

Agenda

- Presentation of the E39 Bjørnafjorden project
- Bjørnafjorden Open Live Centre (BOLC)
- The structure of the classification system V440
- Why use Linked Data/Semantic Web technology (LD/SW)
- Extremely brief introduction to LD/SW
- How V440 is modelled with LD/SW technology
- The way forward

Selected concept

Key values

- Chosen concept: Floating bridge with anchor cables, fixed at one side.
- Cable-stayed bridge at one side
- Total length: 5,5 km
- Fjord depth: 550 m
- About 110 000 ton steel
- About 35 pontoons
- Main span of the cable-stayed bridge: 450 m
- Bridge tower height: 215
- Free sailing clearance: 50 m
- Estimated cost: 17 billion NOK
- Municipality plan approved 2019
- Assumed start constuction 2024, finished 2028

Cost risks

- Marked (steel)
- Logistics

Data management ambitions

- BIM-model: From CAD-layer based data to level 3
 BIM-model
- Document management system:
 - Integrated with the BIM-model
 - Easy to search and find all relevant documentation
- Seamless data transfer from design and build models (PIM) to asset management models (AIM)
- Dashboard solution: Bjørnafjorden Open Live Centre (BOLC)

E39 Bjørnafjorden – Open Live Centre (BOLC)

Project management tool for the E39 Bjørnafjorden project

E39 Bjørnafjorden – Open Live Centre (BOLC)

Functionality examples for Open Live Centre (BOLC):

- Extract and present data from the BIM-server
- Harvest and publish data from different sources, like:
 - Quantities
 - Collisions and constructability
 - Cost / Compensations
 - Status / Progress
 - Logistics
 - RFID-sensors/ QR-code readings
 - HR-data
 - Environmental data
 - Surveillance camera
 - Visualisation / Animation
 - Etc.

V440 - The Norwegian Road Authority's manual for bridge registration

The main purpose of the manual is to provide guiding for the personnel who do the registration and condition-monitoring of the bridges on the main road network in Norway.

The manual contains registration process descriptions and rules for bridge document management.

In addition the manual provides a comprehensive list of definitions of bridge types and bridge parts, that is bride classification.

V440 - The Norwegian Road Authority's manual for bridge registration

Examples of bridge classification:

Bridge Categories:

Code	<u>Description</u>
1	Road bridge
2	Bridge embedded in the road superstructure
3	Pedestrian bridge
4	Ferry landing
6	Tunnel
7	Supportive structures
8	Railroad bridge
9	Other structures

Bridge Types:

Beam bridges:

Concrete beam bridge

Steel beam bridge

Box bridges:

Multiple box bridge

Bridge Types:

Arc bridges:

Arc bridge with upper carriageway

Truss bridges:

Truss bridge with upper carriageway

Arc bridge with lower carriageway

Truss bridge with lower carriageway

Main Groups of Bridge Element Codes:

<u>Code</u>	<u>Description</u>
В	Ground
C	Substructure
D	Superstructure
Ε	Bridge Deck
F	Structure embedded in filling
Н	Equipment

Detailed Bridge Element Codes:

Why use Linked Data and Semantic Web (LD/SW) for BOLC

Why use LD/SW technology:

- BOLC is an integration project. An integration project needs a common data model to be able to interpret and accumulate data
- LD/SW is an extremely flexible technology for data modelling of different domains and combining these domains
- The LD/SW technology is mature based on a well-developed standardisation work from international bodies like World Wide Web Consortium (W3C) and ISO
- By using LD/SW technology as the back-bone of the integration architecture, we'll facilitate an extremely flexible integration solution.

