Package 'TLdating'

November 14, 2016

Type Package

Title Tools for Thermoluminescences Dating

Version 0.1.3 **Date** 2016-08-01

Maintainer David Strebler <david.strebler@uni-koeln.de>

Description

A series of function to make thermoluminescence dating using the MAAD or the SAR protocol. This package completes the R package ``Luminescence."

License GPL-3

Encoding UTF-8

Depends R (>= 2.0.0)

Imports methods, Luminescence (>= 0.5.0), gplots

Collate 'analyse_TL.MAAD.R' 'analyse_TL.SAR.R' 'analyse_TL.plateau.R'

'calc_TL.LxTx.R' 'calc_TL.MAAD.fit.I.R' 'calc_TL.MAAD.fit.Q.R'

'calc_TL.MAAD.separate.R' 'calc_TL.MAAD.average.R'

 $'calc_TL.SAR.fit.R'\ 'calc_TL.plateau.R'\ 'calc_TL.temperature.R'$

'mod_align.peaks.R' 'mod_extract.TL.R' 'mod_extract.aliquot.R'

'mod_extract.preheat.R' 'mod_update.dType.R'

'mod_update.error.R' 'mod_remove.preheat.R'

'mod_remove.aliquot.R' 'mod_substract.background.R'

'plot_align.peaks.R' 'plot_extract.TL.R'

'plot_remove.preheat.R' 'plot_substract.background.R'

'plot_TL.plateau.R' 'plot_TL.MAAD.R' 'plot_TL.SAR.R'

'script_TL.export.R' 'script_TL.import.R' 'script_TL.MAAD.R'

'script_TL.plateau.R' 'script_TL.pretreatment.R'

'script_TL.SAR.R' 'TLum-class.R' 'TLum.Data-class.R'

'TLum.BIN.File-class.R' 'TLum.Data.Curve-class.R'

"TLum.Analysis-class.R' "TLum.Results-class.R'

'Risoe.BINfileData2TLum.BIN.File.R'

'TLum.BIN.File2Risoe.BINfileData.R'

'TLum.BIN.File2TLum.Analysis.R' 'RLum.Analysis2TLum.Analysis.R'

'TLum.BIN.File2TLum.Data.Curve.R'

"TLum.Analysis2TLum.BIN.File.R' "TLum.Analysis2RLum.Analysis.R"

'template_DRAC4flint.R' 'use_DRAC4flint.R'

'template_DRAC4ceramic.R' 'use_DRAC4ceramic.R'

'template_DRAC4cave.R' 'use_DRAC4cave.R'

'template_DRAC4brick.R' 'use_DRAC4brick.R' 'TLdating-package.R'

2 R topics documented:

RoxygenNote 5.0.1
NeedsCompilation no
Author David Strebler [aut, cre], Dominik Brill [ths], Helmut Brückner [ths]
Repository CRAN
Date/Publication 2016-08-31 14:28:21

${\sf R}$ topics documented:

TLdating-package
analyse_TL.MAAD
analyse_TL.plateau
analyse_TL.SAR
calc_TL.LxTx
calc_TL.MAAD.average
calc_TL.MAAD.fit.I
calc_TL.MAAD.fit.Q
calc_TL.MAAD.separate
calc_TL.plateau
calc_TL.SAR.fit
calc_TL.temperature
mod_align.peaks
mod_extract.aliquot
mod_extract.preheat
mod_extract.TL
mod_remove.aliquot
mod_remove.preheat
mod_substract.background
mod_update.dType
mod_update.error
plot_align.peaks
plot_extract.TL
plot_remove.preheat
plot_substract.background
plot_TL.MAAD
plot_TL.plateau
plot_TL.SAR
Risoe.BINfileData2TLum.BIN.File
RLum.Analysis2TLum.Analysis
script_TL.export
script_TL.import
script_TL.MAAD
script_TL.plateau
script_TL.pretreatment
script_TL.SAR
template_DRAC4brick
template_DRAC4cave
template_DRAC4ceramic
template DRAC4flint

TLdating-package	3
1 Edating-package	J

TLda	ting-package Tools for Thermoluminescences Dating	
Index		57
	use_DRAC4flint	33
	use_DRAC4@ramic	
	use_DRAC4cave	
	use_DRAC4brick	
	TLum.Results-class	
	TLum.Data.Curve-class	51
	TLum.Data-class	51
	TLum.BIN.File2TLum.Data.Curve	50
	TLum.BIN.File2TLum.Analysis	49
	TLum.BIN.File2Risoe.BINfileData	49
	TLum.BIN.File-class	48
	TLum.Analysis2TLum.BIN.File	47
	TLum.Analysis2RLum.Analysis	
	TLum.Analysis-class	
	TLum-class	45

Description

A series of functions for thermoluminescence dating using the MAAD or the SAR protocol. This package adds to the R package Luminescence.

Details

Package: TLdating
Type: Package
Version: 0.1.2
Date: 2016-03-01
License: GPL-3

Author(s)

Authors

David Strebler, University of Cologne, Germany

Beta-tester

Anja Zander, University of Cologne, Germany

Supervisor

4 analyse_TL.MAAD

Helmut Brückner, University of Cologne, Germany Dominik Brill, University of Cologne, Germany

Project source code repository

https://github.com/dstreble/TLdating

Related package projects

```
http://www.r-luminescence.de
http://cran.r-project.org/package=Luminescence
```

Package maintainer

David Strebler, Geographisches Institut, Universitat zu Koeln, Cologne, Germany. <david.strebler@uni-koeln.de>

Acknowledgement

This project is realized in the context of the CRC 806 "Our Way to Europe" (http://www.sfb806.uni-koeln.de/) which is funded by the German Research foundation (DFG).

The code and the structure of this package is partially based on those from the R package Luminescence version 0.5.1 developed by S. Kreutzer, M. Dietze, C. Burow, M.C. Fuchs, C. Schmidt, M. Fisher and R.K. Smedley.

analyse_TL.MAAD

MAAD protocol for TL dating

Description

Function to estimate the ED in TL dating using the MAAD protocol.

It provides an estimation of the palaeodose (Q) and/or the supralinearity correction (I). The equivalent dose (ED) is estimated by the addition of Q and I.

See details for more information.

Usage

```
analyse_TL.MAAD(object, eval.Tmin, eval.Tmax,
  rejection.criteria = list(testdose.error = 10, paleodose.error = 10),
  fitting.parameters = list(fit.method = "LIN", fit.weighted = FALSE,
  fit.use.slope = FALSE, fit.aDoses.min = 0, fit.aDoses.max = NA, fit.rDoses.min
  = 0, fit.rDoses.max = NA), plotting.parameters = list(plot.Tmin = 0,
    plot.Tmax = NA, no.plot = FALSE))
```

Arguments

object	TLum.Analysis (required): object containing the TL curves used for the ED estimation.
eval.Tmin	integer (required): Temperature ($^{\circ}\text{C})$ of the lower boundary for the signal integration.
eval.Tmax	integer (required): Temperature ($^{\circ}$ C) of the upper boundary for the signal integration.

analyse_TL.MAAD 5

```
rejection.criteria

list (with default): list containing the rejection criteria (in %). See details.

fitting.parameters

list (with default): list containing the fitting parameters. See details.

plotting.parameters

list (with default): list containing the plotting parameters. See details.
```

Details

This function estimates the equivalent dose for the thermoluminescence dating with the MAAD protocol. It can provide an estimation of the palaeodose (Q) and the supralinearity correction (I) simultaniously or separately. These are estimated using the growth curve approach (QC) (Aitken, 1985) and the dose plateau approach (DP). Both approaches should provide a similar result. The equivalent dose is estimated by the addition of Q and I

The Lx/Tx matrix is estimated using calc_TL.LxTx.

The average TL curves for each dose step are estimate using calc_TL.MAAD.average.

The plateau test values are estimated using calc_TL.plateau.

Rejection criteria

The rejection criteria are:

```
testdose.error numeric: Maximum error accepted on Tx (in %). paleodose.error numeric: Maximum error accepted on Lx (in %).
```

Fitting parameters

The fitting parameters are:

```
method character: Fitting method (LIN, EXP, EXP+LIN or EXP+EXP).

fit.weighted logical: If the fitting is weighted or not.

fit.use.slope logical: If the slope of the Q growth curve is reused for the supralinearity correction.

fit.aDoses.min numeric: Lowest additive dose used for the fitting.

fit.aDoses.max numeric: Highest additive dose used for the fitting.

fit.rDoses.min numeric: Lowest regenerative dose used for the fitting.

fit.rDoses.max numeric: Highest regenerative dose used for the fitting.

See also calc_TL.MAAD.fit.Q and calc_TL.MAAD.fit.I.
```

Plotting parameters

The plotting parameters are:

```
plot.Tmin numeric: Lowest temperature plotted.
plot.Tmax numeric: Highest temperature plotted.
no.plot logical: If TRUE, the results will not be plotted.
See also plot_TL.MAAD.
```

6 analyse_TL.plateau

Value

The results are plotted using plot_TL.MAAD.

The function also provides a TLum.Results containing:

```
    De.GC list: Results obtained with the dose plateau approach and their uncertainties (De, De.error, Q, Q.error, I, I.error)
    De.DP list: Results obtained with the growth curve approach and their uncertainties (De, De.error, Q, Q.error, I, I.error)
    LnLxTnTx.table matrix: Lx/Tx values
    RC.Status character: The acceptance result.
```

Author(s)

David Strebler, University of Cologne (Germany)

References

Aitken, M.J. (1985) Thermoluminescence Dating, Academic Press, London

See Also

```
calc_TL.LxTx, calc_TL.plateau, calc_TL.MAAD.average, calc_TL.MAAD.separate, calc_TL.MAAD.fit.I, calc_TL.MAAD.fit.Q, analyse_TL.SAR.
```

Examples

```
##load data
##perform analysis
```

analyse_TL.plateau

Plateau test function for TL dating

Description

This function performs the plateau test for TL curves (Ln/Lx).

Usage

Arguments

```
object TLum. Analysis (required): object containing the TL curves used for the Plateau test.

plotting.parameters

list (with default): list containing the plotting parameters. See details.
```

analyse_TL.SAR 7

Details

Plotting parameters

The plotting parameters are:

```
plot.Tmin numeric: Lowest temperature plotted.
plot.Tmax numeric: Highest temperature plotted.
no.plot logical: If TRUE, the results will not be plotted.
See also plot_TL.plateau.
```

Value

The results are plotted using plot_TL.plateau.

