

STA1341

Metode Peramalan Deret Waktu

Minggu 7

Model Diagnostics and Forecasting

Prodi Statistika dan Sains Data

Sekolah Sains Data, Matematika, dan Informatika IPB University

Outline

- ☐ Model Diagnostics☐ Residual Analysis
 - ☐ Plots of the Residuals
 - ☐ Normality of the Residuals
 - ☐ Autocorrelation of the Residuals
 - ☐ The Ljung-Box test
 - **□** Overfitting
- **☐** Forecasting

Diagnostic Model: Residual Analysis

• An AR(2) model with a constant:

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \theta_0 + e_t$$

• Having estimated ϕ_1 , ϕ_2 , and θ_0 , the residual are defined as

$$\hat{e}_t = Y_t - \hat{\phi}_1 Y_{t-1} - \hat{\phi}_2 Y_{t-2} - \hat{\theta}_0$$

Diagnostic Model: Residual Analysis,

- ☐ Residual = actual predicted
- ☐ If the model is correctly specified and the parameter estimates are reasonably close to the true values, then the residuals should have nearly the properties of white noise
- ☐ They should behave roughly like independent, identically distributed normal variables with zero means and common standard deviations

Model Diagnostics: Residual Analysis : Plots of the Residuals

Standardized Residuals from AR(1) Model of Color

Standardized Residuals from AR(3) Model for Sqrt(Hare)

Standardized Residuals from Log Oil Price IMA(1,1) Model

If the model is adequate, we expect the plot to suggest a rectangular scatter around a zero horizontal level with no trends whatsoever.

Model Diagnostics: Residual Analysis : Normality of the Residuals

- ☐ The quantile-quantile plots are an effective tool for assessing normality
- ☐ The points seem to follow the straight line fairly closely—especially the extreme values.
- ☐ This graph would not lead us to reject normality of the error terms in this model.
- ☐ The Shapiro-Wilk normality test applied to the residuals produces a test statistic of *W* = 0.9754, which corresponds to a *p*-value of 0.6057, and we would not reject normality based on this test.

Exhibit 8.4 Quantile-Quantile Plot: Residuals from AR(1) Color Model

Theoretical Quantiles

The Shapiro-Wilk normality test

 H_0 : states that the variable is normally distributed, H_1 : states that the variable is NOT normally distributed.

Model Diagnostics: Residual Analysis : Normality of the Residuals

Exhibit 8.5 Quantile-Quantile Plot: Residuals from AR(3) for Ha

Exhibit 8.6 Quantile-Quantile Plot: Residuals from IMA(1,1) Model for Oil

Model Diagnostics: Residual Analysis: Autocorrelation of the Residuals

- To check on the independence of the noise terms in the model, we consider the sample autocorrelation function of the residuals, denoted \hat{r}_k .
- From $Var(r_k) \approx \frac{1}{n}$ and $Corr(r_k, r_j) \approx 0$ for $k \neq j$ we know that for true white noise and large n, the sample autocorrelations are approximately uncorrelated and normally distributed with zero means and variance 1/n.
- As an example, consider a correctly specified and efficiently estimated AR(1) model. It can be shown that, for large n,

$$Var(\hat{r}_1) \approx \frac{\phi^2}{n}$$

$$Var(\hat{r}_k) \approx \frac{1 - (1 - \phi^2)\phi^{2k - 2}}{n} \text{ for } k > 1$$

$$sign(\phi) = \begin{cases} 1 & \text{if } \phi > 0 \\ 0 & \text{if } \phi = 0 \\ -1 & \text{if } \phi < 0 \end{cases}$$

$$Corr(\hat{r}_1, \hat{r}_k) \approx -sign(\phi) \frac{(1 - \phi^2)\phi^{k - 2}}{1 - (1 - \phi^2)\phi^{2k - 2}} \text{ for } k > 1$$

Model Diagnostics: Residual Analysis : Autocorrelation of the Residuals

The industrial color property time series with = 0.57 and n = 35

Exhibit 8.8 Approximate Standard Deviations of Residual	ACF values
---	------------

Lag <i>k</i>	1	2	3	4	5	> 5
$\sqrt{Var(r_k)}$	0.096	0.149	0.163	0.167	0.168	0.169

There is no evidence of autocorrelation in the residuals of this model.

