Higher Several Variable Calculus Math2111 UNSW

Jeremy Le (Based of Hussain Nawaz's Notes)

2023T1

Contents

1	Intr	roduction			
2	Curves and Surfaces				
	2.1	Curves			
	2.2	Limits and Calculus for Curves			
	2.3	Surfaces			
3	Ana	alysis			
	3.1	Formal Definition of a Limit			
	3.2	Distance Functions (metrics)			
	3.3	Limits of Sequences			
	3.4	Open and Closed Sets			
	3.5	Limits			
	3.6	Continuity			
	3.7	Path Connected Sets			
	3.8	Compact Sets			
	3.9	Bolzano-Weierstrass Theorem			
4	Differentiation				
	4.1	Differentiability, Derivatives and Affine Approximations			
	4.2	Partial Derivatives			
	4.3	Jacobian Matrix			
	4.4	Differentiable and Continuous			
	4.5	Chain Rule, Gradient, Directional Derivatives, Tangent Planes			
	4.6	Taylor Series and Theorem			
	4.7	Maxima, Minima and Saddle Points			
	4.8	Classification of Stationary Points			
	49	Lagrange Multipliers Implicit and Inverse Function Theorems			

5	Integration 1				
	5.1	Riemann Integral	15		
	5.2	Fubini's Theorem	15		
	5.3	Leibniz' Rule	16		
	5.4	Change of Variable	17		
6	Fourier Series 1				
	6.1	Inner Products and Norms	17		
	6.2	Fourier Coefficients and Fourier Series	18		
	6.3	Pointwise Convergence of Fourier Series	19		
	6.4	General Periodic, Half Range + Odd and Even Functions	20		
	6.5	Convergence of Sequences	21		
7	Vector Fields 2				
	7.1	Vector Fields and Flow	22		
	7.2	Vector Identities	23		
8	Path Integrals 2				
	8.1	Path Integrals	24		
	8.2	Applications of Path Integrals	25		
9	Vector Line Integrals 2				
	9.1	Vector Line Integrals	25		
	9.2	Other Applications	26		
	9.3	Fundamental Theorem of Line Integrals	27		
	9.4	Green's Theorem	27		
10	Suri	face Integrals	28		
	10.1	Parametrised Surfaces	28		
	10.2	Surface Area	29		
	10.3	Surface Integral	29		
		Surface Integrals of Vector-Valued Functions	30		
11	Inte	gral Theorems	30		
		Stokes Theorem	30		
		(Gauss) Divergence Theorem	30		

1 Introduction

Real one-variable calculus $f: \mathbb{R} \to \mathbb{R}$

- limits
- continuity
- differentiability
- \bullet integrability

Important Theorems

- Min-max theorem
 A continuous function on a closed interval attains a max and min value.
- Intermediate Value Theorem A continuous function on [a, b] attains all values in [f(a), f(b)].
- Mean Value Theorem Connects the instantaneous rate of change of differentiable function to its change over a finite closed interval.

Mutivariable Calclus Applications $f: \mathbb{R}^n \to \mathbb{R}^m$

- Fluid dynamics
- Black Scholes Options Pricing Model

2 Curves and Surfaces

2.1 Curves

The parameterisation of a curve in \mathbb{R}^n is a vector-valued function

$$oldsymbol{c}:oldsymbol{I} o\mathbb{R}^n$$

where I is an interval on \mathbb{R} .

- A multiple point is a point through which the curve passes more than once.
- If I = [a, b] then c(a) and c(b) are called end points.
- A curve is closed if its end points are the same point, c(a) = c(b).

2.2 Limits and Calculus for Curves

For an interval $I \subset \mathbb{R}$ and curve $c: I \to \mathbb{R}^n$ with

$$c(t) = (c_1(t), c_2(t), \dots c_n(t)),$$

the functions $c_i: \mathbf{I} \to \mathbb{R}, i = 1, 2, \dots, n$ are called the components of \mathbf{c} .

• If $\lim_{t\to a} c_i(t)$ exists for all i, then $\lim_{t\to a} \boldsymbol{c}(t)$ and

$$\lim_{t\to a} \mathbf{c}(t) = \left(\lim_{t\to a} c_1(t), \lim_{t\to a} c_2(t), \dots \lim_{t\to a} c_n(t)\right)$$

• If $c'_i(t)$ exists for all i, then

$$c'(t) = (c'_1(t), c'_2(t), \dots, c'_n(t))$$

2.3 Surfaces

You have seen surfaces in \mathbb{R}^3 described in 3 ways.

• Graph: z = f(x, y)

• Implicitly: $x^2 + y^2 + z^2 = 1$

• Parametrically: $\mathbf{x} = \mathbf{x}_0 + \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2$

3 Analysis

3.1 Formal Definition of a Limit

1-variable Calculus Recall that $\lim_{x\to a} f(x) = L$ requires that for all $\epsilon > 0$, there exists a $\delta > 0$ such that if $|x - a| < \delta$ then

$$|f(x) - L| < \epsilon.$$

3.2 Distance Functions (metrics)

A function $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ which satisfies the following three properties is called a metric.

- Positive Definite: for all $x, y \in \mathbb{R}^n$, d(x, y) > 0 and d(x, y) = 0 iff x = y.
- Symmetric: for all $x, y \in \mathbb{R}^n$, d(x, y) = d(y, x).
- Triangle Inequality for all $x, y, z \in \mathbb{R}^n$, $d(x, y) + d(y, z) \ge d(x, z)$.

Euclidean Distance The Euclidean distance between x and y defined by

$$d(x,y) = ||x - y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

is a metric.

Equivalent Metrics Two metrics d and δ are considered equal if there exists constants $0 < c < C < \infty$ such that

$$c\delta(x,y) \le d(x,y) \le C\delta(x,y).$$

3.3 Limits of Sequences

Ball A ball around $\mathbf{a} \in \mathbb{R}^n$ of radius $\epsilon > 0$ is the set

$$B(\mathbf{a}, \epsilon) = {\mathbf{x} \in \mathbb{R}^n : d(\mathbf{a}, \mathbf{x}) < \epsilon}.$$

Limit of Sequences For a sequence $\{\mathbf{x}_i\}$ of points in \mathbb{R}^n we say that \mathbf{x} is the limit of the sequence if and only if

$$\forall \epsilon > 0 \exists N \text{ such that } n \geq N \implies d(\mathbf{x}, \mathbf{x}_n) < \epsilon$$

or equivalently

$$\forall \epsilon > 0 \exists N \text{ such that } n \geq N \implies \mathbf{x}_n \in B(\mathbf{x}, \epsilon).$$

If \mathbf{x} is the limit of the sequence $\{\mathbf{x}_i\}$ then for each positive ϵ there is a point in the sequence beyond which all points of the sequence are inside $B(\mathbf{x}, \epsilon)$.

Convergence

A sequence \mathbf{x}_k converges to a limit \mathbf{x}

 \Leftrightarrow the components of \mathbf{x}_k converge to the components of \mathbf{x}

$$\Leftrightarrow d(\mathbf{x}_k, \mathbf{x}) \to 0.$$

Cauchy Sequences A sequence $\{\mathbf{x}_k\}$ in \mathbb{R}^n is a Cauchy sequence if

$$\forall \epsilon > 0 \exists K \text{ such that } k, l > K \implies d(\mathbf{x}_k, \mathbf{x}_l) < \epsilon.$$

A sequence $\{\mathbf{x}_k\}$ converges in \mathbb{R}^n to a limit if and only if $\{\mathbf{x}_k\}$ is a Cauchy sequence.

3.4 Open and Closed Sets

Definitions Consider x_k

- $x_0 \in \Omega$ is an interior point of Ω if there is a ball around x_0 completely contained in Ω . That is, there exists a $\epsilon > 0$ such that $B(x_0, \epsilon) \subseteq \Omega$.
- Ω is open if every point of Ω is an interior point.
- Ω is closed if its complement is open.
- $x_0 \in \Omega$ is a boundary point of Ω if every ball around x_0 contains points in Ω and points not in Ω .

Closed Sets $\Omega \subset \mathbb{R}^n$ is closed if and only if it contains all of its boundary points.

Union and Intersection

- A finite union/intersection of open sets is open.
- A finite union/intersection of closed sets is closed.

Limit Points and Sets \mathbf{x}_0 is a limit point (or accumulation point) of Ω if there is a sequence $\{\mathbf{x}_i\}$ in Ω with limit \mathbf{x}_0 and $\mathbf{x}_i \neq \mathbf{x}$.

