

Théorie relationnelle

Frédéric DADEAU

Institut FEMTO-ST – Département d'Informatique des Systèmes Complexes

Bureau 410 C

Email: frederic.dadeau@univ-fcomte.fr

Licence 1 - Semestre 2

Objectifs de ce chapitre

Être capable d'appréhender le fonctionnement d'une base de données relationnelle en identifiant les entités, leurs liens et leurs propriétés.

Plan du cours

Définitions de base

Intégrité des données

Un exemple

Les opérateurs relationnels

La théorie relationnelle

Historique

La théorie relationnelle a été proposée pour la première fois par Edgar Frank Codd, dans l'article

A relational Model of Data for Large Shared Data Banks, CACM, Juin 1970

Depuis, aucune modification révolutionnaire.

Il s'agit d'une approche basée sur la théorie des ensembles (mathématiques).

Plan du cours

Définitions sur les relations
Propriétés des relations
Propriétés des schémas relationnels

Intégrité des données

Un exemple

Les opérateurs relationnels

Les relations

Définition des relations

Une relation R, sur un ensemble de domaines $D_1, D_2, \dots D_N$, est constituée de deux parties :

- l'en-tête : ensemble fixé d'attributs
- le corps : ensemble de t-uplets

Une relation peut être assimilée à un tableau.

Attributs et T-uplets

Un attribut correspond à une colonne. Un t-uplet correspond à une ligne.

L . . . Définitions sur les relations

Définitions de base

Nom attribut 1	Nom attribut 2	Nom attribut 3	 Nom attribut N
		$v \in D_3$	

Les attributs sont en bleu, les t-uplets sont en rouge.

On trouve des valeurs D_3 désigne le domaine de l'attribut 3.

Les relations

Domaines de valeurs

Un domaine D est un ensemble de valeurs dans lequel des attributs puisent leurs valeurs.

Domaines de valeurs

Un domaine ${\it D}$ est un ensemble de valeurs dans lequel des attributs puisent leurs valeurs.

Cardinalité d'une relation

La $\it cardinalit\'e$ d'une relation correspond à son nombre de t-uplets (i.e. nombre de lignes).

Un domaine ${\it D}$ est un ensemble de valeurs dans lequel des attributs puisent leurs valeurs.

Cardinalité d'une relation

La cardinalité d'une relation correspond à son nombre de t-uplets (i.e. nombre de lignes).

Degré d'une relation

Le degré d'une relation correspond à son nombre d'attributs (i.e. nombre de colonnes).

La *clé primaire* est un groupe d'attribut dont la valeur permet d'identifier de manière unique un t-uplet (i.e. une ligne) de la relation.

Clé primaire

La *clé primaire* est un groupe d'attribut dont la valeur permet d'identifier de manière unique un t-uplet (i.e. une ligne) de la relation.

Schéma (de base de données) relationnel(le)

Le schéma de base de données relationnelle ou schéma relationnel est un ensemble de relations, qui ont toutes des noms différents.

Intégrité des données Définitions de base Définitions sur les relations

Un exemple de relation

Les attributs de la relation ETUDIANT sont les suivants :

- NumeroEtudiant: entier positif
- NomEtudiant : chaîne de caractères
- PrenomEtudiant : chaîne de caractères
- DateNaissanceFtudiant : date
- LoginEtudiant : chaîne de 8 caractères maxi
- MotDePasseEtudiant : chaînes de 8 caractères maxi

On dénote cette relation ETUDIANT(NumeroEtudiant*, NomEtudiant, PrenomEtudiant, DateNaissanceEtudiant, LoginEtudiant, MotDePasseEtudiant).

Un exemple de relation

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

- L'en-tête correspond à la ligne de titre,
- Degré de la relation ETUDIANT : 6
- Cardinalité de la relation ETUDIANT : 4
- Clé primaire : NumeroEtudiant

Définition mathématique de la notion de relation

- Pas de duplication des t-uplets
- Pas d'ordonnancement des t-uplets
- Pas d'ordonnancement des attributs
- Atomicité des valeurs des attributs
- Pour un attribut donné, toutes les valeurs de cet attribut appartiennent au même domaine

Pas de duplication des t-uplets

- Ensemble de t-uplets d'une relation = Ensemble au sens des mathématiques
- Une même valeur ne peut pas apparaître deux fois dans un ensemble

En conséquence, toute relation possède une clé.

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

Cette relation ne respecte pas la propriété d'absence de doublons dans les t-uplets.

Pas d'ordre des t-uplets

- Ensemble de t-uplets d'une relation = Ensemble au sens des mathématiques
- Les ensembles ne sont pas ordonnés

En conséquence, il n'existe pas de 2ème t-uplet, pas plus que de t-uplet suivant.

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
33818	Schatt	Bastien	23-05-1992	hschatt	hschatt

Pas d'ordre des attributs

- En-tête d'une relation = Ensemble d'attributs
- Comme pour les t-uplets, les attributs ne sont pas ordonnés.

En conséquence, les attributs sont référencés par un nom et pas par une position dans l'en-tête.

Définitions de base Intégrité des données . . . Propriétés des relations

Les propriétés des relations

Atomicité des valeurs des attributs

- Les domaines contiennent des valeurs atomiques
- Dans une relation, à l'intersection d'une ligne et d'une colonne, il ne peut y avoir qu'une seule valeur.

On parle de relation normalisée, en 1ère forme normale.

La relation ETUDIANT erronée

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
Teamore	110	1 10110111	Batortalocarioo	Logiii	motber deec
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
			30-05-1988		
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu
					1234

Cette relation ne respecte pas la propriété d'atomicité des valeurs.

. Propriétés des relations

Définitions de base

Domaines uniques

- Dans une relation, les valeurs possibles des attributs sont données par son domaine.
- Il n'est pas possible d'associer plusieurs domaines à un attribut (pas d'union de type).

Les propriétés des schémas relationnels

Noms uniques

- Un schéma de base de données est un ensemble de relations
 - ⇒ Dans un schéma relationnel, chaque relation a un nom unique.
- Une relation est un ensemble d'attributs
 - ⇒ Dans une relation, chaque attribut a un nom unique.

Justification : il n'est pas possible d'avoir deux fois le même nom dans un ensemble → référencement ambigu

Les propriétés des schémas relationnels

Convention de représentation

On précise toujours le nom et les attributs de la relation. Le contenu de la relation (lestuplets) sont toujours donnés en extension (leurs valeurs sont énumérées).

Lien avec les bases de données relationnelles

Base de données relationnelle

Ensemble de relations normalisées

Plan du cours

Intégrité des données

Notions préliminaires : clé, lien, NULL Les règles d'intégrité : unicité de la clé

Les règles d'intégrité : contraintes de domaine

Les règles d'intégrité : contraintes de références

Les règles d'intégrité : intégrité des entités

Un exemple

Les opérateurs relationnels

L'intégrité des données

L'intégrité des données

Bases pour définir des outils permettant une gestion automatique au niveau du SGBD de certaines propriétés de la base de données.

Intégrité des données relationnelles

- Une base de données contient une configuration particulière des valeurs de données.
- Certaines configurations de valeurs n'ont pas de sens
 - \Rightarrow Définition d'une base de données étendue pour inclure certaines $\it contraintes$ $\it d'intégrité.$

L'intégrité des données

L'intégrité des données

Bases pour définir des outils permettant une gestion automatique au niveau du SGBD de certaines propriétés de la base de données.

Les contraintes d'intégrité sont des règles qui vont permettre au SGBD de conserver automatiquement la cohérence de la base de données.

L'intégrité des données

Comment s'assurer de l'intégrité des données

- en vérifiant les données lors de leur chargement,
- en vérifiant les données lors de toute modification (saisie, mise à jour)
- en répercutant certaines mises à jour entre les tables
- en gérant les références entre les tables

Les règles d'intégrité que nous allons voir

- l'unicité de la clé
- les contraintes de domaines
- les contraintes de références
- la règle d'intégrité des entités

Les clés relationnelles

Une clé identifie un t-uplet.

Nous allons voir les notions de :

- Super-clé
- Clé candidate
- Clé primaire
- Clé étrangère

Les clés relationnelles

Définition d'une super-clé

Une super-clé pour une relation R est un sous-ensemble de l'ensemble des attributs de R qui identifie de manière unique chaque t-uplet de R.

Propriété d'unicité de la super-clé

Une super-clé possède la propriété d'unicité : il n'existe pas deux t-uplets distincts de R ayant la même valeur pour cet ensemble d'attributs.

Intégrité des données

Les opérater

Les clés relationnelles

. . . Notions préliminaires : clé, lien, NULL

Définitions de base

Définition d'une clé candidate

Une clé candidate pour une relation R est une super-clé qui possède la propriété d'être irréductible.

Propriété d'irréductibilité (des clés candidates)

Une clé candidate composée d'un ensemble d'attributs K est dite irréductible si aucun sous-ensemble strict de K n'est une super-clé.

Les clés relationnelles

Utilisation des clés candidates

Les clés candidates fournissent un mécanisme d'adressage dans la relation car elles permettent de répérer un t-uplet dans la relation.

Référencement par clé-candidate

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

Données correspondant à l'étudiant numéro 23794 \rightarrow 1 seul t-uplet. Données correspondant au prénom d'étudiant 'Maxime' \rightarrow ??? t-uplets.

. . . Notions préliminaires : clé, lien, NULL

Définitions de base

Une clé primaire est une clé choisie arbitrairement parmi les clés candidates.

Unicité de la clé primaire dans une relation

S'il est possible de définir plusieurs clé candidates pour une relation, il n'existe en revanche qu'une seule clé primaire.

⇒ une clé primaire est donc unique pour une relation donnée.

Intégrité des données

Les clés relationnelles

La relation ETUDIAN

On considère la relation ETUDIANT :

ETUDIANT (NumeroEtudiant, NomEtudiant, PrenomEtudiant, DateNaissanceEtudiant, LoginEtudiant, MotDePasseEtudiant)

Le couple d'attributs (NumeroEtudiant, NomEtudiant) représente une super-clé, car deux étudiants distincts ne peuvent pas avoir le même numéro et le même nom.

Les opérater

Les clés relationnelles

L . . . Notions préliminaires : clé, lien, NULL

Définitions de base

On considère la relation ETUDIANT :

ETUDIANT (NumeroEtudiant, NomEtudiant, PrenomEtudiant, DateNaissanceEtudiant, LoginEtudiant, MotDePasseEtudiant)

L'attribut Numero Etudiant est une clé candidate, car deux étudiants ne peuvent pas avoir le même numéro.

La clé est réduite à un seul attribut, elle est donc irréductible.

Intégrité des données

Les clés relationnelles

On considère la relation ETUDIANT :

ETUDIANT (NumeroEtudiant, NomEtudiant, PrenomEtudiant, DateNaissanceEtudiant, LoginEtudiant, MotDePasseEtudiant)

Le login d'un étudiant étant également unique, LoginEtudiant est également clé candidate.

On considère la relation ETUDIANT :

ETUDIANT (NumeroEtudiant, NomEtudiant, PrenomEtudiant, DateNaissanceEtudiant, LoginEtudiant, MotDePasseEtudiant)

Si on suppose qu'il n'existe pas deux étudiants avec les mêmes noms, prénoms et dates de naissance, alors le triplet (NomEtudiant, PrenomEtudiant, DateNaissanceEtudiant) est également une clé candidate.

Les opérater

Certains attributs (ou ensembles d'attributs) peuvent apparaître dans plusieurs relations.

⇒ On identifie alors des liaisons (ou liens) entre plusieurs relations.

Définition d'une clé étrangère

Une clé étrangère est un ensemble d'attributs d'un relation R' qui est clé candidate dans une relation R.

Les clés relationnelles

Certains attributs (ou ensembles d'attributs) peuvent apparaître dans plusieurs relations.

⇒ On identifie alors des liaisons (ou liens) entre plusieurs relations.

Propriété d'une clé étrangère

Soit R une relation, une clé étrangère dans R est un sous-ensemble C de l'ensemble des attributs de R tel que :

- Il existe une relation R' avec une clé candidate C', et
- Chaque valeur de C dans R est identique à la valeur de C' dans R'.
- \Rightarrow On définit ainsi un lien entre les relations R' et R.

En notation graphique :

Définitions de base

L . . . Notions préliminaires : clé, lien, NULL

En notation textuelle:

$$R'(C',A_1,A_2,\ldots)[C']\;(?..?)\;\to\;[C]R(B_1,B_2,\ldots,C)$$

Définitions de base Intégrité des données L . . . Notions préliminaires : clé, lien, NULL

Les liens

Types de lien

Différents types de lien existent selon que le nombre de fois où la valeur de la clé candidate peut apparaître en tant que clé étrangère dans la relation cible.

- 1..N une valeur de la clé candidate peut apparaître un nombre indéterminé de fois (potentiellement nul) en tant que clé étrangère.
- 1..1 une valeur de la clé candidate ne peut apparaître qu'une et une seule fois en tant que clé étrangère.

Remarque: les liens N..N n'existent pas!

Sens d'un lien

Un lien est toujours défini d'une clé primaire vers une clé étrangère.

Cela se comprend comme: "J'ai une valeur dans une relation (clé primaire), elle peut être référencée dans une autre table (clé étrangère)."

Les liens

1. Repérer les liens potentiels

Il faut chercher dans les relations si une clé candidate d'une relation se retrouve comme clé étrangère dans une autre relation. On cherche donc des groupes attibuts (ou ensembles d'attributs) "compatibles" d'une relation à l'autre et représentant la même information.

ETUDIANT

NumeroEtudiant NomEtudiant PrenomEtudiant DateNaissanceEtudiant LoginEtudiant MotDePasseEtudiant

INSCRIPTION

NumeroEtudiant CodeModule

Les liens

1. Repérer les liens potentiels

Il faut chercher dans les relations si une clé candidate d'une relation se retrouve comme clé étrangère dans une autre relation. On cherche donc des groupes attibuts (ou ensembles d'attributs) "compatibles" d'une relation à l'autre et représentant la même information.

ETUDIANT SumeroEtudiant NomEtudiant PrenomEtudiant DateNaissanceEtudiant LoginEtudiant MotDePasseEtudiant

2. Définir le sens et le type du lien

Définitions de base

L . . . Notions préliminaires : clé, lien, NULL

Le sens est toujours le même : de la clé primaire vers la clé étrangère. Le type de la relation dépend du nombre d'apparition d'une même valeur des attributs représentant la clé étrangère :

- Plusieurs occurrences possibles : lien de type 1..N
- Une seule occurrence possible : lien de type 1..1

Autrement dit : si la clé étrangère est une clé candidate dans sa relation, on a un lien 1..1.

ETUDIANT

SumeroEtudiant

NomEtudiant

PrenomEtudiant

DateNaissanceEtudiant
LoginEtudiant

MotDePasseEtudiant

Les opérater

Les liens

2. Définir le sens et le type du lien

Définitions de base

L . . . Notions préliminaires : clé, lien, NULL

Le sens est toujours le même : de la clé primaire vers la clé étrangère. Le type de la relation dépend du nombre d'apparition d'une même valeur des attributs représentant la clé étrangère :

Plusieurs occurrences possibles : lien de type 1..N

Intégrité des données

Une seule occurrence possible : lien de type 1..1

Autrement dit : si la clé étrangère est une clé candidate dans sa relation, on a un lien 1..1.

ETUDIANT		INSCRIPTION
NumeroEtudiant	4	NumeroEtudiant
NomEtudiant	I N	CodeModule
PrenomEtudiant		
DateNaissanceEtudiant		
LoginEtudiant		
MotDePasseEtudiant		

Les opérater

La valeur NULL

emto-st

Qu'est-ce que c'est?

Il s'agit d'une valeur conventionnelle, introduite dans une relation lorsque la valeur de l'un des attributs est inconnue, inapplicable ou non-spécifiée.

⇒ NULL représente l'absence de valeur

NULL est une valeur "classique" en programmation.

La valeur NULL

Cette valeur d'attribut s'autorise ou s'interdit au moment de la conception de la base de données. Un SGBD pourra donc affecter cette valeur à un attribut, si celui-ci n'est pas renseigné lors d'un ajout ou d'une mise à jour.

Deux politiques

Si, lors d'un ajout ou d'une mise à jour d'un t-uplet, l'utilisateur ne précise pas une valeur pour un attribut, on a deux possibilités :

- si NULL est autorisé pour l'attribut, le SGBD lui affectera la valeur NULL,
- si NULL n'est pas autorisé pour l'attribut, le SGBD rejettera tout t-uplet ou la valeur de l'attribut n'est pas renseigné.

La valeur NULL

La relation ETUDIANT – Content

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

Supposons que la valeur NULL soit autorisée pour l'attribut DateNaissanceEtudiant.

L'ajout d'un t-uplet (32823, Bucher, Samuel, NULL, sbucher, sbucher) est possible.

La valeur NULL

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

Supposons que la valeur NULL soit interdite pour l'attribut MotDePasseEtudiant.

L'ajout d'un t-uplet (32823, Bucher, Samuel, 4-11-1992, sbucher, NULL) est impossible.

Les opérater

Les règles d'intégrité

Elles sont au nombre de 4 :

- 1. L'unicité de la clé
- 2. Les contraintes de domaine
- 3. Les contraintes de référence
- 4. La règle d'intégrité des entités

L . . . Les règles d'intégrité : unicité de la clé

Définitions de base

Intégrité des données

Règle de l'unicité de la clé

Dans une base de données, toutes les relations doivent posséder une clé unique, appelée clé primaire.

Cette règle permet de mettre en place des mécanismes de contrôle, qui vérifient que deux informations identiques ne peuvent pas être présentes dans la base de données.

Considérons la relation ETUDIANT ci-dessous

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

L'ajout d'un t-uplet (23794, Bucher, Samuel, 4-11-1992, sbucher, sbucher) est impossible, car ce t-uplet duplique une des valeurs de la clé primaire.

Chaque attribut d'une relation prend ses valeurs dans un domaine (i.e. un ensemble de valeurs).

Les domaines sont des types de base, tels que les entiers, les réels, les chaines de caractères, agrémentés de quelques types dédiés, tels que les dates, les horaires, ou les types énumérés (principalement).