Author(s)

David Strebler, University of Cologne (Germany)

References

Aitken, M.J. (1985) Thermoluminescence Dating, Academic Press, London

See Also

```
calc_TL.LxTx, calc_TL.plateau, analyse_TL.MAAD
```

analyse_TL.SAR

SAR protocol for thermoluminescence dating

Description

This function calculates the equivalent dose (ED) using the SAR protocol. See details for more information.

Usage

```
analyse_TL.SAR(object, eval.Tmin, eval.Tmax,
  rejection.criteria = list(recycling.ratio = 10, recuperation.rate = 10,
  testdose.error = 10, paleodose.error = 10),
  fitting.parameters = list(fit.method = "LIN", fit.weighted = FALSE,
  fit.rDoses.min = NA, fit.rDoses.max = NA),
  plotting.parameters = list(plot.Tmin = 0, plot.Tmax = NA, no.plot = FALSE))
```

8 analyse_TL.SAR

Arguments

object TLum.Analysis (required): object containing the TL curves used for the ED calculation.

eval.Tmin integer (required): Temperature (°C) of the lowest boundary for the signal integration.

eval.Tmax integer (required): Temperature (°C) of the upper boundary for the signal integration.

rejection.criteria list (with default): list containing the rejection criteria (in %). See details.

fitting.parameters list (with default): list containing the fitting parameters. See details.

plotting.parameters

Details

This function estimates the equivent dose in thermoluminescence dating using the SAR protocol. The equivalent dose is estimated for each disc using the growth curve approaches (QC) (Aitken, 1985) and the dose plateau approach (DP). Both approach should provide a similar result.

list (with default): list containing the plotting parameters. See details.

The Lx/Tx matrix is estimated using calc_TL.LxTx. The plateau test values are estimated using calc_TL.plateau.

Rejection criteria

The rejection criteria are:

```
recycling.ratio numeric: Maximum recycling ratio accepted (in %). recuperation.rate numeric: Maximum recuperation rate accepted (in %). paleodose.error numeric: Maximum error accepted on Lx (in %). testdose.error numeric: Maximum error accepted on Tx (in %).
```

Fitting parameters

The fitting parameters are:

```
method character: Fitting method (LIN, EXP, EXP+LIN or EXP+EXP).

fit.weighted logical: If the fitting is weighted or not.

fit.rDoses.min numeric: lowest regenerative dose used for the fitting.

fit.rDoses.max numeric: highest regenerative dose used for the fitting.

See also calc_TL.SAR.fit.
```

Plotting parameters

The plotting parameters are:

```
plot.Tmin numeric: lowest temperature plotted. plot.Tmax numeric: highest temperature plotted.
```

calc_TL.LxTx 9

```
no.plot logical: If TRUE, the results will not be plotted. See also plot_TL.SAR.
```

Value

The results are plotted using plot_TL.SAR.

The function also provides an TLum.Results containing:

```
De.GC list: Results obtained with the dose plateau approach and their uncertainties. (De, De.error)

De.DP list: Results obtained with the growth curve approach and their uncertainties. (De, De.error)

LnLxTnTx.table matrix: Lx/Tx values

RC.Status character: Results of the rejection tests.
```

Author(s)

David Strebler, University of Cologne (Germany), David Strebler

References

Aitken, M.J. (1985) Thermoluminescence Dating, Academic Press, London

Murray & Wintle (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements, Vol.32, No.1, p.57-73.

See Also

```
calc_TL.LxTx, calc_TL.plateau, calc_TL.SAR.fit, analyse_TL.MAAD.
```

calc_TL.LxTx

calculation of the Lx/Tx matrix

Description

Internal function called by analyse_TL.MAAD and analyse_TL.SAR.

This function separates the Lx matrix from the Tx matrix. Then, it estimates the Lx/Tx matrix. It also provides a name for each of the curves.

Usage

```
calc_TL.LxTx(object)
```

Arguments

object TLum. Analysis (required): TLum. Analysis object

Details

Warning: This function is an internal function and should not be used except for development purposes. Internal functions can be heavily modified and even renamed or removed in new version of the package.

Value

The function provides an TLum.Results containing:

Temperatures numeric: Vector with the temperature values.

Names character: Vector with the curve names.

Datatype character: Vector with the curve type.

Doses numeric: Vector with the curve doses.

Testdoses numeric: Vector with the curve test-doses.

Lx Lx matrix.

Lx.error Absolute error for the Lx matrix.

Tx Tx matrix.

Tx.error Absolute error for the Tx matrix

LxTx Lx/Tx matrix.

LxTx.error Absolute error for the Lx/Tx matrix.

Author(s)

David Strebler, University of Cologne (Germany).

References

Aitken, M.J. (1985) Thermoluminescence Dating, Academic Press, London

Murray & Wintle (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements, Vol.32, No.1, p.57-73.

See Also

```
analyse_TL.MAAD, analyse_TL.SAR.
```

calc_TL.MAAD.average Estimate average additive curves for the MAAD protocol.

Description

Internal function called by analyse_TL.MAAD.

This function estimates the average curves for each additive dose.

Usage

```
calc_TL.MAAD.average(names, doses, Lx, Lx.error)
```

calc_TL.MAAD.fit.I

Arguments

```
names character (required): Names of the TL curves
```

doses numeric (required): additive doses used for the TL curve

Lx numeric (**required**): Lx matrix

Lx.error numeric (**required**): Error for the Lx matrix.

Details

Warning: This function is an internal function and should not be used except for development purposes. Internal functions can be heavily modified and even renamed or removed in new version of the package.

Value

The function provide an TLum.Results object containing:

```
names character: Vector with the names of the average additive curves.
```

doses character: Vector with the additive doses corresponding to each average additive curve.

Lx numeric: new average additive curve Lx matrix.

Lx.error numeric: Error on the new Lx matrix.

Author(s)

David Strebler, University of Cologne (Germany).

```
calc_TL.MAAD.fit.I Estimation of the supralinearity value for the MAAD protocol
```

Description

Internal function called by analyse TL.MAAD.

This function estimates the supralinearity correction based on the dose vector and the Lx/Tx vector provided.

See details for more information.

Usage

```
calc_TL.MAAD.fit.I(LxTx, LxTx.error, doses, slope = NULL,
  fitting.parameters = list(fit.method = "LIN", fit.weighted = FALSE,
  fit.use.slope = FALSE))
```

Arguments

```
LxTx numeric (required): Lx/Tx vector
```

LxTx.error numeric (**required**): Error for the Lx/Tx vector

doses numeric (required): doses vector

slope list (with default): Property of the additive growth curve.

fitting.parameters

list (with default): fitting parameters. See details.

12 calc_TL.MAAD.fit.I

Details

This function estimates the supralinearity correction based on the doses vector and the Lx/Tx matrix provided.

Different fitting methods are available (LIN, EXP, EXP+LIN or EXP+EXP). Morover, the fitting can be weighted or not.

If the fitting parameter fit.use.slope is TRUE, the function will use the data from slope to define the fitting curve for the supralinearity correction. In that case, the supralinearity correction growth curve will be parallel to the additive growth curve.

#' Fitting parameters

The fitting parameters are:

```
\label{eq:method_character:} \textbf{ Fitting method (LIN, EXP, EXP+LIN or EXP+EXP)}.
```

fit.weighted logical: If the fitting is weighted or not.

fit.use.slope logical: If the slope of the Q growth curve is reused for the supralinearity correction.

fit.rDoses.min numeric: lowest regenerative dose used for the fitting.

fit.rDoses.max numeric: Highest regenerative dose used for the fitting.

Warning: This function is an internal function and should not be used except for development purposes. Internal functions can be heavily modified and even renamed or removed in new version of the package.

Value

The function provides an TLum.Results object containing:

```
GC lm: The fitting result.
```

i numeric: The supralinearity correction estimation for the given equivalent dose

I.error numeric: The error for the supralinearity correction estimation

summary numeric: The parameters of the fitting result.

Author(s)

David Strebler, University of Cologne (Germany).

See Also

```
calc_TL.MAAD.fit.Q, analyse_TL.MAAD.
```

calc_TL.MAAD.fit.Q

```
calc_TL.MAAD.fit.Q Estimation of the palaeodose (Q) with the MAAD protocol
```

Description

Internal function called by analyse_TL.MAAD.

This function makes a first estimation of the palaeodose based on a doses vector and a Lx/Tx vector provided.

See details for more information.

Usage

```
calc_TL.MAAD.fit.Q(LxTx, LxTx.error, doses,
  fitting.parameters = list(fit.method = "LIN", fit.weighted = FALSE))
```

list (with default): fitting parameters. See details.

Arguments

```
LxTx numeric (required): Lx/Tx vector

LxTx.error numeric (required): Error for the Lx/Tx vector

doses numeric (required): doses vector

fitting.parameters
```

Details

This function estimates the equivalent dose before any supralineary correction based on the doses vector and the Lx/Tx matrix provided.

Different fitting methods are available (LIN, EXP, EXP+LIN or EXP+EXP). Moreover, the fitting can be weighted or not.

#' Fitting parameters

The fitting parameters are:

```
method character: Fitting method (LIN, EXP, EXP+LIN or EXP+EXP).

fit.weighted logical: If the fitting is weighted or not.

fit.use.slope logical: If the slope of the Q growth curve is reused for the supralinearity correction.

fit.rDoses.min numeric: lowest regenerative dose used for the fitting.

fit.rDoses.max numeric: Highest regenerative dose used for the fitting.
```

Warning: This function is an internal function and should not be used except for development purposes. Internal functions can be heavily modified and even renamed or removed in new version of the package.

Value

The function provides an TLum.Results object containing:

```
GC lm: fitting result.

Q numeric: equivalent dose estimation

Q.error numeric: Error for the equivalent dose estimation summary numeric: parameters of the fitting result.
```

Author(s)

David Strebler, University of Cologne (Germany).

See Also

```
calc_TL.MAAD.fit.I, analyse_TL.MAAD.
```

calc_TL.MAAD.separate Separate the additive and the regenerative curves

Description

Internal function called by analyse_TL.MAAD.

This function separates the additive curves from the regenerative curves using a vector containing the data type associate with each curve. Additive curves have "Natural" or "N+dose" as datatype. Regenerative curves have "Bleach" or "Bleach+dose" as datatype. Other datatypes are not supported.

Usage

```
calc_TL.MAAD.separate(Lx, Lx.error, doses, dTypes)
```

Arguments

```
Lx numeric (required): Lx matrix
```

Lx.error numeric (**required**): Error for the Lx matrix.

doses numeric (**required**): doses vector
dTypes character (**required**): data type vector.

Details

Warning: This function is an internal function and should not be used except for development purposes. Internal functions can be heavily modified and even renamed or removed in new version of the package.

Author(s)

David Strebler, University of Cologne (Germany).

calc_TL.plateau 15

|--|

Description

The function estimates the quotient between the natural and the additive/regenerate signal.

Usage

```
calc_TL.plateau(Ln, Ln.error, Lx, Lx.error)
```

Arguments

```
Ln numeric (required): Ln vector
```

Ln.error numeric (**required**): Error for the Ln vector

Lx numeric (required): Ln matrix

Lx.error numeric (**required**): Error for the Lx matrix

Details

Warning: This function is an internal function and should not be used except for development purposes. Internal functions can be heavily modified and even renamed or removed in new version of the package.

Value

The function provides an TLum.Results object containing:

```
LnLx numeric: Ln/Lx matrix
LnLx.error numeric: Error for the Ln/Lx matrix.
```

Author(s)

David Strebler, University of Cologne (Germany).

```
calc_TL.SAR.fit
```

Estimation of the equivalent dose (ED) value for the SAR protocol

Description

Internal function called by analyse_TL.SAR.

This function estimates the equivalent dose (ED) based on a doses vector and a Lx/Tx vector provided.

See details for more information.

Usage

```
calc_TL.SAR.fit(doses, LnTn, LnTn.error, LxTx, LxTx.error,
  fitting.parameters = list(fit.method = "LIN", fit.weighted = FALSE))
```

16 calc_TL.SAR.fit

Arguments

doses numeric (**required**): doses vector
LnTn numeric (**required**): Ln/Tn.

LnTn.error numeric (**required**): Error for the Ln/Tn.

LxTx numeric (required): Lx/Tx vector

LxTx.error numeric (**required**): Error for the Lx/Tx vector

fitting.parameters

list (with default): fitting parameters. See details.

Details

This function estimates the equivalent dose based on the doses vector, Ln/Tn and the Lx/Tx matrix provided.

Different fitting methods are available (LIN, EXP, EXP+LIN or EXP+EXP). Moreover, the fitting can be weighted or not.

Fitting parameters

The fitting parameters are:

```
method character: Fitting method (LIN, EXP, EXP+LIN or EXP+EXP).
```

fit.weighted logical: If the fitting is weighted or not.

fit.use.slope logical: If the slope of the Q growth curve is reused for the sublinearity correction.

fit.rDoses.min numeric: Lowest regenerative dose used for the fitting.

fit.rDoses.max numeric: Highest regenerative dose used for the fitting.

Warning: This function is an internal function and should not be used except for development purposes. Internal functions can be heavily modified and even renamed or removed in new version of the package.

Value

The function provides an TLum.Results object containing:

```
GC list: fitting curve.
```

Q numeric: equivalent dose estimation

Q.error numeric: Error for the equivalent dose estimation

summary list: parameters of the fitting result.

Author(s)

David Strebler, University of Cologne (Germany).

See Also

```
analyse_TL.SAR.
```

calc_TL.temperature 17

	calc_TL.temperature	calculate temperature vector
--	---------------------	------------------------------

Description

This function calculates the temperature vector.

Usage

```
calc_TL.temperature(nPoints, Tmax, Hrate, an_temp = 0, an_time = 0,
  rec_ramp2PH = FALSE, rec_duringPH = FALSE)
```

Arguments

```
nPoints numeric (required): number of points.

Tmax numeric (required): Maximum temperature.

Hrate numeric (required): Heating rate.

an_temp numeric (with default): Annealing temperature.

an_time numeric (with default): Annealing time.

rec_ramp2PH logical (with default): Indicate if the signal was record during the ramp up to the preheat temperature.

rec_duringPH logical (with default): Indicate if the signal was record during the preheat plateau.
```

Details

Warning: This function is an internal function and should not be used except for development purposes. Internal functions can be heavily modified and even renamed or removed in new version of the package.

Value

This function provides a new TLum. Results object containing the times and temperature vectors.

Author(s)

David Strebler, University of Cologne (Germany).

mod_align.peaks Aligning the TL peaks

Description

This function detects the peak position for each TL curve of the object and aligns them. It uses the average of the testdose maximum positions as reference for the new peak position.

18 mod_align.peaks

Usage

```
mod_align.peaks(object, aligning.parameters = list(peak.Tmin = 0, peak.Tmax =
NA, no.testdose = FALSE), plotting.parameters = list(plot.Tmin = 0,
plot.Tmax = NA, no.plot = FALSE))
```

Arguments

Details

Aligning parameters

The aligning parameters are:

```
peak.Tmin numeric: Lower boundary for looking at the peak maximum position.peak.Tmax numeric: Upper boundary for looking at the peak maximum position.no.testdose logical: If TRUE, the function will use the Lx curves rather than the Tx curves as reference for the peak maximum position.
```

Plotting parameters

The plotting parameters are:

```
no.plot logical: If TRUE, the results will not be plotted.
```

Value

This function provides a new TLum. Analysis object with the same TL curves but aligned. It also plots the original TL curves, the TL curves used to determine the peak maximum position, and the shiffted TL curves using plot_align.peaks.

Author(s)

David Strebler, University of Cologne (Germany).

See Also

```
plot_align.peaks.
```

mod_extract.aliquot 19

```
mod_extract.aliquot extract aliquots
```

Description

This function extracts a list of aliquots from a TLum. Analysis object.

Usage

```
mod_extract.aliquot(object, list)
```

Arguments

object TLum. Analysis (**required**): object containing the initial TL curves.

list numeric (required): list containing the position of the aliquots that shall be

used.

Value

This function provides a TLum. Data. Curve object containing only the aliquots specified in the list.

Author(s)

David Strebler, University of Cologne (Germany).

Description

This function provides a new TLum. Analysis object containing only the preheat curves.

Usage

```
mod_extract.preheat(object, plotting.parameters = list(no.plot = FALSE))
```

Arguments

```
object TLum. Analysis (required): object containing the initial TL curves. plotting.parameters

list (with default): list containing the plotting parameters. See details.
```

Details

Plotting parameters

The plotting parameters are:

```
no.plot logical: If TRUE, the results will not be plotted.
```

20 mod_extract.TL

Value

This function provides a new TLum. Analysis object with only the preheat curve. It also plots the preheat curves and the TL curves using plot_remove.preheat.

Author(s)

David Strebler, University of Cologne (Germany).

See Also

plot_remove.preheat

mod_extract.TL

Extract TL

Description

This function provides a new TLum. Analysis object containing only the TL curves.

Usage

```
mod_extract.TL(object, plotting.parameters = list(no.plot = FALSE),
  record.parameters = list(separatePreheat = TRUE, recDuringPreheatRamp =
  FALSE, recDuringPreheatPlateau = FALSE))
```

Arguments

```
object TLum. Analysis (required): object containing the initial TL curves. plotting.parameters

list (with default): list containing the plotting parameters. See details. record.parameters

list (with default): list containing the record parameters. See details.
```

Details

Plotting parameters

The plotting parameters are:

no.plot logical: If TRUE, the results will not be plotted.

Record parameters

The record parameters are:

includePreheat logical: If TRUE, the preheat was included in the TL recording. If FALSE, the preheat was recorded separately.

recDuringPreheatRamp logical: Only used when includePreheat is TRUE. If TRUE, the signal was recorded during the preheat ramp.

recDuringPreheatPlateau logical: Only used when includePreheat is TRUE. If TRUE, the signal was recorded during the preheat plateau.

mod_remove.aliquot 21

Value

This function provides a new TLum. Analysis with only the TL curve. It also plots the TL curves using plot_extract.TL.

Author(s)

David Strebler, University of Cologne (Germany).

See Also

```
plot_extract.TL
```

mod_remove.aliquot

Remove aliquots

Description

This function removes a list of aliquots from a TLum. Analysis object.

Usage

```
mod_remove.aliquot(object, list)
```

Arguments

object TLum. Analysis (**required**): object containing the initial TL curves.

list numeric (required): list containing the position of the aliquots to remove.

Value

This function provides a TLum. Analysis without the aliquots specified in the list.

Author(s)

David Strebler, University of Cologne (Germany).

mod_remove.preheat

Remove preheat

Description

This function provides a new TLum. Analysis object from which the preheat curves were removed.

Usage

```
mod_remove.preheat(object, plotting.parameters = list(no.plot = FALSE))
```

Arguments

```
object TLum. Analysis (required): object containing the initial TL curves. plotting.parameters

list (with default): list containing the plotting parameters. See details.
```

Details

Plotting parameters

The plotting parameters are:

```
no.plot logical: If TRUE, the results will not be plotted.
```

Value

This function provides a new TLum. Analysis object without the preheat curves. It also plots the preheat curves and the TL curves using plot_remove.preheat.

Author(s)

David Strebler, University of Cologne (Germany).

See Also

```
plot_remove.preheat
```

```
mod_substract.background
```

Creates a new TLum. Analysis object where the background was removed from the signal.

Description

Creates a new TLum. Analysis object where the background was removed from the signal.

Usage

```
mod_substract.background(object, keep.background = FALSE,
    plotting.parameters = list(no.plot = FALSE))
```

Arguments

```
object TLum. Analysis (required): object containing the initial TL curves.

keep.background

logical (with default): Parameter indicating if the background curve have to be kept or suppressed.

plotting.parameters
```

list (with default): list containing the plotting parameters. See details.

mod_update.dType 23

Details

Plotting parameters

The plotting parameters are:

no.plot logical: If TRUE, the results will not be plotted.

Value

This function provides a new TLum. Analysis object with the TL curves after background subtraction.

It also plots the TL curves, the background curves and the background substracted curves using plot_remove.preheat.

Author(s)

David Strebler, University of Cologne (Germany).

See Also

plot_substract.background

mod_update.dType

mod identify dType

Description

This function identify the data type of each curve from a TLum. Analysis object. It also add the new data type "testdose" and "preheat" based on the comment present in the TLum. Analysis object or a sequence vector.

Usage

```
mod_update.dType(object, method = "comment", ref = list(sequence =
    c("Preheat", "Natural", "Background", "Testdose", "Background"), oneByOne =
    FALSE, protocol = "SAR", preheat = NA, testdose = NA))
```

Arguments

object TLum. Analysis (**required**): object containing the initial TL curves.

method character (with default): Defines the methode use to identify the new data type

("comment", "sequence", "temperature+dose").

ref list (with default): Contains the reference values to identify the new data type.

Value

This function provides a new TLum. Analysis with the new dtype.

Author(s)

David Strebler, University of Cologne (Germany).

24 plot_align.peaks

mad	update.	orror	
moa	ubdate.	error	

Update the error matrix

Description

This function update the error vector of each curve from a TLum. Analysis object.

Usage

```
mod_update.error(object, method, absolute.error = NULL,
    relative.error = NULL, k = 1)
```

Arguments

object	TLum. Analysis (required): object containing the initial TL curves.
method	character (with default): Defines the methode use to update the error matrix ("poisson", "absolute", "relative", "combine").
absolute.error	$\begin{array}{l} \text{numeric} \ (\text{with default}) \text{: absolute error of the TL signals (used by the "absolute"} \\ \text{and "combine" methods)}. \end{array}$
relative.error	numeric (with default): Relative error of the TL signals (used by the "relative" and "combine" methods).
k	numeric (with default): corrective factor to use when using a poisson distribution for the uncertainties (used by the "poisson" method).

Value

This function provides a new TLum. Analysis with the new error matrix.

Author(s)

David Strebler, University of Cologne (Germany).

plot_align.peaks	Plots mod_alignPeaks results

Description

This function plots the results obtained by mod_alignPeaks.

Usage

```
plot_align.peaks(temperatures, old.TL, new.TL, ref.TL, pos.peak,
    plotting.parameters = list(plot.Tmin = 0, plot.Tmax = NA))
```

plot_extract.TL 25

Arguments

temperatures numeric: Vector containing the temperature step

old.TL

numeric: Matrix containing the luminescence signal before the peak alignment.

new.TL

numeric: Matrix containing the luminescence signal after the peak alignment.

ref.TL

numeric: Matrix containing the luminescence signal used as reference to define

the peak position.

pos. peak numeric: Average peak position.

plotting.parameters

list (with default): list containing the plotting parameters. See details.

Details

Plotting parameters

The plotting parameters are:

```
plot. Tmin logical: Minimum temperature which is plotted. plot. Tmax logical: Maximum temperature which is plotted.
```

Author(s)

David Strebler

See Also

mod_align.peaks

```
plot_extract.TL plot the TL curves
```

Description

This function plots the results obtained by mod_extract.TL.

Usage

```
plot_extract.TL(temperatures, TL)
```

Arguments

temperatures numeric: matrix containing the temperature steps for each TL curve.

TL numeric: Matrix containing the luminescence signal for the TL curves.

Author(s)

David Strebler

See Also

```
mod_extract.TL
```

plot_remove.preheat Plotting of the preheat and TL curves

Description

This functions plots the results obtained by mod_remove.preheat

Usage

```
plot_remove.preheat(PH.signal, PH.temperatures, PH.times, TL.signal,
   TL.temperatures)
```

Arguments

PH. signal numeric: matrix containing the preheat curves.

PH. temperatures

numeric: matrix containing the temperature steps for each preheat curve.

PH. times numeric: matrix containing the time steps for each preheat curve.

TL. signal numeric: matrix containing the TL curves.

TL. temperatures

numeric: matrix containing the temperature steps for each TL curve.

Author(s)

David Strebler

See Also

mod_remove.preheat

```
plot_substract.background
```

Plotting function for mod_substract.background.

Description

This function plots the results of the mod_substract.background function. It plots the TL curves, the background (BG) curves and the background substracted curves.

Usage

```
plot_substract.background(old.TL, BG, new.TL, temperatures)
```

Arguments

old.TL numeric: Matrix containing the luminescence signal before background subtrac-

tion.

BG numeric: Matrix containing the luminescence signal from the background curves.

new.TL numeric: Matrix containing the luminescence signal after background subtrac-

tion.

temperatures numeric: Vector containing the temperature step

plot_TL.MAAD 27

Author(s)

David Strebler

See Also

mod_substract.background

plot_TL.MAAD

plot MAAD result

Description

This function plots the results for analyse_TL.MAAD. The first page regroups all the information about the additive curves (names, doses, intensity vs. temperature and plateau test for Lx, Tx and Lx/Tx). The second page regroups all the information about the regenerative curves (names, doses, intensity vs. temperature and plateau test for Lx, Tx and Lx/Tx). The third page regroups all the information about the equivalent dose (dose plateau for the palaeodose and the supralinearity correction, growth curves, rejection criteria,...).

Usage

```
plot_TL.MAAD(sample.name, temperatures, eval.Tmin, eval.Tmax, aNames, aDoses,
    aLx, aTx, aLxTx, aLx.plateau, aTx.plateau, aLxTx.plateau, rNames, rDoses, rLx,
    rTx, rLxTx, rLx.plateau, rTx.plateau, rLxTx.plateau, DP.Q.line,
    DP.Q.line.error, GC.Q.line, GC.Q.slope, GC.Q.LxTx, GC.Q.LxTx.error,
    GC.Q.doses, GC.Q.names, DP.I.line, DP.I.line.error, GC.I.line, GC.I.slope,
    GC.I.LxTx, GC.I.LxTx.error, GC.I.doses, GC.I.names, Q.DP, Q.DP.error, Q.GC,
    Q.GC.error, I.DP, I.DP.error, I.GC, I.GC.error, De.GC, De.GC.error, De.DP,
    De.DP.error, rejection.values, fitting.parameters,
    plotting.parameters = list(plot.Tmin = 0, plot.Tmax = NA))
```

Arguments

```
character (required): Sample name.
sample.name
                  numeric (required): temperature vector
temperatures
eval.Tmin
                  integer (required): Temperature (°C) of the lower boundary for the signal inte-
                  gration.
                  integer (required): Temperature (°C) of the upper boundary for the signal inte-
eval.Tmax
                  gration.
aNames
                  character (required): Name vector for the additive curves.
                  numeric (required): Dose vector for the additive curves.
aDoses
                  numeric (required): Lx matrix for the additive curves.
aLx
аТх
                  numeric (required): Tx matrix for the additive curves.
aLxTx
                  numeric (required): Lx/Tx matrix for the additive curves.
                  numeric (required): Ln/Lx matrix for the additive curves.
aLx.plateau
aTx.plateau
                  numeric (required): Ln/Tx matrix for the additive curves.
                  numeric (required): (Ln/Tn)/(Lx/Tx) matrix for the additive curves.
aLxTx.plateau
```

28 plot_TL.MAAD

rNames	character (required): Name vector for the regenerative curves.
rDoses	numeric (required): Dose vector for the regenerative curves.
rLx	numeric (required): Lx matrix for the regenerative curves.
rTx	numeric (required): Tx matrix for the regenerative curves.
rLxTx	numeric (required): Lx/Tx matrix for the regenerative curves.
rLx.plateau	numeric (required): Ln/Lx matrix for the regenerative curves.
rTx.plateau	numeric (required): Tn/Tx matrix for the regenerative curves.
rLxTx.plateau	numeric (required): (Ln/Tn)/(Lx/Tx) matrix for the regenerative curves.
DP.Q.line	numeric (required): Vector containing the estimation of Q for each T° step.
DP.Q.line.erro	
	numeric (required): Vector containing the uncertainty on the estimation of Q for each T° step.
GC.Q.line	numeric (required): growth curve for Q
GC.Q.slope	numeric (required): growth curve parameters for Q
GC.Q.LxTx	numeric (required): Lx/Tx vector used for Q estimation using the growth curve approach.
GC.Q.LxTx.erro	
	numeric (required): Error on the Lx/tx vector used for Q estimation using the growth curve approach.
GC.Q.doses	numeric (required): Doses used for Q estimation using the growth curve approach.
GC.Q.names	numeric (required): Names of the Lx/tx vector used for Q estimation using the growth curve approach.
DP.I.line	numeric (required): Vector containing I for each temperature step.
DP.I.line.erro	
	numeric (required): Vector containing the uncertainty on I for each temperature step.
GC.I.line	numeric (required): growth curve for I
GC.I.slope	numeric (required): growth curve parameters for I.
GC.I.LxTx	numeric (required): Lx/tx vector used for I estimation using the growth curve approach.
GC.I.LxTx.erro	
	numeric (required): Error on the Lx/tx vector used for I estimation using the growth curve approach.
GC.I.doses	numeric (required): Doses used for I estimation using the growth curve approach.
GC.I.names	numeric (required): Names of the Lx/Tx vector used for I estimation using the growth curve approach.
Q.DP	numeric (required): Q estimation using the dose plateau approach
Q.DP.error	numeric (required): Uncertainty on the Q estimation using the dose plateau approach
Q.GC	numeric (required): Q estimation using the growth curve approach
Q.GC.error	numeric (required): Uncertainty on the Q estimation using the growth curve approach

plot_TL.MAAD 29

```
I.DP
                  numeric (required): I estimation using the dose plateau approach
                  numeric (required): Uncertainty on the I estimation using the dose plateau ap-
I.DP.error
                  proach
I.GC
                  numeric (required): I estimation using the growth curve approach
I.GC.error
                  numeric (required): Uncertainty on the I estimation using the growth curve
                  approach
De.GC,
                  numeric (required): ED (Q+I) estimation using the growth curve approach
De.GC.error,
                  numeric (required): Uncertainty on the ED (Q+I) estimation using the growth
                  curve approach
                  numeric (required): ED (Q+I) estimation using the dose plateau approach
De.DP,
De.DP.error
                  numeric (required): Uncertainty on the ED (Q+I) estimation using the dose
                  plateau approach
rejection.values
                  list (required): result of the rejection tests.
fitting.parameters
                  list (with default): list containing the fitting parameters. See details.
plotting.parameters
                  list (with default): list containing the plotting parameters. See details.
```

Details

Fitting parameters

The fitting parameters are:

```
method character: Fitting method (LIN, EXP, EXP+LIN or EXP+EXP).
fit.weighted logical: If the fitting is weighted or not.
fit.use.slope logical: If the slope of the Q growth curve is reused for the supralinearity correction.
fit.aDoses.min numeric: Lowest additive dose used for the fitting.
fit.aDoses.max numeric: Highest additive dose used for the fitting.
fit.rDoses.min numeric: Lowest regenerative dose used for the fitting.
fit.rDoses.max numeric: Highest regenerative dose used for the fitting.
See also analyse_TL.MAAD, calc_TL.MAAD.fit.Q and calc_TL.MAAD.fit.I.
```

Plotting parameters

The plotting parameters are:

```
plot.Tmin numeric: Lower temperature plotted.
plot.Tmax numeric: Higher temperature plotted.
no.plot logical: If TRUE, the results will not be plotted.
See also analyse_TL.MAAD.
```

Author(s)

David Strebler

30 plot_TL.plateau

See Also

```
analyse_TL.MAAD, calc_TL.MAAD.fit.Q, calc_TL.MAAD.fit.I.
```

plot_TL.plateau plot plateau test result

Description

This function plots the results for analyse_TL.plateau.

