Квадратичные вычеты

Определение 2. *Символом Лежандра* называется выражение, обозначаемое $\left(\frac{a}{p}\right)$, равное 1, если a — квадратичный вычет по модулю p; -1, если a — невычет по модулю p и 0, если a кратно p.

- **1.** Докажите, что для данного нечётного простого модуля p
 - (a) существует ровно $\frac{p-1}{2}$ квадратичных вычетов и столько же невычетов.
 - (б) произведение двух квадратичных вычетов вычет;
 - (в) произведение вычета на невычет невычет;
 - (г) произведение двух невычетов вычет.

Полезный факт. Из задачи 1 следует, что
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$$
.

- **2. (а)** Вычислите произведение всех квадратичных вычетов по модулю простого нечётного числа p. А ещё вычислите произведение всех квадратичных невычетов.
 - **(б) Критерий Эйлера.** Докажите, что $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$.
- 3. Найдите $\left(\frac{-2}{11}\right)$, $\left(\frac{-4}{17}\right)$, $\left(\frac{52}{29}\right)$
- **4. (a)** Докажите, что -1 является квадратичным вычетом по модулю простого нечётного числа p тогда и только тогда, когда $p \equiv 1 \pmod{4}$.
 - **(б)** Докажите, что если при некоторых целых a и b число $a^2 + b^2$ делится на p, где p = 4k + 3 простое, то a и b делятся на p.
 - **(в)** Докажите, что простых чисел вида 4k + 1 бесконечно много.
- **5.** Целое число a таково, что $a^2 6a + 3$ делится на некоторое простое p. Докажите, что существует целое число b такое, что $b^2 2b 53$ делится на p.
- **6.** Докажите, что уравнение $4xy x y = z^2$ не имеет решений в натуральных числах.