AMENDMENTS TO THE CLAIMS

Please amend the claims without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

- 1. **(Currently Amended)** A spot-on formulation for the treatment or prophylaxis of parasite infestation in mammals or birds which comprises
- (1) an effective amount about 1 to about 40% (W/V) of at least one nodulisporic acid derivative;
- (2) a pharmaceutically or veterinarily acceptable liquid carrier vehicle <u>comprising a</u> solvent and optionally a cosolvent wherein the solvent is diethylene glycol monoethyl ether and the cosolvent is selected from the group consisting of absolute ethanol, isopropanol and methanol; and
- (3) <u>about 1 to about 20% (W/V) of a crystallization inhibitor system, comprising a</u> polymeric film-forming agent and a surfactant <u>wherein the film-forming agents are of polymeric type and are selected from the group consisting of various grades of polyvinylpyrrolidone, polyvinyl alcohols, copolymers of vinyl acetate and of vinylpyrrolidone and wherein the <u>surfactant is selected from the group consisting of polyoxyethylenated esters of sorbitan and various grades of polysorbate.</u></u>
- 2. (Previously Presented) The spot-on formulation according to claim 1, which comprises:
 - (1) an effective amount of at least one nodulisporic acid derivative of the formula:

1

wherein

- R₁ is (1) hydrogen,
 - (2) optionally substituted alkyl,
 - (3) optionally substituted alkenyl,
 - (4) optionally substituted alkynyl,
 - (5) optionally substituted cycloalkyl,
 - (6) optionally substituted cycloalkenyl, where the substituents on the alkyl, alkenyl, alkynyl, cycloalkyl and cycloalkenyl are 1 to 3 groups independently selected from
 - (i) alkyl,
 - (ii) X-alkyl, where X is O or S(O)_m,
 - (iii) cycloalkyl,
 - (iv) hydroxy,
 - (v) halogen,
 - (vi) cyano,
 - (vii) carboxy,
 - (viii) NY¹Y², where Y¹ and Y² are

independently H or alkyl,

- (ix) alkanoylamino, and
- (x) aroylamino wherein said aroyl is optionally substituted with 1 to 3 groups independently selected from R^f
- (7) aryl or arylalkyl wherein said aryl is optionally substituted with 1 to 3 groups independently selected from R^f,
- (8) perfluoroalkyl
- (9) a 5- or 6-member heterocycle containing from 1 to 4 heteroatoms independently selected from oxygen, sulfur and nitrogen atoms optionally substituted by 1 to 3 groups independently selected from hydroxy, oxo, alkyl and halogen, and which may be saturated or partly unsaturated,

R₂, R₃, and R₄ are independently OR^a, OCO₂R^b, OC(O)NR^cR^d; or

 R_1 and R_2 together represent =0, =NOR^a or =N-NR^cR^d;

R₅ and R₆ are H; or

 R_5 and R_6 together represent -O-;

- R₇ is
- (1) CHO, or
- (2) the fragment

- R_8 is
- (1) H,
- (2) OR^a , or
- (3) $NR^{c}R^{d}$
- R₉ is
- (1) H, or
- (2) OR^a ;
- R_{10} is
- (1) CN,
- (2) $C(O)OR^b$,
- (3) $C(O)N(OR^b)R^c$,
- (4) $C(O)NR^{c}R^{d}$,
- (5) $NHC(O)OR^b$,
- (6) $NHC(O)NR^{c}R^{d}$,
- (7) CH_2OR^a ,
- (8) $CH_2OCO_2R^b$,
- (9) $CH_2OC(O)NR^cR^d$,
- (10) C(O)NRCNR^cR^d, or
- (11) $C(O)NR^{c}SO_{2}R^{b}$;

represents a single or a double bond;

R^a is (1) hydrogen,

- (2) optionally substituted alkyl,
- (3) optionally substituted alkenyl,
- (4) optionally substituted alkynyl,
- (5) optionally substituted alkanoyl,
- (6) optionally substituted alkenoyl,
- (7) optionally substituted alkynoyl,
- (8) optionally substituted aroyl,
- (9) optionally substituted aryl,

- (10) optionally substituted cycloalkanoyl,
- (11) optionally substituted cycloalkenoyl,
- (12) optionally substituted alkylsulfonyl
- (13) optionally substituted cycloalkyl
- (14) optionally substituted cycloalkenyl where the substituents on the alkyl, alkenyl, alkynyl, alkanoyl, alkenoyl, alkynoyl, aroyl, aryl, cycloalkanoyl, cycloalkenoyl, alkylsulfonyl, cycloalkyl and cycloalkenyl are from 1 to 10 groups independently selected from the group consisting of hydroxy, alkoxy, cycloalkyl, aryl alkoxy, NR^gR^h, CO₂R_b, CONR^cR^d and halogen,
- (15) perfluoroalkyl,
- (16) arylsulfonyl optionally substituted with 1 to 3 groups independently selected from alkyl, perfluoroalkyl, nitro, halogen and cyano,
- (17) a 5- or 6-member heterocycle containing 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen optionally substituted by 1 to 4 groups independently selected from alkyl, alkenyl, perfluoroalkyl, amino, C(O)NR^cR^d, cyano, CO₂R^b and halogen, and which may be saturated or partly unsaturated;

R^b is

- (1) H,
- (2) optionally substituted aryl,
- (3) optionally substituted alkyl,
- (4) optionally substituted alkenyl,
- (5) optionally substituted alkynyl,
- (6) optionally substituted cycloalkyl,
- (7) optionally substituted cycloalkenyl, or
- (8) optionally substituted heterocycle containing from 1 to 4 heteroatoms independently selected from oxygen, sulfur and nitrogen; where the substituents on the aryl, alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycle, or alkynyl are from 1 to 10 groups

independently selected from

- (i) hydroxy,
- (ii) alkyl,

- (iii) oxo,
- (iv) SO₂NR^gR^h,
- (v) arylalkoxy,
- (vi) hydroxyalkyl,
- (vii) alkoxy,
- (viii) hydroxyalkoxy,
- (ix) aminoalkoxy,
- (x) cyano,
- (xi) mercapto,
- (xii) alkyl-S(O)_m,
- (xiii) cycloalkyl optionally substituted

with 1 to 4 groups independently selected from Re,

- (xiv) cycloalkenyl,
- (xv) halogen,
- (xvi) alkanoyloxy,
- (xvii) C(O)NR^gR^h,
- (xviii) CO₂Rⁱ,
- (xix) formyl,
- (xx) -NR^gR^h,
- (xxi) 5 to 9-member heterocycle, which may be saturated or partially unsaturated, containing from 1 to 4 heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 to 5 groups independently selected from R^e,
- (xxii) optionally substituted aryl, wherein the aryl substituents are 1,2-methylenedioxy or 1 to 5 groups independently selected from R^e,
- (xxiii) optionally substituted arylalkoxy, wherein the aryl substituents are 1,2-methylenedioxy or 1 to 5 groups independently selected from R^e, and

(xxiv) perfluoroalkyl;

 R^{c} and R^{d} are independently selected from R^{b} ; or

R^c and R^d together with the N to which they are attached form a 3- to 10-member ring containing 0 to 2 additional heteroatoms selected from O, S(O)_m, and N, optionally substituted with 1 to 3 groups independently selected from R^g, hydroxy, thioxo and oxo;

