

PRODUCT SPECIFICATION

- □ Tentative Specification
- □ Preliminary Specification
- Approval Specification

MODEL NO.: V546H1 SUFFIX: LE5

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your conficomments.	irmation with your signature and

Approved By	Checked By	Prepared By
Chao-Chun Chung	Ken Wu	Wei-ting Hsu

CONTENTS

REVISION HISTORY	4
1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURES	5
1.3 APPLICATION	5
1.4 GENERAL SPECIFICATIONS	5
1.5 MECHANICAL SPECIFICATIONS	6
2. ABSOLUTE MAXIMUM RATINGS	
2. ABSOLUTE MAXIMUM RATINGS	
2.2 ELECTRICAL ABSOLUTE RATINGS	8
3. ELECTRICAL CHARACTERISTICS	
3.1.1TFT LCD MODULE (Ta = 25 ± 2 °C)	9
3.1.2 Vcc Power Dip Condition:	11
3.2 BACKLIGHT UNIT	12
3.2.1 LED LIGHT BARCHARACTERISTICS (Ta = 25 ± 2 °C)	12
3.2.2 CONVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)	12
3.2.3 CONVERTER INTERFACE CHARACTERISTICS	13
4. BLOCK DIAGRAM OF INTERFACE	15
4.1 TFT LCD MODULE	
5 .INPUT TERMINAL PIN ASSIGNMENT	
5.1 TFT LCD Module Input	
5.2 BACKLIGHT UNIT	
5.3 DRIVING BOARD UNIT	
5.4 BLOCK DIAGRAM OF INTERFACE	
5.5 LVDS INTERFACE	
5.6 COLOR DATA INPUT ASSIGNMENT	26
6. INTERFACE TIMING	28
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	
6.2 POWER ON/OFF SEQUENCE	

7. OPTICAL CHARACTERISTICS	
7.1 TEST CONDITIONS	
7.2 OPTICAL SPECIFICATIONS	32
8. DEFINITION OF LABELS	
8.1 CMI MODULE LABEL	36
9. Packaging	
9.1 PACKING SPECIFICATIONS	37
9.2 PACKING METHOD	37
10. PRECAUTIONS	
10.1 ASSEMBLY AND HANDLING PRECAUTIONS	39
10.2 SAFETY PRECAUTIONS	39
10.3 SAFETY STANDARDS	39
11. MECHANICAL CHARACTERISTIC	40

REVISION HISTORY

		Dono	Cootic	REVISION FIISTORY
Version	Date	Page (New)	Sectio n	Description
Ver. 1.0	Jul.20, 10'	all	all	Preliminary Specification was first issued.
Ver. 1.1	Aug.11, 10'	6	1.5	Update Mechanical Specifications
		12	3.2.2	Update Converter Characteristics
		32	7.2	Update Optical Specifications
		40	11	Update Mechanical Characteristic
Ver.2.0	Sep.24.10'	12	3.2.2	Update Converter Characteristics
		37	9.2	Update Packing Method

Date: 20 Sep 2010 Version 2.1

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V546H1-LE5 is a 54.6" TFT Liquid Crystal Display module with LED Backlight unit and 4ch-LVDS interface.

This module supports 1920 x 1080 HDTV format and can display true 1.073G colors (8-bit + Hi-FRC /color).

The driving board module for backlight is built-in.

1.2 FEATURES

- High brightness 450nits
- High contrast ratio 4000:1
- Fast response time Gray to Gray typical 4.5ms
- High color saturation 76% NTSC
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Optimized response time for 120/100 Hz frame rate
- Ultra wide viewing angle: Super MVA technology

1.3 APPLICATION

- Standard Living Room TVs.
- Public Display Application.
- Home Theater Application.
- MFM Application.

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	1209.6(H) x 680.4(V) (54.6" diagonal)	mm	(1)
Bezel Opening Area	1217.6 (H) x 688.4 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920x R.G.B. x 1080	pixel	-
Pixel Pitch(Sub Pixel)	0.21(H) x 0.63(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	1.073G	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti-Glare coating (11% Low Haze) Hardness (3H)	-	(2)

Note (1) Please refer to the attached drawings in chapter 9 for more information about the front and back outlines.

