Lab 2

Juan D Astudillo

Basic R Skills

First, install the package testthat (a widely accepted testing suite for R) from https://github.com/r-lib/testthat using pacman. If you are using Windows, this will be a long install, but you have to go through it for some of the stuff we are doing in class. LINUX (or MAC) is preferred for coding. If you can't get it to work, install this package from CRAN (still using pacman), but this is not recommended long term.

```
#install.packages("testthat")
#install.packages("pacman")
```

• Use the seq function to create vector v consisting of all numbers from -100 to 100.

```
v = seq(-100, 100)
                                                                                -89
                                                                                      -88
                                                                                            -87
##
      [1] -100
                  -99
                              -97
                                    -96
                                           -95
                                                 -94
                                                       -93
                                                             -92
                                                                   -91
                                                                         -90
                        -98
##
     [15]
            -86
                  -85
                        -84
                              -83
                                    -82
                                           -81
                                                 -80
                                                       -79
                                                             -78
                                                                   -77
                                                                         -76
                                                                                -75
                                                                                      -74
                                                                                            -73
##
     [29]
            -72
                  -71
                        -70
                              -69
                                    -68
                                           -67
                                                 -66
                                                       -65
                                                             -64
                                                                   -63
                                                                         -62
                                                                                -61
                                                                                      -60
                                                                                            -59
##
     [43]
            -58
                  -57
                        -56
                              -55
                                    -54
                                           -53
                                                 -52
                                                       -51
                                                             -50
                                                                   -49
                                                                         -48
                                                                                -47
                                                                                      -46
                                                                                            -45
     [57]
            -44
                  -43
                        -42
                              -41
                                           -39
                                                 -38
                                                       -37
                                                             -36
                                                                   -35
                                                                         -34
                                                                                -33
##
                                    -40
                                                                                      -32
                                                                                            -31
     [71]
            -30
                  -29
                        -28
                              -27
                                    -26
                                           -25
                                                 -24
                                                       -23
                                                             -22
                                                                   -21
                                                                          -20
##
                                                                                -19
                                                                                      -18
                                                                                            -17
                                                        -9
                                                                           -6
                                                                                 -5
##
     [85]
            -16
                  -15
                        -14
                              -13
                                    -12
                                           -11
                                                 -10
                                                              -8
                                                                     -7
                                                                                       -4
                                                                                             -3
##
    [99]
             -2
                   -1
                           0
                                 1
                                       2
                                             3
                                                   4
                                                         5
                                                               6
                                                                      7
                                                                            8
                                                                                  9
                                                                                       10
                                                                                             11
## [113]
             12
                   13
                         14
                                15
                                      16
                                            17
                                                  18
                                                        19
                                                              20
                                                                     21
                                                                           22
                                                                                 23
                                                                                       24
                                                                                             25
## [127]
             26
                   27
                         28
                                29
                                      30
                                            31
                                                  32
                                                        33
                                                              34
                                                                     35
                                                                           36
                                                                                 37
                                                                                       38
                                                                                             39
## [141]
             40
                   41
                         42
                                            45
                                                  46
                                                        47
                                                              48
                                                                     49
                                                                           50
                                                                                       52
                                                                                             53
                                43
                                      44
                                                                                 51
## [155]
             54
                   55
                         56
                                57
                                      58
                                            59
                                                  60
                                                        61
                                                              62
                                                                     63
                                                                           64
                                                                                 65
                                                                                       66
                                                                                             67
## [169]
                         70
                                71
                                      72
                                            73
             68
                   69
                                                  74
                                                        75
                                                              76
                                                                     77
                                                                           78
                                                                                 79
                                                                                       80
                                                                                             81
## [183]
             82
                   83
                         84
                                85
                                      86
                                            87
                                                  88
                                                        89
                                                              90
                                                                     91
                                                                           92
                                                                                 93
                                                                                       94
                                                                                             95
## [197]
             96
                   97
                         98
                                99
                                    100
```

Test using the following code:

```
library(testthat)
expect_equal(v, -100 : 100) #it is to check v
```

If there are any errors, the expect_equal function will tell you about them. If there are no errors, then it will be silent.

• Create a function my_reverse which takes as required input a vector and returns the vector in reverse where the first entry is the last entry, etc. No function calls are allowed inside your function (otherwise that would defeat the purpose of the exercise).

```
my_reverse = function(vec){
  revvec = rep(NA, length(vec))##this is giving NA to the vector // up to the length of the vec
  for (i in seq(1, length(vec))){ ## the for loop is taking i initializing it in 1 then going to the ex
   revvec[i] = vec[(length(vec) +1)-i]## since we want to revert it. i
  }
  revvec
}
```

Test using the following code:

```
expect_equal(my_reverse(c("A", "B", "C")), c("C", "B", "A")) ##expect equal is to check what yo did. expect_equal(my_reverse(v), rev(v))
```

• Let n=50. Create a nxn matrix R of exactly 50% entries 0's, 25% 1's 25% 2's in random locations.

```
n=50
R = matrix(sample(rep(c(0,1,2), c(50,25,25))), n, n)
R
```

##	5. 3	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]			[,12]	[,13]
##	[1,]	0	0	0	0	0	0	0	0	0	0	0	0	0
##	[2,]	2	0	2	0	2	0	2	0	2	0	2	0	2
##	[3,]	0	2	0	2	0	2	0	2	0	2	0	2	0
##	[4,]	0	0	0	0	0	0	0	0	0	0	0	0	0
##	[5,]	0	0	0	0	0	0	0	0	0	0	0	0	0
##	[6,]	1	1	1	1	1	1	1	1	1	1	1	1	1
##	[7,]	2	0	2	0	2	0	2	0	2	0	2	0	2
##	[8,]	0	2	0	2	0	2	0	2	0	2	0	2 1	0
##	[9,] [10,]	0	1 2	0 1	2	0 1								
## ##	[11,]	0	0	0	0	0	0	0	0	0	0	0	0	0
##	[12,]	2	1	2	1	2	1	2	1	2	1	2	1	2
##	[13,]	0	2	0	2	0	2	0	2	0	2	0	2	0
##	[14,]	0	2	0	2	0	2	0	2	0	2	0	2	0
##	[15,]	0	2	0	2	0	2	0	2	0	2	0	2	0
##	[16,]	0	2	0	2	0	2	0	2	0	2	0	2	0
##	[17,]	2	2	2	2	2	2	2	2	2	2	2	2	2
##	[18,]	2	1	2	1	2	1	2	1	2	1	2	1	2
##	[19,]	1	1	1	1	1	1	1	1	1	1	1	1	1
##	[20,]	1	2	1	2	1	2	1	2	1	2	1	2	1
##	[21,]	0	0	0	0	0	0	0	0	0	0	0	0	0
##	[22,]	2	0	2	0	2	0	2	0	2	0	2	0	2
##	[23,]	0	2	0	2	0	2	0	2	0	2	0	2	0
##	[24,]	1	0	1	0	1	0	1	0	1	0	1	0	1
##	[25,]	0	0	0	0	0	0	0	0	0	0	0	0	0
##	[26,]	0	1	0	1	0	1	0	1	0	1	0	1	0
##	[27,]	0	0	0	0	0	0	0	0	0	0	0	0	0
##	[28,]	2	2	2	2	2	2	2	2	2	2	2	2	2
##	[29,]	0	2	0	2	0	2	0	2	0	2	0	2	0
##	[30,]	0	2	0	2	0	2	0	2	0	2	0	2	0
##	[31,]	0	1	0	1	0	1	0	1	0	1	0	1	0
##	[32,]	0	1	0	1	0	1	0	1	0	1	0	1	0
##	[33,]	0	0	0	0	0	0	0	0	0	0	0	0	0
##	[34,]	0	0	0	0	0	0	0	0	0	0	0	0	0
##	[35,]	1	1	1	1	1	1	1	1	1	1	1	1	1
##	[36,]	0	0	0	0	0	0	0	0	0	0	0	0	0
##	[37,]	0	0	0	0	0	0	0	0	0	0	0	0	0
## ##	[38,] [39,]	1 2	0 2	1 2										
##	[40,]	1	1	1	1	1	1	1	1	1	1	1	1	1
##	[41,]	1	1	1	1	1	1	1	1	1	1	1	1	1
##	[41,]	0	2	0	2	0	2	0	2	0	2	0	2	0
##	[43,]	0	1	0	1	0	1	0	1	0	1	0	1	0
##	[44,]	1	0	1	0	1	0	1	0	1	0	1	0	1
	[45,]	1	0	1	0	1	0	1	0	1	0	1	0	1

