CHIMICA GENERALE

Corso A Anno Accademico 2024-2025

Docente: Prof. Francesco Pineider

Email: francesco.pineider@unipi.it

Indirizzo: Dipartimento di Chimica e Chimica Industriale
Via Moruzzi 13

La Geometria Molecolare e l'Ibridazione degli Orbitali Atomici

Capitolo 7

Teoria VSEPR

VSEPR: Teoria della repulsione delle coppie di elettroni nel livello di valenza (Valence Shell Electron Pair Repulsion)

Prevede la geometria della molecole basandosi sulle repulsioni elettrostatiche tra coppie di elettroni (di legame o solitarie)

Molecole in cui l'atomo centrale è PRIVO di coppie solitarie

Molecole in cui l'atomo centrale POSSIEDE una o più coppie solitarie

 CH_4 CO_2 NH₃ H₂O

Teoria VSEPR

Molecole in cui l'atomo centrale è PRIVO di coppie solitarie

Atomo centrale

O coppie solitarie sull'atomo centrale

Cloruro di Berillio gassoso

2 atomi legati all'atomo centrale

Teoria VSEPR

Molecole in cui l'atomo centrale è PRIVO di coppie solitarie

Classe

di atomi legati # di coppie solitarie all'atomo centrale sull'atomo centrale

Disposizione delle coppie di elettroni

Geometria molecolare

 AB_3

3

Trifluoruro di Boro

trigonale planare

trigonale planare

Planare

Teoria VSEPR

Molecole in cui l'atomo centrale è PRIVO di coppie solitarie

Classe	_	# di coppie solitarie sull'atomo centrale
AB_4	4	0

Disposizione delle coppie di elettroni

tetraedrica

Geometria molecolare

tetraedrica

Teoria VSEPR

Molecole in cui l'atomo centrale è PRIVO di coppie solitarie

Classe

di atomi legati all'atomo centrale sull'atomo centrale

di coppie solitarie

Disposizione delle coppie di elettroni

Geometria molecolare

 AB_5

5

bipiramidale trigonale

bipiramidale trigonale

Pentacloruro di fosforo

Bipiramide trigonale

Teoria VSEPR

Molecole in cui l'atomo centrale è PRIVO di coppie solitarie

Classe # di atomi

di atomi legati # di coppie solitarie all'atomo centrale sull'atomo centrale

Disposizione delle coppie di elettroni

Geometria molecolare

 AB_6

6

0

ottaedrica

ottaedrica

Esafluoruro di zolfo

Arrangement of Electron Pairs About a Central Atom (A) in a Molecule and Geometry of Some Simple Molecules and Ions in Which the Central Atom Has No Lone Pairs

Number of Electron Pairs	Arrangement of Electron Pairs*	Molecular Geometry*	Examples
2	180°	В—А—В	BeCl ₂ , HgCl ₂
3	Linear 120°	Linear	BF_3
	Trigonal planar	B Trigonal planar	
4	109.5°	B A B	CH ₄ , NH ₄ ⁺
	Tetrahedral	Tetrahedral B	
5	120°	B B B	PCl ₅
	Trigonal bipyramidal	Trigonal bipyramidal	
6	90°	B B B	SF ₆
	Octahedral	Octahedral	

Teoria VSEPR

Molecole in cui l'atomo centrale POSSIEDE una o più coppie solitarie

In queste molecole esistono tre tipi di forze repulsive di intensità crescente:

- 1. Coppia di legame coppia di legame
- 2. Coppia solitaria coppia di legame
- 3. Coppia solitaria coppia solitaria

Teoria VSEPR

Molecole in cui l'atomo centrale POSSIEDE una o più coppie solitarie

Classe	# di atomi legati all'atomo centrale	# di coppie solitarie sull'atomo centrale	Disposizione delle coppie di elettroni	Geometria molecolare
AB_3	3	0	planare trigonale	planare trigonale
AB ₂ E	2	1	planare trigonale	angolare
	Coppia eletti	ronica solitaria	<u>•</u>	

Diossido di zolfo

IMPORTANTE: per la geometria molecolare si considerano solo gli atomi, non le coppie solitarie

