Putnam 2010

A1 Given a positive integer n, what is the largest k such that the numbers $1, 2, \ldots, n$ can be put into k boxes so that the sum of the numbers in each box is the same?

[When n = 8, the example $\{1, 2, 3, 6\}$, $\{4, 8\}$, $\{5, 7\}$ shows that the largest k is at least 3.]

Answer. $\lfloor \frac{n+1}{2} \rfloor$.

Solution. The sum in each box is at least n since this must be the case for the box containing n. Since the total sum of the n numbers is $\frac{n(n+1)}{2}$, the number of boxes cannot exceed $\frac{n+1}{2}$, so the answer is at most $\lfloor \frac{n+1}{2} \rfloor$.

To see this is achievable, we split into cases where n is even and n is odd. When n is odd, we can do $\{n\}, \{1, n-1\}, \{2, n-2\}, \cdots, \{\frac{n-1}{2}, \frac{n+1}{2}\}$. When n is even, the example $\{1, n\}, \{2, n-1\}, \cdots, \{\frac{n}{2}-1, \frac{n}{2}+1\}$ gives the example of $\frac{n}{2} = \lfloor \frac{n+1}{2} \rfloor$ boxes.

A2 Find all differentiable functions $f: \mathbb{R} \to \mathbb{R}$ such that

$$f'(x) = \frac{f(x+n) - f(x)}{n}$$

for all real numbers x and all positive integers n.

Answer. All linear functions f(x) = mx + c in which case $f'(x) = \frac{f(x+n) - f(x)}{n} = m$ **Solution.** To show that f must be linear, we notice that for each x, $f'(x) = f(x+1) - f(x) = \frac{f(x+2) - f(x)}{2}$ so this gives the relation f(x+2) - f(x) = 2(f(x+1) - f(x)), and therefore f'(x+1) = f(x+2) - f(x+1) = f(x+1) - f(x) = f'(x).

We now introduce the function g(x) = f(x+1) - f(x). Notice that:

$$g'(x) = \lim_{\epsilon \to 0} \frac{g(x+\epsilon) - g(x)}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \frac{f(x+1+\epsilon) - f(x+\epsilon) - f(x+1) + f(x)}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \frac{f(x+1+\epsilon) - f(x+1)}{\epsilon} - \frac{f(x+\epsilon) - f(x)}{\epsilon}$$

$$= f'(x+1) - f'(x)$$

$$= 0$$

since f'(x+1) = f'(x) for all x. Therefore g is a constant function, meaning that, f(x+1) - f(x) is constant. But since f(x+1) - f(x) = f'(x), f'(x) is also a constant, which means that f has to be linear.

A3 Suppose that the function $h: \mathbb{R}^2 \to \mathbb{R}$ has continuous partial derivatives and satisfies the equation

$$h(x,y) = a \frac{\partial h}{\partial x}(x,y) + b \frac{\partial h}{\partial y}(x,y)$$

for some constants a, b. Prove that if there is a constant M such that $|h(x, y)| \leq M$ for all (x, y) in \mathbb{R}^2 , then h is identically zero.

Solution. Fix a point $(x_0, y_0) \in \mathbb{R}^2$. Denote $g(z) = h(x_0 + az, y_0 + bz)$. We have the

1

following:

$$g'(z) = \lim_{\epsilon \to 0} \frac{g(z+\epsilon) - g(z)}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \frac{h(x_0 + a(z+\epsilon), y_0 + b(z+\epsilon)) - h(x_0 + az, y_0 + bz)}{\epsilon}$$

$$= a\frac{\partial h}{\partial x}(x_0 + az, y_0 + bz) + b\frac{\partial h}{\partial y}(x_0 + az, y_0 + bz)$$

$$= h(x_0 + az, y_0 + bz)$$

$$= g(z)$$

So the condition g'(z) = g(z) holds for all $z \in \mathbb{R}$. It follows from the identity of differential equation that the solution to g is $g(z) = Ae^z$ for all $z \in \mathbb{R}$. Since h us bounded in \mathbb{R}^2 , so is g and the only possibility is A = 0. Thus $g \equiv 0$ and in particular, $g(0) = h(x_0, y_0) = 0$.

A4 Prove that for each positive integer n, the number $10^{10^{10^n}} + 10^{10^n} + 10^n - 1$ is not prime.

Solution. Let k be the maximum positive integer such that $2^k \mid n$. We claim that the number $10^{10^{10^n}} + 10^{10^n} + 10^n - 1$ is divisible by $10^{2^k} + 1$. It suffices to show that $10^{10^{10^n}}$ and 10^{10^n} are congruent to 1 modulo p whereas 10^n congruent to 1.

Now, $n = d \cdot 2^k$ for some odd number d. Therefore $10^n = 10^{d \cdot 2^k} \equiv (-1)^d = -1 \pmod{10^{2^k}} + 1$) since d is odd. On the other hand, $10^{10^n} = 10^{2^n \cdot 5^n}$ and from $n = d \cdot 2^k \ge 2^k > k$ we have $n \ge k+1$, so $2^{k+1} \mid 2^n \cdot 5^n$. Since $10^{2^{k+1}} \equiv (-1)^2 = 1 \pmod{10^{2^k}+1}$ we have $10^{10^n} \equiv 1 \pmod{10^{2^k}+1}$, and similarly for $10^{10^{10^n}}$.

Finally, it's not hard to see that $10^{10^{10^n}} + 10^{10^n} + 10^n - 1 > 10^{2^k} + 1$ because $n \ge 2^k$ and $10^{10^{10^n}}$ and 10^{10^n} are both strictly greater than 1 (because n is positive so $10^n > 1$ and so is 10^{10^n} and $10^{10^{10^n}}$). Therefore $10^{10^{10^n}} + 10^{10^n} + 10^n - 1 > 1 + 1 + \cdot 10^n - 1 = 10^n + 1 = 10^{2^k} + 1$.

