0. Allgemeines

Carnot-Wirkungsgrad: $\eta_C = 1 - \frac{I_U}{T}$

Lichtgeschwindigkeit: $c = 299.792.458 \frac{m}{c}$

Erdbeschleunigung: $g = 9.81 \frac{m}{c^2}$

$$\left[N = \frac{kg \cdot m}{s^2}\right]$$

 $[1 \ J = 1 \ Nm = 1 \ Ws = 0.2777 \cdot 10^{-6} \ kWh]$

(Umrechnung $Ws \rightarrow kWh$: 1 $Ws \cdot \frac{1}{3.6\cdot10^6}$)

 $1 \, kWh = 3.6 \cdot 10^6 \, I$

 $100 \frac{km}{h} \cdot \frac{1}{3.6} = 27,78 \frac{m}{6}$

Hangabtriebskraft: $F_H = m \cdot g \cdot \sin(\alpha)$

(mit α = Winkel zw. Ebene u. Hang)

Lastenheft

Formulierung der technischen Anforderungen, Normen, Gesetze, Vorschriften

Pflichtenheft

Formulierung von Auftragnehmer; Angaben wie in Lastenheft + Vorgehensvorgabe

$$1km^2 = 10^6m^2$$

 $F_N = F_G \cdot \cos(\alpha)$

F_G: Gewichtskraft

F_H: Hangabtriebskraft

F_N: Normalkraft

m: Masse des Körpers

a: Erdbeschleunigung

a: Steigungswinkel

m²	dm ²	cm²	mm²
1	10²	10⁴	10 ⁸
10 ⁻²	1	10²	10 ⁴
10-4	10 ⁻²	1	10²
10 ⁻⁶	10-4	10 ⁻²	1
$1m^2 = 100 dm^2$	$1 dm^2 = 100 cm^2$	$1 \text{cm}^2 = 100 \text{ mm}^2$	

m³	dm³	cm³	mm³	
1	10 ³	10 ⁸	10°	
10 ⁻³	1	10 ³	10 ⁸	
10 ⁻⁶	10 ⁻³	1	10 ³	
10 ⁻⁹	10 ⁻⁶	10 ⁻³	1	
$1m^3 = 1000 dm^3$ $1dm^3 = 1000 cm^2$		n ² 1cm ³ = 1000 r	mm²	

$$\begin{array}{|c|c|c|c|c|}\hline & \textbf{allgemein} & \textbf{komplex} & \textbf{mit } I \text{ (Reihe)} & \textbf{mit } U \text{ (parallel)}\\ \hline \textbf{S} & S = U \cdot I & \underline{S} = P + jQ = S \cdot e^{j\varphi} = U \cdot I \cdot e^{j(\varphi_U - \varphi_I)} & \underline{S} = \underline{Z} \cdot I^2 = \frac{I^2}{\underline{Y}} & \underline{S} = \frac{U^2}{\underline{Z}^*} = \underline{Y}^* \cdot U^2\\ \hline \textbf{P} & P = U \cdot I \cdot \cos \varphi = S \cdot \cos \varphi & P = Re(\underline{S}) = \frac{Q}{\tan \varphi} = Q \cdot \frac{Re(\underline{Z})}{Im(\underline{Z})} & P = Re\{\underline{Z}\} \cdot I^2 & P = Re\{\underline{Z}\} \cdot I^2\\ \hline \textbf{Q} & Q = U \cdot I \cdot \sin \varphi = S \cdot \sin \varphi & Q = Im(\underline{S}) = P \cdot \tan \varphi = P \cdot \frac{Im(\underline{Z})}{Re(\underline{Z})} & Q = Im\{\underline{Z}\} \cdot I^2 & Q = Im\{\underline{U}^2\}_{\underline{Z}^*} \end{array}$$

(linearer/arithmetischer) Mittelwert / Gleichwert (≜ Gleichanteil)

$$\bar{x} = \frac{1}{T} \cdot \int_{t=0}^{T} x(t) \, dt$$

Sinus = 0, Dreieck = 0, PWM = $\hat{x} \cdot \frac{T_1}{T_1}$

Gleichrichtwert (Mittelwert v. gleichgericht. periodischen Vorgang)

$$\overline{|x|} = \frac{1}{T} \cdot \int_{t=0}^{T} |x(t)| dt$$

 $|\overline{x}| = \frac{1}{T} \cdot \int_{t=0}^{T} |x(t)| dt$ Zweiweg/Brücken: Sinus = $\frac{2}{\pi} \cdot \hat{x}$, Dreieck = $\frac{\hat{x}}{2}$

Einweg: Sinus = $\frac{1}{\pi} \cdot \hat{\chi}$

Bei kleinen Spannungen: jeweils zweite Diode durch Widerstand ersetzen, um Verzerrung durch Schwellenspannung von Diode auszugleichen (Nachteil: verringerter Innenwiderstand)

Effektivwert (quadratischer Mittelwert): $X = \sqrt{\frac{1}{T} \cdot \int_{t=0}^{T} x^2(t) dt}$

Sinus = $\frac{\hat{x}}{\sqrt{2}}$, Dreieck = $\frac{\hat{x}}{\sqrt{3}}$, Rechteck = $\sqrt{X_0^2 + \hat{x}^2}$, PWM = $\hat{x} \cdot \sqrt{\frac{T_1}{T}}$

Effektive Leistung = Wirkleistung: $P_{eff} = \frac{1}{\tau} \cdot \int_{t=0}^{T} p(t) dt$

Formfaktor (Effektivwert/Gleichrichtwert): $F = \frac{X_{eff}}{|x|}$ Sinus = $\frac{\pi}{2\sqrt{2}}$, Dreieck = $\frac{2}{\sqrt{3}}$

Crest-/Scheitelfaktor (Scheitelwert/Eff.): $S = \frac{\hat{x}}{X_{eff}}$ Sin = $\sqrt{2}$, Dreieck = $\sqrt{3}$, PWM = $\sqrt{\frac{T}{T_1}}$

3.1 Kinematik

Bewegungsgrößen

geradlinige Bewegung \rightarrow Translation \rightarrow Geschwindigkeit $v = \frac{ds}{dt} \rightarrow$ Beschleunigung $a = \frac{dv}{dt}$ Drehbewegung \rightarrow Rotation \rightarrow Winkelgeschw. $\omega = \frac{d\varphi}{dt} = 2\pi n \rightarrow$ Wink.beschl. $\alpha = \frac{d\omega}{dt} = 2\pi \frac{dn}{dt}$ (n = Drehzahl)

Kraft, Drehmoment, Energie, Leistung, Massenträgheitsmoment

Kraft: $F = ma = m\dot{v}$

Translation

Überaana

dynamisches Grundgesetz der Translation: $F - F_W = ma$ (mit F_W = Reibung o.Ä.) kinetische Energie bei Translation: $W_{kin} = \frac{1}{2}mv^2$ \rightarrow mech. Leistung: $P = \frac{dW}{dt} = \frac{F \cdot ds}{dt} = F \cdot v$

Geschwindigkeit bei Rotation: $v = \omega \cdot R = 2\pi n \cdot R$

(mit R = Radius)

kinetische Energie bei Rotation: $W_{kin} = \frac{1}{2}m(\omega \cdot R)^2 = \frac{1}{2}mR^2 \cdot \omega^2$

