

## 低频功率放大器 的要求和分类

余姚市职成教中心学核 陈雅萍

#### 什么是低频功率放大器?

低频: 相对于高频而言

本质上三极管放大 器都是功率放大器

功率放大器: 特指供给最终负载较大信号功率的电路, 以推行执行机构工作。

如扬声器发声、继电器动作等。



功放

以最小的失真、最高的效率向负载提供尽可能大的输出功率的放大器



三极管往往工作在线性应用的极限状态



与小信号电压放大电路有着明显的区别和不同的要求

## 基本要求

功放电路工作在大信号状态



功放管往往接近极限工作状态

- 1.尽可能大的输出功率 ——负载上尽可能获得最大交流功率
- 2.尽可能高的效率

放大电路的效率是指负载获得的功率  $P_0$  与电源提供的功率  $P_E$  之比,

用 $\eta$ 表示,即

$$\eta = \frac{P_{\mathbf{o}}}{P_{\mathbf{E}}} \times 100\%$$

- 3.较小的非线性失真
- 4.较好的散热装置

类型

根据功放管静态工作点的不同



甲类、乙类、甲乙类

 功放管静态工作点选择在放大区内的称为甲类功放电路 在工作过程中功放管处于导通状态,输出波形无失真。





根据功放管静态工作点的不同



甲类、乙类、甲乙类

2. 功放管静态工作点设置在截止区边缘的称为乙类功放电路 在工作过程中,功放管仅在输入信号的正半周导通,负半周截止,只有半波输出。 在实际中,经常使用两个管子交替工作,可得完整信号。





根据功放管静态工作点的不同



甲类、乙类、甲乙类

3. 功放管的静态工作点介于甲类和乙类之间的称为甲乙类功放电路 它的波形失情况和效率介于上述两类之间。



## 类型

#### 按功放输出端特点的不同



- 1.变压器耦合功率放大器
- 2.无输出变压器功率放大器(OTL)
- 3.无输出电容功率放大器(OCL)



## 低频功率放大器的要求和分类

#### 1.基本要求

较大的输出功率、较高的效率、较小的非线性失真、较好的散热。

#### 2.类型

(1) 根据功放管静态工作点的不同 🔷 甲类、乙类、甲乙类



(2) 按功放输出端特点的不同

变压器耦合功率放大器 无输出变压器功率放大器(OTL) 无输出电容功率放大器(OCL)



## 0CL电路

**余桃市职成教中心学校** 陈雅萍

## 什么是OCL电路?



无输出电容的功率放大器



双电源互补对称功率放大器

## OCL电路

### 电路构成

## 特点:



- 1.双电源供电
- 2.两管子特性完全对称(NPN+PNP)
- 3.两管子的基极相连后作为输入端
- 4.两管子的发射极相连后作为输出端
- 5.输出端与负载直接耦合

## -1.静态分析





## -2.动态分析



设输入信号ui为正弦信号

(1) $u_i$ 为正半周时, $VT_1$ 导通, $VT_2$ 截止



## -2.动态分析



互补对称功率放大电路

设输入信号ui为正弦信号

- (1)  $u_i$ 为正半周时, $VT_1$ 导通, $VT_2$ 截止,
- (2) $u_i$ 为负半周时, $VT_2$ 导通, $VT_1$ 截止,



## -交越失真





## -加偏置的OCL电路



为了消除交越失真,OCL电路通常在两只功放管的基极之间串入二极管和电阻,为三极管VT<sub>2</sub>、VT<sub>3</sub>的发射结提供正向偏置电压,使电路在静态时处于微导通状态,从而减小交越失真。

