Elementary Effects for the BTD Model

Setup packages.

Design experiment.

Load input ranges.

```
In [ ]: z.ranges <- fread("input-ranges.tsv")
z.ranges %>% dim
In [ ]: z.ranges %>% summary
```

One-at a time experiment with 500 repetitions, à la Morris.

```
In [ ]: z.design <- morris(</pre>
             NULL,
             factors = z.ranges$Variable,
             r = 500,
             design = list(
                 type = "oat",
                 levels = mapply(function(t, x0, x1) {
                     if (t == "Integer")
                         x1 - x0 + 1
                     else if (t == "Boolean")
                     else
                 }, z.ranges$Type, z.ranges$`Sensitivity Minimum`, z.ranges$`Sens
        itivity Maximum`),
                 grid.jump = 1
        )
        z.design$X %>% dim
In [ ]: write.table(z.design$X, file = "design.tsv", row.names = FALSE, col.name
```

```
s = TRUE, sep = "\t", quote = FALSE)
```

Relate the design to the model's variables.

```
In [ ]: | z.inputs <- cbind(</pre>
             Run = 1:(dim(z.design$X)[1]),
             data.table(
                 sweep(
                     sweep(z.design$X, MARGIN = 2, z.ranges$`Sensitivity Maximum`
        - z.ranges$`Sensitivity Minimum`, `*`),
                     MARGIN = 2,
                     z.ranges$`Sensitivity Minimum`,
                 )
             )
        z.inputs %>% summary
```

```
In [ ]: | write.table(z.inputs, file="inputs.tsv", row.names = FALSE, col.names =
        TRUE, sep = "\t", quote = FALSE)
```

Analyze results.

Read files.

Read design.

```
In [2]: z.design <- fread("design.tsv")
z.design %>% dim

42500 84
```

Read inputs.

```
In [3]: z.inputs <- fread("inputs.tsv")
z.inputs %>% dim

42500 85
```

Read outputs.

```
In [4]: z.outputs <- fread("outputs.tsv")
z.outputs[Time == 2050] %>% dim
42500 51
```

