ФКН ВШЭ, МНаД.

Линейная алгебра.

Лист задач 3. Линейные отображения и их матрицы.

1. Дано линейное отображение $\varphi: \mathbb{V} \to \mathbb{W}, \mathbb{V} = \mathbb{W} = \mathbb{R}^3$, и представлено как:

$$\varphi \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ x_3 \\ x_1 + x_3 \end{pmatrix}$$

Найдите матрицу A_{φ} , которая реализует φ в паре стандартных базисов. Покажите, что это работает на конкретном векторе, то есть сравните результаты подсчета через аналитическую формулу и матричновекторное умножение.

2. Дано линейное отображение $\varphi: \mathbb{V} \to \mathbb{W}, \mathbb{V} = \mathbb{W} = \mathbb{R}^2$, и представлено:

$$\varphi\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 + x_2 \\ x_1 - 2x_2 \end{pmatrix}$$

- (a) Найдите матрицу A_{φ} , которая реализует φ в паре стандартных базисов,
- (b) Пусть сначала мы совершаем переход в базис \mathcal{B} в domain пространстве \mathbb{V} . Найдите новый вид матрицы линейного отображения $A_{\varphi,(\mathcal{B},\mathcal{S}^w)}$, которая соответствует φ , если $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$.
- (c) Пусть мы далее совершаем переход в базис $\mathcal C$ в target пространстве $\mathbb W$. Найдите новый вид матрицы линейного отображения $A_{\varphi,\,(\mathcal B,\mathcal C)}$, которая соответствует φ , если $\mathcal C = \mathcal B = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$.

Проверяйте себя на каждом шаге: возьмите конкретный вектор и сравните результаты подсчета через аналитическую формулу и матрично-векторное умножение.

3. Построить матрицу A_{φ} , соответствующую линейному отображению $\varphi(x): \mathbb{R}^2 \to \mathbb{R}^2$ в паре стандартных базисов. Известно, как функция φ действует на пару векторов: вектор $a = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ переходит в вектор $\varphi(a) = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ и вектор $b = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$ переходит в вектор $\varphi(b) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Hint: пользуйтесь свойствами линейных отображений! Аргументы можно комбинировать, можно умножать на скаляры.

Дальше посложнее:

4. Докажите в общем виде, что следующее отображение $\varphi: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ является линейным:

$$\varphi(X) = X^{\top}, \quad \forall X \in \mathbb{R}^{2 \times 2}.$$

Что? Транспонирование матрицы? Да, это тоже линейное отображение.

Найдите матрицу, соответствующую этому отображению в паре стандартных базисов:

$$\mathcal{A} = \mathcal{B} = \left(\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right).$$

Затем проверьте, что это работает на любой 2×2 матрице по вашему выбору.

5. Пусть $\mathbb{V}=\mathbb{R}[x,2]$ и $\mathbb{W}=\mathbb{R}[x,1]$ — два векторных пространства; пусть $\varphi:\mathbb{V}\to\mathbb{W}$ — линейное отображение.

$$\varphi(bx^2 + cx + d) = 2bx + c, \quad \forall (bx^2 + cx + d) \in \mathbb{R}[x, 2].$$

- (a) Найдите матрицу A_{φ} , которая реализует φ в паре стандартных базисов $\mathcal{S}^v=\{1,x,x^2\}$ и $\mathcal{S}^w=\{1,x\}$,
- (b) Затем мы совершаем переход в базис $\mathcal{B} = (x^2, x, -1 x x^2)$ в domain пространстве \mathbb{V} . Найдите новый вид матрицы линейного отображения $A_{\varphi, (\mathcal{B}, \mathcal{S}^w)}$, которая соответствует φ . Покажите, как это работает на каком-то конкретном элементе пространства \mathbb{V} .