Introduction à la Théorie des Graphes

__

Partie 6 : Recherche d'un flot maximum dans un réseau de transport

Sommaire

- Introduction et définitions
- Algorithme de Ford et Fulkerson
- Méthode de coupe

• Un réseau de transport est un type de graphe orienté valué permettant par exemple de modéliser la circulation

o Réseau routier

- Un réseau de transport est un type de graphe orienté valué permettant par exemple de modéliser la circulation
 - o Réseau informatique:

Transporter la quantité maximal de paquets dans un réseau Télécom d'une source (unique) vers une destination (puits).

- Un réseau de transport est un type de graphe orienté valué permettant par exemple de modéliser la circulation
 - o Réseau de transports en commun

• Un réseau de transport est un type de graphe orienté valué permettant par

exemple de modéliser la circulation

o Réseau électrique

 Nous pourrons avec cet outil étudier et optimiser le déplacement d'une certaine quantité d'éléments dans n'importe quel réseau prédéfini.

Réseau de transport

Définition

- \circ Soit G = (V, E, C) un graphe orienté à valuations positives.
- On dit que G est un réseau de transport s'il contient :
 - Un sommet s appelé source qui n'a pas de prédécesseur. (càd Γ^{-1} (s) = \emptyset)
 - Un sommet t appelé puits qui n'a pas de successeur. (càd $\Gamma(t) = \emptyset$)
 - Chaque sommet du graphe se trouve sur un chemin allant de s vers t.
 - Une fonction positive C appelée capacité. On nomme capacité de l'arc a = (x, y) le nombre C(a) ou C(x, y).
 - Rq: Le graphe est supposé antisymétrique,
 - >G = (V, E) est antisymétrique si $[(x, y) \in E \Rightarrow (y, x) \notin E]$ càd qu'il n'existe pas deux arcs opposés reliant deux mêmes sommets.

Réseau de transport

- · On supposera dans la suite que les capacités des arcs sont finies et à valeurs entières,
- Si ce n'est pas le cas:
 - Approcher les valeurs réelles par des rationnels,
 - Réduire ces nombres au même dénominateur commun d
 - Choisir comme unité de référence 1/d.
- Considérons le graphe valué orienté suivant :
 - o Ce graphe est bien un réseau de transport, puisque :
 - Les sommets s et t sont respectivement une source et un puits,
 - Tout autre sommet du graphe se trouve sur un chemin reliant s à t, et
 - La propriété d'antisymétrie est bien vérifiée.

Flot

- · Définition:
 - \circ Soit G = (V, E, C) un réseau de transport.
 - Un <u>flot</u> circulant dans le réseau G est une fonction f définie sur l'ensemble des arcs E représentant une <u>quantité transportée</u> sur cet arc et vérifiant la loi de conservation suivante (loi des nœuds de Kirchhoff):

$$\forall x \neq s,t$$

$$f_x = f(x) = \sum_{y \in V, (y, x) \in E} f(y, x) = \sum_{y \in V, (x, y) \in E} f(x, y)$$

• Exemple: sommet A

- \circ Si f est un flot sur un réseau de transport G, alors f(s) = f(t);
- o cette quantité s'appelle la valeur du flot.

Flot Compatible

- Définition
 - \circ Soit G = (V, E, C) un réseau de transport dont, C est la capacité des arcs.
 - \circ On dit qu'un flot f circulant dans G est <u>compatible</u> si sa valeur sur chacun des arcs est inférieure à la capacité de l'arc en question, càd:

$$\forall (x,y) \in E, f(x,y) \leq C(x,y)$$

• Interprétation : cette inégalité exprime le fait qu'il n'y aura pas de débordements.

Flot Compatible

• Exemple: Un réseau de transport et un flot compatible y circulant

- Il s'agit bien d'un flot car la loi de conservation est vérifiée pour tous les sommets différents de la source et du puits.
- o Ce flot est compatible. (la valeur du flot est ici égale à 10).

Flot Complet

• Définitions:

o Pour un flot \mathbf{f} dans un réseau de transport G = (V, E, C), on dit qu'un arc \mathbf{a} est $\mathbf{satur\acute{e}}$ si f(a) = C(a).

 On dit qu'un flot f circulant dans G est <u>complet</u> s'il est compatible et si tout chemin allant de s à t contient <u>au moins un arc saturé</u>.

Flot Complet

• Exemple : Réseau de transport et un flot complet y circulant :

- Ce flot est complet, car chaque chemin de s vers t, contient au moins un arc saturé,
- Exemple (s, C, D, t), contient un arc saturé (D,t).

Flot Maximal

- Définition
 - \circ Soit G = (V, E, C) un réseau de transport.
 - On dit qu'un flot f circulant dans G est <u>maximal</u> s'il est compatible et s'il possède la plus forte valeur du flot parmi tous les flots compatibles.