 $\rightarrow W_{kin} = \frac{1}{2}J\omega^2$ → (Massen)Trägheitsmoment: $J = mR^2$ [$kg \cdot m^2$]

Vollzylinder: $J = \frac{1}{2}mR^2$ Hohlzylinder: $J = mR^2$

Vollkugel: $J = \frac{2}{5}mR^2$ Hohlkugel: $J = \frac{2}{5}mR^2$

zugeführte Leistung bei Rotation: $P = \frac{dW}{dt} = F_W \cdot v = F_W \cdot \omega R = F_W R \cdot \omega$

 \rightarrow Widerstandsmoment (z.B Reibung): $M_{Last} = F_W \cdot R$ oder $M_{Last} = \frac{F_W \cdot R}{n}$

dynamisches Grundgesetz der Rotation: $\sum M = J \cdot \frac{d\omega}{dt} = J \cdot \alpha$

Drehmoment: $M = F \cdot R = J \cdot \frac{d\omega}{dt}$ [Nm]

 \rightarrow mech. Leistung: $P = M\omega = M \cdot 2\pi \cdot n$

Übertragung rotatorisch/rotatorisch

Geschwindigkeit an Übertragungsstelle (ohne Schlupf):

 $v_1 = v_2 \rightarrow 2\pi n_1 \cdot r_1 = 2\pi n_2 \cdot r_2 \rightarrow \text{Übersetzung: } \ddot{\mathbf{u}} = \frac{n_1}{n_2} = \frac{r_2}{r_1}$

Kräftegleichgewicht an Übertragungsstelle:

$$F_1 = F_2 \Rightarrow \frac{M_1}{r_1} = \frac{M_2}{r_2} \qquad \Rightarrow \frac{r_1}{r_2} = \frac{M_1}{M_2}$$

$$\rightarrow \frac{r_1}{r} = \frac{M_1}{M_2}$$

Leistung an Übertragungsstelle: $P_1 = P_2$ $\rightarrow M_1 \cdot \omega_1 = M_2 \cdot \omega_2$

$$\Rightarrow \ddot{\mathbf{u}} = \frac{r_2}{r_1} = \frac{M_2}{M_1} = \frac{\omega_1}{\omega_2} = \frac{n_1}{n_2} = \frac{n_1}{\frac{v_2}{2\pi r_2}} \qquad \qquad \ddot{\mathbf{u}} = n_{Mot} \cdot \frac{2\pi r_2}{v_2} \quad (\text{mit } v_2 = \text{Geschw. 2}) \qquad \Rightarrow \frac{M_1}{M_2} = \frac{1}{\ddot{\mathbf{u}}}$$

$$\ddot{\mathbf{u}} = n_{Mat} \cdot \frac{2\pi r_2}{\mathbf{u}} \quad \text{(mit } v_2 = \mathbf{G}$$

$$\frac{\pi r_2}{v_2}$$
 (mit v_2 = Geschw. 2

$$\rightarrow \frac{M_1}{M} =$$

ü immer > 1!

Summierung der Energien: $W_{kin} = \frac{1}{2}J_1\omega_1^2 + \frac{1}{2}J_2\omega_2^2 = \frac{1}{2}(J_1 + \frac{J_2}{2}) \cdot \omega_1^2 = \frac{1}{2}(J_1 \cdot \ddot{u}^2 + J_2) \cdot \omega_2^2$

- → Vorteil: Energie mithilfe Übersetzung durch eine Winkelgeschwindigkeit darstellbar
- → Zusammenfassung Trägheitsmomente: $J_{res1} = J_1 + \frac{J_2}{\pi^2}$ und $J_{res2} = J_2 + J_1 \cdot \ddot{u}^2$

Beispiel: Verlustloses Getriebe

Übertragung rotatorisch/translatorisch

Summe der Energien: $W_{kin} = \frac{1}{2}J\omega^2 + \frac{1}{2}mv^2 = \frac{1}{2}J\omega^2 + \frac{1}{2}mr^2\omega^2 = \frac{1}{2}J_{res}\omega^2$ $(J_{res} = J + mr^2)$

Bewegungsgleichung

Rotation (Bsp Antriebsmotor)

DGL: $M_{Mot} - M_{Last} = J_{res} \cdot \frac{d\omega}{dt} = J_{res} \cdot \alpha$ (mit M_{Last} = Widerstandsmoment) J_{res} enthält gesamtes Trägheitsmoment: $J_{res} = J_{Mot} + J_{Welle} + J_{Last}$

durch Integration Hochlaufzeit T_H berechenbar (n_a = Anlaufdrehzahl):

$$T_{H} = \int dt = \int_{n_{a}}^{n_{e}} \left(\frac{J_{res}}{M_{Mot}(n) - M_{Last}(n)} \cdot 2\pi \right) dn \qquad \Rightarrow T_{H} = \frac{J_{res} \cdot 2\pi \cdot (n_{e} - n_{a})}{M_{Mot} - M_{Last}}$$

Wirkungsgrad u. Energieeffizienz

 $\begin{aligned} & \text{wenn } P_1 = P_2 + P_V & \qquad & \Rightarrow \text{Wirkungsgrad: } \eta = \frac{P_2}{P_1} = \frac{P_1 - P_V}{P_1} = 1 - \frac{P_V}{P_1} \\ & \text{wenn } W_1 = W_2 + W_V & \qquad & \Rightarrow \text{Nutzungsgrad: } \varepsilon = \frac{W_2}{W_*} \end{aligned}$

(zeitpunktbezogen!)

(zeitraumbezogen!)

Antriebsmaschine

Drehzahl n

Energieumsetzung: $W_{ae} = \int_{t-t}^{t_e} p(t) dt$

Anwendung

instabiler Arbeitspunkt: M-n-Kennlinien Antriebsmaschine u. Arbeitsmaschine fast parallel → kleine Änderung M würde große Änderung n bewirken (schlecht!)

Veränderliche Massenträgheitsmomente (J)

(Bsp. drehender Roboterarm)

bei Drehung in Richtung ϑ ist J von Winkel φ abhängig: $J_{res}(\varphi) = J_{\vartheta} + m_{ers} \cdot r'^2 = J_{\vartheta} + m_{ers} \cdot r^2 \cdot \sin^2 \varphi$ (mit $I_{19} = I_{res}(\varphi = 0)$)

...Fortsetzung Anwendung

Beschleunigungsverhalten

Beschleunigungskraft: $F_B = m \cdot a$

Fahrwiderstandskraft: $F_W(v) = \frac{\frac{150N}{m}}{\frac{1000kg}{1000kg}} + 400N \cdot \left(\frac{\frac{v}{1km/h}}{100}\right)^2$

Traktions-/Zugkraft: $F_{Tr} = F_W + F_B$

Traktionsleistung Räder: $P_{Tr,R\ddot{a}d}=F_{Tr}\cdot v$ Traktionsl. Batterie: $P_{Tr,Batt}=\frac{P_{Tr,R\ddot{a}d}}{\eta\cdot\eta\cdot...}$

Batteriestrom: $I_{Batt} = \frac{P_{Tr,Batt}}{U_{Batt}}$ kin. Energie Fahren: $W = \frac{1}{2} \cdot m \cdot v^2$

