Duality Theory

Duality Theory

• Every linear programming problem has associated with it another linear programming problem called the **Dual**. The original problem is called **Primal**.

The watch maker's Problem

Smith Family: Father (F) and Son (S)

Decision	Watch		Working h	ours required of
Variable	Type	Profit Per Unit (\$)	F	S
x_1	1	60	2	3
x_2	2	40	1	4
x_3	3	80	4	2
Maximum Working Hours available per week			50	60

Production plan to maximize total profit from 3 type of watches

Max
$$W = 60 x_1 + 40 x_2 + 80 x_3$$

S.t. $2 x_1 + x_2 + 4 x_3 \le 50$
 $3 x_1 + 4 x_2 + 2 x_3 \le 60$
 $x_1, x_2, x_3 \ge 0$

John Blake

Neighbor and owner of similar product line company (competitor) Wants to hire Father and Son full time

How to convince them (Son and Father) to join him (John Blake)?

Comparable wages with respect to before: "at least" as good as before Hire them at the minimum possible cost: "just enough" to effect the switch over

F's wages
$$-$$
\$ y_1 per hour
S's wages $-$ \$ y_2 per hour

Min
$$B = 50 y_1 + 60 y_2$$

S.t. $2 y_1 + 3 y_2 \ge 60$
 $y_1 + 4 y_2 \ge 40$
 $4 y_1 + 2 y_2 \ge 80$
 $y_1, y_2 \ge 0$

Solution: $y_1 = 15$, $y_2 = 10$, Objective function B = \$1350 per week

Solution of John Blake Problem

• Obj B is min at $y_1 = 15, y_2 = 10$

• Objective function B = \$1350 per week

Will the solution of John Blake help to solve Watch maker's problem?

From watch maker's constraint

$$2 x_1 + x_2 + 4 x_3 \le 50 \tag{1}$$

$$3 x_1 + 4 x_2 + 2 x_3 \le 60 (2)$$

Now,
$$(1)x15 + (2) x 10$$

 $60 x_1 + 55 x_2 + 80 x_3 \le 1350$

Also,
$$60 x_1 + 55 x_2 + 80 x_3 \le 1350 \le 50 y_1 + 60 y_2$$
 (for any feasible y_1 and y_2)

 $60 x_1 + 40 x_2 + 80 x_3$: Watch maker's (Smith Family) objective function Hence, the best Smith Family could do is \$1350 per week.

How can they make it?

Only by chance if $x_2 = 0$

$$2 x_1 + 4 x_3 = 50$$

$$3 x_1 + 2 x_3 = 60$$
 => $x_1 = 70/4$ and $x_3 = 15/4$

Objective function value $W = 60 \times 70/4 + 80 \times 15/4 = \1350

John Blake Problem -> Watch maker's problem & vice-versa

Another Example: Diet Problem

$$Min Z = \sum_{j=1}^{n} c_j x_j$$

Min
$$Z = \sum_{j=1}^{n} c_j x_j$$

S.t. $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$, $\forall i = 1, 2, ..., m$

$$x_j \ge 0$$
, $\forall j = 1, 2, ..., n$

Where,
$$c_j : \text{cost per unit of food } j$$

$$a_{ij} : \text{amount of nutrient } i \text{ available in per unit of food } j$$

$$b_i : \text{minimum nutritional requirement for nutrient } i$$

$$x_j : \text{amount of food to be included in the diet.}$$

$$x_j \ge 0, \quad \forall j = 1, 2, ..., n$$

Let us consider a hypothetical dual problem to the diet problem

Salesman: sales pure nutrient pills (i.e. only iron or only vitamins etc.)

