Prerequisites

• sets (basic notation)

Strings: Basic notation

Strings play a very prominent role in computational linguistics. A string is a sequence of symbols, like *nfm*, *wendigo*, or *1058*/. In contrast to sets, strings are ordered and can contain duplicates.

Example **1**

The sets $\{m, a, d\}$, $\{d, a, m\}$, and $\{a, d, a, m\}$ are equivalent, but for strings $mad \neq dam \neq adam$.

Exercise 1

Fill in = or \neq as appropriate for each pair of strings below.

- abba _ ABBA
- 10 _ 5 + 5
- $\{m, a, d\}_{\{d, a, m\}}$

Caution: $\{$ and $\}$ can be symbols just like m, a, or d.

Alphabet

When talking about strings, one usually fixes a finite set of symbols over which the strings are built. This is called an **alphabet**. Alphabets are often given labels like Σ or Ω . A string over alphabet Σ is also called a Σ -string.

The set of Latin characters (A-Z, a-z) is an alphabet that's familiar to all of you. Strings over it include:

- string
- alphabet
- aaaaaaaa
- c

Example 3

The set of Arabic digits is an alphabet with symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Every natural number $(0, 1, 2, \ldots)$, when represented in decimal as usual, is a string over this alphabet. But not every string over this alphabet is a number of the decimal system. For instance, 000134095 is not a valid number, although 134095 is.

Example **4**

The set \mathbb{N} of all natural numbers is not a valid alphabet because it isn't finite.

Exercise 2

For each one of the following, say whether it is a valid alphabet. Justify your answer.

- {*a*}
- {0, 1}
- the set of all English words that are spelled with at most 5 charac-

ters

- all natural numbers less than 1000
- the nucleobases of DNA: adenine, cytosine, guanine, thymine

String length

The length of a Σ -string s is indicated by |s|. For instance, |ant| = 3, |0770001| = 7, and |a| = 1. The set of all strings over Σ whose length is exactly n is denoted by Σ^n .

Example Let $\Sigma := \{a, b\}$. Then Σ^3 contains all of the following strings, and only those:

- aaa
- aab
- aba
- abb
- baa
- bab
- bba
- bbb

The size of Σ^n is always fixed. If Σ has m members, then Σ^n contains m^n strings.

Example In the previous example, Σ contains two symbols, so Σ^n should consist of $2^3 = 8$ distinct strings. That's exactly what we found.

Exercise Which one of the following are members of $\{a, b\}^4$, i.e. Σ^4 where Σ contains a, b, and nothing else?

- aaab
- aba
- aaaaa
- b
- abca

Exercise List all members of $\{k, o, z\}^2$.

4 Very often expressions like a^n are used as a shorthand for $\{a\}^n$.

Example The expression ba^5c^3d is a shorthand for baaaaacccd.

Exercise Write each one of the following in a more compact fashion using exponents.

- ABBA
- loool
- aardvark

Infinite string sets over $\boldsymbol{\Sigma}$

Since alphabets must be finite, Σ^n is necessarily finite for any alphabet Σ and $n \ge 0$. But the set of all strings over Σ is infinite.

Example Let $\Sigma := \{a\}$. Then a is a string over Σ , and so are aa, aaa, aaaa, and so on. This enumeration continues indefinitely, so there must be infinitely many distinct strings over Σ .

Two infinite string sets are commonly defined over Σ . They are Σ^* and Σ^+ , respectively. The former contains all strings over Σ , whereas the latter contains all strings whose length is at least 1. The only difference between the two is that Σ^* also contains the **empty string** ε . The empty string is the string counterpart of the number 0: it represents nothing. In fact, ε is the only string whose length is 0.

Example Let $\Sigma = \{a, b\}$. Then Σ^* contains

9

- ε,
- a,
- b,
- aa,
- *ab*,
- *ba*,
- *bb*,
- aaa,
- aab,
- aba,
- *abb*,
- and so on.

All these strings are also members of Σ^+ , except ε .

 Σ^* is also called the **Kleene closure**, named after Stephen C. Kleene.

Here's a little bit of background to make it easier for you to remember the difference between Σ^* and Σ^+ . As you might know from search engines, the Kleene star * is sometimes used as a wildcard that matches everything. So Σ^* can be translated as "every string built over Σ ". On the other hand Σ^+ only contains those strings whose length is at least 1, or in other words, whose length is positive. And + is a common abbreviation for positive (just think of batteries).

Exercise Enumerate the five shortest members of $\{a\}^*$.

Concatenation

Given two Σ -strings u and v, their **concatenation** $u \cdot v$ is the result of "glueing" the left end of v to the right end of u.

Example Here are a few examples of concatenation:

10

- $math \cdot ematics = mathematics$,
- $2000 \cdot 18 = 200018$,
- Thomas \cdot Graf = Thomas Graf.

Just like addition, concatenation is **associative**. This means that if we carry out multiple concatenations, it does not matter which concatenation step we resolve first: $u \cdot (v \cdot w) = (u \cdot v) \cdot w = u \cdot v \cdot w$.

Example It does not matter in which order we combine *is* with *concatenation* and *associative* below:

- (concatenation \cdot is) \cdot associative = concatenation is associvative
- $concatenation \cdot (is \cdot associative) = concatenation is associvative$

Even though concatenation is associative, it is not **commutative**. That is to say, $u \cdot v$ and $v \cdot u$ are not necessarily the same.

Example Let u := house and v := boat. Then $u \cdot v$ is *houseboat*, whereas $v \cdot u$ is *boathouse*. Those are not the same strings (and they also happen to mean completely different things).

Note the special behavior of the empty string: $u \cdot \varepsilon = \varepsilon \cdot u = u$. This makes sense because adding nothing to u does not change u, just like adding 0 to a number does not change that number.

Sometimes concatenation is not explicitly indicated, so that instead of $u \cdot v$ one may simply write uv.

Exercise Given an example of distinct u and v such that $u \cdot v = v \cdot u$ and neither u nor v is the empty string.

Exercise Is the following true or false? If $u \neq v$, then $u \cdot v \neq v \cdot u$?

Recap

- A string is a sequence of symbols drawn from some alphabet.
- A Σ -string is a string over alphabet Σ .
- The length of string s is denoted by |s|.
- The empty string ε is the unique string of length 0.
- Σ^n is the set of all Σ -strings s such that |s| = n.
- a^n is a shorthand for $\{a\}^n$.
- The Kleene closure Σ^* is the set of all Σ -strings (including ε).
- The positive closure Σ^+ contains all Σ -strings except ε .
- Concatenation of strings u and v is denoted by $u \cdot v$.