# **Assignment 4** 20171213

#### Q1. 1. a.

It's the same.

```
>> create_mat_dct(8)
ans =
    0.3536
              0.3536
                         0.3536
                                    0.3536
                                              0.3536
                                                         0.3536
                                                                    0.3536
                                                                              0.3536
    0.4904
              0.4157
                         0.2778
                                   0.0975
                                             -0.0975
                                                        -0.2778
                                                                  -0.4157
                                                                             -0.4904
    0.4619
              0.1913
                        -0.1913
                                  -0.4619
                                             -0.4619
                                                        -0.1913
                                                                    0.1913
                                                                              0.4619
    0.4157
             -0.0975
                        -0.4904
                                  -0.2778
                                              0.2778
                                                         0.4904
                                                                   0.0975
                                                                             -0.4157
    0.3536
             -0.3536
                        -0.3536
                                    0.3536
                                              0.3536
                                                        -0.3536
                                                                  -0.3536
                                                                              0.3536
    0.2778
             -0.4904
                         0.0975
                                    0.4157
                                             -0.4157
                                                        -0.0975
                                                                    0.4904
                                                                             -0.2778
             -0.4619
                                                         0.4619
    0.1913
                         0.4619
                                  -0.1913
                                             -0.1913
                                                                  -0.4619
                                                                              0.1913
    0.0975
             -0.2778
                         0.4157
                                  -0.4904
                                              0.4904
                                                        -0.4157
                                                                    0.2778
                                                                             -0.0975
>> dctmtx()
Not enough input arguments.
Error in dctmtx (line 35)
validateattributes(n, {'double'}, {'integer' 'scalar'}, mfilename, 'n', 1);
>> dctmtx(8)
ans =
    0.3536
              0.3536
                         0.3536
                                    0.3536
                                              0.3536
                                                         0.3536
                                                                    0.3536
                                                                              0.3536
    0.4904
              0.4157
                         0.2778
                                    0.0975
                                             -0.0975
                                                        -0.2778
                                                                  -0.4157
                                                                             -0.4904
    0.4619
              0.1913
                        -0.1913
                                  -0.4619
                                             -0.4619
                                                        -0.1913
                                                                    0.1913
                                                                              0.4619
    0.4157
             -0.0975
                        -0.4904
                                  -0.2778
                                              0.2778
                                                         0.4904
                                                                    0.0975
                                                                             -0.4157
    0.3536
             -0.3536
                        -0.3536
                                    0.3536
                                              0.3536
                                                        -0.3536
                                                                  -0.3536
                                                                              0.3536
    0.2778
             -0.4904
                         0.0975
                                                        -0.0975
                                                                    0.4904
                                                                             -0.2778
                                    0.4157
                                             -0.4157
    0.1913
             -0.4619
                         0.4619
                                  -0.1913
                                             -0.1913
                                                         0.4619
                                                                  -0.4619
                                                                              0.1913
    0.0975
             -0.2778
                         0.4157
                                  -0.4904
                                              0.4904
                                                        -0.4157
                                                                    0.2778
                                                                             -0.0975
```

### Q1. 2.

Observations: The reconstructed image is little bit smoother as compared to the original.

(1,1): Original

(1, 2): DCT

(2,1): Quantized

(2,2): De-Quantized

(3,1): Reconstructed





<= (427, 298)

These observations are applied for all.

(30, 230) =>



## Q1. 3.



<u>Observations:</u> Similar to Q1.2., taking quantization of 8x8 sub-blocks. The quantized image after DCT shows some similar features as of the original image, like borders and all.

And most of the image is "blackish" i.e. the values are closer to "0", which will help in compression later.

### Q1. 4.









**(1,1):** c = 2 , **(1,2):** c = 8, **(2,1):** c = 10, **(2,2):** c = 15

For c = 2: RMSE = 12.7843, entropy: -32.7549

For c = 8: RMSE = 20.5354 , entropy: -19.5098

For c = 10: RMSE = 23.8593, entropy: -20

For c = 15: RMSE = 33.6285, entropy: -34.3645

Observations: Here, as "c" is increasing, RMSE is also increasing and entropy is first decreasing and then increasing again with the minimum occurring at c = 8 in this sample data set.

At around c = 8, in this dataset the distortions are visible.

But considering for c = 3, the distortions are just perceptible (because of lines on the left and upper corner becomes pixelated).

Below image is for: c = 3:)

