

Lesson 6: Data Cleaning

Lecturer: Dr. Nguyen Tuan Long

Email: ntlong@neu.edu.vn

Mobile: 0982 746 235

Overview Data Cleaning

What We Will Cover Today

- Introduction: Why is Data Cleaning Crucial?
- Part 1: Basic Data Cleaning: The First Steps
- Part 2: Handling Outliers: Identifying and Managing Anomalies
- Part 3: Handling Missing Data: A Comprehensive Guide
- Part 4: Best Practices: Automating with Scikit-learn Pipelines
- Summary & Key Takeaways

Why is Data Cleaning Crucial?

"Garbage In, Garbage Out"

- Machine learning models learn patterns from the data they are given.
- Flawed, noisy, or incorrect data leads to unreliable and inaccurate models.
- Goal of Data Cleaning: To create a high-quality, reliable dataset that serves as a solid foundation for model training.

Impact of Clean Data:

- Improved model performance and accuracy.
- More robust and generalizable models.
- Prevents errors during model training.

Part 1 - Basic Data Cleaning

Foundational Steps for Data Integrity

- Removing Zero-Variance Features: Features that have the same value for all samples.
- Removing Duplicate Rows: Identical observations that can bias the model.

```
# Import necessary libraries
import pandas as pd
import numpy as np
import io
```

We will use a simplified version of the 'oil-spill' dataset for illustration.

```
# Create sample oil-spill data
csv_data = '''f_1,f_2,f_3,f_4,f_5
1,25.4,3.8,0,10
2,22.3,4.1,0,12
3,26.1,3.7,0,10
4,24.8,3.9,0,11
2,22.3,4.1,0,12''' # Duplicate row

df_oil = pd.read_csv(io.StringIO(csv_data))
print("Initial oil-spill data:")
print(df_oil)
```


Zero-Variance Features

Concept:

A feature where all values are identical has a variance of 0.

$$Var(X) = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

These features provide no information for the model to learn from.

- Scikit-learn Class: sklearn.feature_selection.VarianceThreshold
- A simple transformer that removes all features with variance below a certain threshold.

Practice with VarianceThreshold

Usage:

- Initialize the transformer: transformer = VarianceThreshold(threshold=0)
- Apply to data: data_cleaned = transformer.fit_transform(data)

```
# Import the required class
from sklearn.feature_selection import VarianceThreshold
# Use VarianceThreshold to remove columns with zero variance
transformer = VarianceThreshold(threshold=0)
# Note: VarianceThreshold only works on numerical data
data_transformed = transformer.fit_transform(df_oil)
# Get the names of the retained columns
retained_cols = transformer.get_feature_names_out(input_features=df_oil.columns)
# Create a new DataFrame
data cleaned = pd.DataFrame(data transformed, columns=retained cols)
print(data_cleaned)
```


Constant Categorical Features: nunique

Concept:

 The same principle applies to categorical features. A column where every entry is the same category (e.g., 'USA') offers no predictive value.

- Pandas Method: pandas.DataFrame.nunique()
- This method counts the number of unique values in each column.
- Usage:
 - Identify columns where df.nunique() == 1.
 - Drop these columns using df.drop().

```
df_oil.drop(columns=df_oil.columns[df_oil.nunique()==1])
```


Duplicate Rows: Concept & Tool

Concept:

- Rows that are exact copies of each other.
- Risks: Can lead to data leakage and cause the model to overweight certain patterns.

- Pandas Method: pandas.DataFrame.drop duplicates()
- A straightforward method to identify and remove duplicate rows.

```
# Check for duplicate rows
print(f"\nNumber of duplicate rows:
{df_oil.duplicated().sum()}")

# Remove duplicate rows
data_no_dup = df_oil.drop_duplicates()
print("\nData after removing duplicate rows:")
print(data_no_dup)
```


Lab #1: Practice with full data

- The data information: link
- Removing Zero-Variance Features
- Removing Duplicate Rows.

```
url_lab1 = 'https://raw.githubusercontent.com/jbrownlee/Datasets/master/oil-
spill.csv'

df_lab1 = pd.read_csv(url_lab1, header=None)
df_lab1.head()
```


Part 2 - Handling Outliers

What are Outliers?

