

机器学习

Machine Learning

(1) 主讲人:张敏 清华大学长聘副教授

基于实例的学习方法

*图片均来自网络或已发表刊物

动机

- •之前「三步走」的学习方法
 - 估计问题特性(如分布)
 - 作出模型假设
 - LSE, Decision Tree, MAP, MLE, Naïve Bayes, ...

贝叶斯学习

• 找到最优的参数

有没有一种学习方法不遵循「模型假设+参数估计」的思路?

动机

- 人们通过记忆和行动来推理学习
- 思考即回忆、进行类比 Thinking is reminding, making analogies
- One takes the behavior of one's company 「近朱者赤,近墨者黑

动机

「找到和这张图片最相似的 10 张图片"」

?

「找到两个基因组之间所有匹配的基因片段」

Topic 6.1 基于实例的学习 (I)

一、基本概念

一些名词概念

- 参数化(Parametric) vs. 非参数化 (Non-parametric)
 - •参数化:
 - 设定一个特定的函数形式
 - 优点:简单,容易估计和解释
 - 可能存在很大的偏置:实际的数据分布可能不遵循假设的分布
 - 非参数化:
 - 分布或密度的估计是数据驱动的(data-driven)
 - 需要事先对函数形式作的估计相对更少

其他名词

- Instance-Based Learning (IBL):基于实例的学习
 or Instance Based Methods (IBM):基于实例的方法
- Memory-Based Learning:基于记忆的学习
- Case-Based Learning:基于样例的学习
- Similarity-Based Learning:基于相似度的学习
- Case-Based Reasoning:基于样例的推理
- Memory-Based Reasoning:基于记忆的推理
- Similarity-Based Reasoning:基于相似度的推理

基于实例的学习

- 无需构建模型 —— 仅存储所有训练样例
- 直到有新样例需要分类才开始进行处理

基于实例的概念表示

- 一个概念 c_i 可以表示为:
 - 样例的集合 $c_i = \{e_{i1}, e_{i2}, ...\}$,
 - 一个相似度估计函数f,以及
 - 一个阈值 θ
- 一个实例'a'属于概念 c_i,当
 - •'a'和 c_i 中的某些 e_i 相似,并且
 - $f(e_i, \mathbf{a}) > \theta$

1. 最近邻

•相似度 ←→ 距离

最近邻的例子

信用评分

分类:好/坏

特征:

- L = #延迟还款/年
- R = 收入/花销

name	L	R	G/P
Α	0	1.2	G
В	25	0.4	Р
С	5	0.7	G
D	20	8.0	Р
E	30	0.85	Р
F	11	1.2	G
G	7	1.15	G
Н	15	8.0	Р

最近邻示例(续)

name	L	R	G/P
I	6	1.15	?
J	22	0.45	?
K	15	1.2	?

距离度量:

• 缩放距离

$$\sqrt{(L_1 - L_2)^2 + (10R_1 - 10R_2)^2}$$

理论结果

• 无限多训练样本下 1-NN 的错误率界限:

$$\operatorname{Err}(\operatorname{Bayes}) \le \operatorname{Err}(1-NN) \le \operatorname{Err}(\operatorname{Bayes}) \left(2 - \frac{K}{K-1}\operatorname{Err}(\operatorname{Bayes})\right)$$

- 证明很长(参照 Duda et al, 2000)
- 因此 1-NN 的错误率不大于 Bayes 方法错误率的 2 倍

最近邻 (1-NN) :解释

- Voronoi Diagram
- Voronoi tessellation
 - 也称为 Dirichlet tessellation
- Voronoi decomposition

- •对于任意欧氏空间的离散点集合S,以及几乎所有的点x, S中一定有
 - 一个和x最接近的点
 - 没有说"所有的点"是因为有些点可能和两个或多个点距离相等(在边界上)

贝叶斯学习

问题

- 最近邻的点是噪音怎么办?
- ●解决方法
 - ●用不止一个邻居
 - ●在邻居中进行投票

k-近邻 (KNN)

二、K-近邻 (KNN)

KNN: 示例 (3-NN)

顾客	年龄	收入 (K)	卡片数	结果	距口
John S	35	35	3	No	sqrt
Mary	22	50	2	Yes	sqrt
Hannah	63	200	1	No	sqrt
Tom	59	170	1	No	sqrt
Nellie	25	40	4	Yes	sqrt
David David	37	50	2	Yes	

距 David 的距离
sqrt [(35-37) ² +(35-50) ² +(3-2) ²]=15.16
sqrt [(22-37) ² +(50-50) ² +(2-2) ²]=15
sqrt [(63-37) ² +(200-50) ² +(1-2) ²]=152.23
sqrt [(59-37) ² +(170-50) ² +(1-2) ²]=122
sqrt [(25-37) ² +(40-50) ² +(4-2) ²]=15.74

KNN 讨论 1:距离度量

• Minkowski 或 L_{λ} 度量: $d(i,j) = \left(\sum_{k=1}^{p} |x_k(i) - x_k(j)|^{\lambda}\right)^{\overline{\lambda}}$

• 欧几里得距离 (λ = 2)

$$d_{ij} = \sqrt{\sum_{k=1}^{p} (x_{ik} - x_{jk})^2}$$

 曼哈顿距离 Manhattan Distance 城市街区距离 City block Dis.
 出租车距离 Taxi Distance
 或 L₁ 度量 (λ = 1):

$$d(i, j) = \sum_{k=1}^{p} |x_k(i) - x_k(j)|$$

KNN:距离度量

• 切比雪夫距离 (Chebyshev Distance) 棋盘距离 (Chessboard Dis.)

