. Office européen des brevets

(11) EP 1 108 790 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 20.06.2001 Bulletin 2001/25

(21) Application number: 00127688.0

(22) Date of filing: 18.12.2000

(51) Int CI.7: **C12Q 1/68**, C07H 21/04, C12N 15/63, C07K 14/34, C12R 1/15, G06F 17/00, C12R 1/13, G01N 33/50

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 16.12.1999 JP 37748499 07.04.2000 JP 2000159162 03.08.2000 JP 2000280988

(83) Declaration under Rule 28(4) EPC (expert solution)

(71) Applicant: KYOWA HAKKO KOGYO CO., LTD. Chiyoda-ku, Tokyo 100-8185 (JP)

(72) Inventors:

 Nakagawa, Satochi, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Mizoguchi, Hiroshi, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP) Ando, Seiko, c/o Kyowa Hakko Kogyo Co., Ltd. Machida-shi, Tokyo 194-8533 (JP)

Hayashi, Mikiro,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)

 Ochiai, Keiko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

Yokoi, Haruhiko,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)

 Tateishi, Naoko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Senoh, Akihiro, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Ikeda, Masato, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

• Ozaki, Akio, c/o Kyowa Hakko Kogyo Co., Ltd. Hofu-shi, Yamaguchi 747-8522 (JP)

(74) Representative: VOSSIUS & PARTNER Siebertstrasse 4
81675 München (DE)

(54) Novel polynucleotides

(57) Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays

comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.

EP 1 108 790 A2

Description

BACKGROUND OF THE INVENTION

.5 1. Field of the Invention

10

20

25

35

- [0001] The present invention relates to novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, computer readable recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded, and use of them as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.
 - 2. Brief Description of the Background Art
- [0002] Coryneform bacteria are used in producing various useful substances, such as amino acids, nucleic acids, vitamins, saccharides (for example, ribulose), organic acids (for example, pyruvic acid), and analogues of the above-described substances (for example, N-acetylamino acids) and are very useful microorganisms industrially. Many mutants thereof are known.
 - [0003] For example, Corynebacterium glutamicum is a Gram-positive bacterium identified as a glutamic acid-producing bacterium, and many amino acids are produced by mutants thereof. For example, 1,000,000 ton/year of L-glutamic acid which is useful as a seasoning for umami (delicious taste), 250,000 ton/year of L-lysine which is a valuable additive for livestock feeds and the like, and several hundred ton/year or more of other amino acids, such as L-arginine, L-proline, L-glutamine, L-tryptophan, and the like, have been produced in the world (Nikkei Bio Yearbook 99, published by Nikkei BP (1998)).
 - [0004] The production of amino acids by *Corynebacterium glutamicum* is mainly carried out by its mutants (metabolic mutants) which have a mutated metabolic pathway and regulatory systems. In general, an organism is provided with various metabolic regulatory systems so as not to produce more amino acids than it needs. In the biosynthesis of L-lysine, for example, a microorganism belonging to the genus *Corynebacterium* is under such regulation as preventing the excessive production by concerted inhibition by lysine and threonine against the activity of a biosynthesis enzyme common to lysine, threonine and methionine, i.e., an aspartokinase, (*J. Biochem., 65*: 849-859 (1969)). The biosynthesis of arginine is controlled by repressing the expression of its biosynthesis gene by arginine so as not to biosynthesize an excessive amount of arginine (*Microbiology, 142*: 99-108 (1996)). It is considered that these metabolic regulatory mechanisms are deregulated in amino acid-producing mutants. Similarly, the metabolic regulation is deregulated in mutants producing nucleic acids, vitamins, saccharides, organic acids and analogues of the above-described substances so as to improve the productivity of the objective product.
 - [0005] However, accumulation of basic genetic, biochemical and molecular biological data on coryneform bacteria is insufficient in comparison with *Escherichia coli*, *Bacillus subtilis*, and the like. Also, few findings have been obtained on mutated genes in amino acid-producing mutants. Thus, there are various mechanisms, which are still unknown, of regulating the growth and metabolism of these microorganisms.
- [0006] A chromosomal physical map of Corynebacterium glutamicum ATCC 13032 is reported and it is known that its genome size is about 3,100 kb (Mol. Gen. Genet., 252: 255-265 (1996)). Calculating on the basis of the usual gene density of bacteria, it is presumed that about 3,000 genes are present in this genome of about 3,100 kb. However, only about 100 genes mainly concerning amino acid biosynthesis genes are known in Corynebacterium glutamicum, and the nucleotide sequences of most genes have not been clarified hitherto.
- [0007] In recent years, the full nucleotide sequence of the genomes of several microorganisms, such as *Escherichia coli, Mycobacterium tuberculosis*, yeast, and the like, have been determined (*Science, 277*: 1453-62 (1997); *Nature, 393*: 537-544 (1998); *Nature, 387*: 5-105 (1997)). Based on the thus determined full nucleotide sequences, assumption of gene regions and prediction of their function by comparison with the nucleotide sequences of known genes have been carried out. Thus, the functions of a great number of genes have been presumed, without genetic, biochemical or molecular biological experiments.
 - [0008] In recent years, moreover, techniques for monitoring expression levels of a great number of genes simultaneously or detecting mutations, using DNA chips, DNA arrays or the like in which a partial nucleic acid fragment of a gene or a partial nucleic acid fragment in genomic DNA other than a gene is fixed to a solid support, have been developed. The techniques contribute to the analysis of microorganisms, such as yeasts, *Mycobacterium tuberculosis*, *Mycobacterium bovis* used in BCG vaccines, and the like (*Science*, 278: 680-686 (1997); *Proc. Natl. Acad. Sci. USA*, 96: 12833-38 (1999); *Science*, 284: 1520-23 (1999)).

SUMMARY OF THE INVENTION

5

15

20

25

40

45

55

[0009] An object of the present invention is to provide a polynucleotide and a polypeptide derived from a microorganism of coryneform bacteria which are industrially useful, sequence information of the polynucleotide and the polypeptide, a method for analyzing the microorganism, an apparatus and a system for use in the analysis, and a method for breeding the microorganism.

[0010] The present invention provides a polynucleotide and an oligonucleotide derived from a microorganism belonging to coryneform bacteria, oligonucleotide arrays to which the polynucleotides and the oligonucleotides are fixed, a polypeptide encoded by the polynucleotide, an antibody which recognizes the polypeptide, polypeptide arrays to which the polypeptides or the antibodies are fixed, a computer readable recording medium in which the nucleotide sequences of the polynucleotide and the oligonucleotide and the amino acid sequence of the polypeptide have been recorded, and a system based on the computer using the recording medium as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

BRIEF DESCRIPTION OF THE DRAWING

[0011] Fig. 1 is a map showing the positions of typical genes on the genome of *Corynebacterium glutamicum* ATCC 13032.

[0012] Fig. 2 is electrophoresis showing the results of proteome analyses using proteins derived from (A) Coryne-bacterium glutamicum ATCC 13032, (B) FERM BP-7134, and (C) FERM BP-158.

[0013] Fig. 3 is a flow chart of an example of a system using the computer readable media according to the present invention.

[0014] Fig. 4 is a flow chart of an example of a system using the computer readable media according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0015] This application is based on Japanese applications No. Hei. 11-377484 filed on December 16, 1999, No. 2000-159162 filed on April 7, 2000 and No. 2000-280988 filed on August 3, 2000, the entire contents of which are incorporated hereinto by reference.

[0016].. From the viewpoint that the determination of the full nucleotide sequence of *Corynebacterium glutamicum* would make it possible to specify gene regions which had not been previously identified, to determine the function of an unknown gene derived from the microorganism through comparison with nucleotide sequences of known genes and amino acid sequences of known genes, and to obtain a useful mutant based on the presumption of the metabolic regulatory mechanism of a useful product by the microorganism, the inventors conducted intensive studies and, as a result, found that the complete genome sequence of *Corynebacterium glutamicum* can be determined by applying the whole genome shotgun method.

[0017] Specifically, the present invention relates to the following (1) to (65):

- (1) A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium, said method comprising:

(a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,

(b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,

- (c) detecting any hybridization, and
- (d) analyzing the result of the hybridization.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (2) The method according to (1), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - (3) The method according to (2), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - (4) The method according to (1), wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - (5) The method according to (1), wherein the polynucleotide to be examined is derived from Escherichia coli.
 - (6) A polynucleotide array, comprising:

5

10

15

20

25

30

35

40

45

50

55

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (7) A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- (8) A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
- (9) A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
- (10) A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- (11) A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of (7) to (10), or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
- (12) A recombinant DNA comprising the polynucleotide of any one of (8) to (11).
- (13) A transformant comprising the polynucleotide of any one of (8) to (11) or the recombinant DNA of (12).
- (14) A method for producing a polypeptide, comprising:

culturing the transformant of (13) in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of (8) or (9) in the medium, and recovering the polypeptide from the medium.

(15) A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:

culturing the transformant of (13) in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.

- (16) A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS: 2 to 3431.
- (17) A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
- (18) The polypeptide according to (16) or (17), wherein at least one amino acid is deleted, replaced, inserted or

added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.

- (19) A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of (16) or (17), and having an activity which is substantially the same as that of the polypeptide.
- (20) An antibody which recognizes the polypeptide of any one of (16) to (19).
- (21) A polypeptide array, comprising:

10

15

20

25

30

35

40

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- (22) A polypeptide array, comprising:
 - at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- (23) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (24) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- (25) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (26) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;

- (ii) at least temporarily storing said information;
- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- (27) A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information, and determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- (28) A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polypucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
- (29) A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) a data storing device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
 - (iv) an output device that shows a function obtained by the comparator.
- (30) A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
 - (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
- (31) The system according to any one of (23), (25), (27) and (29), wherein a coryneform bacterium is a microor-

5

18

15

20

25

30

35

40

45

50

ganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.

- (32) The method according to any one of (24), (26), (28) and (30), wherein a coryneform bacterium is a microorganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- (33) The system according to (31), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (34) The method according to (32), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (35) A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of (23) or (27) or the method of (24) or (28).
- (36) A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of (25) or (29) or the method of (26) or (30).
- (37) The recording medium or storage device according to
- (35) or (36), which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
- (38) A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
- (39) A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue. (40) The polypeptide according to (38) or (39), wherein the Val residue at the 59th position is replaced with an Ala residue.
- (41) A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- (42) A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue. (43) The polypeptide according to (41) or (42), wherein the Pro residue at the 458th position is replaced with a Ser residue.
- (44) The polypeptide according to any one of (38) to (43), which is derived from Corynebacterium glutamicum.
- (45) A DNA encoding the polypeptide of any one of (38) to (44).
- (46) A recombinant DNA comprising the DNA of (45).
- (47) A transformant comprising the recombinant DNA of (46).
- (48) A transformant comprising in its chromosome the DNA of (45).
- (49) The transformant according to (47) or (48), which is derived from a coryneform bacterium.
- (50) The transformant according to (49), which is derived from Corynebacterium glutamicum.
- (51) A method for producing L-lysine, comprising:
 - culturing the transformant of any one of (47) to (50) in a medium to produce and accumulate L-lysine in the medium, and
 - recovering the L-lysine from the culture.
- (52) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform

5

10

15

20

25

30

35

40

45

50

one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof;

recovering the compound from the culture.

- (64) The method according to (63), wherein the compound is L-lysine.
- (65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

5

10

15

20

25

30

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

- (ii) separating the proteins prepared in (i) by two dimensional electrophoresis;
- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.

As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to a method for examining of a gene at the polypeptide level.

- (66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- (67) The method according to (66), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).
- 35 [0018] The present invention will be described below in more detail, based on the determination of the full nucleotide sequence of coryneform bacteria.
 - 1. Determination of full nucleotide sequence of coryneform bacteria
- [0019] The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacteriology, 8: 599 (1974).
 - [0020] Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum, Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like
 - [0021] Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium flavum, or Corynebacterium lactofermentum), Corynebacterium glutamicum ATCC 14020 (prior genus and species: Brevibacterium divaricatum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium herculis ATCC 13868, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium immariophilum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like.

(1) Preparation of genome DNA of coryneform bacteria

[0022] Coryneform bacteria can be cultured by a conventional method.

[0023] Any of a natural medium and a synthetic medium can be used, so long as it is a medium suitable for efficient culturing of the microorganism, and it contains a carbon source, a nitrogen source, an inorganic salt, and the like which can be assimilated by the microorganism.

[0024] In Corynebacterium glutamicum, for example, a BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine and the like can be used. The culturing is carried out at 25 to 35°C overnight.

[0025] After the completion of the culture, the cells are recovered from the culture by centrifugation. The resulting cells are washed with a washing solution.

[0026] Examples of the washing solution include STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l ethylenediaminetetraacetic acid (hereinafter referred to as "EDTA"), pH 8.0), and the like.

[0027] Genome DNA can be obtained from the washed cells according to a conventional method for obtaining genome DNA, namely, lysing the cell wall of the cells using a lysozyme and a surfactant (SDS, etc.), eliminating proteins and the like using a phenol solution and a phenol/chloroform solution, and then precipitating the genome DNA with ethanol or the like. Specifically, the following method can be illustrated.

[0028] The washed cells are suspended in a washing solution containing 5 to 20 mg/l lysozyme. After shaking, 5 to 20% SDS is added to lyse the cells. In usual, shaking is gently performed at 25 to 40°C for 30 minutes to 2 hours. After shaking, the suspension is maintained at 60 to 70°C for 5 to 15 minutes for the lysis.

[0029] After the lysis, the suspension is cooled to ordinary temperature, and 5 to 20 ml of Tris-neutralized phenol is added thereto, followed by gently shaking at room temperature for 15 to 45 minutes.

[0030] After shaking, centrifugation (15,000 \times g, 20 minutes, 20°C) is carried out to fractionate the aqueous layer.

[0031] After performing extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol are added to the aqueous layer at 1/10 times volume and 2 times volume, of the aqueous layer, respectively, followed by gently stirring to precipitate the genome DNA.

[0032] The genome DNA is dissolved again in a buffer containing 0.01 to 0.04 mg/ml RNase. As an example of the buffer, TE buffer (10 mmol/l Tris hydrochloride, 1 mol/l EDTA, pH 8.0) can be used. After dissolving, the resultant solution is maintained at 25 to 40°C for 20 to 50 minutes and then extracted successively with phenol, phenol/chloroform and chloroform as in the above case.

[0033] After the extraction, isopropanol precipitation is carried out and the resulting DNA precipitate is washed with 70% ethanol, followed by air drying, and then dissolved in TE buffer to obtain a genome DNA solution.

(2) Production of shotgun library

20

35

40

50

[0034] A method for produce a genome DNA library using the genome DNA of the coryneform bacteria prepared in the above (1) include a method described in *Molecular Cloning*, *A laboratory Manual*, Second Edition (1989) (hereinafter referred to as "*Molecular Cloning*, 2nd ed."). In particular, the following method can be exemplified to prepare a genome DNA library appropriately usable in determining the full nucleotide sequence by the shotgun method.

[0035] To 0.01 mg of the genome DNA of the coryneform bacteria prepared in the above (1), a buffer, such as TE buffer or the like, is added to give a total volume of 0.4 ml. Then, the genome DNA is digested into fragments of 1 to 10 kb with a sonicator (Yamato Powersonic Model 50). The treatment with the sonicator is performed at an output of 20 continuously for 5 seconds.

[0036] The resulting genome DNA fragments are blunt-ended using DNA blunting kit (manufactured by Takara Shuzo) or the like.

[0037] The blunt-ended genome fragments are fractionated by agarose gel or polyacrylamide gel electrophoresis and genome fragments of 1 to 2 kb are cut out from the gel.

[0038] To the gel, 0.2 to 0.5 ml of a buffer for eluting DNA, such as MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) or the like, is added, followed by shaking at 25 to 40°C overnight to elute DNA.

[0039] The resulting DNA eluate is treated with phenol/chloroform and then precipitated with ethanol to obtain a genome library insert.

[0040] This insert is ligated into a suitable vector, such as pUC18 Smal/SAP (manufactured by Amersham Pharmacia Biotech) or the like, using T4 ligase (manufactured by Takara Shuzo) or the like. The ligation can be carried out by allowing a mixture to stand at 10 to 20°C for 20 to 50 hours.

[0041] The resulting ligation product is precipitated with ethanol and dissolved in 5 to 20 μ l of TE buffer.

[0042] Escherichia coli is transformed in accordance with a conventional method using 0.5 to 2 μ l of the ligation solution. Examples of the transformation method include the electroporation method using ELECTRO MAX DHIOB

one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof;

recovering the compound from the culture.

- (64) The method according to (63), wherein the compound is L-lysine.
 - (65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

5

10

15

20

25

30

50

55

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

- (ii) separating the proteins prepared in (i) by two dimensional electrophoresis;
- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.
- As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to a method for examining of a gene at the polypeptide level.
- (66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- (67) The method according to (66), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).
- 35 [0018] The present invention will be described below in more detail, based on the determination of the full nucleotide sequence of coryneform bacteria.
 - 1. Determination of full nucleotide sequence of coryneform bacteria
- [0019] The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacteriology, 8: 599 (1974).
 - [0020] Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum, Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like.
 - [0021] Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium flavum, or Corynebacterium lactofermentum), Corynebacterium glutamicum ATCC 14020 (prior genus and species: Brevibacterium divaricatum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium herculis ATCC 13868, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium immariophilum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like.

(manufactured by Life Technologies) for Escherichia coli. The electroporation method can be carried out under the conditions as described in the manufacturer's instructions.

[0043] The transformed Escherichia coli is spread on a suitable selection medium containing agar, for example, LB plate medium containing 10 to 100 mg/l ampicillin (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) when pUC18 is used as the cloning vector, and cultured therein.

[0044] The transformant can be obtained as colonies formed on the plate medium. In this step, it is possible to select the transformant having the recombinant DNA containing the genome DNA as white colonies by adding X-gal and IPTG (isopropyl- β -thiogalactopyranoside) to the plate medium.

[0045] The transformant is allowed to stand for culturing in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml of ampicillin has been added in each well. The resulting culture can be used in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any

(3) Production of cosmid library

5

10

15

20

25

30

35

40

45

50

[0046] The genome DNA (0.1 mg) of the coryneform bacteria prepared in the above (1) is partially digested with a restriction enzyme, such as Sau3Al or the like, and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under a 10 to 40% sucrose density gradient using a 10% sucrose buffer (1 mol/l Nacl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% sucrose, pH 8.0) and a 40% sucrose buffer (elevating the concentration of the 10% sucrose buffer to 40%).

[0047] After the centrifugation, the thus separated solution is fractionated into tubes in 1 ml per each tube. After confirming the DNA fragment size of each fraction by agarose gel electrophoresis, a fraction rich in DNA fragments of about 40 kb is precipitated with ethanol.

[0048] The resulting DNA fragment is ligated to a cosmid vector having a cohesive end which can be ligated to the fragment. When the genome DNA is partially digested with Sau3AI, the partially digested product can be ligated to, for example, the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instruc-

[0049] The resulting ligation product is packaged using a packaging extract which can be prepared by a method described in Molecular Cloning, 2nd ed. and then used in transforming Escherichia coli. More specifically, the ligation product is packaged using, for example, a commercially available packaging extract, Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions and then introduced into Escherichia coli XL-1-BlueMR (manufactured by Stratagene) or the like.

[0050] The thus transformed Escherichia coli is spread on an LB plate medium containing ampicillin, and cultured therein.

[0051] The transformant can be obtained as colonies formed on the plate medium.

The transformant is subjected to standing culture in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin has been added.

[0053] The resulting culture can be employed in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0054] The full nucleotide sequence of genome DNA of coryneform bacteria can be determined basically according to the whole genome shotgun method (Science, 269: 496-512 (1995)).

[0055] The template used in the whole genome shotgun method can be prepared by PCR using the library prepared in the above (2) (DNA Research, 5: 1-9 (1998)).

[0056] Specifically, the template can be prepared as follows.

[0057] The clone derived from the whole genome shotgun library is inoculated by using a replicator (manufactured by GENETIX) into each well of a 96-well plate to which 0.08 ml per well of the LB medium containing 0.1 mg/ml ampicillin has been added, followed by stationarily culturing at 37°C overnight.

[0058] Next, the culture solution is transported, using a copy plate (manufactured by Tokken), into each well of a 96-well reaction plate (manufactured by PE Biosystems) to which 0.025 ml per well of a PCR reaction solution has been added using TaKaRa Ex Taq (manufactured by Takara Shuzo). Then, PCR is carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragments.

[0059] The excessive primers and nucleotides are eliminated using a kit for purifying a PCR product, and the product is used as the template in the sequencing reaction.

[0060] It is also possible to determine the nucleotide sequence using a double-stranded DNA plasmid as a template.

[0061] The double-stranded DNA plasmid used as the template can be obtained by the following method.

[0062] The clone derived from the whole genome shotgun library is inoculated into each well of a 24- or 96-well plate to which 1.5 ml per well of a 2 × YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin has been added, followed by culturing under shaking at 37°C overnight.

[0063] The double-stranded DNA plasmid can be prepared from the culture solution using an automatic plasmid preparing machine KURABO PI-50 (manufactured by Kurabo Industries), a multiscreen (manufactured by Millipore) or the like, according to each protocol.

[0064] To purify the plasmid, Biomek 2000 manufactured by Beckman Coulter and the like can be used.

[0065] The resulting purified double-stranded DNA plasmid is dissolved in water to give a concentration of about 0.1 mg/ml. Then, it can be used as the template in sequencing.

(4-2) Sequencing reaction

40

15

20

25

30

35

40

50

[0066] The sequencing reaction can be carried out according to a commercially available sequence kit or the like. A specific method is exemplified below.

[0067] To 6 μ l of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), 1 to 2 pmol of an M13 regular direction primer (M13-21) or an M13 reverse direction primer (MI3REV) (*DNA Research*, 5: 1-9 (1998)) and 50 to 200 ng of the template prepared in the above (4-1) (the PCR product or plasmid) to give 10 μ l of a sequencing reaction solution.

[0068] A dye terminator sequencing reaction (35 to 55 cycles) is carried out using this reaction solution and GeneAmp PCR System 9700 (manufactured by PE Biosystems) or the like. The cycle parameter can be determined in accordance with a commercially available kit, for example, the manufacture's instructions attached with ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit.

[0069] The sample can be purified using a commercially available product, such as Multi Screen HV plate (manufactured by Millipore) or the like, according to the manufacture's instructions.

[0070] The thus purified reaction product is precipitated with ethanol, dried and then used for the analysis. The dried reaction product can be stored in the dark at -30°C and the stored reaction product can be used at any time.

[0071] The dried reaction product can be analyzed using a commercially available sequencer and an analyzer according to the manufacture's instructions.

[0072] Examples of the commercially available sequencer include ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems). Example of the analyzer include ABI PRISM 3700 DNA Analyzer (manufactured by PE Biosystems).

(5) Assembly

[0073] A software, such as phred (The University of Washington) or the like, can be used as base call for use in analyzing the sequence information obtained in the above (4). A software, such as Cross_Match (The University of Washington) or SPS Cross_Match (manufactured by Southwest Parallel Software) or the like, can be used to mask the vector sequence information.

[0074] For the assembly, a software, such as phrap (The University of Washington), SPS phrap (manufactured by Southwest Parallel Software) or the like, can be used.

[0075] In the above, analysis and output of the results thereof, a computer such as UNIX, PC, Macintosh, and the like can be used.

[0076] Contig obtained by the assembly can be analyzed using a graphical editor such as consed (The University of Washington) or the like.

[0077] It is also possible to perform a series of the operations from the base call to the assembly in a lump using a script phredPhrap attached to the consed.

[0078] As used herein, software will be understood to also be referred to as a comparator.

(6) Determination of nucleotide sequence in gap part

[0079] Each of the cosmids in the cosmid library constructed in the above (3) is prepared in the same manner as in the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the insert fragment of the cosmid is determined using a commercially available kit, such as ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0080] About 800 cosmid clones are sequenced at both ends of the inserted fragment to detect a nucleotide sequence in the contig derived from the shotgun sequencing obtained in (5) which is coincident with the sequence. Thus, the chain linkage between respective cosmid clones and respective contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of Corynebacterium glutamicum ATCC 13032, a physical map of Mol. Gen. Genet., 252: 255-265 (1996) can be used.

[0081] The sequence in the region which cannot be covered with the contigs (gap part) can be determined by the following method.

[0082] Clones containing sequences positioned at the ends of the contigs are selected. Among these, a clone wherein only one end of the inserted fragment has been determined is selected and the sequence at the opposite end of the inserted fragment is determined.

[0083] A shotgun library clone or a cosmid clone derived therefrom containing the sequences at the respective ends of the inserted fragments in the two contigs is identified and the full nucleotide sequence of the inserted fragment of the clone is determined.

[0084] According to this method, the nucleotide sequence of the gap part can be determined.

[0085] When no shotgun library clone or cosmid clone covering the gap part is available, primers complementary to the end sequences of the two different contigs are prepared and the DNA fragment in the gap part is amplified. Then, sequencing is performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment is determined. Thus, the nucleotide sequence of the above-described region can be determined.

[0086] In a region showing a low sequence accuracy, primers are synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington), and the sequence is determined by the primer walking method to improve the sequence accuracy.

[0087] Examples of the thus determined nucleotide sequence of the full genome include the full nucleotide sequence of genome of *Corynebacterium glutamicum* ATCC 13032 represented by SEQ ID NO:1.

(7) Determination of nucleotide sequence of microorganism genome DNA using the nucleotide sequence represented by SEQ ID NO:1

[0088] A nucleotide sequence of a polynucleotide having a homology of 80% or more with the full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1 as determined above can also be determined using the nucleotide sequence represented by SEQ ID NO:1, and the polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is within the scope of the present invention. The term "polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention" is a polynucleotide in which a full nucleotide sequence of the chromosome DNA can be determined using as a primer an oligonucleotide composed of continuous 5 to 50 nucleotides in the nucleotide sequence represented by SEQ ID NO: 1, for example, according to PCR using the chromosome DNA as a template. A particularly preferred primer in determination of the full nucleotide sequence is an oligonucleotide having nucleotide sequences which are positioned at the interval of about 300 to 500 bp, and among such oligonucleotides, an oligonucleotide having a nucleotide sequence selected from DNAs encoding a protein relating to a main metabolic pathway is particularly preferred. The polynucleotide in which the full nucleotide sequence of the chromosome DNA can be determined using the oligonucleotide includes polynucleotides constituting a chromosome DNA derived from a microorganism belonging to coryneform bacteria. Such a polynucleotide is preferably a polynucleotide constituting chromosome DNA derived from a microorganism belonging to the genus Corynebacterium, more preferably a polynucleotide constituting a chromosome DNA of Corynebacterium glutamicum.

2. Identification of ORF (open reading frame) and expression regulatory fragment and determination of the function of ORF

[0089] Based on the full nucleotide sequence data of the genome derived from coryneform bacteria determined in the above item 1, an ORF and an expression modulating fragment can be identified. Furthermore, the function of the thus determined ORF can be determined.

[0090] The ORF means a continuous region in the nucleotide sequence of mRNA which can be translated as an amino acid sequence to mature to a protein. A region of the DNA coding for the ORF of rnRNA is also called ORF.

[0091] The expression modulating fragment (hereinafter referred to as "EMF") is used herein to define a series of polynucleotide fragments which modulate the expression of the ORF or another sequence ligated operatably thereto. The expression "modulate the expression of a sequence ligated operatably" is used herein to refer to changes in the expression of a sequence due to the presence of the EMF. Examples of the EMF include a promoter, an operator, an

~10

25

35

enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like. In coryneform bacteria, an EMF is usually present in an intergenic segment (a fragment positioned between two genes; about 10 to 200 nucleotides in length). Accordingly, an EMF is frequently present in an intergenic segment of 10 nucleotides or longer. It is also possible to determine or discover the presence of an EMF by using known EMF sequences as a target sequence or a target structural motif (or a target motif) using an appropriate software or comparator, such as FASTA (*Proc. Natl. Acad. Sci. USA, 85*: 2444-48 (1988)), BLAST (*J. Mol. Biol., 215*: 403-410 (1990)) or the like. Also, it can be identified and evaluated using a known EMF-capturing vector (for example, pKK232-8; manufactured by Amersham Pharmacia Biotech).

[0092] The term "target sequence" is used herein to refer to a nucleotide sequence composed of 6 or more nucleotides, an amino acid sequence composed of 2 or more amino acids, or a nucleotide sequence encoding this amino acid sequence composed of 2 or more amino acids. A longer target sequence appears at random in a data base at the lower possibility. The target sequence is preferably about 10 to 100 amino acid residues or about 30 to 300 nucleotide residues.

[0093] The term "target structural motif" or "target motif" is used herein to refer to a sequence or a combination of sequences selected optionally and reasonably. Such a motif is selected on the basis of the threedimensional structure formed by the folding of a polypeptide by means known to one of ordinary skill in the art. Various motives are known.

[0094] Examples of the target motif of a polypeptide include, but are not limited to, an enzyme activity site, a protein-protein interaction site, a signal sequence, and the like. Examples of the target motif of a nucleic acid include a promoter sequence, a transcriptional regulatory factor binding sequence, a hair pin structure, and the like.

[0095] Examples of highly useful EMF include a high-expression promoter, an inducible-expression promoter, and the like. Such an EMF can be obtained by positionally determining the nucleotide sequence of a gene which is known or expected as achieving high expression (for example, ribosomal RNA gene: GenBank Accession No. M16175 or Z46753) or a gene showing a desired induction pattern (for example, isocitrate lyase gene induced by acetic acid: Japanese Published Unexamined Patent Application No. 56782/93) via the alignment with the full genome nucleotide sequence determined in the above item 1, and isolating the genome fragment in the upstream part (usually 200 to 500 nucleotides from the translation initiation site). It is also possible to obtain a highly useful EMF by selecting an EMF showing a high expression efficiency or a desired induction pattern from among promoters captured by the EMF-capturing vector as described above.

[0096] The ORF can be identified by extracting characteristics common to individual ORFs, constructing a general model based on these characteristics, and measuring the conformity of the subject sequence with the model. In the identification, a software, such as GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994): manufactured by GenePro)), GeneMark.hmm (manufactured by GenePro), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (*Nuc. Acids. Res., 26*: 544-548 (1998): manufactured by The Institute of Genomic Research), or the like, can be used. In using the software, the default (initial setting) parameters are usually used, though the parameters can be optionally changed.

[0097] In the above-described comparisons, a computer, such as UNIX, PC, Macintosh, or the like, can be used.
[0098] Examples of the ORF determined by the method of the present invention include ORFs having the nucleotide sequences represented by SEQ ID NOS:2 to 3501 present in the genome of *Corynebacterium glutamicum* as represented by SEQ ID NO:1. In these ORFs, polypeptides having the amino acid sequences represented by SEQ ID NOS: 3502 to 7001 are encoded.

[0099] The function of an ORF can be determined by comparing the identified amino acid sequence of the ORF with known homologous sequences using a homology searching software or comparator, such as BLAST, FAST, Smith & Waterman (*Meth. Enzym., 164*: 765 (1988)) or the like on an amino acid data base, such as Swith-Prot, PIR, GenBank-nr-aa, GenPept constituted by protein-encoding domains derived from GenBank data base, OWL or the like.

[0100] Furthermore, by the homology searching, the identity and similarity with the amino acid sequences of known proteins can also be analyzed.

[0101] With respect of the term "identity" used herein, where two polypeptides each having 10 amino acids are different in the positions of 3 amino acids, these polypeptides have an identity of 70% with each other. In case wherein one of the different 3 amino acids is analogue (for example, leucine and isoleucine), these polypeptides have a similarity of 80%.

[0102] As a specific example, Table 1 shows the registration numbers in known data bases of sequences which are judged as having the highest similarity with the nucleotide sequence of the ORF derived from *Corynebacterium glutamicum* ATCC 13032, genes of these sequences, functions of these genes, and identities thereof compared with known amino acid translation sequences.

[0103] Thus, a great number of novel genes derived from coryneform bacteria can be identified by determining the full nucleotide sequence of the genome derived from coryneform bacterium by the means of the present invention. Moreover; the function of the proteins encoded by these genes can be determined. Since coryneform bacteria are industrially highly useful microorganisms, many of the identified genes are industrially useful.

-10

20

25

30

35

40

[0104] Moreover, the characteristics of respective microorganisms can be clarified by classifying the functions thus determined. As a result, valuable information in breeding is obtained.

[0105] Furthermore, from the ORF information derived from coryneform bacteria, the ORF corresponding to the microorganism is prepared and obtained according to the general method as disclosed in *Molecular Cloning*, 2nd ed. or the like. Specifically, an oligonucleotide having a nucleotide sequence adjacent to the ORF is synthesized, and the ORF can be isolated and obtained using the oligonucleotide as a primer and a chromosome DNA derived from coryneform bacteria as a template according to the general PCR cloning technique. Thus obtained ORF sequences include polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3501.

[0106] The ORF or primer can be prepared using a polypeptide synthesizer based on the above sequence information.

[0107] Examples of the polynucleotide of the present invention include a polynucleotide containing the nucleotide sequence of the ORF obtained in the above, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0108] The polynucleotide of the present invention can be a single-stranded DNA, a double-stranded DNA and a single-stranded RNA, though it is not limited thereto.

[0109] The polynucleotide which hybridizes with the polynucleotide containing the nucleotide sequence of the ORF obtained in the above under stringent conditions includes a degenerated mutant of the ORF. A degenerated mutant is a polynucleotide fragment having a nucleotide sequence which is different from the sequence of the ORF of the present invention which encodes the same amino acid sequence by degeneracy of a gene code.

[0110] Specific examples include a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3431, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0111] A polynucleotide which hybridizes under stringent conditions is a polynucleotide obtained by colony hybridization, plaque hybridization, Southern blot hybridization or the like using, as a probe, the polynucleotide having the nucleotide sequence of the ORF identified in the above. Specific examples include a polynucleotide which can be identified by carrying out hybridization at 65°C in the presence of 0.7-1.0 M NaCl using a filter on which a polynucleotide prepared from colonies or plaques is immobilized, and then washing the filter with 0.1x to 2x SSC solution (the composition of lx SSC contains 150 mM sodium chloride and 15 mM sodium citrate) at 65°C.

[0112] The hybridization can be carried out in accordance with known methods described in, for example. *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, DNA Cloning 1: Core Techniques, A Practical Approach*, Second Edition, Oxford University (1995) or the like. Specific examples of the polynucleotide which can be hybridized include a DNA having a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the nucleotide sequence represented by any one of SEQ ID NO:2 to 3431 when calculated using default (initial setting) parameters of a homology searching software, such as BLAST, FASTA, Smith-Waterman or the like.

[0113] Also, the polynucleotide of the present invention includes a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931 and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0114] Furthermore, the polynucleotide of the present invention includes a polynucleotide which is present in the 5' upstream or 3' downstream region of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS: 2 to 3431 in a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of a polypeptide encoded by the polynucleotide. Specific examples of the polynucleotide having an activity of regulating an expression of a polypeptide encoded by the polynucleotide includes a polynucleotide encoding the above described EMF, such as a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like.

[0115] The primer used for obtaining the ORF according to the above PCR cloning technique includes an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides in the nucleotide sequence of the ORF and an adjacent region or an oligonucleotide comprising a sequence which is complementary to the oligonucleotide. Specific examples include an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431, and an oligonucleotide comprising a sequence complementary to the oligonucleotide comprising a sequence of at least 10 to 20 continuous nucleotide of any one of SEQ ID NOS:1 to 3431. When the primers are used as a sense primer and an antisense primer, the above-described oligonucleotides in which melting temperature (T_m) and the number of nucleotides are not significantly different from each other are preferred.

[0116] The oligonucleotide of the present invention includes an oligonucleotide comprising a sequence which is the same as 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431 or an oligonucleotide comprising a sequence complementary to the oligonucleotide.

[0117] Also, analogues of these oligonucleotides (hereinafter also referred to as "analogous oligonucleotides") are also provided by the present invention and are useful in the methods described herein.

[0118] Examples of the analogous oligonucleotides include analogous oligonucleotides in which a phosphodiester

50

-10

bond in an oligonucleotide is converted to a phosphorothioate bond, analogous oligonucleotides in which a phosphodiester bond in an oligonucleotide is converted to an N3'-P5' phosphoamidate bond, analogous oligonucleotides in which ribose and a phosphodiester bond in an oligonucleotide is converted to a peptide nucleic acid bond, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 propynyluracil, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 thiazoluracil, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with C-5 propynylcytosine, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with phenoxazine-modified cytosine, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide with 2'-methoxyethoxyribose, and the like (*Cell Engineering*, 16: 1463 (1997)).

[0119] The above oligonucleotides and analogous oligonucleotides of the present invention can be used as probes for hybridization and antisense nucleic acids described below in addition to as primers.

[0120] Examples of a primer for the antisense nucleic acid techniques known in the art include an oligonucleotide which hybridizes the oligonucleotide of the present invention under stringent conditions and has an activity regulating expression of the polypeptide encoded by the polynucleotide, in addition to the above oligonucleotide.

3. Determination of isozymes

-10

15

20

25

35

45

50

55

[0121] Many mutants of coryneform bacteria which are useful in the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, are obtained by the present invention.

[0122] However, since the gene sequence data of the microorganism has been, to date, insufficient, useful mutants have been obtained by mutagenic techniques using a mutagen, such as nitrosoguanidine (NTG) or the like.

[0123] Although genes can be mutated randomly by the mutagenic method using the above-described mutagen, all genes encoding respective isozymes having similar properties relating to the metabolism of intermediates cannot be mutated. In the mutagenic method using a mutagen, genes are mutated randomly. Accordingly, harmful mutations worsening culture characteristics, such as delay in growth, accelerated foaming, and the like, might be imparted at a great frequency, in a random manner.

[0124] However, if gene sequence information is available, such as is provided by the present invention, it is possible to mutate all of the genes encoding target isozymes. In this case, harmful mutations may be avoided and the target mutation can be incorporated.

[0125] Namely, an accurate number and sequence information of the target isozymes in coryneform bacteria can be obtained based on the ORF data obtained in the above item 2. By using the sequence information, all of the target isozyme genes can be mutated into genes having the desired properties by, for example, the site-specific mutagenesis method described in *Molecular Cloning*, 2nd ed. to obtain useful mutants having elevated productivity of useful substances.

4. Clarification or determination of biosynthesis pathway and signal transmission pathway

[0126] Attempts have been made to elucidate biosynthesis pathways and signal transmission pathways in a number of organisms, and many findings have been reported. However, there are many unknown aspects of coryneform bacteria since a number of genes have not been identified so far.

[0127] These unknown points can be clarified by the following method.

[0128] The functional information of ORF derived from coryneform bacteria as identified by the method of above item 2 is arranged. The term "arranged" means that the ORF is classified based on the biosynthesis pathway of a substance or the signal transmission pathway to which the ORF belongs using known information according to the functional information. Next, the arranged ORF sequence information is compared with enzymes on the biosynthesis pathways or signal transmission pathways of other known organisms. The resulting information is combined with known data on coryneform bacteria. Thus, the biosynthesis pathways and signal transmission pathways in coryneform bacteria, which have been unknown so far, can be determined.

[0129] As a result that these pathways which have been unknown or unclear hitherto are clarified, a useful mutant for producing a target useful substance can be efficiently obtained.

[0130] When the thus clarified pathway is judged as important in the synthesis of a useful product, a useful mutant can be obtained by selecting a mutant wherein this pathway has been strengthened. Also, when the thus clarified pathway is judged as not important in the biosynthesis of the target useful product, a useful mutant can be obtained by selecting a mutant wherein the utilization frequency of this pathway is lowered.

5. Clarification or determination of useful mutation point

[0131] Many useful mutants of coryneform bacteria which are suitable for the production of useful substances, such

as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, have been obtained. However, it is hardly known which mutation point is imparted to a gene to improve the productivity.

[0132] However, mutation points contained in production strains can be identified by comparing desired sequences of the genome DNA of the production strains obtained from coryneform bacteria by the mutagenic technique with the nucleotide sequences of the corresponding genome DNA and ORF derived from coryneform bacteria determined by the methods of the above items 1 and 2 and analyzing them

[0133] Moreover, effective mutation points contributing to the production can be easily specified from among these mutation points on the basis of known information relating to the metabolic pathways, the metabolic regulatory mechanisms, the structure activity correlation of enzymes, and the like.

[0134] * When any efficient mutation can be hardly specified based on known data, the mutation points thus identified can be introduced into a wild strain of coryneform bacteria or a production strain free of the mutation. Then, it is examined whether or not any positive effect can be achieved on the production.

[0135] For example, by comparing the nucleotide sequence of homoserine dehydrogenase gene hom of a lysine-producing B-6 strain of Corynebacterium glutamicum (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)) with the nucleotide sequence corresponding to the genome of Corynebacterium glutamicum ATCC 13032 according to the present invention, a mutation of amino acid replacement in which valine at the 59-position is replaced with alanine (Val59Ala) was identified. A strain obtained by introducing this mutation into the ATCC 13032 strain by the gene replacement method can produce lysine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0136] Similarly, by comparing the nucleotide sequence of pyruvate carboxylase gene *pyc* of the B-6 strain with the nucleotide sequence corresponding to the ATCC 13032 genome, a mutation of amino acid replacement in which proline at the 458-position was replaced with serine (Pro458Ser) was identified. A strain obtained by introducing this mutation into a lysine-producing strain of No. 58 (FERM BP-7134) of *Corynebacterium glutamicum* free of this mutation shows an improved lysine productivity in comparison with the No. 58 strain, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0137] In addition, a mutation A1a213Thr in glucose-6-phosphate dehydrogenase was specified as an effective mutation relating to the production of lysine by detecting glucose-6-phosphate dehydrogenase gene zwf of the B-6 strain.

[0138] Furthermore, the lysine-productivity of Corynebacterium glutamicum was improved by replacing the base at the 932-position of aspartokinase gene lysC of the Corynebacterium glutamicum ATCC 13032 genome with cytosine to thereby replace threonine at the 311-position by isoleucine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0139] Also, as another method to examine whether or not the identified mutation point is an effective mutation, there is a method in which the mutation possessed by the lysine-producing strain is returned to the sequence of a wild type strain by the gene replacement method and whether or not it has a negative influence on the lysine productivity. For example, when the amino acid replacement mutation Val59Ala possessed by *hom* of the lysine-producing B-6 strain was returned to a wild type amino acid sequence, the lysine productivity was lowered in comparison with the B-6 strain. Thus, it was found that this mutation is an effective mutation contributing to the production of lysine.

[0140] Effective mutation points can be more efficiently and comprehensively extracted by combining, if needed, the DNA array analysis or proteome analysis described below.

6. Method of breeding industrially advantageous production strain

[0141] It has been a general practice to construct production strains, which are used industrially in the fermentation production of the target useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, by repeating mutagenesis and breeding based on random mutagenesis using mutagens, such as NTG or the like, and screening.

[0142] In recent years, many examples of improved production strains have been made through the use of recombinant DNA techniques. In breeding, however, most of the parent production strains to be improved are mutants obtained by a conventional mutagenic procedure (W. Leuchtenberger, *Amino Acids - Technical Production and Use.* In: Roehr (ed) Biotechnology, second edition, vol. 6, products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim. P 465 (1996)).

[0143] Although mutagenesis methods have largely contributed to the progress of the fermentation industry, they suffer from a serious problem of multiple, random introduction of mutations into every part of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain obtained by the random mutation and selecting is generally inferior in properties (for example, showing poor growth, delayed consumption of saccharides, and poor resistance to stresses such as temperature and oxygen) to a wild type strain, which brings about troubles such as failing to establish a sufficiently elevated productivity, being frequently contaminated with miscellaneous bacteria, requiring troublesome procedures in culture maintenance, and the like, and, in its

to

20

40

45

turn, elevating the production cost in practice. In addition, the improvement in the productivity is based on random mutations and thus the mechanism thereof is unclear. Therefore, it is very difficult to plan a rational breeding strategy for the subsequent improvement in the productivity.

[0144] According to the present invention, effective mutation points contributing to the production can be efficiently specified from among many mutation points accumulated in the chromosome of a production strain which has been bred from coryneform bacteria and, therefore, a novel breeding method of assembling these effective mutations in the coryneform bacteria can be established. Thus, a useful production strain can be reconstructed. It is also possible to construct a useful production strain from a wild type strain.

[0145] Specifically, a useful mutant can be constructed in the following manner.

[0146] One of the mutation points is incorporated into a wild type strain of coryneform bacteria. Then, it is examined whether or not a positive effect is established on the production. When a positive effect is obtained, the mutation point is saved. When no effect is obtained, the mutation point is removed. Subsequently, only a strain having the effective mutation point is used as the parent strain, and the same procedure is repeated. In general, the effectiveness of a mutation positioned upstream cannot be clearly evaluated in some cases when there is a rate-determining point in the downstream of a biosynthesis pathway. It is therefore preferred to successively evaluate mutation points upward from downstream.

[0147] By reconstituting effective mutations by the method as described above in a wild type strain or a strain which has a high growth speed or the same ability to consume saccharides as the wild type strain, it is possible to construct an industrially advantageous strain which is free of troubles in the previous methods as described above and to conduct fermentation production using such strains within a short time or at a higher temperature.

[0148] For example, a lysine-producing mutant B-6 (*Appl. Microbiol. Biotechnol., 32*: 262-273 (1989)), which is obtained by multiple rounds of random mutagenesis from a wild type strain *Corynebacterium glutamicum* ATCC 13032, enables lysine fermentation to be performed at a temperature between 30 and 34°C but shows lowered growth and lysine productivity at a temperature exceeding 34°C. Therefore, the fermentation temperature should be maintained at 34°C or lower. In contrast thereto, the production strain described in the above item 5, which is obtained by reconstituting effective mutations relating to lysine production, can achieve a productivity at 40 to 42°C equal or superior to the result obtained by culturing at 30 to 34°C. Therefore, this strain is industrially advantageous since it can save the load of cooling during the fermentation.

[0149] When culture should be carried out at a high temperature exceeding 43°C, a production strain capable of conducting fermentation production at a high temperature exceeding 43°C can be obtained by reconstituting useful mutations in a microorganism belonging to the genus *Corynebacterium* which can grow at high temperature exceeding 43°C. Examples of the microorganism capable of growing at a high temperature exceeding 43°C include *Corynebacterium thermoaminogenes*, such as *Corynebacterium thermoaminogenes* FERM 9244, FERM 9245, FERM 9246 and FERM 9247.

[0150] A strain having a further improved productivity of the target product can be obtained using the thus reconstructed strain as the parent strain and further breeding it using the conventional mutagenesis method, the gene amplification method, the gene replacement method using the recombinant DNA technique, the transduction method or the cell fusion method. Accordingly, the microorganism of the present invention includes, but is not limited to, a mutant, a cell fusion strain, a transformant, a transductant or a recombinant strain constructed by using recombinant DNA techniques, so long as it is a producing strain obtained via the step of accumulating at least two effective mutations in a coryneform bacteria in the course of breeding.

[0151] When a mutation point judged as being harmful to the growth or production is specified, on the other hand, it is examined whether or not the producing strain used at present contains the mutation point. When it has the mutation, it can be returned to the wild type gene and thus a further useful production strain can be bred.

[0152] The breeding method as described above is applicable to microorganisms, other than coryneform bacteria, which have industrially advantageous properties (for example, microorganisms capable of quickly utilizing less expensive carbon sources, microorganisms capable of growing at higher temperatures).

- 7. Production and utilization of polynucleotide array
- (1) Production of polynucleotide array

[0153] A polynucleotide array can be produced using the polynucleotide or oligonucleotide of the present invention obtained in the above items 1 and 2.

[0154] Examples include a polynucleotide array comprising a solid support to which at least one of a polynucleotide comprising the nucleotide sequence represented by SEQ ID NOS:2 to 3501, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous nucleotides in the nucleotide sequence of the polynucleotide is adhered; and a polynucleotide array comprising a solid support to

5

15

25

40

which at least one of a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 7001, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequences of the polynucleotides is adhered.

[0155] Polynucleotide arrays of the present invention include substrates known in the art, such as a DNA chip, a DNA microarray and a DNA macroarray, and the like, and comprises a solid support and plural polynucleotides or fragments thereof which are adhered to the surface of the solid support.

[0156] Examples of the solid support include a glass plate, a nylon membrane, and the like.

[0157] The polynucleotides or fragments thereof adhered to the surface of the solid support can be adhered to the surface of the solid support using the general technique for preparing arrays. Namely, a method in which they are adhered to a chemically surface-treated solid support, for example, to which a polycation such as polylysine or the like has been adhered (*Nat. Genet.*, 21: 15-19 (1999)). The chemically surface-treated supports are commercially available and the commercially available solid product can be used as the solid support of the polynucleotide array according to the present invention.

[0158] As the polynucleotides or oligonucleotides adhered to the solid support, the polynucleotides and oligonucleotides of the present invention obtained in the above items 1 and 2 can be used.

[0159] The analysis described below can be efficiently performed by adhering the polynucleotides or oligonucleotides to the solid support at a high density, though a high fixation density is not always necessary.

[0160] Apparatus for achieving a high fixation density, such as an arrayer robot or the like, is commercially available from Takara Shuzo (GMS417 Arrayer), and the commercially available product can be used.

[0161] Also, the oligonucleotides of the present invention can be synthesized directly on the solid support by the photolithography method or the like (*Nat. Genet., 21*: 20-24 (1999)). In this method, a linker having a protective group which can be removed by light irradiation is first adhered to a solid support, such as a slide glass or the like. Then, it is irradiated with light through a mask (a photolithograph mask) permeating light exclusively at a definite part of the adhesion part. Next, an oligonucleotide having a protective group which can be removed by light irradiation is added to the part. Thus, a ligation reaction with the nucleotide arises exclusively at the irradiated part. By repeating this procedure, oligonucleotides, each having a desired sequence, different from each other can be synthesized in respective parts. Usually, the oligonucleotides to be synthesized have a length of 10 to 30 nucleotides.

30 (2) Use of polynucleotide array

-10

40

45

50

55

[0162] The following procedures (a) and (b) can be carried out using the polynucleotide array prepared in the above (1).

(a) Identification of mutation point of coryneform bacterium mutant and analysis of expression amount and expression profile of gene encoded by genome

[0163] By subjecting a gene derived from a mutant of coryneform bacteria or an examined gene to the following steps (i) to (iv), the mutation point of the gene can be identified or the expression amount and expression profile of the gene can be analyzed:

(i) producing a polynucleotide array by the method of the above (1);

(ii) incubating polynucleotides immobilized on the polynucleotide array together with the labeled gene derived from a mutant of the coryneform bacterium using the polynucleotide array produced in the above (i) under hybridization conditions;

(iii) detecting the hybridization; and

(iv) analyzing the hybridization data.

[0164] The gene derived from a mutant of coryneform bacteria or the examined gene include a gene relating to biosynthesis of at least one selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof.

[0165] The method will be described in detail.

[0166] A single nucleotide polymorphism (SNP) in a human region of 2,300 kb has been identified using polynucleotide arrays (*Science, 280*: 1077-82 (1998)). In accordance with the method of identifying SNP and methods described in *Science, 278*: 680-686 (1997); *Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999); *Science, 284*: 1520-23 (1999), and the like using the polynucleotide array produced in the above (1) and a nucleic acid molecule (DNA, RNA) derived from coryneform bacteria in the method of the hybridization, a mutation point of a useful mutant, which is useful in producing an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, or the like can be identified and the gene

expression amount and the expression profile thereof can be analyzed.

[0167] The nucleic acid molecule (DNA, RNA) derived from the coryneform bacteria can be obtained according to the general method described in *Molecular Cloning*, 2nd ed. or the like. mRNA derived from *Corynebacterium glutamicum* can also be obtained by the method of Bormann *et al.* (*Molecular Microbiology*, 6: 317-326 (1992)) or the like.

- [0168] Although ribosomal RNA (rRNA) is usually obtained in large excess in addition to the target mRNA, the analysis is not seriously disturbed thereby.
 - [0169] The resulting nucleic acid molecule derived from coryneform bacteria is labeled. Labeling can be carried out according to a method using a fluorescent dye, a method using a radioisotope or the like.
 - [0170] Specific examples include a labeling method in which psoralen-biotin is crosslinked with RNA extracted from a microorganism and, after hybridization reaction, a fluorescent dye having streptoavidin bound thereto is bound to the biotin moiety (*Nat. Biotechnol., 16*: 45-48 (1998)); a labeling method in which a reverse transcription reaction is carried out using RNA extracted from a microorganism as a template and random primers as primers, and dUTP having a fluorescent dye (for example, Cy3, Cy5) (manufactured by Amersham Pharmacia Biotech) is incorporated into cDNA (*Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999)); and the like.
- [0171] The labeling specificity can be improved by replacing the random primers by sequences complementary to the 3'-end of ORF (*J. Bacteriol., 181*: 6425-40 (1999)).
 - [0172] In the hybridization method, the hybridization and subsequent washing can be carried out by the general method (*Nat. Bioctechnol.*, 14: 1675-80 (1996), or the like).
 - [0173] Subsequently, the hybridization intensity is measured depending on the hybridization amount of the nucleic acid molecule used in the labeling. Thus, the mutation point can be identified and the expression amount of the gene can be calculated.
 - [0174] The hybridization intensity can be measured by visualizing the fluorescent signal, radioactivity, luminescence dose, and the like, using a laser confocal microscope, a CCD camera, a radiation imaging device (for example, STORM manufactured by Amersham Pharmacia Biotech), and the like, and then quantifying the thus visualized data.
- ²⁵ [0175] A polynucleotide array on a solid support can also be analyzed and quantified using a commercially available apparatus, such as GMS418 Array Scanner (manufactured by Takara Shuzo) or the like.
 - [0176] The gene expression amount can be analyzed using a commercially available software (for example, ImaGene manufactured by Takara Shuzo; Array Gauge manufactured by Fuji Photo Film; ImageQuant manufactured by Amersham Pharmacia Biotech, or the like).
- 30 [0177] A fluctuation in the expression amount of a specific gene can be monitored using a nucleic acid molecule obtained in the time course of culture as the nucleic acid molecule derived from coryneform bacteria. The culture conditions can be optimized by analyzing the fluctuation.
 - [0178] The expression profile of the microorganism at the total gene level (namely, which genes among a great number of genes encoded by the genome have been expressed and the expression ratio thereof) can be determined using a nucleic acid molecule having the sequences of many genes determined from the full genome sequence of the microorganism. Thus, the expression amount of the genes determined by the full genome sequence can be analyzed and, in its turn, the biological conditions of the microorganism can be recognized as the expression pattern at the full gene level.
- 40 (b) Confirmation of the presence of gene homologous to examined gene in coryneform bacteria
 - [0179] Whether or not a gene homologous to the examined gene, which is present in an organism other than coryneform bacteria, is present in coryneform bacteria can be detected using the polynucleotide array prepared in the above (1).
- [0180] This detection can be carried out by a method in which an examined gene which is present in an organism other than coryneform bacteria is used instead of the nucleic acid molecule derived from coryneform bacteria used in the above identification/analysis method of (1).
- 8. Recording medium storing full genome nucleotide sequence and ORF data and being readable by a computer and methods for using the same
 - [0181] The term "recording medium or storage device which is readable by a computer" means a recording medium or storage medium which can be directly readout and accessed with a computer. Examples include magnetic recording media, such as a floppy disk, a hard disk, a magnetic tape, and the like; optical recording media, such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, and the like; electric recording media, such as RAM, ROM, and the like; and hybrids in these categories (for example, magnetic/optical recording media, such as MO and the like).
 - [0182] Instruments for recording or inputting in or on the recording medium or instruments or devices for reading out the information in the recording medium can be appropriately selected, depending on the type of the recording medium

and the access device utilized. Also, various data processing programs, software, comparator and formats are used for recording and utilizing the polynucleotide sequence information or the like. of the present invention in the recording medium. The information can be expressed in the form of a binary file, a text file or an ASCII file formatted with commercially available software, for example. Moreover, software for accessing the sequence information is available and known to one of ordinary skill in the art.

[0183] Examples of the information to be recorded in the above-described medium include the full genome nucleotide sequence information of coryneform bacteria as obtained in the above item 2, the nucleotide sequence information of ORF, the amino acid sequence information encoded by the ORF, and the functional information of polynucleotides coding for the amino acid sequences.

[0184] The recording medium or storage device which is readable by a computer according to the present invention refers to a medium in which the information of the present invention has been recorded. Examples include recording media or storage devices which are readable by a computer storing the nucleotide sequence information represented by SEQ ID NOS:1 to 3501, the amino acid sequence information represented by SEQ ID NOS:3502 to 7001, the functional information of the nucleotide sequences represented by SEQ ID NOS:1 to 3501, the functional information of the amino acid sequences represented by SEQ ID NOS:3502 to 7001, and the information listed in Table 1 below and the like.

- 9. System based on a computer using the recording medium of the present invention which is readable by a computer
- [0185] The term "system based on a computer" as used herein refers a system composed of hardware device(s), software device(s), and data recording device(s) which are used for analyzing the data recorded in the recording medium of the present invention which is readable by a computer.

[0186] The hardware device(s) are, for example, composed of an input unit, a data recording unit, a central processing unit and an output unit collectively or individually.

[0187] By the software device(s), the data recorded in the recording medium of the present invention are searched or analyzed using the recorded data and the hardware device(s) as described herein. Specifically, the software device (s) contain at least one program which acts on or with the system in order to screen, analyze or compare biologically meaningful structures or information from the nucleotide sequences, amino acid sequences and the like recorded in the recording medium according to the present invention.

[0188] Examples of the software device(s) for identifying ORF and EMF domains include GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994)), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (The Institute of Genomic Research; *Nuc. Acids. Res., 26*: 544-548 (1998)) and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

[0189] Examples of the software device(s) for identifying a genome domain or a polypeptide domain analogous to the target sequence or the target structural motif (homology searching) include FASTA, BLAST, Smith-Waterman, GenetyxMac (manufactured by Software Development), GCG Package (manufactured by Genetic Computer Group), GenCore (manufactured by Compugen), and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

[0190] Such a recording medium storing the full genome sequence data is useful in preparing a polynucleotide array by which the expression amount of a gene encoded by the genome DNA of coryneform bacteria and the expression profile at the total gene level of the microorganism, namely, which genes among many genes encoded by the genome have been expressed and the expression ratio thereof, can be determined.

[0191] The data recording device(s) provided by the present invention are, for example, memory device(s) for recording the data recorded in the recording medium of the present invention and target sequence or target structural motif data, or the like, and a memory accessing device(s) for accessing the same.

[0192] Namely, the system based on a computer according to the present invention comprises the following:

- (i) a user input device that inputs the information stored in the recording medium of the present invention, and target sequence or target structure motif information;
- (ii) a data storage device for at loast temporarily storing the input information;
- (iii) a comparator that compares the information stored in the recording medium of the present invention with the target sequence or target structure motif information, recorded by the data storing device of (ii) for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
- (iv) an output device that shows a screening or analyzing result obtained by the comparator.

-10

30

35

40

45

50

[0193] This system is usable in the methods in items 2 to 5 as described above for searching and analyzing the ORF and EMF domains, target sequence, target structural motif, etc. of a coryneform bacterium, searching homologs, searching and analyzing isozymes, determining the biosynthesis pathway and the signal transmission pathway, and identifying spots which have been found in the proteome analysis. The term "homologs" as used herein includes both of orthologs and paralogs.

10. Production of polypeptide using ORF derived from coryneform bacteria

[0194] The polypeptide of the present invention can be produced using a polynucleotide comprising the ORF obtained in the above item 2. Specifically, the polypeptide of the present invention can be produced by expressing the polynucleotide of the present invention or a fragment thereof in a host cell, using the method described in *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology*, and the like, for example, according to the following method.

[0195] A DNA fragment having a suitable length containing a part encoding the polypeptide is prepared from the full length ORF sequence, if necessary.

[0196] Also, DNA in which nucleotides in a nucleotide sequence at a part encoding the polypeptide of the present invention are replaced to give a codon suitable for expression of the host cell, if necessary. The DNA is useful for efficiently producing the polypeptide of the present invention.

[0197] A recombinant vector is prepared by inserting the DNA fragment into the downstream of a promoter in a suitable expression vector.

[0198] The recombinant vector is introduced to a host cell suitable for the expression vector.

[0199] Any of bacteria, yeasts, animal cells, insect cells, plant cells, and the like can be used as the host cell so long as it can be expressed in the gene of interest.

[0200] Examples of the expression vector include those which can replicate autonomously in the above-described host cell or can be integrated into chromosome and have a promoter at such a position that the DNA encoding the polypeptide of the present invention can be transcribed.

[0201] When a procaryote cell, such as a bacterium or the like, is used as the host cell, it is preferred that the recombinant vector containing the DNA encoding the polypeptide of the present invention can replicate autonomously in the bacterium and is a recombinant vector constituted by, at least a promoter, a ribosome binding sequence, the DNA of the present invention and a transcription termination sequence. A promoter controlling gene can also be contained therewith in operable combination.

[0202] Examples of the expression vectors include a vector plasmid which is replicable in Corynebacterium glutamicum, such as pCGI (Japanese Published Unexamined Patent Application No. 134500/82), pCG2 (Japanese Published Unexamined Patent Application No. 35197/83), pCG4 (Japanese Published Unexamined Patent Application No. 183799/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG116, pCE54 and pCB101 (Japanese Published Unexamined Patent Application No. 105999/83), pCE51, pCE52 and pCE53 (Mol. Gen. Genet., 196: 175-178 (1984)), and the like; a vector plasmid which is replicable in Escherichia coli, such as pET3 and pET11 (manufactured by Stratagene), pBAD, pThioHis and pTrcHis (manufactured by Invitrogen), pKK223-3 and pGEX2T (manufactured by Amersham Pharmacia Biotech), and the like; and pBTrp2, pBTac1 and pBTac2 (manufactured by Boehringer Mannheim Co.), pSE280 (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese Published Unexamined Patent Application No. 110600/83), pKYP200 (Agric. Biol. Chem., 48: 669 (1984)), pLSA1 (Agric. Biol. Chem., 53: 277 (1989)), pGEL1 (Proc. Natl. Acad. Sci. USA, 82: 4306 (1985)), pBluescript II SK(-) (manufactured by Stratagene), pTrs30 (prepared from Escherichia coli JM109/pTrS30 (FERM BP-5407)), pTrs32 (prepared from *Escherichia coli* JM109/pTrS32 (FERM BP-5408)), pGHA2 (prepared from Escherichia coli IGHA2 (FERM B-400), Japanese Published Unexamined Patent Application No. 221091/85), pGKA2 (prepared from Escherichia coli IGKA2 (FERM BP-6798), Japanese Published Unexamined Patent Application No. 221091/85), pTerm2 (U.S. Patents 4,686,191, 4,939,094 and 5,160,735), pSupex, pUB110, pTP5, pC194 and pEG400 (J. Bacteriol., 172: 2392 (1990)), pGEX (manufactured by Pharmacia), pET system (manufactured by Novagen), and the like.

[0203] Any promoter can be used so long as it can function in the host cell. Examples include promoters derived from *Escherichia coli*, phage and the like, such as *trp* promoter (P_{trp}), *lac* promoter, P_L promoter, P_R promoter, P_R promoter, P_R promoter and the like. Also, artificially designed and modified promoters, such as a promoter in which two P_{trp} are linked in series ($P_{trp} \times 2$), *tac* promoter, *lac*T7 promoter *let* promoter and the like, can be used.

[0204] It is preferred to use a plasmid in which the space between Shine-Dalgamo sequence which is the ribosome binding sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 nucleotides).

[0205] The transcription termination sequence is not always necessary for the expression of the DNA of the present invention. However, it is preferred to arrange the transcription terminating sequence at just downstream of the structural gene.

[0206] One of ordinary skill in the art will appreciate that the codons of the above-described elements may be opti-

5

-10

20

25

35

40

mized, in a known manner, depending on the host cells and environmental conditions utilized.

[0207] Examples of the host cell include microorganisms belonging to the genus *Escherichia*, the genus *Serratia*, the genus *Bacillus*, the genus *Brevibacterium*, the genus *Corynebacterium*, the genus *Microbacterium*. the genus *Pseudomonas*, and the like. Specific examples include *Escherichia coli* XL1-Blue, *Escherichia coli* XL2-Blue, *Escherichia coli* DH1, *Escherichia coli* MC1000. *Escherichia coli* KY3276, *Escherichia coli* W1485, *Escherichia coli* JM109, *Escherichia coli* HB101, *Escherichia coli* No. 49, *Escherichia coli* W3110, *Escherichia coli* NY49, *Escherichia coli* Gl698, *Escherichia coli* TB1, *Serratia ficaria*, *Serratia fonticola*, *Serratia liquefaciens*, *Serratia marcescens*, *Bacillus subtilis*, *Bacillus amyloliquefaciens*, *Corynebacterium ammonia genes*, *Brevibacterium immariophilum* ATCC 14068, *Brevibacterium saccharolyticum* ATCC 14066, *Corynebacterium glutamicum* ATCC 13032, *Corynebacterium glutamicum* ATCC 13869; *Corynebacterium glutamicum* ATCC 14067 (prior genus and species: *Brevibacterium flavum*), *Corynebacterium lactofermentum*), *Corynebacterium acetoacidophilum* ATCC 13870, *Corynebacterium thermoaminogenes* FERM 9244, *Microbacterium ammoniaphilum* ATCC 15354, *Pseudomonas putida*, *Pseudomonas* sp. D-0110, and the like.

[0208] When Corynebacterium glutamicum or an analogous microorganism is used as a host, an EMF necessary for expressing the polypeptide is not always contained in the vector so long as the polynucleotide of the present invention contains an EMF. When the EMF is not contained in the polynucleotide, it is necessary to prepare the EMF separately and ligate it so as to be in operable combination. Also, when a higher expression amount or specific expression regulation is necessary, it is necessary to ligate the EMF corresponding thereto so as to put the EMF in operable combination with the polynucleotide. Examples of using an externally ligated EMF are disclosed in Microbiology, 142: 1297-1309 (1996).

[0209] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into the above-described host cells, such as a method in which a calcium ion is used (*Proc. Natl. Acad. Sci. USA, 69*: 2110 (1972)), a protoplast method (Japanese Published Unexamined Patent Application No. 2483942/88), the methods described in *Genc, 17*: 107 (1982) and *Molecular & General Genetics, 168*: 111 (1979) and the like, can be used.

[0210] When yeast is used as the host cell, examples of the expression vector include pYES2 (manufactured by Invitrogen), YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, pHS15, and the like.

[0211] Any promoter can be used so long as it can be expressed in yeast. Examples include a promoter of a gene in the glycolytic pathway, such as hexose kinase and the like, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, a heat shock protein promoter, MF all promoter, CUP 1 promoter, and the like.

[0212] Examples of the host cell include microorganisms belonging to the genus Saccharomyces, the genus Schizosaccharomyces, the genus Kluyveromyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida and the like. Specific examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius, Candida utilis and the like.

[0213]. With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into yeast, such as an electroporation method (*Methods. Enzymol., 194*: 182 (1990)), a spheroplast method (*Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978)), a lithium acetate method (*J. Bacteriol., 153*: 163 (1983)), a method described in *Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978) and the like, can be used.

[0214] When animal cells are used as the host cells, examples of the expression vector include pcDNA3.1, pSinRep5 and pCEP4 (manufactured by Invitorogen), pRev-Tre (manufactured by Clontech), pAxCAwt (manufactured by Takara Shuzo), pcDNAI and pcDM8 (manufactured by Funakoshi), pAGE107 (Japanese Published Unexamined Patent Application No. 22979/91; *Cytotechnology, 3*:133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pcDM8 (*Nature, 329*: 840 (1987)), pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 (*J. Biochem., 101*: 1307 (1987)), pAGE210, and the like.

[0215] Any promoter can be used so long as it can function in animal cells. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a metallothionein promoter, a heat shock promoter, SRα promoter, and the like. Also, the enhancer of the IE gene of human CMV can be used together with the promoter.

[0216] Examples of the host cell include human Namalwa cell, monkey COS cell, Chinese hamster CHO cell, HST5637 (Japanese Published Unexamined Patent Application No. 299/88), and the like.

[0217] The method for introduction of the recombinant vector into animal cells is not particularly limited, so long as it is the general method for introducing DNA into animal cells, such as an electroporation method (*Cytotechnology, 3*: 133 (1990)), a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method (*Proc. Natl. Acad. Sci. USA, 84*, 7413 (1987)), the method described in *Virology, 52*: 456 (1973), and the like.

[0218] When insect cells are used as the host cells, the polypeptide can be expressed, for example, by the method described in *Bacurovirus Expression Vectors*, *A Laboratory Manual*, W.H. Freeman and Company, New York (1992), *Bio/Technology*, 6: 47 (1988), or the like.

[0219] Specifically, a recombinant gene transfer vector and bacurovirus are simultaneously inserted into insect cells

30

to obtain a recombinant virus in an insect cell culture supernatant, and then the insect cells are infected with the resulting recombinant virus to express the polypeptide.

[0220] Examples of the gene introducing vector used in the method include pBlueBac4.5, pVL1392, pVL1393 and pBlueBacIII (manufactured by Invitrogen), and the like.

- [0221] Examples of the bacurovirus include Autographa californica nuclear polyhedrosis virus with which insects of the family *Barathra* are infected, and the like.
 - [0222] Examples of the insect cells include *Spodoptera frugiperda* occytes Sf9 and Sf21 (*Bacurovirus Expression Vectors, A Laboratory Manual, W.H.* Freeman and Company, New York (1992)), *Trichoplusia ni* occyte High 5 (manufactured by Invitrogen) and the like.
- [0223] The method for simultaneously incorporating the above-described recombinant gene transfer vector and the above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), lipofection method (*Proc. Natl. Acad. Sci. USA, 84*: 7413 (1987)) and the like
 - [0224] When plant cells are used as the host cells, examples of expression vector include a Ti plasmid, a tobacco mosaic virus vector, and the like.
 - [0225] Any promoter can be used so long as it can be expressed in plant cells. Examples include 35S promoter of cauliflower mosaic virus (CaMV), rice actin 1 promoter, and the like.
 - [0226] Examples of the host cells include plant cells and the like, such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat, barley, and the like.
 - [0227] The method for introducing the recombinant vector is not particularly limited, so long as it is the general method for introducing DNA into plant cells, such as the *Agrobacterium* method (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO 94/00977), the electroporation method (Japanese Published Unexamined Patent Application No. 251887/85), the particle gun method (Japanese Patents 2606856 and 2517813), and the like.
- [0228] The transformant of the present invention includes a transformant containing the polypeptide of the present invention per se rather than as a recombinant vector, that is, a transformant containing the polypeptide of the present invention which is integrated into a chromosome of the host, in addition to the transformant containing the above recombinant vector.
- [0229] When expressed in yeasts, animal cells, insect cells or plant cells, a glycopolypeptide or glycosylated polypeptide can be obtained.
- [0230] The polypeptide can be produced by culturing the thus obtained transformant of the present invention in a culture medium to produce and accumulate the polypeptide of the present invention or any polypeptide expressed under the control of an EMF of the present invention, and recovering the polypeptide from the culture.
- [0231] Culturing of the transformant of the present invention in a culture medium is carried out according to the conventional method as used in culturing of the host.
- [0232] When the transformant of the present invention is obtained using a prokaryote, such as *Escherichia coli* or the like, or a eukaryote, such as yeast or the like, as the host, the transformant is cultured.
- [0233] Any of a natural medium and a synthetic medium can be used, so long as it contains a carbon source, a nitrogen source, an inorganic salt and the like which can be assimilated by the transformant and can perform culturing of the transformant efficiently.
- [0234] Examples of the carbon source include those which can be assimilated by the transformant, such as carbohydrates (for example, glucose, fructose; sucrose, molasses containing them, starch, starch hydrolysate, and the like), organic acids (for example, acetic acid, propionic acid, and the like), and alcohols (for example, ethanol, propanol, and the like).
- [0235] Examples of the nitrogen source include ammonia, various ammonium salts of inorganic acids or organic acids (for example, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and the like), other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, casein hydrolysate, soybean meal and soybean meal hydrolysate, various fermented cells and hydrolysates thereof, and the like.
 - [0236] Examples of inorganic salt include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.
 - [0237] The culturing is carried out under acrobic conditions by shaking culture, submerged-aeration stirring culture or the like. The culturing temperature is preferably from 15 to 40°C, and the culturing time is generally from 16 hours to 7 days. The pH of the medium is preferably maintained at 3.0 to 9.0 during the culturing. The pH can be adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia, or the like.
 - [0238] Also, antibiotics, such as ampicillin, tetracycline, and the like, can be added to the medium during the culturing, if necessary
 - [0239] When a microorganism transformed with a recombinant vector containing an inducible promoter is cultured,

~10

20

an inducer can be added to the medium, if necessary.

[0240] For example, isopropyl-β-D-thiogalactopyranoside (IPTG) or the like can be added to the medium when a microorganism transformed with a recombinant vector containing *lac* promoter is cultured, or indoleacrylic acid (IAA) or the like can by added thereto when a microorganism transformed with an expression vector containing *trp* promoter is cultured.

[0241] Examples of the medium used in culturing a transformant obtained using animal cells as the host cells include RPMI 1640 medium (*The Journal of the American Medical Association, 199*: 519 (1967)), Eagle's MEM medium (*Science, 122*: 501 (1952)), Dulbecco's modified MEM medium (*Virology, 8,* 396 (1959)), 199 Medium (*Proceeding of the Society for the Biological Medicine, 73*:1 (1950)), the above-described media to which fetal calf serum has been added, and the like.

[0242] The culturing is carried out generally at a pH of 6 to 8 and a temperature of 30 to 40°C in the presence of 5% CO₂ for 1 to 7 days.

[0243] Also, if necessary, antibiotics, such as kanamycin, penicillin, and the like, can be added to the medium during the culturing.

[0244] Examples of the medium used in culturing a transformant obtained using insect cells as the host cells include TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM (manufactured by Life Technologies), ExCell 400 and ExCell 405 (manufactured by JRH Biosciences), Grace's Insect Medium (Nature, 195: 788 (1962)), and the like.

[0245] The culturing is carried out generally at a pH of 6 to 7 and a temperature of 25 to 30°C for 1 to 5 days.

[0246] Additionally, antibiotics, such as gentamicin and the like, can be added to the medium during the culturing, if necessary.

[0247] A transformant obtained by using a plant cell as the host cell can be used as the cell or after differentiating to a plant cell or organ. Examples of the medium used in the culturing of the transformant include Murashige and Skoog (MS) medium, White medium, media to which a plant hormone, such as auxin, cytokinine, or the like has been added, and the like.

[0248] The culturing is carried out generally at a pH of 5 to 9 and a temperature of 20 to 40°C for 3 to 60 days.

[0249] Also, antibiotics, such as kanamycin, hygromycin and the like, can be added to the medium during the culturing, if necessary.

[0250] As described above, the polypeptide can be produced by culturing a transformant derived from a microorganism, animal cell or plant cell containing a recombinant vector to which a DNA encoding the polypeptide of the present invention has been inserted according to the general culturing method to produce and accumulate the polypeptide, and recovering the polypeptide from the culture.

[0251] The process of gene expression may include secretion of the encoded protein production or fusion protein expression and the like in accordance with the methods described in *Molecular Cloning*, 2nd ed., in addition to direct expression.

[0252] The method for producing the polypeptide of the present invention includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, or a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell employed or the structure of the polypeptide produced.

[0253] When the polypeptide of the present invention is produced in a host cell or on a host cell membrane outer envelope, the polypeptide can be positively secreted extracellularly according to, for example, the method of Paulson et al. (J. Biol. Chem., 264: 17619 (1989)), the method of Lowe et al. (Proc. Natl. Acad. Sci. USA, 86: 8227 (1989); Genes Develop., 4: 1288 (1990)), and/or the methods described in Japanese Published Unexamined Patent Application No. 336963/93, WO 94/23021, and the like.

[0254] Specifically, the polypeptide of the present invention can be positively secreted extracellularly by expressing it in the form that a signal peptide has been added to the foreground of a polypeptide containing an active site of the polypeptide of the present invention according to the recombinant DNA technique.

[0255] Furthermore, the amount produced can be increased using a gene amplification system, such as by use of a dihydrofolate reductase gene or the like according to the method described in Japanese Published Unexamined Patent Application No. 227075/90.

[0256] Moreover, the polypeptide of the present invention can be produced by a transgenic animal individual (transgenic nonhuman animal) or plant individual (transgenic plant).

[0257] When the transformant is the animal individual or plant individual, the polypeptide of the present invention can be produced by breeding or cultivating it so as to produce and accumulate the polypeptide, and recovering the polypeptide from the animal individual or plant individual.

[0258] Examples of the method for producing the polypeptide of the present invention using the animal individual include a method for producing the polypeptide of the present invention in an animal developed by inserting a gene according to methods known to those of ordinary skill in the art (American Journal of Clinical Nutrition, 63: 639S (1996), American Journal of Clinical Nutrition, 63: 627S (1996), Bio/Technology, 9: 830 (1991)).

25

[0259] In the animal individual, the polypeptide can be produced by breeding a transgenic nonhuman animal to which the DNA encoding the polypeptide of the present invention has been inserted to produce and accumulate the polypeptide in the animal, and recovering the polypeptide from the animal. Examples of the production and accumulation place in the animal include milk (Japanese Published Unexamined Patent Application No. 309192/88), egg and the like of the animal. Any promoter can be used, so long as it can be expressed in the animal. Suitable examples include an α -casein promoter, a β -casein promoter, a β -lactoglobulin promoter, a whey acidic protein promoter, and the like, which are specific for mammary glandular cells.

[0260] Examples of the method for producing the polypeptide of the present invention using the plant individual include a method for producing the polypeptide of the present invention by cultivating a transgenic plant to which the DNA encoding the protein of the present invention by a known method (*Tissue Culture, 20* (1994), *Tissue Culture, 21* (1994), *Trends in Biotechnology, 15:* 45 (1997)) to produce and accumulate the polypeptide in the plant, and recovering the polypeptide from the plant.

[0261] The polypeptide according to the present invention can also be obtained by translation in vitro.

[0262] The polypeptide of the present invention can be produced by a translation system *in vitro*. There are, for example, two *in vitro* translation methods which may be used, namely, a method using RNA as a template and another method using DNA as a template. The template RNA includes the whole RNA, mRNA, an *in vitro* transcription product, and the like. The template DNA includes a plasmid containing a transcriptional promoter and a target gene integrated therein and downstream of the initiation site, a PCR/RT-PCR product and the like. To select the most suitable system for the *in vitro* translation, the origin of the gene encoding the protein to be synthesized (prokaryotic cell/eucaryotic cell), the type of the template (DNA/RNA), the purpose of using the synthesized protein and the like should be considered. *In vitro* translation kits having various characteristics are commercially available from many companies (Boehringer Mannheim, Promega, Stratagene, or the like), and every kit can be used in producing the polypeptide according to the present invention.

[0263] Transcription/translation of a DNA nucleotide sequence cloned into a plasmid containing a T7 promoter can be carried out using an *in vitro* transcription/translation system *E. coli* T7 S30 Extract System for Circular DNA (manufactured by Promega, catalogue No. L1130). Also, transcription/translation using, as a template, a linear prokaryotic DNA of a supercoil non-sensitive promoter, such as *lac*UV5, *tac*, λPL(con), λPL, or the like, can be carried out using an *in vitro* transcription/translation system *E. coli* S30 Extract System for Linear Templates (manufactured by Promega, catalogue No. L1030). Examples of the linear prokaryotic DNA used as a template include a DNA fragment, a PCR-amplified DNA product, a duplicated oligonucleotide ligation, an *in vitro* transcriptional RNA, a prokaryotic RNA, and the like.

[0264] In addition to the production of the polypeptide according to the present invention, synthesis of a radioactive labeled protein, confirmation of the expression capability of a cloned gene, analysis of the function of transcriptional reaction or translation reaction, and the like can be carried out using this system.

[0265] The polypeptide produced by the transformant of the present invention can be isolated and purified using the general method for isolating and purifying an enzyme. For example, when the polypeptide of the present invention is expressed as a soluble product in the host cells, the cells are collected by centrifugation after cultivation, suspended in an aqueous buffer, and disrupted using an ultrasonicator, a French press, a Manton Gaulin homogenizer, a Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a purified product can be obtained by the general method used for isolating and purifying an enzyme, for example, solvent extraction, salting out using ammonium sulfate or the like, desalting, precipitation using an organic solvent, anion exchange chromatography using a resin, such as G-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical) or the like, cation exchange chromatography using a resin, such as S-Sepharose FF (manufactured by Pharmacia) or the like, hydrophobic chromatography using a resin, such as butyl sepharose, phenyl sepharose or the like, gel filtration using a molecular sieve, affinity chromatography, chromatofocusing, or electrophoresis, such as isoelectronic focusing or the like, alone or in combination thereof.

[0266] When the polypeptide is expressed as an insoluble product in the host cells, the cells are collected in the same manner, disrupted and centrifuged to recover the insoluble product of the polypeptide as the precipitate fraction. Next, the insoluble product of the polypeptide is solubilized with a protein denaturing agent. The solubilized solution is diluted or dialyzed to lower the concentration of the protein denaturing agent in the solution. Thus, the normal configuration of the polypeptide is reconstituted. After the procedure, a purified product of the polypeptide can be obtained by a purification/isolation method similar to the above.

[0267] When the polypeptide of the present invention or its derivative (for example, a polypeptide formed by adding a sugar chain thereto) is secreted out of cells, the polypeptide or its derivative can be collected in the culture supernatant. Namely, the culture supernatant is obtained by treating the culture medium in a treatment similar to the above (for example, centrifugation). Then, a purified product can be obtained from the culture medium using a purification/isolation method similar to the above.

[0268] The polypeptide obtained by the above method is within the scope of the polypeptide of the present invention,

40

and examples include a polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431, and a polypeptide comprising an amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931.

[0269] Furthermore, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide is included in the scope of the present invention. The term "substantially the same activity as that of the polypeptide" means the same activity represented by the inherent function, enzyme activity or the like possessed by the polypeptide which has not been deleted, replaced, inserted or added. The polypeptide can be obtained using a method for introducing part-specific mutation(s) described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, Nuc. Acids. Res.*, 10: 6487 (1982), *Proc. Natl. Acad. Sci. USA*, 79: 6409 (1982), *Gene*, 34: 315 (1985), *Nuc. Acids. Res.*, 13: 4431 (1985), *Proc. Natl. Acad. Sci. USA*, 82: 488 (1985) and the like. For example, the polypeptide can be obtained by introducing mutation(s) to DNA encoding a polypeptide having the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931. The number of the amino acids which are deleted, replaced, inserted or added is not particularly limited; however, it is usually 1 to the order of tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5, amino acids.

[0270] The at least one amino acid deletion, replacement, insertion or addition in the amino acid sequence of the polypeptide of the present invention is used herein to refer to that at least one amino acid is deleted, replaced, inserted or added to at one or plural positions in the amino acid sequence. The deletion, replacement, insertion or addition may be caused in the same amino acid sequence simultaneously. Also, the amino acid residue replaced, inserted or added can be natural or non-natural. Examples of the natural amino acid residue include L-alanine, L-asparagine, L-asparatic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine, and the like.

[0271] Herein, examples of amino acid residues which are replaced with each other are shown below. The amino acid residues in the same group can be replaced with each other.

Group A:

-10

20

25

30

40

50

[0272] leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;

Group B:

[0273] asparatic acid, glutamic acid, isoasparatic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;

35 Group C:

[0274] asparagine, glutamine;

Group D:

[0275] lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;

Group E:

45 [0276] proline, 3-hydroxyproline, 4-hydroxyproline;

Group F:

[0277] serine, threonine, homoserine;

Group G:

[0278] phenylalanine, tyrosine.

[0279] Also, in order that the resulting mutant polypeptide has substantially the same activity as that of the polypeptide which has not been mutated, it is preferred that the mutant polypeptide has a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the polypeptide which has not been mutated, when calculated, for example, using default (initial setting) parameters by a homology searching software, such as BLAST, FASTA, or the like.

[0280] Also, the polypeptide of the present invention can be produced by a chemical synthesis method, such as Fmoc (fluorenylmethyloxycarbonyl) method, tBoc (t-butyloxycarbonyl) method, or the like. It can also be synthesized using a peptide synthesizer manufactured by Advanced ChemTech, Perkin-Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corporation, or the like.

[0281] The transformant of the present invention can be used for objects other than the production of the polypeptide of the present invention.

[0282] Specifically, at least one component selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof can be produced by culturing the transformant containing the polynucleotide or recombinant vector of the present invention in a medium to produce and accumulate at least one component selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof, and recovering the same from the medium.

[0283] The biosynthesis pathways, decomposition pathways and regulatory mechanisms of physiologically active substances such as amino acids, nucleic acids, vitamins, saccharides, organic acids and analogues thereof differ from organism to organism. The productivity of such a physiologically active substance can be improved using these differences, specifically by introducing a heterogeneous gene relating to the biosynthesis thereof. For example, the content of lysine, which is one of the essential amino acids, in a plant seed was improved by introducing a synthase gene derived from a bacterium (WO 93/19190). Also, arginine is excessively produced in a culture by introducing an arginine synthase gene derived from *Escherichia coli* (Japanese Examined Patent Publication 23750/93).

