Pulmonary Nodules: Challenging Cases

Anthony P. Reeves
Vision and Image Analysis Group
School of Electrical and Computer Engineering
Cornell University

Lung Cancer Workshop VIII, May 2, 2011

Outline

Nodule Challenges

- 1. Large complex lesions
- 2. Different scan resolutions (slice thickness)
- 3. Vessel attachments
- 4. Scanner artifacts/motion
- 5. Part-solid nodules
- 6. Size is an issue
- 7. Cardiac motion/respiration motion
- 8. Non-solid nodules

Easy Cases

Web-system growth tables for Case 1

Group 1: 3D automated analysis

Nodule Information

Nodule	Date	Size (mm) from X-Y Extent	Size (mm) from Volume	Volume (mm ³)	Resolution
T1	Jun 13 2000	9.38	8.63	336.19	0.1875 x 0.1875 x 1.00
T2	Jul 19 2000	10.75	9.19	406.25	0.1875 x 0.1875 x 1.00
T3	Sep 26 2000	11.63	10.48	603.27	0.1875 x 0.1875 x 1.00

Growth Information

Nodules	Date T1	Date T2	Interval (Days)	Volume			Notes
				% Change	DT	GI	Notes
T1-T2	Jun 13 2000	Jul 19 2000	36	20.84%	131.78	17.1	
T1-T3	Jun 13 2000	Sep 26 2000	105	79.44%	124.47	18.2	
T2-T3	Jul 19 2000	Sep 26 2000	69	48.50%	120.96	18.8	

VIA

Nasty Case

Spiculations and many vessels T1-T2: 203 days

From the Prevent Cancer Foundation:
Public Lung Database To Address Drug Response

T2: Central slice + ROI

xres: 0.187 zres: 1.0

50 mm

Different scan resolutions for T1 and T2: $0.546 \times 2.5 \text{ vs. } 0.187 \times 1.0 \text{ Voxels in T1 are 21 times larger than voxels in T2}$

T1: Volumetric Segmentation

50 mm

Volumetric analysis worked for this case. It considered the central region (red) as solid and the surrounding area (blue) as sub-solid

Large Complex Nodules

- Standard volumetric methods designed for small nodules fail
- Solution: use a density based method that evaluates the change in density over a fixed size region as a surrogate for volume change
- Outcome: all nodules have successful size change estimates

Case	Interval (days)	% Size Change	GI (%/month)	DT (days)
0414	44	9.0	6.2	350
1297	56	21.2	11.0	202
2461	29	12.7	13.4	168

VIA

Nasty Case

Zero-Change Dataset T1-T2: ~5 minutes

_

From the VOLCANO '09 Challenge

Zero-change automated segmentation

Montage of slices of region of interest

Segmentation of nodule

VIA

Scanner artifacts?

Issue: Different number of slices on scanner reconstructions

 Z-compensation method. A volumetric evaluation method that is insensitive to linear transformations in the Z dimension.

30.3%

 Measured volume change: Standard volumetric method

Z-compensation method 12.6%

VIA

Size Range

4.86 mm (60 mm³) 29.14 mm (12961 mm³) 47 mm 49 mm Cornell University Vision and Image Analysis Group

Addressing Challenging Nodules

- 1. Issue: Very Complex Large Nodules
 Use Density Change measurement method
- 2. Issue: Scanner slice variation (due to reconstruction artifacts?)

Use a method with Z-compensation

- 3. Issue: Very small Nodules
 Use a detailed algorithm that corrects for differences in segmentation
- 4. Issue: Different scan parameters

 Careful image resampling can help mitigate this issue
- 5. Issue: Patient/scanner motion, inconsistent data Take additional scans

VIA