- Every interior points of Ω is a limit point of Ω .
- \mathbf{x}_0 is not necessarily in Ω .
- A set is closed \Leftrightarrow it contains all of its limit points.

Variations of a Set Consider the set $\Omega \in \mathbb{R}^n$.

- The <u>interior</u> of Ω is the set of all its interior points (denoted Int(Ω)).
- The boundary of Ω is the set of all its boundary points (denoted $\partial\Omega$).
- The closure of Ω is $\Omega \cup \partial \Omega$ (denoted by Ω).

The interior is the largest open subset and the closure is the smallest closed set containing Ω .

3.5 Limits

Limit of a Function at a Point Let $\mathbf{b} \in \mathbb{R}^m$, $\Omega \subseteq \mathbb{R}^n$, $\mathbf{a} \in \bar{\Omega}$ and let $\mathbf{f} : \Omega \to \mathbb{R}^m$ be a function. We say that $\mathbf{f}(\mathbf{x})$ converges to \mathbf{b} as $\mathbf{x} \to \mathbf{a}$ if

$$\forall \epsilon > 0 \; \exists \delta > 0 \text{ such that for } \mathbf{x} \in \Omega :$$

$$0 < d(\mathbf{x}, \mathbf{x}_0) < \delta \implies d(\mathbf{f}(\mathbf{x}), \mathbf{b}) < \epsilon.$$

or alternatively

$$\mathbf{x} \in B(\mathbf{a}, \delta) \cap \Omega \implies \mathbf{f}(\mathbf{x}) \in B(\mathbf{b}, \epsilon).$$

If such **b** exists, then it is unique and we write

$$\lim_{x \to a} \mathbf{f}(\mathbf{x}) = \mathbf{b}.$$

Useful Limit Theorems Let $\mathbf{b} \in \mathbb{R}^m, \Omega \subseteq \mathbb{R}^n, \mathbf{a} \in \overline{\Omega}$ and let $\mathbf{f} : \Omega \to \mathbb{R}^m$ be a function. Then

$$\lim_{\mathbf{x} \to \mathbf{a}} \mathbf{f}(\mathbf{x}) = \mathbf{b} \iff \lim_{\mathbf{x} \to \mathbf{a}} f_i(\mathbf{x}) = b_i \text{ for all } i = 1, \dots, m$$

$$\lim_{\mathbf{x} \to \mathbf{a}} \mathbf{f}(\mathbf{x}) = \mathbf{b} \iff \lim_{k \to \infty} \mathbf{f}(\mathbf{x}_k) = \mathbf{b}$$

for every sequence $\{\mathbf{x}_k\}_{k=1}^{\infty} \subseteq \Omega$ with $\lim_{k\to\infty} \mathbf{x}_k = \mathbf{a}$.

The first theorem is useful to show that a limit exists whilst the second is useful to show the limit does not exist.

Algebra of limits Given that, $\lim_{x\to x_0} f(x) = a$ and $\lim_{x\to x_0} g(x) = b$, then,

$$\lim_{x \to x_0} (f+g)(x) = a+b$$

$$\lim_{x \to x_0} (fg)(x) = ab$$

$$\lim_{x \to x_0} (\frac{f}{g})(x) = \frac{a}{b}, \text{ given } b \neq 0.$$

Pinching Principle Let $\Omega \subset \mathbb{R}^n$, let **a** be a limit point of Ω and let $f, g, h : \Omega \to \mathbb{R}$ be functions such that there exists $\epsilon > 0$ such that

$$g(\mathbf{x}) \le f(\mathbf{x}) \le h(\mathbf{x}) \quad \forall \mathbf{x} \in B(\mathbf{a}, \epsilon) \cap \Omega.$$

Then

$$\lim_{x\to \mathbf{a}} g(\mathbf{x}) = \mathbf{b} = \lim_{x\to \mathbf{a}} h(\mathbf{x}) \implies \lim_{x\to \mathbf{a}} f(\mathbf{x}) = \mathbf{b}.$$

3.6 Continuity

Continuity is like an extension to limits. It first requires that the limit exists and that the limit equals the actual value at that point.

Definition Let $\mathbf{a} \in \Omega \subseteq \mathbb{R}^n$ and let $f : \Omega \to \mathbb{R}^m$ be a function. Then f is continuous at \mathbf{a} if and only if

$$\lim_{x \to a} f(\mathbf{x}) = f(\mathbf{a})$$

f is said to be continuous on Ω if it is continuous at **a** for every $\mathbf{a} \in \Omega$.

Epsilon-Delta Interpretation

For all $\epsilon > 0$ there exists $\delta > 0$ such that if $x \in B(\mathbf{a}, \delta) \cap \Omega \implies f(x) \in B(f(\mathbf{a}), \epsilon)$.

Continuity by Components All component functions $f_i: \Omega \to \mathbb{R}$ are continuous at **a**.

Continuity through Sequences For every sequence $\{\mathbf{x}_k\}_{k=1}^{\infty}$ with $\mathbf{x}_k \in \Omega$ for all k, if $\{\mathbf{x}_k\}_{k=1}^{\infty}$ has limit **a** then $\{f(\mathbf{x}_k)\}_{k=1}^{\infty}$ converges to f(a).

Elementary Functions If $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ is an elementary function, then f is continuous on Ω .

Preimage Suppose that $\Omega \subseteq \mathbb{R}^n$ and $f: \Omega \to \mathbb{R}^m$ is a function. The preimage of a set $U \subseteq \mathbb{R}^m$ is defined by

$$f^{-1}(U) = \{x \in \mathbb{R}^n : f(x) \in U\}.$$

Continuity - Using Preimage Suppose that $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$. The following two statements are equivalent.

- f is continuous on Ω .
- $f^{-1}(U)$ is open in \mathbb{R}^n for every open subset U of \mathbb{R}^m .

3.7 Path Connected Sets

Definition A set $\Omega \subseteq \mathbb{R}^n$ is said to be path connected if for any $\mathbf{x}, \mathbf{y} \in \Omega$, there is a continuous function φ such that $\varphi(t) \in \Omega$ for all $t \in [0, 1]$ and $\varphi(0) = \mathbf{x}$ and $\varphi(1) = \mathbf{y}$.

Theorem Let $\Omega \subseteq \mathbb{R}^n$ and $\mathbf{f}: \Omega \to \mathbb{R}^m$ be continuous. Then

 $B \subseteq \Omega$ and B path connected $\implies \mathbf{f}(B)$ path connected.

3.8 Compact Sets

Bounded A set $\Omega \subseteq \mathbb{R}^n$ is bounded if there is an $M \in \mathbb{R}$ such that $d(\mathbf{x}, \mathbf{0}) \leq M$ for all $\mathbf{x} \in \Omega \iff \Omega \subseteq B(\mathbf{0}, M)$.

Compact A set $\Omega \subseteq \mathbb{R}^n$ is compact if it is closed and bounded.

Theorem Let $\Omega \subseteq \mathbb{R}^n$ and $f: \Omega \to \mathbb{R}^m$ be continuous. Then

 $K \subseteq \Omega$ and K compact $\implies f(K)$ compact.

3.9 Bolzano-Weierstrass Theorem

For $\Omega \subseteq \mathbb{R}^n$, the following are equivalent.

- 1. Ω is compact.
- 2. Every sequence in Ω has a subsequence that converges to an element of Ω .

4 Differentiation

4.1 Differentiability, Derivatives and Affine Approximations

Differentiability in \mathbb{R} $f: \mathbb{R} \to \mathbb{R}$ is differentiable at some $a \in \mathbb{R}$ means there is a *good* straight-line approximation to f near a called a tangent line. This approximating function is given by

$$T(x) = f(a) + f'(a)(x - a) = f(a) - f'(a)a + f'(a)x = y_0 + L(x)$$

where for all a, $y_0 = f(a) - f'(a)a$ is a fixed number and $L : \mathbb{R} \to \mathbb{R} = f'(a)x$ is the linear map.

Recall that

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

Linear Maps A function $L: \mathbb{R}^n \to \mathbb{R}^m$ is called linear iff for all $x, y \in \mathbb{R}^n$ for all $\lambda \in \mathbb{R}$:

$$L(x + y) = L(x) + L(y)$$
 and $L(\lambda x) = \lambda L(x)$.

