Session 1: Introduction

Convective Overshooting in Stars

Lecturer: Poojan Agrawal (KU Leuven)

TAs:

Niall Miller (University of Wyoming)

Daniel Pauli (KU Leuven)

Mathijs Vanrespaille (KU Leuven)

Sunny Wong (University of California Santa Barbara)

Convection in everyday life

Modelling Convection

- Mode of transport of energy, matter and angular momentum
- Turbulent and dynamic process –
 best modelled in three-dimensions
- A simple approximation Mixing length theory – (MLT, Böhm-Vitense, 1958)
- Used in Cox & Giuli 1968, Henyey et al. 1965, amongst many others.

Convection - Density formulation

ρ ρ surrounding1

Heats up and expands

Convection - Temperature formulation

- Temperature gradient, $\nabla = \frac{d \ln T}{d \ln P}$
- Radiative temperature gradient, $\nabla_{rad} \text{energy carried by radiative transfer}$
- Adiabatic temperature gradient, $\nabla_{ad} \text{energy carried by a parcel of } \\ \text{gas without exchanging heat with} \\ \text{its surroundings.}$

Convective boundaries

Convection happens when:

 $\nabla_{rad} > \nabla_{ad}$ (Schwarzschild criteria-named after Karl Schwarzschild)

• Pressure Scale Height,

$$H_P = -\frac{d r}{d \ln P}$$

• Mixing Length, $l = \alpha_{MLT} \times H_P$

Convective Overshooting

Extending mixing with convective overshoot

Note: Overshoot only aids chemical mixing but no heat transport.

Overshoot Schemes

For more overshooting schemes see e.g., Pols et al. (1998), Bressan et al. (1981)

Overshooting: f and f0

Step overshoot:

$$D_{ov} = D_{conv}$$

Exponential overshoot:

$$D_{ov} = D_{conv} \exp \left\{ \frac{-2z}{f \times H_{P,z}} \right\}$$

Overshooting: f and f0

Step overshoot:

$$D_{ov} = D_{conv}$$

Exponential overshoot:

$$D_{ov} = \mathbf{D_{conv}} \exp \left\{ \frac{-2z}{\mathsf{f} \times H_{P,z}} \right\}$$

Overshooting: f and f0

Step overshoot:

$$D_{ov} = D_{conv,f0}$$

Exponential overshoot:

$$D_{ov} = D_{conv,f0} exp \left\{ \frac{-2z}{f \times H_{P,z}} \right\}$$

f0 determines where overshooting begins f determines how far overshooting extends

Varying f0

Overshooting Zones

Overshoot Zone Location

Overshoot Boundary Location

Overshoot Zone Type

 m/M_{\odot}

Overview of today's labs

MaxiLab 1

Modeling core overshooting in main-sequence stars

MiniLab 2

Overshooting during core helium burning (CHeB) phase

Work directory in MESA

Source Code

Input Files

src make

inlist mk

inlist_pgstar clean

inlist_project rn

README.rst re

Executables for compiling and running MESA

Documentation

Source Folder `src`

Executables for compiling and running MESA

make	Folder containing makefile with instructions for compiling MESA
mk	Compiles the files in 'src' folder, links them against MESA, and produces the 'star' executable file.
rn	Runs MESA
re	Resume MESA run starting from a pre-saved photo
clean	Removes the compiled files (e.g., for a fresh compile)

Input Files

inlist

Default input file for MESA

```
&star_job
                                                           &eos
  read_extra_star_job_inlist(1) = .true.
                                                             read_extra_eos_inlist(1) = .true.
  extra_star_job_inlist_name(1) = 'inlist_project'
                                                             extra_eos_inlist_name(1) = 'inlist_project'
/!end of star_job namelist
                                                           /! end of eos namelist
                                                                                                                  inlist_project
&controls
                                                           &kap
 read_extra_controls_inlist(1) = .true.
                                                             read_extra_kap_inlist(1) = .true.
  extra_controls_inlist_name(1) = 'inlist_project'
                                                             extra_kap_inlist_name(1) = 'inlist_project'
 ! end of controls namelist
                                                            '! end of kap namelist
&pgstar
  read_extra_pgstar_inlist(1) = .true.
                                                               inlist_pgstar
  extra_pgstar_inlist_name(1) = 'inlist_pgstar'
/! end of pgstar namelist
```

