Time complexity

If an algorithm samples exact knockoff for any distribution with only access to evaluating the distribution's unnormalized density Φ , then almost surely,

number of evaluations of the density $\geq 2^{|\{j:X_j \neq \tilde{X}_j\}|} - 1$

Theorem 2 (Bates, Candès, Janson and Wang, 2019, informal version)

number of swapping operations is exponential in p

need density at all points of the form $(Z_1, Z_2, ..., Z_p)$, Z_j equal to X_j or X_j

If an algorithm samples exact knockoff for any distribution with only access to evaluating the distribution's unnormalized density Φ , then almost surely,

number of evaluations of the density $\geq 2^{|\{j:X_j \neq \tilde{X}_j\}|} - 1$

need density at all points of the form $(Z_1, Z_2, ..., Z_p)$, Z_i equal to X_i or \tilde{X}_i

number of swapping operations is exponential in p

Theorem 2 (Bates, Candès, Janson and Wang, 2019, informal version)

If an algorithm samples exact knockoff for any distribution with only access to evaluating the distribution's unnormalized density Φ , then almost surely,

number of evaluations of the density $\geq 2^{\left|\{j:X_j\neq \tilde{X}_j\}\right|}-1$