Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Física Prof. Dr. Alan Barros de Oliveira

Prova 2 - FIS110-73 - 17/06/2022

- 1. Considere uma colisão frontal elástica entre duas partículas de massas m e m'=12m. A partícula de massa m se move inicialmente com velocidade v, enquanto a outra encontra-se em repouso. Qual é a fração de energia cinética transferida de m para m' durante a colisão? (a)0,44 (b)0,05 (c)0,28 (d)0,85 (e)0,63
- 2. Um metrô percorre uma curva plana de raio 14 m a 14 km/h. Qual o ângulo, em graus, que as alças de mão penduradas no teto fazem com a vertical? (a) 54.5 (b) 33.4 (c) 40.1 (d) 67.9 (e) 73.1
- 3. Um rifle, que atira balas a 420 m/s, é apontado para um alvo situado a 71 m de distância. Se o centro do alvo está na mesma altura do rifle, para que altura (**em centímetros**) acima do alvo o cano do rifle deve ser apontado para que a bala atinja o seu centro?

 (a)14,3 (b)39,8 (c)83,1 (d)55,1 (e)104,5
- 4. Uma partícula de massa 4,4 kg, lançada sobre um trilho retilíneo com velocidade de 3,5 m/s, está sujeita a uma força F(x) = -bx, onde b = 0,5 N/m e x é o deslocamento, em m, a partir da origem. Sabendo-se que a partícula para em dois pontos do trilho, a saber, $+x_0$ e $-x_0$, determine x_0 em metros. (a)6,4 (b)4,9 (c)1,2 (d)10,4 (e)11,9
- 5. Considere um objeto que se move em uma dimensão de acordo com a equação horária $x=v_0te^{-t/t_0}$, onde t é o tempo, $v_0=13.5$ m/s e $t_0=1.6$ s. Qual é a distância, em metros, que o objeto se encontra da origem quando para momentaneamente?

(a)7,9 (b)11,6 (c)9,9 (d)6,4 (e)4,4

6. Na figura abaixo, um pequeno bloco de 77 g desliza para baixo em uma superfície curva sem atrito a partir de uma altura h=18 cm e depois adere a uma barra uniforme de massa 101 g e comprimento 80 cm. A barra gira em torno do ponto O antes de parar momentaneamente. Determine θ em graus.

(a)19,7 (b)3,3 (c)25,1 (d)7,7 (e)33,8

7. A figura abaixo mostra um corpo rígido formado por um aro fino (de massa m, raio R=0.14 m e momento de inércia em relação ao diâmetro $mR^2/2$) e uma barra fina radial (de

massa m, comprimento $L=2{,}00R$ e momento de inércia em relação ao seu CM $mL^2/12$). O conjunto está na vertical, mas se recebe um pequeno empurrão começa a girar em torno de um eixo horizontal no plano do aro e da barra, que passa pela extremidade inferior da barra. Supondo que a energia fornecida ao sistema pelo pequeno empurrão é desprezível, qual é a velocidade angular em rad/s do conjunto quando ele passa pela posição invertida (de cabeça para baixo)?

(a)8,69 (b)7,44 (c)10,27 (d)6,21 (e)4,26

8. Uma pequena aranha de peso P_a está pendurada na ponta de um fio de teia, no teto de um elevador. Sabendo-se que o fio suporta uma tensão máxima de $4,3P_a$, qual seria a mínima aceleração (em m/s²) de subida do elevador para que o fio se partisse?

(a)33,0 (b)49,4 (c)74,8 (d)60,7 (e)16,0

- 9. Considere um corpo de massa m, sob a ação de um campo de forças F conservativo, cuja energia mecânica é E=K+U, onde K e U são as energias cinética e potencial. Considerando que o movimento do corpo é restrito a uma dimensão, pode-se afirmar que
- (a) se K < 0 o sistema atinge o equilíbrio indiferente.
- (b) quando U = 0, tem-se um ponto de equilíbrio instável.
- (c) necessariamente dE/dt = 0.
- (d) U > E é condição de flutuação mega dissonante.
- (e) se U > E, o sistema é dito ultrasônico.
- 10. Duas partículas, de massas m_1 e m_2 , são empurradas uma contra a outra, comprimindo uma mola colocada entre elas. Quando são liberadas, a mola as arremessa em sentidos opostos. A relação entre as massas das partículas é $m_2/m_1=6$ e a energia armazenada na mola é de 74 J. Suponha que a mola tenha massa desprezível e que toda a energia armazenada seja transferida para as partículas. Após terminada essa transferência, qual é a energia cinética **da partícula 1** em J? (a)35,3 (b)10,8 (c)24,0 (d)44,3 (e)63,4

Fórmulas e Constantes

$$I = \frac{P_s}{4\pi r^2}; \quad E = hf; \quad p = \frac{hf}{c} = \frac{h}{\lambda}$$

$$hf = K_{\text{max}} + \Phi; \quad \Delta \lambda = \frac{h}{mc} (1 - \cos \phi)$$

$$\frac{d^2 \psi}{dx^2} + \frac{8\pi^2 m}{h^2} [E - U(x)] \psi = 0$$

$$T \approx e^{-2bL}, \text{ onde } b = \sqrt{\frac{8\pi^2 m (U_b - E)}{h^2}}$$

$$E_n = \left(\frac{h^2}{8mL^2}\right) n^2, \text{ para } n = 1,2,3...$$

$$\psi_n(x) = A \sin\left(\frac{n\pi}{L}x\right), \text{ para } n = 1,2,3...$$

$$\Delta x \Delta p = h/2\pi$$

$$\epsilon_0 = 8,854 \times 10^{12} \text{ F/m}; \quad \mu_0 = 1,257 \times 10^{-6} \text{ H/m}$$

 $c = 3.0 \times 10^8 \text{ m/s}; \quad h = 6.63 \times 10^{-34} \text{ J/s} = 4.14 \times 10^{-15} \text{ eV.s}$

hc = 1240 eV.nmEletron : $mc^2 = 511 \text{ keV}$

Por exemplo, se seu número de matrícula for 12.1.3579, temos que

e a tabela deve ser preenchida assim:

	XX	0	1	2	3	4	5	6	7	8	9
ſ	1°										
ſ	2°										
	3°										
Γ	4°										
Γ	5°										
	6°										
	7°										

NAO MARCAR												
un	_	_	_	_	_	_	_		_	_		
de		_	_	_	_	_	_	_	_	_		
GABARITO												
_	1	2	3	4	5	6	7	8	9	10		
a												
b												
c												
d												
e												
MATRÍCULA												
_	0	1	2	3	4	5	6	7	8	9		
1°												
2°												
3°												
4°												
5°												
6°												
7°												

MATRÍCULA:

NOME:

TURMA: