CSE 373

Graphs 3: Implementation

reading: Weiss Ch. 9

slides created by Marty Stepp http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

Implementing a graph

- If we wanted to program an actual data structure to represent a graph, what information would we need to store?
 - for each vertex? for each edge?
- What kinds of questions would we want to be able to answer quickly:
 - about a vertex?
 - about edges / neighbors?
 - about paths?
 - about what edges exist in the graph?

- We'll explore three common graph implementation strategies:
 - edge list, adjacency list, adjacency matrix

Edge list

- edge list: An unordered list of all edges in the graph.
 - an array, array list, or linked list
- advantages:
 - easy to loop/iterate over all edges
- disadvantages:
 - hard to quickly tell if an edge exists from vertex A to B
 - hard to quickly find the degree of a vertex (how many edges touch it)

Graph operations

- Using an edge list, how would you find:
 - all neighbors of a given vertex?
 - the degree of a given vertex?
 - whether there is an edge from A to B?
 - whether there are any loops (self-edges)?
 - What is the Big-Oh of each operation?

Adjacency matrix

- adjacency matrix: An N × N matrix where:
 - the non-diagonal entry a[i,j] is the number of edges joining vertex i and vertex j (or the weight of the edge joining vertex i and vertex j).
 - the diagonal entry a[i,i] corresponds to the number of loops (self-connecting edges) at vertex i (often disallowed).
 - in an undirected graph, a[i,j] = a[j,i] for all i, j. (diagonally symmetric)

	1	2	3	4	5	6	7
1	Ø	1	0	1	0	0	1
2	1	Ø	1	0	1	0	0
3	0	1	Ø	0	0	1	0
4	1	0	0	Ø	0	0	1
5	0	1	0	0	ø	1	1
6	0	0	1	0	1	\wp	1
7	1	0	0	1	1	1	Ø

Graph operations

- Using an *adjacency matrix*, how would you find:
 - all neighbors of a given vertex?
 - the degree of a given vertex?
 - whether there is an edge from A to B?
 - whether there are any loops (self-edges)?
 - What is the Big-Oh of each operation?

	1	2	3	4	5	6	7
1	0	1	0	1	0	0	1
2	1	0	1	0	1	0	0
3	0	1	0	0	0	1	0
4	1	0	0	0	0	0	1
5	0	1	0	0	0	1	1
6	0	0	1	0	1	0	1
7	1	0	0	1	1	1	0

Adj matrix pros / cons

• advantages:

fast to tell whether an edge exists between any two vertices i and j
 (and to get its weight)

• disadvantage:

consumes a lot of memory on sparse graphs (ones with few edges)

	1	2	3	4	5	6	7
1	0	1	0	1	0	0	1
2	1	0	1	0	1	0	0
3	0	1	0	0	0	1	0
4	1	0	0	0	0	0	1
5	0	1	0	0	0	1	1
6	0	0	1	0	1	0	1
7	1	0	0	1	1	1	0

Adjacency list

- adjacency list: Stores edges as individual linked lists of references to each vertex's neighbors.
 - in unweighted graphs, the lists can simply be references to other vertices and thus use little memory
 - in undirected graphs, edge (i, j) is stored in both i's and j's lists

Graph operations

- Using an *adjacency list*, how would you find:
 - all neighbors of a given vertex?
 - the degree of a given vertex?
 - whether there is an edge from A to B?
 - whether there are any loops (self-edges)?
 - What is the Big-Oh of each operation?

Adj list pros / cons

• advantages:

- new vertices can be added to the graph easily, and they can be connected with existing nodes simply by adding elements to the appropriate arrays;
- easy to find all neighbors of a given vertex (and its degree)

disadvantages:

determining whether an edge exists between two vertices requires
 O(N) time, where N is the average number of edges per node

Weighted/directed graphs

- weighted:
 - adj. list: store weight in each edge node
 - adj. matrix: store weight in each matrix box
- directed:
 - adj. list: edges appear only in start vertex's list
 - adj. matrix: no longer diagonally symmetric

1	_		2:3_	4:5		
2	-		3:6_	5:1		
3	-	\longrightarrow	6:1			
4	_	\longrightarrow	7:6			
5	_	 	2:1_	6 :2		
6			3 :2 –	7:4		
7	_		1:2_	4:6_		5 :3

	1	2	3	4	5	6	7
1	0	3	0	5	0	0	0
2	0	0	6	0	1	0	0
3	0	0	0	0	0	1	0
4	0	0	0	0	0	0	6
5	0	1	0	0	0	2	0
6	0	0	2	0	0	0	4
7	2	0	0	6	3	0	0

Runtime comparison

 V vertices, E edgesno parallel edgesno self-loops	Edge List	Adjacency List	Adjacency Matrix
Memory usage	V + E	V + E	 V ²
Find all neighbors of ${m v}$	<i>E</i>	degree(<i>v</i>)	<i>V</i>
Is v a neighbor of w ?	<i>E</i>	degree(<i>v</i>)	1
add a vertex	1	1	 V ²
add an edge	1	1	1
remove a vertex	<i>E</i>	1	V ²
remove an edge	<i>E</i>	deg(v)	1

Representing vertices

- Not all graphs have vertices/edges that are easily "numbered".
 - How do we represent lists or matrices of vertex/edge relationships?
 - How do we quickly look up edges or vertices near a given vertex?
 - edge list:
 - List<Edge>
 - adjacency list:
 - Map<Vertex, List<Edge>> or
 - Multimap<Vertex, Edge>
 - adjacency matrix:
 - Map<Vertex, Map<Vertex, Edge>> Or
 - Table<Vertex, Vertex, Edge>

A graph ADT

As with other ADTs, we can create a Graph ADT interface:

```
public interface Graph<V, E> {
    void addEdge(V v1, V v2, E e, int weight);
    void addVertex(V v);
    void clear();
    boolean containsEdge (E e);
    boolean containsEdge(V v1, V v2);
    boolean containsVertex(V v);
    int cost (List < V > path);
    int degree (V v);
    E edge (V v1, V v2);
    int edgeCount();
    Set < E > edges();
    int edgeWeight (V v1, V v2);
```

A graph ADT, cont'd.

```
// public interface Graph<V, E> {
   boolean isDirected();
   boolean isEmpty();
   boolean isReachable (V v1, V v2); // DFS
   boolean isWeighted();
   List<V> minimumWeightPath(V v); // Dijkstra's
    Set < V > neighbors (V v);
    int outDegree (V v);
   void removeEdge(V v1, V v2);
   void removeVertex(V v);
   List<V> shortestPath(V v1, V v2); // BFS
    String toString();
    int vertexCount();
    Set < V > vertices();
```

Info about vertices

- Information stored in each vertex (for internal use):
 - can store various flags and fields for use by path search algorithms

```
public class Vertex<V> {
    public int cost() {...}
    public int number() {...}
    public V previous() {...}
    public boolean visited() {...}

    public void setCost(int cost) {...}
    public void setNumber(int number) {...}
    public void setPrevious(V previous) {...}
    public void setVisited(boolean visited) {...}
    public void clear() {...} // reset dist, prev, visited
}
```

Info about edges

• Information stored in each edge (for internal use):

```
public class Edge<V, E> {
    public boolean contains(V vertex) {...}
    public E edge() {...}
    public V end() {...}
    public V start() {...}
    public int weight() {...} // 1 if unweighted
}
```