Листок 5. Опять схемная сложность.

В задачах 15-20 C(f) обозначает минимальную глубину коммуникационного протокола, а $C_L(f)$ минимальное число листьев в дереве протокола. **СОМР2 20.** Пусть M[X,X] = 0/1-матрица, которая содержит перестановочную матрицу размера |X| (т.е. ее перманент над \mathbb{R} не ноль).

- (a) Докажите, что $\chi(M) \cdot T(M) \ge |X|^2$, где T(M) число единиц в матрице.
- (б) Докажите при помощи этой техники, что $L(MOD_2) = \Omega(n^2)$. **COMP2 21.** Пусть S_t — биномиальное распределение с t сбалансированными монетами. Докажите, что для любого $\delta < 1$,

$$\sum_{i=0}^{t+\delta\sqrt{t}} |\Pr[S_t = i] - \Pr[S_{t+\delta\sqrt{t}} = i]| \le 20\delta.$$

COMP2 22. Будем говорить, что коммуникационный протокол является протоколом с k раундами, если в этом протоколе количество "переходов хода" межу Алисой и Бобом равно k. Например, если сначала Алиса посылает что-то и после этого Боб знает ответ, то это однораундовый протокол. Обозначим сложность отношения R для протоколов с не более чем k раундами, как $C^{(k)}(R)$.

- (а) Докажите, что для любой функции f верно, что $C^{(k)}(f) = O\left(\log\left(L^{(k)}(f)\right)\right)$, где L(f) число листьев формулы, которая вычисляет f в базисе $\{\land,\lor,\lnot\}$ и эта формула глубины k (арность операций неограничена).
- (б) Пусть $P \subseteq \{0,1\}^n \times \{0,1\}^n \times [n]$ это такое отношение, что $(x,y,i) \in P$ тогда и только тогда, когда $\sum_{i=1}^n x_i \equiv 0 \pmod 2$, $\sum_{i=1}^n y_i \equiv 1 \pmod 2$ и $x_i \neq y_i$. Докажите, что $C^{(k)}(f) = \Omega(n^{1/k})$.
- (в) Пусть G это связный граф степени d, а $c:V(G)\to\{0,1\}^n$. Будем называть цейтинской формулой $\mathrm{TS}_{G,c}$ конъюнкцию уравнений $\sum_{u:(v,u)\in E(G)} x_{(u,v)} = c(v)$ для всех $v\in V$ записанную в КНФ.

 $u:(v,u)\in E(G)$ Докажите, что $\mathrm{TS}_{G,c}$ тогда и только тогда, когда $\sum_{v\in V(G)}c(v)=1.$

(г) Пусть G — это граф квадратная решетка на n^2 вершинах, а $c:V\to\{0,1\}$ — это такое отображение, что есть только одна вершина v с c(v)=1.

Докажите, что если $\operatorname{Search}_{\operatorname{TS}_{G,c}}$ — это такое отношение что Алисе дают значение переменных на нижнем треугольнике, а Бобу на верхнем и им надо найти клоз противоречия, то коммуникационная

сложность этой задачи при ограничении, что раундов не больше чем k не меньше чем $\Omega(n^{1/k})$.

СОМР2 23. Пусть $f_1(x_{11},...,x_{1n_1}),...,f_m(x_{m1},...,x_{mn_m})$ — произвольные булевы формулы, зависящие от непересекающегося множества переменных. Докажите, что выполняется неравенство:

$$L(f_1(x_{11},\ldots,x_{1n_1})\oplus\cdots\oplus f_m(x_{m1},\ldots,x_{mn_m}))\geq \frac{1}{2}\sum_i L(f_i),$$

где L(f) — минимальное количество гейтов в формуле $\{\land,\lor,\lnot\}$, вычисляющей f.

[COMP2 24.] Покажите, что у случайной булевой функции $f: \{0,1\}^n \to \{0,1\}$ с большой вероятностью средняя сложность функции f не менее $2^{\frac{n}{10}}$ при больших n.

COMP2 25. Докажите, что если существует S(n) псевдослучайный генератор, то существует такая функция $f \in E$, что $H_{wrs}(f|_{\{0,1\}^n}) \ge S(n)$.

COMP2 26. Докажите, что если перманент является полной задачей в классе $\sharp \mathbf{P}$ относительно сведений, сохраняющих число решений, то $\mathbf{NP} = \mathbf{RP}$.

COMP2 1. Рассмотрим функцию Maj : $\{0,1\}^n \to \{0,1\}$, которая выдает 1, если не менее половины входных битов равны 1. Докажите, что существует:

(в) монотонная формула полиномиального размера, вычисляющая функцию Мај.

СОМР2 11. Пусть $n = k^2$. Рассмотрим функцию $f : \{0,1\}^n \to \{0,1\}$, заданную следующим образом: вход разделен на блоки по k битов, функция равно 1 тогда и только тогда, когда существует блок в котором два последовательных бита равны единице, а остальные биты равны нулю. Оцените s(f), bs(f), C(f), D(f).

 $oxed{ extbf{COMP2 14.}}$ Докажите, что если SAT \in $oxed{ extbf{PCP}(o(\log(n)),1)}$, то $oxed{ extbf{P}}=oxed{ extbf{NP}}.$

СОМР2 15. Докажите, что $C(f) = O(\log(C_L(f)))$.

[COMP2 18.] Игры Карчмера-Вигдерсона. Дана функция $f:\{0,1\}^n \to \{0,1\}$. Алиса получает $x \in f^{-1}(0)$, а Боб получает $y \in f^{-1}(1)$. Им требуется вычислить какую-нибудь координату i, что $x_i \neq y_i$. Данное отношение мы будем обозначать KW_f .

(a) Докажите, что $C(\mathrm{KW}_f) \leq d(f)$ и $C_L(\mathrm{KW}_f) \leq L(f)$, где d(f) — минимальная глубина формулы, которая вычисляет f в базисе $\{\land,\lor,\lnot\}$, а L(f) — соответственно число листьев.

COMP2 19. Будем называть алгоритм $S_{\epsilon,\delta}$ усредняющим булевым сэмплером, если он используя r случайных битов, генерирует q запросов длины n к функции $f:\{0,1\}^n \to \{0,1\}$ и возвращает среднее арифметическое полученных значений так, чтобы результат отличался от \bar{f} больше, чем на ϵ с вероятностью меньше, чем δ .

На основе сэмплера $S_{\epsilon,\delta}$ определим функцию Ext : $\{0,1\}^r \times \{0,1\}^{\log(q)} \to \{0,1\}^n$ так, что $\operatorname{Ext}(x,i)$ равняется i-му запросу сэмплера, если он использует строку x вместо случайных битов.

- (a) Докажите, что Ext является $(r \log(\frac{\epsilon}{\delta}), 2\epsilon)$ экстрактором.
- (б) Какой получится экстрактор, если воспользоваться сэмплером Рамануджана, у которого r=n и $q=O(\frac{1}{\epsilon^2\delta})$?