Teoria VSEPR

Molecole in cui l'atomo centrale POSSIEDE una o più coppie solitarie

Classe	# di atomi legati all'atomo centrale	# di coppie solitarie sull'atomo centrale	Disposizione delle coppie di elettroni	Geometria molecolare
AB_4	4	0	tetraedrica	tetraedrica
AB_3E	3	1	tetraedrica	piramidale trigonale

Ammoniaca

$$\overset{\ddot{N}}{\underset{H}{|}}H$$

Teoria VSEPR

Molecole in cui l'atomo centrale POSSIEDE una o più coppie solitarie

Classe	# di atomi legati all'atomo centrale	# di coppie solitarie sull'atomo centrale	Disposizione delle coppie di elettroni	Geometria molecolare
AB_4	4	0	tetraedrica	tetraedrica
AB ₃ E	3	1	tetraedrica	piramidale trigonale
AB_2E_2	2	2	tetraedrica	angolare
			• •	(i)

Acqua

Teoria VSEPR

Molecole in cui l'atomo centrale è POSSIEDE una o più coppie solitarie

Classe	# di atomi legati all'atomo centrale	# di coppie solitarie sull'atomo centrale	Disposizione delle coppie di elettroni	Geometria molecolare
AB_5	5	0	bipiramidale trigonale	Bipiramidale trigonale
AB_4E	4	1	bipiramidale trigonale	tetraedro distorto

Tetrafluoruro di zolfo

Teoria VSEPR

Classe	# di atomi legati	# di coppie solitarie	Disposizione delle coppie di elettroni	Geometria molecolare
	all'atomo centrale	sull'atomo centrale	coppie di cictiloni	morecolare
AB_5	5	0	bipiramidale trigonale	
AB_4E	4	1	bipiramidale trigonale	tetraedro distorto
AB_3E_2	3	2	bipiramidale trigonale	Forma a T
			R	

Teoria VSEPR

Classe	# di atomi legati all'atomo centrale	# di coppie solitarie sull'atomo centrale	Disposizione delle coppie di elettroni	Geometria molecolare
AB_5	5	0	bipiramidale trigonale	bipiramidale trigonale
AB_4E	4	1	bipiramidale trigonale	tetraedro distorto
AB_3E_2	3	2	bipiramidale trigonale	forma a T
AB_2E_3	2	3	bipiramidale trigonale	lineare
			В	

Teoria VSEPR

Classe	# di atomi legati all'atomo centrale	# di coppie solitarie sull'atomo centrale	Disposizione delle coppie di elettroni	Geometria molecolare
AB_6	6	0	ottaedrica	ottaedrica
<i>AB</i> ₅ <i>E</i>	5	1	ottaedrica	piramidale quadrata

Teoria VSEPR

Classe	# di atomi legati all'atomo centrale	# di coppie solitarie sull'atomo centrale	Disposizione delle coppie di elettroni	Geometria molecolare
AB_6	6	0	ottaedrica	ottaedrica
AB ₅ E	5	1	ottaedrica	piramidale quadrata
AB_4E_2	4	2	ottaedrica	planare quadrata

	Lone Pairs					
Class of Molecule	Total Number of Electron Pairs	Number of Bonding Pairs	Number of Lone Pairs	Arrangement of Electron Pairs*	Geometry of Molecule or Ion	Examples
AB_2E	3	2	1	B A B Trigonal planar	Bent	SO ₂
AB ₃ E	4	3	1	B A B B Tetrahedral	Trigonal pyramidal	NH ₃
AB_2E_2	4	2	2	A B Tetrahedral	Bent	H ₂ O
AB_4E	5	4	1	B B B B B Trigonal bipyramidal	Distorted tetrahedron (or seesaw)	SF ₄
AB_3E_2	5	3	2	B A B C B B C B B C B B B B B B B B B B	T-shaped	CIF ₃
AB_2E_3	5	2	3	B A B Trigonal bipyramidal	Linear	
AB ₅ E	6	5	1	B B B B B C C C C C C C C C C C C C C C	Square pyramidal	BrF ₅
AB_4E_2	6	4	2	B B B B Octahedral	Square planar	XeF ₄
				O CHAILOUI UI		4

