${ \begin{array}{c} {\rm NUEN~647} \\ {\rm Uncertainty~Quantification~for~Nuclear~Engineering} \\ {\rm Homework~2} \end{array} }$

Due on Wednesday, October 19, 2016

Dr. McClarren

Paul Mendoza

Paul Mendoza	NUEN 647 UQ for Nuclear Engineering (Dr. McClarren)	Homework 2
Contents		
Problem 1		3
Problem 2		4
Problem 3		8
Problem 4		10
Problem 5		13

Consider a covariance function between points in 2-D space:

$$k(x_1, y_1, x_2, y_2) = exp[-|x_1 - x_2| - |y_1 - y_2|]$$

Generate 4 realizations of a Gaussian random process with zero mean, $\mu(x,y)=0$, and this covariance function defined on the unit square, $x,y\in[0,1]$. For the realizations, evaluate the process at 50 equally space points in each direction. Plot the realizations.

Assume you have 100 samples of a pair of random variables (X_1, X_2) that have a positive correlation, call this set of pairs, $\mathbf{A_1}$. You then draw another 100 samples and call this set $\mathbf{A_2}$. The Pearson correlation between (X_1, X_2) in $\mathbf{A_1}$ is positive and he Pearson correlation between (X_1, X_2) in $\mathbf{A_2}$ is negative. What can you say about the Pearson correlation for all 200 samples?

A normalized measure of the relation between two random variables, is the Pearson correlation coefficient, ρ . Oftentimes, this is simply called the correlation coefficient or correlation.

$$\rho(X_1, X_2) = \frac{E[X_1 X_2] - E[X_1]E[X_2]}{\sigma_{X_1} \sigma_{X_2}}$$

The expectation value for a series of realizations is defined:

$$E[g(x)] \approx \frac{1}{N} \sum_{i=1}^{N} g(x_i)$$

For the first 100 values:

$$\rho_1 = \frac{\frac{1}{100} \sum_{i=1}^{100} X_{1,i} X_{2,i} - \frac{1}{10000} \sum_{i=1}^{100} X_{1,i} \sum_{i=1}^{100} X_{2,i}}{\sigma_{X1,A1} \sigma_{X2,A1}}$$

$$100\sigma_{X1,A1} \sigma_{X2,A1} \rho_1 = \sum_{i=1}^{100} X_{1,i} X_{2,i} - \frac{1}{100} \sum_{i=1}^{100} X_{1,i} \sum_{i=1}^{100} X_{2,i}$$

$$100\sigma_{X1,A1} \sigma_{X2,A1} \rho_1 + \frac{1}{100} \sum_{i=1}^{100} X_{1,i} \sum_{i=1}^{100} X_{2,i} = \sum_{i=1}^{100} X_{1,i} X_{2,i}$$

Similarly for the second 100 values:

$$\sum_{i=101}^{200} X_{1,i} X_{2,i} = 100 \sigma_{X1,A2} \sigma_{X2,A2} \rho_2 + \frac{1}{100} \sum_{i=101}^{200} X_{1,i} \sum_{i=101}^{200} X_{2,i}$$

The Pearson coefficient for all 200 values:

$$\rho_{3} = \frac{\frac{1}{200} \sum_{i=1}^{200} X_{1,i} X_{2,i} - \frac{1}{40000} \sum_{i=1}^{200} X_{1,i} \sum_{i=1}^{200} X_{2,i}}{\sigma_{X1,A3} \sigma_{X2,A3}}$$

$$200 \sigma_{X1,A3} \sigma_{X2,A3} \rho_{3} = \sum_{i=1}^{200} X_{1,i} X_{2,i} - \frac{1}{200} \sum_{i=1}^{200} X_{1,i} \sum_{i=1}^{200} X_{2,i}$$

$$200 \sigma_{X1,A3} \sigma_{X2,A3} \rho_{3} + \frac{1}{200} \sum_{i=1}^{200} X_{1,i} \sum_{i=1}^{200} X_{2,i} = \sum_{i=1}^{200} X_{1,i} X_{2,i}$$

