

CHEMISTRY

Unit 06 | Theory Book

අකාබනික රසායනය - 2

16 කාණ්ඩය

- කාණ්ඩයේ පහළට යත් ම ලෝහමය ස්වභාවය වැඩි වුව ද 16 වන කාණ්ඩයේ එකදු මූලදුවෳයක් වත් සැබෑ ලෝහ ලෙස කියා නොකරයි.
- ඔක්සිකරණ අවස්ථාව +6 හා -2 හි ස්ථායිතාව කාණ්ඩයේ පහළට යත් ම අඩු වන අතර +4 ඔක්සිකරණ අවස්ථාවේ ස්ථායිතාව වැඩි වේ.

0 (ඔක්සිප්න්)

ඔක්සිජන් වල ඔහුරූපී ආකාර

ඩයි ඔක්සිජන් (\mathbf{O}_2)

අවර්ණ, ගන්ධයකින් තොර, ජලයේ මද වශයෙන් දුාවෘ වායුවකි. වාතයෙන් 21% පමණ වේ.

විදුනගාරයේ දී නිපදවීම :

$$KClO_3$$
 \longrightarrow $KCl+O_2$ උත්පේරක - MnO_2 හෝ Pt H_2O_2 \longrightarrow H_2O+O_2 උත්පේරක - MnO_2

ඕසෝන් (O_3)

කටුක ගන්ධයක් ඇති අතර පහළ වායුගෝලයේ දී වායු දූෂකයකි. දුව අවස්ථාවේ නිල් පැහැතිය. බන්ධන කෝණය 111.5° වේ.

ඕසොන් ඩයිඔක්සිජන්වලට වඩා පුබල ඔක්සිකාරකයකි. සංවර්ධිත රටවල් රැසක ජලයේ සුමුදු ජීවීන් නසන විෂඩීජ නාශකයක් ලෙස ඕසෝන් භාවිත කෙරේ. ක්ලෝරීන් මෙන් නොව, විෂඩීජ නාශක කිුයාවලියේ දී ඕසෝන් **කිසිදු හානිදායක** අතුරුඵලයක් නිපදවන්නේ නැත.

ඔක්සිජන් අඩංගු සංයෝග

ජලය (H₂O)

ස්වභාවයේ පවතින සුලබත ම දාවකයයි. පහත පරිදි ස්වයං අයනීකරණයට ලක්වීමෙන් $\mathrm{H^+}$ හා $\mathrm{OH^-}$ ලබා දෙන බැවින් අම්ලයක් මෙන් ම භෂ්මයක් ලෙස ද හැසිරීමට ඊට හැකියාව ඇත. එනම් **ජලය උභයපෝටික පුභේදයකි.**

$$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$$

හයිඩුජන් පෙරොක්සයිඩ් (H_2O_2)

👃 ඒක තලීය නොවන අණුවකි. (OH කාණ්ඩ දෙක වෙනස් තල වල පවතියි.)

- 👃 පුතල H බන්ධන පැවතීම හේතුවෙන් කාමර උෂ්ණත්වයේ දී දුස්සුාවී දුවයක් ලෙස පවතී.
- 👃 ජලයට වඩා තරමක් ආම්ලික වේ.

H2O2 හි පුතිකියා

ඔක්සිකාරක මෙන් ම ඔක්සිතාරක ගුණ ද දරයි.

$$H_2O$$
 \iff H_2O_2 \implies O_2 O_2 O_2 O_3 O_4 O_4 O_4 O_5 O_5 O_6 O_7 O_8 O_8 O_8 O_9 O_9

🚣 ඔක්සිකාරක ගුණ

- 1. $4 \text{ H}_2\text{O}_2 + \text{PbS} \longrightarrow \text{PbSO}_4 + 4 \text{ H}_2\text{O}$
- 2. $2 \text{ H}^+ + \text{H}_2\text{O}_2 + 2 \text{ I}^- \longrightarrow \text{I}_2 + 2 \text{ H}_2\text{O}$
- 3. $2 H^+ + H_2O_2 + 2 Fe^{2+} \longrightarrow 2 Fe^{3+} + 2 H_2O$
- 4. $10 \text{ OH}^- + 3 \text{ H}_2\text{O}_2 + 2 \text{ Cr}^{3+} \longrightarrow 2 \text{ Cr}^{04^-} + 8 \text{ H}_2\text{O}$

🚣 ඔක්සිහාරක ගුණ

- 1. $3 \text{ H}_2\text{SO}_4 + 2 \text{ KMnO}_4 + 5 \text{ H}_2\text{O}_2 \longrightarrow 2 \text{MnSO}_4 + 5 \text{O}_2 + \text{K}_2\text{SO}_4 + 8 \text{H}_2\text{O}$
- 2. $3 \text{ H}_2\text{O}_2 + \text{Cr}_2\text{O}_7^{2-} + 8 \text{ H}^+ \longrightarrow 2\text{Cr}^{3+} + 3 \text{ O}_2 + 7 \text{ H}_2\text{O}$

