Eighth Homework

Write your answers neatly, in complete sentences. Recopy your work before handing it in. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Hand in to Frank Tuesday 31 October: (Have this on a separate sheet of paper.)

- 29. The wreath product $S_m \wr S_n$ of symmetric groups is the semidirect product $(S_m)^n \rtimes_{\varphi} S_n$ where φ is the action of S_n on $(S_m)^n$ permuting the factors of $(S_m)^n$.
 - (a) For $(\pi_1, \ldots, \pi_n, \omega) \in S_m \wr S_n$ $(\pi_i \in S_n \text{ and } \omega \in S_n)$ define the map from $[m] \times [n]$ to itself by

$$(\pi_1, \ldots, \pi_n, \omega).(i, j) := (\pi_{\omega(j)}(i), \omega(j)).$$

- (Here, $[m] := \{1, ..., m\}$ and the same for [n].) Show that this defines an imprimitive action of $S_m \wr S_n$ on $[m] \times [n]$.
- (b) Using this action or any other methods show that $S_2 \wr S_2 \simeq D_8$, the dihedral group with 8 elements.
- (c) This action realizes $S_3 \wr S_2$ as a sugroup of S_6 . What are the cycle types of permutations of $S_3 \wr S_2$? For each cycle type, how many elements of $S_3 \wr S_2$ have that cycle type?

Hand in for the grader Tuesday 31 October:

- 30. Determine the derived series for the symmetric group S_4 . (This is the series of iterated commutator subgroups).
- 31. Use semidirect products to classify all groups of order 30 up to isomorphism.
- 32. Use semidirect products to classify all groups of order 18 up to isomorphism.
- 33. Let p be a prime number. How many simple subgroups are there in $\mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p$?
- 34. Prove the Fundamental Theorem of Arithmetic by applying the Jordan-Hölder Theorem to the cyclic group \mathbb{Z}_n , where $n \in \mathbb{N}$.
- 35. Let p and q be prime numbers. Prove that any group of order p^2q is solvable.