

PCT 03/0516334

The Patent Office
Concept House
Cardiff Road 12 OCT 2004
Newport
South Wales
NP10 8QQ

REC'D 13 JUN 2003

WIPO PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 8 May 2003

BEST AVAILABLE COPY

An Executive Agency of the Department of Trade and Industry

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

15 APR 2002

1/77

Request for grant of a patent*(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)*

THE PATENT OFFICE

15 APR 2002

The Patent Office

Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

NOTE H263130BED BY FAX

15APR02 E711102-1 002866

01/7700 0.00-0208600.7

1. Your reference

0208600.7

2. Patent application number
*(The Patent Office will fill in this part)*3. Full name, address and postcode of the or of
each applicant (*underline all surnames*).Nottingham University
University Boulevard
Nottingham NG7 2RD
United KingdomPatents ADP number (*if you know it*)

8363483001

If the applicant is a corporate body, give the
country/state of its incorporation

United Kingdom

4. Title of the invention

POWER CONVERTOR

5. Name of your agent (*if you have one*)ERIC POTTER CLARKSON
PARK VIEW HOUSE
58 THE ROPEWALK
NOTTINGHAM
NG1 5DD"Address for service" in the United Kingdom
to which all correspondence should be sent
*(including the postcode)*Patents ADP number (*if you know it*)

1305010

6. If you are declaring priority from one or more
earlier patent applications, give the country
and the date of filing of the or of each of these
earlier applications and (*if you know it*) the or
each application number

Country

Priority application number
*(if you know it)*Date of filing
*(day / month / year)*7. If this application is divided or otherwise
derived from an earlier UK application, give
the number and the filing date of the earlier
application

Number of earlier application

Date of filing
*(day / month / year)*8. Is a statement of inventorship and of right to
grant of a patent required in support of this
request? (Answer 'Yes' if:

YES

- a) any applicant named in part 3 is not an inventor; or
- b) there is an inventor who is not named as an applicant; or
- c) any named applicant is a corporate body.
See note (d)

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form

Description 22

Claims(s) 3

Abstract 0

Drawing(s) 5

10. If you are also filing in any of the following, state how many against each item.

Priority Documents 0

Translations of priority documents 0

Statement of inventorship and right NO
to grant of a patent (*Patents Form 7/77*)

Request for preliminary examination NO
and search (*Patents Form 9/77*)

Request for substantive examination NO
(*Patents Form 10/77*)

Any other documents
(please specify)

I/We request the grant of a patent on the basis of this application.

11.

Signature
ERIC POTTER CLARKSON

Date
15 April 2002

12. Name and daytime telephone number of person to contact in the United Kingdom

0115 9552211

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 01645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

POWER CONVERTER

The present invention relates to power converters and to methods of power conversion.

5

There are numerous conventional arrangements for power conversion using matrices of bi-directional switches, for example as disclosed in US Patent Nos. 5,594,636 and 5,892,677 which involve four-step current commutation.

10

These arrangements employ a current commutation technique in which the command signals for each current direction in the bi-directional switch are staggered in such a way as to ensure the safe commutation of the current path between one bi-directional switch and the next.

15

According to the present invention, there is provided a converter having a plurality of bi-directional switch means arranged in a configuration, the converter comprising current commutation means to effect operation of the switch means to begin initiation of one switch means before de-activation of another switch means.

20

According to the present invention, there is provided a converter having a plurality of bi-directional switch means arranged in a configuration, the converter comprising current commutation means with means to effect an overlap between turning off a switch means and turn-on of a further switch means.

In this way, the commutation time for a converter is reduced compared to present conventional equipment. Such commutation times can be reduced 25 to such levels as to approach or reach zero, and can even be slightly

30

negative up to the total of the turn-off and turn-off delay times of the switching devices used. Thus, for example, the turn-off signal is sent to the out-going switch before sending the turn-on signal to the incoming switch, thereby to compensate for the long turn-off times of semi-conductor
5 switching devices.

The initiation of one switch means may begin at any stage of the de-activation of the another switch means, for example at the start of such de-activation, or at some time during such de-activation, or at the end of such
10 de-activation.

