Banco de Dados

Prof. Fernando Rodrigues de Almeida Júnior

UFC – Universidade Federal do Ceará

Curso: Eng. da Computação

e-mail: fernandorodrigues@sobral.ufc.br

Sumário

- 🖳 Introdução aos Sistemas de Banco de Dados
- Projeto de Bancos de Dados Relacionais
- Bancos de Dados Relacionais
 - → O Modelo Relacional
 - Modelagem de Dados

- →Álgebra Relacional
- ►Linguagem de Manipulação e Consulta
- Projeto Lógico de Bancos de Dados

3. Modelo Relacional - Álgebra Relacional -

Coleção de operações usadas para manipular relações

- O resultado de uma operação é fechado sobre o conjunto das relações:
 - \rightarrow op(r') \rightarrow r"
- Grupos de operações
 - → Operações relacionais
 - Seleção; projeção; junção
 - → Operações de conjunto
 - União; interseção; diferença; produto cartesiano
 - → Operações especiais

3. Modelo Relacional - Álgebra Relacional -

Linguagem de consulta para bancos de dados relacionais

```
Relação
        Consulta
                       Relação
```

- Coleção de operadores sobre relações
- Desenvolvida por Edgar Frank Codd
 - Artigo "Relational Model of Data for Large Shared Data Banks" (pub. na ACM)
- Linguagem procedimental
- Operações básicas

```
(တ)
Seleção
```

(x)→ Produto cartesiano

Operações unárias

Operações binárias

3. Modelo Relacional - Álgebra Relacional [Operações Básicas] -

- Operação de Seleção :: símbolo → σ
 - Seleciona um subconjunto de tuplas de uma relação
 - Com base em um predicado
 - - r é uma relação e
 - P representa um predicado (condição de seleção)
 - Predicados são construídos através de átomos
 - ⇒ Átomos
 - $t[A_i] \theta t[A_k]$, $t \in r \in A_i \in A_k$ são atributos de r.
 - ▶ t[A_i] θ k, onde k é uma constante
 - O símbolo θ denota um operador de comparação
 - =, \neq , \geq , \leq , \leq Os atributos devem possuir domínios iguais
 - Atomos podem ser conectados por ∧ (and), ∨ (or), ¬ (not)
- Regras para construção de fórmulas
 - □ Todo átomo é uma fórmula
- ⇒ Se P₁ e P₂ são fórmulas
- $P_1 \wedge P_2$, $P_1 \vee P_2$ e $\neg P_1$ também são fórmulas

- Álgebra Relacional [Operações Básicas] -
- Operação de seleção (cont.)
 - **⇒**Exemplo
 - Considere a relação Empregado
 - Empregado(matr, nome, ender, cpf, salário, lotação)
 - Listar todos os empregados que ganham salário maior que 5000
 - σ_{salário>5000} (Empregado)
 - Listar todos os empregados do departamento com código igual a 002 e que ganham salários maiores que 5.000,00
 - Listar todos os empregados não lotados no departamento com código igual a 002 e que ganham salários entre 5.000,00 e 10.000,00

- Álgebra Relacional [Operações Básicas] -
- Operação de seleção (cont.)
 - → Propriedades da seleção

$$rac{1}{2} \sigma_{\theta 1}(r) \Leftrightarrow \sigma_{\theta 1}(\sigma_{\theta 1}(r))$$

Idempotência da operação de seleção

Distributividade da operação de seleção

$$\Rightarrow \sigma_{\theta 1 \vee \theta 2}(\mathbf{r}) \Leftrightarrow \sigma_{\theta 1}(\mathbf{r}) \cup \sigma_{\theta 2}(\mathbf{r})$$

$$\mathcal{G}_{\theta 1}(\mathcal{G}_{\theta 2}(\mathbf{r})) \Leftrightarrow \mathcal{G}_{\theta 2}(\mathcal{G}_{\theta 1}(\mathbf{r}))$$

Comutatividade da operação de seleção

- Álgebra Relacional [Operações Básicas] -
- Qperação de Projeção :: símbolo → Π
 - Seleciona um subconjunto de atributos de uma relação
 - → Notação

$$\Rightarrow \Pi_{A_{i1}, A_{i2}, ..., A_{in}}(r)$$

<mark>⇨ r</mark> é uma relação com esquema R(A₁, A₂, …, Aո)

$$\Rightarrow \{A_{i_1}, A_{i_2}, ..., A_{i_n}\} \subseteq \{A_1, A_2, ..., A_n\}$$