- Observations that are significantly different from other observations.
- Causes: Measurement errors, data entry mistakes, or genuinely rare events.
- Impact: Can skew statistical measures and disproportionately influence model parameters.

Data set

We will use the 'housing' dataset for illustration. This dataset contains information about house prices, and extremely large or small values could be outliers.

```
# Create sample housing data
csv_housing = '''CRIM,ZN,INDUS,CHAS,NOX,RM,AGE,DIS,RAD,TAX,PTRATIO,B,LSTAT,MEDV
0.00632,18,2.31,0,0.538,6.575,65.2,4.09,1,296,15.3,396.9,4.98,24
0.02731,0,7.07,0,0.469,6.421,78.9,4.9671,2,242,17.8,396.9,9.14,21.6
0.02729,0,7.07,0,0.469,7.185,61.1,4.9671,2,242,17.8,392.83,4.03,34.7
0.03237,0,2.18,0,0.458,6.998,45.8,6.0622,3,222,18.7,394.63,2.94,33.4
0.06905,0,2.18,0,0.458,7.147,54.2,6.0622,3,222,18.7,396.9,5.33,36.2
0.9,80,20,0,0.6,12,90,2,5,666,20,350,30,500''' # Row that may contain outliers

df_housing = pd.read_csv(io.StringIO(csv_housing))
print("Initial housing data:")
df_housing
```


Outlier Detection: Standard Deviation Method

Concept:

- Assumes data follows a Gaussian (normal) distribution.
- Identifies data points outside a specified number of standard deviations (σ) from the mean (μ).
- A common rule is to use 3 standard deviations.

When to Use:

 When your data is normally or nearnormally distributed.

Standard deviation

% of values expected to lie in the symmetric interval (-zσ, zσ)

1σ	68.2689492%
2σ	95.4499736%
3σ	99.7300204%
4σ	99.993666%
5σ	99.9999426697%

Practice with Standard Deviation

Detect outliers in one column

- Upper bound: $\mu + 2 \times \sigma$
- Lower bound: $\mu 2 \times \sigma$

```
# Consider the MEDV column (house price)
data_col = df_housing['MEDV']
# Calculate the limits
mean, std = data_col.mean(), data_col.std()
cut off = std * \frac{1}{2} # Using 2 std to make outliers more visible in this small dataset
lower, upper = mean - cut off, mean + cut off
# Identify outliers
outliers = df_housing[(data_col < lower) | (data_col > upper)]
print(f"Found {len(outliers)} outliers.")
print(outliers[['RM', 'MEDV']])
# Remove outliers
data_cleaned_outlier = df_housing[(data_col >= lower) & (data_col <= upper)]</pre>
print(f"\nOriginal data size: {len(df_housing)}")
print(f"Data size after cleaning: {len(data_cleaned_outlier)}")
```


Outlier Detection: Interquartile Range (IQR) Method

Concept:

- A robust method that does not assume a specific data distribution.
- Uses quartiles to define boundaries.
 - IQR: Q3 (75th percentile) Q1 (25th percentile)
 - Upper bound: $Q3 + 1.5 \times IQR$
 - Lower bound: $Q1 1.5 \times IQR$

When to Use:

 For skewed data or when you need a method that is less sensitive to extreme values.

Practice with IQR

```
# Reusing the MEDV column
data col = df housing['MEDV']
# Calculate Q1, Q3, and IQR
Q1 = data_col.quantile(0.25)
Q3 = data_col.quantile(0.75)
IQR = Q3 - Q1
# Calculate the limits
lower iqr, upper iqr = Q1 - 1.5 * IQR, Q3 + 1.5 * IQR
# Identify outliers
outliers_iqr = df_housing[(data_col < lower_iqr) | (data_col > upper_iqr)]
print(f"Found {len(outliers_iqr)}_outliers using IQR.")
print(outliers igr[['RM', 'MEDV']])
```

Outlier Detection: Local Outlier Factor (LOF)

Concept:

- An unsupervised, model-based approach that identifies outliers based on local density.
- Excellent for identifying outliers in a multivariate (multi-feature) setting.

