

Commutative equivalence law $a \wedge b \equiv b \wedge a$ (Fig 1)

 $a \lor b \equiv b \lor a \text{ (Fig 2)}$

Associative equivalence law

 $(a \land b) \land c \equiv a \land (b \land c)$

Associative equivalence law

(a \lor b) \lor c \equiv a \lor (b \lor c)

Distributive equivalence law

 $a \wedge (b \vee c) \equiv (a \wedge b) \vee (a \wedge c)$

Distributive equivalence law

 $a \lor (b \land c) \equiv (a \lor b) \land (a \lor c)$

Identity equivalence law

a∧t≣a

Identity equivalence law

a∨c≡a

a∨¬a≡t

a ∧ ¬a ≡ c

¬ t ≡ c

 $\neg c \equiv t$

Idempotent equivalence law

a∧a≡a

Idempotent equivalence law

a∨a≡a

Universal bounds equivalence law

a∨t≡t

Universal bounds equivalence law

a∧c≡c

De Morgan's equivalence law

$$\neg(a \land b) \equiv \neg a \lor \neg b$$

De Morgan's equivalence law

$$\neg(a \lor b) \equiv \neg a \land \neg b$$

Absorption equivalence law

a ∨ (a ∧ b) ≡ a

Absorption equivalence law

a ∧ (a ∨ b) ≡ a