Estatística LEI – LECD

9 de abril de 2025

Primeira frequência

Observação: A resolução completa das questões seguintes inclui a justificação do raciocínio utilizado e a apresentação dos cálculos efetuados.

T

Uma empresa produz chips de memória para computadores, os quais vende no mercado interno e no mercado externo.

- 1. Estes chips de memória são sujeitos a uma inspeção que não é completamente eficaz. Concretamente, sabe-se que 3% dos chips defeituosos são aprovados na inspeção, enquanto que, no caso dos chips não defeituosos, a percentagem de aprovações é de 98%. Sabe-se ainda que 7% dos chips produzidos não são aprovados pela inspeção. Escolhe-se ao acaso um dos chips produzidos na empresa.
 - (a) Verifique que a probabilidade de o chip ser defeituoso é 1/19.
 - (b) Determine a probabilidade de que um chip aprovado na inspeção seja defeituoso.
 - (c) Em 6 chips retirados ao acaso dos mais de 3000 fabricados num certo período, qual é a probabilidade de haver no máximo um defeituoso?
- 2. O número de lotes dos referidos chips, produzidos diariamente, e que são destinados à exportação, pode ser representado por uma variável aleatória Y com distribuição de Poisson de parâmetro $\lambda > 0$. Sabendo que $E(Y^2) = 4E(Y)$, calcule P(Y < 2).
- 3. Os lucros mensais, em milhares de euros, na venda destes chips, no mercado interno e no mercado externo, são representados por variáveis aleatórias V e W, as quais podem ser consideradas independentes e com distribuição $\mathcal{N}(4,3)$ e $\mathcal{N}(1,2)$, respetivamente.
 - (a) Calcule P(V > 3.4).
 - (b) Calcule P(V < 2W).

H

A duração, expressa em milhares de horas, de certo tipo de lâmpadas produzidas por uma fábrica é representada por uma variável aleatória contínua, X, com função densidade dada por

$$f_{\theta}(x) = \begin{cases} 0, & x < \theta \\ \frac{3\theta^3}{x^4}, & x \ge \theta \end{cases}$$

onde θ é um número real positivo desconhecido. Sabe-se $E(X) = \frac{3}{2}\theta$.

- 1. Mostre que $P(X > x) = \left(\frac{\theta}{x}\right)^3$, para qualquer $x > \theta$.
- 2. Sendo $(X_1,...,X_n)$ uma amostra aleatória de X, construa, usando o método dos momentos, um estimador para θ .
- 3. Da produção da fábrica em determinada semana recolheu-se uma amostra de 100 lâmpadas daquele tipo e registou-se a duração de cada uma. A média dos valores observados é 35.4 milhares de horas.
 - (a) Indique estimativas de E(X) e de θ .
 - (b) Calcule uma estimativa para a proporção total de lâmpadas da empresa que duram mais de 30 milhares de horas.

III

Justifique por que motivo são verdadeiras as seguintes afirmações:

- 1. Se A e B são acontecimentos tais que $A \subseteq B$ e 0 < P(B) < 1, então $P(\overline{A}/\overline{B}) = 1$.
- 2. Se X é uma variável aleatória que admite variância, então V(2-X)=V(X).
- 3. Se $X \sim B(n, p)$, então P(X = 1.5) = 0.

Duração: 1h30

O tempo de reparação de um certo tipo de avaria numa linha de montagem (em minutos) é uma variável aleatória que representamos por X. Dispomos de uma amostra de X, de dimensão 81, que apresenta os seguintes valores:

	\overline{x}	s	min	q_1	q_2	q_3	max
ĺ	56.887	7.589	40.145	51.323	56.836	61.812	74.827

- 1. Averigue se esta amostra tem *outliers*.
- 2. Os seguintes outputs foram produzidos, via R, a partir desta amostra. O que pode concluir sobre a distribuição da variável aleatória X?

3. Mostre que nenhum dos seguintes outputs pode ter sido construído com esta amostra.

