习题 1.2.7(3) 中由递推关系

$$x_1 = 1, \quad x_{n+1} = 1 + \frac{x_n}{1 + x_n} \quad (n = 1, 2, \dots)$$

决定的数列的通项.

- (1) 求"不动点". 设 x 满足 $x = 1 + \frac{x}{1+x}$ (即将递推关系中的 x_n 和 x_{n+1} 均用 x 代入), 即 $x^2 x 1 = 0$. 解得 $x = \frac{1 \pm \sqrt{5}}{2}$, 任取其中之一,例如取 $x = \alpha \equiv \frac{1 + \sqrt{5}}{2}$.
 - (2) 令 $x_n = \alpha + t_n$, 则利用 $\alpha^2 \alpha 1 = 0$ 得到 $\{t_n\}$ 满足的递推关系

$$t_1 = 1 - \alpha$$
, $t_{n+1} = \frac{2 - \alpha}{1 + t_n + \alpha} = \frac{3 - \sqrt{5}}{2} t_n = \frac{\alpha^{-2} t_n}{1 + t_n + \alpha}$

(3) 取倒数. 令 $s_n = \frac{1}{t_n}$, 得到线性的递推关系

$$s_1 = \frac{1}{1 - \alpha} = -\alpha, \quad s_{n+1} = \alpha^4 s_n + \alpha^2,$$

再设 s 满足 $s = \alpha^4 s + \alpha^2$, 解得 $s = \frac{\alpha^2}{1 - \alpha^4} = -\frac{1}{\sqrt{5}}$.

$$(4) \diamondsuit s_n = u_n - \frac{1}{\sqrt{5}}, \, 则$$

$$u_1 = \frac{1}{\sqrt{5}} - \alpha = -\frac{1}{\sqrt{5}}\alpha^2, \quad u_{n+1} = \alpha^4 u_n,$$

它的解为 $u_n = -\frac{1}{\sqrt{5}}\alpha^{4n-2}$.

(5) 代回, 得

$$x_n = \alpha + \frac{1}{u_n - \frac{1}{\sqrt{5}}} = \frac{1}{\alpha} \frac{\alpha^{4n} - 1}{\alpha^{4n-2} + 1}.$$