Design and Analysis of Algorithms

L14: Divide and Conquer Advantages & Disadvantages Decrease & Conquer

Dr. Ram P Rustagi
Sem IV (2019-H1)
Dept of CSE, KSIT/KSSEM
rprustagi@ksit.edu.in

Resources

• Text book 1: Sec 5.1-5.3 - Levitin

Divide and Conquer

- Advantages
 - Solution becomes easier as problem is divided into smaller size
 - Efficient compared to brute force approach
 - Binary search
 - Large number multiplication
 - Matrix Multiplication
 - Mergesort, quicksort
 - Smaller problems can be solved in parallel
 - Can improve algorithm running time
 - Can make effficient use of Caches
 - Small problem can be solved in cache itself

Divide and Conquer

- Dis-advantages
 - Makes use of recursion heavily, thus computation may slow down a bit
 - Usage of stacks (by recursion) requires more memory
 - Implementation of recursion requires clarity of thought. At times, simple iteration is good enough
 - e.g. print all N-digit decimal numbers
 - Even a minuscle error in recursion termination condition may result in infinite loop (invocation)
 - Program will run out of memory (stack)
 - Can not solve a problem where recursion depth is more than system allows.
 - When subproblems may repeat (e.g. same sub matrix)
 - Then it may do duplication of computation.

Decrease and Conquer

- Reduce the problem instance to a smaller instance problem of the same type
- Solve the smaller instance problem
- Use the solution of smaller instance problem to solve the original bigger instance problem
- Implementation choices
 - Top down (use recursion) or bottom up
 - Incremental approach /inductive solution

Differences with Divide and Conquer

- Divide and Conquer
 - Given problem instance divided into smaller instances
 - All smaller instances are solved (conquered)
 - Solutions of smaller instances are merged
 - Recursion: T(n) = aT(n/b) + f(n)
- Decrease and Conquer
 - Given problem instance reduced to a single smaller instance.
 - Only one smaller instance problem is to be solved
 - Use smaller instance problem to solve bigger instance problem
 - Recursion T(n) = T(m) + f(n), where m < n

Types of Decrease and Conquer

- A:Decrease by a constant value $c (n \rightarrow n-c)$
 - Usually decrease is by 1
 - Examples
 - Insertion sort
 - Graph traversal (DFS, BFS)
 - Topological sort
 - Generating permutations, subsets
- <u>B</u>:Decrease by a constant factor $c (n \rightarrow n/c)$
 - Still only 1 sub-problem to solve
 - Usually decreases by half i.e. divide in equal half (c=2)
 - Examples:
 - Binary search
 - Exponentiation by squaring

Types of Decrease and Conquer

- C: Decrease by a variable size c_i (n→n-c_i) at ith step
 - The size decrease varies on each iteration
 - Depends upon input problem instance
 - Examples
 - Euclid's algorithm (greatest common divisor)

```
gcd(m,n) \rightarrow gcd(n,m_{mod n})
```

Alternatively

```
if m>n
   gcd(m-n,n)
else
   gcd(n, m-n)
```

-Selection by partition

Types of Decrease and Conquer

- Nim-like games (2 player)
 - A pile of n discs
 - Each player picks min 1, max m discs
 - The person who picks last is winner.
 - Soln:
 - when will 1st person to pick loses?
 - when n=1

Differences with Other Approaches

- Problem instance: compute xn
- Decrease and Conquer approach

$$T(n) = T(n-1)+1 = n-1$$

- Brute force approach
 - Multiply x by itself n-1 times

$$T(n) = n-1$$

- Divide and Conquer approach
 - Multiply $x^{n/2}$ by $x^{n/2}$

$$T(n) = 2T(n/2) + 1 = n-1$$

- Decrease by a constant factor
 - Multiply k times $x^{n/k}$ by itself

$$T(n) = T(n/k) + k-1 = n-1$$

D&C Appln: Celebrity Problem

- Q10 (Levitin):
 - A celebrity among a group of N people is defined as
 - a person who knows nobody but
 - is known to everybody else.
 - Identify the celebrity by only asking the questions to the people of the form:
 - "Do you know him/her?"
 - Design an efficient algorithm to identify a celebrity or determine that the group has no such person.
 - How many questions does your algorithm need to ask in the worst case?

- Approach 1: Using Adjacency matrix
 - Build a graph with adjacency matrix A
 - Ask each person if he knows all other persons
 - Total num of Qs: $n(n-1) = 0(n^2)$
 - A[i,j]=1 if i^{th} person knows person j
 - -0 otherwise
 - Find a column k, such that \forall i
 - $\Sigma A (i, k) = n-1$, and
 - $\bullet \Sigma A (k, i) = 0$
- person k is celebrity

- Approach 2: Using Adjacency List
 - Build a graph with Adjacency List
 - Ask each person if he knows all other persons
 - Total num of Qs: $n(n-1) = 0(n^2)$
 - Draw an edge (i, j) if person i knows person j.
 - Find a node k such that its
 - indegree is (n-1), and
 - outdegree is 0.
- person k is celebrity

- Approach 3: Using Decrease and conquer.
- Design function celebrity (N) which returns k
 - if k is non-zero, then k is celebrity
 - if k is zero, there there is no celebrity.
- celebrity (N) Using Decrease and conquer.
 - Invoke k=celebrity (N−1)
 - if k=N, and N does not know anyone, N is celebrity
 - -Complexity: O(N)
 - if $k \neq N$, and N knows k, k is celebrity, complexity O(1)
 - Else no celebrity
- Time Complexity:

$$T(n) = T(n-1) + O(n) = O(n^2)$$

- Approach 4: Using stacks
- Push all persons(elements) on the stack
 - stack size is N
- Repeat until stack size becomes 1
 - pop two persons A, B from stacks
 - If A knows B, then A is not a celebrity
 - Push B on the stack
 - If A doesn't know B, then B is not a celebrity
 - Push A on the stack.
- The last person on the stack is celebrity (if does not know any one)
- Complexity: 3N-1 = O(N)
 - -2N pop operations, N push operations

Summary

- Advantages and disadvantages of Divide and Conquer
- Decrease and conquer approach