Statistical Methods

Lecture 10 – Hypothesis tests concerning two populations

Luke Dickens

Autumn 2020

Testing two populations

The ability to compare two samples for differences is key to a number of fields:

- samples drawn such that factor of interest varies between conditions, but all factors not under investigation constant
- the observed outcome given a condition is its **response**
- often one sample represents a control, e.g. comparing a drug with a placebo in a clinical trial
- want to determine whether there is a statistically significant difference in the responses of these two samples
- here we explore different hypothesis tests for these differences each based on different assumptions
- across each H_0 is that:
 - o there is no difference in response two sided
 - o one response is less than/more than the other one sided

Equality of means: known variance

Equality of means: unknown variance, large sample

Equality of means: small sample, equal unknown variances

Paired sample t-test

Equality of proportions

We have sample X_1, \ldots, X_n from normal population with mean μ_X and variance σ_X^2 , and sample Y_1, \ldots, Y_m from normal population with mean μ_Y and variance σ_Y^2 .

Both σ_x^2 and σ_y^2 are known.

We wish to test:

$$H_0: \mu_x = \mu_y$$

against alternative:

$$H_1: \mu_x \neq \mu_y$$

The estimators of μ_X and μ_V are respectively:

$$\bar{X} = rac{\sum_{i=1}^{n} X_i}{n}$$
 and $\bar{Y} = rac{\sum_{i=1}^{m} Y_i}{m}$

We would like to reject H_0 when \bar{X} and \bar{Y} are sufficiently far apart. And so, for some constant c>0 we:

Reject
$$H_0$$
 if $|\bar{X} - \bar{Y}| \ge c$
Do not reject H_0 otherwise

As both sample means are normal, so is their difference, and

$$\begin{split} \mathbb{E}[\bar{X} - \bar{Y}] &= \mathbb{E}[\bar{X}] - \mathbb{E}[\bar{Y}] = \mu_{\mathsf{X}} - \mu_{\mathsf{Y}} \\ \mathsf{var}[\bar{X} - \bar{Y}] &= \mathsf{var}(\bar{X}) + \mathsf{var}(\bar{Y}) = \frac{\sigma_{\mathsf{X}}^2}{n} + \frac{\sigma_{\mathsf{Y}}^2}{m} \end{split}$$

And we can define standardised normal RV:

$$\frac{\bar{X} - \bar{Y} - (\mu_x - \mu_y)}{\sqrt{\sigma_x^2 / n + \sigma_y^2 / m}}$$

Under H_0 , $\mu_x - \mu_y = 0$, so we have standard normal test statistic:

$$TS = \frac{\bar{X} - \bar{Y}}{\sqrt{\sigma_x^2 / n + \sigma_y^2 / m}}$$

Test statistic, TS, is standard normal RV and

$$\Pr\left(|Z| \ge z_{\alpha/2}\right) = 2\Pr\left(Z \ge z_{\alpha/2}\right) = \alpha$$

We can now state the significance-level- α test of hypotheses:

$$H_0: \mu_x = \mu_y$$
 and $H_1: \mu_x \neq \mu_y$

is to:

Reject
$$H_0$$
 if $|TS| \ge z_{\alpha/2}$
Do not reject H_0 otherwise

We can alternatively

- first compute the value of the test statistic TS let's say for our data $TS = \nu$
- the resulting p-value is the probability of seeing a value of |TS| least as large as $|\nu|$ under H_0
- then reject H_0 if the p-value is small enough

If $TS = \nu$ then:

$$p
-value = Pr(|Z| \ge |\nu|) = 2 Pr(Z \ge |\nu|)$$

The one-sided test hypotheses are:

$$H_0: \mu_x \leq \mu_y$$
 and $H_1: \mu_x > \mu_y$

And the significance-level- α test is to:

Reject
$$H_0$$
 if $TS \ge z_\alpha$
Do not reject H_0 otherwise

To define the p-value. Say that for sample data $\mathit{TS} = \nu$ then:

$$\mathsf{p\text{-}value} = \mathsf{Pr}\left(Z \geq \nu\right)$$

Summary of two-sided and one-sided tests for two independent samples X_1, \ldots, X_n and Y_1, \ldots, Y_m from populations with respective means μ_x and μ_y , and respective known variances σ_x^2 and σ_y^2 .