Lab 1 Session 1

Setting up inlists and 5M_☉ model with overshooting

- Setting up your MESA work directory
- Modifying the input physics and saving your final model
- Monitoring the run and customizing output

Session 2: Introduction

Initial pgplot- 5M_☉ star

Beginning of hydrogen burning

Formation of convective core

End of main-sequence

Lab 1 Session 2

Trying different the overshoot settings

- How does changing overshooting changes stellar evolution?
- Pick a value from the spreadsheet, put your name /initials to mark that the values have been taken
- Make your own plots

Session 2: Wrap-Up

$5M_{\odot}$ star

$5M_{\odot}$ model with and without overshooting

Omitting pre-main-sequence

Changing overshoot value

Changing metallicity

Changing mass

Lab 1: Key Takeaways

Parameter	Effect on Overshoot Mixing	Consequences of Increased Overshooting
Increasing f	Increases the impact of overshoot	Longer nuclear burning lifetimeLarger radius/ luminosityLarger core
Increasing f0	Increases overshoot mixing	Same as above
Mass	Increases the impact of overshoot mixing	More pronounced changes in lifetime, radius, luminosity, and core mass at higher mass
Metallicity (Z)	Lower Z are affected more by overshoot mixing	Differences due to Z become more pronounced

Session 3: Introduction

Overshooting during main sequence

Overshooting Zone

Overshoot Zone Location

Overshoot Boundary Location

Overshoot Zone Type

Overshooting post-main sequence

Overshooting Zone

Convection zone Top (Core) (Helium **Hydrogen** burning)

Overshoot Zone Location

Overshoot Boundary Location

Overshoot Zone Type

Resuming a run in MESA

Photo

- Default saved in directory `photos`
- complete snapshot of the internal state -guaranteed to give the same results
- Version dependent

Model

- Default None
- Incomplete snapshot of the internal state – not guaranteed to give the same results
- Work across different mesa versions of the same revision

Load pre-saved model: M5_Z0014_fov030_f0ov0005_TAMS.mod

Resuming MESA - Inlists

Don't need initial conditions anymore but do need conditions for sustaining the run

initial_mass = 5! in Msun units initial_z = 0.014d0 use_Type2_opacities = .true. Zbase = 0.014d0

Input Files

inlist

Default input file for MESA

```
&star_job
                                                           &eos
  read_extra_star_job_inlist(1) = .true.
                                                             read_extra_eos_inlist(1) = .true.
  extra_star_job_inlist_name(1) = 'inlist_project'
                                                             extra_eos_inlist_name(1) = 'inlist_project'
/!end of star_job namelist
                                                           /! end of eos namelist
                                                                                                                  inlist_project
&controls
                                                           &kap
 read_extra_controls_inlist(1) = .true.
                                                             read_extra_kap_inlist(1) = .true.
  extra_controls_inlist_name(1) = 'inlist_project'
                                                             extra_kap_inlist_name(1) = 'inlist_project'
 ! end of controls namelist
                                                            '! end of kap namelist
&pgstar
  read_extra_pgstar_inlist(1) = .true.
                                                               inlist_pgstar
  extra_pgstar_inlist_name(1) = 'inlist_pgstar'
/! end of pgstar namelist
```

Input Files

inlist

Default input file for MESA

```
&star_job
                                                           &eos
  read_extra_star_job_inlist(1) = .true.
                                                             read_extra_eos_inlist(1) = .true.
  extra_star_job_inlist_name(1) = 'inlist_project'
                                                             extra_eos_inlist_name(1) = 'inlist_project'
/!end of star_job namelist
                                                           /! end of eos namelist
                                                                                                                  inlist_project
&controls
                                                           &kap
 read_extra_controls_inlist(1) = .true.
                                                             read_extra_kap_inlist(1) = .true.
  extra_controls_inlist_name(1) = 'inlist_project'
                                                             extra_kap_inlist_name(1) = 'inlist_project'
 ! end of controls namelist
                                                            '! end of kap namelist
&pgstar
  read_extra_pgstar_inlist(1) = .true.
                                                               inlist_pgstar
  extra_pgstar_inlist_name(1) = 'inlist_pgstar'
 /!end of pgstar namelist
```

