

Predstavljanje podataka u računaru

TEME

- ✓ Celi brojevi
 - ✓ Komplement dvojke
- ✓ Realni brojevi
 - ✓ Pokretni zarez
- Znakovni tip

Tipovi podataka

Predstavljanje celih brojeva

Označavanje

- □ U decimalnom sistemu se negativni brojevi označavaju znakom "-", a pozitivni znakom "+" (ili se znak izostavlja) napisanim ispred apsolutne vrednosti broja.
- U binarnom sistemu ovakav način označavanja brojeva nije moguć, jer su dozvoljena samo dva znaka "0" i "1".

Dva načina za predstavljanje celih binarnih brojeva:

- pomoću znaka i apsolutne vrednosti
- u komplementu dvojke

Znak i apsolutna vrednost

- Ispred apsolutne vrednosti broja, dopisuje se jedna cifra i to:
 - ❖ 0 ako je broj pozitivan
 - ❖ 1 ako je broj negativan.

Primer 1	
7 ₍₁₀₎ = 111 ₍₂₎	neoznačen binarni broj
+7 ₍₁₀₎ = 0111 ₍₂₎	označen pozitivan binarni broj
-7 ₍₁₀₎ = 1111 ₍₂₎	označen negativan binarni broj

Znak i apsolutna vrednost

- Ovo je najjednostavniji način zapisivanja celog binarnog broja.
- Problem: nad binarnim brojevima zapisanim pomoću znaka i apsolutne vrednosti teško se obavljaju aritmetičke operacije (sabiranje, oduzimanje, množenje i deljenje) zato što se negativan broj ne može tretirati na jedinstven način
- Problem se rešava predstavljanjem celih binarnih brojeva u komplementu dvojke.

Ako je Z ceo broj, onda se pozitivan broj +|Z| i negativan broj -|Z| mogu predstaviti u binarnom obliku kao

+|Z|
$$K^{+} = (|Z|)_{(2)}$$

-|Z| $K^{-} = (2^{n} - |Z|)_{(2)} = (2^{n} - K^{+})_{(2)}$

- U komplementu dvojke, <u>nenegativni</u> brojevi počinju <u>cifrom 0</u>, a <u>negativni cifrom 1</u>

Primer 2

Pomoću 16 cifara, predstaviti u komplementu dvojke +15 i –15.

```
+15: K^+ = (|15|)_{(2)} = 0000 0000 0000 1111
```

Efekat oduzimanja od 2ⁿ može se postići i <u>invertovanjem i dodavanjem 1</u>:

```
polazni broj: 0000 0000 0000 1111
```

invertovani broj: 1111 1111 1111 0000

Postupak

- Pozitivan ceo broj
 - ispred binarnog zapisa apsolutne vrednosti broja doda se cifra 0
- Negativan ceo broj
 - ❖ ispred binarnog zapisa apsolutne vrednosti broja doda se cifra 0
 - sve binarne cifre se <u>invertuju</u>
 (jedinice se zamene nulama, a nule jedinicama)
 - ❖ dobijeni broj se <u>sabere sa 1</u>

Primer 3

Brojeve +7₍₁₀₎ i -10₍₁₀₎ predstaviti u komplementu dvojke.

+7:

0000 0000 0000 0111 (dodavanje nule, puni komplement)

-10:

0000 0000 0000 1010 (dodavanje nule)

1111 1111 1111 0101 (invertovanje)

+1 (sabiranje sa 1)

1111 1111 1111 0110 (puni komplement)

Osobina komplementa dvojke: kada se dva puta uzastopno primeni na neki broj, dobija se polazni broj.

Primer 4

Naći dva puta uzastopno komplement dvojke broja $13_{(10)}$.

```
polazni broj (+13):
                             0000 0000 0000 1101
invertovanje:
                                   1111
                                         1111
                                                0010
sabiranje sa 1:
puni komplement (-13):
                                    1111 1111
                                                0011
polazni broj (-13):
invertovanje:
                             0000 0000
                                         0000
sabiranje sa 1:
puni komplement (+13):
                             0000 0000 0000
```


Pojednostavljeni postupak

- Polazni binarni broj se podeli na dva dela, levi i desni.
 Desni deo čine prva jedinica sa desne strane u broju i sve nule koje slede desno od nje, a levi deo preostale cifre levo od jedinice.
- Komplement dvojke se dobija tako što se sve cifre u levom delu broja invertuju, a desni deo broja ostaje nepromenjen.

