	00	o o o ™
Silver	s o	W I
Oak College	of Err	O Ja

STORY VOICE FUTURE	MCP: Date:
	Assignment - 1
	Matrix:
Que. 1	Define the following:
	(1) Squine matrix: A matrix of order min is called a squire matrix. To a gauge matrix the number of mous
	In a squite matrix the number of mous equals the number of columns.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$= 3 \times 3 = 2 \times 9 = 1 \times 1$
	(2) Diagonal mathia:- A squire mathia in
	which each element expect the diagonal matrix
	Fol := [co] i = j cm = n]
(CERTIFIED ET	

1	001	300	TM E
Silver Oak C	15 C	*	4 Technology
we	Do of Er	r rounn	LITTER .

Do of Engine of the	Date :
	(3) Tenanspose of a material : The material obtained
	from any given matrix A by changing its nows into connespending columns is called the transpose of A and it is denoted by A' on A'.
-	Thus the transpose of A = [aij] is A = [aij] Ex: A = [1.23] -> A = [1.4] [a 5 6] [a 6]
	[4] Symmetric Matrix:- If for a squire matrix
	M=[aij], A'= A, then A is called a symmetric matrix.
-	In a symmetric matrix; auj = aij ton each paln (i,j) amxn = 3x3
	[5] skew - symmetric motrin:-
	It son a squire matrix A = [aij], A' = -A, then A is alled a skew symmetric matrix.
	Thus all the diagonal elements of a skew symmetric matrix are zero A = AT

	TM
200	747
1 00	A P
Oot Oot	To John
Ella	The streets

DAK COLLEGE OF ENGINEERING & TECHNOLOGY

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Date:
WE THOSE ABOUT YOUR PUTTING	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Que: 2	TP A = [6 7 8] and B = [-4 5 6] Then find A + B and A - B.
Mye:	A+B A-[678]+B[-456] 175]
	A+B = [6+(-4) 7+5 8+6] [4+7 9+(-9) 5+(-9)]
	$A+B=\begin{bmatrix} 9 & 19 & 14 \\ 8 & 1 & 3 \end{bmatrix}$
=)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$A-B = \begin{bmatrix} 6-(-4) & 7-5 & 8-6 \\ 1-7 & 7-8 & 5+2 \end{bmatrix}$
	$A-B = \begin{bmatrix} 10 & 2 & 2 \\ -6 & -1 & 9 \end{bmatrix}$

H CONTRACTOR	SILVER OAK COLLEGE ST.
200	Date : Page No. :
QUE. 3	If $A = \begin{bmatrix} 4 & 6 \\ 2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 \\ 5 & 1 \end{bmatrix}$ then find
golire:	$4A - 9B = 4 \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
	- 16 94 2 8 7 8 19 - 0 9 20 -4 1 10 -2
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$4A - 9B = \begin{bmatrix} 14 & 18 \\ 8 & 90 \end{bmatrix}$
Que.4	52 A= [2 3 4] and B= [-2 6] then [1 2 5] 8imd [-9 -1]
	AB and BA
	AB = 2 3 4 7 -2 6 1 2 5 2 5
A STATE OF	2 - 1 -

10	20 30 1
Col	80 To
8	a of Engineering

	Date :
Hit Looks vaccut, come studies	$= \begin{bmatrix} -9 \times (-2) + 8 \times 9 + 4 \times (-2) & 2 \times 3 + 3 \times 5 + 4 \times (-1) \\ -1 \times (-2) + 2 \times 2 + 5 \times (-2) & 1 \times 6 \times 4 \times 5 + 5 \times (-1) \end{bmatrix}$
	$= \begin{bmatrix} (-4)+6+(-8) & 6+15+(-4) \\ (-2)+4+(-10) & 6+10+(-5) \end{bmatrix}$
	AB = [-6 17] [-8 19]
=)	BA = -9 6 0 3 4 9 5 X 1 2 5
	$= [-9 \times 9 + 6 \times 1] - 9 \times 3 + 6 \times 9 - 9 \times 4 + 6 \times 5$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
=	F 1.0 0110 0 0 + 20]
	[-4-1 -6+(-2) =8+-5]
B	A = [2 6 22]
	L5 -8 -13 -

