Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

R31 Cop. 2

UNITED STATES DEPARTMENT OF AGRICULTURE Agricultural Research Service

PROMISING CANDIDATE INSECTICIDES AND ACARICIDES EVALUATED AT BROWNSVILLE, TEX., JULY 1963 TO JULY 1966

By R. E. Redfern, R. L. Walker, and Eluid Cantu,

Entomology Research Division 1/

From July 1, 1963, to July 1, 1966, 627 candidate materials were evaluated for insecticide and acaricide activity at Brownsville, Tex. About half the candidates were synthesized by chemists in the Entomology Research Division at Beltsville, Md., or were plant extracts prepared by them. The other candidates were supplied by industrial or other sources.

Earlier evaluations of candidate materials at the Brownsville laboratory were reported by Butt and Keller $(\underline{1}-\underline{4})2/$ and Keller and Butt $(\underline{5})$.

Of the 627 materials evaluated, 73 were considered to be promising against one or more of the test species and are reported here.

TEST SPECIES

The materials were tested against three species of phytophagous insects and one species of spider mite of economic importance. They were also tested for phytotoxicity to cotton, squash, and lima bean plants.

U. S. DEPT. OF AGRICULTURE NATIONAL AGRICULTURAL LIBRARY

AUG 7 1967

^{1/} The authors express their special appreciation to Mrs. E. M. Osborne of this Division, who reviewed the chemical names.

^{2/} Numbers in parentheses after the authors' names refer to Literature Cited at the end of this report.

The boll weevils used between July 1963 and June 1965 were reared from infested cotton squares collected from fields near Brownsville, Tex., or Tampico, Mexico. Thereafter, boll weevils were obtained from the culture maintained at the Boll Weevil Research Laboratory, State College, Miss. The southern armyworms were reared in the Brownsville laboratory at 80° F. on bean seedlings grown in moist vermiculite and on lettuce and potato tubers. The aphids and spider mites were grown on cotton seedlings in a constant-temperature cabinet at 67° and 82°, respectively.

TEST PROCEDURES

In the insect and spider mite tests, each treatment was replicated four times, and the test species were held at 80° ± 2° F. after treatment. In the tests against boll weevils, 20 weevils 2 to 3 days old were placed in a screenwire cage and sprayed with 5 ml. of an acetone solution of the test material in a horizontal wind tunnel at an air velocity of 9 m.p.h. After treatment, the insects were removed from the wind tunnel and held for 48 hours, at which time mortality was recorded.

In the tests with southern armyworms, both sides of a cotton leaf were sprayed with 5 ml. of an acetone solution of the test material. The leaf was then cut in half, and each half was placed in a petri dish with 10 fourthinstar larvae. Mortality was recorded at 48 hours.

In tests against cotton aphids and two-spotted spider mites, cotton seedlings infested with 20 or more aphids or spider mites were sprayed with 5 ml. of an acetone solution of the test material on a turntable turning at 24 r.p.m. in a horizontal wind tunnel with an air velocity of 3.4 m.p.h. The mortality of aphids and mites was recorded after 24 and 72 hours, respectively.

In systemic tests against the cotton aphid and the two-spotted spider mite, cotton seedlings were placed in plant nutrient solution containing various concentrations of the candidate material. Three days later, the seedlings were infested with aphids or spider mites (20 or more per plant). Mortality of both species was recorded 48 hours after the seedlings were infested.

A candidate material was considered promising if it met the following criteria:

Boll weevil - Kill of 50 percent or more in 48 hours at a concentration of 0.05 percent or less.

Southern armyworm - Kill of 50 percent or more in 48 hours at a concentration of 0.01 percent or less.

Cotton Aphid - In spray test, kill of 50 percent or more in 24 hours at a concentration of 0.01 percent or less; in systemic test, kill of 50 percent or more in 48 hours at 0.1 p.p.m. or less.

Two-spotted spider mite - In spray test, kill of 50 percent or more in 72 hours at a concentration of 0.01 percent or less; in systemic test, kill of 50 percent or more in 48 hours at 1 p.p.m. or less.

In the phytotoxicity tests, cotton, squash, and lima bean plants were sprayed in a horizontal wind tunnel with 5 ml. of an acetone solution of the candidate material. Various concentrations of the candidate were used to determine a safe level of use. Observations for phytotoxicity were made 1, 2, 3, and 4 days after treatment. Each treatment was replicated four times.