- R^e is (1) halogen,
 - (2) alkyl,
 - (3) perfluoroalkyl,
 - (4) $-S(O)_m R^i$,
 - (5) cyano,
 - (6) nitro,
 - (7) $R^{i}O(CH_2)_{v}$ -,
 - (8) $R^{i}CO_{2}(CH_{2})_{v}$ -,
 - (9) $R^{i}OCO(CH_{2})_{v}$,
 - (10) optionally substituted aryl where the substituents are from 1 to 3 of halogen, alkyl, alkoxy, or hydroxy,
 - (11) $SO_2NR^gR^h$, or
 - (12) amino;
- R^f is
- (1) alkyl,
- (2) X-alkyl, where X is O or S(O)_m,
- (3) alkenyl,
- (4) alkynyl,
- (5) perfluoroalkyl,
- (6) NY^1Y^2 , where Y^1 and Y^2 are independently H or alkyl,
- (7) hydroxy,
- (8) halogen, and
- (9) alkanoyl amino,

Rg and Rh are independently

- (1) hydrogen,
- (2) alkyl optionally substituted with hydroxy, amino, or CO₂Rⁱ
- (3) aryl optionally substituted with halogen, 1,2-methylenedioxy, alkoxy, alkyl or perfluoroalkyl,

- (4) arylalkyl, wherein the aryl is optionally substituted with perfluorolkyl or 1,2-methylenedioxy;
- (5) alkoxycarbonyl,
- (6) alkanoyl,
- (7) alkanoylalkyl,
- (9) arylalkoxycarbonyl,
- (10) aminocarbonyl,
- (11) monoalkylaminocarbonyl
- (12) dialkylaminocarbonyl; or

R^g and R^h together with the N to which they are attached form a 3- to 7-member ring containing 0 to 2 additional heteroatoms selected from O, S(O)_m, and N, optionally substituted with 1 to 3 groups independently selected from R^e and oxo;

Ri is

- (1) hydrogen,
- (2) perfluoroalkyl,
- (3) alkyl,
- (4) optionally substituted aryl, or arylalkyl, where the aryl substituents are from 1 to 3 groups independently selected from halogen, alkyl, alkoxy, and hydroxy;

m is

0 to 2; and

v is

0 to 3; or

a pharmaceutically acceptable salt thereof;

a liquid carrier vehicle comprising a solvent and optionally a cosolvent wherein the solvent is selected from the group consisting of acetone, acetonitrile, benzyl alcohol, butyl diglycol, dimethylacetamide, dimethylformamide, dipropylene glycol n-butyl ether, ethanol, isopropanol, methanol, diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, monomethylaceamide, dipropylene glycol monomethyl ether, liquid polyoxyethylene glycols, propylene glycol, 2-pyrrolidone, diethylene glycol monoethyl ether, ethylene glycol, diethyl phthalate, and a mixture of at least two of these solvents and the cosolvent is selected from the group consisting of absolute ethanol, isopropanol or methanol;

- a crystallization inhibitor selected from the group consisting of an anionic surfactant, a cationic surfactant, a non-ionic surfactant, an amine salt, an amphoteric surfactant, polyvinylpyrrolidone, polyvinyl alcohols, copolymers of vinyl acetate and vinylpyrrolidone, polyethylene glycols, benzyl alcohol, mannitol, glycerol, sorbitol, polyoxyethylenated sorbitan esters; lecithin, sodium carboxymethylcellulose, and acrylic derivatives, or a mixture of these crystallization inhibitors.
- 3. (Withdrawn) The spot-on formulation according to claim 2 wherein
- R_1 is (1) hydrogen,
 - (2) optionally substituted alkyl,
 - (3) optionally substituted alkenyl,
 - (4) optionally substituted alkynyl,
 - (5) optionally substituted cycloalkyl,
 - (6) optionally substituted cycloalkenyl where the substituents on the alkyl, alkynyl, cycloalkyl and cycloalkenyl are 1 to 3 groups independently selected from
 - (i) alkyl,
 - (ii) X-alkyl, where X is O or S(O)_m,
 - (iii) cycloalkyl,
 - (iv) hydroxy,
 - (v) halogen,
 - (vi) cyano,
 - (vii) carboxy, and
 - (viii) NY¹Y², where Y¹ and Y² are independently H or alkyl,
 - (7) aryl alkyl wherein said aryl is optionally substituted with 1 to 3 groups independently selected from R^f,
 - (8) perfluoroalkyl,
 - (9) a 5- or 6-member heterocycle containing from 1 to 4 heteroatoms independently selected from oxygen, sulfur and nitrogen atoms optionally substituted by 1 to 3 groups independently selected from hydroxy, oxo, alkyl and halogen, and which may be saturated or partly unsaturated,
- R_8 is (1) H,

- (2) OH, or (3) NH₂; H or R₉ is (1) OH; (2) $C(O)OR^b$, R₁₀ is (1) $C(O)N(OR^b)R^c$ (2) $C(O)NR^{c}R^{d}$, (3) NHC(O)ORb, (4) $NHC(O)NR^{c}R^{d}$, (5) CH_2OR^a , (6) $CH_2OCO_2R^b$, (7) CH₂OC(O)NR^cR^d, (8) C(O)NR°NR°R^d, or (9) $C(O)NR^{c}SO_{2}R^{b};$ (10)Ra is hydrogen, (1) (2) optionally alkyl, (3) optionally substituted alkenyl,
 - (4) optionally substituted alkynyl,
 - (5) optionally substituted alkanoyl,
 - (6) optionally substituted alkenoyl,
 - (7) optionally substituted alkynoyl,
 - (8) optionally substituted aroyl,
 - (9) optionally substituted aryl,
 - (10) optionally substituted cycloalkanoyl,
 - (11) optionally substituted cycloalkenoyl,
 - (12) optionally substituted alkylsulfonyl
 - (13) optionally substituted cycloalkyl
 - (14) optionally substituted cycloalkenyl where the substituents on the alkyl, alkenyl, alkynyl, alkanoyl, alkynoyl, aroyl, aryl, cycloalkanoyl, cycloalkenoyl, alkylsulfonyl, cycloalkyl and cycloalkenyl are from 1 to 10 groups

independently selected from hydroxy, alkoxy, cycloalkyl, aryl alkoxy, NR^gR^h, CO₂R^b, CONR^cR^d and halogen,

- (15) perfluoroalkyl,
- (16) arylsulfonyl optionally substituted with 1 to 3 groups independently selected from alkyl, perfluoroalkyl, halogen and cyano,
- (17) a 5- or 6-member heterocycle containing 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen optionally substituted by 1 to 4 groups independently selected from alkyl, alkenyl, perfluoroalkyl, amino, $C(O)NR^cR^d$, cyano, CO_2R^b and halogen, and which may be saturated or partly unsaturated;

R^b is

- (1) H,
- (2) optionally substituted aryl,
- (3) optionally substituted alkyl,
- (4) optionally substituted alkenyl,
- (5) optionally substituted alkynyl,
- (6) optionally substituted cycloalkyl,
- (7) optionally substituted cycloalkenyl, or
- (8) optionally substituted 5- to 10-member

heterocycle containing from 1 to 4 heteroatoms independently selected from oxygen, sulfur and nitrogen; where the substituents on the aryl, alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycle, or alkynyl are from 1 to 10 groups independently selected from

- (i) hydroxy,
- (ii) alkyl,
- (iii) oxo,
- (iv) $SO_2NR^gR^h$,
- (v) arylalkoxy,
- (vi) hydroxyalkyl,
- (vii) alkoxy,
- (viii) hydroxyalkoxy,
- (ix) aminoalkoxy,
- (x) cyano,

