The Second Hand Market of iPhone in PTT Macshop Board

陳柏瑜,高翊傑

109-1 ECON-DSSI NTU ECON

2021.1.4

1/35

Outline

- Core Question
- Data Description
- Descriptive Statistics
- Results
 - 「女用機」比較值錢?
 - Estimating the second-hand iPhone Demand
 - Estimating the Demand Curve via IV Regression
 - The probability of successfully selling an iPhone 6s

Core Question

Estimating the second-hand iPhone Demand

The probability of successfully selling an iPhone 6s

Analysis based on the geographical distribution of second hand
 iPhone selling and buying

Data Description

Descriptive Statistics

Results

- 欲出售 iphone 的貼文內標注「女用機」或「女生用」
- ●「女用機」真的可以賣得比較貴嗎?
- 將此"premium"稱為"gender rent"

在 163950 則交易 iPhone 的貼文

- 標注「男用機」:83則;標注「女用機」:2922則
- 需要區別「成交價格」以及「非成交價格」

考量線性迴歸模型:

$$price_i = \beta_0 + \beta_1 D_{female,i} + \beta_2 D_{male,i} + \gamma W_i + u_i$$

where W is the control variable and W contains:

TimeUsed, ROM, color

t test of coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.6765e+04 3.8878e+03 17.1730 < 2.2e-16 ***
IsFemale -5.2049e+03 5.8177e+02 -8.9466 < 2.2e-16 ***
IsMale -6.4808e+03 2.8031e+03 -2.3120 0.02084 *
TimeUsed -3.9740e-05 2.6729e-06 -14.8675 < 2.2e-16 ***
R.OM
        8.7480e+01 2.4696e+00 35.4230 < 2.2e-16 ***
color #I 3.9561e+03 6.8944e+02 5.7382 1.037e-08 ***
color 灰 2.6941e+03 4.6818e+02 5.7544 9.428e-09 ***
color_金 2.5873e+03 3.6616e+02 7.0661 1.909e-12 ***
color 藍 9.7082e+03 1.5156e+03
                                  6.4054 1.696e-10 ***
color 線 9.4491e+03 1.1865e+03 7.9641 2.220e-15 ***
color 玫瑰 1.0511e+03 4.8286e+02
                                  2.1768
                                          0.02956 *
color_銀
           2.0776e+03 4.6752e+02
                                  4.4440 9.099e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- 與預期相反,在所有型號中且是「已售出」或「已徵得」的 iPhone中,標注有「女用機」的貼文的成交價格是比較低的。
- 若是限制在 iPhone 6s 這個機型的話,則沒有顯著地異於零,但大致的方向仍是負的,意味著標示「女用機」並沒有辦法「提升價格」。
- 在 PTT 的文化中,更常見的是嘲諷標注女用機的貼文者

考量線性迴歸模型,並將樣本限制在成交的 iPhone 6s 貼文中:

$$price_i = \beta_0 + \beta_1 D_{female,i} + \beta_2 D_{male,i} + \gamma W_i + u_i$$

where W is the control variable and W contains:

TimeUsed, ROM, color

t test of coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 21343.68352 1480.37045 14.4178 < 2.2e-16 ***
IsFemale
           -457.14882 1492.68059 -0.3063
                                         0.7596
TimeUsed -15.22156 0.55273 -27.5388 < 2.2e-16 ***
ROM
            50.24563 8.26413 6.0800 3.39e-09 ***
color_灰 -572.08213
                     1215.11728 -0.4708
                                         0.6381
color_金 941.82397 1267.18374 0.7432 0.4579
color_玫瑰 1200.32805 1205.09409 0.9960 0.3200
color_銀 -294.11541 1313.01866 -0.2240
                                         0.8229
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

 \bullet Demand function characterizes the quantity demanded q^d when given a price p

Notice that q^d is a function of p

- \bullet The Inverse Demand function characterizes the price p when given a quantity demanded q^d
- Economists usually use inverse demand to characterize the "Willingness to Pay"

The Demand Curve

Estimating Demand?

If we do not restrict the data on the SOLD and BOUGHT one, then we are not at the equilibrium.