Les contraintes de domaine

Une contrainte de domaine est une contrainte d'intégrité qui définit la propriété que doit vérifier toute valeur d'un attribut d'une relation donnée.

Il s'agit de vérifier que la valeur est correctement typée.

Intégrité des données

Les règles d'intégrité : contraintes de domaine

Définitions de base

Considérons l'attribut DateNaissanceEtudiant. Son domaine est celui donné par le type DATE.

Lors d'un ajout ou d'une mise à jour de cet attribut, le SGBD s'assurera que la nouvelle valeur appartient bien au domaine défini, pour vérifier la cohérence des données.

Définitions de base

Les contraintes de références permettent au SGBD de gérer automatiquement la présence de données référencées dans les différentes relations de la base.

Intégrité référentielle

La base de données ne doit pas contenir de valeurs de clés étrangères non unifiables. ⇒ Si une clé étrangère prend une valeur, ce doit être une valeur qui existe dans la relation référencée par le lien.

Définitions de base

On considère la relation INSCRIPTION(NumeroEtudiant*, CodeModule*).

- L'attribut Numero Etudiant fait référence à l'étudiant (il est lié à l'attribut ETUDIANT.NumeroEtudiant) dans lequel le cours où il est inscrit est identifié par son CodeModule.
- Le t-uplet (23794, BD L1) signifie que l'étudiant numéro 23794 est inscrit dans le module BD L1.
- La valeur prise par l'attribut INSCRIPTION. Numero Etudiant ne peut être qu'une valeur apparaissant dans la relation ETUDIANT, pour l'attribut Numero Etudiant.
- Il ne serait pas cohérent de décrire les inscriptions d'un étudiant qui n'existe pas.

Définitions de base

Prise en compte de l'intégrité référentielle lors d'une saisie.

- Le SGBD effectue un contrôle qui permet de savoir si la valeur existe dans la relation référencée.
- C'est un contrôle immédiat qui empêche l'ajout en cas d'absence de valeur unifiable.

En cas de modification ou de suppression de données, plusieurs politiques de mise à jour/suppression existent. Ces politiques sont appliquées aux liens entre les relations.

Politique RESTRICTED ou NO ACTION

L'opération de mise à jour ou de suppression est restreinte au cas où il n'existe aucune référence à la valeur dans les autres relations en lien avec la relation initiale. Dans les autres cas, elle est interdite.

En cas de modification ou de suppression de données, plusieurs politiques de mise à jour/suppression existent. Ces politiques sont appliquées aux liens entre les relations.

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

NumeroEtudiant*	CodeModule*
23794	BD_L1
23794	PROG_L1
32911	BD_L1

On veut supprimer le t-uplet correspondant à l'étudiant 23794.

Définitions de base

En cas de modification ou de suppression de données, plusieurs politiques de mise à jour/suppression existent. Ces politiques sont appliquées aux liens entre les relations.

Intégrité des données

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

Codeiviodule
BD_L1
PROG_L1
BD_L1

On veut supprimer le t-uplet correspondant à l'étudiant 23794.

Avec la règle RESTRICTED sur le lien entre ETUDIANT et INSCRIPTION, la suppression est impossible, car il existe des enregistrements dans INSCRIPTION référencant cet étudiant.

Les opérater

Les règles d'intégrité

Définitions de base

En cas de modification ou de suppression de données, plusieurs politiques de mise à jour/suppression existent. Ces politiques sont appliquées aux liens entre les relations.

Intégrité des données

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

Numerocludiant	Codeiviodule
23794	BD_L1
23794	PROG_L1
32911	BD_L1

On veut supprimer le t-uplet correspondant à l'étudiant 33818.

Avec la règle RESTRICTED sur le lien entre ETUDIANT et INSCRIPTION, la suppression est possible, car il n'existe pas d'enregistrements dans INSCRIP-TION référencant cet étudiant.

En cas de modification ou de suppression de données, plusieurs politiques de mise à jour/suppression existent. Ces politiques sont appliquées aux liens entre les relations.

Politique CASCADE

L'opération de mise à jour ou de suppression est réalisée en "cascade" dans les autres relations, c'est-à-dire qu'elle est propagée.

En cas de modification ou de suppression de données, plusieurs politiques de mise à jour/suppression existent. Ces politiques sont appliquées aux liens entre les relations.

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

CodeModule*
BD_L1
PROG_L1
BD_L1

On veut supprimer le t-uplet correspondant à l'étudiant numéro 32794.

En cas de modification ou de suppression de données, plusieurs politiques de mise à jour/suppression existent. Ces politiques sont appliquées aux liens entre les relations.

23794 Dornier Arnaud 27-09-1990 adornier adornier 32911 Martin Maxime 2-12-1992 mmartin mmartin 33818 Schatt Bastien 23-05-1992 bschatt bschatt 2001 Schatt 45-16-000 bschatt bschatt	L	Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
33818 Schatt Bastien 23-05-1992 bschatt bschatt	Ī	23794	Dornier	Arnaud	27-09-1990	adornier	adornier
	Γ	32911	Martin	Maxime	2-12-1992	mmartin	mmartin
04040 Correct Villad 45 40 4000 correct correct	Γ	33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812 Sargu Viad 15-12-1990 Vsargu Vsargu		34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

Intégrité des données

NumeroEtudiant*	CodeModule*
23794	BD_L1
23794	PROG_L1
32911	BD_L1

On veut supprimer le t-uplet correspondant à l'étudiant numéro 23794.

Avec la règle CASCADE sur le lien entre ETUDIANT et INSCRIPTION, la suppression est possible, même s'il existe des enregistrements dans INSCRIPTION référençant cet étudiant. Ces enregistrements seront d'ailleurs également supprimés.

En cas de modification ou de suppression de données, plusieurs politiques de mise à jour/suppression existent. Ces politiques sont appliquées aux liens entre les relations.

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

NumeroEtudiant*	CodeModule*
32911	BD_L1

La suppression a lieu dans les deux tables.

En cas de modification ou de suppression de données, plusieurs politiques de mise à jour/suppression existent. Ces politiques sont appliquées aux liens entre les relations.

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

Intégrité des données

NumeroEtudiant*	CodeModule.
23794	BD_L1
23794	PROG_L1
32911	BD_L1

Supposons que l'on souhaite supprimer les deux enregistrements de INSCRIP-TION qui concernent l'étudiant 23794.

Les opérater

Les règles d'intégrité

En cas de modification ou de suppression de données, plusieurs politiques de mise à jour/suppression existent. Ces politiques sont appliquées aux liens entre les relations.

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

NumeroEtudiant*	CodeModule*
32911	BD_L1

C'est toujours possible, quelque soit la politique de mise à jour.

En effet, les règles de suppression "res-

treinte" ou "en cascade" ne s'appliquent que dans un seul sens (la suppression d'une clé primaire entraîne/est bloquée par la clé étrangère, et pas l'inverse!).

→ La relation ETUDIANT est inchangée!

Définitions de base

En cas de modification ou de suppression de données, plusieurs politiques de mise à jour/suppression existent. Ces politiques sont appliquées aux liens entre les relations.

Politique SET NULL

L'opération de mise à jour ou de suppression de la clé candidate est répercutée en mettant les valeurs des clés étrangères à NULL.

Attention : la valeur NULL doit être autorisée pour ces attributs clé étrangère.

En cas de modification ou de suppression de données, plusieurs politiques de mise à jour/suppression existent. Ces politiques sont appliquées aux liens entre les relations.

Politique SET DEFAULT

L'opération de mise à jour ou de suppression de la clé candidate est répercutée en mettant les valeurs des clés étrangères à une valeur par défaut (si celle-ci existe).

En cas de modification ou de suppression de données, plusieurs politiques de mise à jour/suppression existent. Ces politiques sont appliquées aux liens entre les relations.

Politique NO CHECK

Aucun contrôle n'est réalisé lors de l'application de l'opération de mise à jour ou de suppression.

Bien évidemment, l'utilisation de cette politique entraînera la plupart du temps des incohérences dans la base.

Intégrité des données

Les règles d'intégrité

Règle d'intégrité des données

Tous les attributs appartenant à la clé primaire d'une relation ne sont pas autorisés à prendre la valeur NULL.

Dans la relation ETUDIANT, l'attribut NumeroEtudiant est clé primaire, il ne peut donc pas prendre la valeur NULL.

Un t-uplet (NULL, Bucher, Samuel, 4-11-1992, sbucher, NULL) n'est donc pas autorisé dans ETUDIANT.

Les opérater

Les règles d'intégrité

Définitions de base

Règle d'intégrité des données

Tous les attributs appartenant à la clé primaire d'une relation ne sont pas autorisés à prendre la valeur NULL.

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

Intégrité des données

L . . . Les règles d'intégrité : intégrité des entités

NumeroEtudiant*	CodeModule*
23794	BD_L1
23794	PROG_L1
32911	BD_L1

On veut supprimer le t-uplet correspondant à l'étudiant numéro 23794 pour lequel on a une politique SET NULL entre ETUDIANT et INS-CRIPTION

Les opérater

Les règles d'intégrité

Définitions de base

Règle d'intégrité des données

Tous les attributs appartenant à la clé primaire d'une relation ne sont pas autorisés à prendre la valeur NULL.

