18.06 Recitation 4

Isabel Vogt

October 1, 2018

1 Pictures/Words Problems

- 1. Describe geometrically in pictures/words these subspaces:
 - (a) The span of two vectors $v_1, v_2 \in \mathbb{R}^n$ if v_1 and v_2 are linearly dependent.
 - (b) The span of three linearly independent vectors $v_1, v_2, v_3 \in \mathbb{R}^n$.
 - (c) Let $u = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. The space of vectors $w \in \mathbb{R}^3$ so that $u \cdot w = 0$. Can you describe the geometry of this situation in terms of fundamental subspaces?
- 2. (Strang, 3.4 Problem 24 + 3.5 Problem 25 + ϵ) True or False (give a good reason if True/example if False)
 - (a) If the zero vector is in the column space of a matrix A, then the columns of A are linearly dependent.
 - (b) If the columns of a matrix are dependent, so are the rows.
 - (c) The column space of a 2×2 matrix is the same as its row space.
 - (d) The column space of a 2×2 matrix has the same dimension as its row space.
 - (e) The columns of a matrix are a basis for the column space.
 - (f) A and A^T have the same number of pivots.
 - (g) A and A^T have the same left nullspace.
 - (h) If the row space equals the column space then $A^T = A$.
 - (i) If $A^T = -A$, then the row space of A equals the column space.

2 Problems

1. (Strang 3.4, Problem 7) If w_1, w_2, w_3 are independent vectors in \mathbb{R}^3 , show that the differences

$$v_1 = w_2 - w_3$$

$$v_2 = w_1 - w_3$$

$$v_3 = w_1 - w_2$$
.

are dependent. Find the matrix A so that

$$\begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} A = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}.$$

Which matrices above are singular?

- 2. (Strang 3.4, Problem 11) A is an $m \times n$ matrix of rank r. Suppose there are right sides b for which Ax = b has no solution. (What does this mean in terms of fundamental subspaces?)
 - (a) What are all of the inequalities (< or \le) that must be true between m and n and r?
 - (b) How do you know that $A^T y = 0$ has solutions other than y = 0?
- 3. (Strang 3.4, Problem 22) Construct $A = uv^T + wz^T$ whose column space has basis $\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$ and whose row space has basis (1,0),(1,1). Write A as a 3×2 matrix times a 2×2 matrix.
- 4. (Strang 3.5, Problem 5)
 - (a) If Ax = b has a solution and $A^Ty = 0$, is

$$y^T x = 0,$$
 or $y^T b = 0$?

- (b) If $A^T y = (1, 1, 1)$ has a solution and Ax = 0, then _____.
- 5. (Strang 3.5, Problem 23) If a subspace S is contained in a subspace V, prove that S^{\perp} contains V^{\perp} .
- 6. (Strang 3.5, Problem 27) The lines $3x + y = b_1$ and $6x + 2y = b_2$ are _____. They are the same line if ______. In that case (b_1, b_2) is perpendicular to the vector _____. The nullspace of the matrix is the line 3x + y = _____. One particular vector in the nullspace is _____.
- 7. (Strang 3.5, Problem 33)** Suppose I give you 8 vectors $r_1, r_2, n_1, n_2, c_1, c_2, l_1, l_2$ in \mathbb{R}^4 .
 - (a) What are the conditions for those pairs to be bases for the our fundamental subspaces of a 4×4 matrix?
 - (b) What is one possible matrix A?