In [5]: z.outputs[Time == 2050] %>% summary

```
Time
                               bioproduct market share mass
     Run
Min.
                Min.
       :
            1
                       :2050
                               Min. :-27.65680
 1st Qu.:10626
                1st Qu.:2050
                               1st Qu.: 0.01149
Median :21250
                Median :2050
                               Median :
                                         0.33107
Mean
     :21250
                Mean :2050
                               Mean
                                         0.59533
                                    •
 3rd Qu.:31875
                3rd Qu.:2050
                               3rd Ou.:
                                         0.71766
       :42500
                Max. :2050
                                      : 54.99460
Max.
                               Max.
current market size economic current market size mass long term market
share
Min.
                                    :1.750e+04
                                                             :0.0000
       :-9.881e+13
                             Min.
                                                      Min.
1st Qu.:-2.500e+10
                             1st Ou.:2.069e+07
                                                      1st Qu.: 0.2126
Median : 7.524e+10
                             Median :6.609e+07
                                                      Median :0.3172
      : 3.949e+11
Mean
                             Mean
                                   :2.866e+08
                                                      Mean
                                                             :0.3959
 3rd Ou.: 5.717e+11
                             3rd Ou.:2.009e+08
                                                      3rd Ou.:0.5406
Max. : 5.844e+13
                             Max. :7.965e+09
                                                      Max. :0.9810
                                             NonAdopters
 long term market value
                          Adopters
       :0.000e+00
                              : -11334900
                                                   :5.130e+02
Min.
                       Min.
                                            Min.
 1st Qu.:0.000e+00
                       1st Ou.:
                                   416403
                                            1st Ou.:5.613e+06
Median :0.000e+00
                       Median:
                                  7035080
                                            Median :2.763e+07
Mean :2.098e+09
                             : 135755526
                                            Mean :1.205e+08
 3rd Ou.:7.470e+02
                       3rd Ou.: 59639400
                                            3rd Qu.:9.357e+07
Max. :6.297e+11
                              :5976570000
                                            Max.
                                                   :5.388e+09
                       Max.
                     abandoning bioproduct Cumulative Demoing Producti
Potential Adopters
on
Min.
       : -20212000
                     Min.
                            :0
                                           Min.
                                                          0
 1st Qu.:
             20273
                     1st Ou.:0
                                           1st Ou.:
                                                          0
Median :
           1188780
                     Median :0
                                           Median:
      :
Mean
          30356549
                     Mean :0
                                           Mean : 182732
 3rd Qu.:
          19697400
                     3rd Qu.:0
                                           3rd Qu.:
                                                          0
                     Max. :0
Max. :2077400000
                                           Max. :11109600
Cumulative Production prepiloting
                                       pilot plant construction
               0
                      Min. :0.0000
                                       Min. :0.0000000
                                       1st Qu.:0.0000000
1st Qu.:
                      1st Qu.:0.0000
               0
Median:
               0
                      Median :0.0000
                                       Median :0.0000000
Mean : 696871
                      Mean :0.2168
                                       Mean
                                              :0.0002118
                                       3rd Qu.: 0.0000000
 3rd Qu.:
               0
                      3rd Qu.:0.0000
                      Max. :1.0000
Max. :67509600
                                       Max.
                                              :1.0000000
pilot plant is built startup piloting complete piloting ongoing
Min. :0.000
                     Min.
                            :0.0000
                                               Min. :0.0000
 1st Qu.:1.000
                     1st Qu.:1.0000
                                               1st Qu.:0.0000
Median :1.000
                     Median :1.0000
                                               Median :1.0000
Mean :0.783
                     Mean :0.7767
                                               Mean
                                                     :0.5731
 3rd Qu.:1.000
                     3rd Qu.:1.0000
                                               3rd Qu.:1.0000
Max. :1.000
                     Max.
                            :1.0000
                                               Max.
                                                      :1.0000
piloting progress piloting complete
                                                      demo plant const
                                      predemoing
ruction
Min.
                  Min.
                         :0.0000
                                    Min.
                                           :0.00000
                                                      Min.
                                                             :0.000000
       :0.00
1st Qu.:0.00
                  1st Qu.:0.0000
                                    1st Qu.:0.00000
                                                      1st Qu.:0.000000
Median :0.00
                  Median :0.0000
                                    Median :0.00000
                                                      Median :0.000000
Mean
       :0.21
                  Mean
                         :0.2099
                                    Mean
                                           :0.06772
                                                      Mean
                                                             :0.003106
3rd Qu.:0.00
                  3rd Qu.:0.0000
                                    3rd Qu.:0.00000
                                                      3rd Qu.:0.000000
Max. :1.00
                  Max. :1.0000
                                    Max.
                                           :1.00000
                                                      Max.
                                                             :1.000000
demo plant is built regulatory process ongoing startup demoing complet
ed
Min.
       :0.0000
                    Min.
                           :0.00
                                               Min.
                                                      :0.0000
                                               1st Qu.:0.0000
 1st Qu.:0.0000
                    1st Qu.:0.00
Median :0.0000
                    Median :0.00
                                               Median :0.0000
```

```
:0.1372
 Mean
                     Mean
                             :0.01
                                                 Mean
                                                         :0.1329
 3rd Ou.:0.0000
                     3rd Qu.:0.00
                                                 3rd Ou.:0.0000
        :1.0000
                     Max.
                             :1.00
                                                         :1.0000
 demoing ongoing
                   demoing progress
                                      demoing complete
                                                        regulatory delay
Min.
        :0.00000
                   Min.
                           :0.00000
                                      Min.
                                             :0.00000
                                                        Min.
                                                                :0.0000
 1st Qu.:0.00000
                   1st Qu.:0.00000
