Animal Biotechnology

Introduction to Animal Biotechnology

- Genetically engineered animals can be used to
 - Develop new medical treatments
 - Improve our food supply
 - Enhance our understanding of all animals, including humans
- Presents tough scientific and ethical challenges

Animal Models

- Many genetic and physiological similarities exist between animals and humans
- Research using animals has been the key to most medical breakthroughs in the past century
 - Polio vaccine was developed using animals as test systems
 - Cataract surgical procedures were developed with animals
 - Dialysis was tested first in animals before being applied to human conditions

Side-effects of new drugs discovered in animal models

- Example
 - Propecia
 - Used to encourage hair growth
 - Animal studies indicated that serious birth defects occurred in male offspring when pregnant animals were given large doses of drug
 - As a result of animal tests, warnings were put on containers of Propecia to avoid birth defects in humans using drug.

- Animals most often used are
 - Purebred mice and rats
- Other species used include
 - Zebrafish, fruit flies, nematodes
- Dogs, monkeys, chimpanzees, cats make up less than 1% of total number of research animals

How do you select appropriate animal as a model for the human system?

- Look for genetic homology between animal and human systems.
- In addition, identify animal that
 - Has short time between generations
 - Can produce lots of offspring in each generation
 - Can be easily maintained and manipulated in the laboratory

Matching animal systems as models for the human system

System

Best animal model for human

- Lung and cardiovascular
- Immune system
- HIV and AIDS research
- Drug toxicity tests surgical experimentation

- Dog
- Mice
- Monkey and chimpanzee
- Rats

Zebrafish as a model organism

- Popular hardy aquarium fish
- Size of a paperclip
- Can live in small spaces
- Spawn continuously
- 3 months between generations
- 200 progeny/week/female
- Complete organ development within 120 hours of birth
- Because the embryos inside a female are easily visible to naked eye, they are ideal animal systems for evaluating the effect of a new drug on development

Easy to follow drug effect on embryo development under microscope, since egg can mature outside female.

Copyright © 2009 Pearson Education, Inc.

Zebrafish

- Lots of genetic similarity to humans
- Egg lends itself to genetic transfer
 - no need to implant an egg inside a donor mother for gestation.
- Embryos are transparent, making it possible to study cell division under microscope from first hour of creation.
 - transplant gene into embryo
- Because the genetics of zebrafish and humans are similar, they are ideal animal systems for determining whether a new drug induces genetic mutations

- FDA regulations state that new drugs, medical procedures, and cosmetic products must pass safety tests
 - Involves phase testing
 - Conduct a significant number of trials on cell cultures, in live animals, and on human research participants
 - Only in vitro testing is not sufficient

Regulation of animal research

- Animal Welfare Act
 - Sets specific regulations regarding, housing, feeding, cleanliness and medical care of animals
 - Researchers must first develop a plan describing
 - Appropriateness of species to be used
 - Minimum number of animals needed for test
 - Oversight committee reviews and approves plan
 - Government agencies monitor welfare of the test animals

Phase Testing

- Testing a new product for safety in humans involves vigorously following scientific methodology developed for animal systems
 - Involves collecting data from a statistically significant number of trials (experiments) in lab cell tissue cultures, in live animals and in human subjects.
- 3-stages of testing

Tissue culture model if successful if successful

Human trials

Testing

- If test results using cell cultures indicates toxicity of product, then product will never be tested on live animals.
- Testing on live animals requires evaluation of more than one species, since different species may respond differently.

Phase Testing

- Animal models can provide the following information on a new product
 - Absorption of chemical by body
 - Body metabolism of chemical
 - Time require for chemical or product to be excreted
- If significant problems are encountered with product in live animals, then product is never tested in humans.

- Alternatives to Animal Models
 - Cell culture and computer-generated models
- Cell Culture
 - Preliminary screen to check the toxicity of substances
 - Can answer fundamental questions about biology
 - Cannot provide information about potential impacts on entire living organism

- Computer Models
 - Simulate specific molecular and chemical structures and their interactions
 - Limited by programming and knowledge of how the physiological system works

- Regulation of Animal Research
 - Federal Animal Welfare Act set standards regarding the housing, feeding, cleanliness, and medical care of research animals
 - Institutional Review Boards are present at each institution; researcher must prove the need to use animals, select the most appropriate species, and devise a plan for using as few animals as possible

- Regulation of Animal Research
 - The "Three Rs"
 - Reduce the number of higher species (cats, dogs, primates) used
 - Replace animals with alternative models whenever possible
 - Refine tests and experiments to ensure the most humane conditions possible

- Veterinary Medicine as Clinical Trials
 - Veterinarians also participate in research
 - Information gleaned from one species may be applied to another
 - BRCA1 gene in humans is similar to BRCA1 gene in dogs
 - Cancer treatments cross between species