МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А. И. ГЕРЦЕНА»

Направление подготовки 09.03.01 Информатика и вычислительная техника

направленность (профиль) «Технологии разработки программного обеспечения и обработки больших данных»

Курсовая работа по дисциплине «Информационные технологии в физике»

«Вычислительный эксперимент по исследованию влияния температуры и давления на теплопроводность газа»

Обучающегося 1 курса очной формы обучения Фролова Андрея Алексеевича

Руководитель курсовой работы: кандидат педагогических наук, доцент, доцент Гончарова Светлана Викторовна

Санкт-Петербург 2024

Оглавление

Введение	3
Теоретическая часть.	4
Введение в проблему	
Физическая интерпретация модели	4
Исходные данные для расчета	5
Этапы вычислений Для проведения эксперимента выполняются след	цующие
шаги:	7
Ограничения эксперимента	8
Практическая часть	9
График зависимости k(T).	
График зависимости k(P).	9
3D-график зависимости k (T, P).	10
Общие выводы по графикам зависимости теплопроводности k:	10
Приложения.	12
Библиография	

Введение.

Современная наука и техника предъявляют высокие требования к моделированию процессов теплообмена, особенно в условиях изменяющихся температуры и давления. Теплопроводность газа — это одна из ключевых характеристик, определяющая эффективность теплопередачи. Изучение влияния температуры и давления на теплопроводность позволяет точнее прогнозировать поведение газов в высокотемпературных и высоконапорных системах, что важно для таких областей, как энергетика, машиностроение, аэродинамика и химическая промышленность.

Актуальность работы.

На сегодняшний день во многих инженерных задачах требуется точный расчёт теплопроводности. Если не учитывать её изменение при различных температурах и давлениях, это может привести к ошибкам в работе оборудования. Поэтому важно изучить, как эти параметры влияют на теплопроводность, и найти способы точного её расчёта.

Работа актуальна, потому что её результаты можно использовать в реальных инженерных расчётах. Например, полученные данные помогут улучшить системы теплообмена или разработать более эффективные энергетические установки.

Цель работы.

Целью работы является исследование влияния температуры и давления на теплопроводность газа с использованием эмпирической модели, подтвержденной справочными данными для воздуха.

Для достижения цели были поставлены следующие задачи:

- 1) Провести теоретический обзор зависимости теплопроводности газа от температуры и давления с использованием доступных эмпирических моделей.
- 2) Выявить основные параметры, влияющие на теплопроводность газа, и определить их значения для дальнейших расчётов.
- 3) Определить диапазоны температур и давлений, которые будут рассмотрены в ходе исследования, и обосновать их выбор.
- 4) Построить зависимости теплопроводности от температуры и давления, а также их комбинированное влияние.
- 5) Проанализировать полученные зависимости, выявить закономерности и определить наиболее значимые факторы, влияющие на теплопроводность газа.

Теоретическая часть.

Введение в проблему

Теплопроводность газа — это процесс переноса тепла через среду за счет хаотического движения молекул. Она играет ключевую роль в термодинамике, теплообмене и инженерных расчетах.

Зависимость теплопроводности газа от температуры и давления обусловлена:

- Увеличением средней кинетической энергии молекул с ростом температуры.
- Изменением плотности и частоты столкновений молекул с ростом давления.

Теплопроводность газа k рассчитывается по эмпирической зависимости, которая базируется на кинетической теории:

$$k \propto \rho \cdot cp \cdot \lambda$$
,

где:

- ρ плотность газа,
- c_p теплоёмкость при постоянном давлении,
- λ длинна свободного пробега молекул.

Эта формула усложняется для реальных газов, так как свойства газа зависят от внешних условий.

Физическая интерпретация модели.

Эмпирическая формула теплопроводности k(T, P) была выбрана на основе фундаментальных законов термодинамики и кинетической теории газов. Она отражает следующее:

- 1) Зависимость от температуры:
 - При повышении температуры молекулы газа получают больше кинетической энергии, что увеличивает их способность переносить тепло.

