Formale Grundlagen der Informatik II 5. Übungsblatt

Fachbereich Mathematik Prof. Dr. Ulrich Kohlenbach

SS 2012

Alexander Kreuzer Pavol Safarik

Gruppenübung

Aufgabe G1

- (a) Zeigen Sie mit dem Resolutionskalkül, dass die folgenden Formelmengen unerfüllbar sind:
 - i. $\{(p \lor q) \to x, (x \lor y) \to z, p \lor q \lor y, \neg z\}$
 - ii. $\{ \forall x \forall y (Rxy \rightarrow (Px \land \neg Py)), \forall x \forall y (Rxy \rightarrow \exists z (Rxz \land Rzy)), \forall x Rxfx \}$
 - iii. $\{ \forall x \forall y \forall z (Rxy \lor Rxz \lor Ryz), \forall x \forall y \forall z ((Rxy \land Ryz) \rightarrow Rxz), \forall x \forall y (Rxy \rightarrow Rfxfy), \forall x \neg Rxffx \}$
- (b) Untersuchen Sie für jede der obigen Formelmengen, ob es auch echte Teilmengen gibt, die schon unerfüllbar sind.

Aufgabe G2

Sei G=(V,E) ein ungerichteter Graph (ohne Schleifen, d.h. es gibt keine Kante von einem Knoten zu sich selbst).

Wir nennen G 3-färbbar, wenn es eine Abbildung $f: V \to \{1,2,3\}$ gibt, so dass für jede Kante $(u,v) \in E$ gilt $f(u) \neq f(v)$.

- (a) Erstellen Sie eine Formelmenge $\Phi(G)$, welche genau dann erfüllbar ist, wenn G 3-färbbar ist. Hinweis: Führen Sie zu jedem Knoten $v \in V$ eine Konstante c_v ein und zu jeder Farbe $i \in \{1, 2, 3\}$ ein Prädikat P_i .
- (b) Zeigen Sie mit Hilfe des Kompaktheitssatzes, dass ein Graph G genau dann 3-färbbar ist, wenn jeder endliche Teilgraph 3-färbbar ist. ($H=(V_0,E_0)$ ist ein Teilgraph von G, wenn $V_0\subseteq V$ und $E_0\subseteq E$ ist.)

Aufgabe G3

Sei $L=\{+,\cdot,<,0,1\}$ die Sprache der Arithmetik und und $\mathcal{N}=(\mathbb{N},+^{\mathbb{N}},\cdot^{\mathbb{N}},<^{\mathbb{N}},0^{\mathbb{N}},1^{\mathbb{N}})$ das Modell der natürlichen Zahlen. Dieses Modell wird auch *Standardmodell* genannt. Weiterhin sei

$$T = Th(\mathcal{N})$$

die Menge der Formeln in der Sprache L, die wahr sind in \mathcal{N} . Wie in der Vorlesung besprochen (siehe Skript 4.3) beschreibt T das Modell \mathcal{N} nicht eindeutig, d.h. es gibt auch anderen Modelle von T. Solche Modelle werden Nichtstandardmodelle genannt.

Wir zeigen in dieser Aufgabe, dass jedes Nichtstandardmodell eine Kopie von $\mathcal N$ enthält. Wir zeigen weiter, dass jedes Element, das nicht zu $\mathcal N$ gehört, größer ist als jedes Element in $\mathcal N$, d.h. dass diese Zahlen "unendlich" sind. Nichtstandardmodelle haben damit die Form:

Sei nun * $\mathcal{N}=(^*\mathbb{N},+^{^*\mathbb{N}},\cdot^{^*\mathbb{N}},<^{^*\mathbb{N}},0^{^*\mathbb{N}},1^{^*\mathbb{N}})$ ein Nichtstandardmodell. Betrachten Sie die Abbildung

$$^*(-): \mathbb{N} \to ^*\mathbb{N}: n \mapsto ^*n = (\underbrace{1+1+\ldots+1}_{n-\mathrm{mal}})^{*\mathbb{N}}.$$

- (a) Zeigen Sie, dass diese Abbildung *(-) ein injektiver Homomorphismus ist, d.h. dass die Abbildung 0, 1, die Operation $+, \cdot$ und die Ordnung < erhält.
 - Das Bild von $^*(-)$ verhält sich also wie $\mathcal N$ und ist damit eine Kopie von $\mathcal N$ in $^*\mathcal N$.
 - *Hinweis:* Verwenden Sie hier und in den nächsten Teilaufgaben, dass alles, was wahr ist in \mathcal{N} und sich in der Logik 1. Stufe ausdrücken lässt, auch wahr ist in $^*\mathcal{N}$ und umgekehrt.
- (b) Zeigen Sie, dass alle Elemente, die nicht im Bild von $^*(-)$ liegen, größer als jedes *n (für $n \in \mathbb{N}$) sein müssen.
 - Diese Elemente von $*\mathcal{N}$ sind die *unendlichen* Zahlen.
- (c) Zeigen Sie, dass es für jedes unendliches Element x in \mathbb{N} ein anderes unendliches Element y gibt, so dass $2y \le x$.

