تراشه ها ی منطقی برنامه پذیر

انواع تراشههای برنامهپذیر

- جنبههای تفاوت:
- 🗖 فناوری برنامهریزی تراشه
- □ ساختار بلوکهای منطقی
- □ معماري اتصالات برنامه پذير
 - ا ساختار مدار IO block ساختار مدار
 - Hard core

ساختار FPGA

معماري اتصالات

- :CB •
- □ اتصال LB به قطعه سیم
 - :SB •
- □ اتصال قطعه سیم به قطعه سیم
 - ساخت با
 - ترانزیستور عبور
 - بافر سه حالته
 - - مالتىپلكسر

Connection Block

فقط بخشی از نقاط قابل برنامهریزی

Switch Block

معماری اتصالات CB

معماري اتصالات □ اتصالات با طول بیش از یک LB LB LB LB switch switch switch L=1 switch switch L=2 switch switch L=3

بلوكهاي ورودي-خروجي

IO Blocks

بلوكهاي ورودي-خروجي

:IOB •

- ارتباط بین داخل و خارج تراشه
 - 🗖 وظایف اصلی:
 - تقویت سیگنال خروجی
- ثبت خروجی در ثبات و همگام کردن با کلاک
- انتخاب از بین چند سیگنال و ارسال آن به درگاه خروجی
 - فعال یا غیرفعال کردن درگاه خروجی
- همگام کردن ورودی دریافتی از درگاه ورودی و همگام کردن آن با کلاک

بلوكهاي ورودي-خروجي

- بلوک فرستنده/گیرندهٔ گیگابیتی:
- □ نیاز برخی از کاربردها به ارسال و دریافت دادهها با سرعتهای بسیار بالا
 - چند میلیارد بیت در ثانیه یا Gbps
 - ارسال و دریافت دادهها
 - به صورت سریال (یک بیت در هر کلاک)
 - روی دو خط تفاضلی

- d₀ 0 d₁ 0 d₂ 1 d₃ 1 d₄ 0 d₅ 1 d₆ 0 d₇ 0 d₈ 0 d₉ 1
- D 0 0 1 1 0 1 0 0 0 1

مزایای ارسال و دریافت تفاضلی:

)الف(

مقاوم در برابر اغتشاش \Box

مشکلات ارسال و دریافت موازی در سرعت بالا:

- تداخل الكترومغناطيسي بين خطوط نزديك
 - 🗖 همزمان کردن دریافت سیگنالها
 - همگام کردن کلاک فرستنده و گیرنده
- همگام کردن تعداد زیاد بیت موازی با یک کلاک یکتا
 - → افزایش هزینهٔ ساخت بورد و تراشه

مدار PLL:

بازیابی کلاک

ارسال و دریافت دادههای n بیتی:

- \square استفاده از چند بلوک به طور موازی:
 - در Virtex-7: تا ۹۶ بلوک

FPGA

کدگذار ۸ بیت به ۱۰ بیت

- '1'های متوالی (یا '0'های متوالی) ← خطا
- سرعت بسیار بالا، فیلتر شدن فرکانسهای بالا توسط خط، به هم خوردن تعادل DC

سیگنال دریافتی در سمت

- کدگذار ۸ بیت به ۱۰ بیت:
- تضمين عدم وجود پنج '1' متوالى يا پنج '0' متوالى
 - □ ایجاد تعداد تقریباً مساوی '1' و '0'
 - کدگشای ۱۰ بیت به ۸ بیت:
 - عکس تبدیل در گیرنده

میانگیر FIFO

:FIFO Buffer

- در فرستنده: Serializer دادهها را به ترتیب میخواند و سری می کند
- عدم هماهنگی سرعت تولید دادههای ۱۰ بیتی با سرعت ارسال سریساز
 - برای هماهنگی این دو FIFO \leftarrow –

FPGA

در گیرنده:

- برعکس
- + دریافت از چند بلوک همزمان $_{\text{TXP}}$
 - 🛨 نیاز به هماهنگی