PROJET 4 DATA ANALYST

Réalisez une étude de santé publique avec R ou Python

Etape 1 - Importation des librairies et chargement des fichiers

1.1 - Importation des librairies

```
#Importation de la librairie Pandas
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

```
from google.colab import drive
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_re

1.2 - Chargement des fichiers Excel

```
#Importation du fichier population.csv
path='drive/MyDrive/datas/'
population = pd.read_csv(path+'population.csv')
#Importation du fichier dispo_alimentaire.csv
```

```
dispo_alimentaire= pd.read_csv(path+'dispo_alimentaire.csv')
#Importation du fichier aide_alimentaire.csv
aide_alimentaire=pd.read_csv(path+'aide_alimentaire.csv')
#Importation du fichier sous_nutrition.csv
sous_nutrition=pd.read_csv(path+'sous_nutrition.csv')
```

Etape 2 - Analyse exploratoire des fichiers

2.1 - Analyse exploratoire du fichier population

```
#Afficher les dimensions du dataset
print("Le tableau comporte {} observation(s) ou article(s)".format(population.shape[0]))
print("Le tableau comporte {} colonne(s)".format(population.shape[1]))
    Le tableau comporte 1416 observation(s) ou article(s)
    Le tableau comporte 3 colonne(s)
population.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1416 entries, 0 to 1415
    Data columns (total 3 columns):
        Column Non-Null Count Dtype
       Zone 1416 non-null
                              object
     1 Année 1416 non-null int64
     2 Valeur 1416 non-null float64
    dtypes: float64(1), int64(1), object(1)
    memory usage: 33.3+ KB
```

```
#Affichage les 5 premières lignes de la table
print(" Les 5 premières lignes de la table 'population' : \n")
population.head()
```

Les 5 premières lignes de la table 'population' :

	Zone	Année	Valeur
0	Afghanistan	2013	32269.589
1	Afghanistan	2014	33370.794
2	Afghanistan	2015	34413.603
3	Afghanistan	2016	35383.032
4	Afghanistan	2017	36296.113

```
#Nous allons harmoniser les unités. Pour cela, nous avons décidé de multiplier la population ;
#Multiplication de la colonne valeur par 1000
population["Valeur"] *= 1000
```

```
#changement du nom de la colonne Valeur par Population
population = population.rename(columns={"valeur": "population"})
```

#Affichage les 5 premières lignes de la table pour voir les modifications population.head()

Zone	Année	Valeur
------	-------	--------

```
Afghanistan 2013 32269589.0
Afghanistan 2014 33370794.0
Afghanistan 2015 34413603.0
Afghanistan 2016 35383032.0
Afghanistan 2017 36296113.0
```

2.2 - Analyse exploratoire du fichier disponibilité alimentaire

```
#Afficher les dimensions du dataset
print("Le tableau comporte {} observation(s) ou article(s)".format(dispo alimentaire.shape[0]
print("Le tableau comporte {} colonne(s)".format(dispo alimentaire.shape[1]))
    Le tableau comporte 15605 observation(s) ou article(s)
    Le tableau comporte 18 colonne(s)
#Consulter le nombre de colonnes
print(f"Nombre de colonne : {dispo alimentaire.shape[1]}")
    Nombre de colonne : 18
#Affichage les 5 premières lignes de la table
print("Les 5 premières lignes :")
dispo_alimentaire.head()
    Les 5 premières lignes :
```

4 sur 33 13/06/2025, 16:59

Disponibilité Disponibilité

	Zone	Produit	Origine	Aliments pour animaux	Autres Utilisations	alimentaire (Kcal/ personne/ jour)	alimentaire en quantité (kg/personne/ an)	de matière grasse en quantité (g/ personne/ jour)	de protéines en quantité (g/personne/ jour)
0	Afghanistan	Abats Comestible	animale	NaN	NaN	5.0	1.72	0.20	0.77
1	Afghanistan	Agrumes, Autres	vegetale	NaN	NaN	1.0	1.29	0.01	0.02
2	Afghanistan	Aliments pour enfants	vegetale	NaN	NaN	1.0	0.06	0.01	0.03

```
#remplacement des NaN dans le dataset par des 0
dispo_alimentaire=dispo_alimentaire.fillna(0)
```

```
colonnes_a_convertir = [
   "Disponibilité intérieure",
   "Exportations - Quantité",
   "Importations - Quantité",
   "Nourriture",
   "Pertes",
   "Production",
   "Semences",
   "Traitement",
   "Variation de stock",
   "Aliments pour animaux"
```

```
dispo_alimentaire.loc[:, colonnes_a_convertir] *= 1000000
```

