Лабораторная работа 16

Задачи оптимизации. Модель двух стратегий обслуживания

Ендонова Арюна Валерьевна

Содержание

Цель работы	5
Задание	6
Выполнение лабораторной работы	7
Постановка задачи	7
Построение модели	7
Оптимизация модели двух стратегий обслуживания	11
Выводы	18
Список литературы	19

Список иллюстраций

1	Модель первой стратегии обслуживания	8
2	Отчёт по модели первой стратегии обслуживания	9
3	Модель второй стратегии обслуживания	10
4	Отчет по модели второй стратегии обслуживания	10
5	Модель двух стратегий обслуживания с 1 пропускным пунктом	12
6	Отчёт по модели двух стратегий обслуживания с 1 пропускным пунктом	12
7	Модель первой стратегии обслуживания с 3 пропускными пунктами	13
8	Отчёт по модели первой стратегии обслуживания с 3 пропускными пунк-	
	тами	14
9	Модель первой стратегии обслуживания с 4 пропускными пунктами	15
10	Отчёт по модели первой стратегии обслуживания с 4 пропускными пунк-	
	тами	15
11	Модель второй стратегии обслуживания с 3 пропускными пунктами	16
12	Отчёт по модели второй стратегии обслуживания с 3 пропускными пунк-	
	тами	16
13	Модель второй стратегии обслуживания с 4 пропускными пунктами	17
14	Отчёт по модели второй стратегии обслуживания с 4 пропускными пунк-	
	тами	17

Список таблиц

1	Сравнение стратегий -	[#tbl:strategy]:	1

Цель работы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.

Задание

Реализовать с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

Выполнение лабораторной работы

Постановка задачи

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a,b]. Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: $\mu = 1$, 75 мин, a = 1 мин, b = 7 мин.

Построение модели

Целью моделирования является определение:

- характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска;
- наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля;
- оптимального количества пропускных пунктов.

В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем:

- коэффициенты загрузки системы;
- максимальные и средние длины очередей;
- средние значения времени ожидания обслуживания.

Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель (рис. [-@fig:001]).

```
| lab16_1.gps
GENERATE (Exponential(1,0,1.75)) ; прибытие автомобилей TEST LE Q$Other1,Q$Other2,Obsl_2 ; длина оч. 1<= длине оч. 2
 TEST E Q$Other1,Q$Other2,Obsl_{1}; длина оч. 1= длине оч. 2
TRANSFER 0.5,Obsl_1,Obsl_2 ; длины очередей равны, ; выбираем произв. пункт пропуска
 ; моделирование работы пункта 1
 Obsl 1 QUEUE Other1 ; присоединение к очереди 1
 SEIZE punkt1 ; занятие пункта 1
 DEPART Other1 ; выход из очереди 1
 ADVANCE 4,3 ; обслуживание на пункте 1
 RELEASE punkt1 ; освобождение пункта 1
 TERMINATE ; автомобиль покидает систему
 ; моделирование работы пункта 2
 Obsl_2 QUEUE Other2 ; присоединение к очереди 2
 SEIZE punkt2 ; занятие пункта 2
 DEPART Other2 ; выход из очереди 2
 ADVANCE 4,3 ; обслуживание на пункте 2
 RELEASE punkt2 ; освобождение пункта 2
 TERMINATE ; автомобиль покидает систему
 ; задание условия остановки процедуры моделирования
 GENERATE 10080 ; генерация фиктивного транзакта,
 ; указывающего на окончание рабочей недели
 ; (7 дней х 24 часа х 60 мин = 10080 мин)
 TERMINATE 1 ; остановить моделирование
 START 1 ; запуск процедуры моделирования
```

Рис. 1: Модель первой стратегии обслуживания

После запуска симуляции получим отчёт (рис. [-@fig:002]).

