

รายงาน ศึกษาพฤติกรรมการใช้บริการขนส่งสินค้า

จัดทำโดย

นาย ปรมี สกุลตั้งมณีรัตน์	6310500040
นาง สาวภรภัทร วงศ์สาวิตร	6310500058
นาย ทัตเทพ รัตนจันทร์	6310503324
นาย เทพจุฑา วรรณนิยม	6310503332
นาย ภูริณัฐ วงศ์เกษตรชัย	6310503511

เสนอ รศ.ดร.อนันต์ ผลเพิ่ม ผศ.ดร.สุภาพร เอื้อจงมานี

รายงานฉบับนี้เป็นส่วนหนึ่งของรายวิชาทฤษฎีความน่าจะเป็นและสถิติ สำหรับวิศวกรคอมพิวเตอร์ (01204312) ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ปีการศึกษา 2564 ภาคต้น

สารบัญ

1.	. การเก็บข้อมูล (Data collection)	3
2.	. ตัวแปรสุ่มหลายรายการ (Multiple Random Variables)	4
2.1	ตัวแปรสุ่มระหว่างจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอมกับจำนวน	
การ	ใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงเปิดเทอม	
2.2	ตัวแปรสุ่มระหว่างระยะเวลาที่รอรับสินค้าที่ส่งจากต่างประเทศกับในประเทศ	
2.3	ตัวแปรสุ่มระหว่างจำนวนสินค้าที่สั่งมากที่สุดกับค่าจัดส่งสินค้าที่แพงที่สุดในหนึ่งครั้ง	
2.4	ตัวแปรสุ่มระหว่างราคาสินค้าที่เคยสั่งมากที่สุดกับค่าจัดส่งสินค้าที่แพงที่สุดในหนึ่งครั้ง	
3.	ค่าสัมประสิทธิ์สหสัมพันธ์ (Correlation Coefficient)	12
3.1	ความสัมพันธ์ระหว่าง จำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอม(ครั้ง) กับ	
จำเ	เวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงเปิดเทอม(ครั้ง)	
3.2	ความสัมพันธ์ระหว่าง ระยะเวลาที่รอรับสินค้าที่ส่งจากต่างประเทศกับในประเทศ	
3.3	ความสัมพันธ์ระหว่าง จำนวนสินค้าที่สั่งมากที่สุดกับค่าจัดส่งสินค้าที่แพงที่สุด ในหนึ่งครั้ง	
3.4	ความสัมพันธ์ระหว่าง ราคาสินค้าที่เคยสั่งมากที่สุดกับค่าจัดส่งสินค้าที่แพงที่สุด ในหนึ่งครั้ง	
4.	ความน่าจะเป็นแบบมีเงื่อนไข (Conditional Probability)	16
4.1	ความน่าจะเป็นในการสั่งของช่วงปิดเทอม เมื่อช่วงเปิดเทอมมีการสั่งของตั้งแต่ 1 ชิ้นขึ้นไป	
4.2	ความน่าจะเป็นที่จะมีการสั่งของ 5 ชิ้นขึ้นไปในหนึ่งครั้ง เมื่อมีค่าจัดส่งมากกว่าหรือเท่ากับ 120 บ	Jาท
5.	. สถิติเชิงพรรณนา (Descriptive Statistics)	17
5.1	ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอมและช่วงเปิดเทอม	
5.2	ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ	
5.3	จำนวนสินค้าที่สั่งมากที่สุดในการสั่งของหนึ่งครั้ง	
5.4	ค่าจัดส่งสินค้าที่แพงที่สุดในการสั่งสินค้า	
5.5	จำนวนของผู้ได้รับสินค้าในช่วงเวลาต่าง ๆ	

23

8. บทสรุป (Conclusion)	40
7.5 การทดสอบว่าราคาสินค้าเฉลี่ยเป็น 15 เท่าต่อราคาค่าขนส่งเฉลี่ย	
7.4 การทดสอบว่าค่าจัดส่งสินค้าที่แพงที่สุดมีราคาเฉลี่ยเท่ากับ 123 บาท	
7.3 การทดสอบว่าจำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้งเฉลี่ย 4 ชิ้นขึ้นไป	
7.2 การทดสอบว่าความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศเฉลี่ยมากกว่า 15 วัน	
ช่วงเปิดเทอม ไม่เกิน 2 ครั้ง	
7.1 การทดสอบว่าความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอมและ	;
7. การทดลองสมมติฐาน (Hypothesis Test)	34
6.5 อัตราส่วนของราคาสินค้าเฉลี่ยต่อราคาค่าขนส่งเฉลี่ย	
6.4 ค่าจัดส่งสินค้าที่แพงที่สุด	
6.3 จำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้ง	
6.2 ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอมและช่วงเปิดเทอม	
6.1 ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ	

6. การทดสอบการแจกแจงข้อมูล (Goodness of Fit test)

1. การเก็บข้อมูล (Data collection)

เก็บข้อมูลจากแบบสอบถามจาก google forms โดยส่งให้บุคคลทั่วไปเป็นผู้ทำ และได้ข้อมูลมาทั้งหมด 51 ชุด

2. ตัวแปรสุ่มหลายรายการ (Multiple Random Variables)

2.1 ตัวแปรสุ่มระหว่างจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอม กับจำนวน การใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงเปิดเทอม

P^(X,Y)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	P^(X)	x*P^(X)
0	0.08	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.08	0
1	0.08	0.16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.24	0.24
2	0.04	0.16	0.04	0	0	0	0	0	0	0	0	0	0	0	0	0	0.24	0.48
3	0	0.16	0.04	0.12	0	0	0	0	0	0	0	0	0	0	0	0	0.32	0.96
4	0	0	0	0.08	0	0	0	0	0	0	0	0	0	0	0	0	0.08	0.32
5	0	0.04	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.04	0.2
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P^(Y)	0.2	0.52	0.08	0.2	0	0	0	0	0	0	0	0	0	0	0	0	1	2.2
y*P^(Y)	0	0.52	0.16	0.6	0	0	0	0	0	0	0	0	0	0	0	0	1.28	