#Affichage les 5 premières lignes de la table
dispo_alimentaire.head()

	Zone	Produit	Origine	Aliments pour animaux	Autres Utilisations	Disponibilité alimentaire (Kcal/ personne/ jour)	Disponibilité alimentaire en quantité (kg/personne/ an)	Disponibilité de matière grasse en quantité (g/ personne/ jour)	Disponibilité de protéines en quantité (g/personne/ jour)
0	Afghanistan	Abats Comestible	animale	0.0	0.0	5.0	1.72	0.20	0.77
1	Afghanistan	Agrumes, Autres	vegetale	0.0	0.0	1.0	1.29	0.01	0.02
2	Afghanistan	Aliments pour enfants	vegetale	0.0	0.0	1.0	0.06	0.01	0.03

2.3 - Analyse exploratoire du fichier aide alimentaire

```
#Afficher les dimensions du dataset
print("Le tableau comporte {} observation(s) ou article(s)".format(aide_alimentaire.shape[0])
print("Le tableau comporte {} colonne(s)".format(aide_alimentaire.shape[1]))
```

Le tableau comporte 1475 observation(s) ou article(s) Le tableau comporte 4 colonne(s)

```
#Consulter le nombre de colonnes
print(f"Nombre de colonne : {aide_alimentaire.shape[1]}")
```

Nombre de colonne : 4

#Affichage les 5 premières lignes de la table
aide_alimentaire.head()

	Pays bénéficiaire	Année	Produit	Valeur
0	Afghanistan	2013	Autres non-céréales	682
1	Afghanistan	2014	Autres non-céréales	335
2	Afghanistan	2013	Blé et Farin	39224
3	Afghanistan	2014	Blé et Farin	15160
4	Afghanistan	2013	Céréales	40504

#changement du nom de la colonne Pays bénéficiaire par Zone
aide alimentaire.rename(columns={"Pays bénéficiaire":"Zone"},inplace=True)

#Multiplication de la colonne Aide_alimentaire qui contient des tonnes par 1000 pour avoir des aide alimentaire["Valeur"]= aide alimentaire["Valeur"] * 1000

#Affichage les 5 premières lignes de la table
aide_alimentaire.head()

	Zone	Année	Produit	Valeur	
0	Afghanistan	2013	Autres non-céréales	682000	
1	Afghanistan	2014	Autres non-céréales	335000	
2	Afghanistan	2013	Blé et Farin	39224000	
3	Afghanistan	2014	Blé et Farin	15160000	
	Afghanistan	2013	Céréales	40504000	

2.3 - Analyse exploratoire du fichier sous nutrition

```
#Afficher les dimensions du dataset
print(f"Le tableau comporte {sous_nutrition.shape[0]} observation(s) ou article(s)")
print(f"Le tableau comporte {sous_nutrition.shape[1]} colonne(s)")

Le tableau comporte 1218 observation(s) ou article(s)
Le tableau comporte 3 colonne(s)

#Consulter le nombre de colonnes
print(f"Nombre de colonne {sous nutrition.shape[1]}")
```

Nombre de colonne 3

#Afficher les 5 premières lignes de la table

sous_nutrition.head()

	Zone	Année	Valeur
0	Afghanistan	2012-2014	8.6
1	Afghanistan	2013-2015	8.8
2	Afghanistan	2014-2016	8.9
3	Afghanistan	2015-2017	9.7
4	Afghanistan	2016-2018	10.5

```
#Conversion de la colonne (avec l'argument errors=coerce qui permet de convertir automatiqueme
sous_nutrition['Valeur'] = pd.to_numeric(sous_nutrition['Valeur'], errors='coerce')
#Puis remplacement des NaN en 0
sous_nutrition['Valeur'] = sous_nutrition['Valeur'].fillna(0)
```

