CS224 Lab No: 4 Section No: 06 Barış Tan Ünal 22003617

PART 1

Part 1.a

Location	Machine Instruction	Assembly Language
0x80001000	0x20020005	addi \$2, \$0, 5
0x80001004	0x2003000c	addi \$3, \$0, 12
0x80001008	0x2067fff7	addi \$7, \$3, -9
0x8000100c	0x00e22025	or \$4,\$7,\$2
0x80001010	0x00642824	and \$5, \$3, \$4
0x80001014	0x00a42820	add \$5, \$5, \$4
0x80001018	0x10a7000a	beq \$5,\$7,0x80001044
0x8000101c	0x0064202a	slt \$4, \$3, \$4
0x80001020	0x10800001	beq \$4, \$0, 0x80001028
0x80001024	0x20050000	addi \$5, \$0, 0
0x80001028	0x00e2202a	slt \$4, \$7, \$2
0x8000102c	0x00853820	add \$7, \$4, \$5
0x80001030	0x00e23822	sub \$7, \$7, \$2
0x80001034	0xac670044	sw \$7,68(\$3)
0x80001038	0x8c020050	lw \$2,80(\$0)
0x8000103c	0x08000011	j 0x80000044
0x80001040	0x20020001	addi \$2, \$0, 1
0x80001044	0xac020054	sw \$2,84(\$0)
0x80001048	0x08000012	j 0x80000048

Part 1.d

Figure 1. Interval of 0 - 120ns of the waveform.

Figure 2. Interval of 120 - 240ns of the waveform.

Part 1.e

- i) In an R-type instruction, writedata represents the rd register, which is instr[15:11].
- ii) writedata is undefined at the beginning of the program, because the first three instructions are I-type instructions (addi). I-type instructions do not use rd register, instead they use immediate (16-bits). The first R-type instruction, where writedata was defined for the first time, is the or instruction where $PC = 0000_000c$.
- **iii**) readdata is undefined for most of the time because mips processor reads data from memory only in *lw* instruction for original 10 instruction set.
- iv) In an R-type instruction, dataadr corresponds to the result (32-bit output) of the ALU.
- **v**) *memWrite* becomes 1 in the instrcutions where something has to be written to the memory. The only example in original 10 instrcution set is sw.

Part 1.f

```
module alu(input logic [31:0] a, b,
       input logic [2:0] alucont,
       output logic [31:0] result,
       output logic zero);
  always_comb
     case(alucont)
          3'b010: result = a + b;
          3'b110: result = a - b:
          3'b000: result = a & b;
          3'b001: result = a | b;
          3'b111: result = (a < b) ? 1 : 0;
          3'b011: result = a << b;
       default: result = \{32\{1'bx\}\}\;
     endcase
  assign zero = (result == 0) ? 1'b1 : 1'b0;
endmodule
```

PART 2

Part 2.a

RTL Design of sracc:

```
IM [PC]
RF [rd] ← RF [rd] + ( RF [rs] << RF [rt] )
PC ← PC + 4
```

RTL Design of jm:

```
IM [PC]
PC ← RF [rs] + ( SignExt(imm) * 4 )
```

Part 2.b

Figure 3. Updated datapath with srace & jm instructions

Part 2.c

Inst	Op Code	Reg Write	Reg Dst	ALU Src	Branch	Mem Write	Mem toReg	ALU Op	Jump	Jump Mem	Imm Sel	Write Mux
R-type	000000	1	1	0	0	0	0	10	0	0	X	0
lw	100011	1	0	1	0	0	1	00	0	0	0	0
sw	101011	0	X	1	0	1	X	00	0	0	0	X
beq	000100	0	X	0	1	0	X	01	0	0	X	X
addi	001000	1	0	1	0	0	0	00	0	0	0	0
j	000010	0	X	X	X	0	X	XX	1	0	X	X
sracc	000111	1	1	X	0	0	X	XX	0	0	X	1
jm	000011	0	X	1	0	0	0	00	0	1	1	X