Exploratory Data Analysis and Visualisation 11374/11517

Week 2 Lab Exercises

- 1. Work through the "Introduction to R" script. This will help you become more familiar with the capabilities of R and the coding syntax. You will also be introduced to some default code for creating plots.
- 2. Consider the "mammals" data frame from the MASS package in R, which gives body weights and brain weights for 62 mammals.
 - a. Install and load the MASS package in R.
 - b. Read the help description about the "mammals" data using "?mammals" in R.
 - c. View summaries of the "mammals" dataset using the dim(), names(), summary() and head() R functions.
 - d. Create a scatterplot of brain weight against body weight. Identify the outliers. Which mammal has the largest brain weight? (Hint: use the "identify" function use "?identify" in R to read the help file).
 - e. Which mammal has the largest brain weight relative to their body weight? Plot the brain to body weight ratio against brain weight.
- 3. Download the "airquality.csv" file from Canvas. It contains daily air quality measurements in New York, May to September 1973 on the following variables:
 - Ozone: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island
 - Solar.R: Solar radiation in Langleys in the frequency band 4000–7700 Angstroms from 0800 to 1200 hours at Central Park
 - Wind: Average wind speed in miles per hour at 0700 and 1000 hours at LaGuardia Airport
 - Temp: Maximum daily temperature in degrees Fahrenheit at La Guardia Airport
 - a. Import the "airquality.csv" file.
 - b. Install and load the "dplyr" and "naniar" packages.
 - c. There are missing values in this dataset. How many missing values are there for each variable? Use the "gg_miss_var" function to plot the number of missing values for each variable.
 - d. Create two subsets of the original dataset, one called "airquality_missing" which only contains observations with missing values and the other called "airquality_notmissing" which does not contain the observations with missing values.
 - e. Using the "airquality_notmissing" dataset, find the mean for each variable by month. Compare and rank.
 - f. From the "airquality_missing" dataset, create a subset called "airquality_missing_Ozone" which only contains observations with missing Ozone values. What are some concerns you have regarding the missing Ozone values?
 - g. Create a dataset called "airquality_Ozoneimputed" and impute the missing values for Ozone using median values by month.
 - h. Create the final dataset called "airquality_final" which excludes the "Solar.R", "Month" and "Day" variables.