Teoria VSEPR

Molecole con PIÙ DI UN ATOMO CENTRALE

Due atomi centrali, C e O:

- Atomo C: le tre coppie di legame C-H e la coppia di legame C-O sono disposte a tetraedro attorno all'atomo di C con angoli di circa 109°
- Atomo O: sull'ossigeno ci sono due coppie solitarie e due legami (geometria simile all'acqua) con angolo HOC di 105°

Il legame peptidico

- Gli atomi del gruppo C-O-N giacciono tutti su un medesimo piano
- Questi piani possono ruotare rispetto al carbonio-alfa
- -Tali rotazioni permettono al filamento proteico di avvolgersi su se stesso secondo schemi diversi, raggiungendo una struttura finale stabile

$$\mu = \mathbf{Q} \times \mathbf{r}$$

Q: carica (Coulomb, C)

r: distanza tra le cariche (metri, m)

1 Debye (D) = $3.36 \times 10^{-30} \text{ C m}$

Le molecole biatomiche contenenti atomi diversi sono polari (HF, CO, HCI), quelle contenenti atomi uguali no (H_2, Cl_2) .

Comportamento delle molecole polari

Geometria molecolare e momento di dipolo

Molecole costituite da 3 o più atomi: la presenza del momento di dipolo dipende dalla POLARITA' del legame e dalla GEOMETRIA MOLECOLARE

Geometria molecolare e momento di dipolo

momento di dipolo molecola polare

nessun momento di dipolo molecola apolare

momento di dipolo molecola polare

nessun momento di dipolo molecola apolare

Geometria molecolare e momento di dipolo

ESEMPIO:

*Il BF*₃ ha un momento di dipolo?

No, i tre momenti di dipolo di legame si annullano a vicenda e non danno luogo a un momento di dipolo della molecola

La mappa dei potenziali elettrostatici mostra una distribuzione simmetrica della densità elettronica

Geometria molecolare e momento di dipolo

ESEMPIO:

Il CH₂Cl₂ ha un momento di dipolo?

Sì, i momenti di dipolo di legame non si annullano a vicenda, anzi si sommano vettorialmente

La mappa dei potenziali elettrostatici mostra una distribuzione asimmetrica della densità elettronica

L'idratazione

Idratazione: processo in cui uno ione è circondato da molecole di acqua arrangiate in una maniera specifica

$$NaCl(s) \xrightarrow{H_2O} Na^+(aq) + Cl^-(aq)$$

 H_2O

Limiti della teoria di Lewis

Condivisione di due elettroni tra due atomi

Energia di d	issociazione di legame	Lunghezza di legame	Sovrapposizione	
H_2	436.4 kJ/mole	74 pm	2 1s	
F_2	150.6 kJ/mole	142 pm	2 2p	

La teoria di Lewis ignora differenze di energia di legame tra composti analoghi

Teoria del legame di valenza (VB): I legami sono formati dalla condivisione di e⁻ ottenuta mediante sovrapposizione di orbitali atomici

Molecola H₂

Variazione dell'Energia Potenziale di due atomi di idrogeno in funzione della distanza di separazione

Molecola H₂

Variazione della densità elettronica durante l'avvicinamento di due atomi di idrogeno

Ibridazione

$$N - 1s^2 2s^2 2p^3$$

Molecola NH₃

$$3 H - 1s^1$$

Se il legame si formasse dalla sovrapposizione di 3 orbitali $\frac{2p}{azoto}$ con l'orbitale $\frac{1s}{azoto}$ di ciascun atomo di idrogeno, quale sarebbe la geometria di $\frac{1}{3}$?

