INF-741: Embedded systems programming for IoT

Prof. Edson Borin

Embedded Systems

Agenda

Embedded systems overview

Design metrics

Technologies

- Computing systems are everywhere!
- Most of us think of "desktop" computers
 - Smartphones, Tablets, Laptops
 - Mainframes
 - Servers
- But there's another type of computing system
 - Far more common...

Embedded Computing Systems

- Computing systems embedded within electronic devices
- Billions of units produced yearly, versus millions of desktop units
- Perhaps 50 per household and per automobile

Lots more of these, though they cost a lot less each.

Examples

Anti-lock brakes Auto-focus cameras Automatic teller machines **Automatic toll systems Automatic transmission Avionic systems Battery chargers** Camcorders Cell phones Cell-phone base stations **Cordless phones** Cruise control **Curbside check-in systems Digital cameras** Disk drives Electronic card readers **Electronic instruments Electronic toys/games Factory control** Fax machines Fingerprint identifiers Home security systems Life-support systems

and more...

Medical testing systems

WiFi routers

What is the definition of Embedded Systems?

What is the definition of Embedded Systems?

Quiz on Moodle

What is the definition of Embedded Systems?

Several different definitions on books and on the web:

- An embedded system is a combination of computer hardware and software—and perhaps additional parts, either mechanical
 or electronic—designed to perform a dedicated function.
- Embedded systems are information processing systems embedded into enclosing products.
- An embedded system is a computer system with a dedicated function within a larger mechanical or electrical system, often
 with real-time computing constraints.
- An embedded system is a dedicated computer system designed for one or two specific functions. This system is embedded as
 a part of a complete device system that includes hardware, such as electrical and mechanical components.
- An embedded system is a computer system that does a particular task inside a machine or larger electrical system.
- An embedded system is any electronic system that uses a computer chip, but that is not a general-purpose workstation, desktop or laptop computer.
- An embedded system is a special-purpose system in which the computer is completely encapsulated by the device it controls.
- An embedded system is a computing system that does not look like a computer.

Common aspects on most of the definitions:

- Information processing; and
- Dedicated function / one or two specific function / particular task ...

Typical characteristics of embedded systems

- Single-functioned
 - Executes a single program, repeatedly
- Tightly-constrained
 - Low cost, low power, small, fast, etc.
- Reactive and real-time
 - Continually reacts to changes in the system's environment
 - Must compute certain results in real-time without delay

Embedded system example: Digital Camera

- Single-functioned -always a digital camera
- Tightly-constrained --Low cost, low power, small, fast
- Reactive and real-time -only to a small extent

Embedded system example: ADSL modem/router

- 1 Telephone decoupling electronics (for ADSL)
- 2 Multicolour LED (displaying network status)
- 3 Single colour LED (displaying USB status)
- 4 Main processor,
- 5 JTAG (Joint Test Action Group) test and programming port
- 6 RAM,
- 7 Flash memory: ESMT M12L64164A 8 MB chip
- 8 Power supply regulator
- 9 Main power supply fuse
- 10 Power connector
- 11 Reset button
- 12 Quartz crystal
- 13 Ethernet port
- 14 Ethernet transformer,
- 15 Delta LF8505 KS8721B Ethernet PHY transceiver
- 16 USB port
- 17 Telephone (RJ11) port
- 18 Telephone connector fuses

Agenda

Embedded systems overview

Design metrics

Technologies

Design Metrics

- Obvious design goal:
 - Construct an implementation with desired functionality
- Design metric
 - A measurable feature of a system's implementation
- Key design challenge:
 - Simultaneously optimize numerous design metrics

Common Design Metrics

- NRE cost (Non-Recurring Engineering cost): The one-time monetary cost of designing the system
- Unit cost: the monetary cost of manufacturing each copy of the system, excluding NRE cost
- Size: the physical space required by the system
- Performance: the execution time or throughput of the system
- Power: the amount of power consumed by the system

Common Design Metrics

- Flexibility: the ability to change the functionality of the system without incurring heavy NRE cost
- Time-to-prototype: the time needed to build a working version of the system
- **Time-to-market**: the time required to develop a system to the point that it can be released and sold to customers
- Maintainability: the ability to modify the system after its initial release
 - Correctness, safety, many more...

Design Metric Competition

Improving one design metric may affect (worsen) others

- Ex: Reducing number of transistors may improve size, however, it may affect performance.
- This phenomenon may be compared to a wheel with numerous pins. If you push one pin, such as size, then the other pins pop out.

Design Metrics: Time-to-market

Time-to-market: the time required to develop a system to the point that it can be and sold to customers

- Market window
 - Period during which the product would have highest sales
- Average time-to-market constraint is about 8 months

Delays can be costly

Design Metrics: Time-to-market

Losses due to delayed market entry

- Simplified revenue model
 - Product life = 2W, peak at W
 - Time of market entry defines a triangle, representing market penetration
 - Triangle area = revenue
- Loss
 - The difference between the on-time and delayed triangle areas

Design Metrics: Time-to-market

Quiz on Moodle

Assuming:

- Percentage revenue loss = ((On-time Delayed) / On-time) * 100%
- Market rise angle = 45°

Consider a product whose lifetime is 52 weeks (W = 26). Compute the percentage revenue loss when:

- A) D = 4 weeks
- B) D = 10 weeks

Design Metrics: Non-Recurring Engineering cost

Total cost = NRE cost + unit cost * # of units

Per-production cost = Total cost / # of units

= (NRE cost / # of units) + unit cost

Example:

- NRE=\$2000, unit=\$100
- 10 units:
 - total cost = \$2000 + 10*\$100 = \$3000
 - o per-product cost = \$2000/10 + \$100 = \$300

Design Metrics: Non-Recurring Engineering cost

Compare technologies by costs -- best depends on quantity

Technology A: NRE=\$2,000,

Technology B: NRE=\$30,000,

Technology C: NRE=\$100,000,

unit=\$100

unit=\$30

unit=\$2

Design Metrics: Non-Recurring Engineering cost

Compare technologies by costs -- best depends

Technology A: NRE=\$2,000,

Technology B: NRE=\$30,000,

Technology C: NRE=\$100,000,

unit=\$

unit=\$

unit=\$

Technology C may look cheaper for larger volumes, but the designer must also consider the time-to-market!