Exhibit 8.9 Sample ACF of Residuals from AR(1) Model for Color

Model Diagnostics: Residual Analysis : The Ljung-Box Test

H0: the error terms are uncorrelated

H1: the error terms are correlated

$$Q = n(\hat{r}_1^2 + \hat{r}_2^2 + \dots + \hat{r}_K^2)$$

$$Q_* = n(n+2) \left(\frac{\hat{r}_1^2}{n-1} + \frac{\hat{r}_2^2}{n-2} + \dots + \frac{\hat{r}_K^2}{n-K} \right)$$

Ljung-Box Test

Q or Q_* has an approximate chi-square distribution with K - p - q

Model Diagnostics: Residual Analysis: The Ljung-Box Test

Exhibit 8.11 Residual Autocorrelation Values from AR(1) Model for Color

Lag k

3

5

Residual ACF -0.051

0.032

0.047

0.021

-0.017

-0.019

- > acf(residuals(m1.color),plot=F)\$acf
- signif(acf(residuals(m1.color),plot=F)\$acf[1:6],2)
- # display the first 6 acf values to 2 significant digits

The Ljung-Box test statistic with K = 6 is equal to

H0: the error terms are uncorrelated

H1: the error terms are correlated

$$Q_* = 35(35+2) \left(\frac{(-0.051)^2}{35-1} + \frac{(0.032)^2}{35-2} + \frac{(0.047)^2}{35-3} + \frac{(0.021)^2}{35-4} + \frac{(-0.017)^2}{35-5} + \frac{(-0.019)^2}{35-6} \right) \approx 0.28$$

This is referred to a chi-square distribution with 6 - 1 = 5degrees of freedom. The *p*-value= 0.998

Exhibit 8.12 Diagnostic Display for the AR(1) Model of Color Property

- After specifying and fitting what we believe to be an adequate model, we fit a slightly more general model; that is, a model "close by" that contains the original model as a special case.
- For example, if an AR(2) model seems appropriate, we might over fit with an AR(3) model. The original AR(2) model would be confirmed if:
 - The estimate of the additional parameter, ϕ_3 , is not significantly different from zero, and
 - The estimates for the parameters in common, ϕ_1 and ϕ_2 , do not change significantly from their original estimates.

13 AR(1) Model Results for the Color Property Series

Coefficients:	ar1	Intercept [‡]
	0.5705	74.3293
s.e.	0.1435	1.9151

sigma 2 estimated as 24.83: log-likelihood = -106.07, AIC = 216.15

Exhibit 8.14 AR(2) Model Results for the Color Property Series

- \Box The estimate of ϕ_2 is not statistically different from zero -- This fact supports the choice of the AR(1) Model
- \Box We note that the two estimates of ϕ_1 are quite close
- ☐ The AR(1) fit has a smaller AIC value

Coefficients:	ar1	ar2	Intercept
	0.5173	0.1005	74.1551
s.e.	0.1717	0.1815	2.1463

sigma^2 estimated as 24.6: log-likelihood = -105.92, AIC = 217.84

AR(1) Model Results for the Color Property Series

Coefficients:	ar1	Intercept [‡]	
	0.5705	74.3293	
s.e.	0.1435	1.9151	
gma^2 estimated as 2	24.83: 10g-1	ikelihood = -106 (07 AIC == 216.15

Overfit of an ARMA(1,1) Model for the Color Series

Coefficients:	ar1	ma1	Intercept
	0.6721	-0.1467	74.1730
s.e.	0.2147	0.2742	2.1357

sigma^2 estimated as 24.63: log-likelihood = -105.94, AIC = 219.88

AR(1) Model Results for the Color Property Series

Coefficients:	ar1	Intercept [‡]
	0.5705	74.3293
s.e.	0.1435	1.9151

sigma 2 estimated as 24.83: log-likelihood = -106.07, AIC = 216.15

Overfitted ARMA(2,1) Model for the Color Property Series

Coefficients:	ar1	ar2	ma1	Intercept
	0.2189	0.2735	0.3036	74.1653
s.e.	2.0056	1.1376	2.0650	2.1121

sigma 2 estimated as 24.58: log-likelihood = -105.91, AIC = 219.82

The implications for fitting and overfitting models are as follows:

- ☐ Specify the original model carefully. If a simple model seems at all promising, check it out before trying a more complicated model.
- ☐ When overfitting, do not increase the orders of both the AR and MA parts of the model simultaneously.
- Extend the model in directions suggested by the analysis of the residuals. For example, if after fitting an MA(1) model, substantial correlation remains at lag 2 in the residuals, try an MA(2), not an ARMA(1,1).

