Contents

1	Sem	n Outline
2 Lecture 1		
	2.1	Network Structure
	2.2	Access Network
		2.2.1 Digital Subscriber Line (DSL)
		2.2.2 Cable Network
	2.3	Sending
	2.4	Physical Media
		2.4.1 Coax
		2.4.2 Fiber Optic Cable
		2.4.3 Radio
	2.5	Packet-switching
		2.5.1 Store-and-forward
		2.5.2 Packet switching versus circuit switching
	2.6	Packet Loss
		2.6.1 Nodal Processing
		2.6.2 Queuing Delay
		2.6.3 Transmission Delay
		2.6.4 Propagation Delay
	2.7	Throughput
	2.8	Layering
		2.8.1 Why Layering?
		2.8.2 Internet Protocol Stack
		2.8.3 ISO/OSI Reference Model
	2.9	Security

1 Sem Outline

Week (dates)	Lecture
1	Computer Networks and the Internet
2	Principles of Nw Apps: HTTP, SMTP, DNS
3	Application Layer: P2P, CDN, Sockets
4	Networking at UQ
5	Transport Layer: UDP
6	Transport Layer: TCP
7	Network Layer: Data Plane
8	Network Layer: Control Place
9	Link Layer
11	Wireless and Mobile
12	Security
13	Multimedia

Table 1: Week Outline

2 Lecture 1

• billions of connected computing devices

transmission rate: bandwidth

• Packet Switches: Forward packets

- routers and switches

Internet: "network of networks" (Interconnected ISPs)

 Protocols control sending, receiving (e.g. TCP, IP, HTTP, Skype, 802.11)

Internet standards

RFC: Request for comments

IETF: Internet Engineering Task Force

2.1 Network Structure

Network Edge

- hosts: clients and servers
- servers often in data centers
- Access networks, physical media: wired, wireless communication links
- network core:
 - interconnected routers
 - network of networks

2.2 Access Network

2.2.1 Digital Subscriber Line (DSL)

- use existing telephone line to central office DSLAM
 - data over DSL phone line goes to Internet
 - voice over DSL phone line goes to telephone net
- < 2.5 Mbps upstream transmission rate (typically < 1 Mbps)
- < 24 Mbps downstream transmission rate (typically < 10 Mbps)

2.2.2 Cable Network

frequency division multiplexing: different channels transmitted in different frequency bands

HFC: hybrid fiber coax

- asymmetric: up to 30Mbps downstream transmission rate, 2 Mbps upstream transmission rate
- network of cable, fiber attaches homes to ISP router
 - homes share access network to cable head-end

 unlike DSL, which has dedicated access to central office

wireless LANS:

- within building (30 meters)
- 802.11b/g/n (WiFi): 11,54,450 Mbps transmission rate

wide-area wireless access:

- provided by telco (cellular) operator, 10's km
- between 1 and 10 Mbps
- 3G, 4G, LTE

2.3 Sending

- takes application message
- breaks into smaller chunks, known as packets, of length L bits
- ullet transmites packet into access network at transmission rate R
 - link transmission rate, aka link capacity, aka link bandwidth

Note 1: Packet Transmission Delay

$$\begin{array}{ccc} & & \text{time} \\ \text{packet} & & \text{needed} \\ \text{trans-} & & = \frac{\text{to} & \text{trans-}}{\text{mit} & L\text{-bit}} = \frac{L \text{ (bits)}}{R \text{ (bits/sec)}} \\ \text{delay} & & \text{packet into} \\ & & & \text{link} \end{array}$$

2.4 Physical Media

- bit: propagates between transmitter/receiver pairs
- physical link: what lies between transmitter and receiver
- guided media: signals propagate in solid media (copper, fiber, coax)
- unguided media: signals propagate freely, e.g. radio
- twisted pair (TP): two insulated copper wires
 - Category 5: 100 Mbps, 1 Gbps Ethernet
 - Category 6: 10 Gbps

2.4.1 Coax

- two concentric copper conductors
- bidirectional
- broadband: multiple channels on cable, HFC

2.4.2 Fiber Optic Cable

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation: high-speed point-topoint transmission (e.g. 10's - 100's Gbps transmission rate)
- low error rate
 - repeaters spaced far apart
 - immune to electromagnetic noise

2.4.3 Radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

Radio Link Types:

- terrestrial microwave: up to 45 Mbps channels
- LAN (e.g. WiFi) 54 Mbps
- wide-area (e.g. cellular) 4G cellular: 10 Mbps
- satellite
 - Kbps to 45 Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude

2.5 Packet-switching

2.5.1 Store-and-forward

 ${\cal L}$ bits per packet

Source to destination: R bps

- takes $\frac{L}{R}$ seconds to transmit (push out) L-bit packet into link at R bps
- store and forward: entire packet must arrive at router before it can be transmitted on next link

Note 2: End-End delay

$$\mathrm{delay} = 2\frac{L}{R}$$

(assuming zero propagation delay)

2.5.2 Packet switching versus circuit switching

Is packet switching a "slam dunk winner?"

- great for bursty data (resource sharing, simpler, no call setup)
- excessive congestion possible: packet delay and loss (protocols needed for reliable data transfer, congestion control)

2.6 Packet Loss

Figure 1: Packet Delay Algorithm Explanation

Note 3: Packet Delay Algorithm

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

2.6.1 Nodal Processing

 d_{proc}

- check bit errors
- · determine output link
- typically < msec

2.6.2 Queuing Delay

 d_{queue}

- time waiting at output link for transmission
- depends on congestion level of router

2.6.3 Transmission Delay

 d_{trans}

- L: packet length (bits)
- R: link bandwidth(bps)
- $d_{\text{trans}} = \frac{L}{R}$

2.6.4 Propagation Delay

 d_{prop}

- d: length of physical link
- s: propagation speed ($\approx 2 \times 10^8$ m/sec)
- $d_{prop} = \frac{d}{s}$

2.7 Throughput

Rate (bits/time unit) at which bits transferred 2.9 Security between sender/receiver

Instantaneous: rate at given point in time Average: rate over longer period of time

Note 4: Bottleneck Link

Link on end-end path that constrains end-end throughput

2.8 Layering

2.8.1 Why Layering?

Dealing with complex systems:

- Explicit structure allows identification, relationship of complex system's pieces (layered reference model for discussion)
- Modularization eases maintenance, updating system
 - change of implementation of layer's service transparent to rest of system
 - e.g. change in gate procedure doesn't affect rest of system
- layering considered harmful?

2.8.2 Internet Protocol Stack

Application: supporting applications network (FTP, SMTP, HTTP)

Transport: process-process data transfer (TCP, UDP)

Network: routing of datagrams from source to destination (IP, routing protocols)

Link: data transfer between neighboring network elements (Ethernet, 802.111 (WiFi), PPP)

Physical: bits "on the wire"

2.8.3 ISO/OSI Reference Model

Internet stack "missing" these layers. These services, if needed, must be implemented in application.

Application:

Presentation: allow applications interpret to meaning of data, e.g. encryption, compression, machine-specific conventions

Session: synchronization, check-pointing, recovery of data exchange

Transport: Network: Link: Physical:

Malware can get in host from:

Virus: self-replicating infection by receiving/executing object (e.g. e-mail attachment)

Worm: self-replicating infection by passively receiving object that gets itself executed

- Spyware malware can record keystrokes, web sites visited, upload info to collection site
- Infected host can be enrolled in botnet, used for spam. DDoS attacks

DoS: Denial of Service 2.9.1

Denial of Service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic

- 1. select target
- 2. break into hosts around the network (botnet)
- 3. send packets to target from compromised hosts

2.9.2 Sniffing

- broadcast media (shared Ethernet, wireless)
- promiscuous network interface reads/records all packets (e.g. including passwords) passing by

2.9.3 IP Spoofing

Send packet with false source address