

Especificação de Requisitos

Processador Lapidopacalamba

Universidade Estadual de Feira de Santana

Build 1

Histórico de Revisões

Date	Descrição	Autor(s)
21/12/2015	Concepção e estruturação do Do- cumento	Patricia Gomes
21/12/2015	Finalização do Documento	Patricia Gomes
21/12/2015	Revisão do Documento	Fábio Barros

SUMÁRIO

1	Introdu	ıção
	1.1	Propósito do Documento
	1.2	Visão Geral do Documento
	1.3	Definições
	1.4	Acrônimos e Abreviações
2	Requis	itos Funcionais
	2.1	Requisitos dos módulos
	2.2	Requisitos das operações
3	Reauis	itos não Funcionais

1. Introdução

1.1. Propósito do Documento

O projeto consiste no desenvolvimento um processador capaz de executar 42 instruções. O processador desenvolvido possui 16 registradores de propósito geral, sendo que cada registrador possui a capacidade de armazenamento de 32 bits.

Este documento descreve a lógica de implementação de todos os requisitos do processador.

1.2. Visão Geral do Documento

- Requisitos funcionais lista de todos os requisitos funcionais.
- Requisitos não funcionais lista de todos os requisitos não funcionais.

1.3. Definições

Termo	Descrição
Requisitos Funcionais	Requisitos de hardware que compõem os módulos, descrevendo as ações que o mesmo deve estar apto a executar.
Requisitos Não Funcionais	Requisitos de hardware que compõem os módulos, representando as características que o mesmo deve ter, ou restrições que o mesmo deve operar. Estas características referem-se técnicas, algoritmos, tecnologias e especificidades do Sistema como um todo.

1.4. Acrônimos e Abreviações

Sigla	Descrição
FR	Requisito Funcional
NFR	Requisito Não Funcional
ULA	Unidade de Lógica e Aritmética

2. Requisitos Funcionais

2.1. Requisitos dos módulos

[FR1] Criação de uma Unidade de Lógica e Aritmética

Descrição:

Para que o processador atenda ao requisito de ser capaz de executar 42 instruções, é necessário construir uma unidade responsável por executar as operações de lógica e aritmética(ULA). A ULA deve ser capaz de realizar as operações com dois dois operandos de 32 bits. A mesma deve possuir duas saídas, uma para apresentar o resultado que também será de 32 bits, e outra para apresentar as flags atualizadas de acordo com a operação realizada. Além disso, a ULA deve possuir um sinal de controle responsável por indicar a mesma o código da operação, ou seja, qual operação ela deverá executar no momento.

Nível de Prioridade: Importante

[FR2] Criação de um Extensor de sinais

Descrição: Para viabilizar as operações com constantes deve ser im-

> plementado um extensor de sinais. O mesmo deve possuir entrada de 16 bits e saída de 32 bits. Para realizar a extensão dos sinais, o extensor deve inserir zeros à esquerda do

sinal.

Nível de Prioridade: Importante

[FR3] Criação de um registrador de flags

Descrição: Deve ser criado um registrador de flags de forma a armaze-

nar as flags atualizadas de acordo com a operação da ULA.

Nível de Prioridade: Importante

[FR4] Atualizar Flags

Descrição: A medida que uma operação é realizada algumas flags de-

> verão ser atualizadas. A atualização dessas flags se dará de acordo com a operação realizada pela ULA. As Flags a serem atualizadas são: Overflow, Sinal, Carry e Zero.

Nível de Prioridade: Importante

[FR5] Criação de um testador de flags

Descrição: Para ser possível a realização de desvios condicionais deve

> ser implementado um módulo testador de flags que terá como função analisar uma condição e decidir se um jump

condicional será ou não realizado.

Nível de Prioridade: Importante

[FR6] Criação de uma memória de dados

Descrição: Deverá ser desenvolvida uma memória responsável por sal-

var/ler dados proveniente das instruções de acesso à memó-

ria.

Nível de Prioridade: Importante

[FR7] Criação de um banco de registradores

Descrição: O banco de registradores deve possuir como entrada os en-

dereços dos registradores fonte o endereço do registrador de destino, uma entrada para o dado a ser armazenado. Deve possuir como saída os dados contidos nos registra-

dores fonte.

Nível de Prioridade: Importante

[FR8] Criação de uma memória de instrução

Descrição: Todas as instruções devem ser armazenadas na memória de

instrução. Esse módulo deve possuir como entrada o valor

da saída do contador de programas (PC).

Nível de Prioridade: Importante

2.2. Requisitos das operações

[FR9] Operação de adição

Descrição: A Unidade Lógica e Aritmética recebe dois operandos inici-

almente armazenados no banco de registradores e soma os dois operandos bit a bit. A operação de soma deve atualizar

todas as flags.

Nível de Prioridade: Importante

[FR10] Operação de adição com incremento

Descrição: A Unidade Lógica e Aritmética recebe dois operandos ini-

cialmente armazenados no banco de registradores executa a soma dos dois operandos bit a bit e em seguida soma ao

número 1. Esta operação deve atualizar todas as flags.

