Homework by Chenye Jin. Written in JupyterLab & LATEX.

给定一组数据点 $(x_0,y_0),(x_1,y_1),\ldots,(x_n,y_n)$,拉格朗日插值的目标是找到一个 n 次多项式 P(x),使得它经过所有这些数据点,即 $P(x_i)=y_i (i=0,1,\ldots,n)$ 。

Given a set of data points $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$, the goal of Lagrange interpolation is to find an n th degree polynomial P(x) such that it passes through all these data points, i.e., $P(x_i) = y_i (i = 0, 1, \dots, n)$.

这个n次多项式P(x)就被表示为W(x), 其解析表达式为:

This n th degree polynomial P(x) is represented as W(x), whose analytical expression is:

$$W(x) = \Sigma(i=0->n)y_i * L_i(x)$$

其中 $L_i(x)$ 是拉格朗日基底多项式, 定义为:

Where $L_i(x)$ is the Lagrange basis polynomial, defined as:

$$L_i(x) = \Pi(j=0->n, j!=i)(x-x_j)/(x_i-x_j)$$

The following is my code implementation: (以下是我的代码实现:)

```
term *= (x - points[i][0]) / (points[i][0] - points[i][0])
                         # every time upline executed, term just multiply L[j](x)
                # so when code comes here, term just = y[i] * L[1](x) * L[2](x) * ... * L[n](x)
                 result += term
                # and then we sum up the term onto the final result
             return result
        # format: (x,y) tuples in points list
        example points = [(1, 3), (2, 5), (3, 7)]
        # so we define langrange interpolation upper here
        # and we define a function in order to combine xy arrays easily
        def combine xy(x, y):
            if len(x) != len(y):
                 raise ValueError("Input lists must have the same length.")
            points = []
            for i in range(len(x)):
                points.append((x[i], y[i]))
            return points
In [ ]: import numpy as np
        import pandas as pd
        # homework functions
        f1 = lambda x: np.abs(x)
        f2 = lambda x: np.exp(np.abs(x))
        # define interpolation nodes and function vals
        X = [-5.0, 0.0, 5.0]
        Yf1 a = [f1(x) \text{ for } x \text{ in } X \text{ a}]
```

Yf2 a = [f2(x) for x in X a]

X c = [-5.0, -2.0, 0.0, 2.0, 5.0]

X_b = [-10.0, 0.0, 10.0] Yf1_b = [f1(x) for x in X_b] Yf2 b = [f2(x) for x in X b]

```
Yf1 c = [f1(x) \text{ for } x \text{ in } X \text{ c}]
Yf2 c = [f2(x) for x in X c]
X d = [-9.0, -5.0, 0.0, 5.0, 9.0]
Yf1 d = [f1(x) for x in X d]
Yf2 d = [f2(x) for x in X d]
X = [-10.0, -9.0, -5.0, -2.0, -1.0, 0.0, 1.0, 2.0, 5.0, 9.0, 10.0]
Yf1 e = [f1(x) \text{ for } x \text{ in } X \text{ e}]
Yf2 e = [f2(x) \text{ for } x \text{ in } X \text{ e}]
# create data frames
df a = pd.DataFrame({"X": X a, "f(x) = abs(x)": Yf1 a, "f(x) = exp(abs(x))": Yf2 a})
df b = pd.DataFrame(\{"X": X b, "f(x) = abs(x)": Yf1 b, "f(x) = exp(abs(x))": Yf2 b\})
df c = pd.DataFrame(\{"X": X c, "f(x) = abs(x)": Yf1_c, "f(x) = exp(abs(x))": Yf2_c\})
df d = pd.DataFrame(\{"X": X d, "f(x) = abs(x)": Yf1 d, "f(x) = exp(abs(x))": Yf2 d\})
df e = pd.DataFrame({"X": X e, "f(x) = abs(x)": Yf1 e, "f(x) = exp(abs(x))": Yf2 e})
# display them all
print("Interpolation Nodes and Function Values:")
display(df a)
display(df b)
display(df c)
display(df d)
display(df e)
```

Interpolation Nodes and Function Values:

	Χ	f(x) = abs(x)	f(x) = exp(abs(x))
0	-5.0	5.0	148.413159
1	0.0	0.0	1.000000
2	5.0	5.0	148.413159