	Numero-	Nom	Prenom	DateNaissance	Login	MotDePasse
ĺ	32911	Martin	Maxime	2-12-1992	mmartin	mmartin
	33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
	34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

Intégrité des données

L . . . Les règles d'intégrité : intégrité des entités

NumeroEtudiant*	CodeModule*
NULL	BD_L1
NULL	PROG_L1
32911	BD_L1

On veut supprimer le t-uplet correspondant à l'étudiant numéro 23794.

La suppression mettrait à NULL les valeurs du NumeroEtudiant de INSCRIPTION pour les deux enregistrements. Or NumeroEtudiant est une partie de la clé primaire de INSCRIPTION. et ne peut donc pas être NULL.

La suppression sera alors refusée.

Intégrité des données

Les règles d'intégrité

L . . . Les règles d'intégrité : intégrité des entités

Définitions de base

Les clés étrangères et NULL

L'intégrité référentielle impose que toute valeur d'une clé étrangère contienne une valeur unifiable.

- On étend cette définition pour prendre en compte la valeur NULL, unifiable avec toutes les valeurs.
- Le concepteur de la base de données peut préciser si, oui ou non, une clé étrangère est autorisée à prendre la valeur NULL.
 - Attention : si cette clé étrangère est également clé primaire, elle ne peut pas prendre la valeur NULL (cf. Numero Etudiant dans INSCRIPTION).

Plan du cours

Définitions de base

Intégrité des données

Un exemple

Les opérateurs relationnels

Définitions de base

Considérons l'ensemble de relations suivant :

- ETUDIANT(NumeroEtudiant*, NomEtudiant, PrenomEtudiant, DateNaissanceEtudiant, LoginEtudiant, MotDePasseEtudiant)
- INSCRIPTION(NumeroEtudiant*, CodeModule*, Annee*, NoteSession1, NoteSession2)
- MODULE(CodeModule*, LibelleModule, VolumeCM, VolumeTD, VolumeTP, Responsable)
- ENSEIGNANT(NumeroHarpege*, NomEnseignant, PrenomEnseignant, Grade)

qui représente une version simplifiée des inscriptions d'étudiants à des modules de l'université.

Détaillons chacune des relations.

Définitions de base

Les attributs de la relation ETUDIANT sont les suivants :

- NumeroEtudiant* : entier positif
- NomEtudiant : chaîne de caractères
- PrenomEtudiant : chaîne de caractères
- DateNaissanceEtudiant: date
- LoginEtudiant : chaîne de 8 caractères maxi
- MotDePasseEtudiant : chaînes de 8 caractères maxi

Remarque : LoginEtudiant est clé candidate de la relation.

Détaillons chacune des relations.

Définitions de base

Les attributs de la relation INSCRIPTION sont les suivants :

- NumeroEtudiant* : entier positif
- CodeModule* : chaîne de 8 caractères maxi
- Annee*: entier positif sur 4 chiffres
- NoteSession1: réel entre 0 et 20
- NoteSession2 : réel entre 0 et 20, NULL autorisé.

Détaillons chacune des relations.

La relation MODULE

Les attributs de la relation MODULE sont les suivants :

- CodeModule* : chaîne de 8 caractères maxi
- LibelleModule : chaîne de caractères
- VolumeCM : entier positif ou nul
- VolumeTD : entier positif ou nul
- VolumeTP : entier positif ou nul
- Responsable : entier positif

Détaillons chacune des relations.

Définitions de base

Les attributs de la relation ENSEIGNANT sont les suivants :

- NumeroHarpege* : entier positif à 5 chiffres
- NomEnseignant : chaîne de caractères
- PrenomEnseignant : chaîne de caractères
- Grade: "MCF", "PR", "PRAG", "Vacataire", "Moniteur"

Essayons de trouver les liens.

ETUDIANT NumeroEtudiant NomEtudiant PrenomEtudiant DateNaissanceFtudiant

LoginEtudiant MotDePasseEtudiant

INSCRIPTION

NumeroEtudiant CodeModule Annee NoteSession1 NoteSession2

MODULE CodeModule

LibelleModule VolumeCM VolumeTD VolumeTP Responsable

ENSEIGNANT

NumeroHarpege NomEnseignant PrenomEnseignant Grade

- 1. repérer les attributs compatibles (domaine + sémantique)
- 2. définir le sens et le type du lien (1..N ou 1..1)

Essayons de trouver les liens.

- 1. repérer les attributs compatibles (domaine + sémantique)
- 2. définir le sens et le type du lien (1..N ou 1..1)

Essayons de trouver les liens.

MODULE
CodeModule
LibelleModule
VolumeCM
VolumeTD
VolumeTP
Responsable

ENSEIGNANT NumeroHarpege NomEnseignant PrenomEnseignant Grade

- 1. repérer les attributs compatibles (domaine + sémantique)
- 2. définir le sens et le type du lien (1..N ou 1..1)

Essayons de trouver les liens.

- 1. repérer les attributs compatibles (domaine + sémantique)
- 2. définir le sens et le type du lien (1..N ou 1..1)

Essayons de trouver les liens.

- 1. repérer les attributs compatibles (domaine + sémantique)
- 2. définir le sens et le type du lien (1..N ou 1..1)

Essayons de trouver les liens.

- 1. repérer les attributs compatibles (domaine + sémantique)
- 2. définir le sens et le type du lien (1..N ou 1..1)

Essayons de trouver les liens.

Méthodologie:

1. repérer les attributs compatibles (domaine + sémantique)

Intégrité des données

2. définir le sens et le type du lien (1..N ou 1..1)

Un étudiant peut-il être inscrit plusieurs fois à un même module?

52 / 92

Un étudiant peut-il être inscrit plusieurs fois à un même module?

Oui, mais pas la même année : la clé primaire de la relation INSCRIPTION est composée des 3 attributs (NumeroEtudiant, CodeModule, Annee) on peut donc avoir plusieurs fois le même couple de valeurs pour (NumeroEtudiant, CodeModule), mais pour des valeurs différentes d'Annee.

Un enseignant peut-il être responsable de plusieurs modules ?

Un enseignant peut-il être responsable de plusieurs modules ?

⇒ Oui, par définition du lien 1..N entre ENSEIGNANT et MODULE.

Plusieurs enseignants peuvent-il être responsable d'un même module?

Plusieurs enseignants peuvent-il être responsable d'un même module?

⇒ Non, car pour une valeur de CodeModule, identifiant un module, on a qu'une seule valeur de Responsable.

Un exemple

Supposons une politique de suppression RESTRICTED sur le lien entre MODULE et ENSEIGNANT. Que se passe-t-il si on supprime un enseignant?

Définitions de hase

Supposons une politique de suppression RESTRICTED sur le lien entre MODULE et ENSEIGNANT. Que se passe-t-il si on supprime un enseignant?

- ⇒ S'il est référencé comme Responsable dans la relation MODULE, alors cette suppression sera interdite.
- S'il n'est pas référencé comme Responsable dans la relation MODULE, alors cette suppression sera possible.

Supposons une politique de suppression CASCADE sur le lien entre MODULE et EN-SEIGNANT, et une politique RESTRICTED entre MODULE et INSCRIPTION. Que se passe-t-il si on supprime un enseignant qui est responsable d'un module où des étudiants sont inscrits ?

Définitions de hase

Supposons une politique de suppression CASCADE sur le lien entre MODULE et EN-SEIGNANT, et une politique RESTRICTED entre MODULE et INSCRIPTION. Que se passe-t-il si on supprime un enseignant qui est responsable d'un module où des étudiants sont inscrits?

Cette suppression sera interdite, car elle suppose de supprimer en cascade le module, ce qui est impossible, car celui-ci est référencé dans la relation INSCRIPTION.

Plan du cours

Définitions de base

Intégrité des données

Un exemple

Les opérateurs relationnels

Quelques rappels : logique, théorie des ensembles Les opérateurs ensemblistes Les opérateurs relationnels spécifiques Les opérateurs relationnels dérivés

Les opérateurs relationnels

- ▶ Relations ⇔ Ensembles
- ▶ Opérateurs relationnels ⇔ Opérateurs ensemblistes
- A partir d'une ou de deux relations, un opérateur relationnel permet de calculer une nouvelle relation.
- Les opérateurs relationnels sont utilisés en particulier pour effectuer des requètes de récupération de données.

Les opérateurs relationnels

On trouve différents types d'opérateurs relationnels.

Opérateurs relationnels

Ils se classent en trois catégories :

- les opérateurs ensemblistes classiques : union, intersection, différence, produit cartésien.
- les opérateurs relationnels spécifiques : sélection, projection, jointure.
- les opérateurs dérivés : division, jointure externe, etc.

Un peu de logique

Les connecteurs logique "standards" sont généralement les suivants :

- et logique, opérateur binaire de conjonction, de notation mathématique \(\lambda \)
- ▶ ou logique, opérateur binaire de disjonction, de notation mathématique ∨
- non logique, opérateur unaire de négation, de notation mathématique ¬
- ▶ implication, opérateur binaire, de notation mathématique ⇒
- équivalence, opérateur binaire, de notation mathématique <

Ces opérateurs prennent comme opérandes des expressions booléennes (qui s'évaluent soit à vrai/true/1 soit à faux/false/0) et forment une expression booléenne.

