МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Методы оптимизации»

Тема: Решение прямой и двойственной задач

Студентка гр. 8383	Гречко В.Д.
Преподаватель	Мальцева Н.В

Санкт-Петербург 2021

Цель работы.

- а. Постановка задачи линейного программирования и её решение с помощью стандартной программы.
- б. Исследование прямой и двойственной задачи.

Содержательная постановка задачи.

Вариант 6

При откорме каждое животное ежедневно должно получить не менее 9 единиц питательного вещества S_1 , не менее 8 единиц вещества S_2 и не менее 12 единиц вещества S_3 . Для составления рациона используют два вида корма. Содержимое количества единиц питательных веществ в 1 кг. каждого корма и стоимость 1 кг. корма приведены в табл.3.5.

Стоимость 1 кг. корма первого вида составляет 4 р., второго вида -6 р.

Необходимо составить дневной рацион нужной питательности, причем затраты на него должны быть минимальными.

Таблица 3.5

Питательные	Количество единиц питательных веществ в 1 кг корма		
вещества	Корм 1	Корм 2	
S1	3	1	
S2	1	2	
S3	1	6	

Формальная постановка задачи.

По заданной содержательной постановке задачи поставим задачу формально. Обозначим за x_i количество килограмм корма первого или второго вида.

Целевая функция:

$$\varphi(x) = 4x_1 + 6x_2 \rightarrow min,$$

При этом задача имеет следующие ограничения:

$$\begin{cases} 3x_1 + x_2 \ge 9 \\ x_1 + 2x_2 \ge 8 \\ x_1 + 6x_2 \ge 12 \\ x_1, x_2 \ge 0 \end{cases}$$

Решение поставленной задачи с помощью готовой программы.

Рисунок 1 - постановка задачи в программе

Рисунок 2 – Решение задачи в программе

Координаты оптимальной точки $x_* = (2,3)$.

$$\varphi(x_*) = 26$$

Постановка двойственной задачи.

Двойственная задача имеет три переменных (так как три ограничения в исходной). Проведём необходимые расчёты:

$$\psi(y) = B^{T} * Y = (9 8 12) * \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \end{pmatrix} = 9y_{1} + 8y_{2} + 12y_{3}$$

$$A^{T} * Y = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 2 & 6 \end{pmatrix} * \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \end{pmatrix} = \begin{pmatrix} 3y_{1} & +y_{2} & +y_{3} \\ y_{1} & +2y_{2} & +6y_{3} \end{pmatrix}$$

Тогда двойственная задача:

$$\psi(y) = 9y_1 + 8y_2 + 12y_3 \rightarrow max$$

Ограничения для двойственной задачи:

$$\begin{cases} 3y_1 + y_2 + y_3 \le 4 \\ y_1 + 2y_2 + 6y_3 \le 6 \end{cases}$$

Решение двойственной задачи с помощью программы.

Рисунок 3 – постановка задачи в программе

Рисунок 4 – Решение задачи в программе

Координаты оптимальной точки $y_* = (0.4, 2.8, 0)$.

$$\psi(y_*) = 26$$

По полученным результатам видно, что $\varphi(x_*) = \psi(y_*)$.

Результаты совпали с утверждением №2 о двойственной задаче линейного программирования:

Если решение исходной задачи линейного программирования существует, то существует и решение двойственной ЗЛП, причем экстремумы целевых функций совпадают

Определение коэффициентов чувствительности исходной задачи по координатам правой части ограничений

Алгоритм выполнения:

- а) увеличить i- ю координату вектора ограничений правой части на $\varepsilon = 10^{-2}$;
- б) решить задачу с новым вектором $B = B + \varepsilon e_i$, ответ $\varphi_i(\varepsilon)$;
- в) вычислить $\widetilde{\chi_l} = \frac{\varphi_l(\varepsilon) \varphi_l(0)}{\varepsilon};$
- Γ) сравнить полученное число с i-й координатой оптимальной точки двойственной задачи.

Для удобства чтения ход работы сведён в таблицу:

Значение b_i	Постановка задачи	Результат	Значение $\widetilde{x_i}$
$b_1 = 9.01$	— П — ПОСТАНОВКА ЗАДАЧИ = Целевая функция: С 4 6 —→ min Ограничения: А В 3 1 >=9.01 1 2 >=8 1 6 >=12	x1= 2.004 x2= 2.998 Значение целевой функции f = 26.004	0.4
$b_2 = 8.01$	Целевая функция: C 4 6> min Ограничения: A B 3 1 >=9 1 2 >=8.01 1 6 >=12	x1= 1.998 x2= 3.006 Значение целевой функции f = 26.028	2.8
$b_3 = 12.01$	Целевая функция: C 4 6> min Ограничения: A B 3 1 >=9 1 2 >=8 1 6 >=12.01	x1= 2.000 x2= 3.000 Значение целевой функции f = 26.000	0

Вычисление значения \widetilde{x}_{l}

1.
$$\widetilde{x_1} = \frac{26.004 - 26}{0.01} = 0.4$$

2.
$$\widetilde{x_2} = \frac{26.028 - 26}{0.01} = 2.8$$

3.
$$\widetilde{x_3} = \frac{26 - 26}{0.01} = 0$$

Сравним полученные результаты и координаты оптимальной точки двойственной задачи:

$$\tilde{x} = \begin{pmatrix} 0.4 \\ 2.8 \\ 0 \end{pmatrix}$$

$$y_* = \begin{pmatrix} 0.4 \\ 2.8 \\ 0 \end{pmatrix}$$

Результаты совпали с утверждением №3 о двойственной задаче линейного программирования:

Экстремальная точка λ^* двойственной задачи является векторным коэффициентом чувствительности исходной задачи по вектору b.

Повторение процедуры, описанной в п.5, с варьированием на этот раз коэффициентов целевой функции – компонент вектора и сопоставление результатов с координатами вектора-решения исходной задачи.

Для удобства чтения ход работы сведён в таблицу:

Значение c_i	Постановка задачи	Результат	Значение \widetilde{y}_{l}
$c_1 = 4.01$	=11=== ПОСТАНОВКА ЗАД Целевая функция: С 4.01 6> min Ограничения: А В 3 1 >=9 1 2 >=8 1 6 >=12	x1= 2.000 x2= 3.000 Значение целевой функции f = 26.020	2
$c_2 = 6.01$	Целевая функция: С 4 6.01 —> min Ограничения: А В 3 1 >=9 1 2 >=8 1 6 >=12	x1= 2.000 x2= 3.000 Значение целевой функции f = 26.030	3

Вычисление значения \widetilde{y}_{l}

1.
$$\widetilde{y_1} = \frac{26.020 - 26}{0.01} = 2$$

$$2. \qquad \widetilde{y_2} = \frac{26.030 - 26}{0.01} = 3$$

Сравним полученные результаты и координаты вектора-решения исходной задачи:

$$\tilde{y} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$\tilde{y} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
$$x_* = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

Как видно, они равны.

Выводы.

В ходе лабораторной работы были изучены прямая и двойственная задачи линейного программирования. Кроме того, экспериментальным путем была подтверждена теорема двойственности и утверждение, что экстремальная точка двойственной задачи является векторным коэффициентом чувствительности исходной задачи по вектору b.