Mission_to_Mars_Midlomarie

October 21, 2019

0.1 UR Data Analytics Homework #12: Web Scraping

0.1.1 Introduction to Beautiful Soup, Splinter, and MongoDB

Submitted by MidloMarie, October, 2019

0.2 Mission to Mars

In this assignment, we build a web application that scrapes various websites for data related to NASA's Mission to Mars and displays the information in a single HTML page.

0.2.1 What's going on with NASA Mars missions?

Let's look at the News on the mars.nasa.gov web page and get the most recent article > From "inspection" of activated NASA Mars Web page and using Devtools, we note that the Title > and "teaser" body of each article are found under the > ul class="item list" li class=slide > div class="content title" > div class="article_teaser_body"

```
[6]: # Parse Results HTML with BeautifulSoup
# 
# 

html = browser.html
NASAnews_soup = BeautifulSoup(html, "html.parser")
grid_element = NASAnews_soup.select_one("ul.item_list li.slide")
```

```
[7]: print(grid_element.prettify())
```

```
class="slide">
 <div class="image_and_description_container">
  <a href="/news/8531/mars-2020-unwrapped-and-ready-for-more-testing/"</pre>
target="_self">
   <div class="rollover_description">
    <div class="rollover_description_inner">
     In time-lapse video, bunny-suited engineers remove the inner layer of
protective foil on NASA's Mars 2020 rover after it was relocated for testing.
    </div>
    <div class="overlay_arrow">
     <img alt="More" src="/assets/overlay-arrow.png"/>
    </div>
   </div>
   <div class="list_image">
    <img alt="Mars 2020 Unwrapped and Ready for Testing: In time-lapse video</pre>
bunny-suited engineers remove the inner layer of protective foil on NASA's Mars
2020 rover after it was moved to a different building at JPL for testing."
src="/system/news_items/list_view_images/8531_PIA23467-320x240.gif"/>
   </div>
   <div class="bottom_gradient">
    <div>
     <h3>
     Mars 2020 Unwrapped and Ready for More Testing
     </h3>
    </div>
  </div>
  </a>
  <div class="list_text">
   <div class="list_date">
    October 18, 2019
   </div>
   <div class="content_title">
    <a href="/news/8531/mars-2020-unwrapped-and-ready-for-more-testing/"</pre>
target="_self">
     Mars 2020 Unwrapped and Ready for More Testing
    </a>
   </div>
   <div class="article_teaser_body">
    In time-lapse video, bunny-suited engineers remove the inner layer of
protective foil on NASA's Mars 2020 rover after it was relocated for testing.
   </div>
  </div>
 </div>
```

From mars.nasa.gov on October 18, 2019 we learn that:

'Mars 2020 Unwrapped and Ready for More Testing'

In time-lapse video, bunny-suited engineers remove the inner layer of protective foil on NASA's Mars 2020 rover after it was relocated for testing.

0.2.2 What does Mars look like? Any featured images associated with our article?

Let's look at the images on the jpl.nasa.gov web page and look at recent images > From "inspection" of activated NASA JPL Web page and using Devtools, we find the > featured image at the top of the page is id'd as a "full_image". > The featured image may not be the same as the latest news article on the NASA news page.

```
[9]: ## Now we look for space imagery from NASA Jet Propulsion Laboratory Featured
     \rightarrowSpace Image site
     executable_path = {"executable_path": "./chromedriver.exe"}
     browser = Browser("chrome", **executable_path)
     url = "https://www.jpl.nasa.gov/spaceimages/?search=&category=Mars"
     browser.visit(url)
[10]: | # Use Splinter to find the featured image by its id='full_image' in the HTML
     # <button class="full_image">Full Image</button>
     full_image_button = browser.find_by_id("full_image")
     full_image_button.click()
[11]: # Find "More Info" Button and Click It
     browser.is_element_present_by_text("more info", wait_time=1)
     more_info element = browser.find_link_by_partial_text("more info")
     more_info_element.click()
[21]: # Parse Results HTML with BeautifulSoup
     html = browser.html
     image_soup = BeautifulSoup(html, "html.parser")
     img_url = image_soup.select_one("figure.lede a img").get("src")
     img_url = f"https://www.jpl.nasa.gov{img_url}"
```

[21]: 'https://www.jpl.nasa.gov/spaceimages/images/largesize/PIA07137_hires.jpg'

