Announcements for Monday, 210CT2024

- Week 7 Homework Assignments available on eLearning
 - Graded and Timed Quiz 7 "Bonding" due tonight at 6:00 PM (EDT)
- Exam 2 Conflict Exam Requests due by Friday, 25OCT2024, 11:59 PM (EDT)
 - for students having Rutgers sanctioned classes and activities during the Exam 2 period (Wednesday, 30OCT2024, 7:45 PM – 9:05 PM)

ANY GENERAL QUESTIONS? Feel free to see me after class!

Hybridization Theory

- usually focuses on the valence orbitals of central/interior atoms in molecules
- an atom "mixes" some of its "regular" valence orbitals to form new hybrid orbitals
 - atomic orbitals can be mixed in different proportions
- the shapes and energies of the hybrid orbitals are between the shapes and energies of the unhybridized orbitals

- the number of identical hybrid orbitals formed equals the number of unhybridized orbitals mixed to make the hybrids
 - example: 4 atomic orbitals go in, 4 hybrid orbitals are produced
- the arrangement of hybrid orbitals around the central atom gives the same electron group geometries and shapes predicted by VSEPR
- hybrid orbitals can be used to make sigma bonds (?!?) and to hold lone pairs or single electrons

Hybridization and Electron Groups

the number of electron groups around the central atom tells you the atom's hybridization

- 2 e⁻ groups = sp hybridization
 - linear arrangement of hybrid orbitals around the atom
- 3 e⁻ groups = sp² hybridization
 - trigonal planar arrangement of hybrid orbitals around the atom
- 4 e⁻ groups = sp³ hybridization
 - tetrahedral arrangement of hybrid orbitals around the atom
- 5 e⁻ groups = sp³d hybridization
 - trigonal bipyramidal arrangement of hybrid orbitals around the atom
- 6 e^- groups = sp^3d^2 hybridization
 - octahedral arrangement of hybrid orbitals around the atom

© 2018 Pearson Education, Inc.

Note: For clarity, only one lobe of each hybrid orbital is being shown above

Orbital Energies: Unhybridized vs. sp³ Hybridized

Energy

Orbital Energies: Unhybridized vs. sp² Hybridized

unhybridized

Energy

sp² hybridized

Orbital Energies: Unhybridized vs. sp Hybridized

unhybridized

Energy

sp hybridized

Orbital Energies: Unhybridized vs. sp³d Hybridized

unhybridized

Energy

sp³d hybridized

Orbital Energies: Unhybridized vs. sp³d² Hybridized

unhybridized

Energy

sp³d² hybridized

Orbital Overlap: σ vs. π bonds

- sigma (σ) bonds
 - head-to-head overlap of two atomic orbitals
 - can be hybridized or unhybridized orbitals overlapping
 - free rotation around sigma bonds are possible
- pi (π) bonds
 - side-to-side overlap of two atomic orbitals
 - usually unhybridized and parallel p-orbitals overlapping
 - or d-orbitals on atoms with expanded octets
 - free rotation not possible due to pi bond
- for a given pair of atoms, a sigma bond is typically stronger than a pi bond
 - sigma bonds have greater orbital overlap than pi bonds
 - greater orbital overlap = stronger bond

Bonding Scheme of Methane (CH₄)

bonding scheme = identifies the orbitals overlapping to form bonds within a molecule and specifies the types of bonds (σ vs. π)

Hybridization and σ -bonds in methane (CH₄)

Hybridization and σ -bonds in ammonia (NH₃)

Hybridization and σ-bonds in water (H₂O)

Bonding Scheme of Ethene (C₂H₄)

hindered rotation due to π bond may lead to cis-trans isomerism

Hybridization, σ -bonds and π -bond in ethene (C_2H_4)

valence-orbital diagram for unhybridized C-atom

Bonding Scheme of Ethyne (C₂H₂)

Hybridization, σ -bonds and π -bonds in ethyne (C_2H_2)

valence-orbital diagram for unhybridized C-atom

sp-hybridized C-atom

sp-hybridized C-atom

C₂H₂ with three sigma-bonds and two pi-bonds

Bonding Schemes of AsF₅ and SF₆

Practical skills related to hybridization and valence bond theory

- you should be able to determine the hybridization of all interior atoms of a compound given the compound's name, formula, or Lewis structure
 - for example, give the hybridization of all interior atoms of acetic acid (CH₃COOH)
- you should be able to determine the number of sigma bonds and pi bonds in a given compound
 - for example, how many sigma bonds and pi bonds are in carbon monoxide?

- you should be able to write the bonding scheme for a molecule
 - for example, write the bonding scheme for HCN