Cours d'Analyse 1

Damerdji Bouharis A.

Université des Sciences et de la Technologie Mohamed Boudiaf Faculté des Mathématiques et Informatique.

Table des matières

1	Le o	corps des nombres réels	5
	1.1	Définition axiomatique	5
	1.2	La valeur absolue	6
	1.3	Intervalles de \mathbb{R}	6
	1.4	Minorants, majorants, borne inférieure, borne supérieure, maximum	
		et minimum	7
	1.5	La partie entière	9
	1.6	Caractérisation de la borne supérieure et de la borne inférieure	9
	1.7	Principe d'Archimède	12
	1.8	La densité de $\mathbb Q$ dans $\mathbb R$	12
	1.9	La droite réelle achevée.	13

Chapitre 1

Le corps des nombres réels

1.1 Définition axiomatique

• L'ensemble des nombres réels est l'ensemble noté par \mathbb{R} ; sur lequel sont définies deux lois de composition internes :

l'addition

$$"+": \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

$$(x,y) \mapsto x+y$$

et la multiplication

$$" \cdot " : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

$$(x,y) \mapsto x \cdot y$$

tel que $(\mathbb{R}, +, \cdot)$ est un corps commutatif. En effet;

- $(\mathbb{R},+)$ est un groupe commutatif.
- $(\mathbb{R} \setminus \{0\},.)$ est un groupe commutatif.
- La multiplication "." est distributive par rapport à l'addition "+".
- La relation " \leq "est une relation d'ordre total sur \mathbb{R} . En effet;
 - La relation " \leq " est une relation d'ordre sur \mathbb{R} , car
 - La relation " \leq " est réflexive sur \mathbb{R} .
 - La relation " \leq " est anti-symétrique sur \mathbb{R} .
 - La relation " \leq " est transitive sur \mathbb{R} .
 - La relation " \leq " est une relation d'ordre total car pour tout x,y dans \mathbb{R} ; on a

$$(x \le y) \lor (y \le x)$$
.

- Les deux lois de composition internes ; définies sur \mathbb{R} sont compatibles avec la relation d'ordre total " \leq ", on a pour tout a, b, c de \mathbb{R} :
 - Si $0 \le a$ et $0 \le b$ alors $0 \le ab$
 - Si $0 \le a$ et $b \le 0$ alors $ab \le 0$
 - Si $a \le 0$ et $b \le 0$ alors $0 \le ab$

- Si a < b alors a + c < b + c
- Si $a \le b$ et $0 \le c$ alors $a.c \le b.c$
- Si $a \le b$ et $c \le 0$ alors $b.c \le a.c$, d'où Si $0 \le a$ alors $-a \le 0$
- $-0 < a^2$.
- Toute partie non vide et majorée de \mathbb{R} ; possède une borne supérieure dans \mathbb{R} .

1.2 La valeur absolue

Définition 1.2.1 La valeur absolue est une application de \mathbb{R} dans l'ensemble des nombres réels positifs \mathbb{R}^+ , notée par |.| et définie par :

$$|.|: \mathbb{R} \to \mathbb{R}^+$$

$$x \mapsto |x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Propriétés 1 1. $|x| \ge 0, \forall x \in \mathbb{R}$.

- 2. $|x| = 0 \Leftrightarrow x = 0$.
- $3. |x| \le x \le |x|; \forall x \in \mathbb{R}.$
- 4. $\forall a \ge 0$; $|x| \le a \Leftrightarrow -a \le x \le a$.
- 5. $|x.y| = |x| \cdot |y|, \forall x, y \in \mathbb{R}$.
- 6. $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}, \forall (x,y) \in \mathbb{R} \times \mathbb{R}^*.$
- 7. $|x+y| \leq |x| + |y|$, $\forall x, y \in \mathbb{R}$, (L'inégalité triangulaire).
- 8. $||x| |y|| \le |x y|$, $\forall x, y \in \mathbb{R}$, (La seconde inégalité triangulaire).

1.3 Intervalles de \mathbb{R}

Définition 1.3.1 Une partie I de \mathbb{R} est un intervalle de \mathbb{R} si dès qu'elle contient deux réels a et b alors elle contient tous les réels compris entre eux.

$$\forall a, b \in I, \forall x \in \mathbb{R}; \ a \le x \le b \Rightarrow x \in I.$$

Exemples 1.3.2 1. \mathbb{R} et l'ensemble vide \emptyset sont des intervalles.

- 2. \mathbb{R}^+ est un intervalle.
- 3. \mathbb{R}^* et \mathbb{N} ne sont pas des intervalles.

