

planetmath.org

Math for the people, by the people.

creating an infinite model

Canonical name CreatingAnInfiniteModel

Date of creation 2013-03-22 12:44:29 Last modified on 2013-03-22 12:44:29

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 9

Author CWoo (3771)
Entry type Example
Classification msc 03B10
Classification msc 03C07

Related topic CompactnessTheoremForFirstOrderLogic

 $Related\ topic \qquad Getting Models IModels Constructed From Constants$

From the syntactic compactness theorem for first order logic, we get this nice (and useful) result:

Let T be a theory of first-order logic. If T has finite models of unboundedly large sizes, then T also has an infinite model.

Proof. Define the propositions

$$\Phi_n \equiv \exists x_1 \cdots \exists x_n (x_1 \neq x_2) \wedge \cdots \wedge (x_1 \neq x_n) \wedge (x_2 \neq x_3) \wedge \cdots \wedge (x_{n-1} \neq x_n)$$

 $(\Phi_n \text{ says "there exist (at least) } n \text{ different elements in the world"}). Note that$

$$\cdots \vdash \Phi_n \vdash \cdots \vdash \Phi_2 \vdash \Phi_1.$$

Define a new theory

$$\mathbf{T}_{\infty} = \mathbf{T} \cup \{\Phi_1, \Phi_2, \ldots\}$$
.

For any finite subset $\mathbf{T}' \subset \mathbf{T}_{\infty}$, we claim that \mathbf{T}' is consistent: Indeed, \mathbf{T}' contains axioms of \mathbf{T} , along with finitely many of $\{\Phi_n\}_{n\geq 1}$. Let Φ_m correspond to the largest index appearing in \mathbf{T}' . If $\mathcal{M}_m \models \mathbf{T}$ is a model of \mathbf{T} with at least m elements (and by hypothesis, such as model exists), then $\mathcal{M}_m \models \mathbf{T} \cup \{\Phi_m\} \vdash \mathbf{T}'$.

So every finite subset of \mathbf{T}_{∞} is consistent; by the compactness theorem for first-order logic, \mathbf{T}_{∞} is consistent, and by Gödel's completeness theorem for first-order logic it has a model \mathcal{M} . Then $\mathcal{M} \models \mathbf{T}_{\infty} \vdash \mathbf{T}$, so \mathcal{M} is a model of \mathbf{T} with infinitely many elements ($\mathcal{M} \models \Phi_n$ for any n, so \mathcal{M} has at least $\geq n$ elements for all n).