



Hadley Wickham and Garrett Grolemund (2016) R for Data Science, O'Reilly Media, Inc.





Part 2: Dr. Masatoshi Katabuchi, July 23
Plant Ecologist @ Xishuangbanna Tropical Botanical Garden



Part 3: Dr. Hyunseung Kang, July 30 Statistician @ University of Wisconsin-Madison



### Let's tidy!



Hadley Wickham and Garrett Grolemund (2016) R for Data Science, O'Reilly Media, Inc.

### Let's tidy your data!

But what is tidy data?



- Each variable must have its own column
- Each observation must have its own row
- Each value must have its own cell







TokyoR#91 material from Masatoshi Katabuchi Wickham, Hadley. 2014. "Tidy Data." Journal of Statistical Software, Articles 59 (10): 1–2.

### **Exercise 1**

Download the file "exercise\_1.csv":

https://www.dropbox.com/s/68jloxnvdcblfx2/exercise 1.csv?dl=0

- 1. Explain why this data is untidy.
- 2. Rearrange the data frame to make it tidy.

| Field   | Treatment1 | Treatment2 | Treatment3 |
|---------|------------|------------|------------|
| Field_A | 124        | 15         | 274        |
| Field_B | 121        | 18         | 312        |
| Field_C | 110        | 25         | 290        |
| Field_D | 119        | 15         | 219        |
| Field_E | 68         | 18         | 241        |
| Field_F | 93         | 24         |            |
| Field_G | 133        | 19         | 203        |

## Let's tidy your data!

### Non-tidy data



| Field   | Treatment_1 | Treatment_2 |
|---------|-------------|-------------|
| Field_A | 124         | 15          |
| Field_B | 121         | 18          |
| Field_C | 110         | 25          |

### **Tidy data**



| Field   | Treatment   | Nematode<br>number |
|---------|-------------|--------------------|
| Field_A | Treatment_1 | 124                |
| Field_B | Treatment_1 | 121                |
| Field_C | Treatment_1 | 110                |
| Field_A | Treatment_2 | 15                 |
| Field_B | Treatment_2 | 18                 |
| Field_C | Treatment_2 | 25                 |

### Other common mistakes

#### With comments / titles

| 1 | A           | В          | С        | D                  | E               | F | G              | ŀ |
|---|-------------|------------|----------|--------------------|-----------------|---|----------------|---|
| 1 |             |            | Experime | nt I - harvested o | on July 3, 2021 |   |                |   |
| 2 | Treatment   | Genotype   | Block    | Pi                 | Pf              |   |                |   |
| 3 | Treatment_A | genotype_1 | B1       | 1000               | 5000            |   | Comments:      |   |
| 4 | Treatment_A | genotype_2 | B1       | 1000               | 3500            |   | Blah blah blah |   |
| 5 | Treatment_A | genotype_3 | B1       | 1000               | 1500            |   |                |   |
| 6 | Treatment_B | genotype_1 | B1       | 1000               | 4000            |   |                |   |
| 7 | Treatment_B | genotype_2 | B1       | 1000               | 2500            |   |                |   |
| 8 | Treatment_B | genotype_3 | B1       | 1000               | 1400            |   |                |   |

#### No data entry in the first row / first column

| 4 | Α  | В           | С          | D     | E    | F    |
|---|----|-------------|------------|-------|------|------|
| 1 | Ø. |             | Ti-        |       |      |      |
| 2 |    | Treatment   | Genotype   | Block | Pi   | Pf   |
| 3 |    | Treatment_A | genotype_1 | B1    | 1000 | 5000 |
| 4 |    | Treatment_A | genotype_2 | B1    | 1000 | 3500 |
| 5 |    | Treatment_A | genotype_3 | B1    | 1000 | 1500 |
| 6 |    | Treatment_B | genotype_1 | B1    | 1000 | 4000 |
| 7 |    | Treatment_B | genotype_2 | B1    | 1000 | 2500 |
| 8 |    | Treatment_B | genotype_3 | B1    | 1000 | 1400 |

#### Variables are combined for one column

| A | A                    | В     | С    | D    |
|---|----------------------|-------|------|------|
| 1 | Treatment            | Block | Pi   | Pf   |
| 2 | treatmentA_genotype1 | B1    | 1000 | 5000 |
| 3 | treatmentA_genotype2 | B1    | 1000 | 3500 |
| 4 | treatmentA_genotype3 | B1    | 1000 | 1500 |
| 5 | treatmentB_genotype1 | B1    | 1000 | 4000 |
| 6 | treatmentB_genotype2 | B1    | 1000 | 2500 |
| 7 | treatmentB_genotype3 | B1    | 1000 | 1400 |

## Why learn R?

- Free, open source, cross platform
- 10,000+ "packages"
- Works on many data types
- Produced high-quality graphics
- Reproducibility and repeatability



### Introduction of R & R Studio









A popular software to write R scripts and interact with the R software



# R Studio



https://www.r-

# **Tidyverse**



# Tidying data using {tidyr}

Let's tidy the data from the exercise 1 using {tidyr}!

|         | Treatment3 | Treatment2 | Treatment1 | Field   |
|---------|------------|------------|------------|---------|
| • Gathe | 274        | 15         | 124        | Field_A |
|         | 312        | 18         | 121        | Field_B |
| · &     | 290        | 25         | 110        | Field_C |
|         | 219        | 15         | 119        | Field_D |
| •       | 241        | 18         | 68         | Field_E |
|         | 206        | 24         | 93         | Field_F |
| Spre    | 203        | 19         | 133        | Field_G |
| • Spie  | 244        | 20         | 58         | Field_H |
| •       | 233        | 17         | 101        | Field_I |
| :       | 227        | 17         | 138        | Field_J |





