Algoritmos y estructuras de datos Departamento de computación UBA

Tobias Llop

3 Práctica 3 - Resoluciones

3.1 Ejercicio 1

- (a) $\operatorname{def}(a+1) = \operatorname{def}(a)$
- **(b)** $\operatorname{def}(a/b) = \operatorname{def}(a) \wedge (\operatorname{def}(b) \wedge_L b \neq 0)$

(c)
$$\operatorname{def}(\sqrt{\frac{a}{b}}) = (\operatorname{def}(a) \wedge (\operatorname{def}(b) \wedge_L b \neq 0)) \wedge_L ((a > 0 \wedge b > 0) \vee (a < 0 \wedge b < 0))$$

3.2 Ejercicio 2

 $a \in \mathbb{R}, b \in \mathbb{R}, i \in \mathbb{Z}, A: seq\langle \mathbb{R} \rangle$

(a) wp(a := a + 1, b := a/2, b
$$\geq$$
 0) = def(a + 1) \wedge_L def(a/2) \wedge_L $\frac{a+1}{2} \geq$ 0
wp = true \wedge_L true \wedge_L a + 1 \geq 0
wp = a \geq -1

(c) wp(a := A[i] + 1, a := b*b, a
$$\geq$$
 0) = def(A[i] + 1) \wedge_L def(b * b) \wedge_L $b^2 \geq$ 0
wp = $(\forall i : \mathbb{Z})(0 \leq i < |A|) \wedge_L$ true \wedge_L true
wp = $(\forall i : \mathbb{Z})(0 \leq i < |A|)$

^{*}Preguntar