Nível de Prioridade: Importante

[FR11] Operação de incremento

Descrição: A Unidade Lógica e Aritmética recebe um operando inici-

almente armazenado no banco de registradores e soma ao número 1. Esta operação deve atualizar todas as flags.

Nível de Prioridade: Importante

[FR12] Operação de subtração com decremento

Descrição: A Unidade Lógica e Aritmética recebe dois operandos inici-

almente armazenados no banco de registradores e executa a subtração fazendo uma soma bit a bit com o segundo operando em complemento a 2 e em seguida subtrai o número

1. Essa operação deve atualizar todas as flags.

Nível de Prioridade: Importante

[FR13] Operação de subtração

Descrição: A Unidade Lógica e Aritmética recebe dois operandos inici-

almente armazenados no banco de registradores e executa a subtração fazendo uma soma bit a bit com o segundo operando em complemento a 2. Esta operação deve atualizar

todas as flags.

Nível de Prioridade: Importante

[FR14] Operação de decremento

Descrição: A Unidade Lógica e Aritmética recebe um operando inici-

almente armazenado no banco de registradores e subtrai o número 1. Esta operação deve atualizar todas as flags.

Nível de Prioridade: Importante

[FR15] Operação de deslocamento lógico

Descrição: A Unidade Lógica e Aritmética recebe um operando inici-

almente armazenado no banco de registradores e desloca seus bits à esquerda. Esta operação deve atualizar as flags

de sinal, carry e zero.

Nível de Prioridade: Importante

[FR16] Operação de deslocamento aritmético

Descrição: A Unidade Lógica e Aritmética recebe um operando inici-

almente armazenado no banco de registradores e desloca seus bits à direita. Esta operação deve atualizar as flags de

sinal, carry e zero.

Nível de Prioridade: Importante

[FR17] Operação zeros

Descrição: A Unidade Lógica e Aritmética envia zero para saída. Esta

operação deve atualizar apenas a flag de zero.

Nível de Prioridade: Importante

[FR18] Operação and

Descrição: A Unidade Lógica e Aritmética recebe dois operandos inici-

almente armazenados no banco de registradores e executa uma and entre os dois operandos. Esta operação deve atu-

alizar as flags de sinal e zero.

Nível de Prioridade: Importante

[FR19] Operação and com o primeiro operando negado

Descrição: A Unidade Lógica e Aritmética recebe dois operandos ini-

cialmente armazenados no banco de registradores e faz o complemento a 2 do primeiro operando, em seguida executa uma and entre os dois operandos. Esta operação deve

atualizar as flags de sinal e zero.

Nível de Prioridade: Importante

[FR20] Operação que passa o operando B

Descrição: A Unidade Lógica e Aritmética recebe um operando inicial-

mente armazenado no banco de registradores e o envia para saída. Esta operação não deve atualizar nenhuma flag.

Nível de Prioridade: Importante

[FR21] Operação and com o segundo operando negado

Descrição: A Unidade Lógica e Aritmética recebe dois operandos ini-

cialmente armazenados no banco de registradores e faz o

complemento a 2 do segundo operando, em seguida executa uma and entre os dois operandos. Esta operação deve atualizar as flags de sinal e zero.

Nível de Prioridade: Importante

[FR22] Operação que passa o operando A

Descrição: A Unidade Lógica e Aritmética recebe um operando inici-

almente armazenado no banco de registradores e o envia para saída. Esta operação deve atualizar as flags de sinal e

zero.

Nível de Prioridade: Importante

[FR23] Operação xor

Descrição: A Unidade Lógica e Aritmética recebe dois operandos inici-

almente armazenados no banco de registradores e executa uma xor entre os dois operandos. Esta operação deve atu-

alizar as flags de sinal e zero.

Nível de Prioridade: Importante

[FR24] Operação or

Descrição: A Unidade Lógica e Aritmética recebe dois operandos inici-

almente armazenados no banco de registradores e executa uma or entre os dois operandos. Esta operação deve atua-

lizar as flags de sinal e zero.

Nível de Prioridade: Importante

[FR25] Operação nand

Descrição: A Unidade Lógica e Aritmética recebe dois operandos ini-

cialmente armazenados no banco de registradores, transforma os dois em negativos usando o complemento a 2 e sem seguida executa uma and entre os operandos. Esta

operação deve atualizar as flags de sinal e zero.

Nível de Prioridade: Importante

[FR26] Operação xnor

Descrição: A Unidade Lógica e Aritmética recebe dois operandos inici-

almente armazenados no banco de registradores e executa uma xor entre os dois operandos, em seguida transforma o valor obtido em negativo fazendo o complemento a 2. Esta operação deve atualizar as flags de sinal e zero.

Nível de Prioridade: Importante

[FR27] Operação que passa o operando A negativo

Descrição: A Unidade Lógica e Aritmética recebe um operando inicial-

mente armazenado no banco de registradores o transforma em negativo fazendo o complemento a 2 e o envia para saída. Esta operação deve atualizar as flags de sinal e zero.

