c) Contadores Asíncronos

i) Contadores Binarios

A los Contadores Asíncronos Binarios se les llama también **Contadores de Rizo** y para entender su funcionamiento es necesario conocer su **DIAGRAMA DE TIEMPOS**

El Diagrama de Tiempos muestra el funcionamiento del Circuito Secuencial, tanto las variables de estado, como las entradas y las salidas, respecto al tiempo.

En los Circuitos Secuenciales Síncronos esta relación respecto al tiempo considera un **Tren de Pulsos** como **Reloj**.

PROF: ING. ROBERTO FEDERICO MANDUJANO WILD

EJEMPLO: DISEÑAR UN CONTADOR ASINCRONO BINARIO MODULO 16

NOTA IMPORTANTE: LOS FF's SE DISPARAN POR EL FRENTE DE ONDA DEL PULSO DE RELOJ, EL CUAL PUEDE SER DE FLANCO POSITIVO (CUANDO SUBE) O FLANCO NEGATIVO (CUANDO BAJA).

OJO: EN ESTE DIAGRAMA DE TIEMPOS PODEMOS OSERVAR QUE CK ES EL RELOJ DE Q₀ Y POR CADA PULSO DE RELOJ ENCIENDE Y APAGA, POR LO TANTO ESTAMOS HABLANDO DE UN FF T, ASI TAMBIEN Q₀ ES EL RELOJ DE Q₁, Q₁ ES EL RELOJ DE Q₂ Y Q₂ ES RELOJ Q₃, Y TODOS FUNCIONAN COMO FF'S T

AHORA SI, LA IMPLEMENTACION

PROF: ING. ROBERTO FEDERICO MANDUJANO WILD

ii) Contadores No-Binarios

Para diseñar Contadores Asíncronos No-Binarios es indispensable el **DIAGRAMA DE TIEMPOS** y basar el diseño en la experiencia, no existen **Pasos de Diseño**.

Sin embargo podemos hacer algunas consideraciones:

Para diseñar Contadores Asíncronos No-Binarios, y en general cualquier **Circuito Secuencial Asíncrono**, debemos tomar en cuenta:

- 1.- El diseño tradicional de Circuitos Secuenciales y la Teoría de FF's.
- 2.- Dado el Diagrama de Tiempos determinar quién es reloj de quién, tomando en cuenta el Disparo de los FF's (Frente de Onda).
- 3.- Si estamos diseñando con FF's JK observar que FF's funcionan como FF T.
- 4.- Observar en el Diagrama de Tiempos para que condiciones se enciende el FF (definir la J o la S).
- 5.-Si estamos implementando con FF's JK y el FF se apaga al siguiente pulso de reloj, entonces la K vale "1".
- 6.- Observar en el Diagrama de Tiempos para que condiciones se apaga el FF (definir la K o la R).
- 7.- Hacer una prueba del circuito y comprobar el Diagrama de Tiempos.

EJEMPLO: DISEÑAR UN CONTADOR ASINCRONO MODULO 10 (BCD) UTILIZANDO FF's JK

AHORA SI, LA IMPLEMENTACION

PROF: ING. ROBERTO FEDERICO MANDUJANO WILD

COMPARANDO CON EL CONTADOR SINCRONO EN BCD

COUNT

ENABLE

¿QUE OBSERVAMOS?

EL ASINCRONO TIENE MENOS COMPUERTAS

CONTADOR BCD O MODULO 10

LA FRECUENCIA MAXIMA DE OPERACIÓN DEL CONTADOR ASINCRONO SERIA:

 $f_{max} = 1/(3 \triangle t_b + \triangle t_c)$

Y LA DEL SINCRONO SERIA:

 $f_{\text{max}} = 1/(\triangle t_b + \triangle t_c)$

EJEMPLO 1: DISEÑAR UN DIVISOR DE FRECUENCIA ENTRE 4 CON EL MISMO ANCHO DE PULSO

¿COMO LE HAGO?

¿EN QUE TEMA ESTAMOS?

EJEMPLO 1: DISEÑAR UN DIVISOR DE FRECUENCIA ENTRE 4 CON EL MISMO ANCHO DE PULSO

DISEÑANDO CON UN CONTADOR ASINCRONO MODULO 4 TENEMOS:

EJEMPLO 1: DISEÑAR UN DIVISOR DE FRECUENCIA ENTRE 4 CON EL MISMO ANCHO DE PULSO

SOLO QUE YO LO QUIERO CON EL MISMO ANCHO DE PULSO !!!!!

EJEMPLO 1: DISEÑAR UN DIVISOR DE FRECUENCIA ENTRE 4 CON EL MISMO ANCHO DE PULSO

EJEMPLO 2: DISEÑAR UN CIRCUITO CONTROL DE PALABRA DE 8 TIEMPOS

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.