1. KOLOKVIJ IZ MATEMATIKE 2

Univerzitetni študij

8. april 2011

1. [25T] Izračunajte obseg in ploščino paralelograma, ki je napet na vektorja $\vec{a} + 2\vec{b}$ in $2\vec{a} - 3\vec{b}$, kjer je $|\vec{a}| = 2$, $|\vec{b}| = 1$, kot med vektorjema \vec{a} in \vec{b} pa je enak $\frac{\pi}{3}$.

Rešitev:

Najprej izračunamo dolžini vektorjev $\vec{a} + 2\vec{b}$ in $2\vec{a} - 3\vec{b}$:

$$\begin{aligned} |\vec{a} + 2\vec{b}| &= \sqrt{(\vec{a} + 2\vec{b}) \cdot (\vec{a} + 2\vec{b})} = \sqrt{|\vec{a}|^2 + 4\vec{a} \cdot \vec{b} + 4|\vec{b}|^2} = 2\sqrt{3}, \\ |2\vec{a} - 3\vec{b}| &= \sqrt{(2\vec{a} - 3\vec{b}) \cdot (2\vec{a} - 3\vec{b})} = \sqrt{4|\vec{a}|^2 - 12\vec{a} \cdot \vec{b} + 9|\vec{b}|^2} = \sqrt{13}. \end{aligned}$$

Obseg paralelograma:

$$o = 2|\vec{a} + 2\vec{b}| + 2|2\vec{a} - 3\vec{b}| = 4\sqrt{3} + 2\sqrt{13}.$$

Ploščina paralelograma:

$$p = |(\vec{a} + 2\vec{b}) \times (2\vec{a} - 3\vec{b})| = |2\underbrace{\vec{a} \times \vec{a}}_{=0} + 4\vec{b} \times \vec{a} - 3\vec{a} \times \vec{b} - 6\underbrace{\vec{b} \times \vec{b}}_{=0}| = 7|\vec{a} \times \vec{b}| = 7\sqrt{3}.$$

- 2. [25T] Dana je ravnina π , ki jo določajo točke A(1,2,3), B(-1,1,-2) in C(-3,-1,2).
 - a) Določite enačbo ravnine π .
 - b) Določite točko na ravnini π , ki leži najbližje točki T(9, -6, 0).

Rešitev:

a) Najprej določimo enačbo ravnine. Normala je vektorski produkt dveh vektorjev, ki ležita v ravnini:

$$\vec{a} = \vec{AB} = (-2, -1, -5),$$

$$\vec{b} = \vec{AC} = (-4, -3, -1),$$

$$\vec{n} = \vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & -1 & -5 \\ -4 & -3 & -1 \end{vmatrix} = (-14, 18, 2),$$

$$d = (-14, 18, 2) \cdot (1, 2, 3) = 28.$$

Enačba ravnine:

$$-7x + 9y + z = 14.$$

b) Iščemo pravokotno projekcijo točke T na ravnino π . Dobimo jo kot presečišče ravnine in premice, ki je pravokotna na ravnino π in gre skozi točko T. Enačba premice v vektorski in parametrični obliki:

$$\vec{r} = (9, -6, 0) + t(-7, 9, 1),$$

 $x = 9 - 7t, \quad y = -6 + 9t \text{ in } z = t.$

Vstavimo paramerično izražavo enačbe premice v enačbo ravnine in dobimo vrednost parametra t:

$$-63 + 49t - 54 + 81t + t = 14$$
$$131t = 131$$
$$t = 1$$

Pravokotna projekcija: S(2,3,1).

3. [25T] Obravnavajte sistem enačb glede na parameter a. V primeru, da je sistem rešljiv, poiščite rešitev.

$$x + y + z = 3$$
$$2x + ay + z = 2$$
$$y + z = -1$$

Rešitev:

Najprej izračunamo rang razširjene matrike koeficientov:

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 2 & a & 1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & a - 2 & -1 & -4 \\ 0 & 1 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 - a & a - 6 \end{bmatrix}$$

Obravnavamo primere:

- a = 1: ni rešitve
- $a \neq 1$: natanko ena rešitev

$$x = 4$$
, $y = \frac{5}{1-a}$, $z = \frac{a-6}{1-a}$

4. [25T] Izračunajte lastne vrednosti matrike $A = B \cdot C$, kjer je

$$B = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & -1 \\ -3 & -1 & 0 \end{bmatrix} \quad \text{in} \quad C = \begin{bmatrix} -9 & -4 & -1 \\ 25 & 11 & 4 \\ -12 & -6 & 0 \end{bmatrix}.$$

Poiščite še lastni vektor, ki pripada najmanjši lastni vrednosti.

Rešitev:

Najprej izračunamo matriko A:

$$A = B \cdot C = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & -1 \\ -3 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} -9 & -4 & -1 \\ 25 & 11 & 4 \\ -12 & -6 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix}.$$

Lastne vrednosti matrike A so rešitve enačbe det $(A - \lambda I) = 0$:

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & -1 & 4 \\ 3 & 2 - \lambda & -1 \\ 2 & 1 & -1 - \lambda \end{vmatrix} = (1 - \lambda)(\lambda^2 - \lambda - 6) = (1 - \lambda)(\lambda - 3)(\lambda + 2) = 0$$

Dobimo tri lastne vrednosti matrike A: $\lambda_1=1,\ \lambda_2=3$ in $\lambda_3=-2$. Najmanjša lastna vrednost je $\lambda_3=-2$, za katero izračunamo še lastni vektor:

$$A + 2I = \begin{bmatrix} 3 & -1 & 4 \\ 3 & 4 & -1 \\ 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 3 & -1 & 4 \\ 0 & 5 & -5 \\ 0 & 5 & -5 \end{bmatrix} \sim \begin{bmatrix} 3 & -1 & 4 \\ 0 & 5 & -5 \\ 0 & 0 & 0 \end{bmatrix} \implies x_3 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}.$$

2