##	[46,]	2	0	2	0 2	0	2	0	2	0	2	0	2
##	[47,]	1	0	1	0 1		1	0	1	0	1	0	1
##	[48,]	0	1	0	1 0	1	0	1	0	1	0	1	0
##	[49,]	0	0	0	0 0	0	0	0	0	0	0	0	0
##	[50,]	0	2	0	2 0		0	2	0	2	0	2	0
##		[,14]	[,15]	[,16]		[,18]	[,19]	[,20]	[,21]	[,22]	[,23]	[,24]	
##	[1,]	0	0	0	0	0	0	0	0	0	0	0	
##	[2,]	0	2	0	2	0	2	0	2	0	2	0	
## ##	[3,]	2	0	2	0	2	0	2	0	2	0	2	
##	[4,] [5,]	0	0	0	0	0	0	0	0	0	0	0	
##	[6,]	1	1	1	1	1	1	1	1	1	1	1	
##	[7,]	0	2	0	2	0	2	0	2	0	2	0	
##	[8,]	2	0	2	0	2	0	2	0	2	0	2	
##	[9,]	1	0	1	0	1	0	1	0	1	0	1	
##	[10,]	2	1	2	1	2	1	2	1	2	1	2	
##	[11,]	0	0	0	0	0	0	0	0	0	0	0	
##	[12,]	1	2	1	2	1	2	1	2	1	2	1	
##	[13,]	2	0	2	0	2	0	2	0	2	0	2	
##	[14,]	2	0	2	0	2	0	2	0	2	0	2	
##	[15,]	2	0	2	0	2	0	2	0	2	0	2	
##	[16,]	2	0	2	0	2	0	2	0	2	0	2	
## ##	[17,]	2	2 2	2	2 2	2 1	2 2	2 1	2 2	2 1	2 2	2	
##	[18,] [19,]	1 1	1	1	1	1	1	1	1	1	1	1	
##	[20,]	2	1	2	1	2	1	2	1	2	1	2	
##	[21,]	0	0	0	0	0	0	0	0	0	0	0	
##	[22,]	0	2	0	2	0	2	0	2	0	2	0	
##	[23,]	2	0	2	0	2	0	2	0	2	0	2	
##	[24,]	0	1	0	1	0	1	0	1	0	1	0	
##	[25,]	0	0	0	0	0	0	0	0	0	0	0	
##	[26,]	1	0	1	0	1	0	1	0	1	0	1	
##	[27,]	0	0	0	0	0	0	0	0	0	0	0	
##	[28,]	2	2	2	2	2	2	2	2	2	2	2	
##	[29,] [30,]	2 2	0	2 2	0	2 2	0	2	0	2 2	0	2	
## ##	[31,]	1	0	1	0	1	0	1	0	1	0	1	
##	[32,]	1	0	1	0	1	0	1	0	1	0	1	
##	[33,]	0	0	0	0	0	0	0	0	0	0	0	
##	[34,]	0	0	0	0	0	0	0	0	0	0	0	
##	[35,]	1	1	1	1	1	1	1	1	1	1	1	
##	[36,]	0	0	0	0	0	0	0	0	0	0	0	
##	[37,]	0	0	0	0	0	0	0	0	0	0	0	
##	[38,]	0	1	0	1	0	1	0	1	0	1	0	
##	[39,]	2	2	2	2	2	2	2	2	2	2	2	
##	[40,]	1	1	1	1	1	1	1	1	1	1	1	
##	[41,]	1	1	1	1	1	1	1	1	1	1	1	
##	[42,]	2	0	2	0	2	0	2	0	2	0	2	
## ##	[43,] [44,]	1 0	0 1	1	0 1	1 0	0 1	1 0	0 1	1 0	0 1	1 0	
##	[45,]	0	1	0	1	0	1	0	1	0	1	0	
##	[46,]	0	2	0	2	0	2	0	2	0	2	0	
##	[47,]	0	1	0	1	0	1	0	1	0	1	0	
##	[48,]	1	0	1	0	1	0	1	0	1	0	1	

