

Si se tienen tres fuentes de tensión alterna senoidal de las siguientes características

$$u_{fR}(t) = U_{fR} \cdot sen(\omega t + \theta_R)$$

$$u_{fS}(t) = U_{fS} \cdot sen(\omega t + \theta_S)$$

$$u_{fT}(t) = U_{fT} \cdot sen(\omega t + \theta_T)$$

Que también se pueden escribir como

$$\underline{U}_{fR} = U_{fR} / q_R$$

$$\underline{U}_{fS} = U_{fS} / q_{S}$$

$$\underline{U}_{fT} = U_{fT} / q_T$$

Se podrían disponer de tal manera de hacer posible su suma.

Si se cumple que

$$\left| \underline{U}_{fR} \right| = \left| \underline{U}_{fS} \right| = \left| \underline{U}_{fT} \right|$$

(simetría de módulo)

y si el desfasaje entre ellos vale **120º**

(simetría de fase)

Se puede escribir

$$\underline{U}_{fR} + \underline{U}_{fS} + \underline{U}_{fT} = 0$$

Fuente o generador trifásico perfecto: **Equilibrado y simétrico**

<u>U</u>f R

También se puede obtener una fuente o generador trifásico **imperfecto** cuando alguna de las condiciones anteriores no se cumple:

Fuente o generador equilibrado asimétrico

$$\left| \underline{U}_{fR} \right| \neq \left| \underline{U}_{fS} \right| \neq \left| \underline{U}_{fT} \right|$$

$$\underline{U}_{fR} + \underline{U}_{fS} + \underline{U}_{fT} = 0$$

Fuente o generador desequilibrado

$$\underline{U}_{fR} + \underline{U}_{fS} + \underline{U}_{fT} \neq 0$$

¿Conexión de un generador trifásico?

Generador Conexión **TRIÁNGULO**

Generador Conexión **ESTRELLA**

N=0 centro de estrella del generador (neutro)

Ventajas de la conexión ESTRELLA

Dos juegos de tensiones

Nodo de referencia para las tensiones

¿Qué se puede observar en el fasorial?

SECUENCIA RST (DIRECTA)

Relación de módulos

$$\frac{|\underline{U}_l|}{|\underline{U}_F|} = \sqrt{3} \qquad \text{iy los ángulos?}$$

Finalmente
$$\underline{U}_R + \underline{U}_S + \underline{U}_T = 0$$

 $\underline{U}_{RS} + \underline{U}_{ST} + \underline{U}_{TR} = 0$

Tensiones de FASE

Tensiones de LÍNEA

Tensiones de FASE y de LÍNEA

CARGAS TRIFÁSICAS

Carga en ESTRELLA o Y

Si se cumple

Carga en TRIÁNGULO o A

$$\left|\underline{Z}_{RS}\right| = \left|\underline{Z}_{ST}\right| = \left|\underline{Z}_{TR}\right|$$
 y
 $\theta_{RS} = \theta_{ST} = \theta_{TR}$

la carga trifásica (en estrella o en triángulo) se dice que es EQUILIBRADA

CIRCUITOS

Si el generador es **perfecto** y la carga **equilibrada** se puede dibujar el diagrama fasorial de tensiones y corrientes de la siguiente manera

$$Y \ del \ fasorial \ resulta \qquad -\underline{I}_N = \underline{I}_R + \underline{I}_S + \underline{I}_T = 0$$

$$\underline{I}_R + \underline{I}_S + \underline{I}_T + \underline{I}_N = 0$$

$$y \quad \underline{U}_{0,0} = 0$$

CIRCUITOS

Ahora, si en estas condiciones (generador **perfecto** y carga **equilibrada**) se desconecta el neutro

$$-\underline{I}_N = \underline{I}_R + \underline{I}_S + \underline{I}_T = 0$$

$$y \underline{U}_{00} = 0$$

Si el generador es **perfecto** y la carga **desequilibrada**

Pero el diagrama fasorial de tensiones y corrientes resulta

Y ahora
$$-\underline{I}_N = \underline{I}_R + \underline{I}_S + \underline{I}_T \neq 0$$

$$\underline{I}_R + \underline{I}_S + \underline{I}_T + \underline{I}_N = 0$$

y
$$\underline{U}_{\theta,\theta}=0$$

 $\underline{\mathbf{I}}_N$ no se dibuja para no complicar el diagrama

Ahora, si en estas nuevas condiciones se desconecta el neutro, hay un reacomodamiento de las corrientes y ...

