

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/12, 15/62, C07K 14/47, C12N 5/10, C07K 16/18, G01N 33/53, C12Q 1/68

(11) International Publication Number:

WO 98/41627

(43) International Publication Date: 24 September 1998 (24.09.98)

(21) International Application Number:

PCT/US98/05251

A1

(22) International Filing Date:

18 March 1998 (18.03.98)

(30) Priority Data:

60/039,631

19 March 1997 (19.03.97)

US

(71) Applicant: ZYMOGENETICS, INC. [US/US]; 1201 Eastlake

Avenue East, Seattle, WA 98102 (US).

(72) Inventor: SHEPPARD, Paul, O., 20717 N.E. 2nd Street, Redmond, WA 98053 (US).

(74) Agent: LINGENFELTER, Susan, E., ZymoGenetics, Inc., 1201 Eastlake Avenue East, Seattle, WA 98102 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) TIME: SECRETED POLYPEPTIDES WITH HOMOLOGY TO XENOPUS CEMENT GLAND PROTEINS

(57) Abstract

The present invention relates to zsig10 polynucleotide and novel zsig10 secreted polypeptides encoded thereby. The zsig10 polypeptides are believed to have antimicrobial, mucous-modulating and/or adhesion-modulating activity and may therefore be used in cell culture to evaluate those activities. The present invention also includes antibodies to the zsig10 polypeptides.

NSDOCID: <WO ___9841627A1_I_>

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

							•			
AL	Albania	ES	Spain		LS	Lesotho		SI	Slovenia	
AM	Armenia	FI	Finland		LT	Lithuania		SK	Slovakia	
AT	Austria	FR	France		LU	Luxembourg		SN	Senegal	
ΑŪ	Australia	GA	Gabon		LV	Latvia		SZ	Swaziland	
AZ	Azerbaijan	GB	United Kingdom	:,	MC	Monaco	<u> 3</u> -	TD	Chad	
BA	Bosnia and Herzegovina	GE	Georgia ;		MD	Republic of Moldova	<i>i.</i> ,	TG	Togo	3.
ВВ	Barbados	GH	Ghana		MG	Madagascar		TJ	Tajikistan	
BE	Belgium	GN	Guinea		MK	The former Yugoslav	- AL	TM	Turkmenistan	
BF	Burkina Faso	GR	Greece :	4,		Republic of Macedonia		TR	Turkey	
BG	Bulgaria	HU	Hungary ~	•	ML	Mali	7	TT	Trinidad and Tobago	۵ .
ВJ	Benin .	1E	Ireland	1.	MN	Mongolia	*.	UA-	Ukraine	
BR	Brazil	IL	Israel		MR	Mauritania	3	UG	. Uganda	34.
BY	Belarus	IS	Iceland .		MW	Maláwi		US	United States of America	ij
CA	Canada	IT	Italy	•	MX	Mexico	.,	UZ	Uzbekistan	••
CF	Central African Republic	JP	Japan	Ş	NE	Niger .		VN	. Viet Nam	,.
CG	Congo	KE	Kenya	•.*	NL	Netherlands		YU	Yugoslavia	.
СН	Switzerland	KG	Kyrgyzstan		NO	Norway	4	zw	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's		NZ	New Zealand	•			
CM	Cameroon		Republic of Korea		PL	Poland				
CN	China	KR	Republic of Korea		PT	Portugal				
CU	Cuba	KZ	Kazakstan		RO	Romania				
cz	Czech Republic	LC	Saint Lucia		RU	Russian Federation				
DE	Germany	LI	Liechtenstein		SD	Sudan				
DK	Denmark	LK	Sri Lanka		SE	Sweden				
EE	Estonia	LR	Liberia		SG	Singapore				

WO 98/41627 PCT/US98/05251

DESCRIPTION

SECRETED POLYPEPTIDES WITH HOMOLOGY TO XENOPUS CEMENT GLAND PROTEINS

BACKGROUND OF THE INVENTION

5

expressed in secretory tissues, Proteins including proteins found in mucous or like secretions, or 10 in tissues exposed to external agents may be implicated in secretory function or in development or repair of such tissues. Such exposed tissues include the throat, the mouth, the lungs and the like. Other secretory tissues include the prostate, the intestines and the like. 15 Expression of such proteins may serve protective functions for secretory tissue and/or exposed tissue, acting, for example, as an anti-microbial agent or as a mucousmodulating agent, such as a mucous-clearing or a mucousdegrading agent. Inappropriate expression of such 20 proteins involved in secretory function may cause connote improper mucous composition or secreted amount. Also, inappropriate expression of such proteins involved in secretory organ development or repair may result in proliferation differentiation 25 inappropriate orsecretory tissue. Such proteins or agonists antagonists thereof are therefore sought to study, detect, prevent and treat secretory tissue disorders and/or exposed tissue maladies. More specifically, moieties 30 which are components of mucous, modulators of mucous secretion or mucous degradation factors are sought.

Also, anti-microbial protective agents may be directly acting or indirectly acting. Such agents, operating via membrane association or pore forming mechanisms of action, directly attach to the offending microbe. Anti-microbial agents can also act via an enzymatic mechanism, breaking down microbial protective

substances or the cell wall/membrane thereof. Antimicrobial agents capable of inhibiting microorganism growth are also sought. An example of a microbial-associated condition with mucous involvement in humans is the diminution of the defensive properties of the gastroduodenal mucosa by Helicobacter pylori, potentially resulting in ulcer formation. See, for example, Beligotskii et al., Klin. Khir. 8: 3-6, 1994.

The cement gland is an ectodermal organ in the 10 head of frog embryos anterior to neural tissue. Two proteins, believed to be secreted by the cement gland, have been discovered and designated XLU82110_1 and XLU76752_1. The sequence of XLU82110_1 was published by direct submission without accompanying data.

The amphibian cement gland appears to be involved in anterior/posterior axis formation and may play other roles in amphibian embryogenesis, such as in neural development. In addition, Otte et al., Nature 334: 618-20, 1988, have shown a correlation between neural induction and protein kinase C activation.

In addition, the cement gland is a mucoussecreting organ, which attaches the embryo to a solid support before swimming and feeding begin and provides sensory signals to the embryo to stop moving once such attachment is made. In this manner, the embryo ceases to move, thereby drawing less attention from potential predators. Before feeding begins, the cement gland is undergoes apoptosis. Proteins secreted by the cement gland may also be involved in preparing the substrate for attachment and/or protecting the embryo from microbial attack.

Thus, proteins secreted by the cement gland may have anti-microbial activity and/or be involved in adhesion, differentiation or neural development.

Mammalian homologs of such proteins may be useful for anti-microbial applications and/or mucous-modulating

25

30

WO 98/41627 PCT/US98/05251

3

functions. In addition, such homologs or antagonists or agonists thereof are expected to be useful in circumstances where enhancement (homolog or agonist) or inhibition (antagonist) of adhesion is desired. For example, inhibition of microbial pathogen-cell adhesion and pathological tissue adhesions is desired.

In addition, surgical wounds require closure and increased interest has been devoted to the use of biological adhesives to replace or augment the use of mechanical closure devices. Proteins having adhesive properties are sought for such "tissue glue" applications.

The present invention provides such polypeptides for these and other uses that should be apparent to those skilled in the art from the teachings herein.

15

10

SUMMARY OF THE INVENTION

Within one aspect, the invention provides an isolated polypeptide comprising a sequence of amino acid residues that is at least 80% identical in amino acid 20 sequence to residues 21-175 of SEQ ID NO:2. Within one embodiment the polypeptide is at least 90% identical in amino acid sequence to residues 21-175 of SEQ ID NO:2. embodiment polypeptide the another comprises a cysteine residue corresponding to amino acid 25 residue 81 of SEQ ID NO:2. Within another embodiment the polypeptide further comprises a copper binding site corresponding to amino acid residues 74-78 of SEQ ID NO:2. embodiment the polypeptide another comprises residues 26-175 of SEQ ID NO:2. Within another embodiment 30 the polypeptide comprises residues 21-175 of SEQ ID NO:2. another embodiment the polypeptide comprises Within SEQ ID NO:2. Within yet residues 1-175 of embodiment the polypeptide is at least 1 kb in length. 35 Within another embodiment, the polypeptide is covalently linked to a moiety selected from the group consisting of

15

20

25

30

4

affinity tags, toxins, radionucleotides, enzymes and fluorophores. Within a related embodiment the moiety is an affinity tag selected from the group consisting of polyhistidine, FLAG, Glu-Glu, glutathione S transferase and an immunoglobulin heavy chain constant region. Within yet another related embodiment there is a proteolytic cleavage site between said sequence of amino acid residues and said affinity tag.

Within another aspect, the invention provides a DNA construct encoding a polypeptide fusion, said fusion comprising a secretory signal sequence having the amino acid sequence of amino acid residues 1-20 of SEQ ID NO:2, wherein said secretory signal sequence is operably linked to an additional polypeptide.

Within another aspect, the invention provides an expression vector comprising the following operably linked elements: a transcription promoter; a DNA segment encoding a polypeptide as described above; and a transcriptional terminator. Within one embodiment the DNA segment further encodes a secretory signal sequence operably linked to Within a related embodiment the DNA said polypeptide. segment encodes the secretory signal sequence having the amino acid sequence of residues 1-20 of SEQ ID NO:2. Within a further related embodiment is provided a cultured cell into which has been introduced the expression vector described above, wherein the cell expresses the polypeptide encoded by the DNA segment.

Within another aspect, the invention provides a method of producing a protein comprising: culturing a cell into which has been introduced an expression vector as described above whereby the cell expresses the protein encoded by the DNA segment; and recovering the expressed protein.

Within other aspects of the invention are 35 provided, a pharmaceutical composition comprising a polypeptide as described above in combination with a

pharmaceutically acceptable vehicle. An antibody that specifically binds to an epitope of a polypeptide as described above. A binding protein that specifically binds to an epitope of a polypeptide as described above.

Within another aspect, the invention provides an 5 polynucleotide encoding polypeptide as а described above. Within one embodiment the polynucleotide is selected from the group consisting of, a) a sequence of nucleotides from nucleotide 138 to nucleotide 587 of SEQ ID NO:1; b) a sequence of nucleotides from nucleotide 123 10 nucleotide 587 of SEQ ID NO:2; c) a sequence of nucleotides from nucleotide 63 to nucleotide 587 of SEQ ID NO:2; d) allelic variants of a), b), or c); and e) nucleotide sequences complementary to a), b), c) or d). Within another embodiment the polynucleotide is from 742 15 to 881 nucleotides in length. Within another embodiment isolated polynucleotide comprising provided an is nucleotide 1 to nucleotide 525 of SEQ ID NO:14. another embodiment the polynucleotide is DNA.

20 Within another aspect is provided an oligonucleotide probe or primer comprising 14 contiguous nucleotides of a polynucleotide of SEQ ID NO:14 or a sequence complementary to SEQ ID NO:14.

Within another aspect, the invention provides method for detecting a genetic abnormality in a patient, comprising: obtaining a genetic sample from a patient; genetic sample with a polynucleotide incubating the comprising at least 14 contiguous nucleotides of SEQ ID NO:1 or the complement of SEQ ID NO:1, under conditions will polynucleotide hybridize wherein said complementary polynucleotide sequence, to produce a first reaction product; comparing said first reaction product to a control reaction product, wherein a difference between said first reaction product and said control reaction product is indicative of a genetic abnormality in the patient.

25

30

Within another aspect, the invention provides a detecting zsig10 polypeptides comprising: for method exposing a polypeptide containing sample to an antibody 5 attached to a solid support, wherein said antibody binds zsig10 polypeptide; washing said to an epitope of a immobilized antibody-polypeptide to remove immobilized antibodycontaminants; exposing the polypeptide to a second antibody directed to a second zsig10 polypeptide, wherein the second 10 epitope of a antibody is associated with a detectable label; detecting the detectable label.

These and other aspects of the invention will become evident upon reference to the following detailed description of the invention and the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

schematically depicts the zsig10 Figure 1 polypeptide structure, with "M" indicating the initial 20 methionine residue; "Signal" indicating a secretory peptide through amino acid residue 20; and the solid bar encompassing amino acid residue 21 to residue 175 indicating a polypeptide homologous to a Xenopus secreted protein, with " α " and " β " indicating three alpha helical and five beta sheet structural domains, "~Cu" indicating a putative copper binding site at amino acid residues 74-78 and "C" indicating a free cysteine residue at position 81 (which may constitute part of an intra-chain disulfide in active form or may be an essential moiety for catalytic activity).

Figure 2 illustrates a multiple alignment of two Xenopus laevis secreted proteins (XLU821 (SEQ ID NO:3), XLU82110 1 which corresponds to an abbreviation of published literature and XLU767 (SEQ ID NO:4), which 35 corresponds to XLU76752_1) and a zsig10 polypeptide (SEQ ID NO:2) of the present invention.

30

7

DETAILED DESCRIPTION OF THE INVENTION

Prior to setting forth the invention in detail, ...
it may be helpful to the understanding thereof to define
the following terms:

The term "affinity tag" is used herein to denote a polypeptide segment that can be attached to a second polypeptide to provide for purification or detection of the second polypeptide or provide sites for attachment of the second polypeptide to a substrate. In principal, any 10 peptide or protein for which an antibody or other specific binding agent is available can be used as an affinity tag. Affinity tags include a poly-histidine tract, protein A (Nilsson et al., <u>EMBO J. 4</u>:1075, 1985; Nilsson et al., Methods Enzymol. 198:3, 1991), glutathione S transferase 15 (Smith and Johnson, Gene 67:31, 1988), Glu-Glu affinity tag (Grussenmeyer et al., Proc. Natl. Acad. Sci. USA 82:7952-4, 1985), substance P, Flag™ peptide (Hopp et al., Biotechnology 6:1204-10, 1988), streptavidin binding 20 peptide, or other antigenic epitope or binding domain. See, in general, Ford et al., Protein Expression and Purification 2: 95-107, 1991. DNAs encoding affinity tags are available from commercial suppliers (e.g., Pharmacia Biotech, Piscataway, NJ).

The term "allelic variant" denotes any of two or 25 more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally may result in phenotypic mutation, and through polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or may 30 encode polypeptides having altered amino acid sequence. The term allelic variant is also used herein to denote a protein encoded by an allelic variant of a gene.

The terms "amino-terminal" and "carboxyl35 terminal" are used herein to denote positions within
polypeptides and proteins. Where the context allows,

these terms are used with reference to a particular sequence or portion of a polypeptide or protein to denote proximity or relative position. For example, a certain sequence positioned carboxyl-terminal to a reference sequence within a protein is located proximal to the carboxyl terminus of the reference sequence, but is not necessarily at the carboxyl terminus of the complete protein.

"complement/anti-complement pair" The term 10 denotes non-identical moieties that form a non-covalently associated, stable pair under appropriate conditions. (or streptavidin) instance, biotin and avidin are prototypical members of a complement/anti-complement pair. Other exemplary complement/anti-complement pairs include receptor/ligand pairs, antibody/antigen (or 15 epitope) pairs, sense/antisense polynucleotide pairs, dissociation the subsequent like. Where the pair complement/anti-complement is desirable, complement/anti-complement pair preferably has a binding affinity of $<10^9 \text{ M}^{-1}$. 20

The term "complements of polynucleotide molecules" denotes polynucleotide molecules having a complementary base sequence and reverse orientation as compared to a reference sequence. For example, the sequence 5' ATGCACGGG 3' is complementary to 5' CCCGTGCAT 3'.

The term "contig" denotes a polynucleotide that has a contiguous stretch of identical or complementary sequence to another polynucleotide. Contiguous sequences are said to "overlap" a given stretch of polynucleotide sequence either in their entirety or along a partial polynucleotide. For example, stretch of the representative contigs to the polynucleotide sequence 5'-5'-TAGCTTgagtct-3' and 3'-ATGGCTTAGCTT-3' are gtcgacTACCGA-5'.

25

30

15

20

25

30

35

The term "degenerate nucleotide sequence" denotes a sequence of nucleotides that includes one or more degenerate codons (as compared to а polynucleotide molecule that encodes polypeptide). a different triplets codons contain Degenerate nucleotides, but encode the same amino acid residue (i.e., GAU and GAC triplets each encode Asp).

The term "expression vector" denotes a DNA molecule, linear or circular, that comprises a segment encoding a polypeptide of interest operably linked to additional segments that provide for its transcription. Such additional segments may include promoter and terminator sequences, and may optionally include one or more origins of replication, one or more selectable markers, an enhancer, a polyadenylation signal, and the like. Expression vectors are generally derived from plasmid or viral DNA, or may contain elements of both.

"isolated", term when applied polynucleotide molecule, denotes that the polynucleotide has been removed from its natural genetic milieu and is other thus free of extraneous or unwanted sequences, and is in a form suitable for use within genetically engineered protein production systems. isolated molecules are those that are separated from their natural environment and include cDNA and genomic clones. Isolated DNA molecules of the present invention are free of other genes with which they are ordinarily associated, but may include naturally occurring 5' and 3' untranslated promoters and terminators. regions such as identification of associated regions will be evident to one of ordinary skill in the art (see for example, Dynan and Tijan, Nature 316:774-78, 1985). When applied to a protein, the term "isolated" indicates that the protein is found in a condition other than its native environment, such as apart from blood and animal tissue. preferred form, the isolated protein is substantially free of other proteins, particularly other proteins of animal origin. It is preferred to provide the protein in a highly purified form, i.e., greater than 95% pure, more preferably greater than 99% pure.

The term "operably linked", when referring to DNA segments, denotes that the segments are arranged so that they function in concert for their intended purposes, e.g. transcription initiates in the promoter and proceeds through the coding segment to the terminator.

The term "ortholog" denotes a polypeptide or protein obtained from one species that is the functional counterpart of a polypeptide or protein from a different species. Sequence differences among orthologs are the result of speciation.

The term "polynucleotide" denotes a singledeoxyribonucleotide double-stranded polymer of ribonucleotide bases read from the 5' to the 3' end. Polynucleotides include RNA and DNA, and may be isolated from natural sources, synthesized in vitro, or prepared from a combination of natural and synthetic molecules. Sizes of polynucleotides are expressed as base pairs (abbreviated "bp"), nucleotides ("nt"), or kilobases Where the context allows, the latter two terms may describe polynucleotides that are single-stranded or double-stranded. When the term is applied to doublestranded molecules it is used to denote overall length and will be understood to be equivalent to the term "base It will be recognized by those skilled in the art that the two strands of a double-stranded polynucleotide may differ slightly in length and that the ends thereof may be staggered as a result of enzymatic cleavage; thus all nucleotides within a double-stranded polynucleotide molecule may not be paired. Such unpaired ends will in general not exceed 20 nt in length.

A "polypeptide" is a polymer of amino acid residues joined by peptide bonds, whether produced

5

10

15

20

25

30

naturally or synthetically. Polypeptides of less than about 10 amino acid residues are commonly referred to as "peptides".

The term "promoter" denotes a portion of a gene containing DNA sequences that provide for the binding of RNA polymerase and initiation of transcription. Promoter sequences are commonly, but not always, found in the 5' non-coding regions of genes.

A "protein" is a macromolecule comprising one or more polypeptide chains. A protein may also comprise non-peptidic components, such as carbohydrate groups. Carbohydrates and other non-peptidic substituents may be added to a protein by the cell in which the protein is produced, and will vary with the type of cell. Proteins are defined herein in terms of their amino acid backbone structures; substituents such as carbohydrate groups are generally not specified, but may be present nonetheless.

The term "receptor" denotes a cell-associated protein that binds to a bioactive molecule (i.e., a ligand) and mediates the effect of the ligand on the cell. Membrane-bound receptors are characterized by a multiextracellular domain structure comprising an binding domain and an intracellular effector domain that is typically involved in signal transduction. Binding of ligand to receptor results in a conformational change in interaction between the receptor that causes an the effector domain and other molecule(s) in the cell. interaction in turn leads to an alteration metabolism of the cell. Metabolic events that are linked interactions include receptor-ligand phosphorylation, dephosphorylation, transcription, increases in cyclic AMP production, mobilization of cellular calcium, mobilization of membrane lipids, cell adhesion, hydrolysis of inositol lipids and hydrolysis of Most nuclear receptors also exhibit a phospholipids. including an amino-terminal, multi-domain structure,

20

25

30

transactivating domain, a DNA binding domain and a ligand binding domain. In general, receptors can be membrane bound, cytosolic or nuclear; monomeric (e.g., thyroid stimulating hormone receptor, beta-adrenergic receptor) or multimeric (e.g., PDGF receptor, growth hormone receptor, IL-3 receptor, GM-CSF receptor, G-CSF receptor, erythropoietin receptor and IL-6 receptor).

