deflection that lifts the nose gear off the runway
 - ends when the main gear lifts off the runway
- Climb / Acceleration transitions to target airspeed
 - flaps are retracted
 - landing gear is retracted

Takeoff Speeds

Rotation Speed > 1.05 V_{stall}

> 1.10 V_{stall}

Obstacle Speed > 1.20 V_{stall}

$$V_{stall} = \sqrt{\frac{2W}{o S C_{L_{max}}}}$$

$$V_{rot} = 1.05 V_{stall}$$

Stall Speed is dominated by W/S

Stall Speed Wing Area

Rotation Speed > 1.05 V_{stall}

> 1.10 V_{stall}

Obstacle Speed > 1.20 V_{stall}

$$V_{stall} = \sqrt{\frac{2 W}{\rho S C_{L_{max}}}}$$

$$V_{rot} = 1.05 V_{stall}$$

Stall Speed is dominated by C_{Lmax}

$$R = \mu_r (W - L)$$

 μ_r = coefficient of rolling friction

$$0.02 < \mu_r < 0.08$$

$$\Sigma F_{x} = T - D - R = \frac{d(mV)}{dt} = \dot{m}V + m\dot{V}$$

$$\sum F_{x} = T - D - R = m \frac{dV}{dt}$$

$$ds = \frac{ds}{dt}dt = V dt = V \frac{dt}{dV} dV = \frac{V dV}{a}$$

$$\int_0^{TO} ds = \int_0^{V_{TO}} \frac{V \, dV}{a}$$

$$s_{g} = \frac{V_{TO}^{2}}{2 a}$$

where a is the average acceleration during the ground run

$$s_{g} = \frac{V_{TO}^{2}}{2 a}$$

where a is the average acceleration during the ground run

$$\Sigma F_{x} = T - D - R = m \frac{dV}{dt}$$

$$a = \frac{dV}{dt} = \frac{T - D - R}{W/g}$$

where T, D, and R are calculated at 0.7 V_{TO}

Takeoff capability is dominated by T/W

$$a = \frac{dV}{dt} = \frac{T - D - R}{W/g}$$

where T, D, and R are calculated at 0.7 V_{TO}

 $T = Thrust at 0.7 V_{TO} at takeoff altitude$

D = Drag at 0.7
$$V_{TO}$$
 at takeoff altitude
= $(C_{D_0} + \Delta C_{D_0})$ (0.5 ρ (0.7 V_{TO})² S)

 ΔC_{D_0} includes gear drag and flap drag C_{D_L} and L are considered negligible

T-38 Characteristics:

$$C_{D_0} = 0.0158$$

$$C_{L_{max}}$$
 (with flaps) = 1.20

$$\Delta C_{D_0} = 0.0240$$

T (mil) at
$$SLS = 1900 lb$$

$$W = 10,000 lb$$

$$\mu_{\rm r} = 0.025$$

Sea Level Ground Roll

Calculate V_{TO} Calculate T @ 0.7 V_{TO} Calculate D @ 0.7 V_{TO} Calculate a
Calculate ground roll

$$a = \frac{dV}{dt} = \frac{T - D - R}{W/g}$$

where T and D are calculated at $0.7 V_{TO}$

$$V_{T0} = 1.1 \sqrt{\frac{2 (W/S)}{\rho C_{L_{max}}}}$$
= 223.4 ft/sec

$$0.7 V_{TO} = 156.4 \text{ ft/sec} = 0.1400 \text{ Mach}$$

$$T = 2 (Tmil + 400M) = 3912 lb$$

$$D = (0.0158 + 0.0240) q S = 196 lb$$

$$a = (3912 - 196 - 250) \frac{32.174}{10,000}$$

$$= 11.15 ft/sec^{2}$$

$$s_{g} = \frac{V_{T0}^{2}}{2 a} = 2,238 ft$$

Other Factors

<u>Headwinds, Tailwinds, Crosswinds</u>
Headwinds reduce ground roll, Tailwinds increase ground roll
Crosswinds increase the various controllability speeds

