Seon
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 0 & 1 \end{pmatrix}$$

$$C = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$

a)
$$AB = \begin{pmatrix} -1 & 2 \\ 3 & 4 \end{pmatrix}$$
 ? b) $BA = \begin{pmatrix} -1 & 2 \\ 4 & 3 \end{pmatrix}$?

c)
$$CA = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$
? $AB = \begin{pmatrix} -1 & 2 \\ 4 & 3 \end{pmatrix}$?

$$A \in \mathcal{R}_{(2\times3)}$$
 $B \in \mathcal{R}_{(3\times2)}$ $C \in \mathcal{R}_{(3\times1)}$

a)
$$AB \in \mathbb{R}(2\times 2)$$
, $AB = \begin{pmatrix} -1 & 2 \\ 4 & 3 \end{pmatrix}$, $\mp ALSiD$

b)
$$BA \in \mathbb{R}(3\times3)$$
 $y(-1)^{2} \in \mathbb{R}_{2\times2}$, $\neq ALSO$