The term "secretory signal sequence" denotes a DNA sequence that encodes a polypeptide (a "secretory peptide") that, as a component of a larger polypeptide, directs the larger polypeptide through a secretory pathway of a cell in which it is synthesized. The larger peptide is commonly cleaved to remove the secretory peptide during transit through the secretory pathway.

The term "splice variant" is used herein to denote alternative forms of RNA transcribed from a gene. variation arises naturally through use of Splice splicing alternative sites within a transcribed RNA molecule, or less commonly between separately transcribed RNA molecules, and may result in several mRNAs transcribed Splice variants may same gene. polypeptides having altered amino acid sequence. The term splice variant is also used herein to denote a protein encoded by a splice variant of an mRNA transcribed from a gene.

polymers Molecular weights and lengths of determined by imprecise analytical methods (e.g., gel electrophoresis) will be understood to be approximate When such a value is expressed as "about" X or the stated value of will "approximately" Χ, understood to be accurate to ±10%.

The present invention is based in part upon the discovery of a novel DNA sequence that encodes a polypeptide having homology to two secreted proteins found in Xenopus laevis (SEQ ID NO: 3; XLU82110_1, with Met is at position 1 and SEQ ID NO: 4; XLU76752_1, with Met also

10

15

20

25

30

15

20

at position 1). The protein of the present invention appears to be a soluble protein formed of alpha helical and beta sheet structures (designated " α " and " β " in Fig. 1). Thus, the zsig10 polypeptide is therefore characterized by a mixed alpha helix-beta sheet structure.

addition, the zsig10 polypeptide of present invention has a free cysteine residue at position 81 of SEO ID NO: 2 (designated "C" in Fig. 1) and a putative copper binding site at amino acids 74-78 of SEQ ID NO: 2 (designated "~Cu" in Fig. 1). This copper binding motif most closely matches the cytochrome C oxidase subunit I copper B binding site. The presence of a free cysteine may indicate that the zsig10 polypeptide homodimers or heterodimers via disulfide bond More specifically, the cysteine residue may formation. constitute part of an intra-chain disulfide in active Zsiq10 polypeptide homodimers and form. polypeptide-containing proteinaceous heterodimers are also contemplated by the present invention. Alternatively, the free cysteine may be an essential moiety necessary for catalytic activity.

The zsig10 polypeptides of the present invention also preferably incorporate six potential protein kinase C phosphorylation sites, at amino acids 24, 68, 114, 136, 142 and 146 of SEQ ID NO: 2. Such putative sites of 25 phosphorylation may indicate that the zsig10 polypeptides of the present invention are involved in neural induction, since a correlation between protein kinase C activity and See Otte et al. referenced induction has been noted. In addition, the zsig10 polypeptides of 30 present invention preferably incorporate one potential casein kinase II phosphorylation site at amino acid 57 of Such a phosphorylation site may impact SEO ID NO: 2. zsig10 polypeptide in vivo half-life or localization, protein-protein interaction or function.

Analysis of the tissue distribution of the mRNA corresponding to this novel DNA by both Northern blot and blot showed that expression was highest in lung, small intestine, colon, trachea and stomach, prostate, 5 followed by apparent but decreased expression levels in uterus, pancreas and kidney. Two transcript sizes were approximately 1 kb and one at The 1 kb message was detected in much approximately 2 kb. higher abundance than the 2 kb message, with the 1 kb message expressed at least about 50 times higher in most tissues except trachea where the expression appeared to be higher. polynucleotide approximately times The 25 sequence in SEQ ID NO: 1 appears to correspond to the 1 kb The polypeptide encoded by that polynucleotide sequence has been designated zsig10.

zsig10 polypeptide-encoding novel The polynucleotides of the present invention were initially identified by querying an EST database for secretory signal sequences characterized by an upstream methionine start site, a hydrophobic region of approximately 13 amino acids and a cleavage site (SEQ ID NO: 5, wherein cleavage between the alanine and arginine amino residues) in an effort to select for secreted proteins. Polypeptides corresponding to ESTs meeting those search criteria were compared to known sequences to identify secreted proteins having homology to known ligands. single EST sequence was discovered and predicted to be a Full length sequencing thereof allowed secreted protein. a homolog relationship to two discovery of found in Xenopus laevis (XLU82110 1 proteins See, for example, Sive et al., <u>Dev. Dyn</u>. XLU76752 1). 205(3): 265-80, 1996 and Sive et al., Cell 58(1): 171-80, 1989.

The full sequence of the zsig10 polypeptide was obtained from a single clone believed to contain it, 35 wherein the clone was obtained from a small intestine

10

15

20

25

tissue library. Other libraries that might also be searched for such clones include colon, ovary, prostate, stomach, fetal liver and/or spleen, small intestine, trachea, lung, fetal lung and the like.

length nucleotide sequence encoding full 5 zsig10 polypeptide is described in SEQ ID NO:1, and its deduced amino acid sequence is described in SEQ ID NO:2. When aligned as in Fig. 2, aligned positions 83-87 (amino acids 74-78 of the polypeptide of SEQ ID NO:2) showed one substitution (valine amino acid conservative isoleucine) at position 84 (74 in SEQ ID NO:2). Thus, the aligned polypeptides appear to share a putative copper Also, Fig. 2 shows that the aligned binding site. proteins share a free cysteine at aligned position 90 In addition, XLU82110 1 (position 81 of SEQ ID NO:2). 15 (SEQ ID NO:3) and XLU76752 1 (SEQ ID NO:4) appear to share the mixed alpha helix/beta sheet structure characteristic of zsig10 polypeptides.

DNA encoding Analysis of the polypeptide (SEQ ID NO:1) revealed an open reading frame 20 encoding 175 amino acids (SEQ ID NO:2) comprising a signal peptide of 20 amino acid residues (residue 1 to residue 20 of SEQ ID NO:2) and a mature polypeptide of 155 amino acids (residue 21 to residue 175 of SEQ ID NO:2). skilled in the art will recognize that predicted secretory signal sequence domain boundaries are approximations based on primary sequence content, and may vary slightly; however, such estimates are generally accurate to within ± 4 amino acid residues. Therefore the present invention also includes the polypeptides having amino acid sequences 30 comprising amino acid residues 17-175 of SEQ ID NO:2, residues 18-175 of SEQ ID NO:2, residues 19-175 of SEQ ID NO:2, residues 20-175 of SEQ ID NO:2, residues 21-175 of SEQ ID NO:2, residues 22-175, residues 23-175 of SEQ ID NO:2 and residues 24-175 of SEQ ID NO:2 as well as the polynucleotides encoding them. The C-terminal tail of the

zsig10 polypeptide appears to be longer than that of XLU82110_1 (SEQ ID NO:3) and about the same length as that of XLU76752_1 (SEQ ID NO:4). Also, the C-terminal tail region of aligned proteins zsig10 (SEQ ID NO:2) and XLU76752_1 (SEQ ID NO:4), but not XLU82110_1 (SEQ ID NO:3), is highly positively charged, potentially indicating alternative regulation or specificity.

Multiple alignment of zsig10 polypeptide (SEQ ID NO:2) with Xenopus laevis secreted proteins XLU821 (SEQ ID NO:3) (abbreviation for XLU82110_1) and XLU767 (SEQ ID NO:4) (abbreviation for XLU76752_1), as shown in Fig. 2, revealed a block of high percent identity ranging from aligned amino acid residue 46 to residue 173. Within the region of high identity, the following percent identity figures are observed for the deduced amino acid sequence of SEQ ID NO:2, XLU82110_1 (SEQ ID NO:3) and XLU76752_1 (SEQ ID NO:4).

	Zsig10	Xenopus	Xenopus
		XLU76752_1	XLU82110_1
Zsig10	100	52	56
Xenopus	52 ,	100	95
XLU76752_1			
Xenopus	56	95	100
XLU82110_1			

The highly conserved amino acids, both within and without the region of high identity, can be used as a tool to identify zsig10 polypeptides or zsig10-like proteins. For instance, reverse transcription-polymerase chain reaction (RT-PCR) can be used to amplify sequences encoding the conserved motifs suggested by the multiple alignment from RNA obtained from a variety of tissue sources. In particular, the following primers are useful for this purpose:

10

15

- 1) Amino acids 20-25 of SEQ ID NO: 2 (corresponding to nucleotides 63-137 of SEQ ID NO:1, nucleotides 58-75 of SEQ ID NO:14 and their complements);
- 2) Amino acids 37-42 of SEQ ID NO: 2
 (corresponding to nucleotides 387-437 of SEQ
 ID NO:1, nucleotides 109-126 of SEQ ID NO:14
 and their complements);
- 3) Amino acids 85-90 of SEQ ID NO: 2 (corresponding to nucleotides 315-332 of SEQ ID NO:1, nucleotides 253-270 of SEQ ID NO:14 and their complements);
- 4) Amino acids 50-55 of SEQ ID NO: 2 (corresponding to nucleotides 210-227 of SEQ ID NO:1, nucleotides 148-165 of SEQ ID NO:14 and their complements);
- 5) Amino acids 115-120 of SEQ ID NO: 2 (corresponding to nucleotides 405-422 of SEQ ID NO:1, nucleotides 343-260 of SEQ ID NO:14 and their complements); and
- 6) Amino acids 43-48 of SEQ ID NO: 2 (corresponding to nucleotides 189-206 of SEQ ID NO:1, nucleotides 127-144 of SEQ ID NO:14 and their complements).
- 25 The activity of polypeptides identified by such probes or of polypeptides encoded by polynucleotides identified by such probes can be determined by methods that are known in the art as generally described herein.
- Oligonucleotide probes based the polynucleotide sequence of SEQ ID NO:1 can be used to 30 localize the zsig10 gene to a particular chromosome. Radiation hybrid mapping is somatic cell а technique developed for constructing high-resolution, contiquous maps of mammalian chromosomes (Cox et 35 Science 250:245-50, 1990). Partial or full knowledge of a gene's sequence allows one to design PCR primers suitable

for use with chromosomal radiation hybrid mapping panels. Radiation hybrid mapping panels are commercially available which cover the entire human genome, such as the Stanford G3 RH Panel and the GeneBridge 4 RH Panel (Research Genetics, Inc., Huntsville, AL). These panels enable rapid, PCR-based chromosomal localizations and ordering of sequence-tagged sites (STSs), nonpolymorphic and polymorphic markers within a region of This includes establishing interest. proportional physical distances between newly discovered 10 genes of interest and previously mapped markers. precise knowledge of a gene's position can be useful for a number of purposes, including: 1) determining sequence is part of an existing contig and obtaining additional surrounding genetic sequences in various forms, 15 YACs, BACs or cDNA clones; 2) providing a such as possible candidate gene for an inheritable disease which shows linkage to the same chromosomal region; and cross-referencing model organisms, such as mouse, which may aid in determining what function a particular gene 20 might have.

Sequence tagged sites (STSs) can also be used independently for chromosomal localization. An STS is a DNA sequence that is unique in the human genome and can be used as a reference point for a particular chromosome or region of a chromosome. An STS is defined by a pair of oligonucleotide primers that are used in a polymerase chain reaction to specifically detect this site in the presence of all other genomic sequences. Since STSs are based solely on DNA sequence they can be completely 30 described within an electronic database, for Sequence Tagged Sites (dbsTs), Database of GenBank, (National Center for Biological Information, Institutes of Health, Bethesda, MD http://www.ncbi.nlm. 35 nih.gov), and can be searched with a gene sequence of

interest for the mapping data contained within these short genomic landmark STS sequences.

The results of chromosome mapping experiments, as more fully described in Example 3 hereof, showed that the zsig10 gene maps 59.99 cR from the top of the human chromosome 7 linkage group on the WICGR radiation hybrid map. Relative to the centromere, its nearest proximal marker was AFM144ZA1 and its nearest distal maker was WI-11644. The use of surrounding markers positioned the zsig10 gene in the 7p21.1-p15.3 region on the integrated LDB chromosome 7 map.

The present invention also provides polynucleotide molecules, including DNA and RNA molecules, zsig10 polypeptides disclosed herein. that encode the Those skilled in the art will readily recognize that, in 15 view of the degeneracy of the genetic code, considerable sequence variation is possible among these polynucleotide molecules. SEQ ID NO:14 is a degenerate DNA sequence that encompasses all DNAs that encode the zsig10 polypeptide of SEQ ID NO:2. Those skilled in the art will recognize 20 that the degenerate sequence of SEQ ID NO:14 also provides all RNA sequences encoding SEQ ID NO:2 by substituting U Thus, zsig10 polypeptide-encoding polynucleotides comprising nucleotide 1 to nucleotide 525 of SEQ ID NO:14 and their RNA equivalents are contemplated by the present 25 invention. Table 1 sets forth the one-letter codes used within SEQ IDNO:14 to denote degenerate nucleotide positions. "Resolutions" are the nucleotides denoted by a code letter. "Complement" indicates the code for the 30 complementary nucleotide(s). For example, the code Y denotes either C or T, and its complement R denotes A or G, A being complementary to T, and G being complementary to C.

TABLE 1

Nucleotide	Resolution	Nucleotide	Complement
Α	Α	Т	Т
С	С	G	G
G	G	С	С
T	T	Α	Α
R	A G	Υ	CIT
Υ	CIT	R	AJG
М	A C	K	G T
K	G T	M	AJC
S	C G	S	cle
W	AIT	W	AIT
Н	AICIT	D	A G T
В	CIGIT	V	A C G
V	AICIG	В	C G T
D	A G T	Н	A C T
N	A C G T	N	A C G T

The degenerate codons used in SEQ ID NO:14,
5 encompassing all possible codons for a given amino acid,
are set forth in Table 2.

BNSDOCID: <WO_____9841627A1_I_>

TABLE 2

	0ne		
Amino	Letter	Codons	Degenerate
Acid	Code		Codon
Cys	С	TGC TGT	TGY
Ser	S	AGC AGT TCA TCC TCG TCT	₩SN
Thr	T	ACA ACC ACG ACT	ACN
Pro	Р	CCA CCC CCG CCT	CCN
Ala	Α	GCA GCC GCG GCT	GCN
Gly	G	GGA GGC GGG GGT	GGN
Asn	N	AAC AAT	AAY
Asp	D	GAC GAT	GAY
Glu	Ε	GAA GAG	GAR
Gln	Q	CAA CAG	CAR
His	Н	CAC CAT	CAY
Arg	R	AGA AGG CGA CGC CGG CGT	MGN
Lys	K	AAA AAG	AAR
Met	М	ATG	ATG
Ile	I	ATA ATC ATT	ATH
Leu	L	CTA CTC CTG CTT TTA TTG	YTN
۷a٦	٧	GTA GTC GTG GTT	GTN
Phe	F	TTC TTT	TTY
Tyr	Υ	TAC TAT	TAY
Trp	W	TGG	TGG
Ter	•	TAA TAG TGA	TRR
Asn Asp	В		RAY
Glu Gln	Z		SAR
Any	X		NNN

4SDOCID: <WO_____9841627A1_I >

10

15

20

25

30

35

One of ordinary skill in the art will appreciate ambiguity is introduced in determining degenerate codon, representative of all possible codons " encoding each amino acid. For example, the degenerate codon for serine (WSN) can, in some circumstances, encode arginine (AGR), and the degenerate codon for arginine (MGN) can, in some circumstances, encode serine (AGY). similar relationship codons exists between some polynucleotides phenylalanine and leucine. Thus, encompassed by the degenerate sequence may encode variant amino acid sequences, but one of ordinary skill in the art can easily identify such variant sequences by reference to the amino acid sequence of SEQ ID NO:2. Variant sequences can be readily tested for functionality as described herein.

One of ordinary skill in the art will also appreciate that different species can "preferential codon usage." In general, see, Grantham, et al., Nuc. Acids Res. 8:1893-912, 1980; Haas, et al. Curr. Biol. 6:315-24, 1996; Wain-Hobson, et al., Gene 13:355-64, 1981; Grosjean and Fiers, Gene 18:199-209, 1982; Holm, Nuc. Acids Res. 14:3075-87, 1986; Ikemura, J. Mol. Biol. 158:573-97, 1982. As used herein, the term "preferential codon usage" or "preferential codons" is a term of art referring to protein translation codons that are most frequently used in cells of a certain species, favoring one or a few representatives of the possible codons encoding each amino acid (See Table 2). example, the amino acid Threonine (Thr) may be encoded by ACA, ACC, ACG, or ACT, but in mammalian cells ACC is the most commonly used codon; in other species, for example, insect cells, yeast, viruses or bacteria, different Thr codons may be preferential. Preferential codons for a introduced species can be particular polynucleotides of the present invention by a variety of methods known in the art. Introduction of preferential

10

15

20

25

30

35

codon sequences into recombinant DNA can, for example, enhance production of the protein by making protein translation more efficient within a particular cell type or species. Therefore, the degenerate codon sequence disclosed in SEQ ID NO:14 serves as a template for optimizing expression of polynucleotides in various cell types and species commonly used in the art and disclosed herein. Sequences containing preferential codons can be tested and optimized for expression in various species, and tested for functionality as disclosed herein.

Based upon the homology of zsig10 polypeptides to proteins secreted by amphibian cement gland, zsig10 polypeptides may be involved in differentiation of neural tissue, such as in anterior/posterior axis formation. As stated above, zsig10 polypeptides of the present invention bear six putative protein kinase C phosphorylation sites. Otte et al., Nature 334:618-20, 1988, have shown a correlation between neural induction and protein kinase C activation. Consequently, zsig10 polypeptides may be useful to evaluate the potential of mammalian neural tissue to grow, develop or differentiate.

In addition, the cement gland is a mucouszsigl0 polypeptides Thus, may secreting organ. involved in adhesion or other mucous-mediated functions. More specifically, zsig10 polypeptides may constitute a component of mucous or may be a factor influencing mucous mucous composition mucous integrity. production, or also serve a mucous-clearing Zsig10 polypeptides may function in conditions associated with pathological mucous deposition.

Consequently, zsig10 polypeptides or antagonists or agonists thereof are expected be useful in circumstances where modulation of adhesion is desired. Such adhesion-modulating function may be used in *in vitro* experiments designed to study adhesion, such as inhibition of adhesion of microorganisms to cells, tissue or mucous.

15

20

25

30

35

Enhancers and inhibitors of adhesion also have potential as therapeutics for conditions requiring such enhancement or inhibition. For example, enhanced tumor cell-tumor cell adhesion in a primary solid tumor does not favor metastasis thereof. Also, diminished tumor endothelial cell adhesion also does not favor metastasis formation at a site distant from the primary tumor. Assays to assess metastatic potential, as exemplified by adhesion, are known in the art. See, for example, Koenigsmann et al., Onkologie 17: 528-37, 1994, Asao et 57-62, 1994 and the al., Cancer Letters 78: Adhesion may also be evaluated in assays assessing mucous samples for known indicia of adhesion, such as bacterial colonization, susceptibility to and persistence infection and the like.

In addition, zsig10 polypeptides or agonists or antagonists thereof are expected to be useful in the modulation of mucous production, composition or integrity or in a mucous clearing role. Such modulation may be useful in altering mucous composition or integrity for in vitro study thereof, such as reducing integrity of mucous to evaluate the implication thereof on bacterial-mucous In addition, such modulation may be useful interaction. the treatment of disease states characterized inappropriate mucous production, composition or integrity. example, cystic fibrosis is associated dehydration of the mucous, which results mucous thickening (reduction in viscosity). Other conditions, such as chronic obstructive pulmonary disease, asthma, and associated with chronic like, are hypersecretion. See, for example, Prescott et al., Ugeskr Laeger 158(45): 6456-60, 1996; Gordon, Ear Nose Throat J. 75(2): 97-101, 1996; and Jeffery, Am. J. Respir. Crit. Care Med. 150(5 Pt 2): S6-13, 1994. Also, obstructive pulmonary disease and sinonasal inflammatory disease are associated with changes in rhealogical

properties or thickening of mucous. See, for example, Agliati, J. Int. Med. Res. 24(3): 302-10, 1996 and Wippold et al., Allergy Proc. 16(4): 165-9, 1995. In addition, mucous structural integrity is adversely impacted in inflammatory bowel disease, possibly via increased proteolysis. See, for example, Playford et al., Amer. J. Pathol. 146(2): 310-6, 1995. Certain forms of chronic obstructive pulmonary disease are associated with increased acidic mucous. See, for example, the Jeffery article cited above. Mucous clearing may be useful in a number of these conditions as well.