- (xi) perfluoroalkyl,
- (xii) alkyl-S(O)_m,
- (xiii) cycloalkyl optionally substituted

with 1 to 4 groups independently selected from Re,

- (xiv) cycloalkenyl,
- (xv) halogen,
- (xvi) alkanoyloxy,
- (xvii) C(O)NR^gR^h,
- (xviii) CO₂Rⁱ,
- (xix) optionally substituted aryl alkoxy, wherein the aryl substituents are 1,2-methylenedioxy or 1 to 5 groups independently selected from R^e,
- $(xx) -NR^gR^h$
- (xxi) 5 to 6-member heterocycle, which may be saturated or partially unsaturated, containing from 1 to 4 heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 to 5 groups independently selected from R^e, and
- (xxii) optionally substituted aryl, wherein the aryl substituents are 1,2-methylenedioxy or 1 to 5 groups independently selected from Re;
- (1) halogen,
 - (2) alkyl,
 - (3) perfluoroalkyl,
 - (4) $-S(O)_mR^i$,
 - (5) cyano,
 - (6) amino,
 - (7) $R^{i}O(CH_2)_{v}$ -,
 - (8) $R^{i}CO_{2}(CH_{2})_{v}$,
 - (9) $R^{i}OCO(CH_{2})_{v}$ -,
 - (10) optionally substituted aryl where the substituents are from 1 to 3 of halogen, alkyl, alkoxy, or hydroxy, or
 - (11) $SO_2NR^gR^h$;

R^f is

- (1) methyl,
- (2) X-alkyl, where X is O or $S(O)_m$,
- (3) halogen,
- (4) acetylamino,
- (5) trifluoromethyl,
- (6) NY^1Y^2 , where Y^1 and Y^2 are independently H or methyl, and
- (7) hydroxy;

R^g and R^h are independently

- (1) hydrogen,
- (2) alkyl optionally substituted with hydroxy, amino, or CO₂Rⁱ
- (3) aryl optionally substituted with halogen, 1,2-methylenedioxy, alkoxy, alkyl or perfluoroalkyl,
- (4) aryl alkyl, wherein the aryl is optionally substituted with perfluorolkyl or 1,2-methylenedioxy;
- (5) alkoxycarbonyl,
- (6) alkanoyl,
- (7) alkanoylalkyl,
- (9) arylalkoxycarbonyl,
- (10) aminocarbonyl,
- (11) monoalkylaminocarbonyl
- (12) dialkylaminocarbonyl; or

 R^g and R^h together with the N to which they are attached form a 5- to 6membered ring containing 0 to 2 additional heteroatoms selected from O, $S(O)_m$, and N, optionally substituted with 1 to 3 groups independently selected from R^e and oxo;

Ri is

- (1) hydrogen,
- (2) perfluoroalkyl,
- (3) alkyl,
- (4) optionally substituted aryl alkyl, where the aryl substituents are from 1 to 3 groups independently selected from halogen, alkyl, alkoxy, and hydroxy.

4.	(Withdrawn)	The spot-on formulation according to claim 2, wherein			
R ¹ is		(1)	l) hydrogen,		
		(2)	optionally substituted alkyl,		
		(3)	optionally substituted alkenyl,		
		(4)	optionally substituted alkynyl,		
		where the substituents on the alkyl, alkenyl, and alkynyl are 1 to 3 groups			
		independently selected from			
			(i)	methyl,	
			(ii)	X-methyl, where X is O or S(O) _m and	
			(iii)	halogen,	
		(5)	arylall	cyl wherein said aryl is optionally substituted with 1 to 3	
		groups independently selected from Rf.			
		(6)	trifluoromethyl		
R ₈ is		(1) H,			
		(2)	OH, or	r	
		(3)	NH_2		
R ₉ is		(1)	H, or		
		(2)	OH;		
R_{10} is		(1)	C(O)OR ^b ,		
		(2)	C(O)N	$N(OR^b)R^c$,	
		(3)	C(O)N		
		(4)	NHC(O)OR ^b ,	
		(5)	NHC(O)NR°R ^d ,	
		(6)	CH ₂ O		
		(7)		CO_2R^b ,	
		(8)		C(O)NR°Rd,	
		(9)		JR°NR°R ^d , or	
		(10)	C(O)N	$\mathrm{NR}^{\mathrm{c}}\mathrm{SO}_{2}\mathrm{R}^{\mathrm{b}};$	
R ^a is	(1)	hydrog			
	(2)	-	optionally substituted alkyl,		
	(3)	optionally substituted alkenyl,			

- (4) optionally substituted alkynyl,
- (5) optionally substituted alkanoyl,
- (6) optionally substituted aroyl,
- (7) optionally substituted cycloalkanoyl,
- (8) optionally substituted cycloalkenoyl,
- (9) optionally substituted alkylsulfonyl where the substituents on the alkyl, alkenyl, alkynyl, alkanoyl, aroyl, cycloalkanoyl, cycloalkenoyl, and alkylsulfonyl, are from 1 to 5 groups independently selected from hydroxy, alkoxy, aryl alkoxy, NR^gR^h , CO_2R^b , $CONR^cR^d$ and halogen,
- (10) trifluoromethyl,
- (11) arylsulfonyl optionally substituted with 1 to 3 groups independently selected from methyl, trifluoromethyl and halogen,
- (12) a 5- or 6-member heterocycle containing 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen optionally substituted by 1 to 4 groups independently selected from methyl, trifluoromethyl, C(O)NR^cR^d, CO₂R^b and halogen, and which may be saturated or partly unsaturated;

R^b is

- (1) H,
- (2) optionally substituted aryl,
- (3) optionally substituted alkyl,
- (4) optionally substituted alkenyl,
- (5) optionally substituted alkynyl,
- (6) optionally substituted cycloalkyl,
- (7) optionally substituted cycloalkenyl, or
- (8) optionally substituted 5- to 6-member heterocycle containing from 1 to 4 heteroatoms independently selected from oxygen, sulfur and nitrogen; where the substituents on the aryl, alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycle, or alkynyl are from 1 to 10 groups independently selected from
 - (i) hydroxy,
 - (ii) alkyl,
 - (iii) oxo,

- (iv) $SO_2NR^gR^h$,
- (v) arylalkoxy,
- (vi) hydroxyalkyl,
- (vii) alkoxy,
- (viii) hydroxyalkoxy,
- (ix) aminoalkoxy,
- (x) cyano,
- (xi) alkyl-S(O)_m,
- (xii) cycloalkyl optionally substituted with 1 to 4 groups independently selected from R^e,
- (xiii) cycloalkenyl,
- (xiv) halogen,
- (xv) alkanoyloxy,
- (xvi) $C(O)NR^gR^h$,
- (xvii) CO_2R^i ,
- (xvii) -NR^gR^h,
- (xix) 5 to 6-member heterocycle, which may be saturated or partially unsaturated, containing from 1 to 4 heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 to 5 groups independently selected from R^e,
- (xx) optionally substituted aryl, wherein the aryl substituents are 1,2-methylenedioxy or 1 to 5 groups independently selected from R^e,
- (xxi) optionally substituted aryl alkoxy, wherein the aryl substituents are 1,2-methylenedioxy or 1 to 5 groups independently selected from R^e, and (xxii) perfluoroalkyl;
- Re is
- (1) halogen,
- (2) alkyl,
- (3) perfluoroalkyl,
- (4) $-S(O)_mR^i$,
- (5) cyano,
- (6) $R^{i}O(CH_{2})_{v}$,

- (7) $R^{i}CO_{2}(CH_{2})_{v}$ -,
- (8) $R^{i}OCO(CH_{2})_{v}$ -,
- (9) optionally substituted aryl where the substituents are from 1 to 3 of halogen, alkyl, alkoxy, or hydroxy,
- (10) SO₂NR^gR^h, or
- (11) amino;

Rf is

- (1) methyl,
- (2) X-alkyl, where X is O or S(O)_m,
- (3) trifluoromethyl,
- (4) $NY^{1}Y^{2}$, where Y^{1} and Y^{2} are independently H or methyl,
- (5) hydroxy,
- (6) halogen, and
- (7) acetylamino,

