Some Key Linear Models Results

Ulrike Genschel

January 23, 2025

A General Linear Model (GLM)

Suppose

$$y = X\beta + \epsilon$$
, where (1)

- $ullet y \in \mathbb{R}^n$ is the response vector,
- X is an $n \times p$ matrix of known/fixed constants,
- $oldsymbol{\circ}$ $oldsymbol{eta} \in \mathbb{R}^p$ is an unknown parameter vector, and
- ϵ is a vector of unobserved random "errors" satisfying $\mathrm{E}(\epsilon)=\mathbf{0}$ and $\mathrm{Cov}(\epsilon)=\Sigma.$

The model is called a linear model because the mean of the response vector Y is linear in the unknown parameter vector β . (E(y) = $X\beta$)

A General Linear Model

- This GLM says simply that y is a random vector with expectation $\mathrm{E}(y) = X\beta$ for some $\beta \in \mathbb{R}^p$.
- The distribution of y is left unspecified but generally depends on the distribution of ϵ .
- Goal: estimate E(y)
- Available: <u>observed</u> values of y and X,
- Estimate $X\beta$, which by definition corresponds to the mean of y, i.e., E(y).

Examples

There are many special cases of (1) depending on the distribution of ϵ , the structure of the Σ , and the rank and the structure of X.

We will start out by considering the following two cases generally known as the Gauss-Markov Model:

- the distribution of ϵ is Normal with $E(\epsilon) = 0$ and $Cov(\epsilon) = \Sigma_{\epsilon} = \sigma^2 I$, where $\sigma^2 > 0$ is unknown; $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 I)$
- 2 the distribution of ϵ is unknown with $E(\epsilon)=0$ and $Cov(\epsilon)=\Sigma_{\epsilon}=\sigma^2 I$, where $\sigma^2>0$ is unknown

We will later relax the form of $\mathrm{Cov}(\epsilon) = \Sigma_{\epsilon}$ to allow for more flexibility, e.g., $\mathrm{Cov}(\epsilon) = \Sigma_{\epsilon} = \sigma^2 V$, where V is known and $\sigma^2 > 0$ is unknown. This model is known as the Aitken model.

Ordinary Least Squares (OLS) Estimation

Suppose
$$y = X\beta + \epsilon$$
, $E(\epsilon) = 0$, $Cov(\epsilon) = \sigma^2 I$

- ullet $\mathrm{E}(oldsymbol{y}) = oldsymbol{X}oldsymbol{eta} \in \mathcal{C}(oldsymbol{X})$ with $oldsymbol{eta}$ unknown, $oldsymbol{X}$ is full-rank
- To estimate E(y), consider $X\hat{\beta}$.
- To estimate E(y), find the vector in C(X) that is closest to y.
- Let $\mathcal{N}(\boldsymbol{X}^{\top})$ denote the null space of \boldsymbol{X}^{\top} and note that $\mathcal{N}(\boldsymbol{X}^{\top})$ and $\mathcal{C}(\boldsymbol{X})$ are orthogonal to each other, i.e., $\mathcal{N}(\boldsymbol{X}^{\top}) \perp \mathcal{C}(\boldsymbol{X})$

The null space of a matrix A, denoted by $\mathcal{N}(A)$, is given as $\mathcal{N}(A) = \{x : xA = 0.\}$

Ordinary Least Squares (OLS) Estimation

An estimate $\widehat{\beta}$ is a **least squares estimate** (LSE) of β if $X\widehat{\beta}$ is the vector in $\mathcal{C}(X)$ that is closes to y

$$\widehat{\boldsymbol{\beta}} = \min_{\boldsymbol{\beta} \in \mathbb{R}^p} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^\top (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}).$$

Method of least squares identifies the value of β for which the squared Euclidean norm of the residual vector, i.e., **error sum of squares**

$$\mathcal{Q}(\boldsymbol{\beta}) = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2 = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{\top}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$$

is minimized.