To verify these capabilities in zsig10 polypeptides, agonists or antagonists of the present such zsig10 polypeptides, invention, agonists antagonists are evaluated for mucosal integrity maintenance activity according to procedures known in the art. See, for example, Zahm et al., Eur. Respir. J. 8: which describes 1995, methods for measuring viscoelastic properties and surface properties of mucous as well as for evaluating mucous transport by cough and by ciliary activity. Ιf desired, zsig10 polypeptide performance in this regard can be compared to mucins or Other assays for evaluating the properties of mucous are known to those of ordinary skill in the art. Such assays include those for determining mucin content, water content, carbohydrate content, intrinsic buffering capacity, acidity, barrier properties, ability to absorb water and the like.

Moreover, detection of zsig10 polypeptides in the serum, mucous or tissue biopsy of a patient undergoing evaluation for or disorders characterized by inappropriate mucous deposition, composition or properties, such as cystic fibrosis, asthma, bronchitis, inflammatory bowel disease, Crohn's disease, chronic obstructive pulmonary disease or the like, can be employed in a diagnostic application of the present invention. Such zsig10 polypeptides can be detected using immunoassay techniques

5

10

15

20

10

15

20

25

and antibodies capable of recognizing a zsig10 polypeptide epitope. More specifically, the present invention contemplates methods for detecting zsig10 polypeptide comprising:

exposing a sample possibly containing zsig10 polypeptide to an antibody attached to a solid support, wherein said antibody binds to an epitope of a zsig10 polypeptide;

washing said immobilized antibody-polypeptide to
remove unbound contaminants;

exposing the immobilized antibody-polypeptide to a second antibody directed to a second epitope of a zsig10 polypeptide, wherein the second antibody is associated with a detectable label; and

detecting the detectable label. Elevated concentrations of zsig10 polypeptide (in comparison to normal concentrations thereof) in the test sample appears to be indicative of dysfunction.

In addition, pharmaceutical compositions containing such mucosa-modulating agents may be employed in the treatment of disorders associated with alterations in mucosal production, composition or integrity, such as those described above. Such patients will be given an effective amount of zsiglo polypeptide or agonist or antagonist thereof having mucosal-modulating activity to achieve a therapeutic benefit, generally manifested in a change in mucosal production, composition or integrity in the direction of the normal physiological state thereof.

Also, the zsig10 polypeptides of the present high abundance in digestive found in 30 invention are such as stomach, small intestine and colon. tissues, Thus, expression of zsig10 polypeptides may serve as a marker for digestive function or to promote digestive organ proliferation or differentiation. Also, polypeptides or agonists or antagonists thereof may be 35 useful in modulating the lubrication or barrier properties of digestive organ mucosa.

WO 98/41627 PCT/US98/05251

27

Zsig10 polypeptides of the present invention or agonists or antagonists thereof may be used as antimicrobial agents to protect against pathological action of microorganisms. Such anti-bacterial agents are preferably active on mucosa-associated microorganisms, such as *C. albicans, pneumonus, hemophilus, H. pylori,* and the like. An example of a microbial-associated condition with mucous involvement in humans is the diminution of the defensive properties of the gastroduodenal mucosa by *Helicobacter pylori,* potentially resulting in ulcer formation. See, for example, Beligotskii et al., Klin. Khir. 8: 3-6, 1994.

These anti-microbial protective agents may be indirectly acting. directly acting or Such agents via membrane association operating orpore forming mechanisms of action directly attach to the offending Anti-microbial agents can also act via enzymatic mechanism, breaking down microbial protective the cell wall/membrane thereof. substances or microbial agents, capable of inhibiting microorganism proliferation or action or of disrupting microorganism integrity by either mechanism set forth above, are useful in methods for preventing contamination in cell culture by microbes susceptible to that anti-microbial Such techniques involve culturing cells in the presence of an effective amount of said zsig10 polypeptide or agonist or antagonist thereof. Assays to determine the capability of zsig10 polypeptides oragonist antagonists thereof as anti-microbial agents are known in the art.

Moreover, detection of zsig10 polypeptides in the serum, mucous or tissue biopsy of a patient undergoing evaluation for microbial disorders, particularly those associated with mucosa, can be employed in a diagnostic application of the present invention. Such zsig10 polypeptides can be detected using immunoassay techniques and antibodies capable of recognizing a zsig10 polypeptide

10

15

20

10

15

20

25

30

35

epitope. More specifically, the present invention contemplates methods for detecting zsig10 polypeptide comprising:

exposing a sample possibly containing zsig10 polypeptide to an antibody attached to a solid support, wherein said antibody binds to an epitope of a zsig10 polypeptide;

washing said immobilized antibody-polypeptide to remove unbound contaminants;

exposing the immobilized antibody-polypeptide to a second antibody directed to a second epitope of a zsig10 polypeptide, wherein the second antibody is associated with a detectable label; and

detecting the detectable label. Depressed concentrations of zsig10 polypeptide (in comparison to normal concentrations thereof) in the test sample appears to be indicative of dysfunction.

pharmaceutical compositions addition, In containing such anti-microbial agents may be employed in the treatment of microbial disorders, particularly those associated with mucosa. Such patients will be given an effective amount of zsig10 polypeptide or agonist antagonist thereof having anti-microbial activity achieve a therapeutic benefit, generally manifested in a decrease in proliferation or function of the pathogenic Other conditions which may be addressed in accordance with the present invention are eye, nasal, oral conditions involving the mucosa and rectal pathological microbial agents, chemotherapy side effects impacting the mucosa, AIDS complications relating The anti-microbial activity of zsig10 mucosa or the like. polypeptides, agonists or antagonists may be determined using known assays therefore. See, for example, Barsum et al., Eur. Respir. J. 8(5): 709-14, 1995; Sandovsky-Losica et al., <u>J. Med. Vet. Mycol (England)</u> 28(4): 279-87, 1990; Mehentee et al., J. Gen. Microbiol (England) 135 (Pt. 8):

15

20

25

30

35

2181-8: 1989; Segal and Savage, <u>Journal of Medical and Veterinary Mycology</u> 24: 477-479, 1986 and the like.

Also, zsig10 polypeptides of the present invention may also constitute a component of a known tissue alue, imparting additional adhesive and/or antimicrobial properties thereto. In such applications, purified zsig10 polypeptide would be used in combination with collagen or a form of gelatin, muscle adhesion protein, fibrinogen, thrombin, Factor XIII or the like. The different types of tissue glues as well as the composition thereof are known in the art.

present invention provides methods agonists or antagonists of the identifying polypeptides disclosed above, which agonists antagonists may have valuable therapeutic properties as discussed further herein. Within one embodiment, there is provided a method of identifying zsig10 polypeptide agonists, comprising providing cells responsive zsig10 polypeptide as disclosed above, culturing the cells in the presence of a test compound and comparing the cellular response with the cell cultured in the presence zsiq10 polypeptide, and selecting compounds for which the cellular response is of the same Agonists are therefore useful to mimic or augment the function of zsig10 polypeptides.

Within another embodiment, there is provided a method of identifying antagonists of zsig10 polypeptide, comprising providing cells responsive to a zsig10 polypeptide, culturing a first portion of the cells in the presence of zsig10 polypeptide, culturing a second portion of the cells in the presence of the zsig10 polypeptide and a test compound, and detecting a decrease in a cellular response of the second portion of the cells as compared to the first portion of the cells. Antagonists are therefore useful to inhibit or diminish zsig10 polypeptide function.

Within preferred embodiments of the invention the isolated polynucleotides will hybridize to similar

ID NO:1, regions of SEO SEQ ID NO: oligonucleotide primer designated ZC11668), SEQ ID NO: 7 (an oligonucleotide primer designated ZC12253), SEO ID NO: (an oligonucleotide primer designated ZC12241), other probes described herein, or a sequence complementary under stringent conditions. In general, stringent conditions are selected to be about 5°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typical stringent conditions are those in which the salt concentration is less than about 0.02 M at pH 7 and the temperature is at least about 60°C.

15 previously noted, the isolated polynucleotides of the present invention include DNA and Methods for isolating DNA and RNA are well known in It is generally preferred to isolate RNA from fetal liver or spleen, colon, ovary, prostate, stomach, small intestine, lung, fetal lung or trachea, although DNA 20 can also be prepared using RNA from other tissues or isolated as genomic DNA. Total RNA can be prepared using quanidine HCl extraction followed by isolation centrifugation in a CsCl gradient (Chirgwin Biochemistry 18:52-94, 1979). 25 Poly (A) + RNA is prepared from total RNA using the method of Aviv and Leder (Proc. Natl. Acad. Sci. USA 69:1408-12, 1972). Complementary DNA (cDNA) is prepared from poly(A) + RNA using known methods. Polynucleotides encoding zsig10 polypeptides are 30 identified and isolated by, for example, hybridization or PCR.

The present invention further provides counterpart polypeptides and polynucleotides from other species (orthologs). These species include, but are not limited to mammalian, avian, amphibian, reptile, fish, insect and other vertebrate and invertebrate species. Of

35

5

10

15

20

25

30

35

particular interest are zsig10 polypeptides from other mammalian species, including murine, rat, porcine, ovine, bovine, canine, feline, equine and other primate proteins. " Orthologs of the human proteins can be cloned using information and compositions provided by the present combination with conventional invention in techniques. For example, a cDNA can be cloned using mRNA obtained from a tissue or cell type that expresses the Suitable sources of mRNA can be identified by probing Northern blots with probes designed from the sequences disclosed herein. A library is then prepared from mRNA of a positive tissue of cell line. A zsig10encoding cDNA can then be isolated by a variety of methods, such as by probing with a complete or partial human cDNA or with one or more sets of degenerate probes based on the disclosed sequences. A cDNA can also be cloned using the polymerase chain reaction, (Mullis, U.S. Patent 4,683,202), using primers designed from the sequences disclosed herein. Within an additional method, the cDNA library can be used to transform or transfect host cells, and expression of the cDNA of interest can be detected with an antibody to zsig10 polypeptide. Similar techniques can also be applied to the isolation of genomic clones.

Those skilled in the art will recognize that the sequences disclosed in SEQ ID NO:1 and SEQ ID NO:2 represent a single allele of the human zsig10 gene and polypeptide, and that allelic variation and alternative splicing are expected to occur. cDNAs generated from alternatively spliced mRNAs, which retain the properties of the zsig10 polypeptide are included within the scope of the present invention, as are polypeptides encoded by such cDNAs and mRNAs. For example, Northern blot analysis revealed 1 kb and 2 kb mRNAs, wherein the 1 kb variant was more highly expressed (approximately 50 times higher in most tissues and approximately 25 times higher in

trachea). Such mRNA species are likely to be splice variants. In addition, allelic variants and splice variants can be cloned by probing cDNA or genomic libraries from different individuals or tissues according to standard procedures. Allelic variants of the DNA sequence shown in SEQ ID NO: 1, including those containing silent mutations and those in which mutations result in amino acid sequence changes, are within the scope of the present invention.

The present invention also provides isolated zsiq10 polypeptides that are substantially homologous to the polypeptides of SEQ ID NO:2 and their homologs/orthologs. The term "substantially homologous" herein to denote polypeptides having preferably 60%, more preferably at least 80%, identity to the sequences shown in SEQ ID NO:2 or their Such polypeptides will more preferably be at orthologs. and most preferably 95% or more least 90% identical, identical to SEQ ID NO:2 or its orthologs. sequence identity is determined by conventional methods. See, for example, Altschul et al., Bull. Math. Bio. 48: 603-16, 1986 and Henikoff and Henikoff, Proc. Natl. Acad. Sci. USA 89:10915-9, 1992. Briefly, two amino acid sequences are aligned to optimize the alignment scores using a gap opening penalty of 10, a gap extension penalty of 1, and the "blosum 62" scoring matrix of Henikoff and Henikoff (ibid.) as shown in Table 3 (amino acids are indicated by the standard one-letter codes). The percent identity is then calculated as:

Total number of identical matches

x 100

[length of the longer sequence plus the number of gaps introduced into the longer sequence in order to align the two sequences]

BNSDOCID: <WO_____9841627A1_I_>

5

10

15

20

25

30

PCT/US98/05251

3

P S

X

G H

ഠ

Ø

U

Ω

z

 α

Table

Ŋ

10

r.

Sequence identity of polynucleotide molecules is determined by similar methods using a ratio as disclosed above.

Substantially homologous proteins and polypeptides are characterized as having one or more amino 5 acid substitutions, deletions or additions. These changes are preferably of a minor nature, that is conservative acid substitutions (see Table 4) substitutions that do not significantly affect the folding activity of the protein or polypeptide; 10 deletions, typically of one to about 30 amino acids; and small amino- or carboxyl-terminal extensions, such as an amino-terminal methionine residue, a small linker peptide of up to about 20-25 residues, or a small extension that facilitates purification (an affinity tag), or the like. 15 Preferred such sites include thrombin cleavage sites and factor Xa cleavage sites.

Table 4 Conservative amino acid substitutions arginine Basic: lysine histidine 5 Acidic: glutamic acid aspartic acid Polar: qlutamine asparagine Hydrophobic: leucine 10

isoleucine

valine

phenylalanine Aromatic:

tryptophan

tyrosine 15

> Small: glycine alanine

serine threonine

methionine 20

The present invention further provides a variety other polypeptide fusions [and related multimeric proteins comprising one or more polypeptide fusions]. example, a zsiq10 polypeptide can be prepared as a fusion 25 to a dimerizing protein as disclosed in U.S. Patents Nos. 5,155,027 and 5,567,584. Preferred dimerizing proteins in include immunoglobulin constant this regard Immunoglobulin-zsig10 polypeptide fusions can be domains. expressed in genetically engineered cells [to produce a 30 variety of multimeric zsig10 analogs]. Auxiliary domains can be fused to zsig10 polypeptides to target them to macromolecules specific cells, tissues, orFor example, a zsig10 polypeptide or protein collagen). could be targeted to a predetermined cell type by fusing a 35 zsig10 polypeptide to a ligand that specifically binds to a receptor on the surface of the target cell. In this way, polypeptides and proteins can be targeted for therapeutic or diagnostic purposes. A zsig10 polypeptide can be fused to two or more moieties, such as an affinity tag for purification and a targeting domain. Polypeptide fusions can also comprise one or more cleavage sites, particularly between domains. See, Tuan et al., Con. Tiss. Res. 34:1-9, 1996.

The proteins of the present invention can also comprise non-naturally occurring amino acid 10 Non-naturally occurring amino acids include, without trans-3-methylproline, 2,4-methanoproline, limitation, cis-4-hydroxyproline, trans-4-hydroxyproline, glycine, allo-threonine, methylthreonine, hydroxyethylcysteine, hydroxyethylhomocysteine, nitroglutamine, 15 homoglutamine, pipecolic acid, thiazolidine carboxylic 3 dehydroproline, and 4-methylproline, tert-leucine, norvaline, 2-azaphenyldimethylproline, alanine, 3-azaphenylalanine, 4-azaphenylalanine, fluorophenylalanine. Several methods are known in the art 20 incorporating non-naturally occurring amino residues into proteins. For example, an in vitro system can be employed wherein nonsense mutations are suppressed using chemically aminoacylated suppressor tRNAs. 25 for synthesizing amino acids and aminoacylating tRNA are in the art. Transcription and translation plasmids containing nonsense mutations is carried out in a cell-free system comprising an E. coli S30 extract and commercially available enzymes and other reagents. Proteins are purified by chromatography. 30 See, example, Robertson et al., J. Am. Chem. Soc. 113:2722, 1991; Ellman et al., Methods Enzymol. 202:301, 1991; Chung et al., Science 259:806-9, 1993; and Chung et al., Proc. Natl. Acad. Sci. USA 90:10145-9, 1993). In a second method, translation is carried out in Xenopus oocytes by 35 microinjection of mutated mRNA and chemically

10

15

20

25

30

35

aminoacylated suppressor tRNAs (Turcatti et al., J. Biol. Chem. 271:19991-8, 1996). Within a third method, E. coli cells are cultured in the absence of a natural amino acid that is to be replaced (e.g., phenylalanine) and in the presence of the desired non-naturally occurring amino acid(s) (e.q., 2-azaphenylalanine, 3-azaphenylalanine, 4azaphenylalanine, or 4-fluorophenylalanine). The nonnaturally occurring amino acid is incorporated into the protein in place of its natural counterpart. See, Koide et al., <u>Biochem</u>. <u>33</u>:7470-6, 1994. Naturally occurring amino acid residues can be converted to non-naturally occurring species by in vitro chemical modification. Chemical modification can be combined with site-directed mutagenesis to further expand the range of substitutions (Wynn and Richards, Protein Sci. 2:395-403, 1993).

A limited number of non-conservative amino acids, amino acids that are not encoded by the genetic code, non-naturally occurring amino acids, and unnatural amino acids may be substituted for zsig10 amino acid residues.

Essential amino acids in the zsig10 polypeptides of the present invention can be identified according to procedures known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, <u>Science</u> <u>244</u>: 1081-5, 1989). In the latter technique, single alanine mutations are introduced at every residue in the molecule, and the resultant mutant are tested for biological activity adhesion modulation, anti-microbial activity or the like) to identify amino acid residues that are critical to the activity of the molecule. See also, Hilton et al., \underline{J} . Biol. Chem. 271:4699-708, 1996. Sites of ligand-receptor interaction can also be determined by physical analysis of structure, as determined by such techniques as nuclear magnetic resonance, crystallography, electron diffraction or photoaffinity labeling, in conjunction with mutation of

putative contact site amino acids. See, for example, de Vos et al., <u>Science 255</u>:306-312, 1992; Smith et al., <u>J. Mol. Biol. 224</u>:899-904, 1992; Wlodaver et al., <u>FEBS Lett. 309</u>:59-64, 1992. The identities of essential amino acids can also be inferred from analysis of homologies with related polypeptides.

Multiple amino acid substitutions can be made tested using known methods of mutagenesis and screening, such as those disclosed by Reidhaar-Olson and Sauer (Science 241:53-57, 1988) or Bowie and Sauer (Proc. Natl. Acad. Sci. USA 86:2152-2156, 1989). Briefly, these authors disclose methods for simultaneously randomizing two or more positions in a polypeptide, selecting for polypeptide, functional and then sequencing the mutagenized polypeptides to determine the spectrum of allowable substitutions at each position. Other methods that can be used include phage display (e.g., Lowman et al., Biochem. 30:10832-7, 1991; Ladner et al., U.S. Patent NO: 5,223,409; Huse, WIPO Publication WO 92/06204) region-directed mutagenesis (Derbyshire et al., Gene 46:145, 1986; Ner et al., DNA 7:127, 1988).

the disclosed zsiq10 Variants of DNA and polypeptide sequences can be generated through shuffling as disclosed by Stemmer, Nature 370:389-91, Stemmer, Proc. Natl. Acad. Sci. USA 91:10747-51, 1994 and WIPO Publication WO 97/20078. Briefly, variant DNAs are generated by in vitro homologous recombination by random fragmentation of a parent DNA followed reassembly using PCR, resulting in randomly introduced This technique can be modified by using point mutations. a family of parent DNAs, such as allelic variants or DNAs different species, to introduce additional variability into the process. Selection or screening for the desired activity, followed by additional iterations of mutagenesis and assay provides for rapid "evolution" of

5

10

15

20

25

30

sequences by selecting for desirable mutations while simultaneously selecting against detrimental changes.

Mutagenesis methods as disclosed above can be combined with high-throughput, automated screening methods to detect activity of cloned, mutagenized polypeptides in host cells. Mutagenized DNA molecules that encode active polypeptides (e.g., capable of modulating adhesion, having anti-microbial activity or the like) can be recovered from host cells and rapidly sequenced using the equipment. These methods allow the rapid determination of the importance of individual amino acid residues in a interest, and polypeptide οf can applied be to polypeptides of unknown structure.

Using the methods discussed above, one of ordinary skill in the art can identify and/or prepare a variety of polypeptides that are substantially homologous to residues 21-175 of SEQ ID NO:2 or allelic variants thereof and retain the adhesion-modulating, anti-microbial or like properties of the wild-type protein. Such polypeptides may include additional amino acids, such as affinity tags and the like. Such polypeptides may also include additional polypeptide segments as generally disclosed herein.

of The polypeptides the present invention, full-length proteins, fragments thereof including fusion proteins, can be produced in genetically engineered host cells according to conventional techniques. Suitable host cells are those cell types that can be transformed or transfected with exogenous DNA and grown in culture, and bacteria, fungal cells, and cultured eukaryotic cells. Eukaryotic cells, particularly cultured cells of multicellular organisms, preferred. are Techniques for manipulating cloned DNA molecules introducing exogenous DNA into a variety of host cells are disclosed by Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory

5

10

15

20

25

30

WO 98/41627 PCT/US98/05251

40

Press, Cold Spring Harbor, NY, 1989, and Ausubel et al. (eds.), <u>Current Protocols in Molecular Biology</u>, John Wiley and Sons, Inc., NY, 1987.