- If we do not restrict the data on the SOLD and BOUGHT one, then we are not at the equilibrium.
- However, we have the label: Whether the poster is a potential buyer or seller.
- Thus, we're looking the Willingness to pay (WTP) for buyers.
- What about sellers? "Willingness to be paid" (WTBP)

Estimating WTP and WTBP

由於 iPhone 6s 此一機型非常地暢銷,自 2015 年發售以來便持續活躍於 二手交易市場,以致於在關鍵字為 iPhone 的 19 萬則貼文中,儘管 iPhone 有從 3GS 到 iPhone 12 等數十個型號,但仍有近 10% 的貼文是此 單一機型,因此我們將所估計的財貨限制在此一型號 由於二手交易版需要使用者在貼文時標注自己希望「出售」還是「購買」 (徵求)。在使用者打算「徵求」購買一支二手的手機時,我們可以將帶 有「購買」分類標籤的貼文簡單地視為使用者標注了自己的"Willingness To Pay"(願付價格); 而對於打算出售二手手機的使用者,文內的「希望價 格」我們則以"Willingness To Be Paid"來稱之。

Estimating WTP and WTBP

若分別以 inverse supply function 以及 inverse demand function 的角度視 之,我們可以分別寫下:

$$p_t = \alpha_0 + \alpha_1 q_t^s + \alpha W_t + u_t$$

$$p_t = \beta_0 + \beta_1 q_t^s + \beta W_t + \nu_t$$

where q_t^s, q_t^d 分別代表時間 t 時,iPhone 6s 的供給以及需求

Estimating WTP and WTBP

在此,由於我們有區別是在 supply side 或 demand side 的分類標籤,因此無須處理 simultaneous equation 的問題。當然,我們所估計的上面兩條迴歸式尚且不能稱之為供給及需求函數,但可以作為此二函數的近似。在此,我們尚且稱呼此二式為 Willingness To Be Paid (WTBP) 及 Willingness To Pay (WTP)

Estimating WTBP

WTBP:

$$p = 22346.26 + 20.54q^s$$

t test of coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 22346.26298
                        543.25356 41.1341 < 2.2e-16 ***
quantity
             20.53982
                          5.76329 3.5639 0.000436 ***
TimeUsed
             -12.53909
                         0.35069 - 35.7552 < 2.2e - 16 ***
R.OM
              3.27603
                         4.90388 0.6680 0.504706
Is 6s plus 160.45261
                      289.86773 0.5535 0.580381
___
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Estimating WTP

WTBP:

$$p = 23691.78 - 8.54q^d$$

t test of coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 23691.7842 954.1712 24.8297 < 2e-16 ***
quantity -8.5358 55.3531 -0.1542 0.87762
TimeUsed -12.4746 0.7538 -16.5489 < 2e-16 ***
ROM -18.4653 8.3369 -2.2149 0.02799 *
Is_6s_plus 1134.3397 552.4897 2.0531 0.04147 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Recall the Introduction to Econometrics class:

- Quantity and Price are determined simultaneously in a system
- ullet q and p are endogenous variables in this system
- OLS fails without identification

Take supply function estimation for example:

Supply side:

$$Q = \beta_1 P + \varepsilon$$

Demand side:

$$Q = \alpha_1 P + \alpha_2 Income + u$$

where *Income* is an exogenous variable (determined outside the system).

We cannot estimate β_1 for the supply function via estimating the following regression model with OLS:

$$Q = \beta_1 P + \varepsilon$$

Why? Because of Endogeneity!

We need to find the demand shifter! \rightarrow *Income*

A demand shifter only affects the quantity demanded, and do no effects on quantity supplied.

Similarly, as long as we want to find the demand curve, we need to find a supply shifter.

A supply shifter is simply an IV (Instrument Variable)

IV: TSMC or Samsung?

我們 propose 一個 IV,它是「販賣或購買 iPhone 6s 的貼文內是否標注了『台積電/TSMC 晶片』或『三星/Samsung 晶片』」,因此我們的 IV 為兩個 Dummy Variable,分別以 *IsTSMC* 及 *IsSamsung* 稱之 由於 2015.9.25 發表 iPhone 6s 及 6s Plus 之後,隨即發生了「晶片門」事件

IV: TSMC or Samsung?