<pre>lab16_1.1.</pre>	1 - REPOR	ı									
	START	TIME	I	END T	IME	BLOCKS	FACILIT	IES	STORAG	ES	
		0.000					2		0		
	NAI	ME				ALUE					
	OBSL_1					5.000					
	OBSL_2					1.000					
	OTHER1					0.000					
	OTHER2					1.000					
	PUNKT1 PUNKT2					3.000 2.000					
	PUNK12				1000	2.000					
		100	DI OCK TI		E11	TDV 600	NE CURRE	NT 60	OUNT DE	TDV	
LABEL		1	BLOCK TY	CPE 7	EN	5853		NT CC		TRY 0	
		2	GENERATE TEST	2		5853		0		0	
		3	TEST			4162		0		-	
			TRANSFER			2431		0		0	
OBSL 1			QUEUE			2928		387		0	
0555_1			SEIZE			2541		0		0	
			DEPART			2541		0		0	
			ADVANCE			2541		1		0	
			RELEASE			2540		0		0	
			TERMINAT			2540		0		0	
OBSL 2			QUEUE			2925		388		0	
_		12	SEIZE			2537		0		0	
		13	DEPART			2537		0		0	
		14	ADVANCE			2537		1		0	
		15	RELEASE			2536		0		0	
		16	TERMINAT	ſΕ		2536		0		0	
		17	GENERATE	Ξ		1		0		0	
		18	TERMINAT	ľΕ		1		0		0	
FACILITY			UTIL.								
PUNKT2			0.996								
PUNKT1		2541	0.997		3.9	55 1	5079	0	0	0	387
QUEUE											
OTHER1			387 292								
OTHER2		393	388 292	45	12	187.1	.14 64	4.823	5 64	7.479	U
FEC XN	PRT	BDT	ASS	SEM	CHEBE	NT NEY	T PARAM	FTFP	VAT.	TIL	
5855			102 589				. IANAI		VAL		
	0		517 50		8						
3073		10003.	51, 50								

Рис. 2: Отчёт по модели первой стратегии обслуживания

Составим модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом (рис. [-@fig:003], [-@fig:004]).

```
M lobic_2ops

punkt STORAGE 2

GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

QUEUE Other; присоединение к очереди 1

ENTER punkt,1; занятие пункта 1

DEPART Other; выход из очереди 1

ADVANCE 4,3; обслуживание на пункте 1

LEAVE | punkt,1; освобождение пункта 1

TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования

GENERATE 10080; генерация фиктивного транзакта,

; указывающего на окончание рабочей недели

; (7 дней х 24 часа х 60 мин = 10080 мин)

TERMINATE 1; остановить моделирование

START 1; запуск процедуры моделирования
```

Рис. 3: Модель второй стратегии обслуживания

	1.1 - REPORT									
	START								STORAGES	
	0	.000		10080	.000	9		0	1	
	NAM	ΙE				VALUE				
	OTHER				100	01.000				
	PUNKT				100	00.000				
LABEL		LOC	BLOCK	TYPE	E	NTRY C	OUNT	CURRENT (COUNT RETRY	
			GENERA		_	5719			0	
		2	QUEUE			5719		668	3 0	
		3	ENTER			5051		0	0	
		4	DEPAR	Γ		5051		(0	
		5	ADVANO	Œ		5051		2	2 0	
		6	LEAVE			5049		(0	
		7	TERMI	NATE		5049		0	0	
		8	GENER!	ATE		1		(0	
		9	TERMIN	NATE		1		(0	
QUEUE		MAX C	ONT. El	NTRY E	NTRY (0) AVE	.con	r. AVE.TIN	ME AVE.(-0)	RETR
OTHER		668	668	5719	4	344	.466	607.13	88 607.562	0
STORAGE PUNKT									UTIL. RETRY	
FEC XN	PRI	BDT	1	ASSEM	CURR	ENT N	EXT	PARAMETE	R VALUE	
5721	0	10080.	466	5721	0		1			
5051	0	10081.	269	5051	5	i	6			
5052	0	10083.	431 5	5052	5		6			
5722	0	20160.	000	5722	0		8			

Рис. 4: Отчет по модели второй стратегии обслуживания

Составим таблицу по полученной статистике (табл. [-@tbl:strategy]).