H ₀	H ₁	TS	test at Significance level α	$\begin{array}{c} \mathbf{p} \ \mathbf{value} \ \mathbf{if} \\ \mathbf{TS} = \nu \end{array}$
$\mu_{x} = \mu_{y}$	$\mu_{x} \neq \mu_{y}$	$\frac{\bar{X} - \bar{Y}}{\sqrt{\sigma_x^2/n + \sigma_y^2/n}}$	Reject H_0 if $ TS \geq z_{lpha/2}$	$2\Pr\left(Z\geq u ight)$
		V -x/y/	Do not reject otherwise	
$\mu_{x} \leq \mu_{y}$	$\mu_{x} > \mu_{y}$	$\frac{\bar{X} - \bar{Y}}{\sqrt{\sigma_x^2/n + \sigma_y^2/n}}$	Reject H_0 if $TS \geq z_{lpha}$	$\Pr\left(Z \geq \nu\right)$
		$V^{\sigma_x/n+\sigma_y/n}$	Do not reject otherwise	
$\mu_{x} \geq \mu_{y}$	$\mu_{x} < \mu_{y}$	$\frac{\bar{X} - \bar{Y}}{\sqrt{\sigma_x^2/n + \sigma_y^2/n}}$	Reject H_0 if $TS \leq -z_{lpha}$	$\Pr\left(Z \leq \nu\right)$
		$\sqrt{\sigma_{\bar{x}}/n + \sigma_{\bar{y}}/n}$	Do not reject otherwise	

Equality of means: known variance

Equality of means: unknown variance, large sample

Equality of means: small sample, equal unknown variances

Paired sample t-test

Equality of proportions

We have sample X_1, \ldots, X_n from normal population with mean μ_x and variance σ_x^2 , and sample Y_1, \ldots, Y_m from normal population with mean μ_y and variance σ_y^2 .

 $\sigma_{\scriptscriptstyle X}^2$ and $\sigma_{\scriptscriptstyle Y}^2$ unknown. n and m are large.

We wish to test:

$$H_0: \mu_x = \mu_y$$

against alternative:

$$H_1: \mu_{\mathsf{x}} \neq \mu_{\mathsf{y}}$$

As both samples are large, sample variances are good approximations for the population variances and we can approximate the standardised normal RV with:

$$\frac{\bar{X} - \bar{Y} - (\mu_x - \mu_y)}{\sqrt{\sigma_x^2 / n + \sigma_y^2 / m}} \quad \approx \quad \frac{\bar{X} - \bar{Y} - (\mu_x - \mu_y)}{\sqrt{S_x^2 / n + S_y^2 / m}}$$

where S_x^2 and S_y^2 are the respective sample variances Under H_0 , $\mu_x - \mu_y = 0$, so we have standard normal test statistic:

$$TS = \frac{\bar{X} - \bar{Y}}{\sqrt{S_x^2 / n + S_y^2 / m}}$$

And can now state the significance-level- α test of hypotheses:

$$H_0: \mu_x = \mu_y$$
 and $H_1: \mu_x \neq \mu_y$

is to:

Reject
$$H_0$$
 if $|TS| \ge z_{\alpha/2}$
Do not reject H_0 otherwise

To define the p-value. Say that for sample data $TS = \nu$ then:

$$\mathsf{p\text{-}value} = \mathsf{Pr}\left(|Z| \geq |\nu|\right) = 2\,\mathsf{Pr}\left(Z \geq |\nu|\right)$$

The one-sided test hypotheses are:

$$H_0: \mu_x \le \mu_y$$
 and $H_1: \mu_x > \mu_y$

And the significance-level- α test is to:

Reject
$$H_0$$
 if $TS \ge z_\alpha$
Do not reject H_0 otherwise

To define the p-value. Say that for sample data $\mathit{TS} = \nu$ then:

$$\mathsf{p\text{-}value} = \mathsf{Pr}\left(Z \geq \nu\right)$$

Summary of two-sided and one-sided tests for two independent samples X_1, \ldots, X_n and Y_1, \ldots, Y_m from populations with respective means μ_X and μ_Y , and respective unknown variances σ_X^2 and σ_Y^2 , and with large sample sizes $n, m \geq 30$ (or possibly 20).

