\mathcal{R} obert \mathcal{S} tańczy

http://www.math.uni.wroc.pl/~stanczr/A/010.pdf

Zadanie 118. Zbadać ograniczoność rozwiązań równania

$$x''(t) + ax(t) = \sin(t)$$

z warunkiem poczatkowym

$$x(0) = 0, x'(0) = 1$$

w zależności od parametru $a \in \mathbb{R}$. Podaj interpretacje w kontekście oscylatora harmonicznego.

Zadanie 119. Rozważmy równanie różniczkowe zwyczajne z warunkami brzegowymi: $\frac{d^2u}{dx^2} + u = 0,$ $u(0) = 0, \ u(L) = 0.$

Oczywiście funkcja $u(x) \equiv 0$ jest rozwiązaniem tego zagadnienia. Czy jest to jedyne rozwiązanie? Czy odpowiedź zależy od L?

Zadanie 120. Dla jakich wartości λ zagadnienie $y'' + \lambda y = 0$, $y(0) = y(2\pi)$, $y'(0) = y'(2\pi)$ ma nietrywialne rozwiązanie?

Zadanie 121. Rozwiąż zagadnienie brzegowe u''=0 dla 0 < x < 1, u'(0) + ku(0) = $0, u'(1) \pm ku(1) = 0$

dla każdej stałej k. Rozważaj przypadki +i – osobno. Dlaczego przypadek z k=2 jest wyróżniony?

Zadanie 122. Wyznacz graficznie wartości własne zagadnienia

$$-X'' = \lambda X$$
, $X(0) = 0$, $X'(1) + aX(1) = 0$ dla pewnej stałej $a \neq 0$.

Zadanie 123. Znajdź wartości własne i odpowiadające im funkcje własne zagadnienia $\frac{d^4X}{dx^4} = \lambda X,$ X(0) = X(1) = X''(0) = X''(1) = 0.

Zadanie 124. Znajdź wartości własne i odpowiadające im funkcje własne zagadnienia X(0) = X'(0) = X(1) = X'(1) = 0.

Zadanie 125. Sprawdź, że u(x,y) = f(x)g(y) jest rozwiązaniem równania różniczkowego cząstkowego $uu_{xy} = u_x u_y$ dla dowolnych różniczkowalnych funkcji f, g jednej zmiennej.

Zadanie 126. Sprawdź, że $u_n(x,y) = \sin nx \sinh ny$ jest rozwiązaniem równania $u_{xx} + u_{yy} = 0$.

Zadanie 127. Znajdź rozwiązania ogólne u=u(x,y) następujących równań całkując stronami:

$$(a)u_x = 1,$$
 $(b)u_y = 2xy,$ $(c)u_{yy} = 6y,$ $(d)u_{xy} = 1,$ $(e)u_x + y = 0,$ $(f)u_{xxyy} = 0$

Zadanie 128. Znajdź, przez obsustronne scałkowanie, funkcję u=u(x,y) spełniającą równanie oraz warunki brzegowe:

- $u(0,y) = y, \quad u(1,y) = y^2 + 1,$
- b) $yu_{yy} + u_y = 0$, $u(x,1) = x^2$, u(x,e) = 1, c) $u_{xx} + 2u_x = 0$, u(0,y) = 1, $u(1,y) = 1/(e^2)$.

Zadanie 129. Znaleźć rozwiąznie ogólne równania $3u_y + u_{xy} = 0$ (Wsk. Podstawić $v = u_y$.). Czy istnieje jedyne rozwiązanie przy dodatkowych warunkach $u(x,0)=e^{-3x}, \quad u_v(x,0)=0.$

Zadanie 130. Rozwiązać metodą charakterystyk równanie $2u_t + 3u_x = 0$ przy dodatkowym warunku $u = \sin x \, dla \, t = 0.$

Zadanie 131. Rozwiązać równanie $(1+x^2)u_x + u_y = 0$. Naszkicować charakterystyki.

Zadanie 132. Rozwiązać metodą charakterystyk równanie $\sqrt{1-x^2}u_x+u_y=0$ przy warunku u(0,y) = y.

Zadanie 133. Rozwiązać $au_x + bu_y + cu = 0$, gdzie a, b, c są stałymi. Wsk. Szukać rozwiązania w postaci $u(x,y) = v(x,y)e^{\alpha x}$ dla specjalnie wybranego $\alpha \in \mathbb{R}$...

Zadanie 134. Rozwiązać równanie $u_x + u_y + u = 0$ przy warunku u(x,0) = 0.

Zadanie 135. Znaleźć rozwiązanie ogólne = u(x,y) równania $xu_x + yu_y = 0$.