

Introdução à Probabilidade e Estatística

2^{a} Frequência/Exame de época normal — 11.06.2014TESTE B

Todas as folhas de teste entregues devem estar devidamente identificadas e numeradas (se entregar 3 folhas, devem estar numeradas 1/3, 2/3 e 3/3).

A resolução do teste deve ser entregue em folhas separadas: Folha 1: exercícios 1 a 4; Folha 2: exercícios 5 a 8.

Os alunos que vão a 2ª FREQUÊNCIA resolvem os exercícios 5 a 8. Os alunos que vão a EXAME resolvem os exercícios 1 a 7.

1. Em www.pordata.pt podemos encontrar dados acerca do número de invenções/patentes requeridas anualmente em Portugal, por tipo de requerente (Universidades, Empresas, Instituições de investigação e Inventores individuais). Os resultados apresentados abaixo referem-se ao período de 1998 a 2013.

Statistics						
Número anual de invenções/patentes						
		Universidades	Empresas	Inventores Individuais		
Mean		33,44	43,00	52,75		
Median		35,00	46,00	55,50		
Std. Deviation		25,750	16,232	17,605		
Skewness		,149	-,712	-,013		
Std. Error of Skewness		,564	,564	,564		
Kurtosis		-1,313	-,313	,751		
Std. Error of Kurtosis		1,091	1,091	1,091		
	15	2,65	16,65	33,10		
	25	5,00	33,00	38,50		
Percentiles	50	35,00	46,00	55,50		
	75	55,00	54,50	63,00		
	00	74.00	04.70	75.00		

rtamere annual de mitorigeous paremee de mentarigeou						
de Investigação						
	Frequency	Percent	Cumulative			
			Percent			
2	1	6,25	6,25			
3			12,50			
4	3	18,75	31,25			
5	1	6,25				
6		12,50	50,00			
8	2		62,50			
9	3					
10	2	12,50	93,75			
15	1	6,25				
Total	16	100.0				

Com base nesta informação responda às seguintes questões:

- (a) Classifique os dados quanto à sua natureza.
- (b) Complete a tabela de frequências do número de invenções/patentes requeridas anualmente em Portugal pelas Instituições de Investigação.
- (c) Calcule e interprete a média, a mediana e o desvio-padrão do número de invenções/patentes requeridas anualmente em Portugal pelas Instituições de Investigação.
- (d) Faça corresponder cada boxplot (**A**, **B**, **C** e **D**) ao tipo de requerente (Universidades, Empresas, Instituições de investigação e Inventores individuais).
- (e) Diga, justificando, se cada uma das seguintes afirmações é verdadeira ou falsa:
 - i. "Em 25% dos anos observados verificou-se um número de invenções/patentes requeridas por inventores individuais superior ou igual a 63";
 - ii. A variância do número de invenções/patentes requeridas anualmente em Portugal pelas universidades é de 563;
 - iii. Em Portugal, são as empresas que requerem anualmente, em média, um maior número de invenções/patentes.
- (f) Classifique a distribuição do número de invenções/patentes requeridas anualmente em Portugal pelas Instituições de Investigação, quanto ao tipo de assimetria e achamento. Justifique a sua resposta.
- 2. Na empresa Sojoga foi decidido que nos próximos meses será desenvolvida uma aplicação para Smartphones que permita decidir qual o melhor caminho para que um indivíduo se desloque de um qualquer ponto A para um outro qualquer ponto B, tendo em conta o tráfego em tempo real. Para tal, o primeiro passo foi fazer um inquérito de grande dimensão para perceber qual a receptividade da respectiva aplicação. Nesse inquérito, 72% das pessoas afirmaram que iriam comprar a aplicação, e destas 27% afirmaram registar-se no site da empresa (para ter acesso a informações sobre as futuras actualizações da aplicação). Tendo em conta os resultados, e admitindo que 37% das pessoas se iriam registar no site, diga qual a probabilidade de uma pessoa, seleccionada ao acaso,
 - (a) não comprar a aplicação?
 - (b) comprar a aplicação e registar-se no site?
 - (c) registar-se no site, sabendo que não comprou a aplicação?
- 3. Uma determinada empresa produz peças electrónicas do tipo 425, com 5 cm de comprimento e 3 cm de diâmetro. Estas peças são produzidas por 3 máquinas e podem apresentar no máximo 2 defeitos. A distribuição conjunta da máquina que produz a peça e do número de defeitos da peça é dada por

$X \backslash Y$	0	1	2
1	0,05	0,10	В
2	\mathbf{A}	0,08	$0,\!14$
3	0,07	0,09	\mathbf{C}

- (a) Sabendo que $f_X(3) = 0,39$ e $F_Y(1) = 0,4$, calcule **A**, **B** e **C**.