Winkelbeschleunigung beim Bremsen: $\alpha = \frac{M}{J} = \frac{M_{Mot} - M_{Last}}{J_{res}}$ $\left[\frac{1}{s^2}\right]$ (mit $M_{Last} = \frac{F_W \cdot R}{\ddot{u}}$)

Zeit Bremsvorgang: $T_{Brems} = \frac{\Delta n \cdot 2\pi}{\dot{\omega}} = \frac{\Delta n \cdot 2\pi}{\alpha}$

entnommene Bremsenergie: $\Delta W_{ges} = \frac{1}{2} \cdot J_{res} \cdot (\omega_1^2 - \omega_2^2) = \frac{1}{2} \cdot J_{res} \cdot \left((2\pi)^2 (n_1^2 - n_2^2) \right)$

Energie-Anteil Fahrwiderstand: $\Delta W_W = \frac{F_W \cdot v_1 + F_W \cdot v_2}{2} \cdot T_{Brems} = \frac{P_{W1} + P_{W2}}{2} \cdot T_{Brems}$

Energie-Anteil Motor: $\Delta W_{Mot} = \Delta W_{ges} - \Delta W_{W}$

zurückgespeiste Bremsenergie: $W = P \cdot T_{Brems} = F_{Tr} \cdot v \cdot T_{Brems}$

(mit F_{Tr} = Kraft bei Bremsbeginn, v = mittlere Geschwindigkeit Bremsvorgang)

Drehzahl bei bestimmter Geschwindigkeit: $n = \ddot{\mathbf{u}} \cdot \frac{v}{2\pi R}$ $\begin{bmatrix} \frac{1}{s} \end{bmatrix}$

(mit R = Reifenradius, \ddot{u} = Übersetzung Getriebe)

Wirkungsgrad einer Kupplung

Betrachtung Leistungsaufteil und Verluste an Übertragungsstelle

übertragbares Drehmoment M_K :

 $M_A = M_K = F_K \cdot \mu \cdot R = M_W + J_W \cdot \frac{d\omega_W}{dt}$ (mit μ = Reibkoeffizient)

stationärer Zustand: $J_W \cdot \frac{d\omega_W}{dt} = 0 \rightarrow M_W = M_A$

Leistung Antrieb: $P_A = M_A \cdot \omega_A$ Leistung übertragen: $P_K = M_A \cdot \omega_W$

Leistungsbilanz: $P_A = P_K + P_V$ (mit $P_V = M_A \cdot (\omega_A - \omega_W)$)

→ Verluste ergeben sich bei asynchronem Verhalten

Wirkungsgrad Übertragungsstelle: $\eta_K = \frac{P_K}{P_A} = 1 - \frac{M_A \cdot (\omega_A - \omega_W)}{M_A \cdot \omega_A} = \frac{n_W}{n_A}$

Schlupf: $s = \frac{n_A - n_W}{n_A} = 1 - \frac{n_W}{n_A}$ $\rightarrow \eta_K = 1 - s$

4.1 Windkraft

$$W_{Wind} = W_{kin} = rac{1}{2} \cdot m \cdot v^2$$
 mit: $m = V \cdot \rho = A \cdot l \cdot \rho$ (Luftdichte $\rho = 1,225 rac{kg}{m^3}$) mit Rotorfläche: $A = D^2 \cdot rac{\pi}{4}$

 $\rightarrow W_{Wind} = V \cdot \frac{\rho}{2} \cdot v^2 = \frac{D^2 \cdot l \cdot \pi}{4} \cdot \frac{\rho}{2} \cdot v^2$

 $\Rightarrow P_{Wind} = \frac{dW_{Wind}}{dt} = \frac{D^2 \cdot \pi}{4} \cdot \frac{\rho}{2} \cdot v^3$

 $(da\frac{dl}{dt} = v)$

 \rightarrow entnehmbare Leistung proportional zu D^2 und v^3 !

Aber: Abbremsen der Luftmasse

 $W_{Wind} = V \cdot \frac{\rho}{2} \cdot (v_1^2 - v_3^2)$

bei Windgeschwindigkeit v_2 : $P_{Wind} = \frac{dW_{Wind}}{dt} = A \cdot v_2 \cdot \frac{\rho}{2} \cdot (v_1^2 - v_3^2)$ optimale Leistungsentnahme bei $v_2 = \frac{2}{3}v_1$ und $v_3 = \frac{1}{3}v_1$ $\Rightarrow P_{Wind,max} = \frac{16}{27} \cdot A \cdot \frac{\rho}{2} \cdot v_1^3$

in Luftströmung enthaltene Leistung:

Leistungsbeiwert:

Schnelllaufzahl:

Leistungskennlinie: Nennleistung $\frac{P_N}{P_N}$:

max. Geschwindigkeit Blattspitze:

Jahresenergieertrag:

Ausnutzungsdauer:

Ausnutzungsgrad:

$$\begin{split} &P_{Wind} = A \cdot \frac{\rho}{2} \cdot v_1^3 = \frac{D^2 \cdot \pi}{4} \cdot \frac{\rho}{2} \cdot v^3 \\ &c_P = \frac{P_{mech}}{P_{Wind}} = \frac{P_N}{P_{Wind}} \qquad (c_{P,max} = \frac{16}{27} \approx 0,59) \\ &\lambda = \frac{v_U}{} \qquad (v_U = \text{Umfangsgeschw.}) \end{split}$$

 $P(v) = c_P(v) \cdot P_0(v)$ Leistung am höchsten Punkt

 $v_{max} = D \cdot \pi \cdot n_{max}$ $W_{a} = T_{N} \cdot (\sum_{v=1}^{n} P_{v} \cdot h_{v})$

 $W_a = T_N \cdot (\sum_{v=1}^n P_v \cdot h_v)$ ($T_N = 8.760h$) → P_v ist P bei mittlerer Geschwindigkeit!

 $T_n = \frac{W_a}{P_N}$

n =

4.3 Solartechnik

Energie: $W = \int p(t) dt$

Bsp. Sinus-Halbwelle von 7 – 17 Uhr mit $P_{max} = \hat{p}$ $\rightarrow W = 2 \cdot P_{max} \cdot \frac{10h}{\pi}$

3.2 Synchronmaschine (nahezu immer Sternschaltung)

Energieumwandlung: Energieumformung:

mechanische → elektrisch (Generator)
elektrisch → mechanisch (Motor)

Strahlung → elektrisch (PV)

Gleichstrom → Wechselstrom (Wechselrichter)
Wechselstrom → Gleichstrom (Gleichrichter)
Wechselstrom → Wechselstrom (Trafo, Umrichter)

→ immer mit Leistungsverlust in Form von Wärme verbunden (tdm. hoher Wirkungsgr.)

p = Polpaarzahl ightarrow Anzahl Wicklungen $m \triangleq p
ightarrow$ Anzahl Spulen = Wicklungen $m \cdot p$

 \rightarrow Spulen werden von Strömen gespeist, die um $\frac{2\pi}{m}$ phasenverschoben sind

Grundfeld Drehstromwicklung: $b_P(x,t) = B_P \cdot \cos(px - \omega_1 t)$

Frequenz Ständerströme: $f_1 = f_2 + p \cdot n$ (f_2 = Frequenz Läuferströme, n = Drehzahl)

