**Center for Advanced Vehicle Design and Simulation Western Michigan University** 

UNCLASSIFIED: Dist A. Approved for public release

# Dual Use Ground Vehicle Condition-Based Maintenance Project B

Muralidhar K. Ghantasala

, Daniel Kujawski, Claudia Fajardo and Ajay Gupta+

Mechanical and Aeronautical Engineering & Computer Science
Western Michigan University, Kalamazoo, MI

| maintaining the data needed, and including suggestions for reducin                  | completing and reviewing the colled<br>g this burden, to Washington Headq<br>ould be aware that notwithstanding | ction of information. Send commer<br>juarters Services, Directorate for Ir | nts regarding this burden estin<br>formation Operations and Re | nate or any other aspect<br>ports, 1215 Jefferson Da | existing data sources, gathering and<br>of this collection of information,<br>avis Highway, Suite 1204, Arlington<br>with a collection of information if it |  |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1. REPORT DATE <b>26 FEB 2010</b>                                                   |                                                                                                                 | 2. REPORT TYPE <b>N/A</b>                                                  |                                                                | 3. DATES COVERED -                                   |                                                                                                                                                             |  |
| 4. TITLE AND SUBTITLE  Dual Use Ground Vehicle Condition-Based MaintenanceProject B |                                                                                                                 |                                                                            |                                                                | 5a. CONTRACT NUMBER W56 HZV-08-C-0236 (SimBRS)       |                                                                                                                                                             |  |
|                                                                                     |                                                                                                                 |                                                                            |                                                                | 5b. GRANT NUMBER                                     |                                                                                                                                                             |  |
|                                                                                     |                                                                                                                 | 5c. PROGRAM ELEMENT NUMBER                                                 |                                                                |                                                      |                                                                                                                                                             |  |
| 6. AUTHOR(S)                                                                        |                                                                                                                 |                                                                            |                                                                | 5d. PROJECT NUMBER                                   |                                                                                                                                                             |  |
|                                                                                     | antasala; Daniel Kı                                                                                             | ujawski; Claudia F                                                         | ajardo; Ajay                                                   | 5e. TASK NUMBER                                      |                                                                                                                                                             |  |
| Gupta;                                                                              |                                                                                                                 | 5f. WORK UNIT NUMBER                                                       |                                                                |                                                      |                                                                                                                                                             |  |
| Mechanical and A                                                                    | ization Name(s) and a<br>eronautical Engine<br>u University, Kalam                                              | 8. PERFORMING ORGANIZATION REPORT NUMBER 20834                             |                                                                |                                                      |                                                                                                                                                             |  |
| US Army RDECO                                                                       | DRING AGENCY NAME(S) M-TARDEC 6501                                                                              | 10. SPONSOR/MONITOR'S ACRONYM(S)  TACOM/TARDEC                             |                                                                |                                                      |                                                                                                                                                             |  |
| 48397-5000, USA                                                                     |                                                                                                                 | 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 20834                               |                                                                |                                                      |                                                                                                                                                             |  |
| 12. DISTRIBUTION/AVAI<br>Approved for pub                                           | LABILITY STATEMENT                                                                                              | tion unlimited                                                             |                                                                |                                                      |                                                                                                                                                             |  |
| 13. SUPPLEMENTARY NO The original documents                                         | OTES<br>ment contains color                                                                                     | images.                                                                    |                                                                |                                                      |                                                                                                                                                             |  |
| 14. ABSTRACT                                                                        |                                                                                                                 |                                                                            |                                                                |                                                      |                                                                                                                                                             |  |
| 15. SUBJECT TERMS                                                                   |                                                                                                                 |                                                                            |                                                                |                                                      |                                                                                                                                                             |  |
| 16. SECURITY CLASSIFIC                                                              | CATION OF:                                                                                                      | 17. LIMITATION                                                             |                                                                | 19a. NAME OF                                         |                                                                                                                                                             |  |
| a. REPORT<br>unclassified                                                           | b. ABSTRACT <b>unclassified</b>                                                                                 | c. THIS PAGE<br>unclassified                                               | OF ABSTRACT SAR                                                | OF PAGES 22                                          | RESPONSIBLE PERSON                                                                                                                                          |  |

**Report Documentation Page** 

Form Approved OMB No. 0704-0188



# **Project Objectives**

- Fatigue sensor for structural components design, fabrication and testing
- Lubricant condition monitoring sensor selection, experimentation and laboratory evaluation
- Wireless communication system design and develop a sensor network
- Demonstration of a prototype system in a dual-purpose vehicle

Unclassified





# **Project Team**

### **Principal Investigators:**

Dr. Muralidhar Ghantasala

Dr. Claudia Fajardo

Dr. Ajay Gupta

Dr. Daniel Kujawski

- Students:
- Subash Gokanakonda Fatigue sensor

  Ryan J. Clark Lubricant condition monitoring

  Andrew Hovingh & Madhuri Revalla wireless networking

- Sensors, fabrication, data acquisition and testing
- Engine lubricant condition monitoring
- Wireless communication subsystem-design, interfacing, testing and evaluation
- Fatigue sensor-design, simulation, testing



### How a fatigue sensor works?



- Detects and monitors the fatigue damage at a critical location
- Strains in ligaments resemble the actual strain field at a critical location
- Ligaments fail due to fatigue in a sequence from the ligament experiencing the highest to the lowest strains

Unclassified

# **Important Characteristics**

- Placed at a suitable distance from a critical location
- Made from the same material or different material than that of the structure
- Used on new structures or on those already in service
- Experiences same cyclic strains and environmental conditions as the critical location
- Enables real-time on-board fatigue life monitoring
- Supports Condition Based Maintenance (CBM)