In general, a DNA sequence encoding a zsiq10 polypeptide of the present invention is operably linked to other genetic elements required for its expression, including transcription a promoter terminator within an expression vector. The vector will also commonly contain one or more selectable markers and one or more origins of replication, although those skilled in the art will recognize that within certain systems selectable markers may be provided on separate vectors, and replication of the exogenous DNA may be provided by integration into the host cell genome. Selection of promoters, terminators, selectable markers, vectors and other elements is a matter of routine design within the level of ordinary skill in the art. Many such elements are described in the literature and are available through commercial suppliers.

To direct zsig10 polypeptide a into the secretory pathway of a host cell, a secretory signal sequence (also known as a leader sequence, prepro sequence or pre sequence) is provided in the expression vector. The secretory signal sequence may be that of the zsig10 polypeptide, or may be derived from another secreted (e.g., t-PA) orsynthesized protein de The novo. secretory signal sequence is joined to the zsiq10 DNA sequence in the correct reading frame. Secretory signal sequences are commonly positioned 5' to the DNA sequence encoding the polypeptide of interest, although certain secretory signal sequences may be positioned elsewhere in the DNA sequence of interest (see, e.g., Welch et al., U.S. Patent NO: 5,037,743; Holland et al., U.S. Patent NO: 5,143,830). Conversely, the secretory signal sequence portion of the zsig10 polypeptide (amino acids 1-20 of SEQ

5

10

15

20

25

30

ID NO: 2) may be employed to direct the secretion of an alternative protein by analogous methods.

Cultured mammalian cells are also preferred present invention. within the Methods hosts mammalian host cells introducing exogenous DNA into include calcium phosphate-mediated transfection (Wigler et al., Cell 14:725, 1978; Corsaro and Pearson, Somatic Cell Genetics 7:603, 1981: Graham and Van der Eb, Virology 52:456, 1973), electroporation (Neumann et al., EMBO J. <u>1</u>:841-845, 1982), DEAE-dextran mediated transfection 10 (Ausubel et al., eds., Current Protocols in Molecular Biology, John Wiley and Sons, Inc., NY, 1987), liposomemediated transfection (Hawley-Nelson et al., Focus 15:73, 1993; Ciccarone et al., Focus 15:80, 1993), and viral vectors (Miller and Rosman, BioTechniques 7:980-90, 1989; 15 and Finer, <u>Nature Med.</u> 2:714-6, 1996). The production of recombinant polypeptides in cultured mammalian cells is disclosed, for example, by Levinson et al., U.S. Patent NO: 4,713,339; Hagen et al., U.S. Patent NO: 4,784,950; Palmiter et al., U.S. Patent NO: 4,579,821; 20 and Ringold, U.S. Patent NO: 4,656,134. Preferred cultured mammalian cells include the COS-1 (ATCC NO: CRL 1650), COS-7 (ATCC NO: CRL 1651), BHK 570 (ATCC NO: CRL 10314), 293 (ATCC NO: CRL 1573; Graham et al., J. Gen. Virol. 36:59-72, 1977) and Chinese hamster ovary (e.g. 25 CHO-K1; ATCC NO: CCL 61) cell lines. Additional suitable cell lines are known in the art and available from public depositories such as the American Type Culture Collection, Rockville, Maryland. In general, strong transcription promoters are preferred, such as promoters from SV-40 or 30 See, e.g., U.S. Patent NO: 4,956,288. cytomegalovirus. include suitable promoters those metallothionein genes (U.S. Patent Nos. 4,579,821 and 4,601,978) and the adenovirus major late promoter.

Drug selection is generally used to select for cultured mammalian cells into which foreign DNA has been

15

20

25

30

inserted. Such cells are commonly referred to "transfectants". Cells that have been cultured in the presence of the selective agent and are able to pass the gene of interest to their progeny are referred to "stable transfectants." A preferred selectable marker is a gene encoding resistance to the antibiotic neomycin. Selection is carried out in the presence of a neomycintype drug, such as G-418 or the like. Selection systems may also be used to increase the expression level of the interest, process referred of а to "amplification." Amplification is carried out culturing transfectants in the presence of a low level of the selective agent and then increasing the amount selective agent to select for cells that produce high levels of the products of the introduced genes. preferred amplifiable selectable marker is dihydrofolate reductase. which confers resistance to methotrexate. Other drug resistance genes (e.g., hygromycin resistance, multi-drug resistance, puromycin acetyltransferase) can also be used. Alternative markers that introduce altered phenotype, such as green fluorescent protein, cell surface proteins such as CD4, CD8, Class I MHC, alkaline phosphatase may used placental be transfected cells from untransfected cells by such means as FACS sorting or magnetic bead separation technology.

Other higher eukaryotic cells can also be used as hosts, including insect cells, plant cells and avian cells. The use of Agrobacterium rhizogenes as a vector for expressing genes in plant cells has been reviewed by Sinkar et al., J. Biosci. (Bangalore) 11:47-58, 1987. Transformation of insect cells and production of foreign polypeptides therein is disclosed by Guarino et al., U.S. Patent NO: 5,162,222; Bang et al., U.S. Patent NO: 4,775,624; and WIPO publication WO 94/06463.

Insect cells can be infected with recombinant baculovirus, commonly derived from Autographa californica

nuclear polyhedrosis virus (AcNPV). DNA encoding the zsig10 polypeptide is inserted into the baculoviral genome in place of the AcNPV polyhedrin gene coding sequence by " The first is the traditional method one of two methods. of homologous DNA recombination between wild-type AcNPV and a transfer vector containing the zsig10 flanked by AcNPV sequences. Suitable insect cells, e.g. SF9 cells, are infected with wild-type AcNPV and transfected with a transfer vector comprising а zsiq10 polynucleotide operably linked to an AcNPV polyhedrin gene promoter, terminator, and flanking sequences. See, King and Possee, The Baculovirus Expression System: A Laboratory Guide, Chapman & Hall; O'Reilly et al., Baculovirus Expression Vectors: A Laboratory Manual, New York, Oxford 1994; and Richardson, C. University Press., Baculovirus Expression Protocols. Methods in Molecular 1995. Biology, Totowa, NJ, Humana Press, Natural recombination within an insect cell will result in recombinant baculovirus which contains zsig10 driven by Recombinant viral stocks are the polyhedrin promoter. made by methods commonly used in the art.

The second method of making recombinant baculovirus utilizes a transposon-based system described by Luckow (Luckow et al., <u>J. Virol</u>. <u>67</u>:4566-79, sold in the Bac-to-Bac 25 system is Technologies, Rockville, MD). This system utilizes transfer vector, pFastBac1™ (Life Technologies) containing Tn7 transposon to move the DNA encoding the polypeptide into a baculovirus genome maintained in E. coli as a large plasmid called a "bacmid." 30 The pFastBac1™ transfer vector utilizes the AcNPV polyhedrin promoter to drive the expression of the gene of interest, in this case However, pFastBac1™ can be modified to zsiq10. а considerable degree. The polyhedrin promoter can removed and substituted with the baculovirus basic protein 35 promoter (also known as Pcor, p6.9 or MP promoter) which

10

15

is expressed earlier in the baculovirus infection, and has been shown to be advantageous for expressing secreted See, Hill-Perkins and Possee, J. Gen. Virol. 71:971-6, 1990; Bonning et al., <u>J. Gen. Virol.</u> 75:1551-6, 1994; and, Chazenbalk, G.D., and Rapoport, B., J. Biol. 270:1543-9, 1995. In such transfer vector Chem. constructs, a short or long version of the basic protein promoter can be used. Moreover, transfer vectors can be constructed which replace the native zsig10 secretory signal sequences with secretory signal sequences derived from insect proteins. For example, a secretory signal sequence from Ecdysteroid Glucosyltransferase (EGT), honey bee Melittin (Invitrogen, Carlsbad, CA), or baculovirus gp67 (PharMingen, San Diego, CA) can be used in constructs to replace the native zsig10 secretory signal sequence. addition, transfer vectors can include an in-frame fusion with DNA encoding an epitope tag at the C- or Nterminus of the expressed zsiq10 polypeptide, for example, a Glu-Glu epitope tag (Grussenmeyer et al., Proc. Natl. Acad. Sci. USA 82:7952-4, 1985). Using a technique known a transfer vector containing the art, transformed into E. coli, and screened for bacmids which contain an interrupted lacZ gene indicative of recombinant baculovirus. The bacmid DNA containing the recombinant baculovirus genome is isolated, using common techniques, and used to transfect Spodoptera frugiperda cells, e.g. Sf9 cells. Recombinant virus that expresses zsig10 is subsequently produced. Recombinant viral stocks are made by methods commonly used the art.

30 The recombinant virus is used to infect a cell line derived cells. typically from the fall armyworm, S. frugiperda. See, in general, Glick and Pasternak, <u>Molecular Biotechnology</u>: Principles and Applications of Recombinant DNA, ASM Press, Washington, Another suitable cell line is the High FiveO™ 35 D.C., 1994. cell line (Invitrogen) derived from Trichoplusia ni (U.S.

10

15

20

10

15

20

Patent #5,300,435). Commercially available serum-free media are used to grow and maintain the cells. media are Sf900 II™ (Life Technologies) or ESF (Expression Systems) for the Sf9 cells; and Ex-cellO405™ (JRH Biosciences, Lenexa, KS) or Express FiveO™ Technologies) for the T. ni cells. The cells are grown up from an inoculation density of approximately $2-5 \times 10^5$ cells to a density of 1-2 \times 10 6 cells at which time a recombinant viral stock is added at a multiplicity of infection (MOI) of 0.1 to 10, more typically near 3. recombinant virus-infected cells typically produce recombinant zsig10 polypeptide at 12-72 hours postinfection and secrete it with varying efficiency into the medium. The culture is usually harvested 48 hours post-Centrifugation is used to separate the cells infection. from the medium (supernatant). The supernatant containing the zsiq10 polypeptide is filtered through micropore filters, usually 0.45 μm pore size. Procedures used are generally described in available laboratory manuals (King and Possee, ibid.; Richardson, ibid.). Subsequent purification of the zsig10 polypeptide from the supernatant can be achieved using methods described herein.

Fungal cells, including yeast cells, particularly cells of the genus Saccharomyces, can also be 25 used within the present invention, such as for producing zsig10 fragments or polypeptide fusions. Methods for transforming yeast cells with exogenous DNA and producing recombinant polypeptides therefrom are disclosed by, for example, Kawasaki, U.S. Patent NO: 4,599,311; Kawasaki et 30 al., U.S. Patent NO: 4,931,373; Brake, U.S. Patent NO: 4,870,008; Welch et al., U.S. Patent NO: 5,037,743; and Murray et al., U.S. Patent NO: 4,845,075. Transformed are selected by phenotype determined selectable marker, commonly drug resistance or the ability 35 to grow in the absence of a particular nutrient (e.g.,

leucine). A preferred vector system for use in yeast is the POT1 vector system disclosed by Kawasaki et al. (U.S. patent NO: 4,931,373), which allows transformed cells to glucose-containing by growth in selected promoters and terminators Suitable for use in 5 include those from glycolytic enzyme genes (see, Kawasaki, U.S. Patent NO: 4,599,311; Kingsman et al., U.S. NO: 4,615,974; and Bitter, U.S. Patent 4.977.092) and alcohol dehydrogenase genes. See also U.S. 4,990,446; 5,063,154; 5,139,936 Nos. 10 Transformation systems for other yeasts, 4,661,454. including Hansenula polymorpha, Schizosaccharomyces pombe, lactis, Kluyveromyces fragilis, Ustilago Kluvveromyces maydis, Pichia pastoris, P. methanolica, P. guillermondii and Candida maltosa are known in the art. 15 See, example, Gleeson et al., J. Gen. Microbiol. 132:3459-65, 1986 and Cregg, U.S. Patent NO: 4,882,279. Aspergillus cells may be utilized according to the methods of McKnight Patent NO: 4,935,349. Methods for U.S. al., transforming Acremonium chrysogenum are disclosed by 20 Sumino et al., U.S. Patent NO: 5,162,228. Methods for transforming Neurospora are disclosed by Lambowitz, U.S. Patent NO: 4,486,533.

The use of Pichia methanolica as host for the production of recombinant proteins is disclosed in WIPO 25 Publications WO 97/17450, WO 97/17451, WO 98/02536, and WO DNA molecules for use in transforming 98/02565. methanolica will commonly be prepared as double-stranded, circular plasmids, which are preferably linearized prior 30 transformation. For polypeptide production methanolica. it is preferred that the promoter terminator in the plasmid be that of a P. methanolica gene, such as a P. methanolica alcohol utilization gene Other useful promoters include those of (AUG1 or AUG2). dihydroxyacetone synthase (DHAS). 35 (FMD), and catalase (CAT) genes. To dehydrogenase

10

15

20

25

30

35

facilitate integration of DNA into the host the chromosome, it is preferred to have the entire expression segment of the plasmid flanked at both ends by host DNA A preferred selectable marker for use in Pichia methanolica is a P. methanolica ADE2 gene, which encodes phosphoribosyl-5-aminoimidazole carboxylase (AIRC; EC 4.1.1.21), which allows ade2 host cells to grow in the absence of adenine. For large-scale, industrial processes where it is desirable to minimize the use of methanol, it is preferred to use host cells in which both methanol are deleted. utilization genes (AUG1 and AUG2) production of secreted proteins, host cells deficient in vacuolar protease genes (PEP4 and PRB1) are preferred. Electroporation is used to facilitate the introduction of plasmid containing DNA encoding a polypeptide interest into P. methanolica cells. It is preferred to transform P. methanolica cells by electroporation using an exponentially decaying, pulsed electric field having a field strength of from 2.5 to 4.5 kV/cm, preferably about 3.75 kV/cm, and a time constant (τ) of from 1 to 40 milliseconds, most preferably about 20 milliseconds.

Prokaryotic host cells, including strains of the bacteria Escherichia coli, Bacillus and other genera are also useful host cells within the present invention. Techniques for transforming these hosts and expressing foreign DNA sequences cloned therein are well known in the art (see, e.g., Sambrook et al., ibid.). When expressing a zsig10 polypeptide in bacteria such as E. coli, the polypeptide may be retained in the cytoplasm, typically as insoluble granules, or may be directed to the periplasmic space by a bacterial secretion sequence. In the former case, the cells are lysed, and the granules are recovered and denatured using, for example, guanidine isothiocyanate The denatured polypeptide can then be refolded or urea. and dimerized by diluting the denaturant, such as by dialysis against a solution of urea and a combination of

15

20

25

30

35

reduced and oxidized glutathione, followed by dialysis against a buffered saline solution. In the latter case, the polypeptide can be recovered from the periplasmic space in a soluble and functional form by disrupting the cells (by, for example, sonication or osmotic shock) to release the contents of the periplasmic space and recovering the protein, thereby obviating the need for denaturation and refolding.

Transformed or transfected host cells cultured according to conventional procedures in a culture medium containing nutrients and other components required for the growth of the chosen host cells. A variety of suitable media, including defined media and complex media, are known in the art and generally include a carbon source, a nitrogen source, essential amino acids, vitamins Media may also contain such components as and minerals. growth factors or serum, as required. The growth medium will generally select for cells containing the exogenously added DNA by, for example, drug selection or deficiency in an essential nutrient which is complemented selectable marker carried on the expression vector or cotransfected into the host cell.

Expressed recombinant zsig10 polypeptides (or zsiq10 polypeptides) can be purified using fractionation and/or conventional purification methods and Ammonium sulfate precipitation and chaotrope extraction may be used for fractionation of Exemplary purification steps may hydroxyapatite, size exclusion, FPLC and reverse-phase liquid chromatography. performance chromatographic media include derivatized dextrans, agarose, cellulose, polyacrylamide, specialty silicas, and the like. PEI, DEAE, QAE and Q derivatives are preferred, with DEAE Fast-Flow Sepharose (Pharmacia, Piscataway, NJ) being particularly preferred. Exemplary chromatographic media include those media derivatized with phenyl, butyl,

15

20

30

35

or octyl groups, such as Phenyl-Sepharose FF (Pharmacia), Toyopearl butyl 650 (Toso Haas, Montgomeryville, Octyl-Sepharose (Pharmacia) and the like; or polyacrylic resins, such as Amberchrom CG 71 (Toso Haas) and the like. Suitable solid supports include glass beads, silica-based resins, cellulosic resins, agarose beads, cross-linked polystyrene beads, cross-linked beads, polyacrylamide resins and the like that are insoluble under the conditions in which they are to be used. supports may be modified with reactive groups that allow attachment of proteins by amino groups, carboxyl groups, sulfhydryl groups, hydroxyl groups and/or carbohydrate Examples of coupling chemistries moieties. activation, N-hydroxysuccinimide cyanogen bromide activation, epoxide activation, sulfhydryl activation, hydrazide activation, and carboxyl and amino derivatives for carbodiimide coupling chemistries. These and other solid media are well known and widely used in the art, and are available from commercial suppliers. Methods for binding receptor polypeptides to support media are well known in the art. Selection of a particular method is a matter of routine design and is determined in part by the properties of the chosen support. See, for example, Affinity Chromatography: Principles & Methods, Pharmacia 25 LKB Biotechnology, Uppsala, Sweden, 1988.

The polypeptides of the present invention can be isolated by exploitation of their structural properties. example, immobilized metal ion adsorption chromatography can be used to purify histidine-rich proteins or proteins containing a His tag. Briefly, a gel first charged with divalent metal ions to form a (Sulkowski, Trends in Biochem. 3:1-7, chelate Histidine-rich proteins will be adsorbed to this matrix with differing affinities, depending upon the metal ion used, and will be eluted by competitive elution, lowering the pH, or use of strong chelating agents. Other methods

purification include purification of glycosylated lectin affinity chromatography proteins by and exchange chromatography (Methods in Enzymol., Vol. 182, "Guide to Protein Purification", M. Deutscher, (ed.), Acad. Press, San Diego, 1990, pp.529-39). Preferably, a fusion of the polypeptide of interest and an affinity tag FLAG, Glu-Glu, polyhistidine, (e.g., maltose-binding an immunoglobulin domain) or a member of complement/anti-complement pair may be constructed facilitate purification. Zsiq10 fused to an N- or Cterminal FLAG tag or Glu-Glu tag can be purified by virtue of the affinity tags discussed in more detail in the examples below. Such purification methods allow purification of proteins where the structural properties are not known or are not amenable to exploitation for purification.

Protein refolding (and optionally reoxidation) procedures may be advantageously used. It is preferred to purify the protein to >80% purity, more preferably to >90% purity, even more preferably >95%, and particularly preferred is a pharmaceutically pure state, that is greater than 99.9% pure with respect to contaminating macromolecules, particularly other proteins and nucleic acids, and free of infectious and pyrogenic agents. Preferably, a purified protein is substantially free of other proteins, particularly other proteins of animal origin.

Zsig10 polypeptides or fragments thereof may also be prepared through chemical synthesis. Zsig10 polypeptides may be monomers or multimers; glycosylated or non-glycosylated; pegylated or non-pegylated; and may or may not include an initial methionine amino acid residue.

A zsig10-binding polypeptide can also be used for purification of the zsig10 polypeptide of the present invention. The zsig10-binding polypeptide is immobilized on a solid support, such as beads of agarose, cross-linked

10

15

20

25

30

10

15

agarose, glass, cellulosic resins, silica-based resins, cross-linked polyacrylamide, polystyrene, or like materials that are stable under the conditions of use. Methods for linking polypeptides to solid supports are known in the art, and include amine chemistry, cyanogen activation, N-hydroxysuccinimide activation, bromide epoxide activation, sulfhydryl activation, and hydrazide The resulting medium will generally activation. configured in the form of a column, and fluids containing zsig10 polypeptide are passed through the column one or more times to allow zsiq10 polypeptide to bind to the receptor polypeptide. The bound zsig10 polypeptide is in eluted using changes salt concentration, (guanidine HCl), or pH disrupt chaotropic agents to ligand-receptor binding.

assay system that uses a ligand-binding (or an antibody, one member of a complement/ anti-complement pair) or a binding fragment thereof, and a commercially available biosensor instrument (BIAcoreTM, Pharmacia Biosensor, Piscataway, NJ) may be advantageously 20 receptor, antibody, member of Such employed. complement/anti-complement pair or fragment is immobilized onto the surface of a receptor chip. Use of this instrument is disclosed by Karlsson, J. Immunol. Methods 145:229-40, 1991 and in Cunningham and Wells, J. Mol. 25 Biol. 234:554-63, 1993. A receptor, antibody, member or fragment is covalently attached, using amine or sulfhydryl chemistry, to dextran fibers that are attached to gold film within the flow cell. A test sample is passed through the cell. If a ligand, epitope, or opposite 30 member of the complement/anti-complement pair is present in the sample, it will bind to the immobilized receptor, antibody or member, respectively, causing a change in the refractive index of the medium, which is detected as a change in surface plasmon resonance of the gold film. 35 This system allows the determination of on- and off-rates,

WO 98/41627 PCT/US98/05251

52

from which binding affinity can be calculated, and assessment of stoichiometry of binding.

