

2012 —2013 学年第一学期 考试统一用答题册

题号	_	 111	四	五	六	七	总分
成绩			_/>				
阅卷人		1/17					

考试课程		复变函数与积分变换A				
班	· 级	学号	_			
姓	名	成绩				

2013年1月9日

(试题共4页)

	选择题	(毎.5.1)	4	#: 24	4
一、	延拌 刨	「世談」	σ	火 44	π

- 1. 下列方程所表示的平面点集中,为有界区域的是()
- (A) $-\pi < \arg z < \pi$
- (B) |z+3|-|z-3|>4
- (C) 1 < Re z < 2, Im z = 0
- (D) $\text{Re}(\frac{1}{z}) > \frac{1}{2}$
- 2. 假设点 z_0 是函数f(z)的奇点,则函数f(z)在点 z_0 处(
- (A) 不可导
- (B) 不解析
- (C) 不连续
- (D) 以上答案都不对
- 3. 设C 为椭圆 $\frac{x^2}{2} + y^2 = 2$ 正向,则积分 $\int_C \frac{1}{z i} dz = ($
 - (A) 2*ni*
- (B) π
- (C) 0
- (D) $-2\pi i$

- 4. 设c为正向圆周|z|=2,则 $\int_{c} \left| \frac{dz}{z} \right| = ($
 - (A) 2 **πi**
- (B) 2π
- (C) -2 **πi**
- (D) -2π
- 5. 如果 z_0 为f(z)的m级零点,为g(z)的n级零点,n>m,则 z_0 为f(z)g(z)的

 () 级极点
 - - (A) n+m
- (B) mn
- (C) n-m
- (D) $\frac{n}{m}$

- 6. $\text{Res}[z\cos\frac{1}{z}, z=0] = ($
 - (A) 1
- (B) $\frac{1}{2}$
- (C) **0**
- (D) $-\frac{1}{2}$
- 7. 设 f(t) 的傅立叶变换为 $F(\omega)$,则 f(2t+4) 的傅立叶变换为(
 - (A) $\frac{1}{2}e^{i\omega}F(\frac{\omega}{2})$

(B) $\frac{1}{2}e^{2i\omega}F(\frac{\omega}{2})$

(C) $\frac{1}{2}e^{-i\omega}F(\frac{\omega}{2})$

- (D) $\frac{1}{2}e^{-2i\omega}F(\frac{\omega}{2})$
- 8. 积分 $\int_0^{+\infty} e^{-3t} \sin 2t dt$ 的值为(

(A) $\frac{3}{13}$ (B) $\frac{2}{13}$ (C) $\frac{3}{11}$

 $(D)\frac{2}{11}$

二、填空题(每题3分,共27分)

2. 设 $f(z) = \cos z + i \sin z$,则f'(i) =

3. 复数(1-*i*)^{*i*} =_____

4. 设函数 $f(z) = \int_{|\zeta|=2} \frac{\cos \zeta}{\xi - z} d\zeta$, 则 $f(i) = \underline{\qquad}$, $f''(3) = \underline{\qquad}$

5. 设 $u(x,y) = x^2 + 2xy - y^2$, 那么u(x,y)的共轭调和函数v(x,y)为

6. 级数...+ $\frac{1}{3^n z^n}$...+ $\frac{1}{3^2 z^2}$ + $\frac{1}{3z}$ +1+ $\frac{z}{2}$ + $\frac{z^2}{2^2}$ +...+ $\frac{z^n}{2^n}$ +...的收敛域是

7. 函数 $F(\omega) = \sin t_0 \omega$ 的傅立叶逆变换为

8. 函数 $f(t) = \sin(t - \frac{\pi}{3})u(t - \frac{\pi}{3})$ 的 Laplace 变换为_

9. 函数 $F(s) = \frac{s}{s+3}$ 的拉普拉斯逆变换为_

三、 $(12\, eta)$ 计算积分 $\int_{C}^{\sin(z+i)} \mathrm{d}z$,其中C 为不经过0,i 的简单正向闭曲线.

四、(10 f) 将 $f(z) = \frac{1}{(z-i)(z-2i)}$ 在适当的圆环域内展成以i 为心的幂级数。

六、(10 分) 利用拉普拉斯变换求微分方程 y''-2y'+y=0 满足边界条件 y(0)=0, y(l)=4 的解,其中 l 为已知常数.

七(7 分)证明:若 f(z) 在区域 D 内解析,且 |f(z)| 在区域 D 内为常值,试证 f(z) 在区域 D 内为常值函数.