Algorithmique et optimisation

Loïc Demange loic.demange@etud.univ-paris8.fr

08-15 octobre 2020

• Comment trouver efficacement le zéro d'une fonction continue avec la méthode de la sécante ?

• Comment trouver efficacement le zéro d'une fonction continue avec la méthode de la sécante ?

Prendre un intervalle [a, b] où f(a) < 0 et f(b) > 0 (ou inversement), et tracer un segment [AB] où A = (a, f(a)) et B = (b, f(b)).

La droite (AB) passe par l'origine, et son zéro est facilement déterminable. On peut donc resserer l'intervalle en [a',b] (ou [a,b']), a' (ou b') étant le point où (AB) intersecte l'axe des abscisses.

On peut continuer cette logique au fur et à mesure.

Méthode de la sécante

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue, strictement croissante et convexe telle que $f(a)\leq 0$, f(b)>0.

Alors la suite définie par $a_0 = a$ et $a_{n+1} = a_n - \frac{b-a_n}{f(b)-f(a_n)}f(a_n)$ est croissante et converge vers la solution de (f(x) = 0).

Loïc Demange

Méthode de la sécante

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue, strictement croissante et convexe telle que $f(a)\leq 0$, f(b)>0.

Alors la suite définie par $a_0 = a$ et $a_{n+1} = a_n - \frac{b-a_n}{f(b)-f(a_n)}f(a_n)$ est croissante et converge vers la solution de (f(x) = 0).

Preuve

① L'équation de la droite (AB) est $y = (x - a) \frac{f(b) - f(a)}{b - a} + f(a)$. Vu que la droite intersecte 0 en (a', 0), alors $0 = (a' - a) \frac{f(b) - f(a)}{b - a} + f(a)$ et donc $a' = a - \frac{b - a}{f(b) - f(a)} f(a)$.

Loïc Demange 08-15 octobre 2020

Méthode de la sécante

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue, strictement croissante et convexe telle que $f(a)\leq 0$, f(b)>0.

Alors la suite définie par $a_0 = a$ et $a_{n+1} = a_n - \frac{b-a_n}{f(b)-f(a_n)}f(a_n)$ est croissante et converge vers la solution de (f(x) = 0).

Preuve

- ② On sait que $f(a_0) = f(a) \le 0$ par hypothèse. Prouvons que si $f(a_n) \le 0$, alors $f(a_{n+1}) \le 0$.
 - Si $a_{n+1} < a_n$, alors $f(a_{n+1}) < f(a_n) \le 0$ (car f croissante).
 - Si a_{n+1} ≥ a_n, alors on constate que la sécante entre (a_n, f(a_n)) et (b, f(b)) est au dessus du graphe f.
 Or, le point (a_{n+1}, 0) (qui est par définition sur cette sécante) est au dessus de (a_{n+1}, f(a_{n+1})). Donc f(a_{n+1}) ≤ 0.

Factuellement, vu qu'on sait que f est croissante et que $a_{n+1} = a_n - \frac{b-a_n}{f(b)-f(a_n)} f(a_n)$, on sait aussi que $a_{n+1} \ge a_n$.

Loïc Demange

Méthode de la sécante

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue, strictement croissante et convexe telle que $f(a)\leq 0$, f(b)>0.

Alors la suite définie par $a_0 = a$ et $a_{n+1} = a_n - \frac{b-a_n}{f(b)-f(a_n)}f(a_n)$ est croissante et converge vers la solution de (f(x) = 0).

Preuve

3 On sait que la suite a_n est croissante et majorée par b. Elle est donc convergente. Notons I sa limite.

On sait que pour tout n, $f(a_n) \le 0$. Donc $f(I) \le 0$, et donc I < b.

Comme $a_n \to I$, $a_{n+1} \to I$, $f(a_n) \to f(I)$, l'égalité $a_{n+1} = a_n - \frac{b-a_n}{f(b)-f(a_n)}f(a_n)$ devient, lorsque $n \to +\infty$, $I = I - \frac{b-I}{f(b)-f(I)}f(I)$. Donc f(I) = 0.

Donc (a_n) converge bien vers la solution de (f(x) = 0).

4 D F 4 B F 4 E F 4 E F 9 Q Q

Calcul de l'erreur

Soit $f: \mathcal{I} \to \mathbb{R}$ une fonction dérivable et I tel que f(I) = 0. S'il existe une constante m > 0 telle que pour tout $x \in I$, $|f'(x)| \ge m$ alors $|x - I| \le \frac{|f(x)|}{m}$ pour tout $x \in \mathcal{I}$.

Exemple Soit $f(x) = x^2 - 3$ et l'intervalle $\mathcal{I} = [1, 2]$. Alors f'(x) = 2x, et donc $|f'(x)| \ge 2$ sur \mathcal{I} . On pose $I = \sqrt{3}$, $x = a_n$ et m = 2.

On a donc comme approximation de l'erreur :

$$\epsilon_n = |I - a_n| \le \frac{|f(a_n)|}{m} = \frac{|a_n^2 - 3|}{2}.$$

Exercices:

- Approximer à la main $\sqrt{11}$ en 3 itérations (indice : $\sqrt{9} < \sqrt{11} < \sqrt{16}$)
- Écrire un algorithme itératif qui permet d'approximer un zéro d'une fonction avec la méthode de la sécante, supposant que vous avez déjà un premier encadrement [a, b] et n le rang de la suite voulu
- Écrire cet algorithme de manière récursive