Primer 5

Naći komplement dvojke binarnog broja 01010010010000₍₂₎.

polazni broj = 010100100 | 10000

levi deo desni deo

komplement dvojke = 10101101110000

Osobina komplementa dvojke: pozitivnim brojevima mogu se dodavati vodeće nule (ispred cifre najveće težine), a negativnim vodeće jedinice, a da se vrednost brojeva ne promeni.

Primer 6

$$0111_{(2)} = 0000000111_{(2)}$$

$$1001_{(2)} = 11111001_{(2)}$$

Određivanje decimalne vrednosti broja

Decimalna vrednost X celog binarnog broja zapisanog u komplementu dvojke sa n+1 cifara računa se pomoću sledeće formule:

$$X = -a_n \cdot 2^n + a_{n-1} \cdot 2^{n-1} + \dots + a_1 \cdot 2^1 + a_0 \cdot 2^0$$

Primer 7 Odredi decimalnu vrednost brojeva datih u komplementu dvojke.

$$0110_{(2)} = -0.2^{3} + 1.2^{2} + 1.2^{1} + 0.2^{0} = 4 + 2 = 6_{(10)}$$

$$1010_{(2)} = -1.2^{3} + 0.2^{2} + 1.2^{1} + 0.2^{0} = -8 + 2 = -6_{(10)}$$

$$111010_{(2)} = -1.2^{5} + 1.2^{4} + 1.2^{3} + 0.2^{2} + 1.2^{1} + 0.2^{0} = -32 + 16 + 8 + 2 = -6_{(10)}$$

Opseg neoznačenih brojeva

n-to cifreni binarni broj

Prorodni broj (i 0) 1/0 1/0 1/0 1/0 1/0

Broj različitih kombinacija: 2^n $\begin{cases} 1 \text{ kombinacija:} & \text{za broj } 0 \\ 2^n-1 \text{ kombinacija:} & \text{za brojeve } 1,..., 2^n-1 \end{cases}$

Opseg neoznačenih brojeva zapisanih sa *n* binarnih cifara:

$$0 \le X \le 2^n - 1$$
 ili $X \in \{0, 1, ..., 2^n - 1\}$

Primer 8 Odredi opseg neoznačenih brojeva koji se mogu predstaviti sa 4 i 8 binarnih cifara.

n = 4: $0 \le X \le 15$ ili $X \in \{0, 1, ..., 15\}$

n = 8: $0 \le X \le 255$ ili $X \in \{0, 1, ..., 255\}$

Opseg celih brojeva

n-to cifreni binarni broj

Ceo broi (komplement dvojke)

2ⁿ Broj različitih kombinacija:

1 kombinacija: za broj 0

2ⁿ-1 je neparan broj

1 kombinacija: za jedan negativan broj 2^n-2 je paran broj, pa je $(2^n-2)/2 = 2^{n-1}-1$

 2^{n-1} -1 kombinacija: za pozitivne brojeve

2ⁿ⁻¹ -1 kombinacija: za negativne brojeve

Opseg celih brojeva u komplementu dvojke zapisanih sa *n* binarnih cifara:

$$-2^{n-1} \le X \le 2^{n-1} - 1$$
 ili $X \in \{-2^{n-1}, ..., -1, 0, 1, ..., 2^{n-1} - 1\}$

Primer 9 Odredi opseg celih brojeva predstavljenih sa 4 i 8 binarnih cifara.

