Environmental class practice mathematics

- 1. Find the $\overline{M.W}$ of the gas mixture which contains 10 kg O₂, 20 kg N₂, 30 kg H₂ and 15 Kg NH₃. (16 O, 14 N, 1 H)
- 2. 10 charcoal (¹²C) is to be burnt with required amount of air to produce CO₂ only. Find
 - a. Amour of air required (Kg)
 - b. CO₂ amount produced (Kg)
 - c. $\overline{M.W}$ of the exit gas stream.
- 3. 10 charcoal (¹²C) is to be burnt with 20% more air than required to produce CO₂ only. Find
 - a. CO₂ amount produced (Kg)
 - b. $\overline{M.W}$ of the exit gas stream.
- 4. 10kg charcoal (¹²C) and 20 kg air reacts together to produce CO₂ only. Find-
- a. Amour of air required (Kg)
- b. CO₂ amount produced (Kg)
- c. $\overline{M.W}$ of the exit gas stream.
- 5. 10 kg charcoal (¹²C) is is to be burnt with required amount of air. 70% (mole) of the Charcoal converts to CO₂ and rests to CO. Find-
- a. Amount of air required (Kg)
- b. CO₂ and CO amount produced (Kg)
- c. $\overline{M.W}$ of the exit gas stream.
- 6. 10 kg heptane (C₇H₁₆) is to be burnt with 50% more air than required to produce CO₂ only. Find-
- a. CO₂ amount produced (Kg)
- b. $\overline{M.W}$ of the exit gas stream.