Departamento Académico de Economía Matemáticas III (30651) Primer Semestre 2016

Profesores D. Winkelried, O. Bueno, E. Mantilla, D. Bohorquez y C. Aparicio

Práctica Calificada 3

1. Aproximaciones lineales (4 ptos)

Defina $f: \mathbb{R}^n \to \mathbb{R}$ tal que $f(\boldsymbol{x}) = \|\boldsymbol{x}\|$.

Considere n = 4 y el punto inicial $\mathbf{x} = (x_1, x_2, x_3, x_4)' = (a, a, a, a)'$, donde a > 0.

Determine en cuánto debe variar (aproximadamente) x_2 si x_1 y x_3 disminuyen en ε , sabiendo que mantienen inalterados los valores de x_4 y de $f(\boldsymbol{x})$.

2. Aproximaciones de MacLaurin (4 ptos)

- a) (1 pto) Encuentre la serie de MacLaurin de $f(x) = \ln(1+x)$.
- b) (1 pto) Exprese la integral

$$\mathcal{A} = \int_0^1 s \ln(1+s^2) ds$$

como una suma de infinitos términos

c) (2 ptos) Se desea aproximar la integral \mathcal{A} utilizando polinomios. Llame A_n a la aproximación obtenida con un polinomio de grado n ¿Cuál es el mínimo valor de n tal que $|A_n - A_{n-1}| \leq 0.10$? ¿Y tal que $|A_n - A_{n-1}| \leq 0.05$?

3. Estática comparativa (6 ptos)

Un individuo elige las cantidades de x_1 y x_2 para maximizar su función de utilidad

$$U(x_1, x_2) = \alpha u(x_1) + (1 - \alpha)u(x_2)$$
,

sujeto a la restricción $x_1 + Px_2 = M$, donde P > 0 y M > 0. La función $u(\cdot)$ es creciente y cóncava, es decir $u'(\cdot) > 0$ y $u''(\cdot) < 0$, y $0 < \alpha < 1$.

Las funciones de demanda se definen implícitamente como $x_1 = f_1(M, P)$ y $x_2 = f_2(M, P)$ y satisfacen la igualdad $PU_1(x_1, x_2) = U_2(x_1, x_2)$, donde $U_i(x_1, x_2)$ denota la derivada parcial de $U(\cdot)$ respecto a x_i .

- a) (2 ptos) Escriba el sistema diferencial relevante y verifique que se cumplen las condiciones de existencia de las funciones implícitas $f_1(\cdot)$ y $f_2(\cdot)$.
- b) (2 ptos) Encuentre el efecto sobre x_1 y x_2 de un cambio en P y en M.
- c) (2 ptos) Calcule el diferencial de U ¿Cuál es el signo de la derivada parcial de U respecto a M?

4. Ecuaciones diferenciales de primer orden (6 ptos)

a) (3 ptos) Para dos escalares reales y distintos a y b, y tomando como condición inicial y(1) = 0, resuelva la ecuación diferencial

$$t\frac{dy}{dt} - ay = t^b$$
.

b) (3 ptos) La ecuación del día del juicio final (doomsday equation) para una variable y se define como

$$\frac{dy}{dt} = r \, y^{1+a} \,,$$

donde r y a son dos constantes positivas. Resuelva esta ecuación tomando $y(0) = y_0$.