Section 7.3-7.6 pre-lecture comments

Lecture Outline

We will talk more about subspaces related to a matrix (row/column/null spaces).

New terminology

- 1. row space
- 2. column space
- 3. null space
- 4. orthogonal complement

Fundamental spaces of a matrix

m your n columns

subspace of

Fundamental spaces Let A be an $m \times n$ matrix. Let $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n$ be the columns of A and $\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_m$ be the rows of A.

$$A = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \uparrow & \uparrow & \uparrow \\ \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} \langle \uparrow & \uparrow & \uparrow \\ \langle \uparrow & \uparrow & \uparrow \\ \rangle & \uparrow & \uparrow \\ \rangle & \uparrow & \uparrow & \uparrow \end{bmatrix}$$

- 1. **Row space** of A (row(A)) is span{ $\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_m$ }
- 2. Column space of A (col(A)) is span{ $\mathbf{c}_1, \mathbf{c}_2, ..., \mathbf{c}_n$ }
- 3. **Null space** of A (null(A)) is the solution space of $A\vec{x} = \vec{0}$
- 4. **Null space** of A^T (null(A^T)) is the solution space of $A^T \mathbf{x} = \mathbf{0}$

CII Left nullspace of A

Ex: $A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 3 \end{bmatrix}$. What is the row space, column space and null space

of A?

row (A) = $span \left\{ \begin{array}{c} 1 \\ -4 \end{array} \right\} \left\{ \begin{array}{c} 2 \\ 3 \end{array} \right\}$ row (A) = $span \left\{ \begin{array}{c} 1 \\ -4 \end{array} \right\} \left\{ \begin{array}{c} -4 \\ 3 \end{array} \right\} = R^2$ row (A) = $span \left\{ \begin{array}{c} 1 \\ -4 \end{array} \right\} \left\{ \begin{array}{c} -4 \\ 3 \end{array} \right\} = R^2$ row (A) = $span \left\{ \begin{array}{c} 1 \\ -3 \end{array} \right\} \left\{ \begin{array}{c} -2 \\ -3 \end{array} \right\}$ row (A) = $span \left\{ \begin{array}{c} 1 \\ -3 \end{array} \right\} \left\{ \begin{array}{c} -3 \\ -3 \end{array} \right\}$ is a linear combination of previous vectors, can get rid of it in span

Rank and nullity

Jim (row (A))

The **rank** of a matrix A (rank(A)) is the dimension of its row space. The **nullity** of A (nullity(A)) is the dimension of its null space.

dim(null(A))

Ex:
$$A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 3 \end{bmatrix}$$

Ex: $A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 3 \end{bmatrix}$. What is the rank and nullity of A? rank(A) = 2

nul(A)

row(A)

Dimension Theorem (Section 7.4) For any $m \times n$ matrix A, rank(A) + nullity(A) = n. # of columns of A

rank (A)=7 nullity(A)= 1

Finding bases for the fundamental spaces using row reduction

Note that elementary row operations do not change the row space or null space of a matrix.

Basis for row and null spaces Let A be a matrix with (reduced) row echelon form R.

- \blacktriangleright To get a basis for the row space of A, take all nonzero rows of R.
- ▶ To get a basis for the null space of A, write the solution of $R\mathbf{x} = \mathbf{0}$ in vector form.

Ex:
$$A = \begin{bmatrix} 1 & 2 & -1 \\ -3 & -6 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$
 $R = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{bmatrix}$.

Give bases for the row space and null space of *A*.

Basis for column space (The pivot theorem, Sec. 7.6) $(col(R) \neq col(R))$

Basis for column space Let A be a matrix with (reduced) row echelon form R.

▶ To get a basis for the column space of A, take all columns of A corresponding to the same columns as the leading ones (pivot positions) of R.

The leading ones indicate which columns are *not* the linear combinations of previous columns (or the **0** vector).

Ex:
$$A = \begin{bmatrix} 1 \\ -3 \\ 2 \\ -6 \\ 3 \end{bmatrix}$$
 $R = \begin{bmatrix} 1 \\ -3 \\ 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.