## OCL电路

#### 1.电路特点



双电源供电 互补对称 无输出电容

#### 2.工作过程分析

静态:A点静态电位为0。

动态:两功放管交替工作,向负载提供了完整的输出信号。

#### 3.交越失真

OCL电路存在交越失真。解决的方法:在两功放管的基极之间串入二极管和电阻。



## OTL电路

**余舱市职成教中心学核** 陈雅萍

## 什么是OTL电路?



无输出变压器功率放大器



单电源互补对称功率放大器

## OTL电路

## 电路构成



### 与OCL不同的是:

- 1.单电源供电
- 2.输出端经大电容 $C_L$ 与负载  $R_L$ 耦合

## -1.静态分析



## -2.动态分析



设输入信号ui为正弦信号

- (1) $u_i$ 为正半周时, $VT_1$ 导通, $VT_2$ 截止
- (2) $u_i$  为负半周时, $VT_2$ 导通, $VT_1$ 截止



## -加偏置的OTL电路



#### OCL电路与OTL电路各有何优缺点?

#### OCL电路:

双电源供电。无输出电容。频率响应好。便于集成。

#### OTL电路:

单电源供电。有输出电容。频率响应差。不便于集成。

## OTL电路

#### 1.电路特点



单电源供电 互补对称 有输出电容

#### 2.工作过程分析

静态:A点静态电位为  $\frac{1}{2}V_{\rm CC}$  。

动态:两功放管交替工作,向负载提供了完整的输出信号。

#### 3.交越失真

OTL电路存在交越失真。解决的方法:在两功放管的基极之间串入两个二极管。



余桃市职成教中心学校 陈雅萍

### 集成功率放大器有哪些优点?

- 1.输出功率大。
- 2.外围连接元件少。
- 3.使用方便。





## 输出引脚外接电路特征



单声道集成功放输出引脚外电路特征

## -LM386集成功放



(a) LM386实物外形



(b) LM386引脚功能

#### 特点:

- 1.芯片电源电压范围为4~12V。
- 2.不工作时仅消耗4mA电流。
- 3.通频带宽,外接元件少。
- 4.放大倍数可调,最高可达200。

其内部为OTL电路

## -LM386集成功放应用



### -TDA2822集成功放



#### 特点:

- 1.芯片电源范围为3~15V。
- 2.静态电流小,失真小。
- 3.适用于便携式、微小型收录机。
- 4.可组成双声道BTL电路。

## -TDA2822集成功放应用



#### 1.特点及输出引脚外接电路特征

OTL输出引脚要外接耦合电容, OCL输出引脚不需要接外接耦合电容。

#### 2.LM386集成功放

单功放模块。其内部为OTL电路。

#### 3.TDA2822集成功放

内含两个独立的功放模块。小功率双通道集成功率放大器。



手机



要带上耳机!

输出功率只有几十毫瓦

自己动手做一个

音频功率放大器!



## 音频功放电路 的制作

**余舱市职成教中心学校** 陈雅萍

## TDA2822音频功放电路

## 电路组成



## TDA2822音频功放电路

## -元件清单

| 电子元器件清单               |     |         |    |
|-----------------------|-----|---------|----|
| 元件                    | 名称  | 规格      | 数量 |
| IC                    | 集成块 | TDA2822 | 1  |
| $R_1$                 | 电阻器 | 100Ω    | 1  |
| $R_2$                 | 电阻器 | 100kΩ   | 1  |
| $R_3$                 | 电阻器 | 10kΩ    | 1  |
| $R_4$ , $R_5$         | 电阻器 | 4.7Ω    | 2  |
| $C_1$ , $C_2$         | 电容器 | 10uF    | 2  |
| $C_3$ , $C_5$         | 电容器 | 0.1uF   | 2  |
| <i>C</i> <sub>4</sub> | 电容器 | 0.01uF  | 1  |
| <i>C</i> <sub>6</sub> | 电容器 | 100uF   | 1  |
| SP                    | 喇叭  | 8Ω      | 1  |

| 其他材料     |    |    |  |  |
|----------|----|----|--|--|
| 名称       | 数量 | 备注 |  |  |
| 喇叭连接线    | 2  |    |  |  |
| 音频信号连接线  | 1  |    |  |  |
| USB电源连接线 | 1  |    |  |  |
| 亚克力板外壳   | 1  | 套  |  |  |

## >TDA2822音频功放电路 ——制作过程

第一步:准备材料

## >TDA2822音频功放电路 > ——制作过程

## 第二步: 元器件识别与检测

## TDA2822音频功放电路 ——制作过程

# 第三步: 在万能板上 进行合理布局

## TDA2822音频功放电路

## -制作过程(布局参考图)



## TDA2822音频功放电路 ——制作过程

## 第四步: 电路焊接

## >TDA2822音频功放电路 ——制作过程

## 第五步: 通电测试

## TDA2822音频功放电路 ——制作过程

## 第六步: 安装外壳

## TDA2822音频功放电路的制作

- 1.电路组成和元器件清单。
- 2.电路制作过程。分"六步"走:

