Лабораторная работа №8

Отчет

Устинова Виктория Вадимовна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	16

Список иллюстраций

3.1	Переходим в каталог и создаем там файл lab8-1.asm	7
3.2	Заполняем данный файл	8
3.3	Смотрим как работает файл	8
3.4	Редактируем файл	9
3.5	Смотрим как работает файл	9
3.6	Редактируем данный файл	10
3.7	Сверяемся с нужным выводом, все верно	10
3.8	Используем команду touch, заполняем файл как указано в листинге	11
3.9	Смотрим как работает наш файл	11
3.10	Используем команду touch	11
3.11	Заполняем файл	12
3.12	Смотрим как работает наша программа	12
3.13	Изменяем программу	13
3.14	Проверяем работу файла, все корректно	13
3.15	Используем команду touch	14
3.16	Сама программа	14
	Все работает корректно	15

Список таблиц

1 Цель работы

Приобрести навыки написания программ с использованием циклов и обработкой агрументов командой строки.

2 Задание

Выполнить лабораторную работу $N^{\circ}8$ и написать программы с использованием циклов и обработкой аргументов командной строки.

3 Выполнение лабораторной работы

Реализация циклов в NASM

Создаем каталог для 8 лабораторной работы(рис. 3.1).

```
vvustinova@rudn:~/work/arch-pc/lab08

vvustinova@rudn:~$ mkdir ~/work/arch-pc/lab08
vvustinova@rudn:~$ cd ~/work/arch-pc/lab08
vvustinova@rudn:~/work/arch-pc/lab08$
vvustinova@rudn:~/work/arch-pc/lab08$
vvustinova@rudn:~/work/arch-pc/lab08$
```

Рис. 3.1: Переходим в каталог и создаем там файл lab8-1.asm

Открываем файл в Midnight Commander и заполняем его в соответствии с листингом 8.1(рис. 3.2).

```
∄
                          mc [vvustinova@rudn]:~/work/arch-pc/lab08
                                                                                 Q
 ab8-1.asm
                                                1/ 24] *(7
%include 'in_out.asm'
SECTION .
msgl db 'Введите N: ',0h
SECTION
N: resb 10
SECTION
global _start
_start:
-
mov eax,msgl
call sprint
mov ecx, N
mov edx, 10
call sread
mov eax,N
call atoi
mov [N],eax
mov ecx,[N]
label:
mov [N],ecx
mov eax,[N]
call iprintLF
loop label
 call quit
```

Рис. 3.2: Заполняем данный файл

Запускаем файл(рис. 3.3).

```
vvustinova@rudn:~/work/arch-pc/lab08$ nasm -f elf lab8-1.asm
vvustinova@rudn:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-1 lab8-1.o
vvustinova@rudn:~/work/arch-pc/lab08$ ./lab8-1
Введите N: 8
8
7
6
5
4
3
2
1
vvustinova@rudn:~/work/arch-pc/lab08$
```

Рис. 3.3: Смотрим как работает файл

Снова открываем файл для редактирования и изменяем его значения регистра в цикле(рис. 3.4).

```
a
 \oplus
                         mc [vvustinova@rudn]:~/work/arch-pc/lab08
 ab8-1.asm
                           --] 0 L:[ 1+10 11/ 24] *(153 / 300b) 0109 0x06
%include 'in_out.asm'
SECTION .data
SECTION
SECTION
N: resb 10
SECTION .te
global _start
start:
nov eax,msgl
call sprint
ov ecx, N
nov edx, 10
call sread
nov eax,N
call atoi
nov [N],eax
nov ecx,[N]
label: 'sub ecx,1
.oop label
```

Рис. 3.4: Редактируем файл

Запускаем файл(рис. 3.5).

```
vvustinova@rudn:~/work/arch-pc/lab08$ nasm -f elf lab8-1.asm
vvustinova@rudn:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-1 lab8-1.o
vvustinova@rudn:~/work/arch-pc/lab08$ ./lab8-1
Введите N: 8
7
5
3
1
Ошибка сегментирования (образ памяти сброшен на диск)
vvustinova@rudn:~/work/arch-pc/lab08$
```

Рис. 3.5: Смотрим как работает файл

Регистр есх принимает значения 7,5,3,1. Число проходов цикла не соответсвует числу N, так как уменьшается на 2

Требуется снова отредактировать файл(рис. 3.6).

Рис. 3.6: Редактируем данный файл

Запускаем файл(рис. 3.7).

```
vvustinova@rudn:~/work/arch-pc/lab08$ nasm -т etr tab8-1.asm
vvustinova@rudn:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-1 lab8-1.o
vvustinova@rudn:~/work/arch-pc/lab08$ ./lab8-1
Введите N: 8
7
6
5
4
3
2
1
0
Ошибка сегментирования (образ памяти сброшен на диск)
vvustinova@rudn:~/work/arch-pc/lab08$
```

Рис. 3.7: Сверяемся с нужным выводом, все верно

В данном случае число проходов цикла равно числу N.

