

Term Frequency - Inverse Document Frequency (tf-idf)

Product of Term Frequency (tf) and Inverse Document Frequency (idf)

$$W_{t,d} = [1 + log_{10}(tf_{t,d})] \times [log_{10}(N/df_t)]$$

Term Frequency - Inverse Document Frequency (tf-idf)

Query (q): book of Analytics

Doc 1 (d1): This book is of Analytics

Doc 2 (d2): Big-Data Analytics is the process of examining large volume of data

Term	d1(tf-idf)	d2(tf-idf)
Analytics	0	0
Big-Data	0	0.3
book	0.3	0
data	0	0.3
examining	0	0.3
is	0	0
large	0	0.3
of	0	0
process	0	0.3
the	0	0.3
this	0.3	0
volume	0	0.3

Term Frequency - Inverse Document Frequency (tf-idf)

Query (q): book of Analytics

Doc 1 (d1): This book is of Analytics

Doc 2 (d2): Big-Data Analytics is the process of examining large volume of data

Term	d1(tf-idf)	d2(tf-idf)
Analytics	0	0
Big-Data	0	0.3
book	0.3	0
data	0	0.3
examining	0	0.3
is	0	0
large	0	0.3
of	0	0
process	0	0.3
the	0	0.3
this	0.3	0
volume	0	0.3

Each document is represented as a vector

Term	d1(tf-idf)	d2(tf-idf)
Analytics	0	0
Big-Data	0	0.3
book	0.3	0
data	0	0.3
examining	0	0.3
is	0	0
large	0	0.3
of	0	0
process	0	0.3
the	0	0.3
this	0.3	0
volume	0	0.3

- Each document is represented as a vector
- Dimension of vector space: |V|

Term	d1(tf-idf)	d2(tf-idf)
Analytics	0	0
Big-Data	0	0.3
book	0.3	0
data	0	0.3
examining	0	0.3
is	0	0
large	0	0.3
of	0	0
process	0	0.3
the	0	0.3
this	0.3	0
volume	0	0.3

- Each document is represented as a vector
- Dimension of vector space: |V|
- Terms are the axes

Term	d1(tf-idf)	d2(tf-idf)
Analytics	0	0
Big-Data	0	0.3
book	0.3	0
data	0	0.3
examining	0	0.3
is	0	0
large	0	0.3
of	0	0
process	0	0.3
the	0	0.3
this	0.3	0
volume	0	0.3

- Each document is represented as a vector
- Dimension of vector space: |V|
- Terms are the axes
- Convert the queries into vectors

- Each document is represented as a vector
- Dimension of vector space: |V|
- Terms are the axes
- Convert the queries into vectors
- Rank the documents based on their proximity to the query in vector space

- Each document is represented as a vector
- Dimension of vector space: |V|
- Terms are the axes
- Convert the queries into vectors
- Rank the documents based on their proximity to the query in vector space

Proximity = Similarity

- Each document is represented as a vector
- Dimension of vector space: |V|
- Terms are the axes
- Convert the queries into vectors
- Rank the documents based on their proximity to the query in vector space

Proximity = Similarity = Inverse of the distance

Rank based on the angle

Rank based on the angle ______

Rank based V_2 on the angle

Sine Cosine

Cosine Similarity

Cosine Similarity

$$a \cdot b = |a||b| \cos \theta$$

Cosine Similarity

$$a \cdot b = |a||b| \cos \theta$$

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

Cosine Similarity for vector space model

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot d}{|\vec{q}| |\vec{d}|}$$

Cosine Similarity for vector space model

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

Cosine Similarity for vector space model

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

q_i is the weight of ith term in the query

Cosine Similarity for vector space model

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i is the weight of ith term in the query
- d_i is the weight of ith term in the document

Cosine Similarity for vector space model

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i is the weight of ith term in the query
- d_i is the weight of ith term in the document
- |V| is the vocabulary size

Represent query and each document as a weighted vector

- Represent query and each document as a weighted vector
- Calculate the cosine similarity for query and each document

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- Represent query and each document as a weighted vector
- Calculate the cosine similarity for query and each document
- Rank documents with respect to query (higher the cosine similarity score, lesser the angle and more the similarity)

- Represent query and each document as a weighted vector
- Calculate the cosine similarity for query and each document
- Rank documents with respect to query (higher the cosine similarity score, lesser the angle and more the similarity)
- Return top K documents

Thank You

