Regression model

Team id - PNT2022TMID02351

Project name - Machine Learning based Vehicle Performance Analyzer

1. Build The Model With The Random Forest Regressor.

Random Forest Regressor

```
In [192]: from sklearn.ensemble import RandomForestRegressor
In [193]: x11 = dataset.iloc[:,1:8].values
    y11 = dataset.iloc[:,0].values
```

We use x_train1 and y_train1 obtained above in the train_test_split section to train our decision tree regression model. We're using the fit method and passing the parameters as shown below.

```
In [194]: from sklearn.model_selection import train_test_split
    x_train1, x_test1, y_train1, y_test1 = train_test_split(x11,y11,test_size=0.2,random_state=0)
In [195]: rf= RandomForestRegressor(n_estimators=30,random_state=0)
    rf.fit(x_train1,y_train1)
Out[195]: RandomForestRegressor(n_estimators=30, random_state=0)
```

2. Predict The Values

Once the model is trained, it's ready to make predictions. We can use the predict method on the model and pass x_test1 as a parameter to get the output as y1 pred.

Notice that the prediction output is an array of real numbers corresponding to the input array.

3. Accuracy

For that we need to import the r2_score method from sklearn.metrics package. We can use the r2_score method on the model and pass y test1 and y1 pred as a parameter to get the accuracy.

In regression models, R2 corresponds to the squared correlation between the observed outcome values and the predicted values by the model. The higher the R-squared, the better the model.

```
In [197]: from sklearn.metrics import r2_score
    accuracy = r2_score(y_test1, y1_pred)
    accuracy
Out[197]: 0.8999792555413947
```

4. Save the Regression Model

Save the model by importing pickle file.

```
In [198]: #save the model
import pickle
# pickle.dump(dataset,open('regression.pkl','wb'))
with open('car_performance_regression_pkl', 'wb') as files:
    pickle.dump(rf, files)
```