Runway Gradient – Not all runways are flat Going up grade increases ground roll Going down grade decreases ground roll

Engine Spool-Up/Spool-Down Times
Engines don't produce instantaneous thrust

In-Ground Effect Aerodynamics
Changes the induced drag characteristics
Dependent on the height and span of the wing

Critical Field Length

In the event of the loss of an engine during ground roll Decision point at Critical Engine Failure Speed Decide whether to continue takeoff or abort takeoff

Only for multi-engine aircraft

Landing

The aircraft landing maneuver can be divided up into three distinct phases:

- Air flight at 50 ft to main gear touchdown
 - includes flare
- Transition begins with main gear on the runway
 - ends with nose gear on the runway
- Ground all landing gear on the runway
 - deceleration devices are deployed
 - wheel braking is used
 - ends when the aircraft completely stops

Boeing 757 Landing Video
Boeing 747 Crosswind Landing Video

F-35C Landing Video

F-35B Landing Video[™]

Landing

Figure 6.17 The landing path and landing distance.

Landing

Approach
Speed V_{app}
> 1.20 V_{stall}

Commercial > 1.30 V_{stall}

Touchdown Speed V_{TD} > 1.10 V_{stall}

Commercial > 1.15 V_{stall}

Landing – Air Segment

Air – flight at 50 ft to main gear touchdown

- includes flare

$$S_{AIR} = (50/\gamma) + R(\gamma/2)$$

Landing – Transition

$$S_{TR} = \left[\left(\frac{V_{TD} + V_{TR}}{2} \right) - V_W \right] \Delta t_{TR}$$

Approximate by assuming 3 seconds to rotate the nose gear to the runway and deploy deceleration devices

$$S_{TR} = 3V_{TD}$$

V_{TD} – Touchdown Velocity

V_{TR} – Transition Velocity

V_w – Wind Velocity

Landing – Ground

$$S_{Brake} = -\frac{(V_{TD} - V_W)^2}{2g\left(T/_W - \mu\right)}$$

$$0.12 < \mu_b < 0.38$$

V_{TD} – Touchdown VelocityV_w – Wind Velocity

For zero thrust and no wind

$$s_{brake} = \frac{V_{TD}^2}{2 g \mu}$$

$$s_g = s_{TR} + s_{brake}$$

Landing – Ground

For zero thrust and no wind

$$S_{TR} = 3V_{TD}$$

$$s_{brake} = \frac{V_{TD}^2}{2 g \mu}$$

$$s_g = s_{TR} + s_{brake}$$

Touchdown
Speed V_{TD}
> 1.10 V_{stall}

Commercial > 1.15 V_{stall}

$$V_{\text{stall}} = \sqrt{\frac{2 \text{ W}}{\rho \text{ S C}_{L_{\text{max}}}}}$$

Stall Speed is dominated by W/S

Landing – Ground

For zero thrust and no wind

$$S_{TR} = 3V_{TD}$$

$$s_{brake} = \frac{{V_{TD}}^2}{2 g \mu}$$

$$s_g = s_{TR} + s_{brake}$$

Touchdown
Speed V_{TD}
> 1.10 V_{stall}

Commercial > 1.15 V_{stall}

$$V_{stall} = \sqrt{\frac{2 W}{\rho SC_{L_{max}}}}$$

Stall Speed is dominated by $C_{L_{max}}$

Homework Assignment

HW #15 – Takeoff and Landing (due by 11:59 pm ET on Monday) Reading – Chapters 6.7 and 6.8

Quiz #5 – Maneuver; Takeoff and Landing (due by 11:59 pm ET on Monday)

HW Help Session
Monday 4:00 – 5:00 pm ET

Posted on Canvas

HW #15 Assignment with instructions, tips, and checklist
HW #15 Template for data table in Excel

Questions?