Zsig10 polypeptide and other ligand homologs can also be used within other assay systems known in the art. Such systems include Scatchard analysis for determination of binding affinity (see Scatchard, Ann. NY Acad. Sci. 51: 660-72, 1949) and calorimetric assays (Cunningham et al., Science 253:545-48, 1991; Cunningham et al., Science 245:821-25, 1991). In this context, for example, zsig10 polypeptides may modulate the binding of factors or itself constitute a factor involved the in assembly extracellular matrix or mucous-type secretions.

Zsig10 polypeptides can also be used to prepare antibodies that specifically bind to zsig10 epitopes, peptides or polypeptides. Antibodies generated from this immune response can be isolated and purified as described herein. Methods for preparing and isolating polyclonal and monoclonal antibodies are well known in the art. See, for example, Current Protocols in Immunology, Cooligan, et al. (eds.), National Institutes of Health, John Wiley and Sons, Inc., 1995; Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, NY, 1989; and Hurrell, J. G. R., Ed., Monoclonal Hybridoma Antibodies: Techniques and Applications, CRC Press, Inc., Boca Raton, FL, 1982.

As would be evident to one of ordinary skill in the art, polyclonal antibodies can be generated from inoculating a variety of warm-blooded animals such as horses, cows, goats, sheep, dogs, chickens, rabbits, mice, hamsters, guinea pigs and rats as well as transgenic animals such as transgenic sheep, cows, goats or pigs. Antibodies may also be expressed in yeast and fungi in modified forms as well as in mammalian and insect cells. The zsig10 polypeptide or a fragment thereof serves as an antigen (immunogen) to inoculate an animal or elicit an immune response. Suitable antigens would include the

5

10

15

20

25

30

WO 98/41627 PCT/US98/05251

53

zsiq10 polypeptide encoded by SEQ ID NO:2 from amino acid residue 21-175 of SEQ ID NO:2, or a contiguous 9-175 amino acid residue fragment thereof. The immunogenicity of a zsig10 polypeptide may be increased through the use of an adjuvant, such as alum (aluminum hydroxide) or Freund's complete or incomplete adjuvant. Polypeptides useful for immunization also include fusion polypeptides, such of zsig10 or a portion thereof with fusions immunoglobulin polypeptide with or maltose The polypeptide immunogen may be a full-length molecule or a portion thereof. If the polypeptide portion is "hapten-like", such portion may be advantageously joined or linked to a macromolecular carrier (such keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA) or tetanus toxoid) for immunization.

As used herein, the term "antibodies" includes polyclonal antibodies, affinity-purified polyclonal antibodies, monoclonal antibodies, and antigen-binding fragments, such as $F(ab')_2$ and Fab proteolytic fragments. Genetically engineered intact antibodies or fragments, such as chimeric antibodies, Fv fragments, single chain antibodies and the like, as well as synthetic antigenbinding peptides and polypeptides, are also included. Non-human antibodies may be humanized by grafting nonhuman CDRs onto human framework and constant regions, or by incorporating the entire non-human variable domains (optionally "cloaking" them with a human-like surface by replacement of exposed residues, wherein the result is a "veneered" antibody). some In instances, humanized antibodies may retain non-human residues within the human variable region framework domains to enhance proper binding characteristics. Through humanizing antibodies, biological half-life may be increased, and the potential for adverse immune reactions upon administration to humans is reduced. Human antibodies can also be made in mice

10

15

20

25

30

15

20

25

having a humanized humoral immune system (Mendez et al., Nat. Genet. 14:146-56, 1997).

Alternative techniques for generating or selecting antibodies useful herein include in vitro exposure of lymphocytes to zsigl0 protein or peptide, and selection of antibody display libraries, in phage or similar vectors (for instance, through use of immobilized or labeled zsigl0 protein or peptide). Mutagenesis methods discussed herein, in particular domain shuffling, can be used to generate and mature antibodies.

The antibodies of the current invention, or fragments thereof, can be used to direct molecules to a specific target. For example, as T-bodies, chimeric receptors combining antibody recognition with T al., effector function, (Eshhar et Springer Semin Immunopathol. 18:199-209, 1996; Eshhar, Cancer Immunol. Immunother. 45:131-6, 1997). Intrabodies, engineered single-chain antibodies expressed inside the cell and having high affinity and specificity for intracellular Such molecules have use in gene therapy and targets. treatment of infectious diseases (Marasco, Immunotechnology 1:1-19, 1995; Marasco et al., Gene Ther. 4:11-5, 1997; Rondon and Marasco, Annu. Rev. Microbiol. 51:257-83, 1997 and Mhashilkar et al., J. Virol. 71:6486-94, 1997). Diabodies, bispecific non-covalent dimers of antibodies useful for immunodiagnosis therapeutically. In addition they can be constructed in bacteria (Holliger et al., Proc. Natl. Acad. Sci. USA 90:6444-48, 1993).

Antibodies herein specifically bind if they bind to a zsig10 polypeptide, peptide or epitope with a binding affinity (K_a) of 10⁶ M⁻¹ or greater, preferably 10⁷ M⁻¹ or greater, more preferably 10⁸ M⁻¹ or greater, and most preferably 10⁹ M⁻¹ or greater. The binding affinity of an antibody can be readily determined by one of ordinary

skill in the art, for example, by Scatchard analysis (Scatchard, G., Ann. NY Acad. Sci. 51: 660-72, 1949).

Genes encoding polypeptides having potential zsig10 polypeptide binding domains, "binding proteins", can be obtained by screening random or directed peptide libraries displayed on phage (phage display) bacteria, such as E. coli. Nucleotide sequences encoding the polypeptides can be obtained in a number of ways, such as through random mutagenesis and random polynucleotide synthesis. Alternatively, constrained phage 10 libraries can also be produced. These peptide display libraries can be used to screen for peptides which interact with a known target which can be a protein or polypeptide, such as a ligand or receptor, a biological or synthetic macromolecule, organic or or15 substances. Techniques for creating and screening such peptide display libraries are known in the art (Ladner et al., US Patent NO. 5,223,409; Ladner et al., US Patent NO. 4,946,778; Ladner et al., US Patent NO. 5,403,484 Ladner et al., US Patent NO. 5,571,698) and peptide 20 display libraries and kits for screening such libraries are available commercially, for instance from Clontech (Palo Alto, CA), Invitrogen Inc. (San Diego, CA), Inc. (Beverly, MA) and Pharmacia England Biolabs, Biotechnology Inc. (Piscataway, NJ). Peptide display 25 libraries can be screened using the zsig10 sequences identify proteins which bind to disclosed herein to These "binding proteins" which interact with zsigl0. zsiq10 polypeptides can be used essentially tagging cells; for isolating antibody, for 30 affinity purification; directly polypeptides by indirectly conjugated to drugs, toxins, radionuclides and These binding proteins can also be used in the like. for screening expression analytical methods such as libraries and neutralizing activity. The binding 35 proteins can also be used for diagnostic assays

determining circulating levels of polypeptides; for detecting or quantitating soluble polypeptides as marker of underlying pathology or disease. To increase the half-life of these binding proteins, they can be conjugated. Their biological properties may be modified by dimerizing or multimerizing for use as agonists or antagonists.

A variety of assays known to those skilled in art can be utilized to detect antibodies proteins which specifically bind binding to proteins or peptides. Exemplary assays are described in detail in Antibodies: A Laboratory Manual, Harlow and Lane Cold Spring Harbor Laboratory (Eds.), Press, Representative examples of such assays include: concurrent immunoelectrophoresis, radioimmunoassay, radioimmunoprecipitation, enzyme-linked immunosorbent assay (ELISA), dot blot or Western blot assay, inhibition or competition assay, and sandwich assay. In addition, antibodies can be screened for binding to wild-type versus mutant zsig10 protein or polypeptide.

Antibodies and binding proteins to zsigl0 may be used for tagging cells that express zsig10; for isolating zsig10 by affinity purification; for diagnostic assays for determining circulating levels of zsig10 polypeptides; for detecting or quantitating soluble zsig10 as marker of underlying pathology or disease; in analytical methods employing FACS; for screening expression libraries; for generating anti-idiotypic antibodies; and as neutralizing antibodies or as antagonists to block zsig10 polypeptide adhesion modulating or anti-microbial or like activity in vitro and in vivo. Suitable direct tags or labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent markers, chemiluminescent markers, particles and the like; indirect tags or labels may feature use of biotin-avidin or other complement/anticomplement pairs as intermediates. Moreover, antibodies to zsig10 or fragments thereof may be used in vitro to

10

15

20

25

30

detect denatured zsig10 or fragments thereof in assays, for example, Western Blots or other assays known in the art.

Antibodies or polypeptides herein can also be. directly or indirectly conjugated to drugs, radionuclides and the like, and these conjugates used for in vivo diagnostic or therapeutic applications. instance, polypeptides or antibodies of the present invention can be used to identify or treat tissues or organs that express a corresponding anti-complementary molecule (receptor antigen, respectively, orinstance). More specifically, zsig10 polypeptides or anti-zsig10 antibodies, or bioactive fragments or portions thereof, can be coupled to detectable or cytotoxic molecules and delivered to a mammal having cells, tissues or organs that express the anti-complementary molecule.

Suitable detectable molecules may be directly or indirectly attached to the polypeptide or antibody, and include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent markers, chemiluminescent markers, magnetic particles and the like. Suitable cytotoxic molecules may be directly or indirectly attached to the polypeptide or antibody, and include bacterial or plant instance, diphtheria toxins (for toxin, Pseudomonas exotoxin, ricin, abrin and the like), as well therapeutic radionuclides, such as iodine-131, rhenium-188 or yttrium-90 (either directly attached to the polypeptide or antibody, or indirectly attached through means of a chelating moiety, for instance). Polypeptides antibodies may also be conjugated to cytotoxic drugs, such as adriamycin. For indirect attachment of a detectable or cytotoxic molecule, the detectable or cytotoxic molecule can be conjugated with a member of a complementary/ anticomplementary pair, where the other member is bound to the polypeptide or antibody portion. For these purposes,

5

10

15

20

25

30

biotin/streptavidin is an exemplary complementary/ anticomplementary pair.

In another embodiment, polypeptide-toxin fusion proteins or antibody-toxin fusion proteins can be used for cell or tissue inhibition or ablation treat cancer cells or tissues). to Alternatively, if the polypeptide has multiple functional domains (i.e., an activation domain or a ligand binding plus a targeting domain), a fusion domain, including only the targeting domain may be suitable for directing a detectable molecule, a cytotoxic molecule or a complementary molecule to a cell or tissue type of instances where the domain only fusion interest. In protein includes a complementary molecule, the complementary molecule can be conjugated to a detectable or cytotoxic molecule. Such domain-complementary molecule fusion proteins thus represent a generic targeting vehicle cell/tissue-specific delivery of generic complementary-detectable/ cytotoxic molecule conjugates. The bioactive polypeptide or antibody conjugates described herein can be delivered intravenously, intraarterially, intraductally with DMSO, intramuscularly, subcutaneously, methods. intraperitoneally, also by transdermal electro-transfer, orally or via inhalant.

Molecules of the present invention can be used 25 to identify and isolate receptors involved in adherence. example, proteins and peptides of the present invention can be immobilized on a column and membrane preparations run over the column (Immobilized Affinity Ligand Techniques, Hermanson et al., eds., Academic Press, 30 San Diego, CA, 1992, pp.195-202). Proteins and peptides can also be radiolabeled (Methods in Enzymol., vol. 182, "Guide to Protein Purification", M. Deutscher, ed., Acad. Press, San Diego, 1990, 721-737) or photoaffinity labeled (Brunner et al., Ann. Rev. Biochem. 62:483-514, 1993 and 35

5

10

15

10

15

20

25

30

35

Fedan et al., <u>Biochem. Pharmacol.</u> 33:1167-80, 1984) and specific cell-surface proteins can be identified.

pharmaceutical use, the proteins of formulated invention are for parenteral, present particularly intravenous or subcutaneous. according to conventional methods. Intravenous administration will be by bolus injection or infusion over a typical period of one to several hours. In general, pharmaceutical formulations will include a zsig10 protein in combination with a pharmaceutically acceptable vehicle, such as saline, buffered saline, 5% dextrose in water or the like. Formulations may further include one or more excipients, preservatives, solubilizers, buffering agents, albumin to prevent protein loss on vial surfaces, etc. Methods of formulation are well known in the art and are disclosed, for example, in Remington: The Science and Practice of Pharmacy, Gennaro, ed., Mack Publishing Co., 19th ed., 1995. Easton, PA, Therapeutic doses will generally be determined by the clinician according to accepted standards, taking into account the nature and severity of the condition to be treated, patient traits, Determination of dose is within the level ordinary skill in the art. The proteins administered for acute treatment, over one week or less, often over a period of one to three days or may be used in chronic treatment, over several months or years.

Polynucleotides encoding zsig10 polypeptides are within gene therapy applications where useful desired to increase or inhibit zsig10 activity. mammal has a mutated or absent zsig10 gene, the zsig10 gene can be introduced into the cells of the mammal. one embodiment, a gene encoding a zsig10 polypeptide is Such vectors introduced in vivo in a viral vector. include an attenuated or defective DNA virus, such as, but not limited to, herpes simplex virus papillomavirus, Epstein Barr virus (EBV), adenovirus.

adeno-associated virus (AAV), and the like. Defective viruses, which entirely or almost entirely lack viral genes, are preferred. A defective virus is not infective after introduction into a cell. Use of defective viral vectors allows for administration to cells in a specific, localized area, without concern that the vector can infect other cells. Examples of particular vectors include, but are not limited to, a defective herpes simplex virus 1 (HSV1) vector (Kaplitt et al., Molec. Cell. Neurosci. 2:320-30, 1991); an attenuated adenovirus vector, such as the vector described by Stratford-Perricaudet et al., J. Clin. Invest. 90:626-30, 1992; and a defective adenoassociated virus vector (Samulski et al., J. Virol. 61:3096-101, 1987; Samulski et al., <u>J. Virol</u>. 63:3822-8, 1989).

In another embodiment, a zsig10 gene can introduced in a retroviral vector, e.g., as described in Anderson et al., U.S. Patent No. 5,399,346; Mann et al. Cell 33:153, 1983; Temin et al., U.S. Patent 4,650,764; Temin et al., U.S. 20 Patent No. 4,980,289; Markowitz et al., <u>J. Virol</u>. <u>62</u>:1120, 1988; Temin et al., U.S. Patent No. 5,124,263; WIPO Publication WO 95/07358; and Kuo et al., Blood 82:845, 1993. Alternatively, the vector can be introduced by lipofection in vivo using 25 liposomes. Synthetic cationic lipids can be used to prepare liposomes for in vivo transfection of encoding a marker (Felgner et al., Proc. Natl. Acad. Sci. <u>USA</u> <u>84</u>:7413-7, 1987; Mackey et al., <u>Proc. Natl. Acad. Sci.</u> USA 85:8027-31, 1988). The use of lipofection to introduce 30 exogenous genes into specific organs in vivo has certain practical advantages. Molecular targeting of liposomes to specific cells represents one area of benefit. particularly, directing transfection to particular cells represents one area of benefit. For instance, directing 35 transfection particular cell to types would particularly advantageous in tissue with а

WO 98/41627

5

10

10

15

20

25

30

35

heterogeneity, such as the pancreas, liver, kidney, and brain. Lipids may be chemically coupled to other molecules for the purpose of targeting. Targeted peptides (e.g., hormones or neurotransmitters), proteins such as antibodies, or non-peptide molecules can be coupled to liposomes chemically.

It is possible to remove the target cells from the body; to introduce the vector as a naked DNA plasmid; and then to re-implant the transformed cells into the vectors for Naked DNA gene therapy can body. introduced into the desired host cells by methods known in transfection, electroporation, art. e.g., the microinjection, transduction, cell fusion, DEAE dextran, calcium phosphate precipitation, use of a gene gun or use of a DNA vector transporter. See, e.g., Wu et al., J. Biol. Chem. 267:963-7, 1992; Wu et al., J. Biol. Chem. 263:14621-4, 1988.

Antisense methodology can be used to inhibit transcription, such to inhibit gene as cell zsiq10 Polynucleotides that are proliferation invivo. segment of а zsig10-encoding to a complementary polynucleotide (e.g., a polynucleotide as set froth in SEQ ID NO:1) are designed to bind to zsigl0-encoding mRNA and to inhibit translation of such mRNA. Such antisense polynucleotides are used to inhibit expression of zsig10 in cell culture polypeptide-encoding genes orsubject.

Transgenic mice, engineered to express the zsig10 gene, and mice that exhibit a complete absence of zsig10 gene function, referred to as "knockout mice" (Snouwaert et al., Science 257:1083, 1992), may also be generated (Lowell et al., Nature 366:740-42, 1993). These mice may be employed to study the zsig10 gene and the protein encoded thereby in an in vivo system.

The present invention also provides reagents for use in diagnostic applications. For example, the zsig10

gene, a probe comprising zsig10 DNA or RNA, subsequence thereof can be used to determine if the zsig10 gene is present on chromosome 7 or if a mutation has Detectable chromosomal aberrations the zsiq10 gene locus include, but are not limited to, copy number changes, insertions, aneuploidy, gene deletions, restriction site changes and rearrangements. These aberrations can occur within the coding sequence, within introns, or within flanking sequences, including upstream promoter and regulatory regions, and physical alterations within manifested as а coding sequence or changes in gene expression level.

In general, these diagnostic methods comprise steps of (a) obtaining a genetic sample from patient; (b) incubating the genetic sample polynucleotide probe or primer as disclosed above, under conditions wherein the polynucleotide will hybridize to complementary polynucleotide sequence, to produce a first reaction product; and (iii) comparing the first reaction product to a control reaction product. A difference first reaction product between the and the reaction product is indicative of a genetic abnormality in Genetic samples for use within the present the patient. invention include genomic DNA, CDNA, and RNA. polynucleotide probe or primer can be RNA or DNA, and will comprise a portion of SEQ ID NO:1, the complement of SEQ ID NO:1, or an RNA equivalent thereof. Suitable assay methods in this regard include molecular techniques known to those in the art, such as restriction fragment length polymorphism (RFLP) analysis, short tandem repeat (STR) analysis employing PCR techniques, ligation chain reaction (Barany, PCR Methods and Applications 1:5-1991), ribonuclease protection assays, and other genetic linkage analysis techniques known in the (Sambrook et al., ibid.; Ausubel et. al., ibid.; Marian, Chest 108:255-65, 1995). Ribonuclease protection assays

5

10

15

20

25

30

(see, e.g., Ausubel et al., ibid., ch. 4) comprise the hybridization of an RNA probe to a patient RNA sample, after which the reaction product (RNA-RNA hybrid) exposed to RNase. Hybridized regions of the RNA are protected from digestion. Within PCR assays, a patient's genetic sample is incubated with a pair of polynucleotide primers, and the region between the primers is amplified Changes in size or amount of recovered and recovered. are indicative of mutations in the patient. Another PCR-based technique that can be employed is single polymorphism (SSCP) analysis strand conformational (Hayashi, PCR Methods and Applications 1:34-8, 1991).

The invention is further illustrated by the following non-limiting examples.

