Лабораторная работа 3. ОБУЧЕНИЕ С УЧИТЕЛЕМ. ЗАДАЧА КЛАССИ-ФИКАЦИИ

1. Изучение примеров. Изучите примеры: Lab3_Ex1_Basic_Classifiers.ipynb, Lab3_Ex2_LogisticRegr_HotCode.ipynb, Lab3_Ex3_Naive_Bayes.ipynb, Lab3_Ex4 Imbalance.pdf, Lab3_Ex5 ClassificationModel.ipynb

2. Загрузка и подготовка данных.

- В соответствии с индивидуальным вариантом загрузите предобработанный датасет в формате CSV для решения задачи классификации.
- Выделите целевой признак и предикторы. Определить тип задачи классификации (бинарная или мультиклассовая).
- Проверьте баланс классов. В случае дисбаланса классов проведите их балансировку (см. Lab3_Ex4 Imbalance.pdf).
- При разделении данных на обучающую и тестовую выборки используйте два метода:
- **Метод отложенной выборки (hold-out)** с учётом *стратификации*¹, чтобы выборки сохраняли относительную пропорцию классов.

<u>Изучите самостоятельно:</u> онлайн-документация, раздел [train_test_split в Sklearn] <u>https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html</u>

- Метод k-fold² (кросс-валидация).

Изучите самостоятельно:

онлайн-документация, [Кросс-валидация] <u>https://scikit-</u>

<u>learn.org/stable/modules/cross_validation.html</u>

онлайн-документация, [k-fold] <u>https://scikit-</u>

learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

онлайн-документация, [функция cross_val_score] https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html

3. Решение задачи классификации.

- Решите задачу классификации на ваших данных с использованием следующих классификаторов из Scikit-learn:
 - Logistic Regression.
- kNN. Исследуйте различные методы расстояния и их влияние на классификацию.
 - Naive Bayes.

– SVM, в том числе с ядерными функциями (Linear Kernel, Polynomial Kernel, RBF Kernel, Sigmoid Kernel, Exponential Kernel).

- При необходимости подобрать гиперпараметры для соответствующего классификатора тремя способами (GridSearchCV; RandomizedSearchCV; фреймворк Optuna).
- Постройте итоговую модель классификаторов (см. *Lab3_Ex5 ClassificationModel.ipynb*).

¹¹Стратифицированная выборка (stratified sampling), это делает функция test_train_split, когда устанавливаете параметр stratify для меток.

² Основной класс для использования — KFold, также есть функция cross_val_score, которая позволяет проще применить кросс-валидацию при моделировании алгоритмов ML

- **4. Визуализация.** Постройте графики для визуализации результатов классификации, чтобы показать, как работают классификаторы. Например, представьте график, демонстрирующий влияние изменения k на точность модели kNN. Для бинарной классификации постройте ROC curve.
- **5.** Оценка качества моделей. Вычислите значения метрик оценки качества для обученных моделей классификации: F1, Accuracy, Precision, Recall, матрица ошибок (confusion matrix), ROC AUC score. Поясните ошибки первого и второго рода.

6. Реализация пользовательских функций.

- Самостоятельно реализуйте вычисление следующих метрик оценки качества модели классификации: Accuracy, Precision, Recall, F1, матрица ошибок.
- Поместите пользовательские функции в отдельный файл³ и подключите его к основной программе как библиотеку функций.

7. Реализация алгоритма классификатора kNN.

- Самостоятельно разработайте и реализуйте классификатор на основе алгоритма kNN в контексте реализации Scikit-learn.
- Поместите разработанный классификатор kNN в отдельный файл и подключите его к основной программе как библиотеку алгоритмов ML.
- Создайте таблицу (объект DataFrame) и выведите в них наименования используемых классификаторов и значения вычисленных метрик оценки качества как с использованием Scikit-learn (Образец 1).

Образец 1

	Train Data				Test Data			
Классификатор	F1	Accuracy	Precision	Recall	F1	Accuracy	Precision	Recall
kNN из Sklearn	0.XX	0.XXXX	0.XXXX	0.XXXX	0.XX	0.XXXX	0.XXXX	0.XXXX
программный kNN								

Указания к выполнению:

1). Исследование алгоритма kNN.

Изучите теоретические основы алгоритма kNN, включая:

- принцип работы алгоритма:
- методы вычисления расстояния между точками (например, евклидово, манхэттенское);
 - влияние гиперпараметра k на производительность модели kNN.
 - 2). Реализация алгоритма.

Напишите класс для классификатора kNN. Основные функции должны включать:

- метод для обучения модели;
- метод для предсказания класса для новых данных;
- расчет расстояния между точками;
- возможность выбора количества ближайших соседей k.
- 3). Сравните производительность разработанного классификатора с эталонным классификатором kNN из Scikit-learn.

³Этот файл разработан при выполнении **Лабораторной работы №2**.

8. Создание таблицы результатов.

- Создайте две таблицы (объект DataFrame) и выведите в них наименования используемых классификаторов и значения вычисленных метрик оценки качества как с использованием Scikit-learn, так и пользовательских функций (Образец 2 и Образец 3).
- Убедитесь, что при выводе значений предусмотрено необходимое количество знаков после запятой (см. Образец 2 и Образец 3).

Образец 2

	Train Data					Test Data			
Классификатор	F1	Accuracy	Precision	Recall	F1	Accuracy	Precision	Recall	
Logistic Regression	0.XX	0.XXXX	0.XXXX	0.XXXX	0.XX	0.XXXX	0.XXXX	0.XXXX	

Образец 3

	Метод hold-out (отложенная выборка)				Метод k-fold (кросс-валидация)			
Классификатор	F1	Accuracy	Precision	Recall	F1	Accuracy	Precision	Recall
Logistic Regression	0.XX	0.XXXX	0.XXXX	0.XXXX	0.XX	0.XXXX	0.XXXX	0.XXXX

9. Вывод. Напишите вывод о выполненной Лабораторной работе №3, в котором выберите лучшую модель классификации и обоснуйте свое решение.