Rg and Rh are independently

- (1) hydrogen,
- (2) alkyl optionally substituted with hydroxy, amino, or CO₂Rⁱ
- (3) aryl optionally substituted with halogen, 1,2methylenedioxy, alkoxy, alkyl or perfluoroalkyl,
- (4) aryl or arylalkyl, wherein the aryl is optionally substituted with perfluorolkyl or 1,2-methylenedioxy;
- (5) alkoxycarbonyl,
- (6) alkanoyl,
- (7) alkanoylalkyl,
- (9) arylalkoxycarbonyl,
- (10) aminocarbonyl,
- (11) monoalkylaminocarbonyl
- (12) dialkylaminocarbonyl; or

 R^g and R^h together with the N to which they are attached form a 5- to 6-member ring containing 0 to 2 additional heteroatoms selected from O, $S(O)_m$, and N, optionally substituted with 1 to 3 groups independently selected from R^e and oxo;

Rⁱ is (1) hydrogen,

- (2) perfluoroalkyl,
- (3) alkyl,
- (4) optionally substituted aryl or arylalkyl, where the aryl substituents are from 1 to 3 groups independently selected from halogen, alkyl, alkoxy, and hydroxy.
- 5. (Withdrawn) The spot-on formulation according to claim 2, wherein

 R_{10} is $C(O)NR^{c}R^{d}$;

R^b is

- (1) hydrogen,
- (2) optionally substituted aryl,
- (3) optionally substituted alkyl,
- (4) optionally substituted alkenyl,
- (5) optionally substituted alkynyl,
- (6) optionally substituted cycloalkyl,
- (7) optionally substituted cycloalkenyl, or
- (8) optionally substituted 5 to 6-member heterocycle containing from 1 to 4 heteroatoms independently selected from oxygen, sulfur and nitrogen; where the substituents on the aryl, alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycle, or alkynyl are from 1 to 10 groups independently selected from the group consisting of
 - (i) hydroxy,
 - (ii) alkyl,
 - (iii) oxo,
 - (iv) SO₂NR^gR^h,
 - (v) arylalkyl,
 - (vi) hydroxyalkylfoxy,
 - (viii) hydroxyalkoxy,
 - (ix) aminoalkoxy,
 - (x) cyano,
 - (xi) perfluoroalkyl,
 - (xii) alky1-S(O)_m,

(xiii) cycloalkyl optionally substituted with 1 to 4 groups selected from Re, cycloalkenyl, (xiv) (xv) halogen, (xvi) $C(O)NR^gR^h$, (xvii) CO₂Rⁱ, (xviii) -NR^gR^h, (xix) 5 to 9-member heterocycle containing from 1 to 4 heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 to 3 groups independently selected from R^e, optionally substituted aryl, wherein the aryl substituents are (xx)1,2-methylenedioxy or 1 to 5 groups independently selected from R^e and (xxi) optionally substituted aryl alkoxy, wherein the aryl substituents are 1,2-methylenedioxy or 1 to 5 groups independently selected from Re; R^c and R^d are independently selected from R^b; or R^c and R^d together with the N to which they are attached form a 3- to 10-member ring containing 0 to 2 additional heteratoms selected from O, S(O)_m, and N, optionally substituted with 1 to 3 groups independently selected from R^g, hydroxy, thioxo and oxo; Re is (1) halogen, (2) alkyl, (3) perfluoroalkyl, $R^{i}O(CH_{2})v_{-}$ (4) RiCO2(CH2)v-, (5) RiOCO(CH₂)_v-, (6) SO₂NR^gR^h: (7) (8) amino 0: v is R^g and R^h are independently hydrogen, (1)

alkyl optionally substituted with hydroxy,

(2)

amino, or CO₂Rⁱ,

- (3) aryl optionally substituted with halogen, 1,2-methylenedioxy, alkoxy, alkyl or perfluoroalkyl,
- (4) aryl or arylalkyl, wherein the aryl is optionally substituted with perfluoroalkyl or 1,2methylenedioxy,
- (5) alkoxycarbonyl,
- (6) alkanoyl,
- (7) arylalkoxycarbonyl,
- (8) aminocarbonyl, or

 R^g and R^h together with the N to which they are attached form a 5- to 6-member ring containing 0 to 2 additional heteroatoms selected from O, $S(O)_m$, and N, optionally substituted with 1 to 3 groups independently selected from R^e and oxo;

Ri is

- (1) hydrogen or
- (2) optionally substituted alkyl wherein the substituents are aryl or substituted aryl, and the aryl substituents are from 1 to 3 groups independently selected from halogen, alkyl, alkoxy, and hydroxy.
- 6. (**Original**) The spot-on formulation according to claim 2, wherein the nodulisporic acid derivative is a compound of the formula

wherein R^x is selected from the group consisting of:

H, CH₃, CH₂CH₃, C(CH₃)₃, CH₂CH₂CH₃, CH₂CH₂OH, CH(CO₂CH₃)CH₂OH, CH₂CO₂CH₃, CH₂CH(OCH₂CH₃)₂, CH₂CH₂OCH₂CH₂OH, CH(CH₃)(CH₂)₃C(CH₃)₂OH, (CH₂)₃OH, (CH₂)₄OH, (CH₂)SOH, CH(CH₂OH)CH₂CH₃, NHC(CH₃)₃, CH₂CN, (CH₂)₆OH, CH₂CH(OH)CH₃, CH(CH₂OH)CH₂CH₂CH₃, CH₂CH₂SCH₃, CH₂CH₂SCH₂CH₃, CH₂CONH₂, CH(CH₃)(CH₂OH)₂, CH₂CH₂NHCH₂CH₂OH, CH(CH₂OH)(CH₂)₃CH₃, CH(CH₂OCH₃)CH₃, (CH₂)₂SH, (CH₂)₄NH₂, CH₂CH₂SO₂CH₃, CH₂CH₂S(O)CH₃, CH(CH(CH₃)₂)CH₂OH, (CH₂)₃NH₂, (CH₂)₃N(CH₃)₂, (CH₂)₃N(CH₃)₂, OCH₂CH₃, CH₂CH(OH)CH₂OH, OCH₃, CH₂CH₂OCH₃, CH₂CH₂NHC(O)CH₃, C(CH₃)₂CH₂OH, c-C₃H₅, cC₆H₁₁, (CH₂)₃OCH₂CH₃, CH₂CH=CH₂.

C(CH₂CH₃)(CH₂OH)₂, CH₂C≡CH, CH₂CO₂CH₂CH₃, CH₂CH₂F, (CH₂)₃O(CH₂)₁₁CH₃,
CH₂CH₂N(CH₃)₂, CH₂CH₂OCH₂CH₂NH₂, CH₂CF₃, NHCH₂CO₂CH₂CH₃, CH(CH₃)CO₂CH₃,
C(CH₃)₂CH₂C(O)CH₃, CH(CO₂CH₂CH₃)₂, CH₂CH₃, CH(CH₂CH₂CH₃)CO₂CH₃,
CH₂CH₂CH₂OCH₃, C(CH₃)₂CH₂C≡CH, (CH₂)₄CH₃, CH(CH₂CH₂CH₃)₂,
(CH₂)SCH₃,CH₂CH₂CO₂H, CH(CH(CH₃)₂)CO₂CH₃, OCH₂CO₂H, CH(CH(CH₃)₂)CH₂OH,
CH(CH(CH₃)₂)CH₂OH, CH(CH₃)CH₂OH, CH(CH₃)CH₂OH, CH(CH₃)₂, (CH₂)CH(CH₃)₂,
CH(CH₃)CH₂CH₃, CH₂CH(CH₃)OH, (CH₂)₃CH₃, (CH₂)₂OCH₂CH₃, 1-adamantyl, (CH₂)₈CH₃,
CH(CH₃)CH(CH₃)₂, (CH₂)₃NHCH₃, (CH₂)₂N(CH₂CH₃)₂,

$$-CH_{2}CH_{2}-N O -CH_{2}CH_{2}-N O -CH_{2}CH_$$

- 7. (Original) The spot-on formulation according to claim 6, wherein R^x is $C(CH_3)_3$.
- 8. (Withdrawn) The spot-on formulation according to claim 1, wherein the liquid carrier vehicle comprises a microemulsion.

