Multinomial Naive Bayes:

Training on enron1 dataset

Results for enron1 Accuracy: 0.9320 Precision: 0.9275 Recall: 0.8591 F1-score: 0.8920

Training on enron2 dataset

Results for enron2 Accuracy: 0.9351 Precision: 0.9091 Recall: 0.8462 F1-score: 0.8765

Training on enron4 dataset

Results for enron4 Accuracy: 0.9687 Precision: 0.9698 Recall: 0.9872 F1-score: 0.9785

Discrete Naive Bayes:

Test Set Performance: Accuracy: 0.9013 Precision: 0.9906 Recall: 0.7047 F1-score: 0.8235

Logistic Regression:

Processing dataset: enron1

Training with $\lambda = 0.01$ Iteration 0: Log-Likelihood = -243.1827 Iteration 100: Log-Likelihood = -4.1844 Iteration 200: Log-Likelihood = -2.5338 Iteration 300: Log-Likelihood = -1.9531 Iteration 400: Log-Likelihood = -1.6655

F1-score for λ =0.01: 0.8941

Training with $\lambda = 0.1$ Iteration 0: Log-Likelihood = -244.9118 Iteration 100: Log-Likelihood = -7.4283 Iteration 200: Log-Likelihood = -6.2140 Iteration 300: Log-Likelihood = -5.8135 Iteration 400: Log-Likelihood = -5.6027 F1-score for λ =0.1: 0.8941

Training with $\lambda = 1$

Iteration 0: Log-Likelihood = -262.2027 Iteration 100: Log-Likelihood = -22.1016 Iteration 200: Log-Likelihood = -20.6634 Iteration 300: Log-Likelihood = -20.5250 Iteration 400: Log-Likelihood = -20.5185

F1-score for λ =1: 0.8571

Training with $\lambda = 10$

Iteration 0: Log-Likelihood = -435.1118 Iteration 100: Log-Likelihood = -60.6955 Iteration 200: Log-Likelihood = -60.6955 Iteration 300: Log-Likelihood = -60.6955 Iteration 400: Log-Likelihood = -60.6955 F1-score for λ =10: 0.8889

Best λ : 0.01 with F1-score: 0.8941 Iteration 0: Log-Likelihood = -478.6928 Iteration 100: Log-Likelihood = -5.4579 Iteration 200: Log-Likelihood = -3.3377 Iteration 300: Log-Likelihood = -2.5907 Iteration 400: Log-Likelihood = -2.2203

Results for enron1 (bow representation):

Accuracy: 0.9583 Precision: 0.9062 Recall: 0.9732 F1-score: 0.9385

Training with $\lambda = 0.01$

Iteration 0: Log-Likelihood = -123.2335 Iteration 100: Log-Likelihood = -5.8988 Iteration 200: Log-Likelihood = -3.4078 Iteration 300: Log-Likelihood = -2.5564 Iteration 400: Log-Likelihood = -2.1417

F1-score for λ =0.01: 0.9630

Training with $\lambda = 0.1$

Iteration 0: Log-Likelihood = -123.4203 Iteration 100: Log-Likelihood = -8.8273 Iteration 200: Log-Likelihood = -7.2598 Iteration 300: Log-Likelihood = -6.9001 Iteration 400: Log-Likelihood = -6.7813

F1-score for λ =0.1: 0.9630 Training with $\lambda = 1$ Iteration 0: Log-Likelihood = -186.7039 Training with $\lambda = 1$ Iteration 100: Log-Likelihood = -25.5403 Iteration 0: Log-Likelihood = -125.2889 Iteration 200: Log-Likelihood = -23.8745 Iteration 100: Log-Likelihood = -27.2217 Iteration 300: Log-Likelihood = -23.6900 Iteration 200: Log-Likelihood = -27.1360 Iteration 400: Log-Likelihood = -23.6752 Iteration 300: Log-Likelihood = -27.1321 F1-score for λ =1: 0.9231 Iteration 400: Log-Likelihood = -27.1318 F1-score for λ =1: 0.9630 Training with $\lambda = 10$ Iteration 0: Log-Likelihood = -360.6479 Iteration 100: Log-Likelihood = -65.9558 Training with $\lambda = 10$ Iteration 0: Log-Likelihood = -143.9748 Iteration 200: Log-Likelihood = -65.9558 Iteration 100: Log-Likelihood = -78.3121 Iteration 300: Log-Likelihood = -65.9558 Iteration 200: Log-Likelihood = -78.3121 Iteration 400: Log-Likelihood = -65.9558 Iteration 300: Log-Likelihood = -78.3121 F1-score for λ =10: 0.8667 Iteration 400: Log-Likelihood = -78.3121 F1-score for λ =10: 0.9091 Best λ : 0.01 with F1-score: 0.9538 Iteration 0: Log-Likelihood = -396.6470Iteration 100: Log-Likelihood = -7.7300 Best λ : 0.01 with F1-score: 0.9630 Iteration 200: Log-Likelihood = -4.9763 Iteration 0: Log-Likelihood = -208.2585 Iteration 100: Log-Likelihood = -7.0405 Iteration 300: Log-Likelihood = -3.9291 Iteration 200: Log-Likelihood = -4.0790 Iteration 400: Log-Likelihood = -3.3855 Iteration 300: Log-Likelihood = -3.0730 Iteration 400: Log-Likelihood = -2.5844Results for enron2 (bow representation): Accuracy: 0.9519 Results for enron1 (bernoulli representation): Precision: 0.8963 Accuracy: 0.9583 Recall: 0.9308 Precision: 0.9221 F1-score: 0.9132 Recall: 0.9530 F1-score: 0.9373 Training with $\lambda = 0.01$ Iteration 0: Log-Likelihood = -120.7644 Processing dataset: enron2 Iteration 100: Log-Likelihood = -6.7985Iteration 200: Log-Likelihood = -4.2010 Iteration 300: Log-Likelihood = -3.2582Training with $\lambda = 0.01$ Iteration 0: Log-Likelihood = -167.5701 Iteration 400: Log-Likelihood = -2.7766 Iteration 100: Log-Likelihood = -6.2887 F1-score for λ =0.01: 0.9333 Iteration 200: Log-Likelihood = -3.9561 Iteration 300: Log-Likelihood = -3.0781 Training with $\lambda = 0.1$ Iteration 400: Log-Likelihood = -2.6249Iteration 0: Log-Likelihood = -120.9552 F1-score for λ =0.01: 0.9538 Iteration 100: Log-Likelihood = -9.6300 Iteration 200: Log-Likelihood = -7.9616 Training with $\lambda = 0.1$ Iteration 300: Log-Likelihood = -7.5379 Iteration 0: Log-Likelihood = -169.3095 Iteration 400: Log-Likelihood = -7.3840 F1-score for λ =0.1: 0.9189 Iteration 100: Log-Likelihood = -9.7804Iteration 200: Log-Likelihood = -8.0364 Iteration 300: Log-Likelihood = -7.4520 Training with $\lambda = 1$ Iteration 400: Log-Likelihood = -7.1601 Iteration 0: Log-Likelihood = -122.8636 F1-score for λ =0.1: 0.9394 Iteration 100: Log-Likelihood = -27.4583 Iteration 200: Log-Likelihood = -27.3644