Affine Maps A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is affine means there is $y_0 \in \mathbb{R}^m$ and a linear map (ie matrix) $\mathbf{L}: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$T(\mathbf{x}) = \mathbf{y}_0 + \mathbf{L}(\mathbf{x}).$$

A function $f: \mathbb{R} \to \mathbb{R}$ is affine iff f(x) = ax + b, for some $a, b \in \mathbb{R}$.

Affine approximation The function $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ has an affine approximation at a point $a \in \Omega$ if and only if there exists a matrix $A \in M_{m \times n}(\mathbb{R})$ such that

$$\lim_{x \to a} \frac{d(f(x) - f(a), A(x - a))}{d(x, a)} = 0$$

If f has an affine approximation at a point $a \in \Omega$, then the matrix A in the definition is called the derivative of f at a and is denoted by Df(a) (or Daf).

The function $T_a f: \mathbb{R}^n \to \mathbb{R}^m$ defined by

$$T_a f(x) = Df(a)(x - a) + f(a)$$

is called the best affine approximation of f at a.

Differentiability in $\mathbb{R}^n \to \mathbb{R}^n$ A function $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable for some $a \in \Omega$ if there exists a linear map $L: \mathbb{R}n \to \mathbb{R}^m$ such that

$$\lim_{x \to a} \frac{||f(x) - f(a) - L(x - a)||}{||L(x - a)||} = 0.$$

Notation: the matrix of the linear map L, the derivative of f at a is denoted by $D_a f$.

Delta Epsilon Definition of Differentiability A function $f: \Omega \subset \mathbb{R} \to \mathbb{R}^m$ is differentiable on $a \in \Omega$ if there is a linear map $L: \mathbb{R}^n \to \mathbb{R}^m$ such that $\forall \epsilon > 0 \exists \delta > 0$ such that for all $x \in \Omega$

$$||x - a|| < \delta \to ||f(x) - f(a) - L(x - a)|| < \epsilon ||x - a||.$$

4.2 Partial Derivatives

Let $\mathbf{a} \in \mathbb{R}^n$ and $f: \Omega \to \mathbb{R}$ be a function with coordinates x_i and standard basis vectors $\mathbf{e}_i, i \in \{1, \dots, n\}$. The partial derivative of f in direction i is defined as

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(\mathbf{a} + h\mathbf{e}_i) - f(\mathbf{a})}{h}$$

assuming the limit exists.

Claiaut's Theorem If f, $\frac{\partial f}{\partial x_i}$, $\frac{\partial f}{\partial x_j}$, $\frac{\partial^2 f}{\partial x_i x_j}$, $\frac{\partial^2 f}{\partial x_j x_i}$ all exist and are continuous on an open set around **a** then

$$\frac{\partial^2 f}{\partial x_i x_j}(\mathbf{a}) = \frac{\partial^2 f}{\partial x_j x_i}(\mathbf{a}).$$

That is the partial derivatives commute.

4.3 Jacobian Matrix

Definition If all partial derivatives of $\mathbf{f}: \Omega \to \mathbb{R}^m$ exists at $\mathbf{a} \in \omega \subseteq \mathbb{R}^n$, then the Jacobian matrix of \mathbf{f} at \mathbf{a} is

$$J_{a}f = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\mathbf{a}) & \frac{\partial f_{1}}{\partial x_{2}}(\mathbf{a}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\mathbf{a}) \\ \frac{\partial f_{2}}{\partial x_{1}}(\mathbf{a}) & \frac{\partial f_{2}}{\partial x_{2}}(\mathbf{a}) & \cdots & \frac{\partial f_{2}}{\partial x_{n}}(\mathbf{a}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}}(\mathbf{a}) & \frac{\partial f_{n}}{\partial x_{2}}(\mathbf{a}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\mathbf{a}) \end{pmatrix}.$$

Theorem Let $\Omega \subseteq \mathbb{R}^n$, $\mathbf{a} \in \Omega$ be an interior point and $\mathbf{f} : \Omega \to \mathbb{R}^m$ be a function. If \mathbf{f} is differentiable at \mathbf{a} then all partial derivatives $\frac{\partial f_j}{\partial x_i}$ exist at \mathbf{a} and

$$D\mathbf{f}(\mathbf{a}) = J\mathbf{f}(\mathbf{a}).$$

Best affine approximation: $T_a f(x) = Jf(a)(x-a) + f(a)$.

4.4 Differentiable and Continuous

Limit at 0 For $\mathbf{x} \in \mathbb{R}^n$ and L an $m \times n$ matrix,

$$\lim_{x\to\mathbf{0}}||L\mathbf{x}||=0.$$

Open Sets Let $\Omega \in \mathbb{R}^n$ be open and let $f : \Omega \to \mathbb{R}^m$ be a function that is differentiable on Ω . Then f is continuous on Ω .

Partial Derivatives + Continuity Let $\Omega \subseteq \mathbb{R}^n$ be open and let $f: \Omega \to \mathbb{R}^m$ be a function. If for all i = 1, ..., n and all j = 1, ..., m the partial derivative $\frac{\partial f_j}{\partial x_i}$ exists and is continuous on Ω then f is differentiable on Ω .

4.5 Chain Rule, Gradient, Directional Derivatives, Tangent Planes

Chain Rule Let $\Omega \subseteq \mathbb{R}^n$, $\Omega' \subseteq \mathbb{R}^m$ and let $\mathbf{a} \in \Omega$. Suppose $\mathbf{f} : \Omega \to \mathbb{R}^m$ and $\mathbf{g} : \Omega' \to \mathbb{R}^k$ are functions such that $\mathbf{f}(\Omega) \subseteq \Omega'$. If \mathbf{f} is differentiable at \mathbf{a} and \mathbf{g} is differentiable at $\mathbf{f}(\mathbf{a})$, then $\mathbf{g} \circ \mathbf{f}$ is differentiable at \mathbf{a} and

$$D(\mathbf{g} \circ \mathbf{f})(\mathbf{a}) = D\mathbf{g}(\mathbf{f}(\mathbf{a}))D\mathbf{f}(\mathbf{a}).$$

Gradient For $f:\Omega\subset\mathbb{R}^n\to\mathbb{R}$, if the Jacobian exists, then it is given by the $1\times n$ matrix

$$Jf = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \cdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}.$$

This is equivalent to the gradient of f. That is,

$$\operatorname{grad}(f) = \nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \dots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}.$$

Directional Derivative The directional derivative of $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ in the direction of the unit vector $\hat{\mathbf{u}}$ at $\mathbf{a} \in \Omega$ is

$$D_{\hat{\mathbf{u}}}f(\mathbf{a}) = f'_{\hat{\mathbf{u}}}(\mathbf{a}) = \lim_{h \to 0} \frac{f(\mathbf{a} + h\hat{\mathbf{u}}) - f(\mathbf{a})}{h}.$$

if the limit exists.

Equivalently, if $f:\Omega\subset\mathbb{R}^n\to\mathbb{R}$ is differentiable at a then for a unit vector u

$$D_u f(a) = f'_u(a) = \nabla f(a) \cdot u.$$

Alternatively, allowing θ to be the angle between $\nabla f(a)$ and u,

$$D_u f(a) = |\nabla f(a)| \cdot |u| \cdot \cos \theta.$$

Affine Approximation Allow $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ to be a differentiable function at $a \in \Omega$. The best affine approximation to f at a may be written in terms of the gradient vector as

$$T(x) = f(a) + \nabla f(a) \cdot (x - a).$$

Tangent Planes The tangent plane to a function z = f(x, y) is given by

$$z = T(x, y).$$

4.6 Taylor Series and Theorem

Taylor's Theorem For all continuous and differentiable functions $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) \approx P_{k,a}(x) = \sum_{n=0}^{k} \frac{f^{(n)}(a)}{n!} (x-a)^n + R_{k,a}(x)$$

where the remainder R is

$$R_{k,a}(x) = \frac{f^{(k+1)}(z)}{(k+1)!}(x-a)^{k+1}$$

for some z between x and a.

 $P_{0,a}, P_{1,a}, P_{2,a}, P_{3,a}$ are the best constant, affine, quadratic, cubic approximations.

Hessian Matrix For $\Omega \subseteq \mathbb{R}^n$ and $f: \Omega \to \mathbb{R}$, the *Hessain matrix of f at a point* $a \in \Omega$ is the $n \times n$ matrix

$$Hf(a) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(a) & \frac{\partial^2 f}{\partial x_2 \partial x_1}(a) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1}(a) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2}(a) & \frac{\partial^2 f}{\partial x_2^2}(a) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_2}(a) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n}(a) & \frac{\partial^2 f}{\partial x_2 \partial x_n}(a) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(a) \end{pmatrix}.$$

assuming the $2^{\rm nd}$ order partial derivatives exist.

