Reasoning with Ontology Mappings

Presented by: Carmen Chui
Supervisor: Prof. Michael Grüninger

Semantic Technologies Lab, University of Toronto

June 5, 2012

The Semantic Web

- Movement led by the World Wide Web Consortium (W3C)
 - Common formats for integration and combination of data
 - Knowledge representation of how data relates to realworld objects

"A web of data that can be processed directly and indirectly by machines."

- Tim Berners-Lee [2]

What is the Problem?

- Many tasks require correct and meaningful communication and integration among intelligent agents and information resources
- Barriers to *semantic* interoperability [3]:
 - Different applications
 - Different databases
 - Different web agents
- All assign different meanings to the same terms or use distinct terms to convey the same meaning

What are ontologies? How do we use them?

- Ontology commonly shared conceptualisation of knowledge with a specification of the meaning (semantics) of terms
 - Examples: different meanings for the word 'spring'
- Applications [5][8]:
 - Common access to information
 - Ontology-based search (e.g., Swoogle)
 - Software specification with automation
- How do we represent ontologies in a way computers can use them?

Kinds of Ontologies

Glossaries & Data Dictionaries

Thesauri, Taxonomies Metadata, XML Schemas, & Data Models Formal Ontologies & Inference

Figure 2 in [8] 5

Representing Concepts in OWL

- Web Ontology Language (OWL)
 - Official language of the W3C
 - Used especially in biomedical ontologies (OBO Foundry, NCBO BioPortal) and search engines (Swoogle)

Why bother?

 To preserve semantics for seamless exchange of information, mappings need to be made between logically equivalent concepts in each ontology [6]

- Challenges that arise:
 - Generating these mappings,
 - Determining that they are correct, and
 - Providing a vehicle for executing the mappings
 - Translating terms from one ontology into another.

Current Mapping Solutions

Interlingua (Upper Level Ontologies)

Network of Ontologies (Chain/Community)

Key Questions to Address

- How do researchers in the community represent their ontologies (input) and mappings (output)?
 - Represented in natural language (text) or KR languages like OWL?
- Is their mapping representation computer-interpretable?
 - Can we reason and make inferences using these mappings?
- How are these mappings used in practice? Are they sound and complete?
- Is ontology mapping the same as ontology design?
 - Do mapping techniques in literature arise from incomplete ontologies?
 - If so, how does one go about improving the ontologies before mapping?

Current Findings

- Majority of mappings are produced differently
 - Not everyone represents them in OWL, some are just listed as natural language
 - What is the standard? Is there a standard?
- Greater focus on mapping algorithms than reasoning aspects
 - Many tools for mappings (OntoMap, ToMas, OntoMerge, OMEN, DCM Framework, etc.)
 - Little discussion about reasoning with these generated mappings

Future Work

- Verification of mappings using semi-automatic theorem proving with Prover9 software:
 - Determine the mappings between Hilbert and Tarski's axioms for geometry
 - Determine the mappings between time interval and time point ontologies in the COmmon Logic Ontology REpository (COLORE) developed by STL
- Demonstrate that reasoning can be applied in CAD systems that use two different ontologies for measurements
 - Catia V5, SolidWorks, etc.

Future Work: Reasoning with Mappings in CAD Systems

Catia V5, SolidWorks

- Classification of 'Hole'
- Represented differently in both
 - Ex: defining the bottom angle of a hole

Catia:hasBottomAngle (Catia:Hole, Angle) SW:hasDrillAngle (SW:ComplexHole, Angle)

After mapping, inferences made:

> $SW:SimpleDrilled \subseteq Catia:Hole$ $SW:TaperedDrilled \subseteq Catia:Hole$ $SW:CounterBoreDrilled \subseteq Catia:Hole$ $SW:CounterSinkDrilled \subseteq Catia:Hole$ $SW:CounterDrilledDrilled \subseteq Catia:Hole$

Any questions?

THANK YOU

References

- [1] Samer Abdul-Ghafour, Parisa Ghodous, Behzad Shariat, and Eliane Perna. Ontology Development for the Integration of CAD Models in a Collaborative Environment. In Springer, editor, *Concurrent Engineering, Research and Applications*, pages 207–214, June 2011.
- [2] Tim Berners-Lee and Mark Fischetti. Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web by Its Inventor. Harper San Francisco, 1st edition, 1999.
- [3] Mark Burstein, Christoph Bussler, Michal Zaremba, Tim Finin, Michael N. Huhns, Massimo Paolucci, Amit P. Sheth, and Stuart Williams. A semantic web services architecture. *IEEE Internet Computing*, 9(5):72–81, September 2005.
- [4] Balakrishnan Chandrasekaran, John R. Josephson, and V. Richard Benjamins. What Are Ontologies, and Why Do We Need Them? *IEEE Intelligent Systems*, 14(1):20–26, January 1999.
- [5] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer-Verlag, Heidelberg (DE), 2007.
- [6] Michael Gruninger and Joseph B. Kopena. Semantic integration through invariants. *AI Mag.*, 26(1):11–20, March 2005.
- [7] Dillon McKenzie-Veal, Nathan W. Hartman, and John Springer. Implementing Ontology-based Information Sharing in Product Lifecycle Management. In 65th Midyear Meeting Proceedings, October 2010.
- [8] Michael Uschold and Michael Gruninger. Ontologies and Semantics for Seamless Connectivity. *SIGMOD Rec.*, 33(4):58–64, December 2004.