Lista 9, Geometria Riemanniana

Diego N. Guajardo

17 de maio de 2021

Sempre M é uma variedade Riemanniana, pode-se sempre assumir conexa se for necessario e ∇ indica a conexão de Levi Civita. Alguns exercicios são do Lee, do Do Carmo e do Petersen e das listas do professor

1. Suponha que M é completa, conexa e com curvatura positiva, se $M_1, M_2 \subseteq M$ compactas, totalmente geodésicas e tais que $\dim M_1 + \dim M_2 \ge \dim M$, mostrar que $M_1 \cap M_2 \ne \emptyset$

Comentário: Este exercício generaliza o fato que os circulos geodésicos de uma esfera sempre se intersectam.

- 2. Seja M uma variedade completa e $A \subseteq M$ subvariedade compacta, mostrar que:
 - (a) Curvas que não são estacionarias (para o funcional energia $E: \Omega_{A,A}(M) \to \mathbb{R}$) podem ser deformadas a curvas de comprimento menor.
 - (b) Se M tem curvatura positiva, A totalmente geodésica e $2 \dim A \ge \dim M$, então as curvas estacionarias podem ser deformadas em curvas de comprimento menor.

Comentário: Usando esse exercicio e tecnicas de análise, da para mostrar que de fato qualquer curva com extremos em A pode ser deformada a uma curva em A (em linguagem de topologia, $\pi_1(M, A) = 0$). Este resultado pode ser generalizado para trabalhar $\pi_k(M, N)$ (Connectedness Principle, Wilking).

- 3. Seja M completa com curvatura de Ricci positiva e N, P hipersuperficies mínimas, com N compacta e P fechada, mostrar que $N \cap P \neq \emptyset$
- 4. Seja M completa e $C \subseteq M$ um compacto. Suponha que $\text{Ric} \ge \varepsilon > 0$ fora de C. Provar que M é compacta e achar uma cota superior para o diametro de M.
- 5. Neste exercício vamos ver como a técnica de variações pode ser aplicada para o estudo de subvariedades mínimas. Seja $f: M^n \to \overline{M}^m$ imersão isométrica, e seja $F = I \times M^n \to \overline{M}^m$ uma variação suave de f ($f_0 = F(\cdot, 0) = f$), considere $T = df(Z) + \eta$ o campo variacional decomposto em sua parte tangente e parte normal. Provar que:
 - (a) $\frac{d}{dt}|_{t=0}$ (Vol_t) = $(-n\langle H, \eta \rangle + \text{div}(Z))$ Vol₀, onde Vol_t é a forma de volume associada à $f_t = F(\cdot, t)$ e H é a curvatura média de f.
 - (b) Suponha M compacto (com possivel bordo, nesse caso asuma que $f_t(x) = f(x)$ para todo t e $x \in \partial M$), seja $V_t = \int_M \operatorname{Vol}_t$, mostrar que:

$$\frac{d}{dt}\big|_{t=0}V_t = -\int_M n\langle H, \eta \rangle \text{Vol}_0$$

Comentário 1: o exercício anterior mostra que os pontos críticos do funcional "volume"são as imersões mínimas, H = 0 (daí o nome). De fato o exercício da a melhor direção para diminuir o volume, que é H. Existe muito trabalho estudando este funcional, tomando segundas derivadas, analizando minimos o maximos locais, etc.

Comentário 2: outro problema que da para estudar desta forma, é estudar o funcional curvatura escalar "global", isto é, no espaco de métricas riemannianas de M. A cada métrica ve pode associar o funcional que integra a curvatura escalar em M, os pontos críticos são métricas Einstein.

6. Suponha que M é uma variedade completa com $K \ge \frac{1}{r^2} > 0$ e $N \subseteq M$ uma subvariedade fechada e mínima. Seja $p \notin N$, mostrar que:

$$\operatorname{dist}(p, N) \leq \frac{\pi r}{2}$$

Comentário: em particular N pode ser uma geodésica fechada, como na esfera sao os circulos geodesicos.

7. Seja M simplesmente conexa completa com $K \leq 0$ (M é uma variedade de Hadamard), seja $f_p(x) = \frac{d(x,p)^2}{2}$ onde $p \in M$, mostrar que:

(a) f_p é geodésicamente convexa, isto é, para qualquer geodésica $\gamma:[0,1]\to M$ temos que para $t\in(0,1)$.

$$f_p(\gamma(t)) < (1-t)f_p(\gamma(0)) + tf_p(\gamma(1))$$

- (b) Considere $F_{p_1,\ldots,p_n}(x)=\max\{f_{p_1}(x),\ldots,f_{p_n}(x)\}$, mostrar que ela possui um único mínimo. Denote esse mínimo por $cm_\infty\{p_1,\ldots,p_n\}$, o L^∞ -centro de massa.
- (c) Suponha que $F: M \to M$ é uma isometria tal que existe $p \in M$ e $n \in \mathbb{N}$ tal que $F^n(p) = p$, mostrar que entao existe $q \in M$ tal que q = F(q)
- (d) (Teorema de Torsão de Cartan) Suponha N completa e tal que $K \le 0$, mostrar que o grupo fundamental de N é livre de torsão.

Dica para (a): exercicio 8, parte (a) da lista 8

Dica para (c): conidere q como o centro de massa da órbita de p.

Comentário: veja que parece um pouco com o teorema de Weinsten, respeito os pontos fixos para variedades de curvatura não positiva.

- 8. Vamos dar uma prova alternativa do teorema de Bishop-Gromov. Seja M tal que Ric $\geq k$. Em cartas polares em $p \in M$ podemos escrever a forma de volume como Vol $= \mu(r, \theta) dr d\theta$
 - (a) Verificar que se $\gamma(t) = \exp_p(t\theta)$ e e_i é uma base do complemento de θ , J_i é o campo de Jacobi ao longo da geodésica tal que $J_i(0) = 0$ e $J'(0) = e_i$, então:

$$\mu(r,\theta) = \frac{\det(V_1(r), \dots, V_{n-1}(r))}{\det(e_1, \dots, e_{n-1})}$$

(b) Sejam $e_i(t)$ uma base ortonormal paralela a γ , sejam J_i campos de Jacobi tais que $J_i(0) = 0$ e $J_i(r) = e_i(r)$, mostrar que:

$$\frac{\mu'(r,\theta)}{\mu(r,\theta)} = \sum_{i=1}^{n-1} I_r(V_i, V_i)$$

(c) Seja $\mu_k(r)$ a densidade em coordenadas polares de uma variedade de curvatura constante k, usando o lema do índice conclua que

$$\frac{\mu'(r,\theta)}{\mu(r,\theta)} \leq \frac{\mu_k'(r)}{\mu_k(r)}$$

a partir daqui podemos terminar de provar do mesmo modo que na aula.