AiRA II, w.4

Regulatory, PI

- Sterowanie w układzie otwartym / zamkniętym
- Obiekt astatyczny
- Struktura układu regulacji z regulatorem PI

Struktura układu regulacji

.

Układ z regulatorem proporcjonalnym

$$G(s) = \frac{1}{(30s+1)(20s+1)(5s+1)}$$

w(t) e(t) $G_R(s)=k$ g(t) g(t) g(t)

Odpowiedzi na skok jednostkowy

Obiekt astatyczny w układzie regulacji

$$G(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} = \frac{L(s)}{M(s)}$$

Transmitancja uchybowa układu zamkniętego:

$$G_E(s) = \frac{1}{1 + G(s)} = \frac{1}{1 + \frac{L(s)}{M(s)}} = \frac{M(s)}{L(s) + M(s)}$$

Badanie uchybu ustalonego dla wymuszenia jednostkowego

$$X(s) = \frac{1}{s}$$

Uchyb ustalony:

$$e_{ust} = \lim_{t \to \infty} h(t) = \lim_{s \to 0} s\left(\frac{1}{s}G_e(s)\right) = \frac{M(0)}{L(0) + M(0)} = \frac{a_0}{b_0 + a_0}$$

W obiekcie astatycznym jest: (ob astatyczny 1. rzędu)

$$G(s) = \frac{L(s)}{s \cdot M(s)}$$

$$G_E(s) = \frac{s \cdot M(s)}{L(s) + s \cdot M(s)}$$

$$e_{ust} = \lim_{s \to 0} s \left(\frac{1}{s} G_e(s) \right) = \frac{0 \cdot M(0)}{L(0) + 0 \cdot M(0)} = 0$$

Struktura układu regulacji

Przykład układu regulacji

Regulacja prędkości liniowej $v(t)=v(0)+\Delta v(t)$

6

Uproszczony schemat układu regulacji

Przyjęte założenia upraszczające:

- Obiekt jest liniowy pierwszego rzędu (inercyjny lub całkujący)
- Człon wykonawczy i pomiarowy mają wzmocnienia statyczne równe jedności
- Dynamika członów wykonawczego i pomiarowego jest reprezentowana zastępczo przez sumaryczne opóźnienie ulokowane w bloku wykonawczym

Uwagi:

 Biegun transmitancji obiektu inercyjnego (p<0) ma niewielki wpływ na dobór wzmocnienia K_p regulatora; często można ten wpływ pominąć, sprowadzając obiekt do członu całkującego (p=0)

Transmitancja regulatora PI

$$u(t) = K_P \left(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau \right)$$

$$G_R(s) = \frac{U(s)}{E(s)} = K_P \left(1 + \frac{1}{sT_i} \right) = K_P + \frac{K_i}{s}$$

Wykresy:

Odpowiedź skokowa

Wykres na płaszcz. ampl.-fazowej

*K*_p − wzmocnienie proporcjonalne

T_i – czas zdwojenia regulatora

K; – wzmocnienie całkowe

Wzory na sygnał wyjściowy regulatora PI+

$$u = K_P \left(b \cdot w - y + \frac{w - y}{sT_i} \right)$$
$$u = K_P (b \cdot w - y) + K_i \frac{w - y}{s}$$

$$K_i = \frac{K_P}{T_i}$$

 K_p — wzmocnienie proporcjonalne

T_i – czas zdwojenia regulatora

K_i – wzmocnienie całkowe

– współczynnik wagi dla sygnału w torze proporcjonalnym

Uwagi:

b

- W klasycznym regulatorze PI współczynnik wagi b=1, co pozwala wyrazić sygnał wyjściowy u w funkcji uchybu regulacji e=w-y
- Współczynnik b nie ma znaczenia dla stabilności układu i jego reakcji na zakłócenia z, n

Dobór nastaw regulatora w liniowym zakresie pracy

Cele regulacji:

- 1. Likwidacja uchybu w stanie ustalonym (zapewniona w każdym układzie regulacji PI)
- 2. Wysoka dynamika procesu regulacji (szybkość likwidacji uchybu mierzona różnymi wskaźnikami jakości regulacji)
- Odporność na zmiany parametrów układu (gwarancja stabilnej pracy w różnych warunkach, najprostszymi miarami odporności są marginesy stabilności: GM, PM, DM)

Cele 2 i 3 są wzajemnie sprzeczne i wymagają kompromisu w doborze nastaw regulatora.

