Feuille d'exercice n° 21 : Familles de vecteurs et espaces de dimension finie

Exercice 1 ($^{\circ}$) Dans \mathbb{R}^4 , comparer (*i.e.* dire s'ils sont égaux ou si l'un est inclus dans l'autre) les sous-espaces F et G suivants :

$$F = \text{Vect} \{ (1,0,1,1), (-1,-2,3,-1), (-5,-3,1,-5) \} ;$$

$$G = \text{Vect} \{ (-1,-1,1,-1), (4,1,2,4) \} .$$

Exercice 2 (\bigcirc) Dans \mathbb{R}^4 on considère l'ensemble E des vecteurs (x_1, x_2, x_3, x_4) vérifiant $x_1 + x_2 + x_3 + x_4 = 0$. L'ensemble E est-il un sous espace vectoriel de \mathbb{R}^4 ? Le cas échéant, en donner une famille génératrice.

Exercice 3 (\bigcirc) Dans \mathbb{R}^4 , on considère les familles de vecteurs suivantes.

- 1) $v_1 = (1, 1, 1, 1), v_2 = (0, 1, 2, -1), v_3 = (1, 0, -2, 3), v_4 = (2, 1, 0, -1), v_5 = (4, 3, 2, 1).$
- **2)** $v_1 = (1, 2, 3, 4), v_2 = (0, 1, 2, -1), v_3 = (3, 4, 5, 16).$
- **3)** $v_1 = (1, 2, 3, 4), v_2 = (0, 1, 2, -1), v_3 = (2, 1, 0, 11), v_4 = (3, 4, 5, 14).$

Ces vecteurs forment-ils:

- 1) Une famille libre ? Si c'est le cas, la compléter pour obtenir une base de \mathbb{R}^4 . Si non donner des relations de dépendance entre eux et extraire de cette famille une base du sous-espace vectoriel engendré par celle-ci.
- 2) Une famille génératrice ? Si c'est le cas, en extraire au moins une base de l'espace. Si non, donner la dimension du sous-espace qu'ils engendrent.

Exercice 4 (Soit dans \mathbb{R}^3 les vecteurs $v_1 = (1, 1, 0), v_2 = (4, 1, 4)$ et $v_3 = (2, -1, 4)$.

- 1) Montrer que v_1 et v_2 ne sont pas colinéaires. Faire de même avec v_1 et v_3 , puis avec v_2 et v_3 .
- **2)** La famille (v_1, v_2, v_3) est-elle libre ?

Exercice 5 Soit A et B deux parties d'un espace vectoriel E. Comparer $Vect(A \cap B)$ et $Vect A \cap Vect B$.

Exercice 6 Soit $n \in \mathbb{N}$. Pour tout entier $k \in \mathbb{N}$, on pose $f_k : \mathbb{R} \to \mathbb{R}$, $x \mapsto x^k$.

- 1) Montrer que la famille $(f_k)_{0 \le k \le n}$ est une famille libre de $\mathscr{F}(\mathbb{R}, \mathbb{R})$.
- 2) Est-ce toujours le cas pour la famille $(f_k)_{k\in\mathbb{N}}$?

Exercice 7 () Définir par leurs équations cartésiennes dans la base canonique les sous-espaces vectoriels :

- 1) F engendré par : $\{(3,1,2); (2,1,3)\}$ dans \mathbb{R}^3 ;
- 2) G engendré par : (1,2,3) dans \mathbb{R}^3 ;
- 3) H engendré par $\{(1,2,3,0); (4,-1,2,0); (2,1,-3,0)\}$ dans \mathbb{R}^4 .

Exercice 8 ($^{\circ}$) Soit $n \in \mathbb{N}$, soit $a \in \mathbb{R}$.

- 1) Montrer que la famille $((X-a)^i)_{0 \le i \le n}$, est une base de $\mathbb{R}_n[X]$.
- 2) Donner les coordonnées de $P \in \mathbb{R}_n[X]$ dans cette base.

Exercice 9 () Dans $\mathbb{R}_3[X]$, soit $P = X^3 + 2X - 1$ et Q = 2X - 1. Déterminer une base \mathscr{B} de $\mathbb{R}_3[X]$ dont P et Q sont éléments.

Exercice 10 ($^{\circ}$) Soit $\mathbf{v}_1 = (1,0,0,-1), \mathbf{v}_2 = (2,1,0,1), \mathbf{v}_3 = (1,-1,1,-1), \mathbf{v}_4 = (7,2,0,-1)$ et $\mathbf{v}_5 = (-2,1,0,5).$

- 1) Donner une base du sous-espace vectoriel (de \mathbb{R}^4) $F = \text{Vect}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5)$.
- 2) Déterminer un supplémentaire G de F dans \mathbb{R}^4 .

