

The Link Prediction Problem in Bipartite Networks

Jérôme Kunegis, Ernesto William De Luca, Sahin Albayrak
DAI Lab, Technische Universität Berlin
International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems
Dortmund, June 2010

Introduction -- Networks

- Networks as a model of data
- •E.g.: social networks, interactions, etc.

Bipartite Networks

Some networks are bipartite

Bipartite Networks

Examples:

- Authorship (user-document)
- Ratings (user-item)
- Interaction (e.g. user-service)
- Membership (e.g. user-group)
- Taxonomies (document-category)
- Text (document-word)

Link Prediction in Bipartite Networks

Task: predict links in the network

——— Known link

Unknown link

Examples:

Recommendation

Rating prediction

Outline

Introduction

- Local Link Prediction
- Graph Kernels
- Bipartite Pseudokernels
- Experiments

Local Link Prediction Methods

Triangle closing

Method: count common neighbors, Jaccard coeff., cosine, Pearson, Adamic/Adar, ...

Does not work in bipartite networks!

We need more flexible link prediction methods.

Graph Kernels

Graph kernels are defined algebraically

n×n adjacency matrix **A**: $A_{ij} = 1$ when (i,j) is an edge, 0 otherwise

Graph kernel: function F(A) that is positive semidefinite

Exponential and Hyperbolic Sine

Example: matrix exponential

$$\exp(\mathbf{A}) = \mathbf{I} + \mathbf{A} + \frac{1}{2} \mathbf{A}^2 + \frac{1}{6} \mathbf{A}^3 + \dots$$

Each power \mathbf{A}^n denotes paths of length n.

Use only paths of odd lengths:

$$\mathbf{A} + \frac{1}{6} \mathbf{A}^3 + \frac{1}{120} \mathbf{A}^5 + \dots = \sinh(\mathbf{A})$$

Instead of the exponential we need the hyperbolic sine

The Bipartite von Neumann Pseudokernel

The Von Neumann kernel:

$$N(\mathbf{A}) = (\mathbf{I} - \alpha \mathbf{A})^{-1} = \mathbf{I} + \alpha \mathbf{A} + \alpha^2 \mathbf{A}^2 + \dots$$

The corresponding bipartite von Neumann kernel:

$$N_{bip}(\mathbf{A}) = \alpha \mathbf{A} (\mathbf{I} - \alpha^2 \mathbf{A}^2)^{-1} = \alpha \mathbf{A} + \alpha^3 \mathbf{A}^3 + \alpha^5 \mathbf{A}^5 + \dots$$

Note: We need $\alpha^{-1} > \lambda_1$, where λ_1 is the network's spectral radius.

Hyperbolic Sine -- Example

Computation – Eigenvalue Decomposition

Graph kernels can be computed with the eigenvalue decomposition:

$$A = U \Lambda U^{T}$$

$$\exp(\alpha \mathbf{A}) = \mathbf{U} \exp(\alpha \mathbf{\Lambda}) \mathbf{U}^{\mathsf{T}}$$

$$(\mathbf{I} - \alpha \mathbf{A})^{-1} = \mathbf{U} (\mathbf{I} - \alpha \mathbf{\Lambda})^{-1} \mathbf{U}^{\mathsf{T}}$$

Computation

Adjacency matrix has block structure **A** = [0 **B**; **B**^T 0], where **B** is the biadjacency matrix.

It is enough to compute the singular value decomposition of **B**.

$$B = V \Sigma W^{T}$$

Where $F(B) = V F(\Sigma) W^{T}$ when F is an odd function.

Note: Σ corresponds to Λ up to sign

Note: [V V;W -W]-2-1/2 equals U

Experiments

- Task: Predict links in bipartite networks
- Networks: collection of large bipartite graphs, weighted and unweighted
- Retain a 30% test set of edges
- Performance measure: mean average precision (MAP)
 - 1 = perfect prediction
- Learn parameters by the method of (Kunegis 2009)
- Algorithms:
 - Odd polynomial
 - Odd nonnegative polynomial
 - Hyperblic sine
 - Von Neumann pseudokernel
 - Rank reduction
 - Preferential attachment

Experiments -- Results

Dataset	Nodes	Edges	Poly.	NN-poly.	Sinh	Red.	Odd Neu.	Pref.
BibSonomy tag-item	975,963	2,555,080	0.921	0.925	0.925	0.782	0.917	0.924
BibSonomy user-item	777,084				0.771	0.645	0.750	0.821
BibSonomy user-tag	210,467			0.820	0.820	0.777	0.295	0.878
CiteULike tag-item	885,046	2,411,819	0.593	0.608	0.608	0.510	0.635	0.698
CiteULike user-item	754,484	2,411,819	0.853	0.856	0.856	0.735	0.855	0.838
CiteULike user-tag	175,992			0.836	0.836	0.782	0.202	0.881
DBpedia artist-genre	47,293			0.971	0.833	0.736	0.841	0.961
DBpedia birthplace	191,652	273,695	0.952	0.977	0.978	0.733	0.813	0.968
DBpedia football club	41,846	131,084	0.685	0.678	0.674	0.505	0.159	0.680
DBpedia starring	83,252	141,942	0.908	0.916	0.924	0.731	0.570	0.897
DBpedia work-genre	156,145	222,517	0.879	0.941	0.908	0.746	0.867	0.966
Epinions	876,252	13,668,320	0.644	0.690	0.546	0.501	0.061	0.690
French Wikipedia	3,989,678	41,392,490	0.667	0.744	0.744	0.654	0.108	0.803
German Wikipedia	3,357,353	51,830,110	0.673	0.699	0.699	0.651	0.156	0.799
Japanese Wikipedia	1,892,869	18,270,562	0.740	0.752	0.755	0.618	0.076	0.776
Jester	25,038		0.575	0.571	0.581	0.461	0.579	0.501
MovieLens 100k	2,625	100,000	0.822	0.774	0.738	0.718	0.631	0.812
MovieLens 10M	136,700	10,000,054	0.683	0.682	0.663	0.500	0.298	0.680
MovieLens 1M	9,746	1,000,209			0.538	0.500	0.221	0.662
MovieLens tag-item	24,129	95,580	0.860	0.860	0.860	0.737	0.865	0.863
MovieLens user-item	11,610	95,580	0.755	0.741	0.728	0.659	0.674	0.812
MovieLens user-tag	20,537	95,580	0.782	0.798	0.798	0.672	0.663	0.915
Netflix	497,959	100,480,507	0.674	0.671	0.670	0.500	0.322	0.672
Spanish Wikipedia	2,684,231	23,392,353	0.634	0.750	0.750	0.655	0.094	0.799
Wikipedia categories	2,036,440	3,795,796	0.591	0.659	0.663	0.500	0.589	0.675

Conclusion

Summary:

- Simple link prediction does not work in bipartite networks
- Instead, use algebraic methods
- Hyperbolic sine and von Neumann pseudokernels

Thank You

References

Local link prediction

D. Liben-Nowell, J. Kleinberg, CIKM (2003) The link prediction problem for social networks.

Spectral link prediction

J. Kunegis, A. Lommatzsch, ICML (2009) Learning spectral transformations for link prediction.

Bipartite spectral graph theory

E. Estrada, J.A. Rodríguez-Velázquez, Phys. Rev. E 72 (2005) Spectral measures of bipartivity in complex networks.