## ##	[49,] [50,]	0 2	0	0 2	0	0 2	0	0 2	0	0 2	0	0 2
##	2 , 2	[,25]	[,26]	[,27]	[,28]		[,30]	[,31]	[,32]	[,33]	[,34]	[,35]
##	[1,]	0	0	0	0	0	0	0	0	0	0	0
##	[2,]	2	0	2	0	2	0	2	0	2	0	2
##	[3,]	0	2	0	2	0	2	0	2	0	2	0
##	[4,]	0	0	0	0	0	0	0	0	0	0	0
##	[5,]	0	0	0	0	0	0	0	0	0	0	0
##	[6,]	1	1	1	1	1	1	1	1	1	1	1
##	[7,]	2	0	2	0	2	0	2	0	2	0	2
##	[8,]	0	2	0	2	0	2	0	2	0	2	0
##	[9,]	0	1	0	1	0	1	0	1	0	1	0
##	[10,]	1	2	1	2	1	2	1	2	1	2	1
##	[11,]	0	0	0	0	0	0	0	0	0	0	0
##	[12,]	2	1	2	1	2	1	2	1	2	1	2
##	[13,]	0	2	0	2	0	2	0	2	0	2	0
##	[14,]	0	2	0	2	0	2	0	2	0	2	0
## ##	[15,] [16,]	0	2 2	0	2	0	2	0	2 2	0	2	0
##	[17,]	2	2	2	2	2	2	2	2	2	2	2
##	[18,]	2	1	2	1	2	1	2	1	2	1	2
##	[19,]	1	1	1	1	1	1	1	1	1	1	1
##	[20,]	1	2	1	2	1	2	1	2	1	2	1
##	[21,]	0	0	0	0	0	0	0	0	0	0	0
##	[22,]	2	0	2	0	2	0	2	0	2	0	2
##	[23,]	0	2	0	2	0	2	0	2	0	2	0
##	[24,]	1	0	1	0	1	0	1	0	1	0	1
##	[25,]	0	0	0	0	0	0	0	0	0	0	0
##	[26,]	0	1	0	1	0	1	0	1	0	1	0
##	[27,]	0	0	0	0	0	0	0	0	0	0	0
##	[28,]	2	2	2	2	2	2	2	2	2	2	2
##	[29,]	0	2	0	2	0	2	0	2	0	2	0
##	[30,]	0	2	0	2	0	2	0	2	0	2	0
##	[31,]	0	1	0	1	0	1	0	1	0	1	0
##	[32,]	0	1	0	1	0	1	0	1	0	1	0
##	[33,]	0	0	0	0	0	0	0	0	0	0	0
##	[34,]	0	0	0	0	0	0	0	0	0	0	0
##	[35,]	1	1	1	1	1	1	1	1	1	1	1
## ##	[36,] [37,]	0	0	0	0	0	0	0	0	0	0	0 0
##	[38,]	0	0	1	0	1	0	1	0	1	0	1
##	[39,]	2	2	2	2	2	2	2	2	2	2	2
##	[40,]	1	1	1	1	1	1	1	1	1	1	1
##	[41,]	1	1	1	1	1	1	1	1	1	1	1
##	[42,]	0	2	0	2	0	2	0	2	0	2	0
##	[43,]	0	1	0	1	0	1	0	1	0	1	0
##	[44,]	1	0	1	0	1	0	1	0	1	0	1
##	[45,]	1	0	1	0	1	0	1	0	1	0	1
##	[46,]	2	0	2	0	2	0	2	0	2	0	2
##	[47,]	1	0	1	0	1	0	1	0	1	0	1
##	[48,]	0	1	0	1	0	1	0	1	0	1	0
##	[49,]	0	0	0	0	0	0	0	0	0	0	0
##	[50,]	0	2	0	2	0	2	0	2	0	2	0
##		[,36]	[,37]	[,38]	[,39]	[,40]	[,41]	[,42]	[,43]	[,44]	[,45]	[,46]