(bei DC: $f_2 = 0 \rightarrow n = n_1 = \frac{f_1}{n}$; $n_1 = \text{synchrone Drehzahl}$)

Vollpolläufer: Erregerwicklung in Nuten

(für große Drehzahlen)

Schenkelpolläufer: Erregerwicklung auf Polschuhkernen, Einzelpole auf Läuferkörper montiert

(für kleine Drehzahlen)

permanenterregter Läufer: Dauermagnete auf Läufer geklebt (keine Änderung Amplitude mgl)

Läuferfeld induziert in Ständerwicklung Polradspannung U_{P}

 $\rightarrow \underline{U}_P = jX_h \cdot \underline{I}_E' = j \cdot 2\pi n_1 p \cdot L_h \cdot \underline{I}_E'$ \rightarrow induzierte Polradspannung proportional zu n (I_E' = fiktiver netzfrequenter Erregerstrom, X_h = Hauptreaktanz)

Strangspannung $\underline{U}_1 = jX_d \cdot \underline{I}_1 + \underline{U}_P$

 $\left(U_1 = \frac{U_N}{\sqrt{3}}\right)$

bei Sternschaltung: $I_N = \frac{S_N}{\sqrt{3} \cdot U_N}$

Synchronreaktanz $X_d = x_d \cdot Z_N$

 $\left(Z_N = \frac{U_1}{I_N}\right)$

 $(x_d \text{ oft als Bezug; zw 0,7 und 2,0})$

Achtung! Z_N rein fiktive Größe! Gibt es nur im Nenn-Bereich!

oder: $X_d = \omega \cdot L_d = 2\pi f \cdot L_d = 2\pi \cdot n \cdot p \cdot L_d$

auch: $X_d = X_h + X_\sigma$ (mit X_h = Hauptreakt., X_σ = Streureakt.)

 $\vartheta_L = \text{Polradwinkel} / \text{Lastwinkel}$

Zeichenreihenfolge:

- 1. U_1 senkrecht nach oben
- 2. φ abmessen
- 3. $I_1 = I_N$ einzeichnen
- 4. $-jX_d \cdot \underline{I_1}$ im rechten Winkel zu $\underline{I_1}$
- 5. \underline{U}_P einzeichnen und messen
- 6. ϑ_L messen (Vorzeichen beachten!)

Stromortskurve

Wenn Polradspannung \underline{U}_P gleich Klemmenspannung \underline{U}_1 : Strom I_{E0} = Leerlauferregerstrom

linke Halbebene:

übererregt, ind. Blindl. abgegeben rechte Halbebene:

untererregt, ind. Blindl. aufgenommen

 $|\vartheta_L| > 90^{\circ}$ nicht mgl ightarrow instabil

$$P_{el} = 3 \cdot U_1 \cdot I_1 \cdot \cos \varphi = P_{mech}$$
 (gilt nur ohne Verluste!)

Drehmoment:
$$M = \frac{P_{mech}}{2\pi \cdot n_1}$$

da
$$I_1 \cdot \cos \varphi = -\frac{U_P}{X_d} \cdot \sin \vartheta_L$$
 $\Rightarrow M = -\frac{3}{2\pi \cdot n_1} \cdot \frac{U_1}{X_d} \cdot U_P \cdot \sin \vartheta_L$ (max. Polradwinkel $\vartheta_L = \pm 90^\circ \Rightarrow$ max. Drehmoment ("Kippmoment") $M_{kipp} = \pm \frac{3}{2\pi \cdot n_1} \cdot \frac{U_1}{X_d} \cdot U_P$)

Generator: Leistung und Drehmoment negativ!

Synchrondrehzahlen

Achtung: p ist hier in Tabelle Polzahl, nicht Polpaarzahl

p	2	4	6	8	10	12	14	16	18	20
n	3000	1500	1000	750	600	500	428,6	375	333,3	300

 $[\min^{-1}]$

3.3 Asynchronmaschine

überwiegend als Motoren (bis 10 MW), bei Windkraftwerken als Generatoren (bis 5 MW) genormte Anbaumaße bis <= 132kW Nennleistung überwiegend 4-polig

Voraussetzung für zeitlich konstantes Drehmoment:

magn. Feld, das mit konstanter Winkelgeschwindigkeit ω_1 im Luftspalt, räumlich möglichst sinusförmig verteilt, umläuft

Grundfeld einer Drehstromwicklung: $b_P(x,t) = B_P \cdot \cos(px - \omega_1 t)$

Ständer- und Läuferfrequenz, Schlupf (Indizes: 1 = Ständer, 2 = Läufer)

Ständerkoordinaten ("Ort"): $x_1 = 2\pi nt + x_2$ (mit n = Läuferdrehz., x_2 = Läuferkoord.) magn. Feld im Läufer induziert Spannung mit Läuferfrequenz:

$$f_2 = f_1 \cdot \left(1 - \frac{n \cdot p}{f_1}\right) = f_1 - p \cdot n$$
 (mit n = Läuferdrehz., p = Polpaare) $p = \frac{f_N}{n_N}$ gerundet!

$$p = \frac{f_N}{n_N}$$
 gerundet

(wenn Läufer stillsteht: $f_2 = f_1$, wenn Läuferdrehz. = Ständerdr. n: $f_2 = 0$ (da kein U induz.))

$$= s \cdot f_1$$

Darstellung der Läuferfrequenz als Schlupf:
$$f_2 = s \cdot f_1$$
 $\Rightarrow s_N = \frac{n_1 - n}{n_1} = \frac{\frac{f_N - n_N \cdot p}{p}}{\frac{f_N}{p}} = \frac{f_N - n_N \cdot p}{f_N}$

Schlupf beschreibt relative Abweichung von Läuferdrehzahl n zu synchroner Drehzahl n_1

$$\Rightarrow n = n_1 \cdot (1 - s)$$

$$n_1 = \frac{f_N}{p}$$

(Drehzahl steigt gegen den Uhrzeigersinn auf Ortskurve an!)

Ersatzschaltbild

Magnetisierungsstrom: $\underline{I}_{\mu} = \underline{I}_1 + \underline{I}_2'$

(mit \underline{I}_1 = Ständerstrom, \underline{I}'_2 = netzfrequ. Läuferstrom)

 X_k = Ständer- u. bezogene Läuferstreureaktanz

ightarrow Ortskurve ist Kreis mit MP: $\underline{Y} = -\frac{j}{X_h} - \frac{j}{2 \cdot X_k}$ und Rad. $\frac{1}{2 \cdot X_k}$

Berechnung φ_N : von U_N nach I_N , Minus-Winkel

Spaltung der Luftspaltleistung

im Läufer umgesetzte Leistung: $P_{\delta} = 3 \cdot I_2^{\prime 2} \cdot \frac{R_2^{\prime}}{2}$ \rightarrow muss über Luftspalt übertragen werden

Luftspaltleistung: $P_{\delta} = s \cdot P_{\delta} + (1 - s) \cdot P_{\delta} = P_{Cu2} + P_{mech}$

(Summe Wärmeverluste Läufer u. mechanischer Leistung)

mit <u>Wärmeverlusten</u> in Läuferwicklung: $P_{Cu2} = 3 \cdot {I_2'}^2 \cdot R_2' = s \cdot P_{\delta}$ (nur bei Y-Schaltung!)