	Х	f(x) = abs(x)	f(x) = exp(abs(x))
0	-10.0	10.0	22026.465795
1	0.0	0.0	1.000000
·	10.0	10.0	
_	10.0	10.0	22020.403743
	Χ	f(x) = abs(x)	f(x) = exp(abs(x))
0	-5.0	5.0	148.413159
1	-2.0	2.0	7.389056
2	0.0	0.0	1.000000
3	2.0	2.0	7.389056
4	5.0	5.0	148.413159
	X	f(x) = abs(x)	f(x) = exp(abs(x))
0	-9.0	9.0	8103.083928
1	-5.0	5.0	148.413159
2	0.0	0.0	1.000000
3	5.0	5.0	148.413159
4	9.0	9.0	8103.083928

	X	f(x) = abs(x)	f(x) = exp(abs(x))
0	-10.0	10.0	22026.465795
1	-9.0	9.0	8103.083928
2	-5.0	5.0	148.413159
3	-2.0	2.0	7.389056
4	-1.0	1.0	2.718282
5	0.0	0.0	1.000000
6	1.0	1.0	2.718282
7	2.0	2.0	7.389056
8	5.0	5.0	148.413159
9	9.0	9.0	8103.083928
10	10.0	10.0	22026.465795

```
In []: eval_x_values = np.arange(-10, 11)
# define the x values as the homework told [-10, -9 ... 9, 10]
print(f"Xvalues:\n{eval_x_values}")
```

Xvalues:

我使用每对 $(X_{a,b,c,d,e},Y_{f1,f2})$ 值得到了10个插值函数,并使用这些函数来计算 $X=[-10,-9,\ldots,9,10]$ 的 W(X) 值。以下是我的代码实现:

I get interpolation functions with each $(X_{a,b,c,d,e},Y_{f1,f2})$ values. and use those 10 functions to obtain the X=[-10,-9...9,10]'s W(X) values. My code implementation is here:

```
In [ ]: \# now calculate W(x) the assignment requested
```

```
# Evaluation points
x = np.arange(-10, 11)
# Combine interpolation nodes and function values into tuples
points f1 a = combine xy(X a, Yf1 a)
points f2 a = combine xy(X a, Yf2 a)
points f1 b = combine xy(X b, Yf1 b)
points f2 b = combine xy(X b, Yf2 b)
points f1 c = combine xy(X c, Yf1 c)
points f2 c = combine xy(X c, Yf2 c)
points f1 d = combine xy(X d, Yf1 d)
points f2 d = combine xy(X d, Yf2 d)
points f1 e = combine xy(X e, Yf1 e)
points f2 e = combine xy(X e, Yf2 e)
# Compute the interpolation polynomials for each set of data
W f1 a = [lagrange interpolation(x val, points f1 a) for x val in x]
W f2 a = [lagrange interpolation(x val, points f2 a) for x val in x]
W f1 b = [lagrange interpolation(x val, points f1 b) for x val in x]
W f2 b = [lagrange interpolation(x val, points f2 b) for x val in x]
W f1 c = [lagrange interpolation(x val, points f1 c) for x val in x]
W f2 c = [lagrange interpolation(x val, points f2 c) for x val in x]
W f1 d = [lagrange interpolation(x val, points f1 d) for x val in x]
W f2 d = [lagrange interpolation(x val, points f2 d) for x val in x]
W f1 e = [lagrange interpolation(x val, points f1 e) for x val in x]
W f2 e = [lagrange interpolation(x val, points f2 e) for x val in x]
# Create a DataFrame to display the results
data1 = {
'X': X,
W(x): f(x) = abs(x), X a': W f1 a,
W(x): f(x) = abs(x), X b': W f1 b,
```

```
'W(x): f(x) = abs(x), X_c': W_f1_c,
'W(x): f(x) = abs(x), X_d': W_f1_d,
'W(x): f(x) = abs(x), X_e': W_f1_e
}
data2 = {
    'x': x,
    'W(x): f(x) = exp(abs(x)), X_a': W_f2_a,
    'W(x): f(x) = exp(abs(x)), X_b': W_f2_b,
    'W(x): f(x) = exp(abs(x)), X_c': W_f2_c,
    'W(x): f(x) = exp(abs(x)), X_d': W_f2_d,
    'W(x): f(x) = exp(abs(x)), X_d': W_f2_e,
    'W(x): f(x) = exp(abs(x)), X_e': W_f2_e
}
df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
display(df1)
display(df2)
```

