Examples of Manifolds

A manifold is a generalization of a surface. Roughly speaking, a d-dimensional manifold is a set that looks locally like \mathbb{R}^d . It is a union of subsets each of which may be equipped with a coordinate system with coordinates running over an open subset of \mathbb{R}^d . Here is a precise definition.

Definition 1 We now define what is meant by the statement that \mathcal{M} is a d-dimensional manifold of class C^k (with $1 \leq k \leq \infty$ — we shall deal almost exclusively with manifolds of class C^{∞}).

- (a) Let \mathcal{M} be a Hausdorff topological space⁽¹⁾. A coordinate system (or chart or coordinate patch) on \mathcal{M} is a pair (\mathcal{U}, φ) with \mathcal{U} a connected open subset of \mathcal{M} and φ a homeomorphism (a 1–1, onto, continuous function with continuous inverse) from \mathcal{U} onto an open subset of \mathbb{R}^d . Think of φ as assigning coordinates to each point of \mathcal{U} . A coordinate system (\mathcal{U}, φ) is called a cubic coordinate system if $\varphi(\mathcal{U})$ is an open cube about the origin in \mathbb{R}^d . (That is, if there are numbers $a_1, \dots, a_d, b_1, \dots, b_d > 0$ such that $\varphi(\mathcal{U}) = \{ x \in \mathbb{R}^d \mid -a_i < x_i < b_i, \text{ for all } 1 \leq i \leq d \}$.) If $m \in \mathcal{U}$ and $\varphi(m) = 0$, then the coordinate system is said to be centred at m.
- (b) A locally Euclidean space of dimension d, is a Hausdorff topological space for which every point has a neighbourhood that is homeomorphic to an open subset of \mathbb{R}^d .
- (c) Two charts (\mathcal{U}, φ) and (\mathcal{V}, ψ) are said to be *compatible* of class C^k if the transition functions

are C^k . That is, all partial derivatives up to order k (for C^{∞} , all partial derivatives of all orders) of $\psi \circ \varphi^{-1}$ and $\varphi \circ \psi^{-1}$ exist and are continuous.

(d) An atlas of class C^k for a locally Euclidean space \mathcal{M} is a family $\mathcal{A} = \{ (\mathcal{U}_i, \varphi_i) \mid i \in \mathcal{I} \}$ of coordinate systems on \mathcal{M} such that $\bigcup_{i \in \mathcal{I}} \mathcal{U}_i = \mathcal{M}$ and such that every pair of charts

⁽¹⁾ If you don't know what this means, substitute "metric space" for "Hausdorff topological space" and read the notes "A Little Point Set Topology".