S (සල්ෆර්)

- 👃 ඔක්සිජන් මෙන් නොව, සල්ෆර් සිය පරමාණු සමඟ ද්විත්ව බන්ධන සාදනවාට වඩා ඒක බන්ධන සාදයි.
- 👃 වඩාත් ම සුලබ බහුරූපී ආකාරය වන්නේ α-සල්ෆර් (α S₈) යනුවෙන් හැඳින්වෙන රොම්බසීය සල්ෆර්ය.
- ↓ රොම්බසීය සල්ෆර් හා ඒකානති සල්ෆර් පහත (a) පෙන්වා දී ඇති පරිදි එය සල්ෆර් පරමාණු අටකින් සමන්විත චකි්ය අක්වක් (zig - zag) සැකසුමකින් යුත්, ඔටුන්නක හැඩයෙන් යුක්ත අණු වලින් සමන්විත වේ.

- ullet 95 °C ට වඩා ඉහළ උෂ්ණත්වයට රත් කිරීමේ දී සුලබව හමු වන අනෙක් බහුරූපී ආකාරය වන ඒකානති සල්ෆර් eta සල්ෆර් $(eta S_8)$ බවට සිය ඇසුරුම් ආකාරය වෙනස් කර ගනියි.
- සංවෘත දාම සහිත විලින සල්ෆර් ක්ෂණිකව සිසිල් කිරීමේ දී, විවෘත දාම සහිත තාප සුවිකාර්ය සල්ෆර් බවට පරිවර්තනය වේ. සල්ෆර්වල අස්එටිකරූපි ආකාරය අස්ථායී වේ.
- 👃 ඕනෑ ම බනුරූපී ආකාරයක් කල් ගතවු විට රොම්බසීය S බවට පරිවර්තනය වේ.

සල්ෆර් වල පුතිකිුයා

1.
$$S + O_2 \longrightarrow SO_2$$

2.
$$S + 2Cl_2 \longrightarrow SCl_4$$

$$S + 3F_2 \xrightarrow{\Delta} SF_6$$

3. පුතල අම්ල සමඟ,

$$S + 4 HNO_3$$
 (සාන්දු) \longrightarrow $4 NO_2 + SO_2 + 2H_2O$

සල්ෆර් අඩංගු සංයෝග

🖶 සල්ෆර් පෙන්වන සුලබ ඔක්සිකරණාංක –2,0,+2,+4 හා +6 වේ.

තයිඩුජන් සල්ෆයිඩ් (H_2S)

- 🖶 නරක් වූ බිත්තර ගඳක් සහිත, අවර්ණ, විෂදායී, ජලයේ මද වශයෙන් දුාවෳ දුර්වල ආම්ලික වායුවකි.
- 🖊 ලෝහ සල්ෆයිඩ, පුතල අම්ල සමඟ පුතිකුියාවෙන් ලබාගත හැක.

$$Na_2S + 2 HCl \rightarrow H_2S + 2 NaCl$$

🖊 ජලීය දාවණ වලදී පහත පරිදි ආංශිකව විඝටනය වේ.

$$H_2S(aq) \rightleftharpoons H^+(aq) + HS^-(aq)$$

$$HS^-(aq) \rightleftharpoons H^+(aq) + S^{2-}(aq)$$

H2S හි පුතිකියා

👃 ආම්ලික ගුණ

🖊 ඔක්සිකාරක ගුණ

$$2Na + 2H_2S$$
 (වැඩිපුර) \longrightarrow $2NaHS + H_2$
 $2Na + H_2S \longrightarrow Na_2S + H_2$
 $Mg + H_2S \longrightarrow MgS + H_2$

👃 ඔක්සිහාරක ගුණ

$$H_2S \longrightarrow \mathbf{S}/(H_2SO_4)$$

$$\begin{vmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix}$$

1.
$$6H^+ + 2MnO_4^- + 5H_2S \longrightarrow 5S + 2Mn^{2+} + 8H^+$$

2.
$$8H^+ + Cr_2O_7^{2-} + 3H_2S \longrightarrow 3S + 2Cr^{3+} + 7H_2O$$

3.
$$SO_2 + 2H_2S \longrightarrow 3 S + 2H_2O$$

4.
$$Cl_2 + H_2S \longrightarrow S + 2HCl$$

5.
$$2HNO_3(\varpi) + H_2S \longrightarrow S + 2NO_2 + 2H_2O$$

6.
$$8HNO_3(3) + H_2S \longrightarrow H_2SO_4 + 8NO_2 + 5H_2O$$

7.
$$H_2SO_4$$
 (ED) + H_2S \longrightarrow $S + SO_2 + 2H_2O$

8.
$$2FeCl_3 + H_2S \longrightarrow S + 2FeCl_2 + 2HCl$$

සල්ෆර් ඩයොක්සයිඩ් (SO2)

- 🖶 කටුක ගන්ධයක් සහිත අවර්ණ දුබල ආම්ලික වායුවකි.
- 👃 ජලයේ දිය වීම පහත පරිදි සිදුවේ.

$$SO_2 + H_2O \rightarrow H_2SO_3$$

$$H_2SO_3 + H_2O \rightleftharpoons H_3O^+ + HSO_3^-$$

$$HSO_3^- + H_2O \rightleftharpoons H_3O^+ + SO_3^{2-}$$

SO2 නි පුතිකියා

ඔක්සිකාරකයක් මෙන් ම ඔක්සිනාරකයක් ලෙස ද කුියා කළ හැක

👃 ඔක්සිකාරක ගුණ

2.
$$SO_2 + 2Mg \longrightarrow 2MgO + S$$

 $SO_2 + 3Mg \longrightarrow 2MgO + MgS$

3.
$$SO_2 + 2H_2S \longrightarrow 3S + 2H_2O$$

👃 ඔක්සිහාරක ගුණ

1.
$$2H_2O + 2MnO_4^- + 5SO_2 \longrightarrow 5SO_4^{2-} + 2Mn^{2+}$$

2.
$$2H^+ + Cr_2O_7^{2-} + 3SO_2 \longrightarrow 3SO_4^{2-} + 2Cr^{3+}$$

3.
$$2H_2O + 2FeCl_3 + SO_2 \longrightarrow H_2SO_4 + 2FeCl_2 + 2HCl$$

4.
$$SO_2 + NO_2 \longrightarrow SO_3 + NO$$

$$5. SO_2 + Cl_2 \longrightarrow SO_2Cl_2$$
 (සල්ෆියුරයිල් ක්ලෝරයිඩ්)
$$SO_2Cl_2 + 2H_2O \longrightarrow H_2SO_4 + 2 \ HCl$$

$$\bullet SO_2 + Cl_2 + 2H_2O \longrightarrow H_2SO_4 + 2HCl$$

$$\bullet$$
 SO₂ + Br₂ + 2H₂O \longrightarrow H₂SO₄ + 2 HBr

සල්ෆියුරික් අම්ලය (H_2SO_4)

- 👃 ද්විතාෂ්මික පුභල අම්ලයකි.

$$H_2SO_4 + H_2O \rightarrow H_3O^+ + HSO_4^-$$

 $HSO_4^- + H_2O \rightarrow H_3O^+ + SO_4^{2-}$

H₂SO₄ නිපදවීම

සල්ෆයිඩ/S
$$\frac{$$
වාතයේ $>$ SO $_2$

$$2SO_2 + O_2 = \frac{450^{\circ}C}{V_2O_5(s)} = 2 SO_3$$

$$SO_3 + H_2SO_4 (98\%) \longrightarrow H_2S_2O_7 (oliume)$$

$$H_2 S_2 O_7 + H_2 O \longrightarrow 2H_2 SO_4$$

H₂SO₄ හි පුතිකුියා

👃 ඔක්සිකාරක ගුණ

උණු සාන්දු H₂SO₄ පුභල ඔක්සිකාරකයක් ලෙස හැසිරේ.

1.
$$2H_2SO_4 + Mg \longrightarrow MgSO_4 + SO_2 + 2H_2O$$

2.
$$2H_2SO_4 + C \longrightarrow CO_2 + 2SO_2 + 2H_2O$$

3.
$$2H_2SO_4 + S \longrightarrow 3SO_2 + 2H_2O$$

4.
$$H_2SO_4 + H_2S \longrightarrow S + SO_2 + 2H_2O$$

5.
$$2H^+ + H_2SO_4 + I^- \xrightarrow{H^+} I_2 + SO_2 + 2H_2O$$

6.
$$2H^+ + H_2SO_4 + Br^- \xrightarrow{H^+} Br_2 + SO_2 + 2H_2O$$

7.
$$H_2SO_4 + Cl^- \longrightarrow X$$

8.
$$H_2SO_4 + Fe^{2+} \longrightarrow X$$

👃 ආම්ලික ගුණ

තනුක H2SO4 පුතල අම්ලයක් ලෙස හැසිරේ.

1.
$$H_2SO_4 + Mg \longrightarrow MgSO_4 + H_2$$

2.
$$H_2SO_4 + NaOH \longrightarrow Na_2SO_4 + H_2O$$

👃 විජලකාරක ගුණ

සාන්දු H_2SO_4 විජලකාරකයක් ලෙස ද හැසිරේ.

$$C_6H_{12}O_6 + H_2SO_4 \longrightarrow 6C + H_2SO_4.6H_2O$$

$$CH_3CH_2OH + H_2SO_4 \longrightarrow CH_2 = CH_2 + H_2SO_4.H_2O$$

කල්ෆියුරක් අම්ලය $(\mathrm{H_2SO_3})$

- 👃 සල්ෆියුරික් අම්ලයට වඩා දුබල අම්ලයක් වේ.
- 👃 වායුමය සල්ෆර් ඩයොක්සයිඩ් ජලය සමඟ පුතිකියා කර සල්ෆියුරස් අම්ලය නිපදවයි.

$$SO_2 + H_2O \rightarrow H_2SO_3$$

- 👃 ජලයේ දුාවිත ඔක්සිජන් සමඟ සල්ෆියුරස් අම්ලය පුතිකුියා කර සල්ෆියුරික් අම්ලය නිපදවයි.
- 🚣 වාතය හමුවේ සල්ෆියුරස් අම්ලය ඔක්සිකරණ වීම හේතුවෙන් එහි සැම විට ම සුළු පුමාණයක් සල්ෆියුරික් අම්ලය අඩංගු වේ.

