Rotation Notation/Convention

or equivalently:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} \Lambda \end{bmatrix}^T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = = \begin{bmatrix} \hat{x} & \hat{y} & \hat{z} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

where X/Y/Z are global coordinates, x/y/z are local coordinates, $\hat{\Lambda}$ is the DCM from global to local, and $\hat{x}/\hat{y}/\hat{z}$ are the unit vectors of the local coordinate system expressed in the global coordinate system.

$$\begin{cases} \theta_{x} \\ \theta_{y} \\ \theta_{z} \end{cases} = F^{Euler Extract} \left(\left[\Lambda \left(\theta_{x}, \theta_{y}, \theta_{z} \right) \right] \right)$$

where function $F^{\textit{EulerExtract}}(\)$ returns the 3 Euler angles of the x-y-z (1-2-3) rotation sequence used to form Λ (that is, first a rotation θ_x about the global X axis, followed by rotation θ_y about the Y' axis, followed by rotation θ_z about the Z'' axis) defined as follows:

$$\begin{split} &\Lambda\left(\theta_{x},\theta_{y},\theta_{z}\right) = \begin{bmatrix} COS\left(\theta_{z}\right) & SIN\left(\theta_{z}\right) & 0 \\ -SIN\left(\theta_{z}\right) & COS\left(\theta_{z}\right) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} COS\left(\theta_{y}\right) & 0 & -SIN\left(\theta_{y}\right) \\ 0 & 1 & 0 \\ SIN\left(\theta_{y}\right) & 0 & COS\left(\theta_{z}\right) \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & COS\left(\theta_{z}\right) & SIN\left(\theta_{z}\right) \\ 0 & -SIN\left(\theta_{z}\right) & COS\left(\theta_{z}\right) \end{bmatrix} \\ &= \begin{bmatrix} COS\left(\theta_{y}\right)COS\left(\theta_{z}\right) & COS\left(\theta_{z}\right)SIN\left(\theta_{z}\right) + SIN\left(\theta_{z}\right)SIN\left(\theta_{y}\right)COS\left(\theta_{z}\right) \\ -COS\left(\theta_{y}\right)SIN\left(\theta_{z}\right) & COS\left(\theta_{z}\right)COS\left(\theta_{z}\right) - SIN\left(\theta_{z}\right)SIN\left(\theta_{y}\right)SIN\left(\theta_{z}\right) \\ SIN\left(\theta_{y}\right) & -SIN\left(\theta_{z}\right)COS\left(\theta_{y}\right) \end{bmatrix} & COS\left(\theta_{z}\right)COS\left(\theta_{z}\right)SIN\left(\theta_{z}\right)SIN\left(\theta_{z}\right) \\ -SIN\left(\theta_{y}\right) & COS\left(\theta_{z}\right)COS\left(\theta_{y}\right) \end{bmatrix} & COS\left(\theta_{z}\right)COS\left(\theta_{y}\right) \end{bmatrix} \end{split}$$

Note the following simplifications:

$$\Lambda\left(0,\theta_{y},\theta_{z}\right) = \begin{bmatrix} COS\left(\theta_{y}\right)COS\left(\theta_{z}\right) & SIN\left(\theta_{z}\right) & -SIN\left(\theta_{y}\right)COS\left(\theta_{z}\right) \\ -COS\left(\theta_{y}\right)SIN\left(\theta_{z}\right) & COS\left(\theta_{z}\right) & SIN\left(\theta_{y}\right)SIN\left(\theta_{z}\right) \\ SIN\left(\theta_{y}\right) & 0 & COS\left(\theta_{y}\right) \end{bmatrix}$$

$$\Lambda\left(\theta_{x},0,\theta_{z}\right) = \begin{bmatrix} COS\left(\theta_{z}\right) & COS\left(\theta_{x}\right)SIN\left(\theta_{z}\right) & SIN\left(\theta_{x}\right)SIN\left(\theta_{z}\right) \\ -SIN\left(\theta_{z}\right) & COS\left(\theta_{x}\right)COS\left(\theta_{z}\right) & SIN\left(\theta_{x}\right)COS\left(\theta_{z}\right) \\ 0 & -SIN\left(\theta_{x}\right) & COS\left(\theta_{x}\right) \end{bmatrix}$$

$$\Lambda\left(\theta_{x},\theta_{y},0\right) = \begin{bmatrix} COS\left(\theta_{y}\right) & SIN\left(\theta_{x}\right)SIN\left(\theta_{y}\right) & -COS\left(\theta_{x}\right)SIN\left(\theta_{y}\right) \\ 0 & COS\left(\theta_{x}\right) & SIN\left(\theta_{x}\right) & SIN\left(\theta_{x}\right) \\ SIN\left(\theta_{y}\right) & -SIN\left(\theta_{x}\right)COS\left(\theta_{y}\right) & COS\left(\theta_{x}\right)COS\left(\theta_{y}\right) \end{bmatrix}$$

Commented [JJ1]: We've split up KiteFASTMBD into KiteFASTMBD in C and KiteFASTMBD in Fortran. This plan is for KiteFASTMBD in Fortran.

KiteFASTMBD

Inputs	Outputs
• \vec{p}^{Wind} – Position of the	\bullet $^{MBD} ec{F}$
ground station where the fixed wind measurement is taken (m) • **MBD**\bar{D}F^{FusO} - Position (origin) of the fuselage (m) • **MBD**\Delta FusO - Rotation (absolute orientation) of the fuselage origin (-) • **MBD*\Delta FusO - Translational velocity (absolute) of the fuselage origin (m/s) • **MBD*\Delta FusO - Rotational	applied forces the fuse function for the fuse function function for the fuse function for the fuse function function for the fuse function function for the fuse function function function for the fuse function f
velocity (absolute) of the	j th no

- fuselage origin (rad/s)
- \vec{a}^{FusO} Translational acceleration (absolute) of the fuselage origin (m/s²)
- $^{\textit{MBD}} \vec{\alpha}^{\textit{FusO}}$ Rotational acceleration (absolute) of the fuselage origin (rad/s2)
- $^{MBD}\vec{p}_{j}^{Fus}$ Translational position (absolute) of the j th node of the fuselage mesh (m)

- Fus Aerodynamic ed concentrated at the j^{th} node of selage mesh (N)
- \vec{M}_i^{Fus} Aerodynamic ed concentrated ents at the j^{th} node fuselage mesh (N-
- \vec{r}_i^{SWn} Aerodynamic ether applied ntrated forces at the ode of the starboard wing mesh (N)
- $^{MBD}\vec{M}_{i}^{SWn}$ -Aerodynamic applied and tether concentrated moments at the j th node of the starboard wing mesh (N-m)
- $^{MBD} \vec{F}_{i}^{PWn}$ Aerodynamic and tether applied concentrated forces at the j th node of the port wing

States

- NewTime Is this a new time step (in order to only call the controller once per step)? (flag) (other state)
- MBD Other States - Inputs from MBD from the previous time step stored as other states)
- KAD Other States Outputs from KiteAeroDyn from the previous time step (stored as other states)
- IfW OtherStates - Outputs from InflowWind from the previous time step (stored as other states)
- MD Other States - Inputs to and outputs from

Parameters

- Δt Time step (s) $N_{\it Flaps}$ – Number of flaps per wing (-)
- N_{Pylons} Number of pylons per wing (-)
- $\Lambda^{FAST \, 2Ctrl} DCM$ conversion from the FAST ground system (X pointed nominally downwind; Z pointed vertically opposite gravity; Y transverse) to the ground system used by the controller (X pointed nominally upwind; Z pointed vertically downward, Y transverse)
- (-) $^{MBD}\vec{g}$ Gravity vector \dot{g} Gravity vector inertial-frame coordinate system (m/s2)
- ρ Air density (kg/m³)
- \vec{p}^{Anch} Position of the ground station where the tether attaches (i.e. mooring line anchor) (m)

Commented [JJ2]: These are the data queried from the MBDyn model at t using GetXCur to be used within KiteFASTMBD.

Commented [JJ3]: These are the data sent to the MBDyn model

Commented [JJ4]: Obvious parameters are not listed here.

Commented [JJ5]: I'm currently assuming that MBD is marching in time at $100~{\rm Hz}$ (dt = 0.01 s), which is what the controller is running at. Changing the MBD time step will require a modification to this plan to ensure that the controller is called at 100

- ${}^{MBD}\Lambda_j^{Fus}$ Displaced rotation (absolute orientation) of the j th node of the fuselage mesh (-)
- $MBD \vec{v}_j^{Fus}$ Translational velocity (absolute) of the j th node of the fuselage mesh (m/s)
- ${}^{MBD} \overline{\omega}_{j}^{Fus}$ Rotational velocity (absolute) of the j th node of the fuselage mesh (rad/s)
- ${}^{MBD}\vec{a}_j^{Fus}$ Translational acceleration (absolute) of the j^{th} node of the fuselage mesh (m/s²)
- ${}^{MBD}\vec{F}R_j^{Fus}$ Reaction force (expressed in the local coordinate system) at the j th Gauss point of the fuselage mesh (N)
- ${}^{MBD} \vec{MR}_{j}^{Fus}$ Reaction moment (expressed in the local coordinate system) at the j th Gauss point of the fuselage mesh (N-m)
- MBD \vec{p}^{SWnO} Position (origin) of the starboard wing (m)
- $\stackrel{MBD}{p_j} \stackrel{SWn}{p_j}$ Translational position (absolute) of the j th node of the starboard wing (m)
- ${}^{MBD}\Lambda_j^{SWn}$ Displaced rotation (absolute orientation) of the j^{th} node of the starboard wing mesh (-)
- ${}^{MBD}\vec{v}_{j}^{SWn}$ Translational velocity (absolute) of the j^{th} node of the starboard wing mesh (m/s)
- $\vec{\omega}_{j}^{SWn}$ Rotational velocity (absolute) of the

- mesh (N)
 \vec{M}_{i}^{PWn} -
- Aerodynamic and tether applied concentrated moments at the jth node of the port wing mesh (N-m)
- ${}^{MBD}\vec{F}_{j}^{VS}$ Aerodynamic applied concentrated forces at the j th node of the vertical stabilizer mesh (N)
- MBD \vec{M}_j^{VS} Aerodynamic applied concentrated moments at the j^{th} node of the vertical stabilizer mesh (N-m)
- ${}^{MBD}\vec{F}_{j}^{SHS}$ Aerodynamic applied concentrated forces at the j^{th} node of the starboard horizontal stabilizer mesh (N)
 ${}^{MBD}\vec{M}_{i}^{SHS}$ -
- Aerodynamic applied concentrated moments at the jth node of the starboard horizontal stabilizer mesh (N-m)
- ${}^{MBD}\vec{F}_{j}^{PHS}$ Aerodynamic applied concentrated forces at the j th node of the port horizontal stabilizer mesh (N)
 ${}^{MBD}\vec{M}_{j}^{PHS}$ -
- Aerodynamic applied concentrated moments at the jth node of the port horizontal stabilizer mesh (N-m)
- ${}^{MBD}\vec{F}_{j}^{SPy}\left[n_{Pylons}\right]$ Aerodynamic applied concentrated forces at the j^{th} node of the pylons on the starboard wing mesh
- $^{MBD}\vec{M}_{j}^{SPy}[n_{Pylons}]$ –

- MoorDyn from the previous time step (stored as other states)
- MD x MoorDyn continuous states (varied)
- KAD z KiteAeroDyn
 constraint states
 (varied)
- $m^{MBD}m^{SPyRtr}\left[n_{Pylons},n_2\right]$
- Mass of the top and bottom rotors/drivetrains on the pylons on the starboard wing mesh (kg)
- $^{MBD}I_{Rot}^{SPyRtr}\left[n_{Pylons},n_{2}\right]$
- Rotational inertia about the shaft axis of the top and bottom rotors/drivetrains on the pylons on the starboard wing mesh (kg·m²)
- $^{MBD}I_{Tran}^{SPyRtr}\left[n_{Pylons},n_{2}\right]$
 - Transverse inertia about the rotor reference point of the top and bottom rotors/drivetrains on the pylons on the starboard wing mesh (kg·m²)
- wing mesh (kg·m²)

 $^{MBD}x_{CM}^{SPyRtr} \left[n_{Pylons}, n_2 \right]$
- Distance along the shaft from the rotor reference point of the top and bottom rotors/drivetrains on the pylons on the starboard wing mesh to the center of mass of the rotor/drivetrain (positive along positive x) (m)
- $^{MBD}m^{PPyRtr}[n_{Pylons}, n_2]$
 - Mass of the top and bottom rotors/drivetrains on the pylons on the port wing mesh (kg)
- $^{MBD}I_{Rot}^{PPyRtr} \left[n_{Pylons}, n_2 \right]$
 - Rotational inertia about the shaft axis of the top and bottom
 rotors/drivetrains on the pylons on the port wing mesh (kg·m²)
- $^{MBD}I_{Tran}^{PPyRtr}\left[n_{Pylons},n_{2}\right]$
 - Transverse inertia about the rotor reference point of the top and bottom rotors/drivetrains on the pylons on the port wing mesh (kg·m²)
- ${}^{MBD}x_{CM}^{PPyRtr} \left[n_{Pylons}, n_2 \right]$

- j th node of the starboard wing mesh (rad/s)
- \vec{a}_j^{SWn} Translational acceleration (absolute) of the j th node of the starboard wing mesh (m/s²)
- ${}^{MBD}\vec{F}R_j^{SWn}$ Reaction force (expressed in the local coordinate system) at the j^{th} Gauss point of the starboard wing mesh (N)
- ${}^{MBD}\vec{M}R_{j}^{SWn}$ Reaction moment (expressed in the local coordinate system) at the j th Gauss point of the starboard wing mesh (N-m)
- MBD \vec{p}^{PWnO} Position (origin) of the port wing (m)
- ${}^{MBD}\vec{p}_{j}^{PWn}$ Translational position (absolute) of the j^{th} node of the port wing mesh (m)
- ${}^{MBD} \Lambda_j^{PWn}$ Displaced rotation (absolute orientation) of the j^{th} node of the port wing mesh (-)
- MBD \vec{V}_j^{PWn} Translational velocity (absolute) of the j th node of the port wing mesh (m/s)
- MBD \$\vec{\pi}_{j}^{PWn}\$ Rotational velocity (absolute) of the \$j\$ th node of the port wing mesh (rad/s)
- ${}^{MBD}\vec{a}_{j}^{PWn}$ Translational acceleration (absolute) of the j th node of the port wing mesh (m/s²)
- ${}^{MBD}\vec{F}R_j^{PWn}$ Reaction force (expressed in the local coordinate system) at the j th Gauss point of the port wing mesh (N)

- Aerodynamic applied concentrated moments at the jth node of pylons on the starboard wing mesh (N-m)
- ${}^{MBD}\vec{F}_{j}^{PPy}\left[n_{Pylons}\right]$ Aerodynamic applied concentrated forces at the j^{th} node of the pylons on the port wing mesh (N)
- ${}^{MBD}\vec{M}_{j}^{PPy}\left[n_{Pylons}\right]$ Aerodynamic applied concentrated moments at the j^{th} node of pylons on the port wing mesh (N-m) ${}^{MBD}\vec{F}^{SPyRtr}\left[n_{Pylons},n_{2}\right]$
- Concentrated reaction forces at the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (N)
- $^{MBD}\vec{M}^{SPyRtr}\left[n_{Pylons},n_2\right]$
- Concentrated reaction moments at the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) $^{MBD} \vec{F}^{PPyRtr} \left[n_{Pylons}, n_2 \right]$
- Concentrated reaction forces at the top and bottom nacelles on the pylons on the port wing mesh at the rotor reference point (N)
- $^{MBD}\vec{M}^{PPyRtr}\left[n_{Pylons},n_2\right]$
 - Concentrated reaction moments at the top and bottom nacelles on the pylons on the port wing mesh at the rotor reference point (N-m)

- Distance along the shaft from the rotor reference point of the top and bottom rotors/drivetrains on the pylons on the port wing mesh to the center of mass of the rotor/drivetrain (positive along positive x) (m)
- along positive x) (m)