H ₀	H ₁	TS	test at Significance level α	p value if $TS = \nu$
$\mu_{x} = \mu_{y}$	$\mu_{x} \neq \mu_{y}$	$\frac{\bar{X} - \bar{Y}}{\sqrt{S_x^2/n + S_y^2/n}}$	Reject H_0 if $ TS \geq z_{lpha/2}$	$2\Pr\left(Z\geq u ight)$
		V -×/ · -y/	Do not reject otherwise	
$\mu_{x} \leq \mu_{y}$	$\mu_{x} > \mu_{y}$	$\frac{\bar{X} - \bar{Y}}{\sqrt{S_x^2/n + S_y^2/n}}$	Reject H_0 if $TS \geq z_{lpha}$	$\Pr\left(Z \geq \nu\right)$
		$V^{3_x/n+3_y/n}$	Do not reject otherwise	
$\mu_{x} \geq \mu_{y}$	$\mu_{x} < \mu_{y}$	$\frac{\bar{X} - \bar{Y}}{\sqrt{S_x^2/n + S_y^2/n}}$	Reject H_0 if $TS \leq -z_{lpha}$	$\Pr\left(Z \leq \nu\right)$
		$\sqrt{\frac{3_x^2}{n} + \frac{3_y^2}{n}}$	Do not reject otherwise	

Equality of means: known variance

Equality of means: unknown variance, large sample

Equality of means: small sample, equal unknown variances

Paired sample t-test

Equality of proportions

We have sample X_1, \ldots, X_n from normal population with mean μ_X and variance σ_X^2 , and sample Y_1, \ldots, Y_m from normal population with mean μ_Y and variance σ_Y^2 .

$$\sigma_{\rm x}^2=\sigma_{\rm y}^2=\sigma^2$$
 but unknown. n and m relatively small.

We wish to test:

$$H_0: \mu_x = \mu_y$$

against alternative:

$$H_1: \mu_{\mathsf{x}} \neq \mu_{\mathsf{y}}$$

As both samples have the same population variance, the standardised normal RV is:

$$\frac{\bar{X} - \bar{Y} - (\mu_x - \mu_y)}{\sqrt{\sigma_x^2 / n + \sigma_y^2 / m}} = \frac{\bar{X} - \bar{Y} - (\mu_x - \mu_y)}{\sqrt{\sigma^2 / n + \sigma^2 / m}}$$

Under H_0 , $\mu_x = \mu_y$ the following is a standard normal RV:

$$\frac{\bar{X} - \bar{Y}}{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right)}}$$

but we do not know σ^2

Pooled sample variance

We do not know σ^2 but respective sample variances, S_x^2 and S_y^2 , are both unbiased estimators. We can pool these estimates as:

$$S_p^2 = \frac{n-1}{n+m-2}S_x^2 + \frac{m-1}{n+m-2}S_y^2$$

where S_p^2 has n + m - 2 degrees of freedom.

To see this, recall that for standard normal RVs Z_i :

- $(n-1)S_x^2/\sigma$ has same distribution as $\sum_{i=1}^{n-1} Z_i^2$
- $(m-1)S_y^2/\sigma$ has same distribution as $\sum_{i=1}^{m-1} Z_i^2$
- And so: $(n+m-2)S_p^2/\sigma$ has same distribution as $\sum_{i=1}^{n+m-2} Z_i^2$

We saw that the following was a standard normal RV:

$$\frac{\bar{X} - \bar{Y}}{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right)}}$$

Substituting S_p^2 for σ^2 have t distributed test statistic with m+n-2 degrees of freedom given by:

$$TS = \frac{\bar{X} - \bar{Y}}{\sqrt{S_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}}$$

Can now state the significance-level- α test of hypotheses:

$$H_0: \mu_x = \mu_y$$
 and $H_1: \mu_x \neq \mu_y$

is to:

Reject
$$H_0$$
 if $|TS| \ge t_{m+n-2, \alpha/2}$

Do not reject H_0 otherwise

To define the p-value. Say that for sample data $TS = \nu$ then:

p-value =
$$\Pr(|T_{n+m-2}| \ge |\nu|) = 2\Pr(T_{n+m-2} \ge |\nu|)$$

In the above, $t_{m+n-2,\alpha/2}$ is the t-percentile, and T_{n+m-2} a t-distributed RV, both with n+m-2 degrees of freedom

Summary of two-sided and one-sided tests for two independent samples X_1, \ldots, X_n and Y_1, \ldots, Y_m from populations with respective means μ_X and μ_Y , and unknown variances $\sigma_X^2 = \sigma_Y^2 = \sigma^2$. **Define dof** = n + m - 2.

