

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 0 955 810 B1

(12)

EUROPÄISCHE PATENTSCHRIFT

(45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Patenterteilung:
31.07.2002 Patentblatt 2002/31

(21) Anmeldenummer: 98905298.0

(22) Anmeldetag: 29.01.1998

(51) Int Cl. 7: A01N 47/36

(86) Internationale Anmeldenummer:
PCT/EP98/00201

(87) Internationale Veröffentlichungsnummer:
WO 98/33383 (06.08.1998 Gazette 1998/31)

(54) FESTE MISCHUNGEN AUF DER BASIS VON SULFONYLHARNSTOFFEN UND ADJUVANTEN

SULPHONYL UREA AND ADJUVANT BASED SOLID MIXTURES

MELANGES SOLIDES A BASE DE SULFONYLUREES ET ADJUVANTS

(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL PT SE

Benannte Erstreckungsstaaten:
AL LT LV RO SI

(30) Priorität: 30.01.1997 DE 19703365

(43) Veröffentlichungstag der Anmeldung:
17.11.1999 Patentblatt 1999/46

(73) Patentinhaber: BASF AKTIENGESELLSCHAFT
67056 Ludwigshafen (DE)

(72) Erfinder:
• BRATZ, Matthias
D-67117 Limburgerhof (DE)
• JÄGER, Karl-Friedrich
D-67117 Limburgerhof (DE)

(74) Vertreter: Riedl, Peter, Dr. et al
Patentanwälte
Reitstötter, Kinzebach & Partner (GbR),
Ludwigsplatz 4
67059 Ludwigshafen (DE)

(56) Entgegenhaltungen:
EP-A- 0 498 145 WO-A-95/28410

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingeleitet, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).

EP 0 955 810 B1

Beschreibung

- [0001] Die vorliegende Erfindung betrifft feste Mischungen auf der Basis von Sulfonylharnstoffen und Adjuvantien.
- [0002] Sulfonylharnstoffe (im folgenden mit "SU" bezeichnet) sind eine Gruppe von hochaktiven Herbiziden, die in weiten Bereichen des Pflanzenschutzes Anwendung finden.
- [0003] Bedingt durch den Mechanismus der Wirkstoffaufnahme über das Blatt kann die Wirkung von SU durch Zusatz oberflächenaktiver Stoffe wie Netzmittel zur Spritzbrühe verbessert werden (vgl. Green et al., ANPP, Seizieme conference du column - Journees internationales sur la lutte contre les mauvaises herbes 1995, S. 469-474; "DPX-KG 691 - A new surfactant for sulfonyl urea herbicides").
- [0004] In der Literatur werden als geeignete Netzmittel u.a. Öl-Adjuvantien (Nalejewa et al., Weed Technol. 1995, 9, S. 689-695) oder Alkoholethoxylate (s.o. sowie Dunne et al., Weed Science 1994, 42, S. 82-85; Green, Weed Technol. 1993, 7, S. 633-640) als besonders geeignet beschrieben. Diese Stoffe werden in der landwirtschaftlichen Praxis als Tank-Mix-Additive vom Landwirt der Spritzbrühe zugesetzt. Dabei wird die Mischung aus SU-Herbizid und oberflächenaktivem Stoff erst kurz vor der Anwendung im Spritztank hergestellt.
- [0005] Kommerziell erhältlich ist z.B. ein Doppelpack mit dem Handelsnamen CATO® (Du Pont de Nemours), welcher aus einem 25 %igen wasserdispergierbaren Granulat des Wirkstoffs Rimsulfuron (Komponente A) und einem separat abgepackten Netzmittel (Komponente B) bestehend aus einer Mischung aus 2-Butoxyethanol, polyethoxyliertem Tallowamin und Nonylphenylpolyethylenglykolether besteht. Zur Anwendung werden beide Komponenten wie oben beschrieben im Spritztank gemischt.
- [0006] In der Praxis wäre es wünschenswert, Fertigformulierungen einzusetzen, in denen ein wirkungssteigerndes Netzmittel bereits enthalten ist, um die problematische Mischung unmittelbar vor der Anwendung zu vermeiden. Auf diese Weise könnten logistische Probleme und Mischungsfehler beim Ansetzen der Spritzbrühe vermieden werden. Ferner sind Festformulierungen generell aus anwendungstechnischer Sicht bei der Gestaltung und Entsorgung der Verpackungen vorteilhaft.
- [0007] Aus der Literatur ist weiterhin bekannt, daß Formulierungen, die Sulfonylharnstoffe enthalten, bezüglich der Stabilität der Wirkstoffe problematisch sind, da der Wirkstoff sich unter ungünstigen Bedingungen im Lauf der Zeit zersetzen kann. Die gewünschte herbizide Wirkung ist dann nicht mehr gegeben. Die Tendenz zur Zersetzung ist auch hinsichtlich der Registrierungsanforderungen problematisch, da bei der Registrierung bestimmte Mindestanforderungen an die Stabilität von PS-Wirkstoffen in Formulierungen gestellt werden.
- [0008] In der JP-A 62/084004 wird die Verwendung von Calciumcarbonat und Natrium-tripolyphosphat zur Stabilisierung von SU-haltigen Formulierungen beschrieben.
- [0009] Die JP-A 63/023806 beschreibt eine Problemlösung durch Verwendung spezieller Trägerstoffe und Pflanzenöle zur Herstellung fester SU-haltiger Formulierungen. Die JP-A 08/104603 beschreibt ähnliche Effekte bei der Verwendung von epoxidisierten natürlichen Ölen. Beide vorstehend genannten Anmeldungen haben als gemeinsames Merkmal die Inkorporation von Pflanzenölen in der Festformulierung, um neben einer verbesserten Stabilität die wirkungssteigernden Effekte dieser als Adjuvantien wirksamen Stoffe zu nutzen.
- [0010] Bei der Einarbeitung von Pflanzenölen in flüssige Formulierungen (in der Regel Suspensionskonzentrate) werden ähnliche Effekte ausgenutzt (vgl. EP-A 313317 und EP-A 554015).
- [0011] Aus dem Stand der Technik ist auch bekannt, daß Alkylpolyglucoside als Netzmittel/Adjuvantien verwendet werden können.
- [0012] Gegenstand der WO 95/28410 sind feste Mischungen aus einem Wirkstoff und einem Alkylpolyglucosid in Form eines Absorbats auf einem Trägerstoff.
- [0013] In der EP-A-498 145 sind Alkylpolyglykoside mit dem Wirkstoff N-Phosphono-Methylglycin in Feststoffformulierungen beschrieben.
- [0014] Aufgabe der vorliegenden Erfindung war es daher, Festformulierungen mit Sulfonylharnstoffen als Wirkstoffen zur Verfügung zu stellen, die Adjuvantien bereits in der Festformulierung enthalten und bisher bekannten Festformulierungen überlegen sind.
- [0015] Diese Aufgabe wird erfindungsgemäß durch feste Mischungen gelöst, die enthalten
- 50 a) einen Sulfonylharnstoff und
b) ein Adjuvant aus der Gruppe der Alkylpolyglykoside.
- [0016] Überraschenderweise wurde gefunden, daß bei Verwendung von Alkylpolyglykosiden als Netzmittel in SU-haltigen Feststoffformulierungen eine ausgeprägte Stabilisierung des Wirkstoffs im Vergleich zu anderen Netzmitteln (z.B. ethoxylierten Fettaminen oder Alkoholethoxylaten) auftritt. Dieser Effekt ist vor allem dann zu beobachten, wenn neben herbiziden Wirkstoffen wasserlösliche anorganische Salze wie Ammoniumsulfat vorhanden sind. Besonders deutlich wird die Stabilisierung wenn das Netzmittel in der für die biologische Wirkung erforderlichen Konzentration

eingesetzt wird.

[0017] Durch Mischung der SU mit anderen Wirkstoffen, Alkylpolyglykosiden und Ammoniumsulfat lassen sich lagerstabile Fertigformulierungen mit guter biologischer Wirkung erhalten.

[0018] Weiterhin wurden Verfahren zur Herstellung der erfundungsgemäßen festen Mischungen gefunden sowie deren Verwendung als Pflanzenschutzmittel zur Bekämpfung unerwünschter Schadpflanzen.

[0019] Als Sulfonylharnstoff a) kommen generell Verbindungen mit der Strukturheit

15 in Betracht.

[0020] Bevorzugt werden SU der folgenden Strukturen I:

25

wobei J folgende Bedeutung hat:

J-10J-11J-12J-13

oder

J-14wobei die Substituenten R bis R¹⁸ folgende Bedeutung haben:

- 25 R: H oder CH₃;
- R¹: F, Cl, Br, NO₂, C₁-C₄-Alkyl, C₁-C₄-Haloalkyl, C₃-C₄-Cycloalkyl, C₂-C₄-Haloalkenyl, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₂-C₄-Alkoxyalkoxy, CO₂R¹², C(O)NR¹³R¹⁴, SO₂NR¹⁵R¹⁶, S(O)_nR¹⁷, C(O)R¹⁸, CH₂CN oder L;
- 30 R²: H, F, Cl, Br, CN, CH₃, OCH₃, SCH₃, CF₃ oder OCF₂H;
- R³: Cl, NO₂, CO₂CH₃, CO₂CH₂CH₃, SO₂N(CH₃)₂, SO₂CH₃, SO₂CH₂CH₃, OCH₃, or OCH₂CH₃;
- 35 R⁴: C₁-C₃-Alkyl, C₁-C₄-Haloalkyl, C₁-C₄-Alkoxy, C₂-C₄-Haloalkenyl, F, Cl, Br, NO₂, CO₂R¹², C(O)NR¹³R¹⁴, SO₂NR¹⁵R¹⁶, S(O)_nR¹⁷, C(O)R¹⁸ or L;
- R⁵: H, F, Cl, Br oder CH₃;
- 40 R⁶: C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₂-C₄-Haloalkenyl, F, Cl, Br, CO₂R¹², C(O)NR¹³R¹⁴, SO₂NR¹⁵R¹⁶, S(O)_nR¹⁷, C(O)R¹⁸ or L;
- R⁷: H, F, Cl, CH₃ oder CF₃;
- 45 R⁸: H, C₁-C₄-Alkyl oder Pyridyl;
- R₉: ist C₁-C₄-Alkyl, C₁-C₄-Alkoxy, F, Cl, Br, NO₂, CO₂R¹², SO₂NR¹⁵R¹⁶, S(O)_nR¹⁷, OCF₂H, C(O)R¹⁸, C₂-C₄-Haloalkenyl oder L;
- 50 R¹⁰: H, Cl, F, Br, C₁-C₄-Alkyl or C₁-C₄-Alkoxy;
- R¹¹: H, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₂-C₄-Alkoxy; Haloalkenyl, F, Cl, Br, CO₂R¹², C(O)NR¹³R¹⁴, SO₂NR¹⁵R¹⁶, S(O)_nR¹⁷, C(O)R¹⁸ oder L;
- 55 R¹²: C₁-C₄-Alkyl, ggf. substituiert durch Halogen, C₁-C₄-Alkoxy oder CN, Allyl oder Propargyl;
- R¹³: H, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy;

5 R¹⁴: C₁-C₄-Alkyl;

R¹⁵: H, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Allyl oder Cyclopropyl;

10 R¹⁶: H oder C₁-C₄-Alkyl;

R¹⁷: C₁-C₄-Alkyl, C₁-C₄-Haloalkyl, Allyl oder Propargyl;

15 R¹⁸: C₁-C₄-Alkyl, C₁-C₄-Haloalkyl or C₃-C₅ Cycloalkyl, ggf. substituiert durch Halogen;

n = 0, 1 oder 2 ist;

L = die Struktur II

15

20

hat, wobei

25 R_j: H oder C₁-C₃ Alkyl;

W: O oder S;

30 X: H, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Haloalkylthio, C₁-C₄-Alkylthio, Halo-
gen, C₂-C₅-Alkoxyalkyl, C₂-C₅-Alkoxyalkoxy, Amino, C₁-C₃-Alkylamino oder Di(C₁-C₃ alkyl)-Amino;

35

Y: H, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Haloalkylthio, C₂-C₅-Alkoxyalkyl,
C₂-C₅-Alkoxyalkoxy, Amino, C₁-C₃-Alkylamino, Di(C₁-C₃-Alkyl)-Amino, C₃-C₄-Alkenyloxy, C₃-C₄-Alkanyloxy,
C₂-C₅-Alkylthioalkyl, C₂-C₅-Alkylsulfonylalkyl, C₂-C₅-Alkylsulfonylalkyl, C₁-C₄-Haloalkyl, C₂-C₄-Alkenyl,
C₃-C₅-Cycloalkyl, Azido, Fluor oder Cyano;

Z: CH oder N; ist,

und deren landwirtschaftlich brauchbare Salze.

