

矩阵论

习题课

马锦华

数据科学与计算机学院 中山大学

课程内容

第一章: 矩阵的相似变换

第二章: 范数理论

第三章:矩阵分析

第四章:矩阵分解

第五章:特征值的估计与表示

第六章:广义逆矩阵

第七章: 矩阵的特殊乘积

第八章:线性空间与线性变换

• 基本概念

- -特征值、特征向量、特征矩阵、特征多项式、 代数重数、几何重数、矩阵的多项式、迹
- -相似、相似变换矩阵、可对角化
- -Jordan块、Jordan标准型、λ矩阵的初等变换、 Smith标准型、不变因子、初等因子、行列式因 子、广义特征向量
- -零化多项式、最小多项式
- -向量的内积、长度、Schmidt正交化、标准正交基、西矩阵
- -正规矩阵、Hermite正定(半正定)矩阵

• 主要结论

- -特征值与特征向量
 - 代数重数与几何重数的关系
 - 矩阵多项式的特征值与特征向量
 - 不同特征值对应的特征向量线性无关
 - 矩阵(共轭)转置的特征值
 - 行列式等于特征值乘积
 - 矩阵的迹等于特征值之和
 - tr(AB) = tr(BA)

- 主要结论
 - -相似对角化
 - 相似的性质(等价关系)
 - 可对角化的充分必要条件、必要条件
 - Jordan标准型
 - Jordan分解: 任一方阵相似于Jordan标准型
 - 任一λ矩阵经过初等变换可化为Smith标准型
 - k阶行列式因子等于前k个不变因子的乘积
 - Jordan块幂的表示

• 主要结论

- -Hamilton-Cayley定理
 - 特征多项式是零化多项式
 - 最小多项式是唯一的,且整除任一零化多项式
 - 最小多项式等于特征多项式除以n 1阶行列式因子
 - 相似矩阵有相同的最小多项式
 - 最小多项式与Jordan标准型的关系

-向量的内积

- 内积的性质、Cauchy-Schwarz不等式
- 长度性质、三角不等式
- 正交向量组线性无关
- 酉矩阵的性质

• 主要结论

- 酉相似下的标准型
 - Schur分解: 任一方阵酉相似于上三角矩阵
 - 酉相似于对角矩阵的充分必要条件
 - (共轭)对称矩阵的特征值均为实数、反(共轭) 对称矩阵的特征值为零或纯虚数
 - 正规矩阵的共轭的特征值与特征向量
 - 正规矩阵不同特征值对应的特征向量正交
 - Hermite正定(半正定)矩阵的等价条件
 - AA^{H} 与 $A^{H}A$ 的性质

• 主要方法

- 求特征值与特征向量
- 判断是否可对角化、求相应的相似变换和对角 矩阵
- 求Jordan标准型
 - 特征向量法
 - 初等变换法
 - 行列式因子法
- 求Jordan标准型的相似变换矩阵
- 求矩阵多项式的值、求逆、求最小多项式

- 主要方法
 - 求矩阵的幂
 - 相似对角化
 - Jordan分解
 - 零化多项式
 - 最小多项式
 - 求标准正交基
 - 求正规矩阵的酉相似变换矩阵与对角矩阵

习题一:矩阵的相似变换

1. 已知矩阵
$$A = \begin{pmatrix} 1 & -3 & -2 \\ -1 & 1 & -1 \end{pmatrix}$$
,试求 A 的 $2 + 4 + 5 \end{pmatrix}$ Jordan标准形 J 及相似变换矩阵 P ,使得 $P^{-1}AP = J$.

- 2. 设n阶方阵 $A = (a_{ij})$ 满足 $\sum_{i=1}^{n} a_{ij} = \lambda, \forall j$,试证明 λ 是A的特征值.
- 3. 证明任意n阶方阵A的转置的最小多项式 $m_{A^T}(\lambda)$ 等于A的最小多项式 $m_A(\lambda)$.

习题一:矩阵的相似变换

4. 已知矩阵
$$A = \begin{pmatrix} 7 & 4 & -4 \\ 4 & -8 & -1 \end{pmatrix}$$
,试求 A 的特征多项式与最小多项式.

5. 已知矩阵
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \end{pmatrix}$$
,试讨论 A 是否可以酉相似于对角矩阵,若是,试求酉矩阵 U ,使 U^TAU 为对角矩阵.

6. 证明定理1.25.

