빅데이터 혁신공유대학

리눅스 시스템

숙명여자대학교 소프트웨어학부 창병모 교수

14장 시스템 관리

- 01 시스템 관리자
- 02 사용자 계정 관리
- 03 시스템 부팅과 종료
- 04 시스템 부팅과 데몬
- 05 systemd 관련 명령어
- 06 소프트웨어 설치

14.1 시스템 관리자

시스템 관리자

- 시스템 관리자의 역할
 - 사용자 계정 추가 및 삭제
 - 소프트웨어 설치, 업그레이드, 삭제
 - 시스템 서비스 관리
 - 하드웨어 추가 설치
 - 시스템 보안
 - 데이터 백업

시스템 관리자

- 슈퍼유저(superuser)
 - 시스템을 관리할 수 있는 사용자로
 - 슈퍼유저가 사용하는 계정이 root이다
- 슈퍼유저 로그인
 - 직접 root 계정으로 로그인
 - 다른 계정으로 로그인 후 su(switch user)
 \$ su
 암호:
 #
 - sudo 사용 \$ sudo 명령어

sudo(superuser do)

- sudo
 - 일반 사용자가 sudo 명령어를 이용하여 원하는 명령어를 관리자 권한으로 실행 가능
 - 일반 사용자 계정을 생성할 때 계정 종류를 관리자로 선택해야 함 \$ sudo 명령어
- 예1: 관리자 권한으로 apt를 이용하여 gcc를 설치
 \$ sudo apt install gcc
- 예2 : root 계정의 암호를 설정한 후에 root 계정을 이용 \$ sudo passwd root [sudo] chang의 암호:
 - 새 암호:
 - 새 암호 재입력:
 - passwd: 암호를 성공적으로 업데이트했습니다.

설정

• [프로그램 표시]에서 [설정] 선택

- [네트워크]
- [배경]
- [모양]
- [프로그램]
- [개인 정보]
- [소리]
- [전원]
- [디스플레이]
- [지역 및 언어]
- [사용자] 등

네트워크 설정

네트워크 설정 창[설정] -> [네트워크]

네트워크 수동 설정 / 자동 설정

- 수동 설정
 - IP 주소, 네트마스크, 게이트웨이 정보 입력
- 자동 설정

디스플레이(해상도) 설정

 시스템 설정에서 디스플레이를 변경한다.

[프로그램] → [설정] →디스플레이

배경 설정

- 시스템 설정에서 배경을 변경한다.
- [프로그램] → [설정] → 배경

14.2 사용자 계정 관리

사용자 계정 추가

- [설정]의 사용자 도구
 - 사용자를 추가 혹은 삭제

사용자 계정 추가

• 추가된 사용자 계정

사용자 계정 추가 명령어

• 사용자 계정 추가

useradd [옵션] 사용자명

새로운 사용자 계정을 생성한다.

- 패스워드 설정
 - # passwd 사용자명
 - 관련 파일: /etc/passwd, /etc/shadow
- 사용자 계정 삭제

userdel [-r] 사용자명

사용자 계정을 삭제한다.

-r 옵션을 사용하면 사용자의 홈 디렉터리도 삭제한다.

14.3 시스템 부팅과 종료

시스템 부팅

• 시스템 부팅은 fork/exec 시스템 호출을 통해 이루어진다.

시스템 부팅

- swapper(스케줄러 프로세스)
 - 커널 내부에서 만들어진 프로세스로 프로세스 스케줄링을 한다
- init(초기화 프로세스)
 - /etc/inittab 파일에 기술된 대로 시스템을 초기화
- 서비스 데몬 프로세스
 - 서비스들을 위한 데몬 프로세스들이 생성된다. 예: ftpd
- getty 프로세스
 - 로그인 프롬프트를 내고 키보드 입력을 감지한다.
- login 프로세스
 - 사용자의 로그인 아이디 및 패스워드를 검사
- shell 프로세스
 - 시작 파일을 실행한 후에 쉘 프롬프트를 내고 사용자로부터 명령어를 기다린다

런레벨

- init 프로세스(/etc/init)
 - /etc/inittab 파일에 따라 시스템을 시작하고 초기화한다.
 - 런레벨(runlevel)에 따라 다음과 같이 시스템을 초기화한다.