of Engineerich	Date :Page No. :
	$\frac{4 \times 1 + 3 \times (-1) + 0 \times 1 - 7}{-3 \times 1 + 2 \times (-1) + (-2) \times 1}$ $6 \times 1 + 4 \times (-1) + 5 \times 1$
	$= \begin{array}{cccccccccccccccccccccccccccccccccccc$
31. \ <u>\</u>	$A^3 = \begin{bmatrix} 4 & 11 & 1 \\ -9 & -9 & -9 \\ 01 & 11 & 7 \end{bmatrix}$
	* A3-3A2-A+9]=0
1-	$ \begin{bmatrix} 4 & 1 & 1 \\ -9 & -2 & -7 & -3 & -3 & 2 & -2 & -6 & 1 & -1 \\ -21 & 1 & 7 & 6 & 4 & 5 \end{bmatrix} $
	9[100]
20 12 12 12 12 12 12 12 12 12 12 12 12 12	$\begin{bmatrix} 4 & 11 & 1 & 1 & 12 & 9 & 6 & 1 & 2 & 1 & 9 & 6 \\ -9 & -2 & -3 & -1 & -9 & 6 & -5 & -6 & 1 & -1 & 1 & 0 & 9 & 0 \\ 21 & 11 & 9 & 12 & 15 & 13 & -1 & 1 & 1 & 0 & 0 & 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0$
	The contract of the state of th

	S O	CE	1.
ilver C	*	M	Polon
ak C	(18)	0	Teg

of Englished Pulling	Date : Page No. :
	[4-12-1 11-9-2 1-0-1]
	$\begin{bmatrix} -9 & 0 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & 0 & -9 \end{bmatrix} + \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix} = 0$
	. [000] = 0 R.H.3 Proved.
	The Mution A3-BA3-A+97 is a proved
Que.6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$adj A = 3A^{7}$ $= 3 \begin{bmatrix} -1 & 9 & 2 \\ -2 & 1 & -2 \end{bmatrix}$ $= 2 + 4 = 6$
	$3A^{T} = \begin{bmatrix} -3 & 6 & 6 \\ -6 & 3 & -6 \end{bmatrix}$ $0.3 = -4-2 = -6$
	1-6-63 dag = -2-4 = -6

OF ENGINE STAND	Date : Page No. :
	adj A = [-3 6 6]
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	31 = 4 + 2 = 6 32 = 2 + 4 = 6
	: U.H.S = R.H.S
	Co-Facton=[-3 -6 -6]
- PAVALCO	
QUE. 7	IPO A = [0 7] Pimol A+AT+AT
30/vet	$A^{\Gamma} = \begin{bmatrix} 9 & 5 \\ 7 & 3 \end{bmatrix}$
	$A^{-1} = AdjA$ $A = \begin{bmatrix} 2 & 7 \\ 5 & 3 \end{bmatrix}$
	$\begin{bmatrix} 3 & -4 \\ -5 & 2 \end{bmatrix} = 6 - 35$ $= 1 \times \begin{bmatrix} -5 & 2 \\ -99 & \neq 0 \end{bmatrix}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{bmatrix} -5/99 & -2/29 \end{bmatrix} = \begin{bmatrix} -3 & -9 \\ -5 & 2 \end{bmatrix}$

WIS THORK ABOUT YOUR PUTURE	Date :
	· A + AT+A-#
	$\begin{bmatrix} 5 & 3 \end{bmatrix} + \begin{bmatrix} 9 & 5 \end{bmatrix} + \begin{bmatrix} -3/09 & 7/29 \\ 5 & 3 \end{bmatrix} + \begin{bmatrix} 5/29 & -2/09 \end{bmatrix}$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Que 8	If A = [.52] and B = [4-3] then [-63] that adj (AB) = (adj B) x (adj A) That adj (AB) = (adj B) x (adj A)
Salve	Odj $AB = \begin{bmatrix} -1 & 3 & 1 & 3 & -2 \\ -3 & 4 & 6 & -5 \end{bmatrix}$ $\begin{bmatrix} -3 & +18 & 9 & -15 \\ -9 & +24 & 6 & -20 \end{bmatrix}$ Odj $AB = \begin{bmatrix} 15 & -18 \\ 15 & -14 \end{bmatrix}$