- 9. (Withdrawn) The spot-on formulation according to claim 6, wherein the liquid carrier vehicle further comprises an excipient.
- 10. (Previously Presented) The spot-on formulation according to claim 6, wherein the liquid carrier vehicle further comprises an excipient wherein the excipient is C_8 - C_{10} caprylic/capric triglycerides, oleic acid or propylene glycol.
- 11. (Withdrawn) The spot-on formulation according to claim 10, wherein the spot-on formulation further comprises an antioxidant.
- 12. (Withdrawn) The spot-on formulation according to claim 11, wherein the antioxidant is selected from the group consisting of butylated hydroxyanisole, butylated hydroxytoluene, ascorbic acid, sodium metabisulphite, propyl gallate, and sodium thiosulphate.
- 13. (Withdrawn) The spot-on formulation according to claim 12, wherein the compound of formula (I) is t-butyl nodulisporamide, the carrier medium comprises diethylene glycol monoethyl ether and C_8 - C_{10} caprylic/capric triglycerides, and the antioxidant is butylated hydroxytoluene.
- 14. (Original) The spot-on formulation according to claim 2, wherein the combination comprises about 0.001 to about 100 mg/kg of weight of mammal or bird of a compound of formula (I).
- 15. (Withdrawn) The spot-on formulation according to claim 7, wherein the combination comprises about 1 to about 50 mg/kg of weight of mammal or bird of a compound of formula (I).
- 16. (Withdrawn) The spot-on formulation according to claim 2, which comprises crystallization inhibitor and further comprises an antioxidant.
- 17. (Previously Presented) The spot-on formulation according to claim 2, wherein the compound of formula (I) is t-butyl nodulisporamide.
- 18. (Withdrawn) The spot-on formulation according to claim 16, wherein about 0.005 to about 1% (W/V) of antioxidant is present and the antioxidant is selected from the group consisting of butylated hydroxyanisole, butylated hydroxytoluene, ascorbic acid, sodium metabisulphite, propyl gallate, and sodium thiosulphate.
- 19. (Withdrawn) The spot-on formulation according to claim 18, wherein the crystallization inhibitor is present in an amount from about 1 to about 20% W/V.
- 20. (Withdrawn) The spot-on formulation according to claim 19, wherein

- the anionic surfactant is alkaline stearates, sodium abietate; alkyl sulphates; sodium dodecylbenzenesulphonate, sodium dioctylsulphosuccinate; and fatty acids;
- the cationic surfactant is water-soluble quaternary ammonium salts of formula N+R'R"R" "Y in which the radicals R independently are hydrocarbon radicals, optionally hydroxylated, and Y is an anion of a strong acid;
- the amine salt is an amine salt of $N^+R'R''R''$ in which the radicals R independently are optionally hydroxylated hydrocarbon radicals;
- the non-ionic surfactant is optionally polyoxyethylenated sorbitan esters, polyoxyethylenated alkyl ethers; polyethylene glycol stearate, polyoxyethylenated derivatives of castor oil, polyglycerol esters, polyoxyethylenated fatty alcohols, polyoxyethylenated fatty acids, copolymers of ethylene oxide and propylene oxide; and
 - the amphoteric surfactant is lauryl-substituted betaine compounds.
- 21. (Withdrawn) The spot-on formulation according to claim 19, where the crystallization inhibitor is a crystallization inhibitor system comprising a polymeric film-forming agent and a surfactant.
- 22. (Withdrawn) The spot-on formulation according to claim 21, wherein the polymeric film-forming agent is polyvinylpyrrolidone, polyvinyl alcohols, or a copolymer of vinyl acetate and polyvinylpyrrolidone and the surfactant is a non-ionic surfactant.
- 23. (Withdrawn) The spot-on formulation according to claim 22, wherein the crystallization inhibitor system is a mixture of polyvinylpyrrolidone and polyoxethylene (20) sorbitan monooleate.
- 24. (Withdrawn) The spot-on formulation according to claim 18, wherein the compound of formula (I) is t-butyl nodulisporamide, the liquid carrier vehicle is diethylene glycol monoethyl ether, the crystallization inhibitor is pyrrolidone and the antioxidant is butylated hydroxytoluene.
- 25. (Withdrawn) A method of treating parasite infestations or for the prophylaxis of parasite infestation in mammals, fish or birds which comprises applying to said mammals, fish or birds an effective amount of a spot-on composition according to claim 1.
- 26. (Withdrawn) The method according to claim 25, wherein the parasite is an ectoparasite.
- 27. (Withdrawn) The method according to claim 25, wherein the parasite is an endoparasite.
- 28. (Withdrawn) The method according to claim 25, wherein the mammal is a cat, dog, horse, cattle or sheep.

- 29. (Withdrawn) The method according to claim 28, wherein the parasite is a flea or tick.
- 30. (Withdrawn) The method according to claim 25, wherein the mammal is a human.
- 31. (Withdrawn) The method according to claim 25, wherein the ectoparasites are mites, ticks, mosquitoes, flies or a combination of the foregoing.
- 32. (Withdrawn) A method of treating parasite infestations or for the prophylaxis of parasite infestations in mammals or birds which comprises applying to said mammals or birds an effective amount of a spot-on formulation according to claim 13.
- 33. (Withdrawn) The method according to claim 32 wherein the parasite is a flea or tick and the mammal is a cat or dog.
- 34. (Withdrawn) The method of claim 25, wherein the administration is bimonthly.
- 35. (Withdrawn) The method of claim 25, wherein the administration is quarterly.
- 36. (Withdrawn) The method of claim 25, wherein the administration is monthly.
- 37. (Withdrawn) A method for treating parasite infestations or for the prophylaxis of parasite infestations in mammals or birds which comprises applying to said mammal or bird an effective amount of a spot-on formulation according to claim 24.
- 38. (Withdrawn) The method according to claim 37 wherein the mammal is a cat or dog and the parasite is a flea or tick.
- 39. (Withdrawn) The method of claim 37, wherein the administration is bimonthly.
- 40. (Withdrawn) The method of claim 37, wherein the administration is quarterly.
- 41. (Withdrawn) The method of claim 37, wherein the administration is monthly.
- 42. (Withdrawn) A spot-on formulation for combating parasites in a mammal which comprises applying a composition according to claim 6 for a localized cutaneous application to said mammal with absorption and a resultant plasma concentration of the compound(s) of formula (I) wherein the liquid carrier vehicle comprises diethylene glycol monoethyl ether, and at least one antioxidant.
- 43. (Withdrawn) The spot-on formulation according to claim 42 which further comprises a crystallization inhibitor.
- 44. (Withdrawn) The spot-on formulation as claimed in claim 43, wherein an antioxidant is BHT and the crystallization inhibitor is pyrrolidone.