Class A function $f: \Omega \to \mathbb{R}, \Omega \subseteq \mathbb{R}^n$ open, is called (of class) C^r if all partial derivatives of f of order $\leq r$ exist and are continuous.

Taylor Polynomials Let $\Omega \subseteq \mathbb{R}^n$ be open, let $a \in \Omega$, and let $f : \Omega \to \mathbb{R}$ be a function of class C^2 . The polynomial

$$P_{1,a}(x) = f(a) + \nabla f(a) \cdot (x - a)$$

is called the Taylor polynomial of order 1 about a and the polynomial

$$P_{2,a}(x) = f(a) + \nabla f(a) \cdot (x - a) + \frac{1}{2}(x - a) \cdot Hf(a)(x - a)$$

is called the Taylor Polynomial of order 2 about a.

In general, if $f: \Omega \to \mathbb{R}$ is C^r, Ω open, $a \in \Omega$:

$$P_{r,a}(x) = f(a) + \nabla f(a) \cdot (x - a) + \frac{1}{2}(x - a) \cdot Hf(a)(x - a) + \dots + \frac{1}{r!} \sum_{i_1, \dots, i_r = 1}^n \frac{\partial^r f}{\partial x_{i_1} \dots \partial x_{i_r}} (a)(x_{i_1} - a_{i_1}) \cdot \dots \cdot (x_{i_r} - a_{i_r}).$$

Taylor's Theorem (1st order) Let $\Omega \in \mathbb{R}^n$ be open, let $f : \Omega \to \mathbb{R}$ be a function of class C^2 . Let $x, a \in \Omega$ s.t. the line segment between x and a is contained in Ω . Then there exist z on this line segment such that

$$f(x) = f(a) + \nabla f(a) \cdot (x - a) + R_{1,a}(x)$$

where $R_{1,a}(x) = \frac{1}{2}(x-a) \cdot (Hf(z)(z-a)).$

Taylor's Theorem (2 nd order) Let $\Omega \in \mathbb{R}^n$ be open, let $f : \Omega \to \mathbb{R}$ be a function of class C^3 . Let $x, a \in \Omega$ s.t. the line segment between x and a is contained in Ω . Then there exist z on this line segment such that

$$f(x) = f(a) + \nabla f(a) \cdot (x - a) + \frac{1}{2}(x - a)Hf(a)(x - a) + R_{2,a}(x)$$

where $R_{2,a}(x): \Omega \to \mathbb{R}$ is a function such that $\frac{R_{2,a}(x)|}{|x-a|^2} \to 0$ as $x \to a$.

4.7 Maxima, Minima and Saddle Points

Definitions Let $a \in \Omega \subseteq \mathbb{R}^n$ and $f : \Omega \to \mathbb{R}$ be a function. Then

- a is an absolute or global maximum of f if $f(a) \ge f(x)$ for all $x \in \Omega$.
- a is an absolute or global minimum of f if $f(a) \leq f(x)$ for all $x \in \Omega$.
- a is a local maximum of f if there is an open $A \subseteq \Omega$ containing a such that $f(a) \ge f(x)$ for all $x \in A$.
- a is a local minimum of f if there is an open $A \subseteq \Omega$ containing a such that $f(a) \leq f(x)$ for all $x \in A$.
- a is a stationary point of f if f is differentiable at a and $\nabla f(a) = 0$.
- a is a saddle point of f if a is a stationary point of f but it's neither a local max nor a local minimum of f.

Critical Points Let $a \in \Omega \subseteq \mathbb{R}^n$ and $f : \Omega \to \mathbb{R}$ be a function. If a is a local maximum or a local minimum then

- 1. a is a stationary, or
- 2. $a \in \partial \Omega \iff a$ is a boundary pt, or
- 3. f is not differentiable at a.

Points satisfying 1, 2 or 3 are called critical points.

4.8 Classification of Stationary Points

Definition: An $n \times n$ martix H is

- positive definite \iff all eigenvalues are > 0
- positive semi-definite \iff all eigenvalues are ≥ 0
- positive definite \iff all eigenvalues are < 0
- positive semi-definite \iff all eigenvalues are ≤ 0

Criterion for Local Extrema Let $\Omega \subseteq \mathbb{R}^n$ be open, $a \in \Omega$ and let $f : \Omega \to \mathbb{R}$ be a function such that all paritial derivatives of f of order at most 2 exists on Ω and $\nabla f(a) = 0$. Then

- Hf(a) is positive definite $\implies f$ has a local minimum at a;
- Hf(a) is negative definite $\implies f$ has a local maximum at a;
- f has a local minimum at $a \implies Hf(a)$ is positive semi-definite;
- f has a local maximum at $a \implies Hf(a)$ is negative semi-definite;

Sylvesetr's Criterion If H_k is the upper $k \times k$ matrix of H and $\Delta_k = det(H_k)$, then

- H is positive definite $\iff \Delta_k > 0$ for all k
- H is positive semi-definite $\implies \Delta_k \ge 0$ for all k
- H is negative definite $\iff \Delta_k < 0$ for all odd k and $\Delta_k > 0$ for all even k
- H is negative semi-definite $\implies \Delta_k \leq 0$ for all odd k and $\Delta_k \geq 0$ for all even k

4.9 Lagrange Multipliers, Implicit and Inverse Function Theorems

Lagrange Multipliers Suppose $f: \mathbb{R}^n \to \mathbb{R}$ and $\varphi: \mathbb{R}^n \to \mathbb{R}$ are differentiable and $S = \{x \in \mathbb{R}^n : \varphi(x) = c\}$ defines a smooth surface on \mathbb{R}^n . If f attains a local maximum or minimum at a point $a \in S$ then $\nabla f(a)$ and $\nabla \varphi(a)$ are parallel. If $\nabla \varphi(a) \neq 0$, there exist a Lagrange multiplier $\lambda \in \mathbb{R}$ such that

$$\nabla f(a) = \lambda \nabla \varphi(a).$$

Inverse Function Theorem for $f: \mathbb{R} \to \mathbb{R}$ If $f: \mathbb{R} \to \mathbb{R}$ is differentiable on an open interval $I \in \mathbb{R}$ and $f'(x) \neq 0$ for all $x \in I$, then f is invertible on I and the inverse $f^{-1}: f(I) \to \mathbb{R}$ is differentiable with

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

Generalising the Inverse Function Theorem Let $\Omega \subseteq \mathbb{R}^n$ be open, $f: \Omega \to \mathbb{R}^n$ be C^1 and suppose $a \in \Omega$. If Df(a) is invertible (as a matrix) then f is invertible on an open set U containing a. That is,

$$f^{-1}:f(U)\to U$$

exists. Furthermore, f^{-1} is C^1 and for $x \in U$,

$$D_{f(x)}f^{-1} = (D_x f)^{-1}.$$

5 Integration

5.1 Riemann Integral

Riemann Integral For a bounded function $f: R \to \mathbb{R}$, if there exists a unique number I such that

$$\underline{\mathcal{S}}_{\mathcal{P}_1,\mathcal{P}_2}(f) \le I \le \overline{\mathcal{S}}_{\mathcal{P}_1,\mathcal{P}_2}(f)$$

for every pair of partitions $\mathcal{P}_1, \mathcal{P}_2$ of R, then f is Riemann integrable on R and

$$I = \iint_{R} f = \iint_{R} f(x, y) dA.$$

I is called the Riemann integral of f over R.

