

Laboratorio 1

Objetivo: Identificar y conectar del sistema de ensayo de lazos de control de motores trifásicos

1. MATERIALES Y EQUIPOS

- Sistema de ensayo de lasos de control de motores trifásicos
- Multímetro
- Cable USB tipo B
- Destornilladores estrella y plano PH2
- Fuente de alimentación Monofásica (AC-220 V)
- Computador
- Interfaz gráfica (descargable)

2. MEDIDAS DE SEGURIDAD

Antes de empezar es necesario hacer lo siguiente:

- Leer atentamente esta guía antes de comenzar la práctica.
- Observar que no hay ninguna anomalía.
- No tocar ninguna parte móvil del sistema durante el funcionamiento.
- No dejar objetos dentro del área de operación del sistema.
- Reportar cualquier anomalía al técnico docente.

3. PARTES DEL SISTEMA

Pines del Variador de frecuencia Delta

Fig. 1. Variador de Frecuencia

Tabla 1. Numeración VFD

Número	Detalle
1	MI1 (pin 1/2 del switch de marcha)
2	DCM (pin 2/2 del switch de marcha)
3	ACM (voltaje de salida pin negativo)
4	AVI (voltaje de salida pin positivo)
5	Conexiónes del Arduino Mega 2560
6	Pines del Arduino Mega 2560

Pines del Arduino Mega 2560

Fig. 2. Arduino Mega 2560

Tabla 2. Numeración Arduino Mega

Número	Detalle
1	Pin 5V (voltaje de salida pin positivo encoder)
2	Pin GND (voltaje de salida pin negativo)
3	Pin 13 (Salida PWM hacia acondicionador)
4	Pin 2 (entrada digital del encoder)

Pines del Acondicionador de señal

Fig. 3. Acondicionador de señal

Tabla 3. Numeración acondicionador de señal

Número	Detalle
1	Pin +(voltaje de entrada pin 13 Arduino Mega)
2	Pin - (GND Arduino Mega 2560)
3	Pin - (GND Arduino Mega 2560)
4	Pin + (PIN 4 (AVI) VDF)

Partes de la Interfaz Grafica

Fig. 4. Interfaz gráfica

Tabla 4. Numeración de la interfaz gráfica

Número	Detalle
1	Modo de operación (OL/CL)
2	Slider de velocidad(rpm)
3	Botón de marcha del motor
4	Paro de emergencia
5	Visualizador de datos

Puertos de entrada y salida del sistema

Fig. 5. Puertos de entrada y salida

Tabla 5. Numeración VFD

Número	Detalle
1	Conexión a 220V AC
2	Interruptor de encendido
3	Puerto USB tipo B hembra

1. PROCEDIMIENTO EXPERIMENTAL

- 1. Verificar que el sistema este correctamente conectado y colocarlo sobre una superficie plana y estable, con el fin de evitar accidente para el operario.
- Descargar el software de la interfaz gráfica (Control.exe) como se observa en
 Fig. 6 archivos disponible en: https://github.com/RugorAlex/codespaces-Control Motores

Fig.6 Interfaz gráfica en github.com

- 3. Conectar al sistema el cable de energía y el cable USB tipo B y acciona el interruptor de encendido, se encenderá un LED azul.
- 4. Configurar el puerto por el cual se comunica Arduino 2560, cambiar al puerto "COM3", como se muestra en Fig. 7

Fig. 7 Administrador de dispositivos en Windows

5. Ejecutar el archivo denominado como "Control.exe", se abrirá la interfaz y estará lista para realizar los ensayos respectivos como se muestra en Fig. 8

Fig. 8 Interfaz gráfica del Sistema de Ensayos