T		•		
PA	ıırh	aiv.	ana	gram
10	นเม	атл	uia	ट्रा बाप

	Usage of thermodynamic theory or in other words the Nernst equation to create potential (E) – pH diagram
	This is typically comparable to the composition – temperature diagrams (phase diagrams) which is generally for alloy systems
	Both diagrams are guide <u>maps</u>
	Pourbaix diagrams are plotted in the axes Electrode potential of the metal vs. pH of the electrolyte
	Oxidizing conditions are described by the top part of the diagram (high positive electrode potential)
	Reducing conditions are described by the bottom part of the diagram (high negative electrode potential)
	Acidic solutions are presented in the left side of the diagram (pH lower than 6)
	Alkaline solutions are presented in the right side of the diagram (pH higher than 6)
	Pourbaix diagrams are used to determine the corrosion behavior of a metal in water solutions
	In other words, the direction of electro-chemical processes and the equilibrium state of the metal at a certain electrode potential in a water solution at a certain value of pH
	Normally the Poubaix diagrams are built for the water solutions with the concentrations of metal ions 10 ⁻⁶ M and at the temperature 298K (77°F/25°C).
	The lines of the diagrams dividing different zones of the equilibrium states are calculated by the Nernst equation
	$E = E^0 - (0.059/n)*lnC_{ion}$
n - nui	eandard electrode potential, V; mber of electrons transferred; molar activity (concentration) of ions.
Diagra	ms have three domains:
	<u>Immunity</u> – region of <u>thermodynamic</u> stability of the <u>pure</u> metal. Corrosion is <u>thermodynamically</u> impossible
	<u>Corrosion</u> - region of <u>thermodynamic</u> stability of the metal ion and dissolution will occur

Passivity - region of thermodynamic stability of the metal oxide. Corrosion is mitigated by the formation of a "passive" protective oxide

Fe system

- ☐ Areas in the Pourbaix diagram mark regions where a single species ($Fe^{2+}(aq)$, $Fe_3O_4(s)$, etc.) is stable. More stable species tend to occupy larger areas.
- ☐ Lines mark places where two species exist in equilibrium.
 - > Pure redox reactions are horizontal lines these reactions are not pH-dependent
 - > Pure acid-base reactions are vertical lines these do not depend on potential
 - Reactions that are **both** acid-base and redox have a slope of -0.0592 V/pH x $\#H^+/\#e^-$

Pourbaix diagram for Fe-H2O at 25 °C Line 1

Four t	ypes	of r	<u>eactio</u>	ons:
			1 4	

	Independent of H ⁺ ions (pH) and E (electrons):
	$Fe^{2+} + 2OH^- \rightarrow Fe(OH)_2$
	pH dependent and E independent:
	$Fe^{2+} + 2H_2O \rightarrow Fe(OH)_2 + 2H^+$
	E dependent and pH independent:
	$Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$
	E and pH dependent
	$2Fe^{2+} + 3H_2O \rightarrow Fe_2O_3 + 6H^+ + 2e^-$
The di	agram defines the following zones of the equilibrium states:
	below the line a-b-j : Solid iron (immunity zone). The electrochemical reactions in this zone proceed in the direction of reduction of iron ions. No corrosion occurs in this zone.
	a-b-n-c-d-e : Aqueous solution of ion Fe ²⁺ (corrosion zone). Metallic iron oxidizes in this zone.
	e-d-f-g-k : Aqueous solution of ion Fe ³⁺ (corrosion zone). Metallic iron oxidizes (corrodes) in this zone.
	h-f-g-m : Aqueous solution of ion FeO ₄ ²⁻ (corrosion zone).
	c-d-f-h-i : Solid ferrous oxide Fe ₂ O ₃ (passivation zone). Iron oxidizes (corrodes) in this zone however the resulted oxide film depresses the oxidation process causing passivation (corrosion protection of the metal due to formation of a film of a solid product of the oxidation reaction
	n-c-i-p : Solid oxide Fe ₃ O ₄ (Fe ₂ O ₃ *FeO) (passivation zone). The oxide film causes passivation.
	b-n-p-j : Solid hydroxide (II) Fe(OH) ₂ / FeO*nH2O / green rust (passivation zone).
	Horizontal lines of the Pourbaix diagrams correspond to the redox reactions which are independent of pH
	Vertical lines of the Pourbaix diagrams correspond to the non-redox reactions (electrons are not involved), which are dependent on pH
	Diagonal lines of the Pourbaix diagrams correspond to the redox reactions, which are dependent on PH.

	Some follow	of the reactions and the corresponding lines of the Fe- H_2O Pourbaix diagram are as s -		
	the ele	$e(s) = Fe^{2+}(aq) + 2e^{-}$ Redox reaction independent of PH. The equilibrium occurs at ctrode potential value -0.44V, which is equal to the standard electrode potential of ee the Electrochemical series		
	e-d: F	$e^{2+}(aq) = Fe^{3+}(aq) + e^{-}$ Redox reaction independent of PH.		
	d-f: 21	$Fe^{3+}(aq) + 3O^{2-} = Fe_2O_3(s)$ Non-redox reaction dependent on pH		
	b-n: F	$e^{2+}(aq) + 2OH^{-}(aq) = Fe(OH)_{2}(s)$ Non-redox reaction dependent on pH		
	c-d: 2]	$Fe^{2+}(aq) + 3H_2O = Fe_2O_3(s) + 6H^+(aq) + 2e^-$ Redox reaction dependent on pH		
	b-j: $Fe(s) + 2OH^{-}(aq) = Fe(OH)_{2}(s) + 2e^{-}$ Redox reaction dependent on pH			
Pourb	aix dia	gram limitations		
	M-H ₂ O diagrams present equilibria among metal, metal ions and solid oxides in systems where only metal, water, H ⁺ and OH ⁻ exist. This is not the real world scenario. Missing out on many things			
	The diagrams consider pure metals and aqueous solutions at standard conditions ONLY (temperature 298K, pressure 1 bar, ion concentration 10 ⁻⁶ M).			
	Diagram is based on <u>pure</u> metals, not alloys			
	These equilibrium thermodynamic diagrams reveal nothing concerning corrosion kinetics			
	Criteria for passivity is a concern (e.g., Fe ₂ O ₃ [rust] is considered passive!)			
	Bulk chemistries are different than chemistries inside a crevice, pit or crack, i.e., the local environment must be considered			
Sumn	nary			
Therm	nodynan	nic aspects		
		Equilibrium between metals and their environments		
		Corrosion tendency of metals		
		Qualitative picture of what can happen at a given pH and potential (Pourbaix Diagram)		
But,				
		Considerations of equilibrium are irrelevant to the study of corrosion rates (that is kinetic aspects is missing)		