Properties of the Riemann Integral For a function of one variable, the Riemann integral is interpreted as the (signed) area bounded by the graph y = f(x) and the x-axis over the interval [a, b]. For a function of two variables $\iint_R f$ is the (signed) volume bounded by the graph z = f(x, y) and the xy-plane over the rectangle R. If f and g are integrable on R,

- Linearity: $\iint_{\mathbb{R}} \alpha f + \beta g = \alpha \iint_{\mathbb{R}} f + \beta \iint_{\mathbb{R}} g, \quad \alpha, \beta \in \mathbb{R}.$
- Positivity (monotonicity): If $f(x) \leq g(x), \forall x \in R$ then $\iint_R f \leq \iint_R g$
- $\left| \iint_R f \right| \le \iint_R |f|$
- If $R = R_1 \cup R_2$ and (interior R_1) \cap (interior R_2) $= \emptyset$ then

$$\iint_R f = \iint_{R_1} f + \iint_{R_2} f.$$

5.2 Fubini's Theorem

Fubini's Theorem - Rectangles Let $f: R \to \mathbb{R}$ be continuous on a rectangular domain $R = [a, b] \times [c, d]$. Then f is a bounded function and is integerable over R. Moreover,

$$\int_a^b \int_c^d f(x,y) \, dy dx = \int_c^d \int_a^b f(x,y) \, dx dy = \iint_R f.$$

Fubini's Theorem - Discontinuous Let $f: R \to \mathbb{R}$ be bounded on a rectangular domain $R = [a, b] \times [c, d]$ with the discontinuities of f confined to a finite union of graphs of continuous functions. If the integral $\int_c^d f(x, y) dy$ exists for each $x \in [a, b]$ then

$$\iint_{R} f = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) dx.$$

Similarly, if the integral $\int_a^b f(x,y) dx$ exists for each $y \in [c,d]$, then

$$\iint_{R} f = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) \, dx \right) dy.$$

Iterated Integrals for Elementary Regions Suppose D is a y-simple region bounded by $x = a, x = b, y = \varphi_1(x)$ and $y = \varphi_2(x)$ and $f : D \to \mathbb{R}$ is continuous. Then

$$\iint_D f = \int_a^b \int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) \, dx dy.$$

A simile result hols for integrals over x-simple regions.

5.3 Leibniz' Rule

Basic Version Let $a,b,c,d \in \mathbb{R}$ If $f:[a,b] \times [c,d] \to \mathbb{R}$ and $\frac{\partial f}{\partial x}$ are continuous on the rectangle $[a,b] \times [c,d]$. Then

$$g(x) = \int_{c}^{d} f(x, y) \, dy.$$

is differentiable and has derivative

$$g'(x) = \frac{d}{dx} \left[\int_c^d f(x, y) \, dy \right] = \int_c^d \frac{\partial f}{\partial x}(x, y) dy$$
 for $a \le x \le b$.

With variable limits Let $a, b \in \mathbb{R}$ with $a \leq b$, let $\varphi_1, \varphi_2 : [a, b] \to \mathbb{R}$ be continuously differentiable functions such that $\varphi_1(x) \leq \varphi_2(x)$ for all $x \in [a, b]$. If $f : D_1 \to \mathbb{R}$ and $\frac{\partial f}{\partial x}$ are continuous on the region D_1 with

$$D_1 = \{(x, y) : x \in [a, b] \text{ and } \varphi_1(x) \le y \le \varphi_2(x)\}$$

then the function $g(x) = \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) dy$ is differntiable and

$$g'(x) = \int_{\varphi_2(x)}^{\varphi_2(x)} \frac{\partial f}{\partial x}(x, y) \, dy + f(x, \varphi_2(x)) \varphi_2'(x) - f(x, \varphi_1(x)) \varphi_1'(x).$$

Note: If $\varphi_1(x) \equiv c, \varphi_2(x) \equiv d$ where c, d are constants. Then $g'(x) = \int_c^d \frac{\partial f}{\partial x} dy$ (reduced to the previous version).

5.4 Change of Variable

Let $\Omega \subseteq \mathbb{R}^n$ and $F: \Omega \to \mathbb{R}^n$ be an injective and continuously differentiable function such that $\det JF(x) \neq 0$ for all $x \in \Omega$. If f is any function that is integrable on $\Omega' = F(\Omega)$ then

$$\iint_{\Omega'} (f \circ F) |\det JF|.$$

6 Fourier Series

Fourier Series A Fourier series is the approximation of simple periodic functions by the sum of period functions of the form $\sin(x)$, $\cos(x)$. Note that unlike Taylor series, a function f may be discontinuous. However, any lack of continuity leads to an infinite sum in the Fourier series.

6.1 Inner Products and Norms

Inner Products Let V be a (real) vector space. An inner product on V is a map that assigns each $f, g \in V$ a real number $\langle f, g \rangle$ in such a way that

- $\langle f, f \rangle \ge 0$,
- $\langle f, f \rangle = 0$ if and only if f is zero,
- $\langle \lambda f + \mu g, h \rangle$, = $\lambda \langle f, h \rangle + \mu \langle g, h \rangle$,
- $\bullet \ \langle g, f \rangle = \langle f, g \rangle.$

for all functions $f, g, h \in V$ and all real constants λ, μ .

Usual Inner Products

• The vector space \mathbb{R}^n consisting of all *n*-dimensional vector admits the following inner product

$$\langle v, w \rangle = v \cdot w = \sum_{i=1}^{n} v_i w_i.$$

• The vector space C[a, b] consisting of all continuous function defined on the interval [a, b] admits the following inner product

$$\langle f, g \rangle = \int_a^b f(x)g(x) \, dx.$$

Norms A norm on V is a map that assigns each $f \in V$ a real number ||f|| in such a way that

- ||f|| > 0,
- ||f|| = 0 if and only if f = 0,
- $||\lambda f|| = |\lambda| ||f||$,
- $||f + g|| \le ||f|| + ||g||$ (triangle inequality)

for all functions $f, g \in V$ and all real constant λ .

Usual Norms Consider a vector space C[a, b] consisting of all continuous functions on [a, b].

• The 2-norm $(L^2$ -norm) is a norm on C[a, b]:

$$||f||_2 = \sqrt{\int_a^b f(x)^2 dx}$$

• The max norm is a norm on C[a, b]:

$$||f||_{\infty} = \max_{a \le x \le b} \{|f(x)|\}$$

Theorem Every inner product on a vector space V induces a norm given by

$$||f|| = \sqrt{\langle f, f \rangle},$$

and the Cauchy-Schwartz inequality holds:

$$|\langle f, g \rangle| \le ||f|| \, ||g||$$
 for all $f, g \in V$.

6.2 Fourier Coefficients and Fourier Series

Fourier Series Suppose that a given function $f: \mathbb{R} \to \mathbb{R}$ is a 2π -periodic and is square integrable (i.e., $\int_{-\pi}^{\pi} f(x)^2 dx < \infty$). Its Fourier series is given by

$$S_f(x) = \frac{a_0}{2} + \sum_{k=1}^{n} [a_k \cos(kx) + b_k \sin(kx)]$$

where

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx, \quad k = 0, 1, 2, \dots$$

and

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx, \quad k = 1, 2, \dots$$

6.3 Pointwise Convergence of Fourier Series

Piecewise Continuous Functions Consider a function $f : \mathbb{R} \to \mathbb{R}$ and a point $c \in \mathbb{R}$. Suppose that the one-sided limits $f(c^+) = \lim_{x \to c^+} f(x)$ and $f(c^-) = \lim_{x \to c^-} f(x)$ exists.

- If $f(c^+) = f(c^-) = f(c)$, then f is continuous at c.
- If $f(c^+) = f(c^-) \neq f(c)$ or if $f(c^+) = f(c^-)$ but f(c) is undefined, then f has a removable discontinuity at c.
- If $f(c^+) \neq f(c^-)$, then f has a jump discontinuity at c.

A function $f:[a,b]\to\mathbb{R}$ is piecewise continuous on [a,b] if and only if

- (1) For each $x \in [a, b), f(x^+)$ exists;
- (2) For each $x \in (a, b], f(x^{-})$ exists;
- (3) f is continuous on (a, b) except at (most) a finite number of points.

Note that if f is only piecewise continuous then the partial sum of the Fourier series does not necessarily converge to f for all x.

Piecewise Differentiable Functions Consider a function $f : \mathbb{R} \to \mathbb{R}$ and a point $c \in \mathbb{R}$. We write

$$D^{+}f(c) = \lim_{h \to 0^{+}} \frac{f(c+h) - f(c^{+})}{h}$$

if this one-sided limit exists. Likewise,

$$D^{-}f(c) = \lim_{h \to 0^{-}} \frac{f(c+h) - f(c^{-})}{h}.$$

A function f is differentiable at c if and only if $f(c^+) = f(c) = f(c^-)$ and $D^+f(c) = D^-f(c)$. A function f is piecewise differentiable on [a, b] if and only if

- (1) For each $x \in [a, b), D^+f(x)$ exists;
- (2) For each $x \in (a, b], D^-f(x)$ exists;
- (3) f is differentiable on (a, b) except at (most) a finite number of points.

