Construção de Compiladores 1 - 2015.1 - Prof. Daniel Lucrédio Lista 06 - Análise sintática ascendente LR

1. Dada a gramática

```
S \rightarrow \text{'if'} E \text{'then'} C \mid C

E \rightarrow a

C \rightarrow b
```

a) Construa a tabela SLR

R:

```
Coleção canônica de itens LR(0):  C = \{ \\  10 = \{ [S' \rightarrow . S], [S \rightarrow . 'if' E 'then' C], [S \rightarrow . C], [C \rightarrow . b] \}, \\  11 = \{ [S' \rightarrow S .] \}, \\  12 = \{ [S \rightarrow 'if' . E 'then' C], [E \rightarrow . a] \}, \\  13 = \{ [S \rightarrow C .] \}, \\  14 = \{ [C \rightarrow b .] \}, \\  15 = \{ [S \rightarrow 'if' E . 'then' C] \}, \\  16 = \{ [E \rightarrow a .] \}, \\  17 = \{ [S \rightarrow 'if' E 'then' . C], [C \rightarrow . b] \}, \\  18 = \{ [S \rightarrow 'if' E 'then' C .] \}
```

Função GOTO:

	'if'	'then'	a	b	S	E	С
IO	I2			I4	I1		13
I1							
12			I6			I5	
13							
I4							
15		I7					
16							
17				I4			18
I8							

Conjuntos primeiros e seguidores:

```
primeiros(S') = { 'if',b}
primeiros(S) = { 'if',b}
primeiros(E) = {a}
primeiros(C) = {b}

seguidores(S') = {$}
seguidores(S) = {$}
seguidores(E) = { 'then'}
seguidores(C) = {$}
```

Gramática enumerada:

```
S' → S
```

(3)
$$E \rightarrow a$$

$$(4)$$
 C \rightarrow b

	Ação	Ação	Ação	Ação	Ação	Trans.	Trans.	Trans.
Estados	\if'	`then'	a	b	\$	S	E	С
0	s2			s4		1		3
1					OK			
2			s6				5	
3					r2			
4					r4			
5		s7						
6		r3						
7				s4				8
8					r1			

b) Faça a análise sintática SLR para a cadeia if a then b, preenchendo os valores da pilha, símbolos, cadeia e ação a cada passo

R:

Pilha	Símbolos	Entrada	Ação
0		if a then b \$	s2
0 2	if	a then b \$	s6
0 2 6	if a	then b \$	r3
0 2 5	if E	then b \$	s7
0 2 5 7	if E then	b \$	s4
0 2 5 7 4	if E then b	\$	r4
0 2 5 7 8	if E then C	\$	r1
0 1	S	\$	OK

2. Ordene os três tipos de análise sintática ascendente LR do tipo mais simples e menos poderoso para o mais complexo e mais poderoso, descrevendo brevemente as características de cada um

R:

- 1. SLR(1): análise sintática LR (Left-to-right, Rightmost derivation) simples, que realiza um processo de inferência recursiva para obter derivações mais à direita, lendo a entrada da esquerda para a direita e olhando um caractere à frente durante a análise. Utiliza uma coleção canônica de itens LR(0), ou seja, os itens não consideram um caractere à frente. Por esse motivo, a tabela pode conter um alto número de conflitos empilha-reduz e reduz-reduz, já que alguns itens vão se sobrepor em seus possíveis movimentos.
- 2. LALR(1): similar à SLR(1), porém utiliza uma coleção de itens LR(1), ou seja, os itens consideram um caractere à frente. Sua construção é mais parecida com a técnica LR(1) canônica (descrita a seguir), porém a tabela é otimizada de forma a não ser necessário a construção de todos os itens LR(1) (coleção canônica de itens LR(1)). Assim, ela apresenta menos conflitos que a técnica SLR, ao mesmo tempo que a tabela criada não é tão grande. Além disso, os analisadores LALR(1) se comportam

⁽¹⁾ $S \rightarrow 'if' E 'then' C$

⁽²⁾ S \rightarrow C

exatamente da mesma forma que os analisadores LR(1) (descritos a seguir), quando a entrada é correta. Quando a entrada possui erro sintático, o analisador LALR apenas faz alguns movimentos a mais do que o analisador LR(1). Dessa forma, é a abordagem mais indicada, pois: não gera tantos conflitos quanto a SLR(1); não gera uma tabela grande como a LR(1); e seu comportamento é quase perfeito em termos de reconhecimento de cadeias certas e erradas;