40 [0021] Nachstehend seien einige geeignete SU mit ihrem INN (International Nonproprietary Name) gemäß Pesticide Manual erwähnt:

ACC 322140;

Amidosulfuron;

45 Azimsulfuron (N-[(4,6-dimethoxy-2-pyrimidinyl)amino]-carbonyl]-1-methyl-4-(2-methyl-2H-tetrazol-5-yl)-1H-pyrazol-5-sulfonamid);

Bensulfuron-methyl (Methyl 2-[[[(4,6-dimethoxy-2-pyrimidinyl)-amino]-carbonyl]amino]sulfonyl)methyl]benzoat(Chlorimuron ethyl);

50 2-Chloro-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzolsulfonamid(Chlorsulfuron);

Chlorsulfoxim;

Cinosulfuron;

Cyclosulfamuron;

55 Ethametsulfuron-methyl (Methyl 2-[[[4-ethoxy-6-(methylamino)-1,3,5-triazin-2-yl]amino]carbonyl]amino]sulfonyl]benzoat;

Ethoxysulfuron;

Flazasulfuron;

Flupyralsulfuron (Methyl 2-[[[(4,6-dimethoxy-2-pyrimidinyl)-amino]-carbonyl]amino]sulfonyl]-6-(trifluormethyl)-3-py-

ridincarboxylat);
 Halosulfuron-methyl ;
 Imazosulfuron;
 5 Methyl 2-[[[[4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]aminosulfonyl]benzoat(Metsulfuron methyl) ;
 Nicosulfuron (2-[[[[4,6-dimethoxy-2-pyrimidinyl)amino]-carbonyl]amino]sulfonyl]-N,N-dimethyl-3-pyridincarboxamid);
 Oxasulfuron;
 Primisulfuron (Methyl 2-[[[[4,6-bis(difluormethoxy)-2-pyrimidinyl]amino]carbonyl]amino]sulfonyl]benzoat) ;
 Prosulfuron;
 10 Pyrazosulfuron-ethyl (Ethyl 5-[[[[4,6-dimethoxy-2-pyrimidinyl)-amino]-carbonyl] amino] sulfonyl]-1-methyl-1H-pyrazol-4-carboxylat) ;
 Rimsulfuron (N-[[(4,6-dimethoxy-2-pyrimidinylamino]carbonyl]-3-(ethylsulfonyl)-2-pyridinsulfonamid) ;
 Sulfosulfuron;
 15 Sulfometuron-methyl (Methyl 2-[[[[4,6-dimethyl-2-pyrimidinyl)-amino]-carbonyl]amino]sulfonyl]benzoat) ;
 Thifensulfuron-methyl (Methyl-3-[[[[4-methoxy-6-methyl-1,3,5-triazin-2-yl]amino]carbonyl]amino]sulfonyl]-2-thiophencarboxylat);
 20 2-(Chlorethoxy)-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-amino]carbonyl]benzolsulfonamid (Triasulfuron);
 Tribenuron-methyl (Methyl 2-[[[[N-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-N-methylamino]carbonyllamino]sulfonyl]benzoat);
 und
 Triflusulfuron-methyl (Methyl 2-[[[[4-(dimethylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-yl]amino]-carbonyl]-amino]sulfonyl]-3-methylbenzoat) ;

[0022] Besonders bevorzugt sind Sulfonylharnstoffe der allgemeinen Formel III (entspricht der Formel I mit J=J₁), wie sie z.B aus der EP-A 388 873, der EP-A 559 814, der EP-A 291 851 und der EP-A 446 743 bekannt sind:

35 wobei die Substituenten folgende Bedeutung haben:

- R¹ C₁-C₄-Alkyl, das eine bis fünf der folgenden Gruppen tragen kann: Methoxy, Ethoxy, SO₂CH₃, Cyano, Chlor, Fluor, SCH₃, S(O)CH₃;
 40 Halogen; eine Gruppe ER¹⁹, in der E O, S oder NR²⁰ bedeutet; COOR¹², NO₂; S(O)_nR¹⁷, SO₂NR¹⁵R¹⁶, CONR¹³R¹⁴;
- R² Wasserstoff, Methyl, Halogen, Methoxy, Nitro, Cyano, Trifluormethyl, Trifluormethoxy, Difluormethoxy oder Methylthio,
- Y F, CF₃, CF₂Cl, CF₂H, OCF₃, OCF₂Cl, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy;
- 50 X C₁-C₂-Alkoxy, C₁-C₂-Alkyl, C₁-C₂-Alkylothio, C₁-C₂-Alkylamino, Di-C₁-C₂-Alkylamino, Kalogen, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy,
- R Wasserstoff oder Methyl;
- 55 R¹⁹ C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl oder C₃-C₆-Cycloalkyl, welche 1 bis 5 Halogenatome tragen können. Ferner bedeutet R¹⁹ im Falle, daß E für O oder NR²⁰ steht, noch Methylsulfonyl, Ethylsulfonyl, Trifluormethylsulfonyl, Allylsulfonyl, Propargylsulfonyl oder Dimethylsulfamoyl;

R²⁰ Wasserstoff, Methyl oder Ethyl

R¹² eine C₁-C₄-Alkylgruppe, welche bis zu drei der folgenden Reste tragen kann: Halogen, C₁-C₄-Alkoxy, Allyl oder Propargyl;

R¹⁷ eine C₁-C₄-Alkylgruppe, welche einen bis drei der folgenden Reste tragen kann: Halogen, C₁-C₄-Alkoxy, Allyl oder Propargyl;

R¹⁵ Wasserstoff, eine C₁-C₂-Alkoxygruppe oder eine C₁-C₄-Alkylgruppe;

R¹⁶ Wasserstoff oder eine C₁-C₄-Alkylgruppe,

n = 1 oder 2

Z = N, CH.

[0023] Insbesondere bevorzugte Sulfonylhamstoffe der Formel III sind solche der allgemeinen Formel I, in denen J₁ steht und die restlichen Substituenten die folgende Bedeutung haben:

R¹ CO₂CH₃, CO₂C₂H₅, CO₂iC₃H₇, CF₃, CF₂H; OSO₂CH₃, OSO₂N(CH₃)₂, Cl, NO₂, SO₂N(CH₃)₂, SO₂CH₃ und N(CH₃)SO₂CH₃,

R² Wasserstoff, Cl, F oder C₁-C₂-Alkyl,

Y CF₂H, OCF₃, OCF₂Cl, CF₂Cl, CF₃ oder F,

X OCH₃, OC₂H₅, OCF₃, OCF₂Cl; CF₃, Cl, F, NH(CH₃), N(CH₃)₂ oder C₁-C₂-Alkyl,

R⁵ Wasserstoff, und

Z N oder CH.

[0024] Ganz besonders bevorzugte Verbindungen der Formel III sind in der folgenden Tabelle zusammengestellt.

Tabelle

Nr.	R ¹	R ²	R	Y	X	Z
1	CO ₂ CH ₃	H	H	OCF ₂ Cl	OCH ₃	CH
2	CO ₂ C ₂ H ₅	H	H	OCF ₂ Cl	OCH ₃	CH

Nr.	R ¹	R ²	R	Y	X	Z
3	CO ₂ iC ₃ H ₇	H	H	OCF ₂ Cl	OCH ₃	CH
4	NO ₂	H	H	OCF ₂ Cl	OCH ₃	CH
5	SO ₂ CH ₃	H	H	OCF ₂ Cl	OCH ₃	CH
6	SO ₂ N(CH ₃) ₂	H	H	OCF ₂ Cl	OCH ₃	CH
7	Cl	H	H	OCF ₂ Cl	OCH ₃	CH
8	N(CH ₃)SO ₂ CH ₃	H	H	OCF ₂ Cl	OCH ₃	CH
9	OSO ₂ CH ₃	H	H	OCF ₂ Cl	OCH ₃	CH
10	OSO ₂ N(CH ₃) ₂	H	H	OCF ₂ Cl	OCH ₃	CH
11	CF ₃	H	H	OCF ₂ Cl	OCH ₃	CH
12	CF ₂ H	H	H	OCF ₂ Cl	OCH ₃	CH
13	CO ₂ CH ₃	H	H	OCF ₃	OCH ₃	CH
14	CO ₂ C ₂ H ₅	H	H	OCF ₃	OCH ₃	CH
15	CO ₂ iC ₃ H ₇	H	H	OCF ₃	OCH ₃	CH
16	NO ₂	H	H	OCF ₃	OCH ₃	CH
17	SO ₂ CH ₃	H	H	OCF ₃	OCH ₃	CH
18	SO ₂ N(CH ₃) ₂	H	H	OCF ₃	OCH ₃	CH
19	Cl	H	H	OCF ₃	OCH ₃	CH
20	N(CH ₃)SO ₂ CH ₃	H	H	OCF ₃	OCH ₃	CH
21	OSO ₂ CH ₃	H	H	OCF ₃	OCH ₃	CH
22	OSO ₂ N(CH ₃) ₂	H	H	OCF ₃	OCH ₃	CH
23	CF ₃	H	H	OCF ₃	OCH ₃	CH
24	CF ₂ H	H	H	OCF ₃	OCH ₃	CH
25	CO ₂ CH ₃	H	H	F	OCH ₃	CH
26	CO ₂ C ₂ H ₅	H	H	F	OCH ₃	CH
27	CO ₂ iC ₃ H ₇	H	H	F	OCH ₃	CH
28	NO ₂	H	H	F	OCH ₃	CH
29	SO ₂ CH ₃	H	H	F	OCH ₃	CH
30	SO ₂ N(CH ₃) ₂	H	H	F	OCH ₃	CH
31	Cl	H	H	F	OCH ₃	CH
32	N(CH ₃)SO ₂ CH ₃	H	H	F	OCH ₃	CH
33	OSO ₂ CH ₃	H	H	F	OCH ₃	CH
34	OSO ₂ N(CH ₃) ₂	H	H	F	OCH ₃	CH

