PRÁTICA 5 - CONDUÇÃO DE CALOR TRANSIENTE

LUIZ AUGUSTO DEMBICKI FERNANDES¹; PEDRO FRANCISCO DUARTE²; MANOELA SABRINE VIEIRA³, VICTOR GUSTAVO DURAU⁴; THIAGO ZAGONEL DE LINHARES⁵

Prof. Fernando Voll

Fenômenos de Transporte Experimental II – TQ084 Universidade Federal do Paraná

¹Discentes do curso de Engenharia Química da UFPR Grupo F-2

Resumo

O presente experimento teve como objetivo estudar a transferência de calor por convecção através da imersão de um sólido em diferentes fluidos que estavam a temperaturas consideravelmentente inferiores. Mediu-se a temperatura do sólido em função do tempo com uso de um termômetro e um cronômetro. Assim, em posse de informações sobre algumas propriedades térmicas do objeto e dos fluidos, obteve-se a relação entre a temperatura adimensional θ do sólido e o tempo decorrido através da resolução numérica de uma equação diferencial, e o gráfico resultante foi comparado com os valores obtidos experimentalmente.

Palavras-chave: Transferência de calor, convecção, equação diferencial.

Abstract

The present experiment had the objective of studying the convective heat transfer by immersing a solid in different fluids, which were at considerably lower temperatures. The solid's temperature as a function of time was measured using a thermometer and a chronometer. Thus, through data with respect to some thermal properties of the solid and the fluids, the relationship between the solid's dimensionless temperature θ and the elapsed time was obtained via the numerical solution of a differential equation, and its resulting graph was compared to the experimentally obtained values.

Keywords: Heat transfer, convection, differential equation.

1. Introdução

A condução de calor transiente, ou transferência de calor transiente, é um fenômeno de extrema importância em diversas áreas da ciência e engenharia. Ela descreve o processo de transferência de calor que ocorre em um sistema quando há variações de temperatura com o tempo, diferentemente da condução de calor em estado estacionário, em que as condições de temperatura permanecem constantes ao longo do tempo, ou seja, a distribuição de temperaturas em um determinado sistema é variável.

Esse tipo de fenômeno térmico é encontrado em uma ampla gama de aplicações práticas. Por exemplo, no campo da engenharia de materiais, entender a condução de calor transiente

é crucial para a otimização de processos de soldagem, tratamentos térmicos e fabricação de pecas. Em dispositivos eletrônicos, essa análise é fundamental para projetar sistemas de resfriamento eficientes e garantir o bom funcionamento dos componentes. Ainda, a condução de calor transiente também desempenha um papel vital na análise e projeto de sistemas de transferência de calor, como trocadores de calor, sistemas de refrigeração e isolamento térmico. Ao compreender como o calor se propaga e se dissipa em tais sistemas, é possível melhorar a eficiência energética. evitar danos causados superaquecimento segurança garantir operacional.

Este relatório tem como objetivo explorar os conceitos-chave relacionados à condução de calor transiente, discutindo suas aplicações

práticas, características e as principais ferramentas e métodos utilizados para sua análise. Ao compreender e dominar esses fundamentos, será possível realizar análises mais precisas e tomar decisões embasadas em projetos e processos que envolvam a transferência de calor transiente.

2. Objetivos

2.1. Objetivo geral

Observar e analisar os resultados obtidos no experimento, de modo a estudar o fenômeno da convecção natural para diferentes fluidos e determinar os valores para o coeficiente de transferência de calor para cada, de forma a comparar com os perfis de temperatura em função do tempo.

2.2. Objetivos específicos

Com base nas informações de tempo e temperatura obtidas no experimento, fazer os gráficos de

 $\theta(t)$ versus t para cada fluido e comparar com os do modelo de parâmetros concentrados.

3. Materiais e métodos

3.1. Material

Na prática, foram utilizados os seguintes materiais: termopar 101 sem proteção soldado em sua extremidade; soprador térmico; celular; cronômetro digital; ar; água; azeite de oliva.

3.2. Procedimento experimental

A prática teve início com o aquecimento da esfera soldada na ponta do termopar por meio da utilização de um soprador térmico. Em seguida, a esfera ficou em contato com o ar a fim de ser resfriada e, consecutivamente, limpa, haja vista que o procedimento precisou ser repetido também para a água e o óleo, nessa ordem. O resfriamento foi filmado com o celular e as medidas de tempo e temperatura foram extraídas do vídeo.

4. Resultados

Foram obtidos no experimento os seguintes dados presentes nas tabelas 1, 2 e 3:

TABELA 1 - DADOS EXPERIMENTO, ÁGUA

Tempo (s)	Temperatura (°C)	Tempo (s)	Temperatura (°C)
25,8	147,1	39,4	20,9
26,6	141,8	41,0	20,7
27,5	74,5	42,2	20,5
28,9	36,2	43,2	20,4
30,5	28,1	44,8	20,2
32,0	25,1	47,5	20,1
33,2	23,4	50,6	20,0
34,8	22,4	52,0	19,9
35,1	21,8	60,0	19,8
37,8	21,3		

FONTE: Os autores (2023).