RESULTS

The results of these evaluations are shown in table 1.

The lowest percent concentration or dilution in parts per million of the candidate material giving a kill of 50 percent or more of the test species is shown. In a few instances, the material was not tested at a concentration or dilution lower than that shown.

The results of the phytotoxicity tests are given in table 2. Only those materials found to be phytotoxic to one or more of the plant species are listed.

LITERATURE CITED

- (1) Butt, B. A., and Keller, J. C.
 1961. Susceptibility of boll weevils to some phosphorodithioic acid
 esters. Jour. Econ. Ent. 54: 813
- and Keller, J. C.

 1961. The toxicity of some phosphorothioic acid ester to the twospotted spider mite. Jour. Econ. Ent. 54: 1259-1260.
- and Keller, J. C.

 1963. Laboratory tests of candidate insecticides and acaricides at
 Brownsville, Texas, 1956-1963. U.S. Dept. Agr. ARS-33-85, 24 pp.
- and Keller, J. C.

 1964. Materials evaluated as insecticides and acaricides at
 Brownsville, Texas, September 1955 to June 1961. U.S. Dept. Agr.
 Agr. Hbk. 263, 95 pp.
- (5) Keller, J. C., and Butt, B. A.
 1961. Laboratory tests with some phosphoric acid esters against cotton aphids. Jour. Econ. Ent. 54: 1262.

Table 1.-Effectiveness against 4 insect species of most promising candidate materials evaluated at Brownsville, Tex., 1963-66

		Other		Thompson-Hayward Cidial	du Pont Ins. 1179	General Chemical GC-9879	General Chemical GC-10101	Stauffer R-6395	Stauffer R-6790	Stauffer R-3422-S	Chevron RE-5655	Hercules 9326	Vero Beach BAY 50282	Niagara NIA-10242	Vero Beach BAY 62863
pe	Lion dilution Two-spotted	spider mite ray Systemic	Р.р.п.	1	ı	ı	ı	ı	1	1.0	ı	ı	ı	ı	1
Kill of 50 percent or more at indicated	Percent concentration or parts-per-million dilution Boll Southern Two-spotted	Spray	Percent	0.001	ı	.00	.01	.001	.01	.01	ı	.001	ı	1	1
or more a	parts-per	Cotton aphid ray Systemic est. test.		1	ı	1	1	1	ı	1	0.001	ı	ı	.001	1
percent o	ation or	Sp	Percent	1	ı	ı	ı	ı	ı	ı	ı	ı	ı	1	ı
ill of 50	Southern	armyworm, spray test	Percent	0.01	.001	1	ı	ı	1	1	ı	.01	ı	ı	ı
X	Boll	weevil, spray test	Percent	0.01	• 05	1	1	ı	.01	ı	• 05	ı	.01	• 05	• 05
		Chemical		Acetic acid, mercaptophenyl-, ethyl ester, $S-ester$ with $0.0-dimethyl$ phosphorodithioate	Acetimidic acid, $\overline{N} = [(\text{methylcarbamoyl}) \text{oxy}] \text{thio-,} \\ \text{methyl ester}$	Butyric acid, 4-hydroxy-2-mercapto-, gammalactone, S-ester with 0.0 -diethyl phosphorodithioate	Butyric acid, 4-hydroxy-2-mercapto-, gamma-lactone, \underline{S} -ester with $\underline{0}$, $\underline{0}$ -diethyl phosphorothioate	Carbamic acid, 2-[(mercaptomethyl)thio]ethyl ester, \underline{S} -ester with \underline{O} -isopropyl \underline{O} -methyl phosphorodithioate	Carbamic acid, ethyl-, 2-[(mercaptomethyl)=thio]ethyl ester, S-ester with O-isopropyl O-methyl phosphorodithioate	Carbamic acid, (2-mercaptoethyl)-, ethyl ester, \underline{S} -ester with $\underline{0}, \underline{0}$ -dimethyl phosphorodithioate	Carbamic acid, methyl-, 5-sec-butyl-2- chlorophenyl ester	Carbamic acid, methyl-, 5-tert-butyl-2-chlorophenyl ester	Carbamic acid, methyl-, 4-(diallylamino)-3,5-xylyl ester	Carbamic acid, methyl-, 2,3-dihydro-2,2-dimethyl-7-benzofuranyl ester	Carbamic acid, methyl-, 2,3-dihydro-2- methyl-7-benzofuranyl ester
		ENT No.		27,386-X	27,341	27,211	27,333	27,046	27,179	25,801	27,128	25,911	27,109	27,164	27,324
		Item No.		П	N	т	7	10	9	-	ω	6	10	H	12