Nível de Prioridade: Importante

[FR28] Operação or com o primeiro operando negado

Descrição: A Unidade Lógica e Aritmética recebe dois operandos ini-

cialmente armazenados no banco de registradores, transforma o primeiro operando em negativo usando o complemento a 2 e sem seguida executa uma or entre os operandos. Esta operação deve atualizar as flags de sinal e zero.

Nível de Prioridade: Importante

[FR29] Operação que passa o operando B negativo

Descrição: A Unidade Lógica e Aritmética recebe um operando inicial-

mente armazenado no banco de registradores o transforma em negativo fazendo o complemento a 2 e o envia para saída. Esta operação deve atualizar as flags de sinal e zero.

Nível de Prioridade: Importante

[FR30] Operação or com o segundo operando negado

Descrição: A Unidade Lógica e Aritmética recebe dois operandos ini-

cialmente armazenados no banco de registradores, transforma o segundo operando em negativo usando o complemento a 2 e sem seguida executa uma or entre os operandos. Esta operação deve atualizar as flags de sinal e zero.

Nível de Prioridade: Importante

[FR31] Operação nor

Descrição: A Unidade Lógica e Aritmética recebe dois operandos ini-

cialmente armazenados no banco de registradores, transforma os dois em negativos usando o complemento a 2 e sem seguida executa uma or entre os operandos. Esta ope-

ração deve atualizar as flags de sinal e zero.

Nível de Prioridade: Importante

[FR32] Operação ones

Descrição: A Unidade Lógica e Aritmética envia 1 para saída. Esta ope-

ração não deve atualizar nenhuma flag.

Nível de Prioridade: Importante

[FR33] Operação loadlit

Descrição: A Unidade Lógica e Aritmética recebe o valor contido em

um registrador do banco de registradores e o envia para

saída.

Nível de Prioridade: Importante

[FR34] Operação loadlit

Descrição: Esta operação carrega uma constante de até 16 bits no re-

gistrador de destino.

Nível de Prioridade: Importante

[FR35] Operação Icl

Descrição: Inicialmente é realizada uma operação and entre uma cons-

tante de 16 bits e o valor contido no endereço 0xffff0000 da memória, em seguida é feita uma or entre o resultado dessa

and e a constante de 16 bits.

Nível de Prioridade: Importante

[FR36] Operação Ich

Descrição: Inicialmente a constante é deslocada em 16 bits e é reali-

zada uma operação and entre a constante e o valor contido no endereço 0x00000ffff da memória, em seguida é feita uma or entre o resultado dessa and e a constante deslocada.

Nível de Prioridade: Importante

[FR37] Operação load

Descrição: o endereço presente no registrador B do banco de registra-

dores deve ser lido da memória, e a saída é escrita no banco de registradores no endereço especificado na pelo registra-

dor A.

Nível de Prioridade: Importante

[FR38] Operação store

Descrição: Na instrução Store os dados devem ser lidos do banco de

registradores e escritos na memória, sendo registrador A o dado a ser escrito e o registrador B endereço onde será

armazenado.

Nível de Prioridade: Importante

[FR39] Operação de desvio incondicional

Descrição: Deve realizar um salto para um endereço absoluto da me-

mória de instruções, informado pelo campo DESTINO.

Nível de Prioridade: Importante

[FR40] Operação de desvios condicionais

Descrição: Deve realizar um salto para um endereço absoluto da me-

mória de instruções, informado pelo campo DESTINO a partir de sinais que indicam se o jump é true ou false e dos testes de condições de flags. Tais condições podem ser ob-

servadas no documento de arquitetura.

Nível de Prioridade: Importante

[FR41] Operação de desvios tipo and link

Descrição: O valor de PC+1 deve ser armazenado no registrador r7 (de-

finido pela unidade de controle) e o conteúdo do registrador

RB armazenado em PC.

Nível de Prioridade: Importante

[FR42] Operação de jump register

Descrição: Deve armazenar o conteúdo do registrador RB no PC.

Nível de Prioridade: Importante

[FR43] Halt

Descrição: Deve realizar um salto incondicional para o endereço atual.

Nível de Prioridade: Importante

[FR44] Nop

Descrição: Nessa instrução todos os sinais de controle devem ser zera-

dos, de forma que nada seja registrado na memória ou no

banco de registradores.

Nível de Prioridade: Importante

3. Requisitos não Funcionais

[NFR1] Armazenamento em memória de forma big-endian

Descrição: O armazenamento na memória deve ser feito de forma big-

endian, logo, o bit mais significativo do dado deve ser armazenado na posição menos significativa da memória.

Nível de Prioridade: Importante

[NFR2] Unidade de controle hardwired

Descrição: A unidade de controle deve ser hardwire, logo, sinais de

controle devemm ser gerados com o uso de técnicas de cir-

cuitos lógicos convencionais.

Nível de Prioridade: Importante