                                      1st Qu.:0.00000
                                                        1st Qu.:0.0000
Median :0.00000
                                      Median :0.00000
                                                        Median :0.0000
                   Median :0.00000
        :0.09219
                   Mean
                           :0.05074
                                      Mean
                                             :0.04504
                                                        Mean
                                                                :0.0024
 3rd Qu.:0.00000
                   3rd Qu.:0.00000
                                      3rd Qu.:0.00000
                                                        3rd Qu.: 0.0000
Max.
        :1.00000
                   Max.
                           :1.00000
                                      Max.
                                             :1.00000
                                                        Max.
                                                                :1.0000
precommercial
                    commercial plant construction commercial plant is b
uilt
Min.
        :0.000000
                            :0.000000
                                                   Min.
                                                           :0.00000
 1st Ou.:0.000000
                    1st Ou.:0.000000
                                                   1st Ou.:0.00000
Median :0.000000
                    Median :0.000000
                                                   Median :0.00000
Mean
        :0.007906
                    Mean
                            :0.003294
                                                   Mean
                                                           :0.03144
                    3rd Qu.:0.000000
 3rd Ou.:0.000000
                                                   3rd Qu.:0.00000
                                                   Max.
        :1.000000
                    Max.
                            :1.000000
                                                           :1.00000
 commercial plant operation technology readiness level stage in progres
s
Min.
        :0.00000
                            Min.
                                    :6.000
                                                        Min.
                                                                : 2.000
 1st Qu.:0.00000
                             1st Qu.:6.000
                                                        1st Qu.: 5.000
Median :0.00000
                            Median :6.000
                                                        Median : 6.000
Mean
        :0.03071
                            Mean
                                   :6.311
                                                        Mean
                                                                : 8.823
 3rd Ou.:0.00000
                             3rd Ou.:6.000
                                                        3rd Qu.:10.000
Max.
        :1.00000
                            Max.
                                    :9.000
                                                        Max.
                                                                :58.000
   BS equity
                      payback period
                                          NPV at required return
Min.
        :-2.075e+09
                      Min.
                             :
                                   0.00
                                          Min.
                                                 :-3.664e+10
                                   8.78
 1st Qu.:-1.073e+07
                      1st Qu.:
                                        1st Qu.:-8.530e+08
Median :-1.996e+06
                      Median:
                                  12.02
                                        Median :-2.630e+08
        : 2.478e+09
                                  28.52
                                                 : 8.902e+08
Mean
                      Mean
                             :
                                          Mean
 3rd Qu.: 1.777e+08
                      3rd Qu.:
                                  15.89
                                          3rd Qu.: 8.030e+06
        : 4.108e+11
                             :34389.80
                                          Max. : 2.937e+11
                      Max.
 profitability indicator bioproduct favorability indicator
Min.
        :0.0000
                         Min.
                                 :0.0000
 1st Qu.:1.0000
                         1st Qu.:0.0000
Median :1.0000
                         Median :0.0000
Mean
        :0.9214
                         Mean
                                 :0.2349
 3rd Qu.:1.0000
                         3rd Qu.: 0.0000
Max.
        :1.0000
                         Max.
                                 :1.0000
 long term selling price without green premium after market entry
Min. : 369.7
 1st Qu.:1399.2
Median :2078.5
Mean
        :2136.7
 3rd Qu.:2768.2
Max.
        :6965.5
 total approval cost total approval time in business indicator
        :-1599210
                     Min.
                            : 0.019
                                          Min.
Min.
                                               :0.0000
 1st Qu.: 199833
                     1st Qu.: 1.301
                                          1st Qu.:0.0000
Median : 1052730
                     Median : 3.086
                                          Median :0.0000
Mean
        : 1636119
                     Mean
                           : 3.762
                                          Mean
                                                 :0.4059
 3rd Qu.: 2626350
                     3rd Qu.: 5.521
                                          3rd Qu.:1.0000
        :12420100
                     Max.
                            :20.166
                                          Max.
                                                 :1.0000
 internal project cancelled indicator
                                         investing
                                                               granting
Min.
        :0.0000000
                                       Min.
                                              :0.000e+00
                                                           Min.
                                                                   :0.000
e+00
```

```
1st Ou.:0.0000000
                                       1st Ou.:0.000e+00
                                                           1st Ou.:0.000
e+00
Median :0.0000000
                                       Median :0.000e+00
                                                           Median :0.000
e+00
Mean
        :0.0006588
                                       Mean
                                              :2.162e+08
                                                           Mean
                                                                   :5.044
e+08
 3rd Qu.:0.0000000
                                       3rd Qu.:0.000e+00
                                                           3rd Qu.:3.192
e+07
Max.
        :1.0000000
                                       Max.
                                              :2.189e+11
                                                           Max.
                                                                   :9.984
e+10
Total Government Grants Total Investment
                                              Working Capital
Min.
        :0.000e+00
                         Min.
                                 :3.000e+06
                                              Min.
                                                     :-2.075e+09
 1st Qu.:0.000e+00
                         1st Qu.:1.145e+08
                                              1st Qu.:-1.073e+07
Median :1.373e+08
                                              Median :-1.996e+06
                         Median :7.370e+08
Mean
        :6.579e+08
                         Mean
                                 :1.274e+09
                                              Mean
                                                     : 2.478e+09
                                              3rd Qu.: 1.777e+08
 3rd Qu.:3.661e+08
                         3rd Qu.:1.488e+09
        :3.754e+10
                                 :4.533e+10
                                                     : 4.108e+11
Max.
                         Max.
                                              Max.
 IS production incentive
        :0.000e+00
 1st Ou.:0.000e+00
Median :0.000e+00
Mean
        :1.075e+08
 3rd Qu.:0.000e+00
Max.
       :1.261e+10
```

