Dataflow Analysis Assignment

Very Busy Expression

	Dataflow Problem X
Domain	Sets of Expression
Direction	Backward: $in[b] = f_b(out[b])$ $out[b] = \land in(succ[b])$
Transfer function	$f_b(\mathbf{x}) = Gen_b \cup (\mathbf{x} - Kill_b)$
Meet Operation (^)	n
Boundary Condition	out[exit] = Ø
Initial interior points	in[b] = <i>U</i>

Iterazione 1

$$OUT[BB_8] = \emptyset$$

$$\mathsf{IN}[\mathsf{BB}_8] = \mathit{Gen}_\mathsf{BB_8} \cup (\mathsf{OUT}[\mathsf{BB}_8] - \mathit{Kill}_\mathsf{BB_8}) = \emptyset \cup (\emptyset - \emptyset) = \emptyset$$

$$OUT[BB_7] = IN[BB_8] = \emptyset$$

$$IN[BB_7] = Gen_{BB_7} \cup (OUT[BB_7] - Kill_{BB_7}) = \{a - b\} \cup (\emptyset - \emptyset) = \{a - b\}$$

$$OUT[BB_6] = IN[BB_7] = \{a - b\}$$

$$\mathsf{IN}[\mathsf{BB}_6] = \mathsf{Gen}_{\mathsf{BB}_6} \cup (\mathsf{OUT}[\mathsf{BB}_6] - \mathsf{Kill}_{\mathsf{BB}_6}) = \emptyset \cup (\{a-b\} - \{a-b\}) = \emptyset$$

$$OUT[BB_5] = IN[BB_6] = \emptyset$$

$$\mathsf{IN}[\mathsf{BB}_5] = \mathit{Gen}_{\mathsf{BB}_5} \cup (\mathsf{OUT}[\mathsf{BB}_5] - \mathit{Kill}_{\mathsf{BB}_5}) = \{b-a\} \cup (\emptyset - \emptyset) = \{b-a\}$$

$$OUT[BB_4] = IN[BB_8] = \emptyset$$

$$\mathsf{IN}[\mathsf{BB_4}] = \mathit{Gen}_{\mathsf{BB_4}} \; \cup \; (\mathsf{OUT}[\mathsf{BB_4}] - \mathit{Kill}_{\mathsf{BB_4}}) = \{a-b\} \; \cup \; (\emptyset-\emptyset) = \{a-b\}$$

$$OUT[BB_3] = IN[BB_4] = \{a - b\}$$

$$\mathsf{IN}[\mathsf{BB_3}] = \mathit{Gen}_{\mathsf{BB_3}} \; \cup \; (\mathsf{OUT}[\mathsf{BB_3}] \; - \; \mathit{Kill}_{\mathsf{BB_3}}) = \{b-a\} \; \cup \; (\{a-b\} \; - \; \emptyset) = \{a-b, \; b-a\} \; \cup \; (\{a-b\} \; - \; \emptyset) = \{a-b,$$

$$\mathsf{OUT}[\mathsf{BB}_2] = \mathsf{IN}[\mathsf{BB}_3] \cap \mathsf{IN}[\mathsf{BB}_5] = \{a-b,\ b-a\} \cap \{b-a\} = \{b-a\}$$

$$\mathsf{IN}[\mathsf{BB}_2] = \mathsf{Gen}_{\mathsf{BB}_2} \cup (\mathsf{OUT}[\mathsf{BB}_2] - \mathsf{Kill}_{\mathsf{BB}_2}) = \emptyset \cup (\{b-a\} - \emptyset) = \{b-a\}$$

$$\mathsf{OUT}[\mathsf{BB}_1] = \mathsf{IN}[\mathsf{BB}_2] = \{b - a\}$$

$$\mathsf{IN}[\mathsf{BB}_1] = \mathit{Gen}_{\mathsf{BB}_1} \; \cup \; (\mathsf{OUT}[\mathsf{BB}_1] \; - \; \mathit{Kill}_{\mathsf{BB}_1}) = \emptyset \; \cup \; (\{b-a\} - \emptyset) = \{b-a\}$$

BitVector = <b-a, a-b>

	Iterazione 1			
	IN[B]	OUT[B]		
BB1	<10>	<10>		
BB2	<10>	<10>		
BB3	<11>	<01>		
BB4	<01>	<00>		
BB5	<10>	<00>		
BB6	<00>	<01>		
BB7	<01>	<00>		
BB8	<00>	<00>		