Usage

```
plot_TL.plateau(sample.name, temperatures, names, doses, Lx, Lx.a, Lx.plateau,
    LxTx, LxTx.a, LxTx.plateau, plotting.parameters = list(plateau.Tmin = 0,
    plateau.Tmax = NA, plot.Tmin = 0, plot.Tmax = NA))
```

Arguments

```
sample.name
                  character (required): Sample name.
temperatures
                  numeric (required): temperature vector
                  character (required): Name vector for the additive curves.
names
doses
                  numeric (required): Dose vector for the additive curves.
Lx
                  numeric (required): Lx matrix for the additive curves.
                  numeric (required): Lx matrix for the average additive curves.
Lx.a
Lx.plateau
                  numeric (required): Ln/Lx matrix for the additive curves.
LxTx
                  numeric (required): Lx/Tx matrix for the additive curves.
                  numeric (required): Lx/Tx matrix for the average additive curves.
LxTx.a
                  numeric (required): (Ln/Tn)/(Lx/Tx) matrix for the additive curves.
LxTx.plateau
plotting.parameters
```

list (with default): list containing the plotting parameters. See details.

Details

Plotting parameters

The plotting parameters are:

```
plot.Tmin numeric: Lowest temperature plotted. plot.Tmax numeric: Highest temperature plotted. no.plot logical: If TRUE, the results will not be plotted. See also analyse_TL.MAAD.
```

Author(s)

David Strebler

See Also

```
analyse TL.plateau, calc TL.MAAD.fit.Q, calc TL.MAAD.fit.I.
```

plot_TL.SAR 31

|--|--|

Description

This function plots the results obtained by the analyse_TL.MAAD function.

Usage

Arguments

```
character (required): Sample name.
sample.name
sample.position
                  integer (required): aliquot position.
fitting.parameters
                  list (with default): list containing the fitting parameters. See details.
                  integer (required): Temperature (°C) of the lower boundary for the signal inte-
eval.Tmin
                  gration.
eval.Tmax
                  integer (required): Temperature (°C) of the upper boundary for the signal inte-
                  gration.
                  numeric (required): temperature vector
temperatures
                  character (required): Name vector for the regenerative curves.
names
names.duplicated
                  character (required): Name vector for the duplicated doses.
                  numeric (required): Dose vector for the regenerative curves.
doses
Lx
                  numeric (required): Lx matrix for the regenerative curves.
Tx
                  numeric (required): Tx matrix for the regenerative curves.
LxTx
                  numeric (required): Lx/Tx matrix for the regenerative curves.
Lx.plateau
                  numeric (required): Ln/Lx matrix for the regenerative curves.
                  numeric (required): Tn/Tx matrix for the regenerative curves.
Tx.plateau
LxTx.plateau
                  numeric (required): (Ln/Tn)/(Lx/Tx) matrix for the regenerative curves.
DP.Q.line
                  numeric (required): Vector containing the estimation of Q for each T° step.
DP.Q.line.error
                  numeric (required): Vector containing the uncertainty on the estimation of Q
                  for each T° step.
                  numeric (required): growth curve for Q
GC.Q.line
GC.Q.LxTx
                  numeric (required): Lx/Tx vector used for Q estimation using the growth curve
                  approach.
```

32 plot_TL.SAR

```
GC.Q.LxTx.error
                  numeric (required): Error on the Lx/tx vector used for Q estimation using the
                  growth curve approach.
GC.Q.slope
                  numeric (required): growth curve parameters for Q
Q.DP
                  numeric (required): Q estimation using the dose plateau approach
Q.DP.error
                  numeric (required): Uncertainty on the Q estimation using the dose plateau
                  approach
                  numeric (required): Q estimation using the growth curve approach
Q.GC
Q.GC.error
                  numeric (required): Uncertainty on the Q estimation using the growth curve
                  approach
TxTn
                  numeric (required): average Tx/Tn value for the regenerative curves.
rejection.values
                  list (required): result of the rejection tests.
plotting.parameters
                  list (with default): list containing the plotting parameters. See details.
```

Details

Fitting parameters

The fitting parameters are:

```
method character: Fitting method (LIN, EXP, EXP+LIN or EXP+EXP). fit.weighted logical: If the fitting is weighted or not. fit.rDoses.min numeric: Lower regenerative dose used for the fitting. fit.rDoses.max numeric: Higher regenerative dose used for the fitting. See also calc_TL.SAR.fit.
```

Plotting parameters

The plotting parameters are:

```
plot.Tmin numeric: Lower temperature plotted.
plot.Tmax numeric: Higher temperature plotted.
no.plot logical: If TRUE, the results will not be plotted.
See also plot_TL.SAR.
```

Author(s)

David Strebler

Risoe.BINfileData2TLum.BIN.File

Convert Risoe.BINfileData object to an TLum.BIN.File object.

Description

This function convert a Risoe.BINfileData object, created using the package'Luminescence', into a TLum.BIJ.file object, which will be used by this package. The TL package is implemented to only works with its own class of object (TLum.BIN.File, TLum.Analysis and TLum.Data.Curve).

Usage

```
Risoe.BINfileData2TLum.BIN.File(object, k)
```

Arguments

object Risoe.BINfileData (required): object containing the TL curves used for the

ED estimation.

k numeric (required): Relative error of the TL signals. Generally, it is between

0.02 and 0.1.

Details

This function use the data from the Risoe.BINFileData and the k specified to create a absolute error matrix. Then it create a new TLum.BIN.File including all the information from the Risoe.BINFileData and the new absolute error matrix. For practical reason, the TLdating package considers the error as random. It means that the systematic component of the error will be ignored.

Author(s)

David Strebler, University of Cologne (Germany), David Strebler

See Also

TLum.BIN.File2Risoe.BINfileData, TLum.BIN.File2TLum.Analysis and TLum.BIN.File2TLum.Data.Curve.

RLum.Analysis2TLum.Analysis

Convert RLum. Analysis object to an TLum. Analysis.

Description

This function convert a RLum.Analysis object, created using the package'Luminescence', into a TLum.Analysis object, which will be used by this package. The TL package is implemented to only works with its own class of object (TLum.Analysis, TLum.Analysis and TLum.Data.Curve).

Usage

RLum.Analysis2TLum.Analysis(object, relative.error)

34 script_TL.export

Arguments

object RLum. Analysis (required): object containing the TL curves used for the ED

estimation.

relative.error numeric (required): Relative error of the TL signals. Generally, it is between

0.02 and 0.1.

Details

This function use the data from the RLum. Analysis and the relative error specified to create a absolute error matrix. Then it create a new TLum. Analysis including all the information from the RLum. Analysis and the new absolute error matrix. For practical reason, the TLdating package considers the error as random. It means that the systematic component of the error will be ignored.

Author(s)

David Strebler, University of Cologne (Germany), David Strebler

script_TL.export

Script for data export

Description

This script creates a .binx file from a TLum.Analysis object. It just requires the name of the file and the TLum.Analysis object.

Usage

```
script_TL.export(object, file.name, file.parameters = list(file.extension =
   ".binx", folder.out = "./"))
```

Arguments

object TLum.Analysis (**required**): object containing the TL curves to export. file.name character (**required**): Name of the file containing the luminescence data.

file.parameters

list (with default): list containing the file parameters. See details.

File parameters

The file parameters are:

file.extension character (with default): extension of the file containing the luminescence data (.bin or .binx)

folder.out character (with default): Folder containing the file with the luminescene data.

Value

This function returns a TLum. Analysis object.

script_TL.import 35

Author(s)

David Strebler, University of Cologne (Germany).

See Also

write_R2BIN, TLum.BIN.File2Risoe.BINfileData, TLum.Analysis2TLum.BIN.File.

script_TL.import

Script for data pretreatment

Description

This script opens a .binx file and creates a TLum.Analysis object from it. It just requires the name of the file with the TL curves and the relative error on the measurements. It extracts the TL curves and updates the data types.

Usage

```
script_TL.import(file.name, k = 1, protocol = "Unknown",
  file.parameters = list(file.extension = ".binx", folder.in = "./"),
  plotting.parameters = list(plot.Tmin = 0, plot.Tmax = NA, no.plot = FALSE))
```

Arguments

```
file.name character (required): Name of the file containing the luminescence data.

k numeric (with default): Corrective factor for estimating the uncertainties using a poisson distribution.

protocol character (required): Measurment protocol used.

file.parameters

list (with default): list containing the file parameters. See details.

plotting.parameters

list (with default): list containing the plotting parameters. See details.
```

Details

Plotting parameters

The plotting parameters are:

```
plot.Tmin numeric: Lowest temperature plotted.
plot.Tmax numeric: Highest temperature plotted.
no.plot logical: If TRUE, the results will not be plotted.
See also plot_extract.TL.
```

File parameters

The file parameters are:

```
file.extension character (with default): extension of the file containing the luminescence data (.bin or .binx)
```

folder.in character (with default): Folder containing the file with the luminescene data.

36 script_TL.MAAD

Value

This function returns a TLum. Analysis object.

Author(s)

David Strebler, University of Cologne (Germany).

See Also

read_BIN2R, Risoe.BINfileData2TLum.BIN.File, TLum.BIN.File2TLum.Analysis, mod_extract.TL, mod_update.dType.

script_TL.MAAD

Script for the MAAD protocol

Description

This script calls a series of data functions before estimating the ED using the MAAD protocol. It just requires the name of the files with the TL curves, the relative error on the measurement and the temperature boundaries for the signal integration.

Usage

```
script_TL.MAAD(file.name, eval.Tmin, eval.Tmax, k = 1, remove.discs = NULL,
  file.parameters = list(file.extension = ".binx", folder.in = "./",
  folder.out = "./"), aligning.parameters = list(peak.Tmin = NULL, peak.Tmax =
  NULL, no.testdose = FALSE), fitting.parameters = list(fit.method = "LIN",
  fit.weighted = FALSE, fit.use.slope = FALSE, fit.aDoses.min = 0,
  fit.aDoses.max = NA, fit.rDoses.min = 0, fit.rDoses.max = NA),
  plotting.parameters = list(plot.Tmin = 0, plot.Tmax = NA, no.plot = FALSE),
  rejection.criteria = list(testdose.error = 10, paleodose.error = 10))
```

Arguments

file.name	character (required): Name of the file containing the luminescence data.		
eval.Tmin	integer (required): Temperature ($^{\circ}$ C) of the lower boundary for the signal integration.		
eval.Tmax	integer (required) : Temperature (°C) of the upper boundary for the signal integration.		
k	numeric (with default): Corrective factor for estimating the uncertainties using a poisson distribution.		
remove.discs	numeric (with default): list containing the position of the aliquots to shall be removed.		
file.parameters			
	list (with default): list containing the input/output parameters. See details.		
aligning.parameters			
	list (with default): list containing the aligning parameters. See details.		
fitting.parameters			
	list (with default): list containing the fitting parameters. See details.		

script_TL.MAAD 37

```
plotting.parameters

list (with default): list containing the plotting parameters. See details.

rejection.criteria

list (with default): list containing the rejection criteria (in %). See details.
```

Details

File parameters

The file parameters are:

file.extension character (with default): extension of the file containing the luminescence data (.bin or .binx)

folder.in character (with default): Folder containing the file with the luminescene data.

folder out character (with default): Folder containing the file with the new luminescene data.

see also script_TL.pretreatment.