Preferrably, the converter comprises one or more of the following features:-

- a first switch means and a second switch means whereby, in a first mode in use, the first switch means is activated, and the current commutation means is operable to activate the second switch means before the first switch means is de-activated.
- the converter comprises means to minimise the commutation interval.
- the converter comprises means to provide a commutation interval of less than those typically used as the Deadtime in a Voltage Source Inverter.
- 20 • the converter comprises means to provide a commutation interval which approaches or equals zero.
- the converter comprises means to provide a commutation interval which is slightly negative.
- the converter comprises means to provide a commutation interval which is negative up to the total turn-off times for the switching devices used
25 in the circuit implementation.
- the converter comprises a plurality of switches and timers thereby to effect reduction of the commutation interval.

According to another aspect of the present invention, there is provided a method of operating a converter having a plurality of bi-directional switch means arranged in a configuration, the method comprising effecting current commutation to operate the switching means to begin activation of one switch means before de-activation of another switch means.

5 Preferably the method comprises one or more the following features:-

- operating the current commutation means in order to activate a second switch means before a first switch means is de-activated.
- 10 • minimising the commutation interval .
- providing commutation interval of less than those typically used as the Deadtime in a Voltage Source Inverter.
- providing a commutation interval which approaches or equals zero.
- providing a commutation interval which is slightly negative.
- 15 • providing a commutation interval which is negative up to the total turn-off times for the switching devices used in the circuit implementation
- operating a plurality of switches and timers thereby to effect reduction of the commutation interval.

20 According to another aspect of the present invention, there is provided a computer software product directly loadable into the internal memory of a digital computer, comprising software code portions for performing the steps of the method of the present invention.

25 According to another aspect of the present invention, there is provided a computer program for executing the steps of the method of the present invention.

30 The present invention is applicable to a wide range of configurations of bi-directional switches, but particularly common are matrix converters

implementing the 2-step current commutation operation, the 3-step current commutation operation or the 4-step current commutation operation, based on the output current direction for each output phase of the converter. With the critical central commutation interval reduced to zero these two methods 5 become 1-step and 3-step commutation techniques.

Specific applications for the converter, or the conversion method, of the present invention are electric vehicles and other electric motor control situations.

10 Advantages of the present invention include the reduction or elimination of commutation time, the possibility of eliminating the dc link capacitor, lower conduction losses, and higher conversion efficiency. Furthermore, another advantage may be to make the commutation time slightly negative 15 to compensate for the long turn-off times associated with power semiconductor switching devices.

The present invention can be implemented by hardware, software, firmware or any suitable combination of such technologies, or even appropriate 20 alternative technologies.

Also it is possible to use digital logic applications e.g. transistors, discrete logic devices, programmable logic devices, direct outputs from first microprocessors, as alternatives to a FPGA.

25 The present invention is also applicable to the control of machines which operate without shaft sensors and need high-quality waveforms to operate properly at low speeds and at standstill, e.g. sensorless drives.

The present invention is also applicable to space critical drives (e.g. vehicles and aerospace actuators) and integrated drives in which the converter and motor are in a single package.

5 In a modification, the output current direction for each output phase of the converter may be determined from the voltages seen across the bi-directional switches.

10 The present invention can effect phase-conversion with any number of input and output phase being possible, as long as each is greater than or equal to one; e.g. from three-phase to single-phase, or it can maintain the phase-relationship (e.g. three-phase to three-phase).

15 In order that the invention may more readily be understood, a description is now given, by way of example only, reference being made to the accompanying drawings, in which:-

Figure 1 is a schematic diagram of a converter of the present invention;

20 Figures 2A and 2B are waveforms resulting from the converter of Figure 1;

Figure 3 shows the board layout of the converter of Figure 1;

Figures 4A and B show fibre optic components and edge connectors, respectively, of the converter of Figure 1;

25 Figure 5 shows the micro controller output of the converter of Figure 1;

Figure 6 shows the controller of the converter of Figure 1;

Figures 7 and 8 show the waveforms and switch arrangement for the four-step commutation process of the converter of Figure 1.