##	[1,]	0	0	0	0	0	0	0	0	0	0	0
##	[2,]	0	2	0	2	0	2	0	2	0	2	0
##	[3,]	2	0	2	0	2	0	2	0	2	0	2
##	[4,]	0	0	0	0	0	0	0	0	0	0	0
##	[5,]	0	0	0	0	0	0	0	0	0	0	0
##	[6,]	1	1	1	1	1	1	1	1	1	1	1
			2		2		2		2		2	
##	[7,]	0		0		0		0		0		0
##	[8,]	2	0	2	0	2	0	2	0	2	0	2
##	[9,]	1	0	1	0	1	0	1	0	1	0	1
##	[10,]	2	1	2	1	2	1	2	1	2	1	2
##	[11,]	0	0	0	0	0	0	0	0	0	0	0
##	[12,]	1	2	1	2	1	2	1	2	1	2	1
##	[13,]	2	0	2	0	2	0	2	0	2	0	2
##	[14,]	2	0	2	0	2	0	2	0	2	0	2
##	[15,]	2	0	2	0	2	0	2	0	2	0	2
##	[16,]	2	0	2	0	2	0	2	0	2	0	2
		2	2	2	2	2		2	2	2	2	2
##	[17,]						2					
##	[18,]	1	2	1	2	1	2	1	2	1	2	1
##	[19,]	1	1	1	1	1	1	1	1	1	1	1
##	[20,]	2	1	2	1	2	1	2	1	2	1	2
##	[21,]	0	0	0	0	0	0	0	0	0	0	0
##	[22,]	0	2	0	2	0	2	0	2	0	2	0
##	[23,]	2	0	2	0	2	0	2	0	2	0	2
##	[24,]	0	1	0	1	0	1	0	1	0	1	0
##	[25,]	0	0	0	0	0	0	0	0	0	0	0
##	[26,]	1	0	1	0	1	0	1	0	1	0	1
##	[27,]	0	0	0	0	0	0	0	0	0	0	0
##	[28,]	2	2	2	2	2	2	2	2	2	2	2
##	[29,]	2	0	2	0	2	0	2	0	2	0	2
##	[30,]	2	0	2	0	2	0	2	0	2	0	2
##	[31,]	1	0	1	0	1	0	1	0	1	0	1
##	[32,]	1	0	1	0	1	0	1	0	1	0	1
##	[33,]	0	0	0	0	0	0	0	0	0	0	0
##	[34,]	0	0	0	0	0	0	0	0	0	0	0
##	[35,]	1	1	1	1	1	1	1	1	1	1	1
##	[36,]	0	0	0	0	0	0	0	0	0	0	0
##	[37,]	0	0	0	0	0	0	0	0	0	0	0
##	[38,]	0	1	0	1	0	1	0	1	0	1	0
##	[39,]	2	2	2	2	2	2	2	2	2	2	2
##	[40,]	1	1	1	1	1	1	1	1	1	1	1
##	[41,]	1	1	1	1	1	1	1	1	1	1	1
##	[42,]	2	0	2	0	2	0	2	0	2	0	2
##	[43,]	1	0	1	0	1	0	1	0	1	0	1
##	[44,]	0	1	0	1	0	1	0	1	0	1	0
##		0						0		0		
	[45,]		1	0	1	0	1		1		1	0
##	[46,]	0	2	0	2	0	2	0	2	0	2	0
##	[47,]	0	1	0	1	0	1	0	1	0	1	0
##	[48,]	1	0	1	0	1	0	1	0	1	0	1
##	[49,]	0	0	0	0	0	0	0	0	0	0	0
##	[50,]	2	0	2	0	2	0	2	0	2	0	2
##		[,47]	[,48]		[,50]							
##	[1,]	0	0	0	0							
##	[2,]	2	0	2	0							
##	[3,]	0	2	0	2							

```
[4,]
                                  0
##
              0
                            0
    [5,]
##
              0
                     0
                            0
                                  0
    [6,]
##
                                  1
   [7,]
                     0
                            2
                                  0
##
              2
                     2
##
    [8,]
              0
                            0
                                  2
## [9,]
              0
                     1
                            0
                                  1
## [10,]
              1
                     2
                            1
                                  2
## [11,]
                           0
                                  0
              0
                     0
## [12,]
              2
                     1
                            2
                                  1
## [13,]
              0
                     2
                           0
                                  2
## [14,]
              0
                     2
                            0
                                  2
## [15,]
                     2
                           0
                                  2
              0
## [16,]
              0
                     2
                            0
                                  2
              2
                     2
                            2
                                  2
## [17,]
## [18,]
              2
                     1
                            2
                                  1
## [19,]
              1
                     1
                            1
                                  1
## [20,]
                     2
                           1
                                  2
              1
## [21,]
                            0
                                  0
## [22,]
              2
                     0
                            2
                                  0
                     2
                                  2
## [23,]
              0
                            0
## [24,]
              1
                     0
                            1
                                  0
## [25,]
              0
                     0
                            0
                           0
## [26,]
              0
                     1
                                  1
## [27,]
              0
                     0
                           0
                                  0
                     2
                                  2
## [28,]
              2
                           2
## [29,]
              0
                     2
                            0
                                  2
## [30,]
              0
                     2
                           0
                                  2
## [31,]
              0
                     1
                            0
                                  1
## [32,]
                            0
              0
                     1
                                  1
## [33,]
                     0
                            0
                                  0
              0
## [34,]
              0
                     0
                            0
                                  0
## [35,]
              1
                     1
                            1
                                  1
## [36,]
                     0
                            0
                                  0
              0
## [37,]
              0
                     0
                            0
                                  0
## [38,]
                     0
              1
                            1
                                  0
## [39,]
                     2
                           2
              2
                                  2
## [40,]
                            1
                                  1
## [41,]
              1
                     1
                            1
                                  1
                     2
                                  2
## [42,]
              0
                            0
## [43,]
                           0
              0
                     1
                                  1
## [44,]
              1
                     0
                            1
                                  0
## [45,]
              1
                     0
                            1
                                  0
## [46,]
              2
                     0
                            2
                                  0
## [47,]
                     0
                                  0
              1
                            1
## [48,]
              0
                     1
                            0
                                  1
## [49,]
                            0
                                  0
              0
                     0
## [50,]
                     2
                            0
                                  2
```

Test using the following and write two more tests as specified below:

```
expect_equal(dim(R), c(n, n))
#test that the only unique values are 0, 1, 2
uniqueValues = TRUE
for (i in R){
```

```
if (i != 0 & i!=1 & i !=2){
    uniqueValues = FALSE
}

expect_equal(uniqueValues, TRUE)

#test that there are exactly 625 2's
expect_equal(625,sum(c(R)==2))
table(R)
```

```
## R
## 0 1 2
## 1250 625 625
```

• Randomly punch holes (i.e. NA) values in this matrix so that approximately 30% of the entries are missing.

```
x=c(R) #make matrix a vector
newR = matrix(sample(replace(x,1:length(R)*0.3,NA)),nrow = n,ncol = n)
sum(is.na(newR))
```

[1] 750

Use the testthat library to test that this worked correctly by ensuring the number of missing entries is between the 0.5%ile and 99.5%ile of the appropriate binomial.

```
R_sNa = sum(is.na(newR))
x=n*n
expect_lt(R_sNa, qbinom(0.995, x, 0.3))
expect_gt(R_sNa, qbinom(0.005, x, 0.3))
```