Stauffer R-6482	Hooker HRS-1631	Shell SD-9077	Chevron RE-5353	General Chemical GC-8266	Velsicol 46-CS-72	Velsicol 48-CS-104	General Chemical GC-9287	Hercules 12402	Stauffer N-3734	Stauffer N-3735	Stauffer N-3794	Stauffer N-4548	Stauffer N-3727	Stauffer N-3736	Vero Beach BAY 48792
ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	1	1	ı	ı
.001	1	1	ı	ı	1	î	1	1	•01	.001	.01	.001	1	.01	.01
1	1	1	.001	ı	٠,	.1	ı	.001	.01	.001	ı	ı	.001	.001	ı
1	0.001	ı	ı	.001	ı	1	I	ı	1	.001	1	ı	1	.001	1
ı	I	.01	ı	1	ı	1	.01	ı	ı	ı	.01	ı	1	ı	1
ı	ı	ı	ı	1	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	.05
Carbamic acid, methyl-, 2-[(mercaptomethyl)thio]= ethyl ester, \underline{S} -ester with $\underline{0}$ -isopropyl $\underline{0}$ -methyl phosphorodithioate	Carbamic acid, methyl-, $o-[1-(methoxymethyl)]=$ allyl)]phenyl ester	Carbamic acid, methyl-, 4 -methoxy-3,5-xylyl ester	Carbamic acid, methyl-, \underline{m} -(1-methylbutyl)= phenyl ester	Glycine, M-carboxy-, N-(1,1a,3,3a,4,5,5,5a,5b,6-decachlorooctahydro-1,3,4-metheno- $2\underline{H}$ -cyclobuta= $[\underline{ca}]$ pentalen-2-y1) ethyl ester	4,7-Methanoindan, 1,2-dibromo-4,5,6,7,8,8-hexachloro-3a,4,7,7a-tetrahydro-	$^{\mu},7\text{-Methanoindan, 1,2,3,$^{\mu},5,6,7,8,8-nonachloro-3a,$^{\mu},7,7a\text{-tetrahydro-}$	1,3,4-Metheno-2H-cyclobuta[cd]pentalen-2-ol, 1,1a,3,3a,4,5,5,5a,5b,6-decachlorocctahydro- 2-methyl-	2-Norbornene, 1,2,3,4,7,7-hexachloro-5,6-bis=(chloromethyl)-	Phosphonodithioic acid, ethyl-, $\overline{0}$ -ethyl ester, $\overline{S}, \overline{S}$ -diester with thiodimethanethiol	Phosphonodithioic acid, ethyl-, $\overline{0}$ -methyl ester, $\overline{S}, \overline{S}$ -diester with thiodimethanethiol	Phosphonodithioic acid, ethyl-, $\overline{0}$ -methyl \overline{S} -phenyl ester	Phosphonodithioic acid, methyl-, $S[(\underline{p}\text{-chloro-phenyl})\text{thio}]\text{methyl}$ ofter	Phosphonodithioic acid, methyl-, \overline{O} -methyl \overline{S} -phenyl ester	Phosphonothioic acid, ethyl-, 0 -ethyl ester, 8.5 -diester with thiodimethanethiol	Phosphonothioic acid, ethyl-, 0 -ethyl 0 - $[p$ - (methylsulfinyl)phenyl] ester
27,047	27,157	27,044	27,127	27,155	15,156	27,005	27,153	27,053	27,081	27,082	27,249	27,180	25,961	27,083	27,277
13	17	15	16	17	18	19	50	21	22	23	24	25	56	27	28