Обработка аргументов командной строки

Создаем файл lab8-2.asm и открываем файл в Midnight Commander и заполняем его в соответствии с листингом 8.2(рис. 3.8).

Рис. 3.8: Используем команду touch, заполняем файл как указано в листинге

Запускаем файл и вводим различные значения(рис. 3.9).

```
vvustinova@rudn:~/work/arch-pc/lab08$ nasm -f elf lab8-2.asm
vvustinova@rudn:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-2 lab8-2.o
vvustinova@rudn:~/work/arch-pc/lab08$ ./lab8-2 1 2 '3'
1
2
3
vvustinova@rudn:~/work/arch-pc/lab08$
```

Рис. 3.9: Смотрим как работает наш файл

Программа обработала 3 аргумента.

Создаем новый файл lab8-3.asm(рис. 3.10).

```
vvustinova@rudn:~/work/arch-pc/lab08$ touch lab8-3.asm
vvustinova@rudn:~/work/arch-pc/lab08$
```

Рис. 3.10: Используем команду touch

Открываем файл в соответствии с листингом 8.3(рис. 3.11).

Рис. 3.11: Заполняем файл

Запускаем файл и вводим различные значения(рис. 3.12).

```
vvustinova@rudn:~/work/arch-pc/lab08$ nasm -f elf lab8-3.asm
vvustinova@rudn:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-3 lab8-3.o
vvustinova@rudn:~/work/arch-pc/lab08$ ./lab8-3 12 13 7 10 5
Результат: 47
vvustinova@rudn:~/work/arch-pc/lab08$
```

Рис. 3.12: Смотрим как работает наша программа

Снова открываем файл для редактирования(рис. 3.13).

```
\oplus
                        mc [vvustinova@rudn]:~/work/arch-pc/lab08
                                                                         Q
                         -] 0 L:[ 1+24 25/ 25] *(292 / 292b) <EOF
lab8-3.asm
%include 'in_out.asm'
SECTION .data
msg db "Результат: ",0
SECTION .te
global _start
_start:
рор есх
pop edx
next:
jz _end.
pop eax
call atoi
mul esi
mov esi,eax
loop next
call sprint
mov eax, esi
call quit.
```

Рис. 3.13: Изменяем программу

Запускаем файл, указываем аргументы (рис. 3.14).

```
vvustinova@rudn:~/work/arch-pc/lab08$ nasm -f elf lab8-3.asm
vvustinova@rudn:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-3 lab8-3.o
vvustinova@rudn:~/work/arch-pc/lab08$ ./lab8-3 9 9

Peзультат: 81
vvustinova@rudn:~/work/arch-pc/lab08$ nasm -f elf lab8-3.asm
vvustinova@rudn:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-3 lab8-3.o
vvustinova@rudn:~/work/arch-pc/lab08$ ./lab8-3 2 4 8

Peзультат: 64
vvustinova@rudn:~/work/arch-pc/lab08$
```

Рис. 3.14: Проверяем работу файла, все корректно

Задания для самостоятельной работы

ВАРИАНТ 12

1. Напишите программу, которая находит сумму значений функции f(x) для x = x1, x2 ... xn т.е. программа должна выводить значение f(x1) + f(x2) + ... + f(xn). Значения xi передаются как аргументы. Вид функции f(x) выбрать из таблицы 8.1 вариантов заданий в соответствии c вариантом, полученным

при выполнении лабораторной работы N° 7. Создайте исполняемый файл и проверьте его работу на нескольких наборах $x = x1, x2 \dots xn$.

Создаем новый файл lab8-4.asm(рис. 3.15).

```
vvustinova@rudn:~/work/arch-pc/lab08$ touch lab8-4.asm
vvustinova@rudn:~/work/arch-pc/lab08$
```

Рис. 3.15: Используем команду touch

Открываем его и пишем программу, которая выведет сумму функции:f(x)=15x-9(рис. 3.16).

Рис. 3.16: Сама программа

Запускаем файл и смотрим на его выполнение при разных х(рис. 3.17).

```
vvustinova@rudn:~/work/arch-pc/lab08$ nasm -f elf lab8-4.asm
vvustinova@rudn:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-4 lab8-4.o
vvustinova@rudn:~/work/arch-pc/lab08$ ./lab8-4 l 2

Pезультат: 27
vvustinova@rudn:~/work/arch-pc/lab08$ nasm -f elf lab8-4.asm
vvustinova@rudn:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-4 lab8-4.o
vvustinova@rudn:~/work/arch-pc/lab08$ ./lab8-4 l 2 3

Peзультат: 63
vvustinova@rudn:~/work/arch-pc/lab08$ nasm -f elf lab8-4.asm
vvustinova@rudn:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-4 lab8-4.o
vvustinova@rudn:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-4 lab8-4.o
vvustinova@rudn:~/work/arch-pc/lab08$ ./lab8-4 5 2 3

Peзультат: 123
```

Рис. 3.17: Все работает корректно

4 Выводы

Мы научились решать программы с использованием циклов и обработкой аргументов командной строки.