

Complexity Classes and Performance Metrics

Quantum Capita Selecta

Bernardo Villalba Frías, PhD

b.r.villalba.frias@hva.nl

Turing Machine

- Mathematical model of computation
- Abstract machine that manipulates symbols
- Infinite memory tape divided into cells
- Church—Turing thesis
 - If a problem can be solved by an algorithm, there exists a Turing machine that solves it

Computability

- Theoretical limits of computer programming
- Understand which tasks:
 - Can be performed (computable)
 - Easy to establish
 - Write/test a program to solve the task
 - Cannot be performed (non computable)
 - Harder to prove
 - Rule out every possibility
 - Even with unlimited resources:
 - Memory
 - Time

Computational problems

- Decision problems:
 - Make decision about problems
 - Is p a prime number?
 - yes/no question of the input values
- Search problems:
 - Search for solutions to problems:
 - Find a prime factor of an integer N
- Optimization problems:
 - Find the best solution from all feasible solutions

Undecidable problem

- No program can always give the right answer
 - Sometimes gives wrong answers
 - Sometimes runs forever without any answer
- Examples:
 - The halting problem:

Given a computer program and an input, will the program terminate or will it run forever?

Hilbert's Entscheidungsproblem:

Is there an algorithm that can decide in a finite amount of steps whether any given mathematical statement is provable given some fixed system of axioms?

Tractability

- Establish a basic classification for decidable problems:
 - Tractable:
 - Easy, efficient
 - Can be solved in polynomial time
 - Intractable:
 - Hard, inefficient
 - Can be solved in non—polynomial (exponential or worst) time

- Problems vs Algorithms:
 - "Given a set of n numbers, sort the numbers in increasing numerical order"
 - Insertion sort algorithm
 - Merge sort algorithm

- Analysis of algorithms
 - Complexity of explicitly given algorithms
 - Big–O notation
 - Expressed as a function of the input size

Big O Notation Summary

Notation	Туре	Examples	Description
O(1)	Constant	Hash table access	Remains constant regardless of the size of the data set
O(log n)	Logarithmic	Binary search of a sorted table	Increases by a constant. If n doubles, the time to perform increases by a constant, smaller than n amount
O(<n)< td=""><td>Sublinear</td><td>Search using parallel processing</td><td>Performs at less than linear and more than logarithmic levels</td></n)<>	Sublinear	Search using parallel processing	Performs at less than linear and more than logarithmic levels
O(n)	Linear	Finding an item in an unsorted list	Increases in proportion to n. If n doubles, the time to perform doubles
O(n log(n))	n log(n)	Quicksort, Merge Sort	Increases at a multiple of a constant
O(n²)	Quadratic	Bubble sort	Increases in proportion to the product of n*n
O(c ⁿ)	Exponential	Travelling salesman problem solved using dynamic programming	Increases based on the exponent n of a constant c
O(n!)	Factorial	Travelling salesman problem solved using brute force	Increases in proportion to the product of all numbers included (e.g., 1*2*3*4)

- What about the complexity of a problem?
- Computational Complexity Theory:
 - Classify problems according to resource usage
 - Time
 - Memory
 - ... and relate these classes to each other

Complexity classes

- Depending on the analyzed resource:
 - TIME(f(n)):
 - Set of all decision problems, solved by a Turing machine in O(f(n)) time
 - Examples: P, NP, EXPTIME, NEXPTIME, etc.
 - SPACE(f(n)):
 - Set of all decision problems, solved by a Turing machine with O(f(n)) memory
 - Examples: L, NL, PSPACE, NPSPACE, etc.

