Parte 1: Compresión de imágenes con Kmeans

Leer la imagen

```
In [1]: from skimage import io
        from sklearn.cluster import KMeans
        import numpy as np
        #Lee la imagen
        image = io.imread('lena.png') #recuerda cargar la imagen a su notebook en google co
        print('Imagen Original')
        io.imshow(image)
        io.show()
        #Dimensiones de la imagen original
        rows = image.shape[0]
        cols = image.shape[1]
        #Transforma en matriz de Nx3 (N pixeles, 3 características R, G, B)
        image = image.reshape(rows*cols, 3)
        #Matriz Nx3
        #pixel 1: R, G, B
        #pixel 2: R, G, B
        #pixen N: R, G, B
```

Imagen Original

Implementar k-means

```
In [2]:
        #Implementa k-means clustering para k clusters
        print('Calculando k-means')
        k = 2 # número de colores
        kmeans = KMeans(n\_clusters=k) #con n\_clusters = 128 puede demorar unos 5 minutos en
        kmeans.fit(image)
        Calculando k-means
```

/usr/local/lib/python3.9/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarnin g: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the valu e of `n_init` explicitly to suppress the warning warnings.warn(

Out[2]: **KMeans** KMeans(n_clusters=2)

Comprimir imagen

```
In [3]: #Compresión: Reemplaza cada pixel con su centroide más cercano
    print('Comprimiendo la imagen')
    compressed_image = kmeans.cluster_centers_[kmeans.labels_] #cluster_centers_ son la
    compressed_image = np.clip(compressed_image.astype('uint8'), 0, 255)

#Regresamos a la dimensión original filasxcolumnas*3
    compressed_image = compressed_image.reshape(rows, cols, 3)
```

Comprimiendo la imagen

Mostrar Imagen comprimida

```
In [4]: #Guardamos y mostramos la imagen comprimida
print('Imagen comprimida')
io.imsave('compressed_image_8.png', compressed_image)
io.imshow(compressed_image)
io.show()
```

Imagen comprimida

Actividad

Grafique la distorsión (heterogeneidad) en función del número de clusters k. Utilice los siguientes valores para k: 1, 2, 4, 8, 16, 32, 64, 128. Comente sus resultados. A partir de qué valor de k para usted es imperceptible la diferencia entre la imagen original y la comprimida?

Tip: Consulte la ayuda de kmeans para entender donde almacena la distorsión el objeto kmeans https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html . Recuerde que la distorsión no es nada más que la suma de las distancias al cuadrado entre las muestras y su cluster más cercano.

```
In [12]:
         #Implementa k-means clustering para k clusters
         k = [1,2,4,8,16,32,64,128] # número de colores
         distorsion = []
         for i in k:
           print('Calculando k-means para k = ', i)
           kmeans = KMeans(n\_clusters=i) #con n\_clusters = 128 puede demorar unos 5 minutos
           kmeans.fit(image)
           distorsion.append(kmeans.inertia_) #cluster_centers_ son las coord. de los centro
           #Compresión: Reemplaza cada pixel con su centroide más cercano
           print('Comprimiendo la imagen para k = ', i)
           compressed_image = kmeans.cluster_centers_[kmeans.labels_] #cluster_centers_ son
           compressed_image = np.clip(compressed_image.astype('uint8'), 0, 255)
           #Regresamos a la dimensión original filasxcolumnas*3
           compressed_image = compressed_image.reshape(rows, cols, 3)
           #Guardamos y mostramos la imagen comprimida
           print('Imagen comprimida para k = ', i)
           io.imsave('compressed_image_8.png', compressed_image)
           io.imshow(compressed_image)
           io.show()
         Calculando k-means para k =
                                       1
         /usr/local/lib/python3.9/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarnin
         g: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the valu
         e of `n_init` explicitly to suppress the warning
           warnings.warn(
         Comprimiendo la imagen para k = 1
         Imagen comprimida para k = 1
         <ipython-input-12-dd361d070ce0>:20: UserWarning: compressed_image_8.png is a low co
         ntrast image
           io.imsave('compressed_image_8.png', compressed_image)
         /usr/local/lib/python3.9/dist-packages/skimage/io/_plugins/matplotlib_plugin.py:15
```

4 de 24 4/27/2023, 12:53 AM

lo, hi, cmap = _get_display_range(image)

0: UserWarning: Low image data range; displaying image with stretched contrast.