Se uso i 3 orbitali 2p prevedo 90°

In realtà l'angolo di legame H-N-H è 107.3°

L'Ibridazione

Ibridazione: mescolamento di due o più orbitali atomici a formare un nuovo set di orbitali ibridi

- 1. Mescolare almeno 2 orbitali atomici non equivalenti (e.g. s and p). Gli orbitali ibridi hanno delle forme diverse dagli orbitali atomici originari
- Il numero degli orbitali ibridi è uguale al numero degli orbitali atomici utilizzati nel processo di ibridizzazione.
- 3. I legami covalenti sono formati dalla:
 - a. Sovrapposizione di orbitali ibridi con orbitali atomici
 - b. Sovrapposizione di orbitali ibridi con altri orbitali ibridi

L'Ibridazione

Orbitali ibridi sp³

Ibridazione

L'Ibridazione Orbitali ibridi sp³

Formazione di legami covalenti

L'Ibridazione Orbitali ibridi sp² *Ibridazione* 2s $2p_x$ $2p_y$ sp^2 orbitals 3*s* 3*p* empty 3porbital

L'Ibridazione

Orbitali ibridi sp

L'Ibridazione

Determinare l'ibridazione dell'atomo centrale

- 1. Scrivi la struttura di Lewis della molecola
- Conta il numero di coppie solitarie e il numero di atomi legati all'atomo centrale

# di Coppie Solitarie +		
# di Atomi Legati	Ibridazione	Esempi
2	sp	$BeCl_2$
3	sp²	BF_3
4	sp ³	CH ₄ , NH ₃ , H ₂ O
5	sp³d	PCl ₅
6	sp^3d^2	SF ₆

TABLE 10.4 In	nportant Hybri	id Orbitals a	and Their Shapes	
Pure Atomic Orbitals of the Central Atom	Hybridiza- tion of the Central Atom	Number of Hybrid Orbitals	Shape of Hybrid Orbitals	Examples
s, p	sp	2	180° Linear	BeCl ₂
s, p, p	sp^2	3	Trigonal planar	BF ₃
s, p, p, p	sp^3	4	109.5° Tetrahedral	CH ₄ , NH ₄ ⁺
s, p, p, p, d	sp³d	5	90° 120° Trigonal bipyramidal	PCl ₅
s, p, p, p, d, d	sp^3d^2	6	90° 90° Octahedral	SF ₆

Ibridazione sp² dell'atomo di carbonio

Ibridazione sp² dell'atomo di carbonio

L'orbitale 2p_z è perpendicolare al piano degli orbitali ibridi

Ibridazione sp² dell'atomo di carbonio

Legame sigma (σ)

densità elettronica tra i 2 atomi

Legame pi greco (π)

densità elettronica sopra e sotto il piano dei nuclei degli atomi legati

Ibridazione sp dell'atomo di carbonio

Ibridazione sp dell'atomo di carbonio

L'Ibridazione

Molecole contenenti legami doppi e tripli

ESEMPIO:

Descrivi il legame in CH₂O

C-2 legami singoli, 1 legame doppio, 0 coppie solitarie $C-sp^2$

Legami Sigma (s) e Pi greco (p)

Legame singolo 1 legame sigma

Legame doppio 1 legame sigma e 1 legame pi greco

Legame triplo 1 legame sigma e 2 legami pi greco

ESEMPIO:

Quanti legami σ e π sono presenti nella molecola di acido acetico CH₃COOH?

legami σ = 6 + 1 = 7

legami $\pi = 1$

Ripasso

Concetti fondamentali e parole chiave

- Previsione della geometria molecolare utilizzando modello VSEPR
- Geometrie di molecole con atomo centrale senza coppie solitarie
- Geometrie di molecole con atomo centrale con coppie solitarie
- Geometrie di molecole contenenti più di un atomo centrale
- Momento di dipolo
- Geometria molecolare e momento di dipolo
- La molecola d'acqua
- Limiti della teoria di Lewis: H2 e F2
- Teoria del legame di valenza (VB)
- *Ibridizzazione sp3, sp2, sp, sp3d, sp3d2*
- Ibridizzazione in molecule contenenti legami doppi e tripli
- Legami s e p
- Legami singoli, doppi, tripli

Ripasso

Domande ed esercizi utili

Eserciziario Chang, Overby capitolo 7

	Esercizi
7.1-7.8	7.15-7.20
7.21-7.24	7.25-7.26
7.27-7.32	7.33-7.38
7.39-7.40	7.41-7.44
7.45-7.46	7.47-7.54
7.55-7.56	7.59-7.64
7.65-7.66	7.67-7.70 7.71-7.100 7.111-7.116