Exercises on probability and statistics

Machine Learning 2020-2021 - UMONS Lab 1 Souhaib Ben Taieb

1

Consider a sample space Ω comprising three possible outcomes:

$$\Omega = \{\omega_1, \omega_2, \omega_3\}.$$

Suppose the three possible outcomes are assigned the following probabilities:

$$P(\omega_1) = \frac{1}{5}$$
 $P(\omega_2) = \frac{2}{5}$ $P(\omega_3) = \frac{2}{5}$

Define the events

$$A_1 = \{\omega_1, \omega_2\}, \quad A_2 = \{\omega_1, \omega_3\},$$

and denote by A_1^c the complement of A_1 .

Compute $P(A_2|A_1^c)$, the conditional probability of A_2 given A_1^c .

An economics consulting firm has created a model to predict recessions. The model predicts a recession with probability 80% when a recession is indeed coming and with probability 10% when no recession is coming. The unconditional probability of falling into a recession is 20%. If the model predicts a recession, what is the probability that a recession will indeed come?

- 1. Let *X* be a discrete random variable taking values in $R_X = \{0, 1, 2, 3, 4\}$ with uniform distribution. Compute $P(1 \le X < 4)$.
- 2. Let *X* be a continuous random variable taking values in $R_X = [0, 1]$. Let its probability density function $f_X(x)$ be

$$f_X(x) = \begin{cases} 2x & \text{if } x \in R_X; \\ 0 & \text{if } x \notin R_X \end{cases}$$

Compute $P(\frac{1}{4} \le X < \frac{1}{2})$.

- 1. Let X be a continous random variable with uniform distribution on the interval [1,3]. Compute the **expected value** and **variance** of X.
- 2. Let *X* be a discrete random variable taking values in $R_X = \{1, 2, 3\}$. Let its probability mass function $p_X(x)$ be

$$p_X(x) = \begin{cases} x/6 & \text{if } x \in R_X; \\ 0 & \text{if } x \notin R_X \end{cases}$$

Compute the **expected value** and **variance** of X.

For the following joint distributions between random variables Y and X, find both marginal distributions and the conditional distribution requested. Also, are the two random variables independent?

5.1

Find the marginal distributions and the distribution of Y conditional on X = 0.

$$X = 0$$
 $X = 1$
 $Y = 0$ 0.14 0.26
 $Y = 1$ 0.21 0.39

5.2

Find the marginal distributions and the distribution of X conditional on Y = 1.

$$X = 0$$
 $X = 1$
 $Y = 1$ 0.45 0.25
 $Y = 3$ 0.05 0.25

5.3

Find the marginal distributions and the distribution of Y conditional on X = 1.

	X = 0	X = 1	X = 2
Y=1	0.1	0.2	0.3
Y=2	0.05	0.15	0.2

5.4

Find the marginal distributions and the distribution of Y conditional on X = 2.

$$X = 0$$
 $X = 1$ $X = 2$
 $Y = 1$ 0.05 0.04 0.01
 $Y = 2$ 0.1 0.08 0.02
 $Y = 3$ 0.35 0.28 0.07

We have a population of people, 47% of whom were men and the remaining 53% were women. Suppose that the average height of the men was 70 inches, and the women was 71 inches. What is the average height of the entire population? [Hint: Use the law of total expectation]

Let X_1, X_2, \dots, X_n be a collection of n random variables, and a_1, a_2, \dots, a_n , a set of constants, we have

$$\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \operatorname{Cov}(X_{i}, X_{j}).$$

Prove the above fact. You can use the fact that, for a set of numbers e_1, e_2, \dots, e_n ,

$$\left(\sum_{i=1}^{n} e_{i}\right)^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} e_{i} e_{j}.$$

Let X_1, X_2, \dots, X_n be **i.i.d.** random variables with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$ for $i = 1, 2, \dots, n$. If

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i,$$

show that

- 1. $E[\bar{X}_n] = \mu$
- 2. $\operatorname{Var}(\bar{X}_n) = \frac{\sigma^2}{n}$

Let F_1 be a normal distribution $\mathcal{N}(\mu, \sigma^2)$, and F_2 , a Bernoulli distribution, Bern(p), where $\mu \in \mathbb{R}$, $\sigma > 0$ and $p \in [0,1]$. Consider the four scenarios where $F = F_1$ or F_2 and n = 10 or n = 1000. For each scenario,

- 1. repeat the following procedure 10,000 times:
 - (a) Generate *n* i.i.d. realizations $X_1, X_2, ..., X_n$ where $X_i \sim F$.
 - (b) Compute $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.
- 2. compute the average and variance of the 10,000 values computed in 1(b)
- 3. plot a histogram of these 10,000 values, and add vertical lines at the true mean and the average.

Discuss the results using Exercise 5. Experiment with different values of μ and σ for F_1 , and different values of p for F_2 .