

거대 인공 지능 모델을 위한 고효율 컴퓨팅 인프라

Large Al Models and Computing Challenge

김홍연 (kimhy@etri.re.kr) 한국전자통신연구원

CONTENTS

- **01** 거대 AI 모델을 위한 컴퓨팅
- **02** 고효율 AI 컴퓨팅 기술 연구
- 03 추진체계및공개SW전략

0] 거대 AI 모델을 위한 컴퓨팅

01 거대 AI 모델 발전

• 거대 AI 모델 출현 및 발전 가속화

- GPT-3(OpenAI)
 - 트랜스포머 모델, 1,750억개 파라미터, 퓨/제로샷(few/zero-shot) 전이 학습을 통해 하나의 모델로 다양한 태스크 수행 가능 (출처: OpenAl)
- PaLM(Google)
 - 트랜스포머 모델, 5,400억 파라미터, 6종 학습 데이터(소셜 미디어, 웹페이지, 책, Github, Wikipedia, News), 프롬프트 튜닝을 사용하여 단일 모델로 프로그래밍, 수학 문제 해결, 다국어 번역, 논리적 추론 가능 (출처: Google)
- Gato(DeepMind)
 - 멀티 모달 멀티 태스크 트랜스포머 모델로 아타리 게임, 이미지 캡션, 채팅, 블록 쌓기 등 600여 가지 태스크 수행 가능한 범용 에이전트 출시 (출처: DeepMind)
- → 보상, 모델 거대화, 학습 데이터 다양화로 AGI 달성 가능 주장

(출처: Reward is Enough, DeepMind, Al Journal '21)

01 AI 모델 거대화 이유

• Scaling Law: 모델 사이즈가 클수록 인공지능의 정확도 향상

¹⁾ Goyal et al., Self-supervised Pretraining of Visual Features in the Wild, arXiv 2021.

²⁾ Kaplan et al., Scaling Laws for Neural Language Models, arXiv 2020.

01 초거대 AI 모델 발전의 한계

- AI 모델 크기 증가 속도 → 무어의 법칙(Moore's Law) 상회 → 성능 장벽
- 초거대 AI 모델 학습 → 대규모 에너지 필요 → 에너지 장벽

01 초거대 AI 모델 발전의 한계

• GPU 클러스터/클라우드 비용(TCO) 부담 폭증 → 비용 장벽

	Megatron-LM 사례 (DGX A100 하이퍼 클러스터 활용)				
목표 효율	파라메터수	1조	1,750억	17억	
	유효 성능 (Pflops)	502	143.80	4	
	컴퓨팅 효율	<mark>52%</mark>	<mark>45%</mark>	<mark>44%</mark>	
가속기 성능스펙	GPU	A100	A100	A100	
	TF16 성능 (TFlops)	312	312	312	
요구성능	구축 성능 (PFlops)	965.4	319.6	10	
	총 GPU 수	3,072	1,024	32	
	총 서버 수 (8 GPUs/server)	384	128	4	
비용	개별 GPU 가격 (만원)	1.5	1.5	1500	
	개별 서버 가격 (억원)	4.6	4.6	4.6	
	추정 가격 (억원)	1,766	589	18	

DGX A100 기반 하이퍼 클러스터 비용 비교

(출처: Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM, SC21, 2021)

p3.16xlarge GPU Instance (V100 8GPU, NVLink)

G5.48xlarge GPU Instance (A10G 8GPU, PCIe)

				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
GPU 인스턴스	GPU 개수	GPU 연결망	시간당 비용	6개월 비용 (개발, 시행착오, 학습 포함)
g5.48xlarge	32	PCI-E	\$16.29	6.96 억원 (\$562,982)
p3.16xlarge	32	NVLink	\$24.48 (\$7.34 spot)	10.56 억원 (\$846,029)

17억 파라메터 규모를 위한 Amazon EC2 인스턴스 종류 및 비용 비교 (출처: https://aws.amazon.com/ko/ec2/instance-types)

막대한 컴퓨팅의 종속성 및 비용 부담 또한 초거대 AI 모델 발전의 걸림돌

한계 돌파 기술: 시스템적 최적화 vs. 비시스템적 최적화

- 기술 진화 사이클 = 기능(ठ확도) ↑ → 절대 성능 ↑ → <mark>효율(범용성)</mark> ↑
 - 초기 Model Parallelism 효율 5% -> SOTA 50% 수준
 - 프로세서/서버간 통신 오버헤드가 제약조건
- 비시스템적 (모델 구조, 학습, 추론 방법 변경) 최적화 기법
 - Switch Transformer (2021, Google)
 - ALBERT (ICLR 2020)
 - Progressively Stacking (PMLR 2019)
 - Progressive Layer Dropping (NerulPS 2020)
 - Faster Transformer (GTC 2020, NVIDIA)
- 시스템적 최적화 기법
 - Varuna (Eurosys 2022, Microsoft)
 - DeepSpeed (ATC 2021, Microsoft)
 - Megatron-LM (GTC 2020, NVIDIA)

02 고효율 AI 컴퓨팅 기술 연구

모델

Megatron-LM 전용 Bert, T5, GPT

HuggingFace 83,000 Models

GPT-NeoX GPT-J **GPT-Neo**

문제1) 모델, 프레임워크 종속성

프레임워크 병렬화 기술

모델 (텐서, 파이프라인) 병렬화 (MS Pipedream, Megatron-LM 등)

문제2) HW 및 Architecture 종속성

HW

(모델 크기가 GPU 용량 초과시는 불가능)

범용 클러스터 또는 클라우드 GPU의 저대역 통신으로 인한 낮은 컴퓨팅 효율

클라우드 효율 향상 기술

ML Model ResNet **GPT BERT** Wu Dao

Speech

Al Cloud

ML Applications

Translation

Amazon SageMaker Google Vertex AI MS AzureML KubeFlow

Distributed ML Framework

SageMaker Varuna **ALPA** Megatron-LM DeepSpeed

ML Framework

TensorFlow PyTorch JAX Caffe **MXNet**

종속성 완화 기술

Compiler

ALPA

Glow

KVM

XLA

TVM

Computer Vision

PyTorch-Lightning

Linux

Auto Parallelization

GSPMD FlexFlow

Optimization Library CUDA

OpenCL cuBLAS OpenBLAS

Autonomous Driving

Collective Comm. Library

MPI NCCL

Hypervisor

VMware

OS Docker

Windows

Monitoring/Management

OpenStack Kubeflow

Kubernetes

IPU **GPU** TPU NPU FPGA

Accelerator

Interconnect

NVLink ΙB PCle CXL

학습 효율 향상 기술

02 연구 개발 로드맵

고효율 병렬학습 프레임워크 (v1.0, Bumblebee)

03 추진 체계 및 공개 SW 전략

03 추진 체계

감사합니다

거대 인공 지능 모델을 위한 고효율 컴퓨팅 인프라