Note (2) The spec of the surface treatment is temporarily for this phase. CMI reserves the rights to change this feature.

1.5 MECHANICAL SPECIFICATIONS

l1	tem	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	1260.1	1261.6	1263.1	mm	Module Size
	Vertical (V)	730.9	732.4	733.9	mm	
Module Size	Depth (D)	15.1	16.1	17.1	mm	To Rear
Weight	ght 23.	23.2	24.2	25.2	mm	To converter cover
	Weight	13500	14300	15100	G	Weight

Note (1)Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Module Depth does not include connectors.

PRODUCT SPECIFICATION

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	V	alue	Unit	Note	
nem	Syllibol	Min.	Max.	Offic		
Storage Temperature	T_{ST}	-20	+60	ōC	(1)	
Operating Ambient Temperature	T_OP	0	50	oC	(1), (2)	
Shock (Non-Operating)	±X, ±Y		30	G	(2) (5)	
Shock (Non-Operating)	$S_{NOP} = \frac{\pm Z, \pm 1}{\pm Z}$	-	30	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 ${}^{\circ}$ C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Svmbol	Value		Unit	Note	
No	Gy50.	Min.	Max.	O	11010	
Power Supply Voltage	V_{CC}	-0.3	13.5	V	/1)	
Logic Input Voltage	V_{IN}	-0.3	3.6	V	(1)	

2.2.2 BACKLIGHT CONVERTER UNIT

Item	Symbol	Test Condition	Min.	Туре	Max.	Unit	Note
Light Bar Voltage	V _W	Ta = 25 °C	-	-	73.5	V_{RMS}	
Converter Input Voltage	V_{BL}	-	0	-	30	V	
Control Signal Level	-	-	-0.3	-	7	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

PRODUCT SPECIFICATION

3. ELECTRICAL CHARACTERISTICS

3.1.1TFT LCD MODULE (Ta = $25 \pm 2 \, {}^{\circ}\text{C}$)

	Parameter			Value	Unit	Note		
	Farameter	Symbol	Min.	Тур.	Max.	Offic	Note	
Power Su	pply Voltage	V_{CC}	10.8	12.0	13.2	V	(1)	
Rush Curi	rent	I _{RUSH}	-	3.3	5	Α	(2)	
	White		-	0.584	0.8	Α		
Power Su	pply Current Black	1	-	0.425	0.6	Α	(3)	
i owei su	Horizontal one line stripe	- I _{cc}	-	1.17	1.55	Α	(3)	
	Differential Input High Threshold Voltage	V_{LVTH}	+100	-	-	mV		
LVDS	Differential Input Low Threshold Voltage	V_{LVTL}	-	-	-100	mV		
Interface	Common Input Voltage	V _{CM}	1.0	1.2	1.4	V	(4)	
	Differential input voltage (Single-End)	V _{ID}	200	-	600	mV		
	Terminating Resistor	R_T	-	100	-	ohm		
CMOS	Input High Threshold Voltage	V _{IH}	2.7	A- 1	3.3	V		
Interface	Input Low Threshold Voltage	V _{IL}	0	-	0.7	V		

Note (1) The module should be always operated within the above ranges.

Note (2) Measurement condition:

Note (3) The specified power supply current is under the conditions at Vcc = 12V, Ta = 25 \pm 2 $^{\circ}$ C, f_v = 120 Hz, whereas a power dissipation check pattern below is displayed.

