EUROPÄISCHE PATENTANMELDUNG

- (43) Veröffentlichungstag: 03.01.2001 Patentblatt 2001/01
- (51) Int CL7: A61K 7/00, A61K 9/50, C11D 17/08

- (21) Anmeldenummer: 99112670.7
- (22) Anmeldetag: 02.07.1999
- (84) Benannte Vertragsstaaten: AT BE CHICY DE DK ES FI FRIGBIGRIE IT LI LU MC NL PT SE Benannte Erstreckungsstaaten:

AL LT LV MK ROSI

- (71) Anmelder: Primacare S.A. 08902 L'Hospitalet de Llobregat, Barcelona (ES)
- (72) Erfinder:
 - · Garces, Garces Josep 08760-Martorell, Barcelona (ES)

- · Viladot Petit, Josep-Lluis 08036-Barcelona (ES)
- (74) Vertreter; Fabry, Bernd c/o Cognis Deutschland GmbH, Dep. Intellectual Properties, Postfach 130164 40551 Düsseldorf (DE)

Mikrokapseln - I (54)

Vorgeschlagen werden Mikrokapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm, bestehend aus einer Hüllmembran und einer mindestens einen Wirkstoff enthaltenden Matrix, dadurch erhältlich, daß man

- (a) aus Gelbildnem, Chitosanen und Wirkstoffen eine Matrix zubereitet und
- (b) diese in wäßrige Lösungen anionischer Polymere eintropft.

Beschreibung

Gebiet der Erfindung

[0001] Die Erfindung befindet sich auf dem Gebiet der Verkapselung von Wirkstoffen und betrifft neue Mikrokapseln, ein Verfahren zu deren Herstellung unter Einsatz von verschiedenen Polymeren und Chitosanen sowie deren Verwendung zur Herstellung beispielsweise oberflächenaktiver Zubereitungen.

Stand der Technik

10

20

30

35

45

50

[0002] Unter dem Begriff "Mikrokapsel" werden sphärische Aggregate mit einem Durchmesser im Bereich von etwa 0,1 bis etwa 5 mm verstanden, die mindestens einen festen oder flüssigen Kern enthalten, der von mindestens einer kontinuierlichen Hülle umschlossen ist. Genauer gesagt handelt es sich um mit filmbildenden Polymeren umhüllte feindisperse flüssige oder feste Phasen, bei deren Herstellung sich die Polymere nach Emulgierung und Koazervation oder Grenzflächenpolymerisation auf dem einzuhüllenden Material niederschlagen. Nach einem anderen Verfahren werden flüssige Wirkstoffe in einer Matrix aufgenommen ("microsponge"), die als Mikropartikel zusätzlich mit filmbildenden Polymeren umhüllt sein können. Die mikroskopisch kleinen Kapseln, auch Nanokapseln genannt, lassen sich wie Pulver trocknen. Neben einkernigen Mikrokapseln sind auch mehrkernige Aggregate, auch Mikrosphären genannt, bekannt, die zwei oder mehr Kerne im kontinuierlichen Hüllmaterial verteilt enthalten. Ein- oder mehrkemige Mikrokapseln können zudem von einer zusätzlichen zweiten, dritten etc. Hülle umschlossen sein. Die Hülle kann aus natürlichen, halbsynthetischen oder synthetischen Materialien bestehen. Natürlich Hüllmaterialien sind beispielsweise Gummi Arabicum, Agar-Agar, Agarose, Maltodextrine, Alginsäure bzw. ihre Salze, z.B. Natrium- oder Calciumalginat, Fette und Fettsäuren, Cetylalkohol, Collagen, Chitosan, Lecithine, Gelatine, Albumin, Schellack, Polysaccaride, wie Stärke oder Dextran, Polypeptide, Proteinghydrolysate, Sucrose und Wachse. Halbsynthetische Hüllmaterialien sind unter anderem chemisch modifizierte Cellulosen, insbesondere Celluloseester und -ether, z B. Celluloseacetat, Ethylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose und Carboxymethylcellulose, sowie Stärkederivate, insbesondere Stärkeether und -ester. Synthetische Hüllmaterialien sind beispielsweise Polymere wie Polyacrylate, Polyamide, Polyvinylalkohol oder Polyvinylpyrrolidon.

[0003] Beispiele für Mikrokapseln des Stands der Technik sind folgende Handelsprodukte (in Klammem angegeben ist jeweils das Hüllmaterial): Hallcrest Microcapsules (Gelatine, Gummi Arabicum), Coletica *Thalaspheres* (maritimes Collagen), *Lipotec Millicapseln* (Alginsäure, Agar-Agar), *Induchem Unispheres* (Lactose, mikrokristalline Cellulose, Hydroxypropylmethylcellulose); *Unicerin* C30 (Lactose, mikrokristalline Cellulose, Hydroxypropylmethylcellulose), Kobo Glycospheres (modifizierte Stärke, Fettsäureester, Phospholipide), Softspheres (modifiziertes Agar-Agar) und Kuhs *Probiol Nanospheres* (Phospholipide).

[0004] In diesem Zusammenhang sei auch auf die deutsche Patentanmeldung DE 19712978 A1 (Henkel) hingewiesen, aus der Chitosanmikrosphären bekannt sind, die man erhält, indem man Chitosane oder Chitosanderivate mit Ölkörpem vermischt und diese Mischungen in alkalisch eingestellte Tensidlösungen einbringt. Aus der deutschen Patentanmeldung DE 19756452 A1 (Henkel) ist ferner auch die Verwendung von Chitosan als Verkapselungsmaterial für Tocopherol bekannt.

[0005] Die Freisetzung der Wirkstoffe aus den Mikrokapseln erfolgt üblicherweise während der Anwendung der sie enthaltenden Zubereitungen durch Zerstörung der Hülle infolge mechanischer, thermischer, chemischer oder enzymatischer Einwirkung. Von Nachteil ist dabei, daß die Mikrokapseln die kontrollierte Freisetzung der Wirkstoffe aus ihrem Innern nicht oder nur in unzureichendem Maße zulassen und die Kapseln eine ungenügende Stabilität in Gegenwart von Tensiden, zumal anionischen Tensiden aufweisen. Die Aufgabe der vorliegenden Erfindung hat somit darin bestanden, gerade diese Nachteile zu überwinden.

Beschreibung der Erfindung

[0006] Gegenstand der Erfindung sind Mikrokapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm, bestehend aus einer Hüllmembran und einer mindestens einen Wirkstoff enthaltenden Matrix, die man erhält, indem man

- (a) aus Gelbildnem, Chitosanen und Wirkstoffen eine Matrix zubereitet und
- (b) diese in wäßrige Lösungen anionischer Polymere eintropft.
- [0007] Überraschenderweise wurde gefunden, daß der Einsatz von thermogelierenden natürlichen Heteropolysacchariden oder Proteinen zusammen mit Chitosanen, die in Gegenwart anionischer Polymere Membranen bilden, die Herstellung von neuen Mikrokapseln erlaubt, die sich durch eine deutlich verbesserte Tensidstabilität auszeichnen.

 [0008] Ein weiterer Gegenstand der Erfindung betrifft ein Verfahren zur Herstellung von Mikrokapseln mit mittleren

Durchmessern im Bereich von 0,1 bis 5 mm, bestehend aus einer Hüllmembran und einer mindestens einen Wirkstoff enthaltenden Matrix, bei dem man

- (a) aus Gelbildnem, Chitosanen und Wirkstoffen eine Matrix zubereitet und
- (b) diese in wäßrige Lösungen anionischer Polymere eintropft.

Gelbildner

5

15

20

25

30

35

40

45

State of the state of

[0009] Im Sinne der Erfindung werden als Gelbildner vorzugsweise solche Stoffe in Betracht gezogen, welche die Eigenschaft zeigen in wäßriger Lösung bei Temperaturen oberhalb von 40 °C Gele zu bilden. Typische Beispiele hierfür sind Hetereopolysaccahride und Proteine. Als thermogelierende Heteropolysaccharide kommen vorzugsweise Agarosen in Frage, welche in Form des aus Rotalgen zu gewinnenden Agar-Agar auch zusammen mit bis zu 30 Gew.-% nicht-gelbilden-den Agaropektinen vorliegen können. Hauptbestandteil der Agarosen sind lineare Polysaccharide aus D-Galaktose und 3,6-Anhydro-L-galaktose, die alternierend β-1,3- und β-1,4-glykosidisch verknüpft sind. Die Heteropolysaccharide besitzen vorzugsweise ein Molekulargewicht im Bereich von 110.000 bis 160.000 und sind sowohl farbals auch geschmacklos. Als Alternativen kommen Pektine, Xanthane (auch Xanthan Gum) sowie deren Mischungen in Frage. Es sind weiterhin solche Typen bevorzugt, die noch in 1-Gew.-%iger wäßriger Lösung Gele bilden, die nicht unterhalb von 80 °C schmelzen und sich bereits oberhalb von 40 °C wieder verfestigen. Aus der Gruppe der thermogelierenden **Proteine** seien exemplarisch die verschiedenen Gelatine-Typen genannt.

