Introduction to Malicious Code (Malware)

EDA 263 – Computer Security

Original Slides: Erland Jonsson Changes by Magnus Almgren

Malicious code - some observations

Malicious code is any code *added*, *changed* or *removed* from a software system in order to intentionally cause harm or subvert the intended function of the system.

- "If you let somebody else execute code on your computer, then it is not your own computer"
 - User convinced of running a program, maybe done indirectly by just inserting a USB memory (CD/DVD) into computer,
 - User/system running a program (e.g. web browser) with a vulnerability that can be taken advantage of,
 - **—** ...
- Malicious code can be many things: viruses, worms, Trojan horses, rabbits, etc.
- Note that from a technical/scientific viewpoint: malicious code is "normal" code!!
- Thus: the malware problem is a software problem.

Malicious Code (2)

Many users say:

I would never download unsecure content!

But what type of content is safe?

Targeted attacks

- 48% of exploits target Adobe Acrobat / Adobe Reader
- Adobe begins a quarterly patch cycle
- Health Check statistics show that Adobe Reader is among the top unsecured applications

Malicious code - some recent trends

- Previously malware was normally of one specific kind.
 Nowadays, it is "multifunctional" and complicated.
 - Malware is targeting end users through Web-based attacks (Symantec Internet Security Report xiv)
- Most viruses today are non-destructive. Rather, they try to take control over your computer to
 - collect financial information or
 - using it for malicious purposes, becoming a zombie, e.g. to distribute spam. (claim is that 70% of all email is spam)
- All kinds of malware tend to be called "virus".
 - Bagle, Mydoom, Netsky, Sasser, Kargo and Sober (2004)
 - Conficker (2009)

Latest Threats

One step ahead.

Latest Threats Most Active viru	ses Hoaxes	Spyware	
Threat	Туре	Threat level	First appeared
1 SecurityTool2010	Adware	■ H H H	Aug 24, 2010
2 TapSnake.A	Trojan	• • • •	Aug 24, 2010
3 MS10-060	Vulnerability		Aug 11, 2010
4 MS10-059	Vulnerability	• • • •	Aug 11, 2010
5 MS10-058	Vulnerability		Aug 11, 2010
6 MS10-057	Vulnerability	• • •	Aug 11, 2010
7 MS10-056	Vulnerability		Aug 11, 2010
8 MS10-055	Vulnerability	• • •	Aug 11, 2010
9 MS10-054	Vulnerability		Aug 11, 2010
10 MS10-053	Vulnerability		Aug 11, 2010
1 - 10 of 18 Results			1 2 Next red by PandaLabs in the last 30 days.

Most Active Viruses

One step ahead.

irus	PCs infected	Threat Level	First appeared
. Conficker.C	2.10%	■■ □□	Dec 31, 2008
2 Downloader.MDW	1.62%		Jan 02, 2007
3 Spy.YK	0.99%		Nov 02, 2009
MediaPass	0.82%		Apr 29, 2010
Vobfus.gen	0.70%		Oct 06, 2009
AccesMembre	0.65%		Jun 14, 2004
Sality.AK	0.58%		Oct 08, 2008
Xor-encoded.A	0.50%	• • • •	Jun 02, 2008
FlySky.AD.	0.49%		Jul 11, 2009
.0 Agent.MUF	0.48%	■ □ □ □	Sep 28, 2009

MALWARE THREAT CENTER

home

About MTC Da	Data Analysis Malware Community	Publications	Recent News Articles	Research Projects
--------------	---------------------------------	--------------	----------------------	-------------------

Download our list of the most aggressively spreading malware MD5s.

Most Aggressively Spreading Malware Binaries Sun Aug 16 08:41:34 2009

10 Watch List 30 Watch List

rank	hits	countries	first	last	AV rate	Guess	Binary MD5
38		11	07/17	08/15	33 of 32	unknown	53bfe15e9143d86b276d73fdcaf66265
10		6	08/09	08/11	0 of 32	unknown	d41d8cd98f00b204e9800998ecf8427e
5		6	07/17	08/14	26 of 32	Korgo.U	7d99b0e9108065ad5700a899a1fe3441
5		7	07/19	08/15	31 of 32	Sasser.E	741e3b03b3ff6e464a5a61e7d1875f7f
3		12	07/18	08/15	3 of 32	unknown	d9cb288f317124a0e63e3405ed290765
3		4	07/29	08/14	35 of 32	Korgo.U	9716d7995acc6f6b6b90b992c4e2839d
3		7	07/18	08/15	29 of 32	Sasser.A.14	1a2c0e6130850f8fd9b9b5309413cd00
2		8	07/18	08/13	25 of 32	Korgo.AF	7f60162c2c0bd2cc7531e51328e98290
2		4	07/17	08/15	31 of 32	Kakavex.B	17028f1eda9d3a3f7423f47bd2f525f6
2		5	07/17	08/13	28 of 32	TRATRAPS.Gen	b8076e37aef1105d045fc39f780da5a2
2		4	07/19	08/12	29 of 32	Padobot.Z.2	a12cab51ef99e98305668d189d0db147
2		4	08/05	08/14	7 of 32	Virut.Gen	5354e986cddabd0d5ccdb43556410351
2		2	07/18	08/14	40 of 32	Virut.AX	eda3b7766c23dfffc0b85d0ba546b0c1
2		3	07/17	08/14	29 of 32	Sasser.C	831f4ee0a7d2d1113c80033f8d6ac372
1		1	07/17	08/14	37 of 32	Virut.AX	5285741560bc82342a6c28db536711b6
1		5	07/19	08/15	40 of 32	Virut.AX	119ec42aa00b3ed3d73fec6c7f9b334c
1		2	08/09	08/11	2 of 32	unknown	9ba1f1416a20fd97cdd2fcd9b45c08a9
1		3	07/24	08/13	7 of 32	TRDownloader.Gen	18dfbbc85b46c2e1c85d763130eae228
1		6	07/17	07/31	19 of 32	Virut.A	176f4e0237d64f70b37db965fe025e1a
1		2	07/17	08/14	7 of 32	unknown	7587773eea6bc417aaab068715c9391b
0		2	08/02	08/12	39 of 32	TRCrypt.ULPM.Gen	10980f4df2060b86a72eb5e533102980
0		3	07/31	08/14	37 of 32	TRCrypt.TPM.Gen	67a66839f746f274a5a997d7b157af21
0		4	07/30	08/08	39 of 32	Virut.AX	74b3d149e8cde027c2fec181e849ca10