Nr.	R ¹	R ²	R	Y	X	Z
35	CF ₃	H	H	F	OCH ₃	CH
36	CF ₂ H	H	H	F	OCH ₃	CH
37	CO ₂ CH ₃	H	H	CF ₃	OCH ₃	N
38	CO ₂ C ₂ H ₅	H	H	CF ₃	OCH ₃	N
39	CO ₂ iC ₃ H ₇	H	H	CF ₃	OCH ₃	N
40	NO ₂	H	H	CF ₃	OCH ₃	N
41	SO ₂ CH ₃	H	H	CF ₃	OCH ₃	N
42	SO ₂ N(CH ₃) ₂	H	H	CF ₃	OCH ₃	N
43	Cl	H	H	CF ₃	OCH ₃	N
44	N(CH ₃)SO ₂ CH ₃	H	H	CF ₃	OCH ₃	N
45	OSO ₂ CH ₃	H	H	CF ₃	OCH ₃	N
46	OSO ₂ N(CH ₃) ₂	H	H	CF ₃	OCH ₃	N
47	CF ₃	H	H	CF ₃	OCH ₃	N
48	CF ₂ H	H	H	CF ₃	OCH ₃	N
49	CO ₂ CH ₃	H	H	CF ₃	OCH ₃	CH
50	CO ₂ C ₂ H ₅	H	H	CF ₃	OCH ₃	CH
51	CO ₂ iC ₃ H ₇	H	H	CF ₃	OCH ₃	CH
52	NO ₂	H	H	CF ₃	OCH ₃	CH
53	SO ₂ CH ₃	H	H	CF ₃	OCH ₃	CH
54	SO ₂ N(CH ₃) ₂	H	H	CF ₃	OCH ₃	CH
55	Cl	H	H	CF ₃	OCH ₃	CH
56	N(CH ₃)SO ₂ CH ₃	H	H	CF ₃	OCH ₃	CH
57	OSO ₂ CH ₃	H	H	CF ₃	OCH ₃	CH
58	OSO ₂ N(CH ₃) ₂	H	H	CF ₃	OCH ₃	CH
59	CF ₃	H	H	CF ₃	OCH ₃	CH
60	CF ₂ H	H	H	CF ₃	OCH ₃	CH
61	CO ₂ CH ₃	H	H	CF ₂ H	OCH ₃	N
62	CO ₂ C ₂ H ₅	H	H	CF ₂ H	OCH ₃	N
63	CO ₂ iC ₃ H ₇	H	H	CF ₂ H	OCH ₃	N
64	NO ₂	H	H	CF ₂ H	OCH ₃	N
65	SO ₂ CH ₃	H	H	CF ₂ H	OCH ₃	N
66	SO ₂ N(CH ₃) ₂	H	H	CF ₂ H	OCH ₃	N

Nr.	R ¹	R ²	R	Y	X	Z
67	Cl	H	H	CF ₂ H	OCH ₃	N
68	N(CH ₃)SO ₂ CH ₃	H	H	CF ₂ H	OCH ₃	N
69	OSO ₂ CH ₃	H	H	CF ₂ H	OCH ₃	N
70	OSO ₂ N(CH ₃) ₂	H	H	CF ₂ H	OCH ₃	N
71	CF ₃	H	H	CF ₂ H	OCH ₃	N
72	CF ₂ H	H	H	CF ₂ H	OCH ₃	N
73	CO ₂ CH ₃	H	H	CF ₂ H	OCH ₃	CH
74	CO ₂ C ₂ H ₅	H	H	CF ₂ H	OCH ₃	CH
75	CO ₂ iC ₃ H ₇	H	H	CF ₂ H	OCH ₃	CH
76	NO ₂	H	H	CF ₂ H	OCH ₃	CH
77	SO ₂ CH ₃	H	H	CF ₂ H	OCH ₃	CH
78	SO ₂ N(CH ₃) ₂	H	H	CF ₂ H	OCH ₃	CH
79	Cl	H	H	CF ₂ H	OCH ₃	CH
80	N(CH ₃)SO ₂ CH ₃	H	H	CF ₂ H	OCH ₃	CH
81	OSO ₂ CH ₃	H	H	CF ₂ H	OCH ₃	CH
82	OSO ₂ N(CH ₃) ₂	H	H	CF ₂ H	OCH ₃	CH
83	CF ₃	H	H	CF ₂ H	OCH ₃	CH
84	CF ₂ H	H	H	CF ₂ H	OCH ₃	CH
85	CO ₂ CH ₃	H	H	CF ₂ Cl	OCH ₃	N
86	CO ₂ C ₂ H ₅	H	H	CF ₂ Cl	OCH ₃	N
87	CO ₂ iC ₃ H ₇	H	H	CF ₂ Cl	OCH ₃	N
88	NO ₂	H	H	CF ₂ Cl	OCH ₃	N
89	SO ₂ CH ₃	H	H	CF ₂ Cl	OCH ₃	N
90	SO ₂ N(CH ₃) ₂	H	H	CF ₂ Cl	OCH ₃	N
91	Cl	H	H	CF ₂ Cl	OCH ₃	N
92	N(CH ₃)SO ₂ CH ₃	H	H	CF ₂ Cl	OCH ₃	N
93	OSO ₂ CH ₃	H	H	CF ₂ Cl	OCH ₃	N
94	OSO ₂ N(CH ₃) ₂	H	H	CF ₂ Cl	OCH ₃	N
95	CF ₃	H	H	CF ₂ Cl	OCH ₃	N
96	CF ₂ H	H	H	CF ₂ Cl	OCH ₃	N
97	CO ₂ CH ₃	3-F	H	Cl	OCH ₃	CH
98	CF ₂ CF ₃	H	H	CH ₃	OCH ₃	N

Nr.	R ¹	R ²	R	Y	X	Z
99	CF ₂ CF ₃	H	H	CH ₃	OCH ₃	N
100	SO ₂ C ₂ H ₅	H	H	F	OCH ₃	CH

[0025] Selbstverständlich können als Komponente a) auch Mischungen mehrerer Sulfonylharnstoffe eingesetzt werden.

[0026] Als Komponente b) enthalten die erfindungsgemäßen Festformulierungen eines oder mehrere Alkylpolyglykoside (nachstehend als APG bezeichnet). Die Substanzklasse der APG wird in der Literatur je nach chemischer Struktur und Reaktionsführung der Synthese als Alkylglukoside, Alkylglykoside, Alkylpolyglukoside oder Alkylpolyglykoside bezeichnet. Im folgenden wird hierin nur noch der Begriff APG stellvertretend für alle Bezeichnungen verwendet und erfaßt stets die gesamte Gruppe der vorstehend genannten Verbindungen.

[0027] Als Komponente b) kommen vor allem APG mit einem mittleren Polymerisationsgrad im Bereich von 1,0 bis 6,0 in Betracht. Diese können durch die allgemeine Formel II

charakterisiert werden, wobei R²¹ für einen Alkylrest mit 4 bis 30, vorzugsweise 8 bis 18 C-Atomen und Z für einen Glycosidrest mit 5 bis 6 Kohlenstoffatomen steht und a einen Wert im Bereich von 1 bis 6, vorzugsweise von 1,0 bis 1,7 hat. Entsprechende Produkte sind unter anderem unter den Bezeichnungen Agrimul® PG, APG®, Plantaren® oder Glucopon® (alle Fa. Henkel), Lutensol® (Fa. BASF), Atplus® (Fa. ICI Surfactants) oder Triton® (Fa. Union Carbide) im Handel erhältlich.

[0028] Besonders erwähnt seien hier:

Agrimul® PG 2067 : ein APG mit einer C₈-C₁₀ Alkylgruppe und einem durchschnittlichen Polymerisationsgrad von 1,7;

APG® 425 : ein APG mit einer C₈-C₁₆ Alkylgruppe und einem durchschnittlichen Polymerisationsgrad von 1,6;

APG® 625 : ein APG mit einer C₁₂-C₁₆ Alkylgruppe und einem durchschnittlichen Polymerisationsgrad von 1,6;

APG® 300 : ein APG mit einer C₈-C₁₆ Alkylgruppe und einem durchschnittlichen Polymerisationsgrad von 1,4;

AG 6202 : ein APG mit einer 2-Ethyl-hexylkette (Akzo Nobel) und einem durchschnittlichen Polymerisationsgrad von 1,6;

Lutensol® GD 70 : ein APG mit einer C₁₀-C₁₂-Alkylgruppe (BASF AG) und einem durchschnittlichen Polymerisationsgrad von 1,3;

Agrimul® PG 2069 : ein APG mit einer C₉-C₁₁ Alkylgruppe und einem durchschnittlichen Polymerisationsgrad von 1,6;

Glucopon® 600 : ein APG mit einer C₁₂-C₁₆ Alkylgruppe und einem durchschnittlichen Polymerisationsgrad von 1,4;

Plantaren® 1300 : ein APG mit einer C₁₂-C₁₆ Alkylgruppe und einem durchschnittlichen Polymerisationsgrad von 1,6.

[0029] Weiterhin bevorzugte APGs sind Atplus® 258, Atplus® 264, Atplus® 430, Atplus® 460, Atplus® 469 und Atplus® 450 (Alkylpolysaccharid/Adjuvant-Blends, ICI Surfactants) sowie Agrimul® PG 215, Agrimul® PG 600, Triton® BG-10 sowie Triton® CG-110.

[0030] Gegenüber unverzweigten Alkylresten können verzweigte Alkylreste besonders bevorzugt sein.

[0031] Der Anteil der Komponente a) an den erfindungsgemäßen festen Mischungen liegt im allgemeinen im Bereich von 0,5 bis 75 Gew.%, vorzugsweise von 1 bis 25 Gew.%, bezogen auf das Gesamtgewicht der Formulierung.

[0032] Der Anteil der APG (Komponente b) liegt im allgemeinen im Bereich von 1 bis 75, insbesondere 1 bis 50 und besonders bevorzugt 5 bis 25 Gew.%, bezogen auf das Gesamtgewicht der Formulierung.

