BEVIEW

mathematican's view of EINSTEIN'S EQUIV. PRINCIPLE: Tom (First)

P

(BASE SPACE)

flat vector space UNEAR ALGEBRA UVES HERE

METRIC: Vectors -> Jual vectors (1-forms)

@ 4lus stage: totally symmetric

METRIC: DEFINED AS A FUNCTION ON

THE BASE SPACE M,

BUT ITSELF 18 A LINEAR

MAP (SYM 2-lower-modex-tensor)

ON THE TANGENT SPACE

Q EACH POINT.

In fine of
80:
1- vectors 1-forms
In func. of
ADDED STRUCTURE: MULTIUNEAR MAPS ARE JUST TENSORS
CAN CAU TH A "2-VECTOR"
10 10 mm dB
Mrs Mox TYB is A 2-LOWER-INDER OBJECT
BUT NOT WHAT WE CALL A "2-FORM"
T = (symmeterc) & (ontraym).
4 - 2 - 1 - 1
(trace) & (trace-less)
= 2-BCM
BY DEFINITION
point, but will
be useful.

K-form: K-linear map totally antisyon map from (T,M) -> IR

W(K) (Van, ..., VCK) = #

= - W(x) (V(2), V(3), --- V(K))

s.t. in indices:

Ww. = - WVW...

for ordinary vectors, could elap them together to make ment tensors: VMW is a tensor.

TO MAKE "BIGGER" FORMS, NEEDED AN ANTISYMMETRIC WAY OF SLAPPING THINGS TO GETTHER

 $\omega^{(0)} \wedge \rho^{(2)} = (-)^{k+1} \rho^{(2)} \wedge \omega^{(k)}$ $1 \qquad 1 \qquad 1$ $k-b_{CM} \qquad l-b_{CM}$

monifestly antisym

	un over indep.	
IN WRITE		
was = 2 ai	·iz ein-~eiz	
often def	POSIZ for K-forms	
hti or socuething factor of my some	9	
we'll ignore		
	looks like a kxk	-
	determnant	
eg. Ê. nněk in	R" N>K	
•	Rn n>k	
	ses, Vas,, Vae	
takes ic vector		
takes ic vector	Van	
takes ic vector	Vas Vas Vas Vas	
takes k vector	Van	
takes ic vector	Vas Vas Vas Vas	
takes k vector d gives fluis det.	Vas Vas Vas Vas	

(HENCE THE YILL)

JO K-LEBENZ CON BENERALI SE DIFFERENCIATION
9: K-foew -> (K+1)-form
JW = \(\frac{1}{2}(\O_1)\O_1\dx^1\dx^1\dx^1\dx^1\dx^1\dx^1\dx^1\dx^
7 we found, eg. for a 1-form A. m R3
dA = (TXA) Eight dx' rdx' 7 and is secretly a 2-form!
recover one-index deject when we define HODGE STAR
Maxindxi = = 2 gia gib Eabk dx k m sa
is a valid tensor (a) on & tensor) (a) on & tensor)

no surprise that k-form ? (N-K) form courty same

Np

(if you don't, you week havoc on your path integrals) this idea that dA contains physics but $d^2A = 0$ is called <u>contomplacy</u> by the cognoscenti ... i mention it nece for future poetry...

APPRIBO TO F=dA, this gave [dF=0]
12 of MAXWELL

DIFFERENTIAL FORMS WERE BORN TO BE INTEGRATED

dx' - infinitermal line element

Jax gives arclength (If dx gives f summes along path)

dx'rdx) - mfmitesimol area

Idxindxi gnes 20 area

If dx'rdx) gives f summer more spea

	is so forth: for an n-dimensional space, the n-volume is given by integrating the volume form
	$ \Omega = dx' \cdot \cdots \cdot dx $ $ \Omega = dx' \cdot \cdots \cdot dx $
	CALCULUS - In the most confusing may: integrals of derivative fundamental than: $\int_{\Gamma} f dx = f(a) - f(b) = \int_{\partial \Gamma} f$ whereas (a,b) df
	GREEN'S TUM: JA (TXV). dA = \$ 24 V.dx
DV/	STOKES' THM: IN T. E d(no) = Pav E. dA are there more for 40? 50?)
	POETIC ABUSE OF NOTATION: 2 (SPACE) = "boundary of space" 1 HOMOLOGY)

GENERAL: Ja dw = Jav w

dim V = K+1 (K+1) Brow

the integral of the (K+1)- from dw, ie the integral of the (K+1)- from dw, ie

of V, ∂V .