A snubberless 10KVA Matrix Converter uses discrete 65Amp, 1200 Volt MOS Controlled Thyristors (MCTs) as shown in Figure 1. The commutation time is minimised in order to achieve the optimum waveform quality; this is particularly useful when controlling induction motors in applications where the controller may demand very low output voltages.

One application is in electric vehicle applications, primarily for motor control. In electric vehicles, especially military vehicles, weight and volume reduction are critical. Further, high-temperature operation is desirable to ease the problem of thermal management.

The matrix converter of the present invention can have significant advantages over the traditional dc link converter in all of these areas, since it is possible to eliminate the dc link capacitor. Previously, most matrix converters have been concerned with insulated-gate bipolar transistor (IGBT) switches.

The converter is controlled using a Venturini Control algorithm implemented on a simple micro controller.

A FPGA controls the current commutation process. This hardware control platform allows the commutation time, T_B , to be set by the user, with a minimum time of 100nsecs, which is very small compared to the switching time of the devices used (about 6usecs).

Figure 2B shows the Matrix Converter operating with an output frequency of 40Hz into a 11kW induction motor load. The input filter is formed with the inductance of the paralleling inductors of the variac which supplies converter and the 15uF capacitors attached to the input power planes. The three-step current commutation strategy operates well, there being no

output voltage spikes and no input current spikes which would be seen during a commutation error or failure. The output voltage waveform is very clean, the laminated bus bar structure of the input voltage power planes producing a very small voltage overshoot during the voltage transients.

If the commutation time is increased to 10 usecs, then at very low frequencies the output has a DC bias much larger than the AC current. This DC current is due to the commutation strategy deciding a current direction for each output leg of the converter when the converter has zero current flowing, for example at turn-on.

The distortion due to the long commutation time results in a large DC voltage in the chosen direction, leading to a very significant DC current.

The improved output current waveforms obtained with a commutation time of 100 nsecs can be seen in the quality of the output current shown in Figure 2A.

This result was obtained with the MCT Matrix Converter operating under closed loop vector control with a demand shaft speed of 3 rpm. It shows the high quality of waveform that may be obtained from the converter even with a very low output voltage demand.

In the present invention, the critical commutation time, t_B in Figure 7, for an MCT matrix converter is minimised towards, and to zero, and hence the output waveform quality can be substantially enhanced, particularly under conditions of low converter output voltage demand.

This is particularly important in applications such as vector-controlled induction motor drives, in which output current distortion can cause problems under low speed conditions. These techniques can be applied to a Matrix Converter utilizing any switching device where the turn-off delay is greater than the turn-on delay.

5 The four-step matrix converter driver and control board contains all necessary components to provide firing signals for a three-phase to single-phase matrix converter. The four step semi-soft commutation method is implemented using a single Field Programmable Gate Array (FPGA) with a structure of allowing all of the necessary control logic to be integrated into one IC. With the critical commutation time, t_B effectively reduced to zero, this becomes a three-step commutation method.

10 15 Functions, such as timers, PWM generators and state machines, are used to create a stable commutation process. The timers are configurable and extremely versatile to allow use of a wide variety of semiconductor devices with different switching speeds. A docking port for a micro controller card is provided. Analogue receivers and conditioners are included for the 20 necessary feedback signals. For convenience and noise immunity reasons, only one 5V supply is need for the board. All other necessary power supplies are generated locally.

Board Layout

25 Figure 3 shows the board with the following elements:-

A: Analogue Circuitry Area: contains all of the analogue circuitry used for voltage and current measurement. The functions of this part are 30 described in Section 3.

B: Micro Controller Port: this is the docking port for the micro controller card. The connections to this port are described in Section 4.4.

5 C: Current Direction Inputs: These are used by the FPGA Controller to determine the switching strategy during a current commutation. These are described more fully in Section 4.1.

D: Boot Loading Peripherals: The boot loading peripherals and some
10 considerations are described in Section 4.2

E: Configuration DIP Switches: these are used to configure the various functions and the timers of the FPGA Controller, and are described in Section 5.1.

15 F: FPGA Controller: the controller provides an interface between the desired PWM output of the SAB167 micro controller and the current commutation process. Many test modes have also been implemented for convenience. These modes and the operation of the FPGA controller are
20 described in Section 5.

G: Edge Connector: The connections to the edge connector are described in Section 4.5.

