ИИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ)

Кафедра «Прикладная математика-1»

Ю.П. ВЛАСОВ, В.П. ПОСВЯНСКИЙ

Методические указания к практическим занятиям и самостоятельной работе

по дисциплине «ЧИСЛЕННЫЕ МЕТОДЫ»

Раздел «ЛИНЕЙНАЯ АЛГЕБРА» М.У.

Власов Ю.П.

МИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ)

Кафедра «Прикладная математика -1»

Ю.П. Власов, В.П. Посвянский

Утверждено редакционно-издательским советом университета

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ И САМОСТОЯТЕЛЬНОЙ РАБОТЕ по дисциплине «ЧИСЛЕННЫЕ МЕТОДЫ»

раздел «Линейная алгебра»

для студентов специальности «ПРИКЛАДНАЯ МАТЕМАТИКА»

Москва - 2002

УДК 519.6:512.64 B-58

Власов Ю.П., Посвянский В. П. Методические указания к практическим занятиям и самостоятельной работе по дисциплине «Численные методы». Раздел «Линейная алгебра». -М.: МИИТ, 2002.-37 с.

Методические указания посвящены точным методам решения трех задач линейной алгебры: решению системы линейных алгебраических уравнений, вычислению определителя матрицы и определению элементов обратной матрицы. Перечисленные задачи предлагается решить шестью различными способами: методом Гаусса, методом Гаусса с выбором главного элемента, методом квадратного корня (методом Холецкого), методом ортогонализации, методом вращений (методом Гивенса) и методом отражений (методом Хаусхолдера).

Центральная идея точного решения перечисленных задач линейной алгебры состоит в разложении исходной матрицы в произведение матриц, для которых эти задачи решаются сравнительно просто. Такими матрицами в частности являются треугольные и матрицы с ортогональными столбцами.

В методических указаниях рассматривается решение задач только с невырожденными матрицами.

©Московский государственный университет путей сообщения (МИИТ), 2002

- 1. Особенности решения задач для некоторых матриц специального вида.
 - 1.1 Диагональная матрица.

$$D = \begin{pmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \cdots & \cdots & \vdots & \cdots \\ 0 & \cdots & 0 & d_{nn} \end{pmatrix}, \det D = \prod_{i=1}^{n} d_{ii}, \left(D^{-1} \right)_{ii} = \frac{1}{d_{ii}},$$

DX = B, $X = D^{-1}B$, где X - столбец неизвестных, B - столбец свободных членов.

$1.2 \, N$ и M матрицы.

$$N_k = \begin{pmatrix} 1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & \ddots & \cdots & \cdots & \cdots & \cdots & 0 \\ \cdots & \cdots & 1 & 0 & \cdots & \cdots & 0 \\ \cdots & \cdots & 0 & n_{k,k} & 0 & \cdots & \cdots \\ \cdots & \cdots & \cdots & n_{k+1,k} & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & n_{n,k} & 0 & \cdots & 1 \end{pmatrix}$$

$$M_k = \begin{pmatrix} 1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & \ddots & \cdots & \cdots & \cdots & \cdots & 0 \\ \cdots & \cdots & 1 & 0 & \cdots & \cdots & 0 \\ \cdots & \cdots & 0 & m_{k,k} & m_{k,k+1} & \cdots & m_{k,n} \\ \cdots & \cdots & \cdots & 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \ddots & \cdots \\ 0 & 0 & 0 & \cdots & 0 & \cdots & 1 \end{pmatrix}$$

$$\det N_k = n_{kk}, \quad \det M_k = m_{kk}.$$

$$N_{k}^{-1} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & \ddots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ \cdots & \cdots & 1 & 0 & \cdots & \cdots & 0 \\ \cdots & \cdots & 0 & \frac{1}{n_{k,k}} & 0 & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ n_{k,k} & \vdots & \vdots & \vdots & \vdots & \vdots \\ n_{k,k} & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \frac{-n_{n,k}}{n_{k,k}} & 0 & \cdots & 1 \end{pmatrix},$$

$$NX = B, \quad X = N^{-1}B,$$

$$M_{k}^{-1} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & \ddots & \cdots & \cdots & \cdots & \cdots & 0 \\ \cdots & \cdots & 1 & 0 & \cdots & \cdots & 0 \\ \cdots & \cdots & 0 & \frac{1}{m_{k,k}} & \frac{-m_{k,k+1}}{m_{k,k}} & \cdots & \frac{-m_{k,n}}{m_{k,k}} \\ \cdots & \cdots & 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \ddots & \cdots \\ 0 & 0 & 0 & \cdots & 0 & \cdots & 1 \end{pmatrix},$$

$$MX = B$$
, $X = M^{-1}B$.

1.3 Треугольные матрицы. Нижняя треугольная матрица

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & \cdots & 0 \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & \vdots & a_{nn} \end{pmatrix}, \det A = \prod_{i=1}^{n} a_{ii},$$

$$A = N_1 N_2 \cdots N_n$$
, $A^{-1} = N_n^{-1} N_{n-1}^{-1} \cdots N_1^{-1}$.

Верхняя треугольная матрица

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & \cdots & a_{2n} \\ \cdots & 0 & \ddots & \cdots & \cdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & a_{nn} \end{pmatrix}, \det A = \prod_{i=1}^{n} a_{ii},$$

$$A = M_n M_{n-1} \cdots M_1, \quad A^{-1} = M_1^{-1} M_2^{-1} \cdots M_n^{-1}.$$

Ненулевые элементы столбца k в матрице N_k (строки k в матрице M_k) совпадают с соответствующими элементами столбца (строки) матрицы A.

Система линейных уравнений с треугольной матрицей решается либо методом подстановки, либо методом обратной матрицы $AX = B, X = A^{-1}B$, где обратная матрица A^{-1} легко находится как обратное произведение обратных матриц для M или N соответственно.

