

2900000000

CLAIMS

I. A compound of the formula

wherein

- 5 A is $(\text{CH}_2)_m$, m being from 1 to 3;
 B is $(\text{CH}_2)_n$, n being from 1 to 3;
 x is from 0 to 2;
 R^1 is C_1 to C_{10} hydrocarbyl, in which up to 2 carbon atoms may be replaced by O, S or N, and up to 2 hydrogen atoms may be replaced by halogen;
- 10 R^2 is H or C_1 to C_{15} hydrocarbyl, in which up to 3 carbon atoms may be replaced by O, S or N, and up to 3 hydrogen atoms may be replaced by halogen;
- R^3 is absent when $-\text{Y}-\text{Z}-\text{R}^2$ is attached to W, or is H or C_1 to C_7 hydrocarbyl when $-\text{Y}-\text{Z}-\text{R}^2$ is not attached to W;
- 15 W is nitrogen;
 X is $-\text{CH}_2-$, $-\text{O}-$ or $-\text{NR}^4-$, R^4 being H or C_1 to C_3 alkyl;
 Y replaces a hydrogen atom on any of A, B, W and X, and is C_2 to C_{10} alkylene, in which one non-terminal carbon atom may be replaced by O; and
- 20 Z is

or

wherein R^5 , R^6 and R^7 are independently H or C_1 to C_{15} hydrocarbyl, in which up to 3 carbon atoms may be replaced by O or N, and up to 3 hydrogen

AMENDED SHEET

*SJB
B1*

atoms may be replaced by halogen, and Q is H or methyl, or Q is linked to R⁵ or R⁶ to form a five-membered ring or Q is linked to R² to form a six-membered ring, provided that when Z is

5 at least one of R⁵ and R⁷ is aryl(C₁ to C₃)alkyl or cycloalkyl(C₁ to C₃)alkyl, optionally substituted by halo;
or a pharmaceutically acceptable salt thereof.

- A1>*
- 10 A compound according to claim 1 wherein R² is selected from alkyl, aryl, arylalkyl, cycloalkyl and cycloalkylalkyl, wherein alkyl moieties are optionally substituted by halo, and aryl groups are optionally substituted by C₁ to C₄ alkyl, C₁ to C₄ alkoxy or halo.
- 15 3. A compound according to claim 1 wherein R² is selected from phenyl, halophenyl, benzyl, halobenzyl, phenylethyl, halophenylethyl, phenylpropyl, halophenylpropyl, phenylbutyl, halophenylbutyl, tolyl, methoxybenzyl, trifluoromethylbenzyl, halo-methoxybenzyl, phenylbenzyl, adamantanemethyl, adamantaneeethyl, adamantanepropyl, cyclohexanemethyl, cyclohexaneethyl, and naphthyl.
- 20 4. A compound according to any of claims 1 to 3 wherein x is 0.
- 25 5. A compound according to any of claims 1 to 3 wherein x is 1 or 2, and R¹ is selected from hydroxy, C₁ to C₉ alkoxy (optionally substituted by halo), C₁ to C₉ cycloalkylalkoxy (wherein the cycloalkyl group is optionally substituted by C₁ to C₄ alkyl or halo, and the alkoxy group is optionally substituted by halo), arylalkoxy (wherein the aryl group is optionally substituted by C₁ to C₄ alkyl, C₁ to C₃ alkoxy or halo, and the alkoxy group is optionally substituted by halo) and C₁ to C₉ alkylamino wherein the alkyl group is optionally substituted by halo.

95

Sub A1>

6. A compound according to any preceding claim wherein R³ is H, C₁ to C₇ alkyl or benzyl

7. A compound according to any preceding claim wherein R⁵, R⁶ and R⁷ are independently selected from H, aryl(C₁ to C₃)alkyl and cycloalkyl(C₁ to C₃)alkyl, and are optionally substituted by halo.

8. A compound according to any preceding claim wherein Y is propylene, butylene, pentylene, hexylene, heptylene, octylene or nonylene.

10

9. A compound according to any preceding claim wherein m+n ≥ 3.

10. A compound according to claim 8, wherein m+n ≥ 3, Z-R² is

15 and R⁵ is benzyl or halobenzyl.

11. ~~A compound according to any preceding claim, for use in therapy.~~

Sub A2>

12. A compound which is degraded *in vivo* to yield a compound according to any of claims 1 to 10.

13. A pharmaceutical composition comprising a therapeutically effective amount of a compound according to any of claims 1 to 10, and a physiologically acceptable diluent or carrier.

25

14. A method of making a compound of the formula

2902.00

wherein A, B, x, R¹, R², R³, R⁵, X and Y are as recited in claim 1, said method comprising the step of reacting a compound of the formula R²SO₂Cl with a compound of the formula

5 wherein R^{3A} is C₁ to C₇ hydrocarbyl or a protecting group.

15. A method of making a compound of the formula

wherein A, B, x, R¹, R², X and Y are as recited in claim 1, said method comprising the
10 step of reacting a compound of the formula

with a compound of the formula Cl-Y-NH-SO₂-R².

16. A method of making a compound of the formula

15

wherein A, B, x, R¹, R², R³, R⁵, X and Y are as recited in claim 1, said method comprising the step of reacting a compound of the formula

97 25002-000

(wherein R^{3A} is C₁ to C₇ hydrocarbyl or a protecting group and Pr is a protecting group) with a compound of the formula R^2Br , and reacting the product with R^5Br when R^5 is not hydrogen.

5

17. A method of making a compound of the formula

wherein A, B, x, R^1 , R^2 , R^3 , X and Y are as recited in claim 1, said method comprising the step of reacting a compound of the formula

10

(wherein R^{3A} is C₁ to C₇ hydrocarbyl or a protecting group) with a compound of the formula $R^2-NH-SO_2-NH-Pr$, wherein Pr is a protecting group, and reacting the product with R^6Br when R^6 is not hydrogen.

