Feynman diegnoss in equiv. Onweethe georety.

Enumerative geometry is the study of country geometric Objects. For me, this is country certain curves into a special kild of variety in proticion K-theory, which is an invarient much like horoboy, allows us to use algebraic to polosy to study these counts in hieresting lucys.

Plan: - What kinds of vorieties are we going to Study?

- What is the K-theory of these objects & chy
Should you care? (Rethe equations, interesting algebra)

- What are we canting.
- How to disgramaticely model these objects (i.e. Feynman diagrams)

Part 1: Nalcajima Vanietics In the 90's Hiraku Makejima diseased an amorning connected between QFT. & certain geametric objects arising from griver is a directed graph Taking this quive we may assign. Kep(v) = Hom(v:, v;) & Hom(w:, v;) Quiver Rep Theory Studies group actions of these spaces

We	went	a g	Rometric	object.	14 to	hs a	rt A	L Le	, 6		•
ſ	this	l IS								•	•
		1)	Add	framing	vertice	s" c	nd a	maus W;	نا و	ļih Wi	·
•	٠	2)	. Double	e all a	rrows.	•	•	•	٠	•	
. 50	ee, (oinzbr	5.5 not	us for p	reise r	Tasen	•	•	•	•	٠
	_			pt. quot			t. bun	les	•		•
<u>E</u> ×:	•	.01	υ _Σ ν ₃	(1)	V _L	Uz. V	3	•	٠	٠	•
•	•			•	•			•	•	•	•
•	•	٠	• •	(2)				0	•	•	٠
•	•	•	• •	· • • • • • • • • • • • • • • • • • • •	• = •	=	·	•	•	•	٠
٠	٠	•	•		٠	. [J.	•	•	•	•
Ni	the	th	Space				•		٠		•
-* Re	י א		· · ·	 	•				•	٠	•
٠,٠٦	وروري	_	;->;	m(Vi; U;)	€ ⊕	Hom	ω_i, v	(;)	•	٠	•
>	•		...	duels	. *				•	•	٠
1- ctrell	4 C	dege:	t bund	le .	•	•	•	•	•	•	•

Grap action
$$G_{v} = \prod_{i} G_{i}(v_{i})$$
 $G_{w} = \prod_{i} G_{i}(v_{i})$

I make the arrows to get the forms

The lost imported piece is smalling colled a Stability parameter Again it's a super imported part but why would take too long. It's a map

 $\Theta: G_{v} \longrightarrow C^{*}$
 $G_{i} \longmapsto_{i} \prod_{j} \prod_{i} G_{j}(v_{i})$

Changing $\Theta \longrightarrow D_{i} \bigcap_{j} G_{v}(v_{i})$

So what is a Nakajina Which?

 $X = \mu^{-1}(0) / G_{v}(v_{i})$

If you've never seen these before here are some examples: Ex: T*Gr(10,1), T*Partid Play, Hilb^(CC2) $W = (O_1, ..., O_1, N)$ 0 = ± (1...,1) $\overline{1} = A \times C_{*} \times A \times X$ There is a torus action Max tone Scaling of Aut(X) Symplech form $(\uparrow,\downarrow)=(\uparrow,\downarrow\downarrow)$ What are we Counting? Scale mosik A: Quasimaps X = 1 [Rep Gy/Gv] Nakojima Varieties Subset State locus Snooth: Sympletic (-) Grazinap X X X

"DeF": Maps $f: C \longrightarrow X$ are called chesimps if $f(p) \in X$ for all but finitely many pts pe C. Pts pe C where fip) & X are called Singularities of f $GM^{2}(X) = \left\{ C = \mathbb{P}' - - - - > X \mid \deg(f) = d \right\}$ $deH_{2}(x_{1}z_{2})$ J Well-défined Ovir EKG (BME(X)) . We are really in each of.
familes canting the "number of degree
d querineps" X (Ovir 8 ...) [= anglog of (where form)

Gue in Cohomology) Classes Qm e(x)

evaluation Map $\mathbb{G}M^{\ell}(X) \xrightarrow{C} \mathcal{X}$ f in the evp*(t) E KT (QMd(x)) If Te XT(X) then There are useful shorthand. Notetion for descriping "Feynman Diagrams" Component of same Curve C=P1 · · · · · · · · · · · evp(t) descendant insertion (. . 7 . G=Gla> = K([p+/6) $K([x] = T^*V/G)$ ~ (C p7) = Rep(G) = Chor(G)

Another structure

$$QM_{us}^{q}(x) = \{ f \in QM_{q} : f \in X \}$$

$$= eV_{p_{\pi}} : K_{e}(QM_{nsp}) \longrightarrow K_{e}(X)$$

$$+ Sum over all degrees.$$

$$\mathcal{E}_{\mathsf{X}}$$
:
 \mathcal{P}_{I}
 \mathcal{P}_{Z}

$$V^{(t)}_{(2)} = \sum_{k} ev_{p_{z}, k} \left(GM_{ns}^{k} p_{k}, ev_{p_{z}}^{*}(\tau) \Theta \hat{G}_{u, r}^{k} \Theta \cdots \right) z^{d}$$

$$\in K_{T \times C_{q_{z}}^{\times}} \left(\chi \right) \left[\Gamma^{2} \right]^{2}$$

Vertex function w/ descendent . T.