กราฟของ P^(X) และ P^(Y)

<u>ข้อมูลในรูปแบบสามมิติ</u>

2.2 ตัวแปรสุ่มระหว่างระยะเวลาที่รอรับสินค้าที่ส่งจากต่างประเทศกับในประเทศ

P^(X,Y)	0 to 5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40	40 to 45	45 to 50	50 to 55		P^(X)	x*P^ (X)
0 to 5	0.2	0.04	0.04	0	0	0	0.04	0	0	0	0	0	0.32	0.8
5 to 10	0.2	0.12	0.08	0.04	0.12	0	0	0	0.04	0	0	0	0.6	4.5
10 to 15	0	0	0	0	0	0.04	0	0	0	0	0	0	0.04	0.5
15 to 20	0.04	0	0	0	0	0	0	0	0	0	0	0	0.04	0.7
20 to 25	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25 to 30	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30 to 35	0	0	0	0	0	0	0	0	0	0	0	0	0	0
35 to 40	0	0	0	0	0	0	0	0	0	0	0	0	0	0
40 to 45	0	0	0	0	0	0	0	0	0	0	0	0	0	0
45 to 50	0	0	0	0	0	0	0	0	0	0	0	0	0	0
50 to 55	0	0	0	0	0	0	0	0	0	0	0	0	0	0
55 to 60	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P^(Y)	0.44	0.16	0.12	0.04	0.12	0.04	0.04	0	0.04	0	0	0	1	6.5
y*P^(Y)	1.1	1.2	1.5	0.7	2.7	1.1	1.3	0	1.7	0	0	0	11.3	

กราฟของ P^(X) และ P^(Y)

<u>ข้อมูลในรูปแบบสามมิติ</u>

2.3 ตัวแปรสุ่มระหว่างจำนวนสินค้าที่สั่งมากที่สุดกับค่าจัดส่งสินค้าที่แพงที่สุดในหนึ่งครั้ง

P^(X,Y)	0 to 30	30 to 60	60 to 90	90 to 120	120 to 150	150 to 180	180 to 210	210 to 240	240 to 270	270 to 300	P^(X)	x*P^(X)
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0.04	0	0	0	0	0	0	0.04	0.04
2	0	0.12	0	0	0	0	0	0	0	0	0.12	0.24
3	0	0.08	0.16	0	0.04	0	0	0	0	0	0.28	0.84
4	0	0.04	0	0	0	0	0	0	0	0	0.04	0.16
5	0	0	0.08	0	0	0.04	0	0	0	0.08	0.2	1
6	0	0.04	0	0	0	0	0	0	0	0.12	0.16	0.96
7	0	0.08	0	0	0	0	0	0	0	0	0.08	0.56
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0.04	0	0	0	0	0	0	0	0	0.04	0.4
11	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0.04	0	0	0	0	0	0	0.04	0.48
P^(Y)	0	0.4	0.24	0.08	0.04	0.04	0	0	0	0.2	1	4.68
y*P^(Y)	0	18	18	8.4	5.4	6.6	0	0	0	57	113.4	

กราฟของ P^(X) และ P^(Y)

<u>ข้อมูลในรูปแบบสามมิติ</u>

2.4 ตัวแปรสุ่มระหว่างราคาสินค้าที่เคยสั่งมากที่สุดกับค่าจัดส่งสินค้าที่แพงที่สุด ในหนึ่งครั้ง

P^(X,Y)	0 to 30	30 to 60	60 to 90	90 to 120	120 to 150	150 to 180	180 to 210	210 to 240	240 to 270	270 to 300	P^(X)	x*P^(X)
0 to 1000	0	0.12	0.04	0.04	0	0	0	0	0	0	0.2	100
1000 to 2000	0	0.16	0.08	0.04	0	0.04	0	0	0	0	0.32	480
2000 to 3000	0	0.08	0.04	0	0	0	0	0	0	0	0.12	300
3000 to 4000	0	0	0.08	0	0	0	0	0	0	0	0.08	280
4000 to 5000	0	0	0	0	0	0	0	0	0	0	0	0
5000 to 6000	0	0	0	0	0	0	0	0	0	0	0	0
6000 to 7000	0	0	0	0	0	0	0	0	0	0	0	0
7000 to 8000	0	0	0	0	0	0	0	0	0	0	0	0
8000 to 9000	0	0	0	0	0	0	0	0	0	0.08	0.08	680
9000 to 10000	0	0	0	0	0	0	0	0	0	0	0	0
10000 to 11000	0	0	0	0	0.04	0	0	0	0	0.12	0.16	1680
11000 to 12000	0	0	0	0	0	0	0	0	0	0	0	0
12000 to 13000	0	0	0	0	0	0	0	0	0	0	0	0
13000 to 14000	0	0	0	0	0	0	0	0	0	0	0	0
14000 to 15000	0	0.04	0	0	0	0	0	0	0	0	0.04	580
P^(Y)	0	0.4	0.24	0.08	0.04	0.04	0	0	0	0.2	1	4100
y*P^(Y)	0	18	18	8.4	5.4	6.6	0	0	0	57	113.4	

กราฟของ P^(X) และ P^(Y)

<u>ข้อมูลในรูปแบบสามมิติ</u>

3. ค่าสัมประสิทธิ์สหสัมพันธ์ (Correlation coefficient)