If we plug in the Pearson for the first 100 and second 100 for the right side of the equation,

$$200\sigma_{X1,A3}\sigma_{X2,A3}\rho_{3} + \frac{1}{200}\sum_{i=1}^{200}X_{1,i}\sum_{i=1}^{200}X_{2,i}$$

$$=$$

$$100(\sigma_{X1A1}\sigma_{X2A1}\rho_{1} + \sigma_{X1A2}\sigma_{X2A2}\rho_{2}) + \frac{1}{100}\left(\sum_{i=1}^{100}x_{1,i}\sum_{i=1}^{100}x_{2,i} + \sum_{i=101}^{200}x_{1,i}\sum_{i=101}^{200}x_{2,i}\right)$$

Grouping and setting:

$$\sum_{i=1}^{100} x_{1,i} = X_{1,1}$$

$$\sum_{i=1}^{100} x_{2,i} = X_{2,1}$$

$$\sum_{i=101}^{200} x_{1,i} = X_{1,2}$$

$$\sum_{i=101}^{200} x_{2,i} = X_{2,2}$$

$$\sum_{i=1}^{200} x_{1,i} = X_{1,3}$$

$$\sum_{i=1}^{200} x_{2,i} = X_{2,3}$$

 $200\sigma_{X1,A3}\sigma_{X2,A3}\rho_3 - 100(\sigma_{X1A1}\sigma_{X2A1}\rho_1 + \sigma_{X1A2}\sigma_{X2A2}\rho_2) = \frac{1}{100}(X_{1,1}X_{2,1} + X_{1,2}X_{2,2}) - \frac{1}{200}X_{1,3}X_{2,3}$

Setting:

$$\sigma_{X1A1} = \frac{1}{100} \sum_{i=1}^{100} (x_{1,i}^2 - \mu_{X_{11}}^2) = \frac{1}{100} \sigma'_{X1A1}$$

$$\sigma_{X2A1} = \frac{1}{100} \sum_{i=1}^{100} (x_{2,i}^2 - \mu_{X_{21}}^2) = \frac{1}{100} \sigma'_{X2A1}$$

$$\sigma_{X1A2} = \frac{1}{100} \sum_{i=101}^{200} (x_{1,i}^2 - \mu_{X_{12}}^2) = \frac{1}{100} \sigma'_{X1A2}$$

$$\sigma_{X2A2} = \frac{1}{100} \sum_{i=101}^{200} (x_{2,i}^2 - \mu_{X_{22}}^2) = \frac{1}{100} \sigma'_{X2A2}$$

$$\sigma_{X1A3} = \frac{1}{200} \sum_{i=1}^{200} (x_{1,i}^2 - \mu_{X_{13}}^2) = \frac{1}{200} \sigma'_{X1A3}$$

$$\sigma_{X2A3} = \frac{1}{200} \sum_{i=1}^{200} (x_{2,i}^2 - \mu_{X_{22}}^2) = \frac{1}{200} \sigma'_{X2A3}$$

Where A3 and ρ_3 are for the series added to 200. Plugging these in, and multiplying both sides of the equation by 200.

$$\sigma'_{X1,A3}\sigma'_{X2,A3}\rho_3 - 2(\sigma'_{X1A1}\sigma'_{X2A1}\rho_1 + \sigma'_{X1A2}\sigma'_{X2A2}\rho_2) = 2(X_{1,1}X_{2,1} + X_{1,2}X_{2,2}) - X_{1,3}X_{2,3}$$

Note: $X_{1,3} = X_{1,1} + X_{2,1}$ and $X_{2,3} = X_{2,1} + X_{2,2}$ and that the right side of the equation simplifies to: $(X_{1,1} - X_{1,2})(X_{2,1} - X_{2,2})$. Then ρ_3 is:

$$\rho_3 = \frac{(X_{1,1} - X_{1,2})(X_{2,1} - X_{2,2}) + 2(\sigma'_{X1A1}\sigma'_{X2A1}\rho_1 + \sigma'_{X1A2}\sigma'_{X2A2}\rho_2)}{\sigma'_{X1,A3}\sigma'_{X2,A3}}$$

Assuming that:

$$\frac{(X_{1,1} - X_{1,2})(X_{2,1} - X_{2,2})}{\sigma'_{X_{1},A_{3}}\sigma'_{X_{2},A_{3}}} \approx 0$$

and

$$\sigma'_{X1,A3}\sigma'_{X2,A3} \approx 4\sigma'_{X1A1}\sigma'_{X2A1}$$
$$or \approx 4\sigma'_{X1A2}\sigma'_{X2A2}$$

The above would simplify to:

$$\rho_3 \approx \frac{\rho_1 + \rho_2}{2}$$

Meaning, ρ_3 will usually be inside the interval $\rho_2 < \rho_3 < \rho_1$, I was curious, and wrote a script, to check to see if it would ever be outside. There could be an error with my script, but I found with the below script that a small percentage (less than 1% of the time around 0.2-0.4%), it would be outside the above interval. I also made a histogram plot...because I like wasting time.

Listing 1: Script for Problem

```
#!/usr/bin/env python3
              ####### Import packages #############################
  import numpy as np
  import time
  start_time = time.time()
  import Functions as Fun
                ###### Calculations
15
  Error=[];Ntimes=1000;Nsamples=100;CountOut=0
  for i in range(0,Ntimes):
      Positive=True
20
      Negative=True
      while (Positive or Negative):
         X1=np.random.uniform(-1,1,Nsamples)
         X2=np.random.uniform(-1,1,Nsamples)
         rho=Fun.CalculateRho(X1,X2)
         if rho>0:
             rho1=rho; X11=X1; X21=X2;
             Positive=False
         if rho<0:</pre>
             rho2=rho; X12=X1; X22=X2;
```


Figure 1: Histogram plot showing error ρ_g is the approximated guess at ρ_3 and ρ_a is the actual calculated ρ_3 .

For the following data, compute by hand or via code you write the Pearson and Spearman correlations and Kendall's tau.

X_1	X_2
55.01	82.94
54.87	55.02
57.17	85.18
36.01	-84.27
35.88	-106.30
36.33	-119.65
43.49	-112.03
41.44	-71.69
54.43	-3.50
36.47	140.57

Pearson Correlation

$$\rho(X,Y) = \frac{E[XY] - E[X]E[Y]}{\sigma_X \sigma_Y}$$

Where:

$$E[g(x)] = \int_{-\infty}^{\infty} dx \ g(x)f(x) \approx \frac{1}{N} \sum_{i=1}^{N} g(x_i)$$

and

$$\sigma_X = Var(x) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx \approx \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 \approx \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2 \equiv s^2$$

and

$$\mu_X \approx \frac{1}{N} \sum_{i=1}^{N} x_i \equiv \bar{x}$$

Spearman Rank Correlation

$$\rho_S(X,Y) = \frac{\sum_{i=1}^{N} (rank(x_i) - \bar{r}_X)(rank(y_i) - \bar{r}_Y)}{\sqrt{\sum_{i=1}^{N} (rank(x_i) - \bar{r}_X)^2}} \sqrt{\sum_{i=1}^{N} (rank(y_i) - \bar{r}_Y)^2}$$

Where:

 $rank(x_i)$ = Rank of x_i in sample population

and

$$\bar{r}_X = \frac{1}{N} \sum_{i=1}^{N} rank(x_i)$$

Kendall's Tau

$$\tau = \frac{\left(\# \text{ of concordant pairs}\right) \text{ - } \left(\# \text{ of discordant pairs}\right)}{\frac{1}{2}N(N-1)}$$

```
Where concordance is x_i > x_j and y_i > y_j or if x_i < x_j and y_i < y_j for all pairs of samples (\frac{1}{2}N(N-1)) of them) and discordance is x_i > x_j and y_i < y_j or if x_i < x_j and y_i > y_j
```