Table 1.--Continued

			-71	Tribal and the comment of the first out of	440000	+0 0000	+001001	20	
			nercent	NIII of to percent or mare at intraced	ion or r	arts-per-	million	dilution	
			Bo11	Southern			Two-s	Two-spotted	
			weevil,	ಹ	Cotto	Cotton aphid	Q.	spider mite	1 40
Ltem	ON THE	Chemical	spray test	spray test	Spray	Systemic test		Systemic	designation1/
100	· Out Tier		Percent	Percent	Percent	Р.р.ш.	Percent	Р.р.ш.	
29	27,234	Phosphonothioic acid, methyl-, 0-ethyl ester, 0-ester with 2-chloro-4-hydroxybenzonitrile	• 05	.01	1	ı	.01	ı	Vero Beach BAY 51294
30	27,276	Phosphonothioic acid, methyl-, 0-methyl 0-[4-(methylsulfinyl)- \bar{m} -tolyl] ester	• 05	1	1	ı	.01	1.0	Vero Beach BAY 48772
31	27,239	Phosphoramidothioic acid, $[(2-hydroxyethy1)=methy1thiocarbamoy1]-, 0.0-dimethy1 ester$	1	ı	ı	ı	.01	1	Stauffer B-10288
32	27,099	Phosphoric acid, 1-(4-bromo-2-chlorophenyl)-2-chlorovinyl dimethyl ester	1	ı	.001	ı	1	ı	Shell SD-8967
33	27,043	Phosphoric acid, 2-bromo-1-(2,4-dichlorophenyl)= vinyl dimethyl ester	1	ı	ı	1	.01	1	Shell SD-8988
34	27,129	Phosphoric acid, dimethyl ester, ester with 3 -hydroxy- N -methyl- $\overline{\text{cis}}$ -crotonamide	ı	ı	.001	8	.01	ı	Shell Azodrin
35	27,071	Phosphorodithioic acid, 0,0-dimethyl S-[(2-methyl-1,3-oxathiolan-2-yl)methyl] ester	1	1	1	1	.01	ı	Stauffer B-9625
36	25,654	Phosphorodithioic acid, $S_{-}[[(2,6-dichlorophenyl)=thio]methyl]$ 0,0-dimethyl ester	.01	ı	.001	1	.001	1	Geigy G-35165
37	27,269	Phosphorodithioic acid, 0.0 -diethyl ester, S -ester with N -(2-bromo-1-mercaptoethyl)= phthalimide		ı	ı	1	.001	1	Hercules 13843
38	27,320	Phosphorodithioic acid, 0.0 -diethyl ester S -ester with N -(2-chloro-1-mercaptoethyl)= phthalimide	• 00	1	1	1	.01	1	Hercules 14503
39	27,163	Phosphorodithioic acid, 0,0-diethyl ester, S-ester with 6-chloro-3-(mercaptomethyl)-2-benzoxazolinone	1	ı	•	.001	.001	1	Chipman RP-1197 ⁴
017	27,312	Phosphorodithioic acid, 0.0 -diethyl ester, S -ester with N -(2-cyanoethyl)-2-mercapto= acetanilide	ı	1	1	1	.01	1	General Chemical GC-10284