Give a basis for the column space of A.

(col(A) = col(R))

Rank Theorem (Section 7.5) Row space and column space of a matrix A have the same dimension:

Orthogonal complement

Ex: Let
$$P$$
 be the plane $\vec{\mathbf{x}} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} s + \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} t$.

Find a normal vector \mathbf{n} to the plane P.

Every vector in span($\vec{\mathbf{n}}$) is orthogonal to every vector in span($\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2$).

We say that $span(\mathbf{n})$ and $span(\mathbf{v}_1, \mathbf{v}_2)$ are orthogonal complements.

Orthogonal complement Let $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ be a set of vectors in \mathbb{R}^n . The **orthogonal complement** of S, denoted S^{\perp} , is the set of all vectors \mathbf{x} that are orthogonal (perpendicular) to all vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$

 $V_1, V_2, \dots, V_{k : 1}$ $S = \{ \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \}$ $S = Span \{ \begin{bmatrix} -1 \\ 2 \end{bmatrix} \}$ Solutions to Ax = 0 are orthogonal to every row of A.

$$\begin{bmatrix} \vec{r}_1 & \vec{r}_2 & \cdots & \vec{r}_n \\ \vec{r}_n & \vec{r}_n & \cdots & \vec{r}_n \end{bmatrix} \begin{bmatrix} \vec{r}_1 & \vec{r}_2 & \cdots & \vec{r}_n \\ \vec{r}_n & \vec{r}_n & \cdots & \vec{r}_n \end{bmatrix} \begin{bmatrix} \vec{r}_1 & \vec{r}_2 & \cdots & \vec{r}_n \\ \vec{r}_n & \vec{r}_n & \cdots & \vec{r}_n \end{bmatrix} \begin{bmatrix} \vec{r}_1 & \vec{r}_2 & \cdots & \vec{r}_n \\ \vec{r}_n & \vec{r}_n & \cdots & \vec{r}_n \end{bmatrix}$$

if 5 subspace, then (5) = 5 orthogonal complement is a subspace

In other words, row space and null space of A are orthogonal comple-

ments of each other.

$$null(A) = row(A)^{\perp}$$

 $row(A) = null(A)^{\perp}$

Note: Since col(A) = ron(A)

col(A) and null(AT) are ofthogonal complements

How to find orthogonal complement

Since row space and null space of A are orthogonal complements of each other, we can find orthogonal complement of $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ as follows:

- ▶ Write $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ as the rows of a matrix A.
- ightharpoonup Solve $A\mathbf{x} = \mathbf{0}$.

Ex: Find the orthogonal complement of
$$\begin{cases}
\begin{bmatrix}
1 \\
1 \\
-1
\end{bmatrix}, \begin{bmatrix}
0 \\
1 \\
-3
\end{bmatrix}
\end{cases}$$

$$\vec{v}_{1} \begin{bmatrix}
1 \\
-1 \\
-3
\end{bmatrix}, \begin{bmatrix}
-3 \\
7
\end{bmatrix}$$

$$\vec{v}_{2} \begin{bmatrix}
1 \\
-1 \\
-3
\end{bmatrix}, \begin{bmatrix}
-3 \\
7
\end{bmatrix}$$

$$\vec{v}_{3} \begin{bmatrix}
1 \\
-1 \\
-3
\end{bmatrix}, \begin{bmatrix}
-3 \\
7
\end{bmatrix}$$

$$\vec{v}_{4} = t (f_{100}) \quad x_{2} = 3s - 7t \\
x_{3} = s (f_{100}) \quad x_{1} = -2s + 5t$$

$$\begin{bmatrix}
x_{1} \\
x_{2} \\
x_{3}
\end{bmatrix} = \begin{bmatrix}
-2 \\
3 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
-7 \\
0 \\
1
\end{bmatrix}$$

$$rank(A) + nullity(A) = n$$

$$dim(W) + dim(W^{\perp}) = n$$

$$w is a subspace$$