[0033] Neben den Komponenten a) und b) können die erfindungsgemäßen festen Mischungen noch weitere, mit Sulfonylharnstoffen mischbare bzw. synergistisch wirksame andere Wirkstoffe enthalten. Entsprechende Produkte sind dem Fachmann bekannt und in der Literatur beschrieben. Die folgenden Gruppen von weiteren Wirkstoffen seien beispielhaft unter Verwendung ihrer INN (in englischer Sprache) genannt:

c1: 1,3,4-Thiadiazole :

10 buthidazole, cyprazole;

c2: Amide :

15 alidochlor (CDAA), Benzoylprop-ethyl, Bromobutide, chlorihiamid, dimepiperate, dimethenamid, diphenamid, etobenzanid (benzchlomet), flamprop-methyl, fosamin, isoxaben, monalide, naptalam, pronamid (propyzmid), propanil;

c3: Aminophosphorsäuren :

20 bilanafos (bialaphos), buminafos, glufosinate-ammonium, glyphosate, sulfosate

c4: Aminotriazole :

25 Amitrol;

c5: Anilide :

anilofos, mefenacet, thiafluamide;

30 c6: Aryloxyalkansäuren

2,4-D, 2,4-DB, clomeprop, dichlorprop, dichlorprop-P, (2,4-DP-P), fenoprop (2,4,5-TP), fluoroxypr, MCPA, MCPB, mecoprop, mecoprop-P, napropamide, napropanilide, triclopyr;

35 c7: Benzoësäuren :

chloramben, dicamba;

40 c8 : Benzothiadiazinone :

Bentazon;

c9: Bleacher :

45 clomazone (dimethazone), diflufenican, fluorochloridone, flupoxam, fluridone, pyrazolate, sulcotrione (chlormesulone) isoxaflutol, 2-(2'-Chlor-3'-Ethoxy-4'-ethylsulfonyl-benzoyl)-4-methylcyclohexan-1,3-dion;

c10: Carbamate :

50 asulam, barban, butylate, carbetamide, chlorbufam, chlorpropham, cycloate, desmedipham, diallate, EPTC, esprocarb, molinate, orbencarb, pebulate, phenisopham, phenmedipham, propham, prosulrocacb, pyributicarb, sulfallate (CDEC), terbucarb, thiobencarb (benthiocarb), tiocarbazil, triallate, vernolate;

c11: Chinolinsäuren :

55 quinclorac, quinmerac;

c12: Chloracetanilide :

EP 0 955 810 B1

acetochlor, alachlor, butachlor, butenachlor, diethyl ethyl, dimethachlor, dimethenamide (vgl. auch unter Kategorie c2) metazachlor, metolachlor, pretilachlor, propachlor, prynachlor, terbuchlor, thienylchlor, xylachlor;

5 **c13: Cyclohexenone :**

alloxydim, caloxydim, clethodim, cloproxydim, cycloxydim, sethoxydim, tralkoxydim, 2-{1-[2-(4-Chlor-phenoxo) propyloxyimino] butyl}-3-hydroxy-5-(2H-tetrahydrothiopyran-3-yl)-2-cyclohexen-1-on;

10 **c14: Dichlorpropionsäuren :**

dalapon;

15 **c15: Dihydrobenzofurane :**

ethofumesate;

20 **c16: Dihydrofuran-1-one :**

flurtamone;

25 **c17: Dinitroaniline :**

benefin, butralin, dinitramin, ethalfluralin, fluchloralin, isopropalin, nitralin, oryzalin, pendimethalin, prodiamine, profluralin, trifluralin;

30 **c18: Dinitrophenole :**

bromofenoim, dinoseb, dinoseb-acetat, dinoterb, DNOC;

35 **c19: Diphenylether :**

acifluorfen-sodium, aclonifen, bifenox, chlornitrofen (CNP), difenoxuron, ethoxyfen, fluorodifen, fluoroglycofen-ethyl, fomesafen, furyloxyfen, lactofen, nitrofen, nitrofluorfen, oxyfluorfen;

40 **c20: Dipyridylene :**

cyperquat, difenzoquat-methylsulfat, diquat, paraquat-dichlorid;

45 **c21: Harnstoffe :**

benzthiazuron, buturon, chlorbromuron, chloroxuron, chlortoluron, cumyluron, dibenzyluron, cycluron, difuron, diuron, dymron, ethidimuron, fenuron, fluometuron, isoproturon, isouron, karbutilat, linuron, methaben-thiazuron, metabenzuron, metoxuron, monolinuron, monuron, neburon, siduron, tebutiuron, trimeturon;

50 **c22: Imidazole :**

iscarbamide;

55 **c23: Imidazolinone :**

imazamethapyr, imazapyr, imazaquin, imazethabenz-methyl (imazame), imazethapyr, imazamox;

60 **c24: Oxadiazole :**

methazole, oxadiargyl, oxadiazone;

65 **c25: Oxirane :**

tridiphane

c26: Phenole :

5 bromoxynil, ioxynil;

c27: Phenoxypropionsäureester

10 clodinafop, cyhalofop-butyl, diclofop-methyl, fenoxyprop-ethyl, fenoxyprop-p-ethyl, fenthiapropethyl, fluazifop-butyl, fluazifop-butyl, haloxyfop-ethoxyethyl, haloxyfop-methyl, haloxyfop-p-methyl, isoxapryifop, propaquizafop, quizalofop-ethyl, guizalofop-p-ethyl, quizalofopfuryl;

c28: Phenylessigsäuren :

15 chlōfenac (fenac);

c29: Phenylpropionsäuren :

20 chlorophenprop-methyl;

c30: Protoporphyrinogen-IX-Oxydase-Hemmer

25 benzofenap, cinidon-ethyl, flumiclorac-pentyl, flumioxazin, flumipropyn, flupropacil, fluthiacet-methyl, pyrazoxyfen, sulfentrazone, thidiazimine, carfentrazone, azafenidin;

c31: Pyrazole :

nipyraprofen;

c32: Pyridazine :

chloridazon, maleic hydrazide, norflurazon, pyridate;

c33: Pyridincarbonsäuren:

35 clopyralid, dithipppyr, picloram, thalzopyr;

c34: Pyrimidylether :

40 pyrithiobac-acid, pyrithiobac-sodium, pyriminobac-methyl, bispyribenzoxim, bispyribac-sodium;

c35: Sulfonamide :

45 flumetsulam, metosulam, cloransulam-methyl, diclosulam;

c36: Triazine :

50 ametryn, atrazin, aziprotryn, cyanazine, cyprazine, desmetryn, dimethamethryn, dipropetryn, eginazin-ethyl, hexazinon, procyzazine, prometon, prometryn, propazin, sebumeton, simazin, simetryn, terbumeton, terbutryn, terbutylazin, trietazin, dimesyflam;

c37: Triazinone :

55 ethiozin, metamitron, metribuzin;

c38: Triazolcarboxamide :

triazofenamid;

c39: Uracile:

bromacil, lenacil, terbacil;

5 c40: Verschiedene :

benazolin, benfuresate, bensulide, benzofluor, butamifos, cafenstrole, chlorthal-dimethyl (DCPA), cinmethylin, dichlobenil, endothall, fluorbentranil, mefluidide, perfluidone, piperophos, diflufenzopyr, diflufenzopyr-natrium

10 oder die umweltverträglichen Salze der vorstehend genannten Wirkstoffgruppen.

[0034] Bevorzugte weitere Wirkstoffe c) sind z.B.

bromobutide, dimethenamide, isoxaben, propanil,
glufosinate-ammonium, glyphosate, sulfosate,
15 mefenacet, thiafluamide,
2,4-D, 2,4-DB, dichlorprop, dichlorprop-P,
dichlorprop-P(2,4-DP-P), fluoroxypr, MCPA, mecoprop, mecoprop-P, dicamba,
Bentazon,
20 clomazone, diflufenican, sulcotrione, isoxaflutole, phenmedipham, thiobencarb,
quinclorac, quinmerac,
acetochlor, alachlor, butachlor, metazachlor, metolachlor, pretilachlor,
butroxydim, caloxydim, clethodim, cycloxydim, sethoxydim, tralkoxydim, 2-[1-[2-(4-Chlor-phenoxy) propyloxyimino] butyl]-3-hydroxy-5-(2H-tetrahydrothiopyran-3-yl)-2-cyclohexen-1-on, pendimethalin,
25 acifluorfen-sodium, bifenoxy, fluoroglycofen-ethyl, fomesafen, lactofen,
chlortoluron, cycluron, dymron, isoproturon, metabenzthiazuron, imazaquin, imazamox, imazethabenz-methyl,
imazethapyr,
bromoxynil, ioxynil,
30 clodinafop, cyhalofop-butyl, fenoxyprop-ethyl, fenoxaprop-p-ethyl, haloxyfop-p-methyl,
cinidon-ethyl, flumiclorac-pentyl, carfentrazone, flumipropyn, fluthiacet-methyl,
pyridate,
35 clopyralid,
bispyribac-sodium, pyriminobac-methyl,
flumetsulam, metosulam,
atrazin, cyanazine, terbutylazine,
benazolin, benfuresate, cafenstrole, cinmethylin, ammonium-bentazon, cloquintocet, diflufenzopyr, diflufenzopyr-Natrium, pyraflufen-ethyl.

[0035] Insbesondere bevorzugt sind folgende Verbindungen c):

40 2,4-D, Dichlorprop-P, MCPA, mecoprop-P,
dicamba,
bentazon,
diflufenican, sulcotrione,
45 quinclorac,
caloxydim, cycloxydim, sethoxydim, 2-[1-[2-(4-Chlor-phenoxy) propyloxyimino] butyl]-3-hydroxy-5-(2H-tetrahy-
drothiopyran-3-yl)-2-cyclohexen-1-on,
acifluorfen-sodium, fluoroglycofen-ethyl,
bromoxynil,
fenoxyprop-ethyl,
50 cinidon-ethyl,
Atrazin, terbutylazin,
ammonium-bentazon, cloquintocet,
thiafluamid, isoxaflutole, diflufenzopyr, diflufenzopyr-Na, carfentrazone, imazamox.

55 [0036] Ganz besonders bevorzugt sind folgende Verbindungen c):

2,4-D, dichlorprop-P, Mecoprop-P, MCPA, ammonium-bentazon, Bentazon, diflufenican, quinclorac, 2-[1-[2-(4-Chlor-phenoxy) propyloxyimino] butyl]-3-hydroxy-5-(2H-tetrahydrothiopyran-3-yl)-2-cyclohexen-1-on,

caloxydim, cycloxydim, sethoxydim, fluoroglycofen-ethyl, cinidon-ethyl, atrazin und terbutylazine, dicamba, diflufenzopyr, diflufenzopyr-Na.

5 [0037] Der Anteil der weiteren Wirkstoffe c), wenn solche vorhanden sind, liegt im allgemeinen im Bereich von 0,5 bis 75, vorzugsweise von 1 bis 60 Gew.% der Formulierung.

[0038] Neben den vorstehend beschriebenen Komponenten a), b) und c) können die erfindungsgemäßen festen Mischungen noch an sich bekannte Formulierungshilfsmittel enthalten.

10 [0039] Als oberflächenaktive Stoffe kommen dabei die Alkali-, Erdalkalioder Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren von Arylsulfonaten, von Alkylethern, von Laurylethern, von Fettalkoholsulfaten und von Fettalkoholglykolethersulfaten, Kondensationsprodukte von sulfonierte Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfosäuren mit Phenol und Formaldehyd, Kondensationsprodukte des Phenols oder der Phenolsulfosäure mit Formaldehyd, Kondensationsprodukte des Phenols mit Formaldehyd und Natriumsulfit, Polyoxoethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkohol/Ethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxoethylenalkylether, ethoxylierte Triarylphenole, Salze phosphatierter Triarylphenolethoxylate Polyoxopropylenealkylether, Laurylalkoholpolyglykoletheracetat, Sorbitester, Ligninsulfit-Ablaugen oder Methylcellulose oder deren Mischungen in Betracht.

