Numerical Analysis: Midterm

(30 marks, only the 3 best questions count)

Urbain Vaes

October 24, 2022

Question 1 (Floating point arithmetic, 10 marks). True or false? (+1/0/-1)

- 1. Let $(\bullet)_2$ denote binary representation. It holds that $(0.1011)_2 + (0.0101)_2 = 1$.
- **2.** Let $(\bullet)_3$ denote base 3 representation. It holds that $(1000)_3 \times (0.002)_3 = 2$.
- **3.** A natural number with binary representation $(b_4b_3b_2b_1b_0)_2$ is even if and only if $b_0 = 0$.
- 4. In Julia, Float64(.4) == Float32(.4) evaluates to true.
- **5.** Machine addition $\widehat{+}$ is a commutative operation. More precisely, given any two double-precision floating point numbers $x \in \mathbf{F}_{64}$ and $y \in \mathbf{F}_{64}$, it holds that x + y = y + x.
- **6.** Let \mathbf{F}_{32} and \mathbf{F}_{64} denote respectively the sets of single and double precision floating point numbers. It holds that $\mathbf{F}_{32} \subset \mathbf{F}_{64}$.
- 7. The machine epsilon of a floating point format is the smallest strictly positive number that can be represented exactly in the format.
- 8. Let \mathbf{F}_{64} denote the set of double precision floating point numbers. For any $x \in \mathbf{R}$ such that $x \in \mathbf{F}_{64}$, it holds that $x + 1 \in \mathbf{F}_{64}$.
- **9.** Let $a_i \in \{0,1\}$ for $i \in \{1,2,3\}$. If $(a_1a_2a_3)_2$ is a multiple of 3, then $(a_1a_2a_3)_4$ is a multiple of 6. Here $(\bullet)_4$ denotes base 4 representation.
- **10.** Let $f: \mathbf{R} \to \mathbf{R}$ denote the function that maps $x \in \mathbf{R}$ to the number of double precision floating point numbers contained in the interval [x-1,x+1]. Then f is a decreasing function of x.
- 11. Let $n \in \mathbb{N}$. The number of bits in the binary representation of n is less than or equal to 4 times the number of digits in the decimal representation of n.
- **12.** It holds that $(0.\overline{2200})_3 = (0.9)_{10}$.
- **13.** Let $p \in \mathbb{N}$. The set $\{(b_0.b_1b_2...b_{p-1})_2 : b_i \in \{0,1\}\}$ contains 2^p distinct real numbers.

Question 2 (Interpolation and approximation, 10 marks). Throughout this exercise, we assume that $x_0 < \ldots < x_n$ are distinct values and that $u: \mathbf{R} \to \mathbf{R}$ is a smooth function. The notation $\mathbf{P}(n)$ denotes the set of polynomials of degree less than or equal to n.

- 1. (4 marks) Are the following statements true or false? (+1/0/-1)
 - There exists a unique polynomial $p \in \mathbf{P}(n)$ such that

$$\forall i \in \{0, \dots, n\}, \qquad p(x_i) = u(x_i). \tag{1}$$

• Assume that $p \in \mathbf{P}(n)$ is such that (1) is satisfied. Then there is a constant $K \in \mathbf{R}$ independent of x such that

$$\forall x \in \mathbf{R}, \quad u(x) - p(x) = K(x - x_0) \dots (x - x_n).$$

- Assume that $p \in \mathbf{P}(n)$ is such that (1) is satisfied. Then p is of degree exactly n.
- If x_0, \ldots, x_n are the roots of the Chebyshev polynomial of degree n, then

$$\sup_{x \in \mathbf{R}} \left| (x - x_0) \dots (x - x_n) \right| \leqslant \frac{\pi}{2^n}.$$

• The function $S \colon \mathbf{N} \to \mathbf{R}$ given by

$$S(n) = \sum_{i=1}^{n} (i + i^{2} + i^{3} + i^{4})$$

is a polynomial of degree 5. (More precisely, there exists a polynomial of degree 5, say q, such that S(n) = q(n) for all $n \in \mathbb{N}$.)

2. For $i \in \{0, ..., n\}$, let $u_i = u(x_i)$, and let $m \le n$ be a given natural number. We wish to fit the data $(x_0, u_0), ..., (x_n, u_n)$ with a function $\widehat{u} \colon \mathbf{R} \to \mathbf{R}$ of the form

$$\widehat{u}(x) = \alpha_0 + \alpha_1 x + \ldots + \alpha_m x^m$$

Specifically, we wish to find coefficients $\boldsymbol{\alpha} = (\alpha_0, \dots, \alpha_m)^T$ such that the error

$$J(\alpha) := \frac{1}{2} \sum_{i=0}^{n} |u_i - \widehat{u}(x_i)|^2$$

is minimized. Throughout this exercise, we use the notations

$$A \begin{pmatrix} 1 & x_0 & \dots & x_0^m \\ \vdots & \vdots & & \vdots \\ 1 & x_n & \dots & x_n^m \end{pmatrix}, \qquad \boldsymbol{b} := \begin{pmatrix} u_0 \\ \vdots \\ u_n \end{pmatrix}$$

• (3 marks) Show that $J(\alpha)$ may be rewritten as

$$J(\boldsymbol{\alpha}) = \frac{1}{2} (\mathsf{A}\boldsymbol{\alpha} - \boldsymbol{b})^T (\mathsf{A}\boldsymbol{\alpha} - \boldsymbol{b}).$$

• (2 marks) Prove that if $\alpha_* \in \mathbf{R}^{m+1}$ is a minimizer of J, then

$$\mathsf{A}^T \mathsf{A} \boldsymbol{\alpha}_* = \mathsf{A}^T \boldsymbol{b}. \tag{2}$$

• (1 mark) Find a solution to (2) in terms of u_0, \ldots, u_n and n when m = 0. Explain.