Aligning parameters

The aligning parameters are:

```
peak. Tmin numeric: Lower boundary for looking for the peak maximum position.
```

peak. Tmax numeric: Upper boundary for looking for the peak maximum position.

no.testdose logical: If TRUE, the function will use the Lx curves rather than the Tx curves as reference for the peak maximum position.

Fitting parameters

The fitting parameters are:

```
method character: Fitting method (LIN, EXP, EXP+LIN or EXP+EXP).
```

fit.weighted logical: If the fitting is weighted or not.

fit.use.slope logical: If the slope of the Q growth curve is reused for the supralinearity correction.

fit.aDoses.min numeric: Lowest additive dose used for the fitting.

fit.aDoses.max numeric: Highest additive dose used for the fitting.

fit.rDoses.min numeric: Lowest regenerative dose used for the fitting.

fit.rDoses.max numeric: Highest regenerative dose used for the fitting.

See also calc_TL.MAAD.fit.Q and calc_TL.MAAD.fit.I.

Plotting parameters

The plotting parameters are:

```
plot.Tmin numeric: Lowest temperature plotted.
plot.Tmax numeric: Highest temperature plotted.
no.plot logical: If TRUE, the results will not be plotted.
```

38 script_TL.plateau

See also plot_TL.MAAD.

Rejection criteria

The rejection criteria are:

testdose.error numeric: Maximum error accepted on the testdose signal within the selected temperature interval.

paleodose.error numeric: Maximum error accepted on the palaeodose signal within the selected temperature interval.

Value

This function plots the results from the differents functions called using: plot_extract.TL, plot_remove.preheat plot_substract.background plot_align.peaks and plot_TL.MAAD.

This function saves a file containing the luminescence data after the pretreatment in the specified folder.

Finally, it also provides an list containing:

De. GC data.frame: Results obtained with the dose plateau approach and their uncertainties (De, De, error

De.DP data.frame: Results obtained with the growth curve approach and their uncertainties (De, De.error

Author(s)

David Strebler, University of Cologne (Germany), David Strebler

See Also

read_BIN2R, Risoe.BINfileData2TLum.BIN.File, mod_extract.TL, mod_update.dType, mod_remove.aliquot, mod_remove.preheat, mod_substract.background, mod_align.peaks, write_R2BIN, TLum.BIN.File2TLum.Analysis and analyse_TL.MAAD.

script_TL.plateau

Script for the plateau test

Description

This script calls a series of data pretreatment functions before performing the plateau test. It just requires the name of the file with the TL curves and the relative error on the measurements.

Usage

```
script_TL.plateau(file.name, k = 1, remove.discs = NULL,
  file.parameters = list(file.extension = ".binx", folder.in = "./",
  folder.out = "./"), aligning.parameters = list(peak.Tmin = NULL, peak.Tmax =
  NULL, no.testdose = FALSE), plotting.parameters = list(plot.Tmin = 0,
  plot.Tmax = NA, plateau.Tmin = 0, plateau.Tmax = 0, no.plot = FALSE))
```

script_TL.plateau 39

Arguments

file.name character (required): Name of the file containing the luminescence data.

k numeric (with default): Corrective factor for estimating the uncertainties using a poisson distribution.

remove.discs numeric (with default): list containing the position of the aliquots that shall be removed.

file.parameters
 list (with default): list containing the file parameters. See details.

aligning.parameters
 list (with default): list containing the aligning parameters. See details.

plotting.parameters
 list (with default): list containing the plotting parameters. See details.

Details

Aligning parameters

The aligning parameters are:

```
peak. Tmin numeric: Lower boundary for looking for the peak maximum position.

peak. Tmax numeric: Upper boundary for looking for the peak maximum position.

no.testdose logical: If TRUE, the function will use the Lx curves rather than the Tx curves as reference for the peak maximum position.
```

File parameters

The file parameters are:

```
file.extension character (with default): extension of the file containing the luminescence data (.bin or .binx)

folder.in character (with default): Folder containing the file with the luminescene data.
```

folder.out character (with default): Folder containing the file with the new luminescene data.

see also script_TL.pretreatment.

Plotting parameters

The plotting parameters are:

```
plot.Tmin numeric: Lowest temperature plotted.
plot.Tmax numeric: Highest temperature plotted.
no.plot logical: If TRUE, the results will not be plotted.
See also plot_TL.MAAD.
```

Value

This function plots the results from the differents functions called using: plot_extract.TL, plot_remove.preheat plot_substract.background plot_align.peaks and plot_TL.plateau.

Author(s)

David Strebler, University of Cologne (Germany).

See Also

read_BIN2R, Risoe.BINfileData2TLum.BIN.File, mod_extract.TL, mod_update.dType, mod_remove.aliquot, mod_remove.preheat, mod_substract.background, mod_align.peaks, write_R2BIN, TLum.BIN.File2TLum.Analysis and analyse_TL.plateau.

```
script_TL.pretreatment
```

Script for data pretreatment

Description

This script call a series of data pretreatment functions for TL dating. It only requires the name of the files with the TL curves and the relative error on the measurement.

Usage

```
script_TL.pretreatment(file.name, k = 1, remove.discs = NULL,
  file.parameters = list(file.extension = ".binx", folder.in = "./",
  folder.out = "./"), aligning.parameters = list(peak.Tmin = NULL, peak.Tmax =
  NULL, no.testdose = FALSE), plotting.parameters = list(plot.Tmin = 0,
  plot.Tmax = NA, no.plot = FALSE))
```

Arguments

Details

Aligning parameters

The aligning parameters are:

```
peak. Tmin numeric: Lower boundary for looking at the peak maximum position.

peak. Tmax numeric: Upper boundary for looking at the peak maximum position.

no.testdose logical: If TRUE, the function will use the Lx curves rather the Tx curves as reference for the peak maximum position.
```

script_TL.SAR 41

Plotting parameters

The plotting parameters are:

```
plot.Tmin numeric: Lower temperature plotted.
plot.Tmax numeric: Higher temperature plotted.
no.plot logical: If TRUE, the results will not be plotted.
See also plot_TL.MAAD.
```

File parameters

The plotting parameters are:

file.extension character (with default): extension of the file containing the luminescence data (.bin or .binx)

folder.in character (with default): Folder containing the file with the luminescene data.

folder .out character (with default): Folder containing the file with the new luminescene data.

see also mod_update.dType.

Value

This function return a TLum.Analysis where the preheat were removed, the background substract and the peaks aligned. Its save the result as a .binx file il the specified folder. And, its plots the results from the differents functions called using: plot_extract.TL, plot_remove.preheat, plot_substract.background and plot_align.peaks.

Author(s)

David Strebler, University of Cologne (Germany), David Strebler

See Also

read_BIN2R, Risoe.BINfileData2TLum.BIN.File, mod_extract.TL, mod_update.dType, mod_remove.aliquot, mod_remove.preheat, mod_substract.background, mod_align.peaks, write_R2BIN.

script_TL.SAR

Easy script for the SAR protocol

Description

This function provides and estimation of the ED using the SAR protocol. It only requires the name of the files with the TL curves, the relative error on the measurements and the temperature boundaries for the signal integration. Extra parameters can be provided to improve the ED estimation.

42 script_TL.SAR

Usage

```
script_TL.SAR(file.name, eval.Tmin, eval.Tmax, k = 1, remove.discs = NULL,
  file.parameters = list(file.extension = ".binx", folder.in = "./",
  folder.out = "./"), aligning.parameters = list(peak.Tmin = NULL, peak.Tmax =
  NULL, no.testdose = FALSE), fitting.parameters = list(fit.method = "LIN",
  fit.weighted = FALSE, fit.rDoses.min = 0, fit.rDoses.max = NA),
  plotting.parameters = list(plot.Tmin = 0, plot.Tmax = NA, no.plot = FALSE),
  rejection.criteria = list(recycling.ratio = 10, recuperation.rate = 10,
  testdose.error = 10, paleodose.error = 10))
```

Arguments

file.name	character (required): Name of the file containing the luminescence data.		
eval.Tmin	integer (required): Temperature ($^{\circ}$ C) of the lower boundary for the signal integration.		
eval.Tmax	integer (required): Temperature ($^{\circ}$ C) of the upper boundary for the signal integration.		
k	numeric (with default): Corrective factor for estimating the uncertainties using a poisson distribution.		
remove.discs	numeric (with default): list containing the position of the aliquots that shall be removed		
file.parameters			
	list (with default): list containing the input/output parameters. See details.		
aligning.parameters			
	list (with default): list containing the aligning parameters. See details.		
fitting.parameters			
	list (with default): list containing the fitting parameters. See details.		
plotting.parameters			
	list (with default): list containing the plotting parameters. See details.		
rejection.criteria			
	list (with default): list containing the rejection criteria (in %). See details.		

Details

File parameters

The file parameters are:

```
file.extension character (with default): extension of the file containing the luminescence data (.bin or .binx)

folder.in character (with default): Folder containing the file with the luminescene data.

folder.out character (with default): Folder containing the file with the new luminescene data.

see also script_TL.pretreatment.
```

Aligning parameters

The aligning parameters are:

```
peak.Tmin numeric: Lower boundary for looking for the peak maximum position. peak.Tmax numeric: Upper boundary for looking for the peak maximum position.
```

script_TL.SAR 43

no. testdose logical: If TRUE, the function will use the Lx curves rather the Tx curves as reference for the peak maximum position.

Rejection criteria

The rejection criteria are:

```
recycling.ratio numeric: Maximum recycling ratio accepted (in %).
recuperation.rate numeric: Maximum recuparation rate accepted (in %).
paleodose.error numeric: Maximum error accepted on the regenative signals (in %).
testdose.error numeric: Maximum error accepted on the testdose signals (in %).
```

Fitting parameters

The fitting parameters are:

```
method character: Fitting method (LIN, EXP, EXP+LIN or EXP+EXP).

fit.weighted logical: If the fitting is weighted or not.

fit.rDoses.min numeric: Lowest regenerative dose used for the fitting.

fit.rDoses.max numeric: Highest regenerative dose used for the fitting.

See also calc_TL.SAR.fit.
```

Plotting parameters

The plotting parameters are:

```
plot.Tmin numeric: Lower temperature plotted.
plot.Tmax numeric: Higher temperature plotted.
no.plot logical: If TRUE, the results will not be plotted.
See also plot TL.SAR.
```

Value

This function plots the results from the differents functions called using: plot_extract.TL, plot_remove.preheat plot_substract.background plot_align.peaks and plot_TL.SAR.