- Scikit-learn Class: sklearn.neighbors.LocalOutlierFactor
- Returns 1 for inliers and -1 for outliers.
- Correct Train/Test Usage (Important!)
 - On Training Data: Use .fit_predict() to learn the data distribution and identify outliers. These outliers should then be removed: yhat_train = lof.fit_predict(X_train)
 - On Test Data: Use only .predict(). Do not fit again and do not remove outliers from the test set: yhat_test = lof.predict(X_test)
 - Warning: Never fit on the combined dataset before splitting. This causes data leakage.

Practice with LocalOutlierFactor

```
# Import the required class
from sklearn.neighbors import LocalOutlierFactor
```

Important Parameters:

- `n_neighbors` (int, default=20): The number of neighbors used to calculate the local density. This is the most important parameter to tune.
- `contamination` (float, default='auto'): The expected proportion of outliers in the dataset (e.g., 0.1 for 10%). This parameter affects the model's decision threshold. The default 'auto' will determine the threshold based on the original algorithm's publication.

```
# Use LOF on the entire housing dataset
lof = LocalOutlierFactor()
yhat = lof.fit_predict(df_housing)

# Filter out the outliers (LOF labels outliers as -1)
mask = yhat != -1
print(f"Number of outliers found: {sum(yhat == -1)}")
print(f"Data size after removing outliers: {df_housing[mask].shape}")
```


Lab #2: Practice with full data set

Data set information: <u>link</u>

```
column names =
    "CRIM",
              # Tội phạm bình quân đầu người theo thị trấn
    "ZN",
                Tỷ lệ đất ở > 25,000 sq.ft
    "INDUS",
              # Tỷ lệ diện tích cho doanh nghiệp phi bán lẻ
    "CHAS", # Biến giả sông Charles (=1 nếu gần sông, 0 nếu không)
              # Nồng độ oxit nitơ (phần triệu)
    "NOX",
    "RM",
              # Số phòng trung bình mỗi căn hộ
    "AGE",
              # % căn hộ xây dựng trước 1940
              # Khoảng cách bình quân đến 5 trung tâm việc làm
    "DIS",
              # Chỉ số khả năng tiếp cận đường cao tốc
    "RAD",
              # Thuế bất động sản
    "TAX",
    "PTRATIO", # Tỷ lệ học sinh/giáo viên
    "B",
              # 1000(Bk - 0.63)^2, với Bk % dân da đen
    "LSTAT", # % dân có địa vị kính tế xã hội thấp
    "MEDV"
              # Giá tri trung vi của nhà (ngàn USD)
url lab2 = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.csv"
df_lab2 = pd.read_csv(url_lab2, header=None, names=column_names)
df lab2
df lab2.head()
```


Part 3 - Handling Missing Data

The Challenge of Missing Values

- Most machine learning algorithms cannot handle missing values (NaN).
- The way we handle them can significantly impact model performance.
- We will explore four main strategies:
 - 1. Removing Data
 - 2. Statistical Imputation
 - 3. KNN Imputation
 - 4. Iterative Imputation

We will use a simplified version of the 'horse-colic' dataset for illustration.

```
# Create sample horse-colic data
csv_horse = '''hospital_number,rectal_temp,pulse,respiratory_rate,pain,outcome
530101,38.5,66,28,3,2
534817,39.2,88,20,?,1
530334,38.3,40,?,3,1
529048,39.1,164,84,4,2
526254,?,72,?,2,1'''

# Read data, considering '?' as a missing value
df_horse = pd.read_csv(io.StringIO(csv_horse), na_values='?')
print("Initial horse-colic data:")
print(df_horse)
```


Missing Data: Removing Rows/Columns

Concept:

- The simplest strategy: delete any row containing missing values.
- Tool: pandas.DataFrame.dropna()

Pros & Cons:

- Pros: Quick and easy.
- Cons: Can result in significant data loss and may introduce bias.

```
# Check the number of missing values
print("\nNumber of missing values per column:")
print(df_horse.isnull().sum())

# Remove rows with missing values
data_dropped = df_horse.dropna()
print("\nData after dropping missing rows:")
print(data_dropped)
```

Missing Data: Statistical Imputation

Concept:

 Replace missing values with a statistical summary of the column (mean, median, mode).

