MAREK POLEWSKI MECHANIKA LOTU 2 PROWADZĄCY: DR. INŻ MACIEJ LASEK WTOREK 14:15-16:00

Projekt 12 "Analiza ruchów fugoidalnych samolotu"

DATA ODDANIA PROJEKTU:	OCENA:

1 Wstęp

Obliczenia zostały wykonane w programie EXCEL. Wyszystkie obliczenia zostały wkononane dla samolotu o następujących parametrach:

- m = 700 kg,
- $S = 15m^2$,
- h = 3km,
- $\rho(h = 3km) = 0.908kgm^{-3}$

2 Równania ruchu samolotu

Zastosowane zostały poniższe równania ruchu samolotu:

$$m\frac{dv}{dt} + mg\sin(\theta) + \frac{1}{2}\rho S(V_0 + v)^2 C_x = 0$$
(1)

$$mV_0 \frac{d\theta}{dt} + mg\cos(\theta) - \frac{1}{2}\rho S(V_0 + \nu)^2 C_z = 0$$
 (2)

Równania te zostały sprawdzone do bezwymiarowych równań ruchu:

$$\frac{d\bar{v}}{d\bar{t}} + \frac{1}{2}C_z\vartheta + C_x\bar{v} = 0 \tag{3}$$

$$\frac{d\bar{\vartheta}}{d\bar{t}} + \frac{1}{2}C_X\vartheta + C_Z\bar{v} = 0 \tag{4}$$

gdzie $\bar{v} = \frac{v}{V_0}$, $\bar{\vartheta}$ - bezwymiarowe zaburzenie kąta pochylenia, \bar{t} bezwymiarowy czas, $\hat{t} = \frac{2m}{\rho S V_0}$ - czas aerodynamiczny Pierwiaskami zespolonymi sprzeżnomi równań (1) i (2) są:

$$\lambda_{1,2} = -\frac{3}{4}C_x \pm i \cdot \sqrt{\frac{1}{2}(C_x^2 + C_z^2) - \frac{9}{16}C_x^2}$$

Wówczas otrzymyjemy:

Bezwymiarowy współczynnik tłuamienia:

$$\bar{\zeta} = -\frac{3}{4}C_x$$

Bezwymiarowa częstość ruchu okresowego:

$$\bar{\eta} = \sqrt{\frac{1}{2} \left(C_x^2 + C_z^2 \right) - \frac{9}{16} C_x^2}$$

Okres ruchu:

$$T = \frac{w\pi}{\sqrt{\frac{1}{2}(C_x^2 + C_z^2) - \frac{9}{16}C_x^2}} \cdot i$$

czas stłumienia amplotudy do $\frac{1}{2}$:

$$T_{\frac{1}{2}} = \frac{\ln 2}{\frac{3}{4}C_X} \cdot i$$

Otrzymane wartości zamieszczam w tabeli:

C_z	C_x	V[m/s]	Im	Re	î	T[s]	$T_{\frac{1}{2}}$ [s]
0.10	0.05	100.37	0.07	-0.04	1.02	92.40	18.70
0.17	0.05	77.39	0.12	-0.04	1.33	70.52	23.76
0.24	0.05	65.28	0.17	-0.04	1.57	59.32	27.34
0.30	0.06	57.51	0.21	-0.04	1.79	52.20	29.85
0.37	0.06	51.99	0.26	-0.04	1.98	47.16	31.53
0.44	0.06	47.80	0.31	-0.05	2.15	43.35	32.52
0.51	0.06	44.48	0.36	-0.05	2.31	40.33	32.96
0.58	0.07	41.77	0.41	-0.05	2.46	37.87	32.95
0.65	0.07	39.51	0.46	-0.06	2.60	35.81	32.60
0.71	80.0	37.57	0.50	-0.06	2.73	34.06	32.00
0.78	80.0	35.90	0.55	-0.06	2.86	32.54	31.20
0.85	0.09	34.43	0.60	-0.07	2.98	31.20	30.27
0.92	0.10	33.12	0.65	-0.07	3.10	30.02	29.26
0.99	0.11	31.96	0.70	-0.08	3.21	28.97	28.20
1.05	0.11	30.91	0.75	-0.08	3.32	28.02	27.12
1.12	0.12	29.95	0.79	-0.09	3.43	27.15	26.04
1.19	0.13	29.08	0.84	-0.10	3.53	26.36	24.98
1.26	0.14	28.29	0.89	-0.11	3.63	25.64	23.95
1.33	0.15	27.55	0.94	-0.11	3.73	24.97	22.94
1.40	0.16	26.87	0.99	-0.12	3.82	24.36	21.98
1.46	0.17	26.23	1.03	-0.13	3.91	23.78	21.06
1.53	0.18	25.64	1.08	-0.14	4.00	23.25	20.18
1.60	0.20	25.09	1.13	-0.15	4.09	22.75	19.35

Tab. 1: Wartości parametrów ruchu samolotu

Rys. 1: Bezwymiarowe wartości w czasie

Rys. 2: Parametry okresowe ruchów fugoidalnych

3 Ruchy fugoidalne

Do obliczeń wybrałem prędkość $V=44.5ms^{-1}$, oraz zakłucenie prędkości $v_0=0.5ms^{-1}$.

$$-\frac{2(\bar{\xi}+C_x)}{C_z}\pm i\frac{2\bar{\eta}}{C_z}=a\pm ib=-\frac{2*(-0.0485)*0.0647}{0.5091}\pm i\frac{2\cdot0.3596}{0.5091}\approx 0.1905\pm i1.4142$$

Ubezwymiarowany współczynnik prędkości samolotu:

$$\bar{u}_o = \frac{v_0}{V_0} = \frac{0.5}{44.5} = 0.0112$$

Ruchy fugoidalne samolotu mają postać:

$$\vartheta_0(t) = \vartheta_0 + \vartheta(\bar{t}) = \frac{\bar{u}_0}{h} (a^2 + b^2) \cdot e^{\bar{\xi} \frac{t}{\bar{t}}} \sin(\bar{\eta} \frac{t}{\hat{t}})$$

$$V(t) = V_0 + \bar{V}(t) \cdot V_0 = V_0 + V_0 \cdot \bar{u}_0 e^{\bar{\xi} \frac{t}{\hat{t}}} \left(\cos \left(\bar{\eta} \frac{t}{\hat{t}} \right) - \frac{a}{b} \sin \left(\bar{\eta} \frac{t}{\hat{t}} \right) \right)$$

Rys. 3: Ruchy fugoidalne samolotu

4 Wnioski

Dla prędkości $V=44.5ms^{-1}$ oraz zakłócenia prędkości $v_0=0.5ms^{-1}$, samolot **wykonał ruchy fugoidalne tłumione** z okresem $T\approx 35s$ i czasem stłumienia $T_{\frac{1}{2}}\approx 100s$. Po 200 sekundach samolot wykonuje ruchy o amplitudzie znikomo małej.