EX13.1. Вычислить

$$I = \int_{0}^{2\pi} \left[\operatorname{ctg}(\varphi + i \, a) \right]^{p} \, d\varphi,$$

где a>0, $p\in\mathbb{R}$, и $[\cdot]^p$ — однозначная ветвь степенной функции, заданная равенством

$$\zeta^p := |\zeta|^p e^{ip \arg \zeta} \tag{1}$$

при

$$\arg \zeta \in [0, 2\pi). \tag{2}$$

ightharpoonup Полагая $z:=e^{i\varphi}$, где $\varphi\in[0,2\pi]$, получим

$$\operatorname{ctg}(\varphi + i \, a) = \frac{\cos(\varphi + i a)}{\sin(\varphi + i a)} = i \, \frac{z \, e^{-a} + \frac{1}{z} \, e^{a}}{z \, e^{-a} - \frac{1}{z} \, e^{a}} =$$

$$= i \, \frac{z^{2} + e^{2a}}{z^{2} - e^{2a}} = : \zeta(z), \quad (3)$$

И

$$I = \frac{1}{i} \int_{C^+} \frac{1}{z} \left[\zeta(z) \right]^p dz,$$

где C — единичная окружность |z|=1 .

Рассмотрим подынтегральную функцию последнего интеграла в единичном круге

$$G := \{z : |z| < 1\}.$$

1. Заметим, что и числитель, и знаменатель дроби $\dfrac{z^2+e^{2a}}{z^2-e^{2a}}$ — целые функции; кроме того, $e^{2a}|_{a>0}>1$, поэтому знаменатель не обращается в нуль при $|z|\leqslant 1$. Таким образом,

$$\zeta(z)$$
 : $\left\{egin{array}{ll} ext{аналитична в } G, \ ext{непрерывна в } \overline{G}. \end{array}
ight.$

2. Функция ζ^p аналитична (см. условие задачи) в области

$$\mathcal{G} := \{z : 0 < \arg z < 2\pi\}$$

— плоскости с разрезом по неотрицательной вещественной полупрямой. Поэтому сложная функция $[\zeta(z)]^p$ будет аналитической в G и непрерывной в \overline{G} , если

$$\zeta(G) \subset \mathcal{G}. \tag{4}$$

3. Чтобы установить справедливость (4), рассмотрим функцию

$$g(z) := \frac{w + x_0}{w - x_0}$$

с произвольным $x_0 > 1$. Так как

$$g(w) = \frac{(w+x_0)\overline{(w-x_0)}}{|w-x_0|^2} = \frac{|w|^2 - x_0^2 - 2ix_0 \operatorname{Im} w}{|w-x_0|^2},$$

TO

$$\operatorname{Re} g(w) < 0$$
 при $x_0 > 1$, $|w| \leqslant 1$.

Поэтому при таких $x_0 \equiv e^{2a}$ функция $g(z^2)$ отображает единичный круг G в некоторое подмножество G' левой полуплоскости, а функция $\zeta(z) = i\,g(z^2)$ — в множество $i\,G'$, целиком лежащее в нижней полуплоскости $\{\zeta: {\rm Im}\,\zeta < 0\} \subset \mathcal{G}$. Тем самым, справедливо (4). Отсюда, как было отмечено ранее, следует, что

$$[\zeta(z)]^p$$
 : $\left\{egin{array}{ll} \mbox{аналитична в } G, \mbox{ } & \overline{G}. \end{array}
ight.$

4. Положим

$$f(z) := \frac{1}{z} \left[\zeta(z) \right]^p.$$

Как видно из (5), единственной особой точкой f(z) в G может быть только z=0; при этом $f(z)\in C(\overline{G}\setminus\{0\})$. Но тогда из основной теоремы теории вычетов следует, что

$$I = 2\pi \operatorname{res}[f(z), 0].$$
 (6)

5. Точка z=0 — правильная для $[\zeta(z)]^p$ и нуль первого порядка для z , причем $\frac{d}{dz}z\bigg|_{z=0}=1$. Поэтому z=0

res
$$[f(z), 0] = [\zeta(0)]^p$$
.

Из (3) получим $\zeta(0)=-i$, а из (1) и (2) — что $[\zeta(0)]^p=e^{3\pi i p/2}$. Таким образом, с учетом (6) $I=2\pi\,e^{3\pi i p/2}$.

¹См., например, равенство (5.9) в книге А. Г. Свешникова и А. Н. Тихонова "Теория функций комплексной переменной".