ДУ

Никита Латушкин

23 декабря 2021 г.

1 ОДУ первого порядка в нормальной форме, координатная запись. Связь между автономным и неавтономным ОДУ. Решение

ОДУ 1-ого порядка в нормальной форме называется соотношение вида $\dot{x} = f(t, x(t))$ (1.1)

где $t \in R$ – независимая переменная (в дальнейшем – время);

 $x:I\to R^n$ – неизвестная функция, определённая на промежутке $I\subset R$ со значениями $R^n;\,f:D\to R^n$ – заданное отображение множества D прямого произведения $R\times R^n$ в $R^n;$

точка – оператор дифференцирования по
t $(\dot{x}=\frac{dx}{dt})$

Если правая часть ДУ явно не зависит от t, то есть принимает вид $\dot{x} = f(x(t))$

то ДУ называется автономным.

Если же хотя бы одна компонента вектор-функции f явно зависит от t, то ДУ называется **неавтономным**.

 $\dot{x} = x(x(t))$ не является ДУ в нормальной форме

Множество D, на котором определена функция f, называется множеством задания (определения) ОДУ

Если в векторном пространстве R^n ввести базис $(\nu_1, \nu_2, \dots, \nu_n)$, то подробнее векторное ДУ (1.1) можно записать в виде дифференциальной системы (ДС)

$$\dot{x}_i = f_i(t, x_1, x_2, \dots, x_n), i = \overline{1, n}$$
 (1.1")

Действительно, так как

$$\dot{x} = \dot{x_1}\nu_1 + \dot{x_2}\nu_2 + \dots + \dot{x_n}\nu_n = f_1(t, x_1, x_2, \dots, x_n)\nu_1 + f_2(t, x_1, x_2, \dots, x_n)\nu_2 + \dots + f_n(t, x_1, x_2, \dots, x_n)\nu_n, \text{ to } (\dot{x_1} - f_1)\nu_1 + (\dot{x_2} - f_2)\nu_2 + \dots + (\dot{x_n} - f_n)\nu_n = 0,$$

что в силу линейной независимости базисных векторов и приводит к системе (1.1")

Оказывается, что каждому неавтономному ДУ всегда можно поставить в соответствие автономную систему, вводя специальным образом новую переменную, а именно:

$$\begin{cases} \frac{dx}{d\tau} = f(t, x) \\ \frac{dt}{d\tau} = 1 \end{cases}$$

Решением (в явном виде) ОДУ (1.1) с непрерывной правой частью f(t,x), определённым на промежутке $I=|a,b|\in R$, называется дифференцируемое на I отображение $\phi: I \to \mathbb{R}^n$, график которого лежит в D

$$\dot{\phi}(t) = f(y,\phi(t)) \; \forall t \in I$$
 или $\dot{\phi}(t) \equiv f(t,\phi(t))$

Из непрерывности f и определения решения следует, что $\dot{\phi}$ непрерывна на I.

Например, решением скалярного ДУ

$$\dot{x} = 2tx$$

которое определено в области $D=R\times R$, является функция $\phi:t\to$

Эта функция определена и непрерывно дифференцируема на R, её график лежит в области $D = R^2$ и $\frac{d}{dt}(e^{t^2}) = e^{t^2}2t = 2te^{t^2} \ \forall t \in R$

$$\frac{d}{dt}(e^{t^2}) = e^{t^2} 2t = 2te^{t^2} \ \forall t \in R$$

В случае уравнения

$$\dot{x} = 2\sqrt{x}$$

где $D=R\times R_0^+(R_0^+=[0;+\infty)),$ можно убедиться, что решениями здесь являются функции $x(t)=t^2, t\in R_0^+$ и $x(t)\equiv 0$

Также из двух указанных выше решений последнего ДУ можно составить так называемое **склеенное** (составное) решение. Например, решение, полученное склейкой $(-\infty;0]$ и оси t и полупараболы $x(t)=t^2,$ $t\in R_0^+$

Процесс нахождения решения ДУ называется интегрированием.

2 Интегральная кривая ОДУ первого порядка в нормальной форме. Траектория. Начальные данные решений. Условия существования решений. Условия единственности решений, особые решения. Задача Коши

Интегральной кривой, или движением ОДУ наывается график решения ОДУ.

Фазовой кривой, или траекторией ОДУ называется множество значений $\phi(t),\ t\in I,$ то есть монжество $\phi(I)\subset R^n,$ где $\phi:I\to R^n$ – решение ОДУ.

