УДК 546.3-866.711.682

https://doi.org/10.37827/ntsh.chem.2024.75.028

Галина НИЧИПОРУК, Ореста ДМИТРАХ, Ярослав КАЛИЧАК

СИСТЕМА La-Ni-In: ФАЗОВІ РІВНОВАГИ ТА КРИСТАЛІЧНІ СТРУКТУРИ СПОЛУК

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: varoslav.kalvchak@lnu.edu.ua

Методами рентгенівського фазового і, частково, мікроструктурного аналізів та енергодисперсійної рентгенівської спектроскопії встановлено фазові рівноваги та побудовано ізотермічний переріз діаграми стану системи La-Ni-In у повному концентраційному інтервалі за температури 870 K (область 0–0,333 ат. часток La) та 670 K (область > 0,333 ат. часток La). У системі виявлено розчинність індію у сполуці LaNis (до 8,5 ат. %) та нікелю у сполуці La2In (до 5 ат. %) і підтверджено існування Ia терних сполук: $LaNirIn_6$ (CT $LaNirIn_6$), $LaNirIn_6$), $LaNirIn_6$ (CT $LaNirIn_6$), $LaNirIn_6$), $LaNirIn_6$ 0 (CT $LaNirIn_6$), $LaNirIn_6$ 1), $LaNirIn_6$ 1), LaNi

Keywords: індид, метод порошку, потрійна система, тернарна сполука.

Вступ

Потрійні системи рідкісноземельних металів з перехідними металами, особливо 3*d*-металами 7–12 груп Періодичної системи, та *p*-елементами 3–5 груп, є плідними на інтерметалічні сполуки. Ці сполуки вирізняються різноманітністю складу, складністю кристалічної структури, унікальністю фізичних властивостей. Значною мірою це стосується систем, де *p*-елементом є індій, а *d*-металом кобальт, нікель чи мідь. Ізотермічні перерізи діаграм стану систем міді побудовані практично для всіх рідкісноземельних металів [1]. У них утворюється від шести (у системі Y–Cu–In) до дев'яти (у системі Се–Cu–In) сполук, більшість з яких зосереджена в області до 33,3 ат. % РЗМ. Попередній огляд сполук систем РЗМ–Nі–In описаний у [2]. Сьогодні побудовані ізотермічні перерізи діаграм стану систем з Y [3], Се [4], Gd [5], Ть [6], Dу [7], Но [8], Ег [9], Тт [10], Lu [11]. На відміну від систем міді вони багатші на потрійні сполуки, які більш різноманітні за хімічним складом і кристалічною структурою. Продовжуючи систематичні дослідження взаємодії компонентів у системах РЗМ–Nі–In, представляємо діаграму фазових рівноваг

системи La–Ni–In за температури 870 К (область 0–0,333 ат. часток La) та 670 К (область > 0,333 ат. часток La).

З літературних джерел відомо про існування в системі сполук LaNi $_7$ In $_6$ [1, 12], LaNi $_9$ In $_2$ [1, 2, 13, 14], LaNi $_3$ In $_6$ [1, 2], LaNi $_5$ In [1, 2, 15], LaNi $_3$ In $_2$ [1, 2], LaNiIn $_4$ [1, 2, 12], La $_4$ Ni $_7$ In $_8$ [1, 2], La $_5$ Ni $_6$ In $_{11}$ [1, 2], LaNi $_2$ In [1, 2], LaNiIn [16], LaNi $_0$, $_5$ In $_{1,5}$ [1, 2] (LaNi $_0$, $_5$ In $_{1,75}$ [20]), La $_2$ Ni $_2$ In [1, 2, 17], La $_1$ Ni $_4$ In $_9$ [18, 19], La $_1$ Ni $_6$ In [1]. Для сполук LaNi $_9$ In $_2$ [13], LaNi $_5$ In [21], LaNi $_2$ In [22, 23], LaNiIn [24–30], La $_2$ Ni $_2$ In [31] та твердого розчину LaNi $_5$ - $_x$ In $_x$ [32] досліджено воденьсорбційні властивості.

Для подвійних систем La–Ni [33, 34], La–In [35–37] і Ni–In [38, 39], які обмежують досліджувану потрійну, побудовано діаграми стану та досліджено кристалічні структури сполук.

Матеріали та методика експерименту

Для дослідження взаємодії компонентів у системі La—Ni—In виготовлено понад 130 подвійних і потрійних сплавів. Зразки масою близько 1 г синтезували електродуговим сплавлянням шихти з компактних металів (лантан з вмістом 0,999 мас. частки La; нікель — 0,9992 мас. частки Ni, індій — 0,9999 мас. частки In) у відповідних масових співвідношеннях в атмосфері очищеного аргону (гетер — губчастий титан). Для забезпечення гомогенізації сплави переплавляли двічі. Втрати під час плавлення не перевищували 1 мас. %, тому склад сплавів приймали таким, що дорівнює складу шихти. Одержані зразки відпалювали у вакуумованих кварцових ампулах за 870 К упродовж місяця (область 0–0,333 ат. часток La) та за 670 К (область > 0,333 ат. часток La) упродовж двох місяців з наступним загартовуванням у холодну воду без попереднього розбивання ампул. Сплави литі та відпалені стійкі до дії навколишнього середовища протягом тривалого часу, за винятком сплавів із вмістом від \sim 0,30 до \sim 0,60 ат. часток La та \sim до 0,10 ат. часток Ni, які впродовж кількох тижнів руйнувалися з утворенням аморфних фаз і кристалічного індію.