런레벨	부팅 환경	
0	시스템을 정지한다.	
1	단일 사용자 모드로 부팅하며 네트워크 기능을 사용 안 한다.	
1	root로만 로그인 가능하다.	
2	다중 사용자 모드로 부팅하며 네트워크 기능을 사용 안 한다.	
3	정상 작동 모드로 다중 사용자 모드, 텍스트 인터페이스로 부팅한다.	
4	사용되지 않으며 특별한 시스템을 구현하기 위한 예약된 레벨이다.	
5	정상 작동 모드로 부팅하며 X-윈도우 인터페이스로 부팅한다.	
6	시스템을 재부팅 한다.	

런레벨

• runlevel 명령어를 이용한 현재 부팅 레벨 확인

\$ runlevel

시스템의 현재 부팅 레벨을 알려준다.

- 예
 - \$ runlevel
 - N 5
- 런레벨을 변경
 - 시스템 실행 후에도 init 명령어로 런레벨을 변경 가능
- 예
 - \$ init 6

프로세스 관리 도구 top

\$ top [-d 숫자]

프로세스별 CPU와 메모리 점유율 등을 출력한다.

-d 옵션을 사용하면 숫자만큼의 시간마다 다시 출력한다.

\$ top

```
top - 14:42:23 up 114 days, 2:53, 5 users, load average:0.14, 0.07, 0.02
Tasks: 228 total, 1 running, 227 sleeping, 0 stopped, 0 zombie
Cpu(s):0.0%us, 0.2%sy, 0.0%ni, 99.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 2061948k total, 1938932k used, 123016k free, 286124k buffers
Swap: 4128760k total, 0k used, 4128760k free, 766936k cached
PID USER PRI NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
9818 chang 20 0 2656 1172 872 R 0.3 0.1 0:00.14 top
        20 0 2828 1292 1096 S 0.0 0.1 0:07.21 systemd
  1 root
  2 root
         20 0
                  0 0
                        0 S 0.0
                                    0.0 0:00.13 kthreadd
  3 root
        RT 0
                   0 0
                         0.00
                                    0.0 0:00.25 migration/0
                  0 0
  4 root
        20 0
                         0.50.0
                                    0.0
                                        0:00.01 ksoftirqd/0
                   0 0
  5 root
        RT 0
                         0 S 0.0
                                    0.0
                                        0:00.00 watchdog/0
         RT 0
                   0 0 0 5 0.0
                                    0.0
                                         0:00.21 migration/1
  6 root
                                         0:00.03 ksoftirqd/1
  7 root
         20 0
                         0.50.0
                                    0.0
```

시스템 종료

- [상태 영역]
 - [컴퓨터 끄기/로그아웃]
- shutdown 명령어
 - # shutdown +5
 - # shutdown now

shutdown 시간 [경고메시지]

지정된 시간에 시스템을 종료한다.

모든 사용자에게 보낼 경고 메시지를 명시할 수 있다.

14.4 시스템 부팅과 데몬

systemd

- init를 대체한 시스템 데몬 프로세스
 - 시스템이 부팅될 때 다양한 서비스 데몬들을 시작시키고,
 - 서비스 데몬 프로세스들을 관리함

\$ pstree

systemd가 생성한 자식 데몬 프로세스들을 트리 형태로 보여준다.

```
chang@ubuntu: ~/바탕화면
chang@ubuntu:~/바탕화면$ pstree
systemd——ModemManager——2*[{ModemManager}]
         —NetworkManager——2*[{NetworkManager}]
         —VGAuthService
         -accounts-daemon---2*[{accounts-daemon}]
         —avahi-daemon——avahi-daemon
         -colord---2*[{colord}]
         -cups-browsed---2*[{cups-browsed}]
         -cupsd
         —dbus-daemon
                 —gdm-session-wor——gdm-wayland-ses——gnome-session-b——2*[{gnome-session-b}]
—2*[{gdm-wayland-ses}]
                                   └─2*[{gdm-session-wor}]
                └-2*[{gdm3}]
          -gnome-keyring-d<del>---</del>ssh-agent
                            └─3*[{gnome-keyring-d}]
         —irqbalance——{irqbalance}
         −2*[kerneloops]
         —networkd-dispat
          -packagekitd---2*[{packagekitd}]
         -polkitd---2*[{polkitd}]
         —power-profiles-——2*[{power-profiles-}]
```