- 45. (Withdrawn) A method for combating parasites in a mammal comprising topically administering to a mammal a parasiticically effective amount of a spot-on formulation according to claim 42.
- 46. (Withdrawn) The method according to claim 45, wherein the mammal is a cat or dog and the parasite is a flea or tick.
- 47. (Withdrawn) A method for obtaining a detectable plasma concentration of parasiticides in a mammal comprising topically applying to a localized area on said mammal a parasiticically effective amount of the spot-on formulation as claimed in claim 42.
- 48. (Withdrawn) A method for combating parasites of a cat or dog comprising localized cutaneous application to the cat or dog, between the shoulders, at a frequency not greater than monthly, of a spot-on composition, which comprises, in a veterinarily acceptable vehicle, an effect amount parasitically effective amount of at least one of the formula

wherein R^x is selected from the group consisting of:

 $\begin{array}{l} H, CH_3, CH_2CH_3, C(CH_3)_3, CH_2CH_2CH_3, CH_2CH_2OH, CH(CO_2CH_3)CH_2OH, CH_2CO_2CH_3, \\ CH_2CH(OCH_2CH_3)_2, CH_2CH_2OCH_2CH_2OH, CH(CH_3)(CH_2)_3C(CH_3)_2OH, (CH_2)_3OH, \\ (CH_2)_4OH, (CH_2)SOH, CH(CH_2OH)CH_2CH_3, NHC(CH_3)_3, CH_2CN, (CH_2)_6OH, \\ CH_2CH(OH)CH_3, CH(CH_2OH)CH_2CH_2CH_3, CH_2CH_2SCH_3, CH_2CH_2SCH_2CH_3, CH_2CONH_2, \\ CH(CH_3)(CH_2OH)_2, CH_2CH_2NHCH_2CH_2OH, CH(CH_2OH)(CH_2)_3CH_3, CH(CH_2OCH_3)CH_3, \\ (CH_2)_2SH, (CH_2)_4NH_2, CH_2CH_2SO_2CH_3, CH_2CH_2S(O)CH_3, CH(CH(CH_3)_2)CH_2OH, (CH_2)_3NH_2, \\ (CH_2)_3N(CH_2CH_3)_2, (CH_2)_3N(CH_3)_2, OCH_2CH_3, CH_2CH(OH)CH_2OH, OCH_3, CH_2CH_2OCH_3, \\ CH_2CH_2NHC(O)CH_3, C(CH_3)_2CH_2OH, c-C_3H_5, cC_6H_{11}, (CH_2)_3OCH_2CH_3, CH_2CH=CH_2, \\ C(CH_2CH_3)(CH_2OH)_2, CH_2C=CH, CH_2CO_2CH_2CH_3, CH_2CH_2F, (CH_2)_3O(CH_2)_{11}CH_3, \\ CH_2CH_2N(CH_3)_2, CH_2CH_2OCH_2CH_2NH_2, CH_2CF_3, NHCH_2CO_2CH_2CH_3, CH(CH_3)CO_2CH_3, \\ C(CH_3)_2CH_2C(O)CH_3, CH(CO_2CH_2CH_3)_2, CH_2CH_3, CH(CH_2CH_2CH_3)CO_2CH_3, \\ CH_2CH_2CH_2OCH_3, C(CH_3)_2CH_2C=CH, (CH_2)_4CH_3, CH(CH_2CH_2CH_3)_2, \\ C(CH_2)SCH_3, CH_2CH_2OCH_2, CH_2C=CH, (CH_2)_4CH_3, CH(CH_2CH_2CH_3)_2, \\ C(CH_2)SCH_3, CH_2CH_2CO_2H, CH(CH(CH_3)_2)CO_2CH_3, OCH_2CO_2H, CH(CH(CH_3)_2)CH_2OH, \\ C(CH_2)SCH_3, CH(CH(CH(CH_3)_2)CO_2CH_3, OCH_2CO_2H, CH(CH(CH(CH_3)_2)CH_2OH, \\ C(CH_2)SCH_3, CH(CH(CH(CH_3)_2)CO_2CH_3, OCH_2CO_2H, CH(CH(CH(CH_3)_2)CO$

CH(CH₃)₂)CH₂OH, CH(CH₃)CH₂OH, CH(CH₃)CH₂OH, CH(CH₃)₂, (CH₂)CH(CH₃)₂, CH(CH₃)CH₂CH₃, CH₂CH(CH₃)OH, (CH₂)₃CH₃, (CH₂)₂OCH₂CH₃, 1-adamantyl, (CH₂)₈CH₃, CH(CH₃)CH(CH₃)₂, (CH₂)₃NHCH₃, (CH₂)₂N(CH₂CH₃)₂,

the vehicle is for a localized cutaneous application to the animal between the shoulders and contains an organic solvent, an antioxidant and/or a crystallization inhibitor wherein:

the organic solvent comprises acetone, ethyl acetate, methanol, ethanol, isopropanol, dimethylformamide, dichloromethane or diethyl glycol monoethyl ether; said solvent optionally supplemented by C_8 - C_{10} caprylic/capric triglyceride, oleic acid or propylene glycol;

the antioxidant is selected from the group consisting of butylated hydroxyanisole, butylated hydroxytoluene, ascorbic acid, sodium metabisuphite, propylgallate, and sodium theosulphate; and

the crystallization inhibitor selected from the group consisting of polyvinylpyrrolidone, copolymers of vinyl acetate and vinylpyrrolidone, polyoxyethylenated sorbitan esters and mixtures thereof;

whereby there is a prolonged release of formula (I) in or on the body of the cat or dog.

- 49. (Withdrawn) The method of claim 48 wherein in the spot-on composition the compound of formula (I) is t-butyl nodulisporamide.
- 50. (Withdrawn) The method of claim 48 wherein compound of formula (I) is present in the spot-on composition in an amount of from about 0.1 to about 100 mg/kg of weight of animal.
- 51. (Withdrawn) The method according to claim 49 wherein the liquid carrier vehicle is diethylene glycol monoethyl ether and the antioxidant is butylated hydroxytoluene.
- 52. (Withdrawn) The method of claim 49 wherein the spot-on composition comprises an antioxidant and the antioxidant is polyvinylpyrrolidone.

53. (Withdrawn) A process for the preparation of a compound having the formula:

$$R_3$$
 R_2 R_1 R_4 R_4

wherein

R₁ is

- (1) hydrogen,
- (2) optionally substituted alkyl,
- (3) optionally substituted alkenyl,
- (4) optionally substituted alkynyl,
- (5) optionally substituted cycloalkyl,
- (6) optionally substituted cycloalkenyl,

where the substituents on the alkyl, alkenyl, alkynyl,

cycloalkyl and cycloalkenyl are 1 to 3 groups independently selected from

- (i) alkyl,
- (ii) X-alkyl, where X is O or S(O)_m,
- (iii) cycloalkyl,
- (iv) hydroxy,
- (v) halogen,
- (vi) cyano,
- (vii) carboxy,
- (viii) NY¹Y², where Y¹ and Y² are

independently H or alkyl,

- (ix) alkanoylamino, and
- (x) aroylamino wherein said aroyl is optionally substituted with 1 to 3 groups independently selected from R^f
- (7) aryl or arylalkyl wherein said aryl is optionally substituted with 1 to 3 groups independently selected from R^f,
- (8) perfluoroalkyl

(9) a 5- or 6-member heterocycle containing from 1 to 4 heteroatoms independently selected from oxygen, sulfur and nitrogen atoms optionally substituted by 1 to 3 groups independently selected from hydroxy, oxo, alkyl and halogen, and which may be saturated or partly unsaturated,

 R_2 , R_3 , and R_4 are independently OR^a , OCO_2R^b , $OC(O)NR^cR^d$; or R_1 and R_2 represent =0, =NOR^a or =N-NR^cR^d;