Stauffer R-7239	Stauffer B-9323	Stauffer B-10633	Hooker HRS-1635	Hercules 13842	Hercules 14504	Ge1gy GS-12968	Spencer formothion	Chipman RP-13378	Chipman RP-11783	Ge1gy GS-13005	Stauffer R-7240	Stauffer B-9627
1	1	1	1	;	1	1	1.0	1	ı	1	ı	1
.01	.001	.001	.001	.01	.01	.01	1	.01	.01	.000	.01	.01
1	1	.01	1	1	1	1	1	1	1	ı	1	1
1	1	.001	.001	1	1	ı	ı	1	1	1	1	ı
1	1	1	1	1	1	1	1	ı	1	1	ı	1
• 02	1	1	1	1	• 05	.01	• 05	1	1	.01	• 00	1
Phosphorodithioic acid, 0.0 -diethyl ester, S-ester with 3-(mercaptomethyl)-2,4-thiazolidinedione	Phosphorodithioic acid, 0.0 -diethyl ester, S -ester with mercapto- 2 -propanone, diethyl mercaptole	Phosphorodithioic acid, 0.0-diethyl ester, S-ester with mercapto-2-propanone, dimethyl mercaptole	Phosphorodithioic acid, 0.0-diethyl S-9-thiabicyclo[4.2.1]nonenyl ester	Phosphorc-lithioic acid, 0.0 -dimethyl ester, S -ester with N - $(2$ -bromo-l-mercaptoethyl)= phthalimide	Phosphorodithioic acid, 0.0 -dimethyl ester, S -ester with N -(2-chloro-l-mercaptoethyl)= phthalimide	Phosphorodithioic acid, 0.0-dimethyl ester, S-ester with 2-ethoxy- h -{mercaptomethyl}- Δ 2-1,3, μ -thiadiazolin-5-one	Phosphorodithioic acid, 0.0 -dimethyl ester, S -ester with N-formyl-2-mercapto-N-methylacetamide	Phosphorodithioic acid, 0.0 -dimethyl ester, S -ester with 2-[(2-mercaptoethyl)sulfinyl]- \overline{N} -methylpropionamide	Phosphorodithioic acid, $0.0-dimethyl$ ester, $S-ester$ with $3-(mercaptomethyl)-2-benzoxazolinone$	Phosphorodithioic acid, 0.0-dimethyl ester, S-ester with 4-(mercaptomethyl)-2-methoxy- $\overline{\Delta}$ 2-1,3,4-thiadiazolin-5-one	Phosphorodithioic acid, 0.0 -dimethyl ester, S -ester with 3-(mercaptomethyl)-2,4-thiazolidinedione	Phosphorodithioic acid, 0.0 -dimethyl ester, S -ester with mercapto- Z -propanone, diethyl mercaptole
27,295	27,070	27,036	27,159	27,268	27,321	27,238	27,257	27,113	27,110	27,193	27.296	27,072
η1	775	η3	††	η2	911	14	148	64	50	51	52	53

			K	Kill of 50 percent or more at indicated	sercent o	r more a	t indicat	ed	
			Boll Boll		Tou or b	arts-per	Two-s	Two-spotted	
tem No.	ENT No.	Chemical	weevil, spray test	armyworm, spray	Spray	Cotton aphid ray Systemic	Spray	spider mite ray Systemic	Other
			Percent	Percent	Percent	Р.р.ш.	Percent	Р.р.ш.	
54	27,123	Phosphorodithioic acid, $S-4$,6-dimethyl-2-pyrimidinyl 0-ethyl 0-isopropyl ester	1	ı	.001	.001	.01	1	Stauffer R-5763
55	27,122	Phosphorodithioic acid, $S^{-\mu}$,6-dimethy1-2-pyrimidinyl 0 -ethyl 0 -propyl ester	• 05	ı	.001	.001	ı	ı	Stauffer R-5762
99	27,158	Phosphorodithioic acid, 0.0 -dimethyl \underline{S} -9-thiabicyclo[$4.2.1$]nonenyl ester	ı	ı	.001	1	ı	ı	Hooker HRS-1634
57	27,103	Phosphorothioic acid, $0-[1-(4-bromo-2-chloropheny1)-2-chloroviny1] 0.0-diethyl ester$	ı	.01	ı	i	ı	ı	Shell SD-9321
58	27,162	Phosphorothioic acid, $\overline{0}$ -(4-bromo-2,5-dichlorophenyl) $\overline{0}$,0-dimethyl ester	ı	ı	.001	1	1	ı	CELA bromophos
59	25,996	Phosphorothioic acid, $0-(5-\text{chloro-l},2-\text{benzisoxazol-}3-y1)$ $0,0-\text{diethyl}$ ester	1	.01	1	1	.01	ı	Vero Beach BAY 52957
09	27,120	Phosphorothioic acid, $0-[2-chloro-1-(2, 4-dibromophenyl) vinyl] 0.0-dimethyl ester$	ı	ı	.001	1	ı	ı	Shell SD-9174
19	27,116	Phosphorothioic acid, $0-[2-chloro-1-(2,h-dichlorophenyl)vinyl] 0,0-dimethyl ester$	ı	.01	.001	1	1	ı	Shell SD-9020
62	27,118	Phosphorothioic acid, $0-[2-chloro-1-(2.5-dichlorophenyl)vinyl] 0.0-dimethyl ester$	ı	ı	.001	1	ı	ı	Shell SD-9097
63	27,144	Phosphorothioic acid, $0,0$ -diethyl ester 0 -ester with 3-hydroxycoumarin	ı	1	.001	.01	.001	ı	Niagara NIA-9227
79	27,311	Phosphorothioic acid, 0.0 -diethyl $0-3.5.6$ -trichloro-2-pyridyl ester	ı	.01	ı	1	1	1	Dow Dursban
9	27,165	Phosphorothioic acid, 0.0 -dimethyl ester, 0.0 -diester with 1.4 -thiodiphenol	ı	ı	1	.001	•	1	American Cyansmid Abate
99	27,042	Phosphorothioic acid, 0,0-dimethyl ester, S-ester with 3-(mercaptomethyl)-2-benzoxazolinone	ı	ı	.000	ı	.01	ı	Niagara NIA-9203

