ชื่อ-นามสกุล ______ หมู่เรียน____

แบบฝึกหัดที่ 8

1. ร้านค้าออนไลน์ขายเมล็ดพืชหายากชนิดหนึ่ง อ้างว่าเมล็ดที่ขายมีเปอร์เซ็นต์การงอกสูงกว่า 90% จากการทดลอง ของลูกค้ารายหนึ่งได้สั่งซื้อเมล็ดมาทั้งหมด 100 เมล็ดและพบว่ามี 14 เมล็ดที่ไม่งอก จงทดสอบคำกล่าวอ้างของ ร้านค้าว่าเป็นจริงหรือไม่ที่ระดับนัยสำคัญ 0.05 หากถือว่าอัตราการงอกของเมล็ดพืชดังกล่าวมีการแจกแจงแบบ ปกติ

์ ตั้งสมมติฐาน H₀: **P** ≤ **0**. **9** H₁: **P** > **0**. **9** ทดสอบด้วยการแจกแจงความน่าจะเป็นแบบ: $(\text{กากบาท} \times \text{lu} \ \Box)$

ความหมายของตัวแปรที่ใช้ในการตั้งสมมติฐาน **ให้ P** คือสัดส่วนเมล็ดที่งอก ซึ่งขายโดยร้านค้าออนไลน์
ดังกล่าว

ค่าสถิติ $heta_{cal}$ ที่ได้ (เมื่อ heta=Z,t, χ^2 ,F)

คำสั่งที่ใช้ในการหาค่าวิกฤติ stats.norm.isf(0.05) กราฟการแจกแจงความน่าจะเป็นพร้อมระบุตำแหน่ง $heta_{cal}$,ค่าวิกฤติ และแรเงาบริเวณวิกฤติ z_{cal} z_cal z_crit 1.333 1.645

คำสั่งในการหาค่า p-value

(ใช้ t_cal/z_cal/chi2_cal/f_cal แทน **0**cal)

stats.norm.sf(z_cal)

ค่าวิกฤติที่ได้
1.645

ค่า p-value
0.909

สรุปผลการทดสอบ

ค่า Z_{cal} ไม่อยู่ในบริเวณวิกฤต และค่า p-val > 0.05 จึงยอมรับ H_0 นั่นคือสัดส่วนการงอกของเมล็ดที่ขาย โดยร้านค้าออนไลน์ร้านนี้ ≤ 0.9 ที่ระดับนัยสำคัญ 0.05 คำกล่าวอ้างของทางร้านจึงไม่เป็นความจริง

占	
ชื่อ-นาม	สกล
00 101	011 101

รหัสนิสิต

	4
98911	เรยน
NIONI	9 0 W

สืบเนื่องจากข้อ 8.1 พบว่ามีร้านค้าออนไลน์อีกเจ้าซึ่งขายเมล็ดพืชหายากชนิดเดียวกันนี้ อ้างว่าเมล็ดที่ขายมี
 เปอร์เซนต์การงอกสูงกว่า 95% จึงสั่งซื้อมา 50 เมล็ดพบว่ามี 4 เมล็ดที่ไม่งอก จงทดสอบว่าร้านค้านี้ขายเมล็ดซึ่งมี
 เปอร์เซ็นต์การงอกสูงกว่าร้านค้าแรกมากกว่าหรือเท่ากับ 5% หรือไม่ ที่ระดับนัยสำคัญ 0.05

ตั้งสร	มมติฐา	น

 $H_0: P_1 - P_2 \ge 0.05$

 $H_1: P_1 - P_2 < 0.05$

ทดสอบด้วยการแจกแจงความน่าจะเป็นแบบ:					
(กากบาท x ใน 🔲)					
X Z	$\Box t$	$\square \chi^2$	□F		