我們真實想估計的 demand function(非 inverse demand function) 是

$$q_t^d = \beta_0 + \beta_1 p_t + \beta_3 W_t + \varepsilon_t$$

where W_t 表示其他外生變數。但由於 p_t 存在內生性問題 $Cov(p_t, \varepsilon_t) \neq o$,因此我們可以透過 IsTSMC 以及 IsSamsung 此二外生 變數來 serve p_t

IV: TSMC or Samsung?

```
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 4284.6034 18815.6238
                                 0.228
                                         0.820
             -0.1833 0.8156 -0.225 0.822
price
             -2.3286 10.1989 -0.228 0.820
TimeUsed
ROM
              0.1215
                         1.1386 0.107
                                         0.915
Is 6s plus
             36.8174
                       167.6908 0.220
                                         0.826
Diagnostic tests:
               df1 df2 statistic p-value
Weak instruments
                 2 251
                          0.026 0.97427
Wu-Hausman
                 1 251 10.771 0.00118 **
                   NA
                          0.013 0.90755
Sargan
                 1
```

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

IV Regression

也就是 demand function 是:

$$q^d = 4284.60 - 0.18328p$$

移項得到 inverse demand function:

$$p = 23377.34 - 5.4561q^d$$

Recall the WTP estimated:

$$p = 23691.78 - 8.64q^d$$

IV Estimation 所給我們的估計較為保守

Binary Response Model

30/35

Binary Response Model

以「是否賣出」為被解釋變數

$$IsSold = \beta_0 + \beta_1 price + \beta_2 ROM + \beta_3 i6sPlus + \beta_4 TimeUsed + \beta_5 D_{female} + \beta_6 color$$

Binary Response Model: LPM

```
t test of coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.7299e-02 1.3766e-02 2.7095 0.006748 **
avg_price -1.3428e-06 4.7938e-07 -2.8011 0.005101 **
ROM
          5.6730e-06
                       4.9910e-05 0.1137 0.909505
Is_6s_plus 1.0190e-02
                       3.5333e-03 2.8839 0.003935 **
TimeUsed
           -1.0668e-05
                       9.0650e-06 -1.1768 0.239304
IsFemale
           -3.4201e-03
                       9.0412e-03 -0.3783 0.705230
color_灰 1.0223e-02 7.0065e-03 1.4590 0.144582
color_金 1.2327e-02
                       6.9306e-03 1.7787 0.075320 .
                       6.5062e-03 2.0927 0.036399 *
color_玫瑰 1.3615e-02
color 銀
           9.1335e-03 7.3937e-03 1.2353 0.216739
Signif. codes:
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Binary Response Model: Probit

```
: z test of coefficients:
              Estimate
                      Std. Error z value Pr(>|z|)
(Intercept) -1.7569e+00 2.4610e-01 -7.1389 9.407e-13 ***
avg price -2.4706e-05 8.0708e-06 -3.0611
                                        0.002205 **
: ROM
        1.3855e-04 8.2493e-04 0.1679
                                        0.866625
0.003396 **
TimeUsed -2.0327e-04 1.4356e-04 -1.4159
                                        0.156794
: IsFemale
           -5.6058e-02 1.4617e-01 -0.3835
                                        0.701349
: color 灰 2.1121e-01 1.5505e-01 1.3622
                                        0.173143
: color_金 2.3960e-01 1.5243e-01 1.5719
                                        0.115985
: color 玫瑰 2.6174e-01 1.4728e-01 1.7772
                                        0.075532 .
: color 銀
        1.8686e-01 1.6171e-01 1.1555
                                        0.247867
---
              0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
: Signif. codes:
```

Binary Response Model: Logit

```
z test of coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.1681e+00
                       5.9295e-01 -5.3430 9.144e-08 ***
                                          0.001866 **
avg price
           -5.9276e-05
                       1.9055e-05 -3.1107
ROM
           2.2993e-04
                       1.9502e-03 0.1179
                                          0.906144
Is 6s plus 4.0372e-01
                       1.3258e-01 3.0451
                                          0.002326 **
TimeUsed
           -4.8572e-04
                       3.3617e-04 -1.4449
                                          0.148493
IsFemale
           -1.2858e-01
                       3.4595e-01 -0.3717
                                          0.710136
color 灰
        4.8629e-01
                       3.8594e-01 1.2600 0.207661
color 金 5.6200e-01 3.7943e-01 1.4812 0.138555
color 玫瑰 6.1361e-01
                       3.6748e-01
                                  1.6698
                                          0.094962 .
color 銀
        4.3925e-01
                       4.0170e-01 1.0935
                                          0.274191
Signif. codes:
                  ***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

34/35

Binary Response Model

- 最重要的因素仍是價格: 價格越低, 成交的機率就越高
- ●「玫瑰金」在 2015 年推出 iPhone 6s 時是新出的顏色