Chemistry 129.01

Name: Key

Solve the following problems:

- 1. (16 pts.) Consider the B₂ ion.
 - (a) Draw its molecular orbital diagram and write its electron configuration.
 - (b) What are the shapes of the molecular orbitals σ_{2p} and σ_{2p}^* ?
 - (c) Determine its bond order. Is B₂ stable? Is B₂ paramagnetic or diamagnetic?
 - (d) If two electrons are added to form B_2^{2-} , how many unpaired electrons would B_2^{2-} have? Calculate the bond order of B_2^{2-} . Which would you expect to have the stronger bond, B_2 or B_2^{2-} ? Longer bond? Explain

(c)
$$9.0. = \frac{1}{2}(6-4) = 1$$

Bond Order is >1 > Stable

B2 has two unpaired electrons → Paramagnetic

(d)
$$B_2^2$$
 has no unpaired electrons

 B_2^2 has no unpaired electrons

 B_2^2
 B_2^2

B2 has a greater bond order so it has a stronger bond B2 has a lower bond order so it has the longer bond

2. (5 pts) The IR spectrum of ammonia vapor shows a bending vibrational mode band at $\tilde{v} = 950 \, \text{cm}^{-1}$. Calculate wavelength (in nm) and the energy of the photon absorbed.

$$\lambda = \frac{1}{V} = \frac{1}{950 \text{ cm}^3} = 1.1 \times 10^3 \text{ cm} = 1.1 \times 10^4 \text{ nm}$$

3. (4 pts) Based on our discussion of Session 6 of the greenhouse gas module, which of the following would you predict are greenhouse gases: CO₂, O₂, and H₂O? Explain.

CO2 & HSD are greenhouse gases. They have dipole moments that change during vibratilen so they are IR active.