

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

РТУ МИРЭА

Институт комплексной безопасности и специального приборостроения

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ

по дисциплине «Анализ защищенности систем искусственного интеллекта»

«Лабораторная работа 2»

Выполнил студент группы ББМО-01-22

Лысак Я.Д.

Проверил

Спирин Андрей Андреевич

«15» ноября 2023 г.

Цель работы

Выполнить задания по реализации атак против моделей на основе глубокого обучения, а также получить навыки построения и реализации атак белого и черного ящика на модели машинного обучения.

Задание

- 1. реализовать атаки уклонения на основе белого ящика против классификационных моделей на основе глубокого обучения;
- 2. получить практические навыки переноса атак уклонения на основе черного ящика против моделей машинного обучения.

Ход выполнения работы

В качестве набора данных для данной работы выступает GTSRB (German Traffic Sign Recognition Benchmark). Набор состоит из 43 классов и более 50000 записей различных придорожных знаков. Размер изображений составляет 32 на 32 пикселя.

Местом проведения лабораторной работы была выбрана среда Google Collab изза простоты подключения и доступности графического ускорителя для более быстрого расчет результатов.

Загрузка и передача файлов для обучения проводится через подключение Google диска с выполнением следующих команд (на фрагмент кода 1):

Фрагмент кода – 1

```
!cp drive/MyDrive/archive.zip .
!unzip archive.zip -d data
```

После выполнения фрагмент кода 1 в директории проекта появилась новая папка, содержащая данные для обучения, валидации и тестирования. Проводится настройка формата взводимых данных, а также загрузка данных в программу. Полная загрузка данных продемонстрирована во фрагменте кода 2 и 3.

Фрагмент кода — 2

```
data_dir = './data'
train_path = './data/Train'
test_path = './data/Test'
image_height = 35
image_width = 35
channels = 3
image_shape = (image_height, image_width, channels)
image_size = (image_height, image_width)
batch_size = 32
number_of_categories = len(os.listdir(train_path))
```

Следующий фрагмент кода демонстрирует функцию загрузки данных по категориям. Таким образом в коде программы получен набор данных для обучения модели. Используется 2 подхода к загрузке данных: с помощью написанной функции load_data() для ручной разбивки данных для дальнейшей обработки и tf.keras.preprocessing.image_dataset_from_directory() для формирования генератора Keras.

Фрагмент кода – 3

```
data = tf.keras.preprocessing.image_dataset_from_directory(train_path)

def load_data(data_dir):
    images = list()
    labels = list()
    for category in range(number_of_categories):
        categories = os.path.join(data_dir, str(category))
        for img in os.listdir(categories):
            img = load_img(os.path.join(categories, img), target_size=image_size)
            image = img_to_array(img)
            images.append(image)
            labels.append(category)

return images, labels
```

Затем создается генератор Keras для предобработки и итерации входных данных модели (фрагмент кода 4).

Фрагмент кода – 4

Применение генератора позволяет модифицировать и расширить набор данных для достижения лучшего результата обучения.

После получения генератор и загрузки в него параметров входных данных производится загрузка уже готовых моделей ResNet50 и VGG16 из пакета Keras (фрагмент кода 5).

Фрагмент кода – 5

Затем проводится дополнительная обработка входных слоев, добавляются дополнительные слои и функция активации. После конфигурации модель компилируется. Целевая метрика для обучения — ассигасу. Фрагмент кода для обучения модель ResNet — 6, также на рисунке 1 можно увидеть процесс обучения.

Фрагмент кода – 6

На рисунке 1 также изображен процесс обучения модели ResNet с валидацией на соответствующих выборках.