Dominator Analysis

	Dataflow Problem X
Domain	Sets of Basic Blocks
Direction	Forward: out[b] = f_b (in[b]) in[b] = Λ out(pred[b])
Transfer function	$f_b(x) = b \cup x$
Meet Operation (△)	Λ
Boundary Condition	in[entry] = Ø
Initial interior points	in[b] = <i>U</i>

Iterazione 1

$$IN[A] = \emptyset$$

$$OUT[A] = \{A\} \cup \emptyset = \{A\}$$

$$IN[B] = OUT[A] = {A}$$

$$OUT[B] = \{B\} \cup \{A\} = \{A, B\}$$

$$IN[C] = OUT[A] = \{A\}$$

$$OUT[C] = \{C\} \cup \{A\} = \{A, C\}$$

$$IN[D] = OUT[C] = {A, C}$$

$$OUT[D] = {D} \cup {A, C} = {A, C, D}$$

$$IN[E] = OUT[C] = {A, C}$$

$$OUT[E] = \{E\} \cup \{A, C\} = \{A, C, E\}$$

$$IN[F] = OUT[D] \cap OUT[E] = \{A, C, D\} \cap \{A, C, E\} = \{A, C\}$$

$$OUT[F] = \{F\} \cup \{A, C\} = \{A, C, F\}$$

$$IN[G] = OUT[B] \cap OUT[F] = \{A, B\} \cap \{A, C, F\} = \{A\}$$

$$OUT[G] = \{G\} \cup \{A\} = \{A, G\}$$

BitVector = <A,B,C,D,E,F,G>

	Iterazione 1			
	IN[B]	OUT[B]		
Α	<0000000>	<1000000>		
В	<1000000>	<1100000>		
С	<1000000>	<1010000>		
D	<1010000>	<1011000>		
Е	<1010000>	<1010100>		
F	<1010000>	<1010010>		
G	<1000000>	<1000001>		

Constant Propagation

	Dataflow Problem X
Domain	Sets of Pairs (variable, costant)
Direction	Forward: out[b] = f_b (in[b]) in[b] = Λ out(pred[b])
Transfer function	$f_b(x) = Gen_b \cup (x - Kill_b)$
Meet Operation (△)	Λ
Boundary Condition	in[entry] = Ø
Initial interior points	in[b] = <i>U</i>

```
Iterazione 1
```