Nested inlists

```
&star_job
 read_extra_star_job_inlist(1) = .true.
 extral &star_job
/!end
         read_extra_star_job_inlist(2) = .true.
         extral &star_job
       /!end
                 read_extra_star_job_inlist(3) = .true.
                 extra &star_job
               /!end
                         read_extra_star_job_inlist(4) = .true.
                         / ! end of
                                  read_extra_star_job_inlist(5) = .true.
                                  extra_star_job_inlist_name(5) = 'inlist_extremely_specific'
                                /! end of star_job namelist
```

Lab 2

How overshooting affects different stellar phases

Evolve $5M_{\odot}$ model from Session 1 until the end of core helium burning:

- Without core overshooting
- With step overshooting
- Limit core overshooting in regions with strong chemical gradients

Session 3: Wrap-Up

Overshooting during core helium burning

Overshooting during core helium burning

Result of

- Overshoot mixing
- 12 C (α , γ) 16 O reaction
- Free-free opacity (Dominant in low & intermediate mass stars ($<8\,M_{\odot}$).

Result of

- Overshoot mixing
- 12 C $(\alpha, \gamma)^{16}$ O reaction
- Free-free opacity (Dominant in low & intermediate mass stars ($<8\,M_{\odot}$).

Result of

- Overshoot mixing
- 12 C $(\alpha, \gamma)^{16}$ O reaction
- Free-free opacity (Dominant in low & intermediate mass stars ($<8\,M_{\odot}$).

Convection - Density formulation

Heats up and expands

Brunt-Väisälä frequency

Convective stability and Brunt-Väisälä frequency

Brunt-Väisälä frequency
$$N^2 = \frac{g^2 \rho}{P} \frac{\chi_T}{\chi_\rho} (\nabla_{ad} - \nabla + B)$$
 squared

Convective stability and Brunt-Väisälä frequency

Brunt-Väisälä frequency
$$N^2 = \frac{g^2 \rho}{P} \frac{\chi_T}{\chi_\rho} (\nabla_{ad} - \nabla + \mathbf{B}) \leftarrow \mathbf{B} = \frac{\mathrm{d} \ln \mu}{\mathrm{d} \ln P}$$
 squared

 $N^2 > 0 \rightarrow$ Oscillations $N^2 < 0 \rightarrow$ Convection

 $\nabla_{rad} > \nabla_{ad}$ + B (Ledoux Criteria-named after Paul Ledoux)

Brunt composition gradient term /
Ledoux term /
Brunt_B

Brunt B

Brunt_B >overshoot_brunt_B_max

Terminate mixing due to overshoot when composition gradient exceeds a certain threshold

Limiting overshooting using Brunt B factor

Limiting overshooting using Brunt B factor

Lab 2: Key Takeaways

Overshooting during core – helium burning:

- Increases core mass, luminosity, radius
- Leads to longer nuclear burning phases
- Can trigger "breathing pulses" during core helium burning
- Pulsations or oscillations may dominate in regions with a stabilizing composition gradient

Words of wisdom

Finally, remember what Peter Eggleton told me when I was first getting started and asked him why something I was trying failed to converge. Peter patiently explained that with stellar evolution the only surprise is when the code *does* converge! And of course he's right. Each step requires a root find for a highly non-linear relation involving anywhere from a few thousand to several hundreds of thousands of variables. It makes me tired just to think about it.

And remember that it takes time to learn how to use the code -- you'll get better at it with experience.

- Bill Paxton

MESA School Leuven 2025

Convective Overshooting in Stars

Recap of Day 1

Lab 1: Set up inlists for a 5 M_☉ model

How to evolve a 5 M_{\odot} star in MESA?

$5\,M_{\odot}$ star with overshooting on the MS

Lab 1: Tried different the overshoot settings

How does changing overshooting changes stellar evolution?

Changing f_overshoot and the overshoot scheme

Changing mass and metallicity

Lab 2: Evolved a 5 M_{\odot} star model at TAMS till the end of core helium burning

How overshooting affects different nuclear burning phases?

Overshooting during core helium burning

Brunt_B >overshoot_brunt_B_max

Why does this matter?

Day 1: Key Takeaway

Convective overshooting is more than just another parameter in stellar evolution.

It influences every major branch of astrophysics, including:

- planetary evolution
- binary star interactions
- predictions of transient events
- the long-term evolution of stellar populations