Graph and Network Theory

Weighted tree

A rooted tree is called a weighted tree if each leaf is assigned to a nonnegative number called a weight of leaf.

Let T be a rooted tree with t leaves with the weights $w_1, w_2, ..., w_t$, let $I_1, I_2, ..., I_t$ denote the levels of corresponding leaves. A weight of T is a value

$$W(T) := \sum_{i=1}^t w_i I_i$$

So, for T_1 we have

$$W(T_1) = 7 \cdot 1 + 3 \cdot 2 + 4 \cdot 2 + 5 \cdot 2 + 1 \cdot 3 + 2 \cdot 3 = 7 + 6 + 8 + 10 + 3 + 6 = 40$$

Optimal rooted tree

The weight $W(T_1)$ is smaller than $W(T_2)$, because **heavier** leaves are closer to the root.

Let $\{w_1, w_2, ..., w_n\}$ be a list of nonnegative numbers and let T be a rooted tree with n leaves. A tree T is called **minimal (optimal) tree** with the weights $\{w_1, w_2, ..., w_n\}$, if the above weights are assigned to leaves in such a way that the number W(T) is minimal.

Huffman algorithm

```
Inputs: L — the list of t nodes with the weights \{w_1, ..., w_t\}, (t > 2)
Outputs: optimal tree T(L)
HUFFMAN(L)
1 n \leftarrow |L|
2 Q \leftarrow L
3 for i \leftarrow 1 to n-1
4
          do allocate a new node z
5
              z.left \leftarrow x \leftarrow \mathsf{EXTRACT}-MIN(L)
              z.right \leftarrow y \leftarrow \mathsf{EXTRACT-MIN}(L)
6
              w[z] \leftarrow w[x] + w[y]
              INSERT(L, z)
                                     {1, 3, 4, 6, 9, 13}
```

$$L = \{1, 3, 4, 6, 9, 13\}$$

$$L = \left\{ 1, 3, 4, 6, 9, 13 \right\}$$

$$\left\{ \frac{1+3}{4}, 4, 6, 9, 13 \right\}$$

$$L = \{1, 3, 4, 6, 9, 13\}$$
$${ \begin{cases} 1+3\\4, 4, 6, 9, 13 \end{cases}}$$
$${ \begin{cases} 4+4\\8, 6, 9, 13 \end{cases}}$$

$$L = \{1, 3, 4, 6, 9, 13\}$$

$${1+3 \atop 4}, 4, 6, 9, 13$$

$${4+4 \atop 8}, 6, 9, 13$$

$${6+8 \atop 14}, 9, 13$$

$$L = \{1, 3, 4, 6, 9, 13\}$$

$${1+3 \atop 4}, 4, 6, 9, 13\}$$

$${8+4 \atop 8}, 6, 9, 13\}$$

$${6+8 \atop 14}, 9, 13\}$$

$${14, 9+13 \atop 22}$$

 We build lists T(L'), which are formed from the list L by removing the two smallest weights and attaching the sum of these weights.

$$L = \{1, 3, 4, 6, 9, 13\}$$

$${1+3 \atop 4, 4, 6, 9, 13}$$

$${8+4 \atop 8, 6, 9, 13}$$

$${6+8 \atop 14, 9, 13}$$

$${14, \frac{9+13}{22}}$$

• We build lists T(L'), which are formed from the list L by removing the two smallest weights and attaching the sum of these weights.

$$L = \{1, 3, 4, 6, 9, 13\}$$

$${1+3 \atop 4, 4, 6, 9, 13}$$

$${8+4 \atop 8, 6, 9, 13}$$

$${6+8 \atop 14, 9, 13}$$

$${14, \frac{9+13}{22}}$$

 We build lists T(L'), which are formed from the list L by removing the two smallest weights and attaching the sum of these weights.

$$L = \{1, 3, 4, 6, 9, 13\}$$

$${1+3 \atop 4, 4, 6, 9, 13}$$

$${8+4 \atop 8, 6, 9, 13}$$

$${6+8 \atop 14, 9, 13}$$

$${14, \frac{9+13}{22}}$$

 We build lists T(L'), which are formed from the list L by removing the two smallest weights and attaching the sum of these weights.

$$L = \{1,3,4,6,9,13\}$$

$${1+3 \atop 4,4,6,9,13}$$

$${8+4 \atop 8,6,9,13}$$

$${6+8 \atop 14,9,13}$$

$${14, \frac{9+13}{22}}$$

 We build lists T(L'), which are formed from the list L by removing the two smallest weights and attaching the sum of these weights.