Forecasting – AR(1)

- One of the primary objectives of building a model for a time series is to be able to forecast the values for that series at future times.
- Of equal importance is the assessment of the precision of those forecasts.
- Based on the available history of the series up to time t, namely $Y_1, Y_2, \ldots, Y_{t-1}, Y_t$, we would like to forecast the value of Y_{t+l} that will occur l time units into the future.
- We call time t the **forecast origin** and l the **lead time** for the forecast, and denote the forecast itself as $\hat{Y}_t(l)$.
- The minimum mean square error forecast is given by

$$\hat{Y}_t(\ell) = E(Y_{t+\ell} | Y_1, Y_2, ..., Y_t)$$

Forecasting – AR(1)

We shall first illustrate many of the ideas with the simple AR(1) process with a nonzero mean that satisfies

$$Y_t - \mu = \phi(Y_{t-1} - \mu) + e_t \tag{9.3.1}$$

Consider the problem of forecasting one time unit into the future. Replacing t by t+1 in Equation (9.3.1), we have

$$Y_{t+1} - \mu = \phi(Y_t - \mu) + e_{t+1}$$
 (9.3.2)

Given $Y_1, Y_2, ..., Y_{t-1}, Y_t$, we take the conditional expectations of both sides of Equation (9.3.2) and obtain

$$\hat{Y}_{t}(1) - \mu = \phi[E(Y_{t}|Y_{1}, Y_{2}, ..., Y_{t}) - \mu] + E(e_{t+1}|Y_{1}, Y_{2}, ..., Y_{t})$$
(9.3.3)

Forecastingn – AR(1)

$$\hat{Y}_{t}(1) - \mu = \phi[E(Y_{t}|Y_{1}, Y_{2}, ..., Y_{t}) - \mu] + E(e_{t+1}|Y_{1}, Y_{2}, ..., Y_{t})$$
(9.3.3)

Now, from the properties of conditional expectation, we have

$$E(Y_t|Y_1, Y_2, ..., Y_t) = Y_t$$
 (9.3.4)

Also, since e_{t+1} is independent of $Y_1, Y_2, ..., Y_{t-1}, Y_t$, we obtain

$$E(e_{t+1}|Y_1, Y_2, ..., Y_t) = E(e_{t+1}) = 0$$
 (9.3.5)

Thus, Equation (9.3.3) can be written as

$$\hat{Y}_t(1) = \mu + \phi(Y_t - \mu) \tag{9.3.6}$$

Forecasting – AR(1)

$$l = 2$$

$$Y_{t+l} - \mu = \phi(Y_{t+l-1} - \mu) + e_{t+l}$$

$$Y_{t+2} - \mu = \phi(Y_{t+1} - \mu) + e_{t+2}$$

$$\hat{Y}_t(2) - \mu = \phi(\hat{Y}_t(1) - \mu) + 0$$

$$\hat{Y}_t(2) = \phi(\hat{Y}_t(1) - \mu) + \mu$$

$$\hat{Y}_t(3) = \phi(\hat{Y}_t(2) - \mu) + \mu$$

$$\hat{Y}_t(3) = \phi(\phi(\hat{Y}_t(1) - \mu) + \mu - \mu) + \mu$$

$$\hat{Y}_t(3) = \phi^2(\hat{Y}_t(1) - \mu) + \mu$$

$$\hat{Y}_t(3) = \phi^2(\phi(Y_t - \mu) + \mu - \mu) + \mu$$

$$\hat{Y}_t(3) = \phi^3(Y_t - \mu) + \mu$$

Forecasting – AR(1)

$$Y_t - \mu = \phi(Y_{t-1} - \mu) + e_t \tag{9.3.1}$$

Now consider a general lead time ℓ . Replacing t by $t + \ell$ in Equation (9.3.1) and taking the conditional expectations of both sides produces

$$\hat{Y}_t(\ell) = \mu + \phi [\hat{Y}_t(\ell-1) - \mu] \quad \text{for } \ell \ge 1$$
 (9.3.7)

since $E(Y_{t+\ell-1}|Y_1, Y_2, ..., Y_t) = \hat{Y}_t(\ell-1)$ and, for $\ell \ge 1$, $e_{t+\ell}$ is independent of Y_1 , $Y_2, ..., Y_{t-1}, Y_t$.

