EE 103 – Intro to Electrical Engg: 2023-24/I - Autumn

Analog Electronics - Practice Problems (with numerical answers)

Sep 2, 2023

Part A: Circuit Theory

Mesh Analysis

7. Find the voltage V_{AB} , i.e. the voltage across A and B nodes. (Answer: $V_{AB} = 45 \text{ V}$)

2. Find i_1 and i_2 using mesh analysis. (Ans: $i_1 = 3.5$ A, $i_2 = 2.625$ A)

Node Voltage Method

3. In the circuit shown below, using the node voltage method, determine I_L for R_L = 200 ohms. (Ans: I_L = 26.43 mA)

Thevenin's theorem

- 4. For the circuit shown in the figure,
 - i) Find the Thevenin's equivalent circuit across the terminals A and B.
 - ii) Using Thevenin's equivalent circuit find I_L for: a) $R_L = 100 \Omega$ and b) $R_L = 80 \Omega$.

(Ans: (i) $V_{Th} = 7.4 \text{ V}$, $R_{Th} = 80 \Omega$; (ii) a) 41.11 mA b) 46.25 mA)

Superposition Theorem

In the circuit shown below, using superposition theorem determine I_L for $R_L = 400 \Omega$. (Ans: I_{L1} (with $V_2=0$) = 13.33 mA, I_{L2} (with $V_1=0$) = 2.08 mA; $I_L=I_{L1}+I_{L2}=15.4$ mA)

Part B - Transient Response of RC Circuits

RC Integrator circuits

- 1. An RC integrator circuit is shown below. $R = 10 \text{ k}\Omega$, $C = 0.1 \mu\text{F}$. Evaluate and sketch the voltage (V_{out}) and current (i_c) waveforms for the following RC integrator circuit for the following cases:
 - a) T = 5 msec
 - b) T = 1 msec

The input (V_{in}) is a square-wave signal (with equal high and low time intervals T), with a low-level amplitude of 0 volts and high-level amplitude 10 V.

Hints:

- i) In an RC circuit steady state voltage and current are reached when $T = 5\tau$. For cases with $T < 5\tau$, it has to be computed iteratively or analytically.
- ii) Use the capacitor equation to solve RC time response circuits.
- $V_c = V_f + (V_i V_f) \exp(-t/RC)$, where $V_c =$ capacitor voltage being evaluated, $V_i =$ initial voltage, V_f = final voltage
- iii) Voltage across a capacitor cannot change instantaneously, but current can.

Answer:

Case a (T=5 msec) : $\tau=1$ msec. Steady state is reached in each half cycle. Hence $V_{out}=10$ V (end of +ve half cycle), and $V_{out}=0$ V (end of the 2^{nd} half cycle)

Case a (T = 1 msec): $\tau = 1 \text{ msec}$. Steady state is <u>not</u> reached in each half cycle. The steady state values can be analytically arrived at or evaluated numerically in an iterative fashion using the equation for the voltage across a capacitor.

Iteratively, $V_{out} = 6.32 \text{ V}$ (end of first +ve half cycle), $V_{out} = 2.33 \text{ V}$ (end of the 2^{nd} half cycle), $V_{out} = 7.18 \text{ V}$ (end of the 3rd half cycle), $V_{out} = 2.64 \text{ V}$ (end of the 4^{th} half cycle), etc

RC Differentiator circuits

- 2. An RC differentiator circuit is shown below. $R = 10 \text{ k}\Omega$, $C = 0.1 \text{ }\mu\text{F}$. Evaluate and sketch the voltage (V_{out}) and current (i_c) waveforms for the following RC integrator circuit for the following cases:
 - a) T = 5 msec
 - b) T = 10 msec

The input (V_{in}) is a square-wave signal (with equal high and low time intervals T), with a low-level amplitude of 0 volts and high level amplitude 10 V.

Hint: In an RC circuit steady state voltage and current are reached when $T = 5\tau$. For cases with $T < 5\tau$, it has to be computed iteratively or analytically.

Answer:

Case a (T = 5 msec) : $\tau = 1$ msec. Steady state is reached in each half cycle. Hence $V_{out} = 10$ V (at $t = t_{0+}$ which decays to 0 V at the end of the 1st half cycle), and $V_{out} = -10$ V (at $t = (t_0 + T)_+$ which charges to 0 V at the end of the 2nd half cycle, and the cycle repeats).

Case a (T = 1 msec): $\tau = 1 \text{ msec}$. Steady state is <u>not</u> reached in each half cycle. The steady state values can be analytically arrived at or evaluated numerically in an iterative fashion using the equation for the voltage across a capacitor.