systemd

- systemd에 의한 시스템 부팅은 런레벨에 따라 다르게 진행
 - 런레벨은 서비스의 실행을 단계별로 구분하여 적용하는 것
 - 높은 레벨일수록, 시스템 부팅 시 불러오는 서비스 데몬 수가 많음

런레벨	target 파일 (심볼릭 링크)	target 원본 파일	부팅 환경
0	runlevel0.target	poweroff.target	시스템을 정지한다.
1	runlevel1.target	rescue.target	단일 사용자 모드로 부팅, 네트워크 기 능을 사용 안함. root로만 로그인
2	runlevel2.target		정사 자도 ㅁㄷㄹ 다즈 나요가 ㅁㄷ
3	runlevel3.target	multi-user.target	정상 작동 모드로 다중 사용자 모드, 텍스트 인터페이스로 부팅한다.
4	runlevel4.target		픽—르 근디페이—포 구경인터.
5	runlevel5.target	graphical.target	정상 작동 모드로 부팅하며 X-윈도우 인터페이스로 부팅한다.
6	runlevel6.target	reboot.target	시스템을 재부팅 한다.

init과 systemd

- init과 systemd
 - 최신 배포판은 systemd가 init를 대치하여 부팅 서비스
 - init는 없어지지는 않았지만 제 기능을 하지 못함.
- systemd의 기능
 - 서비스, 시스템 로그, 사용자, 시간, 원격, cgroup 관리 등
 - 시스템의 전반적인 관리를 전부 systemd가 담당
- systemd 관련 명령어와 설정 파일
 - systemd 관련 명령어들: /lib/systemd 디렉터리
 - systemd 설정파일들: /etc/systemd 디렉터리
 - # Is /etc/systemd
 - bootchart.conf journal.conf logind.conf system system.conf user user.conf
 - service, target 설정 파일: /lib/systemd/system 디렉터리

데몬

- 데몬(daemon)
 - 후면에서 동작하면서 특정한 서비스를 제공하는 프로세스
 - 대부분의 데몬들은 시스템이 부팅되면서 시작
 - 서비스 요청이 없을 때는 후면 프로세스로서 대기 상태에 있다가 서비스 요청이 들어오면 이를 서비스하게 된다.
- 리눅스 시스템에서 데몬에 의해 제공되는 서비스
 - 명령 예약 실행(at)
 - 웹(http),
 - 원격 접속(ssh),
 - 파일 전송(ftp)

데몬의 동작 방식

• 독자형(standalone) 데몬

- 스스로 동작하는 데몬으로 후면에서 항상 동작
- 서비스 요청이 오면 즉시 서비스
- 명령 예약 실행을 위한 atd, cron 등

• 슈퍼데몬(superdaemon)

- 평소에는 슈퍼데몬만 동작하고
- 서비스 요청이 오면 슈퍼데몬이 해당 서비스 데몬을 동작시킨다.
- 독자형 데몬 보다 응답이 시간이 좀 더 걸릴 수 있지만 자원을 효율적으로 사용할 수 있다.

• 슈퍼데몬 inetd

- inetd(또는 xinetd) 데몬으로 네트워크 서비스를 담당한다.
- ftp, ssh, telnet 등의 네트워크 서비스 요청이 오면 해당 데몬을 동작시킴.