$$\underline{I}_R + \underline{I}_S + \underline{I}_T = 0$$

$$\underline{I}_N = 0$$

$$\underline{I}_N = 0$$

y ya NO es posible asegurar que $\underline{U}_{0,0} = 0$

Y el diagrama fasorial de tensiones podría resultar de la siguiente forma

OTRAS CONEXIONES

Generador en Y – Carga en 🛭

Generador en ⊿ – Carga en Y

Generador en △ – Carga en △

RRIMIENTO" DEL NEUTRO

Aplicando LKC (análisis nodal) en 0 ó en 0'

$$\underline{I}_R + \underline{I}_S + \underline{I}_T + \underline{I}_N = 0$$

Por ley de Ohm
$$\underline{I}_R = \frac{\underline{U}_{R0'}}{\underline{Z}_R}$$
 $\underline{I}_S = \frac{\underline{U}_{S0'}}{\underline{Z}_S}$

$$\underline{I}_{T} = \frac{\underline{U}_{T0'}}{\underline{Z}_{T}} \qquad \underline{I}_{N} = \frac{\underline{U}_{00'}}{\underline{Z}_{N}}$$

Y como

$$\underline{U}_0 = 0 \implies \underline{U}_{0'0} = \underline{U}_{0'} \text{ ó } \underline{U}_{00'} = -\underline{U}_{0'}$$

$$Luego \ se \ puede \ escribir \qquad \frac{\underline{U}_{fR} - \underline{U}_{0'}}{\underline{Z}_{R}} + \frac{\underline{U}_{fS} - \underline{U}_{0'}}{\underline{Z}_{S}} + \frac{\underline{U}_{fT} - \underline{U}_{0'}}{\underline{Z}_{T}} + \frac{\underline{U}_{0} - \underline{U}_{0'}}{\underline{Z}_{N}} = 0$$

Y reordenando resulta

$$\underline{U}_{0'} = \frac{\underline{U}_{fR} \cdot \underline{Y}_R + \underline{U}_{fS} \cdot \underline{Y}_S + \underline{U}_{fT} \cdot \underline{Y}_T}{\underline{Y}_R + \underline{Y}_S + \underline{Y}_T + \underline{Y}_N}$$

CIRCUITO EQUIVALENTE MONOFÁSICO

Si el generador es **perfecto** y la carga **equilibrada**

se observa que, debido a la simetría del circuito y del diagrama fasorial, sería posible trabajar con un circuito monofásico equivalente que represente el funcionamiento de una sola fase

Circuito equivalente monofásico representado por la fase **R**

Con este método es posible analizar lo que sucede en una sola fase y luego, dada la simetría, reconstruir el sistema teniendo en cuenta que al diagrama fasorial deben agregarse los fasores de tensión y corriente de las dos fases restantes.

La idea se puede extender a circuitos de tres conductores, como es el caso de generador y carga en Δ ; con la única condición de que el generador sea **perfecto** y la carga sea **equilibrada**.

Diagrama fasorial del equivalente monofásico representado por la fase **R**

RESUMEN

- > Definición de sistemas trifásicos
- Generadores. Equilibrio. Asimetría.
- Diagramas fasoriales.
- ➤ Tipos de cargas. Estrella (Y), triángulo (△). Equilibradas, desequilibradas.
- ightharpoonup Tipos de circuitos. Y-Y, Δ - Δ , Y- Δ , Δ -Y.
- Corrimiento del neutro.
- Circuito equivalente monofásico.

BIBLIOGRAFÍA

- Circuitos eléctricos. Parte 2. Morcelle-Deorsola. Cap 3.
- ➤ Principios de electrotecnia. Tomo I. Zeveke Ionkin. Cap XIV.
- Circuitos eléctricos. Nilsson. Cap 12.
- Circuitos en ingeniería eléctrica. Skilling. Cap 20.
- Análisis básico de circuitos eléctricos. Johnson-Hilburn-Johnson. Cap 13.
- > Teoría de circuitos eléctricos. Sanjurjo Lázaro de Miguel. Cap 7.
- Análisis de circuitos en ingeniería. Hayt-Kemmerly. Cap 11.
- Circuitos eléctricos. Dorf. Cap 19.
- Análisis introductorio de circuitos. Boylestad. Cap 23.
- Circuitos eléctricos y magnéticos. E. Spinadel. Cap 11.