- 3. LR(1) canônica: similar a SLR(1), porém utiliza uma coleção canônica de itens LR(1), que são itens que consideram um caractere à frente. Dessa forma, a tabela de análise não irá prever alguns movimentos impossíveis conforme os próximos caracteres, o que reduz drasticamente a ocorrência de conflitos. O preço pago é o tamanho da tabela, que fica muito grande. No entanto, esse é o analisador LR mais poderoso de todos, capaz de reconhecer mais gramáticas e gerar menos conflitos.
- 3. Dada a gramática e tabela sintática LR a seguir

(1)	E	\rightarrow	E	+	Т
(2)	E	\rightarrow	\mathbf{T}		
(3)	\mathbf{T}	\rightarrow	\mathbf{T}	*	F
(4)	\mathbf{T}	\rightarrow	F		
(5)	F	\rightarrow	(I	٤)	

(6) $F \rightarrow id$

Estados	Ações				Transições				
Estados	id	+	*	()	\$	ш	Т	F
0	s5			s4			1	2	3
1		s6				ОК			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Faça a análise sintática para as seguintes cadeias, preenchendo os valores da pilha, símbolos, cadeia e ação a cada passo:

a) (id)

Pilha	Símbolos	Entrada	Ação
0		(id)\$	s4
0 4	(id)\$	s5
0 4 5	(id) \$	r6
0 4 3	(F) \$	r4
0 4 2	(T) \$	r2
0 4 8	(E) \$	s11
0 4 8 11	(E)	\$	r5
0 3	F	\$	r4
0 2	Т	\$	r2
0 1	E	\$	OK

b) ((id))

Pilha	Símbolos	Entrada	Ação
0		((id))\$	s4
0 4	((id))\$	s4
0 4 4	((id))\$	s5
0 4 4 5	((id))\$	r6
0 4 4 3	((F))\$	r4
0 4 4 2	((T))\$	r2
0 4 4 8	((E))\$	s11
0 4 4 8 11	((E))\$	r5
0 4 3	(F)\$	r4
0 4 2	(T)\$	r2
0 4 8	(E)\$	s11
0 4 8 11	(E)	\$	r5
0 3	F	\$	r4
0 2	T	\$	r2
0 1	E	\$	OK

c) (id * id (id))

Pilha	Símbolos	Entrada	Ação
0		(id * id (id))\$	s4
0 4	(id * id (id))\$	s5
0 4 5	(id	* id (id))\$	r6
0 4 3	(F	* id (id))\$	r4
0 4 2	(T	* id (id))\$	s7
0 4 2 7	(T *	id (id))\$	s5
0 4 2 7 5	(T * id	(id))\$	erro! Esperando: +, *,),

d) ()

Pilha	Símbolos	Entrada	Ação
0		()\$	s4
0 4	()\$	erro! Esperando: id, (

e) (id *)id)

Pilha	Símbolos	Entrada	Ação
0		(id *)id)\$	s4
0 4	(id *)id)\$	s5
0 4 5	(id	*)id)\$	r6
0 4 3	(F	*)id)\$	r4
0 4 2	(T	*)id)\$	s7
0 4 2 7	(T *)id)\$	erro! Esperando: id, (

f) (id) * id)

- 1 - 1	a ()]	The force of a	- ~
Pilha	Simbolos	Entrada	Açao

0		(id) * id)\$	s4
0 4	(id) * id)\$	s5
0 4 5	(id) * id)\$	r6
0 4 3	(F) * id)\$	r4
0 4 2	(Τ) * id)\$	r2
0 4 8	(E) * id)\$	s11
0 4 8 11	(E)	* id)\$	r5
0 3	F	* id)\$	r4
0 2	Т	* id)\$	s7
0 2 7	Т *	id)\$	s5
0 2 7 5	T * id) \$	r6
0 2 7 10	T * F) \$	r3
0 2	T) \$	r2
0 1	E) \$	erro! Esperando: +, \$

