Regulation Analysis using **Restricted Boltzmann Machines**

Network Modeling Seminar, 10/1/2013

Patrick Michl

Implementation & Results

A linear metabolic pathway of enzymes (E) ...

... is regulated by transcription factors (TF) ...

... which respond to **signals** (S)

P 4

P 3

P 2

P 1

Which transcription factors and signals cause this patterns ...

... and how do they interact? (topological structure)

Biological Problem

Analysing the regulation of metabolism

Network Modeling

Restricted Boltzmann Machines (RBM)

Validation & Implementation

Lets start with some pathway of our interest ...

... and lists of interesting TFs and interesting SigMols

Graphical Models

Graphical Models

Directed Graph

. . .

Undirected Graph

... but there are many types of graphical models

Bayesian Networks

a	b	c	P[a,b,c]
0	0	0	0.1
0	0	1	0.9
0	1	0	0.5
0	1	1	0.5
1	0	0	

Bayesian Networks

a	b	c	P[a,b,c]
0	0	0	0.1
0	0	1	0.9
0	1	0	0.5
0	1	1	0.5
1	0	0	

... to represents conditional dependencies in an acyclic graph ...

Bayesian Networks

... but the regulation mechanism of a cell can be more complicated

Markov Random Fields

Motivation (Ising Model)

A set of magnetic dipoles (*spins*) is arranged in a graph (lattice) where neighbors are coupled with a given strengt

... which emerged with the **Ising Model** from statistical Physics ...

Markov Random Fields

Motivation (Ising Model)

A set of magnetic dipoles (*spins*) is arranged in a graph (lattice) where neighbors are coupled with a given strengt

... which uses **local energies** to calculate new states ...

Markov Random Fields

Drawback

By allowing cyclic dependencies the computational costs explode

... the drawback are high computational costs ...

... which can be avoided by using Restricted Boltzmann Machines

$$V \coloneqq \text{set of visible units}$$

 $x_v \coloneqq \text{value of unit } v, \forall v \in V$
 $x_v \in R, \forall v \in V$

$$V \coloneqq \text{set of visible units}$$

 $x_v \coloneqq \text{value of unit } v, \forall v \in V$
 $x_v \in R, \forall v \in V$

$$H := \text{set of hidden units}$$

 $x_h := \text{value of unit } h, \forall h \in H$
 $x_h \in \{0, 1\}, \forall h \in H$

$$x_v \sim N(b_v + \sum_h w_{vh} x_h, \sigma_v), \forall v \in V$$

$$\sigma_v := \text{std. dev. of unit } v$$

$$b_v \coloneqq \text{bias of unit } v$$

$$w_{vh} := \text{weight of edge } (v, h)$$

Restricted Boltzmann Machines

$$x_v \sim N(b_v + \sum_h w_{vh} x_h, \sigma_v), \forall v \in V$$

 $\sigma_v := \text{std. dev. of unit } v$

 $b_v := \text{bias of unit } v$

 $w_{vh} := \text{weight of edge } (v, h)$

$$x_h \sim \operatorname{sigmoid}\left(b_h + \sum_v w_{vh} \frac{x_v}{\sigma_v}\right), \forall h \in H$$

$$b_h := \text{bias of unit } h$$

 $w_{vh} := \text{weight of edge } (v, h)$

... and hidden units with simoids to encode dependencies

Learning in Restricted Boltzmann Machines

Task: Find dependencies in data

← Find configuration of parameters with maximum likelihood (to data)

Learning in Restricted Boltzmann Machines

Task: Find dependencies in data

→ Find configuration of parameters with maximum likelihood (to data)

In RBMs configurations of parameters have probabilities, that can be defined by local energies

Local Energy
$$E_{v} \coloneqq -\sum_{h} w_{vh} \frac{x_{v}}{\sigma_{v}} x_{h} + \frac{(x_{v} - b_{v})^{2}}{2\sigma_{v}^{2}}$$

$$E_{h} \coloneqq -\sum_{v} w_{vh} \frac{x_{v}}{\sigma_{v}} x_{h} + x_{h} b_{h}$$

Like in the Ising model the units states correspond to local energies ...

Learning in Restricted Boltzmann Machines

Task: Find dependencies in data

- ← Find configuration of parameters with maximum likelihood (to data)

Global Energy

$$E \coloneqq \sum_{v} E_v + \sum_{h} E_h = -\sum_{v} \sum_{h} w_{vh} \frac{x_v}{\sigma_v} x_h + \sum_{v} \frac{(x_v - b_v)^2}{2\sigma_v^2} + \sum_{h} w_{vh} \frac{x_v}{\sigma_v} x_h$$

... which sum to a **global energy**, which is our objective function

Learning in Restricted Boltzmann Machines

Task: Find dependencies in data

- ← Find configuration of parameters with maximum likelihood (to data)
- \leftrightarrow Perform stochastic gradient descent on σ_v , b_v , b_h , w_{vh} (to data)

Learning in Restricted Boltzmann Machines

Task: Find dependencies in data

- ← Find configuration of parameters with maximum likelihood (to data)
- \leftrightarrow Perform stochastic gradient descent on σ_v , b_v , b_h , w_{vh} (to data)

Gradient Descent on RBMs

The bipartite graph structure allows constrastive divergency learning, using Gibbs-sampling

... which has an efficient learning algorithmus

How to model our initial structure as an RBM?

Biological Problem

Analysing the regulation of metabolism

Network Modeling
Restricted Boltzmann Machines (RBM)

```
# Initialize a weight a Gaussian distribution of the self. weight a line of the self. weight a s
```

Implementation & Results python::metapath

Validation of the results

- Information about the true regulation
- Information about the descriptive power of the data

Validation of the results

- Information about the true regulation
- Information about the descriptive power of the data

Without this infomation validation can only be done, using simulated data!

