```
In[4]:= (* Adam Beck *)
      (* Problem 1*)
      (* hosp-heart.nb data *)
      (* {M,V} M = one year mortality rate,
      percentage of patiuents that died within one year of the
       transplant operation,
      V = average annual number of transplants at that center during the same 4 years *)
      heart = \{\{17.9, 27\}, \{23.1, 4\}, \{40, 3\}, \{6.5, 35\}, \{14.9, 17\}, \{12.5, 4\}, \{15.7, 45\},
          \{9.8, 28\}, \{24, 6\}, \{5.0, 10\}, \{15.4, 13\}, \{4.8, 7\}, \{0, 1\}, \{19.1, 47\}, \{4.5, 6\},
          \{15, 56\}, \{12.5, 4\}, \{33.9, 8\}, \{10.7, 9\}, \{13, 14\}, \{28.3, 12\}, \{57.1, 2\}, \{6.3, 4\},
          \{10, 3\}, \{8.3, 12\}, \{17.5, 10\}, \{20, 3\}, \{29.3, 10\}, \{21.4, 7\}, \{27.3, 8\}, \{13.6, 6\},
          \{21.8, 30\}, \{36.4, 3\}, \{18.2, 11\}, \{33.3, 2\}, \{20, 4\}, \{38.5, 7\}, \{20.8, 18\}, \{12.2, 19\},
          \{22.2, 18\}, \{29, 8\}, \{0, 9\}, \{5.7, 9\}, \{50, 2\}, \{21.7, 15\}, \{66.7, 4\}, \{29.4, 17\},
          \{12.1, 27\}, \{10.7, 14\}, \{6.3, 4\}, \{16.2, 9\}, \{21.1, 5\}, \{17.4, 33\}, \{23.9, 17\},
          \{42.9, 2\}, \{40, 2\}, \{6.7, 15\}, \{44.4, 3\}, \{18.7, 34\}, \{14.7, 24\}, \{7.4, 7\}, \{12.6, 24\},
          \{9.7, 26\}, \{44.4, 2\}, \{16.7, 6\}, \{15.8, 14\}, \{83.3, 2\}, \{10.9, 22\}, \{13.3, 5\},
          \{11.1, 5\}, \{75, 2\}, \{19, 20\}, \{14, 13\}, \{60, 1\}, \{21.2, 8\}, \{9.7, 8\}, \{50, 2\}, \{25, 14\},
          \{18.6, 15\}, \{0.0, 1\}, \{35.3, 9\}, \{23.5, 85\}, \{15.6, 11\}, \{37.5, 2\}, \{14.3, 28\},
          \{14.3, 4\}, \{16.7, 6\}, \{20.0, 15\}, \{13.0, 17\}, \{9.6, 26\}, \{66.7, 3\}, \{30.8, 3\},
          {14.0, 13}, {27.5, 10}, {37.5, 8}, {18.9, 13}, {0.0, 4}, {12.2, 44}, {57.1, 4},
          \{21.4, 35\}, \{23.4, 16\}, \{10.9, 12\}, \{15.6, 8\}, \{16.7, 2\}, \{13.9, 9\}, \{18.2, 11\},
          \{11.5, 26\}, \{18.4, 13\}, \{16.7, 3\}, \{20.4, 14\}, \{40.0, 5\}, \{20.7, 56\}, \{19.6, 13\},
          \{13.5, 9\}, \{29.9, 36\}, \{8.4, 21\}, \{28.4, 24\}, \{7.7, 23\}, \{19.3, 29\}, \{0.0, 1\},
          \{22.2, 20\}, \{30.0, 5\}, \{7.0, 11\}, \{23.8, 7\}, \{18.8, 29\}, \{14.5, 16\}, \{17.0, 16\},
          {20.0, 15}, {6.7, 15}, {11.4, 20}, {100.0, 1}, {31.4, 9}, {17.6, 26}, {19.6, 14}};
 In[5]:= (* Split this M and V data into separate
       lists via Transpose[] in order to parse through *)
      heartTranspose = Transpose[heart];
      MData = heartTranspose[[1]];
      VData = heartTranspose[[2]];
 In[8]:= (* Define mean, median, quantile, and variance functions *)
 ln[0]:= mean[x_] := Sum[x[[i]], \{i, 1, Length[x]\}] / Length[x];
      (* Sum elements, divide by length *)
In[10]:= median[x_] := (s = Sort[x]; s[[IntegerPart[.5 * Length[s]]]]);
      (* Sort list, take element at index 1/2*length *)
ln[ii]= quantile[x_, alpha_] := (s = Sort[x]; s[[IntegerPart[alpha*Length[s]]]])
       (* Sort list, take element at index .alpha*length *)
log(12) = variance[x_] := (m = mean[x]; Sum[(x[[i]] - m)^2, {i, 1, Length[x]}]/Length[x]);
      (* difference of every element from mean, squared, times 1/length *)
In[13]:= (* Find the mean, median, q1 and q3, and variance *)
      hospMeanM = mean[MData]
Out[13]= 21.9045
```

```
In[14]:= hospMeanV = N[mean[VData]]
Out[14]= 13.8657
In[15]:= hospMedianM = median[MData]
Out[15]= 18.2
In[16]:= hospMedianV = median[VData]
Out[16]= 10
In[17]:= hospQ1M = quantile[MData, .25]
Out[17]= 12.2
In[18]:= hospQ1V = quantile[VData, .25]
Out[18]= 4
In[19]:= hospQ2M = quantile[MData, .75]
Out[19]= 25
In[20]:= hospQ2V = quantile[VData, .75]
Out[20]= 17
In[21]:= hospVarianceM = variance[MData]
Out[21]= 268.634
In[22]:= hospVarianceV = N[variance[VData]]
Out[22]= 166.46
In[23]:= (* Histograms using two difference bin sizes *)
      (* I will use a bin size Length/2 for a very large bin,
      and Length/10 for a smaller bin *)
      (* MData large bin *)
      Histogram[MData, IntegerPart[Length[MData] / 2]]
      12
      10
Out[23]=
```

