Definition (Category). A *category* C is specified by four components:

- 1. **Objects**: a collection $Ob_{\mathbb{C}}$, whose elements are called *objects*.
- 2. **Morphisms**: for every pair of objects $X, Y \in \mathrm{Ob}_{\mathbb{C}}$, there is a set $\mathrm{Hom}_{\mathbb{C}}(X; Y)$, elements of which are called *morphisms* from X to Y. The set is called the "hom-set from X to Y".
- 3. **Identity morphisms**: for each object X, there is an element $\mathrm{Id}_X \in \mathrm{Hom}_{\mathbb{C}}(X;X)$ which is called *the identity morphism of* X.
- 4. **Composition rules**: given any morphism $f \in \operatorname{Hom}_{\mathbb{C}}(X;Y)$ and any morphism $g \in \operatorname{Hom}_{\mathbb{C}}(Y;Z)$, there exists a morphism $f \, \, \, \, \, \, g \in \operatorname{Hom}_{\mathbb{C}}(X;Z)$ which is the *composition of f and g*.

Furthermore, the constituents are required to satisfy the following conditions:

a) Unitality: for any morphism $f \in \operatorname{Hom}_{\mathbb{C}}(X;Y)$:

$$\operatorname{Id}_{\mathbf{X}} \circ f = f = f \circ \operatorname{Id}_{\mathbf{Y}}.$$

b) Associativity: for morphisms $f \in \operatorname{Hom}_{\mathbb{C}}(X;Y)$, $g \in \operatorname{Hom}_{\mathbb{C}}(Y;Z)$, and $h \in \operatorname{Hom}_{\mathbb{C}}(Z;W)$,

$$(f \circ g) \circ h = f \circ (g \circ h).$$