<u>Dépolluer les eaux par le chitosane :</u> <u>répondre aux besoins actuels et futurs</u>

MILIEUX: INTERACTIONS, INTERFACES, HOMOGENEITE, RUPTURES

Position du problème

Chitosane: solution durable? Poudre ou film? Respect de l'environnement?

PLAN:

I/ Caractéristiques du chitosane

- a) Extraction de la chitine et transformation en chitosane
- b) Validation de la désacétylation par spectroscopie IR

II/ Efficacité des matériaux : film, poudre, que choisir?

- a) Elaboration de films de chitosane
- b) Comparaison de l'absorption pour une même masse
- c) Calcul de la capacité d'adsorption d'un film
- d) Comprendre

III/Utilisation industrielle envisageable?

- a) Résistance à la traction
- b) Influence de l'épaisseur du film
- c) La question du coût

IV/ Vers une solution durable : recyclage du film?

- a) Recycler par l'EDTA
- b) Coût et limites

<u>I/a) Chitine et chitosane : deux matériaux prometteurs</u>

Carapaces de crustacé

I/ a) Chitine et chitosane : deux matériaux prometteurs

<u>I/a) Chitine et chitosane : deux matériaux prometteurs</u>

I/ a) Chitine et chitosane : deux matériaux prometteurs

I/a) Chitine et chitosane: deux matériaux prometteurs

I/ a) Chitine et chitosane : deux matériaux prometteurs

I/a) Extraction de la chitine à partir d'os de seiche

Contient 4/5 en masse de calcaire

Bain d'acide pour déminéraliser

Bain de soude pour éliminer les protéines

I/b) Validation de la désacétylation par spectroscopie IR

I/b) Validation de la désacétylation par spectroscopie IR

I/b) Validation de la désacétylation par spectroscopie IR

II/a) Elaboration de films de chitosane

Métal	Taux élimination FILM	Taux élimination POUDRE
Cuivre	80 %	56%

absorbance

Spectre d'absorption de la solution (50 mL sulfate de cuivre 3,5.10⁻³ mol.L⁻¹)

λ (nm)

II / a) Vérification de la loi de Beer Lambert

II/b) Comparaison de l'absorbance de 458 mg de chitine, chitosane et film n°4 à 816 nm Dans 50 mL de sulfate de cuivre à 0,035 mol.L - 1

II/b) Comparaison de l'absorption

Espèce	Film 1 (516 mg)	Film 4 (458 mg)	Poudre chitosane 516 mg	Poudre chitosane 458 mg
Pourcentage de réduction APRES 24h	45 %	43 %	31 %	22%

II/c) Calcul de la capacité d'adsorption d'un film

Le film 1 adsorbe $(7.0 \pm 0.2).10^{-3}$ mol d'ions cuivre (II) par gramme de film.

Calculs en annexe

Graphique issu de European Polymer Journal 38 (2002) 1523-1530

NH2

Complexe

du cuivre II

II/d) Comprendre

Pourquoi le film adsorbe-t-il mieux que la poudre?

R

II/d) Modélisation orbitalaire comme complexe ML4

4 L

M

Complexe plan carré $(Cu(NH_2)^{2+}, 2H0^{-})$:

no(Cu) = +II nev(Cu) = (11-2) + 2x4 = 17 électrons (max)

> - remplissage d'antiliantes Δ augmente

III/ Application en industrie? a) Résistance à la traction

Mesures réalisées sur le même film d'épaisseur (1,2 ± 0,2).10 ⁻¹ mm

$$P = F = mg$$

N° Test	masse (g)
1	332
2	660,5
3	602
4	627
5	425

Critiques : en réalité la résistance est faciale

III/ Application en industrie? a) Résistance à la traction

Mesures réalisées sur le même film d'épaisseur (1,2 ± 0,2).10 ⁻¹ mm

$$P = F = mg$$

N° Test	masse (g)
1	332
2	660,5
3	602
4	627
5	425

Incertitude de type A:
Mmoy = 529,3
Sx = 143

 $M = (500 \pm 200) g$

$$F = (5 \pm 2) N$$

Critiques : en réalité la résistance est faciale

III/ Application en industrie? b) Influence de l'épaisseur du film

Après calculs d'incertitude de type A :

(Détails en annexe)

Zone 1 : E = $(2,04 \pm 0,06)$. 10^{-1} mm Zone 2 : E = $(1,27 \pm 0,03)$. 10^{-1} mm Zone 3 : E = $(1,11 \pm 0,13)$. 10^{-1} mm

mesure moyenne sur les 3 zones :

$$E = (1,2 \pm 0,1).10^{-1} \text{ mm}$$

Réalisation de 2 films de rapport 2 en épaisseur et en masse :

	Pourcentage de réduction de la concentration	Rapport d'efficacité
Film A (fin)	36 %	1 00
Film B (épais)	18%	1,99

3)

1kg de chitine = 82,50 euros 1kg de chitosane = 130,60 euros

Chitosanlab

III/ Application en industrie?

Coût de la création d'un film :

- 50 mL d'acide acétique
- 620 mg de chitosane

1 film de 15 cm² = 8 €

Avec 1kg de chitosane on peut créer 170 000 films de surface moyenne 15 cm². 170000 films coûtent 140 euros et couvrent 25 500 m². 5.10⁻³ moles d'ions Cu II par gramme de film adsorbés. Donc 1kg de film adsorbe 5 moles.

Adsorption: 317 grammes de cuivre (II) dépollués pour 340 €

VI/Recyclage du film?