Listing 2: Script for Problem

```
#!/usr/bin/env python3
#################### Import packages #############################
import numpy as np
import time
start_time = time.time()
import Functions as Fun
X1=np.array([55.01,54.87,57.17,36.01,35.88,36.33,
          43.49,41.44,54.43,36.47])
X2=np.array([82.94,55.02,85.18,-84.27,-106.30,-119.65,
          -112.03, -71.69, -3.50, 140.57
rho, rhoNM1=Fun.CalculatePearson(X1, X2)
#Getting rank of each element, starting with 1
X1R=Fun.Rank(X1)
X2R=Fun.Rank(X2)
rhoS=Fun.CalculateSpearman(X1, X2, X1R, X2R)
tau=Fun.CalculateTau(X1,X2)
print("Pearson Var Div by N: "+str(round(rho, 4)))
print("Pearson Var Div by N-1: "+str(round(rhoNM1, 4)))
print ("Spearman: "+str(round(rhoS, 4)))
print("Kendall: "+str(round(tau, 4)))
##################### Time To execute #################
print("--- %s seconds ---" % (time.time() - start_time))
```

Code output:

Pearson Var Div by N: 0.5429

Pearson Var Div by N-1: 0.4886

Spearman: 0.5879Kendall: 0.5111

Demonstrate the tail dependence of a bivariate normal random variable is 0.

The bivariate Gaussian copula is defined as:

$$C_N(u,v) = \Phi_o(\Phi^{-1}(u),\Phi^{-1}(v))$$

Where:

$$\Phi^{-1}(q) = \mu + \sigma \sqrt{2} er f^{-1}(2q - 1)$$

Evaluated at q = 0 and q = 1:

$$\Phi^{-1}(0) = -\infty \qquad \Phi^{-1}(1) = \infty$$

Also where:

$$\Phi_{\rho}(x,y) = \int_{-\infty}^{x} dx' \int_{-\infty}^{y} dy' \frac{1}{2\pi\sigma_{x}\sigma_{y}\sqrt{1-\rho^{2}}} exp\left[-\frac{z}{2(1-\rho^{2})}\right]$$

with

$$z = \frac{(x' - \mu_x)^2}{\sigma_x^2} - \frac{2\rho(x' - \mu_x)(y' - \mu_y)}{\sigma_x \sigma_y} + \frac{(y' - \mu_y)^2}{\sigma_y^2}$$

and

$$\rho = \frac{E[XY] - E[X]E[Y]}{\sigma_x \sigma_y}$$

Note:

$$\Phi_{\rho}(-\infty, -\infty) = \int_{-\infty}^{-\infty} dx' \int_{-\infty}^{-\infty} dy' \frac{1}{2\pi\sigma_{\sigma}\sigma_{\sigma}\sqrt{1-\rho^2}} exp\left[-\frac{z}{2(1-\rho^2)}\right] = 0$$

Because integrating over zero domain is 0.

$$\Phi_{\rho}(\infty,\infty) = \int_{-\infty}^{\infty} dx' \int_{-\infty}^{\infty} dy' \frac{1}{2\pi\sigma_x \sigma_y \sqrt{1-\rho^2}} exp\left[-\frac{z}{2(1-\rho^2)}\right] = 1$$

Because integrating over the entire domain of a PDF is 1.

Lower Tail Dependance:

$$\lambda_l = \lim_{q \to 0} \frac{C(q, q)}{q}$$
$$= \lim_{q \to 0} \frac{\Phi_{\rho}(\Phi^{-1}(q), \Phi^{-1}(q))}{q}$$

Applying L'Hôspital (Pronouced Hospital - like the place you go when you get sick - not really).

$$\lambda_l = \lim_{q \to 0} \frac{\frac{d}{dq} \Phi_{\rho}(\Phi^{-1}(q), \Phi^{-1}(q))}{1}$$
$$= \lim_{q \to 0} \frac{d}{dq} \Phi_{\rho}(\Phi^{-1}(q), \Phi^{-1}(q))$$