주요 데몬

데몬	설명
atd	특정 시간에 실행하도록 예약한 명령을 실행한다.
cron	주기적으로 실행하도록 예약한 명령을 실행한다.
httpd	웹 서비스를 제공한다.
sshd	원격 접속 서비스를 제공한다.
vsftpd	파일 송수신 서비스를 제공한다.
nfsd	네트워크 파일 시스템 서비스를 제공한다.
named	DNS 서비스를 제공한다.
sendmail	이메일 서비스를 제공한다.

커널 데몬

- 커널이 담당하는 메모리 관리, 스케줄링, 입출력 등을 수행하는 데몬
- 대괄호([])로 표시됨
 - 3번 프로세스부터 커널 데몬 프로세스
 - 이들의 부모 프로세스 ID(PPID)는 모두 2번 kthreadd임.
- 커널 스레드 데몬([kthreadd])
 - 모든 커널 데몬의 조상 데몬, 다른 커널 데몬들을 생성하는 역할

```
# ps -ef
        PID
UID
              PPID C STIME TTY
                                    TIME CMD
               0 0 9월30 ? 00:00:23 /sbin/init auto noprompt
root
         2
              0 0 9월30 ?
                            00:00:00 [kthreadd]
root
                             00:00:00 [rcu_gp]
              2 0 9월30 ?
root
         4 2 0 9월30 ?
                             00:00:00 [rcu_par_gp]
root
         6 2 0 9월30 ?
                            00:00:00 [kworker/···]
root
               2 0 9월30 ?
                             00:00:00 [mm percpu wq]
root
```

service

• 서비스 데몬에 대해서 실행, 중지, 재시작 등의 직접 제어

service 서비스 명령어

시스템 서비스를 조작하기 위해 서비스 데몬을 명령어에 따라 제어한다.

예

service cron status

cron.service - Regular background program processing daemon

Loaded: loaded(/lib/systemd/system/cron.service; enabled;

Active: active(running) since Tue 2021-08-17 19:44:47 PDT;

Main PID: 715 (cron)

. . .

service cron stop

service cron start

명령어	설명
start	시비스 데몬을 실행한다.
stop	서비스 데몬을 중지한다.
restart	서비스 데 몬을 재시작한다.
status	서비스 데몬의 상태를 보여준다.

14.5 systemd 관련 명령어

부팅 관련 systemd 명령어

명령어	설명
systemd-analyze	부팅에 걸린시간 표시
systemd-analyze blame	부팅 시 서비스별 걸린 시간표시
systemd-analyze plot	부팅 시 서비스별 걸린 시간을 정렬해서 표시
avatame analyza aritical abain	부팅 시 시간이 많이 걸리는 서비스들을 트리 형태로
systemd-analyze critical-chain	엮어서(chain) 표시
journalctl	부팅을 포함한 전체적인 시스템 로그
journalctl -b	마지막 부팅 이후 시스템 로그
hostnamectl	호스트 이름표시
hostnamectl set-hostname 이름	호스트이름 변경

systemd-analyze

Startup finished in 4.762s (kernel) + 8.278s (userspace) = 13.041s graphical.target reached after 8.247s in userspace

서비스 상태 표시: systemctl 명령어

systemd의 서비스를 관리하기 위한 명령어로 서비스 상태를 표시할 수 있다

명령어	서비스 상태 표시 기능
systemctl	전체 서비스 목록
systemctl list-unit-files	서비스 목록 (활성화 여부 표시)
systemctlfailed	부팅 시 실행에 실패한 서비스목록
systemctl is-enabled 서비스명	특정 서비스 활성화 여부
systemctl is-active 서비스명	특정 서비스 현재 동작 여부
systemctl status -l 서비스명	특정 서비스의 자세한 상태

systemctl status cron

• cron.service - Regular background program processing daemon

Loaded: loaded(/lib/systemd/system/cron.service; enabled;

Active: active(running) since Tue 2021-08-17 19:44:47 PDT;

Main PID: 715 (cron)

. . .

