Name : Chaganti Kamaraja Siddhartha

ID : EP20B012

ID5841: Quantum Computing Lab

Answer to Question 1 a

Output for input 000 is

Circuit for 2 Fredkin gates on state 001

Output for input 001 is

Circuit for 2 Fredkin gates on state 010

Output for input 010 is

Circuit for 2 Fredkin gates on state 011

Output for input 011 is

Circuit for 2 Fredkin gates on state 100

Output for input 100 is

Circuit for 2 Fredkin gates on state 101

Output for input 101 is

Circuit for 2 Fredkin gates on state 110

Output for input 110 is

Circuit for 2 Fredkin gates on state 111

Output for input 111 is

Input	Output
000	000
001	001
010	010
011	011
100	100
101	101
110	110
111	111

Since, input is equal to output we can clearly say Fredkin gate is reversible gate.

Answer to Question 1 b (a)

LHS Circuit for input 00 $q_0: \begin{array}{c|c} & & & \\ \hline & & & \\ \hline q_1: & & \\ \hline & & \\ \hline meas:/_{\overline{2}} & & \\ \hline \end{array}$

Output of LHS circuit for input 00

Output of RHS circuit for input 00

LHS Circuit for input 01

Output of LHS circuit for input 01

Output of RHS circuit for input 01

LHS Circuit for input 10

Output of LHS circuit for input 10

Output of RHS circuit for input 10

LHS Circuit for input 11

Output of LHS circuit for input 11

Answer to Question 1 b (b)

Output of RHS circuit for input 00

LHS Circuit for input 01

Output of LHS circuit for input 01

Output of RHS circuit for input 01

LHS Circuit for input 10

Output of LHS circuit for input 10

Output of RHS circuit for input 10

LHS Circuit for input 11

Output of LHS circuit for input 11

Output of RHS circuit for input 11

Truth table

Input	Output of LHS	Output of RHS
00	00	00
01	01	01
10	10	10
11	11	11

Since, truth table is same for both LHS and RHS both circuits are equivalent.

Answer to Qeusiton 1 b (c)

Output of LHS circuit for input 00

RHS Circuit for input 00

Output of RHS circuit for input 00

Output of LHS circuit for input 01

RHS Circuit for input 01

Output of RHS circuit for input 01

Output of LHS circuit for input 10

RHS Circuit for input 10

Output of RHS circuit for input 10

Answer to Question 1 b (d)

Output of LHS circuit for input 00

RHS Circuit for input 00

Output of RHS circuit for input 00

Output of LHS circuit for input 01

RHS Circuit for input 01

Output of RHS circuit for input 01

Output of LHS circuit for input 10

RHS Circuit for input 10

Output of RHS circuit for input 10

Output of LHS circuit for input 11

RHS Circuit for input 11

Output of RHS circuit for input 11

Truth table

Input	Output of LHS	Output of RHS
00	11	11
01	10	10
10	01	01
11	00	00

Since, truth table is same for both LHS and RHS both circuits are equivalent.

Answer to Question 2

Circuit for 4 qubit GHZ state

Output of IBM Q machine for 4 - qubit GHZ state

Circuit for 5 qubit GHZ state

Answer to Question 3 (a)

Initial State,

$$|\psi_0\rangle = |000\rangle \tag{1}$$

Applying Hadamard gate to qubit 0,

$$|\psi_1\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |001\rangle) \tag{2}$$

CNOT gate with qubit 0 as control and qubit 1 as target,

$$|\psi_2\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |011\rangle) \tag{3}$$

CNOT gate with qubit 1 as control and qubit 2 as target,

$$|\psi_3\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle) \tag{4}$$

Applying X gate on qubit 0,

$$|\psi_4\rangle = \frac{1}{\sqrt{2}}(|001\rangle + |110\rangle) \tag{5}$$

Answer to Question 3 (b)

Initial State,

$$|\psi_0\rangle = |000\rangle \tag{6}$$

Applying Hadamard gate to qubit 0,

$$|\psi_1\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |001\rangle) \tag{7}$$

CNOT gate with qubit 0 as control and qubit 1 as target,

$$|\psi_2\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |011\rangle) \tag{8}$$

CNOT gate with qubit 1 as control and qubit 2 as target,

$$|\psi_3\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle) \tag{9}$$

Applying X gate on qubit 1,

$$|\psi_4\rangle = \frac{1}{\sqrt{2}}(|010\rangle + |101\rangle) \tag{10}$$

Answer to Question 3 (c)

Initial State,

$$|\psi_0\rangle = |000\rangle \tag{11}$$

Applying Hadamard gate to qubit 0,

$$|\psi_1\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |001\rangle) \tag{12}$$

CNOT gate with qubit 0 as control and qubit 1 as target,

$$|\psi_2\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |011\rangle) \tag{13}$$

CNOT gate with qubit 1 as control and qubit 2 as target,

$$|\psi_3\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle) \tag{14}$$

Applying X gate on qubit 2,

$$|\psi_4\rangle = \frac{1}{\sqrt{2}}(|100\rangle + |011\rangle) \tag{15}$$

Answer to Question 4

Answer to Question 5 a

```
Construction of a N - Qubit GHZ gate

N = int(input('Please enter no.of Qubits'))

=> Number of qubits can be manually entered

qc = QuantumCircuit(N) => Making a quantum circuit of with N qubits.

qc.h(0) => Applying Hadamard gate to zeroth qubit.

for i in range(1,N):

qc.cx(i-1,i) => CNOT gate is applied to every qubit as target

qubit and previous one as control qubit

qc.measure_all()

qc.draw()
```


Answer to Question 5 b

```
Construction of a N - Qubit Entangled bipartite state
            N=int(input('Please enter no.of Qubits'))
                             => Number of qubits can be manually entered
            qc = QuantumCircuit(N) \Rightarrow Making a quantum circuit of with N qubits.
            qc.ry(2*np.arccos(1/np.sqrt(N)),0)
                     => Qubit 0 is Rotated 2arccos(1/sqrt(N)) times w.r.t y-axis
            for i in range(1,N):
                qc.cry(2*np.arccos(1/np.sqrt(N-i)),i-1,i)
                     => Qubit i is target qubit rotated 2arccos(1/sqrt(N-i))
                         times w.r.t y-axis and i-1 qubit is control qubit
            for i in range(1,N):
                qc.cx(N-i-1,N-i) \Rightarrow CNOT gate is applied on i th qubit
                                      with i-1 th qubit as control qubit.
            qc.x(0) \Rightarrow NOT gate is applied on qubit 0.
            qc.draw()
A 5 qubit Entangled bipartite state
```