Why use V440 – Norwegian Bridge classification system:

- For integration projects, it is crucial to have a common understanding of the domains
- V440 provides a fully developed data model/ classification system for the main domain for this integration project
- V440 is relevant for Norwegian conditions
- V440 will be the "centre ontology" for the integration work, like the Core EUROTL on the next slide

Interlink - EUROTL

Linked Data & The Semantic Web – Crash course (5 mins)

http://www.w3.org/standards/semanticweb/

Linked data – starting with the web (linked documents)
Physical machines abstracted away

Linked data - Semantic Web (Web of data)

RDF

Resource Description Framework

RDFS – One level up

Resource Description Framework Schema

SPARQL

SPARQL Protocol and RDF Query Language GeoSparQL

Ontologies

OWL == Web Ontology Language

Technology Stack – Web technology

RDF – Resource Description Framework

Resource Description Framework predicate Subject Object A triple hasWindow WallA Windowl3 A triple

RDFS - RDF Schema

SPARQL – Querying the semantic web

OWL – Ontologies (RDFS++)

- Web Ontology Language
- OWL includes RDFS plus much more:
 - E.g. Class "Mother" is the intersection of classes "Parent" and "Woman"
 - E.g. My class "Wall" is equivalent to the class "IfcWall"
 - E.g. System-A:BridgeA is the same as System-X:BridgeX
 - OWL gives you a much larger vocabulary to play with
 - =>It makes it easy to say anything you might want to say about your data
 - =>OWL allows you to easily express the relationships between different ontologies using a standard annotation framework.
- Semantic reasoning
 - Inferring new triples (knowledge) from existing triples
 - E.g. This individual belongs to "Parent" and "Woman" => Must be a "Mother"

Use cases

- Make structure explicit and readable/understandable by machines/applications
 - RDF, RDFS, OWL
- Referenceable from other standards/formats such as IFC & *GML
 - Through the use of de-referenceable URI:s
- Easily "mappable" to other structures
 - Through "Linking Rule Sets", i.e. ontologies of their own right, specifying schema level relationships
- Available through standard Web API:s
 - http GET, SPARQL endpoint
- For free:
 - Exchange format for both schema and data (XML, Json, Turtle, ...)

Inspiration from ISO 12006-2

Building construction — Organization of information about construction works — Part 2: Framework for classification

- Construction complex
 - aggregate of construction entities serving at least one user activity or function
- Construction entity
 - an independent unit of the *built environment* with a characteristic spatial structure, serving at least one user activity or function
- Construction Entity part
 - constituent of a construction entity
- Construction element
 - constituent of a construction entity with a characteristic technical function, form or position
- Construction process
 - process which uses construction resources to achieve construction results

Use of CEN/TC442 Semantic Modelling and Linking Standard - Including the basicsemantics ontology

CEN/TC 442

Date: 2019-09-27

prEN XXXXX: XXXX

Secretariat: XXX

Building Information Modelling (BIM) —

Semantic Modelling and Linking Standard (SMLS) —

for data integration (delivery & sharing) in the built environment

ICS:

Basic concepts used in RDF, RDFS and OWL

- URI:s identify each concept
- Define the concepts using owl:Class
- Define relationships between classes using
 - rdfs:subClassOf (for the taxonomy)
 - basicsemantics:hasPart (for the meronomy with restrictions)
 - And other owl:ObjectProperty if needed
- Define the properties using owl:DatatypeProperty
- Connect properties and classes with restrictions (cardinality, type)
 - rdfs:domain, rdfs:range and/or owl:Restriction
- Define Annotation using owl:AnnotationProperty
 - E.g. capture the "Codes" used in V440

A challenge

- The handbook defines a hierarchical structure of classes/codes, but
 - It is not always strict with regards to the nature of the hierarchy
 - E.g. taxonomies vs meronomies
- rdfs/owl needs to support reasoning and to be "semantically strict"
 - A class is a set
 - rdfs:subClassOf specifies a subset (used for taxonomies)
- Example: Pillar
 - In V440 there is no clear difference beteen
 - The relationship between BuildingElement vs Pillar (is-a)
 - And the relationship between Pillar and Foundation (has-a)

The process

Verification Validation

Generate V440 ontology using SPARQL/SPIN

Convert excel to rdf (generic spreadsheet structure)

TopBraid Composer™

CONSTRUCT {

?uri a owl:Class . ?uri rdfs:subClassOf ?baseUri . ?uri rdfs:label ?labelNo . ?uri v440-owl:kode ?code . ?uri v440-owl:kapitel ?kapitel . ?uri v440-owl:avsnitt ?avsnitt .