Pointwise Convergence Let $c \in \mathbb{R}$ and suppose that a function $f : \mathbb{R} \to \mathbb{R}$ has the following properties:

- 1. f is 2π -periodic;
- 2. f is piecewise continuous on $[-\pi, \pi]$;
- 3. $D^+f(c)$ and $D^-f(c)$ exists.

If f is continuous at c then,

$$S_f(c) = f(c).$$

If f has a jump/removable discontinuity at c, then

$$S_f(c) = \frac{1}{2} [f(c^+) + f(c^-)].$$

6.4 General Periodic, Half Range + Odd and Even Functions

General Periodic Functions Suppose that f has period 2L, instead of 2π :

$$f(x+2L) = f(x)$$
 for $x \in \mathbb{R}$.

Note that $\cos\left(\frac{\pi}{L}x\right)$ and $\sin\left(\frac{\pi}{L}x\right)$ are periodic functions with period 2L. So, the decomposition becomes

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{k\pi}{L}x\right) + b_k \sin\left(\frac{k\pi}{L}x\right) \right)$$

where

$$a_k = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{k\pi x}{L}\right) dx, \quad k = 0, 1, 2, \dots$$

and

$$b_k = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{k\pi x}{L}\right) dx, \quad k = 1, 2, \dots$$

Half Range Expansion Let f be defined on [0, L]. We can extend f to an even function (or odd function) on [-L, L] and calculate its Fourier Series.

Odd and Even Functions We define an odd and even functions by the conditions f(-x) = -f(x) and f(-x) = f(x) respectively for a function f. The following elementary properties hold:

- $Odd \times Even = Odd$
- $Odd \times Odd = Even$
- Even \times Even = Even
- $\int_{-L}^{L} Odd = 0$

Odd and Even Functions for Fourier Series If f is odd, then

$$a_k = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{k\pi x}{L}\right) dx = 0$$

and

$$b_k = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{k\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{k\pi x}{L}\right) dx.$$

So the Fourier series becomes

$$S_f(x) = \sum_{k=1}^{\infty} b_k \sin\left(\frac{k\pi x}{L}\right).$$
 (Fourier Sine Series)

If f is even, then

$$a_k = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{k\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} f(x) \cos\left(\frac{k\pi x}{L}\right) dx.$$

and

$$b_k = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{k\pi x}{L}\right) dx = 0$$

So the Fourier series becomes

$$S_f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos\left(\frac{k\pi x}{L}\right).$$
 (Fourier Cosine Series)

6.5 Convergence of Sequences

Pointwise Convergence Let $f_k : \mathbb{R} \to \mathbb{R}$. We say f_k converges to f on [a, b] pointwisely iff, for every $x \in [a, b], f_k(x) \to f(x)$ as $k \to \infty$. In this case, f is called the pointwise limit. In terms of $\epsilon - \delta$ language:

For every $x \in [a, b], \epsilon > 0$, there exists an K (depends on ϵ and x), such that

$$|f_k(x) - f(x)| \le \epsilon$$
 for all $k \ge K$.

Uniform Convergence Let $f_k : \mathbb{R} \to \mathbb{R}$. We say f_k converges to f on [a, b] uniformly iff for every $\epsilon > 0$, there exists an K (depends on ϵ only), such that

$$\sup_{x \in [a,b]} |f_k(x) - f(x)| \le \epsilon \text{ for all } k \ge K.$$

Uniform Convergence Theorem If $f_k : \mathbb{R} \to \mathbb{R}$ is continuous on [a, b] for all k if:

- $f_k \to f$ uniformly on [a, b] then f is continuous on [a, b].
- f has at least one discontinuity on [a, b], f_k cannot converge uniformly to f on [a, b].

Weierstrass Test Let $f_k : \mathbb{R} \to \mathbb{R}$ be a sequence of function defined on [a, b]. Suppose that there exists a sequence of numbers c_k such that

$$|f_k(x)| \le c_k$$
 for all $x \in [a, b]$

and $\sum_{k=1}^{\infty} c_k$ converges (or exists as a real number). Then $\sum_{k=1}^{\infty} f_k$ converges uniformly to a function f on [a, b].

Note that this test also holds for functions $f: \mathbb{R}^n \to \mathbb{R}$ for $x \in \Omega$ where Ω is a closed bounded set in \mathbb{R}^n .

Norm Convergence Consider the supremum norm $||f|| = \sup_{x \in [a,b]} |f(x)|$. The definition of uniform convergence can be equivalently written as: for every $\epsilon > 0$, there exists an K such that

$$||f_k - f|| \le \epsilon \text{ for all } k \ge K.$$

Equivalently,

$$\lim_{k \to \infty} ||f_k - f|| = 0.$$

Here, the norm is defined as the supremum norm. Extending this idea, we can define norm convergence for any arbitrary norm.

Let V be a vector space of functions f equipped with a norm ||f||. We say a sequence of functions $f_1, \ldots f_k, \ldots$, (norm) converges to f in V if $f \in V$ and

$$\lim_{k \to \infty} ||f_k - f|| = 0.$$

As such, the L^2 norm convergence, also known as mean square convergence is equivalent to the following

$$\lim_{k \to \infty} \int_a^b [f_k(x) - f(x)]^2 dx = 0.$$

Parseval Theorem Let f be 2π periodic, bounded and $\int_{-\pi}^{\pi} f(x)^2 dx < +\infty$. Then, the Fourier series of f converges to f in the mean square sense. Moreover, the following Parseval's identity holds:

$$\int_{-\pi}^{\pi} f^2(x) \, dx = ||f||_2^2 = \frac{\pi}{2} a_0^2 + \pi \sum_{k=1}^{\infty} (a_k^2 + b_k^2).$$

This identity continues to hold for 2L periodic functions integrated over [-L, L].

7 Vector Fields

7.1 Vector Fields and Flow

Vector Fields A vector field in 3D space has components that are functions and is of the type

$$\mathbf{F}(\mathbf{x}) = \mathbf{F}(x, y, z)$$

= $(F_1(x, y, z), F_2(x, y, z), F_3(x, y, z))$
= $F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$.

A vector field in 2D has components that are functions and is of the type

$$\mathbf{F}(\mathbf{x}) = \mathbf{F}(x, y)$$

$$= (F_1(x, y), F_2(x, y))$$

$$= F_1(x, y)\mathbf{i} + F_2(x, y)\mathbf{j}.$$

Flow Lines If F is a vector field, a flow line for F is a path $\mathbf{c}(t)$ such that

$$\mathbf{c}'(t) = \mathbf{F}(\mathbf{c}(t)).$$

That is, **F** yields the velocity field of the path $\mathbf{c}(t)$.

The Del ∇ operator The vector differential operator ∇ is not a vector, but an operator. It may be considered a symbolic vector. The differential operator may be written as

$$\mathbf{\nabla} = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}.$$

Divergence If $\mathbf{F} = F_1 \mathbf{i} + F_2 \mathbf{j} + F_3 \mathbf{k}$, the divergence of \mathbf{F} is the scalar field

div
$$\mathbf{F} = \mathbf{\nabla \cdot F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$
.

Divergence may be thought as a type of derivative that describes the measure at which a vector field *spreads away* from a certain point. If the divergence is positive, then there is a net outflow while there is net inflow if the divergence is negative.

Observe that the divergence of a vector field will be real-valued.

Curl If $\mathbf{F} = F_1 \mathbf{i} + F_2 \mathbf{j} + F_3 \mathbf{k}$, the curl of \mathbf{F} is the vector field

curl
$$\mathbf{F} = \mathbf{\nabla} \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$

$$= \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) \mathbf{i} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x} \right) \mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \mathbf{k}.$$

Curl is also analogous to a type of derivative for vector fields. The curl may be thought as the measure at which the vector field *swirls* around a point. A positive swirl can be thought of as a counterclockwise rotation.

Observe that the curl of a vector field is also a vector field.

7.2 Vector Identities

Basic Vector Identities

1.
$$\nabla (f+q) = \nabla f + \nabla q$$

2.
$$\nabla(\lambda f) = \lambda \nabla f$$
 where $\lambda \in \mathbb{R}$

3.
$$\nabla(fg) = f\nabla g + g\nabla f$$
. You may draw analogies to the product.

4.
$$\nabla \left(\frac{f}{g}\right) = \frac{g\nabla f - f\nabla g}{g^2}$$
 where $g \neq 0$. This is analogous to the quotient rule.