Iteration 300: Log-Likelihood = -27.3603	F1-score for λ =1: 0.9758
Iteration 400: Log-Likelihood = -27.3600	
F1-score for λ =1: 0.9167	Training with $\lambda = 10$
	Iteration 0: Log-Likelihood = -343.8945
Training with $\lambda = 10$	Iteration 100: Log-Likelihood = -67.5273
Iteration 0: Log-Likelihood = -141.9474	Iteration 200: Log-Likelihood = -67.5273
Iteration 100: Log-Likelihood = -77.9907	Iteration 300: Log-Likelihood = -67.5273
Iteration 200: Log-Likelihood = -77.9907	Iteration 400: Log-Likelihood = -67.5273
Iteration 300: Log-Likelihood = -77.9907	F1-score for λ =10: 0.9680
Iteration 400: Log-Likelihood = -77.9907	
F1-score for λ =10: 0.8657	Best λ : 0.01 with F1-score: 0.9798
	Iteration 0: Log-Likelihood = -513.1457
Best λ : 0.01 with F1-score: 0.9333	Iteration 100: Log-Likelihood = -4.1940
Iteration 0: Log-Likelihood = -212.9513	Iteration 200: Log-Likelihood = -2.5208
Iteration 100: Log-Likelihood = -9.1320	Iteration 300: Log-Likelihood = -1.9624
Iteration 200: Log-Likelihood = -5.6136	Iteration 400: Log-Likelihood = -1.6926
Iteration 300: Log-Likelihood = -4.3237	
Iteration 400: Log-Likelihood = -3.6672	Results for enron4 (bow representation):
	Accuracy: 0.9595
Results for enron2 (bernoulli representation):	Precision: 0.9467
Accuracy: 0.9498	Recall: 1.0000
Precision: 0.9077	F1-score: 0.9726
Recall: 0.9077	
F1-score: 0.9077	Training with $\lambda = 0.01$
	Iteration 0: Log-Likelihood = -169.0172
Processing dataset: enron4	Iteration 100: Log-Likelihood = -4.3566
T	Iteration 200: Log-Likelihood = -2.5046
Training with $\lambda = 0.01$	Iteration 300: Log-Likelihood = -1.9049
Iteration 0: Log-Likelihood = -225.9457	Iteration 400: Log-Likelihood = -1.6199
Iteration 100: Log-Likelihood = -3.5305	F1-score for λ =0.01: 0.9808
Iteration 200: Log-Likelihood = -2.0956	T :: :4.2 0.1
Iteration 300: Log-Likelihood = -1.6194	Training with $\lambda = 0.1$
Iteration 400: Log-Likelihood = -1.3903	Iteration 0: Log-Likelihood = -169.3462
F1-score for λ =0.01: 0.9798	Iteration 100: Log-Likelihood = -7.2094
The initial width $\lambda = 0.1$	Iteration 200: Log-Likelihood = -6.0944
Training with $\lambda = 0.1$	Iteration 300: Log-Likelihood = -5.8622
Iteration 0: Log-Likelihood = -227.0083	Iteration 400: Log-Likelihood = -5.7882 F1-score for λ =0.1: 0.9808
Iteration 100: Log-Likelihood = -6.5138	F1-score for λ =0.1; 0.9808
Iteration 200: Log-Likelihood = -5.5225	Training with $\lambda = 1$
Iteration 300: Log-Likelihood = -5.2305 Iteration 400: Log-Likelihood = -5.0839	Training with $\lambda = 1$ Iteration 0: Log-Likelihood = -172.6365
F1-score for λ=0.1: 0.9798	Iteration 100: Log-Likelihood = -25.1857
Γ1-SCOIE 101 λ=0.1. 0.9/98	Iteration 200: Log-Likelihood = -25.1145
Training with $\lambda = 1$	Iteration 300: Log-Likelihood = -25.1121
Iteration 0: Log-Likelihood = -237.6343	Iteration 400: Log-Likelihood = -25.1121
Iteration 100: Log-Likelihood = -21.7123	F1-score for λ =1: 0.9808
Iteration 200: Log-Likelihood = -20.7580	1 1-50010 101 K=1, 0.7000
Iteration 300: Log-Likelihood = -20.6659	Training with $\lambda = 10$
Iteration 400: Log-Likelihood = -20.6578	Iteration 0: Log-Likelihood = -205.5387
1161411011 400. Lug-Likeliii00d = -20.03/6	iteration of Log-Likelinood = -203.3367

Iteration 100: Log-Likelihood = -80.1764 Iteration 200: Log-Likelihood = -80.1764 Iteration 300: Log-Likelihood = -80.1764 Iteration 400: Log-Likelihood = -80.1764 F1-score for λ =10: 0.9808

Best λ: 0.01 with F1-score: 0.9808 Iteration 0: Log-Likelihood = -285.3286 Iteration 100: Log-Likelihood = -5.5128 Iteration 200: Log-Likelihood = -3.1834 Iteration 300: Log-Likelihood = -2.4233 Iteration 400: Log-Likelihood = -2.0613

Results for enron4 (bernoulli representation):

Accuracy: 0.9705 Precision: 0.9607 Recall: 1.0000 F1-score: 0.9799

Each classifier's performance was optimized through hyperparameter tuning; for Naive Bayes classifiers, the main hyperparameter, alpha, regulates Laplace smoothing; for Logistic Regression, the key hyperparameter is the regularization strength (C), which was varied across a logarithmic scale from 0.01 to 10; the optimization solver used was 'lbfgs'; and the maximum number of iterations was set to 1000 to ensure convergence.

1. Which combination of algorithm and data representation yielded the best performance? Why?

The combination of the Bag of Words representation with Logistic Regression performed the best. This method produced the best accuracy and F1-score, most likely as a result of the model's capacity to identify subtle word associations in the dataset. Logistic regression can model more intricate interactions, improving predictive performance, whereas Naive Bayes assumes that features are independent.

2. Did Multinomial Naive Bayes perform better than Logistic Regression on the Bag of Words representation? Explain.

No, using the Bag of Words representation, Multinomial Naive Bayes did not perform better than Logistic Regression. Multinomial Naive Bayes assumes that word frequencies are conditionally independent given the class, which makes it ideal for text classification tasks. In contrast, logistic regression is more effective for the given dataset because it does not rely on this assumption and is capable of learning more intricate decision boundaries.

3. Did Discrete Naive Bayes perform better than Logistic Regression on the Bernoulli representation? Explain.

No, Discrete Naive Bayes (Bernoulli Naive Bayes) did not outperform Logistic Regression on the Bernoulli representation. Although Bernoulli Naive Bayes is designed for binary feature representations, it struggles with correlated features, which are common in natural language processing tasks. Logistic Regression is more robust in handling such dependencies and thus demonstrated superior performance in terms of accuracy and F1-score.