 $^{MBD}\vec{p}_{j}^{FusR}$ Reference

 position of the j th node

 of the fuselage mesh (m)
- $^{MBD}\Lambda_j^{FusR}$ Reference orientation of the j^{th} node of the fuselage mesh
- \vec{p}_j^{SWnR} Reference position of the j th node of the starboard wing mesh (m)
- $^{MBD}\Lambda_j^{SWnR}$ Reference orientation of the j th node of the starboard wing mesh (-)
- ${}^{MBD}\vec{p}_{j}^{PWnR}$ Reference position of the j^{th} node of the port wing mesh (m)
- ApWnR Reference
 orientation of the j th
 node of the port wing
 mesh (-)
- $^{MBD}\vec{p}_{j}^{VSR}$ Reference position of the j^{th} node of the vertical stabilizer mesh (m)
- $^{MBD}A_j^{VSR}$ Reference orientation of the j^{th} node of the vertical stabilizer mesh (-)
- ${}^{MBD}\vec{p}_{j}^{SHSR}$ Reference position of the j th node of the starboard horizontal stabilizer mesh (m)
- $MBD \Lambda_j^{SHSR}$ Reference orientation of the j^{th}

- ${}^{MBD}\vec{M}R_j^{PWn}$ Reaction moment (expressed in the local coordinate system) at the j th Gauss point of the port wing mesh (N-m)
- ${}^{MBD}\vec{p}^{VSO}$ Position (origin) of the vertical stabilizer (m)
- ${}^{MBD}\vec{p}_{j}^{VS}$ Translational position (absolute) of the j th node of the vertical stabilizer mesh (m)
- $^{MBD}\Lambda_j^{VS}$ Displaced rotation (absolute orientation) of the j th node of the vertical stabilizer mesh (-)
- ${}^{MBD}\vec{V}_{j}^{VS}$ Translational velocity (absolute) of the j th node of the vertical stabilizer mesh (m/s)
- ${}^{MBD}\vec{\omega}_{j}^{VS}$ Rotational velocity (absolute) of the j th node of the vertical stabilizer mesh (rad/s)
- ${}^{MBD}\vec{a}_{j}^{VS}$ Translational acceleration (absolute) of the j th node of the vertical stabilizer mesh (m/s²)
- ${}^{MBD}\vec{F}R_j^{VS}$ Reaction force (expressed in the local coordinate system) at the j^{th} Gauss point of the vertical stabilizer mesh (N)
- ${}^{MBD}\vec{M}R_j^{VS}$ Reaction moment (expressed in the local coordinate system) at the j^{th} Gauss point of the vertical stabilizer mesh (N-m)
- $\stackrel{MBD}{p} \vec{p}^{SHSO}$ Position (origin) of the starboard horizontal stabilizer (m)
- \vec{p}_j^{SHS} Translational position (absolute) of the

- node of the starboard horizontal stabilizer mesh (-)
- ${}^{MBD}\vec{p}_{j}^{PHSR}$ Reference position of the j^{th} node of the port horizontal stabilizer mesh (m)
- $^{MBD}\Lambda_{j}^{PHSR}$ Reference orientation of the j th node of the port horizontal stabilizer mesh (-)
- MBD $\vec{p}_j^{SPyR} \left[n_{Pylons} \right]$ —

 Reference position of the j^{th} node of the pylons on the starboard wing mesh (m)
- $^{MBD}A_j^{SPyR} [n_{Pylons}] -$ Reference orientation of the jth node of the pylons on the starboard wing mesh (-)
- ${}^{MBD}\vec{p}_{j}^{PPyR}\left[n_{Pylons}\right]$ Reference position of the j^{th} node of the pylons on the port wing mesh (m)
- $^{MBD}\Lambda_j^{PPyR} \left[n_{Pylons} \right] -$ Reference orientation of the j th node of the pylons on the port wing mesh (-)
- $^{MBD}\vec{p}^{SPyRtrR}\left[n_{Pylons},n_2\right]$ Reference positions (origins) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (m)
- $MBD \Lambda^{SPyRtrR} [n_{Pylons}, n_2]$
 - Reference orientations of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (-)
- $\stackrel{MBD}{\vec{p}} \vec{p}^{PPyRtrR} \left[n_{Pylons}, n_2 \right]$ Reference positions
 - Reference positions (origins) of the top and

j^{th} node of the starboard horizontal stabilizer mesh (m) • ${}^{MBD}\Lambda_j^{SHS}$ – Displaced rotation (absolute orientation) of the j^{th}		bottom nacelles on the pylons on the port wing mesh at the rotor reference point (m) • $^{MBD}\Lambda^{PPyRtrR}\left[n_{Pylons},n_{2}\right]$ - Reference orientations
node of the starboard horizontal stabilizer mesh (-) • ${}^{MBD}\vec{v}_{j}^{SHS}$ – Translational		of the top and bottom nacelles on the pylons on the port wing mesh at the rotor reference point (-)
velocity (absolute) of the j th node of the starboard horizontal stabilizer mesh (m/s)		
• $^{MBD}\vec{\omega}_{j}^{SHS}$ – Rotational		
velocity (absolute) of the j th node of the starboard horizontal stabilizer mesh		
(rad/s) • \vec{a}_{j}^{SHS} – Translational		
acceleration (absolute) of the j th node of the		
starboard horizontal stabilizer mesh (m/s ²) • ${}^{MBD}\vec{F}R_{j}^{SHS}$ – Reaction		
force (expressed in the local coordinate system) at the j th Gauss point of the		
starboard horizontal stabilizer mesh (N)		
• ${}^{MBD}\vec{M}R_j^{SHS}$ - Reaction moment (expressed in the local coordinate system) at the j th Gauss point of the		
starboard horizontal stabilizer mesh (N-m) • MBD \vec{p}^{PHSO} – Position		
(origin) of the port horizontal stabilizer (m)		
• \vec{p}_j^{PHS} – Translational		
position (absolute) of the j th node of the port horizontal stabilizer mesh		
(m) • $^{MBD}\Lambda_{j}^{PHS}$ – Displaced		
rotation (absolute		

	1		
	rientation) of the j th		
	ode of the port horizontal		
	tabilizer mesh (-)		
• 1	\vec{v}_{i}^{PHS} – Translational		
	elocity (absolute) of the		
	j th node of the port		
-			
	orizontal stabilizer mesh		
	m/s)		
• "	$\vec{\omega}_{j}^{PHS}$ – Rotational		
v	elocity (absolute) of the		
	j th node of the port		
	orizontal stabilizer mesh		
	rad/s)		
	\vec{a}_{j}^{PHS} – Translational		
	-		
	cceleration (absolute) of		
	he j th node of the port		
	orizontal stabilizer mesh		
(1	m/s^2)		
• A	$\vec{F}R_{j}^{PHS}$ – Reaction		
	orce (expressed in the		
	ocal coordinate system) at		
	the j^{th} Gauss point of the		
	,		
	ort horizontal stabilizer		
	nesh (N)		
• "	$\vec{M}R_j^{PHS}$ – Reaction		
n	noment (expressed in the		
lo	ocal coordinate system) at		
tl	he j^{th} Gauss point of the		
р	ort horizontal stabilizer		
n	nesh (N-m)		
• A	$\vec{p}^{SPyO} \left[n_{Pylons} \right] -$		
	ositions (origins) of		
	ylons on the starboard		
W	ving (m)		
• ¹	$\vec{p}_{j}^{SPy} \left[n_{Pylons} \right] -$		
	ranslational position		
	absolute) of the j^{th} node		
	f the pylons on the		
	tarboard wing mesh (m)		
• "	$\Lambda_{j}^{SPy} \left[n_{Pylons} \right] -$		
Г	Displaced rotation		
	absolute orientation) of the		
	j th node of the pylons on		
	ne starboard wing mesh (-)		
	$\vec{v}_{j}^{SPy} \left[n_{Pylons} \right] =$		
•	$v_j \cdot \lfloor n_{Pylons} \rfloor -$		
T	ranslational velocity		
	•		

	(absolute) of the j th node		
	of the pylons on the		
	starboard wing mesh (m/s)		
	$^{MBD}\vec{\omega}_{j}^{SPy}\Big[n_{Pylons}\Big]-$		
•	$\omega_j [n_{Pylons}] =$		
	Rotational velocity		
	(absolute) of the j th node		
	of the pylons on the		
	starboard wing mesh		
	(rad/s)		
	$^{MBD}\vec{a}_{j}^{SPy}\left[n_{Pylons}\right]-$		
-			
	Translational acceleration		
	(absolute) of the j th node		
	of the pylons on the		
	starboard wing mesh (m/s ²)		
	$^{MBD}\vec{F}R_{j}^{SPy}\left[n_{Pylons}\right]$ -		
	Reaction force (expressed		
	in the local coordinate		
	system) at the j^{th} Gauss		
	point of the pylons on the		
	starboard wing mesh (N)		
•	$^{MBD}\vec{M}R_{j}^{SPy} \left[n_{Pylons} \right] -$		
	Reaction moment (expressed in the local		
	coordinate system) at the		
	j th Gauss point of the		
	pylons on the starboard		
	wing mesh (N-m)		
•	$^{MBD}\vec{p}^{PPyO}\left[n_{Pylons}\right]$ –		
	Positions (origins) of		
	pylons on the port wing		
	(m)		
•	$^{MBD}\vec{p}_{j}^{PPy}\left[n_{Pylons}\right]-$		
	Translational position		
	(absolute) of the j th node		
	of the pylons on the port		
	wing mesh (m)		
	$^{MBD}\Lambda_{j}^{PPy}\left[n_{Pylons}\right]-$		
	Displaced rotation		
	(absolute orientation) of the		
	j^{th} node of the pylons on		
	the port wing mesh (-)		
•	${}^{MBD}\vec{v}_{j}^{PPy} \lceil n_{Pylons} \rceil -$		
	Translational velocity		
	(absolute) of the j th node		
	of the pylons on the port		
	wing mesh (m/s)		

	<u> </u>	
$ullet$ $\stackrel{MBD}{ec{\omega}_{j}^{PPy}} ar{n}_{Pylons} -$		
Rotational velocity		
(absolute) of the j th node		
of the pylons on the port wing mesh (rad/s)		
$ullet$ $MBD \vec{a}_j^{PPy} [n_{Pylons}] -$		
Translational acceleration		
(absolute) of the j^{th} node		
of the pylons on the port		
wing mesh (m/s ²)		
$ullet$ $MBDec{F}R_{j}^{PPy}igg[n_{Pylons}igg]-$		
Reaction force (expressed		
in the local coordinate		
system) at the j th Gauss		
point of the pylons on the		
port wing mesh (N)		
• ${}^{MBD}\vec{M}R_{j}^{PPy}[n_{Pylons}] -$		
Reaction moment		
(expressed in the local		
coordinate system) at the		
j th Gauss point of the		
pylons on the port wing		
mesh (N-m)		
• $^{MBD} \vec{p}^{SPyRtr} \left[n_{Pylons}, n_2 \right] -$		
Translational position		
(absolute) of the top and		
bottom nacelles on the		
pylons on the starboard		
wing mesh at the rotor		
reference point (m)		
• $^{MBD}\Lambda^{SPyRtr}\left[n_{Pylons}, n_2\right] -$		
Displaced rotation		
(absolute orientation) of the		
top and bottom nacelles on		
the pylons on the starboard		
wing mesh at the rotor		
reference point (-)		
• $^{MBD}\vec{v}^{SPyRtr}\left[n_{Pylons},n_2\right]$ -		
Translational velocity		
(absolute) of the top and		
bottom nacelles on the		
pylons on the starboard		
wing mesh at the rotor		
reference point (m/s)		
• ${}^{MBD} \vec{o}^{SPyRtr} [n_{Pylons}, n_2] -$		
Rotational velocity		
(absolute) of the top and		

bottom nacelles on the		
pylons on the starboard		
wing mesh at the rotor		
reference point (rad/s)		
• $^{MBD}\vec{a}^{SPyRtr}[n_{Pylons}, n_2] -$		
Translational acceleration		
(absolute) of the top and		
bottom nacelles on the		
pylons on the starboard		
wing mesh at the rotor		
reference point (m/s ²)		
• $^{MBD}\vec{\alpha}^{SPyRtr}\left[n_{Pylons},n_2\right]$ -		
Rotational acceleration		
(absolute) of the top and		
bottom nacelles on the		
pylons on the starboard		
wing mesh at the rotor		
reference point (rad/s ²)		
• $^{MBD}\vec{p}^{PPyRtr}[n_{Pylons},n_2]$ -		
$p \qquad \lfloor n_{Pylons}, n_2 \rfloor -$		
Translational position		
(absolute) of the top and		
bottom nacelles on the		
pylons on the port wing		
mesh at the rotor reference		
point (m)		
• $^{MBD}\Lambda^{PPyRtr}\left[n_{Pylons},n_2\right]$ -		
Displaced rotation		
(absolute orientation) of the		
top and bottom nacelles on		
the pylons on the port wing		
mesh at the rotor reference		
point (-)		
• $^{MBD}\vec{v}^{PPyRtr}\left[n_{Pylons},n_2\right]$ -		
Translational velocity		
(absolute) of the top and		
bottom nacelles on the		
pylons on the port wing		
mesh at the rotor reference		
point		
(m/s)		
$^{MBD}\vec{\omega}^{PPyRtr}\left[n_{Pylons},n_{2}\right]-$		
Rotational velocity		
(absolute) of the top and		
bottom nacelles on the		
pylons on the port wing		
mesh at the rotor reference		
point (rad/s)		
• $^{MBD}\vec{a}^{PPyRtr} [n_{Pylons}, n_2] -$		
Translational acceleration		

(absolute) of the top and		
bottom nacelles on the		
pylons on the port wing		
mesh at the rotor reference		
point (m/s ²)		
• $^{MBD}\vec{\alpha}^{PPyRtr}[n_{Pylons},n_2]$ -		
Rotational acceleration		
(absolute) of the top and		
bottom nacelles on the		
pylons on the port wing		
mesh at the rotor reference		
point (rad/s ²)		

MiscVars: ^{Ctrl}y , ^{MD}y , ^{IJW}y , ^{KAD}y , ^{MBD}u , ^{MD}u , $^{MD}x^{Copy}$, $^{KAD}z^{Copy}$

Mapping of Outputs to Inputs in KiteFASTMBD

mapping of Oil	Mapping of Outputs to Inputs in Kiter AST MBD					
Output depend	s on Input (Y/N)	Inputs				
		MBDyn	KiteAeroDyn	InflowWind	MoorDyn	Controller
Outputs	MBDyn		N	N	N	Y
	KiteAeroDyn	Y				Y
	InflowWind		Y			Y
	MoorDyn	Y				Y
	Controller	N	N			

Data Flow (stopping when reaching "N")

MBDyn Controller

KiteAeroDyn MBDyn Controller

Controller

InflowWind KiteAeroDyn MBDyn Controller

Controller

Controller

MoorDyn MBDyn Controller

Controller

Controller

Thus, no nonlinear solves are required

Order of calls: MBDyn, Controller, MoorDyn, InflowWind, KiteAeroDyn

Constructor

This routine initializes KiteFASTMBD at t = 0:

- Sets parameters
- Initializes states
- Calls module Init routines
- Opens the write output file
- Opens and writes the summary file

Query the MBDyn model to access the inputs at t = 0.

Query the MBDyn model to access the names of the KiteAeroDyn, InflowWind, and MoorDyn primary input files

Commented [JJ6]: The outputs of each module at time t (as calculated by their respective CalcOutput() routines) are stored as MiscVars in KiteFASTMBD.

Commented [JJ7]: The inputs from MBD and inputs to MD at time t are stored as MiscVars in KiteFASTMBD.

Commented [JJ8]: This may technically not be true, but we can only call the Controller once anyway, so, we'll assume no.

Commented [JJ9]: t=0 outputs are not set here.

Commented [JJ10]: The names of the KiteAeroDyn input file etc., along with switches for enabling/disabling each module, must be queried from the MBDyn model. I haven't specifically included logic below to enable/disable modules, but this should implemented.