Рисунок – 1

```
↑ ↓ ⊕ ■
generated_resnet = model_resnet.fit_generator(train_data,
                                                    validation_data=validation_data,
steps_per_epoch=train_data.n // train_data.batch_size,
                                                   validation_steps=validation_data.n // validation_data.batch_size,
                                                    epochs=20
                                                    verbose=1)
    Epoch 1/20
980/980 [==
Epoch 2/20
                                                 557s 568ms/step - batch: 489.5000 - size: 31.9755 - loss: 1.7518 - accuracy: 0.4601 - val_loss: 2.3023 - val_accuracy: 0.3889
    980/980 [==:
Epoch 3/20
                                                558s 569ms/step - batch: 489.5000 - size: 31.9755 - loss: 1.3673 - accuracy: 0.5555 - val loss: 2.3456 - val accuracy: 0.3929
    980/980 [==
Epoch 4/20
980/980 [==
Epoch 5/20
                                                 556s 567ms/step - batch: 489.5000 - size: 31.9755 - loss: 1.2584 - accuracy: 0.5876 - val_loss: 2.3775 - val_accuracy: 0.4066
                                                555s 566ms/step - batch: 489.5000 - size: 31.9755 - loss: 1.1956 - accuracy: 0.6084 - val_loss: 2.4034 - val_accuracy: 0.4187
                                              - 557s 569ms/step - batch: 489.5000 - size: 31.9755 - loss: 1.1251 - accuracy: 0.6283 - val loss: 2.4497 - val accuracy: 0.4181
     980/980 [===
    980/980 [==
Epoch 6/20
980/980 [==
Epoch 7/20
980/980 [==
                                                 558s 570ms/step - batch: 489.5000 - size: 31.9755 - loss: 1.0806 - accuracy: 0.6429 - val_loss: 2.4944 - val_accuracy: 0.4239
                                                 563s 575ms/step - batch: 489.5000 - size: 31.9755 - loss: 1.0506 - accuracy: 0.6494 - val_loss: 2.4946 - val_accuracy: 0.4244
    Epoch 8/20
     989/989 [==:
                                                560s 571ms/step - batch: 489.5000 - size: 31.9755 - loss: 1.0324 - accuracy: 0.6565 - val loss: 2.6029 - val accuracy: 0.4138
                                                 554s 565ms/step - batch: 489.5000 - size: 31.9755 - loss: 0.9863 - accuracy: 0.6707 - val loss: 2.7263 - val accuracy: 0.4167
                                              - 561s 573ms/step - batch: 489.5000 - size: 31.9755 - loss: 0.9806 - accuracy: 0.6726 - val loss: 2.6305 - val accuracy: 0.4231
     980/980 [====
Epoch 11/20
     980/980 [===
                                                553s 564ms/step - batch: 489.5000 - size: 31.9755 - loss: 0.9503 - accuracy: 0.6814 - val_loss: 2.6811 - val_accuracy: 0.4116
    Epoch 12/20
980/980 [===
Epoch 13/20
                                                556s 567ms/step - batch: 489.5000 - size: 31.9755 - loss: 0.9385 - accuracy: 0.6875 - val_loss: 2.5996 - val_accuracy: 0.4189
                                 980/980 [===
                                =======] - ETA: 0s - batch: 489.5000 - size: 31.9755 - loss: 0.9126 - accuracy: 0.6944
```

По завершении обучения были сформированы следующие графики точности и потерь для моделей ResNet и VGG (рисунок 2), также конечная таблица (таблица 1):

Таблица – 1

M	Пуста атау	Обучение		Валидация		
Модель	Число эпох	Потери (loss)	Точность (accuracy)	Потери (loss)	Точность (accuracy)	
ResNet50	20	1,15	0,63	3,56	0,36	
VGG16	20	0,85	0,73	2,94	0,42	

После завершения обучения были заданы стартовые значения ϵ (эпсилон) для проведения атак Fast Gradient Sign Method (FGSM) и Projected Gradient Descent (PGD). Для проведения атак используется библиотека Adversarial Robustness Toolbox, а именно функции FastGradientMethod и ProjectedGradientDescent. Импорт модели и первичная настройка атаки FGSM продемонстрирована во фрагменте кода 7.

Фрагмент кода – 7

```
eps_list = [0.003, 0.007, 0.011, 0.015, 0.019, 0.031, 0.039, 0.078, 0.19, 0,31]

classifier_resnet = KerasClassifier(model=model_resnet, clip_values=(0, 1))

for eps in eps_list:
    attack_fgsm_resnet = FastGradientMethod(estimator=classifier_resnet, eps=0.03)
    x_test_adv_resnet = attack_fgsm_resnet.generate(x_test_first)

loss_test, accuracy_test = model_resnet.evaluate(x_test_adv_resnet, y_test_first)

perturbation = np.mean(np.abs((x_test_adv_resnet - x_test_first)))

print('Точность на искаженных данных: {:4.2f}%'.format(accuracy_test * 100))

print('Среднее искажение: {:4.2f}'.format(perturbation))
```

Импорт модели и первичная настройка атаки PGD продемонстрирована во фрагменте кода 8.