PRODUCT SPECIFICATION

Vcc rising time is 470us

Note (4) The LVDS input characteristics are as follows:

3.1.2 Vcc Power Dip Condition:

Dip condition: 10V≤Vcc≤10.8V, Td≤20ms

PRODUCT SPECIFICATION

3.2 BACKLIGHT UNIT

3.2.1 LED LIGHT BARCHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note		
rafameter	Symbol	Min.	Тур.	Max.	Offic	Note	
Light Bar Voltage	V_{W}	-	-	73.5	V	I _L =120mA	
Forward Voltage	V_{f}	3.0	-	3.5	V	I _L =120mA	
LED Current	IL	112.8	120	127.2	mA		

3.2.2 CONVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol	Value			Unit	Note
Farameter	Syllibol	Min.	Тур.	Max.	Offic	Note
Power Consumption	P_BL	-	14 0	155	W	(1), (2) IL = 120 mA
Converter Input Voltage	V_{BL}	22.8	24	25.2	V_{DC}	
Converter Input Current	I _{BL}	-	5.8	6.5	Α	Non Dimming
Input Invied Current				9		V _{BL} =24V,(IL=typ.)
Input Inrush Current	-	-	-	9	Α	(3)
Dimming Frequency	F _B	150	160	170	Hz	
Minimum Duty Ratio	D _{MIN}	5	10		%	(4)

Note (1) The power supply capacity should be higher than the total converter power consumption P_{BL}. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when converter dimming.

Note (2) The measurement condition of Max. value is based on 55" backlight unit under input voltage 24V, average LED current 120 mA and lighting 1 hour later.

Note (3) The duration of rush current is about 30ms.

Note (4) 5% minimum duty ratio is only valid for electrical operation.

PRODUCT SPECIFICATION

3.2.3 CONVERTER INTERFACE CHARACTERISTICS

Parameter		Cymalaal	Test	Value		l loit	Unit Note	
		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
On/Off Control Valtage	ON	VBLON	_	2.0	_	5.0	V	
On/Off Control Voltage	OFF	VBLON	_	0	_	0.8	V	
Internal PWM Control	MAX	\/\D\\/\	_	3.15	_	3.45	٧	maximum duty ratio
Voltage	MIN	VIPWM	_	_	0	_	٧	minimum duty ratio
Internal PWM Ripple Vo	ltage	-			_	TBD	mV	Peak to Peak (1)
External PWM Control	НІ		_	2.0	_	5.0	V	Duty on
Voltage	LO	VEPWM	_	0		0.8	۷ v	Duty off
Ctatus Cianal	HI	- Status	_	3.0	3.3	3.6	V	Normal
Status Signal	LO		_	0		0.8	V	Abnormal
VBL Rising Time		Tr1	-	30) –	_	ms	100/ 000/1/
VBL Falling Time		Tf1	7	30	_	_	ms	10%-90%V _{BL}
Control Signal Rising Ti	me	Tr		_	_	100	ms	
Control Signal Falling Ti	me	Tf		_	_	100	ms	
PWM Signal Rising Time	е	TPWMR	_	_	_	50	us	
PWM Signal Falling Time		TPWMF	_	_	_	50	us	
Input Impedance		Rin	_	1	_	_	МΩ	
PWM Delay Time		TPWM	_	100	_	_	ms	
DI ON Delett Times		T _{on}	_	300	_	_	ms	
BLON Delay Time		T _{on1}	_	300	_	_	ms	
BLON Off Time		Toff	_	300	_	_	ms	

- Note (1) Backlight flicker or flash may be occurred if the ripple voltage of internal PWM signal is over Max. value.
- Note (2) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM signal during backlight turn on period.
- Note (3) The power sequence and control signal timing are shown in the following figure. For a certain reason, the converter has a possibility to be damaged with wrong power sequence and control signal timing.

Note (4) While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence: VBL \rightarrow PWM signal \rightarrow BLON Turn OFF sequence: BLOFF \rightarrow PWM signal \rightarrow VBL

PRODUCT SPECIFICATION

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

5 .INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module Input

CNF2 Connector Pin Assignment (187059-51221(P-two) or equivalent)

