Theory of Computation

Chapter 02 Non Context- Free Languages

Introduction to the Theory of Computation, 3rd Ed, Michael Sipser
Introduction to Automata Theory Languages and Computation, 2nd, Hopcroft, Motwani, and Ullman

Last modified 28/10/2020

Oct, 2020 Zinia Sultana Lecturer, CSE Dept, MIST

Non-regular Language

Let's consider the languages:

- 1. $C = \{w \mid w \text{ has an equal number of 0s and 1s}\}$, and
- 2. $D = \{w \mid w \text{ has an equal number of occurrences of } 01 \text{ and } 10 \text{ as substrings} \}$.

Pumping Lemma for Non-regular Language

THEOREM **1.70**

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each $i \ge 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \le p$.

Pumping Lemma for Non-Context-Free Languages

THEOREM **2.34**

Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the conditions

- 1. for each $i \ge 0$, $uv^i x y^i z \in A$,
- **2.** |vy| > 0, and
- 3. $|vxy| \le p$.

Pumping Lemma for Non-Context-Free Languages

Pumping Lemma for Non-Context-Free Languages

- ☐ To prove that a language B is not context-free
 - 1. First assume that B is context-free in order to obtain a contradiction.
 - 2. Then use the pumping lemma to guarantee the existence of a pumping length **p** such that all strings of length **p** or greater in B can be pumped.
 - 3. Next, find a string s in B that has length p or greater but that cannot be pumped.
 - 4. Finally, demonstrate that **s** cannot be pumped by considering all ways of dividing s into u, v, x, y, and z for each such division, finding a value **i** where $uv^ixy^iz/\in B$.
 - 5. The existence of s contradicts the pumping lemma if B were context-free. Hence B cannot be context-free.
- ☐ Finding s takes a bit of creative thinking.

Non-Context Free Proof: Example-1

□ Show that the language $B = \{a^nb^nc^n | n \ge 0\}$ is not context free.

Proof:

Let, B is context free. So, it can be divided into uvxyz Cases:

- 1. both v and y contain only one type of alphabet symbol.
- 2. either v or y contains more than one type of symbol

Non-Context Free Proof: Example-2

□ Show that the language $C = \{a^ib^jc^k | 0 \le i \le j \le k\}$ is not context free.

Proof:

Let, C is context free. So, it can be divided into uvxyz 1 5 = 2 5 C Cases:

1. both v and y contain only one type of alphabet symbol.

- - # a's do not appear in v or y
 - # b's do not appear in v or y
 - # c's do not appear in v or y
- either v or y contains more than one type of symbol

Non-Context Free Proof: Example-3

□ Show that the language $D = \{ww \mid w \in \{0,1\} *\}$. is not context free.

Proof:

Let, D is context free. So, it can be divided into uvxyz

String $S = 0^p 1 0^p 1$

 \Box The string $0^p1^p0^p1^p$ seems to capture more of the "essence" of Language D.

END