Фазовий аналіз виконували за рентгенограмами, отриманими в камерах Дебая-Шеррера (Сг K-випромінювання) та на порошковому дифрактометрі (ДРОН-2.0, Fe $K\alpha$ -випромінювання) шляхом порівняння порошкограм досліджуваних сплавів із порошкограмами відомих бінарних та тернарних сполук і чистих компонентів. Теоретичні рентгеногами отримували за допомогою програм Powder Cell [40] і STOE WinXPOW [41]. Для детальнішого вивчення кристалічної структури (програма FullProf [42]) використовували масиви експериментальних даних, отриманих на дифрактометрі STOE STADI P (Си $K\alpha_1$ -випромінювання). Аналіз мікроструктур поверхонь окремих зразків та кількісний і якісний аналіз проводили на сканувальному електронному мікроскопі Tescan Vega 3 LMU, оснащеному детектором Oxford Instruments SDD X-Max N20 .

Результати досліджень та обговорення

За результатами рентгенівського фазового та, частково, мікроструктурного і локального рентгеноспектрального аналізів (рис. 1) побудовано ізотермічний переріз діаграми стану системи La–Ni–In у повному концентраційному інтервалі за температури 870 К (область 0–0,333 ат. часток La) та 670 К (область > 0,333 ат. часток La) (рис. 2).

За умов дослідження підтверджено існування ряду бінарних сполук подвійних систем: La₃In (структурний тип (СТ) AuCu₃), La₂In (СТ Ni₂In), La₃In₅ (СТ Pu₃Pd₅),

LaIn (CT CsCl), LaIn₂ (CT KHg₂), LaIn₃ (CT AuCu₃); La₃Ni (CT Fe₃C), La₇Ni₃ (CT Th₇Fe₃), LaNi (CT TII), La₂Ni₃ (CT La₂Ni₃), LaNi₂ (CT MgCu₂), LaNi₃ (CT PuNi₃), La₂Ni₇ (CT Ce₂Ni₇), LaNi₅ (CT CaCu₅); Ni₃In (CT Mg₃Cd), Ni₂In (CT Ni₂In), ζ (Ni_xIn_{1-x}, CT NiAs), Ni₁₃In₉ (CT Ni₁₃Ga₉), NiIn (CT CoSn), Ni₂In₃ (CT Ni₂Al₃), а також 14 тернарних сполук у системі La–Ni–In, склади та кристалографічні характеристики яких наведено у табл. 1.

Рис. 1. Фотографії поверхонь мікрошліфів окремих зразків системи La-Ni-In.

Fig. 1. Scanning electron micrographs of polished samples of the La-Ni-In system.

Бінарні сполуки практично не розчиняють третього компонента, за винятком сполук LaNi₅ зі структурою типу CaCu₅ і La₂In зі структурою типу Ni₂In. Перша, за даними дослідження монокристала, розчиняє вздовж ізоконцентрати 16,7 ат. % La біля 8,5 ат. % In [14]. Заміщення атомів нікелю атомами індію відбувається в положенні 3g (1/2 0 1/2) просторової групи P6/mmm. У цьому випадку параметри елементарної комірки очікувано зростають від a = 0,5009; c = 0,3983 нм [34] для LaNi₅ до a = 0,5042; c = 0,4009 нм для LaNi_{4,49}In_{0,51} [14]. За даними [32] у сплавах, відпалених за 1500 К, зафіксована гранична розчинність індію при складі LaNi_{4,8}In_{0,2} і, що сплав цього складу поглинає 6,4 атома водню на формульну одиницю. Розчинність нікелю (до 5 ат. %) у сполуці La₂In вздовж ізоконцентрати 66,7 ат. % La зафіксована за результатами EDX аналізу двофазових сплавів La₅₀Ni₂₀In₃₀ та La₆₅Ni₂₅In₁₀ (див. рис. 1). Граничний склад описується формулою La₂Ni_{0,15}In_{0,85}.

Рис. 2. Ізотермічний переріз діаграми стану системи La–Ni–In за 870 К (область 0–33,3 ат. % La) та 670 К (область > 33,3 ат. % La) (нумерація сполук відповідає даним табл. 1).

Fig. 2. Isothermal section of the phase diagram of La–Ni–In system at 870 K (region 0–33,3 at. % La) and 670 K (region > 33,3 at.% La) (the numbering of compounds corresponds to the data in the table 1).