Design Metrics: Performance

Widely-used measure of system, widely-abused

- Clock frequency, instructions per second not good measures
- Digital camera example a user cares about how fast it processes images, not clock speed or instructions per second

Design Metrics: Performance

Latency (response time)

- Time between task start and end
- e.g., Camera's A and B process images in 0.25 seconds

Throughput

- Tasks per second, e.g. Camera A processes 4 images per second
- Throughput can be more than latency seems to imply due to concurrency, e.g. Camera B may process 8 images per second (by capturing a new image while previous image is being stored).
- Speedup of B over S = B's performance / A's performance
 - Throughput speedup = 8/4 = 2

Agenda

Embedded systems overview

Design metrics

Technologies

Technologies

Technology

 A manner of accomplishing a task, especially using technical processes, methods, or knowledge

Three key technologies for embedded systems

- Processor technology
- IC technology
- Design technology

Processor Technology

The architecture of the computation engine used to implement a system's desired functionality -- Processor does not have to be programmable.

Processor Technology

Processors vary in their customization for the problem at hand

General-purpose processor

Application-specific processor

Single purpose processor

Processor Technology: General-purpose processor

Programmable device used in a variety of applications

Also known as "microprocessor"

Features

- Program memory
- General datapath with large register file and general ALU

User benefits

- Low time-to-market and NRE costs
- High flexibility

Processor Technology: Single-purpose processor

Digital circuit designed to execute exactly one program

a.k.a. coprocessor, accelerator or peripheral

Features

- Contains only the components needed to execute a single program
- No program memory

Benefits

- Fast
- Low power
- Small size

Processor Technology: Application-specific processor

Programmable processor optimized for a particular class of applications having common characteristics

 Compromise between general-purpose and singlepurpose processors

Features

- Program memory
- Optimized datapath
- Special functional units

Benefits

Some flexibility, good performance, size and power

Integrated Circuit Technology

The manner in which a digital (gate-level) implementation is mapped onto an IC

- IC: Integrated circuit, or "chip"
- IC technologies differ in their customization to a design
- IC's consist of numerous layers (perhaps 10 or more)
 - IC technologies differ with respect to who builds each layer and when

Integrated Circuit Technology

Three types of IC technologies

- Full-custom/VLSI
- Semi-custom ASIC (gate array and standard cell)
- PLD (Programmable Logic Device)

Integrated Circuit Technology: Full-custom/VLSI

All layers are optimized for an embedded system's particular digital implementation

- Placing transistors
- Sizing transistors
- Routing wires

Benefits

Excellent performance, small size, low power

Drawbacks

High NRE cost (e.g., \$300k), long time-to-market

Integrated Circuit Technology: Semi-custom

Lower layers are fully or partially built

- Designers are left with routing of wires and maybe placing some blocks
 Benefits
- Good performance, good size, less NRE cost than a full-custom implementation (perhaps \$10k to \$100k)

Drawbacks

Still require weeks to months to develop

Integrated Circuit Technology: PLD

All layers already exist

- Designers can purchase an IC
- Connections on the IC are either created or destroyed to implement desired functionality
- Field-Programmable Gate Array (FPGA) very popular

Benefits

Low NRE costs, almost instant IC availability

Drawbacks

Bigger, expensive (perhaps \$30 per unit), power hungry, slower

Design Technology

The manner in which we convert our concept of desired system functionality into an implementation

Compilation/Synthesis: Automates exploration and insertion of implementation details for lower level.

Libraries/IP: Incorporates pre-designed implementation from lower abstraction level into higher level.

Test/Verification: Ensures correct functionality at each level, thus reducing costly iterations between levels.

Design Technology: Increase in productivity

Productivity has increased exponentially over the past few decades.

Design Technology: HW/SW co-design

In the past:

- Hardware and software design technologies were very different
- Maturation of synthesis enabled a unified view of hardware and software
- Hardware/software "codesign"

The choice of hardware versus software for a particular function is simply a tradeoff among various design metrics, like performance, power, size, NRE cost, and especially flexibility; there is no fundamental difference between what hardware or software can implement.

Independence of processor and IC technologies

Basic tradeoff

- General vs. custom with respect to processor technology or IC technology
- The two technologies are independent

Design productivity gap

While designer productivity has grown at an impressive rate over the past decades, the rate of improvement has not kept pace with chip capacity

Design productivity gap

1981 leading edge chip required 100 designer months 2002 leading edge chip requires 30,000 designer months

Designer cost increase from \$1M to \$300M

INF-741. Embedded Systems Programming for IoT – Prof. Edson Borin

Summary

- Embedded systems are everywhere
- Key challenge: optimization of design metrics
- Design metrics compete with one another
- Three key technologies
 - Processor: general-purpose, application-specific, single-purpose
 - IC: Full-custom, semi-custom, PLD
 - Design: Compilation/synthesis, libraries/IP, test/verification

Reading for next class

Chapter 1: Introduction

Embedded System Design: A Unified Hardware/ Software Introduction

Frank Vahid and Tony Givargis

John Wiley & Sons;

ISBN: 0471386782. Copyright (c) 2002.

INF-741: Embedded systems programming for IoT

Prof. Edson Borin