$$\begin{aligned} &\text{IN[BB_1]} = 0 \\ &\text{OUT[BB_1]} = Gen_{00_1} \cup & (\text{IN[BB_1]} - Kill_{00_1}) = 0 \cup (0 - 0) = \emptyset \\ &\text{IN[BB_2]} = 0 \\ &\text{OUT[BB_2]} = Gen_{00_2} \cup & (\text{IN[BB_2]} - Kill_{00_2}) = 0 \cup (((K, 2)) - \emptyset) = ((K, 2)) \\ &\text{IN[BB_3]} = \text{OUT[BB_2]} = ((K, 2)) \\ &\text{OUT[BB_3]} = Gen_{00_3} \cup & (\text{IN[BB_3]} - Kill_{00_3}) = 0 \cup (((K, 2)) - \emptyset) = ((K, 2)) \\ &\text{IN[BB_4]} = \text{OUT[BB_3]} = Gen_{00_3} \cup & (\text{IN[BB_3]} - Kill_{00_4}) = ((K, 2)) \cup (((K, 2)) - \emptyset) = ((K, 2)) \\ &\text{IN[BB_4]} = \text{OUT[BB_4]} = ((K, 2)) \\ &\text{OUT[BB_4]} = Gen_{00_4} \cup & (\text{IN[BB_4]} - Kill_{00_4}) = ((K, 4)) \cup (((K, 2)) - \emptyset) = ((K, 2), (K, 4)) \\ &\text{OUT[BB_4]} = Gen_{00_4} \cup & (\text{IN[BB_4]} - Kill_{00_4}) = ((K, 5)) \cup (((K, 2), (K, 4)) - \emptyset) = ((K, 2), (K, 4)) \cup ((K, 2), (K, 4)) \\ &\text{OUT[BB_4]} = Gen_{00_4} \cup & (\text{IN[BB_4]} - Kill_{00_4}) = ((K, 4)) \cup (((K, 2), (K, 4)) - \emptyset) = ((K, 2), (K, 4)) \cup ((K, 2), (K, 4)) \\ &\text{IN[BB_5]} = \text{OUT[BB_6]} = ((K, 2), (K, 4)) \\ &\text{OUT[BB_6]} = Gen_{00_4} \cup & (\text{IN[BB_5]} - Kill_{00_4}) = ((K, 2), (K, 4)) \cup (((K, 2), (K, 4), (K, 8)) = ((K, 2), (K, 4)) \cup ((K, 2), (K, 4), (K, 8)) \\ &\text{IN[BB_6]} = \text{OUT[BB_6]} = ((K, 2), (K, 4)) \cup (((K, 2), (K, 4), (K, 8)) = ((K, 2), (K, 4)) \cup ((K, 4), (K, 4), (K, 4)) \cup ((K, 4), (K, 4)) \cup ((K, 4), (K, 4), (K, 4)) \cup ((K, 4), (K, 4), (K, 4)) \cup ((K, 4), (K, 4), (K, 4), (K, 4)) \cup ((K, 4), (K, 4), (K, 4), (K, 4), (K, 4)) \cup ((K, 4), (K, 4), (K, 4), (K, 4), (K, 4), (K, 4), (K, 4)) \cup ((K, 4), (K, 4), (K,$$

```
Iterazione 2
IN[BB_1] = \emptyset
OUT[BB_1] = \emptyset
IN[BB_2] = \emptyset
OUT[BB_2] = \{(k, 2)\}
IN[BB_3] = \{(k, 2)\}
OUT[BB_3] = \{(k, 2)\}
IN[BB_4] = \{(k, 2)\}
OUT[BB_4] = \{(k, 2), (a, 4)\}
IN[BB_5] = \{(k, 2), (a, 4)\}
OUT[BB_5] = \{(k, 2), (a, 4), (x, 5)\}
IN[BB_6] = \{(k, 2)\}
OUT[BB_6] = \{(k, 2), (a, 4)\}
IN[BB_7] = \{(k, 2), (a, 4)\}
OUT[BB_7] = \{(k, 2), (a, 4), (x, 8)\}
IN[BB_g] = \{(k, 2), (a, 4)\}
OUT[BB_8] = \{(k, 4), (a, 4)\}
IN[BB_9] = OUT[BB_8] \cap OUT[BB_{12}] = \{(k, 4), (a, 4)\} \cap \{(k, 5), (a, 4), (b, 2), (x, 8), (y, 8)\} = \{(a, 4)\}
OUT[BB_9] = Gen_{BB_9} \cup (IN[BB_9] - Kill_{BB_9}) = \emptyset \cup (\{(a, 4)\} - \emptyset) = \{(a, 4)\}
IN[BB_{10}] = OUT[BB_9] = \{(a, 4)\}
\mathsf{OUT}[\mathsf{BB}_{10}] = \mathit{Gen}_{\mathsf{BB}_{10}} \cup (\mathsf{IN}[\mathsf{BB}_{10}] - \mathit{Kill}_{\mathsf{BB}_{10}}) = \{(b,2)\} \cup (\{(a,4)\} - \emptyset) = \{(a,4),(b,2)\}
IN[BB_{11}] = OUT[BB_{10}] = \{(a, 4), (b, 2)\}
\mathsf{OUT}[\mathsf{BB}_{11}] = \mathit{Gen}_{\mathsf{BB}_{10}} \ \cup \ (\mathsf{IN}[\mathsf{BB}_{10}] - \mathit{Kill}_{\mathsf{BB}_{10}}) = \emptyset \ \cup \ (\{(a,4),(b,2)\} - \emptyset) = \{(a,4),(b,2)\}
IN[BB_{12}] = OUT[BB_{11}] = \{(a, 4), (b, 2)\}
OUT[BB_{12}] = Gen_{BB_{12}} \cup (IN[BB_{12}] - Kill_{BB_{12}}) = \{(y, 8)\} \cup (\{(a, 4), (b, 2)\} - \emptyset) = \{(a, 4), (b, 2), (y, 8)\}
IN[BB_{13}] = OUT[BB_{12}] = \{(a, 4), (b, 2), (y, 8)\}
OUT[BB_{13}] = Gen_{BB_{13}} \cup (IN[BB_{13}] - Kill_{BB_{13}}) = \emptyset \cup (\{(a, 4), (b, 2), (y, 8)\} - \emptyset) = \{(a, 4), (b, 2), (y, 8)\}
IN[BB_{14}] = OUT[BB_9] = \{(a, 4)\}
OUT[BB_{14}] = Gen_{BB_{14}} \cup (IN[BB_{14}] - Kill_{BB_{14}}) = \emptyset \cup (\{(a, 4)\} - \emptyset) = \{(a, 4)\}
```