Таблица 1: Сравнение стратегий {#tbl:strategy}:

Показатель	стратегия 1			стратегия 2
	пункт 1	пункт 2	в целом	
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина очереди	393	393	786	668
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

Сравнив результаты моделирования двух систем, можно сделать вывод о том, что первая модель позволяет обслужить большее число автомобилей. Однако мы видим, что разница между обслуженными и поступившими автомобилями меньше для второй модели — значит, продуктивность работы выше. Также для второй модели коэффициент загрузки равен 1 — значит ни один из пунктов не простаивает. Максимальная длина очереди, средняя длина очереди и среднее время ожидания меньше для второй стратегии. Можно сделать вывод, что вторая стратегия лучше.

Оптимизация модели двух стратегий обслуживания

Изменим модели, чтобы определить оптимальное число пропускных пунктов (от 1 до 4). Будем подбирать под следующие критерии:

- коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5; 0, 95];
- среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;
- среднее время ожидания обслуживания не должно превышать 4 мин.

Для обеих стратегий модель с одним пунктом выглядит одинаково (рис. [-@fig:005]).

```
# holf_2ops

GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

QUEUE Other; присоединение к очереди 1

SEIZE punkt; занятие пункта 1

DEPART Other; выход из очереди 1

ADVANCE 4,3; обслуживание на пункте 1

RELEASE punkt; освобождение пункта 1

TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования

GENERATE 10080; генерация фиктивного транзакта,

; указывающего на окончание рабочей недели

; (7 дней x 24 часа x 60 мин = 10080 мин)

TERMINATE 1; остановить моделирование

START 1; запуск процедуры моделирования
```

Рис. 5: Модель двух стратегий обслуживания с 1 пропускным пунктом

После симуляции получим следующий отчет (рис. [-@fig:005]).

lab16_2.6.1	- REPORT										
					FACILITIES						
	0.000) 1	0080.000	9	1	0					
	NAME			VALUE							
	OTHER		100	000.000							
	PUNKT		10001.000								
LABEL	т	OC BLOCK T	VDF F	NTDV COII	NT CURRENT C	OUNT DETDY					
DADLE		GENERAT		5744	0 1712/17100 171						
		OUEUE	_		3233	ō					
	3	SEIZE		2511	0	0					
	4	DEPART		2511	0	0					
	5	ADVANCE		2511	1	0					
	6	RELEASE		2510	0	0					
	7	TERMINA	TE	2510	0	0					
		GENERAT		1	0	0					
	9	TERMINA	TE	1	0	0					
FACILITY	ENTF	RIES UTIL.	AVE. TI	ME AVAIL	. OWNER PEND	INTER RETRY	DELAY				
PUNKT	25	1.000	4.	014 1	2512 0	0 0	3233				
OUEUE		V CONT. THE	DV ENEDY	(0) 3117 0			DETEN				
OTHER						E AVE.(-0) 9 2839.313					
OTHER	323	04 3233 37	77 1	101/.0	/6 2030.01	9 2039.313	U				
FEC XN					T PARAMETER	VALUE					
2512		80.255 25		6							
5746		80.384 57									
5747	0 201	.60.000 57	47 (8 (

Рис. 6: Отчёт по модели двух стратегий обслуживания с 1 пропускным пунктом

В этом случае модель не проходит ни по одному из критериев, так как коэффициент загрузки, размер очереди и среднее время ожидания больше.

Построим модель для первой стратегии с 3 пропускными пунктами и получим отчет (рис. [-@fig:007], [-@fig:008]).