1.4 Матрица перестановок

$$\det P_{ij} = \det P_{ij}^{-1} = -1.$$

Умножение матрицы A на матрицу перестановок справа AP_{ij} приводит к перестановке столбцов матрицы с номерами i и j, умножение слева $P_{ij}A$ - к перестановке строк с теми же номерами.

1.5 Матрицы с ортогональными столбцами

Пусть Q – матрица с ортогональными столбцами. Тогда $QQ^T = D$, где Q^T - транспонированная матрица.

$$\det Q = \pm \sqrt{\det D}$$
, $Q^{-1} = Q^T D^{-1}$.

1.5.1 Матрица вращений T_{ij} является частным случаем ортогональной матрицы.

Матрица вращений является ортогональной, и задает переход от одного ортонормированного базиса к другому с помощью вращения на угол α в плоскости, определяемой базисными векторами с номерами i,j.

$$T_{ij}^{-1} = T_{ij}^T, \quad \det T_{ij} = \mathbf{l}, \quad \text{где} \quad T^T \quad \text{-} \quad \text{транспонированная}$$
 матрица.

1.5.2 Матрица отражений U задает отражение вектора относительно плоскости, которая определяется единичной нормалью $\overline{\omega}$.

 $U=E-2\Omega$, где элементы матрицы Ω определяются равенством:

 $(\Omega)_{ij} = \overline{\omega_i \omega_j}$, то есть $\Omega = \overline{\omega \omega^T}$. Матрица отражений - симметричная ортогональная матрица. $\det U = -1$. В дальнейшем будет использована обобщенная матрица отражений U_i

2. Точные методы решения задач линейной алгебры, основанные на LU разложении матрицы.

2.1 Гаусса решения системы линейных алгебраических уравнений состоит из двух этапов, которые соответственно называются прямой и обратный ход. При выполнении прямого хода исходная матрица с помощью эквивалентных преобразований приводится к треугольному виду, то есть к матрице с нулевыми элементами под главной диагональю (правая треугольная матрица). Оказывается, что матрицу представить, онжом исходную промежуточные результаты вычислений, как произведение левой и правой треугольной матриц. Такое представление называется LU разложением.

Пусть требуется решить систему линейных алгебраических уравнений (в дальнейшем СЛАУ).

 $A\overline{X}=\overline{B}$, где \overline{X} — столбец неизвестных, \overline{B} — столбец свободных членов, A — матрица коэффициентов.

Выполняя прямой ход метода Гаусса, получим эквивалентную систему уравнений с треугольной матрицей

 $U\overline{X} = L^{-1}\overline{B}$, которая решается методом подстановки. Это решение и составляет обратный ход метода Гаусса. Так как метод Гаусса является методом разложения матрицы A в произведение двух треугольных, то он позволяет решить задачи о вычислении определителя и элементов обратной матрицы.

A=LU, $\det A=\det L\det U=\det L$, так как обычно прямой ход метода Гаусса выполняется таким образом, что бы диагональные элементы матрицы U равнялись единице. $A^{-1}=U^{-1}L^{-1}$ и в результате задача сводится к определению элементов матриц обратных к треугольным, что можно

например сделать через обратное произведение обратных M и N матриц соответственно.

2.1.1 Пример. Решить методом Гаусса СЛАУ.

$$\begin{cases} 2X_1 + X_2 + X_3 = 3 \\ -5X_1 + 2X_2 - X_3 = -4 \\ 3X_1 - 2X_2 + X_3 = 4 \end{cases}$$

Решение. Выполняем прямой ход метода Гаусса для расширенной матрицы системы

$$A_{pacu} = \begin{pmatrix} 2 & 1 & 1 & 3 \\ -5 & 2 & -1 & -6 \\ 3 & -2 & 1 & 4 \end{pmatrix}$$

$$\frac{\text{деление первой строки на}}{\text{диагональный элемент}} \to \begin{pmatrix} 1 & 1/2 & 1/2 & 3/2 \\ -5 & 2 & -1 & -6 \\ 3 & -2 & 1 & 4 \end{pmatrix}$$

умножение первой строки на 5 и сложение со второй

результат на место второй строки

$$\begin{pmatrix} 1 & 1/2 & 1/2 & 3/2 \\ 0 & 3/2 & 3/2 & 3/2 \\ 3 & -2 & 1 & 1 \end{pmatrix}$$

умножение первой строки на -3 и сложение с третьей \rightarrow

результат на место третьей строки

$$\begin{pmatrix} 1 & 1/2 & 1/2 & 3/2 \\ 0 & 9/2 & 3/2 & 3/2 \\ 0 & -7/2 & -1/2 & -1/2 \end{pmatrix}$$

$$\dfrac{\text{деление второй строки на}}{\text{диагональный элемент}}
ightarrow egin{pmatrix} 1 & 1/2 & 1/2 & 3/2 \\ 0 & 1 & 1/3 & 1/3 \\ 0 & -7/2 & -1/2 & -1/2 \end{pmatrix}$$

результат на место третьей строки

$$\begin{pmatrix} 1 & 1/2 & 1/2 & 3/2 \\ 0 & 1 & 1/3 & 1/3 \\ 0 & 0 & 2/3 & 2/3 \end{pmatrix} \frac{\text{деление третьей строки на}}{\text{диагональный элемент}} \rightarrow \\ \begin{pmatrix} 1 & 1/2 & 1/2 & 3/2 \\ 0 & 1 & 1/3 & 1/3 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

В итоге исходная система уравнений приводится к виду

$$\begin{cases} X_1 + 1/2X_2 + 1/2X_3 = 3/2 \\ X_2 + 1/3X_3 = 1/3 \\ X_3 = 1 \end{cases}$$

Выполнение обратного хода метода Гаусса приводит к следующему результату $\mathcal{X}_1 = 1\,,\;\; \mathcal{X}_2 = 0\,,\;\; \mathcal{X}_3 = 1\,.$

2.1.2 Пример. Найти определитель матрицы СЛАУ, приведенной в примере 2.1.1.