Calculando k-means para k = 2

Comprimiendo la imagen para k = 2

Imagen comprimida para k = 2

Calculando k-means para k = 4

Comprimiendo la imagen para k = 4

Imagen comprimida para k = 4

Calculando k-means para k = 8

Comprimiendo la imagen para k = 8

Imagen comprimida para k = 8

Calculando k-means para k = 16

Comprimiendo la imagen para k = 16

Imagen comprimida para k = 16

Calculando k-means para k = 32

Comprimiendo la imagen para k = 32

Imagen comprimida para k = 32

Calculando k-means para k = 64

Comprimiendo la imagen para k = 64

Imagen comprimida para k = 64

Calculando k-means para k = 128

Comprimiendo la imagen para k = 128

Imagen comprimida para k = 128


```
In [16]: import matplotlib.pyplot as plt

# Plot the two arrays
plt.plot(k, distorsion, '-o',label='Distorsión en función del número de clusters')

# Add a Legend and axis LabeLs
plt.legend()
plt.xlabel('Número de Clusters')
plt.ylabel('Distorsión')

# Show the plot
plt.show()
distorsion
```


Out[16]: [1667696252.483666, 607088451.4581901, 214402412.80558157, 104698631.19235456, 54736935.31049685, 30775993.912985384, 18667160.414809674, 11884878.942435645]

A partir de k=32, a mi parecer, es imperceptible la diferencia entre la imagen original y la comprimida.

Parte 2: Clustering de vinos

En la siguiente actividad se implementará un ejemplo de aprendizaje no supervisado utilizando k-means (Clustering).

Se tiene que agrupar vinos con características similares para esto se debe cargar el archivo características de vinos. La base de datos tiene 178 vinos y sus características como alcohol, alcalinidad, entre otras.

```
In [13]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from sklearn.cluster import KMeans
    vinos=pd.read_csv('caracteristicas_de_vinos.csv',engine='python') #cargue el archiv
    vinos.head()
```

Out[13]:		Vino	Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	Nonflavanoids	Proant
	0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
	1	2	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
	2	3	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
	3	4	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
	4	5	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	

Se elimina la primera columna pues esta es solo un índice

In [14]: vinos_variables=vinos.drop(['Vino'],axis=1)
se describe su media, desviación estandar minimo máximo de cada una de las caract
vinos_variables.describe()

Out[14]:		Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	Nonfla
	count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	17
	mean	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	
	std	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	
	min	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	
	25%	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	
	50%	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	
	75%	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	
	max	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	

A continuación, normalizamos los datos para que sus variables tengan media cero y varianza unitaria. La función StandardScaler es la que nos permite realizar esta normalización

```
In [15]: from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler() #normalizaciòn media cero, varianza 1.
    scaler.fit(vinos_variables)
    vinos_norm = scaler.transform(vinos_variables)
    pd.DataFrame(vinos_norm).describe()
```

Out[15]:

	0	1	2	3	4	5	
count	1.780000e+02	1.780000e+02	1.780000e+02	1.780000e+02	1.780000e+02	178.000000	1.
mean	-8.382808e-16	-1.197544e-16	-8.370333e-16	-3.991813e-17	-3.991813e-17	0.000000	-3
std	1.002821e+00	1.002821e+00	1.002821e+00	1.002821e+00	1.002821e+00	1.002821	1.0
min	-2.434235e+00	-1.432983e+00	-3.679162e+00	-2.671018e+00	-2.088255e+00	-2.107246	-1.
25%	-7.882448e-01	-6.587486e-01	-5.721225e-01	-6.891372e-01	-8.244151e-01	-0.885468	-8
50%	6.099988e-02	-4.231120e-01	-2.382132e-02	1.518295e-03	-1.222817e-01	0.095960	1
75%	8.361286e-01	6.697929e-01	6.981085e-01	6.020883e-01	5.096384e-01	0.808997	8
max	2.259772e+00	3.109192e+00	3.156325e+00	3.154511e+00	4.371372e+00	2.539515	3.0

Actividad

Determine el número de clusters óptimo utilizando la técnica del codo (elbow´s method). Para esto, ejecute k-means para valores de k=1, 2, ... 11 y guarde la distorsión de cada clusterización. Grafique la distorsión en función de K y aplica el método del codo para determinar el valor óptimo de k (número de clusters).