Рис. 7: Модель первой стратегии обслуживания с 3 пропускными пунктами

LABEL		LOC	BLOCK I	YPE	ENTR	Y COUNT	CURREN	T COUN	T RET	RY	
		1	GENERAT	Έ	5	547		0	0		
		2	TRANSFE	ER	5	547		0	0		
GO		3	TRANSFE	ER	3	682		0	0		
OBSL 1		4			1	853		1	0		
_			SEIZE		1	852		0	0		
		6	DEPART		1	852		0	0		
		7	ADVANCE	2	1	852		1	0		
		8	RELEASE	2	1	851		0	0		
		9	TERMINA	ATE	1	851		0	0		
OBSL 2		10	QUEUE		1	829		0	0		
_			SEIZE		1	829		0	0		
		12	DEPART		1	829		0	0		
		13	ADVANCE	2	1	829		0	0		
			RELEASE		1	829		0	0		
		15	TERMINA	ATE	1	829		0	0	l	
OBSL 3		16	QUEUE		1	865		3	0		
_			SEIZE		1	862		0	0		
		18	DEPART		1	862		0	0		
		19	ADVANCE	2	1	862		1	0		
		20	RELEASE	2	1	861		0	0		
		21	TERMINA	ATE	1	861		0	0		
		22	GENERAT	Œ		1		0	0		
		23	TERMINA	ATE		1		0	0		
FACILITY		ENTRIES	UTIL.	ΑV	E. TIME	AVAIL.	OWNER F	END IN	TER R	ETRY	DELAY
PUNKT2		1829	0.717	7	3.952	1	0	0	0	0	0
PUNKT3		1862	0.740)	4.006	1	5534	0	0	0	3
PUNKT1		1852			3.957		5546		0	0	1
QUEUE		MAX C	ONT. ENT	RY E	NTRY(0)	AVE.CON	T. AVE.	TIME	AVE.	(-0)	RETRY
OTHER2		11	0 18	329	508	1.112	6			.482	
OTHER3		13	3 18	865	513	1.134	6	.132	8	.458	0
OTHER1		9	1 18	353	529	0.929	5	.055	7	.075	0
FEC XN	PRI				CURRENT	NEXT	PARAME	TER	VALU	E	
5549	0	10081.				1					
5534	0	10082.	440 55	34	19	20					
5546		10085.	099 55	46	7	8					
5550	0	20160.	000 55	550	0	22					

Рис. 8: Отчёт по модели первой стратегии обслуживания с 3 пропускными пунктами

В этом случае среднее количество автомобилей в очереди меньше 3 и коэффициент загрузки в нужном диапазоне, но среднее время ожидания больше 4.

Построим модель для первой стратегии с 4 пропускными пунктами (рис. [-@fig:009], [-@fig:010]).

Рис. 9: Модель первой стратегии обслуживания с 4 пропускными пунктами

		27 28 29	RELI TERI GENI	ANCE EASE MINATE ERATE MINATE		1413 1412 1412 1 1		1 0 0 0		0 0 0	
FACTLITY		ENTRIES	UT:	тт	AVE. TIME	AVATT	OWNER	PEND	INTER	RETRY	DELAY
PUNKT4					3.97				0	0	0
PUNKT3					3.98				0	0	0
PUNKT2					3.99					0	0
PUNKT1					4.01				0	_	0
QUEUE OTHER4 OTHER3 OTHER2 OTHER1		6	0 0	1413 1378 1366	ENTRY (0) 628 655 625 590	0.41 0.34 0.36	5 5 3	2.958 2.527 2.676	3 7 5	5.325 4.816 4.934	0 0 0
FEC XN	PRI	BDT		ASSE	M CURREN	T NEXT	PARAM	METER	VA	LUE	
5624	0	10080.	041	5624	0	1					
5621	0	10080.	398	5621	8	9					
5623	0	10082.	255	5623	26	27					
5625	0	20160.	000	5625	0	29					

Рис. 10: Отчёт по модели первой стратегии обслуживания с 4 пропускными пунктами

В этом случае все критерии выполнены, поэтому 4 пункта являются оптимальным количеством для первой стратегии.

Построим модель для второй стратегии с 3 пропускными пунктами и получим отчет (рис. [-@fig:011], [-@fig:012]).

```
punkt STORAGE 3;
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

; моделирование работы пункта 1
QUEUE Other; присоединение к очереди 1
ENTER punkt; заяятие пункта 1
DEPART Other; выход из очереди 1
ADVANCE 4,3; обслуживание на пункте 1
LEAVE punkt; освобождение пункта 1
TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования
GENERATE 10080; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1; остановить моделирование
START 1; запуск процедуры моделирования
```