තයෝසල්ෆියුරික් අම්ලය $(\mathrm{H_2S_2O_3})$

- 👃 දුබල අම්ලයකි.
- ♣ තයෝසල්ෆියුරික් අම්ලය අස්ථායී වන අතර එහි ලවණය පමණක් ස්ථායී වේ. එම නිසා ජලීය දුාවණ වල දී පහත පරිදි ස්වයං විඝටනය වේ.

$$H_2S_2O_3 \rightarrow S + SO_2 + H_2O$$

👃 තයෝසල්ෆේට් අයනයට ඔක්සිතාරකයක් ලෙස කිුයා කළ හැකි ය.

$$2 S_2 O_3^{2-} + I_2 \rightarrow 2 I^- + S_4 O_6^{2-}$$

17 කාණ්ඩය

 $\mathbf{F}_{\mathbf{2}}$ ළා කහ $\mathbf{I}_{\mathbf{2}}$ කලු දිලිසෙනසුළු ඝනයකි

Cl₂ ළා කොළ At විකිරණශීලී මූලදුවසයකි

Br₂ රතු - දුඹුරු දුවයකි

- 👃 නැලජන පුතිකුියාශීලි වන අතර ස්වතාවයේ සංයෝග ලෙස පමණක් හමු වේ.
- 👃 වඩාත් ම විදුපුත් ඍණ මූලදුවසය ෆ්ලෝරීන් වන අතර, ෆ්ලෝරීන් -1 හා 0 ඔක්සිකරණ අවස්ථා පෙන්නුම් කරයි.
- ♣ ෆ්ලෝරීන් හැර අනෙක් හැලජන -1 සිට +7 දක්වා පැවතිය හැකි සෑම ඔක්සිකරණ අවස්ථාවට ම පාහේ අනුරූප වන ස්ථායි සංයෝග සාදයි. කෙසේ වෙතත් බෝමින් වල +7 ඔක්සිකරණ අවස්ථාවේ පවතින සංයෝග අස්ථායි වේ.
- 📤 කුඩා පරමාණුක අරය හේතුවෙන්, අනෙක් මූලදුවඃවල ඉහළ ඔක්සිකරණ අවස්ථා ස්ථායි කිරීමට ෆ්ලෝරීන්වලට හැකි ය. (උදා SF₆)
- 👃 විදපුත් ඍණතාවයේ විචලනය අනුව කාණ්ඩයේ පහළට ඔක්සිකාරක හැකියාව (පුතිකිුයාශීලිත්වය) අඩු වේ.

문항 -
$$Cl_2 + Br^- \rightarrow Br_2 + Cl^-$$

$$Br_2 + I^- \rightarrow I_2 + Br^-$$

ද්වි පරමාණුක හේලයිඩ වල ඔන්ධන දිග හා ශක්තිය විචලනය

4 17 කාණ්ඩයේ පහළට පරමාණු වල විශාලත්වය වැඩි වන බැවින් ද්වි පරමාණුක හේලයිඩ වල බන්ධන දිග විචලනය පහත පරිදි වේ.

$$. \quad F \, - \, F < \, Cl \, - \, Cl < Br - Br < I - I$$

- 📤 බන්ධන දිගෙහි විචලනය මත F2 වැඩිම බන්ධන ශක්තියක් හා I2 අඩු ම බන්ධන ශක්තියක් දැරිය යුතුය. නමුත් පායෝගිකව බන්ධන ශක්තිය මත හැලජන විචලනය පහත පරිදි වේ.
 - $\hspace{.1in} \bullet \hspace{.1in} \hspace{.1in} I \hspace{.1in} \hspace{.1in} \hspace{.1in} I \hspace{.1in} \hspace{.1in} < \hspace{.1in} \hspace{.1in} F \hspace{.1in} \hspace{.1in} F \hspace{.1in} < \hspace{.1in} \hspace{.1in} Br \hspace{.1in} \hspace{.1in} Br \hspace{.1in} < \hspace{.1in} Cl \hspace{.1in} \hspace{.1in} Cl \hspace{.1in}$
 - $(149 \text{ kJ mol}^{-1}) (155 \text{ kJ mol}^{-1}) (190 \text{ kJ mol}^{-1}) (240 \text{ kJ mol}^{-1})$
- 👃 ඉහත අපගමනය තුළ සිදු වී ඇති අපගමනය වන්නේ F2 හි බන්ධන ශක්තිය අසාමානෳ ලෙස අඩු වීමයි.
- 👃 මීට හේතුව,

F යනු පෘෂ්ඨික සෘණ අරෝපණ ඝනත්වය වැඩි පරමාණුවකි. එවැනි පරමාණු දෙකක් කෙටි බන්ධනයකින් බැඳී ඇති විට පරමාණු දෙකෙහි ඇති එකසර ඉලෙක්ටෝන අතර ඉහළ විකර්ෂණ කියාත්මක වේ. එම නිසා අදාළ බන්ධනය තරමක් දුර්වල වේ.

