AI Planning for Autonomy

Problem Set V: Delete Relaxation

- 1. Discuss in your group the heuristics you used in project 1. Are any of them related to the domain independent heuristics we have covered in class?
 - What is the (optimal) delete relaxation heuristic h^+ ? How would it be interpreted in pacman?
 - What is the relationship between h^{max} , h^+ , and h^{add} ? What about h^* ? $h^{MOX} << h^+ << h^+ << h_{aeb}$
- 2. In a blocks-world problem, the agent's aim is to stack the blocks as in Figure 1.

Figure 1: An Initial (Left hand side) and Goal (Right hand side) state of a blocks-world problem.

There are several important classes of domain-independent heuristics. Recall the delete relaxation based heuristics from Lectures:

- Compute $h^{add}(s_0)$ for the 4 operators blocks-world problem.
- Compute $h^{max}(s_0)$ for the 4 operators blocks-world problem.

	On(A,C)	On (A1B)	on(B,C)	c(A)	c(B)	c(C)	oT(A)	ग(B)	(TC)	/ h(A)	h(B)	1 krc) laF
0	0	Ø	<i>9</i> 0	0	Ō	×	∞	0	0	×	∞	N	D
1	0	Ø	M	0	0		W	0	0	1	ı	Ø	2
<u>_</u>	0		2	0	0		2	0	ס	1	(2	0
										L.	1		