CALCULUS III; SOLUTIONS TO GRADED HOMEWORK PROBLEMS #7

Sec 14.6 #26. Find the maximum rate of change of f at the given point and the direction in which it occurs.

$$f(x, y, z) = \tan(x + 2y + 3z), (-5, 1, 1)$$

 $\nabla f(x,y,z) = \langle \sec^2(x+2y+3z) \cdot 1, \sec^2(x+2y+3z) \cdot 2, \sec^2(x+2y+3z) \cdot 3 \rangle$ $\nabla f(-5,1,1) = \langle \sec^2(0) \cdot 1, \sec^2(0) \cdot 2, \sec^2(0) \cdot 3 \rangle = \langle 1,2,3 \rangle \text{ is the direction of maximum rate of change and the maximum rate is } |\nabla f(-5,1,1)| = \sqrt{14}.$

Sec 14.6 #40. Find equations of (a) the tangent plane and (b) the normal line to the given surface at the specified point.

$$x = y^2 + z^2 - 2$$
, $(-1, 1, 0)$

Let $F(x, y, z) = y^2 + z^2 - x$. Then $x = y^2 + z^2 - 2$ is the level surface F(x, y, z) = 2.

$$F_x(x, y, z) = -1, \ F_y(x, y, z) = 2y, \ F_z(x, y, z) = 2z;$$

then

$$F_x(-1,1,0) = -1, F_y(-1,1,0) = 2, F_z(-1,1,0) = 0.$$

- (a) An equation of the tangent plane is -1(x+1) + 2(y-1) + 0(z-0) = 0 or -x + 2y = 3.
- (b) The normal line has symmetric equations $\frac{x+1}{-1} = \frac{y-1}{2}$, z = 0.

Sec 14.7 #8. Find the local maximum and minimum values and saddle point(s) of the function $f(x,y) = e^{4y-x^2-y^2}$.

$$f_x = -2xe^{4y-x^2-y^2}, \ f_y = (4-2y)e^{4y-x^2-y^2},$$

$$f_{xx} = (4x^2-2)e^{4y-x^2-y^2}, \ f_{xy} = -2x(4-2y)e^{4y-x^2-y^2}, \ f_{yy} = (4y^2-16y+14)e^{4y-x^2-y^2}$$
Then $f_x = 0$ and $f_y = 0$ implies $x = 0$ and $y = 2$, so the only critical point is $(0,2)$. $D(0,2) = (-2e^4)(-2e^4) = 4e^8 > 0$ and $f_{xx}(0,2) = -2e^4 < 0$, so $f(0,2) = e^4$ is a local maximum.

Sec 14.7 #31. Find the absolute maximum and minimum values of $f(x,y) = x^4 + y^4 - 4xy + 2$, on the set $D = \{(x,y) | 0 \le x \le 3, 0 \le y \le 2\}$.

 $f_x(x,y) = 4x^3 - 4y$, $f_y(x,y) = 4y^3 - 4x$. The critical points of f are (0,0), (1,1), (-1,-1). Only (1,1) with f(1,1) = 0 is inside D.

On L_1 : y = 0, $f(x,0) = x^4 + 2$, $0 \le x \le 3$, a polynomial in x which attains its maximum at x = 3, f(3,0) = 83, and its minimum at x = 0, f(0,0) = 2. On L_2 : x = 3, $f(3,y) = y^4 - 12y + 83$, $0 \le y \le 2$, a polynomial in y which attains its minimum at $y = \sqrt[3]{3}$,

 $f(3,\sqrt[3]{3})=83-9\sqrt[3]{3}\approx 70.0$, and its maximum at y=0, f(3,0)=83. On L_3 : $y=2, f(x,2)=x^4-8x+18, 0 \le x \le 3$, a polynomial in x which attains its minimum at $\sqrt[3]{2}$, $f(\sqrt[3]{2},2)=18-6\sqrt[3]{2}\approx 10.4$ and its maximum at x=3, f(3,2)=75. On L_4 : $x=0, f(0,y)=y^4+2, 0 \le y \le 2$, a polynomial in y which attains its maximum at y=2, f(0,2)=18, and its minimum at y=0, f(0,0)=2. Thus the absolute maximum of f on D is f(3,0)=83 and the absolute minimum is f(1,1)=0.