Importent pts:

1) $G = T \times C_2^{\times}$

		1 ofethor
•	٠	Symmetry
•	٠	2) ex. K(GMnsp) -> K(x) not defined
•	•	it's nonproper. To fix this we need to
	•	. Use equipment localization, this is where Co
		Cones in,
•	٠	This is why we land in localize equilent
•	٠	K-thany.
	٠	
Cla	im !	P. Pz
•	•	
٠	•	Propre No singularitées en P1/21, R
•	٠	
So	we	need localization, but the upshot is that this
		V'is easy to compute well localization.
		t, these are solutions of certain q-difference
		(g-différential in HT) 8 generalise
ำทุน (ϕ ,	hypergeenetric functions.

7 V(3):= 2. ENDS: (QM (X) LEI DS, END, (S) & ON, O.) 59 E KT (X)[[z]] This is very difficult to compute since we don't have localization and is the main town of my research Many deep properties: Conjecture: This is a rational tunetion Than [Pandharipande-Pixton, 13]: This is rational for the Cohomological versier in the case of certain Stable pairs Thro[Smirrow, 16]: This is true for X= M(nor) Thri [A-Smichon, '24] This is true for X= Hilb(Ce2)

and Campute an explicit Combinatorial formula for this V(2)

	Thm [A - Dia	cins, To	Appear Soon						
•	χ =	Hilb	$\mathbb{C}^{\mathbb{Z}}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	مر	Com	ute o	en en	rpirc:+	•
٠		inotorial			$\int_{\zeta} \zeta(\epsilon)$	•	٠	•	•	•
٠	٠		•			•	•	•	•	•
<u>E×</u>		· ·			√ .	•	٠	•	•	•
•	٠	P,	PZ	•	٠	٠	٠	•	٠	•
•	•		٠	٠	•		•	•	•	•
•		evp,,*	& EUPZ	, + (Q/	14(X/	, Ĝ	v: - 8)29		•
	7				rel Pa	.E	K _T	$^{2}(\times)$) Loc];?}j
•		4	(a,2)		"Cappin	3	operato	۲.		•
1	P(9,2)	is the	fund.	Solution	on Ma	kix	of	9-d	iff e	guet?
	10	both a spee	م م الع عا	& Z	-) dyno	nice l etas				
	a is	a Spee	feel pers	eneter a	nishe f	j	RT"			•
٠	There	is . c .	nice. S	symmetry	between	een (a. D	₹. (Callee) .
•	3D -	Mirror.	Symre	try	•	•	•		•	٠

Why one diagrams useful? Bare vertex is easy to. Comple, capped isn't blc no localization but	•
P ₁ Verlex Capping Capping Capping	
Very Very important than in R-theoretic Enon. Geo Droves Le Or you It Connects quesiness georets.	•
proven by Okanloov. It Connects quesinep genety, geometric rep theory & Methernatical physics into one capation.	•

•

•

•

.

•

•

•

•

.

•

•

•

•

•

•

•

•

•

•

.

.

•

•

•

•

•

•

•

•

•

•

•

 $G = \sum_{d} ev_{P_{1,4}} eev_{P_{2}} \left(QM_{rel}^{d}(x), ev_{P_{3}}^{*}(\tau) e Qi'^{a.} \right) 2^{d}$

"Glue Metrix"

Important Connection to RT: G = T.*

- Quentum multiplication by T, these operators

- Commute 8 form Bethe algebra

In particular they're Hz = Hamiltonin whose expensives
are controlled by a for an XXZ-Spin chain

•	Inte	yreble Spin chains & Connections to geometry	•
٠		$-\log(\hat{q})$, $-\sqrt{(a)}$, $-\sqrt{(a)}$	•
•	•	quentum find rep of Uq(g)	•
•	٠		•
•	٠	Fock = V(a,) 6 - 8 V(cn)	•
•	3	System of counting Hamiltonius HI, Hz, O Fock	•
•	•		•
•		Fork = # Forkn. L veight k subspace	•
•	٠	Fock ~ K_T(Xk)	•
•		XI XI es a Nekejine vorkty	•
•	٠	Stolle enelope	•
•	٠	Under Steble envelopes operators of quarter rult	•
•	•	Hamiltoning.	•
٠	•		•

•

•

.

.

•

.

•

•

.

.

•

•

.