

<u>Help</u>

selfpoised ~

Next >

<u>Course Progress Dates Course Notes Discussion</u>

Tutorial: Minimal Sum Of Products

 \square Bookmark this page

< Previous</pre>

For the following problems, please use the following conventions when entering boolean expressions.

- \bar{X} : enter as not(X).
- X AND Y: enter as XY.
- X AND $ar{Y}$: enter as Xnot(Y).
- X OR Y: enter as X + Y.
- $\bar{X}\bar{Y}$: enter as not(X)not(Y).
- Recall that $\overline{XY} = \overline{X} + \overline{Y}$ (not $\overline{X}\overline{Y}$).
- Extra white spaces are ignored.
- Lower or upper case letters are treated the same.
- Sum of products expression refers to an expression of the form ABC + not(A)not(B)C, where each term is a product term and ORing them together makes a sum of products expression. Note that within a product term negation can only be applied to a single variable at a time. In other words not(A)not(B) is acceptable but not(AB) is not.

Minimal Sum Of Products

1/1 point (ungraded)

Consider the following circuit that implements the 3-input function Z(A,B,C):

What is the minimal sum-of-products expression for Z(A,B,C):

not(a) + not(b) + not(c)

Submit

Minimal Sum Of Products

1/1 point (ungraded)

A sum-of-products expression involving 3 variables with greater than 2 product terms can *always* be simplified to a sum-of-products expression using fewer product terms.

True

False

Submit

Minimal Sum Of Products

10/10 points (ungraded)

A 6.004 intern at Intel has designed the combinational circuit shown below. His boss can't figure out what it does and has asked for your help.

⊞ Calculator

A ->-

A) Your first task is to fill out F(A,B,C) in the truth table below:

$oldsymbol{A}$	B	C	F(A,B,C)	
0	0	0	0	~
0	0	1	0	~
0	1	0	1	~
0	1	1	0	~
1	0	0	0	~
1	0	1	1	~
1	1	0	1	~
1	1	1	0	~

B) Now, express F(A,B,C) in minimal sum-of-products form. Hint: use a Karnaugh map!

anot(b)c + bnot(c)

C) The boss isn't quite sure what it means but he knows his engineers are always impressed if he asks "is the circuit universal?" Is it? Choose YES or NO.

○ NO

Submit

Minimal Sum Of Products

1/1 point (ungraded)

Hapless Logic, Inc has found a bunch of CMOS curcuits one of which is shown below:

⊞ Calculator

 $Tutorial\ Problems\ |\ 4.\ Combinational\ Logic\ |\ Computation\ Structures\ 1:\ Digital\ Circuits\ |\ edX$ Hapless Logic has forgotten what function, H(A,B,C,D), this circuit computes so they need your help. Give a Boolean sum-of-products expression for H(A,B,C,D) consistent with the pulldown shown above. not(c)not(d) + not(a)not(b) Submit Discussion **Hide Discussion** Topic: 4. Combinational Logic / Tutorial : Minimal Sum Of Products **Add a Post** Show all posts by recent activity 🗸 ? Can't understand $q2 \rightarrow c$ 2 In the lecture i understand that any sum of product i can represent it using NAND NAND & NOR NOR but answer of that question try t... ✓ Universal gate? 3 In Question 2 my gate ends up as XOR if A=logical 1 ... is XOR universal gate? Previous Next >

© All Rights Reserved

edX

About

<u>Affiliates</u>

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center Media Kit

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>