In[24]:= (* MData small bin *) ${\tt Histogram}\big[{\tt MData,\ IntegerPart}\big[{\tt Length}\,[{\tt MData}]\,\big/\,{\tt 10}\big]\big]$

In[25]:= (* VData, large bin *) Histogram[VData, IntegerPart[Length[VData]/2]]

In[26]:= (* VData, small bin *) ${\tt Histogram} \big[{\tt VData, IntegerPart} \big[{\tt Length} \big[{\tt VData} \big] \, \Big/ \, {\tt 10} \big] \big]$


```
log(27):= (* Product plots of quantile functions, moment functions, and CDFs *)
      (* Define functions for moments and CDF *)
      (* Sum elements raised to the kth power, divide by length *)
     moment[x_, k_] := N[Sum[x[[i]]^k, {i, 1, Length[x]}]/Length[x]];
ln[28] = cdf[x_, xi_] := N[Sum[If[x[[i]] <= xi, 1, 0], {i, 1, Length[x]}]];
      (* Count that an element is less than or equal to a given element *)
In[29]:= (* Plot the quantile functions *)
      (* MData *)
     Plot[quantile[MData, i], {i, 0, 1}]
     60
     50
     40
Out[29]=
     30
     20
      10
                 0.2
                                                          1.0
                           0.4
                                      0.6
                                                8.0
In[30]:= (* VData *)
     Plot[quantile[VData, i], {i, 0, 1}]
     50
     40
     30
Out[30]=
     20
      10
                 0.2
                                                          1.0
                           0.4
                                      0.6
                                                8.0
In[31]:= (* Plot moment functions *)
      (* Get the first 10 moments for MData and VData in a Table *)
     momMData = Table[moment[MData, i], {i, 1, 10}];
In[32]:= momVData = Table[moment[VData, i], {i, 1, 10}];
```

```
In[33]:= (* Plot the two moments *)
       ListPlot[\{momMData, momVData\}, \ PlotStyle \rightarrow PointSize[.03], \ PlotRange \rightarrow \{0, 9.9*10^17\}]
       (* Blue is MData, Orange is VData*)
       8 \times 10^{17}
       6 \times 10^{17}
Out[33]=
       4 \times 10^{17}
       2\times10^{17}
In[34]:= (* Plot CDF functions *)
       (* MData *)
       Plot[cdf[MData, i], {i, 0, Max[MData]}]
       120
       100
        80
Out[34]=
        60
        40
        20
                                                                       100
In[35]:= (* VData *)
       Plot[cdf[VData, i], {i, 0, Max[VData]}]
       140
       120
       100
        80
Out[35]=
        60
        40
        20
```

80

40

(* Although the instructions do not say to compare
any box and whisker and QQ plots for this hospital data
against other sets of data, I will product them anyways. QQ
will be MData(x axis) against VDaya (y axis) *)

- (* Box an whisker plots *)
- (* A box and whisker plot takes a min, q1, q2 (median), q3, and max *)

(* Box and whisker, MData and VData, outliers not shown *)
BoxWhiskerChart[{MData, VData}]

In[47]:= (* Box and whisker, MData and VData, outliers shown *)
BoxWhiskerChart[{MData, VData}, "Outliers"]

(* If the two sets come from a population with the same distribution,
the points should fall approximately
along a 45 degree reference line. As we can see,
the 2 batches do not appear to have come from populations with
a common distribution, as they do not fit along a 45 degree line *)