3.3. Thiết kế bộ điều khiển

Nội dung

- Bộ điều khiển phản hồi trạng thái gán điểm cực
- Bộ quan sát trạng thái
- Bộ điều khiển phản hồi đầu ra

3.3.1. Bộ điều khiển phản hồi trạng thái gán điểm cực

+Đặt vấn đề:

- Xác định ma trận hàm truyền G(s) của hệ từ mô hình trạng thái thì các điểm cực của hệ chính là giá trị riêng của ma trận A.
- Chất lượng hệ thống lại phụ thuộc nhiều vào vị trí của các điểm cực trong mặt phẳng phức.
- → Vì vậy, để chất lượng hệ thống điều khiển như mong muốn, ta tìm cách can thiệp (thiết kế bộ điều khiển) sao cho các điểm cực của hệ kín ở vị trí tương ứng với chất lượng điều khiển mong muốn.

+Các phương pháp thiết kế

- + Thiết kế bộ điều khiển phản hồi trạng thái:
 - □Phương pháp trực tiếp.
 - □Phương pháp Ackermann.
- + Thiết kế theo nguyên tắc phản hồi tín hiệu ra

Tư tưởng thiết kế của hai phương pháp

• Giả sử các điểm cực mong muốn là s_1 ,, s_n

Phản hồi trạng thái

$$\frac{d\underline{x}}{dt} = A\underline{x} + B\underline{u} = A\underline{x} + B\left(\underline{w} - R\underline{x}\right) = (A - BR)\underline{x} + B\underline{w}$$

Phải giải phương trình để có R

$$\det(sI - (A - BR)) = (s - s_1)(s - s_2) \cdots (s - s_n)$$

Điều kiện: Chỉ cần hệ điều khiển được

Phản hồi tín hiệu đầu ra

$$\frac{d\underline{x}}{dt} = A\underline{x} + B\underline{u} = A\underline{x} + B\left(\underline{w} - R\underline{y}\right) = (A - BRC)\underline{x} + B\underline{w}$$

Tìm ma trận R thỏa mãn

$$\det(sI - (A - BRC)) = (s - s_1)(s - s_2) \cdots (s - s_n)$$

Tính điều khiển được chưa đủ

1. Phương pháp trực tiếp

Đơn giản, xét hệ một vào một ra

$$\frac{d\underline{x}}{dt} = A\underline{x} + B\underline{u} \quad ; \ A \in \mathbb{R}^{n \times n} \ , \ B \in \mathbb{R}^n$$

Tìm bộ điều khiển $R = [r_1, \dots, r_n]$ trực tiếp từ phương trình

$$\det(sI - (A - BR)) = (s - s_1)(s - s_2) \cdots (s - s_n)$$
 (2)

Cách làm:

Khai triển hai vế của phương trình (2) thành các đa thức bậc *n*.

Cân bằng hệ số các đa thức.

Giải hệ n phương trình thu được tìm r_1, \ldots, r_n .

Cho đối tượng có mô hình trạng thái

$$\frac{dx}{dt} = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u \; ; \; y = x_1$$
 trong đó
$$\underline{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Hãy xác định bộ điều khiển phản hồi trạng thái R để hệ kín nhận các giá trị cho trước s_1 =-1; s_2 =-2 làm điểm cực. Tìm bộ điều khiển phản hồi trạng thái R = (r1, r2) sao cho det(sI-A+BR) = (s+1)(s+2) = s²+3s+2 Ta co

$$\det(sI - A + BR) = \det\begin{pmatrix} s & -1 \\ 1 & s - 2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} (r_1 & r_2) = \det\begin{pmatrix} s & -1 \\ r_1 + 1 & s - 2 + r_2 \end{pmatrix} = s(s - 2 + r_2) + r_1 + 1$$

Cân bằng hệ số ta có hệ Vậy bộ điều khiển R=(1 5) $\begin{cases} r_2-2=3 \\ r_1+1=2 \end{cases} \Rightarrow \begin{cases} r_2=5 \\ r_1=1 \end{cases}$

Xét đối tượng SISO có mô hình trạng thái:

$$\frac{dx}{dt} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 2 & 3 \end{pmatrix} \underline{x} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} u$$

