Departamento de Ciência de Computadores Modelos de Computação (CC1004)

FCUP 2014/15

1º Teste – 11.04.2015

Uma resolução (v1)

duração: 2h + 30m

- **1.** Seja $\Sigma = \{a, b, c\}$ e seja r a expressão $((a((b+c)^*))a)$.
- a) Baseando-se na definição de expressão regular, mostre que r é uma expressão regular sobre Σ .

Resposta:

Uma expressão regular sobre Σ é qualquer sequência finita de símbolos de $\Sigma \cup \{\emptyset, \varepsilon, +, *, \}, (\}$ que se possa obter por aplicação das regras seguintes: ε , \emptyset , a, b e c são expressões regulares sobre Σ ; se r e s são expressões regulares sobre Σ então (r+s), (rs) e (r^*) são expressões regulares sobre Σ .

Assim, r é uma expressão regular sobre Σ porque $r=(r_1r_2)$, com $r_1=(\mathtt{a}((\mathtt{b}+\mathtt{c})^\star))$ e $r_2=\mathtt{a}$, sendo $r_1=(r_3r_4)$, com $r_3=\mathtt{a}$ e $r_4=((\mathtt{b}+\mathtt{c})^\star)$, e $r_4=(r_5^\star)$, para $r_5=(\mathtt{b}+\mathtt{c})$, e $r_5=(r_6+r_7)$, com $r_6=\mathtt{b}$ e $r_7=\mathtt{c}$.

b) Determine o autómato finito que resulta da aplicação do método de Thompson à expressão regular r. Apresente **os passos relevantes** dessa construção.

Resposta:

Na continuação da resposta anterior, os AFNDs- ε para r_6 , r_7 , r_3 e r_2 são:

 $A(r_6):$ $\longrightarrow \widehat{(i_6)} \xrightarrow{b} \widehat{(f_6)}$

 $A(r_7): \longrightarrow \widehat{(i_7)} \xrightarrow{c} \widehat{f_7}$

 $A(r_3): \longrightarrow \widehat{(i_3)} \xrightarrow{a} \widehat{(f_3)}$

 $A(r_2): \longrightarrow \widehat{(i_2)} \xrightarrow{a} \widehat{(f_2)}$

Os AFNDs- ε para $r_5=(r_6+r_7)$ e $r_4=(r_5^{\star})$ são:

Os autómatos para $r_1 = (r_3r_4)$ e $r = (r_1r_2)$ obtém-se de $A(r_3)$ e $A(r_4)$ e, depois, de $A(r_1)$ e $A(r_2)$, por identificação do estado inicial de $A(r_4)$ com o final de $A(r_3)$, e do estado final de $A(r_1)$ (que é o final de $A(r_4)$) com o inicial de $A(r_2)$.

c) Apresente a expressão r na forma *abreviada*, retirando parentesis desnecessários, e descreva informalmente a linguagem de Σ^* que é caraterizada pela expressão regular r.

Resposta:

 \overline{A} expressão abreviada é $a(b+c)^*a$.

A linguagem descrita pela expressão r é o conjunto das palavras de $\{a,b,c\}^*$ que têm exatamente dois a's, e começam e terminam em a.

d) Descreva informalmente a linguagem descrita pela expressão regular $((r + (b + c))^*)$. Partindo dessa descrição, determine um AFD que reconheça tal linguagem. Justifique sucintamente a correção da resposta, descrevendo o que memoriza cada estado (e explicando a necessidade das mudanças de estado).

Resposta:

 \overline{A} linguagem descrita pela expressão indicada é o conjunto das palavras de $\{a,b,c\}^*$ que têm número par de a's.

A linguagem é reconhecida pelo AFD seguinte:

As palavras que levam este AFD do estado inicial s_0 ao estado s_1 são as que têm número ímpar de a's. As palavras que têm número par de a's levam o autómato do estado s_0 ao estado s_0 . Os dois estados são necessários porque apenas as palavras que têm número par de a's pertencem à linguagem.

2. Seja $A = (S, \Sigma, \delta, q_0, F)$ o autómato finito não determinístico com transições por ε representado pelo diagrama seguinte, com alfabeto $\Sigma = \{0, 1\}$.

a) Qual é o valor de $\delta(q_2, 0)$, $\delta(q_0, \varepsilon)$, $\delta(q_3, 0)$, e $\delta(q_1, \varepsilon)$? Justifique sucintamente.