Ordinary Least Squares (OLS) Estimation

There exist two distinct ways to identify the LSE:

- algebraically: normal equations
- ullet geometrically: orthogonal projection of $oldsymbol{y}$ onto $\mathcal{C}(oldsymbol{X})$

OLS Estimation: Normal Equations

Recall that the method of least squares seeks the β that minimizes the Euclidean norm of the residual vector

$$Q(\boldsymbol{\beta}) = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|_{2}^{2} = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{\top}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$$
$$= \boldsymbol{y}^{\top}\boldsymbol{y} - 2\boldsymbol{\beta}^{\top}\boldsymbol{X}^{\top}\boldsymbol{y} + \boldsymbol{\beta}^{\top}\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{\beta}.$$

To find the minimum, we take the derivative and set the gradient equal to the null vector

$$\nabla \mathcal{Q}(\boldsymbol{\beta}) = -2\boldsymbol{X}^{\top}\boldsymbol{y} + 2\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{\beta} = \mathbf{0}$$

leading to the normal equations

$$\boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{X}^{\top} \boldsymbol{y}. \tag{2}$$

OLS Estimation: Solutions to the Normal Equations

The normal equations

$$\boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{X}^{\top} \boldsymbol{y}$$

have $(X^{\top}X)^{-1}X^{\top}y$ as the **unique** solution for β if rank(X) = p.

The normal equations have infinitely many solutions for β if rank(X) < p.

While $\hat{\beta} = (X^{\top}X)^{-}X^{\top}y$ may not always be a unique solution, $X\hat{\beta} = \hat{y}$ will be unique.

OLS Estimation: Geometric Approach

Let P_X denote the orthogonal projection matrix onto $\mathcal{C}(X)$

$$\boldsymbol{P}_{\boldsymbol{X}} = \boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-}\boldsymbol{X}^{\top}.$$

Properties:

- P_X is idempotent, (i.e., $P_X P_X = P_X$)
- P_X projects onto C(X)
- P_X is invariant to the choice of $(X^\top X)^-$, i.e., it is the same matrix for all generalized inverses $(X^\top X)^-$ of $X^\top X$
- ullet P_X is symmetric (i.e., $P_X = P_X^ op$) and unique
- ullet $P_XX=X$ and $X^{ op}P_X=X^{ op}$.
- $rank(X) = rank(P_X) = tr(P_X)$.

OLS Estimation: Geometric Approach

An estimate $\widehat{\beta}$ is a least squares estimate if and only if

$$X\widehat{\boldsymbol{\beta}} = P_X y.$$

The OLS Estimator of E(y) is thus given by

$$P_X y = X \widehat{\beta} \equiv \widehat{y} \tag{3}$$

because $oldsymbol{P}_{oldsymbol{X}}oldsymbol{y}\in\mathcal{C}(oldsymbol{X})$ and

$$||\boldsymbol{y} - \boldsymbol{P}_{\boldsymbol{X}} \boldsymbol{y}||^2 < ||\boldsymbol{y} - \boldsymbol{z}||^2 \ \forall \ \boldsymbol{z} \in \mathcal{C}(\boldsymbol{X}) \setminus \{\boldsymbol{P}_{\boldsymbol{X}} \boldsymbol{y}\}.$$

Even when $\widehat{\beta}$ is not unique, $P_X y = X \widehat{\beta} \equiv \widehat{y}$ always will.

OLS Estimation: Fitted Values

 $\widehat{y} = P_X y$ is the vector of fitted values. Recall that geometrically, \widehat{y} is the point in $\mathcal{C}(X)$ that is closest to y. Now, note that $I - P_X$ is the perpendicular projection matrix onto $\mathcal{N}(X^\top)$ and

$$(I - P_X)y = y - P_Xy = y - \widehat{y} \equiv \widehat{\mathbf{e}}.$$

 $\widehat{\mathbf{e}}$ is the vector of **residuals** and $\widehat{\mathbf{e}} \in \mathcal{N}(X^{\top})$. Because $\mathcal{C}(X)$ and $\mathcal{N}(X^{\top})$ are orthogonal complements, we can uniquely decompose y as

$$y = \hat{y} + \hat{e}$$
.