Compute elementary effects.

Just use the final year.

```
In [6]: z.outputs.clean <- z.outputs[order(Run)][`Time` == 2050, c(-1, -2)] %>%
    as.matrix
    z.outputs.clean %>% dim
42500 49
```

Define functions to compute elementary effects.

```
In [7]: | ind.rep <- function(i, p) {</pre>
        # indices of the points of the ith trajectory in the DoE
          (1 : (p + 1)) + (i - 1) * (p + 1)
        ee.oat <- function(X, y) {</pre>
           # compute the elementary effects for a OAT design
          p <- ncol(X)
          r \leftarrow nrow(X) / (p + 1)
         # if(is(y,"numeric")){
           if(inherits(y, "numeric")){
             one_i_vector <- function(i){</pre>
               j <- ind.rep(i, p)</pre>
               j1 < -j[1 : p]
               j2 <- j[2 : (p + 1)]
               # return((y[j2] - y[j1]) / rowSums(X[j2,] - X[j1,]))
               return(solve(X[j2,] - X[j1,], y[j2] - y[j1]))
             ee <- vapply(1:r, one i vector, FUN.VALUE = numeric(p))</pre>
             ee <- t(ee)
             # "ee" is now a (r times p)-matrix.
           } else if(is(y, "matrix")){
           } else if(inherits(y, "matrix")){
             one i matrix <- function(i){
               j <- ind.rep(i, p)</pre>
               j1 < - j[1 : p]
               j2 < -j[2 : (p + 1)]
               return(solve(X[j2,] - X[j1,],
                             y[j2, , drop = FALSE] - y[j1, , drop = FALSE]))
             ee <- vapply(1:r, one i matrix,
                           FUN.VALUE = matrix(0, nrow = p, ncol = dim(y)[2]))
             # Special case handling for p == 1 and ncol(y) == 1 (in this case,
          "ee" is
             # a vector of length "r"):
             if(p == 1 \&\& dim(y)[2] == 1){
               ee \leftarrow array(ee, dim = c(r, 1, 1))
             # Transpose "ee" (an array of dimensions c(p, ncol(y), r)) to an arr
         ay of
             # dimensions c(r, p, ncol(y)) (for better consistency with the stand
         ard
             # case that "class(y) == "numeric""):
             ee <- aperm(ee, perm = c(3, 1, 2))
         # } else if(is(y,"array")){
           } else if(inherits(y, "array")){
             one i array <- function(i){</pre>
               j <- ind.rep(i, p)</pre>
               j1 < - j[1 : p]
               j2 < -j[2 : (p + 1)]
               ee per 3rd dim <- sapply(1:(dim(y)[3]), function(idx 3rd dim){
                 y_j2_matrix <- y[j2, , idx_3rd_dim]</pre>
                 y_j1_matrix <- y[j1, , idx_3rd_dim]</pre>
                 # Here, the result of "solve(...)" is a (p \text{ times } dim(y)[2])-matr
         ix or
```

```
# a vector of length dim(y)[2] (if p == 1):
        solve(X[j2,] - X[j1,], y_j2_matrix - y_j1_matrix)
      }, simplify = "array")
      if(dim(y)[2] == 1){
        # Correction needed if dim(y)[2] == 1, so "y j2 matrix" and
        # "y j1 matrix" have been dropped to matrices (or even vectors,
 if also
        \# p == 1):
        ee per 3rd dim <- array(ee per 3rd dim,
                                 \dim = c(p, \dim(y)[2], \dim(y)[3])
      } else if(p == 1){
        # Correction needed if p == 1 (and dim(y)[2] > 1), so "y j2 matr
ix" and
        # "y_j1_matrix" have been dropped to matrices:
        ee per 3rd dim <- array(ee per 3rd dim,
                                 dim = c(1, dim(y)[2], dim(y)[3]))
      }
      # "ee per 3rd dim" is now an array of dimensions
      # c(p, dim(y)[2], dim(y)[3]). Assign the corresponding names for t
he
      # third dimension:
      if(is.null(dimnames(ee per 3rd dim))){
        dimnames(ee per 3rd dim) <- dimnames(y)</pre>
      } else{
        dimnames(ee per_3rd_dim)[[3]] <- dimnames(y)[[3]]</pre>
      return(ee per 3rd dim)
    ee <- sapply(1:r, one i array, simplify = "array")</pre>
    # Special case handling if "ee" has been dropped to a vector:
     if(is(ee, "numeric")){
    if (inherits(ee, "numeric")){
      ee <- array(ee, dim = c(p, dim(y)[2], dim(y)[3], r))
      dimnames(ee) <- list(NULL, dimnames(y)[[2]], dimnames(y)[[3]], NUL</pre>
L)
    # "ee" is an array of dimensions c(p, dim(y)[2], dim(y)[3], r), so i
    # transposed to an array of dimensions c(r, p, dim(y)/2), dim(y)
[3]):
    ee <- aperm(ee, perm = c(4, 1, 2, 3))
  }
 return(ee)
}
```