Cl₂ හි පුතිකුියා

👃 Cl2 ති ඉහළ විදුපුත් ඍණතාවය හේතුවෙන් එය පහසුවෙන් ඔක්සිහරණය වෙමින් පුතල ඔක්සිකාරකයක් ලෙස හැසිරේ.

1. ජලය සමඟ පුතිකිුිිිිිිිිිිිිිිි

$$Cl_2 + H_2O \longrightarrow HCl + HOCl$$

ඉහත පුතිකුියාවේ දී Cl , 0 ඔක්සිකරණාංකයේ සිට +1 හා -1 බවට **ද්විධාකරණය** වීම සිදුවේ. මෙහිදී ලැබෙන HOCl, HOCl o HCl + '0' ලෙස ස්වයං විඝටනය වේ. මෙම පරමාණුක ඔක්සිජන් විෂඩීජ නාශක ගුණ දරයි. මේ නිසා Cl_2 ජලය පිරිසිදුකාරකයක් ලෙස භාවිතා වේ.

2. ජලීය භෂ්ම සමඟ පුතිකුියාව

සි.ත.
$$Cl_2 + 2 NaOH \longrightarrow NaCl + NaOCl + H_2O$$
 උ.සා. $3Cl_2 + 6NaOH \longrightarrow 5NaCl + NaClO_3 + 3 H_2O$

♣ පහළ උෂ්ණත්ව වල දී ස්ථායී වුව ද රත් කිරීමේ දී OCl⁻ පහත පරිදි ද්විධාකරණය වේ. කෙසේ වුව ද OBr⁻ හා OI⁻ පහළ උෂ්ණත්ව වල දී ද අස්ථායී වන බැවින් ඒවා පහළ උෂ්ණත්ව වල දී ද ද්විධාකරණය වීම සිදු වේ. ආම්ලික තත්ත්ව යටතේ HOCl ට වඩා ClO⁻ ස්ථායි වේ. ඒ නිසා භාෂ්මික තත්ත්ව යටතේ ද්විධාකරණ පුතිකුියා මූලික වේ.

3. NH_3 සමඟ පුතිකිුයාව

වැ.

$$3Cl_2 + NH_3 \longrightarrow NCl_3 + 3HCl$$

වැ.

$$3Cl_2 + 8NH_3 \longrightarrow N_2 + 6NH_4Cl$$

4. ලෝහ සමඟ පුතිකුයාව

$$Cu + Cl_2 \xrightarrow{\Delta} CuCl$$

$$CuCl + Cl_2 \xrightarrow{\Delta} CuCl_2$$

$$Fe + Cl_2 \xrightarrow{\Delta} FeCl_2$$

2 FeCl₂ + Cl₂
$$\longrightarrow$$
 2 FeCl₃

5. $Cl_2 + H_2S \longrightarrow S + 2HCl$

6.
$$P + Cl \xrightarrow{\Delta} PCl_3 \xrightarrow{\mathfrak{O}_{\overline{c}}} PCl_5$$

7.
$$S + Cl_2 \xrightarrow{\Delta} SCl_2 \xrightarrow{\mathfrak{O}_{\zeta}} SCl_4 \xrightarrow{\mathfrak{O}_{\zeta}} X$$

හයිඩුජන් හේලයිඩ

හයිඩුජන් හේලයිඩ වල තෝරාගත් ලක්ෂණ කිහිපයක් පහත පරිදි වේ.

	HF	HCl	HBr	HI
දුවාංකය∕ °C	-84	-114	-89	-51
තාපාංකය/ °C	20	-85	- 67	-35
බන්ධන දිග/ pm	92	127	141	161
බන්ධන විඝටන ශක්තිය/ kJ mol ⁻¹	570	432	366	298

👃 ඉහත හයිඩුජන් හේලයිඩ අතරින් HF පමණක් දුබල ආම්ලික වන අතර අනෙක්වා පුභල ආම්ලික වේ.

ullet HF බන්ධනය සාපේක්ෂව කෙටි බැවින් එම බන්ධන වඩාත් ශක්තිමත් වේ. එම නිසා එම බන්ධනය විඝටනය වී මාධායයට H $^+$ හා F $^-$ නිදහස් කිරීම අඩුවෙන් සිදු වේ.

දුවාංක තාපාංක විචලනය :

- 4 HF හැර අනෙකුත් පුතේද අණුක ස්කන්ධය වැඩිවන පිළිවෙලට අපකිරණ බල පුතල වන නිසා දුවාංක ද එම පිළිවෙලට වැඩි වේ.
- 👃 HF හි H බන්ධන කුියාත්මක වන බැවින් එහි දුවාංක තාපාංක අසාමානෳ ලෙස අඩු වී ඇත.