Dobór nastaw regulatora w liniowym zakresie pracy

Cele regulacji:

- 1. Likwidacja uchybu w stanie ustalonym (zapewniona w każdym układzie regulacji PI)
- 2. Wysoka dynamika procesu regulacji (szybkość likwidacji uchybu mierzona różnymi wskaźnikami jakości regulacji)
- 3. Odporność na zmiany parametrów układu (gwarancja stabilnej pracy w różnych warunkach, najprostszymi miarami odporności są marginesy stabilności: GM, PM, DM)

Cele 2 i 3 są wzajemnie sprzeczne i wymagają kompromisu w doborze nastaw regulatora.

Eksperymentalny dobór nastaw Kp, Ki

przy skokowych zmianach sygnałów <u>zakłócających</u>: *z(t)* na wejściu obiektu lub na wejściu członu wykonawczego

- Zwiększać wzmocnienie Kp (Ki≈0,Ti ≈ inf) aż do pojawienia się śladów oscylacji w przebiegach przejściowych
- 2. Zmniejszać Ti (zwiększać Ki) przy Kp=const, aż osiągnie się zadowalającą szybkość likwidacji uchybu
- Jeżeli odporność na zmiany parametrów obiektu jest zbyt niska zmniejszyć Kp i zwiększyć Ti
- 4. Do poprawy jakości regulacji przy zmianach sygnału *w(t)* wykorzystać współczynnik wagi *b* (cz.2. wykładu)

Dobór nastaw regulatora w liniowym zakresie pracy (3)

Reakcja sygnału wyjściowego na skokową zmianę zakłócenia

Dobór nastaw regulatora w liniowym zakresie pracy (4)

Większe Kp -> mniejszy uchyb ustalony, ale już widoczny ślad oscylacji

Dobór nastaw regulatora w liniowym zakresie pracy (5)

Zmniejszanie Ti skraca czas likwidacji uchybu

Dobór nastaw regulatora w liniowym zakresie pracy (6)

Nastawy Kp, Ti dające szybką, ale bezoscylacyjną likwidację uchybu

Dobór nastaw regulatora w liniowym zakresie pracy (7)

Jeszcze szybsza likwidacja uchybu, z ledwo zauważalnym śladem oscylacji !

Wskaźniki przebiegu regulacji

Podstawowe wskaźniki jakości regulacji:

- c_{ur} wartość ustalona odpowiedzi
- Δc_{ur} błąd statyczny
- Δc_{mr} przeregulowanie w stosunku do wartości ustalonej odpowiedzi
- t_{rr} czas regulacji, po upływie którego wartość odpowiedzi nie różni się więcej niż pewien margines od odpowiedzi ustalonej. Margines wynosi 3 5% c_{ur}

Wskaźniki jakości regulacji związane z zakłóceniem

Wskaźniki całkowe: IAE, ITAE, ISTAE

$$IAE = \int e(t) dt$$
 Integrated Absolute Error

$$ITAE = \int t |e(t)| dt$$
 Integrated Time Absolute Error

$$ISTAE = \int t^2 |e(t)| dt$$
 Integrated Squered Time Absolute Error

dla nastaw CHR:

$$IAE \approx 7 \cdot \Delta z \cdot K_{y} \cdot T^{2}$$

$$ITAE \approx 25 \cdot \Delta z \cdot K_{y} \cdot T^{3}$$

$$ISTAE \approx 90 \cdot \Delta z \cdot K_v \cdot T^4$$

Wpływ zmian parametrów na jakość regulacji (1)

.param cK=1 cT=1 cKp=1 cTi=1 .ste

.step param cTi LIST 0.666 1 1.5

Zmienne parametry:

Regulatora: Kp, Ti czł. opóźniającego: r obiektu: Kv

Wpływ zmian parametrów na jakość regulacji (2)

Wpływ zmian parametrów na jakość regulacji (2)

Badania na przykładach regulatora PI

- Kształtowanie odpowiedzi na sygnał zadany
- Ograniczenie sygnału wyjściowego regulatora

Reakcja na skokową zmianę sygnału zadanego "w"

Dobór nastaw regulatora PI wg wzorów CHR (Kp = 0.6/T/Kv , Ti = 4T) zapewnia dobrą reakcję na zakłócenie z(t), ale odpowiedź na skokową zmianę sygnału zadanego w(t) wykazuje duże przeregulowanie.

