

FACULTAD DE CIENCIAS ÁLGEBRA LINEAL 1

Tarea 07

Semestre 2024 - 1

Profesora:

Mindy Yaneli Huerta Pérez

Ayudantes:

Elizabeth Chalnique Ríos Alvarado Gilbert Raúl Avendaño Aguilar Aldair Reyes Gónzalez

Alumnos:

Paul César Cabañas Segura Marco Silva Huerta José Luis Cruz Mayen

24 de Noviembre de 2023

Ejercicio 1

Considérense las siguientes bases de \mathbb{R}^3

$$\beta = \{(1,0,0), (0,1,0), (0,0,1)\}$$

$$\gamma = \{(1,0,1), (2,1,2), (1,2,2)\}$$

Y la transformación $T:\mathbb{R}^3 \to \mathbb{R}^3$ tal que T(x,y,z)=(2x,x+y,y+z)

1. Encuentra la matriz de cambio de coordenadas de la base β y γ

Solución:

Escribimos los vectores de β como columnas de una matriz

$$\beta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Multiplicamos esta matriz por P

$$P\beta = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 2 & 2 & 2 \end{pmatrix}$$

El resultado debe ser la matriz que contiene los vectores de γ como columnas.

$$\gamma = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 2 & 2 & 2 \end{pmatrix}$$

Por lo tanto, la matriz de cambio de coordenadas es la siguiente:

$$P = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

2. Encuentra la matriz de cambio de coordenadas de la base γ y β

Solución:

Escribimos los vectores de γ como columnas de una matriz.

$$\gamma = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 2 \end{pmatrix}$$

Inversamos esta matriz.

$$\gamma^{-1} = \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$$

Multiplicamos esta matriz por γ

$$Q\gamma = \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

El resultado debe ser la matriz que contiene los vectores de β

$$Q = \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$$

3. Comprueba que $\left[T\right]_{\gamma}=Q^{-1}\left[T\right]_{\beta}Q$

Solución:

Matriz de T en la base β

La matriz de T en la base β es la matriz que representa el operador lineal T cuando se expresan los vectores en la base β . Esta matriz se puede encontrar multiplicando la matriz de T por la matriz de cambio de coordenadas de γ a β .

$$[T]_{\beta} = P^{-1}[T]P$$

Donde P es la matriz de cambio de coordenadas de γ a β y [T] es la matriz de T en la base estándar. Sabemos que P es la siguiente matriz:

$$P = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

2

Y sabemos que [T] es la siguiente matriz:

$$[T] = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Por lo tanto, la matriz de T en la base β es la siguiente:

$$[T]_{\beta} = P^{-1}[T]P = \begin{pmatrix} 1 & -\frac{1}{2} & 0\\ 0 & 0 & \frac{1}{2}\\ 0 & 0 & \frac{1}{2} \end{pmatrix}$$

Matriz de T en la base γ

La matriz de T en la base γ es la matriz que representa el operador lineal T cuando se expresan los vectores en la base γ . Esta matriz se puede encontrar multiplicando la matriz de T por la matriz de cambio de coordenadas de β a γ .

$$[T]_{\gamma} = Q[T]Q^{-1}$$

Donde Q es la matriz de cambio de coordenadas de β a γ y [T] es la matriz de T en la base estándar. Sabemos que Q es la siguiente matriz:

$$Q = \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$$

Y sabemos que [T] es la siguiente matriz:

$$[T] = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Por lo tanto, la matriz de T en la base γ es la siguiente:

$$[T]_{\gamma} = Q[T]Q^{-1} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

Ahora podemos comprobar si la ecuación $[T]_{\gamma} = Q^{-1} [T]_{\beta} Q$

$$Q^{-1} [T]_{\beta} Q = \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

La ecuación $[T]_{\gamma} = Q^{-1} [T]_{\beta} Q$ se cumple. Esto significa que la matriz de T en la base γ se puede obtener multiplicando la matriz de T en la base β por la matriz de cambio de coordenadas de β a γ , y luego multiplicando por la inversa de la matriz de cambio de coordenadas.

Ejercicio 2

Considera la transformación lineal $T:\mathbb{R}^3\to\mathbb{R}^2$ dada por T(x,y,z)=(2x-y,3y-z) Considérense las siguientes bases de \mathbb{R}^3 y \mathbb{R}^2

$$\beta = \{(1,0,0), (0,1,0), (0,0,1)\}$$

$$\beta' = \{(1,3,2), (0,1,2), (1,0,1)\}$$

$$\gamma = \{(1,1), (2,1)\}$$

$$\gamma' = \{(3,1), (1,4)\}$$

1. Encuentra las matrices de cambios de coordenadas

Solución:

Para encontrar la matriz de cambio de coordenadas, tenemos que encontrar los escalares únicos que cumplan lo siguiente:

$$(1,3,2) = _(1,0,0) + _(0,1,0) + _(0,0,1)$$

 $(0,1,2) = _(1,0,0) + _(0,1,0) + _(0,0,1)$

$$(1,0,1) = _(1,0,0) + _(0,1,0) + _(0,0,1)$$

Y también:

$$(3,1) = _(1,1) + _(2,1)$$

$$(1,4) = _(1,1) + _(2,1)$$

Resolvemos, y obtenemos lo siguiente:

$$(1,3,2) = 1(1,0,0) + 3(0,1,0) + 2(0,0,1)$$

$$(0,1,2) = 0(1,0,0) + 1(0,1,0) + 2(0,0,1)$$

$$(1,0,1) = 1(1,0,0) + 0(0,1,0) + 1(0,0,1)$$

Y de γ a γ ':

$$(3,1) = -1(1,1) + 2(2,1)$$

$$(1,4) = 7(1,1) + (-3)(2,1)$$

Tenemos entonces que:

$$Q_{\beta'}^{\beta} = \begin{pmatrix} 1 & 0 & 1 \\ 3 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix}$$

Es la matriz de cambio de coordenadas de β ' a β

$$Q_{\gamma'}^{\gamma} = \begin{pmatrix} -1 & 7\\ 2 & -3 \end{pmatrix}$$

2. Calcula las bases duales de β y γ

Solución:

Tenemos que $\beta * = \{f_1, f_2, f_3\}$ es la base dual de β , donde f_i es la i-esima función coordenada con respecto a β , que cumple que para cada j-esimo elemento de β , cumple que: $f_i(x_j) = \delta_{ij}$, siendo δ la delta de Kronecker

Calculemos las funciones f_1, f_2, f_3 que cumplan lo siguiente:

$$f_1(1,0,0) = 1, f_1(0,1,0) = 0, f_1(0,0,1) = 0$$

 $f_2(1,0,0) = 0, f_2(0,1,0) = 1, f_2(0,0,1) = 0$
 $f_3(1,0,0) = 0, f_3(0,1,0) = 0, f_3(0,0,1) = 1$

Tenemos que $\beta^* = \{f_1, f_2, f_3\}$, con f_i :

$$f_1: \mathbb{R}^3 \longrightarrow \mathbb{R}, f_1(x, y, z) = x$$

 $f_2: \mathbb{R}^3 \longrightarrow \mathbb{R}, f_2(x, y, z) = y$
 $f_3: \mathbb{R}^3 \longrightarrow \mathbb{R}, f_3(x, y, z) = z$

Ahora, calculamos la base dual de γ , las funciones coordenada que cumplen que:

$$g_1(1,1) = 1, g_1(2,1) = 0$$

 $g_2(1,1) = 0, g_2(2,1) = 1$

Obtenemos el siguiente sistema de funciones:

$$g_1(1,0) + g_1(0,1) = 1$$

$$2g_1(1,0) + g_1(0,1) = 0$$

$$g_2(1,0) + g_2(0,1) = 0$$

$$2g_2(1,0) + g_2(0,1) = 1$$

Resolvemos, y tenemos que:

$$g_1(1,0) = -1, g_1(0,1) = 2$$

 $g_2(1,0) = 1, g_2(0,1) = -1$

Tenemos entonces que $\gamma^* = \{g_1, g_2\}$, con f_i :

$$g_1: \mathbb{R}^2 \longrightarrow \mathbb{R}, g_1(x,y) = -x + 2y$$

 $g_2: \mathbb{R}^2 \longrightarrow \mathbb{R}, g_2(x,y) = x - y$

3. Dada T^t la función transpuesta de T, comprueba que $[T^t]_{\gamma*}^{\beta*} = \left([T]_{\beta}^{\gamma}\right)^t$

Solución:

Calculamos $[T]^{\gamma}_{\beta}$, que es la matriz cuyas entradas son los escalares que cumplen lo siguiente:

$$T((1,0,0)) = (2(1) - (0), 3(0) - (0)) = (2,0)$$

$$T((0,1,0)) = (2(0) - (1), 3(1) - (0)) = (-1,3)$$

 $T((0,0,1)) = (2(0) - (0), 3(0) - (1)) = (0,-1)$

Construimos las matrices de representación:

$$(2,0) =_{\ell} (1,1) +_{\ell} (2,1)$$

$$(-1,3) =_{\ell} (1,1) +_{\ell} (2,1)$$

$$(0,-1) =_{\ell} (1,1) +_{\ell} (2,1)$$

Los escalares que cumplen esto son los siguientes:

$$(2,0) = -2(1,1) + 2(2,1)$$
$$(-1,3) = 7(1,1) + -4(2,1)$$
$$(0,-1) = -2(1,1) + 1(2,1)$$

Tenemos entonces que la matriz de representación es:

$$[T]^{\gamma}_{\beta} = \begin{pmatrix} -2 & 7 & -2\\ 2 & -4 & 1 \end{pmatrix}$$

Transpuesta, la matriz queda:

$$([T]_{\beta}^{\gamma})^t = \begin{pmatrix} -2 & 2\\ 7 & -4\\ -2 & 1 \end{pmatrix}$$