(bei Δ -Schaltung: $P_{Cu2} = {I'_{2L}}^2 \cdot R'_2$ (da Leiterstrom \neq Strangstrom))

mit mechanischer Leistung:
$$P_{mech} = P_{\delta} - P_{Cu2} = P_{\delta} \cdot (1 - s)$$
 $(P_{\delta} \triangleq P_{el})$

→ Gesetz über Spaltung der Luftspaltleistung

Leistung bei generatorisch negativ

$$\rightarrow$$
 Drehmoment: $M = \frac{P_{mech}}{2\pi n} = \frac{P_{\delta} \cdot (1-s)}{2\pi n_1 \cdot (1-s)} = \frac{P_{\delta}}{2\pi n_1}$ $M_N = \frac{P_N}{2\pi \cdot n_N}$

$$M_N = \frac{P_N}{2\pi \cdot n_N}$$

Stromortskurve

Maßstäbe:

Strom:
$$m_I = \left[\frac{A}{cm}\right]$$
Leistung: $m_P = \sqrt{3} \cdot U_N \cdot m_I = \left[\frac{W}{cm}\right]$

Drehmoment:
$$m_M = \frac{m_P}{2\pi n_1}$$
 $\left[\frac{Nm}{cm}\right]$
Schlupf: $m_S = \frac{s_{kipp}}{Radius}$ $\left[\frac{1}{cm}\right]$ (mit $Radius = \overline{M_{kipp}MP}$)

 \underline{I}_1 (hier \underline{I}_N): Ständerstrom

bezogener Läuferstrom

 I_{μ} (hier I_0): Magnetisierungsstrom, geht immer bis P_0 (Kreisverschieb.)

Abstand \overline{PB} Drehmoment *M*: mechanische Leistung P_{mech} : Abstand \overline{PA} Wärmeverlustleitung P_{Cu2} : Abstand \overline{AB}

Strecke \overline{PB} entspricht Luftspaltleistung, deshalb:

 $\overline{P_0 P_\infty}$ = Drehmomentgerade = Gerade der Luftspaltleistung (da $M = \frac{P_\delta}{2\pi n}$)

Strecke \overline{PA} entspricht mechanischer Leistung, deshalb: $\overline{P_0P_k}$ = Gerade der mech. Leistung

motorischer Bereich: $0 \le s \le 1$ \rightarrow s = 0: Synchronismus, s = 1: Stillstand, Kurzschluss generatorischer Bereich: s < 0 $\rightarrow n > n_1$, Luftspaltleistung wird negativ; ohne

Schaltungsänderung möglich

Gegenstrombremsbereich: $s > 1 \rightarrow$ Läuferdrehzahl n wird negativ, Läufer dreht sich entgegen Umlaufrichtung des Luftspaltfeldes, Aufnahme mechanische und elektrische Leistung und Umwandlung in Wärme

Kippmoment (= maximales Drehmoment)

$$M_{kipp} = \pm \frac{1}{2\pi n_1} \cdot \frac{U_1^2}{2X_k}$$
 $s_{kipp} = \pm \frac{R_2'}{X_k}$ Kloss'sche Gleichung: $\frac{M}{M_{kipp}} = \frac{2}{\frac{S}{S_{kipp}} + \frac{S_{kipp}}{S}}$

$$\Rightarrow s_{1/2} = \frac{s_{kipp}}{M} \cdot \left(M_{kipp} \pm \sqrt{M_{kipp}^2 - M^2} \right) \quad \text{oder} \quad s_{kipp_{1/2}} = \frac{s}{M} \cdot \left(M_{kipp} \pm \sqrt{M_{kipp}^2 - M^2} \right)$$

Drehmoment-Drehzahl-Kennlinie

stationärer Betrieb mit Last ($|s| < s_N$) näherungsweise durch Gerade darstellbar (rechts): $M(s) = \frac{M_N}{s_N} \cdot s$

Kurve würde punktsymmetrisch zum x-Achsen-SP im Negativen weitergehen → generatorisch

relative Größen

relatives Anzugsmoment

 $m_A = \frac{M_A}{M_N}$ typisch 1 – 2 $m_{kipp} = \frac{M_{kipp}}{M_N}$ typisch 2 – 2,5 (min 1,6) rel. Kippmoment (Überlastbarkeit):

relativer Anlaufstrom typisch 5 – 7

Anlauf von Antrieben

Bewegungsgleichung: $\frac{d\omega}{dt} = \frac{M_M(n) - M_L(n)}{J_{res}} = f(n)$

(mit M_M = Motormoment, M_L = Lastmoment, J_{res} = Trägheitsmoment)

Stern-Dreieck-Anlauf

Erst Sternschaltung, dann Dreieck, um Anlaufstrom und Anzugsmoment um $\frac{1}{2}$ zu reduzieren

5.1 Energiemesstechnik

Leistungsmessung

$$I = \sqrt{\frac{1}{N} \sum_{i=1}^{N} I_i^2}$$

N: Anzahl Abtastwerte

$$I^2 = I_1^2 + \sum_{v} I_v^2$$

 I_1 : Grundschwingungseffektivwert

*I*_n: Oberschwingungseffektivwerte

$$U = \sqrt{\frac{1}{N} \sum_{i=1}^{N} U_i^2}$$

$$P = \frac{1}{N} \sum_{i=1}^{N} U_i I_i$$

$$S = U \cdot I$$
$$Q = \sqrt{S^2 - P^2}$$

$$\cos(\varphi) = \frac{P}{c}$$

$$\lambda = \frac{P}{S}$$

 $P = \sqrt{3} \cdot U_L \cdot I_L \cdot \cos(\varphi)$

P: Wirkleistung [W]

Q: Blindleistung [var]

S: Scheinleistung [VA]

λ: Leistungsfaktor

 $cos(\varphi)$: Verschiebungsfaktor

Sternschaltung -> Phasen- und Leiterstrom identisch

Dreieckschaltung -> $I_L = \sqrt{3} \cdot I$; $U_L = \sqrt{3} \cdot U$

$$Q = \sqrt{Q_1^2 + Q_D^2}$$

$$Q_1 = U_1 \cdot I_1 \cdot \sin(\varphi)$$

 Q_1 : Grundschwingungsblindleistung

Q_D: Verzerrungsblindleistung

Stromwandler

$$\frac{I_1}{I_2} = \frac{N_2}{N_1}$$
 mit $N_1 = 1$

 I_1 : Eingangsstrom

I₂: Ausgangsstrom

 N_1 : Primärwindungszahl

N2: Sekundärwindungszahl

Energiemessung

$$W_P = \sum_i P_i \Delta t_i$$

 $W_Q = \sum_i Q_i \Delta t_i$
 W_P : Wirkarbeit

 W_0 : Blindarbeit

3.4 Transformatoren

Bild 3.4.1: T-Ersatzschaltbild des Transform

Die Bedeutung der Ersatzgrößen zeigt folgende Tabelle.