Ces connecteurs sont utilisés dans tous les langages de programmation, mais nous allons également les utiliser pour définir formellement d'autres opérateurs qui dérivent de leur application.

Les tables de vérité

Et logique:

а	b	a∧b
faux	faux	faux
faux	vrai	faux
vrai	faux	faux
vrai	vrai	vrai

Quelques tables de vérité des connecteurs standards.

Les tables de vérité

Ou logique:

а	b	a∨b
faux	faux	faux
faux	vrai	vrai
vrai	faux	vrai
vrai	vrai	vrai

Quelques tables de vérité des connecteurs standards.

Les tables de vérité

Non logique:

а	¬а
faux	vrai
vrai	faux

Les tables de vérité

Implication:

а	b	$a \Rightarrow b$
faux	faux	vrai
faux	vrai	vrai
vrai	faux	faux
vrai	vrai	vrai

L'implication $a \Rightarrow b$ peut se réécrire $(\neg a) \lor b$

Les tables de vérité

Equivalence logique :

а	b	a ⇔ b
faux	faux	vrai
faux	vrai	faux
vrai	faux	faux
vrai	vrai	vrai

L'équivalence $a \Leftrightarrow b$ peut se réécrire $(a \Rightarrow b) \land (b \Rightarrow a)$.

Un peu de théorie des ensembles

On va définir les opérateurs ensemblistes basiques suivants :

- Le constructeur d'ensemble en extension { a, b, c, d}
- Le constructeur d'ensemble en compréhension $\{x \mid P(x)\}$
- Le prédicat d'appartenance d'un élément à un ensemble $x \in S$
- Les prédicats d'égalité et d'inégalité entre ensembles S = T, $S \neq T$
- Le prédicat d'inclusion (inclusion stricte) d'un ensemble dans un autre $S \subseteq T$ $(S \subset T)$

Les deux premiers permettent de construire (définir) des ensembles. Les suivants permettent de donner des propriétés sur les ensembles.

Définitions de base

Définition en extension de l'ensemble S, contenant les 6 éléments 4, 8, 15, 16, 23. et 42.

$$S = \{4, 8, 15, 16, 23, 42\}$$

Définition en compréhension de l'ensemble T, contenant les éléments de S supérieurs à 10.

$$T = \{x \mid x \in \mathcal{S} \ \land \ x \ge 10\}$$

Cette expression se lit "l'ensemble des x tels que x appartienne à S et soit supérieur ou égal à 10".

Une constante désigne l'ensemble qui ne contient aucun élément. Elle s'appelle l'ensemble vide et se note ∅ (i.e. équivalent à { }).

Définition de l'opérateur d'appartenance

L'opérateur d'appartenance est un opérateur binaire, dénoté $x \in S$ qui s'évalue à vrai si l'élément désigné par x appartient à l'ensemble désigné par S.

Attention, cet opérateur n'est pas commutatif, pour des raisons de typage des opérandes : sa première opérande est un élément, sa second est un ensemble d'éléments.

Supposons $S = \{4, 8, 15, 16, 23, 42\}.$

- l'expression $42 \in S$ est évaluée à vrai.
- l'expression $5 \in S$ est évaluée à faux.
- l'expression $S \in S$ est mal formée (erreur de typage).
- l'expression $x \in \emptyset$ est évaluée à faux (quelque soit x).

Définition de l'égalité entre ensembles

Deux ensembles S et T sont égaux si et seulement si ils possèdent exactement les mêmes éléments.

$$(\forall x.x \in S \Rightarrow x \in T) \land (\forall y.y \in T \Rightarrow y \in S)$$

Ils sont différents dans le cas contraire.

$$(\exists x. x \in S \land x \not\in T) \lor (\exists y. y \in T \land y \not\in S)$$

Supposons $S = \{a, b, c, d\}, T = \{a, b, c\}, \text{ et } U = \{a, b, c\}.$ On a alors :

- S ≠ T
- S ≠ U
- ► T = U

Logique et théorie des ensembles

Définition de l'opérateur d'inclusion

L'opérateur d'inclusion est un opérateur binaire, dénoté $S \subset T$, qui s'évalue à vrai si tous les éléments de S appartiennent à T.

$$S \subseteq T \Leftrightarrow \forall x.x \in S \Rightarrow x \in T$$

L'inclusion stricte, dénotée $S \subset T$, s'évalue à vrai si tous les éléments de S sont dans T et s'il existe des éléments de T qui ne sont pas dans S (les ensembles ne sont pas égaux).

$$S \subset T \Leftrightarrow S \subseteq T \land S \neq T$$

Logique et théorie des ensembles

Inclusion stricte et non-stricte

Supposons $S = \{4, 8, 15, 16, 23, 42\}$ et $T = \{x \mid x \in S \land x \ge 10\} = \{15, 16, 23, 42\}$

- l'expression $T \subseteq S$ est évaluée à vrai.
- l'expression $T \subset S$ est évaluée à vrai.
- l'expression $S \subseteq T$ est évaluée à faux (non-commutativité).
- l'expression $S \subseteq S$ est évaluée à vrai.
- l'expression $S \subset S$ est évaluée à faux.

Deux cas particuliers:

- l'expression $\emptyset \subseteq S$ est toujours évaluée à vrai (quelque soit S).
- l'expression $\emptyset \subset S$ est toujours évaluée à vrai (sauf si $S = \emptyset$).

On remarque que : $S = T \Leftrightarrow (S \subseteq T \land T \subseteq S)$

La théorie des ensemble est prépondérante en informatique théorique, mais aussi appliquée (pas uniquement pour les bases de données).

Les opérateurs vus précédemments se transposent au niveau des relations, les relations étant des ensembles de t-uplets.

Définition de l'union ensembliste

L'union de deux ensembles S et T, dénotée $S \cup T$, produit un nouvel ensemble contenant tous les éléments de S et tous les éléments de T.

$$S \cup T = \{x \mid x \in S \lor x \in T\}$$

Soient $S = \{4, 8, 15, 16, 23\}$ et $T = \{4, 15, 23, 42\}$, on a :

$$S \cup T = \{4, 8, 15, 16, 23, 42\}$$

(Rappel: il n'y a pas d'ordre dans les ensembles)

L'union permet de créer une relation dans laquelle apparaissent tous les t-uplets apparaissant dans au moins une des deux relations de départ. L'union de deux relations R_1 et R_2 se dénote R_1 UNION R_2 ou $R_1 \cup R_2$.

Exemple d'union de relations

ETUDIANTSINFO		
Numero*	Nom	
23794	Dornier	
32911	Martin	
33818	Schatt	
34812	Sargu	

ETUDIANTSPASINFO		
Numero*	Nom	
32936	Marchal	
33061	Vallee	
35684	Grandvuinet	

ETUDIANTSINFO ∪ ETUDIANTSPASINFO		
Numero*	Nom	
23794	Dornier	
32911	Martin	
32936	Marchal	
33061	Vallee	
33818	Schatt	
34812	Sargu	
35684	Grandvuinet	

Définition de l'intersection ensembliste

L . . . Les opérateurs ensemblistes

Définitions de base

L'intersection de deux ensembles S et T, dénotée $S \cap T$, produit un nouvel ensemble contenant tous les éléments de S qui sont également dans T.

$$S \cap T = \{x \mid x \in S \land x \in T\}$$

Exemples d'intersections ensembliste

Soient $S_1 = \{4, 8, 15, 16, 23\}$ et $\mathcal{T}_1 = \{4, 15, 23, 42\},$ on a :

$$S_1 \cap T_1 = \{4, 15, 23\}$$

Soient $S_2 = \{4, 8, 16, 23\}$ et $T_2 = \{15, 42\}$, on a :

$$S_2 \cap T_2 = \emptyset$$

L . . . Les opérateurs ensemblistes

Définitions de base

L'intersection permet de créer une relation dans laquelle apparaîssent tous les t-uplets contenus à la fois, dans la première et dans la seconde relation de départ. L'intersection de deux relations R_1 et R_2 se dénote R_1 INTER R_2 ou $R_1 \cap R_2$.

Exemple d'intersection de relations

ETUDIANTSGRB

Numero*	Nom
23794	Dornier
32911	Martin
32936	Marchal
33061	Vallee
33818	Schatt
34812	Sargu
35684	Grandvuinet

ETUDIANTSINFO

NOITI
Balizet
Verbruggen
Dornier
Martin
Schatt
Sargu

ETUDIANTSINFO ∩ ETUDIANTSGRB

Numero*	Nom
23794	Dornier
32911	Martin
33818	Schatt
34812	Sargu

Définition de la différence ensembliste

La différence entre deux ensembles S et T, dénotée S-T, produit un nouvel ensemble contenant tous les éléments de S qui ne sont pas dans T.

$$S-T=\{x\mid x\in S\ \wedge\ x\not\in T\}$$

Soient $S = \{4, 8, 15, 16, 23\}$ et $T = \{4, 15, 23, 42\}$, on a:

$$S - T = \{8, 16\}$$

Définition de la différence ensembliste

La différence entre deux ensembles S et T, dénotée S-T, produit un nouvel ensemble contenant tous les éléments de S qui ne sont pas dans T.

$$S-T=\{x\mid x\in S\ \land\ x\not\in T\}$$

Réécriture de l'intersection avec des différences

Soient $S = \{4, 8, 15, 16, 23\}$ et $T = \{4, 15, 23, 42\}$, on a:

$$S \cap T = S - (S - T) = S - \{8, 16\} = \{4, 15, 23\}$$

ou alors

$$S \cap T = T - (T - S) = T - \{42\} = \{4, 15, 23\}$$

Définitions de base Intégrité des données L . . . Les opérateurs ensemblistes

Les opérateurs ensemblistes

La différence de deux relations R_1 et R_2 permet de créer une relation dans laquelle apparaissent tous les t-uplets de R_1 n'apparaissant pas dans R_2 . La différence de deux relations R_1 et R_2 se dénote $R_1 - R_2$.

