Computer Systems	
Steven Moerman	
1	
Computer Systems	
Computer Systems	
Rekenmachine (basis)	
Geen laptop, geen smartphone Jacob hij getaller	
Index bij getallenRuitjespapier (oefeningen – aan bord)	
8 cijfers na de komma	
Groepen volledig (leading zero)	
2	
H1 Computersystemen	
Til Computersystemen	
Inleiding	
- Veel verschillen bij computers (keuze?) • Invoer-verwerk-uitvoer model	
 Toch iets altijd hetzelfde (werking) 	
Onderdelen Hardware	
– Software	
– Gegevens	
3	

H1 Computersystemen	
Hardware	
Toetsenbord	
- CPU (Central Processing Unit) • ALU (Arithmetic and Logic Unit)	
CU (Control Unit) IU (Interface Unit) Bus	
 _ Scherm	
4	
	1
H1 Computersystemen	
Gegevens (bv RAM)	
 Cel met uniek nummer (adres) 8 bits = Byte = 2^8 = 256 patronen 	
2 Bytes = WordWerkgeheugen	
 '80 : 64 kilobyte Vandaag: 8-16 gigabyte	
Permanent geheugen (HDD SSD, diskarrays)	
5	
	1
H1 Computersystemen	
Opdrachten voor verwerking	
InstructiesetCompatibel (intel & amd vs ARM advanced RISC	
machine) — Stored program concept (John von Neumann)	
 Instructie geladen in memory 	
Data geladen in memory	

	=
H1 Computersystemen	
Software	
Besturingssysteem	
 Applicatieprogramma's 	
	_
7	
	_
H1 Computersystemen	
Communicatie Computer Networking	
– Switchen, routers,	
LAN, WAN,Fiber, coax, twisted pair, satelliet, microgolven,	
- Protocol (regels)	
8	
H1 Computersystemen]
The computersystement	
Computersysteem – 2458 kg (IBM eServer p5 595)	
- 2430 kg (labit eserver ps 393) - 1,7 kg (laptop)	
• Gedistribueerd systeem	
Via communicatie samenwerken	
9	

	_
H1 Computersystemen	
Geschiedenis	
Stelsels:	
Indianen (tussen vingers tellen = 4-tallig stelsel)20-tallig stelsel (vingers en tenen)	
tijd (60-tallig stelsel)10-delig of decimaal stelsel (vingertoppen)	
To deligor decimal steller (vinger oppen)	
10	
	1
H1 Computersystemen	
Geschiedenis	
 Telraam (Grieken&Romeinen 500 vChr., Chinezen 2000 vChr.) Telmachines 1624-1674 	
Ponskaarten (vorm van programmeren) 1801	
 Programmeertaal 19^e eeuw George Boole : binaire logica 	
Elektronische computers 1937 (MARK 1) 5 ton	
11	
	1
H1 Computersystemen	
Geschiedenis	
 Vanaf 1945 stored program concept John von Neumann 	
•	
 Pagina's 8-15: lezen en markeren belangrijke items Pagina's 17 tot H2: thuis 	

H2 Talstelsels	
 Arabische cijfers {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 	
Binaire cijfers {0, 1}	
1 bit = bit4 bits = nibble	
8 bits = byte = 2 nibbles16 bits = word = 2 bytes = 4 nibbles	
• 32 bits = double word =	
13	l
15	
	1
H2 Talstelsels	
$1_{(2)}$ Binair $\{0,1\}$ = basis 2	
1 (8) Octaal {0, 1, 2, 3, 4, 5, 6, 7} = basis 8	
1 (10) Decimaal {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} = basis 10	
${f 1}$ (16) Hexadecimaal {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}	
14	
H2 Talstelsels	

Hoe stellen we het decimale getal 5 voor vanuit Oudheid tot nu?

 $IIIII = V_{(Romeins)} = 101_{(2)} = 12_{(3)} = 5_{(10)}$

H2 Talstelsels	
Geboortedatum samenstellen in Romeinse cijfers p 24.	
2002 NANAII .	
2002 ₍₁₀₎ = MMII (Romeins)	
$1996_{(2)} = M CM XC VI (Romeins)$	
1978 ₍₂₎ = M CM LXX VIII (Romeins)	
16	
H2 Talstelsels	
Tellen	
 Binair {0, 1} = 2 cijfers Octaal {0, 1, 2, 3, 4, 5, 6, 7} = 8 cijfers 	
 Decimaal {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} = 10 cijfers Hexadecimaal {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 	
= 16 cijfers	
17	
H2 Talstelsels	
Tellen (verder tellen)	
 Binair {0, 1} 10, 11, 100, 101, 110, 111, 1000, Octaal {0, 1, 2, 3, 4, 5, 6, 7} 10, 11, 12, 13, 14, 15, 16, 17, 20, 	
 Decimaal {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 10, 11, 12, 13, 14, 15, 16, Hexadecimaal {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 	
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F, 20,	