Сполуки системи La—Ni—In можна розділити на три групи: сполуки багаті на нікель — це складні багатошарові сполуки з високими значеннями координаційних чисел атомів; сполуки середньої частини концентраційного трикутника — двошарові сполуки з координаційними многогранниками у вигляді призм; сполуки багаті лантаном — складні багатошарові сполуки з порівняно низькими значеннями координаційних чисел атомів. До першої групи належать сполуки LaNi₉In₂, LaNi₇In₆, LaNi₅In. Другу групу становлять сполуки LaNi₃In₆, LaNi₃In₂, LaNiIn₄, La₄Ni₇In₈, La₅Ni₆In₁, LaNi₂In, LaNiIn, LaNi_{0,5-0,25}In_{1,5-1,75}, La₂Ni₂In та La₁₁Ni₄In₉. Третя група представлена сполукою La₁₂Ni₆In.

Сполука LaNi₉In₂ зі тетрагональною структурою типу YNi₉In₂ має область гомогенності вздовж ізоконцентрати лантану 8,3 ат %, яка описується формулою LaNi_{9-8,2}In_{2-2,8}. Граничний склад з боку багатого індієм визначено за дослідженнями кристалічної структури методом монокристала [14] і підтверджено EDX аналізом двофазового сплаву La₈Ni₆₄In₂₈ (див. рис. 1). Іще однією особливістю цієї сполуки є роздвоєння положення атомів лантану за кімнатної температури та за T = 100 K. Якщо у прототипі YNi₉In₂ атоми P3M розташовані в положенні 2a (0 0 0), то у сполуці лантану він займає положення 2a (0 0 0) та $4e (0 0 z) (z\sim0,05)$ з коефіцієнтами

заповнення 0,26 та 0,37, відповідно [14]. Сполука LaNi₉In₂ характеризується типовою для металів електропровідністю і ε парамагнетиком Паулі [13]. Наводнення сплаву призводить до утворення гідриду LaNi₉In₂H_{0,95} з вихідною структурою і дещо більшими параметрами комірки [13].

Таблиця 1 Кристалографічні характеристики сполук системи La-Ni-In

Table 1
Crystallographic characteristics of the compounds in the La–Ni–In system

No	Стотино	Структурний	Просторова	Параметри комірки, нм			Літера-
Π/Π	Сполука	тип	група	а	b	С	тура
1.	LaNi7In6	LaNi7In6	Ibam	0,8066	0,9248	1,2465	1, 12
2.	LaNi ₉ In ₂	YNi ₉ In ₂	P4/mbm	0,8339	-	0,4877	1, 2
				0,8285	-	0,4871	13
	LaNi _{8,2} In _{2,8}			0,83976	T = 295 K	0,50439	14
				0,83814	T = 100 K	0,50352	14
3.	LaNi ₃ In ₆	LaNi ₃ In ₆	Pmmn	0,4388	0,7574	1,2110	1, 2
4.	LaNi ₅ In	CeNi ₅ Sn	P6 ₃ /mmc	0,4957	-	1,9969	1, 2,15
5.	LaNi ₃ In ₂	HoNi _{2,6} Ga _{2,4}	P6/mmm	0,9334	_	0,4356	1, 2
6.	LaNiIn4	YNiAl ₄	Cmcm	0,4484	1,6885	0,7199	1,2
				0,4482	1,6895	0,7221	12
7.	La ₄ Ni ₇ In ₈	Ce4Ni7In8	Cmmm	1,4757	2,4187	0,4398	1, 2
8.	La ₅ Ni ₆ In ₁₁	Pr ₅ Ni ₆ In ₁₁	Cmmm	1,4640	1,4674	0,4439	1, 2
9.	LaNi ₂ In	PrCo ₂ Ga	Pmma	0,5254	0,4131	0,7169	1, 2
10.	LaNiIn	ZrNiAl	P-62m	0,7613	-	0,4035	16
				0,7607	-	0,4059	18
11.	LaNi _{0,5} In _{1,5}	AlB_2	P6/mmm	0,4837	-	0,4036	1, 2
	LaNi _{0,25} In _{1,75}			0,4850		0,3963	20
12.	La ₂ Ni ₂ In	Mo ₂ FeB ₂	P4/mbm	0,7611	-	0,3918	1, 2
	o-La ₂ Ni ₂ In	o-La ₂ Ni ₂ In	Pbam	0,75840	1,54891	0,39151	17
			Pbam	0,7588(1)	1,5499(3)	0,3915(1)	*
13.	La ₁₁ Ni ₄ In ₉	Nd ₁₁ Pd ₄ In ₉	Cmmm	1,50173	2,2515	0,38381	18
				1,50061	2,25039	0,38347	19
14.	La ₁₂ Ni ₆ In	Sm ₁₂ Ni ₆ In	<i>Im</i> –3	1,0209			1, 2
				1,0254(4)			*

^{*} Результати цієї праці.

Сполука LaNi $_7$ In $_6$ має власний тип структури, який є варіантом ромбічної деформації кубічної структури типу NaZn $_{13}$. Структура цієї сполуки частково невпорядкована, зокрема у положенні 8j є статистична суміш атомів Ni/In у співвідношенні 0,180/0,820, що приводить до складу LaNi $_{7,36}$ In $_{5,64}$. Це, а також незначні зміни параметрів елементарної комірки цієї фази у сплавах близьких до стехіометричного складу, свідчить про незначну (в межах 2-3 ат. %) область гомогенності [12].