H ₀	H ₁	TS	test at Significance level α	p value if $TS = \nu$
$\mu_{x} = \mu_{y}$	$\mu_{x} eq \mu_{y}$	$\frac{\bar{X} - \bar{Y}}{\sqrt{S_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}}$	Reject H_0	$2 \operatorname{Pr} \left(\mathcal{T}_{dof} \geq u \right)$
		•	if $ \mathit{TS} \geq t_{dof, lpha/2}$	
			Do not reject otherwi	se
$\mu_{x} \leq \mu_{y}$	$\mu_{x} > \mu_{y}$	$\frac{\bar{X} - \bar{Y}}{\sqrt{S_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}}$	Reject H_0	$\Pr\left(T_{dof} \geq u ight)$
		V °P(n ' m)	if $\mathit{TS} \geq \mathit{t}_{dof, lpha}$	
			Do not reject otherwi	se

Equality of means: known variance

Equality of means: unknown variance, large sample

Equality of means: small sample, equal unknown variances

Paired sample t-test

Equality of proportions

Paired sample t-test: hypotheses

We have samples X_1, \ldots, X_n and Y_1, \ldots, Y_n with respective means μ_X and μ_Y .

Pairs of values (X_i, Y_i) , i = 1, ..., n are not independent but represent pairs of related RVs.

We wish to test:

$$H_0: \mu_x = \mu_y$$

against alternative:

$$H_1: \mu_x \neq \mu_y$$

Paired sample t-test: hypotheses again

Define the differences between pairs as

$$D_i = X_i - Y_i$$
 for $i = 1, \dots, n$

This gives new RVs, D_i with population mean:

$$\mu_d = \mathbb{E}[D_i] = \mathbb{E}[X_i] - \mathbb{E}[Y_i] = \mu_x - \mu_y$$

We can thus redefine our hypotheses as:

$$H_0: \mu_d = 0$$

against alternative:

$$H_1: \mu_d \neq 0$$

Paired sample t-test: TS

Assuming D_1, \ldots, D_n constitutes a sample from a normal RV, we can test H_0 by using the t-test from [Ros17, Sec. 9.4]. That is, for associated sample mean \bar{D} and sample SD S_d define test statistic:

$$TS = \frac{\sqrt{n}}{S_d} \bar{D}$$

And the significance-level- α test is to:

Reject
$$H_0$$
 if $|TS| \ge t_{n-1,\alpha/2}$
Do not reject H_0 otherwise

To define the p-value, say that for sample data $TS = \nu$ then:

$$p$$
-value = $Pr(|T_{n-1}| \ge |\nu|) = 2 Pr(T_{n-1} \ge |\nu|)$

Summary of two- and one-sided tests for paired samples X_1, \ldots, X_n and Y_1, \ldots, Y_n where each (X_i, Y_i) is a related pair and with respective population means μ_X and μ_Y . Define $D_i = X_i - Y_i$ and corresponding sample mean and SD as:

$$\bar{D} = \frac{\sum_{i=1}^{n} D_i}{n}$$
 and $S_d = \sqrt{\frac{\sum_{i=1}^{n} (D_i - \bar{D})^2}{n-1}}$

H ₀	H ₁	TS	test at Significance level α	p value if $TS = \nu$
$\mu_{x} = \mu_{y}$	$\mu_{x} \neq \mu_{y}$	$\sqrt{n}\frac{\bar{D}}{S_d}$	Reject H_0 if $ TS \ge t_{n-1,\alpha/2}$ Do not reject otherwise	$2\Pr\left(T_{n-1}\geq \nu \right)$
$\mu_{x} \leq \mu_{y}$	$\mu_{x} > \mu_{y}$	$\sqrt{n} \frac{\bar{D}}{S_d}$	Reject H_0 if $TS \geq t_{n-1,\alpha}$ Do not reject otherwise	$\Pr\left(T_{n-1} \geq \nu\right)$

Equality of means: known variance

Equality of means: unknown variance, large sample

Equality of means: small sample, equal unknown variances

Paired sample t-test

Equality of proportions

Proportions: hypotheses

Consider two large populations, with some characteristic of interest at unknown proportions p_1 and p_2 respectively. Respective samples of size n_1 and n_2 are drawn resulting numbers in the samples with the characteristic of X_1 and X_2 .