3.1 ความสัมพันธ์ระหว่าง จำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิด เทอม กับ จำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงเปิดเทอม

จำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอม กับ จำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงเปิดเทอม

จากกราฟความสัมพันธ์ระหว่าง จำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วง ปิดเทอม กับ จำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงเปิดเทอม มีค่าสัมประสิทธิ์ สหสัมพันธ์ (Correlation coefficient) เท่ากับ 0.6354 หมายถึง มีความสัมพันธ์แบบแปรผันตรง กล่าวคือ เมื่อจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอมเพิ่ม มากขึ้น จำนวนการใช้บริการ ขนส่งสินค้าเฉลี่ยนในช่วงเปิดเทอมก็จะเพิ่มมากขึ้นเช่นกัน

3.2 ความสัมพันธ์ระหว่าง ระยะเวลาที่รอรับสินค้าที่ส่งจากในประเทศ กับ ระยะเวลาที่ รอรับสินค้าที่ส่งจากต่างประเทศ

จากกราฟความสัมพันธ์ระหว่าง ระยะเวลาที่รอรับสินค้าที่ส่งจากในประเทศ กับ ระยะ เวลาที่รอบรับสินค้าที่ส่งจากต่างประเทศ มีค่าสัมประสิทธิ์สหสัมพันธ์(Correlation coefficient) เท่ากับ 0.0967 กล่าวคือ หมายถึง ไม่มีความสัมพันธ์กัน ระยะเวลาที่รอรับสินค้าที่ส่งจากใน ประเทศ กับ ระยะเวลาที่รอรับสินค้าที่ส่งจากต่างประเทศ เป็นอิสระต่อกัน

3.3 ความสัมพันธ์ระหว่าง จำนวนสินค้าที่สั่งมากที่สุดกับค่าจัดส่งสินค้าที่แพงที่สุด ในหนึ่งครั้ง

จากกราฟความสัมพันธ์ระหว่าง จำนวนสินค้าที่สั่งมากที่สุดกับ ค่าจัดส่งสินค้าที่แพงที่สุด มีค่าสัมประสิทธิ์สหสัมพันธ์ (Correlation coefficient) เท่ากับ 0.3380 หมายถึง มีความสัมพันธ์ แบบแปรผันตรง กล่าวได้ว่า ถ้าจำนวนสินค้าที่สั่งมีจำนวนมาก ค่าจัดส่งสินค้าก็จะต้องแพงขึ้น ตามไปด้วย

3.4 ความสัมพันธ์ระหว่าง ราคาสินค้าที่เคยสั่งมากที่สุดกับค่าจัดส่งสินค้าที่แพงที่สุด ในหนึ่งครั้ง

จากกราฟความสัมพันธ์ระหว่าง ราคาสินค้าที่สั่งมากที่สุดกับ ค่าจัดส่งสินค้าที่แพงที่สุด มี ค่าสัมประสิทธิ์สหสัมพันธ์ (Correlation coefficient) เท่ากับ 0.6540 หมายถึง มีความสัมพันธ์ แบบแปรผันตรง กล่าวได้ว่า ถ้าราคาสินค้าที่สั่งยิ่งมีราคาสูง ค่าจัดส่งสินค้าก็จะต้องสูงขึ้นตาม ราคาสินค้าที่สั่งตามไปด้วย

4. ความน่าจะเป็นแบบมีเงื่อนไข (Conditional Probability)

4.1 ความน่าจะเป็นในการสั่งของช่วงปิดเทอม เมื่อช่วงเปิดเทอมมีการสั่งของ 1 ชิ้นขึ้นไป

ตัวแปร x แทนจำนวนการสั่งของในช่วงปิดเทอม ตัวแปร y แทนจำนวนการสั่งของในช่วงเปิดเทอม

P(x|y>=1) = P(x,y)/P(y>=1) = 0.8039/0.8431 = 0.9535
สรุป ความน่าจะเป็นในการสั่งของช่วงปิดเทอม เมื่อช่วงเปิดเทอมมีการสั่งของ 1 ชิ้นขึ้น
ไป มีความน่าจะเป็นเท่ากับ 0.9535

4.2 ความห่าจะเป็นที่จะมีการสั่งของ 5 ชิ้นขึ้นไปในหนึ่งครั้ง เมื่อมีค่าจัดส่งมากกว่าหรือ เท่ากับ 120 บาท

ตัวแปร x แทนจำนวนการสั่งของในหนึ่งครั้ง ตัวแปร y แทนค่าจัดส่งสินค้า

P(x>=5|y>=120) = P(x,y)/P(y>=120) = 0.1569/0.2157 = 0.7273 โดยที่ x>=5 สรุป ความน่าจะเป็นที่จะมีการสั่งของ 5 ชิ้นขึ้นไปในหนึ่งครั้ง เมื่อมีค่าจัดส่งมากกว่าหรือ เท่ากับ 120 บาท มีความน่าจะเป็นเท่ากับ 0.7273

5. สถิติเชิงพรรณนา (Descriptive Statistics)

ข้อมูลต่าง ๆ ที่จำเป็นต้องใช้ในการคำนวณ

จากการเก็บข้อมูลตัวอย่างจากบุคคลทั่วไปจำนวน 51 ตัวอย่าง ได้ข้อมูลต่างๆมาเป็นหัวข้อดัง ต่อไปนี้

- 5.1 ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอมและ ช่วงเปิดเทอม
 - 5.2 ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ
 - 5.3 จำนวนสินค้าที่สั่งมากที่สุดในการสั่งของหนึ่งครั้ง
 - 5.4 ค่าจัดส่งสินค้าที่แพงที่สุดในการสั่งสินค้า
 - 5.5 อัตราส่วนของราคาสินค้าเฉลี่ยต่อราคาค่าขนส่งเฉลี่ย

5.1 ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอมและ ช่วงเปิดเทอม

MEAN	1.019607843
median	1
mode	0
MIN	0
MAX	5
range	5
variance	1.459607843
SD	1.208142311
cv	1.184908805
quartile1 (Q1)	0
quartile3 (Q3)	2
IQR	2
Q1-1.5IQR	-3
Q3+1.5IQR	5
Outliers (based on IQR)	-
Mean after removing outliers based on IQR.	1.019607843
SD after removing outliers based on IQR.	1.208142311

Histogramของ ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วง...

ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอมและช่วงเปิดเทอม

5.2 ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ

MEAN	14.09803922
median	10
mode	3
MIN	2
MAX	53
range	51
variance	166.6501961
SD	12.90930657
cv	0.9156809944
quartile1 (Q1)	4
quartile3 (Q3)	20
IQR	16
Q1-1.5IQR	-20
Q3+1.5IQR	44
Outliers (based on IQR)	50,53
Mean after removing outliers based on IQR.	11.72916667
SD after removing outliers based on IQR.	8.929367239

Histogramของ ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ

5.3 จำนวนสินค้าที่สั่งมากที่สุดในการสั่งของหนึ่งครั้ง

MEAN	4.882352941
median	4
mode	3
MIN	1
MAX	20
range	19
variance	12.54588235
SD	3.542016707
cv	0.7254733014
quartile1 (Q1)	3
quartile3 (Q3)	6
IQR	3
Q1-1.5IQR	-1.5
Q3+1.5IQR	10.5
Outliers (based on IQR)	12,13,20
Mean after removing outliers based on IQR.	4.25
SD after removing outliers based on IQR.	2.365532642

Histogram ของจำนวนสินค้าที่สั่งมากที่สุดในการสั่งของหนึ่งครั้ง

จำนวนสินค้าที่สั่งมากที่สุดในการสั่งของหนึ่งครั้ง

5.4 ค่าจัดส่งสินค้าที่แพงที่สุดในการสั่งสินค้า

MEAN	128.7058824
median	80
mode	50
MIN	30
MAX	2000
range	1970
variance	75097.85176
SD	274.0398726
cv	2.129194622
quartile1 (Q1)	50
quartile3 (Q3)	100
IQR	50
Q1-1.5IQR	-25
Q3+1.5IQR	175
Outliers (based on IQR)	200,300,2000
Mean after removing outliers based on IQR.	74.7555556
SD after removing outliers based on IQR.	33.11148905

Histogram ของค่าจัดส่งสินค้าที่แพงที่สุดในการสั่งสินค้า

ค่าจัดส่งสินค้าที่แพงที่สุดในการสั่งสินค้า

5.5 อัตราส่วนของราคาสินค้าเฉลี่ยต่อราคาค่าขนส่งเฉลี่ย

MEAN	15.21132419
median	10
mode	10
MIN	0
MAX	100
range	100
variance	302.7387015
SD	17.39938796
cv	1.143844398
quartile1 (Q1)	6
quartile3 (Q3)	20
IQR	14
Q1-1.5IQR	-15
Q3+1.5IQR	41
Outliers (based on IQR)	46.875,71.4285 7143,100
Mean after removing outliers based on IQR.	11.53750294
SD after removing outliers based on IQR.	7.868142059

Histogram ของ อัตราส่วนของราคาสินค้าเฉลี่ยต่อราคาค่าขนส่งเฉลี่ย

6. การทดสอบการแจกแจงข้อมูล (Goodness of Fit test)

- 6.1 ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ
- 6.2 ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอมและ ช่วงเปิดเทอม
- 6.3 จำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้ง
- 6.4 ค่าจัดส่งสินค้าที่แพงที่สุด
- 6.5 อัตราส่วนของราคาสินค้าเฉลี่ยต่อราคาค่าขนส่งเฉลี่ย

6.1 ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ

Goodness of Fit test ของ ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ

of Interval	Right end of Interval (x2)	`	(x1-mu)/s	z2 = (x2 - mu)/sigm a	= P(Ž	CDF(z2) = P(Z <=	P(x1<= X < x2) = P(z1<= Z < z2) = CDF(z2) - CDF(z1)	,	((Observ ed-Expec ted)^2)/E xpected
-1.00E+9	10	22	-7.74635 E+97	-0.3174	0	0.375452	0.375452	19.14804	0.42478
10	20	16	-0.31745	0.4572	0.375452	0.676232	0.300780	15.33977	0.02842
20	30	7	0.45719	1.2318	0.676232	0.890992	0.214761	10.95279	1.42654
30	1.00E+99	6	1.23182	7.74635E +97	0.890992	1	0.109008	5.55940	0.03492

ทำการทดสอบที่ α = 0.01

- กำหนดให้ \boldsymbol{H}_0 = ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ เป็นการ กระจายตัวแบบ Normal distribution
- กำหนดให้ $H_a^{}$ = ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ ไม่เป็นการ กระจายตัวแบบ Normal distribution
- M (ตัวแปรไม่ทราบค่า) = 2
- K (จำนวนตารางข้อมูล) = 4

$$-X_{p,k-1}^2 = X_{0.99,3}^2 = 11.345$$

-
$$X_{p,k-1}^2 = X_{0.99,3}^2 = 11.345$$

- $X_{p,k-m-1}^2 = X_{0.99,1}^2 = 6.6349$
- ค่า x^2 ของกลุ่มตัวอย่างมีค่า 1.91465

เนื่องจาก $\boldsymbol{X}^2 \leq \boldsymbol{X}_{p,k-m-1}^2$ จึงไม่ reject null hypothesis ดังนั้นจึงสรุปได้ว่า ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ เป็นการกระจายตัวแบบ Normal distribution ที่มีค่า mean = 14.09803922, SD = 12.90930657