$$n = 4$$
: $-8 \le X \le 7$ ili $X \in \{-8, ..., -1, 0, 1, ..., 7\}$

$$n = 8: -128 \le X \le 127$$
 ili $X \in \{-128, ..., -1, 0, 1, ..., 127\}$

Aritmetičke operacije: sabiranje i oduzimanje

1

- Brojevi se tretiraju kao jedinstvene celine (znak je sastavni deo broja).
- Operacije se obavljaju isto kao nad binarnim neoznačenim brojevima.
- Operacija oduzimanja se svodi na operaciju sabiranja

$$A - B = A + (-B)$$

<u>Sabiranje</u>

- U računaru, operacija sabiranja se kontroliše pomoću:
 - ❖ indikatora prenosa C i P (carry bits)
 - prenosi iz <u>dva najstarija razreda</u>
 - ❖ indikatora prekoračenja V (overflow)
 - računa se pomoću C i P, na sledeći način

ako je C = P, onda je V = 0

ako je $C \neq P$, onda je V = 1

□ Rezultat je <u>ispravan</u> ako je V = 0, a <u>neispravan</u> ako je V = 1.

Postupak sabiranja

- 1. oba sabirka se predstave u komplementu dvojke
- dobijeni brojevi se saberu po pravilima binarnog sabiranja uz pamćenje prenosa između razreda
- 3. na osnovu zapamćenih prenosa odrede se vrednosti C i P
- 4. na osnovu *C* i *P* izračuna se indikator *V* koji pokazuje da li je dobijeni rezultat ispravan

Primer 10 Sabrati brojeve A = +3 i B = +4 (n = 4).

prenosi: 0000

puni komplement *A*: 0011 puni komplement *B*: 0100

zbir: $0111 = -0.2^3 + 1.2^2 + 1.2^1 + 1.2^0 = +7$ (tačno)

C = 0, P = 0, V = 0, ispravno

Primer 11 Sabrati brojeve A = +3 i B = -4 (n = 4).

prenosi: 0000

puni komplement A: 0011

puni komplement B: 1100

zbir: $1111 = -1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = -1$ (tačno)

C = 0, P = 0, V = 0, ispravno

Primer 12 Sabrati brojeve A = +7 i B = +1 (n = 4).

prenosi: **01**11

puni komplement *A*: 0111 puni komplement *B*: 0001

zbir: $1000 = -1.2^3 + 0.2^2 + 0.2^1 + 0.2^0 = -8$ (netačno)

C = 0, P = 1, V = 1, neispravno

Primer 13 Sabrati brojeve A = -7 i B = -4 (n = 4).

prenosi: **10**00

puni komplement *A*: 1001 puni komplement *B*: 1100

zbir: $0101 = -0.2^3 + 1.2^2 + 0.2^1 + 1.2^0 = +5$ (netačno)

C = 1, P = 0, V = 1, neispravno

Predstavljanje realnih brojeva

- Za predstavljanje realih brojeva (sa decimalnim zarezom) koristi se pokretni zarez – floating point
- Zapis u pokretnom zarezu ima 3 komponente:
 - □ znak Z
 - eksponent E
 - mantisu M

Z E M

Decimalna vrednost broja zapisanog u pokretnom zarezu je:

 $V = (Z) M \cdot 2^{Es}$

Es je stvarni eksponenet koji se računa na osnovu E

- Postoje razni standardi koji definišu koliko se bita koristi za koju komponentu i u kom formatu su komponente zapisane.
- Danas najčešće korišćeni standard za zapis brojeva u pokretnom zarezu je standard IEEE 754.

Zapis broja po jednostukom standardu IEEE 754

- □ 1 bit za znak Z
- □ 8 bitova za eksponent E
- ☐ 23 bita za mantisu *M*

Znak

Z=0 ako je broj pozitivan Z=1 ako je broj negativan

Eksponent

- U zapisu E je uvećani eksponent (uvećan je za 127 u odnosu na Es).
- Razlog za uvećanje eksponenta: omogućeno je da Es ima kako pozitivnu, tako i <u>negativnu vrednost (predstavljaje velikih i malih brojeva)</u>
 - 8 bitova odgovara opsegu od 0 do 255
 - oduzimanjem 127 od granica opsega dobija se opseg od -127 do 128
 - ako dopustimo da Es bude u ovom opsegu, onda je u zapisu uvećani eksponent E = Es + 127.
- Pri određivanju decimalne vrednosti zapisa važi *Es* = *E* 127.