[0284] To produce such a physiologically active substance, the transformant according to the present invention can be cultured by the same method as employed in culturing the transformant for producing the polypeptide of the present invention as described above. Also, the physiologically active substance can be recovered from the culture medium in combination with, for example, the ion exchange resin method, the precipitation method and other known methods. [0285] Examples of methods known to one of ordinary skill in the art include electroporation, calcium transfection, the protoplast method, the method using a phage, and the like, when the host is a bacterium; and microinjection, calcium phosphate transfection, the positively charged lipid-mediated method and the method using a virus, and the like, when the host is a eukaryote (*Molecular Cloning*, 2nd ed.; Spector et al., Cells/a laboratory manual, Cold Spring Harbour Laboratory Press, 1998)). Examples of the host include prokaryotes, lower eukaryotes (for example, yeasts), higher eukaryotes (for example, mammals), and cells isolated therefrom. As the state of a recombinant polynucleotide fragment present in the host cells, it can be integrated into the chromosome of the host. Alternatively, it can be integrated into a factor (for example, a plasmid) having an independent replication unit outside the chromosome. These transformants are usable in producing the polypeptides of the present invention encoded by the ORF of the genome of *Corynebacterium glutamicum*, the polynucleotides of the present invention and fragments thereof. Alternatively, they can be used in producing arbitrary polypeptides under the regulation by an EMF of the present invention.

11. Preparation of antibody recognizing the polypeptide of the present invention

[0286] An antibody which recognizes the polypeptide of the present invention, such as a polyclonal antibody, a monoclonal antibody, or the like, can be produced using, as an antigen, a purified product of the polypeptide of the present invention or a partial fragment polypeptide of the polypeptide or a peptide having a partial amino acid sequence of the polypeptide of the present invention.

(1) Production of polyclonal antibody

[0287] A polyclonal antibody can be produced using, as an antigen, a purified product of the polypeptide of the present invention, a partial fragment polypeptide of the polypeptide, or a peptide having a partial amino acid sequence of the polypeptide of the present invention, and immunizing an animal with the same.

[0288] Examples of the animal to be immunized include rabbits, goats, rats, mice, hamsters, chickens and the like.

[0289] A dosage of the antigen is preferably 50 to 100 μ g per animal.

[0290] When the peptide is used as the antigen, it is preferably a peptide covalently bonded to a carrier protein, such as keyhole limpet haemocyanin, bovine thyroglobulin, or the like. The peptide used as the antigen can be synthesized by a peptide synthesizer.

[0291] The administration of the antigen is, for example, carried out_3 to 10 times at the intervals of 1 or 2 weeks after the first administration. On the 3rd to 7th day after each administration, a blood sample is collected from the venous plexus of the eyeground, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay (Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)) or the like.

[0292] Serum is obtained from the immunized non-human mammal with a sufficient antibody titer against the antigen used for the immunization, and the serum is isolated and purified to obtain a polyclonal antibody.

⁻10

15

20

25

30

35

40

[0293] Examples of the method for the isolation and purification include centrifugation, salting out by 40-50% saturated ammonium sulfate, caprylic acid precipitation (*Antibodies, A Laboratory manual*, Cold Spring Harbor Laboratory (1988)), or chromatography using a DEAE-Sepharose column, an anion exchange column, a protein A- or G-column, a gel filtration column, and the like, alone or in combination thereof, by methods known to those of ordinary skill in the art.

- (2) Production of monoclonal antibody
- (a) Preparation of antibody-producing cell
- [0294] A rat having a serum showing an enough antibody titer against a partial fragment polypeptide of the polypeptide of the present invention used for immunization is used as a supply source of an antibody-producing cell.
 - [0295] On the 3rd to 7th day after the antigen substance is finally administered the rat showing the antibody titer, the spleen is excised.
 - [0296] The spleen is cut to pieces in MEM medium (manufactured by Nissui Pharmaceutical), loosened using a pair of forceps, followed by centrifugation at 1,200 rpm for 5 minutes, and the resulting supernatant is discarded.
 - [0297] The spleen in the precipitated fraction is treated with a Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to eliminate erythrocytes and washed three times with MEM medium, and the resulting spleen cells are used as antibody-producing cells.
 - (b) Preparation of myeloma cells

20

30

35

- [0298] As myeloma cells, an established cell line obtained from mouse or rat is used. Examples of useful cell lines include those derived from a mouse, such as P3-X63Ag8-U1 (hereinafter referred to as "P3-U1") (*Curr. Topics in Microbiol. Immunol., 81*: 1 (1978); *Europ. J. Immunol., 6*: 511 (1976)); SP2/O-AgI4 (SP-2) (*Naturc, 276*: 269 (1978)): P3-X63-Ag8653 (653) (*J. Immunol., 123*: 1548 (1979)); P3-X63-Ag8 (X63) cell line (*Nature, 256*: 495 (1975)), and the like, which are 8-azaguanine-resistant mouse (BALB/c) myeloma cell lines. These cell lines are subcultured in 8-azaguanine medium (medium in which, to a medium obtained by adding 1.5 mmol/l glutamine, 5×10^{-5} mol/l 2-mercaptoethanol, 10 µg/ml gentamicin and 10% fetal calf serum (FCS) (manufactured by CSL) to RPMI-1640 medium (hereinafter referred to as the "normal medium"), 8-azaguanine is further added at 15 µg/ml) and cultured in the normal medium 3 or 4 days before cell fusion, and 2×10^7 or more of the cells are used for the fusion.
- (c) Production of hybridoma
- [0299] The antibody-producing cells obtained in (a) and the myeloma cells obtained in (b) are washed with MEM medium or PBS (disodium hydrogen phosphate: 1.83 g, sodium dihydrogen phosphate: 0.21 g, sodium chloride: 7.65 g, distilled water: 1 liter, pH: 7.2) and mixed to give a ratio of antibody-producing cells: myeloma cells = 5:1 to 10:1, followed by centrifugation at 1,200 rpm for 5 minutes, and the supernatant is discarded.
- [0300] The cells in the resulting precipitated fraction were thoroughly loosened, 0.2 to 1 ml of a mixed solution of 2 g of polyethylene glycol-1000 (PEG-1000), 2 ml of MEM medium and 0.7 ml of dimethylsulfoxide (DMSO) per 108 antibody-producing cells is added to the cells under stirring at 37°C, and then 1 to 2 ml of MEM medium is further added thereto several times at 1 to 2 minute intervals.
- **[0301]** After the addition, MEM medium is added to give a total amount of 50 ml. The resulting prepared solution is centrifuged at 900 rpm for 5 minutes, and then the supernatant is discarded. The cells in the resulting precipitated fraction were gently loosened and then gently suspended in 100 ml of HAT medium (the normal medium to which 10^{-4} mol/l hypoxanthine, 1.5×10^{-5} mol/l thymidine and 4×10^{-7} mol/l aminopterin have been added) by repeated drawing up into and discharging from a measuring pipette.
- [0302] The suspension is poured into a 96 well culture plate at 100 μ l/well and cultured at 37°C for 7 to 14 days in a 5% CO₂ incubator.
- [0303] After culturing, a part of the culture supernatant is recovered, and a hybridoma which specifically reacts with a partial fragment polypeptide of the polypeptide of the present invention is selected according to the enzyme immunoassay described in *Antibodies, A Laboratory manual*, Cold Spring Harbor Laboratory, Chapter 14 (1998) and the like. [0304] A specific example of the enzyme immunoassay is described below.
- [0305] The partial fragment polypeptide of the polypeptide of the present invention used as the antigen in the immunization is spread on a suitable plate, is allowed to react with a hybridoma culturing supernatant or a purified antibody obtained in (d) described below as a first antibody, and is further allowed to react with an anti-rat or anti-mouse immunoglobulin antibody labeled with an enzyme, a chemical luminous substance, a radioactive substance or the like as a second antibody for reaction suitable for the labeled substance. A hybridoma which specifically reacts with the polypeptide of the present invention is selected as a hybridoma capable of producing a monoclonal antibody of the present

invention.

10

15

20

25

40

50

[0306] Cloning is repeated using the hybridoma twice by limiting dilution analysis (HT medium (a medium in which aminopterin has been removed from HAT medium) is firstly used, and the normal medium is secondly used), and a hybridoma which is stable and contains a sufficient amount of antibody titer is selected as a hybridoma capable of producing a monoclonal antibody of the present invention.

- (d) Preparation of monoclonal antibody
- [0307] The monoclonal antibody-producing hybridoma cells obtained in (c) are injected intraperitoneally into 8- to 10-week-old mice or nude mice treated with pristane (intraperitoneal administration of 0.5 ml of 2,6,10,14-tetrameth-ylpentadecane (pristane), followed by 2 weeks of feeding) at 5×10^6 to 20×10^6 cells/animal. The hybridoma causes ascites tumor in 10 to 21 days.
- [0308] The ascitic fluid is collected from the mice or nude mice, and centrifuged to remove solid contents at 3000 rpm for 5 minutes.
- [0309] A monoclonal antibody can be purified and isolated from the resulting supernatant according to the method similar to that used in the polyclonal antibody.
- [0310] The subclass of the antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit. The polypeptide amount can be determined by the Lowry method or by calculation based on the absorbance at 280 nm.
- [0311] The antibody obtained in the above is within the scope of the antibody of the present invention.
- [0312] The antibody can be used for the general assay using an antibody, such as a radioactive material labeled immunoassay (RIA), competitive binding assay, an immunotissue chemical staining method (ABC method, CSA method, etc.), immunoprecipitation, Western blotting, ELISA assay, and the like (An introduction to Radioimmunoassay and Related Techniques, Elsevier Science (1986); Techniques in Immunocytochemistry, Academic Press, Vol. 1 (1982), Vol. 2 (1983) & Vol. 3 (1985): Practice and Theory of Enzyme Immunoassays. Elsevier Science (1985): Enzyme-linked
- Vol. 2 (1983) & Vol. 3 (1985); Practice and Theory of Enzyme Immunoassays, Elsevier Science (1985); Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies A Laboratory Manual, Cold Spring Harbor laboratory (1988); Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987); Second Series Biochemical Experiment Course, Vol. 5, Immunobiochemistry Research Method, Tokyo Kagaku Dojin (1986)).
 - [0313] The antibody of the present invention can be used as it is or after being labeled with a label.
- [0314] Examples of the label include radioisotope, an affinity label (e.g., biotin, avidin, or the like), an enzyme label (e.g., horseradish peroxidase, alkaline phosphatase, or the like), a fluorescence label (e.g., FITC, rhodamine, or the like), a label using a rhodamine atom, (*J. Histochem. Cytochem.*, 18: 315 (1970); Meth. Enzym., 62: 308 (1979); Immunol., 109: 129 (1972); J. Immunol., Meth., 13: 215 (1979)), and the like.
 - [0315] Expression of the polypeptide of the present invention, fluctuation of the expression, the presence or absence of structural change of the polypeptide, and the presence or absence in an organism other than coryneform bacteria of a polypeptide corresponding to the polypeptide can be analyzed using the antibody or the labeled antibody by the above assay, or a polypeptide array or proteome analysis described below.
 - [0316] Furthermore, the polypeptide recognized by the antibody can be purified by immunoaffinity chromatography using the antibody of the present invention.
 - 12. Production and use of polypeptide array
 - (1) Production of polypeptide array
 - [0317] A polypeptide array can be produced using the polypeptide of the present invention obtained in the above item 10 or the antibody of the present invention obtained in the above item 11.
 - [0318] The polypeptide array of the present invention includes protein chips, and comprises a solid support and the polypeptide or antibody of the present invention adhered to the surface of the solid support.
 - [0319] Examples of the solid support include plastic such as polycarbonate or the like; an acrylic resin, such as polyacrylamide or the like; complex carbohydrates, such as agarose, sepharose, or the like; silica; a silica-based material, carbon, a metal, inorganic glass, latex beads, and the like.
 - [0320] The polypeptides or antibodies according to the present invention can be adhered to the surface of the solid support according to the method described in *Biotechniques*, 27: 1258-61 (1999); *Molecular Medicine Today*, 5: 326-7 (1999); *Handbook of Experimental Immunology*, 4th edition, Blackwell Scientific Publications, Chapter 10 (1986); *Meth.*
 - Enzym., 34 (1974); Advances in Experimental Medicine and Biology, 42 (1974); U.S. Patent 4,681,870; U.S. Patent 4,282,287; U.S. Patent 4,762,881, or the like.
 - [0321] The analysis described herein can be efficiently performed by adhering the polypeptide or antibody of the present invention to the solid support at a high density, though a high fixation density is not always necessary.

(2) Use of polypeptide array

10

15

20

25

30

35

40

50

[0322] A polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention adhered to the array can be identified using the polypeptide array to which the polypeptides of the present invention have been adhered thereto as described in the above (1).

[0323] Specifically, a polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention can be identified by subjecting the polypeptides of the present invention to the following steps (i) to (iv):

- (i) preparing a polypeptide array having the polypeptide of the present invention adhered thereto by the method of the above (1);
- (ii) incubating the polypeptide immobilized on the polypeptide array together with at least one of a second polypeptide or compound;
- (iii) detecting any complex formed between the at least one of a second polypeptide or compound and the polypeptide immobilized on the array using, for example, a label bound to the at least one of a second polypeptide or compound, or a secondary label which specifically binds to the complex or to a component of the complex after unbound material has been removed; and
- (iv) analyzing the detection data.

[0324] Specific examples of the polypeptide array to which the polypeptide of the present invention has been adhered include a polypeptide array containing a solid support to which at least one of a polypeptide containing an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide containing an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide containing an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, and a peptide comprising an amino acid sequence of a part of a polypeptide.

[0325] The amount of production of a polypeptide derived from coryneform bacteria can be analyzed using a polypeptide array to which the antibody of the present invention has been adhered in the above (1).

[0326] Specifically, the expression amount of a gene derived from a mutant of coryneform bacteria can be analyzed by subjecting the gene to the following steps (i) to (iv):

- (i) preparing a polypeptide array by the method of the above (1);
- (ii) incubating the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of coryneform bacteria;
- (iii) detecting the polypeptide bound to the polypeptide immobilized on the array using a labeled second antibody of the present invention; and
- (iv) analyzing the detection data.

[0327] Specific examples of the polypeptide array to which the antibody of the present invention is adhered include a polypeptide array comprising a solid support to which at least one of an antibody which recognizes a polypeptide comprising an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide comprising an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, or a peptide comprising an amino acid sequence of a part of a polypeptide.

[0328] A fluctuation in an expression amount of a specific polypeptide can be monitored using a polypeptide obtained in the time course of culture as the polypeptide derived from coryneform bacteria. The culturing conditions can be optimized by analyzing the fluctuation.

[0329] When a polypeptide derived from a mutant of coryneform bacteria is used, a mutated polypeptide can be detected.

- 13. Identification of useful mutation in mutant by proteome analysis
- [0330] Usually, the proteome is used herein to refer to a method wherein a polypeptide is separated by twodimensional electrophoresis and the separated polypeptide is digested with an enzyme, followed by identification of the polypeptide using a mass spectrometer (MS) and searching a data base.
 - [0331] The two dimensional electrophoresis means an electrophoretic method which is performed by combining two

electrophoretic procedures having different principles. For example, polypeptides are separated depending on molecular weight in the primary electrophoresis. Next, the gel is rotated by 90° or 180° and the secondary electrophoresis is carried out depending on isoelectric point. Thus, various separation patterns can be achieved (JIS K 3600 2474).

[0332] In searching the data base, the amino acid sequence information of the polypeptides of the present invention and the recording medium of the present invention provide for in the above items 2 and 8 can be used.

[0333] The proteome analysis of a coryneform bacterium and its mutant makes it possible to identify a polypeptide showing a fluctuation therebetween.

[0334] The proteome analysis of a wild type strain of coryneform bacteria and a production strain showing an improved productivity of a target product makes it possible to efficiently identify a mutation protein which is useful in breeding for improving the productivity of a target product or a protein of which expression amount is fluctuated.

[0335] Specifically, a wild type strain of coryneform bacteria and a lysine-producing strain thereof are each subjected to the proteome analysis. Then, a spot increased in the lysine-producing strain, compared with the wild type strain, is found and a data base is searched so that a polypeptide showing an increase in yield in accordance with an increase in the lysine productivity can be identified. For example, as a result of the proteome analysis on a wild type strain and a lysine-producing strain, the productivity of the catalase having the amino acid sequence represented by SEQ ID NO: 3785 is increased in the lysine-producing mutant.

[0336] As a result that a protein having a high expression level is identified by proteome analysis using the nucleotide sequence information and the amino acid sequence information, of the genome of the coryneform bacteria of the present invention, and a recording medium storing the sequences, the nucleotide sequence of the gene encoding this protein and the nucleotide sequence in the upstream thereof can be searched at the same time, and thus, a nucleotide sequence having a high expression promoter can be efficiently selected.

[0337] In the proteome analysis, a spot on the two-dimentional electrophoresis gel showing a fluctuation is sometimes derived from a modified protein. However, the modified protein can be efficiently identified using the recording medium storing the nucleotide sequence information, the amino acid sequence information, of the genome of coryneform bacteria, and the recording medium storing the sequences, according to the present invention.

[0338] Moreover, a useful mutation point in a useful mutant can be easily specified by searching a nucleotide sequence (nucleotide sequence of promoters, ORF, or the like) relating to the thus identified protein using a recording medium storing the nucleotide sequence information and the amino acid sequence information, of the genome of coryneform bacteria of the present invention, and a recording medium storing the sequences and using a primer designed on the basis of the detected nucleotide sequence. As a result that the useful mutation point is specified, an industrially useful mutant having the useful mutation or other useful mutation derived therefrom can be easily bred.

[0339] The present invention will be explained in detail below based on Examples. However, the present invention is not limited thereto.

35 Example 1

5

10

15

20

25

30

40

45

50

Determination of the full nucleotide sequence of genome of Corynebacterium glutamicum

[0340] The full nucleotide sequence of the genome of *Corynebacterium glutamicum* was determined based on the whole genome shotgun method (*Science*, *269*: 496-512 (1995)). In this method, a genome library was prepared and the terminal sequences were determined at random. Subsequently, these sequences were ligated on a computer to cover the full genome. Specifically, the following procedure was carried out.

(1) Preparation of genome DNA of Corynebacterium glutamicum ATCC 13032

[0341] Corynebacterium glutamicum ATCC 13032 was cultured in BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine at 30°C overnight and the cells were collected by centrifugation. After washing with STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l EDTA, pH 8.0), the cells were suspended in 10 ml of STE buffer containing 10 mg/ml lysozyme, followed by gently shaking at 37°C for 1 hour. Then, 2 ml of 10% SDS was added thereto to lyse the cells, and the resultant mixture was maintained at 65°C for 10 minutes and then cooled to room temperature. Then, 10 ml of Tris-neutralized phenol was added thereto, followed by gently shaking at room temperature for 30 minutes and centrifugation (15,000 × g, 20 minutes, 20°C). The aqueous layer was separated and subjected to extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner. To the aqueous layer, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol were added at 1/10 times volume and twice volume, respectively, followed by gently stirring to precipitate the genome DNA. The genome DNA was dissolved again in 3 ml of TE buffer (10 mmol/l Tris hydrochloride, 1 mmol/l EDTA, pH 8.0) containing 0.02 mg/ml of RNase and maintained at 37°C for 45 minutes. The extractions with phenol, phenol/chloroform and chloroform were carried out successively in the same manner as the above. The genome DNA was subjected to iso-

propanol precipitation. The thus formed genome DNA precipitate was washed with 70% ethanol three times, followed by air-drying, and dissolved in 1.25 ml of TE buffer to give a genome DNA solution (concentration: 0.1 mg/ml).

(2) Construction of a shotgun library

10

20

25

35

40

50

[0342] TE buffer was added to 0.01 mg of the thus prepared genome DNA of *Corynebacterium glutamicum* ATCC 13032 to give a total volume of 0.4 ml, and the mixture was treated with a sonicator (Yamato Powersonic Model 150) at an output of 20 continuously for 5 seconds to obtain fragments of 1 to 10 kb. The genome fragments were bluntended using a DNA blunting kit (manufactured by Takara Shuzo) and then fractionated by 6% polyacrylamide gel electrophoresis. Genome fragments of 1 to 2 kb were cut out from the gel, and 0.3 ml MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) was added thereto, followed by shaking at 37°C overnight to elute DNA. The DNA eluate was treated with phenol/chloroform, and then precipitated with ethanol to obtain a genome library insert. The total insert and 500 ng of pUC18 *Small*/BAP (manufactured by Amersham Pharmacia Biotech) were ligated at 16°C for 40 hours.

[0343] The ligation product was precipitated with ethanol and dissolved in 0.01 ml of TE buffer. The ligation solution (0.001 ml) was introduced into 0.04 ml of *E. coli* ELECTRO MAX DH10B (manufactured by Life Technologies) by the electroporation under conditions according to the manufacture's instructions. The mixture was spread on LB plate medium (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) containing 0.1 mg/ml ampicillin, 0.1 mg/ml X-gal and 1 mmol/l isopropyl-β-D-thiogalactopyranoside (IPTG) and cultured at 37°C overnight.

[0344] The transformant obtained from colonies formed on the plate medium was stationarily cultured in a 96-well titer plate having 0.05 ml of LB medium containing 0.1 mg/ml ampicillin at 37°C overnight. Then, 0.05 ml of LB medium containing 20% glycerol was added thereto, followed by stirring to obtain a glycerol stock.

(3) Construction of cosmid library

[0345] About 0.1 mg of the genome DNA of *Corynebacterium glutamicum* ATCC 13032 was partially digested with *Sau*3Al (manufactured by Takara Shuzo) and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under 10 to 40% sucrose density gradient obtained using 10% and 40% sucrose buffers (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% or 40% sucrose, pH 8.0). After the centrifugation, the solution thus separated was fractionated into tubes at 1 ml in each tube. After confirming the DNA fragment length of each fraction by agarose gel electrophoresis, a fraction containing a large amount of DNA fragment of about 40 kb was precipitated with ethanol.

[0346] The DNA fragment was ligated to the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions. The ligation product was incorporated into Escherichia coli XL-1-BlueMR strain (manufactured by Stratagene) using Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions. The Escherichia coli was spread on LB plate medium containing 0.1 mg/ml ampicillin and cultured therein at 37°C overnight to isolate colonies. The resulting colonies were stationarily cultured at 37°C overnight in a 96-well titer plate containing 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin in each well. LB medium containing 20% glycerol (0.05 ml) was added thereto, followed by stirring to obtain a glycerol stock.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0347] The full nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 was determined mainly based on the whole genome shotgun method. The template used in the whole genome shotgun method was prepared by the PCR method using the library prepared in the above (2).

[0348] Specifically, the clone derived from the whole genome shotgun library was inoculated using a replicator (manufactured by GENETIX) into each well of a 96-well plate containing the LB medium containing 0.1 mg/ml of ampicillin at 0.08 ml per each well and then stationarily cultured at 37°C overnight.

[0349] Next, the culturing solution was transported using a copy plate (manufactured by Tokken) into a 96-well reaction plate (manufactured by PE Biosystems) containing a PCR reaction solution (TaKaRa Ex Taq (manufactured by Takara Shuzo)) at 0.08 ml per each well. Then, PCR was carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragment.

[0350] The excessive primers and nucleotides were eliminated using a kit for purifying a PCR production (manufactured by Amersham Pharmacia Biotech) and the residue was used as the template in the sequencing reaction.

[0351] Some nucleotide sequences were determined using a double-stranded DNA plasmid as a template.

- [0352] The double-stranded DNA plasmid as the template was obtained by the following method.
- [0353] The clone derived from the whole genome shotgun library was inoculated into a 24- or 96-well plate containing a 2× YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin at 1.5 ml per each well and then cultured under shaking at 37°C overnight.
- [0354] The double-stranded DNA plasmid was prepared from the culturing solution using an automatic plasmid preparing machine, KURABO PI-50 (manufactured by Kurabo Industries) or a multiscreen (manufactured by Millipore) in accordance with the protocol provided by the manufacturer.
 - [0355] To purify the double-stranded DNA plasmid using the multiscreen, Biomek 2000 (manufactured by Beckman Coulter) or the like was employed.
 - [0356] The thus obtained double-stranded DNA plasmid was dissolved in water to give a concentration of about 0.1 mg/ml and used as the template in sequencing.

(4-2) Sequencing reaction

10

30

50

- 15 [0357] To 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (*DNA Research*, 5: 1-9 (1998) and the template prepared in the above (4-1) (the PCR product or the plasmid) were added to give 10 μl of a sequencing reaction solution. The primers and the templates were used in an amount of 1.6 pmol and an amount of 50 to 200 ng, respectively.
- 20 [0358] Dye terminator sequencing reaction of 45 cycles was carried out with GeneAmp PCR System 9700 (manufactured by PE Biosystems) using the reaction solution. The cycle parameter was determined in accordance with the manufacturer's instruction accompanying ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sample was purified using MultiScreen HV plate (manufactured by Millipore) according to the manufacture's instructions. The thus purified reaction product was precipitated with ethanol, followed by drying, and then stored in the dark at -30°C.
 - [0359] The dry reaction product was analyzed by ABI PRISM 377 DNA Sequencer and ABI PRISM 3700 DNA Analyzer (both manufactured by PE Biosystems) each in accordance with the manufacture's instructions.
 - [0360] The data of about 50,000 sequences in total (i.e., about 42,000 sequences obtained using 377 DNA Sequencer and about 8,000 reactions obtained by 3700 DNA Analyser) were transferred to a server (Alpha Server 4100: manufactured by COMPAQ) and stored. The data of these about 50,000 sequences corresponded to 6 times as much as the genome size.

(5) Assembly

- [0361] All operations were carried out on the basis of UNIX platform. The analytical data were output in Macintosh platform using X Window System. The base call was carried out using phred (The University of Washington). The vector sequence data was deleted using SPS Cross_Match (manufactured by Southwest Parallel Software). The assembly was carried out using SPS phrap (manufactured by Southwest Parallel Software; a high-speed version of phrap (The University of Washington)). The contig obtained by the assembly was analyzed using a graphical editor, consed (The University of Washington). A series of the operations from the base call to the assembly were carried out simultaneously using a script phredPhrap attached to consed.
 - (6) Determination of nucleotide sequence in gap part
- [0362] Each cosmid in the cosmid library constructed in the above (3) was prepared by a method similar to the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the inserted fragment of the cosmid was determined by using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.
 - [0363] About 800 cosmid clones were sequenced at both ends to search a nucleotide sequence in the contig derived from the shotgun sequencing obtained in the above (5) coincident with the sequence. Thus, the linkage between respective cosmid clones and respective contigs were determined and mutual alignment was carried out. Furthermore, the results were compared with the physical map of *Corynebacterium glutamicum* ATCC 13032 (*Mol. Gen. Genet., 252*: 255-265 (1996) to carrying out mapping between the cosmids and the contigs.
 - [0364] The sequence in the region which was not covered with the contigs was determined by the following method.
 [0365] Clones containing sequences positioned at the ends of contigs were selected. Among these clones, about 1,000 clones wherein only one end of the inserted fragment had been determined were selected and the sequence at the opposite end of the inserted fragment was determined. A shotgun library clone or a cosmid clone containing the sequences at the respective ends of the inserted fragment in two contigs was identified, the full nucleotide sequence

of the inserted fragment of this clone was determined, and thus the nucleotide sequence of the gap part was determined. When no shotgun library clone or cosmid clone covering the gap part was available, primers complementary to the end sequences at the two contigs were prepared and the DNA fragment in the gap part was amplified by PCR. Then, sequencing was performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment was determined. Thus, the nucleotide sequence of the domain was determined.

[0366] In a region showing a low sequence precision, primers were synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington) and the sequence was determined by the primer walking method to improve the sequence precision. The thus determined full nucleotide sequence of the genome of Corynebacterium glutamicum ATCC 13032 strain is shown in SEQ ID NO:1.

(7) Identification of ORF and presumption of its function

5

25

30

40

45

50

55

[0367] ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified according to the following method. First, the ORF regions were determined using software for identifying ORF, i.e., Glimmer, GeneMark and GeneMark.hmm on UNIX platform according to the respective manual attached to the software.

[0368] Based on the data thus obtained, ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified.

[0369] The putative function of an ORF was determined by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, Frame Search (manufactured by Compugen), or by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, BLAST. The nucleotide sequences of the thus determined ORFs are shown in SEQ ID NOS:2 to 3501, and the amino acid sequences encoded by these ORFs are shown in SEQ ID NOS:3502 to 7001.

[0370] In some cases of the sequence listings in the present invention, nucleotide sequences, such as TTG, TGT, GGT, and the like, other than ATG, are read as an initiating codon encoding Met.

[0371] Also, the preferred nucleotide sequences are SEQ ID NOS:2 to 355 and 357 to 3501, and the preferred amino acid sequences are shown in SEQ ID NOS:3502 to 3855 and 3857 to 7001

[0372] Table 1 shows the registration numbers in the above-described databases of sequences which were judged as having the highest homology with the nucleotide sequences of the ORFs as the results of the homology search in the amino acid sequences using the homology-searching software Frame Search (manufactured by Compugen), names of the genes of these sequences, the functions of the genes, and the matched length, identities and analogies compared with publicly known amino acid translation sequences. Moreover, the corresponding positions were confirmed via the alignment of the nucleotide sequence of an arbitrary ORF with the nucleotide sequence of SEQ ID NO: 1. Also, the positions of nucleotide sequences other than the ORFs (for example, ribosomal RNA genes, transfer RNA genes, IS sequences, and the like) on the genome were determined.

[0373] Fig. 1 shows the positions of typical genes of the Corynebacterium glutamicum ATCC 13032 on the genome.

5	
•	
10	
15	
20	
25	
30	
-	
35	
40	
45	
50	

Table 1	Function	replication initiation protein DnaA		DNA polymerase III beta chain	DNA replication protein (recF protein)	hypothetical protein	DNA tcpoisomerase (ATP. hydrolyzing)					NAGC/XYLR repressor			DNA gyrase subunit A	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, LysR type		cytochrome c biogenesis protein	hypothetical protein	repressor
	Natched 'ength (a.a.)	524		390	392	174	704					422			854	112	329	268		265	155	117
	Similarity (%)	8.66		81.8	79.9	58.1	88.9					50.7			88.1	69.6	63.5	62.3		57.4	64.5	70.1
	Identity (%)	99.8		50.5	53.3	35.1	71.9					29.4			70.4	29.5	33.7	27.6		29.1	31.6	36.8
	Homologous gene	Brevibacterium flavum dnaA		Mycobacterium smegmatis dnaN	Mycobacterium smegmatis recF	Streptomyces coelicolor yreG	Mycobacterium tuberculosis H37Rv gyrB					Mycobacterium tuberculosis H37Rv			Mycobacterium tuberculosis H37Rv Rv0006 gyrA	Mycobacterium tuberculosis H37Rv Rv0007	Escherichia coli K12 yeiH	Hydrogenophilus thermoluteolus TH-1 cbbR		Rhodobacter capsulatus ccdA	Coxiella burnetii com1	Mycobacterium tuberculosis H37Rv Rv1846c
	db Match	gsp:R98523		Sp.DP3B_MYCSM	sp:RECF_MYCSM	sp:YREG_STRCO	pir.S42198					sp:YV11_MYCTU			sp:GYRA_MYCTU	pir.E70698	sp:YEIH_ECOLI	gp:AB042619_1		gp:AF156103_2	pir:A49232	pir.F7C664
	ORF (bp)	1572	324	1182	1182	534	2133	996	699	510	441	1071	261	246	2568	342	1035	894	420	870	762	369
	Terminal (nt)	1572	1597	3473	4766	5299	7486	8795	84.88	10071	9474	10107	11263	11523	14398	14746	15209	17207	17670	17860	18736	20073
	Initial (nt)	-	1920	2292	3585	4766	5354	7830	9466	9562	9914	11177	11523	11768	11831	14405	16243	16314	17251	18729	19497	19705
	SEQ NO (a.a.)	3502	3503	3504	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	3517	3518	3519	3520	3521	3522
	SEQ NO.	2	3	4	5	9	2	60	6	9	1	12	13	14	15	16	17	18	19	20	21	22

,								T			1			1			- 1	1	_1	ا ي		<	c l	- 1	
. 5			ne protein	c acic reductase	ursor	vio total	y process		de detoxication	A helicase			ıcosidase		nily or integral		sport ATP-	ner, periplasmic in	ransport protein	P-bincing protei	nit NF-180		lans isomerase	rane protein	
10	Function		hypothetical membrane protein	2,5-diketo-D-gluconic acid reductase	5'-nucleotidase precursor	imed cookidaal	5-nucleotidase tarriny process	transposase	organic hydroperoxide de:oxication enzyme	ATP-dependent DNA helicase			glucan 1,4-alpha-glucosidase	lipoprotein	ABC 3 transport family or integral	membrane protein	iron(III) dicitrate transport ATP biding protein	sugar ABC transporter, periplasmic sugar-binding protein	high affinity ribose transport protein	ribose transport ATP-bincing protein	neurofilament subunit NF-180		peptidyl-protyl c:s-trans isomierase	hypothetical membrane protein	
15	Watched	(a.a.)	321	. 92	196		270	51	139	217			449	311	266		222	283	312	236	347		169	226	
20	Similarity	(%)	50.8	88.5	56.1		56.7	72.6	6.67	808	2		54.1	63.7	74.4		70.3	56.5	68.3	76.7	44.4		89.9	53.1	
	Identity	(%)	24.9	65.4	27.0		27.0	52.9	51.8	22.7	36.1		26.7	28.9	3	0.4.0	39.2	25.8	30.5	32.2	32.6	63.0	79.9	29.2	
25 Canding	600	gene	e)	ATCC	Afric and	Can lead	Jrans	iatum ORF1	estris		dans reco		evisiae a1	pathiae	enes SF370		2 fecE	na MSB8	2 rbsC	2 rheA	CEO I	SI	rae H3/KV	B yagP	
30 00 Table Touringed	ign) i gine i	Homologous gene	Mycobacterium leprae	Corynebacterium sp. ATCC	Alita simply distributions of the Alita	IDIIO paranaeniony	Deinococcus radiodurans DR0505	Corynebacterium striatum ORF1	Xanthomonas campestris	pilaseoii oiii	Thiobacillus ferrooxidans reco		Saccharomyces cerevisiae S288C YIR019C sta1	Erysipelothrix rhusiopathiae	Street occurs progenes SF370	mtsC	Escherichia coli K12 fecE	Thermotoga maritima MSB8	Echerichia coli K12 rbsC	Cacilcing autilia 185	Hacillus suorills 100 1030	Petromyzon mannus	Mycobacterium leprae H37KV RV0009 ppiA	Bacillus subtilis 168 yagP	
35				0 7		1															-+			ACSU	1
40		db Match	gp:MLCB1788_6	pir:140838		Sp.5NTD_VIBPA	gp:AE001909_7	JC0213302C	orf.2413353A		Sp.RECG_THIFE		sp:AMYH_YEAST	an FRI 152850 1		gp:AF180520_3	sp:FECE_ECOLI	pir.A72417			sp.RBSA_BACSU	pir 151116	sp.CYPA_MYCTU	Sp.YOGP BACSU	
		ORF (bp)	993	180	\neg	528	1236	197	435		1413	438	1278	054		849	657	981	- 3	1023	759	816	561	6.8.7	3
45		Terminal (nt)	21065	21074		22124	23399	2000	23615	21.2	24885	26775	26822	20167	50.07	29117	30651	31677		32699	33457	33465	34899	25688	32000
50		Initial (nt)	20073	21253	207.7	21597	22164		23779	26747	26297	26338	28099	2004	11167	29962	29995			31677	32699	34280	34339	!_	34987
	0	SEQ.	3523			3525	3526	†	3527	3256	3529	3530	3531	1	3532	3533	15.34	35.35	3	3536	3537	3538	3539		3540
55	- }-	SEQ.			7.7	25	<u> </u>	T	27	97	29	30	31		32	33	5	, ,	3	36	37	38	39	!	40

5 - 10	Function	ferric enterobactin transport system permease protein		ATDaca
15	Identity Similarity Hength (%) (%) (a.a.)	332		253
20	Similarity (%)	70.5		0 10
	Identity (%)	40.4		0.7.0
25 Continued)	Homologous gene	978 sp:FEPG_ECOLI Escherichia coli K12 fepG		
40	db Match	sp.FEPG_ECOLI		
	ORF (bp)	978	966	
45	Terminal (nt)	38198	36247	
50	Initial (nt)	37221	37242	
	SEQ	3541	3542	
	0.0	<u>}</u>	1	ĺ,

			_		_				_												
	Function	ferric enterobactin transport system permease protein		ATPase	vulnibactin utilization protein	hypothetical membrane protein	serine/threonine protein kinase	serineAhreonine protein kinase	penicillin-binding protein	stage V sporulation protein E	phosphoprotein phosphatase	hypothetical protein	hypothetical protein					phenol 2-monooxygenase	succinate-semialdehyde dehydrogenase (NAD(P)+)	hypothelical protein	hypothetical membrane protein
	Matched length (a.a.)	332		253	260	95	648	486	492	375	469	155	526					117	490	242	262
	Similarity (%)	70.5		81.8	52.7	72.6	68.7	59.1	66.7	9.59	70.8	66.5	38.8					63.3	78.2	57.0	64.1
	Identity (%)	40.4		51.8	26.2	40.0	40.6	31.7	33.5	31.2	44.1	38.7	23.6					29.9	46.7	27.3	29.0
(Homologous gene	Escherichia coli K12 fepG		Vibrio cholerae viuC	Vibrio vulnificus MO6-24 viuB	Mycobacterium tuberculosis H37Rv Rv0011c	Mycobacterium leprae pknB	Streptomyces coelicolor pksC	Streptomyces griseus pbpA	Bacillus subtilis 168 spoVE	Mycobacterium tuberculosis H37Rv ppp	Mycobacterium tuberculosis H37Rv Rv0019c	Mycobacterium tuberculosis H37Rv Rv0020c					Trichosporon cutaneum ATCC 46490	Escherichia coli K12 gabD	Bacillus subtilis yrkH	Methanococcus jannaschii MJ0441
	db Match	sp:FEPG_ECOLI		gp.VCU52150_9	sp:VIUB_VIBVU	sp:YO11_MYCTU	SP. PKNB MYCLE	gp:AF094711_1	gp:AF241575_1	sp.SP5E_BACSU	pir:H70699	pir.A70700	pir:870700					sp.PH2M_TRICU	sp:GA3D_ECOLI	sp:YRKH_BACSU	sp:Y441_METJA
	ORF (bp)	978	966	777	822	270	1938	1407	1422	1143	1353	462	864	147	720	219	471	954	1470	1467	789
	Terminal (nt)	38198	36247	38978	39799	40189	40576	42513	43926	45347	46659	48024	48505	49455	49897	50754	99605	54008	51626	55546	55629
	Initial (nt)	37221	37242	38202	38978	40458	42513	43919	45347	46489	48021	48485	49368	49601	50616	50972	51436	53055	53095	54080	56417
	SEQ NO.	3541	3542	3543	3544	3545	3546	3547	3548	3549	3550	3551	3552	3553	3554	3555	3556	3557	3558	3559	3560
	SEQ		42	43		1	46	47	48	49	50	51	52	53	54	55	56	57	58	59	90

									1	;		1	_				1	T	1	i					
5 - - 10		Function	hypothetical protein		hypothetical protein	hypothetical protein	hynothetical protein	1		management and cohalt transport	protein		chloride channel protein	required for NMN transport	phosphate starvation-induced	protein-like protein			Ma(2+1/citrate complex secondary	transporter	two-component system sensor histidine kinase		transcriptional regulator	D-isomer specific 2-hydroxyacid	dehydrogenase
15		Matched length (a.a.)	T	\vdash	179	62	310	1			390		400	241	3	340				497	563		229		293
20		Similarity (%)	74.3		70.4	83.9	50.7	2			59.5		64.8	53.1		0.09				68.8	9.09		63.3	3	73.7
		Identity (%)	40.5		36.3	53.2	90	70.0			29.5		30.0	24.1		29.1				42.3	27.2	-	13.7	122	43.3
25	itinued)	gene		50000	C 6803	rculosis		1/68.11			rculosis A		ZM4 clcb	Office entities	and bill	GICUIOSIS				_	2 dpiB	-		Z CTIK	lutarnicon
30	Table 1 (continued)	Homologous gene	Harry Allianters of the	Bacillus subtilis yini	Synechocystis sp. PCC6803 slr1261	Mycobacterium tuberculosis H37Rv Rv1766		Leishmania major L4/68.11			Mycobacterium tuberculosis H37Rv Rv1239c corA		Zymomonas mobilis ZM4 clcb	Cylindrical Company	Salmonella typnimurium priuce	Mycobacterium tubercurosis H37Rv RV2368C				Bacillus subtilis citM	Escherichia coli K12 dpiB			Escherichia coll K12 criK	Corynebacterium glutamicum unkdh
40		db Match		Sp YRKF BACSU B	sp.YCE1_SYNY3	pr.G70988		gp:LMFL4768_11 L			pir.F70952		_	十	sp:PNUC_SALTY	sp:PHOL_MYCTU				sp.CITM_BACSU		sp.oria_cocci		sp.DPIA_ECOLI	gp:AF134895_1
•		ORF		291	591 5	174 p	855	840 g	711	1653	1119	147	1		069	1122	132	384	765	1467	10.5	2002	570	654	912
45		-E	(III)	55386	56680	57651	58941	59930	60662	62321	62390	70303	93384	65458	65508	67972	68301	68251	65824	68720		/2158	71474	72814	72817
50		Initial	(nt)	56676	57270	57478	58087	59091	59952	69909	63508	9,0,0	64040	64190	66197	66851	68170	68634	69060	70186		70506	72043	72161	73728
		SEQ	(3 3.)	3561	3562	3563	3564	3565	3566	15.67	3568		3569	3570	3571	3572	3573	3574	3575	3576		3577	35.78	3579	3580
55		SEO	_	61	i	63	29	65	99	67	89		69	70	71	72	73	74	75	76		77	78	79	80

5 - - 10		Function	hypothetical protein	biotin synthase	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	integral membrane efflux protein	creatinine deaminase			SIR2 gene family (silent information regulator)	triacyiglycerol lipase	triacylglycerol lipase		transcriptional regulator	urease gammma subunit or urease structural protein	urease beta subunit	urease alpha subunit
15		Matched length (a a)	127	334	43	85		42	84	503	394			279	251	262		171	100	162	570
20		Similarity (%)	76.4	7.66	79 1	63.5		75.0	0.99	59.0	96.8			50.2	59.0	56.1		94.7	100 0	100.0	100.0
		Identity (%)	38.6	99.4	72.1	34.1		71.0	61.0	25.6	97.2			26.2	30.7	29.4		90.6	100.0	100.0	100.0
25	nued)	ane.	or A3(2)	micum	utosis	isiae		Nigg	<u>e</u>	e varS				risiae hst2	es	Sət		amicum	amicum	amicum	amicum
30	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCM2.03	Corynebacterium glutamicum bioB	Mycobacterium tuberculosis H37Rv Rv1590	Saccharomyces cerevisiae YKL084w		Chlamydia muridarum Nigg TC0129	Chlamydia pneumoniae	Streptomyces virginiae varS	Bacillus sp.			Saccharomyces cerevisiae hst2	Propionibacterium acnes	Propionibacterium acnes		Corynebacterium glutamicum ureR	Corynebacterium glutamicum ureA	Corynebacterium glutamicum ATCC 13032 ureB	Corynebacterium glutamicum ATCC 13032 ureC
<i>35</i> 40		db Match	gp:SCM2_3	sp:BIOB_CORGL	pir.H70542	Sp.YKI4_YEAST		PIR:F81737	GSP-Y35814	orf 2512333A	qp D38505 1			sp.HST2_YEAST	prf 2316378A	prf 2316378A		gp:AB029154_1	gp.AB029154_2	gp:CGL251883_2	gp CGL251883_3
		ORF (bp)	429 6	1002	237	339	117	141	273	+-			615	924	972	+	888	513	300	486	1710
45		Terminal (nt)	74272	75491	75742	76035	76469	80613	81002	82120	83691	85098	8563	87241	87561	88545	90445	90461	91473	91988	93701
50		Initial (nt)	73844	74490	75506	75697	76353	80753	17610	83568	84935	05403	96277	86318	88537		89558	90973	91174	91503	91992
		SEO	3581	3582	3583	3584	3585	3586	1507	3307	35.80	200	3.000 2.000 2.000	3592	1503	3594	3595	3596	3597	3598	3599
55		SEO	91	82	83	84	85	86	5	200	2 2	8 8	3 5	92	ត	94	95	96	97	98	66

(þa
continue
-
Table
•

_									-,-								1				T		\neg
	Function	urease accessory protein	urease accessory protein	urease accessory protein	urease accessory protein	epoxide hydrolase		valanimyčin řesisiani protein			heat shock protein (hsp90-family)	AMP nucleosidase		acetolactate synthase large subunit		proline dehydrogenase/P5C dehydrogenase		aryl-alcohol dehydrogenase (NADP+)	pump protein (transport)	indole-3-acetyl-Asp hydrolase		hypothelical membrane protein	
-	Matched length (a.a.)	157	226	205	283	279	!	347			899	481		196		1297		338	513	352		106	
	Similarity (%)	100.0	100.0	100.0	100.0	48.4		59.7			52.7	68.2		58.7		50.4		2.09	71.4	49.2		70.8	
	Identity (%)	100.0	100.0	100.0	100.0	21.2		26.5			23.8	41.0		29.6		25.8		30.2	36.5	23.0		35.9	
(Homologous gene	Corynebacterium glutamicum ATCC 13032 ureE	Corynebacterium glutamicum ATCC 13032 ureF	Corynebacterium glutamicum ATCC 13032 ureG	Corynebacterium glutamicum ATCC 13032 ureD	Agrobacterium radiobacter echA		Streptomyces viridifaciens vlmF			Escherichia coli K12 htpG	Escherichia coli K12 amn		Aeropyrum pernix K1 APE2509		Salmonella typhimunium putA		Phanerochaete chrysosporium aad	Escherichia coli K12 ydaH	Enterobacter agglomerans		Escherichia coli K12 yidH	
	db Match	gp:CGL251883_4	gp:CGL251883_5	gp.CGL251883_6	gp:CGL251883_7	prf.2318326B		gp:AF148322_1			Sp:HTPG_ECOLI	Sp. AMN_ECOLI		pir.E72483		sp:PUTA_SALTY		sp:AAD_PHACH	SP.YDAH ECOLI			sp:YIDH_ECOLI	
	ORF (hp)	471	678	615	849	777	699	1152	675	2775	1824	1416	579	552	099	3455	114	945	1614	1332	669	366	315
	Terminal (nt)	94199	94879	95513	95365	95368	98189	97319	100493	9886	101612	104909	105173	105841	106630	110890	111274	112318	114083	115478	114564	115943	116263
	Initial (nt)	93729	94202	94899	95517	97144	97521	98470	99819	101582	103435		105751	106392	107289	107435	111161	111374	112470		115262	,	115949
	SEQ NO.	3600	3601	3602	3603	3604	3605	3606	3607	3608	3609	3610	3611	3512	3613	3614	3515	3616	3617	3618	_	$\overline{}$	3621
	SEQ NO.	100	101	102	103	104	105	106	107	108	5	15	E	112	113	114	115	116	117	118	119	120	121

. 5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function		transcriptional repressor	methylglyoxalase	hypothetical protein	mannitol dehydrogenase	D-arabinitol transporter		galactitol utilization operon repressor	xylulose kinase		pantoatebeta-alanine ligase	3-methyl-2-oxobutanoate hydroxymethyltransferase		DNA-3-inethyladenine glycosylase		esterase		carbonale dehydratase	xylose operan repressor protein	macrolide efflux protein		
	Matched length (aa)		258	126	162	497	435		260	451		279	27.1		188		270		201	357	418		
	Similarity (%)		59.7	78.6	64.8	70.4	68.3		64.6	68.1		100.0	100.0		97.9		69.3		53.2	49.3	61.2		
	Identity (%)		29.5	57.9	37.0	43.5	30.3		27.3	45.0		100.0	100.0		42.0		39.3		30.9	24.1	21.1		
Table 1 (continued)	Homologous gene		Agrobacterium tumefaciens accR	Bacillus subtilis yurT	Mycobacterium tuberculosis H37Rv Rv1276c	Pseudomonas fluorescens mtlD	Klebsiella pneumoniae dalT		Escherichia coli K12 gatR	Streptomyces rubiginosus xylB		Corynebacterium glutamicum ATCC 13032 panC	Corynebacterium glutamicum ATCC 13032 panB		Arabidopsis thaliana mag		Petroleum-degrading bacterium HD-1 hde		Methanosarcina thermophila	Bacillus subtilis W23 xylR	Lactococcus lactis mef214		
	db Malch		sp.ACCR_AGRTU	pir.C70019	sp:YC76_MYCTU	prf.2309180A	prf 2321326A		sp:GATR_ECOLI	Sp:XYLB_STRRU		gp:CGPAN_2	gp:CGPAN_1		Sp:3MG_ARATH		gp:AB029896_1		sp:CAH_METTE	SP:XYLR_BACSU	gp:LLLP:<214_12		
	ORF (bp)	2052		390	510	1509	1335	189	837	1419	822	837	813	951	630	654	924	627	558	1143	1272	804	444
	Terminal (nt)	116548	118810	120410	120413	120951	122507	124033	124965	126353	127992	126353	127192	128099	129489	130798	130815	132424	132981	132971	134207	135519	136122
	Initial (nt)	118599	119589	120021	120922	122459	123841	123842	124130	124932	127171	127189	128004	129049		130145	131738	131798	132424			3642 136321	136565
	SEQ NO.	3622	3623	3624	3625	3626	3627	3628	3629	3630	3631	3632	3633	3634	3635	3636	3637	3638	3639	3640	3641	3642	
	SEQ	;	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143

	.5	
•		
,	10	
	15	
	20	
	25	
	30	
	35	
	40	
	45	
	50	

Table 1 (continued)

										,_										_					_	
	Function					cellulose synthase	hypothelical membrane protein				chloramphenicol sensitive protein	hypothetical membrane protein			transport protein	hypothetical membrane protein			ATP-dependent helicase		nodulation protein	DNA repair system specific for alkylated DNA	DNA-3-methyladenine glycosylase	threonine efflux protein	hypothetical protein	doxorubicin biosynthesis enzyme
	Matched length (a.a.)					420	593				303	198			361	248			829		188	219	166	217	55	284
	Similarity (%)					51.2	51.8				60.7	59.1			62.3	70.2			64.3		0.99	2.09	65.1	61.3	727	52 1
	Identity (%)	i				24.3	25.1	ŀ			34.7	30.3			32.4	34.7			33.8		40.4	34.7	39.8	34.1	50.9	31.0
ומחוב ו (בחווווחבם)	Homologous gene					Agrobacterium tumefaciens celA	Saccharomyces cerevisiae YDR420W hkr1				Pseudomonas aeruginosa rarD	Escherichia coli K12 yadS			Escherichia coli K12 abrB	Escherichia coli K12 yfcA			Escherich:a coli K12 hrpB		Rhizobium leguminosarum bv. viciae plasmid pRL1JI nodL	Escherichia coli 0373#1 alkB	Escherichia coli K12 tag	Escherichia coli K12 rhtC	Bacillus subtilis vaaA	Streptomyces peucetius dnrV
	db Match			-		pir 1397 14	sp.HKR1_YEAST				Sp.RARD_PSEAE	sp YADS_ECOLI			Sp. ABRB_ECOLI	sp:YFCA_ECOLI			Sp.HRPB_ECOLI		sp NODL_RHILV	sp ALKB_ECOLI	Sp.3MG1 ECOLI	SH BHTC ECOLI	Sp. YAAA BACSII	
	ORF (bp)	1941	000	500	636	1451	1731	621	1065	756	879	717	333	1659	1137	798	624	405	2388	315	675	069	525	678	5 5	852
	Terminal (nt)	138744	00000	140329	139226	141789	143526	143075	144639	145480	145518	147238	147570	149780	149794	152369	150966	152814	153226	156167	156147	157537	158138	150021	150051	160013
	Initial (nt)	136804	1	138/91	139861	140329	141796	142455	143575	144725	146396	146522	147238	148122	150930	151572	151589	3659 152410	155613	155853	156821	156848	157614			
	SEQ NO.	3644	3 3	3645	3646	3647	3648	3649	3650	3651	3652	3653	3654	3655	3656	3657	3658	3659	3660	3661	3662	3663	3664	5 5	2000	3667
	SEQ NO.	144	ー	145	145	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	2 9	co.	167

5
-
10
15
20
25
30
35
40
45
50

	Function	methyltransferasc				ribonuclease			neprilysin-like metallopeptidase 1		transcriptional regulator, GntR family or fatty acyl-responsive regulator	fructokinase or carbohydrate kinase	hypothetical prolein	methylmalonic acid semialdehyde dehydrogenase	myo-inositol catabolism	myo-inositol catabolism	rhizopine catabolism protein	myo-inositol 2-dehydrogenase	myo-inositol catabolism	metabolite export pump of tetracenomycin C resistance		oxidoreductase	
	Matched length (a.a.)	104				118			722	:	238	332	296	498	268	586	290	335	287	457		354	
	Similarity (%)	56.7				76.3			57.2		9.59	63.0	80.7	86.1	58.2	8.69	51.0	72.2	72.1	61.5		65.5	
	Identity (%)	35.6				41.5			28.5		29.8	28.6	52.7	61.0	33.2	41.0	29.7	39.1	44.6	30.9		31.1	
Table 1 (continued)	Homologous gene	Schizosaccharomyces pombe SPAC1250.04c				Neisseria meningitidis MC58 NMB0662			Mus musculus n11		Escherichia coli K12 farR	Beta vulgaris	Streptomyces coelicolor A3(2) SC8F11.03c	Streptomyces coelicolor msdA	Bacillus subtilis iolB	Bacillus subtilis iolD	Rhizobium meliloti mocC	Bacillus subtilis ich or iolG	Bacillus subtilis iolH	Streptomyces glaucescens tcmA		Bacillus subtilis yvaA	
	db Match	gp:SPAC1250_3				gp:AE002420_13			gp:AF176569_1		Sp.FARR_ECOLI	pir T14544	gp:SC8F11_3	prt:2204281A	Sp.IOLB BACSU			sp:MI2D_BACSU				sp:YVAA_BACSU	
	ORF (bp)	342	930	657	933	405	639	741	2067	953	759	1017	921	1512	888	1728	954	1011	870	1374	621	1023	456
	Terminal (nt)	160370	161360	162352	161363	162867	163603	166457	163689	167419	167837	163991	170916	172444	173355	175275	176272	177318	178203	179658	178461	180711	181297
	(nt)	160029	160431	161696	162295	162463	162965	165717	165755	166457	168595	168975	169996	170933	172468	173548	175319	176308	177334	1	179081	179689	180842
	SEQ NO.	3668	3669	3670	3671	3672	3673	3674	3675	3676	3677	3678	3679	3680	3681	3682	3683	3684	3685	3686	3687	3688	3689
	SEO		169	170	171	172	173	174	175	176	177	178		180	181	182	183	184	185	1	187	188	189

													_				$\neg \neg$	T-		\neg						
5 - 		Function		regulatory protein	oxidoreductase	hypothetical protein		cold shock protein			caffeoyl-CoA 3-O-methyltransferase		alunca registance amylase	glucose-resistance arrivase regulator regulator		o months action of the control	U-xylose prototo sente.		transposase (ISCg2)	signal-transducing histidine kinase	glutamine 2-oxoglutarate aminotransferase large subunit	glutamine 2-oxoglutarate aminotransferase small subunit		hypothetical protein		
15		Matched tength (a.a.)		331	442	303		64			134	5		338		3	456		401	145	1510	506		496		
20		Similarity (%)		61.9	52.5	64.7		92.2			58.2	300.2		62.1		,	/0.5		100.0	60.7	100 0	99.8		72.8		
		Identity (%)		32.0	24.4	33.7		70.3			9 00	30.0		28.7			36.0		100.0	27.6	6.99	99.4		44.6	-	
25	ned)	le		bR	v4hM			r A3(2)											micum		micum	тісиш		ulosis		
30	Table 1 (continued)	Homalogous gene		Strentonyces reticuli cebR	Shizobium sp. NGR234 v4hM	Bacillus subtifis vftH		Streptomyces coelicolor A3(2)				Stellaria longipes		Bacillus subtilis ccpA			Lactobacillus brevis xylT		Corynebacterium glutamicum ATCC 13032 tnp	Rhizobium meliloti fixt	Corynebacterium glutamicum altB	Corynebacterium glutamicum		Mycobacterium tuberculosis	H3/KV KV3098	
<i>35</i>		db Match		-	gp SKE9/36 I	+	Ī	sp:CSP_ARTGO				prf.2113413A		sp.ccpA_aACSU			SP.XYLT_LACBR		gp:AF189147_1	Sp. FIXL RHIME	gp:AB024708_1	gp. AB024708_2		nir C70793		
•		ORF (tp)	287	, ,		2027		201.	1:	534	306		426	066	402	240	1473	300	1203	435		1518	2,45	1485	2	369
45		Terminal (nt)	101647	181047		1		185642		18/302	187607	188100	188300	188747	190321	190389	190703	192949	194464	194604	199769	201289	177700	201341	_	205956
50		Initial (nt)		181264	182679	182819	1840//	185214		186769	187302	187687	188725	189736	189920			193248	193262	195038						205588
		SEO	(a a)			3692	3693	3694		3696	3697	3698	3699	3700	3701	3702	3703	3704	3705	3706	3707	3708		3/09	37.0	3711
55		<u> </u>		\neg			193	194	1	196	197	198	Ť	200	201	202	203	204	7 205	300	20, 20	208		209	210	211

EP 1 108 790 A2

<i>5</i>	
* 10	
15	
20	
25	
30	
35	
40	
45	
50	

Table 1 (continued)

SEQ NO (a.a)		Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a a.)	Function
3712	+	206068	206385	318						
3713	10	207011	203541	3471	prf:2224383C	Mycobacterium avium embB	39.8	70.6	1122	arabinosyl transferase
3714	4	208989	207007	1983	pir.D70697	Mycobacterium tuberculosis H37Rv Rv3792	35.0	66.1	651	hypothetical membrane protein
3715	5	209968	209210	759	prf.2504279B	Pseudomonas sp. phbB	31.4	56.5	223	acetoacetyl CoA reductase
3716	9	211455	209992	1464	pir:B70697	Mycobacterium tuberculosis H37Rv Rv3790	66.0	85.1	464	oxidoreductasc
3717	7	211768	211535	234						
3718	8	211777	212283	507						
3719	6	212283	212735	453						
3720	18.	212656	213657	1002	gp:LMA243459_1	Leishmania major ppg1	24.3	57.4	350	proteophosphoglycan
3721	72	213712	214107	396	sp.Y0GN_MYCTU	Mycobacterium tuberculosis H37Rv Rv3789	60.5	83.9	124	hypothetical protein
3722	2	214121	214522	402						
3723	23	214527	215159	633	pir:H70666	Mycobacterium tuberculosis H37Rv Rv1864c	43.2	73.8	206	hypothetical protein
3724	24	216100	215162	939	pir:B70696	Mycobacterium tuberculosis H37Rv Rv3782 rfbE	63.6	79.1	302	rhamnosyl transferase
37	3725	216264	216605	342						
37	3726	216712	216116	597	gp:AB016260_100	Agrobacterium tumefaciens olasmid pTi-SAKURA (lorf100	31.3	55.1	214	hypothetical protein
3727	7.7	217929	217141	789	sp:RFBE_YEREN	Yersinia enterocolitica rfbE	47.0	78.4	236	O-antigen export system ATP- binding protein
3728	88	218746	217943	804	sp.RFBD_YEREN	Yersinia enterocolitica rfbD	31.3	75.6	262	O-antigen export system permease protein
3729	59	218979	220151	1173	pir.F70695	Mycobacterium tuberculosis H37Rv Rv3778c	36.5	63.0	416	hypothetical protein
37	3730	221107	220154	954	gp:AF010309_1	Homo sapiens pig3	41.1	71.5	302	NADPH quinone oxidoreductase
1	1		The state of the last of the l							

(\neg	$\overline{}$								1		- 1			-		1
5			nsfer protein	otein	thoris protoin	inesis proieiri	ise, large	r biosynthesis	rotein	tor synthesis	ine protein	eriplasmic	erting factor		otein	ane protein				
10	Function		probable electron transfer protein	amino acid carrier protein		mciybdopterin biosyntilesis protein mce8 (sulfurylase)	molybdopterin synthase, large subunit	mclybdenum cofactor biosynthesis protein CB	co-factor synthesis protein	molybdopterin co-factor synthesis protein	hypothetical membrane protein	molybdate-binding periplasmic	melybdopterin converting factor	subunit 1	mattose transport protein	hypothetical membrane protein	histidinol-phosphate aminofransferase			
15	Matched length (a.a.)		78	475		368	. 150	158	154	377	227	256	8	g	365	121	330			
20	Similarity (%)		51.0	75.8		70.1	75.3	63.3	84.4	58.6	70.5	68.0	70.0	0.0	8.09	76.9	65.8			
	Identity (%)		35.0	46.7		43.8	44.7	33.5	61.7	34.5	44.1	34.0	3	37.5	34.3	36.4	37.3	_	-	_
25 (bandinuch t elder	Homologous gene		tuberculosis	alsT		sp. PCC 7942	cotinovorans	s sp. PCC 7942	cotinovorans	cotinovorans	cotinovorans	cotinovorans	tuberculosis		litoralis malK	Streptomyces coelicolor A3(2) ORF3	obilis hisC			
30 de 1	Homolog		Mycobacterium tuberculosis H37Rv Rv3571	Bacillus subtilis alsT		Synechococcus sp. PCC 7942 moeB	Arthrobacter nicotinovorans moaE	Synechococcus sp. PCC 7942 moaCB	Arthrobacter nicotinovorans	Arthrobacter nicotinovorans	Arthrobacter nicotinovorans	Arthrobacter nicotinovorans	modA Murobacterium futherculosis	H37Rv moaD2	Thermococcus litoralis malk	Streptomyces ORF3	Zymomonas mobilis hisC			
<i>35</i>	db Match		PIR: A70606	sp.ALST_BACSU		gp.SYPCCMOEB_	prf 2403296D	sp:MOCB_SYNP7	prf 2403296C	gp:ANY10817_2	n.f.2403296F		1.2403230C	pir:D70816	prf 2518354A	Sp:YPT3_STRCO	sp.HISB_ZYMMO			
	ORF (bb)	582	16	1476 sp	606		_1	471 sp	468 pr	1185 gr			804 p	321 p	912 p	+	1023 s	906	294	120
45	Terminal	-		222210	225244	225242	226312	225760	227218	227703	100000	100077	729/11	230928	230931	231848	232260	234818	234910	235409
50	Initial	221712	221911	223685	224336	226324	226767	227230	227685	22R87	0.000	C1 0827	230514	230608	231842			233913	1	1 .
	SEO	(a.a.)		3733	3734	3735	3736	3737	37.7R	37.39		3/40	3741	3742	3743	3744	3745	3746	3747	
55	SEO	(DNA)	232	233	224	235	236	237	238	230	66.3	240	241	242	243	244	245	246	247	248

EP 1 108 790 A2

									···				\neg			1			\neg		$\neg \Gamma$			
5				a)		orter		nsporter			c			rotein	ransferase	e protein				lase				
10	Function		transcript on factor	alcohol dehydrogenase	pulrescine oxidase	magnesium ion transporter		Na/dicarboxylate cotransporter	oxidoreductase	hypothetical protein	nitrogen fixation protein			membrane transport protein	queuine tRNA-ribosyltransferase	hypothetical membrane protein			ABC transporter	glutamyl-tRNA synthetase		transposase		
15	Matched	(a a)	252	335	451	444		267	317	160	144			266	400	203		3	226	316		360		
20	Similarity	(%)	57.1	0.99	38.1	68.5		59.6	69.1	73.8	70.1			45.7	68.0	62.1			49.6	63.3		55.0		
	Identity	(%)	29.4	340	215	30.9		33.2	46.1	48.8	45.1			20.7	41.3	28.1			24.3	34.8		34.2		
25 (pancija	,	gene	~	ophilus	ond	ngtE			rculosis	rculosis	nicum			rculosis oL2		0			escens strW			gae tnpA		
So Table 1 (Continued)		Homologous gene	Brucella abortus oxyR	Bacillus stearothermophilus DSM 2334 adh	Micrococcus rubens puo	Borrelia burgdorferi mgtE		Xenopus laevis	Mycobacterium tuberculosis H37Rv tyrA	Mycobacterium tuberculosis H37Rv Rv3753c	Bradyrhizobium japonicum			Mycobacterium tuberculosis H37Rv Rv0507 mmpL2	Zymomonas mobilis	Bacillus subtilis ypdP			Streptomyces glaucescens strW	Bacillus subtilis gltX		Pseudomonas syringae tnpA		
35		db Match	gp.BAU81286_1 E	TS	SP. PUO MICRU			prf. 2320140A	pir.C70800	pir:B70800	gp.RHBNFXP_1			sp.YV34_MYCTU	Sp.TGT_ZYMMO	sp:YPDP_BACSU			pir.S65588	sp:SYE_BACSU		gp:PSESTBCBAD_1		
	100	(gd)	762 gp.		801 sp.	+	174	1530 prf	1020 pir.	522 pir	417 gp	201	351	+	1263 sp	738 sp	1080	648	1437 pir	879 sp	066	1110 95	303	138
45		(nt)	235451		238145		+-	+-	Ť	243431	243910	+	╁	 	248572	248557	250507	249722	251939	252830	252830	254329	255492	255204
50	3	nifia (nt)	236212	236326	237345	238176	239772	239986	242902	242910	243494	244015	244466	J.	247310	249294	249428	250369	250503	<u></u>	253819	255438	255794	
	SEO	ON E	3749	!	3751	3752	3753	3754	3755	37.56	3757	3758	3759	3760	3761	3762	3763	3764	3765	3766	3767	3768	3769	
55	SFO	NO S	249	250	25.1	252	253	254	255	256	257	258	259	260	761	262	263	264	265	266	267	268	269	270

EP 1 108 790 A2

	_						_	7	7	_		$\neg \neg$					- 1	-	a)	- 1	1 1		1	1.7	ล์ไ	
5		tion	nase		Il holoenzyme tau				tein	ase	amyl tripeptide		III epsilon chain	brane protein		alpha chain			extracytoplasmic function alternative	Se			ve regulatory	Accept His	branched-chain amino acid transport	
10		Function	aspartate transaminase		DNA polymerase III holoenzyme tau	subunit	of Control of Control	nypothetical protein	recombination protein	cotyric acid synthase	UDP-N-acetylmuramyl tripeptide	synthetase	DNA polymerase III epsilon chain	hypothetical membrane protein	nypouleucal man	aspartate kinase alpha chain			extracytoplasmic	sigma factor	5		leucine-responsive regulatory	prctein	branched-chain	
15		Matched length (a.a.)	432		9	047		٥	214	248		444	346	270	07	421			180	3 8	437	-		143	203	
20		Similarity (%)	100.0			53.1		74.3	72.4	61.7		9.09	55.2	3	100.0	99.8			2 52	200	6.4			72.0	68.0	
		Identity (%)	08.6	2		31.6		41.6	42.5	38.3		31.3	25.7		100.0	99.5				31.2	52.9	-	-	37.1	30.5	
25	ntinued)	gene	fermentum			us dnaX		×	~	Choo	2000	s murC	erculosis	lutamicum	vum) ATCC	Jutamicum				regmatis sigt	¥.			oniae Irp	A1 azlC	
30	Table 1 (continued)	Homologous gene	Brevibacterium lactofermentum	aspC		Thermus thermophilus dnaX		Bacillus subtilis yaak	Racillus subtilis recR		Heliobaciilus mobilis cood	Heliobacillus mobilis murC	Mycobacterium tuberculosis	Corynebacterium glutamicum	(Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum IvsC-alpha				Mycobacterium smegmatis sige	Bacillus sublilis kalA			Klebsiella pneumoniae Irp	Bacillus subtilis 1A1 azlC	
35 40		db Match		gsp:W69554 as		gp.AF025391_1 Ti		SE VAAK BACSU B	+	3	prf:2503462B	prf.2503462C	Mir.H70794		sp:YLEU_CORGL (Sp. AKAB_CORGL				prf.2312309A	sp:CATV_BACSU			Sp:LRP_KLEPN	SD AZLC BACSU	
-		ORF (bp)	- †	1296 gs	630	2325 gp	717	+		524 55	750 pr	1269 pr	1080	_	867 s	1263 s	4063	3	1434	579	1506	342	291	462	753	-1
45		Terminal (257894	258529	260875	258596	20000	C67197	262055	262546	263298	264599		268258	270633	101000	47C6Q7	273194	273542	275871	276232	275957	276302	-i-	
50		initial	(1111)	256599	257900	258551	250312	+	_ <u>-</u> -	251402	253295	264566	765678	210007	269124	269371		2/05/6	271761	274120	274366			_		2/6829
		SEQ NO.	(a a.)	3771	3772	1				3776	3777		07.70	2/2	3780	1781		3782	3783	3784	3785	+	+-			
55		SEQ		271	272		-		275	276	1			8/7	280	180	107	282	283	284	285	286	287	2 6	20 1	289

EP 1 108 790 A2

	Function			metalloregulatory protein	arsenic oxyanion-transiocation purrip membrane subunit	arsenate reductase				Na+/H+ aniporter of multiple resistance and pH regulation related protein D	Na+/H+ antiporter	Na+/H+ antiporter or multiple resistance and pH regulation related protein A	*			transcriptional activator	two-component system sensor histidine kinase	alkaline phosphatase		phosphoesterase	hypothetical protein
	Matched length (a a)		1	9E 06	341 ars	119 ars				503 res	119 Na	824 re:				223 tre	521 th	180 al	\neg		149 h
	Similarity (%)	-		68.9	84.2	689				70.4	9.07	64.3				70.4	56.8	0.09		54.7	71.8
	Identity (%)			34.4	52.2	31.1				32.4	37.0	34.1				38.6	26.7	28.3		26.1	37.6
Table 1 (continued)	Homologous gene			Sinorhizobium sp. As4 arsR	Sinorhizobium sp. As4 arsB	Staphylococcus xylosus arsC				Baciilus firmus OF4 mrpD	Staphylococcus aureus mnhC	Bacillus firmus OF4 mrpA				Alcaligenes eutrophus CH34 czcR	Mycobacterium tuberculosis mtrB	Lactococcus lactis MG1363 apl		Bacillus subtilis ykuE	Bacillus subtilis yqeY
	db Match			gp: AF178758_1	gp:AF178758_2	SP ARSC_STAXY				gp:AF097740_4	ort 2504285D	gp:AF097740_1				sp:czcR_ALCEU	prf.2214304B	sp.APL_LACLA		pir.B69865	sp:YQEY_BACSU
	ORF (bp)	324	315	345	1080	387	318	270	453	1530	38.		1485	603	964	999	1467	603	561	915	453
	Terminal (nt)	277904	277987	278388	279893	280279	280349	280670	280949	281404	750080	283317	287857	287059	287966	289131	289777	292417	291273	292597	293991
	Initial (nt)	277581	278301	278732	278814	279893	280666	280939	281401	282933	712200		286373	287661	288829	289796	291243	291815	┷		
	SEQ NO (a.a.)	3790	3791	3792	3793	3794		3796	3797	3798	2000	3800	3801	3802			3805	3806	3807	3808	3809
	SEQ NO (DNA)		+	1-	1	294	1	296	297		9	300	301	302	303	304	305	306	302	308	309

EP 1 108 790 A2

	Function	class A penicillin-binding protein(PBP1)	regulatory protein			hypothetical protein	transcriptional regulator	shikimate transport protein		long-chain-fatty-acid—CoA ligase		transcriptional regulator	3-oxoacyl-(acyl-carrier-protein)	reductase	glutamine synthetase	short-chain acyl CoA oxidase	nodulation protein		hydrolase		diotora relaces Child	CAMP receptor process		ultraviolet N-glycosylase/AP lyase	dialoga sisanaccid o comercia	cytochrome c brugeriesis proven
	Matched length (a.a.)	782	7.			20	149	440		534	100	127	251		254	394	153		272			207		240	;	211
	Similarity (%)	77.1	63.4			96.0	88.9	6 89		2	8.80	65.4	77.5	5.27	52.0	66.5	72.6	?}	72.4			65.7		77.1	 -	58.3
	Identity (%)	48.3	908			.84.0	65.1	27.3	3		31.1	33.9	;	2	27.2	38.8	1	4	41.2			30.9		57.5	3	34.6
Table 1 (continued)	Homologous gene	Mycobacterium leprae pon1	strentomyces coelicolor A3(2)	whiB		Streptomyces coelicolor A3(2) SCH17.10c	Mycobacterium tuberculosis	HOUNT HASOLOG	Escherichia coil K 12 sniM		Bacillus subtilis IcfA	Streptomyces coelicolor A3(2)	2024.202	Bacillus subtilis fabG	Emericella nidulans fluG	And a control of the	Arabidopsis manaric cego	Rhizobium leguminosarum nodiv	Mycobacterium tuberculosis H37Rv Rv3677c			Vibrio cholerae crp		7	Micrococcus luteus pag	Mycobacterium fuberculosis H37Rv Rv3673c
	db Match	nr 2209359A		pir:S20912		gp:SCH17_10	nir.G70790	1	sp.SHIA_ECOLI		SP.LCFA BACSU			sp.FABG_BACSU	INDIVIDUO I			sp:NODN_RHILV	pir.F70790			A67273749A		_	sp: UVEN_MICLU	pir.870790
	ORF (bp)	1.0		339	192	153	459		1353	609	1536	525		<u>9</u> 33	15	746 - 746	1194	471	843	1173	705	ü	+	192	780	558
	Terminal	70700	234004	297402	297622	297783	050800	007067	298332	300695	200726	301512	30100	303099		304074	305263	305758	306700	305195	<u> </u>	-	-+	307727	308734	309302
	Initial	()(1)	296388	297064	207431	297631	201700	76//67	299684	300087	190100	30100	307030	302167		303133	304070	305288		306367			1	307918	307955	308745
	SEQ.		3810	3811	20.43		.	3814	3815	3816		/188	3818	3819	3	3820	3821	3822	3823	28.24	2027	3023	3826	3827	3828	3829
	SEQ	5	310	311		313		314	315	-	$\overline{}$	317	318	310	2	320	321	322	323	200	325	372	326	327	328	329

EP 1 108 790 A2

5	Function	hypothetical protein	serine proleinase	epoxide hydrolase	hypothetical membrane protein	phosphoserine phosphatase	hypothetical prolein	conjugal transfer region protein		hypothetical membrane protein	hypothelical protein	hypothetical protein			Carried AMO 4-25	Al P-dependent KNA helicase	cold shock protein		DNA topoisomerase I	
15	Matched length (a.a.)	192	396	280	156	287	349	319		262	201	59				/64	67		977	
20	Similarity (%)	56.3	71.0	52.1	77.6	65.5	60.2	66.5		63.7	64.2	84.8				66.1	88.1		81.6	
	Identity (%)	30.7	38.6	29.6	46.8	29.6	35.0	32.9		30.5	33.8	47.5				33.8	68.7		61.7	
25 . (bantifute	gene	2 уеаВ	erculosis	р. С12 сЕН	erculosis	rae erB	erculosis	8		perculosis	oerculosis	serculosis				Y.	ormis S155		berculosis op.A	
so of tentinued)	Homologous gene	Escherichia coli K12 yeaB	Mycobacterium tuberculosis 1137Rv Rv3671c	Corynebacterium sp.	Mycobacterium tuberculosis H37Rv Rv3669	Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv3660c	Escherichia coli trbB		Mycobacterium tuberculosis H37Rv Rv3658c	Mycobacterium tuberculosis H37Rv Rv3657c	Mycobacterium tuberculosis H37Rv Rv3656c				Bacillus subtilis yprA	Arthrobacter globiformis SIS5 csp		Mycobacterium tuberculosis H37Rv Rv3646c topA	
<i>35</i>	db Match	sp:YEAB_ECOL! E		prf:2411250A	pir:F70789	pir.S72914	pir:E70788	pir.C44020		pir.C70798	pir.870788	pir:A70788				sp:YPRA_BACSU	sp:CSP_ARTGO		pir.G70563	
	ORF (bp)			993	549	996	1023	1023	615	816	546	198	318	414	345	2355	201	225	2988	711
45	Terminal (nt)	310038	311325	311899	312909	313625	316002	317132	316350	317893	318465	318689	319013	318545	319335	319336	322207	321992	325897	326614
50	Initial	309370	310135	312891	313457	314590	314980	316110	316964	317078	317920	318492	318596	318958	318991	321690	322007	322216	322910	325904
	SEO	(a.a.)	3831	3832	3833	3834	3835	3836	3837	3838	3839	3840	3841	3842	3843	3844	3845	3846	3847	3848
55	SEQ.	(DNA)	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

Table 1 (continued)

						lable 1 (confinied)			Matched	
SEQ Initial Terminal ORF (hp)	Terminal (nt)		ORF (bp)		db Match	Homologous gene	Identity (%)	Similarity (%)	length (a.a.)	Function
3849 327735 326695 1041 s	326695 1041	1041		S	sp.CYAB_STIAU	Stigmatella aurantiaca B17R20 cvaB	32.7	62.4	263	adenylale cyclase
328283 329539 1257	329539 1257	1257		S	sp.DP3X_BACSU	Bacillus subtilis dnaX	25.3	52.7	423	DNA polymerase III subunit tau/gamma
3851 329748 329909 162	329909	+	162	1						
329933 330376 444	330376 444	444	1	9	gp:AE002103_3	Ureaplasma urealyticum uu033	326	59.0	144	hypothetical protein
330973 331533 561	331533 561	561		<i>.</i> ₽	gp:AE001882_8	Deinococcus radiodurans DR0202	39.0	63.4	172	hypothetical protein
3854 331552 332433 882 sp.	332433 882	882	-i	Sp.	sp:RLUC_ECOLI	Escherichia coli K12 rluC	43.6	65.0	314	ribosomal large subunit pseudouridine synthase C
1844	1844	1844		5	HOWEN X PRINCH	Erwinia chrysanthemi D1 bgxA	34.8	60.2	558	beta-glucosidase/xylosidase
332919 334302 1049	334302 1044	1089		- E	on AF090429 2	Azospirillum irakense salB	38.6	61.4	101	beta-glucosidase
336112 1104	336112 1104	1104		s d	Sp.FADH_AMYME	Amycolatopsis methano ica	66.6	86.5	362	NAD/mycothiol-dependent tormaldehyde dehydrogenase
335805 335185 621	135805 335185	+	621	_						
336748 537	335712 336748 537	537	+-	Sp	Sp:YTH5_RHOSN	Rhodococcus erythropolis orf5	32.5	47.5	160	metallo-beta-lactamase superfamily
336781 337449 669	336781 337449 669	699	+	S.	sp:FABG_ECOU	Escherichia coli K12 fabG	25.9	55.8	251	3-oxoacyl-(acyl-carrier-protein) reductase
10300	10300	1230	16	5	ap. AF148322 1	Streptomyces viridifaciens vlmF	26.3	56.4	415	valanimycin resistant protein
933	337339 339725 933	933	<u> </u>	F 2	prt:2512357B	Actinoplanes sp. acbB	33.8	66.3	320	dTDP-glucose 4,6-dehydratase
340569 340195 375	340569 340195 375	375	+	<u> </u>	pir:A70562	Mycobacterium tuberculosis H37Rv Rv3632	59.3	88.9	108	hypothetical protein
3864 341327 340569 759 sp	341327 340559 759	759		1 55	sp:YC22_METJA	Methanococcus jannaschii JAL- 1 MJ1222	33.9	66.5	230	dolichol phosphate mannose synthase
342375 1029	341347 342375 102	342375 102	102	┼-						
342451 1035	347217 343451 1035	343451 1035	1035	+ 0,	SD:YEFJ ECOLI	Escherichia coli K12 yefJ	25.8	57.3	260	nucleotide sugar synthetase
343636 345717	343636 345717	345717	1	+==	2082 SP. USHA_SALTY	Salmonella typhimurium ushA	26.1	54.4	286	UDP-sugar hydrolase
345975 345814	345975 345814	345814	\vdash	\vdash						
•	ŧ									

														-,-			T		\neg				
5 - :10		Function	Independent of the second	NADP-dependent alconor dehydrogenase	glucose-1-phosphate thymidylyltransferase	dTDP-4-keto-L-rhamnose reductase	dTDP-glucose 4,6-dehydratase	NADH dehydrogenase	Fe-regulated protein		hypothetical membrane protein	metallopeptidase	prolyl endopeptidase		hypothetical membrane protein	cell surface layer protein	autophosphorylating protein Tyr kinase	protein phosphatase		capsular polysaccharide biosynthesis	ORF 3	I popolysaccharide biosynthesis / aminofransferase	
15	Matched	length (a.a.)		343	285	192	343	206	325		423	461	708		258	363	453	102		613	06	394	•
20		Similarity (%)		74.9	84.9	74.0	83.4	61.2	66.5		68.3	62.5	56.4		46.0	9.97	57.2	68.6		65.7	51.0	68.3	
		Identity (%)		52.2	62.8	49.5	61.8	35.4	33.2		37.4	34.1	28.4		26.0	50.7	28.5	39.2		33.0	41.0	37.1	
30 Pallori (pallori) Lauri	Commission	us gene		berculosis	т М32 пЪА	stans milC	tans XC rmlB	us HB8 nox	ureus sirA		ıberculosis	elicolor	apsulala		elicolor A3(2)	ATCC 6872	nsonii ptk	nsonii ptp		aureus M capD		ejuni wlaK	
30	l anie	Homologous gene		Mycobacterium tuberculosis H37Rv adhC	Salmonella anatum M32 rfbA	Streptococcus mutans milC	Streptococcus mutans XC rmlB	Thermus aquaticus HB8 nox	Staphylococcus aureus sirA		Mycobacterium tuberculosis H37Rv Rv3630	Streptomyces coelicolor SC5F2A.19c	Sphingomenas capsulata		Streptomyces coelicolor A3(2)	Corynebacterium annoniagenes ATCC 6872	Acinetobacter johnsonii ptk	Acinetobacter johnsonii ptp		Staphylococcus aureus M capD	Vibrio cholerae	Campylobacter jejuni wlaK	
<i>35</i>		db Match		SP. ADH_MYCTU	SP. RFBA_SALAN	nn.D78182 5	TRMU	T			sp:Y17M_MYCTU	gp:SC5F2A_19	prf.2502226A		gp.SCF43_2	gsp W56155	prf.2404346B	prf 2404346A		sp.CAPD_STAAU	DRF-2109288X	prf.2423410L	
		ORF (bp)	351	1059 8	855 S	1359 0	3 5	, 0	2	၂ တ	8	1380	2118	573	92	1095	1434	603	+		042		
45		Terminal (nt)	346110	346961	348098	248052	\top	_	353637	353749	1	355849	357237	359762	360814	362057	365257	365852	366838	368643	267701	369801	_
50		fnitial (nt)	346460	348019	348952	010030	350310	251440	352693	354387	355906	357228	359354	360334	361905	363151	363824	365250	365855		1	368647	
		SEQ NO.	3869	↓	3871	<u> </u>			38/4	3876	3877	3878	3879	A B B O	3881	3882	3883	3884	2000	3886	- 10	3888	_
55		SEO NO.		1-	371	6		$\neg \vdash$	3/4	376	377	378	379	280	381	382	383	287	2 2	386		388	_

5
10
15
20
25
30
35
40
45
50

	Function	pilin glycosylation protein	capsular polysaccharide biosynthesis	ipopolysaccharide biosynthesis / export protein	UDP-N-acetylglucosamine 1- carboxyvinyitransferase	UDP-N- acetylenolpyruvoylglucosamine reductase	sugar transferase	transposase		money (insertion sequence	(S31831)		hypothelical protein	acelvlians ferase		hypothetical protein B	UDP-glucose 6-dehydrogenase			glycosyl transferase	acetyltransferase	
	Matched length (a.a.)	196	380	504	427	273	356	53			70		404	35.4	500	65	388			243	221	
	Similarity (%)	75.0	69.2	69.8	64.6	68.5	57.3	79.3			94.3		57.4	5	200	53.0	89.7			65.0	62.0	
	Identity (%)	54.6	33.4	34.3	31.4	34.8	32.0	60.4			75.7		28.0	3	04.0	44.0	63.7			32.1	33.0	
Table 1 (continued)	Hamologous gene	Neisseria meningitidis pglB	Staphylococcus aureus M capM	Xanthomonas campestris gumJ	Enterobacter cloacae murA	Bacillus subtilis murB	Vibrio cholerae ORF39x2	Carrechacterium alutamicum	Corynepacierium giudaimedii		Corynebacterium glutamicum ATCC 31831		Mycobacterium tuberculosis	Pselidomonas aeruginosa PAO1	psbC	Corynebacterium glutamicum	Escherichia coli ugd			Escherichia coli wbnA	Escherichia coli 0157 wbhl I	
	db Match	25. AE014804 1	1 3		ENTCL		0 55010///00	gp. voc. vo.	prf 2211295A		pir:S43613		pir.G70539		gsp:W37352	PIR. S60890				ab: AF 172324 3		
	ORF (bp)	1 -	210			7.	200		150	135	327	276	1170		993	231	1161	273	1209	822	+	1-1
	Termina ¹ (nt)	207010	3/0405	273410	374813	375837	918010	3/09/0	377832	378227	378511	178787	378668		379850	381495	383108	ᆜ-	-	-	4-	↓
	Initial (nt)		369794	370013	373500			3/5842	377683	378093	378185	270562	3700015		380842	181765						
	SEO	(9.9.)	3889	0895	- <u>"</u> - 0	3893		3894	3895	3896	3897	000	3890	3	3900	3004	3907	3903	3004	2000		
		-+	$\overline{}$			393		394	395	396	397		350		400		5 5	403	3 5	3 3	0 5	407