	X	$W(x): f(x) = abs(x), X_a$	$W(x): f(x) = abs(x), X_b$	$W(x): f(x) = abs(x), X_c$	$W(x): f(x) = abs(x), X_d$	$W(x)$: $f(x) = abs(x)$, X_e
0	-10	20.0	10.0	-87.142857	8.095238	10.000000
1	-9	16.2	8.1	-48.600000	9.000000	9.000000
2	-8	12.8	6.4	-22.857143	8.838095	75.964894
3	-7	9.8	4.9	-7.000000	7.933333	70.461435
4	-6	7.2	3.6	1.542857	6.571429	32.448120
5	-5	5.0	2.5	5.000000	5.000000	5.000000
6	-4	3.2	1.6	5.257143	3.428571	-2.421873
7	-3	1.8	0.9	3.857143	2.028571	0.048202
8	-2	0.8	0.4	2.000000	0.933333	2.000000
9	-1	0.2	0.1	0.542857	0.238095	1.000000
10	0	0.0	0.0	0.000000	0.000000	0.000000
11	1	0.2	0.1	0.542857	0.238095	1.000000
12	2	0.8	0.4	2.000000	0.933333	2.000000
13	3	1.8	0.9	3.857143	2.028571	0.048202
14	4	3.2	1.6	5.257143	3.428571	-2.421873
15	5	5.0	2.5	5.000000	5.000000	5.000000
16	6	7.2	3.6	1.542857	6.571429	32.448120
17	7	9.8	4.9	-7.000000	7.933333	70.461435
18	8	12.8	6.4	-22.857143	8.838095	75.964894
19	9	16.2	8.1	-48.600000	9.000000	9.000000

 $x W(x): f(x) = abs(x), X_a W(x): f(x) = abs(x), X_b W(x): f(x) = abs(x), X_c W(x): f(x) = abs(x), X_d W(x): f(x) = abs(x), X_e$ 20 10 20.0 10.0 -87.142857 8.095238 10.000000

	X	$W(x): f(x) = exp(abs(x)), X_a$	$W(x): f(x) = exp(abs(x)), X_b$	$W(x): f(x) = exp(abs(x)), X_c$	$W(x): f(x) = exp(abs(x)), X_d$	$W(x): f(x) = exp(abs(x)),$ X_e
0	-10	590.652636	22026.465795	2126.103472	13197.242074	22026.465795
1	-9	478.618635	17841.627294	1407.259301	8103.083928	8103.083928
2	-8	378.377687	14097.298109	889.375725	4573.850652	2934.593021
3	-7	289.929792	10793.478239	530.688483	2266.643016	1081.544334
4	-6	213.274949	7930.167686	294.346753	878.902871	406.136598
5	-5	148.413159	5507.366449	148.413159	148.413159	148.413159
6	-4	95.344422	3525.074527	65.863766	-146.702095	50.995349
7	-3	54.068737	1983.291922	24.588081	-187.977780	17.988978
8	-2	24.586105	882.018632	7.389056	-116.607696	7.389056
9	-1	6.896526	221.254658	1.983084	-33.444560	2.718282
10	0	1.000000	1.000000	1.000000	1.000000	1.000000
11	1	6.896526	221.254658	1.983084	-33.444560	2.718282
12	2	24.586105	882.018632	7.389056	-116.607696	7.389056
13	3	54.068737	1983.291922	24.588081	-187.977780	17.988978
14	4	95.344422	3525.074527	65.863766	-146.702095	50.995349
15	5	148.413159	5507.366449	148.413159	148.413159	148.413159
16	6	213.274949	7930.167686	294.346753	878.902871	406.136598
17	7	289.929792	10793.478239	530.688483	2266.643016	1081.544334
18	8	378.377687	14097.298109	889.375725	4573.850652	2934.593021

```
9
                         478.618635
      19
                                            17841.627294
                                                                   1407.259301
                                                                                         8103.083928
                                                                                                              8103.083928
       20 10
                         590.652636
                                            22026.465795
                                                                   2126.103472
                                                                                        13197.242074
                                                                                                             22026.465795
In [ ]: # try with scipy one
        # results seems like same with mine algorithm
        import numpy as np
        import pandas as pd
        from scipy.interpolate import lagrange
        x = np.arange(-10, 11)
        points f1 a = np.column stack((X a, Yf1 a))
        points f2 a = np.column stack((X a, Yf2 a))
        points f1 b = np.column stack((X b, Yf1 b))
        points f2 b = np.column stack((X b, Yf2 b))
        points f1 c = np.column stack((X c, Yf1 c))
        points f2 c = np.column stack((X c, Yf2 c))
        points f1 d = np.column stack((X d, Yf1 d))
        points f2 d = np.column stack((X d, Yf2 d))
        points f1 e = np.column stack((X e, Yf1 e))
        points f2 e = np.column stack((X e, Yf2 e))
        W f1 a = [lagrange(points f1 a[:, 0], points f1 a[:, 1])(xi) for xi in x]
        W f2 a = [lagrange(points f2 a[:, 0], points f2_a[:, 1])(xi) for xi in x]
        W f1 b = [lagrange(points f1 b[:, 0], points f1 b[:, 1])(xi) for xi in x]
        W f2 b = [lagrange(points f2 b[:, 0], points f2 b[:, 1])(xi) for xi in x]
        W f1 c = [lagrange(points f1 c[:, 0], points f1 c[:, 1])(xi) for xi in x]
        W f2 c = [lagrange(points f2 c[:, 0], points f2 c[:, 1])(xi) for xi in x]
```