 Caso não consiga obter estes valores, use as letras para as alíneas seguintes.
- (b) Indique a função de probabilidade de X.
- (c) Determine a função distribuição do número de defeitos por peça.
- (d) Calcule o valor médio e a variância do número de defeitos por peça.
- (e) Calcule a probabilidade da peça apresentar 1 defeito, sabendo que foi produzida pela máquina 3.
- (f) Sabendo que uma peça foi produzida pela máquina 2, qual o número esperado de defeitos da peça.
- 4. A empresa de construção ConstroiFuturo, Lda. foi contratada para construir um novo bairro habitacional de luxo em Évora. Sabe-se que a área total dos apartamentos segue uma distribuição normal de média 100 m² e a probabilidade de um apartamento escolhido ao acaso exceder os 109,2 m² é de 0,409.
 - (a) Determine a variância da área total dos apartamentos.

 Caso não tenha consequido determinar este valor, considere para as alíneas sequintes $\sigma = 40 \ m^2$)
 - (b) Qual a probabilidade de um qualquer apartamento, seleccionado ao acaso, apresentar uma área total superior a 190 m²?
 - (c) Qual a probabilidade de um qualquer apartamento, seleccionado ao acaso, apresentar uma área total superior entre 85 e 150 m²?
 - (d) Sabe-se que vão ser construídos numa primeira fase 20 apartamentos e numa segunda fase mais 35 apartamentos. A construção da segunda fase está garantida, não dependendo da construção da primeira fase. Um grupo de investidores estrangeiros pretende adquirir apartamentos com áreas superiores a 150 m². Qual a probabilidade do grupo de investidores encontrar
 - i. na primeira fase entre 5 e 7 apartamentos com áreas superiores a 150m²?
 - ii. no final (1ª e 2ª fase) mais de 12 apartamentos com áreas superiores a $150 \mathrm{m}^2$?
- 5. Uma cadeia de supermercados está a preparar uma campanha em que anuncia que um determinado tipo de pilhas da sua marca (A) é superior ao mesmo tipo de pilhas de uma marca conhecida (B). Para tal, realizou testes a um conjunto de pilhas de cada marca e registou o tempo de vida, em horas, de cada uma delas. As tabelas seguintes apresentam os resultados obtidos:

Descriptives

	Marca		Statistic	Std.
				Error
	_	Mean	4,839	0,110
_	Α	Variance	0,253	
Tempo		Mean	3,754	0,141
	В	Std. Deviation	0,707	

Tests of Normality

	Marca	Kolmo	ogorov-Sm	irnov ^a	S	Shapiro-Wil	k
		Statistic	df	Sig.	Statistic	df	Sig.
T	А	,131	21	,200*	,952	21	,367
Tempo	В	,111	25	,200*	,945	25	,190

^{*.} This is a lower bound of the true significance.

One-Sample Test

		Test Valu	ue = 4,5
	df	Sig. (2-tailed)	Mean Difference
Tempo de vida das pilhas da marca A	20	,006	0,339

Independent Samples Test

			t-test for Equality of Means					
		t	df	Sig. (2-tailed)	Mean	Std. Error	99% Confidence	Interval of the Difference
					Difference	Difference	Lower	Upper
T	Equal variances assumed	5,886	44	,000	1,085	,1844	,5887	1,5814
Tempo	Equal variances not assumed	6,061	42,9	,000	1,085	,1790	,6025	1,5676