Malicious code - reasons for increase

A few trends that largely influence the wide spread of malicious code:

Growing number and connectivity of computers

- "everybody" is connected and dependant on computers
- the number of attacks increases
- attacks can be launched easily (automated attacks)

Growing system complexity

- unsafe programming languages
- heterogeneity
- hiding code is easy
- verification and validation is impossible (let alone proofs)

Systems are easily extensible

- mobile code, dynamically loadable modules
- incremental evolution of systems

Types of Malicious code (1)

Traditional virus (1982)

- attaches to existing program code
- intervenes in normal execution
- replicates and propagates

Document virus (macro virus)

highly formatted documents include commands (+data)

Stealth virus (and rootkits)

 hides the modifications it has made in the system, normally by monitoring system calls and forging the results of such calls

Polymorphic virus

 avoids virus scanners by producing multiple variant of itself or encrypting itself.

Virus Surrounding a Program

Pfleeger: p. 115 (119)

Virus Integrated into a Program

Pfleeger: p. 115 (120)

Boot Sector Virus Relocating Code

Before Infection

After Infection

Pfleeger: p. 119 (123)

Phases of viral action

Types of Malicious code (2)

Hoax virus

- is no virus at all. It is an email with a bogus warning
- Rabbit (or bacteria, greedy programs)
 - is a virus (or worm) that replicates without bounds, thus exhausting some computing resource. Does not spread to other systems (thus attacking availability only).
- Worm (1975, 1982)
 - is a stand-alone program that replicates and spreads copies of itself via the network. Non-trivial to make.

Trojan Horse

 is a "normal" program that contains some hidden functionality, that is unwanted by the user.

Signature (Code Red Worm)

- Uses an unchecked buffer in a section of code that handles the input of the URLs:
- NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 0%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u78 01%u9090%u6858%ucbd3%u7801%u9090%u9090%u8 190%u00c3%u0003%u8b00%u531b%u53ff%u0078%u0 000%u00=a HTTP/1.0

22

Trojan Horse Example

Dangerous People (!!!)

"Cameron Diaz"-searches yield ten percent risk of landing on a malicious site

Types of Malicious code (3)

Logic bomb

malware that triggers on a condition and "detonates"

Time bomb

malware that triggers on a time condition and "detonates

Trap door (Back door)

- is an undocumented and unknown (to the user) entry point to a system,
- normally inserted during the system design phase, and
- could be put there for a useful purpose (trouble shooting, testing, maintenance, but left by mistake.

Salami attack

 achieving some economic benefit but making a large number of insignificant changes, e.g. rounding errors.

Types of Malicious Code

Code Type	Characteristics			
Virus	Attaches itself to a program and propagates copies of itself to other programs (1980:ies)			
Trojan horse	Contains unexpected, additional functionality			
Logic bomb	Triggers action when condition occurs			
Time bomb	Triggers action when specified time occurs			
Trapdoor, backdoor	Allows unauthorized access to functionality			
Worm	Propagates copies of itself through a network, replicating, stand-alone (1975, 1982)			
Rabbit, Bacteria, Greedy program	Replicates itself without limit to exhaust resource (cmp flooding Denial-of-service attack)			
Salami attack	Uses seemingly inconsequential data; Example: fractions of cents when calculating interests for bank accounts \rightarrow accumulated into hacker's account. Each account owner would not notice but Σ many small pieces = significant amount.			

Stallings: p. 202 (217);Pfleeger: p. 112 (117)

Hardware Tampering

- So far, only discussed problems in software.
- Tampering can also happen in the hardware, where the vulnerability or the Trojan horse is permanently etched in the component.
- Supply chain is becoming global, and the very complex components are made all over the world, which makes it difficult to control the process.
- Can you really trust your computer?

Mobile code Examples

Attack script

- Javascript, VisualBasic scripts, ...
- Java applets
- ActiveX control
 - is a Microsoft version of a Java applet, and
 - is much more powerful that the Java applet.
 - ActiveX controls are extremely dangerous if used for malicious purposes.

Stallings: p. 216 (219)

Drive-by Downloads

- Download of malware through exploitation of a web browser, e-mail client or operating system bug, without any user intervention whatsoever. (Wikipedia)
- Pwn2Own 2009: Hacking contest targeting browsers
 - Firefox, Safari, Internet Explorer hacked immediately.
 - Google Chrome had problem but could not be hacked.

Drive-by Downloads An Example (1)

Drive-by Downloads An Example (6)