Tip: Consulte la ayuda de kmeans para entender donde almacena la distorsión el objeto kmeans https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html . Recuerde que la distorsión no es nada más que la suma de las distancias al cuadrado entre las muestras y su cluster más cercano.

```
In [16]: # INICIO CÓDIGO]
         from sklearn.preprocessing import StandardScaler
         scaler = StandardScaler() #normalización media cero, varianza 1.
         scaler.fit(vinos variables)
         vinos_norm = scaler.transform(vinos_variables)
         pd.DataFrame(vinos_norm).describe()
         #Implementa k-means clustering para k clusters
         k_vinos = [1,2,3,4,5,6,7,8,9,10,11] # número de colores
         distorsion_vinos = []
         for i in k_vinos:
           print('Calculando k-means para k = ', i)
           kmeans = KMeans(n_clusters=i) #con n_clusters = 128 puede demorar unos 5 minutos
           kmeans.fit(vinos norm)
           distorsion_vinos.append(kmeans.inertia_) #cluster_centers_ son las coord. de los
         #INSERTE AQUÍ EL CÓDIGO SOLICITADO
         import matplotlib.pyplot as plt
         # Plot the two arrays
         plt.plot(k_vinos, distorsion_vinos, '-o', label='Distorsión en función del número d
         # Add a Legend and axis labels
         plt.legend()
         plt.xlabel('Número de Clusters')
         plt.ylabel('Distorsión')
         # Show the plot
         plt.show()
         distorsion_vinos
         #FIN CÓDIGO
         Calculando k-means para k =
         Calculando k-means para k =
         Calculando k-means para k = 3
         Calculando k-means para k = 4
         Calculando k-means para k =
```

```
C:\Users\valex\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cl
uster\_kmeans.py:870: FutureWarning: The default value of `n_init` will change from
10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(
```

C:\Users\valex\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cl uster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

C:\Users\valex\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cl uster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

C:\Users\valex\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cl uster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

C:\Users\valex\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cl uster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

Calculando k-means para k =

C:\Users\valex\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cl uster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

C:\Users\valex\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cl uster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

C:\Users\valex\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cl uster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

C:\Users\valex\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cl uster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

Calculando k-means para k = 10

Calculando k-means para k = 11

C:\Users\valex\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cl uster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

C:\Users\valex\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cl uster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(


```
Out[16]: [2314.0000000000005,
1658.7588524290954,
1277.928488844642,
1175.501001765632,
1109.6012330598774,
1044.6650567512286,
998.2141113244717,
947.3250902204838,
898.5181362452325,
858.9480635833289,
835.7357179582076]
```

Por la gráfica obtenida, haciendo uso del método del codo, se presume que el valor óptimo de k es 3.

Una vez determinado el número de clusters óptimo de acuerdo al método del codo, vamos a ejecutar de nuevo kmeans con dicho valor. En este apartado, usted solo tiene que asignar el valor de k obtenido del análisis anterior a la variable no del siguiente bloque:

```
In [17]: nc= 3 ##### Coloque aquí el valor de k obtenido con el método del codo del apartado
    clustering = KMeans(n_clusters=nc, max_iter=300)
    clustering.fit(vinos_norm)
    vinos['KMeans_Clusters']=clustering.labels_ #creamos una columna con la etiqueta in
    vinos
```

C:\Users\valex\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cl
uster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from
10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(

Out[17]:		Vino	Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	Nonflavanoids	Proa
	0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
	1	2	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
	2	3	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
	3	4	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
	4	5	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
	•••										
	173	174	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	
	174	175	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	
	175	176	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	
	176	177	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	
	177	178	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	

178 rows × 15 columns

Con el fin de graficar los cluster se utilizará el algortimo PCA para visualizar los datos a graficar

```
In [18]: from sklearn.decomposition import PCA

pca=PCA(n_components=2)
pca_vinos=pca.fit_transform(vinos_norm)
pca_vinos_df = pd.DataFrame(data=pca_vinos, columns =['Componente_1', 'Componente_2')
pca_nombres_vinos= pd.concat([pca_vinos_df, vinos[['KMeans_Clusters']]], axis=1)
pca_nombres_vinos
```

Out[18]:		Componente_1	Componente_2	KMeans_Clusters
	0	3.316751	-1.443463	1
	1	2.209465	0.333393	1
	2	2.516740	-1.031151	1
	3	3.757066	-2.756372	1
	4	1.008908	-0.869831	1
	•••			
	173	-3.370524	-2.216289	2
	174	-2.601956	-1.757229	2
	175	-2.677839	-2.760899	2
	176	-2.387017	-2.297347	2
	177	-3.208758	-2.768920	2