At the transitions of V_{in} , there will be a 10 V jump (+ve jump or -ve jump for +ve going and -ve going edges respectively). After the jump, the capacitor charges or discharges as the case may be. Iteratively, $V_{out} = 10 \text{ V}$ (at $t = t_{0+}$ which decays to 3.68 V at the end of the 1^{st} half cycle), and

 $V_{out} = (3.68\text{-}10) = -6.32 \text{ V}$ (at $t = (t_0 + T)_+$ which charges to -2.33 V at the end of the 2^{nd} half cycle, and $V_{out} = (-2.33 + 10) = 7.67 \text{ V}$ (at $t = (t_0 + 2T)_+$ which discharges to 2.82 V at the end of the 3^{rd} half cycle, etc.

Part C – Frequency Response of RC Circuits

1. The circuit diagram of an RC high-pass filter is given below. For a sinusoidal input voltage, sketch the magnitude plot of V_{out}/V_{in} as a function of frequency. The cut-off frequency of the filter is $f_c = 1/(2\pi RC)$. The component values are: $C = 0.2 \ \mu F$, $R = 2 \ k\Omega$.

(Ans: $f_c = 397.89$ Hz. Magnitude of (V_{out}/V_{in}) will be 0.707 at f_c , and 1 for $f >> f_c$. For $f < f_c$, the magnitude drops below 0.707 and approaches 0 at very low frequencies).

2. The circuit diagram of an RC low-pass filter is given below. For a sinusoidal input voltage, sketch the magnitude plot of V_{out}/V_{in} as a function of frequency. The cut-off frequency of the filter is $f_c = 1/(2\pi RC)$. The component values are: $C = 0.1 \ \mu F$, $R = 10 \ k\Omega$.

(Ans: $f_c = 159.15$ Hz. Magnitude of (V_{out}/V_{in}) will be 0.707 at f_c , and 1 for $f << f_c$. For $f > f_c$, the magnitude drops below 0.707 and approaches 0 at very high frequencies).

Part D – Unregulated DC Power Supply

Half-wave and Full-wave Rectifier Circuits

1. Sketch the V_A and V_{out} waveforms. Evaluate the average value of V_{out} . (Ans: $V_{out (avg)} = 15 \text{ x sqrt}(2)/\pi = 6.75 \text{ V}$)

2. In the Bridge rectifier circuit shown below, sketch the V_{AB} and V_{out} waveforms. Evaluate the average value of V_{out} .

(Ans:
$$V_{out (avg)} = 2 \times 15 \times sqrt(2)/\pi = 13.50 \text{ V}$$
)

Fig D.2

- 3. Sketch the likely V_{out} waveforms of the full-wave rectifier circuit shown in Fig.D.3, for the following cases:
- a) C is a large value (say 1000 μF), and R_L open circuit
- b) C is a large value (say 1000 μ F), and R_L = large value (say 10 k Ω)
- c) C is a large value (say 1000 μ F), and R_L = small value (say 100 Ω)

Fig D.3

Part E – Regulated DC Power Supply (using Zener Regulator)

- 1. A Zener regulator circuit is shown below that uses a 12 V Zener diode. It has a resistance (R_Z) of 125 Ω in the Zener region. Other parameters are: Vin = 20 V, R_S = 470 Ω ,
- a) Evaluate V_{out} , I_S , I_Z , and I_L for $R_L = 1 \text{ k } \Omega$.
- b) Evaluate V_{out} , I_S , I_Z , and I_L for $R_L = 4 \text{ k } \Omega$.

<u>Hint</u>: Find the Thevenin's equivalent across R_L and use it to evaluate the currents and voltages. For finding the Thevenin equivalent, replace the Zener diode with a battery of 12 V in series with 125 Ω (the resistance in the Zener region).

(Ans: $V_{Th} = 13.68 \text{ V}$, $R_{Th} = 98.74 \Omega$

 $R_L = 1 \text{ k} \Omega$: $V_{out} = 12.45 \text{ V}$; $I_S = 16.05 \text{ mA}$; $I_Z = 3.6 \text{ mA}$ and $I_L = 12.45 \text{ mA}$

 $R_L = 4 \text{ k } \Omega : V_{out} = 13.35 \text{ V} ; I_S = 14.15 \text{ mA}; I_Z = 10.8 \text{ mA} \text{ and } I_L = 3.34 \text{ mA})$

Part F – BJT DC Circuits

1. A BJT inverter circuit is shown below. Circuit values and BJT parameters are:

Circuit values: Vcc = 5 V, $R_B = 20 \text{ k}\Omega$, $R_C = 1 \text{ k}\Omega$

BJT parameters: $\beta = 40$, $V_{BE} = 0.7$ V, $V_{CEsat} = 0.2$ V

Analyse the circuit and sketch the VTC (voltage-transfer characteristic, i.e. V_{out} vs V_{in}) of the BJT inverter when V_{in} is varied from 0 to 5 V.

(Ans:
$$V_{IL} = 0.7 \text{ V}$$
, $V_{IH} = 3.1 \text{ V}$, $V_{OL} = 0.2 \text{ V}$, $V_{OH} = 5 \text{ V}$)

2. In the BJT inverter if the resistances R_C and R_B are changed to R_C = 500 Ω and R_B =10 k Ω , while keeping all the other parameters the same, once again sketch the VTC of the modified BJT inverter.