• Hãy thiết kế bộ điều khiển để hệ kín nhận được chọn ứng điểm cực $s_0 = -3$, $s_1 = -4$ và $s_3 = -5$

Giải:

Bộ điều khiển $R=(r_1,r_2,r_3)$, khi đó hệ kín có đa thức đặc tính

$$\det(sI - A + BR) = \det\begin{pmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{pmatrix} - \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 2 & 3 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} (r_1 \quad r_2 \quad r_3)$$

$$= \det\begin{pmatrix} s & -1 & 0 \\ 0 & s & -1 \\ r_1 + 1 & r_2 - 2 & s - 3 + r_3 \end{pmatrix} = s(s(s - 3 + r_3) + r_2 - 2) + r_1 + 1 = s^3 + (r_3 - 3)s^2 + (r_2 - 2)s + r_1 + 1 \tag{1}$$

• Với các điểm cực mong muốn ta có:

$$(s-s_1)(s-s_2)(s-s_3) = (s+3)(s+4)(s+5) = 60 + 47s + 12s^2 + s^3$$
 (2)

Cân bằng hệ số của (1) và (2) ta có hệ phương trình

$$\begin{cases} r_1 + 1 = 60 \\ r_2 - 2 = 47 \\ r_3 - 3 = 12 \end{cases} - > \begin{cases} r_1 = 59 \\ r_2 = 49 \\ r_3 = 15 \end{cases}$$

Vậy bộ điều khiển phản hồi trạng thái cần tìm là:

$$R = (59, 49, 15)$$

Cho đối tượng có mô hình trạng thái

$$\frac{dx}{dt} = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & -4 & 3 \end{pmatrix} x + \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} u$$

$$y = x_1$$

trong đó

$$\underline{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Hãy xác định bộ điều khiển phản hồi trạng thái R để hệ kín nhận các giá trị cho trước $s_1=s_2=-1$ và $s_3=-2$ làm điểm cực. Giải:

• Tìm bộ điều khiển $R = (r_1 \quad r_2 \quad r_3)$ sao cho

$$\det(sI - (A - BR)) = (s+1)(s+1)(s+2)$$

$$(sI - A + BR) = \begin{pmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{pmatrix} - \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & -4 & 3 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} (r_1 \quad r_2 \quad r_3)$$

$$(sI - A + BR) = \begin{pmatrix} s - 1 & -2 & 1 \\ 0 & s - 1 & 0 \\ 0 & 4 & s - 3 \end{pmatrix} + \begin{pmatrix} r_1 & r_2 & r_3 \\ r_1 & r_2 & r_3 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} s - 1 + r_1 & r_2 - 2 & r_3 \\ r_1 & s - 1 + r_2 & r_3 \\ 0 & 4 & s - 3 \end{pmatrix}$$

Suy ra:
$$\det(sI - A + BR) = (s - 1 + r_1)(s - 1 + r_2)(s - 3) - 4r_3(s - 1 + r_1) - (r_2 - 2)r_1(s - 3) + 4r_3r_1$$

$$(s-1+r_1)(s-1+r_2)(s-3)-4r_3(s-1+r_1)-(r_2-2)r_1(s-3)+4r_3r_1=(s+1)(s+1)(s+2)$$

Khai triển rồi đồng nhất hệ số -> quá dài

Nhược điểm của phương pháp:

- Không chỉ ra cách tìm R một cách tổng quát.
- Không phải lúc nào cũng giải được dễ dàng hệ n phương trình thu được

2. Phương pháp Ackermann

+ Mô hình trạng thái dạng chuẩn điều khiển

Chỉ áp dụng cho đối tượng một tín hiệu vào.

Xét đối tượng chỉ có một đầu vào u được mô tả bởi mô hình trạng thái dạng chuẩn điều khiển

$$\frac{d\underline{x}}{dt} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{pmatrix} \underline{x} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} u$$
(3)

Như vậy, đối tượng có đa thức đặc tính the $\overset{b}{\circ}$ công thức là:

$$\det(sI - A) = a_0 + a_1 s + \cdots + a_{n-1} s^{n-1} + s^n$$
 (4)

với nghiệm là các điểm cực của đối tượng.