5.
$$\nabla \cdot (\mathbf{F} + \mathbf{G}) = \nabla \cdot \mathbf{F} + \nabla \cdot \mathbf{G}$$

6.
$$\nabla \times (\mathbf{F} + \mathbf{G}) = \nabla \times \mathbf{F} + \nabla \times \mathbf{G}$$

7.
$$\nabla \cdot (f\mathbf{F}) = f\nabla \cdot \mathbf{F} + \mathbf{F} \cdot \nabla f$$

8.
$$\nabla \cdot (\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot (\nabla \times \mathbf{F}) - \mathbf{F} \cdot (\nabla \times \mathbf{G})$$

9.
$$\nabla \cdot (\nabla \times \mathbf{F}) = 0$$

10.
$$\nabla \times (f\mathbf{F}) = f\nabla \times \mathbf{F} = \nabla f \times \mathbf{F}$$

11.
$$\nabla \times (\nabla f) = 0$$

12.
$$\nabla^2(fg) = f\nabla^2g + 2(\nabla f \cdot \nabla g) + g\nabla^2f$$

13.
$$\nabla \cdot (\nabla f \times \nabla q) = 0$$

14.
$$\nabla \cdot (f\nabla g - g\nabla f) = f\nabla^2 g - g\nabla f^2$$

8 Path Integrals

8.1 Path Integrals

Path (scalar line) Integrals We say that a vector-valued function $\mathbf{c}(t)$ parametrises a curve C for a < t < b if the image of \mathbf{c} traces out the curve C.

Computing a Scalar Line Integral Let $\mathbf{c}(t)$ be a parametrisation of a curve $C \in \mathbb{R}^3$ for a < t < b. Assume that f(x, y, z) and $\mathbf{c}'(t)$ are continuous. Then

$$\int_C f(x, y, z) ds = \int_a^b f(\mathbf{c}(t)) ||\mathbf{c}'(t)|| dt$$

The value of the integral on the right does not depend on the choice of parametrisation. For f(x, y, z) = 1, we obtain the length of C:

Length of
$$C = \int_C ||\mathbf{c}'(t)|| dt$$

where
$$||\mathbf{c}'(t)|| = \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2}$$
 for $\mathbf{c}(t) = (x(t), y(t), z(t))$.

Elementary Properties of Path Integral

•
$$\int_C f_1 ds + \int_C f_2 ds = \int_C (f_1 + f_2) ds$$

•
$$\int_C \lambda f \, ds = \lambda \int_C f \, ds$$
, $\lambda \in \mathbb{R}$

8.2 Applications of Path Integrals

Mass Suppose that $\delta = \delta(x, y, z)$ which is a density function.

$$M = \int_C \delta(x, y, z) \, dz$$

First Moments About the Coordinate Planes

$$M_{yz} = \int_C x \delta \, ds, \qquad M_{xz} = \int_C y \delta \, ds, \qquad M_{xy} = \int_C z \delta \, ds$$

Coordinates of the Center of Mass

$$\bar{x} = \frac{M_{yz}}{M}, \qquad \bar{y} = \frac{M_{xz}}{M}, \qquad \bar{z} = \frac{M_{xy}}{M}$$

Moments of Inertia about Axes

$$I_x = \int_C (y^2 + z^2) \delta \, dx, \qquad I_y = \int_C (x^2 + z^2) \delta \, ds, \qquad I_z = \int_C (x^2 + y^2) \delta \, ds$$

9 Vector Line Integrals

9.1 Vector Line Integrals

Vector Line Integrals There is an important distinction between vector and scalar line integrals. To define a vector line integral we must specify a direction along the path or curve C.

A curve C can be traversed in one of two directions. We say that C is oriented if one of these two directions is specified. We refer to the specified direction as the forward direction along the curve.

Computing a Line Integral Let $\mathbf{c}(t)$ be a parameterisation of an oriented curve C for $a \le t \le b$. The line integral of a vector field \mathbf{F} along C is the defined by

$$\int_{C} \mathbf{F} \cdot ds = \int_{a}^{b} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt.$$

Link with the path integral Let $\mathbf{c}(t)$ be a parametrisation of an oriented smooth curve C and let $\hat{\mathbf{T}}$ denotes the unit tangent vector pointing in the forward direction of C.

$$\hat{\mathbf{T}}(\mathbf{c}(t)) = \frac{\mathbf{c}'(t)}{||\mathbf{c}'(t)||}$$

Then, the line integral of a vector field \mathbf{F} over the oriented curve C is the path integral of the tangential component of \mathbf{F} along C, that is

$$\int_{C} \mathbf{F} \cdot ds = \int_{C} \mathbf{F} \cdot \hat{\mathbf{T}} \, ds.$$

Summing Paths Let C_i , i = 1, ..., m be curves with continuous differentiable parameterisations. Let $C = C_1 + C_2 + \cdots + C_m$, that is, C is the union of curves C_i , which are joined end-to-end. Then, we define

$$\int_C \mathbf{F} \cdot ds = \sum_{i=1}^m \int_{C_i} \mathbf{F} \cdot ds.$$

Work notation Denote $\mathbf{c}(t) = (x(t), y(t), z(t))$ and $\mathbf{F} = (M, N, P) = M\mathbf{i}, N\mathbf{j}, P\mathbf{k}$. Then, we can denote work as any of the following notations:

$$W = \int_{C} \mathbf{F} \cdot ds$$

$$= \int_{a}^{b} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt \qquad (Definition)$$

$$= \int_{a}^{b} \left(M \frac{dx}{dt} + N \frac{dy}{dt} + P \frac{dz}{dt} \right) dt$$

$$= \int_{a}^{b} M dx + N dy + P dz. \qquad (Alternative form)$$

Properties of Line Integrals Let C be a smooth oriented curve and let \mathbf{F} and \mathbf{G} be vector fields.

(i) Linearity:

$$\int_{C} (\mathbf{F} + \mathbf{G}) \cdot ds = \int_{C} \mathbf{F} \cdot ds + \int_{C} \mathbf{G} \cdot ds$$
$$\int_{C} k\mathbf{F} \cdot ds = k \int_{C} \mathbf{F} \cdot ds \qquad (k \text{ a constant})$$

(ii) Reversing orientation:

$$\int_{-C} \mathbf{F} \cdot ds = -\int_{C} \mathbf{F} \cdot ds$$

(iii) Additivity: If C is a union of n smooth curves $C_1 + \cdots + C_n$, then

$$\int_C \mathbf{F} \cdot ds = \int_{C_1} + \dots + \int_{C_n} \mathbf{F} \cdot ds$$

9.2 Other Applications

Flow Integral, Circulation If $\mathbf{r}(t)$ is a smooth curve in the domain of a continuous velocity field \mathbf{F} , the flow along the curve from t=a to t=b is

Flow =
$$\int_{a}^{b} \mathbf{F} \cdot \hat{\mathbf{T}} ds$$

The integral in this case is called a flow integral. If the curve is a closed loop, the flow is called the circulation around the curve.

Flux Across a Closed Curve in the Plane If C is a smooth closed curve in the domain of a continuous vector field $\mathbf{F} = M(x,y)\mathbf{i} + N(x,y)\mathbf{j}$ in the plane and if $\hat{\mathbf{n}}$ is the outward-pointing unit normal vector on C, the flux of \mathbf{F} across C is

Flux of **F** across
$$C = \int_C \mathbf{F} \cdot \hat{\mathbf{n}} \, ds$$
.

Calculating Flux Across a Smooth Closed Plane Curve

(Flux of
$$\mathbf{F} = M\mathbf{i} + N\mathbf{j}$$
 across C) = $\oint_C M \, dy - N \, dx$

The integral can be evaluated from any smooth parametrisation $x = g(t), y = h(t), a \le t \le b$, that traces C counterclockwise exactly once.

9.3 Fundamental Theorem of Line Integrals

(Second) Fundamental Theorem of Calculus in One Vairable Let $f : \mathbb{R} \to \mathbb{R}$ and $\varphi : \mathbb{R} \to \mathbb{R}$. If $f(x) = \varphi'(x)$, then

$$\int_{a}^{b} \varphi'(x) dx = \int_{a}^{b} f(x) dx = \varphi(b) - \varphi(a).$$

Gradient Fields A vector field **F** is called a gradient vector field if there exists a real-valued function φ such that $\mathbf{F} = \nabla \varphi$. That is, $(M, N, P) = (\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z})$. A vector field **F** with this property is called conservative and φ is called the potential function of **F**.

