Amendments to the Claims:

The following listing of claims replaces all prior versions and listing of claims in the above-identified application.

Listing of Claims:

Claim 1. (Currently Amended) A compound of formula (I)

the *N*-oxides, the pharmaceutically acceptable acid addition salts and the stereochemically isomeric forms thereof, wherein the dotted line is an optional bond and is absent when X^2 represents nitrogen; the radical $-Y^1-Y^2$ - is a radical of formula

wherein in the bivalent radicals of formula (a-1) or (a-2) the hydrogen atom may optionally be replaced by C_{1-6} alkyl or phenyl; or in the bivalent radicals of formula (a-3) or (a-4) one or two hydrogen atoms may optionally be replaced by C_{1-6} alkyl or phenyl;

X¹ is carbon or nitrogen;

at least one of X^2 or X^3 X^2 represents CH and X^3 represents nitrogen; or X^2 represents nitrogen and the other X^2 or X^3 represents CH or carbon when the dotted line represents a bond, or both X^3 represents CH; or X^2 and X^3 represent nitrogen; R^1 is C_{1-6} alkyl;

aryl¹;

Serial No.: 10/589,515 $C_{1\text{-}6} \text{alkyl substituted with hydroxy, } C_{3\text{-}6} \text{cycloalkyl, aryl}^1 \text{ or naphthalenyl;} \\ C_{3\text{-}6} \text{cycloalkyl;} \\ C_{3\text{-}6} \text{cycloalkenyl;} \\ C_{3\text{-}6} \text{alkenyl;} \\ C_{3\text{-}6} \text{alkenyl substituted with aryl}^1;}$

C₃₋₆alkynyl substituted with aryl⁴;

 C_{1-4} alkyloxy C_{1-4} alkanediyl optionally substituted with aryl¹; or when $-Y^1-Y^2$ - is a radical of formula (a-1) than R^1 may be taken together with Y^2 to form a radical of formula -CH=CH-CH=CH- wherein each hydrogen may optionally be replaced by a substituent independently selected from C_{1-4} alkyl, C_{1-4} alkyloxy, polyhalo C_{1-4} alkyl, halo, cyano, trifluoromethyl or aryl¹; wherein aryl¹ is phenyl; or phenyl substituted with from one or five two substituents each independently selected from C_{1-4} alkyl, C_{1-4} alkyl, halo, cyano, or trifluoromethyl;

R² is hydrogen, C₁₋₄alkyl, or halo;

A is C₁₋₆alkanediyl;

C₃₋₆alkynyl;

 C_{1-6} alkanediyl substituted with one or two groups selected from aryl 2 , and heteroaryl 1 and C_{3-8} cycloalkyl;

or provided X³ represents CH said radical A may also represent NH optionally substituted with aryl², heteroaryl¹ or C₃₋₈cycloalkyl;

wherein aryl² is phenyl; or phenyl substituted with from one to five substituents each independently selected from C₁₋₄alkyl, C₁₋₄alkyloxy, halo, cyano or trifluoromethyl;

heteroaryl¹ is furanyl, thienyl, pyridinyl, pyrazinyl, pyrimidinyl, or pyridazinyl; and said heteroaryl¹ is optionally substituted with one or two substituents each independently selected from C_{1-4} alkyl ,or halo; and wherein heteroaryl¹ is thienyl or pyridinyl; $-C_{1-4}$ alkyloxy, halo, cyano or trifluoromethyl;

B is NR^3R^4 ; or OR^9 :

```
Serial No.: 10/589,515
          wherein each R<sup>3</sup> and R<sup>4</sup> are independently selected from
                  hydrogen,
                  C<sub>1-8</sub>alkyl,
                  C<sub>1-8</sub>alkyl substituted with one or two, two or three substituents each
                                 independently from one another selected from hydroxy, halo,
                                 cyano, C<sub>1-4</sub>alkyloxy, C<sub>1-4</sub>alkyloxycarbonyl, <del>C<sub>3-8</sub>cycloalkyl,</del>
                                 polyhaloC<sub>1-4</sub>alkyl, NR<sup>5</sup>R<sup>6</sup>, <del>CONR<sup>7</sup>R<sup>8</sup>, aryl<sup>3</sup>, polycyclic aryl, or</del>
                                 heteroaryl<sup>2</sup>;
                  C<sub>3-8</sub>cycloalkyl;
                  C<sub>3-8</sub>cycloalkenyl;
                  C<sub>3-8</sub>alkenyl;
                  C<sub>3-8</sub>alkynyl;
                  aryl<sup>3</sup>;
                  polycyclic aryl;
                  heteroaryl<sup>2</sup>; or
                  R<sup>3</sup> and R<sup>4</sup> combined with the nitrogen atom bearing R<sup>3</sup> and R<sup>4</sup> may form
                      a an azetidinyl, pyrrolidinyl, piperidinyl, morpholinyl, azepanyl, or
                      azocanyl ring wherein each of these rings may optionally be
                      substituted by C<sub>1-4</sub>alkyloxycarbonyl, C<sub>1-4</sub>alkyloxycarbonylC<sub>1-4</sub>alkyl,
                      carbonylamino, C<sub>1-4</sub>alkylcarbonylamino, CONR<sup>7</sup>R<sup>8</sup> or C<sub>1-</sub>
                      4alkylCONR<sup>7</sup>R<sup>8</sup>;
                  wherein
                  R<sup>5</sup> is hydrogen, C<sub>1-4</sub>alkyl, <u>or aryl<sup>3</sup>, polycyclic aryl</u>, or heteroaryl<sup>2</sup>;
                  R<sup>6</sup> is hydrogen or C<sub>1-4</sub>alkyl;
                  R<sup>7</sup> is hydrogen, C<sub>1-4</sub>alkyl or phenyl;
                  R<sup>8</sup> is hydrogen, C<sub>1-4</sub>alkyl or phenyl; or
                  R<sup>9</sup> is C<sub>1-6</sub>alkyl, or C<sub>1-6</sub>alkyl substituted with one, two or three substituents
                      each independently from one another selected from hydroxy, halo,
                      cyano, C<sub>1-4</sub>alkyloxy, C<sub>1-4</sub>alkyloxycarbonyl, C<sub>3-8</sub>cycloalkyl, C<sub>3-8</sub>
                      <sub>8</sub>cycloalkenyl, trifluoromethyl, NR<sup>5</sup>R<sup>6</sup>, CONR<sup>7</sup>R<sup>8</sup>, aryl<sup>3</sup>, polycyclic aryl,
```