 We build lists T(L'), which are formed from the list L by removing the two smallest weights and attaching the sum of these weights.

$$L = \{1, 3, 4, 6, 9, 13\}$$

$${1+3 \atop 4}, 4, 6, 9, 13$$

$${8+4 \atop 8}, 6, 9, 13$$

$${6+8 \atop 14}, 9, 13$$

$${14, 22}$$

Coding problem

How to code the word **ABRAKADABRA** using binary codes (each letter has its unique binary code)?

- Suppose first that we use codes with of the same length for each letter.
- We have 5 different letters (A,B,R,C,D), so we need 5 different binary codes
- Thus the minimal length of the code will be 3 (for 2-bits binary codes we have only 2² different codes).
- Consequently the length of the word ABRACADABRA will be $3 \times 11 = 33$.

1	0	0	0	0	0	1	1	0	1	0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	0	0	1	1	0	1	0	0	0
	Α		В		R			Α		С		Α			D			Α			В			R			Α						

Coding problem

- Too long code!
- Better idea?
- Use code of variable length! More frequent letter shorter code!
- How to know where one code ends and where next starts when they have variable lengths?
- Solution: Prefix codes!

Prefix coding

Prefix coding is a kind of coding of the set of words which has the "prefix property" i.e. there is no whole code word in the system that is a prefix (initial segment) of any other code word in the system.

Example

With binary coding the following codes

01001 1001

have the prefix property

01001 010

do not have the prefix property.

Prefix coding

Code the word ABRACADABRA

Hint 1: Note that prefix codes can be generated using binary three. Codes will be connected with leaves. When you go down from the root to the left and you turn left — you have 1, otherwise — 0.

Hint 2: The length of the code is the level of the leaf.

Unlabeled trees

Let n be a number of vertices in a tree.

Labeled trees

Let n be the number of vertices of a tree.

16 tree

Caley's theorem on a number of labeled trees.

This theorem was fromulated by Arthur Caley in XIXth century. The proof uses Prüfer's sequences (1918).

Theorem

For every positive integer n, the number of trees with n labeled vertices is n^{n-2} .

Caley's theorem on a number of labeled trees.

This theorem was fromulated by Arthur Caley in XIXth century. The proof uses Prüfer's sequences (1918).

Theorem

For every positive integer n, the number of trees with n labeled vertices is n^{n-2} .

Proof. We shall show bijective correspondence between the set of labeled trees with n vertices and all sequences $(a_1, a_2, ..., a_{n-2})$, where a_i is a natural number and $1 \le a_i \le n$. Since the number of such sequences is n^{n-2} the proof is completed. \blacksquare

Prüfer's coding algorithm

```
Inputs: a labeled tree T with n vertices
```

Output: Prüfer's code in the form of sequence $(a_1, a_2, ..., a_{n-2})$, uniquely assigned to the tree T.

```
Prüfer's Code (T)
     if (n=2)
         then
                return the empty code
 4
         else
                i \leftarrow 0
                T_0 \leftarrow T
 6
               while (T_i \neq K_2)
                     do
 9
                         v the smallest number assigned to the leaf in tree T_i
10
                         a_{i+1} \leftarrow a vertex incident to v in tree T_i
11
                         T_{i+1} \leftarrow T_i - \{v\}
                         i \leftarrow i + 1
12
```

Prüfer's code

For the tree

Prüfer's code is of the form

Prüfer's code

For the tree

Prüfer's code is of the form

- Prüfer's code does not contain any leaf label .
- Each vertex v of the T tree appears in the Prüfer's code exactly deg(v) 1 times.

Prüfer's algorithm

For every Prüfer's sequence it is possible to assign uniquely a tree.

```
Inputs: A Prüfer's sequence d = (a_1, a_2, ..., a_{n-2})
Outputs: A labeled tree T with n vertices.
```

```
Prüfer's(d)method
```

```
draw the set of n vertices and put the labels v_1, v_2, ..., v_n
 2 S \leftarrow \{v_1, v_2, ..., v_n\}
 3 \quad i \leftarrow 0
 4 d_0 \leftarrow d
 5 S_0 \leftarrow S
 6 while (d_i \neq \emptyset)
              dο
                  j \leftarrow min\{k : v_k \in S_i \text{ oraz } k \notin d_i\}
                  draw the edge \{v_i, v_{a_{i+1}}\}
10
                  d_{i+1} \leftarrow d_i - \{a_{i+1}\}
                  S_{i+1} \leftarrow S_i - \{v_i\}
11
12
                 i \leftarrow i + 1
13
      draw the edge between others points of he set S_i
```

Thank you for your attention!!!