We wish to test:

$$H_0: p_1 = p_2$$

against alternative:

$$H_1: p_1 \neq p_2$$

Sample estimates for the proportions in the two samples are:

$$\hat{p}_1 = \frac{X_1}{n_1}$$
 and $\hat{p}_2 = \frac{X_2}{n_2}$

We would want to reject H_0 when \hat{p}_1 and \hat{p}_2 are far apart, namely choose some c>0 and

Reject
$$H_0$$
 if $|\hat{p}_1 - \hat{p}_2| \ge c$
Do not reject H_0 otherwise

To choose the c we must know how to model the RV $\hat{p}_1 - \hat{p}_2$.

Modelling the difference

As we've seen, the sample proportion RV gives (for i = 1 or 2):

$$\mathbb{E}[\hat{p}_i] = p_i$$
 and $\mathsf{var}[\hat{p}_i] = rac{p_i(1-p_i)}{n_i}$

So the difference of our RVs gives:

$$\mathbb{E}[\hat{p}_1 - \hat{p}_2] = \mathbb{E}[\hat{p}_1] - \mathbb{E}[\hat{p}_2] = p_1 - p_2$$

$$\operatorname{var}[\hat{p}_1 - \hat{p}_2] = \operatorname{var}[\hat{p}_1] + \operatorname{var}[\hat{p}_2] = \frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}$$

For large n_1 and n_2 , both sample proportions will be approximately normal, as will $\hat{p}_1 - \hat{p}_2$. Thus, we can define standardised variable:

$$\frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{p_1(1 - p_1)/n_1 + p_2(1 - p_2)/n_2}}$$

Under H_0 , $p_1 = p_2 = p$ and our standardised variable becomes:

$$W = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{p(1-p)/n_1 + p(1-p)/n_2}}$$

But we cannot use W as test statistic as we don't know p. Instead, approximate p with:

$$\hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2} = \frac{X_1 + X_2}{n_1 + n_2}$$

And our test statistic is:

$$TS = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})/n_1 + \hat{p}(1-\hat{p})/n_2}} = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{(1/n_1 + 1/n_2)\,\hat{p}(1-\hat{p})}}$$

Can now state the significance-level- α test of hypotheses:

$$H_0: p_1 = p_2$$
 and $H_1: p_1 \neq p_2$

is to:

Reject
$$H_0$$
 if $|TS| \ge z_{\alpha/2}$

Do not reject H_0 otherwise

To define the p-value. Say that for sample data $TS = \nu$ then:

$$\mathsf{p\text{-}value} = \mathsf{Pr}\left(|Z| \geq |\nu|\right) = 2\,\mathsf{Pr}\left(Z \geq |\nu|\right)$$

Summary of two-sided and one-sided tests for two independent samples of sizes n_1 and n_2 where characteristic of interest in samples is X_1 and X_2 . Respective population proportions of characteristic are p_1 and p_2 . Sample proportions are:

$$\hat{p}_1 = \frac{X_1}{n_1}$$
 , $\hat{p}_2 = \frac{X_2}{n_2}$ and $\hat{p} = \frac{X_1 + X_2}{n_1 + n_2}$

H_0	H ₁	TS	test at Significance level α	$ \mathbf{p} \ \mathbf{value} \ \mathbf{if} \\ \mathbf{TS} = \nu $
$p_1 = p_2$	$p_1 \neq p_2$	$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{(1/n_1 + 1/n_2)\hat{p}(1-\hat{p})}}$	Reject H_0 if $ TS \ge z_{\alpha/2}$	$2\Pr\left(Z\geq u ight)$
		•	Do not reject otherwise	
$p_1 \leq p_2$	$p_1 > p_2$	$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{(1/n_1 + 1/n_2)\hat{p}(1 - \hat{p})}}$	Reject H_0 if $TS \geq z_{\alpha}$	$\Pr\left(Z \geq u ight)$
		v () 2 : / 2//() /	Do not reject otherwise	

References I

[Ros17] Sheldon M. Ross, *Introductory Statistics*, 4 ed., Academic Press, 2017.