

Project Initialization and Planning Phase

Date	6 JUNE 2024	
Team ID	740048	
Project Title	Air Quality Index analyzer using ML	
Maximum Marks	3 Marks	

Project Proposal (Proposed Solution) template

To explain an Air Quality Index (AQI) analyzer using machine learning (ML), you can structure it similarly to the project proposal template shown in the image. Here's an outline:

Project Overview	y
Objective	Develop a machine learning system to analyze and predict air quality index levels in real-time.
Scope	Implement a scalable fraud detection system that can analyze large volumes of transaction data to identify and flag potentially fraudulent activities. The project will cover data collection, model training, and integration with existing transaction systems.
Problem Stateme	ent
Description	Air pollution is a significant issue affecting public health and the environment. Accurate and timely predictions of AQI can help in mitigating health risks and informing the public and authorities about air quality.
Impact	Solving this problem will enhance public health safety, inform policy decisions, and improve the overall quality of life. It will also help in identifying pollution sources and trends, facilitating better environmental management.
Proposed Solutio	n
Approach	Utilize supervised machine learning techniques, such as regression models, decision trees, and neural networks, to analyze historical and real-time environmental data to predict AQI levels. The solution will involve data preprocessing, feature engineering, model training, and evaluation.

Data collection:	Sources: Meteorological data, pollution sensors, satellite data Types: Temperature, humidity, wind speed, particulate matter (PM2.5, PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), carbon monoxide (CO)
Data preprocessing:	Cleaning: Handle missing values, remove outliers Transformation: Normalize/standardize data Feature Engineering: Create new features from raw data
Model Training:	Algorithms: Linear regression, random forest, gradient boosting, deep learning models Evaluation: Cross-validation, performance metrics (RMSE, MAE, R2 score) Integration: Real-time data ingestion and prediction Visualization: Dashboards and alerts for AQI levels

Resource Requirements

Resource Type	Description	Specification/Allocation		
Hardware				
Computing Resources	High-performance CPUs/GPUs	e.g., 2 x NVIDIA V100 GPUs		
Memory	Sufficient RAM for large datasets	e.g., 32 GB		
Storage	Large storage for data, models, and logs.	e.g., 1 TB SSD		
Software				
Frameworks	Python frameworks	e.g., Tenser flow, sklearn, keras.		
Libraries	Pandas, NumPy, Matplotlib for data manipulation and visualization	e.g., numpy, pandas.		
Development Environment	Jupyter Notebooks, IDEs	e.g., Pycharm		
Data				
Data	Source: Government and private environmental monitoring agencies, open data	e.g., Kaggle		

platforms (e.g., Kaggle)	
Size: Varies depending on the	
region and time span	
Format: CSV, JSON, real-	
time API feeds	