15 [0040] Bei Mitverwendung oberflächenaktiver Stoffe liegt deren Anteil im allgemeinen im Bereich von 0,5 bis 25 Gew. %, bezogen auf das Gesamtgewicht der festen Mischung.

20 [0041] Die erfindungsgemäßen festen Mischungen können auch zusammen mit Trägermaterialien verwendet werden. Beispielsweise seien als Trägerstoffe erwähnt:

25 Mineralerden wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kreide, Löß, Ton, Dolomit, Diatomeenerde, Calciumsulfat, Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Thioharnstoff und Harnstoff, pflanzliche Produkte wie Getreidemehle, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver, Attapulgite, Montmorillonite, Glimmer, Vermiculite, synthetische Kieselsäuren und synthetische Calciumsilicate oder deren Mischungen.

30 [0042] Als weitere Zusatzstoffe in an sich üblichen Mengen können ferner eingesetzt werden:

Wasserlösliche Verbindungen oder Salze wie :

35 Natriumsulfat, Kaliumsulfat, Natriumchlorid, Kaliumchlorid, Natriumacetat, Ammoniumhydrogensulfat, Ammoniumchlorid, Ammoniumacetat, Ammoniumformiat, Ammoniumoxalat, Ammoniumcarbonat, Ammoniumhydrogencarbonat, Ammoniumthiosulfat, Ammoniumhydrogendiphosphat, Ammoniumdihydrogenmonophosphat, Ammoniumnatriumhydrogenphosphat, Ammoniumthiocyanat, Ammoniumsulfamat oder Ammoniumcarbamat;

40 Bindemittel, wie :

Polyvinylpyrrolidon, Polyvinylalkohol, partiell hydrolysiertes PolyvinylacetatCarboxymethylcellulose, Stärke, Vinylpyrrolidon/Vinylacetat-Copolymere und Polyvinylacetat oder deren Mischungen;

45 Schmiermittel, wie :

Mg-Stearat, Na-Stearat, Talkum oder Polyethylenglykol oder deren Mischungen;

Entschäumer, wie :

50 Silikonemulsionen, langketige Alkohole, Phosphorsäureester, Acetylendiole, Fettsäuren oder fluororganische Verbindungen,

und

55 Komplexbildner, wie :

Salze der Ethyldiamintetraessigsäure (EDTA), Salze der Trinitilotriessigsäure oder Salze von Polyphosphorsäuren oder deren Mischungen.

- [0043] Die erfindungsgemäßen festen Mischungen können in Form von Pulver, Granulat, Briketts, Tabletten und ähnliche Formulierungsvarianten hergestellt werden. Neben Pulvern sind dabei Granulate besonders bevorzugt. Bei den Pulvern kann es sich um wasserlösliche oder wasserdispergierbare Pulver handeln. Bei den Granulaten kann es sich um wasserlösliche oder wasserdispergierbare Granulate zum Einsatz in der Spritzapplikation oder um sog. Streugranulate zur Direktapplikation handeln. Die mittlere Teilchengröße der Granulate liegt im allgemeinen zwischen 200 µm und 2 mm.
- [0044] Die erhaltenen Granulatformulierungen sind staubfrei, freifließende, nicht verbackende Produkte, die in kaltem Wasser gut löslich bzw. dispergierbar sind.
- [0045] Aufgrund ihrer Eigenschaften können die Produkte leicht in größeren Mengen abgefüllt werden. Neben Gebinden wie Kunststoff-, Papier-, Laminatsäcken oder Beuteln können sie in Kartons oder anderen Bulk-Containern gehandhabt werden. Um eine Exposition des Anwenders weiter zu vermeiden, ist es möglich, die Produkte in wasserlöslichen Folienbeuteln, wie z.B. Polyvinylalkohol-Folienbeuteln, zu verpacken, die direkt in den Spritztank gegeben werden und sich dort auflösen. Für solche wasserlöslichen Folien können eingesetzt werden u.a. Polyvinylalkohol oder Cellulose-Derivate wie Methylcellulose, Methyl-hydroxypropyl-cellulose oder Carboxymethylcellulose. Durch Portionierung in anwendungsgerechter Größe kommt der Anwender nicht mehr mit dem Produkt in Berührung. Vorzugsweise werden die wasserlöslichen Beutel in einer wasserdampfundurchlässigen äußeren Hülle wie Polyethylen-Folie, polyethylen-laminiertes Papier oder Alufolie verpackt.
- [0046] Die erfindungsgemäßen Festformulierungen lassen sich nach verschiedenen, dem Fachmann bekannten Verfahren herstellen.
- [0047] Als bevorzugte Herstellverfahren für die genannten Formulierungen sind die Extrudergranulation, Sprührocknung, Wirbelschichtagglomeration, Mischergranulation und die Tellergranulation zu nennen.
- [0048] Besonders geeignet ist die Wirbelschichtgranulation (WSG). Je nach gewünschter Zusammensetzung der Formulierung wird eine wässrige Lösung, Emulsion oder Suspension, die alle Rezepturbestandteile enthält, in einer WSG-Apparatur versprührt und agglomeriert.
- [0049] Wahlweise können aber auch Wirkstoffsalze und/oder anorganische Ammoniumsalze in der Apparatur vorgelegt werden und mit einer Lösung oder Emulsion/Suspension der restlichen Rezepturbestandteile besprüht und dabei agglomeriert werden. Ferner ist es möglich, wässrige Lösungen, Emulsionen oder Suspensionen, die bestimmte Rezepturbestandteile enthalten, nacheinander auf ein Wirkstoffgranulat, ein Wirkstoffsatz und/oder ein anorganisches Ammoniumsalz aufzutragen und so verschiedene umhüllende Schichten zu erhalten.
- [0050] Im allgemeinen erfolgt im Zuge der Wirbelschichtgranulierung eine ausreichende Trocknung des Granulats. Es kann jedoch vorteilhaft sein, der Granulation einen separaten Trocknungsschritt im gleichen oder in einem separaten Trockner nachzuschalten. Im Anschluß an die Granulation/Trocknung wird das Produkt abgekühlt und gesiebt.
- [0051] Ein weiteres besonders geeignetes Verfahren ist die Extrudergranulation. Zur Extrudergranulierung eignen sich vorzugsweise Korb-, Radial- oder Dome-Extruder mit geringer Verdichtung des Granulatkorns.
- [0052] Zur Granulation wird eine Feststoffmischung in einem geeigneten Mischer mit einer Granulierflüssigkeit angezeigt, bis eine extrudierbare Masse entsteht. Diese wird in einem der genannten Extruder extrudiert. Zur Extrusion werden Lochgrößen zwischen 0,3 und 3 mm verwendet (vorzugsweise 0,5-1,5 mm). Als Feststoffmischungen dienen Gemische aus Wirkstoffen, Formulierungshilfsmitteln und ggf. wasserlöslichen Salzen. Diese werden im allgemeinen vorgemahlen. Teilweise ist es ausreichend, wenn nur die wasserunlöslichen Stoffe in geeigneten Mühlen vorgemahlen werden.
- [0053] Als Granulierflüssigkeit eignet sich Wasser, die erfindungsgemäßen APG oder wässrige Lösungen davon. Weiterhin geeignet sind, wässrige Lösungen von anorg. Salzen, nichtionischen Tensiden, anionischen Tensiden, Lösungen von Bindemitteln wie Polyvinylpyrrolidon, Polyvinylalkohol, Carboxymethylcellulose, Stärke, Vinylpyrrolidin/Vinylacetat-Copolymere, Zucker, Dextrin oder Polyethylenglykol. Nach Extrudergranulation wird das erhaltene Granulat getrocknet und ggf. gesiebt um von Grob- und Feinanteil abzutrennen.

Vergleichsbeispiel 1

- [0054] Eine Vormischung bestehend aus:
- | | |
|--------|---|
| 73,1 g | SU 1 (Verbindung Nr. 47 aus Tabelle 1) (techn. 95,7%) |
| 8 g | Tamo ^R NH |
| 17,9 g | Ufoxane ^R 3A |
- wurde gemischt und in einer Rotorschnellmühle vermahlen.
- [0055] Im weiteren wurden:

7,1 g	Vormischungl
5 g	Extrusil® (Degussa)
77,9 g	Ammoniumsulfat

5

in einem Moulinette Haushaltsmischer mit 29g Lutensol® ON 80 als 50%ige wss. Lösung vermischt. Die erhaltene Masse wurde mittels eines Extruders (KAR-75, Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden Trockenschrank getrocknet.

10

Vergleichsbeispiel 2

[0056] Eine Vormischung bestehend aus:

73,1 g	SU 1 (techn. 95,7%)
8 g	Tamol® NH
17,9 g	Ufoxane® 3A

15

wurde gemischt, und in einer Rotorschneelmühle vermahlen.

20

[0057] Im weiteren wurden:

7,1 g	Vormischung
15 g	Extrusil® (Degussa)
77,9 g	Ammoniumsulfat

25

in einem Moulinette Haushaltsmischer mit 23g Arnoblem® 557 als 50%ige wss. Lösung vermischt. Die erhaltene Masse wurde mittels eines Extruders (KAR-75, Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden Trockenschrank getrocknet.

30

Vergleichsbeispiel 3

[0058] Eine Vormischung bestehend aus:

285 g	destilliertem Wasser
30,3 g	SU 1 technisch
20 g	Ufoxane® 3A
10 g	Tamol® NH
2,5 g	Antischäumemulsion SRE
30 g	Sipernat® 50
560 g	Pluronic® PE 6400

35

wurde gemischt und in einer Perlühle vermahlen. Die entstandene Suspension wurde später als Sprühmischung verwendet.

45

[0059] In einem Laborwirbelschichtgranulator (Combi Coata®, Fa. Niro Aeromatic) wurden 137 g pulverförmiges Ammoniumsulfat vorgelegt. Über dem Wirbelboden befand sich eine Zweistoffdüse. Die Vorlage wurde mit Luft von 120 °C Eingangstemperatur gewirbelt. Der Spüldruck der Zweistoffdüse wurde auf 2 bar eingestellt. Die Sprühmischung wurde in die Wirbelschicht eingesprührt und das Wasser verdampft. Das erhaltene Granulat wurde zur Abtrennung des Feinanteils über ein Sieb mit 0,2 mm Maschenweite abgesiebt.

50

Vergleichsbeispiel 4

[0060] Eine Mischung bestehend aus:

6,9 g	Metsulfuron-Methyl (techn. 99%)
3 g	Tamol® NH

55

EP 0 955 810 B1

(fortgesetzt)

6 g	Ufoxane ^R 3A
15 g	Extrusil ^R
43,1 g	Ammonsulfat

5

wurde intensiv vermischt und mittels einer Laborrotorschnellmühle vermahlen. Die erhaltene Pulvermischung wurde in einem Planetenmixer (Kenwood Chef) mit 25 Teilen Lutensol^R ON 30 vermischt. Die erhaltene Masse wurde mittels eines Extruders (DGL-1, Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden in einem Wirbelbetttrockner getrocknet.

10

Beispiel 1.