Bộ điều khiển phản hồi trạng thái R phải tìm là: $R = (r_1, r_2, \dots, r_n)$

Khi đó hệ kín sẽ có mô hình:

$$\frac{d\underline{x}}{dt} = (A - \underline{b}R)\underline{x} + \underline{b}w$$

$$= \begin{bmatrix}
0 & 1 & 0 & (5) & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_0 & -a_1 & -a_2 & \cdots & -a_{n-1}
\end{bmatrix} - \begin{bmatrix}0 \\ \vdots \\ 0 \\ 1\end{bmatrix} (r_1, r_2, \dots, r_2) \underline{x} + \begin{bmatrix}0 \\ \vdots \\ 0 \\ 1\end{bmatrix} w$$

$$= \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-(a_0 + r_1) & -(a_1 + r_2) & -(a_2 + r_3) & \cdots & -(a_{n-1} + r_n)
\end{bmatrix} \underline{x} + \begin{bmatrix}0 \\ \vdots \\ 0 \\ 1\end{bmatrix} w$$

với đa thức đặc tính:

$$\det\left(sI - (A - \underline{b}R)\right) = (a_0 + r_1) + (a_1 + r_2)s + \cdots + (a_{n-1} + r_n)s^{n-1} + s^n \quad (6)$$

Để hệ kín nhận các điểm $s_1, s_2, ..., s_n$ là các điểm cực thì

Suy ra

$$\det(sI - (A - \underline{b}R)) = (s - s_1)(s - s_2).....(s - s_n)$$

$$(a_0 + r_1) + (a_1 + r_2)s + \cdots + (a_{n-1} + r_n)s^{n-1} + s^n = \overset{\sim}{a_0} + \overset{\sim}{a_1}s +\overset{\sim}{a_{n-1}}s^{n-1} + s^n$$

$$r_i = \overset{\sim}{a_{i-1}} - \underset{\sim}{a_{i-1}}, \quad i = 1, 2, \dots, n$$

Xét đối tượng SISO có mô hình trạng thái:

$$\frac{d\underline{x}}{dt} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 2 & 3 \end{pmatrix} \underline{x} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} u$$

• Hãy thiết kế bộ điều khiển để hệ kín nhận được chọn ứng điểm cực $s_0 = -3$, vậ = -4 $s_3 = -5$

Giải:

 Hệ này ở dạng chuẩn điều khiển nên từ mô hình ta có ngay:

$$\det(sI - A) = a_0 + a_1s + a_2s^2 + s^3 \quad \text{v\'oi} \qquad a_0 = 1, \ a_1 = -2, \ a_2 = -3$$

• Với các điểm cực mong muốn ta có:

$$(s-s_1)(s-s_2)(s-s_3) = (s+3)(s+4)(s+5) = 60 + 47s + 12s^2 + s^3$$

Ta có: $\tilde{a}_o = 60; \tilde{a}_1 = 47; \tilde{a}_2 = 12$

Vậy bộ điều khiển phản hồi trạng thái cần tìm là:

$$R = (60-1, 47+2, 12+3) = (59, 49, 15)$$

+Mô hình không ở dạng chuẩn điều khiển

$$\frac{d\underline{x}}{dt} = A\underline{x} + B\underline{u}$$

• Tìm một phép đổi biến $\underline{z} = S\underline{x} \Leftrightarrow \underline{x} = S^{-1}\underline{z}$ sao cho với nó, đối tượng ban đầu được chuyển về dạng chuẩn điều khiển.