Χb

Х

exp(abs(x)), X a

 $W(x): f(x) = W(x): f(x) = \exp(abs(x)), \quad W(x): f(x) = \exp(abs(x)), \quad W(x): f(x) = \exp(abs(x)),$

Хс

Χd

Хe

```
W f1 d = [lagrange(points f1 d[:, 0], points f1 d[:, 1])(xi) for xi in x]
W f2 d = [lagrange(points f2 d[:, 0], points f2 d[:, 1])(xi) for xi in x]
W f1 e = [lagrange(points f1 e[:, 0], points f1 e[:, 1])(xi) for xi in x]
W f2 e = [lagrange(points f2 e[:, 0], points f2 e[:, 1])(xi) for xi in x]
data1 = {
    'X': X,
    'W(x): f(x) = abs(x), X a': W f1 a,
    'W(x): f(x) = abs(x), X b': W f1 b,
    'W(x): f(x) = abs(x), X c': W f1 c,
    'W(x): f(x) = abs(x), X d': W f1 d,
    'W(x): f(x) = abs(x), X e': W f1 e
data2 = {
    'X': X,
    W(x): f(x) = \exp(abs(x)), X a': W f2 a,
    W(x): f(x) = \exp(abs(x)), X b': W f2 b,
    W(x): f(x) = \exp(abs(x)), X c': W f2 c,
    'W(x): f(x) = exp(abs(x)), X d': W f2 d,
    W(x): f(x) = \exp(abs(x)), X e': W f2 e
df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
display(df1)
display(df2)
```

	X	$W(x): f(x) = abs(x), X_a$	$W(x): f(x) = abs(x), X_b$	$W(x): f(x) = abs(x), X_c$	$W(x): f(x) = abs(x), X_d$	$W(x)$: $f(x) = abs(x)$, X_e
0	-10	20.0	10.0	-87.142857	8.095238	10.000000
1	-9	16.2	8.1	-48.600000	9.000000	9.000000
2	-8	12.8	6.4	-22.857143	8.838095	75.964894
3	-7	9.8	4.9	-7.000000	7.933333	70.461435
4	-6	7.2	3.6	1.542857	6.571429	32.448120
5	-5	5.0	2.5	5.000000	5.000000	5.000000
6	-4	3.2	1.6	5.257143	3.428571	-2.421873
7	-3	1.8	0.9	3.857143	2.028571	0.048202
8	-2	0.8	0.4	2.000000	0.933333	2.000000
9	-1	0.2	0.1	0.542857	0.238095	1.000000
10	0	0.0	0.0	0.000000	0.000000	0.000000
11	1	0.2	0.1	0.542857	0.238095	1.000000
12	2	0.8	0.4	2.000000	0.933333	2.000000
13	3	1.8	0.9	3.857143	2.028571	0.048202
14	4	3.2	1.6	5.257143	3.428571	-2.421873
15	5	5.0	2.5	5.000000	5.000000	5.000000
16	6	7.2	3.6	1.542857	6.571429	32.448120
17	7	9.8	4.9	-7.000000	7.933333	70.461435
18	8	12.8	6.4	-22.857143	8.838095	75.964894
19	9	16.2	8.1	-48.600000	9.000000	9.000000

