NATIONAL UNIVERSITY OF HO CHI MINH CITY

KHOA CÔNG NGHỆ THÔNG TIN

Nguyễn Quốc Huy - 21127511

LỚP 21CLC02 - VẬT LÝ ĐẠI CƯƠNG

Mục lục

1	CHI	ƯƠNG 3: CÁC ĐỊNH LUẬT BẢO TOÀN	3
	1.1	BÀI 1	3
	1.2	BÀI 2	3
	1.3	BÀI 3	4
	1.4	BÀI 4	4
	1.5	BÀI 7	5

1 CHƯƠNG 3: CÁC ĐỊNH LUẬT BẢO TOÀN

1.1 **BÀI 1**

Bài 1. Một quả bóng có khối lượng 0,7 kg chuyển động theo phương nằm ngang với vận tốc 5 m/s đến va chạm với bức tường thẳng đứng rồi bật ngược trở lại với vận tốc 2 m/s. Tính độ lớn của độ biến thiên động lượng của quả bóng.

Độ biến thiên động lượng:

$$\Delta p = P_2 - P_1 = mv_2 - mv_1 = 0, 7.5 - 0, 7.(-2) = 4, 9 \text{ (kg.m/s)}$$

1.2 **BÀI 2**

Bài 2. Một xe tải nặm 2100 kg chuyển động về hướng bắc với tốc độ 41 km/h rồi chuyển lái về hướng đông và tăng tốc lên tốc độ 51 km/h.

- a) Tính độ biến thiên động năng của xe.
- b) Tính độ biến thiên động lượng của xe.

Độ biến thiên động năng:

$$\Delta K = K_2 - K_1 = \frac{mv_2^2}{2} - \frac{mv_1^2}{2} = \frac{m(v_2^2 - v_1^2)}{2}$$

$$\rightarrow \Delta K = \frac{2100(14,17^2-11,14^2)}{2} \approx 7,5.10^4(J)$$

Độ biến thiên động lượng:

$$\Delta \vec{p} = \vec{P_2} - \vec{P_1}$$
 nhưng hướng Bắc \perp hướng Đông

$$\Rightarrow p = \sqrt{P_2^2 + P_1^2} = \sqrt{(mv_2)^2 + (mv_1)^2}$$

$$\Leftrightarrow \sqrt{(2100.14, 17)^2 + (2100.11, 4)^2} \approx 3, 8.10^4 (kg.m/s)$$

1.3 **BÀI 3**

Bài 3. Một quả dừa nặng 2 kg rơi xuống một dòng sông. Giả sử tốc độ của quả dừa khi chạm mặt nước là 5 m/s và lực do nước tác dụng lên quả dừa trong thời gian quả dừa chìm xuống là 50 N.

- a) Hỏi quả dừa chìm xuống nước bao xa?
- b) Tính độ lớn xung lượng của lực do nước tác dụng lên quả dừa.

Ta có :
$$\Delta K + \Delta U = A$$

$$\Leftrightarrow \frac{mv^2}{2} + mgS = F_n.S \Leftrightarrow \frac{2.5^2}{2} - 9, 8.2.S = 50.S$$

(Chọn gốc tọa độ khi vật dừng ở nước)

$$\Leftrightarrow S = 0.82(m)$$

Xung lượng :
$$|\Delta \vec{p}| = \vec{P_2} - \vec{P_1}$$

$$\Rightarrow |mv_2 - mv_1| = |-mv_1| = |-2.5| = 10(m/s)$$

1.4 **BÀI 4**

Bài 4. Một người đàn ông nặng 91 kg nằm trên bề mặt có ma sát không đáng kể đẩy một viên đá nặng 68 g ra xa mình, viên đá có vận tốc 4,0 m/s. Tính tốc độ của người đàn ông sau khi đẩy viên đá.

Ta xét định luật bảo toàn động lượng:

$$\vec{p_1} = \vec{p_2} \Leftrightarrow m_1 v_1 = m_2 v_2 \Leftrightarrow 91.v_1 = 0,068.4$$

$$\rightarrow v_1 = \frac{0.068.4}{91} \approx 3.10^{-3} (m/s)$$

1.5 **BÀI 7**

Bài 7. Một viên đạn có khối lượng m = 10 g đâm vào con lắc đo tốc độ có khối lượng M = 2 kg, kết quả là co lắc nâng lên một độ cao h = 12 cm so với vị trí ban đầu của nó. Giả sử viên đạn vẫn còn nằm trong con lắc. Tính tốc độ ban đầu của viên đạn.

Gọi V là vận tốc của hệ sau va chạm (hệ gồm viên đạn và con lắc).

Theo định luật bảo toàn động lượng:

$$mv + 0 = (m+M)V \Rightarrow V = \frac{mv}{m+M}$$
 (1)

Áp dụng định luật bảo toàn cơ năng:

$$\frac{(m+M)V^2}{2} = (m+M).g.h \Rightarrow V = \sqrt{2gh} \ (2)$$

Từ (1) và (2)
$$\Leftrightarrow V = \frac{mv}{m+M} = \sqrt{2gh}$$

$$\Leftrightarrow v = \frac{m+M}{m}.\sqrt{2gh} = \frac{0.01+2}{0.01}.\sqrt{2.10.0, 12} \approx 3, 1.10^2 (m/s)$$