合肥工业大学试卷参考答案(A)

		/ • •		•		(14)	
2021~2022 学年第_二_学期	课程代码034Y01	课程名称	数学(下)		命题教师	集体	系
教学班级	学生姓名	学号		考试日期_	2022 年 6 月	18 日 8:00-	-10:00
一、填空题(每小题 3 分, 共 18 分)		3. (8 分)【解】					

- 一、填空题(每小题 3 分, 共 18 分*)* 请将你的答案对应填在横线上:
- 1. _______, 2. _2 $x \cos(x^2+1) dx$, 3. _______1/2 _____,
- 请将你所选择的字母 A, B, C, D 之一对应填在下列表格里:

<u> </u>									
题号	1	2	3	4	5	6			
答案	A	D	В	A	С	D			

- 三、解答题(每小题 8 分, 共 64 分)
- 1. (8分)【解】

$$\lim_{x \to -1} \frac{x^2 - 1}{x^2 + 3x + 2} = \lim_{x \to -1} \frac{(x - 1)(x + 1)}{(x + 2)(x + 1)} \qquad (3 \ \%)$$

$$= \lim_{x \to -1} \frac{x - 1}{x + 2} \qquad (3 \ \%)$$

$$= \frac{-2}{1} = -2. \qquad (2 \ \%)$$

2. (8分)【解】

$$\lim_{x \to 0} \frac{e^x - 1 - x}{\arcsin x^2} = \lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$$
 (3 分)
$$\frac{\frac{\cancel{A} \cancel{\triangle} \cancel{\triangle}}{\cancel{\triangle}}}{= \lim_{x \to 0} \frac{e^x - 1}{2x}}$$
 (2 分)

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} ... (2 \%)$$

$$= \frac{3t^2 + 1}{2t + 1}, ... (2 \%)$$

$$\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt} ... (2 \%)$$

$$= \frac{6t(2t + 1) - (3t^2 + 1)2}{(2t + 1)^3} = \frac{6t^2 + 6t - 2}{(2t + 1)^3} ... (2 \%)$$

系主任审批

4. (8分)【解】

由于 f(x) 在 x=0 处连续, 因此

$$f(0) = f(0^{+}) \qquad \dots \qquad (1 \ \%)$$

$$= b = \lim_{x \to 0^{-}} x \arctan \frac{1}{x} = 0 \times \left(-\frac{\pi}{2}\right) = 0. \qquad \dots \qquad (1 \ \%)$$

由于 f(x) 在 x=0 处可导, 因此

$$f'_{-}(0) = f'_{+}(0), \qquad \dots \qquad (1 \ \%)$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{x \arctan \frac{1}{x}}{x} = \lim_{x \to 0^{-}} \arctan \frac{1}{x} = -\frac{\pi}{2}$$
(1 分)

$$f'_{+}(0) = (2x+a)|_{x=0} = a, \qquad \dots$$
 (1 \mathcal{H})

因此
$$a = -\frac{\pi}{2}$$
. 由于

$$\lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \left(x - \frac{\pi}{2} \right) = +\infty, \qquad \dots$$

$$\lim_{x \to -\infty} \frac{y}{x} = \lim_{x \to -\infty} \arctan \frac{1}{x} = 0,$$

$$\lim_{x \to -\infty} y = \lim_{x \to -\infty} x \arctan \frac{1}{x} = \lim_{t \to 0^{-}} \frac{\arctan t}{t} = 1,$$

大 学 试 卷 参 考 案 (\mathbf{A})

数学(下) 2021~2022 学年第 二 学期 课程代码 034Y01 课程名称 命题教师 集体 学生姓名 学号 教学班级 考试日期 2022 年 6 月 18 日 8:00-10:00 7. (8分)【证明】 5. (8分)【解】 由 $f'(x) = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \quad \cdots \quad (2 \text{ }\%)$ 由于 $f(-2) = -10, \quad f(2) = 2, \quad f\left(-\frac{1}{3}\right) = \frac{5}{27}, \quad f(1) = -1, \quad \cdots \quad (2 \ \%)$ 因此最大值为 2. 最小值为 -10.(2 分) 8. (8分)【解】 6. (8分)【证明】 (1)

$$f'(x) = \frac{1}{\cos^2 x} - 1 = \tan^2 x \ge 0.$$
(2 $\%$)

$$f(x_2) \geqslant f(x_1), \quad \tan x_2 - \tan x_1 \geqslant x_2 - x_1. \quad \cdots \quad (2 \ \%)$$