서비스 제어: systemctl 명령어

• systemd의 서비스를 관리하기 위한 명령어로 서비스를 제어할 수 있다

명령어	서비스 제어 기능
systemctl enable 서비스명	서비스 활성화
systemctl disable 서비스명	서비스 비활성화
systemctl start 서비스명	서비스 시작
systemctl stop 서비스명	서비스 종료
systemctl restart 서비스명	서비스 재시작
systemctl reload 서비스명	서비스 갱신
systemctl kill 서비스명	서비스 관련 프로세스도 모두 죽임
systemctl daemon-reload	서비스 설정 정보를 데몬에 반영

- 예: cron 서비스를 활성화하여 부팅 시 자동으로 실행
 - # systemctl enable cron
- 예: 서비스를 바로 직접 실행
 - # systemctl start cron

14.6 소프트웨어 설치

우분투 소프트웨어 센터

- 간단하게 소프트웨어를 설치하거나 삭제하기 위한 앱스토어
- 여러 패키지 모음을 분류하여 관리
- [설치함]에서 이미 설치되어 있는 패키지들을 확인

우분투 소프트웨어 센터

- [Development]
 - 관련 소프트웨어 패키지를 보여줌
 - 우측 상단에 체크 표시가 되어 있는 것은 이미 설치되어 있는 것
 - [설치] 혹은 [제거] 가능
 - 검색으로 원하는 소프트웨어 패키지를 찾을 수 있음

자동 소프트웨어 설치 도구 apt

- apt(Advanced Package Tool)
 - 우분투 리눅스에서 사용하는 deb 기반의 시스템
 - 패키지 파일 다운로드부터 설치, 삭제 및 업데이트 자동

apt 명령	기존 명령	기능
apt install 패키지+	apt-get install	패키지를 설치한다.
apt remove 패키지+	apt-get remove	패키지를 삭제한다.
apt update	apt-get update	패키지 목록을 갱신한다.
apt upgrade	apt-get upgrade	패키지를 업그레이드한다.
apt autoremove	apt-get autoremove	불필요한 패키지를 제거한다.
apt search 패키지	apt-cache search	키워드로 패키지를 검색한다.
apt show 패키지	apt-cache show	패키지 정보를 출력한다.
apt list		패키지 목록을 출력한다.

데비안 패키지 매니저 dpkg

• 데비안 패키지

- 리눅스의 표준 패키지 중 하나로 확장자는 .deb
- 설치할 파일들과 이름, 버전, 설명 등의 정보를 포함하는 패키지 파일

● 장점

- 바이너리 파일로 구성되어 있어 컴파일이 필요 없다.
- 쉽고 빠른 패키지 설치 및 삭제가 가능하다.
- 기존에 설치한 패키지를 삭제하지 않고 바로 업그레이드 가능하다.
- 패키지의 설치 상태를 검증할 수 있다.
- 질의를 통하여 패키지에 대한 자세한 정보를 확인할 수 있다.

데비안 패키지 매니저 dpkg

모드	사용법	설명
패키지 목록 출력	# dpkg -l [패키지명]	설치된 패키지 목록을 출력
패키지 설치	# dpkg -i 패키지파일	패키지를 설치하거나 업그레이드
패키지 상세 정보	# dpkg -s 패키지명	패키지의 상세 정보를 출력
패키지 삭제	# dpkg -r 패키지명	패키지를 삭제
설치 파일 목록	# dpkg -L 패키지명	지정한 패키지가 설치한 파일 목록 출력
파일 검색	# dpkg -S 경로명	지정한 파일이 포함된 패키지 검색
패키지 파일 내용	# dpkg -c 패키지파일	패키지 파일의 내용 출력
πμэιαι πιοι ネネ	# dpkg -x 패키지파일 디렉	패키지 파일의 내용을 지정한 디렉터리에
패키지 파일 추출	터리	추출

핵심 개념

- 슈퍼 유저는 root 계정으로 로그인하여 시스템 관리의 모든 측면 을 수행할 수 있다.
- init 혹은 systemd 프로세스는 보통 fork/exec를 반복적으로 수 행하여 시스템 운영에 필요한 다양한 프로세스들(주로 서비스 데 몬 프로세스)을 새로 생성한다.
- init 프로세스는 부팅 시에 런레벨에 따라 설정된 서비스 프로그 램들을 로딩하여 실행한다.