OLS Estimation: Orthogonal Decomposition of $oldsymbol{y}^{ op}oldsymbol{y}$

We know that \widehat{y} and $\widehat{\mathbf{e}}$ are orthogonal vectors. Thus,

$$\begin{aligned} \boldsymbol{y}^{\top} \boldsymbol{y} &= \boldsymbol{y}^{\top} \boldsymbol{I} \boldsymbol{y} &= \boldsymbol{y}^{\top} (\boldsymbol{P}_{\boldsymbol{X}} + \boldsymbol{I} - \boldsymbol{P}_{\boldsymbol{X}}) \boldsymbol{y} \\ &= \boldsymbol{y}^{\top} \boldsymbol{P}_{\boldsymbol{X}} \boldsymbol{y} + \boldsymbol{y}^{\top} (\boldsymbol{I} - \boldsymbol{P}_{\boldsymbol{X}}) \boldsymbol{y} \\ &= \boldsymbol{y}^{\top} \boldsymbol{P}_{\boldsymbol{X}} \boldsymbol{P}_{\boldsymbol{X}} \boldsymbol{y} + \boldsymbol{y}^{\top} (\boldsymbol{I} - \boldsymbol{P}_{\boldsymbol{X}}) (\boldsymbol{I} - \boldsymbol{P}_{\boldsymbol{X}}) \boldsymbol{y} \\ &= \widehat{\boldsymbol{y}}^{\top} \widehat{\boldsymbol{y}} + \widehat{\mathbf{e}}^{\top} \widehat{\mathbf{e}}, \end{aligned}$$

since P_X and $(I - P_X)$ are both symmetric and idempotent.

Orthogonal Decomposition of $y^{\top}y$ & ANOVA Table

This orthogonal decomposition of $y^\top y$ is often given in a tabular display called an analysis of variance (ANOVA) table.

Suppose y is $n \times 1$, X is $n \times p$ with rank $r \le p$, β is $p \times 1$, and ϵ is $n \times 1$. We assume the model given in (1): $y = X\beta + \epsilon$. Then, the ANOVA table looks as follows

Source	df	Sum of Squares
Model	r	$\widehat{m{y}}^ op \widehat{m{y}} = m{y}^ op m{P}_{m{X}} m{y}$
Residual	n-r	$\widehat{\mathbf{e}}^{ op}\widehat{\mathbf{e}} = oldsymbol{y}^{ op}(oldsymbol{I} - oldsymbol{P}_{oldsymbol{X}})oldsymbol{y}$
Total	n-1	$\boldsymbol{y}^{\top}\boldsymbol{y} = \boldsymbol{y}^{\top}\boldsymbol{I}\boldsymbol{y}$

Table: ANOVA Table

The OLS Estimator of a Linear Function of E(y)

For any $q \times n$ matrix A, AE(y) is a linear function of E(y).

For any $q \times n$ matrix ${\boldsymbol A}$, the OLS Estimator of ${\boldsymbol A}{\rm E}({\boldsymbol y}) = {\boldsymbol A}{\boldsymbol X}{\boldsymbol \beta}$ is

$$egin{aligned} A \left[\mathsf{OLS} \; \mathsf{Estimator} \; \mathsf{of} \; \mathrm{E}(m{y})
ight] &= A \widehat{m{y}} = A P_X m{y} \ &= A X (X^ op X)^- X^ op m{y}. \end{aligned}$$

- $AE(y) = AX\beta$ is automatically a linear function of β of the form $C\beta$, where C = AX.
- If C is any $q \times p$ matrix, we say that the linear function of β given by $C\beta$ is estimable if and only if C = AX for some matrix $q \times n$ matrix A.
- The OLS Estimator of an estimable linear function $C\beta$ is $C(X^{\top}X)^{-}X^{\top}y$.

Uniqueness of the OLS Estimator of an Estimable $C\beta$

If $C\beta$ is estimable, then $C\widehat{\beta}$ is the same for all solutions $\widehat{\beta}$ to the Normal Equations.

In particular, the unique OLS Estimator of $C\beta$ is

$$C\widehat{\boldsymbol{\beta}} = \boldsymbol{C}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-}\boldsymbol{X}^{\top}\boldsymbol{y} = \boldsymbol{A}\boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-}\boldsymbol{X}^{\top}\boldsymbol{y} = \boldsymbol{A}\boldsymbol{P}_{\boldsymbol{X}}\boldsymbol{y},$$

where C = AX.

The OLS Estimator is a Linear Unbiased Estimator

If $C\beta$ is estimable, then $C\widehat{\beta}$ is a linear unbiased estimator of $C\beta$.