$$\begin{split} \hat{Y}_t(\ell) &= \phi[\hat{Y}_t(\ell-1) - \mu] + \mu \\ &= \phi\{\phi[\hat{Y}_t(\ell-2) - \mu]\} + \mu \\ &\vdots \\ &= \phi^{\ell-1}[\hat{Y}_t(1) - \mu] + \mu \end{split}$$

or

$$\hat{Y}_t(\ell) = \mu + \phi^{\ell}(Y_t - \mu)$$
(9.3.8)

Forecasting—Example

Exhibit 9.1 Maximum Likelihood Estimation of an AR(1) Model for Color

Coefficients: ar1 intercept[†]

0.5705 74.3293

s.e. 0.1435 1.9151

sigma² estimated as 24.8: log-likelihood = -106.07, AIC = 216.15

The last observed value of the color property is 67, so we would forecast one time period ahead as[†]

$$\hat{Y}_{t}(1) = 74.3293 + (0.5705)(67 - 74.3293)$$

$$= 74.3293 - 4.181366$$

$$= 70.14793$$

$$\hat{Y}_{t}(2)?$$

$$\hat{Y}_{t}(6)?$$

 $\hat{Y}_{t}(8)$?

 $\hat{Y}_{t}(10)$?

In general, since $|\phi| < 1$, we have simply

$$\hat{Y}_t(\ell) \approx \mu$$
 for large ℓ

[†]Remember that the intercept here is the estimate of the process mean μ —not θ_0 .

Forecasting - AR(1)

$$Var(e_t(l)) = \sigma_e^2 \left[\frac{1 - \phi^{2l}}{1 - \phi^2} \right]$$

For long lead times, we have

$$Var(e_t(l)) \approx \frac{\sigma_e^2}{1-\phi^2}$$
 for large l or $Var(e_t(l)) \approx Var(Y_t) = \gamma_0$ for large l

Forecasting - MA(1)

$$Y_{t} = \mu + e_{t} - \theta e_{t-1}$$

$$Y_{t+1} = \mu + e_{t+1} - \theta e_{t}$$

$$\hat{Y}_{t}(1) = E[\mu + e_{t+1} - \theta e_{t} | Y_{t}, Y_{t-1}, ..., Y_{1}]$$

$$\hat{Y}_{t}(1) = \mu + 0 - \theta e_{t}$$

$$\hat{Y}_{t}(1) = \mu - \theta e_{t}$$

$$Y_{t+2} = \mu + e_{t+2} - \theta e_{t+1}$$

$$\hat{Y}_t(2) = E[\mu + e_{t+2} - \theta e_{t+1} | Y_t, Y_{t-1}, \dots, Y_1]$$

$$\hat{Y}_t(2) = \mu + 0 - 0$$

$$\hat{Y}_t(2) = \mu$$

For longer lead times, we have

$$\hat{Y}_t(\ell) \; = \; \mu + E(e_{t+\ell}|Y_1,\,Y_2,\,...,\,Y_t) - \theta E(e_{t+\ell-1}|Y_1,\,Y_2,\,...,\,Y_t)$$

$$\hat{Y}_t(\ell) = \mu \text{ for } \ell > 1$$

Prediction Limits: ARIMA Models

- If the white noise terms $\{et\}$ in a general ARIMA series each arise independently from a normal distribution, then the forecast error $e_t(l)$ will also have a normal distribution
- For an AR(1) model, $Var(e_t(l)) = \sigma_e^2 \left[\frac{1-\phi^{2l}}{1-\phi^2} \right]$
- In practice, σ_e^2 will be unknown and must be estimated from the observed time series.
- As a numerical example, consider the AR(1) model that we estimated for the industrial color property series. We use $\phi = 0.5705$, $\mu = 74.3293$, and $\sigma_e^2 = 24.8$.

