

CENTRO DE DESARROLLO TECNOLÓGICO

Asesor tecnológico

Microsoft Student Partner

CTO and Co-founder

CPO and Co-founder

Conceptos básicos:

- ¿Qué es Inteligencia Artificial, Machine Learning y Deep Learning?
- Ciencia de datos, diferencias y similitudes con Machine Learning
- ¿De dónde provienen, como son y para qué sirven los datos?
- Instalación de entorno y herramientas
- ¿Qué es una neurona y cómo funciona?
- Aproximaciones de Deep Learning

Uso de los datos en DL:

- Definición de problemáticas (Taller de ideación para el desarrollo de los proyectos finales)
- Repositorios de datos y preprocesamiento (Limpieza, verificación de integridad)
- Cosas a tener en cuenta al trabajar con datos (homogeneidad, fuentes, tamaño)
- Práctica con Jupyter Notebook y Anaconda cargado grandes volúmenes de datos.

Redes neuronales y Modelos DL:

- ¿Qué es una red neuronal artificial?
- Modelo matemático de las Redes Neuronales
- Función softmax(z) y sigmoid(z)
- Lógica difusa y otras aproximaciones de IA
- Modelos (Logistic Classifier, Multi Layer Perceptron, Long-Short Term Memory)
- Algoritmos no supervisados
- Práctica de DL Resolución de problemas planteados.

Evaluación, integración:

- Evaluación de sistemas entrenados
- Precisión de los resultados
- Integración con otros sistemas computacionales
- Proyecto final

CONCEPTOS BÁSICOS

Since an early flush of optimism in the 1950's, smaller subsets of artificial intelligence - first machine learning, then deep learning, a subset of machine learning - have created ever larger disruptions.

¿Qué es Inteligencia Artificial?

"La capacidad de un sistema para interpretar correctamente datos externos, para aprender de dichos datos y emplear esos conocimientos para lograr tareas y metas concretas a través de la adaptación flexible" - *Andreas Kaplan y Michael Haenlein*

¿Qué es Machine Learning?

da a las "maquinas la capacidad de aprender sin ser explícitamente programadas" - **Arthur Lee Samuel**.

"experiencia" = datos históricos + datos nuevos (ingresados por humanos)

¿Qué es Deep learning?

"Intenta modelar abstracciones de alto nivel en datos usando arquitecturas compuestas de transformaciones no lineales múltiples."- Y. Bengio.

"Redes neuronales" = datos históricos + funciones de activación.

TRIBUS

Tribu	Origen	Master algorithm
Simbolista	Lógica, filosofía	Deducción inversa
Conexionista	Neurociencia	Backpropagation
Evolucionista	Biología evolutiva	Programación genética
Bayesiano	Estadística	Inferencia probabilística
Analogizador	Psicología	Kernel Machines

Imagen: http://visao.sapo.pt/

Tribu	Origen	Master algorithm
Simbolista	Lógica, filosofía	Deducción inversa
Conexionista	Neurociencia	Backpropagation
Evolucionista	Biología evolutiva	Programación genética
Bayesiano	Estadística	Inferencia probabilística
Analogizador	Psicología	Kernel Machines

$$f(x) = y$$

Simbolistas

- Aprende en base a lógica de primer orden
- El tipo mas antiguo de inteligencia
- Ejemplo:
- x_1 : El hombre es mortal
- x₂: Sócrates es hombre
- y: Sócrates es mortal
- x₁: Si tiene una temperatura alta
- x₂: Si tiene fiebre
- X₃: Estaba sano en el pasado
- y: Tiene gripe

Tribu	Origen	Master algorithm
Simbolista	Lógica, filosofía	Deducción inversa
Conexionista	Neurociencia	Backpropagation
Evolucionista	Biología evolutiva	Programación genética
Bayesiano	Estadística	Inferencia probabilística
Analogizador	Psicología	Kernel Machines

Conexionista

- Aprende a conectar elementos de entrada representando interacciones entre variables
- Algoritmo: Redes Neuronales, Deep Learning
- Ejemplo:
- x: registros pasados de temperatura, edad, síntomas
- y: tiene gripe, no tiene gripe

Tribu	Origen	Master algorithm
Simbolista	Lógica, filosofía	Deducción inversa
Conexionista	Neurociencia	Backpropagation
Evolucionista	Biología evolutiva	Programación genética
Bayesiano	Estadística	Inferencia probabilística
Analogizador	Psicología	Kernel Machines

Evolucionista

 Aprende evolucionando la representación de los elementos de entrada y calculando una función

Algoritmo: Algoritmos genéticos

Tribu	Origen	Master algorithm
Simbolista	Lógica, filosofía	Deducción inversa
Conexionista	Neurociencia	Backpropagation
Evolucionista	Biología evolutiva	Programación genética
Bayesiano	Estadística	Inferencia probabilística
Analogizador	Psicología	Kernel Machines

Bayesiano

 Aprende en base a probabilidad condicional P(A|B) y el teorema de Bayes

Tribu	Origen	Master algorithm
Simbolista	Lógica, filosofía	Deducción inversa
Conexionista	Neurociencia	Backpropagation
Evolucionista	Biología evolutiva	Programación genética
Bayesiano	Estadística	Inferencia probabilística
Analogizador	Psicología	Kernel Machines

Analogizador

- Aprende en base a analogías (similaridades) para evaluar de forma similar las evidencias que pertenece a la misma clase
- Algoritmo: Support Vector Machines (SVM),
 K-nearest neighbors (KNN)

Diccionario

The Dictionary

Α	Abbey - κ definition 1 - n. definition 2
Abandon -v. definition 1 -v. defi- nition 2	Abbey -v. definition 1 -n. definition 2
Abandoned -v. definition 1 -n.	Abbey -v. definition 1 -n. defini-
definition 2	tion 2
Abbey -v. definition 1 -n. defini-	Abbey -v. definition 1 -n. defini-
tion 2	tion 2
Abbey -v. definition 1 -n. defini-	Abbey -v. definition 1 ⋅n. defini-
tion 2	tion 2
Abbey -v. definition 1 -n. defini-	Abbey -v. definition 1 -n. defini-
tion 2	tion 2
Abbey -v. definition 1 -n. defini- tion 2	Abbey -x. definition 1 -n. definition 2
Abbey -v. definition 1 -n. defini-	Abbey -v. definition 1 -n. defini-
tion 2	tion 2
Abbey -v. definition 1 -n. defini- tion 2	Abbey -v. definition 1 -n. definition 2
Abbey -ν. definition 1 -π. definition 2	Abbey -v. definition 1 -n. defini- tion 2
Abbey -v. definition 1 -n. defini-	Abbey -v. definition 1 -n. defini-
tion 2	tion 2
Abbey -v. definition 1 -n. defini-	Abbey - definition 1 -n. defini-
tion 2	tion 2
Abbey -v. definition 1 -n. definition 2	Abbey -v. definition 1 -n. defini- tion 2
Abbey -v. definition 1 -n. defini-	Abbey -v. definition 1 -n. defini-
tion 2	tion 2
Abbey -v. definition 1 -n. defini- tion 2	Abbey -v. definition 1 -n. definition 2