#changement du nom de la colonne Valeur par sous_nutrition
sous_nutrition.rename(columns={'Valeur': 'sous_nutrition'}, inplace=True)
print(sous_nutrition)

Zone	Année	sous_nutrition
Afghanistan	2012-2014	8.6
Afghanistan	2013-2015	8.8
Afghanistan	2014-2016	8.9
Afghanistan	2015-2017	9.7
Afghanistan	2016-2018	10.5
• • •		• • •
Zimbabwe	2013-2015	0.0
Zimbabwe	2014-2016	0.0
Zimbabwe	2015-2017	0.0
Zimbabwe	2016-2018	0.0
Zimbabwe	2017-2019	0.0
	Afghanistan Afghanistan Afghanistan Afghanistan Afghanistan Zimbabwe Zimbabwe Zimbabwe Zimbabwe	Afghanistan 2012-2014 Afghanistan 2013-2015 Afghanistan 2014-2016 Afghanistan 2015-2017 Afghanistan 2016-2018 Zimbabwe 2013-2015 Zimbabwe 2014-2016 Zimbabwe 2015-2017 Zimbabwe 2016-2018

```
[1218 rows x 3 columns]
```

```
#Multiplication de la colonne sous_nutrition par 1000000
sous_nutrition['sous_nutrition']=sous_nutrition["sous_nutrition"] * 1000000
```

#Afficher les 5 premières lignes de la table
sous_nutrition.head()

	Zone	Année	sous_nutrition
0	Afghanistan	2012-2014	8600000.0
1	Afghanistan	2013-2015	8800000.0
2	Afghanistan	2014-2016	8900000.0
3	Afghanistan	2015-2017	9700000.0
	Afghanistan	2016-2018	10500000.0

Etape 3 - Analyses

3.1 - Proportion de personnes en sous nutrition

```
# Il faut tout d'abord faire une jointure entre la table population et la table sous nutrition
population['Année'] = population['Année'].astype(str)
sous_nutrition['Année'] = sous_nutrition['Année'].astype(str)
# Filtrer les données pour l'année 2017 dans la colonne 'Année' de sous_nutrition
```

```
sous_nutrition_2017 = sous_nutrition[sous_nutrition["Année"]=='2016-2018']

# Filtrer les données pour l'année 2017 dans la population
population_2017 = population[population["Année"] == '2017']

# Jointure sur la colonne 'Zone'
pop_sous_nutrition_2017 = pd.merge(population_2017, sous_nutrition_2017, left_on=["Zone"], ri{
```

#Affichage du dataset
pop sous nutrition 2017.head()

	Zone	Année_x	Valeur	Année_y	sous_nutrition
0	Afghanistan	2017	36296113.0	2016-2018	10500000.0
1	Afrique du Sud	2017	57009756.0	2016-2018	3100000.0
2	Albanie	2017	2884169.0	2016-2018	100000.0
3	Algérie	2017	41389189.0	2016-2018	1300000.0
4	Allemagne	2017	82658409.0	2016-2018	0.0

#Calcul et affichage du nombre de personnes en état de sous nutrition
pop_sous_nutrition_somme=pop_sous_nutrition_2017["sous_nutrition"].sum()
print(f"En 2017, le nombre de personne en état de sous nutition est de: {round(pop_sous_nutrition)}

En 2017, le nombre de personne en état de sous nutition est de: 535,700,000.

```
# Calcul des proportions
population_mondiale_2017 = pop_sous_nutrition_2017['Valeur'].sum()
proportion personne sous nutrition = (pop_sous_nutrition somme / population mondiale 2017) * 1
```

```
proportion normale = 100 - proportion personne sous nutrition
# Graphique
labels = ["Sous-nutrition", "Normal"]
sizes = [pop sous nutrition somme, population mondiale 2017 - pop sous nutrition somme]
colors = ["#ff9999", "#66b3ff"]
explode = (0.1, 0)
plt.figure(figsize=(7, 7))
wedges, texts, autotexts = plt.pie(
    sizes, labels=labels, autopct='%1.1f%%', colors=colors, explode=explode,
    startangle=140, wedgeprops={"edgecolor": "black", "linewidth": 1.2},
    textprops={"fontsize": 12}, pctdistance=0.75
centre circle = plt.Circle((0, 0), 0.60, fc='white')
plt.gca().add_artist(centre circle)
plt.title("Proportion de personnes en état de sous-nutrition dans le monde en 2017", fontsize:
plt.show()
```

