25 January Second Homework

Write your answers neatly, in complete sentences, and prove all assertions. Start each problem on a new page (this makes it easier in Gradescope). Revise your work before handing it in, and submit a .pdf created from a LaTeX source to Gradescope. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Due Monday 1 February.

manner.

- 1. Let $S := \{1, 2, 2^2 = 4\}$, a multiplicatively closed subset of $R := \mathbb{Z}/6\mathbb{Z}$. Determine (compute and identify) the ring $R[S^{-1}]$ of fractions of R by S.
- 2. Let R be a commutative ring and suppose that $S \subset R$ is a multiplicatively closed subset (multiplicative subsemigroup of R). Identify the kernel of the canonical map $\iota \colon R \to R[S^{-1}]$.
- 3. Show that for any ring R and R-module M, $\operatorname{Hom}_R(R,M) \simeq (M,+,0)$, as abelian groups.
- 4. Let R be a ring and A be an abelian group. For $r \in R$ and $f \in \operatorname{Hom}_{\mathbb{Z}}(R,A)$, define $r.f \colon R \to A$ by (r.f)(x) = f(xr) for $x \in R$. Show that this gives $\operatorname{Hom}_{\mathbb{Z}}(R,A)$ the structure of an R-module. (Part of this problem is showing that $r.f \in \operatorname{Hom}_{\mathbb{Z}}(R,A)$.)
- 5. Let R be a ring and A,B,M, and N be R-modules. Let $f\in \operatorname{Hom}_R(A,M)$ and $g\in \operatorname{Hom}_R(N,B)$. For $\varphi\in \operatorname{Hom}_R(M,N)$, define $f^*(\varphi):=\varphi\circ f$ and $g_*(\varphi):=g\circ \varphi$. Show that these give homomorphisms of abelian groups,

$$f^* \colon \operatorname{Hom}_R(M,N) \to \operatorname{Hom}_R(A,N)$$
 and $g_* \colon \operatorname{Hom}_R(M,N) \to \operatorname{Hom}_R(M,B)$.

Show that $f \mapsto f^*$ is a homomorphism of abelian groups $\operatorname{Hom}_R(A,M) \to \operatorname{Hom}_Z(\operatorname{Hom}_R(M,N),\operatorname{Hom}_R(A,N)).$

- 6. Let M be an R-module. Show that $\operatorname{Hom}_R(M,M)$ is a ring whose product is the composition of functions. It is called the $\operatorname{endomorphism\ ring}$ of M, written $\operatorname{End}(M)$.
 - Show that M is a left $\operatorname{End}(M)$ -module under the action by elements $f \in \operatorname{End}(M)$ defined by f.m = f(m), for $m \in M$.
- 7. An R-module M is simple if its only submodules are 0 and M. Prove that every simple R-module is cyclic. Prove Schur's Lemma, that when M is simple, End(M) is a division ring.
- 8. (Five Lemma). Consider the following commutative diagram of R-modules, with exact rows:

$$M_{1} \longrightarrow M_{2} \longrightarrow M_{3} \longrightarrow M_{4} \longrightarrow M_{5}$$

$$\downarrow f_{1} \qquad \downarrow f_{2} \qquad \downarrow f_{3} \qquad \downarrow f_{4} \qquad \downarrow f_{5}$$

$$N_{1} \longrightarrow N_{2} \longrightarrow N_{3} \longrightarrow N_{4} \longrightarrow N_{5}$$

- (a) Prove that if f_1 is a surjection and f_2 , f_4 are injections, then f_3 is an injection.
- (b) Prove that if f_5 is an injection and f_2 , f_4 are surjections, then f_3 is a surjection.
- 9. (Splicing short exact sequences). If $0 \to A \to B \xrightarrow{f} C \to 0$ and $0 \to C \xrightarrow{g} D \to E \to 0$ are short exact sequences of R-modules, then the sequence $0 \to A \to B \xrightarrow{gf} D \to E \to 0$ is exact. Show that every exact sequence may be obtained by splicing together suitable short exact sequences in this