Решение. Найдем $\,LU\,$ - разложение матрицы $A\,$ методом Γ аусса.

$$A = \begin{pmatrix} 2 & 1 & 1 \\ -5 & 2 & -1 \\ 3 & -2 & 1 \end{pmatrix}$$
 После выполнения прямого хода

метода Гаусса получаем матрицу $U = \begin{pmatrix} 1 & 1/2 & 1/2 \\ 0 & 1 & 1/3 \\ 0 & 0 & 1 \end{pmatrix}$. Составим

левую треугольную матрицу L. Элементы i-го столбца матрицы L, расположенные над главной диагональю равны нулю, а диагональные и расположенные под ними равны

значениям соответствующих элементов преобразуемой матрицы, которые эти элементы имеют перед делением *i*-ой строки на диагональный элемент. Из примера 1 нетрудно видеть, что

$$L = \begin{pmatrix} 2 & 0 & 0 \\ -5 & 9/2 & 0 \\ 3 & -7/2 & 2/3 \end{pmatrix}, \text{ при этом} \quad L = N_1 N_2 N_3, \text{ где}$$

$$N_1 = \begin{pmatrix} 2 & 0 & 0 \\ -5 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, \quad N_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 9/2 & 0 \\ 0 & -7/2 & 1 \end{pmatrix}, \quad N_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2/3 \end{pmatrix}.$$
 Тогда $\det A = \det L \det U = \det L = 2*(9/2)*(2/3) = 6.$

2.1.3 Пример. Используя LU разложение матрицы A, найти элементы обратной матрицы.

Решение. $A^{-1} = U^{-1}L^{-1}$. Ненулевые элементы матрицы $C = L^{-1}$ можно получить из систем уравнений с треугольными матрицами:

$$2C_{11} = 1, \begin{cases} 2C_{21} - 5C_{22} = 0 \\ 9/2C_{22} = 1 \end{cases}, \begin{cases} 2C_{31} - 5C_{32} + 3C_{33} = 0 \\ 9/2C_{32} - 7/2C_{33} = 0 \\ 2/3C_{33} = 1 \end{cases}$$

или из равенства $L^{-1} = N_3^{-1} N_2^{-1} N_1^{-1}$. Аналогично можно вычислить элементы матрицы U^{-1} . В результате

$$L^{-1} = \begin{pmatrix} 1/2 & 0 & 0 \\ 5/9 & 2/9 & 0 \\ 2/3 & 7/6 & 3/2 \end{pmatrix}, \ U^{-1} = \begin{pmatrix} 1 & -1/2 & -1/3 \\ 0 & 1 & -1/3 \\ 0 & 0 & 1 \end{pmatrix},$$
$$A^{-1} = \begin{pmatrix} 0 & -1/2 & -1/2 \\ 1/3 & -1/6 & -1/2 \\ 2/3 & 7/6 & 3/2 \end{pmatrix}.$$

- 2.2 Метод Гаусса с выбором главного элемента отличается от метода Гаусса тем, что при выполнении прямого хода перед каждым делением строки с номером i на ее диагональный элемент, среди элементов строк матрицы системы с номерами $n \ge m \ge i$, где n – число уравнений, выбирается наибольший по модулю элемент (главный или ведущий). Далее перестановкой строк и столбцов он перемещается на пересечение і-ой строки и і-го столбца. Затем выполняется і-ый шаг прямого хода метода Гаусса. Такая процедура позволяет всегда производить деление на наибольший по величине элемент из тех, которые еще преобразуются. Это увеличивает численную устойчивость метода. Метод Гаусса с выбором главного элемента позволяет, используя промежуточные результаты, представить исходную квадратную матрицу в виде произведения N – матриц, матриц перестановок и треугольной матрицы U. В дальнейшем такое разложение будем называть NPU разложением матрицы. NPU разложение является результатом прямого хода метода Гаусса с выбором главного элемента и может быть использовано для решения основных задач линейной алгебры.
- 2.2.1 Пример. Решить методом Гаусса с выбором главного элемента СЛАУ.

$$\begin{cases} 2X_1 + X_2 + X_3 = 3 \\ -5X_1 + 2X_2 - X_3 = -6 \\ 3X_1 - 2X_2 + X_3 = 4 \end{cases}$$

Решение

$$\begin{pmatrix} 2 & 1 & 1 & 3 \\ -5 & 2 & -1 & -6 \\ 3 & -2 & 1 & 4 \end{pmatrix} \xrightarrow{\textit{главный элемент равен } -5}$$

$$\xrightarrow{\textit{перестановка второй и первой строк}} \rightarrow$$

Отсюда,
$$X_1 = 1$$
, $X_2 = 0$, $X_3 = 1$.

2.2.2 Пример. Произвести NPU разложение матрицы, методом Гаусса с выбором главного элемента и вычислить определитель.

Решение. Обозначим треугольную матрицу системы, полученной в результате преобразований U.

$$U = \begin{pmatrix} 1 - 2/5 & 1/5 \\ 0 & 1 & 1/3 \\ 0 & 0 & 1 \end{pmatrix}$$
. Составим матрицу перестановок

$$P_{1,2} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 и, по правилам, которые изложены при

решении примера 2.1.2, составим N матрицы.

$$N_1 = \begin{pmatrix} -5 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, \quad N_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 9/5 & 0 \\ 0 & -4/5 & 1 \end{pmatrix}, \quad N_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2/3 \end{pmatrix}.$$

Легко убедиться в выполнении равенства $A = P_{1,2}N_1N_2N_3U$.

Определитель матрицы A равен произведению определителей матриц NPU. В результате получаем

$$\det A = (-1)^* (-5)^* (9/5)^* (2/3) = 6$$

2.2.3 Пример. Используя NPU разложение матрицы A, найти обратную матрицу.