25 H: Power Connector: Although power to the board can be applied using the edge connector, a power terminal block is provided for convenience. The board uses only one 5 volt supply. Any other voltages needed are generated on the board. The +5V terminal is the one nearest the analogue circuitry.

I: Push Buttons: Three push buttons are included for performing tasks that occur frequently. The two that are set close together are used for enabling and disabling the output of the FPGA controller during test mode operation. The one nearest the fibre optic receiver is used for enabling the outputs. The third push button is used to reset the micro controller.

J: Fibre Optic Outputs: The fibre optic outputs and their drivers are discussed in Section 4.3.

10 Section 4: Analogue Circuits

The analogue area of the board allows voltage and current inputs to be transformed so that the micro controller can sample them. High Impedance 15V differential inputs are provided to reduce conducted noise. This stage has a gain of 1/3. The next stage is an offset and gain stage. The micro controller can only sample positive voltages so an offset is used to move the input waveforms. The offset voltage for all stages is controlled by the potentiometer and the op-amp at the bottom right of the analogue circuit area. The final gain and offset are then fine-tuned by the variable resistors. The upper resistor in each channel controls the gain and the lower controls the offset.

The micro-controller has only one integrated sample-and-hold channel since large amounts of silicon area are used up by these. These multiple voltages cannot be sampled at the same instant in time. For this reason, a dedicated sample-and-hold chip (Analog Device SMP04E) is included on the board.

The analoguc-to-digital converter of the SAB167 accepts inputs in the range of between 0-5V. For this range to be achieved, the Varef pin of the

processor needs to be connected to the 5V rail. It has been found that noise on the 5V rail caused by the SAB167 is transferred to the sampled analogue data. For this reason, a stable 4V reference has been placed on the board. This then reduces the input range of the micro controller to 0-4V. The previously described circuitry is used to ensure the input voltage range is not exceeded.

The OP-Amps require supply voltages of +15V and the S/H integrated circuits uses +8V and -5V. All of these voltages are generated by the onboard DC-DC converter and the linear regulators from the 5V supply. This also makes the analogue circuitry more immune to digital noise.

Section 4: Peripherals

4.1 Current Direction Inputs

The current direction information is used by the FPGA Controller to determine the firing sequence during a current commutation. The FPGA Controller has two current direction inputs that can be used. The first is connected to a fibre optic receiver (HFBR2521). The second is connected to an opto-coupler (HCPL2611). Connection to the opto-coupler is through an SMB connector with the anode of the opto-coupler connected to the centre pin.

The second current direction input is also wire-Ored to an auxiliary MOSFET and can be driven from the edge connector. The gate of the MOSFET is optimised for 5V signals. Only one of these signals is used for the commutation process. The signal that is used depends on the configuration DIP switches (see Section 5.1.1). The current direction signal can also be forced to a particular direction internally for testing.

purposes. The design of the FPGA controller ensures that there are no external filtering or latching requirements for the signal.

4.2 Boot-loader considerations

5

For convenience, a 9-way D-type connector is included on the board for pre-rack mounting testing. Only a standard serial port extension cable is required. The connections are such that no null modem wire swapping is required. The TQM167LCD serial port lines are also connected to the edge 10 connector for future use. The PC serial port lines RTS and DTR are used to reset and bootload the micro controller.

15 After bootloading, these lines can be toggled by the terminal program used to communicate with the micro controller causing a reset to occur. As a safety measure, two jumpers are used to break the connections of the RTS and DTR lines when not bootloading. Only the TxD and RxD lines are required to communicate with the micro controller during normal operations. If preferred, the connector on top of the TQM167LCD can be used. Care must then be taken with the RTS and DTR lines for the reasons 20 outlined above.

4.3 Fibre Optic Drivers

The output gate drive fibre optic components (HFBR 1521) are driven by a series connection of a MOSFET, resistor and the opto diode. The 25 MOSFET is directly driven by the FPGA controller. The polarity of the outputs (active high or active low) can be changed to suit the application (see Section 5.1.5). The fibre optic transmitter at the top of the board of Figure 3 is used for the forward device in commutation cell number 1 (1F),

the next is for the reverse device (1R) and so on. This can be seen more clearly in Figure 4.