Exemple de différence de relations

ETUDIANTSGRB

Numero*	Nom
23794	Dornier
32911	Martin
32936	Marchal
33061	Vallee
33818	Schatt
34812	Sargu
35684	Grandvuinet

ETUDIANTSINFO

Numero*	Nom
23485	Balizet
24871	Verbruggen
23794	Dornier
32911	Martin
33818	Schatt
34812	Sargu

ETUDIANTSGRB — ETUDIANTSINFO

Numero*	Nom
32936	Marchal
33061	Vallee
35684	Grandvuinet

Remarque sur UNION, INTERSECTION, et DIFFERENCE

Attention, ces trois opérateurs ne s'appliquent qu'entre des relations qui possèdent les mêmes attributs (et donc au moins le même degré).

Autrement, elles n'ont pas de sens.

Intégrité des données

Définition du produit cartésien de deux ensembles

Le produit cartésien de deux ensembles S et T, dénoté $S \times T$, est l'ensemble des couples dont la première composante est issue de S et la seconde composante est issue de T.

$$S \times T = \{(x, y) \mid x \in S \land y \in T\}$$

Dans ce contexte, tous les éléments de S sont associés à tous les éléments de T. La cardinalité (taille) du produit cartésien est égale au produit des cardinalités des opérandes.

Soient $S = \{x, y, z\}$ et $T = \{1, 2, 3, 4\}$ deux ensembles. Le produit cartésien de S et de T, est l'ensemble des couples

$$S \times T = \{(x,1), (x,2), (x,3), (x,4), (y,1), (y,2), (y,3), (y,4), (z,1), (z,2), (z,3), (z,4)\}$$

On remarque que : $card(S \times T) = card(S) \times card(T) = 3 \times 4 = 12$

Produit cartésien de deux relations

Le produit cartésien de deux relations R₁ et R₂ permet de créer une relation dans laquelle apparaissent tous les t-uplets de R_1 auxquels sont concaténés les t-uplets de R_2 .

Le produit cartésien de deux relations R_1 et R_2 se dénote $R_1 \times R_2$. On note que le degré de $R_1 \times R_2$ = degré de R_1 + degré de R_2 .

ETUDIANTS1		
Numero*	Nom	
23794	Dornier	
32911	Martin	
34812	Sargu	

MODULES1
CodeModule*
BD_L1
PROG L1

FTUDIANTS1 × MODULES1

Numero*	Nom	CodeModule*	
23794	Dornier	BD_L1	
23794	Dornier	PROG_L1	
32911	Martin	BD_L1	
32911	Martin	PROG_L1	
34812	Sargu	BD_L1	
34812	Sargu	PROG_L1	

Les opérater

Les opérateurs relationnels spécifiques

Intégrité des données

Définition

La sélection, également appelée restriction, permet d'extraire d'une relation les t-uplets satisfaisant une condition donnée.

La sélection des t-uplets de R satisfaisant un critère C se dénote S(C)R.

Quelques propriétés

Définitions de base

Les opérateurs relationnels spécifiques

- La relation resultante de la sélection possède la même en-tête que la relation initiale R, mais une cardinalité différente (inférieure ou égale à celle de R).
- Seuls les t-uplets satisfaisant le critère de sélection apparaissent dans le résultat.

Intégrité des données

Critère de sélection C

Définitions de base

Les opérateurs relationnels spécifiques

Le critère de sélection C doit respecter une syntaxe particulière :

- Les attributs sont les attributs de la relation R.
- Les opérateurs sont les opérateurs classiques de comparaison : $=, \neq, >, <, \geq,$ <. Les conditions atomiques peuvent se connecter à l'aide des opérateurs logiques classiques ET, OU et NON.
- Les valeurs sont celles du domaine de l'attribut considéré.

Considérons la relation ETUDIANT vue précédemment.

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

On souhaite calculer:

ETUDIANTSAPRES92 = S(DateNaissanceEtudiant ≥ 1-01-1992) ETUDIANT

Intégrité des données

Définitions de base

On sélectionne les t-uplets satisfaisant le critère.

L . . . Les opérateurs relationnels spécifiques

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

On souhaite calculer:

ETUDIANTSAPRES92 = S(DateNaissanceEtudiant ≥ 1-01-1992) ETUDIANT

Intégrité des données

Définitions de base

On obtient le résultat : ETUDIANTSAPRES92

L . . . Les opérateurs relationnels spécifiques

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt

Définition

La projection permet de définir une relation consistant en l'ensemble de tous les t-uplets de la relation de départ dans laquelle seuls les attributs de projection sont conservés.

La projection de R sur ses attributs Att_1 , Att_2 , ... se dénote $[Att_1, Att_2, ...]R$.

Quelques propriétés

- Le degré de la relation résultante est inférieur (ou égal) au dégré de la relation de départ.
- La cardinalité peut également être diminuée, si le résultat contient des doublons (par définition interdits dans les ensembles, ils n'apparaîtront qu'une fois).

Les opérater

Les opérateurs relationnels spécifiques

Intégrité des données

Définitions de base

L . . . Les opérateurs relationnels spécifiques

Considérons la relation ETUDIANT

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32827	Bros	Maxime	3-10-1992	mbros	mbros
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

On veut calculer ETUDIANTSNP = [NomEtudiant, PrenomEtudiant] ETUDIANTS

Application de la projection

On réalise la projection sur les deux attributs mentionnés

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32827	Bros	Maxime	3-10-1992	mbros	mbros
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

On veut calculer ETUDIANTSNP = [NomEtudiant, PrenomEtudiant] ETUDIANTS

On obtient le résultat ETUDIANTSNP

Nom	Prenom
Dornier	Arnaud
Bros	Maxime
Martin	Maxime
Schatt	Bastien
Sargu	Vlad

Les opérater

emto-st

Les opérateurs relationnels spécifiques

Considérons la relation FTUDIANT

Numero*	Nom	Prenom	DateNaissance	Login	MotDePasse
23794	Dornier	Arnaud	27-09-1990	adornier	adornier
32827	Bros	Maxime	3-10-1992	mbros	mbros
32911	Martin	Maxime	2-12-1992	mmartin	mmartin
33818	Schatt	Bastien	23-05-1992	bschatt	bschatt
34812	Sargu	Vlad	15-12-1990	vsargu	vsargu

On veut calculer ETUDIANTSPRENOM = [PrenomEtudiant] ETUDIANTS

Intégrité des données

Définitions de base

L . . . Les opérateurs relationnels spécifiques

On réalise la projection sur le seul attribut mentionné

Num	ero*	Nom	Prenom	DateNaissance	Login	MotDePasse
237	794	Dornier	Arnaud	27-09-1990	adornier	adornier
328	327	Bros	Maxime	3-10-1992	mbros	mbros
329	911	Martin	Maxime	2-12-1992	mmartin	mmartin
338	318	Schatt	Bastien	23-05-1992	bschatt	bschatt
348	312	Sargu	Vlad	15-12-1990	vsargu	vsargu

On veut calculer ETUDIANTSPRENOM = [PrenomEtudiant] ETUDIANTS

On obtient le résultat ETUDIANTSPRENOM

Prenom
Arnaud
Maxime
Bastien
Vlad

Les relations étant des ensembles, la valeur "Maxime" n'apparaît qu'une seule fois.

A vous de jouer

Définitions de base

L . . . Les opérateurs relationnels spécifiques

Donnez les requêtes permettant de calculer, sur notre exemple :

Intégrité des données

- Le libellé des modules qui ont plus de 18h de CM.
- Le nom et prénom des étudiants nés avant 1991.
- Le numéro des étudiants ayant validé leurs modules en session 1 en 2010.
- Les nom et prénom des enseignants ayant le grade "MCF".
- Le numéro des étudiants inscrits en BD_L1, mais qui ne l'ont jamais validé.

La jointure est un opérateur essentiel pour la manipulation des informations dans une base de données.

Définition de la jointure

Une jointure de relations R_1 et R_2 consiste à construire une relation dont les t-uplets sont la concaténation d'un t-uplet de R_1 et d'un t-uplet de R_2 vérifiant une condition dite de jointure.

La jointure de deux relations R_1 et R_2 avec la condition de jointure C se note : $R_1[C]R_2$.

Intégrité des données

La jointure est un opérateur essentiel pour la manipulation des informations dans une base de données.