Set the parameters from inputs
$$(\Delta t, N_{Flaps}, N_{Pylons}, {}^{MBD}\bar{g}, {}^{MBD}m^{SPyRtr}[n_{Pylons}, n_2], {}^{MBD}I_{Rot}^{SPyRtr}[n_{Pylons}, n_2], {}^{MBD}I_{Tran}^{SPyRtr}[n_{Pylons}, n_2], {}^{MBD}I_{Tran}^{SPyRtr}[n_{Pylons}, n_2], {}^{MBD}I_{Rot}^{SPyRtr}[n_{Pylons}, n_$$

Set the DCM conversion parameter from the FAST ground system (X pointed nominally downwind; Z pointed vertically opposite gravity; Y transverse) to the ground system used by the controller (X pointed nominally upwind; Z pointed vertically downward, Y transverse):

$$\Lambda^{FAST2Ctrl} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

• And:

Set the reference positions (origins) needed as initialization inputs to KiteAeroDyn:
$$^{KAD} \vec{p}^{SWnOR} = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{SWnO} - {}^{MBD} \vec{p}^{FusO} \right\}$$

$$^{KAD} \vec{p}^{PWnOR} = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{PWnO} - {}^{MBD} \vec{p}^{FusO} \right\}$$

$$^{KAD} \vec{p}^{PSOR} = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{PSO} - {}^{MBD} \vec{p}^{FusO} \right\}$$

$$^{KAD} \vec{p}^{SHSOR} = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{SHSO} - {}^{MBD} \vec{p}^{FusO} \right\}$$

$$^{KAD} \vec{p}^{SHSOR} = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{SHSO} - {}^{MBD} \vec{p}^{FusO} \right\}$$

$$^{KAD} \vec{p}^{PHSOR} = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{PHSO} - {}^{MBD} \vec{p}^{FusO} \right\}$$

$$^{KAD} \vec{p}^{SPyOR} \left[n_{Pylons} \right] = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{SPyO} \left[n_{Pylons} \right] - {}^{MBD} \vec{p}^{FusO} \right\}$$

$$^{KAD} \vec{p}^{PPyOR} \left[n_{Pylons} \right] = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{PPyO} \left[n_{Pylons} \right] - {}^{MBD} \vec{p}^{FusO} \right\}$$

$$^{KAD} \vec{p}^{SPyRtrR} \left[n_{Pylons} , n_2 \right] = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{SPyRtr} \left[n_{Pylons} , n_2 \right] - {}^{MBD} \vec{p}^{FusO} \right\}$$

$$^{KAD} \vec{p}^{PPyRtrR} \left[n_{Pylons} , n_2 \right] = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{SPyRtr} \left[n_{Pylons} , n_2 \right] - {}^{MBD} \vec{p}^{FusO} \right\}$$

Call KiteAeroDyn_Init()

Trigger a fatal error if $\left({^{KAD}}\Delta t \neq \Delta t \right)$

Set the air density for future reference: $\rho = {}^{K\!A\!D}\rho$

Commented [JJ11]: These must be queried from the MBDyn

Determine the number of points where wind will be accessed within InflowWind by summing up the nodes on the AeroDyn input meshes, plus one for the fuselage origin and one for the ground station:

If
$$W$$
 NumWindPoint $s = 2$

$$+ {}^{KAD}NumPWnNds$$

$$+ {^{KAD}}NumPylNds(2N_{Pylons})$$

$$+4N_{Pylons}$$

Call InflowWind Init()

Trigger a fatal error if $\left({}^{IfW}\Delta t \neq \Delta t \right)$

Set the initialization inputs to MoorDyn:

$$^{MD}g = ||^{MBD}\vec{g}||$$

$$^{MD}rhoW = \rho$$

$$^{MD}WtrDepth = 0$$

$$^{MD}PtfmInit = \begin{cases} {^{MBD}\vec{p}^{FusO}} \\ {^{MBD}}\Lambda^{FusO} \end{cases}$$

Call MoorDyn_Init()

Trigger a fatal error if
$$\binom{MD}{\Delta t} \neq \Delta t$$

Trigger a fatal error if there is more than one anchor set in MoorDyn. Also, set the anchor position for future reference based on the initialization output from MoorDyn:

$$\vec{p}^{\textit{Anch}} = \text{from MoorDyn initialization output}$$

Call Controller Init()

Set the reference positions and orientations of the line2 and point meshes from the inputs:

$$\begin{array}{ll} {}^{MBD}\vec{p}_{j}^{FusR} = {}^{MBD}\boldsymbol{\Lambda}_{j}^{FusO}\left\{{}^{MBD}\vec{p}_{j}^{Fus} - {}^{MBD}\vec{p}_{j}^{FusO}\right\} & \text{ (for } j = \left\{1,2,\ldots,{}^{MBD}NumFusNds\right\}) \\ {}^{MBD}\boldsymbol{\Lambda}_{j}^{FusR} = {}^{MBD}\boldsymbol{\Lambda}_{j}^{Fus}\left[{}^{MBD}\boldsymbol{\Lambda}_{j}^{FusO}\right]^{T} & \text{ (for } j = \left\{1,2,\ldots,{}^{MBD}NumFusNds\right\}) \\ {}^{MBD}\vec{p}_{j}^{SWnR} = {}^{MBD}\boldsymbol{\Lambda}_{j}^{FusO}\left\{{}^{MBD}\vec{p}_{j}^{SWn} - {}^{MBD}\vec{p}_{j}^{FusO}\right\} & \text{ (for } j = \left\{1,2,\ldots,{}^{MBD}NumSWnNds\right\}) \\ {}^{MBD}\boldsymbol{\Lambda}_{j}^{SWnR} = {}^{MBD}\boldsymbol{\Lambda}_{j}^{SWn}\left[{}^{MBD}\boldsymbol{\Lambda}_{j}^{FusO}\right]^{T} & \text{ (for } j = \left\{1,2,\ldots,{}^{MBD}NumSWnNds\right\}) \\ {}^{MBD}\vec{p}_{j}^{PWnR} = {}^{MBD}\boldsymbol{\Lambda}_{j}^{FusO}\left\{{}^{MBD}\vec{p}_{j}^{PWn} - {}^{MBD}\vec{p}_{j}^{FusO}\right\} & \text{ (for } j = \left\{1,2,\ldots,{}^{MBD}NumPWnNds\right\}) \\ {}^{MBD}\boldsymbol{\Lambda}_{j}^{PWnR} = {}^{MBD}\boldsymbol{\Lambda}_{j}^{PWn}\left[{}^{MBD}\boldsymbol{\Lambda}_{j}^{FusO}\right]^{T} & \text{ (for } j = \left\{1,2,\ldots,{}^{MBD}NumPWnNds\right\}) \\ {}^{MBD}\boldsymbol{\Lambda}_{j}^{PWnR} = {}^{MBD}\boldsymbol{\Lambda}_{j}^{PWn}\left[{}^{MBD}\boldsymbol{\Lambda}_{j}^{FusO}\right]^{T} & \text{ (for } j = \left\{1,2,\ldots,{}^{MBD}NumPWnNds\right\}) \\ {}^{MBD}\boldsymbol{\Lambda}_{j}^{PWnR} = {}^{MBD}\boldsymbol{\Lambda}_{j}^{PWn}\left[{}^{MBD}\boldsymbol{\Lambda}_{j}^{FusO}\right]^{T} & \text{ (for } j = \left\{1,2,\ldots,{}^{MBD}NumPWnNds\right\}) \\ {}^{MBD}\boldsymbol{\Lambda}_{j}^{PWnR} = {}^{MBD}\boldsymbol{\Lambda}_{j}^{PWn}\left[{}^{MBD}\boldsymbol{\Lambda}_{j}^{FusO}\right]^{T} & \text{ (for } j = \left\{1,2,\ldots,{}^{MBD}NumPWnNds\right\}) \\ {}^{MBD}\boldsymbol{\Lambda}_{j}^{PWnR} = {}^{MBD}\boldsymbol{\Lambda}_{j}^{PWn}\left[{}^{MBD}\boldsymbol{\Lambda}_{j}^{FusO}\right]^{T} & \text{ (for } j = \left\{1,2,\ldots,{}^{MBD}NumPWnNds\right\}) \\ {}^{MBD}\boldsymbol{\Lambda}_{j}^{PWnR} = {}^{MBD}\boldsymbol{\Lambda}_{j}^{PWn}\left[{}^{MBD}\boldsymbol{\Lambda}_{j}^{FusO}\right]^{T} & \text{ (for } j = \left\{1,2,\ldots,{}^{MBD}NumPWnNds\right\}) \\ {}^{MBD}\boldsymbol{\Lambda}_{j}^{PWn}\left[{}^{MBD}\boldsymbol{\Lambda}_{j}^{FusO}\right]^{T} & \text{ (for } j = \left\{1,2,\ldots,{}^{MBD}NumPWnNds\right\} \\ {}^{MBD}\boldsymbol{\Lambda}_{j}^{PWn}\left[{}^{MBD}\boldsymbol{\Lambda}_{j}^{FusO}\right]^{T} & \text{ (for } j = \left\{1,2,\ldots,{}^{MBD}NumPWnNds\right\} \\ {}^{MBD}\boldsymbol{\Lambda}_{j}^{PWn}\left[{}^{MBD}\boldsymbol{\Lambda}_{j}^{FusO}\right]^{T} & \text{ (for } j = \left\{1,2,\ldots,{}^{MBD}NumPWnNds\right\} \\ {}^{MBD}\boldsymbol{\Lambda}_{j}^{PWn}\left[{}^{MBD}\boldsymbol{\Lambda}_{j}^{PWn}\left[{}^{MBD}\boldsymbol{\Lambda}_{j}^{FusO}\right]^{T} & \text{ (for } j = \left\{1,2,\ldots,{}^{MBD}NumPWnNds\right\} \\ {}^{MBD}\boldsymbol{\Lambda}_{j}^{PWn}\left[{}^{MBD}\boldsymbol{\Lambda}_{j}^{PWn}\left[{}^{MBD}\boldsymbol{\Lambda}_{j}^{PWn}\left[{}^{MBD}\boldsymbol{\Lambda}_{j}^{PWn}\left[{}^{MBD}\boldsymbol{\Lambda}_{j}^{PWn}\left[{}^{MBD}\boldsymbol{\Lambda}_{j}^{PWn}\left[{}^{MB$$

Commented [JJ12]: The Controller_Init() call returns the initial controller outputs.

Commented [JJ13]: Note: the controller will trigger a fatal error if $N_{Flaps} \neq 3$ (to match the current controller interface),

 $N_{Pylons} \neq 2$ (to match the current controller interface),

 $\Delta t \neq 0.01$ (to match the controller time step), or

 $^{Ctrl}\Delta t \neq \Delta t$

Commented [JJ14]: Note: the motion meshes are line2 meshes (except for the rotors, which are point meshes), but the load meshes are point meshes.

$$\begin{array}{ll} {}^{MBD}\vec{p}_{j}^{VSR} = {}^{MBD}A^{FusO}\left\{{}^{MBD}\vec{p}_{j}^{VS} - {}^{MBD}\vec{p}^{FusO}\right\} & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumVSNds\right\}) \\ {}^{MBD}A_{j}^{VSR} = {}^{MBD}A_{j}^{VS}\left[{}^{MBD}A^{FusO}\right]^{T} & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumVSNds\right\}) \\ {}^{MBD}\vec{p}_{j}^{SHSR} = {}^{MBD}A^{FusO}\left\{{}^{MBD}\vec{p}_{j}^{SHS} - {}^{MBD}\vec{p}_{j}^{FusO}\right\} & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumSHSNds\right\}) \\ {}^{MBD}A_{j}^{SHSR} = {}^{MBD}A_{j}^{FusO}\left\{{}^{MBD}\vec{p}_{j}^{FHS} - {}^{MBD}\vec{p}_{j}^{FusO}\right\} & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumSHSNds\right\}) \\ {}^{MBD}\vec{p}_{j}^{PHSR} = {}^{MBD}A_{j}^{FusO}\left\{{}^{MBD}\vec{p}_{j}^{PHS} - {}^{MBD}\vec{p}_{j}^{FusO}\right\} & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumSHSNds\right\}) \\ {}^{MBD}A_{j}^{PHSR} = {}^{MBD}A_{j}^{FHS}\left[{}^{MBD}A_{j}^{FusO}\right]^{T} & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumPHSNds\right\}) \\ {}^{MBD}A_{j}^{SPyR}\left[n_{Pylons}\right] = {}^{MBD}A_{j}^{FusO}\left\{{}^{MBD}\vec{p}_{j}^{SPy}\left[n_{Pylons}\right] - {}^{MBD}\vec{p}_{j}^{FusO}\right\} & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumPHSNds\right\}) \\ {}^{MBD}A_{j}^{SPyR}\left[n_{Pylons}\right] = {}^{MBD}A_{j}^{SPy}\left[n_{Pylons}\right] \left[{}^{MBD}A_{j}^{FusO}\right]^{T} & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumPylNds\right\}) \\ {}^{MBD}A_{j}^{SPyR}\left[n_{Pylons}\right] = {}^{MBD}A_{j}^{SPy}\left[n_{Pylons}\right] \left[{}^{MBD}A_{j}^{FusO}\right]^{T} & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumPylNds\right\}) \\ {}^{MBD}A_{j}^{SPyR}\left[n_{Pylons}\right] = {}^{MBD}A_{j}^{SPy}\left[n_{Pylons}\right] \left[{}^{MBD}A_{j}^{FusO}\right]^{T} & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumPylNds\right\}) \\ {}^{MBD}A_{j}^{SPyR}\left[n_{Pylons}\right] = {}^{MBD}A_{j}^{SPy}\left[n_{Pylons}\right] \left[{}^{MBD}A_{j}^{FusO}\right]^{T} & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumPylNds\right\}) \\ {}^{MBD}A_{j}^{SPyR}\left[n_{Pylons}\right] = {}^{MBD}A_{j}^{SPy}\left[n_{Pylons}\right] \left[{}^{MBD}A_{j}^{FusO}\right]^{T} & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumPylNds\right\}) \\ {}^{MBD}A_{j}^{SPyR}\left[n_{Pylons}\right] = {}^{MBD}A_{j}^{SPy}\left[n_{Pylons}\right] \left[{}^{MBD}A_{j}^{SPyR}\left[n_{Pylons}\right] - {}^{MBD}B_{j}^{SPyR}\left[n_{Pylons}\right] - {}^{MBD}B_{j}^{SPyR}\left[n_{Pylons}\right] - {}^{MBD}B_{j}^{SPyR}\left[n_{Pylons}\right] - {}^{MBD}B_{j}^{SPyR}\left[n_{Pylons}\right] - {}^{MBD}B_{j}^{SPyR}\left[n_{Pylons}\right] - {}^{MBD}B_{j}^{SPyR}\left[n_{Pylons}\right] - {}^{MBD}B_{j}^{S$$

Set mesh-mappings between KiteFASTMBD-KiteAeroDyn and KiteFASTMBD-MoorDyn

Open the write Output File

Initialize the states not previously initialized:

NewTime = TRUE

Open and write a summary file (if SumPrint = TRUE)

KiteFASTMBD Summary File

Predictions were generated on DATE at TIME using KiteFASTMBD (VERSION, DATE)

compiled with

NWTC Subroutine Library (VERSION, DATE)

KiteAeroDyn (VERSION, DATE)

InflowWind (VERSION, DATE) for OpenFAST (VERSION DATE)

MoorDyn (VERSION, DATE)

Controller Wrapper (VERSION, DATE)

Controller (VERSION, DATE)

MBDyn (VERSION, DATE)

Description from the MDyn input file: TITLE

Time Step (s): Δt

Reference Points, MBDyn Finite-Element Nodes, and MBDyn Gauss Points

Commented [JJ15]: The mesh-mapping routines can only handle one source and one destination mesh. To do this mapping, the MBDyn meshes for the starboard and port wings (SWn and PWn) have to be copied into a single mesh using a one-to-one transfer of reference positions, reference orientations, and fields (which I label as Wn in the mesh-mappings below).

Commented [JJ16]: SumPrint must be queried from the MBDyn model

Commented [JJ17]: I'm only hand waving here because the implementation should be obvious (similar to other OpenFAST summary files)

Commented [JJ18]: (VERSION,DATE) has been replaced with the a git hash

Commented [JJ19]: Probably not needed if TITLE is not easily accessible within the MBDyn user element.