- ⇒ Projeção de R sobre os atributos A_{i1}, A_{i2}, ..., A_{in} ⇒Exemplo
 - Listar o nome e salário de todos os empregados

✓ Listar nome e salário de todos os empregados que ganham salário maior que 9000 Projeção

Filtro de atributos Seleção

Filtro de tuplas

- Álgebra Relacional [Operações Básicas] -
- Operação de União :: símbolo → ∪
 - ►Executa a união de duas relações compatíveis
 - Duas relações com esquemas R(A₁, A₂, ..., A_n) e S(B₁, B₂, ..., B_n) são compatíveis se
 - Apresentam o mesmo número de atributos
 - \Rightarrow dom(A_i)= dom(B_i), 0<i \le n
 - →Notação
 - ⇒r∪s
 - **⇒**Exemplo
 - Considere as seguintes relações
 - Empregado(matr, nome, ender, dt-nasc, cpf, salário, lotação)
 - Dependente(nome-dep, data-nasc, matr-resp)
 - Liste o nome e a data de nascimento de todos os empregados e dependentes existentes na empresa
 - \Rightarrow $\Pi_{\text{nome, dt-nasc}}$ (Empregado) $\cup \Pi_{\text{nome-dep, data-nasc}}$ (Dependente)

- Álgebra Relacional [Operações Básicas] -
- Operação de Diferença :: símbolo → -
 - →O resultado da operação r s é uma relação que contém todas as tuplas de r que não pertencem a s
 - r e s devem ser relações compatíveis!
 - **⇒**Exemplo
 - Considerando que na empresa só existam as relações Empregado e Dependente que referem-se a pessoas, execute a seguinte consulta: Listar nomes de empregados, desde que não existam dependentes com mesmo nome
 - $\Rightarrow \Pi_{\text{nome}}$ (Empregado) $\Pi_{\text{nome-dep}}$ (Dependente)

- Álgebra Relacional [Operações Derivadas] -

- Operação de Interseção :: símbolo →
 - →O resultado da operação r ∩ s é uma relação que contém todas as tuplas de r que pertencem também a s;

→ O resultado de r ∩ s é definido por:

$$r \cap s = r - (r - s)$$

- Álgebra Relacional [Operações Básicas] -
- Operação de Produto Cartesiano :: símbolo → x
 - Sejam r e s relações com esquemas R(A₁, A₂, ..., Aₙ) e S(B₁, B₂, ..., B๓), respectivamente;
- →Resultado da operação r x s é uma relação:

$$ightharpoonup T(r.A_1, r.A_2, ..., r.A_n, s.B_1, s.B_2, ..., s.B_m)$$

- com n+m atributos
 - cada tupla de T é uma combinação entre uma tupla de r e uma tupla de s

$$\Rightarrow$$
 $t \in T \Leftrightarrow \exists v \in r$ e $\exists u \in s$, tal que $t[A_i] = v[A_i]$, $0 < i \le n$, e $t[B_i] = u[B_i]$, $0 < j \le m$

Se a cardinalidade de r é n_r tuplas e a cardinalidade s é n_s tuplas, então:

□ A cardinalidade de T é n_r* n_s

- Álgebra Relacional [Operações Básicas] -
- Operação de Produto Cartesiano (cont.)
 - **⇒**Exemplo
 - Sejam r e s mostradas abaixo. Calcule r x s

rxs

r

Α	В
a1	b1
a1	b2
a2	b1

S

А	В	С
a ₁	b1	c1
a2	b3	сЗ
a2	b1	c4

r.A	r.B	s.A	s.B	s.C
a1	b1	a1	b1	c1
a1	b1	a2	b3	с3
a1	b1	a2	b1	c4
a1	b2	a1	b1	c1
a1	b2	a2	b3	c 3
a1	b2	a2	b1	c4
a2	b1	a1	b1	c1
a2	b1	a2	b3	c 3
a2	b1	a2	b1	c4