Proportion de personnes en état de sous-nutrition dans le monde en 2017

3.2 - Nombre théorique de personne qui pourrait être nourries

Une femme a besoin en moyenne de 2000 kcal par jour, tandis qu'un homme a besoin de 2600 kcal par jour. En supposant que la population mondiale est composée d'hommes et de femmes répartis de manière égale : On a besoin de 2300 kcal par jour et par humain en moyenne.

#On commence par faire une iointure entre le data frame population et Dispo alimentaire afin d'

pop_dispo_alimentaire_2017 = dispo_alimentaire.merge(population.loc[population['Année'] == '2
#Affichage du nouveau dataframe
pop dispo alimentaire 2017.head()

	Zone	Produit	Origine	Aliments pour animaux	Autres Utilisations	Disponibilité alimentaire (Kcal/ personne/ jour)	Disponibilité alimentaire en quantité (kg/personne/ an)	Disponibilité de matière grasse en quantité (g/ personne/ jour)	Disponibilité de protéines en quantité (g/personne/ jour)
0	Afghanistan	Abats Comestible	animale	0.0	0.0	5.0	1.72	0.20	0.77
1	Afghanistan	Agrumes, Autres	vegetale	0.0	0.0	1.0	1.29	0.01	0.02
2	Afghanistan	Aliments pour enfants	vegetale	0.0	0.0	1.0	0.06	0.01	0.03

#Création de la colonne dispo_kcal avec calcul des kcal disponibles mondialement

pop_dispo_alimentaire_2017["dispo_kcal"]= pop_dispo_alimentaire_2017['Disponibilité alimentair

print(f'La disponibilité mondial en kcal est de {round(pop_dispo_alimentaire_2017["dispo_kcal'

La disponibilité mondial en kcal est de 7,635,429,388,975,815

#Calcul du nombre d'humains pouvant être nourris

nb_humains_nourris= pop_dispo_alimentaire_2017['dispo_kcal'].sum() / conso_nourriture_kcl_an

Disnonihilitá

butur(i eu rusoute, ta buonnertou catoutdne ataboutnie bonileate uoniliti. sustiou fuonunfuo un butur

En théorie, la production calorique disponible pourrait nourrir environ 9,095,210,708 personnes, soit 120.57% de la Ainsi, l'ensemble de la population mondiale pourrait être correctement alimenté, compte tenu d'un surplus calorique

3.3 - Nombre théorique de personne qui pourrait être nourrie avec les produits végétaux

#Transfert des données avec les végétaux dans un nouveau dataframe pop_dispo_alimentaire_2017_vegetal=pop_dispo_alimentaire_2017[pop_dispo_alimentaire_2017['Oriş pop_dispo_alimentaire_2017_vegetal.head(20)

	Zone	Produit	Origine	Aliments pour animaux	Autres Utilisations	Disponibilité alimentaire (Kcal/ personne/ jour)	Disponibilité alimentaire en quantité (kg/personne/ an)	de matière grasse en quantité (g/ personne/ jour)	Disponibilit de protéine en quantit (g/personne jour
1	Afghanistan	Agrumes, Autres	vegetale	0.0	0.0	1.0	1.29	0.01	0.0
2	Afghanistan	Aliments pour enfants	vegetale	0.0	0.0	1.0	0.06	0.01	0.0
3	Afghanistan	Ananas	vegetale	0.0	0.0	0.0	0.00	0.00	0.0
4	Afghanistan	Bananes	vegetale	0.0	0.0	4.0	2.70	0.02	0.0
6	Afghanistan	Bière	vegetale	0.0	0.0	0.0	0.09	0.00	0.0
7	Afghanistan	Blé	vegetale	0.0	0.0	1369.0	160.23	4.69	36.9
8	Afghanistan	Boissons Alcooliques	vegetale	0.0	0.0	0.0	0.00	0.00	0.0
9	Afghanistan	Café	vegetale	0.0	0.0	0.0	0.00	0.00	0.0