15 18. A method of making a compound of the formula

wherein A, B, x, R^1 , R^2 , R^3 , R^5 , R^6 , X and Y are as recited in claim 1, said method comprising the step of reacting a compound of the formula

AMENDED SHEET

(wherein R^{3A} is C₁ to C₇ hydrocarbyl or a protecting group) with a compound of the formula R²R⁶NH and sulfamide.

5 19. A method of making a compound of the formula

wherein A, B, x, R¹, R², R³, R⁶ and X are as recited in claim 1 and Y² is a bond or C₁ to C₈ alkylene, said method comprising the step of reacting a compound of the formula

10 (wherein R^{3A} is C₁ to C₇ hydrocarbyl or a protecting group) with a compound of the formula

wherein Pr is a protecting group, reducing the reaction product, and (when R⁶ is not hydrogen) reacting the reduced product with R⁶Br.

15

20. A method of making a compound of the formula

99 2902 · 00

wherein A, B, x, R¹, R², R³, R⁵, R⁷, Q, X and Y are as recited in claim 1, said method comprising the step of reacting a compound of the formula

with a compound of the formula

wherein Q¹, R^{2A}, R^{3A}, and R^{7A} are any of the groups defined for Q, R², R³, and R⁷, respectively, or protecting groups.

21. A method of making a compound of the formula

wherein A, B, x, R¹, R², and X are as recited in claim 1 and Y¹ is a C₁ to C₉ alkylene group, said method comprising the step of reacting a compound of the formula

(wherein Pr¹ and Pr² are protecting groups) with a compound of the formula

100 2902.00

22. A method of making a compound of the formula

- 5 wherein A, B, x, R¹, R², R³, R⁵, X and Y are as recited in claim 1, said method comprising the step of reacting a compound of the formula

(wherein R^{3A} is C₁ to C₇ hydrocarbyl or a protecting group) with a compound of the formula

23. A method of making a compound of the formula

- wherein A, B, x, R¹, R², and X are as recited in claim 1 and Y¹ is a C₁ to C₉ alkylene group, said method comprising the step of reacting a compound of the formula

101 29 002 - 00

with a compound of the formula $R^2-SO_2-Y^1-CHO$.

24. A method of making a compound of the formula

5

wherein A, B, x, R^1 , R^2 , R^5 , R^7 , Q, X and Y are as recited in claim 1, said method comprising the step of reacting a compound of the formula

with a compound of the formula

10

wherein V is C_1 to C_9 alkylene, and Q^1 , R^{2A} , R^{5A} and R^{7A} are any of the groups defined for Q, R^2 , R^5 and R^7 , respectively, or a protecting group.

25. A method of making a compound of the formula

102

29002.00

wherein A, B, x, R¹, R², R⁵, R⁷, Q, X and Y are as recited in claim 1, said method comprising the step of reacting a compound of the formula

5 with a compound of the formula

wherein L is a leaving group, and Q¹, R^{2A}, R^{5A} and R^{7A} are any of the groups defined for Q, R², R⁵ and R⁷, respectively, or a protecting group.

10 26. A method of making a compound of the formula

wherein A, B, x, R¹, R², R⁵, X and Y are as recited in claim 1, said method comprising the step of reacting a compound of the formula

AMENDED SHEET

103

with a compound of the formula

wherein V is C₁ to C₉ alkylene, and R^{2A} and R^{5A} are any of the groups recited for R² and R⁵, respectively, or a protecting group.

5

27. A method of making a compound of the formula

wherein A, B, x, R¹, R², R⁵, X and Y are as recited in claim 1 (provided that the moiety

10 constitutes a group falling within the definition of R⁶), said method comprising the step of reacting a compound of the formula

with a compound of the formula

15 wherein V is C₁ to C₉ alkylene, and R^{2A} and R^{5A} are any of the groups recited for R² and R⁵, respectively, or a protecting group.

Sub A3>

28. The use of an H₃ receptor ligand in the manufacture of a medicament for modifying H₃ receptor activity in a patient, said H₃ receptor ligand being a compound of the formula

5 wherein

A is (CH₂)_m, m being from 1 to 3;B is (CH₂)_n, n being from 1 to 3;

x is from 0 to 2;

10 R¹ is C₁ to C₁₀ hydrocarbyl, in which up to 2 carbon atoms may be replaced by O, S or N, and up to 2 hydrogen atoms may be replaced by halogen;R² is H or C₁ to C₁₅ hydrocarbyl, in which up to 3 carbon atoms may be replaced by O, S or N, and up to 3 hydrogen atoms may be replaced by halogen;15 R³ is absent when -Y-Z-R² is attached to W, or is H or C₁ to C₇ hydrocarbyl when -Y-Z-R² is not attached to W;

W is nitrogen;

X is -CH₂- , -O- or -NR⁴- , R⁴ being H or C₁ to C₃ alkyl;20 Y replaces a hydrogen atom on any of A, B, W and X, and is C₂ to C₁₀ alkylene, in which one non-terminal carbon atom may be replaced by O; and

Z is

or

105

Sub A3>

wherein R⁵, R⁶ and R⁷ are independently H or C₁ to C₁₅ hydrocarbyl, in which up to 3 carbon atoms may be replaced by O or N, and up to 3 hydrogen atoms may be replaced by halogen, and Q is H or methyl, or Q is linked to R⁵ or R⁷ to form a five-membered ring or Q is linked to R² to form a six-membered ring.

5

or a pharmaceutically acceptable salt thereof.

*a add
B2*

*a add
C4*