• Định lý 3.13. Nếu hệ là điều khiển được thì phép đổi biến

$$\underline{z} = S\underline{x}$$
 với:
$$S = \begin{pmatrix} \underline{s}^T \\ \underline{s}^T A \\ \vdots \\ \underline{s}^T A^{n-1} \end{pmatrix}$$

trong đó \underline{s}^T là vector hàng cuối cùng của ma trận:

$$(B, A\underline{B}, \cdots, A^{n-1}\underline{B})^{-1}$$

sẽ chuyển nó về dạng chuẩn điều khiển

$$\frac{d\underline{z}}{dt} = SAS^{-1}\underline{z} + S\underline{b}u = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{pmatrix} \underline{z} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} u$$

• với a_0, a_1, \dots, a_{n-1} là các hệ số của đa thức đặc tính:

$$\det(sI - A) = a_0 + a_1s + \cdots + a_{n-1}s^{n-1} + s^n$$

áp dụng được thuật toán đã biết để thiết kế bộ điều khiển R_z phản hồi trạng thái \underline{z} cho nó, tức là: $_{\sim}$

$$R_z = (a_0 - a_0, a_1 - a_1, \dots, a_{n-1} - a_{n-1})$$

với các hệ số a_i được xác định từ:

$$(s-s_1)(s-s_2)....(s-s_n) = \overset{\sim}{a_0} + \overset{\sim}{a_1} s + \overset{\sim}{a_{n-1}} s^{n-1} + s^n$$

· Cuối cùng bộ điều khiển phản hồi trạng thái là

$$R = R_{z}S = (\tilde{a}_{0} - a_{0}, \tilde{a}_{1} - a_{1}, \dots, \tilde{a}_{n-1} - a_{n-1})\begin{pmatrix} \underline{s}^{T} \\ \underline{s}^{T} A \\ \vdots \\ \underline{s}^{T} A^{n-1} \end{pmatrix}$$

$$= \sum_{i=0}^{n-1} (\tilde{a}_{i} - a_{i}) \underline{s}^{T} A^{i} = \sum_{i=0}^{n-1} \tilde{a}_{i} \underline{s}^{T} A^{i} - \sum_{i=0}^{n-1} a_{i} \underline{s}^{T} A^{i}$$

$$= \sum_{i=0}^{n-1} \tilde{a}_{i} \underline{s}^{T} A^{i} + \underline{s}^{T} A^{n}$$

$$Vi: A^{n} = -\sum_{i=0}^{n-1} a_{i} A^{i} \qquad \text{(Cayley-Hamilton)}$$

Cho đối tượng

$$\frac{dx}{dt} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -2 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} u$$

Thiết kế bộ điều khiển để hệ kín nhận được các điểm cực

$$s_1 = s_2 = s_3 = -1$$

Giải

Trước hết phải chuyển về mô hình điều khiển chuẩn Đối tượng này có

$$AB = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} ; \qquad A^{2}B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} B & AB & A^2B \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -3 \\ 1 & -2 & 4 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & 2 & 1 \\ 3 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$s^T = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$$

Vậy

$$s^{T}A = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} ; \qquad s^{T}A^{2} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & -3 \\ 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & -3 \\ 0 & 0 & -2 \end{pmatrix}$$

• Để gán các điểm cực $s_1 = s_2 = s_3 = -1$

$$(s-s_1)(s-s_2)(s-s_3) = (s+1)^3 = 1 + 3s + 3s^2 + s^3$$
 $a_0 = 1, a_1 = a_2 = 3$

Ta sử dụng bộ điều khiển phản hồi trạng thái R tìm theo

$$R = \sum_{i=0}^{n-1} \overset{\sim}{a_i} \underline{s}^T A^i + \underline{s}^T A^n$$

$$\tilde{a}_{0} s^{T} = (1 \quad 0 \quad 0);$$

$$\tilde{a}_{1} s^{T} A = 3(0 \quad 1 \quad 0) = (0 \quad 3 \quad 0);$$

$$\tilde{a}_{2} s^{T} A^{2} = 3(0 \quad -1 \quad 1) = (0 \quad -3 \quad 3)$$

$$s^{T} A^{3} = (0 \quad 1 \quad -3)$$

Vậy bộ điều khiển R là

$$R = \stackrel{\sim}{a_0} s^T + \stackrel{\sim}{a_1} s^T A + \stackrel{\sim}{a_2} s^T A^2 + s^T A^3 = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 3 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -3 & 3 \end{pmatrix} + \begin{pmatrix} 0 & 1 & -3 \end{pmatrix};$$

$$R = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$$

Cho đối tượng có mô hình trạng thái

$$\frac{dx}{dt} = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & -4 & 3 \end{pmatrix} x + \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} u \qquad y = x_1 \text{ trong d\'o} \qquad \underline{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

- a) Hãy xác định bộ điều khiển phản hồi trạng thái R để hệ kín nhận các giá trị cho trước s₁=s₂=-1 và s₃=-2 làm điểm cực.
- b) Hãy viết hàm truyền đạt của hệ kín bao gồm đối tượng đã cho và bộ điều khiển phản hồi trạng thái tìm được ở câu a. Từ đó chỉ ra rằng bộ điều khiển phản hồi trạng thái đó đã không làm thay đổi được bậc tương đối của đối tượng.