Hauptreaktanz (Hauptinduktivität) $X_h = \omega M$

 $X_{\sigma 1}, X_{\sigma 2}$ Streureaktanzen $X_{\sigma 1} = \omega L_{\sigma 1}$: $X_{\sigma 2} = \omega L_{\sigma 2}$

 R_1, R_2 : Wicklungswiderstände

Widerstand, der die Eisenverluste repräsentiert

Leerlaufversuch (Bestimmung R_{Fe} und X_h)

hier ist :
$$I_0 << (I_1; I_2)$$

$$\Rightarrow I_1 \approx I_0 = I_{10}$$

$$\Rightarrow Z_{1h} = \frac{U_1}{I_{10}}$$

$$R_{1Fe} = \frac{U_1^2}{P_{Fe}}$$

$$ightarrow Z_{1h} = rac{U_1}{I_{10}} \qquad ext{und} \qquad R_{1Fe} = rac{U_1^2}{P_{Fe}} \qquad ext{und} \qquad X_{1h} = rac{1}{\sqrt{rac{1}{Z_{1h}^2} rac{1}{R_{1Fe}^2}}}$$

Kurzschlussversuch (Bestimmung R_k (zsm R_1 und R_2) und X_k (zsm $X_{\sigma 1}$ und $X_{\sigma 2}$)) Vernachlässigung R_{Fe} und X_h

Speisung der OS-Seite mit kleinem U_k (so gewählt, dass Nenn-Strom fließt)

Angabe relativ zu Nennspannung: u_{ν} (relative Kurzschlussspannung)

 $\rightarrow P_{kN}$ wird gemessen \rightarrow Kupferverluste Wicklungen

$$\Rightarrow Z_k = u_k \cdot \frac{U_{1N}}{I_{1N}} = u_k \cdot \frac{U_N^2}{S_N}$$

und
$$R_k = P_{kN} \cdot \frac{1}{l_{1N}^2} = P_{kN} \cdot \frac{U_N^2}{s_N^2}$$
 und

Achtung: U_N immer von Bezugsseite (Wert aus ü-Angabe)!

$$I_N = \frac{\underline{S}_N^*}{\sqrt{3} \cdot \underline{U}_N^*}$$
 (immer \underline{U}_N !)

$$\rightarrow Z_k = R_k + j \cdot X_k$$

Berücksichtigung Übersetzungsverhältnis ü (in Form von "Strich"-Größen zB U_2 ")

Bild 3.4.5: Ersatzschaltbild (ESB) des belasteten Transformators mit idealem Übertrager

$$\frac{1}{1} = \frac{N_1}{N_2} = \frac{I_2}{I_1} = \frac{U_1}{U_{20}} = \left(\frac{U_{1L}}{U_{20L}}\right)$$
 (N₁)

 $(N_1 = \text{OS-Seite}, N_2 = \text{US-Seite}, \text{mit } U_{20} = \text{Leerlaufspannung US})$

ightarrow Verwendung der bezogenen Größen: $U_2' = \ddot{\mathbf{u}} \cdot U_2$ und $I_2' = \frac{I_2}{\pi}$

Wenn ESB auf US bezogen: $I'_{OS} = I_{OS} \cdot \ddot{\mathbf{u}}$ und $I'_{OS} = \frac{U_{OS}}{\ddot{\mathbf{u}}}$, sonst umgekehrt

 \rightarrow da I_{μ} sehr klein gilt: $\underline{I}_1 \approx \underline{I}_2'$

Berechnung U_2' :

Achtung wenn U_Q o.Ä. gegeben, ob $\frac{1}{\sqrt{2}}$ nötig!

$$\underline{U}_1 = (R_k + j \cdot X_k) \cdot \underline{I}_1 + \underline{U}_2'$$

Kurzschlussimpedanz: $Z_k = R_k + j \cdot X_k$ Lastimpedanz: $Z'_L = \ddot{\mathbf{u}}^2 \cdot Z_L$

Wenn nach Wirk-/Scheinleistung gefragt prüfen ob x3 nötig wg. Drei-Phasen-System!

Umrechnung 3-Phasen-System

$$\underline{I}_1 = \underline{I}_{31} - \underline{I}_{12}$$
 $\underline{I}_2 = \underline{I}_{12} - \underline{I}_{23}$ $\underline{I}_3 = \underline{I}_{23} - \underline{I}_{31}$

äquivalent: $\underline{Z}_{Stern} = \frac{\underline{Z}_{Dreieck}}{2}$ und $\underline{Y}_{Stern} = 3 \cdot \underline{Y}_{Dreieck}$

Bezeichnung Drehstromtransformatoren

Dvn5

→ D = OS Dreieck, y = US Stern, n = Neutrall. nach außen gef., 5 = US eilt OS 5 · 30° nach

Verluste und Wirkungsgrad

Eisenverluste: $P_{Fe} = \left(\frac{U_1}{U_{FeN}}\right)^2 \cdot P_{FeN}$ (mit P_{FeN} = Eisenverluste bei Nennspannung)

Stromwärmeverluste: $P_k = \left(\frac{I_1}{I_{1\,N}}\right)^2 \cdot P_{kN}$ (mit P_{kN} = Stromwärmeverluste bei Nennstrom)

abgegebene Leistung: $P_{ab} = \sqrt{3} \cdot U_{2L}' \cdot I_{2L}' \cdot \cos \varphi_2$ Wirkungsgrad: $\eta = \frac{P_{ab}}{P_{ab} + P_{Fe} + P_{k}}$ (typisch (typischerweise sehr hoch, $\sim 99\%$)

4.4 Leitungen und Kabel

ESB

Kenngrößen einer Leitung		
Ohmscher Widerstand	R'	$[\Omega / km]$
Ohmscher Querleitwert	G	[S/km]
induktiver Längswiderstand	$X'=\omega \cdot L'$	$[\Omega / km]$
kapazitiver Querleitwert	$B'=\omega \cdot C_B'$	[S / km]

Physikalische Bedeutung der Elemente

 \vec{E} – Feld kapazitiver Querleitwert \vec{H} – Feld induktiver Längswiderstand Ohmscher Widerstand Leitungsverluste Ohscher Querleitwert dielektrische Verluste

Ohmscher Widerstand:

$$R' = \frac{1}{r_1 4} \tag{}$$

 $(\chi = \text{spez. Leitwert}, A = \text{Leiterquerschnitt})$

inkl. Temperatur:

$$R'_{\theta} = R'_{20} \cdot \left(1 + \alpha_{20} \cdot (\vartheta - 20^{\circ}C)\right)$$

nperatur:
$$R'_{\vartheta} = R'_{20} \cdot \left(1 + \alpha_{20} \cdot (\vartheta - 20^{\circ}C)\right)$$

$$\Rightarrow \text{ gute N\"aherung: Cu: } R'_{50} = 20 \cdot \frac{1}{A \cdot \frac{1}{mm^{2}}} \frac{\Omega}{km} \qquad \text{Al: } R'_{50} = 32,5 \cdot \frac{1}{A \cdot \frac{1}{mm^{2}}} \frac{\Omega}{km}$$

