

Getting started with MIT's Rolling Spider MATLAB Toolbox

with Parrot's Rolling Spider Drone!

An MIT take-home lab for 16.30 Feedback Control Systems

MIT's

Rolling Spider MATLAB Toolbox

... let's you design and simulate estimation and control algorithms for a drone in MATLAB/Simulink and autogenerates embedded c-code that you can use to actually fly the drone! After your flight, recorded data can be visualized and analyzed.

MIT's

Rolling Spider MATLAB Toolbox

with Parrot's Rolling Spider Drone!

* keep in mind that this toolbox is for educational purposes. It is therefore rather tuned to be easily understood than to meet software engineering standards and amazing flight performance. The first version is mainly designed for experimenting with hover flight.

__

https://github.com/Parrot-Developers/RollingSpiderEdu for more information

Simulate ...

Plot simulated data

Plot

recorded data

- Drone
 - Hardware
 - Safety
- Software interface
- "What's the workflow?"

"How can we hack it?"

- Toolbox
 - Simulation and control design
 - Embedded code generation
 - Flying
 - Data Analysis
 - Dynamics Analysis
 - Beta-Feature: Vision
- Troubleshooter's FAQ

Drone-Hardware

Parrot Rolling Spider (note: not the end2015-EVO version!)

1. Mass: 68g

2. Motors: 33g Thrust/motor

3. embedded linux system

4. IMU: 6axis-accelerometer-gyroscope

5. Altitude sensors: Sonar, Pressure sensor

6. Vision: Downward-facing camera, 160x120

7. Battery: 7-8min flight time

Bluetooth BLE adapter (if your laptop does not provide it,

 1005AB Blueto at la 4 0 1 6 B Miles Adapted

e.g. IOGEAR Bluetooth 4.0 USB Micro Adapter (GBU521))

- Safety goggles
- optional
 - 1. Additional battery and charger
 - 2. Extra set of propellers

Drone-Safety

Hardware Safety

- Stick to Parrot's safety guidelines (print-out)
- Don't charge batteries unattended
- Always fly with wheels installed
- Wear safety glasses all the time
- Only fly indoors, open area >10'x10' for hover experiments
- Ensure people, animal, property, etc. safety
- Be smart!
- Always test a new program with safe power levels first
- Stick to software safety procedures (p. 23)

Software Interface

"How do we hack it?"

- Drone calls our control code @200Hz,
 - output: motor commands input: sensor data

void RSEDU_control(HAL_acquisition_t* hal_sensors_data,

HAL_command_t* hal_sensors_cmd)

Drone calls our image processing code @60Hz

input: image buffer

void RSEDU image processing(void * buffer)

Drone calls our optical flow code @60Hz

input: computed optical flow

More: media/SoftwareArchitecture.pdf void RSEDU_optical_flow(float vx, float vy, float vz,int defined,float qualityIndicator)

FIFO

"What's the workflow?"

1) Simulation and Control-Design

2) Embedded code generation

3) Controlcode integration into embedded system framework Communication

Safety

4) Upload of shared library to Drone via Bluetooth

7) Estimator-Control-*Re*design

6) Data analysis

5) Download of mat-file and images

A step-by-step tutorial to guide you from simulation to flight

Workflow 0.1: Equipping your VirtualMachine/ubuntu (once)

- Let [ROSMAT] denote the path to the MIT toolbox root folder (i.e. the folder containing the README- and LICENSE file).
- If using the MIT 16.30 Feedback Control Systems virtual machine, you should only need to activate your MATLAB. Have your Mathworks student account ready (check MIT's IST webpage for MATLAB) and open MATLAB via the desktop icon shortcut (you might have to run it from a terminal with sudo matlab). Sidenote, here, [ROSMAT] is ~/RollingSpiderEdu-master/MIT_MatlabToolbox
- Your own ubuntu-system should be equipped with the following programs (if not, install them):
 - 1. MATLAB 2015a
 - 2. Lftp sudo apt-get install lftp
 - 3. Bluetooth stack sudo apt-get install bluez-compat
 - 4. expect sudo apt-get install expect

Workflow 0.1: Equipping your VirtualMachine/ubuntu (once, cont.)