TABELA 2 - DADOS EXPERIMENTO, AR

	TABELA 2 – DADOS EXPERIMENTO, AR					
Tempo	Temperatura	Tempo	Temperatura			
(s)	(°C)	(s)	(°C)			
19,8	152,9	73,3	52,5			
21,3	147,9	74,8	51,3			
22,8	142,6	76,0	50,1			
24,3	137,8	77,6	49,0			
25,6	132,8	79,0	48,0			
27,2	128,3	80,4	47,0			
28,6	122,0	81,6	46,0			
30,1	120,1	83,2	45,0			
31,6	116,5	84,6	44,1			
33,0	112,9	86,2	43,2			
34,5	109,3	87,6	42,5			
36,0	106,3	89,0	41,7			
37,4	103,3	90,5	40,9			
38,8	100,5	92,0	40,2			
40,1	97,6	93,3	39,5			
41,6	94,8	94,8	38,9			
,•	5 .,5	J .,J	55,5			
43,0	92,1	96,2	38,3			
44,5	89,5	97,6	37,8			
46,0	86,8	99,0	37,1			
47,4	84,3	100,5	36,5			
48,8	81,9	102,0	35,9			
50,3	79,7	103,6	35,5			
51,8	77,6	104,8	34,9			
53,3	75,5	106,0	34,5			
54,6	73,4	107,6	34,1			
55,2	71,5	109,0	33,8			
57,6	69,6	110,6	33,3			
58,9	67,9	112,0	32,9			
60,4	66,1	113,4	32,5			
61,8	64,4	114,8	31,9			
63,3	62,8	116,3	31,6			
64,7	61,1	117,6	31,2			
66,2	59,6	119,0	30,9			
67,6	58,0	120,6	30,6			
68,9	56,5	122,0	30,3			
70,4	55,1	123,3	29,9			
72,0	53,8	·				
FONTE: Os autores (2023)						

FONTE: Os autores (2023).

TABELA 3 - DADOS EXPERIMENTO, AZEITE

Tempo (s)	Temperatura (°C)	Tempo (s)	Temperatura (°C)
20,8	139,6	63,0	23,4
21,4	135,3	64,5	23,2
22,8	99,5	65,8	23,1
24,3	78,4	67,4	22,9
25,8	67,0	68,8	22,7
27,0	58,5	70,2	22,6
28,6	52,1	71,6	22,5
30,0	47,3	73,0	22,4
31,5	43,4	74,5	22,3
32,8	40,3	76,0	22,2
34,3	37,8	77,4	22,1
35,8	35,6	78,8	22,0
37,1	33,9	80,1	21,9
38,6	32,6	81,6	21,8
40,2	31,4	84,5	21,6
41,4	30,3	85,9	21,5
43,0	29,3	90,2	21,4
44,3	28,6	93,0	21,3
45,8	27,8	97,4	21,2
47,3	27,3	98,8	21,1
48,6	26,7	102,0	21,0
50,0	26,2	107,4	20,9
51,6	25,8	111,6	20,8
53,0	25,4	121,6	20,7
54,5	25,0	127,4	20,6
56,0	24,7	141,6	20,5
57,3	24,4	158,8	20,4
58,8	24,1		
60,2	23,9		
61,6	23,6 FONTE: Os a	utores (2023	8)

4.1. Solução numérica e comparação com dados experimentais

Utilizando o método Runge-Kutta de quarta ordem, foi obtido uma solução numérica para o problema com modelagem de parâmetros concentrados, foi utilizado um intervalo de tempo de 150 segundos e o software Scilab. Os gráficos de temperatura (Theta) e tempos (t) obtidos estão apresentados nas figuras 1, 2 e 3, onde os pontos vermelhos indicam os dados experimentais e as curvas azuis representam a solução numérica para os respectivos fluidos indicados.

FIGURA 1 – GRÁFICO SOLUÇÃO NÚMERICA E EXPERIMENTAL, ÁGUA

FONTE: Os autores (2023).

FIGURA 2 – GRÁFICO SOLUÇÃO NÚMERICA E EXPERIMENTAL, AR

FONTE: Os autores (2023).

FIGURA 3 – GRÁFICO SOLUÇÃO NÚMERICA E EXPERIMENTAL, AZEITE

FONTE: Os autores (2023).

