Analysis Module Documentation

Adam, Brandon Cann, Xin Wang $^{\rm 1}$

 $\begin{array}{c} {\rm May\ 12,\ 2020} \\ {\rm v1.0} \end{array}$

¹document compiled by Xin Wang

Contents

1	Intr	roduction	2	
2	Mod 2.1 2.2 2.3	Miffied Nodal Analysis Node Voltage Method	3 4 5	
3	Algorithm design for MNA			
	3.1	A matrix	6	
		3.1.1 A_a matrix	6	
		3.1.2 A_b matrix	7	
		3.1.3 A_c matrix	7	
		3.1.4 A_d matrix	7	
	3.2	x matrix	8	
		3.2.1 x_a matrix	8	
		3.2.2 x_b matrix	8	
	3.3	<i>b</i> matrix	8	
4	The	e use of Eigen library	9	
5	Imp	plementation	10	
	5.1	Analysis	10	
			10	
		5.1.2 SemanticCheck	11	
6	Mis	cellaneous	12	

1 Introduction

This document will research the theory of analysing a circuit and design the *Analyser* module. The *Analyser* module will create the matrices required to perform the nodal analysis and, using the matrices, perform a quick scan to ensure the circuit described is a practical circuit. As stated previous in the Netlist documentation, the netlist input format may be correct but the circuit is unrealistic e.g. a resistor is only connected on one end.

The initial stage is will be to implement a version of the software that supports basic components like resistors and voltage source. Support for capacitors and inductors, and non-linear components will be added at a later stage.

This document is primarily used for planning the most effective way to approach the problem as well as allowing fellow teammates to engage productively on a equal knowledge footing.

2 Modified Nodal Analysis

2.1 Node Voltage Method

Building from first principals, node voltage method is the foundational concept required to analyse a circuit but it is not easily converted into an algorithm. Modified Nodal Analysis seeks to establish an universal algorithm for solving a circuit.

- Establish a reference node (Ground)
- Name remaining nodes
- Name current through each voltage source
- Apply KCL at each node. Currents out of node is taken to be positive.
- Write equation and solve for unknowns

$$\begin{vmatrix} \frac{v_a}{R_1} - i_{v1} = 0 & \left[\frac{1}{R_1} & 0 & 0 & -1 & 0 \\ 0 & \frac{1}{R_2} + \frac{v_b}{R_2} - v_c = 0 & 0 & \frac{1}{R_2} + \frac{1}{R_3} & -\frac{1}{R_2} & 1 & 0 \\ 0 & -\frac{1}{R_2} & \frac{1}{R_2} & 0 & 1 \\ v_b - v_a = V_1 & 0 & 0 & 0 & 0 \\ v_c = V_2 & 0 & 0 & 1 & 0 & 0 \end{vmatrix} \begin{bmatrix} v_a \\ v_b \\ v_c \\ i_{v1} \\ i_{v2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ V_1 \\ V_2 \end{bmatrix}$$

Figure 1: Process of conversion of equations into a matrix [1]

2.2 Characteristics of the MNA matrix

All circuits when presented in matrix for, will always result in the form:

$$Ax = b$$

In the given example matrix¹:

Figure 2: Characteristics of Ax = b

The following characteristics will always hold:

- Matrix A
 - The highlighted part is size $[N \times N]$ and contains values of passive elements
 - The main diagonal is positive values only. Non-diagonal values are either 0 or negative.
 - If an element is grounded, it will appear along diagonal.
- Matrix x: Matrix of unknown quantities:
 - General dimension: $[(N+M)\times 1]$
 - Top N elements are simply node voltages
 - Bottom M elements are the currents related to voltage sources²
- Matrix b: Matrix containing known quantities:
 - General dimension: $[(N+M)\times 1]$
 - Top N elements are either 0 or sum of independent current sources
 - Bottom M elements are independent voltage sources

Solution is found by:

$$x = A^{-1}b$$

¹Red highlight is $[N \times N]$ and matrix is $[(N+M) \times (N+M)]$ where N is the nodes in the circuit and M is the number of independent sources.

²Dependent current and voltage sources have not been considered yet

2.3 Notations

The naming notation is the following:[1].

- Ground is labelled Node 0
- \bullet Each node is given a label starting from 1 to N
- Node voltage name: v_N
- \bullet Independent voltage sources: vname
- \bullet Independent voltage sources: iname

3 Algorithm design for MNA

Matrices need that need to be generated:

- A
- x
- *b*

3.1 A matrix

The A matrix has dimension $[(M+N)\times (M+N)]$ and is combined from four smaller matrices: A_a , A_b , A_c and A_d [1].

The respective matrices are defined as:

- A_a : $n \times n$ matrix Passive element connections
- A_b : $n \times m$ matrix Voltage source connections
- A_c : $m \times n$ matrix Similar to matrix A_b
- A_d : $m \times m$ matrix 0 if independent sources are considered

3.1.1 A_a matrix

- Size $N \times N$
- Each element in diagonal matrix is the conductance of each element connected to respective node
- Elements not on diagonal are negative conductances of the element connected to respective node.
- Non-grounded element will have one entry.
- $\bullet\,$ Non-grounded element will have four entries.

For example:

Figure 3: The relationship between diagonal and non-diagonal elements

3.1.2 A_b matrix

- Size $N \times M$
- Only 1, 0 and -1 entries
- Direction of voltage source matter. Negative terminal is -1 and positive terminal is 1.
- A grounded voltage source will have one entry.
- Non-grounded voltage source will have two entries.

The positive terminal of V1 in the above circuit is connected to node 2 as indicated in matrix element [1,2] where 1 is Vi and 2 is the node the terminal is connected to.

For example:

Figure 4: Matrix showing the direction of voltage sources

3.1.3 A_c matrix

- Size $M \times N$
- Usually the transpose of A_b
 - Not the case if dependent sources are involved.

3.1.4 A_d matrix

- Size $M \times M$
- \bullet Usually composed of 0
 - Not the case if dependent sources are involved.

$3.2 \quad x \text{ matrix}$

The x matrix has dimension $[N \times M]$ and is combined from two smaller matrices: x_a and x_b .

The respective matrices are defined as:

- x_a : $N \times 1$ Unknown node voltages
- x_b : $M \times 1$ Unknown currents through voltage sources

3.2.1 x_a matrix

The naming follows the notation set out earlier.

There is no entry for Ground (Node 0).

Figure 5: General notation of the x_a matrix

3.2.2 x_b matrix

Corresponds to the number of voltage sources. Example given in Figure 2.

3.3 b matrix

This matrix has dimension $[(N \times M)) \times 1]$ and contains the independent current and voltage sources.

The matrix is composed of two matrices: b_a and b_b :

- b_a : $N \times 1$ Either 0 or the sum of independent current sources.
- b_b : $M \times 1$ Values of independent voltage sources.

4 The use of Eigen library

5 Implementation

Figure 6: Analysis module breakdown

5.1 Analysis

```
Analyser
{
    Get N and M
    Initialise matrices
    Form Ax = b
    Check circuit semantics
    Find inverse of A
    Solve for x
}
```

5.1.1 FormMatrix

```
Check if grounded
Add 1 or -1 in A matrix
Insert in b matrix
Insert in x matrix [Unknown values are 0]
}

5.1.2 SemanticCheck
SemanticCheck(vector<CirElement>)
{
Check if node are at least paired [Ignore node 0]
}
```

6 Miscellaneous

References

[1] Professor Erik Cheever. *Analysis of Circuits.* 2005 - 2019. DOI: https://lpsa.swarthmore.edu/Systems/Electrical/mna/MNA1.html.