- 5. MIT's ROSMAT: Checkout https://github.com/Parrot-Developers/RollingSpiderEdu. Let [ROSMAT] be the path to the MIT-toolbox root folder containing the README- and LICENSE-file
- 6. Unpacked Gcc-arm-Toolchain in /opt/arm-2012.03/... (files can be found in [ROSMAT]/libs/gcc-arm-Toolchain)
 - on 64bit systems, also install the following programs by entering in a terminal sudo apt-get install lib32z1 lib32ncurses5 lib32bz2-1.0
- 7. Add binaries folder to PATH: sudo gedit ~/.profile
 Append line, save, then lock out of ubuntu and back in again.
 export PATH=\$PATH:[ROSMAT]/bin:[ROSMAT]/bin/utils:[ROSMAT]/bin/firmware
- 8. Build utils
 BuildUtils.sh

Info on MATLAB toolboxes:

<u>recommended to have</u>: Communications System Toolbox, Computer Vision System Toolbox, Control System Toolbox, Embedded Coder, Fixed-Point Designer, MATLAB Coder, MATLAB Compiler, MATLAB Compiler SDK, Signal Processing Toolbox, Simulink, Simulink Coder, Simulink Control Design, Stateflow, Symbolic Math Toolbox

additionally part of MIT's 16.30 VirtualMachine for MIT students: Curve Fitting Toolbox, DSP System Toolbox, Fuzzy Logic Toolbox, Global Optimization Toolbox, Image Acquisition Toolbox, Image Processing Toolbox, Instrument Control Toolbox, MATLAB Report Generator, Model Predictive Control Toolbox, Optimization Toolbox, Robotics System Toolbox, Robust Control Toolbox, Simscape, Simulink 3D Animation, Simulink Design Optimization, Simulink Design Verifier, Simulink Report Generator, Simulink Verification and Validation, System Identification Toolbox, Vision HDL Toolbox, Wavelet Toolbox

Workflow 0.2: Flashing the drone (once)

The consumer drone has to be flashed with a custom firmware once.

- Connect drone via USB (if using a virtual machine, make sure to connect to ubuntu) 1.
- 2. Open fvt6.txt on drone USB, note down name and MAC address. (If no fvt6.txt can be found, skip step 3 for now and run sudo hcitool scan after step 9. Your drone should be listed, read the MAC address from there. Then do step 3 and continue with step 10 afterwards.)
- 3. Save MAC address to *DroneMACaddress.txt* by entering, in a terminal DroneSetMACaddress.sh [MACADDRESS]
- Upload main firmware to drone by running 4. EDUfirmwareUploadSYS.sh (Info: This script copies rollingspider.edu.plf to root folder of drone USB device)
- 5. Disconnect drone by ejecting USB device and removing USB cable
- Charge battery 6.
- 7. Insert battery
- 8. Wait until LEDs stopped blinking (firmware is now updated) (Note: If LEDs never blinked, redo step 1 & 3-8.)
- 9. Plug in bluetooth adapter (if necessary)

...continue on next slide!

Workflow 0.2: Flashing the drone (once) (cont)

10. Connect drone to computer by running

DroneConnect.sh

11. Upload firmware files by running

EDUfirmwareUploadFILES.sh

(Info: uploads files in [ROSMAT]/libs/EDUfirmwareFILES to drone via ftp and IP 192.168.1.1)

12. Reboot drone

DroneReboot, sh

...continue on next slide!

Videotutorial: 01_FlashingTheDrone

Workflow 0.2: Flashing the drone (once) (cont)

13. Connect drone again

DroneConnect.sh

Initialize drone firmware 14

FDUfirmwareInitialize.sh

(Info: This script moves firmware files to right locations and grants permissions rights:

mv /data/edu/dragon-prog /usr/bin/

chmod +x /usr/bin/dragon-prog

mv /data/edu/SpiderFlight.sh /bin/

chmod +x /bin/SpiderFlight.sh)

15. Initialize drone

DroneInitialize.sh

(Info: This script write the computer's IP address to the drone's parameter file)

16. Done with flashing. Nice!

Videotutorial: 01_FlashingTheDrone

Workflow 0.3: (Dis-)Connecting to the drone (after restarts, ...)