EP 1 108 790 A2

														-,				-		-	
5	Function	dibydrolipoamide dehydrogenase	a threshalo	UTP-glucose-1-pnospnate urdylyltransferase	prolein	Iranscriptional regulator	b subunit	succinate dehydrogenase Ilavoprotein	succinate dehydrogenase subunit B						al protein	al protein			tetracenomycin C transcription repressor		
10		dibydroling	odiophin di	UTP-glucose-1-pr uridylyltransferase	regulatory protein	transcriptio	cytochrcme b subunit	succinate de flavoprotein	succinate						hypothetical protein	hypothetical protein			repressor		transporter
15	Matched length	(4.4.)	50	295	153	477	230	608	258						259	431			197		499
20	Similarity (%)	1000	0.001	68.1	71.9	81.3	67.4	61.2	56.2						49.8	64.3			53.8		74.6
	Identity (%)		0.66	41.7	43.8	57.0	34.8	32.4	27.5						26.3	32.7			26.4		36.1
25 (panui	lene	amicum		stris	nosa PAO1	culosis	olor A3(2)		ans sdhB						olor	yjiN			escens		e T#2717
So Sapple 1 (Continued)	Homologous gene	Corynebacterium alutamicum	ATCC 13032 lpd	Xanthomonas campestris	Pseudomonas aeruginosa PAO1 orfX	Mycobacterium tuberculosis H37Rv Rv0465c	Streptomyces coelicolor A3(2) SCM10.12c	Bacillus subtilis sdhA	Paenibacillus macerans sdhB						Streptomyces coelicolor SCC78.05	Escherichia coli K12 yjiN			Streptomyces glaucescens GLA 0 tcmR		Streptomyces fradiae T#2717 urdJ
<i>35</i>	db Match	-	gp:CGLPD_1	pir.JC4985	gp:PAU49666_2	pir.E70828	gp:SCM10_12	pir.A27763	gp.BMSDHCAB_4						gp:SCC78_5	sp:YJIN_ECOLI			sp:TCMR_STRGA		gp:AF164961_8
	ORF	(da)	1407	921	498	1422	771	1875	837	336	261	630	96	339	975	1251	420	303	678	204	1647
45	Terminal	(בר)	389098	390168	390730	390787	393475	395513	396262	396650	396932	396411	397825	398222	397232	399579	400017	490341	401150	401253	402796
50	Initial	(at)	387692	389248	390233	392208	392705	393639	395426		396672	397040	397730	397884	398206	398329	399598	400039	400473	401050	401150
	SEQ	(a a)	3908	3909	3910	3911	3912	3913	3914	3915	3916	3917	3918	3919	3920	3921	3922	3923	3924	3925	
55	SEQ	DNA	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426

																					¬	1
5 * 10		Function	Iransporter	formyltetrahydrofolate deformylase	deoxyribose-phosphale aldolase			hypothetical protein	hypothetical protein		cation-transporting P-type ATPase B			glucan 1,4-alpha-glucosidase	hemin-binding periplasmic protein	ABC transporter	ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein			
15		Matched Tength (3.a.)	508	286	208			280	92		748			626	348	330	254	266	258	_		
20		Similarity (%)	74.6	72.7	74.0			53.6	85.9		75.3			56.1	83.6	90.3	85.0	56.4	61.6			
		Identity (%)	39.6	40.9	38.5			26.8	58.7		45.7			27.3	57.2	65.2	63.8	28.6	32.6		+	
25	(Danul	ene	T#2717	P-1 purU				n GIR 10	rculosis		1 to 0	מולים		evisiae 1	ohtheriae	ohtheriae	phtheriae	olor C75A	color C75A			
	Table 1 (continued)	Homologous gene	Streptomyces fradiae T#2717 urdJ	Corynebacterium sp. P-1 purU	Bacillus subtilis deoC			Mycobacterium avium GIR 10 mav 346	Mycobacterium tuberculosis H37Rv Rv0190		1 the about the long	Mycopacienum lepipe cipo		Saccharomyces cerevisiae S288C YIR019C sta1	Corynebacterium diphtheriae hmuT	Corynebacterium diphtheriae hmuU	Corynebacterium diphtheriae hmuV	Streptomyces coelicolor C75A SCC75A.17c	Streptomyces coelicolor C75A SCC75A.17c			
35 40		db Match	gp AF164961_8	a	1			prf.2413441K	pir A70907			Sp.CTPB_MYCLE		sp:AMYH_YEAST	gp:AF109162_1	gp:AF109162_2	gp.AF109162_3	gp:SCC75A_17	gp:SCC75A_17			
		ORF (bp)	1632	155	\neg	+-	768	867	300	9	_	2265	450	1863	1077	1068	813	957	837	810	813	501
45		Terminal (404430			406161	405521	407416	407409		一	407711	410027	412545	413633	414710	415526	416599	417439	417545	418441	419257
50		Initial (nt)	+		405419	406310	406417	406550	407708		408546	409975	410476	410683	412557	413643	414714	415643	416603	418354	419253	3945 419757
		SEO	3927		3928				3933		3934	3935	3936	3937	3938	3939	3940	3941	3942	3943	3944	3945
55			(DNA)		428	_	3 5	1			434	435	436	1	438	439	440	441	442	443	444	445

EP 1 108 790 A2

	Function	UDP-N-acetylpyruvoyiglucosamine reductase			long-chain-fatty-acidCoA ligase	and the state of t	transferase	phosphoglycerate mutase	two-component system sensor histidine kinase	two-component response regulator			ABC transporter ATP-binding protein	cytochrome P450	exopolyphosphatase	hypothetical membrane protein	pyrroline-5-carboxylate reductase	membrane glycoprotein	hypothetical protein	
	Matched length (a.a.)	356			650	925	416	246	417	23.1	- 67		921	269	306	302	269	394	55	
	Similarity (%)	58.4				280	58.7	84.2	74.8	000	8.08		60.7	6.99	57.8	57.3	100.0	52.0	94.6	
	Identity (%)	30.1			1	35.5	33.9	7.07	49.2	,	73.8		31.3	45.0	28.8	28.8	100.0	25.4	76.4	
Table 1 (continued)	Homologous gene	Escherichia colı RDD012 murB				Bacillus subtilis IcfA	Streptomyces coelicolor SC2G5.06	Streptomyces coelicolor A3(2)	Mycobacterium bovis senX3	Mycobacterium Lovis BCG	regX3		Streptomyces coelicolor A3(2) SCE25.30	Mycobacterium tuberculosis	Pseudomonas aeruginosa ppx	Mycobacterium tuberculosis H37Rv Rv0497	Corynebacterium glutamicum ATCC 17965 proC	Equine herpesvirus 1 ORF71	Mycobacterium leprae B2168 C1 172	
	db Match	gp.ECOMURBA_1				sp:LCFA_BACSU	gp.SC2G5_6	Sp. PMGY_STRCO			prf.2404434B		gp:SCE25_30	sp:YV21_MYCTU	nt 2512277A	sp:YV23_MYCTU	sp. PROC_CORGL			
	ORF (bp)		651	735	174	1704	1254	744	1239		969	879	2586	903	027	813	810	1122	-	219
	Terminal (nt)	420885	421516	420309	422031	422090	425131	425920	27177		427867	429439	429438	432126	422000		435695			436103
	Initial	. 35	420866	421043	421858	423793	423878	425177	725037	453624	427172	428561	432023	433028		433002				436321
	SEO.	(a.a)	3947				<u> </u>	2052		3853	3954	2055	3955	1057	5	3959	3960		3962	
		(DNA) 445	447	1-	_	1	451	cay	432	453	454	155	456	1 24	j.	458	469		467	463

Table 1 (continued)	ORF db Match			寸	618	1065 pir.S72914 MTCY20G9.32C. serB	424 246 tsp.YV35_MYCTU Mycobacterium tuberculosis 40.5 66.2 74 hypothetical prolein H37Rv Rv0508	030	44.4 74.3 455	1389 SP.HEMILIMITCHE	906 pir.S72887 Mycobacterium lepide ilenioc	372	882 Sp. CATM_ACICA Acinetobacter calcoacelicus 27.1 57.6 321	72.2 417	1401 sp.SHIA_ECOL! Eschericina cui mis simi	1854 sp 3SHD NEUCR Neurospora classa yaz	849 gp:AF124518_2 ASO19 aroE	273	1050 sp.POTG_ECOLI Escherichia coli K12 polG 34.7 00.0	615	1644 sp:SFUB_SERMA Serratia marcescens sfuB 25.1 55.2 578	1113	1059 gp. SHU75349_1 Brachyspira hyodysentende or 250.	1770 pir.S72909 Mycobacterium leptae cysol	
				76	18			03				7.2		_				273		615					_
	Terminal OF	-		寸	437850 6	436980 10	438424 2		+	439904	440814 9	441591 3	 		-	446038 1	447386	447398	448130	449100	449183	451961	450837		
	Initial		- +	436573	437233	438044	438179	1	438294	438516	439909	441220			442758	444185	446538	447670			450826	450849	451895	452661	
٠	SEO			3965	3966	3967			3969	3970	3971	3977	3073	23/2	3974	3975	3976	3977	1	1		3981	3982	3983	
	SEQ			465	466	467	46.8	9	469	470	471	677	2 5	ر د ک	474	475	476	477	478	479	480	481	482	483	

EP 1 108 790 A2

															\neg					
5	Function	delta-am:nolevulinic acid dehydratase			cation-transporting P-type ATPase B		uroporphyrinogen decarboxylase	protoporphyrinogen IX oxidase	glutamate-1-semialdehyde 2,1- aminomutase	phosphoglycerate mutase	hypothetical protein	cytochrome c-type biogenesis protein	hypothetical membrane protein	cytochrome c biogenesis protein		transcriptional regulator	Zn/Co transport repressor		hypothetical membrane protein	1,4-dihydroxy-2-naphthoate cctaprenyltransferase
	O	del:a-am:nole dehydratase			cation-t		игорогр	protapo	glutamate-1-s aminomutase	phosph	hypothe	cytochro	hypoth	cytochr		transcri	Zn/Co I		hypoth	1,4-dih cctapre
15	Matched length (a.a.)	337			858		364	464	425	161	208	245	533	338		144	90		82	301
20	Similarity (%)	83.1			56.5		76.7	59.9	83.5	52.7	71.2	35.3	76.0	77.8		69.4	72.2		78.1	61.5
	Identity (%)	8.09			27.4		55.0	28.0	61.7	28.0	44.7	53.5	50.7	44.1		38.9	31.1		39.0	33.6
52 Gontinued)	us gene	elicolor A3(2)			sprae ctpB		elicolor A3(2)	emY	eprae hemL	<12 gpmB	uberculosis	uberculosis	uberculosis	uberculosis		uberculosis pb5	aureus zntR		uberculasis	K12 menA
Table 1	Homologous gene	Streptomyces coelicolor A3(2) hemB			Mycobacterium leprae ctpB		Streptomyces coelicolor A3(2) hemE	Bacillus subtilis hemY	Mycobacterium leprae hemL	Escherichia coli K12 gpmB	Mycobacterium tuberculosis H37Rv Rv3526	Mycobacterium tuberculosis H37Rv ccsA	Mycobacterium tuberculosis H37Rv Rv0528	Mycobacterium tuberculosis H37Rv ccsB		Mycobacterium tuberculosis H37Rv Rv3678c pb5	Staphylococcus aureus zntR		Mycobacterium tuberculosis H37Rv Rv0531	Escherichia coli K12 menA
<i>35</i>	db Match	sp.HEMZ_STRCO			sp:CTPB_MYCLE		sp.DCUP_STRCO	sp. PPOX_BACSU		sp.PMG2_ECOLI	pir:A70545	pir:B70545	pir:C70545			pir.G70790	prf:2420312A		pir.F70545	sp.MENA_ECOLI
	4.0		2	10	_	3	74 sp.(-		90 sp.F	21 pir./	 	23 pir.(-	71 pir.		0		
	ORF (bp)	1017	582	S.	2544	843	=	1344	1311	9	<u> </u>	792	19	1011	801	4	357	300	333	894
45	Terminal (nt)	455983	456597	457150	459900	458583	461093	462455	463867	464472	465102	465909	457571	468658	470170	470654	470657	471121	471847	471915
50	Initial (nt)	454967	456016	456641	457357	459425	460020	461112		463867	464482	465118	465949	467648	469370	470184	471013	471420	471515	472808
	SEQ NO.	3985	3986	3987	3988	3989	3950	3991		3993	3994	3995	3996	3997	3998	3999	4000	4001	4002	4003
<i>55</i>	SEQ NO.	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	200	501	502	503

EP 1 108 790 A2

5	Function	glycosyl transferase	maionyl-CoA-decarboxylase	hypothetical membrane protein	ketoglutarate semialdehyde dehydrogenase	5-dehydro-4-deoxyglucarate dehydratase	als operon regulatory protein		hypothetical protein	o service and	pylore-t, o-dicar configuration			Journation in programic phosphate	transporter		Libraria everthace	appringate symmetre	peptidase E	pterin-4a-carbinolamine dehydratase	muconate cycloisomerase	
15	Matched length (a.a.)	1	421 m	139 hy	520 ke	303	293 al	_	94	\top	7 197				410		1	293	202	77	335	1
20	Similarity (%)	62.6	51.5	65.5	76.0	75.6	66.2		64.9		54.7				83.2			703	82.7	68.8	7.97	
	Identity (%)	32.4	25.4	35.3	50.4	48.5	36.9		33.0		28.1				0.09			48.5	57.9	37.7	54.0	_
os Table 1 (conlinued)	ars gene	s weaB	nafB.	12 vq.F	tida	tida KDGDH	68 alsR		berculosis		p. LB126 fldB				uberculosis			menB	fiodurans	VF5 phhB	tuberculosis	menC
30 1able 1	Нотоlogous gene	Basteraides franilis wcaB	Deizebium frifolii matB	Escherichia coli K12 vaiF	Pseudomonas putida	Pseudomonas putida KDGDH	Bacillus subtilis 168 alsR		Mycobacterium tuberculosis H37Rv Rv0543c		Sphingomonas sp. LB126 fldB				Mycobacterium tuberculosis H37Rv pitA			Bacillus subtilis menB	Deinococcus radiodurans	Antifex aeolicus VF5 phhB	Mycobacterium tuberculosis	H37Rv Rv0553 menC
35	db Match	4		=		PSEPU	10000	מממשם			gp:SSP277295_9							BACSU	957_12			1548
40	qp	27.4					- -	Sp.ALSR	pir:B70547		gp:SSP				pir:070547			Sp. MENB	+			4 pir.U / U548
	ORF	(do)	854	1323	1560	940	919	8/8	315	444	750	417	378	261	1275	222	306	+	+-	-+		1014
45	Terminal	(ie)	473811	473814	4/499/	477048		478092	478989	480597	479452	480208	480624	481131	481394	483366	483637	484106	485986	!_	 -	487014
50	Initial	<u>(i</u>	472948	475136	475407	477005	2557	478970	479303	480154	480201	480624	481001	481391	1	483587	_1					486001
	SEQ		4004			4004	4000	4009	4010	4011	4012	4013	4014	4015	4016	4017	40.A	40.0	4019	30.	4021	4022
55	SEO	7	504	505			SQ.	509	1	511	55	513	514	515	516	517	2 2	0 0	5 6	350	521	225

EP 1 108 790 A2

{		ż	T						0	ji j	ein				9
5	uc	boxylase and 4- rboxylate	ane protein	pha(1- inositol nsferase	llycine	none ransferase			hate synthas	se SecE subi	erminator prot	sin L11	ein L.1		ninotransferas
10	Function	2-oxogiutarate decarboxylase and 2- succinyl-6-hydroxy-2,4- cyclohexadiene-1-carboxylate synthase	hypothetical membrane protein	alpha-D-mannose-alpha(1- 6)phosphatidyl myo-inositol monomannoside transferase	D-serine/D-alanine/glycine transporter	ubiquinone/menaquinone biosynthesis methyltransferase		oxidoreductase	heptaprenyl diphosphale synthase component II	preprotein translocase SecE subunit	transcriptional antiterminator protein	50S ribosomal protein L11	50S ribosomal protein L1	regulatory protein	4-aminobutyrate aminotransfe:ase
15	Matched length (a.a.)	909	148	408	447	237		412	316	=	318	145	236	564	443
20	Similarity (%)	54.0	64.9	54.2	89.9	66.7		7.97	67.1	100.0	100.0	100.0	100.0	50.2	82.4
	Identity (%)	29.4	37.2	22.8	66.2	37.1		49.0	39.2	100.0	100 0	100.0	100.0	23.1	60.5
25 (penuii	ene		culosis	culosis	cycA	ubiE		culosis	ophilus	tamicum	itamicum	ıtamicum	ıtamicum	olor	rculosis T
So Solutioned)	Homologous gene	Bacillus subtilis menD	Mycobacterium tuberculosis H37Rv Rv0556	Mycobacterium tuberculosis H37Rv pimB	Escherichia coli K12 cycA	Escherichia coli K12 ubiE		Mycobacterium tuberculosis H37Rv Rv0561c	Bacillus stearothermophilus ATCC 10149 hepT	Corynebacterium glutamicum ATCC 13032 secE	Corynebacterium glutamicum ATCC 13032 nusG	Corynebacterium glutamicum ATCC 13032 rplK	Corynebacterium glutamicum ATCC 13032 rplA	Streptomyces coelicolor SC5H4.02	Mycobacterium tuberculosis H37Rv RV2589 gabT
35			21	21											
40	db Match	sp.MEND_BACSU	pir.G70548	pir:H70548	sp:CYCA_ECOLI	sp:UBIE_ECOLI		pir.D70549	sp.HEP2_BACST	gp:AF130462_2	gp:AF130462_3	gp:AF130462_4	gp:AF130462_5	gp.SC5H4_2	sp:GABT_MYCTU
	ORF (bp)		441	1239	1359	069	699	1272	1050	333	954	435	708	1512	1344
45	Terminal (nt)	488656	489100	490447	491938	492655	493583	492645	495110	497142	498327	499032	499869	499925	502920
50	Initial (nt)	487028	488660	489209	490580		492915		494061	496810	497374	498598	499162	501436	501577
	SEQ	(a.a.) 4023	4024	4025	4026	4027	4028	4029	4030	4031	4032	4033	4034	4035	4036
55	SEO	(DNA)	524	525	526	527	828	529	530	531	532	533	534	535	536

EP 1 108 790 A2

	Function	succinate-semialdehyde dehydrogenase (NAD(P)+)	novel two-component regulatory system	tyrosine-specific transport protein	cation-transporting ATPase G	hypothetical protein or dehydrogenase		50S ribosomal protein L10	50S ribosomal protein L7/L12		hypothetical membrane protein	DNA-directed RNA polymerase beta chain	DNA-directed RNA polymerase heta chain	hypothetical protein		DNA-binding protein	hypothetical protein
	Matched length (a.a.)	461	150	447	615	468		170	130		283	1180	1332	169		232	215
	Similarity (%)	71.8	38.0	49.9	64.4	66.2		84.7	89.2		55.5	90.4	88.7	52.0		63.8	57.7
	Identity (%)	40.8	32.0	25.5	33.2	40.2		52.9	72.3		25.8	75.4	72.9	39.0		39.2	29.3
Table 1 (continued)	Homologous gene	Escherichia coli K12 gabD	Azospirillum brasilense carR	Escherichia coli K12 o341#7 tyrP	Mycobacterium tuberculosis H37Rv RV1992C ctpG	Streptomyces lividans P49		Streptomyces griseus N2-3-11 rpU	Mycobacterium tuberculosis H37Rv RV0652 rplL		Mycobacterium tuberculosis H37Rv Rv0227c	Mycobacterium tuberculosis H37Rv RV0667 rpo8	Mycobacterium tuberculosis H37Rv RV0668 rpcC	Mycobacterium tuberculosis H37Rv Jv0166c		Streptomyces coelicolor A3(2) SCJ9A.15c	Mycobacterium tuberculosis H37Rv RV2908C
	db Malch	sp.GABD_ECOLI	GP.ABCARRA_2	sp:TYRP_ECOL!	sp.CTPG_MYCTU	sp P49_STRLI		sp RL10_STRGR	sp RL7_MYCTU		pir A70962	sp:RPOB_MYCTU	sp:RPOC_MYCTU	GP:AF121004_1		gp:SCJ9A_15	sp:YT08_MYCTU
	ORF (bp)	1359	468	1191	1950	1413	603	513	384	138	972	3495	3999	582	189	780	798
	Terminal (nt)	504283	503272	505569	507647	509081	509696	510510	510974	510989	512507	516407	520492	513696	520850	521644	521679
	Initial (nt)		503739	504379	505698	507669	500004	i	510591	511176	511536	512913	516494	519277	520671		522476
	SEQ	(a.a.) 4037	4038	4039	4040	4041	2,07	4043	4044	1045	1046	4047	4048	4049	4050	4051	4052
		(DNA)	 -	539	540		5		544	646	546	547	548	549	950	551	552

											_						- 1	$\neg \neg$	\neg	\top	\top	Т	T		1
5		Function	30S ribosomal protein S12	30S ribosomal protein S7	factor G						ferring anterchardin transmort ATP.	itein	ferric enterobactin transport protein	ferric enterobactin transport protein	butyryl-CoA acetate coenzyme A	8	30S ribosomal protein S10	50S ribosomal protein L3	1	50S nbosomal protein L4	50S ribosomai protein C23	SOS vibasamal profein 1.2		30S ribosomal protein S19	
			30S riboson	30S riboson	elongation factor			linonrolein			Acres on to	binding protein	ferric enter	ferric enter	butyryl-Co/	transferase	30S riboso	50S riboso	1	50S nbosc	SUS ribos	20412 202	500	30S ribos	
15	Matched	length (a.a.)	121	154	709			VV	r			258	329	335		145	101	212		212	96	6	282	92	
20		Similarity (%)	97.5	94.8	88.9			7.07	0.07			83.7	77.8	80.6		79.3	0.66	9.68		90.1	90.6	3	92.9	98.9	
		Identity (%)	90.9	8.1.8	71.7		!	3	20.0			56.2	45.6	48 1		56.6	84.2	66.5		11.2	74.0		80.	87.0	-
25 (20)	(HIDEO)	lene	ellulare	matis	ASI				lis			fepC	fenG	fand	ndar.	num um actA	ATCC	s BCG rplC		is BCG rplD	is BCG rplW		is BCG rplB	erculosis S	
30	lable I (col	Homologous gene	Mycobacterium intracellulare rpsL	Mycobacterium smegmatis	Micropopous Infolic firs A	שנומנסמנים ומנים			Chlamydia trachomatis			Escherichia coli K12 fepC	Graharichia coli K12 fenG	Escherichia con N.1	Escherichia coil N12 lepu	Thermoanaerobacterium thermosaccharolyticum actA	Planobispora rosea ATCC 53733 rosJ	Mycobacterium bovis BCG rplC		Mycobacterium bovis BCG rplD	Mycobacterium bovis BCG rplW		Mycobacterium bovis BCG rplB	Mycobacterium tuberculosis H37Rv Rv6705 rpsS	
<i>35</i>		db Match	sp.RS12_MYCIT	SP RS7 MYCSM		Sp.EFG_MICLU			GSP: Y37841			Sp. FEPC_ECOU	\top	T	Sp. FEPD_ECOU	gp.CTACTAGEN_1	sp.RS10_PLARO	SP:RL3 MYCBO		Sp.RL4 MYCBO	sp.RL23_MYCBO		sp:RL2_MYCLE	sp:RS19_MYCTU	
		ORF (bp)	365 sp:F	465 sp		15	2160	144	228 GS	153	729	792 sp.	1		1035 sp.	516 gp	303 sp	654 sp	+	+	+-	327	840 sp	276 SF	285
45		Terminal (nt)	6	523533			523911	526013	526894	527607	528768	528779		\neg	530748	532523	533401	534090	533401	534743	535048	534746	535915	536210	535899
50		Initial (nt)	522694	623060	323003	523896	525070	526156	527121	527759	528040	529570	2 222	530626	531782	532008	533099	- 1		534090		┵	-		536183
		SEQ	(a.a)		4004	4055	4056	4057	+			1904		4062	4063	4064	4065	900	4067	4007	4069	4070	4071	4072	4073
55		SEO S		- i	224	555	929	557	1	_	T			562	563	564	787	3	900	/00	260	570	571	572	573

EP 1 108 790 A2

5		Function	50S ribosomal protein L22	30S ribosomal protein S3	50S ribosomal protein L 10	50S ribosomal protein L29	30S ribosomal protein 5 17				50S ribosomal protein L14	50S ribosomal protein L24	50S ribosomal protein L5		2,5-diketo-D-gluconic acid reductase		formate dehydrogenase chain D	molybdopterin-guanine dinucleotide biosynthesis protein	formate dehydrogenase H or alpha chain			ABC transporter ATP-binding protein		
15	Matched		109	T		67	82				122	105	183		260		298	94	756			524		
20		Similarity (%)	91.7	91.2	88.3	88.1	89.0				95.1	91.4	92.3		74.2		59.7	68.1	53.4			52.6	1	
		Identity (%)	74.3	77.4	69.3	65.7	69.5				83.6	76.2	73.6		52.3		28.9	37.2	24.3		_	26.9	1	_
25 (panujuo		is gene	oercutosis V	vis BCG rpsC	vis BCG rpIP	vis BCG rpmC	vis BCG rpsQ				berculosis IIN	iberculosis	s rplE		sp.		Ghb sanage	elicolor A3(2)	-HP			uberculosis oppD		
So Table 1 (continued)	200	Homologous gene	Mycobacterium tubercutosis H37Rv Rv0706 rplV	Mycobacterium bovis BCG rpsC	Mycobacterium bovis BCG rplP	Mycobacterium bovis BCG rpmC	Mycobacterium bovis BCG rpsQ				Mycobacterium tuberculosis H37Rv Rv0714 rplN	Mycobacterium tuberculosis H37Rv Rv0715 rplX	Micrococcus luteus rplE		Conynebacterium sp.		Wolinella succinogenes fdhD	Streptomyces coelicolor A3(2)	Escherichia coli fdfF			Mycobacterium tuberculosis H37Rv Rv1281c oppD		
<i>35</i>		db Match	Sp.RL22_MYCTU	Sp. RS3 MYCBO N	1	T					sp:RL14_MYCTU	sp:RL24_MYCTU	en RI 5 MICLU		SC 2DKG CORSP		US IOM UHUS	gp. SCGD3_29	SP.FDHF_ECOLI			sp:YC81_MYCTU		
		ORF (bp)	360 sp.R	744 SD	+			294	318	969	366 sp:	312 sp.	573 cn	3 5		-	\neg		2133 sp.	756	804	1662 sp	1146	1074
45		Terminal O	536576 3	537322 7	+	+	1	† -	538381	1		540423	640008	\top	ī	7	-+-	544335		548084	548187	548990	550699	551854
50		Initial (nt)	536217	- 02362	330303		537977	538267	538698	539413	539741	540112	240476	340420	541040	247620	543412	544529		547329	_'		551844	
		SEO		 -	4070			┷-	-	4081	4082	4083	3	4084	4085	4086	4087	4088		4091	╅		4094	+
55	į	SEO			5/3	0 5	578	579	580	1	1	583		584	282	586	287	588 589	590	505	595	593	594	595

. , **5**

EP 1 108 790 A2

	Matched length Function (a a)	405 hypothetical protein	150 hypothetical protein	132 30S ribosomal protein S8	179 50S ribosomal protein L6		171 30S ribosomal protein S5	55 50S ribosomal protein L30	143 50S ribosomal protein L15		methylmalonic acid semialdehyde dehydrogenase		novel two-component regulatory system	aldehyde dehydrogenase or betaine aldehyde dehydrogenase		\neg	1	7	257 p-cumic alcohol dehydrogenase	50 hypothetical protein	629 phosphoeno!pyruvate synthetase	378 phosphoenolpyruvate synthetase	422 cytochrome P450
	Similarity Mate (%)	50.4 40	66.7	97.7	87.7	90.9	88.3	76.4	87.4		68.8		52.0	71.5 4		\dashv	+	-	70.8	56 0	45.0	667	65.2
	Identity (%)	24.7	42.7	75.8	59.2	67.3	67.8	54.6	66.4		46.9		47.0	41.7			41.1	47.7	35.8	50.0	22.9	386	34.8
Table 1 (conlinued)	Homologous gene	Archaeoglobus fulgidus AF1398	Deinococcus radiodurans DR0763	Micrococcus luteus	Micrococcus luteus	Micrococcus luteus rpIR	Micrococcus luteus rpsE	Escherichia coli K12 rpmJ	Micrococcus luteus rplO		Streptomyces coelicolor msdA		Azospirillum brasilense carR	Rhodococcus rhodochrous plasmid pRTL1 orf5			Sphingomonas sp. redA2	Rhodobacter capsulatus fdxE	Pseudomonas putida cymB	Aeropyrum pernix K1 APE0029	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Charles de la contraction de l
	db Match	pir.E69424	gp:AE001931_13	pir. S29885	pir. S29886	Sp.RL18_MICLU	sp:RS5_MICLU	Sp. RL30 ECOLI	sp:RL15_MICLU		prf:2204281A		GP.ABCARRA_2	prf.2516398E			prf.24112579	prf:2313248B	gp:PPU24215_2	PIR:H72754	pir.JC4176	pir.JC4176	
	ORF (bp)	1182		396			_	183	444	729	321	363	456	1491	735	306	1266	318	744	213	1740	1080	\neg
	Terminal (nt)	552948	554452	555726	556282	556690	557366	557555	558008	556860	558197	558607	560260	559144	560634	562937	561368	562646	562993	564083	563732	565680	
	Initial (nt)	554129	554919	555331	555749	556289	556734	557373	557565	557588		558969	559805	560634	561368	562632	,	<u> </u>				566759	
	SEO	40.06	4097	Anga			4 101	4102	1 5	4104	4105	4106	4107	4108	4109	4110	4111	4112	4113	4114	4115	4116	
	SEQ	206		807	\neg	7	+	1	7	.1-	:	909	607	809	609	610	611	612	613	614	615	616	

																								 -
5			_		dase		tor 1F-1		S13	S11	S4	a subunit		L17	ase A		e protein					yl-phospholipid		ne protein
10		Function	transcriptional repressor	adenylate kınase	asebitoeacoume eniacidios		translation initiation factor 1F-1		30S ribosomal protein S13	30S ribosomal protein S11	30S ribosomal protein S4	RNA polymerase alpha subunit		50S ribosomal protein L17	pseudouridylate synthase		hypothetical membranc protein			hypothetical protein	cell elongation protein	cyclopropane-fatty-acyl-phospholipid	synthase	hypothetical membrarie protein
15	Matched	length (a a)		184	200	233	22	7	122	134	132	311		122	265		786			485	505	423		001
20		Similarity (%)	0.99	81.0		/4./	0 90	99.0	91.0	93.3	93.9	77.8		77.1	61.1		51.2			53.8	50.9	2,6	3	29.0
		Identity (%)	28.5	48.9		43.1	33.0	0.77	66.4	81.3	82.6	51.1		51.6	37.0	?	24.8			27.4	22.8	20.7	8	28.0
25 9	luaca)	ene	rotovora	×		deu			s HB8	for A3(2)	culosis D	PoA		Olar	1 4	٠ د ا	culosis			rculosis	CV DIM	1	Cla	olor A3(2)
30 5.14.F	ומחוב ו (רחוו	Homologous gene	Erwinia carotovora carotovora kdgR	Micrococcus luteus adk		Bacillus subtilis 168 map		Bacillus subtilis InfA	Thermus thermophilus HB8 rps13	Streptomyces coelicolor A3(2) SC6G4.06. rpsK	Mycobacterium tuberculosis H37Rv RV3458C rpsD	Bacillus subtilis 168 rpoA		Ceparichia coli K12 ralO	Tachendra con 1715	Escherichia coli N12 IIUN	Mycobacterium tuberculosis H37Rv Rv3779			Mycobacterium tuberculosis H37Rv Rv0283	liana		Escherichia coli K12 cia	Streptomyces coelicolor A3(2) SCL2.30c
<i>35</i>		db Match	prf.2512309A Ke	Sp:KAD_MICLU N		SP. AMPM_BACSU B		pir.F69644 E	prf:2505353B	sp RS11_STRCO	prf.2211287F	SPOA BACSU	+	-100	+	sp:TRUA_ECOLI	pir.G70695			pir.A70836	Sp. DIM ABATH		sp.CFA_ECOU	gp:SCL2_30
		ORF (bp)	804 prf.	543 sp.	+	792 sp.	828	216 pir.	366 prf	402 sp	603 prf	1014 cn		_	- i	867 sp	2397 pii	456	303		45.45		1353 sp	426 gi
45		Terminal O	568272 8	571316	+-	572267	573176	573622	574181	574588	575217	1	$\neg \vdash$	1176/6	\dashv	577923	580429	580436	580919	582562	00070	284228	585520	586248
50		Initial (nt)	569075	570774		571476	572349	573407	573816	574187	574615	00025	5/5338	575366	576410	577057	578033	580891	5,01221	581406		552684	584268	585823
		SEO NO.		4110		4121	4122	4123	 	4125	4126				4129	4130	4131	4132	4433	4134		4135	4136	4137
<i>55</i>		SEO		10	1	1	1	623		625	626	3	627	628	629	630	631	632	3 3	634		635	636	637

•.	5
•	10
	15
	20
	25
	30
	35
	40
	45
	50

Γ		T			\top	Τ	T		-		T								
	Function	high-alkaline serine proteinase	hypothetical membrane protein	hypothetical membrane protein				hypothetical protein	early secretory antigen target ESAT- 6 protein	50S ribosomal protein L13	30S ribosomal protein S9	phosphoglucosamine mutase		hypothetical protein			hypothetical protein	alanine racemase	hypothelical protein
	Matched length (a.a.)	273	516	1260				103	80	145	181	450		318			259	368	154
	Similarity (%)	58.0	9.03	38.4	!			6.69	81.3	82 1	72.4	76.4		45.6			72.2	68.5	78.6
	Identity (%)	31.3	24.0	65.0				31.1	36.3	58.6	49.2	48.9		29.3			44.0	41.6	48.7
Table 1 (continued)	Homologous gene	Bacillus alcalophilus	Streptomyces coelicalor A3(2) SC3C3.21	Mycobacterium tuberculosis H37Rv Rv3447c				Mycobacterium tuberculosis H37Rv Rv3445c	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2) SC6G4.12. rpIM	Streptomyces coelicolor A3(2) SC6G4.13. rpsl	Staphylococcus aureus femR315		Synechocystis sp. PCC6803 slr1753			Mycobacterium leprae B229_F1_20	Myccbacterium tuberculosis H37Rv RV3423C alr	Myccbacterium tuberculosis H37Rv Rv3422c
	db Match	sp.ELYA_BACAO	pir:T10930	pir.E70977				pir:C70977	prf:2111376A	sp.RL13_STRCO	sp:RS9_STRCO	pri:2320260A		pir:S75138	-		pir.S73000	sp.ALR_MYCTU	sp:Y097_MYCTU
	ORF (bp)	1359	1371	3567	822	663	900	324	288	441	546	1341	303	1509	573	234	855	1083	495
	Terminal (nt)	586399	587645	592862	589590	589898	593761	594258	594580	595379	595927	597449	598194	599702	598778	599932	600022	602053	602574
	Initial (nt)	587757	589015	589296	590411	590560	592862	593935	594293	594939	595382	596109	597892	598194	599350	599699	600876	600971	602080
	SEO NO.	4138	4139	4140	4141	4142	4143	4144	4145	4146	4147	4148	4149	4150	4151	4152	4153	4154	4155
	SEQ		-	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655

EP 1 108 790 A2

													T-				1	1	1	- 1
5 10	acitaca	Function	hypothetical membrane protein	proline iminopeptidase	hypothetical protein	ribosomal-protein-alanine N- acetyltransferase	O-sialoglycoprotein endopeptidase	hypothetical protein			heat shock protein groES	heat shock protein groEL	hypothetical protein	hypothetical protein	regulatory protein	RNA polymerase sigma factor		hypothetical protein	IMP dehydrogenase	hypothetical protein
15	Matched	length (a.a.)	550	411	207	132	319	571			100	537	75	138	94	174		116	504	146
20	Similarity	(%)	66.2	77.6	75.4	59.9	75.2	59.4			94.0	85.1	56.0	45.0	88.3	81.6		69.8	93.9	53.0
	Ideoptiv		28.9	51.3	52.2	30.3	46.1	38.4			76.0	63.3	50.0	34.0	64.9	55.2		41.4	80.8	39.0
30 - older	(2)	s gene	12 yidE	shermanii pip	berculosis	12 riml	olytica cp	berculosis			iberculosis mopB	prae oE1	berculosis	uberculosis	megmatis	uberculosis sigO		ергае	ATCC 6872	koshii PH0308
30 · 1	2) - 2000	Homologous gene	Escherichia coli K12 yidE	Propionibacterium shermanii	Mycobacterium tuberculosis H37Rv Rv3421c	Escherichia coli K12 riml	Pasteurella haemolytica SEROTYPE A1 gcp	Mycobacterium tuberculosis H37Rv Rv3433c			Mycobacterium tuberculosis H37Rv RV3418C mopB	Mycobacterium leprae B229_C3_248 groE1	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Mycobacterium smegmatis whiB3	Mycobacterium tuberculosis H37Rv Rv3414c sigD		Mycobacterium leprae B1620_F3_131	Corynebacterium ammoniagenes ATCC 6872 quaB	Pyrococcus horikoshii PH0308
35		db Match	ECOLI	1161		ECOLI	PASHA	sp.Y115_MYCTU			sp.CH10_MYCTU	sp.CH61_MYCLE	GP MSGTCWPA 1			sp.Y09F_MYCTU		Sp. YO9H_MYCLE	gp.AB003154_1	PIR F71456
40			sn.YIDE			sp:RIMI_	2 sp.GCP		6	3						64 sp.YC	126	+		27 PIR
	_	ORF (bg)	1599	-	67.5	507	1032	1722	42	45	29	1614	255	 	T	5	12	3 378	3 1518	9
45		Terminal (nt)	804409	907303	606392	606898	607936	609679	610175	609816	610544	612272	610946	611109	612418	613719	614747	614803	616853	615605
50		Initial (nt)	1 0000	110700	605718	606392	606909	607958	609747	610268	610348	610659	611200	61226	612714	613156	613722		615336	616231
		SEO.			4158		4160	4161	4162	4163	4164	4165	1466	4100	4168	4169	4170	4171	4172	4173
55	-			\neg	658	\dashv		661	667	66.3	664	665	900	000	899	699	670	671	672	673

EP 1 108 790 A2

		_														·			$\neg \neg$			\neg
	Function	IMP dehydrogenase	hypothetical membrane protein	glutamate synthetase positive	regulator	GMP synthetase				hypothetical memorane protein	two-component system sensor histidine kinase	transcriptional regulator or extracellular proteinase response regulator					hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	
	Matched length (a.a.)	381	274		262	517				513	411	218					201	563		275	288	
	Similarity (%)	86.1	67.5		58.4	92.8				39.6	48.7	65.1					64.2	64.1		62.9	58.3	
	Identity (%)	6.07	38.0		29.0	81.6				20.5	26.8	33.5					30.9	37.5		33.8	27.8	
Table 1 (continued)	Homologous gene	Corynebacterium	Craharichia anli K12 vhiff	Escherichia con in a Jun	Bacillus subtilis gltC	Corynebacterium ammoniagenes guaA				Streptomyces coelicolor A3(2)	Streptomyces coelicolor A3(2)	Bacillus subtilis 168 degU					Mycobacterium tuberculosis H37Rv Rv3395c	Mycobacterium tuberculosis H37Rv Rv3394c		Streptomyces coelicolor A3(2) SC5B8.20c	Deinococcus radiodurans DR0809	
	db Match	gp;AB003154_2		sp:YBIF_ECUCI	prf 1516239A	sp:GUAA_CORAM				gp:SCD63_22	gp SC6E10_15	sp.DEGU_BACSU					pir B70975	pir.A70975		gp:SC5B8_2U	gp:AE001935_7	
	ORF (bp)	1122	\neg	921	606	1569	663	441	189	1176	1140	069	324	100	403	963	825	1590	999	861	861	390
	Terminal (nt)	618094		618093	619994	621572	620264	622157	622457	622460	624939	625674	626000	02000	0/029	626577	628551	630140	630151	631809	631824	632590
	Initial (nt)	616973		619013	619086	620004	620926	621717	622269	623635	623800	624985	675877	- -		627539	627727	628551	630810		632684	633079
	SEO	4174		4175	4176	4177	4178	4179	4180	4181	4182	4183	7107	5	4185	4186	4187	4188	4180	4190	4191	4192
	SEQ NO.	(DNA)	$\vec{}$	675	676	677	678	1	1			683	700	000	685	989	587	688	089	069	691	692

. 10

EP 1 108 790 A2

	Function	hypothetical membrane protein	de d		phytoene synthase	transmembrane transport protein	geranyigeranyi pyrophosphale (GGPP) synthase	transcriptional regulator (MarR family)	outer membrane lipoprotein	hypothetical protein		DIVA pilotolyase	glycosyl transferase	ABC transporter		ABC transporter		ABC transporter		ABC transporter	linoprafein		DNA polymerase III	hypothetical protein	
	Matched length (a.a.)	95		524	288	722	367	188	145	462	-	497	205	798	3	223		206		346	900	007	1101	159	
	Similarity (%)	67.4		76.2	71.2	75.6	63.8	68.1	62.1	742	!	63.2	53.7	0.70	94.9	722		75.2	_	75.4	+-	7.79	57.5	62.3	
	Identity (%)	36.8		50.4	42.0	48.6	32.7	38.3	33.1	48.7	ř	40.0	25.9	3	24.3	35.4		35.9		42.6	2	28.7	30.2	41.5	1
Table 1 (continued)	Homologous gene		Mycobacterium mar num	Brevibacterium linens ATCC 9175 crtl	Brevibacterium linens ATCC 9175 crtB	Streptomyces coelicolor A3(2)	SCF43A-23C Brevibacterium linens cnE	Brevibacterium linens	old 10900 old ilbanoti att	Citrobacter Heuricia dic Cooc and	Brevibacterium linens	Brevibacterium linens ATCC	Strategererie enie enstK	Streptococcus suis cport	SCE25.30	Racillus subtilis 168 yvrO		Code inclusion	Helicopaciei pyrori apco		Escherichia coli I AP90 acc	Haemophilis Inluenzae SEROTYPE B hlpA	Thermus aquaticus dnaE	Streptomyces coelicolor A3(2)	SCE120.11
	db Match	Ī	gp:MMU92075_3	gp:AF139916_3	gp:AF139916_2	dn SCF43A 29	9F. C. 1		1		5 gp. AF139916_1	14 on AF139916 5	- 1	3 gp AF155804_/	15 gp SCE25_30	477071100		_	666 prf.2320284D	846	1080 sp. ABC_ECOLI	897 SP.HLPA_HAEIN	2012 prf 2517386A		
	nal ORF		966 52	32 1644	78 912	- `			208 282	232 648	557 142	1400		644778 753	545176 2415	+	647593 /1	648315 153	648440 GE	650187 84	649114 10	650392 8	T		655122 4
	Terminal	(1)	633079	633532	635178	_ _			640208	9 640232	3 642557	┼				+	-			↓	├	 	-		_
	Initial	(E)	633474	635175	FARORG		638278	639462	639624	640879	641133	_	643959	644026	647590		648309	648467	649105	649342		65128B			1 654676
	SEQ		4193		4105	200	4196	4197	4198	4199	\neg	\neg	4201	4202	4203	1	4204	5 4205	3 4206		1	000			1 4211
	SEQ	(SNA)	503	709	5 6	: : :	969	697	698	669	202	3	70	702	5	3	704	705	992	707	708	7		2	711

*

		Function	hypothetical membrane protein		transcriptional repressor	hypothetical protein	Winet Ciol settle	transcriptional regulator (Sitz termit)	hypothetical protein	iron-regulated lipoprotein precursor	rRNA methylase	methylenetetrahydrofolale dehydrogenase	hypothetical membrane protein		nypomencar process		homoserine O-acetyltransferase	O-acetylhomoserine sulfhydrylase	carbon starvation protein		hypothetical protein		
15		Matched length (aa)	468		203	264		245	157	357	151	278	8	3	489		379	429	069		20	<u> </u>	
20		Similarity (%)	56.0		76.4	61.7		71.8	78.3	62.2	86.1	87.4	76.3		63.2		99.5	76.2	78.4		0.99		
	1	identity (%)	26.1		503	34.9		42.5	45.2	31.1	62.9	70.9	31.3		34.0		99.5	49.7	53.9		40.04	}	
25 :	onlinued)	s gene	icolor A3(2)		berculosis R	licolor A3(2)		lgidus AF1676	licolor A3(2)	diphtheriae	oberculosis	uberculosis folD	prae	15.00 A 2012.1	elicolor A3(2)		ı glutamicum	ri metY	K12 cstA		¥ii 01/	K12 yjin	
30	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2)		Mycobacterium tuberculosis H37Rv Rv2788 sırR	Streptomyces coelicolor A3(2) SCG8A.05c		Archaeoglobus fulgidus AF1676	Streptomyces coelicolor A3(2) SC5H1.34	Corynebacterium diphtheriae irp1	Mycobacterium tuberculosis H37Rv Rv3366 spoU	Mycobacterium tuberculosis H37Rv Rv3356c folD	Mycobacterium leprae	ALCB1//9.10c	Streptomyces coelicolor A3(2) SC66T3.18c		Corynebacterium glutamicum metA	I entosnira meveri met	Eccherichia roli K12 ustA		1	Escherichia coii K12 yjiv	
35			155 X	-	ΣÏ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\vdash	4	SS			1=1							T	1			7
40		db Match	gp:SCE9_1		pir.C70884	gp:SCG8A_5		pir.C69459	gp:SC5H1_34	gp.CDU02617_1	pir.E70971	pir.C70970	92.2	approximate and a second a second and a second a second and a second a second and a second and a second and a	gp.SC66T3_18		gp:AF052652_1			Spice IA ECOL		sp:YJ'X_ECOLI	
		ORF (bp)		738	+	798	138	774	492	966	471	852	255	65	1380	963	1131		131	2202	609	201	609
45		Terminal (nt)	4	265007	657215	657205	558147	658928	659424	660538	660650	662017	720033	602314	662382	564126	565183		666460	670465	669445	670672	671045
50		Initial	655122	7.0000	656547	658002	30000	629465	658933	659543	661120	661166	- !	662120	663761	665088				668264	670053	670472	671653
		SEQ	(a a.)		4214			975	4218	4219	4220	4221		4222	4223	4004	4225	766	4226	4227	4228	4229	4230
55		SEQ 8	(DNA) (714	1	Ť	$\neg \vdash$	718				1	722	723	126	7.75	3	726	121	728	729	730

. 5

EP 1 108 790 A2

5.		Function	hypothetical protein	carboxy phosphoenolpyruvate mutase	citrate synthase	The state of the s	nypomental process		L-malate dehydrogenase	regulatory protein		negation utilization protein	VIDIODACIII QUIZZIONI	ABC transporter ATP-binding protein	ABC transporter	ABC transporter	iron-regulated lipoprotein precursor	chloramphenicol resistance protein	cataboilte repression control protein	hypothetical protein	
15	Matched	length (aa)	317	281	380		2		338	226		700	784	269	339	330	356	395	303	219	
20		Similarity (%)	86.4	76.2	81.3		62.3		67.5	62.8			54.2	85.1	86.4	88.2	82.3	9.69	58.1	85.8	
		Identity (%)	71.0	41.6	56.1		34.0		37.6	26.1			25.4	55.4	56.3	63.0	53.1	32.2	30.4	56.2	
25	Olumbaay	s gene	erculosis	roscopicus	negmatis		12 yneC		fervidus V24S	rmophilus T-6		395	255 4040	diphtheriae	diphtheriae	ı diphtheriae	diphtheriae	nezuelae cmlv	eruginosa crc	uenzae Rd	
30	lable 1 (commune)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1130	Streptomyces hygroscopicus	Mycobacterium smegmatis ATCC 607 gltA		Escherichia coli K12 yneC		Methanothermus fervidus V24S mdh	Bacillus stearothermophilus T-6 uxuR		O october	Vibrio cholei de OGAVA 333 viuB	Corynebacterium diphtheriae irp 1D	Corynebacterium diphtheriae irp1C	Corynebacterium diphtheriae irp1B	Corynebacterium diphtheriae irp1	Streptomyces venezuelae cmlv	Pseudomonas aeruginosa crc	Haemophilus influenzae Rd H11240	
35	-		ŽΪ		-1																
40		db Match	pir.C73539	prf. 1902224A	sp:CISY_MYCSM		SP:YNEC_ECOL!		SP.MOH_METFE	prf:2514353L			sp.ViUB_VIBCH	gp:AF176902_3	gp:AF176902_2	gp:AF176902_1	gp:CD!J02617_1	orf 2202262A		_	
		ORF (bp)	954	912	1149	930	-	672	1041	720	1	702	897	907	1059	966	1050	1272	\neg	9	195
45		Terminal (nt)	672653	673576	674756	672710	674799	675846	675082	676218		677047	680131	681040	681846	682871	683876	606780	_}_	688007	
50		Initial (nt)	671700	672665	673608	673639	674990	675175	676122			677748	691027	681846	682904	683866	684925			585435	
•		SEO	(a.a.)	4232	4233	4234	1235	42.36	4237	4238		4239	4240	4241	4242		4244	- $$		4245	
55		SEO	(DNA)	732	733	734	72,		737	738		739	740	741	742	743	744		/45	746	748

EP 1 108 790 A2

	Function		ferrichrome ABC transporter	hemin permease	toutonbanyl-tRNA synthetase	itypicpitatification (1)	hypothetical protein	A distance seit in	precursor	hypothetical protein		hypothetical protein			uracil phosphoribosyltransferase	bacterial requiatory protein, lact	family	N-acy:-L-amino acid amidohydrolase	or peptidase	phosphomannomurase	dihydrolipoamide dehydrogenase	pyruvate carboxylase	hypothetical protein	hypothetical protein
Matched	length (aa)		244	346			278		301	417		323			209		77	3	385	561	468	1140	263	127
	Similarity (%)		73.8	60.1	3	79.8	72.3		57.5	70.7		52.6			723		662		80.5	53.8	65.0	100.0	60.1	6.99
	Identity (%)		45.1	7.00	20.7	54.4	37.1		30.9	34.1		29.4			46.4	7	41.6		51.4	22.1	31.6	100.0	26.2	30.7
lage (common)	Homologous gene		Corynebacterium diphtheriae	hmuV	Yersinia enterocolitica hemU	Escherichia coli K12 trpS	Escherichia coli K12 yhjD		Salmonella typhimurium LT2	Mycobacterium tuberculosis	H3/KV KV3311	Streptomyces coelicolor A3(2) SC6G10.08c				Lactococcus lactis tipp	Streptomyces coelicolor A3(2)	30.176.11	Mycobacterium tuberculosis H37Rv Rv3305c amiA	Mycoplasma pirum BER manB	Halobacterium volcanii ATCC 29605 lpd	Corynebacterium glutamicum strain21253 pyc	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2)
	db Match	-		gp:AF109162_3	pir.S54438	STAN FCOLL	Sp YHJD ECOLI		sp.DACD_SALTY	F77847		gp: SC6G10_8				sp.UPP_LACLA	ap SC1A2 11	-	pir:H70841	S Sp. MANB MYCPI	Sp:DLDH_HALVO	prf.2415454A	Sp YD24 MYCTU	
	ORF (bp)	1	6/6	780	1017	-		600	1137	7664	1771	858	۲	6	321	633	384	2	1182	1725	1407	3420	870	
	Terminal (nt)		688916	689917	907069	9,000	604110	605074	695077	09500	60/060	698065	00000	997669	698922	699913	700381		703262	700384	704811	708630		
	Initial (nt)	-	689890	969069	601722	27/160	691882	030760	694112		c66/69	698922		699072	699272	699281		03886	702081					ecoon/
	SEO	(a.a.)	4249	4250	1261	-+-			4254		4256	4257		4258	4259	4260		4201	4262	500	4264	4265		4200
		(DNA)	749	750	Ť	_			754	3	756	757		758	759	760		761	767		764	765	3	766

EP 1 108 790 A2

	Function	hypothetical protein	thioredoxin reductase	PrpD protein for propionate	catabolism	carboxy phosphoenolpyruvale mutase	hypothetical protein	0000	cittate symmase		hypothetical protein				thiosulfate sulfuntansierase	hypothetical protein	hypothetical protein		hypothetical membrane protein	hypothetical protein	hypothetical protein	detergent sensitivity rescuer or	carboxyl transferase	detergent sensitivity rescuer or carboxyl transferase	
	Matched length (a.a.)	381	305		521	278	96	3	383		456				225	352	133		718	192	63	ļ	33/	543	
	Similarity (%)	69.0	593		49.5	74.5	47.0		78.9		72.6				100.0	79.8	7.97		63.4	66.2	69.8		100.0	100.0	
	Identity (%)	446	970	7.7	240	42.5	39.0		546		40 8				100.0	61.1	51.1	\ \	35.1	31.8	33.3		8.66	9.66	
Table 1 (continued)	Homologous gene	Cicc. 021 - 1111	Bacillus subtilis 199 yel	Bacillus subtilis 1559 (IXB	Salmonella typhimurium L12	Strentomyces hygroscopicus	* APEN223	Aeropyrum pentikanan Com-	Mycobacterium smegmatis ATCC 607 gltA		Mycobacterium tuberculosis	H3/ RV LV 12.55			Corynebacterium glutamicum ATCC 13032 thtR	Campylobacter jejuni Cj0069	Mycobacterium leprae	MLCB4.27c	Mycobacterium tuberculosis H37Rv Rv1565c	Escherichia coli K12 yceF	Mycobacterium leprae B1308-	C3-211	Corynebacterium giutamicum A.111060 dtsR2	Corynebacterium glutamicum	ASI I UBU disk i
	db Match		_	Sp. TRXB_BACSU	SD. PRPD_SALTY	1		PIR:E72779	sp.CISY_MYCSM		pir B70539				Sp:THTR_CORGL	5 an: C 111168X1 62		gp:MLCB4_16	8 pir.G70539	SO YCEF ECOLI	_	-	1 gp.AB018531_2	9 nir JC4991	
	ORF (ho)		1086	924	1494		883	378	1182	375	1323	3	246	1359	903	90,	3	414	214	501	+		161	1679	
	Terminal	(m)	710520	712647	714231		715145	714380	716283	7162RG	716687	10001	718350	720016	720547	110000	1,077	722925	725559	778377	210021	726470	726742		
	ļ	 E_	711605	711724	857575	06/21/	714258	714757	715102	716680	7 10000	60081/	718105	718658	721449		////2/	723338	723412			726715	728357		730324
	SEO	(44)	4268		•	4270	4271;	4272		150	4214	42/5	4276	4277	427R	2	4279	4280	4281		4282	4283	7367	1024	4285
	SEQ S		768	1	$\overline{}$	9//	177	772	+	1	F .	775	776	777	778		779	780	781		782	783	707	04	785

EP 1 108 790 A2

5		Function	trehalcse/mattose-binding protein	trehalose/maltose-binding protein		rehalose/maltose-binding protein		ABC transporter ATP-binding protein	(ABC-type sugar transport protein) or cellobiose/maltose transport protein	A Notice of the second of the				hypothetical protein	hypothelical protein	DNA helicase II						KNA nelicase	hypothetical protein	RNA polymerase associated protein (ATP-dependent helicase)	
15	Matched		271	306		417			332	500,	1/83			070	027	701	2					2033	698	873	
20		Similarity (%)	75.3	70.3		62.4			73.9		49.9				2.80	02.3	4.1.					45.8	53.2	48.6	
		Identity S (%)	42.4	37.3	2	30.0			57.2		25.1				31.7	30.0	20.7					22.4	24.4	23.1	-
<i>25</i>	nen)		Sien		LIBL	ī	1910		SiK	10.00	. X S			losis		3 jhp0462	۸۰D					lor	130 130	henA	
30	lable 1 (confined)	Hcmologous gene	Elemaile male male	lemocuccus inoralisms	Thermococcus inoralis main		Thermococcus inoralis maic		Streptomyces reticuli msiK		Deinococcus radiodurairs in i DRB0135			Signatura furboral osis	Mycobacterium topes H37Rv Rv3268	Helicobacter pylori J99 jhp0462	Escherichia coli K12 uvrD				:	Streptomyces coelicolor SCH5.13	Halobacterium sp. NRC-1	Transporting political K12 henA	ESCINETICINA CON 1815
35			+	=	Ę	-	F	-	<u>- </u>		00		+	+	2 1										100 CO
40		db Match		prf 2406355C	prf.2406355B		prf.2406355A		prf.2308356A		pir 875633				pir.E70978	pir.C71929	Sp.UVRD_ECOU					pir.T36671	pir.T08313		sp.HEPA_ECULI
•		ORF	(dn)	834 p	1032 p	468	1272 p	423	966	369	4800	37.2	3/2	3699	633	2433	1563	357	393	396	825	6207	4596		2886
45		70	(uc)	743067	743900	745046	745622	748442	747031	748814	748886	10177	15/434	753697	757630	758364	760906	762853	763122	762582	767367	763237	780547		774150
50		-	(n)	743900	<u> </u>	├-	 	┼	748028	748446	753685		757063	757395	759262	750795	762468	762497	762730						777035
		SEO	(a.a)	4303				_		 4309	4310		4311	4312	4313	4244	4315			4318	4319	4320	3	4321	4322
55		1-	(DNA)			すー	+-		i	 808	810		811	812	813		0 0	0 0	817	818	218	2 00		821	822

EP 1 108 790 A2

	Function	hypothetical protein	dTDP-Rha:a-D-GICNAc- diphosphoryl polyprenol, a-3-L- rhamnosyl transferase	mannose-1-phosphale guanylyltransferase	regulatory protein	hypothetical protein	hypothetical protein	phosphomannomutase	hypothetical protein	mannose-6-phosphate isomerase				pheromone-responsive protein	S_adenosyl- -homocysteine	hydrolase			thymidylate kinase
	Matched length (a.a.)	527	289	353	94	139	136	460	327	420				180		476			209
	Similarity (%)	71.4	77.9	6.99	81.9	74.8	71.3	66.3	56.3	66.2				57.8		83.0		-	56.0
	identity (%)	45.5	56.4	29.8	73.4	48.9	51.5	38.0	31.2	36.9				35.6		29.0	_	-	25.8
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	Mycobacterium smegmatis mc2155 wbbL	Saccharomyces cerevisiae	Mycobacterium smegmatis whmD	Mycobacterium tuberculosis H37Rv Rv3259	Streptomyces coelicolor A3(2) SCE34,11c	Salmonella montevideo M40	Mycobacterium tuberculosis	H3/KV KV3230C				Enterococcus faecalis plasmid pCF10 prgC		Trichomonas vaginalis WAA38			Archaeoglobus fulgidus VC-10 AF0061
	db Match	pir.D70978	gp.AF187550_1	sp:MPG1_YEAST	gp.AF164439_1	pir B70847	gp SCE34_11	SP MANB_SALMO	nir B70594		Sp:MANA_ECOLI			prf: 1804279K		Sp:SAHH_TRIVA			sp KTHY_ARCFU
	ORF (bp)			1044	408	456	390	1374	1005	3	1182	150	360	264	351	1422	708	720	609
	Terminal (nt)	777158	779910	781171	781875	782162	783101	784557	705830	ecoca/	786824	787045	787983	 	788546		788719	789002	790704
	Initial (nt)	778711	779014	780128	781468	782617	782712	783184	70000	/84633	785643	785896	787624		788196		789426		790096
	SEQ NO.	(3.3.)		4325	4326	4327	4328	4320		4330	4331	4332	4333	4334	4335	4336	4337	4338	4339
		_i _	823			827	RCB RCB	62	670	830	831	832	833	834	835	836	837	838	839

EP 1 108 790 A2

		Function	two-component system response		two-component system sensor	kinase	U	hypothetical protein		30S ribosomal protein or chloroplast	10	preprotein translocase SecA subunit		hypothetical protein		hypothetical protein	5-enolpyruvylshikimate 3-pnospna:e synthase	hypothetical protein	S and lower worlshikimate 3-phosphate	Se	hypothetical protein	RNA polymerase sigma factor	
			two-comp	regulator	two-com	histidine kinase	lipoprotein	hypothet		30S ribo	precursor	preprote		_								1	
5		Matched Iergth (a.a.)	224	133		484	595	213		203	3	845		1,70	-	322	461	100	200	23	380	188	-
20		Similarity (%)	8 00	0.0		78.9	65.6	72.8		9.70	0.10	93.6		9	0.0	82.9	99.0		63.9	100.0	42.4	87.2	\dashv
		Identity (%)	1 5	/3./		53.1	29.6	38.0		;	34.5	99.1	_		47.1	64.6	99.0		38.3	100.0	21.6	6.5	2
25 3	nued)	e L	doeis			ulosis	:ulosis	ulosis			rps22	n Itamicum)		onlocie	COLOSIS	rculosis	tamicum	oi a di	culosis	utamicum	erculosis	erculosis	
30	Table 1 (continued)	Homologous gene	or the second	Mycobacterium tuber condition 137Rv Rv3246c mtrA		Mycobacterium tuberculosis H37Rv Rv3245c mtrB	Mycobacterium tuberculosis	Mycobacterium tuberculosis	2000	1 4 1	Spinacia oleracea CV rps22	Brevibacterium flavum (Corynebacterium glutamicum)	505 007-0M		Mycobacterium tuber curosis H37Rv Rv3231c	Mycobacterium tuberculosis	Corynebacterium glutamicum	ASO19 aroA	Mycobacterium tuberculosis H37Rv Rv3226c	Corynebacterium glutamicum	Mycobacterium tuberculosis	H37Rv Rv0336	sigH
35				ΣÏ		ΣI	ĮΣI	2 -		Ť		<u> </u>					-			33 1			30
40		db Match		prf.2214304A		prf.2214304B	pir F 70592	nir D.70592			sp.RR30_SPIOL	gsp:R74093			pir.A70591	nir F70590		gp.Ar.114235_	pir.D70590	GP AF114233 1) pir.G/0506	prf 2515333D
		ORF	(ab)	678	684	1497	1704	A B A	3.	156	663	2535	-	672	504	780	3	1413	480	123	-	1110	5 618
45		Terminal	(at)	791409	790738	793008	704711	10000	193301	795292	796110	798784		799691	800200	90000	907000	801190	803128	907565	90230	803131	805025
50		-	(nt)	790732	791421		90000	1 93000	/94/14	795447	795448	796250		799020	799697	3	801184	802602	802649		80708	804240	804408
			(a a.)	┼	1767				4344	4345	<u> </u>	4347	: :	4348	4349		4350	4351	4352		4353	4354	4355
55		1-	NO.		一	04.0			844	845	\top	0.47	5	848	849		820	851	P.5.7		853	854	855

EP 1 108 790 A2

_				Γ_			Т			Ι	Ī	\top			T			Ţ					
	Function	regulatory protein	hypothetical protein		hypothetical protein	DEAD box A1P-dependent KINA helicase		hypothetical prolein	hypothetical protein		ATP-dependent DNA helicase		escolor Aldo technical car	ATP-dependent DNA neilicase		polassium channel	hypothetical protein	DNA helicase II			hypothetical protein		
	Matched length (a a)	84	129		415	458		291	249		1155		1	1126		302	230	099			280		
	Identity Similarity (%)	96.4	65.1		62.2	64.0		8.69	62.9		48.9			65.7		64.2	58.3	58.8			49.3		
	Identity (%)	78.6	33.3		29.6	37.3		46.4	37.0		23.9			41.4		26.2	30.4	32.6			26.8		
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	Mycobacterium tuberculosis	H37Rv Rv3217c	Mycobacterium tuberculosis H37Rv Rv3212	Klebsiella pneumoniae CG43 deaD		Mycobacterium tuberculosis	Mycobacterium tuberculosis	H3/Kv Kv3zu3c	Mycobacterium tuberculosis H37Rv Rv3201c			Mycobacterium tuberculosis H37Rv Rv3201c		Methanococcus jannaschii JAL- 1 MJ0138.1.	Mycobacterium tuberculosis H37Rv Rv3199c	Escherichia coli K12 uvrD			Mycobacterium tubercuicsis 1137Rv Rv3196		
	db Match	pir. D70596			pir.E70595	sp:DEAD_KLEPN		pir.H70594	nir F70594		pir.G70951			pir.G70951		sp:Y13B_METJA	pir.E70951	SE UVRD ECOLI			pir:B70951		
	ORF (bb)	258		450	1200	1272	225	846	759	667	3048	187	8	3219	1332	1005	714	2034		2	816	603	
	Terminal (nt)	805535		800/3/	806740	807946	809510	810394	011163	61.10	814217	200770	811380	817422	814210	818523	819236	1921287	107170	822669	821290	823391	_!
	Initial (nt)	005.700	903132	806318	807939	809217	809286	809549	9 9 9 9	810403	811170		812165	814204	R15541		818523			822079	822105	822789	_
	SEO	(3.3.)	4330	4357	4358	4359	4360	1361		4362	4363		4364	4365	4386	4367	4368	000	4309	4370	4371	4377	2
			$\overline{}$	857	858	859	088	190	9	862	863		864	965	990	867	868		698	870	871	872	7/0

.≟

.

EP 1 108 790 A2

	Function	hypothetical protein	hypothetical protein			hypothetical protein	regulatory protein	ethylene-inducible protein	hypothetical protein	hypothetical protein			alpha-lytic proteinase precursor		Party John Mile Polymerase	DIAA-directed Crop Policy	major secreted protein PS1 protein precursor					monophosphatase	
	Matched length (a.a.)	474	350			1023	463	301	81	20.7	2		408			807	363					255	
	Similarity (%)	76.4	74.9			73.5	57.7	89.0	53.0	13.6	02		44.4			51.4	51.5					74.9	
}	Identity (%)	42.8	43.4			47.2	34.3	67.4	49.0	2 3	40.8		26.7			25.0	27.0				-	518	<u>.</u>
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3195	Mycobacterium tuberculosis H37Rv Rv3194			Mycobacterium tuberculosis H37Rv Rv3193c	Deinococcus radiodurans	Havea brasiliensis laticifer er1	116.020 AV	Aeropyrum pernix K1 AFEU247	Bacillus subtilis 168 yaaE		Lysobacter enzymogenes ATCC	29487		Neurospora intermedia Labelle 1b mitochondrion plasmid	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1					The state of the s	Streptomyces alboniger pura
	db Match	pir.A70951	pir H70950			pir G70950	gp:AE001938_5	00/10/100	Sp:EKI_HEVBK	PIR:F72782	SP. YAAE_BACSU		nir TRYXB4			pir S03722	1581 sp.CSP1_CORGL						prf.2207273H
	ORF (bp)	1446	1050	675	522	2955	1359];	951	345	900	363	+-		501	585	+			十	2	38	780
	Terminal (nt)	822680	825239	825242	825996	829570	829627		831971	831578	832570	207050	55,693	834033	835388	835837	838892	020251	+	_	840210	840437	841517
	Initial (nt)	824125	824190	825916	825517	826616	830085	2000	831021	831922	831971	022167	833137	833572	834888	835253	837312		_	839630	840431	840745	842296
	SEO			4375			4270	2 / 2	4379	4380	4381		4382	4383	4384	4385	4386	_	Ť	4388	4389	4390	4391
	SEO			875	\neg		0.70	8/9	879	a d	200	00	982	883	884	885	886		88	888	889	890	891

		_				$\neg au$		\neg			Т	\top	T	T	\neg									. 1	
5 - - 10			Function	myo-inositol monophosphatase		peptide chain release factor 2	cell division ATP-binding protein	hypothelical protein	cell division protein	small protein B (SSRA-binding	protein)	hypothetical protein				nie on aciteriite aitocateia.	אוסנוססמכווון מווולמווסו לאסכווו	Fe-regulated protein	hypothetical membrane protein	ferric anguibactin-binding protein precursor	ferrichrome ABC transporter	ferrichrome ABC transporter	(permease)	terrichrome ABC transporter (ATP-binding protein)	
15			Matched length (a.a.)	243	2	359	226	72	301	145		116				5	212	319	191	325	313		312	250	
20	٠		Similarity (%)	6.00	J. 1	986	91.2	54.0	74.8	75.9		73.3					52.9	58.3	71.2	61.5	80.8		76.0	82.0	
			Identity (%)	7.55	33.1	0.89	70.4	43.0	40.5	3.55	5.5	44.0					26.8	29.5	36.1	27.7	39.3	_	35.6	48.4	
25		ntinued)	gene	ersicus		olor A3(2)	erculosis E	1 APE2061	erculosis	< 0	2 этрь	2 yeaO				ANA 205	AVVA 333	reus sirA	rae	775 fatB	Nicy		B yclO	88 yclP	
30		Table 1 (continued)	Homologous gene	Strentomyces flavonersicus	spcA	Streptomyces coelicolor A3(2) prfB	Mycobacterium tuberculosis H37Rv Rv3102c ftsE	Aeropyrum pernix K1 APE2061	Mycobacterium tuberculosis	H3/KV KV3 IO IC IISA	Escherichia coli K12 smpb	Escherichia coli K12 yeaO					Vibrio cholerae UGAVVA 393 viuB	Staphylococcus aureus sirA	Mycobacterium leprae	Vibrio anguillarum 775 fatB	Nico all selling anticod		Bacillus subtilis 168 yclO	Bacillus subtilis 168 yclP	
35			-	1	n is		2 1	4	2.			†	-	<u>!</u> :	-										
40			db Match		gp:U70376_9	sp:RF2_STRCO	pir.E70919	PIR G72510	nir.D74919	2.50	sp.SMPB_ECOLI	sp:YEAO_ECOLI					Sp:VIUB_VIBCH	prf.2510361A				pir Boy 703	pir.C69763		
			ORF	G	819	1104	687	264	500	200	492	351	537		ב ה	405	825	918	588	1014		666	942	753	} —
45			<u>ia</u>	(iu)	842306	844360	845181	044640	24040	840097	846628	846982	046260	503040	848026	847718	848499	849376	850412	1950364	00700	853616	854724	056476	855470
50			Initial	(nt)	843124	843257	844495		845105	845198	845137	945632		042000	847727	849122	849323				· _!_	852618	853783		854724
			SEQ	(9.9)	4392	4393	7307		4395	4396	4397	4204	5	4399	4400	4401	4402	100	4403	4044	4405	4406	4407		4408
55			SEO		892	803				989	897	_	_	一	900	901	902		508	904	905	906	100) G	908

÷ 10

EP 1 108 790 A2

			1	Τ-			T		<u> </u>			1		T	Τ		- -		\neg				T			
	Function	hypothelical protein	Riodose Joseph	hypothetica; protein	kynurenine aminotransferase/qlutamine	transaminase K		DNA repair helicase		hypothetical protein	hypothetical protein		racus citation-promoting factor	a constraint and a cons	cold shock protein	hynothetical protein		glutamine cyclotransferase				permease	O Conicont Living	rkNA(agenosine-2-0-7- methy:transferase		
	Matched length (a.a.)	48		84	2442	755		613		764	22		9	2	61	150	2	273				477	-	310		
	Similarity (%)	72.0		66.0		64.9		62.3		65.2	62.0		1	64./	75.4	6	28.0	67.8				79.3		51.7		
	Identity S	0 99	200	61.0		33.5		30.7		36.1	44.0			39.4	42.6	3	28.3	41.8	-			43.6		27.9		
Table 1 (continued)	Homologous gene	Chlamydia muridarum Nigg	TC0129	Chlamydia pneumoriae		Rattus norvegicus (Rat)		Saccharomyces cerevisiae	S288C YIL143C RAD25	Mycobacterium tuberculosis H37Rv Rv0862c	Mycobacterium tuberculosis	H37Rv Rv0863		Micrococcus Inteus rpf	Lactococcus lactis cspB	Lactorium longo	Mycobacterium reprae MLCB57.27c	Deinococcus radiodurans	UK0112			Streptomyces coelicolor A3(2) SC6C5.09		Streptomyces azureus IsnR		
	db Match		PIR F81737 T	COO. V25814		pir:S66270 F		T	sp:RA25_YEAST	pir F70815		pir G/0813		nrf 2420502A	45200274A	prt. 232027 1.A	gp:MLCB57_11	AF001874 1				gp:SC6C5_9		en TSINR STRAZ		
	ORF (bp)	-+-	147 P	+-	2/3	1209 p	200	-i-	1671 8	2199	 	219	843	507		383	525	77.4		669	138	1473	912	8 C 8	3	876
	Terminal	_	860038	+	860473	862752	6027630	862/33	863396	865119		867571	868630	200700	80/903	869318	869379	9 7 0 0 0 0	916609	870721	871660	873210	972016	010210	01/01/0	874369
	Initial	(un)	860224	- +	860745	851544		853391	865066	867317		867353	887788		858389	868938	869903		8/0591	871419	871523		!		8/32/3	874944
	SEO	(3 a.)	4409 8	_ !	4410	4411		44 12	4413			4415	3446	-	4417	4418	4419		4420	4421				4424	4425	4426
	SEQ	2	909	1	910	911 4	-	912	913			915		-	917	918	919		920	921	922	923		924	925	926

. 5 \$. 10			Function	hypothetical protein	phosphoserine transaminase	acetyl-coenzyme A carboxylase carboxy transferase subunit beta	hypothetical protein	sodium/proline symporter	•	hypothetical protein	fatty-acid synthase			homoserine O-acetyltransferase			glutaredoxin	dihydrofolate reductase	thymidylate synthase	ammonium transporter	ATP dependent DNA helicase	formamidopyrimidine-DNA glycosidase	
				hypoth	phosp	acetyl	hypoth	sodiur	_	hypot	fatty-a	-	_	homo	$\frac{1}{1}$	+	gluta	dihyd	thym	ашш			
15			Matched length (a.a.)	316	374	236	103	549		243	3026			335			62	=======================================	261	202	1715	298	
20			Similarity (%)	55.1	52 9	69.5	80 6	58 1		77.4	83.4			59.7			72.5	62.0	88.9	56.4	68.1	51.0	
	^		Identity (%)	32.6	21.9	36.0	51.5	26.4		49.0	63.1			29.0			43.6	38.0	64.8	32.2	47.4	29.2	
25	V	ntinued)		rculosis	TCC 21783	2 accD	color A3(2)	escens		erculosis				netX			durans	ium folA	12 thyA	12 cysQ	licolor A3(2)	orgatus	
30		Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0883c	Bacillus circulans ATCC	Escherichia coli K12 accD	Streptomyces coelicolor A3(2) SCI8.08c	Pseudomonas fluorescens		Mycobacterium tuberculosis H37Rv Rv2525c	Corynebacterium ammoniagenes fas			Leptospira meyeri metX			Deinococcus radiodurans DR2085	Mycobacterium avium folA	Escherichia coli K12 thyA	Escherichia coli K12 cysQ	Streptomyces coelicalar A3(2) SC7C7, 16c	Synechococcus elorgatus naegeli mutM	
35					Ba	1	1	Ps	-	€H		-		ے ا				2		1_	İ	Ţ	1
40			db Match	sp.YZ11_MYCTU	oir:S71439	sp:ACCD_ECOLI	gp:SCI8_8	pir.JC2382		pir.A70657	pir. S55505			prf.2317335B			gp:AE002044_8	prf.2408256A			+	sp:FPG_SYNEN	
			ORF (bp)	933	1128	23	339	1653	816	840	8907	489	186	1047	426	267	237	456	79.8	756	 -	768	
45			Terminal (nt)	874951	075085	879642	881985	883647	884541	884549	894578	895191	805503	895596	896719	897689	897727	897979	POBARA	899253	904602	905382	
50			Initial (nt)	875883	077110	881114	881647	881995	883726	885388	885672	507700	904700	896642	897144	897423	897963	AF 1400			!		_
			SEO	4427		97470			26.74	4433	4434	26.44	000	4430	4438	4439	4440	4444	7 .	4442	4443	4445	
55				927	_	928				933	934	200	255	922	938	939	940	15	5 6	942	943	945	

Ł

.5			Function		hypothetical protein	alkaline phosphatase	integral membrane transporter		glucose-6-phosphate isomease	hypothetical protein			hypothetical protein	ATP-dependent helicase		ABC transporter	ABC transporter			peptidase	hypothetical protein		5'-phosphoribosyigiyciitariiide formyltransferase	S-nbosnhoribosyl-5-aminoimidazole-	4-carboxamide formyltransferase	citrate lyase (subunit)	
15			Matched length	(a.a.)	128	196	403		557	195			78	763		885	217			236	434		189	<u> </u>	525	217	
20			Similarity	(%)	86.7	71.9	67.0		77.0	52.3			85.9	73.1		48.6	71.4			73.3	8.09		86.2		87.8	100.0	
	٨		3	(%)	55.5	38.8	33.8		52.4	24.6			59.0	46.1		21.8	43.8		-	43.6	31.1		64.6	-	74.5	100.0	
25	C .	ontinued)	0	allab	erculosis	MG1363 apl	color A3(2)		1101 pgi	erculosis			serculosis	торhilus		licolor A3(2)	38 yvrO			berculosis	berculosis			215	Hin	glutamicum	
30		Table 1 (continued)		Homologous gene	Mycobacterium tuberculosis H37Rv Rv0870c	Lactococcus lactis MG1363 apl	Streptomyces coelicolor A3(2) SCI28 06c		Escherichia coli JM101 pgi	Aycobacterium tub	H37Rv Rv0336		Mycobacterium tuberculosis H37Rv Rv0948c	Bacillus stearothermophilus	NCA 1503 pcrA	Streptomyces coelicolor A3(2)	Bacillus subtilis 168 yvrO			Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv0955		Corynebacterium	ammoniagenes purN	Corynebacterium ammoniagenes purH	Corynebacterium glutamicum ATCC 13032 citE	
35 40				db Match	pir:F70816	SP 1 ACLA					pir.G70506		sp:YT26_MYCTU		sp.PCRA_BACST	qp.SCE25_30		21.2420410		pir:D79716	sp.YT19_MYCTU		0 01.70000	gp AB003139_2	gp. AB003159_3	gp:CGL133719_3	
			100	(gd)	408	009	1 00	1.5	-		11:76	381			2289	2223		7	207	711	1425	228	+-	627	1560	819	-
45				lerminal (nt)	905796	207.300	906559	00000	909328	907759	909521	911223	910855		913514	913477		915699	916368	916970	919352	700710	311021	919956	921526	922412	
50			-	Initial (nt)	905389		906391		908612	903378	910696	910843	011163		911226	015600	2000	915364	916874	917680	917928	1,000	918034	919330	919967		
			0 E	NO.			4447			4450	4451	4452			4454	4455	24.00	4456	4457	4458	4459		4460	4461	4462	4463	
55			000		(000)		947		949	950	951	Cyc	202	ccs	954	, ,	605	926	957	958	959		8	961	967	963	_

EP 1 108 790 A2

	Function	repressor of the high-affinity (methyl) ammonium uptake system		hypothelical protein	C	30S ribosomal protein 518	30S ribosomal protein S14	50S ribosomal protein L33	50S ribosomal protein L28	transporter (sulfate transporter)	7n/Co transport repressor	Con Transfer 131	505 fibosoffial protein C3 i	50S ribosomal protein L32		conserinducible two-component	regulator	two-component system sensor	proteinase DO precursor	molybdopterin biosynthesis cnx1	protein (molybdenum cofactor biosynthesis enzyme cnx1)		large-conductance	mechanosensitive channel	hypothetical protein	5-formyltetrahydrofolate cyclo-ligase
	Matched length (a a)	222		109.		29	100	49	77	529	8	3	B/	25			227	484	406		188			131	210	191
	Similarity (%)	100.0		100.0		76.1	90.0	83.7	81.8	71.1		6.	65 4	78.2			73.6	60.1	59.9		54.3			77.1	60.0	59.7
	Identity (%)	100.0		100.0		52.2	540	45.1	52.0	24.6	7 6	3/.5	37.2	0.09		1	48.0	24.4	22.3	3	27.7			50 4	28.6	25.1
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum	VTCC 13032 amtR	Corynebacterium glutamicum ATCC 13032 yjcC		Cyanophora paradoxa rps18	Escherichia coli K12 rosN		Escherichia coli K.12 rpmo	Escherichia coil N 12 Ipilio	Bacillus subtilis 168 yvas	Staphylococcus aureus zniR	Haemophilus ducreyi rpmE	Streptomyces coelicolor A3(2)	SCF51A.14		Pseudomonas syringae copR	Cerherichia coli K12 baeS	Carlo	Escherichia coil N 12 IIII N	Arabidopsis thaliana CV cnx1		of ordered and the second of t	Mycobacterium tuberculosis H37Rv Rv0985c mscL	Mycobacterium tuberculosis H37Rv Rv0990	Homo sapiens MTHFS
	db Match		gp:CGL133/19_2	gp:CGL133719_1		T	,		sp:RL33_ECOLI	pir.R5EC28	pir.B70033	prf:2420312A	SP RL31 HAEDU	an SC51A 14			Sp.COPR_PSESM	1000	sp. BAES_ECOL	pir.S45229	sp.CNX1_ARATH			sp.MSCL_MYCTU	pir A70601	pir.JC4389
	ORF (hn)		999	327	32.4	30	249	303	162	234	1611	312	26.0	3 5	-	447	969		1365	1239	585	18	861	405	651	570
	Terminal	(mr)	952396	923138	00000	106076	924159	924425	924734	924901	925325	926931	727727	20707	376176	927339	928812		930248	931648	932290	1	932487	932570	933060	
	Initial	(m)	923061	923464	7,000	193526	924407	924727	924895	925134	926935	CACTCO	27777	674776	92//25	927785	978117		928884	930410	931706		932290	932974	933710	
	SEQ		4464	4465	- 1		4457	4468	4469	4470	4471	1173	7 1	24/3	4474	4475	4476	?	4477	4478	4479		4480	4481	4487	
	SEO	==	964	965	-	996	967	968	696	970	971	\top	7/6	973	974	975	0.76	2	977	978	979		980	981	og C	983

* * *

5		
15		
20	÷	
25	₩	(finued)
30		Table 1 (continued)
35		
40		
45		
50		

					_	<u> </u>	- -							1		-T	T	$\neg \top$	\top		
	Function	UTP-glucose-1-phosphate uridylyitansferase	molybdopterin biosynthesis protein	ribosomal-protein-alanine N-	מרפולוו: פווזור: פוזר	hypothetical membrane protein	cyanate transport protein		hypothetical membrane protein	hypothetical membrane protein	cyclomaltodextrinase	hypothetical membrane protein	niaproleojical	nypotnetical protein	methionyl-IRNA synthetase	ATP-dependent DNA helicase	hypothetical protein	hypothetical protein		transposase	
	Matched length (a.a.)	296	390	193		367	380		137	225	444	488	250	272	615	741	210	363		94	
	Similarity (%)	689	62.6	54 9		54.8	62.4		9.09	59.6	53.6	75.2	3	78.3	66.7	49.0	53.3	59.0		59.6	
	Identity 8 (%)	42.2	31.8	29.0		30.3	56.6		32.1	25.3	26.8	43.0		54.0	33.8	26.2	27.6	30.0		33.0	
lable 1 (collinated)	Homologous gene	Xanthomonas campestris	Arthrobacter nicolinovorans	mceA	Escherichia con 13 mino	Mycobacterium tuberculosis H37Rv Rv0996	Escherichia coli K12 cynX		Haemophilus influenzae Rd H11602	Mycobacterium tuberculosis H37Rv Rv0093c	Bacillus sphaericus E-244	Mycobacterium tuberculosis	H3/KV	Mycobacterium tuberculosis H37Rv Rv1003	Methanobacterium thermoautotrophicum Delta H MTH587 metG	Escherichia coli recQ	Methanobacterium thermoautotrophicum Delta H MTH796	Bacillus subtilis 168 yxaG		Enterococus faecium	Enterocous raccion.
	db Match	pir.JC4985	a		sp:RIMJ_ECOLI	pir:G70601	SD.CYNX ECOLI		sp.YG02_HAEIN	1	sp.CDAS_BACSH	1		sp.Y19J_MYCTU	Sp.SYM_METTH	prf.1306383A	pir.869206	SO YXAG BACSU		1 70700014	gp.AF029727_1
	ORF (bb)				8 <u>0</u> 99	1020	1200	_		714	1167	1560	3	825	1830	2049	633	1158		2 3	294
	Terminal	6		709956	937274	938401	939626	037700	940090	940754	941925	042381	31530	944833	948569	950839	950828	051034	P.C. C.	953043	954266
	Initial	934423		935351	936615	937382	0.284.27	7,000	939686	940041	940759	0,00	943940	944009	946840	04R791	•		!_		953973
	SEO			4485	4486	4487	044	00 0	1490	4491	4492		4483	4494	4495	4406	4497	- 1	4438	4499	4500
	SEO	(DNA)		985	986	786	 -		686	1	69	300	993	994	995	900	997		866	666	1000