Pin	Name	Description	Note
1	GND	Ground	
2	N.C.	No Connection	(1)
3	N.C.	No Connection	(1)
4	N.C.	No Connection	(1)
5	N.C.	No Connection	(1)
6	N.C.	No Connection	(1)
7	SELLVDS	LVDS Data Format Selection	(2)
8	N.C.	No Connection	(1)
9	N.C.	No Connection	(1)
10	N.C.	No Connection	(1)
11	GND	Ground	
12	CH1[0]-	First pixel Negative LVDS differential data input. Pair 0	
13	CH1[0]+	First pixel Positive LVDS differential data input. Pair 0	
14	CH1[1]-	First pixel Negative LVDS differential data input. Pair 1	
15	CH1[1]+	First pixel Positive LVDS differential data input. Pair 1	
16	CH1[2]-	First pixel Negative LVDS differential data input. Pair I 2	
17	CH1[2]+	First pixel Positive LVDS differential data input. Pair 2	
18	GND	Ground	
19	CH1CLK-	First pixel Negative LVDS differential clock input.	
20	CH1CLK+	First pixel Positive LVDS differential clock input.	
21	GND	Ground	
22	CH1[3]-	First pixel Negative LVDS differential data input. Pair 3	
23	CH1[3]+	First pixel Positive LVDS differential data input. Pair 3	
24	CH1[4]-	First pixel Negative LVDS differential data input. Pair 4	
25	CH1[4]+	First pixel Positive LVDS differential data input. Pair 4	
26	N.C.	No Connection	(1)
27	N.C.	No Connection	(1)
28	CH2[0]-	Second pixel Negative LVDS differential data input. Pair 0	

Version 2.1 Date: 20 Sep 2010 16

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

29	CH2[0]+	Second pixel Positive LVDS differential data input. Pair 0			
30	CH2[1]-	econd pixel Negative LVDS differential data input. Pair 1			
31	CH2[1]+	econd pixel Positive LVDS differential data input. Pair 1			
32	CH2[2]-	Second pixel Negative LVDS differential data input. Pair 2			
33	CH2[2]+	Second pixel Positive LVDS differential data input. Pair 2			
34	GND	Ground			
35	CH2CLK-	Second pixel Negative LVDS differential clock input.			
36	CH2CLK+	Second pixel Positive LVDS differential clock input.			
37	GND	Ground			
38	CH2[3]-	Second pixel Negative LVDS differential data input. Pair 3			
39	CH2[3]+	Second pixel Positive LVDS differential data input. Pair 3			
40	CH2[4]-	Second pixel Negative LVDS differential data input. Pair 4			
41	CH2[4]+	Second pixel Positive LVDS differential data input. Pair 4			
42	N.C.	No Connection	(1)		
43	N.C.	No Connection	(1)		
44	GND	Ground			
45	GND	Ground			
46	GND	Ground			
47	N.C.	No Connection	(1)		
48	VCC	+12V power supply			
49	VCC	+12V power supply			
50	VCC	+12V power supply			
51	VCC	+12V power supply			

CNF3 Connector Pin Assignment (196225-80041(P-two) or equivalent)

Pin	Name	Description	Note
1	GND	Ground	
2	N.C.	No Connection	(1)
3	N.C.	No Connection	(1)
4	N.C.	No Connection	(1)
5	N.C.	No Connection	(1)
6	N.C.	No Connection	(1)
7	N.C.	No Connection	(1)