Complexe de l'EDTA avec ion métallique

Ligand	Chitosane	L'EDTA
Constantes de complexation du complexe du cuivre II avec le ligand		K = 18

Film 1 dans 20 mL d'EDTA à 0,05 mol.L⁻¹

Limites:

- coût de l'EDTA
- récupération des ions cuivre (II)

Conclusion

OBJECTIFS	VALIDATION ?
Extraction de la chitine et validation de la désacétylation	OUI
Comparaison de la fixation du cuivre (II) sur les 3 matériaux	OUI
Calcul de la capacité d'adsorption d'un film	OUI
Influence de l'épaisseur	OUI
Résistance du film à la traction	OUI
Recyclage	Limites

Conclusion

Le chitosane semble être une SOLUTION DURABLE pour dépolluer les eaux en IONS METALLIQUES car recycle des détritus organiques pour dépolluer les eaux.

Mécanisme et théorie de la désacétylation :

Mécanisme et théorie de la désacétylation :

c) Calcul de la capacité d'adsorption d'un film

Calculs

 $\Delta m = mCu(adsorbé) = mf - mi = (749 - 516) \pm 1 mg$ = 233 ± 1 mg de masse d'ions adsorbés

 Δ m/g de film = Δ m/mi = 0,45 % => le film adsorbe 45% de sa masse en ions

 $M(Cu) = 63,55 \text{ gmol}^{-1} \text{ donc n} = 3,6.10^{-3} \text{ mol pour } 516 \text{ mg}$ de films

Le film 1 adsorbe $(7.1 \pm 0.2).10^{-3}$ mol d'ions cuivre (II) par gramme de film.

Ecart à la valeur trouvée par les scientifiques : 0,40

Critiques et sources d'erreurs :

- constitution du film (degré de désacétylation du chitosane utilisé).
- la chitine initiale diférente
- reste d'eau dans le film
- forte incertitude sur la pesée : u = 3unités du dernier chiffre

III/Application en industrie? b) Influence de l'épaisseur du film

Après calculs d'incertitude de type A :

Zone 1 : E = $(2,04 \pm 0,06)$. 10^{-1} mm Zone 2 : E = $(1,27 \pm 0,03)$. 10^{-1} mm Zone 3 : E = $(1,11 \pm 0,13)$. 10^{-1} mm

mesure moyenne sur les 3 zones :

 $E = (1,2 \pm 0,1).10^{-1} \text{ mm}$

Réalisation de 2 films de rapport 2 en épaisseur et en masse :

	Epaisseur en centième de mm (donnée avec incertitude de type A à 95%)	Rapport épaisseurs moyennes	Masse en mg à +/- 1 mg	Rapport masses
Film A (fin)	7.19 +/- 1.01	2.09	677	2.00
Film B (épais)	15.1 +/- 1.27		1.357	

		Rapport A/A0 A0 = 0.410	Pourcentage de réduction de la concentration de la solution en ions cuivre II	••
Film A (fin)	0.262	0.639	Réduction de 36.1%	1.99
Film B (épais)	0.336	0.819	Réduction de 18.1%	

mesure de l'épaisseur du film n°4 en 1/100 mm				
Zone 1	Zone 2	Zone 3		
21	13	9		
20	13	16		
20	12	10		
21	12	11		
20	15	18		
23	13	15		
20	13	17		
19	14	9		
19	12	10		
21	12	9		
18	12,5	9		
22	12	13		
21	12	10		
19	13	9		
20	13	9		
20	12,5	13		
23	12	9		
19	13	9		
21	12	9		
19	12,5	9		
22				

III/Application en industrie? b) Influence de l'épaisseur du film

Détail d'un calcul d'incertitude de type A sur la zone 1 :

$$X_{\rm m}$$
 = 20,38 $S_{\rm x}$ = 1,36

Donc
$$u(x) = 1/(\sqrt{21}) \cdot S_x = 0.297$$

Résultat : $X = X_m \pm 2.u(x)$

$$X = (2,04 \pm 0,06).10^{-1} \text{ mm}$$

Avec un niveau de confiance à 95%.

mesure de l'épaisseur du film n°4 en 1/100 mm				
Zone 1	Zone 2	Zone 3		
21	13	9		
20	13	16		
20	12	10		
21	12	11		
20	15	18		
23	13	15		
20	13	17		
19	14	9		
19	12	10		
21	12	9		
18	12,5	9		
22	12	13		
21	12	10		
19	13	9		
20	13	9		
20	12,5	13		
23	12	9		
19	13	9		
21	12	9		
19	12,5	9		
22				

ANNEXES approche cinétique

ANNEXES approche cinétique

Résistance et propriétés physiques module d'Young du film sec

	Valeur	Unités
Déformation	0,061	mm
Force	11	N
Contrainte	16,520	MPa
Allongement	3,007	mm
Temps	180,8	S

Film sec : rupture à

 $F = (1,5 \pm 0,2).10$ Newton

(incertitude A sur les 3 mesures cohérentes)

$$F/S = E \Delta L/L$$

Epaisseur	Longueur initiale (mm)	Force maximale (N)	Contrainte maximale (MPa)	Déformation à la rupture (%)	Module (MPa)	
0,1	49	14,8	21,2	6,63	1021,7	
0,1	49	23,8	34,1	5,655	1010,2	
0,1	49	14,6	20,9	3,355	738,8	
0,1	49	14,5	20,8	2,205	1348,7	

Spectroscopie UV visible

		Transition vibrationnelle
Ordre de grandeur ΔE (en eV)	1 - 10	0,1 - 1
Totale de glandeal de (en Ne.inel)		10 - 100
Longueur d'onde du rayonnement émis ou absorbé	300 - 800 nm	1 μm
Domaine spectral	UV - Visible	Infrarouge

Source : culture Sciences chimie