# Multi-adversarial Discriminative Deep Domain Generalization for Face Presentation Attack Detection



# Rui Shao, Xiangyuan Lan, Jiawei Li, Pong C. Yuen

LONG BEACH **CALIFORNIA** June 16-20, 2019

# Department of Computer Science, Hong Kong Baptist University

Fake Depth

# Introduction **Training Seen Domains Unseen Domain** Generalized **Feature Space**

- > Improving the generalization ability of face anti-spoofing methods from the perspective of the domain generalization.
- ➤ Learning a generalized feature space that is shared and discriminative.



# **Network Components**



#### ➤ Multi-adversarial Domain Generalization :

$$\mathcal{L}_{DG} = (\mathbf{X}, \mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_N; G, D_1, D_2, \dots, D_N)$$

$$= \sum_{i=1}^{N} \begin{pmatrix} \mathbb{E}_{x \sim \mathbf{X}} \left[ log \left( D_i(G(x)) \right) \right] \\ + \mathbb{E}_{x_i \sim \mathbf{X}_i} \left[ log \left( 1 - D_i(M_i(x_i)) \right) \right] \end{pmatrix}$$

- Train one feature generator to compete with all the N domain discriminators simultaneously.
- A shared feature space is learned after one feature generator fools all the N domain discriminators.

### **➤ Dual-force Triplet-mining Constraint** $\mathcal{L}_{Trip} = (\mathbf{X}, \mathbf{Y}; G, E)$



- Fake face with the same identity has similar facial characteristics; real face with the different identity has different facial characteristics.
- Distance of each subject to its intra/cross-domain positive smaller than to its intra/cross-domain negative.

#### > Auxiliary Face Depth Information



• Feature space guided to exploit generalized differentiation cues related to the face depth in the learning process.

## **Experimental Results**

#### > Datasets











> Comparison Results

| Methods          | O&C&I to M |       | O&M&I to C |       | O&C&M to I |       | I&C&M to O |       |
|------------------|------------|-------|------------|-------|------------|-------|------------|-------|
|                  | HETR       | AUC   | HETR       | AUC   | HETR       | AUC   | HETR       | AUC   |
| MS_LBP           | 29.76      | 78.50 | 54.28      | 44.98 | 50.30      | 51.64 | 50.29      | 49.31 |
| B_CNN            | 29.25      | 82.87 | 34.88      | 71.94 | 34.47      | 65.88 | 29.61      | 77.54 |
| IDA              | 66.67      | 27.86 | 55.17      | 39.05 | 28.35      | 78.25 | 54.20      | 44.59 |
| CT               | 28.09      | 78.47 | 30.58      | 76.89 | 40.40      | 62.78 | 63.59      | 32.71 |
| LBPTOP           | 36.90      | 70.80 | 42.60      | 61.05 | 49.45      | 49.54 | 53.15      | 44.09 |
| Auxiliary(Depth) | 22.72      | 85.88 | 33.52      | 73.15 | 29.14      | 71.69 | 30.17      | 77.61 |
| MMD_AAE          | 27.08      | 83.19 | 44.59      | 58.29 | 31.58      | 75.18 | 40.98      | 63.08 |
| Ours             | 17.69      | 88.06 | 24.5       | 84.51 | 22.19      | 84.99 | 27.98      | 80.02 |

#### **≻**Ablation Study

| Methods      | O&C&M to I |       |  |  |
|--------------|------------|-------|--|--|
| Wiethous     | HETR       | AUC   |  |  |
| Ours_wo/mgan | 36.50      | 63.15 |  |  |
| Ours_wo/trip | 34.99      | 71.37 |  |  |
| Ours_wo/dep  | 37.44      | 62.82 |  |  |
| Ours         | 22.19      | 84.99 |  |  |

#### **►** Limited source domains

| Methods | M&    | I to C | M&I to O |       |  |
|---------|-------|--------|----------|-------|--|
| Memous  | HETR  | AUC    | HETR     | AUC   |  |
| MS_LBP  | 51.16 | 52.09  | 43.63    | 58.07 |  |
| IDA     | 45.16 | 58.8   | 54.52    | 42.17 |  |
| LBPTOP  | 45.27 | 54.88  | 47.26    | 50.21 |  |
| Ours    | 41.02 | 64.33  | 39.35    | 65.10 |  |

#### > Attention Map





Ours



















0.5