18 කාණ්ඩය

- 👃 18 කාණ්ඩයට අයත් මූලදුවෘ සියල්ල පුතිඛුයාශීලි නැති ඒක පරමාණුක වායු වේ.
- 👃 Xe පමණක් 0 හා F සමඟ සැලකිය යුතු සංයෝග පුමාණයක් සාදයි.
- 👃 18 කාණ්ඩයට අයත් සියලු මූලදුවෘ ධන ඉලෙක්ටුෝන ලබා ගැනීමේ එන්තැල්පියක් දරයි.

Xe සාදන සරල සංයෝග

- 🖶 සෙනෝන්වල සංයෝගවලට +2, +4, +6 සහ +8 යන ඔක්සිකරණ අංක ඇත.
- 👃 මේ අනුව මූලදුවෳයක් විසින් පෙන්වන ඉහළ ම ධන ඔක්සිකරණාංකය පෙන්වන්නේ Xe වේ.

ඔක්සිකරණ අංකය	සංයෝගය	වාූූනය
+2	XeF_2	F Xe
+4	XeF ₄	F Xe
+6	XeF ₆	Xe
+6	XeO ₃	Xe
+8	XeO ₄	Xe

3 වන ආවර්තයේ මූලදුවා වල ගුණ විචලනය

ස්වභාවයේ බනුලව පවතින මූලදුවඃමය ආකාර :

4.19 වගුව තුන්වන ආවර්තයේ මූලදුවා බහුලව පවතින පරමාණු ආකාර, සමාන පරමාණු අතර පවතින බන්ධන සහ දුවාංක

	Na	Mg	A1	Si	P ₄	S_8	Cl ₂	Ar
දුවාංකය/ °C	98	649	660	1420	44	119	-101	-189
බන්ධන ස්වභාවය	M	Μ	M	NC	С	С	С	-
			© (ලා්හ − <i>M</i> ,	ජාල ස	හසංයුජ–	- <i>NC</i> , සහස	සංයුජ - (

3 වන ආවර්තයේ මූලදවෘ භෂ්ම සමඟ පුතිකිුිිිිිිිිිිිිිිිි :

ඔක්සයිඩ හා ඒවායේ ගුණ

4.20 වගුව තුන්වන ආවර්තයේ ඔක්සයිඩ සංසන්දනය

	Na ₂ O(s)	MgO(s)	$Al_2O_3(s)$	SiO ₂ (s)	P ₄ O ₁₀ (s)	SO ₃ (g)	Cl ₂ O ₇ (1)		
ඔක්සිකරණ	+1	+2	+3	+4	+5	+6	+7		
අංකය									
බන්ධන	I	I	Ι	NC	C	С	C		
ආකාරය									
ස්වභාවය	පුබල	В	Am	බොහෝ	දුබල	A	පුබල		
	В			දුබල A	A		A		
				අයනික – I,	.ජල සහසංය	9ජ− NC, සෑ	හසංයුජ - C		
				හාස්මික – B, උභයගුණි – Am, ආම්ලික - A					

ඔක්සයිඩ ජලය සමඟ පුතිකුියා :

- 👃 Na නා Mg නි ඔක්සයිඩ ජලය සමඟ පුතිකුියාවෙන් ඒවායේ නයිඩොක්සයිඩ ලැබේ.
- 👃 Al හා Si හි ඔක්සයිඩ ජලය සමඟ පුතිකුියා නොකරයි.
- 🖊 P , S හා Cl හි ඔක්සයිඩ ජලය සමඟ පුතිකිුිිියාවෙන් ඒවා පැවති ඔක්සිකරණාංකයට අදාල ඔක්සො අම්ලය ලැබේ.

ඔක්සයිඩ අම්ල හා භෂ්ම සමඟ පුතිකිුිිිියා :

- 👃 Na හා Mg හි ඔක්සයිඩ භාෂ්මික වන බැවින් ඒවා අම්ල සමඟ පුතිකිුයා කරයි.
- 👃 Al හි ඔක්සයිඩය උභයගුණික බැවින් එය අම්ල මෙන් ම භෂ්ම සමඟ ද පුතිකුියා කරයි.
- 👃 P , S හා Cl හි ඔක්සයිඩ ආම්ලික වන බැවින් ඒවා භෂ්ම සමඟ පුතිකිුයා කරයි.

නයිඩොක්සයිඩ හා ඒවායේ ගුණ

👃 තුන්වන ආවර්තයේ හයිඩොක්සයිඩ ඒ ආවර්තයේ ම ඔක්සයිඩවලට සමාන පුවණතාවක් පෙන්නුම් කරයි.