10	Afghanistan	Coco (Incl Coprah)	vegetale	0.0	0.0	0.0	0.00	0.00	0.0
12	Afghanistan	Céréales, Autres	vegetale	0.0	0.0	0.0	0.00	0.00	0.0
13	Afghanistan	Dattes	vegetale	0.0	0.0	0.0	0.02	0.00	0.0
14	Afghanistan	Edulcorants Autres	vegetale	0.0	0.0	2.0	0.53	0.00	0.0
15	Afghanistan	Feve de Cacao	vegetale	0.0	0.0	0.0	0.02	0.04	0.0
16	Afghanistan	Fruits, Autres	vegetale	0.0	0.0	9.0	7.29	0.06	0.′
17	Afghanistan	Graines de coton	vegetale	0.0	0.0	0.0	0.00	0.00	0.0
18	Afghanistan	Graines de tournesol	vegetale	0.0	0.0	0.0	0.00	0.00	0.0
20	Afghanistan	Huil Plantes Oleif Autr	vegetale	0.0	359.0	2.0	0.08	0.21	0.0
21	Afghanistan	Huile Graines de Coton	vegetale	0.0	1.0	3.0	0.12	0.34	0.0
		Huila							

#Calcul du nombre de kcal disponible pour les végétaux

kcal_dispo_vegetales=pop_dispo_alimentaire_2017_vegetal["dispo_kcal"].sum()
print(f"Les végétaux produits comptent {round(kcal_dispo_vegetales):,} kcal disponibles.")

Les végétaux produits comptent 6,300,178,937,197,865 kcal disponibles.

```
#Calcul du nombre d'humains pouvant être nourris avec les végétaux
humains_nourris_vegetaux=kcal_dispo_vegetales/conso_nourriture_kcl_an
print(f"Les calories issues des végétaux permettraient de nourrir {round(humains_nourris_vegetales)
```

Les calories issues des végétaux permettraient de nourrir 7,504,680,092 personnes, soit 99.5 % de la population mond Ainsi, presque l'ensemble de l'humanité de cette année-là pourrait être alimenté exclusivement par les ressources v

3.4 - Utilisation de la disponibilité intérieure

```
#Calcul de la disponibilité totale : Disponibilite totale
Disponibilite_interieure_totale=pop_dispo_alimentaire_2017['Disponibilité intérieure'].sum()
print(f"La disponibilité intérieure totale est de {round(Disponibilite_interieure_totale):,} |
```

La disponibilité intérieure totale est de 9,733,927,000,000 kcal

```
#création d'une boucle for pour afficher les différentes valeurs en fonction des colonnes alir
# Donner la part de l'alimentation humaine, animale , perdue(est ce qu'on peut calculer les au
# Liste des catégories à afficher
liste_col = ["Aliments pour animaux", "Pertes", "Nourriture", "Semences", "Traitement", "Autres une proportions = []
labels = []

for col in liste_col:
    proportion=(dispo_alimentaire[col].sum() / Disponibilite_interieure_totale ) * 100
    print(f'Les {col} représente {round(proportion,2)}% dans la disponibilité intérieur de nourrence."
```

as Alimants naum animany mannésants 12 AV dans la dispanibilité inténiour de naumaiture

Les Allments pour animaux represente 15.4% dans la disponibilité interfeur de nourriture

Les Pertes représente 4.66% dans la disponibilité intérieur de nourriture

Les Nourriture représente 50.1% dans la disponibilité intérieur de nourriture

Les Semences représente 1.59% dans la disponibilité intérieur de nourriture

Les Traitement représente 22.65% dans la disponibilité intérieur de nourriture

Les Autres Utilisations représente 0.0% dans la disponibilité intérieur de nourriture

3.5 - Utilisation des céréales

liste_cereales=['Blé','Riz (Eq Blanchi)','Orge','Maïs','Seigle','Avoine','Millet','Sorgho','Ce