 $x W(x): f(x) = abs(x), X_a W(x): f(x) = abs(x), X_b W(x): f(x) = abs(x), X_c W(x): f(x) = abs(x), X_d W(x): f(x) = abs(x), X_e$ 20 10 20.0 10.0 -87.142857 8.095238 10.000000

	X	$W(x): f(x) = exp(abs(x)), X_a$	$W(x): f(x) = exp(abs(x)), X_b$	$W(x): f(x) = exp(abs(x)), X_c$	$W(x): f(x) = exp(abs(x)), X_d$	$W(x): f(x) = exp(abs(x)),$ X_e
0	-10	590.652636	22026.465795	2126.103472	13197.242074	22026.465795
1	-9	478.618635	17841.627294	1407.259301	8103.083928	8103.083928
2	-8	378.377687	14097.298109	889.375725	4573.850652	2934.593021
3	-7	289.929792	10793.478239	530.688483	2266.643016	1081.544334
4	-6	213.274949	7930.167686	294.346753	878.902871	406.136598
5	-5	148.413159	5507.366449	148.413159	148.413159	148.413159
6	-4	95.344422	3525.074527	65.863766	-146.702095	50.995349
7	-3	54.068737	1983.291922	24.588081	-187.977780	17.988978
8	-2	24.586105	882.018632	7.389056	-116.607696	7.389056
9	-1	6.896526	221.254658	1.983084	-33.444560	2.718282
10	0	1.000000	1.000000	1.000000	1.000000	1.000000
11	1	6.896526	221.254658	1.983084	-33.444560	2.718282
12	2	24.586105	882.018632	7.389056	-116.607696	7.389056
13	3	54.068737	1983.291922	24.588081	-187.977780	17.988978
14	4	95.344422	3525.074527	65.863766	-146.702095	50.995349
15	5	148.413159	5507.366449	148.413159	148.413159	148.413159
16	6	213.274949	7930.167686	294.346753	878.902871	406.136598
17	7	289.929792	10793.478239	530.688483	2266.643016	1081.544334
18	8	378.377687	14097.298109	889.375725	4573.850652	2934.593021

```
W(x): f(x) = W(x): f(x) = \exp(abs(x)), W(x): f(x) = \exp(
                                                     Х
                                                                                                                                       exp(abs(x)), X a
                                                                                                                                                                                                                                                                                                                                                                                                                                                       Χb
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Хc
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Χd
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Хe
19 9
                                                                                                                                                                           478.618635
                                                                                                                                                                                                                                                                                                                                                                     17841.627294
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1407.259301
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        8103.083928
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      8103.083928
                                                                                                                                                                            590.652636
                                                                                                                                                                                                                                                                                                                                                                     22026.465795
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2126.103472
  20 10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               13197.242074
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             22026.465795
```

```
In []: import matplotlib.pyplot as plt
        plt.figure(figsize=(8, 6))
        plt.title('Interpolation for f1(x)')
        plt.xlabel('x')
        plt.ylabel('W(x)')
        for key, value in data1.items():
            if key != 'x':
                label = W(x): "+ key.split(': ')[1]
                plt.scatter(data1['x'], value, label=label)
        x \text{ for original = np.arange}(-10,10.01,0.01)
        plt.plot(x for orignal, [f1(x) for x in x for orignal], label = "f(x) = abs(x)")
        plt.legend()
        plt.grid(True)
        plt.show()
        plt.figure(figsize=(8, 6))
        plt.title('Interpolation for f2(x)')
        plt.xlabel('x')
        plt.ylabel('W(x)')
        for key, value in data2.items():
            if key != 'x':
                label = W(x): "+ key.split(': ')[1]
                plt.scatter(data2['x'], value, label=label)
        plt.plot(x for orignal, [f2(x) for x in x for orignal], label = "f(x) = \exp(abs(x))")
```

plt.legend()
plt.grid(True)
plt.show()