- Scikit-learn Class: sklearn.impute.SimpleImputer
- Usage:
 - Initialize with a strategy: imputer = SimpleImputer(strategy='mean')
 - Apply to data: data_imputed = imputer.fit_transform(data)

Practice with SimpleImputer

```
# Import the required class
from sklearn.impute import SimpleImputer
```

Important Parameters:

- 'strategy' (string, default='mean'): The imputation strategy. Possible values are 'mean', 'median', 'most frequent', or 'constant'.
- `fill_value` (string or number, default=None): When `strategy='constant'`, this parameter is used to specify the value to be imputed.

```
# Use SimpleImputer
imputer = SimpleImputer(strategy='mean')
data_imputed_mean = imputer.fit_transform(df_horse)

print("Data after imputing with the mean:")
print(pd.DataFrame(data_imputed_mean, columns=df_horse.columns))
```


Missing Data: K-Nearest Neighbors (KNN) Imputation

Concept:

- A multivariate approach that finds the k most similar rows (neighbors).
- Imputes the missing value using the average value from those neighbors.

- Scikit-learn Class: sklearn.impute.KNNImputer
- Usage:
 - Initialize with number of neighbors: imputer = KNNImputer(n_neighbors=5)
 - Apply to data: data_imputed = imputer.fit_transform(data)

Practice with KNNImputer

```
# Import the required class
from sklearn.impute import KNNImputer
```

Important Parameters:

- `n_neighbors` (int, default=5): The number of neighbors to use for imputation.
- 'weights' (string, default='uniform'): The weight function used in prediction. ''uniform' means all neighbors are weighted equally. ''distance' means that closer neighbors will have a greater influence.

```
# Use KNNImputer
knn_imputer = KNNImputer(n_neighbors=2, weights='uniform')
data_imputed_knn = knn_imputer.fit_transform(df_horse)

print("Data after KNN imputation:")
print(pd.DataFrame(data_imputed_knn, columns=df_horse.columns))
```


Missing Data: Iterative Imputation (MICE)

Concept:

- An advanced strategy that treats imputation as a machine learning problem.
- It models each feature with missing values as a function of all other features.

- Scikit-learn Class: sklearn.impute.IterativeImputer (Experimental)
- Usage:
 - Initialize the imputer: imputer = IterativeImputer()
 - Apply to data: data_imputed = imputer.fit_transform(data)

Practice with IterativeImputer

```
# Import the required classes
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
```

Important Parameters:

- `estimator` (object, default=BayesianRidge()): The regression model used to predict missing values. Other models like `RandomForestRegressor` can be used.
- 'max iter' (int, default=10): The maximum number of imputation rounds.
- random_state` (int): To ensure reproducible results.

```
# Use IterativeImputer
iter_imputer = IterativeImputer(max_iter=10, random_state=0)
data_imputed_iter = iter_imputer.fit_transform(df_horse)

print("Data after iterative imputation:")
print(pd.DataFrame(data_imputed_iter, columns=df_horse.columns))
```


Lab #3: Practice with full data: horse-colic

The data information: link

```
url_lab3 = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse-colic.csv"
col names = [
     "surgery", "age", "hospital_number", "rectal_temp", "pulse", "respiratory_rate", "temp_extremities", "peripheral_pulse",
     "mucous_membrane", "capillary_refill", "pain", "perīstalsis",
     "abdominal_distension", "nasogastric_tube", "nasogastric_reflux", "nasogastric_reflux_ph", "rectal_exam_feces", "abdomen",
     "packed_cell_volume", "total_protein", "abdomocentesis_appearance",
     "abdomocentesis_total_protein", "outcome", "surgical_lesion",
     "lesion 1", "lesion 2^{\overline{}}, "lesion 3", "lesion 4"
df lab3 = pd.read csv(url lab3, header=None, names=col names, na values="?")
df lab3.head()
```


Part 4 - Automating with Pipelines

The Danger of Data Leakage

- Data Leakage: When information from outside the training dataset is used to create the model.
- **Example:** Calculating the mean for imputation using the *entire* dataset before splitting into train/test sets.
- This leads to overly optimistic performance metrics and models that fail in production.