6.2 ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอมและ ช่วงเปิดเทอม

Goodness of Fit test ของ ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อ สัปดาห์ในช่วงปิดเทอมและช่วงเปิดเทอม

		#sample s in Interval (Observe d)		z2 = (x2 - mu)/sigm a	, ,	CDF(z2) = P(Z <=	P(x1<= X < x2) = P(z1<= Z < z2) = CDF(z2) - CDF(z1)	= X < x2)	((Observ ed-Expec ted)^2)/E xpected
-1.00E+99	0	0	-8.2772E +98	-0.8439	0	0.199350	0.199350	10.16683	10.16683
0	1	22	-8.4395E -01	-0.0162	0.199350	0.493526	0.294176	15.00298	3.26324
1	2	15	-1.6230E -02	0.8115	0.493526	0.791457	0.297932	15.19451	0.00249
2	1.00E+99	14	8.1149E- 01	8.27717 E+98	0.791457	1.000000	0.208543	10.63569	1.06421

ทำการทดสอบที่ α = 0.01

- กำหนดให้ H_{0} = ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิด เทอมและช่วงเปิดเทอม กระจายตัวแบบ Normal distribution
- กำหนดให้ $H_a^{}$ = ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วง ปิดเทอมและช่วงเปิดเทอม ไม่เป็นการกระจายตัวแบบ Normal distribution
- M (ตัวแปรไม่ทราบค่า) = 2
- K (จำนวนตารางข้อมูล) = 4

$$-X_{p,k-1}^2 = X_{0.99,3}^2 = 11.345$$

-
$$X_{p,k-1}^2 = X_{0.99,3}^2 = 11.345$$

- $X_{p,k-m-1}^2 = X_{0.99,1}^2 = 6.6349$
- ค่า x^2 ของกลุ่มตัวอย่างมีค่า 14.49677

เนื่องจาก $X^2 \geq X_{n,k-1}^2$ จึง reject null hypothesis ดังนั้นจึงสรุปได้ว่า ความต่างของ จำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอมและช่วงเปิดเทอม ไม่เป็นการ กระจายตัวแบบ Normal distribution ที่มีค่า mean = 1.019607843. SD = 1.208142311

6.3 จำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้ง

จำนวนสินค้าที่สั่งมากที่สุคในหนึ่งครั้ง

Goodness of Fit test ของ จำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้ง

of	Right end of Interval (x2)	#samples in Interval (Observe d)	z1 = (x1-mu)/s igma	z2 = (x2 - mu)/sigm a	CDF(z1) = P(Z <=z1)	CDF(z2) = P(Z <=	P(x1<= X < x2) = P(z1<= Z < z2) = CDF(z2) - CDF(z1)	N*P(x1<= X < x2) (Expecte d)	((Observ ed-Expec ted)^2)/E xpected
-1.00E+9 9	2	5	-2.82325 E+98	-0.8138	0	0.207891	0.207891	10.60245	2.96039
2	4	17	-8.13760 E-01	-0.2491	0.207891 1118	0.401638	0.193747	9.88108	5.12890
4	6	16	-2.49110 E-01	0.3155	0.401637 7206	0.623824	0.222186	11.33150	1.92339
6	8	6	3.15540E -01	0.8802	0.623824 0616	0.810622	0.186798	9.52668	1.30554
8	1.00E+99	7	8.80190E -01	2.82325E +98	0.810621 7572	1.000000	0.189378	9.65829	0.73165

ทำการทดสอบที่ α = 0.01

- กำหนดให้ H_0 = จำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้ง กระจายตัวแบบ Normal distribution
- กำหนดให้ $H_a^{}$ = จำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้ง ไม่เป็นการกระจายตัวแบบ Normal distribution
- M (ตัวแปรไม่ทราบค่า) = 2
- K (จำนวนตารางข้อมูล) = 5

$$-X_{p,k-1}^2 = X_{0.99.4}^2 = 13.277$$

-
$$X_{p,k-1}^2 = X_{0.99,4}^2 = 13.277$$

- $X_{p,k-m-1}^2 = X_{0.99,2}^2 = 9.2103$

- ค่า x^2 ของกลุ่มตัวอย่างมีค่า 12.04987

เนื่องจาก $X_{p,k-m-1}^2 \leq X^2 \leq X_{p,k-1}^2$ จึงยังไม่สรุปว่า จำนวนสินค้าที่สั่งมากที่สุด ในหนึ่งครั้ง เป็นการกระจายตัวแบบ Normal distribution ที่มีค่า mean = 4.882352941, SD = 3.542016707 หรือไม่

6.4 ค่าจัดส่งสินค้าที่แพงที่สุด

Goodness of Fit test ของ จำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้ง

Left end of Interval (x1)	Right end of Interval (x2)		(x1-mu)/s	z2 = (x2 - mu)/sigm a	= P(Z	CDF(z2) = P(Z <= z2)	P(x1<= X < x2) = P(z1<= Z < z2) = CDF(z2) - CDF(z1)	= X < x2)	((Observ ed-Expec ted)^2)/E xpected
-1.00E+99	100	29	-3.64910 E+96	-0.1048	0	0.458287	0.458287	23.37263	1.35489
100	300	19	-1.04751 E-01	0.6251	0.458286 7951	0.734037	0.275751	14.06328	1.73296
300	400	2	6.25070 E-01	0.9900	0.734037 4591	0.838908	0.104871	5.34841	2.09629
400	1.00E+99	1	9.89980 E-01	3.6491E +96	0.838908 1637	1.000000	0.161092	8.21568	6.33740

