

CRICOS PROVIDER 00123M

School of Computer Science

COMP SCI 2000 / 7081 Computer Systems Lecture 2

adelaide.edu.au seek LIGHT

The whole system

(Abstraction-implementation paradigm)

Review: What is gate logic?

- Our hardware is an inter-connected set of chips.
- Chips are built of simpler chips, down to the simplest structure of all the elementary logic gate.
- Logic gates are hardware implementations of Boolean functions. This allows us to represent logical statements in computer form.
- Every chip and gate has:
 - An interface: Telling us what it does
 - An implementation: Telling us how it does it
 - Interfaces are a key abstraction mechanism

University of Adelaide

Review: Example

Interface

а	b	out
0	0	0
0	1	1
1	0	1
1	1	0

Implementation

All Boolean functions of 2 variables

Constant $0 = x.\overline{x}$ Constant 0 0 0 0 0 And $x \cdot y$ 0 0 0	L
And $x \cdot y = 0$ 0 0	
)
$r \land rd \land rd \Rightarrow r \cdot \overline{r} \qquad 0 0 1$	l
$x \text{ And Not } y \qquad x \cdot \overline{y} \qquad 0 \qquad 0 \qquad 1$)
x x 0 0 1	l
Not x And y $\overline{x} \cdot y$ 0 1 0)
y y 0 1 0	l
Add / Difference Xor $x \cdot \overline{y} + \overline{x} \cdot y$ 0 1 1)
Or $x+y$ 0 1 1	l
Nor $\overline{x+y}$ 1 0 0)
XNor Equivalence $x \cdot y + \overline{x} \cdot \overline{y} = 1 0 0$	L
Not y \overline{y} 1 0 1)
$x \text{ Or Not } y \text{ If } y \text{ then } x \qquad x + \overline{y} \qquad 1 \qquad 0 \qquad 1$	l
)
Not x Or y If x then y $\overline{x} + y$ 1 1 0	l
Nand $\overline{x \cdot y}$ 1 1 1)
Constant $1 = x + \overline{x}$ Constant 1 1 1 1	l

Canonical Form

- We can construct a canonical representation of any boolean function
 - For each row that gives a 1 in its truth table
 - and together all terms after applying **not** to any 0 to make it a 1
 - if applied to any other row, the equation will evaluate to o
 - Then
 - or together the equations for every row that gives a 1
- XOR

$$- \overline{x} \cdot y + x \cdot \overline{y}$$

So you only need and, or and not gates

Canonical Form – Mux

out = if sel == 0 then a else b

- = a.b.sel + a.b.sel + a.b.sel + a.b.sel
- = a.b.sel + a.b.sel + a.b.sel
- = a.sel + b.sel

How to construct and, or and not

• From the truth table:

$$-\overline{x} = \overline{x.x}$$

$$-x.y = \overline{\overline{x.y}}$$

$$-x+y = \overline{\overline{x}.\overline{y}}$$

- Not(x)
 - Nand(x,x)
- And(x,y)
 - Nand(Nand(x,y),Nand(x,y))
- Or(x,y)
 - Nand(Not(x),Not(y))

We only need nand gates!

Review: Gate logic

- Gate logic a gate architecture designed to implement a Boolean function
- Elementary gates:

■ Composite gates:

■ Important distinction: Interface (what) VS implementation (how).

Example: Building an And gate

And.cmp

a 0 0	b 0 1	out 0 0
1	0	0
1	1	1

Contract:

When running your .hdl on our .tst, your .out should be the same as our .cmp.

And.hdl

```
CHIP And
{    IN a, b;
    OUT out;

PARTS:
    // implementation missing
}
```

And.tst

```
load And.hdl,
output-file And.out,
compare-to And.cmp,
output-list a b out;
set a 0,set b 0,eval,output;
set a 0,set b 1,eval,output;
set a 1,set b 0,eval,output;
```

Building an And gate

Implementation: And(a,b) = Not(Nand(a,b))

And.hdl And(a = ?, b = ?, out = ?);

```
CHIP And
{       IN a, b;
       OUT out;
      Nand(a = a, b = b, out = x);
      Not(in = x, out = out);
      // Nand(a = x, b = x, out = out);
}
```

Boolean Functions!

- Each Boolean function has a canonical representation
- The canonical representation is expressed in terms of And, Not, Or
- And, Not, Or can be expressed in terms of Nand alone (or Nor)
- Every Boolean function can be realized by a standard circuit consisting of Nand gates only
- Mass production
- Universal building blocks, unique topology

Number Representation

4-bit 2's Complement	Decimal
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
	1000 1001 1010 1011 1100 1110 1111 0000 0001 0010 0011 0100 0101 0110

Binary Addition

Assuming a 4-bit system:

No overflow
$$1 + 5 = 6$$

Overflow
$$-5 + 7 = 2$$

- Algorithm: exactly the same as in decimal addition
- Overflow (MSB carry) may need to be dealt with we usually ignore it.

Binary Addition

- How do we know if a 2's complement number is negative?
 - The Most Significant Bit is 1
- There is only one representation of o
- To negate a number, flip all the bits and add 1
- If you flip all the bits in a number x, you get -x 1
- Sometimes the result of an add operation is wrong!
 - Using subtract to compare numbers needs to account for this effect

Bad overflow 5 + 4 = -7

Bad overflow
$$-5 + -5 = 6$$

Building an Adder chip

- Adder: a chip designed to add two integers
- Proposed implementation:
 - Half adder: designed to add 2 bits (we only need one)
 - Full adder: designed to add 3 bits (we need n-1 of these)
 - Adder: designed to add two *n*-bit numbers.

Half adder (designed to add 2 bits)

а	b	sum carry		
0	0	0 0		
0	1	1 0		
1	0	1 0		
1	1	0 1		

- A half adder can be built from an **xor** and an **and**
 - the sum column matches xor
 - the carry columns matches and

Full adder (designed to add 3 bits)

а	b	С	sum	carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Implementation: can be based on half-adder gates.

Perspective

- Combinational logic
- The canonical representation would be too big to use
- Our adder design is very basic: no parallelism
- It pays to optimize adders (but we won't do that here)
- Where is the seat of more advanced maths operations? a typical hardware/software tradeoff.

Summary

- You can construct many gates from NAND this is just one example of how gates are built up.
- By understanding arithmetic, we can combine gates to add two numbers, then combine full-adders to add larger numbers.

University of Adelaide