Вариант 2.11.

Все консольные приложения Ruby следует реализовывать в виде трех отдельных файлов:

- 1. основная программа;
- 2. программа для взаимодействия с пользователем через консоль;
- 3. программа для автоматического тестирования на основе MiniTest::Unit. Везде, где это возможно, данные для проверки должны формироваться автоматически по правилам, указанным в задании.

Все тексты программ должны быть проверены на соответствие стилю программирования Ruby при помощи *rubocop* и *reek*.

$\Pi P 5$

Часть 1

Вычислить:
$$y = \frac{e^x}{tg(x^3 - 5)} + x^2$$
.

Часть 2

Дана последовательность строк. Строки содержат зашифрованную информацию и состоят из слов, разделенных пробелом. Пробел записан без шифра. Написать программу, обеспечивающую ввод строк и их расшифровку. Для расшифровки каждая из букв слова заменяется следующей за ней буквой алфавита. Буква «я» заменяется буквой «а». Вывести на печать зашифрованную и подвергнутую дешифровке последовательности строк.

Автоматический тест программы обязательно должен генерировать случайные строки в соответствии с правилами, перечисленными в задании.

ЛР 6

Часть 1

Решить задачу, организовав итерационный цикл. Вычислить сумму ряда $S=\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{k}$ с точностью $\xi=10^{-2},10^{-4}.$ Точное значение: $\ln 2.$ Определить, как изменяется число итераций при изменении точности.

Часть 2

Решить предыдущее задание с помощью Enumerable или Enumerator.

Часть 3

Составить метод minmax, отыскивающую $x \in [a, b]$, для которого функция y = f(x) принимает максимальное и минимальное значение с точностью 0,01. В основной программе использовать метод для функций $y = \frac{x-1}{x+2}, x \in [0,2]$ и $y = \sin(\frac{x}{2}-1), x \in [-1,1]$.

Реализовать вызов метода двумя способами: в виде передаваемого lambda-выражения и в виде блока.

$_{\rm JIP}$ 7

Часть 1

Организовать программным способом текстовый файл \mathbf{F} , компоненты которого являются строками, содержащими до 10 символов. Переписать в файл \mathbf{G} все компоненты файла \mathbf{F} с заменой символов a,b,c в каждой строке на символы d,e,f.

Автоматический тест программы обязательно должен проверять работу с файлами.

Часть 2

Разработать и реализовать иерархию классов для описанных объектов предметной области, используя механизмы наследования. Проверить ее на тестовом примере с демонстрацией всех возможностей разработанных классов на конкретных данных.

Объект, включающий поле — слово. Объект умеет выводить на экран значение своего поля и отвечать на запрос о его значении и количестве гласных букв в слове.

Объект, включающий поля: целое число (длина слова) и слово. Объект умеет выводить на экран содержимое своих полей, возвращать по запросу их содержимое и количество согласных букв в слове.

В тестирующей программе обеспечить автоматическую проверку того, что созданные объекты действительно соответствют заданной иерархии классов.

ЛР 8. Ruby on Rails

Разработать веб-приложение, имеющее HTML-страницу с формой ввода данных и HTML-страницу для представления результатов. Результат расчёта должен быть представлен в форме таблицы, оформленной с помощью элемента table или отдельными ячейками div и имеющей не менее двух колонок. Если по условию задания результат может быть представлен только в виде одной строки таблицы, необходимо реализовать вывод промежуточных результатов расчёта в качестве дополнительных строк. В этом случае первой колонкой таблицы будет порядковый номер итерации.

Под вводом с клавиатуры в тексте заданий следует понимать ввод в поле ввода данных формы на HTML-странице.

Текст задания:

Метод Ньютона – Рафсона основывается на утверждении, что квадратный корень числа А можно найти с помощью рекурентной формулы:

$$x_{i+1} = \frac{1}{2} \left(x_i + \frac{A}{x_i} \right)$$
 , где — положительное число, x_i — текущее при-

ближение квадратного корня , x_{i+1} — очередное приближенное значение квадратного корня из числа . Написать программу, определяющую квадратный корень заданных чисел, используя приведенную формулу. Прекращение процесса вычисления предусмотреть при выполнении условия $\frac{x_{i+1}^2-A}{A} < 0.001$.

Вывести промежуточные итерации и полученный результат.