Soluzioni fondamentali per equazioni di tipo onda su varietà curve

Rubens Longhi

Equazioni di tipo ondulatorio

Gli operatori di tipo ondulatorio governano la dinamica di molti sistemi fisici

• Operatore d'onda: il d'Alembertiano

$$\Box = \frac{\partial^2}{\partial t^2} - \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}$$

Equazioni di Maxwell

$$\begin{cases} \Box A^{\mu} - \partial^{\mu} \partial_{\nu} A^{\nu} = 4\pi J^{\mu} \\ \partial_{\mu} J^{\mu} = 0 \end{cases}$$

• Equazione di Klein-Gordon

$$(\Box + m^2)\psi = f$$

Equazioni di tipo ondulatorio

Gli operatori di tipo ondulatorio governano la dinamica di molti sistemi fisici

• Operatore d'onda: il d'Alembertiano

$$\Box = \frac{\partial^2}{\partial t^2} - \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}$$

Equazioni di Maxwell

$$\begin{cases} \Box A^{\mu} - \partial^{\mu} \partial_{\nu} A^{\nu} = 4\pi J^{\mu} \\ \partial_{\mu} J^{\mu} = 0 \end{cases}$$

• Equazione di Klein-Gordon

$$(\Box + m^2)\psi = f$$

Equazioni di tipo ondulatorio

Gli operatori di tipo ondulatorio governano la dinamica di molti sistemi fisici

Operatore d'onda: il d'Alembertiano

$$\Box = \frac{\partial^2}{\partial t^2} - \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}$$

Equazioni di Maxwell

$$\begin{cases} \Box A^{\mu} - \partial^{\mu} \partial_{\nu} A^{\nu} = 4\pi J^{\mu} \\ \partial_{\mu} J^{\mu} = 0 \end{cases}$$

• Equazione di Klein-Gordon

$$(\Box + m^2)\psi = f$$

ullet Vogliamo risolvere in \mathbb{R}^N una qualsiasi equazione differenziale scalare non omogenea

$$P\psi = f$$

nell'incognita ψ con sorgente f.

• Le soluzioni saranno date da

$$\psi = \psi_0 + \psi_f$$

dove ψ_0 risolve l'omogenea associata e ψ_f è una soluzione particolare

Un metodo costruttivo

 \bullet Vogliamo risolvere in $\mathbb{R}^{\it N}$ una qualsiasi equazione differenziale scalare non omogenea

$$P\psi = f$$

nell'incognita ψ con sorgente f.

• Le soluzioni saranno date da

$$\psi = \psi_0 + \psi_f$$

dove ψ_0 risolve l'omogenea associata e ψ_f è una soluzione particolare

Un metodo costruttivo

• Risolviamo per un punto $x \in \mathbb{R}^N$

$$Pu_{x} = \delta_{x}$$

con $u_x \in \mathcal{D}'(\mathbb{R}^N)$. u_x è detta soluzione fondamentale per P in x

Troviamo una soluzione particolare tramite la convoluzione

$$\psi_f = u_{\mathsf{x}} * f$$

 Nel caso di operatori d'onda, otteniamo una soluzione per l'omogenea dalla differenza di due soluzioni fondamentali • Risolviamo per un punto $x \in \mathbb{R}^N$

$$Pu_{x} = \delta_{x}$$

con $u_x \in \mathcal{D}'(\mathbb{R}^N)$. u_x è detta soluzione fondamentale per P in x

• Troviamo una soluzione particolare tramite la convoluzione

$$\psi_f = u_x * f$$

 Nel caso di operatori d'onda, otteniamo una soluzione per l'omogenea dalla differenza di due soluzioni fondamentali

Un metodo costruttivo

• Risolviamo per un punto $x \in \mathbb{R}^N$

$$Pu_{x} = \delta_{x}$$

con $u_x \in \mathcal{D}'(\mathbb{R}^N)$. u_x è detta soluzione fondamentale per P in x

Troviamo una soluzione particolare tramite la convoluzione

$$\psi_f = u_{\mathsf{x}} * f$$

 Nel caso di operatori d'onda, otteniamo una soluzione per l'omogenea dalla differenza di due soluzioni fondamentali

L'operatore d'onda in Minkowski

Il caso dello spaziotempo piatto

Ec	uazione	di	K	lein-	Gordon	con	massa	nulla

$$\Box \psi = f$$

Spaziotempo piatto di Minkowski $\mathbb{M}^n o 1$ dimensione temporale e n dimensioni spaziali

L'invarianza traslazionale ci consente di limitare il problema per 🗆 all'origine:

$$\Box u_0 = \delta_0$$

e di utilizzare la tecnica della trasformata di Fourier.