- If you want to disconnect, run in a terminal DroneDisconnect.sh
- Connect via , run in a terminal DroneConnect . sh

Workflow I: Simulation and Control Design

- 1. Open MATLAB and navigate to the [ROSMAT]/trunk/matlab/folder
 - Simulation/ contains the Simulink files to design and simulate the drone with its estimators and controllers.
 - libs/ contains parts of Peter Corke's Robotics Toolbox to simulate the dynamics of a drone, updated to (somewhat) match Parrot's Rolling Spider
 - ExperimentAnalyzer/ contains various files to analyze sensor and dynamics data recorded while flying, or processing times from threads running on the drone.
- 2. Run startup.m, then open sim quadrotor.slx
- 3. Design your controllers.
 - As a first approach, copy-paste a preset controller: Open controllers/controller PID/controller PID.slx, copy the ControllerPID block and insert it at the correct place in sim quadrotor.slx. For further design, Simulink can be used (mostly) freely, but keep in mind that c-code for a drone with low processing-power will be generated. (See section "Troubleshooter's FAQ" for more hints). Do not change the input/output-ports of the Drone Compensator to avoid manual changes in the resulting c-code.
- Open SCOPES to have variables plotted, press b to simulate 4. Or: Go to MATLAB, type FlightAnalyzer

Workflow II: Embedded code generation (1/2)

1. Rightclick on the Drones_Compensator block, select "Build This Subsystem".

In the pop-up dialogue box, click Build.

Workflow II: Embedded code generation (2/2)

2. Upload your controller

(If disconnected from Drone: DroneConnect.sh first)

DroneUploadEmbeddedCode.sh

(Info: this script packs the autogenerated code with the drone's c-code framework using the binary PackEmbeddedCode, builds the code with make in [ROSMAT]/trunk/embcode/build-arm and uploads new shared library [ROSMAT]/DroneExchange/librsedu.so to drone using ftp to 192.168.1.1)

Expert level - With changed Simulink input/output-ports: Do the steps from step 2 manually. After running PackEmbeddedCode in its folder, replace code paragraph "Input/Outputport Declarations IO(x)"... of SIMULINK compensator block in rsedu control.c with input/output-port declarations found in *ert main.c.* Note: You also have to update function calls for initializing, stepping and packing the model in rsedu control.c; found in rsedu_control.c with comments "IO(2)" and "IO(3)")

Workflow III: Flying (1) – Flight Phases

The drone's flight is split into 3 phases

- Sensor calibration
 It sits on the floor for 2 seconds to calibrate its sensors.
- Take-off
 Take-off for 1 second with given power and attitude control only to about 1m altitude.
- 3. Actual flight

Workflow III: Flying (2) – Safety Procedures

- Stick to Parrot's safety guidelines (see print-out)
- Always fly with wheels installed
- Wear safety glasses all the time
- Only fly indoors, open area >10'x10' for hover experiments
- Ensure people, animal, property, etc. safety
- Be smart!
- Always test a new program with DroneTest.sh, i.e. 10% power, first
- Stick to software safety procedures (p.23)

Workflow III: Flying (3) – Software Safety

- If the drone's main script does not crash itself, it shuts down the motors in case of a crash or a loss of optical flow
- A single flight is aborted automatically after 20 seconds (see "Troubleshooter's FAQ)
- For all other cases (and they will happen!)
- Always have a separate terminal open, enter telnet 192.168.1.1 (you should already be connected to the drone), now you are logged directly onto the drone.
 Type

```
killall -s SIGKILL dragon-prog; gpio 39 -d ho 1;test-SIP6_pwm -S; and be ready to execute this line when the drones goes crazy!
```

- After an automatic 20-seconds shutdown or a crash, shut down server manually by hitting 'e' in the server terminal (or Cntrl+C to kill it)
- Read through the section "Troubleshooter's FAQ"

Workflow III: Flying (4) – Settings

If you want to enable/disable software features

In a new terminal, log onto drone telnet 192.168.1.1

vi /data/edu/params/paramsEDU.dat

Enable features with replacing '0' by '1'