ทำการทดสอบที่ α = 0.01

- กำหนดให้ H_0^- = ค่าจัดส่งสินค้าที่แพงที่สุด กระจายตัวแบบ Normal distribution
- กำหนดให้ H_a = ค่าจัดส่งสินค้าที่แพงที่สุด ไม่เป็นการกระจายตัวแบบ Normal distribution
- M (ตัวแปรไม่ทราบค่า) = 2
- K (จำนวนตารางข้อมูล) = 4

-
$$X_{p,k-1}^2 = X_{0.99,3}^2 = 11.345$$

$$- X_{p,k-m-1}^2 = X_{0.99,1}^2 = 6.6349$$

- ค่า x^2 ของกลุ่มตัวอย่างมีค่า 11.52155

เนื่องจาก $X^2 \geq X_{p,k-1}^2$ จึง reject null hypothesis ดังนั้นจึงสรุปได้ว่า ค่าจัดส่ง สินค้าที่แพงที่สุด ไม่เป็นการกระจายตัวแบบ Normal distribution ที่มีค่า mean = 128.7058824, SD = 274.0398726

6.5 อัตราส่วนของราคาสินค้าเฉลี่ยต่อราคาค่าขนส่งเฉลี่ย

อัตราส่วนระหว่างราคาสินค้ำกับค่าส่ง

Goodness of Fit test ของ อัตราส่วนของราคาสินค้าเฉลี่ยต่อราคาค่าขนส่งเฉลี่ย

	Right end of Interval (x2)	(Observe	(x1-mu)/s	z2 = (x2 - mu)/sigm a	= P(Ž	CDF(z2) = P(Z <= z2)	P(x1<= X < x2) = P(z1<= Z < z2) = CDF(z2) - CDF(z1)	= X < x2)	((Observ ed-Expec ted)^2)/E xpected
-1.00E+99	15	32	-5.74733 E+97	-0.0121	0	0.495155	0.495155	24.75774	2.11854
15	20	5	-1.21455 E-02	0.2752	0.495154 7673	0.608427	0.113272	5.66360	0.07775
20	25	5	2.75221 E-01	0.5626	0.608426 7476	0.713142	0.104715	5.23577	0.01062
25	1.00E+99	8	5.62587 E-01	5.74733 E+97	0.713142 0507	1.000000	0.286858	14.34290	2.80504

ทำการทดสอบที่ α = 0.01

- ทำหนดให้ H_{0} = อัตราส่วนของราคาสินค้าเฉลี่ยต่อราคาค่าขนส่งเฉลี่ย กระจายตัวแบบ Normal distribution
- กำหนดให้ $H_a^{}$ = อัตราส่วนของราคาสินค้าเฉลี่ยต่อราคาค่าขนส่งเฉลี่ย ไม่เป็นการ กระจายตัวแบบ Normal distribution
- M (ตัวแปรไม่ทราบค่า) = 2
- K (จำนวนตารางข้อมูล) = 4

$$-X_{p,k-1}^2 = X_{0.99,3}^2 = 11.345$$

-
$$X_{p,k-1}^2 = X_{0.99,3}^2 = 11.345$$

- $X_{p,k-m-1}^2 = X_{0.99,1}^2 = 6.6349$

- ค่า x^2 ของกลุ่มตัวอย่างมีค่า 5.01195

เนื่องจาก $\boldsymbol{X}^2 \leq \boldsymbol{X}_{p,k-m-1}^2$ จึงไม่ reject null hypothesis ดังนั้นจึงสรุปได้ว่า อัตราส่วนของราคาสินค้าเฉลี่ยต่อราคาค่าขนส่งเฉลี่ย กระจายตัวแบบ Normal distribution ที่มีค่า mean = 15.21132419, SD = 17.39938796

7. การทดลองสมมติฐาน (Hypothesis Test)

- 7.1 การทดสอบว่าความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วง ปิดเทอมและช่วงเปิดเทอม ไม่เกิน 2 ครั้ง
- 7.2 การทดสอบว่าความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ เฉลี่ยมากกว่า 15 วัน
- 7.3 การทดสอบว่าจำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้งเฉลี่ย 4 ชิ้นขึ้นไป
- 7.4 การทดสอบว่าค่าจัดส่งสินค้าที่แพงที่สุดมีราคาเฉลี่ยเท่ากับ 123 บาท
- 7.5 การทดสอบว่าราคาสินค้าเฉลี่ยเป็น 15 เท่าต่อราคาค่าขนส่งเฉลี่ย

7.1 การทดสอบว่าความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วง ปิดเทอมและช่วงเปิดเทอม ไม่เกิน 2 ครั้ง

- A) กำหนดสมมติฐานการทดลอง
- ให้ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอมและช่วง เปิดเทอม ไม่เกิน 2 ครั้ง
- ข้อมูลจาก 51 คน มีค่าเฉลี่ยเท่ากับ 1.0196
- ส่วนเบี่ยงเบนมาตรฐาน = 1.2081
- Significant Levels = 0.1
- เป็น Upper-tailed test
- B) เริ่มขั้นตอนสมมติฐาน แบบ Large sample size
- μ = ค่าเฉลี่ยความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วง ปิดเทอมและช่วงเปิดเทอม
- $-\mu_0 = 2$
- H_0 : $\mu = 2$
- $H_a: \mu > 2$
- \overline{X} = 1.0196, s = 1.2081
- C) Test Statistic

$$Z = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} = \frac{1.0196 - 2}{1.2081 / \sqrt{51}} = -5.7952$$

Rejection Region : Z ≥ 1.2816

- D) สรุปผลการทดลอง
- Test Statistics ไม่อยู่ใน Rejection Region
- ไม่ปฏิเสธสมมติฐานหลัก (Null Hypothesis)
- ดังนั้น ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอม และช่วงเปิดเทอม ไม่เกิน 2 ครั้ง