L'operatore d'onda in Minkowski

Il caso dello spaziotempo piatto

Ec	uazione	di	K	lein-	Gordon	con	massa	nulla

$$\Box \psi = f$$

Spaziotempo piatto di Minkowski $\mathbb{M}^n o 1$ dimensione temporale e n dimensioni spaziali

L'invarianza traslazionale ci consente di limitare il problema per \square all'origine:

$$\Box u_0 = \delta_0$$

e di utilizzare la tecnica della trasformata di Fourier.

La tecnica della trasformata di Fourier

La PDE in (t, \mathbf{x}) diventa l'equazione algebrica nello spazio delle fasi (ω, \mathbf{k})

$$(|\mathbf{k}|^2 - \omega^2)\widehat{u} = 1$$

Troviamo due soluzioni linearmente **indipendenti**, che danno luogo a due soluzioni fondamentali G^+ e G^- dette **ritardata** e **avanzata**

$$G^{\pm}(x) = \frac{1}{(2\pi)^{n+1}} \lim_{\varepsilon \to 0^+} \int_{\mathbb{R}^{n+1}} \frac{e^{i\langle k, x \rangle}}{|\mathbf{k}|^2 - (\omega \pm i\varepsilon)^2} \, \mathrm{d}k$$

La tecnica della trasformata di Fourier

La PDE in (t, \mathbf{x}) diventa l'equazione algebrica nello spazio delle fasi (ω, \mathbf{k})

$$(|\mathbf{k}|^2 - \omega^2)\widehat{u} = 1$$

Troviamo due soluzioni linearmente **indipendenti**, che danno luogo a due soluzioni fondamentali G^+ e G^- dette **ritardata** e **avanzata**

$$G^{\pm}(x) = \frac{1}{(2\pi)^{n+1}} \lim_{\varepsilon \to 0^+} \int_{\mathbb{R}^{n+1}} \frac{e^{i\langle k, x \rangle}}{|\mathbf{k}|^2 - (\omega \pm i\varepsilon)^2} \, \mathrm{d}k$$

Le soluzioni fondamentali ritardata e avanzata

Il caso n = 1 - onde su una corda

Le soluzioni fondamentali in Minkowski

La soluzione fondamentale ritardata

$$G^+(t,x) = \frac{\Theta(t-|x|)}{2}$$

supp G^+ è il cono luce **futuro**

Il caso n = 1 - onde su una corda

Le soluzioni fondamentali in Minkowski

La soluzione fondamentale avanzata

$$G^{-}(t,x)=-\frac{\Theta(t+|x|)}{2}$$

supp G^- è il cono luce passato

Il caso n = 2 - onde su una superficie

Le soluzioni fondamentali in Minkowski

Un insieme di livello della soluzione fondamentale **ritardata**

$$G^+(t, \mathbf{x}) = rac{\Theta(t)}{2\pi} rac{\Theta(t^2 - |\mathbf{x}|^2)}{\sqrt{t^2 - |\mathbf{x}|^2}}$$

supp G⁺ \subset cono luce **futuro**

Il caso n = 2 - onde su una superficie

Le soluzioni fondamentali in Minkowski

Un insieme di livello della soluzione fondamentale avanzata

$$G^{-}(t,\mathbf{x}) = \frac{\Theta(-t)}{2\pi} \frac{\Theta(t^2 - |\mathbf{x}|^2)}{\sqrt{t^2 - |\mathbf{x}|^2}}$$

supp $G^- \subset \text{cono luce } \mathbf{passato}$

Le soluzioni fondamentali in Minkowski

Il supporto della soluzione fondamentale ritardata

$$G^+(t, \mathbf{x}) = rac{\Theta(t)}{4\pi} rac{\delta(t - |\mathbf{x}|)}{|\mathbf{x}|}$$

supp G^+ è il **bordo** del cono luce **futuro**

Le soluzioni fondamentali in Minkowski

Il supporto della soluzione fondamentale avanzata

$$G^-(t,\mathbf{x}) = rac{\Theta(-t)}{4\pi} rac{\delta(t+|\mathbf{x}|)}{|\mathbf{x}|}$$

supp G^- è il **bordo** del cono luce **passato**

Il Principio di Huygens

Le soluzioni fondamentali in Minkowski

Il supporto di G^{\pm} coincide con il bordo del cono luce solo se n > 1 è dispari.