Elementary effects.

```
In [8]: z.ee <- ee.oat(z.design, z.outputs.clean)
z.ee %>% dim
```

mu, mu*, and sigma.

```
In [9]: z.mu <- apply(z.ee, 3, function(M){
          apply(M, 2, mean)
     })
     z.mu <- melt(
          cbind(
               data.table(Input=rownames(z.mu)),
                      data.table(z.mu)
          ),
          id.vars="Input",
          variable.name = "Output",
          value.name = "mu"
     )
     z.mu %>% head
```

A data.table: 6 x 3

mu	Output	Input
<dbl></dbl>	<fct></fct>	<chr></chr>
0.303273857	bioproduct market share mass	advertising budget
-0.387986934	bioproduct market share mass	advertising start time
-0.001418284	bioproduct market share mass	aversion to NPV deviation
-0.023685767	bioproduct market share mass	base external investor ask rate
-0.160606092	bioproduct market share mass	bioproduct long term price
0.512129831	bioproduct market share mass	bioproduct offtake agreement

A data.table: 6 x 3

mu*	Output	Input
<dbl></dbl>	<fct></fct>	<chr></chr>
0.31027692	bioproduct market share mass	advertising budget
0.41195148	bioproduct market share mass	advertising start time
0.01152693	bioproduct market share mass	aversion to NPV deviation
0.26447606	bioproduct market share mass	base external investor ask rate
0.39980623	bioproduct market share mass	bioproduct long term price
0.77572582	bioproduct market share mass	bioproduct offtake agreement

A data.table: 6 x 3

Input	Output	sigma
<chr></chr>	<fct></fct>	<dbl></dbl>
advertising budget	bioproduct market share mass	1.1085135
advertising start time	bioproduct market share mass	1.4664525
aversion to NPV deviation	bioproduct market share mass	0.1115146
base external investor ask rate	bioproduct market share mass	0.6278341
bioproduct long term price	bioproduct market share mass	1.7387415
bioproduct offtake agreement	bioproduct market share mass	4.5942430

```
In [12]: z.results <- merge(merge(z.mu, z.mu.star, on=c("Input", "Output")), z.si
    gma, on=c("Input", "Output"))
    z.results %>% head
```

A data.table: 6 x 5

sigma	mu*	mu	Output	Input
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<chr></chr>
1.108513e+00	3.102769e-01	3.032739e-01	bioproduct market share mass	advertising budget
4.866741e+12	9.415770e+11	-2.412707e+11	current market size economic	advertising budget
0.000000e+00	0.000000e+00	0.000000e+00	current market size mass	advertising budget
1.507683e-02	1.255821e-03	-6.742848e-04	long term market share	advertising budget
7.252179e+09	3.252294e+08	-3.252294e+08	long term market value	advertising budget
1.587423e+08	5.092098e+07	4.651019e+07	Adopters	advertising budget

A data.table: 6 x 8

Input	Output	mu	mu*	sigma	mu rank	mu* rank	sigma rank
<chr></chr>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
advertising budget	bioproduct market share mass	3.032739e-01	3.102769e-01	1.108513e+00	3	15	24
advertising budget	current market size economic	-2.412707e+11	9.415770e+11	4.866741e+12	80	23	25
advertising budget	current market size mass	0.000000e+00	0.000000e+00	0.000000e+00	43	44	44
advertising budget	long term market share	-6.742848e-04	1.255821e-03	1.507683e-02	64	49	51
advertising budget	long term market value	-3.252294e+08	3.252294e+08	7.252179e+09	71	30	24
advertising budget	Adopters	4.651019e+07	5.092098e+07	1.587423e+08	6	13	23

Interpret results.