7.2 การทดสอบว่าความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ เฉลี่ยมากกว่า 15 วัน

- A) กำหนดสมมติฐานการทดลอง
- ให้ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ เฉลี่ยมากกว่า 15 วัน
- ข้อมูลจาก 51 คน มีค่าเฉลี่ยเท่ากับ 14.0980
- ส่วนเบี่ยงเบนมาตรฐาน = 12.9093
- Significant Levels = 0.1
- เป็น Lower-tailed test
- B) เริ่มขั้นตอนสมมติฐาน แบบ Large sample size
- μ = ค่าเฉลี่ยความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ
- $-\mu_0 = 15$
- H_0 : μ = 15
- H_a : μ < 15
- \overline{X} = 14.0980, s = 12.9093
- C) Test Statistic

$$Z = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} = \frac{14.0980 - 15}{12.9093 / \sqrt{51}} = -0.4989$$

Rejection Region : $Z \le -1.2816$

- D) สรุปผลการทดลอง
- Test Statistics ไม่อยู่ใน Rejection Region
- ไม่ปฏิเสธสมมติฐานหลัก (Null Hypothesis)
- ดังนั้น ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศเฉลี่ยมากกว่า 15 วัน

7.3 การทดสอบว่าจำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้งเฉลี่ย 4 ชิ้นขึ้นไป

- A) กำหนดสมมติฐานการทดลอง
- ให้จำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้งเฉลี่ย 4 ชิ้นขึ้นไป
- ข้อมูลจาก 51 คน มีค่าเฉลี่ยเท่ากับ 4.8824
- ส่วนเบี่ยงเบนมาตรฐาน = 3.5420
- Significant Levels = 0.1
- เป็น Lower-tailed test
- B) เริ่มขั้นตอนสมมติฐาน แบบ Large sample size
- μ= ค่าเฉลี่ยของค่าจัดส่งสินค้าที่แพงที่สุด
- $-\mu_0 = 4$
- H_0 : $\mu = 4$
- H_a : μ < 4
- \overline{X} = 4.8824, s = 3.5420
- C) Test Statistic

$$Z = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} = \frac{4.8824 - 4}{3.5420 / \sqrt{51}} = 1.7791$$

Rejection Region : $Z \le -1.2816$

- D) สรุปผลการทดลอง
- Test Statistics ไม่อยู่ใน Rejection Region
- ไม่ปฏิเสธสมมติฐานหลัก (Null Hypothesis)
- ดังนั้น จำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้งเฉลี่ย 4 ชิ้นขึ้นไป

7.4 การทดสอบว่าค่าจัดส่งสินค้าที่แพงที่สุดมีราคาเฉลี่ยเท่ากับ 123 บาท

- A) กำหนดสมมติฐานการทดลอง
- ให้ค่าจัดส่งสินค้าที่แพงที่สุดมีราคาเฉลี่ยเท่ากับ 123 บาท
- ข้อมูลจาก 51 คน มีค่าเฉลี่ยเท่ากับ 128.7059
- ส่วนเบี่ยงเบนมาตรฐาน = 274.0399
- Significant Levels = 0.1
- เป็น Two-tailed test
- B) เริ่มขั้นตอนสมมติฐาน แบบ Large sample size
- μ= ค่าเฉลี่ยของค่าจัดส่งสินค้าที่แพงที่สุด
- $-\mu_0 = 123$
- H_0 : μ = 123
- H_a : $\mu \neq 123$
- \overline{X} = 128.7059, s = 274.0399
- C) Test Statistic

$$Z = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} = \frac{128.7059 - 123}{274.0399 / \sqrt{51}} = 0.1487$$

Rejection Region : Z ≤ -1.6449 และ Z ≥ 1.6449

- D) สรุปผลการทดลอง
- Test Statistics ไม่อยู่ใน Rejection Region
- ไม่ปฏิเสธสมมติฐานหลัก (Null Hypothesis)
- ดังนั้น ค่าจัดส่งสินค้าที่แพงที่สุดมีราคาเฉลี่ยเท่ากับ 123 บาท

7.5 การทดสอบว่าราคาสินค้าเฉลี่ยเป็น 15 เท่าต่อราคาค่าขนส่งเฉลี่ย

- A) กำหนดสมมติฐานการทดลอง
- ให้การทดสอบว่าราคาสินค้าเฉลี่ยเป็น 15 เท่าต่อราคาค่าขนส่งเฉลี่ย
- ข้อมูลจาก 50 คน มีค่าเฉลี่ยเท่ากับ 15.2113
- ส่วนเบี่ยงเบนมาตรฐาน = 17.3994
- Significant Levels = 0.1
- เป็น Two-tailed test
- B) เริ่มขั้นตอนสมมติฐาน แบบ Large sample size
- μ = ค่าเฉลี่ยของอัตราส่วนระหว่างราคาสินค้าเฉลี่ยและค่าขนส่งเฉลี่ย
- $-\mu_0 = 15$
- H_0 : μ = 15
- $H_a: \mu \neq 15$
- \overline{X} = 15.2113, s = 17.3994
- C) Test Statistic

$$Z = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} = \frac{15.2113 - 15}{17.3994 / \sqrt{50}} = 0.0859$$

Rejection Region : Z ≤ -1.6449 และ Z ≥ 1.6449

- D) สรุปผลการทดลอง
- Test Statistics ไม่อยู่ใน Rejection Region
- ไม่ปฏิเสธสมมติฐานหลัก (Null Hypothesis)
- ดังนั้น ราคาสินค้าเฉลี่ยเป็น 15 เท่าต่อราคาค่าขนส่งเฉลี่ย

8. บทสรุป (Conclusion)

