1) Equitalence of NFA and DFA: (Theorem)

Statement:- Let 'I' be a set accepted by a non deterministic finite automata then there exists a DFA which accepts 'L'.

Proof :-

- → Let M=(a, E, 8, 20, F) be the NFA which accepts 1%
- The state of the analysis of the state of t
- → The initial state of DFA is same as initial state of NFA. so,

- → The states of the DFA are subsets of the set of states of NFA.
- \rightarrow [2, 22, ..., 2i] is an individual state in DFA, Where 9, 22, 23, ..., 2i are seperate states in NFA.
- → The final states of DFA are those states which contains at least one final state in NFA.
- \rightarrow The transition function S' is defined as $S'([2_1, 2_2, ..., 2_i], a) = [P_1, P_2, ..., P_j]$

, if and only it

 \rightarrow NOW Let us prove that the language accepted by the NFA and DFA are equal.

- -> For this we need to prove that every string accepted by NFA is accepted by DFA.
- → tet us apply the mathematical induction on the length of string 'x', -lo show that there are similar type of transitions in both NFA and DFA after processing string 'x'.
- That is, we need to prove that 8'(9i, x) = [9i, 92, ..., 9i]iff 8(90, 1) = 991, 92, ..., 9i

Basis step:- Consider a string of length 0 $\delta(90, \epsilon) = 90$ $\delta'(90', \epsilon) = 90'$ We know that 90' = [90].

→ This means that on a string of length 0, both MFA and DFA are having similar type of transitions.

Hence Basis step is proved.

Inductive Hypothesis: Let us assume that for strings of length k' both NFA and DFA are having similar type of transitions.

$$S'(20', \lambda) = \{P_1, P_2, ..., P_i\}$$
iff
 $S(20, \lambda) = \{P_1, P_2, ..., P_i\}$

Scanned with CamScanner

Inductive step: - We need to prove that for a string of length (k+1) also, MFA and DFA will be having similar type of transitions.

i.e., we required to prove that

$$S'(q_0', x_0) = [r_1, r_2, \ldots, r_K]$$
iff

 \rightarrow Let us consider, S'(20', xa) = S'(S'(30', x), a)

(: From inductive hypothesis)

8([P,P],...,P], a)=[r,r2,...,rk] (: from the definition

of DFA)

From the definition

$$S(S(30, x), a) = \{x_1, x_2, ..., x_k\}$$

$$\delta(90, xa) = \{ r_1, r_2, \ldots, r_{10} \}$$

Hence proved.

- → Now we need to prove that every string 'x' accepted by NFA:
- \rightarrow 2t x is accepted by NFA. 8(90, X) \in F

i.e., one of the states 91,92,, 21 must be accepted by NFA.

→ From the definition, if one of the states of 8(20,2)=221,-2
is a final state then (21,22,-2i) is a final state in

DFA which implies that 'x' is accepted by DFA

thence language accepted by NFA and DFA are equal.

2)					
3)		cus resign	a finite automo	ata -For	larguage which
49.	Contain	strings that	are divisible	by 8	en the
	strings	are interprete	ed as binary n	umbers	
soln	Ŋō,	Birary	Reminder when	stati	e end
	0	0000	0		30
	1	0001	•		3.1
	1	0010	2		22
	3	0011	3		33
	ч	0100	4		14
	5	0101	0		20
	6	0110	17	em.p.	21
	٦	0111	2	1	92
	8	1000	3	14	33
	٩	1001	4		34
	lo	1010	0		95
	Ŋ	1011	· p-/ 1		2,
			. 1		

4) Fo Types & Finite Automata:

Finite Automala is of 3 forms

1. Deterministic Finite Automata (DFA)

2. Mon deterministic Finite Automata (MFA)

3. E - Non deterministic Finite Automata (E-NFA)

1. Deterministic Finite Automata (DFA)

- 1. A finite automata in which every input symbol is applied on every state and is applied exactly once.
- A. A deterministic Finite Automata M can be described by 5-tuple ($0, \Sigma, 8, 30, F$), where
 - i. A is finite, non empty set of states
 - ii. I is an input alphabet
 - iii. δ is transition function which maps $A \times \Sigma \rightarrow A$ i.e. the head reads a symbol in its present state and moves into next state.
 - iv. 30 Ea, known as initial state
 - U. F.Ca, known as set of final states.
- 3. Examples & DFA:-

Definition & Mondeterministic Finite Actomata:

A finite Automata is a 5 tuple. It is the machine

could be get from the second of the second

M: (a, 5, 8, 20, F)

whole,

i. $A \rightarrow Non$ empty set of finite & number of states

ii. $E \rightarrow Non$ empty set of finite number of symbols or

Finite input alphabet.

iii. $S \to \text{state}$ transition function, defined as $S: A \times \Sigma \longrightarrow 2^A$ one or more states (paper set 9 a)

iv. $90 \rightarrow 2t$ is initial or start state, $90 \in Q$.

