School of Computing and Information Systems The University of Melbourne COMP90049 Introduction to Machine Learning (Semester 2, 2022) Week 3

1. For the following dataset:

id	apple	ibm	lemon	sun	CLASS		
TRAINING INSTANCES							
A	4	0	1	1	FRUIT		
В	5	0	5	2	FRUIT		
C	2	5	0	0	COMPUTER		
D	1	2	1	7	COMPUTER		
TEST INSTANCES							
T1	2	0	3	1	?		
T2	1	2	1	0	?		

- (i). Using the Euclidean distance measure, classify the test instances using the 1-NN method.
- (ii). Using the **Manhattan distance** measure, classify the test instances using the 3-NN method, for the three weightings we discussed in the lectures: *majority class*, *inverse distance*, *inverse linear distance*.
- (iii). Can we do weighted k-NN using cosine similarity?
- 2. Approximately 1% of women aged between 40 and 50 have breast cancer. 80% of mammogram screening tests detect breast cancer when it is there. 90% of mammograms DO NOT show breast cancer when it is **NOT** there¹. Based on this information, complete the following table.

Cancer	Probability
No	99%
Yes	1%

Cancer	Test	Probability	
Yes	Positive	80%	
Yes	Negative	?	
No	Positive	?	
No	Negative	90%	

- 3. Based on the results in question 2, calculate the **marginal probability** of 'positive' results in a Mammogram Screening Test.
- 4. Based on the results in question 2, calculate $P(Cancer = 'Yes' \mid Test = 'Positive')$, using the Bayes Rule.

¹ Remember these numbers are not accurate and simplified to ease the calculations in this question.