g) id + id * id

Pilha	Símbolos	Entrada	Ação
0		id + id * id\$	s5
0 5	id	+ id * id\$	r6
0 3	F	+ id * id\$	r4
0 2	T	+ id * id\$	r2
0 1	E	+ id * id\$	s6
0 1 6	E +	id * id\$	s5
0 1 6 5	E + id	* id\$	r6
0 1 6 3	E + F	* id\$	r4
0 1 6 9	E + T	* id\$	s7
0 1 6 9 7	E + T *	id\$	s5
0 1 6 9 7 5	E + T * id	Ş	r6
0 1 6 9 7 10	E + T * F	Ş	r3
0 1 6 9	E + T	Ş	r1
0 1	E	\$	OK

h) id + id + id

Pilha	Símbolos	Entrada	Ação
0		id + id + id\$	s5
0 5	id	+ id + id\$	r6
0 3	F	+ id + id\$	r4
0 2	Т	+ id + id\$	r2
0 1	E	+ id + id\$	s6
0 1 6	E +	id + id\$	s 5
0 1 6 5	E + id	+ id\$	r6
0 1 6 3	E + F	+ id\$	r4
0 1 6 9	E + T	+ id\$	r1
0 1	E	+ id\$	s6
0 1 6	E +	id\$	s5
0 1 6 5	E + id	\$	r6
0 1 6 3	E + F	\$	r4
0 1 6 9	E + T	\$	r1
0 1	E	\$	OK

4. Dada a gramática

a) Construa a tabela SLR

R:

Gramática enumerada:

- (1) $E \rightarrow E + E$
- (2) $E \rightarrow E * E$
- (3) $E \rightarrow id$

	+	*	id	\$	E
0			s2		1
1	s3	s4		OK	
2	r3	r3		r3	
3			s2		5
4			s2		6
5	r1/s3	r1/s4		r1	
6	r2/s3	r2/s4		r2	

b) Identifique os conflitos e classifique-os como shift/shift e shift/reduce

R: Temos 4 conflitos do tipo shift/reduce.

```
Temos dois conflitos shift/reduce relativos ao estado 5:

I5 = {[E \rightarrow E+E.], [E \rightarrow E.+E], [E \rightarrow E.*E]}
```

No estado 5, acabou de ocorrer a leitura de uma soma (indicado pelo item [E \rightarrow E+E.]), e o analisador está pronto para fazer a redução E \rightarrow E+E. Qualquer símbolo que vier, exceto id, pode causar uma redução válida, já que seguidores(E) = $\{+,*,\$\}$.

No entanto, caso o próximo símbolo seja + ou *, também é possível fazer o empilhamento, conforme indicado pelos itens $[E \rightarrow E.+E]$ e $[E \rightarrow E.+E]$. Nesses dois casos, haverá conflito entre reduzir ou empilhar

```
De forma análoga, temos dois conflitos shift/reduce relativos ao estado 6: I6 = \{[E \rightarrow E^*E.], [E \rightarrow E.+E], [E \rightarrow E.*E]\}
```

A situação do estado 6 é idêntica, com exceção que aqui acabou de ocorrer a leitura de uma multiplicação (indicado pelo item $[E \rightarrow E^*E.]$). Assim, pode ocorrer redução $E \rightarrow E^*E$ ou um empilhamento, caso os próximos símbolos sejam + ou *.

c) Resolva os conflitos considerando a precedência e associatividade convencionais dos operadores aritméticos

	+	*	id	\$	E
0			s2		1
1	s3	s4		OK	
2	r3	r3		r3	
3			s2		5
4			s2		6

5	r1 (+ é associativo à esquerda)	s4 (* tem precedência sobre +)	r1	
6	r2 (* tem precedência sobre +)	r2 (* é associativo à esquerda)	r2	

d) Faça a análise sintática da cadeia id + id * id conforme a resolução de conflitos do item anterior

Pilha	Símbolos	Entrada	Ação
0		id + id * id * id\$	s2
0 2	id	+ id * id * id\$	r3
0 1	E	+ id * id * id\$	s3
0 1 3	E +	id * id * id\$	s2
0 1 3 2	E + id	* id * id\$	r3
0 1 3 5	E + E	* id * id\$	s4
0 1 3 5 4	E + E *	id * id\$	s2
0 1 3 5 4 2	E + E * id	* id\$	r3
0 1 3 5 4 6	E + E * E	* id\$	r2
0 1 3 5	E + E	* id\$	s4
0 1 3 5 4	E + E *	id\$	s2
0 1 3 5 4 2	E + E * id	\$	r3
0 1 3 5 4 6	E + E * E	\$	r2
0 1 3 5	E + E	\$	r1
0 1	E	\$	OK