- R^a is
- (1) hydrogen,
- (2) optionally substituted alkyl,
- (3) optionally substituted alkenyl,
- (4) optionally substituted alkynyl,
- (5) optionally substituted alkanoyl,
- (6) optionally substituted alkenoyl,
- (7) optionally substituted alkynoyl,
- (8) optionally substituted aroyl,
- (9) optionally substituted aryl,
- (10) optionally substituted cycloalkanoyl,
- (11) optionally substituted cycloalkenoyl,
- (12) optionally substituted alkylsulfonyl
- (13) optionally substituted cycloalkyl
- (14) optionally substituted cycloalkenyl

where the substituents on the alkyl, alkenyl, alkynyl, alkanoyl, alkenoyl, alkynoyl, aroyl, aryl, cycloalkanoyl, cycloalkenoyl, alkylsulfonyl, cycloalkyl and cycloalkenyl are from 1 to 10 groups independently selected from the group consisting of hydroxy, alkoxy, cycloalkyl, aryl alkoxy, NR^gR^h, CO₂R_b, CONR^cR^d and halogen,

- (15) perfluoroalkyl,
- (16) arylsulfonyl optionally substituted with 1 to 3 groups independently selected from alkyl, perfluoroalkyl, nitro, halogen and cyano,
- (17) a 5- or 6-member heterocycle containing 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen optionally substituted by 1 to 4 groups independently

selected from alkyl, alkenyl, perfluoroalkyl, amino, C(O)NR^cR^d, cyano, CO₂R^b and halogen, and which may be saturated or partly unsaturated;

- R^b is
- (1) H,
- (2) optionally substituted aryl,
- (3) optionally substituted alkyl,
- (4) optionally substituted alkenyl,
- (5) optionally substituted alkynyl,
- (6) optionally substituted cycloalkyl,
- (7) optionally substituted cycloalkenyl, or
- (8) optionally substituted heterocycle containing from 1 to 4 heteroatoms independently selected from oxygen, sulfur and nitrogen; where the substituents on the aryl, alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycle, or alkynyl are from 1 to 10 groups

independently selected from

- (i) hydroxy,
- (ii) alkyl,
- (iii) oxo,
- (iv) SO₂NR^gR^h,
- (v) arylalkoxy,
- (vi) hydroxyalkyl,
- (vii) alkoxy,
- (viii) hydroxyalkoxy,
- (ix) aminoalkoxy,
- (x) cyano,
- (xi) mercapto,
- (xii) alkyl-S(O)_m,
- (xiii) cycloalkyl optionally substituted
- with 1 to 4 groups independently selected from R^e ,
- (xiv) cycloalkenyl,
- (xv) halogen,
- (xvi) alkanoyloxy,

- (xvii) $C(O)NR^gR^h$,
- (xviii) CO₂Rⁱ,
- (xix) formyl,
- (xx) -NR^gR^h,
- (xxi) 5 to 9-member heterocycle, which may be saturated or partially unsaturated, containing from 1 to 4 heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 to 5 groups independently selected from R^e,
- (xxii) optionally substituted aryl, wherein the aryl substituents are 1,2-methylenedioxy or 1 to 5 groups independently selected from R^e ,

(xxiii) optionally substituted arylalkoxy, wherein the aryl substituents are 1,2-methylenedioxy or 1 to 5 groups independently selected from $R^{\rm e}$, and

(xxiv) perfluoroalkyl;

 R^{c} and R^{d} are independently selected from R^{b} ; or

R^c and R^d together with the N to which they are attached form a 3- to 10-member ring containing 0 to 2 additional heteroatoms selected from O, S(O)_m, and N, optionally substituted with 1 to 3 groups independently selected from R^g, hydroxy, thioxo and oxo;

Re is

- (1) halogen,
- (2) alkyl,
- (3) perfluoroalkyl,
- $(4) -S(O)_m R^i,$
- (5) cyano,
- (6) nitro,
- (7) $R^{i}O(CH_2)_{v}$,
- (8) $R^{i}CO_{2}(CH_{2})_{v}$ -,
- (9) $R^{i}OCO(CH_{2})_{v}$ -,
- (10) optionally substituted aryl where the substituents are from 1 to 3 of halogen, alkyl, alkoxy, or hydroxy,
- (11) SO₂NR^gR^h, or
- (12) amino;

- Rf is alkyl, (1) X-alkyl, where X is O or $S(O)_m$, (2) alkenyl, (3) (4) alkynyl, perfluoroalkyl, (5) NY¹Y², where Y¹ and Y² are independently H or alkyl, (6) hydroxy, **(7)** halogen, and (8) alkanoyl amino, (9) R^g and R^h are independently (1) hydrogen, alkyl optionally substituted with hydroxy, amino, or CO₂Rⁱ **(2)** aryl optionally substituted with halogen, 1,2-methylenedioxy, alkoxy, (3) alkyl or perfluoroalkyl, arylalkyl, wherein the aryl is optionally substituted with perfluorolkyl or (4) 1,2-methylenedioxy; alkoxycarbonyl, (5) alkanoyl, (6) alkanoylalkyl, (7) arylalkoxycarbonyl, (9) (10)aminocarbonyl, (11)monoalkylaminocarbonyl (12)dialkylaminocarbonyl; or R^g and R^h together with the N to which they are attached form a 3- to 7-member ring containing 0 to 2 additional heteroatoms selected from O, S(O)_m, and N, optionally substituted with 1 to 3 groups independently selected from R^e and oxo;
- Rⁱ is (1) hydrogen, (2) perfluoroalkyl,
 - (3) alkyl,

(4) optionally substituted aryl, or arylalkyl, where the aryl substituents are from 1 to 3 groups independently selected from halogen, alkyl, alkoxy, and hydroxy;

m is

0 to 2; and

v is

0 to 3;

R⁵¹ is

 R^c and R^d

or a pharmaceutically acceptable salt thereof which comprises

(1) coupling a compound of formula II':

$$\bigcap_{R_3} \bigcap_{R_2} \bigcap_{R_1} \bigcap_{R_4} \bigcap_{R_4} \bigcap_{R_4} \bigcap_{R_4} \bigcap_{R_4} \bigcap_{R_5} \bigcap_{R$$

wherein

R₁, R₂, R₃, and R₄ are defined above,

with a compound of formula III:

$$R^{6}-N=C=N-R^{7}$$

wherein R^{6'} and R^{7'} can be independently selected from alkyl and cycloalkyl, in the presence of an organic solvent to produce a first intermediate compound, of the formula

(2) reacting the first intermediate compound with an activating compound, Act

to produce a second intermediate compound of the formula:

- (3) adding an alkyl amine of the formula HNR^cR^d to the second intermediate compound to obtain a compound of formula I'.
- 54. (Withdrawn) The process according to claim 53, wherein the activating compound is 1-hydroxybenzotriazole, 2-hydroxypyridine-N-oxide, 2-hydroxypyridine and hydroxysuccinimide.
- 55. (Withdrawn) The process according to claim 53 wherein the first intermediate compound has the formula

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

wherein R^{6'} and R^{7'} can be independently selected from alkyl and cycloalkyl, or a pharmaceutically acceptable salt thereof.

56. (Withdrawn) The process according to claim 53 wherein the second intermediate compound has the formula

$$R_3$$
 R_2 R_1 VI'

or a pharmaceutically acceptable salt thereof.

57. (Withdrawn) The process according to claim 53 wherein said organic solvent is a halogenated hydrocarbon or a mixture of halogenated hydrocarbons.