The OLS Estimator is a linear estimator because it is a linear function of y:

$$C\widehat{\boldsymbol{\beta}} = C(\boldsymbol{X}^{\top}\boldsymbol{X})^{-}\boldsymbol{X}^{\top}\boldsymbol{y} = M\boldsymbol{y}, \text{ where } \boldsymbol{M} = C(\boldsymbol{X}^{\top}\boldsymbol{X})^{-}\boldsymbol{X}^{\top}.$$

The OLS Estimator is unbiased because, for all $\beta \in \mathbb{R}^p$,

$$\begin{split} \mathbf{E}(C\widehat{\boldsymbol{\beta}}) &= \mathbf{E}(C(\boldsymbol{X}^{\top}\boldsymbol{X})^{-}\boldsymbol{X}^{\top}\boldsymbol{y}) = C(\boldsymbol{X}^{\top}\boldsymbol{X})^{-}\boldsymbol{X}^{\top}\mathbf{E}(\boldsymbol{y}) \\ &= \boldsymbol{A}\boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-}\boldsymbol{X}^{\top}\mathbf{E}(\boldsymbol{y}) = \boldsymbol{A}\boldsymbol{P}_{\boldsymbol{X}}\mathbf{E}(\boldsymbol{y}) \\ &= \boldsymbol{A}\boldsymbol{P}_{\boldsymbol{X}}\boldsymbol{X}\boldsymbol{\beta} = \boldsymbol{A}\boldsymbol{X}\boldsymbol{\beta} = \boldsymbol{C}\boldsymbol{\beta}. \end{split}$$

The Gauss-Markov Model (GMM)

Suppose $y = X\beta + \epsilon$, where

- $ullet y \in \mathbb{R}^n$ is the response vector,
- X is an $n \times p$ matrix of known constants,
- $oldsymbol{\circ}$ $oldsymbol{\beta} \in \mathbb{R}^p$ is an unknown parameter vector, and
- ϵ is a vector of random "errors" satisfying $\mathrm{E}(\epsilon)=\mathbf{0}$ and $\mathrm{Var}(\epsilon)=\sigma^2 \mathbf{I}$ for some unknown variance parameter $\sigma^2\in\mathbb{R}^+$.

The GMM is a Special Case of the GLM

The GMM is a special case of the GLM presented previously.

We have added the assumption $Var(\epsilon) = \sigma^2 I$; i.e., we assume the errors are uncorrelated and have constant variance.

All the results presented for the GLM hold for the GMM.

The Gauss-Markov Theorem

For the GMM, we have an additional result provided by the *Gauss-Markov Theorem*:

The Gauss-Markov Theorem

The OLS Estimator of an estimable function $C\beta$ is the

Best Linear Unbiased Estimator (BLUE) of $C\beta$

in the sense that the OLS Estimator $C\widehat{\beta}$ has the smallest variance among all linear unbiased estimators of $C\beta$.

Unbiased Estimation of σ^2

An unbiased estimator of σ^2 under the GMM is given by

$$\widehat{\sigma}^2 \equiv \frac{\boldsymbol{y}^\top (\boldsymbol{I} - \boldsymbol{P}_{\boldsymbol{X}}) \boldsymbol{y}}{n-r}, \text{ where } r = rank(\boldsymbol{X}).$$

Because
$$I - P_X = (I - P_X)(I - P_X) = (I - P_X)^{\top}(I - P_X)$$
,

$$egin{array}{lll} oldsymbol{y}^ op (oldsymbol{I} - oldsymbol{P}_{oldsymbol{X}}) oldsymbol{y} &= oldsymbol{y}^ op (oldsymbol{I} - oldsymbol{P}_{oldsymbol{X}}) oldsymbol{y}^ op \{(oldsymbol{I} - oldsymbol{P}_{oldsymbol{I}}) oldsymbol{y}^ op \{(oldsymbol{I} - oldsymbol{P}_{oldsymbol{I}}) oldsymbol{P}_{oldsymbol{X}} oldsymbol{y}^ op \{(oldsymbol{I} - oldsymbol{P}_{oldsymbol{I}}) oldsymbol{Y}^ op \{(oldsymbol{I} - o$$

Gauss-Markov Model with Normal Errors (GMMNE)

Suppose

$$y = X\beta + \epsilon$$
,

where

- $y \in \mathbb{R}^n$ is the response vector,
- X is an $n \times p$ matrix of known constants,
- $oldsymbol{\circ}$ $oldsymbol{eta} \in \mathbb{R}^p$ is an unknown parameter vector, and
- $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ for some unknown variance parameter $\sigma^2 \in \mathbb{R}^+$.

The GMMNE is a special case of the GMM.

We have added the assumption ϵ is multivariate normal.