Commented [JJ20]: All time steps are the same. Is there a reason to allow for other time step of modules or output?

```
Type
                                                                                                                           Number Output Number
Component
                                                                                  (-)
                                                                                                                                               (-)
      (m)
                                 (m)
Fuselage
                                                                                  Reference point
                                                                                                                                                 \begin{cases} Fus\langle\beta\rangle & for(FusOutNd[\beta] = j) \\ - & otherwise \end{cases}
Fuselage
                                                                                  Finite-element node j
       ^{MBD} \vec{p}_{j}^{\it FusR}
                                                                                                                                                 \begin{cases} Fus\langle\beta\rangle & for(FusOutNd[\beta] = j) \\ - & otherwise \end{cases}
Fuselage
                                                                                  Gauss point
        \left[\left(1 - \frac{\sqrt{3}}{3}\right)^{MBD} \vec{p}_{j+1}^{FusR} + \left(\frac{\sqrt{3}}{3}\right)^{MBD} \vec{p}_{j}^{FusR} \quad for\left(Mod\left(j,2\right) = 1\right)\right]
         \left[ \left( \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j+I}^{FusR} + \left( I - \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j}^{FusR} \qquad otherwise
Starboard wing KAD \vec{p}^{SWnOR}
                                                                                  Reference point
                                                                                                                                                \begin{cases} SWn\langle\beta\rangle & for(SWnOutNd[\beta] = j) \\ - & otherwise \end{cases}
Starboard wing
                                                                                  Finite-element node j
Starboard wing
                                                                                  Gauss point
        \left[\left(1 - \frac{\sqrt{3}}{3}\right)^{MBD}\vec{p}_{j+1}^{SWnR} + \left(\frac{\sqrt{3}}{3}\right)^{MBD}\vec{p}_{j}^{SWnR} \quad for\left(Mod\left(j,2\right) = 1\right)\right]
        \left[ \left( \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j+l}^{SWnR} + \left( 1 - \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j}^{SWnR} \qquad otherwise \right]
                                                                                                                                               \begin{cases} PWn\langle\beta\rangle & for(PWnOutNd[\beta] = j) \\ - & otherwise \end{cases}
Port wing
                                                                                  Finite-element node j
                                                                                                                                                                                    otherwise
Port wing
                                                                                  Gauss point
       \left\{ \left( 1 - \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j+1}^{PWnR} + \left( \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j}^{PWnR} \quad for \left( Mod \left( j, 2 \right) = 1 \right) \right\}
        \left| \left( \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j+1}^{PWnR} + \left( 1 - \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j}^{PWnR} \right. \qquad otherwise
```

```
Vertical stabilizer
                                                                         Reference point
       ^{\mathit{KAD}}\, \vec{p}^{\mathit{VSOR}}
                                                                                                                                   VS\langle\beta\rangle for (VSOutNd[\beta]=j)
                                                                         Finite-element node j
Vertical stabilizer
                                                                                                                                                               otherwise
      ^{MBD} \vec{p}_{i}^{VSR}
                                                                                                                                 \int VS \langle \beta \rangle \quad for \big( VSOutNd \big[ \beta \big] = j \big)
Vertical stabilizer
                                                                         Gauss point
                                                                                                                                                               otherwise
        \left[ \left( 1 - \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j+1}^{VSR} + \left( \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j}^{VSR} \quad for \left( Mod \left( j, 2 \right) = 1 \right) \right]
Starboard horizontal stabilizer
                                                                         Reference point
      KAD \vec{p}^{SHSOR}
                                                                                                                                  [SHS \langle \beta \rangle \quad for (SHSOutNd [\beta] = j)
Starboard horizontal stabilizer
                                                                         Finite-element node j
                                                                                                                                                                otherwise
      ^{MBD} \vec{p}_{i}^{SHSR}
                                                                                                                                  SHS\langle\beta\rangle for SHSOutNd[\beta] = j
Starboard horizontal stabilizer
                                                                         Gauss point
         \left(\left(1 - \frac{\sqrt{3}}{3}\right)^{MBD} \vec{p}_{j+1}^{SHSR} + \left(\frac{\sqrt{3}}{3}\right)^{MBD} \vec{p}_{j}^{SHSR} \quad for\left(Mod\left(j,2\right) = 1\right)\right)
           \left(\frac{\sqrt{3}}{3}\right)^{MBD}\vec{p}_{j+1}^{SHSR} + \left(1 - \frac{\sqrt{3}}{3}\right)^{MBD}\vec{p}_{j}^{SHSR}
                                                                                                   otherwise
                                                                         Reference point
Port horizontal stabilizer
       ^{\mathit{KAD}}\, \vec{p}^{\mathit{PHSOR}}
                                                                                                                                   PHS\langle\beta\rangle \quad for(PHSOutNd[\beta] = j)
Port horizontal stabilizer
                                                                         Finite-element node j
      ^{MBD} ec{p}_{i}^{PHSR}
Port horizontal stabilizer
                                                                         Gauss point
         \left(1 - \frac{\sqrt{3}}{3}\right)^{MBD} \vec{p}_{j+1}^{PHSR} + \left(\frac{\sqrt{3}}{3}\right)^{MBD} \vec{p}_{j}^{PHSR} \quad for\left(Mod\left(j,2\right) = 1\right)
        \left| \left( \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j+l}^{PHSR} + \left( 1 - \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j}^{PHSR} \right|  otherwise
```

```
Starboard pylon n_{Pylons}
                                                                       Reference point
      ^{KAD}\vec{p}^{SPyOR}\lceil n_{Pylons}\rceil
                                                                                                                   \begin{cases} SP\langle n_{Pylons}\rangle\langle\beta\rangle & for(PylOutNd[\beta] = j) \\ - & otherwise \end{cases}
Starboard pylon n_{Pylons}
                                                                       Finite-element node j
      ^{MBD} \vec{p}_{j}^{SPyR} \left[ n_{Pylons} \, \right]
                                                                      Starboard pylon n_{Pylons}
      \left[ \left( I - \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j+1}^{SPyR} \left[ n_{Pylons} \right] + \left( \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j}^{SPyR} \left[ n_{Pylons} \right] \quad for \left( Mod \left( j, 2 \right) = 1 \right) \right] 
        \left[ \left( \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j+I}^{SPyR} \left[ n_{Pylons} \right] + \left( I - \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j}^{SPyR} \left[ n_{Pylons} \right]  otherwise
Port pylon n_{Pylons}
                                                                      Reference point
      ^{KAD}\vec{p}^{PPyOR}\lceil n_{Pylons}\rceil
                                                                       \begin{array}{ll} \text{Finite-element node} & j & & \left\{ PP \Big\langle n_{\textit{Pylous}} \Big\rangle \Big\langle \beta \big\rangle & \textit{for} \left( \textit{PylOutNd} \left[ \beta \right] = j \right) \\ & - & \textit{otherwise} \end{array} \right. 
Port pylon n_{Pylons}
      ^{MBD}\vec{p}_{j}^{PPyR}\lceil n_{Pylons}\rceil
                                                                      Port pylon n_{Pylons}
       \left[\left(1 - \frac{\sqrt{3}}{3}\right)^{MBD}\vec{p}_{j+1}^{PPyR}\left[n_{Pylons}\right] + \left(\frac{\sqrt{3}}{3}\right)^{MBD}\vec{p}_{j}^{PPyR}\left[n_{Pylons}\right] \quad for\left(Mod\left(j,2\right) = 1\right)\right]
        \left| \left( \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j+1}^{PPyR} \left[ n_{Pylons} \right] + \left( 1 - \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j}^{PPyR} \left[ n_{Pylons} \right] \right|
Top rotor on starboard pylon n_{Pylons}
                                                                       Reference point
      ^{KAD} \vec{p}^{SPyRtrR} \left[ n_{Pylons}, 1 \right]
Bottom rotor on starboard pylon n_{Pvlons}
                                                                      Reference point
      ^{KAD}\vec{p}^{SPyRtrR}\left\lceil n_{Pylons},2\right\rceil
Top rotor on port pylon n_{Pylons}
                                                                       Reference point
      ^{KAD}\vec{p}^{PPyRtrR} \lceil n_{Pylons}, 1 \rceil
Bottom rotor on port pylon n_{Pylons}
                                                                       Reference point
      (KAD \vec{p}^{PPyRtrR} [n_{Pylons}, 2])
Requested Channels in KiteFASTMBD Output Files: NUMBER
     Number
                             Name
                                              Units
                                                                 Generated by
                                                                 KiteFASTMBD
                              Time
                                               (s)
     NUMBER
```

(KiteFASTMBD, KiteAeroDyn, InflowWind, MoorDyn, or Controller

NAME

Wrapper)

UNITS

Deconstructor

This routine ends KiteFASTMBD:

- Calls module End routines
- · Deallocates memory
- · Closes the write output file

AssRe

This routine accesses inputs at t (from GetXCur) (including t = 0) for both the prediction and correction steps of each MBD time step, temporarily updates states from $t - \Delta t$ to t, and calculates outputs at t:

- Calls module UpdateStates and Controller_Step routines except at t = 0
- Calls module CalcOutput routines
- Note that AssRes has input argument InitialTime = 1 at t = 0 and InitialTime = 0 at all other t

Set the discrete-time counter:

$$n = \frac{t}{\Delta t} - 1$$

Query the MBDyn model to access the inputs at t (from GetXCur) i.e. $^{\mathit{MBD}}u$.

Calculate the translation displacements (relative) of the MBDyn input meshes at t:

$$\begin{array}{ll} {}^{MBD}\vec{u}_{j}^{Fus} = {}^{MBD}\vec{p}_{j}^{Fus} - {}^{MBD}\vec{p}_{j}^{FusR} & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumFusNds\right\}) \\ {}^{MBD}\vec{u}_{j}^{SWn} = {}^{MBD}\vec{p}_{j}^{SWn} - {}^{MBD}\vec{p}_{j}^{SWnR} & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumSWnNds\right\}) \\ {}^{MBD}\vec{u}_{j}^{PWn} = {}^{MBD}\vec{p}_{j}^{PWn} - {}^{MBD}\vec{p}_{j}^{PWnR} & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumPWnNds\right\}) \\ {}^{MBD}\vec{u}_{j}^{VS} = {}^{MBD}\vec{p}_{j}^{VS} - {}^{MBD}\vec{p}_{j}^{VSR} & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumPWnNds\right\}) \\ {}^{MBD}\vec{u}_{j}^{SHS} = {}^{MBD}\vec{p}_{j}^{SHS} - {}^{MBD}\vec{p}_{j}^{SHSR} & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumSHSNds\right\}) \\ {}^{MBD}\vec{u}_{j}^{SPS} = {}^{MBD}\vec{p}_{j}^{PHS} - {}^{MBD}\vec{p}_{j}^{PHS} & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumPHSNds\right\}) \\ {}^{MBD}\vec{u}_{j}^{SPS} \left[n_{Pylons}\right] = {}^{MBD}\vec{p}_{j}^{SPS} \left[n_{Pylons}\right] - {}^{MBD}\vec{p}_{j}^{SPSR} \left[n_{Pylons}\right] & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumPylNds\right\}) \\ {}^{MBD}\vec{u}_{j}^{SPS} \left[n_{Pylons}\right] = {}^{MBD}\vec{p}_{j}^{SPS} \left[n_{Pylons}\right] - {}^{MBD}\vec{p}_{j}^{PPSR} \left[n_{Pylons}\right] & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumPylNds\right\}) \\ {}^{MBD}\vec{u}_{j}^{SPSR} \left[n_{Pylons}\right] = {}^{MBD}\vec{p}_{j}^{SPSR} \left[n_{Pylons}\right] - {}^{MBD}\vec{p}_{j}^{SPSR} \left[n_{Pylons}\right] & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumPylNds\right\}) \\ {}^{MBD}\vec{u}_{j}^{SPSR} \left[n_{Pylons}\right] = {}^{MBD}\vec{p}_{j}^{SPSR} \left[n_{Pylons}\right] - {}^{MBD}\vec{p}_{j}^{SPSR} \left[n_{Pylons}\right] & \text{(for } j = \left\{1,2,\ldots,{}^{MBD}NumPylNds\right\}) \\ {}^{MBD}\vec{u}_{j}^{SPSR} \left[n_{Pylons}\right] = {}^{MBD}\vec{p}_{j}^{SPSR} \left[n_{Pylons}\right] - {}^{MBD}\vec{p}_{j}^{SPSR} \left[n_{Pylons}\right] - {}^{MBD}\vec{p}_{j}^{SPSR} \left[n_{Pylons}\right] \\ {}^{MBD}\vec{u}_{j}^{SPSR} \left[n_{Pylons}\right] = {}^{MBD}\vec{p}_{j}^{SPSR} \left[n_{Pylons}\right] - {}^{MBD}\vec{p}_{j}^{SPSR} \left[n_{Pylons}\right] - {}^{MBD}\vec{p}_{j}^{SPSR} \left[n_{Pylons}\right] \\ {}^{MBD}\vec{u}_{j}^{SPSR} \left[n_{Pylons}\right] - {}^{MBD}\vec{p}_{j}^{SPSR} \left[n_{Pylons}\right] - {$$

Advance the controller only once per time step, obtaining the controller outputs at t:

IF
$$((NewTime).AND.(InitialTime == 0))$$
 THEN

• Set inputs to Controller at $t - \Delta t$ using data stored in $^{MBD}OtherStates$, $^{KAD}OtherStates$, $^{IFW}OtherStates$, and $^{MD}OtherStates$ (from the previous step):

$${^{Ctrl}dcm}_{g} 2b = {^{MBD}} \Lambda^{FusO} \left[\Lambda^{FAST2Ctrl} \right]^{t}$$
$${^{[Ctrl}pqr} = {^{MBD}} \Lambda^{FusO} {^{MBD}} \vec{o}^{FusO}$$

Commented [JJ21]: AssRes could access inputs at t-dt (from GetXPrev), but we save the previous inputs as OtherStates instead

Commented [JJ22]: Note: the module UpdateSates Controller Step routines are not called at t=0.

Commented [JJ23]: This is necessary because in OpenFAST, UpdateStates shifts from t to t+dt whereas AssRes shifts from t-dt to

Commented [JJ24]: Move controller to after InflowWind and before KiteAD

Commented [JJ25R24]: No, the inputs to the controller should be at a consistent time step.

Commented [JJ26]: All filtered values (_f) are identical to the

cum commoner_step()

Ensure that we only call the controller once per time step:

NewTime = FALSE

END

Store a copy of the current states at $t - \Delta t$:

$$\begin{bmatrix} {}^{MD}x^{Copy} = {}^{MD}x \\ {}^{KAD}z^{Copy} = {}^{KAD}z \end{bmatrix}$$

Set inputs to MoorDyn at t from MBDyn:

MD
PtFairleadDisplacement = $M_u^{L2P} \binom{^{MBD}\vec{u}_j^{Wn}, ^{MBD}A_j^{Wn}}{j}$

Advance MoorDyn:

Set inputs to KiteAeroDyn from Controller at t:

$${^{KAD}Ctrl}^{SFlp} \left[n_{Flaps} \right] = \begin{cases} {^{Ctrl}kFlapA5} & for \left(n_{Flaps} = 1 \right) \\ {^{Ctrl}kFlapA7} & for \left(n_{Flaps} = 2 \right) \\ {^{Ctrl}kFlapA8} & for \left(n_{Flaps} = 3 \right) \end{cases}$$

Commented [JJ27]: We are approximating this input to the controller as the vector sum of the fairlead tensions.

Commented [JJ28]: These were added to the original controller inputs so that the controller could calculate the rotor/drivetrain acceleration and resulting generator speed and torque.

We should also ensure that the controller is using the same rotor/drivetrain rotational inertia.

We still need to confirm the sign of the rotor speeds, aerodynamic torques, and generator torques.

Commented [JJ29]: Use these MiscVars in the calls to MoorDyn and KiteAeroDyn UpdateStates and CalcOutput below rather than the actual states.

Commented [JJ30]: See earlier comment about mesh mapping with Wn above.

Commented [JJ31]: Input the time at t-dt in this call.