4.4 Micro Controller Port

All of the necessary connections to the micro controller card are provided using the two connectors on the board. These connections include the analogue signal lines together with the analogue reference, the serial port lines and connections to the FPGA controller. Three lines are used to connect the SAB167 and the FPGA. One line is used as an enable line. The other two are used for the PWM demand. Figure 5 shows a typical PWM output period from the micro controller. The decoding of these signals into the three six output signals is done internally in the FPGA controller. During period A, the outputs of commutation cell 1 are active, during B cell 2 is active and finally during C cell 3 is active. If the FPGA controller is set to use the SAB167 PWM inputs (i.e not using one of the test modes), the push button enable and disable push buttons are not active. Only the enable line from the SAB167 is used to enable and disable the FPGA outputs. A line is also used for to trigger the sample and hold IC.

20

Edge connector

Pin Number	Usage	Pin Number	Usage
1	Analogue channel 1 +ve	15	5V Power supply input
2	Analogue channel 1 -ve	16	0V Power supply input
3	Analogue channel 2 +ve	18	Serial Port DTR
4	Analogue channel 2 -ve	19	Serial Port RTS
5	Analogue channel 3 +ve	20	Serial Port TxD
6	Analogue channel 3 -ve	21	Serial Port RxD
7	Analogue channel 4 +ve	22	AUX current direction input
8	Analogue channel 4 -ve	All Other	Not Used

30

Table 1

Figure 4B and Table 1 above show the connections to the edge connector. All connections are made to the underside of the edge connector with the exception of the power supply connections which are attached to both the underside and the component side.

5

5. FPGA Controller

Figure 6 shows a high level schematic of the FPGA controller. The FPGA acts as an interface between the PWM demands of the micro controller and the output requirements of the commutation process. The output stage is controlled in such a way as to implement the standard 4-step semi-soft commutation strategy to avoid line to line short circuits or load open circuits. The FPGA contains all the necessary circuitry to implement the three necessary timers and the current direction input conditioning. Various test modes are also included for converter operation without the need to the micro controller using an internal PWM generator. These modes are described in Section 5.1.2. The FPGA is configured with the use of DIP switches on the board. The polarity of the output stage and the current direction inputs can be changed according to the desired application thus removing constraints on providing external inverters for interfacing.

20

5.1 FPGA Configuration

The DIP switches produce a logic 0 if switched to the "on" position and floats to a logic "1" if in the "off" position. Table 2 below shows the pin naming convention for the FPGA configuration DIP switches (labelled "Config" on the board).

30

5

Switch No.	1	2	3	4	5	6	7	8	9	10
Switch Name	Cinconf1	Cinconf2	Test1	Test2	Test3	Testsp1	Testsp2	Globaldiv2	Activeout	Activecin

Table 2

10

5.1.1 Cinconf1, Cinconf2

15 These two switches configure the current direction input. They are used to select either one of the current direction inputs described earlier or to force the current direction to one value or the other during testing. The current direction is defined as positive (logic 1) if it is flowing out of the converter from the utility to the load and negative if current is flowing into the
 20 converter from the load to the utility (logic 0). Table 3 below shows the operation of the switches.

25

Cinconf1	Cinconf2	Operation
0	0	CIN1 Selected (fibre optic)
0	1	CIN2 Selected (optocoupler/Aux)
1	0	Current direction forced to 0
1	1	Current direction forced to 1

30

Table 3

15

5.1.2 Test1, Test2, Test3

These three switches configure the mode of operation of the FPGA. Under normal operation the FPGA controller uses the PWM of the micro controller to derive the output waveforms. There are however various test modes to aid in the development process. These modes include a three phase commutation with a cells 1, 2 and 3 given a 25%, 25% and 50% duty cycle respectively. The test generator can also commutate between two desired phases with a 50% duty cycle. Table 4 below shows all of the possibilities.

Test1	Test2	Test3	Operation
0	0	0	SAB167 Controlled
0	0	1	3 Phase Test mode
0	1	X	2 phase commutate between cells 1 and 2
1	0	X	2 phase commutate between cells 2 and 3
1	1	X	2 phase commutate between cells 3 and 1

NOTE: When the FPGA Controller is set to be controlled by the micro controller the push button enable and disable are not active. The outputs are enabled by the micro controller.

