Linear Regression-1



Regsession

+ 401.40A

+ 401 YORF 20)

-> 40 LATR LIJ



One Hot Encoding

| Age        | Milage | Make     | Cost     |
|------------|--------|----------|----------|
| 20         | 16     | Masuti   | 201      |
| 30         | 40     | Ford     | 301_     |
| _          | _      | Mazuti   | ~        |
|            | _      | Maruti   |          |
|            | _      | Food     | _        |
| 2 Noke +   | 2 Age  | + Y Mile | ge = cod |
| 2 × Maruti | V      | •        |          |

o Tdingl

Cabel encodique

| J.          |     | ı      |        |      |
|-------------|-----|--------|--------|------|
| School      | Age | Milage | Make   | Cost |
| High school | 20  | 16     | 1      | 201  |
| Graduate    | 311 | 90     | 2      | 301_ |
| Greduati    |     | _      | ۱ ۷    |      |
| Poot Grad   |     | _      | Maruti |      |
| 1001 0040   |     | _      | Ford   | _    |
|             |     | l      | ,      |      |
| Į           | V   |        |        |      |

Marsia > 1 Food > 2

|     |        | •   | า    | 1           | 1        |
|-----|--------|-----|------|-------------|----------|
| Age | Milage |     | Cost | Make_Maroti | Make_For |
| 20  | 16     |     | 201  | 1           | 0        |
| 30  | 40     | 1   | 301_ | 0           | )        |
|     | _      |     | ~    | 1           | ٥        |
| _   | _      |     | _    | 1           | 0        |
| _   | _      |     | _    | 0           | ſ        |
|     |        | · \ |      | ,           |          |

| Age      | Milage   | Make    | Cost | Make_Marin | , I mak. | For BA   | w #1 |
|----------|----------|---------|------|------------|----------|----------|------|
| 20       | 16       | Masuti  | 201  | l.         | C        | <b>⊘</b> | 6    |
| 3 U      | 90       | Foxe    | 301_ | 0          | 1        |          | 0    |
|          | _        | BMW     | _    | O          | O        |          | 0    |
|          | _        | Maruti  |      | <b>k</b>   | O        | 0        | 0    |
| _        | _        | Ford    | _    | 0          |          | U,       | 0    |
| <b>—</b> | <b>—</b> | flunda; | _    | 0          | CV       | 0        | ) (  |

Tagget Encoding

0 to 1

$$x_{scale} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

d → # feature,
m → # sample
n → 2

m \*d

 $\alpha^{i} = [x_{i}^{i}, x_{i}^{i}, \cdots x_{d}^{i}]$ 

Ji Ji Fredicted of

Break: 8:32









CTRL +5

Population UP (120 100 cities Rahul Gardhi Bangalore Rahal Can

M w3x3 + W1X1+W2XL+W0=0

Sim



Google Jeur Ming

 $y \sim \hat{y}$ 



$$x^{i} \xrightarrow{f()} y^{i}$$

$$\hat{y}_{\lambda} = f(x^{i})$$

$$\int_{0}^{0} x^{i} dx$$

$$\sin(x)$$

age, odoneteo

Price = W, \* age evo

gi = wx, +wz12+wo



1 feature (Univariate LR) -> Straigth line 2 -- (Bivariate LR) -> Plane 3D

Mustivasiate (d featurei ) del 1

< w0, w1, w2, \_\_\_, wd>



15 my model Goods

$$y^{i} - \hat{y}^{i} = error_{i}$$

$$min \leq e_{i}$$

$$e_{i}$$

$$e_{i} = 0$$

Square 
$$\Rightarrow \frac{1}{m} \stackrel{m}{\underset{i=0}{\in}} (\hat{y}^{i} - y^{i})^{2} \Rightarrow MSE$$

$$MSE \rightarrow model1=) 21$$

$$\rightarrow model2 \Rightarrow 31$$

0 to 2

 $3 \left[ R^2 \right]$ 

R<sup>2</sup> score -> coeff of determination



$$\frac{SS \text{ residual e}}{SS \text{ total e}} \rightarrow low \rightarrow good$$

