Third Semester B.E. Degree Examination, Dec.2017/Jan.2018

Advanced Mathematics - I

Time: 3 hrs.

Max Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

Find the modulus and amplitude of $\frac{4+2i}{2-3i}$

(06 Marks)

b. Express the complex number $2 + 3i + \frac{1}{1-i}$ in the form a $\pm ib$.

(07 Marks)

c. Simplify $\frac{(\cos 3\theta + i \sin 3\theta)^{4}(\cos 4\theta - i \sin 4\theta)^{5}}{(\cos 4\theta + i \sin 4\theta)^{2}(\cos 5\theta + i \sin 5\theta)^{-4}}.$

(07 Marks)

2 Find the nth derivative of en sin(bx + t)

(06 Marks)

b. Find the nth derivative of $\frac{x^2}{2x^2 + 7x + 6}$

(07 Marks)

e. If $y = e^{a \sin^{-1} x}$, prove that $(1-x^2) y_{n+2} - (2n+1)xy_{n+1} - (n^2 + a^2)y_n = 0$

(07 Marks)

a. If ϕ is the angle between the tangent and radius vector to the curve $r = f(\theta)$ at any point

 (r, θ) , prove that $\tan \theta = \frac{rd\theta}{dr}$.

b. Find the angle of intersection between the curves $r^n = a^n \cos n\theta$ and $r^n = b^n \sin n\theta$.

(07 Marks)

Using Maclaurin's series, expand tan x up to the term containing x³.

(07 Marks)

a. If $Z = f(x + ct) + \phi(x - ct)$, prove that $\frac{\partial^2 z}{\partial x^2} = C^2 \frac{\partial^2 z}{\partial x^2}$

(06 Marks)

b. If $u = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$ prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ tan u.

(07 Marks)

If u = f(x-y, y-z, z-x), prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

(97 Marks)

PART - B

a. Obtain the reduction formula for \subsections xdx

(06 Marks)

b. Using reduction formula evaluate $\int_{-\sqrt{n^2-v^2}}^{1} dx$.

(07 Marks

c. Evaluate $\int \int e^{x+y} dx dy$.

(07 Marks

MATDIP301

- Evaluate III x yz dxdydz
 - b. Prove that $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$
 - e. Prove that ((5) Va.
- a. Solve $3e^x \tan y dx + (1-e^x) \sec^2 y dy = 0$. b. Solve (2x + 3y + 4)dx + (4x + 6y + 5) dy = 0.

 - e. Solve $\frac{dy}{dx} + y \tan x = \cos x$
- a. Solve $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = -2 \cos hx$. b. Solve $(D^2 4D + 3)y = \sin 3x \cos 2x$.

 - e. Solve $\frac{d^2y}{dx^2} + 4y = x^2 + \cos 2x$.

- (06 Marks)
- (06 Marks)
- (07 Marks)
- (07 Marks)
- (06 Marks)
- (07 Marks
- (07 Marks