The GMMNE implies $\boldsymbol{y} \sim \mathcal{N}(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2\boldsymbol{I})$.

The GMMNE is useful for drawing statistical inferences regarding estimable $C\beta$.

Throughout the remainder of these slides we will assume

- the GMMNE model holds,
- C is a $q \times p$ matrix such that $C\beta$ is estimable,
- rank(C) = q, and
- d is a known $q \times 1$ vector.

These assumptions imply H_0 : $C\beta = d$ is a *testable hypothesis*.

The Distribution of $C\widehat{\beta}$ and $\widehat{\sigma}^2$

In the GMMNE model, it can be shown that $C\widehat{\beta}$ follows a Normal distribution with mean and variance given as follows:

Distribution of $C\widehat{\beta}$

$$\boldsymbol{C}\widehat{\boldsymbol{\beta}} \sim \mathcal{N}\left(\boldsymbol{C}\boldsymbol{\beta}, \ \sigma^2\boldsymbol{C}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-}\boldsymbol{C}^{\top}\right)$$

The distribution of $\hat{\sigma}^2$ is a scaled χ^2_{n-r} distribution:

Distribution of $\widehat{\sigma}^2$

$$\frac{(n-r)\widehat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-r} \Longleftrightarrow \frac{\widehat{\sigma}^2}{\sigma^2} \sim \frac{\chi^2_{n-r}}{n-r} \Longleftrightarrow \widehat{\sigma}^2 \sim \frac{\sigma^2}{n-r} \chi^2_{n-r}$$

Note that $C\widehat{\beta}$ and $\widehat{\sigma}^2$ are independent.

The F-Test $(H_0 : C\beta = d)$

To test H_0 : $C\beta = d$, we can use the following statistic

$$F \equiv (C\widehat{\beta} - d)^{\top} [\widehat{\text{Var}}(C\widehat{\beta})]^{-1} (C\widehat{\beta} - d)/q$$

$$= (C\widehat{\beta} - d)^{\top} [\widehat{\sigma}^{2} C(X^{\top} X)^{-} C^{\top}]^{-1} (C\widehat{\beta} - d)/q$$

$$= \frac{(C\widehat{\beta} - d)^{\top} [C(X^{\top} X)^{-} C^{\top}]^{-1} (C\widehat{\beta} - d)/q}{\widehat{\sigma}^{2}}.$$

F has a non-central F-distribution with non-centrality parameter

$$\frac{(\boldsymbol{C}\boldsymbol{\beta} - \boldsymbol{d})^{\top}[\boldsymbol{C}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-}\boldsymbol{C}^{\top}]^{-1}(\boldsymbol{C}\boldsymbol{\beta} - \boldsymbol{d})}{2\sigma^{2}}$$

and df q and n-r.

The *F*-Test continued ($H_0: C\beta = d$)

The non-negative non-centrality parameter

$$\frac{(\boldsymbol{C}\boldsymbol{\beta} - \boldsymbol{d})^{\top}[\boldsymbol{C}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-}\boldsymbol{C}^{\top}]^{-1}(\boldsymbol{C}\boldsymbol{\beta} - \boldsymbol{d})}{2\sigma^{2}}$$

is equal to zero if and only if H_0 : $C\beta = d$ is true.

If $H_0: C\beta = d$ is true, the statistic F has a central F-distribution with q and n-r degrees of freedom $(F_{q,n-r})$.

The *F*-Test continued $(H_0 : C\beta = d)$

Thus, to test $H_0: C\beta = d$, we compute the test statistic F and compare the observed value of F to the $F_{q,n-r}$ -distribution.

If F is so large that it seems unlikely to have been a draw from the $F_{q,n-r}$ -distribution, we reject H_0 and conclude $C\beta \neq d$.

The p-value of the test is the probability that a random variable with distribution $F_{q,n-r}$ matches or exceeds the observed value of the test statistic F.

The *t*-Test $(H_0: \boldsymbol{c}^{\top}\boldsymbol{\beta} = d)$ for estimable $\boldsymbol{c}^{\top}\boldsymbol{\beta}$

The test statistic

$$t \equiv \frac{\boldsymbol{c}^{\top} \widehat{\boldsymbol{\beta}} - d}{\sqrt{\widehat{\mathrm{Var}}(\boldsymbol{c}^{\top} \widehat{\boldsymbol{\beta}})}} = \frac{\boldsymbol{c}^{\top} \widehat{\boldsymbol{\beta}} - d}{\sqrt{\widehat{\sigma}^2 \boldsymbol{c}^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-} \boldsymbol{c}}}.$$

t has a non-central t-distribution with non-centrality parameter

$$\frac{\boldsymbol{c}^{\top}\boldsymbol{\beta} - d}{\sqrt{\sigma^2 \boldsymbol{c}^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-} \boldsymbol{c}}}$$

and df= n-r.