H2 Talstelsels	
Groep (decimaal)	-
10 = 1 groep van 10 + 0	
11 = 1 groep van 10 + 1	
 19 = 1 groep van 10 + 9	
20 = 2 groepen van 10 + 0	
19	
19	
H2 Talstelsels	
HZ Taisteiseis	
Groep (decimaal)	
63	
= 6 groepen van 10 + 3	
= 6 x 10 + 3 648	
= 6 groepen van 10 groepen van 10 + 4 groepen van 10 + 8 = 6 x 10x10 + 4 x 10 + 8	
= 6 x 10^2 + 4 x 10^1 + 8 x 10^0	-
20	
	ı
H2 Talstelsels	
Conversion (control to decimans)	
Conversie (octaal->decimaal)	
617(8)	
$= 6 \times 8^{2} + 1 \times 8^{1} + 7 \times 8^{0}$ $= 6 \times 64 + 1 \times 8 + 7 \times 1$	
$= 6 \times 64 + 1 \times 8 + 7 \times 1$ $= 384 + 8 + 7$	
= 399 (10)	
21	
	

H2 Talstelsels	
Positie cijfer in getal	
224305(6)	-
= 2 x 6^5 + 2 x 6^4 + 4 x 6^3 + 3 x 6^2 + 0 x 6^1 + 5 x 6^0	
= 2 x 7776 + 2 x 1296 + 4 x 216 + 3 x 36 + 0 x 6 + 5 x 1 = 15552 + 2592 + 864 + 108 + 0 + 5	
= 19121 (10)	
22	
H2 Talstelsels	
Opdracht p 27	
Maak zelf een tabel met de voorstelling van de getallen van 0 tot 20 in het decimaal, binair, octaal en hexadecimaal stelsel.	
Vergelijk met het tellen in Romeinse cijfers tot 20.	
23	
	l
H2 Talstelsels Romeins Decimal Binary Octal Hexadecimal Readecimal Rea	
Opdracht p 27 11 2 10 2 2 2 3 3 3 3 4 4 4 4 4 4	
VI 6 110 6 6 6 VII 7 111 7 7 VIII 8 1000 10 8	
IX 9 1001 11 9	
XIII	
XVIII 17 10001 21 11 1	
XX 20 10100 24 14	<u> </u>
24	

nz idisteiseis	
Bereik R of aantal getallen	
Bereik it of dantal getalien	
R = B^K	
R = bereik	
B = Basis	
K = aantal cijfers	
0.5	
25	
	1
HO To be dead.	
H2 Talstelsels	
Opdracht p 28	
Opuracint p 20	
Hoeveel verschillende getallen kan je voorstellen met 8	
binaire cijfers en 2 hexadecimale cijfers?	
Wat stel je vast?	
26	
]
H2 Talstelsels	
Our due alst in 20	
Opdracht p 28	
R = 2^8 = 256 (10)	
$R = 16^2 = 256_{(10)}$	
R = (2^4)^2 = 2^8	
27	

H2 Talstelsels

Positie cijfer in getal (herhaling)

224305(6)

- = 2 x 6^5 + 2 x 6^4 + 4 x 6^3 + 3 x 6^2 + 0 x 6^1 + 5 x 6^0
- = 2 x 7776 + 2 x 1296 + 4 x 216 + 3 x 36 + 0 x 6 + 5 x 1
- = 15552 + 2592 + 864 + 108 + 0 + 5
- = 19121 (10)

28

H2 Talstelsels

Algemeen

t = teken

 $\sum_{i=-b}^{a-1} t_i * g^i$

- a = aantal cijfers links van teken
- b = aantal cijfers rechts van teken
- g = grondtal

29

H2 Talstelsels

Algemeen

62,43(10)

= 6 x 10^1 + 2 x 10^0 + 4 x 10^-1 + 3 x 10^-2

a = 2, b = 2, g = 10

 $t_1 = 6$, $t_0 = 2$, $t_{-1} = 4$, $t_{-2} = 3$

H2	Ta	lste	lsels	

Voorbeeld 1: 10001₂

$$\sum_{i=0}^4 t_i * 2^i$$

 $1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$

 $1 \times 16 + 0 \times 8 + 0 \times 4 + 0 \times 2 + 1 \times 1 = 1710$

31

H2 Talstelsels

Voorbeeld 2: 110,011₂

$$\sum_{i=3}^{2} t_i * 2^i$$

 $1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 0 \times 2^{\cdot 1} + 1 \times 2^{\cdot 2} + 1 \times 2^{\cdot 3}$

 $1 \times 4 + 1 \times 2 + 0 \times 1 + 0 \times 1/2 + 1 \times 1/4 + 1 \times 1/8 = 6,375_{10}$

32

H2 Talstelsels

Voorbeeld: 562₈

$$\sum_{i=0} t_i * 8^i$$

 $5 \times 8^2 + 6 \times 8^1 + 2 \times 8^0$

 $5 \times 64 + 6 \times 8 + 2 \times 1 = 370_{10}$

Voorbeeld: CA3₁₆

$$\sum_{i=0}^{2} t_i * 16$$

 $C \times 16^2 + A \times 16^1 + 3 \times 16^0$

 $12 \times 256 + 10 \times 16 + 3 \times 1 = 3235_{10}$

34

H2 Talstelsels

• Opdrachten p 32 - 33