In 2D l'effetto dell'onda viene percepito **anche dopo** che il segnale è arrivato.

Le onde 3D si propagano solo sulla superficie sferica del fronte d'onda.

Il supporto di G^{\pm} coincide con il bordo del cono luce solo se n > 1 è dispari.

In 2D l'effetto dell'onda viene percepito **anche dopo** che il segnale è arrivato.

Le onde 3D si propagano solo sulla superficie sferica del fronte d'onda.

Il supporto di G^{\pm} coincide con il bordo del cono luce solo se n>1 è dispari.

In 2D l'effetto dell'onda viene percepito **anche dopo** che il segnale è arrivato.

Le onde 3D si propagano solo sulla superficie sferica del fronte d'onda.

Lo spaziotempo come varietà differenziabile

Una varietà differenziabile M è localmente omeomorfa a \mathbb{R}^{n+1} e decorata con

- spazio tangente Minkowskiano
- metrica g
- orientazione temporale (spaziotempo)

Lo spaziotempo come varietà differenziabile

Una varietà differenziabile M è localmente omeomorfa a \mathbb{R}^{n+1} e decorata con

- spazio tangente Minkowskiano
- metrica g
- orientazione temporale (spaziotempo)

Lo spaziotempo come varietà differenziabile

Una varietà differenziabile M è localmente omeomorfa a \mathbb{R}^{n+1} e decorata con

- spazio tangente Minkowskiano
- metrica g
- orientazione temporale (spaziotempo)

Spazitempi Globalmente Iperbolici

• $M \simeq \mathbb{R} \times S \longrightarrow \{t\} \times S$ è ipersuperficie a tempo costante su cui porre dati iniziali

Assenza di curve chiuse causali → no paradossi temporali

Spazitempi Globalmente Iperbolici

• $M \simeq \mathbb{R} \times S \longrightarrow \{t\} \times S$ è ipersuperficie a tempo costante su cui porre dati iniziali

Assenza di curve chiuse causali → no paradossi temporali

Spazitempi di interesse fisico

Lo spaziotempo cosmologico

$$M_c = \mathbb{R} \times \mathbb{R}^n$$

con metrica

$$g_c = -\mathrm{d}t^2 + f^2(t)\,\mathrm{d}\mathbf{x}^2$$

descrive un universo con fattore di espansione f(t)

• Lo spaziotempo di Schwarzschild

$$M_s = \mathbb{R} \times (2m, +\infty) \times S^2$$

con metrica

$$g_s = -\left(1 - \frac{2m}{r}\right) \mathrm{d}t^2 + \left(1 - \frac{2m}{r}\right)^{-1} \mathrm{d}r^2 + r^2 \mathrm{d}\Omega^2$$
 descrive l'esterno di un **buco nero** non rotante di massa m e raggio $2m$

Operatori d'onda in ambiente curvo

Gli operatori di tipo ondulatorio si generalizzano in base alla metrica locale g

Operatore generalizzato di d'Alembert

$$P = -g^{ij}(x)\frac{\partial^2}{\partial x^i \partial x^j} + a^j(x)\frac{\partial}{\partial x^j} + b(x)$$

In particolare l'operatore d'onda diventa

$$\Box = -rac{1}{\sqrt{|g|}}\partial_i \left(\sqrt{|g|}g^{ij}\partial_j
ight)$$

Operatori d'onda in ambiente curvo

Gli operatori di tipo ondulatorio si generalizzano in base alla metrica locale g

Operatore generalizzato di d'Alembert

$$P = -g^{ij}(x)\frac{\partial^2}{\partial x^i \partial x^j} + a^j(x)\frac{\partial}{\partial x^j} + b(x)$$

In particolare l'operatore d'onda diventa

$$\Box = -rac{1}{\sqrt{|g|}}\partial_i\left(\sqrt{|g|}g^{ij}\partial_j
ight)$$

Operatori d'onda in ambiente curvo

Spaziotempo cosmologico

$$\Box = \frac{\partial^2}{\partial t^2} - \frac{3}{f(t)} \frac{\partial}{\partial t} + \frac{1}{f^2(t)} \Delta$$

