

Workshop 2

COMP90051 Machine Learning Semester 1, 2021

Zoom in workshops

To make the most of online workshops, please:

- ensure your mic is muted unless you have the floor
- make use of non-verbal feedback (e.g. raise hand)
- use chat to communicate discretely (e.g. send a pm)
- participate in class discussion

Agenda

- 1. Icebreaker
- 2. Python ecosystem for ML
- 3. Refresher: Bayes' theorem
- 4. Worksheet on Bayesian inference

Icebreaker

Is your system ready to go?

- You should have installed Anaconda on your system before today's workshop. If not, please install it now.
- Anaconda is a Python distribution tailored for scientific computing
- Most of the packages we need are installed by default
- Worksheets will be distributed as Jupyter Notebooks

Python ML ecosystem

Why Python for ML?

- It's popular in academia and industry
- There's a huge collection of open-source packages/libraries
- Acts as a glue between low-level libraries so can be relatively fast

Top 5 libraries for beginners to master

- Library for working with large multidimensional arrays
- High-level functions for arrays

- Machine learning library
- Includes implementations of most models covered in this course (exception: neural nets)

- 2D plotting library
- Provides similar interface to **MATIAB**

- Scientific computing library
- Functionality includes: statistics/random number generation, linear algebra, optimisation, special functions, integration

manipulation of tabular data

to DataFrames and dplyr in R

Provides similar functionality

Library for analysis and

We'll see some of these libraries later...

Deep learning frameworks

Probabilistic programming frameworks

Bayesian inference

Recall from Lecture 2c

COMP90051 Statistical Machine Learning

Tools of probabilistic inference

- Bayesian probabilistic inference
 - Start with prior $P(\theta)$ and likelihood $P(X|\theta)$
 - Observe data X = x
 - * Update prior to posterior $P(\theta|X=x)$

Bayes Rule: reverses order of conditioning

$$P(\theta|X=x) = \frac{P(X=x|\theta)P(\theta)}{P(X=x)}$$

Marginalisation: eliminates unwanted variables

Bayes

These are general tools of probability and not specific to **Bayesian** stats/ML

This quantity is called the evidence

Worksheet 2