

Nhập môn An Toàn Thông Tin Các chế độ mã khối

Nội dung

- Mã khối lý tưởng
- Chế độ ECB
- Mã hoá xác suất
- Chế độ CBC
- Một số chế độ mã khối dựa trên mã dòng

Nội dung

- Mã khối lý tưởng
- Chế độ ECB
- Mã hoá xác suất
- Chế độ CBC
- Một số chế độ mã khối dựa trên mã dòng

Mã khối lý tưởng

- Trên thực tế, người ta xem AES hoặc 3DES như hệ mã khối lý tưởng E(k,x).
- ullet Tức là, với mỗi khoá k, ánh xạ

$$F_k(x) = E(k, x)$$

là một hoán vị ngẫu nhiên độc lập.

Hoán vị ngẫu nhiên

Các chế độ sử dụng

- Câu hỏi: Làm thế nào để mã hoá thông điệp với độ dài bất kỳ?
 (dùng AES hoặc 3DES)
- Trả lời: Dùng một trong các chế độ sau:
 - "ECB" = "Electronic code book"
 - "CTR" = "Counter mode"
 - "CBC" = "Cipher Block Chaining"
 - "OFB" = "Output Feedback" v.v.

Nội dung

- Mã khối lý tưởng
- Chế độ ECB
- Mã hoá xác suất
- Chế độ CBC
- Một số chế độ mã khối dựa trên mã dòng

ECB (Electronic code book)

- Dữ liệu được chia thành các khối khối b bit, với b = kích thước khối.
- Với dữ liệu không chia hết cho b bit: Thêm dãy "10..0" để độ dài thông điệp chia hết cho b.
- Phép toán padding này cho có tính khả nghịch. Nó cho phép giải mã.

ECB: giải mã

ECB không an toàn

Hình: Bên trái là Bản rõ. Ở giữa là chế độ ECB. Bên phải là Mã hoá an toàn

- Vấn đề: Nếu $x_i = x_j$ thì $y_i = y_j$
- ECB chỉ an toàn khi mã hoá dữ liệu ngẫu nhiên (Ví dụ, mã hoá các khoá).

Ví dụ: Chuyển tiền giữa hai ngân hàng

Block # 1 2 3 4 5

Sending Sending Receiving Receiving Amount Bank A Account # Bank B Account # \$

- 1. Giả sử: kích thước mỗi trường là n-bit (ví dụ 128 bit)
- 2. Giả sử: khoá k_{AB} để trao đổi thông tin giữa hai ngân hàng không thay đổi thường xuyên

Oscar tấn công

Block # 1 2 3 4 5

Sending Sending Receiving Receiving Amount
Bank A Account # Bank B Account # \$

- 1. Oscar mở một tài khoản tại ngân hàng A và một tài khoản tại ngân hàng B
- 2. Oscar chuyển nhiều lần 1\$ từ tài khoản của anh ta ở ngân hàng A sang tài khoản ở ngân hàng B
- 3. Oscar bắt gói tin trên đường truyền và nhận được các bản mã giống nhau $B_1\Big\|B_2\Big\|B_3\Big\|B_4\Big\|B_5$ và anh ta giữ lại bản mã B_4
- 4. Trong tương lai, mỗi khi thấy lệnh chuyển tiền từ B_1 tới B_3 , thay block thứ 4 bởi B_4

Nội dung

- Mã khối lý tưởng
- Chế độ ECB
- Mã hoá xác suất
- Chế độ CBC
- Một số chế độ mã khối dựa trên mã dòng

Mã hoá xác suất

- Mã hóa hai lần của cùng một thông điệp sẽ cho hai bản mã khác nhau
- Bản mã phải dài hơn bản rõ
- Nói một cách nôm na:

Kích thước bản mã = Kích thước bản rõ + "dãy bit ngẫu nhiên"

 Hãy viết hàm giải mã cho hàm mã hoá Enc được định nghĩa bởi

```
Enc(k, m):
    r = random()
    c = AES(k, r) ⊕ m
    return (r, c)
```

Dạng mã hoá

Nội dung

- Mã khối lý tưởng
- Chế độ ECB
- Mã hoá xác suất
- Chế độ CBC
- Một số chế độ mã khối dựa trên mã dòng

Chế độ CBC

Thuật toán. Chọn IV ("initialization value") một cách ngẫu nhiên, sau đó dùng y_i như "IV" cho x_{i+1} . Gửi IV cùng với bản mã

CBC: công thức đại số

•
$$y_{-1} = IV$$

// Khởi tạo

• $y_i = E_k(y_{i-1} \oplus x_i)$ với i = 0, 1, ...

Sử dụng IV như thế nào?

- IV không cần giữ bí mật
- Nhưng phải là "nonce" = "number used only once"
- Ví dụ: IV có thể là
 - ngẫu nhiên "thật"
 - bộ đếm "counter" (phải được lưu trữ bởi Alice)
 - \Box $\mathsf{ID}_A \parallel \mathsf{ID}_B \parallel$ time

Padding cho CBC

• Padding n byte, với n > 0,

- Nếu không cần pad, thêm một khối giả
- Khi giải mã, loại bỏ pad.

CBC: giải mã

Hãy viết công thức đại số cho mạch giải mã của chế độ CBC.

Nội dung

- Mã khối lý tưởng
- Chế độ ECB
- Mã hoá xác suất
- Chế độ CBC
- Một số chế độ mã khối dựa trên mã dòng

Mã dòng

Sử dụng một hàm sinh số giả ngẫu nhiên

$$G: \mathcal{K} \to \{0,1\}^n$$
,

là hàm đơn định từ không gian khoá đến dãy bit độ dài n

• Mã hoá
$$y = E_k(x) = G(k) \oplus x$$

• Giải mã
$$x = D_k(y) = G(k) \oplus y$$

Mã dòng

• Mã hoá $y = E_k(x) = G(k) \oplus x$

Mã dòng và mã khối

 Các chế độ mã khối trong mục này đều dựa trên nguyên lý của hệ mã dòng: mã khối an toàn được dùng xây dựng các hàm sinh số giả ngẫu nhiên

Ví dụ:

$$G(k) = E_k(0) ||E_k(1)|| \cdots ||E_k(n)||$$

• Hàm mã hoá và giải mã của mã dòng đều giống nhau $D_{k}(z) = E_{k}(z) = G(k) \oplus z$

Chế độ Output Feedback (OFB)

- Sử dụng IV ngẫu nhiên truyền cùng bản mã
- Không cần padding

OFB: công thức đại số

•
$$s_{-1} := IV$$

// Khởi tạo

•
$$s_i := E_k(s_{i-1})$$

// Khối bit giả ngẫu nhiên

•
$$y_i := s_i \oplus x_i$$

•
$$y_i := s_i \oplus x_i$$
 với $i = 0, 1, 2, \dots$

Chế độ Cipher Feedback (CFB)

CFB: công thức đại số

• $y_{-1} := IV$

// Khởi tạo

• $s_i := E_k(y_{i-1})$

- // Khối bit giả ngẫu nhiên
- $y_i := s_i \oplus x_i$ với $i = 0, 1, 2, \dots$

 Hãy mô tả mạch giải mã ở dạng công thức đại số cho chế độ CFB.

Chế độ Counter (CTR)

- Đảm bảo IV + Ctr không bao giờ lặp lại.
- Ctr được bắt đầu từ 0 cho mỗi thông điệp; và tăng (Ctr=Ctr+1) sau mỗi khối của thông điệp.

Hãy mô tả mạch giải mã cho chế độ CTR.

- Xét thông điệp x gồm ℓ khối AES (ví dụ $\ell=100$). Alice mã hóa x dùng chế độ CBC và truyền bản mã kết quả tới Bob.
- Do mạng lỗi, khối bản mã số $\ell/2$ bị mất trong khi truyền. Mọi bản mã khác được truyền và nhận đúng.
- Khi Bob giải mã bản mã nhận được, bao nhiều khối bản rõ sẽ bị mất?

- Xét thông điệp x gồm ℓ khối AES (ví dụ $\ell=100$). Alice mã hóa x dùng chế độ CTR (với Nonce ngẫu nhiên) và truyền bản mã kết quả tới Bob.
- Do mạng lỗi, khối bản mã số $\ell/2$ bị mất trong khi truyền. Mọi bản mã khác được truyền và nhận đúng.
- Khi Bob giải mã bản mã nhận được, bao nhiều khối bản rõ sẽ bị mất?