FEAT_TIME: records timestamps for entering and leaving the functions rsedu_control,

rsedu of (optical flow) and rsedu vis (visual position reconstruction)

FEAT_OF_USE: optical flow is used to stabilize position

FEAT POSVIS RUN:

camera looks for landmark setup and reconstructs position if all

landmarks found; visually reconstructed position is recorded

FEAT_POSVIS_USE:

use visually reconstructed position to enhance kalman position

estimate

FEAT_NOLOOK:

compute color conversion, landmark matching etc. online instead of using a

precomputed lookup-table (don't use this, too slow)

FEAT_IMSAVE:

1: saves images (camera runs at 60Hz, images being recorded/saved at 10Hz)

2: images are being streamed to ubuntu machine (see rsedu_vis.c for

additional instructions)

FEAT_NOSAFETY: 1: drone is not automatically shut down when take off-surface is not level, z-axis –

acceleration is positive or x-y-accelerations exceed 6m/s² (dangerous setting!)

POWERGAIN cannot be changed manually

Workflow III: Flying (5)

- 1. Start KeyboardPilot, i.e. the server providing the reference values, with DroneKeyboardPilot.sh
- 2. In another terminal
 - DroneTest.sh for a test run with 10% Power
 - DroneRun.sh for a full run
- 3. Go back to the KeyboardPilot's terminal, **hit** keyboard buttons (do not keep pressing them!)

Workflow IV: Data Analysis – FlightAnalyzer

- Download RSdata.mat from drone via ftp to [ROSMAT]/DroneExchange/ by running DroneDownloadFlightData.sh (Alternatively, connect drone via usb and run DroneDownloadFlightDataUSB.sh (faster)
- In MATLAB, load RSdata.mat (double-click)
- Run MATLAB-script FlightAnalyzer

Workflow IV: Data Analysis – Software in the Loop

Instead of a full-stack simulation, feed recorded sensor data through the Simulink Drones_Compensator block to see what happened within the estimators and controllers during the recorded flight.

- 1. Make sure to have loaded some flight data RSdata.mat and have run the FlightAnalyzer once
- 2. In MATLAB, navigate to [ROSMAT]/trunk/matlab/Simulation
- 3. Use Simulink model sim_SoftwareIntheLoop_Compensator.slx

Workflow IV: Data Analysis – Processing Times

- Download folder ptimes/ from drone with DroneDownloadPTimes.sh
- 2. Run matlab script PTimesAnalyzer

Workflow V: Dynamics Analysis

 Check one of the folders in [ROSMAT]/trunk/matlab/Simulation/controllers/ to see examples how to utilize MATLAB and Simulink to linearize dynamics to design fullstate controllers

Info: Resetting the drone

- To fully reset the drone to its original state,
 - Do a software update via http://www.parrot.com/usa/support/parrot-rolling-spider/: Click on "Software Update" and then "Download", follow the instructions on the webpage.

Workflow VI: Betafeature-Vision

- Process recorded images: Converting recorded, binary images to ppm, save visioninferred poses into pose.txt
 - Download binary images from drone (remember to enable the image-save feature, page 25):
 - DroneDownloadImages.sh
 - 2. Run
 VisionPrePostProcessor.sh
 Follow instructions
 - 3. See [ROSMAT]/DataExchange/imgs/processed for ppm, poses, and landmark-identification images.
- Updating landmark setup:
 When using a different landmark setup, use
 [ROSMAT]/trunk/VisionPrePostProcessor/findPostReconstructionParameters.m to compute new
 vision matrices, then update them in [ROSMAT]/trunk/embcode/rsedu_vis_helpers.c
- The landmark's descriptors (HSV-values) might need to be updated (VisionPrePostProcessor/main_offboard_image.c)