- 58. (Withdrawn) The process according to claim 53 wherein said organic solvent is an ether or a mixture of ethers.
- 59. (Withdrawn) The process according to claim 56 wherein said halogenated hydrocarbon is methlyene chloride.
- 60. (Withdrawn) The process according to claim 57 wherein said ether or mixture of ethers are selected from the group consisting of tetrahydrofuran, diethyl ether, and methyl t-butyl ether.
- 61. (Withdrawn) The process according to claim 52 wherein the process is which is carried out in a single step without the isolation of a first and second intermediate compounds.
- 62. (Withdrawn) The process according to claim 53 which is carried out step-wise with the isolation of a first and/or second intermediate compounds.
- 63. (Withdrawn) A compound of the formula:

wherein

R₁ is

- (1) hydrogen,
- (2) optionally substituted alkyl,
- (3) optionally substituted alkenyl,
- (4) optionally substituted alkynyl,
- (5) optionally substituted cycloalkyl,
- (6) optionally substituted cycloalkenyl,

where the substituents on the alkyl, alkenyl, alkynyl,

cycloalkyl and cycloalkenyl are 1 to 3 groups independently selected from

- (i) alkyl,
- (ii) X-alkyl, where X is O or S(O)_m,
- (iii) cycloalkyl,
- (iv) hydroxy,
- (v) halogen,
- (vi) cyano,

- (vii) carboxy,
- (viii) NY^1Y^2 , where Y^1 and Y^2 are

independently H or alkyl,

- (ix) alkanoylamino, and
- (x) aroylamino wherein said aroyl is optionally substituted with 1 to 3 groups independently selected from R^f
- (7) aryl or arylalkyl wherein said aryl is optionally substituted with 1 to 3 groups independently selected from R^f,
- (8) perfluoroalkyl
- (9) a 5- or 6-member heterocycle containing from 1 to 4 heteroatoms independently selected from oxygen, sulfur and nitrogen atoms optionally substituted by 1 to 3 groups independently selected from hydroxy, oxo, alkyl and halogen, and which may be saturated or partly unsaturated,

 R_2 , R_3 , and R_4 are independently OR^a , OCO_2R^b , $OC(O)NR^cR^d$; or R_1 and R_2 represent =0, =NOR^a or =N-NR^cR^d;

- R^a is
- (1) hydrogen,
- (2) optionally substituted alkyl,
- (3) optionally substituted alkenyl,
- (4) optionally substituted alkynyl,
- (5) optionally substituted alkanoyl,
- (6) optionally substituted alkenoyl,
- (7) optionally substituted alkynoyl,
- (8) optionally substituted aroyl,
- (9) optionally substituted aryl,
- (10) optionally substituted cycloalkanoyl,
- (11) optionally substituted cycloalkenoyl,
- (12) optionally substituted alkylsulfonyl
- (13) optionally substituted cycloalkyl
- (14) optionally substituted cycloalkenyl

where the substituents on the alkyl, alkenyl, alkynyl, alkanoyl, alkenoyl, alkynoyl, aroyl, aryl, cycloalkanoyl, cycloalkenoyl, alkylsulfonyl, cycloalkyl and

cycloalkenyl are from 1 to 10 groups independently selected from the group consisting of hydroxy, alkoxy, cycloalkyl, aryl alkoxy, NR^gR^h, CO₂R_b, CONR^cR^d and halogen,

- (15) perfluoroalkyl,
- (16) arylsulfonyl optionally substituted with 1 to 3 groups independently selected from alkyl, perfluoroalkyl, nitro, halogen and cyano,
- (17) a 5- or 6-member heterocycle containing 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen optionally substituted by 1 to 4 groups independently selected from alkyl, alkenyl, perfluoroalkyl, amino, C(O)NR^cR^d, cyano, CO₂R^b and halogen, and which may be saturated or partly unsaturated;

R^b is

- (1) H,
- (2) optionally substituted aryl,
- (3) optionally substituted alkyl,
- (4) optionally substituted alkenyl,
- (5) optionally substituted alkynyl,
- (6) optionally substituted cycloalkyl,
- (7) optionally substituted cycloalkenyl, or
- (8) optionally substituted heterocycle containing from 1 to 4 heteroatoms independently selected from oxygen, sulfur and nitrogen; where the substituents on the aryl, alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycle, or alkynyl are from 1 to 10 groups

independently selected from

- (i) hydroxy,
- (ii) alkyl,
- (iii) oxo,
- (iv) $SO_2NR^gR^h$,
- (v) arylalkoxy,
- (vi) hydroxyalkyl,
- (vii) alkoxy,
- (viii) hydroxyalkoxy,
- (ix) aminoalkoxy,

- (x) cyano,
- (xi) mercapto,
- (xii) alkyl-S(O)_m,
- (xiii) cycloalkyl optionally substituted

with 1 to 4 groups independently selected from R^e,

- (xiv) cycloalkenyl,
- (xv) halogen,
- (xvi) alkanoyloxy,
- (xvii) $C(O)NR^gR^h$,
- (xviii) CO₂Rⁱ,
- (xix) formyl,
- $(xx) -NR^gR^h$
- (xxi) 5 to 9-member heterocycle, which may be saturated or partially unsaturated, containing from 1 to 4 heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 to 5 groups independently selected from R^e,
- (xxii) optionally substituted aryl, wherein the aryl substituents are 1,2-methylenedioxy or 1 to 5 groups independently selected from R^e ,

(xxiii) optionally substituted arylalkoxy,

wherein the aryl substituents are 1,2-methylenedioxy or 1 to 5 groups independently selected from R^e, and

(xxiv) perfluoroalkyl;

R^c and R^d are independently selected from R^b; or

R^c and R^d together with the N to which they are attached form a 3- to 10-member ring containing 0 to 2 additional heteroatoms selected from O, S(O)_m, and N, optionally substituted with 1 to 3 groups independently selected from R^g, hydroxy, thioxo and oxo;

- R^e is
- (1) halogen,
- (2) alkyl,
- (3) perfluoroalkyl,
- $(4) S(O)_m R^i,$
- (5) cyano,

- (6) nitro,
- (7) $R^{i}O(CH_2)_{v}$ -,
- (8) $R^{i}CO_{2}(CH_{2})_{v}$ -,
- (9) $R^{i}OCO(CH_{2})_{v}$,
- (10) optionally substituted aryl where the substituents are from 1 to 3 of halogen, alkyl, alkoxy, or hydroxy,
- (11) $SO_2NR^gR^h$, or
- (12) amino;

 R^f is

- (1) alkyl,
- (2) X-alkyl, where X is O or S(O)_m,
- (3) alkenyl,
- (4) alkynyl,
- (5) perfluoroalkyl,
- (6) NY^1Y^2 , where Y^1 and Y^2 are independently H or alkyl,
- (7) hydroxy,
- (8) halogen, and
- (9) alkanoyl amino,

Rg and Rh are independently

- (1) hydrogen,
- (2) alkyl optionally substituted with hydroxy, amino, or CO₂Rⁱ
- (3) aryl optionally substituted with halogen, 1,2-methylenedioxy, alkoxy, alkyl or perfluoroalkyl,
- (4) arylalkyl, wherein the aryl is optionally substituted with perfluorolkyl or 1,2-methylenedioxy;
- (5) alkoxycarbonyl,
- (6) alkanoyl,
- (7) alkanoylalkyl,
- (9) arylalkoxycarbonyl,
- (10) aminocarbonyl,
- (11) monoalkylaminocarbonyl
- (12) dialkylaminocarbonyl; or

R^g and R^h together with the N to which they are attached form a 3- to 7-member ring containing 0 to 2 additional heteroatoms selected from O, S(O)_m, and N, optionally substituted with 1 to 3 groups independently selected from R^e and oxo;

 R^{i} is

- (1) hydrogen,
- (2) perfluoroalkyl,
- (3) alkyl,
- (4) optionally substituted aryl, or arylalkyl, where the aryl substituents are from 1 to 3 groups independently selected from halogen, alkyl, alkoxy, and hydroxy;

m is

0 to 2; and

v is

0 to 3;

 $R^{6'}$ and $R^{7'}$ can be independently selected from alkyl and cycloalkyl, or a salt thereof.