Рис. 11: Модель второй стратегии обслуживания с 3 пропускными пунктами

	OTHER PUNKT				10001 10000					
LABEL		100	DT O	במעד שה	FNT	DV COUNT	CURRENT	COUNT	DETDV	
LADEL					ENI		CORRENT	0	0	
		_	QUE			5683		0	0	
				ER		5683		0	0	
				ART		5683		0	0	
				ANCE		5683		3	0	
		_	LEA			5680		0	0	
		-		MINATE		5680		0	0	
				ERATE		1		0	0	
		_		MINATE		1		0	0	
						-				
QUEUE OTHER		MAX C					T. AVE.T.			
STORAGE		CAP	DEM	MTN M	AY FNT	DIES AVI.	. AVE.C	HTTT.	DETDV	DET.AV
PUNKT							2.243			
FEC XN	PRI	BDT		ASSEM	CURREN	T NEXT	PARAMETI	ER	VALUE	
5680	0	10080.	434	5680	5	6				
5683	0	10080.	631	5683	5	6				
5685	0	10082.	068	5685	0	1				
5684	0	10085.	592	5684	5	6				
5686	0	20160.	000	5686	0	8				

Рис. 12: Отчёт по модели второй стратегии обслуживания с 3 пропускными пунктами

В этом случае все критерии выполняются, поэтому модель оптимальна.

Построим модель для второй стратегии с 4 пропускными пунктами и получим отчет (рис. [-@fig:011], [-@fig:012]).

```
рипкt STORAGE 4;

GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

; моделирование работы пункта 1

QUEUE Other; присоединение к очереди 1

ENTER punkt; занятие пункта 1

DEPART Other; выход из очереди 1

ADVANCE 4,3; обслуживание на пункте 1

LEAVE punkt; освобождение пункта 1

TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования

GENERATE 10080; генерация фиктивного транзакта,

; указывающего на окончание рабочей недели

; (7 дней х 24 часа х 60 мин = 10080 мин)

TERMINATE 1; остановить моделирование

START 1; запуск процедуры моделирования
```

Рис. 13: Модель второй стратегии обслуживания с 4 пропускными пунктами

LABEL		T.O.C	BT.O	CK TYP	F FN	TRY COUNT	CURRENT	COUNT	RETRY	
211222		1				5719	001112111	0	0	
		2						0	0	
		3		ER		5719		0	0	
		4		ART		5719		0	0	
		5	ADV.	ANCE		5719		4	0	
		6	LEA	VE		5715		0	0	
		7	TER	MINATE		5715		0	0	
		8	GEN	ERATE		1		0	0	
		9	TER	MINATE		1		0	0	
QUEUE		MAX C	CONT.	ENTRY	ENTRY (0) AVE.CON	T. AVE.T	IME A	AVE. (-0)	RETRY
OTHER		7	0	5719	4356	0.194	0.3	341	1.431	0
STODAGE		CVD	DFM	MTN	MAV FN	TRIES AVL	AVE C	HTTI	DETDV	עגזאר
PUNKT						5719 1				
FEC XN	PRI	BDT		ASSE	M CURRE	NT NEXT	PARAMETI	ER 1	VALUE	
5718	0	10082.	346	5718	5	6				
5717	0	10082.	412	5717	5	6				
5719	0	10083.	393	5719	5	6				
5721	0	10084.	393	5721	. 0	1				
	0	10085.	162	5720	5	6				
5720										

Рис. 14: Отчёт по модели второй стратегии обслуживания с 4 пропускными пунктами

Здесь все критерии выполнены при этом время ожидания и среднее число автомобилей меньше, чем в случе второй стратегии с 3 пунктами, однако и загрузка меньше. Можно сделать вывод, что 4 пропускной пункт излишне разгружает систему.

В результате анализа наилучшим количеством пропускных пунктов будет 3 при втором типе обслуживания и 4 при первом.

Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

Список литературы

- 1. Королькова А.В., Кулябов Д.С. Руководство к лабораторной работе №16. "Задачи оптимизации. Модель двух стратегий обслуживания". Москва, 2025. 135 с.
- 2. Сетевые протоколы: базовые понятия и описание самых востребованных правил // Selectel. URL: https://selectel.ru/blog/network-protocols/
- 3. Протокол передачи данных // Википедия. URL: https://ru.wikipedia.org/wiki/Протокол_передачи_д
- 4. Список сетевых протоколов // Википедия. URL: https://ru.wikipedia.org/wiki/Список_сетевых_про
- 5. О протоколах передачи данных // Habr. URL: https://habr.com/ru/articles/138533/