Complexity classes

- P: Solved by a deterministic Turing machine in polynomial time
- NP: Solved by a non-deterministic Turing machine in polynomial time
 - Solutions are verifiable by a deterministic Turing machine in polynomial time
- EXPTIME: Solved by a deterministic Turing machine in exponential time
- NEXPTIME: Solved by a non-deterministic Turing machine in exponential time

Complexity classes

- Example of P problem:
 - Given a list of n integers and an integer k, is there an integer in the list greater than k?
 - Solved in O(n)
 - Iterate the list and check against k
- Example of NP problem:
 - Given a list of n integers and an integer k, is there a set of integers, within the list, that when summed equal k?
 - Verifiable in polynomial time, but ...
 - Solved in exponential time

Completeness and hardness

- Almost all of the "hard" NP problems are the same "hard" problem in different guises
- A problem is said to be NP-hard if any NP problem can be efficiently reduced to it
- A problem is said to be NP-complete if it is NP-hard and in NP

Completeness and hardness

- Example of NP—complete problem:
 - Given a Boolean circuit, is there an assignment of its inputs that makes the output True?
- Example of NP-hard problem:
 - Given a list of n cities, the distance between each pair of cities and some cost k. Is there a route with length l such that l < k that visits every city exactly once?

Randomness

- What if we allow randomized algorithms?
- Bounded—error Probabilistic Polynomial time (BPP)
 - Solved by a probabilistic Turing machine in polynomial time
 - Bounded error rate of 1/3
 - Basically:
 - Algorithms are allowed to make a coin toss
 - Guaranteed to run in polynomial time
 - Gives the correct answer at least 2/3 of the time

Quantum Complexity Classes

- Bounded–error Quantum Polynomial time (BQP)
 - Set of all decision problems solvable by a quantum computer in polynomial time with an error probability of, at most, 1/3 for all instances
 - Problem in BQP:
 - There is a quantum algorithm that solves it
 - With high probability (p > 2/3)
 - Guaranteed to run in polynomial time
 - NP problems in BQP:
 - Integer factorization

Quantum Complexity Classes

- Quantum Merlin–Arthur (QMA)
 - Set of all decision problems verifiable by a quantum computer in polynomial time with an error probability of, at most, 1/3 for all instances
 - A prover sends a message to a verifier
 - The message is verified in polynomial time
 - If the answer is YES:
 - Verified with p > 2/3
 - Using a proof that runs in polynomial time
 - In a quantum computer
 - QMA relates to BQP as NP relates to P
 - Same for QMA—hard and QMA—complete

General Overview

Church—Turing thesis

- The original thesis states:
 - Any algorithmic process can be simulated using a Universal Turing Machine
- The strong Church—Turing thesis:
 - Any algorithmic process can be simulated efficiently using a Universal Turing Machine
- The extended Church—Turing thesis:
 - Any algorithmic process can be simulated efficiently using a Probabilistic Turing Machine
- The quantum extended Church—Turing thesis:
 - Any realistic physical computing device can be efficiently simulated by a fault—tolerant quantum computer

Quantum Computing Performance

- Amount of useful work accomplished by a quantum computer per unit of time
- The QPU is supported by a classical runtime system
- Performance metrics must consider the whole system
- Narrowed down to 3 key factors:
 - Scale: size of the problems to be encoded
 - Quality: size of the quantum circuit to be executed
 - Speed: number of primitive circuits per second

Scale

- Given by the number of qubits
- Determines the amount of information that can be encoded
 - Size of solvable problems
- Highly dependent on:
 - Available material
 - Fabrication technologies
- Main challenge:
 - Increase scale while maintaining quantum coherence

Quality

- How faithfully a quantum circuit can be implemented
- Quantum Volume:
 - Single–number metric
 - Width of the largest random square circuit that the quantum computer can successfully run
 - Sensitive to:
 - Coherence
 - Gate fidelity
 - Measurement fidelity
 - Connectivity
 - Compilers

Speed

- How many circuits a QPU can execute per second
- Execution time includes:
 - Updating parameters to the circuit
 - Submitting the job to the QPU
 - Executing on the QPU
 - Sending results back
- QPU speed → Circuit Layer Operations Per Second (CLOPS)
- Can be increased by:
 - High—fidelity and fast gates and readout
 - Advanced control electronics
 - Reducing latencies