20

Table 4

5.1.3 Testp1, Testp2

25 These switches control the switching frequency of the test mode PWM generator. Table 5 below shows the available combinations.

30

16

5

Testsp1	Testsp2	Frequency
0	0	5 kHz
0	1	2.5 kHz
1	0	1.25 kHz
1	1	625 Hz

Table 5

10

5.1.4 Globaldiv2

This switch is used when longer delays are required. All internal timer clocks are halved in frequency when this is set to 0. Normal system clock speed is used when set to 1. This will be described more fully in section 15 5.2

5.1.5 Activein, Activeout

20 The activein and activeout switches control the polarity of the outputs and the CIN inputs. If activeout is set to 1, a 1 will appear at the output of the FPGA (the fibre optic transmitter will be driven) when a device should be turned on. The reverse is true if the switch is set to 0.

25 As mentioned earlier a positive current (flowing from utility to load) is internally represented by a logic 1. This can be inverted inside the FPGA so that the designer need not worry about signal polarity when designing the current direction detection circuitry. If activein is set to logic 1, it is assumed that a logic 1 on the input to the FPGA is positive current (i.e. 30 active high). If the activein is set to 0 then a 0 at the input to the FPGA will

mean positive current flow (i.e current direction is then active low). Any inversion due to the on board current direction receiving components also need to be taken into consideration. Setting activein to either value will not affect the direction value if the current direction is forced using one of 5 the test modes.

5.2 Timer Configuration

Figure 7 shows the output waveforms achieved by the switches shown in 10 Figure 8 for the commutation from cell 1 to switch cell 2 assuming the current to be in the direction shown. The times marked T_A , T_B and T_C are defined as the "reverse switch off time", the "commutation time" and the "reverse switch on time" respectively. Each of these delays has its own 15 configurable timer. Each of the three DIP switches are identical and control one timer each. The "reverse switch off time" timer is marked "R-off" on the board, the "commutation time" timer is marked "Comm" and the "reverse switch on time" timer is marked "R-on". Since each of the timer configuration settings are identical, only one will be described. Table 6 shows the switch usage for the commutation timer.

20

25

Switch Nu.	Switch Name	Switch Nu.	Switch Name
1	CommDiv1	6	CommDIP5
2	CommDiv0	7	CommDIP4
3	Not Used	8	CommDIP3
4	CommDIP7	9	CommDIP2
5	CommDIP6	10	CommDIP1

30

Table 6

18

The switches labelled "CommDIP1-7" form the input to a 7-bit binary counter, CommDIP1 being the "least significant bit" and CommDIP7 being the "most significant bit". The timer counts up to the value specified on the CommDIP switches before resetting to create the variable delay required. The switches labelled CommDIV0-1 are used to dictate the input clock speed into the timer. Table 7 below shows all available clock periods assuming 10MHz clock is used to clock the FPGA controller.

10

15

CommDIV1	CommDIV0	Period
0	0	100 ns
0	1	200 ns
1	0	400 ns
1	1	800 ns

20

Table 7

If the Globaldiv2 input is set to 0, these times are doubled for all timers. The timer time is calculated by multiplying the selected clock period by the binary number set on the CommDIP switches (remembering that a logic 0 is produced when the switch is on and a 1 when off when setting the DIP switches) and then adding one FPGA clock period (100ns for the 10MHZ clock). For example, if the timer was to be set to its maximum value

(Globaldiv2 is also set to 0 to double the delay), all seven bits set to high on the CommDIP switches will cause a maximum count of 127, this multiplied by a period of 1.6μ s gives 203.2μ s plus 100ns gives a maximum delay of 203.3μ s. If the CommDIP switches are all set to zero, then the timer delay is set to 100ns. This wide range of timer values makes the FPGA controller suitable for most types of semiconductor switching devices. The "reverse off" and "reverse on" timers are configured in the same way.