- wants to sell pills to the dietician in order to switch completely from foods to pills
- Price pills subject to
 - (1) A switch takes place competitive prices in terms of cost of foods
 - (2) Total revenue to salesman is maximized if minimum requirements are sold

Dual Problem

$$\mathbf{Max} W = \sum_{i=1}^{m} b_i y_i$$
 Where, y_i : price of *i*th nutrient pill containing one unit of nutrient *i*

S.t.
$$\sum_{i=1}^{m} a_{ij} y_i \le c_j$$
, $\forall j = 1, 2, ..., n$ (Competitive pricing w.r.t. foods)

$$y_i \ge 0,$$
 $\forall i = 1, 2, ..., m$

How to get Dual (D) from Primal (P)?

P

Max
$$Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

Dual Variable

S.t.
$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \le b_1$$

$$y_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$$

y₂ (Optimal Allocation of Resources)

•

•

•

•

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \le b_m$$

 y_m

and $x_j \ge 0$, for j = 1, 2, ..., n

D

Min
$$W = b_1 y_1 + b_2 y_2 + \dots + b_m y_m$$

S.t.
$$a_{11}y_1 + a_{21}y_2 + \dots + a_{m1} y_m \ge c_1$$

$$a_{12}y_1 + a_{22}y_2 + \dots + a_{m2} y_m \ge c_2$$

(Optimal Pricing of Resources)

•

•

$$a_{1n}y_1 + a_{m2}y_2 + \ldots + a_{mn}y_n \ge c_n$$

and
$$y_i \ge 0$$
, for $i = 1, 2, ..., m$

Matrix Form of Primal and Dual Problems

P Max
$$Z = \mathbf{c}\mathbf{x}$$
 Dual variable D Min $W = \mathbf{y}\mathbf{b}$
S.t. $\mathbf{A}\mathbf{x} \le \mathbf{b}$ y S.t. $\mathbf{y}\mathbf{A} \ge \mathbf{c}$
 $\mathbf{x} \ge \mathbf{0}$ $\mathbf{y} \ge \mathbf{0}$ $\mathbf{y} = [\mathbf{y}_1 \ \mathbf{y}_2 \ \dots \ \mathbf{y}_m]$

Summary of P-D Relations (Rules for constructing the dual problem)

Primal Problem	\leftrightarrow	Dual Problem	
Objective: Maximization	\leftrightarrow	Objective: Minimization	
Cost coefficient	\leftrightarrow	RHS	
RHS	\leftrightarrow	Cost coefficient	
Constraints		Variables	
≤	\leftrightarrow	≥ 0	
=		Unrestricted in sign	
≥		≤ 0	
Variables		Constraints	
≥ 0	\leftrightarrow	2	
Unrestricted in sign		=	
≤ 0		≤	

Demonstration of Primal-Dual Rule: Numerical Examples

Example 1: Maximization Type

Max
$$Z = x_1 + 4x_2 + 3x_3$$

Dual Variable

S.t.
$$2x_1+3x_2-5x_3 \le 2$$
 y_1
 $3x_1-x_2+6x_3 \ge 1$ y_2
 $x_1+x_2+x_3=4$ y_3

 $x_1 \ge 0$, $x_2 \le 0$, x_3 unrestricted

Min
$$W = 2y_1 + y_2 + 4y_3$$

S.t. $2y_1 + 3y_2 + y_3 \ge 1$
 $3y_1 - y_2 + y_3 \le 4$
 $-5y_1 + 6y_2 + y_3 = 3$
 $y_1 \ge 0, y_2 \le 0, y_3$ unrestricted

Example 2: Minimization Type

Min
$$Z = 2x_1 + x_2 - x_3$$

Dual Variable

Dual

S.t.
$$x_1 + x_2 - x_3 = 1$$
 y_1
 $x_1 - x_2 + x_3 \ge 2$ y_2
 $x_2 + x_3 \le 4$ y_3

 $x_1 \ge 0$, $x_2 \le 0$, x_3 unrestricted

Max
$$W = y_1 + 2y_2 + 4y_3$$

S.t. $y_1 + y_2 \le 2$
 $y_1 - y_2 + y_3 \ge 1$
 $-y_1 + y_2 + y_3 = -1$
 y_1 unrestricted, $y_2 \ge 0$, $y_3 \le 0$