Fundamental Theorem for Gradient Vector Fields If $\mathbf{F} = \nabla \varphi$ on a domain \mathcal{D} , then for every oriented smooth curve C in \mathcal{D} with initial point P and terminal point Q.

$$\int_{C} \mathbf{F} \cdot ds = \varphi(Q) - \varphi(P)$$

If C is closed (i.e., if P = Q), then $\oint_C \mathbf{F} \cdot ds = 0$.

Cross Partials of a Gradient Vector Field are Equal Let $\mathbf{F} = (F_1, F_2, F_3)$ be a gradient vector field whose components have continuous partial derivatives. Then the cross partials are equal:

$$\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}, \quad \frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y}, \quad \frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial z}$$

Similarly, if the vector field in the plane $\mathbf{F}=(F_1,F_2)$ is the gradient vector field, then $\frac{\partial F_1}{\partial y}=\frac{\partial F_2}{\partial x}$. Equivalently, $\nabla\times\mathbf{F}=\mathbf{0}$.

9.4 Green's Theorem

Green's Theorem connects double integrals with line integrals and is very useful for line integrals over complicated vector fields with simpler partial derivatives.

Green's Theorem (Flux-divergence or Normal Form) Let D be a bounded simple region in \mathbb{R}^2 with nonempty interior, whose boundary consists of a finite number of smooth curves. Let C be the boundary of D with a positive (counter-clockwise) direction. Let $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$ be a vector field which is continuously differentiable on D. Then, the outward flux of \mathbf{F} across the curve C equals the double integral of divergence $\nabla \cdot F$ over D, that is

$$\oint_C \mathbf{F} \cdot \hat{\mathbf{n}} \, ds = \oint_C -N \, dx + M \, dy = \iint_D \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} \right) \, dx dy$$

Three key assumptions:

- \bullet The region D is bounded and simple region with nonempty interior.
- The boundary C is oriented in the positive (counter-clockwise) direction, and is a finite union of smooth curves.
- The vector field \mathbf{F} is continuously differentiable on D.

Green's Theorem (Circulation-curl or Tangential Form) Let D be a bounded simple region in \mathbb{R}^2 with nonempty interior, whose boundary consists of a finite number of smooth curves. Let C be the boundary of D with a positive (counter-clockwise) direction. Let $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$ be a vector field which is continuously differentiable on D. Then, the counter-clockwise circulation of \mathbf{F} around C equals the double integral $\nabla \times F \cdot k$ over D, that is

$$\oint_C \mathbf{F} \cdot \hat{\mathbf{T}} \, ds = \oint_C M \, dx + N \, dy = \iint_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx dy$$

Area of a Region Let D be a simple and bounded region with non-empty interior and let C be its boundary with positive (counter-clockwise) direction which is a finite union of smooth curves. Then, the area of D can be calculated by

$$Area(D) = \frac{1}{2} \oint_C (-y \, dx + x \, dy).$$

10 Surface Integrals

10.1 Parametrised Surfaces

Parametrised Surface A parametrised surface is a function $\phi: D \subseteq \mathbb{R}^2 \to \mathbb{R}^3$, where D is some domain in \mathbb{R}^2 , that is,

$$\phi(u,v) = (x(u,v), y(u,v), z(u,v)).$$

The surface S corresponding to the function ϕ is its image: $S = \phi(D)$. If ϕ is differentiable (resp. continuously differentiable), then we call S a differentiable (resp. continuously differentiable) surface.

Cone The cone $z^2 = x^2 + y^2$ has the parametrisation

$$\phi(u,v) = (u\cos v, u\sin v, u), \qquad 0 \le v \le 2\pi, u \in \mathbb{R}.$$

Cylinder The cylinder of radius $R, x^2 + y^2 = R^2$ has the parametrisation

$$\phi(\theta, z) = (R\cos\theta, R\sin\theta, z), \qquad 0 \le \theta \le 2\pi, z \in \mathbb{R}.$$

Sphere The sphere of radius $R, x^2 + y^2 + z^2 = R^2$ has the parametrisation

$$\Phi(\theta,\phi) = (R\cos\theta\sin\phi, R\sin\theta\sin\phi, R\cos\phi), \qquad 0 \le \theta \le 2\pi, \ 0 \le \phi \le \pi.$$

10.2 Surface Area

In the rest of this section, we consider smooth parametrised surfaces and also piecewise smooth parametrised surfaces.

Area of a Surface Let $\Phi(u, v)$ be parametrisation of a smooth surface S with parameter domain D. The area of the surface S is

$$Area(S) = \iint_D ||\mathbf{T}_u \times \mathbf{T}_v|| \, du \, dv.$$

Sometimes we write

$$||\mathbf{n}(u,v)|| = ||\mathbf{T}_u \times \mathbf{T}_v||.$$

Note that this $\mathbf{n}(u,v)$ is not necessarily a unit vector and neither are the tangent vectors.

10.3 Surface Integral

Let $\Phi(u, v)$ be a parametrisation of a smooth parametrised surface S with parameter domain D. The surface integral of f over S is

$$\begin{split} &\iint_{S} f(x, y, z) \, dS \\ &= \iint_{D} f(\Phi(u, v)) || \mathbf{T}_{\mathbf{u}} \times \mathbf{T}_{\mathbf{v}} || \, du dv \\ &= \iint_{D} f(\Phi(u, v)) || \mathbf{n}(u, v) || \, du dv. \end{split}$$

If S is piecewise smooth parameterised surface S which are made up of finitely many smooth surface S_i , i = 1, ..., m, then, the surface integral of f over S is

$$\iint_{S} f(x, y, z) \, dS = \sum_{i=1}^{m} \iint_{S_{i}} f(x, y, z) \, dS.$$

10.4 Surface Integrals of Vector-Valued Functions

The surface integral of a vector field \mathbf{F} over an oriented smooth parameterised surface S is defined as

$$\iint_{S} \mathbf{F} \cdot dS = \iint_{S} (\mathbf{F} \cdot \hat{\mathbf{n}}) \, dS.$$

More generally, for a piecewise smooth parametrised surface S formed by finite union of oriented smooth surfaces S_i , i = 1, ..., m, then

$$\iint_{S} \mathbf{F} \cdot dS = \sum_{i=1}^{m} \iint_{S_{i}} \mathbf{F} \cdot dS.$$

If S is a smooth parametrised oriented surface and Φ parameterises the surface S (i.e., $\hat{\mathbf{n}}$ in the normal direction specificed by the orientation of S) then,

$$\iint_{S} \mathbf{F} \cdot dS = \iint_{S} (\mathbf{F} \cdot \hat{\mathbf{n}}) dS$$

$$= \iint_{D} \left(\mathbf{F}(\Phi(u, v)) \cdot \frac{\mathbf{T_{u}} \times \mathbf{T_{v}}}{||\mathbf{T_{u}} \times \mathbf{T_{v}}||} \right) ||\mathbf{T_{u}} \times \mathbf{T_{v}}|| dudv$$

$$= \iint_{D} \mathbf{F}(\Phi(u, v)) \cdot (\mathbf{T_{u}} \times \mathbf{T_{v}}) dudv$$

11 Integral Theorems

11.1 Stokes Theorem

Stokes theorem gives the relationship between a surface integral over a surface S and a linear integral around the boundary curve of S.

Let S be a smooth oriented surface defined by a one-to-one parametrisation $\Phi: D \subset \mathbb{R}^2 \to S$, where D is a region to which Green's theorem applies. Let ∂S denote the oriented boundary of S and let \mathbf{F} be a C^1 vector field on S. Then

$$\iint_{S} (\nabla \times F) \cdot dS = \int_{\partial S} F \cdot ds.$$

11.2 (Gauss) Divergence Theorem

The divergence theorem gives the relationship between a triple integral over a region W and a surface integral over its boundary surface S.

Let $W \subseteq \mathbb{R}^3$ be a bounded, solid and simple region, and let \mathbf{F} be a vector field in \mathbb{R}^3 which is continuously differentiable on W. Let S be the boundary of W which is a piece-wise smooth parameterised surface formed by a finite union of oriented smooth surfaces (say S_i). Then, the outward flux of \mathbf{F} across the surface S equals the triple integral of divergence div \mathbf{F} over W, that is

$$\iint_{S} \mathbf{F} \cdot dS = \iiint_{W} \mathbf{\nabla} \cdot \mathbf{F} \, dV$$

where $\iint_S \mathbf{F} \cdot dS = \sum \iint_{S_i} \mathbf{F} \cdot dS$ and the surface are oriented such that the normal vector points outwards.