This function saves a file containing the luminescence data after the pretreatment in the specified folder.

Finally, it also provides an list containing:

```
De.GC list: Results obtained with the dose plateau approach and their uncertainties (De, De.error)

De.DP list: Results obtained with the growth curve approach and their uncertainties (De, De.error)
```

Author(s)

David Strebler, University of Cologne (Germany).

See Also

read_BIN2R, Risoe.BINfileData2TLum.BIN.File, mod_extract.TL, mod_update.dType, mod_remove.aliquot, mod_remove.preheat, mod_substract.background, mod_align.peaks, write_R2BIN, TLum.BIN.File2TLum.Analysis and analyse_TL.SAR.

template_DRAC4brick

Creation of a template for use_DRAC4brick input.

Description

This function generates a template that can be fill in and use with use_DRAC4brick.

Usage

```
template_DRAC4brick()
```

Author(s)

David Strebler

template_DRAC4cave

Creation of a template for use_DRAC4cave input.

Description

This function generates a template that can be fill in and use with use_DRAC4cave.

Usage

```
template_DRAC4cave()
```

Author(s)

David Strebler

template_DRAC4ceramic Creation of a template for use_DRAC4flint input.

Description

This function generates a template that can be fill in and use with use_DRAC4ceramic.

Usage

```
template_DRAC4ceramic()
```

Author(s)

David Strebler

template_DRAC4flint

45

template_DRAC4flint

Creation of a template for use_DRAC4flint input.

Description

This function generates a template that can be fill in and use with use_DRAC4flint.

Usage

```
template_DRAC4flint()
```

Author(s)

David Strebler

TLum-class

Class "TLum"

Description

Abstract class for data in the package Luminescence

Note

TLum is a virtual class.

Author(s)

David Strebler

TLum.Analysis-class

Class "TLum. Analysis"

Description

Object class containing analysis data for protocol analysis.

Usage

```
## S4 method for signature 'TLum.Analysis'
show(object)

set_TLum.Analysis(records, protocol, history, plotHistory)

## S4 method for signature 'list,ANY,character,list'
set_TLum.Analysis(records, protocol,
    history, plotHistory)

get_TLum.Analysis(object, record.id, recordType, curveType, TLum.type,
    get.index, keep.object = FALSE)

## S4 method for signature 'TLum.Analysis'
get_TLum.Analysis(object, record.id, recordType,
    curveType, TLum.type, get.index, keep.object = FALSE)
```

Arguments

object TLum. Analysis: an object of class TLum. Analysis.

records list: list of TLum.Data.Curve objects

protocol character: protocol type for analysis object.

history character: Vector containing the previous modification made on the data set.

plotHistory list: Data for plotting the evolution of the data set.

record.id numeric: IDs of specific records.

recordType character: record type. curveType character: curve type.

TLum. type character: TLum object type.

get.index logical: return a numeric vector with the index of each element in the TLum. Analysis

object.

keep.object logical: return a TLum.Analysis object.

Slots

```
protocol character: Protocol used for the analysis.

records list: TLum.Data.Curve included in the analysis.

history character: Vector containing the previous modification made on the data set.

plotHistory list: Data for plotting the evolution of the data set.
```

Note

The code and the structure of this class is based on the RLum. Analysis class from the Luminescence package.

Author(s)

David Strebler

TLum.Analysis2RLum.Analysis

Convert RLum. Analysis object to an TLum. Analysis.

Description

This function convert a TLum.Analysis object into a RLum.Analysis object, from the 'Luminescence' package. The 'TLdating' package is implemented to only works with its own class of object (TLum.Analysis, TLum.Analysis and TLum.Data.Curve).

Usage

TLum.Analysis2RLum.Analysis(object)

Arguments

object

TLum. Analysis (**required**): object containing the TL curves used for the ED estimation.

Details

This function use the data from the TLum.Analysis to create a new RLum.Analysis. During the process, all information relative to the uncertainties and stored in the TLum.Analysis object are lost. The original data-type of each luminescence curve is also restored.

Author(s)

David Strebler, University of Cologne (Germany), David Strebler

TLum.Analysis2TLum.BIN.File

Convert TLum. Analysis object to an TLum. BIN. File object.

Description

This function convert a TLum.BIN.File in a TLum.Analysis object. A TLum.Analysis object is a list of TLum.Data.Curve object. It is possible to specify which luminescence curves will be keeped.

Usage

TLum.Analysis2TLum.BIN.File(object)

Arguments

object TLum. Analysis (**required**): object containing the luminescence curves.

Value

This function will return a TLum.BIN.File object.

48 TLum.BIN.File-class

Author(s)

```
David Strebler, University of Cologne (Germany),
David Strebler
```

See Also

TLum.Analysis, TLum.BIN.File, TLum.Data.Curve and TLum.BIN.File2TLum.Data.Curve.

```
TLum.BIN.File-class Class "TLum.BIN.File"
```

Description

Class for luminescence curves data.

Usage

Arguments

object TLum.BIN.File: an object of class 'TLum.BIN.File'.

METADATA data.frame: Object containing the meta information for each curve.

DATA list: Object containing numeric vector with count data.

ERROR list: Object containing numeric vector with count data absolute uncertainty.

.RESERVED list: Object containing list of undocumented raw values for internal use only.

Slots

```
METADATA data.frame: Object containing the meta information for each curve.

DATA list: Object containing numeric vector with count data.

ERROR list: Object containing numeric vector with count data absolute uncertainty.

.RESERVED list: Object containing list of undocumented raw values for internal use only.
```

Note

The code and the structure of this class is based on the Risoe.BINfileData class from the Luminescence package.

Author(s)

David Strebler

TLum.BIN.File2Risoe.BINfileData

Convert TLum.BIN.File object to an Risoe.BINfileData object.

Description

This function convert TLum.BIN.File object into a Risoe.BINfileData object that is usable by the Luminescence package.

Usage

```
TLum.BIN.File2Risoe.BINfileData(object)
```

Arguments

object

TLum.BIN.File (**required**): object containing the TL curves used for the ED estimation.

Value

This function return an Risoe.BINfileData containing all information previously stored in the TLum.BIN.File except the uncertainties matrix. To avoid conflicts with other software, the original data type of each curves is restored.

Author(s)

David Strebler

TLum.BIN.File2TLum.Analysis

Convert TLum.BIN.File object to an TLum.Analysis object.

Description

This function convert a TLum.BIN.File in a TLum.Analysis object. A TLum.Analysis object is a list of TLum.Data.Curve object. It is possible to specify which luminescence curves will be keeped.

Usage

```
TLum.BIN.File2TLum.Analysis(object, protocol = "unknown",
  rec_duringPH = TRUE, rec_ramp2PH = TRUE)
```

Arguments

object TLum.BIN.File (required): object containing the luminescence curves.

protocol character (with default): protocol used.

rec_duringPH logical (with default): Indicate if the signal was record during the preheat plateau.
rec_ramp2PH logical (with default): Indicate if the signal was record during the ramp up to the

preheat temperature.

Value

This function will return a TLum. Analysis object.

Author(s)

David Strebler, University of Cologne (Germany), David Strebler

See Also

TLum.Analysis, TLum.BIN.File, TLum.Data.Curve and TLum.BIN.File2TLum.Data.Curve.

TLum.BIN.File2TLum.Data.Curve

Convert an element from a TLum.BIN.File object into a TLum.Data.Curve objet

Description

This function extract a curve from a TLum.BIN.File object and convert it into a TLum.Data.Curve objet. The extract element can be identify either by its id or by its position, run and set.

Usage

```
TLum.BIN.File2TLum.Data.Curve(object, id, pos, run, set, rec_duringPH = TRUE,
    rec_ramp2PH = TRUE)
```

Arguments

object TLum.BIN.File (required): object containing the luminescence curves.

id integer (with default): id of the curve.

pos integer (with default): position of the curve.

run integer (with default): run of the curve.

set integer (with default): set of the curve.

rec_duringPH logical (with default): Indicate if the signal was record during the preheat plateau.
rec_ramp2PH logical (with default): Indicate if the signal was record during the ramp up to the

preheat temperature.

Details

The element that is extracted to be converted into a TLum.Data.Curve objet can be identify either by its id or by its position, run and set.

TLum.Data-class 51

Value

This function return a TLum.Data.Curve objet.

TLum.Data-class

Class "TLum.Data"

Description

Generalized virtual data class for luminescence data.

Note

The code and the structure of this class is based on the RLum.Data class from the Luminescence package.

Author(s)

David Strebler

```
TLum.Data.Curve-class Class "TLum.Data.Curve"
```

Description

Class for luminescence curve data.

Usage

```
## S4 method for signature 'TLum.Data.Curve'
show(object)

set_TLum.Data.Curve(recordType, curveType, metadata, temperatures, data, error,
    analysis, .RESERVED)

## S4 method for signature 'ANY'
set_TLum.Data.Curve(recordType, curveType, metadata,
    temperatures, data, error, analysis, .RESERVED)

get_TLum.Data.Curve(object, ref)

## S4 method for signature 'ANY'
get_TLum.Data.Curve(object, ref)
```

52 TLum.Results-class

Arguments

object TLum.Data.Curve: an object of class 'TLum.Data.Curve'.

recordType character: record type.
curveType character: curve type
metadata list: metadata elements.

temperatures numeric: Object containing numeric vector with temperature data.

data numeric: Object containing numeric vector with count data

error numeric: Object containing numeric vector with count data absolute uncertainty.

analysis list: data produced by analysis function.

.RESERVED list: Object containing list of undocumented raw values for internal use only.

ref character: name of the wanted element.

Slots

```
recordType character: record type.

curveType character: curve type

metadata list: metadata elements.

temperatures numeric: Object containing numeric vector with temperature data.

data numeric: Object containing numeric vector with count data

error numeric: Object containing numeric vector with count data absolute uncertainty.

analysis list: data produced by analysis function.

.RESERVED list: Object containing list of undocumented raw values for internal use only.
```

Note

The code and the structure of this class is based on the RLum.Data.Curve class from the Luminescence package.

Author(s)

David Strebler

TLum.Results-class Class "TLum.Results"

Description

Object class contains results data from functions.

use_DRAC4brick 53

Usage

```
## S4 method for signature 'TLum.Results'
show(object)

set_TLum.Results(originator, data, plotData)

## S4 method for signature 'ANY,list'
set_TLum.Results(originator, data, plotData)

get_TLum.Results(object, ref)

## S4 method for signature 'TLum.Results'
get_TLum.Results(object, ref)
```

Arguments

object TLum.Results: object to be evaluated.

originator character: : contains the name of the calling function.

data list: the data to be stored in the object.

plotData list: a list containing the data required for plotting.

plotData list: a list containing the data required for plotting.
ref character: name of the 'data' slot to be returned.