8	N.C.	No Connection	(1)
9	GND	Ground	
10	CH3[0]-	Third pixel Negative LVDS differential data input. Pair 0	
11	CH3[0]+	Third pixel Positive LVDS differential data input. Pair 0	
12	CH3[1]-	Third pixel Negative LVDS differential data input. Pair 1	
13	CH3[1]+	Third pixel Positive LVDS differential data input. Pair 1	
14	CH3[2]-	Third pixel Negative LVDS differential data input. Pair 2	
15	CH3[2]+	Third pixel Positive LVDS differential data input. Pair 2	
16	GND	Ground	
17	CH3CLK-	Third pixel Negative LVDS differential clock input.	
18	CH3CLK+	Third pixel Positive LVDS differential clock input.	
19	GND	Ground	
20	CH3[3]-	Third pixel Negative LVDS differential data input. Pair 3	
21	CH3[3]+	Third pixel Positive LVDS differential data input. Pair 3	
22	CH3[4]-	Third pixel Negative LVDS differential data input. Pair 4	
23	CH3[4]+	Third pixel Positive LVDS differential data input. Pair 4	
24	N.C.	No Connection	(1)
25	N.C.	No Connection	(1)
26	CH4[0]-	Fourth pixel Negative LVDS differential data input. Pair 0	
27	CH4[0]+	Fourth pixel Positive LVDS differential data input. Pair 0	
28	CH4[1]-	Fourth pixel Negative LVDS differential data input. Pair 1	
29	CH4[1]+	Fourth pixel Positive LVDS differential data input. Pair 1	
30	CH4[2]-	Fourth pixel Negative LVDS differential data input. Pair 2	
31	CH4[2]+	Fourth pixel Positive LVDS differential data input. Pair 2	
32	GND	Ground	
33	CH4CLK-	Fourth pixel Negative LVDS differential clock input.	
34	CH4CLK+	Fourth pixel Positive LVDS differential clock input.	
35	GND	Ground	
36	CH4[3]-	Fourth pixel Negative LVDS differential data input. Pair 3	
37	CH4[3]+	Fourth pixel Positive LVDS differential data input. Pair 3	
38	CH4[4]-	Fourth pixel Negative LVDS differential data input. Pair 4	

39	CH4[4]+	Fourth pixel Positive LVDS differential data input. Pair 4	
40	N.C.	No Connection	(1)
41	N.C.	No Connection	(1)

- Note (1) Reserved for internal use. Please leave it open.
- Note (2) High=connect to +3.3V : JEIDA Format ; Low= connect to GND or Open : VESA Format.
- Note (3) Interface optional pin has internal scheme as following diagram. Customer should keep the interface voltage level requirement as below.

Note (4) LVDS 4-port Data Mapping

Port	Channel of LVDS	Data Stream
1st Port	First Pixel	1, 5, 9,1913, 1917
2nd Port	Second Pixel	2, 6, 10,1914, 1918
3rd Port	Third Pixel	3, 7, 11,1915, 1919
4th Port	Fourth Pixel	4, 8, 12,1916, 1920

PRODUCT SPECIFICATION

5.2 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below.

CN2 (Housing): CI0113M1HR0-LA (CvilLux)

	\	,
Pin No.	Symbol	Description
1	VLED+	Positive of LED String
2	NC	NC
3	N-	
4	N-	Negative of LED Chrise
5	N-	Negative of LED String
6	N-	
7	NC	NC
8	N-	
9	N-	Negative of LED Children
10	N-	Negative of LED String
11	N-	
12	NC	NC
13	VLED+	Positive of LED String

CN3 (Housing): Cl0112M1HR0-LA (CvilLux)

	51 1 0 (110031119). (SIGN TENTTH TO EA (OVIILUX)
Pin No.	Symbol	Description
1	VLED+	Positive of LED String
2	NC	NC
3	N-	
4	N-	Negative of LED String
5	N-	Negative of LED String
6	N-	
7	N-	
8	N-	Negative of LED String
9	N-	Negative of LED String
10	N-	
11	NC	NC
12	VLED+	Positive of LED String

Note (1) The backlight interface housing for high voltage side is a model 51281-1094??, manufactured by Molex or equivalent. The mating header on converter part number is 51281-1094??

5.3 DRIVING BOARD UNIT

Global LCD Panel Exchange Center

CN1(Header): CI0114M1HR0-LA (CvilLux)

Pin №	Symbol	Feature
1		
2		
3	VBL	+24V
4		
5		
6		
7		
8	GND	GND
9		
10		
11	Status	Normal (3.3V) Abnormal (0V)
12	E_PWM	External PWM Control
13	I_PWM	Internal PWM Control
14	BLON	BL ON/OFF

Note (1) Pin 12: External PWM control (use pin 12): Pin 13 must open.

Note (2) Pin 13: Internal PWM control (use pin 13): Pin 12 must open.

Note (3) Pin 12 and Pin 13 can't open in the same period.

