<u>CS 458 Homework 3</u> Due Date: 11 November 2024, 11:59 pm

Question 1: (5 points)

Part 1: By Hand

- 1. Compute $7^{13} \mod 23$ using the square-and-multiply algorithm.
 - Write down the binary representation of the exponent 13.
 - · Follow the steps of the algorithm, showing each squaring and multiplication step.
 - Write your answer as $7^{13} \mod 23$.

Part 2: Programming

- 2. Implement the square-and-multiply algorithm in a programming language of your choice (e.g., Python, Java, or C++) to compute $x^y \mod n$.
 - ullet Your function should take three inputs: base x, exponent y, and modulus n.
 - The function should output $x^y \mod n$.

Sample Input and Output:

• For inputs x=5, y=20, and n=35, your function should output 25, as shown in the slide.

3. Test Cases

- · Use your program to compute the following:
 - $5^{13} \mod 23$
 - $\bullet \quad 12^{17} \mod 29$
 - $10^{25} \mod 37$

4. Analysis

- Compare the output of your program with hand calculations (if possible) for one of the test
 cases.
- ullet Discuss why the square-and-multiply algorithm is more efficient than directly calculating x^y before taking the modulus.

Additional Instructions

- Show all intermediate steps in Part 1 to demonstrate your understanding of the square-andmultiply process.
- Include comments in your code explaining each part of the algorithm.

Example Solution Format

For Part 1:

- Write out the binary representation of the exponent.
- Show each step in the sequence, including each square and multiply operation.

For Part 2:

· Include your code, formatted and commented.

Question 2: (5 points)

Objective: Understand the steps of the Diffie-Hellman Key Exchange (DHKE) protocol and perform the calculations manually.

Given:

- 1. Public Parameters:
 - ullet Prime number p=23
 - Base $\alpha=5$
- 2. Private Keys:
 - Alice's private key a=6
 - Bob's private key b=15

Tasks:

- 1. Public Key Calculation:
 - Calculate Alice's public key $A = \alpha^a \mod p$.
 - Calculate Bob's public key $B=lpha^b \mod p$.
- 2. Exchange Public Keys:
 - Imagine that Alice and Bob exchange their public keys. Write down the values of A and B
 that each party receives.
- 3. Common Secret Calculation:
 - Calculate the common secret key K_{AB} that Alice and Bob will use for secure communication.
 - $\bullet \quad \text{For Alice:} \ K_{AB} = B^a \mod p.$
 - ullet For Bob: $K_{AB}=A^b \mod p$.

ullet Verify that both parties obtain the same shared secret key $K_{AB}.$

4. Explanation:

ullet Explain why the common secret K_{AB} is the same for both Alice and Bob, even though they used different calculations.

Solution Format:

- Show all steps of the calculations clearly.
- Explain the concepts where needed to demonstrate your understanding of the DHKE protocol.