[0061] Eine Vormischung bestehend aus:

15

73,1 g	SU 1 (techn. 95,7%)
8 g	Tamol ^R NH
17,9 g	Ufoxane ^R 3A

20

wurde gemischt, und in einer Rottorschnellmühle vermahlen.

[0062] Im weiteren wurden:

25

7,1 g	Vormischung
15 g	Extrusil ^R (Degussa)
52,9 g	Ammoniumsulfat
18,5 g	Lutensol ^R GD 70

30

in einem Moulinette Haushaltsmischer vermischt. Die erhaltene Masse wurde mittels eines Extruders (KAR-75, Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden im Trockenschrank getrocknet.

Beispiel 2

35

[0063] Eine Vormischung bestehend aus:

40

285 g	destilliertem Wasser
15,8 g	SU 1 technisch
31g	Ufoxane ^R 3A
15,3 g	Tamol ^R NH
2,5 g	Antischaumemulsion SRE
7,5 g	Sipernat ^R 22
75g	AG ^R 6202

45

wurde gemischt und in einer Perlzmühle vermahlen. Die entstandene Suspension wurde später als Sprühmischung verwendet.

50

[0064] In einem Laborwirbelschichtgranulator (Combi Coata^R, Fa. Niro Aeromatic) wurden 120 g pulverförmiges Ammoniumsulfat vorgelegt. Über dem Wirbelboden befand sich eine Zweistoffdüse. Die Vorlage wurde mit Luft von 120 °C Eingangstemperatur gewirbelt. Der Spüldruck der Zweistoffdüse wurde auf 2 bar eingestellt. Die Sprühmischung wurde in die Wirbelschicht eingesprühnt und das Wasser verdampft. Das erhaltene Granulat wurde zur Abtrennung des Feinanteils über ein Sieb mit 0,2 mm Maschenweite abgesiebt.

Beispiel 3

55

[0065] Eine Vormischung bestehend aus:

73,1 g	SU 1 (techn. 95,7%)
--------	---------------------

EP 0 955 810 B1

(fortgesetzt)

8 g	Tamol ^R NH
17,9 g	Ufoxane ^R 3A

5

wurde gemischt und in einer Rotorschnellmühle vermahlen.

[0066] Im weiteren wurden:

10

7,1 g	Vormischung
15 g	Extrusil ^R (Degussa)
52,9 g	Ammoniumsulfat
16 g	AG ^R 6202

15

in einem Moulinette Haushaltsmischer vermischt. Die erhaltene Masse wurde mittels eines Extruders (KAR-75, Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden im Trockenschrank getrocknet.

Beispiel 4

20

[0067] Eine Mischung bestehend aus:

25

5,1 g	SU 1 (techn. 98,54%)
3 g	Tamol ^R NH
6 g	Ufoxane ^R 3A
15 g	Extrusil ^R (Degussa)
44,9 g	Ammoniumsulfat

30

wurde gemischt und in einer Rotorschnellmühle vermahlen. Das erhaltene Pulver wurde in einem Moulinette Haushaltsmischer mit 21 g Atplus^R 450 und 1 g Antischaummittel SRE vermischt. Die erhaltene Masse wurde mittels eines Extruders (KAR-75, Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden im Trockenschrank getrocknet.

Beispiel 5

35

[0068] Eine Mischung bestehend aus:

40

5,1 g	SU 1 (techn. 98,54%)
3 g	Tamol ^R NH
6 g	Ufoxane ^R 3A
15 g	Extrusil ^R (Degussa)
44,9g	Ammoniumsulfat

45

wurde gemischt und in einer Rotorschnellmühle vermahlen. Das erhaltene Pulver wurde in einem Moulinette Haushaltsmischer mit 25g Agrimul^R PG 2067 und 1 g Antischaummittel SRE vermischt. Die erhaltene Masse wurde mittels eines Extruders (KAR-75, Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden im Trockenschrank getrocknet.

50

[0069] Eine Vormischung bestehend aus:

55

5,1 g	SU 1 (techn. 98,5%)
3,1 g	Cinidon-Ethyl (techn. 98%)
1 g	Tamol ^R NH
2 g	Ufoxane ^R 3A
15 g	Extrusil ^R (Degussa)

(fortgesetzt)

47,8 g	Ammoniumsulfat
--------	----------------

5 wurde gemischt und in einer Strahlmühle vermahlen.

[0070] Im weiteren wurden:

74 g	Vormischung
25 g	Lutensol® GD 70 (Alkylpolyglucosid, BASF AG, techn. 70%)
1 g	Antischaummittel SRE

10

in einem Plänenmischer (Kenwood-Chef) vermischt und mit insgesamt 4g Wasser (bezogen auf 100g Produkt) ver-
setzt. Die erhaltene Masse wurde mittels eines Extruders (DGL-1, Fitzpatrick Europe) extrudiert. Die erhaltenen feuch-
ten Granulate wurden in einem Wirbelbetttrockner getrocknet. Man erhielt ein gut dispergierendes Granulat.

15

Beispiel 7

[0071] Eine Vormischung bestehend aus:

20

5,1 g	SU 1 (techn. 98,5%)
3,1 g	Cinidon-Ethyl (techn. 98%)
1 g	Tamol® NH
2 g	Ufoxane® 3A
15 g	Extrusil® (Degussa)
47,8 g	Ammoniumsulfat

25

wurde gemischt und in einer Strahlmühle vermahlen.

[0072] Im weiteren wurden:

30

74 g	Vormischung
22,5 g	AGR 6202 (Alkylpolyglucosid, Akzo, techn. 65%)
1 g	Antischaummittel SRE

35

in einem Planetenmischer (Kenwood-Chef) vermischt. Die erhaltene Masse wurde mittels eines Extruders (DGL-1,
Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden in einem Wirbelbetttrockner getrocknet. Man
erhielt ein gut dispergierendes Granulat.

40

Beispiel 8

[0073] Eine Mischung bestehend aus:

45

126 g	Cinidon-ethyl
209 g	SU 1
4361 g	Destilliertem Wasser
359 g	Ufoxane® 3A
2153 g	Tamol® NH
34 g	Antischaumemulsion SRE
1538 g	AGR 6202

50

wurde gemischt und mit einer Perlühle vermahlen. Die entstandene Suspension wurde als Sprühmischung verwen-
det. Die Sprühmischung wurde in einen Laborwirbelschichtgranulator (MP1®, Fa. Niro Aeromatic) eingedüst und zu
einem wasserdispergierbaren Granulat getrocknet. Dabei betrug die Temperatur der Trocknungsluft 120°C und die
Zweistoffdüse, die über der Wirbelschicht angebracht war, wurde mit 2 bar Sprühdruck betrieben. Das erhaltene Gra-
nulat wurde zur Abtrennung des Feinanteils über ein Sieb mit 0,2 mm Maschenweite abgesiebt.

Beispiel 9

[0074] Eine Vormischung bestehend aus:

5

73,1 g	SU 1 (techn. 95,7%)
8 g	Tamol® NH
17,9 g	Ufoxane® 3A

10

wurde gemischt und in einer Rotorschnellmühle vermahlen.

[0075] Im weiteren wurden:

15

3,8 g	Vormischung
60,6 g	Bentazon-Na (techn. 87,5%)
22,6 g	Ammoniumsulfat
2 g	Lutensol® GD 70 (Alkylpolyglucosid, BASF AG, techn. 70 %)
1 %	Antischaummittel SRE

20

in einem Planetenmischer (Kenwood-Chef) vermischt und mit insgesamt 9g Wasser (bezogen auf 100g Produkt) ver-
setzt. Die erhaltene Masse wurde mittels eines Extruders (DGL-1, Fitzpatrick Europe) extrudiert. Die erhaltenen feuch-
ten Granulate wurden in einem Wirbelbetttrockner getrocknet.

Beispiel 10

25

[0076] Eine Vormischung bestehend aus:

30

71 g	SU 1 (techn. 98,5%)
8 g	Tamol® NH
21 g	Ufoxane® 3A

wurde gemischt und in einer Rotorschnellmühle vermahlen.

[0077] Im weiteren wurden:

35

3,8 g	Vormischung
55,7 g	Ammonium-Bentazon (techn. 95,2 %)
26,5 g	Ammoniumsulfat
12 g	Lutensol® GD 70 (Alkylpolyglucosid, BASF AG, techn. 70 %)
1 g	Antischaummittel SRE

40

in einem Planetenmischer (Kenwood-Chef) vermischt und mit insgesamt 9g Wasser (bezogen auf 100g Produkt) ver-
setzt. Die erhaltene Masse wurde mittels eines Extruders (DGL-1, Fitzpatrick Europe) extrudiert. Die erhaltenen feuch-
ten Granulate wurden in einem Wirbelbetttrockner getrocknet.

45

Beispiel 11

50

[0078] Eine Vormischung bestehend aus:

55

1173 g	destilliertem Wasser
92 g	SU 1 technisch
125 g	Ufoxane® 3A
110 g	Ammoniumsulfat
375 g	AGR 6202
250 g	Extrusil®

wurde gemischt und in einer Perlmühle vermahlen. Die entstandene Suspension wurde dann als Sprühmischung ver-

EP 0 955 810 B1

wendet. In einem Laborwirbelschichtgranulator (MP1 (RTM), Fa. Niro Aeromatic) 1523 g Natriumbentazon mit einer Korngröße kleiner als 1,0 mm vorgelegt. Über dem Wirbelboden befand sich eine Zweistoffdüse. Die Vorlage wurde mit Luft von 120 °C Eingangstemperatur gewirbelt. Der Sprühdruck der Zweistoffdüse wurde auf 2 bar eingestellt. Die Sprühmischung wurde in die Wirbelschicht eingesprührt und das Wasser verdampft. Das erhaltene Granulat wurde zur Abtrennung des Feinanteils über ein Sieb mit 0,2 mm Maschenweite abgesiebt.

Beispiel 12

[0079] Eine Vormischung bestehend aus:

2548 g	destilliertem wasser
75 g	SU 1
228 g	Ufoxane ^R 3A
730 g	Tamol ^R NH
451 g	AGR 6202
301 g	Extrusil ^R

wurde gemischt und in einer Perlühle vermahlen. Die entstandene Suspension wurde später als Sprühmischung verwendet.

[0080] In einem Laborwirbelschichtgranulator (MP1^R,Fa. Niro Aeromatic) wurden 1065 g feinpulveriges Magnesium - Mecoprop-P vorgelegt. Über dem Wirbelboden befand sich eine Zweistoffdüse. Die Vorlage wurde mit Luft von 120 °C Eingangstemperatur gewirbelt. Der Sprühdruck der Zweistoffdüse wurde auf 2,5 bar eingestellt. Die Sprühmischung wurde in die Wirbelschicht eingesprührt und das Wasser verdampft. Das erhaltene Granulat wurde zur Abtrennung des Feinanteils über ein Sieb mit 0,2 mm Maschenweite abgesiebt.

Beispiel 13

[0081] Eine Vormischung bestehend aus:

2655 g	destilliertem Wasser
800 g	AGR 6202
420 g	Ufoxane ^R 3A
210 g	Tamol ^R NH
340 g	Sipernat ^R 50 S

wurde gemischt und in einer Perlühle vermahlen. Die entstandene Suspension wurde als Sprühflüssigkeit A verwendet.