Hausübung

Aufgabe H1 (6 Punkte)

Betrachten Sie die Signatur $S=(\leq)$. In dieser Aufgabe behandeln wir partielle Ordnungen. Zur Erinnerung: partielle Ordnungen sind S-Strukturen, die die folgenden Sätze erfüllen:

$$\forall x \,\forall y \, ((x \le y \land y \le x) \leftrightarrow x = y)$$
$$\forall x \,\forall y \,\forall z \, ((x \le y \land y \le z) \rightarrow x \le z)$$

(a) Geben Sie für die folgenden partiellen Ordnungen A_1, A_2, A_3, A_4 Sätze $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ an, so dass für jedes $i \in \{1, 2, 3, 4\}$

$$A_i \vDash \varphi_i$$
 und für $j \neq i$ $A_j \nvDash \varphi_i$.

D.h. mit den Sätzen φ_i können die Strukturen unterschieden werden.

i.
$$A_1 = (\mathbb{N}, \leq^{\mathbb{N}})$$

ii.
$$\mathcal{A}_2 = (\mathbb{Q}, \leq^{\mathbb{Q}})$$

iii. $A_3 = (\Sigma^*, \preccurlyeq)$ mit $\Sigma = \{a, b\}$, wobei \preccurlyeq die Präfixrelation beschreibt, d.h. für die Wörter $e_0e_1 \dots e_n \in \Sigma^*$ und $f_0f_1 \dots f_m \in \Sigma^*$ gilt

$$e_0e_1\ldots e_n \preccurlyeq f_0f_1\ldots f_m,$$

falls $n \leq m$ und $e_i = f_i$ für alle $i \leq n$.

iv.
$$\mathcal{A}_4 = (\mathcal{P}(\mathbb{N}), \subseteq)$$

(b) Geben Sie eine S-Struktur an, die keine partielle Ordnung ist.

Aufgabe H2 (Zusatzaufgabe[†])

(10 Punkte)

Betrachten Sie die folgende FO-Theorie \mathcal{T} mit Gleichheit (Beispiele dieser Art gehen auf Statman, Orevkov, Pudlak oder Zhang zurück):

- Die Sprache $\mathcal{L}(\mathcal{T})$ beinhaltet die Konstanten 0 und 1, die Funktionssymbole +, $2^{(\cdot)}$ und ein einstelliges Predikat $I(\cdot)$.
- Die Theorie $\mathcal T$ beinhaltet die zusätzlichen Axiome $x+(y+z)=(x+y)+z, \ y+0=y, \ 2^0=1, \ 2^x+2^x=2^{1+x}, \ I(0), \ I(x)\to I(1+x).$ Man beachte, dass der \forall -Abschluss der Konjunktion dieser Axiome als ein Universeller Satz $\forall \underline{x} \ \varphi_{\mathrm{qf}}(\underline{x})$, wobei φ_{qf} eine quantorenfreie Formel ist, geschrieben werden kann.

Im folgenden benutzen wir die abkürzende Schreibweise

$$2_0 := 0, \quad 2_{k+1} := 2^{2_k}.$$

(a) Zeigen Sie mit dem Satz von Herbrand für offene Theorien, dass es für jedes $k \in \mathbb{N}$ eine Herbrand-Disjunktion geben muss, so dass

$$\bigvee_{i=1}^n \big(\varphi_{\mathrm{qf}}(\underline{t}_i) \to I(2_k)\big),$$

wobei \underline{t}_i geschlossene Terme von \mathcal{T} sind.

(b) Geben Sie einen kurzen (informellen) Beweis für $\exists \underline{x} \left(\varphi_{qf}(\underline{x}) \to I(2_k) \right)$ für jedes $k \in \mathbb{N}$. Hinweis: Definieren Sie hierzu eine Relationen R_i mit $R_0 :\equiv I$ und $R_{i+1}(x) :\equiv \forall y \left(R_i(y) \to R_i(2^x + y) \right)$.

Man kann zeigen, dass es einen (\mathcal{SK} -)Beweis gibt der nur polynomiel in k viele Schritte benötigt.

(c) Zeigen Sie, dass jede Herbrand-Disjunktion von $\exists \underline{x} \ \left(\varphi_{\mathsf{qf}}(\underline{x}) \to I(2_k) \right)$ mindestens die Länge 2_k hat.

[†]Punkte zählen für den Klausurbonus, aber nicht für die Bestimmung der Basis der 50% Schranke.