SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE

Fakulta informatiky a informačných technológií Ilkovičova 2, 842 16 Bratislava 4

Zadanie č. 1 - SIP Proxy (telefónna ústredňa)

MOBILNÉ TECHNOLÓGIE A APLIKÁCIE

Róbert Junas

FIIT STU

Cvičenie: streda 12:00

1.3.2022

1. Implementácia

1.1. Použité knižnice

Použili sme UDP implementáciu SIP proxy servera, ktorá bola vytvorená pre python 2.X od THIRION Philippe – presnejšie repozitár PySipFullProxy a súbor sipfullproxy.py (https://github.com/tirfil/PySipFullProxy)

1.2. Naša doimplemetácia

Na našu implementáciu sme sa rozhodli v jazyku python verzie 3.10.0 64-bit. Kvôli tomu, že knižnica bola implementovaná pre starú verziu python-u, tak sme nad ňou vykonali potrebné úpravy. Ako napr. funkcia dict.has_key(key) nie je podporovaná v 3.X, náhradou je key in dict alebo funckia string.join(list,str) nie je podporovaná. Namiesto nej sa používa str.join(list). Ďalej socketserver (pôvodne SocketServer —> bol nahradený socketserver) nepodporuje posielanie obyčajných reťazcov, ale musia byť správne zakódované a odkódované. Ďalej pôvodná implementácia nepovoľuje adresy zo súkromných sieti 10.0.0.0 a 192.168.0.0, táto podmienka bola odstránená.

Implantovali sme SIPCodeInjector.py, ktorý mení text kódov, ktoré si nastavujeme pri konfigurácií servera. Linphone je implementovaný tak, že spracováva iba kódy a vypíše text, ktorý má sám implementovaný pre 486 to je "<ciel> is busy", teda nezobrazí upravený text kódu. Za to Zoiper ukáže upravený text.

Implementovali sme vlastný logger – myLogger.py, ktorý vypisuje registrácie, kedy bol, ktorý INVITE poslaný a odmietnutý alebo prijatý. Ak bol prijatý, tak kedy bol hovor položený. Príklad nášho výstupu je v example.log vyzerá nasledovne:

```
>> Logging

02/27/2022, 11:13:47 >> [ REGISTER: 231234@192.168.1.16 ]

02/27/2022, 11:14:04 >> [ REGISTER: 1234@192.168.1.16 ]

02/27/2022, 11:14:05 >> [ REGISTER: 1234@192.168.1.16 ]

02/27/2022, 11:14:05 >> [ REGISTER: 1234@192.168.1.16 ]

02/27/2022, 11:14:20 >> [ REGISTER: 1234@192.168.1.16 ]

02/27/2022, 11:14:26 >> wJ5LSnFtWm >> [ INVITE: 231234@192.168.1.16 >>> 1234@192.168.1.16 ]

02/27/2022, 11:14:31 >> wJ5LSnFtWm >> [ 200: hovor bol zodvihnuty: 231234@192.168.1.16 <>>> 1234@192.168.1.16 ]

02/27/2022, 11:15:03 >> wJ5LSnFtWm >> [ BYE: Hovor bol ukonceny: 1234@192.168.1.16 >>> 231234@192.168.1.16 ]
```

Posledné sme implementovali Wrapper.py, ktorý obaľuje všetky potrebné veci na spustenie servera do jedného súboru – sipfullproxy.py, SIPCodeInjector.py a myLogger.py. Obsahuje triedu s dvomi funkciami __init__(...) - na inicializáciu potrebných dát a funkcia start() na zapnutie servera.

Tento wrapper sa potom spúšťa cez main.py, kde sú umiestnené aj niektoré konfiguračné premenné ako port, adresa hosta a texty kódov. Program sa spustí pomocou príkazu py main.py v priečinku kde je súbor main.py.