[0082] In einem Laborwirbelschichtgranulator (MP1^R,Fa. Niro Aeromatic) wurden 1020 g pulverförmiges Ammoniumsulfat vorgelegt. Über dem Wirbelboden befand sich eine Zweistoffdüse. Die Vorlage wurde mit Luft von 120°C Eingangstemperatur gewirbelt. Der Sprühdruck der Zweistoffdüse wurde auf 2 bar eingestellt. Die Sprühmischung wurde in die Wirbelschicht eingesprührt und das Wasser verdampft. Es entstand das Vorgranulat A.

[0083] Eine weitere Vormischung B bestehend aus:

1725 g	Destilliertem Wasser
103 g	SU 1 technisch
618 g	MCPA
127 g	Natronlauge
192 g	Ufoxane ^R 3A
96 g	Tamol ^R NH
12,6 g	Antischaumemulsion SRE

wurde gemischt und als Sprühflüssigkeit B verwendet.

[0084] In einem Laborwirbelschichtgranulator (MP1^R, Fa. Niro Aeromatic) wurden 1875 g Vorgranulat A vorgelegt. Über dem Wirbelboden befand sich eine Zweistoffdüse. Die Vorlage wurde mit Luft von 120°C Eingangstemperatur gewirbelt. Der Sprühdruck der Zweistoffdüse wurde auf 2 bar eingestellt. Die Sprühmischung B wurde in die Wirbel-

EP 0 955 810 B1

schicht eingesprührt und das Wasser verdampft. Es entstand das fertige Granulat. Das Granulat wurde zur Abtrennung des Feinanteils über ein Sieb mit 0,2 mm Maschenweite abgesiebt.

Beispiel 14

5 [0085] Eine Vormischung bestehend aus:

10	6 g	SUI
	10 g	Clefoxydim-Lithium
	10 g	Extrusil®
	10 g	Harnstoff
	3 g	Morwet® EFW
	1 g	Aerosol® OT B
15	40 g	Tamol® NH

wurde intensiv vermischt und mittels einer Luftstrahlmühle vermahlen. Die so erhaltene Pulvermischung wurde in einem Planetenmixer (Kenwood Chef) mit 20 Teilen AG® 6202 vermischt. Zur Erzeugung einer extrudierfähigen Masse wurden weiterhin 1,8 % Wasser zugegeben. Die erhaltene Masse wurde mittels eines Extruders (DGL-1, Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden in einem Wirbelbetttrockner getrocknet.

Beispiel 15

25 [0086] Eine Mischung bestehend aus :

25	6,9 g	Metsulfuron-Methyl (techn. 99%)
	3 g	Tamol NH
	6 g	Ufoxane 3A
	15 g	Extrusil
30	43,1 g	Ammonsulfat

wurde intensiv vermischt und mittels einer Laborrotorschnellmühle vermahlen. Die erhaltene Pulvermischung wurde in einem Planetenmixer (Kenwood Chef) mit 25 Teilen AG® 6202 vermischt. Die erhaltene Masse wurde mittels eines Extruders (DGL-1, Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden in einem Wirbelbetttrockner getrocknet.

Beispiel 16

40 [0087] Eine Mischung bestehend aus :

40	6,9 g	Metsulfuron-Methyl (techn. 99%)
	3 g	Tamol® NH
	6 g	Ufoxane® 3A
	15 g	Extrusil®
45	43,1 g	Ammonsulfat

wurde intensiv vermischt und mittels einer Laborrotorschnellmühle vermahlen. Die erhaltene Pulvermischung wurde in einem Planetenmixer (Kenwood Chef) mit 25 Teilen Lutensol® GD 70 vermischt. Die erhaltene Masse wurde mittels eines Extruders (DGL-1, Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden in einem Wirbelbetttrockner getrocknet.

Beispiel 17

55 [0088] Eine Vormischung bestehend aus:

55	423 g	Destilliertem Wasser
----	-------	----------------------

(fortgesetzt)

17,7 g	Natronlauge
93,2 g	Dicamba technisch
15,2 g	SU 1 technisch
39,8 g	Ufoxane ^R 3A
79,5 g	Tamol ^R NH
92,3 g	AG ^R 6202 (als 65%ige wässrige Lösung)

5

10

wurde in der angegebenen Reihenfolge gemischt und später als Sprühmischung verwendet.

15

[0089] In einem Laborwirbelschichtgranulator (Combi Coata^R, Fa. Niro Aeromatic) wurde die Granulation durchgeführt. Über dem Wirbelboden befand sich eine Zweistoffdüse. Mit Luft von 120°C Eingangstemperatur wurde gewirbelt. Der Spüldruck der Zweistoffdüse wurde auf 2 bar eingestellt. Die Sprühmischung wurde in die Wirbelschicht eingesprührt und das Wasser verdampft. Es entstand das fertige Granulat. Das Granulat wurde zur Abtrennung des Feinanteils über ein Sieb mit 0,2 mm Maschenweite abgesiebt.

15

Beispiel 18

20

[0090] Eine Vormischung bestehend aus:

1350 g	destilliertem Wasser
178 g	SU 1 technisch
173 g	Ufoxane ^R 3A
346 g	Tamol ^R NH
1077 g	AG ^R 6202 (als 65 %ige wässrige Lösung)
15 g	Antischaumemulsion SRE

25

30

wurde gemischt und in einer Perlühle vermahlen. Die entstandene Suspension wurde als Sprühflüssigkeit A verwendet.

35

[0091] Eine weitere Vormischung bestehend aus:

1325 g	destilliertem Wasser
145 g	Natronlauge
781 g	Dicamba technisch

40

wurde bis zum Auflösen bemischt und als Sprühflüssigkeit B verwendet.

45

[0092] In einem Laborwirbelschichtgranulator (MP1, Fa. Niro-Aeromatic) wurden 900 g pulverförmiges Ammoniumsulfat vorgelegt. Über dem Wirbelboden befand sich eine Zweistoffdüse. Die Vorlage wurde mit Luft von 120°C Eingangstemperatur gewirbelt. Der Spüldruck war auf 2 bar eingestellt. Die Sprühflüssigkeit A wurde dann in die Wirbelschicht eingedüst und das Wasser verdampft. In einem weiteren Schritt wurde danach die Sprühflüssigkeit B in die Wirbelschicht eingedüst und das Wasser verdampft. Das entstandene Granulat wurde zur Abtrennung von Feinanteilen über ein Sieb mit 0,2 mm Maschenweite abgesiebt.

50

[0093] Die nachstehende Tabelle erläutert die in den Beispielen eingesetzten Komponenten:

Tabelle 2 :

Name	chem. Bezeichnung	Bezugsquelle
Tamol ^R NH	Naphthalinsulfonsäure-Formaldehyd-Kondensat	BASF AG
Ufoxane ^R 3A	Na-Ligninsulfonat	Borregaard
Morwet ^R D425	Naphthalinsulfonsäure-Formaldehyd-Kondensat	BASF AG
Wettol ^R NT 1	Alkyl-Naphthalinsulfonat	BASF AG
Extrusil ^R	hochdisperse Calciumsilicat	Degussa
Sipernat ^R 22	hochdisperse Kieselsäure	Degussa

Tabelle 2 : (fortgesetzt)

Name	chem. Bezeichnung	Bezugsquelle
Antischaummittel SRE	Silikonölemulsion	Wacker-Chemie
Lutensol ^R ON 30	Fettalkoholethoxylat (3EO)	BASF AG
Lutensol ^R ON 80	Fettalkoholethoxylat (8EO)	BASF AG
Lutensol ^R GD 70	Alkylpolyglycosid	BASF AG
AGR 6202	2-Ethyl-hexyl-glucosid	Akzo
Atplus ^R 450	Alkylpolysaccharid/ Adjuvant-Blend	ICI
Agrimul ^R PG 2067	C ₈ -C ₁₀ -Alkylpolyglykosid	Henkel KGaA
Armoblem ^R 557	ethoxyliertes Fettamin	Akzo
Pluronic ^R PE 6400	EO/PO-Blockcopolymer	BASF AG
Morwet ^R EFW	Anionischer Netzmittel-Blend	Witco
Sipernat ^R 50 S	hochdisperse Kieselsäure	Degussa
SU-1	Verb. 47 aus Tabelle 1	
Clefoxydim	2-[1-[2-(4-Chlorphenoxy)-propyloxyamino]-butyl]-5-tetrahydrothiopyran-3-yl-cyclohexan-1,3-dion	
Cinidon-ethyl	Ethyl-(Z)-2-chlor-3-[2-chlor-5-(4,5,6,7-tetrahydro-1,3-dioxoisindoldion-2-yl)-phenyl] acrylat	
Aerosol OT B	Natriumdiocylsulfosuccinat/Natriumbenzoat-Mischung	Cyanamid

Prüfmethoden

[0094] Der Wirkstoffgehalt an SU der Formulierungen gemäß den vorstehenden Beispielen wurde jeweils mittels quantitativer HPLC bestimmt, und wird in Tabelle 3 in Prozent angegeben.

Versuche zur Lagerstabilität:

[0095] Zur Untersuchung der Lagerstabilität wurden Proben der jeweiligen Formulierung gemäß den Beispielen 1-18 und den Vergleichsbeispielen 1 bis 4 für eine bestimmte Zeit (14 d oder 30 d) in fest verschlossenem Glasgefäß bei der jeweils angegebenen Temperatur (54°C bzw. 50°C) gelagert. Anschließend werden die Proben untersucht und mit dem Vergleichswert zu Beginn der Lagerung (Nullwert) verglichen. Der Wirkstoffgehalt wird als relativer Anteil des SU, bezogen auf den Nullwert (in Prozent) angegeben. Die Lagerversuche wurden in Anlehnung an die Methode CIPAC MT 46 durchgeführt. Dabei wird die Langzeitstabilität eines Produkts durch Kurzlagerung bei erhöhter Temperatur abgeschätzt.

[0096] Tabelle 3 gibt die Ergebnisse aus der Bestimmung der Lagerstabilität der hergestellten festen Mischungen aus den Beispielen 1-17 und den Vergleichsbeispielen 1-4 wieder.

Tabelle 3 :

Bsp.-Nr.	Adjuvans	Wirkstoffgehalt in Gew.%	rel. Wirkstoffgehalt SU nach 14 d, 54°C	rel. Wirkstoffgehalt SU nach 30 d, 50 °C
V1	Lutensol ^R ON 80	3,2	16	-
V2	Armoblem ^R 557	3,9	13	-
V3	Pluronic ^R PE 6400	10,4	39	-
V4	Lutensol ^R ON 30	7,3	48	-
1	Lutensol ^R GD 70	5,6	87	-
2	AGR 6202	6,3	86	-

Tabelle 3 : (fortgesetzt)

Bsp.-Nr.	Adjuvans	Wirkstoffgehalt in Gew.%	rel. Wirkstoffgehalt SU nach 14 d, 54°C	rel. Wirkstoffgehalt SU nach 30 d, 50 °C
3	AGR 6202	5,9	95	-
4	Atplus® 450	5,9	87	-
5	Agrimul® PG 2067	5	78	-
6	Lutensol® GD 70	5,15	92,2	-
7	AGR 6202	5,49	-	90
8	AGR 6202	5,1	99	-
9	Lutensol® GD 70	2,77	-	98
10	Lutensol® GD 70	2,77	-	100
11	AGR 6202	2,9	62	-
12	AGR 6202	2,78	97,5	-
13	AGR 6202	2,36	70	-
14	AGR 6202	-	-	-
15	AGR 6202	7,3	62	-
16	Lutensol® GD 70	7,3	70	-
17	AGR 6202	5,1	-	-
18	AGR 6202	4,66	90	-

[0097] Die Ergebnisse zeigen die überlegenen Eigenschaften der erfindungsgemäßen festen Mischungen.

