XI международная научно-практическая конференция «Электронные средства и системы управления» ТУСУР

Анализ тональности текстовых сообщений. Система мониторинга настроения людей в социальных сетях

Мейта Марина, Шиповской Владислав Студенты кафедры КИБЭВС, ФБ ТУСУР Руководитель: Романов А.С.

Назначение системы и ее актуальность

- Социальные сети
- Маркетинговые, социальные и иные исследования
- Информационная безопасность и защита национальных интересов страны

Проблемы и задачи

- Выявление стилистических, лексических, синтаксических и семантических особенностей текстов разной эмоциональной окраски
- Создание выборки текстов, отражающих все разнообразие настроения людей разных полов и возрастных групп, менталитета и уровня образования
- Исследование современных методов классификации больших объемов данных

Проблемы и задачи

- Исследование методов классификации текстов по тональности
- Проведение такого рода классификации
- Формирование модели, отражающей различные особенности авторского стиля сообщений в зависимости от эмоциональной составляющей
- Разработка системы мониторинга настроения людей в социальных сетях
- Ориентированность на русский язык

Анализ тональности и методы классификации высказываний

- Факт нейтральное высказывание
- Мнение эмоционально окрашенное высказывание
- Анализ тональности нахождение мнений и их классификация по эмоциональной окраске

Факт: «Это яблоко зеленое»

Мнение: «Это яблоко восхитительно вкусное»

Анализ тональности и методы классификации высказываний

Алгоритмы классификации:

- Метод опорных векторов
- Наивный байесовский классификатор
- Нейронные сети (обучение с учителем и без, походы, основанные на словарях или правилах)

Метод опорных векторов

- SVM, support vector machine
- Набор алгоритмов обучения с учителем
- Линейный классификатор
- Поиск разделяющих гиперплоскостей с максимальным зазором в пространстве

Наивный байесовский классификатор

- Простой вероятностный классификатор
- Преимущество малое количество данных для обучения, необходимых для оценки параметров и классификации
- Эффективно обучаем
- Теорема Байеса:

$$p(C|F_1,\ldots,F_n) = \frac{p(C) \ p(F_1,\ldots,F_n|C)}{p(F_1,\ldots,F_n)}.$$

Нейронные сети

Главное преимущество перед традиционными алгоритмами — возможность обучения

Подходы к обучению:

- основанные на словарях
- на правилах
- с учителем
- без учителя

Нейронные сети

Стэндфорская нейросеть

http://nlp.stanford.edu:8080/sentiment/rntnDemo.html

Структура разрабатываемого проекта

- База данных для хранения и последующего анализа данных
- Интерфейс для наглядного представления произведенного анализа
- Инструменты анализа

Структура разрабатываемого проекта

Инструменты разработки

Архитектура приложения

- Технология ORM (Object-Relational Mapping)
 - объектно-реляционное отображение
- MVT (Model-Template-View) паттерн проектирования с использованием моделей, шаблонов и представлений
- Встроенные АРІ для работы с БД

Результаты работы

- Django-проект
- Веб-приложение для сбора твитов по определенным хэштегам и сохранением в БД
- Структура и модели БД
- Веб-интерфейс для отображения данных
- Исследование предметной области (разработок в области анализа тональности текста)

Результаты работы

4 3 192.168.1.36 :8000		∀ ৫	О Поиск ☆	É
Поиск	Обновить таблицу			

id	text	hashtags	created at	usern
639412260490858496	3 сентября. Пишу деловое письмо по КРиДО. Да, да я теперь деловая дама))) #Зсентября #студентка #ТУСУР #Томск	Зсентября,студентка,ТУСУР,Томск	2015-09-03 12:18:57	Irin Antip
638777388801859584	Началась новая жизнь)отличная группа и прекрасный факультет,я рада© #тусур http://t.co /vTVqpb08DK	тусур	2015-09-01 18:16:12	Верон Аверко
638648501207965696	Отличный день. Отличная группа) #ТУСУР #Томск #1сентября2015 #студентка http://t.co/i6882LYQL8	ТУСУР,Томск,1сентября2015,студентка	2015-09-01 09:44:02	Irin Antip
638636475278577664	Теперь я с вами #PKФ #TVCVP http://t-co/p4dGFHcIfF	РКФ,ТУСУР	2015-09-01 08-56-15	Mari Serdi

Планы на будущее

- Применение нейронных сетей в разрабатываемой системе
- Обучение системы на некоторой выборке данных
- Расширение возможностей системы (мониторинг других социальных сетей)

Заключение

Наш проект можно найти здесь:

https://github.com/MarinaMeyta/social_network_ analisys