• Sort the rows matrix R by the largest row sum to lowest. Be careful about the NA's!

```
r =c()
for (i in 1:n){
  r= c(r, sum(newR[i,], na.rm = TRUE) )
}
row.names(newR) = r
R = newR[order(rownames(newR), decreasing = TRUE), ]
head(R)
```

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
##
                     NA
## 36
         NA
                2
                            0
                                  1
                                        1
                                              0
                                                    0
                                                          1
                                                                 2
          2
                                                                                2
                                                                                      NA
## 35
                0
                      2
                           NA
                                  0
                                        0
                                             NA
                                                    0
                                                          0
                                                                NA
                                                                         1
## 35
          2
                1
                      0
                            1
                                 NA
                                        0
                                              2
                                                   NA
                                                          2
                                                                 1
                                                                         0
                                                                                0
                                                                                       1
                0
                      0
                                  1
                                              0
                                                    2
                                                          0
                                                                 2
                                                                         0
                                                                                2
                                                                                       2
## 34
         NA
                            1
                                       NA
##
   32
          0
                0
                     NA
                            0
                                  1
                                        0
                                              0
                                                    1
                                                          0
                                                                 2
                                                                         0
                                                                                0
                                                                                       2
                            2
                                        2
                                                                         2
##
   31
          0
                0
                      0
                                  0
                                             NA
                                                   NA
                                                         NA
                                                                 0
                                                                                0
                                                                                       0
##
              [,15] [,16] [,17] [,18] [,19]
                                                  [,20]
                                                         [,21]
                                                                [,22]
                                                                       [,23]
                                                                               [,24]
                                                                                      [.25]
       [,14]
## 36
                 NA
                          2
                                 2
                                       NA
                                              NA
                                                       1
                                                             NA
                                                                     1
## 35
            0
                  NA
                          1
                                NA
                                        2
                                               2
                                                       0
                                                              1
                                                                     2
                                                                                    0
                                                                                           0
                                                                            1
## 35
          NA
                   0
                         NA
                                 1
                                       NA
                                               1
                                                       2
                                                              1
                                                                    NA
                                                                            0
                                                                                  NA
                                                                                           0
                          0
                                       NA
                                               0
                                                       2
                                                                     0
                                                                            2
                                                                                   0
## 34
          NA
                   0
                                 1
                                                              2
                                                                                         NA
## 32
            0
                 NA
                         NA
                                 2
                                        0
                                              NA
                                                                            2
                                                                                         NA
                                                                            2
## 31
            0
                   1
                          2
                                 0
                                        2
                                               0
                                                       1
                                                             ΝA
                                                                     0
                                                                                   2
                                                                                         NA
##
       [,26]
              [,27] [,28] [,29] [,30] [,31] [,32]
                                                         [,33]
                                                                [,34]
                                                                       [,35]
                                                                               [,36]
                                                                                      [,37]
                                                             NA
                                                                     0
## 36
                   0
                          1
                                        1
                                               0
          NA
                                 1
                                                       1
```

```
## 35
                                    0
                                                    2
                                                                                          NA
                                                                                                   2
             1
                     1
                            1
                                            1
                                                           NA
                                                                  NA
                                                                          NA
                                                                                   1
                            0
                                    2
                                                                                                   1
##
   35
           NA
                   NA
                                           NA
                                                   NA
                                                           NA
                                                                    0
                                                                            0
                                                                                  NA
                                                                                            1
##
   34
             2
                     0
                            2
                                   NA
                                            1
                                                    0
                                                            0
                                                                    1
                                                                            2
                                                                                   2
                                                                                            0
                                                                                                  NA
                                            2
                                                                                            2
             0
                     0
                            0
                                    2
                                                                            0
                                                                                                   2
##
   32
                                                   NA
                                                          NA
                                                                  NA
                                                                                  NA
##
   31
             1
                   NA
                           NA
                                   NA
                                            2
                                                    1
                                                            2
                                                                  NA
                                                                            0
                                                                                  NA
                                                                                            0
                                                                                                  NA
                                       [,42]
##
                [,39]
                          40]
                                  41]
                                               [,43]
                                                       [,
                                                         44]
                                                               [,45]
                                                                       [,46]
                                                                                      [,48]
                                                                                              [,49]
        [,38]
                                                                               [,47]
                                            2
## 36
           NA
                     2
                            0
                                    2
                                                    0
                                                            1
                                                                    0
                                                                          NA
                                                                                  NA
                                                                                            2
                                                                                                   1
                                            2
                                                                                            2
##
   35
           NA
                     0
                           NA
                                    1
                                                    1
                                                            2
                                                                    0
                                                                            0
                                                                                   0
                                                                                                   2
##
   35
           NA
                   NA
                            2
                                    1
                                            1
                                                    2
                                                            1
                                                                    1
                                                                            2
                                                                                   2
                                                                                            2
                                                                                                   2
                                                    2
                                                                                   0
                                                                                            0
##
   34
           ΝA
                     1
                            1
                                    0
                                           NA
                                                            0
                                                                  NA
                                                                            1
                                                                                                   1
##
   32
             0
                     1
                            2
                                   NA
                                            2
                                                    1
                                                            2
                                                                    0
                                                                            2
                                                                                   0
                                                                                            0
                                                                                                   2
                                                                            2
                                                    2
                                                                    0
                                                                                            0
##
   31
             0
                   NA
                           NA
                                    1
                                            1
                                                           NA
                                                                                   1
                                                                                                  NA
##
        [,50]
## 36
             0
   35
##
             0
## 35
             0
## 34
             1
## 32
           NA
## 31
             2
```

Test using the following code.