Resposta:

A função de transição δ do AFND- ε $A=(S,\Sigma,\delta,q_0,F)$ é uma função de $S\times(\Sigma\cup\{\varepsilon\})$ em 2^S . O diagrama de transição tem um arco de s para s' com etiqueta α se e só se $s'\in\delta(s,\alpha)$. Se houver várias transições de um estado para outro (ou para si próprio), essas transições representam-se por um único arco, com os símbolos correspondentes separados por vírgulas.

Assim,
$$\delta(q_2, 0) = \{q_1, q_3\}, \delta(q_0, \varepsilon) = \emptyset, \delta(q_3, 0) = \{q_1\}, e \delta(q_1, \varepsilon) = \emptyset.$$

b) Determine $\hat{\delta}(\{q_0\}, 100)$. Apresente os cálculos intermédios.

Resposta:

(a definição de $\hat{\delta}$ que estamos a seguir está em **2e**))

c) Que interpretação tem $\hat{\delta}(\{q_0\}, 100)$? É verdade ou é falso que $100 \in \mathcal{L}(A)$? Justifique.

Resposta:

 $\hat{\delta}(\{q_0\}, 100)$ representa o conjunto de estados em que o autómato se pode encontrar se consumir a palavra 100 partindo do estado q_0 (estado inicial do autómato).

A palavra 100 pertence a $\mathcal{L}(A)$ porque $\hat{\delta}(\{q_0\}, 100) = \{q_0, q_1\}$ contém um estado final (o estado q_1).

d) Por aplicação do método de eliminação de estados, determine uma expressão regular que descreva a linguagem que A reconhece. Deverá apresentar os passos intermédios da aplicação do algoritmo. Pode apresentar expressões abreviadas, usando as propriedades e precedência das operações para retirar parentesis desnecessários. Sempre que for óbvio, simplifique as expressões obtidas em cada passo.

Resposta:

Todos os estados do autómato são acessíveis do estado inicial e permitem aceder a algum estado final. Assim, não há estados que se possam eliminar por serem inutéis.

Começamos por substituir os estados finais por um único estado final f (do qual não saem transições). Inserimos um novo estado inicial i, para garantir que não chegam transições ao estado inicial. Substituimos as etiquetas dos ramos por expressões regulares.

Eliminamos q_1 , substituindo os percursos q_3q_1f e q_2q_1f por arcos (q_3,f) e (q_2,f) , com etiquetas 0ε e $(\varepsilon+0+1)\varepsilon$, respetivamente (ou seja, 0 e $\varepsilon+0+1$). Como já existia um arco de q_3 para f, substituimos a sua expressão regular por $\varepsilon+0$.

Eliminamos q_0 , substituindo os percursos $q_3q_0q_0^{\star}q_2$ e $iq_0q_0^{\star}q_2$ por arcos (q_3,q_2) e (i,q_2) com etiquetas $\varepsilon 0^{\star}1$, ou seja, $0^{\star}1$. A expressão de (q_3,q_2) seria substituída por $1+0^{\star}1$, que é equivalente a $0^{\star}1$.

Eliminamos q_3 , substituindo $q_2q_3q_2$ e q_2q_3f por arcos (q_2,q_2) e (q_2,f) com etiquetas $(0+\varepsilon)0^*1$ e $(0+\varepsilon)(\varepsilon+0)$. A expressão de (q_2,f) seria substituída por $\varepsilon+0+1+(0+\varepsilon)(\varepsilon+0)$ que é equivalente a $\varepsilon+0+1+00$. A expressão $(0+\varepsilon)0^*1$ também se pode simplificar como 0^*1 .

Eliminando q_2 , por substituição de percursos $iq_2q_2^{\star}f$ por um arco (i, f), obtém-se

concluindo-se que $\mathcal{L}(A)$ é descrita pela expressão regular (abreviada):

$$0^*1(0^*1)^*(\varepsilon+0+1+00)$$

e) Por aplicação do método de conversão descrito nas aulas para obter um AFD equivalente a um dado AFND- ε , determine o diagrama de transição de um AFD equivalente ao autómato A. Explique.

Resposta:

 $\overline{\mathbf{O} \operatorname{AFD} A'} = (2^S, \Sigma, \delta', Fecho_{\varepsilon}(q_0), F'), \operatorname{com} F' = \{E \mid E \in 2^S \text{ e } E \cap F \neq \emptyset\} \text{ e}$

$$\delta'(E, a) = Fecho_{\varepsilon} \left(\bigcup_{s \in Fecho_{\varepsilon}(E)} \delta(s, a) \right) = \hat{\delta}(E, a)$$

para todo $E \in 2^S$ e $a \in \Sigma$, é equivalente ao AFND- ε $A = (S, \Sigma, \delta, q_0, F)$.