Application de la jointure

Définitions de base

Les opérateurs relationnels spécifiques

Une jointure entre deux relations est possible lorsque celles-ci possède au moins un attribut commun au sens sémantique.

En pratique, le résultat de la jointure est équivalent à l'application successive d'un produit cartésien, suivi d'une sélection des t-uplets respectant le critère de jointure.

$$R_1[C]R_2 \Leftrightarrow S(C)(R_1 \times R_2)$$

Responsable

Les opérateurs relationnels spécifiques

On souhaite réaliser la jointure :

CodeModule*

NoHarnege*

MOD1 [MOD1.Responsable = ENS1.NumeroHarpege] ENS1

MOD1

Ocacivicadio	Liboliolyloddio	ricoponidabio
BD_L1	Bases de données	7914
PROG_L1	Programmation	7358
TEST_M2	Test de logiciels	7914

LibelleModule

FNS₁

NoHarpege*	Nom	Prenom
7358	Féléa	Violeta
7914	Dadeau	Frédéric
32598	Paquette	Guillaume

Responsable

Intégrité des données

On souhaite réaliser la jointure :

CodeModule*

Définitions de base

L . . . Les opérateurs relationnels spécifiques

MOD1 [MOD1.Responsable = ENS1.NumeroHarpege] ENS1

MOD1

Ocacivicadio	Liboliolyloddio	ricoporioabio
BD_L1	Bases de données	7914
PROG_L1	Programmation	7358
TEST_M2	Test de logiciels	7914

LibelleModule

FNS₁

NoHarpege*	Nom	Prenom	
7358	Féléa	Violeta	
7914	Dadeau	Frédéric	
32598	Paquette	Guillaume	

On souhaite réaliser la jointure :

MOD1 [MOD1.Responsable = ENS1.NumeroHarpege] ENS1

CodeModule*	LibelleModule	Responsable	NoHarpege*	Nom	Prenom
BD_L1	Base de données	7914	7914	Dadeau	Frédéric
PROG_L1	Programmation	7358	7358	Féléa	Violeta
TEST_M2	Test de logiciels	7914	7914	Dadeau	Frédéric

Remarque : on aurait obtenu le même résultat avec

ENS1 [ENS1.NumeroHarpege = MOD1.Responsable] MOD1

On trouve en réalité trois types de jointures, en fonction de la nature de la condition de jointure.

- La jointure naturelle
- L'équi-jointure
- La θ -jointure

Intégrité des données

Définition de la jointure naturelle

Définitions de base

Les opérateurs relationnels spécifiques

Une jointure naturelle de relations R_1 et R_2 consiste à construire une relation dont les t-uplets sont la concaténation d'un t-uplet de R₁ et d'un t-uplet de R₂ pour lesquels la condition de jointure spécifie que des attributs de même nom doivent porter la même valeur.

$$R_1[R_1.att = R_2.att]R_2$$
 également noté $R_1[att]R_2$

En conséquence, le résultat ne conservera qu'une seule des deux colonnes communes.

Intégrité des données

FTU₁

On souhaite réaliser : ETU1 [NumeroEtudiant] MOD1

NumeroEtudiant"	Nom	Prenom
23794	Dornier	Arnaud
32911	Martin	Maxime
33818	Schatt	Bastien
34812	Sargu	Vlad
	23794 32911 33818	23794 Dornier 32911 Martin 33818 Schatt

Numero Etudiont* Code Module*

	NumeroEtudiant	Codeiviodule
MOD1	23794	BD_L1
WIOD!	23794	PROG_L1
	32911	BD L1

Intégrité des données

Définitions de base

L . . . Les opérateurs relationnels spécifiques

On souhaite réaliser : ETU1 [NumeroEtudiant] MOD1 NumeroEtudiant* Nom Prenom

14dilloro Ltadiant	140111	1 TOHOITI
23794	Dornier	Arnaud
32911	Martin	Maxime
33818	Schatt	Bastien
34812	Sargu	Vlad

MOD1

FTU₁

NumeroEtudiant*	CodeModule*		
23794	BD_L1		
23794	PROG_L1		
32911	BD_L1		

Intégrité des données

Définitions de base

L . . . Les opérateurs relationnels spécifiques

On souhaite réaliser : ETU1 [NumeroEtudiant] MOD1

NumeroEtudiant*	Nom	Prenom	CodeModule*
23794	Dornier	Arnaud	BD_L1
23794	Dornier	Arnaud	PROG_L1
32911	Martin	Maxime	BD_L1

On remarque la colonne *CodeModule* n'apparaît qu'une seule fois dans le résultat.

Les opérateurs relationnels spécifiques

Intégrité des données

Définition de l'équi-jointure

Définitions de base

Les opérateurs relationnels spécifiques

L'équi-jointure de deux relations R₁ et R₂ est une jointure dont la condition de jointure est l'égalité des valeurs d'attributs att₁ et att₂, appartenant respectivement aux relations R_1 et R_2 .

$$R_1[R_1.att_1 = R_2.att_2]R_2$$

Remarque : la jointure naturelle, vue précédemment, est un cas particulier d'équi-jointure, où les deux attributs sont les mêmes.

Intégrité des données

CodoModulo*

Définitions de base

L . . . Les opérateurs relationnels spécifiques

C'est le cas de la jointure déjà montrée précédemment : MOD1 [MOD1.Responsable = ENS1.NumeroHarpege] ENS1

MOD1

Codelviodule	Libellelviodule	nesponsable
BD_L1	Bases de données	7914
PROG_L1	Programmation	7358
TEST_M2	Test de logiciels	7914

LiballaMadula

FNS₁

NoHarpege*	Nom	Prenom
7358	Féléa	Violeta
7914	Dadeau	Frédéric
32598	Paquette	Guillaume

Responsable

Intégrité des données

CodeModule*

Définitions de base

C'est le cas de la jointure déjà montrée précédemment : MOD1 [MOD1.Responsable = ENS1.NumeroHarpege] ENS1

MOD1

o o do mo da lo	Elbollollloadio	ricoporiodoro
BD_L1	Bases de données	7914
PROG_L1	Programmation	7358
TEST_M2	Test de logiciels	7914

LibelleModule

FNS₁

NoHarpege*	Nom	Prenom
7358	Féléa	Violeta
7914	Dadeau	Frédéric
32598	Paquette	Guillaume

Les opérater

Les opérateurs relationnels spécifiques

Intégrité des données

Définitions de base

L . . . Les opérateurs relationnels spécifiques

C'est le cas de la jointure déjà montrée précédemment : MOD1 [MOD1.Responsable = ENS1.NumeroHarpege] ENS1

CodeModule*	LibelleModule	Responsable	NoHarpege*	Nom	Prenom
BD_L1	Base de données	7914	7914	Dadeau	Frédéric
PROG_L1	Programmation	7358	7358	Féléa	Violeta
TEST_M2	Test de logiciels	7914	7914	Dadeau	Frédéric

Intégrité des données

Définition de la θ -jointure

Définitions de base

Les opérateurs relationnels spécifiques

La θ -jointure de deux relations R_1 et R_2 selon une condition de jointure C est l'ensemble des t-uplets du produit cartésien de R_1 et R_2 satisfaisant la condition C.

$$R_1[C]R_2$$

Remarque: l'équi-jointure, et, par extension, la jointure naturelle, sont des cas particuliers de θ -jointure, où la condition de jointure est une égalité.

Intégrité des données

Définitions de base

No-Hornogo*

L . . . Les opérateurs relationnels spécifiques

La condition d'une θ -jointure n'est pas obligée de contenir une égalité : MOD1 [MOD1.Responsable ≠ ENS1.NumeroHarpege] ENS1

MOD1

CodeModule [*]	LibelleModule	Responsable
BD_L1	Bases de données	7914
PROG_L1	Programmation	7358
TEST_M2	Test de logiciels	7914

FNS₁

Nonarpege	INOITI	FIEIIOIII
7358	Féléa	Violeta
7914	Dadeau	Frédéric
32598	Paquette	Guillaume

Nom

Les opérateurs relationnels spécifiques

Intégrité des données

Définitions de base

L . . . Les opérateurs relationnels spécifiques

La condition d'une θ -jointure n'est pas obligée de contenir une égalité : MOD1 [MOD1.Responsable ≠ ENS1.NumeroHarpege] ENS1

MOD1

Codeiviodule"	Libelleiviodule	Responsable
BD_L1	Bases de données	7914
PROG_L1	Programmation	7358
TEST_M2	Test de logiciels	7914

FNS₁

NoHarpege*	Nom	Prenom
7358	Féléa	Violeta
7914	Dadeau	Frédéric
32598	Paquette	Guillaume

Les opérater

Les opérateurs relationnels spécifiques

Exemple de θ -jointure

No-Hornogo*

La condition d'une θ -jointure n'est pas obligée de contenir une égalité : MOD1 [MOD1.Responsable \neq ENS1.NumeroHarpege] ENS1

MOD1

emto-st

Codelviodule	Libellelviodule	Responsable
BD_L1	Bases de données	7914
PROG_L1	Programmation	7358
TEST_M2	Test de logiciels	7914

