PH101

Lecture 2

Coordinate systems

Cartesian coordinate System in plane

In Cartesian coordinate position P is represented by (x, y).

$$\overrightarrow{OP} = \overrightarrow{r} = x \widehat{x} + y \widehat{y}$$

Note:

- \hat{x} and \hat{y} are unit vectors **pointing the** increasing direction of x and y.
- \hat{x} and \hat{y} are orthogonal and points in the same direction everywhere or for any location (x, y).

Cartesian Coordinate System

Another way of looking unit vector Cartesian coordinate in plane

 \hat{x} is the unit vector perpendicular to x = constant line (surface)

 \hat{y} is the unit vector perpendicular to y = constant line (surface)

Notations

We may interchangeably use the notations:

$$\hat{x} = \hat{i}$$

$$\hat{y} = \hat{j}$$

$$\hat{z} = \hat{k}$$

Standard Notations:

$$\frac{dx}{dt} = \dot{x} \quad Or \quad \frac{dr}{dt} = \dot{r}$$

$$\frac{d^2\theta}{dt^2} = \ddot{\theta}$$

For **time** derivatives (only)!

Velocity and acceleration in Cartesian

Velocity
$$\vec{v} = \frac{d\vec{r}}{dt}$$

Velocity in Cartesian: $\vec{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt} (x \hat{x} + y \hat{y})$

$$= \dot{x}\hat{x} + x \, \frac{d\hat{x}}{dt} + \dot{y}\hat{y} + y \frac{d\hat{y}}{dt}$$

$$\vec{v} = \dot{x}\hat{x} + \dot{y}\hat{y}$$

Acceleration,

$$\vec{a} = \frac{d\vec{v}}{dt} = \ddot{x}\hat{x} + \ddot{y}\hat{y}$$

 $\frac{d\hat{x}}{dt} = \frac{d\hat{y}}{dt} =$

Since.

Newton's second law in vector form,

$$\overrightarrow{F} = F_x \widehat{x} + F_y \widehat{y} = m \frac{d\overrightarrow{v}}{dt} = m(\ddot{x}\widehat{x} + \ddot{y}\widehat{y})$$

I. Plane polar coordinate

Each point P(x, y) on the plane can also be represented by its distance (r) from the origin O and the angle (θ) OP makes with X-axis.

Relationship with Cartesian coordinates

$$x = r \cos \theta \& y = r \sin \theta$$

Thus,
$$r = (x^2 + y^2)^{1/2}$$

 $\theta = \tan^{-1} \frac{y}{x}$

Unit vector in plane polar coordinate

- For plane polar unit vectors:
 - $\widehat{m{r}}$ and $\widehat{m{ heta}}$ associated to **each point** in the plane.
- \hat{r} and $\hat{\theta}$ are unit vector along increasing direction of coordinate r and θ .

$$\overline{r} = r \cos \theta \ \widehat{x} + r \sin \theta \ \widehat{y}$$

$$\widehat{r} = \cos \theta \ \widehat{x} + \sin \theta \ \widehat{y}$$

$$\widehat{\theta} = -\sin \theta \ \widehat{x} + \cos \theta \ \widehat{y}$$

$$\hat{r}$$
 and $\hat{\theta}$ are orthogonal: $\hat{r} \cdot \hat{\theta} = 0$ but their directions depend on location.

$$\hat{r} = \frac{\partial \bar{r}}{\partial r}$$

$$\widehat{\theta} = \frac{\partial \widehat{r}}{\partial \theta}$$

Unit vector in plane polar coordinate

The unit vectors in the polar coordinate can also be viewed in another way. \hat{r} is the unit vector perpendicular to r = constant surface and points in the increasing direction of r.

Similarly, $\hat{\theta}$ is the unit vector perpendicular to $\theta = constant$ surface (i,e tangential to r = constant) and points in the increasing direction of θ .