Interpolation for f2(x)


```
In []: # batchly get the f1, f2 values with numpy

f1_a = np.abs(x)
f2_a = np.exp(np.abs(x))

f1_b = np.abs(x)
f2_b = np.exp(np.abs(x))
```

```
f1 c = np.abs(x)
f2 c = np.exp(np.abs(x))
f1 d = np.abs(x)
f2 d = np.exp(np.abs(x))
f1 e = np.abs(x)
f2 e = np.exp(np.abs(x))
# calculate relative error and absolute errors
relative error f1 a = np.abs((f1 a - W f1 a) / f1 a)
absolute error f1 a = np.abs(f1 a - W f1 a)
relative error f2 = np.abs((f2 = W f2 = A) / f2 = A)
absolute error f2 a = np.abs(f2 a - W f2 a)
relative error f1 b = np.abs((f1 b - W f1 b) / f1 b)
absolute error f1 b = np.abs(f1 b - W f1 b)
relative error f2 b = np.abs((f2 b - W f2 b) / f2 b)
absolute error f2 b = np.abs(f2 b - W f2 b)
relative error f1 c = np.abs((f1 c - W f1 c) / f1 c)
absolute error f1 c = np.abs(f1 c - W f1 c)
relative error f2 c = np.abs((f2 c - W f2 c) / f2 c)
absolute error f2 c = np.abs(f2 c - W f2 c)
relative error f1 d = np.abs((f1 d - W f1 d) / f1 d)
absolute error f1 d = np.abs(f1 d - W f1 d)
relative error f2 d = np.abs((f2 d - W f2 d) / f2 d)
absolute error f2 d = np.abs(f2 d - W f2 d)
relative error f1 e = np.abs((f1 e - W f1 e) / f1 e)
absolute error f1 e = np.abs(f1 e - W f1 e)
relative error f2 e = np.abs((f2 e - W f2 e) / f2 e)
absolute error f2 e = np.abs(f2 e - W f2 e)
```

```
/tmp/ipykernel 14039/528344189.py:20: RuntimeWarning: invalid value encountered in divide
         relative error f1 a = np.abs((f1 a - W f1 a) / f1 a)
       /tmp/ipykernel 14039/528344189.py:26: RuntimeWarning: invalid value encountered in divide
         relative error f1 b = np.abs((f1 b - W f1 b) / f1 b)
       /tmp/ipykernel 14039/528344189.py:32: RuntimeWarning: invalid value encountered in divide
         relative error f1 c = np.abs((f1 c - W f1 c) / f1 c)
       /tmp/ipykernel 14039/528344189.py:38: RuntimeWarning: invalid value encountered in divide
         relative error f1 d = np.abs((f1 d - W f1 d) / f1 d)
       /tmp/ipykernel 14039/528344189.py:44: RuntimeWarning: invalid value encountered in divide
         relative error f1 e = np.abs((f1 e - W f1 e) / f1 e)
In [ ]: import pandas as pd
        function names = ['f1 Xa', 'f2 Xa', 'f1 Xb', 'f2 Xb', 'f1 Xc', 'f2 Xc', 'f1 Xd', 'f2 Xd', 'f1 Xe', 'f2 Xe']
        relative errors = [relative error f1 a, relative error f2 a, relative error f1 b, relative error f2 b,
                           relative error f1 c, relative error f2 c, relative error f1 d, relative error f2 d,
                           relative error f1 e, relative error f2 e]
        relative errors = [np.nanmean(error) for error in relative errors]
        absolute errors = [absolute error f1 a, absolute error f2 a, absolute error f1 b, absolute error f2 b,
                           absolute error f1 c, absolute error f2 c, absolute error f1 d, absolute error f2 d,
                           absolute error f1 e, absolute error f2 e]
        absolute errors = [np.nanmean(error) for error in absolute errors]
        # mean errors calculated here
        data = { 'Function': function names, 'Mean Relative Error': relative errors, 'Mean Absolute Error': absolute errors}
        # create a dataframe
        df = pd.DataFrame(data)
        # display the dataframe
        display(df)
```

	Function	Mean Relative Error	Mean Absolute Error
0	f1_Xa	0.500000	2.857143
1	f2_Xa	0.980650	3119.601974
2	f1_Xb	0.450000	1.571429
3	f2_Xb	40.819824	4758.501854
4	f1_Xc	2.377143	19.678912
5	f2_Xc	0.373227	2798.028503
6	f1_Xd	0.228571	0.725624
7	f2_Xd	4.505829	1203.535569
8	f1_Xe	2.455895	15.928392
9	f2_Xe	0.019657	6.653424

Clearly, the best fit for the function f1(x) = |x| is obtained by interpolating with Lagrange interpolation on the data set X_d .

The best fit for the function $f2(x)=\exp(|x|)$ is obtained by interpolating with Lagrange interpolation on the data set X_e .

结论:

显然, 由 X_d 拉格朗日插值的 f1(x) = abs(x) 的插值函数拟合得最好。

由 X_e 拉格朗日插值的 f2(x) = exp(abs(x)) 的插值函数拟合得最好。