1. Exercise 1.8 in LFD

binomial distribution tells us

$$p_x = \binom{n}{x} p^x q^{n-x}$$

$$n = 10$$

$$x = 0 \text{ and } x = 1$$

$$p = 0.9$$

$$q = 1 - p = 0.1$$

$$p_0 = \binom{10}{0} 0.9^0 0.1^{10} = 0.1^{10} = 1 \times 10^{-10}$$

$$p_1 = \binom{10}{1} 0.9^1 0.1^9 = 10 \times 0.9 \times 0.1^9 = 9 \times 10^{-9}$$

$$p = p_0 + p_1 = 9.1 \times 10^{-9}$$

2. Exercise 1.9 in LFD

Using $P[|\nu - \mu| \ge \epsilon] \le 2e^{-2\epsilon^2 N}$, we can find the following bounds: Using $\epsilon = 0.8$ and N = 10, we can derive $2e^{-2\epsilon^2 N} = 2e^{2(0.8)^2 \times 10}$, which equals 5.52×10^{-6} . Since this is a bound, it is reasonable for it to be greater than our answer in exercise 1.8

3. Exercise 1.10 in LFD

(a)
$$\mu = 0.5$$

- (d) c_1 and c_{rand} obey the Hoeffding bound, c_{min} does not because c_1 and c_{rand} were selected without looking at the data, while c_{min} looks at the data before selecting. c_{min} represents the "unlucky" choice
- (e) There are 1,000 bins with evenly distributed green and red marbles, from each bin, pick 10 marbles, we can use green marble to represent flipping heads, and red flipping tails. c_1 will be the first bin, c_{rand} will be a random bin, and c_{min} will be the bin from which you picked the most red marbles from (least green marbles / heads).

4. Exercise 1.11 in LFD

- (a) No, to acheive this, we need $E_{out} \approx 0$, which means that we need $E_{in} \approx E_{out} \approx 0$. Due to the low data points, the best assumption we can make is $E_{out} \approx 0.5$, which tells us nothing other than random.
- (b) Yes, outside the data we don't know anything about the datapoints, so if there are more points that are -1 outside the data than +1, then our hypothesis C will be better than our hypothesis S.
- (c) We need to look at all possible probabilities and pick those that have 13 or more +1 in the sample of 25. We know that p = 0.9, so there's a 0.9 chance that a point is +1 and 0.1 chance a point is -1, so we can derive the following equation:

$$N = 25$$

$$\sum_{n=13}^{N} {25 \choose n} 0.9^n \times 0.1^{25-n} \approx 0.99999$$

(d) No, the value p doesn't know anything about the data outside the 25 data points, so we can't make any assumption of C and S outside. In the data set, S will always pick the better hypothesis than C, so if there are more +1 than -1, it will pick h_1 , vise-versa, so inside the data, there is no way that C will product a hypothesis better than S.

5. Exercise 1.12 in LFD

- (a) We don't know anything about the sample, so we can't make any assumptions of how well our g can approximate f, in addition, the problem says "guarantee", which will never happen.
- (b) No, in order to have a high probability that our g approximates f well out of sample, we need our $E_{out} \approx E_{in} \approx 0$. With 4000, which is a small data point, we can say $E_{in} \approx 0$, but we can't say anything about $E_{out} \approx E_{in}$ since that requires N to be large.
- (c) This is the best choice, more likely than not we will declare that we have failed, we don't have enough data to say anything about outside the N = 4000 data points.

6. Problem 1.3 in LFD

- (a) w^* separates the data, so $x_n = y_n$, let $A_n = x_n = y_n$ and $p = \min_{1 \le n \le N} A_n^2 w^*$, A_n^2 will always be a positive number, so p > 0
- (b) Assume

$$w^{T}(t)w^{*} \geq w^{T}(t-1)w^{*} + p$$

$$w^{T}(t) = w(t-1) + y_{*}x_{*} \text{ update rule}$$

$$(w^{T}(t-1) + y_{*}x_{*})w^{*} \geq w^{T}(t-1)w^{*} + p$$

$$w^{T}(t-1)w^{*} + y_{*}x_{*}w^{*} \geq w^{T}(t-1)w^{*} + p$$

Here, we see that $w^T(t-1)w^*$ are the same on both side of the inequality, so we need to prove that $y_*x_*w^* \ge p$, but we already know that $p \le y_n(w^{*T}x_n)$ from part (a), so the statement is true

prove $w^T(t)w^* \ge tp$ by induction:

base case: t = 0, w(0) = 0, so $0 \ge 0$ is true

induction step: assume k = t and create our induction hypothesis $w^T(k)w^* \geq kp$

Prove $w^{T}(k+1)w^{*} \geq (k+1)p$

$$(w^{T}(k) + y_{*}x_{*})w^{*} \ge (k+1)p$$
 update rule
 $w^{T}(k)w^{*} + y_{*}x_{*}w^{*} \ge kp + p$