(Ans:
$$V_{IL} = 0.7 \text{ V}$$
, $V_{IH} = 3.1 \text{ V}$, $V_{OL} = 0.2 \text{ V}$, $V_{OH} = 5 \text{ V}$)

3. A BJT circuit is shown below in Fig.P3. Determine the currents I_C , I_B and I_E and the node voltages V_C and V_B . Circuit and BJT parameters are: $V_{CC} = 12 \text{ V}$, $R_C = 1 \text{ k}\Omega$, $R_B = 50 \text{ k}\Omega$, $\beta = 40$, $V_{BE} = 0.7 \text{ V}$, $V_{CEsat} = 0.2 \text{ V}$. Comment on the mode of operation of the BJT.

b) In the above circuit if R_C is now changed to $10 \text{ k}\Omega$, while keeping all other circuit values and BJT parameters as earlier, determine once again the currents I_C , I_B and I_E and the node voltage V_C . Comment on the mode of operation of the BJT. What is the special feature of this circuit (from the point of view of biasing and the BJT mode).

(Answers:
$$I_B = 24.57 \ \mu A$$
; $I_C = 0.98 \ mA$; $I_E = 1.01 \ mA$; $V_C = 1.93 \ V$; $V_B = 0.7 \ V$).

4. A modified version of the circuit of Fig.P3 is shown in Fig.P4. Determine the currents I_C , I_B and I_E and the node voltage V_C and V_E . Circuit and BJT parameters are: Vcc=12 V, $R_C=1$ k Ω , $R_B=50$ k Ω , $R_E=2$ k Ω , $\beta=40$, $V_{BE}=0.7$ V, $V_{CEsat}=0.2$ V. Comment on the mode of operation of the BJT.

 $(Answers:\ I_B=65.32\ \mu A;\ \ I_C=2.61\ mA\ ;\ I_E=2.68\ mA;\ V_C=9.32\ V;\ V_B=6.06\ V\ ;\ V_E=5.36\ V).$

Fig. P3 Fig. P4

Part G – Opamp Amplifier Circuits – Linear Applications

1. The circuit diagram of an Opamp inverting amplifier is shown below in Fig.P1. The circuit values are: +Vcc = +12 V, -Vcc = -12 V. $R_1 = 5 \text{ k}\Omega$, $R_F = 50 \text{ k}\Omega$. The input signal is $V_{in} = 0.2 \sin \omega t$ V. Sketch the V_{in} and V_{out} waveforms. Assume that the maximum possible Opamp output levels possible are +/- Vcc. (Ans: Voltage gain Av = -10).

Fig. P1

- 2. For the circuit shown in Fig.P1, if now R_F is now increased to $500~k\Omega$, while keeping $R_1=5~k\Omega$ and Vin the same as in problem 5, sketch V_{in} and V_{out} waveforms. Explain the V_{out} sketch (as to why it is abnormal). Once again assume that the maximum possible Op amp output levels possible are +/- Vcc. (Ans: Voltage gain Av=-100; the positive and negative peaks as per calculation would be +20 and =20 respectively. Since Vout output levels cannot exceed +/- Vcc (+/- 12 V), Vout will get clipped beyond +/- 12 V).
- 3. Once again consider the inverting amplifier of problem 1, i.e. $R_1=5~k\Omega$, $R_F=50~k\Omega$. However, for this case, the V_{in} signal is from a sensor, which has a Thevenin equivalent Voltage, $V_{Th}=0.1~V$, and the Thevenin equivalent resistance, $R_{Th}=3~k\Omega$. What would be the Op amp output V_{out} for this case. (Ans: This would result in a voltage gain of $-[R_F/(R_1+R_{Th})]=-[50/(5+3)]=-6.25$. Hence V_{out} will have less amplitude).

4. For the problem statement of 3, if a non-inverting amplifier is used (with the same

voltage gain magnitude as of the original inverting amplifier) what would be V_{out} . Comment as to which amplifier, the inverting or the non-inverting amplifier is a better choice as a voltage amplifier. (Ans: The input resistance (= V_{in}/i_{in}) of an inverting amplifier equals the resistance connected to the input (= R_1 for problem 3). In the case of a non-inverting amplifier (assuming no resistance connected parallel to the input voltage Vin), the input resistance (= V_{in}/i_{in}) is ideally infinite, practically also very high. For a voltage amplifier, the input resistance should be as high as possible. Hence non-inverting amplifier is a better voltage amplifier in comparison to the inverting amplifier).

Part H – Op amp Circuits – Non-Linear Applications

1. An op amp comparator circuit is shown below.

Given: +Vcc = +12 V, -Vcc = -12 V. Assume that the op amp is ideal. Also assume that the maximum and minimum V_{OUT} levels are +Vcc and -Vcc respectively.

For the given V_{IN} waveform sketch the V_{OUT} waveform by superimposing V_{OUT} on V_{IN} .