Simulation 1

First of all we need to understand how the modell handles **dependencies** and **noise**

To demonstrate this we create very simple data with a simple structure

What can we expect from this model?

... as RBM we get 8 visible and 2 hidden units, fully connected

Data

S	E
1,0,0,1	1,0,0,0
1,0,0,1	1,1,0,0
1,0,0,1	1,0,1,0
1,0,0,1	1,0,0,1
1,0,1,1	0,0,0,0
1,0,1,1	0,1,0,0
1,0,1,1	0,0,1,0
1,0,1,1	0,0,0,1

Let's feed the machine with **samples** ...

Weight matrix

	TF ₁	TF_2
S ₁	0,3	0,8
S_2	0,5	0,6
S_3	1,0	0,1
S_4	0,3	0,8
E₁	0,8	0,0
E_2	0,1	0,0
E_{3}^{-}	0,1	0,0
E_4	0,2	0,0

.. to get the calculated parameters (especially the weight matrix)

Weight matrix

	TF ₁	TF_2
S ₁	0,3	0,8
S_2	0,5	0,6
S_3^-	1,0	0,1
S_4	0,3	0,8
E₁	0,8	0,0
E_2	0,1	0,0
E_{3}^{-}	0,1	0,0
E_4	0,2	0,0

The weights are visualized by the **intensity** of the edges

Learning samples

S	E
1,0,0,1	1,0,0,0
1,0,0,1	1,1,0,0
1,0,0,1	1,0,1,0
1,0,0,1	1,0,0,1
1,0,1,1	0,0,0,0
1,0,1,1	0,1,0,0
1,0,1,1	0,0,1,0
1,0,1,1	0,0,0,1

Now we can compare the results with the samples

Learning samples

S	E
1,0, <mark>0</mark> ,1	1 ,0,0,0
1,0, <mark>0</mark> ,1	1 ,1,0,0
1,0, <mark>0</mark> ,1	1 ,0,1,0
1,0, <mark>0</mark> ,1	1 ,0,0,1
1,0, 1 ,1	0 ,0,0,0
1,0, 1 ,1	0 ,1,0,0
1,0, 1 ,1	0 ,0,1,0
1,0, 1 ,1	0 ,0,0,1

Learning samples

S	E
1,0 ,0, 1	1,0,0,0
1,0 ,0, 1	1,1,0,0
1,0 ,0, 1	1,0,1,0
1,0 ,0, 1	1,0,0,1
1,0,1,1	0,0,0,0
1,0,1,1	0,1,0,0
1,0,1,1	0,0,1,0
1,0,1,1	0,0,0,1

 S_1 , S_2 and S_4 do almost not affect the metabolism ...

 \dots so we can forget them and get $S_{1,}TF_{1}$ for our regulation model

Weight matrix

	TF ₁	TF ₂
S ₁	0,3	0,8
S_2	0,5	0,6
S_3^-	1,0	0,1
S_4	0,3	0,8
E₁	0,8	0,0
E_2	0,1	0,0
E_3^{-}	0,1	0,0
E_4	0,2	0,0

We can also take a look at the causal mechanism ...

Weight matrix

	TF₁	TF_2
S ₁	0,3	0,8
S ₂	0,5	0,6
S_3	1,0	0,1
S ₄	0,3	0,8
E₁	0,8	0,0
E_2	0,1	0,0
E_3^{T}	0,1	0,0
$E_{\mathtt{4}}^{C}$	0,2	0,0

Also E₁ seems to have an effect on S₃ (fewer than S₃ on E₁)

Comparing to Bayesian Networks

For this purpose we simulate data in three steps

Comparing to Bayesian Networks

Step 1

Choose number of Genes (E+S) and create random bimodal distributed data

Comparing to Bayesian Networks

Step 1

Choose number of Genes (E+S) and create random bimodal distributed data

Step 2

Manipulate data in a fixed order

Comparing to Bayesian Networks

Step 1

Choose number of Genes (E+S) and create random bimodal distributed data

Step 2

Manipulate data in a fixed order

Step 3

Add noise to manipulated data and normalize data

Comparing to Bayesian Networks

Idea

- melt down' the bimodal distribution from very sharp to very noisy
- Try to find the original causal structure with BN and RBM
- Measure Accuracy by counting the right and wrong dependencies

Simulation 2

Step 1: Number of visible nodes 8 (4E, 4S)

Create intergradient datasets from sharp to noisy bimodal distribution $\sigma_1 = 0.0$, $\sigma_1 = 0.3$, $\sigma_3 = 0.9$, $\sigma_4 = 1.2$, $\sigma_4 = 1.5$

Step 2 + 3: Data Manipulation + add noise

$$e_1 = 0.5s_1 + 0.5s_2 + N(\mu = 0, \sigma)$$

 $e_2 = 0.5s_2 + 0.5s_3 + N(\mu = 0, \sigma)$
 $e_3 = 0.5s_3 + 0.5s_4 + N(\mu = 0, \sigma)$
 $e_4 = 0.5s_4 + 0.5s_1 + N(\mu = 0, \sigma)$

RBM Model $(\sigma = 0.0)$

Causal Mechanism

Causal Mechanism
$$(\sigma=0.0)$$

Comparison BN / RBM

Conclusion

Conclusion

RBMs are more stable against noise compared to BNs.

It has to be assumed that RBMs have high predictive power regarding the regulation mechanisms of cells

The drawback are high computational costs

Since RBMs are getting more popular (Face recognition / Voice recognition, Image transformation). Many new improvements in facing the computational costs have been made.

Acknowledgement

eilsLABS

PD Dr. Rainer König Prof. Dr Roland Eils Network Modeling Group

