편향과 분산

- 편향은 예측값들이 정답과 일정하게 차이가 나는 정도를 의미
- 분산은 주어진 데이터 포인트(예를 들어 평균)에 대한 모델 예측의 가변성을 의미

- 위의 그림처럼 모델 A, B 모델을 학습 시켰다고 하자
- A모델
 - 예측값을 나타내는 선이 단순하게 직선으로 되어 있다.
 - 그렇기 때문에 정답과 예측값의 차이가 클수밖에 없다.
 - 그래서 이는 편향이 크다고 한다.
 - 일반화가 잘되어 있으므로 새로운 값에 대한 예측값이 일정한 패턴을 나타낸다.
 - 예측 결과를 보면 예측한 값들의 변동성이 적다
- B모델
 - 예측값이 정답과 완벽하게 일치한다.
 - 따라서 모델 B는 편항이 매우 작다
 - 하지만 예측값이 매우 요동치고 있기 때문에 새로운 데이터를 예측하면 예측한 값과 정답의 차이가 모델 A보다 오히려 더 커질 수 있다.
 - 이를 분산이 크다라고 한다.

Trade-Off

• 편향과 분산은 트레이드 오프 관계

- 예측이나 분류 모델을 만들 때 주어진 학습 데이터에 잘 맞도록 모델을 만들수록 편향은 줄어들고 분 산은 증가할수 밖에 없음
- 이 둘 간의 균형을 잘 맞춰 상황에 맞게 최적의 모델을 만드는 것이 데이터 과학자의 역할

분산이 작음 (low variance)

편향이 작음 (low bias)

편향이 큼 (high bias)

- 이상적인 모델은 왼쪽 상단에 있는 그림이지만 현실적으로 힘듬
- 일반적인 머신러닝 모델은 오른쪽 위의 그림 형태를 갖고 있음
- 아래쪽 왼쪽은 과소적합된 모델이며, 아래쪽 오른쪽은 과적합된 모델이다.

과적합 해결방법

- 학습 데이터 양을 증가
- 배치정규화(Batch Normalization)
- 모델의 복잡도 줄이기
- 드롭아웃(Drop-out)
- 가중치 규제(Weight Regularization)

가중치 규제

- 모델의 손실 함수의 값이 너무 작아지지 않도록 특정한 값(함수)를 추가
- 가중치 값이 과도하게 커져서 일부 특징에 의존하는 현상을 방지하여 데이터의 일반적인 특징(일반화, Generalization)을 잘 반영하도록 함

L1 규제

L1 Norm

- 맨하탄 거리(Manhattan distance), 맨하탄 택시
- 택시가 도시의 블록 사이를 이동해 다른 지점으로 이동하는 것과 같이 표현
- 특정 방향으로만 움직일 수 있는 조건이 있는 경우, 두 벡터 간의 최단 거리를 찾는데 사용

$$d = |a_1 - b_1| + |a_2 - b_2|$$
 $L = \sum_{i=1}^{n} |y_i - f(x_i)|$

L1 norm (Manhattan distance)

L1 Loss Function

• L1 loss는 실제 값과 예측 값 오차들의 절대값에 대한 합을 나타냄

• 특징:

- 다른 점으로 이동하는데 다양한 방법이 존재
- 절대값을 사용하기 때문에 L2에 비해 이상치에 강건함(robust)
- 수식에 절대값이 있기 때문에 특정 특성을 0으로 처리하는 것이 가능하기 때문에 남아 있는 변수들을 선택해서 모델을 만들수 있음(변수 선택의 역할)
- 특성이 많은 데이터셋에서 유용함
- 0에서는 미분이 불가능하기 때문에 경사기반 알고리즘에서는 주의가 필요
- 규제효과가 L2 대비 떨어짐

L1 Regularization

학습 데이터에 알고리즘에서 모델이 과적합이 되지 않도록 손실 함수에 특정한 규제 함수를 추가하여
 손실 함수가 너무 작아지지 않도록 가중치에 페널티를 주는 기법

Lasso

L2 규제

L2 Norm

- 유클리디안 거리
- 두점 사이의 최단 거리를 측정할 때 사용

$$d = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2} \qquad L = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

L2 norm (Manhattan distance)

L2 Loss Function

L2 loss는 실제 값과 예측 값 오차들의 제곱의 합으로 나타냄

- 특징
 - 다른 점으로 이동하는데 단 한가지 방법만 존재
 - 오차의 제곱을 사용하기 때문에 L1보다 이상치에 더 큰 영향을 받음
 - L2는 가중치의 크기가 너무 커지는 것을 방지하는 가중치 감소가 가능
- L2 norm이 가중치에 대한 규제에 조금 더 효과적이기 때문에 학시 시 더 좋은 결과를 얻을 수 있어 L1
 norm 보다 많이 사용

L2 Regularization

Ridge