FNS1

Nonarpege	INOITI	Frenom
7358	Féléa	Violeta
7914	Dadeau	Frédéric
32598	Paquette	Guillaume

Les opérater

Les opérateurs relationnels spécifiques

Intégrité des données

Définitions de base

No-Hornogo*

L . . . Les opérateurs relationnels spécifiques

La condition d'une θ -jointure n'est pas obligée de contenir une égalité : MOD1 [MOD1.Responsable ≠ ENS1.NumeroHarpege] ENS1

MOD1

CodeModule*	LibelleModule	Responsable
BD_L1	Bases de données	7914
PROG_L1	Programmation	7358
TEST_M2	Test de logiciels	7914

FNS₁

Noriarpege	INOITI	FIEIIOIII
7358	Féléa	Violeta
7914	Dadeau	Frédéric
32598	Paquette	Guillaume

Intégrité des données

Exemple de θ -jointure

Définitions de base

L . . . Les opérateurs relationnels spécifiques

La condition d'une θ -jointure n'est pas obligée de contenir une égalité : MOD1 [MOD1.Responsable \neq ENS1.NumeroHarpege] ENS1

CodeModule*	LibelleModule	Resp.	NoHarpege*	Nom	Prenom
BD_L1	Base de données	7914	7358	Féléa	Violeta
BD_L1	Base de données	7914	32598	Paquette	Guillaume
PROG_L1	Programmation	7358	7914	Dadeau	Frédéric
PROG_L1	Programmation	7358	32598	Paquette	Guillaume
TEST_M2	Test de logiciels	7914	7358	Féléa	Violeta
TEST_M2	Test de logiciels	7914	32598	Paquette	Guillaume

A vous de jouer

Définitions de base

L . . . Les opérateurs relationnels spécifiques

Donnez les requètes permettant de calculer, sur notre exemple :

- Le libellé des modules où est inscrit l'étudiant numéro 23794 en 2010.
- Le nom et prénom des étudiants inscrits un module de l'enseignant 7914.
- Les noms et prénoms des enseignants qui ont côtoyé l'étudiant numéro 23794.
- Les numéros des étudiants qui n'ont jamais côtoyé l'étudiant numéro 23974.
- Le libellé des modules communs aux étudiants 23974 et 33818.

Intégrité des données

Définition de la division

La division de la relation $R_1(A_1,...,A_p,A_{p+1},...,A_n)$ par la relation $R_2(A_{p+1},...,A_n)$ retourne une relation $R_3(A_1,...,A_p)$ telle que tous les t-uplets de R_3 concaténés à R_2 apparaissent dans la relation R_1 .

On a :
$$R_3 \times R_2 \subseteq R_1$$

Cette division se note : $R_3 = R_1[R_1.A_{p+1},...,R_1.A_n/R_2.A_{p+1},...,R_2.A_n]R_2$

Définitions de base

L . . . Les opérateurs relationnels dérivés

Définitions de base

L . . . Les opérateurs relationnels dérivés

Définitions de base

L . . . Les opérateurs relationnels dérivés

Intégrité des données

Quelle utilité pour la division

Définitions de base

Les opérateurs relationnels dérivés

Cet opérateur permet :

- de rechercher dans une relation tous les t-uplets qui sont complétés par concaténation par ceux d'une autre relation.
- de répondre à des questions de la forme : "quelque soit x, trouver y" de façon simple.

Notation

La relation par laquelle on divise ne doit pas contenir d'autres attributs que ceux intervenants dans la division. Il est donc possible de simplifier l'écriture de la division :

R₁ DIV R₂

Intégrité des données

•

Un premier exemple de divisior

Définitions de base

L . . . Les opérateurs relationnels dérivés

INSCRIPTION			
NoEtudiant*	CodeModule*		
23794	BD_L1		
23794	PROG_L1		
32911	BD_L1		
32911	PROG_L1		
32911	TEST_M2		
33818	BD_L1		
34812	PROG_L1		
34812	BD_L1		
34812	TEST_M2		

MOD1
CodeModule*
BD I 1
PROG L1
TEST_M2

INSCRIPTION	DIV	MOD1
NoEtudiant*		
32911	7	
34812		

On calcule ainsi les étudiants qui sont inscrits dans tous les modules de MOD1.

Intégrité des données

Définitions de base

L . . . Les opérateurs relationnels dérivés

INSCRIPTION			
NoEtudiant*	CodeModule*		
23794	BD_L1		
23794	PROG_L1		
32911	BD_L1		
32911	PROG_L1		
32911	TEST_M2		
33818	BD_L1		
34812	PROG_L1		
34812	BD_L1		
34812	TEST_M2		

EIU1	
NoEtudiant*	
23794	
32911	
33818	
34812	

NSCRIPTION	DIV	ETU1
CodeModule*		
BD I 1		

On calcule ainsi les modules auxquels sont inscrits tous les étudiants de ETU1.

Dans le cas où, pour un t-uplet de la relation R_1 il n'existe pas de t-uplet de la relation R₂ satisfaisant la condition de jointure, ce t-uplet n'apparaît pas dans le résultat de la iointure.

... vs. jointure externe

La jointure externe permet de garder les t-uplets de R₁ même si aucun t-uplet correspondant n'existe dans la relation R_2 .

Définition de la jointure externe

La jointure externe permet de créer une relation à partir de deux relations R_1 et R_2 par jointure des deux relations, et ajout des t-uplets des relations R₁ et R₂ ne participant pas à la jointure, avec des valeurs NULL pour les attributs de l'autre relation.

La notation est similaire à celle d'une jointure, on rajoute un + du côté de la relation pour laquelle on souhaite conserve tous les t-uplets.

$$R_1 + [C] + R_2$$

MOD1

CodeModule*	LibelleModule	Responsable
BD_L1	Bases de données	7914
PROG_L1	Programmation	7358
SR_L3	Systèmes et réseaux	22223

ENS₁

NoHarp	ege*	Nom	Prenom
735	В	Féléa	Violeta
791	4	Dadeau	Frédéric
3259	18	Paquette	Guillaume

MOD1

femto-st

CodeModule*	LibelleModule	Responsable
BD_L1	Bases de données	7914
PROG_L1	Programmation	7358
SR_L3	Systèmes et réseaux	22223

ENS₁

NoHarpege*	Nom	Prenom
7358	Féléa	Violeta
7914	Dadeau	Frédéric
32598	Paquette	Guillaume

Jointure interne: MOD1 [MOD1.Responsable = ENS1.NoHarpege] ENS1

CodeModule*	LibelleModule	Resp.	NoHarpege	Nom	Prenom
BD_L1	Bases de données	7914	7914	Dadeau	Frédéric
PROG L1	Programmation	7358	7358	Féléa	Violeta

Définitions de base Intégrité des données

L . . . Les opérateurs relationnels dérivés

Les opérateurs relationnels dérivés

Exemple de jointures

MOD1

CodeModule* LibelleModule		Responsable
BD_L1	Bases de données	7914
PROG_L1	Programmation	7358
SR_L3	Systèmes et réseaux	22223

ENS1

Un exemple

NoHarpege*	Nom	Prenom	
7358	Féléa	Violeta	
7914	Dadeau	Frédéric	
32598	Paquette	Guillaume	

Jointure externe : MOD1 + [MOD1.Responsable = ENS1.NoHarpege] ENS1

CodeModule*	LibelleModule	Resp.	NoHarpege	Nom	Prenom
BD_L1	Bases de données	7914	7914	Dadeau	Frédéric
PROG_L1	Programmation	7358	7358	Féléa	Violeta
SR_L3	Systèmes et réseaux	22223	NULL	NULL	NULL

MOD1

CodeModule* LibelleModule		Responsable
BD_L1	Bases de données	7914
PROG_L1	Programmation	7358
SR_L3	Systèmes et réseaux	22223

ENS₁

NoHarpege*	Nom	Prenom	
7358	Féléa	Violeta	
7914	Dadeau	Frédéric	
32598	Paquette	Guillaume	

Jointure externe: MOD1 [MOD1.Responsable = ENS1.NoHarpege] + ENS1

CodeModule*	LibelleModule	Resp.	NoHarpege	Nom	Prenom
BD_L1	Bases de données	7914	7914	Dadeau	Frédéric
PROG_L1	Programmation	7358	7358	Féléa	Violeta
NULL	NULL	NULL	32598	Paquette	Guillaume

MOD1

femto-st

CodeModule*	LibelleModule	Responsable	
BD_L1	Bases de données	7914	
PROG_L1	Programmation	7358	
SR_L3	Systèmes et réseaux	22223	

ENS₁

Un exemple

NoHarpege*	Nom	Prenom	
7358	Féléa	Violeta	
7914	Dadeau	Frédéric	
32598	Paquette	Guillaume	

Jointure externe: MOD1 + [MOD1.Responsable = ENS1.NoHarpege] + ENS1

CodeModule*	LibelleModule	Resp.	NoHarpege	Nom	Prenom
BD_L1	Bases de données	7914	7914	Dadeau	Frédéric
PROG_L1	Programmation	7358	7358	Féléa	Violeta
SR_L3	Systèmes et réseaux	22223	NULL	NULL	NULL
NULL	NULL	NULL	32598	Paquette	Guillaume