Por otro lado, encontremos T^t , para ello, para cada uno de los elementos de la base dual de γ , se tiene que:

$$T^{t}(g_{1})(x,y,z) = g_{1}(T(x,y,z)) = g_{1}(2x-y,3y-z) = -(2x-y) + 2(3y-z) = -2x + 7y - 2z$$
$$T^{t}(g_{1})(x,y,z) = g_{2}(T(x,y,z)) = g_{2}(2x-y,3y-z) = (2x-y) - (3y-z) = 2x - 4y + z$$

Para encontrar las columnas de $[T^t]_{\gamma*}^{\beta*}$, tenemos que encontrar los escalares que cumplan lo siguiente:

$$-2x + 7y - 2z = _{-}(x) + _{-}(y) + _{-}(z)$$
$$2x - 4y + z = _{-}(x) + _{-}(y) + _{-}(z)$$

Siendo los escalares que cumplen esto:

$$-2x + 7y - 2z = (-2)(x) + 7(y) + (-2)(z)$$
$$2x - 4y + z = 2(x) + (-4)(y) + 1(z)$$

Tenemos entonces que $[T^t]_{\gamma*}^{\beta*}$ es:

$$[T^t]_{\gamma*}^{\beta*} = \begin{pmatrix} -2 & 2\\ 7 & -4\\ -2 & 1 \end{pmatrix}$$

Notemos además que se cumple la siguiente igualdad:

$$([T]^{\gamma}_{\beta})^t = [T^t]^{\beta*}_{\gamma*}$$

Ejercicio 3

1. Encuentra la base dual de \mathbb{R}^2 , $\beta = \{(1,2),(3,4)\}$

Solución:

La base dual de un espacio vectorial es un conjunto de formas lineales (funciones lineales que toman vectores y devuelven escalares) que actúan sobre los vectores de la base original. Para una base $\beta = \{v_1, v_2\}$ en \mathbb{R}^2 , la base dual $\beta^* = \{f_1, f_2\}$ se define tal que $f_i(v_j) = \delta_{ij}$, donde δ_{ij} es la delta de Kronecker que es 1 si i = j y 0 en caso contrario.

Para nuestra base $\beta = \{(1, 2), (3, 4)\}$ podemos encontrar la base dual resolviendo el sistema de ecuaciones lineales para $f_i(v_j) = \delta_{ij}$.

$$f_1((1,2)) = 1$$

$$f_1((3,4)) = 0$$

$$f_2((1,2)) = 0$$

$$f_2((3,4)) = 1$$

Esto se puede escribir como un sistema de ecuaciones lineales donde $f_1 = a_1x + b_1y$ y $f_2 = a_2x + b_2y$ Entonces tenemos:

$$a_1 \cdot 1 + b_1 \cdot 2 = 1$$

$$a_1 \cdot 3 + b_1 \cdot 4 = 0$$

$$a_2 \cdot 1 + b_2 \cdot 2 = 0$$

$$a_2 \cdot 3 + b_2 \cdot 4 = 1$$

$$a_1 + 2 \cdot b_1 = 1$$

$$a_1 \cdot 3 + 4 \cdot b_1 = 0$$

$$a_2 + 2 \cdot b_2 = 0$$

$$a_2 \cdot 3 + 4 \cdot b_2 = 1$$

$$a_1 = 2$$

$$b_1 = -1$$

$$a_2 = -\frac{3}{2}$$

$$b_2 = 1$$

Resolviendo este sistema, obtenemos la base dual

$$\beta^* = \left[(2, -1), \left(\frac{-3}{2}, 1 \right) \right]$$

2. Encuentra la base β de $V=P_1(\mathbb{R})$ cuya base dual es $\beta^*=\{f_1,f_2\}$, siendo $f_1[p(x)]=\int_0^1 p(x)\,dx$ y $f_2[p(x)]=\int_0^2 p(x)\,dx$

Solución:

Necesitamos encontrar dos polinomios $p_1(x), p_2(x) \in p_1(R)$ tal que $f_i(p_j(x)) = \delta_{ij}$ Esto significa que necesitamos encontrar $p_1(x), p_2(x)$ tal que:

$$\int_0^1 p_1(x) dx = 1$$

$$\int_0^2 p_1(x) dx = 0$$

$$\int_0^1 p_2(x) dx = 0$$

$$\int_0^2 p_2(x) dx = 1$$

Para $p_1(x)$:

$$\int_0^1 (1 - 2x) \, dx = \left[x - x^2 \right]_0^1 = 1$$

$$\int_0^1 (1 - 2x) \, dx = \left[x - x^2 \right]_0^2 = 0$$

Para $p_2(x)$:

$$\int_0^1 \left(x - \frac{x^2}{2} \right) \, dx = \left[\frac{x^2}{2} - \frac{x^3}{6} \right]_0^1 = 0$$

$$\int_0^2 \left(x - \frac{x^2}{2} \right) dx = \left[\frac{x^2}{2} - \frac{x^3}{6} \right]_0^2 = 0$$

Entonces:

$$\beta = \left[1 - 2x, x - \frac{x^2}{2}\right]$$