15

10

EXAMPLES

Example 1

20

25

30

Extension of EST Sequence

polypeptide-encoding zsig10 The novel polynucleotides of the present invention were initially identified by querying an EST database for secretory signal sequences characterized by an upstream methionine start site, a hydrophobic region of approximately 13 amino acids and a cleavage site (SEQ ID NO: 5, wherein cleavage arginine occurs between the alanine and residues) in an effort to select for secreted proteins. Polypeptides corresponding to ESTs meeting those search criteria were compared to known sequences to identify secreted proteins having homology to known ligands. single EST sequence was discovered and predicted to be related to secreted proteins found in Xenopus laevis. See, for example, Sive et al., Dev. Dyn. 205(3): 265-80 (1996) and Sive et al., Cell 58(1): 171-80 (1989). identify the corresponding cDNA, a clone considered likely

the entire coding region was used to contain Using an Invitrogen S.N.A.P. TM Miniprep kit sequencing. Diego, Corp., San CA) according (Invitrogen, manufacturer's instructions a 5 ml overnight culture in LB + 50 μ g/ml ampicillin was prepared. The template was 5 sequenced on an ABIPRISMTM model 377 DNA sequencer (Perkin-Elmer Cetus, Norwalk, Ct.) using the ABI PRISMTM Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer Corp.) according to manufacturer's instructions. Oligonucleotides ZC976 (SEQ ID NO: 9), ZC694 (SEQ ID NO: 10 10) and ZC6768 (SEQ ID NO: 11) to the LacZ, T7 and T3 promoters on the clone-containing vector were used sequencing primers. Oligonucleotides ZC11668 (SEQ ID NO: 6), ZC12253 (SEQ ID NO: 7) and ZC12241 (SEQ ID NO: 8) were used to complete the sequence from the clone. Sequencing 15 were carried out reactions in а Hybaid OmniGene Cycling System (National Labnet Temperature SEQUENCHERTM 3.0 Woodbridge, NY). sequence software (Gene Codes Corporation, Ann Arbor, MI) was used for data analysis. The resulting 881 bp sequence is 20 disclosed in SEQ ID NO: 1. Comparison of the originally derived EST sequence with the sequence represented in SEQ ID NO: 1 showed that there were 13 base pair differences and 9 base pair insertions which resulted in 10 amino acid 25 differences and 9 frame shifts between the deduced amino acid sequences. Note that these numbers include base pair changes from unknown residues in the EST sequence to known residues in SEQ ID NO: 1, which result in "assumed" amino acid changes.

30 <u>Example 2</u> Tissue Distribution

Northerns were performed using Human Multiple Tissue Blots from Clontech (Palo Alto, CA). A 40 bp DNA probe (ZC11668; SEQ ID NO: 6) to the 5' end of the

oligonucleotide sequence of the mature protein shown in SEQ ID NO: 1 was radioactively labeled with P using T4 polynucleotide kinase and forward reaction buffer (GIBCO BRL, Gaithersburg, MD) according to the manufacturer's specifications. The probe was purified using a NUCTRAP 5 push column (Stratagene Cloning Systems, La Jolla, CA). EXPRESSHYB (Clontech, Palo Alto, CA) solution was used for prehybridization and as a hybridizing solution for the Northern blots. Hybridization took place overnight at 42° C, and the blots were then washed in 2X SSC and 0.05% SDS 10 at RT, followed by a wash in 1X SSC and 0.1% SDS at 60°C. Two transcript sizes were observed, one at approximately 1 kb and one at approximately 2 kb. The 1 kb message was detected in much higher abundance than the 2 kb message, with the 1 kb message expressed at least about 50 times 15 higher in most tissues except trachea where the expression appeared to be approximately 25 times higher. intensity was highest for lung, prostate, small intestine, colon, trachea and stomach, with relatively less intense signals in uterus, pancreas and kidney. 20

Example 3

Chromosomal Assignment and Placement of the zsig10 Gene

The zsig10 gene was mapped to chromosome 7 using 25 commercially available version of the Whitehead Institute/MIT Center for Genome Research's GeneBridge 4 Radiation Hybrid Panel (Research Genetics, Huntsville, AL). The GeneBridge 4 Radiation Hybrid Panel contained PCRable DNAs from each of 93 radiation hybrid 30 clones, plus two control DNAs (the HFL donor and the A23 recipient). A publicly available WWW server (http://wwwgenome.wi.mit.edu/cgi-bin/contig/rhmapper.pl) allowed mapping relative to the Whitehead Institute/MIT Center for 35 Genome Research's radiation hybrid map of the human genome

10

15

20

25

30

(the "WICGR" radiation hybrid map) which was constructed with the GeneBridge 4 Radiation Hybrid Panel.

For the mapping of the zsig10 gene with the GeneBridge 4 Radiation Hybrid Panel, 25 µl reactions were set up in a PCRable 96-well microtiter plate (Stratagene, La Jolla, CA) and used in a RoboCycler Gradient 96 thermal cycler (Stratagene). Each of the 95 PCR reactions 2.5 μ l 10X KlenTag PCR reaction buffer consisted of (CLONTECH Laboratories, Inc., Palo Alto, CA), 2 µl dNTPs mix (2.5 mM each, PERKIN-ELMER, Foster City, CA), 1.25 μ l sense primer, ZC 13173 (SEQ ID NO: 11), 1.25 μ l antisense primer, ZC 13172 (SEQ ID NO: 12), 2.5 μl *Redi*Load (Research Genetics, Inc., Huntsville, AL), $0.5 \mu l$ 50X ADVANTAGE[™] KlenTag Polymerase Mix (Clontech Laboratories, Inc.), 25 ng of DNA from an individual hybrid clone or control and x μ l ddH2O for a total volume of 25 μ l. reactions were overlaid with an equal amount of mineral oil and sealed. The PCR cycler conditions were as follows: an initial 1 cycle 5 minute denaturation at 95°C, 35 cycles of a 1 minute denaturation at 95°C, 1 minute annealing at 64°C and 1 minute and 15 second extension at 72°C, followed by a final 1 cycle extension of 7 minutes at 72°C. reactions were separated by electrophoresis 3% NuSieve® GTG agarose gel (FMC Bioproducts, Rockland, ME).

The results showed that the zsiq10 gene maps 59.99 cR from the top of the human chromosome 7 linkage group on the WICGR radiation hybrid map. Relative to the centromere, its nearest proximal marker was AFM144ZA1 and its nearest distal maker was WI-11644. The use surrounding markers positioned the zsig10 gene in 7p21.1-p15.3 region on the integrated LDB chromosome 7 map Location (The Genetic Database, University of Southhampton, WWW server: http://cedar.genetics.soton.ac. uk/public html/).

10

15

20

25

30

35

67

Example 4 Creation of mammalian expression vectors zsig10NF/pZP9, zsig10CF/pZP9 and zsig10/pZP9

Three expression vectors were prepared for the zsig10 polypeptide, zSIG10CF/pZP9 and zSIG10NF/pZP9, wherein the constructs are designed to express a zsig25 polypeptide with a C- or N-terminal FLAG tag (SEQ ID NO:35) and zSIG10/pZP9 expressing untagged zsig10 polypeptides.

ZSIG10/pZP9

A approximately 875 bp restriction digest fragment of ZSIG-10 DNA was derived from the clone described in Example 1 above. Five micrograms of the clone was digested with 1 μl each of the restriction enzymes Eco RI and Xho I. The resultant ligation fragment was then run on a 0.8% LMP agarose gel (Seaplaque GTG) with 0.5x TBE buffer. A band of the predicted size was excised and the DNA was purified from the gel with a QIAQUICK column (Qiagen) according the manufacturer's instructions.

The excised, restriction digested zsig10 DNA was subcloned into plasmid pZP9 which had been cut with Eco RI and Xho I. Plasmid pZP9 (deposited at the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD) is a mammalian expression vector containing an expression cassette having the mouse metallothionein-1 promoter, multiple restriction sites for insertion of coding sequences, a stop codon and a human growth hormone terminator. The plasmid also has an E. coli origin of replication, a mammalian selectable marker expression unit SV40 promoter, enhancer and origin replication, a DHFR gene and the SV40 terminator.

zSIG10CF/pZP9

A 533 bp PCR generated ZSIG-10 DNA fragment was created using ZC13436 (SEQ ID NO:36) and ZC13435 (SEO ID

WO 98/41627 PCT/US98/05251

68

NO:37) as PCR primers and the template described The PCR reaction was incubated at 94°C Example 1 above. for 5 minutes, and then run for 10 cycles of 30 seconds at 94°C and 2 minutes at 75°C, followed by 15 cycles at 94°C for 30 seconds and 62°C for 2 minutes. The resultant PCR product was then run on a 0.9% GTG/TBE agarose gel with 1x TBE buffer. A band of the predicted size was excised and the DNA was purified from the gel with a QIAQUICK column (Qiagen) according the manufacturer's instructions. DNA was digested with the restriction enzymes (Boehringer Mannheim) and Eco RI (Gibco BRL), followed by phenol/chloroform/isoamyl alcohol extraction and ETOH/glycogen precipitated.

The excised, restriction digested zsig10 DNA was subcloned into plasmid CF/pZP9 which had been cut with Eco RI and Bam HI. The zSIG10/CFpZP9 expression vector uses the native zSIG10 signal peptide, and the FLAG epitope ID NO:35) is attached at the C-terminus as Plasmid CF/pZP9 purification aid. (deposited at American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD) is a mammalian expression vector containing an expression cassette having the mouse metallothionein-1 promoter, multiple restriction sites for insertion of coding sequences, a sequence encoding the FLAG tag (SEQ ID stop codon and human а growth terminator. The plasmid also has an E. coli origin of replication, a mammalian selectable marker expression unit having an SV40 promoter, enhancer and origin replication, a DHFR gene and the SV40 terminator.

30

35

10

15

20

25

zSIG10NF/pZP9

A 474 bp PCR generated zSIG10/NF DNA fragment was created in accordance with the procedure set forth above using Z13441 (SEQ ID NO:38) and ZC13442 (SEQ ID NO:39) as PCR primers. The purified PCR fragment was digested with the restriction enzymes Bam HI (Boehringer

10

15

20

25

30

35

Mannheim) and Xho I (Gibco BRL), followed by phenol/chloroform/isoamyl alcohol extraction and ETOH/glycogen precipitation.

The excised and restriction digested zSIG10 DNA was subcloned into plasmid NF/pZP9 which had been cut with Bam HI and Xho I. The zSIG10/NFpZP9 expression vector incorporates the TPA leader and attaches the FLAG tag (SEQ ID NO:35) to the N-terminal of the zsig10 polypeptidepolynucleotide sequence. Plasmid encoding (deposited at the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD) is a mammalian expression vector containing an expression cassette having the mouse metallothionein-1 promoter, a TPA leader peptide followed by the sequence encoding the FLAG tag (SEQ ID NO:35), multiple restriction sites for insertion of sequences, and a human growth hormone terminator. plasmid also contains an E. coli origin of replication, a mammalian selectable marker expression unit having an SV40 promoter, enhancer and origin of replication, a DHFR gene and the SV40 terminator.

construct, For the untagged zsigl0 approximately 100 ng of the zsig10 insert and 100 ng of the Eco RI/Not I digested pZP9 vector were ligated as described for the tagged constructs. For the N- and Ctagged constructs, about 10 ng of the restriction digested ng of the corresponding vectors were inserts and 10 ligated at room temperature for 4 hours. One microliter of each ligation reaction was independently electroporated into DH10B competent cells (GIBCO BRL, Gaithersburg, MD) according to manufacturer's direction and plated onto LB ampicillin, and incubated plates containing 50 mg/ml overnight. Colonies were screened by PCR as described For zsig10/pZP9 screens the primers were ZC6583 above. NO:40) and ZC5020 (SEQ ID NO:41), (SEQ ID zSIG10CF/pZP9 screens the primers were, ZC13435 NO: 37) and ZC13436 (SEQ ID NO:36) and for zSIG10NF/pZP9

10

screens the primers were ZC13442 (SEQ ID NO:39) and ZC13441 (SEQ ID NO:38). The insert sequence of positive clones, 950 bp for zsig10 untagged, 474 bp fragment for zSIG10NF and a 533 bp fragment for zSIG10/CF were verified by sequence analysis. A large scale plasmid preparation was done using a QIAGEN Maxi prep kit (Qiagen) according to manufacturer's instructions.

Example 5 Expression of zsig10NF/pZP9, zsig10CF/pZP9 and zsig10/pZP9

BHK 570 cells (ATCC NO: CRL-10314) were plated in 10 cm tissue culture dishes and allowed to grow to approximately 50 to 70% confluency overnight at 37°C, 5% CO, in DMEM/FBS media (DMEM, Gibco/BRL High Glucose, 15 (Gibco BRL, Gaithersburg, MD), 5% fetal bovine (Hyclone, Logan, UT), 1 µM L-glutamine (JRH Biosciences, Lenexa, KS), 1 μ M sodium pyruvate (Gibco BRL)). The cells were then transfected with the plasmid zsig10NF/pZP9 (Nterminal FLAG tag), zsig10CF/pZP9 (C-terminal FLAG tag), 20 or zsig10/pZP9 (untagged), using Lipofectamine™ (Gibco BRL), in serum free (SF) media formulation (DMEM, 10 mg/ml transferrin, 5 mg/ml insulin, 2 mg/ml fetuin, glutamine and 1% sodium pyruvate). Sixteen micrograms of μg of zsig10CF/pZP9 25 zsig10NF/pZP9, 16 and zsiq10/pZP9 were separately diluted into 15 ml tubes to a total final volume of 640 µl with SF media. In separate tubes, 35 µl of Lipofectamine (Gibco BRL) was mixed with 605 μl of SF medium. The LipofectamineTM mix was added to 30 the DNA mix and allowed to incubate approximately 30 minutes at room temperature. Five milliliters of SF media was added to the DNA:Lipofectamine TM mixture. plates of cells were rinsed once with 5 ml of SF media, aspirated, and the DNA:Lipofectamine™ mixture was added. The cells were incubated at 37°C for five hours, then 6.4 35 ml of DMEM/10% FBS, 1% PSN media was added to each plate. The plates were incubated at 37°C overnight

20

25

30

35

DNA:Lipofectamine mixture was replaced with fresh 5% FBS/DMEM media the next day. On day 2 post-transfection, the cells were split into the selection media (DMEM/FBS media from above with the addition of 1 μ M methotrexate (Sigma Chemical Co., St. Louis, Mo.)) in 150 mm plates at 1:10, 1:20 and 1:50. The cells were refed at day 5 post-transfection with fresh selection media. Approximately 10 days post-transfection, two 150 mm culture dishes of methotrexate resistant colonies from each transfection were trypsinized and the cells were pooled and plated into a T-162 flask and transferred to large scale culture.

Example 6

15 <u>Large Scale Culture of zsig10 FLAG-tagged and untagged</u> <u>polypeptides</u>

One T-162 flask, containing confluent cells expressing zsig10/NF and one containing confluent cells expressing zsig10-untagged, obtained from the expression procedure described above, were expanded into six T-162 flasks. One of the six resulting flasks was used to freeze down four cryovials, and the other five flasks were used to generate a Nunc cell factory.

The cells from the five T-165 flasks were used to seed a Nunc cell factory (10 layers, commercially available from VWR). Briefly, the cells from the T-162 flasks described above containing cells expressing zsig10-NF were detached using trypsin, pooled, and added to 1.5 liters ESTEP1 media (668.7g/50L DMEM (Gibco), 5.5 g/50L pyruvic acid, sodium salt 96% (Mallinckrodt), 185.0 g/50L NaHCO₃ (Mallinkrodt), 5.0 mg/ml and 25 ml/50L insulin (JRH Biosciences), 10.0 mg/ml and 25 ml/50L transferrin (JRH Biosciences), 2.5L/50L fetal bovine serum (characterized) (Hyclone), 1 μ M MTX, with pH adjusted to 7.05 +/- 0.05) prewarmed to 37°C. The cells from the T-162 flasks described above containing cells expressing untagged zsig10 were detached using trypsin, pooled, and added to

1.5 liters of SL6V2 media (13.3 g/l DMEM, 0.11 g/l Napyruvate, 3.7 g/l NaHCO₃, 5.96 g/l HEPES (JRH Biosciences, Lenexa, KS) and 50 ml/l FBS (Hyclone, Logan, UT), pH 7.05). The media containing cells was then poured into Nunc cell factories via a funnel. The cell factories were placed in a $37^{\circ}C/5.0\%$ CO2 incubator.

At 80-100% confluence, a visual contamination test (phenol red color change) was performed on the Nunc cell factories. Since no contamination was observed, supernatant from the confluent factories was poured into a small harvest container, sampled and discarded. adherent cells were then washed once with 400 ml PBS. detach the cells from the factories, 100 mls of trypsin was added to each and removed and the cells were then incubated for 5 to 10 minutes in the residual trypsin. The zsig10NF cells were collected following two, 200 ml washes of ESTEP1 media, the untagged zsig10 cells were collected in ESTEP Form, 5%HIA-FBS/DMEM media. construct, 40 ml of collected cells were then used to seed each of ten Nunc cell factories. For zsig10-NF cells, to each of ten ESTEP1 media-containing bottles (1.5 liters each, at 37°C) was added 40 mls of collected cells. 1.5 liter bottle was then used to fill one Nunc factory. For untagged zsig10 cells, ESTEP FORM. 5%FBS/DMEM media Each cell factory was placed in a 37°C/5.0% CO2 was used. incubator.

At 80-90% confluence, a visual contamination test (phenol red color change) was performed on the Nunc cell factories. Since no contamination was observed, supernatant from the confluent factories were poured into a small harvest container, sampled and discarded. Cells were then washed once with 400 ml PBS. To the factories containing zsig10-NF cells, 1.5 liters of ESTEP2 media (668.7g/50L DMEM (Gibco), 5.5 g/50L pyruvic acid, sodium salt 96% (Mallinckrodt), 185.0 g/50L NaHCO₃ (Mallinkrodt), 5.0 mg/ml, 25 ml/50L insulin, 10.0 mg/ml and 25 ml/50L

10

15

20

25

30

35

transferrin) was added to each Nunc cell factory. To factories containing untagged zsig10 cells, 1.5 liters of serum free ESTEP FORM. media was added. The cell factories were incubated at $37^{\circ}\text{C}/5.0\%$ CO₂.

At approximately 76 hours (zsig10/NF, 15L was 5 obtained) and 65 hours (untagged zsig10, 15L was obtained), a visual contamination test (phenol red color performed on the Nunc cell factories. change) was Supernatant from each factory was poured into small Fresh serum-free media (1.5 liters) harvest containers. 10 was poured into each Nunc cell factory, and the factories were incubated at 37°C/5.0% CO₂. One ml of supernatant harvest was transferred to a microscope slide, subjected to microscopic analysis for contamination. contents of the small harvest containers for each factory 15 were pooled and immediately filtered. A second harvest was then performed, substantially as described above at 40 L were obtained) hours (zsig10/NF, and 52 15 (untagged zsigl0, L were obtained) and the cell 15 were discarded thereafter. An 20 factories aseptically assembled filter train apparatus was used for aseptic filtration of the harvest supernatant (conditioned media). Assembly was a follows: tubing was wire-tied to an Opti-Cap filter (Millipore Corp., Bedford, MA) and a Gelman Supercap 50 filter (Gelman Sciences, Ann Arbor; MI). 25 Supercap 50 filter was also attached to a sterile capped container located in a hood; tubing located upstream of Millipore Opti-cap filter was inserted peristaltic pump; and the free end of the tubing was placed in the large harvest container. The peristaltic 30 pump was run between 200 and 300 rpm, until all of the conditioned media passed through the 0.22 µm final filter into a sterile collection container. The filtrate was placed in a 4 °C cold room pending purification.

Conditioned media containing zsigl0/NF and untagged zsigl0 was collected for concentration at various

35

10

15

20

25

30

35

time points (at the 5 T-162 flask stage; 1 factory, fetal bovine serum media; 10 factories, fetal bovine media; 10 factories, serum free media and a second 10 factory, serum free media time point). Since the expected mass of the protein was in excess of 8 kDA, Millipore 5 kDa cut off concentrators were used. The starting volume for each sample was 15 ml, which was concentrated to a final volume of 1.5 ml. The concentrators were spun at 4°C in Beckman tabletop centrifuge at 2000 x g (3000 rpm) for 40 minutes. The concentrate was transferred to a 1.5 ml non-stick microfuge tube, and the volume was adjusted to 1 media to using flow through achieve а 10xml To 'sterilize the media. the 10xconcentration. concentrate was split into two Costar Spin-X tubes, and the tubes were spun at 8000 x g for two minutes in a Eppendorf 5415 microfuge (VWR, Seattle, WA).

Example 7

Construction of ZSIG10 Amino Terminal Glu-Glu Tagged and Carboxy Terminal Glu-Glu Tagged Yeast Expression Vectors

Pichia methanolica Expression of zsiq10 in utilizes the expression system described in co-assigned WIPO publication WO 97/17450. An expression plasmid containing all or part of a polynucleotide encoding zsig10 constructed via homologous recombination. expression vector was built from pCZR204 to express Cterminal Glu-Glu-tagged (CEE) zsig10 polypeptides. pCZR204 vector contains the AUG1 promoter, followed by the αFpp leader sequence, followed by a blunt-ended Sma I restriction site, a carboxy-terminal peptide tag (Glu-Glu), a translational STOP codon, followed by the AUG1 terminator, the ADE2 selectable marker, and finally the AUG1 3' untranslated region. Also included in this vector are the URA3 and CEN-ARS sequences required for selection and replication in S. cerevisiae, and the AmpR and colEl

. .

ori sequences required for selection and replication in *E. coli*. A second expression vector was built from zCZR191 to express a N-terminal Glu-Glu-tagged (NEE) zsig10 polypeptides. The zCZR191 expression vector is as described above, having an amino terminal Glu-Glu tag. The zsig10 sequence inserted into these vectors begins at residue 21 (Arg) of the zsig10 amino acid sequence (SEQ ID NO:2).