Interpretations:

- mu: influence of variable
- mustar: influence of variable, accounting for non-monoticity
- sigma: non-linear and interaction effects for variable

Heat map for mu*.

```
In [14]: ggplot(
             z.results,
             aes(
                 x=factor(
                     Output,
                     levels=z.results[, .(`sort` = mean(`mu* rank`)), by=.(Output
         )][order(sort), `Output`]
                 ),
                 y=factor(
                     Input,
                     levels=z.results[, .(`sort` = mean(`mu* rank`)), by=.(Input)
         ][order(sort), `Input`]
                 ),
                 fill=`mu* rank`
             )
         ) +
             geom_tile() +
             scale_fill_distiller(type="div") +
             xlab("Input variable sorted by mean rank of mu*") +
             ylab("Output variable sorted by mean rank of mu*") +
             theme(
                 axis.text=element_text(size=5),
                 axis.text.x = element_text(angle = 45, hjust=1)
             )
```


Heat map for sigma.

```
In [15]: | ggplot(
             z.results,
             aes(
                 x=factor(
                     Output,
                     levels=z.results[, .(`sort` = mean(`sigma rank`)), by=.(Outp
         ut)][order(sort), `Output`]
                 ),
                 y=factor(
                      Input,
                     levels=z.results[, .(`sort` = mean(`sigma rank`)), by=.(Inpu
         t)][order(sort), `Input`]
                 ),
                 fill=`sigma rank`
             )
         ) +
             geom_tile() +
             scale_fill_distiller(type="div") +
             xlab("Input variable sorted by mean rank of sigma") +
             ylab("Output variable sorted by mean rank of sigma") +
             theme(
                 axis.text=element_text(size=5),
                 axis.text.x = element_text(angle = 45, hjust=1)
             )
```


Box plots of ranks for mu*.

Select the variables whose median rank is less than 30.

Input	mu* minimum rank	mu* mean rank	mu* median rank	sigma minimum rank	sigma mean rank	sigma median rank
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
bioproduct long term price	1.0	21.989796	20.5	2.0	22.938776	21.5
commercial variable operating cost input	1.0	19.183673	16.0	1.0	20.000000	17.0
random stream	1.0	5.816327	1.0	1.0	5.816327	1.0
commercial plant capacity	1.5	28.193878	27.0	1.5	29.418367	26.0
base external investor ask rate	2.0	13.744898	7.0	2.0	14.755102	9.0
commercial plant capacity input	2.0	13.673469	7.0	2.0	14.428571	7.0
government production incentive	2.0	28.897959	29.0	3.0	29.295918	29.0
payback period multiplier	2.0	22.020408	16.0	2.0	21.285714	15.0
piloting acceptable rate	2.0	17.908163	9.0	1.0	17.826531	9.5
required return multiplier	2.0	30.326531	30.5	2.0	30.285714	30.0
target pilot hours	2.0	11.948980	6.0	2.0	11.775510	6.0
commercial capital cost input	3.0	14.326531	8.5	3.0	15.173469	9.0
pilot capacity	3.0	14.632653	7.0	2.0	15.285714	8.0
piloting failure default recovery time	3.0	23.000000	20.0	2.0	23.857143	24.0
strategic value to external investors	3.0	26.132653	23.0	3.0	26.265306	20.0
management response time	4.0	18.091837	11.0	3.0	18.897959	10.0
minimum runway	4.5	22.683673	17.5	4.5	22.785714	17.0
pilot and demo response time	4.5	23.581633	19.0	5.0	24.030612	20.0
commercial process yield input	5.0	22.500000	20.0	5.0	22.938776	20.0
expected continuity of government policy	6.0	29.071429	27.0	3.0	28.653061	28.0
startup piloting rate	6.0	24.122449	19.0	5.0	24.377551	19.0
piloting failure distribution max	7.0	27.571429	24.0	4.0	27.397959	24.0
government capital cost share	10.0	27.520408	23.0	8.0	27.357143	23.0
researching impact on piloting	10.0	28.571429	22.0	10.0	28.755102	23.0

Input	mu* minimum rank	mu* mean rank	mu* median rank	sigma minimum rank	sigma mean rank	sigma median rank
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
aversion to NPV deviation	11.0	34.142857	30.5	12.5	33.285714	30.0
startup piloting period	11.0	28.459184	25.5	6.0	28.020408	25.5