CUDASCII

A CUDA-accelerated image-to-ascii Python library written in modern C++
Presented by Alex Groeger & Alex Schwartz

The Goal

- ♦ Convert an image into text
 - Must be fast enough to process a 1080p 60 fps video stream
 - ♦ Text best preserves the original resolution when viewed in a terminal
 - Characters best match the underlying pixel intensities instead of average intensity

The Tools

- ♦ Build System
- ♦ Programming
 - ♦ Modern C++ based on John Lakos' *Large Scale C++*
 - ♦ CUDA 12.6 using best practices from Nvidia
 - ♦ PyBind to wrap code into a Python 3.11.2 library
- ♦ Third-party Libraries
 - ♦ CIMG & SDL2

The Preamble

- User provides a path to an image file and font size
- SDL2 draws ASCII characters using the font on new images which define the patch shape

```
BCDEFGH
  LMNOPQR
    V W X Y Z
ab cde fghi
 k 1 m n o p q r
s f u v w x y z
 1 2 3 4 5 6 7 8
 . , ; : $ #
 / ? % & ( )
```

The Preamble

- CIMG does the following
 - ♦ Reads the image from the file
 - Converts the image to grayscale
 - Crops the image to fit a whole number of ASCII patches in each dimension
 - Performs a Sobel filter on the image to obtain an edge map
- ♦ Edge map is moved to GPU for ASCII conversion

The GPU Code

- An output array is allocated with size that matches the number of patches that in the target image
- CUDA kernel grid dimensions match the dimensions of the output array
- Each CUDA thread block tries to find the ASCII character patch that best matches the patch assigned to the thread block

Output Array

CUDA Kernel Grid

1	2	3	4	5
6	7	8	9	10
11	12(13	4	15
16	17	18	19	20
21	22	23	24	25

The GPU Code

♦ Each CUDA thread will perform a dot product between the image patch assigned to its block and an ASCII character patch determined by its thread index

Patch Block

- ♦ All threads in a block report their similarity metric results so the thread block may assign the best matching ASCII character to the output array
- ♦ Final output array can be printed to a terminal screen

The Result

- All the CUDA kernel block results construct the final ASCII representation
- Using smaller patches via smaller font size, the precision increases

Output Array

	^		
/		\	
		+	I
\		/	
	V		

Future Work

- Allow user to specify image already in memory
- Write a python script to pipe live camera feed into CUDASCII and display it on a terminal with the specified font size

Questions?