																$\overline{}$			$\overline{}$	\neg			$\overline{}$	$\overline{}$	$\overline{}$		T	\neg	
5	-	1	Function	transposase	transposase subunit		D-lactate dehydrogenase	aserojanostindio Alan	site-specific DNA-methylitalisterase		transposase	transposase		transcriptional regulator	cadmium resistance protein		nietora lecitoria	hypothetical protein	hypothetical protein	dimethyladenosine transferase	isopentenyl monophosphate kinase			ABC transporter	pyridoxine kinase	hypothetical protein		hypothetical protein	
15		Matched		139 (112		565		231		96	139		91	205		3	263	362	592	315			478	242	159		108	
20		_	Similarity (%)	9.79	88.4		75.6	2	62.8		59.6	67.6		84.6	8.99			70.7	63.5	65.3	67.0	5		82.8	67.4	58.5		78.7	
	^	_	Identity (%)	41.7	73.2		16.1	7.07	30.8		33.0	417		62.6	31.7			46.4	34.8	34.3	,	47.3		65.5	8 2.	27.0		45.4	
25	r (juned)				And			1	e OK8					culosis	us cadD		1	culosis	rculosis	ksqA	reulosis			erythraea	pdxK	rculosis		cotor A3(2)	
30	Table 1 (continued)	and Longs	Homologous gene	Eschorichia coli K12	Cacileticina con 13 12	revioacterium mens		Escherichia coli did	Klebsiella pneumoniae OK8 kpn!M		Philosophia factoria	Enterococcus laccium	Escherichia coil N.12	Mycobacterium tuberculosis Hazzev Rv1994c	Stanhylococcus aureus cadD			Mycobacterium tuberculosis H37Rv Rv1008	Mycobacterium tuberculosis	Escherichia coli K12 ksqA	Mysobacterium tube	H37Rv Rv1011		Saccharopolyspora erythraea	Facherichia coli K12 pdxK	Mycobacterium tuberculosis	1137Rv Rv2874	Streptomyces coelicolor A3(2) SCF1.02	
35		-	<u>,</u>	1	1		İ			-	7	<u>- </u>	T)		+-	+	1	<u> </u>			1				\top	Τ.	212		
40			db Match	0.00	pir: IQECI3	gp.AF052055_1		prf.2014253AE	sp.MTK1_KLEPN			~!	pir TQEC13	Sp.YJ94_MYCTU	7 8 7 8 7 V	pr. 23143010		pir:C70603	pir:D73603		Sp. No.ch Co	pir.F70603		pir.S47441		-	sp.YX05_MYC1U	gp:SCF1_2	-
			ORF (bp)	-	_		864	1713	840	50	-1.		477	357	3	70	342	831	1071	1	8/8	933	642	1833	\neg	76/	480	321	$\frac{1}{2}$
45			Terminal (nt)		954753	955354	956774	955686	957844	201020	929102	960374	960961	961653		962249	961321	963639	064934		965852	966784	965950	968660		969458	969461	970349	
50			Initial	fruit	954277	954941	955911	957398	958683	100	959403	960081	960385	061207	301731	961629	961662	962809	063864	100000	964974	965852	966591			968667	969940	970029	_
			SEO	(a.a.)	4501	4502	4503				4506	4507	4508			4510	4511	4512	5,57	4313	4514	4515	4516	4517	5	4518	4519	4520	
5 5			SEQ S		1001	1002 4	1003 4			_	1006 4	1007	1008		6001	1010	101	+		5101	1014	1015	9101	200	200	1018	1019	1020	
			10,2	゠	<u> </u>	1	L					1	┸-	ــــــــــــــــــــــــــــــــــــــ															

	,										Τ-						η-	$\neg \tau$		Т	\neg	\neg
5 •. •. 10			Function	hypothetical protein	regulator	hypothetical protein	enoyl-CoA hydratase					major secreted protein PS1 protein precursor	transcriptional regulator (tetR family)	membrane transport protein	S-adenosylmethionine: 2-	demethylmenaquinone methyltransferase		hypothetical protein	hypothetical protein		peptide-chain-release factor 3	amide-urea transport protein
15		Matched	 -	107	261	276	337					440	100	802		157		121	482		546	404
20		_	Similarity (%)	69.2	88.1	59.1	6.07					56.8	70.0	70.0		75.8		63.6	48.3		0.89	72.8
	₹	-	identity (%)	35.5	64.8	27.2	35.6					27.7	44.0	42.6		38.2		29.8	24.9		39.2	42.8
25	, (banu			r A3(2)	ır A3(2)	Ha	ulosis					amicum n) ATCC	or A3(2)	or A3(2)		ae Rd		, NMA1953	culosis		prfC	otrophus
30	Table 1 (continued)	lapir alapi	Homologous gene	Streptomyces coelicolor A3(2) SCF1.02	Streptomyces coelicolor A3(2) SCJ1 15	Bacillus subtilis 168 yxeH	Mycobacterium tuberculosis					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Streptomyces coelicolor A3(2)	Streptomyces coelicolor A3(2)	SCEB/.1/c	Haemophilus influenzae Rd H10508 menG		Neisseria meningitidis NMA1953	Mycobacterium tuberculosis H37Rv Rv1128c		Escherichia coli K12 prfC	Methylophilus methylotrophus fmdD
35			db Match	.2		100	+-					sp.CSP1_CORGL (gp:SCF56_6			sp:MENG_HAEIN		gp:NMA622491_21	pir.A70539		1154305	pri:2405311A
40			ਚ 	gp:SCF1	gp:SCJ1_15	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	pir.E70893					S sp:CS		200				4 gp:NA	1 pir.A7	١	_	
			ORF (bp)	321	960	5	101.7		654	777	1212	138	579	227		498	999	88	1551	16	<u> </u>	\neg
45			Terminat (nt)	970738	971823		972244		973304	974962	974965	977734	977800	070368	97.000	981490	982287	982294	984650	085845	4	
50		İ	Initial (nt)	970418	970864		973035		973957	974186	976176	976349	978378	07.000	980740	980993	981622		983100	!_	!_	01 5086
			SEQ NO.	4521	4522		4523		4525	4526	4527	4528	4529		4530	4531	4532	_	4534	<u> </u>		4536
55		į	SEO.		1022	-+	1023	_	1025	1026	1027		1079		1030	1031	1032	1033	1034		1035	1036

	

Table 1 (continued)

_																$\overline{}$		
	Function	amide-urea transport protein	amide-urea transport protein	high-affinity branched-chain amino acid transport ATP-binding protein	high-affinity branched-chain amino acid transport ATP-binding protein	peptidyl-tRNA hydrolase	2-nitropropane dioxygenase	glyceraldehyde-3-phosphate dehydrogenase	polypeptides predicted to be useful antigens for vaccines and diagnostics	peptidyl-tRNA hydrolase	50S ribosomal protein L25	lactoylglutathione lyase	DNA alkylation repair enzyme	ribose-phosphate pyrophosphokinase	UDP-N-acetylglucosamine pyrophosphorylase		sufl protein precursar	nodulation ATP-binding protein I
	Matched length (a.a.)	2.2	234	253	236	187	361	342	51	174	194	143	208	316	452		909	310
	Similarity (%)	61.0	68.0	0.07	69.1	706	540	72.8	61.0	63.2	65.0	546	62.5	79.1	71.9		61.7	64.8
	Identify (%)	40.8	34.6	37.9	35.2	39.0	25.2	39.5	54.0	38.5	47.0	28.7	38.9	44.0	42.0		30.8	35.8
(Applied (Collinger)	Homologeus gene	Methylophilus methylotrophus fmdE	Methylophilus methylotrophus fmdF	Pseudomonas aeruginosa PAO braF	Pseudomonas aeruginosa PAO braG	Escherichia coli K12 pth	Williopsis mrakii IFO 0895	Streptomyces roseofulvus gap	Neisseria meningilid ⁱ s	Escherichia coli K12 pth	Mycobacterium tuberculosis H37Rv rplY	Salmonella typhimurium D21 gloA	Bacillus cereus ATCC 10987 alkD	Bacillus subtilis prs	Bacillus subtilis gcaD		Escherichia coli K12 sufl	Rhizobium sp. N33 nodl
	db Match	prf:2406311B	prf:2406311C	SP.BRAF_PSEAE	sp:BRAG_PSEAE	Sp.PTH ECOLI	Sp. 2NPD WILMR	sp G3P_ZYMMO	GSP Y75094	SD:PTH ECOLI	pir.B70622	sp:LGUL_SALTY	prf.2516401BW	sp:KPRS_BACCL	pir.S66080		sp.SUFI_ECOLI	SP:NODI_RHIS3
	ORF (bp)	882	1077	726	669	612	1023	1065	369	531	600	429	524	975	1455	1227	1533	918
	Terminal (nt)	988904	989980	990705	991414	991417	993080	994613	994106	994845	995527	996830	996833	997466	998455	1000016	1002864	.1
	Initial (nt)	988023	988904	989980	990716	992028	992058	993549	994474	995375	996126	996402	997456	998440	606666	1001242	1001332	
	SEQ.	4538	4539	4540	4541	4542	4543	4544	4545	4546	45.47	4548	4549	4550	4551	4552	4553	4554
		1038	1039	1040	1041	1042	_		1045	1046	1047	1048	1049	1050	1051	1052	1053	1054

4 ~ ~	Function	hypothetical membrane protein	two-component system sensor histidine kinase	two component transcriptional regulator (luxR family)		hypothetical membrane protein	ABC transporter		ABC transporter	gamma-g!ulamyltranspeptidase precursor					transposase protein fragment	transposase (IS1628 TnpB)				transcriptional regulator (TetR- family)	transcription/repair-coupling protein	
	Matched length (a.a.)	272	459	202		349	535		573	999					37	236				183	1217	
	Similarity (%)	63.2	48.4	67.3		64.5	57.0		74.0	58.6					72.0	100.0				59.6	65.1	
r	Identity (%)	30.2	24.6	36.6		31.5	28.6		44.0	32.4					64.0	9.66				23.0	36.2	
Table 1 (continued)	Homologous gene	Streptomyces lividans ORF2	Escherichia coli K12 uhpB	Streptomyces peucetius dnrN		Streptomyces coelicolor A3(2) SCF15.07	Streptomyces glaucescens strV		Mycobacterium smegmatis exiT	Escherichia coli K12 ggt					Corynebacterium glutamicum TnpNC	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB				Escherichia coli tetR	Escherichia coli mfd	
	db Natch	pir.JN0850	sp:UHPB_ECOLI	prf.2107255A		gp.SCF15_7	pir.S65587		pir.T14180	sp:GGT_ECOL!					GPU:AF164956_23	gp.AF121000_8				sp:TETC_ECOLI	sp.MFD_ECOLI	_
	ORF (bp)	831	1257	609	204	1155	1440	153	1734	1965	249	519	192	606	243	708	462	597	312	651	3627	1224
	Terminal (nt)	1004783	1006085	1006697	1006734	1008152	1010061	1008534	1011790	1011797	1014264	1014343	1015116	1016560	1015450	1015145	1017018	1017274	1018393	1019066	1022715	1019390
	Initial (nt)	1003953		1006089	1006937	1006998	1008522	1008686	1010057	1013761	1014016	1014861	1014925	1015652	1015692	1015852	1016557	1017870	1018082	1018416	1019090	1020613
	SEQ NO.	4555		4557	4558	4559	4560	4561	4562	4563	4564	4565	4566	4567	4568	4569	4570	4571	4572	4573	4574	4575
	SEQ NO (DNA)	1055	1056	1057	1058	1059	1060	1001	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075

<i>5</i>	
10	
15	
20	•
25	'n
30	
35	
40	
45	
50	

Table 1 (continued)

		ed to	sport												of.			
	Function	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	multidrug resistance-like ATP- binding protein, ABC-type transport protein	ABC transporter	hypothetical membrane protein		hypothetical protein			IpqU protein	enolase (2-phosphoglycerate dehydratase)(2-phospho-D- glycerate hydro-lyase)	hypothetical protein	hypothetical protein	hypothelical protein	guanosine pentaphosphatase or exopolyphosphatase		threonine dehydratase	
	Matched length (a.a.)	92	632	574	368		183	!		241	422	14	191	153	329		314	
	Similarity (%)	0.69	62.7	81.9	100.0		57.4			689	86.0	58.0	55.0	778	55.0		64.7	
	Identity (%)	48.0	31.3	50.2	100.0		33.4			46.5	64.5	68.0	31.9	59.5	25.2		30.3	
lable 1 (continued)	Homologous gene	Neisseria gonorrhoeae	Escherichia coli mdlB	Mycobacterium tuberculosis H37Rv Rv1273c	Corynebaclerium glutamicum ATCC 13032 orf3		Bacillus subtilis yabN			Mycobacterium tuberculosis H37Rv Rv1022 lpqU	Bacillus subtilis eno	Aeropyrum pernix K1 APE2459	Mycobacterium tuberculosis H37Rv Rv1024	Mycobacterium tuberculosis H37Rv Rv1025	Escherichia coli gppA		Escherichia coli tdcB	-
	db Match	GSP:Y75301	sp:MDLB_ECOLI	sp:VC73_MYCTU	sp.YLI3_CORGL		SP.YABN_BACSU			pir:A70623	sp.ENO_BACSU	PIR: B72477	pir:C70623	pir.D70623	sp:GPPA_ECOLI		sp.THD2_ECOLI	
	ORF (bp)	228	1968	1731	2382	297	585	426	378	786	1275	144	540	546	963	984	930	195
	Terminal (nt)	1021078	1022699	1024666	1026505	1032181	1032780	1032760	1033269	1034739	1036223	1036016		1037445	1038410	1036498	1038721	1039977
	Initial (nt)	1021305	1024666	1025396	1028886	1031885		1033185	1033646		1034949	1036159		1036900	1037448	1037481		1039783
	SEO	(a.a.) 4576	4577	4578	4579	4580	4581	4582	4583	4584	4585	4585		4588	4589	4590	+	4597
		(UNA)	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089	1090	1091	1092

_
ъ
۵
−
=
.=
_
_
ō
·O
٤
-
e 1 (c
_
云
云
š

_																	_				
	Function		hypothetical protein	transcription activator of L-rhamnose operon	hypothetical protein		hypothetical protein	transcription elongation factor	hypothetical protein	lincomycin-production		3-deoxy-D-arabino-heptulosonate-7-phosphate synthase		hypothetical protein or undecaprenyl pyrophosphale synthelase	hypothetical protein			pantothenate kinase	serine hydroxymethyl transferase	p-aminobenzoic acid synthase	
	Matched length (a a)		56	. 242	282		140	143	140	300		367		26	28			308	434	969	
	Similarity (%)		74.1	8.25	1.08		57.1	60.1	72.1	56.3		99.5		6.79	100.0			79.9	100.0	70.1	
	Identity (%)		46.3	24.8	57.8		30.0	35.0	34.3	31.7		99.2		0.96	100.0			53.9	99.5	47.6	
(2000)	Homologous gene		Thermotoga maritima MSB8	Escherichia coli rhaR	Mycobacterium tuberculosis H37Rv Rv1072		Streptomyces coelicolor A3(2) SCF55.39	Escherichia coli greA	Mycobacterium tuberculosis H37Rv Rv1081c	Streptomyces lincolnensis ImbE	-	Corynebacterium glutamicum aroG		Corynebacterium glutamicum CCRC18310	Corynebacterium glutamicum (Brevibacterium flavum)			Escherichia coli coaA	Brevibacterium flavum MJ-233 glyA	Streptomyces griseus pabS	
	db Match	٠	pir.872287	sp RHAR_ECOLI	pir:F70893		gp.SCF55_39	sp.GREA_ECOLI	pir.G70894	pir:S44952		sp:AROG_CORGL		sp.YARF_CORGL	SP:YARF_CORGL			sp.COAA_ECOLI	gsp:R97745	sp:PABS_STRGR	The state of the s
	ORF (bp)	330	189	993	816	387.	450	522	483	873	318	1098	633	675	174	519	318	936	1302	1860	723
	Terminal (nt)	1040325	1040682	1041917	1042842	1042850	1043298	1043774	1044477	1046030	1046390	1047707	1046820	1048501	1048529	1049043	1049068	1049427	1051925	1053880	1054602
	Initial (nt)	1039996	1040494	1040925	1042027	1043236	1043747	1044295	1044959	1045158	1046073	.046610	1047452	1047827	1048356	1048525	1049385	1050362	1050624	1052021	4612 1053880
	SEQ NO (a a)	4593	4594	4595	4596	4597	4598	4599	4600	4601	4602	4603	4604	4605	4606	4607	4608	4609	4610	4611	4612
Ī	SEQ NO.	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1104	1105	1106	1107	1108	1109	1110	1111	1112

EP 1 108 790 A2

	Function			phosphinothricin resistance protin	hypothetical protein		hunothelical profein	distribution profess	ושכומנו חווולשויחו לוסיכווו	hypothetical membrane protein			transcriptional regulator			fumarate nydratase precursor	NADH-dependent FMN nxxdoreductase				reductase	dibenzathiophene desulfurization	disparathionhene desulfurization	enzyme C (DBT sulfur dioxygenase)	dibenzothiophene desulfurization			
	Matched length (a.a.)			165			375	677	2/0	165			200	507		456	159				184	443		372	301	:		
	Similarity (%)			5.8.8	0 0	03.0	1	3/.0	52.2	81.2			18	93.2		794	65 4		-		810	67.7		51.3	61.6	 		
	identity (%)			30.3	200	30.3	1	37.8	30.8	40.6				26.0		52.0	32.7				55.4	39.1	_	25.8	28.9		-	_
Table 1 (continued)	Homologous gene			Code of	Alcaligenes raecalis pick	Escherichia coli ybgK		Escherichia coli ybgJ	Emericella nidulans lamB	Oscillus embtilis vosH	Cacher Section 1			Bacillus subtilis ydhC		Rattus norvegicus (Rat) fumH	Rhodococcus erythropolis	IGTS8 dszD			Streptomyces coelicolor A3(2)	Bhodococciis sp. IGTS8 soxA		Rhodococcus sp. IGTS8 soxC	Charlette en IGTSB soxC			
	db Match					Sp.YBGK_ECOLI		sp:Y9GJ_ECOLI		٦.	Sp. YCSH_BACSO			sp. YDHC_BACSU		SO FILMH RAT	4 07004074	gp.Ar.04697.9_1			gp:SCAH10_16	CoCha	sp.sovva_knoso	SD:SOXC_RHOSO		Sp:SOAC_RHOSO		
	ORF (bp)	1	864	393	537	879	1056	699	Τ.		_	672	603	681	1278	1410	2 :	489	261	447	564		1488	1080	-	1197	780	9
	Terminal (nt)		1055722	1054640	1056319	1056322	1058628	1057200	100704	102/643	1058624	1059889	1059962	1060792	1062146	2000	1305211	1064424	1064478	1064754		<u>i</u> _	1067570	1068649	i_	1069845	1068913	1069119
	Initial (nt)		1054859	1055032	1055783	1057200	1057573	1	-	_	1059214	1059218	1059360	1060112	1060860	6000001		1063936	1064738				1066083	1067570		1068649	1069692	4634 1069808
	SEO		4613 1	4614	4615					,	4620	4621	4622					4626	4627	1670	4020	2	4630	4631	3	4632	4633	
	<u> </u>	(DNA)	1113	1114	1115		-			1119	1120	1121	1122	_	_	1124	1125	1126	1127		1120	211	1130		2	1132	1133	1134

EP 1 108 790 A2

5 F. 10			Function	FMNH2-dependent aliphatic sulfonate monooxygenase	glycerol metabolism	hypothetical protein	hypothetical protein		transmembrane efflux protein	exadeoxyribonuclease small subunit	exodeoxyribonuclease large subunit	penicillin tolerance	polypeptides predicted to be useful antigens for vaccines and diagnostics		permease		sodium-dependent proline transporter	major secreted protein PS1 protein precursor	GTP-binding protein	virulence-associated protein	ornithine carbamoylt ansferase	hypothetical protein
15			Matched length (a a)	397	325	211	227		82	62	466	311	131		338		552	412	361	75	304	143
20			Similarity (%)	73.1	75.7	56.4	66.1		78.1	67.7	55.6	78.8	47.0		63.9		61.4	0.09	98.6	80.0	58.8	6.69
	, *		Identity (%)	45.3	44.3	27.5	31.3		36.6	40.3	30.0	50.2	33.0		26.3		30.3	29.9	70.1	57.3	29.6	39.2
25	•	ntinued)		Onss	glpX	erculosis	Ō.		color A3(2)	2 MG1655	2 MG1655	2 lytB	eae		2 perM		Rat) SLC6A7	lutamicum vum) ATCC	ų,	sus intA	uginosa argF	8 ykkB
30		Table 1 (continued)	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 glpX	Mycobacterium tuberculosis H37Rv Rv1100	Bacillus subtilis ywmD		Streptomyces coelicolor A3(2) SCH24.37	Escherichia coli K12 MG1655 xseB	Escherichia coli K12 MG1655 xseA	Escherichia coli K12 lytB	Neisseria gonorrhoeae		Escherichia coli K12		Rattus norvegicus (Rat) SLC6A7 ntpR	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Bacillus subtilis yyaF	Dichelobacter nodosus intA	Pseudomonas aeruginosa argF	Bacillus subtilis 168 ykkB
35				3	T		B		क ल			1	Z				αĒ	<u> </u>	T	T	Ť	11
40			db Match	gp:ECO237695_	Sp.GLPX_ECOLI	pir.870897	pir H70062		gp:SCH24_37	sp:EX7S_ECOLI	sp:EX7L_ECOU	SP.LYTB ECOLI	GSP:Y75421		SP. PERM_ECOLI		sp:NTPR_RAT	sp.CSP1_CORGL	Sn. YYAF BACSU	-	sp OTC	
			ORF (bp)	1176	963	570	1902	285	225	243	1251	975	429	828	1320	180	1737	1233	10B3			1
45			Terminal (nt)	1071134	1071479	1073245	1073340	1075641	1075329	1075667	1075933	1078271	1077306	1078319	٠.,	1080786	1080972	1082951	1085462		i	, ,
50			Initial (nt)	· =	1672441	·	1075241	1075357	1075553	1075909	1077183	1077797		1079145	1 _	1080965	1082708	1084183	1084380			
			SEO	4635	4636	4637	4638	4639	4640	4641	4642	4643		4645				4649	1650			
55			SEQ	(UNA)	1136		1138	1139	1140	1141	1142	1143	1144	1115	1146	1147	1148	1149	1110		1157	1153

_	5	
<u>}</u>	10	
	15	
	20	r
	25	•
	30	
	35	
	40	
	45	
	50	

	Function	9-cis relinol dehydrogenase or oxidoreductase	transposase/integrase (IS110)	hypothetical membrane profein	N-acetylglucosamınyltransterase			Iransposase (insertion sequence IS31831)	transposase	transposase				oxidoreductase or morpyine-6- dehydrogenase (naloxone reductase)	4-carboxymuconolactone decarboxlyase			frenolicin gene cluster protein involved in frenolicin biosynthetic
	Matched length (a a)	198	396	1153	259			97	125	48				264	108			146
	Similarity (%)	9.09	73.0	52.2	47.1			93.8	94.4	95.8				66.3	63.9			66.4
	Identity (%)	338	42.2	23 0	22.8			82.5	79.2	87.5				37.5	33.3			34.9
Table 1 (continued)	Homologous gene	Mus musculus RDH4	Streptomyces coelicolor SC3C8.10	Escherichia coli K12 yegE	Rhizobium meliloti nodC			Corynebacterium glutamicum ATCC 31831	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869				Pseudomonas putida M10 norA	Acinetobacter calcoaceticus dc4c			Streptomyces roseofulvus frnS
	db Match	gp:AF013289_1	sp:YIS1_STRCO	sp. YEGE_ECOLI	Sp.NODC_RHIME			pir.S43613	pir.JC4742	pir.JC4742				sp:MORA_PSEPU	sp.DC4C_ACICA			gp:AF058302_19
	ORF (bp)	630	1206	3042		219	333	291	375	144	141	366	498	843	321	663	195	654
-	Terminal (nt)	1087664	1088535	1093216	1094693	1094911	1095384	1095387	1095719	1096188	1096331	1096746	1097726	1098592	1098929	1099750	1099015	
	Initial (nt)	1088293	1089740	1090175	1093929	1094693	1095052	1095677	1096093	1096331	1096471	1097111	1097229	1097750	1098609	1099088		
	SEQ	4654	4655	4656		4658	4659		4661	4662	4663	4664	4665	4666	4667	4668	4669	4670
	\	(DNA)	1155	1156		1158	1159		1161	1162	1163	1164	1165	1166	1167	1168	1169	1170

5 } J	
15	
20	
25	
30	
35	
40	
45	
50	

	Function	biotin carboxylase						hypothetical protein	magnesium chelatase subunit	2,3-PDG dependent phosphoglycerate mutase	hypothetical protein	carboxyphosphonoenolpyruvate phosphonomutase	tyrosin resistance ATP-binding protein	hypothetical protein	alkylphosphonate uptake protein	transcriptional regulator	multi-drug resistance efflux pump	transposase (insertion sequence IS31831)
	Matched length (a.a.)	563						655	329	160	262	248	593	136	111	134	. 367	436
	Identity Similarity (%)	78.5						80.3	52.6	62.5	60.7	59.3	54.1	6.99	82.0	62.7	59.4	99.8
	dentity (%)	48.1						57.9	27.7	33.8	38.2	29.4	31.7	29.4	55.0	32.1	22.6	99.5
Table 1 (continued)	Homologous gene	Synechococcus sp. PCC 7942 accC						Mycobacterium tuberculosis H37Rv Rv0959	Rhodobacter sphaeroides ATCC 17023 bchl	Amycolatopsis methanolica pgm	Mycobacterium tuberculosis H37Rv Rv2133c	Streptomyces hygroscopicus SF1293 BcpA	Streptomyces fradiae ttrC	Mycobacterium tuberculosis H37Rv Rv2923c	Escherichia coli K12 MG1655 phnA	Bacillus subtilis 168 yxaD	Streptococcus pneumoniae pmrA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 31831
	db Match	gp:SPU59234_3						sp:YT15_MYCTU	HSCHI_IHDB ds	gp:AMU73808_1	pir.A70577	gp:STMBCPA_1	Sp:TLRC_STRFR	sp:Y06C_MYCTU	Sp. PHNA_ECOLI	sp:YXAD_BACSU		3 pir.S43613
	ORF (bp)	1737	597	498	345	153	639	1956	1296	642	705	762	1641	396	342	474	1218	1308
	Terminal (nt)	1101653	1102639	1103192	1103524	1104103	1105561	1104103	1106086	1108201	1108905	1109754	1111432	1111425	1112230	1112484	4	1115793
	Initial (nt)	1099917	1102043	1102695	1,103180	1103951	1104923	1106058	1107381	1107560	1108201	1108993		1	1111889	1112957		1114486
	SEQ NO.		4672		4674	4575	4676	4677	4678	4679	4680	4681	4682		4684	4685		4687
	SEO	$\overline{}$	1172	1173		1175	1176		1178	.1179	1180	1181	1182	1183	1184	1185	1186	1187

55

ABC transporter ATP-binding protein

532 250

47.6

24.8 25.6

61.6

191

9 69

36.7

Bacillus subtilis 168 ykoE

Bacillus subtilis 168 ykoC

Escherichia coli yijK

753 pir.G69858

1129102 1129632

531

hypothetical membrane protein

hypothetical membrane protein

Ca2+/H+ antiporter ChaA

339 236

69.0 57.6

33.3 28.4

hypothetical protein

hypothetical membrane prolein

221

61.1

27.6

Pyrococcus abyssi Orsay PAB1341

1205 4705 1132123 1131401 723 sp.YWAF_BACSU Bacillus subtilis ywaF

708 pir C75001

1204 | 4704 | 1130721 | 1131428 |

Escherichia coli chaA

10	Function	cysteine desulphurase	application of the state of the	İ	quinolinate synthetase A	DNA hydrolase	hypothetical membrane protein	hynothetical protein		hypothetical protein	lipoate-protein ligase A	alkylphosphonate uptake protein and C-P lyase activity	transmembrane transport protein or 4-hydroxybenzoale transporter	p-hydroxybenzoate hydroxylase (4-hydroxybenzoate 3-monooxygenase)	
15	Matched length	(a.a.)		283	361	235	192	214		108	216	148	420	395	į
20	Similarity (%)	73.4	5	68.9	77.6	6.09	54.7	7 99	3	74.1	60 7	8.09	64.3	68.6	
~	Identity (%)	62 6	p	42.1	49.3	37.0	23.4	90	20.0	41.7	30.1	29.7	28.8	40.8	
25 (panuiju		faciens	se gene	erculosis	A	color	Jurans R1	color		2 MG1655	2 lplA	2 phnB	da pcaK	uginosa phhy	
So Table 1 (Continued)	Homologous gene	Diminococciis flavefaciens	cysteine desulphurase gene	Mycobacterium tuberculosis	Bacillus subtilis nadA	Streptomyces coelicolor SC588.07	Deinococcus radiodurans R1	OK 1112 Strentomyces coelicolor	SC3A7.08	Escherichia coli K12 MG1655 vbdF	Escherichia coli K12 IpIA	Escherichia coli K12 phnB	Pseudomonas putida pcaK	Pseudomonas aeruginosa phhy	
35 40	M 45		gp:RFAJ3152_2	SP.NADC_MYCTU	pir.E69663	7.	an AE001961 5	\top	gp:SC3A7_8	sp:YBDF_ECOLI	dp. AAA21740 1	sp:PHNB_ECOL1	SD:PCAK_PSEPU	SP. PHHY_PSEAE	
	ORF		1074	837	1182	22	900		009	342	780		1293	 -	_
45	Terminal	(luf)	1115832	1116908	1117751	1119086	A080C11	100031	1120833	1121468	1121818	1123461	1123534		_
50	Initial	(nt)	1116905	1117744	2118012		30000	5020211	1121432	1121809	,	1123051		1126020	-
	SEQ	(a. 6)	4688	4689		4691		4092	4693	4694	100,	4695 4696			_
55	SEO		1188	1189		1191		1192	1193	1194		1195	2 5	1198	_

(y)

EP 1 108 790 A2

	Function	excinuclease ABC subunit A	Ihioredoxin peroxidase			hypothetical membrane protein	oxidoreductase of miamin biosynthesis protein					chymotrypsin BII	arsenate reductase (arsenical pump modifier)	hypothetical membrane protein	hypothetical protein	hypothetical protein	GTP-binding protein (tyrosine phsphorylated protein A)	hypothetical protein	hypothetical protein		ferredoxin (4Fe-4S)
	Matched length (a.a.)	946	164			318	282					271	111	340	147	221	614	909	315		103
	Similarity (%)	58.7	81.7			72.0	490					51.3	72.1	62.4	71.4	62.9	76.7	54.9	61.9		91.3
	Identity (%)	35.5	57.3			39.9	34.0					28.8	43.2	23.5	43.5	35.8	46.3	27.9	38.7		78.6
Table 1 (continued)	Homologous gene	Thermus thermophilus unrA	Mycobacterium tuberculosis H37Rv tpx			Escherichia coli yedL	Streptomyces coelicator A3(2)					Penaeus vannamei	Escherichia coli	Bacillus subtilis yyaD	Mycobacterium tuberculosis H37Rv Rv 1632c	Mycobacterium tuberculosis H37Rv Rv1157c	Escherichia coli K12 typA	Mycobacterium tuberculosis H37Rv Rv1166	Mycobacterium tuberculosis H37Rv Rv1170		Streptomyces griseus fer
	db Match	SP UVRA_THETH	sp.TPX_MYCTU			sp:YEDI_ECOLI	gp:SCF76_2					sp:CTR2_PENVA	sp:ARC2_ECOLI	0 sp.YYAD_BACSU	pir:F70559	pir.F70555	sp:TYPA_ECOLI	pir.F70874	pir.B70875		SP.FER_STRGR
	ORF (bp)	2340	495	216	1776	954	006	366	297	261	387	834	345	1200	537	714	1911	1506	870	438	315
	Terminal (nt)	1132133	1135055	1135691	1135058	1136938	1138859	1139245	1139492	1139617	1139635	1140028	1140901	1142472	1142479	1143026	1146028	1147602	1148461	1148882	1149267
	Initial (nt)	1134472	1134561	1135476	1136833	1137891	1137960	1138880	1139196	1139357	1140021	1140861		1141273	1143015	1143739	1144118	1146097	1147592	1148445	, ,
	SEQ NO.			4708	4709	4710	4711	4712	4713	4714	4715	4716	4717	4718	4719	4720	4721	4722	4723	4724	
	SEQ			1208	1209	1210	1211	1212	1213	1214	1215	<u> </u>		1218	1219	1220	1221	1222	1223	1224	1225

		-1						-					\neg			- T		
	Function	aspartale aminotransferase			tetrahydrodipicolinate succinylase or succinylation of piperidine-2,6- dicarboxylate		hypothetical protein	dihydropteroate synthase	hypothetical protein	hypothetical protein	antigen TbAAMK, useful in vaccines for prevention or treatment of tuberculosis	mycinamicin-resistance gene	sucrose-6-phosphate hydrolase	ADPglucosestarch(bacterial glycogen) glucosyltransferase	glucose-1-phosphate adenylyltransferase	methyltransferase	RNA polymerase sigma factor (sigma-24); heat shock and oxidative stress	
	Matched length (a.a.)	397			229		211	273	245	66	47	286	524	433	400	93	194	
	Similarity (%)	52.9			100.0		100.0.	69.0	73.1	67.7	91.5	67.8	51.0	51.3	81.8	62.4	57.2	
	Identity (%)	25.9			100.0		100.0	59.0	45.7	31.3	72.3	39.2	23.5	24.7	61.0	25.8	27.3	
Table 1 (continued)	Hamologous gene	Bacillus sp. strain YM-2 aat			Corynebacterium glutamicum ATCC 13032 dapD		Corynebacterium glutamicum ATCC 13032 orf2	Streptomyces coelicalor A3(2) dhpS	Mycobacterium leprae u1756l	Mycobacterium tuberculosis H37Rv Rv1209	Mycobacterium tuberculosis	Micromonospora griseorubida myrA	Pediococcus pentosaceus scrB	Escherichia coll K12 MG1655 glgA	Streptomyces coelicalar A3(2) glgC	Streptomyces mycarofaciens MdmC	Escherichia coli rpoE	
	db Match	sp:AAT_BACSP			gp:CGAJ4934_1		pir.S60064	gp:SCP8_4	gp.MLU15180_14	pir.G70609	gsp:W32443	sp:MYRA_MICGR	SP.SCRB PEDPE	sp:GLGA_ECOLI	sp:GLGC_STRCO	sp:MDMC_STRMY	sp:RPOE_ECOLI	
	ORF (bp)	1101	621	1185	891	663	768	831	729	306	165	864	1494	1227	1215	639	639	492
,	Terminal (nt)	1150379	1151028	1152370	1152373	1155875	1157669	1158524	1159252	1159572	1159799	1150728	1160738	1162379	1164916	1164974	1166384	1167067
	Initial (nt)	1149279	1150408	1151186	1153263	1156537	1156902	1157694	1158524	1159267	1159635	1159865	1162231	1163605	1163702	1165612	1165746	1166576
	SEQ.	 -	4727	4728	4729	4730	4731	4732	4733	4734	4735	4736	4737	4738	4739	4740	4741	4742
	SEO					1230		1232	1233	1234	1235	1236	1237	1238	1239	1240	1241	1242

tetracycline resistance protein

409

61.4

27.1

Escherichia coli transposon Tn1721 tetA

1215 | sp:TCR1_ECOLI

876

525

1185218

1185742

1257 4757

1258 4758 1185825

651

1184257

1255 4755 1183607

metabolite export pump of tetracenomycin C resistance

444

64.2

32.4

Streptomyces glaucescens tcmA

1347 | sp.TCMA_STRGA

188389

1259 4759 1167043

705

5	Function	hypothetical protein	ATPase	hypothetical protein	hypothetical protein	hypothetical protein			2-oxoglutarate dehydrogenase	ABC transporter or multidrug resistance protein 2 (P-glycoprotein 2)	hypothetical protein	sh⊧kimate dehydrogenase	para-nitrobenzyl esterase	
15	Matched length (aa)	112	257	154	434	140			1257	1288	240	255	501	
20	Similarity (%)	73.2	72.0	83.8	0.77	87.1			93.8	60.4	72.1	61.2	64.7	
•	Identity (%)	45.5	43.6	60.4	49.8	57.9			99.4	28.8	31.7	25.5	35.7	
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1224	Escherichia coli mrp	Mycobacterium tuberculosis H37Rv Rv1231c	Mycobacterium tuberculosis H37Rv Rv1232c	Mycobacterium tuberculosis H37Rv Rv1234			Corynebacterium glutamicum AJ12036 odhA	Cricetulus griseus (Chinese hamster) MDR2	Mycobacterium tuberculosis H37Rv Rv1249c	Escherichia coli aroE	Bacillus subtilis pnbA	
35		Mycob H37Rv	Escher	Mycob H37Rv	Mycob H37Rv	Mycob H37Rv			Coryne AJ120	Cricet	Mycob H37R	Esche	Bacille	
40	db Match	pir.C70508	Sp.MRP_ECOLI	pir:870509	290 pir.C70509	pir.A70952			3771 prf.2306367A	3741 sp:MDR2_CRIGR	pir:H70953	SP. AROE ECOLI	SO PNBA BACSU	שליי יישור ישני
	ORF (bp)	468	1125	579	1290	516	999	594	3771	3741	717	808	+-	+
45	Terminal (nt)	1167577	1167587	1168747	1169321	1171187	1171871	1171869	1172501	1176308	1180121	1180872	- 	
50	Initial (nt)	1167110	1168711	1169325	1170610	1170672	1171206	1172462	1176271	1180048	1180837	1101675	10101	1181933
	SEO	4743	4744	4745	4746	4747	4748	4749	4750	4751	4752	4763	4/33	4724
55	SEO NO.	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	2500	207	1254

EP 1 108 790 A2

_																		
	Function	5- methyltetrahydropteroyltriglulamate- -homocysteine S-methyltransferase		thiophene biotransformation protein						ABC transporter	ABC transporter	cytochrome bd-type menaquinol oxidase subunil II	cytochrome bd-type menaquinol oxidase subunit I	helicase		mutator mutT protein ((7,8-dihydro-8-oxoguanine triphosphatase)(8-oxo-dGTPase)(dGTP		profine-specific permease
	Matched fength (a a)	774		444	·					526	551	333	512	402		86		433
	Similarity (%)	72.2		79.5						63.5	58.4	93.0	99.0	55.0		65.6		850
	identity (%)	45.2		55.2						28.7	29.4	92.0	9.66	26.4		36.9		51.3
Table 1 (continued)	Homologous gene	Catharanthus roseus metE		Nocardia asteroides strain KGB1						Escherichia coli K12 MG1655 cydC	Escherichia coli K12 MG1655 cydD	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydB	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydA	Escherichia coli K12 MG1655 yejH		Proteus vulgaris mutT		Salmonella typhimurium proY
	db Match	5 pir.S57636		gsp: Y29930						sp.CYDC_ECOLI	sp:cYDD_ECOLI	gp:A8035066_2	gp:A8035086_1	sp.YEJH_ECOLI		sp:MUTT_PROVU		1404 SP.PROY_SALTY
	ORF (bp)	2235	455	1398	324	945	792	1647	192	1554	1533	666	1539	2265	342	393	765	1404
	Terminal (nt)	1188388	1191542	1193807	1194190	1195109	1195125	1197620	1197815	1197990	1199543	1201090	1202094	1203916	1206657	1206831	1208139	1208212
	Initial (nt)	1190622	1191087	1192410	1193867	1194165	1195916	1195974		1199543	1201075	1202088	1203632	1206180	1206316	1207223	1207374	4777 1209615
	SEQ NO (a a)		4762	4763	4764	4765	4766	4767	4768	4769	4770	4771	4772	4773	4774	4775	4776	4777
	SEO NO.		1262	1263	1264	1265	1266	1267		1269	1270	1271	1272	1273	1274		1276	1277

EP 1 108 790 A2

ſ					į											-		\neg
	Function	DEAD box ATP-dependent RNA helicase	bacterial regulatory protein, tetR family	pentachlorophenol 4- monooxygenase	maleylacetate reductase	catechol 1,2-dioxygenase		hypothetica: protein	transcriptional regulator		hypothetical protein	phosphoesterase	hypothetical protein			esterase or lipase		
	Matched length (a.a.)	643	247	595	354	278		185	878		203	395	915			220		
	Similarity (%)	74.3	47.4	47.7	72.0	59.4		58.4	55.4		56.2	67.3	59.6			64.6		
	Identity (%)	48.1	24.7	24.5	40.4	30.6		31.9	24.9		29.6	39.2	29.7			37.3		
Table 1 (continued)	Homologous gene	Klebsiella pneumoniae CG43 DEAD box ATP-dependent RNA helicase deaD	Mycobacterium leprae B1308_C2_181	Sphingomonas flava pcpB	Pseudomonas sp. 813 clcE	Acinetobacter calcoaceticus catA		Mycobacterium tuberculosis H37Rv Rv2972c	Saccharomyces cerevisiae SNF2		Streptomyces coelicolor A3(2) orf2	Mycobacterium tuberculosis H37Rv Rv1277	Mycobacterium tuberculosis H37Rv Rv1278			Petroleum-degrading bacterium HD-1 hde		
	db Match	sp:DEAD_KLEPN	prf.2323363BT	sp:PCPB_FLAS3	sp.CLCE_PSESB	Sp.CATA_ACICA		pir.A70672	sp:SNF2_YEAST		gp:SCO007731_6	pir:E70755	sp:Y084_MYCTU			gp:AB029896_1		
	ORF (bp)	2196	687	1590	1068	885	471	540	3102	1065	828	1173	2628	306	318	774	378	786
	Terminal (nt)	1212129	1212429	1214858	1215938	1216836	1216904	1217443	1222996	1221841	1223843	1225059	1227693	1227282	1227340	1229636	1229095	1229935
	Initial (nt)	1209934	1213115	1213269	1214871	1215952	1217374	1217982	1219895	1222905	1222986	1223887	1225066	1227587	1227657	1227863	1228718	1229150
	SEQ NO (a a.)	4778	4779	4780	4781	4782	4783	4784	4785	4786	4787	4788	4789	4790	4791	4792	4793	4794
	SEQ NO. (DNA)	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294

.5

25 -

EP 1 108 790 A2

10	
15	
20	
25	
30	
35	
40	
1 5	
50	

Table 1 (continued)

		1		T	Γ	O.	1		T	T	T	T	T	Т	$\overline{}$	_	T	T	Г	T	T -
Function	short-chain fatty acids transporter	regulatory protein			fumarate (and nitrate) reduction regulatory protein	mercuric transort protein periplasmic component precursor	zinc-transporting ATPase Zn(II)- translocating P-type ATPase	GTP pyrophosphokinase (ATP:G1P 3'-pyrophosphotransferase) (ppGpp synthetase I)	tripeptidyl aminopeptidase			homoserine dehydrogenase			nitrate reductase gamma chain	nitrate reductase delta chain	nitrate reductase beta chain	hypothetical protein	hypothetical protein	nitrate reductase alpha chain	nitrate extrusion protein
Matched fength (a.a.)	122	166			228	81	605	137	601			24			220	175	505	137	93	1271	461
Similarity (%)	69.7	56.6			57.9	66.7	706	58.4	49.3			98.0			9.69	63.4	83.4	46.0	55.0	73.8	6.79
Identity (%)	37.7	24.7			25.0	33.3	38.0	32.9	26.6			95.0			45.0	30.3	56.6	36.0	36.0	46.9	32.8
Homologous gene	Streptomyces coelicolor SC1C2.14c atoE	Erwinia chrysanthemi recS			Escherichia coli K12 MG1655 fnr	Shewanella putrefaciens merP	Escherichia coli K12 MG1655 atzN	Vibrio sp. S14 relA	Streptomyces lividans tap			Corynebacterium glutamicum			Bacillus subtilis narl	Bacillus subtilis narJ	Bacillus subtilis narH	Aeropyrum pernix K1 APE1291	Aeropyrum pernix K1 APE1289	Bacillus sublilis narG	Escherickia coli K12 narK
db Match	sp:ATOE_ECOLI	Sp. PECS_ERWCH			Sp.FNR_ECOLI	sp:MERP_SHEPU	sp.ATZN_ECOLI	sp:RELA_VIBSS	gsp:R80504			GSP: P61449			sp:NARI_BACSU	sp:NARJ_BACSU	sp:NARH_BACSU	PIR: D72603	PIR: 872603	sp:NARG_BACSU	sp:NARK_ECOLI
ORF (bp)	537	486	222	519	750	234	1875	630	1581	603	120	108	1260	069	777	732	1593	594	273	3744	1350
Terminal (nt)	1229180	1230480	1230831	1230914	1232479	1232836	1234881	1235612	1236545	1241554	1242156	1243728	1243942	1244843	1245720	1246508	.247199	1250444	1251817	1248794	1252557
Initial (nt)	1229716	1229995	1230610	1231432	1231730	1232603	1233007	1234983	1238125	1242156	1242275	1243621	1245201	1245532	1246496	1247239	1248791	1249851	1251545	1252537	1253906
SEQ NO. (a.a.)	4795	4796	4797	4798	4799	4800	4801	4802	4803	4804	4805	4806	4807	4808	4809	4810	4811	4812	4813	4814	4815
SEQ NO. (DNA)	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315

red)
(conti
_
~
•
=
Table
,
-
•

Matched Matched	Identity Similarity length (%) (%) (aa)	molybdopterin biosynthesis cnx1 65 0 157 protein (molybdenum cofactor biosynthesis enzyme cnx1)	45.9 738 extracellular serine protease precurosor		334 hypothelical membrane protein	hypothetical membrane protein	mo'ybdopterin guanine dinucleolide synthase	mo:ybdoptein biosynthesis protein	mo'ybdopterin biosynthsisi protein Moybdenume (mosybdenum cofastor biosythesis enzyme)	edium-chain fatty acidCoA ligase	ctor				peptide chain release factor 1	protoporphyrinogen oxidase		hypothetical protein	undecaprenyl-phosphate alpha-N- acetylglucosaminyltransferase
_	Similarity (%)			İ	334			-	E 8 8	ediu	Rho factor				peptide	protopc		hypoth	undecap acetylglt
		0 59	15.9	\neg	.,	472	178	366	354	572	753				363	280		215	322
	Sentity (%)		,		62.6	60.2	52.3	58.2	73.7	65.7	73.8				71.9	57.9		0.98	58.4
1		32.5	21.1		30.8	31.6	27.5	32.8	51.4	36.7	50.7				41.9	31.1		62.3	31.1
ומחום (בחוווותבת)	Hamologous gene	Arabidopsis thaliana CV cnx1	Serratia marcescens strain IFO- 3046 prtS		Mycobacterium tuberculosis H37Rv Rv1841c	Mycobacterium tuberculosis H37Rv Rv1842c	Pseudomonas putida mobA	Mycobacterium tuberculosis H37Rv Rv0438c moeA	Arabidopsis thaliana cnx2	Pseudomonas oleovorans	Micrococcus luteus rho				Escherichia coli K12 RF-1	Escherichia coli K12		Mycobacterium tuberculosis H37Rv Rv1301	Escherich a coli K12 rfe
	db Match	sp:CNX1_ARATH	sp.PRTS_SERMA		sp:Y0D3_MYCTU	sp.Y0D2_MYCTU	gp:PPU242952_2	sp.MOEA_ECOL!	sp:CNX2_ARATH	sp:ALKK_PSEOL	sp:RHO_MICLU				sp:RF1_ECOLI	sp:HEMK_ECOLI		sp:YD01_MYCTU	1146 SP.RFE_ECOLI
	ORF (bp)	489	1866	684	1008	1401	551	1209	1131	1725	2286	603	969	1023	1074	837	774	648	1146
	Terminal (nt)	1254634	1254737	1257750	1255851	1257865	1259429	1259993	1261688	1262886	1267427	1266267	1265611	1265427	1268503	1269343	1268267	1270043	1271192
	Initial (nt)	1254146	1256602	1257067	1257858	1259265	1259989	1261201	1262818	1264610	1265142	1265665	1266306	1266449	1267430	1268507	1269040	1269396	1270047
020	NO.	4816	4817	4818	4619	4820	4821	4822	4823	4824	4625	4826	4827	4628	4629	4830	4831	4832	4833
CEO	n 2 😃	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333

10
15
20
25
30
35
40
45
50

Table 1 (continued)

_																	
	Function		hypothetical protein	ATP synthase chain a (protein 6)	H+-transporting ATP synthase lipid- birding protein. ATP synthase C chane	H+-transporting ATP synthase chain b	H+-transporting ATP synthase delta chain	H+-transporting ATP synthase alpha chain	H+-Iransporling ATP synthase gamma chain	H+-transporting ATP synthase beta chain	H+-transporting ATP synthase epsilon chain	hypothetical protein	hypothetical protein	pulative ATP/GTP-binding protein	hypothetical protein	hypothetical protein	thioredoxin
	Matched length (a.a.)		80	245	1.2	151	274	516	320	483	122	132	230	95	134	101	301
	Simianity (%)		0.99	26.7	85.9	6.99	67.2	88.4	9.92	100.0	73.0	67.4	85.7	56.0	68.7	79.2	71.4
	Identity (%)		98.0	24.1	54.9	27.8	34.3	6.99	46.3	93.8	41.0	38.6	70.0	45.0	35.8	54 5	37.9
(Homologous gene		Corynebacterium glutamicum atpl	Escherichia coli K12 alpB	Streptomyces lividans atpL	Streptomyces lividans atpF	Streptomyces lividans atpD	Streptomyces lividans atpA	Streptomyces lividans atpG	Corynebaclerium glutamicum AS019 atpB	Streptomyces lividans atpE	Mycobacterium tuberculosis H37Rv Rv1312	Mycobacterium tuberculosis H37Rv Rv1321	Streptomyces coelicolor A3(2)	Bacillus subtilis yqjC	Mycobacterium tuberculosis H37Rv Rv1898	Mycobacterium tuberculosis H37Rv Rv1324
	db Match		GPU:AB046112_1	sp:ATP6_ECOLI	sp.ATPL_STRLI	sp:ATPF_STRLI	sp:ATPD_STRLI	sp:ATPA_STRLI	sp:ATPG_STRLI	sp:ATPB_CORGL	sp:ATPE_STRL!	sp:Y02W_MYCTU	sp:Y036_MYCTU	GP:SC26G5_35	sp:YQJC_BACSU	sp:YC20_MYCTU	sp:YD24_MYCTU
	ORF (bp)	486	249	810	240	564	813	1674	975	1449	372	471	069	285	453	312	921
	Terminal (nt)	1271698	1272119	1273149	1273525	1274122	1274943	1276648	1277682	1279136	1279522	1280240	1280959	1281251	1281262	1282105	1283114
	Initial (nt)	1271213	1271871	1272340	1273286	1273559	1274131	1274975	1276708	1277688	1279151	1279770	1280270	1280967	1281714	1281794	1282194
	SEQ NO (a a.)	4834	4835	4836	4837	4838	4839	4840	4841	4842	4843	4844	4845	4846	4847	4848	1349 4849
	SEQ NO (DNA)	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349

	Matched Function (a.a.)	366 Sulfonate monooxygenase	240 alphatic sulfonates transport permease protein	alphatic sulfonates transport permease protein	311 sulfonate binding protein precursor	710 1,4-alpha-glucan branching enzyme (glycogen branching enzyme)	467 alpha-amylase		ferric enterobactin transport ATP- 211 binding protein or ABC transport ATP-binding protein	260 hypothetical protein	367 hypothetical protein		electron transfer flavoprotein beta- subunit	335 electron transfer flavoprotein alpha subunit for various dehydrogenases		375 nitrogenase cofactor sythesis protein		397 hypothetical protein
	Similarity Her (%)	74.3	75.8	72.8	62.1	72.7	50.5		87.6	68.5	70.0		64.8	61.8		2.79		55.7
	Identity (%)	50.3	40.8	50.4	35.1	46.1	22.9		31.8	39.6	43.1		31.2	33.1		35.2		29.5
Table 1 (continued)	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 ssuC	Escherichia coli K12 ssuB	Escherichia coli K12 ssuA	Mycobacterium tuberculosis H37Rv Rv1326c glgB	Dictyoglomus thermophilum amyC		Escherichia coli K12 fepC	Mycobacterium tuberculosis H37Rv Rv3040c	Mycobacterium tuberculosis H37Rv Rv3037c		Rhizobium melilati fixA	Rhizobium meliloti fixB		Azolobacter vinelandii nifS		Rhizobium sp NGR234 plasmid pNGR234a y4mE
	db Match	gp ECO237695_3	sp:SSUC_ECOLI	sp.SSUB_ECOLI	SP. SSUA_ECOLI		sp AMY3_DICTH		sp.FEPC_ECOU	pir C70860	pir H70859		sp.FIXA_RHIME	sp:FIXB_RHIME		sp:NIFS_AZOVI		146 sp Y4ME_RHISN
	ORF (bp)	1143	768	729	957	2193	1494	348	879	804	1056	612	786	951	615	1128	312	1146
	Terminal (nt)	1284466	1285284	1286030	1286999	1287281	1289514	1291373	1	1294025	1295206	1294436	1296220	1297203	1297093	1298339	1298342	1299000
	Initial (nt)	1283324	1284517	4852 1285302	1286043	1289473	1291007	1291026		1293222	1294151	1295047	1295435	1296253	1296479	1297212	1298653	4966 1300145
	SEQ NO.		4851	4852	4853		4855	4856	4857	4858	4859	4860	4861	4862	4863	4864	4865	
	SEO NO.		1351	1352	1353		1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366

· 5

5	
10	
15	
20	•
25	+
30	
35	
40	-
45	
50	

	Function	transcriptional regulator	acety!transferase				tRNA (5-methylaminomethyl-2- thioundylate)-methyltransferase		hypothetical protein	tetracenomycin C resistance and export protin		DNA ligase (polydeoxyribonucleotide synthase [NAD+]	hypothetical protein	glutamyl-tRNA(Gln) amidotransferase subunit C	glutamyl-IRNA(Gln) amidotransferase subunit A	vibriobactin utilization protein / iron- chelator utilization protein	hypothetical membrane protein	pyrophosphate-fructose 6- phosphate 1-phosphotransrefase
	Watched length (a a)	59	181				361		332	500		677	220	97	484	263	96	358
	Simitarity (%)	76.3	55.3				6.08		0.99	65.8		70.6	70.9	64.0	83.0	54.0	79.2	77.9
	Identity (%)	47.5	34.6				61.8		33.7	30.2		42.8	40.0	53.0	74.0	28.1	46.9	54.8
Table 1 (continued)	Homologous gene	Rhizobium sp. NGR234 plasmid pNGR234a Y4mF	Escherichia coli K12 MG1655 yhbS				Mycobacterium tuberculosis H37Rv Rv3024c		Mycobacterium tuberculosis H37Rv Rv3015c	Streptomyces glaucescens tcmA		Rhodothermus marinus dnlJ	Mycobacterium tuberculosis H37Rv Rv3013	Streptomyces coelicolor A3(2) gatC	Mycobacterium tuberculosis H37Rv gatA	Vibrio vulnificus viuB	Streptomyces coelicolor A3(2) SCE6.24	Amycolatopsis methanolica pfp
	db Match	SP.Y4MF_RHISN	sp:YHBS_ECOLI				pir:C70858		pir:B70857	sp.TCMA_STRGA		2040 sp.DNLJ_RHOMR	pir:H70856	sp.GATC_STRCO	sp.GATA_MYCTU	sp VIUB_VIBVU	gp:SCE6_24	sp.PFP_AMYME
	ORF (bp)	225	504	942	1149	396	1095	654	066	1461	735	2040	663	297	1491	849	306	1071
	Terminal (nt)	1300145	1301055	1300988	1301975	1303694	1304923	1303883	1305921	1305924	1307462	1310369	1310435	1311616	1313115	1314118	1314470	1316083
	Initial (nt)	1300369	4868 1300552 1301055	1301929	1303123	1303299	4872 1303829	1304536	1304932	1307384	1308196	·	1311097	1311320	1311625	1313270	1314775	1315013
	SEQ NO		4868	4869	4870	4871	4872	4873		4875	4876	4877	4878	4879	4880	4881	4882	4883
	SEQ NO DNA)		1368	1369	1370	1371	1372	1373		1375	1376		1378	1379	1380	1381	1382	1383

dihydroxy-acid dehydratase

513

99.4

99.2

Corynebacterium glutamicum ATCC 13032 ilvD

1839 gp:AJ012293_1

4899 1335280

1399 1398

237

1333188 1333442

1333424

4898

hypothetical protein

105

68.6

33.3

Mycobacterium tuberculosis H37Rv Rv3004

pir.G70855

564

5		noi		amylase control protein)	2-binding protein	ansport protein	vinding protein	ransport prote:n		ıding lipopratein	acid transporter	nidotransferase B	ndent NADH			ane protein
10		Function		glucose-resistance amylase regulator (catabolite control protein)	ripose transport ATP-binding protein	high affinity ribose transport protein	periplasmic ribose-binding prolein	high affinity ribose transport protein	hypothetical protein	iron-siderophore binding lipoprotein	Na-dependent bile acid transporter	RNA-dependent amidotransferase B	putative F420-dependent NADH reductase	hypothetical protein	hypothetical protein	hypothetica! membrane protein
15		Matched length (a a)		328	499	329	305	139	200	354	268	485	172	317	234	325
20		Similarity (%)		31.4	76.2	76.9	77.7	68.4	58.0	60.2	61.9	71.8	61.1	6.99	62.4	52.6
•		Identity (%)		31.4	44.7	45.6	45.9	41.7	31.0	31.4	35.8	43.1	32.6	39.8	39.3	27.4
25 Congress	ullided)	aene		ccpA	rbsA	MG1655	MG1655	MG1655	evisiae	olor	tat) NTCI	eus WHU 29	ıaschii	yqjG	rculosis	rculosis
30 . J. J. J. J. J. J. J. J. J. J. J. J. J	ומח) ו בותפו			Bacillus megaterium ccpA	Escherichia coli K12 rbsA	Escherichia coli K12 MG1655 rbsC	Escherichia coli K12 MG1655 rbsB	Escherichia coli K12 MG1655 rbsD	Saccharomyces cerevisiae YIR042c	Streptomyces coelicolor SCF34_13c	Rattus norvegicus (Rat) NTCI	Staphylccoccus aureus WHU 29 ratB	Methanococcus jannaschii MJ1501 f4re	Escherichia coli K12 yqjG	Mycobacterium tuberculosis H37Rv Rv2972c	Mycobacterium tuberculosis H37Rv Rv3005c
40		db Match		sp:CCPA_BACME	Sp.RBSA_ECOLI	sp:RBSC_ECOLI	sp.RBSB_ECOLI	sp RBSD_ECOLI	sp.YIW2_YEAST	gp:SCF34_13	sp.NTCI_RAT		sp:F4RE_METJA	sp:YaJG_ECOL!	pir.A70672	pir:H70855
		ORF (bp)	630	1107	1572	972	942	369	636	1014	1005	1479	672	1077	774	1056
45		Terminal (nt)	1315325	1317444	1319005	1319976	1320942	1321320	1322111	1323406	1324537	1326256	1327049	1329891	1331875	1333008
50		Initial (nt)	1315954	1316338	1317434	1319005	1320001	1320952	1321476	1322393	1323533	1324778	1326378	1330967	1331102	1331953
		SEQ NC.		4885	4886	4887	4888	4889	C681	4891	4892	4893	4894	4895	4896	4897
55		SEQ NO.	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397

10	
15	
20	
25	•
30	
35	
40	
45	
50	

	Function	hypothetical membrane protein	hypothetical protein		nitrate transport ATP-binding potein	mal:ose/maltodextrin transport ATP-binding protein	nitrate transporter protein			actinorhodin polyketide dimerase	coball-zinc-cadimium resistance protein			hypothetical protein		D-3-phosphoglycerate dehydrogenase	hypothetica! serine-rich protein			hypothetical protein	
	Matched length (a.a.)	62	99		167	87	324			142	304			642		530	105			620	
	Similarity (%)	100.0	55.0		80.9	78.2	56.8			73.2	72.7			53.7		100.0	52.0			63.1	
	Identity (%)	100.0	45.0		50.9	46.0	28.1			39.4	39.1			22.9		93.8	29 0			32.9	
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 yilV	Sulfolobus solfataricus		Synechococcus sp. nrtD	Enterobacter aerogenes (Aerobacter aerogenes) malK	Anabaena sp. strain PCC 7120 nrtA			Streptomyces coelicolor	Ralstonia eutropha czcD			Methanococcus jannaschii		Brevibacterium flavum serA	Schizosaccharomyces pombe SPAC11G7.01			Rhodobacter capsulatus strain SB1003	
	db Match	sp:YILV_CORGL	GP:SSU18930_26 3		SP NRTD_SYNP7	SP MALK_ENTAE	SP NRTA_ANASP			sp DIM6_STRCO	sp.CZCD_ALCEU			sp:Y686_METJA		gsp:Y22646	SP:YEN1_SCHPO			pir. T03476	
	ORF (bp)	1473	231	909	498	267	882	447	369	486	954	153	069	1815	1743	1590	327	867	1062	1865	402
	Terminal (nt)	1336095	1338379	1342677	1341960	1342461	1342794	1344464	1344808	1345420	1346439	1345335	1345642	1348272	1350076	1352444	1351727	1353451	1354540	1357554	1356853
	Initial (nt)	1337567	1338609	1342072	1342457	1342727	1343675	1344019	1344440	1344935	1345485	1345487	1346331	1346458	1348334	1350855	1352053	1352585	1355601	1355689	1355452
	SEQ NO (a.a.)	4901	4902	4933	4604	4935	4906	4937	4938	4939	4910	4911	4912	4913	4914	4915	4916	4917	4918	4919	4920
	SEQ NO.	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420

								$\overline{}$		$-\tau$	Т				$\neg \neg$		1	$\overline{}$	1	T	\top		1
5		Function		homoprotocatechinate catabolism	bifunctional isomerase/decarboxylase fincludes: 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase(hhdd isomerase); 5- carboxymethyl-2-oxo-hex-3-ene-1,7- dioate decarboxylase(opet	methyltransferase or 3- demethylubiquinone-9 3-O-	methyltransferase	isochorismate synthase	glutamyl-IRNA synthetase	transcriptional regulator												thiam'n biosynthesis protein	
15		Matched length (a.a.)			228	192		371	485	29												599	,
20		Similarity (%)			59.2	55.7		70.4	69.7	0.06									_			810	,
-		Identity (%)			33.3	23.4		38.0	37.3	77.0												85.4	200
25 *	ontinued)	s gene			hpcE	12	!	ည္ရ	×	licolor A3(2)												1111	A of thic
30	Table 1 (conlinued)	Homologous gene			Escherichia coli C hpcE	Escherichia coli K12		Bacillus subtilis dhbC	Bacillus sublifis altX	Streptomyces coelicolor A3(2)												7 - 3.4 - 1	Bacillus subtilis thiA or thiC
35			+	+		1		1	1			-	+										_
40		db Match			sp:HPCE_ECOL!	O Digital Pro-	sp:uello_ecoci	130 CAL DHAC BACSII	INCOME BACK		2000 46												sp. THIC_BACSU
		ORF	3	654	804	9	618	1100	0711	25	2 2	522	342	621	303	180	330	213	183	318	1152	├ <i>─</i> †	1761
45		Terminal	(ma)	1358210	1359062		1359669		i_		1302920	1363142			1364878	1365217	1366137	1367505	1367888	1368395	1369551	1369874	1371637 1369877
50		Initial	(mt)	1357557	1358259	1	1359052		1361295			1363657			-	1365396	1365808	1367293	1368070	1368078	1368400	1369551	1371637
		SEQ NO	(a.a)	4921	4922		4923		$\overline{}$	_		-	4920			4932	4933	4934	4935	1936	4937	4938	4939
55		SEO	DNA)	1421	1422		1423	1	1424	1425	1426	1427	1428	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439

•	5	
	10	
	15	
	20	. -
	25	-
	30	
	35	
	40	
	45	
	50	

Table 1 (continued)

SEC
137206
Name
SEO Initial Terminal ORF db Match Homologous gene (%) (nt) (nt) (ht)
SEO Initial Terminal ORF (b) (a a) (nt) (nt) (b) (b) (a a) (a 2) (a 1) (a 2) (a 3)
SEO Initial (nt) (bp) (a a) (nt) (nt) (bp) (bo) (nt) (nt) (bp) (bo) (372326 1371979 348 4941 1372501 1373929 132 4942 1373798 1373929 132 4944 1375776 1373950 132 4945 1375987 1375805 183 4946 1376988 1375805 183 4949 1378942 1378966 564 4950 1378942 1378966 564 4950 1378940 1378966 564 4951 1380259 1379566 564 4952 1380440 1381882 1443 4954 1382819 1382892 591 4955 1383930 1382845 954 4956 1383930 1385125 996
SEO Initial 1 (a a) (nt) (a b) (nt) (b) (nt) (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d
SEQ NO. 1941 1 4941 4942 4944 4945 4949 4955 4955 4955 4955
SEO NO. 1440 1441 1444 1444 1444 1444 1444 144

5	
10	
15	
20	-
25	•
30	
35	
40	-
45	
50	

-			

	Function		thiamin-phosphate kinase	uracil-DNA glycosylase precursor	hypothetical protein	ATP-dependent DNA helicase	polypeptides predicted to be useful antigens for vaccines and diagnostics	biotin carboxyl carrier protein	methylase	lipopolysaccharide core biosynthesis profein		of political additional or leister to	Neisserial pulypepings predictions be useful antigens for vaccines and diagnostics	ABC transporter or glutamine ABC transporter, ATP-binding protein	nopaline transport protein	glutamine-binding protein precursor		hypothetical membrane protein		phage integrase
i	Matched length (a a)		335	245	568	693	108	29	167	155			65	252	220	234	_	322		223
	Similarity (%)		57.6	59.6	56.3	0.09	48.0	67.2	63.5	78.7			74.0	78.6	75.0	29.0		60.3		52.5
	Identity (%)		32.2	38.8	23.1	35.4	31.0	38.8	37.1	42.6			67.0	56.4	32.7	27.4		28.6		26.9
Table 1 (continued)	Homologous gene		Escherichia coli K12 thil.	Mus musculus and	Mycoplasma genitalium (SGC3) MG369	Escherichia coli K12 recG	Neisseria meningitidis	Propionibacterium freudenreichii subsp. Shermanii	Escherichia coli K12 vhhF	Escherichia coli K12 MG1655	Katis		Neisseria gonorrhoeae	Bacillus stearothermophilus glnQ	Agrobacterium fumefaciens noct/	Escherichia coli K12 MG1655 glnH		Methanobacterium thermoautotrophicum MTH465		Bacteriophage L54a vinT
	db Match		THI ECOI	SP. I. N.C. ECCE.	sp:Y369_MYCGE	en RFCG ECOLI	GSP: Y75303	sp.BCCP_PROFR	NUMBER COLL	Sp. rnnr_ccoci			GSP:Y75358	sp. GLNQ_BACST	sp:NOCM_AGRT5	Sp.GLNH_ECOLI		pir:H69160		sp:VINT_BPL54
	ORF (bp)	978		+-		2121		213	1	282	3	1080	204	750	843	861	807	978	408	756
	Terminal (nt)	1386293	70000	1300324	1390788	1302016	1391638	1393151		1393/35	1.771-601	1395933	1395097	1394800	1395568	1396561	1398468	1398557	1401333	1
	(nt)	1387270		-	1389208	20007006	1391961	1392939		1393154	7476661	1394854	1394894	1395549	1396410	1397421	1397662		1400926	
	SEO	+		-	4967		4964	4965			490/	4968	4969	4970	4971	4972	4073	4974	4975	
	SEO S			_	1462	_	1464	1465			146/	1468		1470	1471	1472	1473	1474	1475	1476

EP 1 108 790 A2

morphine-6-dehydrogenase

284 283

76.1

DNA-binding protein

65.4

41.3 46.5

Streptomyces coelicolor A3(2) SCJ9A. 15c

gp:SCJ9A_15

606

1418870

1496 4996 1417962

873 sp. MORA_PSEPU | Pseudomonas putida morA

159

456

67.8

33.8

1422 Sp: CMCT_NOCLA

1416462

1495 | 4995 | 1417883 |

EP 1 108 790 A2

	Function	hypothelical protein	S diatoral protein S1	303 fibosonial process		hypothetical protein				9 20 20 20 20 20 20 20 20 20 20 20 20 20	inosine-undine prefermig muceosida hypolase (purine nucleosidase)	aniseptic resistance protein	shoo kinasa	criptic asc operon repressor,	ranscription regulator		excinuclease ABC subunit B	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein		hypothetical protein	hydrolase
	Matched length (a.a.)	163		451		195					310	517		267	337	-	671	152	121	279		958	3	150	214
	Similarity (%)	583	200	71.4		93.9					81.0	9 53	2 2	٥/٠٥	65.6		83.3	59.2	80.2	77.1		47.2	3. 1.	68.0	58 4
	Identity (%)	3,0	P	39.5		80.5					61.9	000	73.0	32.5	30.0	1	57.4	33.6	38.8	53.8	-	15	7.67	32.7	30.6
lane i (conunca)	Homologous gene	Ctrantomyres coelicolor	SCH5.13 yafe	Escherichia coli K12 rpsA		Brevibacterium lactofermentum ATCC 13859 yacE					Crithidia fasciculata iunH		Staphylococcus aureus	Escherichia coli K12 rbsK	Escherichia coli K12 ascG		Streptococcus pneumoniae plasmid pSB470 uvrB	Methanococcus jannaschii M 10531	Escherichia coli K12 vtfH	rational K10 Affa	Escherichia con N 12 3mg		Bacillus subtilis yvgS	Streptomyces coelicolor A3(2) SC9H11.26c	177.042.
	db Match	\top	Sp.YAFE_ECOLI	Sp.RS1_ECOLI		sp:YACE_BRELA					CRIEA	Sp.icivin_civin	SP CACA_STAAU	SP-RBSK_ECOLI	sp.ASCG_ECOLI		sp.UVRB_STRPN	Sp. Y531 METJA	- 1000	-+	sp.YTFG_ECOU		pir.H70040	gp. SC9H11_26	
	ORF (bp)	_	654	1458		900	1098	582	24F	057	300	056	1449	921	1038	798	2097	441		-	846	684	2349	1	-
	Terminal (rt)		1420071	1422556	1421096	1425878	1427354	1427376	1427B04	9400044	0576741	1428224	1429194	1430659	1431575	1433547	_i		\dashv		1438201	1440026	1438212		
	Initial	1	1420724	1421099	1420571	1425279	1426257	1427057	100000	1420049	5006 1428290	5007 1429159	1430642	1431579		1432750				1437249	1437356	1439343	1440560		
	SEO	(9.9.)	4999		2000	5002		3 3	200	2002			8000			5911				5014	5015	5016	5047		3
	SEO	-	1499		_	1502					1506	1507	9034	1500	1510	15.11	15.12		213	1514	1515	1516	, L	1017	5

EP 1 108 790 A2

-	 -		—т						 ;					Т		1			
5	Function	BC subunit A	hypothetical protein 1246 (uvrA region)	hypothetical protein 1245 (uvrA region)			translation initiation factor IF-3	protein L35	protein L20			sn-glycerol-3-phosphate transport system permease protein	sn-glycerol-3-phosphate transport system protein	sn-glycerol-3-phosphate transport system permease proein	sn-glycerol-3-phosphate transport ATP-binding protein	rotein	noryl diester :rase	ne-2'-0-}- ase	phenylalanyl-tRNA synthetase alpha chain
10	L.	excinuclease ABC subunit A	hypothetical pro region)	hypothetical pr region)			translation initia	50S ribosomal protein L35	50S ribosomal protein L20			sn-glycerol-3-phosphate t	sn-glycerol-3-p system protein	sn-glycerol-3-phosphate system permease proein	sn-glycerol-3-p ATP-binding pi	hypothetical protein	glycerophosphoryl diester phosphodiesterase	IFNA(guanosine-2-0-)- methlytransferase	phenylalanyl-ti chain
15	Matched length (a.a.)	952	100	142			179	90	117			292	270	436	393	74	244	153	
20	Similarity (%)	9.08	0'29	47.0			78.2	76.7	92.7			71.6	70.4	57.6	71.3	26.0	50.0	71.2	
•	Identity (%)	56.2	40.0	31.0			52.5	41.7	75.0			33.2	33.3	26.6	44.0	47.0	26.2	34.0	
25 Continued)	us gene	12 uvrA	s	S			eroides infC	entans	ringae pv.			(12 MG1655	(12 MG1655	12 MG1655	(12 MG1655	K1 APE0042	pq	(12 MG1655	68 syfA
Table 1 (Homologous gene	Escherichia coli K12 uvrA	Micrococcus luteus	Micrococcus luteus			Rhodobacter sphaeroides infC	Mycoplasma fermentans	Pseudomonas syringae pv. syringae			Escherichia coli K12 MG1655 ugpA	Escherichia coli K12 MG1655 upgE	Escherichia coli K12 MG1655 ugpB	Escherichia coli K12 MG1655 ugpC	Aeropyrum pernix K1 APE0042	Bacillus subtilis glpQ	Escherichia coli K12 MG1655 trmH	Bacillus subtilis 168 syfA
35			Σ	<u>≥</u> !			2	İ				<u> </u>				▼			
40	db Match	Sp:UVRA_ECOLI	PIR-JQ0406	PIR: J00406			sp. IF3_RHOSH	SP. RL35_MYCFE	SP.RL20_PSESY			sp:UGPA_ECOLI	sp:UGPE_ECOLI	sp:UGPB_ECOLI	sp:uGPC_ECULI	PIR E72756	sp.GLPQ_BACSU	SP.TRMH_ECOLI	sp:SYFA_BACSU
	ORF (bp)	2847	306	450	717	2124	267	192	381	822	267	903	834	1314	1224	249	717	594	1020
45	Terminal (nl)	1445333	1443810	1444944	1446874	1445323	1448358	1448581	1449025	1449119	1450692	1451820	1452653	1454071	1455338	1454102	1455350	1456948	1458066
50	Initial (nt)	1442487	1444115	1445393	1446158	1447446	1447792	1448390	1448645	1449940	1450126	1450918	1451820	1452758	1454115	1454350	1456066	1456355	1457047
	SEO NO.	5020	5021	5022	5023	5024	5025	5026	5027	5028	5029	5030	5031	5032	5033	5034	5035	5036	5037
55	SEO NO (DNA)	1520		.522	1523	1524	+	:526	1527	1528	1529	1530	1531	.532	.533	1534	1535	1536	1537

. 5		Function	phenylalanyl-tkivk synutetase co.c.		esterase	macrolide 3-O-acyltransferase	state & completed	N-acetyigiulainate-3-3chiminatry dehydrogenase	glutamate N-acetyltransferase	acetylornithine aminotransferase	argininosuccinate synthetase		argininosuccinate lyese				hypothetical protein	tyrosyl-tRNA synthase (tyrosine	(RNA ligase)	hypothetical protein		hypothetical protein
15	Matched	<u>_</u>	343		203	423		347	388	391	401		470	o r			50	!	41/	149		45
20		Similarity (%)	71.7		55.1	56.3		99.1	99.7	99.2	99.5		8	90.0			72.0	-	79.6	64.4		75.0
• .		Identity (%)	42.6		26.5	30.0		98.3	99.5	99.0	99.5			83.3			Q WY	2	48.4	26.9		71.0
25 9 1	likilingen)	gene	2 MG1655		ies estA	arofaciens		lutamicum	lutamicum	Jutamicum	glutamicum		alutamicum					12 year	/y1	annaschii		arum Nigg
30	lable i (confinited)	Homologous gene	Escherichia coli K12 MG1655 syfB		Streptomyces scabies estA	Streptomyces mycarofaciens mdmB		Corynebacterium glutamicum ASO19 argC	Corynebacterium glutamicum ATCC 13032 argJ	Corynebacterium glutamicum ATCC 13032 ardD	Corynebacterium glutamicum ASO19 araG		The state of the s	ASO19 argH				Escherichia coil N 12 year	Bacillus subtilis syy1	Methanococcus jannaschii MJ0531		Chlamydia muridarum Nigg TC0129
35 40		db Match	SP.SYFB_ECOLI S		SP.ESTA STRSC S	STRMY		gp. AF 005242_1	sp ARGJ_CORGL	Sp. ARGD_CORGL		1		gp:AF048764_1				sp:YCAR_ECOLI	sp:SYY1_BACSU	sp:Y531_METJA		PIR-F81737
		ORF (bp)	2484 sp. S	127	: -	+	402		1164 sp	1173 sp			1209	1431 gp	1143	1575	612	177 Sp	1260 SF	465 sg	390	141 P
45		Terminal Of (nt)	9	7 7		┼ <u></u>	4 463014 4	+		1468548 1	+-	_	1470154	1472907	1474119	1475693	1476294	1476519	1477809	14/7929	1478503	
50		Initial (nt)	33				463633	5043 1464083		1467376	1470211		1471362	1471477	1472977	1474119	1475683	1476343	1476550	1478393	1478892	1483475
		SEO	(a a.) 5038 1	9	6000	5041	19	5042		2045			5047	5048	5049	5050				5054	5055	
55			(ONA)			1541		1542			1343	250	1547	1548	1549	1550	1551	1552	1553	1554	100	1556

																		T		$\neg \top$				i
5				tor IF-2									ammonia			P-binding	,	ing protein or ctive : bacterial			sferase		nit ase B	
10		Function	hypothetical protein	translation initiation factor IF-2	hypothetical prolein		hypothetical protein	hypothetical protein	DNA repair protein	hypothetical protein		hypothetical protein	CTP synthase (UTP-ammonia ligase)	hypothetical protein	tyrosine recombinase	tyrosip resistance ATP-binding	protein	chromosome partitioning protein or ATPase involved in active partitioning of diverse bacterial plasmids	hypothetical protein		thiosulfate sulfurtransferase	hypothetical protein	ribosomal large subunit pseudouridine synthase	
15		Matched length (a.a.)	84	182	311		260	225	574	304	189	313	549	157	300		551	258	251		270	172	229	
20		Similarity (%)	66.0	67.0	60.1		69.6	31.6	63.4	73.4	- 2	68.1	7.97	71.3	71.7		29.7	73.6	64.5		67.0	65.7	72.5	
•		Identity (%)	61.0	36.3	29.6		38.5	31.6	31.4		9.19	30.4	55.0	36.3	70.7	2	30.5	44.6	28.3		35.6	33.1	45.9	
25	ntinued)	gene	gei	3 6				rculosis	Tach!	rculosis		erculosis	2 pyrG		200	ens vein	ae tIrC	ntus parA	9		7	1		
30	Table 1 (continued)	Homologous gene	einomiana eipomeiae	C Hamiyola piliculinoidad	Borrella buiguorien ii	G-Company Spinops	Oscillar emblile vax	Mycobacterium tuberculosis	H3/KV KV 1095	Escherichia coli N.2. reciv	H37Rv Rv1697	Mycobacterium tuberculosis H37Rv Rv1698	Escherichia coli K12 pyrG	Show all the second	Bacillus suddilis yang	Staphylococcus aureus xein	Streptomyces fradiae tIrC	Caulobacter crescentus parA	Bacillus subtilis ypuG		Datiena nlomerata tet	Bacillus subtilis voul	Bacillus subtilis rlu8	
40		db Match			1	Sp. r.con_parced		SP. YUAC BACSO B	1.		pir.H70502	pir.A70503	SD. PYRG ECOLI	1.	2	gp AF093548_1	sp:TLRC_STRFR	gp CCU87804_4	SA VPLIG BACSU		47.400452.4	gp.Ar.109135_1	Sp. RLUB BACSU	
		ORF (bb)	-+-	m	_	Z 3		819 9		1779	1191	963	1662		657	912	1530	783	765	-+-	+	+	243 756	
45		Terminal	(1)	1483724	1486027	1497025	1487193	1488056	2000	1490881	1492134	1493109	1495174		1495861	1496772	1496795	1499645	1500605	130000			15031/6	
50		Initial		_+	-	1486042	1487032	1487238	1400140	1489103	1490944	1492147				1495861	1498324	5070 1498863				1_	1502634	
		SEO	(a a)				2060		2005	5063	5064	5065		_	2067	5068	5069		-		-			20/2
55		SEO NO	(DNA)	1557		1559	1560	1561	1562	1563	1564	1565	95.54	000	1567	1568	1569	1570		121	1572	1573	1574	15/5

			1						1	ì	1	ı	1	1	i	ŀ	= 1	J	,	J
5	Function		ein			a				norane protein		31			ein	2-hydroxy-6-oxohepta-2,4-dlenoate hydrolase	preprotein translocase SecA subunit	on protein	tein	tein
10	ru ^R	cytidylate kinase	GTP binding protein			methyltransferase	ABC transporter	ABC transporter	:	hypothetical memorane protein		Na+/H+ antiporter			hypothetical protein	2-hydroxy-6-oxo hydrolase	preprotein frans	signal transduction protein	hypothetical protein	hypothetical protein
15	Matched length (a a)	220	435			232	499	602		257		499			130	210	808	132	234	133
20	Similarity (%)	736	740			67.2	60 1	56 3		73.2		61.5			57.7	63.8	61.7	93.2	74.4	63.2
•	Identity (%)	38.6	42.8			36.2	29.7	31.2		39.7		25.7			36.9	25.2	35.2	75.8	41.9	30.8
25 (panultured)	auab					rculosis	iatum M82B	iatum M82B		ygiE		C 9372			2 0249#9	idus AF0675	A	egmatis garA	erculosis	erculosis
So Table 1 (continued)	Homologous gene	Bacillus subtilis cmk	Bacillus subtilis yphC			Mycobacterium tuberculosis Rv3342	Corynebacterium striatum M82B tetA	Corynebacterium striatum M828 tetB		Escherichia coli K12 ygiE		Bacillus subtilis ATCC 9372 nhaG			Escherichia coli K12 o249#9 ychJ	Archaeoglobus fulgidus AF0675	Bacillus subtilis secA	Mycobacterium smegmatis garA	Mycobacterium tuberculosis H37Rv Rv1828	Mycobacterium tuberculosis H37Rv Rv1828
40	db Match	BACSII	15			sp.YX42_MYCTU	pri.2513302B	prf 2513302A		sp:YGIE_ECOLI		gp:AB029555_1			sp:YCHJ_ECOLI	pir C69334	SPCA BACSU	qp:AF173844 2	sp:Y0DF_MYCTU	sp.Y0DE_MYCTU
	ORF (bp)	$\overline{}$			493	813 s	1554 p	1767	925	687	189	1548	186	420	375	1164	2289			633
45	Terminal (nt)	1504045	1506573	1506662	1507405	1507917	1510366	1512132	1510843	1512977	1514693	1512980	1514974	1515815	1515408	1515799	1516/5B	1526029		1521589
50	Initial (nt)	230,030	1504230			1508729	1508813	1510366	1511667	1512189	1514505	1514527	1515159	1515396	1515782	1516962	4547470	1510601		5094 1520957
	SEO	(a.a.)	50/6	5078	5079	5080	5081	5082	5083	5084	5085		5087	5088		5090		500		5094
55		(DNA)	15/6	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590		- 60	1593	1594

6-phosphogluconate dehydrogenase

99.2

99.0

Brevibacterium flavum

5		Function	hypothetical protein					hemolysin	hemolysin		DEAD box RNA helicase	ABC transporter ATP-binding protein	6.phosphoplyconate dehydrogenase
15		Matched length (a.a)	178					342	65		374	245	407
20		Identity Similarity Matched (%) (%)	84.3					0.69	65.5		69.5	66.1	000
•		Identity (%)	71.4					33.9	31.4		412	34.3	6
25	(par	a	Sis								erA	osis	
30 35	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1828					1062 sp:YHDP_BACSU Bacilus subtilis yhdP	Bacilus subtilis yhdT		1344 gp-TTHERAGEN_1 Thermus thermophilus herA	Mycobacterium tuberculosis H37Rv Rv1348	
40		db Match	573 sp.YODE_MYCTU					sp:YHDP_BACSU	1380 Sp.YHDT_BACSU		gp TTHERAGEN_1	sp YD48_MYCTU	
		ORF (bp)	573	510	1449	909	930	1062	1380		1344	735	1
45		Terminal (nt)	1522343	1522432	1523052	1525973	1524568	1525473	1526534	1528185	1527987	1530220	
50		Initial (nt)	1595 5095 1521771	1522941	1524500	1525374	1525497	1526534	1601 5101 1527913	5102 1527968	5103 1529330	1529485	
		SEO	5005	5096	5097	5098	5099	5100	5101	5102			
5 5		SEQ	1595	1596	1597	1598	1599	1600	1601	1602	1603	1604	

thioesterase		nodulation ATP-binding protein I	hypothetical membrane protein	transcriptional regulator	phosphonales transport system permease protein	phosphonates transport system permease protein	phosphonates transport ATP-binding protein		
121		235	232	277	281	268	250		
67.8		68.1	76.3	63.9	63.4	62.3	72.0		
39.7		39.6	43.1	26.7	29.9	27.2	44.8		
Mycobacterium tuberculosis H37Rv Rv1847		Rhizobium sp. N33 nod!	Mycobacterium tuberculosis H37Rv Rv1686c	Escherichia coli K12 yfhH	sp:PHNE_ECOLI Escherichia coli K12 phnE	sp.PHINE_ECOLI Escherichia coli K12 phnE	sp PHNC_ECOLI Escherichia coli K12 phnC		
pir G70664		sp:NODI_RHIS3	pir E70501	Sp. YFHH ECOLI	sp:PHNE_ECOL!	sp.PHINE_ECOLI	sp PHNC_ECOLI		
462	675	741	741	873	846	804	804	210	1050
1532394	1532996	1533781	1609 5109 1533781 1534521	1534529	1535382	1612 5112 1537030 1536227	1613 5113 1537833 1537030	1538968	1537870
1606 5106 1531933	1532322	1533041	1533781	1610 5110 1535401		1537030	1537833	1614 5114 1538759	1615 5115 1538919
5106	5107		5109	5110	5111	5112	5113	5114	5115
1606	1607	1608	1609	1610	1611 5111	1612	1613	1614	1615
						_		_	

