	Diagoual Most.
	P-1 AP (A) -P-1 AP similarity transformation.
	· Det(A)=Det(P-1AP) = Det(P-1) Det(A) Det(P).
	= Tret(R). pet(R).
	· Imercibility.
	· Rank, Noldity.
	· Trace (CHZ 2524 &).
	· Characteristic quadion.
	· eigenvalues. eigenpace dim.
* Dof 1)	If A.B: Square matrices
	=> B is similar to A if = invertible matrix p
	S. J. [B=P-'AP]
x hefzx	A: diagonalizable
	if it is similar to some diagonal most.
	>> P-IAP.
	P is said to diagonalize A.
* Than 5.21) A: NXN matrice. D=P'AP, =P
	(a) diagonalizable.
	(b) A has a linearly independent organizators.
* Than 52.2) (a) A, Ak : distinct eigenvalues of A. KNO eigenvalue VI, VK : corresponding significations A3 45.
	VI, VK: coressponding eigenvectors. 1. A3 46.
	⇒ 9 V., Vic 3: Twenty Tudge.
	(b) nxn matrix with n distinct eigenvalues
	is diagonalizable.

step	1. check if in linearly independent eigenvalues.
	noted lin-indep. It organize
Ç 1 .	(AI-A) x=0: 50 lection Space. → B, Pz,, Pn.
Step	2. P= [P] [Pa] Laxu.
siq	3. $D = P^{-1}AP$ where $D = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$
*ex1)	$A = \begin{bmatrix} 0 & 0 & -2 & 7 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$
	sol) (1-1)(1-2)2=0. => 1=1 (1=2.)
	Sol) $(1/1)(1/2)^2 = 0$. $\Rightarrow 1/1 = 1$
	$\gamma = 1 \rightarrow Ps = \begin{bmatrix} -2 \\ i \end{bmatrix}$ & dan=1.
	$P = \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \qquad P^{-1}AP = D = \begin{bmatrix} A_1 & A_2 & A_3 \\ A_3 & A_3 & A_3 \end{bmatrix}$
*ex2)	A= 120 -352
	double rod.
	sul) ded (AI-A) = (A-1)(2-2) =0. \(\lambda = 1, \lambda = 2 \)
	· 7=1 P. = [16] & dim=1 stle lin-indep eigen vectorst Det
	$\begin{array}{c c} \cdot \chi = 2 & P_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \in d\bar{u} = 1. \end{array}$

	140.
DA SAT	
* e × 3)	T 0 / 0 7
	A= 001 4-198
	4-17 8
	Gal) >= 1 , >= 2±√3. > M)H dictinct of value investible?
	D-10B 4 7
	$P^{-1}AP = \begin{bmatrix} 4 \\ 2+\sqrt{3} \\ 2-\sqrt{3} \end{bmatrix}$
1011	
*ex4)	1-1/2 4 of upper triangle
	A = 3 1 7
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $
	P-1AP= 3 5
# Cigewalne	e of Power of a Matrix.
Thm 5.2.3)	Scalar.
	AX = AX $AX = KX$
	$= A \cdot A \times$
	=A(AX)
	ニヘA丝
	$= \chi^2 \times$
	$\Rightarrow A \rightarrow \gamma$ B_1, \dots, P_k $A^2 \rightarrow \gamma^2$ B_1, \dots, D_k
	· · · · · · · · · · · · · · · · · · ·
	$A^n \to A^r$
	$A^n \to A^r$
	$A^n \rightarrow A^n$. +) eigen vector: "Stayed Same"

$\star e \times 5$). $\begin{bmatrix} 1 & 0 & 0 \\ A = & 1 & 2 & 0 \\ & & & & & & & & & & & & & & & & &$	
A= 120 A7	7
3 5 2].	
	. 5
sol) \(\lambda = 1 \lambda = 2.	$\Lambda^{\prime\prime}$ $\Lambda = 1^{7}$ $\Lambda = 2^{7} = 128$
↓	A^{7} $A=1^{7}$, $A=2^{7}=128$. \downarrow . Since. $P_{1}=\begin{bmatrix} \frac{1}{8} \\ -\frac{1}{8} \end{bmatrix}$, $P_{2}=\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
P,= [1/8], P2=[0]	Sime. P. = 1/8 7 P = 6 7
# Computar Powers of a Matrix.	
D=P-AP, Add Dagount	和 中
A'=? diagonal D'o?	一日本地 香港 子子 分名.
4. D'0 ABAS.	
	V
D'° = P'AP. P'AP (P	DAP
10g	
= P-1A10P	
A'° =	= PD'0P-1 Bet. West!
	D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
≠ex6).	00-27
A ¹³ = ? A=	1 2 1
A 13	A=2, A=1, A=-2.
A = Pp = 1	
= -1 0 -2 7 [213]	$P = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$
= 0 1 1 2 3	P-1
L(01]L 11	

	and Algebric Multiplicity >385"
	Nsing Veing
	$(\alpha-1)(\alpha-2)^2=0$ $(\alpha-1)(\alpha-2)^2=0$.
	$\Lambda = 1$ $\Lambda = 2$ (dauhde root). $\Lambda = 1$ $\Lambda = 2$ (double root)
	multiplicaty / 2 MA.
	dim / 2 & deo.
	5.
	multiplicity / 2 (dauble root). A=1 $\Lambda=2$ (double root). Multiplicity / 2 (double root). dim / 2 deo. 3. $2 + 2 = 0$
*Ha to	
/50184 5.2.5	z. (a) geo. mul. \subseteq alg. mul.
	(b) diagonalizable (>> geo. mud. = alq. mul.
	" ¿dof lin-indep. ¿à"