Lecture 22 – November 30, 2004

Prof. Victor Kač Scribes: Genya Zaytman and Yaim Cooper

Definition. An enveloping algebra of a Lie algebra \mathfrak{g} is a pair (U, φ) where U is a unital associative algebra and φ is a Lie algebra homomorphism $\mathfrak{g} \to U_-$ (where U_- denotes the Lie algebra structure on U given by [a, b] = ab - ba).

Example. Given a representation $\varphi : \mathfrak{g} \to \text{End } V = U$, we have an enveloping algebra (U, φ) of \mathfrak{g} .

Definition. The universal enveloping algebra of \mathfrak{g} is an enveloping algebra $(U(\mathfrak{g}), \varphi)$ which is universal in the sense that for any other enveloping algebra (U, φ) , there is a unique associative algebra homomorphism $\pi: U(\mathfrak{g}) \to U$, which makes the following diagram commute: (with respect to Lie algebra homomorphisms)

$$\mathfrak{g} \xrightarrow{\psi} U(\mathfrak{g})_{-}$$

$$U(\mathfrak{g})_{-}$$

Theorem. For any Lie algebra \mathfrak{g} , a universal enveloping algebra exists and is unique.

Proof. 1. Uniqueness: Suppose there are two universal enveloping algebras, $U(\mathfrak{g})_-$ and $U'(\mathfrak{g})_-$.

$$\mathfrak{g} \xrightarrow{\psi} U(\mathfrak{g})_{-}$$

$$U(\mathfrak{g})'_{-}$$

But then $\pi \circ \pi' : U(\mathfrak{g}) \to U(\mathfrak{g})$, and also $\pi' \circ \pi : U'(\mathfrak{g}) \to U'(\mathfrak{g})$.

But

is a commuting diagram.

By uniqueness, we see that $\pi \circ \pi' = 1$, and by symmetry, $\pi' \circ \pi = 1$.

Existence: Let a_i be a basis for \mathfrak{g} . Let $U(\mathfrak{g})$ be a unital associative algebra generated by a_i , with relations $a_i a_j - a_j a_i = [a_i, a_j]$. Let $\varphi(a_i) = a_i$.

Since we divided by the above relations, φ is a Lie algebra homomorphism. So, this is an enveloping algebra.

It is universal because:

$$\mathfrak{g} \xrightarrow{\psi} U(\mathfrak{g})_{-}$$

$$U(\mathfrak{g})_{-}$$

This diagram commutes if we let $\pi(a_{i_1}...a_{i_s}) = \varphi(a_{i_1})...\varphi(a_{i_s})$.

Poincare-Birkhoff-Witt Theorem. The monomials $a_{i_1}...a_{i_s}$ with $i_1 \leq i_2 \leq ...i_s$ form a basis of $U(\mathfrak{g})$. In particular, $\psi : \mathfrak{g} \to U(\mathfrak{g})_-$ is an embedding.

Proof. I) These monomials span $U(\mathfrak{g})$. Of course, the unordered monomials $a_{j_1}...a_{j_s}$ span $U(\mathfrak{g})$. We prove by induction on (s, number of inversions) that using relations $[a_i, a_j] = a_i a_j - a_j a_i$, we can bring this monomial to a linear combination of ordered monomials. If $...a_{j_t}a_{j_{t+1}}...$ with $j_t > j_t + 1$, we replace $a_{j_t}a_{j_{t+1}}$ with $[a_{j_t}, a_{j_{t+1}}] + a_{j_{t+1}}a_{j_t}$, (where $[a_{j_t}, a_{j_{t+1}}]$ is a linear combination of the generators a_i). We get a sum of monomials, where the number of factors is less than s in all but the last one, and in that one, the number of inversions drops by 1. Thus we can apply the inductive assumption.

II) Let \mathfrak{B}_n be the free vector space on generators $u_{i_1}...u_{i_n}$, $i_1 \leq i_2... \leq i_n$. Let $\mathfrak{B} = 1 \oplus \mathfrak{B}_1 \oplus \mathfrak{B}_2 \cdots$. We will show that there is a linear map $\sigma : U(\mathfrak{g}) \to \mathfrak{B}$ such that the image of the ordered monomials under σ is linearly independent, which will complete the theorem.

