1. Array (structure, operations)

1) Representation of polynomial coefficients: not interesting ...

2) Different ways to increase array capacity.

	Copies per Insertion	Unused Memory
Increase by 1	n – 1	0
Increase by <i>m</i>	n/m	<i>m</i> – 1
Increase by a factor of 2	1	n
Increase by a factor of $r > 1$	1/(r – 1)	(r – 1)n

2. 1 Linked List (structure, operations)

- 1) How to insert a node pointer
- 2) Given value v and header h, how to find a specific node with value v: only by traversing the linked list.
- 3) Time complexity:

	Front/1st node	<i>k</i> th node	Back/nth node
Find	O(1)	O(n)	O(1)
Insert After	O(1)	O(1)	O(1)
Replace	O(1)	O(1)	O(1)
Next	O(1)	O(1)	n/a
Previous	n/a	O(n)	O(n)

But students did not study O or Θ representation until lec 3.

4) How to use an array to implement a linked list

2. 2 Special linked list: Doubly Linked List (structure, operations)

1) Similar to Linked list

- 1.1) benefit: O(1) Previous .
- 1.2) drawback: $\Theta(n)$ extra space.

3. Stack (structure, operations)

- 1) Parsing Reverse-Polish Notation with Stack: e.g. valid notation, calculating results.
- 2) Check if the given push and pop sequence of Stack is valid or not.
- 4. Queue (structure, operations)
- 1. How to use an array to represent a queue.
- 2. Circular array
- 3. deque