- (a) Verifique, ao nível de significância de 5%, se existe evidência suficiente nos resultados para afirmar que, em média, o tempo de vida das pilhas da marca A é superior a 4,5 horas.
- (b) Calcule e interprete o *p-value* associado ao teste da alínea anterior.
- (c) Determine o intervalo a 90% de confiança para a comparação das variâncias do tempo de vidas das pilhas das duas marcas. O que pode concluir?
- (d) Diga, ao nível de significância de 10% se existem diferenças significativas no tempo médio de vida das pilhas da marca A e da marca B.
- (e) A cadeia de supermercados pode admitir que de facto é verdade que as pilhas da sua marca são superiores ao mesmo tipo de pilhas da marca conhecida (B)?
- 6. Numa determinada universidade, a experiência de anos anteriores revela que para um determinado grupo de disciplinas o número de alunos que chegam, por hora, para tirar dúvidas duas semanas antes de uma prova segue uma distribuição de Poisson com desvio-padrão igual a 2. Observou-se o número de alunos que chegaram, por hora, num total de 50 horas para as primeiras prova das disciplinas. Realizou-se um teste de hipóteses de forma a averiguar se de facto podemos admitir a distribuição de probabilidade indicada para o número de alunos que chegam, por hora, para tirar dúvidas duas semanas antes de uma prova. Os resultados obtidos foram os seguintes:

a. Lilliefors Significance Correction

Número de alunos

	Observed N	Expected N	Residual
≤ 2	9	11,9	А
3	В	9,8	-4,8
•		_	_
4	15	C	D
5	12	E	F
J 3	·-	_	•
6≥	9	G	-1,7
Total	50		
10101			

Test Statistics			
	Número de alunos		
Chi-Square	8,360		
df	4		
Asymp. Sig.	,079		

- (a) Indique qual foi o teste realizado e quais as hipóteses em teste.
- (b) Determine os valores de A a G.
- (c) Interprete de forma detalhada os resultados apresentados. O que pode concluir?
- 7. Para ilustrar a aplicação do modelo de regressão linear simples, foram utilizados os dados da percentagem de energia consumida em aquecimento/arrefecimento proveniente de fontes de energias renováveis na zona euro (28 países) de 2004 a 2012. Alguns dos resultados obtidos com o auxílio do software SPSS são apresentados nas tabelas seguintes:

Mo	odel	Sum	marv

Model	R Square		
1	,982		
a. Predictors: (Constant),			

i. i rediciors. (Consiai

Ano

Desci	riptive	Statistics

	Mean	Variance
Ano	2008,00	7,500
% de energia consumida em aquecimento/arrefecimento proveniente de fontes renováveis	12,5889	4,336

Coefficientsa

Model		Unstandardized Coefficients		Standardized Coefficients		Sig.	95,0% Confidence Interval for B		
		В	Std. Error	Beta			Lower Bound	Upper Bound	
1	1	(Constant)		78,275	,991	-19,164		-1685,196	-1315,012
	Ano		,039		19,325	,000			

- a. Dependent Variable: % de energia consumida em aquecimento/arrefecimento proveniente de fontes renováveis
- (a) Indique a recta de regressão dos mínimos quadrados e interprete os seus coeficientes.
- (b) Determine e interprete os coeficientes de correlação e de determinação.
- (c) Ao nível de significância de 1% pode concluir que a recta de regressão não passa pela origem?
- (d) Para um nível de significância de 10%, teste a hipótese de o declive da recta de regressão ser nulo.

- (e) De acordo com o modelo qual a previsão para 2013 da percentagem de energia consumida em aquecimento/arrefecimento proveniente de fontes de energias renováveis na zona euro?
- 8. É comum ouvir-se dizer que o estado do tempo influencia o estado de espírito de um indivíduo. Realizou-se um estudo para averiguar se esta ideia é de facto verdadeira. O estudo envolveu 100 indivíduos em que foi classificado o seu estado de espírito em 1 radiante; 2 assim-assim ou 3 -macambúzio. O estado do tempo correspondente foi classificado de 1 Dia chuvoso com vento; 2 Dia ameno de Outono; 3- Dia de Primavera e 3- Dia radioso de Verão. Com base nos resultados seguintes, será que podemos afirmar que o estado de espírito depende significativamente do estado do tempo? Realiza um teste de hipóteses adequado, considerando um nível de significância de 1%.

Estado de espírito * Estado do tempo Crosstabulation

			Estado do tempo				Total
			Dia chuvoso de inverno	Dia ameno de outono	Dia de primavera	Dia radioso de verão	
	radiante	Count	3	2	6	7	18
		Expected Count	3,8	3,8	6,7	3,8	18,0
	Assim-assim	Count	6	11	10	7	34
Estado de espírito		Expected Count	7,1	7,1	12,6	7,1	34,0
	Macambúzio	Count	12	8	21	7	48
		Expected Count	10,1	10,1	17,8	10,1	48,0
		Count	21	21	37	21	100
Total		Expected Count	21,0	21,0	37,0	21,0	100,0

Bom Trabalho!