Let us define σ by

$$\sigma(1) = 1, \sigma(a_{i_1} \cdots a_{i_n}) = u_{i_1} \cdots u_{i_n} \text{ if } i_1 \le \cdots \le i_n.$$

$$\tag{1}$$

Finally, we want to have

$$\sigma(a_{j_1} \cdots a_{j_n} - a_{j_1} \cdots a_{j_{k+1}} a_{j_k} \cdots a_{j_n}) = \sigma(a_{j_1} \cdots [a_{j_k}, a_{j_{k+1}}] \cdots a_{j_n}). \tag{2}$$

To show that such a linear map exists, we assume it has been defined for all monomials of degree less than or equal to n-1 in $U(\mathfrak{g})$, and show that it can be extended to a map on all monomials of degree less than or equal to n in $U(\mathfrak{g})$. So, assuming σ has been defined for all monomials of degree less than or equal to n-1 in $U(\mathfrak{g})$, if $a_{i_1} \cdots a_{i_n}$ is an ordered monomial, let $\sigma(a_{i_1} \cdots a_{i_n}) = u_{i_1} \cdots u_{i_n}$.

If $a_{i_1} \cdots a_{i_n}$ is not ordered, suppose $j_k > j_{k+1}$. Then set

$$\sigma(a_{j_1} \cdots a_{j_n}) = \sigma(a_{j_1} \cdots a_{j_{k+1}} a_{j_k} \cdots a_{j_n}) + \sigma(a_{j_1} \cdots [a_{j_k}, a_{j_{k+1}}] \cdots a_{j_n}). \tag{3}$$

We must check that this map is well defined, in that its independent of the choice of the pair (j_k, j_{k+1}) . Suppose (j_l, j_{l+1}) is another pair with $j_l > j_{l+1}$. There are two cases: 1) l > k+1 and 2) l = k+1.

1) Set $a_{j_k} = u$, $a_{j_{k+1}} = v$, $a_{j_l} = w$, $a_{j_{l+1}} = x$. Then the induction hypothesis permits us to write for the right hand side of (3)

$$\sigma(\cdots vu \cdots xw \cdots) + \sigma(\cdots vu \dots [wx] \cdots) + \sigma(\cdots [uv] \dots xw \cdots) + \sigma(\cdots [uv] \dots [wx] \cdots)$$
(4)

If we start with (j_l, j_{l+1}) , we obtain

$$\sigma(\cdots uv \cdots xw \cdots) + \sigma(\cdots uv \dots [wx] \cdots) = \sigma(\cdots vu \dots xw \cdots) + \\ + \sigma(\cdots [uv] \dots xw \cdots) + \sigma(\cdots vu \cdots [wx] \cdots) + \sigma(\cdots [uv] \dots [wx] \cdots)$$
(5)

This is the same as the value obtained before.

2) Set $a_{j_k} = u, a_{j_{k+1}} = v, a_{j_{l+1}} = w$. Using the induction hypothesis, the right hand side of (3) becomes

$$\sigma(\cdots wvu\cdots) + \sigma(\cdots [vw]u\cdots) + \sigma(\cdots v[uw]\cdots) + \sigma(\cdots [uv]w\cdots)$$
(6)

Similarly, if we start with $\sigma(\cdots wvu\cdots) + \sigma(\cdots u[vw])$, we can wind up with

$$\sigma(\cdots wvu\cdots) + \sigma(\cdots w[uv]\cdots) + \sigma(\cdots [uw]v\cdots) + \sigma(\cdots u[vw]\cdots)$$
 (7)

So we must show that σ applied to

$$(\cdots [vw]u\cdots) - (\cdots u[vw]\cdots) + (\cdots v[uw]\cdots) - \\ - (\cdots [uw]v\cdots) + (\cdots [uv]w\cdots) - (\cdots w[uv]\cdots), \quad (8)$$

a monomial of degree less than or equal to n-1, gives 0.