Workflow VI: Betafeature-Vision

Landmarks are colored markers on the floor

Troubleshooter's FAQ

Troubleshooter's FAQ: Motors, Crashes

- A low battery level can cause multiple problems...
 - ... the takeoff is slower unfortunately, sonar and vision measurements work best above 0.5m. With a slower takeoff, the drone cannot reliably use those measurements for a longer time!
 - ... the motors are "weaker", the control impact therefore too.
 - ... the CPU behavior can become unpredictable.
 - Just having the drone up and running (without flying) drains the battery it is an embedded computer after all.
 - Bottom line: Always charge your second battery while working with the first one.
- <u>Flight time</u> is currently limited by software to 20 seconds for a single flight. This can be extended (*rsedu_control.c*, variable onCycles). However, note that recoding data takes space (especially when images are recorded). There is only a single-digit mb space available on the drone. Also note that you might have to increase the data buffer size for logging FlightAnalyzer-ready data (see *make*-file in *embcode/build_arm*)
- If drone says "RSEDU IP not found", reupload your code (the underlying problem is that the uploaded shared library is not fully recognized (usually linker issues))
- <u>Motors may not start</u> because of default override from manufacturer firmware. This can occur with the drone having been upside down, too high currents while crashing or a low battery. Try starting the drone again, or reboot it with new battery.
- After a crash, check the plots of all <u>sensor for irregularities</u>.

Troubleshooter's FAQ:

Simulation, State Estimation

- The underlying dynamics are modeled using <u>Euler angles</u>. Due to singularities flown maneuvers have to be limited to $\pm 90^{\circ}$ for pitch and roll.
- Note that the <u>position estimate</u> is reset to zero when switching back to position control from attitude control.
- Note that the <u>bias of the IMU</u> is not iteratively estimated but considered to be constant during a flight. It is inferred from data gathered right before takeoff – make sure to start on level ground.
- The kalman filters have <u>outlier handling</u> procedures based on the deviation of the current state estimates to recent measurements. This kind of outlier handling is overly simple. Also, it can make the estimators useless for aggressive maneuvers.
- Ideas for your simple tweaks: If Kalman-estimates and measurement updates differ largely over a significant period of time, consider resetting kalman-estimates.
- Ideas for your simple tweaks: Make use of the <u>pressure sensor</u> to detect outliers of the sonar measurement (e.g. caused by obstacles). Be careful with how to deal with calibrating pressure offset and drift. E.g., Check if jumps of the current sonar-based altitude estimate are realistic/valid. If not, switch to pressure-based estimate and possibly back to the sonar-based one once that is close to the pressure-based one again.

Troubleshooter's FAQ: Model Accuracy

- The <u>optical flow module</u> is modeled (in SIMULINK) very far from the real implementation. Still, the optical flow is the main input to estimate the drone's velocity. Now, if we tune controllers in simulation such that they respond to velocity in a very sensitive way, we will likely run into problems running that controller on the *real* drone (because we tuned the controller to a state (velocity) that is badly estimated (on the real drone) and has low model-accuracy!).
 - If the plant model was known with perfect accuracy, we could design a controller that maxes out the performance. However, with a real-world system that is modeled with inaccuracies, there is a need for robustness, achievable with trading of controller performance. You will notice this when tuning the drone's controller gains in the simulation. If you max out gains in simulation, the real drone will be unstable!
- In a <u>simulation without drag</u>, the sensed acceleration by the accelerometer will always point in the direction of the z-axis. Therefore, correcting the drift of the integration of angular rates from the gyro (to estimate the attitude) would only be possible in perfect hover, or with making use of the current attitude estimate. In real life, drag brings the drone into a steady-state with zero acceleration so we can infer the attitude from the direction of the gravitational vector.
- The drone does have a <u>motor lag</u>, i.e. the propeller rate does not change instantly. This effect
 is not modeled in the simulation and not addressed by the controllers. A lead compensator
 could help compensating for this lag.

Troubleshooter's FAQ: From Simulation to C-Code

- Avoid SIMULINK blocks that require zero-crossing detection.
- Avoid huge <u>matrix multiplications</u>.
- Avoid <u>logging</u> a lot of signals.
- Be smart, your SIMULINK model has to run on-board with limited computing power!

Troubleshooter's FAQ: Beta-feature Vision

• The camera pose reconstruction algorithm assumes <u>zero pitch and roll angle</u> when seeing the landmarks.