课程内容

第一章:矩阵的相似变换

第二章: 范数理论

第三章:矩阵分析

第四章:矩阵分解

第五章:特征值的估计与表示

第六章:广义逆矩阵

第七章: 矩阵的特殊乘积

第八章:线性空间与线性变换

范数理论的基本概念

• 向量范数

- -向量空间 C^n 中满足非负性、齐次性和三角不等式的实值函数
- -1-范数、2-范数、p-范数、∞-范数、椭圆范数

• 矩阵范数

- -以矩阵 $A \in C^{m \times n}$ 为变量,满足非负性、齐次性、三角不等式和乘法相容性的实值函数
- -向量范数的推广: m_1 -范数、 m_2 -范数(F-范数)、 m_∞ -范数、G-范数
- -向量范数的从属范数: 1-范数、2-范数、∞-范数 数

范数理论的基本概念

• 矩阵范数与向量范数相容

$$||Ax||_{v} \leq ||A||_{m} \cdot ||x||_{v},$$

- (1)矩阵m,-范数、1-范数都与向量1-范数相容
- (2)矩阵F-范数、2-范数都与向量2-范数相容
- (3)矩阵 m_{∞} -范数、G-范数、 ∞ -范数 都与向量∞-范数相容

范数理论的主要结论

- 范数的等价性
 - $-C^n$ 上的所有向量范数都等价
 - $-C^{m\times n}$ 上的所有矩阵范数都等价
- 矩阵范数与向量范数的相容性
 - -对任意给定的<mark>矩阵</mark>范数,必存在与它相容的<mark>向</mark> 量范数
 - -对任意给定的<mark>向量</mark>范数,必存在与它相容的<mark>矩</mark> 阵范数
 - -一种矩阵范数可以与多种向量范数相容
 - 多种矩阵范数可以与一种向量范数相容

范数理论的主要结论

- 向量p-范数的极限是 ∞ -范数,即 $\forall x \in \mathbb{C}^n$, $\lim_{p \to \infty} ||x||_p = ||x||_\infty$.
- 向量2-范数与矩阵2-范数、F-范数的酉不 变性
- 由列满秩矩阵A构造新的向量范数

$$\|x\|_b = \|Ax\|_a$$

• 由可逆矩阵S构造新的矩阵范数

$$||A||_m = ||S^{-1}AS||$$

范数理论的应用

• 谱半径估计:

$$(1)\rho(A) \leq ||A||$$

$$(2)\forall \varepsilon > 0, \exists \|\cdot\|_{m}, \text{s.t. } \|A\|_{m} \leq \rho(A) + \varepsilon.$$

(3) 当
$$A$$
是正规矩阵时, $\rho(A)=||A||_2$.

矩阵范数的应用

- 若 $\|P\|$ < 1,则I P可逆
- 误差分析
- (1)定义条件数: $cond(A) = ||A|| \cdot ||A^{-1}||$

(3)方程组求解误差:

$$\frac{\left\|\delta x\right\|_{v}}{\left\|x\right\|_{v}} \leq \frac{cond(A)}{1-cond(A)\cdot\left\|\delta A\right\|/\left\|A\right\|} \left(\frac{\left\|\delta A\right\|}{\left\|A\right\|} + \frac{\left\|\delta b\right\|_{v}}{\left\|b\right\|_{v}}\right),$$

习题二: 范数理论

1. 已知矩阵
$$A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
,试求 A 的 m_1 -范数、 m_2 -范数(F-范数)、 m_∞ -范数、1-范数、2-范数、 ∞ -范数。

- 2. 若m为正整数,试讨论 $\sqrt[m]{||A^m||}$ 是否矩阵范数,若是,证明结论;若不是,举出反例.
- 3. 试求1) 中矩阵A的条件数 $cond_1(A)$ 和 $cond_{\infty}(A)$.

习题二: 范数理论

- 4. 设列向量 $\alpha, \beta \in \mathbb{R}^n$, 证明: $\|\alpha + \beta\|_2 = \|\alpha\|_2 + \|\beta\|_2$ 的充要条件是 $\alpha = \|\beta\|_2$ 的充要条件是 $\alpha = \|\beta\|_2$ 线性相关且 $\alpha^T\beta \geq 0$.
- 5. 给定矩阵范数||·||,可选取可逆矩阵P,使得||P|| = 1;定义||A||_M = || AP^{-1} ||,证明||_M是矩阵范数.
- 6. 设A, B都是可逆矩阵,且(A + B)x = 0有非零解,证明对任意矩阵范数 $\|\cdot\|$,都有 $\|A^{-1}B\| \ge 1$, $\|AB^{-1}\| \ge 1$.