But from the properties of σ on all monomials of degree less than or equal to n-1 in $U(\mathfrak{g})$, if $(\cdots xy \cdots)$ is a monomial of degree less than or equal to n-1,

$$\sigma(\cdots xy\cdots) - \sigma(\cdots yx\cdots) - \sigma(\cdots [xy]\cdots) = 0. \tag{9}$$

Hence σ applied to (8) gives

$$(\cdots [[vw]u]\cdots) + (\cdots [v[uw]]\cdots) + (\cdots [[uv]w]\cdots)$$

$$(10)$$

which is zero by the Jacobi identity and linearity of σ . Thus σ is well defined on monomials of degree less than or equal to n, as well, and we extend σ linearly to the space spanned by all monomials of degree less than or equal to n in $U(\mathfrak{g})$. In this way, σ is defined on all of $U(\mathfrak{g})$, and clearly, the image of the ordered monomials in $U(\mathfrak{g})$ is linearly independent in \mathfrak{B} , as they are in bijection with the generators of \mathfrak{B} . Thus the proof is completed.

Remark. Any representation π of a Lie algebra \mathfrak{g} in a vector space V extends to a representation of $U(\mathfrak{g}) \to \text{End } V$ (as associative algebras).

Definition. Given a representation π of \mathfrak{g} over V, V can be considered a \mathfrak{g} -module by defining a binary product $\mathfrak{g} \times V$ into V mapping $g \cdot v$ to $\pi(\mathfrak{g})v$. Thus the defining property of a \mathfrak{g} -module is: [a,b]v = abv - bav. By a homomorphism of \mathfrak{g} -modules we mean a linear map $\varphi: V_1 \to V_2$ such that $\varphi(gv) = g\varphi(v)$. An isomorphism is a homomorphism φ which is bijective.

Let \mathfrak{g} be a finite dimensional Lie algebra with a fixed non-degenerate invariant symmetric bilinear form (.,.). Chose a basis u_i of \mathfrak{g} and let v_i be the dual basis, which means $(u_i, v_j) = \delta_{ij}$.

Definition. The Casimir operator $\Omega = \sum_i u_i v_i \in U(\mathfrak{g})$.

Exercise 22.1. Ω is independent of the choice of the basis u_i .

Solution. Take another basis u_i' with dual basis v_i' . Since u_i was a basis, we can write $u_i' = \sum_i a_{ij} u_j$. In this basis, $\Omega' = \sum_i u_i' v_i'$.

Note that by definition, $(u_i', v_k') = \delta_{ij} = (\sum_j a_{ij} u_j, v_k') = \sum_j (a_{ij})(u_j, v_k')$. Let the matrix $A = \langle a_{ij} \rangle$, and $B = \langle (u_j, v_k') \rangle$. Clearly, AB = I. Now consider $I = BA = \sum_k (u_j, v_k') a_{ki}$. This implies that $\sum_k (u_j v_k') a_{ki} = \delta_{ji} = (u_j, \sum_k a_{ki} v_k')$. But since v_i is the unique vector such that $(u_j, v_i) = \delta_{ji}$, it follows that $v_i = \sum_k a_{ki} v_k'$.

Finally, $\Omega' = \sum_i u_i' v_i' = \sum_i (\sum_j a_{ij} u_j) v_i' = \sum_j \sum_i a_{ij} v_i' u_j$. By the result of the previous paragraph, this equals $\sum_j v_j u_j$, which gives the desired result, $\Omega' = \sum_i u_i v_i = \Omega$.

Lemma 1. (on dual bases) For $a \in \mathfrak{g}$ write $[a, u_i] = \sum_j a_{ij} u_j$ and $[b, u_i] = \sum_j b_{ij} u_j$. Then $a_{ij} = -b_{ji}$ (under the above assumptions).

Proof. We have: $([a, u_i], v_k) = \sum_j a_{ij}(u_j, v_k) = a_{ik}$ and similarly $([a, v_i], u_k) = b_{ik}$. Hence $a_{ik} = (a, [u_i, v_k])$ and $b_{ik} = (a, [v_i, u_k])$. Therefore $a_{ik} = -b_{ki}$.