AND THM OF CALCULS - trivial interp of the above principle.

GREEN'S THM: W = A; dx'

1- form that contains some data as \vec{A} (sometimes say: $\omega = \vec{A}^{\#}, \vec{A} = \omega^{b}$)

then: Jaw = JARRA d(Aidxi)

917! 9x, v9x,

= $\int AGA \left(\nabla \times \underline{A} \right) d(area)$

JOHNER W = & A; dx; \(\text{MLE INCORDER AROUND BNDY!}

DIVERSENCE THM (i'll be a little slick, to write it out rigorously gets a little tedians)
W= Ex dyndz + Eydzndx + Ezdxndy 1 1 1 Conres some data as E (related py * but that just adds more notation)
dw = (2xEx + 2yEy + 2zEz) dx r dy r dz 1 V.E V. E V. Ay r dy r dz = 0
Jou W = Jou Ex dounds + = Jou E.da
dynde ~ dn

```
OTHER RESULTS FROM VECTOR CALCUMS: d^2=0
         CASE: W 12 0- form [ w = f(x)]
                                                  dw = df , 1- 6m
                                                                                                                             = 2xf dx + --- = \sqrt{2}f \cdot d\forall
                                       q_s m = 0
                                                                                                                                                                                                                                                                                                                                                                                                           curl of grad
                                                                                                                                = \Delta \times \Delta t \longrightarrow \Delta \times \Delta = 0
                                                                                                                                                                                                             smae we noticed d(1-frm) in so
                                                                                                                                                                                                               gives well
                      OASE : W is 1-form [W = fx dx + ... ]
                                                   dw = (7xp) = dx n dy + ---
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             hus of our
                                                d2w
                                                                                                                                                                       = \vec{\nabla} \cdot \vec{\nabla} \times \vec{\nabla} \times \vec{\nabla} = \vec{\nabla} \cdot \vec{\nabla} \times \vec{\nabla} \times \vec{\nabla} \times \vec{\nabla} \times \vec{\nabla} = \vec{\nabla} \cdot \vec{\nabla} \times \vec{\nabla} 
                                                                                                                                                                                                                                      Since we noticed that
                                                                                                                                                                                                                                           d(2-form) gives components
                                                                                                                                                                                                                                                  that are the divergence
```

observe i $J^2w = 0$ $J^2w = 0$

(no 95=0 => correction)

nb: this is just the tip of the iceleary
of how diff. geometry connects
chauses to Topology.

favorite integral: ACTION	→ 8-5 L
	evidently, userwaion DENSITY is AN O-form on
	n- Im suce int
HOW TO WRITE ACTION FOR	Erectural namics?
etm wes in $F = dA$	z form
need to 'fill this out" dF = 0, so can't use 2.	into a 4-form
CONCATENATE: FAF	or F14F
Works in an	Morks in that DW
muigh ove;	

٠.

FAXF = ENBRS gry JUB FIN FRE dx dx dx dx dx
DEPENDS ON METERIC!
- CONTRIBUTES TO
SUESS ONESSA
Tw ~ 85/8g~~
WHAT DOES IT WOR WE!
Piùc M, ~ = 0,1
rd VA
$\Rightarrow g^{rd}g^{VA} \Rightarrow dB = 01$
⇒ Exors ⇒ 78 = 23
$\Rightarrow dx \wedge dx \Rightarrow p\sigma = 01$
Fw Fpor ~ Ex2
$\frac{1}{2}$ indeed, we end up w/ $(\vec{E}^2 - \vec{B}^2)$

.