000	" D D C
80	10
32	A
	0
Par En	giorantina

	Date: Page No.: 11
	$AB = \begin{bmatrix} -5 & 9 \\ -6 & 3 \end{bmatrix} \times \begin{bmatrix} 4 & -3 \\ 3 & -1 \end{bmatrix}$
	-94+9 18-3
	$= \begin{bmatrix} -14 & 13 \\ -15 & 15 \end{bmatrix} = \begin{bmatrix} 15 & -13 \\ 15 & -14 \end{bmatrix} - (ii)$
	$(ii) = (ii) \leftarrow$
Que.9	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Solve	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\frac{m!mon}{a_{11}= -1 } = 0-2$ $ 2 = -2$

	Date :)
	$a_{10} = 0 = 0 - 3$ $a_{10} = 0 - 3$	
	A13 = 0 -1 = 0 +3	
	00 = -6	
Asserta	000 = 1 3 = 0 - 9	
	033= 01 2 = 2-6	
	$Q_{31} = \begin{vmatrix} 2 & 3 \\ -1 & 1 \end{vmatrix} = 2 + 3$	
	032 - 13 = 1-0.	
- 1:3/ A	033= 1 2 = -1-0 -6 -9 -4	
1 5 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	co-Parton = -2 3 3 6 -9 4 5 -1 1	

	00	000
Silvo	S O	A I
Ook Co	10	8
-	18 to of	AGENTA PUTUME

SE SHOWLANDER FUNDING	Date :Page No. : 13	
	$co-factor = \begin{bmatrix} -2 & 3 & 3 \\ 6 & -9 & 4 \end{bmatrix}$	
	$A^{-1} = \frac{\text{adj} A}{\text{IAI}} = \frac{1}{13} \begin{bmatrix} -2 & 3 & 3 \\ 6 & -9 & 4 \end{bmatrix}$	
Que 10	Show that -2/3 2/3 2/3 is an 2/3 2/3 is an 2/3 2/3 2/3 conthogonal 2/3 -2/3 2/3 matrix.	(
solve	$A^{T} = \begin{bmatrix} -\frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \end{bmatrix}$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	= [-2/3x-2/3+-1/3x1/3+2/3x2/3-2/3+2/3x2/3x2/3+2/3x2/3x2/3x2/3x2/3x2/3x2/3x2/3x2/3x2/3x	
	4/9 + /3 + 4/9 2/9 + 2/9 + 2/9 - 2/9 + 4/9 - 4/9 + 2/9 + 2/9 + 2/9 + 4/9 + 1/9 = 2/9 - 4/9 + 2/9 - 2/9 - 2/9 + 4/9 2/9 + 4/9 + 2/9 1/3 + 4/9 + 4/3	

-	000	00"
138	500	TO.
10 00	26	*
6	10	0/3

.0	Date : Page No. ; 14
	= 19/9 0/9 0/9
Que.11	given matrix is anthogonal matrix.
Salver	A. A.I = I
	[ab] x [32] = [10]
([30+76 20+56] = [10] [30+76 20+56] = [0]
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	equation (i) - (ii) 8a+7b=1 -2a+5b=6
	a + 2b -1.
	equation. 5 value put in (2)

and Transport Proper Printing	Date : Page No. :
N / / /	$2(1-2b)+5b=0 \qquad a=1-2(-2)$ $2-4b+5b=0 \qquad =1+4$ $0+b=0$ $1 \qquad (a=5)$
Asan Antoni	equation (iii) - (iv) $3c+7d=0$
	- 2· C· +5 d·=1 · · · · · · · · · · · · · · · · · ·
	C = -1 - 2d - (c) $eq(c)$ value put in equation (3) $3(-1 - 2d) + 7d = 0$ $C = 7 - 2d$ $-3 - 6d + 7d = 0$ $-1 - 6$
	-3+d=0 $C=-7$
	$A = \begin{bmatrix} 0 & b & -15 & -2 \\ -1 & 3 & 3 \end{bmatrix}$ $A = \begin{bmatrix} 0 & b & -15 & -2 \\ -1 & 3 & 3 \end{bmatrix}$
	The state of the s

Silver Out Common Attack	SILVER OAK COLLEGE OF ENGINEERING & TECHNOLOGY Date: Page No.: 16
	$ \begin{bmatrix} 5 & -9 & x & 5 & -7 \\ -7 & 3 & & & & & \\ \hline -7 & 3 & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & & & \\ \hline -7 & 3 & & & & $
1 - 1	: A [5 -2] is not onthogonal matrial
	1
	-311 d-51 = 1 0 d 0