U. F → It is set of Final or Accepting States, FCQ

1. Design an NFA for the language of strings with about as substring.

soln

Epsilon NFA:- at the sale state of the

- 1. The NFA which takes even epsilon (E) as input and gives even transitions is called Epsilon NFA.
- 2. E-MFA are closely related to regular expressions and useful in proving the equivalence between the classes of languages accepted by finite automata and by regular expressions.

Formal definition & E-NFA:

MFA with E-moves is the machine M = (a, E, 8, 20, F) Where.

i. $A \rightarrow Non$ empty set of finite number of states. ii. $\Sigma \rightarrow Non$ empty set of finite number of symbols or Finite input alphabet.

iii. $S \to \text{state}$ transition function, defined as $S: Q \times \Sigma \cup SE_1 \longrightarrow 2Q$

iv. $g_0 \to It$ is initial or start state, $g_0 \in A$. v. $F \to It$ is set of Final or Accepting states, $F \subseteq A$.

Epsilon closuse: -14 , and market market

1. All the states which are reachable by just taking E.

E-closuse (9): 9UP

where p is all the states which are reachable from a by taking E' as input.

**
$$\hat{\mathcal{S}}(2,a) = \epsilon - closure(8(\hat{\mathcal{S}}(2,\epsilon),a))$$

 $\hat{\mathcal{S}}(2,\epsilon) = \epsilon - closure(2)$

2. Find every state that can be reached from qualong any path whose ones are labelled &.

2) Theorem:

Let it be an regular expression then there exists an MFA with e-transitions which accepts L(17).

proof: Let us apply mathematical induction on number of operators in the regular expression to show that there exists E-NFA which accepts L(x).

Basis step:

consider the regular expression, with Zero operators, which
has to be one of the tollowing forms.

$$(ii) \in \{\epsilon\} \rightarrow (0) \in (0) \rightarrow (0)$$

$$(iii) \alpha \in \{\alpha\} \rightarrow (0) \rightarrow (0)$$

there exists E-NFA for each of the above forms.

Hence the basis step is proved.

Step-11 Inductive hypothosis

Let us assume that the theorem, holds for a regular expression with fewer than i operators. (:>1)

Step-111 Inductive Hep

Now Let us prove that there exists an E-NFA for a regular expression with i Operators. Now here consider three cases.

- (1) 1/412
- (3) Ti.12
- (3) 7, 4 (or) 7, 4

Caseci): 11+12

which have i operators since rice roust have fewer than ii operators there must exists E-NFAS. Let them be

then be M= (Q1/2, 81, 9, H)

Ma=(02, 5, 82, 05, {f2}) there are the E-UFAS

Such that $L(M_1) = L(r_1)$ and $L(M_2) = L(r_2)$

- Now Let Us consider E-NFA for M

Note:

there are no transitions from final state.

M,

Ma

$$S(x,a) = S_{1}(x,a)$$
 if $x \in Q_{1} - \{f_{1}\}$
 $S(x,a) = S_{2}(x,a)$ if $x \in Q_{2} - \{f_{2}\}$
 $S(f_{1},e) = q_{2}$

Every path in m from $a_1 \rightarrow f_2$ is of the form a path labelled x in He from $a_1 \rightarrow f_1$. Tollowed by a path labelled in He from $a_2 \rightarrow f_1$. Tollowed by fath labelled in He from $a_2 \rightarrow f_2$ which implies $a_2 \rightarrow f_1$.

I = {xy | x \in M, and y \in M_2}

thence renfied.

Since 1. contains fewer than i operators there exists a e-NFA. and let it be

M=
$$(0,0)$$
 $(0,0)$,

Any party in M from $a_0 \rightarrow f_0$ then either directly from $a_0 \rightarrow f_0$ on f_0 on f

Hence Verified.

= r(2,*)