ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN KHOA CÔNG NGHỆ THÔNG TIN

---oOo---

PROJECT 4 AIR QUALITY SENSOR CALIBRATION **USING LINEAR MODELS**

Nhóm sinh viên thực hiện:

Lê Gia Bảo MSSV: 23127325

Vũ Anh MSSV: 23127321

Hồ Gia Huy **MSSV:** 23127376

Thành phố Hồ Chí Minh, tháng 4 năm 2025

I. Phân công công việc

Thành Viên	Nhiệm vụ chính
Lê Gia Bảo	Tiền xử lý, Task 1 (Linear models)
Hồ Gia Huy	Feature engineering, Task 2
Vũ Anh	Kiểm định và đánh giá thống kê, Task 3, report

II. Mô tả dữ liệu

- Train.csv: có Time, Ozone, NO2, temp, humidity, no2op1, no2op2, o3op1, o3op2.
- Test.csv: Cùng cấu trúc train.csv, sử dụng để kiểm thử
- **Tiền xử lý**: Loại bỏ giá trị thiếu (nếu có), tách *Time* thành *hour*, mã hóa chu kỳ *hour_sin*, *hour_cos*, chuẩn hóa (StandardScaler)

III. Phương pháp luận

1. Task 1: Mô hình tuyến tính cơ bản

- Đặc trưng: chỉ 4 điện áp.
- Mô hình: OLS, Ridge ($\alpha = 1$), Lasso ($\alpha = 1$)
- Đánh giá: MAE trên tập train

2. Task 2: Mô hình nâng cao

- Mở rộng đặc trưng: voltage + temp, humidity, hour sin, hour cos
- Mô hình thử nghiệm: Linear Regression, Random Forest (200 cây, depth = 20), MLP (2 lớp ẩn 128-64, α = 0.001).

- Tuning: RandmomizeSearchCV, GridSearchCV.
- Đánh giá thống kê: MSR, R², kiểm định Shapiro-Wilk, Breusch-Pagan, BIC cho Linear, đo thời gian train và inference.

3. Triển khai và kiểm thử

- Script predict.py: chọn MLP và chạy test.csv
- Đầu ra: file predictions.csv gồm Time,
 OZONE PRED, NO2 PRED.

IV. Kết quả thí nghiệm và phân tích

1. Task 1: Linear models

Mô hình	MAE O ₃	MAE NO ₂
OLS	5.6259	6.5401
Ridge	5.6259	6.5401
Lasso	5.6804	6.6216

Nhận xét: Cả 3 mô hình tuyến tính cơ bản đều cho MAE > 5.6, vãn còn sai số lớn (MAE càng nhỏ thì mô hình dự đoán càng chính xác)

2. Task 2: Advanced Models

a. O_3

Mô hình	MAE	\mathbb{R}^2	Train	Inference	Shapiro	BP p-
			Time	Times	p-val	val
			(s)	(s)		
Linear	5.2010	0.8592	0.00	0.00	0.0000	0.0000
Regression						
Random	3.4905	0.9191	8.82	0.15	0.0000	0.0000
Forest						
Neural	4.1040	0.9071	6.87	0.00	0.0000	0.0000
Network						

Nhận xét:

- Random Forest vượt trội so với Neural Network và Linear Regression.
- Giảm sai số trung bình tuyệt đối (MAE) khoảng 0.61 μg/m³ so với MLP và 1.71 μg/m³ so với linear, đồng thời R² cao nhất cho thấy RF có hiệu suất tốt.

b. NO₂

Mô hình	MAE	\mathbb{R}^2	Train	Inference	Shapiro	BP p-
			Time	Times	p-val	val
			(s)	(s)		
Linear	6.6295	0.3284	0.00	0.00	0.0000	0.0000
Regression						
Random	2.2265	0.8911	8.74	0.14	0.0000	0.0000
Forest						
Neural	3.2118	0.8114	10.09	0.01	0.0000	0.0000
Network						

Nhận xét:

- Random Forest cũng dẫn đầu so với Neural Network và Linear Regression.
- MAE của RF thấp hơn MLP gần 1.0 μg/m³, và cải thiện mạnh so với linear, R² của RF gần 0.89, trong khi linear chỉ ~0.33, tức là RF giải thích tốt hơn gấp 3 lần linear.

c. So sánh hiệu quả tính toán

- Thời gian huấn luyện
 - Linear Regression nhanh nhất, nhưng accurary quá kém.
 - MLP mất ~6.87-10.09 s, lâu hơn RF mà MAE lại cao hơn.

- RF có độ trễ train chấp nhận được (~8.8s), inference nhanh (0.14-0.15s)
- Thời gian suy luận (inference)
 - Cả ba đều thực thi rất nhanh (<0.2s cho toàn bộ tập validation). Không có khác biệt lớn.

d. Đánh giá thống kê (Diagnostics)

- Shapiro-Wilk và Breusch-Pagan
 - Shapiro-Wilk Test: Kiểm định tính phân phối chuẩn của residuals. Cả ba mô hình đều có p-value = 0.0000 (<0.05) => bác bỏ H₀, residuals không phân phối chuẩn
 - Breusch-Pagan Test: Kiểm định phương sai đồng nhất. Cả ba mô hình đều có p-value = 0.0000 (<0.05) => bác bỏ H₀, residuals không phân phối chuẩn
- BIC (chỉ áp dụng cho Linear Regression)
 - BIC $O_3 = 15794.06$
 - BIC $NO_2 = 17838.19$
 - ⇒ Với BIC này cho thấy mô hình có độ phức tạp vừa phải nhưng likelihood trên dữ liệu chưa tối ưu

3. Task 3: Deployment

- Triển khai mô hình đã huấn luyện dễ dự đoán dữ liệu mới và lưu kết quả
- Quy trình:
 - Tải mô hình (joblib.load) và scaler.pkl từ thư muc models/
 - Đọc test.csv, chuyển Time sang datetime, trích xuất hour, tạo hour sin, hour cos.
 - Chuẩn hóa test data với scaler.transform()

- Dự đoán O₃ và NO₂, tạo cột OZONE_PRED,
 NO2 PRED
- Xuất predictions.csv gồm Time,
 OZONE PRED và NO2 PRED
- Cú pháp chạy:

V. Kết luận

Mô hình tối ưu (Best Model): Sau khi so sánh các tiêu chí MAE, R², thời gian huấn luyện và inference. Random Forest được lựa chọn là mô hình tốt nhất cho cả hai biến mục tiêu O₃ và NO₂ bởi:

- 1. Độ chính xác cao nhất: MAE giảm đáng kể (3.49 cho O₃, 2.23 cho NO₂) và R² trên 0.89
- 2. Hiệu quả tính toán: Thời gian huấn luyện chấp nhận được (~8.7s) và inference nhanh (~0.15s).
- 3. Tính ổn định và dễ triển khai: RF ít nhạy cảm với scaling, không cần tuning phức tạp như MLP

VI. Tài liệu tham khảo

- 1. Shapiro, S. S., & Wilk, M. B. (1965). "An analysis of variance test for normality." *Biometrika*, 52(3/4), 591–611.
- 2. Breusch, T. S., & Pagan, A. R. (1979). "A simple test for heteroscedasticity." *Econometrica*, 47(5), 1287–1294.
- 3. Breiman, L. (2001). "Random Forests." *Machine Learning*, 45(1), 5–32.
- 4. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

- 5. Pedregosa, F. et al. (2011). "Scikit-learn: Machine Learning in Python." *Journal of Machine Learning Research*, 12, 2825–2830.
- 6. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.