

September 1983 Revised February 1999

# MM74HC125/MM74HC126 3-STATE Quad Buffers

## **General Description**

The MM74HC125 and MM74HC126 are general purpose 3-STATE high speed non-inverting buffers utilizing advanced silicon-gate CMOS technology. They have high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits possess the low power dissipation of CMOS circuitry, yet have speeds comparable to low power Schottky TTL circuits. Both circuits are capable of driving up to 15 low power Schottky inputs.

The MM74HC125 require the 3-STATE control input C to be taken high to put the output into the high impedance

condition, whereas the MM74HC126 require the control input to be low to put the output into high impedance.

All inputs are protected from damage due to static discharge by diodes to  $\ensuremath{\text{V}_{\text{CC}}}$  and ground.

### **Features**

- Typical propagation delay: 13 ns
- Wide operating voltage range: 2-6V
- Low input current: 1 μA maximum
- Low quiescent current: 80 µA maximum (74HC)
- Fanout of 15 LS-TTL loads

## **Ordering Code:**

| Order Number | Package Number | Package Description                                                               |
|--------------|----------------|-----------------------------------------------------------------------------------|
| MM74HC125M   | M14A           | 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow Body |
| MM74HC125SJ  | M14D           | 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide                     |
| MM74HC125MTC | MTC14          | 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide       |
| MM74HC125N   | N14A           | 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide            |
| MM74HC126M   | M14A           | 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow Body |
| MM74HC126SJ  | M14D           | 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide                     |
| MM74HC126MTC | MTC14          | 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide       |
| MM74HC126N   | N14A           | 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide            |

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. (Tape and Reel not available in N14A.)

## **Connection Diagrams**

## Pin Assignments for DIP, SOIC, SOP and TSSOP





## **Truth Tables**

| Inp | uts | Output |  |  |
|-----|-----|--------|--|--|
| Α   | С   | Υ      |  |  |
| Н   | ٦   | Н      |  |  |
| L   | L   | L      |  |  |
| Χ   | Н   | Z      |  |  |

| Inp | uts | Output |  |  |  |
|-----|-----|--------|--|--|--|
| Α   | С   | Y      |  |  |  |
| Н   | Н   | Н      |  |  |  |
| L   | Н   | L      |  |  |  |
| Χ   | L   | Z      |  |  |  |

## **Absolute Maximum Ratings**(Note 1)

## (Note 2)

Lead Temperature (T<sub>L</sub>)

(Soldering 10 seconds)

#### Supply Voltage (V<sub>CC</sub>) -0.5 to +7.0V DC Input Voltage (V<sub>IN</sub>) -1.5 to $V_{CC} + 1.5V$ DC Output Voltage (V<sub>OUT</sub>) -0.5 to $V_{CC}$ +0.5VClamp Diode Current (I<sub>IK</sub>, I<sub>OK</sub>) ±20 mA DC Output Current, per pin (I<sub>OUT</sub>) $\pm 35~\text{mA}$ DC V<sub>CC</sub> or GND Current, per pin ±70 mA Storage Temperature Range (T<sub>STG</sub>) -65°C to +150°C Power Dissipation (P<sub>D</sub>) 600 mW (Note 3) S.O. Package only 500 mW

# Recommended Operating Conditions

|                                               | Min | Max             | Units |  |
|-----------------------------------------------|-----|-----------------|-------|--|
| Supply Voltage (V <sub>CC</sub> )             | 2   | 6               | V     |  |
| DC Input or Output Voltage                    | 0   | $V_{\text{CC}}$ | V     |  |
| $(V_{IN}, V_{OUT})$                           |     |                 |       |  |
| Operating Temperature Range (T <sub>A</sub> ) | -40 | +85             | °C    |  |
| Input Rise or Fall Times $(t_r, t_f)$         |     |                 |       |  |
| $V_{CC} = 2.0V$                               |     | 1000            | ns    |  |
| $V_{CC} = 4.5V$                               |     | 500             | ns    |  |
| $V_{CC} = 6.0V$                               |     | 400             | ns    |  |
|                                               |     |                 |       |  |