5		
10		
15		
20	ā	
25	te	
30		
35		
40		
45		
50		

	Function	- Look on the Couring in kings e	prosprioritetilythytimorite	hydoxyethytthiazole kinase	cyclopropane-fatty-acyl-phospholipid synthase	sugar transporter or 4-methyl-o-	T. T. T. T. T. T. T. T. T. T. T. T. T. T	purine phosphoriposymensicase	hypothetical protein	arsenic oxyanion-translocation pump	membrane subunit		hypothetical protein	sulfate permease	hypothetical protein						hypothetical protein	dolichoi phosphate mannose synthase	apolipoprotein N-acyltransferase		secretory lipase	1
	Matched length (a.a.)	000	797	249	451	468		136	206	361			222	469	6	,	-	-		-	<u> </u>	217	527		392	
	Similarity (%)		70.2	77.5	55.0	66.9		59.0	68.5	546	5		83.8	83.6	20.05	3					87.3	71.0	55.6		55.6	
	Identity (%)		47.3	46.6	286	32.5		36.5	39.8	22.2	65.5		62.2	51.8	90,	93.0		-			71.8	39.2	25.1	-	23.7	2
Table 1 (continued)	Homologous gene		Salmonella typhimurium thiD	Salmonella typhimurium LT2	Mycobacterium tuberculosis	Burkholderia cepacia Pc701	торВ	Thermus flavus AT-62 gpt	Escherichia coli K12 yebN		Sinorhizobium sp. As4 arsb		Streptomyces coelicolor A3(2)	DO COM SOCIETY	Pseudoinoras sp. 70 cm.	Pseudomonas sp. K9 CKFG					Mycobacterium tuberculosis H37Rv Rv2050	Schizosaccharomyces pombe	Cocherichia coli K12 Int		Carachinane lint	Candida albicans rip i
	db Match		Sp.THID SALTY		1		DECC5222 IId	ort 2120352B	STATES	Sp. regiverous	gp AF178758_2		gp:SCI7_33		gp.PSIRIEICI	GP.PSTRTETC1_7					pir.A70945	prf.2317468A		Sp.LNI_rCUE		224 gp:AF188894_1
	ORF (bp)	702	1584		1314	2	1380	474	7 8	650	966	483	693	; 	1455	426	615	207	189	750	396	810	+	+	-	듸
	Terminal (nt)	1538963	1539820	1542119	46.46.200	1340203	1546307	7807434	104/30/	1549349	1550398	1550951	1552237		1553972	1553297	1554070	1555067	1554891	1555086		1557014			!	1560437
	Initial (nt)	1539664	. 1			1344870	1547692	0,70	1548440	1548651	1549403	1550469	2125 1551545	2	5126 1552518	5127 1553722	1554684	5129 1554861	5130 1555079	5131 1555835	1556376	1557823		1559493	5135 1560237	1561660
	SEQ.	+	2 2	7118	2	9119	5120 1	_!_		5122	5123	5174	4125	516	5126	5127	5128	5129	5130				_			5136
	SEQ S	_	2 5	94.84		1619	1620	÷	1621	1622	1623	1624	1626	6701	1626	1627	1628	1629	1630	1631	1632	1693	202	1634	1635	1636

· 5	Function	precorrin 2 methyltransferase	precorrin-8Y C5, 15 methyltransferase			oxidoreductase	dipeptidase or X-Pro dipeptidase		ATP-dependent RNA helicase	sec-independent protein translocase protein	hypothetical prote:n	hypothelical protein	hypothetical protein	hypothetical protein		hypothelical protein	hypothetical protein	hypothetical protein
15	Matched length (a a)	291	411			244	382		1030	268	85	317	324	467		61	516	159
20	Similarity (%)	56.7	8.09			75.4	61.3		55.7	62.7	69.4	61.2	64.8	77.3		80.3	74.2	20.0
•	Identity (%)	31.3	32.4			54.1	36.1		26.5	28.7	44.7	31.9	32.4	53.1		54.1	48.6	42.0
25 (D		is	v			sis	-		e)			sis		sis		sis	sis	2014
se of the second	Homologous gene	Mycobacterium tuberculosis H37Rv cobG	Pseudomonas denitrificans SC510 cobl.			Mycobacterium tuberculosis H37Rv RV3412	Streptococcus mutans LT11 pepQ		Saccharomyces cerevisiae YJL050W dob1	Escherichia coli K12 tatC	Mycobacterium leprae MLCB2533.27	Mycobacterium tuberculosis H37Rv Rv2095c	Mycobacterium leprae MLCB2533.25	Mycobacterium tuberculosis H37Rv Rv2097c		Mycobacterium tuberculosis H37Rv Rv2111c	Mycobacterium tuberculosis H37Rv Rv2112c	Aeropyrum pernix K1 APE2014
40	db Match	pir.C70764	sp.COBL_PSEDE			sp.YY12_MYCTU	gp:AF014460_1		sp:MTR4_YEAST	sp:TATC_ECOLI	sp.YY34_MYCLE	sp:YY35_MYCTU	sp:YY36_MYCLE	sp:YY37_MYCTU		pir:B70512	pir:C70512	PIR:H72504
	CRF (bb)	774	1278	366	246	738	1137	638	2787	1002	315	981	972	1425	249	192	1542	480
45	Terminal (nt)	1562553	1562525	1564237	1564482	1564565	1565302	156/106	1567117	1569932	1571068	1571506	1572492	1573491	1575205	1574945	1575406	1577805
50	Initial (nt)	1561780	1563802	1563872	1564237	1565302	1566438	1566468	1569903	1570933	1571382	1572486	1573463	1574915	1574957	1575136	1576947	1577327
	SEQ NO	5137	5138	5139	5140	5141	5142	5143		5145	5146	5147	5148	5149	5150	5151	5152	5153
55	SEQ	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652	1653

5		Function	AAA family ATPase (chaperone-like function)	protein-beta-aspartate methyltransferase	aspartyl aminopeptidase	hypothetical protein	virulence-associated protein	quinolon resistance protein	aspartate ammonia-lyase	ATP ohospharbosyltransferase		beta-phosphoglucomutase	5-methyltetrahydrofolate homocysteine methyltransferase	aselnibor objective and in the	subunit F	arsenical-resistance protein	arsenate reductase	arsenale reductase		cysteinyl-IRNA synthetase	
15	Matched	length (a.a.)	545	281	436	269	69	385	526	784	3	195	1254		366	388	129	123		387	
20	-	Similarity (%)	78.5	79.0	67.2	71.4	72.5	61.0	93.8	3 50	6.78	63.1	62.4		49.5	63.9	64.3	75.6		64.3	
,		Identity 8 (%)	51.6	57.3	38.1	45.4	40.6	21.8	8.66	3	9.0g	30.8	31.6		22.4	33.0	32.6	47.2		35.9	
25 [*]			opolis arc	le pimT		rculosis	us A198	eus norA23	utamicum um) MJ233	tamicim.		na MSB8	2 melH		pestris ahpF	revisiae acr3	reus plasmid	erculosis		12 cvsS	2007
30	iane i	Homalogous gene	Rhodococcus erythropolis	Mycobacterium leprae pimT	Homo sapiens	Mycobacterium tuberculosis	Dichelobacter nodosus A198	Stanhylococcus aureus norA23	Corynebacterium glutamicum (Brevibacterium flavum) MJ233	aspA	ASO19 hisG	Thermotoga maritima MSB8 TM1254	Escherichia coli K12 melH		Xanthomonas campestris ahpF	Saccharomyces cerevisiae S288C YPR201W acr3	Staphylococcus aureus plasmid	Mycobacterium tuberculosis	H37Rv arsC	Ezcherichia coli K12 cvsS	Eschercina con co
<i>35</i>		db Match	nrf 24723820		6.		ACNO		RGL	\neg	gp:AF050166_1	pir:H72277	sp:METH_ECOLI		sp:AHPF_XANCH	1176 sp.ACR3_YEAST	SD'ARSC STAAU	7	rosove lid		sp SYC_ECOUI
	-	ORF (ho)		25	3 3	834			1578		843	693	3663	570	+				860		9 1212
45		Terminal	2	1370331		15/9449	777003	12851	1582273		1585603	1586812	1587573	1591912	1591941	1594512	1594951		1595668		1596249
50		Initial				1580771	 -		1583481	200	1586445	1587504	1591235	1501343					1595030		1597460
		SEO		1		5156 1			5159	0016	5161	5162			5165				5168	9 5169	0 5170
55		SEO	<u> </u>	1654	1655	1656	200	1658	1659	1990	1661	1867	1663		1564	3 9		166	1668	1669	1670

5		Function	bacitracin resistance protein	oxidoreductase	lipoprotein	dihydroorotate dehydrogenase			Iransposase		bio operon ORF I (biotin biosynthetic enzyme)	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics		ABC transporter		ABC transporter		puromycin N-acetyltransferase	LAO(lysine, arginine, and ornithine)/AO (arginine and ornithine)transport system kinase	methylmalonyl-CoA mutase alpha subunit
15		Matched length (a.a.)	255	326	359	334			360		152	198		597		535		99	339	741
20		Similarity (%)	69.4	62.6	53.5	67.1			55.3		75.0	33.0		68.7		67.1		56.4	72.3	87.5
•		Identity (%)	37.3	33.4	27.0	44.0			34.7		44.1	26.0		43.6		36.8		32.4	43.1	72.2
	Table 1 (continued)	Homologous gene	Escherichia coli K12 bacA	Agrobacterium tumefaciens mocA	Mycobacterium tuberculosis H37Rv lppL	Agrocybe aegerita ura1			Pseudomonas syringae InpA		Escherichia coli K12 ybhB	Neisseria meningitidis		Corynebacterium striatum M82B tetB		Corynebacterium striatum M82B tetA		Streptomyces anulatus pac	Escherichia coli K12 argK	Streptomyces cinnamonensis A3823.5 mutB
40		db Match	sp.BACA_ECOLI	prf.2214302F	pir.F70577	SP. PYRD_AGRAE		•	1110 gp.PSESTBCBAD_		sp:YBHB_ECOLI	GSP:Y74829		prf 2513302A		prf.2513302B		pir.JU0052	sp:ARGK_ECOLI	2211 SP.MUTB_STRCM
		ORF (bp)	879	948	666	1113	351	807	1110	486	531	729	603	1797	249	1587	351	609	1089	2211
45		Terminal (nt)	1597745	1599614	1600677	1601804	1601931	1603466	1504629	1604830	1505281	1606689	1608248	1605861	1609335	1607661	1609842	1610844	1611150	1612234
50		Initial (nt)	1598623	1598667	1599679	1600692	1602281	1602660	1603520	1605315	1605811	1605961	1607645	1607657	1609087	1609247	1610192	1610236	1612238	1614444
		SEO NO	5171	5172	5173	5174	5175	5176	5177	5178	5179	5180	5181	5182	5183	5184	5185	5186	5187	5188
55		SEQ NC. (DNA)	1671	1672	1673	1674	1675	1676	1577	1678	1679	1680	1681	1682	1683	1684	1605	1686	1687	1688

=
8
~
=
=
Ξ
5
ರ
$\overline{}$
_
4
ਙ
횬
ō
_

	Function	methylmalonyl-CoA mutase bela subunit	hypothetical membrane protein		hypothetical membrane protein	hypothelical membrane protein	hypothetical protein		lerrochelatase	invasin		aconitate hydratase	transcriptional regulator	GMP synthetase	hypothetical protein	hypothetical protein		hypothetical protein
	Matched length (a.a.)	610	224		370	141	261		364	611		959	174	235	221	98		446
	Similarity (%)	68.2	70.1		87.0	78.7	72.8		65.7	56.5		85.9	81.5	51.9	62.0	80.2		86.1
	Identity (%)	41.6	39.7		64.1	44.7	51.0		36.8	25.5		6.69	54.6	21.3	32.6	37.2		61.2
lane i (commed)	Homologous gene	Streptomyces cinnamonensis A3823.5 mutA	Mycobacterium tuberculosis H37Rv Rv1491c		Mycobacterium tuberculosis H37Rv Rv1488	Mycobacterium tuberculosis H37Rv Rv1487	Streptomyces coelicolor A3(2) SCC77.24		Propionibacterium freudenreichii subsp. Shermanii hemH	Streptococcus faecium		Mycobacterium tuberculosis H37Rv acn	Mycobacterium tuberculosis H37Rv Rv1474c	Methanococcus jannaschii MJ1575 guaA	Streptomyces coelicolor A3(2) SCD82.04c	Methanococcus jannaschii MJ1558		Neisseria meningitidis MC58 NMB1652
	db Match	sp MUTA_STRCM	sp:YS13_MYCTU		sp:YS39_MYCTU	pir B70711	gp SCC77_24		sp HEMZ_PROFR	Sp. P54 ENTFC		pir F70873	pir.E70873	pir:F64496	gp:SCD82_4	pir.E64494		gp:AE002515_9
	ORF (bp)	1848	723	597	1296	435	843	783	1110	1800	498	2829	564	756	663	267	393	1392
	Terminal (nt)	1614451	1617300	1617994	1518321	1619672	1620167	1621838	1621841	1623027	1625428	1629107	1629861	1630668	1630667	1631926	1631353	1633324
	Initial (nt)	1616298	1616578	1617398	1619616	1620105	1621009	1621056	1622950	1624826	1625925	5199 1626279	1629298	1629913	1631329	1631660	1631745	
	SEO	5189	5190	5191	5192	5193	5194	5195	5196	5197	5198	5199	5200	5201	5202	5203	5204	
		(CINA)	1690	1691		1693	1694	1695	1696	1607	160R	1699	1700	1701	1702	1703	1704	1705

EP 1 108 790 A2

5		Function	antigenic protein	antigenic protein	O oscotto	cation-transporting A 1 days 1		hypothetical protein					host cell surface-exposed lipoprotein	integrase	ABC transporter ATP-Dinging protein		sialidase	(ransposase (IS1628)	transposase protein fragment	hypothetical protein		dTDP-4-keto-L-rhamnose reductase	nitrogen fixation protein
15	Matched	length (a.a.)	113	152	T	883		120					107	154	497		387	236	37	88		107	149
20	-	Similarity (%)	0.09	0.69		73.2		58.3					73.8	60 4	64 4		72.4	100.0	72.0	43.0		70.1	85.2
-	_	Identity (%)	54.0	29.0	23	42.6		35.8					43.0	34.4	32.8		51.9	9.66	64.0	32.0		32.7	63.8
30 - Here 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	,	us gene	oeae ORF24	9000	Docesto	PCC6803		elicolor A3(2)					ermophilus	4L int	K12 yijK		ı vindifaciens dA	n glutamicum 1 pAG1 tnpB	n glutamicum			ssi Orsay	leprae ifU7
30	200	Homologous gene	Neisseria nonorrhoeae ORF24	die die die	Neisseria gonormoeae	Synechocystis sp. PCC6603 sil1614 pma1		Streptomyces coelicolor A3(2) SC3D11.02c					Streptococcus thermophilus phage TP-J34	Corynephage 304L int	Escherichia coli K12 yjjK		Micromonospora vindifaciens ATCC 31146 nedA	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Corynebacterium glutamicum TnpNC	Plasmid NTP16		Pyrococcus abyssi Orsay PAB1087	Mycobacterium leprae MLCL536.24c nifU7
35	-		2		2															2			
40		db Match	000000	GSF. 1 36636	GSP:Y38838	SPIATA1_SYNY3		gp:SC3011_2					prf.2408488H	prf 2510491A	Sp:YJJK_ECOL		Sp.:NANH_MICVI	gp:AF121000_8	GPU.AF164956_23	GP NT1TNIS		pir B75015	pir.S72754
		ORF (bp)		-+	456	2676	783	489	1362	357	156	162	375	456	1629	1476	1182	708	243	261	÷	423	447
45		Terminal (nt)		1632109	1632682	1636241	1633781	1635244	1638442	1638776	1639520	1639817	1640155	1641001	1641046	1642743	1644318	1646368	1646063	1645601	1647133	1647212	1647651
50		Initial	_	1632588	1633137	1633566	1634563	1636732	1637081	1639132	1639365	1639656	1639781	1640546	1642674	1644218		1645661	1645821	1645861		:647634	1648097
		SEO		5206	5207	5208	5209		5211					5216	5217	5218	5219	5220	5221	5222			5225
55		SEO	-	1706	1707	1708	1709	-	1711					1716		_	1719	1720	1721	1777	1723	1724	1725

	Function	hypothetical protein	pitrogen fixation protein		ABC transporter ATP-binding protein	diodocal and a second	hypothetical protein	ABC transporter	DNA-binding protein	the state of the s	hypothetical memory pro-	ABC transporter	hypothetical protein		hypothetical protein		helicase	quinone oxidoreductase	cytochrome o ubiquinol oxidase	assembly factor I heme U synthase	transketolase		Iransaidolese	
Matched		52	1	T	252		377	493	217		518	317	266		291		418	323		295	675	-	358	
	Similarity (%)	57.0		84.4	89.3		83.0	73.0	71.4		67.8	77.3	74.8		74.6	_	51.0	70.07		66.8	100.0	1	85.2	
	Identity 8	AR O	2	64.7	70.7	:	55.2	41.0	46.1		36.3	50.2		<u> </u>	43.0	_	23.4	37.6	5	37.6	100.0	-	62.0	_
Table 1 (confined)	l lomologous gene	SCOCEDA AVE.	Aeropyrum pernix K1 AFE2023	Mycobacterium leprae nifS	Strentomyces coelicolor A3(2)	SCC22.04c	Mycobacterium tuberculosis H37Rv Rv1462	Synechocystis sp. PCC6803	Streptomyces coelicolor A3(2)	SCC22.08c	Mycobacterium tuberculosis H37Rv Rv1459c	Mycobacterium leprae	MLCL330.31 abuz	MLCL536.32	Mycobacterium tuberculosis	DOCT AN ANICH	OSPORO STATE	Pyrococcus nonkosiiii r 10430	Escherichia coli K12 dor	Nitrohacter winogradskyi coxC	Corynebacterium glutamicum	ATCC 31833 lkt	Mycobacterium leprae MLCL536.39 tal	
	db Match		PIR:C72506			gp:SCC22_4	pir.A70872	43 SD Y074 SYNY3		gp:SCC22_8	pir.F70871	-ir. C72783	pii. Si zi ci	pir.S72778	nir.C70871			9 pir.C71156	Sp. GOR_ECOLI	gp:NWCOXABC_3		0 gp:AB023377_1	1080 SP.TAL_MYCLE	7:
	ORF	(da)	167		2071	756	1176	1443		693	1629	`	1050	804	000		357	3 1629	2 975	696		2 2100	+	1164
	Terminal	(2	46.4B.709	50,0401	1648100	1649367	1650249	1661473	2	1652894	1655671		1655/00	1657515	4650675	100001	1659140	1661136	-	1662630		1666502	1667752	1000001
	_	(u)	<u> </u>		1649362	1650122	1651424	7.00.0	6/97691	1653586	5232 1654043		1655681	1656712		1657677	1659496	1				1664403	1666673	
	SEO	Z 6			5227	5228			5230	5231			5233	5234		5235	5236	 -				0 5240	1 5241	$\overline{}$
	-	. §		1726	1727	1728	4770	3	1730	1731	4777	76 / 1	1733	1734		1735	1736	72.	7.7		60.	1740	1741	

5	doitou	LONGIGO	glucose-6-phosphale dehydrogenase	oxppcycle protein (glucose 6- phosphale dehydrogenase assembly protein)	6-phosphogluconolactonase	sercosine oxidase	transposase (IS1676)	sarcosine oxidase				triose-phosphate isomerase	probable membrane protein	phosphoglycerate kinase	glyceraldehyde-3-phosphate dehydrogenase	hypothetical protein	hypothetical protein	hypothetical protein	excinuclease ABC subunit C
15	Matched	length (a.a.)	484	318	258	128	200	205				259	128	405	333	324	309	281	701
20	Similarity	(%)	100.0	71.7	58.1	57.8	46.6	100.0				9.66	51.0	98.5	99.7	87.4	82.5	76.2	61.5
	Identity		8.66	40.6	28.7	35.2	24.6	100.0				99.2	37.0	98.0	99.1	63.9	56.3	52.0	34.4
<i>25</i> (Den		e e		osis	ae		is	nicum				nicum A	siae	nicum Jk	nicum Ip	losis	losis	losis	56803
30 05 Table 1 (continued)		Homologous gene	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1446c opcA	Saccharomyces cerevisiae S288C YHR163W sol3	Bacillus sp. NS-129	Rhodococcus erythropolis	Corynebaclerium glulamicum ATCC 13032 soxA				Corynebacterium glutamicum AS019 ATCC 13059 tpiA	Saccharomyces cerevisiae YCR013c	Corynebacterium glutamicum AS019 ATCC 13059 pgk	Corynebacterium glutamicum AS019 ATCC 13059 gap	Mycobacterium fuberculosis H37Rv Rv1423	Mycobacterium tuberculosis H37Rv Rv1422	Mycobacterium tuberculosis H37Rv Rv1421	Synechocystis sp. PCC6803 uvrC
<i>40</i>		db Match	gsp:W27612		sp SOL3_YEAST	SP. SAOX BACSN	 	S.				sp.TPIS_CORGL	SP.YCQ3_YEAST	sp.PGK_CORGL	sp.G3P_CORGL	pir.D70903	sp:YR40_MYCTU	sp:YR39_MYCTU	sp.UVRC_PSEFL
		ORF (bp)	1452	957	705	405			174	687	981	777	408	1215	1002	981	1023	927	2088
45		Terminal (nt)	1669401	1670375	1671099	1671273	1673123	1673266	1677384	1678070	1580128	1680332	1681670	1681190	1682624	1684117	1585110	1586152	1687103
50		Initial (nt)	1667950	1669419	1670395	1671677	1671773	1674105	1677211	1678756	1679148	1681108	1681263	1682404	1683625	1685097	1686132	1687078	1689190
	- - -	SEQ			5245	5746			5249	5250	5251	5252	5253	5254	5255	5256	5257	5258	5259
55	⊢		(DNA)		17.45	27.46	1747	1748	1749	1750	1751	1752	1753	1754	1755	1756	1757	1758	1759

10		Function	hypothetical protein	6,7-dimethyl-8-ribityllumazine	symmetry oncoded by rib operon	lypepulae encoded of the	riboflavin biosynthetic protein	polypeptide encoded by rib operon	GTP cyclohydrolase II and 3, 4-	dihydroxy-2-butanone 4-phosphate synthase (riboflavin synthesis)	riboflavin synthase alpha chain	riboflavin-specific deaminase	discontract 3-epimerase	Daniel Service Control of the Contro	nuclealar protein NOL 1/NOP2	methionyl-tRNA formyltransferase	polypeptide deformylase	primosomal protein n	S-adenosylmethionine synthetase	DNA/pantothenate metabolism	flavoprotein	hypothetical protein	guanylate kinase	integration host factor	
15	Matched	length (a.a.)	150 hy	154 6,		72 pc	217 rit	106 pc	S	404 di	211	36.5	T	567	448	308	ì	\top	1	1	409	81	186	103	
20	1	Similarity (%)	68.7	72.1		68.0	48.0	52.0	 -	84.7	79.2	5.7.3	170	73.1	60.7	67.9	12.7	16.7	2 2	0.88	80.9	87.7	74.7	8	
-		Identity (%)	32.7	43.5		59.0	26.0	44.0		65.6	47.4	6	5/50	43.6	30.8	7		44.	677	99.3	58.0	70.4	39.8	9	
25 9	(linea)		culosis							rculosis ribA		SU-178 ribE	ribD	evisiae	e ii a		ginosa imi	def	4	um MJ-233	erculosis	erculosis	revisiae auk1	perculosis	生
30	lable 1 (collinaca)	Homologous gene	Mycobacterium tuberculosis	H37Rv Rv1417	Escherichia coil N 12	Racillus subtilis	Decillis cubtilis	Cilius succilis	Bacillus suorinis	Mycobacterium tuberculosis ribA	Actinobacillus	pleuropneumoniae ISU-178 ribE	Escherichia coli K12 ribD	Saccharomyces cerevisiae	SZ88C TJLIZICIPEL	Scherichia coll N.	Pseudomonas aeruginosa imi	Bacillus subtilis 168 del	Escherichia coli priA	Brevibacterium flavum MJ-233	Mycobacterium tuberculosis H37Rv RV1391 dfp	Mycobacterium tuberculosis	H3/RV RV 1330	Machademin tul	H37Rv Rv1388 miHF
35		tch	_														PSEAE	BACSU			CTU	15	1	200	66
40		db Match		sp:YR35_MYC1U	sp:RISB_ECOLI	CCB V82773	53F 1032	GSP Y832/2	GSP Y83273	gp: AF001929_1		sp:RISA_ACTPL	Sp. RIBD_ECOLI	PPE VEAST	ab.rs	sp:SUN_ECOLI	Sp.FMT_F	sp.DEF_	sp.PRI	qsp.R80060		OBCIV. Ca	3	pir:KIBYGU	pir.B70899
		ORF		579 8	477 5			714	336	1266		533	984	150	200	1332	945	507	2064			Š	+	627	318
45		Terminal		1689201	1689869		1690921	1691421	1691347	1690360		1691639	1692275	00000	1693262	1693967	1695499	1	1				7,02037	1702411	1702991
50		-		1689779	1690345	-	1690654	1690708	1691012	1691625		1692271	1693258		1693918	1695298	1606443				1701767		1702322	1703037	5277 1703308
		SEO	(a a)	5260 1	5261	_	5262 1	5263 1	5264 1	4		9929	5267	•	5268	5269	5370	5274	_	3772	5272		5275	5276	
55		SEQ S	1	1760 5	1761	_	1762	1763	1			1766	1767		1768	1769	77.6		1	7//[17/3		1775	1776	1777

	_										
5		lon	ate	te synthase	te synthase		ltransferase	sferase or egulatory protein			
10		Function	orotidine-5'-phosphate decarboxylase	carbamoyl-phosphate synthase large chain	carbamoyl-phosphate synthase small chain	dihydroorotase	aspartate carbamoyltransferase	phosphoribosyl transferase or pyrimidine operon regulatory protein	cell division inhibitor		
15		Matched fength (a a)	276	1122	381	402	311	176	297		
20		identity Similarity (%)	73.6	77.5	70.1	67.7	79.7	80.1	73.4		
-		Identity (%)	51.8	53.1	45.4	42.8	48.6	54.0	39.7		
25 -	ntinued)	gene	rculosis		ginosa	DSM 405	ginosa	DSM 405	rculosis		
30 35	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv uraA	Escherichia coli carB	Pseudomonas aeruginosa ATCC 15692 carA	Bacillus caldolyticus DSM 405 pyrC	Pseudomonas aeruginosa ATCC 15692	Bacillus caldolyticus DSM 405 pyrR	Mycobacterium tuberculosis H37Rv Rv2216		
40	1	db Match	834 Sp DCOP_MYCTU	3339 pir.SYECCP	179 Sp.CARA_PSEAE	341 sp.PYRC_BACCL	sp.PYRB_PSEAE	576 Sp.PYRR_BACCL	164 SP:YOOR_MYCTU		
		ORF (bp)	834	3339	1179	1341	936	576	1164	477	467
45		Terminal (nt)	1703517	1704359	1707706	1709017	1710413	1711352	1713759	1714306	1714760
50		Initial (nt)	1704350	1707697	5280 1708884	1710357	1711348	1711927	1712596	1713830	1786 5286 1714299 1714760
		SEQ NO (a a)	1778 5278	5279		5281	5282	5283	5284	5285	5286
55		SEQ NO.	17.78	1779	1780	1781	1782	1783	1784	1785	17R6

	Function	bacterial regulatory protein, arsR family	ABC transporter		iron(III) ABC transporter, periplasmic-binding protein	ferrichrome transport ATP-binding protein	shikimate 5-dehydrogenase	hypothetical protein	hypothetical protein	alanyl-tRNA synthelase	hypothetical protein		aspartyl-tRNA synthetase	hypothetical protein	glucan 1,4-alpha-glucosidase	phage infection protein		transcriptional regulator
	Matched length (a a)	83	340		373	230	259	395	161	894	454		591	297	839	742		192
	Similarity (%)	68.7	73.2		50.7	7.17	0.09	70.1	9.69	71.8	84.8		89.2	74.1	53.6	54.0		62.0
	Identity (%)	45.8	35.9		23.6	38.3	50.0	41.8	52.8	43.3	65.4		71.1	46.1	26.1	23.1		29.2
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC1A2.22	Corynebacterium diphtheriae hmuU	-	Pyrococcus abyssi Orsay PAB0349	Bacillus subtilis 168 fhuC	Mycobacterium tuberculosis H37Rv aroE	Mycobacterium tuberculosis H37Rv Rv2553c	Mycobacterium fuberculosis H37Rv Rv2554c	Thiobacillus ferrooxidans ATCC 33020 alaS	Mycobacterium tuberculosis H37Rv Rv2559c		Mycobacterium leprae aspS	Mycobacterium tuberculosis H37Rv Rv2575	Saccharomyces cerevisiae S288C YIR019C sta1	Bacillus subtilis yhgE		Streptomyces coelicolor A3(2) SCE68.13
	db Match	gp:SC1A2_22	gp.AF109162_2		pir.A75169	sp.FHUC_BACSU	pir.D70660	pir.E70660	pir.F70660	sp:SYA_THIFE	sp:Y0A9_MYCTU		SP.SYD_MYCLE	sp:Y08Q_MYCTU	SP. AMYH_YEAST	sp:YHGE_BACSU		gp:SCE68_13
	ORF (bp)	303	1074	909	957	753	828	1167	546	2664	1377	1224	1824	891	2676	1857	648	594
	Terminal (nt)	1721423	1722853	1722202	1723826	1724578	1724612	1725459	1725625	1727385	1730166	1731599	1732988	1735946	1736004	1738713	1740572	1741906
	Initial (nt)	1721725	1721780	1722807	1722870	1723826	1725439	1726625	1727170	1730048	1731542	1732822	1734811	1735056	1738679	1740539	1741219	1741313
	SEO NO		5295	5296		5298	5299	5300	5301	5302	5303	5304	5305	5306	5307	5308	5309	5310
	SEO NO.		1795	1796	1797	1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810

9
10
15
20
25
30
35
40
45
50

Table 1 (continued)

			,—																
Function		oxidoreductase		NADH-dependent FMN reductase	L-serine dehydratase		alpha-glycerolphosphate oxidase	histidyl-IRNA synthetase	hydrolase	cyclophilin		hypothetical protein		GTP pyrophosphokinase	adenine phosphoribosyltransferase	dipeplide transport system	hypothetical protein	protein-export membrane protein	
Matched length (a.a.)	,	37.1		116	462		598	421	211	175		128		760	185	49	558	332	
Similarity (%)		1.88		9'11	71.4		53.9	72.2	62.1	61.1		100.0		6.99	100.0	9.86	6.09	57.2	
Identity (%)		72.8		37.1	46.8		28.4	43.2	40.3	35.4		98.4		6.66	99.5	0.86	30.7	25.9	
Homologous gene		Streptomyces caeticolor A3(2) SCE15.13c		Pseudomonas aeruginosa PAO1 SIfA	Escherichia coli K12 sdaA		Enterococcus casseliflavus glpO	Staphylococcus aureus SR17238 hisS	Campylobacter jejuni NCTC11168 Cj0809c	Streptomyces chrysomallus sccypB		Corynebacterium glutamicum ATCC 13032 orf4		Corynebacterium giutamicum ATCC 13032 rel	Corynebacterium glutamicum ATCC 13032 apt	Corynebacterium glutamicum ATCC 13032 dciAE	Mycobacterium tuberculosis H37Rv RV2585c	Escherichia coli K12 secF	
db Match		gp.SCE15_13		sp:SLFA_PSEAE	sp:SDHL_ECOLI		prf:2423362A		gp.CJ11168X3_12 7	prf.2313309A		gp. AF038651_4		gp:AF038651_3	gp:AF038651_2	gp:AF038651_1	SP YOBG_MYCTU	1209 sp SECF_ECOLI	
ORF (bp)	714	1113	126	495	1347	861	1685	1287	629	507	237	555	342	2280	555	150	1743	1209	630
Terminal (nt)	1742606	1743813	1743968	1744519	1746230	1747588	1746233	1747990	1749325	1750933	1751200	1752051	1752527	1752615	1754925	1755599	1755486	1757589	1760336
Initial (nt)	1741893	1742701	1743843	1744025	1744884	1746728	1747918	1749276	1749963	1750427	1750964	1751497	1752186	1754894	1755479	1755/48	1757228	1758797	1759707
SEQ NO (a a.)	5311	5312	5313	5314	5315	5316	5317	5318	5319	5320	5321	5322	5323	5324	5325	532E	5327	5328	5329
SEQ NO (DNA)	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827		1879

Table 1 (continued)	Homologous gene (%) (%) (aa)	Streptomyces coelicolor A3(2) 45.8 68.7 83 bacterial regulatory protein, arsH SC1A2.22	Corynebacterium diphtheriae 35.9 73.2 340 ABC transporter hmuU		Pyrococcus abyssi Orsay 23.6 50.7 373 iron(III) ABC transporter, PAB0349	CSU Bacillus subtilis 168 fhuC 38.3 71.7 230 ferrichrome transport ATP-binding protein	Mycobacterium tuberculosis 50.0 60.0 259 shikimate 5-dehydrogenase H37Rv aroE	Mycobaclerium tuberculosis 41.8 70.1 395 hypothetical protein H37Rv RV2553c	Mycobacterium tuberculosis 52.8 69.6 161 hypothetical protein H37Rv Rv2554c	E Thiobacillus ferrooxidans ATCC 43.3 71.8 894 alanyl-IRNA synthetase 33020 alaS	CTU Mycobacterium tuberculosis 65.4 84.8 454 hypothetical protein		LE Mycobacterium leprae aspS 71.1 89.2 591 aspartyl-tRNA synthetase	CTU Mycobacterium tuberculosis 46.1 74.1 297 hypothetical protein H37Rv Rv2575	Saccharomyces cerevisiae 26.1 53.6 839 S288C YIR019C sta1	(CSU Bacillus subtilis yhgE 23.1 54.0 742 phage infection protein		Streptomyces coelicolor A3(2) 29.2 62.0 192 transcriptional regulator SCE68.13
}		80	6	_									-			+	1	
	Ident	45.	35		23.	38.	20	4	25	5	65	_	7	46	56	23	-	
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC1A2.22	Corynebacterium diphtheriae hmuU	-	Pyrococcus abyssi Orsay PAB0349	Bacillus subtilis 168 fhuC	Mycobacterium tuberculosis H37Rv aroE	Mycobacterium tuberculosis H37Rv Rv2553c	Mycobacterium tuberculosis H37Rv Rv2554c	Thiobacillus ferrooxidans ATCC 33020 alaS	Mycobacterium tuberculosis H37Rv Rv2559c		Mycobacterium leprae aspS	Mycobacterium tuberculosis H37Rv Rv2575	Saccharomyces cerevisiae S288C YIR019C sta1	Bacillus subtilis yhgE		Streptomyces coelicolor A3(2) SCE68.13
	db Match	gp:SC1A2_22	gp:AF109162_2		pir.A75169	sp.FHUC_BACSU	pir: D70660	pir.E70660	pir:F70660	sp:SYA_THIFE	sp:Y0A9_MYCTU		SP.SYD_MYCLE	sp:Y08Q_MYCTU	SP.AMYH_YEAST	sp:YHGE_BACSU		gp:SCE68_13
	ORF (bp)	303	1074	909	957	753	828	1167	546	2664	1377	1224	1824	891	2676	1857	648	594
	Terminal (nt)	1721423	1722853	1722202	1723826	1724578	1724612	1725459	1725625	1727385	1730166	1731599	1732988	1735946	1736004	1738713	1740572	1741906
	Initial (nt)	1721725	1721780	1722807	1722870	1723826	1725439	1726625	1727170	1730048	1731542	1732822	1734811	1735056	1738679	1740539	1741219	1741313
	SEO		5295	5296		5298	5299	5300	5301	5302	5303	5304	5305	5306	5307	5308	5309	
		1794	1795	1796		1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810

`**5**

EP 1 108 790 A2

	_																		 -	-7
		Function	protein-export membrane protein	hypothe!ical protein	holliday junction DNA helicase	holliday junction DNA helicase	crossover junction endodeoxyribonuclease	hypothetical prolein	acyl-CoA thiolesterase	hypothetical protein	hypothetical protein	hexosyltransferase or N- acetylglucosaminyl- phosphatidylinositol biosynthetic protein	acyltransferase	CDP-diacylgtycerol-glycerol-3- phosphate phosphalidyltransferase	histidine triad (HIT) family protein	threonyl-tRNA synthetase	hypothetical protein			
		Matched length (a.a.)	616	106	331	210	180	250	283	111	170	414	295	78	194	647	400			
		Similarity (%)	52.0	66.0	81.9	74.3	63.3	78.4	68.6	61.3	612	49.3	67.8	78.0	78.4	68.9	51.8			
•		Identity (%)	24.4	39.6	55.3	45.2	35.6	49.2	38.5	31.5	38.2	21.7	46.4	48.2	54.6	42.0	34.3			
	Table 1 (continued)	Homologous gene	Rhodobacter capsulatus secD	Mycobacterium leprae MLCB1259.04	Escherichia coli K12 ruvB	Mycobacterium leprae ruvA	Escherichia coli K12 ruvC	Escherichia coli K12 ORF246 yebC	Escherichia coli K12 tesB	Streptomyces coelicolor A3(2) SC10A5.09c	Mycobacterium tuberculosis H37Rv Rv2609c	Saccharomyces ce:evisiae S288C spt14	Streptomyces coelicolor A3(2) SCL2.16c	Mycobacterium tuberculosis H37Rv Rv2612c pgsA	Mycobacterium tuberculosis H37Rv Rv2613c	Bacillus subtilis thrZ	Bacillus subtilis ywbN			
		db Match	pr.2313285A	SD: YOBD_MYCLE	SD:RUVB_ECOLI	SP. RUVA MYCLE	663 sp.RUVC_ECOLI	sp:YEBC_ECOLI	sp. TESB_ECOLI	gp:SC10A5_9	pir H70570	083 sp.GPI3_YEAST	gp:SCL2_16	pir.C70571	pir.D70571	sp.SY12_BACSU	sp:YWBN_BACSU			
		ORF (bp)	1932	363	1080	618	663	753	846	474	462	1083	963	657	999	2058	1206	564	546	735
		Terminal (nt)	1758803	1761005	1761419	1762517	1763177	1763990	1765015	1766442	1766487	1766948	1768034	1769022	1769681	1770327	1772658	1774444	1773893	1774457
		Initial (nt)	1760734		1762498			1764742	1765860		1766948	1768030	1768996	1769678	1770340	1772384	1773863	1773881	1774438	1775191
		SEO	5330	5331	5332			5335	5336	5337	5338	5339	5340	5341	5342	5343		5345	5346	5347
			1830		1832			1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847

EP 1 108 790 A2

	_								_,		 -		$\overline{}$	$\neg \neg$		T-		7	_								\neg
5		Function						M ocetylrans(erase												ferric transport ATP-binding protein					pantothenate metabolism flavoprotein		
		70.	-	 -	-	-	-	_				-							-		1		-				
15		Matched length (aa)		-	1			- 5	<u> </u>	1		-	-	1	-			-	1	202		_	_		129		_
20		Similarity (%)							54.2											28.7					66.7		_
÷		Identity (%)							36.3					_						28.7					27.1		
25 -	Table 1 (continued)	us gene							riatus pac											se afuC					bilis dfp		
30	Table 1 (Homologous gene							Streptomyces anulatus pac											Actinobacillus pteuropneumontae afuC					Zymomonas mobilis dfp		
35 40		db Match							Sp. PUAC_STRLP											sp. AFLJC_ACTPL					gp:AF088896_20		
		ORF	(do)	378	594	1407	615	399	567 s	1086	1101	669	2580	1113	1923	483	189	312	429	597	666	159	1107	420	591	864	420
45		Terminal	(m)	1777646	1778037	1778102	1779554	1780507	1781019	1782790	1784381	1783382	1782894	1785732	1786907	1789562	1789768	1790057	1790461	1792438	1793426	1793496	1794820	1795621	1796181	1797049	<u> </u>
50		Initial	(m)	1777269	1777444	1779508	1780168	1780905	1781585	1781705	1783281	1784080	1785473	5358 1786844	1788829	1789080	1789580	1789746	1790889	5364 1791842	1792428	1793654	1793714	1795202		1796186	
		SED		5348	5349	5350	5351	5352	5353	5354	5355	5356	5357	5358	5359	5360	5361	5362	5363		5365		5367	5368		5270	
55		SEO	2	1848		1850	1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871

EP 1 108 790 A2

5			Function																			Zi resolvase			protein-tyrosine phosphatase		
10			Ē																			transposon INZ1 resolvase			protein-tyrosin		
15			Matched length (a.a.)																			186			164		
20			Similarity (%)																			78.0	 _ <u></u> ‡		51.8		
	•		Identity (%)															_				51.1	- -	-	29.3		_
25	÷,	Table 1 (continued)	s gene																			PR			erevisiae yvh1		
30		Table 1 (c	Homologous gene									·		-	-							Escherichia coli tnpR			Saccharomyces cerevisiae S288C YIR026C yvh1		
35			tch							-																	
40			db Match			ļ																sp:TNP2_ECOL			sp.PVH1_YEAST		
			ORF (bp)	120	/35	225	894	156	474	753	423	687	429	465	237	681	960	480	681	285	375	612	1005	375	477	726	423
45			Terminal (nt)	1797850	1/98023	1799406	1800366	1800449	1801307	1802096	1802155	1803419	1803893	1804598	1804865	1805599	1806686	1807396	1808113	1808421	1808832	1810372	1811545	1811938	1812691	1813606	1812460
50			Initial (nt)	1797969	1798757	1799182		1800604	1800834	1801344	1802577	1802733	1803465	•	1804629	1804919	1805727	1806917	1807433	1808137	1808458	1809761	1810541	1811564		1812881	1812882
			SEQ		5373	5374	<u></u> .	5376	5377	5378	5379	5380	5381	5382	5383	5384	5385	5386	5387	5388	5389	5390	5391			5394	5395
55			SEQ			1874		1876	1877			1880		1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895

10	
15	
20	-
25	œ,
30	
35	
40	
45	
50	

	Function	sporulation transcription factor									hypothetical protein					hypothetical protein	insertion element (1S3 related)	insertion element (IS3 related)			single-stranded-DNA-specific exonuclease		primase	
	Matched length (a.a.)	216									545					166	298	101			622		381	
	Similarity (%)	65.7									55.2					75.0	92.6	84.2			50 6		64.3	
	Identity (%)	34.3									22.6					63.0	87.9	72.3			24.0		31.8	
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) whiH									Thermotoga maritima MSB9 TM1189					Corynebacterium glutamicum	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf 1			Erwinia chrysanthemi recJ		Streptococcus phage phi-O1205 ORF13	
	db Match	gp:SCA32WHIH_6									pir.C72285					PIR:S60891	pir:S60890	pir.S60889			sp:RECJ_ERWCH		pir.T13302	
	ORF (bp)	738	789	456	186	672	417	315	369	202	2202	1746	219	144	429	534	894	294	213	1299	1878	780	1650	
	Terminal (nt)	1814517	1815651	1816128	1816636	1817803	1818219	1818774	1819166	1819748	1820181	1824322	1824589	1824927	1825178	1826557	1825751	1826644	1829688	1832063	1834044	1834149	1838324	
	Initial (nt)	1813780	1814863	1815673	1816451	1817132	1817803	1818460	1818798	1819954	1822382	1822577	1824371	1824784	1825606	1826024	1826644	1826937	1829900	1830765	1832167	1834928	5417 1836675	
	SEO NO. (a.a.)	5395	5397	5399	5399	5400	5401	5402	5403	5404	5405	5406	5407	5408	5409	5410	5411	5412	5413	5414	5415	5416		
	SEO NO (DNA)	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917	

5	
10	
15	
20	•
25	÷
30	
35	
40	•
45	
50	

	Function				helicase		phage N15 protein gp57											actin binding protein with SH3 domains					ATP/GTP binding protein		ATP-dependent CIp proteinase ATP-binding subunit
	Matched length (a.a.)				620		109											422					347		630
	Similarity (%)				44.7		64.2											49.8					52.5		61.0
	Identity (%)				22.1		36.7											28.7					23.6		30.2
Table 1 (continued)	Homologous gene				Mycoplasma pneumoniae ATCC	2004 2002	Darterionhane N15 nene57	Dattellopriage 1415 general										Schizosaccharomyces pombe SPAPJ760.02c					Streptomyces coelicolor SC5C7.14		Escherichia coli K12 clpA
	db Match				Sp. Y018 MYCPN		.:- T40444	plr. 1 13144					,					gp:SPAPJ760_2					gp:SC5C7_14		1965 sp:CLPA_ECOLI
	ORF (bp)	3789	177		1839	376	2 2	330	366	618	537	528	798	186	372	438	576	1221	852	1395	594	180	1257	1854	1965
	Terminal (nt)	1842137		104700	1845356	1045057	100000	1846207	1846333	1847932	1848474	1849036	1849785	1849966	1850406	1849978	1850474	1852440	1852324	1853873	1854854	1855237	1856788	1858738	1860727
	Initiat (nt)	1838349	2 2 2	C622981	1843518	20, 11, 01	1842483	1845872	1846698	1847315	1847938	1848509	1848988	1849781	1850035	1850415	1851049		1851473	1852479	1854261	1855058	1855532	1856885	5440 1858763
	SEQ NO.	2418		E V	5421		2477	5423	5424	5425	5426	5427	5428	5429	5430	5431			5434	5435	5436	5437	5438	5439	5440
	SEQ	1018	0 6	9191	1920		1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940

EP 1 108 790 A2

5		Function					ATP-dependent helicase					hypothetical protein	deoxynucleotide monophosphate kinase					type II 5-cytosoine methyltransferase	type II restriction endonuclease			hypothetical protein	
15		Matched length (a.a.)					693 ATI			-		224 hyp	208 dec		-	-		363 typ	358 typ			504 hyl	
20		Similarity (%)					45.9					47.8	61.5					7.66	99.7			45.8	
	,	Identity (%)					21.4					25.9	31.7					99.2	99.7			24.6	
25	; nlinued)	gene					eus SA20					color A3(2)	331 gp52					utamicum	utamicum			color A3(2)	
30	Table 1 (continued)	Homologous gene				,	Staphylococcus aureus SA20 pcrA					Streptomyces coelicolor A3(2) SCH17.07c	Bacteriophage phi-C31 gp52			,		Corynebacterium glutamicum ATCC 13032 cgliM	Corynebacterium glutamicum ATCC 13032 cgllR			Streptomyces coelicolor A3(2) SC1A2.16c	
35 40		db Match					Sp.PCRA_STAAU p					gp:SCH17_7	prf:2514444Y					prf.2403350A	pir.A55225			gp:SC1A2_16	
		ORF (bp)	474	156	324	312	2355 sp	558	378	465	264	777	702 pr	225	2166	273	6507	1089 pr	1074 pi	1521	717	1818	186
45		Terminal (nt)	1861225	1861475	1861519	1862399	1865299	1865822	1866219	1866792	1867095	1867874	1868587	1868671	1868927	1871101	1871380	1879400	1880485	1882470	1884220	1887047	1887590
50		Initial (nt)	1860752	1851320	1861842	1862088	1862945	1855265	1855842	1866328	1866832	1867098	1867886	1868895	1871092	1871373	1877886	1878312	1879412	1883990	1884936	1885230	1887405
		SEQ NO.		5442	5443	5444	5445	5446	5447	5448	5449		5451	5452	5453	5454	5455	5456	5457	5458	5459	5460	5461
55		SEO	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1955	1957	1958	1959	1960	1961

5		Function	icase-related	ein		ein				Slp ATP-binding							nuclear mitotic apparatus protein									
10		D.	SNF2/Rad54 helicase-related protein	hypothetical protein		hypothetical protein				endopeptidase Clp ATP-binding chain B							nuclear mitotic a									
15		Matched length (a a.)	90	163		537				724							1004	-								
20		Similarity (%)	70.0	56.4		47.9				52.5							49.1									
٠		Identity (%)	46.7	33.1		20.7				25.3							20.1						-			
25	ontinued)	s gene	durans	e phi-gle		0XO2-16				98							υĄ									
30	Table 1 (continued)	Homologous gene	Deinococcus radiodurans DR1258	Lactobacillus phage phi-gle Rorf232		Bacillus anthracis pXO2-16				Escherichia coli clpB							Homo sapiens numA									
<i>35</i>		db Match	gp:AE001973_4	pir.T13226	-	gp:AF188935_16				sp:CLPB_ECOLI			t.				pir.S23647									
		ORF (bp)	351	864	330	1680	1206	1293	2493	1785	621	1113	846	981	879	198	2766	900	1251	969	714	1008	1659	1488		1509
45	,	Terminal (nt)	1887688	1888231	1889859	1890028	1891832	1893388	1894739	1897374	1899233	1899804	1901066	1902955	1902005	1903225	1903113	1905973	1906664	1907965	1908785	1909501	1910642	1912333	1913973	1914725
50		Initial (nt)	1888038	1889094	1889530	1891707	1893037	1894680	1897231	1899158	1899853	1900916	1901911	1901975	1902883	1903028	1905878	1906572	1907914	1908660	5480 1909498	1910508	1912300	1913820	1914371	1916233
		SEO NO (a.a.)		5463	5464	5465	5456	5467	5468	5469	5470	5471	5472	5473	5474	5475	5476	5477	5478	5479	5480	5481	5482	5483	5484	5485
55		SEQ NO NO NO		1963	1964	1965	1966	1967	1968		1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	T

EP 1 108 790 A2

· 5	Function										omucin			thylase					otein			stein			
10	Ψ										submaxillary apomucin			modification methylase					hypothetical protein			hypothetical protein			
15	Matched length (a.a.)										1408			61					114			328			
20	Similarity (%)	,									49.2			65.6					58.8			54.6			
٠	Identity (%)										23.2			42.6				_	38.6			27.1			
S 52	ous gene										stica			ecoR1					uberculosis			annaschii			
ε Table 1	Homologous gene										Sus scrofa domestica			Escherichia coli ecoR1					Mycobacterium tuberculosis H37Rv Rv1956			Methanococcus jannaschii MJ0137			
<i>35</i>	db Match										pir. T03099			sp:MTE1_ECOLI					pir.H70638			sp:Y137_METJA			
	ORF (bp)	360	222	312	645	759	549	930	306	357	4464 pi	579	945	171 SF	375	1821	201	468	381 pi	202	837	942 st	624	210	534
45	Terminal (nt)	1916733	1917165	1917329	1917564	1918703	1919646	1920347	1925695	1926038	1921547	1926259	1927245	1928381	1928908	1929059	1930990	1931421	1931935	1932373	1933522	1934971	1936849	1937411	1937486
50	Initial (nt)	1916374	1916944	1917640	1918208	1919461	1920194	1921276	1925390	1925682	1926010	1926837	1928189	1928211	1928534	1930879	1931190	1931888	1932315	1932879	1934358	1935912	1936226	1937202	1938019
	SEQ NO.	5486	5487	5488	5489	5490	5491	5492	5493	5494	5495	5496	5497	5498	5499	5530	5501	2055	5503	5504	5505	5506	5507	5508	5509
55	SEQ NO (DNA)	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

EP 1 108 790 A2

	Function										surface protein				major secreted protein PS1 protein precursor			DNA topoisomerase III					major secreted protein PS1 protein precursor	
	Matched length (a.a.)									1	304				27ò			597					344	
	Similarity (%)										44 1				54.4			50.9					54.7	
	Identity (%)										23.0				30.7			23.8					29.7	_
Table 1 (continued)	Homologous gene										Enterococcus faecalis esp				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Escherichia coli topB					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	
	db Match								-		prf.2509434A				sp.CSP1_CORGL			sp:TOP3_ECOLI					sp.CSP1_CORGL	
•	ORF (bp)	1191	534	588	444	753	303	216	309	885	828	297	381	429	1581	2430	867	2277	2085	891	432	744	1887	291
	Terminal (nt)	1940135	1938531	1940844	1941550	1941732	1942812	1943310	1943653	1944564	1944608	1945595	1945952	1946609	1947070	1949021	1951619	1952546	1956203	1958450	1959765	1960371	1961114	1963139
)	Initial (nt)	1938945	1939064	1940257	1941107	1942484	1942510	1943095	1943345	1943680	1945435	1945891	1946332	1947037	1948650	1951450	1952485	1954922	1958287	1959340	2029 5529 1960196	1961114	1963000	5532 1963429
	SEQ NO.	5510	· I			5514	5515	5516	5517	5518	5519	5520	5521	5522	5523	5524		5526	5527	5528	5529	5530	5531	
	SEQ NO (DNA)	2010		_	2013		2015	2016		_				$\overline{}$		2024	2025	2026	2027	2028	2029	2030	2031	2032

· 5

EP 1 108 790 A2

																	iein												
5			L														-binding pro												
10			Function				thermonuclease										single stranded DNA-binding protein								serine protease				
15			Matched length (a.a.)				227										225								249				
20			Similarity (%)				57.7										59.1								52.6				
	•		Identity (%)				30.4										24.9								25.7				
25	-, Conning	IIIIII aan	gene				อบร กนต																		AgSP24D				
30	Table 1 (continued)	ישחוב ו	Homologous gene				Staphylococcus aureus nuc										Shewanella sp. ssb								Anopheles gambiae AgSP24D				
35			db Match				sp NUC_STAAU																		sp.S24D_ANOGA				`
40							Sp NUC	: !		<u> </u>							prf.2313347B							İ	-				
			ORF (bp)	1230	1176	357	684	147	564	1452	459	1221	1419	591	396	237	624	579	462	507	588	333	558	570	912	693	366	747	180
45			Terminal (nt)	1963514	1964727	1965911	1966984	1967289	1968167	1969715	1970203	1971474	1973090	1973737	1974204	1974503	1975794	1976494	1976983	1977549	1978329	1978721	1979217	1979809	1980885	1981657	1982028	1982817	1981912
50			Initial (nt)	1964743	1965902	1966267	1966301	1967435	1967604	1968264	1969745	1970254	1971672	1973147	1973809	1974267	1975171	1975916	1976522	1977043	1977742	1978389	1978660	1979239	1979974	1980965	1981663		1982091
			SEQ NO (a a.)	2033 5533	5534	5535	5536	5537	5538	5539	5540	5541	5542	5543	5544	5545	5546	5547	5548	5549	5550	5551	5552	5553	5554	5555	5556	5557	5550
55			SEQ NO. (DNA)	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	202	2053	2054	2055	2056	2057	2058

EP 1 108 790 A2

Table Confined C									_									1	\neg				į.
Table (continued) Terminal OPF O			Function								integrase	transposase (divided)	transposase (divided)		transposition repressor	insertion element (IS3 related)	transposase					major secreted protein PS1 protein precursor	ıntegrase
Table 1 (continued) Table 2 Table 3 Table 4 (continued) Table 4 (continued) Table 5 Table 5 Table 6 (continued) Ta	15		Matched lergth (a.a.)								406	124	117		31	63	270					153	223
SEC No.	20		Similarity (%)								55.9	94.4	84.6		96.8	88.4	53.7					37.0	56.1
SEG SEG Initial Terminal ORF db Match (a.a.) (nt) (nt) (bp) (a.a.) (nt) (nt) (bp) (bo) (nt) (a.a.) (nt) (nt) (bp) (bo) (nt) (a.a.) (nt) (nt) (bp) (a.a.) (nt) (nt) (bp) (a.a.) (nt) (a.a.) (nt) (nt) (bp) (a.a.) (nt) (nt) (bp) (a.a.) (nt) (a.a.) (nt) (nt) (a.a.) (nt) (nt) (a.a.) (nt) (nt) (a.a.) (nt) (nt) (a.a.) (nt) (a.a.) (nt) (nt) (a.a.) (nt) (a.a.) (nt) (nt) (a.a.) (nt) (nt) (a.a.) (nt) (a.a.) (nt) (nt) (nt) (a.a.) (nt) (nt) (nt) (nt) (nt) (a.a.) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	-		Identity (%)								29.6	63.9	70.9		80.7	74.4	31.1					25.0	28.7
SEG SEG Initial Terminal ORF db Match (a.a.) (nt) (nt) (bp) (a.a.) (nt) (nt) (bp) (bo) (nt) (a.a.) (nt) (nt) (bp) (bo) (nt) (a.a.) (nt) (nt) (bp) (a.a.) (nt) (nt) (bp) (a.a.) (nt) (a.a.) (nt) (nt) (bp) (a.a.) (nt) (nt) (bp) (a.a.) (nt) (a.a.) (nt) (nt) (a.a.) (nt) (nt) (a.a.) (nt) (nt) (a.a.) (nt) (nt) (a.a.) (nt) (a.a.) (nt) (nt) (a.a.) (nt) (a.a.) (nt) (nt) (a.a.) (nt) (nt) (a.a.) (nt) (a.a.) (nt) (nt) (nt) (a.a.) (nt) (nt) (nt) (nt) (nt) (a.a.) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	25	ontinued)	gene								age L5 int	lofermentum	tofermentum		tofermentum	glutamicum	licolor A3(2)					glutamicum avum) ATCC	age L5 int
SEO SEO Initial Terminal ORF db Match (DNA) (a a.) (nt) (nt) (nt) (bn) (bn) (nt) (a a.) (nt) (nt) (bn) (bn) (bn) (nt) (a a.) (nt) (nt) (bn) (bn) (bn) (nt) (a a.) (nt) (nt) (bn)	30	Table 1 (co	Homologous								Mycobacterium pha	Brevibacterium lac CGL 2005 ISaB1	Brevibacterium lac CGL 2005 ISaB1		Brevibacterium lac CGL2005 ISaB1	Corynebacterium gorf1	Streptomyces coe SCJ11.12					Corynebacterium (Brevibacterium fl. 17965 csp1	Mycobacterium pt
SEO SEO Initial Terminal ORF (NO NO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)			db Match								P.VINT_BPML5	lsp:R23011	Jsp:R23011		Jsp:R21601	oir:S60889	gp:SCJ11_12					sp.CSP1_CORGL	SP.VINT BPML5
SEO SEO Initial Terminal (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)			ORF (bo)	363	273	264	234	342	273	303	1149 S			207	+	+		354	168	432	744	1584	
SEO SEO Initial CDVA) (a.a.) (nt) CDVB) (a.a.) (nt) CDVB) (a.a.) (nt) CDVB) (a.a.) (nt) CDVB (a.a.) (nt) CDV	45		<u> </u>					1984728	1985354	1985071	1	1987507	1987887	1988589	1988370	1988530	1988778	1991020	1989874	1991189	1991795	1	
SEO SEO NO NO NO NO NO NO NO NO NO NO NO NO NO	50			1983186				<u> </u>	<u> </u>	╄					1988483	•				1991620		1	1995294
			SEQ NO (a a.)		1	<u>:</u>		1								 -				5575	5576		5578
	55							+					2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078

EP 1 108 790 A2

			-				\neg	[Į.	1	- 1	l	1	- 1	- 1	ŀ	1	
5		u0	ansporter				is protein	protein	reductase					5-phosphate	ase			nosphate	į	
10		Function	sodium-dependent transporter	hypothetical protein			riboflavin biosynthesis protein	potential membrane protein	methionine sulfoxide reductase		hypothetical protein	hypothetical protein	ribonuclease D	1-deoxy-D-xylulose-5-phosphate synthase	RNA methyltransferase		hypothetical protein	deoxyuridine 5'-triphosphate nucleotidohydrolase	hypothetical protein	
15	Matchad	matched length (a.a.)	88	92			233	384	126		232	201	37.1	618	472		268	140	150	
20		Similarity (%)	76.1	81.5			64.4	71.9	67.5		77.2	786	528	78.5	52.3		62 7	82.1	70.7	
-		Identity (%)	39.8	48.9			33.5	42.5	41.3		55.2	55.7	25.9	55.3	25.4		38.1	55.0	46.0	
30	on minded)	s gene	1 26595	ЭA			berculosis 5D	berculosis	rdonii msrA		berculosis	berculosis	Jenzae Rd	CL 190 dxs	tima MSB8		uberculosis	elicolor A3(2)	uberculosis	:
30 T	ane i	Homologous gene	Helicobacter pylon 26595 HP0214	Bacillus subtilis yxaA	İ		Mycobacterium tuberculosis H37Rv Rv2671 ribD	Mycobacterium tuberculosis H37Rv Rv2673	Streptococcus gordonii msrA		Mycobacterium tuberculosis H37Rv Rv2676c	Mycobacterium tuberculosis H37Rv Rv2680	Haemophilus influenzae Rd KW20 H10390 rnd	Streptomyces sp. CL190 dxs	Thermotoga maritima MSB8 TM1094		Mycobacterium tuberculosis H37Rv Rv2696c	Streptomyces coelicolor A3(2) SC2E9.09 dut	Mycobacterium Iuberculosis H37Rv Rv2698	
35		db Match	pir.F64546	sp.YXAA_BACSU			pir.C70968	pir.E70968	gp: AF128264_2		pir:H70968	pir.C70528	SP.RND_HAEIN	gp:AB026631_1	pir:E72298		pir:C70530	sp.DUT_STRCO	pr.E70530	
40) (c	i	-	2	90	696 pir.C	1254 pir.E	408 gp:/	426	696 pir.1	624 pir.	1263 sp:1	1908 gp:	1236 pir.	282	861 pir.	447 sp.	549 pir.	207
		al ORF (bp)	3 306	17 432	2 345	3 336	 	+	+-	+-	+	+			+	+			 	+
45		Termina (nt)	1995783	1996537	1997112	1997503	1998240	1999542	1999949	1999707		2002112	2003334	2003402	2005452	2006979	1	2007738	2008798	2008876
50		Initial (nt)	1996088	1996106	1996768	1997168	1997545	1998289	1999542			2001489	2002072	2005309	2006697	2006698		2008184	2008250	2009082
		SEO		5580		5582		5584	5585	55.8G	5587	5588	5589	5590	5591	5592		5594	5835	5596
55		SEQ SEQ	2079	2080	2081	2082	2083	2084	2085	2086	2087	2088	2089	2090	2091	2092	2093	2094	2095	2096
						_		_												

EP 1 108 790 A2

Γ																					
	Function	hypothetical protein	odradonic suppressor profein	exitage in supplemental process	polyphosphate glucokinase	sigma factor or RNA polymerase transcription factor	hypothetical membrane protein		hypothetical protein	hypothetical membrane protein	hypothetical protein	transferase	hypothetical protein	iron dependent repressor or diphtheria toxin repressor	putative sporulation protein	UDP-glucose 4-epimerase		historical protein	nypoureucar protein	ATP-dependent RNA helicase	
	Matched length (a.a.)	100	90,	96	248	200	422		578	127	76	523	144	228	77	329		300	S	661	
	Similarity (%)	81.0	1	68.2	80.2	98.6	51.4		80.8	59.1	85.5	61.2	100.0	93.6	64.0	. 66		,	0.6/	50.7	
	Identity (%)	58.0		38.4	54.4	98.0	23.9		61.3	32.3	65.8	33.5	97.2	98.7	62.0	99.1		;	45.3	24.4	
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	H37Rv Rv2699c	Escherichia coli K12 suhB	Mycobacterium tuberculosis H37Rv RV2702 ppgK	Corynebacterium glutamicum	Bacillus subtilis yrkO		Mycobacterium tuberculosis H37Rv Rv2917	Mycobacterium tuberculosis H37Rv Rv2709	Mycobacterium tuberculosis H37Rv Rv2708c	Streptomyces coeticolor A3(2) SCH5.08c	Corynebacterium glutamicum ATCC 13869 ORF1	Corynebacterium glutamicum	Streptomyces aureofaciens	Corynebacterium glutamicum ATCC 13869 (Brevibacterium lactofermentum) galE		Managerinia (ilherrillosis	Mycobacteriori (uperculosis H37Rv Rv2714	Saccharomyces cerevisiae YJL050W dob1	
	db Match	1		Sp. SUHB_ECOLI	9	prf.2204286A	SP YRKO BACSU		sp Y065_MYCTU	pir H70531	pir.G70531	gp SCH5_8	pri.2204286C	nir 140339	GP-AF010134 1	sp.GALE_BRELA			pir.E70532	2550 sp.MTR4_YEAST	
	ORF (bp)			816	828	1494	1335	537	1710	636	237	1533	432	684	25		┿	251	957	+	
	Terminal (nt)		2009280	2009724	2011382	2013356	2014162	2015585	2016257	2018754	2017966	2020276	2020724	0700000	202222			2023948	2026379	2029043	_
	Initial		2009570	2010539				.L.	2017966	2018119	2018202	2018744	2020293	9900000		2022959		2025270	2025423	2026494	
	SEQ.		5597 2	1.08 P.		3600	. 1083			5604	5605	9095	5607	900	2008	5610		2611	5612	5613	
	SEO 8		2097	2008				\neg			2105		2107		2.108	2110	Ì	2111	2112	2113	

EP 1 108 790 A2

						_														
5	Function	hydrogen peroxide-inducible genes activator	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ATP-dependent helicase	regulatory protein		SOS regulatory protein	galactitol utilization operon repressor	phosphofructokinase (fructose 1- phosphate kinase)	phosphoenolpyrwate-protein phosphotransferase	glycerol-3-phosphate regulon repressor	1-phosphofructokinase or 6- phosphofructokinase	PTS system, fructose-specific IIBC component	phosphocarrier protein		uracil permease	ATP/GTP-binding protein			diaminopimelate epimerase
15	Aatched length (aa)	299 hydroger activator	\neg		145 regula	\dashv	222 SOS r	245 galact	320 phosp phosp	592 phosp	262 glycerol-3 repressor	345 1-pho	549 PTS s	81 phosp	-	407 uracil	419 ATP/			269 diami
	-	29		2	-		2	5	9.	26	2	<u></u>	2		_	4	4	\downarrow		- 5
20	Similarity (%)	65.6		76.2	86.2		71.6	67.8	55.6	64.0	62.6	55.7	9.69	71.6		70.5	90.C			64.7
•	Identity (%)	35.8		49.2	61.4		46.9	33.9	27.2	34.3	26.7	33.0	43.0	37.0		39.1	54.4			33.5
os 25 (continued)	us gere	куК	·	ırpA	vuligerus nrdR		inR	<12 gatR	elicolor A3(2)	ermophilus ptsl	<12 glpR	sulatus fruK	412 fruA	ermophilus XL-		cus pyrP	Idiae orf11*			nenzae Rd apF
Table 1	Homologous gere	Escherichia coli oxyR		Escherichia coli hrpA	Streptomyces clavuligerus nrdR		Bacillus subtilis dinR	Escherichia coli K12 gatR	Streptomyces coelicolor A3(2) SCE22.14c	Bacillus stearothermophilus ptsl	Escherichia coli K12 glpR	Rhodobacter capsulatus fruK	Escherichia coli K12 fruA	Bacillus stearothermophilus XL- 65-6 ptsH	,	Bacillus caldolyticus pyrP	Streptomyces fradiae orf11*			Haemophilus influenzae Rd KW20 HI0750 dapF
<i>35</i>	db Match	SP OXYR_ECOL!			gp:SCAJ4870_3		sp.LEXA_BACSU	Sp. GATR ECOLI	!	sp.PT1_BACST	sp:GLPR_ECOLI	sp:K1PF_RHOCA	sp.PTFB_ECOLI	Sp.PTHP_BACST		sp:PYRP_BACCL	gp:AF145049_8			831 SP.DAPF_HAEIN
•	ORF (bp)	981 sp	089	3906	450 gr	420	969	777	096	704 SF	792 51	ls 066	836 sı	267 s	582	1287 s	458 9	785	537	331 s
45	Terminal O (t	2030157 9	2330277 10	2035383 38	2035431 4	2035990 4	2037507 6	十	-	2039619 1	2042519 7	2043508 5	2045571	2046028	2046714	2047320 1	2048650 1	2051106	2051842	2051845
	Terr		1	<u> </u>				1							-	+	-		-	
50	Initial (nt)	7	2031365	2031478	2035880	2036409	2036812			2041321	2041728	2042519	2043736	2045762	2047295	2048606	5629 2050107	2050321	2051306	
	SEQ	5614	5615	5616	5617	5518		5520	5621	5622	5623	5624	5625	5626	5627		-		5631	5632
55	SEO	(UNA) 2114	2115			2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132

	,												$\neg \top$		\neg	T		
	Function	tRNA delta-2- isopentenylpyrophosphate transferase		hypothetical protein			hypothetical membrane protein	hypothetical protein	glutamate transport ATP-binding protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	glutamate transport system permease protein	glutamate transport system permease protein	regulatory protein	hypothetical protein		biotin synthase	putrescine transport ATP-binding protein	hypothetical membrane protein
	Matched length (a a)	300		445			190	494	242	11	225	273	142	67		197	223	228
	Similarity (%)	68.7		75.7			63.7	86.4	9.66	73.0	100.0	93.6	6.99	71.6		61.4	69.5	58.8
•	Identity (%)	40.0		48.5			29.0	68.4	9.66	66.0	100.0	99.3	34.5	40.3		33.0	33.2	24.6
Table 1 (Application)	Homologous gene	Escherichia coli K12 miaA		Mycobacterium tuberculosis H37Rv Rv2731			Mycobacterium tuberculosis H37Rv Rv2732c	Mycobacterium leprae B2235 C2 195	Corynebacterium glutamicum ATCC 13032 gluA	Neisseria gonorrhoeae	Corynebacterium glutamicum	Corynebacterium glutamicum (Brevibacterium flavum) ATCC	Mycobacterium leprae recX	Mycobacterium tuberculosis H37Rv Rv2738c		Bacillus sphaericus bioY	Escherichia coli K12 potG	Bacillus subtilis ybaF
	db Match	sp MIAA_ECOLI		pir:870506			pir:C70506	sp.Y195_MYCLE	sp. GLUA_CORGL	GSP:Y75358	sp.GLUC_CORGL	sp:GLUD_CORGL	Sp. RFCX MYCLE	pir.A70878		SP. BIOV BACSH	sp POTG_ECOU	pir.F69742
	ORF		675	1359	1020	1023	699	1566	726	219	684	819	507	234	7.38	E 76	669	609
	Terminal (84	2053609	2055761	2054724	2056787	2057120	2057855	2060499	2060196	2062312	2063259	20632008	2065394	2065667	200000	2067866	
	Initial	9	2054283		2055743			2059420	2059774	2060414	2081629	2062441	1	2065627			2066566	2067866
	SEO		5634		5636			5639			5647			5645	9	2040	5647	
i	SEQ 8	~ m	2134		2136		- -	2139			2442	2143		2144		2146	2147	2149

EP 1 108 790 A2

5		Function	protein	hypothetical protein (35kD protein)	regulator (DNA-binding protein)	competence damage induced proteins	phosphotidylglycerophosphate synthase	protein	surface protein (Peumococcal surface protein A)		tellurite resistance protein	stage III sporulation protein E	l protein	l protein	l protein			guanosine pentaphosphate synthetase	30S ribosomal protein S15	hydrolase	
			hypothetical protein	hypothetical	regulator (D	competence proteins	phosphotidy synthase	hypothetical protein	surface protein (Posurface protein A)		tellurite resi	stage III spo	hypothetical protein	hypothetical protein	hypothetical protein			guanosine synthetase	30S ribosor	nucleoside hydrolase	
15		Matched length (a.a.)	228	269	83	165	160	117	30		358	845	216	645	250			742	89	319	
20		Similarity (%)	78.5	89.6	78.3	68.5	72.5	52.1	70.0		59.8	64.6	61.0	99.4	99.6			85.3	88.8	63.3	
	•	Identity (%)	417	72.5	54.2	41.8	38.8	24.8	0.09		31.0	38.0	33.3	99.1	99.2			65.4	64.0	35.1	
25	i ontinued)	s gene	premiseic	erculosis	erculosis	umoniae R6X	genes pgsA	8	umoniae		Ç	8 spoillE	icolor A3(2)	glutamicum	glutamicum ctofermentum)			bioticus gps1	SO		
30	Table 1 (continued)	Homologous gene	at the storium turboreulacie	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Streptococcus pneumoniae R6X cinA	Streptacoccus pyagenes pgsA	Arabidopsis thaliana ATSP: T16118.20	Streptococcus pneumoniae DBL5 pspA		Escherichia coli terC	Bacillus subtilis 168 spolllE	Streptomyces coelicalor A3(2) SC4G6.14	Corynebacterium glutamicum ATCC 13032 orf4	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 orf2			Streptomyces antibioticus gpsl	Bacillus subtilis rpsO	Leishmania major	
35						+	 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	₩ <u>□</u>	-	ŭ		20.00					S	60		
40		db Match		pir:B601/6 sp:35KD MYCTU	pir:H70878	Sp.CINA_STRPN	prf:2421334D	pir:T10688	gp. AF071810_1		prf 2119295D	sp.SP3E_BACSU	gp:SC4G6_14	sp.YOR4_CORGL	sp:YDAP_BRELA			prf:2217311A	pir:F69700		
		ORF (bb)	-	690 828		516	603	285	117	813	1107	2763	633	2154	750	669	264	2259	267	948	
45		Terminal		2069392 2068356	2069616	2069997	2070519	2071599	2071740	2072878	2071799	2073294	2076392	2077122	2080387	2082813	2082105	2082932	2085435	_1	
50		Initial	(1)	2068703	206936	2070512	2071121	2071315	2071624	2077066				2079275	2081136	2082115	2082358		2085702		
		SEQ	(a a.)	5650				5655	5656	5657		5659		5661	5662	5663	5664		5666		-
55		SEQ	(DNA)	2150				2155	2155	2157	215R	2159	2160	2161	2162	2163	2164	2165	2166	2167	j

	Function	bitunctional protein (riboflavin kinase and FAD synthetase)	tRNA pseudouridine synthase B	hypothetical protein		hypothetical protein	phosphoesterase	DNA damaged inducible protein f	hypothetical protein	ribosome-binding factor A	translation initiation factor IF-2		hypothetical protein	n-utilization substance protein (transcriptional termination/antitermination factor)		hypothetical protein	peptide-binding protein	peptidetransport system permease	oligopeptide permease	peptidetransport system ABC- transporter ATP-binding protein
	Matched length (a a)	329	303	47		237	273	433	308	108	1103		83	352		165	534	337	292	552
	Similarity (%)	79.0	61.7	73.0		62.5	689	78.8	708	70.4	62.9	3	663	710		65 5	609	69 4	69 2	813
	Identity (%)	56.2	32.7	65.0	3	42.2	46.9	51.0	36.7	32.4	37.7	27.75	44.6	42.3		34.6	25.3	37.7	38.4	57.6
Table 1 (continued)	Homologous gene	Corynebacterium	Bacillus subtilis 168 truB	Corynebacterium	ammoniagenes	Streptomyces coelicolor A3(2) SC5A7.23	Mycobacterium tuberculosis H37Rv Rv2795c	Mycobacterium tuberculosis H37Rv Rv2836c dinF	Mycobacterium tuberculosis	HS/RV RV2031C	Bacillus subclins 100 100	Stigmatella aurantiaca UW4 inits	Streptomyces coelicolor A3(2) SC5H4.29	Bacillus subtilis 168 nusA		Mycobacterium tuberculosis	Dacillie cubilic 168 dopE	Procession on K12 dans	Dacillus subtilis sno0KC	Mycobacterum tuberculosis H37Rv Rv3663c dppD
	db Match	SP. RIBE CORAM	-1-		PIR:PC4007	gp:SC5A7_23	pir.B70885	pir:G70693	nir H70693		sp:RBFA_BACSU	sp:fF2_STIAU	gp:SC5H4_29			nir F70588			_	pri:1/09239C
	ORF (bp)	1023	1023	169	228	651	804	1305	988	÷	447	3012	336	966	4004		_			3 999 3 1731
	Terminal	000000	6160907	2088853	2087954	2089218	2089861	2090751	2000061		2093055	2093712				C108802	_			2103973
	Initial	inul	2087941	2087973	2088181	2089968	2090664	2092055	00000	5674 2093040	2093501	2096723	2097179			2098562	7098943	2100240	2102023	2102975
	SEO	(a a)	5668	5669	5670	5671	5672	5673			5675	$\overline{}$					2680	5681	5682	5683
	SEO		2168	2169	2170	2171		2173		2174	2175	2176	2477	2178		2179	2180	2181	2182	2183

· 5

EP 1 108 790 A2

	Function	prolyl-IRNA synthetase	A choical profein	nypomencar protein	magnesium-chelatase subunit	magnesium-chelatase subunit	uroporphyrinagen III methyltransferase	hypothetical protein	hypothetical protein		hypothetical protein	glutathione reductase					methionine aminopeptidase	and a property of the state of	peniculary process	system response regulator)	two-component system sensor histidine kinase	hypothetical membrane protein
- Postore	Matcheo length (a.a)	878	55	243	37	342	237	488	151	5	338	466				-	75.2	200	930	216	424	360
	Similarity (%)	84.6		65.0	2.09	9.69	73.8	68.7	6.73	02.3	65.7	76.6					25.0	0.5	56.5	72.2	56.8	58 1
	Identify (%)	67.0		39.5	32.4	45.5	49.0	41.2	7 20		37.6	53.0					;	41.2	27.3	44.0	29.5	24.4
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	H3/ RV RV2043C ploal	Streptomyces coencolor Au(z) SCC30.05	Rhodobacter sphaeroides ATCC 17023 bchD	Heliobacilius mobilis bchl	Propionibacterium freudenreichii	Clostridium perfringens NCIB	Street omyces coelicolor A3(2)	SC5H1.10c	Mycobacterium tuberculosis H37Rv Rv2854	Burkholderia cepacia AC1100 gor						Escherichia coli K12 map	Streptomyces clavuligerus pcbR	Corynebacterium diphtheriae	Corynebacterium diphtheriae	Deinococcus radiodurans DRA0279
	db Match	SYP MYCTU		gp:SCC30_5	sp. BCHD_RHOSH	AR 2503462AA	orf 2108318B	422 en VPI C. CLOPE		gp:SC5H1_10	pir.A70590	SP.GSHR_BURCE						sp:AMPM_ECOLI	prf.2224268A	prf:2518330B	prf.2518330A	gp AE001863_70
	ORF (bp)	1764		735	759	1,0	750	1422		006	1014	1395	5	3#5	+	327	729	789	1866	630	1149	957
	Terminal (nt)	10001	1000017	2108386	2108389	2,000,0	5110012	039077	6002117	2112717	2116774	2118310	- 1	510/112	21:8607: 2119080	2119495	2120356	2120359	┷-	┵—		
	Initial (nt)		+9C/017	2107652	2109147		2110255		2111236	2113616	2115761	2116916			21:8607	2119139	2119628	2121147			2124996	
	SEO	1	2682	5686	5687				2690	5691	5692	5693		5694	2695	9699						
			2185	2186					2190	2191	2192	2193		2194	2195	2196	2197	2108	2 8	2200	2204	2202

· 5

EP 1 108 790 A2

						_		- -			,	1	- 1	c.:	1	1		1	:	- 1	l l	1	1
5		c			gcpE protein)		1	ne protein	used ās amydia	5-phosphate				p-binding prolei	ise 1 activating		ane protein	ylyltransferase					ein S2
10		Function	ARC transporter		hypothetical protein (gcpE protein)			hypothetical membrane protein	polypeptides can be used as vaccines against Chlamydia trachomatis	1-deoxy-D-xylulose-5-phosphale reductoisomerase				ABC transporter ATP-binding prolein	nvrivate formate-ivase 1 activating	enzyme	hypothetical membrane protein	phosphatidate cytidylyltransferase	ribosome recycling factor	uridylate kinase		elongation factor Ts	30S ribosomal protein S2
15		Matched length	225	222	359			405	147	312				245		356	94	294	185	109		280	254
20	ļ	Similarity (%)	1.4	-	73.8	200		73.6	43.0	42.0				75.1		78.0	74.5	56.5	84.3	43.1		76.8	83.5
		Identity (%)	1	3/.3	. 77	5.		43.0	36.0	22.8				37.1		0.99	41.5	33.3	47.0	28.4		49.6	54.7
<i>25</i>	ued)	a				וַג		SISO						ASB8		losis	losis	osa		osa pyrH		or A3(2)	
30	Table 1 (continued)	Homologous gene		Bacillus subtilis 168 yvrO		Escherichia coli K12 gcpe		Mycobacterium tuberculosis H37Rv Rv2869c	C.Jamydia trachomatis	Escherichia coli K12 dxr				Thermotoga maritima MSB8	TM0793	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv3760	Pseudomonas aeruginosa ATCC 15692 cdsA	Bacillus subtilis 168 frr	Pseudomonas aeruginosa pyrH		Streptomyces coelicolor A3(2) SC2E1 42 tsf	Bacillus subtilis rpsB
35			\dashv	<u> </u>	寸	1	<u>i</u> 	ΣI	Ö					 - - -	-		21	 	T	1		1-	
40		db Match		prf 2420410P		sp.GCPE_ECOU		pir.G70885	GSP: Y37145	1176 sp.DXR_ECOLI				A50070-31-4		sp:YS80_MYCTU	pir A70801	sp:CDSA_PSEAE	Sp.RRF BACSU		+	sp.EFTS_STRCO	pir:A69699
		ORF	(da)	069	162	1134	612	1212	645	1176	441	480	1578	$\overline{}$	200	1098	258	855	2,5,5	┿			816
45		Terminal	(E)	2126753	2126926	2127350	2129461	2128669	2130950	2129903	2131762	2131247	2121825	201017	2134260 - 2133406	2134454	2136141	2136235					2140071
50				2126064	2127087	2128483	2128850	2129880	2130306	2131078	2131322	2131726	2123402 2131825	2133402	2134260	2135551	2135884	2137089		213/840	2130004	2139827	5721 2140896 2140071
		SEO	(a a)	<u>-</u>	5704	5705	5706			5709				21/5	5713	5714	5715	5716			-	57.19	5721
55		-	(ANO)				2206					2244	177	2212	2213	2214	2215	2216		2217	2218	2219	2221

EP 1 108 790 A2

	Function	hypothetical protein	site-specific recombinase	hypothetical protein	Mg(2+) chelatase family protein	hypothetical protein	hypothetical protein	ribonuclease HII		signal peptidase	Fe-regulated protein		50s ribosomal protein L19	thiamine phosphate	pyrophosphorylase	oxidoreductase	thiamine biosynthetic enzyme thiS (thiG1) protein	thiamine biosynthetic enzyme thiG protein	molybdopterin biosynthesis prote n
	Matched length (a.a.)	120	297	395	504	119	101	190		285	323		-		225	376	9	251	437
	Similarity (%)	58.0	68.7	66.8	75.8	72.3	96.¢	69.5		61 1	102		6	600	6.09	64.1	74.2	76.9	56.8
İ	Identity (%)	46.0	40.1	39.8	46.6	40.3	68.3	42.6		32.3	7. 40	7.07	,	/0.3	28.4	34.0	37.1	48.2	30.2
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	Proteus mirabilis xerD	Mycobacterium tuberculosis	Mycobacterium tuberculosis H37Rv Rv2897c	Mycobacterium tuberculosis H37Rv Rv2898c	Mycobacterium tuberculosis H37Rv Rv2901c	Haemophilus influenzae Rd H1059 rnhB		Streptomyces lividans TK21	sipY	Staphylococcus aureus sirA		Bacillus stearothermophilus rpiS	Bacillus subtilis 168 thiE	Streptomyces coelicolor A3(2)	Escherichia coli K12 thiS	Escherichia coli K12 thiG	Emericella nidulans cnxF
	db Match	Sp.YS91 MYCTU				sp:YX29_MYCTU	Sp.YT01_MYCTU	sp:RNH2_HAEIN		100CA 200L		prf.2510361A		sp.RL19_BACST	sp:THIE_BACSU	gp:SC6E10_1			1 prf.2417383A
	ORF (bp)			1182	1521	366	303	627	707		8	936	213	339	, 663	1080	195	-	
	Terminal (nt)	2141760	20/11/2	2142885	2144066	2145576	2146264	2146566	CCOOKE		2147261	2149166	2149359	2149634	2150997	2152118			
	Initial (nt)			2142680	2145586	2145941	2146566	2147192	10000	214/231	2148046	2148231	2149571		5734 2150335	2151039		26,020	5738 2153058 5738 2153058
	SEO			5723				5728		5/59	5730	5731	_	5733					
					2222		7227	2228		2229	2230	2231	2232	2233	2234	2035		25.30	75237