Por definição, $Fecho_{\varepsilon}(s) = \{s\} \cup \{s' \mid \text{ existe um percurso de } s \text{ para } s' \text{ formado por transições-} \varepsilon\}$ e $Fecho_{\varepsilon}(E) = \bigcup_{s \in E} Fecho_{\varepsilon}(s)$.

Como o número de estados deste AFD genérico é exponencial no número de estados do AFND- ε dado, vamos tentar obter um AFD com menos estados, criando apenas os estados que são acessíveis do seu estado inicial $Fecho_{\varepsilon}(q_0) = \{q_0\}$. Obtém-se o seguinte AFD.

3. Seja L a linguagem de alfabeto $\Sigma = \{a, b\}$ que é aceite pelo AFD $A = (\{s_1, s_2, s_3, s_4, s_5\}, \Sigma, \delta, s_1, F)$, com $F = \{s_1, s_4, s_5\}$ e δ dada pela tabela representada à esquerda.

	a	b
s_1	s_2	s_4
s_2	s_3	s_4
s_3	s_1	s_4
s_4	s_2	s_5
s_5	s_2	s_5

- a) Desenhe o diagrama de transição de A e descreva informalmente L.
- **b**) Diga, justificando, se o AFD dado é o AFD mínimo para L.
- c) Assuma que, para aplicação do método de Kleene a A, se designa o estado s_i apenas pelo símbolo i, para i=1,2,3,4,5. Indique uma expressão regular (abreviada) que descreva a linguagem $\mathcal{L}(r_{11}^{(3)})$. Justifique sucintamente.

Resposta:

3a)

L é o conjunto das sequências finitas de a's e b's que depois do último b têm um número de a's que é múltiplo de três, possivelmente zero (se não têm b's, têm um número de a's que é multiplo de três, podendo ser zero).

3b)

Segundo a definição da linguagem, tem-se: $bz \in L$ se e só se $z \in L$ e $bbz \in L$ se e só se $z \in L$. Isto implica que as palavras b e bb são equivalentes segundo R_L (relação do teorema de Myhill-Nerode que carateriza o AFD mínimo para L), pelo que, sendo δ' a função de transição do AFD mínimo, teriamos $\delta'([b], b) = [bb] = [b]$. Assim, os dois estados s_4 e s_5 dão origem a um único estado no AFD mínimo. Portanto, o AFD dado não é o AFD mínimo para L.

Resposta (cont):

3b) Resposta alternativa:

O AFD dado não é mínimo pois teriamos um AFD equivalente se retirassemos s_5 e colocassemos um lacete com b em s_4 . Os estados s_4 e s_5 não são distinguíveis pois, para quaisquer x e y tais que $\hat{\delta}(s_1,x)=s_4$ e $\hat{\delta}(s_1,y)=s_5$, tem-se $xz\in\mathcal{L}(A)$ se e só se $yz\in\mathcal{L}(A)$, para todo $z\in\Sigma^*$. De facto, se $z=\varepsilon$, a condição verifica-se pois s_4 e s_5 são ambos estados finais. Se z=bw, para algum $w\in\Sigma^*$, então $\hat{\delta}(s_1,xz)=\hat{\delta}(s_5,w)=\hat{\delta}(s_1,yz)$ e, se z=aw então $\hat{\delta}(s_1,xz)=\hat{\delta}(s_2,w)=\hat{\delta}(s_1,yz)$. Logo, se $z\neq\varepsilon$, as palavras xz e yz são equivalentes para A e, portanto, $xz\in\mathcal{L}(A)$ sse $yz\in\mathcal{L}(A)$.

3c)

No método de Kleene, a expressão regular $r_{ij}^{(k)}$ descreve a linguagem das palavras que levam o autómato do estado i ao estado j, podendo passar por estados i intermédios numerados até k (inclusivé).

Assim, a $\mathcal{L}(r_{11}^{(3)})$ é descrita pela expressão regular (aaa)* pois além de ε apenas podiamos considerar palavras que correspondem a percursos do estado s_1 para o estado s_1 que não passam em s_4 nem s_5 , o que restringe a análise ao diagrama seguinte:

(Fim)