Overview of last class

The Internet network layer

host, router network layer functions:

IP datagram format

Subnets

recipe

- to determine the subnets, detach each interface from its host or router, creating islands of isolated networks
- each isolated network is called a <u>subnet</u>

Bhilding #: Subret mask
Room # Within Specific address

223.1.3.0/24

subnet mask: /24

Network Layer: Data Plane 4-4

IP addressing: CIDR

CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

200.23.16.0/23

DHCP client-server scenario

IP addresses: how to get one?

Q: how does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP's address

space

Organization 7

ISP's block	11001000	00010111	00010000	00000000	200.23.16.0/20
			•		
Organization 0	11001000	00010111	<u>0001000</u> 0	00000000	200.23.16.0/23
Organization 1	11001000	00010111	<u>0001001</u> 0	00000000	200.23.18.0/23
Organization 2	<u>11001000</u>	00010111	<u>0001010</u> 0	0000000	200.23.20.0/23

11001000 00010111 00011110 00000000

200.23.30.0/23

Rout aggregation and longest prefix match

ISPs-R-Us has a more specific route to Organization I

Network Layer: Data Plane 4-8

Class Today

all datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

IP addresses for local/private networks

- 192.168.0.0 192.168.255.255 (65,536 **IP addresses, 16bits**)
- 172.16.0.0 172.31.255.255 (1,048,576 **IP addresses, 20bits**)
- 10.0.0.0 10.255.255.255 (16,777,216 **IP addresses, 24bits**)

Network Layer: Data Plane 4-12

motivation: local network uses just one IP address as far as outside world is concerned:

- range of addresses not needed from ISP: just one IP address for all devices
- can change addresses of devices in local network without notifying outside world
- can change ISP without changing addresses of devices in local network
- devices inside local net not explicitly addressable, visible by outside world (a security plus)

implementation: NAT router must:

- outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 . . . remote clients/servers will respond using (NAT IP address, new port #) as destination addr
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Network Layer: Data Plane 4-15

- I6-bit port-number field:
 - 60,000 simultaneous connections with a single LAN-side address!
- NAT is controversial:
 - routers should only process up to layer 3
 - address shortage should be solved by IPv6
 - violates end-to-end argument
 - NAT possibility must be taken into account by app designers, e.g., P2P applications
 - NAT traversal: what if client wants to connect to server behind NAT?

NAT traversal problem

- client wants to connect to server with address 10.0.0.1
 - server address I0.0.0. I local to LAN (client can't use it as destination addr)
 - only one externally visible NATted address: 138.76.29.7
- solution I: statically configure NAT to forward incoming connection requests at given port to server
 - e.g., (123.76.29.7, port 2500)
 always forwarded to 10.0.0.1 port 25000

NAT traversal problem

- solution 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol. Allows NATted host to:
 - learn public IP address (138.76.29.7)
 - *add/remove port mappings (with lease times)

i.e., automate static NAT port map configuration

138.76.29.7 NAT router

- (1) Alice open startup Alicesolution. com, run company web at 10.0.0.1, with purt 80
- 2) UPNP/ZGD automatically establish Vecord
 [38.76.29.7, 80 10.0.0.1, 80]
- 3 (nsert DM record (Hicesolution.com, 138.76.29.7)

NAT traversal problem

- solution 3: relaying (used in Skype)
 - NATed client establishes connection to relay
 - External client connects to relay

relay bridges packets between to connections

Network Layer

4-20

Chapter 4: outline

- 4.1 Overview of Network layer
 - data plane
 - control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - network address translation
 - IPv6

- 4.4 Generalized Forward and SDN
 - match
 - action
 - OpenFlow examples of match-plus-action in action

IPv6: motivation

- initial motivation: 32-bit address space soon to be completely allocated.
- additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- fixed-length 40 byte header
- no fragmentation allowed

IPv6 datagram format

priority: identify priority among datagrams in flow flow Label: identify datagrams in same "flow." (concept of flow not well defined). next header: identify upper layer protocol for data

ver	pri	flow label						
K	payload	llen	next hdr	hop limit				
source address (128 bits)								
destination address (128 bits)								
data								

Network Layer: Data Plane 4-23

Quality of Service

- Pri bits: can be used to indicate a service class: premium, assured, or best effort
- QoS requirements for premium:
 - In order delivery
 - Guaranteed bandwidth
- Implementation for premium service
 - virtual-circuit based resource allocation: fixed path with reserved bandwidth along the path
 - Packets carrying the same flow label use the same virtual circuit

Other changes from IPv4

- checksum: removed entirely to reduce processing time at each hop
- options: allowed, but outside of header, indicated by "Next Header" field
 - 8bits
 - TCP, UDP, ICMP, or an extension header for other functions (e.g., specifiy the path for a flow)
- ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - multicast group management functions

backward competability

Transition from IPv4 to IPv6

- not all routers can be upgraded simultaneously
 - no "flag days"
 - how will network operate with mixed IPv4 and IPv6 routers?
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Tunneling

