

CÉSAR VALLEJO

CÉSAR VALLEJO

ÁLGEBRA

Inecuaciones

Semana 03

Docente: José Luis Vásquez Carhuamaca

OBJETIVOS:

- ✓ Resolver inecuaciones polinomiales y fraccionarias.
- ✓ Aplicar teoremas sobre inecuaciones.
- ✓ Resolver problemas tipo, relacionados con el tema de inecuaciones.

INECUACIÓN

Una inecuación es una desigualdad entre dos expresiones matemáticas, donde esta presente al menos una variable que será llamada incógnita.

Ejemplo:

•
$$2x^2 \le 3x - 1$$

$$\bullet \quad \frac{x-3}{x+1} > \frac{5}{x+3}$$

•
$$|2x - 3| \le 10$$

Solución de una inecuación

Es el valor que al reemplazarla por la incógnita en la inecuación, la desigualdad se verifica.

Ejemplo:

• $x^2 \le x + 6$ una solución es el 2, veamos:

$$x = 2$$
: $2^2 \le 2 + 6$ ¡se verifica!

$$2^2 \le 2 + 6$$

INECUACIÓN LINEAL

Su forma general es:

$$ax + b \ge 0$$
 $a \ne 0$

Resolución:

Su resolución por lo general es por despeje de la incógnita aplicando los teoremas de desigualdades.

Ejemplo

Resuelva

$$3x - 5 \le x - 17$$

Resolución

$$\xrightarrow{-x}$$
 $2x - 5 \le -17$

$$\xrightarrow{\div 2}$$
 $x \le -6$

$$\begin{array}{c} +5 \\ \longrightarrow \end{array} \quad 2x \le -12$$

$$\begin{array}{c} -\infty \\ -6 \\ \end{array} \quad +\alpha$$

$$\therefore CS = \langle -\infty; -6]$$

Caso 2
$$(\Delta = \mathbf{0})$$

El polinomio es un trinomio cuadrado perfecto y por simple inspección se obtiene el conjunto solución.

Ejemplo

Resuelva la inecuación

$$x^2 - 12x + 36 \le 0$$

Resolución:

Se tiene
$$x^2 - 12x + 36 \le 0$$

Como
$$\Delta = (-12)^2 - 4(1)(36) = 0$$

entonces la cuadrática es un TCP

$$(x - 6)^2 \le 0$$

$$(x-6)^2 = 0 \quad \forall \quad (x-6)^2 < 0$$

$$\therefore CS = \{6\}$$

También tenga en cuenta lo siguiente:

• Si
$$(x-3)^2 \ge 0 \longrightarrow CS = \mathbb{R}$$

• Si
$$(x-3)^2 > 0 \longrightarrow CS = \mathbb{R} - \{3\}$$

• Si
$$(x-3)^2 \le 0$$
 \longrightarrow CS = {3} (Solución única)

• Si
$$(x-3)^2 < 0 \longrightarrow CS = \emptyset$$

Observación

Si el conjunto solución de:

- $ax^2 + bx + c \le 0$ es de la forma $\{\alpha\}$
- $ax^2 + bx + c > 0$ es de la forma $\mathbb{R} \{\alpha\}$

entonces $\alpha > 0$, $\Delta = 0$ y α es raíz doble.

IN	NSIVO UNI									
	1) Aplique el criterio de los puntos críticos e									
	indique el conjunto solución.									
	Ejercicio									
	Resuelva la inecuación									
	$7x + 6 - x^2 \ge 2x^3$									
	Resolución:									
		CÉSAR VALLEJO								

INTENSIVO UNI	
Teoremas	
Sea la inec	cuación polinomial, $P_{(x)} \gtrless 0$
Teorema 1	
factor se	oresenta un factor positivo, dicho $ (x^2 - 4x - 12)(x^2 + 3x + 5)(2x - 1) > 0 $ puede cancelar y no cambia el e la desigualdad.
Ejemplos	
•	$x^4 \leq 5x^2 + 36$
	CÉSAR VALLEJO

INTENSIVO UNI										
Teorema 2										
impar, dich	Si $P_{(x)}$ presenta algún factor con exponente impar, dicho exponente se puede cancelar y no afecta el sentido de la desigualdad. $(x^2 - 3x + 2)(x^2 - 4x + 3)(x^2 - 5x + 4) \le 0$									
Ejemplo	Resolución									
• Resuelva	$a (x+4)^5(x+1)(x-5)^3 \le 0$									
Resolución										
	CÉSAR VALLEJO									

Teorema 3

Cuando $P_{(x)}$ presenta factores con **exponente par**, se puede cancelar dicho factor teniendo en cuenta lo siguiente:

Si la desigualdad es \leq o \geq , se rescata la(s) solución(es) de los factores cancelados igualándolos a cero.

Ejemplos

• $(x-4)^2(x-1) \le 0$

$$x - 1 \le 0$$
 V $x - 4 = 0$

$$x \le 1$$
 $\forall x = 4$

$$\therefore CS = \langle -\infty; 1 \rangle \cup \{4\}$$

• $(x+3)^4(x-5)(x-8)^6 \ge 0$

$$x - 5 \ge 0$$
 V $x + 3 = 0$ V $x - 8 = 0$

$$x \ge 5$$
 $\forall x = -3$ $\forall x = 8$

Ya está en el CS

$$\therefore CS = [5; +\infty) \cup \{-3\}$$

Si la desigualdad es < o > , se rescata la(s) restricciones obtenidas de los factores cancelados, indicando que estas deben ser diferente a cero.

Ejemplos

•
$$(x-5)^4(x-9) < 0$$

$$x - 9 < 0 \quad \land \quad x - 5 \neq 0$$

$$x < 9$$
 \wedge $x \neq 5$

$$\therefore CS = \langle -\infty; 9 \rangle - \{5\}$$

•
$$(x-6)^2(x-4)(x+1)^8 > 0$$

$$x-4>0$$
 \wedge $x-6\neq 0$ \wedge $x+1\neq 0$

$$x > 4$$
 \wedge $x \neq 6$ \wedge $x \neq -1$

$$\wedge \quad x \neq -1$$

El CS no toma este valor

$$\therefore CS = \langle 4; +\infty \rangle - \{6\}$$

INTENSIVO UNI				
Ejercicio :				
	suma de las soluci	ones enteras		
	de la inecuación			
_	3 5	ACADEM		
	$\frac{3}{x+2} \le \frac{3}{2x-3}$			
Resolució				
				CÉSAR VALLEJO

- ACADEMIA -CÉSAR VALLEJO

GRACIAS

academiacesarvallejo.edu.pe