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi), \qquad (2 \ \%)$$

即

$$\frac{\tan x_2 - \tan x_1}{x_2 - x_1} = \frac{1}{\cos^2 \xi} \geqslant 1. \quad \dots \quad (2 \ \%)$$

设
$$F(x) = x^{2022} f(x)$$
, (2 分)则 $F(x)$ 在 $[0,1]$ 上连续, $(0,1)$ 内可导, (1 分)且 $F(0) = 0$, $F(1) = f(1) = 0$. (1 分)由罗尔中值定理,存在 $\xi \in (0,1)$ 使得 $F'(\xi) = 0$. (2 分)由于 $F'(x) = x^{2022} f'(x) + 2022 x^{2021} f(x)$ 且 $\xi \neq 0$, (1 分)所以 $\xi f'(\xi) + 2022 f(\xi) = 1$. (1 分)8. (8 分)【解】

(1)
$$f'(x) = \frac{1}{x} - \frac{4}{x^3} = \frac{x^2 - 4}{x^3} = \frac{(x+2)(x-2)}{x^3}$$
. (1 分)当 $0 < x < 2$ 时, $f'(x) < 0$. 当 $x > 2$ 时, $f'(x) > 0$. (1 分)所以 $f(x)$ 只有唯一的极小值 $f(2) = \ln 2 + \frac{1}{2}$. (1 分)第 $f''(x) = -\frac{1}{x^2} + \frac{12}{x^4} = -\frac{x^2 - 12}{x^4} = -\frac{(x-2\sqrt{3})(x+2\sqrt{3})}{x^4}$. (1 分)第 $f''(x) = -\frac{1}{x^2} + \frac{12}{x^4} = -\frac{x^2 - 12}{x^4} = -\frac{(x-2\sqrt{3})(x+2\sqrt{3})}{x^4}$. (1 分)第 $f''(x) = -\frac{1}{x^2} + \frac{12}{x^4} = -\frac{x^2 - 12}{x^4} = -\frac{(x-2\sqrt{3})(x+2\sqrt{3})}{x^4}$. (1 分)第 $f''(x) = -\frac{1}{x^2} + \frac{12}{x^4} = -\frac{x^2 - 12}{x^4} = -\frac{(x-2\sqrt{3})(x+2\sqrt{3})}{x^4}$. (1 分)第 $f''(x) = -\frac{1}{x^2} + \frac{12}{x^4} = -\frac{x^2 - 12}{x^4} = -\frac{(x-2\sqrt{3})(x+2\sqrt{3})}{x^4}$. (1 分)第 $f''(x) = -\frac{1}{x^2} + \frac{12}{x^4} = -\frac{x^2 - 12}{x^4} = -\frac{(x-2\sqrt{3})(x+2\sqrt{3})}{x^4}$. (1 分)第 $f''(x) = -\frac{1}{x^2} + \frac{12}{x^4} = -\frac{x^2 - 12}{x^4} = -\frac{(x-2\sqrt{3})(x+2\sqrt{3})}{x^4}$. (1 分)第 $f''(x) = -\frac{1}{x^2} + \frac{12}{x^4} = -\frac{x^2 - 12}{x^4} = -\frac{(x-2\sqrt{3})(x+2\sqrt{3})}{x^4}$. (1 分)第 $f''(x) = -\frac{1}{x^2} + \frac{12}{x^4} = -\frac{x^2 - 12}{x^4} = -\frac{(x-2\sqrt{3})(x+2\sqrt{3})}{x^4}$. (1 分)第 $f''(x) = 0$,是曲线 $f'(x)$ 的凹区间,[2√3, +∞]是曲线 $f'(x)$ 的凸区间,[2√3, +∞]是曲线 $f'(x)$ 的凸区间,[2√3, +∞]是曲线 $f'(x)$ 的凸区间,[2√3, +∞]

系主任审批

成绩