Сполука LaNi₅In має гексагональну структуру типу CeNi₅Sn [15]. Результатом її гідрування за кімнатної температури і тиску водню до 10 MPa ϵ утворення гідриду

LaNi₅InH_{1,8} зі структурою металічної матриці і незначним збільшенням параметрів комірки [21].

Для цієї групи сполук координаційні числа атомів лантану перебувають у межах 18-20, атомів нікелю -10-12 (ікосаедр і його похідні) та атомів індію -13-15.

Для двошарових структур (друга група сполук) координаційними многогранниками атомів лантану зазвичай є гексагональні та пентагональні призми (КЧ = 12-20), атомів індію – тетрагональні призми (КЧ = 12-14), а атомів нікелю – многогранники типу атомів Cu у структурі CaCu₅ або частіше тригональні призми (КЧ = 9-12). У всіх випадках призми екваторіально центровані додатковими атомами. Для атомів лантану й, у деяких випадках, атомів індію центрованими є також основи призм. У структурі сполуки LaNiIn4 можна виокремити призми [InIn₈], аналогічні до структури чистого індію. Зі зміною стехіометрії сполук змінюється склад атомних шарів. За низьких концентрацій лантану в обох шарах ϵ усі сорти атомів (La + Ni + In). Сюди належать сполуки LaNi₃In₆, LaNi₃In₂, LaNiIn₄, La₄Ni₇In₈, La₅Ni₆In₁₁. Зі збільшенням вмісту лантану, зокрема в сполуках LaNi₇In та LaNiIn, в одному шарі є атоми La та Ni, а в іншому Ni та In. При подальшому збільшенні вмісту лантану (сполуки LaNi_{0.5-0.25}In_{1.5-1.75}, La₂Ni₂In і La₁₁Ni₄In₉) один шар складається виключно з атомів La, а інший – із атомів Ni та In. Варто зауважити, що зі збільшенням вмісту La зменшується значення найкоротшого періоду від 0,4484 нм для LaNiIn₄ до 0,3838 нм для La₁₁Ni₄In₉.

Сполука зі структурою типу AlB₂, подібно до ізоструктурних сполук у системах Ce–Ni–In і La–Cu–In [1], має область гомогенності вздовж ізоконцентрати рідкісноземельного металу. За даними [1] і [20] вона перебуває в межах від 50 до 58 ат. % In, а її склад описується формулою LaNi_{0,5–0,25}In_{1,5–1,75}. Як і в сполуці CeNi_{0,3–0,2}In_{1,7–1,8} зі збільшенням вмісту індію в межах області гомогенності значення параметра комірки a зростає, а параметра c – зменшується. У цьому випадку для сполуки LaCu_{0,5–0,2}In_{1,5–1,8} значення обох періодів зростають [1].

Сполука La₂Ni₂In існує у вигляді двох модифікацій. За даними диференційного термічного аналізу до температури 820 К існує тетрагональна модифікація із структурою типу Mo₂FeB₂, а вище — o-ромбічна модифікація (рис. 3,a) із власним типом структури [17]. Ромбічна модифікація також двошарова і близько споріднена до тетрагональної. Метрично вони пов'язані співвідношеннями: $a_o \sim a_t$; $b_o \sim 2a_t$; $c_o \sim c_t$. Оскільки структуру o-ромбічної модифікації сполуки La₂Ni₂In визначено за монокристальними даними, то ми виконали уточнення її кристалічної структури методом порошку (програма FullProf) за масивом даних, отриманих на дифрактометрі STOE STADI P (рис. 3,a; табл. 2), використавши монокристальні дані [17] як модель.

Гідрогенсорбційні властивості вивчено для сполук LaNi₂In, LaNiIn і La₂Ni₂In. Сполука LaNi₂In поглинає до 3,5 атомів водню на формульну одиницю без зміни типу вихідної структури [22, 23]. Очевидно, найбільше досліджень [24–30] присвячено гідрогенсорбційним властивостям сполуки LaNiIn, яка без зміни структури поглинає до 2 атомів водню на формульну одиницю [24]. Гідрид LaNiInH₂ розкладається у дві стадії при нагріванні до 800 К. На прикладі сполуки LaNiInH₂ (разом із сполуками церію та неодиму) вперше було виявлено аномально коротку відстань між атомами водню в \sim 1,6 Å всупереч емпіричному правилу 2 Å [25]. Електронна структура цього гідриду досліджена у [28]. Тетрагональна фаза La₂Ni₂In поглинає водень із зміною структури до ромбічної (просторова група

Рис. 3. Експериментальна (•), розрахункова (—) та різницева (знизу) дифрактограми зразків: $a-\text{La}_{40}\text{Ni}_{40}\text{In}_{20}$; $\delta-\text{La}_{65}\text{Ni}_{25}\text{In}_{10}$ ($I-\text{La}_{12}\text{Ni}_{6}\text{In}$; $2-\text{La}_{2}\text{Ni}_{0,15}\text{In}_{0,85}$) (STOE STADI P, Cu $K\alpha_1$ -випромінювання).