For each construct two linkers are prepared, and along with zsig10, were homologously recombined into the yeast expression vectors described above. The untagged Nterminal linker (SEQ ID NO:29) spans 70 base pairs of the alpha factor prepro (aFpp) coding sequence on one end and joins it to the 70 base pairs of the amino-terminus coding sequence from the mature zsiq10 sequence on the other. The NEE-tagged linker (SEQ ID NO:19) joins Glu-Glu tag (SEO ID NO:42) between the aFpp coding sequence and the The untagged C-terminal linker (SEQ ID zsigl0 sequence. NO:24) spans about 70 base pairs of carboxy terminus coding sequence of the zsig10 on one end with 70 base pairs of AUG1 terminator sequence. The CEE-tagged linker (SEQ ID NO:34) inserts the Glu-Glu tag (SEQ ID NO:42) the C-terminal end of zsig10 and the AUG1 terminator region.

25

30

10

15

20

Construction of the NEE-tagged-Zsig10 plasmid

An NEE-tagged-zsig10 plasmid was made by homologously recombining 100 ng of the SmaI digested pCZR190 acceptor vector, 1 μ g of Eco RI-Xho I zsig10 cDNA donor fragment, 1 μ g NEE-tagged-zsig10 linker (SEQ ID NO:19) and 1 μ g of C-terminal untagged linker (SEQ ID NO:24) in S. cerevisiae.

The NEE-zsig10 linker was synthesized by a PCR reaction. To a final reaction volume of 100 µl was added 15 1 pmol each of linkers, ZC13,731 (SEQ ID NO:16) and ZC13,729 (SEQ ID NO:17), and 100 pmol of each primer ZC13,497 (SEQ ID NO:15) and ZC13,730 (SEQ ID NO:18), 10 µl

15 '

20

25

30

of 10X PCR buffer (Boehringer Mannheim), 1 μ l Pwo Polymerase (Boehringer Mannheim), 10 μ l of 0.25 mM nucleotide triphosphate mix (Perkin Elmer) and dH₂O. The PCR reaction was run 10 cycles at 30 seconds at 94°C, 1 minute at 50°C and 1 minute at 72°C, concluded with a 6 minute extension at 72°. The resulting 141 bp double stranded, NEE-tagged linker is disclosed in SEQ ID NO:19.

The C-terminal untagged zsig10 linker was made via a PCR reaction as described using oligonucleotides ZC13,734 (SEQ ID NO:23), ZC13,732 (SEQ ID NO:20), ZC13,728 (SEQ ID NO:21) and ZC13,733 (SEQ ID NO:22). The resulting 129 bp double stranded, C-terminal untagged linker is disclosed in SEQ ID NO:24.

Construction of the CEE-zsig10 plasmid

A CEE-zsig10 plasmid was made by homologously recombining 100 ng of Sma I digested pCZR204 acceptor vector, the 1 μ g of Eco RI-Xho I zsig10 cDNA donor fragment, 1 μ g of N-terminal untagged zsig10 linker (SEQ ID NO:29) and 1 μ g of CEE-tagged linker (SEQ ID NO:34) in a S. cerevisiae.

The N-terminal untagged zsig10 linker was made via a PCR reaction as described above using oligonucleotides ZC14,822 (SEQ ID NO:25), ZC14,821 (SEQ ID NO:26), ZC14,832 (SEQ ID NO:27) and ZC14,833 (SEQ ID NO:28). The resulting 147 bp double stranded, N-terminal untagged linker is disclosed in SEQ ID NO:29.

The CEE-tagged linker was made via a PCR reaction as described above using ZC14,834 (SEQ ID NO:30), ZC15,957 (SEQ ID NO:31), ZC15,632 (SEQ ID NO:32) and ZC 14,820 (SEQ ID NO:33). The resulting approximately 1145 bp double stranded, CEE-tagged linker is disclosed in SEQ ID NO:34.

One hundred microliters of competent yeast cells (S. cerevisiae) was independently combined with 10 μl of the various DNA mixtures from above and transferred to a

10

15

20

25

30

35

0.2 cm electroporation cuvette. The yeast/DNA mixtures were electropulsed at 0.75 kV (5 kV/cm), ∞ ohms, 25 μF . To each cuvette was added 600 μl of 1.2 M sorbitol and the yeast was plated in two 300 μl aliquots onto two URA D plates and incubated at 30°C.

After about 48 hours the Ura+ yeast transformants from a single plate were resuspended in 2.5 ml $\rm H_2O$ and spun briefly to pellet the yeast cells. The cell pellet was resuspended in 1 ml of lysis buffer (2% Triton X-100, 1% SDS, 100 mM NaCl, 10 mM Tris, pH 8.0, 1 mM EDTA). Five hundred microliters of the lysis mixture was added to an Eppendorf tube containing 300 μl acid washed glass beads and 200 μl phenol-chloroform, vortexed for 1 minute intervals two or three times, followed by a 5 minute spin in a Eppendorf centrifuge as maximum speed. Three hundred microliters of the aqueous phase was transferred to a fresh tube and the DNA precipitated with 600 μl ethanol (EtOH), followed by centrifugation for 10 minutes at $4^{\rm OC}$. The DNA pellet was resuspended in 100 μl $\rm H_2O$.

Transformation of electrocompetent $E.\ coli$ cells (DH10B, Gibco BRL) was done with 0.5-2 μ l yeast DNA prep and 40 ul of DH10B cells. The cells were electropulsed at 2.0 kV, 25 μ F and 400 ohms. Following electroporation, 1 ml SOC (2% BactoTM Tryptone (Difco, Detroit, MI), 0.5% yeast extract (Difco), 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl₂, 10 mM MgSO₄, 20 mM glucose) was plated in 250 μ l aliquots on four LB AMP plates (LB broth (Lennox), 1.8% BactoTM Agar (Difco), 100 mg/L Ampicillin).

Individual clones harboring the correct expression construct for NEE tagged zsig10 were identified by restriction digest to verify the presence of the zsig10 insert and to confirm that the various DNA sequences had been joined correctly to one another. For CEE-tagged zsig10, correct expression constructs were identified by PCR as described above using oligos ZC14834 (SEQ ID NO:30) and ZC14820 (SEQ ID NO:33) which gave a 145 bp fragment

and oligos 14822 (SEQ ID NO:25) and ZC14833 (SEQ ID NO:28) which gave a 147 bp fragment. The insert of positive clones were subjected to sequence analysis. Larger scale plasmid DNA was isolated using the Qiagen Maxi (Qiagen) according to manufacturer's instruction and the 5 DNA was digested with Not I to liberate the Pichia-Zsig10 expression cassette from the vector backbone. The Not Irestriction digested DNA fragment was then transformed into the Pichia methanolica expression host, PMAD16. was done by mixing 100 µl of prepared competent PMAD16 10 cells with 10 µg of Not I restriction digested zsig10 and transferred to a 0.2 cm electroporation cuvette. The yeast/DNA mixture was electropulsed at 0.75 kV, 25 μF, To the cuvette was added 1 ml of 1X Yeast infinite ohms. Nitrogen Base and 500 µl aliquots were plated onto two ADE 15 (0.056% -Ade -Trp -Thr powder, 0.67% yeast nitrogen acids, D-glucose, without amino 2% 0.5% tryptophan, threonine solution, and 18.22% D-sorbitol) plates for selection and incubated at 30°C. The resulting NEE-tagged-zsig10 plasmid containing yeast cells 20 the CEE-tagged-zsig10 designated PMAD16::pSDH112-5 and yeast cells were designated plasmid containing The transformed yeast cells were plated PMAD16::pTAP13. on ADE DS plates for selection. Clones were picked and screened via Western blot for high-level Zsig10 expression 25 and subjected to fermentation.

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

30

· 79

SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: ZymoGenetics, Inc. 1201 Eastlake Ave. E

Seattle Washington

USA 98102

- (ii) TITLE OF THE INVENTION: SECRETED ZSIG10 POLYPEPTIDES
- (iii) NUMBER OF SEQUENCES: 42
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: ZymoGenetics
 - (B) STREET: 1201 Eastlake Ave. E.
 - (C) CITY: Seattle
 - (D) STATE: WA
 - (E) COUNTRY: USA
 - (F) ZIP: 98102
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 60/039,631
 - (B) FILING DATE: March 19, 1997
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Lingenfelter, Susan E
 - (B) REGISTRATION NUMBER: 41,156
 - (C) REFERENCE/DOCKET NUMBER: 97-06PC
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 206-442-6675

(B) TELEFAX: 206-442-6678 (C) TELEX:	
(2) INFORMATION FOR SEQ ID NO:1:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 881 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (ix) FEATURE:	
(A) NAME/KEY: Coding Sequence(B) LOCATION: 63587(D) OTHER INFORMATION:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
GAATTCGGCA CGAGAGCCGC CGACTCACAC AAGGCAGGTG GGTGAGGAAA TCCAGAGT CC ATG GAG AAA ATT CCA GTG TCA GCA TTC TTG CTC CTT GTG GCC CTC Met Glu Lys Ile Pro Val Ser Ala Phe Leu Leu Val Ala Leu 1 5 10 15	TG 60 107
TCC TAC ACT CTG GCC AGA GAT ACC ACA GTC AAA CCT GGA GCC AAA AAG Ser Tyr Thr Leu Ala Arg Asp Thr Thr Val Lys Pro Gly Ala Lys Lys 20 25 30	155
GAC ACA AAG GAC TCT CGA CCC AAA CTG CCC CAG ACC CTC TCC AGA GGT Asp Thr Lys Asp Ser Arg Pro Lys Leu Pro Gln Thr Leu Ser Arg Gly 35 40 45	203
TGG GGT GAC CAA CTC ATC TGG ACT CAG ACA TAT GAA GAA GCT CTA TAT Trp Gly Asp Gln Leu Ile Trp Thr Gln Thr Tyr Glu Glu Ala Leu Tyr 50 55 60	251
AAA TCC AAG ACA AGC AAC AAA CCC TTG ATG ATT ATT CAT CAC TTG GAT Lys Ser Lys Thr Ser Asn Lys Pro Leu Met Ile Ile His His Leu Asp 65 70 75	299
GAG TGC CCA CAC AGT CAA GCT TTA AAG AAA GTG TTT GCT GAA AAT AAA Glu Cys Pro His Ser Gln Ala Leu Lys Lys Val Phe Ala Glu Asn Lys	347

95

85

GAA . Glu																395
GAA Glu																443
ATT Ile																491
AGA Arg																539
TTG Leu 160															TTG T Leu 175	588
AGTG ATGT TGTG	TGAC TACA TGAA	AAC A	GACT(AACT/ CAAT/	GGCT/ ATTT ATTG	AG TO TT TA	GTGG/ AAGA/ ACTA(AAGC/ AAAA(CCAT/	A TAG C AAG A GTG	GTGA/ GTTT GAGC(ACAC TAGA CATG	ACTO AAT ATT	GATT/ TTGG ⁻ TTCT/	AGG TTT (AAA /	TTAT(CAAG` AAAA	AGAAGA GGTTTA TGTACA AAAATA	648 708 768 828
AAIG	i	l GG 1	GGGT	allC	16 1	Π	I CCA/	AA A	4444	AAAA	AAAA		616 1	6AG		881

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 175 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
 (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Glu Lys Ile Pro Val Ser Ala Phe Leu Leu Val Ala Leu Ser Tyr Thr Leu Ala Arg Asp Thr Thr Val Lys Pro Gly Ala Lys Lys Asp 25 Thr Lys Asp Ser Arg Pro Lys Leu Pro Gln Thr Leu Ser Arg Gly Trp Gly Asp Gln Leu Ile Trp Thr Gln Thr Tyr Glu Glu Ala Leu Tyr Lys Ser Lys Thr Ser Asn Lys Pro Leu Met Ile Ile His His Leu Asp Glu 70 75 Cys Pro His Ser Gln Ala Leu Lys Lys Val Phe Ala Glu Asn Lys Glu Ile Gln Lys Leu Ala Glu Gln Phe Val Leu Leu Asn Leu Val Tyr Glu 105 Thr Thr Asp Lys His Leu Ser Pro Asp Gly Gln Tyr Val Pro Arg Ile 120 Met Phe Val Asp Pro Ser Leu Thr Val Arg Ala Asp Ile Thr Gly Arg 135 140 Tyr Ser Asn Arg Leu Tyr Ala Tyr Glu Pro Ala Asp Thr Ala Leu Leu 155 Leu Asp Asn Met Lys Lys Ala Leu Lys Leu Leu Lys Thr Glu Leu 165

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 173 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met Gln Thr Gly Leu Ser Leu Ala Cys Leu Val Leu Leu Cys Ser Val 1 5 10 15

Leu Gly Glu Ala Ala Leu Arg Lys Pro Lys Arg Gln Ala Ala Ala Thr 20 25 30

Asp Thr Asn Gly Ala Ala Lys Ser Glu Pro Ala Pro Val Lys Thr Lys 40 45

Gly Leu Lys Thr Leu Asp Arg Gly Trp Gly Glu Asp Ile Glu Trp Ala 50 55 60

Gln Thr Tyr Glu Glu Gly Leu Ala Lys Ala Arg Glu Asn Asn Lys Pro 65 70 75

Leu Met Val Ile His His Leu Glu Asp Cys Pro Tyr Ser Ile Ala Leu Lys Lys Ala Phe Val Ala Asp Lys Met Ala Gln Lys Leu Ala Gln Glu 105 100 Asp Phe Ile Met Leu Asn Leu Val His Pro Val Ala Asp Glu Asn Gln 120 125 Ser Pro Asp Gly His Tyr Val Pro Lys Gly Ile Phe Ile Asp Pro Ser 135 140 Leu Thr Val Arg Ser Asp Leu Lys Gly Arg Tyr Gly Asn Lys Leu Tyr 155 150 Ala Tyr Asp Ala Asp Asp Ile Pro Glu Leu Ile Thr Thr 170 165

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 183 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Gln Ala Gly Leu Ser Leu Val Cys Leu Val Leu Leu Cys Ser Ala Leu Gly Glu Ala Val Leu Lys Lys Pro Lys Lys Gln Ala Gly Thr Thr 25 30 Asp Thr Lys Thr Asp Gln Glu Pro Ala Pro Ile Lys Thr Lys Gly Leu Lys Thr Leu Asp Arq Gly Trp Gly Glu Ser Ile Glu Trp Val Gln Thr Tyr Glu Glu Gly Leu Ala Lys Ala Arg Glu Asn Asn Lys Pro Leu Met 75 Val Ile His His Leu Glu Asp Cys Pro Tyr Ser Ile Ala Leu Lys Lys Ala Phe Val Ala Asp Arg Met Ala Gln Lys Leu Ala Gln Glu Asp Phe 105 Ile Met Leu Asn Leu Val His Pro Val Ala Asp Glu Asn Gln Ser Pro 120 125 115 Asp Gly His Tyr Val Pro Arg Val Ile Phe Ile Asp Pro Ser Leu Thr 135 130 Val Arg Ser Asp Leu Lys Gly Arg Tyr Gly Asn Lys Met Tyr Ala Tyr 155 160 145 150

Asp Ala Asp Asp Ile Pro Glu Leu Ile Thr Asn Met Lys Lys Ala Lys
165 170 175

Ser Phe Leu Lys Thr Glu Leu
180

- (2) INFORMATION FOR SEQ ID NO:5:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Ala Phe Leu Leu Val Ala Leu Ser Tyr Thr Leu Ala Arg Asp 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:6:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: ZC1168
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GTGTCCTTTT TGGCTCCAGG TTTGACTGTG GTATCTCTGG

40

- (2) INFORMATION FOR SEQ ID NO:7:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other

(1	vii) IMMEDIATE SOURCE: (B) CLONE: ZC12253	
()	xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
GGAGGACA	AAA CTGCTCTGCC	20
	(2) INFORMATION FOR SEQ ID NO:8:	
(-	 i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
•	ii) MOLECULE TYPE: Other vii) IMMEDIATE SOURCE: (B) CLONE: ZC12241	
(:	xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
GTTTGTC	CTC CTCAATCTGG	20
	(2) INFORMATION FOR SEQ ID NO:9:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 18 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	•
	ii) MOLECULE TYPE: Other vii) IMMEDIATE SOURCE: (B) CLONE: ZC976	
(:	xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
CGTTGTA	AAA CGACGGCC	18
	(2) INFORMATION FOR SEQ ID NO:10:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	

· 86

(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other (vii) IMMEDIATE SOURCE: (B) CLONE: ZC694	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
TAATACGACT CACTATAGGG	20
(2) INFORMATION FOR SEQ ID NO:11:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other (vii) IMMEDIATE SOURCE: (B) CLONE: ZC6768	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
GCAATTAACC CTCACTAAAG GGAAC	25
(2) INFORMATION FOR SEQ ID NO:12:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 18 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
<pre>(ii) MOLECULE TYPE: Other (vii) IMMEDIATE SOURCE: (B) CLONE: ZC13173</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
AAATTCCAGT GTCAGCAT	18
(2) INFORMATION FOR SEQ ID NO:13:	
(i) SECULENCE CHARACTERISTICS:	

(A)	LENGTH:	18	bas	se	pai	r
(B)	TYPE: nu	uc l e	eic	ac	cid	
(C)	STRANDE	ONES	SS:	si	ngl	e

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Other
(vii) IMMEDIATE SOURCE:

(B) CLONE: ZC13172

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

AGAGTCCTTT GTGTCCTT

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 525 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

ATGGARAARA	THCCNGTNWS	NGCNTTYYTN	YTNYTNGTNG	CNYTNWSNTA	YACNYTNGCN	60
MGNGAYACNA	CNGTNAARCC	NGGNGCNAAR	AARGAYACNA	ARGAYWSNMG	NCCNAARYTN	120
CCNCARACNY	TNWSNMGNGG	NTGGGGNGAY.	CARYTNATHT	GGACNCARAC	NTAYGARGAR	180
GCNYTNTAYA	ARWSNAARAC	NWSNAAYAAR	CCNYTNATGA	THATHCAYCA	YYTNGAYGAR	240
TGYCCNCAYW	SNCARGCNYT	NAARAARGTN	TTYGCNGARA	AYAARGARAT	HCARAARYTN	300
GCNGARCART	TYGTNYTNYT	NAAYYTNGTN	TAYGARACNA	CNGAYAARCA	YYTNWSNCCN	360
GAYGGNCART	AYGTNCCNMG	NATHATGTTY	GTNGAYCCNW	SNYTNACNGT	NMGNGCNGAY	420
ATHACNGGNM	GNTAYWSNAA	YMGNYTNTAY	GCNTAYGARC	CNGCNGAYAC	NGCNYTNYTN	480
YTNGAYAAYA	TGAARAARGC	NYTNAARYTN	YTNAARACNG	ARYTN		525

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 44 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE:

(B) CLONE: ZC13497	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
AGCATTGCTG CTAAAGAAGA AGGTGTAAGC TTGGACAAGA GAGA	44
(2) INFORMATION FOR SEQ ID NO:16:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 51 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (B) CLONE: ZC13731	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
GGTGTAAGCT TGGACAAGAG AGAAGAAGAA TACATGCCAA TGGAAGGTGG T	. 51
(2) INFORMATION FOR SEQ ID NO:17:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 63 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (B) CLONE: ZC13729	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
TGTGTCCTTT TTGGCTCCAG GTTTGACTGT GGTATCTCTA CCACCTTCCA TTGGCATGTA	60 63
(2) INFORMATION FOR SEQ ID NO:18:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 53 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	

. 89

(D) TOPOLOGY: Tinear	
<pre>(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (B) CLONE: ZC13730</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
GGTCTGGGGC AGTTTGGGTC GAGAGTCCTT TGTGTCCTTT TTGGCTCCAG GTT	53
(2) INFORMATION FOR SEQ ID NO:19:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 141 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
AGCATTGCTG CTAAAGAAGA AGGTGTAAGC TTGGACAAGA GAGAAGAAGA ATACATGCCA ATGGAAGGTG GTAGAGATAC CACAGTCAAA CCTGGAGCCA AAAAGGACAC AAAGGACTCT CGACCCAAAC TGCCCCAGAC C	60 120 141
(2) INFORMATION FOR SEQ ID NO:20:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 54 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (B) CLONE: ZC13732	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
CCTGCAGATA CAGCTCTGTT GCTTGACAAC ATGAAGAAAG CTCTCAAGTT GCTG	54
(2) INFORMATION FOR SEQ ID NO:21:	
(i) SEQUENCE CHARACTERISTICS:	