```
for (i in 2 : n){
   expect_gte(sum(R[i - 1, ], na.rm = TRUE), sum(R[i, ], na.rm = TRUE))
}
```

• We will now learn the apply function. This is a handy function that saves writing for loops which should be eschewed in R. Use the apply function to compute a vector whose entries are the standard deviation of each row. Use the apply function to compute a vector whose entries are the standard deviation of each column. Be careful about the NA's!

```
#std= standard deviation
row_std = apply( R , 1, sd, na.rm = T)
column_std = apply( R, 2, sd, na.rm = T)
```

• Use the apply function to compute a vector whose entries are the count of entries that are 1 or 2 in each column. Try to do this in one line.

```
apply( R >= 1, 2, sum, na.rm=T)
## [1] 15 18 19 19 18 18 16 14 20 19 17 24 21 14 21 17 16 15 15 16 16 14 17
## [24] 11 15 14 18 15 22 25 23 12 14 17 18 26 13 16 14 19 14 19 24 19 14 23
## [47] 19 17 19 20
```

• Use the split function to create a list whose keys are the column number and values are the vector of the columns. Look at the last example in the documentation ?split.

```
newlist = split(R, col(R), drop = T)
```

• In one statement, use the lapply function to create a list whose keys are the column number and values are themselves a list with keys: "min" whose value is the minimum of the column, "max" whose value is the maximum of the column, "pct_missing" is the proportion of missingness in the column and "first_NA" whose value is the row number of the first time the NA appears. Use the which function.

```
list= lapply(newlist, function(R) {
  minimum = min (R,na.rm = T)
  pct_missing = sum(is.na(R))/ length(R)*100
  first_NA=min(which(is.na(R)))
```

```
maximum=max(R,na.rm=TRUE)
  c(minimum, maximum, pct_missing, first_NA)})
  • Create a vector v consisting of a sample of 1,000 iid normal realizations with mean -10 and variance 10.
v=rnorm(1000,mean=-10,sd=sqrt(10))
  • Find the average of v and the standard error of v.
sum(v)/length(v)
## [1] -10.16618
mean(v)
## [1] -10.16618
stderror = sd(v)/(sqrt(length(v)))
  • Find the 5%ile of v and use the qnorm function to compute what it theoretically should be.
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
## Error in qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE): object 'p' not found
t=quantile(v, probs=0.05)
q=qnorm(0.05,-10,sqrt(10))
expect_equal(as.numeric(t),as.numeric(q),tol=se)
## Error in all.equal.numeric(x, y, tolerance = tolerance, check.attributes = check.attributes, : object
  • Create a list named my_list with keys "A", "B", ... where the entries are arrays of size 1, 2 x 2, 3 x 3
     x 3, etc. Fill the array with the numbers 1, 2, 3, etc. Make 8 entries.
nom= c("A", "B", "C", "D", "E", "F", "G", "H")
my_list = list()
for (i in 1:8){
  my_list[[nom[i]]] = array(seq(1,i**i), dim = rep(i, i))
}
Test with the following uncomprehensive tests:
expect_equal(my_list$A, 1)
## Error: my_list$A not equal to 1.
## Attributes: < Modes: list, NULL >
## Attributes: < Lengths: 1, 0 >
## Attributes: < names for target but not for current >
## Attributes: < current is not list-like >
expect_equal(my_list[[2]][, 1], 1 : 2)
expect_equal(dim(my_list[["H"]]), rep(8, 8))
Run the following code:
lapply(my_list, object.size)
## $A
## 224 bytes
##
## $B
```

232 bytes

```
##
## $C
##
  352 bytes
##
## $D
## 1248 bytes
##
## $E
## 12744 bytes
##
## $F
  186864 bytes
##
##
## $G
## 3294416 bytes
##
## $H
## 67109104 bytes
```

##

Use **?object.size** to read about what these functions do. Then explain the output you see above. For the later arrays, does it make sense given the dimensions of the arrays?

Answer here in English. Object.size Provides an estimate of the memory that is being used to store in each key of an object, in our case of my_list.

Now cleanup the namespace by deleting all stored objects and functions:

```
rm(list= ls())
```

Basic Binary Classification Modeling

• Load the famous iris data frame into the namespace. Provide a summary of the columns and write a few descriptive sentences about the distributions using the code below and in English.