Spreading

|         |             | man can         |  |  |
|---------|-------------|-----------------|--|--|
| Field   | Treatment   | Nematode number |  |  |
| Field_A | treatment_1 | 124             |  |  |
| Field_B | treatment_1 | 121             |  |  |
| Field_C | treatment_1 | 110             |  |  |
| Field_D | treatment_1 | 119             |  |  |
| Field_E | treatment_1 | 68              |  |  |
| Field_F | treatment_1 | 93              |  |  |
| Field_G | treatment_1 | 133             |  |  |
| Field_H | treatment_1 | 58              |  |  |
| Field_I | treatment_1 | 101             |  |  |
| Field_J | treatment 1 | 138             |  |  |
| Field_A | treatment_2 | 15              |  |  |
| Field_B | treatment_2 | 18              |  |  |
| Field_C | treatment_2 | 25              |  |  |
| Field_D | treatment_2 | 15              |  |  |
| Field_E | treatment_2 | 18              |  |  |
| Field_F | treatment_2 | 24              |  |  |
| Field_G | treatment_2 | 19              |  |  |
| Field_H | treatment_2 | 20              |  |  |
| Field_I | treatment_2 | 17              |  |  |
| Field_J | treatment_2 | 17              |  |  |
| Field_A | treatment_3 | 274             |  |  |
| Field_B | treatment_3 | 312             |  |  |
| Field C | treatment 3 | 290             |  |  |

## gather()

- Use when column names are not names of variables, but values of a variable.

#### - Input:

data,key column (created from col names),values column (fill the key variable),A range of columns to gather

| subid | Treatment | NematodeCount |
|-------|-----------|---------------|
|       | T1        | 124           |
|       | T1        | 121           |
|       | T1        | 110           |
|       | T1        | 119           |
|       | T1        | 68            |
|       | T1        | 93            |
|       | T1        | 133           |
|       | T1        | 58            |
|       | T1        | 101           |
|       | 10 T1     | 138           |
|       | T2        | 15            |
|       | 2 T2      | 18            |
|       | 3 T2      | 25            |
|       | T2        | 15            |
|       | T2        | 18            |
|       | 6 T2      | 24            |
|       | 7 T2      | 19            |
|       | T2        | 20            |
|       | 1         |               |

Kev

Value

# **Demonstration**



# Tidying data using {tidyr}

## Let's import your data to R



# But before you import... set up a working directory

- Open Rstudio
- File > New project > New directory > Empty project
- Enter a name for this new folder
- Choose a convenient location
- Click "Create project"

Check which the working directory is: **getwd()**Set working directory: **setwd()** 

### But before you import... create a new R script

- File > New File > R script
- Save it in your project directory
- Look on the top left of the R Studio window to see where it's saved



### Importing data

#### **CSV** file is probably the best

```
15 read.csv("exercise_1.csv")
```

Default package for importing csv file

```
18 library(readr)
19 read_csv("exercise_1.csv")
```

A function to read csv file

- Require {readr} package

#### Importing excel file is still possible but not common..

```
21 library(readxl)
22 read_excel("exercise_1.xlsx")
```

A function to read excel file

- Require {readxl} package

### **Exercise 2**

- 1. Create a working directory and a new R script.
- 2. Import the file you tidied in the exercise 1 to R.

# **Data export**

| File type | Package | Import<br>function | Export function   |                                 |
|-----------|---------|--------------------|-------------------|---------------------------------|
| CSV       | Default | read.csv()         | write.csv()       |                                 |
| CSV       | readr   | read_csv()         | write_csv()       | Part of {tidyverse}             |
| Excel     | readxl  | read_excel()       | -                 | Part of {tidyverse} Import only |
| Excel     | writexl | -                  | write_excel(<br>) | Export only                     |

### **Tidyverse**

Let's install Tidyverse packages for next week session.

10 install.packages("Tidyverse")



### R coding practices using {swirl}

```
10 install.packages("swirl")
11 library(swirl)
12 swirl()
```



To familiarize R, {swirl} is a great place to start!

Please install (swirl) and learn the basic R coding as well as data analysis.

Knowing basic codes becomes handy for the following sessions.

- 1: R Programming: The basics of programming in R
- 2: Regression Models: The basics of regression modeling in R
- 3: Statistical Inference: The basics of statistical inference in R
- 4: Exploratory Data Analysis: The basics of exploring data in R
- 5: Don't install anything for me. I'll do it myself.

See you next week!

### Thanks to

Functional Programming by Sara Altman, Bill Behrman and Hadley Wickham

https://github.com/dcl-docs/prog

#### Introduction to Data Handling @TokyoR91 by Masatoshi Katabuchi

https://mattocci27.github.io/assets/TokyoR91/data\_handling.html#1

#### BeginnerR Special データの読み書き@TokyoR91 by Osamu Machida

https://docs.google.com/presentation/d/1XQk Gz9Jo660jADxQ78deas5LeRXejqn2z1yHIv2gLQ/edit#slide=id.gc7dee91765 1 10

#### Data Carpentry R basics by Tobin Magle

https://datacarpentry.org/R-ecology-lesson/