4.21 වගුව තුන්වන ආවර්තයේ හයිඩොක්සයිඩ සංසන්දනය

	NaOH	Mg(OH) ₂	Al(OH) ₃	Si(OH) ₄	P(OH) ₅	S(OH) ₆	Cl(OH) ₇
ස්ථායි				H ₂ SiO ₃	H ₃ PO ₄	H ₂ SO ₄	HClO ₄
ආකාරය							
ඔක්සිකරණ	+1	+2	+3	+4	+5	+6	+7
අංකය							
බන්ධන	I	I	С	С	C	C	С
ආකාරය							
ස්වභාවය	පුබල	В	Am	බොහෝ	දුබල	පුබල	ඉතා
	В			දුබල A	A	A	පුබල
							A
			ĝ	<i>ැයනික−I, ජ</i> ා	ල සහසංයු	$g\mathscr{C}-NC$, සැ	හසංයුජ - C
				භාස්මික	− <i>B,</i> උභය	⊋& −Am, d	ආම්ලික - A

හයිඩුයිඩ හා ඒවායේ ගුණ

4.22 වගුව තුන්වන ආවර්තයේ හයිඩුයිඩ සංසන්දනය

	NaH(s)	MgH ₂ (s)	$(AlH_3)_x(s)$	SiH ₄ (g)	PH ₃ (g)	$H_2S(g)$	HCl(g)
ඔක්සිකරණ අංකය	+1	+2	+3	-4	-3	-2	-1
ජලීය දුාවණයේ ස්වහාවය	පුබල B	දුබල B	Am	ඉතා දුබල A	N	දුබල A	ඉතා පුබල A
බන්ධන ආකාරය	Ι	I	NC	С	С	С	С
			മാഷ്ക				සහසංයුජ - C , උදාසීන - N

ක්ලෝරයිඩ හා ඒවායේ ගුණ

ආවර්තයක් හරහා වමේ සිට දකුණට යෑමේ දී මූලදුවඃවල විදුපුත් සෘණතාව වැඩි වන නිසා ක්ලෝරයිඩ ජලවිච්ඡේදනය වීමේ හැකියාව වැඩි වේ. තුන්වන ආවර්තයේ ඇති s ගොනුවේ මූලදුවඃ වල ක්ලෝරයිඩ අයනික වන අතර p ගොනුවේ මූලදුවඃවල ක්ලෝරයිඩ සහසංයුජ වේ.

4.23 වගුව තුන්වන ආවර්තයේ ක්ලෝරයිඩ සංසන්දනය

	NaCl(s)	MgCl ₂ (s)	AlCl ₃ (s)	SiCl ₄ (1)	PCl ₅ (s)	SCl ₂ (g)
ඔක්සිකරණ අංකය	+1	+2	+3	+4	+5	+2
බන්ධන වර්ගය	I	I	С	С	С	С
ජලීය දාවණයේ ස්වභාවය	N	ඉතා දුබල A	A	A	A	A
				අය	නික–I, සහ	ාසංයුජ - C
5)		භාස්මික -	- <i>B, උභයගු</i> ම්	5 - Am, 40	ම්ලික–A, උ	,දාසීන - N

ඇනායන විශ්ලේෂණය

NO_2^- හා NO_3^- හඳුනා ගැනීම

1)
$$NO_3^ \xrightarrow{\mathfrak{D}. H^+} X$$
 $NO_2^ \xrightarrow{\mathfrak{D}. H^+}$ දුඹුරු වායුව (NO_2)
 $NO_3^ \xrightarrow{\mathfrak{D}. H^+}$ දුඹුරු වායුව (NO_2)

2) දුඹුරු වලය පරීක්ෂාව

පරීක්ෂණ නළයකට අලුත සෑදු $FeSO_4$ දාවණයක් හා NO_3^- අඩංගු දාවණයක් එකතු කරයි. අනතුරුව නළයේ බිත්තිය දිගේ බිංදු වශයෙන් සාන්දු අම්ලයක් එකතු කරයි. මෙවිට $FeSO_4$ හා NO_3^- කලාප වෙන් වන සීමාවේ දුඹුරු වලයක් ඇති වේ.

3)
$$NO_3^-$$
 හෝ OH^-/Δ NH_3 OH_3 $OH_$

SO_3^{2-} හා SO_4^{2-} හඳුනා ගැනීම

$$SO_3^{2-}$$
 $\xrightarrow{BaCl_2}$ $\xrightarrow{BaSO_3}$ $\xrightarrow{\mathfrak{D}. H^+}$ දිය වේ.

දුර්වල අම්ලවලින් වපුත්පන්න වන ඇනායන සාදන අවක්ෂේප තනුක අම්ල හමුවේ දාවණය වේ.

