Universidade de Aveiro Departamento de Matemática

Cálculo II - Agrupamento 3

2021/2022

Soluções do Exame Final (Época de Recurso) (V 1)

- 1. (a) -1
 - (b) 1
 - (c) f é contínua em \mathbb{R}^2
 - (d) x + z 1 = 0
 - (e) (0,0) é ponto de sela
 - (f) $2x^3y + y^2x^2 = C, C \in \mathbb{R}$.
- 2. $\left] -\frac{7}{3}, -\frac{5}{3} \right[$
- 3. (a) $T_0^2 f(x) = x \frac{x^2}{2}$
 - (b) $\ln(1,1) \approx \frac{19}{200}$
- 4. (a) f é uma função par, logo a sua série de Fourier é uma série de cossenos. $a_0 = \frac{7\pi^2}{3}$.
 - (b) Como f é contínua e seccionalmente diferenciável em \mathbb{R} , podemos concluir pelo Teorema de Dirichlet que S(x) = f(x), para todo o $x \in \mathbb{R}$, onde S denota a soma da série de Fourier. Logo, $S(3\pi) = 2\pi^2$.
- 5. $f(\frac{1}{2}, \frac{1}{2}) = \frac{1}{2}$ é máximo global e $f(-\frac{1}{2}, -\frac{1}{2}) = -\frac{3}{2}$ é mínimo global de $f|_{\mathcal{C}}$. (Sugestão: usar o Método dos Multiplicadores de Lagrange)
- 6. $y = -\frac{1}{x}\cos x + \frac{1}{x^2}\sin x + \frac{C}{x^2}, C \in \mathbb{R}.$
- 7. (a) $y_h = C_1 + C_2 e^x + C_3 x e^x$, $C_1, C_2, C_3 \in \mathbb{R}$.
 - (b) $y = y_h + y_p = C_1 + C_2 e^x + C_3 x e^x + 2x^2 + 9x$, $C_1, C_2, C_3 \in \mathbb{R}$.
- 8. $y(t) = t + \cos t 2\sin t$, $t \ge 0$.