Mantisa

□ Neka su 23 bita za mantisu obeleženi sa m_1 , m_2 , ..., m_{23} , počevši sa leva na desno.

$$m_1$$
 m_2 m_3 m_4 m_2 m_{20} m_{21} m_{22} m_{23}

Decimalna vrednost mantise M određuje se formulom:

$$M_{(10)} = 2^{0} + m_{1} \cdot 2^{-1} + m_{2} \cdot 2^{-2} + \dots + m_{22} \cdot 2^{-22} + m_{23} \cdot 2^{-23}$$

Vrednost mantise mora biti između 1 i 2.

Primer 14 Odrediti decimalnu vrednost broja zapisanog u pokretnom zarezu.

0100000101110000000000000000000000

Rešenje:

0 10000010 111000000000000000000000

Znak: cifra znaka je $0 \rightarrow broj je pozitivan$

Eksponent: $E = 10000010_{(2)} = 128 + 2 = 130_{(10)}$

Es = 130 - 127 = 3

Mantisa: $M = 2^{0} + 2^{-1} + 2^{-2} + 2^{-3} = 1 + 1/2 + 1/4 + 1/8 = 15/8$

Vrednost broja: $V = (Z) M \cdot 2^{Es} = +15/8 \cdot 2^3 = +15/8 \cdot 8 = +15$

Predstavljanje podataka znakovnog tipa

Skup znakova čine:

- velika i mala slova abecede
- decimalne cifre
- specijalni znaci (znaci na tastaturi koji nisu ni slova ni cifre i mogu se štampati, na primer, !, #, \$, %, =, +, itd.)
- kontrolni znaci (ne mogu se štampati, niti prikazati na ekranu, služe za upravljanje ulazno/izlaznim uređajima: zvučni signal i sl.)

ASCII standard

Postoji više načina za binarno predstavljanje znakova u računaru. Najpoznatiji od njih je

ASCII – American Standard Code for Information Interchange.

- Po ASCII standardu, znakovi se u memoriji računara pamte u vidu odgovarajućeg 8-cifarskog binarnog sadržaja.
- ASCII tabela daje jednoznačnu vezu između znakova i njihovih 8-cifarskih binarnih kodova.

ASCII tabela (prvih 128 vrednosti)

Hex	ASCII														
0	NUL	10	DLE	20		30	0	40	@	50	P	60	`	70	p
1	SOH	11	DC1	21	!	31	1	41	A	51	Q	61	a	71	q
2	STX	12	DC2	22	"	32	2	42	В	52	R	62	b	72	r
3	ETX	13	DC3	23	#	33	3	43	C	53	S	63	C	73	S
4	EOT	14	DC4	24	\$	34	4	44	D	54	T	64	d	74	t
_5	ENQ	15	NAK	25	%	35	5	45	E	55	U	65	e	75	u
6	ACK	16	SYN	26	&	36	6	46	F	56	V	66	f	76	V
7	BEL	17	ETB	27	,	37	7	47	G	57	W	67	g	77	W
8	BS	18	CAN	28	(38	8	48	Н	58	X	68	h	78	X
9	TAB	19	EM	29)	39	9	49	I	59	Y	69	\/i	79	y
A	LF	1A	SUB	2A	*	3A	:	4A	J_	5A	Z	6A	-j	7A	Z
В	VT	1B	ESC	2B	+	3B	• •	4B	K	5B	C[L	6B	k	7B	AI
C	FF	1C	FS	2C	,	3C	<	4C	L	5C	\ \ P	6C	IMTA	7C	
D	CR	1D	GS	2D	-	3D	=	4D	M	5D	JIN	6D	ZmE	7D	}
Е	SO	1E	RS	2E	•	3E	>	4E	N	5E	Λ	6E	n	7E	~
F	SI	1F	US	2F	/	3F	?	4F	O	5F		6F	0	7F	DEL

Jedinice

□ 1 bit [1b]

jedna binarna cifra

□ 1 bajt [1B]

8 bitova

1 kilobajt [1KB]

 $2^{10} = 1024 B$

□ 1 megabajt [1MB]

 $2^{10} KB$

☐ 1 gigabajt [1GB]

 $2^{10} MB$

☐ 1 terabajt [1TB]

 $2^{10}\,\mathrm{GB}$