 $IN[BB_{15}] = OUT[BB_{14}] = \{(a, 4)\}$

 $\mathsf{OUT}[\mathsf{BB}_{15}] = Gen_{\mathsf{BB}_{15}} \ \cup \ (\mathsf{IN}[\mathsf{BB}_{15}] - Kill_{\mathsf{BB}_{15}}) = \emptyset \ \cup \ (\{(a,4)\} - \emptyset) = \{(a,4)\}$

```
Iterazione 3
IN[BB_1] = \emptyset
OUT[BB_1] = \emptyset
IN[BB_2] = \emptyset
OUT[BB_2] = \{(k, 2)\}
IN[BB_3] = \{(k, 2)\}
OUT[BB_3] = \{(k, 2)\}
IN[BB_4] = \{(k, 2)\}
OUT[BB_4] = \{(k, 2), (a, 4)\}
IN[BB_5] = \{(k, 2), (\alpha, 4)\}
OUT[BB_5] = \{(k, 2), (a, 4), (x, 5)\}
IN[BB_6] = \{(k, 2)\}
OUT[BB_6] = \{(k, 2), (a, 4)\}
IN[BB_7] = \{(k, 2), (a, 4)\}
\mathsf{OUT}[\mathsf{BB}_7] = \{(k,2), (a,4), (x,8)\}
IN[BB_8] = \{(k, 2), (a, 4)\}
OUT[BB_8] = \{(k, 4), (a, 4)\}
\mathsf{IN}[\mathsf{BB}_9] = \mathsf{OUT}[\mathsf{BB}_8] \cap \mathsf{OUT}[\mathsf{BB}_{13}] = \!\! \{(k,4),(a,4)\} \cap \{(a,4),(b,2),(y,8)\} = \{(a,4)\}
OUT[BB_9] = \{(a, 4)\}
IN[BB_{10}] = \{(a, 4)\}
OUT[BB_{10}] = \{(a, 4), (b, 2)\}
IN[BB_{11}] = \{(a, 4), (b, 2)\}
OUT[BB_{11}] = \{(a, 4), (b, 2)\}
IN[BB_{12}] = \{(a, 4), (b, 2)\}
```

 $OUT[BB_{12}] = \{(a, 4), (b, 2), (y, 8)\}$

 $IN[BB_{13}] = \{(a, 4), (b, 2), (y, 8)\}$

 $OUT[BB_{13}] = \{(a, 4), (b, 2), (y, 8)\}$

 $IN[BB_{15}] = OUT[BB_{14}] = \{(a, 4)\}$

 $\mathsf{OUT}[\mathsf{BB}_{15}] = \mathit{Gen}_{\mathsf{BB}_{15}} \ \cup \ (\mathsf{IN}[\mathsf{BB}_{15}] - \mathit{Kill}_{\mathsf{BB}_{15}}) = \emptyset \ \cup \ (\{(a,4)\} - \emptyset) = \{(a,4)\}$

 $IN[BB_{14}] = \{(a, 4)\}$

 $OUT[BB_{14}] = \{(a, 4)\}$

	Iterazione 1		Iterazione 2		Iterazione 3	
	IN[B]	OUT[B]	IN[B]	OUT[B]	IN[B]	OUT[B]
BB1	<00000000>	<00000000>	<00000000>	<00000000>	<00000000>	<00000000>
BB2	<00000000>	<00100000>	<00000000>	<00100000>	<00000000>	<00100000>
BB3	<00100000>	<00100000>	<00100000>	<00100000>	<00100000>	<00100000>
BB4	<00100000>	<10100000>	<00100000>	<10100000>	<00100000>	<10100000>
BB5	<10100000>	<10100100>	<10100000>	<10100100>	<10100000>	<10100100>
BB6	<00100000>	<10100000>	<00100000>	<10100000>	<00100000>	<10100000>
BB7	<10100000>	<10100010>	<10100000>	<10100010>	<10100000>	<10100010>
BB8	<10100000>	<10010000>	<10100000>	<10010000>	<10100000>	<10010000>
BB9	<10010000>	<10010000>	<10000000>	<10000000>	<10000000>	<10000000>
BB10	<10010000>	<11010000>	<10000000>	<11000000>	<10000000>	<11000000>
BB11	<11010000>	<11010010>	<11000000>	<11000000>	<11000000>	<11010000>
BB12	<11010010>	<11010011>	<11000000>	<11000001>	<11000000>	<11000001>
BB13	<11010011>	<11001011>	<11000001>	<11000001>	<11000001>	<11000001>
BB14	<10010000>	<10010000>	<10000000>	<10000000>	<10000000>	<10000000>
BB15	<10010000>	<10010000>	<10000000>	<10000000>	<10000000>	<10000000>