Al:
$$R'_{50} = 32.5 \cdot \frac{1}{A \cdot \frac{1}{mm^2}} \frac{\Omega}{km}$$

induktiver Längswiderstand:

$$L' = \frac{\mu_0}{2\pi} \cdot \left(\ln \frac{a}{R} + \frac{1}{4} \right) = 0.2 \cdot \left(\ln \frac{a}{R} + \frac{1}{4} \right) \cdot 10^{-3} \frac{H}{km}$$

rer Längswiderstand: $L' = \frac{\mu_0}{2\pi} \cdot \left(\ln \frac{a}{R} + \frac{1}{4} \right) = 0.2 \cdot \left(\ln \frac{a}{R} + \frac{1}{4} \right) \cdot 10^{-3} \frac{H}{km}$ (mit R = Leiterradius, a = Abstand zw. Leitern \rightarrow mittlerer Abst.: $a = \sqrt[3]{a_{12} \cdot a_{23} \cdot a_{31}}$)

bei Doppelleitungssystem:

$$L' = \frac{\mu_0}{2\pi} \cdot \left(\ln \frac{a \cdot a'}{R \cdot a''} + \frac{1}{4} \right)$$

(mit
$$a' = \sqrt[3]{a_{1\overline{2}} \cdot a_{2\overline{3}} \cdot a_{3\overline{1}}}$$
 und $a'' = \sqrt[3]{a_{1\overline{1}} \cdot a_{2\overline{2}} \cdot a_{3\overline{3}}}$)

mit Bündelleiterersatzradius:
$$L' = \frac{\mu_0}{2\pi} \cdot \left(\ln \frac{a}{R_P} + \frac{1}{4 \cdot n} \right)$$

(mit $R_B = \sqrt[n]{n \cdot R \cdot R_T^{(n-1)}}$, n = Anzahl Teilleiter, R_T = Teilkreisradius)

kapazitiver Querleitwert:

$$B' = \omega \cdot C_B'$$

einfache Drehstromleitung:

$$C_B' = \frac{2\pi \cdot \varepsilon_0}{\ln \frac{a}{R_B}}$$

$$\frac{2E}{3 \cdot \ln \left(\frac{2h}{\sqrt[3]{R_B \cdot a^2}}\right)}$$

Doppelleitung:

$$C_B' = \frac{2\pi \cdot \varepsilon_0}{\ln\left(\frac{a \cdot a'}{2a - a'}\right)}$$

Kabel mit äußerer Feldbegrenz.:

$$C_B' = \frac{2\pi \cdot \varepsilon_r \cdot \varepsilon_0}{\ln(\frac{R_a}{R_s})} = C_E'$$

Ohmscher Querleitwert:

nur maßgeblich für Leerlaufverluste

Übertragung von AC

Wellenwiderstand: $Z_W = \frac{E}{\mu}$ (E = Elektrisches Feld, H = Magnetisches Feld)

 \rightarrow Freileitung: $Z_W = 200 \dots 400 \Omega$

 \rightarrow Kabel: $Z_W = einige \ 10 \ \Omega$

für Leitungen unter Vernachlässigung von Verlusten: $Z_W = \sqrt{\frac{L'}{C'}}$

Wellenausbreitungsgeschwindigkeit: $v = \sqrt{\frac{1}{L' \cdot C'}}$ (Freileitungen: $v \approx c$, Kabel: v = 0.3..0.7c)

Wellenlänge: $\lambda = \frac{v}{f}$

Vorgehensweise Leistungsberechnung

$$\underline{I}_{E} = \frac{\underline{S}_{E}^{*}}{3 \cdot \underline{U}_{E}^{*}} = \frac{P_{E} - j \cdot \underline{Q}_{E}}{\sqrt{3} \cdot U_{n}} \quad \text{mit} \qquad \underline{U}_{E} = \frac{U_{n}}{\sqrt{3}}$$

$$\underline{I}_{0E} = \frac{1}{2} \cdot \underline{U}_{E} \cdot (G + jB)$$

$$\underline{\Delta}\underline{U} = \underline{Z}_{12} \cdot \underline{I}_{12} = (R + jX) \cdot (\underline{I}_{E} + \underline{I}_{0E})$$

$$\underline{U}_{A} = \underline{U}_{E} + \Delta\underline{U}$$

$$\underline{I}_{0A} = \frac{1}{2} \cdot \underline{U}_{A} \cdot (G + jB)$$

$$\underline{I}_{A} = \underline{I}_{E} + \underline{I}_{0E} + \underline{I}_{0A}$$

$$\underline{U}_{A} = \underline{U}_{E} + \underline{I}_{0E} + \underline{I}_{0A}$$

$$\underline{U}_{A} = \underline{U}_{E} + \underline{I}_{0E} + \underline{I}_{0A}$$

5.2 Leistungselektronik

 $\Delta I \uparrow = -\Delta I \downarrow \rightarrow (U_1 - U_2) \cdot \frac{1}{L} \cdot T_E = U_2 \cdot \frac{1}{L} \cdot (T - T_E)$ $\Rightarrow \frac{U_2}{U_1} = \frac{T_E}{T} = a$ $\Rightarrow U_2 = U_1 \cdot a$ (a zwischen 0 und 1) $I_{2_av} = \frac{P_1}{U_2} = \frac{P_2}{U_2}$ Leistung an ohmschen Verbraucher: $P = \frac{u_2^2}{U_2} = \frac{a^2 \cdot u_1^2}{U_2}$

Leistung an ohmschen Verbraucher: $P = \frac{u_2^2}{R} = \frac{a^2 \cdot u_1^2}{R}$

Effektivwert Transistorstrom: $I_T = \sqrt{\frac{T_E}{T} \cdot \left[I_{min} \cdot I_{max} + \frac{(I_{max} - I_{min})^2}{3}\right]}$

Effektivwert Diodenstrom: $I_D = \sqrt{\frac{T - T_E}{T} \cdot \left[I_{min} \cdot I_{max} + \frac{(I_{max} - I_{min})^2}{3}\right]}$

Hochsetzsteller / Boost-Converter

$$\Delta I \uparrow = -\Delta I \downarrow \Rightarrow U_1 \cdot \frac{1}{L} \cdot T_E = -(U_1 - U_2) \cdot \frac{1}{L} \cdot (T - T_E)$$

$$\Rightarrow \frac{U_2}{U_1} = \frac{T}{T - T_E} = \frac{1}{1 - a} \qquad \Rightarrow a = \frac{T_E}{T} = 1 - \frac{U_1}{U_2} \qquad \Rightarrow U_2 = \frac{U_1}{1 - a} \qquad (a \text{ zwischen 0 und 1})$$

$$I_{1_av} = \frac{P_1}{U_1} = \frac{P_2}{U_1}$$

$$i_D(T_E) = I_{1_av} + \frac{\Delta I}{2} \qquad \Rightarrow i_D(T) = I_{1_av} - \frac{\Delta I}{2}$$

$$i_C(0 \text{ bis } T_E) = -I_2$$

 $i_C(T \text{ bis } T_E) = i_D(t) - I_2$

$$i = C \cdot \frac{du}{dt}$$

$$u = \frac{1}{c} \cdot \int i \, dt$$

$$u = L \cdot \frac{di}{dt}$$

$$i = \frac{1}{L} \cdot \int u \, dt$$

8. Dreiphasen-Wechselstrom

Erzeuger: Sternschaltung

Strang-/Sternspannungen: Spann. an Zweigen des Sterns

$$\left|\underline{U}_{1}\right| = \left|\underline{U}_{2}\right| = \left|\underline{U}_{3}\right| = U_{Strang} = \left|\underline{U}_{1N}\right| = \left|\underline{U}_{2N}\right| = \left|\underline{U}_{3N}\right|$$

Außenleiterspannungen: Spannungen zw. Phasen

$$\left|\underline{U}_{12}\right| = \left|\underline{U}_{23}\right| = \left|\underline{U}_{31}\right| = U_{AL} = \sqrt{3} \cdot U_{Strang}$$

$$U_{12} = U_{1N} - U_{2N} = U_1 - U_2$$
 etc.