For a one-step-ahead prediction, we have

$$70.14793 \pm 1.96\sqrt{24.8} = 70.14793 \pm 9.760721$$
 or 60.39 to 79.91

Two steps ahead, we obtain

$$71.86072 \pm 11.88343$$
 or 60.71 to 83.18

Notice that this prediction interval is wider than the previous interval. Forecasting ten steps ahead leads to

$$74.173934 \pm 11.88451$$
 or 62.42 to 86.19

By lead 10, both the forecast and the forecast limits have settled down to their long-lead values.

Exhibit 1.3 Time Series Plot of Color Property from a Chemical Process

Forecasting
Illustrations:
An Industrial
Chemical
Process

Step 1. Stationary

Exhibit 6.25 Sample ACF for the Color Property Series

Exhibit 6.26 Sample Partial ACF for the Color Property Series

Step 2. Model Specification

Process

Exhibit 7.7 Parameter Estimation for the Color Property Series

Parameter	Method-of- Moments Estimate	Conditional SS Estimate	Unconditional SS Estimate	Maximum Likelihood Estimate	n
ф	0.5282	0.5549	0.5890	0.5703	35

Forecasting
Illustrations:
An Industrial
Chemical
Process

Step 4. Model Diagnostics

Exhibit 8.1 Standardized Residuals from AR(1) Model of Color

Exhibit 8.9 Sample ACF of Residuals from AR(1) Model for Color

Exhibit 8.4 Quantile-Quantile Plot: Residuals from AR(1) Color Model

The Ljung-Box test statistic with K = 6 is equal to

$$Q_* = 35(35+2) \left(\frac{(-0.051)^2}{35-1} + \frac{(0.032)^2}{35-2} + \frac{(0.047)^2}{35-3} + \frac{(0.021)^2}{35-4} + \frac{(-0.017)^2}{35-5} + \frac{(-0.019)^2}{35-6} \right) \approx 0.28$$

This is referred to a chi-square distribution with 6 - 1 = 5 degrees of freedom. The *p*-value= 0.998

Exhibit 8.13 AR(1) Model Results for the Color Property Series

Coefficients:	ar1	Intercept [‡]
	0.5705	74.3293
s.e.	0.1435	1.9151

sigma 2 estimated as 24.83: log-likelihood = -106.07, AIC = 216.15

Exhibit 8.14 AR(2) Model Results for the Color Property Series

Coefficients:	ar1	ar2	Intercept
	0.5173	0.1005	74.1551
s.e.	0.1717	0.1815	2.1463

sigma² estimated as 24.6: log-likelihood = -105.92, AIC = 217.84

Exhibit 8.15 Overfit of an ARMA(1,1) Model for the Color Series

Coefficients:	ar1	ma1	Intercept
	0.6721	-0.1467	74.1730
s.e.	0.2147	0.2742	2.1357

sigma 2 estimated as 24.63: log-likelihood = -105.94, AIC = 219.88

Forecasting
Illustrations:
An Industrial
Chemical
Process

[†]m1.color #R code to obtain table

[‡] Recall that the intercept here is the estimate of the process mean μ —not θ_0 .

Exhibit 9.1 Maximum Likelihood Estimation of an AR(1) Model for Color

Coefficients: ar1 intercept[†]

0.5705 74.3293

s.e. 0.1435 1.9151

sigma 2 estimated as 24.8: log-likelihood = -106.07, AIC = 216.15

The last observed value of the color property is 67, so we would forecast one time period ahead as[†]

$$\hat{Y}_t(1) = 74.3293 + (0.5705)(67 - 74.3293)$$
$$= 74.3293 - 4.181366$$
$$= 70.14793$$

For lead time 2, we have from Equation (9.3.7)

$$\hat{Y}_t(2) = 74.3293 + 0.5705(70.14793 - 74.3293)$$
$$= 74.3293 - 2.385472$$
$$= 71.94383$$

Alternatively, we can use Equation (9.3.8):

$$\hat{Y}_t(2) = 74.3293 + (0.5705)^2 (67 - 74.3293)$$
$$= 71.92823$$

At lead 5, we have

$$\hat{Y}_t(5) = 74.3293 + (0.5705)^5 (67 - 74.3293)$$
$$= 73.88636$$

and by lead 10 the forecast is

$$\hat{Y}_{t}(10) = 74.30253$$

Step 6. Forecasting

Exhibit 9.3 Forecasts and Forecast Limits for the AR(1) Model for Color

Terima Kasih

Inspiring Innovation with Integrity in Agriculture, Ocean and Biosciences for a Sustainable World