$S_2O_3^{2-}$ හඳුනා ගැනීම

1)
$$S_2O_3^{2-} + 2H^+ \longrightarrow S\downarrow + SO_2\uparrow + H_2O$$

දහ :-

$$Na_2S_2O_3 + 2HCl \longrightarrow S + SO_2 + 2NaCl + H_2O$$

$$4$$
 2 Na₂S₂O₃ + I₂ \longrightarrow Na₂S₄O₆ + 2Nal

තේලයිඩ අයන හඳුනාගැනීම

1)
$$Cl^{-}\frac{}{AgNO_{3}}$$
 $AgCl$ \downarrow සුදු $\frac{}{$ $_{\mathfrak{D}.NH_{3}}}$ දිය වේ. $\frac{}{}$ දිය වේ.

$$Br^{-} \xrightarrow{AgNO_3} AgBr \downarrow \underline{\square} \underline{\square}.NH_3 \longrightarrow X$$

$$\downarrow \underline{\square}.NH_3 \longrightarrow V$$

$$\downarrow \underline{\square}.NH_3 \longrightarrow V$$

$$I^{-} \xrightarrow{AgNO_3} AgI \downarrow \textcircled{s} ass \xrightarrow{\sigma.NH_3} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad X$$

$$assume as X$$

3) බුබුලේ පරීක්ෂාව

තනුක අම්ල සමග වායු ලබා දෙන පුභේද

කැටායන විශ්ලේෂණය

(1) කාණ්ඩය

කැටායන මිශුණායට **තනුක** HCl එකතු කරයි.

මෙහි දී අවක්ෂේප 3 ක් ඇති වේ.

- 1. $Ag^{+} \longrightarrow AgCl$ \downarrow සුළ 2. $Hg_{2}^{2+} \longrightarrow Hg_{2}Cl_{2}$ (HgCl) \downarrow සුළ 3. $Pb^{2+} \longrightarrow PbCl_{2}$ \downarrow සුළ
- 🖶 තනුක NH3 යෙදු විට AgCl දිය වේ.
- 🖶 සාන්දු HCl යෙදු විට හෝ රත් කළ විට PbCl2 දිය වේ.

(2) කාණ්ඩය

ආම්ලික මාධනයේ H2S බුබුලනය සිදු වේ.

පළමුවන පෙරනයට පිටතින් H2S බුබුලනය කරයි. 1 කාණ්ඩයේ දී යෙදු HCl හේතුවෙන් මාධ්යයේ ඉහළ H+ සාන්දුණයක් පවතියි. එම නිසා H_2S හි විඝටනය දුර්වල වී මාධ්යයේ $[S^{2-}]$ අඩු වේ.

$$\begin{array}{c|c} \textcircled{2} & \textcircled{3} \\ H_2S & \rightleftharpoons & 2H^+ \uparrow & + & S^{2-} \downarrow \\ \textcircled{1} & \end{array}$$

අඩු $[S^{2-}]$ ක් යටතේ පහත S^{2-} අවක්ෂේප ඇති වේ.

(3) කාණ්ඩය

2 හි ලැබෙන පෙරනය පහත කුියාවලට පිළිවෙලින් භාජනය කරයි.

- 1. රත් කිරීම (H₂S ඉවත් කිරීම)
- 2. HNO_3 යෙදීම. brace $Fe^{2+}\longrightarrow Fe^{3+}$ බවට පත් කිරීම.) 3. නැටවීම.
- 4. NH₄Cl හා NH₄OH යෙදීම.

NH4OH හි විඝටනය NH4Cl පැවතීම හේතුවෙන් අඩු වේ.

$$NH_4Cl \longrightarrow NH_4^+ + Cl^-$$

මේ හේතුවෙන් දාවණයේ ඉහළ
$$\mathrm{NH_4^+}$$
 සාන්දුණයක් ඇති වේ.
$$\frac{2}{\mathrm{NH_4OH}} \longleftrightarrow \mathrm{NH_4^+} \uparrow + \mathrm{OH^-} \downarrow$$
 ① \bigcirc

ඉහත ආකාරයේ අඩු OH^- සාන්දුණයක් යටතේ පහත අවක්ෂේප 3 ලැබේ.

- $1. Al(OH)_3 සුදු ජෙලටිනීය$
- 2. Cr(OH)₃ කිළිටි කොළ
- $3. \quad \text{Fe}(\text{OH})_3$ රතු දුඹුරු

(4) කාණ්ඩය

භාෂ්මික මාධ්යයේ H_2S බුබුලනය සිදුවේ.

$$\begin{array}{c|c} & & & \\ \hline & & \\ H_2S & & & \\ \hline \end{array} \right) + S^{2-} \uparrow$$

මෙහි දී ලැබෙන ඉහළ $[S^{2-}]$ යටතේ පහත අවක්ෂේප ලැබේ.

$$Ni^{2+}$$
 \longrightarrow NiS $_{\text{co}^{2+}}$ \longrightarrow CoS $^{\text{so}}$ කළු Mn^{2+} \longrightarrow MnS - රෝස Zn^{2+} \longrightarrow ZnS - සුදු

(5) කාණ්ඩය

 NH_4Cl හා $(NH_4)_2CO_3$ එකතු කරයි. මෙහි දී අවක්ෂේප 3 ක් ලැබේ.

$$Ca^{2+}$$
 \longrightarrow $CaCO_3$ Sr^{2+} \longrightarrow $SrCO_3$ Ba^{2+} \longrightarrow $BaCO_3$