$\angle MDC \cong \angle MCD$

Prove: $\overline{AC} \cong \overline{BD}$

16. Given: $\angle 1 \cong \angle 2$; $\angle 3 \cong \angle 4$:

∠5 ≅ ∠6

 $\angle 3 = \angle$

Prove: $\overline{BC} \cong \overline{ED}$

17. A, B, C, and D are noncoplanar. $\triangle ABC$, $\triangle ACD$, and $\triangle ABD$ are equilateral. X and Y are midpoints of \overline{AC} and \overline{AD} . Z is a point on \overline{AB} . What kind of triangle is $\triangle XYZ$? Explain.

Mixed Review Exercises

1. Write the Isosceles Triangle Theorem (Theorem 4-1) and its converse (Theorem 4-2) as a single biconditional statement.

Complete each statement with the word always, sometimes, or never.

- 2. Two isosceles triangles with congruent bases are ? congruent.
- 3. Two isosceles triangles with congruent vertex angles are __? congruent.
- **4.** Two equilateral triangles with congruent bases are __?_ congruent.

Draw a diagram for each of the following.

- **5. a.** M is between A and B.
 - **b.** M is the midpoint of \overline{AB} .
- 7. a. acute scalene $\triangle JKL$
 - **b.** obtuse scalene $\triangle JKL$
- **9.** a. right scalene $\triangle RST$
 - **b.** right isosceles $\triangle RST$

- 6. a. \overline{XY} bisects \overline{CD} .
 - **b.** \overrightarrow{XY} bisects $\angle CXD$.
- **8. a.** acute isosceles $\triangle XYZ$
 - **b.** obtuse isosceles $\triangle XYZ$
- 10. a. equilateral $\triangle EFG$
 - **b.** equiangular $\triangle EFG$

11. Write a proof in two-column form.

Given: $\overline{BE} \cong \overline{CD}$; $\overline{BD} \cong \overline{CE}$ Prove: $\triangle ABC$ is isosceles.