178 rows × 3 columns

Una vez realizado PCA se realizará la gráfica de los cluster

```
In [19]: fig = plt.figure(figsize=(6,6))

ax=fig.add_subplot(1,1,1)
ax.set_xlabel('Compomente 1', fontsize=15)
ax.set_ylabel('Compomente 2', fontsize=15)
ax.set_title('Componentes principales', fontsize=20)

color_theme = np.array(['blue', 'green', 'orange', 'black', 'yellow','cyan','magent
ax.scatter(x=pca_nombres_vinos.Componente_1, y = pca_nombres_vinos.Componente_2, c=
plt.show
```

Out[19]: <function matplotlib.pyplot.show(close=None, block=None)>

Parte 3: Kmeans++

Investigue qué es K-means++ y la diferencia con k-means

Kmeans++ es una modificación del algoritmo Kmeans para clustering. La principal diferencia entre Kmeans y Kmeans++ es la forma en que seleccionan los centroides de los clusters iniciales.

Cuando solamente se usa Kmeans, los centroides iniciales se seleccionan aleatoriamente, tomando como base la data. Por otra parte, Kmeans++ realiza un proceso un poco diferente:

- Primero coloca el primer centroide de los clusters aleatoriamente a partir de los puntos de datos.
- Luego (para cada punto de datos) calcula la distancia que existe entre este y el centroide más cercano.
- A continuación coloca el siguiente centroide aleatoriamente pero le agrega una probabilidad proporcional al cuadrado de la distancia al centroide más cercano que encontró anteriormente.

De esta manera, al utilizar Kmeans++, existe una mayor probabilidad de encontrar clusters y centroides óptimos que no sean tan afectados por la aleatoriedad como lo eran con Kmeans.

Rerefencias:

- Arthur, D., & Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding.
 Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 1027-1035.
- Scikit-learn documentation on Kmeans and Kmeans++: https://scikit-learn.org/stable /modules/clustering.html#k-means

Parte 4: BIC AIC

Repetir la Parte 2 pero use las métricas BIC y AIC para determinar el número de clusters.

```
In [20]:
         from sklearn.cluster import KMeans
         import numpy as np
         from sklearn import metrics
         from sklearn.cluster import KMeans
         from sklearn.mixture import GaussianMixture
         #Implementa k-means clustering para k clusters
         k_vinos_bic_aic = [1,2,3,4,5,6,7,8,9,10,11] # número de colores
         distorsion vinos bic = []
         distorsion_vinos_aic = []
         for i in k vinos:
             # Fit KMeans models for each k value and calculate BIC and AIC
             print('Calculando BIC y AIC para k = ', i)
             #kmeans = KMeans(n clusters=i) #con n clusters = 128 puede demorar unos 5 minut
             #kmeans.fit(vinos norm)
             #distorsion_vinos_bic.append(metrics.bic(vinos_norm, kmeans.labels_))
             #distorsion vinos aic.append(metrics.aic(vinos norm, kmeans.labels ))
             gmm = GaussianMixture(n_components=i, init_params='kmeans')
             gmm.fit(vinos_norm)
             distorsion vinos bic.append(gmm.bic(vinos norm))
             distorsion vinos aic.append(gmm.aic(vinos norm))
         # Plot the BIC and AIC scores as a function of cluster number
         import matplotlib.pyplot as plt
         plt.plot(k_vinos, distorsion_vinos_bic, 'o-', label='BIC')
         plt.plot(k_vinos, distorsion_vinos_aic, 'o-', label='AIC')
         plt.xlabel('Numero de clusters')
         plt.legend()
         plt.show()
         Calculando BIC y AIC para k =
                                          10
         Calculando BIC y AIC para k =
                                          11
```


Parte 5: Conclusiones

Concluya su trabajo de acuerdo a sus observaciones de los experimentos realizados.

Debido a que, utilizando el criterio de BIC y AIC, el valor menor es mejor, se puede concluir que:

- Según el criterio BIC, el valor óptimo de k sería 2.
- Según el criterio AIC, el valor óptimo de k sería 11.

Referencias para el código:

• https://datascience.oneoffcoder.com/kmc-bic-aic.html

In []: