JAYPEE INSTITUE OF INFORMATION TECHNOLOGY

Electronics and Communication Engineering

Course: VLSI Design
Course Code: 18B11EC315

Tutorial-3

- Q1. Consider a resistive-load inverter circuit with $V_{DD}=5$ V, $k'n=20 \mu A/V^2$, $V_{t0}=0.8$ V, $R_L=200 K\Omega$, and W/L=2. Calculate the critical voltages- V_{OL} , V_{OH} , V_{IL} , V_{IH} find the noise margins of the circuit.
- Q2. Determine the value of (W/L) of nMOS for resistive load inverter, if

$$V_{OL}=0.6V$$
, R=10 K Ω , $V_{DD}=5V$, $V_{th.n}=1V$, $\mu_n C_{ox}=22\mu A/V^2$

- Q3. Consider a CMOS inverter with the given process transconductance parameters- k'n=140 $\mu A/V^2$, k'p=60 $\mu A/V^2$, V_{ton} =0.7 V, V_{top} = 0.7 V, VDD=3 V.
- (a) If the design is ideal and symmetrical, then find out the ratio of (W/L)p and (W/L)n.
- (b) Take the case when (W/L)p = (W/L)n, then find out the inverter threshold voltage.
- Q4. A CMOS inverter is built in a process where k'n=100 μ A/V², k'p=42 μ A/V², V_{ton}=0.7 V, V_{top}= 0.8 V and a power supply of VDD=3.3 V is used. Calculate the inverter threshold voltage Vth if (W/L)n=10 and (W/L)p=14.
- Q5. Find the ratio kn/kp needed to obtain a CMOS inverter threshold voltage of Vth=1.3 V with a power supply of 3 V. Assume that V_{ton} =0.6 V and V_{top} = 0.82 V. What would be the relative device sizes if the mobility values are related by μ_n =2.2 μ_p ?