$$\frac{SS \text{ high}}{SS \text{ total e}} \rightarrow high \rightarrow bqd$$

$$20) \qquad (1000)$$

$$R^2 = 1 - \frac{SS_{\text{ver}}}{SS_{\text{tof}}}$$

$$f(x)=x^{2}$$



Pick 
$$\chi_0$$
 randomly  $\frac{\partial f}{\partial \chi_0} \Big|_{\chi_0} \Rightarrow \text{tup}$ 

$$3) x_1 = x_0 + \eta \left(-\frac{\lambda f}{\lambda x}\right)_{x : x_y}$$

$$R^2 = 1 - \frac{SS_{\text{ver}}}{SS_{\text{tof}}}$$

$$SSres = \mathcal{E}(y-\hat{y})^{2}$$

$$= 06 \cdot sum(y-y_{-}) \times \times 2$$

$$ss_{-tot} = n \beta \cdot sum (y - y \cdot man()) \times \times 2$$

$$D \Rightarrow \left\{ x^{i}, y^{i} \right\}_{i=1}^{m} \quad x^{i} \in \mathbb{R}^{d}, y^{(i)} \in \mathbb{R}$$

$$\hat{y}^{(i)} \quad s \cdot t \cdot$$

$$\hat{y}^{(i)} = f(x^i) = w^T x^i + w_0$$

$$f(x^i) = w^T x^i + w_0$$

$$L = \min_{w_0, w_1} \frac{1}{m} \underbrace{\mathcal{E}}_{i=1} \left[ y^{(i)} - (w_0 + w_1 x^{(i)}) \right]^2$$

$$(2-3)^2$$

$$L \left( w_{i}, w_{z} \dots, w_{o} \right) = \left( y - \left( w_{z} x_{z} + w_{i} x_{i} + w_{o} \right) \right)^{2}$$

$$\frac{\partial L}{\partial w_0} = -2(y-\hat{y})$$

$$\frac{\partial L}{\partial w_i} = -2(y-\hat{y}) \cdot x_i$$

$$\frac{\partial L}{\partial w_2} = -2 \left( y - \hat{y} \right) \cdot x_2$$

$$\frac{\partial L}{\partial w_0} = \frac{1}{m} \underbrace{\begin{cases} y - \hat{y} \\ -2(y - \hat{y}) \end{cases}}_{i=1}$$

$$\frac{\partial L}{\partial w_0} = \frac{1}{m} \underbrace{\begin{cases} x \\ -2(y - \hat{y}) \\ x \\ x \end{cases}}_{i=1}$$

$$w_0 = w_0 - d \frac{\partial L}{\partial w_0}$$

$$w_d = w_d - \lambda \frac{\partial L}{\partial w_d}$$

$$d = 0.1$$

$$d = 0.1$$

$$d = 0.0$$

$$d = 0.0$$

$$d = 0.0$$

$$\alpha = 0.1 = 0.033$$

$$\alpha = \frac{\alpha}{\eta}$$

$$\frac{\partial L}{\partial w_0} = -2(y-\hat{y})$$

$$\frac{\partial L}{\partial w_i} = -2(y-\hat{y}) \cdot x_1$$

$$\frac{\partial L}{\partial w_{\nu}} = -2 \left( y - \hat{y} \right) \cdot \alpha_{z}$$

Self. 
$$w = self. w - self. leganing_rete \times dw$$
  
 $self. b = self.b - \longrightarrow \times db$ 

$$\frac{1 p \cdot dot}{\chi_{r} V} \xrightarrow{\chi_{r} \chi_{r}} \frac{1}{\chi_{r} V} \xrightarrow{\chi_{r} \chi_{r}} \frac{1}{\chi$$

$$\frac{1}{1 + o lo} \left( - , \forall andom - state = 13 \right)$$



Adjusted R2

N feature 
$$\Rightarrow R^2$$

+

( feature

Adjusted 
$$R^2$$

$$= 1 - \left[ \frac{(1-R^2)(m-1)}{(m-d-1)} \right]$$