2024.11.14

如无特别说明, 所有函数均取实值。

- 1. 设有正数列 $(a_n)_n$, 且存在 $\alpha > 0$ 使得 $\sum_n a_n^{\alpha}$ 收敛, 问: $\sum_n a_n/n$ 是否一定收敛?
- 2. 设 $f \in C^{\infty}(\mathbb{R})$, 存在函数 $\varphi: \mathbb{R} \to \mathbb{R}$ 作为函数列 $\left\{f^{(n)}\right\}_n$ 在任何有限区间上的一致极限,求解 φ .
- 3. 求和 $\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} \frac{1}{k}\right) x^n$.
- 4. Maclaurin 展开 $x \mapsto \ln(x + \sqrt{1 + x^2})$.
- 5. 用幂级数的乘法说明 $\exp(x+y) = (\exp x)(\exp y)$.
- 6. 求 S 在 \mathbb{R}^2 中的导集 S' 与闭包 \overline{S} , 其中 $S := \{(x, \sin(1/x)) \in \mathbb{R}^2 : 0 < x \leq 1\}$. \overline{S} 是赫赫有名的"拓扑学家的正弦曲线",试说明它在 \mathbb{R}^2 中是连通但不道路连通的。
- 7. 设 $f \in C([a,b] \times [c,d])$, 函数列 $(\varphi_n)_n$ 于 [a,b] 上一致收敛, 且在 [a,b] 上逐点成立 $c \leqslant \varphi_n \leqslant d$. 试证明 $\{x \mapsto f(x,\varphi_n(x))\}_n$ 在 [a,b] 上一致收敛。
- 8. 证明: \mathbb{R}^n 中的有界开集 G 上的一致连续函数一定可以延拓成 \overline{G} 上的一致连续函数。
- 9. 证明单位球面 $x^2 + y^2 + z^2 = 1$ 和锥面 $x^2 + y^2 = cz^2$ 正交(在任何交点处的切平面相互垂直),其中 c > 0 是常数。试几何地解释这个现象。
- 10. 用尽可能多的方法解 $\sup_A f$ 和 $\inf_A f$, 其中 A: x+y-1=0.
- 11. 用尽可能多的方法解 n 元实二次型在 \mathbb{R}^n 中的单位球面(l_2 范数意义下)上的最值。计算 $x^2 + xy + y^2 \le 1$ 的面积。
- 12. 计算 $\int_L \sqrt{2y^2+z^2} \, \mathrm{d}s$, 其中 L 是 \mathbb{R}^3 中 x=y 和 $x^2+y^2+z^2=a^2(a>0)$ 的交线.
- 13. 在平面直角右手坐标系中,原点处有一质量为 M 的质点 A,并有一个质量为 m 的质点 B 沿 $\{(x,y)\in[0,\infty)^2\colon (x/a)^2+(y/b)^2=1\}$ 从 (a,0) 无折返地运动到 (0,b),问在这一过程中 A 对 B 的万有引力所做的功。A 对 B 的万有引力的方向为平面向量 \overrightarrow{BA} 的方向,大小为 $GMmr^{-2}$,其中 G 是正常量,r 是 A 与 B 之间的距离。
- 14. 计算 $\{(a(\cos t)^3, a(\sin t)^3) \in \mathbb{R}^2\}$ 在 \mathbb{R}^2 上所围图形的面积,其中 a > 0。
- 15. 求边长为 a、密度均匀(设为 ρ)的立方体关于其任意棱边的转动惯量。
- 16. 己知 $a + \sqrt{a^2 y^2} = ye^u$, $au = x + \sqrt{a^2 y^2}$, a > 0, 求 dy/dx 和 d^2y/dx^2 .

- 17. 把偏微分方程 $(x+y)z_x-(x-y)z_y=0$ 换成以 u,v 为自变量的形式,其中 $u=\ln\sqrt{x^2+y^2},$ $v=\arctan(y/x).$
- 18. 求曲面 $x^2 + 2y^2 + 3z^2 = 21$ 的切平面,使它平行于平面 x + 4y + 6z = 0.
- 19. 计算 $\iint_D xy^2 d\sigma$, 其中 D 是由 $y^2 = 4x$, x y = 1, x + y = 1 所围成的 \mathbb{R}^2 中的有界区域。
- 20. 计算 $\iiint_V \frac{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z}{(1+x+y+z)^3}$, 其中 V 是由 x+y+z=1 与三个坐标面所围成的体积。