5

10

Switch No.	Switch Name	Switch No.	Switch Name
1	R-offDIV1	6	R-offDIP5
2	R-offDIV0	7	R-offDIP4
3	Not Used	8	R-offDIP3
4	R-offDIP7	9	R-offDIP2
5	R-offDIP6	10	R-offDIP1

"reverse off timer"

15

Table 8

20

Switch No.	Switch Name	Switch No.	Switch Name
1	R-onDIV1	6	R-onDIP5
2	R-onDIV0	7	R-onDIP4
3	Not Used	8	R-onDIP3
4	R-onDIP7	9	R-onDIP2
5	R-onDIP6	10	R-onDIP1

"reverse on timer"

The formula below can be used to calculate timer periods where:-

DIP represents the binary number on the DIP switches (DIP1 = LSB, DIP7 = MSB).

DIV represents the binary number on the DIV0 and DIV1 switches (DIV0 = LSB, DIV1 = MSB).

CLK is the global clock period, normally 100ns but if Globaldiv2 is set to 0 CLK = 200ns.

25

$$\text{Timer Period} = (CLK \times 2^{DIV} \times DIP) + 100\text{ns}$$

Example: If CLK = 100ns, DIV0 and DIV1 are both set to 1 and 45 is set on the DIP switches, the resulting timer period would be,

$$(100\text{ns} \times 2^3 \times 45) + 100\text{ns} = 36.1\mu\text{s}$$

30

Table 9

20

Pin Number	Pin Use	Pin Number	Pin Use
1	DEB UG PIN	43	VCC
2	PWR RESET	44	R-off DIP3
3	SAB-A1	45	R-off DIP2
4	Reserved for Future Use	46	R-off DIP3
5	SAB-A2	47	R-on DIP1
6	GND	48	R-on DIP2
7	SAB-ENABLE	49	GND
8	Reserved for Future Use	50	R-off DIP2
9	CINcon1	51	"EXT"-enable
10	TEST1	52	R-off DIP1
11	CINcon2	53	Reserved for Future Use
12	GND	54	CIN-LED
13	TEST2	55	EXT-enable
14	TEST3	56	ENABLE-LED
15	TEST-SP1	57	"CIN2 (opto/A/D)"
16	TEST-SP2	58	Reserved for Future Use
17	Global DIV2	59	R-off DIP1
18	active-out	60	Reserved for Future Use
19	active-cnt	61	Reserved for Future Use
20	R-on DIV1	62	Reserved for Future Use
21	Reserved for Future Use	63	GND
22	VCC	64	VCC
23	VCC	65	VCC
24	R-off DIV1	66	CIN1
25	R-off DIV1	67	Reserved for Future Use
26	R-on DIV0	68	Reserved for Future Use
27	R-off DIV0	69	Reserved for Future Use
28	GND	70	GND
29	R-off DIP7	71	3R
30	R-off DIV0	72	3F
31	R-off DIP7	73	4R
32	R-on DIP7	74	2F
33	R-on DIP6	75	1F
34	R-off DIP6	76	1R
35	R-off DIP5	77	Reserved for Future Use
36	R-off DIP5	78	Reserved for Future Use
37	R-on DIP5	79	Reserved for Future Use
38	R-on DIP4	80	Reserved for Future Use
39	R-off DIP5	81	Reserved for Future Use
40	R-off DIP4	82	Reserved for Future Use
41	R-off DIP4	83	CLK
42	R-on DIP3	84	VCC

Table 10 gives FPGA pin definitions

Timer DIP Switch Setting Examples

Table 11 below gives some examples of possible timer DIP switch settings and their resultant delay times.

5

10

15

20

Globaldiv2	DIV1	DIV0	DIP							DELAY
			7	6	5	4	3	2	1	
1	0	0	0	0	0	0	0	0	0	100ns
1	0	0	0	0	0	0	1	0	0	500ns
1	0	0	0	0	0	1	0	0	1	1μs
1	0	1	0	0	0	0	1	0	0	900ns
1	0	1	0	0	0	1	0	1	0	2.1μs
1	1	0	0	1	1	0	0	1	0	20.1μs
1	1	0	1	1	1	1	1	1	1	50.9μs
1	1	1	0	0	0	1	0	0	0	6.5μs
1	1	1	1	0	0	0	0	0	0	51.3
1	1	1	1	0	0	0	0	1	0	900ns
0	0	0	0	0	0	0	1	0	0	1.9μs
0	0	0	0	0	0	0	1	0	0	1.7μs
0	0	1	0	0	0	0	1	0	1	4.1μs
0	0	1	0	0	0	1	0	0	1	40.1μs
0	1	0	0	1	1	0	0	1	1	101.7μs
0	1	0	1	1	1	1	1	1	1	12.9μs
0	1	1	0	0	0	1	0	0	0	102.5
0	1	1	1	0	0	0	0	0	1	203.3
0	1	1	1	1	1	1	1	1	1	