The input at t-dt comes from MDOtherStates

$${}^{KAD}Ctrl^{PFlp} \left[n_{Flaps} \right] = \begin{cases} {}^{Ctrl}kFlapA4 & for \left(n_{Flaps} = 1 \right) \\ {}^{Ctrl}kFlapA2 & for \left(n_{Flaps} = 2 \right) \\ {}^{Ctrl}kFlapA1 & for \left(n_{Flaps} = 3 \right) \end{cases}$$

$${}^{KAD}Ctrl^{Rudr} \left[n_{2} \right] = {}^{Ctrl}kFlapA10 \\ {}^{KAD}Ctrl^{SElv} \left[n_{2} \right] = {}^{Ctrl}kFlapA9 \\ {}^{KAD}Ctrl^{PElv} \left[n_{2} \right] = {}^{Ctrl}kFlapA9 \\ {}^{KAD}\Omega^{SPyRtr} \left[n_{Pylons}, n_{2} \right] = {}^{Ctrl}\Omega^{SPyRtr} \left[n_{Pylons}, n_{2} \right] \\ {}^{KAD}\Omega^{PPyRtr} \left[n_{Pylons}, n_{2} \right] = {}^{Ctrl}\Omega^{PPyRtr} \left[n_{Pylons}, n_{2} \right] \\ {}^{KAD}\theta^{SPyRtr} \left[n_{Pylons}, n_{2} \right] = 0 \\ {}^{KAD}\theta^{PPyRtr} \left[n_{Pylons}, n_{2} \right] = 0$$

Set inputs to KiteAeroDyn from MBDyn at t based on mesh-mapping: $\vec{u}^{FusO} = \vec{p}^{FusO}$

$$\begin{split} ^{KAD}\vec{u}^{Fus} &= ^{MBD}\vec{p}^{Fus} \\ M_u^{Fus} &= M_u^{L2L} \left(^{MBD}\vec{u}_j^{Fus}, ^{MBD}A_j^{Fus} \right) \\ ^{KAD}A_j^{Fus} &= M_u^{L2L} \left(^{MBD}A_j^{Fus}, ^{MBD}A_j^{Fus} \right) \\ ^{KAD}V_j^{Fus} &= M_v^{L2L} \left(^{KAD}\vec{u}_j^{Fus}, ^{MBD}\vec{u}_j^{Fus}, ^{MBD}\vec{v}_j^{Fus}, ^{MBD}\vec{\omega}_j^{Fus} \right) \\ ^{KAD}\vec{v}_j^{SWn} &= M_u^{L2L} \left(^{MBD}\vec{u}_j^{SWn}, ^{MBD}A_j^{SWn} \right) \\ ^{KAD}A_j^{SWn} &= M_u^{L2L} \left(^{MBD}A_j^{SWn}, ^{MBD}\vec{u}_j^{SWn}, ^{MBD}\vec{v}_j^{SWn}, ^{MBD}\vec{v}_j^{SWn}, ^{MBD}\vec{\omega}_j^{SWn} \right) \\ ^{KAD}V_j^{SWn} &= M_v^{L2L} \left(^{KAD}\vec{u}_j^{SWn}, ^{MBD}\vec{u}_j^{SWn}, ^{MBD}\vec{v}_j^{SWn}, ^{MBD}\vec{\omega}_j^{SWn} \right) \\ ^{KAD}\vec{u}_j^{PWn} &= M_u^{L2L} \left(^{MBD}A_j^{PWn}, ^{MBD}\vec{u}_j^{PWn}, ^{MBD}\vec{v}_j^{PWn}, ^{MBD}\vec{\omega}_j^{PWn}, ^{MBD}\vec{\omega}_j^{PWn} \right) \\ ^{KAD}V_j^{PWn} &= M_v^{L2L} \left(^{KAD}\vec{u}_j^{PWn}, ^{MBD}\vec{u}_j^{PWn}, ^{MBD}\vec{v}_j^{PWn}, ^{MBD}\vec{\omega}_j^{PWn} \right) \\ ^{KAD}\vec{v}_j^{S} &= M_u^{L2L} \left(^{MBD}A_j^{SS} \right) \\ ^{KAD}\vec{v}_j^{S} &= M_v^{L2L} \left(^{KAD}\vec{u}_j^{SS}, ^{MBD}\vec{u}_j^{SS}, ^{MBD}\vec{v}_j^{SS}, ^{MBD}\vec{\omega}_j^{SS} \right) \\ ^{KAD}\vec{v}_j^{SHS} &= M_u^{L2L} \left(^{MBD}\vec{u}_j^{SHS}, ^{MBD}\vec{u}_j^{SHS}, ^{MBD}\vec{v}_j^{SS}, ^{MBD}\vec{\omega}_j^{SS} \right) \\ ^{KAD}\vec{v}_j^{SHS} &= M_u^{L2L} \left(^{MBD}\vec{u}_j^{SHS}, ^{MBD}\vec{u}_j^{SHS}, ^{MBD}\vec{v}_j^{SHS}, ^{MBD}\vec{\omega}_j^{SHS} \right) \\ ^{KAD}\vec{u}_j^{PHS} &= M_u^{L2L} \left(^{MBD}\vec{u}_j^{PHS}, ^{MBD}\vec{u}_j^{SHS}, ^{MBD}\vec{v}_j^{SHS}, ^{MBD}\vec{\omega}_j^{SHS} \right) \\ ^{KAD}\vec{u}_j^{PHS} &= M_u^{L2L} \left(^{MBD}\vec{u}_j^{PHS}, ^{MBD}\vec{u}_j^{SHS}, ^{MBD}\vec{v}_j^{SHS}, ^{MBD}\vec{\omega}_j^{SHS} \right) \\ ^{KAD}\vec{u}_j^{PHS} &= M_u^{L2L} \left(^{MBD}\vec{u}_j^{PHS}, ^{MBD}\vec{u}_j^{SHS} \right) \\ ^{KAD}\vec{u}_j^{PHS} &= M_u^{L2L} \left(^{MBD}\vec{u}_j^{PHS}, ^{MB$$

Commented [JJ32]: Different controller documentation use kFlapRud in place of kFlapA10

Commented [JJ33]: Different controller documentation use kFlapEle in place of kFlapA9

Commented [JJ34]: These were added to the original controller outputs so that the controller could calculate the rotor/drivetrain acceleration and resulting generator speed and torque.

Commented [JJ35]: The rotor-collective pitch angles are not currently commanded from the controller; assume zero for now.

Commented [JJ36]: You could use P2P mappings here, but there is no point, because the reference (0,0,0) is the same in both KiteAeroDyn and MBDyn.

$$\begin{split} &^{KAD} \vec{v}_{j}^{PHS} = M_{v}^{L2L} \left({^{KAD} \vec{u}_{j}^{PHS}}, {^{MBD} \vec{u}_{j}^{PHS}}, {^{MBD} \vec{v}_{j}^{PHS}}, {^{MBD} \vec{o}_{j}^{PHS}} \right) \\ &^{KAD} \vec{u}_{j}^{SPy} \left[n_{Pylons} \right] = M_{u}^{L2L} \left({^{MBD} \vec{u}_{j}^{SPy} \left[n_{Pylons} \right]}, {^{MBD} \vec{A}_{j}^{SPy} \left[n_{Pylons} \right]} \right) \\ &^{KAD} A_{j}^{SPy} \left[n_{Pylons} \right] = M_{u}^{L2L} \left({^{MBD} A_{j}^{SPy} \left[n_{Pylons} \right]}, {^{MBD} \vec{u}_{j}^{SPy} \left[n_{Pylons} \right]}, {^{MBD} \vec{v}_{j}^{SPy} \left[n_{Pylons} \right]} \right) \\ &^{KAD} \vec{u}_{j}^{PPy} \left[n_{Pylons} \right] = M_{u}^{L2L} \left({^{MBD} \vec{u}_{j}^{PPy} \left[n_{Pylons} \right]}, {^{MBD} \vec{u}_{j}^{PPy} \left[n_{Pylons} \right]} \right) \\ &^{KAD} A_{j}^{PPy} \left[n_{Pylons} \right] = M_{u}^{L2L} \left({^{MBD} \vec{u}_{j}^{PPy} \left[n_{Pylons} \right]}, {^{MBD} \vec{u}_{j}^{PPy} \left[n_{Pylons} \right]}, {^{MBD} \vec{v}_{j}^{PPy} \left[n_{Pylons} \right]}, {^{MBD} \vec{v}_{j}^{PPy} \left[n_{Pylons} \right]}, {^{MBD} \vec{w}_{j}^{PPy} \left[n_$$

Set inputs to InflowWind at t based on the KiteAeroDyn inputs:

$$I_{jlW} PositionXYZ (:, 1) = {}^{MBD} \vec{p}^{Wind}$$

$$I_{jlW} PositionXYZ (:, 2) = {}^{MBD} \vec{p}^{FusO}$$

$$I_{jlW} PositionXYZ (:, j + 2) = {}^{KAD} I_{ll} \vec{p}^{FusR} + {}^{KAD} \vec{u}^{Fus}$$

$$I_{jlW} PositionXYZ (:, j + 2) = {}^{KAD} I_{ll} \vec{p}^{FusR} + {}^{KAD} \vec{u}^{Fus}$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumFusNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumFusNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumFusNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumSWnNds$$

$$I_{jlW} PositionXYZ (:, j$$

Commented [JJ37]: You could use P2P mappings here, but there is no point, because the references are the same in both KiteAeroDyn and MBDyn.

Commented [JJ38]: You could use P2P mappings here, but there is no point, because the references are the same in both KiteAeroDyn and MBDyn.

```
+ KAD NumFusNds
                                + KAD NumSWnNds
                                                                     = {^{\text{KAD}} \text{In}} \vec{p}_{j}^{PHSR} + {^{\text{KAD}}} \vec{u}_{j}^{PHS} \text{ (for } j = \left\{1, 2, \dots, {^{\text{KAD}}} NumPHSNds\right\})
IfW PositionXYZ
                                + KAD NumPWnNds
                                 + KAD NumVSNds
                                 + KAD NumSHSNds
                   (:, j+2)
                       + KAD NumFusNds
                                                                                                           (for j = \{1, 2, \dots, {}^{KAD}NumPylNds\})
                       + KAD NumSWnNds
                       +\ ^{\mathit{KAD}} NumPWnNds
<sup>IfW</sup> PositionXYZ
                       + KAD Num VSNds
                       + KAD NumSHSNds
                        + {}^{KAD}NumPylNds(n_{Pylons})
                     i, j + 2
                       + KAD NumFusNds
                                                                                                           (for j = \{1, 2, \dots, {}^{KAD}NumPylNds\})
                       + KAD NumSWnNds
                       +\ ^{\mathit{KAD}} \mathit{NumPWnNds}
                      + \ ^{KAD}NumVSNds
<sup>IfW</sup> PositionXYZ
                                                              = \stackrel{\text{\tiny KAD}}{p_j} \stackrel{PPyR}{[} n_{Pylons} ] + \stackrel{KAD}{u_j} \stackrel{PPy}{[} n_{Pylons} ]
                       +\ ^{\mathit{KAD}} \mathit{NumSHSNds}
                       +\ ^{\mathit{KAD}} NumPHSNds
                       +\ ^{\mathit{KAD}} NumPylNds \left(N_{\mathit{Pylons}}\right)
                        + \frac{KAD}{NumPylNds} (n_{Pylons} - 1)
                            \left(\vdots, n_2 + 2\right)
                                  + KAD NumFusNds
                                  + KAD NumSWnNds
                                  + KAD NumPWnNds
                                                                                     = {^{KAD}}\vec{p}_{j}^{SPyRtrR} \left[ n_{Pylons}, n_{2} \right] + {^{KAD}}\vec{u}^{SPyRtr} \left[ n_{Pylons}, n_{2} \right] 
                                  + KAD Num VSNds
IfW PositionXYZ
                                  + {}^{KAD}NumSHSNds
                                 + {^{KAD}}NumPHSNds 
+ {^{KAD}}NumPylNds (2N_{Pylons}) 
+ 2(n_{Pylons} - 1)
```

$$\begin{bmatrix} \vdots, n_{2} + 2 \\ + {}^{KAD}NumFusNds \\ + {}^{KAD}NumSWnNds \\ + {}^{KAD}NumPWnNds \\ + {}^{KAD}NumVSNds \\ + {}^{KAD}NumSHSNds \\ + {}^{KAD}NumSHSNds \\ + {}^{KAD}NumPHSNds \\ + {}^{KAD}NumPHSNds \\ + {}^{KAD}NumPyINds \left(2N_{Pylons}\right) \\ + 2\left(N_{Pylons} - 1\right) \end{bmatrix} = {}^{KAD}\vec{p}_{j}^{PPyRtrR} \left[n_{Pylons}, n_{2}\right] + {}^{KAD}\vec{u}^{PPyRtr} \left[n_{Pylons}, n_{2}\right]$$

Call InflowWind CalcOutput()

Set inputs to KiteAeroDyn from InflowWind at t:

$$\begin{array}{l} {}^{KAD}\vec{V}_{j}^{Fiss} = {}^{IJW}VelocityUVW\left(:,j+2\right) & \text{ (for } j = \left\{1,2,\ldots,{}^{KAD}NumFusNds\right\}\right) \\ {}^{KAD}\vec{V}_{j}^{SWn} = {}^{IJW}VelocityUVW\left(:,j+2\right) & \text{ (for } j = \left\{1,2,\ldots,{}^{KAD}NumFusNds\right\}\right) \\ {}^{KAD}\vec{V}_{j}^{SWn} = {}^{IJW}VelocityUVW\left(:,j+2\right) & \text{ (for } j = \left\{1,2,\ldots,{}^{KAD}NumSWnNds\right\}\right) \\ {}^{KAD}\vec{V}_{j}^{FWn} = {}^{IJW}VelocityUVW\left(:,j+2\right) & \text{ (for } j = \left\{1,2,\ldots,{}^{KAD}NumSWnNds\right\}\right) \\ {}^{KAD}\vec{V}_{j}^{SWs} = {}^{IJW}VelocityUVW\left(:,j+2\right) & \text{ (for } j = \left\{1,2,\ldots,{}^{KAD}NumPWnNds\right\}\right) \\ {}^{KAD}NumSWnNds & + {}^{KAD}NumSWnNds \\ {}^{KAD}NumSWnNds & + {}^{KAD}NumFusNds \\ {}^{KAD}NumFusNds & + {}^{KAD}NumFusNds \\ {}^{KAD}NumSWnNds & + {}^{KAD}NumSWnNds \\ {}^{KAD}NumSWnNds & + {}^{KAD}NumSWnNds \\ {}^{KAD}NumPWnNds & + {}^{KAD}NumSWnNds \\ {}^{KAD}NumPWnNds & + {}^{KAD}NumPWnNds \\ {}^{KAD}NumPWnNds & + {}^{KAD}NumSWnNds \\ {}^{KAD}NumVSNds & + {}^{KAD}NumVSNds & + {}^{KAD}NumSWnNds \\ {}^{KAD}NumVSNds & + {}^{KAD}NumVSNds & + {}^{KAD}NumVSNds & + {}^{KAD}NumSWnNds \\ {}^{KAD}NumVSNds & + {}^{KAD}NumVSNds & + {}^{KAD}NumSWnNds \\ {}^{KAD}NumVSNds & + {}^{KAD}NumVSNds$$

```
+ KAD NumFusNds
+ KAD NumSWnNds
+ KAD NumPWnNds
\vec{V}_{j}^{PHS} = \vec{V}^{W} Velocity UVW
                                                                                                  (for j = \{1, 2, \dots, {}^{KAD}NumPHSNds\})
                                                   + KAD Num VSNds
                                                   + KAD NumSHSNds
                                                  (:, j+2)
                                                       +\ ^{\mathit{KAD}} NumFusNds
                                                       +\ ^{\mathit{KAD}} NumSWnNds
                                                                                                  (for j = \{1, 2, ..., {}^{KAD}NumPylNds\})
                                                       + {}^{KAD}NumPWnNds
^{\mathit{KAD}} \vec{V}_{j}^{\mathit{SPy}} \left[ n_{\mathit{Pylons}} \right] = {}^{\mathit{IfW}} \mathit{VelocityUVW}
                                                       +\ ^{\mathit{KAD}}\mathit{NumVSNds}
                                                       + KAD NumSHSNds
                                                       + KAD NumPHSNds
                                                       + {}^{KAD}NumPylNds(n_{Pylons} - 1)
                                                    i, j + 2
                                                       + KAD NumFusNds
                                                       + KAD NumSWnNds
                                                       +\ ^{\mathit{KAD}} NumPWnNds
                                                                                                  (for j = \{1, 2, ..., {}^{KAD}NumPylNds\})
^{KAD}\vec{V}_{j}^{PPy}\left[n_{Pylons}\right] = {}^{lfW}VelocityUVW
                                                       + KAD NumVSNds
                                                       +\ ^{\mathit{KAD}} \mathit{NumSHSNds}
                                                        + KAD NumPHSNds
                                                       + \ ^{\mathit{KAD}} NumPylNds \Big( N_{\mathit{Pylons}} \Big)
                                                       + \left.^{\mathit{KAD}} NumPylNds \left( n_{\mathit{Pylons}} - 1 \right) \right)
                                                                        + KAD NumFusNds
                                                                        + KAD NumSWnNds
                                                                        + {}^{KAD}NumPWnNds
^{\mathit{KAD}}\vec{V}^{\mathit{SPyRtr}}\Big[\,n_{\mathit{Pylons}}\,,n_{2}\,\Big] = \,^{\mathit{IfW}}\mathit{Velocity}\,\mathit{UVW}
                                                                        + KAD NumVSNds
                                                                        + KAD NumSHSNds
                                                                        + KAD NumPHSNds
                                                                      + {}^{KAD}NumPylNds(2N_{Pylons})
+ 2(n_{Pylons} - I)
```

$$\left(\begin{array}{c} \vdots, n_{2} + 2 \\ + \ ^{KAD}NumFusNds \\ + \ ^{KAD}NumSWnNds \\ + \ ^{KAD}NumPWnNds \\ + \ ^{KAD}NumVSNds \\ + \ ^{KAD}NumVSNds \\ + \ ^{KAD}NumSHSNds \\ + \ ^{KAD}NumSHSNds \\ + \ ^{KAD}NumPHSNds \\ + \ ^{KAD}NumPHSNds \\ + \ ^{KAD}NumPylNds \left(2N_{Pylons} \right) \\ + 2 \left(N_{Pylons} - 1 \right) \\ \end{array} \right)$$

Copy KiteAeroDyn inputs at t to $t - \Delta t$ (for KiteAeroDyn_UpdateStates)

Advance KiteAeroDyn:

IF (InitialTime == 0) Call KiteAeroDyn UpdateStates()

Call KiteAeroDyn CalcOutput()

Model the rotor/drivetrain dynamics, including the effects from the Controller and KiteAeroDyn, and calculate the reaction loads on the pylons for transfer to MBDyn at t:

action loads on the pylons for transfer to MBDyn at
$$t$$
:

Call Rotor(
$${}^{MBD}A^{SPyRtr}\left[n_{Pylons},n_{2}\right], \quad {}^{MBD}\vec{\omega}^{SPyRtr}\left[n_{Pylons},n_{2}\right], \quad {}^{MBD}\vec{\omega}^{SPyRtr}\left[n_{Pylons},n_{2}\right],$$

Commented [JJ39]: Input the time at t-dt in this call.

Commented [JJ40]: This math assumes the top node of the pylon is node 1 and that the pylons are numbered from inboard to

$${}^{Ctrl}T^{GenPPyRtr}\left[n_{Pylons},n_{2}\right] = \begin{cases} {}^{Ctrl}Motor\,6 & for\left(\left(n_{Pylons}=1\right).AND.\left(n_{2}=1\right)\right) \\ {}^{Ctrl}Motor\,3 & for\left(\left(n_{Pylons}=1\right).AND.\left(n_{2}=2\right)\right) \\ {}^{Ctrl}Motor\,5 & for\left(\left(n_{Pylons}=2\right).AND.\left(n_{2}=1\right)\right) \\ {}^{Ctrl}Motor\,4 & for\left(\left(n_{Pylons}=2\right).AND.\left(n_{2}=2\right)\right) \end{cases}$$

Transfer outputs from KiteAeroDyn to MBDyn at t:

$$\begin{split} &^{MBD}\vec{F}_{j}^{Fus} = M_{F}^{P2P}\left(^{KAD}\vec{F}_{j}^{Fus}\right) \\ &^{MBD}\vec{M}_{j}^{Fus} = M_{F}^{P2P}\left(^{KAD}\vec{F}_{j}^{Fus}\right) \\ &^{MBD}\vec{H}_{j}^{Fus} = M_{F}^{P2P}\left(^{KAD}\vec{F}_{j}^{SWn}\right) \\ &^{MBD}\vec{F}_{j}^{SWn} = M_{F}^{P2P}\left(^{KAD}\vec{F}_{j}^{SWn}\right) \\ &^{MBD}\vec{M}_{j}^{SWn} = M_{F}^{P2P}\left(^{KAD}\vec{F}_{j}^{SWn}\right) \\ &^{MBD}\vec{M}_{j}^{SWn} = M_{F}^{P2P}\left(^{KAD}\vec{F}_{j}^{SWn}\right) \\ &^{MBD}\vec{F}_{j}^{PWn} = M_{F}^{P2P}\left(^{KAD}\vec{F}_{j}^{PWn}\right) \\ &^{MBD}\vec{H}_{j}^{FWn} = M_{F}^{P2P}\left(^{KAD}\vec{F}_{j}^{PWn}\right) \\ &^{MBD}\vec{H}_{j}^{FVS} = M_{F}^{P2P}\left(^{KAD}\vec{F}_{j}^{FVS}\right) \\ &^{MBD}\vec{M}_{j}^{FVS} = M_{F}^{P2P}\left(^{KAD}\vec{F}_{j}^{SVS}\right) \\ &^{MBD}\vec{M}_{j}^{SS} = M_{F}^{P2P}\left(^{KAD}\vec{F}_{j}^{SSS}\right) \\ &^{MBD}\vec{H}_{j}^{SSS} = M_{F}^{P2P}\left(^{KAD}\vec{F}_{j}^{PSS}\right) \\ &^{MBD}\vec{H}_{j}^{SSS} = M_{F}^{P2P}\left(^{KAD}\vec{F}_{j}^{SSS}\right) \\ &^{MBD}\vec{H}_{j}^{SSS} = M_{F}^{P2P}\left(^{KAD}\vec{F}_{j}^{SSS}\right) \\ &^{MBD}\vec{H}_{j}^{SSS} = M_{F}^{P2P}\left(^{KAD}\vec{F}_{j}^{SSS}\right) \\ &^{MBD}\vec{H}_{j}^{SSS} = M_{F}^{P2P}\left(^{KAD}\vec{H}_{j}^{SSS}\right) \\ &^{MBD}\vec{H}_{j}^{SSS} = M_{F}^{PSS} \\ &^{NAD}\vec{H}_{j}^{SSS} = M_{F}^{PSS}\left(^{KAD}\vec{H}_{j}^{SSS}\right) \\ &^{NAD}\vec{H}_{j}^{SSS} = M_{F}^{PSS}\left(^{KAD}\vec{H}_{j}^{SSS}\right) \\ &^{NAD}\vec{H}_{j}^{SSS} = M_{F}^{PSS}\left(^{KAD}\vec{H}_{j}^{SSS}\right) \\ &^{NBD}\vec{H}_{j}^{SSS} = M_{F}^{PSS}\left(^{KAD}\vec{H}_{j}^{SSS}\right) \\ &^{NBD}\vec{H}_{j}^{SSS} = M_{F}^{PSS}\left(^{KAD}\vec{H}_{j}^{SSS}\right) \\ &^{NBD}\vec{H}_{j}^{SSS} = M_{F}^{PSS}\left(^{KAD}\vec{H}_{j}^{SSS}\right) \\ &^{NBD}\vec{H}_{j}^{SSS} = M_{F}^{PSS}\left(^{KAD}\vec{H}_{j}^{SSS}\right) \\ &^{NBD}\vec{H}_{j}^{SSS}$$

Transfer outputs from MoorDyn to MBDyn at t:

$$\begin{split} ^{MBD}\vec{F}_{j}^{SWn} &= {}^{MBD}\vec{F}_{j}^{SWn} + M_{F}^{P2P}\left({}^{MD}PtFairleadLoad\right) \\ ^{MBD}\vec{M}_{j}^{SWn} &= {}^{MBD}\vec{M}_{j}^{SWn} + M_{M}^{P2P}\left({}^{MBD}\vec{u}_{j}^{SWn}, {}^{MD}PtFairleadDisplacement, {}^{MD}PtFairleadLoad, \vec{0}\right) \\ ^{MBD}\vec{F}_{j}^{PWn} &= {}^{MBD}\vec{F}_{j}^{PWn} + M_{F}^{P2P}\left({}^{MD}PtFairleadLoad\right) \\ ^{MBD}\vec{M}_{j}^{PWn} &= {}^{MBD}\vec{M}_{j}^{PWn} + M_{M}^{P2P}\left({}^{MBD}\vec{u}_{j}^{PWn}, {}^{MD}PtFairleadDisplacement, {}^{MD}PtFairleadLoad, \vec{0}\right) \end{split}$$

Commented [JJ41]: This math is now done in the C controller

Commented [JJ42]: See earlier comment about mesh mapping with Wn above

Private SUBROUTINES

Rotor (SUBROUTINE Rotor)

Implements the structural dynamics of a rotor/drivetrain analytically to calculate the reaction loads (forces and moments) applied on the nacelle, including the applied aerodynamic loads, rotor inertial loads, rotor gyroscopic loads, etc. The analytical formulation assumes that the rotor/drivetrain is a rigid body rotating about the local x-axis of the nacelle coordinate system and that the structure is axisymmetric about this axis (with no imbalances) such that the calculations do not depend on the azimuth angle of the rotor. That is, for a body-fixed (x,y,z) coordinate system in the rotor/drivetrain, it is assumed that:

$$C^{M} y = C^{M} z = 0$$

$$I_{xy} = I_{yz} = I_{xz} = 0$$

$$I_{xx} = I^{Rot}$$

$$I_{yy} = I_{zz} = I^{Tran}$$

Inputs	Outputs	States	Parameters
 	F React — reaction forces applied on the nacelle at the rotor reference point expressed in the global inertial-frame coordinate system (N) M React — reaction moments applied on the nacelle about the rotor reference point expressed in the global inertial-frame coordinate system (N⋅m)		
 F^{Aero} – aerodynamic forces applied on the rotor at the rotor reference point expressed in the global inertial-frame coordinate system (N) M̄ Aero – aerodynamic moments applied on 			

Commented [JJ43]: This is input in place of:

 $\dot{\Omega}^{Rtr}$ – Rotor acceleration about the shaft axis (relative to the nacelle) (rad/s²)

the rotor about the		
rotor reference point		
expressed in the global		
inertial-frame		
coordinate system		
(N·m)		
• \vec{g} – gravity vector		
expressed in the global		
inertial-frame		
coordinate system		
(m/s^2)		
• <i>m</i> – rotor/drivetrain		
mass (kg)		
• I^{Rot} – rotor/drivetrain		
rotational inertia about		
the shaft axis (kg·m²)		
• I^{Tran} – rotor/drivetrain		
transverse inertia about		
the rotor reference		
point (kg·m²)		
• ^{CM}x – distance along		
the shaft from the rotor		
reference point to the		
center of mass of the		
rotor/drivetrain		
(positive along positive		
x) (m)		

Compute the inputs relative to the rotor/drivetrain CM and expressed in the local nacelle coordinate system:

Compute the inputs relative to the rotor/drivetrain
$$\vec{r} = {}^{CM}\vec{x}\hat{x}^{Nac}$$

$${}^{CM}\vec{r} = {}^{CM}x\hat{x}^{Nac}$$

$${}^{CM}I^{Tran} = I^{Tran} - m^{CM}x^2$$

$${}^{CM}F_x^{Aero}$$

$${}^{CM}F_y^{Aero}$$

$${}^{CM}F_z^{Aero}$$

$${}^{CM}M_x^{Aero}$$

$${}^{CM}M_y^{Aero}$$

$${}^{CM}M_y^{Aero}$$

$${}^{CM}M_z^{Aero}$$

C

$$\left\{ \begin{array}{l} \omega_{x}^{Rtr} \\ \omega_{y}^{Rtr} \\ \omega_{z}^{Rtr} \end{array} \right\} = \Lambda^{Nac} \vec{\omega}^{Rtr}$$

Commented [JJ44]: The equation implemented neglects the rotor acceleration about the shaft axis. The correct equation should be:

$$\vec{\alpha}^{Rtr} = \vec{\alpha}^{Nac} + \dot{\Omega}^{Rtr} \hat{x}^{Nac}$$

, but the rotor acceleration about the shaft axis is not needed because the generator torque is input instead.

$$\begin{cases} {}^{CM} a_x^{Rtr} \\ {}^{CM} a_z^{Rtr} \\ {}^{CM} a_z^{Rtr} \end{cases} = A^{Nac} \left\{ \vec{a}^{Nac} + \vec{\alpha}^{Rtr} \times {}^{CM} \vec{r} + \vec{\omega}^{Rtr} \times \left\{ \vec{\omega}^{Rtr} \times {}^{CM} \vec{r} \right\} \right\}$$

$$\begin{cases} \alpha_x^{Rtr} \\ \alpha_x^{Rtr} \\ \alpha_z^{Rtr} \end{cases} = A^{Nac} \vec{\alpha}^{Rtr}$$

$$\alpha_z^{Rtr}$$

Compute the reaction loads applied to the rotor/drivetrain at the rotor/drivetrain CM and expressed in the local nacelle coordinate system:

$$\begin{pmatrix} {^{CM}F_x^{React}} \\ {^{CM}F_y^{React}} \\ {^{CM}F_z^{React}} \end{pmatrix} = \begin{pmatrix} -{^{CM}F_x^{Aero}} - mg_x + m^{CM}a_x^{Rtr} \\ -{^{CM}F_x^{Aero}} - mg_y + m^{CM}a_y^{Rtr} \\ -{^{CM}F_z^{Aero}} - mg_z + m^{CM}a_z^{Rtr} \end{pmatrix}$$

$$\begin{cases} {}^{CM}\boldsymbol{M}_{x}^{React} \\ {}^{CM}\boldsymbol{M}_{y}^{React} \\ {}^{CM}\boldsymbol{M}_{z}^{React} \end{cases} = \begin{cases} \boldsymbol{T}^{Gen} \\ -{}^{CM}\boldsymbol{M}_{y}^{Aero} + \boldsymbol{I}^{Rot}\boldsymbol{\alpha}_{y}^{Rtr} + \left(\boldsymbol{I}^{Rot} - {}^{CM}\boldsymbol{I}^{Tran}\right)\boldsymbol{\omega}_{z}^{Rtr}\boldsymbol{\omega}_{x}^{Rtr} \\ -{}^{CM}\boldsymbol{M}_{z}^{Aero} + \boldsymbol{I}^{Rot}\boldsymbol{\alpha}_{z}^{Rtr} - \left(\boldsymbol{I}^{Rot} - {}^{CM}\boldsymbol{I}^{Tran}\right)\boldsymbol{\omega}_{y}^{Rtr}\boldsymbol{\omega}_{x}^{Rtr} \end{cases}$$

Compute the reaction loads applied to the nacelle (this is equal, but opposite to the reaction loads applied to the rotor/drivetrain) at the rotor/drivetrain reference point and expressed in the global inertial frame coordinate system:

$$\begin{split} \vec{F}^{React} &= - \left[A^{Nac} \right]^T \begin{cases} {}^{CM}F_x^{React} \\ {}^{CM}F_y^{React} \\ {}^{CM}F_z^{React} \end{cases} \\ \vec{M}^{React} &= - \left[A^{Nac} \right]^T \begin{cases} {}^{CM}M_x^{React} \\ {}^{CM}M_z^{React} \\ {}^{CM}M_z^{React} \end{cases} + {}^{CM}\vec{r} \times \vec{F}^{React} \end{split}$$

AfterPredict

This routine updates the actual states based on the temporary states at the successful completion of time step t.

$$NewTime = TRUE$$

$$^{MBD}OtherStates = {}^{MBD}u$$

$$^{KAD}OtherStates = {}^{KAD}y$$

$$^{KAD}z = {}^{KAD}z^{Copy}$$

$$^{IJW}OtherStates = {}^{IJW}y$$

$$^{MD}OtherStates = {}^{MD}u$$

$$^{MD}x = {}^{MD}x^{Copy}$$

Commented [JJ45]: The first equation should be:

$$^{CM}M_x^{React} = - ^{CM}M_x^{Aero} + I^{Rot}\alpha_x^{Rtr}$$

But this equals the equation implemented because the generator torque is input instead of the rotor acceleration about the shaft axis.

Commented [JJ46]: Instead of this, any quantity that is needed at GetXPrev (t-dt) gets set here as an other state and the MD x and KAD_z states are set.

New OtherStates for the controller

*MD input current becomes previous (needed for MoorDyn)
*IfW_ground_prev
*IfW_Fus0_prev

Output

This routine is called at the successful completion of time step t to write output data to a file.

Calculate the KiteFASTMBD write outputs and write them to the output file, together with the module-level write output data currently stored in MiscVars.

