Particle spectrograph

Wave operator and propagator

Source constraints SO(3) irreps	Fundamental fields	Multiplicities
$\tau_0^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_0^{\#1} - 2 i k \sigma_0^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$t_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#2}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	Е
$t_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	8
$+ik \sigma_1^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\iota^{\beta\chi} + \partial_{\chi}\partial^{\beta}\iota^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\iota^{\alpha\beta} +$	3
1	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha} \iota^{\chi\beta} + \partial_{\chi}\partial^{\beta} \iota^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi} t^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta} \sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1}\alpha\beta - 2ik\sigma_{2+}^{\#1}\alpha\beta == 0$	$t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0 - i(4 \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2 \partial_{\delta}\partial^{\delta}\partial^{\alpha}\tau^{\chi}_{\chi} -$	2
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}{}_{\delta}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} t^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$ -	
	$4 i \eta^{\alpha\beta} k^{X} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$	
Total constraints/gauge generators:	ge generators:	16

L	$\sigma_{1}^{\#1}$	$\sigma_{1}^{\#2}{}_{lphaeta}$	$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1^{^{-}}\alpha}^{\#1}$	$\sigma_{1^{-}\alpha}^{\#2}$	$\tau_{1^{-}\alpha}^{\#1}$	$ au_1^{\#2} lpha$
	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_{1+}^{#2} + \alpha \beta$	$\frac{\sqrt{2}}{t_1 + k^2 t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\tau_{1}^{\#1} + \alpha \beta$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$
	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$
	0	0	0	0	0	0	0
	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2} k(2k^2 r_5 - t_1)}{(t_1 + 2k^2 t_1)^2}$	0	$\frac{-4k^4r_5 + 2k^2t_1}{(t_1 + 2k^2t_1)^2}$
_ =	ic (free	Quadratic (free) action					
	$\int (f_{\alpha\beta} t)$	$S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} +$	$\tau_{\alpha\beta\chi}$ +				
		$\frac{1}{2}t_{1}(2 c)$	$\omega^{\alpha\prime}_{\alpha} \omega^{\theta}_{\alpha\theta}$ -4	$\omega_{\alpha}^{\ \ \theta}\partial_{\beta}f^{\alpha}$	$\frac{1}{2}t_1(2\ \omega^{\alpha\prime}_{\alpha}\ \omega^{\theta}_{\prime} - 4\ \omega^{\theta}_{\alpha}\ \partial_{\prime}f^{\alpha\prime} + 4\ \omega^{\theta}_{\prime}\ \partial^{\prime}f^{\alpha}_{\alpha})$	α'	
		2	$\partial_i f^{\theta}{}_{\beta} \partial^i f^{\alpha}{}_{\alpha}$	$2 \partial_i f^{\alpha i} \partial_{\theta} f$	$2\partial_i f^{\theta}_{}\partial^i f^{\alpha}_{} - 2\partial_i f^{\alpha i}\partial_{\theta} f^{}_{} + 4\partial^i f^{\alpha}_{}\partial_{\theta} f^{}_{} - 2\partial_{\alpha} f_{}$	f,θ-2	$\partial_{\alpha}f_{I, heta}$