• Показатель n характеризует скорость роста теплопроводности с температурой. Для большинства газов n лежит в диапазоне 0.7 — 1.0

2) Зависимость от давления:

- С увеличением давления плотность газа возрастает, что увеличивает частоту столкновений молекул. Это приводит к увеличению теплопроводности, однако эффект давления выражен слабее, чем эффект температуры, что объясняется меньшим значением m (m < n)
- 3) Фактические ограничения модели:
 - При очень низких давлениях ($P \to 0$) теплопроводность ограничивается длиной свободного пробега молекул.
 - При экстремально высоких давлениях $(P \to \infty)$ возможны нелинейные эффекты, которые модель не учитывает.

Формула для расчета теплопроводности:

$$k(T,P) = k_0 * \left(\frac{T}{T_0}\right)^n * \left(\frac{P}{P_0}\right)^m,$$

где:

- k_0 теплопроводность газа при стандартных условиях (T_0, P_0) ,
- Т, Р текущие значения температуры и давления,
- п, т показатели степени.

Исходные данные для расчета

Для эксперимента используется воздух (состав: 78% азота, 21% кислорода 1% другие газы). Основные параметры взяты из табличных данных:

Параметр	Значение
k_0	0.026 Вт м*К
T_0	300K
P_0	0.1 МПа
n	0.76

m	0.25
Диапазон температур	300К – 1500К (Шаг 100К)
Диапазон давления	0.1МПа – 10Мпа (шаг 0.5 МПа)

Пояснение к выбору единиц измерения:

- 1) Температура(Т) Кельвины (К):
 - Кельвины являются стандартной единицей измерения температуры в научных расчетах. Они позволяют учитывать абсолютное нулевое значение температуры (0 К), при котором движение молекул останавливается
 - Использование Кельвинов исключает отрицательные значения температуры, что важно для корректного расчета теплопроводности
- 2) Давление(Р) Мегапаскали (МПа):
 - Паскали (Па) это стандартная единица давления в системе СИ, но для удобства работы с высокими значениями давления, мы используем Мегапаскали (1Мпа = 10⁶ Па)
 - Диапазон давлений 0,1 10 МПа выбран, чтобы охватить реальные условия, характерные для атмосферы (от пониженного до повышенного давления, например в компрессорах или турбинах).
- 3) Теплопроводность(k) Ватты на метр на Кельвин $(\frac{B_T}{M*K})$
 - Единицы $\frac{B_T}{M*K}$ используются для описания количества тепла, проходящего через единичный слой газа толщиной 1 м, при разности температур 1 К. Это стандартная единица измерения теплопроводности в физике и инженерии.
- 4) Показатели степени (п и m):
 - n = 0.76: взято из экспериментальных данных, которые показывают, что теплопроводность воздуха растет почти линейно с температурой в рассматриваемом диапазоне.

- m = 0.25: значение для давления указывает на слабое, но заметное влияние плотности воздуха на теплопроводность. Так же взято из экспериментальных данных.
- 5) Диапазон температур и давлений:
 - Температура (300 1500 K)

 Нижний предел 300К соответствует комнатной температуре.

 Верхний предел 1500К выбран, чтобы охватить

 высокотемпературные процессы, например, в двигателях или
 турбинах.
 - Давление (0.1 10.1 МПа)
 Нижний предел 0.1 Мпа представляет разреженные условия, характерные для высотной атмосферы.
 Верхний предел 10.1 Мпа охватывает высокое давление, встречающееся в компрессорах и промышленных системах.

Этапы вычислений

Для проведения эксперимента выполняются следующие шаги:

- 1) Задание диапазонов температур и давлений.
- 2) Вычисление теплопроводности для каждого сочетания Т и Р:

$$k(T,P) = k_0 * \left(\frac{T}{T_0}\right)^n * \left(\frac{P}{P_0}\right)^m,$$

- 3) Построение графиков. Для анализа результатов эксперимента будут построены три графика:
 - График зависимости теплопроводности от давления (k(P)): Температура фиксирована.

Цель: показать, как давление влияет на теплопроводность при неизменной температуре.

- График зависимости теплопроводности от температуры (k(T)): Давление фиксировано.
 - Цель: показать, как температура влияет на теплопроводность при неизменном давлении.
- 3D-график зависимости теплопроводности от температуры и давления (k(T, P)):

Температура и давление изменяются одновременно.