课程内容

第一章: 矩阵的相似变换

第二章: 范数理论

第三章: 矩阵分析

第四章:矩阵分解

第五章:特征值的估计与表示

第六章:广义逆矩阵

第七章: 矩阵的特殊乘积

第八章:线性空间与线性变换

基本概念

- 矩阵序列
 - -收敛性、收敛矩阵
- 矩阵级数
 - 收敛性、幂级数、Neumann级数
- 矩阵函数
 - 收敛的矩阵幂级数: 指数函数、三角函数等
- 矩阵微分和积分
 - 函数矩阵对参数的微分和积分
 - 数量函数对矩阵变量的导数
 - -矩阵函数对矩阵变量的导数

- 矩阵序列的收敛性
 - 充要条件:对任何矩阵范数,有 $\lim_{k\to +\infty} ||A^{(k)}-A||=0$,
 - -矩阵序列收敛的性质:
 - 线性
 - 乘积
 - 逆矩阵
 - -收敛矩阵的充要条件: $\rho(A) < 1$
 - -收敛矩阵的充分条件: ||A|| < 1

- 矩阵级数的收敛性
 - 充要条件:对任何矩阵范数,正项级数 $\sum_{k=0}^{\infty} ||A^{(k)}||$ 收敛
 - -矩阵级数收敛的性质:
 - 收敛:线性、左(右)乘常数矩阵
 - 绝对收敛: 左(右) 乘常数矩阵、求和顺序、乘积
 - -矩阵幂级数的敛散性
 - $\rho(A) < r$ 收敛
 - $\rho(A) > r$ 发散
 - -Neumann级数收敛的充要条件: $\rho(A) < 1$
 - -Neumann级数收敛的充分条件: ||A|| < 1

- 矩阵函数的性质
 - -矩阵指数函数与三角函数的关系(欧拉公式)
 - -矩阵指数函数的性质
 - 可交换矩阵的指数函数
 - 行列式、逆矩阵
 - -矩阵三角函数的性质
 - 和角公式(可交换矩阵)
 - 倍角公式
 - 平方关系
 - 周期性

- 矩阵微分与积分的性质
 - 微分与积分的线性运算
 - -微分
 - 函数乘积的导数
 - 逆矩阵的导数
 - 矩阵指数函数和三角函数的导数
 - -积分
 - 微分与积分的关系
 - 定积分的计算

常用方法

- 矩阵函数求值的常用方法
 - 利用零化多项式(特征多项式或最小多项式)
 - 找出矩阵方幂的特殊关系
 - 待定系数法
 - 利用Jordan标准型
- 矩阵分析的应用
 - 求解微分方程组
 - 求解矩阵方程
 - 求解最优化问题
 - 最小二乘问题

习题三:矩阵分析

$$\min_{X \in \mathbb{R}^{m \times n}} \operatorname{tr}(CX^T A X) - 2\operatorname{tr}(X^T B)$$

2. 已知矩阵
$$A = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}$$
,试求 e^{At} .

3. 对2) 中矩阵A,求解微分方程组

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = Ax(t), x(0) = (1 \quad 1 \quad 1)^T$$

习题三:矩阵分析

4. 已知
$$e^{At} = e^{2t} \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}$$
, 试求 A .

- 5. 已知 $A^2 = A$,试求 $\sin(\pi A)$.
- 6. 判断矩阵幂级数 $\sum_{k=0}^{\infty} \frac{k^2}{4^k} \begin{pmatrix} 0 & -1 \\ 4 & 4 \end{pmatrix}^k$ 的敛散性.

7. 已知矩阵
$$A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$$
,试求 $\sin At$.

课程内容

第一章: 矩阵的相似变换

第二章: 范数理论

第三章:矩阵分析

第四章:矩阵分解

第五章:特征值的估计与表示

第六章:广义逆矩阵

第七章:矩阵的特殊乘积

第八章:线性空间与线性变换

基本概念

- 方阵的三角分解
 - -LR分解、Doolittle分解、 Crout分解、 LDR分解、 Cholesky分解
- 矩阵的QR分解
 - 方阵、长方阵、Householder矩阵(变换)、 Givens矩阵(变换)
- 矩阵的满秩分解
 - -矩阵等价、Hermite标准型、置换矩阵
- 矩阵的奇异值分解
 - -矩阵的奇异值、酉等价

• 三角分解的存在性

- $-A \in \mathbb{C}^{n \times n}$ 可进行三角分解(唯一的LDR分解、Doolittle分解、Crout分解)的充要条件是A的n-1个顺序主子式 $\Delta_1, \Delta_2, \cdots, \Delta_{n-1}$ 不为零
- 设 $A \in \mathbb{C}^{n \times n}$ 是正定的Hermite矩阵,则A可作Cholesky分解.