WHAT ABOUT F 1 F?
= Fub Fpo dx', dx b, dx o, dx o
prox $dB = 0.1$ $dx = 0.1$ $dx = 0.2$ $dx = 0.3$ $dx =$
IN TENSOR NOTATION AND REAL SAN AND REAL SAN SERVING
integ. by parts:
>A 8666 a A - (8A86 a A) 66 =
SEREMAN - MSS
total derivative
= 0 for Em but not nec for nonperum gauge thy
no conblind to 2 to everall -> tobelodical form

SYMMETRY APPROACH TO ETM
WRITE OUT ML THE CANDIDATE 4-FORMS
GFAF -> Lon
FAF -> total deriv. (SUPPACE TERM)
BUT NSO 4 (F) F 1 + F
O- Arm
this is a 4-form
(c = h = 1) GUES
A PREFACTOR THAT GODS UKE YA4
presumably some heavy or scale irrelevant for low energy physics.
is so forth for more complicated terms.
80 WE FIND THAT LEM IS "UNIQUE" TO GOOD APPROX!

WHITEMES THAN	ive 3 A	<u>^</u>
	EW CALIFUR	POTENTIAL
		<u> </u>
	~~~	•
λ	·	on the second se
CANOIDACE: A		
	3 FORM	
S=S F x + +	ANY	
et's do this glib int by paces:	ly:	
INTO BY PARTS:		
S = J d (AXXF)	- A > 1 + E	+ A ^ <del>\</del> \ \
TOTAL DERV.	r.	
8S = -d*++		
SA	, J	

<u>08</u>	SERVE: ELECTROMAGNETIC DUALITY
Annual An	is house bonnies
	¥Ε ~ ε F. = Ε
The state of the s	17 this is, g o1 (Ex)
	L then this is 23 (Bx)
Andrews of the second s	8: ¥: <u>E</u> ←> <u>B</u>
Andread Company of the Company of th	MAXMEN IN NORMA: OF =0 } F => * F
American de la companya de la compan	E & B
	ous one from Seon
	other from action principle Didn't matter which, As voice As j =0
Ĩ.	I PRESENCE OF WATER: dF = 0  dy F = 4 j
	no longer symmetric. putting in in breaks" geometry single potential description fails

one way to understand this:
dF=0 come from d2=0
in the homology pathre,
this had to do w! the
pandary (8=0)
hm?
can try to diagnose by dang Em transform
BUT: FERME What happens to A?
<u> </u>
only an issue for
j. A term
•
e only in the support " of i
( ant tunnel through
spacetime around e worldling
outside of this
EM abality is good.
me intrognos a pologí.
<b>_1</b>

.

SO, QUALITATIVELY: can try to study
May monopole by "braising" try wi only
electric charges

- seems to introduce a topology
(tre to worldlines that break an travity)

- seems to introduce a topology
(tre to worldlines that break an travity)

- seems to introduce a topology
(tre to worldlines that break an travity)

- seems to introduce a topology

(tre to worldlines that break an travity)

- seems to introduce a topology

(tre to worldlines that break an travity)

- seems to introduce a topology

- seems to introduce a to

EXAMPLE FOR IN 2+1 AM

still have at =0 94E = #1

BUT NOW: 4F is A 1- FORM

"completes" 2-FORM F

# ) 15 4 2-600M

F= OEx Ey

H

*F = F dual field strength nb 1 form in 30 still has 3 deg of treedom.

dP= 4xF = xj 70

Uso F + dA

C A 13 A SCHUR POT.

F = 2+A

the c	psfe	uchre		s H	e ele	echi	>			
curre	A	Wh.	ids	onle	1 e	xist	7 0	>()		
the	ele	>ch	<i>&gt;</i> 0	Woo	49 In	ies	·			
	<b>4</b>	3;								
	4 4	1	4	- +i	- 7	Gi	Sig (	Z:-	又)	dx dy

Space of measure sero

AWAY FROM & (MOST of Space),

P = 22

CONSIDER SOME SUPFACE PLEASED BY



 $\int_{\mathbb{R}} d\hat{F} = \int_{\mathbb{R}} + j$   $= \sum_{i=1}^{n} 8i \int_{\mathbb{R}} 8(x - x) d^{2}x$ 

= e (INTEGER)

BUT: SEDF = SOEDÃ
BOUNDARY POTENTY A
= \$\hat{10=217} - \hat{10=0}\$  should be zero  POUT 1945 IS SOME (generally \$\forall_{10}\$)  INTERES 1
So: À is a poordie potentime.  I "mobili gooce is a cylinder"
MONOPULES ARE INCINTIFIED WI THIS WINDING.