Цель: визуализировать комбинированное влияние температуры и давления на теплопроводность.

Ограничения эксперимента

- Предполагается, что воздух ведет себя как идеальный газ.
- Формула применима только в диапазоне температур (300-1500 K) и давлении (0.1-10 МПа).
- Фазовые переходы не учитываются (например, конденсация газа).

Практическая часть.

График зависимости k(T).

График зависимости k(T) с неизменным значением P = 1.0 МПа можно наблюдать в приложении 1.

- 1) Физический смысл:
 - а. Основное влияние температуры на теплопроводность:
 - Увеличение температуры связано с ростом средней кинетической энергии молекул газа. Чем выше энергия молекул, тем быстрее передается тепло в среде, что приводит к увеличению теплопроводности.

Этот график особенно полезен для оценки поведения теплопроводности в процессах, где давление остаётся неизменным (например, в камерах сжатия при постоянном атмосферном давлении).

- 2) Особенности графика:
 - а. На низких температурах (T<600 K) рост теплопроводности менее выражен. Это связано с меньшей скорость молекул газа и их слабым взаимодействием.
 - b. На высоких температурах (T>1000 K) теплопроводность растет быстрее из-за увеличения свободного пробега молекул.

График зависимости k(P).

График зависимости k(P) при неизменном значении T = 600 K можно наблюдать в приложении 2.

- 1) Физический смысл:
 - а. Роль давления в увеличении плотности газа:
 - При увеличении давления молекулы газа становятся ближе друг к другу, что увеличивает частоту их столкновений.
- Увеличение плотности способствует более эффективной передаче тепла, что и приводит к росту теплопроводности
 Этот график важен для процессов с изменяющимся давлением (например, в

турбомашинах, компрессорах или газопроводах).

2) Особенности графика:

- а. На малых давлениях (P<2.0 МПа) рост k выражен сильнее. В этом диапазоне увеличение плотности газа оказывает заметное влияние на передачу тепла.
- b. При высоких давлениях (Р>5.0 МПа) зависимость становится практически плоской. Это связано с тем, что при высоких давлениях плотность достигает насыщения, и дальнейшее сжатие уже мало влияет на теплопроводность.

3D-график зависимости k (T, P).

График зависимости k(T,P) можно наблюдать в приложении 3.

- 1) Физический смысл:
 - а. Комбинированное влияние температуры и давления:
 - Температура напрямую влияет на кинетическую энергию молекул и длину их свободного пробега.
 - Давление влияет на плотность газа, увеличивая частоту столкновений молекул.

Этот график наиболее полезен для анализа реальных процессов, где оба параметра изменяются одновременно, например, в реактивных двигателях, энергетических установках или при моделировании процессов теплообмена.

- 2) Особенности графика:
 - а. Температура оказывает значительно более влияние на k, что выражается крутым наклоном поверхности вдоль оси T.
 - давление оказывает более слабое влияние, особенно при высоких значениях P, что видно по "уплощению" поверхности вдоль оси P.
 - с. На низких значениях Т и Р теплопроводность минимальная, что соответствует реальным физическим свойствам газа.

Общие выводы по графикам зависимости теплопроводности к:

1) Температура как основной фактор.

Влияние температуры на теплопроводность газа значительно сильнее, чем влияние давления. Это связано с фундаментальными процессами передачи энергии между молекулами, которые интенсивно зависят от кинетической энергии молекул, определяемой температурой.

2) Давление как второстепенный фактор. Давление играет заметную роль в изменении теплопроводности только при низких температурах и малых значениях давления. При высоких значениях давление оказывает менее значительное влияние.

3) Совместное влияние параметров: Максимальная теплопроводность достигается при одновременном увеличении температуры и давления, однако основной вклад в изменение величины вносит температура.

4) Практическая применимость: Полученные зависимости позволяют моделировать поведение теплопроводности газа в различных инженерных процессах, таких как теплообмен в энергетических установках, высокотемпературные системы и компрессоры.