CN2: CI0113M1HR0-LA (CvilLux)

Pin № Symbol	Feature
--------------	---------

1	VLED+	Positive of LED String
2	NC	NC
3	N-	
4	N-	Nogative of LED String
5	N-	Negative of LED String
6	N-	
7	NC	NC
8	N-	
9	N-	Negative of LED String
10	N-	Negative of LED String
11	N-	
12	NC	NC
13	VLED+	Positive of LED String

CN3: Cl0112M1HR0-LA (CvilLux)

CIV	J. CIOTIZIVITI	TO EA (OVIIEUX)
Pin №	Symbol	Feature
1	VLED+	Positive of LED String
2	NC	NC
3	N-	
4	N-	Negative of LED String
5	N-	Negative of LED String
6	N-	
7	N-	
8	N-	Negative of LED String
9	N-	Negative of LED String
10	N-	
11	NC	NC
12	VLED+	Positive of LED String

5.4 BLOCK DIAGRAM OF INTERFACE

Date: 20 Sep 2010 Version 2.1 23

AR0~AR9: First pixel R data AG0~AG9: First pixel G data AB0~AB9: First pixel B data BR0~BR9: Second pixel R data

BG0~BG9: Second pixel G data BB0~BB9: Second pixel B data

DE: Data enable signal DCLK: Data clock signal

The third and fourth pixel are followed the same rules.

CR0~CR9: Third pixel R data CG0~CG9: Third pixel G data CB0~CB9: Third pixel B data DR0~DR9: Fourth pixel R data DG0~DG9: Fourth pixel G data DB0~DB9: Fourth pixel B data

Note (1) A ~ D channel are first, second, third and fourth pixel respectively.

Note (2) The system must have the transmitter to drive the module.

Note (3) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

PRODUCT SPECIFICATION

5.5 LVDS INTERFACE

VESA Format : SELLVDS = L or Open

JEIDA Format : SELLVDS = H

AR0~AR9: First Pixel R Data (9; MSB, 0; LSB) AG0~AG9: First Pixel G Data (9; MSB, 0; LSB) AB0~AB9: First Pixel B Data (9; MSB, 0; LSB)

DE : Data enable signal DCLK: Data clock signal

RSVD: Reserved

5.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

Versus	data input.														Г	ata	Siar	nal													
	Color					R	ed									Gre		iai								BI	IIA				
	30.01	R9	R8	R7	R6			R3	R2	R1	R0	G9	G8	G7	G6	G5		G3	G2	G1	G0	В9	B8	В7	В6			В3	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	Red (2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:			:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:			:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:	:	:
Of	Red (1021)	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Scale	:		:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
areen	Green (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Scale	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue (1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1

Version 2.1 26 Date: 20 Sep 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

Blue (,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	C
Blue (1023) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

PRODUCT SPECIFICATION

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz	
LVDS Receiver	Input cycle to cycle jitter	T _{rcl}	-	-	200	ps	(3)
Clock	Spread spectrum modulation range	Fclkin_mo	F _{clkin} -2%	-	F _{clkin} +2%	MHz	(4)
	Spread spectrum modulation frequency		-	1	200	KHz	(4)
LVDS	Setup Time	Tlvsu	600	-	-	ps	
Receiver Data	Hold Time		600	-		ps	(5)
	Frame Rate	F _{r5}	97	100	103	Hz	(6)
Vertical	Traine riale	F _{r6}	117	120	123	Hz	(0)
Active Display	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tv b
Term	Display	Tvd	1080	1080	1080	Th	_
	Blank	Tvb	35	45	55	Th	_
Horizontal Active	Total	Th	540	550	575	Tc	Th=Thd+T hb
Display	Display	Thd	480	480	480	Тс	_
Term	Blank	Thb	60	70	95	Тс	_

Note (1) Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

Note (2) Please make sure the range of pixel clock has follow the below equation:

$$\begin{aligned} & \text{Fclkin(max)} \ge \text{Fr6} \times \text{Tv} \times \text{Th} \\ & \text{Fr5} \times \text{Tv} \times \text{Th} \ge \text{Fclkin(min)} \end{aligned}$$

PRODUCT SPECIFICATION

INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

PRODUCT SPECIFICATION

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Note (6): (ODSEL) = H/L or open for 100/120Hz frame rate. Please refer to 5.1 for detail information

PRODUCT SPECIFICATION

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the diagram below.

Power ON/OFF Sequence

Note:

- (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	Ha	50±10	%RH
Supply Voltage	V_{CC}	12V	V
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"
LED Current	I_L	120	mA

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio)	CR		2500	4000	-	-	Note (2)	
Response Tim	e	Gray to gray		-	6	12	ms	Note (3)	
Center Lumina	ance of White	L _C		350	450	-	cd/ m ²	Note (4)	
White Variation	n	δW			-	1.5	-	Note (7)	
Cross Talk		СТ		-	-	4	%	Note (5)	
	Ded	Rx	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$		0.647		-		
	Red	Ry	Viewing angle at		0.321		-		
	Croon	Gx	normal direction		0.298		-		
Oalan	Green	Gy		Тур	0.621	Тур.+	-	NI-t- (C)	
Color	Dlue	Вх		0.03	0.151	0.03	-	Note (6)	
Chromaticity	Blue	Ву			0.050		-		
	\A/le;te	Wx			0.280		-		
	White				0.290		-		
	Color Gamut			-	76	-	%	NTSC	
	l lovino mtol	θ_{x} +		80	88	-			
Viewing	Horizontal	θ _x -	OD: 00	80	88	-	Das	Note (4)	
Angle	Voution	θγ+	CR≥20	80	88	-	Deg.	Note (1)	
	Vertical	θ _Y -		80	88	-			

PRODUCT SPECIFICATION

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80.

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L1023 / L0

L1023: Luminance of gray level 1023

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7)

Note (3) Definition of Gray to Gray Switching Time:

The driving signal means the signal of gray level 0, 127, 255, 383,511, 639,767, 895and 1023. Gray to gray average time means the average switching time of gray level 0, 127, 255, 383,511, 639,767, 895and 1023 to each other.

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 1023 at center point.

 $L_C = L(5)$, where L(x) is corresponding to the luminance of the point X at the figure in Note (7).

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

 Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 1023 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

8. DEFINITION OF LABELS

8.1 CMI MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V546H1-LE5
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.
- (c) CMI barcode definition:

Serial ID: XX-XX-XX-YMD-L-NNNN

Code	Meaning	Description
XX	CMI internal use	-
XX	Revision	Cover all the change
X-XX	CMI internal use	-
YMD		Year: 2001=1, 2002=2, 2003=3, 2004=4 Month: Jan. ~ Dec.=1, 2, 3, ~, 9, A, B, C Day: 1 st to 31 st =1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product

9. Packaging

9.1 PACKING SPECIFICATIONS

- (1) 3 LCD TV modules / 1 Box
- (2) Box dimensions: 1334(L) X 284 (W) X 856 (H)
- (3) Weight: approximately 48.5 Kg (3 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

Figure.9-1 packing method

PRODUCT SPECIFICATION

Air Transportation

Figure. 9-2 Packing method

PRODUCT SPECIFICATION

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of LED will be higher than that of room temperature.

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

10.3 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

Regulatory	Item	Standard
	UL	UL60950-1:2006 or Ed.2:2007
Information Technology equipment	cUL	CAN/CSA C22.2 No.60950-1-03 or 60950-1-07
	СВ	IEC60950-1:2005 / EN60950-1:2006
	UL	UL60065 Ed.7:2007
Audio/Video Apparatus	cUL	CAN/CSA C22.2 No.60065-03:2006 + A1:2006
	СВ	IEC60065:2001+ A1:2005 / EN60065:2002 + A1:2006

If the module displays the same pattern for a long period of time, the phenomenon of image sticking may be occurred.

PRODUCT SPECIFICATION

11. MECHANICAL CHARACTERISTIC

