

Naïve Bayes Classifier

Ratchainant Thammasudjarit, Ph.D.

Bayes Theorem

Priors, Likelihood, Marginal, and Posterior

 Let A and B be random variables. Bayes' theorem is defined as follows

Likelihood (we can observe)

Posterior (we want to estimate)
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
 Prior (we know it)

Prior (we know it)

Marginal (we can either directly observe or do some math)

Alternative Form of Bayes' Theorem

Dealing with marginal

From the probability theory

$$P(X) = P(X \cap Y) + P(X \cap Y')$$
$$= P(X,Y) + P(X,\sim Y)$$
Eq.1

$$P(X|Y) = \frac{P(X,Y)}{P(Y)}$$
 Eq.2

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
$$= \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}$$

Hence

Applications of Bayes' Theorem to Healthcare

Liver disease

Scenario

Historical data tells that 10% of patients visiting our clinic have liver disease. 7% of patients diagnosed with liver disease, they are alcoholics. 5% of patients according to the test are alcoholics. Finding out the probability of liver disease if a given patient is alcoholics.

Prior: Historical data tells that 10% of patients visiting our clinic have liver disease, P(liver disease) = 0.1

Likelihood: 7% of patients diagnosed with liver disease, they are alcoholics, P(alcoholics | liver disease) = 0.07

Marginal: 5% of patients according to the test are alcoholics, P(alcoholics) = 0.05

Posterior: $P(liver\ disease\ |\ alcoholics) = (0.07 \times 0.1)/0.05 = 0.14$

Assumption of Naïve Bayes

- Recall probability theory
 - Let A and B be random variables
 - Two events *A* and *B* are independent if

$$P(A \cap B) = P(A)P(B)$$

Or eventually

$$P(A|B) = P(A)$$

Assumption of Naïve Bayes

• Definition: Two events A and B are conditionally independent given an event C with P(C)>0 if

$$P(A \cap B|C) = P(A|C)P(B|C)$$

Recall that from the definition of conditional probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Assumption of Naïve Bayes

• if P(B) > 0, by conditioning on C, we obtain

$$P(A|B,C) = \frac{P(A \cap (B \cap C))}{P(B \cap C)}$$
$$= \frac{P(A \cap B \cap C)}{P(B \cap C)} \cdot \frac{P(C)}{P(C)}$$
$$= \frac{P(A \cap B|C)}{P(B|C)}$$

Assumption of Naïve Bayes

• if P(B|C) and $P(C) \neq 0$ and if A and B are conditionally independent given C, we obtain

$$P(A|B,C) = \frac{P(A \cap B|C)}{P(B|C)}$$
$$= \frac{P(A|C)P(B|C)}{P(B|C)}$$
$$= P(A|C)$$

Translation:

Knowing prior B does not improve posterior of A given C

Example: Lung Cancer prediction from smoking and sex

 Knowing prior probability of sex does not improve posterior probability of lung cancer given smoking

Model Representation

- Two choices
 - Directed Graph
 - Plate Notations

Directed Graph

Plate Graph

Equation

- Let Y be a set of k class labels, $Y = \{y_1, y_2 ... y_k\}$ and x_j be any possible value of X_j , $1 \le j \le M$
- For each class label i that $1 \le i \le k$, Naïve Bayes Model is defined as follows

$$P(y_i|x_1, x_2, ..., x_M) = \frac{P(x_1, x_2, ..., x_M|y_i)P(y_i)}{P(x_1, x_2, ..., x_M)}$$

$$\propto P(x_1, x_2, \dots, x_M | y_i) P(y_i)$$

Assuming $X_1, X_2, ..., X_M$ are conditionally independence given Y

$$P(x_1, x_2, ..., x_M | y_i) = P(x_1 | y_i) P(x_2 | y_i) ... P(x_M | y_i)$$

$$P(y_i|x, x_2, ..., x_M) \propto P(y_i) \prod_{j=1}^{M} P(x_j|y_i)$$

MLE Inference

 From training data N × M, the maximum likelihood estimator for Naïve Bayes model is defined as follows

$$\hat{y}_i = \arg\max_{y_i \in Y} \prod_{j=1}^M P(x_j | y_i)$$

Apply logarithmic function to avoid overflow problem

$$\hat{y}_i \approx \arg\max_{y_i \in Y} \log \prod_{j=1}^{M} P(x_j | y_i)$$

 $\approx \arg\max_{y_i \in Y} \sum_{j=1}^{M} \log P(x_j | y_i)$

Or a convenience form

$$\hat{y} \approx \arg\max_{y \in Y} \sum_{j} \log P(x_j|y)$$

MAP Inference

 From training data N × M, the Maximum A-Posteriori estimator for Naïve Bayes model is defined as follows

$$\hat{y}_{i} = \arg \max_{y_{i} \in Y} \prod_{j=1}^{M} P(y_{i}|x_{j})$$

$$\approx \arg \max_{y_{i} \in Y} \prod_{j=1}^{M} P(x_{j}|y_{i}) P(y_{i})$$

$$\approx \arg \max_{y_{i} \in Y} P(y_{i}) \prod_{j=1}^{M} P(x_{j}|y_{i})$$

$$\approx \arg \max_{y_{i} \in Y} \log \left(P(y_{i}) \prod_{j=1}^{M} P(x_{j}|y_{i}) \right)$$

