MI Claim:

A compound of the formula

(I).

wherein the dotted time represents an optional double bond; X is hydrogen or halo; and Y is substituted carboxylate or substituted sulfonyl.

claim 1. wherein Y is -COOR or SO2R; compound accordi with the proviso that when Y is $\frac{1}{M}$ COOR, R is C₁ to C₁₂ alkyl, substituted C₁ to C₁₂ alkyl, phenyl, substituted phenyl, C₇

phenylalkyl
to C₁₂ phenylalkyl
to C₁₂ phenylalkyl
wherein the phenyl moiety is substituted or R is -2,-3, or -4 piperidyl or N-substituted piperidyl wherein the substituents on said \substituted C₁ to C₆ alkyl are selected from amino or substituted amino and the substituents on said substituted amino are selected from C₁ to C₅ alkyl, the substituents on moieting the C7 to C₁₂. Phenyl alkyl said substituted phenyl and on said substituted phenyl meets are selected from C₁ to C₆ alkyl and halo, and the substituent on said N-substituted piperidyl is C_1 to C_4 alkyl; and with the proviso that when Y is SO_2R , R is C_1 to C₁₂ alkyl, phenyl, substituted phenyl, C₇ to C₁₂ aralkyl, phenylalkyl kyl wherein the phenyl moiety is substituted, wherein the substituents on said substituted phenyl and said substituted phenyl moiety, are selected from C₁ to C₆ alkyl and halo.

B

3 a A compound according to claim 1, wherein Y is $\frac{1}{m}$ COOR, wherein R is as defined in claim $\frac{1}{2}$, said compound having a single bond between the 5- and 6- carbons.

B

A compound according to claim 1, wherein Y is $\frac{1}{m}SO_2R$, wherein R is as defined in claim $\frac{1}{2}$, said compound having a single bond between the 5- and 6- carbons.

4

A compound according to claim, wherein X is hydrogen, said compound having a single bond between the 5- and 6- carbons.

5.

A compound according to claim 2, wherein X is 8-chloro, said compound having a single bond between the 5- and 6- carbons.

9

A compound according to claim &, wherein X is hydrogen, said compound having a single bond between the 5- and 6- carbons.

' ||-

11-(N-carboethoxy-4-piperidylidene)-8-chloro-6,11-dihydro-5H-benzo-[5,6]-cyclohepta-[1,2-b]-pyridine.

11-(N-methanesulfonyl-4-piperidylidene)-6,11-dihydro-5H€ benzo-[5,6]-cyclohepta-[1,2-b]-pyridine.

9 10

11-(N-carboethoxy-4-piperidylidene)-6,11-dihydro-5H2
benzo-[5,6]-cyclohepta-[1,2-b]-pyridine.

1/2.

11-(N-carbomethoxy-4-piperidylidene)-6,11-dihydro-5H⊖

8,9

benzo-[5,6]-cyclohepta-[1,2-b]-pyridine.

1/2.

11-(N-carbophenoxy-4-piperidylidene)-6,11-dihydro-5Hobenzo-[5,6]-cyclohepta-[1,2-b]-pyridine.

B

B

Apharmaceutical composition comprising an effective amount of a compound as claimed in any one of the preceding claims and a pharmaceutically acceptable carrier.

12

A method of effecting an anti-allergic response in an animal comprising administering to the animal an effective amount of a compound as claimed in any one of claims 1 to 16.

for the forest f