Fig. 3. Experimental (•), calculated (–) and difference (bottom) X–ray patterns of the alloys: $a - \text{La}_{40}\text{Ni}_{40}\text{In}_{20}$; $b - \text{La}_{65}\text{Ni}_{25}\text{In}_{10}$ ($I - \text{La}_{12}\text{Ni}_{6}\text{In}$; $2 - \text{La}_{2}\text{Ni}_{0.15}\text{In}_{0.85}$) (STOE STADI P, Cu $K\alpha_1$ -radiation).

Як уже згадувалось вище, третя група представлена сполукою La₁₂Ni₆In із кубічною структурою типу Sm₁₂Ni₆In. Оскільки для цієї сполуки визначено лише параметри елементарної комірки, то ми виконали уточнення її кристалічної структури методом порошку (дифрактометр STOE STADI P, Cu $K\alpha_1$ -випромінювання, програма FullProf) (рис. 3, δ).

Деталі експерименту та результати уточнення кристалічної структури сполуки $La_{12}Ni_6In$ наведені у табл. 2. Найкоротші міжатомні відстані у цій структурі: La-La 0,3787; La-Ni 0,2831; La-In 0,3669; Ni-Ni 0,2418 нм. Особливістю структури є ікосаедрична координація атомів індію, що рідко трапляється у потрійних індидах. Іще одна особливість — наявність пар Ni-Ni на відстані 0,2418 нм (у чистому нікелі — 0,2592 нм [43]), що є у здвоєних основами тетрагональних антипризмах [1].

Таблиця 2 Деталі експерименту та результати уточнення кристалічної структури сполук La₂Ni₂In i La₁₂Ni₆In

Table 2

Experimental details and results of crystal structure refinement of La₂Ni₂In and La₁₂Ni₆In compounds

1 ₁₀ ¹ n		
n		
6,573		
Sm ₁₂ Ni ₆ In		
<i>Im</i> −3, № 204		
cI38		
DI P		
ı <i>Κ</i> α ₁)		
585		
0 с		
a = 1,0254(4)		
5)		
0,3057(4)		
0 1/2		
1,25(7)		
1,3		
0,729(9); 0,0; 0,006(2)		
0,05(1); [100]		
4,58; 5,82		
6,41; 4,89		

 1 Додаткова фаза La₂Ni_{0,15}In_{0,85}) (CT Ni₂In; ПГ $P6_3/mmc$; a=0,5655(3), c=0,7102(4) нм; $R_{\rm Bragg}=8,85$ %; $R_{\rm F}=6,02$ %; $\omega=7,8(4)$ %).

Висновки

Побудовано ізотермічний переріз діаграми стану системи La–Ni–In у повному концентраційному інтервалі за температури 870 К (область 0–0,333 ат. часток La) та 670 К (область > 0,333 ат. часток La). В системі виявлено розчинність індію у

сполуці LaNi₅ (до 8,5 ат. %) та нікелю у сполуці La₂In (до 5 ат. %) і підтверджено існування 14 тернарних сполук: LaNi₇In₆, LaNi₉In₂, LaNi₃In₆, LaNi₅In, LaNi₃In₂, LaNiIn₄, La₄Ni₇In₈, La₅Ni₆In₁₁, LaNi₂In, LaNiIn, LaNi_{0,5-0,25}In_{1,5-1,75}, La₂Ni₂In, La₁₁Ni₄In₉, La₁₂Ni₆In. Методом порошку уточнено кристалічну структуру ромбічної модифікації сполуки La₂Ni₂In та La₁₂Ni₆In. Для сполуки зі структурою типу YNi₉In₂ визначено область гомогенності, яка описується формулою LaNi_{9-8,2}In_{2-2,8}.

Подяка

Автори вдячні провідному науковому співробітнику П. Ю. Демченку за допомогу в отриманні експериментальних масивів дифрактограм окремих сплавів та науковому співробітнику А. В. Зелінському за допомогу у дослідженні мікроструктур окремих зразків.

 Γ . H. ma \mathcal{A} . K. вдячні за фінансову підтримку фонду Simons Foundation (Award ID: 1290588).

