Lecture 7: Supervised Learning Pt. 1

Linear Classifiers and Cross Validation INFO 1998: Introduction to Machine Learning

Agenda

- 1. Linear Classifiers
 - Linear Perceptron
 - Support Vector Machines (SVMs)
- 2. Cross Validation (K-Fold)

Linear Classifiers

Linear Classifiers

A linear classifier is a hyper plane that is used to classify our data points

A hyperplane is our decision boundary and our goal is to find the best hyper plane for our data.

Linearly Separable

In this example, we cannot partition our dataset into yellow and purple with a linear decision boundary. This means that our data is not linearly separable.

Outliers are frequently the reason a data set is not linearly separable.

This data set is not linearly separable because of an <u>outlier</u>

Perceptron Learning Algorithm

Goal: find a normal vector w that perfectly classifies all the points in our data set Algorithm:

Initialize classifier as some random hyperplane
While there exists a misclassified point x:
 Adjust classifier slightly so that it classifies x correctly
 (or, is a little closer to classifying x correctly)
End While

"Use your mistakes as your stepping stones"

History of the Linear Perceptron

Frank Rosenblatt was first to implement perceptron!

→ Cornell professor and alum PHD '56 6

Gave him the title of 'Father of Deep Learning'

Deep Learning

→ Neural Networks a.k.a. Multilayer Perceptrons

Limitations of Perceptron

The training algorithm will never terminate if your training dataset is not linearly separable •

Is a great model to understand the intuition behind the training of a linear classifier: iteratively improve classifier by using misclassified points \rightleftharpoons

Support Vector Machines

Classify (+) and (-)

Which Hyperplane?

Optimal Hyperplane

Support Vector Machine

Maximal Margin Classifier

- We want to find a separating hyperplane
- Once we find candidates for the hyperplane, we try to maximize the margin, the normal distance from borderline points
 - Only Support Vectors matter

What if...

Which Decision Boundary is better?

Margins

Use cost function to penalize misclassified points

Choice of cost function makes margin "hard" vs. "soft"

Non-separable training sets

Use linear separation, but admit training errors.

Penalty of error: distance to hyperplane multiplied by error cost C.

Hard Margins

- High penalty value
- The hyperplane can be dictated by a single outlier

Soft Margins

Used in non-linearly separable datasets

Allow for misclassification

 Can account for "dirty" boundaries

Misclassification Penalty C

Kernels

- You cannot linearly divide the 2 classes on the xy plane at right
- Introduce new feature, $z = x^2 + y^2$ (radial kernel)
- Map 2 dimensional data onto 3 dimensional data. Now a hyperplane is easy to find.

Kernels

SVM has **MANY** Hyperparameters

SVM

C

The "penalty cost" for misclassifications (soft margins)

Gamma

How far the influence of a single training example reaches

Kernels

Method of transforming our data set

Finding the Best Hyper Parameters

Curse of Dimensionality

Our search space for the optimal hyper-parameters increases **exponentially** as the number of hyper parameters we are considering increases

Overview

Perceptron	SVM
 A very simple model Will perform poorly if data is not linearly separable 	 More complex model because we have to choose the "penalty cost" associated with misclassifications Can transform feature space by choosing a Kernel

Demo

Cross Validation

Often used in practice with k=5 or k=10.

Create equally sized *k* partitions, or **folds**, of training data

For each fold:

- Treat the *k-1* other folds as training data.
- Test on the chosen fold.

The average of these errors is the validation error

Dataset

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Test Sample

Training Sample

Training Sample

Training Sample

Training Sample

Calculate MSE = mse1

Training Sample

Test Sample

Training Sample

Training Sample

Training Sample

Calculate MSE = mse2

Training Sample

Training Sample

Test Sample

Training Sample

Training Sample

Calculate MSE = mse3

And so on

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

MSE = Avg(mse1...5)

Matters less how we divide up

Selection bias not present

Leave-1-Out Cross Validation

For each sample:

- Treat all other data as training data.
- Test on that one sample

The average of these errors is the validation error

Pro: Better on small datasets

Pro: More realistic (trained on most of the data)

Con: Takes longer to run

Coming Up

- Assignment 6: Due tonight at 11:59pm
- Assignment 7: Due next Wednesday at 11:59pm
- Mid-Semester Check-Ins: Due today! Please get them done ASAP:)
- Next Lecture: More Supervised Learning! (Decision Trees & Logistic Regression)