#Création d'un dataframe avec les informations uniquement pour ces céréales pop_dispo_alimentaire_2017_cereales= pop_dispo_alimentaire_2017[pop_dispo_alimentaire_2017['Pupop_dispo_alimentaire_2017_cereales.head()

	Zone	Produit	Origine	Aliments pour animaux	Autres Utilisations	Disponibilité alimentaire (Kcal/ personne/ jour)	Disponibilité alimentaire en quantité (kg/personne/ an)	de matière grasse en quantité (g/ personne/ jour)	Disponibili de protéir en quanti (g/personr jou
7	Afghanistan	Blé	vegetale	0.0	0.0	1369.0	160.23	4.69	36
12	2 Afghanistan	Céréales, Autres	vegetale	0.0	0.0	0.0	0.00	0.00	0
32	2 Afghanistan	Maïs	vegetale	200000000.0	0.0	21.0	2.50	0.30	0
34	4 Afghanistan	Millet	vegetale	0.0	0.0	3.0	0.40	0.02	0
40) Afghanistan	Orge	vegetale	360000000.0	0.0	26.0	2.92	0.24	0

#Affichage de la proportion d'alimentation animale proportion_part_alimentation_animale= (pop_dispo_alimentaire_2017_cereales["Aliments pour an:

```
print(f"La part des céréales utilisées pour l'alimentation des animaux est de {round(proportique de la company de
```

La part des céréales utilisées pour l'alimentation des animaux est de 36.14%.

```
proportion_part_alimentation_humaine= ( pop_dispo_alimentaire_2017_cereales["Nourriture"].sumprint(f"La part des céréales utilisées pour l'alimentation humaine est de {round(proportion_particles)
```

La part des céréales utilisées pour l'alimentation humaine est de 42.91%.

Double-cliquez (ou appuyez sur Entrée) pour modifier

palette="coolwarm"

3.6 - Pays avec la proportion de personnes sous-alimentée la plus forte en 2017

```
#Création de la colonne proportion par pays
pop_sous_nutrition_2017["proportion_par_pays"]= pop_sous_nutrition_2017["sous_nutrition"] / pop_sous_nutrition_2017["proportion_par_pays"]= pop_sous_nutrition_en 2017["sous_nutrition"] / pop_sous_nutrition_top10 = pop_sous_nutrition_2017.sort_values(by="proportion_par_pays", ascen
# Graphique
plt.figure(figsize=(12, 6))
sns.barplot(
    data=pop_sous_nutrition_top10,
    x="proportion_par_pays",
    y="Zone",
    hue="Zone",
```

```
plt.xlabel("Proportion de sous-alimentation (%)")
plt.ylabel("Pays")
plt.title("Top 10 Pays avec la proportion de personnes sous-alimentées la plus forte en 2017")
plt.grid(axis="x", linestyle="--", alpha=0.7)
plt.show()
```


pop_sous_nutrition_top10[["Zone","sous_nutrition","proportion_par_pays"]]

	Zone	sous_nutrition	<pre>proportion_par_pays</pre>
78	Haïti	5300000.0	0.482592
157	République populaire démocratique de Corée	12000000.0	0.471887
108	Madagascar	10500000.0	0.410629
103	Libéria	1800000.0	0.382797
100	Lesotho	800000.0	0.382494
183	Tchad	5700000.0	0.379576
161	Rwanda	4200000.0	0.350556
121	Mozambique	9400000.0	0.328109
186	Timor-Leste	400000.0	0.321735
0	Afghanistan	10500000.0	0.289287

3.7 - Pays qui ont le plus bénéficié d'aide alimentaire depuis 2013

#calcul du total de l'aide alimentaire par pays
aide_alimentaire_par_pays=aide_alimentaire.groupby('Zone',as_index=False).sum()
aide_alimentaire_top10 = aide_alimentaire_par_pays.sort_values('Valeur', ascending=False).hea
aide_alimentaire_top10[["Zone","Valeur"]]