```
data("iris")
temp=iris
summary(temp)
                                                         Petal.Width
##
     Sepal.Length
                      Sepal.Width
                                       Petal.Length
##
    Min.
            :4.300
                             :2.000
                                              :1.000
                                                               :0.100
                     Min.
                                      Min.
                                                       Min.
                     1st Qu.:2.800
                                                       1st Qu.:0.300
##
    1st Qu.:5.100
                                      1st Qu.:1.600
##
    Median :5.800
                     Median :3.000
                                      Median :4.350
                                                       Median :1.300
                             :3.057
##
    Mean
            :5.843
                                              :3.758
                     Mean
                                      Mean
                                                       Mean
                                                               :1.199
##
    3rd Qu.:6.400
                     3rd Qu.:3.300
                                      3rd Qu.:5.100
                                                       3rd Qu.:1.800
                                              :6.900
##
    Max.
            :7.900
                     Max.
                             :4.400
                                      Max.
                                                       Max.
                                                               :2.500
##
          Species
##
    setosa
               :50
##
    versicolor:50
    virginica:50
##
```

The outcome metric is Species. This is what we will be trying to predict. However, we have only done binary classification in class (i.e. two classes). Thus the first order of business is to drop one class. Let's drop the level "virginica" from the data frame.

```
temp = temp[temp$Species != "virginica",]
summary(temp)
```

```
Sepal.Length
                      Sepal.Width
                                      Petal.Length
                                                       Petal.Width
##
##
    Min.
           :4.300
                    Min.
                            :2.000
                                     Min.
                                             :1.000
                                                      Min.
                                                             :0.100
##
    1st Qu.:5.000
                    1st Qu.:2.800
                                     1st Qu.:1.500
                                                      1st Qu.:0.200
##
   Median :5.400
                    Median :3.050
                                     Median :2.450
                                                      Median :0.800
##
   Mean
           :5.471
                    Mean
                            :3.099
                                     Mean
                                             :2.861
                                                      Mean
                                                             :0.786
                    3rd Qu.:3.400
                                     3rd Qu.:4.325
##
    3rd Qu.:5.900
                                                      3rd Qu.:1.300
##
    Max.
           :7.000
                    Max.
                            :4.400
                                     Max.
                                             :5.100
                                                      Max.
                                                             :1.800
##
          Species
##
    setosa
              :50
##
    versicolor:50
##
    virginica: 0
##
##
##
```

Now create a vector y that is length the number of remaining rows in the data frame whose entries are 0 if "setosa" and 1 if "versicolor".

```
y = nrow (temp)
for( i in 1: nrow(temp)){
   if(temp$Species[i] == "versicolor"){
      y[i] = 1}
else y[i]=0 }
```

• Fit a threshold model to y using the feature Sepal.Length. Try to write your own code to do this. What is the estimated value of the threshold parameter? What is the total number of errors this model makes?

```
X = as.matrix(cbind(temp[, 1, drop = F]))
MAX_ITER = 200
w_vec = 0
    for (iter in 1 : MAX_ITER){
        for (i in 1 : nrow(X)){
        x_i = X[i]
        yhat_i = ifelse(sum(x_i * w_vec) > 0, 1, 0)
        y_i = y[i]
        w_vec = w_vec + (y_i - yhat_i) * x_i
        }
}
```

Does this make sense given the following summaries:

```
summary(iris[iris$Species == "setosa", "Sepal.Length"])
##
      Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
                                                Max.
##
     4.300
             4.800
                      5.000
                              5.006
                                      5.200
                                               5.800
summary(iris[iris$Species == "virginica", "Sepal.Length"])
##
      Min. 1st Qu.
                               Mean 3rd Qu.
                    Median
                                                Max.
             6.225
                      6.500
                              6.588
                                      6.900
                                               7.900
```

Write your answer here in English. Setosa Min. 1st Qu. Median Mean 3rd Qu. Max. $4.300\ 4.800\ 5.000\ 5.006$ $5.200\ 5.800$

Virginica

Min. 1st Qu. Median Mean 3rd Qu. Max. $4.900\ 6.225\ 6.500\ 6.588\ 6.900\ 7.900$

Summary give us good amount of information to visualize where the points are. as well it gives some information to create a vage asumption of where the line will cut through the two data sets. therefore, out of this information we cause that the data sets are not linearly separable.

• What is the total number of errors this model makes (in-sample)?

```
yhat = ifelse(X %*% w_vec > 0, 1, 0)
sum((y != yhat) / length(y))
```

[1] 0.5