Our induction hypothesis says $w^T(k)w^* \ge kp$, and we know that $y_*x_*w^* \ge p$ from part (a), so the statement is true

(c) with the update rule, we get

$$||w(t-1) + x(t-1)y(t-1)||^2 \le ||w(t-1)||^2 + ||x(t-1)||^2$$

We can solve LHS, so

$$\begin{aligned} ||[w(t-1) + x(t-1)y(t-1)]^2|| &= ||w(t-1)^2 + 2w(t-1)x(t-1)y(t-1) + x(t-1)^2y(t-1)^2|| \\ y(t-1)^2 &= 1 \text{ since y } \in \{-1, 1\} \\ &= ||w(t-1)^2 + 2w(t-1)x(t-1)y(t-1) + x(t-1)^2|| \\ &||w(t-1)^2 + x(t-1)^2|| \text{ is in both sides of the inequality} \end{aligned}$$

On the LHS, we have 2w(t-1)x(t-1)y(t-1), which, when x(t-1) is misclassified by w(t-1), becomes < 0, so

$$||w(t-1)^2 + x(t-1)^2 + \text{ negative number }|| < ||w(t-1)^2 + x(t-1)^2||$$

We know $||w(t-1)^2 + x(t-1)^2|| \le ||w(t-1)||^2 + ||x(t-1)||^2$ by subadditivity, so $||w(t)||^2 \le ||w(t-1)^2 + x(t-1)^2|| \le ||w(t-1)||^2 + ||x(t-1)||^2$, by transitivity, we know $||w(t)||^2 \le ||w(t-1)||^2 + ||x(t-1)||^2$

(d) BC $||w(0)||^2 = 0$ and $0R^2 = 0$, so $0 \le 0$ is true

Induction, assume induction hypothesis $||w(k)||^2 \le kR^2$ for k=t, then we must prove it for k=k+1

so,
$$||w(k+1)||^2 \le (k+1)R^2 = kR^2 + R^2$$

from (c), we know that $||w(k+1)||^2 \le ||w(k)||^2 + ||x(k)||^2$, from the induction hypothesis, we know $||w(k)||^2 \le kR^2$, so we must prove $||x(t)||^2 \le R^2$, the problem tells us that R is the max, so $R \ge x(t)$, therefore $R^2 \ge ||x(t)||^2$ as well

so, $||w(k+1)||^2 \le ||w(k)||^2 + ||x(k)||^2 \le kR^2 + R^2$, by transitivity, $||w(k+1)||^2 \le kR^2 + R^2 = (k+1)R^2$, our induction proof is complete and we can conclude $||w(t)||^2 \le tR^2$

(e) modify the problem to $\frac{w^T(t)}{||w(t)||} \cdot w^* \ge \sqrt{t} \frac{p}{R} \frac{\sqrt{t}}{\sqrt{t}}$, so that it is $\frac{w^T(t)}{||w(t)||} \cdot w^* \ge \frac{pt}{R\sqrt{t}}$

We need to prove $A \geq C$ and $B \leq D$ for $\frac{A}{B}$ and $\frac{C}{D}$, then we can say that $\frac{A}{B} \geq \frac{C}{D}$, so from (b), we know that $w^T(t)w^* \geq pt$ and from (d), we know that $||w(t)||^2 \leq tR^2$, which simplifies to $||w(t)|| \leq \sqrt{t}R$, hence we can conclude that $\frac{w^T(t)}{||w(t)||}w^* \geq \sqrt{t}\frac{P}{R}$

Rearranging variables to isolate t, we get $\frac{R^2(w^T(t)w^*)^2}{p^2||w(t)||^2} \geq t$, using the hint we are given, $w^T(t)w^* \leq ||w(t)||||w^*||$, $w^T(t) \cdot w^* = ||w(t)|| \cdot ||w^*|| \cdot \cos\theta$, squaring both sides, we get $w^T(t)^2 \cdot w^{*2} = ||w(t)||^2 \cdot ||w^*||^2 \cdot \cos^2\theta$, we know that $\cos\theta$ is bounded by $\{-1,1\}$, since it's squared, its value is always 1, therefore $w^T(t)^2 \cdot w^{*2} \leq ||w(t)||^2 \cdot ||w^*||^2$

So, we can derive $\frac{||w(t)||^2\cdot||w^*||^2R^2}{p^2||w(t)||^2} \ge \frac{R^2(w^T(t)w^*)^2}{p^2||w(t)||^2} \ge t$, we can simplify this to $\frac{||w^*||^2R^2}{p^2} \ge \frac{R^2(w^T(t)w^*)^2}{p^2||w(t)||^2} \ge t$, by transitivity, $\frac{R^2||w^*||^2}{p^2} \ge t$

- 7. Problem 1.7 in LFD
 - (a) FINISH HERE
 - (b) FINISH HERE