ЛІТЕРАТУРА

- Kalychak Ya. M., Zaremba V. I., Pöttgen R., Lukachuk M., Hoffmann R.-D. Rare Earth– Transition Metal–Indides. In: K. A. Gschneidner, Jr., J.-C. Bünzli, V. K. Pecharsky (Eds.). Handbook on the Physics and Chemistry of Rare Earths. Elsevier, Amsterdam. 2005. Vol. 34. P. 1–133. https://doi.org/10.1016/S0168-1273(04)34001-8.
- 2. *Kalychak Ya.* Peculiarities of the composition and structure of the compounds of the rare-earth–Ni–In system. J. Alloys Compd. 1997. Vol. 262–263. P. 341–345. https://doi.org/10.1016/S0925-8388(97)00402-7.
- 3. Zaremba V., Dzevenko M., Nychyporuk G., Kalychak Ya. Phase equlibrium in the Y-Ni-In systhem at 870 K. Visn. Lviv University, Ser. Chem. 2021. 62. P. 18–27 (in Ukrainian). https://doi.org/10.30970/vch.6201.018.
- 4. *Kalychak Ya.* The component interaction in Ce–Ni–In system. Ukr. Chem. Jorn. 1998. Vol. 64(7). P. 15–20 (in Ukrainian).
- 5. Zaremba V., Dzevenko M., Pöttgen R., Kalychak Ya. Phase equilibrium in the Gd–Ni–In system at T = 870 K. Z. Naturforsch. B. 2019. Vol. 74(7–8). P. 613–618. https://doi.org/10.1515/znb-2019-0083.
- 6. Dzevenko M., Tyvanchuk Yu., Demidova Ch., Lukachuk M., Kalychak Ya. Phase equilibria in Tb-Ni-In system at 870 K. Visnyk Lviv Univ. Ser. Chem. 2014. Iss. 55(1). P. 21–28 (in Ukrainian).
- 7. Tyvanchuk Yu. B., Zaremba V. I., Akselrud L. G., Szytula A., Kalychak Ya. M. The Dy–Ni–In system at 870 K: isothermal section, solid solutions, crystal structures. J. Alloys Compd. 2017. Vol. 704. P. 717–723. https://doi.org/10.1016/j.jallcom.2017.02.023.
- 8. Zaremba V., Dzevenko M., Nychyporuk G., Maletska Yu., Kalychak Ya. The system Ho–Ni–In at 870 K. Visnyk Lviv Univ. Ser. Chem. 2022. Iss. 63. P. 16–28 (in Ukrainian). https://doi.org/10.30970/vch.6301.016.
- 9. Dzevenko M., Tyvanchuk Yu., Bratash L., Zaremba V., Havela L., Kalychak Ya. Ternary system Er–Ni–In at T = 870 K. J. Solid State Chem. 2011. Vol. 184(10). P. 2707–2712. https://doi.org/10.1016/j.jssc.2011.08.006.
- Tyvanchuk Yu. B., Lukachuk M., Pöttgen R., Szytula A., Kalychak Ya. M. The ternary system Tm-Ni-In at 870 K. Z. Naturforsch. B. 2015. Vol. 70. P. 665–670. https://doi.org/10.1515/ znb-2015-0075.

- 11. Zaremba V., Nychyporuk G., Dzevenko M., Kalychak Ya. Ternary system Lu–Ni–In at T = 870 K. Visnyk Lviv Univ. Ser. Chem. 2023. Iss. 64. P. 14–25 (in Ukrainian). https://doi.org/10.30970/vch.6401.014.
- Kalychak Ya. M., Zaremba V.I., Galadzhun Ya.V., Miliyanchuk K.Yu., Hoffmann R.-D., Pöttgen R. New ^{∞1}[Ni₇] cluster in LaNi₇In₆ and distorted bcc indium cubes in LaNiIn₄. Chem. Eur. J. 2001. Vol. 7. P. 5343–5349. https://doi.org/10.1002/1521-3765(20011217)7: 24<5343::AID-CHEM5343>3.0.CO;2-%23.
- 13. Bigun I., Dzevenko M., Havela L., Kalychak Ya. RENi9In₂ (RE = Rare-Earths Metal): Crystal Chemistry, Hydrogen Absorption, and Magnetic properties. Eur. J. Inorg. Chem. 2014. Vol. 16. P. 2631–2642. https://doi.org/10.1002/ejic.201400058.
- 14. *Kalychak Ya., Dzevenko M., Babizhetskyy V., Daszkiewicz M., Gulay L.* Single-crystal structure determination of LaNi_{5-x}In_x and LaNi_{9-x}In_{2+x}. Z. Naturforsch. 2020. Vol. 75b. P. 553–557. https://doi.org/10.1515/znb-2020-0020.
- 15. *Pustovoychenko M., Pavlyk V., Kalychak Ya.* Synthesis and crystal structure of LaNi₅In and Sm₂Ni_{2-x}In *x* = 0.20. Chem. Met. Alloys. 2011. Vol. 4. P. 113–118. https://doi.org/10.30970/cma4.0176.
- 16. Ferro R., Marazza R., Rambaldi G. Equiatomic ternary phases in the alloys of the rare earths with indium and nickel or palladium. Z. Metallkunde. 1974. Bd. 65. S. 37–39. https://doi.org/10.1515/ijmr-1974-650106.
- 17. *Pustovoychenko M., Svitlyk V., Kalychak Ya.* Orthorombic La₂Ni₂In form a new intergrowth CsCl- and AlB₂-type slabs. Intermetallics. 2012. Vol. 24. P. 30–32. https://doi.org/10.1016/j.intermet.2012.01.007.
- 18. Pustovoychenko M., Tyvanchuk Yu., Hayduk I., Kalychak Ya. Crystal structure of the RE₁₁Ni₄In₉ compounds (RE = La, Ce, Pr, Nd, Sm, Gd, Tb and Y). Intermetallics. 2010. Vol. 18. P. 929–932. https://doi.org/10.1016/j.intermet.2010.01.003.
- 19. Provino A., Gschneidner K. A., Jr., Dhar S. K., Ferdeghini C., Mudryk Y., Manfrinetti P., Paudyal D., Pecharsky V. K. The nano-microfibrous R₁₁Ni₄In₉ intermetallics: New compounds and exstraordinary anisotropy in Tb₁₁Ni₄In₉ and Dy₁₁Ni₄In₉. Acta Materialia. 2015. Vol. 91. P. 128–140. https://doi.org/10.1016/j.actamat.2015.03.003.
- Sung H. H., Wu H. H., Syu K. J., Lee W. H., Chen Y. Y. A new Kondo antiferromagnet Ce(Ni_{0.25}In_{1.75}). J. Phys.: Condens. Matter. 2009. Vol. 21. P. 176004 (4 PP). https://doi.org/10.1088/0953-8984/21/17/176004.
- Bulyk I. I. Interaction of the RNi₅In (R = La, Ce and Nd) compounds with hydrogen. Int. J. Hydrogen Energy. 1999. Vol. 24. P. 927–932. https://doi.org/10.1016/S0360-3199(98)00169-4.
- 22. Fruchart D., Bouondina M., Kalychak Ya. M. The new hydrogen compounds RNi₂InH_x (R = La, Pr, Nd). Coll. Abstr. VII international conference on crystal chemistry of intermetallic compounds (Ukraine, L'viv, September 22-25, 1999). 1999. L'viv. Ukraine. P. B4.
- 23. Fruchart D., Bouondina M., Gignoux D., Kalychak Ya. M., Galadzhun Ya. V. Synthesis, crystallographic characteristics of RM₂In compounds with M = Co, Ni; R = La, Pr, Nd, Sm and their hydrides. Coll. Abstr. X international conference on crystal chemistry of intermetallic compounds (Ukraine, L'viv, September 17-20, 2007). 2007. L'viv. Ukraine. P. 111.
- 24. Bulyk I. I., Yartys V. A., Denys R. V., Kalychak Ya. M., Harris I. R. Hydrides of the RNiIn (R = La, Ce, Nd) intermetallic compounds: crystallographic characterisation and thermal stability. J. Alloys Compd. 1999. Vol. 284. P. 256–261. https://doi.org/10.1016/S0925-8388(98)00953-0.
- 25. Yartys V. A., Denys R. V., Hauback B. C., Fjellvag H., Bulyk I. I., Riabov A. B., Kalychak Ya. M. Short hydrogen–hydrogen separation in novel intermetallic hydrides RE₃Ni₃In₃D₄ (RE = La,