Решение. $A^{-1} = U^{-1}N_3^{-1}N_2^{-1}N_1^{-1}P_{1,2}^{-1}$. Используя уже приведенные ранее формулы и методы, нетрудно получить:

$$\begin{split} U^{-1} = \begin{pmatrix} 1 & 2/5 & -1/3 \\ 0 & 1 & -1/3 \\ 0 & 0 & 1 \end{pmatrix}, & P_{1,2}^{-1} = P_{1,2} \,, \\ N_3^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3/2 \end{pmatrix}, & N_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5/2 & 0 \\ 0 & 4/9 & 1 \end{pmatrix}, & N_1^{-1} = \begin{pmatrix} -1/5 & 0 & 0 \\ 2/5 & 1 & 0 \\ 3/5 & 0 & 1 \end{pmatrix}. \end{split}$$

В результате
$$A^{-1} = \begin{pmatrix} 0 & -1/2 & -1/2 \\ 1/3 & -1/6 & -1/2 \\ 2/3 & 7/6 & 3/2 \end{pmatrix}$$
.

2.3 Метод квадратного корня (метод Холецкого) решения основных задач линейной алгебры основан на разложении симметричной матрицы в произведение треугольной L матрицы и транспонированной к ней матрицы L^{T} . При этом система уравнений для определения элементов матрицы L распадается на подсистемы нелинейных уравнений. Необходимо помнить, что в общем случае приходится выполнять действия с комплексными числами. После осуществления такого разложения решение СЛАУ с симметричной матрицей сводится к решению двух СЛАУ, каждая из которых имеет треугольную матрицу

$$A\overline{X} = \overline{B}$$
, $A = LL^T$, $LL^T\overline{X} = \overline{B}$, $LY = \overline{B}$, $L^T\overline{X} = \overline{Y}$.

Вычисление определителя и элементов обратной матрицы также элементарно после того как разложение матрицы A в произведение треугольных выполнено.

$$\det A = (\det L)^2 = \prod_{i=1}^n l_{ii}^2, \ A^{-1} = (L^T)^{-1} L^{-1}.$$

2.3.1 Пример. Решить систему линейных уравнений методом квадратного корня.

Решение.

$$\begin{cases} x_1 - 2x_2 + x_3 = -4 \ -2x_1 + 3x_3 = -1. \end{cases}$$
 Представим матрицу системы $x_1 + 3x_2 + x_3 = 1$

A в виде $A = LL^T$:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} l_{11} & l_{12} & l_{13} \\ 0 & l_{22} & l_{23} \\ 0 & 0 & l_{33} \end{pmatrix} \begin{pmatrix} l_{11} & 0 & 0 \\ l_{12} & l_{22} & 0 \\ l_{13} & l_{23} & l_{33} \end{pmatrix},$$

отсюда для элементов матрицы L получаем три системы уравнений

$$\begin{cases} I_{11}^2 + I_{12}^2 & + I_{13}^2 & = \mathcal{Q}_{11} \\ I_{12}I_{22} + I_{13}I_{23} & = \mathcal{Q}_{12} \\ I_{13}I_{33} & = \mathcal{Q}_{13} \end{cases} \qquad \begin{cases} I_{22}^2 + I_{23}^2 = \mathcal{Q}_{22} \\ I_{23}I_{33} & = \mathcal{Q}_{23} \end{cases}, \qquad I_{33}^2 = \mathcal{Q}_{33} \,. \quad \text{Решив}$$

полученную систему уравнений, находим матрицу

$$L = \begin{pmatrix} 5/3 & 5i/3 & 1 \\ 0 & 3i & 3 \\ 0 & 0 & 1 \end{pmatrix}.$$
 После решения системы $L\overline{Y} = \overline{B}$, получаем $y_1 = -15/9$, $y_2 = 4i/3$, $y_3 = 1$. Решая систему уравнений $L^T\overline{X} = \overline{Y}$, получаем $\mathcal{X}_1 = -1$, $\mathcal{X}_2 = 1$, $\mathcal{X}_3 = -1$.

2.3.2 Пример. Используя разложение симметричной матрицы в произведение треугольной и транспонированной к ней, вычислить определитель матрицы A.

Решение. Det
$$A = -((5/3)*(3)*(1))^2 = -25$$
.

2.3.3 Пример. Используя разложение симметричной матрицы в произведение треугольной и транспонированной к ней, найти обратную матрицу.

Решение. После нетрудных вычислений получаем

$$L^{-1} = (L^{T})^{-1} = (L^{-1})^{T} = \begin{pmatrix} 3/5 & -1/3 & 2/5 \\ 0 & -i/3 & i \\ 0 & 0 & 1 \end{pmatrix},$$

$$A^{-1} = \begin{pmatrix} 9/25 & -1/5 & 6/25 \\ -1/5 & 0 & 1/5 \\ 6/25 & 1/5 & 4/25 \end{pmatrix}.$$

- 3. Точные методы решения задач линейной алгебры, основанные на QR разложении матрицы.
- 3.1 В методе ортогонализации сначала производится ортогонализация столбцов заданной невырожденной матрицы A методом Грамма-Шмитда. В результате получаются столбцы, образующие матрицу Q, которая удовлетворяет равенству $Q^TQ=D$, где D диагональная матрица. Элементы правой треугольной матрицы R определяются через коэффициенты перехода к новому базису при ортогонализации столбцов исходной матрицы.

При этом A=QR, $\det A=\sqrt{\det D}\cdot\det R=\sqrt{\det D}$, так как диагональные элементы матрицы R равны единице и

$$A^{-1} = R^{-1}Q^{-1} = R^{-1}D^{-1}Q^{T}$$
.

Решение системы линейных алгебраических уравнений $A\overline{X}=\overline{B}$ сводится к решению системы $R\overline{X}=Q^{-1}\overline{B}$ и последующему решению СЛАУ с треугольной матрицей.