Evaluating at q = 0

$$\lambda_l = \frac{d}{dq} \Phi_{\rho}(\Phi^{-1}(0), \Phi^{-1}(0))$$

$$= \frac{d}{dq} \Phi_{\rho}(-\infty, -\infty)$$

$$= \frac{d}{dq} 0$$

$$= 0$$

The problem with this is, I do not think I can just plug in q = 0 inside the whole mess, but rather like this:

$$\lambda_l = \left| \frac{d}{dq} \Phi_{\rho}(\Phi^{-1}(q), \Phi^{-1}(q)) \right|_{q=0}$$

Here, I would want to say that the integral cancels with $\frac{d}{dq}$ (not sure if thats correct - because there are two integrals), to get

$$\lambda_{l} = |\phi(\Phi^{-1}(q), \Phi^{-1}(q))|_{q=0}$$

$$= \phi(\Phi^{-1}(0), \Phi^{-1}(0))$$

$$= \phi(-\infty, -\infty)$$

$$= 0$$

Where ϕ is the PDF of a bivariate normal (Φ without the integrals). Noting $\phi(-\infty, -\infty)$ ends up with a $e^{-\infty}$ term.

but if we apply the limit before L'Hôspital, then we get:

$$\lambda_{l} = \lim_{q \to 0} \frac{C(q, q)}{q}$$

$$= \lim_{q \to 0} \frac{\Phi_{\rho}(\Phi^{-1}(q), \Phi^{-1}(q))}{q}$$

$$= \frac{\Phi_{\rho}(\Phi^{-1}(0), \Phi^{-1}(0))}{0}$$

$$= \frac{\Phi_{\rho}(-\infty, -\infty)}{0}$$

$$= \frac{0}{0}$$

I am not sure if thats healthy.

Upper Tail Dependance:

$$\lambda_u = \lim_{q \to 1} \frac{1 - 2q + C(q, q)}{1 - q}$$

$$= \lim_{q \to 1} \frac{1 - 2q + \Phi_\rho(\Phi^{-1}(q), \Phi^{-1}(q))}{1 - q}$$

Applying the limit:

$$\lambda_u = \frac{1 - 2 + \Phi_{\rho}(\Phi^{-1}(1), \Phi^{-1}(1))}{0}$$

$$= \frac{1 - 2 + \Phi_{\rho}(\infty, \infty)}{0}$$

$$= \frac{1 - 2 + 1}{0}$$

$$= \frac{0}{0}$$

Again, I do not think this is healthy, but I don't know what else to do. Could look at similar things as above, but I think they wouldn't even give 0...I could try and evaluate the intervals and then differentiate but that sounds like a mess.

Another Archimedean copula is the Joe copula with generator

$$\varphi_J(t) = -log(1 - (1 - t)^{\theta}),$$

and

$$\varphi_I^{-1} = 1 - (1 - exp(-t))^{1/\theta}.$$

(a) Compute the bivariate copula for this generator The Archimedean copula for φ is

$$C_{\varphi}(u,v) = \hat{\varphi}^{-1}(\varphi(u) + \varphi(v))$$

(b) Derive the upper and lower tail dependence for this copula

$$\lambda_l = \lim_{q \to 0} \frac{C(q, q)}{q}$$

$$\lambda_u = \lim_{q \to 1} \frac{1 - 2q + C(q, q)}{1 - q}$$

(c) Compute the value of Kendall's tau for this copula

$$\tau(U, V) = 1 + 4 \int_0^1 \frac{\varphi(t)}{\varphi'(t)} dt$$

(d) Generate 1000 samples from the copula with standard normal margins and a value of Kendall's tau of 0.6.

(a) $C_{\varphi}(u,v) = \hat{\varphi}^{-1}(\varphi(u) + \varphi(v))$

(b)

$$\lambda_l = \lim_{q \to 0} \frac{C(q, q)}{q}$$

$$\lambda_u = \lim_{q \to 1} \frac{1 - 2q + C(q, q)}{1 - q}$$

(c)

$$\tau(U, V) = 1 + 4 \int_0^1 \frac{\varphi(t)}{\varphi'(t)} dt$$

(d)