5) Адаптивность модели:

Представленная модель с эмпирическими коэффициентами n и m показывает согласованность с теоретическими ожиданиями и может быть применена для анализа теплопроводности других газов с соответствующей настройкой параметров.

Приложения.

Приложение 1.

Рисунок 1. График зависимости k(T).

Приложение 2.

Рисунок 2. График зависимости k(P).

Приложение 3.

Рисунок 3. График зависимости k(T,P).

Библиография.

- 1. Гусев, А. А. Механика жидкости и газа: учебник для вузов / А. А. Гусев. 3-е изд., испр. и доп. Москва: Издательство Юрайт, 2024. 232 с. (Высшее образование). ISBN 978-5-534-05485-9. / Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/535604 (дата обращения: 15.11.2024). Текст: электронный.
- 2. Грабовский, Р. И. Курс физики / Р. И. Грабовский. 14-е изд., стер. Санкт-Петербург: Лань, 2024. 608 с. ISBN 978-5-507-47391-5. / Лань: электронно-библиотечная система. URL: https://reader.lanbook.com/book/367019 (дата обращения: 15.11.2024). Режим доступа: для авториз. пользователей. Текст: электронный.
- 3. Кораблев, В. А. Лабораторный практикум по курсу теория тепло- и массообмена. Общая часть: учебное пособие / Н.Ф. Гусарова. Редакционноиздательский отдел Университета ИТМО. URL: https://books.ifmo.ru/file/pdf/1928.pdf (дата обращения: 15.11.2024). Режим доступа: Электронно-библиотечная система ИТМО. Текст: электронный.
- 4. Крайко А.Н. Механика жидкости и газа. Избранное / ред. А. Н. Крайко. Москва: Физматлит, 2003. 384 с. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=69129 (дата обращения: 15.11.2024). ISBN 978-5-9221-0444-9. Текст: электронный.
- 5. Кузнецов, В. А. Гидрогазодинамика: учебное пособие для вузов / В. А. Кузнецов. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2024. 120 с. (Высшее образование). ISBN 978-5-534-11813-1. / Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/542712 (дата обращения: 15.11.2024). —Текст: электронный.
- 6. Лебедев, В. М. Программирование на VBA в MS Excel: учебное пособие для вузов / В. М. Лебедев. 3-е изд., испр. и доп. Москва: Издательство Юрайт, 2024. 312 с. (Высшее образование). ISBN 978- 5-534-15949-3. / Образовательная платформа Юрайт [сайт]. URL:

- <u>https://urait.ru/bcode/536729</u> (дата обращения: 15.11.2024). Текст: электронный.
- 7. Попов, И. С. Современные методы математического моделирования задач теоретической и математической физики: учебно-методическое пособие: [16+] / И. С. Попов; Омский государственный университет им. Ф. М. Достоевского. Омск: Омский государственный университет им. Ф.М. Достоевского (ОмГУ), 2024. 68 с. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=714123 (дата обращения: 15.11.2024). Библиогр. в кн. ISBN 978-5-7779-2672-2. Текст: электронный.
- 8. Попов, И. С. Численные методы и математическое моделирование в задачах теоретической физики: учебно-методическое пособие: [16+] / И. С. Попов, В. Н. Бородихин; Омский государственный университет им. Ф. М. Достоевского. Омск: Омский государственный университет им. Ф.М. Достоевского (ОмГУ), 2024. 53 с. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=714122 (дата обращения: 15.11.2024). ISBN 978-5-7779-2670-8. Текст: электронный.
- 9. Прикладная информатика: учебное пособие / составитель Т. Ю. Гусева. пос. Караваево: КГСХА, 2021. 96 с. / Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/252020 (дата обращения: 15.11.2024). Режим доступа: для авториз. пользователей. Текст: электронный.
- 10.Стародубцева, Г. П. Физика. Курс лекций: учебное пособие для вузов / Г. П. Стародубцева, С. И. Любая, Е. И. Рубцова. 2-е изд., испр. Санкт-Петербург: Лань, 2021. 156 с. ISBN 978-5-8114-7521-6. URL: https://e.lanbook.com/book/174968 (дата обращения: 15.11.2024). Режим доступа: для авториз. пользователей. Лань: электронно-библиотечная система. Текст: электронный.