

Computation Structures 3: Computer Organization

<u>Help</u>

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u>

Course / 16. Virtual Memory / Lecture Videos (49:01)

LE16.3.1: Page Map Arithmetic

0.0/1.0 point (ungraded)

Consider a virtual memory system that uses a single-level page map to translate virtual addresses into physical addresses. Each of the questions below asks you to consider what happens when **just ONE of the design parameters** (page size, virtual memory size, physical memory size) of the original system is changed. Select the correct answer.

1.	If the	physical memory size (in bytes) is doubled, the number of entries in the page table
		stays the same
		doubles
		is reduced by half
		increases by one
		decreases by one
2.	If the	page size (in bytes) is halved, the number of entries in the page table
		stays the same
		doubles
		is reduced by half
		increases by one
		decreases by one
3.	If the	virtual memory size (in bytes) is doubled, the number of bits in each entry of the page table
		stays the same
		doubles
		is reduced by half
		increases by one
		decreases by one
4.	If the	page size (in bytes) is doubled, the number of bits in each entry of the page table
		stays the same
		doubles
		is reduced by half

) phys are sh		-	Lecture Videos (49:01) 16. Virtual Memory Computation Structures 3: Computer Organization edX ges where each page contains 1024 ($\mathbf{2^{10}}$) bytes. The first 8 entries of the current page elow:	map
i	ndex	D	R	PPN	
	0	1		0x22	
,	1	0	1	0x01	
:	2		0		
;	3	0	1	0x02	
•	4	1	1	0x03	
!	5		0		
	6	1			
	7	0	1	0x04	
	 What i	s th	ie to	otal number of bits in the page map?	
	Total r	num	nbe	r of bits in the page map (you can express your answer as a mathematical expression	n like
:	2.5*2	^7, 1	for	example):	
6. \	Which	ad	dre	ss bits from the CPU are used to choose an entry from the page table?	
	Addre	ss l	oits	s used to choose page table entry: A[:	1
7. '	What i	s th	е р	physical address for the word at virtual location 0x1234?	
	Physic	cal a	add	Iress for byte at virtual address 0x1234: 0x	
8. \	What a	acti	on (caused the D bit for page 6 to be 1?	
		A L	Dο	of address 0x1856	
		A L	Dο	of virtual page 6.	
	\bigcirc	A S	T ir	nstruction wrote to a location in physical page 6.	
		A S	T ir	nstruction wrote to a location in virtual page 6.	
Subi	mit				
LE16.	3.2:	Me	em	ory access time	
=	gemap	o re	side	d) es to main memory and accessed via a translation lookaside buffer (TLB). Each main me and each TLB access takes 10 ns. Each virtual memory access involves:	emory
• map	oping	VPI	ا to	PPN using TLB [10 ns]	
• if T	LB mis	ss: r	map	oping VPN to PPN using page map in main memory [50 ns]	
• acc	essing	g ma	ain	memory at appropriate physical address [50 ns]	
	-		_	faults (i.e., all virtual memory pages are resident) what TLB hit rate is required for an ave ess time of 61 ns?	erage
TLB hit	rate f	or 6	61 n	s access time:	

Submit

LE16.3.3: TLB

0.0/1.0 point (ungraded)

Consider a system with 40-bit virtual addresses, 36-bit physical addresses, and 64 KB (2¹⁶ bytes) pages. The system uses a page map to translate virtual addresses to physical addresses; each page map entry includes dirty (D) and resident (R) bits.

1. Assuming a flat page map, what is the size of each page map entry, and how many entries does the page map have? You can express your answers as mathematical expressions if you like, e.g., 10*(2^17).

Size of page map entry in bits: 22 Answer: 22

Explanation

Physical addresses are 36 bits long. 16 of those bits are used for the page offset, so 20 bits are used for the PPN. In addition, we need a dirty bit and a resident bit per page map entry, so we end up with 22 bits per entry.

Number of entries in the page map: 2**24 Answer: 2^24

Explanation

Virtual addresses are 40 bits long. 16 of those bits are used for the page offset, so 24 bits are used for the VPN. Since we need one entry per virtual page in the page map, that means that we have 2^{24} entries in the page map.

2. If we changed the system to use 16 KB (2¹⁴ bytes) pages instead of 64 KB pages, how would the number of entries in the page map change? Please give the ratio of the new size to the old size.

(# entries with 16 KB pages) / (# entries with 64 KB pages): 4 Answer: 4

Explanation

If the page size goes down by a factor of 4 while the virtual memory size remains the same, that means that there must be 4 times as many virtual pages.

Assume 64 KB pages for the rest of this exercise.

3. The contents of the page map and TLB are shown below. The page map uses an LRU replacement policy, and the LRU page (shown below) will be chosen for replacement. For each of these four accesses, compute its corresponding physical address and indicate whether the access causes a TLB miss and/or a page fault. Assume each access starts with the TLB and Page Map state shown below.

TLB:

VPN(tag)	V	D	PPN
0x0	1	0	0xBE7A
0x3	0	0	0x7
0x5	1	1	0xFF
0x2	1	0	0x900

Page Table:

VPN	D	R	PPN
0x0	0	1	0xBE7A
0x1		0	
0x2	0	1	0x900
$LRU \rightarrow 0x3$	0	1	8x0
0x4		0	
0x5	1	1	0xFF

0x6 0 1 0x70

Fill in the table below

Explanation

VA 0x06004: VPN = 0x0, page offset = 0x6004. Results in TLB hit which provides PPN = 0xBE7A. A TLB hit also means that there was no page fault because the page is in main memory. Our physical address is produced by concatenating the VPN with the page offset. Since the page offset happens to be a multiple of 4, it's easy to do in hex. So physical address = 0xBE7A6004.

VA 0x30286: VPN = 0x3, page offset = 0x0286. Although there is an entry for VPN 0x3 in the TLB, it's valid bit is 0, so it cannot be used. So we look it up in the page map instead. There we find a resident page with PPN = 0x8. Concatenating the two together results in a physical address of 0x80286. This example showed a TLB miss together with a page map hit (i.e., no page fault).

VA 0x68030: VPN = 0x6, page offset = 0x8030. Looking up page 6 in the TLB results in a TLB miss. Looking it up in the page map results in a hit with a resulting PPN of 0x70. So the physical address is 0x708030.

VA 0x4BEEF: VPN = 0x4, page offset = 0xBEEF. Looking up page 4 in the TLB results in a TLB miss. Looking up page 4 in the page map also results in a miss. This means that we have a page fault in this case and must bring the page into main memory. In order to do that, we must first remove the LRU page from main memory. The LRU page is VPN 3 whose dirty bit is 0, so the page does not need to be written back to disk. We set it's resident bit to 0, and now we can use physical page 0x8 for VPN 4. We set the R bit for VPN 4 to 1, and the PPN to 0x8. So the resulting PPN is 8, and the resulting physical address is 0x8BEEF.

Submit

Answers are displayed within the problem

Discussion

Topic: 16. Virtual Memory / LE16.3

Add a Post

Show all posts

Physical page number outnumbers virtual page number
Physical page number outnumbers virtual page number in LE16.3.1. How is that possible?

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2024 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>