Chitosane

[0010] Chitosane stellen Biopolymere dar und werden zur Gruppe der Hydrokolloide gezählt. Chemisch betrachtet handelt es sich um partiell deacetylierte Chitine unterschiedlichen Molekulargewichtes, die den folgenden - idealisierten - Monomerbaustein enthalten:

[0011] Im Gegensatz zu den meisten Hydrokolloiden, die im Bereich biologischer pH-Werte negativ geladen sind, stellen Chitosane unter diesen Bedingungen kationische Biopolymere dar. Die positiv geladenen Chitosane können mit entgegengesetzt geladenen Oberflächen in Wechselwirkung treten und werden daher in kosmetischen Haar- und Körperpflegemitteln sowie pharmazeutischen Zubereitungen eingesetzt (vgl. Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., Vol. A6, Weinheim, Verlag Chemie, 1986, S. 231-232). Übersichten zu diesem Thema sind auch beispielsweise von B. Gesslein et al. in HAPPI 27, 57 (1990), O. Skaugrud in Drug Cosm.Ind. 148, 24 (1991) und E. Onsoyen et al. in Seifen-Öle-Feffe-Wachse 117, 633 (1991) erschienen. Zur Herstellung der Chitosane geht man von Chitin, vorzugsweise den Schalenresten von Krustentieren aus, die als billige Rohstoffe in großen Mengen zur Verfügung stehen. Das Chitin wird dabei in einem Verfahren, das erstmals von Hackmann et al. beschrieben worden ist, üblicherweise zunächst durch Zusatz von Basen deproteiniert, durch Zugabe von Mineralsäuren demineralisiert und schließlich durch Zugabe von starken Basen deacetyliert, wobei die Molekulargewichte über ein breites Spektrum verteilt sein können. Entsprechende Verfahren sind beispielsweise aus Makromol. Chem. 177, 3589 (1976) oder der französischen Patentanmeldung FR 2701266 A bekannt. Vorzugsweise werden solche Typen eingesetzt, wie sie in den deutschen Patentanmeldungen DE 4442987 A1 und DE 19537001 A1 (Henkel) offenbart werden und die ein durchschnittliches Molckulargewicht von 10.000 bis 500.000 bzw. 800.000 bis 1.200.000 Dalton aufweisen undloder eine Viskosität nach Brookfield (1 Gew.-%ig in Glycolsäure) unterhalb von 5000 mPas, einen Deacetylierungsgrad im Bereich von 80 bis 88 % und einem Aschegehalt von weniger als 0,3 Gew.-% besitzen. Aus Gründen der besseren Wasserlöslichkeit werden die Chitosane in der Regel in Form ihrer Salze, vorzugsweise als Glycolate eingesetzt.

Wirkstoffe

20

35

45

[0012] Die Auswahl der Wirkstoffe, die in den neuen Mikrokapseln eingeschlossen sind, ist an sich unkritisch. Vorzugsweise handelt es sich um Stoffe, die erst durch mechanische Zerstörung der Mikrokapseln freigesetzt werden. In diesen Fällen kommt den Mikrokapseln die Aufgabe zu, den Kontakt zwischen äußerer Umgebung und Wirkstoff und damit eine chemische Reaktion bzw. einen Abbau zu verhindern. Es kann es sein, daß die in der Kapsel eingeschlossenen Stoffe überhaupt nicht freigesetzt werden sollen und ausschließlich dem Zweck dienen, der Zubereitung ein ästhetisches Äußeres zu verleihen; dies trifft beispielsweise vielfach für Farbstoffe zu. Es ist natürlich klar, daß diese Einsatzformen auch nebeneinander bestehen können. Insbesondere ist es möglich, beispielsweise einen Duftstoff für die spätere Freisetzung zusammen mit einem Farbpigment zu verkapseln, welches der Kapsel ein besonderes Aussehen verleiht.

Wirkstoffe für kosmetische und pharmazeutische Anwendungen

[0013] Typische Beispiele für Wirkstoffe, wie sie im Bereich der kosmetischen und pharmazeutischen Zubereitungen eingesetzt werden sind Tenside, kosmetische Öle, Perlglanzwachse, Stabilisatoren, biogene Wirkstoffe, Vitamine, Deodorantien, Antitranspirantien, Antischuppenmittel, UV-Lichtschutzfaktoren, Antioxidantien, Konservierungsmittel, Insekienrepellentien, Selbstbräuner, Typrosininhibitoren (Depigmentierungsmittel), Parfümöle und Farbstoffe.

[0014] Als oberflächenaktive Stoffe können anionische, nichtionische, kationische und/oder amphotere bzw. amphotere Tenside verkapselt werden. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, α -Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Fettsäureethersulfate, Hydroxymischethersulfate, Monoglycerid (ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl (ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk (en)yloligoglykoside bzw. Glucoronsäurederivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyldistearylammoniumchlorid, und Esterquats, insbesondere quaternierte Fettsäuretrialkanolaminestersalze. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J.Falbe (ed.), "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen.

[0015] Als kosmetische Öle kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C_6 - C_{22} -Fettsäuren mit linearen C_6 - C_{22} -Fettalkoholen, Ester von verzweigten C_6 - C_{13} -Carbonsäuren mit linearen C_6 - C_{22} -Fettalkoholen, wie z.B. Myristylmyristat, Myristylpalmıtat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, Myristylerucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearylerucat, Isostearylmyristat, Isostearylpalmitat, Isostearylstearat, Isostearylisostearat, Isostearyloleat, Isostearylbehenat, Isostearyloleat, Oleylmyristat, Oleylpalmilat, Oleylstearat, Oleylisostearat, Oleyloleat, Oleylbehenat, Oleylerucat, Behenylmyristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, $\label{eq:continuous} Erucyloleat, Erucylohenat und Erucylerucat. \ Daneben eignen sich Ester von linearen C_6-C_{22}-Fettsäuren mit verzweig-neuen sich Ester von linearen contract en linearen sich Ester von linearen sich Ester von$ ten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Hydroxycarbonsäuren mit linearen oder verzweigten C_6 - C_{22} -Fettalkoholen, insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis C_s- $\textbf{C}_{10}\text{-Fetts\"{a}uren, fl\"{u}ssige Mono-/Di-/Triglyceridmischungen auf Basis von C}_{6}\textbf{-C}_{18}\text{-Fetts\"{a}uren, Ester von C}_{6}\textbf{-C}_{22}\text{-Fettal-}$ koholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C₂-C₁₂-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohe30

35

40

45

50

55

15

xane, lineare und verzweigte C_6 - C_{22} -Fettalkoholcarbonate, Guerbetcarbonate, Ester der Benzoesäure mit linearen und/oder verzweigten C_6 - C_{22} -Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukte von epoxidierten Fettsäureestem mit Polyolen, Siliconöle und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.

[0016] Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethylenglycoldistearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.

[0017] Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.

[0018] Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsäure, Desoxyribonucleinsäure, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren, Kojisäure, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen.

[0019] Kosmetische Deodorantien (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbaklerien auf apokrinen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden. Dementsprechend enthalten Deodorantien Wirkstoffe, die als keimhemmende Mittel, Enzyminhibitoren, Geruchsabsorber oder Geruchsüberdecker fungieren.

[0020] Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie z. B. 4-Hydroxybenzoesäure und ihre Salze und Ester, N-(4-Chlorphenyl)-N'-(3,4 dichlorphenyl)hamstoff, 2,4,4'-Trichlor-2'-hydroxydiphenylether (Triclosan), 4-Chlor-3,5-dimethylphenol, 2,2'-Methylen-bis(6-brom-4-chlorphenol), 3-Methyl-4-(1-methylethyl)phenol, 2-Benzyl-4-chlorphenol, 3-(4-Chlorphenoxy)-1,2-propandiol, 3-lod-2-propinylbutyl-carbamat, Chlorhexidin, 3,4,4'-Trichlorcarbanilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Famesol, Phenoxyethanol, Glycerinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N-alkylamide wie z. B. Salicylsäure-n-octylamid oder Salicylsäure-n-decylamid.

[0021] Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT, Henkel KGaA, Düsseldorf/FRG). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitosterinsulfat bzw -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäuremonoethylester, Adipinsäurediethylester, Hydroxycarbnonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäurediethylester, sowie Zinkglycinat.

[0022] Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten können. Sie senken den Partialdruck der einzelnen Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, daß dabei Parfums unbeeinträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixateure" bekannt sind, wie z. B. Extrakte von Labdanum bzw. Styrax oder bestimmte Abietinsäurederivate. Als Geruchsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfumöle seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethem zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Liliał und Bourgeonal, zu den Ketonen z.B. die Jonone und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parlümöle, z.

B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblūtenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labdanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, β-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evemyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.

[0023] Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkrinen Schweißdrüsen die Schweißbildung, und wirken somit Achselnässe und Körpergeruch entgegen. Wässrige oder wasserfreie Formulierungen von Antitranspirantien enthalten typischerweise folgende Inhaltsstoffe:

- adstringierende Wirkstoffe,
- Ölkomponenten,
- > nichtionische Emulgatoren,
- 15 > Coemulgatoren,

10

30

35

40

45

55

- Konsistenzgeber,
- > Hilfsstoffe wie z. B. Verdicker oder Komplexierungsmittel und/oder
- nichtwässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin.
- 20 [0024] Als adstringierende Antitranspirant-Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten antihydrotisch wirksamen Wirkstoffe sind z.B. Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumdichlorhydrat, Aluminiumsesquichlorhydrat und deren Komplexverbindungen z. B. mit Propylenglycol-1,2. Aluminiumhydroxyallantoinat, Aluminiumchloridtartrat, Aluminium-Zirkonium-Trichlorohydrat, Aluminium-Zirkonium-pentachlorohydrat und deren Komplexverbindungen z. B. mit Aminosäuren wie Glycin.

Daneben können in Antitranspirantien übliche öllösliche und wasserlösliche Hilfsmittel in geringeren Mengen enthalten sein. Solche öllöslichen Hilfsmittel können z.B. sein:

- > entzündungshemmende, hautschützende oder wohlriechende ätherische Öle,
- > synthetische hautschützende Wirkstoffe und/oder
- > öllösliche Parfümöle.
- [0025] Übliche wasserlösliche Zusätze sind z.B. Konservierungsmittel, wasserlösliche Duftstoffe, pH-Wert-Stellmittel, z.B. Puffergemische, wasserlösliche Verdickungsmittel, z.B. wasserlösliche natürliche oder synthetische Polymere wie z.B. Xanthan-Gum, Hydroxyethylcellulose, Polyvinylpyrrolidon oder hochmolekulare Polyethylenoxide.
- [0026] Als Antischuppenmittel können Climbazol, Octopirox, Ketokonazol und Zinkpyrethion eingesetzt werden.
- **[0027]** Unter **UV-Lichtschutzfaktoren** sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z.B. zu nennen:
 - > 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4-Methylbenzyliden)campher wie in der EP 0693471 B1 beschrieben
 - → 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethylhexylester, 4-(Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoesäureamylester;
 - Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäurepropylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-2-ethylhexylester (Octocrylene);
 - Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropylbenzylester, Salicylsäurehomomenthylester,
- Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methoxybenzophenon, 2.2'-Dihydroxy-4-methoxybenzophenon;
 - > Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexylester;
 - > Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1,3,5-triazin und Octyl Triazon, wie in der EP 0818450 A1 beschrieben oder Dioctyl Butamido Triazone (Uvasorb® HEB);
 - > Propan-1.3-dione, wie z.B. 1-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-1,3-dion;
 - > Ketotricyclo(5:2.1.0)decan-Derivate, wie in der EP 0694521 B1 beschrieben.

[0028] Als wasserlösliche Substanzen kommen in Frage:

- > 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze;
- Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und ihre Salze:
- > Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bomylidenmethyl)benzolsulfonsäure und 2-Methyl-5-(2-oxo-3-bomyliden)sulfonsäure und deren Salze.

[0029] Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1,3-dion, 4-tert.-Butyl-4'-methoxydibenzoylmethan (Parsol 1789), 1-Phenyl-3-(4'-isopropylphenyl)-propan-1,3-dion sowie Enaminverbindungen, wie beschrieben in der DE 19712033 A1 (BASF). Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautoflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mikro- oder Nanopigmente eingesetzt. Vorzugsweise wird mikronisiertes Zinkoxid verwendet. Weitere geeignete UV-Lichtschutzfiller sind der Übersicht von P.Finkel in SÖFW-Journal 122, 543 (1996) zu entnehmen.

[0030] Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundare Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D, L-Camosin, D-Camosin, L-Camosin und deren Derivate (z.B. Anserin), Carotinoide. Carotine (z.B. α-Carotin, β-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleotide und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α-Hydroxysäuren (z.B. Citronensaure, Milchsäure, Äpfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsauren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Camosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z.B. ZnO, ZnSO4) Selen und dessen Derivate (z.B. Selen-Methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser

[0031] Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Parabene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoff-klassen. Als Insekten-Repellentien kommen N,N-Diethyl-m-toluamid, 1,2-Pentandiol oder Ethyl Butylacetylamino-propionate in Frage, als Selbstbräuner eignet sich Dihydroxyaceton. Als Tyrosinhinbitoren, die die Bildung von Melanin verhindern und Anwendung in Depigmentierungsmitteln finden, kommen beispielsweise Arbutin, Kojisäure, Cumarinsäure und Ascorbinsäure (Vitamin C) in Frage.

[0032] Als Parfūmöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus). Hölzern (Pinien-, Sandel-, Guajak-, Zedern-,

5

20

30

35

40

45

Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen). Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allvlcvclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethem zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, ∞-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfumöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool. Boisambrene Forte, Ambroxan, Indol, Hedioné, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylolycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, β-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.

[0033] Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Diese Wirkstoffe können auch ausschließlich aus ästhetischen Gründen in den Kapseln enthalten und nicht für eine kontrollierte Freigabe vorgesehen sein.

Wirkstoffe für Detergensanwendungen

15

20

30

35

40

45

55

Bei Mikrokapselanwendungen im Bereich der Detergentien, insbesondere bei Wasch- und Reinigungsmitteln besteht ebenfalls der Wunsch, den Kontakt der verschiedenen Einsatzstoffe miteinander zu verhindern. So ist es sinnvoll, chemisch empfindliche Stoffe, wie beispielsweise Parfümöle oder optische Aufheller zu verkapseln, um deren Aktivität beispielsweise in Chlor- oder Peroxidbleichlaugen auch bei längerer Lagerung sicherzustellen. Man nutzt jedoch beispielsweise auch den Effekt, daß die Bleiche von Textilien in der Regel nicht zu Beginn des Waschprozesses, sondern erst in dessen Verlauf stattfindet und stellt mit der durch mechanische Einwirkung auf die Mikrokapseln verzögerten Freisetzung sicher, daß die Bleichmittel zum richtigen Zeitpunkt ihre volle Wirkung entfalten. Demzufolge kommen als Wirkstoffe, die es für Detergensanwendungen zu verkapseln gilt, vor allem Bleichmittel, Bleichaktivatoren, Enzyme, Vergrauungsinhibitoren, optische Aufheller sowie (chlor- bzw. peroxidstabile) Parfüm- und Farbstoffe in Frage. [0035] Unter den als Bleichmittel dienenden, in Wasser Wasserstoffperoxid liefernden Verbindungen haben das Natriumperborat-Tetrahydrat und das Natriumperborat-Monohydrat eine besondere Bedeutung. Weitere Bleichmittel sind beispielsweise Peroxycarbonat, Citratperhydrate sowie Salze der Persäuren, wie Perbenzoate, Peroxyphthalate oder Diperoxydodecandisäure. Sie werden üblicherweise in Mengen von 8 bis 25 Gew.-% eingesetzt. Bevorzugt ist der Einsatz von Natriumperborat-Monohydrat in Mengen von 10 bis 20 Gew.-% und insbesondere von 10 bis 15 Gew.-%. Durch seine Fähigkeit, unter Ausbildung des Tetrahydrats freies Wasser binden zu können, trägt es zur Erhöhung der Stabilität des Mittels bei

[0036] Beispiele für geeignete **Bleichaktivoren** sind mit Wasserstoffperoxid organische Persäuren bildende N-Acylbzw. O-Acyl-Verbindungen, vorzugsweise N,N'-tetraacylierte Diamine, ferner Carbonsäureanhydride und Ester von Polyolen wie Glucosepentaacetat. Der Gehalt der bleichmittelhaltigen Mittel an Bleichaktivatoren liegt in dem üblichen Bereich, vorzugsweise zwischen 1 und 10 Gew.-% und insbesondere zwischen 3 und 8 Gew.-%. Besonders bevorzugte Bleichaktivatoren sind N,N,N',N'-Tetra-acetylethylendiamin und 1,5-Diacetyl-2,4-dioxo-hexahydro-1,3,5-triazin.

[0037] Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Ihr Anteil kann etwa 0,2 bis etwa 2 Gew.-% betragen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Zusätzlich zu den mono- und polyfunktionellen Alkoholen und den Phosphonaten können die Mittel weitere Enzymstabilisatoren enthalten. Beispielsweise können 0,5 bis 1 Gew.-% Natriumformiat eingesetzt werden. Möglich ist auch der Einsatz von Proteasen, die mit löslichen Calciumsalzen und einem Calciumgehalt von vorzugsweise etwa 1,2-Gew.-%, bezogen auf das Enzym, stabilisiert sind. Besonders

vorteilhaft ist jedoch der Einsatz von Borverbindungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen der Orthoborsäure (H₃BO₃), der Metaborsäure (HBO₂) und der Pyroborsäure (Tetraborsäure H₂B4O₇).

[0038] Geeignete Vergrauungsinhibitoren sind wasserlösliche Kolloide meist organischer Natur, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestem der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether, wie Carboxymethylcellulose, Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylcellulose und deren Gemische sowie Polyvinylpyrrolidon, beispielsweise in Mengen von 0.1 bis 99 und vorzugsweise 1 bis 5 Gew.-%, bezogen auf die Mittel.

[0039] Als optische Aufheller können Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze eingesetzt werden. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden. Ein besonders bevorzugter Farbstoff ist Tinolux® (Handelsprodukt der Ciba-Geigy).

[0040] Beispiele für aktivchlorbeständige Duftstoffe sind Citronellol (3,7-Dimethyl-6-octen-1-ol), Dimethyloctanol (3,7-Dimethyloctanol-1), Hydroxycitronellol (3,7-Dimethyloctane-1,7-diol), Mugol (3,7-Dimethyl-4,6-octatrien-3-ol), Mirsenol (2-Methyl-6-methylen-7-octen-2-ol), Terpinolen (p-Mentho-1,4(8)-dien), Ethyl-2-methylbutyrat, Phenylpropylalkohol, Galaxolid (1,3,4,6.7,8-hexahydro-4,6,6,7,8,8,-hexamethylcyclopental-2-benzopyran, Tonalid (7-Acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalin), Rosenoxid, Linaloloxid, 2,6-Dimethyl-3-octanol, Tetrahydroethyllinalool, Tetrahydroethyllinalylacetat, o-sec-Butylcyclohexylacetat und Isolonediphorenepoxid sowie Isobomeal, Dihydroterpenöl, Isobomylacetat, Dihydroterpenylacetat). Weitere geeignete Duftstoffe sind die in der Europäischen Patentanmeldung EP 0622451 A1 (Procter & Gamble) in den Spalten 3 und 4 genannten Stoffe.

[0041] Als Farbpigmente kommen neben anorganischen Stoffen, wie beispielsweise Eisen- oder Wismutoxiden, vor allem grüne Chlorophthalocyanine (Pigmosol® Grün, Hostaphine® Grün), gelbes Solar Yellow BG 300 (Sandoz), blaues Chlorophthalocyanin (Hostaphine® Blau) oder Cosmenyl® Blau in Frage.

Anionische Polymere

5

10

15

20

25

30

35

40

45

50

[0042] Die anionische Polymere haben die Aufgabe, mit den Chitosanen Membranen zu bilden. Für diesen Zweck eignen sich vorzugsweise Salze der Alginsäure. Bei der Alginsäure handelt es sich um ein Gemisch carboxylgruppenhaltiger Polysaccharide mit folgendem idealisierten Monomerbaustein:

[0043] Das durchschnittliche Molekulargewicht der Alginsäuren bzw. der Alginate liegt im Bereich von 150.000 bis 250.000. Dabei sind als Salze der Alginsäure sowohl deren vollständige als auch deren partiellen Neutralisationsprodukte zu verstehen, insbesondere die Alkalisalze und hierunter vorzugsweise das Natriumalginat ("Algin") sowie die Ammonium- und Erdalkalisalze, besonders bevorzugt sind Mischalginate, wie z.B. Natrium/Magnesium- oder Natrium/Calciumalginate. In einer alternativen Ausführungsform der Erfindung kommen für diesen Zweck jedoch auch anionische Chitosanderivate, wie z.B. Carboxylierungs- und vor altem Succinylierungsprodukte in Frage, wie sie beispielsweise in der deutschen Patentschrift **DE 3713099 C2** (L'Oréal) sowie der deutschen Patentanmeldung **DE 19604180**

A1 (Henkel) beschrieben werden.

Herstellverfahren

20

25

30

35

40

45

50

- [0044] Zur Herstellung der neuen Mikrokapseln stellt man üblicherweise eine 1 bis 10, vorzugsweise 2 bis 5 Gew-%ige wäßrige Lösung des Gelbildners, vorzugsweise des Agar-Agars her und erhitzt diese unter Rückfluß. In der Siedehitze, vorzugsweise bei 80 bis 100°C, wird eine zweite wäßrige Lösung zugegeben, welche das Chitosan in Mengen von 0,1 bis 2, vorzugsweise 0,25 bis 0,5 Gew.-% und den Wirkstoff in Mengen von 0,1 bis 25 und insbesondere 0,25 bis 10 Gew.-% enthält; diese Mischung wird als Matrix bezeichnet. Die Beladung der Mikrokapseln mit Wirkstoffen kann daher ebenfalls 0,1 bis 25 Gew.-% bezogen auf das Kapselgewicht betragen. Falls gewünscht, können zu diesem Zeitpunkt zur Viskositätseinstellung auch wasserunlösliche Bestandteile, beispielsweise anorganische Pigmente zugegeben werden, wobei man diese in der Regel in Form von wäßrigen oder wäßrig/alkoholischen Dispersionen zusetzt. Zur Emulgierung bzw. Dispergierung der Wirkstoffe kann es ferner von Nutzen sein, der Matrix Emulgatoren und/oder Lösungsvermittler hinzuzugeben.
- [0045] Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
 - Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffalomen im Alkylrest;
 - Alkyl- und/oder Alkenyloligoglykoside mit 8 bis 22 Kohlenstoffatomen im Alk(en)ylrest und deren ethoxylierte Analoga;
 - > Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
 - Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
 - > Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
 - Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polyethylenglycol (Molekulargewicht 400 bis 5000). Trimethylolpropan, Pentaerythrit, Zuckeralkoholen (z.B. Sorbit), Alkylglucosiden (z.B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Polyglucosiden (z.B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid.
 - > Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß **DE 1165574 PS** und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin.
 - > Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
 - > Wollwachsalkohole;
 - > Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate:
 - > Polyalkylenglycole sowie
 - Glycerincarbonat.
 - [0046] Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. C_{12/18}-Fettsäuremono- und diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus **DE 2024051 PS** als Rückfettungsmittel für kosmetische Zubereitungen bekannt.
 - [0047] Alkyl- und/oder Alkenyloligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 Kohlenstoffatomen. Bezüglich des Glycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
 - [0048] Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonoglycerid, Hydroxystearinsäurediglycerid, Isostearinsäurediglycerid, Ölsäuremonoglycerid, Ölsäurediglycerid, Ricinolsäuremonoglycerid, Linolsäuremonoglycerid, Linolsäuremonoglycerid, Linolensäuremonoglycerid, Linolensäuremonoglycerid, Erucasäurediglycerid, Erucasäurediglycerid, Kpfelsäuremonoglycerid, Apfelsäuremonoglycerid, Apfelsäuremonoglycerid, Sowie deren

technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Partialglyceride.

[0049] Als Sorbitanester kommen Sorbitanmonoisostearat. Sorbitansesquiisostearat, Sorbitandiisostearat, Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitanmonoisostearat, Sorbitanmonoisostearat, Sorbitanmonoisostearat, Sorbitanmonoisomoleat, Sorbitanmonoisomoleat, Sorbitanmonoisomoleat, Sorbitansesquiiricinoleat, Sorbitandiiricinoleat, Sorbitanmonoisomoleat, Sorbitanmonoisomol

[0050] Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydroxystearate (Dehymuls® PGPH), Polyglycerin-3-Diisostearate (Lameform® TGI), Polyglyceryl-4 Isostearate (Isolan® GI 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostearate (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) und Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Isostearate sowie deren Gemische.

[0051] Beispiele für weitere geeignete **Polyolester** sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di- und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Talgfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behensäure und dergleichen.

[0052] Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylaminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethylammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C_{8/18}-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO₃H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C_{12/18}-Acylsarcosin.

[0053] Schließlich kommen auch **Kationtenside** als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquatemierte Difettsäuretriethanolaminester-Salze, besonders bevorzugt sind.

[0054] Als Lösungsvermittler oder **Hydrotrope** eignen sich beispielsweise Ethanol, Isopropylalkohol, oder Polyole eingesetzt werden. Letztere besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktionelle Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind

Glycerin;

10

15

20

25

30

35

45

50

55

- Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
- > technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
- > Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
- > Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methylund Butylglucosid:
- > Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
- Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
- Aminozucker, wie beispielsweise Glucamin;
- > Dialkoholamine, wie Diethanolamin oder 2-Amino-1,3-propandiol.

[0055] Die Konzentration der Emulgatoren kann bezogen auf die Wirkstoffe 1 bis 20 und vorzugsweise 5 bis 10

Gew.-% betragen. Die Menge an Lösungsvermittler richtet sich ausschließlich nach der Wasserlöslichkeit bzw. Wasserdispergierbarkeit der Wirkstoffe.

[0056] Nach der Herstellung der Matrix aus Gelbildner, Chitosan und Wirkstoff erfolgt die eigentliche Verkapselung, d.h. die Ausbildung der Hüllmembran durch Inkontaktbringen mit den anionischen Polymeren. Hierzu reicht es zunächst aus, die Lösung bei einer Temperatur im Bereich von 40 bis 100, vorzugsweise 50 bis 60 °C in eine wäßrige, etwa 0,1 bis 3 und vorzugsweise 0,25 bis 0,5 Gew.-%ige wäßrige Lösung des Anionpolymers, vorzugsweise des Alginats, unter starkem Rühren einzutropfen. Nach Filtration werden Mikrokapseln erhalten, welche im Mittel einen Durchmesser im Bereich von 3 bis 5 mm aufweisen. Es empfiehlt sich, die Kapseln zu sieben, um eine möglichst gleichmäßige Größenverteilung sicherzustellen. Die so erhaltenen Mikrokapseln können im herstellungsbedingten Rahmen eine beliebige Form aufweisen, sie sind jedoch bevorzugt näherungsweise kugelförmig.

Kosmetische und/oder pharmazeutische Zubereitungen

5

10

15

20

25

30

35

[0057] Die Mikrokapseln der vorliegenden Erfindung dienen zur Herstellung oberflächenaktiver Mittel, in einer ersten Ausführungsform insbesondere zur Herstellung von kosmetischen und/oder pharmazeutischen Zubereitungen, als da sind Haarshampoos, Haarlotionen, Schaumbäder, Duschbäder, Cremes, Gele, Lotionen, alkoholische und wäßrig/alkoholische Lösungen, Emulsionen, Wachs/Fett-Massen, Stiftpräparaten, Pudern oder Salben. Diese Mittel können neben den Mikrokapseln, die in Mengen von 0,1 bis 99 und vorzugsweise 1 bis 5 Gew.-% - bezogen auf die Zubereitungen - enthalten sein können, als weitere Hilfs- und Zusatzstoffe milde Tenside, Ölkörper, Emulgatoren, Überfettungsmittel, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Polymere, Siliconverbindungen, Fette, Wachse, Stabilisatoren, biogene Wirkstoffe, Deodorantien, Antitranspirantien, Antischuppenmittel, Filmbildner, Quellmittel, UV-Licht-schutzfaktoren, Antioxidantien, Hydrotrope, Konservierungsmittel, Insektenrepellentien, Selbstbräuner, Solubilisatoren, Parfümöle, Farbstoffe und dergleichen aufweisen. Eine Reihe dieser Hilfsstoffe sind schon in den vorherigen Kapiteln näher erläutert worden, so daß an dieser Stelle auf eine Widerholung verzichtet wird.

[0058] Typische Beispiele für geeignete milde, d.h. besonders hautverträgliche **Tenside** sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, α-Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Alkylamidobetaine und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen. [0059] Als **Überfettungsmittel** können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.

[0060] Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten.

[0061] Geeignete Verdickungsmittel sind beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopole® von Goodrich oder Synthalene® von Sigma), Polyacrylamide, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.

[0062] Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quatemierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quatemierte VinylpyrrolidonNinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quatemierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L/Grūnau), quatemierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z.B. Amidomethicone, Copolymere der Adipinsäure und Dimethylaminohydroxypropyldiethylentriamin (Cartaretine @/Sandoz), Copolymere der Acrylsäure mit Dimethyldiallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, wie z.B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quatemiertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis-Dimethylamino-1,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-16 der Firma Celanese, quatemierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 der Firma Miranol.

[0063] Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylacetat/Crotonsäure-Copolymere, Vinylacetat/Butylmaleat/ Isobomylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und deren Ester, unvernetzte und mit Polyolen ver-

netzte Polyacrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/ Acrylat-Copolymere, Octylacrylamid/Methylmethacrylat/tert.Butylaminoethylmethacrylat/2-Hydroxyproylmethacrylat-Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/ Dimethylaminoethylmethacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage.

[0064] Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm.Toil. 91, 27 (1976).

[0065] Typische Beispiele für **Fette** sind Glyceride, als **Wachse** kommen u.a. natürliche Wachse, wie z.B. Candelillawachs, Camaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse, chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Polyethylengtycolwachse in Frage.

[0066] Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch übliche Kalt - oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperaturmethode.

Detergenszubereitungen

15

20

35

40

45

[0067] In einer weiteren Ausführungsform der Erfindung dienen die Mikrokapseln zur Herstellung von Detergentien, spezielt Wasch-, Spül-, Reinigungs- und Avivagemitteln, in denen sie ebenfalls in Mengen von 0,1 bis 99 und vorzugsweise 1 bis 5 Gew.-% - bezogen auf die Zubereitungen - enthalten sein können; vorzugsweise handelt es sich dabei um wäßrige oder wäßrig-alkoholische Mittel. Solche Flüssigwaschmittel können einen nicht wäßrigen Anteil im Bereich von 5 bis 50 und vorzugsweise 15 bis 35 Gew.-% aufweisen. Im einfachsten Fall handelt es sich um wäßrige Lösungen der genannten Tensidmischungen. Bei den Flüssigwaschmitteln kann es sich aber auch um im wesentlichen wasserfreie Mittel handeln. Dabei bedeutet "im wesentlichen wasserfrei", daß das Mittel vorzugsweise kein freies, nicht als Kristallwasser oder in vergleichbarer Form gebundenes Wasser enthält. In einigen Fällen sind geringe Menge an freiem Wasser tolerierbar, insbesondere in Mengen bis zu 5 Gew.-%. Die Flüssigwaschmittel können neben den genannten Tensiden noch weitere typische Inhaltsstoffe, wie beispielsweise Lösungsmittel. Hydrotrope, Bleichmittel, Builder, Viskositätsregulatoren, Enzyme, Enzymstabilisatoren, optische Aufheller, Soil repellants, Schauminhibitoren, anorganische Salze sowie Duft- und Farbstoffe aufweisen, unter der Voraussetzung, daß diese im wäßrigen Milieu hinreichend lagerstabil sind. Auch hier wurden eine Reihe der genannten Hilfsstoffe bereits in vorhergehenden Kapiteln abgehandelt, so daß sich eine Wiederholung erübrigt.

[0068] Als organische Lösungsmittel kommen beispielsweise mono- und/oder polyfunktionelle Alkohole mit 1 bis 6 Kohlenstoffatomen, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in Frage. Bevorzugte Alkohole sind Ethanol, 1,2-Propandiol, Glycerin sowie deren Gemische. Die Mittel enthalten vorzugsweise 2 bis 20 Gew.-% und insbesondere 5 bis 15 Gew.-% Ethanol oder ein beliebiges Gemisch aus Ethanol und 1,2-Propandiol oder insbesondere aus Ethanol und Glycerin. Ebenso ist es möglich, daß die Zubereitungen entweder zusätzlich zu den mono- und/oder polyfunktionellen Alkoholen mit 1 bis 6 Kohlenstoffatomen oder allein Polyethylenglykol mit einer relativen Molekulmasse zwischen 200 und 2000, vorzugsweise bis 600 in Mengen von 2 bis 17 Gew.-% enthalten. Als Hydrotrope können beispielsweise Toluolsulfonat, Xylolsulfonat, Cumolsulfonat oder deren Mischungen eingesetzt werden.

[0069] Geeignete **Builder** sind Ethylendiamintetraessigsäure, Nitrilotriessigsäure, Citronensäure sowie anorganische Phosphonsäuren, wie z.B. die neutral reagierenden Natriumsalze von 1-Hydroxyethan-1,1,-diphosphonat, die in Mengen von 0,5 bis 5, vorzugsweise 1 bis 2 Gew.-% zugegen sein können.

[0070] Als Viskositätsregulatoren können beispielsweise gehärtetes Rizinusöl, Salze von langkettigen Fettsäuren, die vorzugsweise in Mengen von 0 bis 5 Gew.-% und insbesondere in Mengen von 0,5 bis 2 Gew.-%, beispielsweise Natrium-, Kalium-, Aluminium-, Magnesium- und Titanstearate oder die Natrium- und/oder Kaliumsalze der Behensäure, sowie weitere polymere Verbindungen eingesetzt werden. Zu den letzteren gehören bevorzugt Polyvinylpyrrolidon, Urethane und die Salze polymerer Polycarboxylate, beispielsweise homopolymerer oder copolymerer Polyacrylate, Polymethacrylate und insbesondere Copolymere der Acrylsäure mit Maleinsäure, vorzugsweise solche aus 50 % bis 10 % Maleinsäure. Die relative Molekülmasse der Homopolymeren liegt im allgemeinen zwischen 1000 und 100000, die der Copolymeren zwischen 2000 und 200000, vorzugsweise zwischen 50000 bis 120000, bezogen auf die freie Säure. Insbesondere sind auch wasserlösliche Polyacrylate geeignet, die beispielsweise mit etwa 1 % eines Polyalylethers der Sucrose quervernetzt sind und die eine relative Molekülmasse oberhalb einer Million besitzen. Beispiele hierfür sind die unter dem Namen Carbopol® 940 und 941 erhältlichen Polymere mit verdickender Wirkung. Die quer-

vernetzten Polyacrylate werden vorzugsweise in Mengen nicht über 1 Gew.-%, vorzugsweise in Mengen von 0,2 bis 0,7 Gew.-% eingesetzt. Die Mittel können zusätzlich etwa 5 bis 20 Gew.-% eines partiell veresterten Copolymerisats enthalten, wie es in der europäischen Patentanmeldung EP 0367049 A beschrieben ist. Diese partiell veresterten Polymere werden durch Copolymerisation von (a) mindestens einem C_4 - C_{28} -Olefin oder Mischungen aus mindestens einem C_4 - C_{28} -Olefin mit bis zu 20 Mol-% C_1 - C_{28} -Alkylvinylethem und (b) ethylenisch ungesättigten Dicarbonsäureanhydriden mit 4 bis 8 Kohlenstoffatomen im Molverhältnis 1:1 zu Copolymerisaten mit K-Werten von 6 bis 100 und anschließende partielle Veresterung der Copolymerisate mit Umsetzungsprodukten wie C₁-C₁₃-Alkoholen, C₈-C₂₂-Fettsäuren, C₁-C₁₂-Alkylphenolen, sekundären C₂-C₃₀-Aminen oder deren Mischungen mit mindestens einem C₂-C₄-Alkylenoxid oder Tetrahydrofuran sowie Hydrolyse der Anhydridgruppen der Copolymerisate zu Carboxylgruppen erhalten, wobei die partielle Veresterung der Copolymerisate soweit geführt wird, daß 5 bis 50 % der Carboxylgruppen der Copolymerisate verestert sind. Bevorzugte Copolymerisate enthalten als ethylenisch ungesättigtes Dicarbonsäureanhydrid Maleinsäureanhydrid. Die partiell veresterten Copolymerisate können entweder in Form der freien Säure oder vorzugsweise in partiell oder vollständig neutralisierter Form vorliegen. Vorteilhafterweise werden die Copolymerisate in Form einer wäßrigen Lösung, insbesondere in Form einer 40 bis. 50 Gew.-%igen Lösung eingesetzt. Die Copolymerisate leisten nicht nur einen Beitrag zur Primär- und Sekundärwaschleistung des flüssigen Wasch- und Reinigungsmittels, sondern bewirken auch eine gewünschte Viskositätsemiedrigung der konzentrierten flüssigen Waschmittel. Durch den Einsatz dieser partiell veresterten Copolymerisate, werden konzentrierte wäßrige Flüssigwaschmittel erhalten, die unter dem alleinigen Einfluß der Schwerkraft und ohne Einwirkung sonstiger Scherkräfte fließfähig sind. Vorzugsweise beinhalten die konzentrierten wäßrigen Flüssigwaschmittel partiell veresterte Copolymerisate in Mengen von 5 bis 15 Gew.-% und insbesondere in Mengen von 8 bis 12 Gew.-%.

[0071]. Als schmutzabweisende Polymere ("soil repellants") kommen solche Stoffe in Frage, die vorzugsweise Ethylenterephthalat- und/oder Polyethylenglycolterephthalatgruppen enthalten, wobei das Molverhältnis Ethylenterephthalat zu Polyethylenglycolterephthalat im Bereich von 50:50 bis 90:10 liegen kann. Das Molekulargewicht der verknüpfenden Polyethylenglycoleinheiten liegt insbesondere im Bereich von 750 bis 5000, d.h., der Ethoxylierungsgrad der Polyethylenglycolgruppenhaltigen Polymere kann ca. 15 bis 100 betragen. Die Polymere zeichnen sich durch ein durchschnittliches Molekulargewicht von etwa 5000 bis 200.000 aus und können eine Block-, vorzugsweise aber eine Random-Struktur aufweisen. Bevorzugte Polymere sind solche mit Molverhältnissen Ethylenterephthalat/Polyethylenglycolterephthalat von etwa 65: 35 bis etwa 90: 10, vorzugsweise von etwa 70: 30 bis 80: 20. Weiterhin bevorzugt sind solche Polymere, die verknüpfende Polyethylenglycoleinheiten mit einem Molekulargewicht von 750 bis 5000, vorzugsweise von 1000 bis etwa 3000 und ein Molekulargewicht der Polymere von etwa 10.000 bis etwa 50.000 aufweisen. Beispiele für handelsübliche Polymere sind die Produkte Milease® T (ICI) oder Repelotex® SRP 3 (Rhöne-Poulenc).

[0072] Beim Einsatz in maschinellen Waschverfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Hierfür eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C₁₈-C₂₄-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, z.B. solche aus Silikonen Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere silikon- oder paraffinhaltige Schauminhibitoren, an eine granuläre, in Wasser lösliche bzw. dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Misschungen aus Paraffinen und Bistearylethylendiamiden bevorzugt.

[0073] Der pH-Wert der Mittel beträgt im allgemeinen 7 bis 10,5, vorzugsweise 7.bis 9,5 und insbesondere 7 bis 8,5. Die Einstellung höherer pH-Werte, beispielsweise oberhalb von 9, kann durch den Einsatz geringer Mengen an Natronlauge oder an alkalischen Salzen wie Natriumcarbonat oder Natriumsilicat erfolgen. Die Flüssigwaschmittel weisen im allgemeinen Viskositäten zwischen 150 und 10000 mPas (Brookfield-Viskosimeter, Spindel 1, 20 Umdrehungen pro Minute, 20°C) auf. Dabei sind bei den im wesentlichen wasserfreien Mitteln Viskositäten zwischen 150 und 5000 mPas bevorzugt. Die Viskosität der wäßrigen Mittel liegt vorzugsweise unter 2000 mPas und liegt insbesondere zwischen 150 und 1000 mPas.

[0074] In einer letzten Ausführungsform eignen sich beispielsweise mit Aromen beladene Mikrokapseln zur Herstellung von Lebensmitteln.

Beispiele

15

20

25

30

35

Beispiel 1.

[0075] In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Talk in ad 100 g Wasser und dann mit einer Zubereitung

von 25 g Chitosan (Hydagen® DCMF, 1 Gew.-%ig in Glycolsäure, Henkel KGaA, Düsseldorf/FRG), 10 g Paraffinöl, 0,5 g Phenonip® (Konservierungsmittelmischung enthaltend Phenoxyethanol und Parabene) und 0,5 g Polysorbat-20 (Tween® 20, ICI) in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 60 °C erwärmt und in eine 0,5 Gew.%ige Natriumalginatlösung getropft. Zum Erhalt von Mikrokapseln gleichen Durchmessers wurden die Zubereitungen anschließend gesiebt. Die Mikrokapseln erwiesen sich in Gegenwart von Tensiden über eine Lagerung von 4 Wochen bei 40 °C beständig.

Beispiel 2.

10

15

20

25

30

35

45

50

[0076] In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Talk in ad 100 g Wasser und dann mit einer Zubereitung von 25 g Chitosan (Hydagen® DCMF, 1 Gew.-%ig in Glycolsäure, Henkel KGaA, Düsseldorf/FRG), 10 g Squalan, 0,5 g Phenonip® und 0,5 g Ceteareth-20 in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 60 °C erwarmt und in eine 0,5 Gew.-%ige Natriumalginatlösung getropft. Zum Erhalt von Mikrokapseln gleichen Durchmessers wurden die Zubereitungen anschließend gesiebt. Die Mikrokapseln erwiesen sich in Gegenwart von Tensiden über eine Lagerung von 4 Wochen bei 40 °C beständig.

Beispiel 3.

[0077] In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunachst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Eisen(II) oxid in ad 100 g Wasser und dann mit einer Zubereitung von 25 g Chitosan (Hydagen® DCMF, 1 Gew. %ig in Glycolsäure, Henkel KGaA, Düsseldorf/FRG), 10 g Panthenol, 0,5 g Phenonip® in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 60 °C erwärmt und in eine 0,5 Gew. %ige Natriumalginatlösung getropft. Zum Erhalt von Mikrokapseln gleichen Durchmessers wurden die Zubereitungen anschließend gesiebt.

Beispiel 4.

[0078] In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Talk in ad 100 g Wasser und dann mit einer Zubereitung von 25 g Chitosan (Hydagen® DCMF, 1 Gew.-%ig in Glycolsäure, Henkel KGaA, Düsseldorf/FRG), 10 g β-Carotin, 0,5 g Phenonip® in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 60 °C erwärmt und in eine 0,5 Gew.-%ige Natriumalginatiösung getropft. Zum Erhalt von Mikrokapseln gleichen Durchmessers wurden die Zubereitungen anschließend gesiebt. Die Mikrokapseln erwiesen sich in Gegenwart von Tensiden über eine Lagerung von 4-Wochen bei 40 °C beständig.

40 Beispiel 5.

[0079] In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunachst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Eisen(II) oxid in ad 100 g Wasser und dann mit einer Zubereitung von 25 g Chitosan (Hydagen® DCMF, 1 Gew.-%ig in Glycolsäure, Henkel KGaA, Düsseldorf/FRG), 10 g Tocopherolacetat, 0,5 g Phenonip® in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 60 °C erwärmt und in eine 0,5 Gew.-%ige Natriumalginatlösung getropft. Zum Erhalt von Mikrokapseln gleichen Durchmessers wurden die Zubereitungen anschließend gesiebt. Die Mikrokapseln erwiesen sich in Gegenwart von Tensiden über eine Lagerung von 4 Wochen bei 40 °C beständig.

Beispiel 6.

[0080] In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Eisen(II)oxid in ad 100 g Wasser und dann mit einer Zubereitung von 25 g Chitosan (Hydagen® DCMF, 1 Gew -%ig in Glycolsäure, Henkel KGaA, Düsseldorf/FRG); 10 g Ascorbinsäure, 0,5 g Phenonip® in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 60 °C erwärmt und in eine 0,5 Gew.%ige Natriumalginatlösung getropft. Zum Erhalt von Mikrokapseln gleichen Durchmessers wurden

die Zubereitungen anschließend gesiebt. Die Mikrokapseln erwiesen sich in Gegenwart von Tensiden über eine Lagerung von 4 Wochen bei 40 °C beständig.

Beispi 17.

5

15

25

35

40

45

50

55

1

[0081] In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Eisen(II)oxid in ad 100 g Wasser und dann mit einer Zubereitung von 25 g Chitosan (Hydagen® DCMF, 1 Gew.-%ig in Glycolsäure, Henkel KGaA, Düsseldorf/FRG), 10 g Kojisäure, 0,5 g Phenonip® in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 60 °C erwärmt und in eine 0,5 Gew.%ige Natriumalginatlösung getropft. Zum Erhalt von Mikrokapseln gleichen Durchmessers wurden die Zubereitungen anschließend gesiebt. Die Mikrokapseln erwiesen sich in Gegenwart von Tensiden über eine Lagerung von 4 Wochen bei 40 °C beständig.

Beispiel 8.

[0082] In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Eisen(II)oxid in ad 100 g Wasser und dann mit einer Zubereitung von 25 g Chitosan (Hydagen® DCMF, 1 Gew.-%ig in Glycolsäure, Henkel KGaA, Düsseldorf/FRG), 10 g Dehyquart F® 75 (Distearoylethyl hydroxyethylmonium Methosulfate and Cetearyl Alcohol, Henkel KGaA), 0,5 g Phenonip® in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 60 °C erwärmt und in eine 0,5 Gew.-%ige Natriumalginatlösung getropft. Zum Erhalt von Mikrokapseln gleichen Durchmessers wurden die Zubereitungen anschließend gesiebt. Die Mikrokapseln erwiesen sich in Gegenwart von Tensiden über eine Lagerung von 4 Wöchen bei 40 °C beständig.

Beispiel 9.

[0083] In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Gelatine in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Talk in ad 100 g Wasser und dann mit einer Zubereitung von 25 g Chitosan (Hydagen® DCMF, 1 Gew.-%ig in Glycolsäure, Henkel KGaA, Düsseldorf/FRG), 10 g Dehyquart, F® 75 (Distearoylethyl Hydroxyethylmonium Methosulfate and Cetearyl Alcohol, Henkel KGaA), 0,5 g Phenonip® in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 60 °C erwärmt und in eine 0,5 Gew.-%ige Lösung von Hydagen® SCD (succinyliertes Chitosan, Henkel KGaA) getropft. Zum Erhalt von Mikrokapseln gleichen Durchmessers wurden die Zubereitungen anschließend gesiebt. Die Mikrokapseln erwiesen sich in Gegenwart von Tensiden über eine Lagerung von 4 Wochen bei 40 °C beständig.

[0084] Formulierungsbeispiele sind der nachstehenden Tabelle 1 zu entnehmen.

<u>Tabelle 1</u>
Kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%)

Zusammensetzung (INCI)	M	2.				6		18	¥9.	10
Texapon® NSO Sodium Laureth Sulfate		•	-	•	•	•	38,0	38,0	25,0	•
Texapon® SB 3 Disodium Laureth Sutlosuccinate	-	-	-	-	-	٠		-	10,0	•
Plantacare® 818 Coco Glucosides	•	-	-	-	-	٠	7,0	7,0	6,0	-
Plantacare® PS 10 Sodium Laureth Sulfate (and) Coco Glucosides	-	-	-	-	-	-	-	-	-	-16,0
Dehyton® PK 45 Cocamidopropyl Betaine	•	•	-	-	•	•	٠	-	10,0	-
Dehyquart® A Cetrimonium Chloride	2,0	2,0	2,0	2,0	4,0	4,0	•	•	•	-
Dehyquart L® 80 Dicoccylmethylethoxymonium Methosulfate (and) Propylenglycol	1,2	1,2	1,2	1,2	0,6	0,6	•	-	-	•
Eumulgin® B2 Ceteareth-20	8,0	0,8	-	0,8	-	1,0	-	-	• •	•
Eumulgin® VL 75 Lauryl Glucoside (and) Polyglyceryl-2 Polyfrydroxystearate (and) Glycerin	-	33 -	0,8	-	0.8	•	-	-	-	-
Lanette® O Cetearyl Alcohol	2,5	2,5	2,5	2,5	3,0	2,5		•	•	<u> </u>
Cutina® GMS Glyceryl Stearate	0,5	0,5	0,5	0,5	0,5	1,0	-	-	•	-
Cetiol® HE PEG-7 Glyceryl Coccate	1,0	•	-	-	-	•	-	-	1,0	
Cetiol® PGL Hexyldecanol (and) Hexyldecyl Laurate	•	1,0	-	-	1,0	•	-	•	-	-
Cetiol® V Decyl Oleate	-	-	-	1,0	-	-	, -	-	-	
Eutanol® G Octytdodecanol	-	•	1,0	-	-	1,0	•	-	·	·
Nutrilan® Keratin W Hydrolyzed Keratin	•	•	- `	2,0		-	-	-	•	•
Lames oft® LMG Glyceryl Laurate (and) Potassium Coccyl Hydrolyzed Collagen	•	-	-	•		•	3,0	2,0	4,0	-
Euperlan® PK 3000 AM Glycol Distaarate (and) Laureth-4 (and) Cocamidopropyl Betaine	·	-	-	-	-	•	-	3,0	5,0	5,0
Generol® 122 N Soja Sterol		-	-	•	1,0	1,0	•	-		-
Panthenol-Mikrokapseln gemäß Beispiel 3 Hydagen® CMF	1,0	1,0	1,0 1,0	1,0	1,0	1,0 1,0	1,0	1,0 1,0	1,0	1,0
Chitosan Copherol® 1250 Tocopherol Acetate		•	0,1	0,1	-	•		•	•	•
Artypon® F Laureth-2	-	-	•	-	-	•	3,0	3,0	1,0	·
Sodium Chloride		·	-	-	-	-		1,5		1,5

(1-4) Haarspülung, (5-6) Haarkur, (7-8) Duschbad, (9) Duschgel, (10) Waschlotion

<u>Tabelle 1</u> Kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%) - Fortsetzung

Zistämmensetzung (INCI) Z		12	13	144					23	200
Texapon® NSO Sodium Laureth Sulfate	20,0	20,0	12,4	-	25,0	11,0	-		-	-
Texapon® K 14 S Sodium Myreth Sulfale		-	-		-	·	·	·	11,0	23,0
Texapon® SB 3 Disodium Laureth Sulfosuccinate	•	•	-	-	-	7,0			·	-
Plantacare® 818 Coco Glucosides	5,0	5,0	4,0	-	-	-	-	-	6,0	4,0
Plantacare® 2000 Decyl Glucoside	-	-	-	-	5,0	4,0	-	·	-	
Plantacare® PS 10 Sodium Laureth Sulfate (and) Coco Glucosides		-	-	40,0	-	-	16,0	17,0	•	-
Dehyton® PK 45 Cocamidopropyl Betaine	20,0	20,0	. 2	-	8,0	·	•	•	•	7,0
Eumulgin® B1 Ceteareth-12	•		-	-	1,0	•			-	-
Eumulgin® B2 Ceteareth-20	-	-	· •	1,0	-	-	-	•	.•	-
Lameform® TGI Polyglycaryl-3 Isostearate	-	-	-	4,0	-	-	-	-	-	-
Dehymuls® PGPH Potyglyceryl-2 Dipolyhydroxystearate	-	-	1,0	-	-	-	-	-	-	•
Monomuls® 90-L 12 Glyceryl Laurate		-	-	-	-	•	-	-	1,0	1,0
Cetiol® HE PEG-7 Glyceryl Coccate	•	0,2	-	-	-	•	-	-	•	•
Eutanol® G Octyldodecanol	٠	-	-	3,0	-	-	-	-	-	- .
Nutrilan® Keratin W Hydrolyzed Keratin	-	-	-	-	-	-	-	-	2,0	2,0
Nutritan® I Hydrolyzed Cotagen	1,0		`-	-	-	2,0	-	2,0	-	-
Lames oft ® LMG Glyceryl Laurate (and) Potassium Coccyl Hydrolyzed Collagen	-	•	- 1	-	-	-	-	•	1,0	•
Larnes oft ® 156 hydrogenated Tallow Gyceride (and) Potassium Cocoyi Hydrolyzed Collagen		-	-		-		•		·	5,0
Gluadin® WK Godium Coccyl Hydrolyzed Wheat Protein	1,0	1,5	4,0	1,0	3,0	1,0	2,0	2,0	2,0	-
Sycol Distearate (and) Laureth-4 (and) Cocamidopropyl Betaine	5,0	3,0	4,0		-	-	-	3,0	3,0	
Arlypon® F .aureth-2	2,6	1,6	-	1,0	1,5		-			
Panthenol-Mikrokapseln gemäß Beispiel 3 Hydagen® CMF	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Chitosan	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Glycerin (86 Gew%ig)	\dashv	5.0	-			1,6	2,0	2,2	3,0	3,0

(11-14) Duschbad "Two-in-One), (15-20) Shampoo

10.

<u>Tabelle 1</u>
Kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%) - Fortsetzung 2

Zusammensetzung (INCT)	21	22	23.	24	25 .	26	71	28	29	30
Texapon® NSO Sodium Laureth Sulfate	-	30,0	30,0	-	25,0	-	-	-	-	-
Plantacare® 818 Coc Glucosides	-	10,0	-	-	20,0	-	-	-	-	٠
Plantacare® PS 10	22,0	-	5,0	22,0	-	•	-	-	-	·
Sodium Laureth Sulfate (and) Coco Glucosides Dehyton® PK 45	15,0	10,0	15,0	15,0	20,0	-	-	-	-	-
Cocamidopropyl Betaine Emulgade® SE Glycaryl Sterate (and) Ceteareth 12/20 (and) Cetearyl Alcohol (and) Cetyl Palmitate	-	-	-	•	-	5,0	5,0	4,0	• /	•
Eumulgin® B1 Ceteareth-12			-	-	-	-	-	1,0	-	
Lameform® TGI Polyglyceryl-3 Isostearate	-	-		-	-	•	•		4,0	-
Dehymuls® PGPH Polyglyceryl-2 Dipolyhydroxystearate	•	•	•	•	-	-	•	-	- '	4,0
Monomuis® 90-O 18 Glyceryl Oleate	-	-	•	-	-	•	-	-	2,0	-
Catiol® HE PEG-7 Glyceryl Coccale	2,0	.	-	2,0	5,0	-	-	-	-	2,0
Cetiol® OE Dicaprylyl Ether	-		•	•	-	-		-	5,0	6,0
Cetiol® PGL Hexyldecanol (and) Hexyldecyl Laurate	-	•	•	-	-	-	-	3,0	10,0	9,0
Cetiol® SN Cetearyl Isononanoate		-	-	-	-	3,0	3,0	,-	-	-
Cetiol® V	-	-		-	-	3,0	3,0	-	•	-
Decyl Oleate Myritol® 318 Cocc Caprylate Caprate	·	-	-	•	-	•,	-	3,0	5,0	5,0
Bees Wax	-	-	-	-	-	-			7,0	5,0
Nutrilan® Elastin E20 Hydrolyzed Elastin		*.	-	• .	-	2,0	•	-		
Nutrilan® I-50 Hydrolyzed Collagen	-	-		·	2,0	-	2,0	•	· •	
Gluadin® AGP Hydrolyzed Wheat Gluten	0,5	0,5	0,5	-	-	-	-	0,5	. -	_
Gluadin® WK Sodium Coccyl Hydrolyzed Wheat Protein	2,0	2,0	2,0	2,0	5,0	-	•	•	0,5	0,5
Euperlan® PK 3000 AM Glycol Distearate (and) Laureth-4 (and) Cocamidopropyl Betaine	5,0	-	-	5,0		٠	•	•	•	
Arlypon® F Laureth-2	-:	•	-	-	•	•	-	•	•	•
Panthenol-Mikrokapseln gemäß Belspiel 3	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Hydagen® CMF Chitosan	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Magnesium Sulfate Hepta Hydrate Glycerin (86 Gew%ig)	-	-	-	-	-	3,0	3.0	5,0	1,0 5,0	1,0 3.0

(21-25) Schaumbad, (26) Softcreme, (27, 28) Feuchtigkeitsemulsion, (29, 30) Nachtcreme

<u>Tabelle 1</u>
Kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%) - Fortsetzung 3

Zusammensetzung (INCI)	3146	328	331	2	35 ≙	36	77	38	39	40%
Dehymuls® PGPH Polyglyceryi-2 Dipolythydroxystearate	4,0	3,0		5,0	-	-	-	-		-
Lameform® TGI Polyglyceryl-3 Disostearate	2,0	1,0	-	-	-	·	·	-		-
Emulgade® PL 68/50 Cetearyl Glucoside (and) Cetearyl Alcohol	-	-			4,0	-	-	-	3,0	-
Eurnulgin®B2 Ceteareth-20	-	-			-	-	·	2,0		·
Tegocare® PS Polyglyceryl-3 Meithylglucose Distearate		-	3,0	-	-	-	4,0	-	•	٠
Eumulgin VL 75 Polyglyceryi-2 Dipolythydroxystearate (and) Lauryi Giucoside (and) Glycerin	-	-	-	-	-	3,5	-	-	2,5	-
Bees Wax	3,0	2,0	5,0	2,0	-	-	-	-	-	-
Cutina® GMS Glyceryl Stearate		•	-	•	-	2,0	4,0	·	•	4,0
Lanette® O Cetearyt Alcohol	•	•	2,0	-	2,0	4,0	2,0	4,0	4,0	1,0
Antaron® V 216 PVP / Hexadecene Copolymer	-		•	-	•	3,0	•	•	-	2,0
Myritol® 818 Coccylycandes	5,0	,	10,0	-	8,0	6,0	6,0	-	5,0	5,0
Finsolv® TN C12/15 Alloyi Benzoate	·	6,0	•	2,0	-	7	3,0	-	. •	2,0
Cetiol® J 600 Oleyl Enucate	7,0	4,0	3,0	5,0	4,0	3,0	3,0	-	5,0	4,0
Cetiol® OE Dicaprytyl Ether	3,0	-	6,0	8,0	6,0	5,0	4,0	3,0	4,0	6,0
Mineral Oil Cetiol® PGL	•	4,0	-	4,0	-	2,0	-	1,0	•	•
Hexadecanol (and) Hexyldecyl Laurate	-	7,0	3,0	7,0	4,0	_		-	1,0	-
Bisabolol	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2
Panthenol-Mikrokapsein gemäß Beispiel 3	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1.0	1,0	1,0
Hydagen® CMF Chllosan	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Copherol ® F 1300 Tocopherol / Tocopheyl Acetate	0,5	1,0	1,0	2,0	1,0	1,0	1,0	2,0	0,5	2,0
Neo Heliopan® Hydro Sodium Phenylbenzimidazole Sulfonate	3,0	-	•	3,0	-	-	2,0	•	2,0	-
Neo Heliopan® 303 Octocrytene	· .	5,0	-	-	-	4,0	5,0	-	-	10,0
Neo Heliopan® BB Benzophenone-3	1,5	-	-	2,0	1,5	- 1	-	·	2,0	·
Neo Heliopan® E 1000 Isoamyt p-Methoxycinnamate	5,0	-	4,0	-	2,0	2,0	4,0	10,0	-	-
Neo Heliopan® AV Octyl Methoxycinnamate	4,0	-	4,0	3,0	2,0	3,0	4,0	-	10,0	2,0
Uvinul® T 150 Octyl Triazone	2,0	4,0	3,0	1,0	1,0	1,0	4,0	3,0	3,0	3,0
Zinc Oxide	_	6,0	6,0	- 1	4,0	·	-	- 1		5,0
Titanium Dioxide	•	-	\cdot		-	- 1	-	5,0		•
Glycerin (86 Gew%ig)	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0

⁽³¹⁾ W/O-Sonnenschutzcreme, (32-34) W/O-Sonnenschutzlotion, (35, 38, 40) O/W-Sonnenschutzlotion (36, 37, 39) O/W-Sonnenschutzcreme