The Solution: Scikit-learn Pipelines

What is a Pipeline?

- Tool: sklearn.pipeline.Pipeline
- It chains together multiple steps (e.g., an imputer and a classifier) into a single object.
- When you call .fit(), it correctly fits the transformers only on the training data.
- Usage:
 - Define steps as a list of tuples:
 steps = [('imputer', SimpleImputer()), ('model', RandomForestClassifier())]
 - Create the pipeline: pipeline = Pipeline(steps)
 - Use like a normal model: pipeline.fit(X_train, y_train)

Details on Components within the Pipeline

Let's break down the tools we're using:

- sklearn.model_selection.train_test_split
 - **Purpose:** A crucial function that splits your dataset into two subsets: one for training the model and one for testing its performance on unseen data.
 - Why? This prevents the model from "memorizing" the data and ensures an honest evaluation of its ability to generalize.

sklearn.impute.SimpleImputer

- Purpose: As we've learned, this transformer handles missing (NaN) values.
- Role in Pipeline: It's the first step, ensuring the data is complete before it's passed to the model.

sklearn.ensemble.RandomForestClassifier

- **Purpose:** A powerful classification model that builds multiple decision trees and merges their outputs for a more accurate prediction.
- Role in Pipeline: It's the final step, the estimator that learns from the preprocessed data.

Practice with Pipeline

('imputer', SimpleImputer(strategy='median')),

RandomForestClassifier(random_state=42))

pipeline = Pipeline([

('model',

])

```
# Import all necessary classes for this example
 from sklearn.model_selection import train_test_split
 from sklearn.pipeline import Pipeline
 from sklearn.impute import SimpleImputer # Already imported, but good practice to have it here
 from sklearn.ensemble import RandomForestClassifier
 from sklearn.metrics import accuracy score
                                                      # 4. Train the entire Pipeline on the training
# 1. Prepare data from horse-colic
                                                      set
# Drop rows where the target variable 'outcome' is
                                                      # Scikit-learn will automatically:
missing
                                                      # - Call imputer.fit_transform(X_train)
df_lab3_clean = df_lab3.dropna(subset=['outcome'])
                                                      # - Then use the result to train
X = df_lab3_clean.drop('outcome', axis=1)
                                                      model.fit(X train transformed, y train)
y = df lab3 clean['outcome']
                                                      pipeline.fit(X_train, y_train)
# 2. Split the data
X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.3,
random state=42)
                                                      fitting)
# 3. Create the Pipeline
# This Pipeline will consist of 2 steps:
# 'imputer': Impute missing values with the median.
# 'model': Train a Random Forest model.
```

5. Evaluate the Pipeline on the test set # Scikit-learn will automatically: # - Call imputer.transform(X test) (NOT re-# - Then use the result to predict model.predict(X test transformed) y pred = pipeline.predict(X test) accuracy = accuracy score(y test, y pred) print(f"Pipeline has been trained.") print(f"Accuracy on the test set: {accuracy:.4f}")

Summary and Key Takeaways

- Start with the Basics: Always remove zero-variance features and duplicates first.
- 2. Choose the Right Outlier Method: Use IQR for robustness, or model-based methods like LOF for multivariate data.
- 3. Select an Imputation Strategy: Progress from SimpleImputer to KNNImputer or IterativeImputer as needed.
- 4. ALWAYS Use Pipelines: Encapsulate your preprocessing and modeling steps to prevent data leakage and create production-ready code

