Risk and Return: The Sharpe Ratio

Below are the tasks completed in Jupyter Notebook –

Task 1:

Read in the stock data for Facebook, Amazon and the S&P 500.

- Load in the stock data from datasets/stock_data.csv and assign it to stock data.
- Load in the benchmark data from datasets/benchmark_data.csv and assign it to benchmark data.
- When reading in the data change the parse_dates parameter to set
 the 'Date' column to datetime64, set the index_col parameter to set
 the 'Date' column as the index, and use .dropna() to get rid of missing values.

Task 2:

Take a peek at the data you loaded in the last task.

- Display a summary of each DataFrame's content using .info()
- Show the first few lines of each DataFrame using .head()

Task 3:

Plot and summarize the stock data.

- Use the pandas .plot() method on stock data to show a line plot.
- Set the parameter subplots=True to show two plots since the stock prices are at different levels.
- Set 'Stock Data' as the title for the plot.
- Apply the .describe() method to the stock data to produce summary statistics.

Task 4: Instructions

Plot and summarize the benchmark data.

- Use the pandas .plot() method on benchmark data to show a line plot.
- Set 'S&P 500' as the title for the plot.
- Apply the .describe() method to the benchmark data to produce summary statistics.

Task 5: Instructions

Calculate, plot and summarize the stock data returns.

- Apply pandas method .pct_change() method to the stock_data to calculate the daily returns.
- Use the .plot () method on the result to show a line plot of the daily returns.
- Apply the .describe() method to your daily returns to take a look at summary statistics.

Task 6: Instructions

Calculate, summarize, and plot daily returns for the benchmark data.

- Select the S&P 500 prices as a Series from the benchmark_data using single brackets [] and apply .pct change() as in he last task.
- Use.plot() to display a line plot of the result.
- Take a look at the summary statistics using .describe()

Task 7: Instructions

Calculate, plot and describe the difference between stock returns and sp returns.

- Use the <code>.sub()</code> method to subtract the <code>sp_returns</code> from the <code>stock_returns</code> and assign the resulting <code>DataFrame</code> to <code>excess_returns</code>. Make sure to set the parameter <code>axis=0</code> to align the dates for both time series.
- Calculate excess returns summary statistics using .describe().

Task 8: Instructions

Calculate and plot the mean of excess returns.

- Calculate the average of excess_returns using .mean() and assign the result to avg excess return
- Plot the result using the pandas method .plot.bar() and set 'Mean of the Return Difference' as the title.

Task 9: Instructions

Calculate and visualize the standard deviation of excess returns.

- Calculate the standard deviation of excess_returns using .std() and assign the result to sd excess return.
- Visualize the result as a bar chart and set 'Standard Deviation of the Return Difference' as the title for the plot.

Task 10: Instructions

Use avg_excess_return and sd_excess_return to calculate the Sharpe ratio, then annualize.

- Apply .div() to divide avg_excess_return by sd_excess_return and assign the result to daily sharpe ratio.
- Calculate the square root of 252 using np.sqrt() and assign the result to the variable annual factor.
- Use .mul() to multiply daily_sharpe_ratio by annual_factor and assign the result to annual sharpe ratio.
- Display the result as a bar plot, setting 'Annualized Sharpe Ratio: Stocks vs S&P 500' as the title.

Task 11: Instructions

- Select the stock you would have picked in 2016 based on the Sharpe Ratio by setting either buy_amazon or buy_facebook to True.
- More Sharpe Ratio means greater return per unit risk, therefore we would choose the one with greater Sharpe Ratio.