Flot Maximal

• Exemple : Réseau de transport et un flot maximal y circulant:

• Remarques:

- Tout flot maximal est complet,
- Mais l'inverse n'est pas nécessairement vrai:
 - Pour le 1^{er} exemple (complet NON Maximal):

$$> f(s,B) = 1 , f(A,B) = 0 , f(A,P) = 1$$

■ Pour le 2^{ème} exemple (complet NON Maximal):

$$> f(s,C) = 7$$
, $f(A,C) = 4$, $f(A,B) = 12$, $f(B,t) = 19$

Objectif

- Pour un réseau de transport donné comment déterminer un flot de valeur maximale ainsi que les flots le long de chaque arc?
- 1er Essai : Recherche d'un flot complet
 - o Considérons le graphe partiel engendré par les arcs non saturés.
 - Si le flot n'est pas complet, il existe nécessairement un chemin µ allant de l'entrée à la sortie, ne contenant pas d'arc saturé.
 - \circ Définir un nouveau flot pour le réseau en améliorant d'une valeur ϵ le flot de chacun des arcs constituant le chemin μ .
 - o la valeur du flot est alors également augmentée de ε.

Objectif

- 1er Essai: Recherche d'un flot complet
 - On peut donc progressivement augmenter la valeur d'un flot incomplet jusqu'à ce qu'il soit complet.
 - \circ En tenant compte des différences entre les capacités et la valeur du flot sur les arcs de μ , on peut connaître d'avance l'augmentation possible du flot.
 - o Cependant, le flot complet ainsi obtenu n'est pas, nécessairement maximal.
 - Nécessité d'amélioration du flot

Recherche Flot Maximal: Graphe d'écart

Définition

- \circ Soient G = (V, E, C) un réseau de transport tq C est la capacité des arcs et soit f un flot compatible circulant dans G.
- \circ Le graphe d'écart de ce flot f dans G est le graphe G'(f) = (V, E', C') tq :
 - $si(x, y) = a \in E, et f(a) < C(a) alors a \in E' et C'(a) = C(a) f(a)$
 - $si(x, y) = a \in E$, et f(a) > 0 alors $a^{-1} = (y, x) \in E'$ et $C'(a^{-1}) = f(a)$
 - C'appelée capacité résiduelle

Recherche Flot Maximal: Graphe d'écart

• Exemple. un réseau de transport avec un flot y circulant et son graphe d'écart:

- Considérons par exemple l'arc (C,D). Il y aura également dans le graphe d'écart un arc (C,D) mais de valuation égale à la capacité restante, càd la capacité initiale moins la valeur du flot, i.e. 14-4=10.
- De plus, étant donné qu'il circule dans (C,D) un flot d'une valeur de 4, il y aura dans le graphe d'écart un arc (D,C) de valuation égale à 4.
- · Même chose pour tous les autres arcs.

- · Permet de déterminer un flot maximal dans un réseau de transport.
- Le pseudo code de cet algorithme est le suivant :
 - 1. Partir d'un flot compatible, <u>par exemple le flot nul</u>. Construire le graphe d'écart correspondant.
 - 2. Rechercher un chemin μ allant de la source vers le puits dans le graphe d'écart.
 - 3. Il y a alors deux possibilités :
 - o S'il existe un tel chemin :
 - Augmenter le flot (circulant sur ce chemin dans le réseau) de ϵ = minimum des valuations des arcs du chemin dans le graphe d'écart.
 - Recommencer alors à l'étape 2.
 - O Sinon, l'algorithme est terminé et le flot courant est maximal.

- Soit G = (V, E, C) un graphe réseau de transport tq
 - o C représente les capacités,
 - os et t respectivement la source et le puits.
 - of un flot circulant sur ce réseau.
- Soit G'(f) = (V, E', C') le graphe d'écart associé au flot f circulant sur le réseau G.
- tq C'ses valuations, (capacités résiduelles).

• Une Initialisation:

$$\forall (x,y) \in E, f(x,y) = 0$$

• Traitement:

```
Construire le graphe d'écart G'
TantQue il existe un chemin allant de s à t dans G 'FAIRE
   Choisir un chemin µ allant de s à t dans G
   \varepsilon = \min \{ C'(x,y) / (x,y) \in \mu \}
   Pour Tout arc (x, v) \in \mu Faire
       Si (x, y) \in E Alors
           f(x, y) \leftarrow f(x, y) + \varepsilon
       Sinon
            f(x, y) \leftarrow f(x, y) - \varepsilon
       Fin Si
   Fin Pour
FinTantQue
```

- Exemple partiel
 - o Imaginons qu'une partie d'un réseau de transport soit :

L'extrait du graphe d'écart correspondant est donc :

 On peut donc considérer dans ce graphe d'écart le chemin (s,A,B,C,t) allant de la source vers le puits.