A5 Let G be a group, with operation *. Suppose that

- (i) G is a subset of \mathbb{R}^3 (but * need not be related to addition of vectors);
- (ii) For each $\mathbf{a}, \mathbf{b} \in G$, either $\mathbf{a} \times \mathbf{b} = \mathbf{a} * \mathbf{b}$ or $\mathbf{a} \times \mathbf{b} = \mathbf{0}$ (or both), where \times is the usual cross product in \mathbb{R}^3 .

Prove that $\mathbf{a} \times \mathbf{b} = \mathbf{0}$ for all $\mathbf{a}, \mathbf{b} \in G$.

Solution. Let $\mathbf{e} \in \mathbb{R}^3$ be the identity element in the group. If $\mathbf{e} \times \mathbf{a} \neq \mathbf{0}$ for some $\mathbf{a} \in G$, then $\mathbf{e} \times \mathbf{a} = \mathbf{e} * \mathbf{a} = \mathbf{a}$. Since both \mathbf{e} and \mathbf{a} are not parallel and nonzero, $\mathbf{a} = \mathbf{e} \times \mathbf{a}$ is perpendicular to \mathbf{a} , which is impossible for \mathbf{a} nonzero. Hence, for all $\mathbf{a} \in G$ we have $\mathbf{e} \times \mathbf{a} = \mathbf{0}$.

Now if **e** is not the zero vector, then from $\mathbf{e} \times \mathbf{a} = \mathbf{0}$ for all $\mathbf{a} \in G$ all such **a**'s are either 0 or parallel to **e**. In this case, the condition $\mathbf{a} \times \mathbf{b} = \mathbf{0}$ for all $\mathbf{a}, \mathbf{b} \in G$. We can now assume that $\mathbf{e} = \mathbf{0}$.

Suppose there are **a** and **b** \in G such that $\mathbf{a} \times \mathbf{b} \neq \mathbf{0}$. From (ii), $\mathbf{a} * \mathbf{b} = \mathbf{a} \times \mathbf{b} \in G$ and is perpendicular to **a** and **b**, i.e. there exists a vector in G that is perpendicular to **a**. Thus we can choose **a** and **b** (in the beginning) such that they are perpendicular to each other, and we will now assume that **a** and **b** are perpendicular to each other.

Let $\mathbf{a} \times \mathbf{b} = \mathbf{c} = -\mathbf{b} \times \mathbf{a}$. Since $\mathbf{e} = 0$, we have $(\mathbf{a} \times \mathbf{b}) * (\mathbf{b} \times \mathbf{a}) = \mathbf{0}$ and with $\mathbf{a} \times \mathbf{b} = \mathbf{a} * \mathbf{b}$ as of above (and similarly $\mathbf{b} \times \mathbf{a} = \mathbf{b} * \mathbf{a}$) we get $\mathbf{0} = \mathbf{a} * \mathbf{b} * \mathbf{b} * \mathbf{a}$ (notice the omission of brackets because * is associative). "Multiplying" both sides by $-\mathbf{a}$ from the left and \mathbf{a} from the right gives $\mathbf{b}^2 * \mathbf{a}^2 = \mathbf{0}$ (second power means multiplication by itself), i.e. \mathbf{b}^2 and \mathbf{a}^2 are inverses of each other. But since \mathbf{c} is perpendicular to \mathbf{a} and \mathbf{b} , a similar conclusion yields \mathbf{c}^2 and \mathbf{a}^2 are inverses of each other, and so are \mathbf{c}^2 and \mathbf{b}^2 . With \mathbf{a}^2 , \mathbf{b}^2 and \mathbf{c}^2 being inverses of one another, the only possibility is all of them being $\mathbf{0}$.

Since **a** and **c** are also perpendicular to each other, we get $\mathbf{a} \times \mathbf{c} = \mathbf{a} * \mathbf{c} = \mathbf{a} * \mathbf{a} * \mathbf{b} = \mathbf{0} * \mathbf{b} = \mathbf{b}$. Similarly, $\mathbf{c} \times \mathbf{b} = \mathbf{a}$. Denote **i**, **j** and **k** as the vectors parallel to x, y, z axes, respectively. By rotating **a** and **b**, we can assume that $\mathbf{a} = x\mathbf{i}$ and $\mathbf{b} = y\mathbf{j}$, making $\mathbf{c} = xy(\mathbf{i} \times \mathbf{j}) = (xy)\mathbf{k}$. But then $y\mathbf{j} = \mathbf{b} = \mathbf{a} \times \mathbf{c} = x^2y\mathbf{i} \times \mathbf{k} = -x^2y\mathbf{j}$, so $y = -x^2y$, or $x^2 = -1$ because $y \neq 0$. This is impossible since this forces $x = \sqrt{-1}$, which is imaginary. This contradiction shows that there cannot be **a** and **b** with nonzero cross products.

B1 Is there an infinite sequence of real numbers a_1, a_2, a_3, \ldots such that

$$a_1^m + a_2^m + a_3^m + \dots = m$$

for every positive integer m?

- **B2** Given that A, B, and C are noncollinear points in the plane with integer coordinates such that the distances AB, AC, and BC are integers, what is the smallest possible value of AB?
- **B3** There are 2010 boxes labeled $B_1, B_2, \ldots, B_{2010}$, and 2010n balls have been distributed among them, for some positive integer n. You may redistribute the balls by a sequence of moves, each of which consists of choosing an i and moving exactly i balls from box B_i into any one other box. For which values of n is it possible to reach the distribution with exactly n balls in each box, regardless of the initial distribution of balls?