Remarques:

- 1. Le complémentaire d'un intervalle ouvert est fermé.
- 2. Pour les notations, on a les intervalles de $\mathbb R$:
 - bornés : ouverts]a, b[, fermés [a, b] ou semi-ouverts [a, b[,]a, b].
 - non bornés : ouverts $]-\infty, b[$, $]a, +\infty[$ ou fermés $[a, +\infty[$, $]-\infty, b]$.
 - Si a = b alors $[a, a] = \{a\}, |a, b| = [a, b] = [a, b] = \emptyset.$

Remarque : \mathbb{R} et l'ensemble vide \emptyset sont les seules parties ouvertes et fermées de \mathbb{R}

En effet, $\mathbb{R} =]-\infty, +\infty[$ est un intervalle ouvert donc son complémentaire, l'ensemble vide \emptyset est fermé, or l'ensemble vide \emptyset peut s'écrire comme un intervalle ouvert $]\alpha, \alpha[$, $\alpha \in \mathbb{R}$, donc son complémentaire \mathbb{R} est fermé.

Remarques:

- 1. L'intersection de deux intervalles est toujours un intervalle.
- 2. La réunion de deux intervalles ayant une intersection non vide est un intervalle.

Définition 1.3.3 Soient $a, b \in \mathbb{R}$, on appelle segment l'ensemble noté [a, b] défini $par[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$. Si a > b alors $[a, b] = \emptyset$.

Définition 1.3.4 Soit V une partie de \mathbb{R} et $x_0 \in \mathbb{R}$, On dit que V est un voisinage de x_0 s'il existe un intervalle ouvert]a,b[de \mathbb{R} contenant x_0 et inclu dans V, on note V_{x_0} ou $V(x_0)$.

- **Exemples 1.3.5** 1. Pour tout $\varepsilon > 0$; l'intervalle $V =]x_0 \varepsilon, x_0 + \varepsilon[$ est un voisinange de x_0 ; car il existe un intervalle ouvert $]x_0 \frac{\varepsilon}{2}, x_0 + \frac{\varepsilon}{2}[$ de \mathbb{R} contenant x_0 et inclu dans V.
 - 2. L'intervalle [a, b] est voisinage de tous les points $x \in [a, b]$.
 - 3. Les ensembles \mathbb{N}, \mathbb{Z} et \mathbb{Q} ne sont des voisinages d'aucun de leurs points.

1.4 Minorants, majorants, borne inférieure, borne supérieure, maximum et minimum.

Définition 1.4.1 Etant donné un ensemble E totalement ordonné par la relation d'ordre notée " \leq " et soit $A \subset E$ une partie non vide de E.

- On dit que $M \in E$ est un majorant de A si : $\forall x \in A$; $x \leq M$.
- On dit que $m \in E$ est un minorant de A si : $\forall x \in A$; $m \leq x$.
- A est dite majorée (resp. minorée) si elle possède au moins un majorant (resp. un minorant).

Remarque: Si A possède un majorant (resp. minorant), alors il n'est pas unique.

Définition 1.4.2 - Etant donnée une partie A non vide et majorée de E, et soit $Maj(A) \subset E$ l'ensemble des majorants de A, on dit que $M \in E$ est la borne supérieure de A si M est le plus petit des majorants de A, on le note sup A.

- Etant donnée une partie A non vide et minorée de E, et soit $Min(A) \subset E$ l'ensemble des minorants de A, on dit que $m \in E$ est la borne inférieure de A si m est le plus grand des minorants de A, on le note inf A.

Théorème 1.4.3 Toute partie non vide et majorée (resp. minorée) de \mathbb{R} , possède une borne supérieure (resp. inférieure).

Remarques:

- 1. Quand la borne supérieure (resp. la borne inférieure) existe alors elle est unique.
- 2. La borne supérieure sup A (resp. la borne inférieure inf A) n'appartient pas nécessairement à l'ensemble A.

Définition 1.4.4 - On dit que M est le plus grand élément de A ou maximum de A si M est un majorant de A qui appartient à A, on le note par max A.

- On dit que m est le plus petit élément de A ou minimum de A si m est un minorant de A qui appartient à A, on le note par min A.

Remarques:

- 1. Si le maximum $\max A$ (resp. le minimum $\min A$) existe alors $\sup A = \max A$ (resp. $\inf A = \min A$).
- 2. Si La borne supérieure sup A (resp. la borne inférieure inf A) appartient à A alors max $A = \sup A$ (resp. min $A = \inf A$).
- 3. Si La borne supérieure sup A (resp. la borne inférieure inf A) n'appartient pas à A alors le maximum max A (resp. le minimum min A) n'existe pas.

Remarque : La borne supérieure d'un ensemble majoré A (resp. la borne inférieure d'un ensemble minoré A) existe toujours mais peut ne pas appartenir à A, par contre le maximum d'un ensemble majoré (resp. le minimum d'un ensemble minoré) peut ne pas exister.

```
Exemple 1.4.5 Soit A = ]-5,1]; A est une partie bornée de \mathbb{R}. L'ensemble des majorants de A est Maj(A) = [1,+\infty[, \sup A = \max A = 1. L'ensemble des minorants de A est Min(A) = ]-\infty, -5], \inf A = -5, \min A n'existe pas car -5 \notin A.
```

Proposition 1.4.6 Soit A une partie non vide de \mathbb{R} , les deux assertions suivantes sont équivalentes :

```
(i) \exists \alpha > 0, \forall x \in A : |x| \le \alpha
```

(ii) $\exists m, M \in \mathbb{R}, \forall x \in A : m \le x \le M$.