Vero Beach BAY 52553	Walter Reed Army Medical Center (no designation)	Do.	National Lead (no designation)	Do.	Metal & Thermit LS-4442	Stauffer N-5117
ı	1	ı	ı	ı	1	ı
ı	ı	ı	1	ı	.001	.01
ı	.1	.1	.001	.001	1	ı
ı	ı	ı	ı	ı	1	1
.01	1	ı	ı	ı	1	1
ı	ı	1	ı	1	ı	ı
Phosphorothioic acid, O-isopropyl O-methyl O-p-nitrophenyl ester	Phthalimide, \overline{N} -(8-bromoocty1)-	Phthalimide, N.M'-hexamethylenedi-	Sodium hydroxytris[lactato(2-)]zirconate (IV)	Scdium oxodisulfatozirconate (IV)	Tin, chlorotriphenyl-	Tin, tributyl(oleoyloxy)-
67 27,248	27,147	27,146	27,142	27,143	25,207	27,261
19	99	69	10	77	72	73

1/ Mention of a proprietary product in this publication does not constitute a guarantee or warranty by the U.S. Department of Agriculture.

Table 2.-Phytotoxicity to 3 plants of some promising candidate insecticides and acaricides evaluated at Brownsville, Tex., 1963-66

Item No.	Percent concentration 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Phytotoxicity1/to	Coxicit Coxicit	on o	to pl	w l	FOR THE TO SO O O O O O O O O O O O O O O O O O	Or indi Squash b t t t t t t t t t t t t t t t t t t t	indicated 3			Seans 3 3 3 4 4 4 4 4 4 4 6 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9		
	70 ° 70 ° 70 ° 70 ° 70 ° 70 ° 70 ° 70 °	0011 01	0011 01	0011 01	H011 01	0000 01	۱ ۰ ۰ ۰ ۰ ۱	4 H H O O I	4 m m O O I	0000 00	0100 00			Vero Beach BAY 52957 Stauffer R-6790
	N th 1	0 1	0 1	0 1	0 1	00	О Р	0 0	m 0	00	00	0 1	0 00	Stauffer N-4548
	⊅ 01	011	011	011	011	001	001	101	101	000	000	000	110	Geigy GS-13005
	7 0 1	011	011	011	011	000	ппо	0 1 1	0 1 3	101	001	001	001	Vero Beach BAY 51294

Vero Beach BAY 52553	Stauffer N-3794	Stauffer N-5117	Vero Beach BAY 48792	Thompson-Hayward Cidial
m 0	0 1 3	1002222	0 1	0 0
m 0	000	44 M 4 M 0 0 1	0 1	0 1
0 ח	000	I OHNOMER	0 1	00
0 0	0 0 1	mm044001	0	00
70	мо і	дадаално	н 0	0 1
0 0	001		00	0 1
0 0	001	0 て て で の な た な た	00	0 1
0 0	001	00011000	00	0 1
0 1	011	3 MHO1111	0 1	0 I
0 1	011	ww401111	0 h	0 1
0 1	011	0010111	0 1	0 1
01	011	44401111	0 1	0 1
4 0	7 C L	4 2 1 5 05	1.0	1.0
19	5ħ	73	28	7
27,248	27,249	27,261	27,277	27,386-x

 $\frac{1}{2}$ Rated 0-4; 0 = nonphytotoxic, μ = all leaves dead. $\frac{2}{2}$ Same as footnote 1, table 1.

UNITED STATES DEPARTMENT OF AGRICULTURE Agricultural Research Service Beltsville, Md. 20705

Official Business

Postage and Fees Paid U.S. Department of Agriculture