Patentansprüche

1. Feste Mischungen, enthaltend

- a) einen Wirkstoff aus der Gruppe der Sulfonylharnstoffe, und
- b) ein Alkylpolyglycosid.

2. Feste Mischung nach Anspruch 1, enthaltend einen Sulfonylharnstoff der Formel III

wobei die Substituenten folgende Bedeutung haben:

- R¹ C₁-C₄-Alkyl, das eine bis fünf der folgenden Gruppen tragen kann: Methoxy, Ethoxy, SO₂CH₃, Cyano, Chlor, Fluor, SCH₃, S(O)CH₃; Halogen; eine Gruppe ER¹⁹, in der E O, S oder NR²⁰ bedeutet; COOR¹²; NO₂.

$S(O)_nR^{17}$, $SO_2NR^{15}R^{16}$, $CONR^{13}R^{14}$;

5 R² Wasserstoff, Methyl, Halogen, Methoxy, Nitro, Cyano, Trifluormethyl, Trifluormethoxy oder
Methylthio,

Y F, CF_3 , CF_2Cl , CF_2H , OCF_3 , OCF_2Cl , C_1-C_4 -Alkyl oder C_1-C_4 -Alkoxy;

10 X C_1-C_2 -Alkoxy, C_1-C_2 -Alkyl, C_1-C_2 -Alkylthio, C_1-C_2 -Alkylamino, Di- C_1-C_2 -Alkylamino, Halogen, C_1-C_2 -Ha-
logenalkyl, C_1-C_2 -Halogenalkoxy,

15 R Wasserstoff oder Methyl;

R¹⁹ C_1-C_4 -Alkyl, C_2-C_4 -Alkenyl, C_2-C_4 -Alkynyl oder C_3-C_6 -Cycloalkyl, welche 1 bis 5 Halogenatome tragen kön-
nen. Ferner bedeutet R¹⁹ im Falle, daß E für O oder NR²⁰ steht, noch Methylsulfonyl, Ethylsulfonyl, Trifluor-
methylsulfonyl, Allylsulfonyl, Propargylsulfonyl oder Dimethylsulfamoyl;

20 R²⁰ Wasserstoff, Methyl oder Ethyl

R¹² eine C_1-C_4 -Alkylgruppe, welche bis zu drei der folgenden Reste tragen kann: Halogen, C_1-C_4 -Alkoxy, Allyl
25 oder Propargyl;

R¹⁷ eine C_1-C_4 -Alkylgruppe, welche einen bis drei der folgenden Reste tragen kann: Halogen, C_1-C_4 -Alkoxy,
Allyl oder Propargyl;

30 R¹⁵ Wasserstoff, eine C_1-C_2 -Alkoxygruppe oder eine C_1-C_4 -Alkylgruppe;

R¹⁶ Wasserstoff oder eine C_1-C_4 -Alkylgruppe,

n 1 - 2

35 Z N, CH.

3. Feste Mischungen nach Anspruch 1, enthaltend einen weiteren herbiziden Wirkstoff c).

4. Feste Mischungen nach Anspruch 1, enthaltend 0,5 bis 75 Gew.% der Komponente a).

5. Feste Mischungen nach Anspruch 1, enthaltend 1 bis 50 Gew.% der Komponente b).

6. Feste Mischungen gemäß Anspruch 1, enthaltend ein Alkylpolyglycosid mit einem Polymerisationsgrad von 1-3.

40 7. Feste Mischungen gemäß Anspruch 6, enthaltend ein Alkylpolyglycosid mit einem Polymerisationsgrad von 1-2.

8. Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß man die Pflanzen
und/oder die von den Pflanzen freizuhaltende Fläche mit einer herbizid wirksamen Menge einer festen Mischung
45 gemäß Anspruch 1 behandelt.

9. Verfahren zur Herstellung von Herbizidformulierungen, dadurch gekennzeichnet, daß man einen Sulfonylharn-
stoff mit einem Alkylpolyglykosid mischt.

50

Claims

1. A solid mixture comprising

- 55 a) an active compound from the group of the sulfonylureas, and
b) an alkylpolyglycoside.

2. The solid mixture as claimed in claim 1, comprising a sulfonylurea of the formula III

where:

15 R¹ is C₁-C₄-alkyl, which may carry from one to five of the following groups: methoxy, ethoxy, SO₂CH₃, cyano, chlorine, fluorine, SCH₃, S(O)CH₃; halogen; a group ER¹⁹, in which E is O, S or NR²⁰; COOR¹²; NO₂; S(O)_nR¹⁷, SO₂NR¹⁵R¹⁶, CONR¹³R¹⁴.

20 R² is hydrogen, methyl, halogen, methoxy, nitro, cyano, trifluoromethyl, trifluoromethoxy, difluoromethoxy or methylthio,

25 Y is F, CF₃, CF₂Cl, CF₂H, OCF₃, OCF₂Cl, C₁-C₄-alkyl or C₁-C₄-alkoxy;

30 X is C₁-C₂-alkoxy, C₁-C₂-alkyl, C₁-C₂-alkylthio, C₁-C₂-alkylamino, di-C₁-C₂-alkylamino, halogen, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy,

35 R is hydrogen or methyl;

40 R¹⁹ is C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl or C₃-C₆-cycloalkyl, each of which may carry from 1 to 5 halogen atoms. Furthermore, in the case that E is O or NR²⁰, R¹⁹ is also methylsulfonyl, ethylsulfonyl, trifluoromethylsulfonyl, allylsulfonyl, propargylsulfonyl or dimethylsulfamoyl;

45 R²⁰ is hydrogen, methyl or ethyl

50 R¹² is a C₁-C₄-alkyl group which may carry up to three of the following radicals: halogen, C₁-C₄-alkoxy, allyl or propargyl;

55 R¹⁷ is a C₁-C₄-alkyl group which may carry from one to three of the following radicals: halogen, C₁-C₄-alkoxy, allyl or propargyl;

60 R¹⁵ is hydrogen, a C₁-C₂-alkoxy group or a C₁-C₄-alkyl group;

65 R¹⁶ is hydrogen or a C₁-C₄-alkyl group,

70 n is 1 - 2

75 Z is N, CH.

3. The solid mixture as claimed in claim 1, comprising a further herbicidally active compound c).

4. The solid mixture as claimed in claim 1, comprising from 0.5 to 75% by weight of the component a).

5. The solid mixture as claimed in claim 1, comprising from 1 to 50% by weight of the component b).

6. The solid mixture as claimed in claim 1, comprising an alkylpolyglycoside having a degree of polymerization of 1-3.

7. The solid mixture as claimed in claim 6, comprising an alkylpolyglycoside having a degree of polymerization of 1-2.
8. A method for controlling undesirable vegetation, which comprises treating the plants and/or the area to be kept free of the plants with a herbicidally effective amount of a solid mixture as claimed in claim 1.
- 5 9. A process for preparing herbicide formulations, which comprises mixing a sulfonylurea with an alkylpolyglycoside.

Revendications

10 1. Mélanges solides contenant

- a) une substance active du groupe des sulfonylurées, et
b) un alkylpolyglycoside.

15 2. Mélange solide selon la revendication 1, contenant une sulfonylurée de formule III

dans laquelle les symboles ont les significations suivantes

R¹, un groupe alkyle en C1-C4 qui peut porter un à cinq des substituants suivants méthoxy, éthoxy, SO₂CH₃, cyano, chloro, fluoro, SCH₃, S(O)CH₃;

un halogène ;

un groupe ER¹⁹ dans lequel E représente O, S ou NR²⁰ ;

un groupe COOR¹² ;

un groupe NO₂ ;

un groupe S(O) R¹⁷, SO₂NR¹⁵R¹⁶, CONR¹³R¹⁴ ;

R² : l'hydrogène, un groupe méthyle, un halogène, un groupe méthoxy, nitro, cyano, trifluorométhyle, trifluorométhoxy, difluorométhoxy ou méthylthio ;

Y : F, CF₃, CF₂Cl, CF₂H, OCF₃, OCF₂Cl, un groupe alkyle en C1-C4 ou alcoxy en C1-C4 ;

X , un groupe alcoxy en C1-C2, alkyle en C1-C2, alkylthio en C1-C2, alkylamino en C1-C2, di-(alkyle en C1-C2) amino, un halogène, un groupe halogénoalkyle en C1-C2, halogénoalcoxy en C1-C2,

R : l'hydrogène ou un groupe méthyle ;

R¹⁹ : un groupe alkyle en C1-C4, alcényle en C2-C4, alcynyle en C2-C4 ou cycloalkyle en C3-C6 qui peuvent porter un à cinq atomes d'halogènes. En outre, dans le cas où E représente O ou NR²⁰, R¹⁹ peut encore représenter un groupe méthylsulfonyle, éthylsulfonyle, trifluorométhylsulfonyle, allylsulfonyle, propargylsulfonyle ou diméthylsulfamoyle ;

R²⁰ : l'hydrogène, un groupe méthyle ou éthyle

R¹² : un groupe allyle en C1-C4 qui peut porter un à trois des substituants suivants halogéno, alcoxy en C1-C4, allyle ou propargyle ;

R¹⁷ : un groupe alkyle en C1-C4 qui peut porter un à trois des substituants suivants halogéno, alcoxy en C2-C4, allyle ou propargyle ;

R¹⁵ : l'hydrogène, un groupe alcoxy en C1-C2 ou alkyle en C1-C4 ;

R¹⁶ : l'hydrogène ou un groupe alkyle en C1-C4,

n : 1 à 2

Z : N, CH.

55 3. Mélanges solides selon la revendication 1, contenant une autre substance active herbicide c).

4. Mélanges solides selon la revendication 1, contenant 0,5 à 75 % en poids du composant a).

5. Mélanges solides selon la revendication 1, contenant 1 à 50 % en poids du composant b).
6. Mélanges solides selon la revendication 1, contenant un alkylpolyglycoside au degré de polymérisation de 1 à 3.
- 5 7. Mélanges solides selon la revendication 6, contenant un alkylpolyglycoside au degré de polymérisation de 1 à 2.
8. Procédé pour combattre les croissances des végétaux indésirables, **caractérisé par le fait que** l'on traite les végétaux et/ou l'aire à maintenir libre de végétaux par une quantité herbicide efficace d'un mélange solide selon la revendication 1.
- 10 9. Procédé pour la préparation de produits herbicides, **caractérisé par le fait que** l'on mélange une sulfonylurée avec un alkylpolyglycoside.

15

20

25

30

35

40

45

50

55