This is a list of all possible output parameters available within the KiteFASTMBD (not including the module-level outputs available from KiteAeroDyn, InflowWind, MoorDyn, and the Controller). The names are grouped by meaning, but can be ordered in the OUTPUTS section of the KiteMBDyn Preprocessor input file as you see fit

Fus β refers to output β on the fuselage, where β is a one-digit number in the range [1,9] corresponding to the finite-element node for motions or Gauss point for loads identified by entry β in the *FusOutNd* list. Setting $\beta > NFusOuts$ yields invalid output.

SWn β and PWn β refer to output β on the starboard and port wings, respectively, where β is a one-digit number in the range [1,9] corresponding to the finite-element node for motions or Gauss point for loads identified by entry β in the *SWnOutNd* and *PWnOutNd* lists, respectively. Setting $\beta > NSWnOuts$ and *NPWnOuts*, respectively, yields invalid output.

VS β refers to output β on the vertical stabilizer, where β is a one-digit number in the range [1,9] corresponding to the finite-element node for motions or Gauss point for loads identified by entry β in the *VSOutNd* list. Setting $\beta > NVSOuts$ yields invalid output.

SHS β and PHS β refer to output β on the starboard and port horizontal stabilizers, respectively, where β is a one-digit number in the range [1,9] corresponding to the finite-element node for motions or Gauss point for loads identified by entry β in the **SHSOutNd** and **PHSOutNd** lists, respectively. Setting $\beta > NSHSOuts$ and **NPHSOuts**, respectively, yields invalid output.

SP α and PP α refer to pylon α on the starboard and port wings, respectively, where α is a one-digit number in the range [1,9]. SP α and PP α β refer to output β on pylon α on the starboard and port wings, respectively, where α is a one-digit number in the range [1,9] corresponding to the finite-element node for motions or Gauss point for loads identified by entry β in the *PylOutNd* list. Setting $\alpha > NumPylons$ or setting $\beta > NPylOuts$ yields invalid output. If NumPylons > 9, only the first 9 pylons can be output.

For the fuselage, wings, vertical stabilizer, horizontal stabilizers, and pylons, the local structural coordinate system is used for output, where n is normal to the chord pointed toward the suction surface, c is along the chord pointed toward the trailing edge, and the spanwise (s) axis is directed into the airfoil following the right-hand rule i.e. $s = n \times c$.

Figure: Example member with 5 finite elements, 11 nodes (•), and 10 Gauss points (x) (each finite element in MBDyn has 2 end nodes, 1 middle node, and 2 Gauss points). The red circles identify the finite-element nodes where motions are output and Gauss points where loads are output when **NOuts** = 3 and **OutNd** = 3, 6, 10.

--- OUTPUT --SumPrint True Print summary data to <RootName>.sum? (flag) "ES10 3E2" OutFmt Format used for text tabular output, excluding the time channel; resulting field should be 10 characters (string) NFusOuts Number of fuselage outputs (-) [0 to 9] 2, 4, 6, 8 List of fuselage nodes/points whose FusOutNd values will be output (-) [1 to NFusOuts] [unused for NFusOuts=0] NSWnOuts Number of starboard wing outputs (-) [0 to 9] 2, 4, 6, 8 SWnOutNd List of starboard wing nodes/points whose values will be output (-) [1 to NSWnOuts] [unused for NSWnOuts=0] NPWnOuts Number of port wing outputs (-) [0 to 2, 4, 6, 8 PWnOutNd List of port wing nodes/points whose values will be output (-) [1 to NPWnOuts] [unused for NPWnOuts=0] NVSOuts Number of vertical stabilizer outputs () [0 to 9] VSOutNd List of vertical stabilizer nodes/points whose values will be output (-) [1 to NVSOuts] [unused for NVSOuts =01 NSHSOuts Number of starboard horizontal stabilizer outputs (-) [0 to 9] List of starboard horizontal stabilizer SHSOutNd nodes/points whose values will be output (-) [1 to NSHSOuts] [unused for NSHSOuts=0] NPHSOuts Number of port horizontal stabilizer outputs (-) [0 to 9] 2 PHSOutNd List of port horizontal stabilizer nodes/points whose values will be output (-) [1 to NPHSOuts] [unused for NPHSOuts=0] NPylOuts Number of pylon outputs (-) [0 to 9] PylOutNd List of pylon nodes/points whose values will be output (-) [1 to NPylOuts] [unused for NPylOuts=0] The next line(s) contains a list of output OutList parameters. See OutListParameters.xlsx for a listing of available output channels (quoted string)

END of input file (the word "END" must appear in the first 3

columns of this last OutList line)

Commented [JJ47]: The new OUTPUT section of the KiteMBDyn Preprocessor input file should look something like this:

Channel Name(s)	Unit(s)	Description	
Fuselage			
FusβTDx, FusβTDy, FusβTDz,	(m), (m), (m),	Translational and rotational (angular	r) deflections
FusβRDx, FusβRDy, FusβRDz	(deg), (deg), (deg)	at Fusβ relative to the undeflecte position/orientation in the kite coord	
		the rotations are output as Euler ang	les in a x-y'-

		z'' (roll-pitch-yaw) rotation sequence
FusβRVn, FusβRVc, FusβRVs	(deg/s), (deg/s), (deg/s)	Absolute rotational (angular) velocity at Fusβ
		expressed in the local structural coordinate
		system
FusβTAn, FusβTAc, FusβTAs	(m/s^2), (m/s^2), (m/s^2)	Absolute translational acceleration at Fusβ
		expressed in the local structural coordinate
		system (does not include gravity)
FusβFRn, FusβFRc, FusβFRs,	(N), (N), (N),	Shear force and bending moment reaction loads at
FusβMRn, FusβMRc, FusβMRs	$(N \cdot m), (N \cdot m), (N \cdot m)$	Fusβ expressed in the local structural coordinate
		system
Starboard (Right) Wing		
SWnβTDx, SWnβTDy, SWnβTDz,	(m), (m), (m),	Translational and rotational (angular) deflections
SWnβRDx, SWnβRDy, SWnβRDz	(deg), (deg), (deg)	at SWnβ relative to the undeflected rigid-body
		position/orientation in the kite coordinate system;
		the rotations are output as Euler angles in a x-y'-
CW-ODY-CW-ODY-CW-ODY-	(1/-) (1/-) (1/-)	z'' (roll-pitch-yaw) rotation sequence Absolute rotational (angular) velocity at SWnβ
SWnβRVn, SWnβRVc, SWnβRVs	(deg/s), (deg/s), (deg/s)	expressed in the local structural coordinate
		system
SWnβTAn, SWnβTAc, SWnβTAs	(m/s^2), (m/s^2), (m/s^2)	Absolute translational acceleration at SWnβ
SwiipTAii, SwiipTAc, SwiipTAs	(111/8 2), (111/8 2), (111/8 2)	expressed in the local structural coordinate
		system (does not include gravity)
SWnβFRn, SWnβFRc, SWnβFRs,	(N), (N), (N),	Shear force and bending moment reaction loads at
SWnβMRn, SWnβMRc, SWnβMRs	$(N \cdot m), (N \cdot m), (N \cdot m)$	SWnβ expressed in the local structural coordinate
S wipwirdi, S wipwirde, S wipwirds	(1 111), (1 111), (1 111)	system
Port (Left) Wing		5)500111
PWnβTDx, PWnβTDy, PWnβTDz,	(m), (m), (m),	Translational and rotational (angular) deflections
PWnβRDx, PWnβRDy, PWnβRDz	(deg), (deg), (deg)	at PWnß relative to the undeflected rigid-body
		position/orientation in the kite coordinate system;
		the rotations are output as Euler angles in a x-y'-
		z'' (roll-pitch-yaw) rotation sequence
PWnβRVn, PWnβRVc, PWnβRVs	(deg/s), (deg/s), (deg/s)	Absolute rotational (angular) velocity at PWnβ
		expressed in the local structural coordinate
		system
PWnβTAn, PWnβTAc, PWnβTAs	$(m/s^2), (m/s^2), (m/s^2)$	Absolute translational acceleration at PWnβ
		expressed in the local structural coordinate
	an an an	system (does not include gravity)
PWnβFRn, PWnβFRc, PWnβFRs,	(N), (N), (N),	Shear force and bending moment reaction loads at
PWnβMRn, PWnβMRc, PWnβMRs	(N·m), (N·m), (N·m)	PWnβ expressed in the local structural coordinate
V		system
Vertical Stabilizer VSβTDx, VSβTDy, VSβTDz,	(m) (m) (m)	Translational and rotational (angular) deflections
VSβTDx, VSβTDy, VSβTDz, VSβRDx, VSβRDy, VSβRDz	(m), (m), (m), (deg), (deg), (deg)	at VSβ relative to the undeflected rigid-body
VSpkDx, VSpkDy, VSpkDz	(deg), (deg), (deg)	position/orientation in the kite coordinate system;
		the rotations are output as Euler angles in a x-y'-
		z'' (roll-pitch-yaw) rotation sequence
VSβRVn, VSβRVc, VSβRVs	(deg/s), (deg/s), (deg/s)	Absolute rotational (angular) velocity at VSβ
. Spierii, ropiero, ropiero	(406/3), (406/3), (406/3)	expressed in the local structural coordinate
		system
VSβTAn, VSβTAc, VSβTAs	(m/s^2), (m/s^2), (m/s^2)	Absolute translational acceleration at VSβ
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	expressed in the local structural coordinate
		system (does not include gravity)
VSβFRn, VSβFRc, VSβFRs,	(N), (N), (N),	Shear force and bending moment reaction loads at
	$(N \cdot m), (N \cdot m), (N \cdot m)$	VSβ expressed in the local structural coordinate
VSβMRn, VSβMRc, VSβMRs	(1N 111), (1N 111), (1N 111)	v sp expressed in the local structural coordinate

Starboard (Right) Horizontal Stabilizer		
SHSβTDx, SHSβTDy, SHSβTDz,	(m), (m), (m),	Translational and rotational (angular) deflections
SHSβRDx, SHSβRDy, SHSβRDz	(deg), (deg), (deg)	at SHS\(\beta\) relative to the undeflected rigid-body
,,, ,	(8), (8), (8)	position/orientation in the kite coordinate system;
		the rotations are output as Euler angles in a x-y'-
		z'' (roll-pitch-yaw) rotation sequence
SHSβRVn, SHSβRVc, SHSβRVs	(deg/s), (deg/s), (deg/s)	Absolute rotational (angular) velocity at SHSβ
5н5ркvп, 5н5ркvс, 5н5ркvs	(deg/s), (deg/s), (deg/s)	expressed in the local structural coordinate
		system
CHERTA - CHERTA - CHERTA -	(m/s^2), (m/s^2), (m/s^2)	Absolute translational acceleration at SHSB
SHSβTAn, SHSβTAc, SHSβTAs	(m/s ²), (m/s ²), (m/s ²)	,
		expressed in the local structural coordinate
GUGOED GUGOED GUGOED	an an an	system (does not include gravity)
SHSβFRn, SHSβFRc, SHSβFRs,	(N), (N), (N),	Shear force and bending moment reaction loads at
SHSβMRn, SHSβMRc, SHSβMRs	$(N \cdot m), (N \cdot m), (N \cdot m)$	SHS β expressed in the local structural coordinate
		system
Port (Left) Horizontal Stabilizer	T	
PHSβTDx, PHSβTDy, PHSβTDz,	(m), (m), (m),	Translational and rotational (angular) deflections
PHSβRDx, PHSβRDy, PHSβRDz	(deg), (deg), (deg)	at PHSB relative to the undeflected rigid-body
		position/orientation in the kite coordinate system;
		the rotations are output as Euler angles in a x-y'-
		z'' (roll-pitch-yaw) rotation sequence
PHSβRVn, PHSβRVc, PHSβRVs	(deg/s), (deg/s), (deg/s)	Absolute rotational (angular) velocity at PHSβ
, , , , , ,		expressed in the local structural coordinate
		system
PHSβTAn, PHSβTAc, PHSβTAs	$(m/s^2), (m/s^2), (m/s^2)$	Absolute translational acceleration at PHSB
		expressed in the local structural coordinate
		system (does not include gravity)
PHSβFRn, PHSβFRc, PHSβFRs,	(N), (N), (N),	Shear force and bending moment reaction loads at
PHSβMRn, PHSβMRc, PHSβMRs	$(N \cdot m), (N \cdot m), (N \cdot m)$	PHSβ expressed in the local structural coordinate
, , , , ,		system
Pylons		
SPαβTDx, SPαβTDy, SPαβTDz,	(m), (m), (m),	Translational and rotational (angular) deflections
SPαβRDx, SPαβRDy, SPαβRDz,	(deg), (deg), (deg),	at SPαβ and PPαβ relative to the undeflected
ΡΡαβΤΟχ, ΡΡαβΤΟy, ΡΡαβΤΟz,	(m), (m), (m),	rigid-body position/orientation in the kite
ΡΡαβRDx, ΡΡαβRDy, ΡΡαβRDz	(deg), (deg), (deg)	coordinate system; the rotations are output as
1 2 1 32 1		Euler angles in a x-y'-z'' (roll-pitch-yaw) rotation
		sequence
SPαβRVn, SPαβRVc, SPαβRVs,	(deg/s), (deg/s), (deg/s),	Absolute rotational (angular) velocity at SPαβ
ΡΡαβRVn, ΡΡαβRVc, ΡΡαβRVs	(deg/s), (deg/s), (deg/s)	and PPαβ expressed in the local structural
1 , 1 , 1		coordinate system
SPαβTAn, SPαβTAc, SPαβTAs,	(m/s^2), (m/s^2), (m/s^2),	Absolute translational acceleration at SPαβ and
ΡΡαβΤΑη, ΡΡαβΤΑς, ΡΡαβΤΑς	(m/s^2) , (m/s^2) , (m/s^2)	PPαβ expressed in the local structural coordinate
11 4 17 111, 11 4 17 10, 11 4 17 13	(11.5 2), (11.5 2), (11.5 2)	system (does not include gravity)
SPαβFRn, SPαβFRc, SPαβFRs,	(N), (N), (N),	Shear force and bending moment reaction loads at
SPαβMRn, SPαβMRc, SPαβMRs,	$(N, (N), (N), (N \cdot m), (N \cdot m),$	SP $\alpha\beta$ and PP $\alpha\beta$ expressed in the local structural
PPαβFRn, PPαβFRc, PPαβFRs,	(N), (N), (N),	coordinate system
PPαβMRn, PPαβMRc, PPαβMRs	$(N \cdot m), (N \cdot m), (N \cdot m)$	coordinate system
Rotors	(13 111), (13 111), (13 111)	
SPαTRtSpd, SPαBRtSpd,	(rad/s), (rad/s),	Rotor speed of the top (T) and bottom (B) rotor
PPαTRtSpd, PPαBRtSpd	(rad/s), (rad/s)	on SPα and PPα (relative to the nacelle)
SPαTRtAcc, SPαBRtAcc,	(rad/s^2), (rad/s^2),	Rotor acceleration of the top (T) and bottom (B)
PPαTRtAcc, PPαBRtAcc	(rad/s^2), (rad/s^2)	rotor on SPα and PPα (relative to the nacelle)
Energy Kite		
KitePxi, KitePyi, KitePzi,	(m), (m), (m),	Translational position and rotational (angular)
KiteRoll, KitePitch, KiteYaw	(deg), (deg), (deg)	orientation of the energy kite fuselage reference

		point in the global inertial-frame coordinate system; the rotations are output as Euler angles in a X-Y'-Z'' (roll-pitch-yaw) rotation sequence
KiteTVx, KiteTVy, KiteTVz,	(m/s), (m/s), (m/s),	Absolute translational and rotational (angular)
KiteRVx, KiteRVy, KiteRVz	(deg/s), (deg/s), (deg/s)	velocity of the energy kite fuselage reference
·		point expressed in the kite coordinate system
KiteTAx, KiteTAy, KiteTAz,	$(m/s^2), (m/s^2), (m/s^2),$	Absolute translational and rotational (angular)
KiteRAx, KiteRAy, KiteRAz	$(deg/s^2), (deg/s^2), (deg/s^2)$	acceleration of the energy kite fuselage reference
		point expressed in the kite coordinate system

