Grundbegriffe der Informatik Aufgabenblatt 6

Matr.nr.:		
Nachname:		
Vorname:		
Tutorium:	Nr.	Name des Tutors:
Ausgabe:	27. November 2013	
Abgabe: 6. Dezember 2013, 12:30 Uhr im GBI-Briefkasten im Untergeschoss von Gebäude 50.34 Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift,		
 mit dieser Seite als Deckblatt und in der oberen linken Ecke zusammengetackert 		
abgegeben werden.		
Vom Tutor auszufüllen:		
erreichte Punkte		
Blatt 6:	/ 20	0
Blätter 1 – 6:	/ 11:	2

Aufgabe 6.1 (2+3+2=7 Punkte)

In dieser Aufgabe geht es um die Zahlendarstellung mit Hilfe der Ziffern aus dem Alphabet $Z = \{1,0,1\}$ mit den Wertigkeiten

- $\operatorname{num}(\mathfrak{I}) = -1$, $\operatorname{num}(\mathfrak{0}) = 0$, $\operatorname{num}(\mathfrak{1}) = 1$ und den Festlegungen
- $\operatorname{Num}(\varepsilon) = 0$ und $\forall w \in Z^* \ \forall x \in Z \colon \operatorname{Num}(wx) = 3 \cdot \operatorname{Num}(w) + \operatorname{num}(x)$ Auf den Vorlesungsfolien wurde die "schriftliche Addition" zweier solcher Zahlen etwas ungenau vorgeführt.

Gegeben sei die Funktion $\bar{S}: Z^3 \to M$ mit $M = \{-3, -2, -1, 0, 1, 2, 3\}$ und $\bar{S}(a, b, c) = \text{num}(a) + \text{num}(b) + \text{num}(c)$ für alle $a, b, c \in Z$.

a) Geben Sie die Wertetabellen für zwei Funktionen $S' : M \to Z$ und $C' : M \to Z$, so dass für die Funktionen $S = S' \circ \bar{S}$ und $C = C' \circ \bar{S}$ beim schriftlichen Addieren gilt: Stelle Stelle

$$p-1$$
 p a_p b_p $C(a_p,b_p,c_p)$ c_p $\mathbf{S}(a_p,b_p,c_p)$

Dabei sind a_p und b_p die beiden mit dem Übertrag c_p von der nächsten Stelle weiter rechts zu addierenden Ziffern, $\mathbf{S}(a_p,b_p,c_p)$ die Ziffer, die man unter den Strich schreibt, und $\mathbf{C}(a_p,b_p,c_p)$ ist der Übertrag für die nächste Stelle weiter links.

Wir nehmen nun an, dass x und y zwei Wörter *gleicher Länge* n seien. Gehen Sie davon aus, dass die ersten Ziffern von x und y 0 sind, also $x, y \in \{0\} \cdot Z^{n-1}$. Fassen Sie x und y wie am Anfang der Vorlesung als Abbildungen mit Definitionsbereich \mathbb{G}_n auf. Dann ist zum Beispiel x(0) das erste Symbol links in x und y(n-1) das letzte Symbol rechts in y.

b) Ergänzen Sie die Lücken im folgenden Algorithmus so, dass am Ende im Wort $z \in Z^*$ die eine Repräsentation der Zahl $\operatorname{Num}(x) + \operatorname{Num}(y)$ steht. Benutzen Sie die Funktionen **S** und **C** aus Teilaufgabe a).

c) Warum wurde vorausgesetzt, dass *x* und *y* mit einer führenden 0 beginnen? Welche Anweisung muss man nach Ende der Schleife ergänzen, damit diese Voraussetzung nicht mehr nötig ist?

Aufgabe 6.2 (5 Punkte)

Es sei $h: A^* \to B^*$ ein Homomorphismus. Beweisen Sie

$$\forall w_1 \in A^* : \forall w_2 \in A^* : h(w_1 w_2) = h(w_1)h(w_2)$$

Hinweis: vollständige Induktion über die Länge von w_2 .

Aufgabe 6.3 (4 Punkte)

Es sei A das Alphabet $A = \{a, b\}$ und $f: A^* \rightarrow A^*$ die Abbildung

$$f(\varepsilon) = \varepsilon$$
$$\forall w \in A^* \ \forall x \in A \colon f(wx) = xf(w)x$$

- a) Ist f surjektiv?
- b) Beweisen Sie Ihre Behauptung aus Teilaufgabe a).
- c) Ist f ein Homomorphismus?
- d) Beweisen Sie Ihre Behauptung aus Teilaufgabe c).

Aufgabe 6.4 (2+2=4 Punkte)

- a) Konstruieren Sie den Huffman-Baum für das Wort w = dadbdadcdadbdad.
- b) Geben Sie an, welche Huffman-Codierungen für die in w vorkommenden Symbole man aus dem Baum in Teilaufgabe a) ablesen kann.