Lista IV - Métodos Numéricos

EPGE - 2018

Professor: Cezar Santos Aluno: Raul Guarini Riva

O código principal da lista está no arquivo ps4.m. Como nas outras listas, utilizei minha função $tauchen_ar1$ para realizar a discretização desejada do processo estocástico z_t num grid de 9 pontos. O problema do fazendeiro consiste em escolher consumo e número de cabras que serão guardadas em cada instante do tempo. Portanto, as variáveis de estado são o choque de dotação atual z e o nível de cabras estocadas no presente a. As variáveis de controle são o consumo c e o número de cabras a serem estocadas a'. A equação funcional que o fazendeiro tenta resolver, dado q, é dada por:

$$V(z, a) = \max_{c, a'} \{ u(c) + \beta \mathbb{E}(V(z', a')|z) \}$$

s.t. $c + qa' = e^z + a$

Para a discretização do espaço de ativos, precisamos de um limite de endividamento adequado. Em geral, poderíamos utilizar o limite natural de endividamento. Contudo, neste contexto rural, parece fazer sentido definir como limite inferior para o número de cabras estocadas o valor zero. Para o limite superior, segui os slides e o defini como 40. Utilizei 2000 pontos no grid de cabras e nove pontos no grid do choque de produtividade.

Solucionei o modelo utilizando o método de iteração da função valor em vista da simplicidade de sua implementação e do quão simples é o problema do fazendeiro. A figura a seguir mostra a função valor sob a calibração original:

Em seguida, computei a distribuição estacionária, de elemento típico $\pi(z,a)$, no espaço das variáveis de estado. Utilizei o método recursivo descrito nos slides, levando em conta a cada iteração a função política de estocagem de cabras.

O código inclusive implementa um teste de robustez da solução que é checar se a soma de todas os valores da distribuição se iguala a 1.

Com base na distribuição estacionária π , computei a variável "Aggregate Goats", análoga ao que seria o capital agregado num modelo à la Hugget ou Aiyagari:

$$\text{Aggregate Goats} = \sum_{a} \sum_{z} g(z,a) \pi(z,a)$$

onde g(z,a) corresponde á função política de estocagem de cabras avaliada no estado (z,a), já computada no estágio anterior. A tabela abaixo mostra como esta variável se comportou em cada cenário pedido. Nos três últimos casos, apenas o parâmetro em destaque foi diferente da calibração original proposta na lista:

Calibração	Aggregate Goats
Original	20.0093
$\rho = 0.97$	20.0689
$\gamma = 5$	20.0916
$\sigma = 0.05$	20.1403

Com um valor maior de ρ , os choques tornam-se mais persistentes, ainda que o processo gerador dos choques se mantenha estacionário. Apesar da média deste processo continuar zero, um valor maior de ρ implica que a variância de z_t aumenta. Isto é, a incerteza individual com respeito à dotação de recursos aumenta. Num ambiente com mercados incompletos, os fazendeiros não podem comprar seguro contra este choque de modo que o motivo precaucional da poupança explica o maior valor agregado de cabras estocadas. Os próprios fazendeiros tentam segurar a si próprios através de poupança, evitando estados da natureza de baixo consumo, agora mais prováveis frente à maior volatilidade da dotação.

A mesma interpretação aplica-se ao caso em que σ aumenta. Nesse caso, as inovações do processo z_t tem maior variância, levando consequentemente à maior variância do próprio z_t . De fato, nos dois casos, o número de cabras agregadas aumenta quando comparado ao caso da calibração original.

Com $\gamma=5$ ao invés de $\gamma=1.0001$, os fazendeiros tornam-se mais avessos ao risco. Isto implica que oscilações no consumo causam uma desutilidade maior quando γ cresce. A solução encontrada pelos fazendeiros para lidar com uma maior aversão ao risco é poupar mais, resultando num nível maior de cabras agregadas comparado ao caso da calibração original, algo intuitivo nesse caso.