· 5

EP 1 108 790 A2

	Function	transcriptional accessory protein	sporulation-specific degradation regulator protein	dicarboxylase translocator	2-oxoglutarate/malate translocator	3-carboxy-cis, cis-ritocoriate cycloisomerase			ONA (concentration)	methyltransferase	hypothetical protein	16S rRNA processing protein	hypothetical protein	30S ribosomal protein S16	inversin	ABC transporter	ABC transporter	signal recognition particle protesti			cell division protein	
	Matched length (a.a.)	176	334	456	65	350				273	210	172	69	83	196	256	318	559	İ		505	3
	Similarity (%)	78.7	65.3	78.3	80.0	66.3				64.8	57.6	72.1	66.7	79.5	61.7	69.1	63.8	782			1 99	- 000
	ldentity (%)	9.99	27.0	45.8	40.0	39.1				34.8	30.5	52.3	29.0	47.0	32.1	26.6	35.5	58.7			37.0	3/.2
Table 1 (continued)	Hcmologous gene	Bordetella pertussis TOHAMA I	Bacillus subtilis 168 degA	Chlamydophila pneumoniae CWL029 ybhl	Spinacia oleracea chloroplast	Pseucomonas putida pcaB				Escherichia coli K12 trmD	Streptomyces coelicolor A3(2) SCF81.27	Mycobacterium leprae MI CR250 34, rimM	Helicobacter pylori J99 jhp0839	Bacillus subtilis 168 rpsP	Mus musculus inv	Streptococcus agalactiae cylB	Pyrococcus horikoshii OT3 mtrA	Bacillus subtilis 168 ffh				Escherichia coli K12 ftsY
	db Match	sp.TEX_BORPE		pir.H72105	prf.2108268A	sp:PCAB_PSEPU				sp. TRMD_ECOLI	gp.SCF81_27	SP. RIMM_MYCLE			+-	-	_		-			Sp.FTSY_ECOLI
	ORF (bp)	2274	975	1428	219	1251	66	393	690	819	648	513	3,48	÷	+	+	+-	1641	633	417	699	1530
	Terminal (nt)	2154460	2156747	2157754	2159019	2159287	2160768	2161111	2161507	2162196	2163745	2163748				_				2172131	2172877	2173759
	Initial (nt)	2156733	2157721	2159181	2159237	2160537	2160670	2161503	+	+				2164390		2166990	2167865	2169584		5757 2171715	5758 2172209	2259 5759 2175289
	SEO			5741		5743	5744					5740		5/50	5757	57.53						5759
		(DNA)						_				22.40	2	2250	1677	7677	5077	2255	2256	2257	2258	2259

EP 1 108 790 A2

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

Table 1 (conlinued)

_		-			-	— Т		\neg	Т		\neg	T		1	T				$\neg \tau$	$\overline{}$	\neg
	Function			glucan 1,4-alpha-glucosidase or glucoamylase S1/S2 precursor		chromosome segregation protein	acylphosphatase		transcriptional regulator	hypothetical membrane protein			cation efflux system protein	formamidopyrimidine-DNA glycosylase	ribonuclease III	hypothetical protein	hypothelical protein	transport protein	ABC transporter	hypothelical protein	
<u> </u>	Matched length (a a)			1144		1206	92		305	257			188	285	221	176	238	559	541	388	
	Similarty (%)			46.2		72.6	73.9		0.09	73.5			76.6	66.7	76.5	62.5	76.9	55.6	58.8	62.6	
	Identity (%)			22.4		48.3	51.1		23.9	39.3			46.8	36.1	40.3	35.8	50.0	28.3	26.6	35.3	
lable 1 (conlinued)	Homologous gene		And international section in the sec	Saccharomyces cerevisiae S288C YIR019C sta1		Mycobacterium tuberculosis H37Rv Rv2922c smc	Mycobacterium tuberculosis H37Rv RV2922.1C		Escherichia coli K12 yfeR	Mycobacterium leprae MLCL581,28c			Dichelobacter nodosus gep	Escherichia coli K12 mutM or fpg	Bacillus subtilis 168 rncS	Mycobacterium tuberculosis H37Rv Rv2926c	Mycobacterium tuberculosis H37Rv Rv2927c	Streptomyces verticillus	Escherichia coli K12 cydC	Streptomyces coelicolor A3(2) SC9C7.02	
	db Match			sp.AMYH_YEAST		sp:Y068_MYCTU	sp.ACYP_MYCTU		Sp:YFER_ECOU	pir:S72748			gp.DNINTREG_3	sp.FPG_ECOLI	pir.869693	sp:Y06F_MYCTU	sp:Y06G_MYCTU	prf.2104260G	Sp.CYDC_ECOLI	gp:SC9C7_2	
	ORF (bp)	159	702	3393	963	3465	282	1854	858	931	183	447	615	858	741	534	789	1644	1530	1122	441
	Terminal (nt)	2175888	2177103	2176110	2181880	2179628	2183110	2183405	2185351	2187129	2187342	2187233	2187692	2188313	2189166	2189906	2190540	2193165	2194694	2198004	2198007
	In tial (nt)	2176046	2176402	2179502	2180918	2183092	2183391	2185258	2186208	2186299	2187160	5770 2187679	2188306	2189170	2189906	2190439	2191328	2191522	2193165	2196883	2198447
	SEQ NO	5760	5761	5762	5763	5764	5765	5766	5767	5768	5769	5770	5771	5772	5773	57.74	5775	5776	5777	5778	5779
	SEO	2260	2261	2262	2263	2264	2265	2266	2267	2268	2269	2270	2271	2272	2273	2274	2275	2276	2277	2278	2279

EP 1 108 790 A2

	Function	hypothetical protein	peptidase	sucrose transport protein			maltodextrin phosphorylase / glycogen phosphorylase	hypothetical protein	prolipoprotein diacylglyceryl transferase	indole-3-glycerol-phosphate synthase / anthranilate synthase component II	hypothelical membrane protein	phosphoribosyl-AMP cyclohydrolase	cyclase	inositol monophosphate phosphatase	phosphoribosylformimino-5- aminoimidazole carboxamide ribotide isomerase	glutamine amidotransferase	chloramphenicol resistance protein or transmembrane transport protein
	Matched length (a a)	405	353	133			814	295	264	169	228	83	258	241	245	210	402
	Similarity (%)	43.7	64.3	51.9			67.4	66.4	65.5	62.1	58.8	79.8	7.76	94.0	97.6	92.4	54.0
_	Identity (%)	21.0	32.9	27.1			36.1	33.9	31.4	29.6	29.4	528	97.3	94.0	95.9	86.7	25.6
Table 1 (continued)	Homologous gine	Thermotoga maritima MSB8 TM0896	Campylobacter jejuni ATCC 43431 hipO	Arabidopsis thaliana SUC1			Thermococcus litoralis malP	Bacillus subtilis 168 yfiE	Staphylococcus aureus FDA 485	Emericella nidulans trpC	Mycobacterium tuberculosis H37Rv Rv1610	Rhodobacter sphaeroides ATCC 17023 hisl	Corynebacterium glutamicum AS019 hisF	Corynebacterium glutamicum AS019 impA	Corynebacterium glutamicum AS019 hisA	Corynebacterium glutamicum AS019 FisH	Streptomyces lividans 66 cmIR
	db Match	pir A72322	sp.HIPO_CAMJE	pir.S38197			prf.2513410A	SP YFIE BACSU	sp.LGT_STAAU	sp:TRPG_EMENI	pir:H70556	sp.HIS3_RHOSH	sp.HIS6_CORG	prf.2419176B	gp:AF051846_1	gp:AF060558_1	sp:CMLR_STRLI
	CRF (bp)	1284	1263	336	135	276	2550	96	948	801	657	354	774	825	738	633	1266
	Terminal (nt)	2199758	2201070	2201073	2201450	2201594	2201992	2204591	2207302	2208367	2209232	2209920	2210273	2211051	2211882	2212641	2214321
	Initial (nt)	2198475	2199808	2201408	2201584	2201869	2204541	2205493	2208249	2209167	2209888	2210273	2211046	2211875	2212619	2213273	2215586
	SEG	5780	5781	5782		5784		57B6	5787	5788	5789	5790	5791	5792		5794	5795
		(DNA) 2280	2281	2282	2283	2284	2285	2000	2287	2288	2289	2290	2291	2292	2293	2294	2295

5

EP 1 108 790 A2

`5				ate			_			osphatase		yme.			ase	n repressor	-binding				
10		Function		imidazoleglycerol-phosphate dehydratase	histidincl-phosphate aminotransferase	histidinol dehydrogenase	serine-rich secreted protein			histidine secretory acid phosphatase	tet repressor protein	glycogen debranching enzyme	hypothelical protein	oxidoreductase	myo-inositol 2-dehydrogenase	galactitol utilization operon repressor	ferrichrome transport ATP-binding protein or ferrichrome ABC transporter	hemin permease	iron-binding protein	iron-binding protein	hypothetical protein
15		Matched length (a.a.)		198	362	439	342			211	204	722	258	268	343	329	246	332	103	182	113
20		Similarity (%)		81.8	79.3	85.7	54.4			59.7	60.8	75.5	76.0	55.2	60.9	64.4	68.3	71.1	68.0	9'29	73.5
-		Identity (%)		52.5	57.2	63.8	27.2			29.4	28.9	47.4	20.0	29.9	35.0	30.4	32.9	36.8	30.1	34.6	38.1
30 (Painting) t alder	Columnaca)	us gene		licolor A3(2)	licolor A3(2)	negmatis	yces pombe			vani SAcP-1	lasmid RP1	aldarius treX	berculosis	elicolor A3(2)	eliloti idhA	(12 galR	68 MuC	olc.	68 yvrC	68 yvrC	(12 ytfH
30	anic I	Homologous gene		Streptomyces coelicolor A3(2) hisB	Streptomyces coelicolor A3(2) hisC	Mycobacterium smegmatis ATCC 607 hisD	Schizosaccharomyces pombe SPBC215.13			eishmania donovani SAcP-1	Escherichia coli plasmid RP1 tetR	Sulfolobus acidocaldarius treX	Mycobacterium tuberculosis H37Rv Rv2622	Streptomyces coelicolor A3(2) SC2G5.27c gip	Sinorhizobium meliloti idhA	Escherichia coli K12 galR	Bacillus subtilis 168 fhuC	Vibrio cholerae hutC	Bacillus subtilis 168 yvrC	Bacillus subtilis 168 yvrC	Escherichia coli K12 ytfH
35			·					. '		۳		Ö	ΣÏ	<u>w</u> w	S		1	>	8	B	
40		db Match		sp:HIS7_STRCO	sp:HIS8_STRCO	sp.HISX_MYCSM	gp:SPBC215_13	-		pri:2321269A	pir:RPECR1	prf.2307203B	pir.E70572	gp:SC2G5_27	prf.2503399A	Sp. GALR_ECOLI	sp:FHUC_BACSU	prf:2423441E	pir:G70046	pir:G70046	sp:YTFH_ECOLI
		ORF (bp)	225	909	1098	1326	1200	651	309	642	561	2508	801	774	101	966	798	1038	348	594	441
45		Terminal (nt)	2215639	2215869	2216494	2217600	2220358	2220459	2221919	2221187	2222518	2225035	2225949	2225990	2226769	2228901	2229099	2229900	2230947	2231339	2232016
50		fritial (1r)	2215863		2217591	2218925	2219159	2221109	2221611	2221828	_	2222528	2225149	2226763	2227779	_		2230937			
		SEO NO (a a)	5796	5797	5798	5799	2800	5801	5802	5803	5804	5805	5806	5807	5808	5809		5811	5812	5813	_
55		SEQ NO.	22ag	2297	2298	2299	2300	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314

EP 1 108 790 A2

10		Function	DNA polymerase III epsilon chain		maltooligosyl trehalose syrthase	hypothetical protein					alkanal monooxygenase alpha chain	hypothetical protein		maltooligosyltrehalose trehalohydrolase	hypothetical protein	threonine dehydratase			Corynebacterium glutamicum AS019	DNA polymerase III	chloramphenicol sensitive protein	histidine-binding protein precursor	hypothetical membrane protein
15		Matched length (a.a.)	355		814	322					375	120		568	214	436			415	1183	279	149	198
20		Similarity (%)	50 1		58.E	52.E					54.4	79.2		72.4	72.4	99.3			49.6	80.5	73.8	55.7	64.7
•		Identity (%)	23.4		42.0	27.6			,		20.5	58.3		46.3	36.5	99.3			22.7	53.3	37.6	21.5	22.7
25 - G	mucu)	ene	lor A3(2)		treY	ans					scens	lor A3(2)		treZ		атісит			metE	lor A3(2)	rarD	DZ72 hisJ	us AF2388
30 FONET	ומח) ו מחום	Homologous gene	Streptomyces coelicolor A3(2) SCI8.12		Arthrobacter sp. Q36 treY	Deinocccus radiodurans DR1631					Photorhabdus luminescens ATCC 29999 luxA	Streptomyces coelicolor A3(2) SC7H2.05		Arthrobacter sp. Q36 treZ	Bacillus subtilis 168	Corynebacterium glutamicum ATCC 13032 ilvA			Catharanthus roseus metE	Streptomyces coelicolor A3(2) dnaE	Escherichia coii K12 rarD	Campylobacter jejuni DZ72 hisJ	Archaeoglobus fulgidus AF2388
40		db Match	gp:SCI8_12		pir S65769	gp:AE002006_4			-		sp:LXA1_PHOLU	gp:SC7H2_5		pir:S65770	sp:YVYE_BACSU	sp:THD1_CORGL			pir:S57636	prf 2508371A	sp.RARD_ECOLI	sp:HISJ_CAMJE	pir:D69548
		ORF (bp)	1143	909	2433	1023	399	198	189	1056	1044		231	1785	651	1308	202	156	1203	3582	940	468	918
45		Terminal (nt)	2234070	2234763	2237284	2238353	2238694	2239845	2240058	2239508	2241724	2242115 2241738	2242129	2244819	2242393	2244864	2246892	2246295	2247006	2248358	2252856	2253659	2254642
50		Initial (nt)	2232928	2234158	2234852	2237331	2239092	2240042	2240246	2240563	2240681	2242115	2242359	2243035	2243043	2246171	2246386	2246450	2248208	2251939	2252017	2253192	2253725
		SEQ NO (a a.)	5815	5816	5817	5818	5819	5820	5821	5822	5823	5824	5825	5826	5827	5828	5829	5830	5831	5832	5833	5834	5835

EP 1 108 790 A2

5	Function	short chain dehydrogenase or general stress protein	diaminopimelate (DAP) decarboxylase	cysteine synthase		ribosomal large subunit pseudouridine synthase D	lipoprotein signal peptidase		oleandomycin resistance protein		hypothetical protein	L-asparaginase	DNA-damage-inducible protein P	hypothetical membrane protein	transcriptiona! regulator	والمراقبة والمراقبة والمناقبة والمناقبة والمناقبة والمناقبة والمناقبة والمناقبة والمناقبة والمناقبة والمناقبة	hypothetical protein	isoleucyl-tRNA synthetase		
15	Matched length (a.a.)	280	445	314		326	154		550		158	321	371	286	334	!	212	1066		
20	Similarity (%)	80.0	47.6	64.3		61.0	61.7		64.0		57.6	62.0	60.7	61.5	73.1		67.0	65.4		
•	Identity (%)	48.2	22.9	32.8		36.5	33.8		36.4		36.7	31.2	31.8	31.5	44.3		42.0	38.5		
25	ene	daD	nosa lysA	. СН34		Qn	cens NCIB		icus oleB		oolis orf17		linP	⁄biF	or A3(2)		lor A3(2)	risiae I		
30	Homologous gene	Eacillus subtilis 168 ydaD	Pseudomonas aeruginosa lysA	Alcaligenes eutrophus CH34 cysM		Escherichia coli K12 rluD	Pseudomonas fluorescens NCIB 10585 IspA		Streptomyces antibioticus oleB		Rhodococcus erythropolis orf17	Bacillus licheniformis	Escherichia coli K12 dinP	Escherichia coli K12 ybiF	Streptomyces coelicolor A3(2) SCF51.06		Streptomyces coelicolor A3(2) SCF51.05	Saccharomyces cerevisiae A364A YBL076C ILS1		
<i>35</i>	db Match	sp.GS39_BACSU	Sp.DCDA_PSEAE	sp:CYSM_ALCEU		sp:RLUD_ECOLI	sp:LSPA_PSEFL		pir.S67863		prf.2422382P	sp:ASPG_BACLI	Sp.DINP_ECOL	sp:YBIF_ECOLI	gp:SCF51_6		gp:SCF51_5	sp:SYIC_YEAST		
	ORF (bp)	876	1287	951	579	930	534	1002	1650	303	900	975	1401	858	1002	132	627	3162	216	1095
45	Terminal (nt)	2254683	2255738	2258362	2259421	2260002	2260934	2262689	2264499	2265298	2264509	2266394	2266897	2268388	2269260	2270435	2270258	2270988	2274473	2274767
50	Initial (nt)	225558	2257024	2259312	2259999	2260931	2261467	2261688	2262850	2264996	2265108	2265420	2268297	2269245	2270261	2270304	2270884	2274149	2274688	2275861
	SEQ		5837	5838	5839		5841	5842	5843	5844	5845	5846	5847	5848	5849	5850	5851	5852	5853	5854
55	SEQ	2336	2337	2338	2339	2340	2341	2342	2343	2344	2345	2346	2347	2348	2349	2350	2351	2352	2353	2354

Table 1 (conlinued)	ORF db Match Homologous gene (%) (%) (3.a.) Identity Similarity Matched Function (bp)	bir.F70578 Mycobacterium tuberculosis 46.3 73.2 82 H37Rv Rv2146c	456 gp.BLFTSZ_6 arf6 orf6 orf6	663 sp.YFZ1_CORGL Corynebacterium glutamicum 97.7 99.6 221 hypothetical protein	prt:2420425C Brevibacterium actofermentum 99.2 100.0 246	486 GP AB028868_1 Mus musculus P4(21)n 39.0 51.0 117 hypothetical protein	1326 sp.FTSZ_BRELA Brevibacterium lactofermentum 98.6 98.6 442 cell division protein 1326 sp.FTSZ_BRELA 1452	666 gsp:W70502 Corynebacterium glutamicum 99.6 100.0 222 division protein or cell	458 gp. AB015023_1 Corynebacterium glutamicum gg, 4 gg, 8 ligase ligase	Brevibacterium lactofermentum 98.9 99.5 372 98.9 99.5 99.5 99.5 90.5	1650 gp.BLA242646_2 Brevibacterium lactofermentum 99.4 99.6 490 cell division protein ATCC 13869 flsW	468 gp:BLA242546_1 ATCC 13869 murD 99.1 110 glutamate ligase	384	333	1098 sp.MRAY_ECOLI Escherichia coli K12 mraY 38.6 63.8 365 pentapeptide	UDP-N-acetylmuramoylalanyl-D-Searchylmuramoylalanyl-D-Searchylmuramoylalanyl-D-Searchylmuramoylalanyl-D-Searchylmuramoylalanyl-2,6-diaminopimelate-D-Searchylmuramyl-2,6-diaminopimelate
		10							58	16	550 gp:BLA242646_2		184	333	098 Sp.MRAY_ECOLI	1542 An MIJRE FCOLI
	Terminal ORI	2276353 28	2276981 49	2277416 66	 -	2279640 4	1	2280470 6	2281166 14	2282661 11	2283782	2285437 4	2286655	2286831	1	1707060
	Initial (nt)	2276637	2277336	2276078	2278859	2279155	2280215	2281135	2282623	2283775	1 2285431	5 2285904	3 2286272	7 2286499	8 2287959	
	SEQ SEQ NO. NO.		2356 5856	2357 5857		2359 5859	2360 5860	2361 5861	2362 5862	2363 5063	2364 5864	2365 5865	2355 5866			

`5

EP 1 108 790 A2

hypothetical membrane protein

411

58.4

30.7

Mycobacterium leprae MLCB268.23

2386 | 5886 | 2304983 | 2306218 | 1236 | 9p:MLCB268_21

5	Function	UDP-N-acetylmuramoylalanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase	penicillin binding protein	penicillin-binding protein		hypothetical protein	hypothetical membrane protein	hypothetical protein		hypothelical protein	5. 10-methylenetetrahydrofolate reductase	dimethylallyltranstransferase	hypothetical membrane protein		hypothetical protein	eukaryotic-type protain kinase
15		UDP. gluta a!any	penic	penic	-	hуро	нуро	hypo	-	hypo				-		
	Matched length (a.a.)	491	57	650		323	143	137		190	303	329	484		125	684
20	Similarity (%)	9'.29	100.0	58.8		79.3	88.8	69.3		65.3	70.6	62.0	9.69		68.8	62.4
•	Identity (%)	37.7	100.0	28.2		55.1	72.0	39.4		36.3	42.6	30.1	35.7		43.2	34.2
Table 1 (continued)	Homologous gene	Bacillus subtilis 168 murE	Brevibacterium lactofermentum ORF2 pbp	Pseudomonas aeruginosa pbpB		Mycobacterium tuberculosis H37Rv Rv2165c	Mycobacterium leprae MLCB268, 11c	Mycobacterium tuberculosis H37Rv Rv2169c		Mycobacterium leprae MLCB268.13	Streptomyces lividans 1326 metF	Myxococcus xanthus DK1050 ORF1	Mycobacterium leprae MLCB268.17		Mycobacterium tuberculosis H37Rv Rv2175c	Streptomyces coelicolor A3(2) pkaF
<i>40</i>	db Match	sp:MURE_BACSU B	GSP:Y33117 B	pir.S54872 P		pir.A70581 H	9p:MLCB268_11 N	pir.C70935		gp.MLCB268_13 N	Sp.METF_STRLI	pir.S32168	gp:MLCB268_16		pir.A70936	gp:AB019394_1
	ORF (bp)		225	1953	795	1011	429	387	423	573	978	1113	1470	507	369	2148
45	Termina! (nt)	2289523	2290973	2291212	2293323	2294117	2295376	2296512	2297231	2298438	2298451	2300636	2302175	2302685	2302251	2304980
50	Initial (nt)	<u>6</u>	2291197	2293164	2294117	2295127	2295804	2296898	2297653	2297866	2299428	2299524	2300706	2302179	<u> </u>	2302833
	SEO		5871	5872			5875	5876	5877	5878	5879	5880	5881	5882	5883	5884
55		(DNA)	2371	2372	2373	2374	2375	2376	2377	2378	2379	2380	2381	2382	2383	2384

5		
10		
15		
20	•	
25	٠	
30 r		
` * 35		
40	•	
45		
50		

	Function	hypothetical membrane protein	3-deoxy-D-arabino-heptulosonate-7- phosphate synthase	hypothetical protein	hypothetical membrane protein	major secreted protein PS1 protein precursor			hypothetical membrane protein	acyltransferase	glycosyl transferase	protein P50 precursor (invasion- associated-protein)	protein P60 precursor (invasion- associated-protein)	ubiquinol-cytochrome c reductase cytochrome b subunit	ubiquinol-cylochrome c reductase iron-sulfur subunit (Rieske [eF e-2S] iron-sulfur profein cyo8	ubiquinol-cytochrome c reductase cytochrome c
	Matched length (a.a.)	434	462	166	428	440			249	245	383	596	191	201	203	278
	Similarity (%)	62.0	87.9	77.7	64.5	57.1			100.0	100.0	75.7	60.8	61.3	64.7	57.1	83.1
	Identity (%)	30.4	6.99	58.4	35.1	28 2			100.0	100.0	50.1	26.4	33.0	34.3	37.9	58.6
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2181	Amycolatopsis mediterranei	Mycobacterium leprae MLCB268.21c	Mycobacterium tubercutosis H37Rv Rv2181	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Corynebacterium glutamicum ATCC 13032	Corynebacterium glutamicum ATCC 13032	Streptomyces coelicolor A3(2) SC6G10.05c	Listeria ivanovii iap	Listeria grayi iap	Heliobacillus mobilis petB	Streptomyces lividans qcrA	Mycobacterium tuberculosis H37Rv Rv2194 qcrC
	db Match	pir G70936	gp:AF260581_2	gp: MLCB268, 20	pir:G70936	sp.cSP1_cORGL			gp:AF096280_3	gp:AF096280_2	gp:SC6G10_5	sp:P60_LISIV	sp:P60_LISGR	prf. 2503462K	gp:AF107888_1	sp:Y005_MYCTU
	ORF (bp)	1308	1386	504	2418	1449	204	177	1188	735	1143	1047	627	1602	672	885
	Terminal (nt)	2307621	2307697	2309173	2312252	2313808	2314036	2313915	2314236	2315678	2317633	2318804	2319968	2321472	2323088	2324311
	Initial (nt)	2306314	2309082	2309676	2309835	2312360	2313833	2314092	2315423	2316412	2318775	2319850	2320594	2323073	2323759	2325195
	SEQ NO.		5888	5889	2890	5891	5892	5893	5894	5895	5896	5897	5898	5899	2900	5901
	SEO NO.		2388	2389	2390	2391	2392			2395	2396	2397	2398	2399	2400	2401

EP 1 108 790 A2

												٠,٠								\neg
5		Function	cytochrome c oxidase subunit III		hypothetical membrane protein	cytochrome c oxidase subunit II	glutamine-dependent amidotransferase or asparagine synthetase (lysozyme insensitivity protein)	hypothetical prote:n	hypothetical membrane protein	cobinamide kinase	nicolinate-nucleolide dimethylbenzimidazole phosphoribosyllransferase	cobalamin (5'-phosphate) synthase		clavulanate-9-aldehyde reductase	branched-chain amino acid aminotransferase	leucyl aminopeptidase	hypothetical protein	dihydrolipoamide acetyltransferase		lipoyltransferase
			5	_	hyp	5	gam age	dy.	ξ	ខ្ល	声	8		Ę,	bra am	<u>ē</u>	À	듣	_	<u>i</u>
15		Matched length (a a)	188		145	317	640	114	246	172	341	305		241	364	493	97	691		210
20		Similarity (%)	70.7		71.0	53.9	8.66	100.0	60.2	64.0	66.99	49.8		68.5	70.3	62.9	67.0	68.5		65.7
	.	Identity (%)	36.7		38.6	28.7	99.7	100.0	35.0	43.0	37.8	25.3		38.6	40.1	36.3	40.2	48.9		36.7
25 30	Table 1 (continued)	Homologous gene	Synechococcus vulcanus		Mycobacterium tuberculosis H37Rv Rv2199c	Rhodobacter sphaeroides ctaC	Corynebacterium glutamicum KY9611 ItsA	Corynebacterium glutamicum KY9611 orf1	Mycobacterium leprae MLCB22.07	Rhodobacter capsulatus cobP	Pseudomonas denitrificans cobU	Pseudomonas denitrificans cobV		Streptomyces clavuligerus car	Mus musculus BCAT1	Pseudomonas putida ATCC 12633 pepA	Saccharopolyspora erythraea ORF1	Streptomyces seoulensis pdhB		Arabidopsis thaliana
4-	 	ĭ	Synechoc		Mycobaci H37Rv R	Rhodoba	Coryneba KY9611	Corynebacte KY9611 orf1	Mycobaci MLCB22	Rhodoba	Pseudom cobU	Pseudom		Streptom	Mus mus	Pseudomona 12633 pepA	Sacchard ORF1	Streptom		Arabidop
<i>35</i> <i>40</i>		db Match	sp.COX3_SYNVU		sp:Y00A_MYCTU	sp.COX2_RHOSH	gp:AB029550_1	gp:AB029550_2	gp:MLCB22_2	pir.S52220	sp.coBU_PSEDE	sp.COBV_PSEDE		prf 2414335A	sp:ILVE_MYCTU	gp:PPU010261_1	prf:2110282A	gp:AF047034_2		gp.AB020975_1
		ORF (bp)	615	153	429	1077	1920	342	768	522	1089	921	237	714	1137	1500	393	2025	1365	753
45		Terminal (nt)	2325273	2325121	2325472	2326921	2330435	2330586	2331967	2332495	1	2334535	2334481	2335028		2338734	2338748	234 - 293	2339440	2342164
50		Initial (nt)	2325887	2326273	2326900	2327997	2328516	2330927	2331200	2331974		2333615	2334717	2335741	2337051	2337235	2339140	2339269	2340804	2341412
		SEQ.	5502	5903	5904	5905		2065	5908	5909	5910	5911	5912	5913	5914	5915	5916	5917	5918	5919
55		SEQ.				2405		2407	2408	2409		2411		2413		2415	2416	2417		2419

EP 1 108 790 A2

5	Function	ipoic acid synthetase	hypothetical membrane protein	hypothetical membrane protein	transposase (ISC92)		hypothelical membrane protein		mutator mutT domain protein	hypothelical protein		alkanal monooxygenase alpha chain (bacterial luciferase alpha chain)	protein synthesis inhibitor (translation initiation inhibitor)			4-hydroxyphenylacetate permease	transmembrane transport protein	transmembrane transport protein		
15	Matched length (a.a.)	285 lipo	257 hyp	559 hyp	401 trar		157 Һур		145 mu	128 hyp	_	220 alk	111 pro			433 4-h	158 trai	118 tra		
20	Similarity te (%)	6.07	76 7	67.8	100.0		63.7		44.0	65.6		6.09	73.0			53.4	72.8	66.1		
e.	Identily Si (%)	44.6	45.5	32.9	100.0		41.4		31.0	36.7		25.0	40.5			21.9	42.4	31.4		
. 25 (panui)	ene	us GRA BD	culosis	yidE	lamicum		lor A3(2)			MSB8			MSB8			~	olor A3(2)	olor A3(2)		
S Table 1 (continued)	Homologous gene	Petobacter carbinolicus GRA BD 1 lipA	Mycobacterium tuberculosis H37Rv Rv2219	Escherichia coli K12 yidE	Corynebacterium glutamicum ATCC 13032 tnp		Streptomyces coelicolor A3(2) SC5F7.04c			Thermotoga maritima MSB8 TM1010		Vibrio harveyi luxA	Thermotoga maritima MSB8 TM0215			Escherichia coli hpaX	Streptomyces coelicolor A3(2) SCGD3.10c	Streptomyces coelicolor A3(2) SCGD3.10c		
35												-	- -							
40	db Match	sp.LIPA_PELCA	SP YOOU_MYCTU	Sp YIDE_ECOLI	gp.AF189147_1		gp:SC5F7_34			pir.872308		sp:LUXA_VIBHA	pir.A72404		, 	prf.2203345H	gp:SCGD3_10	gp.SCGD3_10		
	ORF (bp)	1044	780	1617	1203	300	471	213	975	399	909	849	393	243	261	1323	261	444	195	405
45	Terminal (nt)	2343347	2344258	2346047	2346289	2347804	2348078	2350408	2351996	2350912	2351310	2352828	2353225	2355398	2355180	2356843	2357354	2357707	2357290	2358130
50	Initial (nt)	2342304	2343479	2344431	2347491	2347505		2350620	2351022	2351310	2351909	2351980	2352833	2355156	2355440	2355521	2356794	2357264	2357484	2357726
	SEO NO.	2920	5921	5922		5924		5926		5928	5929		5931	5932	5933	5934	5935	5936	5937	5938
55	SEO NO.	2420	2421	2422	2423	2424	2425	2426	2427	2428	2429	2430	2431	2432	2433	2434	2435	2436	2437	2438

5	noipour a citation	בתווכווסו		паѕе	glutamate-ammonia-ligase adenylyttransferase	nthetase	protein	protein	l protein	Se	virulence-associated protein		bifunctional protein (ribonuclease H and phosphoglycerate mutase)		ıl protein	I protein	phosphoglycolate phosphatase	low molecular weight protein- tyrosine-phosphatase	al protein	insertion element (IS402)
				heme oxygenase	glutamate-ammonia adenylyttransferase	glutamine synthetase	hypothetical protein	hypothetical protein	hypothetical protein	galactokınase	virulence-as		bifunctional and phosph		hypothelical protein	hypothetical protein	phosphogly	low molecular weight tyrosine-phosphatase	hypothetical protein	insertion el
15	Matched	(a.a.)		214	808	441	392	601	54	374	358		382		249	378	204	156	281	129
20	Similarity	(%)		78.0	67.0	73.0	54.1	58.2	55.6	53.7	54.5		75.1		58.6	76.2	54.4	63.5	65.5	56.6
•	Identity	(%)		57.9	43.4	43.5	26.8	33.4	38.9	24.9	27.1		54.7		26.5	.49.2	26.0	46.2	40.9	32.6
25 (panui)		gene		phtheriae C7	olor A3(2)	a MSB8	color A3(2)	erculosis	color A3(2)	-	89		erculosis		erculosis	erculosis	2 gph	color A3(2)	erculosis	e i
Table 1 (conlinued)		Homologous gene		Corynebacterium diphtheriae C7 hmuO	Streptomyces coelicolor A3(2) ginE	Thermotoge maritima MSB8 glnA	Streptomyces coelicolor A3(2) SCE9 39c	Mycobacterium tuberculosis H37Rv Rv2226	Streptomyces coelicolor A3(2) SCC75A.11c.	Homo sapiens galk1	Brucella abortus vacB		Mycobacterium tuberculosis H37Rv Rv2228c		Mycobacterium tuberculosis H37Rv Rv2229c	Mycobacterium tuberculosis H37Rv Rv2230c	Escherichia coli K12 gph	Streptomyces coelicolor A3(2) SCQ11.04c ptpA	Mycobacterium tuberculosis H37Rv Rv2235	Burkholderia cepacia
<i>35</i>		db Match		Sp:HMUO_CORDI	gp:SCY17736_4	SP.GLNA_THEMA g	gp:SCE9_39	sp:Y017_MYCTU	gp:SCC75A_11	SD.GAL1 HUMAN	┪		sp:Y019_MYCTU		sp:Y01A_MYCTU	sp:Y01B_MYCTU	Sp.GPH_ECOLI	Sp.PTPA_STRCO	sp.Y01G_MYCTU	sp:YI21_BURCE
		ORF (bp)	543	645 sp	3135 gp	1338 sp	1104 gr	1827 sp	180 94	1293 St	99		1146 sp	729	717	1140 s	654 8	47.1 \$	954 s	393 s
45		Terminal (nt)	2358153	2358772	2359614	2362818	2365455	2367413	2367473	2369083	2369116	2370908	2371412	2373289	2372573	2373323	2375197		2376720	2376998
50		Initial (nt)	2359695	2359416	2362748	5942 2364155	2364352	7365587	2367652	1927987	2370381	2370423	2372557	2372561	2373289	2374462	2374544		2375767	2456 5956 2377390
	020		5939	5940	5941		5943	5944	5945	5046		5948		5950		5952	5953		5955	2956
55	020	NO (DNA)	2439	2440	2441	2442	2443	2444	2445	2446	2447	2448	2449	2450	2451	2452	2453	2454	2455	2456

5	Function		transcriptional regulator		hypothetical protein		nyruyate dehydrogenase component	64	And transporter or alutamine	transport ATP-binding protein	
15	Matched length (a.a.)		135		134		910			261	
20	Identity Similarity Matched (%) (%) (9a)		57.8		77.6		78.0	6.0		62.8	
_	Identity (%)		30.4		55.2		2 2 2	33.9		33.7	
55 00 Tahle 1 (Continued)	Homologous gene		Streptomyces coelicolor A3(2) SC8F4.22c		Mycobacterium tuberculosis	H3/Kv Kv2239C	4 J T J T T T T T T T T T T T T T T T T	Streptomyces seoulensis panA		sp:GLNQ_ECOLI Escherichia coli K12 glnQ	and the second s
<i>35</i>	db Match		gp:SC8F4_22 S		sn.Y01K MYCTU		1	2712 gp:AF047034_4 S		Sp.GLNQ_ECOLI E	
	ORF (bp)	243		101		27.	$\neg \neg$		1476	789	983
45 .	Terminal	7377484	2378276	2378480	COPOICS	23/0004	2379426 2379770	2382744	2380765	2382827	2385426
50	Initial (nt)	; 6	5958 2377899	0000000	2870167	23/9312		2380033	5963 2382240	5964 2383615	7304464
	SEQ	(8.8)				2950	5961	5962			
	Q a	₹ !	2 8	15	2 5	8	5	32	33	54	

											-	 -		 _	1			T		\neg	
		transcriptional regulator		hypothetical protein		pyruvate uerryurugenase component	And the second or all terrine	transport ATP-binding protein		ribose transport system permease	Transfer de la constant de la consta	hypothetical protein	calcium binding protein		lipase or hydrolase	acyl carier protein	N-acetylglucosamine-6-phosphate deacetylase		hypothetical protein		
(a.a.)		135		134		ULG		261		283		286	125		352	75	253		289		
(%)		57.8	İ	77.6		78.9		62.8		58.7		62.9	55.2		55.7	0.08	75.5		65.7		
(%)		30.4		55.2		55.9		33.7		25.4		26.2	41.6		29.6	42.7	43.9		33.6		
Homologous gene		Streptomyces coelicolor A3(2) SCBF4, 22c		Mycobacterium tuberculosis H37Rv Rv2239c		Streptomyces seoulensis pdhA		Escherichia coli K12 glnQ		Bacillus subtilis 168 rbsC		Rickettsia prowazekii Madrid E RP367	Dictyostelium discoideum AX2		Streptomyces coelicolor A3(2) SC6G4.24	Myxococcus xanthus ATCC 25232 acpP	Escherichia coli K12 nagD		Deinococcus radiodurans DR1192		
db Match		gp:SC8F4_22		sp:Y01K_MYCTU		gp:AF047034_4		sp.GLNQ_ECOLI		LISOVA CSAG.	osova_osav.ds	pir:H71693	sp.CBPA_DICDI		gp:SCEG4_24	SP.ACP_MYXXA	LIODE ECOIL		gp:AEC01968_4		
(gg)	243	378	198	429	345	2712	1476	789	963	9	888	939	810	372	1014	291	2,0	020	1032	17.4	-
(nt) (br	2377484	2378276	2378489	2378884	2379770	2382744	2380765	2382827	2385426	20002	2383077	2384509	2386580	2385913	2386614	2387957		700057	2389869	KEKOOCC	
(nt)	2377726	2377899	2378292	2379312	2379426	2380033	2382240	2383615	DANARC		2384509	2385447	2385771	 2386284	2387627	2387667		/66/862	2388838		2390904
2 2			5959		5961		5963	5964	COCK	coec	5966	5967	5968	5969	5970	5971		2972	5973		5974
	457	+	459		461		463				466	2467	246B	2469	2470	2471		2472	2473		2474

5	
10	
15	
20	•
25	-
30	
' 35	
40	
45	
50	

	Function	hypothetical protein						alkaline phosphatase D precursor		hypothetical protein	hypothetical protein		DNA primase	ribonuclease Sa			L-glutamine. D-fructose-6-phosphate amidotransferase			deoxyguanosinetriphosphate triphosphohydrolase	hypothetical protein
	Matched length (a.a.)	271						530		594	89		633	98			929			414	171
	Similarity (%)	75.3						64.7		73.1	72.1		82.9	67.4			82.2			76.3	59.7
	Identity (%)	52.4						34.2		44.4	41.2		59.1	49.0			59.1			54.6	30.4
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC4A7.08						Bacillus subtilis 168 phoD		Streptomyces coelicolor A3(2) SCI51.17	Mycobacterium tuberculosis H37Rv Rv2342		Mycobacterium smegmalis dnaG	Streptomyces aureofaciens BMK			Mycobacterium smegmatis mc2155 glmS			Mycobacterium smegmatis dgt	Neisseria meningitidis NMA0251
	db Match	gp:SC4A7_8						sp:PPBD_BACSU		gp:SCI51_1/	pir:G70661		prf:2413330B	gp:XXU39467_1			gp:AF058788_1			prf 2413330A	gp:NMA1Z2491_23 5
	ORF (bp)	825	492	171	546	465	342	1560	714	1836	240	675	1899	462	243.	636	1869	324	1152	1272	675
	Terminal (nt)	2391184	2392075	2392579	2393970	2393973	2394935	2396763	2395273	2399099	2399397	2399668	2399405	2401834	2402080	2402530	2402144	2404846	2406822	2404987	2406262
	Initial (nt)	2392008	2392566	2393349	2393425	2394437	2394594	2395204	2395986	2397264	2399158	2400342	2401303	2401373	2401838	2403165	5990 2404012	2404523	2405571		5994 2406936
	SEQ NO.	5975	5976	2265	5978	5979	5980	5981	5982	5983	5984	5985	5986	5987	5988	5989		5991	5992	5993	5994
	SEQ NO.		2476	2477	2478	2479	2480	2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2492	2493	2494

														$\overline{}$				1			
5		Function	yein	yein	11. 14. 14. 14.	inclase	Itory protein, arsk	ferric uptake regulation protein	hypothetical protein (conserved in C. glutamicum?)	hypothelical membrane protein	undecaprenyl diphosphate synthase	rioto	Otein	Era-like G11binding protein	hypothetical membrane protein	rotein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	phosphate starvation inducible protein	vrotein		
10		ū	hypothetical protein	hypothetical protein		glycyl-tRNA syninetase	bacterial regulatory protein, family	ferric uptake re	hypothetical pr C.glutamicum?	hypothetical m	undecaprenyl	o locitoria.	hypothelical prolein	Era-like G1F-r	hypothetical m	hypothetical protein	Neisserial poly be useful antiq diagnostics	phosphate sta	hypothetical protein		
15	podotol	Matched length (a.a.)	692	138		208	68	132	529	224	233	, ,	245	296	432	157	85	344	248	-	
20		Similarity (%)	63.6	54.4		6.69	73.0	70.5	46.7	67.0	71.2		74.3	70.3	82.4	86.0	50.0	84.6	75.4		
*		Identity (%)	31.1	24.6		46.1	49.4	34.9	24.8	40.6	43.4	<u> </u>	45.7	39.5	52.8	65.0	45.0	61.1	44.0		
- 25	tinued)	jene	culosis	ıster		1B8	rculosis	fur	rculosis	olor A3(2)	8-P 26 uppS	o di con	erculosis	moniae era	erculosis	erculosis	dis	erculosis	color A3(2)		
30 	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2345	Drosophila melanogaster CG10592		Thermus aquaticus HB8	Mycobacterium tuberculosis	Escherichia coli K12 fur	Mycobacterium tuberculosis H37Rv Rv1128c	Streptomyces coelicolor A3(2)	Micrococcus lutelly B-P 26 uppS	ואוכוסיסיכים ומיפים	Mycobacterium tuberculosis H37Rv Rv2362c	Streptococcus pneumoniae era	Mycobacterium tuberculosis H37Rv Rv2366	Mycobacterium tuberculosis	Neisseria meningitidis	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2)	SCC/7.19C	
35 40		db Match	pir.B70662	gp.AE003565_26		nir S58522		Ę	pir.A70539	dp. AF162938 1		sp.UPPS_MICLU	pir.A70586	qp:AF072811_1	sp.Y1DE_MYCTU	Sp. YN67_MYCTU	GSP:Y75650	Sp. PHOL MYCTU			
		ORF (bp)	2037 p	486 g	582			1.		792		729	726	915	1320	588	264	1050		-+	942
45		Terminal (nt)	2409029	2409779	2410280	2410056	2412948	7447473	2415118	241579B	0670147	2416371	2417222	2417969		2420313		000000			2423791
50		Initial (nt)	2406993	2410264	2410B61		2412330	2527.7	2412992	0000	6002 2410033	2417099	6004 2417947	241883	2420309	2420900	2420973		242 1342	2422697	2511 6011 2422850
		SEO	(a.a.) 5995	5996	-		2886	CEEC	6000			6003	6004	2002		5002			6009	6010	1 601
55			(DNA) 2495			_	2498	5647	2500		2502	2503	2504	3030	2506	7030	2508		2509	2510	2511

_	_
3	į
70000000	
3	
-	_
707	
۲	_

·

SEO	-																		
SEO Initial Terminal ORF Ub Match Homologous gene (%) (%		Function	heat shock protein dnaJ	heat-inducible transcriptional repressor (groEL repressor)	oxygen-independent coproporphyrinogen III oxidase	agglutinin attachment subunit precursor			long-chain-fatty-acidCoA ligase	4-aipha-giucanotransferase	ABC transporter, Hop-Resistance protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	polypeptides predicted to be useful antigens for vaccines and diagnostics			peptidyl-dipeptidase	carboxylesterase	glycosyl hydrolase or trehalose synthase	hypothetical protein
SEO		Matched length (a.a.)	380	334	320	134			611	738	604	68	107			069	453		449
SEO		Similarity (%)	77.4	79.6	64.1	64.9			75.1	55.4	64.4	51.0	53.0			68.3	45.7	84.9	58.8
SEO Initial (nt) (bp) db Match (a a) (nt) (nt) (bp) db Match (a a) (nt) (bp) db Match (a b) 2423845 2422700 1146 prf.24213428 (a c) 2423845 2422700 1146 prf.2421342A (a c) 2424965 990 prf.2318256A (a c) 2424965 990 prf.2318256A (a c) 2427468 2424965 990 prf.2318256A (a c) 2427468 242699 519 sp.AGA1_YEAST (a c) 2430028 2428184 1845 gp.SC6G10_4 (a c) 2430296 2432413 2118 sp.MALQ_ECOLJ (a c) 2432508 2434370 1863 gp.AB005752_1 (a c) 2434207 2433875 333 GSP·Y74829 (a c) 2434776 2434805 2034 sp.DCP_SALTY (a c) 243683 2436804 1179 gp.AF064523_1 (a c) 2438113 2439906 1794 pir.G70983 pr.H70943		Identity (%)	47.1	48.2	33.1	36.6			48.0	28.3	29.5	44.0	47.0			40.3	24.1	65.2	32.1
SEQ Initial Terminal ORF (a a) (nt) (ht) (bp) (bp) (6012 2423845 2422700 1146 (6013 2424937 2423915 1023 (6014 2425954 2424965 990 (6016 2427468 2426776 693 (6016 2427468 2426776 693 (6016 2430028 2432413 2118 (6019 2430296 2432413 2118 (6020 2434207 2433875 333 (6022 2434776 2433875 333 (6024 2434776 2434805 2034 (6026 24388113 2439906 1799 (6027 2438813 2439906 1799 (6027 2438813 2439906 1799	lable I (collinged)	Homologous gene	Streptomyces albus dnaJ2	Streptomyces albus hrcA	Bacillus stearothermophilus hemN	Saccharomyces cerevisiae YNR044W AGA1			Streptomyces coelicolor A3(2) SC6G10.04	Escherichia coli K12 malQ	Lactobacillus brevis plasmid horA	Neisseria gonorrhoeae	Neisseria meningitidis			Salmonella typhimurium dcp	Anisopteromalus calandrae	Mycobacterium tuberculosis H37Rv Rv0126	Mycobacterium tuberculosis H37Rv Rv0127
SEQ Initial Terminal NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		db Match			prf.2318256A					sp:MALQ_ECOLI		GSP:Y74827	GSP:Y74829						pir:H70983
SEQ Initial Terminal NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		ORF (bp)	1116	1023	980	519	693	378	1845	2118	1863	255	333	180	204	2034	1179	1794	1089
SEO NO. (a a) (b 2) (b 2) (c		Terminal (nt)	2422700	2423915	2424965	2426699	2426776	2427807	2428184	2432413	2434370	2433614	2433875	2434440	2434573		2438049	2439906	2440994
		Initiat (nt)			2425954	2426181	2427468					2433868		2434619	2434776	2436838	2436871	2438113	2439906
			6012	6013	6014	6015	6016	6017	6018	6019	6020	6021	6022	6023		6025	6026	6027	6029
		SEQ NO. (DNA)	2512	2513	2514	2515		2517	2518	2519	2520	2521	2522		2524	2525	2526	2527	2528

EP 1 108 790 A2

	_			·-T				_				\neg		\neg	ī	T	T	$\overline{}$			I	
10		Function	isopentenyl-diphosphate Delta- isomerase						beta C-S lyase (degradation of aminoethylcysteine)	branched-chain amino acid transport system carrier protein (isoleucine uptake)	alkanal monooxygenase alpha chain		maionale transporter	glycolate oxidase subunit	transcriptional regulator		hypothetical protein		heme-binding protein A precursor (hemin-binding lipoprotein)	oligopeptide ABC transporter (permease)	dipeptide transport system permease protein	oligopeptide transport ATP-bindirg protein
			isopenteny isomerase						beta C- aminoe	branche system uptake)	alkanal		malona	glycola	transcr		hypoth		heme-t (hemin	oligopeptide (permease)	dipepti perme	oligope protein
15		Matched length (a.a.)	189						325	426	343		324	483	203		467		546	315	271	372
20		Similarity (%)	57.7						100 0	100 0	49.0		60.5	55.1	65.0		57.6		55.5	73.3	74.5	66.4
Đ		Identity (%)	318						99.4	99.8	21.6		25.9	27.7	25.6		22.5		27.5	40.0	43.2	37.4
25 :	Table 1 (continued)	as gene	einhardlii ipi1						glutamicum J	glutamicum	A		siloti mdcF	(12 glcD	(12 yd!H		nurium ygiK		Jenzae Rd	68 appB	(12 dppC	(12 oppD
30	Table 1 (c	Homologous gene	Chlamydomonas reinhardlii ipi1		-				Corynebacterium glutamicum ATCC 13032 aecD	Corynebacterium glutamicum ATCC 13032 brnQ	Vibrio harveyi luxA		Sinorhizobium meliloti mdcF	Escherichia coli K12 glcD	Escherichia coli K12 ydfH		Salmonella typhimurium ygiK		Haemophilus influenzae Rd H10853 hbpA	Bacillus subtilis 168 appB	Escherichia coli K12 dppC	Escherichia coli K12 oppD
35 40		db Malch	pir. T07979						gp.coRcsLYs_1	sp.BRNQ_CORGL	sp.LUXA_VIBHA		gp:AF155772_2	sp.GLCD_ECOLI	sp:YDFH_ECOLI		sp:YGIK_SALTY		sp:HBPA_HAEIN	sp:APPB_BACSU	sp.DPPC_ECOLI	prf 2305258MR
		ORF (bp)	585	222	438	1755	099	519	975	1278	978	525	927	2844	711	282	1347	423	1509	996	828	1437
45		Terminal (nt)	2441005	2441890	2442792	2441602	2443356	2444033	2445709	2446993	2447998	2450323	2450859	2451794	2455435	2455452	2455720	2457337	2459371	2460336	2461167	2462599
50		Initial (nt)	2441589	2441669	.2442355	2443356	2444015	6034 2444551	6035 2444735	2445716	2447021	2450844	2451785	2454637	2454725	2455733	6043 2457066	2457759		2459371	2460340	2461163
		SEO		6030	6031	6032	6033	6034	6035	9609	6037		6039	6040	6041	6042		6044		6046	6047	6048
55			2529	2530				2534	2535	2536	2537			2540	2541	$\overline{}$	2543	2544	2545	2546	2547	2548

10
15
20
25
30 -
3 5
40
45
50
55

				_							τ.—		_	,		_r — —				 -
	Function	hypothetical protein	hypothetical protein	ribose kinase	hypothetical membrane protein		sodium-dependent transporter or odium Bile acid symporter family	apospory-associated protein C		thiamine biosynthesis protein x	hypothetical protein	glycine betaine transporter				large integral C4-dicarboxylate membrane transport protein	small integral C4-dicarboxylate membrane transport protein	C4-dicarboxylate-binding periplasmic protein precursor	extensin l	GTP-binding protein
	Malched length (a.a.)	106	157	00ε	466		284	295		133	197	601				448	118	227	46	603
	Similarity (%)	44.0	0.83	0 59	64.6		61.6	51.2		100.0	65.5	7.17				71.9	73.7	59.0	73.0	83.6
	identity (%)	35.0	29.3	410	39.9		31.3	28.5		100.0	42.6	39.8				346	33.9	28.2	63.0	58.7
Table 1 (continued)	Homologous gene	Aeropyrum pernix K1 APE1580	Aquifex aeolicus VF5 aq_768	Rhizobium etli rbsK	Streptomyces coelicolor A3(2) SCM2, 16c		Homo sapiens	Chiamydomonas reinhardtii		Corynebacterium glutamicum ATCC 13032 thiX	Mycobacteriophage D29 66	Corynebacterium glutamicum ATCC 13032 betP				Rhodobacter capsulatus dctM	Klebsiella pneumoniae dctQ	Rhodobacter capsulatus B10 dctP	Lycopersicon esculentum (tomato)	Bacillus subtilis 168 lepA
	db Match	PIR:G72536	pir:D70367	prf:2514301A	gp:SCM2_16		sp:NTCI_HUMAN	gp:AF195243_1		sp:THIX_CORGL	sp:VG66_BPMD	sp.8ETP_CORGL				prf:2320266C	gp:AF186091_1	sp:DCTP_RHOCA	PRF:1806416A	sp.LEPA_BACSU
	ORF (bp)	507	549	903	1425	303	972	846	366	570	588	1890	966	1508	384	1311	480	747	243	1845
	Terminal (nt)	2461543	2462602	2464143	2455768	2465465	2456038	2467922	2470678	2472819	2472893	2475542	2477492	2479251	2479762	2479898	2481213	2481734	2484087	2482548
	Initial (nt)	2462049	2463150	2463241	2464344	2465767	2467009	2467077	2470313	2472250	2473480	2473653	2476497	6061 2477644	2479379	2481208	2481692	2482480	2483845	2484392
ĺ	SEQ NO. (a a.)	6049	6050	6051	6052	6053	6054	6055	6056	6057	6058	6029	0909	6061	909	6063	6064	6065	9909	6067
	SEQ NO (DNA)	2549	2550	2551	2552	2553	2554	2555	2556	2557	2558	2559	2560	2561	2562	2563	2564	2565	2566	2567

	Function	hypothelical protein	30S ribosomal protein S20	thrreonine efflux protein	ankyrin-iike protein	hypothetical protein	late competence operon required for DNA binding and uptake	late competence operon required for DNA binding and uptake		hypothetical protein	phosphoglycerate mutase	hypothetical protein	hypothetical protein		gamma-glutamy; priospriate reductase or glutamate-5- semialdehyde dehydrogenase	D-isomer specific 2-hydroxyacid dehydrogenase		GTP-binding protein
	Matched Iength (a a)	185	85	210	129	313	527	195		273	235	117	197		432	304		487
	Similarity (%)	69.7	72.9	67.1	80.6	74.1	49.7	63.6		66.3	66.4	86.3	85.3		8.66	100.0		78.2
	Identily (%)	41.5	48.2	30.0	61.2	46.0	21.4	30.8		34.8	46.8	55.5	68.0		99.1	99.3		58.9
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2405	Escherichia coli K12 rpsT	Escherichia coli K12 rhtC	Streptomyces coelicolor A3(2) SC6D7.25.	Mycobacterium tuberculosis H37Rv Rv2413c	Bacillus subtilis 168 comEC	Bacillus subtilis 168 comEA		Streptomyces coelicolor A3(2) SCC123.07c.	Mycobacterium tuberculosis H37Rv Rv2419c	Mycobacterium tuberculosis H37Rv Rv2420c	Streptomyces coelicolor A3(2) SCC123.17c.		Corynebacterium glutamicum ATCC 17965 proA	Corynebacterium glutamicum ATCC 17965 unkdh		Streptcmyces coeticolor A3(2) obg
	db Malch	pir.H70683	Sp.RS20 ECOLI	SP.RHTC_ECOLI	gp:SC6D7_25	pir:H70684	sp.CME3_BACSU	sp.CME1_BACSU	-	gp:SCC123_7	pir.F70685	pir.G70685	gp:SCC123_17		1296 sp:PROA_CORGL	sp:YPRA_CORGL		503 gp:D87915_1
	0,8F (bp)	609	261	699	405	975	1539	582	822	822	708	471	678	1023	1	912	711	
	Terminal (nl)	2485269	2485733	2485801	2486477	2486910	2487912	2489573	2491732	2490290	2491151	2491873	2492501	2493215	2494339	2495696	2497513	·
	Inital (nt)	2484561	2485473			2487884	2489450	2490154	2490911		2491858	2492343	2493178	2494237		2496607	2496803	
	SEQ		0909			6072	6073	6074	6075		2209	6078	6029	6080		6082	6083	
	SEQ		0000	25.70		2572	2573	2574	2575	2576	2577	2578	2579	2580	2581	2582	2583	2584

5		Function	xanthine permease	2,5-diketo-D-gluconic acid reductase			50S ribosomal protein L27	50S ribosomal protein L21	ribonuclease E				hypothetical protein	transposase (insertion sequence IS31831)	hypothetical protein	hypothetical protein.	nucleoside diphosphate kinase		hypothetical protein	hypothetical protein	hypothetical protein
15		Matched length (a a)	422 ×	276 2			81	101	986				195	436	117	143	134		92	112	118
20		Similarity (%)	77.3	81.9			92.6	82.2	56.6				82.6	100 0	76.9	67.8	9.68		67 4	64.3	68.6
•.		Identity (%)	39.1	61.2			80.3	56.4	30.1				61.0	99.1	51.3	37.B	70.9		34.8	36.6	33.9
25 *	Table 1 (continued)	us gene	58 pbuX	sp. ATCC			seus IFO13189	seus IFO13189	<12 rne				elicolor A3(2)	ı glutamicum	elicolor A3(2)	elicolor A3(2)	megmatis ndk		iodurans R1	uberculosis	uberculosis
<i>30</i>	Table 1 (Homologous gene	Bacillus subtilis 168 pbuX	Corynebacterium sp. ATCC 31090			Streptomyces griseus IFO13189 rpmA	Streptomyces griseus IFO13189 obg	Escherichia coli K12 rne				Streptomyces caelicolor A3(2) SCF76.08c	Corynebacterium glutamicum ATCC 31831	Streptomyces coelicolor A3(2) SCF76.08c	Streptomyces coelicolor A3(2) SCF76.09	Mycobacterium smegmatis ndk		Deinococcus radiodurans R1 DR1844	Mycobacterium tuberculosis H37Rv Rv1883c	Mycobacterium tuberculosis H37Rv Rv2446c
35 40		db Match	sp.PBUX_BACSU	pir 140838			sp:RL27_STRGR	prf:2304263A	Sp.RNE_ECOLI				gp:SCF76_8	pir.S43613	gp:SCF76_8	gp:SCF76_9	gp:AF069544_1		gp:AE002024_10	pir:H70515	pir.E70863
		ORF (bp)	1887 sp	843 pii	621	396	264 sp	303 pr	2268 St	549	573	747	609	1308 pi	378 91	450 g	408	350	342 g	455 p	423 p
45		Terminal (nt)	2501669	2501735	2503355	2504265	2503984	2504300	2504831	2507663	2507710	2508840	2509530	2509523	2511423	2511876	2511949	2512409	2513144	2513154	2513692
50		Initial (nt)	2499783		2502735	+	<u> </u>	2504602	2507098	2507115	6093 2507138	2508094		2510830	2511046	2511427	2512356	2512768		2513618	2514114
		SEQ	(a a.)		6087	6088	6089	0609	6091	6092		5094	6095	9609	2609	8609	6609	6100		6102	2603 6103
55		SEQ NO.	(DNA)	2586	2587	2588	2589	2590	2591	2592	2593	2594	2595	2596	2597	2598	2599	2600	2601	2602	2603

5	Function	ate synthetase				hetase	oligopeptide ABC transport system substrate-binding protein	ein dnaK	ylase	genase	egulator	otein	vanillate demethylase (oxygenase)	enol 4-	u	porter	class-III heat-shock protein or ATP-dependent protease	otein	succinyl CoA:3-oxoadipate CoA transferase beta subunit	-oxoadipate CoA ha subunit
10	ŭ.	folyl-polyglutamate synthetase				valyl-tRNA synthetase	oligopeptide ABC transposupside substrate-binding protein	heat shock protein dnaK	lysine decarboxylase	malate dehydrogenase	transcriptional regulator	hypothetical protein	vanillate demet	pentachlorophenol 4- monooxygenase reductase	transport protein	malonate transporter	class-III heat-shock dependent protease	hypothetical protein	succinyl CoA:3-oxoadipa transferase beta subunit	succinyl CoA:3-oxoadipate transferase alpha subunit
15	Matched length (a a)	451				915	.521	508	170	319	207	208	357	338	444	286	430	366	210	251
20	Similarity (%)	9.62				72.1	58.5	54.9	71.2	76.5	56.5	51.4	68.6	59.2	76.8	58.4	82.8	73.0	85.7	84.5
•	Identity (%)	55.4				45.5	24.2	26.2	42.9	56.4	24.6	26.0	39.5	32.8	40.8	28.0	59.8	45.6	63.3	60.2
os continued)	us gene	licolor A3(2)				38 balS	38 oppA	38 dnaK	ns ATCC	ıs ATCC 33923	elicolor A3(2)	phA	vanA	ava ATCC	vanK	oniae mdcF	Xqi	elicolor A3(2)	2065 pcaJ	. 2065 pcal
20 Table 1 ((Hamologous gene	Streptomyces coelicolor A3(2) folC				Bacillus subtilis 168 balS	Bacillus subtilis 168 oppA	Bacillus subtilis 168 dnaK	Eikenella corrodens ATCC 23824	Thermus aquaticus ATCC 33923 mdh	Streptomyces coelicolor A3(2) SC4A10.33	Vibrio cholerae aphA	Acinetobacter sp. vanA	Sphingomonas flava ATCC 39723 pcp□	Acinetobacter sp. vanK	Klebsiella pneumoniae mdcF	Bacillus subtilis clpX	Streptomyces caelicolor A3(2) SCF55.28c	Streptomyces sp	Streptomyces sp. 2065 pcal
<i>35</i>	db Match	prf.2410252B				sp:SYV_BACSU	pir:A38447	sp:DNAK_BACSU	gp:ECU89166_1	SP MDH_THEFL	gp:SC4A10_33	gp.AF065442_1	prf.2513416F	gp:FSU12290_2	prf.2513416G	gp:KPU95087_7	prf:2303274A	gp:SCF55_28	gp:AF109386_2	gp.AF109386_1
	ORF (bp)	1374 p	512	714	563	2700 s	1575	1452	585 (984	111	576	1128	975	1425	930	1278	1086	633	750
45	Terminal (nt)	2514114	2516273	2516956	2517751	2515637	2518398	2521660	2521667	2522265	2524337	2524340	2526226	2527207	2528559	2528551	2529484	2531976	2531969	2532604
50	Initial (nt)	2515487	2515662	2516243	2517089	2518336	2519972	2520209	2522251	2523248	2523561	2524915	2525099		2527135	2529480		2530991	2532601	2622 6122 2533353
	SEQ NO.		6105	6106	6107	6108	6109	6110	6111	6112	6113	6114			6117	_		6120	6121	6122
55	SEQ NO.	2604	2605	2606	2607	2608	2609	2610	2611	2612	2613	2614	2615	2616	2617	2618	2619	2620	2621	2622

EP 1 108 790 A2

€	5
(nonlined)	5
1 (00	3
Table	ב ב ב

.

_																			
	Function	protocatechuate catabolic protein	beta-ketothiolase		3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase	transcriptional regulator	3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolacione decarboxylase		3-carboxy-cis, cis-muconate cycloisomerase	protocatechuate dioxygenase alpha subunit	protocatechuate dioxygenase beta subunit	hypothetical protein	muconolactone isomerase		muconate cycloisomerase		catechol 1,2-dioxygenase		toluate 1,2 dioxygenase subunit
	Matched length (a.a.)	251	406		256	825	115		437	214	217	273	92		372		285		437
	Similarity (%)	82 5	71.9		76.6	43.0	89.6		63.4	9.07	91.2	48.7	81.5		84.7		88.4		85.6
	Identity (%)	58.2	44.8		50.8	23.6	78.3		39.8	49.5	74.7	26.4	54.4		60.8		72.3		62.2
ומחוב ו (בחוווותבת)	Homologous gene	Rhodococcus opacus 1CP pcaR	Ralstonia eutropha bktB		Rhodococcus opacus pcal.	Streptcmyces coelicolor A3(2) SCM1.10	Rhodococcus opacus pcal		Rhodococcus opacus pcaB	Rhodococcus opacus pcaG	Rhodococcus opacus pcaH	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis catC		Rhodococcus opacus 1CP calB		Rhodococcus rhodochrous catA		Pseudcmonas putida plasmid pDK1 xylX
	db Match	prf:2408324F	prf 2411305D		prf.2408324E	2061 gp:SCM1_10	prf.2408324E		prf.2408324D	prf:2408324C	prf.2408324B	pir:G70506	prf.2515333B		sp.CATB_RHOOP		prf:2503218A		470 gp:AF134348_1
	ORF (tp)	792	1224	912	753	2061	366	678	1116	612	069	1164	291	771	1119	909	855	141	1470
	Terminal (nt)	2534182	2535424	2534257	2536182	2538256	2538248	2540230	2538616	2539709	2540335	2541187	2542512	2543813	2542818	2544867	2544022	2544928	2546784
	Initial (nt)	2533391	2534201	2535168	2535430	2536196	2538613	2539553	2539731	2540320	2541024	2542350	2542802	2543043	2543936	2544262	2544976	2545069	2640 6140 2545315
	SEQ NO.		6124	6125	6126	5127	6128	6129	6130	6131	6132	6133	6134	6135	6136	6137	6138	6139	6140
	SEQ NO.	2623	2624	2625	2626	2627	2628	2629	2630	2631	2632	2633	2634	2635	2636	2637	2638	2639	2640

5		Function	enase subunit	enase subunit	hexa-3,5-diene rogenase	amily with ATP-	ansport protein or e transporter	ne transport	lp protease 2	ip protease 1	_	yl isomerase) n)	r.	orotein	u				in	
10		Fun	toluate 1,2 dioxygenase subunit	toluate 1,2 dioxygenase subunit	1,2-dihydroxycyclohexa-3,5-diene carboxylate dehydrogenase	regulator of LuxR family with ATP-binding site	transmembrane transport protein or 4-hydroxybenzoate transporter	benzoate membrane transport protein	ATP-dependent Clp protease proteolytic subunit 2	ATP-dependent Clp proteas proteolytic subunit 1	hypothetical protein	trigger factor (prolyl isomerase) (chaperone protein)	hypothelical protein	penicillin-binding protein	hypothetical protein		transposase		hypothetical protein	transposase
15		Matched length (aa)	161	342	27.7	979	435	388	197	198	42	417	160	336	115		142		35	75
20		Similarity (%)	83.2	81.0	61.4	48.6	64.4	66.2	88.3	85.9	71.4	66.4	63.1	50.9	58.3	-	73.2		82.9	78.7
•		Identity (%)	60.3	51.5	30.7	23.3	31.3	29.9	69.5	62.1	42.9	32.1	32.5	25.3	27.8		54.2		57.1	50.7
25 25	millueu)	gene	ı plasmid	plasmid	plasmid	opolis thcG	sceticus	aceticus	olor M145	olor M145	s CRF154	tig	olor A3(2)	ans LC411			iatum ORF1		riatum ORF1	riatum ORF1
30	lable i (confined)	Homologous gene	Pseudomonas putida plasmid pDK1 xylY	Pseudomonas putida plasmid pDK1 xylZ	Pseudomonas putida plasmid pDK1 xyIL	Rhodocaccus erythropolis thcG	Acinetobacter calcoaceticus pcaK	Acinetobacter calcoaceticus benE	Streptcmyces coelicolor M145 clpP2	Streptcmyces coelicolor M145 clpP1	Sulfolosus islandicus CRF154	Bacillus subtilis 168 tig	Streptomyces coelicolor A3(2) SCD25.17	Nocardia lactamdurans LC411 pbp	Mus musculus Moa1		Corynebacterium striatum ORF1		Corynebacterium striatum ORF1	Corynebacterium striatum ORF1
35			ا م م		<u>a</u> a					İ	4		05 07		=				Ŭ	$\check{\sqcap}$
40		db Match	gp:AF134348_2	gp:AF134348_3	gp:AF134348_4	gp.REU95170_1	sp:PCAK_ACICA	sp:BENE_ACICA	gp:AF071885_2	gp:AF071885_1	qp:SIS243537	sp:TIG_BACSU	gp:SCD25_17	sp:PBP4_NOCLA	prf.2301342A		prf.2513302C		prf.2513302C	prf.2513302C
		ORF (bp)	492	1536	828	2685	1380	1242	624	603	150	1347	495	975	456	249	438	150	126	264
45		Terminal (nt)	2547318	2548868	2549695	2552455	2553942	2555267	2555317	2555978	2556748	2556760	2559103	2560131	2560586	2561363	2561483	2562242	2561990	2562078
50		Initial (nt)	2546827	2547333	2548868	2549771	2552563	2554026	2555940	2556580	2556599		2558609	2559157	2560131		2561920	2562093		2562341
		SEO NO (a a)	5141	5142	6143	6144	6145	6145	6147	6148	6149	6150	6151	6152	6153		2655 6155	6156	_	6158
55		SEQ NO.	2641	2642	2643	2644	2645	2646	2647	2648	2649	2650	2651	2652	2653	2654	2655	2656	2657	2658

_	
ued)	
Iti	
3	
le 1	
Tab	

						ושפור ו (בפוניוומבמ)				
SEQ NO (DNA)	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
2659	6159	2562776	2562387	390						
2650	6160	2562963	2563847	885			_			
2661	6161	2564402	2563932	471	sp:LACB_STAAU	Staphylococcus aureus NCTC 8325-4 lacB	40.0	71.4	140	galactose-6-phosphate isomerase
2992	6162	2565245	2564550	969	sp:YAMY_BACAD	Bacilius acidopullulyticus ORF2	26.2	58.1	248	hypothetical protein
2663	6163	2566231	2565623	609	pir A70866	Mycobacterium tuberculosis H37Rv Rv2466c	56.8	80.9	199	hypothetical protein
2664	6164	2565345	2568945	2601	SP. AMPN_STRLI	Streptomyces lividans pepN	47.5	70.5	890	aminopeptidase N
2665	6165	2569211	2570293	1083	pir.B70206	Borrelia burgdorferi BB0852	25.1	58.1	358	hypothetical protein
2666	6166	2571460	2570309	1152						
2667	6167	2571510	2572175	999					:	
2568	6168	2572193	2572348	156						
2669	6169	2572677	2572351	327	gp.AF139916_3	Brevibacterium linens ATCC 9175 cntl	61.5	81.7	104	phytoene desaturase
2670	6170	2572977	2572807	171						
2671	6171	2573770	2573393	378						
2672	6172	2573864	2572659	1206	sp.CRTJ_MYXXA	Myxococcus xanthus DK1050 carA2	31.2	63.8	381	phytoene dehydrogenase
2573	6173	2574718	2573843	876	sp.CRTB_STRGR	Streptomyces griseus JA3933 crtB	31.4	58.6	. 290	phytoene synthase
2674	6174	2575898	2574780	1119	gp:LMAJ9627_3	Listeria monocytogenes IItB	25 8	47.7	392	mullidrug resistance transporter
2675	6175	2577213	2575981	1233						
2676	6176	2578872	2577232	1641	gp:SYOATPBP_2	Synechococcus elongatus	41.3	71.6	538	ABC transporter ATP-binding protein
2677	6177	2579760	2578879	882	sp:DPPC_BACFI	Bacillus firmus OF4 dppC	38.8	73.8	286	dipeptide transport system permease protein
2678	6178	2580707	2579769	939	pir S47696	Escherichia coli K12 nikB	33.2	62.0	316	nickel Iransport system permease protein
2679		6:79 2582417	2580711	1707						

5	
10	
15	
20	•
25	•
30	
35	
40	
45	
50	

																	$\overline{}$	
Function		acetylornithine aminotransferase	hypothetical protein	hypothetical membrane protein	acetoacetyl CoA reductase	transcriptional regulator, TetR family	polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter ATP-binding protein	globin	chromate transport protein	hypothetical protein	hypothetical protein		hypothetical protein	ABC transporter ATP-binding protein	hypothetical protein	hypothetical membrane protein	alkaline phosphatase
Matched length (a a)		411	482	218	235	240	94	238	126	396	196	127		55	563	172	700	536
Similarity (%)		63.5	47.9	79.4	60.0	55.0	47.0	65.1	0.77	60.4	68.9	61.4		0.09	79.6	62.2	26.7	52.6
Identity (%)		31.4	25.1	49.1	28.1	26.7	38.0	31.1	53.2	27.3	37.8	36.2		36.4	52.8	31.4	28.C	28.C
Homologous gene		Corynebacterium glutamicum ATCC 13032 argD	Mycobacterium tuberculosis H37Rv Rv1128c	Mycobacterium tuberculosis H37Rv Rv0364	Chromatium vinosum D phbB	Streptomyces coelicolor actil	Neisser.a meningilidis	Pseudomonas putida GM73 ttg2A.	Mycobacterium leprae MLCB1610.14c	Pseudomonas aeruginosa Plasmid pUM505 chrA	Mycobacterium tuberculosis H37Rv Rv2474c	Streptomyces coelicolor A3(2) SC6D10.19c		Aeropyrum pernix K1 APE1182	Escherichia coli K12 yijK	Mycobacterium tuberculosis H37Rv Rv2478c	Mycobacterium leprae o659	Bacillus subtilis phoB
db Match		sp:ARGD_CORGL	pir.A70539	sp:YA26_MYCTU	Sp. PHBB CHRVI			gp.AF106002_1	gp:MLCB1610_9	sp.CHRA_PSEAE	pir A70867	gp:SC6D10_19		pir.B72589	Sp:YJJK_ECOLI	pir.E70867	Sp:Y05L_MYCLE	pir.C69676
ORF (bp)	1941	1314	1584	747	708	738	441	792	393	1128	627	465	621	162	1668	615	2103	1419
Terminal (nt)	2584504	2585926	2587763	2588722	2588725	2590302	2591137	2591574	2592794	2593965	2593968	2594597	2595188	2595822	╀—	2597869		2602879
Initial (nt)	2582564	2584613	2586180	2587976	2589432			2592365	2592402	2592838	2594594	2595061	2595808					
SEQ NO.	6180		6182	6183	6184	6185		6187	6188									
SEQ NO.	2680	2681	2682	2683	2684	2685	2686	2687	2688	2689	2690	2691	2692	2693	2694	2695	2696	2697
	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (nt) (bp) (bp) (bp) (aa)	SEQ Initial NO. (nt) Terminal (pp) ORF (bp) db Match Homologous gene (sa.) Identity (%) Similarity (%) Ingth (a.a.) (a.a.) (nt) (nt) (hp) (a.a.) (a.a.)	SEQ (a1) Initial (a2) Terminal (bp) ORF (bp) db Match Homologous gene (9%) Identity (9%) Similarity (9%) Matched (194) 6180 2582564 2584564 1941 Corynebacterium glutamicum 31.4 63.5 411	SEQ Initial NO. Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO. (nt) (nt) (nt) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) </td <td>SEQ Initial (a3.) Terminal (bp) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO. (nt) (nt) (nt) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (h</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)</td> <td>SEQ (a a.) Initial (III) Terminal (III) ORF (III) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) >SEQ NO. Initial (nt) Terminal (nt) ORF (pp) db Match Homologous gene (9.8) Identity (9.8) Similarity (9.8) Matched (9.8) >SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (3a) NOO (141) (bp) db Match Homologous gene (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a)</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO. (4a.) (4b) (4b) db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td> <td>SEQ Initial Terminal ORF de Match Homologous gene Identity Smilanity length Matched (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) <</td> <td>SEQ Initial Terminal ORF de Match Homologous gene Identity Smilanity Impaired length NOO (n1) (p1) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp)<td> SEC</td><td>SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)</td><td> SEC Initial Terminal ORF ab Match Homologous gene (%) (%) (%) (aa) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (</td><td> SEC</td></td>	SEQ Initial (a3.) Terminal (bp) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)	SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO. (nt) (nt) (nt) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (h	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)	SEQ (a a.) Initial (III) Terminal (III) ORF (III) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) >NO. Initial (nt) Terminal (nt) ORF (pp) db Match Homologous gene (9.8) Identity (9.8) Similarity (9.8) Matched (9.8) Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (3a) NOO (141) (bp) db Match Homologous gene (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a) (7a)	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO. (4a.) (4b) (4b) db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	SEQ Initial Terminal ORF de Match Homologous gene Identity Smilanity length Matched (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) <	SEQ Initial Terminal ORF de Match Homologous gene Identity Smilanity Impaired length NOO (n1) (p1) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) <td> SEC</td> <td>SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)</td> <td> SEC Initial Terminal ORF ab Match Homologous gene (%) (%) (%) (aa) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (</td> <td> SEC</td>	SEC	SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)	SEC Initial Terminal ORF ab Match Homologous gene (%) (%) (%) (aa) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (SEC		

20	P
25	. .
30 -	
35	
40	

	_	
٠	-	3
	2	1
	q	υ
	٠	٠
	=	_
		_
	-	3
	7	=
	•	
	ç	2
	c	3
•		-
4		•
	O	١
	Ξ	ַ
	c	3
•	7	
	u	u

-			_			_													
	Function			multiple sugar-binding transport system permease protein	multiple sugar-binding transport system permease protein		maltose-binding protein	-	ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein		dolichol phosphate mannose synthase		aldehyde dehydrogenase	circadian phase modifier		hypothetical membrane protein	glyoxylate-induced protein	ketoacy: reductase	oligoribonuclease
	Matched length (a.a.)			279	292		462		386		154		207	183		412	255	258	179
	Similarity (%)			76.3	67.5		63.2		79.8		72.7		89.4	73.8		64.6	69.4	57.0	78.8
	Identity (%)			39.1	27.4		28.8		59.1		37.7		67.2	48.6		35.0	41.2	40.0	48.0
	Homologous gene			Streptococcus mutans INGBRITT msmG	Streptococcus mutans INGBRITT msmF		Thermoanaerobacterium thermosul amyE		Streptomyces reticuli msiK		Schizosaccharomyces pombe dpm1		Rhodococcus rhodochrous plasmid pRTL1 orf5	Synechococcus sp. PCC7942 cpmA		Thermologa maritima MSB8 TM0964	Escherichia coli K12 gip	Mycobacterium tuberculosis H37Rv Rv1544	Escherichia coli K12 orn
	db Match			sp:MSMG_STRMU	sp.MSMF_STRMU		prf.2206392C		prf.2308356A		prf.2317468A		prf:2516398E	prf.2513418A		pir:A72312	sp:GIP_ECCLI	pir.E70761	sp:ORN_ECOLI
	ORF (bp)	930	639	912	843	1674	1329	1242	1128	750	684	069	789	762	345	1182	750	798	657
	Terminal (nt)	2605502	2603945	2604609	2605527	2608117	2606561	2608185	2609512	2612272	2610848	2613151	2614500	2615410	2615795	2615939	2617995	2518869	2619538
	Initial (nt)	2604573	2604583	2605520	2606369	2606444	2607889	2609426	2610639	2611523	2611531	2612462	2613712	2614649	2615451	2617120	2617246	2618072	2618882
	SEQ NO (a a)	6198	6199	6200	6201	6202	6203	6204	6205	6206	6207	6208	6029	6210	6211	6212	6213	6214	6215
	SEQ NO (DNA)	2698	2699	2700	2701	2702		2704	2705	2706	2707	2708	2709	2710	2711	2712	2713	2714	2715

10		Function	ferric enterochelin esterase	lipoprotein				transposase (1S1207)			transcriptional regulator	glutaminase	sporulation-specific degradation regulator protein		uronate isomerase		hypothetical protein	pyrazinamidase/nicotinamidase	hypothetical protein	bacterioferritin comigratory protein	bacterial regulatory protein, telts family
15	100000	Matcheo length (a a)	454	398				436			131	358	97		335		291	185	75	141	114
20		Similarity (%)	50.9	71.9				8.66			63.4	69.3	72.2		60.9		45.0	74.6	80.0	73.8	61.4
•		Identity (%)	26 0	48.5			! i	99.5			32.8	35.2	42.3		29.0		32.0	48.1	42.7	46.8	32.5
25	able I (confined)	Homologous gene	terica iroD	Mycobacterium tuberculosis H37Rv Rv2516c lppS				Corynebacterium glutamicum ATCC 21086			Salmonella typhimurium KP1001 cytR	Rattus norvegicus SPRAGUE- DAWLEY KIDNEY	lis 168 degA		Escherichia coli K12 uxaC		Zea diploperennis perennial teosinte	Mycobacterium avium pncA	Mycobacterium tuberculosis H37Rv Rv2520c	Escherichia coli K12 bcp	Streptomyces coelicalor A3(2) SC111.01c
- - 35	able	Homole	Salmonella enterica iroD	Mycobacterium H37Rv Rv251				Corynebacter ATCC 21086			Salmonella ty cytR	Rattus norvegicus DAWLEY KIDNEY	Bacillus subtilis 168 degA		Escherichia		Zea diploper teosinte	Mycobacteri	Mycobacterium to H37Rv Rv2520c	Escherichia	Streptomyce SCI11.01c
40		db Match	24.2409378A	pir.C7C870				gp.SCU53587_1			gp.AF085235_1	sp.GLSK_RAT	pir. A36940		sp:UXAC_ECOL!		prf.1814452C	prf:232444A		en RCP ECOLI	
		ORF (bp)		1 6	645	150	246		707	639	453	1629	477	555	1554	501	1197	558		ARS	
45		Terminal (nt)		2620973	2623605	2623621	2624048	2624051		2625302	2628376	2626493	2628852	2628324	2630479	2631136	2632466	2633100			
50		Initial		2622181		—			003550	2626447								2632543			2634116
		SEO.		6216			6170			2770					_						6233
55				2716	_		81.77	2721	6	2777	2724	27.25	2726	7070	2728	2729	2730	17.24	27.37		2733

_	
Parit	2
ronir	5
-	-
alde	200
ř	ž

-

						(
SEQ NO. (DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched Jength (a.a.)	Function
2735	6235	2635151	2634747	405	gp:BAY15081_1	Corynebacterium ammoniagenes ATCC 6871 ppt1	56.6	75.9	145	phosphopantethiene protein transferase
2736	6236	2636589	2635165	1425	gp.AF237667_1	Corynebacterium glutamicum ImrB	52.4	9 58	473	lincomycin resistance protein
2737	6237	2636845	2637168	324	pir.S76537	Synechocystis sp. PCC6803	30.1	54.0	113	hypothetical membrane protein
2738	6238	2637653	2637240	414						
2739	6239	2647627	2638649	8979	pir:S2047	Corynebacterium ammoniagenes fas	62.3	93.6	3029	fatty-acid synthase
2740	6240	2649416	2648235	1182	gp:SC4A7_14	Streptomyces coelicolor A3(2) SC4A7.14	25.3	55.2	404	hypothetical protein
2741	6241	2649550	2650164	615	pir:D70716	Mycobacterium tuberculosis H37Rv Rv0950c	40.4	6.09	230	peptidase
2742	6242	2650441	2650902	462	sp:Y077_MYCT	Mycobacterium tuberculosis H37Rv Rv1343c	40.2	6'29	112	hypothetical membrane protein
2743	6243	2650986	2651339	354	sp:Y076_MYCLE	Mycobacterium leprae B1549_F2_59	37.2	0.69	113	hypothetical membrane protein
2744	6244	2652037	2651420	618	sp.Y03Q_MYCTU	Mycobacterium tuberculosis H37Rv Rv1341	55.0	7.97	202	hypotheticai protein
2745	6245	2652801	2652067	735	SP.RNPH_PSEAE	Pseudomonas aeruginosa ATCC 15692 rph	60.2	81.4	236	ribonuclease PH
2746	6246	2653254	2653009	245						
2747	5247	2654018	2653326	693						
2748	6248	2654660	2654079	582						
2749	6249	2656236	2654875	1362	sp:Y029_MYCTU	Mycobacterium tuberculosis H37Rv SC8A6.09c	29.0	58.2	428	hypothetical membrane protein
2750	6250	2656452	2656985	534	gp:AF121000_8	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	92.1	97.2	175	transposase (IS1628)
2751	6251	2657633	2656974	099						
27.52	6252	2658500	2657736	765	sp.Y03O_MYCLE	Mycobacterium leprae ats	46.0	74.4	250	arylsulfatase

10	
15	
20	
25	
30 -	
- 35	
40	
45	
50	

	Function	D-glutamate racemase		bacterial regulatory protein, marR family	hypothetical membrane protein		endo-type 6-aminohexanoale oligomer hydrolase	hypothetical protein	hypothetical protein		hypothetical protein		ATP-dependent helicase	hypothetical membrane protein	hypothetical protein	phosphoserine phosphatase		cytochrome c oxidase chain I	
	Matched length (a.a.)	284		147	225		321	200	105		428		647	313	222	310		575	
	Similarity (%)	99.3		70.8	69.3		58.3	58.5	17.1		80.8		53.3	60.1	52.0	61.0		74.4	
	Identily (%)	99.3		44.2	38.2		30.2	35.0	57.1		61.2		25.2	29.7	39.0	38.7		46.8	
Table 1 (continued)	Homologous gene	Corynebacterium glutarricum ATCC 13869 murl		Streptomyces coelicolor A3(2) SCE22.22	Mycobacterium tuberculosis H37Rv Rv1337		Flavobacterium sp. nylC	Mycobacterium tuberculosis H37Rv Rv1332	Mycobacterium tuberculosis H37Rv Rv1331		Mycobacterium tuberculosis H37Rv Rv1330c		Escherichia coli dinG	Mycobacterium tuberculosis H37Rv Rv2560	Streptomyces coelicolor A3(2) SC1B5.06c	Escherichia coli K12 serB		Mycobacterium tuberculosis H37Rv Rv3043c	
	db Match	prf.2516259A		gp:SCE22_22	sp Y03M_MYCTU		pir.A47039	sp.Y03H_MYCTU	sp:Y03G_MYCTU		sp.Y03F_MYCTU		1740 prf.1816252A	sp:Y0A8_MYCTU	pir:T34684	sp.SERB_ECOLI		pir.D45335	
	ORF (bp)	852	636	492	747	991	096	537	300	624	1338	305	1740	891	723	1017	1596	1743	308
	Terminal (nt)	2658606	2660131	2660147	2660671	2662455	2661417	2662331	2662883	2664060	2665397	2665992	2667854	2667870	2668839	2669557	2672721	2671063	2673255
	Initial (nt)	2659457	2659496	2660638 2660147	2661417	2661565	2662376	2662867	2663182	2663437		2665687	2666115	6265 2668760	2669561	2670573	2671126	2672805	2672950
	SEO NO	1 -	6254		6256	6257		6229	6260	6261	6262	6263	6264		9929	6267	6268	6569	6270
	SEO NO.		2754		2755	2757		2759	2760	2761	2762	2763			2766	2767	2768	2769	2770