3.1.1 Пример. Решить методом ортогонализации систему уравнений

$$\begin{cases} X_1 - X_2 + X_3 = 1 \\ X_1 + X_2 - X_3 = 1 \\ -X_1 + X_2 + X_3 = 1 \end{cases}$$

Решение. Рассмотрим столбцы матрицы системы

$$y^{(1)} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \qquad y^{(2)} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \qquad y^{(3)} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}.$$

Ортогонализуем их методом Грамма - Шмидта.

$$e^{(1)} = y^{(1)}$$

 $e^{(2)} = y^{(2)} + \beta_1^{(2)} e^{(1)}$

$$e^{(3)} = v^{(3)} + B_{5}^{(3)}e^{(1)} + B_{5}^{(3)}e^{(2)}$$

Коэффициенты преобразования получаются из условий $(e^{(1)}, e^{(2)}) = 0$, $(e^{(1)}, e^{(3)}) = 0$, $(e^{(2)}, e^{(3)}) = 0$.

Отсюда

$$\beta_1^{(2)} = \frac{1}{3}, \qquad \beta_1^{(3)} = \frac{1}{3}, \qquad \beta_2^{(3)} = \frac{1}{2}.$$

Ортогональные столбцы $e^{(1)}, e^{(2)}, e^{(3)}$ образуют матрицу

$$Q = \begin{pmatrix} 1 - 2/3 & 1 \\ 1 & 4/3 & 0 \\ -1 & 2/3 & 1 \end{pmatrix}$$
, а коэффициенты β матрицу

$$R = \begin{pmatrix} 1 - \beta_1^{(2)} - \beta_1^{(3)} \\ 0 & 1 - \beta_2^{(3)} \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 - 1/3 & -1/3 \\ 0 & 1 - 1/2 \\ 0 & 0 & 1 \end{pmatrix}.$$

В результате получаем искомое разложение матрицы A:

A = QR и СЛАУ приводится к виду $R\overline{X} = Q^{-1}\overline{B} = D^{-1}Q^T\overline{B}$, где \overline{B} - вектор — столбец свободных членов системы уравнений. Решая систему уравнений с треугольной матрицей, получаем

вектор – столбец неизвестных
$$\overline{X} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
.

3.1.2 Пример. Выполнив QR разложение матрицы A методом ортогонализации, вычислить определитель матрицы A.

Решение. $D=Q^TQ$. Диагональные элементы матрицы D получаются равными $d_{11}=3$, $d_{22}=8/3$, $d_{33}=2$,

$$\det A = \det Q \det R = \det Q = \sqrt{\det D} = 4$$
.

3.1.3 Пример. Используя полученное QR разложение матрицы A найти обратную к ней.

Решение.
$$A = QR$$
. Тогда $A^{-1} = R^{-1}Q^{-1}$.

Для вычисления матрицы Q^{-1} можно воспользоваться формулой $Q^{-1} = D^{-1}Q^T$.

$$Q^{-1} = \begin{pmatrix} 1/3 & 1/3 & -1/3 \\ -1/4 & 1/2 & 1/4 \\ 1/2 & 0 & 1/2 \end{pmatrix}$$

Для вычисления матрицы R^{-1} учтем, что $R=M_1M_2M_3$, и значит $R^{-1}=M_3^{-1}M_2^{-1}M_1^{-1}$, где

$$M_1 = \begin{pmatrix} 1 & -1/3 & -1/3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, M_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1/2 \\ 0 & 0 & 1 \end{pmatrix}, M_3 = E.$$

По формулам для элементов матриц обратных к матрицам M в этом примере получаем

$$M_1^{-1} = \begin{pmatrix} 1 & 1/3 & 1/3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad , \quad M_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 0 & 1 \end{pmatrix} \quad , \quad M_3^{-1} = E \quad \text{м}$$

$$R^{-1} = \begin{pmatrix} 1 & 1/3 & 1/2 \\ 0 & 1 & 1/2 \\ 0 & 0 & 1 \end{pmatrix} . \text{ Окончательно } A^{-1} = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \end{pmatrix}.$$

3.2 Метод вращений (Гивенса) основан на преобразовании исходной матрицы А путем последовательного умножения на матрицы вращений к треугольной матрице. Метод использует свойство матрицы вращений: если умножить матрицу вращений T_{ij}^{-1} , в которой угол α определяется формулами

$$\cos \alpha = \frac{a_{ii}}{\left(a_{ii}^2 + a_{ji}^2\right)^{1/2}}, \sin \alpha = \frac{-a_{ji}}{\left(a_{ii}^2 + a_{ji}^2\right)^{1/2}}$$
 на матрицу

A, то в результате элемент матрицы $A^{(1)} = T_{ij}^{-1}A$, стоящий на пересечении i — ой строки и j — ого столбца оказывается

равным нулю, $a_{ij}^{(1)}=0$. После умножения матрицы A последовательно на матрицы $T_{12}^{-1},T_{13}^{-1},...,T_{1n}^{-1},T_{23}^{-1},T_{24}^{-1},...,T_{2n}^{-1},...,T_{n-1,n}^{-1}$, с соответствующими углами поворотов, получим треугольную матрицу U: $T_{n-1,n}^{-1}\cdots T_{12}^{-1}A=U$. Отсюда получаем разложение матрицы A в произведение ортогональной матрицы T, получаемой как произведение матриц вращения, и верхней треугольной матрицы U.

$$A = TU$$
, где $T = T_{12} \cdots T_{n-1,n}$.

Тогда $\det A = \det T \det U = \det U, A^{-1} = U^{-1} T^T$, а система уравнений приводится к системе

 $U\!\overline{X} = T_{n-1,n}^{-1} \cdots T_{12}^{-1}\overline{B}$, которую легко решить, потому что U – треугольная матрица.

3.2.1 Пример. Решить методом вращений (Гивенса) систему уравнений

$$\begin{cases} X_1 - X_2 + X_3 = 1 \\ X_1 + X_2 - X_3 = 1 \\ -X_1 + X_2 + X_3 = 1 \end{cases}$$

Решение.