- Ce and Nd). J. Alloys Compd. 2002. Vol. 330–332. P. 132–140. https://doi.org/10.1016/S0925-8388(01)01638-3.
- 26. Denys R. V., Riabov A. B., Yartys V. A., Hauback B. C., Brinks H. W. In situ powder neutron diffraction study of LaNiInD_{1.63} with short D–D distances. J. Alloys Compd. 2003. Vol 356–357. P. 65–68. https://doi.org/10.1016/S0925-8388(03)00101-4.
- 27. Vajeeston P., Ravindran P., Vidya R., Kjekshus A., Fjellvog H., Yartys V. A. Short hydrogen-hydrogen separation in RNiInH_{1.333} (R = La, Ce, Nd). Phys. Rev. B. 2003. Vol. 67. P. 014101. https://doi.org/10.1103/PhysRevB.67.014101.
- Jezerski A., Penc B., Szytula A. Electronic structures of LaNiIn and LaNiInH_x (x = 1/3, 2/3, 1, 4/3).
 J. Alloys Compd. 2005. Vol. 404–406. P. 204–207. https://doi.org/10.1016/j.jallcom.2004.09.093.
- 29. Gondek L., Kozlak K., Czub J., Rusinek D., Szytula A., Hoser A. On the verge of short D–D distances in RNiIn deuterides. Intermetallics. 2013. Vol. 34. P. 23–28. https://doi.org/10.1016/j.intermet.2012.11.002.
- 30. Klein R. A., Balderas-Xicohtencalt R., Machlen Y. P., Udovic T. J., Brown C. M., Delaplane R., Cheng Y., Denys R.V., Ramirez-Cuesta A. J., Yartys V. A. Neutron vibrational spectroscopie evidence for short H···H contacts in the RNiInH_{1.4;1.6} (R = Ce, La). J. Alloys Compd. 2022. Vol. 894. P. 162381. https://doi.org/10.1016/j.jallcom.2021.162381.
- 31. Dzevenko M., Miliyanchuk K., Filinchuk Ya., Stelmakhovych O., Akselrud L., Havela L., Kalychak Ya. Large hydrogen capacity in hydrides R₂Ni₂In-H (R = La, Ce, Pr, Nd) with new structure type. J. Alloys Compd. 2009. Vol. 477. P. 182–187. https://doi.org/10.1016/j.jallcom.2008.10.042.
- 32. Drašner A., Blazina Z. Interaction of hydrogen with LaNi_{4.9}In_{0.1}, LaNi_{4.8}In_{0.2} and LaNi_{4.8} alloys and their Nd analogues. J. Alloys Compd. 2006. Vol. 420. P. 213–217. https://doi.org/10.1016/j.jallcom.2005.11.003.
- 33. Buschow K. H. J., Van Mal H. H. Phase relations and hydrogen absorption in the lanthanum-nickel system. J. Less-Common Met. 1972. Vol. 29. P. 203–210. https://doi.org/10.1016/0022-5088(72)90191-9.
- 34. *Ivanchenko V. G., Kobzenko G. F., Svechnikov V. N.* Phase equlibria in the lanthanum–nickel system. Dopov. Acad. Nauk Ukr. RSR, Ser. A. 1982. Vol.1. P. 80–84 (in Ukrainian).
- 35. McMasters O. D., Gschneidner K. A. Jr. The lanthanum-indium system. J. Less-Common Met. 1974. Vol. 38. P. 137–148. https://doi.org/10.1016/0022-5088(74)90057-5.
- 36. Yatsenko S. P., Semyannikov A. A., Shakarov H. O., Fedorova E. G. Phase diagrams of binary rare earth metal-indium systems. J. Less-Common Met. 1983. Vol. 90. P.95–108. https://doi.org/10.1016/0022-5088(83)90121-2.
- 37. Palenzona A., Girafici S. The In–La (indium–lanthanum) system. Bull. Alloy Phase Diagrams. 1989. Vol. 10. P.580–587. https://doi.org/10.1007/BF02882417.
- 38. Singleton M. F., Nash P. The In–Ni (indium–nickel) system. Bull. Alloy Phase Diagrams. 1988. Vol. 9. P. 592–597. https://doi.org/10.1007/BF02881962.
- 39. Durussel Ph., Burri G., Feschotte P. The binary system Ni–In. J. Alloys Compd. 1997. Vol. 257. P. 253–258. https://doi.org/10.1016/S0925-8388(97)00033-9.
- 40. Kraus W., Nolze G. Powder Cell For Windows. Berlin, 1999.
- 41. STOE WinXPOW, Version 1.2, STOE & CIE GmbH, Darmstadt, 2001.
- 42. *Rodriguez-Carvajal J.* Recent developments of the program FULLPROF. Commission on Powder Diffraction. Newsletter. 2001. Vol. 26. P. 12–19.
- 43. Emsley J. The Elements: 2-nd ed. Oxford: Clarendon Press. 1991. 251 p.

