Finite-State Machines (FSMs) and Controllers

Mealy and Moore machines

- Mealy machines tend to have fewer states
- Mealy machines react faster to inputs
- Moore machines are generally safer to use
 - outputs change at clock edge (always one cycle later)
 - in Mealy machines, input change can cause output change as soon as logic is done

Mealy and Moore machines

Moore (a) and Mealy (b)

State: SR, D, T, J-K, memory

Finite state machine representations

- States: determined by possible values in sequential storage elements
- Transitions: change of state
- Clock: controls when state can change by controlling storage elements
- Sequential logic
 - sequences through a series of states
 - based on sequence of values on input signals
 - clock period defines elements of sequence

sequential system- represented with a state diagram

- Shift register
 - input value shown on transition arcs
 - output values shown within state node

Counters are simple finite state machines

- Counters
 - proceed through well-defined sequence of states in response to enable
- Many types of counters: binary, BCD, Gray-code
 - 3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...
 - 3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

How do we turn a state diagram into logic?

Counter

- 3 flip-flops to hold state
- logic to compute next state
- clock signal controls when flip-flop memory can change
 - wait long enough for combinational logic to compute new value
 - don't wait too long as that is low performance

How do we turn a state diagram into logic?

Pre	esent	state	e Ne	Next state					
		0.4	ميرا						

Fli	p 1	flo	p	in	pu	t

Q	Q(next)	D
0	0	0
0	1	1
1	0	0
1	1	1

C3	C2	C1	N3	N2	N1	D3	D2	D1
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	0
0	1	0	0	1	1	0	1	1
0	1	1	1	0	0	1	0	0
1	0	0	1	0	1	1	0	1
1	0	1	1	1	0	1	1	0
1	1	0	1	1	1	1	1	1
1	1	1	0	0	0	0	0	0

How do we turn a state diagram into logic? (3 bit counter)

Counter

- 3 flip-flops to hold state
- logic to compute next state
- clock signal controls when flip-flop memory can change
 - wait long enough for combinational logic to compute new value
 - · don't wait too long as that is low performance

Present state Next state Flip f	flop	input
---------------------------------	------	-------

C3	C2	C1	N3	N2	N1	_J3	K3	J2	K2	J1	K1
0	0	0	0	0	1	0	Χ	0	X	1	X
0	0	1	0	1	0	0	Χ	1	Χ	Χ	1
0	1		0		1	0	Χ	Χ	0	1	X
0	1	1	1	0	0	1	Χ	Χ	1	Χ	1
1	0	0	1	0	1	Χ	0	0	Χ	1	X
1	0	1	1	1	0	Χ	0	1	Χ	Χ	1
1	1	0	1	1	1	Χ	0	Χ	0	1	X
1	1	1	0	0	0	X	1	Χ	1	X	1

Q	Q(next)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

J3=C1C2

K3=C1C2

Present state	Next state	Flip flop input

C 3	C2	C1	N3	N2	N1	_J3	K3	J2	K2	J1	K1
0	0	0	0	0	1	0	Χ	0	Χ	1	X
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	0	1	1	0	Χ	Χ	0	1	X
0	1	1	1	0	0	1	Χ	Χ	1	Χ	1
1	0	0	1	0	1	Χ	0	0	Χ	1	Χ
1	0	1	1	1	0	Χ	0	1	X	Χ	1
1	1	0	1	1	1	Χ	0	Χ	0	1	X
1	1	1	0	0	0	Χ	1	Χ	1	X	1

J2=C1

K2=C1

Present state Next state Flip flop i	nput
--------------------------------------	------

C 3	C2	C1	N3	N2	N1	_ J3	K3	J2	K2	J1	K1
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	0	1	1	0	Χ	Χ	0	1	X
0	1	1	1	0	0	1	Χ	Χ	1	Χ	1
1	0	0	1	0	1	Χ	0	0	X	1	X
1	0	1	$ar{1}$	1	0	Χ	0	1	Χ	Χ	1
1	1	0	$\begin{bmatrix} - \\ 1 \end{bmatrix}$	1	1	Χ	0	Χ	0	1	X
1	1	1	0	0	0	X	1	X	1	X	1

J1=1

K1=1

Present state Next state

Flip flop input

C 3	C2	C1	N3	N2	N1	J3	K3	J2	K2	J1	K1	
0	0	0	0	0	1	0	Χ	0	Χ	1	Χ	J3=C1C2
0	0	1	0	1	0	0	X	1	X	X	1	K3=C1C2
0	1	0	0	1	1	0	X	Χ	0	1	X	
0	1	1	1	0	0	1	Χ	Χ	1	Χ	1	J2=C1
1	0	0	1	0	1	Χ	0	0	Χ	1	Χ	K2=C1
1	0	1	1	1	0	Χ	0	1	Χ	Χ	1	J1=1
1	1	0	1	1	1	Χ	0	Χ	0	1	Χ	K1=1
1	1	1		0	0	Χ	1	Χ	1	Χ	1	KI-I
Т	Т	Т	ľ	U	U		_	- -	_		_	

How do we turn a state diagram into logic?

