高等代数 (一) 期中试卷 2017-11-25

班级:

姓名:

学号:

 =	三	四	五	六	七	八	九	+	总分

- 一、判断题(本题共5小题,每小题4分,共20分). 判断下列陈述是否正确,并说明理由.
 - 1. 设 \mathbb{Z} 是整数集,则 $P = \{a + bi | a, b \in \mathbb{Z}\}$ 是数域,其中 $i = \sqrt{-1}$.
 - 2. 设 $f_1(x), f_2(x), f_3(x), g(x)$ 都是数域 P 上的多项式. 如果 $(f_1(x), f_2(x), f_3(x)) = 1$, 并且 $f_i(x)|g(x), i = 1, 2, 3$, 则 $f_1(x)f_2(x)f_3(x)|g(x)$.
 - 3. 设有理系数多项式 $f(x) \neq 0$. 若 $(f(x), f'(x)) \neq 1$, 则 f(x) 在有理域上有重根.
 - 4. 多项式 $x^4 + 4$ 在实数域上不可约.
 - 5. 设 a_i, b_i, c_i, d_i 都是数域 P 中的数, i = 1, 2, 则

$$\begin{vmatrix} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & d_1 + d_2 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 \\ c_1 & d_1 \end{vmatrix} + \begin{vmatrix} a_2 & b_2 \\ c_2 & d_2 \end{vmatrix}.$$

- 二、填空题(本题共5小题,每小题4分,共20分).

 - 2. $f(x) = 2x^3 3x^2 + 1$ 的全部有理根为
 - 3. 设实系数多项式 $f(x) = x^3 + px + q$ 有一个虚根 4 + 3i, 则 f(x) 的其余两个根是
 - 4. 设行列式 $D = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 1 & 5 & 10 & 17 \end{vmatrix}$ 中元素 a_{1j} 的代数余子式为 A_{1j} (j = 1, 2, 3, 4),则 $A_{11} + 2A_{12} + 3A_{13} + 4A_{14} = \underline{\hspace{1cm}}$.

三、(10 分) 设 $f(x) = x^3 + 2x^2 - 5x - 6$, $g(x) = x^2 + x - 2$. 求 (f(x), g(x)) 以及多项式 u(x), v(x) 使得 u(x)f(x) + v(x)g(x) = (f(x), g(x)).

四、(10分) 写出多项式 x^4+1 在复数域、实数域及有理数域上的标准分解式,并说明理由.

五、(10 分) 求 t 值使 $f(x) = x^3 + tx^2 + 3x + 1$ 有重根,并求出重根及其重数.

六、(10 分) 计算行列式	1	1	1	0	0
	1	2	3	0	0
六、(10分)计算行列式	0	1	1	1	1
	0	x_1	x_2	x_3	x_4
	0	x_{1}^{2}	x_{2}^{2}	x_{3}^{2}	x_{4}^{2}

七、(10 分)设 P 为数域, 整数 $n \ge 2$, $f_i(x) = a_{i1} + a_{i2}x + a_{i3}x^2 + \cdots + a_{in}x^{n-1} \in P[x]$, $i = 1, \dots, n$.

日知
$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = D,$$
 求 $\Delta = \begin{vmatrix} f_1(n) & f_1(n-1) & \cdots & f_1(1) \\ f_2(n) & f_2(n-1) & \cdots & f_2(1) \\ \vdots & \vdots & \vdots & \vdots \\ f_n(n) & f_n(n-1) & \cdots & f_n(1) \end{vmatrix}$.

八、(10分)证明:两个本原多项式的乘积仍是本原多项式.

九、(10 分) 设 P 是数域, $a,b,c_1,c_2,\ldots,c_n\in P$ 且 $a\neq b$. 令

$$f(x) = (c_1 - x)(c_2 - x) \cdots (c_n - x).$$

证明:

$$A = \begin{vmatrix} c_1 & a & \cdots & a & a \\ b & c_2 & \cdots & a & a \\ \vdots & & \ddots & & \vdots \\ b & b & \cdots & c_{n-1} & a \\ b & b & \cdots & b & c_n \end{vmatrix} = \frac{af(b) - bf(a)}{a - b}.$$

十、(10 分)设 P 是数域, $n\geqslant 3,$ $f_1(x),$ $f_2(x),$ $\dots,$ $f_n(x)\in P[x]$. 若存在 P 中 n 个互不相同的数 $\alpha_1,\alpha_2,$ $\dots,$ α_n 使得

$$\begin{vmatrix} f_1(\alpha_1) & f_1(\alpha_2) & \cdots & f_1(\alpha_n) \\ f_2(\alpha_1) & f_2(\alpha_2) & \cdots & f_2(\alpha_n) \\ \vdots & \vdots & & \vdots \\ f_n(\alpha_1) & f_n(\alpha_2) & \cdots & f_n(\alpha_n) \end{vmatrix} \neq 0,$$

证明:存在 $1 \le i \le n$ 使得 $f_i(x)$ 的次数 $\ge n-1$.