Question 3 (Numerical integration, 10 marks). The Gauss–Legendre quadrature formula with n nodes is an approximate integration formula of the form

$$I(u) := \int_{-1}^{1} u(x) \, \mathrm{d}x \approx \sum_{i=1}^{n} w_i \, u(x_i) =: \widehat{I}_n(u), \tag{3}$$

which is exact when u is a polynomial of degree less than or equal to 2n-1. (Note that the nodes are here numbered starting from 1.)

- 1. (5 marks) Find the nodes and weights of the Gauss-Legendre rule with n=3 nodes.
- **2.** (2 marks) Let $\{L_0, L_1, \dots\}$ denote orthogonal polynomials for the inner product

$$\langle f, g \rangle := \int_{-1}^{1} f(x)g(x) \, \mathrm{d}x$$

which, in addition, satisfy the following two conditions:

- For all $i \in \mathbb{N}$, the polynomial L_i is of degree i.
- The leading coefficient of L_i , which multiplies x^i , is equal to 1.

Calculate L_0 , L_1 , L_2 and L_3 . What is the connection between L_3 and the rule found in the first item?

- **3.** Assume that x_1, \ldots, x_n and w_1, \ldots, w_n are such that (3) is satisfied for all $u \in \mathbf{P}(2n-1)$.
 - (2 marks) Show that the weights are given by

$$\forall i \in \{1,\ldots,n\}, \qquad w_i = \int_{-1}^1 \ell_i(x) \,\mathrm{d}x,$$

where ℓ_i is the Lagrange polynomial

$$\ell_i(x) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}.$$

• (1 marks) Show that the weights are all positive: $w_i > 0$ for all i.

4. (Bonus +2) Prove the following error estimate: if u is a smooth function, then

$$|I(u) - \widehat{I}_n(u)| \le \frac{C_{2n}}{(2n)!} \int_{-1}^1 (L_n(x))^2 dx, \qquad C_{2n} := \sup_{\xi \in [-1,1]} |u^{(2n)}(\xi)|.$$

Hint: You may find it useful to proceed as follows:

• First show that

$$I(u) - \widehat{I}_n(u) = \int_{-1}^1 u(x) - p(x) \, \mathrm{d}x,\tag{4}$$

for any polynomial $p \in \mathbf{P}(2n-1)$ such that

$$\forall i \in \{1, \dots, n\}, \qquad p(x_i) = u(x_i).$$

• Notice that equation (4) is true in particular when p is the Hermite interpolation of u at the nodes x_1, \ldots, x_n . Finally, conclude by using the formula for the interpolation error proved in class: if p is the Hermite interpolant of u at the nodes x_1, \ldots, x_n , then

$$\forall x \in \mathbf{R}, \qquad u(x) - p(x) = \frac{u^{(2n)}(\xi(x))}{(2n)!} (x - x_1)^2 \dots (x - x_n)^2.$$

Question 4 (Vector and matrix norms, 10 marks). The 1-norm and the ∞ -norm of a vector $x \in \mathbb{R}^n$ are defined as follows:

$$\|x\|_1 = |x_1| + \dots + |x_n|$$
 and $\|x\|_{\infty} = \max\{|x_1|, \dots, |x_n|\}.$

These norms both induce a matrix norm through the formula

$$\|\mathsf{A}\|_p := \sup \{ \|\mathsf{A} \boldsymbol{x}\|_p : \|\boldsymbol{x}\|_p = 1 \}.$$

Prove, for $A \in \mathbf{R}^{n \times n}$, that

1. (10 marks) $\|A\|_1$ is given by the maximum absolute column sum:

$$\|\mathsf{A}\|_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|. \tag{5}$$

2. (Bonus +2) $\|A\|_{\infty}$ is given by the maximum absolute row sum:

$$\|\mathsf{A}\|_{\infty} = \max_{1 \leqslant i \leqslant n} \sum_{j=1}^{n} |a_{ij}|.$$

Hint: In order to prove (5), you may find it useful to proceed as follows:

• Introduce j_* as the index of the column with maximum absolute sum:

$$j_* = \underset{1 \le j \le n}{\arg\max} \sum_{i=1}^n |a_{ij}|.$$

• Prove the direction \geqslant in (5) by finding a vector \boldsymbol{x} with $\|\boldsymbol{x}\|_1 = 1$ such that

$$\|A\boldsymbol{x}\|_1 = \sum_{i=1}^n |a_{ij_*}|.$$

• Prove the direction \leq in (5) by showing that, for any $\boldsymbol{x} \in \mathbf{R}^n$ with $\|\boldsymbol{x}\|_1 = 1$,

$$\|Ax\|_1 \leqslant \sum_{i=1}^n |a_{ij_*}|.$$