

Quelle: https://aps.arxiv.org/pdf/2009.09808v1.pdf

Neural implicits (Neural networks)

19.01.2023

Tristan Schmele & Babak Sedaghat

Bildbasierte Computergrafik (BCG)

Seite 1

Dozent: Matthias Groß & Fabian Frieder

Technology Arts Sciences TH Köln

Paper

- > Overfit Neural Networks as a Compact Shape Representation
- Von Thomas Davies , Derek Nowrouzezahrai and Alec Jacobson
- > In Kanada
- ➤ Im Jahr 2020

Agenda

- > Einleitung
- Methodik
- Ergebnisse
- > Limitierungen & Anwendungen

Einleitung

- > SDF
- > Problemstellung
- Beitrag

SDF

Begriff:

eine vielseitige implizite Oberflächendarstellung, die überall in der Computergrafik nützlich ist.

Darstellung:

Komplexe Objekte können semianalytisch erstellt werden durch Zusammensetzen geometrischen Primitiven mit Raumverzerrung, Überblendungsoperationen und Replikationsfunktionen.

SDF

> Speicherung:

- auf einem regelmäßigen Gitter (Kosten, Profitieren)
- explizite Darstellungen als Datenformat
- Wie wird Mesh-Assets in implizite Darstellungen umwandelt?

SDF

- Konvertieren:
 - Die Überanpassung eines **tiefen neuronalen Netzes** an die SDF effektiv ist, und wir plädieren dafür, es als eine erstklassige implizite Darstellung(Neuronale Implicits).
- Neuronale Implicits
 - Die effektiv unendliche Auflösung von Implicits, aber mit der Berechnungseffizienz von groben Netzen und der Speicherzugriffseinheitlichkeit eines festen Gitters.

Problemstellung

- ➤ Die Konvertierung in **Punktwolken** umgeht, dass das Problem der Homogenität, indem die Abhängigkeit von der Ordnung oder der Expliziten / impliziten über die vielfältige Struktur der Form vollständig beseitigt.
- bei Klassifizierungs- und Erkennungsaufgaben
- > die Interpolation von Formen, differenzierbares Rendering und Oberflächenrekonstruktion

Problemstellung

"Training a specific neural network for each shape is neither feasible nor very useful." — PARK, FLORENCE,

Beitrag

➤ Deep neuronale Netze, oder Neural Implicits, eine Kombination der wünschenswerten Eigenschaften einer Formdarstellung aufweisen. Die an eine einzelne Form wird als **Testfall** behandelt.

Vergleich die wirtschaftliche Speicherung von Neural Implicits mit bestehenden Formaten

- neuronale Netzwerkarchitektur(OVERFITSDF):
 - die darauf trainiert ist, eine Überanpassung an eine einzelne vorzeichenbehaftete Distanzfunktion
 - gelernte Parametersatz als effiziente und leichtgewichtige Darstellung der Form verwendet werden

- Neural Implicit Format:
 - die gelernten Netz Gewichte eines OVERFITSDF-Modells, das auf Stichproben aus der vorzeichenbehafteten Distanzfunktion der Form trainiert wurde.

- Neural Implicit Dateiformat:
 - einfach zu verwenden ist und in bestehende Pipelines zu integrieren
 - Für jedes trainierte OVERFITSDF wird die gewählte Netzwerkarchitektur und die Geometrietransformationsmatrix werden als erste Bytes geschrieben

➤ Die festen Speicherprofile und das Speicherlayout der unserer erlernten impliziten Funktionen bieten konsistente Abfrage- und Rendering Geschwindigkeiten.

Ergebnisse

- Performance
- Konvertierung
- Komprimierung
- Thingi10k

Performance

- 34 FPS bei 512x512 (Nvidia P100 GPU)
- "[...] not acceptable for real-time rendering applications."
- Kann wie andere Implicits manipuliert werden

Konvertierung

- Bei minimaler Komplexität (8 layers of 32 neurons)
 - Durchschnittlich 90s für beliebige Geometrie
 - 64kB Speicher benötigt
- Thingi10k Dataset
 - Konvertiert in 16h (Nvidia Titan RTX) bzw 4h (4 Nvidia Titan RTX parallel)
 - Speicheernutzung reduziert von 38.85 GB auf 640 MB
- Möglichkeit Komplexität basierend auf Input Geometrie zu ändern

Komprimierung

- bessere Annäherung
 bei gleicher Speichernutzung
- 93% von Thingi10k
 mit surface error unter 0.003
- Vergleich:

 adaptive decimation (left)
 uniform SDF (middle)
 neural implicit (right)

Limitierung & Anwendungen

- Probleme bei minimaler Komplexität
- Noch nicht nutzbar für Echtzeit Anwendungen
- Reduzierte Speichernutzung
- Generelle Vorteile von Implicits

Technology

Arts Sciences

Limitierung

- Minimale Konfiguration nicht ausreichend bei komplexer Geometrie
 - Surface error beim Training pr

 üfen
 - und nach Bedarf Komplexität anpassen
- Probleme bei Echtzeit Anwendungen
 - Vergleichsweise hohe Renderzeit
 - Zukunftspotential (hard- & software)

Anwendungen

- Reduzierte Speichernutzung
 - Langzeitspeicherung und Aufbewahrung
 - Große Projekte ohne Echtzeit Anforderung
- Vorteile von Implicit Representations
 - Praktisch unendliche Auflösung
 - Einfach zu manipulieren
 - Uniform memory pattern

Dozent: Matthias Groß & Fabian Frieder