Фрагмент кода – 8

```
eps_list = [0.003, 0.007, 0.011, 0.015, 0.019, 0.031, 0.039, 0.078, 0.19, 0,31]

attack_pgd_resnet = ProjectedGradientDescent(estimator=classifier_resnet, targeted=False, eps=0.03,
batch_size=128, max_iter=20)
x_train_adv_pgd_resnet = attack_pgd_resnet.generate(x_train_first)
x_test_adv_pgd_resnet = attack_pgd_resnet.generate(x_test_first)
```

Атаки проводятся на уменьшенном наборе данных, а именно на первых 1000 элементов множества тренировочных и тестовых данных. Также важно отметить, что значения ϵ (эпсилон) используются из условия $\epsilon = [1/255, 2/255, 3/255, 4/255, 5/255, 8/255, 10/255, 20/255, 50/255, 80/255].$

Для проверки полученных искаженных данных приведен пример на рисунке 3 с демонстрацией случайных изображений из сформированного набора атаки FGSM на модель ResNet с различными значениями ϵ .

Аналогично с атакой FGSM для модели VGG на рисунке 4.

Также была проведена атака PGD на обе модели ResNet и VGG, демонстрация полученных изображений на рисунке 5.

По завершении подготовки атак были получены таблицы 2 и 3 для демонстрации точности классификации моделей ResNet (таблица 2) и VGG (таблица 3) в зависимости от параметра искажений ϵ .

Таблица – 2

Атака	Точность ResNet при ϵ (эпсилон)						
	1/255	3/255	5/255	10/255	20/255	80/255	
FGSM	0,61	0,59	0,59	0,51	0,26	0,06	
PGD	0.58	0,54	0.43	0.28	0.12	0.03	

Таблица – 3

A marea	Точность VGG при ϵ (эпсилон)					
Атака	1/255	3/255	5/255	10/255	20/255	80/255
FGSM	0,69	0,65	0,57	0,42	0,12	0,09
PGD	0,6	0,56	0,48	0,43	0,18	0,02

Также был получен следующий график (рисунок 6) на основе собранных данных по атаке:

Рисунок – 6

Собранные результаты дают возможность предположить, что получаемые метрики могут сильно зависит от конкретных методов обучения и наборов данных. В данном случае VGG16 показывает наибольшую устойчивость и в большинстве случае

точность результата выше. Также можно увидеть, что скорость снижения точности сильно возрастает при переходе к искажению около 20/255.

Для создания целевой атаки необходимо задать метод подготовки атаки и указать явно, что планируемая атака целевая, далее, на этапе генерации изображений, указать целевую метку класса как продемонстрировано во фрагменте кода – 9.

```
attack_fgsm_resnet_t = FastGradientMethod(estimator=classifier_resnet, eps=0.3, targeted=True)

x_test_adv_resnet = attack_fgsm_resnet.generate(x_train_first[:1], y_test_first[:1])

predictions = classifier_resnet.predict(x=x_test_adv_resnet)

plt.matshow(x_test_adv_resnet[:1][0])

plt.show()

print('adv: %s' % classes[np.argmax(classifier_resnet.predict(x_test_adv_resnet[:1, :])[0])])

print('og: %s' % classes[np.argmax(classifier_resnet.predict(x_test[:1, :])[0])])
```

В качестве примера на рисунке 7 приведены примеры успешного формирования целевой атаки:

Также на данном этапе получилось сформировать таблицу условной эффективности точности данных механизмов по атаке на наборы данных (таблица 4): Таблица – 4

ϵ	PGD - Stop	PGD – Limit 30
$\epsilon = 1/255$	0,58	0,56
$\epsilon = 3/255$	0,58	0,48
$\epsilon = 5/255$	0,52	0,46
$\epsilon = 10/255$	0,47	0,34
$\epsilon = 20/255$	0,34	0,26
$\epsilon = 50/255$	0,08	0,08
$\epsilon = 80/255$	0,03	0,01

Данные демонстрируют, что знак с ограничение лучше поддается атаке. Это можно объяснить тем, что фото с данным знаком часто размытые, что приводить к сложности его распознавания, а именно определить какой именно лимит скорости, так как в данном наборе есть и другие лимиты. Также важно отметить, что в данном конкретном примере знак стоп более эффективен для атаки на уровне искажения 20/255, более сильное искажение приводит серьезным повреждениям исходного изображения и уже не дают такой значительный прирост (упадок) точности.

Вывод

В результате выполнения работы получен некоторый опыт работы с инструментами организации атак на модели машинного обучения. Были также проведены эксперименты по атаке на модели машинного обучения методом черного и белого ящика, а также целевые и нецелевые.

В рамках работы были рассмотрены модели VGG16 и ResNet50, VGG16 показала несколько большую устойчивость к атакам, хоть и не значительную, но уже не в рамках погрешности. Было отмечено сильно ухудшение качества и точности моделей по достижении отметки искажения в 20/255.

При работе с целевыми атаки было отмечено, что наиболее эффективным значение, в рамках данного набора данных, является значение искажения 20/255.