จากการสำรวจและเก็บข้อมูล พฤติกรรมการใช้บริการขนส่งสินค้า จากบุคคลทั่วไป เป็นจำนวน 51 ราย ประกอบไปด้วย ผู้ชาย 27 ราย ผู้หญิง 21 ราย ไม่ต้องการระบุ 3 ราย

พบว่าบริษัทขนส่งที่ผู้คนนิยมใช้บริการบ่อยที่สุด คือ บริษัท Kerry express มากถึง 47.1% และ ปัจจัยที่มีผลต่อผู้ใช้บริการในการเลือกใช้บริษัทขนส่งนี้ สูงสุด 3 อันดับแรก คือ 1. บริการจัดส่งรวดเร็ว 2. ค่าจัดส่งมีราคาถูก 3. สินค้ามีสภาพสมบูรณ์ นอกจากนี้ประเภทของสินค้าที่สั่งบ่อยที่สุดคือ อุปกรณ์ อิเล็กทรอนิกส์ คิดเป็น 37.3% และ ช่องทางการชำระเงินที่ผู้ใช้บริการใช้งานบ่อยที่สุดคือ บัตรเครดิต/ บัตรเดบิต คิดเป็น 45.1%

ค่าสัมประสิทธิ์สหสัมพันธ์ (Correlation coefficient)

ความสัมพันธ์ระหว่าง จำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอม กับ จำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงเปิดเทอม มีความสัมพันธ์แบบแปรผันตรง

ความสัมพันธ์ระหว่าง ระยะเวลาที่รอรับสินค้าที่ส่งจากในประเทศ กับ ระยะเวลาที่รอรับสินค้าที่ ส่งจากต่างประเทศ ไม่มีความสัมพันธ์กัน

ความสัมพันธ์ระหว่าง จำนวนสินค้าที่สั่งมากที่สุดกับค่าจัดส่งสินค้าที่แพงที่สุดในหนึ่งครั้ง มี ความสัมพันธ์แบบแปรผันตรง

ความสัมพันธ์ระหว่าง ราคาสินค้าที่เคยสั่งมากที่สุดกับค่าจัดส่งสินค้าที่แพงที่สุดในหนึ่งครั้ง มี ความสัมพันธ์แบบแปรผันตรง

ความน่าจะเป็นแบบมีเงื่อนไข (Conditional Probability)

ความน่าจะเป็นในการสั่งของช่วงปิดเทอม เมื่อช่วงเปิดเทอมมีการสั่งของ 1 ชิ้นขึ้นไป มีความน่า จะเป็นเท่ากับ 0.9535 หรือ 95.35%

ความน่าจะเป็นที่จะมีการสั่งของ 5 ชิ้นขึ้นไปในหนึ่งครั้ง เมื่อมีค่าจัดส่งมากกว่าหรือเท่ากับ 120 บาท มีความน่าจะเป็นเท่ากับ 0.7273 หรือ 72.73%

สถิติเชิงพรรณนา (Descriptive Statistics)

ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอมและช่วงเปิดเทอม

- mean = 1.01960784
- sd = 1.208142311
- no outliner

ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ

- mean = 14.09803922
- sd = 12.9093065
- new mean = 11.72916667
- new sd = 8.929367239

จำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้งมีกี่ชิ้น

- mean = 4.882352941
- sd = 3.542016707
- new mean = 4.25
- new sd = 2.365532642

ค่าจัดส่งสินค้าที่แพงที่สุดมีราคากี่บาท

- mean = 128.7058824
- sd = 274.0398726
- new mean = 74.7555556
- new sd = 33.11148905

จำนวนของผู้ได้รับสินค้าในช่วงเวลาต่าง ๆ

- mean = 15.21132419
- sd = 17.39938796
- new mean = 11.53750294
- new sd = 7.868142059

การทดสอบการแจกแจงข้อมูล (Goodness of Fit test)

ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ เป็นการกระจายตัวแบบ Normal distribution ที่มีค่า mean = 14.09803922, SD = 12.90930657

ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอมและช่วงเปิดเทอม ไม่เป็นการกระจายตัวแบบ Normal distribution ที่มีค่า mean = 1.019607843, SD = 1.208142311 จำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้ง กระจายตัวแบบ Normal distribution ที่มีค่า

mean = 4.882352941, SD = 3.542016707

ค่าจัดส่ง สินค้าที่แพงที่สุด ไม่เป็นการกระจายตัวแบบ Normal distribution ที่มีค่า mean = 128.7058824, SD = 274.0398726

อัตราส่วนของราคาสินค้าเฉลี่ยต่อราคาค่าขนส่งเฉลี่ย กระจายตัวแบบ Normal distribution ที่มี ค่า mean = 15.21132419. SD = 17.39938796

การทดลองสมมติฐาน (Hypothesis Test)

ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอม และช่วงเปิดเทอม ไม่เกิน 2 ครั้ง

ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ เฉลี่ยมากกว่า 15 วัน จำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้ง เฉลี่ย 4 ชิ้นขึ้นไป ค่าจัดส่งสินค้าที่แพงที่สุด มีราคาเฉลี่ยเท่ากับ 123 บาท ราคาสินค้าเฉลี่ยเป็น 15 เท่าต่อราคาค่าขนส่งเฉลี่ย

ความรับผิดชอบ

นายปรมี สกุลตั้งมณีรัตน์ 6310500040 (Multiple Random Variables)

นางสาวภรภัทร วงศ์สาวิตร 6310500058 (Goodness of fit test)

นายทัตเทพ รัตนจันทร์ 6310503324 (Correlation Coefficient)

นายเทพจุฑา วรรณนิยม 6310503332 (Descriptive Statistics)

นายภูริณัฐ วงศ์เกษตรชัย 6310503511 (Hypothesis Test)