Problemas de Ecuaciones Algebraicas

Rafael Arquero Gimeno @_arkeros Helena Garví Casas

29 de octubre de 2015

Índice

Índice de figuras

Índice de cuadros

1. Grupos

1. Sea $f(X) = a_0 + a_1 X + ... + a_n X^n \in \mathbb{Z}[X], a_0, ..., a_n \in \mathbb{Z}$, un polinomio. Supongamos $\exists p \in \mathbb{Z}$ primo tal que

$$p \nmid a_n, p^2 \nmid a_0, p \mid a_i \forall i = 0, ..., n - 1$$
 (1)

Demostrad que f es irreductible en \mathbb{Q} . Si además f es primitivo, entonces tambien es irreductible en $\mathbb{Z}[X]$.

2. (Criterio de Eisenstein) Sean A un dominio de factorización unica, K su cuerpo de fracciones y $f(X) = a_0 + a_1 X + ... + a_n X^n \in A[X], a_0, ..., a_n \in A$, un polinomio. Supongamos que $\exists p \in A$ primo tal que

$$p \nmid a_n, p^2 \nmid a_0, p \mid a_i \forall i = 0, ..., n - 1$$
 (2)

Demostrad que f es irreductible en K[X]. Si además f es primitivo, entonces tambien es irreductible en A[X].

3. Sean A,B dominios y $f:A\to B$ un morfismo de anillos. Denotamos por $\widetilde{f}:A[X]\to B[X]$ el morfismo de anillos dado por

$$\widetilde{f}(\sum_{i} a_i X^i) = \sum_{i} f(a_i) X^i, a_i \in A$$
(3)

- (a) Supongamos que A es un dominio de factorización unica. Demostrad que si $p(X) \in A[X]$ es un polinomio primitivo y $\widetilde{f}(p(X)) \in B[X]$ es irreductible y del mismo grado que $p(X) \in A[X] \implies p(X)$ es irreductible en A[X].
- (b) Supongamos que $f: A \to B$ es un isomorfismo de anillos. Demostrad que $p(X) \in A[X]$ es irreductible $\iff \widetilde{f}(p(X))$ es irreductible en B[X].
- (c) Dado $a \in A$, el polinomio $p(X) \in A[X]$ es irreductible $\iff p(X+a)$ es irreductible.
- 4. (Criterio de reducción)
 - (a) Sean A,B dominios de integridad, L el cuerpo de fracciones de B y $f:A\to B$ un morfismo de anillos cualquiera. Llamamos $\widetilde{f}:A[X]\to B[X]$ el morfismo de anillos que se obtiene al aplicar f a los coeficientes de los polinomios de A[X]. Sea $p(X)\in A[X]$ un polinomio tal que $\widetilde{f}(p(X))$ es irreductible en L[X],p(X) no admite ninguna factorización en A[X] de la forma

(b)

5. Construid las tablas de sumar y de multiplicar de los cuerpos \mathbb{F}_n , $\forall n \leq 10$. Explicitad generadores de los grupos multiplicativos.

Solución:		
$1. \mathbb{F}_1$		
	$egin{array}{ c c c c c } \hline + & 0 \\ \hline 0 & 0 \\ \hline \end{array} egin{array}{ c c c c } \hline \times & 0 \\ \hline 0 & 0 \\ \hline \end{array}$	

 $2. \mathbb{F}_2$

+	0	1	×	0	1
0	0	1	0	0	0
1	1	0	1	0	1

3. \mathbb{F}_3

+	0	1	2	×	0	1	4
0	0	1	2	0	0	0	(
1	1	2	0	1	0	1	4
2	2	0	1	2	0	2	

4. \mathbb{F}_4

+	0	1	a	b
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0

×	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

5. \mathbb{F}_5

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
1	4	0	1	2	3

×	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

- 6. \mathbb{F}_6 No existe
- 7. \mathbb{F}_7
- 8. \mathbb{F}_8
- 9. \mathbb{F}_9
- 10. \mathbb{F}_{10} No existe
- 6. Sean $n \geq 1$ y p un numero primo. Demostrad $\forall x \in \mathbb{F}_{p^n} \exists ! y \in \mathbb{F}_{p^n} \mid y^p = x.$