EP 1 108 790 A2

Γ	1			T			\top	\top	П			1	1	اي						1	1	E Ce				
	Function	ribonucleotide reductase beta-chain		ferritin	sporulation transcription factor	iron dependent repressor or	diptheria toxin repressor	cold shock protein TIR2 precursor	hypothetical membrane protein	ribonucleotide reductase alpha-	Chain	SE I diodora	50S ribosomiai pioteili coo	NH3-dependent NAD(+) synthetase				hypothetical profein		hypothetical protein	alcohol dehydrogenase	Bacillus subtilis mmg (for mother cell	hypothetical protein		phosphoglucomutase	
	Matched length (a.a.)	752	5	159	256	3,75	677	124	20	707			41	279				257	1	96	337	459	284	5 	556	
	Similarity (%)	7 00	000	64.2	60.2	1 00	60.4	62.1	96.0	100.0			79.0	78.1				56.4		68.8	52.8	56.0	2 2 2	2.00	80.6	
	Identity (%)	,	28.	31.5	32.8		27.6	24.2	50.0	6 65	3		58.0	55.6				30.7		41.7	26.1	27.0	5	0.00	617	
Table 1 (continued)		Connabacterium alutamicum	ATCC 13032 nrdF	Escherichia coli K12 flnA	Streptomyces coelicolor A3(2)	whith	Corynebacterium glutarincurii ATCC 13869 dtxR	Saccharomyces cerevisiae YPH148 YOR010C TIR2	Archaeoglobus fulgidus AF0251	Corynebacterium glutamicum	ATCC 13032 nrdE		Rickettsia prowazekii	Oscillus subtilis 168 nadE	Dacillus subtilis 100 mag			Synechocystis sp. PCC6803	sir1563	Mycobacterium tubercuiosis H37Rv Rv3129	Baciltus stearothermophilus	Domilie 168 mmar	The same same same same same same same sam	Arabidopsis thaliana 16K22.50	r. Leaching coli K12 nam	Eschelicina cui ivie pgi
	db Match		gp:AF112536_1	SP.ETNA FCOUL	4	-	pir:140339	sp:TIR2_YEAST	1	pir.Coszo i	gp:AF112535_3		SP RI 36 RICPR	10040	Sp.NADE_BACSU			nir.976790		pir:G70922	sp. ADH2_BACST		sp:MMGE_BACSU	pir.T05174		sp. PGMU_ECOLI
	ORF (ba)		1002	40.6			099	438	9.5	9/7	2121	315	14		831	93	498	3		288	1020	-	1371	834		1662
	Terminal		2673338	0003636	2010200	70/0240	2676243	7577377	j	2676918	2677478	2680784	2601223	6771007	2682376	2681464	2683616	1	6167907	2683131	2683627		2686289			2688389
		(m)	2674339		+-	26/5491	2676902	2676940		2677193	2679598	2580470		5061907	6280 2681546	6281 2681556	6282 2683119		2683125	6284 2683418	2684646		2684919	2686315	2688240	6289 2690050
	SEQ	(e e)	6271			6273	6274	6275		6276	6277	8278	0770	6/79		6281			6283		RORE		6286	6287	6288	
	SEO	 ;	2771	_		2773	2774	2775	2113	2776	7777	27.70	0//7	2779	2780	2781	2782	70 / 7	2783	2784	2785	3/7	2785	2787	2788	2789

EP 1 108 790 A2

	Function	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	transposase (IS1676)	major secreted protein PS1 protein precursor				transposase (1S1676)		proton/sodium-alutamate symport	protein		ABC transporter		ABC transponer ATP-binding protein	hypothetical protein	hypothetical protein		oxidoreductase or dehydrogenase
	Matched length (a a)	84	122	254	496	355				200			438		873		218	84	42		196
	Similarity (%)	64.3	61.5	79.1	48.6	49.6				46.6			66.2		0.69		79.8	0.79	75.0		54.1
	Identity (%)	41.7	25.4	51.2	24.2	24.8				24.6			30.8		33.0		45.4	60.0	71.0		28.1
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3069	Helicobacter pylori J99 jhp1146	Bacillus subtilis 168 ycsl	Rhodocaccus erythropolis	Corynebaclerium glutamicum (Brevibaclerium flavum) ATCC 17965 csp1				Rhodocaccus erythropolis			Bacillus subtilis 168		Streptomyces coelicolor A3(2) SCE25.30		Staphylococcus aureus	Chlamydophila pneumoniae AR39 CP0987	Chlamydia muridarum Nigg TC0129		Streptomyces collinus Tu 1892 ansG
	db Match	pir.F70650	nir D71843	sp.YCSI BACSU	gp. AF126281 1	1620 sp.CSP1_CORGL				1 18080130			sp.GLTT_BACCA		gp:SCE25_30		gp:SAU18641_2		PIR:F81737		prf:2509388L
	ORF (bp)	288	324			1620	354	165	7447	,	3	768	1338	693	2541	891	708	273	141	678	672
	Terminal (nt)	2690437	0920090	2691564	2693053	2694918	2695279	2695718	000000	026592	269/212	2697383	2698194	2701612	2699926	2703356			2704975	2710555	2808 6308 2710637 2711308
	Initial (nt)	6290 2690150			6292 2090113	2693299	2694926	250554	1000007	00/6697	2695812	2698150	2699531	2700920	2702466	2702466	2703194	2704314	2704835	2709878	2710637
	SEQ	6290		1679	7670	2794 6294	5005	6200	0530	/679	6298	6539		6301	+	6303	_		6306	6307	6308
	SEQ	2790				2794	2705	2130	06/7	2/9/	2798	2799	2800	2801	2802	2803	2804	2805	2806	2807	2808

					_																——————————————————————————————————————
5		Function	methyltransferase	hypothetical protein	hypothetical protein	the second of th	UDP-in-acetylgiucusarimic carboxyvinyltransferase	hypothetical protein	transcriptional regulator		cysteine synthase	O-acetylserine synthase	hypothetical protein	succinyl-CoA synthetase alpha chain	hypothetical protein	succinyl-CoA synthetase beta chain	L	frenolicin gene E product		succinyl-CoA coenzyme A transferase	transcriptional regulator
			methy	hypot	hypoth		carbo	hypot	transo		cyste	0-90	hypol	succir chain	hypo	Succi		treno		trans	trans
15		Matched length (a a)	205	84	42		417	190	281		305	172	83	291	75	400		213		501	321
20		Similarity (%)	51.2	0.99	75.0		75.3	84.2	0.69		84.6	79.7	65.1	79.4	43.0	73.0		71.8		77.8	68.5
•		Identity 8 (%)	25.9	61.0	71.0		44.8	66.3	45.9		57.1	61.1	36.1	52.9	42.0	39.8		38.5		47.9	38.6
25	(pan	<u>o</u>	osis		ligg.		ticus	losis	r A3(2)		Ϋ́	cysE2	ins R1	Aile Ph I	\PE1069	ပ္ပ		vus frnE		it cat 1	a ATCC
30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0089	Chlamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Acinetobacter calcoaceticus NCIB 8250 murA	Mycobacterium tuberculosis H37Rv Rv1314c	Streptomyces coelicolor A3(2) SC2G5.15c		Bacillus subtilis 168 cysK	Azotobacter vinelandii cysE2	Deinocccous radiodurans R1 DR1844	Coxiella burnetii Nine Mile Ph I sucD	Aeropyrum pernix K1 APE1069	Bacillus subtilis 168 sucC		Streptomyces roseofulvus frnE		Clostridium kluyveri cat 1 cat 1	Azospirillum brasilense ATCC 29145 rtrC
40		db Match	Sp.Y089_MYCTU	GSP: Y35814			sp:MURA_ACICA	sp:Y02Y_MYCTU	gp:SC2G5_15		SP.CYSK BACSU		gp:AE002024_10	sp:SUCD_COXBU	PIR: F72706	sp.succ_BACSU		gp:AF058302_5		sp.CAT1_CLOKL	sp:NIR3_AZOBR
		ORF (bp)	525 sp	273 G	141 P	195	1254 8	570 s	843 g	408	+	_	288	882	225 F		360	735	819	1539	1143
45		Terminal ()	2712374	2713453	┼──	2717993	2718436 1	2720319	2720385	2921272	+-	+-	 -	2724478	2725843	+	2726786	2727399	2728207	2729378	2732518
50		Initial (nt)	2711850	2713181	+	2718187	2719689	2719750	2721272	2721702		+-	2724057	2725359	2725619	2726577			2729025		2731376
		SEQ.				6312		5314	6315	8116		- -		6320	6321				6325		6327
55		SEQ S				2812		2814	2815	20.00				2820	2821	2822	2823	2824	2825	2826	2827

EP 1 108 790 A2

	Function		phosphate transport system	regulatory protein	phosphale-specific flatishors	phosphate ABC transport system permease protein	phosphate ABC transport system permease protein	phosphate-binding protein S-3 precursor	acetyltransferase		hynothetical protein		hypothetical protein	branched-chain amino acid aminotransferase	hypothetical protein	hypothetical protein	5'-phosphoribosyl-5-aminoimidazole synthetase	amidophosphoribosyl transferase
	Matched length (a.a.)		656	213	255	292	325	369	315		344	;	225	259	352	58	347	482
	Similarity (%)			81./	82.8	82.2	78.5	26.0	0.09		55.2	33.6	74.2	56.0	79.0	81.0	94.2	89.0
	Identity (%)			46.5	58.8	51.4	50.2	40.0	34.3		100	7.47	44.9	28.6	58.5	58.6	81.0	70.3
Table 1 (continued)	Homologous gene		the tribotalogic	Mycobacterium tuber curcsis H37Rv Rv0821c phoY-2	Pseudomonas aeruginosa pstB	Mycobacterium tuberculosis H37Rv Rv0830 pstA1	Mycobacterium tuberculosis	Mycobacterium tuberculosis H37Rv phoS2	Streptomyces coelicolor A3(2)	3CD04: 10c		Bacillus subtilis 168 bmrU	Mycobacterium tuberculosis H37Rv Rv0813c	Solanum tuberosum BCAT2	Corynebacterium ammoniagenes ATCC 6872 ORF4	Mycobacterium tuberculosis H37Rv Rv0810c	Corynebacterium ammoniagenes ATCC 6872 purM	Corynebacterium ammoniagenes ATCC 6872 purF
	db Match			pir:E70810	pir.S68595	gp:MTPSTA1_1	pir.A70584		ap: SCD84 18			SP. BMRU_BACSU	pir.E70809	gp:AF193846_1	gp:AB003158_6	pir. B70809	gp:AB003158_5	1482 gp.AB003158_4
	ORF (bp)		807	732	897	921	1014	1125	876		783	1095	687	942	1101	213	1074	
	Terminal (nt)		2731424	2733367	2733455	2734264	2735202	2736414	27.778.36	2001017	2739553	2739556	2741356	2741636	2743785	2744222	2744881	2746083
,	Initial	i	2732230	2732636	2734351	2735184	2736215	2737538	2738711	11 100 17	2738771	2740650	2740670	2742577		2744010	2745954	2747564
	SEO	(a.a.)	6328 2	6329	6330		1			9234	6335	6336			6339	6340		6342
	SEO S	(DNA)	2828	2829						2834	2835			2838	2839	2840	2841	2842

	ſ	 T		 -T	T							T		Т			
5 ·		L.			ine protein		synthetase		synthetase			ise	99			ınsporter	lidase
10		Function	hypothelical protein	hypothelical protein	hypothetical membrane protein	hypothetical protein	5'-phosphoribosyl-N- formylglycinamidine synlhetase		5:-phosphoribosyl-N- formylglycinamidine synthetase	hypothetical protein		gluthatione peroxidase	extracellular nuclease		hypothetical protein	C4-dicarboxylate transporter	dipeptidyl aminopeptidase
15		Matched length (a.a.)	124	315	217	42	763		223	79		158	965		211	414	697
20		Similarity (%)	75.8	94.0	87.1	71.0	89 5		93.3	93.7		77.9	51.5		68.7	81.6	70.5
•		Identity (%)	57.3	75.9	67.7	64.0	77.6		80.3	81.0		46.2	28.0		37.4	49.0	41.8
25	(ŝ	.2.	7.2		72		72	72			AP636		sis		dapb1
30	Table 1 (continued)	Homologous gena	Mycobacterium tuberculosis H37Rv Rv0807	Corynebacterium ammoniagenes ATCC 6872 ORF2	Corynebacterium ammoniagenes ATCC 6872 ORF 1	olfataricus	Corynebacterium ammoniagenes ATCC 6872 purl.		Corynebacterium ammoniagenes ATCC 6972 purQ	Corynebacterium ammoniagenes ATCC 6872 purorf		tactis gpo	Aeromonas hydrophila JMP636 nucH		Mycobacterium tuberculosis H37Rv Rv0784	Salmonella typhimurium LT2 dctA	Pseudomonas sp. WO24 dapb1
- 35	Table	Homo	Mycobacterium H37Rv Rv0807	Corynebacterium ammoniagenes A ORF2	Corynebacterium ammoniagenes A ORF 1	Sulfolobus solfataricus	Corynebacterium ammoniagenes A purl.		Corynebacterium ammoniagenes A purQ	Corynebacterium ammoniagenes A purorf		Lactococcus factis gpo	Aeromonas nucH		Mycobacterium H37Rv Rv0784	Salmonella t dctA	Pseudomon
<i>35</i> 40		db Match	pir.H70536	gp:AB003158_2	gp:AB003158_1	GP SSU18930_21	gp:AB003162_3		gp:AB003162_2	gp:AB003162_1		prf.2420329A	prf.2216389A		pir.C70709	SP.DCTA_SALTY	2118 prf.2408266A
	•	ORF (bp)	375 pi	1017 gl	741 9	186	2286 g	720	669	243 g	522	477 p	2748 p	276	687 р	1338 s	2118
45		Terminal (nt)	2747683	2749111	2749162	2752103	2750027	2753121	2752327	2752995	2753819	2753328	2756739	2757126	2757129	2757863	2759532
50		Initial (nt)	2748057	2748095	2749902	2751918	2752312	2752402		2753237	2753298	2753804	2753992	2756851	2757815	2759200	2761649
		SEQ NO.	+	6344	6345	6346	6347	6348		6350	6351	6352	6353	6354		6356	6357
55		SEQ NO.	2843	2844	2845	2846	2847	2848	2849	2850	2851	2852	2853	2854	2855	2855	2857

10
15
20
25
<i>30</i>
• 35
40
45
50

·**5**

Table 1 (continued)

	Function		5-phosphoribosyl-4-N- succinocarboxamide-5-amino imidazole synthetase	adenylosuccino lyase	aspartate aminotransferase	5'-phosphoribosylglycinamide synthelase	histidine triad (FIIT) family protein		hypothetical protein	di-/tripeptide transpoter	adenosylmethionine-8-amino-7- oxononanoate aminotransferase or 7,8-diaminopelargonic ac:d aminotransferase	dethiobiolin synthelase	two-component system sensor histidine kinase	two-component system regulatory protein	transcriptional activator	metal-activated pyridoxal enzyme or low specificity D-Thr aldolase
	Matched length (a.a.)		294	477	395	425	136		243	469	423	224	335	231	249	382
	Similarity (%)		1.68	95.0	62.3	86.4	80.2		56.4	9'.29	98.8	93.6	70.5	72.7	69.5	53.9
	Identity (%)		70.1	85.3	28.1	71.1	53.7		26.8	30.1	95.7	98.7	31.3	42.0	37.4	30.9
lable I (columbed)	Homologous gene		Corynebacterium ammoniagenes ATCC 6872 purC	Corynebacterium ammoniagenes ATCC 6872 purB	Sulfolobus solfataricus ATCC 49255	Corynetaclerium ammoniagenes ATCC 6372 purD	Mycobacterium leprae u296a		Methanosarcina barkeri orf3	Lactococcus lactis subsp. lactis dipT	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioA	Corynebacterium glutarricum (Brevibacterium flavum) MJ233 bioD	Lactococcus lactis M71plasmid pND306	Thermologa marilima drrA	Streptomyces lividans tipA	Arthrobacter sp. DK-38
	db Match		gp:AB003161_3	gp.AB003161_2	sp:AAT_SULSO	gp:AB00316'_1	SP.YHIT_MYCLE	-	pir:S62195	sp:DTPT_LACLA	sp:BIOA_CORGL	sp:BIOD_CORGL	gp.AF049873_3	prf.2222216A	SD:TIPA STRLI	40 prf.2419350A
	ORF (bp)	624	· · · · · · · · · · · · · · · · · · ·	1428	1158	1263	414	435	753	1356	1269	672	1455	705	753	1140
	Terminal (nt)	2761829	2761785	2763504	2764978	2766158	2767993	2767703	2768343	2769156	2771982	2772660	2772644	2774110	2774937	
	initial (nt)	2762452	2762675	2764931	2766135	2767420	2767580				2770714	2771989	2774098	2774814	2775689	
	SEQ NO	6358		6350	6361	6362	6363	6364	6365	5366	5367	6368	6369	6370	5371	
	SEO			2860	2861	2862	2863	7867	2865	2866	2867	2868	2869	2870	2071	2872

10	
•	
15	
20	
25	•
30 ~	
35 35	
40	
45	
50	

	Function	pyruvate oxidase	multidrug efflux protein	transcriptional regulator	hypothetical membrane protein		3-ketosteroid dehydrogenase	transcriptional regulator, LysR family	hypothelical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	transcription initiation factor sigma	trehalose-6-phosphale synthase		trehalose-phosphatase	glucose-resistance amylase regulator	high-affinity zinc uplake system protein
	Matched length (a.a)	574	504	92	421		303	232	278	288		140	464	155	487		245	344	353
	Similarity (%)	758	68.9	68.5	78.4		62.1	0.69	52.9	55.6		50.7	64.0	50.3	66.7		57.6	60.2	46.7
	Identity (%)	46 3	33.3	30.4	45.6		34.3	37.1	28.4	26.7		28.6	36.0	32.3	38.8		27.4	24.7	22.4
Table 1 (continued)	Homologous gene	Escherichia coli K12 pox9	Staphylococcus aureus plasmid pSK23 qacB	Escherichia coli K12 ycdC	Mycobacterium tuberculosis H37Rv RV2508c		Rhodococcus erythropolis SQ1 kstD1	Bacillus subtilis 168 alsR	Mycobacterium tuberculosis H37Rv Rv3298c ipqC	Bacillus subtilis 168 ykrA		Oryctolagus cuniculus kidney cortex rBAT	Mycobacterium tuberculosis H37Rv Rv3737	Streptomyces griseus hrdB	Schizosaccharomyces pombe tps1		Escherichia coli K12 otsB	Bacillus megaterium ccpA	Haemophilus influenzae Rd H10119 znuA
	db Match	gp:ECOPOXB8G_1	prf.2212334B	sp.YCDC_ECOLI	pir:D70551		gp:AF096929_2	SP. ALSR_BACSU	pir.C70982	pir.C69862		pir.A45264	pir:B70798	pir:S41307	sp:TPS1_SCHPO		sp.OTSB_ECOLI	sp:CCPA_BACME	SP.ZNUA_HAEIN
	ORF (5p)	1737	1482	531	1320	2142	960	705	813	813	459	399	1503	327	1455	513	768	1074	942
	Terminal (nt)	2776768	2780446	2780959	2782315	2782340	2784656	2785651	2788594	2788587	2789477	2790550	2792448	2792857	2794327	2794812	2795637	↓	2797806
	Initial (nt)	2778504	2778965	2780439		2784481	2785615	2786355		2789399	2789935		2790946	2792531		2794300			2796865
	SEO	<u> </u>	6374	6375		6377		6379	6380	6381	6382	6383	6384	6385	6386	6387	6388		6390
	<u> </u>	2873	2874	2875	_	2877		2879		2881		2883	2884	2885	2886	2887	2888	2889	2890

| | | | | | | | — т |

 | | | - 1
 |
 | \neg
 | | | |
 |
|----------------------------|---|---|---|--|--|---|---
--
---|--

--
--
--
--|---|---|--|--
---|
| | | ne protein | 3-5) | | genase | -: | osynthesis
tase or | yo-inositol 2-

 | rotein | rotein | for
 | e methylase or
ansferase
 | etase
 | e II sucrose
cific IIABC | s hydrolase or | phate | e-6-phosphate
 |
| Function | ABC transporter | hypothelical membrar | transposase (ISA096; | | 3-ketosteroid dehydro | | lipopolysaccharide bii
protein or oxidoreduc
dehydrogenase | dehydrogenase or m
dehydrogenase

 | shikimate transport p | shikimate transport p | transcriptional regula
 | ribosomal RNA ribos
IRNA/rRNA methyltra
 | cysteinyl-tRNA synth
 | PTS system, enzyme
protein (sucrose-spe
component) | sucrose 6-phosphate
sucrase | glucosamine-6-phos isomerase | N-acetylglucosamine-6-phosphate
deacetylase
 |
| Matched
length
(a a) | 223 | 135 | 303 | | 561 | | 204 | 128

 | 292 | 130 | 212
 | 334
 | 464
 | 899 | 473 | 248 | 368
 |
| Similarity
(%) | 63.2 | 87.4 | 52.5 | | 62 0 | | 56.4 | 69.5

 | 67.5 | 80.8 | 55.7
 | 47.3
 | 688
 | 77.0 | 56.9 | 69.4 | 60.3
 |
| Identity (%) | 31.4 | 0.09 | 23.4 | | 32.1 | | 34.3 | 35.2

 | 30.5 | 43.1 | 32.6
 | 22.8
 | 42.2
 | 47.0 | 35.3 | 38.3 | 30.2
 |
| gene | us 8325-ả | rculosis | Jus | | apolis SQ1 | | a MSB8 | idh or iolG

 | ShiA | shiA | color A3(2)
 | evisiae
 | 2 cysS
 | sacB | ıtylicum | 2 nagB | 514 manD
 |
| Homologous | aphylococcus aure | robacterium tube
17Rv Rv2060 | chaeoglobus fulgic | | nodococcus erythri
tD1 | - | nermotoga maritim | acillus subtilis 168

 | Cryerichia coli K12 | scherichia coli K12 | treptomyces coelic
 | accharomyces cer
 | scherichia coli K1
 | actococcus lactis s | lostridium acetobi | scherichia coli K1 | Vibrio furnissii SR1514 manD
 |
| - | | Ş£ | | | | | 투형 |

 | + | \top |
 |
 | T
 | | | |
 |
| db Match | Jp. AF121672_2 | pir.E70507 | pir. A69426 | | gp:AF096929_2 | | pir:872359 | sp.MI2D_BACS

 | OUD VIETO | Sport Allows | ap:SC5A7_19
 | sp.PT56_YEA
 | sp. SYC ECCL
 | prf 2511 | | sp:NAGB_EC | sp. NAGA_VIBFU
 |
| ORF
(bp) | 069 | 555 | 1500 | 201 | 1689 | 747 | 618 | 435

 | 1 | 833 | 420
 | 939
 | 1380
 | 1983 | | 759 | 1152
 |
| Terminal
(nt) | 2798509 | 2799391 | 2901034 | 2801313 | 2801558 | 2803250 | 2804074 | 2804676

 | | 2805113 | 2806599
 | 2807426
 | 2808399
 | 2809824 | 2811960 | 2813279 | 2814081
 |
| Initial
(nt) | | | | + | | 2803996 | 2804691 |

 | | |
 |
 |
 | | | |
 |
| SEO | | | | | | | | A20R

 | | | 6400
 | 6402
 |
 | | | |
 |
| | | 2892 | - | | | | | 2808

 | 2007 | 2899 | 2900
 | 2062
 |
 | 2903 | 2905 | 2906 | 2907
 |
| | SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%) | SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (aa) (aa) | SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) (a.a.) (nt) (nt) (bp) Staphylococcus aureus 8325-4 31.4 63.2 223 6392 2798837 2799391 555 pir.E70507 Mycobacterium tuberculosis 60.0 87.4 135 | SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) NO (nt) (nt) (nt) (bp) Staphylococcus aureus 8325-4 31.4 63.2 223 6391 2798630 690 gp:AF121672_2 mreA Mycobacterium tuberculosis 60.0 87.4 135 6392 2798837 2799391 555 pir.E70507 Hy7Rv Rv2060 Archaeoglobus fulgidus 23.4 52.5 303 | SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Matched (%) | SEQ Initial (nt) (nt) (bp) db Match (bp) (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) | SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) | SEQ
NO
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarily
(%) Matched
(%) >SEQ (nt) (1) Initial (nt) (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Matched</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%)</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%)<td>SEO Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%)
Similarity length (%) Matched (%) (%)<td> Nationarie Termina ORF de Match Homologous gene (%) </td><td> Nationary Communication </td><td> Fund Continue Co</td><td> Classical Carlottical Carlot</td><td> Page
Page Page </td></td></td> | SEQ (nt) (1) Initial (nt) (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Matched | SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) | SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) <td>SEO Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) (%)<td> Nationarie Termina ORF de Match Homologous gene (%) </td><td> Nationary Communication
Communication Communication </td><td> Fund Continue Co</td><td> Classical Carlottical Carlot</td><td> Page </td></td> | SEO Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) (%) <td> Nationarie Termina ORF de Match Homologous gene (%)
(%) (%) </td> <td> Nationary Communication </td> <td> Fund Continue Co</td> <td> Classical Carlottical Carlot</td> <td> Page </td> | Nationarie Termina ORF de Match Homologous gene (%)
(%) (%) | Nationary Communication | Fund Continue Co | Classical Carlottical Carlot | Page Page |

10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function	dihydrodipicolinate synthase	glucokinase	N-acetylmannosamine-6-phosphale epimerase		sialidase precursor	L-asparagine permease operon repressor	dipeptide transporter protein or heme-binding protein	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein	oligopeptide transport ATP-binding protein	homoserine/homoserin lactone efflux protein or lysE type translocator	leucine-responsive regulatory protein		hypothetical protein	hypothetical protein	Iranscription factor
	Matched length (a a)	298	321	220		439	222	260	342	314	258	193	142		152	235	157
	Similarity (%)	62.1	57.6	68 6		50.3	57.2	51.4	64.3	78.3	7.87	62.7	66.2		85.2	71.5	91.1
	Identity (%)	28.2	28.7	35.4		24.8	26.6	22.5	31.9	46.5	43.4	28.5	31.0		55.9	46.4	73.3
Table 1 (continued)	Homologous gene	Escherichia coli K12 dapA	Streptomyces coelicolor A3(2) SC6E10 20c glk	Clostridium perfringens NCTC 8798 nanE		Micromonospora viridifaciens ATCC 31146 nadA	Rhizobium etli ansR	Bacillus firmus OF4 dppA	Bacillus firmus OF4 dappB	Bacillus subtilis 168 oppD	Lactococcus lactis oppF	Escherichia coli K12 rhtB	Bradyrhizobium japonicum Irp		Mycobacterium tuberculosis H37Rv Rv3581c	Mycobacterium tuberculosis H37Rv Rv3582c	Mycobacterium tuberculosis H37Rv Rv3583c
	db Match	sp. DAPA_ECOLI	sp:GLK_STRCO	prf.2516292A		sp:NANH_MICVI	gp:AF181498_1	gp:BFU64514_1	sp:OPPB_BACFI	sp.OPPD_BACSU	SP OPPF_LACLA	sp:RHTB_ECOLI	prf.2309303A		pir.C70607	sp:Y18T_MYCTU	pir:H70803
	ORF (bp)	936	606	969	17.7	1215	729	1608	951	1068	816	621	483	360	480	768	594
	Terminal (nt)	2816393	2817317	2818058	2818137	2818350	2819557	2822191	2823337	2825341	2826156	2826215	2827404	2827458	2827904	2828379	2829156
	Initial (nt)	2815458	2816409	2817363	2818313	2819564	2820285	2820584	2822387	2824274	2825341	2826835	2826922	2827817		2829146	6423 2829749
	SEQ NO	-i		6410	6411	6412	6413	6414	6415	6416	6417	6418	6419	6420	6421	6422	
	SEQ NO.	 -		2910	2911	+	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922	2923

EP 1 108 790 A2

				\neg	- I				1	1	i	ı	- 1	ì	1	1	i	1	- 1	l l	
5	Function	two-component system response regulator	two-component system sensor histidine kinase	Abro nichter die	UNA repair protein Naux	hypothetical protein	hypothetical protein	p-hydroxybenzaldehyde dehydrogenase		mitochondrial carbonate detrydralase beta	A/G-specific adenine glycosylase		a second superior of the second secon	L-2.3-Duraneuror derry di ogeniae				hypothetical protein	virulence factor	virulence factor	
15	Matched length (a a)	223 two	341 two		\top	345 hy	231 hy	471 p-t		210 de	283 A		十	238 L-	-		T	97 H	5	72 vi	
20	Similarity M	70.0	7.79	+	74.3	73.3	53.3	85.1		66.2	70.7			9.66				69.1	63.0	55.0	
•	Identity (%)	43.5	29.3		41.5	40.3	29.4	59.5		36.7	48.4			99.2		-		48.5	57.0	54.0	
25 Q		. <u>s</u>					is	æ B		Itii ca 1	IMRU			yticum				sis	eo.	83	
30	Hemologous gene	Mycobacterium tuberculosis H37Rv Rv3246c mtrA	Escherichia coli K12 baeS		Escherichia coli K12 radA	Bacillus subtilis 168 yack	Mycobacterium tuberculosis H37Rv Rv3587c	Pseudomonas putida NCIMB 9866 plasmid pRA4000		Chlamydomonas reinhardtii ca 1	Streptomyces antibioticus IMRU 3720 mutY			Brevibacterium saccharolyticum				Mycobacterium tuberculosis H37Rv Rv3592	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF25110	
40	db Match	pri:2214304A	sp.BAES_ECOLI		Sp. RADA_ECOLI	Sp. YACK_BACSU	pir.D70804	gp.PPU96338_1		pir: T08204	gp:AF121797_1			gp. AB009078_1				pir:E70552	GSP:Y29188	GSP: Y29193	
	ORF (bb)	-i	1116	582	1392		687	1452	147	621	879	1155	306	774	324	741	312	291	420	213	į
45	Terminal	2630779	2831894	2832666	2834181	2835285	2835283	2836048	2027504	2837956	2839521	2840716	. 1		2842453	2843233	2843716	2843432	2845558	2846101	-
50	Initial	1.5		2832085	+	+	2835969	2837499	101100	2838576		2839562			2842130		2843405	2843722	2845139	2845889	
	SEO	(a a.) 6424		6476						6431	6433	_			6437		6439		6441	6447	_
55	SEQ	(DNA)		2926	2027					2931	2933	7034	2035	2936	2937	2938	2939	2940	2941	2942	_

EP 1 108 790 A2

·5			phatase /				ıse					orotein			ligase			e protein	oteridine	ase	ase
10	Function	virulence factor	CIPC adenosine triphosphatase	ATP-binding proteinase	inosine monophosphale dehydrogenase	transcription factor	phenol 2-monooxygenase					lincomycin resistance profein	hypothetical protein	lysyl-tRNA synthetase	pantoatebeta-alanine ligase			hypothetical membrane protein	2-arrino-4-hydroxy-6- hydroxymethyldihydropteridine pyrophosphokinase	dihydroneopterin aldolase	dihydropteroate synthase
15	Matched length	(8.8)		832	469	316	680					481	240	511	268			138	158	118	258
20	Similarity (%)	75.0	2	86 2	70 2	62.7	6 09					100.0	55.8	71.2	52.6			9.69	0.69	69.5	75.0
•	Identify (%)	24.0	2.7.	58.5	37.1	24.7	33.5					100.0	26.7	41.7	29.9			29.0	42.4	38.1	51.5
25 (O	ene	nosa		. всв	нрдн	hrous nitR	ım ATCC					tamicum	rculosis	aphilus lysS	ıtamicum			96	dorquens	folB	ae folP
	Homologous gene	Pseudomonas aeruginosa	ORF25110	Bacillus subtilis 168 mecB	Bacillus cereus ts-4 impdh	Rhodocaccus rhodochrous nitR	Trichosporon cutaneum ATCC 46490					Corynebacterium glutamicum ImrB	Mycobacterium tuberculosis H37Rv Rv3517	Bacillus stearothermophilus lysS	Corynebacterium glutamicum ATCC 13032 panC			Mycobacterium leprae MLCB2548.04c	Methylobacterium extorquens AM1 folK	Bacillus subtilis 168 folB	Mycobacterium leprae folb
<i>35</i>	db Match		GSP:Y29193	sp.MECB_BACSU E	gp:AB035643_1	pir.JC6117	TRICU			-		gp:AF237667_1	pir.G70807	gp:AB012100_1	gp:CGPAN_2			gp:MLCB2548_4	sp:HPPK_METEX	SO FOLB BACSU	\rightarrow
	ORF	(pb)	321	2775	1431	1011	1785	1716	1941	1722	162	1443	951	1578	798	693	798	465	477	300	+
45	Terminal	(ut)	2846506	2844166	2848659	2849779	2851815	2853732	2855709	2857516	2859205	2857613	2859195	2860505	2862132	2862929	2863624	2864384	2864867	7055746	
50	Initial	(ut)	2846186	2846940	2847229	2848769	2850031	2852017	2853769	2855795	2859044		2860145	2862082		2863621	2864421			305238	6461 2866567
	SEO	(a.a.)	6443	6444	6445		6447	6448	6449	6450	6451		6453	6454		6456					
55		ONA)	2943	2944	2945			29.48	2949	2950	2951	2952	2953	2954	2955	2956	2957	2958	2959	6	2961

EP 1 108 790 A2

	Function	GTP cyclohydrolase I		cell division protein FtsH	hypoxanthine	phospheribosyltransferase	cell cycle protein Mess of Cycosing deaminase-related protein	D-alanyl-D-atanine carboxypeptidase	inorganic pyrophosphatase			spermidine syninase	hypothetical membrane protein		hypothetical protein	hypothelical protein	hypothetical protein	ore metam heta-discosides-	permease II ABC component		ferredoxin reductase	hypothetical protein	Marka requisition protein mark	family
	Matched length (a a)	188		782		165	310	459	159			207	132		144	173	202	1	88		411	70	;	135
	Similarity (%)	86.2		69.0	2.50	83.0	66.8	51.4	73.6			80.7	86.4		63.2	60.1	72.3		59.6		69.6	73.7	3.2	59.3
	identity (%)	909		0 95	200.0	51.5	41.0	27.2	49.7			26.0	38.6		36.8	36.4	8 8		30.3		38.0	3	7 Q	26.7
Table 1 (continued)	Homologous gene	S min 169 mtrA	Bacillus subtilis Too mico		00000	Salmonella typhimurium (SP660 hprt	Mycobacterium tuberculosis	Actinomadura sp. R39 dac	ena CAN inc inc. v	Escherichia coil N. 2 PPB		Mycobacterium tuberculosis H37Rv soeE	Mycobacterium tuberculosis	H37Rv Rv2600	Mycobacterium tuberculosis H37Rv Rv2599	Mycobacterium tuberculosis	Mycobacterium tuberculosis	H37Rv Rv2597	Bacillus subtilis 168 bglP		Obda 70% as asking	Nocardioldes sp. nr. 1 ping.	SCH69.09c	Burkholderia pseudomallei ORF
	db Match		sp. GCH1_BACSU			gp:AF008931_1	SD VZC5 MYCTU	ACTSP	ap. over over over	Sp.IPYR_ECOLI		pir:H70886		sp:Y081_MYCTU	sp:Y0B2_MYCTU	US MYCTU		sp:Y0B4_MYCTU	Sp. PTBA BACSU			3 gp:AB017795_2	gp:SCH69_9	11802911
	ORF	-+	588	915	2580	582	108	5	1233	474	219	1539		399	411	9	-+	609	249	╌	564	1233	288	1 2 2 2
	Terminal		2866586	2868385	2867169	2869863	0070700	2640102	28/1445	2873399	2873393			2875434	2875870		0070/07	2876777	2877455		2877595	2878478	5 2880252	700000
	Initial	()	2867173	2867471	2869748	2870444	000,4100		2872677	2872926				2875832	2876280		5473 28/6///	2877385	2077703	2011107	3 2877858	7 2879710	8 2879965	
	SEO	(a.a)	6462	6463		6465			6467	6468				6471	6472	<u>;</u> -		6474		04/3	6 6476	7 6477	8 6478	-
	SEO		2962		_		2067	2966	2967	2968	2080	200	787	2971	2072		2973	2974		2975	2976	2977	2978	

EP 1 108 790 A2

	Function	peptide synthase		shenylacetaldehyde dehydrogenase		hypothelical protein	hypothetical protein	hypothetical protein	heat shock protein or chaperon or groEL protein							nypotnetical protein			peptidase			Na+/H+ antiporter or multiple resistance and pH regulation related protein A or NADH dehydrogenase
	Metched length (a.a.)	1241		100	207	241	54	31	548							1236			447			797
	Similarity (%)	51.6		, 53	03.7	7.67	630	80.0	100.0							42.3			0.89			68.3
	Identity (%)	28.4		1	33.0	57.3	62.0	74.0	99.5							21.7			37.1			35.6
Table 1 (continued)	Homologous gene	Strentomyces roseosporus cpsB			Escherichia coli K12 padA	Campylobacter jejuni Cj0604	GP-MSGTCWPA 1 Mycobacterium tuberculosis	Mycobacterium tuberculosis	Brevibacterium flavum MJ-233							Homo sapiens MUC5B			Mycobacterium tuberculosis H37Rv Rv2522c			Staphylococcus aureus mnhA
	db Match	4.741222EA			prf.2310295A	gp:CJ11168X2_25	GP MSGTCWPA 1	GP MSGTCWPA 1	gsp.R94368							prf.2309326A			pir.G70870			3057 prt:2504285B
	ORF (bp)	200	2882	1461	1563	918	167	177	1644	180	1209	963	1986	2454	2799	3591	2775	612	1371	579	99	3057
	Terminal (nt)	\neg	2884882	2881844	2884935	2886916	2800346	2800553	2888897	2890751	2890930	2892138	2893100	2895072		2900330	2903964	2906639	2908885	2909788	2909231	
	Initial (nt)		2880958	2883304	2886497	2887833	2000105			2890930	648R 2892138	2893100	2895085	2897525	2900326		2906738	2907250		2909210	2909830	2910172
	SEO.	(e e)	6480	6481	6482		7073	1010	6485		848	6489	6490	6491	6492		6494	6495	6496	6497	6498	6499
		(DNA)	2980 (2981	2982				2982	7907							7		2996	2997	3000	2999

EP 1 108 790 A2

										τ		1	\neg	Ţ	1	٦ .
	Furction	Na+/IH+ antiporter or multiple resistance and pH regulation related protein C or cation transport system protein	Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ antiporter or multiple resistance and pH regulation related protein E	K+ efflux system or multiple resistance and pH regulation related protein F	Na+/H+ antiporter or multiple resistance and pH regulation related protein G	hypothetical protein	hypothetical protein	and a defermation	polypepulae delorinylase	hypothetical protein	acetyltransferase (GNAT) family of N terminal acetylating enzyme		į	exodeoxyribonuclease III of	cardiolipin synthase
	Matched ادtengt (a.a.)	104	523	161	7.7	121	178	334		184	7.1	339			31	513
	Similarity (%)	81.7	72.1	6.09	66.2	63.6	54.5	61.7		6.09	70.4	54.2			59.9	62.0
	dentity (%)	44.2	35.2	26.7	32.5	25.6	24.7	27.0		37.5	47.9	31.3			30.8	27.9
Table 1 (continued)	Homologous gene	Bacillus firmus OF4 mrpC	Bacillus firmus OF4 mrpD	Bacıllus firmus OF4 mrpE	Rhizobium meliloti phaF	Staphylococcus aureus mnhG	Mycobacterium tuberculosis H37Rv lioV	Escherichia coli K12 ybdK		Bacillus subtilis 168 def	Mycobacterium tuberculosis H37Rv Rv0430	Mycobacterium tuberculosis H37Rv Rv0428c			Salmonella typhimurium LT2 xthA	Bacillus firmus OF4 cls
	db Match	gp. AF097740_3	gp. AF097740_4	gp AF097740_5	prf.2416476G	prf.2504285H	pir:D70594	SP:YBDK_ECOLI		sp.DEF_BACSU	pir:D70631	pir:B70631			gp:AF108767_1	gp.BFU88888_2
	ORF (bp)		1668	441	273	378	594	1128	663	579	252	1005	699	630	789	1500
	Terminal (nt)	2913723	2915416	2915922	2916201	2916582	2917024	2917630	2918819	2920293		2921290	2919808	2920250		2923617
	Initial (nt)	5	2913749	2915482	2915929	2916205	2917617					2920286	2920476	2920849	2921320	6514 2922118
	SEO	(a.a.)	6501	6502	6503	6504	6505	8058	6507		~	9510	6511			6514
	SEO		3001	3002	3003	3004	3005	3006	3007	3008	3009	3010	3011	3017	3013	3014

·

10		
15		
20		
25	•	ntinued)
30		Table 1 (continued)
35		
40		
45		
50		

SEQ Initial Terminal ORF db Match H NO (nt) (nt) (bp) db Match H 6515 2924191 2924844 654 Escheric 6516 2925147 2923954 1194 sp. BCR_ECOLI Escheric 6517 2925541 2926704 1164 gp. VCAJ10968_1 Vibrio ch 6518 2927546 2926707 1404 sp. BCR_ECOLI Escheric 6519 2928283 2927551 768 gp. CAJ10968_1 Vibrio ch 6520 2929275 2928302 936 sp. BCRA_BACL Sce8.16 6521 2929275 768 gp. BCRA_BACL Sp. GER Hycoba 6522 2929275 768 pp. C70629 Mycoba 6523 292957 2934829 2253 pir.H70628 H37Rv 6524 2931340 2934829 2253 pir.H70628 H37Rv 6526 2939957 2940452 545																					
SEQ		Function		membrane transport protein or bicyclomycin resistance protein	sodium dependent phosphate pump	phenazine biosynthesis protein		ABC transporter	ABC transporter ATP-binding protein	mutator mutT protein	hypothelical membrane protein	glutamine-binding protein precursor	serine/threonine kinase		ferredoxin/ferredoxin-NADP reductase	acetyltransferase (GNAT) family				phosphoribosylglycinamide formyltransferase	
SEQ (nt) Initial (nt) Terminal (bp) db Match Homologous gene (%) Identity (%) 6515 2924191 2924844 654 Escherichia coli K12 bcr 31.6 6516 2925147 2926704 1164 gp. DCAJ 10968_1 Vibrio cholerae JS1588 nptA 28.5 6516 2925147 2926704 1164 gp. DCAJ 10968_1 Vibrio cholerae JS1588 nptA 28.5 6517 2925541 2926707 840 sp. PHZC_PSEAR Rededomonas aureofaciens 30-// 38.8 31.6 6520 2928318 2927551 768 gp. CCE8_16 Sce8 16c 38.8 6521 2929265 501 pir. C70629 Mycobacterium tuberculosis 47.6 6522 2929376 1366 pir. B70629 Mycobacterium tuberculosis 35.0 6523 2929357 1365 sp.GLNH_BACST Mycobacterium tuberculosis 47.6 6524 2931336 1365 sp.GLNH_BACST Mycobacterium tuberculosis 35.0 6525 2934603 2939767 1365<		Matched length (a.a.)		393	382	289		255	309	168	423	270	805		457	156				379	
SEQ (n1) Initial (n1) Terminal (n1) ORF (n1) db Match Homologous gene 6516 2925147 2923954 1194 sp. BCR_ECOL1 Escherichia coli K12 bcr 6516 2925147 2923954 1194 sp. BCR_ECOL1 Escherichia coli K12 bcr 6517 2925541 2926704 1164 gp VCAJ10986_1 Vibrio cholerae JS1569 nptA 6518 2927546 2926707 840 sp. PHZC_PSEAR Pseudomonas aureofaciens 30- 6518 2927541 2926707 840 sp. PHZC_PSEAR Pseudomonas aureofaciens 30- 6518 2927551 633 sp. PHZC_PSEAR Pseudomonas aureofaciens 30- 6520 2929366 501 pir. C70629 Mycobaclerium tuberculosis 6521 2929376 396 pir. B70629 H37Rv Rv0413 6522 2929367 2932371 1032 sp. GLNH_BACST Bacillus inchentrophilus 6523 2934829 2253 pir. H70628 H37Rv Rv0410c pknG 6526 293339767 2940447 1062<		Similarity (%)		67.2	68.9	56.4		60.8	66.3	68.5	70.2	64.8	63.5		67.8	60.3				82.6	
SEQ NO (n1) Initial (n1) Terminal (n1) ORF (pp) db Match db Match (5515 6516 2924191 2924844 654 db Match (5516 6516 2925147 2923954 1194 sp. BCR_ECOLI 6517 2925541 2926704 1164 gp. VCAJ10968_1 6518 2927546 2926707 840 sp. PHZC_PSEAR 6519 2928283 2927651 633 sp. PHZC_PSEAR 6520 2928318 2927551 768 gp. SCEB_16 6521 2929237 2928302 936 sp. BCRA_BACI.I 6522 2929756 501 pir. B70629 6523 2929551 2931336 1366 pir. B70629 6524 2931340 2932371 1032 sp. GLNH_BACST 6525 2932507 2934829 2253 pir. H70628 6526 2933967 2934867 1365 sp. ELAA_ECOLI 6529 2941508 2940447 1062 pir. BACST 6530 <td></td> <td>Identity (%)</td> <td></td> <td>31.6</td> <td>28.5</td> <td>38.8</td> <td></td> <td>24.3</td> <td>36.9</td> <td>47.6</td> <td>35.0</td> <td>31.5</td> <td>41.2</td> <td></td> <td>37.2</td> <td>34.0</td> <td></td> <td></td> <td></td> <td>59.1</td> <td></td>		Identity (%)		31.6	28.5	38.8		24.3	36.9	47.6	35.0	31.5	41.2		37.2	34.0				59.1	
SEQ NO (n1) Initial (n1) Terminal (n1) ORF (pp) db Match db Match (5515 6516 2924191 2924844 654 db Match (5516 6516 2925147 2923954 1194 sp. BCR_ECOLI 6517 2925541 2926704 1164 gp. VCAJ10968_1 6518 2927546 2926707 840 sp. PHZC_PSEAR 6519 2928283 2927651 633 sp. PHZC_PSEAR 6520 2928318 2927551 768 gp. SCEB_16 6521 2929237 2928302 936 sp. BCRA_BACI.I 6522 2929756 501 pir. B70629 6523 2929551 2931336 1366 pir. B70629 6524 2931340 2932371 1032 sp. GLNH_BACST 6525 2932507 2934829 2253 pir. H70628 6526 2933967 2934867 1365 sp. ELAA_ECOLI 6529 2941508 2940447 1062 pir. BACST 6530 <td>Table 1 (continued)</td> <td>Homologous gene</td> <td></td> <td>Escherichia coli K12 bcr</td> <td>Vibrio cholerae JS1569 nptA</td> <td>Pseudomonas aureofaciens 30- 84 phzC</td> <td></td> <td>Streptomyces coelicalor A3(2) SCE8, 16c</td> <td>Bacillus licheniformis ATCC 9945A bcrA</td> <td>Mycobacterium tuberculosis H37Rv Rv0413</td> <td>Mycobacterium tuberculosis H37Rv Rv0412c</td> <td>Bacillus stearothermophilus NUB36 glnH</td> <td>Mycobacterium tuberculosis H37Rv Rv0410c pknG</td> <td></td> <td>Bos faurus</td> <td>Escherichia coli K12 elaA</td> <td></td> <td></td> <td></td> <td>Bacillus subtilis 168 pur</td> <td></td>	Table 1 (continued)	Homologous gene		Escherichia coli K12 bcr	Vibrio cholerae JS1569 nptA	Pseudomonas aureofaciens 30- 84 phzC		Streptomyces coelicalor A3(2) SCE8, 16c	Bacillus licheniformis ATCC 9945A bcrA	Mycobacterium tuberculosis H37Rv Rv0413	Mycobacterium tuberculosis H37Rv Rv0412c	Bacillus stearothermophilus NUB36 glnH	Mycobacterium tuberculosis H37Rv Rv0410c pknG		Bos faurus	Escherichia coli K12 elaA				Bacillus subtilis 168 pur	
SEQ Initial Terminal On (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt		db Match		sp.BCR_ECOLI	gp VCAJ10968_1			gp:SCE8_16	sp:BCRA_BACI.I	pir:C70629	pir:B70629	sp:GLNH_BACST	pir.H70628			sp:ELAA_ECOLI				sp:PURT_BACSU	
SEQ Initial (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		ORF (bp)	654	94			633	768	936	501	1366	1032	2253	747	1365	545	1062	1029	399	1194	888
SEQ NO (a.a.) 6515 6516 6517 6518 6522 6523 6523 6523 6525 6525 6525 6525			2924844	2923954	2926704	2926707	2927651	2927551	2928302	2929256	2931336	2932371	2934829	2932652	2939767	2940452	2940447	2941472	2942609	1	2945639
		Initial (nt)	2924191		2925541	2927546												2942500	2943007		2946526
		SEQ	6515	6516	6517	6518	6519.	6520	6521	6522	6523		9525	5526	6527		+	_	6531	6532	6533
		SEQ	3015	3016	$\overline{}$		3019	3020	3021	3022	3023	3024	3025	3026	3027	3028	3029	3030	3031	3032	3033

5			ated)	ated)	ensor			60	2			protein	03000	Goldse			ransferase							
10		Function	insertion element (IS3 related)	insertion element (IS3 related)	two-component system sensor	histidine kinase transcriptional regulator		odfave of a -:	adenylosuccinate symmetrase	hypothetical protein		hypothetical membrane protein		fructose-bisphosphate aldolase	hypothetical protein	methyltransferase	aratata abasaharibasyltransferase	Olorate priority	hypothetical protein	3-mercaptopyruvate	2 consideration of the constant of the constan			
15	Matched	length (a.a.)	295	68	349	21R	21.7		427	204		359		344	304	187		7	250	294	-			
20		Similarity (%)	90.9	84.3	5.53	5. 9	03.0		95.3	59.3		100.0		100.0	100.0	5		65.5	0.09	56.1		-		
	_	Identity (%)	77.6	67.4	{	4.22	31.7		89.7	34.3		5	20	99.7	100.0	9	e e	39.1	27.6	29.6			-	-
25	nen)	a)	nicum	nicum	placeus		egC			losis		mictim	RF3	micum Ia	micum	ulosis		ų	ulosis					
30	lable 1 (cominged)	Homologous gene	Corynebacterium glutamicum orf?	Corynebacterium glutamicum	Charlemone thermoviolaceus	opc-520 chiS	Bacillus brevis ALK36 degU		Corynebacterium ammoniagenes purA	Mycobacterium tuberculosis H37Rv Rv0358		Corvnebacterium glutamicum	AS019 ATCC 13059 ORF3	Corynebacterium glutamicum AS019 ATCC 13059 fda	Corynebacterium glutamicum	Asona Arconium Inherculosis	H37Rv Rv0380c	Pyrococcus abyssi pyrE	Mycobacterium tuberculosis	איניפראע אאונין פו	Homo sapiens mps i			
35			Cory	\ <u>\</u> 5	5					\SE		\dashv		ŏ¥	0.4	Ž 3	<u> </u>	-			-			
40		db Match	pir.S60890	SECORES 14		gp:AB016841_1	sp DEGU_BACBR		gp:AB003160_1	pir.G70575			sp:YFDA_CORGL	pir:S09283	on CGFDA 1	1	pir.G70833	qp: AF058713	nir B70834		sp.THTM_HUMAN			
		ORF (bp)	 -	757		1140	618	225	1290	759		707	1167	1032	98.	3	618	552	+		852	720	279	333
45		Terminal (nt)		00025700	0201467	2948049	2949265	2950431	2950434	2952691		2952972	2952975	2954241	_ !	C200067	2956830	2957485		5619067	2959520	2960468	2962730	2963198
50		Initial 1	=		294/880	2949188	2949882	<u></u>				6541 2952709	2954141	2955272		2956473	2957447	2050036	0508052	2959710	2960371	2961187	2963008	2963596
		SEO	(a a.)		6535	6536	6537	65.18		6540		_	6542	6543	-	6544	6545			6547	6548	6549		1 6551
55		SEQ.	(DNA)		3032	3036	2037			0000	040	3041	3042	3043	}	3044	3045		3046	3047	3048	3049	3050	3051

10	Function	virulence factor	viru'ence factor	virulence factor	sodium/glutamate symport carner protein	cadmium resistance protein	cation efflux system protein (zinc/cadmium)	monooxygenase or oxidoreductase or steroid monooxygenase	alkanal monooxygenase alpha chain		cystathionine gamma-lyase	bacterial regulatory protein, faci famity	rifampin ADP-ribosyl transferase	rifampin ADP-ribosyl transferase	hypothetical protein	hypothetical protein	oxidoreduclase
15	Matched length	1	200	132	489	108	283	476	399		375	184	68	56	361	204	386
20	Similarity (%)	82.0	55.0	63.0	54.8	71.3	63.3	45.4	47.4		62.4	67.9	65.2	87.5	56.2	64.7	9.09
•	Identity (%)	76.0	38.0	62.0	24.7	37.0	23.7	22.5	21.1		36.5	40.2	49.4	73.2	30.5	33.8	31.9
25 (pən.		Sa	Sa)Sa	:6903	s cadC	ě	rous	symbiant		retB	or A3(2)	or A3(2)	or A3(2)	ulosis	ulosis	ulosis
S Table 1 (continued)	Homologous gene	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF23228	Pseudomonas aeruginosa ORF25110	Synechacystis sp. PCC6803 slr0625	Staphylococcus aureus cadC	Pyrococcus abyssi Orsay PAB0462	Rhodococcus rhodochrous	Kryptophanaron alfredi symbiont luxA		Escherichia coli K12 metB	Streptomyces coelicolor A3(2) SC1A2.11	Streptomyces coeliculor A3(2) SCE20.34c arr	Streptomyces coelicolor A3(2) SCE20.34c arr	Mycobacterium tuberculosis H37Rv Rv0837c	Mycobacterium tuberculosis H37Rv Rv0836c	Mycobacterium tuberculosis H37Rv Rv0385
, 35		Pseudomo ORF24222	Pseudomo ORF23228	Pseudomor ORF25110	Synecho slr0625	Staphy	Pyrococci PAB0462	Rhodoco IFO3338	Krypto	 	Esche	Streptomy SC1A2.11	Strept	Strept SCE2	Mycot H37R	Mycol H37R	Myco H37R
40	db Match	GSP Y29188	GSP Y29182	GSP.Y29193	pir.S76683	SP. CADE STAAU	pir.H75109	gp:AB010439_1	sp.LUXA_KRYAS		Sp. METB_ECOLI	gp:SC1A2_11	gp.SCE20_34	gp:SCE20_34	pir:E70812	pir:D70812	pir D70834
	ORF		762	396	1347	387	•	1170	1041	762	1146	567	240	183	1125	732	1179
45	Terminal	2964434	2965837	2965583	2966458	2968789	2969808	2971003	2972057	2971338	2972060	2973230	2974200	2974382	2975591	2976360	2977774
50	Initial	2964258	2965076	2965188	2967804	2968403	2958951	2969834	2971017	2972099	2973205	2973796	2973961	2974200	2974467	2975629	2976596
	SEQ			6554	6555	6558		6558	6559	6560	6561	6562	6563	6564	6565	6566	929
55	SEO	<u> </u>		3354	3055	3056	3057	3058	3059	3060	306	3062	3063	3064	3065	3066	3067

_										1			வ	\top	Т		Т		
	Function	N-carbamoyl-D-amino acid· amidohydrolase		hypothetical protein	novel two-component regulatory system	aldehyde dehydrogenase	heat shock transcription regulator	heat shock protein dnaJ	nucleotide exchange factor grpE protein bound to the ATPase domain of the molecular chaperone DnaK	heat shock protein dnaK	hypothetical membrane protein	5-methylthioadenosine	nucleosidase and S- adenosylhomocysteine nucleosidase			chromosome segregation protein			alcohol dehydrogenase
	Matched length (a.a.)	275		289	108	507	135	397	212	618	338		195			1311			334
	Similarity (%)	67.3		55.4	44.0	90.3	70.4	80.1	66.5	9.66	79.0		0 09		-	48.4			81.7
	Identity (%)	32.0		28.0	38.0	9.69	47.4	56.7	38.7	8.66	42.6		27.2			18.9			20.0
Table 1 (continued)	Homologous gene	Methanobacterium thermoautotrophicum Delta H MTH1811		Streptomyces coelicolor A3(2) SC4A7.03	Azospirillum brasilense carR	Phodococcus endhropolis thcA	Streptomyces albus G hspR	Mycobacterium tuberculcsis	Streptomyces coelicolor grpE	Brevibacterium flavum MJ-233	Streptomyces coelicolor A3(2)	SCF6.09	Helicobacter pylori HP0089 mtn			Schizosaccharomyces pombe cut3			Bacillus stearothermophilus DSM 2334 adh
	db Match	pir.869109		gp:SC4A7_3	GP ABCARRA_2	0000000	pri. 2 1043330	Sp. DNAJ MYCTU	sp.GRPE_STRCO	nsn R94587	g 43.00 mg	gp ser o_o	sp.PFS_HELPY			sp:CUT3_SCHPO			1035 sp ADH2_BACST
	ORF (bp)		243	1	330	1	230			1854	1333	1332	633	1200	885	3333	636	1485	1035
	Terminal	74	2078979	-	2981216		2980181	2982023	2983887	2004544	10.002	2998164	2988214	2988846			2993286	+	
	Initial	44	7070700	+	2080887	100000	2981698	2982460	2984522	-	7860387	2986833	2988846	2990045			2933921		2996781
	SEO	<u> </u>		6570 2				6573				6577	6578	6579	6580	6581	6587	5659	
	SEG			3009		- /ac			3075	$\overline{}$		3077	3078	2070	2080	3081	2082	2002	3084

EP 1 108 790 A2

						_														·····	
5	uo					ane protein			sferase, subunit	slerase small	phosphosulfate	eductase	n-NADP				ptake protein ty		jenase		
10	Function					hypothetical membrane protein	hypothetical protein		sulfate adenylyltransferase, 1	sulfate adenylyltransferase smalf chain	phosphoadenosine phosphosulfate reductase	ferredoxinnitrate reductase	ferredoxin/ferredoxin-NADP reductase	huntingtin interactor			alkylphosphonate uptake protein and C-P lyase activity	hypothelical protein	ammonia monooxygenase		
15	Matched length (a a)					301	252		414	308	212	502	487	144			142	80	161		
20	Similarity (%)					70.1	53.2		78.3	70.1	64.2	65.5	61.4	59.7			59.9	66.3	76.4		
	Identity (%)					43.5	32.5		47.3	46.1	39.2	34.5	30.8	32.6			26.8	50.0	39.1		
25 (penu	e e						r A3(2)		Z.	CS		C 7942	siae				ınB	r A3(2)	SMZ ID		
· · · · · · · · · · · · · · · · · · ·	Homologous gene					Bacillus subtilis ytnM	Streptomyces coelicotor A3(2) SC7A8 · 0c		Escherichia coli K12 cysN	Escherichia coli K12 cysD	Bacillus subtilis cysH	Synechococcus sp. PCC 7942	Saccharomyces cerevisiae FL200 arh1	Homo sapiens hypE			Escherichia coli K12 phnB	Streptomyces coelicolor A3(2) SCE68.10	Pseudomonas putida DSMZ ID 88-260 amoA		
35						Ba	Str SC					ý		H				SC	P.88		
40	db Match					pir.F69997	gp.SC7A8_10		sp:CYSN_ECOL!	sp.cysp_Ecou	sp:CYH1_BACSU	Sp:NIR_SYNP7	sp:ADRO_YEAST	prf:2420294J			sp:PHNB_ECOL!	gp:SCE68_10	gp:PPAMOA_1		
	ORF (bp)	216	207	189	261	927	723	915	1299	912	693	1683	1	1083	237	534	414	366	522	321	486
45	Terminal (nt)	2997366	2997481	2997876	2997963	2998528	2999478	3002426	3000241	3001542	3002453	3003480	3006915	3008376	3008453	3009303	3008749	3009607	3009710	3010979	3010441
50	Initial (nt)	2997151	2997687	2997688	2998223	2999454	3000200	3001512	3001539	3002453	3003145	3005162	3005545	3007294	3008689	3008770	3009162	3009242	3010231	3010659	3010926
	SEO NO (a.a.)	6585	6586	6587		6289		6591	6592	6593	6594	6595	+	6597	8559	6299	9009	6601	6602		5604
55	SEQ NO. (DNA)	3085	3086	3087	3088	3089	3090	3091	3092	3093	3094	3095	3096	3097	3098	3099	3100	3101	3102	3103	3104

_
inued)
(conti
-
Tab

				-						-		1	1	- 1				- 1	T		7	
	Function	hypothetical protein		hypothetical protein	ABC transporter	ABC transporter	metabolite transport protein homolog			succinyl-diaminopimelate desuccinylase				dehydrin-like protein	maltose/maltodextrin transport ATP- binding protein		coball transport protein	NADPH-flavin oxidoreductase	inosine-undine preferring nucleoside hydrolase	hypothetical membrane protein	DNA-3-methyladenine glycosylase	flavohemoprotein
	Matched length (a a)	68		337	199	211	416			466				114	373		179	231	317	276	179	406
	Similarity (%)	580		57 9	648	73.0	67.8			48.5				46.0	50.1		9'29	71.4	59.3	59.4	78.8	63.8
	Identity (%)	41.0		26.1	35.7	39.3	30.8			21.5				33.0	24.9		30.2	37.2	28.4	31.2	50.3	33.5
(aple 1 (collinace)	Homologous gene	Agrobacterium vitis ORFZ3		Alcaligenes eutrophus H16 ORF 7	Haemophilus influenzae hmcB	Haemophilus influenzae hmcB	Bacillus subtilis ydeG			Escherichia coli K12 msgB				Daucus carota	Escherichia coli K12 malK		Lactococcus lactis Plasmid pNZ4000 Orf-200 cbiM	Vibrio harveyi MAV frp	Crithidia fasciculata iunH	Streptomyces coelicolor A3(2) SCE20.C8c	Escherichia coli K12 tag	Alcaligenes eutrophus H16 fhp
	db Match	SP-YTZ3_AGRVI		sp:YGB7_ALCEU	gp:HIU68399_3		pir:A59778			sp.DAPE_ECOU				GPU.DCA297422_	Sp: MALK_ECOLI		gp:AF036485_6	Sp. FRP_VIBHA	sp:IUNH_CRIFA	gp:SCE20_8	sp:3MG1_ECOLI	sp. HMPA_ALCEU
	ORF (bp)	285	564	1002	693	714	1203	822	687	1323	1905	774	762	954	1069	642	618	816	903	975	588	1158
	Terminal (nt)	3011273	3011242		3013106	3013837	3015924	3014648	3016924	3015827	3019220	3018312	3017420	3018123	3019542	3020561	3021208	3022113	3022998	3025353	3026139	3026142
	Initial (nt)	3010989	3011805	3012809	3013798		3014616	3015469	3016238		3017316			3019075	3020609	3021202	3021825	3022928		3024379	6624 3025552	3027299
	SEQ NO		9099	2099	6099	6099	6610	6611	6612	6613	6614		6616	6617	6618	6619	6620	6621	6622	6623	6624	6625
	SEO		-		3108		3110	3111	3112	3113	3114	3115	3116	3117	3118	3119	3120	3121	3122	3123	3124	3125

5	
10	
15	
20	
25	•
30	
, 35	
40	
45	
50	-

Table 1 (continued)

_																				
	Function		oxidoreductase		transcription antiterminator or belagincoside positive regulatory protein		6-phospho-beta-glucosidase		6-phospho-beta-glucosidase	aspartate aminotransferase		transposase (ISCg2)	hypothelical membrane prolein		UDP-glucose dehydrogenase	deoxycytidine triphosphate deaminase		hypothetical protein		beta-N-Acetylglucosaminidase
	Matched length (a.a.)		210		192		167		99	402		401	399		442	188		229		410
	Similarity (%)		63.8		69.3		59.9		78.8	6.08		100.0	70.2		72.2	72.3		59.4		58.1
	Identity (%)		34.8		28.1		43.7		43.9	53.7		100.0	33.6		40.5	43.6		30.6		28.5
ישמור ו (ממווווממת)	Homologous gene		Streptomyces coelicolor A3(2) mmyQ		Escherichia coli K12 bglC		Clostridium longisporum B6405 abgA		Clostridium longisporum B6405 abgA	Methylobacillus flagellatus aat		Corynetacterium glutamicum ATCC 13032 tnp	Streptomyces coelicolor A3(2) SCQ11.10c	•	Sinorhizobium meliloli rkpK	Escherichia coli K12 dcd		Streptornyces coelicolor A3(2) SCC75A. 16c		Streptomyces thermoviolaceus nagA
	db Match		gp:SCO276673_18		sp:BGLG_ECOLI		sp. ABGA_CLOLO		sp:ABGA_CLOLO	gp:L78665_2		gp:AF189147_1	gp:SCQ11_10		prf.2422381B	sp.pcp_EcoU		gp:SCC75A_16		gp:AB008771_1
	ORF (bp)	603	624	156	591	279	360	381	240	1257	300	1203	1257	183	1317	567	237	177	1689	1185
	Terminal (nt)	3028163	3028891	3029033	3028884	3029782	3029702	3030535	3030101	3031979	3032348	3033863	3035437	3034105	3035440	3036845	3037911	3038942	3038993	3040748
	Initial (nt)	3027551	3028268	3028878	_ !	3029504	3030061	3030155	3030340	3030723	3032647	3032651	3034181	3034287	3036756	3037411	3037675	3938172	3040681	3041932
	SEQ NO.	6626	6627	6528	6299	6530	6631	6632	6633	6634	6635	6636	6637	6638	6639	6640	6541	6642	6643	6644
	SEO	3126	3127	3128		3130	3131	3132	3133	3134	3135	3136	3137	3138	3139	3140	3141	3142	3143	3144

SEC SEC Initial Terminal CMP Gab Match Homologous gene CMP CMN Smnlasky Initial CMN		_		-			- T	7				1			T	au i	į	1	İ		1
SEC Initial Terminal ORF ORF	5		ion						rane protein	nacrolide 3-O-		rane protein				ate carboxykinas	ransporter		-	protein	
SED	10		Funci			hypothetical proteir			hypothetical memb	acyltransferase or i acyltransferase		hypothetical memb		hexosyltransferase	methyl transferase	phosphoenolpyruv (GTP)	C4-dicarboxylate t	hypothetical protei	hypothetical prote	mebrane transpor	
SEC	15	}	Matched length (a.a.)									529		369	251	501	332	241	207	768	
SEG	20					49.4			47.1	51.0		54.8		79.1	73.3	78.5	52.7	67.2	85.0	72.3	
SEQ	•		Identily (%)			29.6			24.8	27.7		31.2		53.4	58.6	54.7	24.4	35.7	69.1	42.3	
SEO (nitial Terminal ORF db Match (a.a.) (nt) (bp) (bp) (bd) (nt) (nt) (bp) (bp) (bd) (a.a.) (nt) (nt) (bp) (bb) (bd) (a.a.) (nt) (nt) (bp) (bd) (a.a.) (a.a		nuea)								<i>T</i>				ulosis	ulosis	s pepck	say	'ggH	culosis	culasis AL3	
SEO (nitial Terminal ORF db Match (a.a.) (nt) (bp) (bp) (bd) (nt) (nt) (bp) (bp) (bd) (a.a.) (nt) (nt) (bp) (bb) (bd) (a.a.) (nt) (nt) (bp) (bd) (a.a.) (a.a	30	lable 1 (confl	Homologous ge			lycobacterium leprae ILCB1883.13c	-		Aycobacterium leprae ALCB 1883, 05c	streptomyces sp. acy/		Aycobacterium leprae ALC91883.04:		Aycobacterium tubero 137Rv Rv0225	Mycobacterium tubero	Veocallimastix frontali	Pyrococcus abyssi Or PAB2393	Escherichia coli K12 y	Mycobacterium tubero H37Rv Rv0207c	Mycobacterium tubero H37Rv Rv0206c mm	
SEQ Initial Terminal (nt) (a a.) (nt) (nt) (nt) (a a.) (nt) (nt) (a a.) (nt) (nt) (a a.) (nt) (nt) (a a.) (nt) (nt) (a a.) (nt)			db Match							pir.JC4001		gp:MLCB1883_3		pir.G70961		sp:PPCK_NEOFR	pir.E75125	T		pir.C70839	
SEQ Initial TO (nt) (a a.) (nt) (b645 3041994 3 3042660 3 3042660 3 3045796 3 3047146 3 3047146 3 3047146 3 3047146 3 3047146 3 3047146 3 3047146 3 3047146 3 3047146 3 3047146 3 3047146 3 3047146 3 3047146 3 3047146 3 3047146 3 3047146 3 3047146 3 3047194 3 3047194 3 3057194 3 3057194 3 3057194 3 3057194 3 3057194 3 3057194 3 3057194 3 3057194 3 3057194 3 3057194 3 3057194 3 3057194 3 3057194 3 3057194 3 305719			ORF (bp)	444	201	3129	621	195	903	1068	708	1422	+-	+	771		_	+	+		
SEQ NO (a a.) 6645 3 6646 3 6646 3 6646 3 6646 3 6647 3 6652 (6652 6653 6653 6655 6655 6655 6656 6656	45		Terminal (nt)	3042437	3042703	3045788	3043022	3045990	3048048	3046122	3047197	3049479	3051190	3049456	3051964	3052062					
0, -0 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	50		Initial (nt)			3042660	1				_1							_ 1			
SEQ NO. (DNA) 3145 3145 3145 3145 3150 3150 3150 3150 3150 3150 3150 315					6646	6647	5548	6649		6651	6652		-								
	55		SEQ NO.	3145	3145	3147	3148	31/19	3150	3151	1157	3153	2154	3155	3156	3157	3158	1150	3160	3161	3162

5	Function	hypothetical membrane protein	hypothetical membrane proteir	propionyl-CoA carboxylase comple B subunt	polyketide synthase	acyi-CoA synthase	hypothetical protein		major secreted protein PS1 proteii precursor			antigen 85-C	hypothetical membrane protein	nodulation protein	hypothetical protein	hypothelical protein		phosphatidic acid phosphatase
15	Matched length (3 a)	364 h	108 h	523 P	1747 p	592 a	319 h		657			331	667	295 r	168	656		170
20	Similarity (%)	6 7 9	69.4	76.9	542	62.3	67.4	ļ	99.5			62.5	61.2	51.5	75.0	74.7		56.5
	Identity (%)	29.1	34.3	49.7	30.2	33.5	39.8		98.6			36.3	37.5	27.1	51.2	55.6		28.2
30 Jennituo) Leiter	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0204c	Mycobacterium tuberculosis H37Rv Rv0401	Streptomyces coelicolor A3(2) pccB	Streptomyces erythraeus eryA	Mycobacterium bovis BCG	Mycobacterium tuberculosis H37Rv Rv3802c		Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 cop1			Mycobacterium tuberculosis ERDMANN RV0129C fbcC	Mycobacterium tuberculosis H37Rv Rv3805c	Azorhizobium caulinodans ORS571 noeC	Mycobacterium tuberculosis H37Rv Rv3807c	Mycobacterium tuberculosis H37Rv Rv3808c		Bacillus licheniformis ATCC 9945A bcrC
40	db Match	pir.A70839	pir: H70633	gp:AF113605_1	Sp.ERY1_SACER	prf.2310345A	pir.F70887		sp.CSP1_CORGL			sp:A85C_MYCTU	pir.A70888	sp.NOEC_AZOCA	pir:C70888	pir:070888		sp:BCRC_BACLI
	ORF (bp)	1083	363	1548	4830	1788	927	498	1971	1401	219	1023	2058	966	504	1968	1494	477
45	Terminal (nt)	3060733	3061095	3051380	3052951	3069143	3070214	3071147	3071650	3075447	3073857	3075540	3076715	3078853	3079848	3080344	3083960	3083935
50	Initial (nt)	3059651	3060733	3052927	3067780	3069930	3071140	3071644	3073620	3074047	3074075	3076562	3078772	3079848	3080351	3082311	3082467	3084411
	SEQ	6663	6664	9999	9999	2999	8999	6999		6671	6672	6673	6674	6675	9299	6677	6678	6299
55	SEO	3163	3164	3165	3166	3167	3168	3169	3170	3171	3172	3173	3174	3175	3176	3177	3178	3179

																	$\overline{}$			T	T	7
	Function			dimethylaniline monooxygenase (N-	oxide-forming)	On State of	OOL Spainter of the control of the c	hypothetical protein	glycerol kinase	hypothetical protein	acyltransferase	seryl-tRNA synthetase	transcriptional regulator, GntR family or fatty acyl-responsive regulator		hypothetical protein	hypothetical protein		2,3-PDG dependent	prospirogiyeerate iiidiase	nichtinamidase or ovrazinamidase		
	Matched length (a a)			Ť	377	17.0		629	499	279	261	419	235		356	113		218		460	3	
	Similarity (%)				50 4	6	6.7/	47.8	78.8	70.3	72.0	87.6	61.7		61.2	79.7		62.8		9	90.00	
	identity (%)				24.4		43.2	29.6	51.7	41.6	46.7	70.2	27.7		32.6	46.0		37.2			7.1.4	
Table 1 (continued)	Homologous gene				Sus scrofa fmo1		Escherichia coli K12 glf	Mycobacterium tuberculosis H37Rv Rv3811 csp	Pseudomonas aeruginosa ATCC 15692 glpK	Mycobacterium tuberculosis H37Rv Rv3813c	Mycobacterium tuberculosis H37Rv Rv3816c	Mycobacterium tuberculosis	Escherichia coli K12 farR		Mycobacterium tuberculosis H37Rv Rv3835	Mycobacterium tuberculosis H37Rv Rv3836		A colloacitom pigos page	Amycolatopais internationed part		Mycobacterium smegmatis pzaA	
	db Match				sp:FMO1_PIG		sp GLF_ECOU	pir:G70520	sp.GLPK_PSEAE	pir.A70521	pir D70521	gsp:W26465	sn FARR ECOLI		pir.H70652	pir:A70653			gp:AMU73808_1		prf:2501285A	
	ORF (bp)		777	510	1302	612	1203	2049	1527	834	876	1266	714		1113	342	g	3	699	630	1143	729
	Terminal (nt)		3084424	3085218	3087048	3088276	3087101	$\overline{}$	3090760	3092342	3093175	3094078	7809000	3090507	3097423	3097764	2007780	4	3097904	3099454	3100698	3101426
	truitial	<u> </u>	3085200	3085727	3085747	3087665	3088303	3088616	3092286	3093175	3094050	3095343		3080574	3096311	3097423	9797000		3098572	3098825	3099556	6697 3100698
	SEO	(a.a)	0899	1899	6682	6683			6686	6687	6688	6689		0699	1699	6692	_	6693	6694	6695	9699	6697
	<u> </u>	_	180	7	182	1183	_	$\overline{}$	3186	3187	3188			3190	3191	3192		3193	3194	3195	3196	3197

.