5. Discussão

A taxa transferência de calor entre um objeto e o ambiente irá depender da diferença de temperatura entre o objeto e o meio ao seu redor. Quando o objeto e o ambiente são mantidos em temperatura constante, a taxa de transferência será constante. No entanto, à medida que um objeto resfria a ΔT diminui. Isso diminui a taxa de mudança na temperatura e faz com que a variação da T com o tempo não apresente um comportamento linear.

No experimento realizado, a esfera de metal troca muito mais calor por convecção do que por outros mecanismos, então é possível tratar o experimento como troca exclusivamente por convecção. Além disso, a esfera tem volume pequeno e é feita de material condutor, logo a condução de calor no interior da esfera deve ser muito mais rápida que a troca convectiva na superfície, o que permite considerar que a T é homogênea em toda a esfera.

Segundo descrito em Incropera et. Al (2008), uma relação para o comportamento da temperatura ao longo do tempo pode ser obtida igualando a taxa de transferência de calor na superfície com a taxa de variação da energia interna do sólido.

$$-h \cdot A(T - T_{\infty}) = \rho \cdot V \cdot C_{p} \cdot \frac{dT}{dt} \qquad (1)$$

Substituindo o produto entre a massa específica e o volume pela massa e rearranjando obtém-a expressão da equação 2.

$$-\frac{h\cdot A}{m\cdot Cp} = \frac{1}{(T-T_{\infty})} \cdot \frac{dT}{dt}$$
 (2)

A equação 2 é uma equação diferencial, no entanto ela não pode ser resolvida analiticamente, pois o valor de Cp varia em função da temperatura, que varia em função do tempo. O valor de h também irá variar ao longo do tempo, pois depende da densidade e de viscosidade do fluído que em contato com a superfície do sólido. Por isso foi necessário o uso de um método computacional para obter a solução.

Entretanto, se simplificarmos o problema considerando que h e Cp são constantes, a equação diferencial pode ser resolvida de forma analítica. Na equação 3 o termo (h.a/m.Cp) foi substitúido pelo parâmetro b, os dois lados da expressão são integrados em relação ao tempo.

$$\int_{t_1}^{t_2} -b \cdot dt = \int_{t_1}^{t_2} \frac{1}{(T - T_{\infty})} \cdot \frac{dT}{dt} \cdot dt$$
$$-bt + C = \ln(T - T_{\infty}) \qquad (3)$$
$$(T - T_{\infty}) = C2 \cdot e^{-bt}$$

Aplicando a condição inicial, de T = T0 em t=0s, obtém-se uma aproximação para o comportamento da temperatura em função do tempo, representado na equação 4. A expressão obtida apresenta a variável t no expoente, o que indica que o gráfico deve ter comportamento exponencial. O sinal negativo no expoente indica que a temperatura irá diminuir com o tempo, tendendo a temperatura do ambiente em $t=\infty$.

$$T = T_{\infty} + (T_0 - T_{\infty}) \cdot e^{-bt} \quad (4)$$

Nas figuras 1, 2 e 3, pode-se observar que o comportamento dos dados experimentais e das funções obtidas é compatível com o esperado para essa função. Nos três gráficos os pontos experimentais estão localizados mais à direita que a solução obtida. Esse achado provavelmente se deve ao atraso na medida do termômetro, visto que o intervalo de tempo em que todo o resfriamento ocorreu é curto, então pequenas diferenças no dado experimental apresentam um efeito relativamente grande.

6. Conclusões

Analisando os resultados, foi possível observar o fenômeno da convecção natural para ar água e o óleo, e diante dos resultados obtidos nas simulações matemáticas em comparação às curvas experimentais plotadas com os dados do laboratório, foi possível demonstrar a aplicação dos assuntos estudados em fenômenos de transferência de calor de maneira a demonstrar o comportamento no perfil de temperatura durante o resfriamento de um sólido utilizando diferentes fluidos.

Com o experimento foi possível observar os aspectos do fluido que provocam essa diferença no tempo de troca de calor entre fluído e solido, sobretudo, os fenômenos que facilitam ou dificultam a transferência de calor.

Referências

CHASE M.W., Jr. NIST-JANAF Themochemical Tables, Fourth Edition, **J. Phys. Chem. Ref. Data.** 9 ed, 1998, p. 1-1951.

INCROPERA, F.P.; DEWITT, D. P.; BERGMAN, T. L.; LAVINE, A. S. **Fundamentos de transferência de calor e de massa**. 6 ed. Rio de Janeiro: LTC, 2008.

JANNA, W. S.; **Projetos de sistemas fluidotérmicos**. São Paulo: Cengage Learning, 4 ed. 2016.

SMITH, J.M.; VAN NESS, H.C.; ABBOTT, M.M. Introdução à termodinâmica da engenharia química. 5ª ed. Rio de Janeiro: LTC, 2000.

CALLISTER, W. D.; Ciência e engenharia de materiais: uma introdução. 8. ed. Rio de Janeiro: LTC, 2012.