Data Exploration, Cleaning, and Integration for Data Science

AnHai Doan

What We Will Discuss

- What is data science?
- The rise of data science
- Data exploration, cleaning, and integration
 - Addressing the two Vs of Big Data: variety and veracity
- Why do you need these even if you don't do data science
- Course coverage, goals, syllabus
- What you should do in the next few weeks

What Is Data Science?

- No one really knows
 - the field has not been around long enough so that people converge to a single definition
- There is a popular joke about this
- Our definition: data science is a new interdisciplinary field that develops principles, algorithms, and best practices to manage data, focusing on
 - Infer insights from raw data (the raw data to insight pipeline)
 - Build data driven artifacts (e.g., knowledge graphs, recommender systems)
 - Design data driven experiments to answer questions
- The field draws on CS, stat, math, operation research, optimization, information science, etc.
- This is a broad definition encompassing most current definitions
 - DS definition may still change in the future
 - But this concrete definition will be sufficient for us to get started

The Raw Data to Insight Pipeline

Sales Department 2015 Sales

prod	ghy	date	store
cheese	20	3	15
milk	16	8	4
cheese	106		17
cheese	8	6	1

Facilities Department

2015 Stores

	The state of the s
sid	state
14	[WI
5	CA
6	AZ
17	AZ
	1

raw data

> acquire > clean > match > integrate >

prod	gby 1	state	
1	20	CA	
cheese	16	WI	1
cheese	18	IW	1
cheese	106	AZ	1
cheese		A2	
-			_

data preparation (data wrangling)

2 raw data state analysis cheese 20 CA CA 20 cheese 18 WI -> insight cheese WI 16 nilk acquire -> clean -> match -> integrate -> cheese 114 AZ IW 18 cheese AZ 106 cheese AZ 8 cheese CA WI AZ data analysis

data preparation (data wrangling)

Another Example

The raw data to insight pipeline

is there any correlation between location and revenue?

Data hanalysis

id	name	loc
x ₁	Apple	CA
X ₂	IBM	NY

id	cname address		rev
y ₁	IBM Corp	CA	25
y ₂	Apple Inc	CA	51
y ₃	GE	NY	351

id	name	loc
x ₁	Apple	CA
x ₂	IBM	NY

id	cname	address	rev
y ₁	IBM Corp	CA	25
y ₂	Apple Inc	CA	51
y ₃	GE	NY	351

data cleaning: GE revenue: 351 → 35.1

schema matching: name = cname

loc = address

X(name, loc) schema merging:

Y(cname, address, rev) Z(name, loc, rev)

data matching:

xid	yid
x ₁	y ₂
\mathbf{x}_2	y ₁

data merging: for name, return the longer string from X.name and Y.cname

for loc, return X.loc

schema mapping: Z = select merge_name(X.name, Y.cname), X.loc, Y.rev

from X, Y, M

where X.id = M.xid and Y.id = M.yid

X

id	nam e	loc
x ₁	Apple	CA
x ₂	IBM	NY

Y

id	cname	addres s	rev
y ₁	IBM Corp	CA	25
y ₂	Apple Inc	CA	51
y ₃	GE	NY	351

Z

name	loc	rev
Apple Inc	CA	51
IBM Corp	NY	25

Building Data Driven Artifacts

Data warehouse

Fact Table Sales Dimension Measurement tid pid lid qty attributes attributes 3 t_1 p_1 4 I_2 p_1 6 t_2 p_2

Dimension Tables -

_	٠			
- 1	ı	m	OC	
- 10			23	

tid	day	quarter	year
t ₁	3	1	2016
t ₂	10	2	2016

Products

pid	name	color	brand
p ₁	TV	black	Sony
p ₂	Phone	white	LG

Locations

lid	city	state	country	
l,	Madison	WI	USA	
l ₂	Milwaukee	WI	USA	
l ₃	San Jose	CA	USA	
l ₄	Toronto	ON	Canada	

Building Data Driven Artifacts

What Happens in the Backend?

Building Data Driven Artifacts

What Happens in the Backend?

What Kinds of Data-Driven Artifacts?