Exemple partiel

 ○ Le minimum des valuations des arcs constituants ce chemin est égal à 1, on va donc modifier notre flot en conséquence.

- Dans ce chemin les arcs (s,A), (A,B) et (C,t)
 appartiennent au réseau, on va donc augmenter
 la valeur du flot y circulant de 1.
- Par contre l'arc (B,C) n'appartenant pas au réseau,
 on va diminuer la valeur de son flot de 1.
- Nous obtenons donc ce nouveau flot :

• Exemple complet. Considérons le réseau de transport G suivant :

- Nous avons pour l'instant un flot nul, dont le graphe d'écart correspond : (ci-haut à droite)
- Dans ce graphe d'écart, considérons le chemin $\mu = (s,A,B,t)$:
 - \circ La valuation minimale de ses arcs ε = 12, on va donc augmenter le flot de cette valeur.
 - o Tous les arcs de ce chemin appartiennent bien au réseau donc on y augmente le flot courant

Exemple complet

- Dans ce graphe d'écart, considérons maintenant le chemin μ = (s,C,D,t).
- La valuation minimale de ses arcs ε = 4, on va donc augmenter le flot de cette valeur.
- · Tous les arcs de ce chemin appartiennent bien au réseau donc on y augmente le flot courant

• Exemple complet. Màj du graphe d'écart :

$$\circ \mu = (s,C,D,B,t).$$

 \circ La valuation minimale de ses arcs $\varepsilon = 7$

• Exemple complet. Màj du graphe d'écart :

Exemple complet.

o Il n'y a plus de chemins allant de la source vers le puits dans le graphe

d'écart, le flot courant est donc maximal:

o La valeur du flot maximal est ainsi de 23.

• Exercice. Considérons le réseau de transport suivant :

· Appliquer l'algorithme de Ford et Fulkerson à ce graphe.

• Correction Exercice. Considérons le réseau de transport suivant :

Méthode des coupes

- Énumération des coupes:
 - Une coupe est une <u>partition</u> de l'ensemble des sommets du réseau X en 2 parties {S, T}, l'une contient la source et l'autre contient le puits.
 - La capacité C(S,T) d'une coupe est la somme des capacités des arcs de S à T: C(S,T) = $\sum_{u \in S, v \in T} c(u,v)$
 - Une coupe définit un ensemble d'arcs qui, s'ils sont supprimés du réseau, cela entraînera une interruption totale de la circulation entre les noeuds d'entrée (source) et de sortie (puits).
 - Parmi toutes les coupes possibles dans le réseau, la coupe de <u>plus petite</u>
 <u>capacité</u> donne le débit maximal dans le réseau.

Méthode des coupes

- Pour déterminer le flot maximal, il est nécessaire d'énumérer toutes les coupes, puis choisir la coupe de <u>capacité minimale</u>; (voir diapo suivant)
- · Une tâche ordinairement difficile pour le réseau général.
 - Nécessité d'un algorithme efficace.

Méthode des coupes

S	Т	Arcs Associés	Capacité
Α	B,C,D,E	(AB)(AC)(AD)	20 + 30 + 10 = 60
A,B	C,D,E	(AC)(AD)(BC)(BE)	30 + 10 + 40 + 30 = 110
A,C	B,D,E	(AB)(AD)(CD)(CE)	20 + 10 + 10 + 20 = 60
A,D	B,C,E	(AB)(AC)(DE)	20 + 30 + 20 = 70
A,B,C	D,E	(AD)(BE)(CD)(CE)	10 + 30 + 10 + 20 = 70
A,B,D	C,E	(AC)(BC)(BE)(DE)	30 + 40 + 30 + 20 = 120
A,C,D	B,E	(AB)(CE)(DE)	20 + 20 + 20 = 60
A,B,C,D	Е	(BE)(CE)(DE)	30 + 20 + 20 = 70

☐ Flot Optimal du réseau = Capacité minimal de toutes les coupes : 60

04/01/2023 20:48 Intro à la TG : Chap 6 :: Flot Maximum 34

TD 5 Ex 1

• Soit le réseau, valué par les capacités de ses arcs, donné par le croquis

suivant:

• Déterminer un flot maximal sur ce réseau de transport.

TD 5 Ex 2

· Soit le réseau, valué par les capacités de ses arcs, donné par le croquis

suivant:

• Déterminer un flot maximal sur ce réseau de transport.

TD 5 Ex 3

• Utiliser la méthode des coupes pour déterminer toutes les coupes possibles

du réseau RF.

• En déduire le flot maximal du réseau RF