Tunneling

IPv4 tunnel В Ε connecting IPv6 routers logical view: IPv6 IPv6 IPv6 IPv6 Α В Ε physical view: IPv6 IPv6 IPv6 IPv6 IPv4 IPv4 src:B flow: X flow: X src:B src: A src: A dest: E dest: E dest: F dest: F Flow: X Flow: X Src: A Src: A Dest: F data Dest: F data data data A-to-B: E-to-F: B-to-C: B-to-C: IPv6 IPv6 IPv6 inside IPv6 inside IPv4 IPv4

Network Layer: Data Plane 4-28

IPv6: adoption

- Google: 8% of clients access services via IPv6
- NIST: I/3 of all US government domains are IPv6 capable
- Long (long!) time for deployment, use
 - •20 years and counting!
 - •think of application-level changes in last 20 years: WWW, Facebook, streaming media, Skype, ...

Chapter 4: outline

- 4.1 Overview of Network layer
 - data plane
 - control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - network address translation
 - IPv6

4.4 Generalized Forward and SDN

- match
- action
- OpenFlow examples of match-plus-action in action

Unified Streamlined Design Soune destination middleboxes Doep parket Impertion

(content based processing)

Generalized Forwarding and SDN

Each router contains a *flow table* that is computed and distributed by a *logically centralized* routing controller

Network Layer: Data Plane 4-32

OpenFlow data plane abstraction

- flow: defined by header fields
- generalized forwarding: simple packet-handling rules
 - Pattern: match values in packet header fields
 - Actions: for matched packet: drop, forward, modify, matched packet or send matched packet to controller
 - Priority: disambiguate overlapping patterns
 - Counters: #bytes and #packets

Flow table in a router (computed and distributed by controller) define router's match+action rules

OpenFlow data plane abstraction

- flow: defined by header fields
- generalized forwarding: simple packet-handling rules
 - Pattern: match values in packet header fields
 - Actions: for matched packet: drop, forward, modify, matched packet or send matched packet to controller
 - Priority: disambiguate overlapping patterns
 - Counters: #bytes and #packets

*: wildcard

- 1. src=1.2.*.*, $dest=3.4.5.* \rightarrow drop$
- 2. $src = *.*.*.*, dest=3.4.*.* \rightarrow forward(2)$
- 3. src=10.1.2.3, $dest=*.*.*.* \rightarrow send to controller$

OpenFlow: Flow Table Entries

- 1. Send to normal processing pipeline (normal forwarding)
- 2. Forward packet to multiple port (load balancing)
- 3. Drop packet (firewall)
- 4. Modify Fields (NAT)
- 5. Encapsulate and forward to controller (deep packet inspection)

OpenFlow abstraction

- match+action: unifies different kinds of devices
- Router
 - match: longest destination IP prefix
 - action: forward out a link
- Switch
 - match: destination MAC address
 - action: forward or flood

- Firewall
 - match: IP addresses and TCP/UDP port numbers
 - action: permit or deny
- NAT
 - match: IP address and port
 - action: rewrite address and port

Examples

Destination-based forwarding:

Switch						IP Sro	ľ.			TCP dport	Action
Port	Src		dst	type	טון	Src	Dst	Prot	sport	aport	
*	*	*		*	*	*	51.6.0.8	*	*	*	port6

IP datagrams destined to IP address 51.6.0.8 should be forwarded to router output port 6

Firewall:

Switch Port		2	Eth type		IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Forward
*	*	*	*	*	*	*	*	*	22	drop

do not forward (block) all datagrams destined to TCP port 22

Switch	MAC)	MAC	Eth	VLAN	IP	IP	IP	ТСР	ТСР	Forward
Port	src		dst	type	ID	Src	Dst	Prot	sport	dport	roiwaiu
*	*	*		*	*	128.119.1.1	*	*	*	*	drop

do not forward (block) all datagrams sent by host 128.119.1.1

Examples

Destination-based layer 2 (switch) forwarding:

Switch	MAC	MAC	Eth	VLAN	IP	IP	IP	TCP	TCP	Action
Port	src	dst	type	ID	Src	Dst	Prot	sport	dport	
*	22:A7:23:	*	*	*	*	*	*	*	*	port3

layer 2 frames from MAC address 22:A7:23:11:E1:02 should be forwarded to output port 3

OpenFlow example

Example: datagrams from hosts h5 and h6 should be sent to h3 or h4, via s1 and from there to s2

match	action
ingress port = 1 IP Src = 10.3.*.* IP Dst = 10.2.*.*	forward(4)

match	action
ingress port = 2 IP Dst = 10.2.0.3	forward(3)
ingress port = 2 IP Dst = 10.2.0.4	forward(4)

Chapter 4: done!

- 4.1 Overview of Network layer: data plane and control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - NAT
 - IPv6

- 4.4 Generalized Forward and SDN
 - match plus action
 - OpenFlow example

Question: how do forwarding tables (destination-based forwarding) or flow tables (generalized forwarding) computed?

Answer: by the control plane (next chapter)