0.2.3 Now let's find out about Martian weather from the Mars Twitter account

```
[31]: # Set Executable Path & Initialize Chrome Browser to view and control desired
     →Web pages
     executable_path = {"executable_path": "./chromedriver.exe"}
     browser = Browser("chrome", **executable_path)
     url = "https://twitter.com/marswxreport?lang=en"
     browser.visit(url)
[32]: # Parse Results HTML with BeautifulSoup
     html = browser.html
     weather_soup = BeautifulSoup(html, "html.parser")
     # print(weather_soup.prettify())
[33]: # Find a Tweet with the data-name `Mars Weather`
     mars weather tweet = weather soup.find("div",
                                             attrs={
                                                 "class": "tweet",
                                                  "data-name": "Mars Weather"
                                              })
     # print(mars_weather_tweet.prettify())
[34]: # Search Within Tweet for  Tag Containing Tweet Text
     mars_weather = mars_weather_tweet.find("p", "tweet-text").get_text()
     print(mars_weather)
    InSight sol 319 (2019-10-19) low -101.5žC (-150.7žF) high -25.5žC (-13.9žF)
    winds from the SSE at 4.6 m/s (10.4 mph) gusting to 18.4 m/s (41.2 mph)
    pressure at 7.10 hPapic.twitter.com/gdBUdujdVM
 []: ## Now look at Mars Facts site to scrape the table for data about the planet □
      →including size, mass.
     * Use Pandas to convert the data to an HTML table string
[35]: mars_df = pd.read_html("https://space-facts.com/mars/")[0]
     print(mars df)
     mars_df.columns=["Description", "Mars", "Earth"]
     # mars df
     mars_facts_df=mars_df.drop(columns=["Earth"])
     mars_facts_df.set_index("Description",inplace=True)
    mars_facts_df
      Mars - Earth Comparison
                                           Mars
                                                           Earth
    0
                    Diameter:
                                       6,779 km
                                                       12,742 km
                                6.39 E 10<sup>23</sup> kg
                                                5.97 Œ 10^24 kg
    1
                        Mass:
    2
                       Moons:
    3
           Distance from Sun:
                                227,943,824 km
                                                  149,598,262 km
    4
              Length of Year:
                                687 Earth days
                                                     365.24 days
    5
                                -153 to 20 řC
                                                     -88 to 58řC
                 Temperature:
```

```
Description
Diameter: 6,779 km
Mass: 6.39 Œ 10^23 kg
Moons: 2
Distance from Sun: 227,943,824 km
Length of Year: 687 Earth days
Temperature: -153 to 20 řC

[36]: # Output table in HTML format
mars_facts_df.to_html(open('mars_facts.html', 'w'))
```

0.3 Look for images of Mars Hemispheres

The two hemispheres of Mars are dramatically different from each other—a characteristic not seen on any other planet in our solar system. Non-volcanic, flat lowlands characterize the northern hemisphere, while highlands punctuated by countless volcanoes extend across the southern hemisphere.Jan 29, 2015 https://www.futurity.org/marshemispheres-846802/

```
[37]: # Visit the USGS Astrogeology Science Center Site
     executable_path = {"executable_path": "./chromedriver.exe"}
     browser = Browser("chrome", **executable_path, headless=False)
     url = "https://astrogeology.usgs.gov/search/results?
      \rightarrowq=hemisphere+enhanced&k1=target&v1=Mars"
     browser.visit(url)
[38]: # Find all of the level 3 header information for hemisphere products. Loopu
      →through images based on number of products.
     hemisphere_image_urls = []
     products = browser.find_by_css("a.product-item h3")
     for i in range(len(products)):
         # initialize hemisphere dictionary
         hemisphere = {}
         # click on each product link to get to actual image
         browser.find_by_css("a.product-item h3")[i].click()
         # get url (href) for the "Sample" image option since full-res images are
      →very large
         sample_product = browser.find_link_by_text("Sample").first
         hemisphere["img_url"] = sample_product["href"]
         # Get Hemisphere Title
         hemisphere["title"] = browser.find_by_css("h2.title").text
         # Append Hemisphere Object to List
```

hemisphere_image_urls.append(hemisphere)

Go back to product screen to move to next product on the page browser.back()

print out the hemisphere urls
print(hemisphere_image_urls)

[{'img_url': 'http://astropedia.astrogeology.usgs.gov/download/Mars/Viking/cerbe rus_enhanced.tif/full.jpg', 'title': 'Cerberus Hemisphere Enhanced'}, {'img_url': 'http://astropedia.astrogeology.usgs.gov/download/Mars/Viking/schiap arelli_enhanced.tif/full.jpg', 'title': 'Schiaparelli Hemisphere Enhanced'}, {'img_url': 'http://astropedia.astrogeology.usgs.gov/download/Mars/Viking/syrtis _major_enhanced.tif/full.jpg', 'title': 'Syrtis Major Hemisphere Enhanced'}, {'img_url': 'http://astropedia.astrogeology.usgs.gov/download/Mars/Viking/valles _marineris_enhanced.tif/full.jpg', 'title': 'Valles Marineris Hemisphere Enhanced'}]

Cerberus

Syrtis

Schiaparelli

Valles Marineris