Unit vector in plane polar coordinate

$$\hat{x} = \hat{i}$$

$$\hat{y} = \hat{j}$$

$$\hat{z} = \hat{k}$$

Unit vectors in polar coordinate are function of θ only.

$$\frac{\partial \hat{r}}{\partial \theta} = \frac{\partial}{\partial \theta} (\hat{x} \cos \theta + \hat{y} \sin \theta) = -\hat{x} \sin \theta + \hat{y} \cos \theta = \hat{\theta}$$

$$\frac{\partial \widehat{\boldsymbol{\theta}}}{\partial \boldsymbol{\theta}} = \frac{\partial}{\partial \theta} \left(-\hat{x} \sin \theta + \hat{y} \cos \theta \right) = -(\hat{x} \cos \theta + \hat{y} \sin \theta) = -\hat{r}$$

Velocity in plane polar coordinate

Velocity
$$\vec{v} = \frac{d\vec{r}}{dt}$$

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt} (r \, \hat{r}) = \frac{dr}{dt} \hat{r} + r \frac{d\hat{r}}{dt}$$

$$= \dot{r}\hat{r} + r \frac{\partial \hat{r}}{\partial \theta} \frac{d\theta}{dt}$$

$$\vec{v} = \dot{r}\hat{r} + r \dot{\theta} \hat{\theta}$$
Since,
$$\frac{\partial \hat{r}}{\partial \theta} = \hat{\theta}$$

Radial component \dot{r} and Tangential/transverse component $r\dot{\theta}$

Acceleration in plane polar coordinate

$$\vec{a} = \frac{d\vec{v}}{dt}$$
Note:
$$\frac{\partial \hat{r}}{\partial \theta} = \hat{\theta} & \frac{\partial \hat{\theta}}{\partial \theta} = -\hat{r}$$

$$= \frac{d}{dt} (\dot{r}\hat{r} + r\dot{\theta}\hat{\theta}) = \frac{d\dot{r}}{dt}\hat{r} + \dot{r}\frac{d\hat{r}}{dt} + \dot{r}\dot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} + r\dot{\theta}\frac{d\hat{\theta}}{dt}$$

$$= \ddot{r}\hat{r} + \dot{r}\frac{\partial \hat{r}}{\partial \theta}\frac{d\theta}{dt} + \dot{r}\dot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} + r\dot{\theta}\frac{\partial \hat{\theta}}{\partial \theta}\frac{d\theta}{dt}$$

$$= \ddot{r}\hat{r} + \dot{r}\dot{\theta}\hat{\theta} + \dot{r}\dot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} - r\dot{\theta}^2\hat{r}$$

$$\vec{a} = (\ddot{r} - r\dot{\theta}^2)\hat{r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\theta}$$

Radial component of acceleration: $\ddot{r} - r\dot{\theta}^2$

(Note: $-r\dot{\theta}^2$ is the familiar *Centripetal contribution!*)

Tangential component: $2\dot{r}\dot{\theta} + r\ddot{\theta}$

(Note: $2\dot{r}\dot{\theta}$ is called the *Coriolis* contribution!)

Newton's law in plane polar coordinate

$$\vec{F} = m \frac{d\vec{v}}{dt}$$

$$\vec{F} = F_r \hat{r} + F_\theta \hat{\theta} = m[(\ddot{r} - r\dot{\theta}^2)\hat{r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\theta}]$$

Newton's law for radial direction: $F_r = \mathbf{m}(\ddot{r} - r\dot{\theta}^2)$

Newton's law for tangential direction: $F_{\theta} = m(2\dot{r}\dot{\theta} + r\ddot{\theta})$

Note: Newton's law in polar coordinates **do not** follow its **Cartesian form** as,

$$F_r \neq m\ddot{r}$$
 or $F_{\theta} \neq m\ddot{\theta}$

Highlights

• Transformation relation between *Cartesian* and *polar coordinate* is given by,

$$x = r \cos \theta$$
$$y = r \sin \theta$$

Reverse transformation

$$r = (x^2 + y^2)^{1/2}$$
$$\theta = \tan^{-1} \frac{y}{x}$$

- Directions of unit vectors (\hat{x}, \hat{y}) in **Cartesian** system remain *fixed* **irrespective** of the location (x, y).
- Directions of unit vectors $(\hat{r}, \hat{\theta})$ in plane polar coordinates depend on the location.
- Caution: Form of Newton's law is different in different coordinate systems.

Questions please