	10	
	15	
	20	•
	25	•,
•	30	
•	35	
	40	
	45	
	50	

	Function	transcriptional regulator				hypothetical protein	glucan 1,4-alpha-glucosidase		glycerophosphoryl diester phosphodiesterase	gluconate permease			pyruvate kinase	L-lactate dehydrogenase	hypothetical protein	hydrolase or haloacid dehalogenase-like hydrolase	efflux protein	transcription activator or transcriptional regulator GntR family	phosphoesterase	shikimate transport protein
	Matched length (a.a.)	380				107	432		259	456			491	314	526	224	188	221	255	422
	Simitarity (%)	57.1				81.3	55.3		54.1	71.9		! 	47.7	99.7	64.8	58.5	67.6	57.0	68.6	74.4
	Identity (%)	31.6				43.9	28.7		29.0	37.3		-	25.5	99.7	33.5	32.1	39.9	27.6	47.8	37.9
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC6G4.33				Streptomyces lavendulae ORF372	Saccharomyces cerevisiae S288C YIR019C sta1		Bacillus subtilis glpQ	Bacillus subtilis gntP			Corynebacterium glutamicum AS019 pyk	Brevibacterium flavum lctA	Mycobacterium tuberculosis H37Rv Rv1069c	Streptomyces coelicolor A3(2) SC1C2.30	Brevibacterium linens ORF1 tmpA	Escherichia coli K12 MG1655 glcC	Mycobacterium tuberculosis H37Rv Rv2795c	Escherichia coli K12 shiA
	db Match	gp:SC6G4_33				pir:826872	sp:AMYH_YEAST		sp:GLPQ_BACSU	sp. GNTP_BACSU			sp:KPYK_CORGL	gsp:Y25997	pir:C70893	gp:SC1C2_30	gp:AF030288_1	sp:GLCC_ECOLI	pir:870885	sp.SHIA_ECOLI
	ORF (bp)	1035	120	552	870	327	1314	918	819	1389	642	159	1617	942	1776	636	543	693	786	1299
	Terminal (nt)	3102768	3101744	3102079	3103763	3104252	3105719	3106053	3106951	3109519	3108823	3110003	3110464	3112449	3115394	3116042	3116621	3117332	3118121	3119582
	Initial (nt)	3101734	3101863	3102630	3102894	3103926	3104406	3106970		3108131	3109464	3109845	3112080	3113390	3113619	3115407	3116079	3116640	3117336	3118284
	SEQ NO.		6699	6700	6701	6702	6703	6704		9029	5707	6708	6709	6710	6711	6712	6713	6714	5715	6716
	SEQ		3199	3200	3201	_	3203	3204	3205	3206	3207	3208	3209	3210	3211	3212	3213	3214	3215	3216

10
15
20
25
<i>30</i>
51 35
40
45
50

·5

e de la companya de l	Function	L-lactate dehydrogenase or FMN- dependent dehydrogenase		immunity repressor protein			phosphatase or reverse transcriptase (RNA-dependent)		peptidase or IAA-amino acid hydrolase		peptide methionine sulfoxide reductase	superoxide dismutase (Fe/Mn)	transcriptional regulator	mullidrug resistance transporter				hypothetical protein	membrane transport protein	transcriptional regulator	two-component system response regulator
	Matched length (a.a)	376		55			569		122		210	164	292	384	!			216	447	137	212
	Similarity (%)	689		80 0			51.3		63 1		1 69	92 7	658	49.0				648	59.3	65.0	75.5
	ident:ty (%)	40.4		45.5			29 5		36 9		47.6	82.3	32.5	23.4				33.8	27.3	37.2	50.9
Table 1 (continued)	Homologous gene	Neisseria meningitidis IIdA		Bacillus phage phi-105 ORF1	-		Caenorhabditis elegans Y51811A.1		Arabidopsis thaliana ill 1		Escherichia coli 8 msrA	Corynebacterium pseudodiphtheriticum sod	Bacillus subtilis gitC	Corynebacterium glutamicum tetA				Mycobacterium tuberculosis H37Rv Rv3850	Streptomyces cyanogenus land	Bacillus subtilis 168 yxaD	Corynebacterium diphtheriae chrA
	db Match	prf 2219306A		sp:RPC_BPPH1			gp CELY51B11A_1		Sp:ILL1_ARATH		sp PMSR_ECOLI	pir.140858	sp:GLTC_BACSU	gp AF121000_10				pir.G70654	prf 2508244AB	SP.YXAD BACSU	
	ORF (bp)	1215	405	312	138	711	1617	546	402	150	651	900	924	1134	1611	=======================================	1521	633	1491	456	636
	Terminal (nt)	3120379	3121313	3121909	3121992	3123932	3122556	3124341	3124897	3125492	3125495	3126991	3127494	3129739	3131395	3133030	3131508	3133747	3133778	3135752	3135856
	Initial (nl)	3119665	3120909	3121598	3122129	3123222	3124172	3124885	3125298	3125343	3126145	3126392	3128417		3129785	3132920	3133028	3133115	3135268		
	SEO		6718	6119	6720	6721		6773	6724	6725		6727	6728	6729	6730	6731	6732	6733	6734	6735	6736
	SEQ		3218	_		3221		3223		3225		3227	3228		3230	3231	3232	3233	22.74	3235	3236

	Function			two-comporent system sensor histidine kinase	hypothelical protein	hypothelical protein	stage III sporulation protein	transcriptional repressor	transglycosylase-associated protein	hypothelical protein	hypothetical protein	RNA pseudoundylate synthase	hypothetical protein	hypothetical protein		bacterial regulatory protein, gntR family or glc operon transcriptional activator	hypothetical protein	hypothetical protein
	Matched length (a.a.)			408	48	772	265	192	87	296	314	334	84	42		109	488	267
	Similarity (%)			64.5	79.2	59.2	53.6	6.09	71.3	69 G	73.9	51.2	0 99	75.0		56.0	48.2	78.7
	Identity (%)			30.2	45.8	30.0	26.0	32.3	34.5	41.2	38.5	28.4	61.0	71.0		30.3	26.0	48.3
Table 1 (conlinued)	Homologous gene			Corynebacterium diphtheriae chrS	Streptomyces coelicolor A3(2) SCH69.22c	Streptomyces coelicolor A3(2) SCH69.20c	Bacillus subtilis spottiJ	Mycobacterium tuberculosis H37Rv Rv3173c	Escherichia coli K12 MG1655 tag1	Myccbacterium tuberculosis H37Rv Rv2005c	Escherichia coil K12 MG1655 yhbW	Chlorobium vibrioforme ybc5	Ch!amydia pneumoniae	Chlamydia muridarum Nigg TC0129		Escherichia coli K12 MG1655 glcC	Streptomyces coelicolor SC4G6.31c	Mycobacterium tuberculosis H37Rv Rv2744c
	db Match			prf.2518330A	gp:SCH69_22	gp:SCH69_20	sp:SP3J_BACSU	pir:C70948	sp:TAG1_ECOLI	sp.YW12_MYCTU	sp:YHBW_ECOLI	sp YBC5_CHLVI	GSP:Y35814	PIR:F81737		sp GLCC_ECOLI	gp SC4G6_31	sp.35KD_MYCTU
	ORF (bp)	639	588	1311	150	822	1302	639	261	903	186	996	273	141	207	363	1416	873
	Terminal (nt)	3137558	3138471	3136593	3138481	3138634	3140952	3140885	3141709	3142454	3143496	3145626	3146841	3147230	3151369	3151842	3153828	3153894
	fnitial (nt)	3136920	3137884	3137903	6740 3138630	3139455	3139651	3141523	3141969	3143356	3144482	3144661	3146569	3147090	3151575		3152413	3154766
	SEQ NO.	6737	-		6740	6741	6742	6743	6744	6745	6746	6747	6748	6749	6750	6751	6752	6753
	SEQ NO.	3237	-		3240	3241	3242		3244	3245	3246	3247	3248	3249	3750	3251	3252	3253

EP 1 108 790 A2

																		_		(a)		ng ting	
5		Function					!	erase	nodulin 21-related protein				transposon tn501 resolvase		recursor	protein		transposase protein fragment TnpNC		glyceraldehyde-3-phosphale dehydrogenase (pseudogene)		copper/potassium-transporting ATPase B or cation transporting ATPase (E1-E2 famity)	
10								methyltransferase	nodulin 21-r				transposon		ferredoxin precursor	hypothetical protein	transposase	transposase TnpNC		glyceraldeh dehydrogen	Iipoprolein	copper/pota ATPase B c ATPase (E	
15		Matched length (a.a.)						217	241				26		62	55	27	46		38	180	717	
20		Similarity (%)						58.1	55.2				92.9		98.4	85.5	84.0	90.0		84.2	59.4	73.4	
•	•	Identity (%)						32.3	26.1				48.2		90.3	47.3	81.0	84.0		63.2	32.2	45.8	
25	Table 1 (continued)	Homologous gene						oelicolor A3(2)					Pseudomonas aeruginosa TNP5	:	Saccharopolyspora erythraea fer	oelicolor A3(2)	m glutamicum	m glutamicum		esei gap	sp. PCC6803	Archaeoglobus fulgidus AF0152	
30 *	Table 1	Homolog						Streptomyces coelicolor A3(2) SCD35, 11c	soybean NO21				Pseudomonas a		Saccharopolysp	Streptomyces coelicolor A3(2)	Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum		Pyrococcus woesel gap	Synechocystis sp. PCC6803 sll0788	Archaeoglobus	
35 40		db Match						gp:SCU35_11	sp:NO21_SOYBN				sp.TNP5_PSEAE		Sp.FER_SACER	gp.SCD31_14	GPU AF164956_8	GPU:AF164956_23		sp.G3P_PYRWO	pir.S77018	pir.H69268	
		ORF (bp)	153	1452	1068	249	309	711	720	204	378	186	216	483	321	333	11.	162	1038	126	099	2217	171
45		Terminal (nt)	3154969	3155246	3156306	3157223	3157479	3158834	3159081	3160419	3161055	3161001	3160723	3161701	3161087	3161682	3162804	3162871	3163889	3162858	3163074	3163789	3166267
50		Initial (nt)	3154817	3156697	3157373	3157471	3157787	3158124	3159800	3160216	3160688	3160816	3160938	3161219	3161407	6767 3162014	6768 3162694	3162710	3162852	3162983	3163733	3166005	3166437
		SEQ NO.	6754	6755	6756	6757	6758	6229	6760	6761	6762	6763	5764	6765	9929	6767		6929	6770	6771	6772	6773	6774
<i>55</i>		SEQ NO.	3254	3255	3256	3257	3258	3259	3260	3261	3262	3263	3264	3265	3266	3267	3268	3269	3270	3271	3272	3273	3274

10	
15	
20	•
25	•
30 -	
<i>35</i>	
40	
45	
50	

	Function		two-component system sensor h-stidine kinase		two-component response regulator or alkaline phosphatase synthesis transcriptional regulatory protein		laccase or copper resistance protein precursor A	thiol:disulfide interchange protein (cytochrome c biogenesis protein)	quinone oxidoreductase (NADPH:quinone reductase)(seta- crystallin)		zinc-transporting ATPase (Zn(II)- translocating p-type ATPase			zinc-transporting ATPase (Zn(II)-translocating p-type ATPase	hypothetical protein		transposase	transposase
	Matched !ength (a.a.)		301		233		069	101	322		9,2			909	7.2		73	7.0
	Similarity (%)		71.4		72.1		47.9	63.4	6.09		2 99			68.5	54.0		73.0	77.0
	Identity (%)		37.5		43.4		26.7	31.7	31.4		37.2			39.8	45.0		58.0	75.0
Table 1 (continued)	Homologous gene		Escherichia coli K12 baeS		Bacillus subtilis phoP		Pseudomonas syringae pv. tomato cop.A	Bradyrhizobium japonicum tlpA	Mus musculus qor		Synechocystis sp. PCC6803 atzN			Escherichia coli K12 MG1655 alzN	Aeropyrum pernix K1 APE2572		Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum Tnp1673
:	db Match		sp.BAES_ECOLI		sp.PHOP_BACSU		sp COPA_PSESM	sp TLPA_BRAJA	sp.QOR_MOUSE		sp. ATZN_SYNY3		٠	sp.ATZN_ECOLI	PIR:E72491		GPU.AF164956_B	GPU AF164956_8
	ORF (bp)	192	1197	828	756	672	1479	363	918	471	234	315	207	1875	390	309	216	258
	Terminal (nt)	3167169	3166450	3168566	3167646	2169340	3170992	3171616	3171619	3173465	3173857	3174380	3174784	3176901	3175254	3177482	3177089	3177308
	Initial (nt)	3166978	3167646	3167739	3168401	3168669	3169414	3171254	3172536	3172995	3173624	3174066	3174990	3175027	3175643	3177174	6790 3177304	3177565
	SEQ NO (a a.)	6775	6776	22.29	6778	6779	6780	6781	6782	6783	6784	6785	3286 6786	6787	6788	6289		6791
	SEO NO.	3275	3276	3277	3278	3279	3280	3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291

(continued)
(cont
)e 1
Table

_																							
	Function	transposase (1S1628)	thiaredoxin		transmembrane transport protein or 4-hydroxybenzoate transporter		hypothetical protein	replicative DNA helicase		50S ribosomal protein L9	single-strand DNA binding protein	30S ribosomal protein S6		hypothetical protein		penicillin-binding protein	hypothetical protein	bacterial regulatory protein, marR family	hypothetical protein		hypothetical protein	hypothetical protein	ABC transporter ATP-binding protein
	Matched length (a.a.)	53	100	1	421		208	461		154	229	92		480		647	107	137	296		71	298	433
	Similarity (%)	96.2	74.0		60.1		62.5	73.1		71.4	51.5	78.3		683		60.1	72.0	65.0	61.8		70.4	63.8	64.0
	Identity (%)	92.5	39.0		27.1		35.1	37.7		42.2	30.6	28.3		41.5		29.1	41.1	35.1	29.7		32.4	30.2	31.2
()	Homologous gene	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Escherichia coli K12 thi2		Pseudomonas putida pcaK		Escherichia colı K12 yqjl	Escherichia coli K12 cnaB		Escherichia coli K12 RL9	Escherichia coli K12 ssb	Escherichia coli K12 RS6		Mycobacterium smegmatis mc(2)155		Bacillus subtilis ponA	Mycobacterium tuberculosis H37Rv Rv0049	Mycobacterium tuberculosis H37Rv Rv0042c	Mycobacterium tuberculosis H37Rv Rv2319c yofF		Bacillus subtilis yhgC	Escherichia coli K12 yceA	Escherichia coli K12 ybjZ
	db Match	gp:AF121000_8	sp.THI2_ECOU		344 sp:PCAK_PSEPU		sp:YQJI_ECOLI	sp:DN:AB_ECOL!		sp:RL9_ECOLI	sp.SSB_ECOLI	sp.RS6_ECOLI		gp:AF187306_1		sp:PBPA_BACSU	sp:YOHC_MYCTU	pir:870912	sp:Y0FF_MYCTU		sp:YHGC_BACSU	sp:YCEA_ECOLI	sp:YBJZ_ECOLI
	ORF (bp)	159	447	264	1344	159	576	1530	516	450	675	285	189	1458	882	2160	357	471	942	495	321	936	1263
	Terminal (nl)	3177525	3178112	3178872	3180392	3180945	3180551	3181337	3183984	3183478	3183987	3184701	3185348	3185536	3188793	3187042	3189296	3190347	3191319	3191848	3191922	3192266	3193252
	Initial (nt)	3177683	3178558	3178609	3179049	3181104	3181126	3182866	3183469	3183927	3184661	3184985	3185536	3186993	3187912	3189201	3189652	3189877	3190378	3191354	3192242	3193201	3194514
	SEQ NO.	6792	6793	6794	6795	96,29	5797	6798	6229	6800	6801	6802	6803	3304 6804	6805	9089	6807	6808	6809	6810	6811	6812	6813
	SEQ NO. (DNA)	3292	3293	3294	3295	3296	3297	3298	3299	3300	+	3302	3303	3304	3305	3306		3308	3309	3310	3311	3312	

· 5		Function	ABC transporter ATP-binding protein	Ľ	Ë			uring starvation	line-DNA	in			-protein-cysteine 1Se	drogenase or uctase reductase) or		ort protein	malate oxidoreductase [NAD] (malic enzyme)	gluconokinase or gluconate kinase	ance protein	ance protein
10		Fun	ABC transporter A	hypothetical protein	hypothetical protein			DNA protection during starvation protein	formamidopyrimidine-DNA glycosylase	hypothetical protein			methylated-DNAprotein-cysteine S-methyltransferase	zinc-binding dehydrogenase or quinone oxidoreductase (NADPH:quinone reductase) or alginate lyase		membrane transport protein	malate oxidoredu enzyme)	gluconokinase or	teicoplanin resistance protein	teicoplanin resistance protein
15		Matched length (a.a.)	221	237	360			154	268	404			166	231		398	392	486	169	159
20		Similarity (%)	80.1	42.0	90.0			64.9	55.6	9.99			63.3	63.5		66.3	99.5	53.7	60.4	159.0
•		Identity (%)	48.9	18.0	77.8			37.7	28.4	47.5			38.0	33.3		26.4	99.7	24.5	27.8	27.0
25 "	Table 1 (continued)	s gene	12 MG1655	uni Cj0606	berculosis			12 dps	12 mutM or	12 rtcB			JmT	Suinea pig) qor		iberculosis deA	melassecola n glutamicum) E	JE JE	cium vanZ	cium vanZ
F	Table 1 (c	Homologous gene	Escherichia coli K12 MG1655 ybjZ	Campylobacter jejuni Cj0606	Mycobacterium tuberculosis H37Rv Rv0046c			Escherichia coli K12 dps	Escherichia coli K12 mutM or fpg	Escherichia coli K12 rtcB			Homo sapiens mgmT	Cavia porcellus (Guinea pig) qor		Mycobacterium tuberculosis H37Rv Rv0191 ydeA	Corynebacterium melassecola (Corynebacterium glutamicum) ATCC 17965 malE	Bacillus subtilis gntK	Enterococcus faecium van Z	Enterococcus faecium vanZ
40		db Match	sp:YBJZ_ECOLI	pir.E81409	pir:F70912			sp.DPS_ECOLI	sp.FPG_ECOLI	SP.RTCB_ECOLI			sp:MGMT_HUMAN	sp.:QOR_CAVPO		sp:YDEA_ECOLI	gp:AF234535_1	SP.GNTK_BACSU	Sp.VANZ_ENTFC	sp:VANZ_ENTFC
		ORF (bp)	069	1977	1089	909	1485	495	813	1149	1089	573	474	1011	Ξ	1176	1176	1482	591	525
45		Terminal (nt)	3194514	3195210	3198500	3198582	3199202	3201260	3202712	3204100	3202979	3204728	3204731	3205222	3206756	3208024	3209454	3209705	-	
50		Initial (nt)	3195203	3197186		3199187	3200686		3201900	3202952				3206232	3206646		3208279	3211186		3212428
		SEQ.		6815		6817	6818		6820	6821	6822			6825	6826		6828	6829	_	
55		SEQ.	3314	3315	3316	3317	3318	3319	3320	3321	3322	3323	3324	3325	3326	3327	3328	3379	3330	3331

EP 1 108 790 A2

-

	Function	mercury(II) reductase	D-amino acid dehydrogenase small subunit				NALI(F)H miroreduciase			leucyl-tRNA synthetase	hypothetical membrane protein	virulence-associated protein		hypothetical protein	bifunctional protein (homoprotocatechuate catabolism bifunctional isomerase/decarboxylase) (2- hydroxyhepta-2,4-diene-1,7-dioate isomerase and 5-carboxymethyl-2- oxo-hex-3-ene-1,7dioate decarboxylase)	gentisate 1,2-dioxygenase or 1- hydroxy-2-naphthoate dioxygenase	bacterial regulatory protein, lact tamily or pectin degradation repressor protein	Iransmembrane transport protein or 4-hydroxybenzoale Iransporter
	Matched length (a.a.)	448	444				194			943	104	88		247	298	339	229	454
	Similarity (%)	65.6	54.5				55.2			68.1	40 4	81.4		53.8	50.3	64.3	60.7	8.09
	Identity (%)	29.9	27.3				25.8			47.7	40.4	55.8		31.6	28.5	34.2	25.3	27.5
Table 1 (continued)	Homologous gene	Staphylococcus aureus merA	Escherichia coli K12 dadA				Thermus thermophilus nox			Bacillus subtilis syl	Escherichia coli K12	Dichelobacter nodosus vapl		Streptomyces coelicolor SCC54.19	Escherichia coli K12 hpcE	Pseudomonas alcaligenes xInE	Pectobacterium chrysanthemi kdgR	Pseudomonas putida pcaK
	db Match	SD: MERA STAAU	sp.DADA_ECOLI				sp:NOX_THETH			SPISYL_BACSU	Sp YBAN ECOLI	Sp. VAPI_BACNO		gp:SCC54_19	sp:HPCE_ECOLI	1125 gp:AF173167_1	sp:KDGR_ERWCH	1256 Sp.PCAK_PSEPU
	ORF (bp)	1344		1503	330	321	609	924	1452	2856	429	357	774	723	837		780	
	Terminal JORF (nt) (bp)	3213931	3213934	3215257	3215886	3217457	3218601	3219700	3222495	3219778	3223150	3223089	3225374	3223992	3224718	3225563	3226910	3229079
	Initial (nt)	32125RB	3215163	3216759	3217215	3217777	3217993	6938 3218777	3221044	3222633	322222	3223445	3224601	3224714	3225554	3226687	3227689	6848 3227724
	SEO			6834		6836	6837	6838	6839	6840	6841		6843	6844	6845	6846	6847	6848
	SEO NO.			3334	_		3337	3338	3339						3345	3346	3347	3348

1	1	\neg				7				1	 i	T		T I	اع	l
5	Function	salicylate hydroxylase	proton/glutamate symporter or excitatory amino acid transporter2	tryptophan-specific permease	anthranilate synthase component I		anthranilate synthase component II	anthranilate phosphoribosyltransferase	indole-3-glycerol phosphate synthase (IGPS) and N-(5'-phosphoribosyl) anthranilate isomerase(PRAI)		tryptophan synthase beta chain	Iryptophan synthase alpha chain	hypothetical membrane protein	PTS system, IIA component or unknown pentitol phosphotransferase enzyme II, A component	ABC transporter ATP-binding protein	ABC transporter
15	o a ed					+			i						\neg	
	Matched length (a.a.)	476	507	170	515		208	348	474		417	283	521	152	305	547
20	Similarity (%)	49.4	54.4	99.4	99.8		100.0	99.4	98.3		6.79	96.5	86.8	71.7	63.6	57.2
•	Identity (%)	28.2	25.4	99.4	99.2		99.0	99.4	97.3		97.6	95.4	66.6	30.3	32.5	25.2
25 (panu				micum	mentum		rmentum	тіспт	rmentum		rmentum	rmentum	or A3(2)	txA		or A3(2)
& Table 1 (continued)	Homologous gene	Pseudomonas putida	Homo sapiens eat2	Corynebacterium glutamicum AS019 ORF1	Brevibacterium lactofermentum trpE		Brevibacterium lactofermentum trpG	Corynebacterium glulamicum ATCC 21850 trpD	Brevibacterium lactofermentum trpC		Brevibacterium lactofermentum trp3	Brevibacterium lactofermentum trpA	Streptomyces coelicolor A3(2) SCJ21.17c	Escherichia coli K12 ptxA	Pseudomonas stutzeri	Streptomyces coelicolor A3(2) SCH10.12
35		ă	 -	ÖĞ			8 E		i	-		i	တတ			SS
40	db Match	prf.1706191A	sp:EAT2_HUMAN	pir.JC2326	SP_TRPE_BRELA		TRPG_BRELA	sp_TRPD_CORGL	422 sp TRPC_BRELA		sp.TRPB_BRELA	sp.TRPA_BRELA	gp SCJ21_17	sp.PTXA_ECOLI	sp:NOSF_PSEST	gp.SCH10_12
	ORF (bp)	1325	1251	510	1554	171	624	1044	1422	969	1251	840	1539	810	906	1584
45	Terminal (nt)	3230444	3231054	3233105	3234956	3233250	3235579	3236645	3238062	3236518	3239332	3240171	3240313	3241879	3243759	3245342
50	Initial (nt)	3229119	3232304	3232596	3233403	3233420	3234956	3235602	3236641	3237213	3238082	3239332	3241851	3242688	3242854	3243759
	SEO NO.	6849	6850	6851	6852	6853	6854	6855	9589	6857	6858	6889	6860	6861	6862	6863
55	SEQ NO.			3351	3352	3353		3355	3356	3357	3358	3359	3360	3361	3362	

EP 1 108 790 A2

.

, 30 ,

_									$\neg \neg$		i								
	Function	cytchrome b6-F complex iron-sulfur subunit (Rieske iron-sulfur protein)	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, arsR family or methylenomycin A resistance protein	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical protein					acetoin(diacetyl) reductase (acetoin dehydrogenase)	hypothetical protein	di-/tripeptide transpoter		bacterial regulatory protein, tetR family	hydroxyquinol 1,2-dioxygenase	
	Matched length (a.a.)	305	336	328	292	102	347	226					238	58	469		188	246	
	Similarity (%)	63.6	64.3	74.7	54.6	79.4	64.3	69.5					52.9	84.5	71.6		50.5	62.2	
	Identity (%)	32.5	33.3	43.6	34.0	45.1	33.4	31.4					26.9	53.5	34.5		26.1	31.7	
Table 1 (continued)	Homologous gene	Chlorobium limicola petC	Thermoanaerobacter brockii nadO	Escherichia coli K12 yfeH	Streptomyces coelicolor A3(2) SCI11.36c	Streptomyces coelicolor Plasmid SCP1 mmr	Thermoanaerobacter brockii nadO	Saccharomyces cerevisiae ymyO					Klebsiella terrigena budC	Mycobacterium tuberculosis H37Rv Rv2094c	Lactococcus lactis subsp. lactis dtpT		Escherichia coli K12 acrR	Acinetobacter calcoaceticus catA	
	db Match	Sp.UCRI_CHLLT	sp.NADO_THEBR	Sp. YFEH_ECOLI	gp:SCI11_36	pir.A29606	SP.NADO_THEBR	sp YMY0_YEAST					sp:BUDC_KLETE	sp:YY34_MYCTU	sp.DTPT_LACLA		sp.ACRR_ECOLI	sp:CATA_ACICA	
	ORF (bp)	450	1110	972	774	348	1092	648	153	192	168	321	753	188	1359	171	555	903	
	Terminal (nt)	3245766	3245822	3248205	3249165	3249187	3250742	3251405	3251466	3251743	3252133	3252316	3253480	3253739	3253824	3255719	3255744	3256471	
	Initial (nt)	3245317	3246931	3247234	3248392	3249534	3249651	6870 3250758	3251618	3251934	3252300	3252636	3252728	3253560	3255182	3255549		6880 3257373	1
	SEQ NO.	6864	6865	6866	6867	6868	6989	6870	6871	6872	6873	6874	6875	6876	6877	6878	6879		
	SEO		3365	3366		3368	3369	3370	3371	3372	3373	3374	3375	3376	3377	3378	3379	3380	

EP 1 108 790 A2

	Function	maleylacetate reductase	sugar transporter or D-xylose-proton symporter (D-xylose transporter)	bacterial transcriptional regulator or acetate operon repressor	oxidoreductase	diagnostic fragment protein sequence	myo-inositol 2-dehydrogenase	dehydrogenase or myo-inositol 2- dehydrogenase or streptomycin biosynthesis protein	phosphoesterase				stomatin		DEAD box RNA helicase family	hypothetical membrane protein		phosphomethylpyrimidine kinase	mercuric ion-binding protein or heavy-metal-associeted domain containing protein	ectoine/profine uptake protein
	Watched length (aa)	351	513	280	357	270	332	343	1242				206		1660	141		125	67	297
	Similarity (%)	75.5	58.3	60.7	55.7	58.2	59.6	62.4	62.7	-			57.3		80.2	61.0		76.8	70.1	62.3
	Identity (%)	43.0	31.4	25.7	27.2	25.9	26.5	34.1	33.3				28.6		58.4	34.8		50.4	46.3	29.9
Table 1 (confinued)	Homologous gene	Pseudomonas sp. P51	Escherichia coli K12 xylE	Salmonella typhimurium icIR	Escherichia coli K12 ydgJ	Listeria innocua strain 4450	Sinorhizobium meliloti idhA	Streptomyces griseus strl	Bacillus subtilis yvnB				Caenorhabditis elegans unc1		Mycobacterium bovis BCG RvD1-Rv2024c	Mycobacterium leprae u2266k		Bacillus subtilis thiO	Bacillus subtilis yvgY	Corynebacterium glutamicum proP
	db Match	Sp. TCBF PSESQ		sp:ICLR_SALTY	sp. YDGJ_ECOLI	gsp.W61761	sp:MI2D_BACSU	sp.STRI_STRGR	pir.C70044				sp.UNC1_CAEEL		4929 gp MBO18605_3	prt:2323363AAM		sp. THIO_BACSU	pir.F70041	prf.2501295A
	ORF (bp)	1089	1524	861	1077	879	1005		4032	645	618	1086	744	696	4929	507	360	909	243	837
	Terminal (nt)	3257403	3258561	3261989	3263221	3264115	3265146	3266266	3271093	32679.3	3268618	3272477	3274488	3275602	3276671	3281666	3283101	3282347	3283383	3283473
	Initial (nt)	3258491	3260084	3261129	3262145	3263237	3264142	3265184	3267062	3268557	3269235	3271392	3275231	3276570	3281599	3282172	3282742	3282946	3283141	3284309
	SEQ NO.	6881		6883	6884	6885	6886	6887	6888	6889	0689	6891	6892	6893	6894	6895	6896	6897	6898	6899
	SEQ NO.			3383	3384		3336		3388	3389	3390	3391	3392	3393	3394	3395	3396	3397	3398	3399

EP 1 108 790 A2

		٢		U 0 _	a)	T		T			ho	٦			T						ō	}	
5			uc	ing periplasmi iron(III) dicitrat mease protein	itory function ig ADPH quinon			idine Kinase		profein or sted domain	no acid transp	no acid transp		sterase		-		ane protein	ane protein		gma-H factor (F subfamily)	se	
10			Function	iron(III) dicitrate-binding periplasmic protein precursor or iron(III) dicitrate transport system permease protein	mitochondrial respiratory function protein or zinc-binding dehydrogenase or NADPH quinone oxidoreductase			phosphomethy(pyrimidine kinase		mercuric ion-binding protein or heavy-metal-associated domain containing protein	branched-chain amino acid transport	branched-chain amino acid transport	hypothetical protein	en on of the state	וצואל וותכובסוות אוויו	mutator mutT protein		hypothetical membrane protein	hypothetical membrane protein		RNA polymerase sigma-H factor or sigma-70 factor (ECF subfamily)	thiorecoxin reductase	
15			Matched length (a.a.)	279	324			249		29	102	212	169	7.74	4	234		858	1201		189	308	
20			Similarity (%)	60.6	58.0			75.5		70.1	65.7	67.0	56.2	3 5	B. LO	69.2		543	60.1		6.09	82.5	3
	•		Identity (%)	29.4	27.2			46.2		41.8	36.3	32.1	23.7	43.7	26.8	436		25.8	35.7		30.2	60.4	2
25	•	ntinued)	gene	fecB	es pombe					>			0,000	z yaye	2 cca	erculosis		erculosis	erculosis		Uginosa algU	Hydrine by	חאוו פוושפווט
30		Table 1 (continued)	Homologous gene	Escherichia coli K12 fecB	Schizosaccharonyces pombe	•		Bacillus subtilis thiD		Bacillus subtilis yvgY	Bacillus subtilis azlD	Decillus cubtlie azil	Bacillus subtrits az it	Escherichia coli N 12 yqgc	Escherichia coli K12 cca	Mycobacterium tuberculosis H37Ry Rv3908		Mycobacterium tuberculosis H37Rv Rv3909	Mycobacterium tuberculosis H37Rv Rv3910		Use idomonas aeruginosa algU	Ne o account	Streptomyces clavuilgelus LIXD
35 40			db Match	Sp. FECB_ECOLI	sp MRF1_SCHPO			sp. THID_BACSU		pir.F70041	AZIO BACSII	Sp. AZLO BACSU	sp.AZLC_BACSU	sp. YOGE_ECOLI	sp.ccA_ECOLI	pir.E70600		pir.F70600	pir.G70600		PSEAF		sp.TRX8_STRCL
			ORF (5p)	957	1122	384	219	798	345	i	_		=	567	1320	996	273	2511	3249	773	603	3	951
45			Terminal (nt)	3284399	3286576	3287005	3287079	3287393	3288609	3288885	100000	32889/1	3289311	3290025	3290623	3293497	3292610	3296007	3299404	achance			3301321
50			Initial (nt)	33	3285455	3286622				3288685		١.		3290591	3291942	3292532	3292882		3296156			3299661	3417 6917 3300371
			SEO	(8.8)	6901	6902	6903	6904	6905	9069			6908	6069	6910	6911	6912		6914			69.16	6917
55			SEQ.		3401	2402	3403	3404	3405	3406		3407	3408	3409	3410	3411	3412	3413	3414		3415	3416	3417

	Function		thioredoxin ch2, M-type	N-acetylmuramoyl-L-alanine amidase			hypothetical protein	hypothetical protein	partitioning or sporulation protein	glucose inhibited division protein B	hypothetical membrane protein	ribonuclease P protein component	50S ribosomal protein L34			L-aspartate-alpha-decarboxylase precursor	2-isopropylmalate synthase	hypothetical protein	aspartale-semialdehyde dehydrogenase	3-dehydroquinase
	Matched length (a.a.)		119	196			212	367	272	153	313	123	47			136	616	85	344	149
	Similarity (%)		76.5	75.4			58.5	60.5	78.0	64.7	75.4	59.4	93.6			100.0	100.0	100.0	100.0	100.0
•	Identity (%)		42.0	51.0			34.4	37.6	65.0	36.0	44.7	26.8	83.0			100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene		Chlamydomonas reinharotii thi2	Bacillus subtilis cwlB			Mycobacterium tuberculosis H37Rv Rv3916c	Pseudomonas putida ygi2	Mycobacterium tuberculosis H37Rv parB	Escherichia coli K12 gidB	Mycobacterium tuberculosis H37Rv Rv3921c	Bacillus subtilis rnpA	Mycobaclerium avium rpmH			Corynebacterium glutamicum panD	Corynebacterium glutamicum ATCC 13032 leuA	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum asd	Corynebacterium glutamicum ASO19 aroD
-	db Match		sp:THI2_CHLRE	sp:CWLB_BACSU			pir.D70851	sp: YGI2_PSEPU	sp:YGI1_PSEPU	sp.GIDB_ECOLI	pir.A70852	sp:RNPA_BACSU	gp:MAU19185_1			gp:AF116184_1	sp.LEU1_CORGL	sp:YLEU_CORGL	sp:DHAS_CORGL	gp:AF124518_1
	ORF (bp)	1185	372	1242	777	1041	618	1152	837	699	951	399	336	294	222	408	1848	255	1032	447
	Terminal (nt)	3300119	3301729	3302996	3301989	3304475	3302999	3303636	3304835	3305864	3306682	3307971	3308412	3309321	3308822	147573	266154	268814	271691	446521
	Initial (nt)	3301303	3301358		3302765	3303435	3303616	3304787	3305671	3306532		3308369	3308747	3309028	3309043	147980	268001	269068	270660	446075
	SEO NO.	6918	6919	6920	6921	6922	6923	6924	6925	6926	6927	6928	6269	6930	6931	6932	6933	6934	6935	6936
	SEQ NO.	3418	3419		3421	3422	3423	3424	3425	3426	3427	3428	3429	3430	3431	3432	3433	3434	3435	3436

EP 1 108 790 A2

_															
	Function	elongation factor Tu	preprotein translocase secY subuit	isocitrate dehydrogenase (oxalosuccinatedecarboxylase)	acyl-CoA carboxylase or biotin- binding protein	citrate synthase	putative binding protein or peptidyl- prolyl cis-trans isomerase	glycine betaine transporter	hypothetical membrane protein	L-Iysine permease	aromatic amino acid permease	hypothetical protein	succinyl diaminopimelate desuccinylase	proline transport system	arginyl-tRNA synthetase
	Matched length (a a)	396	440	738	591	437	118	595	426	501	463	316	369	524	250
	Similarity (%)	100.0	100 0	100.0	100.0	100.0	100 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13059 luf	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 secY	Corynebacterium glutamicum ATCC 13032 icd	Corynebacterium glutamicum ATCC 13032 accBC	Corynebacterium glutamicum ATCC 13032 gltA	Corynebacterium glutamicum ATCC 13032 fkbA	Conynebacterium glutarnicum ATCC 13032 betP	Corynebacterium glutamicum ATCC 13032 orf2	Corynebacterium glutamicum ATCC 13032 lysl	Corynebacterium glutamicum ATCC 13032 aroP	Corynebacterium glutamicum ATCC 13032 orf3	Corynebacterium glutamicum ATCC 13032 dapE	Corynebacterium glutamicum ATCC 13032 putP	Corynebacterium glutamicum ASO19 ATCC 13059 argS
	db Match	sp.EFTU_CORGL	sp SECY_CORGL	2214 sp:IDH_CCRGL	773 prf.2223173A	sp CISY_CORGL	SP.FKBP_CORGL	Sp. BETP_CORGL	sp.YLI2_CORGL	sp:LYSI_CORGL	sp.AROP_CORGL	pir.S52753	prf.2106301A	gp:CGPUTP_1	1650 SP.SYR_CORGL
	ORF (bp)	1188	1320	2214	1773	1311	354	1785	1278	1503	1389	948	1107	1572	1650
	Terminal (nt)	527563	570771	677831	718580	879148	879629	946780	1029006	1030369	1153295	1154729	1156837	1218031	1239923
	initial (nt)	526376	569452	680044	720352	877838	879276	944996	1030283	1031871	1154683	1155676	1155731	1219602	1238274
	SEO NO (a a)	6937	6938	6633	6940	6941	6942	6943	6944	6945	6946	6947	6948	6946	6950
	SEO NO (DNA)	3437	3438	3439	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450

EP 1 108 790 A2

.30 -

	Function	diaminopimelate (DAP) decarboxylase (meso- diamiropimelate decarboxylase)	homoserine dehydrogenase	homoserine kinase	ion channel subunit	lysine exporter protein	lysine export regulator protein	acetohydroxy acid synthase, large subunit	acetohydroxy acid synthase, small subunit	acetohydroxy acid isomeroreductase	3-isopropylmalate dehydrogenase	PTS system, phosphoenolpyruvate sugar phosphotransferase (mannose and glucose transport)	acetylglutamate kinase	ornithine carbamoyitransferase	arginine repressor
	Matched length (a.a.)	445	445	309	216	236	290	626	172	338	340	683	294	319	171
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum AS019 ATCC 13059 lysA	Corynebacterium glutamicum AS019 ATCC 13059 hom	Corynebacterium glutamicum AS019 ATCC 13059 thrB	Corynebacterium glutamicum R127 orf3	Corynebacterium glutamicum R127 lysE	Corynebacterium glutamicum R127 lysG	Corynebacterium glutamicum ATCC 13032 ilvB	Corynebacterium glutamicum ATCC 13032 ilvN	Corynebacterium glutamicum ATCC 13032 ilvC	Corynebacterium glutamicum ATCC 13032 leuB	Corynebacterium glutamicum KCTC1445 ptsM	Corynebacterium glutamicum ATCC 13032 argB	Corynebacterium glutamicum ATCC 13032 argF	Corynebacterium glutamicum ASO 19 argR
	db Match	sp.DCDA_CORGL	sp:DHOM_CORGL	sp:KHSE_CORGL	gsp:W37716	sp:LYSE_CORGL	sp:LYSG_CORGL	1878 sp:ILVB_CORGL	pir.B48648	pir.C48648	sp:LEU3_CORGL	2049 prf.2014259A	sp.ARGB_CORGL	sp.OTCA_CORGL	gp.AF041436_1
	ORF (bp)	1335	1335	927	627	708	870	1878	516	1014	1020	2049	882	957	513
	Terminal (nt)	1241263	1243841	1244781	1328243	1328246	1329884	1340008	1340540	1341737	1354508	1425265	1467372	1469521	1470040
	Initial (nt)	1239929	1242507	1243855	1327617	1328953	1329015	1338131	1340025	1340724	1353489	1423217	1466491	1468565	3264 6964 1469528
	SEO	+	6952	6953	6954	6955	9569	6957	6958	6929	0969	6961	6962	6963	6964
	SEO NO SEO		3452	3453	3454	3455	3456	3457	3458	3459	3460	3461	3462	3463	3264

EP 1 108 790 A2

	Function	NADH dehydrogenase		phosphoribosyl-ATP- pyrophosphohydrolase	ornithine-cyclodecarboxylase	ammonium uptake protein, high affinity	nrotein-export membrane protein	secG	phosphoenolpyruvate carboxylase	chorismate synthase (5- enotpyruvylshikimate-3-phosphate	phospholyase)	restriction endonuclease	sigma factor or RNA polymerase	transcription factor	glutamate-binding protein	rec A nrolein		dihydrodipicolinate synthase		dihydrodipicolinate reductase	L-malate dehydrogenase (acceptor)	
	Matched length (a.a.)	467	ior	87	362	452		77	919	410		632	}	331	295	376	2	301		248	200	
	Similarity (%)	000	100.0	100.0	100.0	100.0		100 0	100.0	100.0		100.0		100.0	100.0	90,	0.001	100.0		100.0	100 0	
	Identity (%)	1	100.0	100.0	100.0	100.0		100.0	100.0	100 0		100.0		100.0	100.0		100.0	100.0		100.0	100 0	
Table 1 (continued)	Homologous gene	minimatica minimatical	ATCC 13032 ndh	Corynebacterium glutamicum	Conynebacterium glutamicum	Corynebacterium glulamicum	ATCC 13032 amt	Corynebacterium glutamicum ATCC 13032 secG	Corynebacterium glutamicum	Corynebacterium glutamicum	AS019 aroC	Corynebacterium glutamicum	ATCC 13032 cglilk	Corynebacterium glufamicum ATCC 13869 sigB	Corynebacterium glutamicum	ALCC 13032 gide	AS019 recA	Corynebacterium glutamicum (Brevibacterium lactofermentum)	ATCC 13869 dapA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapB	Corynebacterium glutamicum	R127 mq0
	db Match		gp:CGL238250_1	1	an CGI 007732 4	37	gp.cccco0732_3	gp:CGL007732_2	p:f 1509267A		1230 gp.AF124600_1	-ir B45224		prf.2204286D	CORGL	$\overline{}$	sp.RECA_CORGL	Sp.DAPA_BRELA		sp:DAPB_CORGL	0.00	1500 gp:CGAZ24948_1
	ORF	(40)	1401	261	900	200	1356	231	2757		1230	1006		993	8		1128	903		1 744	-+-	$\overline{}$
	Terminal	(m)	1543154	1586465	1074423	10/4/63	1675268	1677049	1677387		1719669	200000	1882385	2021846	7021.000	7001304	2063989	2079281		2081191		2113864
	-		1544554			16/5208	1676623	16777791	4600143	C+1.0001	1720898		1880490	2020854		2060620	2065116	2080183		2081934		2115363
	SED	(a a.)	6065		1	969	8969	6060		0/69	6971		6972	6973	;	6974	6975	6076		7.69		6978
	SEQ 8	-	3465		03400	3467	3468	2460		3470	3471		3472	2473	5	3474	3475	,	34/0	3477		3478

EP 1 108 790 A2

.5

	Function	uridilylyltransferase, uridilylyl- removing enzyme	nitrogen regulatory protein P-II	ammonium transporter	glutamate dehydrogenase (NADP+)	pyruvate kinase	glucokinase	glutamine synthetase	threonine synthase	ectoine/proline/glycine betaine carrier	malate synthase	isocitrate lyase	glutamate 5-kinase	cystathionine gamma-synthase	ribonucleotide reductase	glutaredoxin
	Matched length (a a)	692	112	438	447	475	323	477	481	615	739	432	369	386	148	77
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.C	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 glnD	Corynebacterium glutamicum ATCC 13032 glnB	Corynebacterium glutamicum ATCC 13032 amtP	Corynebacterium glutamicum ATCC 17965 gdhA	Corynebacterium glutamicum AS019 pyk	Corynebacterium glutamicum ATCC 13032 glk	Corynebacterium glutamicum ATCC 13032 glnA	Corynebacterium glutamicum thrC	Corynebacterium glutamicum ATCC 13032 ectP	Corynebacterium glutamicum ATCC 13032 aceB	Conynebacterium glutamicum ATCC 13032 aceA	Corynebacterium glutamicum ATCC 17965 proB	Corynebacterium glutamicum ASO19 metB	Corynebacterium glutamicum ATCC 13032 nrdl	Corynebacterium glutamicum ATCC 13032 nrdH
	db Malch	gp:CAJ10319_4	gp:CAJ10319_3	gp.CAJ10319_2	pir:S32227	Sp.KPYK_CORGL	gp:AF096280_1	prf.2322244A	1443 Sp. THRC_CORGL	prf.2501295B	pir:140715	pir:140713	sp:PROB_CORGL	gp:AF126953_1	gp:AF112535_2	gp:AF112535_1
	ORF (bp)	2076	336	1314	1341	1425	696	1431	1443	1845	2217	1296	1107	1158	444	231
	Terminal (nt)	2169666	2171751	2172154	2194742	2205668	2316582	2350259	2353600	2448328	2467525	2472035	2496670	2590312	2679684	2580419
	Initial (nt)	-	2172086	2173467	2196082	2207022	2317550	2348829	2355042	2450172	2470141	2470740	2497776	2591469	6992 2680127	2680649
	SEO	(3 8.)	0869	1869	6982	6983	6984	6985	9869		6988	6869	0669	6991	6992	6993
	ļ	3479 E	3480	3481	3482	3483	3484	3485	3486		3468	3489	3490	3491	3492	3493

EP 1 108 790 A2

_								_		7		_	- T		7	
	Function	meso-diaminopimelate D.	dehydrogenase	porin or cell wall channel forming protein		acetate kinase	phosphate acetyltransferase	multidaya resistance protein or	macrolide-efflux pump or	ATP-dependent protease regulatory	subunit	dobydratace	preprietate den journage		ectoine/proline uplake protein	
	Matched length	1-	370	45	Π	397	329		459		852	;	er.		504	
	Identity Similarity (%)		100.0	100.0		100.0	100.0		100.0		100.0	┺	100.0		100.0	
	Identity (%)		100.0	100.0		100.0	100.0		100.0		100.0		100.0		100.0	
Table 1 (continued)	Homologous gene		Corynebacterium giutamicu: ii KY10755 ddh	Corynebacterium glutamicum	WHZU-ZZB pur	Corynebacterium glutamicum ATCC 13032 ackA	Corynebecterium glutamicum	AICC 13032 ptd	Corynebacterium glutamicum		Corynebacterium glutamicum	The state of the s	Corynebacterium glutariiicum	Here	Corynebacterium glutamicum ATCC 13032 proP	22000
	db Match		960 Sp.DDH_CCRGL	Τ_		1191 SP. ACKA_CORGL	r.f.2516394A		1377 prf:2309322A		Sp.CLP3 CORGL		945 prf. 1210266A		1512 prf:2501295A	
	ORF	(da)	096	125	3	1191	7 8 0		1377		2556			_	1512	
	Terminal	(nt)	2786756	2007044	446/007	2935315	9038600	2930300	2962718		2983606		300B57B		3272563	
	Initial	(pt)	2787715		8/08897	2936505		2937494	CAE 1300	7.0.067	20E6161	010067	20005	30353676	3274074	
	SEO	(9.9)	8009		6995	9669		2669	000	0250	- 6	22.00			7007	3
	SEQ		2404		3495	3496		3497	0.70	3430	0	3499	3	3200	200	- 200

Example 2

10

15

20

25

30

45

55

Determination of effective mutation site

(1) Identification of mutation site based on the comparison of the gene nucleotide sequence of lysine-producing B-6 strain with that of wild type strain ATCC 13032

[0374] Corynebacterium glutamicum B-6, which is resistant to S-(2-aminoethyl)cysteine (AEC), rifampicin, streptomycin and 6-azauracil, is a lysine-producing mutant having been mutated and bred by subjecting the wild type ATCC 13032 strain to multiple rounds of random mutagenesis with a mutagen, N-methyl-N'-nitro-N-nitrosoguanidine (NTG) and screening (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)). First, the nucleotide sequences of genes derived from the B-6 strain and considered to relate to the lysine production were determined by a method similar to the above. The genes relating to the lysine production include lysE and lysG which are lysine-excreting genes; ddh, dapA, hom and lysC (encoding diaminopimelate dehydrogenase, dihydropicolinate synthase, homoserine dehydrogenase and aspartokinase, respectively) which are lysine-biosynthetic genes; and pyc and zwf (encoding pyruvate carboxylase and glucose-6-phosphate dehydrogenase, respectively) which are glucose-metabolizing genes. The nucleotide sequences of the genes derived from the production strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed. As a result, mutation points were observed in many genes. For example, no mutation site was observed in IysE, IysG, ddh, dapA, and the like, whereas amino acid replacement mutations were found in hom, lysC, pyc, zwf, and the like. Among these mutation points, those which are considered to contribute to the production were extracted on the basis of known biochemical or genetic information. Among the mutation points thus extracted, a mutation, Val59Ala, in hom and a mutation, Pro458Ser, in pyc were evaluated whether or not the mutations were effective according to the following method.

(2) Evaluation of mutation, Val59Ala, in hom and mutation, Pro458Ser, in pyc

[0375] It is known that a mutation in hom inducing requirement or partial requirement for homoserine imparts lysine productivity to a wild type strain (*Amino Acid Fermentation*, ed. by Hiroshi Aida *et al.*, Japan Scientific Societies Press). However, the relationship between the mutation, Val59Ala, in *hom* and lysine production is not known. It can be examined whether or not the mutation, Val59Ala, in *hom* is an effective mutation by introducing the mutation to the wild type strain and examining the lysine productivity of the resulting strain. On the other hand, it can be examined whether or not the mutation, Pro458Ser, in *pyc* is effective by introducing this mutation into a lysine-producing strain which has a deregulated lysine-bioxynthetic pathway and is free from the *pyc* mutation, and comparing the lysine productivity of the resulting strain with the parent strain. As such a lysine-producing bacterium, No. 58 strain (FERM BP-7134) was selected (hereinafter referred to the "lysine-producing No. 58 strain" or the "No. 58 strain"). Based on the above, it was determined that the mutation, Val59Ala, in *hom* and the mutation, Pro458Ser, in *pyc* were introduced into the wild type strain of *Corynebacterium glutamicum* ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain" or the "ATCC 13032 strain") and the lysine-producing No. 58 strain, respectively, using the gene replacement method. A plasmid vector pCES30 for the gene replacement for the introduction was constructed by the following method.

[0376] A plasmid vector pCE53 having a kanamycin-resistant gene and being capable of autonomously replicating in Coryneform bacteria (*Mol. Gen. Genet.*, 196: 175-178 (1984)) and a plasmid pMOB3 (ATCC 77282) containing a levansucrase gene (*sacB*) of *Bacillus subtilis* (*Molecular Microbiology*, 6: 1195-1204 (1992)) were each digested with *Pst*l. Then, after agarose gel electrophoresis, a pCE53 fragment and a 2.6 kb DNA fragment containing *sacB* were each extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The pCE53 fragment and the 2.6 kb DNA fragment were ligated using Ligation Kit ver. 2 (manufactured by Takara Shuzo), introduced into the ATCC 13032 strain by the electroporation method (*FEMS Microbiology Letters*, 65: 299 (1989)), and cultured on BYG agar medium (medium prepared by adding 10 g of glucose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH to 7.2) containing 25 µg/ml kanamycin at 30°C for 2 days to obtain a transformant acquiring kanamycin-resistance. As a result of digestion analysis with restriction enzymes, it was confirmed that a plasmid extracted from the resulting transformant by the alkali SDS method had a structure in which the 2.6 kb DNA fragment had been inserted into the *Pst*l site of pCE53. This plasmid was named pCES30.

[0377] Next, two genes having a mutation point, *hom* and *pyc*, were amplified by PCR, and inserted into pCES30 according to the TA cloning method (Bio Experiment Illustrated vol. 3, published by Shujunsha). Specifically, pCES30 was digested with *Bam*HI (manufactured by Takara Shuzo), subjected to an agarose gel electrophoresis, and extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The both ends of the resulting pCES30 fragment were blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended pCES30 fragment was concentrated by extraction with phenol/chloroform and precipitation with ethanol, and allowed

to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dTTP at 70°C for 2 hours so that a nucleotide, thymine (T), was added to the 3'-end to prepare a T vector of pCES30.

[0378] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the method of Saito et al. (*Biochem. Biophys. Acta, 72*: 619 (1963)). Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymelase (manufactured by Stratagene). In the mutated *hom* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. In the mutated *pyc* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENE-GLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

5

10

15

20

30

35

40

50

[0379] The above pCES30 T vector fragment and the mutated *hom* gene (1.7 kb) or mutated *pyc* gene (3.6 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.7 kb or 3.6 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pChom59 and pCpyc458.

[0380] The introduction of the mutations to the wild type ATCC 13032 strain and the lysine-producing No. 58 strain according to the gene replacement method was carried out according to the following method. Specifically, pChom59 and pCpyc458 were introduced to the ATCC 13032 strain and the No. 58 strain, respectively, and strains in which the plasmid is integrated into the chromosomal DNA by homologous recombination were selected using the method of lkeda et al. (Microbiology 144: 1863 (1998)). Then, the stains in which the second homologous recombination was carried out were selected by a selection method, making use of the fact that the Bacillus subtilis levansucrase encoded by pCES30 produced a suicidal substance (J. of Bacteriol., 174: 5462 (1992)). Among the selected strains, strains in which the wild type hom and pyc genes possessed by the ATCC 13032 strain and the No. 58 strain were replaced with the mutated hom and pyc genes, respectively, were isolated. The method is specifically explained below.

[0381] One strain was selected from the transformants containing the plasmid, pChom59 or pCpyc458, and the selected strain was cultured in BYG medium containing 20 μg/ml kanamycin, and pCG11 (Japanese Published Examined Patent Application No. 91827/94) was introduced thereinto by the electroporation method. pCG11 is a plasmid vector having a spectinomycin-resistant gene and a replication origin which is the same as pCE53. After introduction of the pCGII, the strain was cultured on BYG agar medium containing 20 μg/ml kanamycin and 100 μg/ml spectinomycin at 30°C for 2 days to obtain both the kanamycin- and spectinomycin-resistant transformant. The chromosome of one strain of these transformants was examined by the Southern blotting hybridization according to the method reported by Ikeda *et al.* (*Microbiology, 144*: 1863 (1998)). As a result, it was confirmed that pChom59 or pCpyc458 had been integrated into the chromosome by the homologous recombination of the Cambell type. In such a strain, the wild type and mutated *hom* or *pyc* genes are present closely on the chromosome, and the second homologous recombination is liable to arise therebetween.

[0382] Each of these transformants (having been recombined once) was spread on Suc agar medium (medium prepared by adding 100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 g of sodium chloride, 5 g of yeast extract (manufactured by Difco), and 18 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH 7.2) and cultured at 30°C for a day. Then the colonies thus growing were selected in each case. Since a strain in which the sacB gene is present converts sucrose into a suicide substrate, it cannot grow in this medium (J. Bacteriol., 174: 5462 (1992)). On the other hand, a strain in which the sacB gene was deleted due to the second homologous recombination between the wild type and the mutated hom or pyc genes positioned closely to each other forms no suicide substrate and, therefore, can grow in this medium. In the homologous recombination, either the wild type gene or the mutated gene is deleted together with the sacB gene. When the wild type is deleted together with the sacB gene, the gene replacement into the mutated type arises.

[0383] Chromosomal DNA of each the thus obtained second recombinants was prepared by the above method of Saito et al. PCR was carried out using Pfu turbo DNA polymerase (manufactured by Stratagene) and the attached buffer. In the hom gene, DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. Also, in the pyc gene was used, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The nucleotide sequences of the PCR products were determined by the conventional method so that it was judged whether the hom or pyc gene of the second recombinant was a wild type or a mutant. As a result, the second recombinant which were called HD-1 and No. 58pyc were target strains having the mutated hom gene and pyc gene, respectively.

(3) Lysine production test of HD-1 and No. 58pyc strains

[0384] The HD-1 strain (strain obtained by incorporating the mutation, Val59Ala, in the *hom* gene into the ATCC 13032 strain) and the No. 58pyc strain (strain obtained by incorporating the mutation, Pro458Ser, in the *pyc* gene into the lysine-producing No. 58 strain) were subjected to a culture test in a 5 I jar fermenter by using the ATCC 13032 strain and the lysine-producing No. 58 strain respectively as a control. Thus lysine production was examined.

[0385] After culturing on BYG agar medium at 30°C for 24 hours, each strain was inoculated into 250 ml of a seed medium (medium prepared by adding 50 g of sucrose, 40 g of corn steep liquor, 8.3 g of ammonium sulfate, 1 g of urea, 2 g of potassium dihydrogenphosphate, 0.83 g of magnesium sulfate heptahydrate, 10 mg of iron sulfate heptahydrate, 1 mg of copper sulfate pentahydrate, 10 mg of zinc sulfate heptahydrate, 10 mg of β -alanine, 5 mg of nicotinic acid, 1.5 mg of thiamin hydrochloride, and 0.5 mg of biotin to 1 liter of water, and adjusting its pH to 7.2, then to which 30 g of calcium carbonate had been added) contained in a 2 1 buffle-attached Erlenmeyer flask and cultured therein at 30°C for 12 to 16 hours. A total amount of the seed culturing medium was inoculated into 1,400 ml of a main culture medium (medium prepared by adding 60 g of glucose, 20 g of corn steep liquor, 25 g of ammonium chloride, 2.5 g of potassium dihydrogenphosphate, 0.75 g of magnesium sulfate heptahydrate, 50 mg of iron sulfate heptahydrate, 13 mg of manganese sulfate pentahydrate, 50 mg of calcium chloride, 6.3 mg of copper sulfate pentahydrate, 1.3 mg of zinc sulfate heptahydrate, 5 mg of nickel chloride hexahydrate, 1.3 mg of cobalt chloride hexahydrate, 1.3 mg of ammonium molybdenate tetrahydrate, 14 mg of nicotinic acid, 23 mg of β -alanine, 7 mg of thiamin hydrochloride, and 0.42 mg of biolin to 1 liter of water) contained in a 5 1 jar fermenter and cultured therein at 32°C, 1 vvm and 800 rpm while controlling the pH to 7.0 with aqueous ammonia. When glucose in the medium had been consumed, a glucose feeding solution (medium prepared by adding 400 g glucose and 45 g of ammonium chloride to 1 liter of water) was continuously added. The addition of feeding solution was carried out at a controlled speed so as to maintain the dissolved oxygen concentration within a range of 0.5 to 3 ppm. After culturing for 29 hours, the culture was terminated. The cells were separated from the culture medium by centrifugation and then L-lysine hydrochloride in the supernatant was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2 below.

Table 2

Strain	L-Lysine hydrochloride yield (g/l)
ATCC 13032	0
HD-1	8
No. 58	45
No. 58pyc	51

[0386] As is apparent from the results shown in Table 2, the lysine productivity was improved by introducing the mutation, Val59Ala, in the *hom* gene or the mutation, Pro458Ser, in the pyc gene. Accordingly, it was found that the mutations are both effective mutations relating to the production of lysine. Strain, AHP-3, in which the mutation, Val59Ala, in the *hom* gene and the mutation, Pro458Ser, in the *pyc* gene have been introduced into the wild type ATCC 13032 strain together with the mutation, Thr331Ile in the *lysC* gene has been deposited on December 5, 2000, in National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology (Higashi 1-1-3, Tsukuba-shi, Ibaraki, Japan) as FERM BP-7382.

Example 3

10

20

30

35

55

45 Reconstruction of lysine-producing strain based on genome information

[0387] The lysine-producing mutant B-6 strain (*Appl. Microbiol. Biotechnol.*, 32: 269-273 (1989)), which has been constructed by multiple round random mutagenesis with NTG and screening from the wild type ATCC 13032 strain, produces a remarkably large amount of lysine hydrochloride when cultured in a jar at 32°C using glucose as a carbon source. However, since the fermentation period is long, the production rate is less than 2.1 g/l/h. Breeding to reconstitute only effective mutations relating to the production of lysine among the estimated at least 300 mutations introduced into the B-6 strain in the wild type ATCC 13032 strain was performed.

(1) Identification of mutation point and effective mutation by comparing the gene nucleotide sequence of the B-6 strain with that of the ATCC 13032 strain

[0388] As described above, the nucleotide sequences of genes derived from the B-6 strain were compared with the

corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed to identify many mutation points accumulated in the chromosome of the B-6 strain. Among these, a mutation, Val591Ala, in *hom*, a mutation, Thr311lle, in *lysC*, a mutation, Pro458Ser, in *pyc* and a mutation, Ala213Thr, in *zwf* were specified as effective mutations relating to the production of lysine. Breeding to reconstitute the 4 mutations in the wild type strain and for constructing of an industrially important lysine-producing strain was carried out according to the method shown below.

(2) Construction of plasmid for gene replacement having mutated gene

10

15

20

30

35

40

45

- [0389] The plasmid for gene replacement, pChom59, having the mutated *hom* gene and the plasmid for gene replacement, pCpyc458, having the mutated *pyc* gene were prepared in the above Example 2(2). Plasmids for gene replacement having the mutated *lysC* and *zwf* were produced as described below.
- [0390] The *lysC* and *zwf* having mutation points were amplified by PCR, and inserted into a plasmid for gene replacement, pCES30, according to the TA cloning method described in Example 2(2) (Bio Experiment Illustrated, Vol. 3). [0391] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the above method of Saito *et al.* Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymerase (manufactured by Stratagene). In the mutated *lysC* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 were used as the primer set. In the mutated *zwf* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq DNA polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.
- [0392] The above pCES30 T vector fragment and the mutated *lysC* gene (1.5 kb) or mutated *zwl* gene (2.3 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.5 kb or 2.3 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pClysC311 and pCzwf213.
- (3) Introduction of mutation, Thr311lle, in IysC into one point mutant HD-1
- [0393] Since the one mutation point mutant HD-1 in which the mutation, Val59Ala, in *hom* was introduced into the wild type ATCC 13032 strain had been obtained in Example 2(2), the mutation, Thr311lle, in *lysC* was introduced into the HD-1 strain using pClysC311 produced in the above (2) according to the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-2 was a two point mutant having the mutated *lysC* gene in addition to the mutated *hom* gene.
 - (4) Introduction of mutation, Pro458Ser, in pyc into two point mutant AHD-2
 - [0394] The mutation, Pro458Ser, in pyc was introduced into the AHD-2 strain using the pCpyc458 produced in Example 2(2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-3 was a three point mutant having the mutated pyc gene in addition to the mutated hom gene and lysC gene.
 - (5) Introduction of mutation, Ala213Thr, in zwf into three point mutant AHP-3
- [0395] The mutation, Ala213Thr, in *zwf* was introduced into the AHP-3 strain using the pCzwf458 produced in the above (2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set. DNAs having the nucleotide sequences represented by SEQ ID NOS: 7008 and 7009 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR

product was determined in the usual manner, it was confirmed that the strain which was named APZ-4 was a four point mutant having the mutated *zwf* gene in addition to the mutated *hom* gene, *lysC* gene and *pyc* gene.

(6) Lysine production test on HD-1, AHD-2, AHP-3 and APZ-4 strains

[0396] The HD-1, AHD-2, AHP-3 and APZ-4 strains obtained above were subjected to a culture test in a 5 I jar fermenter in accordance with the method of Example 2(3).

[0397] Table 3 shows the results.

5

10

15

20

25

30

35

45

50

55

Table 3

Strain	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
HD-1	8	0.3
AHD-2	73	2.5
AHP-3	80	2.8
APZ-4	86	3.0

[0398] Since the lysine-producing mutant B-6 strain which has been bred based on the random mutation and selection shows a productivity of less than 2.1 g/l/h, the APZ-4 strain showing a high productivity of 3.0 g/l/h is useful in industry.

(7) Lysine fermentation by APZ-4 strain at high temperature

[0399] The APZ-4 strain, which had been reconstructed by introducing 4 effective mutations into the wild type strain, was subjected to the culturing test in a 51 jar fermenter in the same manner as in Example 2(3), except that the culturing temperature was changed to 40°C.

[0400] The results are shown in Table 4.

Table 4

Temperature (°C)	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
32	86	3.0
40	95	3.3

[0401] As is apparent from the results shown in Table 4, the lysine hydrochloride titer and productivity in culturing at a high temperature of 40°C comparable to those at 32°C were obtained. In the mutated and bred lysine-producing B-6 strain constructed by repeating random mutation and selection, the growth and the lysine productivity are lowered at temperatures exceeding 34°C so that lysine fermentation cannot be carried out, whereas lysine fermentation can be carried out using the APZ-4 strain at a high temperature of 40°C so that the load of cooling is greatly reduced and it is industrially useful. The lysine fermentation at high temperatures can be achieved by reflecting the high temperature adaptability inherently possessed by the wild type strain on the APZ-4 strain.

[0402] As demonstrated in the reconstruction of the lysine-producing strain, the present invention provides a novel breeding method effective for eliminating the problems in the conventional mutants and acquiring industrially advantageous strains. This methodology which reconstitutes the production strain by reconstituting the effective mutation is an approach which is efficiently carried out using the nucleotide sequence information of the genome disclosed in the present invention, and its effectiveness was found for the first time in the present invention.

Example 4

Production of DNA microarray and use thereof

[0403] A DNA microarray was produced based on the nucleotide sequence information of the ORF deduced from the full nucleotide sequences of *Corynebacterium glutamicum* ATCC 13032 using software, and genes of which expression is fluctuated depending on the carbon source during culturing were searched.

(1) Production of DNA microarray

[0404] Chromosomal DNA was prepared from Corynebacterium glutamicum ATCC 13032 by the method of Saito et

al. (Biochem. Biophys. Acta, 72: 619 (1963)). Based on 24 genes having the nucleotide sequences represented by SEQ ID NOS:207, 3433, 281, 3435, 3439, 765, 3445, 1226, 1229, 3448, 3451, 3453, 3455, 1743, 3470, 2132, 3476, 3477, 3485, 3488, 3489, 3494, 3496, and 3497 from the ORFs shown in Table 1 deduced from the full genome nucleotide sequence of Corynebacterium glutamicum ATCC 13032 using software and the nucleotide sequence of rabbit globin gene (GenBank Accession No. V00882) used as an internal standard, oligo DNA primers for PCR amplification represented by SEQ ID NOS:7010 to 7059 targeting the nucleotide sequences of the genes were synthesized in a

[0405] As the oligo DNA primers used for the PCR,

35

DNAs having the nucleotide sequence represented by SEQ ID NOS:7010 and 7011 were used for the ampli-[0406] fication of the DNA having the nucleotide sequence represented by SEQ ID NO:207,

[0407] DNAs having the nucleotide sequence represented by SEQ ID NOS:7012 and 7013 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3433,

[0408] DNAs having the nucleotide sequence represented by SEQ ID NOS:7014 and 7015 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:281,

[0409] DNAs having the nucleotide sequence represented by SEQ ID NOS:7016 and 7017 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3435,

[0410] DNAs having the nucleotide sequence represented by SEQ ID NOS:7018 and 7019 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3439,

[0411] DNAs having the nucleotide sequence represented by SEQ ID NOS:7020 and 7021 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:765,

[0412] DNAs having the nucleotide sequence represented by SEQ ID NOS:7022 and 7023 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3445,

[0413] DNAs having the nucleotide sequence represented by SEQ ID NOS:7024 and 7025 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1226,

[0414] DNAs having the nucleotide sequence represented by SEQ ID NOS:7026 and 7027 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1229,

[0415] DNAs having the nucleotide sequence represented by SEQ ID NOS:7028 and 7029 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3448,

[0416] DNAs having the nucleotide sequence represented by SEQ ID NOS:7030 and 7031 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3451,

[0417] DNAs having the nucleotide sequence represented by SEQ ID NOS:7032 and 7033 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3453,

[0418] DNAs having the nucleotide sequence represented by SEQ ID NOS:7034 and 7035 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3455,

[0419] DNAs having the nucleotide sequence represented by SEQ ID NOS:7036 and 7037 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1743,

[0420] DNAs having the nucleotide sequence represented by SEQ ID NOS:7038 and 7039 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3470,

[0421] DNAs having the nucleotide sequence represented by SEQ ID NOS:7040 and 7041 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:2132,

[0422] DNAs having the nucleotide sequence represented by SEQ ID NOS:7042 and 7043 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3476,

[0423] DNAs having the nucleotide sequence represented by SEQ ID NOS:7044 and 7045 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3477,

[0424] DNAs having the nucleotide sequence represented by SEQ ID NOS:7046 and 7047 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3485,

[0425] DNAs having the nucleotide sequence represented by SEQ ID NOS:7048 and 7049 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3488,

[0426] DNAs having the nucleotide sequence represented by SEQ ID NOS:7050 and 7051 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3489,

[0427] DNAs having the nucleotide sequence represented by SEQ ID NOS:7052 and 7053 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3494,

[0428] DNAs having the nucleotide sequence represented by SEQ ID NOS:7054 and 7055 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3496,

[0429] DNAs having the nucleotide sequence represented by SEQ ID NOS:7056 and 7057 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3497, and

[0430] DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNA having the nucleotide sequence of the rabbit globin gene,

as the respective primer set.

5

10

20

[0431] The PCR was carried for 30 cycles with each cycle consisting of 15 seconds at 95°C and 3 minutes at 68°C using a thermal cycler (GeneAmp PCR system 9600, manufactured by Perkin Elmer). TaKaRa EX-Taq (manufactured by Takara Shuzo). 100 ng of the chromosomal DNA and the buffer attached to the TaKaRa Ex-Taq reagent. In the case of the rabbit globin gene, a single-stranded cDNA which had been synthesized from rabbit globin mRNA (manufactured by Life Technologies) according to the manufacture's instructions using a reverse transcriptase RAV-2 (manufactured by Takara Shuzo). The PCR product of each gene thus amplified was subjected to agarose gel electrophoresis and extracted and purified using QIAquick Gel Extraction Kit (manufactured by QIAGEN). The purified PCR product was concentrated by precipitating it with ethanol and adjusted to a concentration of 200 ng/μl. Each PCR product was spotted on a slide glass plate (manufactured by Matsunami Glass) having MAS coating in 2 runs using GTMASS SYSTEM (manufactured by Nippon Laser & Electronics Lab.) according to the manufacture's instructions.

(2) Synthesis of fluorescence labeled cDNA

[0432] The ATCC 13032 strain was spread on BY agar medium (medium prepared by adding 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to in 1 liter of water and adjusting its pH to 7.2) and cultured at 30°C for 2 days. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30°C overnight. Then, the cultured strain was further inoculated into 30 ml of a minimum medium (medium prepared by adding 5 g of ammonium sulfate, 5 g of urea, 0.5 g of monopotassium dihydrogenphosphate, 0.5 g of dipotassium monohydrogenphosphate, 20.9 g of morpholinopropanesulfonic acid, 0.25 g of magnesium sulfate heptahydrate, 10 mg of calcium chloride dihydrate, 10 mg of manganese sulfate monohydrate, 10 mg of ferrous sulfate heptahydrate, 1 mg of zinc sulfate heptahydrate, 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmol/l glucose or 200 "mmol/l ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 1.0 of absorbance at 660 nm. After the cells were prepared by centrifuging at 4°C and 5,000 rpm for 10 minutes, total RNA was prepared from the resulting cells according to the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)). To avoid contamination with DNA, the RNA was treated with Dnasel (manufactured by Takara Shuzo) at 37°C for 30 minutes and then further purified using Qiagen RNeasy MiniKit (manufactured by QIAGEN) according to the manufacture's instructions. To 30 μg of the resulting total RNA, 0.6 μl of rabbit globin mRNA (50 ng/μl, manufactured by Life Technologies) and 1 μl of a random 6 mer primer (500 ng/µl, manufactured by Takara Shuzo) were added for denaturing at 65°C for 10 minutes, followed by quenching on ice. To the resulting solution, 6 µl of a buffer attached to Superscript II (manufactured by Lifetechnologies), 3 μl of 0.1 mol/l DTT, 1.5 μl of dNTPs (25 mmol/l dATP, 25 mmol/l dCTP, 25 mmol/l dGTP, 10 mmol/l I dTTP), 1.5 μI of Cy5-dUTP or Cy3-dUTP (manufactured by NEN) and 2 μI of Superscript II were added, and allowed to stand at 25°C for 10 minutes and then at 42°C for 110 minutes. The RNA extracted from the cells using glucose as the carbon source and the RNA extracted from the cells using ammonium acetate were labeled with Cy5-dUTP and Cy3-dUTP, respectively. After the fluorescence labeling reaction, the RNA was digested by adding 1.5 µl of 1 mol/l sodium hydroxide-20 mmol/l EDTA solution and 3.0 µl of 10% SDS solution, and allowed to stand at 65°C for 10 minutes. The two cDNA solutions after the labeling were mixed and purified using Qiagen PCR purification Kit (manufactured by QIAGEN) according to the manufacture's instructions to give a volume of 10 μl.

(3) Hybridization

[0433] UltraHyb (110 µl) (manufactured by Ambion) and the fluorescence-labeled cDNA solution (10 µl) were mixed and subjected to hybridization and the subsequent washing of slide glass using GeneTAC Hybridization Station (manufactured by Genomic Solutions) according to the manufacture's Instructions. The hybridization was carried out at 50°C, and the washing was carried out at 25°C.

(4) Fluorescence analysis

[0434] The fluorescence amount of each DNA array having the fluorescent cDNA hybridized therewith was measured using ScanArray 4000 (manufactured by GSI Lumonics).

[0435] Table 5 shows the Cy3 and Cy5 signal intensities of the genes having been corrected on the basis of the data of the rabbit globin used as the internal standard and the Cy3/Cy5 ratios.

Table 5

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
207	5248	3240	1.62

40

45

Table 5 (continued)

Table 5 (continues)			
SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
3433	2239	2694	0.83
281	2370	2595	0.91
3435	2566	2515	1.02
3439	5597	6944	0.81
765	6134	4943	1.24
3455	1169	1284	0.91
1226	1301	1493	0.87
1229	1168	1131	1.03
3448	1187	1594	0.74
3451	2845	3859	0.74
3453	3498	1705	2.05
3455	1491	1144	1.30
1743	1972	1841	1.07
3470	4752	3764	1.26
2132	1173	1085	1.08
3476	1847	1420	1.30
3477	1284	1164	1.10
3485	4539	8014	0.57
3488	34289	1398	24.52
3489	43645	1497	29.16
3494	3199	2503	1.28
3496	3428	2364	1.45
3497	3848	3358	1.15

[0436] The ORF function data estimated by using software were searched for SEQ ID NOS:3488 and 3489 showing remarkably strong Cy3 signals. As a result, it was found that SEQ ID NOS:3488 and 3489 are a maleate synthase gene and an isocitrate lyase gene, respectively. It is known that these genes are transcriptionally induced by acetic acid in *Corynebacterium glutamicum* (*Archives of Microbiology, 168*: 262-269 (1997)).

[0437] As described above, a gene of which expression is fluctuates could be discovered by synthesizing appropriate oligo DNA primers based on the ORF nucleotide sequence information deduced from the full genomic nucleotide sequence information of *Corynebacterium glutamicum* ATCC 13032 using software, amplifying the nucleotide sequences of the gene using the genome DNA of *Corynebacterium glutamicum* as a template in the PCR reaction, and thus producing and using a DNA microarray.

[0438] This Example shows that the expression amount can be analyzed using a DNA microarray in the 24 genes. On the other hand, the present DNA microarray techniques make it possible to prepare DNA microarrays having thereon several thousand gene probes at once. Accordingly, it is also possible to prepare DNA microarrays having thereon all of the ORF gene probes deduced from the full genomic nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 determined by the present invention, and analyze the expression profile at the total gene level of *Corynebacterium glutamicum* using these arrays.

Example 5

5

10

15

20

25

30

40

45

50

55

Homology search using Corynebacterium glutamicum genome sequence

(1) Search of adenosine deaminase

[0439] The amino acid sequence (ADD_ECOLI) of *Escherichia coli* adenosine deaminase was obtained from Swissprot Database as the amino acid sequence of the protein of which function had been confirmed as adenosine deaminase (EC3.5.4.4). By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the amino acids in the ORF region deduced from the genome sequence using FASTA program (*Proc. Natl. Acad. Sci. ISA, 85*: 2444-2448 (1988)). A case where E-value was le⁻¹⁰ or less was judged as being significantly homologous. As a result,

no sequence significantly homologous with the *Escherichia coli* adenosine deaminase was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the amino acid sequences in the ORF region deduced from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having adenosine deaminase activity and thus has no activity of converting adenosine into inosine.

(2) Search of glycine cleavage enzyme

5

10

20

25

30

35

40

45

50

55

[0440] The sequences (GCSP_ECOLI, GCST_ECOLI and GCSH_ECOLI) of glycine decarboxylase, aminomethyl transferase and an aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme as the amino acid sequence of the protein, of which function had been confirmed as glycine cleavage enzyme (EC2.1.2.10), were obtained from Swiss-prot Database.

[0441] By using these full-length amino acid sequences as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the ORF amino acid sequences deduced from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, no sequence significantly homologous with the glycine decarboxylase, the aminomethyl transferase or the aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme, was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the ORF amino acid sequences estimated from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having the activity of glycine decarboxylase, aminomethyl transferase or the aminomethyl group carrier and thus has no activity of the glycine cleavage enzyme.

*(3) Search of IMP dehydrogenase

[0442] The amino acid sequence (IMDH ECOLI) of Escherichia coli IMP dehydrogenase as the amino acid sequence of the protein, of which function had been confirmed as IMP dehydrogenase (EC1.1.1.205), was obtained from Swissprot Database. By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences predicted from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, the amino acid sequences encoded by two ORFs, namely, an ORF positioned in the region of the nucleotide sequence No. 615336 to 616853 (or ORF having the nucleotide sequence represented by SEQ ID NO:672) and another ORF positioned in the region of the nucleotide sequence No. 616973 to 618094 (or ORF having the nucleotide sequence represented by SEQ ID NO:674) were significantly homologous with the ORFs of Escherichia coli IMP dehydrogenase. By using the above-described predicted amino acid sequence as a query in order to examine the similarity of the amino acid sequences encoded by the ORFs with IMP dehydrogenases of other organisms in greater detail, a search was carried out on GenBank (http://www.ncbi.nlm. nih gov/) nr-aa database (amino acid sequence database constructed on the basis of GenBankCDS translation products, PDB database, Swiss-Prot database, PIR database, PRF database by eliminating duplicated registrations) using BLAST program. As a result, both of the two amino acid sequences showed significant homologies with IMP dehdyrogenases of other organisms and clearly higher homologies with IMP dehdyrogenases than with amino acid sequences of other proteins, and thus, it was assumed that the two ORFs would function as IMP dehydrogenase. Based on these results, it was therefore assumed that Corynebacterium glutamicum has two ORFs having the IMP dehydrogenase activity.

Example 6

Proteome analysis of proteins derived from Corynebacterium glutamicum

(1) Preparations of proteins derived from Corynebacterium glutamicum ATCC 13032, FERM BP-7134 and FERM BP-158

[0443] Culturing tests of Corynebacterium glutamicum ATCC 13032 (wild type strain), Corynebacterium glutamicum FERM BP-7134 (lysine-producing strain) and Corynebacterium glutamicum (FERM BP-158, lysine-highly producing strain) were carried out in a 5 l jar fermenter according to the method in Example 2(3). The results are shown in Table 6.

Table 6

Strain	L-Lysine yield (g/l)	
ATCC 13032	0	
FERM BP-7134	45	
FERM BP-158	60	

[0444]: After culturing, cells of each strain were recovered by centrifugation. These cells were washed with Tris-HCl buffer (10 mmol/l Tris-HCl, pH 6.5, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim)) three times to give washed cells which could be stored under freezing at -80°C. The freeze-stored cells were thawed before use, and used as washed cells.

[0445]. The washed cells described above were suspended in a disruption buffer (10 mmol/l Tris-HCl, pH 7.4, 5 mmol/l magnesium chloride, 50 mg/l RNase, 1.6 mg/ml protease inhibitor (COMPLETE: manufactured by Boehringer Mannheim)), and disrupted with a disruptor (manufactured by Brown) under cooling. To the resulting disruption solution, DNase was added to give a concentration of 50 mg/l, and allowed to stand on ice for 10 minutes. The solution was centrifuged $(5,000 \times g, 15 \text{ minutes}, 4^{\circ}\text{C})$ to remove the undisrupted cells as the precipitate, and the supernatant was recovered.

[0446] To the supernatant, urea was added to give a concentration of 9 mol/l, and an equivalent amount of a lysis buffer (9.5 mol/l urea, 2% NP-40, 2% Ampholine, 5% mercaptoethanol, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim) was added thereto, followed by thoroughly stirring at room temperature for dissolving.

[0447] After being dissolved, the solution was centrifuged at 12,000 × g for 15 minutes, and the supernatant was recovered.

[0448] To the supernatant, ammonium sulfate was added to the extent of 80% saturation, followed by thoroughly stirring for dissolving.

[0449] After being dissolved, the solution was centrifuged (16,000 \times g, 20 minutes, 4°C), and the precipitate was recovered. This precipitate was dissolved in the lysis buffer again and used in the subsequent procedures as a protein sample. The protein concentration of this sample was determined by the method for quantifying protein of Bradford.

(2) Separation of protein by two dimensional electrophoresis

5

10

30

35

45

[0450] The first dimensional electrophoresis was carried out as described below by the isoelectric electrophoresis method.

[0451] A molded dry IPG strip gel (pH 4-7, 13 cm, Immobiline DryStrips; manufactured by Amersham Pharmacia Biotech) was set in an electrophoretic apparatus (Multiphor II or IPGphor; manufactured by Amersham Pharmacia Biotech) and a swelling solution (8 mol/l urea, 0.5% Triton X-100, 0.6% dithiothreitol, 0.5% Ampholine, pH 3-10) was packed therein, and the gel was allowed to stand for swelling 12 to 16 hours.

[0452] The protein sample prepared above was dissolved in a sample solution (9 mol/l urea, 2% CHAPS, 1% dithiothreitol, 2% Ampholine, pH 3-10), and then about 100 to 500 μg (in terms of protein) portions thereof were taken and added to the swollen IPG strip gel.

[0453] The electrophoresis was carried out in the 4 steps as defined below under controlling the temperature to 20°C:

step 1: 1 hour under a gradient mode of 0 to 500V;

step 2: 1 hour under a gradient mode of 500 to 1,000 V;

step 3: 4 hours under a gradient mode of 1,000 to 8,000 V; and

step 4: 1 hour at a constant voltage of 8,000 V.

[0454] After the isoelectric electrophoresis, the IPG strip gel was put off from the holder and soaked in an equilibration buffer A (50 mmol/l Tris-HCl, pH 6.8, 30% glycerol, 1% SDS, 0.25% dithiothreitol) for 15 minutes and another equilibration buffer B (50 mmol/l Tris-HCl, pH 6.8, 6 mol/l urea, 30% glycerol, 1% SDS, 0.45% iodo acetamide) for 15 minutes to sufficiently equilibrate the gel.

[0455] After the equilibrium, the IPG strip gel was lightly rinsed in an SDS electrophoresis buffer (1.4% glycine, 0.1% SDS, 0.3% Tris-HCl, pH 8.5), and the second dimensional electrophoresis depending on molecular weight was carried out as described below to separate the proteins.

[0456] Specifically, the above IPG strip gel was closely placed on 14% polyacrylamide slub gel (14% polyacrylamide, 0.37% bisacrylamide, 37.5 mmol/l Tris-HCl, pH 8.8, 0.1% SDS, 0.1% TEMED, 0.1% ammonium persulfate) and sub-

jected to electrophoresis under a constant voltage of 30 mA at 20°C for 3 hours to separate the proteins.

(3) Detection of protein spot

10

20

25

35

40

45

50

5 [0457] Coomassie staining was performed by the method of Gorg et al. (*Electrophoresis*, 9: 531-546 (1988)) for the slub gel after the second dimensional electrophoresis. Specifically, the slub gel was stained under shaking at 25°C for about 3 hours, the excessive coloration was removed with a decoloring solution, and the gel was thoroughly washed with distilled water.

[0458] The results are shown in Fig. 2. The proteins derived from the ATCC 13032 strain (Fig. 2A), FERM BP-7134 strain (Fig. 2B) and FERM BP-158 strain (Fig. 2C) could be separated and detected as spots.

- (4) In-gel digestion of detected protein spot
- [0459] The detected spots were each cut out from the gel and transferred into siliconized tube, and 400 μl of 100 mmol/1 ammonium bicarbonate: acetonitrile solution (1:1, v/v) was added thereto, followed by shaking overnight and freeze-dried as such. To the dried gel, 10 μl of a lysylendopeptidase (LysC) solution (manufactured by WAKO, prepared with 0.1% SDS-containing 50 mmol/l ammonium bicarbonate to give a concentration of 100 ng/μl) was added and the gel was allowed to stand for swelling at 0°C for 45 minutes, and then allowed to stand at 37°C for 16 hours. After removing the LysC solution, 20 μl of an extracting solution (a mixture of 60% acetonitrile and 5% formic acid) was added, followed by ultrasonication at room temperature for 5 minutes to disrupt the gel. After the disruption, the extract was recovered by centrifugation (12,000 rpm, 5 minutes, room temperature). This operation was repeated twice to recover the whole extract. The recovered extract was concentrated by centrifugation *in vacuo* to halve the liquid volume. To the concentrate, 20 μl of 0.1% trifluoroacetic acid was added, followed by thoroughly stirring, and the mixture was subjected to desalting using ZipTip (manufactured by Millipore). The protein absorbed on the carriers of ZipTip was eluted with 5 μl of α-cyano-4-hydroxycinnamic acid for use as a sample solution for analysis.
- (5) Mass spectrometry and amino acid sequence analysis of protein spot with matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI-TOFMS)
- [0460] The sample solution for analysis was mixed in the equivalent amount with a solution of a peptide mixture for mass calibration (300 nmol/l Angiotensin II, 300 nmol/l Neurotensin, 150 nmol/l ACTHclip 18-39, 2.3 μmol/l bovine insulin B chain), and 1 μl of the obtained solution was spotted on a stainless probe and crystallized by spontaneously drying.
 - [0461] As measurement instruments, REFLEX MALDI-TOF mass spectrometer (manufactured by Bruker) and an N2 laser (337 nm) were used in combination.
 - [0462] The analysis by PMF (peptide-mass finger printing) was carried out using integration spectra data obtained by measuring 30 times at an accelerated voltage of 19.0 kV and a detector voltage of 1.50 kV under reflector mode conditions. Mass calibration was carried out by the internal standard method.
 - [0463] The PSD (post-source decay) analysis was carried out using integration spectra obtained by successively altering the reflection voltage and the detector voltage at an accelerated voltage of 27.5 kV.
 - [0464] The masses and amino acid sequences of the peptide fragments derived from the protein spot after digestion were thus determined.
 - (6) Identification of protein spot
 - **[0465]** From the amino acid sequence information of the digested peptide fragments derived from the protein spot obtained in the above (5), ORFs corresponding to the protein were searched on the genome sequence database of *Corynebacterium glutamicum* ATCC 13032 as constructed in Example 1 to identify the protein.
 - [0466] The identification of the protein was carried out using MS-Fit program and MS-Tag program of intranet protein prospector.
 - (a) Search and identification of gene encoding high-expression protein
 - [0467] In the proteins derived from Corynebacterium glutamicum ATCC 13032 showing high expression amounts in CBB-staining shown in Fig. 2A, the proteins corresponding to Spots-1, 2, 3, 4 and 5 were identified by the above method.

 [0468] As a result, it was found that Spot-1 corresponded to enclase which was a protein having the amino acid sequence of SEQ ID NO:4585; Spot-2 corresponded to phosphoglycelate kinase which was a protein having the amino acid sequence of SEQ ID NO:5254; Spot-3 corresponded to glyceraldehyde-3-phosphate dehydrogenase which was

a protein having the amino acid sequence represented by SEQ ID NO:5255; Spot-4 corresponded to fructose bisphosphate aldolase which was a protein having the amino acid sequence represented by SEQ ID NO:6543; and Spot-5 corresponded to triose phosphate isomerase which was a protein having the amino acid sequence represented by SEQ ID NO:5252.

- [0469] These genes, represented by SEQ ID NOS:1085, 1754, 1775, 3043 and 1752 encoding the proteins corresponding to Spots-1, 2, 3, 4 and 5, respectively, encoding the known proteins are important in the central metabolic pathway for maintaining the life of the microorganism. Particularly, it is suggested that the genes of Spots-2, 3 and 5 form an operon and a high-expression promoter is encoded in the upstream thereof (*J. of Eacteriol., 174*: 6067-6086 (1992)).
- [0470] Also, the protein corresponding to Spot-9 in Fig. 2 was identified in the same manner as described above, and it was found that Spot-9 was an elongation factor Tu which was a protein having the amino acid sequence represented by SEQ ID No:6937, and that the protein was encoded by DNA having the nucleotide sequence represented by SEQ ID No:3437.
- [0471] Based on these results, the proteins having high expression level were identified by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1. Thus, the nucleotide sequences of the genes encoding the proteins and the nucleotide sequences upstream thereof could be searched simultaneously. Accordingly, it is shown that nucleotide sequences having a function as a high-expression promoter can be efficiently selected.
- 20 (b) Search and identification of modified protein
 - [0472] Among the proteins derived from *Corynebacterium glutamicum* FERM BP-7134 shown in Fig. 2B, Spots-6, 7 and 8 were identified by the above method. As a result, these three spots all corresponded to catalase which was a protein having the amino acid sequence represented by SEQ ID NO:3785.
 - [0473] Accordingly, all of Spots-6, 7 and 8 detected as spots differing in isoelectric mobility were all products derived from a catalase gene having the nucleotide sequence represented by SEQ ID No:285. Accordingly, it is shown that the catalase derived from *Corynebacterium glutamicum* FERM BP-7134 was modified after the translation.
 - [0474] Based on these results, it is confirmed that various modified proteins can be efficiently searched by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.
 - (c) Search and identification of expressed protein effective in lysine production
 - [0475] It was found out that in Fig. 2A (ATCC 13032: wild type strain), Fig. 2B (FERM BP-7134: lysine-producing strain) and Fig. 2C (FERM BP-158: lysine-highly producing strain), the catalase corresponding to Spot-8 and the elongation factor Tu corresponding to Spot-9 as identified above showed the higher expression level with an increase in the lysine productivity.
 - [0476] Based on these results, it was found that hopeful mutated proteins can be efficiently searched and identified in breeding aiming at strengthening the productivity of a target product by the proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.
 - [0477] Moreover, useful mutation points of useful mutants can be easily specified by searching the nucleotide sequences (nucleotide sequences of promoter, ORF, or the like) relating to the identified proteins using the above database and using primers designed on the basis of the sequences. As a result of the fact that the mutation points are specified, industrially useful mutants which have the useful mutations or other useful mutations derived therefrom can be easily bred.
- [0478] While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. All references cited herein are incorporated in their entirety.

Claims

50

55

5

30

- 1. A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium,

said method comprising:

5

10

20

25

30

35

45

55

- (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
- (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
- (c) detecting any hybridization, and
- (d) analyzing the result of the hybridization.
- 2. The method according to claim 1, wherein the coryneform bacterium is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
 - 3. The method according to claim 2, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 4. The method according to claim 1, wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - 5. The method according to claim 1, wherein the polynucleotide to be examined is derived from Escherichia coli.
 - 6. A polynucleotide array, comprising:

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

- 7. A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- **8.** A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
 - A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
 - 10. A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- 50 11. A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of claims 7 to 10, or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
 - 12. A recombinant DNA comprising the polynucleotide of any one of claims 8 to 11.
 - 13. A transformant comprising the polynucleotide of any one of claims 8 to 11 or the recombinant DNA of claim 12.

236

14. A method for producing a polypeptide, comprising:

culturing the transformant of claim 13 in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of claim 8 or 9 in the medium, and recovering the polypeptide from the medium.

- 5 15. A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
 - culturing the transformant of claim 13 in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
 - 16. A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431.
 - 17. A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
 - 18. The polypeptide according to claim 16 or 17, wherein at least one amino acid is deleted, replaced, inserted or added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.
 - 19. A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of claim 16 or 17, and having an activity which is substantially the same as that of the polypeptide.
- 25 20. An antibody which recognizes the polypeptide of any one of claims 16 to 19.
 - 21. A polypeptide array, comprising:

10

15

20

30

35

40

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

22. A polypeptide array, comprising:

at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- 23. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- 24. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and

- (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 25. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- 26. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;

5

10

15

20

25

30

35

45

50

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 27. A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information for determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- 28. A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polypucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
 - 29. A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;

- 41. A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- 5 42. A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.
 - 43. The polypeptide according to claim 41 or 42, wherein the Pro residue at the 458th position is replaced with a Ser residue.
 - 44. The polypeptide according to any one of claims 38 to 43, which is derived from Corynebacterium glutamicum.
 - 45. A DNA encoding the polypeptide of any one of claims 38 to 44.
- 46. A recombinant DNA comprising the DNA of claim 45.

10

20

30

35

40

45

55

D - ED

440070040 1 -

- 47. A transformant comprising the recombinant DNA of claim 46.
- 48. A transformant comprising in its chromosome the DNA of claim 45.
- 49. The transformant according to claim 47 or 48, which is derived from a coryneform bacterium.
- 50. The transformant according to claim 49, which is derived from Corynebacterium glutamicum.
- 25 51. A method for producing L-lysine, comprising:
 - culturing the transformant of any one of claims 47 to 50 in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.

 - 52. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point, or deleting the mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
 - 53. The method according to claim 52, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
 - 54. The method according to claim 52, wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- 50 55. A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and

- (ii) a data storing device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
- (iv) an output device that shows a function obtained by the comparator.
- 30. A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;

5

10

15

25

30

35

45

50

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
- (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
- 31. The system according to any one of claims 23, 25, 27 and 29, wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - **32.** The method according to any one of claims 24, 26, 28 and 30, wherein a coryneform bacterium is a microorganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
 - 33. The system according to claim 31, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 34. The method according to claim 32, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 35. A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of claim 23 or 27 or the method of claim 24 or 28.
- 36. A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of claim 25 or 29 or the method of claim 26 or 30.
 - 37. The recording medium or storage device according to claim 35 or 36, which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
 - **38.** A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
 - 39. A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue.
 - **40**. The polypeptide according to claim 38 or 39, wherein the Val residue at the 59th position is replaced with an Ala residue.

- (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- **56.** The method according to claim 55, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
 - 57. The method according to claim 55, wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- 58. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
 - 59. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431; (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway:
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- 60. A coryneform bacterium, bred by the method of any one of claims 52 to 59.
 - **61.** The coryneform bacterium according to claim 60, which is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- 62. The coryneform bacterium according to claim 61, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoamino genes, and Corynebacterium ammonia genes.
 - **63.** A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:
 - culturing a coryneform bacterium of any one of claims 60 to 62 in a medium to produce and accumulate at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof; recovering the compound from the culture.
 - 64. The method according to claim 63, wherein the compound is L-lysine.
 - 65. A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

5

15

20

25

30

45

50

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

(ii) separating the proteins prepared in (i) by two dimensional electrophoresis;

5

10

20

25

30

35

40

45

50

55

- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.
- 15 66. The method according to claim 65, wherein the coryneform bacterium is a microorganism belonging to the genus corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 67. The method according to claim 66, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium um melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 68. A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).

F/G. 3

FIG. 4

