МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет»

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Лабораторная работа №1 по дисциплине «Моделирование»

Выполнил студент группы ИВТ-32	/Рзаев А. Э./
Проверил преподаватель	/Старостин П. А./

Оглавление

1	Содержательная задача	3
	Модель	
	Постановка задачи	
	Вычисления	
	Первая система	
	•	
	Вторая система	
	Вывод	
	Расчеты для второй части	
7	Исхолные ланные	. 8

1 Содержательная задача

Рассматривается упрощенная физическая модель устройства, состоящего из процессора и двух ВЗУ. Данное устройство производит обработку файлов (считывает их с ВЗУ и обрабатывает на процессоре). На вход устройству подаются процессы — потоки заявок. Каждый поток определяется своим набором файлов для обработки. В нашем случае имеется 5 потоков.

Необходимо рассмотреть поведение системы при увеличении производительности процессора. В качестве характеристики системы возьмем время ожидания в очереди W и время обслуживания U.

2 Молель

- 1. система массового обслуживания (входной поток экспоненциальный, один сервис, очередь не ограничена, время обслуживания либо детерминировано (дисперсия 0), либо экспоненциально (дисперсия 1))
- 2. разомкнутая сеть из трех систем массового обслуживания. Каждое устройство отдельная СМО.

3 Постановка задачи

Для первой системы:

- Определить зависимость: построить график, написать в явном виде функцию среднего времени во входящей очереди от производительности процессора;
- Сравнить два варианта работы системы: время обслуживания детерминировано, время обслуживания сл. величина с экспоненциальным законом распределения. Сделать выводы.

Для второй системы:

- Определить зависимость: график и функция среднего времени нахождения в очереди во всех устройствах от мощности процессора, когда дальше увеличивать процессор смысла не имеет;
- Сравнить два варианта работы системы: время обслуживания детерминировано, время обслуживания сл. величина с экспоненциальным законом распределения. Сделать выводы.

Сравнить работу системы с системами, построенными ранее. Сделать выводы.

4 Вычисления

4.1 Первая система

Первая система имеет вид, представленный на рисунке 1.

Рисунок 1

Расчёты для построения графиков используется формула:

$$\omega = \sum_{i=1}^{5} \frac{\lambda_i \rho_i (1 + v_i^2)}{2(1 - R)}$$
$$R = \sum_{i=1}^{5} \lambda_i v_i$$

Где среднее время обслуживания i-го потока получается из суммы времени обслуживания всех членов системы, считая, что всё выполняется последовательно.

Пусть V_p — производительность процессора в флопс, тогда формула после некоторых упрощений имеет вид:

$$\omega = \frac{\left(1+v_i^2\right)}{2} \frac{\sum_{i=1}^5 \lambda_i \theta_i}{(V_p - \sum_{i=1}^5 \lambda_i \theta_i)}$$
, где $Vp = \sum_{i=1}^5 \lambda_i \theta_i = 272~399~842$ Флопс

Минимальное значение, для которого выполняется данная формула (при R<1): $Vp=\sum_{i=1}^5 \lambda_i \theta_i=272~399~842~\Phi$ лопс

Существует предел, к которому стремится данная функция при постепенном увеличении производительности процессора, который равен 0 сек. Однако, так как значение 0 недостижимо, то следует ограничить производительность процессора на определённом уровне, в зависимости от требований скорости и возможностей ускорения.

На рисунке 2 приведен график зависимости времени ожидания от производительности процессора, при v=0, на рисунке 3- при v=1.

При коэффициенте вариации 0, время ожидания меньше в два раза, по сравнению со значениями, полученными с коэффициентом вариации 1.

Рисунок 2 – график зависимости времени ожидания от производительности процессора ($v_i = 0$)

Рисунок 3 – график зависимости времени ожидания от производительности процессора ($v_i = 1$)

4.2 Вторая система

Рассматривается система из трех СМО (рисунок 4). Все устройства в этой системе способны работать параллельно. Дисциплина каждой из очередей – FIFO.

Для оценки времени общего времени ожидания принимается сумма времен ожидания во всех очередях устройств.

Рисунок 4 – модель сети СМО для второй системы

В данном случае от S_0 к S_k через процессор идёт 5 потоков с разной интенсивностью. Каждый поток работает со своим набором файлов для обработки.

$$\begin{array}{l} \lambda_{31} + \lambda_{21} + \lambda_{0} &= \lambda_{13} + \lambda_{12} + \lambda_{14} \\ \lambda_{31} &= \lambda_{13} \ \lambda_{21} = \lambda_{12} \ \lambda_{0} = \lambda_{14} \\ \lambda_{0} &= p_{1}(\lambda_{0} + \lambda_{21} + \lambda_{31}) \\ \lambda_{\text{BX}} &= \lambda_{0}/p_{1} \\ \lambda_{12} &= \lambda_{\text{BX}} \ p_{2} \\ \lambda_{13} &= \lambda_{\text{BX}} \ p_{3} \end{array}$$

Формула времени ожидания в очереди процессора:

$$\omega = \frac{(1 + v_i^2)}{2} \frac{\sum_{i=1}^{5} \lambda_i \theta_i}{(V_p - \sum_{i=1}^{5} \lambda_i \theta_i)}$$

Время ожидания в очередях других устройств (максимальное среди всех потоков) не зависит от производительности процессора и равно 0,525 мсек (ВЗУ1) и 42 мсек (ВЗУ2). Таблицы расчетов представлены в приложении А.