WHERE {

spread:Klasser ss:cell ?cell1 . ?cell1 ss:row ?row . ?cell1 ss:column 1 . ?cell1 ss:cellContents ?kapitel .

Properties Ontology Enumeration (21) AdministrativeKoder_V2 (3) Statisk_system_V6_2 (9) **Construction entity** Status_V5_2 (2) Typekoder_V8 (7) v440:Byggverk Diverse_typekoder_V8_8 v440:Annet Grunn_og_underbygning_V8_1 (5) v440:Bru_i_fylling Konstruksjoner_i_fylling_V8_3 v440:Ferjeleie Konstruksjonsmaterialer_V8_6 v440:G S Bru Overbyggning_og_brudekke_V8_2 (2) v440:Jernbanebru Overflatebehandling_V8_7 v440:Stottekonstruksjon Spesielt_kaiutstyr_V8_5 Utstyr_V8_4 v440:Tunnel_vegoverbygg v440:Vegbru composition v440:Byggverkselement v440:Byggverksdel v440:AnnetElement v440:Andre_byggverk v440:Brudekke Slitelag v440:Bjelkebru_BH1 v440:Grunnen v440:Buebru_og_hvelvbru v440:Konstruksjoner_i_fylling v440:Fagverksbru_sprengverksbru_og_hengverksbru v440:Overbygning v440:Hengebru_skrastagbru_flytebru_og_nedtrykket_rorbru v440:Spesielle_installasjoner composition v440:Kai_bevegelig_bru_og_andre_brutyper v440:Spesielt_kaiutstyr v440:Kassebru v440:Stottekonstruksjon v440:Kulvert_bjelkeramme_ror_og_hvelv_i_fylling v440:Underbygning v440:Utstyr v440:Platebru_bjelkeplatebru_og_ribbeplatebru

Construction entity part

Construction element

Example dataset

```
dataset_test:Vegbru_1_

    dataset test:Brudekke E 1

   rdf:type v440_1:Brudekke_E;
                                               rdf:type
                                               v440_1:Vegbru_1
 dataset_test:Peler_B2_1
   rdf:type v440 1:Peler B2;
 dataset test:Platebru massiv 21 1
   rdf:type v440 1:Platebru massiv 21;
   v440_1:harElement dataset_test:Brudekke_E_1;
   v440 1:harElement dataset test:Peler B2 1;
   v440 1:harStatisktSystem v440 1:Statisk system Kontinuerlig;
 dataset test:Vegbru 1 1
   rdf:type v440_1:Vegbru_1;
   v440_1:harDel dataset_test:Platebru_massiv_21_1;
```


dataset_test:Peler_B2_1

dataset_test:Platebru_massiv_21_1

rdf:type

v440_1:Platebru_massiv_21

v440_1:harStatisktS

dataset_test:Brudekke_E_

v440_1:Statisk_system_Kontinuerlig

The way forward

- An ontology (OTL) for V440 will be finished and published before March 2020
- Further work on Linked Data Sets (LDS) to other relevant OTLs (IFC e.g.) will probably start in the spring 2020
- The public tender for implementation of BOLC will be issued in Q1 2020
- Software vendors will be invited to an "interoperate" from mid-April to the end of June 2020
 - The purpose is to prototype the integration of LD/SW technology and the V440 OTL in relevant software products
 - Will be arranged as facilitated workshops with independent work sessions in between
- Information about this project, the LD/SW technology and the developed ontologies will be given to the industry in breakfast meetings, newsletters, seminars etc. It is important to get the industry engaged.