	Zone	Valeur
50	République arabe svrienne	1858943000

	1	
75	Éthiopie	1381294000
70	Yémen	1206484000
61	Soudan du Sud	695248000
60	Soudan	669784000
30	Kenya	552836000
3	Bangladesh	348188000
59	Somalie	292678000
53	République démocratique du Congo	288502000
43	Niger	276344000

```
#Graphique
plt.figure(figsize=(12, 6))
sns.barplot(
    data=aide_alimentaire_top10,
    x="Valeur",
    y="Zone",
    hue="Zone",
    dodge=False,
    palette="coolwarm",
    legend=False
)

plt.xlabel("Aide alimentaire (en tonnes)")
plt.ylabel("Pays")
plt.title("Top 10 des pays recevant le plus d'aide alimentaire")
```

Template+Julien+(1).ipynb - Colab

plt.grid(axis="x", linestyle="--", alpha=0.7)
plt.show()

3.8 - Evolution des 5 pays qui ont le plus bénéficiés de l'aide alimentaire entre 2013 et 2016

#Création d'un dataframe avec la zone, l'année et l'aide alimentaire puis groupby sur zone et aide_alimentaire_par_pays_2=aide_alimentaire[['Zone','Année','Valeur']].groupby(['Zone','Année','Année','Valeur']].groupby(['Zone','Année','Année','Valeur']].groupby(['Zone','Année','Ann

aide_alimentaire_par_pays_2.head(20)

	Zone	Année	Valeur
0	Afghanistan	2013	128238000
1	Afghanistan	2014	57214000
2	Algérie	2013	35234000
3	Algérie	2014	18980000
4	Algérie	2015	17424000
5	Algérie	2016	9476000
6	Angola	2013	5000000
7	Angola	2014	14000
8	Bangladesh	2013	131018000
9	Bangladesh	2014	194628000
10	Bangladesh	2015	22542000
11	Bhoutan	2013	1724000
12	Bhoutan	2014	146000
13	Bhoutan	2015	578000
14	Bhoutan	2016	218000
15	Bolivie (État plurinational de)	2014	6000
16	Burkina Faso	2013	18620000
17	Burkina Faso	2014	22938000
18	Burkina Faso	2015	23182000
19	Burkina Faso	2016	72000

```
#Création d'une liste contenant les 5 pays qui ont le plus bénéficiées de l'aide alimentaire pays_top_cinq_aide_alimentaire_liste=aide_alimentaire_par_pays.sort_values('Valeur', ascendin{ pays_top_cinq_aide_alimentaire_liste
```

```
['République arabe syrienne', 'Éthiopie', 'Yémen', 'Soudan du Sud', 'Soudan']
```

```
#On filtre sur le dataframe avec notre liste
pays_top_cinq_aide_alimentaire=aide_alimentaire_par_pays_2[aide_alimentaire_par_pays_2['Zone']
```

```
# Affichage des pays avec l'aide alimentaire par année
pays_top_cinq_aide_alimentaire

plt.figure(figsize=(12, 6))
sns.lineplot(data=pays_top_cinq_aide_alimentaire, x='Année', y='Valeur', hue='Zone', marker='@
annees_uniques = sorted(pays_top_cinq_aide_alimentaire['Année'].unique())
plt.xticks(ticks=annees_uniques)

plt.title("Évolution de l'aide alimentaire des 5 principaux pays")
plt.xlabel("Année")
plt.ylabel("Aide alimentaire (Valeur)")
plt.legend(title="Pays")
plt.grid(True)

plt.show()
```

Évolution de l'aide alimentaire des 5 principaux pays

3.9 - Pays avec le moins de disponibilité par habitant

#Affichage des 10 pays qui ont le moins de dispo alimentaire par personne dispo_alimentaire.groupby("Zone")['Disponibilité alimentaire (Kcal/personne/jour)'].sum().sort

Disponibilité alimentaire (Kcal/personne/jour)

Zone

République centrafricaine	1879.0
Zambie	1924.0
Madagascar	2056.0
Afghanistan	2087.0
Haïti	2089.0
République populaire démocratique de Corée	2093.0
Tchad	2109.0
Zimbabwe	2113.0
Ouganda	2126.0
Timor-Leste	2129.0

dtype: float64

3.10 - Pays avec le plus de disponibilité par habitant

```
y=zones,
palette="viridis"
)

plt.xlabel("Disponibilité alimentaire (Kcal/personne/jour)")
plt.ylabel("Zone")
plt.title("Top 10 des zones avec la plus grande disponibilité alimentaire")
plt.grid(axis="x", linestyle="--", alpha=0.7)
plt.show()
```