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}, \quad \overline{B} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Рассмотрим первый вектор столбец матрицы A:

 $\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$. Вычислим косинус и синус угла α - угла поворота в

плоскости первого и второго координатных векторов.

$$\cos \alpha = \frac{a_{11}}{\left(a_{11}^2 + a_{21}^2\right)^{1/2}} = \frac{1}{\sqrt{2}}, \quad \sin \alpha = \frac{-a_{21}}{\left(a_{11}^2 + a_{21}^2\right)^{1/2}} = -\frac{1}{\sqrt{2}}.$$

Таким образом,

$$T_{12}^{-1} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Умножим на матрицу T_{12}^{-1} слева уравнение $A\overline{X}=\overline{B}$, в результате получим

$$\begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & -\sqrt{2} \\ -1 & 1 & 1 \end{pmatrix} \overline{X} = \begin{pmatrix} \sqrt{2} \\ 0 \\ 1 \end{pmatrix}$$

Составляем матрицу T_{13}^{-1} . Для этого вычислим косинус и синус угла поворота в плоскости, определяемой первым и третьим координатными векторами.

$$\cos \alpha = \frac{a_{11}}{\left(a_{11}^2 + a_{31}^2\right)^{1/2}} = \sqrt{2/3}, \quad \sin \alpha = \frac{-a_{31}}{\left(a_{11}^2 + a_{31}^2\right)^{1/2}} = 1/\sqrt{3}.$$

Естественно в формулы подставлены текущие значения первого вектор столбца преобразуемой матрицы.

$$a_{11} = \sqrt{2}$$
, $a_{31} = -1$. В итоге

$$T_{13}^{-1} = \begin{pmatrix} \sqrt{2/3} & 0 & -1/\sqrt{3} \\ 0 & 1 & 0 \\ 1/\sqrt{3} & 0 & \sqrt{2/3} \end{pmatrix}$$
, и после умножения системы

уравнений слева на эту матрицу получаем:

$$\begin{pmatrix} \sqrt{3} & -1/\sqrt{3} & -1/\sqrt{3} \\ 0 & \sqrt{2} & -\sqrt{2} \\ 0 & \sqrt{2/3} & \sqrt{2/3} \end{pmatrix} \overline{X} = \begin{pmatrix} 1/\sqrt{3} \\ 0 \\ 2\sqrt{2/3} \end{pmatrix}$$

Аналогично, выбрав второй вектор – столбец преобразуемой матрицы $\begin{pmatrix} -1/\sqrt{3} \\ \sqrt{2} \\ \sqrt{2/3} \end{pmatrix}$, вычислив косинус и синус

угла поворота в плоскости второго и третьего координатного

вектора, получаем матрицу
$$T_{23}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{3}/2 & 1/2 \\ 0 & -1/2 & \sqrt{3}/2 \end{pmatrix}$$
 и, умножая

преобразуемую систему уравнений слева на эту матрицу, получим систему уравнений с треугольной матрицей U

$$\begin{pmatrix} \sqrt{3} & -1/\sqrt{3} & -1/\sqrt{3} \\ 0 & 2 & \sqrt{2/3} & -\sqrt{2/3} \\ 0 & 0 & \sqrt{2} \end{pmatrix} \overline{X} = \begin{pmatrix} 1/\sqrt{3} \\ \sqrt{2/3} \\ \sqrt{2} \end{pmatrix}, \text{ решение которой } \overline{X} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

3.2.2 Пример. Вычислить определитель матрицы A, получив ее QR разложение методом вращений.

Решение. Используя результаты решения предыдущего примера, получаем $A = T_{12}T_{13}T_{23}U = TU$, причем $T_{ii}^{-1} = T^T$. Но тогда $\det A = \det T \det U = \det U = 4$.

3.2.3 Пример. Выполнив QR разложение матрицы Aметодом вращений найти матрицу обратную для матрицы A.

Решение. $A^{-1} = U^{-1}T^{-1} = U^{-1}T_{23}^{-1}T_{13}^{-1}T_{12}^{-1}$. Матрицу можно найти, например, используя разложение матрицы U в произведение M – матриц. $U = M_1 M_2 M_3$, $U^{-1} = M_3^{-1} M_2^{-1} M_1^{-1}$,

где
$$M_1 = \begin{pmatrix} \sqrt{3} & -1/\sqrt{3} & -1/\sqrt{3} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $M_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2\sqrt{2/3} & -\sqrt{2/3} \\ 0 & 0 & 1 \end{pmatrix}$,

$$M_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}. \qquad \text{Отсюда} \qquad M_1^{-1} = \begin{pmatrix} 1/\sqrt{3} & 1/3 & 1/3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$M_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{6}/4 & 1/2 \\ 0 & 0 & 1 \end{pmatrix}, \quad M_3^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/\sqrt{2} \end{pmatrix}.$$

$$U^{-1} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{2\sqrt{6}} & \frac{1}{2\sqrt{2}} \\ 0 & \frac{\sqrt{3}}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \qquad \text{M}$$

$$A^{-1} = U^{-1}T_{12}^{-1}T_{13}^{-1}T_{23}^{-1} = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \end{pmatrix}.$$

3.3 Метод отражений (Хаусхолдера). Метод отражений решения основных задач линейной алгебры основан на преобразовании исходной матрицы к треугольному виду с помощью последовательного умножения исходной матрицы на обобщенные матрицы отражений. Элементы матриц отражения вычисляются на основании свойства: всегда можно найти такую плоскость, что вектор (столбец) отраженный относительно нее переходит в вектор (столбец) коллинеарный заданному вектору (столбцу), например координатному.

Матрица отражений задается формулой $V=E-2\Omega$, где элементы матрицы Ω определяются выражением: $(\Omega)_{ij}=\overline{\omega}_i\overline{\omega}_j$. Вектор $\overline{\omega}$ - единичная нормаль к гиперплоскости, относительно которой проводится отражение. Если требуется преобразовать вектор (столбец) \overline{b}

с помощью отражения относительно некоторой гиперплоскости в вектор (столбец) коллинеарный вектору \overline{c} , единичная нормаль $\overline{\omega}$ задается формулой: $\overline{\omega} = \frac{\overline{b} - \alpha \overline{c}}{\sqrt{2\overline{b}\,(\overline{b} - \alpha \overline{c})}}$.