# Strain Magnification: Comparison





### Strain Ratio



### Fatigue sensor (active part) in Stainless Steel









# Glue-Adhesive Testing



Shear strength,

$$\tau_{Test} = \frac{P}{\left(h * w\right)}$$

Normal stress,

$$\sigma_{test,normal} = \frac{P}{\left(w^*t\right)}$$



### **Work Plan**

- FEA simulations are being conducted using an elasticplastic material model
- The properties of the adhesives for gluing the fatigue sensor on to test structures are under investigation
- Different manufacturing techniques are being evaluated.
   The first set of sensors will be manufactured using milling and laser machining

# Lubricant Condition Monitoring Strategies

### Goal

 Quantify the degree and rate of oil degradation in a JP-8 fueled diesel engine through <u>direct, on-board</u> <u>monitoring of lubricant properties</u>

### Objectives

- Establish correlations between contamination levels and changes in lubricant properties
- Validate the relationship between published threshold limits on contaminant level and lubricant properties
- Determine the effect of engine operating conditions on lubricant properties

Unclassified



#### Engine

- Naturally-aspirated, 6.5 Liter (detuned)V-8 diesel
- Coupled engine-dynamometer setup and instrumentation
- Lubricant-condition monitoring sensor
  - -Temperature (-40  $^{\circ}$ C < T < +150  $^{\circ}$ C)
  - Dynamic viscosity (0 <  $\mu$  < 50 cP)
  - Dielectric constant  $(1 < \kappa < 6)$
  - Density  $(0 < \rho < 1.5 \text{ g/cm}^3)$
- Mounting location
  - Ensure sufficient fluid contact with sensor



**Engine** 



**Lubricant sensor** 



# **Benchmarking Experiments**

### Bench-top

- Assess contaminant effects (e.g. fuel, water, soot) on lubricant properties
- Validate sensor output against ASTM standards



### Engine

- Monitor lubricant properties directly with the oilcondition sensor
- Validate sensor output and identify contaminants



### Results: Validation of Prototype Sensor Output

Baseline measurements

| Property                   | Sensor        | Validation    | Mfr. Spec. | Difference%<br>(validation vs. MS) | Discrepancy<br>(sensor vs.<br>validation) |
|----------------------------|---------------|---------------|------------|------------------------------------|-------------------------------------------|
| Viscosity at 40 °C (cSt)   | 96.2 +/- 0.9  | 123.2 +/- 0.1 | 118        | 4%                                 | 21.9%                                     |
| Viscosity at 100 °C (cSt)  | 14.1 +/- 0.7  | 15.2 +/- 0.7  | 15.7       | 3%                                 | 7%                                        |
| Dielectric const. at 40 °C | 2.22 +/- 0.01 | 2.38 +/- 0.01 | n/a        | n/a                                | 6.7%                                      |
| Flash Point (°F)           | n/a           | 419 +/- 5     | 415        | 1%                                 | n/a                                       |

Lubricant contamination (2.5% fuel by vol.)

| Property                   | Sensor Output | Validation<br>Measurement | Discrepancy (sensor vs. validation) |
|----------------------------|---------------|---------------------------|-------------------------------------|
| Viscosity at 40 °C (cSt)   | 89.1 +/- 0.7  | 117 +/- 0.4               | 23.7% *                             |
| Viscosity at 100 °C (cSt)  | 13.7 +/- 0.1  | 14.3 +/- 0.1              | 5%                                  |
| Dielectric const. at 40 °C | 2.22 +/- 0.02 | 2.39 +/- 0.01             | 7%                                  |
| Flash Point (°F)           | n/a           | 412 +/- 1                 | n/a                                 |

- Very good precision established
- Discrepancy between sensor output and bench-top measurements
   ≤ 7% for viscosity at 100 °C and dielectric constant
- Investigating discrepancies for viscosity measurement at 40 °C



# College of Engineering and Applied Sciences Results (continued)



- Decrease in viscosity with increasing temperature
- Decrease in viscosity with fuel contamination
- Decrease in flash point with fuel contamination
- No change in dielectric constant for 2.5% vol. fuel contamination

# Wireless Communication Strategy

# Objectives

- Design a wireless, self-sufficient, low-power, scalable and cost-effective sensor-data communication system using off-the-shelf devices (microcontrollers, radio transceivers, amps, A/D converters...) for ground vehicles
- Build a prototype of wireless network system that stores and displays sensor data from the engine and structural components



# System Configuration



## **Evaluated Device Configurations**

- Texas Instrument's MSP430 micro-controller + Chipcon transceiver
  - Inexpensive, configurable
  - Low level programming (more software development time)
- Crossbow's MICA motes
  - Integrated controller + radio, costlier
  - NesC programming (less development time)
- Characteristics
  - Low power, low duty-cycle (on/off)
  - 900MHz and 2.4GHz bands
  - Communication standards: 802.15.4 and ISM band compliant and ZigBee ready





# College of Engineering and Applied Sciences Challenges

- Harsh environments (e.g. high temperature)
  - MSP430, CC chips, and Crossbow motes can tolerate up to 185°F
- Connectivity
  - Interference (with other communication equipments, and other transceivers)
  - Signal degradation (Faraday cage effect from the vehicle, temperature-resistant enclosures)
- Fault-tolerance
  - Provide built-in redundancy in the communication network





- Fatigue sensor design First stage of the design and numerical simulation has been completed. Manufacturing strategies are being explored.
- 2. Lubricant monitoring sensor has been identified.

  Literature review has been completed. A dualpurpose diesel engine has been procured and is being set-up with the required instrumentation.
- 3. Wireless communication strategies are being evaluated. Texas Instrument's MSP430 microcontroller- based and Crossbow's motes- based systems are shortlisted for further evaluation. Simple system configurations are being tested in the laboratory.

  Unclassified





Unclassified