Patentansprüche

5

20

25

30

35

40

50

- 1. Mikrokapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm, bestehend aus einer Hüllmembran und einer mindestens einen Wirkstoff enthaltenden Matrix, dadurch erhältlich, daß man
 - (a) aus Gelbildnem, Chitosanen und Wirkstoffen eine Matrix zubereitet und
 - (b) diese in wäßrige Lösungen anionischer Polymere eintropft.
- 2. Verfahren zur Herstellung von Mikrokapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm, bestehend aus einer Hüllmembran und einer mindestens einen Wirkstoff enthaltenden Matrix, bei dem man
 - (a) aus Gelbildnern, Chitosanen und Wirkstoffen eine Matrix zubereitet und
 - (b) diese in wäßrige Lösungen anionischer Polymere eintropft.
- Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man als Gelbildner Heteropolysaccharide oder Proteine einsetzt.
 - 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man als Heteropolysaccharide Agarosen, Agar-Agar, Pektine, Xanthane sowie deren Gemische einsetzt.
 - 5. Verlahren nach Anspruch 3, dadurch gekennzeichnet, daß man als Proteine Gelatine einsetzt.
 - Verfahren nach mindestens einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß man Chitosane einsetzt, die ein mittleres Molekulargewicht im Bereich von 10.000 bis 500.000 bzw. 800.000 bis 1.200.000 Dalton aufweison
 - 7. Verfahren nach mindestens einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß man Wirkstoffe einsetzt, die ausgewählt sind aus der Gruppe, die gebildet wird von Tensiden, kosmetischen Ölen, Periglanzwachsen, Stabilisatoren, biogenen Wirkstoffen, Deodorantien, Antitranspirantien, Antischuppenmitteln, UV-Lichtschutzfaktoren, Antioxidantien, Konservierungsmitteln, Insektenrepellentien, Selbstbräunern, Parfümölen, Aromastoffen, Bleichmitteln. Bleichaktivatoren, Enzymen, Vergrauungsinhibitoren, optischen Aufhellem und Farbstoffen.
 - 8. Verfahren nach mindestens einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß man als anionische Polymere Salze der Alginsäure oder anionische Chitosanderivate einsetzt.
 - 9. Verfahren nach mindestens einem der Ansprüche 2 bis 8; dadurch gekennzeichnet, daß man die Mikrokapseln bezogen auf das Kapselgewicht mit 0,1 bis 25 Gew.-% Wirkstoff belädt.
 - 10. Verfahren nach mindestens einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß man bei der Herstellung der Matrix Emulgatoren und/oder Viskositätsregulatoren mitverwendet.
 - 11. Verlahren nach mindestens einem der Ansprüche 2 bis 10, dadurch gekennzeichnet, daß man die Matrix bei Temperaturen im Bereich von 40 bis 100 °C herstellt.
- 45 12. Verfahren nach mindestens einem der Ansprüche 2 bis 11, dadurch gekennzeichnet, daß man die Matrix zu 0,1 bis 3 Gew.-%igen wäßrigen Lösungen der anionischen Polymere zutropft.
 - 13. Verlahren nach mindestens einem der Ansprüche 2 bis 12, dadurch gekennzeichnet, daß man die Matrix bei Temperaturen im Bereich von 40 bis 100 °C zu den wäßrigen Lösungen der anionischen Polymere zutropft.
 - 14. Verfahren nach mindestens einem der Ansprüche 2 bis 13, dadurch gekennzeichnet, daß man die Matrix in solche Mengen anionischer Polymere eintropft, daß der Anteil der Mikrokapseln an der Zubereitung schließlich im Bereich von 1 bis 10 Gew.-% liegt.
- 15. Verfahren nach mindestens einem der Ansprüche 2 bis 14, **dadurch gekennzeichnet**, daß man die Zubereitungen ständig rührt.
 - 16. Verwendung von Mikrokapseln nach Anspruch 1 zur Herstellung von kosmetischen und/oder pharmazeutischen

21

INSDOCID: <EP 1064912A1 1 >

Zubereitungen.

- 17. Verwendung von Mikrokapseln nach Anspruch 1 zur Herstellung von Wasch-, Spül-, Reinigungs- und Avivagemitteln.
- 18. Verwendung von Mikrokapseln nach Anspruch 1 zur Herstellung von Lebensmitteln.
- 19. Verwendung nach mindestens einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, daß man die Mikrokapseln in Mengen von 0,1 bis 99 Gew.-% bezogen auf die Zubereitungen einsetzt.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 99 11 2670

Categorie	Kennzeichnung des Dokument der maßgeblichen T	s mit Angabe, soweit erforderlich, eile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CI.7)
Υ	FR 2 699 545 A (L'ORE, 24. Juni 1994 (1994-0 *das ganze Dokument*	AL)	1-19	A61K7/00 A61K9/50 C11D17/08
,	PATENT ABSTRACTS OF JAVO1. 13, no. 190 (C-568. Mai 1989 (1989-05-68. JP 01 018440 A (DAILLED), 23. Januar 1989 * Zusammenfassung * & DATABASE WPI Week 198909 Derwent Publications 1 AN 65806 * Zusammenfassung *	93), 08) NIPPON PHARMACEUT CO (1989-01-23)	1-19	
Υ	US 5 855 904 A (CHONG 5. Januar 1999 (1999-0 * Spalte 3-4 *		1-19	
A	EP 0 237 542 A (BIOCOM 23. September 1987 (19			RECHERCHIERTE SACHGEBIETE (Int.CI.7)
A	US 5 089 272 A (SHIOY) 18. Februar 1992 (1993			COSL C1ID
Α	EP 0 152 898 A (MASSA) TECHNOLOGY) 28. August			
Dervo	rliegende Recherchenbericht wurde	für alle Patentansprüche erstellt		
	Hecherchenort	Abschluidatum der Hecherche		Prüter
	DEN HAAG	15. Dezember 1999	9 Len	sen, H
X : von Y : von ande A : tech	ATEGORIE DER GENANNTEN CÖKUME besonderer Bedautung abein betrachtet besonderer Bedautung in Verbindung mit beren Veröftentlichung dersellben Kallegorie nologischer Hintergrund ischriffliche Offenbarung	E : alteres Patentdol nach dem Anmel einer D : in der Anmeldun L aus anderen Grü	cument, das jedo dedatum veröffer g angeführtes Do nden angeführtes	itlicht worden ist kument

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 99 11 2670

In diesem Arihang sind die Mitglieder der Patenttamilien der im obengenannten europaischen Recherchenbericht angeführten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

15-12-1999

	Recherchenberio ihrtes Patentdoku		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
FR	2699545	Α	24-06-1994	KEINE	,
JP	01018440	Α	23-01-1989	KEINE	
US	5855904	A	05-01-1999	CN 1131042 A EP 0806944 A JP 11509167 T WO 9613253 A	18-09-199 19-11-199 17-08-199 09-05-199
EP	237542	Α	23-09-1987	AT 60507 T WO 8701587 A JP 63501290 T	15-02-199 26-03-198 19-05-198
US	5089272	A	18-02-1992	KEINE	
EP	152898	A	28-08-1985	CA 1254528 A JP 61189218 A US 4749620 A US 4744933 A	23-05-198 22-08-198 07-06-198 17-05-198

EFO FORM P0461

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

T.S1/7

1/7/1 DIALOG(R) File 351: Derwent WPI

(c) 2003 Thomson Derwent. All rts. reserv.

013686590

WPI Acc No: 2001-170814/200118

Microcapsules containing e.g. cosmetic, detergent, pharmaceutical, and food substances are formed from gel-forming agents, chitosans and actives dropped into aqueous solutions of anionic polymers

Patent Assignee: PRIMACARE SA (PRIM-N)

Inventor: GARCES G J; VILADOT PETIT J; GARCES J Number of Countries: 092 Number of Patents: 004

Patent Family:

Date Patent No Kind Applicat No Kind Date Al 20010103 EP 99112670 A 19990702 200118 B EP 1064912 A1 20010111 WO 2000EP5808 A 20000623 200118 WO 200101927 AU 200054066 A 20010122 AU 200054066 Α 20000623 200125 JP 2003503433 W 20030128 WO 2000EP5808 Α 20000623 200309 JP 2001507425 A 20000623

Priority Applications (No Type Date): EP 99112670 A 19990702

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

EP 1064912 A1 G 23 A61K-007/00

Designated States (Regional): AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI

WO 200101927 A1 G A61K-007/00

Designated States (National): AE AL AM AU AZ BA BB BG BR BY CA CN CR CU CZ DM EE GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LV MA MD MG MK MN MW MX NO NZ PL RO RU SD SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

Designated States (Regional): EA GH GM KE LS MW MZ OA SD SL SZ TZ UG ZW A61K-007/00 Based on patent WO 200101927

AU 200054066 A

55 A61K-009/50 Based on patent WO 200101927 JP 2003503433 W

Abstract (Basic): EP 1064912 A1

NOVELTY - The microcapsule comprises gel-forming chitosans and active substances prepared as a matrix. This is dropped in to aqueous solutions of anionic polymers.

DETAILED DESCRIPTION - The microcapsule comprises gel-forming chitosans and active substances prepared as a matrix. This is dropped in to aqueous solutions of anionic polymers.

An INDEPENDENT CLAIM is included for the corresponding method of making the microcapsules.

USE - As cosmetic and/or pharmaceutical preparations. As washing, rinsing, cleaning, brightening or softening agents. In food manufacture. Use in quantities of 0.1-99 wt% in the preparations is covered. All foregoing uses are claimed.

ADVANTAGE - Thermo-gelling natural heteropolysaccharides or proteins together with chitosanes, which in the presence of anionic polymer, from membranes, permit the manufacture of new microcapsules; a considerable surprise. Tenside stability is markedly improved. In-depth discussion with references is included in the disclosure, together with nine practical examples and their results.

pp; 23 DwgNo 0/0

Derwent Class: A96; B07; D21

International Patent Class (Main): A61K-007/00; A61K-009/50

International Patent Class (Additional): A23L-001/00; A61K-007/075;

A61K-007/08; A61K-007/42; A61K-007/48; A61K-007/50; A61K-047/36; A61K-047/42; B01J-013/02; C11D-017/00; C11D-017/08

.

.

.

.

•

)