Коэффициент $\alpha = \frac{|\overline{b}|}{|\overline{c}|}$. В методе отражений в качестве

вектора \overline{c} выбирается координатный единичный вектор в подпространстве размерности (n-i+1), а в качестве вектора \overline{b} - вектор, принадлежащий этому подпространству и имеющий координаты, которые совпадают с соответствующими элементами i-го столбца преобразуемой матрицы на главной диагонали и под ней. После этого строится матрица отражений с нормалью $\overline{\omega}$, определенной по вышеприведенной формуле, и обобщенная матрица отражений U_i^{-1} , которая имеет структуру:

$$U_i^{-1} = egin{pmatrix} E & O \\ O & E - 2 \Omega \end{pmatrix}$$
 . Тогда матрица $A_{\rm l} = U_i^{-1} A$ будет

иметь элементы i—го столбца, стоящие под главной диагональю равные нулю. В результате, выполняя последовательное умножение преобразуемой матрицы на матрицы $U_1^{-1},\,U_2^{-1},\,\cdots\,U_{n-1}^{-1}$, получаем правую треугольную матрицу $R=U_{n-1}^{-1},\,U_{n-2}^{-1},\,\cdots\,U_1^{-1}A$, а также разложение исходной матрицы A в произведение ортогональной и треугольной A=QR, где $Q=U_1U_2\cdots U_{n-1}$. Конечно, любая ортогональная симметричная матрица имеет обратную, совпадающую с ней самой.

Отсюда, система линейных алгебраических уравнений $A\overline{X} = \overline{B}$ приводится к виду $R\overline{X} = U_{n-1}^{-1} \cdots U_1^{-1} \overline{B}$ и далее решается методом подстановки, потому, что R – треугольная

матрица. Так как определитель матрицы отражений равен -1, то

$$\det A = (-1)^{n-1} \det R \quad \text{if } A^{-1} = R^{-1} U_{n-1}^{-1} \cdots U_1^{-1}.$$

3.3.1 Пример. Решить СЛАУ методом отражений.

$$\begin{cases} \mathcal{X}_{1} + \mathcal{X}_{2} + \mathcal{X}_{3} &= 1 \\ -2\mathcal{X}_{1} - \mathcal{X}_{2} + \mathcal{X}_{3} &= -1 \\ 2\mathcal{X}_{1} + 2\mathcal{X}_{2} - \mathcal{X}_{3} &= 2 \end{cases}$$

Решение. Рассмотрим первый вектор (столбец) матрицы системы $\begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$. Найдем нормаль к такой гиперплоскости, что

отражение относительно нее преобразует первый вектор (столбец) в вектор (столбец), коллинеарный координатному

вектору
$$\bar{e} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
.

Используя приведенные выше формулы, получаем

$$\overline{b} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}, \quad \overline{c} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad |\overline{b}| = 3, \quad |\overline{c}| = 1, \quad \alpha = 3,
\overline{b} - \alpha \overline{c} = \begin{pmatrix} -2 \\ -2 \\ 2 \end{pmatrix}, \quad (\overline{b}(\overline{b} - \alpha \overline{c})) = 6,
\overline{\omega} = \begin{pmatrix} -0.577 \\ -0.577 \\ 0.577 \end{pmatrix}, \qquad \Omega = \begin{pmatrix} 0.333 & 0.333 - 0.333 \\ 0.333 & 0.333 - 0.333 \\ -0.333 & -0.333 \\ -0.333 & -0.333 & 0.333 \end{pmatrix},
E - 2\Omega = U_1^{-1} = \begin{pmatrix} 0.333 - 0.667 & 0.667 \\ -0.667 & 0.333 & 0.667 \\ 0.667 & 0.667 & 0.333 \end{pmatrix}.$$

Умножаем матрицу системы и столбец свободных членов на U_1^{-1} :

$$U_1^{-1}A = \begin{pmatrix} 3 & 2,333 & -1 \\ 0 & 0,333 & -1 \\ 0 & 0,667 & 1 \end{pmatrix}, \ U_1^{-1}\overline{B} = \begin{pmatrix} 2,333 \\ 0,333 \\ 0,667 \end{pmatrix}.$$

Приступаем ко второму этапу разложения матрицы A. С этой целью в двумерном подпространстве рассматриваем вектор, координаты которого равны второму и третьему элементу во втором столбце матрицы $U_i^{-1}A$. Строим обобщенную матрицу отражений, такую, что выбранный вектор преобразуется в координатный вектор.

$$\begin{split} \overline{b} &= \begin{pmatrix} 0{,}333 \\ 0{,}667 \end{pmatrix}, \ \overline{c} &= \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ |\overline{b}| = 0{,}745, \ |\overline{c}| = 1, \ \alpha = 0{,}745, \\ (\overline{b} - \alpha \overline{c}) &= \begin{pmatrix} -0{,}412 \\ 0{,}667 \end{pmatrix}, \quad (\overline{b}(\overline{b} - \alpha \overline{c})) = 0{,}308, \\ \overline{\omega} &= \begin{pmatrix} -0{,}525 \\ 0{,}850 \end{pmatrix}, \qquad \Omega = \begin{pmatrix} 0{,}276 & -0{,}446 \\ -0{,}446 & 0{,}722 \end{pmatrix}, \\ E - 2\Omega &= \begin{pmatrix} 0{,}448 & 0{,}892 \\ 0{,}892 & -0{,}448 \end{pmatrix}, \qquad U_2^{-1} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0{,}448 & 0{,}892 \\ 0 & 0{,}892 & -0{,}448 \end{pmatrix}, \\ U_2^{-1}U_1^{-1}A &= \begin{pmatrix} 3 & 2{,}333 & -1 \\ 0 & 0{,}744 & 0{,}444 \\ 0 & 0 & -1{,}336 \end{pmatrix}, \\ U_2^{-1}U_1^{-1}\overline{B} &= \begin{pmatrix} 2{,}333 \\ 0{,}743 \\ 0 \end{pmatrix}. \ \text{Отсюда} \qquad \textbf{\textit{X}}_3 = 0{,}\textbf{\textit{X}}_2 = 1{,}\textbf{\textit{X}}_1 = 0 \,. \end{split}$$

3.3.2 Пример. Вычислить определитель матрицы $A = \begin{pmatrix} 1 & 1 & 1 \\ -2 & -1 & 1 \\ 2 & 2 & 1 \end{pmatrix}.$

Решение. Как результат вычислений в предыдущем примере имеем

$$R = U_2^{-1}U_1^{-1}A$$
, $A = U_1U_2R$,
 $\det A = (-1)^2 \det R \approx -2,982 = -3$.

