Normalization in DBMS - Notes

Normalization in DBMS is a process used to minimize data redundancy and eliminate undesirable characteristics like insertion, update, and deletion anomalies. It divides larger tables into smaller, more manageable pieces and establishes relationships between them.

Objectives of Normalization:

- To remove redundant data.
- To ensure data dependencies make sense.
- To protect data integrity.
- To make database design more efficient and flexible.

Normal Forms in DBMS:

Normalization is carried out through a series of 'normal forms' — each form represents a specific level of database organization. The most commonly used forms are:

1NF (First Normal Form):

A table is in 1NF if:

- Each cell contains only a single (atomic) value.
- Each record is unique.

Example: Splitting multi-valued attributes into separate rows.

2NF (Second Normal Form):

A table is in 2NF if:

- It is already in 1NF.
- All non-key attributes are fully functionally dependent on the primary key.

Example: Removing partial dependency (when a non-key attribute depends on only part of a composite key).

3NF (Third Normal Form):

A table is in 3NF if:

- It is in 2NF.
- It has no transitive dependencies (non-key attributes should not depend on other non-key attributes).

Example: Removing columns that are not directly dependent on the primary key.

BCNF (Boyce-Codd Normal Form):

A stronger version of 3NF. A table is in BCNF if:

- It is in 3NF.
- For every functional dependency $(X \rightarrow Y)$, X should be a super key.

Example: When multiple candidate keys exist and anomalies still appear in 3NF.

Advantages of Normalization:

- Reduces data redundancy.
- Improves data integrity.
- Easier maintenance and modification.

- Saves storage space.
- Enhances query performance in some cases.

Disadvantages of Normalization:

- Complex queries due to multiple table joins.
- May affect performance in read-heavy systems.
- Requires careful design and understanding of data relationships.

Conclusion:

Normalization is a vital process in database design that ensures efficiency, consistency, and integrity. However, in real-world systems, a balance is often maintained between normalization and performance by selectively denormalizing data where necessary.