ction $-\omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + \frac{1}{2}t_1 (2\omega^{\alpha'}\omega^{\theta} - 4\omega^{\theta} - 3f^{\alpha'} + 4\omega^{\theta} - 3f^{\alpha'} + 4\omega^{\theta} - 3f^{\alpha'} + 4\omega^{\theta} - 3f^{\alpha'} + 3f^{\alpha} - 3g^{\alpha'} - 3g^{\alpha'} - 3g^{\alpha'} - 3g^{\alpha'} - 3g^{\alpha'} + 2\omega^{\alpha'} + 2\omega^{\alpha'} + 2g^{\alpha'} + 2g^{\alpha'}$	
$\int_{0}^{\pi} f dt$	>
$ \int_{\alpha}^{\theta} \partial_{i} f^{\alpha i} + 4 \omega_{i}^{\theta} \partial^{i} f^{\alpha} - \frac{1}{2} \partial_{i} f^{\alpha i} + 4 \omega_{i}^{\theta} \partial^{i} f^{\alpha} - \frac{1}{2} \partial_{i} f^{\alpha i} + 4 \partial^{i} f^{\alpha} \partial_{\theta} f_{i}^{\theta} - \frac{1}{2} \partial_{i} f^{\alpha i} + \partial_{i} f^{\alpha} \partial_{\theta} f^{\alpha i} + \partial_{\theta} f^{\alpha i} \partial_{\theta} f^{\alpha i} + 2 \partial_{\theta} f^{\alpha i} \partial_{\theta} f^{\alpha i} + 2 \partial_{\theta} \omega_{i} \partial_{\theta} f^{\alpha i} + 2 \partial_{\theta} \omega_{i} \partial_{\theta} f^{\alpha i} + 2 \partial_{\theta} \omega_{i} \partial_{\theta} \partial_{\theta} f^{\alpha i} + 2 \partial_{\theta} \omega_{i} \partial_{\theta} \partial_{\theta}$,
$ \frac{\partial}{\partial x} \partial_{\beta} f^{\alpha \prime} + 4 \omega_{\beta}^{\theta} $ $ \frac{\partial}{\partial x} \partial_{\beta} f^{\alpha \prime} + 4 \omega_{\beta}^{\theta} $ $ \frac{\partial}{\partial x} f^{\alpha \prime} \partial_{\beta} f^{\alpha} + 4 \partial_{\beta}^{\prime} $ $ \frac{\partial}{\partial x} f^{\alpha \prime} \partial_{\beta} f^{\alpha} + 2 \partial_{\beta}^{\theta} $ $ \frac{\partial}{\partial x} f^{\alpha \prime} + \partial_{\beta} f^{\alpha} \partial_{\beta} f^{\alpha \prime} $ $ \frac{\partial}{\partial x} f^{\alpha \prime} + \partial_{\beta} f^{\alpha} \partial_{\beta} f^{\alpha \prime} $ $ \frac{\partial}{\partial x} f^{\alpha \prime} + \partial_{\beta} f^{\alpha} \partial_{\beta} f^{\alpha \prime} $ $ \frac{\partial}{\partial x} f^{\alpha \prime} + 2 \partial_{\beta} \omega_{\beta} \partial_{\beta} f^{\alpha \prime} $ $ \frac{\partial}{\partial x} \partial_{\beta} \omega_{\alpha} \partial_{\beta} \partial_{\beta} \partial_{\beta} \partial_{\beta} \partial_{\beta} $ $ \frac{\partial}{\partial x} f^{\alpha \prime} \partial_{\beta} \partial_{\alpha} \partial_{\beta} \partial_{\beta} \partial_{\beta} $ $ \frac{\partial}{\partial x} f^{\alpha \prime} \partial_{\beta} \partial_{\alpha} \partial_{\beta} \partial_{\beta} \partial_{\beta} $ $ \frac{\partial}{\partial x} f^{\alpha \prime} \partial_{\beta} \partial_{\alpha} \partial_{\beta} \partial_{\beta} \partial_{\beta} \partial_{\beta} $ $ \frac{\partial}{\partial x} f^{\alpha \prime} \partial_{\beta} \partial_{\alpha} \partial_{\beta} \partial_{\beta} \partial_{\beta} \partial_{\beta} $ $ \frac{\partial}{\partial x} f^{\alpha \prime} \partial_{\beta} \partial_{\alpha} \partial_{\beta} \partial_{\beta} \partial_{\beta} \partial_{\beta} $ $ \frac{\partial}{\partial x} f^{\alpha \prime} \partial_{\beta} \partial_{\alpha} \partial_{\beta} \partial_{\beta} \partial_{\beta} \partial_{\beta} $ $ \frac{\partial}{\partial x} f^{\alpha \prime} \partial_{\beta} \partial_{\alpha} \partial_{\beta} \partial_{\beta} \partial_{\beta} \partial_{\beta} \partial_{\beta} $ $ \frac{\partial}{\partial x} f^{\alpha \prime} \partial_{\beta} \partial_{\beta} \partial_{\beta} \partial_{\beta} \partial_{\beta} \partial_{\beta} \partial_{\beta} \partial_{\beta} $ $ \frac{\partial}{\partial x} f^{\alpha \prime} \partial_{\beta} $ $ \frac{\partial}{\partial x} f^{\alpha \prime} \partial_{\beta} \partial_{$	1 1,7 ° 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 4 4 V L
$\int_{\mathcal{L}} \mathcal{L} \alpha \alpha \alpha \alpha$	
$ \begin{cases} \theta - 4 \\ \theta - 4 \end{cases} $ $ \begin{cases} f^{\alpha} - \\ \partial \alpha f \theta_{I} \end{cases} $ $ \begin{cases} \alpha' + 2 \\ \partial \beta \omega_{i} \end{cases} $ $ \begin{cases} 2 \partial_{\beta} \omega_{i} \end{cases} $ $ \begin{cases} \alpha - \partial_{\theta} v \end{cases} $	$\omega_1^{\#}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\omega_1^{\#}$
$-\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Ouadratic (free) action $S = \iiint (f^{\alpha\beta}) f^{\alpha\beta} \int_{-\alpha\beta} f^{\alpha\beta} \int_{$	
$\omega_1^{\#1} + \alpha$	
$\omega_1^{\sharp 2} \uparrow^{\alpha}$	
$f_{1}^{\#1} + \alpha$	
$\delta \mid \ddot{S} \mid f_1^{\#2} \uparrow^{\alpha}$	

$\omega_{0}^{\#1}$	f#1 0+ f#2 f0+	ω_{0}^{\sharp}	2 <u>ikt1</u>	0				
	$\omega_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1-lpha}^{\sharp 1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1}^{\#1}\alpha$	$f_{1}^{#2}\alpha$	$\sigma_{0}^{\#1}$
$p_{1}^{\#1} + \alpha^{\beta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	
$p_{1}^{\#2} + \alpha^{\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0	τ ^{#2} ₀ +
$^{*1}_{1}^{+}$ † $^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0	$\tau_{0}^{\#1}$
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁	-
$\omega_{1}^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0	$\sigma_{0}^{\#1}$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0	
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	-	0	0	0	

0

	$\sigma_{2}^{\#1}$	$\tau_2^{\#1}$	$\sigma_{2}^{\#1} +$	ı
<u> </u>	0	0	0	$\frac{1}{k^2 r_2 - t_1}$
O	0	0	0	0
. 0	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
. 0	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
ļ	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}$ †

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $\frac{t_1}{r_2} > 0$
Spin: 0
Parity: Odd

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$