3.3.3 Пример. Вычислить элементы обратной матрицы A^{-1} для матрицы A.

Решение. Так как

 $R = U_2^{-1}U_1^{-1}A$, $A = U_1U_2R$, то $A^{-1} = R^{-1}U_2^{-1}U_1^{-1}$. Определим элементы матрицы R^{-1} .

$$R = \begin{pmatrix} 3 & 2,333 & -1 \\ 0 & 0,744 & 0,444 \\ 0 & 0 & -1,336 \end{pmatrix} = M_3 M_2 M_1$$
, где $M_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1,336 \end{pmatrix}$, $M_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0,744 & 0,444 \\ 0 & 0 & 1 \end{pmatrix}$, $M_1 = \begin{pmatrix} 3 & 2,333 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. По формулам (п.п. 1.1) получаем $M_3^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -0,748 \end{pmatrix}$, $M_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1,344 & -0,597 \\ 0 & 0 & 1 \end{pmatrix}$, $M_1^{-1} = \begin{pmatrix} 0,333 & -0,778 & 0,333 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,

$$R^{-1} = M_1^{-1} M_2^{-1} M_3^{-1} = \begin{pmatrix} 0.333 - 1.046 - 0.596 \\ 0 & 1.344 & 0.447 \\ 0 & 0 - 0.748 \end{pmatrix}.$$

Окончательно,
$$A^{-1} = R^{-1}U_2^{-1}U_1^{-1} = \begin{pmatrix} 0.333 - 0.667 & 0.667 \\ -0.667 & 0.333 & 0.667 \\ 0.667 & 0.667 & 0.333 \end{pmatrix}$$
.

4. Задание для типового расчета по дисциплине "Численные методы линейной алгебры"

По заданной матрице A и столбцу свободных членов \overline{B} найти

- 1. Определитель матрицы А
- 2. Обратную матрицу
- 3. Решение системы линейных алгебраических уравнений $A\overline{X}=\overline{B}$.

При выполнении задания для вариантов 1.1 — 1.20 использовать:

- 1. LU разложение методом Гаусса.
- 2. NPU разложение методом Гаусса с выбором главного элемента.
 - 3. QR разложение методом ортогонализации.
 - 4. QR разложение методом отражений.

Примечание: выполнять пункты 1-3, используя обыкновенные дроби. При выполнении пункта 4 возможно использование десятичных дробей с тремя знаками после запятой.

При выполнении задания для вариантов 2.1 – 2.20 использовать:

- 1. LU разложение методом квадратного корня.
- 2. QR разложение методом вращений.

Примечание: выполнять пункты 1-2, используя обыкновенные дроби.

ВАРИАНТЫ

5. Ответы: решение систем линейных алгебраических уравнений.

- **1.1.** (1,1,1) **1.2.** (1,-1,2) **1.3.** (1,1,0) **1.4.** (1,1,0) **1.5.** (1,1,0) **1.6.** (1,0,-1) **1.7.** (1,-1,2) **1.8.** (-1,-1,1) **1.9**. (-1,-1,1) **1.10.** (1,1,1) **1.11.** (-1,-1,1) **1.12.** (1,1,1) **1.13.** (1,5,0) 1.14. (5,1,-1) **1.15.** (1,-1,5) **1.16.** (4,2,-3) **1.17.** (0,-2,3) 1.18. (3,3,2) 1.19. (3,-4,2)
- **2.1.** (0,0,-5) **2.2.** (1,1,0) **2.3.** (2,0,-1) **2.4.** (1,1,0) **2.5.** (-1,-1,1) **2.6.** (1,1,1) **2.7.** (1,1,0) **2.8.** (0,0,-1) **2.9.** (6,7,1) **2.10.** (7,6,1) **2.11.** (0,1,1) **2.12.** (1,1,1) **2.13.** (1,5,0) **2.14.** (5,1,-1) **2.15.** (1,-1,5) **2.16.** (4,2,-3) **2.17.** (0,-2,3) **2.18.** (3,3,2) **2.20.** (2,4,-3)

Литература

- **1.** Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. М., Наука, 1984.
- **2.** Воеводин В.В. Вычислительные основы линейной алгебры. М., Наука, 1977.
 - 3. Бахвалов Н.С. Численные методы. М., Наука, 1987.
- **4.** Самарский А.А. Введение в численные методы. М., Наука, 1987.

C	T	p	١,

1. Особенности решения задач для некоторых матриц
специального вида
2. Точные методы решения задач линейной алгебры,
основанные на LU разложении матрицы9
3. Точные методы решения задач линейной алгебры,
основанные на QR разложении матрицы18
4. Задание для типового расчета по дисциплине "Численные методы линейной алгебры"
5. Ответы
б. Литература

Учебно-методическое издание

Власов Юрий Павлович, Посвянский Владимир Павлович

Методические указания к практическим занятиям и самостоятельной работе по дисциплине «Численные методы»

раздел «Линейная алгебра»

Сдано в печать - 23.10.02. Тираж - 100. Усл. печ. л. -2,25. Формат - 60×84/16 Цена - 15 руб. 00х. Изд. № 327-02. Заказ - 1103.

> 127994, Москва, ул. Образцова, 15 Типография МИИТа

Цена - 15руб. 00 коп (по себестоимости)