Außenleiterströme: $I_{AL} = I_{Strang}$

Erzeuger: Dreieckschaltung

Strangströme: Ströme an Kanten des Dreiecks

 \underline{I}_{12} und \underline{I}_{23} und \underline{I}_{31}

Außenleiterspannungen: Spannungen zw. Phasen = Strangspannung

$$\left| \underline{U}_{12} \right| = \left| \underline{U}_{23} \right| = \left| \underline{U}_{31} \right| = U_{AL} = U_{Strang}$$

Außenleiterströme:

$$I_{AL} = \sqrt{3} \cdot I_{Strana}$$

$$I_1 = I_{31} - I_{12}$$

$$\overline{I_2} = \overline{I_{12}} - \overline{I_{23}}$$

$$\underline{I}_2 = \underline{I}_{12} - \underline{I}_2$$

 $I_3 = I_{23} - I_{31}$

 I_2

Verbraucher

symmetrische Belastung

Stern: kein Neutralleiter nötig

Dreieck:
$$I_{AL} = \sqrt{3} \cdot I_{Strang}$$
 und $\frac{\underline{I_1}}{U_1} = 3\underline{Y}$

äquivalent:
$$\underline{Z_{Stern}} = \frac{\underline{Z_{Dreieck}}}{3}$$
 und $\underline{Y_{Stern}} = 3 \cdot \underline{Y_{Dreieck}}$

unsymmetrische Belastung

Stern: mit Neutralleiter: Ausgleichsstrom $I_N = I_1 + I_2 + I_3$

Potential von Verbraucher- u. Netzsternpunkt gleich

Gilt nur für Δ-Verbraucher:

 $U_{II} = U_1$ etc. und $I_1 = U_1 \cdot Y_1$ etc.

Potentialdifferenz $\underline{U}' = \frac{\underline{U}_1 \cdot \underline{Y}_U + \underline{U}_2 \cdot \underline{Y}_V + \underline{U}_3 \cdot \underline{Y}_W}{\underline{Y}_U + \underline{Y}_V + \underline{Y}_W}$ ohne Neutralleiter:

 $U_{II} = U_1 - U'$ etc. und $I_1 = U_{II} \cdot Y_{II}$ etc.

 $I_1 + I_2 + I_3 = 0$!!!

Dreieck: $\underline{I}_1 = \underline{I}_{12} - \underline{I}_{31}$ $\underline{I}_{12} = \underline{U}_{12} \cdot \underline{Y}_{12}$

 $\underline{I}_2 = \underline{I}_{23} - \underline{I}_{12}$ $\underline{I}_{23} = U_{23} \cdot \underline{Y}_{23}$ (symmetrieunabhängig)

 $I_3 = I_{31} - I_{23}$ $I_{31} = U_{31} \cdot Y_{31}$

Leistung (Einzelleistungen auch mit $P = I^2 \cdot R$ etc. berechenbar!)

Symmetrie egal

$$\begin{split} \underline{S}_{ges} &= \underline{S}_1 + \underline{S}_2 + \underline{S}_3 = \underline{U}_1 \cdot \underline{I}_1^* + \underline{U}_2 \cdot \underline{I}_2^* + \underline{U}_3 \cdot \underline{I}_3^* \\ \textbf{oder} \text{ (nur bei Dreieck): } \underline{S}_{ges} &= \underline{U}_{12} \cdot \underline{I}_{12}^* + \underline{U}_{23} \cdot \underline{I}_{23}^* + \underline{U}_{31} \cdot \underline{I}_{31}^* \\ P_{ges} &= Re \big\{ \underline{S}_{ges} \big\} = U_1 \cdot I_1 \cdot \cos \varphi_1 + U_2 \cdot I_2 \cdot \cos \varphi_2 + U_3 \cdot I_3 \cdot \cos \varphi_3 = P_1 + P_2 + P_3 \\ Q_{ges} &= Im \big\{ S_{ges} \big\} = U_1 \cdot I_1 \cdot \sin \varphi_1 + U_2 \cdot I_2 \cdot \sin \varphi_2 + U_3 \cdot I_3 \cdot \sin \varphi_3 = Q_1 + Q_2 + Q_3 \end{split}$$

andere Möglichkeit, aber nur ohne Neutralleiter:

$$\underline{S} = \underline{U}_{12} \cdot \underline{I}_{1}^{*} + \underline{U}_{32} \cdot \underline{I}_{3}^{*}$$

$$P = Re\{\underline{U}_{12} \cdot \underline{I}_{1}^{*}\} + Re\{\underline{U}_{32} \cdot \underline{I}_{3}^{*}\} = U_{12} \cdot I_{1} \cdot \cos \varphi_{12} + U_{32} \cdot I_{3} \cdot \cos \varphi_{32} = P_{1} + P_{3} \qquad (\varphi_{12} \angle von \underline{I}_{1} zu \underline{U}_{12})$$

$$Q = Im\{U_{12} \cdot \underline{I}_{1}^{*}\} + Im\{U_{32} \cdot \underline{I}_{3}^{*}\} = U_{12} \cdot I_{1} \cdot \sin \varphi_{12} + U_{32} \cdot I_{3} \cdot \sin \varphi_{32} = Q_{1} + Q_{3} \qquad (\varphi_{12} \angle von \underline{I}_{1} zu \underline{U}_{12})$$

symmetrische Belastung

Für Stern und Dreieck gilt:

$$P_{ges} = \sqrt{3} \cdot U_{AL} \cdot I_{AL} \cdot \cos \varphi$$
 (Achtung! φ = Phase von I_{Strang} nach U_{Strang})
 $Q_{ges} = \sqrt{3} \cdot U_{AL} \cdot I_{AL} \cdot \sin \varphi$ (Achtung! φ = Phase von I_{Strang} nach U_{Strang})

Messung einzelner Phase:

$$P_{Strang} = U_{Strang} \cdot I_{Strang} \cdot \cos \varphi = Re\{\underline{U} \cdot \underline{I}^*\}$$
 (U_{Strang} und I_{Strang} bei * und Δ anders!) $Q_{Strang} = U_{Strang} \cdot I_{Strang} \cdot \sin \varphi = Im\{\underline{U} \cdot \underline{I}^*\}$ (U_{Strang} und I_{Strang} bei * und Δ anders!) $\Rightarrow P = 3 \cdot P_{Strang}$ und $Q = 3 \cdot Q_{Strang}$ (wenn kein Neutralleiter: künstlicher Sternpunkt mit $R_1 = R_2 = R_3$)

unsymmetrische Belastung

künstlicher Sternpunkt mit $R_1 = R_2 = R_3$ (ohne N-Leiter: Einzelleistungen P_1 etc. nicht repräsentativ, aber Summe)