Решение $\phi:I\to R^n$ ОДУ **имеет начальные данные** $t_0,x_0,$ если отображение ϕ удовлетворяет условию

$$\phi(t_0)=x_0, x_0=(x_1^0, x_2^0, \dots, x_n^0)$$
 которое называется **начальным условием**

ОДУ удовлетворяет условиям существования решений, если для любой точки $(t_0,x_0)\in D$ существуют $\delta>0$ и отображение $\phi_\delta:I_\delta\to R^n,$ $(I_\delta=\{t||t-t_0|<\delta\}),$ являющееся решением ОДУ, удовлетворяющим начальному условию t_0,x_0

ОДУ удовлетворяет условию единственности решений, если для любых двух решений $\phi_1: I_1 \to R^n$ и $\phi_2: I_2 \to R^n$ из равенства $\phi_1(t_1) = \phi_2(t_1), t_1 \in (I_1 \cap I_2)$ следует, что $\phi_1(t) = \phi_2(t) \ \forall t \in (I_1 \cap I_2)$

Задача Коши, или начальная задача для ОДУ ставится следующим образом: требуется среди всего множества решений ОДУ найти решение $\phi: I \to R^n$, имеющее наперёд заданные данные t_0, x_0

Другими словами, задача Коши состоит в построении отображения $\phi: I \to R^n$, удовлетворяющего двум условиям:

$$\begin{cases} \dot{x} = f(t, x) \\ x(t_0) = x_0, \end{cases}$$

Геометрически задача Коши состоит в нахождении интегральной кривой, проходящей через точку (t_0, x_0) .

Если рассмотреть, например, начальную задачу

$$\begin{cases} \dot{x} = f(t, x) \\ x(t_0) = x_0, \end{cases}$$

с непрерывной на (a,b) функцией f, то решением этой задачи, причём единственным, будет функция ϕ , заданная равенством:

$$\phi(t) = x_0 + \int_{t_0}^t f(\tau)d\tau$$

Геометрическая интерпретация ОДУ пер-3 вого порядка в нормальной форме

Чтобы выяснить геометрический смысл ОДУ, запишем систему (1.1") (см. 1)) в так называемой симметрической форме

$$\frac{dt}{1} = \frac{dx_1}{f_1(t,x_1,x_2,...,x_n)} = \frac{dx_2}{f_2(t,x_1,x_2,...,x_n)} = \cdots = \frac{dx_n}{f_n(t,x_1,x_2,...,x_n)}$$
 А тогда если отображение $\phi = (\phi_1,\phi_2,\ldots,\phi_n)$ является решением за-

дачи Коши

$$\begin{cases} \frac{dx_i}{dt} = f_i(t, x_1, x_2, \dots, x_n), i = \overline{1, n} \\ x_1(t_0) = x_{10}, \\ x_2(t_0) = x_{20}, \\ \dots \\ x_n(t_0) = x_{n0}, \end{cases}$$

то касательная к графику отображения ϕ (к интегральной кривой) задаётся системой:

$$\frac{dt}{1} = \frac{d\phi_1}{f_1(t_0, x_{10}, x_{20}, \dots, x_{n0})} = \frac{d\phi_2}{f_2(t_0, x_{10}, x_{20}, \dots, x_{n0})} = \dots = \frac{d\phi_n}{f_n(t_0, x_{10}, x_{20}, \dots, x_{n0})}$$

причём отрезок поля направлений, связанный с указанной точкой, будет, очевидно, отрезком этой касательной.

Таким образом, интегральная кривая уравнения обладает тем свойством, что в каждой её точке направление касательной совпадает с направлением поля, которое задаёт уравнение в соответствующей точке.

Это свойство и определяет геометрический смысл ОДУ: направление касательной к интегральной кривой ОДУ в точке М совпадает с направлением поля, которое задаёт ОДУ в этой точке М

Изоклины. Линия точек перегиба. Теорема 4 о точке перегиба интегральной кривой

Кривая, в каждой точке которой наклон поля, определяемый ДУ, один и тот же, называется изоклиной ДУ.

Семейство изоклин ДУ (если они существуют) задаётся уравнением f(t,x) = k

где k – переменный параметр.