(Using T-FF)

Present state Next state

Flip flop input

C3	C2	C1	N3	N2	N1	T3	T2	T1
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

	T	Q	
-	> Clk	٠	
		Q'	-

T1	= 1
T2=	= C1
T3	= C2C1

T1 _{C1} C	2 C2			C3
	1	1	1	1
C1	1	1	1	1
·		(C2	

Q(next)

0

0

0

Elin flon input

Present state Next state						FIIP 1	riop ir	nput			
C3	C2	C1	N3	N2	N1	S3	R3	S2	R2	S1	R1
0	0	0	0	0	1	0	Χ	0	Χ	1	0
0	0	1	0	1	0	0	Χ	1	0	0	1
0	1	0	0	1	1	0	Χ	Χ	0	1	0
0	1	1	1	0	0	1	0	0	1	0	1
1	0	0	$ _1$	0	1	X	0	0	Χ	1	0
1	0	1	$ar{1}$	1	0	X	0	1	0	0	1
1	1	0	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1	1	X	0	Χ	0	1	0
_	_	4		_	_	n	1	Λ	1	Λ	1

	$\rightarrow c$	lk Q	_
Q	Q(next)	S	Ŗ
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

S1=C1'

R1=C1

Tlim flow immus

Present state Next state						Hip	flop ii	nput			
C3	C2	C1	N3	N2	N1	S3	R3	S2	R2	S1	R1
0	0	0	0	0	1	0	X	0	Χ	1	0
0	0	1	0	1	0	0	X	1	0	0	1
0	1	0	0	1	1	0	Χ	Χ	0	1	0
0	1	1	1	0	0	1	0	0	1	0	1
1	0	0	l ₁	0	1	X	0	0	Χ	1	0
1	0	1	$ _1$	1	0	X	0	1	0	0	1
1	1	0	$ar{1}$	1	1	X	0	Χ	0	1	0
1	1	1	0	0	0	0	1	0	1	0	1

	$\rightarrow C$	rik Q	
Q	Q(next)	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

C1 C3	3C2		(C3
	0	X	Х	0
C1	1	0	0	1
,		(C2	

S2=C1C2'

R2=C1C2

Elin flon input

Present state Next state						FIIP 1	riop ir	nput			
C3	C2	C1	N3	N2	N1	S3	R3	S2	R2	S1	R1
0	0	0	0	0	1	0	Χ	0	Χ	1	0
0	0	1	0	1	0	0	X	1	0	0	1
0	1	0	0	1	1	0	Χ	Χ	0	1	0
0	1	1	1	0	0	1	0	0	1	0	1
1	0	0	1	0	1	X	0	0	Χ	1	0
1	0	1	l ₁	1	0	X	0	1	0	0	1
1	1	0	$ar{1}$	1	1	X	0	Χ	0	1	0
_	_	4	<u> </u>	_	_	n	1	Λ	1	Λ	1

	- R	ik Q	
Q	Q(next)	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

S3=C1C2C3'

R3=C1C2C3

shift register

Present state Next state

In	C1	C2	C3	N1	N2	N3
In 0 0 0 0 0 0 0 0	0	0	0	0		0
0	0	0 0	1 0 1 0 1	0 0 0 0 0 0 0	0 0 0	0
0	0	1	0	0	0	1
0	0	1 1 0	1	0		1
0	1	0	0	0	0 1	0
0	1	0 1 1 0 0 1 1	1	0	1	0
0	1	1	0	0	1 1	1
0	1 0	1	1	0	1	1
1	0	0	0	1	0	0
1 1	0	0	1	1	0	0
1	0	1	1 0 1 0 1	1	0	1
1 1	0	1	1	1	0 1	1
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	N3 0 0 1 1 0 0 1 1 0 0 1 1 1 0
1	1	1	1	1	1	1

Do as an exercise:flip flop inputs table, logic (D1, D2, D3) and Simplification