Алгоритмы и структуры данных

Сергей Григорян

7 октября 2024 г.

Содержание

1	Лек	ция 5	3
	1.1	Биномиальная куча	3
	1.2	Амортизационный анализ	4
		1.2.1 Динамический массив	
		(std::vector)	5

1 Лекция 5

1.1 Биномиальная куча

Хотим следующие операции:

- getMin()
- extractMin()
- insert(x)
- decreaseKey(ptr, \triangle)
- merge(heap1, heap2) обЪединение куч.

Определение 1.1. Биномиальное дерево ранга k:

 ${\bf k}=0)\ T_0$ - одна вершина

 $\mathbf{k}=1)\ T_1$ - вершина с одним ребёнком

 ${\bf k}=2)\ T_2$ - Дерево $T_1,$ к корню кот. ещё подвешено T_1

 $\mathbf{k}=\mathbf{n})\ T_n$ - Дерево $T_{n-1},$ к корню кот. ещё подвешено T_{n-1}

Кроме того, в вершинах дерева, есть числа, удовл. усл. обыкновенной кучи (значение в родителе \leq значения в сыновьях)

<u>Определение</u> **1.2.** Биномиальная куча - это набор биномиальных деревьев, попарно различных рангов.

Пример.

 $\overline{T_0, T_1, T_5}$ - OK T_3, T_5, T_5 - NOT OK

Замечание. 1) Если в куче всего n - эл-ов, то в ней не более $\log_2 n$ - деревьев, m. к. в T_k ровно 2^k вершин.

Пример.
$$n = 11 = 1011_2 \Rightarrow T_0 + T_1 + T_3$$

2) Дерево ранга k имеет глубину k

$$k \le \log_2 n$$

Реализация:

- getMin(): Храним указатель на корень с наим. значением. $\Rightarrow O(1)$
- $merge(H_1, H_2)$:
 - 1) Если в H_1 и H_2 не содержатся деревья одинаковых рангов, то просто объединяем.
 - 2) Иначе пусть есть дерево L_k , R_k два дерева одинакового ранга. Сделаем из них T_{k+1} . Повторяем процедуру, пока у нас есть деревья равных рангов. $(O(\log_2 n))$
- insert(x): Заводим биномиальную кучу из одной вершины с значением x, затем merge новой и старой кучи $\Rightarrow O(\log_2 n)$
- extractMin(): Пусть min вершина в H_2 . На самом деле дерево H_2 тоже корректная куча. Оставшуюся кучу обозначим за H_1 . Удалим из H_2 min, из оставшихся деревьев составим новую кучу H_2' и смёрджим его с H_1
- decrease Key(ptr, \triangle): Как в бинарной. $(O(\log_2 n)) + \Pi$ роверить, не изменился ли min корень

1.2 Амортизационный анализ

Определение 1.3. Пусть S - какая-то СД, способная обрабатывать m типов запросов. Тогда ф-ции $a_1(n), a_2(n), \ldots, a_m(n)$ наз-ся учётными (амортизационными) асимптотиками ответов на запросы, если $\forall n \forall$ п-ть из n запросов с типами i_1, i_2, \ldots, i_n суммарное время их обработки = $O(\sum_{i=1}^n a_{i_j}(n))$

Пример. В бинарной куче:

- $insert: O(\log n)$
- $extractMin: O^*(\log n)$

- $getMin(): O^*(\log n)$
- erase: a mopm. $O(\log n)$

 C л-но, любые n запросов работают за $O(n \log n)$

Замечание. Можно даже считать так:

- insert: $O^*(\log n)$
- $extractMin: O^*(1) \le k$
- $getMin: O^*(1)$
- erase: $O^*(1) \le k$

На п запросов.

Из них k - insert. Тогда реальное время работы: $O(k \log k + n - k)$

1.2.1 Динамический массив (std::vector)

Хранит массив: $a_0, a_1, \ldots, a_{n-1}$ Отвечает на запросы:

- []: по i вернуть a_i O(1)
- \bullet push-back х: добавить x в конец массива.
- pop-back: удалить последний эл-т.