Spaziotempo di Schwarzschild

$$\Box = \left(1 - \frac{2m}{r}\right)^{-1} \frac{\partial^2}{\partial t^2} - \left(1 - \frac{2m}{r}\right) \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 - 2mr) \frac{\partial}{\partial r} + \frac{1}{r^2} \Delta_{\vartheta,\varphi}$$

Cade la simmetria traslazionale. La soluzione fondamentale

$$Pu_x = \delta_x$$

deve essere cercata punto per punto senza poter usare Fourier

Le distribuzioni di Riesz

Ritroviamo le soluzioni fondamentali su Minkowski sfruttando le distribuzioni di Riesz, definite per $\alpha \in \mathbb{C}$ a partire dalla formula

$$R_{\pm}(\alpha)(x) := \frac{2^{1-\alpha} \pi^{\frac{1-n}{n+1}}}{\Gamma(\frac{\alpha}{2})\Gamma(\frac{\alpha-n+1}{2})} \left(-\langle x, x \rangle\right)^{\frac{\alpha-n-1}{2}}$$

se x è nel cono luce futuro (+)/passato (-) e 0 altrimenti, con Re $\alpha > n+1$

$$\Box R_{\pm}(2) = \delta_0$$

 $R_{\pm}(2)$ sono le soluzioni fondamentali **ritardata** (+) e avanzata (-)

Le distribuzioni di Riesz

Ritroviamo le soluzioni fondamentali su Minkowski sfruttando le **distribuzioni di Riesz**, definite per $\alpha \in \mathbb{C}$ a partire dalla formula

$$R_{\pm}(\alpha)(x) := \frac{2^{1-\alpha} \pi^{\frac{1-n}{n+1}}}{\Gamma(\frac{\alpha}{2})\Gamma(\frac{\alpha-n+1}{2})} \left(-\langle x, x \rangle\right)^{\frac{\alpha-n-1}{2}}$$

se x è nel cono luce futuro (+)/passato (-) e 0 altrimenti, con Re $\alpha > n+1$

$$\Box R_{\pm}(2) = \delta_0$$

 $R_{\pm}(2)$ sono le soluzioni fondamentali **ritardata** (+) e avanzata (-)

La soluzione fondamentale locale

Le distribuzioni di Riesz si estendono localmente dal tangente Minkowskiano al curvo.

La soluzione fondamentale locale

Le distribuzioni di Riesz si estendono localmente dal tangente Minkowskiano al curvo.

Il problema ai dati iniziali locale

Con le soluzioni fondamentali trovate risolviamo il problema di Cauchy localmente

Problema ai dati iniziali

$$egin{cases} egin{aligned} eta\psi=f\ &\psi(t_0,\cdot)=\psi^0\ &rac{\partial}{\partial t}\psi(t_0,\cdot)=\psi^1. \end{aligned}$$

Il problema ai dati iniziali globale

Se lo spaziotempo è globalmente iperbolico, si ottengono soluzioni fondamentali globali G^\pm

- ullet la soluzione ψ è unica e liscia
- supporto nel futuro causale e nel passato causale

Conclusioni

Risultati ottenuti:

- Costruzione delle soluzioni fondamentali per □ in Minkowski attraverso
 - trasformata di Fourier
 - distribuzioni di Riesz
- Estensione locale e globale delle soluzioni fondamentali su spazitempi globalmente iperbolici

Possibili sviluppi:

• Estensione ad altri operatori (Dirac *D*)

Conclusioni

Risultati ottenuti:

- Costruzione delle soluzioni fondamentali per
 ☐ in Minkowski attraverso
 - trasformata di Fourier
 - distribuzioni di Riesz
- Estensione locale e globale delle soluzioni fondamentali su spazitempi globalmente iperbolici

Possibili sviluppi:

• Estensione ad altri operatori (Dirac *D*)

Conclusioni

Risultati ottenuti:

- Costruzione delle soluzioni fondamentali per
 ☐ in Minkowski attraverso
 - trasformata di Fourier
 - distribuzioni di Riesz
- Estensione locale e globale delle soluzioni fondamentali su spazitempi globalmente iperbolici

Possibili sviluppi:

• Estensione ad altri operatori (Dirac D)