- 矩阵的QR分解
 - -Householder矩阵的性质
 - Hermite矩阵、酉矩阵、对合矩阵、自逆矩阵、行列 式为-1
 - 设 $z \in \mathbb{C}^n$ 是单位向量,则对于任意向量 $x \in \mathbb{C}^n$,存在Householder矩阵,使得 $Hx = \alpha z$, $\alpha \in \mathbb{C}$
 - -Givens矩阵的性质
 - 酉矩阵、行列式为1
 - 对任意非零向量 $x \in C^n$ 和单位向量 $e \in C^n$,总存在有限个Givens矩阵的乘积T,使得 $Tx = ||x||_2 e$

• 矩阵的QR分解

- -任意 $A ∈ \mathbf{C}^{n \times n}$ 都可作QR分解
- -可逆矩阵QR分解的唯一性
- -任意 $A ∈ \mathbb{C}^{n \times n}$ 酉相似于Hessenberg矩阵
 - Hermite矩阵酉相似于三对角矩阵

• 矩阵的满秩分解

- $设 A \in \mathbf{C}_r^{m \times n}$,则使用初等行变换可将A化为 Hermite标准型
- -设 $A \in \mathbf{C}_r^{m \times n} (r > 0)$,则A的满秩分解总存在

- 矩阵的奇异值分解
 - 酉等价矩阵有相同的奇异值
 - $-设A \in \mathbb{C}_r^{m \times n} (r > 0)$,则A的奇异值分解总存在
 - 对任意方阵可以进行极分解

矩阵分解的计算方法

- 三角分解的紧凑计算格式
 - Doolittle分解、 Crout分解、 Cholesky分解
- 矩阵的QR分解
 - Schmidt正交化、 Householder变换、 Givens变换
- 矩阵的满秩分解
 - 逆矩阵法、 Hermite标准型法
- 矩阵的奇异值分解
 - 直接构造: 1) 求 A^HA 的特征值和特征向量; 2) 计算 U_1 并扩展称酉矩阵
 - 试算验证: 分别求 A^HA 和 AA^H 的特征值和特征向量

习题四:矩阵分解

1. 已知
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$
, 求 A 的Doolittle分解.

2. 已知
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, 求 A 的QR分解.

3. 已知
$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 2 & 1 & -1 \\ 1 & 0 & 2 & 1 \end{pmatrix}$$
, 求 A 的满秩分

习题四:矩阵分解

- 4. 已知 $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix}$, 求A的奇异值分解.
- 5. 已知A的奇异值分解为A =

$$(U_1 \quad U_2)$$
 $\begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix}$ $(V_1 \quad V_2)^H$,求 $B = \begin{pmatrix} A \\ A \end{pmatrix}$ 的奇异值分解.

课程内容

第一章:矩阵的相似变换

第二章: 范数理论

第三章:矩阵分析

第四章:矩阵分解

第五章:特征值的估计与表示

第六章:广义逆矩阵

第七章:矩阵的特殊乘积

第八章:线性空间与线性变换

基本概念

- 特征值的估计
 - -矩阵的盖尔圆
 - -矩阵的Ostrowski圆
 - -矩阵的Cassini 卵形
- 特征值的表示
 - -Hermite矩阵的Rayleigh商
 - -广义特征值问题
 - -广义Rayleigh商

- 特征值的界
 - 谱半径与矩阵范数的关系
 - -特征值实部和虚部的界
 - 实矩阵特征值虚部的界
 - -特征值模的平方和的界
- 特征值的包含区域
 - 盖尔圆:圆盘定理1、圆盘定理2
 - -Ostrowski 圆: Ostrowski 定理1
 - -Cassini卵形: Ostrowski定理2

- Hermite矩阵特征值的表示
 - -Hermite矩阵的最大和最小特征值分别是 Rayleigh商的最大值和最小值
 - -Hermite矩阵的任意特征值可由Rayleigh商在特征向量组成的子空间的最大或最小值表示
 - -特征值的极小极大原理和极大极小原理
- 广义特征值的性质与表示
 - 性质1-3
 - -Hermite矩阵特征值表示的推广

常用方法

- 特征值的隔离
 - -用对角矩阵进行相似变换
- 求广义特征值
 - -直接法
 - -转化法

习题五:特征值的估计与表示

1. 已知
$$A = \begin{pmatrix} 9 & 1 & -2 & 1 \\ 0 & 8 & 1 & 1 \\ -1 & 0 & 4 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$
, 应用盖尔圆

定理证明A至少有两个实特征值.

2. 设 $A \in \mathbb{C}^{n \times n}$ 是Hermite矩阵, $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ 是A的n个特征值,证明

$$\lambda_{s} = \max_{P \in \mathbf{C}^{n \times (n-s)}} \min \left\{ \frac{x^{H} A x}{x^{H} x} \middle| x \in \mathbf{C}^{n}, x \neq 0, P^{T} x = 0 \right\}, 1 \leq s < n$$