Знание изоклин иногда может дать полное представление о поведении интегральных кривых ДУ, даже не интегрируя. Например, для ДУ

$$\dot{x} = \sqrt{t^2 + x^2}$$

семейство изоклин задатся уравнением $\sqrt{t^2+x^2}=k$ или $t^2+x^2=k^2$ Таким образом, изоклинами для нашего ДУ, при $k \neq 0$, являются концентрические окружности с центром в начале координат O(0;0) (при k=0 изоклиной является точка (0;0))

Кривая, в точках которой интергальные кривые ДУ имеют перегиб, называется линией точек перегиба.

Теорема (о точке перегиба интегральной кривой):

Пусть точка $(t_0, \phi(t_0))$ – точка перегиба интегральной кривой, соответствующей решению $\phi:I\to R$ ДУ. Тогда если функция f непрерывно дифференцируема, то точка $(t_0, \phi(t_0))$ является точкой касания интегральной кривой с изоклиной.

Доказательство:

Т.к. $\phi: I \to R$ – решение ДУ, то $\dot{\phi}(t) \equiv f(t, \phi(t))$, значит

$$\ddot{\phi}(t) \equiv \frac{\partial f(t,\phi(t))}{\partial t} + \frac{\partial f(t,\phi(t))}{\partial \phi(t)} \cdot \frac{d\phi(t)}{dt}$$

 $\ddot{\phi}(t)\equiv rac{\partial f(t,\phi(t))}{\partial t}+rac{\partial f(t,\phi(t))}{\partial \phi(t)}\cdotrac{d\phi(t)}{dt}$ В точке перегиба графика функции ϕ значение её второй производной равно нулю, поэтому

$$rac{\partial f(t_0,\phi(t_0))}{\partial t}+rac{\partial f(t_0,\phi(t_0))}{\partial \phi(t)}\cdotrac{d\phi(t_0)}{dt}=0$$
 Значит

$$\frac{d\phi(t_0)}{dt} = -\frac{\partial f(t_0,\phi(t_0))}{\partial t} / \frac{\partial f(t_0,\phi(t_0))}{\partial \phi(t)}$$

 $\frac{d\phi(t_0)}{dt}=-\frac{\partial f(t_0,\phi(t_0))}{\partial t}/\frac{\partial f(t_0,\phi(t_0))}{\partial \phi(t)}$ С другой стороны, дифференцируя соотношение $f(t,\phi(t))=k$ (определяющее семейство изоклин) по t, имеем равенство:

$$\frac{\partial f(t_0,\phi(t_0))}{\partial t} + \frac{\partial f(t_0,\phi(t_0))}{\partial \phi(t)} \cdot \frac{d\phi(t_0)}{dt} = 0,$$

из которого получаем уже найденное выше значение для производной $\frac{d\phi(t_0)}{dt},$ а это и доказывает теорему.

5 Геометрический метод Бродецкого

Указанный метод позволяет, не решая ДУ, выяснить характер поведения интегральных кривых указанного уравнения, если удастся построить кривую L_p и кривую I_0 , заданную уравнением f(t,x) = 0.

Так, если кривая I_0 не является интегральной кривой, то её точки – это чтоки экстремума интегральных кривых. А тогда кривые L_p и I_0 разбивают область определения ДУ на такиие подобласти, в каждой из которых первая и вторая производные решения имеют определённые знаки. В каждом конкретном случае эти области и необходимо установить. Сделав это, мы сможем получить представление о характере поведения интегральных кривых ДУ.

Пример

Рассотрим ДУ:

$$\dot{x} = t + x$$

Область его определения – вся плоскость tOx. Очевидно, что кривая $I_0: x=-t$, интегральной кривой не является, а кривая $L_p: x=-t-1$ является интегральной кривой, но не является линией точек перегиба.

Прямые L_p и I_0 разбивают плоскость tOx на 3 подобласти:

$$S_1(\dot{x}>0,\ddot{x}>0)$$
 – справа от I_0 $S_2(\dot{x}<0,\ddot{x}>0)$ –между I_0 и L_p $S_3(\dot{x}<0,\ddot{x}<0)$ – слева от L_p

На кривой I_0 расположены точки минимумов интегральных кривых. Справа от I_0 интегральные кривые поднимаются вверх, слева — опускаются вниз, если смотреть слева направо. Точек перегиба нет. Справ от L_p интегральные кривые вогнуты вверх, слева — вогнуты вниз.

В рассмотренной примере интегральная кривая L_p является своего рода "разделительной" кривой — она отделяет одно семейство решений от другого. Такие линии называют **сепаратрисами**.

