Recherche de chemin par dépôt de phéromones

Merwan Achibet

Université du Havre

Jeudi 16 février 2012

Analogie avec le vivant

Les fourmis

- Fragiles, minuscules
- Une espèce pourtant prospère
- Grâce à son caractère social

Coopération \rightarrow communication

Par des signaux chimiques, les phéromones

- Piste vers une source de nourriture
- Délimitation d'un territoire
- Zone dangereuse
- Disposition à la reproduction

Analogie avec le vivant

Les phéromones sont soumises à différents phénomènes naturels : Évaporation Éphémères, elles disparaissent progressivement Diffusion Volatiles, elles s'étalent

Émergence de pistes

- Les meilleures sont renforcées
- Les mauvaises s'effacent

Adapté pour les systèmes multi-agents

Les phéromones rassemblent plusieurs qualités notables :

Diversité Une phéromone peut prendre n'importe quel sens Distribution Elles sont réparties sur l'environnement Décentralisation Une fourmi est un agent parmi d'autres Dynamicité S'adapte aux changements de l'environnement

Le modèle de Parunak et al.

Utilisation de phéromones dans un cadre militaire

- Environnement → zone de conflit divisée en blocs
- Fourmis → drones aériens
- Nourriture → bâtiments cibles
- Dangers → bâtiments menaces

Phéromones employées

GNest Mène à la base

GTarget Mène à une cible

RTarget Libérée par les cibles, elle attire

RThreat Libérée par les menaces, elle repousse

Guidage

Pour se diriger

- On ne veut pas évaluer chaque phéromone séparément
- On calcule une phéromone nette décrivant l'attractivité

$$\mathbf{g} = \frac{\theta \, \mathsf{RTarget} + \gamma \, \mathsf{GTarget} + \beta}{\alpha \, \mathsf{RThreat} + \delta \, \mathsf{Dist} + \beta}$$

Un nouveau type d'agent

Les fantômes

- Courte durée de vie
- Haute vitesse

Ils permettent d'évaluer les chemins que le drone pourrait arpenter dans un futur proche.

L'implémentation de José M. Vidal

- Zones \rightarrow patches
- Agents (drones, fantomes, bâtiments) → turtles

La simulation

- Environnement aléatoirement généré
- Un unique drone
- Objectif: atteindre une cible
- On ne se soucie pas du retour à la base

GNest

GNest

RThreat

Merwan Achibet

RTarget

Problème : un guidage trop simpliste

Dans le code

- uphill RTarget guide les fantômes
- uphill GTarget guide le drone

La fonction d'évaluation de l'attractivité n'est pas utilisée

- Le drone suit toujours le chemin le plus court...
- ... Mais ignore les dangers !

Scénario critique

Merwan Achibet

Recherche de chemin par dépôt de phéromones

Nouvelle version

L'attractivité de chaque case est mise à jour après chaque itération via la fonction g.

Étapes du déplacement d'un drone/fantôme

- Observer l'attractivité des huits zones voisines
- 2 Tirage aléatoire sur une roue de la fortune biaisée
- 3 Déplacement sur la case gagnante

Scénario critique

Merwan Achibet

Nombre de fantômes

Plus de fantômes Plus de chemins possibles

Trop de fantômes Aucun chemin n'émerge

Taux de diffusion

Trop faible Pistes étroites

Trop elevé L'environnement est inondé

Taux de diffusion

Trop faible Pistes étroites

Trop elevé L'environnement est inondé

Taux d'évaporation

Trop faible Pas le temps de les suivre

Trop elevé Les mauvaises pistes perdurent et induisent en erreur

Influence des facteurs de g

$$g = \frac{\theta \, \mathsf{RTarget} + \gamma \, \mathsf{GTarget} + \beta}{\alpha \, \mathsf{RThreat} + \delta \, \mathsf{Dist} + \beta}$$