

Informatyka

Schematy Blokowe i inne zabawy

Opracował: Maciej Penar

Spis treści

Funkcje przedostatni raz	3
Typ funkcyjny	
Argument innej funkcji	
typ zwracany innej funkcji	
Uproszczona arytmetyka modularna	
Zadania	
Schematy Blokowe	
7adania	
Zanania	- 5

Funkcje przedostatni raz

TYP FUNKCYJNY

Funkcja może być traktowana jako specjalny rodzaj danych. Tak samo jak mówiliśmy o Int, $Double\ czy\ String$, tak samo możemy mówić o typie: Function(...). Taki typ możemy podać jako argument innej funkcji albo jak typ zwracany (funkcja która zwraca inne funkcje).

ARGUMENT INNEJ FUNKCJI

Przykładem pierwszego przypadku (tj. argument innej funkcji) może być filtrowanie tablicy:

```
filter(arr: Array < Int >, predicate: Function < Int >: Bool)
```

Mając tablicę: x = [10, -5, 12, 4, 5]

Wywołania mają następujący efekt:

- $filter(x, (arg: Int) \{ return \ arg \ge 10 \}) = [10, 12]$
- $filter(x, (arg: Int) \{ return arg < 0 \}) = [-5]$

Zwróćmy uwagę że:

- podczas wywołania funkcji filter, funkcja podana w parametrze predicate nie musi mieć podanej nazwy jest ona istotna tylko podczas definiowania funkcji filter
- podczas wywoływania funkcji filter, funkcja podana w parametrze predicate musi mieć nazwane argumenty co nie jest wymagane przy definiowaniu funkcji filter

TYP ZWRACANY INNEJ FUNKCJI

Drugi przypadek ma miejsce gdy chcemy sterować implementacją funkcji (wybrać odpowiednie dla nas zachowanie). Przykładem może być szyfrowanie. Dane są funkcje wykonujące szyfrowanie dwoma algorytmami:

```
cesar(text: String, key: Int) : String
xor(text: String, key: Int) : String
```

Chcemy wybrać funkcje na podstawie ich nazwy:

```
getCipher(name: String) : Function(String, String) : String
```

W ten sposób możliwe wywołania to:

- getCipher('cesar')('troll', 13) = gebyy
- $getCipher('xor')('ABC', 64) = 00\ 03\ 02_{(16)}$

Uproszczona arytmetyka modularna

Operacja % czyli wyznaczania reszty z dzielenia. Użycie funkcji/operatora dzielenia modulo gwarantuje że wartości będą całkowite i z zakresu [0, mod). Jeśli $f(x) \in R$, to:

- $f(x) \% 10 \in [0, 10) \cap Z$
- $f(x) \% 24 \in [0, 23) \cap Z$
- $(f(x) \% 6) + 10 \in [10, 16) \cap Z$

W informatyce operacja ta znajduje zastosowanie jako zamiennik na max/min/if oraz przy generowaniu liczb losowych. Tak naprawdę w informatyce każdy prymitywny typ danych (np. Int, Double, Char) możemy traktować jako podlegający arytmetyce modularnej – ze względu na przepełnienie wartości (np. Integer Overflow).

ZADANIA

Policzyć:

- 1. Jest dzień 27 listopad 12:00. Dodać 15 godzin wprzód.
- 2. Jest dzień 27 listopad 11:00. Dodać 4 dni i 6 godzin wprzód.
- 3. Jest dzień 27 listopad 11:00. Dodać 7 dni i 10 godzin w tył.

Mamy grupę: {A,B,C,....,Z}. Załóżmy, że A + 1 = B, B + 1 = C, ..., Z + 1 = A

4. Wyznaczyć moduł

Policzyć:

- 5. A + 10
- 6. T+7
- 7. Z + 20
- 8. M + 26
- 9. K 25
- 10. K + 27

Schematy Blokowe

ZADANIA

Narysuj schemat blokowe następujących problemów:

- 1. Wczytaj liczbę do zmiennej k. Na wyjściu wypisz liczbę przeciwną.
- 2. Wczytaj liczbę do zmiennej k. Na wyjściu wypisz czy jest parzysta
- 3. Wczytuj liczby do zmiennej k dopóki użytkownik nie wprowadzi -1. Na wyjściu wypisz:
 - a. a. Sume
 - b. b. lle elementów użytkownik wprowadził
 - c. c. Średnia
- 4. Wczytaj liczbę do zmiennej k. Na wyjściu wypisz z ilu cyfr się składa.
- 5. Wczytaj liczby do zmiennych k, m. Na wyjściu wypisz resztę z dzielenia k przez m. Komentarz: załóżmy że nie mamy operacji modulo % (link: https://pl.wikipedia.org/wiki/Modulo)
- 6. Wczytać tablicę liczb do zmiennej t. Znaleźć oraz wypisać na wyjściu: a. Minimalną wartość b. Maksymalność wartość
- 7. Załóżmy że użytkownik wczytuje ciąg znaków do zmiennej s o długości n oraz mamy zdefiniowaną operację s[i] zwracającą i-ty znak. Np. dla s="Informatyka" operacja s[0] -> "I", s[1] -> "n", s[2] -> "f", itd. Wczytać ciąg znaków oraz wypisać na wyjściu czy dany ciąg jest palindromem.
- 8. Dla modelu z zadania 7. Wczytać ciąg znaków s oraz wypisać cały wyraz wspak.
- 9. Dla modelu z zadania 7. Wczytać ciągi znaków s1, s2. Określić najdłuższy wspólny prefix tych wyrazów i wypisać na wyjściu (liczbę, nie prefix)