Classification: Basic Concepts

- Basics
- Decision Tree Classifier
- Rule Based Classifier
- Nearest Neighbor Classifier
- Bayesian Classifier
- Artificial Neural Network Classifier

Issues: Over-fitting, Validation, Model Comparison

Supervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are
 accompanied by labels indicating the class of the observations
 - New data is classified based on the training set

Test Set

Classification vs. Prediction

• Classification:

- predicts categorical class labels
- classifies data (constructs a model) based on the training set and the values
 (class labels) in a classifying attribute and uses it in classifying new data

• Regression:

models continuous-valued functions, i.e., predicts unknown or missing values

Typical Applications

- credit approval
- target marketing
- medical diagnosis
- treatment effectiveness analysis

Why Classification? A motivating application

Credit approval

- A bank wants to classify its customers based on whether they are expected to pay back their approved loans
- The history of past customers is used to train the classifier
- The classifier provides rules, which identify potentially reliable future customers
- Classification rule:
 - If age = "31...40" and income = high then credit_rating = excellent
- Future customers
 - Paul: age = 35, income = high \Rightarrow excellent credit rating
 - John: age = 20, income = medium \Rightarrow fair credit rating

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as
 determined by the class label attribute

- The set of tuples used for model construction: training set

- The model is represented as classification rules, decision trees, or mathematical formulae

Classification Process (1): Model Construction: E.g.

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

Classification—A Two-Step Process

- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test samples is compared with the classified result from the model

• Accuracy rate is the percentage of test set samples that are correctly classified by the model

$$Accuracy = \frac{\text{Number of correct classifications}}{\text{Total number of test cases}},$$

• Test set is independent of training set, otherwise over-fitting will occur

Classification Process (2): Use the Model in Prediction

Classification by Decision Tree Induction

Decision tree

- A flow-chart-like tree structure
- Internal node denotes a test on an attribute
- Branch represents an outcome of the test
- Leaf nodes represent class labels or class distribution

Classification by Decision Tree Induction

- Decision tree generation consists of two phases
 - Tree construction
 - At start, all the training examples are at the root
 - Partition examples recursively based on selected attributes
 - Tree pruning
 - Identify and remove branches that reflect noise or outliers
- Use of decision tree: Classifying an unknown sample
 - Test the attribute values of the sample against the decision tree

Example of a Decision Tree

categorical continuous

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Start from the root of tree.

Home Owner			Defaulted Borrower	
No	Married	80K	?	

Decision Tree Classification Task

Test Set

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Samples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Algorithm for Decision Tree Induction (pseudocode)

Algorithm GenDecTree(Sample S, Attlist A)

- create a node N
- 2. If all samples are of the same class C then label N with C; terminate;
- 3. If A is empty then label N with the most common class C in S (majority voting); terminate;
- 4. Select $a \in A$, with the highest information gain; Label N with a;
- 5. For each value v of a:
 - a. Grow a branch from N with condition a=v;
 - b. Let S_v be the subset of samples in S with a=v;
 - c. If S_v is empty then attach a leaf labeled with the most common class in S;
 - d. Else attach the node generated by GenDecTree(S_v, A-a)

Attribute Selection Measure: Information Gain (ID3)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D (data set) belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

Information needed (after using A to split D into v partitions) to classify D: $\sum_{i=0}^{v} |D_{i}|_{i=1}^{v} |D_{i}|_$

$$Info_{A}(D) = \sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times I(D_{j})$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Input: Training Dataset

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Output: A Decision Tree for "buys_computer"

Attribute Selection: Information Gain

$$\frac{5}{14}I(2,3)$$
 means "age <= 30" has 5 out of 14 samples, with 2 ves'es and 3 no's. Hence

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

Info(D) = I(9,5) =	9 10	~ (9)	5	$\frac{5}{2}$	040
Injo(D) = I(9,3) =	10	g ₂ ()-	<u> </u>	$(g_{\gamma}())=0$	1.940
	14	14	14	14	

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit_rating) = 0.048$$

Splitting the samples using age

• Because age has the highest information gain among the attributes, it is selected as the splitting attribute

Over-fitting and Tree Pruning

- Over-fitting: An induced tree may over-fit the training data
 - Good accuracy on training data but poor on test data
 - Symptoms: Too many branches, some may reflect anomalies due to noise or outliers
 - Results in Poor accuracy for unseen samples
- Two approaches to avoid over-fitting
 - Pre-pruning: Halt tree construction early—do not split a node if this would result in the goodness measure(Information gain) falling below a threshold
 - Difficult to choose an appropriate threshold
 - Post-pruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Decision Tree Based Classification

Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Robust to noise (especially when methods to avoid over-fitting are employed)
- Can easily handle redundant or irrelevant attributes (unless the attributes are interacting)

Decision Tree Based Classification

Disadvantages:

- Space of possible decision trees is exponentially large. Greedy approaches are often unable to find the best tree.
- Does not take into account interactions between attributes
- Each decision boundary involves only a single attribute

Class work

• Study the table given below and construct a decision tree based on the greedy algorithm using information gain.

ID	Age	Has_Job	Own_House	Credit_Rating	Class
1	young	false	false	fair	No
2	young	false	false	excellent	No
3	young	true	false	good	Yes
4	young	true	true	good	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No

Contd..

We build the final tree

Home work

• Study the table given below and construct a decision tree based on the greedy algorithm using information gain.

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
D1	SUNNY	HOT	HIGH	WEAK	NO
D2	SUNNY	HOT	HIGH	STRONG	NO
D3	OVERCAST	HOT	HIGH	WEAK	YES
D4	RAIN	MILD	HIGH	WEAK	YES
D5	RAIN	COOL	NORMAL	WEAK	YES
D6	RAIN	COOL	NORMAL	STRONG	NO
D7	OVERCAST	COOL	NORMAL	STRONG	YES
D8	SUNNY	MILD	HIGH	WEAK	NO
D9	SUNNY	COOL	NORMAL	WEAK	YES
D10	RAIN	MILD	NORMAL	WEAK	YES
D11	SUNNY	MILD	NORMAL	STRONG	YES
D12	OVERCAST	MILD	HIGH	STRONG	YES
D13	OVERCAST	HOT	NORMAL	WEAK	YES
D14	RAIN	MILD	HIGH	STRONG	NO