SUMMARY

Galyna NYCHYPORUK, Oresta DMYTRAKH, Yaroslav KALYCHAK

THE SYSTEM La-Ni-In: PHASE EQUILIBRIA AND CRYSTAL STRUCTURES OF COMPOUNDS

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: yaroslav.kalychak@lnu.edu.ua

Interaction between the components in the La–Ni–In system was investigated by X-ray powder diffraction and, partially, scanning electron microscopy with energy-dispersive X-ray spectroscopy. Isothermal section of the phase diagram was constructed in full concentration range at 870 K (0–0.333 at. part La) and 670 K (> 0.333 at. part La).

The samples were synthesized in an arc-furnace on a water-cooled Cu-plate under an argon atmosphere and annealed in silica tubes at 870 K for one month (range 0–0.333 at. part. La) and at 670 K (range > 0.333 at. part. La) for two months. The phase analysis was performed by X-ray powder diffraction method. Microstructures of polished samples and quantitative and qualitative analysis were carried out on a Tescan Vega 3 LMU scanning electron microscope equipped with an Oxford Instruments SDD X-Max^{N20} detector.

Fourteen ternary compounds, namely $LaNi_7In_6$ ($LaNi_7In_6$ -type structure), $LaNi_9In_2$ (YNi_9In_2 -type structure), $LaNi_3In_6$ ($LaNi_3In_6$ ($LaNi_3In_6$ -type structure), $LaNi_3In$ ($CeNi_5Sn$ -type structure), $LaNi_3In_2$ ($HoNi_2_6Ga_2_4$ -type structure), $LaNi_3In_4$ ($YNiAI_4$ -type structure), $La_4Ni_7In_8$ ($Ce_4Ni_7In_8$ -type structure), $La_5Ni_6In_{11}$ ($Pr_5Ni_6In_{11}$ -type structure), $LaNi_2In$ ($Pr_5Ni_6In_{11}$ -type structure) exist in the La-Ni-In system at the temperature of investigation. The crystal structure of o- La_2Ni_2In and La_12Ni_6In compounds was refined using powder data (STOE STADI P, $Pr_5Ni_6In_{11}$ -type structure) and its composition can be described by the formulas $LaNi_0.5-0.25In_1.5-1.75$ and $LaNi_9.8.2In_2.2.8$ respectively. Binary compound $LaNi_5$ dissolves up to 8.5 at. % of In and La_2In – up to 5 at. % of Ni.

Compounds of the La-Ni-In system can be divided into three groups: nickel-rich compounds are complex multi-layered with high values of coordination numbers of atoms; compounds of the middle part of the concentration triangle – two-layered compounds with coordination polyhedra in the form of prisms; compounds rich in lanthanum are complex multi-layered compounds with relatively low values of coordination numbers of atoms.

Key words: indide, powder data, ternary system, ternary compound.

Стаття надійшла: 23.05.2024. Після доопрацювання: 25.06.2024. Прийнята до друку: 04.10.2024.