

Numerical Project Phase 2

Shahd Mohamed	22010848

Menan Mohamed 22011265

Youssef Ahmed 22011369

Omar Zydan 22010966

Abdelrahman Elsayed 22010869

Pseudo-code for methods

• Bisection

```
def solve( func, a, b, tolerance, max_iterations, SF):
 error = 1
 counter = 0
 while error >= tolerance and counter <= max_iterations:
   x = (a + b) / 2
                                    # Compute midpoint
   if func(a)*f(b):
                                   # no root in this interval
     return "no root"
   counter += 1
   if func(x) == 0: # Exact root found
     return x
   if func(x) * func(a) < 0: # Narrow interval
     b = x
   else:
     a = x
```

• False-Position

```
def solve(func, a, b, tolerance, max_iterations):
    error = 1
    counter = 0
    while error >= tolerance and counter <= max_iterations:
        x = b - (func(b) * (b - a)) / (func(b) - func(a))  # Compute x using Regula Falsi formula
        counter += 1
    if func(x) == 0:  # Exact root found
        break
    if func(x) * func(a) < 0:
        b = x
    else:
        a = x</pre>
```

Fixed Point

• Original-Newton

```
def solve( func, dfunc, x0, tolerance, max_iterations):
    error = 1
    counter = 0
    while error >= tolerance and counter <= max_iterations:
        x1 = x0 - func(x0) / dfunc(x0)  # Newton-Raphson formula
        counter += 1

    error = abs(x1 - x0)  # Update error
    if error < tolerance:  # Check if the solution has converged
        break

    x0 = x1  # Update for the next iteration</pre>
```

Modified-Newton

Secant

```
def solve( func, x0, x1, tolerance, max_iterations):
    error = 1
    counter = 0
    while error >= tolerance and counter <= max_iterations:
        x2 = x1 - func(x1) * (x1 - x0) / (func(x1) - func(x0))  # Secant formula
        counter += 1

    error = abs(x2 - x1)  # Update error
    if error < tolerance:  # Check if the solution has converged
        break

    x0, x1 = x1, x2  # Update points for the next iteration</pre>
```

Test Cases

Case 1

Method	Num	Run time	App.Root	Initial	Relative
	iterations			guesses	error
Bisection	15	139	4.36521	4,5	6e-4
False- Position	8	101	4.36522	4,5	4e-4
Original Newton	4	28	4.36523	4	2e-4
Modified Newton	4	91	4.36523	4	0
Fixed Point	24	7344	4.36512	4	9e-6
Secant	5	77	4.365	4,5	0

#From table Fixed point takes the largest number of iterations

#Newton is the most efficient method to get the roots for this problem

Case 2

Method	Num	Run time	App.root	Initial	Relative error
	iterations			guesses	
Bisection	16	367	0.5672	0,2	0
False-	7	489	0.5671	0,2	0
Position					
Original	4	208	0.5671	0	0
Newton					
Modified	4	393	0.5671	0	0
Newton					
Fixed point	13	339	0.567	0	0
Secant	5	411	0.567	0,2	0

#From table Bisection takes the largest number of iterations

#Newton is the most efficient method to get the roots for this problem

#All relative errors are close to zero

Case 3

The given initial guesses have the same sign which makes Bisection method fails

Case 4

#From graph the result is so close to the true value but takes many iterations
#False-Position works because the initial guesses have different signs

Case 5

#Becuase the derivative of the given function is greater than one, it diverges

Case 6

Original

Modified

#Original and Modified method have the same result at the same number of iterations

Case 7

#The denominator in secant formula is very close to zero and the method diverges