These are calculated within KiteFASTMBD as follows:

```
Fuselage:
   Fus \beta TDx
   Fus\beta TDy
   Fus \beta TDz
   Fus \beta RDx
   Fus\beta RDy
  Fus\beta RDz
  Fus\beta RVn
                         rac{180}{\pi} MBD A_{FusOutNd[eta]}^{Fus} MBD ec{o}_{FusOutNd[eta]}^{Fus}
   Fus \beta RVc
   Fus \beta RVs
  Fus \(\beta TAn\)
  Fus \beta TAc = {}^{MBD} \Lambda_{FusOutNd[\beta]}^{Fus} {}^{MBD} \vec{a}_{FusOutNd[\beta]}^{Fus}
   Fus \(\beta TAs\)
   Fus \beta FRn
   Fus\beta FRc
   Fus \beta FRs
   Fus\beta MRn
   Fus\beta MRc
  Fus \beta MRs
```

Starboard (Right) Wing:

$$\begin{bmatrix} SWn\beta TDx \\ SWn\beta TDy \\ SWn\beta TDz \\ SWn\beta RDx \\ SWn\beta RDy \\ SWn\beta RDz \end{bmatrix} = \begin{cases} MBD \Lambda^{FusO} \left\{ MBD \vec{p}_{SWn}^{SWn} \\ \vec{p}_{SWnOutNd[\beta]}^{SWn} - MBD \vec{p}_{SWnOutNd[\beta]}^{FusO} \right\} - MBD \vec{p}_{SWnOutNd[\beta]}^{SWnR} \\ \frac{180}{\pi} F^{EulerExtract} \left(\left[MBD \Lambda^{FusO} \right]^T \left[MBD \Lambda^{SWnR}_{SWnOutNd[\beta]} \right]^T MBD \Lambda^{SWn}_{SWnOutNd[\beta]} \right) \end{cases}$$

$$\begin{cases} SWn\beta RVn \\ SWn\beta RVc \\ SWn\beta RVs \end{cases} = \frac{180}{\pi} MBD A_{SWnOutNd[\beta]}^{SWn} MBD \vec{o}_{SWnOutNd[\beta]}^{SWn} \\ SWn\beta TAn \\ SWn\beta TAc \\ SWn\beta TRn \\ SWn\beta FRn \\ SWn\beta FRn \\ SWn\beta FRs \\ SWn\beta MRn \\ SWn\beta MRn \\ SWn\beta MRn \\ SWn\beta MRs \end{cases} = \begin{cases} MBD \vec{F}R_{SWnOutNd[\beta]}^{SWn} \vec{a}_{SWnOutNd[\beta]}^{SWn} \\ MBD \vec{M}R_{SWnOutNd[\beta]}^{SWn} \\ PWn\beta TDz \\ PWn\beta RDz \\ PWn\beta RDz \\ PWn\beta RNDz \\ PWn\beta RVc \\ PWn\beta$$

Vertical Stabilizer:

PWnβMRn PWnβMRc PWnβMRs $^{MBD}\vec{M}R_{PWnOutNd[eta]}^{PWn}$

$$\begin{cases} VS\beta TDx \\ VS\beta TDz \\ VS\beta RDx \\ VS\beta RDy \\ VS\beta RDz \\ \end{cases} = \begin{cases} {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}_{VSOutNd[\beta]}^{VS} - {}^{MBD} \vec{p}_{VSOutNd[\beta]}^{VSR} \right\} - {}^{MBD} \vec{p}_{VSOutNd[\beta]}^{VSR}} \\ {}^{180} \pi F^{Euler Extract} \left(\left[{}^{MBD} \Lambda^{FusO} \right]^T \left[{}^{MBD} \Lambda^{VSR}_{VSOutNd[\beta]} \right]^T {}^{MBD} \Lambda^{VS}_{VSOutNd[\beta]} \right) \\ VS\beta RVc \\ VS\beta RVc \\ VS\beta RVs \\ \end{cases} = \frac{180}{\pi} {}^{MBD} \Lambda^{VS}_{VSOutNd[\beta]} {}^{MBD} \vec{\omega}_{VSOutNd[\beta]}^{VS} \\ VS\beta TAn \\ VS\beta TAc \\ VS\beta TAc \\ VS\beta FRc \\ VS\beta FRc \\ VS\beta FRc \\ VS\beta FRc \\ VS\beta MRc \\ VS\beta MRc \\ VS\beta MRc \\ VS\beta MRc \\ VS\beta MRs \end{cases} = \begin{cases} {}^{MBD} \vec{F} R^{VS}_{VSOutNd[\beta]} \\ {}^{MBD} \vec{M} R^{VS}_{VSOutNd[\beta]} \\ {}^{MBD} \vec{M} R^{VS}_{VSOutNd[\beta]} \\ \end{pmatrix}$$

Starboard (Right) Horizontal Stabilizer:

$$\begin{cases} SHS \, \beta TDx \\ SHS \, \beta TDz \\ SHS \, \beta RDx \\ SHS \, \beta RDx \\ SHS \, \beta RDy \\ SHS \, \beta RDz \end{cases} = \begin{cases} & \text{\tiny MBD} \, \Lambda^{FusO} \left\{ ^{MBD} \, \vec{p}_{SHSOulNd[\beta]}^{SHS} - ^{MBD} \, \vec{p}_{SHSOulNd[\beta]}^{SHSR} \right\} - ^{MBD} \, \vec{p}_{SHSOulNd[\beta]}^{SHSR} \\ & \frac{180}{\pi} \, F^{EulerExtract} \left(\left[^{MBD} \, \Lambda^{FusO} \right]^T \left[^{MBD} \, \Lambda^{SHS}_{SHSOulNd[\beta]} \right]^T \, ^{MBD} \, \Lambda^{SHS}_{SHSOulNd[\beta]} \right) \\ & SHS \, \beta RVn \\ & SHS \, \beta RVc \\ & SHS \, \beta RVs \end{cases} = \frac{180}{\pi} \, ^{MBD} \, \Lambda^{SHS}_{SHSOulNd[\beta]} \, ^{MBD} \, \vec{\omega}^{SHS}_{SHSOulNd[\beta]} \\ & SHS \, \beta TAn \\ & SHS \, \beta TAc \\ & SHS \, \beta TAs \end{cases} = \frac{^{MBD} \, \Lambda^{SHS}_{SHSOulNd[\beta]} \, ^{MBD} \, \vec{a}^{SHS}_{SHSOulNd[\beta]} }{^{SHS} \, \beta SHSOulNd[\beta]}$$

$$\begin{cases} SHS \, \beta FRn \\ SHS \, \beta FRc \\ SHS \, \beta FRs \\ SHS \, \beta MRn \\ SHS \, \beta MRc \\ SHS \, \beta MRs \end{cases} = \begin{cases} {}^{MBD} \vec{F}R_{SHSOutNd[\beta]}^{SHS} \\ {}^{MBD} \vec{M}R_{SHSOutNd[\beta]}^{SHS} \end{cases}$$

Port (Left) Horizontal Stabilizer:

$$\begin{bmatrix} PHS\,\beta TDx \\ PHS\,\beta TDy \\ PHS\,\beta TDz \\ PHS\,\beta RDx \\ PHS\,\beta RDx \\ PHS\,\beta RDy \\ PHS\,\beta RDy \\ PHS\,\beta RDz \end{bmatrix} = \begin{cases} MBD\,\Lambda^{FusO}\left\{ ^{MBD}\,\vec{p}^{PHS}_{PHSOutNd[\beta]} - ^{MBD}\,\vec{p}^{FusO}\right\} - ^{MBD}\,\vec{p}^{PHSR}_{PHSOutNd[\beta]} \\ \frac{180}{\pi}\,F^{EulerExtract}\left(\left[^{MBD}\Lambda^{FusO}\right]^T \left[^{MBD}\Lambda^{PHSR}_{PHSOutNd[\beta]} \right]^T & ^{MBD}\Lambda^{PHS}_{PHSOutNd[\beta]} \\ PHS\,\beta RVc \\ PHS\,\beta RVc \\ PHS\,\beta RVs \end{bmatrix} = \frac{180}{\pi}\,M^{BD}\,\Lambda^{PHS}_{PHSOutNd[\beta]} & ^{MBD}\,\vec{\omega}^{PHS}_{PHSOutNd[\beta]} \\ PHS\,\beta TAc \\ PHS\,\beta TAc \\ PHS\,\beta TAs \end{bmatrix} = \frac{^{MBD}\,\Lambda^{PHS}_{PHSOutNd[\beta]} & ^{MBD}\,\vec{\omega}^{PHS}_{PHSOutNd[\beta]} \\ PHS\,\beta FRc \\ PHS\,\beta FRc \\ PHS\,\beta FRc \\ PHS\,\beta RRc \\ PHS\,\beta MRc \\ PHS\,\beta MRc \\ PHS\,\beta MRs \end{bmatrix} = \begin{cases} ^{MBD}\,\vec{F}\,R^{PHS}_{PHSOutNd[\beta]} \\ ^{MBD}\,\vec{M}\,R^{PHS}_{PHSOutNd[\beta]} \\ ^{MB$$

Pylons:

```
SP\alpha\beta TDx
 SP\alpha\beta TDy
 SP\alpha\beta TDz
                                                               {\it MBD} A^{\it FusO} \left\{ {\it MBD} \, \vec{p}_{\it PylOutNd[\beta]}^{\it SPy} \left[ \alpha \right] - {\it MBD} \, \vec{p}_{\it FusO} \right\} - {\it MBD} \, \vec{p}_{\it PylOutNd[\beta]}^{\it SPyR} \left[ \alpha \right]
 SP\alpha\beta RDx
                                                \frac{180}{\pi} F^{\text{EulerExtract}} \left( \left[ \left[ {}^{\text{MBD}} \Lambda^{\text{FusO}} \right]^T \left[ {}^{\text{MBD}} \Lambda^{\text{SPyR}}_{PylOutNd[\beta]} [\alpha] \right]^T {}^{\text{MBD}} \Lambda^{\text{SPy}}_{PylOutNd[\beta]} [\alpha] \right) \right| \\ \frac{\text{MBD}}{\pi} \Lambda^{\text{FusO}} \left\{ {}^{\text{MBD}} \vec{p}^{\text{PPy}}_{PylOutNd[\beta]} [\alpha] - {}^{\text{MBD}} \vec{p}^{\text{FusO}} \right\} - {}^{\text{MBD}} \vec{p}^{\text{PPyR}}_{PylOutNd[\beta]} [\alpha] \right\}
 SP\alpha\beta RDy
 SP\alpha\beta RDz
 PP\alpha\beta TDx
 ΡΡαβΤΟυ
                                                 \frac{180}{\pi} F^{\textit{EulerExtract}} \bigg( \Big[ {}^{\textit{MBD}} \Lambda^{\textit{FusO}} \Big]^{\textit{T}} \Big[ {}^{\textit{MBD}} \Lambda^{\textit{PPyR}}_{\textit{PylOutNd}[\beta]} \big[ \alpha \big] \Big]^{\textit{T}} {}^{\textit{MBD}} \Lambda^{\textit{PPy}}_{\textit{PylOutNd}[\beta]} \big[ \alpha \big] \bigg) \bigg]
 PP\alpha\beta TDz
 PP\alpha\beta RDx
 PP\alpha\beta RDy
PP\alpha\beta RDz
SP\alpha\beta RVn
 SP\alpha\beta RVc
                                                 \frac{180}{\pi} {}^{MBD} A_{PylOutNd[\beta]}^{SPy} [\alpha]^{MBD} \bar{\omega}_{PylOutNd[\beta]}^{SPy} [\alpha] \Big|
 SP\alpha\beta RVs
                                                 \frac{180}{\pi} {}^{MBD} A^{PPy}_{PylOulNd[\beta]} [\alpha] {}^{MBD} \vec{o}^{PPy}_{PylOulNd[\beta]} [\alpha] \Big]
 PP\alpha\beta RVn
ΡΡαβRVc
PP\alpha\beta RVs
SP\alpha\beta TAn
 SP\alpha\beta TAc
                                                 \begin{array}{l} ^{\textit{MBD}} \varLambda^{\textit{SPy}}_{\textit{PylOutNd}[\beta]} \big[\alpha\big] ^{\textit{MBD}} \bar{a}^{\textit{SPy}}_{\textit{PylOutNd}[\beta]} \big[\alpha\big] \\ ^{\textit{MBD}} \varLambda^{\textit{PPy}}_{\textit{PylOutNd}[\beta]} \big[\alpha\big] ^{\textit{MBD}} \bar{a}^{\textit{PPy}}_{\textit{PylOutNd}[\beta]} \big[\alpha\big] \end{array} 
 SP\alpha\beta TAs
 ΡΡαβΤΑη
 ΡΡαβΤΑς
PPαβTAs
 SP\alpha\beta FRn
 SP\alpha\beta FRc
 SP\alpha\beta FRs
 SP\alpha\beta MRn
                                                    ^{MBD}\vec{F}R_{PylOutNd[\beta]}^{SPy}[\alpha]
 SP\alpha\beta MRc
                                                   \vec{M}R^{SPy}_{PylOutNd[eta]}[lpha]
 SP\alpha\beta MRs
                                                   {}^{MBD}ec{F}R^{PPy}_{PylOutNd[eta]}[lpha]
 PP\alpha\beta FRn
 PPαβFRc
                                                  {}^{MBD} \vec{M} R^{PPy}_{PylOutNd[eta]} ig[lphaig]
 PP\alpha\beta FRs
 ΡΡαβΜRη
 ΡΡαβΜRc
PP\alpha\beta MRs
```

$$\begin{cases} SP\alpha TRtSpd \\ SP\alpha BRtSpd \\ PP\alpha TRtSpd \\ PP\alpha BRtSpd \end{cases} = \begin{cases} \binom{Ctrl}{\Omega} \Omega^{SPyRtr} [\alpha, 1] \\ \binom{Ctrl}{\Omega} \Omega^{SPyRtr} [\alpha, 2] \\ \binom{Ctrl}{\Omega} \Omega^{PPyRtr} [\alpha, 1] \\ \binom{Ctrl}{\Omega} \Omega^{PPyRtr} [\alpha, 2] \end{cases}$$

$$\begin{cases} SP\alpha TRtAcc \\ SP\alpha BRtAcc \\ PP\alpha TRtAcc \\ PP\alpha BRtAcc \end{cases} = \begin{cases} \binom{Ctrl}{\alpha} \Omega^{SPyRtr} [\alpha, 2] \\ \binom{Ctrl}{\alpha} \Omega^{SPyRtr} [\alpha, 2] \\ \binom{Ctrl}{\alpha} \Omega^{PPyRtr} [\alpha, 2] \\ \binom{Ctrl}{\alpha} \Omega^{PPyRtr} [\alpha, 2] \end{cases}$$

Energy Kite

$$\begin{cases} \textit{KitePxi} \\ \textit{KitePyi} \\ \textit{KitePzi} \\ \textit{KiteRoll} \\ \textit{KitePitch} \\ \textit{KitePitch} \\ \textit{KiteYaw} \end{cases} = \begin{cases} \frac{180}{\pi} F^{\textit{EulerExtract}} \left({}^{\textit{MBD}} \Lambda^{\textit{FusO}} \right) \\ \frac{180}{\pi} F^{\textit{EulerExtract}} \left({}^{\textit{MBD}} \Lambda^{\textit{FusO}} \right) \\ \frac{180}{\pi} F^{\textit{EulerExtract}} \left({}^{\textit{MBD}} \Lambda^{\textit{FusO}} \right) \\ \frac{180}{\pi} {}^{\textit{MBD}} \Lambda^{\textit{FusOMBD}} \vec{v}^{\textit{FusO}} \\ \frac{180}{\pi} {}^{\textit{MBD}} \Lambda^{\textit{FusOMBD}} \vec{v}^{\textit{MBD}} \\ \frac{180}{\pi} {}^{\textit{MBD}} \Lambda^{\textit{MBD}} \\ \frac{180}{\pi} {}^{\textit{MBD}} \\ \frac{180}{\pi} {}^{\textit{MBD}} \Lambda^{\textit{MBD}} \\ \frac{180}{\pi} {}^{\textit{MBD}} \Lambda^{\textit{MBD}} \\ \frac{180}{\pi} {}^{\textit{MBD}} \\ \frac{180}{\pi} {}^{\textit{MBD}} \\ \frac{180}{\pi} {}^{\textit{MBD}} \Lambda^{\textit{MBD}} \\ \frac{180}{\pi} {}^{\textit{MBD}} \\ \frac{180}{\pi} {}^{\textit{MBD}} \\ \frac{180}$$