Giải

a. Trước hết phải chuyển về mô hình điều khiển chuẩn Đối tượng này có

$$AB = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & -4 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ -3 \end{pmatrix} ; \qquad A^2B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 8 \\ 1 \\ -10 \end{pmatrix}$$

$$(B \quad AB \quad A^2B)^{-1} = \begin{pmatrix} 1 & 3 & 8 \\ 1 & 1 & 1 \\ 0 & -3 & -10 \end{pmatrix}^{-1} = \begin{pmatrix} 7 & -6 & 5 \\ -10 & 10 & -7 \\ 3 & -3 & 2 \end{pmatrix}$$

Vậy

$$s^T = \begin{pmatrix} 3 & -3 & 2 \end{pmatrix}$$

$$s^{T} A = \begin{pmatrix} 3 & -3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & -4 & 3 \end{pmatrix} = \begin{pmatrix} 5 & -5 & 3 \end{pmatrix}; \qquad s^{T} A^{2} = \begin{pmatrix} 5 & -5 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & -4 & 3 \end{pmatrix} = \begin{pmatrix} 8 & -7 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & -4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & -4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -7 & 4 \end{pmatrix}$$

• Để gán các điểm cực $s_1 = s_2 = -1; s_3 = -2$

$$(s-s_1)(s-s_2)(s-s_3) = (s+1)^2(s+2) = 2+5s+4s^2+s^3$$
 $a_0 = 2$, $a_1 = 5$; $a_2 = 4$

Ta sử dụng bộ điều khiển phản hồi trạng thái R tìm theo

$$R = \sum_{i=0}^{n-1} \tilde{a}_i \, \underline{s}^T A^i + \underline{s}^T A^n$$

$$\tilde{a}_{0} s^{T} = 2(3 -3 2) = (6 -6 4);$$

$$\tilde{a}_{1} s^{T} A = 5(5 -5 3) = (25 -25 15);$$

$$\tilde{a}_{2} s^{T} A^{2} = 4(8 -7 4) = (32 -28 16)$$

$$s^{T} A^{3} = (12 -7 4)$$

Vậy bộ điều khiển R là

$$R = \stackrel{\sim}{a_0} s^T + \stackrel{\sim}{a_1} s^T A + \stackrel{\sim}{a_2} s^T A^2 + s^T A^3$$

$$= \begin{pmatrix} 6 & -6 & 4 \end{pmatrix} + \begin{pmatrix} 25 & -25 & 15 \end{pmatrix} + \begin{pmatrix} 32 & -28 & 16 \end{pmatrix} + \begin{pmatrix} 12 & -7 & 4 \end{pmatrix};$$

$$\rightarrow R = \begin{pmatrix} 75 & -66 & 39 \end{pmatrix}$$

b. Sơ đồ hệ thống khi có bộ điều khiển R

$$\begin{cases} \frac{d\underline{x}}{dt} = A\underline{x} + B\underline{u} = A\underline{x} + B\left(\underline{w} - R\underline{x}\right) = (A - BR)\underline{x} + B\underline{w} \\ y = Cx \end{cases}$$

Ta có bậc tương đối của đối tượng là kiểm tra CA^kB ≠ 0 với k= 0,1,....

Với k=0 ta có:

$$CB = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 1 \neq 0$$

Vậy bậc tương đối của đối tượng là bằng 1

Để kiểm tra bậc tương đối r khi có bộ điều khiển R ta tìm k để $C(A-BR)^kB \neq 0$ với k= 0,1,....