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

## DC Electrical Characteristics (Note 4)

| Symbol          | Parameter              | Conditions                     | V <sub>cc</sub> | $T_A = 25^{\circ}C$ |      | $T_A = -40 \text{ to } 85^{\circ}\text{C}$ $T_A = -40 \text{ to } 125^{\circ}\text{C}$ |       | Units |
|-----------------|------------------------|--------------------------------|-----------------|---------------------|------|----------------------------------------------------------------------------------------|-------|-------|
| Syllibol        | rarameter              | Conditions                     | *cc             | Тур                 |      | Guaranteed L                                                                           | imits | Units |
| V <sub>IH</sub> | Minimum HIGH Level     |                                | 2.0V            |                     | 1.5  | 1.5                                                                                    | 1.5   | V     |
|                 | Input Voltage          |                                | 4.5V            |                     | 3.15 | 3.15                                                                                   | 3.15  | V     |
|                 |                        |                                | 6.0V            |                     | 4.2  | 4.2                                                                                    | 4.2   | V     |
| V <sub>IL</sub> | Maximum LOW Level      |                                | 2.0V            |                     | 0.5  | 0.5                                                                                    | 0.5   | V     |
|                 | Input Voltage          |                                | 4.5V            |                     | 1.35 | 1.35                                                                                   | 1.35  | V     |
|                 |                        |                                | 6.0V            |                     | 1.8  | 1.8                                                                                    | 1.8   | V     |
| V <sub>OH</sub> | Minimum HIGH Level     | $V_{IN} = V_{IH}$ or $V_{IL}$  | 2.0V            | 2.0                 | 1.9  | 1.9                                                                                    | 1.9   | V     |
|                 | Output Voltage         | $ I_{OUT}  \le 20 \ \mu A$     | 4.5V            | 4.5                 | 4.4  | 4.4                                                                                    | 4.4   | V     |
|                 |                        |                                | 6.0V            | 6.0                 | 5.9  | 5.9                                                                                    | 5.9   | V     |
|                 |                        | $V_{IN} = V_{IH}$ or $V_{IL}$  |                 |                     |      |                                                                                        |       |       |
|                 |                        | $ I_{OUT}  \le 6.0 \text{ mA}$ | 4.5V            | 4.2                 | 3.98 | 3.84                                                                                   | 3.7   | V     |
|                 |                        | $ I_{OUT}  \le 7.8 \text{ mA}$ | 6.0V            | 5.7                 | 5.48 | 5.34                                                                                   | 5.2   | V     |
| V <sub>OL</sub> | Maximum LOW Level      | $V_{IN} = V_{IH}$ or $V_{IL}$  | 2.0V            | 0                   | 0.1  | 0.1                                                                                    | 0.1   | V     |
|                 | Output Voltage         | $ I_{OUT}  \le 20 \ \mu A$     | 4.5V            | 0                   | 0.1  | 0.1                                                                                    | 0.1   | V     |
|                 |                        |                                | 6.0V            | 0                   | 0.1  | 0.1                                                                                    | 0.1   | V     |
|                 |                        | $V_{IN} = V_{IH}$ or $V_{IL}$  |                 |                     |      |                                                                                        |       |       |
|                 |                        | $ I_{OUT}  \le 6.0 \text{ mA}$ | 4.5V            | 0.2                 | 0.26 | 0.33                                                                                   | 0.4   | V     |
|                 |                        | $ I_{OUT}  \le 7.8 \text{ mA}$ | 6.0V            | 0.2                 | 0.26 | 0.33                                                                                   | 0.4   | V     |
| I <sub>OZ</sub> | Maximum 3-STATE Output | $V_{IN} = V_{IH}$ or $V_{IL}$  | 6.0V            |                     | ±0.5 | ±5                                                                                     | ±10   | μΑ    |
|                 | Leakage Current        | $V_{OUT} = V_{CC}$ or GND      |                 |                     |      |                                                                                        |       |       |
|                 |                        | C <sub>n</sub> = Disabled      |                 |                     |      |                                                                                        |       |       |
| I <sub>IN</sub> | Maximum Input Current  | $V_{IN} = V_{CC}$ or GND       | 6.0V            |                     | ±0.1 | ±1.0                                                                                   | ±1.0  | μΑ    |
| Icc             | Maximum Quiescent      | $V_{IN} = V_{CC}$ or GND       | 6.0V            |                     | 8.0  | 80                                                                                     | 160   | μΑ    |
|                 | Supply Current         | $I_{OUT} = 0 \; \mu A$         |                 |                     |      |                                                                                        |       |       |

260°C

Note 4: For a power supply of 5V  $\pm$ 10% the worst case output voltages (V<sub>OH</sub>, and V<sub>OL</sub>) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V<sub>IH</sub> and V<sub>IL</sub> occur at V<sub>CC</sub>=5.5V and 4.5V respectively. (The V<sub>IH</sub> value at 5.5V is 3.85V.) The worst case leakage current (I<sub>IN</sub>, I<sub>CC</sub>, and I<sub>OZ</sub>) occur for CMOS at the higher voltage and so the 6.0V values should be used.

## **AC Electrical Characteristics**

 $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ ,  $C_L = 45$  pF,  $t_r = t_f = 6$  ns

| Symbol                              | Parameter                           | Conditions        | Тур | Guaranteed<br>Limit | Units |
|-------------------------------------|-------------------------------------|-------------------|-----|---------------------|-------|
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum                             |                   | 13  | 18                  | ns    |
|                                     | Propagation Delay Time              |                   |     |                     |       |
| t <sub>PZH</sub>                    | Maximum                             | $R_L = 1 k\Omega$ | 13  | 25                  | ns    |
|                                     | Output Enable Time to HIGH Level    |                   |     |                     |       |
| t <sub>PHZ</sub>                    | Maximum                             | $R_L = 1 k\Omega$ | 17  | 25                  | ns    |
|                                     | Output Disable Time from HIGH Level | $C_L = 5 pF$      |     |                     |       |
| t <sub>PZL</sub>                    | Maximum                             | $R_L = 1 k\Omega$ | 18  | 25                  | ns    |
|                                     | Output Enable Time to LOW Level     |                   |     |                     |       |
| t <sub>PLZ</sub>                    | Maximum                             | $R_L = 1 k\Omega$ | 13  | 25                  | ns    |
|                                     | Output Disable Time from LOW Level  | $C_L = 5 pF$      |     |                     |       |

