

Comparativa de **Sistemas** Operativos y Paradigmas de Programación

Daniela Moreno León y Miguel Duarte Clavijo

Introduccion

Introduction

El principal **objetivo** es evaluar y comparar el rendimiento de programas de multiplicación de matrices en diferentes sistemas operativos (Windows y Linux) y paradigmas de programación (serie y paralelo).

Como Métricas de Rendimiento

tenemos el Tiempo de ejecución (µs), uso de memoria y CPU.

Importancia: Optimización de software, toma de decisiones informadas sobre plataformas de cómputo y estrategias de programación.

02 Sistemas Operativos

Contexto de Sistemas Operativos

Software esencial que controla el hardware y permite la interacción entre el usuario y la computadora.

Windows

Popular, fácil de usar, amplia compatibilidad, pero puede ser menos eficiente en recursos y más vulnerable a amenazas.

Linux

Estable, eficiente, altamente personalizable, pero requiere conocimientos técnicos y puede tener una curva de aprendizaje más pronunciada.

03 Sistemas De computo

Comparativa de Sistemas de Cómputo

Justificacion

Representan dos enfoques diferentes en el diseño de sistemas operativos y son ampliamente utilizados

Objetivo

Evaluar si hay diferencias significativas en el rendimiento de los programas de multiplicación de matrices en estas plataformas.

Plataformas Seleccionadas

Windows y Linux (Ubuntu en Docker)

04 Algoritmo De MM matrices

Algoritmos de Multiplicación de Matrices

Implementación

Lenguaje C (eficiencia y control sobre la gestión de memoria).

Algoritmos

Multiplicación clásica
(MM_clasico)
Multiplicación con matriz
transpuesta
(MM_transpuesta)

Justificación

La multiplicación de matrices es una operación común en diversas aplicaciones y su optimización es crucial.

O5 Paradigma de programacion

Paradigmas de Programación

Programación en Serie

Ejecución secuencial de tareas.

Programación en Paralelo

Ejecución simultánea de tareas (utilizando hilos en este caso).

Objetivo

Comparar el rendimiento de ambos paradigmas en la multiplicación de matrices.

06 Metodología de experimentación

Metodología de Experimentación

Ley de los Grandes Números

Repetición de experimentos para obtener resultados estadísticamente significativos.

Número de Hilos

1, 2, 4, 6, 8.

Tamaños de Matrices

150×150, 250×250, 1000×1000, 2000×2000, 3000×3000, 4000×4000.

Métricas

Tiempo de ejecución (µs), uso de memoria y CPU

Análisis de Resultados

Análisis De resultados

(MM_clasico Windows y Linux)

Windows Linux

Análisis De resultados

(MM_Transpuesta Windows y Linux)

Windows Linux

000

Análisis De resultados

(Gráfica del comportamiento de los 2 tipos de matrices)

Conclusiones

01 Rendimiento Similar

Windows y Linux mostraron un rendimiento comparable en general

Ventajas de la Multiplicación Transpuesta

Mejor rendimiento, especialmente para matrices grandes

03 Impacto de los Hilos

Mejora significativa hasta 6 hilos, luego se estabiliza

Recomendaciones

Considerar la multiplicación transpuesta y el uso de hilos (hasta un punto óptimo) para mejorar el rendimiento en la multiplicación de matrices

Thanks!

- Herrera, J. (2023, diciembre 13). Linux vs Windows vs macOS: similitudes, diferencias, y comparativa de los principales sistemas operativos. Guía Hardware.
 https://www.guiahardware.es/linux-vs-windows-vs-macos/
- Tanenbaum, A. S. (s/f). Sistemas Operativos Modernos (4ta Edición) Andrew S. Tanenbaum.