6 Интегрирование в широком и узком смысле

Наряду с ДУ $\frac{dx}{dt} = f(t,x)$ (1), естественно рассмотреть "перевёрнутое" ДУ $\frac{dt}{dx} = \frac{1}{f(t,x)}$ (2). Эти ДУ эквивалентны, если их правые части определены в каждой точке некоторой области D, в том смысле, что если отображение $\phi: I \to R$ является решением ДУ (1), то обратное отображение ϕ^{-1} будет решением ДУ (2), а значит у них будут общие интегральные кривые.

Если же в некоторых точках области D хотя бы одно из ДУ теряет смысла, то тогда имеют место 2 подхода к понятию интегрирования ДУ: **интегрирование в широком смысле** и **интегрирование в узком смысле**.

- 7 Интегрирование в окрестности особой точки
- 8 Простейшие и автономные скалярные ОДУ первого порядка в нормальной форме
- 9 ОДУ первого порядка с разделяющимися переменными
- 10 Одонородные скалярные ОДУ первого порядка. Теорема
- 11 Линейные скалярные ОДУ первого порядка. Методы их решений и свойства

- 12 Уравнения Риккати и их свойства. Специальное уравнение Риккати и его свойства
- 13 Уравнение в полных дифференциалах. Критерий уравнения в полных дифференциалах
- 14 Интегрирующий множитель $\mu=\mu(t)$
- 15 Интегрирующий множитель $\mu = \mu(x)$
- 16 Интегрирующий множитель $\mu = \mu(\omega(t,x))$
- 17 Условие Липшица. Теорема. Связь между условием Липшица, непрерывностью и существованием ограниченной производной
- 18 Лемма об эквивалентности решения начальной задачи и соответствующего интегрального уравнения
- 19 Теорема Пикара-Линделёфа и её геометрическая интерпретация
- 20 Приближения Пикара и их геометрический смысл. Ряд Пикара
- 21 Теорема Пикара-Линделёфа для линейных ОДУ. Теорема Пеано
- 22 Продолжимость решений. Примеры
- 23 Точки ветвления. Огибающее решение. С-

- 24 Первые интегралы. Геометрическая интерпретация первых интегралов
- 25 Аналитический критерий первого интеграла
- 26 Теорема о неединственности первого интеграла
- 27 Теорема об интегрируемой комбинации
- 28 Закон сохранения энергии
- 29 **Функционально независимые отображения.** Критерий функциональной независимости первых интегралов
- 30 Теорема о максимальном числе функционально независимых первых интегралов
- 31 Связь между линейными и функционально независимыми отображениями. Базис первых интегралов. Теорема о связи базиса первых интегралов с существованием и единственностью решений ОДУ первого порядка
- 32 Редукция ОДУ в нормальной форме
- 33 Теорема о существовании интегрирующего множителя 10
- 34 Теорема о неединственности интегрирующего множителя
- 35 Теорема об общем виде интгерирующего

- 36 Метод нахождения интергирующего множителя, основанный на теореме об общем виде интгерирующего множителя
- 37 Системы ОДУ первого порядка в симметрической форме. Свойство ряда равных отношений. Связь системы в симметрической форме с неавтономной системой ОДУ
- 38 Теорема о числе стационарных функционально независимых первых интегралов автономных дифференциальных систем
- 39 Линейные однородные уравнения в частных производных первого порядка. Две теоремы о связи решений линейного однородного ДУ в частных производных первого порядка и интегралов соответствующих систем в симметрической форме
- 40 Теорема о множестве решений линейных однородных ДУ в частных производных первого порядка. Понятие полного семейства решений линейных однородных ДУ в частных производных первого порядка
- 41 Задача Коши для линейного однородного ДУ в частных производных первого порядка. Алгоритм решения задачи Коши

- 42 Линейные неоднородные ДУ в частных производных первого порядка и их связь с линейными однородными ДУ в частных производных первого порядка
- 43 Задача Коши для линейного неоднородного ДУ в частных производных первого порядка. Алгоритм решения задачи Коши
- 44 Лемма Гронволла. Теорема об оценке расхождения решений
- 45 Непрерывная зависимость от начальных данных. Теорема
- 46 Непрерывная зависимость решений от параметра. Теорема
- 47 Скалярные ОДУ первого порядка в общей форме. Теорема о существовании и единственности решений
- 48 **Р-дискриминантная кривая**. Ветвление интегральных кривых
- 49 Методы решения скалярных ОДУ первого порядка в общей форме
- 50 Уравнение Лагранжа
- 51 Уравнение Клеро. С-семейство решений, особые решения
- 52 Скалярные ОДУ п-ого порядка и их связь