<ipython-input-120-c45867796028>:10: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `sns.barplot(

3.101 -Pays avec le moins de disponibilité par habitant

```
dispo_alimentaire_top10less = dispo_alimentaire.groupby("Zone")['Disponibilité alimentaire (Kontaine | Notation | No
zones=dispo_alimentaire_top10less.index
valeurs = dispo_alimentaire_top10less.values
plt.figure(figsize=(12, 6))
sns.barplot(
                    x=valeurs,
                    y=zones,
                     palette="mako"
plt.xlabel("Disponibilité alimentaire (Kcal/personne/jour)")
plt.ylabel("Zone")
plt.title("Top 10 des zones avec la moins grande disponibilité alimentaire")
plt.grid(axis="x", linestyle="--", alpha=0.7)
 plt.show()
```

<ipython-input-121-e03bec51ab26>:8: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `sns.barplot(

3.11 - Exemple de la Thaïlande pour le Manioc

```
#création d'un dataframe avec uniquement la Thaïlande
pop_sous_nutrition_Thai=pop_sous_nutrition_2017 [(pop_sous_nutrition_2017["Zone"] == "Thaïlande")
pop_sous_nutrition_Thai.head()
```

	Zone	Année_x	Valeur	Année_y	sous_nutrition	proportion_par_pays
185	Thaïlande	2017	69209810.0	2016-2018	6200000.0	0.089583

#Calcul de la sous nutrition en Thaïlande

```
sous_nutrition_2017_Thai = pop_sous_nutrition_Thai["sous_nutrition"].iloc[0]
population_2017_Thai=pop_sous_nutrition_Thai["Valeur"].iloc[0]
print(f"Sur une population de {round(population_2017_Thai):,} habitants, nous trouvons {round(sous_nutrition_2017_Thai) * 100 ,2)}% de la population_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutrition_sous_nutriti
```

Sur une population de 69,209,810 habitants, nous trouvons 6,200,000 d'individu en état de sous nutrition. Ainsi 8.96% de la population Thailandaise est touchée.

```
dispo_alimentaire_Manioc=dispo_alimentaire[dispo_alimentaire["Produit"]=="Manioc"]

dispo_alimentaire_Thai=dispo_alimentaire[dispo_alimentaire["Zone"]=="Thaïlande"]

dispo_alimentaire_thai_par_habitant= dispo_alimentaire_Thai["Disponibilité intérieure"] / popu

dispo_alimentaire_thai_par_habitant.head()
```

	Disponibilité	intérieure
13759		1.069213
13760		0.115591
13761		5.172677
13762		0.173386
13763		11.298976

dtype: float64

```
dispo_alimentaire_Thai_Manioc=dispo_alimentaire_Thai[dispo_alimentaire_Thai["Produit"]=="Manior ratio_exportation_manioc = (dispo_alimentaire_Thai_Manioc["Exportations - Quantité"] / dispo_alimentaire_Thai_Manioc["Exportations - Quantité "] / dispo_alimentaire_Thai_Manio
```

La Thaïlande exporte 83.41 % de sa production de manioc, ce qui témoigne de son orientation vers le marché internatio Cela suggère que la culture du manioc dans le pays est principalement destinée à l'exportation plutôt qu'à la consom

Etape 6 - Analyse complémentaires

6.1 - Population pouvant être nourris avec les pertes

```
Pertes_2017=pop_dispo_alimentaire_2017['Pertes'].sum()
population_nourries_pertes=round(Pertes_2017/conso_nourriture_kcl_an,2)
point(f"les_pertes_nourriest_nourries_found(nonulation_nourries_pertes): } personnes ")
```

print(f"Cela représente {round((population_nourries_pertes/population_mondiale_2017)*100,2)}%

Les pertes pourraient nourrir 538,753 personnes. Cela représente 0.01% de la population mondiale