ความหมายของตัวแปรที่ใช้ในการตั้งสมมติฐาน

 $m{P_1}$ คือสัดส่วนเมล็ดที่งอก ซึ่งขายโดยร้านค้าออนไลน์ร้าน ใหม่

 $m{P_2}$ คือสัดส่วนเมล็ดที่งอก ซึ่งขายโดยร้านค้าออนไลน์ร้าน เดิม

ค่าสถิติ $heta_{cal}$ ที่ได้ (เมื่อ heta=Z,t, χ^2 ,F)

0.265

คำสั่งที่ใช้ในการหาค่าวิกฤติ

stats.norm.ppf(0.05)

ค่าวิกฤติที่ได้

-1.645

สรุปผลการทดสอบ

ค่า z_{cal} ไม่ได้อยู่ในบริเวณวิกฤต และค่า p-val > 0.05 จึงยอมรับ H₀ นั่นคือสัดส่วนของเมล็ดที่งอกซึ่งขาย โดยร้านใหม่สูงกว่าร้านเดิม ≥0.05 ที่ระดับนัยสำคัญ 0.05

_หมู่เรียน____

3. จากชุดข้อมูล "titanic.csv" จงทดสอบว่าส่วนเบี่ยงเบนมาตราฐานข้อมูลอายุผู้โดยสารมีค่าน้อยกว่า 10 ปีหรือไม่ที่ ระดับความเชื่อมั่น 99% หากกำหนดให้ข้อมูลอายุผู้โดยสารมีการแจกแจงแบบปกติ

ความหมายของตัวแปรที่ใช้ในการตั้งสมมติฐาน

ให้ σ^2 คือความแปรปรวนของข้อมูลอายุผู้โดยสารเรือไท
ทานิค

ค่าสถิติ $heta_{cal}$ ที่ได้ (เมื่อ heta=Z,t, χ^2 ,F) **1504.566**

ค่าวิกฤติที่ได้
628.103

สรุปผลการทดสอบ

ค่า χ_{cal} ไม่อยู่ในบริเวณวิกฤต และค่า p-val > 0.01 จึงยอมรับ H_0 นั่นคือความแปรปรวนของข้อมูลอายุ ผู้โดยสารเรือไททานิคมีค่า $\geq 10^2$ ปี (ส่วนเบี่ยงเบนมาตรฐาน ≥ 10 ปี) ที่ระดับนัยสำคัญ 0.01

ชื่อ-นามสกุล ______ หมู่เรียน_____

4. จากข้อ 8.3 จงทดสอบว่ากลุ่มผู้โดยสารชั้น Pclass = 1 มีความแปรปรวนของอายุเท่ากับ กลุ่มผู้โดยสารชั้น Pclass = 2 หรือไม่ที่ระดับนัยสำคัญ 0.05

ตั้งสมมติฐาน

$$H_0: \sigma_1^2/\sigma_2^2 = 1$$

 $H_1: \sigma_1^2/\sigma_2^2 \neq 1$

ความหมายของตัวแปรที่ใช้ในการตั้งสมมติฐาน

- σ_1 คือความแปรปรวนของอายุผู้โดยสาร Pclass 1
- σ_2 คือความแปรปรวนของอายุผู้โดยสาร Pclass 2

ค่าสถิติ $heta_{cal}$ ที่ได้ (เมื่อ heta=Z,t, χ^2 ,F)

1.118

คำสั่งที่ใช้ในการหาค่าวิกฤติ

f crit left = stats.f.ppf(0.05/2, dfn=185, dfd=172)

f crit right = stats.f.isf(0.05/2, dfn=185, dfd=172)

ค่าวิกฤติที่ได้

0.745

1.344

สรุปผลการทดสอบ

ค่า F_{cal} ไม่ได้อยู่ในบริเวณวิกฤต และค่า p-val > 0.05 จึงยอมรับ H_0 นั่นคือความแปรปรวนของอายุ ผู้โดยสาร Pclass 1 มีค่าเท่ากับ ความแปรปรวนของอายุผู้โดยสาร Pclass 2 ที่ระดับนัยสำคัญ 0.05