Slots

originator character: contains the name of the calling function (the function that produces this object).data list: a list containing the data to be stored in the object.

Note

The code and the structure of this class is based on the RLum.Results class from the Luminescence package.

Author(s)

David Strebler

use_DRAC4brick

Calculation of the dose rate for a brick sample coming from a cave

Description

This function allows to estimating the dose rate for a grain which was surrounded by brick and mortar. It call the use_DRAC and calc_CosmicDoseRate functions from the R package 'Luminescence'. The function 'use_DRAC' is only compatible wth DRAC version 1.1.

Usage

```
use_DRAC4brick(data, notification = TRUE)
```

54 use_DRAC4cave

Arguments

data list: data object create throught the function template_DRAC4brick.

notification logical (default): set to FALSE if you don't want to see the legal notification.

Value

This function return a TLum.Results object containing the Age estimation, the dose rates (total, internal, external, environmental, alpha, beta, gamma and cosmic), the equivalent dose used and their uncertainties.

Author(s)

David Strebler

use_DRAC4cave

Calculation of the dose rate for a sediment sample coming from a cave

Description

This function allows to estimating the dose rate for a grain which was surrounded by sediment and rocks. It call the use_DRAC and calc_CosmicDoseRate functions from the R package 'Luminescence'. The function 'use_DRAC' is only compatible wth DRAC version 1.1.

Usage

```
use_DRAC4cave(data, notification = TRUE)
```

Arguments

data list: data object create throught the function template_DRAC4cave.

notification logical (default): set to FALSE if you don't want to see the legal notification.

Value

This function return a TLum.Results object containing the Age estimation, the dose rates (total, internal, external, environmental, alpha, beta, gamma and cosmic), the equivalent dose used and their uncertainties.

Author(s)

David Strebler

use_DRAC4ceramic 55

use_DRAC4ceramic	Calculation of the dose rate for a ceramic sample

Description

This function allows to estimating the dose rate for a ceramic which was surrounded by sediment. It call the use_DRAC and calc_CosmicDoseRate functions from the R package 'Luminescence'. The function 'use_DRAC' is only compatible wth DRAC version 1.1.

Usage

```
use_DRAC4ceramic(data, notification = TRUE)
```

Arguments

data list: data object create throught the function template_DRAC4flint.

notification logical (default): set to FALSE if you don't want to see the legal notification.

Value

This function return a TLum.Results object containing the Age estimation, the dose rates (total, internal, external, environmental, alpha, beta, gamma and cosmic), the equivalent dose used and their uncertainties.

Author(s)

David Strebler

use_DRAC4flint	Calculation of the dose rate for a flint

Description

This function allows to estimating the dose rate for a burnt flint object which was surrounded by sediment. It call the use_DRAC and calc_CosmicDoseRate functions from the R package 'Luminescence'. The function 'use_DRAC' is only compatible wth DRAC version 1.1.

Usage

```
use_DRAC4flint(data, notification = TRUE)
```

Arguments

data list: data object create throught the function template_DRAC4flint.

notification logical (default): set to FALSE if you don't want to see the legal notification.

Value

This function return a TLum.Results object containing the Age estimation, the dose rates (total, internal, external, environmental, alpha, beta, gamma and cosmic), the equivalent dose used and their uncertainties.

56 use_DRAC4flint

Author(s)

David Strebler

Index

```
*Topic classes
                                                   get_TLum.Results,TLum.Results-method
    TLum-class, 45
                                                            (TLum.Results-class), 52
    TLum. Analysis-class, 45
                                                   integer, 4, 8, 27, 31, 36, 42, 50
    TLum.BIN.File-class, 48
    TLum.Data-class.51
                                                   list, 5, 6, 8, 9, 11, 13, 16, 18-20, 22, 23, 25,
    TLum.Data.Curve-class, 51
                                                            29-32, 34-40, 42, 43, 46, 48, 52-55
    TLum.Results-class, 52
                                                   lm, 12, 14
*Topic package
                                                   logical, 5, 7-9, 12, 13, 16-20, 22, 23, 25, 29,
    TLdating-package, 3
                                                            30, 32, 35, 37, 39–41, 43, 46, 50, 54,
analyse_TL.MAAD, 4, 7, 9-14, 27, 29, 30, 38
                                                   Luminescence, 3, 4, 46, 48, 49, 51–55
analyse_TL.plateau, 6, 30, 40
analyse_TL.SAR, 6, 7, 9, 10, 15, 16, 44
                                                   matrix, 6, 9
                                                   mod_align.peaks, 17, 25, 38, 40, 41, 44
calc_CosmicDoseRate, 53-55
                                                   mod_extract.aliquot, 19
calc_TL.LxTx, 5-9, 9
                                                   mod_extract.preheat, 19
calc_TL.MAAD.average, 5, 6, 10
                                                   mod_extract.TL, 20, 25, 36, 38, 40, 41, 44
calc_TL.MAAD.fit.I, 5, 6, 11, 14, 29, 30, 37
                                                   mod_remove.aliquot, 21, 38, 40, 41, 44
calc_TL.MAAD.fit.Q, 5, 6, 12, 13, 29, 30, 37
                                                   mod_remove.preheat, 21, 26, 38, 40, 41, 44
calc_TL.MAAD.separate, 6, 14
                                                   mod_substract.background, 22, 26, 27, 38,
calc_TL.plateau, 5-9, 15
                                                            40, 41, 44
calc_TL.SAR.fit, 8, 9, 15, 32, 43
                                                   mod_update.dType, 23, 36, 38, 40, 41, 44
calc_TL.temperature, 17
                                                   mod_update.error, 24
character, 5, 6, 8–14, 16, 23, 24, 27–32,
         34-37, 39-43, 46, 50, 52, 53
                                                   numeric, 5, 7, 8, 10–19, 21, 24–43, 46, 52
data.frame, 38, 48
                                                   plot_align.peaks, 18, 24, 38, 39, 41, 43
                                                   plot_extract.TL, 21, 25, 35, 38, 39, 41, 43
get_TLum.Analysis
                                                   plot_remove.preheat, 20, 22, 23, 26, 38, 39,
        (TLum. Analysis-class), 45
                                                            41, 43
get_TLum.Analysis,TLum.Analysis-method
                                                   plot_substract.background, 23, 26, 38, 39,
        (TLum. Analysis-class), 45
                                                            41, 43
get_TLum.BIN.File
                                                   plot_TL.MAAD, 5, 6, 27, 38, 39, 41
        (TLum.BIN.File-class), 48
                                                   plot_TL.plateau, 7, 30, 39
get_TLum.BIN.File,TLum.BIN.File-method
                                                   plot_TL.SAR, 9, 31, 32, 43
        (TLum.BIN.File-class), 48
get_TLum.Data.Curve
                                                   read_BIN2R, 36, 38, 40, 41, 44
        (TLum.Data.Curve-class), 51
                                                   Risoe.BINfileData, 33, 48, 49
                                                   Risoe.BINfileData2TLum.BIN.File, 33, 36,
get_TLum.Data.Curve,ANY-method
         (TLum.Data.Curve-class), 51
                                                            38, 40, 41, 44
get_TLum.Data.Curve,TLum.Data.Curve-method
                                                   RLum. Analysis, 33, 34, 46, 47
        (TLum.Data.Curve-class), 51
                                                   RLum. Analysis 2TLum. Analysis, 33
get_TLum.Results(TLum.Results-class),
                                                   RLum. Data, 51
                                                   RLum. Data. Curve, 52
```

58 INDEX

RLum.Results, 53	TLum.BIN.File, 47-50 TLum.BIN.File-class, 48			
script_TL.export, 34				
script_TL.import, 35	TLum.BIN.File2Risoe.BINfileData, 33, 35,			
	49			
script_TL.MAAD, 36	TLum.BIN.File2TLum.Analysis, 33, 36, 38,			
script_TL.plateau, 38	40, 44, 49			
script_TL.pretreatment, 37, 39, 40, 42	TLum.BIN.File2TLum.Data.Curve, 33, 48,			
script_TL.SAR, 41	50, 50			
set_TLum.Analysis	TLum.Data-class, 51			
(TLum.Analysis-class), 45	TLum.Data.Curve, 19, 46-52			
$\verb set_TLum.Analysis, list, ANY, character, list-median $	thodm.Data.Curve-class,51			
(TLum.Analysis-class), 45	TLum.Results, 6, 9-12, 14-17, 53-55			
set_TLum.Analysis,TLum.Analysis-method	TLum.Results-class, 52			
(TLum.Analysis-class), 45				
set_TLum.BIN.File	use_DRAC, <i>53–55</i>			
(TLum.BIN.File-class), 48	use_DRAC4brick, 44, 53			
<pre>set_TLum.BIN.File,data.frame,list,list-method</pre>	duse_DRAC4cave, 44, 54			
(TLum.BIN.File-class), 48	use_DRAC4ceramic, 44, 55			
set_TLum.BIN.File,TLum.BIN.File-method	use_DRAC4flint, 44, 45, 55			
(TLum.BIN.File-class), 48				
set_TLum.Data.Curve	write_R2BIN, <i>35</i> , <i>38</i> , <i>40</i> , <i>41</i> , <i>44</i>			
(TLum.Data.Curve-class), 51				
set_TLum.Data.Curve,ANY-method				
(TLum.Data.Curve-class), 51				
set_TLum.Data.Curve,TLum.Data.Curve-method				
(TLum.Data.Curve-class), 51				
set_TLum.Results (TLum.Results-class),				
52				
set_TLum.Results,ANY,list-method				
(TLum.Results-class), 52				
set_TLum.Results,TLum.Results-method				
(TLum.Results-class), 52				
show,TLum.Analysis-method				
(TLum.Analysis-class), 45				
show,TLum.BIN.File-method				
(TLum.BIN.File-class), 48				
show, TLum. Data. Curve-method				
(TLum.Data.Curve-class), 51				
show,TLum.Results-method				
(TLum.Results-class), 52				
template_DRAC4brick, 44, 54				
template_DRAC4cave, 44, 54				
template_DRAC4ceramic, 44				
template_DRAC4flint, 45, 55				
TLdating (TLdating-package), 3				
TLdating-package, 3				
TLum-class, 45				
TLum. Analysis, 4, 6, 8, 9, 18–24, 33–36, 41,				
46–50				
TLum. Analysis-class, 45				
TLum. Analysis 2RLum. Analysis, 47				
TLum.Analysis2TLum.BIN.File, 35, 47				