MATH 325 - Lecture 1

Lambros Karkazis

September 27, 2017

1 Logic and Proof Construction

<u>Statement:</u> a sentence with a truth value (True or False) Ex: are these statements?

- 1. It is windy: No, 'windy' is not well-defined.
- 2. Life is good: no, 'good' is not well-defined.
- 3. Every continuous function is differentiable: Yes (This statement is false).
- 4. There is a continous function that is differentiable: Yes (This statement is true).
- 5. $x^2 5x + 6 = 0$: No (x is not defined).
- 6. This sentence is false: No, cannot determine a truth value.

<u>Compound Statement:</u> formed from simpler component statements. A table of <u>truth values for a statement</u> and all its components is a truth table.

1.1 Common Connectives:

• Negation: not $\tilde{}$ or \neg

• Conjunction: and \wedge

• Disjunction: or \vee

• Implication: if...then... \Longrightarrow

• Biconditional: iff... \iff

P	Q	$P \wedge Q$	$P \lor Q$	$P \Longrightarrow Q$	$P \iff Q$
T	Т	Т	T	Т	Т
Т	F	F	Т	F	F
F	Т	F	Т	F	F
F	F	F	F	T	Т

1.1.1 Precendence Rules:

$$\neg \to \land \to \lor \to \Longrightarrow \to \Longleftrightarrow$$

1.1.2 Example:

 $P \iff Q$ is equivalent to $(P \wedge Q) \vee (\neg P \wedge \neg Q)$

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$\neg P \land \neg Q$	$(P \land Q) \lor (\neg P \land \neg Q)$
T	Т	F	F	Т	F	T
Т	F	F	Τ	F	F	F
F	Т	Т	F	F	F	F
F	F	Т	Τ	F	Т	T