CLAIMS

1	1. Position detection apparatus, comprising:
2	an accelerometer for providing an acceleration signal representative of acceleration of
3	a movable element,
4	a combining network having an acceleration input for receiving said acceleration
5	signal, a position input for receiving a position signal representative of position of said
6	movable element, and an output for providing an inferred position signal representative of an
7	inferred position of said movable element,
8	said network including a first signal processor for processing said acceleration signal
9	to provide a modified acceleration signal, said first signal processor comprising a low-pass
10	filter,
11	a second signal processor for processing said position signal to provide a modified
12	position signal, and
13	a combiner for additively combining said modified acceleration signal with said
14	modified position signal to provide said inferred position signal.
1	2. Position detection apparatus in accordance with claim 1, further comprising:
2	a second accelerometer, for providing a reference element signal representative of
3	acceleration of a reference element;
4	a differential acceleration measuring element, comprising
5	a first acceleration input for receiving said movable element acceleration signal,
6	a second acceleration input for receiving said reference element acceleration signal,
7	and
8	an output for providing a differential output signal representative of a differential
9	acceleration of said movable acceleration signal and said reference element acceleration
10	signal,
11	wherein said combining network acceleration input is for receiving said differential
12	acceleration signal, and
13	wherein said combining network first signal processor is for processing said
14	differential acceleration signal to provide said modified acceleration signal.

1	3. Position detection method for processing an acceleration signal and a measured
2	position signal representative of acceleration and position, respectively, of a movable element to
3	provide an inferred position signal comprising:
4	low-pass filtering said acceleration signal; and
5	additively combining the low-pass filtered acceleration signal with said position signal
6	to provide said inferred position signal.
1	4. Position detection method in accordance with claim 3, wherein said acceleration
2	signal is a movable element signal representative of acceleration of a movable element, and
3	wherein said method is further for processing a reference element signal representative of
4	acceleration of a reference element, said method further comprising:
5	differentially combining said movable element acceleration signal and said reference
6	element acceleration signal to provide a differential acceleration signal representative of
7	differential acceleration of said movable element and said reference element;
8	low pass filtering said differential acceleration signal; and
9	additively combining the low pass filtered acceleration signal with said position
10	signal to provide said inferred position signal.
1	5. Closed loop motion control apparatus, comprising:
2	a movable element having a position,
3	an accelerometer for providing an acceleration signal representative of acceleration of
4	said movable element,
5	a combining element, for combining a reference position signal and an inferred
6	position signal to provide an error signal,
7	a controller, for providing a control signal responsive to said error signal,
8	an actuator, for applying a force, responsive to said control signal, to said movable
9	element to change said position, said force resulting in said acceleration of said movable
10	element,
11	a feedback loop, for providing said inferred position signal, said feedback loop
12	comprising a combining network for providing said inferred position signal, said combining
13	network including
14	an acceleration input for receiving said acceleration signal,

15	a position input for receiving a position signal representative of position of said
16	movable element, and
17	an output for providing an inferred position signal representative of an inferred
18	position of said movable element,
19	said network including a first signal processor for processing said acceleration signal
20	to provide a modified acceleration signal, said first signal processor comprising a low-pass
21	filter,
22	a second signal processor for processing said position signal to provide a modified
23	position signal, and
24	a combiner for additively combining said modified acceleration signal with said
25	modified position signal to provide said inferred position signal.
1	6. Closed loop motion control apparatus in accordance with claim 5, further
2	comprising
3	a reference element,
4	a second accelerometer, for providing a reference element acceleration signal
5	representative of acceleration of said reference element;
6	a differential acceleration measuring element, comprising
7	a first acceleration input for receiving said movable element acceleration signal,
8	a second acceleration input for receiving said reference element acceleration signal,
9	and
10	an output for providing a differential output signal representative of a differential
11	acceleration of said movable acceleration signal and said reference element acceleration
12	signal,
13	wherein said combining network acceleration input is for receiving said differential
14	acceleration signal, and
15	wherein said combining network first signal processor is for processing said
6	differential acceleration signal to provide said modified acceleration signal.
1	7. Open loop position detection apparatus, comprising:
2	an accelerometer for providing an acceleration signal representative of acceleration of
3	a movable element,

4	a combining network having an acceleration input for receiving said acceleration
5	signal, a position input for receiving a position signal representative of position of said
6	movable element, and an output for providing an inferred position signal representative of an
7	inferred position of said movable element,
8	said network including a first signal processor for processing said acceleration signal
9	to provide a modified acceleration signal, said first signal processor comprising a low-pass
10	filter,
11	a second signal processor for processing said position signal to provide a modified
12	position signal, and
13	a combiner for additively combining said modified acceleration signal with said
14	modified position signal to provide said inferred position signal.
_	
1	8. Open loop position detecting apparatus in accordance with claim 7, further
2	comprising
3	a second accelerometer, for providing a reference element acceleration signal
4	representative of acceleration of a reference element;
5	a differential acceleration measuring element, comprising
6	a first acceleration input for receiving said movable element acceleration signal,
7	a second acceleration input for receiving said reference element acceleration signal,
8	and
9	an output for providing a differential output signal representative of a differential
10	acceleration of said movable acceleration signal and said reference element acceleration
11	signal,
12	wherein said combining network acceleration input is for receiving said differential
13	acceleration signal, and
14	wherein said combining network first signal processor is for processing said differential
15	acceleration signal to provide said modified acceleration signal.