(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (B) CLONE: ZC13728	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
ATGAAGAAAG CTCTCAAGTT GCTGAAGACT GAATTGTAAT AGTATTCTAG GGCTGCCTGT TTG	60 63
(2) INFORMATION FOR SEQ ID NO:22:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 54 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (B) CLONE: ZC13733	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
TGGCAAACTC TCAAAAATTA TAAAAATATC CAAACAGGCA GCCCTAGAAT ACTA	54
(2) INFORMATION FOR SEQ ID NO:23:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 52 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
<pre>(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (B) CLONE: ZC13734</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
ATCATAGAAG AGAAAAACAT TAGTTGGCAA ACTCTCAAAA ATTATAAAAA TA	52

(2) INFORMATION FOR SEQ 10 NO.24.	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 147 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
CCTGCAGATA CAGCTCTGTT GCTTGACAAC ATGAAGAAAG CTCTCAAGTT GCTGAAGACT GAATTGTAAT AGTATTCTAG GGCTGCCTGT TTGGATATTT TTATAATTTT TGAGAGTTTG CCAACTAATG TTTTTCTCTT CTATGAT	60 120 147
(2) INFORMATION FOR SEQ ID NO:25:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 40 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (B) CLONE: ZC14822	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
ACGGTTTATT GTTTATCAAT ACTACTATTG CTAGCATTGC	40
(2) INFORMATION FOR SEQ ID NO:26:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 62 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE:	

(B) CLONE: ZC14821

- 92

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
TCAATACTAC TATTGCTAGC ATTGCTGCTA AAGAAGAAGG TGTAAGCTTG GACAAGAGAG	60 62
(2) INFORMATION FOR SEQ ID NO:27:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 68 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	·
<pre>(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (B) CLONE: ZC14832</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
CCTTTGTGTC CTTTTTGGCT CCAGGTTTGA CTGTGGTATC TCTTTCTCTC TTGTCCAAGC	60 68
(2) INFORMATION FOR SEQ ID NO:28:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 50 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	·
(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (B) CLONE: ZC14833	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
GGGTCTGGGG CAGTTTGGGT CGAGAGTCCT TTGTGTCCTT TTTGGCTCCA	50
(2) INFORMATION FOR SEQ ID NO:29:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 147 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
ACGGTTTATT GTTTATCAAT ACTACTATTG CTAGCATTGC TGCTAAAGAA GAAGGTGTAA GCTTGGACAA GAGAGAAAGA GATACCACAG TCAAACCTGG AGCCAAAAAG GACACAAAGG ACTCTCGACC CAAACTGCCC CAGACCC	60 120 147
(2) INFORMATION FOR SEQ ID NO:30:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 48 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (B) CLONE: ZC14834	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
ACGAACCTGC AGATACAGCT CTGTTGCTTG ACAACATGAA GAAAGCTC	48
(2) INFORMATION FOR SEQ ID NO:31:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 69 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (B) CLONE: ZC15957	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
TGCTTGACAA CATGAAGAAA GCTCTCAAGT TGCTGAAGAC TGAATTGGGA GGCGAGGAGT ATATGCCTA	60 69
(2) INFORMATION FOR SEQ ID NO:32:	
(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 58 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (B) CLONE: ZC15632	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
AACAGGCAGC CCTAGAATAC TAGGAATTCT ACTCCATAGG CATATACTCC TCGCCTCC	58
(2) INFORMATION FOR SEQ ID NO:33:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 39 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (B) CLONE: ZC14820	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
ATTATAAAAA TATCCAAACA GGCAGCCCTA GAATACTAG	39
(2) INFORMATION FOR SEQ ID NO:34:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 148 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
ACGAACCTGC AGATACAGCT CTGTTGCTTG ACAACATGAA GAAAGCTCTC AAGTTGCTGA AGACTGAATT GGGAGGCGAG GAGTATATGC CTATGGAGTA GAATTCCTAG TATTCTAGGG CTGCCTGTTG TTTGGATATT TTTATAAT	60 120 148

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid.
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

Asp Tyr Lys Asp Asp Asp Lys 1 5

- (2) INFORMATION FOR SEQ ID NO:36:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 25 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: ZC13436
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

GCGCGAATTC ATGGAGAAAA TTCCA

25

- (2) INFORMATION FOR SEQ ID NO:37:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 25 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: ZC13435
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

VSDOCID: <WO_____9841627A1 I >

CGCGGGATCC CAATTCAGTC TTCAG	25
(2) INFORMATION FOR SEQ ID NO:38:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
<pre>(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (B) CLONE: ZC13441</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
GCGCGGATCC AGAGATACCA CAGTC	25
(2) INFORMATION FOR SEQ ID NO:39:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (B) CLONE: ZC13442	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
CGCGCTCGAG TTACAATTCA GTCTT	25
(2) INFORMATION FOR SEQ ID NO:40:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 21 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (B) CLONE: ZC6583	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
CACTGGAGTG GCAACTTCCA G	21
(2) INFORMATION FOR SEQ ID NO:41:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 2! base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
<pre>(ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: (B) CLONE: ZC5020</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
GTCCAACGAC TATAAAGAGG G	21
(2) INFORMATION FOR SEQ ID NO:42:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 7 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	• .
(ii) MOLECULE TYPE: peptide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
Glu Glu Tyr Met Pro Met Glu 1 5	

CLAIMS

What is claimed is:

- 1. An isolated polypeptide comprising a sequence of amino acid residues that is at least 80% identical in amino acid sequence to residues 21-175 of SEQ ID NO:2.
- 2. An isolated polypeptide according to claim 1, wherein said polypeptide is at least 90% identical in amino acid sequence to residues 21-175 of SEQ ID NO:2.
- 3. An isolated polypeptide according to claim 1, wherein said polypeptide further comprises a cysteine residue corresponding to amino acid residue 81 of SEQ ID NO:2.
- 4. An isolated polypeptide according to claim 1, wherein said polypeptide further comprises a copper binding site corresponding to amino acid residues 74-78 of SEQ ID NO:2.
- 5. An isolated polypeptide according to claim 1, wherein said polypeptide comprises residues 26-175 of SEQ ID NO:2.
- 6. An isolated polypeptide according to claim 2, wherein said polypeptide comprises residues 21-175 of SEQ ID NO:2.
- 7. An isolated polypeptide according to claim 1, wherein said polypeptide comprises residues 1-175 of SEQ ID NO:2.
- 8. An isolated polypeptide according to claim 1, wherein said polypeptide is at least 1 kb in length.
- 9. An isolated polypeptide according to claim 1, covalently linked to a moiety selected from the group consisting of affinity tags, toxins, radionucleotides, enzymes and fluorophores.

- 10. An isolated polypeptide according to claim 9, wherein said moiety is an affinity tag selected from the group consisting of polyhistidine, FLAG, Glu-Glu, glutathione S transferase and an immunoglobulin heavy chain constant region.
- 11. An isolated polypeptide according to claim 10 further comprising a proteolytic cleavage site between said sequence of amino acid residues and said affinity tag.
- 12. A DNA construct encoding a polypeptide fusion, said fusion comprising a secretory signal sequence having the amino acid sequence of amino acid residues 1-20 of SEQ ID NO:2, wherein said secretory signal sequence is operably linked to an additional polypeptide.
- 13. An expression vector comprising the following operably linked elements:
 - a transcription promoter;
- a DNA segment encoding a polypeptide comprising a sequence of amino acid residues that is at least 80% identical in amino acid sequence to residues 21-175 of SEQ ID NO:2; and
 - a transcriptional terminator.
- 14. An expression vector according to claim 13, wherein said DNA segment encodes a polypeptide is at least 90% identical in amino acid sequence to residues 21-175 of SEQ ID NO:2.
- 15. An expression vector according to claim 13, wherein said DNA segment encodes a polypeptide further comprising a cysteine residue corresponding to amino acid residue 81 of SEQ ID NO:2.
- 16. An expression vector according to claim 13, wherein said DNA segment encodes a polypeptide further

comprising a cooper binding site corresponding to amino acid residues 74-78 of SEQ ID NO:2.

- 17. An expression vector according to claim 13, wherein said polypeptide encoded by said DNA segment comprises residues 26-175 of SEQ ID NO:2.
- 18. An expression vector according to claim 13, wherein said polypeptide encoded by said DNA segment comprises residues 21-175 of SEQ ID NO:2.
- 19. An expression vector according to claim 13, wherein said polypeptide encoded by said DNA segment comprises residues 1-175 of SEQ ID NO:2.
- 20. An expression vector according to claim 13, wherein said polypeptide encoded by said DNA segment is at least 1 kb in length.
- 21. An expression vector according to claim 13, wherein said DNA segment encodes a polypeptide covalently linked to an affinity tag selected from the group consisting of polyhistidine, FLAG, Glu-Glu, glutathione S transferase and an immunoglobulin heavy chain constant region.
- 22. An expression vector according to claim 13 wherein said DNA further encodes a secretory signal sequence operably linked to said polypeptide.
- 23. An expression vector according the claim 22, wherein said DNA encodes the secretory signal sequence having the amino acid sequence of residues 1-20 of SEQ ID NO:2.
- 24. A cultured cell into which has been introduced an expression vector according to claim 13, wherein said cell expresses said polypeptide encoded by said DNA segment.

- 25. A method of producing a protein comprising:
 culturing a cell into which has been introduced an
 expression vector according to claim 13, whereby said cell
 expresses said protein encoded by said DNA segment; and
 recovering said expressed protein.
- 26. A pharmaceutical composition comprising a polypeptide according to claim 1 in combination with a pharmaceutically acceptable vehicle.
- 27. An antibody that specifically binds to an epitope of a polypeptide according to claim 1.
- 28. A binding protein that specifically binds to an epitope of a polypeptide according to claim 1.
- 29. An isolated polynucleotide encoding a polypeptide comprising a sequence of amino acid residues that is at least 80% identical in amino acid sequence to residues 21-175 of SEQ ID NO:2.
- 30. An isolated polynucleotide according to claim 29, wherein said polypeptide is at least 90% identical in amino acid sequence to residues 21-175 of SEQ ID NO:2.
- 31. An isolated polynucleotide according to claim 29, wherein said polypeptide further comprises a cysteine residue corresponding to amino acid residue 81 of SEQ ID NO:2.
- 32. An isolated polynucleotide according to claim 29, wherein said polypeptide further comprises a copper binding site corresponding to amino acid residues 74-78 of SEQ ID NO:2.

- 33. An isolated polynucleotide according to claim 29, wherein said polypeptide comprises amino acid residues 26-175 of SEQ ID NO:2.
- 34. An isolated polynucleotide according to claim 29, wherein said polypeptide comprises amino acid residues 21-175 of SEQ ID NO:2.
- 35. An isolated polynucleotide according to claim 29, wherein said polypeptide comprises amino acid residues 1-175 of SEQ ID NO:2.
- 36. An isolated polynucleotide according to claim 29, wherein said polypeptide is approximately 1 kb in length.
- 37. An isolated polynucleotide according to claim 29, wherein said polynucleotide is selected from the group consisting of,
- a) a sequence of nucleotides from nucleotide 138 to nucleotide 587 of SEQ ID NO:1;
- b) a sequence of nucleotides from nucleotide 123 to nucleotide 587 of SEQ ID NO:2;
- c) a sequence of nucleotides from nucleotide 63 to nucleotide 587 of SEQ ID NO:2;
 - d) allelic variants of a), b), or c); and
- e) nucleotide sequences complementary to a), b),c) or d).
- 38. An isolated polynucleotide according to claim 29, wherein said polynucleotide is from 742 to 881 nucleotides in length.
- 39. An isolated polynucleotide according to claim 29 comprising nucleotide 1 to nucleotide 525 of SEQ ID NO:14.

WO 98/41627

- 40. An isolated polynucleotide according to claim 29, wherein said polynucleotide is DNA.
- 41. An oligonucleotide probe or primer comprising 14 contiguous nucleotides of a polynucleotide of SEQ ID NO:14 or a sequence complementary to SEQ ID NO:14.
- 42. A method for detecting a genetic abnormality in a patient, comprising:

obtaining a genetic sample from a patient;

incubating the genetic sample with a polynucleotide comprising at least 14 contiguous nucleotides of SEQ ID NO:1 or the complement of SEQ ID NO:1, under conditions wherein said polynucleotide will hybridize to complementary polynucleotide sequence, to produce a first reaction product;

comparing said first reaction product to a control reaction product, wherein a difference between said first reaction product and said control reaction product is indicative of a genetic abnormality in the patient.

43. A method for detecting zsig10 polypeptides comprising:

exposing a polypeptide containing sample to an antibody attached to a solid support, wherein said antibody binds to an epitope of a zsig10 polypeptide;

washing said immobilized antibody-polypeptide to remove unbound contaminants;

exposing the immobilized antibody-polypeptide to a second antibody directed to a second epitope of a zsig10 polypeptide, wherein the second antibody is associated with a detectable label; and

detecting the detectable label.

1/2

Zsig10 Domains

Fig. 1

2/2

	1 10	20	30		40
x1u76752	MQAGLSLVCL	VLLCSALGEA	VLKKPKKQAG 30	TTDTKTDQ	EPAPIKTKGL
x1u82110	MQTGLSLACL	VLLCSVLGEA		ATDTNGAAKS	EPAPVKTKGL
Zsig10			LARDTTVK.P		
	50	60	70	80	90
x1u76752			LAKARENNKP 80		PYSIALKKAF 100
x1u82110	KTLDRGWGED	IEWAQTYEEG	LAKARENNKP 70	LMVIHHLEDC	
Zsig10			LYKSKTSNKP		
	100	110	120	130	140
x1u76752	VADRMAQKLA	QEDFIMLNLV	HPVADENQSP	DGHYVPRVIF	IDPSLTVRSD
x1u76752	VADRMAQKLA 110 VADKMAQKLA	QEDFIMLNLV 120 QEDFIMLNLV	HPVADENQSP 130 HPVADENQSP	DGHYVPRVIF 140 DGHYVPKGIF	IDPSLTVRSD 150 IDPSLTVRSD
x1u76752 x1u82110	VADRMAQKLA 110 VADKMAQKLA	QEDFIMLNLV 120 QEDFIMLNLV 110	HPVADENQSP 130 HPVADENQSP 120	DGHYVPRVIF 140 DGHYVPKGIF 130	IDPSLTVRSD 150 IDPSLTVRSD 140
x1u76752 x1u82110	VADRMAQKLA 110 VADKMAQKLA 100	QEDFIMLNLV 120 QEDFIMLNLV 110	HPVADENQSP 130 HPVADENQSP 120	DGHYVPRVIF 140 DGHYVPKGIF 130	IDPSLTVRSD 150 IDPSLTVRSD 140
x1u76752 x1u82110 Zsig10	VADRMAQKLA 110 VADKMAQKLA 100	QEDFIMLNLV 120 QEDFIMLNLV 110 .EQFVLLNLV	HPVADENQSP 130 HPVADENQSP 120 YETTDKHLSP	DGHYVPRVIF 140 DGHYVPKGIF 130 DGQYVPRIMF	IDPSLTVRSD 150 IDPSLTVRSD 140
x1u76752 x1u82110 Zsig10	VADRMAQKLA 110 VADKMAQKLA 100 AENKEIQKLA	QEDFIMLNLV 120 QEDFIMLNLV 110 .EQFVLLNLV	HPVADENQSP 130 HPVADENQSP 120 YETTDKHLSP	DGHYVPRVIF 140 DGHYVPKGIF 130 DGQYVPRIMF	IDPSLTVRSD 150 IDPSLTVRSD 140
x1u76752 x1u82110 Zsig10 x1u76752	VADRMAQKLA 110 VADKMAQKLA 100 AENKEIQKLA 150 LKGRYGNKMY 160 LKGRYGNKLY	QEDFIMENEV 120 QEDFIMENEV 110 .EQFVEENEV 160 AYDADDIPEL 170 AYDADDIPEL	HPVADENQSP 130 HPVADENQSP 120 YETTDKHLSP	DGHYVPRVIF 140 DGHYVPKGIF 130 DGQYVPRIMF	IDPSLTVRSD 150 IDPSLTVRSD 140

Fig. 2

NSDOCID: <WO_____9841627A1_I_>

INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/US 98/05251

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/12 C12N C07K16/18 C07K14/47 C12N5/10 C12N15/62 G01N33/53 C1201/68 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C07K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages NIELSEN H ET AL: "Identification of 1-41,43Υ prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites." PROTEIN ENG, JAN 1997, 10 (1) P1-6, ENGLAND, XP002072638 see the whole document TASHIRO K ET AL: "SIGNAL SEQUENCE TRAP: A 1-41,43 Y CLONING STRATEGY FOR SECRETED PROTEINS AND TYPE I MEMBRANE PROTEINS" SCIENCE. vol. 261, 30 July 1993, pages 600-603, XP000673204 see abstract -/--Further documents are listed in the continuation of box C. Patent family members are tisted in annex. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docucitation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of the actual completion of theinternational search Date of mailing of the international search report 12/08/1998 24 July 1998 **Authorized officer** Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Gurdjian, D Fax: (+31-70) 340-3016

Δ

INTERNATIONAL SEARCH REPORT

Inte :onal Application No
PCT/US 98/05251

ation) DOCUMENTS CONSIDERED TO BE RELEVANT	1
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
EMBL database Accession number U76752 Sive H., Bradley L. 05-DEC-1996 (Rel. 50, Created) "Progressive determination" XP002072381 cited in the application see the whole document	1-41,43
SIVE H ET AL: "A sticky problem: the Xenopus cement gland as a paradigm for anteroposterior patterning." DEV DYN, MAR 1996, 205 (3) P265-80, UNITED STATES, XP002072379 cited in the application see abstract	1-41,43
MILLENNIUM BIOTHERAPEUTICS: "Progressive determination during formation of the anteroposterior axis in Xenopus laevis." CELL, JUL 14 1989, 58 (1) P171-80, UNITED STATES, XP002072380 cited in the application see abstract	1-41,43
EMBL database Accession number U82110 Aberger F. et al. 22-FEB-1997 (Rel. 51, Created) "A Xenopus cement" XP002072382 cited in the application see the whole document	1-41,43
YOKOYAMA-KOBAYASHI M ET AL: "A SIGNAL SEQUENCE DETECTION SYSTEM USING SECRETED PROTEASE ACTIVITYAS AN INDICATOR" GENE, vol. 163, 1995, pages 193-196, XP002053953 see the whole document	1-41,43
WO 98 11217 A (KATO SEISHI ;PROTEGENE INC (JP); SEKINE SHINGO (JP); SAGAMI CHEM R) 19 March 1998 see abstract; claims 1-3; figures SEQ.9,18,27	1-8, 12-25
	EMBL database Accession number U76752 Sive H., Bradley L. 05-DEC-1996 (Rel. 50, Created) "Progressive determination" XP002072381 cited in the application see the whole document SIVE H ET AL: "A sticky problem: the Xenopus cement gland as a paradigm for anteroposterior patterning." DEV DYN, MAR 1996, 205 (3) P265-80, UNITED STATES, XP002072379 cited in the application see abstract MILLENNIUM BIOTHERAPEUTICS: "Progressive determination during formation of the anteroposterior axis in Xenopus laevis." CELL, JUL 14 1989, 58 (1) P171-80, UNITED STATES, XP002072380 cited in the application see abstract EMBL database Accession number U82110 Aberger F. et al. 22-FEB-1997 (Rel. 51, Created) "A Xenopus cement" XP002072382 cited in the application see the whole document YCKOYAMA-KOBAYASHI M ET AL: "A SIGNAL SEQUENCE DETECTION SYSTEM USING SECRETED PROTEASE ACTIVITYAS AN INDICATOR" GENE, vol. 163, 1995, pages 193-196, XP002053953 see the whole document WO 98 11217 A (KATO SEISHI ;PROTEGENE INC (JP); SEKINE SHINGO (JP); SAGAMI CHEM R) 19 March 1998 see abstract; claims 1-3; figures

INTERNATIONAL SEARCH REPORT

information on patent family members

Int tional Application No PCT/US 98/05251

Patent document cited in search report	Publication date	Patent tamily member(s)	Publication date .
WO 9811217 A	19-03-1998	AU 4220797 A	02-04-1998

Form PCT/ISA/210 (patent family ennex) (July 1992)

3NSDOCID: <WO_____9841627A1_I_>