Zmniejszanie przeregulowania przez wzrost Ti

Poprawa odpowiedzi na skok sygnału zadanego (zmniejszenie przeregulowania) wiąże się z bardzo znacznym wydłużeniem reakcji na zakłócenie!

Zmniejszanie przeregulowania przez <u>ograniczenie</u> <u>szybkości</u> zmiany sygnału zadanego

- Wydłuża się czas reakcji na zmianę sygnału zadanego, ale bez pogorszenia reakcji na zakłócenie
- Przeregulowanie jest mniejsze, ale nie znika całkowicie
- Potrzebny jest dodatkowy blok (zadajnik) kształtujący sygnał wejściowy w(t)

Modyfikacje algorytmu PI – wsp. b

Zmniejszenie przeregulowanie w odpowiedzi na skok sygnału zadanego oraz obniżenie maksimum charakterystyki częstotliwościowej uzyskuje się redukując udział sygnału w(t) w działaniu proporcjonalnym regulatora do poziomu $b \cdot Kp$, (0<b<1). Reakcja układu na zakłócenie z(t) pozostaje przy tym bez zmiany.

Modyfikacje algorytmu PI – wsp. b

Sygnał sterujący

Oprócz zmniejszenia przeregulowania współczynnik wagi b<1 znacząco obniża maksymalną wartość sygnału sterującego u(t) – bez wydłużania czasu regulacji, jak to miało miejsce w poprzedniej metodzie (zwiększanie Ti)

27

Modyfikacje algorytmu PI – wsp. b

Charakterystyka częstotliwościowa

Współczynnik wagi *b* < 1 korzystnie zmniejsza lub likwiduje maksimum charakterystyki częstotliwościowej.

Jednak zbyt mała wartość *b* ogranicza częstotliwość graniczną pasma przenoszenia (częstotliwość, przy której wzmocnienie spada o 3dB względem wyjściowego, równego 1).

Modyfikacje algorytmu PI – ogr. sygnału wy. regulatora

Ograniczanie sygnału wyjściowego regulatora → sygnału sterującego obiektu

Sygnał wyjściowy regulatora u(t) powinien być ograniczony możliwości członu wykonawczego. Wpływ ograniczenia ujawnia się głównie przy gwałtownych i dużych zmianach sygnału zadanego w(t). Ograniczenie powoduje jednak wydłużenie czasu ustalania się odpowiedzi oraz zwiększa przeregulowanie.

Modyfikacje algorytmu PI – ogr. sygnału wy. regulatora

Zjawisko "windup" - skutek ograniczenia (nasycenia) sygnału u bez ograniczania całkowania w regulatorze – nieliniowy zakres pracy regulatora

Po wejściu regulatora w stan ograniczania sygnału wyjściowego *u*, jego wewnętrzny człon całkujący nadal całkuje i osiąga wartości znacznie większe niż ograniczany sygnał wyjściowy. Powoduje to opóźnione wychodzenie regulatora ze stanu ograniczenia, co może wywołać bardzo duże przeregulowania.

Modyfikacje algorytmu PI – ogr. sygnału wy. regulatora

Układy anty-windup – zapobieganie efektowi windup

Układ anty-windup ogranicza całkowanie wewnątrz regulatora, gdy jego sygnał wyjściowy *u* jest ograniczony (w nasyceniu); dzięki temu sygnał wyjściowy z regulatora wychodzi z ograniczenia wcześniej i nie powstaje przeregulowanie

Wpływ zmian wzmocnienia całkowego obiektu Kc (=Kv)

Regulator Kp = 12, Ti = 2 daje dobry efekt regulacji z obiektem Kv = 0.1. Jaki będzie efekt regulacji przy zmianie Kv (0.05 i 0.2) ? (Uwaga: na wykresach Kc = Kv)

Regulator nastawiony wg wzorów CHR dla nominalnej wartości Kc (Kv) (linie czerwone) nie zapewnia dobrej jakości regulacji dla skrajnych wartości Kc (Kv). W obu przypadkach powstają oscylacje, a dla Kc=0.05 (połowa wartości nominalnej) układ jest bardzo blisko granicy stabilności. Aby uzyskać odporność na zmiany parametrów trzeba obniżyć wzmocnienie Kp i zwiększyć stałą czasową Ti. Spowolnione przebiegi dla różnych Kc (Kv) ustalają się w takim samym czasie.