Diffraction of DNA structure

物理系二年級甲班 林英豪 41041118S 2022年11月12日修訂

I. 實驗結果

一、 計算雷射光波長λ:

我們固定狹縫片與成像位置的距離 D 為 404.4cm,先用雷射光源照射不同縫距 a 的 繞射光柵以及狹縫,並在成像處紀錄暗紋的 位置 x_m (第 m 暗紋),然後作 $x_m - m$ 圖,擬 合出斜率後,代入(1)式:

$$x_m = \left(\frac{D\lambda}{a}\right)m\dots(1)$$

其中 x_m 是暗紋的位置,m 是第 m 暗紋, D 是狹縫片與成像位置的距離, a 是縫距。我們便可以計算出雷射光源的波長 λ 值,表格如下:

(表一): 擬合斜率及雷射光源波長表

(农),城市州十次由州儿师仪区农				
柵寬	斜率	雷射波長		
無障礙物				
0.17	1.57	657.97		
0.14	1.92	671.29		
0.11	2.42	665.82		
0.08	3.45	689.71		
0.05	2.31	676.80		
有障礙物				
0.17	1.51	635.52		
0.14	1.90	658.94		
0.11	2.26	614.52		
0.08	3.26	645.70		
0.05	2.35	687.68		
平均 λ (nm)		660.40		

二、計算彈簧的垂直間距 d,厚度 a,夾角α, 螺距 P,以及彈簧半徑 r: 我們將原來狹縫片的位置替換成不同粗細的彈簧,照射雷射光源後,其成像處會同時具有 繞射以及干涉的亮暗紋。繞射具有較大暗紋 間距,而干涉則有較小的間距,將所有暗紋記 錄下來。

i. 觀察彈簧側面,我們可以發現彈簧側 面圖如下:

(圖一):彈簧側視圖

我們將記錄下是亮紋位置,n表示第n暗紋。我們便可以求出不同粗細彈簧的垂直間距:

$$d_{\text{gg}} = 1.112 \, mm$$

 $d_{\text{gg}} = 0.556 \, mm$

接著,我的干涉暗紋位置兩兩取平均,可以 找到亮紋的位置 x_n (第 n 亮紋),然後作 $x_n - n$ 圖(圖二),並擬合出斜率,代入 (2) 式:

$$x_n = \left(\frac{D\lambda}{d}\right)n\dots(2)$$

(圖二): 亮紋位置 x_n 與第 n 小暗紋圖接著我們將記錄的繞射暗紋位置 x_m (第 m 暗紋)作 x_m-m 圖(圖三),擬合出斜率後,代入(1)式,觀察(圖一),此時雷射光源是對彈簧進行繞射,因此狹縫間劇是彈簧的厚度 a,我們可以算出:

$$a_{\text{$rak g$}} = 0.105 \ mm$$

 $a_{\text{$rak g$}} = 0.109 \ mm$

(圖三):暗紋位置 x_m 與第 m 暗紋圖接續,我們將繞射暗紋上下相連,拉出第三邊,然後便能利用餘弦定理計算出(圖一)中的彈簧夾角:

$$\alpha_{\mbox{\ensuremath{\cancel{\oplus}}}} = 14.108 \,^{\circ}$$
 $\alpha_{\mbox{\ensuremath{\cancel{\oplus}}}} = 11.424 \,^{\circ}$

接下來,我們觀察(圖四),可以發現(3) 式:

$$cos\alpha = \frac{d}{P}...(3)$$

(圖四):細部關係圖1

其中, α 是彈簧的夾角,d 是彈簧的垂直間 距以及 P 是彈簧的螺距。而 α 以及d 已經求 得,代入 (3) 式便可計算出螺距 P:

$$P_{\text{gg}} = 1.134 \, mm$$

 $P_{\text{gg}} = 0.573 \, mm$

最後,我們觀察(圖五),可以發現(4)式:

$$sin\alpha = \frac{P/2}{\pi r}...(4)$$

其中, α 是彈簧的夾角,P是彈簧的螺距,r 是彈簧的半徑。而 α 以及 P 已經求得,可以代入 (4) 式,便可計算出 r:

$$r_{\mathfrak{Y}} = 0.374 \, mm$$
$$r_{\mathfrak{Y}} = 0.912 \, mm$$

Ⅱ. 實驗探討

1. 經過計算,我們求出雷射光源的波長 λ 為 660.40nm,而上網查得市面上常用的紅光 雷射筆的波長範圍是:650nm~660nm,實驗測得的值洽落在此範圍,因此結果大致 符合理想值。

2. 計算後,粗細彈簧的數據如(表二):

(表二): 粗細彈簧的各數據圖

	雙彈簧	粗彈簧
垂直間距 d (mm)	1.112	0.556
彈簧厚度 a (mm)	0.105	0.111
夾角 α (°)	14.108	11.424
螺距 P (mm)	1.134	0.573

半徑 r (mm)	0.374	0.912
. ,		

而仔細觀察不同粗細的彈簧,粗彈簧長度與細彈簧的長度差不多,但細彈簧匝數較多,因此垂直間距 d 確實是細彈簧較粗彈簧要來得小。若觀察彈簧的寬度,也就是 2 倍的彈簧半徑 r, 粗彈簧較細彈簧寬,因此 r_{H} 會大於 r_{H} 。