Table 11

The switch names used are general since they can be applied to any of the three timers.

D5

CLAIMS

1. A converter having a plurality of bi-directional switch means arranged in a configuration, the converter comprising current commutation means to effect operation of the switch means to begin initiation of one switch means before de-activation of another switch means.
2. A converter according to Claim 1 comprising a first switch means and a second switch means whereby, in a first mode in use, the first switch means is activated and the second switch means is not activated, and the current commutation means is operable to activate the second switch means before the first switch means is de-activated.
3. A converter according to any preceding claim wherein the operating means comprises means to minimise the commutation interval.
4. A converter according to any preceding claim wherein the operating means comprises means to provide a commutation interval of less than those typically used as the deadtime in a Voltage Source Inverter.
5. A converter according to any preceding claim wherein the operating means comprises means to provide a commutation interval which approaches or equals zero.
6. A converter according to any preceding claim wherein the operating means comprises means to provide a commutation interval which is slightly negative.
7. A converter according to Claim 1 wherein the operating means comprises means to provide a commutation interval which is negative up to

the total turn-off delays and times of the switching devices used for the converter realisation.

8. A converter according to any preceding claim wherein the converter comprises a plurality of switches and timers thereby to effect reduction of the commutation interval.
5
9. A converter substantially as hereinbefore described with reference to, and/or as illustrated in, any one or more of the Figures of the accompanying drawings.
10
10. A method of operating a converter having a plurality of bi-directional switch means arranged in a configuration, the method comprising effecting current commutation to operate the switching means to begin activation of one switch means before de-activation of another switch means.
15
11. A method according to Claim 10 comprising operating the current commutation means in order to activate a second switch means before a first switch means is de-activated.
20
12. A method according to Claim 10 or 11 comprising minimising the commutation interval.
25
13. A method according to any of Claims 10 to 17 comprising providing a commutation interval of less than those typically used as the deadtime in a Voltage Source Inverter.
14. A method according to any of Claims 10 to 13 comprising providing a commutation interval which approaches or equals zero.
30

15. A method according to any of Claims 10 to 14 comprising providing —
a commutation interval which is slightly negative.

5 16. A method according to any of Claims 10 to 15 comprising a
commutation interval which is negative up to the total turn-off delays and
times of the switching devices used for the converter realisation.

10 17. A method comprising operating a plurality of switches and timers
thereby to effect reduction of the commutation interval.

18. A method substantially as hereinbefore described with reference to,
and/or as illustrated in, any one or more of the Figures of the accompanying
drawings.

15 19. A computer program product directly loadable into the internal
memory of a digital computer, comprising software code portions for
performing the steps of any one of Claims 10 to 18 when said product is
run on a computer.

20 20. A computer program for executing the steps of the method according
to any one of Claims 10 to 18.

21. Electronic distribution of a computer program product according to
25 Claim 19 or a computer program according to Claim 20.

Figure 1: The Matrix Converter Circuit and Controller

Figure 2A. An Output Current Waveform for the Matrix Converter with an Induction Motor Load
Switching Frequency = 4kHz, Motor Shaft Speed = 3rpm

2/5

Figure 2B Input Current, Output Voltage and Output Current Waveforms
for the Matrix Converter with an Induction Motor Load
Switching Frequency = 4kHz, Input Frequency = 60Hz, Output frequency = 40Hz

Figure 3 Photograph of the controller card

Figure 4A

Figure 4B

Figure 5 Micro controller PWM output

Figure 6 Schematic of the FPGA controller IC

Figure 7

Figure 8

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.