Definition. Let V be a \mathfrak{g} -module, where \mathfrak{g} is a Lie algebra. A 1-cocycle is a linear map $\varphi : \mathfrak{g} \mapsto V$ such that $\varphi([a,b]) = a\varphi(b) - b\varphi(a)$. The space of 1-cocycles is denoted $Z(\mathfrak{g},V)$.

Example of a 1-cocycle. The trivial 1-cocycle associated to $v \in V$ is $\varphi_v(a) = a \cdot v$.

Exercise 22.2. Check that φ_v is a 1-cocycle.

Solution.
$$\varphi_v([a,b]) = [a,b]v = a(bv) - b(av) = a\varphi_v(b) - b\varphi_v(a)$$

The trivial 1-cocycles form a subspace $B(\mathfrak{g}, V)$ of $Z(\mathfrak{g}, V)$. Let $H^1(\mathfrak{g}, V) = Z(\mathfrak{g}, V)/B(\mathfrak{g}, V)$.

Main Theorem on Cohomology. If \mathfrak{g} is a semi-simple Lie algebra over an algebraicly closed field of characteristic 0, and V is a finite dimensional \mathfrak{g} -module, then $H^1(\mathfrak{g}, V) = 0$, i.e., every 1-cocycle is trivial.

Exercise 22.3. $H^1(\mathfrak{g}, V_1 \oplus V_2) = H^1(\mathfrak{g}, V_1) \oplus H^1(\mathfrak{g}, V_2)$ where $V_1 \oplus V_2$ denotes the direct sum of \mathfrak{g} -modules V_1 and V_2 .

Solution. First we show that $Z(\mathfrak{g}, V_1 \oplus V_2) = Z(\mathfrak{g}, V_1) \oplus Z(\mathfrak{g}, V_2)$. It is clear that $Z(\mathfrak{g}, V_1 \oplus V_2) \supset Z(\mathfrak{g}, V_1) \oplus Z(\mathfrak{g}, V_2)$. Furthermore, every 1-cocycle $\varphi \in Z(\mathfrak{g}, V_1 \oplus V_2)$ can be decomposed as $\pi_1 \circ \varphi \oplus \pi_2 \circ \varphi \in Z(\mathfrak{g}, V_1) \oplus Z(\mathfrak{g}, V_2)$.

It is also clear that $B(\mathfrak{g}, V_1 \oplus V_2) = B(\mathfrak{g}, V_1) \oplus B(\mathfrak{g}, V_2)$ since $\varphi_{v_1 \oplus v_2} = \varphi_{v_1} \oplus \varphi_{v_2}$.

Therefore
$$H^1(\mathfrak{g}, V_1 \oplus V_2) = Z(\mathfrak{g}, V_1 \oplus V_2)/B(\mathfrak{g}, V_1 \oplus V_2) = Z(\mathfrak{g}, V_1) \oplus Z(\mathfrak{g}, V_2)/B(\mathfrak{g}, V_1) \oplus B(\mathfrak{g}, V_2) = Z(\mathfrak{g}, V_1)/B(\mathfrak{g}, V_1) \oplus Z(\mathfrak{g}, V_2)/B(\mathfrak{g}, V_2) = H^1(\mathfrak{g}, V_1) \oplus H^1(\mathfrak{g}, V_2).$$

Lemma 2. In the situation of lemma 1. Let V be a \mathfrak{g} -module and $\varphi : \mathfrak{g} \mapsto V$ a 1-cocycle. Then for any $a \in \mathfrak{g}$ we have: $a \sum_i u_i \varphi(v_i) = \Omega \varphi(a)$.