The *t*–Test (continued)

The non-centrality parameter

$$\frac{\boldsymbol{c}^{\top}\boldsymbol{\beta} - d}{\sqrt{\sigma^2 \boldsymbol{c}^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-} \boldsymbol{c}}}$$

is equal to zero if and only if $H_0: \mathbf{c}^{\top} \boldsymbol{\beta} = d$ is true.

If $H_0: \mathbf{c}^{\top} \boldsymbol{\beta} = d$ is true, the statistic t has a central t-distribution with n-r degrees of freedom (t_{n-r}) .

The *t*–Test (continued)

Thus, to test $H_0: \mathbf{c}^{\top} \boldsymbol{\beta} = d$, we compute the test statistic t and compare the observed value of t to the t_{n-r} -distribution.

If t is so far from zero that it seems unlikely to have been a draw from the t_{n-r} -distribution, we reject H_0 and conclude $\mathbf{c}^\top \boldsymbol{\beta} \neq d$.

The p-value of the test is the probability that a random variable with distribution t_{n-r} would be as far or farther from 0 than the observed value of the t test statistic.

A $100(1-\alpha)\%$ Confidence Interval for Estimable $\boldsymbol{c}^{\top}\boldsymbol{\beta}$

A $100(1-\alpha)\%$ confidence interval for estimable $\boldsymbol{c}^{\top}\boldsymbol{\beta}$ is given as

$$\boldsymbol{c}^{\top} \widehat{\boldsymbol{\beta}} \pm t_{n-r,1-\alpha/2} \sqrt{\widehat{\sigma}^2 \boldsymbol{c}^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-} \boldsymbol{c}}$$

estimate \pm (distribution quantile) \times (estimated standard error)

Form of the t Statistic for Testing $H_0: \mathbf{c}^{\top} \boldsymbol{\beta} = d$

$$t \quad = \quad \frac{\text{estimate} - d}{\text{estimated standard error}} = \frac{\text{estimate} - d}{\sqrt{\widehat{\text{Var}}(\text{estimator})}}$$

$$t^2 = \frac{(\text{estimate} - d)^2}{\widehat{\text{Var}}(\text{estimator})}$$

$$= (\text{estimate} - d) \Big[\widehat{\text{Var}}(\text{estimator}) \Big]^{-1} (\text{estimate} - d) / 1$$

Revisiting the F Statistic for Testing $H_0: \mathbf{C}\boldsymbol{\beta} = \boldsymbol{d}$

$$\begin{split} F &= (\mathbf{estimate} - \boldsymbol{d})^\top \Big[\widehat{\mathrm{Var}} (\mathbf{estimator}) \Big]^{-1} (\mathbf{estimate} - \boldsymbol{d}) / q \\ &= (\boldsymbol{C}\widehat{\boldsymbol{\beta}} - \boldsymbol{d})^\top [\widehat{\mathrm{Var}} (\boldsymbol{C}\widehat{\boldsymbol{\beta}})]^{-1} (\boldsymbol{C}\widehat{\boldsymbol{\beta}} - \boldsymbol{d}) / q \\ &= (\boldsymbol{C}\widehat{\boldsymbol{\beta}} - \boldsymbol{d})^\top [\widehat{\boldsymbol{\sigma}}^2 \boldsymbol{C} (\boldsymbol{X}^\top \boldsymbol{X})^- \boldsymbol{C}^\top]^{-1} (\boldsymbol{C}\widehat{\boldsymbol{\beta}} - \boldsymbol{d}) / q \\ &= \frac{(\boldsymbol{C}\widehat{\boldsymbol{\beta}} - \boldsymbol{d})^\top [\boldsymbol{C} (\boldsymbol{X}^\top \boldsymbol{X})^- \boldsymbol{C}^\top]^{-1} (\boldsymbol{C}\widehat{\boldsymbol{\beta}} - \boldsymbol{d}) / q}{\widehat{\boldsymbol{\sigma}}^2} \end{split}$$