Odkaz na git repozitár: https://github.com/RobJun/Ustredna

2. Komunikácie

2.1. Registrácia

V pcape registracia.pcapng sa pripojili 3 účty na server, pričom jeden poslal požiadavku na registráciu 2x za sebou.

No.	Time	Source	Destination	Protocol	Length Info
Г	1 0.000000	192.168.1.2	192.168.1.16	SIP	699 Request: REGISTER sip:192.168.1.16 (1 binding)
L	2 0.002438	192.168.1.16	192.168.1.2	SIP	718 Status: 200 0K (1 binding)
	3 16.391829	192.168.1.25	192.168.1.16	SIP	649 Request: REGISTER sip:192.168.1.16 (1 binding)
	4 16.392284	192.168.1.25	192.168.1.16	SIP	649 Request: REGISTER sip:192.168.1.16 (1 binding)
	5 16.394182	192.168.1.16	192.168.1.25	SIP	669 Status: 200 0K (1 binding)
	6 16.396606	192.168.1.16	192.168.1.25	SIP	669 Status: 200 0K (1 binding)
	7 30.094925	192.168.1.16	192.168.1.16	SIP	700 Request: REGISTER sip:192.168.1.16 (1 binding)
	8 30.096206	192.168.1.16	192.168.1.16	SIP	720 Status: 200 0K (1 binding)

Obrázok 1 Úspešná registrácia v Linphone

2.2. Vytočenie hovoru a zvonenie

Vytočenie a zvonenie je v pcap-e vytocenie.pcap, kde je vidieť poslanie INVITE requestu serveru, ktorý prepošle INVITE cieľovému klientovi, ktorý pošle Trying a Ringing rámce, ktoré server pošle zdrojovému klientovi.

2.3. Prijatie hovoru

Prijatie hovoru je v pcap súbore prijatie Hovoru pcapng. Súbor obsahuje 2 hovory – jeden medzi dvoma zariadeniami a serverom (obrázok 2.) a medzi serverom, na ktorom beží aj klient a iným klientom (obrázok 3.). Dôvod prečo používame dva hovory je, že keď server aj klient beží na rovnakom zariadení, tak ich server zlúči do jedného. Pri dvoch zariadeniach a servery zase nie je možné vidieť RTP komunikáciu.

Obrázok 2 prijatie hovoru 1.

Obrázok 3 Prijatie hovoru 2.

2.4. Ukončenie hovoru

V pcap-e neprijateHovory.pcapng sa nachádzajú ukončenia hovorov, kde zdroj po zodvihnutí zruší hovor, cieľ po zodvihnutí zruší hovor, cieľ ukonči hovor pred zodvihnutím, ciel nezodvihne a zdroj zruší pred zodvihnutím.

Róbert Junas 102970

Poznámka: Každá aplikácia má svoje vlastné špecifikácie a čo robia, napr. Zoiper pri zrušení hovoru pred zodvihnutím pošle kód 486, ale Linphone pošle 486, len vtedy, ak sa telefonát nezodvihne, ale ak sa zruší pošle kód 603.

2.5. Presmerovanie

Presmerovanie je v presmerovanie.pcapng, kde jedno zariadenie presmeruje hovor na iné zariadenie pomocou REFER požiadavky.

2.6. Videohovor

Videohovor.pcapng obsahuje rámce sip komunikácie pri zapnutí videohovoru medzi klientami. Ako je vidieť, posielajú sa dva INVITE požiadavky s tým, že na začiatku klienti volajú pomocou audia a ďalší INVITE obsahuje dáta o audiu a aj o videu.

2.7. Konferenčný telefón

Vykonané medzi 3 zariadeniami a serverom – pcap konferencia.pcapng. Zariadenia najprv volajú vo dvojici a keď tretie zariadenie zavolá druhému, tak druhé pozastaví telefonát s prvým a začne komunikovať s 3.. Potom druhé stlačí tlačidlo konferencie a iba odzastaví komunikáciu s prvým a zariadenia už komunikujú v konferenčnom režime.