$$\begin{array}{ll} \textit{Proof.} \ \ a\sum_{i}u_{i}\varphi(v_{i}) = \sum_{i}[a,u_{i}]\varphi(v_{i}) + \sum_{i}u_{i}a\varphi(v_{i}) = \sum_{i,j}a_{ij}u_{j}\varphi(v_{i}) + \sum_{i}u_{i}a\varphi(v_{i}) = \\ \sum_{j}u_{j}\varphi(\sum_{i}a_{ij}v_{i}) + \sum_{i}u_{i}a\varphi(v_{i}). \ \ \text{Now} \ \sum_{i}a_{ij}v_{i} = -\sum_{i}b_{ji}v_{i} = -[a,v_{i}], \ \text{so} \ \ a\sum_{i}u_{i}\varphi(v_{i}) = \\ -\sum_{j}u_{j}\varphi([a,v_{i}]) + \sum_{j}u_{j}a\varphi(v_{j}) = \sum_{j}u_{j}(a\varphi(v_{j}) - \varphi([a,v_{i}])) = \sum_{j}u_{j}v_{j}\varphi(a) = \Omega\varphi(a). \end{array}$$

Corollary. \mathfrak{g} commutes with Ω , i.e., in any \mathfrak{g} -module $a(\Omega v) = \Omega(av)$ for all $a \in \mathfrak{g}, v \in V$.

Proof. Apply lemma 2 to the trivial cocycle
$$\varphi_v(a) = a \cdot v$$
: $a(\Omega v) = a \sum_i u_i v_i(v) = \Omega(av)$. \square

Proof of the Main Theorem on Cohomology. The proof is by induction on the dimension of the \mathfrak{g} -module V.

First note that we may assume that V is faithful, that is, aV = 0 implies a = 0 for $a \in \mathfrak{g}$. Indeed let $\mathfrak{g}_0 = \{a \in \mathfrak{g} | aV = 0\}$. This is an ideal of \mathfrak{g} . Hence \mathfrak{g}_0 and $\mathfrak{g}/\mathfrak{g}_0$ are again semi-simple Lie algebras. In particular $[\mathfrak{g}_0,\mathfrak{g}_0] = \mathfrak{g}_0$. Let φ be a 1-cocycle of \mathfrak{g} in V, i.e., $\varphi([a,b]) = a\varphi(b) - b\varphi(a)$. If $a,b \in \mathfrak{g}_0$, we get $\varphi([a,b]) = 0$. So $\varphi([\mathfrak{g}_0,\mathfrak{g}_0]) = 0$, therefore $\varphi([a,b]) = 0$. Hence $\varphi: \mathfrak{g}/\mathfrak{g}_0 \mapsto V$, so we may replace \mathfrak{g} by $\mathfrak{g}/\mathfrak{g}_0$.

We want to apply lemma 2.

Take $(a, b) = \operatorname{tr}_V ab$. It is non-degenerate since \mathfrak{g} is semi-simple. Let $\{u_i\}$ be a basis of \mathfrak{g} , $\{v_i\}$ the dual basis, and $\Omega = \sum_i u_i v_i$ the Casmir operator. We decompose $V = V_0 \oplus V_1$, where V_0 is the generalized eigenspace of Ω attached to 0 and V_1 is the sum of all the other generalized eigenspaces. By the corollary V_0 and V_1 are \mathfrak{g} -invariant. So by Exercise 22.3 $H^1(\mathfrak{g}, V) = H^1(\mathfrak{g}, V_0) \oplus H^1(\mathfrak{g}, V_1)$. If V_0 and V_1 are not both zero, by the induction hypothesis $H^1(\mathfrak{g}, V_0) = 0$ and $H^1(\mathfrak{g}, V_1) = 0$ and so $H^1(\mathfrak{g}, V) = 0$. Hence we may assume $V = V_0$ or V_1 .

Case 1: $V = V_1$. So Ω is invertible. Let $v = \sum_i u_i \varphi(v_i)$. Lemma 2 now states that $a(v) = \Omega \varphi(a)$. Hence $\varphi(a) = \Omega^{-1} a(v) = a(\Omega^{-1} v)$. So $\varphi = \varphi_{\Omega^{-1} v}$ is a trivial cocycle.

Case 2: $V = V_0$. So Ω is a nilpotent operator. Hence $\operatorname{tr}_V(\Omega) = 0$, but $\operatorname{tr}_V(\Omega) = \operatorname{tr}_V \sum_i u_i v_i = \sum_i (u_i, v_i) = \dim \mathfrak{g}$. So $\mathfrak{g} = 0$ and $H^1(\mathfrak{g}, V) = 0$.