Отдельно стоит отметить появление предела времени ожидания, равного 61 мсек. Появление указанного предела объясняется постоянным (не зависящим от V_p) временем ожидания при обращении к ВЗУ.

На рисунке 5 – график зависимости ω от производительности ($v_i = 0$).

На рисунке 6 – график зависимости ω от производительности ($v_i = 1$).

Рисунок 5 – график зависимости времени ожидания от производительности процессора ($v_i = 0$)

Рисунок 6 – график зависимости времени ожидания от производительности процессора ($v_i = 1$)

5 Вывод

При моделировании поведения вычислительной системы за основу были взяты две модели СМО.

Первая модель не учитывает особенности внутреннего строения системы. Предполагается, что система состоит только из процессора, в результате чего время ожидания обработки потока неограниченно приближается к нулю при росте производительности процессора. В этом смысле, первая система обладает лучшими показателями быстродействия чем первая.

Во втором случае, когда исходная СМО рассматривается как композиция 3 СМО (процессора, ВЗУ1, ВЗУ2) появляется предел производительности, при котором дальнейшее увеличение производительности процессора не влияет на скорость обработки процессов. Такое ограничение связано с постоянной (независящей от производительности процессора) скоростью обращения к ВЗУ. При таком подходе система обладает худшими показателями быстродействия по сравнению с первой системой, но с другой стороны даёт более точную оценку быстродействия СМО и в результате чего является более приближенной к реальности.

6 Расчеты для второй части

Таблицы расчетов для модели с тремя СМО (2 часть)

Таблица 6.1 – Расчёт вероятностей для потока 3

Итого для ВЗУ1	4	p_{12}	0,114286
Итого для ВЗУ2	30	p_{13}	0,857143
	1	p_k	0,028571
Итого (с учётом конечного)	35	Проверка	1

Таблица 6.2 – Расчёт интенсивностей для потока 3

Расчёт интенсивностей	
L_1 (ПРОЦ)	7,0
L ₂ (B3У1)	0,8
$L_3(\mathrm{B3Y2})$	6,0
L_k	0,2
$L_1 + L_2 + L_3$	13,8

7 Исходные данные

Таблица 7.1 – Интенсивности поступления потоков обслуживаемых процессов

№ потока	Интенсивность потока
3	0,20
9	0,05
10	0,05
11	0,55
16	0,10

Таблица 7.2 – Параметры обслуживаемых процессов

	Среднее количество вычислительных	Сред	Среднее число операций обращения к файлам данных пробслуживании процесса (N_{ij})					при			
№ процесса	операций, выполняемых при	F	Номера файлов, к которым выполняется обращение								
процесси	обслуживании процесса [Мфлоп]	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
3	300	-	-	20	-	10	-	-	-	-	4
9	900	20	10	-	18	-	-	-	-	-	3
10	1000	-	30	-	-	-	20	6	-	8	-
11	100	24	-	16	20	-	-	-	4	4	2
16	600	-	30	50	12	8	-	6	-	4	-

Таблица 7.3 – Характеристики операций обращения к файлам данных

№ файлов данных	Объем данных, передаваемых при выполнении одной операции обращения к файлу данных $oldsymbol{V_{FI}}$ [Мбайт]	Средний объем данных, передаваемых при выполнении одной операции ввода/вывода \boldsymbol{G}_{FI} [Кбайт]
F1	0.5	5
F2	1.0	8
F3	1.0	15
F4	1.5	6
F5	1.5	14
F6	2.0	18
F7	2.5	10
F8	3.0	15
F9	4.0	20
F10	3.5	11

Таблица 7.4 – Характеристики накопителей внешней памяти

№ файла данных	Среднее время выполнения одной операции ввода/вывода данных $oldsymbol{artheta_{FI}}$ [мкс/оп.]					
	Тип накопителя ВЗУ, на котором размещены файлы данных					
	НМД 1	НМД 2				
F 1	1,0	-				
F 2	-	0,10				
F 3	2,0	-				
F 4	-	0,05				
F 5	3,0	-				
F 6	-	0,06				
F 7	2,5	-				
F 8	-	0,13				
F 9	2,5	-				
F 10	-	0,12				