Suy ra r-1 = k

$$CB = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 1 \neq 0$$

Vậy k= 0 suy ra r=1 ; như vậy khi mắc thêm bộ điều khiển R không làm thay đổi Bậc tương đối của đối tượng

+ Ưu nhược điểm của phương pháp Ackermann

• Ưu điểm:

- Đơn giản.
- Chỉ ra cách tìm bộ điều khiển phản hồi trạng thái R một cách tổng quát.
- Nhược điểm:
 - Chỉ áp dụng được cho các hệ có một đầu vào

Sử dụng Matlab xác định hàm truyền đạt khi biết hệ phương trình trạng thái

```
A = [1 \ 2 \ -1; 0 \ 1 \ 0; 1 \ -4 \ 3];
B = [1; 1; 0];
C = [1, 0, 0];
D = 0;
[num, den] = ss2tf(A, B, C, D);
Gd=tf(num,den)
R = [75, -66, 39];
Q = A - B * R
[num, den] = ss2tf(Q, B, C, D);
Gk=tf(num,den)
```

3.3.2. Bộ quan sát trạng thái

Tại sao cần quan sát trạng thái?

- Không phải lúc nào cũng đo được tất cả các trạng thái của hệ.Hơn nữa, nếu có thể thì chi phí rất đắt. Ví dụ: công suất không đo được trực tiếp mà phải thông qua dòng điện và điện áp.
- Số biến trạng thái đo được thì ít nhưng thuật toán điều khiển cần tới giá trị của nhiều biến trạng thái.
- =) cần tới bộ quan sát trạng thái tính toán, xấp xỉ các biến trạng thái không đo được.

+ Bộ quan sát Luenberger

1. Tư tưởng thiết kế

Xét đối tượng hợp thức chặt với mô hình trạng thái:

$$\begin{cases} \frac{d\underline{x}}{dt} = A\underline{x} + B\underline{u} \\ \underline{y} = C\underline{x} + D\underline{u} \end{cases}$$

thiết kế bộ quan sát trạng thái Luenberger là sử dụng khâu có mô hình:

$$\frac{d\underline{z}}{dt} = A\underline{z} + B\underline{u} + L(\underline{y} - C\underline{z} - D\underline{u}) \qquad (1)$$

Làm bộ quan sát để có $\underline{z} \approx \underline{x}$ ít nhất trong khoảng thời gian đủ ngắn T hay $||\underline{e}(t)||_{\infty} = ||\underline{x}(t) - \underline{z}(t)||_{\infty} \approx 0$ với t≥T (2)

Nhiệm vụ xác định L trong (1) để có được (2)

- Trước hết ta lập sai lệch : $\underline{e}(t) = \underline{x}(t) \underline{z}(t)$
- Mô hình e:

$$\frac{d\underline{e}}{dt} = \frac{d(\underline{x} - \underline{z})}{dt} = A(\underline{x} - \underline{z}) - L(\underline{y} - C\underline{z} - D\underline{u})$$
$$= A(\underline{x} - \underline{z}) - L(C\underline{x} + D\underline{u} - C\underline{z} - D\underline{u}) = (A - LC)\underline{e}$$

có nghiệm $e(t) = e^{(A-LC)t}e(0)$

Từ đó suy ra $e(t) \rightarrow 0 \iff A-LC$ là bền

Giá trị riêng của A-LC càng xa trục ảo về bên trái thì $e(t) \rightarrow 0$ càng nhanh.

2. Thuật toán

- Cho trước $s_1, s_2, ..., s_n$ đủ xa về phía trái trục ảo
- Tìm L từ phương trình $det(sI-(A-LC)) = (s-s_1)(s-s_2)...(s-s_n) \text{ đúng với } \forall s$
- So sánh việc tìm L sao cho A-LC nhận các điểm cho trước làm điểm cực thì cũng tương đương với việc tìm L^T để (A-LC)^T nhận các điểm cho trước làm điểm cực.
- Do đó việc tìm L chính là bài toán thiết kế bộ điều khiển phản hồi trạng thái L^T cho đối tượng đối ngẫu

$$\begin{cases} \frac{dx}{dt} = A^T x + C^T u \\ y = B^T x \end{cases}$$

Cho đối tượng

$$\begin{cases} \frac{d\underline{x}}{dt} = \begin{pmatrix} 0 & 1\\ -3 & -5 \end{pmatrix} \underline{x} + \begin{pmatrix} 0\\ 1 \end{pmatrix} \underline{u} \\ \underline{y} = \begin{pmatrix} 1 & 0 \end{pmatrix} \underline{x} \end{cases}$$