# **AC Electrical Characteristics**

 $V_{CC} = 2.0 \text{V}$  to 6.0V,  $C_L = 50 \text{ pF}$ ,  $t_f = t_f = 6 \text{ ns}$  (unless otherwise specified)

| Symbol                              | Parameter                  | Conditions              | V <sub>CC</sub> | T <sub>A</sub> = 25°C |     | T <sub>A</sub> = -40 to 85°C | T <sub>A</sub> = -40 to 125°C | Units |  |
|-------------------------------------|----------------------------|-------------------------|-----------------|-----------------------|-----|------------------------------|-------------------------------|-------|--|
| Symbol                              |                            |                         | *00             | Тур                   |     | Guaranteed L                 | imits                         | Units |  |
| $t_{PHL}$ , $t_{PLH}$               | Maximum Propagation        |                         | 2.0V            | 40                    | 100 | 125                          | 150                           | ns    |  |
|                                     | Delay Time                 |                         | 4.5V            | 14                    | 20  | 25                           | 30                            | ns    |  |
|                                     |                            |                         | 6.0V            | 12                    | 17  | 21                           | 25                            | ns    |  |
| t <sub>PLH</sub> , t <sub>PHL</sub> | Maximum Propagation        | C <sub>L</sub> = 150 pF | 2.0V            | 35                    | 130 | 163                          | 195                           | ns    |  |
|                                     | Delay Time                 |                         | 4.5V            | 14                    | 26  | 33                           | 39                            | ns    |  |
|                                     |                            |                         | 6.0V            | 12                    | 22  | 28                           | 39                            | ns    |  |
| $t_{PZH}, t_{PZL}$                  | Maximum Output             | $R_L = 1 k\Omega$       | 2.0V            | 25                    | 125 | 156                          | 188                           | ns    |  |
|                                     | Enable Time                |                         | 4.5V            | 14                    | 25  | 31                           | 38                            | ns    |  |
|                                     |                            |                         | 6.0V            | 12                    | 21  | 26                           | 31                            | ns    |  |
| $t_{PHZ},t_{PLZ}$                   | Maximum Output             | $R_L = 1 k\Omega$       | 2.0V            | 25                    | 125 | 156                          | 188                           | ns    |  |
|                                     | Disable Time               |                         | 4.5V            | 14                    | 25  | 31                           | 38                            | ns    |  |
|                                     |                            |                         | 6.0V            | 12                    | 21  | 26                           | 31                            | ns    |  |
| $t_{PZL}, t_{PZH}$                  | Maximum Output             | C <sub>L</sub> = 150 pF | 2.0V            | 35                    | 140 | 175                          | 210                           | ns    |  |
|                                     | Enable Time                | $R_L = 1 k\Omega$       | 4.5V            | 15                    | 28  | 35                           | 42                            | ns    |  |
|                                     |                            |                         | 6.0V            | 13                    | 24  | 30                           | 36                            | ns    |  |
| $t_{TLH}$ , $t_{THL}$               | Maximum Output             | C <sub>L</sub> = 50 pF  | 2.0V            | 30                    | 60  | 75                           | 90                            | ns    |  |
|                                     | Rise and Fall Time         |                         | 4.5V            | 7                     | 12  | 15                           | 18                            | ns    |  |
|                                     |                            |                         | 6.0V            | 6                     | 10  | 13                           | 15                            | ns    |  |
| C <sub>IN</sub>                     | Input Capacitance          |                         |                 | 5                     | 10  | 10                           | 10                            | pF    |  |
| C <sub>OUT</sub>                    | Output Capacitance Outputs |                         |                 | 15                    | 20  | 20                           | 20                            | pF    |  |
| C <sub>PD</sub>                     | Power Dissipation          | (per gate)              |                 |                       |     |                              |                               |       |  |
|                                     | Capacitance (Note 5)       | Enabled                 |                 | 45                    |     |                              |                               | pF    |  |
|                                     |                            | Disabled                |                 | 6                     |     |                              |                               | pF    |  |

Note 5:  $C_{PD}$  determines the no load dynamic power consumption,  $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$ , and the no load dynamic current consumption,  $I_S = C_{PD} \ V_{CC} f + I_{CC}$ .



# Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14LD, TSSOP, JEDEC MO-153, 4.4MM WIDE









## NOTES

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION ABREF NOTE 6, DATED 7/93
- B. DIMENSIONS ARE IN MILLIMETERS
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS



# 14-Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14



14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

## LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com