- We have discussed data warehouses, knowledge graphs, and recommender systems
- Would a relational database fit here? After all, it is also a data-driven artifact
- DS focuses on data-driven artifacts that can be used to infer insights or provide more semantic information (in the "discover something new" sense)
 - For example, a data warehouse is used to infer insights (aka actionable knowledge)
 - A knowledge graph can be used to provide more semantic information to a search query; it can also be used to help the process of inferring insights from raw data
 - A recommender system offers insights about what kinds of book (say) you may be interested in
 - A relational database, in contrast, is typically used for querying and manage user transactions.

Design Data Driven Experiments

For example A/B testing

Problem

- Have two new ads A and B, don't know which one would be better, i.e., users would be more likely to click on
- Show A to a fraction of incoming user traffic, show B to a fraction of incoming user traffic
- Collect data, use statistical analysis to decide if the difference in user reactions to A and B is statistically significant

Example

- If 990 out of 1000 users who view A click on the ad, while only 10 out of 1000 users who view B click on the ad → A is better
- If 200 out of 1000 and 180 out of 1000?
- If 200 out of 1000 and 150 out of 1000?
- The previous two directions deal with existing data, here we generate data

The Rise of Data Science

RDBMSs

- transactional data management, belong to the CIO, no one else cares about data
- Data is not at the heart of the enterprise
- Web => Google, other Web companies
- Social media: Twitter, Facebook, blogs, ...
- Cloud computing (e.g., at Amazon), crowdsourcing (Wikipedia, Mturk)

In recent years three trends emerged

- much easier to generate and capture data
- much easier to process data (eg using open source software, cloud computing)
- many more people become involved (e.g., Wikipedia, Facebook face tagging)

Lead to a major change in perception the Big Data trend

- data is now at the heart of enterprises, at the heart of everything
- people want to capture as much data as possible, process it, infer insights
- Everything is becoming increasingly data driven
- Data science emerged to respond to this need

How is DS Different From ...

RDBMSs

- Is concerned with tabular data
- A major focus is on transaction processing
- Not concerned with the three tasks that we discussed
- But they are often used to store and query tabular data

• Machine learning, visualization, optimization, etc

these are the techniques that DS often use

Big Data

Two meanings: (a) the Big Data phenomenon, (b) systems that can process large amounts of data

Data mining

- Historically is concerned with the first task: infer insights from raw data
- Can be viewed as "subsumed" or "being continued" by data science (a controversial point)

Statistics

- Historically is concerned with (a) infer properties of a whole population based on those of a sample,
 and (b) design data intensive experiments to answer questions
- But typically has not been concerned with a very large volume of data, has not been concerned with data wrangling
- Typically does not deal with "existing" data

All of the above are necessary for data science

Data Exploration, Cleaning, and Integration

- When doing DS, users often must do data exploration, cleaning, integration
- Examples
- Often take an enormous amount of time
 - often quoted number is 80%
- These activities have been studied for 40+ years
- The field is known under many names
 - data integration, data wrangling, data preparation, data curation, etc.
 - I have been working on it for 20+ years
- It is becoming increasingly critical
 - initially, a lot of work in DS focus on the analysis step
 - now people increasingly realize that "garbage data in, garbage results out"
 - so a lot of work is increasingly devoted to this field
- This course covers this field
 - we say data exploration, cleaning, integration
 - but we do refer to the entire field

Data Exploration, Cleaning, and Integration

- Solving these problems often requires multiple techniques
 - databases, ML, big data scaling (e.g., Spark), effective user interaction, crowdsourcing, etc.

What We Will Discuss

- What is data science?
- The rise of data science
- Data exploration, cleaning, and integration
 - Addressing the two Vs of Big Data: variety and veracity
- Why do you need these even if you don't do data science
- Course coverage, goals, syllabus
- What you should do in the next few weeks

Why Do You Need These Even without DS?

- Data used to be isolated in a corner of a company
- Now data is at the heart of a company
 - Treated as a major asset → Big Data
 - What other assets companies have? Human resources, tech know-how, products, etc.
- When dealing with data, what are major challenges?
 - Volume, velocity → CS 544, CS 744
 - Variety, veracity → this course
- Variety and veracity challenges come up even if you don't do DS
 - If the company is moderately large, you WILL have these challenges
 - E.g., moving/integrating data between Canvas and Gradescope

Course Syllabus and Misc Issues

Let's discuss class homepage in Canvas

- You should start learning
 - Python, pandas, machine learning, scikit-learn
- Start thinking about project teams