

Strukturbestemmelse: Infrarød spektroskopi (IR)

Strukturbestemmelse og spektroskopi

- Spørsmål: "Hvordan vet vi hva vi har?"
- Dagens viktigste verktøy er et mangfold av avanserte, spektroskopiske metoder
 - Massespektrometri (MS)
 Molekylmassen kan bestemmes
 - Infrarød spektroskopi (IR)
 Vibrasjoner om bindinger gir informasjon om funksjonelle grupper
 - UV-synlig lys spektroskopi (UV-vis) Informasjon om dobbeltbindinger og π-systemer
 - Kjernemagnetisk resonans (NMR)
 Informasjon om funskjonelle grupper, konnektivitet og mye annet
 - "Ser" forskjellige atomkjerneslag (1H, 13C, 19F, 31P...)

Infrarød (IR) spektroskopi

Vibrasjonsspektroskopi

- Vibrasjonene er kvantiserte, d.v.s. skjer ved spesifikke frekvenser
- Bølgelengder λ i området ca. 2.5×10⁻⁶ til 2.5×10⁻⁵ m brukes av organikere
- Oppgis oftest som antall bølger pr. centimeter,

$$Bølgetall = \tilde{v} (cm^{-1}) = \frac{1}{\lambda (cm)}$$

- Bølgetall 4000 til 400 cm⁻¹ tilsvarer 48-4.8 kJ/mol
- Forskjellige bindingstyper vibrerer ved forskjellige frekvenser

Molekylgymnastikk

Symmetrisk strekk

Antisymmetrisk strekk

Saksing

Rocking

Vridning

Noen viktige IR-områder

Et moderne IR-spektrometer

En aromatisk forbindelse

Hvilke grupper kan vi "se" her?