MLE VS MAP

Prior

Use MAP when prior is taking into account

$$\hat{y}_i \approx \arg\max_{y \in Y} \sum_j \log P(x_j|y)$$

$$\hat{y}_i \approx \arg\max_{y_i \in Y} \log \left(P(y_i) \prod_{j=1}^{M} P(x_j | y_i) \right)$$

MLE

MAP

Diabetes Prediction

- From training data, the model is designed as follows
- Model parameters are
- $P(S \mid D)$
- $\bullet \quad P(B \mid D)$
- P(D)

Blood Pressure (B)	Sex (S)	Diabetes (D)
normal	male	no
low	female	no
high	male	yes
normal	female	yes
normal	male	no
low	female	no
high	male	yes

 $B = \{low, normal, high\}$

Learning

- Step 1: Create frequency tables
 - #S
 - #S,D
 - #B,D

D	#
yes	3
no	4

S	D	#
male	yes	2
male	no	2
female	yes	1
female	no	2

В	D	#
low	yes	0
low	no	2
normal	yes	1
normal	no	2
high	yes	2
high	no	0

Learning

• Step 2: Initialize the joint probability tables

D	$P(\mathbf{D})$
yes	3/7
no	4/7

S	D	P(S,D)
male	yes	2/7
male	no	2/7
female	yes	1/7
female	no	2/7

В	D	P(B,D)
low	yes	0/7
low	no	2/7
normal	yes	1/7
normal	no	2/7
high	yes	2/7
high	no	0/7

Zero probability is undesirable. Smoothing probability will be applied to the last table (B,D)

Learning

- Step 2.1: Smoothing probability
 - $\alpha = 0.1$

D	P (D)
yes	3/7
no	4/7

S	D	P (S,D)
male	yes	2/7
male	no	2/7
female	yes	1/7
female	no	2/7

В	D	$P_{smooth}(B,D)$
low	yes	0.0132
low	no	0.2763
normal	yes	0.1447
normal	no	0.2763
high	yes	0.2763
high	no	0.0132

Learning

Step 3: Calculate the conditional probability table

• P(S|D)

D	$P(\mathbf{D})$
yes	3/7
no	4/7

S	D	P(S,D)
male	yes	2/7
male	no	2/7
female	yes	1/7
female	no	2/7

S	D	P(S D)
male	yes	$(2/7) \div (3/7) = 2/3$
male	no	$(2/7) \div (4/7) = 1/2$
female	yes	$(1/7) \div (3/7) = 1/3$
female	no	$(2/7) \div (4/7) = 1/2$

Learning

- Step 3: Calculate the conditional probability table
 - P(B|D)

D	$P(\mathbf{D})$
yes	3/7
no	4/7

В	D	$P_{smooth}(B,D)$	В	D	P(B D)
low	yes	0.0132	low	yes	$0.0132 \div (3/7) = 0.6447$
low	no	0.2763	low	no	$0.2763 \div (4/7) = 0.2533$
normal	yes	0.1447	normal	yes	$0.1447 \div (3/7) = 0.0307$
normal	no	0.2763	normal	no	$0.2763 \div (4/7) = 0.4836$
high	yes	0.2763	high	yes	$0.2763 \div (3/7) = 0.6447$
high	no	0.0132	high	no	$0.0132 \div (4/7) = 0.0230$

Your model

S	D	P(S D)
male	yes	0.6666
male	no	0.5000
female	yes	0.3333
female	no	0.5000

 В	D	P(B D)
low	yes	0.6447
low	no	0.2533
normal	yes	0.0307
normal	no	0.4836
high	yes	0.6447
high	no	0.0230

D	$P(\mathbf{D})$
yes	0.4286
no	0.5714

Note: In practice, for fast learning, model parameters are stored in the form of joint probability. Such parameters will be transform to conditional probability before inference.

\overline{S}	D	P(S D)
male	yes	0.6666
male	no	0.5000
female	yes	0.3333
female	no	0.5000

В	D	P(B D)
low	yes	0.6447
low	no	0.2533
normal	yes	0.0307
normal	no	0.4836
high	yes	0.6447
high	no	0.0230

 Given a patient is male and has high blood pressure, what is the conclusions for his diabetes?

D	<i>P</i> (D)
yes	0.4286
no	0.5714

$$\log P(male|yes) + \log P(high|yes) = \log 0.6666 + \log 0.6447 = -0.8445$$

$$\log P(male|no) + \log P(high|no) = \log 0.5000 + \log 0.0230 = -4.4654$$

With MLE inference, this patient is likely to have diabetes

Coding Practice