Szemerédi's proof of Roth's theorem

In this exercise sheet, we outline Szemerédi's proof of Roth's theorem on the existence of 3-term arithmetic progressions in large sets. Szemerédi's proof appeared some 10 years after Roth's original proof and contain elements of his general result on the existence of k-term arithmetic progressions.

As in the Fourier analytic proof the key will again be to show that if a set $A \subseteq [1, N]$ with $|A| = \delta N$ does not contain any 3-term arithmetic progressions, then there exists a "long" arithmetic progression on which the (relative) density of A increases, to say $\delta + \delta^2/20$. This can then be iterated a large number of time as before and, provided N is sufficiently large, the density of A will eventually exceed 1 on some progression, which is clearly impossible.

Throughout this sheet we will use of the convenient notation $\log N := \log_2 N$.

1. (Cube Lemma) Let $a, d_1, \ldots, d_k \in \mathbb{N}$. We define a k-dimensional cube to be a set of the form

$$Q(a, d_1, \dots, d_k) = \{a + \varepsilon_1 d_1 + \dots + \varepsilon_k d_k : \varepsilon_i = 0 \text{ or } 1 \text{ for all } 1 \le i \le k\}.$$

- (a) Let $\delta > 0$ and $k \in \mathbb{N}$. Use induction to show that if $N \geq (2/\delta)^{2^k}$ and $A \subseteq [1, N]$ with $|A| = \delta N$ then A must contain a k-dimensional cube.
- (b) Note in particular that if $\delta > 0$, $N \ge 2^{(\log 2/\delta)^2}$ and $A \subseteq [1, N]$ with $|A| = \delta N$ then A must contain a k-dimensional cube with $k \ge \frac{1}{2} \log \log N$.
- 2. Let $A, P \subseteq [1, N]$ and $P = P_1 \cup \cdots \cup P_k$ be a partition.
 - (a) Verify that from the simple observation that

$$\frac{|A \cap P|}{|P|} = \sum_{j=1}^{k} \frac{|P_j|}{|P|} \frac{|A \cap P_j|}{|P_j|}$$

it follows that there must exist $1 \le j \le k$ such that

$$\frac{|A \cap P_j|}{|P_j|} \ge \frac{|A \cap P|}{|P|}.$$

(b) Let $\delta > 0$. Verify that if $A \subseteq P$ with $|A| = \delta N$ and $|P| \le (1 - \delta/10)N$, then in fact there must exist $1 \le j \le k$ such that

$$\frac{|A \cap P_j|}{|P_j|} \ge \delta + \delta^2/20 \text{ and } |P_j| \ge \frac{\delta^3}{20} \frac{N}{k}.$$

(c) Note in particular that if $\delta > 0$, $|A| = \delta N$ and we know that A can be covered by a union of disjoint progressions P_1, \ldots, P_k with $k \leq N/\log\log N$ whose union P satisfies $|P| \leq (1 - \delta/10)N$, then there must exist $1 \leq j \leq k$ such that

$$\frac{|A \cap P_j|}{|P_i|} \ge \delta + \delta^2/20 \quad \text{and} \quad |P_j| \ge \frac{\delta^3}{20} \log \log N.$$

3. Let $A \subseteq [1, N]$ and $d \in \mathbb{N}$. We will say that $a, b \in A$ are equivalent, and write $a \sim b$, if there exists $L \in \mathbb{N}$ such that either

$${a, a+d, \ldots, a+(L-1)d = b} \subseteq A \text{ or } {b, b+d, \ldots, b+(L-1)d = a} \subseteq A.$$

- (a) Verify that the relation \sim is an equivalence relation whose equivalence classes are (maximal) progressions of step size d.
- (b) Show that the number of equivalence classes k, satisfies $k = |(A+d) \setminus A|$.
- (c) Verify that the complement of A can be partitioned into at most k+d progressions with step size d, that is

$$[1,N] \setminus A = P_1 \cup \cdots \cup P_\ell$$

where each P_j is a progressions with step size d and $\ell \leq k + d$.

4. Let $\delta > 0$, $N > 2^{2(\log 2/\delta)^2}$ and $A \subset [1, N]$ with $|A| = \delta N$.

Set $B := A \cap [N/3, 2N/3]$ and suppose $|B| \ge \delta N/6$.

(a) Show that B must contain a k-dimensional cube $Q(a, d_1, \ldots, d_k)$ with $k \geq \frac{1}{2} \log \log N$ and $1 \leq d_1 + \cdots + d_k \leq \sqrt{N}$.

Hint: Decompose [N/3, 2N/3] in to intervals of length \sqrt{N} .

(b) For each $1 \le j \le k$ we set $Q_i := Q(a, d_1, \dots, d_i), Q_0 := \{a\}$ and introduce the sets

$$B_i := \{x : x = 2z - y, z \in Q_i \text{ and } y \in B\}.$$

Verify that for each $0 \le j \le k$ the sets B_j satisfy the following:

- i. $B_i \cap A = \emptyset$ if A contains no 3-term arithmetic progressions
- ii. $|B_j| \ge |B| \ge \delta N/6$
- iii. $B_j \cup (B_j + 2d_{j+1}) \subset B_{j+1}$ (for $0 \le j \le k-1$)
- (c) i. Verify that there must exist $0 \le j \le k-1$ such that

$$|B_{j+1} \setminus B_j| \le \frac{2N}{\log\log N}.$$

ii. Conclude from this that the complement of the set B_j can be partitioned into at most ℓ progressions with step size $d=2d_{j+1}$ where

$$\ell \le d + |B_{j+1} \setminus B_j| \le 2\sqrt{N} + \frac{2N}{\log \log N} \le \frac{3N}{\log \log N}.$$

Hint: The set B_j can be partitioned into $|(B_j + 2d_{j+1}) \setminus B_j|$ progressions with step size $2d_{j+1}$ and it follows from 4(b)iii that $|(B_j + 2d_{j+1}) \setminus B_j| \le |B_{j+1} \setminus B_j|$.

- 5. Let $A \subseteq [1, N]$ and set $\delta = |A|/N$.
 - (a) Verify that if A contains <u>no</u> non-trivial 3-term arithmetic progressions, then either $N < 2^{2(\log 2/\delta)^2}$ or there exists an arithmetic progression P with $|P| \ge c\delta^3 \log \log N$, such that

$$\frac{|A \cap P|}{|P|} \ge \delta + \frac{\delta^2}{20}.$$

(b) By iterating this argument (in exactly the same way as we did in the Fourier analytic proof) we can prove Roth's Theorem. What bounds do you obtain from this combinatorial approach?