• Hãy xác định bộ quan sát trạng thái Luenberger để tính xấp xỉ $\underline{z}=\underline{x}$ trạng thái của đối tượng với hai điểm cực cho trước $\lambda_1 = \lambda_2 = -10$

Giải:

Chuyển về mô hình đối tượng đối ngẫu ta có

$$\begin{cases} \frac{d\underline{x}}{dt} = \begin{pmatrix} 0 & -3 \\ 1 & -5 \end{pmatrix} \underline{x} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \underline{u} \\ \underline{y} = \begin{pmatrix} 0 & 1 \end{pmatrix} \underline{x} \end{cases}$$

- Khi đó bài toán trở thành thiết kế bộ điều khiển phản hồi trạng thái R cho đối tượng đối ngẫu.
- Để hệ kín nhận $\lambda_1 = \lambda_2 = -10$ làm điểm cực thì det (sI-A^T+C^TR)=(s+10)²

$$Det \begin{pmatrix} s + r_1 & r_2 + 3 \\ -1 & s + 5 \end{pmatrix} = (s + r_1)(s + 5) + r_2 + 3 = s^2 + (r_1 + 5)s + 5r_1 + r_2 + 3$$
$$= s^2 + 20s + 100$$

Cân bằng các hệ số ta có hệ:

$$\begin{cases} r_1 + 5 = 20 \\ 5r_1 + r_2 + 3 = 100 \end{cases} \Leftrightarrow \begin{cases} r_1 = 15 \\ r_2 = 22 \end{cases}$$

Vậy R=(15 , 22) suy ra bộ quan sát L=R^T= $\binom{15}{22}$

3.3.3. Bộ điều khiển phản hồi đầu ra

Tại sao cần bộ điều khiển phản hồi đầu ra?

- Dùng bộ điều khiển phản hồi trạng thái thì cần phải đo tín hiệu trạng thái> Tuy nhiên trong thực tế nhiều trạng thái không đo được. Còn tín hiệu đầu ra luôn đo được.
- Đó là bài toán tìm bộ điều khiển R phản hồi đầu ra cho đối tượng:

$$\begin{cases} \frac{d\underline{x}}{dt} = A\underline{x} + B\underline{u} \\ \underline{y} = C\underline{x} \end{cases}$$

trong đó $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{r \times n}$ sao cho hệ kín thu được với mô hình:

$$\begin{cases} \frac{d\underline{x}}{dt} = (A - BR)\underline{x} + B\underline{w} \\ \underline{y} = C\underline{x} \end{cases}$$

có được các điểm cực s_1, \ldots, s_n là những giá trị cho trước.

3.3.3. Bộ điều khiển phản hồi đầu ra

- Sử dụng thêm bộ quan sát trạng thái cùng với bộ điều khiển phản hồi trạng thái để có điều khiển phản hồi đầu ra.
- Sơ đồ cấu trúc

Sử dụng bộ quan sát Luenberger ta có sơ đồ cấu trúc

Thường chọn giá trị riêng của A-LC xa trục ảo hơn rất nhiều so với giá trị riêng A-BR

+Nguyên lý tách

Mô hình trạng thái của hệ kín

$$\begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} A - BR & BR \\ 0 & A - LC \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix}$$

- Hệ kín là ổn định khi và chỉ khi A -BR và A -LC ổn định
- Đa thức đặc tính của hệ kín:

$$A_k(s) = det(sI-(A-BR)).det(sI-(A-LC))$$

 Ở hệ tuyến tính việc thiết kế bộ điều khiển phản hồi đầu ra có thể tách thành hai bài toán riêng: thiết kế bộ quan sát trạng thái L và thiết kế bộ điều khiển phản hồi trạng thái R