 L_{∞}

盤距离 (Chessboard Dis.) $d(i, j) = \max_{k} |x_k(i) - x_k(j)|$

加权欧氏距离
 Mean Censored Euclidean
 Weighted Euclidean Distance

$$\sqrt{\sum_{k} (x_{ik} - x_{jk})^2 / n}$$

• Bray-Curtis Dist.

- $\sum_{k} \left| x_{ik} x_{jk} \right| / \sum_{k} \left(x_{ik} + x_{jk} \right)$
- 堪培拉距离Canberra Dist.

$$\frac{\sum_{k} \left| x_{ik} - x_{jk} \right| / \left(x_{ik} + x_{jk} \right)}{k}$$

KNN 总览

- •基本算法
- •讨论
 - 更多距离度量
 - •属性

KNN 讨论 2: 属性

John: Age=35 Inco me=95K No. of credit cards=3

Rachel:

Age=41
Income=215K
No. of credit cards=2

- 邻居间的距离可能被某些取值特别大的属性所支配
 - e.g. 收入 Dis (John, Rachel)=sqrt [(35-45)² + (95,000-215,000)² +(3-2)²]
- 对特征进行归一化是非常重要的 (e.g., 把数值归一化到 [0-1])
 - Log, Min-Max, Sum, ···

贝叶斯学习

KNN: 属性归一化

Customer	Age	Income (K)	#cards
John S	55/63= 0.55	35/200= 0.175	3/4= 0.75
Rachel (22/63= 0.34	50/200= 0.25	2/4= 0.5
Hannah 🥱	, 63/63= 1	200/200= 1	1/4= 0.25
Tom	59/63= 0.93	170/200= 0.85	1/4= 0.25
Nellie 💮	25/63= 0.39	40/200= 0.2	4/4= 1
David 🔊	37/63= 0.58	50/200= 0.25	2/4= 0.5

Response
No
Yes
No
No
Yes
Yes

KNN: 属性加权

- 一个样例的分类是基于所有属性的
 - ▶ 与属性的相关性无关 —— 无关的属性也会被使用进来
- 根据每个属性的相关性进行加权 e.g. $d_{WE}(i,j) = \left(\sum_{k=1}^{p} w_k (x_k(i) x_k(j))^2\right)^{\frac{1}{2}}$
- 在距离空间对维度进行缩放
 - ➤ w_k = 0 → 消除对应维度 (特征选择)
- 一个可能的加权方法: 使用 互信息 /(*属性*, *类别*)

$$I(X,Y) = H(X) + H(Y) - H(X,Y)$$
 H: 熵 (entropy) $H(X,Y) = -\sum p(x,y)log\ p(x,y)$ 联合熵 (Joint entropy)

KNN 总览

- 基本算法
- •讨论
 - 更多距离度量
 - 属性
 - 归一化、加权
 - 连续取值目标函数

KNN 讨论 3: 连续取值目标函数

- 离散输出 投票
- 连续取值目标函数
 - k 个近邻训练样例的均值

连续取值目标函数

红色:实例的真实值 蓝色:估计值

1-nearest neighbor

3-nearest neighbor

5-nearest neighbor

KNN 总览

- •基本算法
- •讨论
 - 更多距离度量
 - 属性
 - 归一化、加权
 - 连续取值目标函数
 - k 的选择

KNN 讨论 4: k 的选择

- 多数情况下 k=3
- 取决于训练样例的数目
 - 更大的 k 不一定带来更好的效果
- 交叉验证
 - Leave-one-out (Throw-one-out, Hold-one-out)
 - 每次:拿一个样例作为测试, 所有其他的作为训练样例
- KNN 是稳定的
 - 样例中小的混乱不会对结果有非常大的影响

KNN 总览

- 基本算法
- •讨论
 - 更多距离度量
 - 属性
 - 归一化、加权
 - 连续取值目标函数
 - k 的选择
 - 打破平局(break ties)

KNN 讨论 5:打破平局

•如果 k=3 并且每个近邻都属于不同的类

- P(w|X)=1/3
- 或者找一个新的邻居 (4th)
- 或者取最近的邻居所属类
- 或者随机选一个
- 或者 ...

「之后会讨论一个更好的解决方案」

KNN 总览

- •基本算法
- 讨论
 - 更多距离度量
 - •属性:归一化、加权
 - 连续取值目标函数
 - k 的选择
 - 打破平局
 - 关于效率 (待续)