Тема: *Многокутники. Підготовка до контрольної* роботи

Опорний конспект

ПОВТОРЕННЯ

Кути правильного

п-кутника

1. Внутрішній кут:
$$\alpha = \frac{180^{\circ}(n-2)}{n}$$
;

$$2^{\Omega}$$
Зовнішній кут: $\beta = \frac{360^{\circ}}{n}$;

3. Центральний кут:
$$\gamma = \frac{360^{\circ}}{n}$$

Внутрішній та зовнішній кути

Сумма кутів правильного п-кутника

$$(n-2)\cdot 180^{0}$$

$$\alpha_n = \frac{(n-2) \cdot 180^0}{n}$$

Кут правильного п-кутника

Скільки сторін має правильний многокутник, якщо кожний із зовнішніх його кутів дорівнює 36°?

Розв'язання

Відповідь: 10 сторін.

Д іагоналі n-кутника

$$n(n-3)$$

2

n – кількість кутів многокутника

Практичне завдання:

Накресліть і позначте довільний опуклий семикутник, назви усі його вершини та сторони. Проведіть з однієї вершини всі діагоналі, назвіть їх. На скільки трикутників діагоналі розділили семикутник?

Запам"ятай, це важливо!

Теорема:

навколо чотирикутника можна описати коло , якщо суми протилежних кутів рівні 180°.

Кути <A і <B вписані і спираються на дуги, що доповнюють одна одну до повного кола. За теоремою про вписані кути

$$\angle A + \angle C = \frac{1}{2}(\cup BAD + \cup BCD) = \frac{360^{\circ}}{2} = 180^{\circ}$$

Теорема:

В чотирикутник можна вписати коло, якщо суми протилежних сторін рівні.

AB+CD=AD+BC.

Для доведення звернемо увагу:

AN=AK, KB=KL, LC=CM, MD=DN

Як відрізки дотичних , що виходять з однієї точки до одного кола.

Теорема Фалеса

<u>Теорема:</u> якщо паралельні прямі, які перетинають сторони кута, відтинають на одній його стороні рівні відрізки, то вони відтинають рівні відрізки й на другій його стороні.

Дано: ∠ABC, MK = KP, MO ||KE || PH Довести: OE = EH

Доведення:

- 1. Через т.К проведемо XT|| BC
- 2. ОХКЕ і ЕКТН паралелограми
- 3. XK = OE, KT = EH.
- 4. Розглянемо **ДХКМ** і **ДТКР**.
- 5. В них: \angle XKM = \angle TKP , MK = KP, та \angle XMK = \angle TPK.
- 6. Отже, Δ XКМ = Δ ТКР.
- 7. XK = TK.
- 8. Тоді XK = OE = KT = EH.

УЗАГАЛЬНЕНА ТЕОРЕМА ФАЛЕСА (теорема про пропорційні відрізки)

Паралельні прямі, що перетинають сторони кута, відтинають на його сторонах пропорційні відрізки

$$\frac{AB}{BB_1} = \frac{AC}{CC_1}.$$

Наслідок 1.
$$\frac{AB}{AC} = \frac{BB_1}{CC_1}$$
.

Наслідок 2.
$$\frac{AB}{AB_1} = \frac{AC}{AC_1}$$
.

Ознаки подібності трикутників

ПЕРША ОЗНАКА ПОДІБНОСТІ ТРИКУТНИКІВ

Якщо $\angle A = \angle A_1$, $\angle C = \angle C_1$, то $\triangle ABC \sim \triangle A_1B_1C_1$

ДРУГА ОЗНАКА ПОДІБНОСТІ ТРИКУТНИКІВ

Якщо
$$\frac{AB}{A_1B_1}=\frac{AC}{A_1C_1}$$
 і $\angle A=\angle A_1$, то $\triangle ABC \sim \triangle A_1B_1C_1$

ТРЕТЯ ОЗНАКА ПОДІБНОСТІ ТРИКУТНИКІВ

Якщо $\frac{AB}{A_1B_1} = \frac{BC}{B_1C_1} = \frac{AC}{A_1C_1}$, то $\triangle ABC \sim \triangle A_1B_1C_1$

Слайд №3

Теорема Піфагора:

$$a^2 + b^2 = c^2.$$

$$c = \frac{a}{\sin \alpha} \qquad c = \frac{b}{\sin \beta}$$

_	b		
C	 $\cos \alpha$		

$$c = \frac{a}{\cos \beta}$$

A

ДЕЯКІ ЗНАЧЕННЯ ТРИГОНОМЕТРИЧНИХ ФУНКЦІЙ

Функція	Значення						
	0,	30° <u>π</u> 6	45° π 4	60° π 3	90° π 2	180° π	
sin	0	1 2	2	√3 2	1	0	
cos	1	2	√ <u>2</u> 2	1 2	0	-1	
tg	0	<u>1</u> √3	1	√3	-	0	
ctg	-	√3	1	1/3	0	-	
31					P		

Пластикові стенди по найнижчим цінам