or heteroaryl²;

wherein

aryl³ is phenyl; phenyl substituted with one to five three substituents each independently selected from C₁₋₄alkyl, C₁₋₄alkyloxy, halo, hydroxy, trifluoromethyl, cyano, C₁₋₄alkyloxycarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkyloxycarbonyl, methylsulfonyl, or NR⁵R⁶, C₁₋₄alkylNR⁵R⁶, CONR⁷R⁸ or C₁₋₄alkylCONR⁷R⁸;

polycyclic aryl is naphthalenyl, indanyl, <u>or</u> fluorenyl, er

1,2,3,4-tetrahydronaphtalenyl, and said polycyclic aryl is
optionally substituted with one or two substituents
each substituent independently selected from C₁₋₆alkyl, C₁₋₆alkyloxy, phenyl, halo, cyano, C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkyloxycarbonylC₁₋₄alkyl, NR⁵R⁶, C₁₋₄alkyloxycarbonylC₁₋₄alkyl, NR⁵R⁶, C₁₋₄alkyl-oxycarbonylamino and

heteroaryl² is pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, triazolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, pyrrolyl, furanyl, thienyl; quinolinyl; isoquinolinyl; 1,2,3,4-tetrahydro-isoquinolinyl; benzothiazolyl; benzo[1,3]dioxolyl; 2,3-dihydro-benzo[1,4]dioxinyl; indolyl; 2,3-dihydro-1H-indolyl; 1H-benzoimidazolyl; and said heteroaryl² is optionally substituted with one or two substituents each independently selected from C₁₋₆alkyl, C₄₋₆alkyloxy, phenyl, halo, cyano, C₁₋₄alkylcarbonyl, C₁₋₄alkyloxy-carbonyl, or C₁₋₄alkyloxycarbonylC₁₋₄alkyl, NR⁵R⁶, C₄₋₄alkylNR⁵R⁶, CONR⁷R⁸ or C₄₋₄alkylCONR⁷R⁸.

- Claim 2. (Original) A compound as claimed in claim 1 wherein X^2 represents nitrogen and X^3 represents CH.
- Claim 3. (Original) A compound as claimed in claim 1 wherein X^2 represents CH and X^3 represents nitrogen.
- Claim 4. (Original) A compound as claimed in claim 1 wherein both X^2 and X^3 represent nitrogen.

Claim 5. (Previously Presented) A compound as claimed in claim 1 wherein radical A represents C₁₋₆alkanediyl substituted with aryl².

- Claim 6. (Previously Presented) A compound as claimed in claim 1 wherein radical B represents OR^9 wherein R^9 is C_{1-6} alkyl or NR^3R^4 wherein R^3 is hydrogen.
- Claim 7. (Previously Presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically active amount of a compound as claimed in claim 1.
- Claim 8. (Currently Amended) A process for preparing a pharmaceutical composition comprising as claimed in claim 7 wherein a therapeutically active amount of a compound as claimed in claim 1 is intimately mixing ed a therapeutically active amount of a compound of claim 1 with a pharmaceutically acceptable carrier.

Claim 9. (Cancelled)

Claim 10. (Currently Amended) A process for preparing a compound of formula (I) of claim 1 wherein an intermediate of formula (II), wherein X¹, X², X³, R², A, and B are as defined

in claim 1 and Q is selected from bromo, iodo and trifluoromethylsulfonate, wherein Y¹, Y² and R¹ are defined as in claim 1, is reacted with an intermediate of formula (III), wherein Y¹, Y² and R¹ are defined as in claim 1, wherein X¹, X², X³, R², A, and B are as defined in claim 1 and Q is selected from bromo, iodo and trifluoromethylsulfonate, in a reaction-inert solvent and optionally in the presence of at least one transition metal coupling reagent and/or at least one suitable catalyst such as palladium associated with triphenylphosphine, or triphenylarsine; or to prepare a compound of formula (I) as follows:

Claim 11. (Currently Amended) A compound of formula (IX)

HO-C-A-X³

$$X^2$$
 X^2
 X^1
 X^2
 X^2
 X^3
 X^4
 X^4

the *N*-oxides, the pharmaceutically acceptable acid addition salts and the stereochemically isomeric forms thereof, wherein R^4 , R^2 , X^4 , X^2 , X^3 , Y^4 , Y^2 and A are as defined in claim 1.

the dotted line is an optional bond and is absent when X² represents nitrogen; the radical -Y¹-Y²- is a radical of formula

-N=CH-	<u>(a-1),</u>
-CH=N-	(a-2),
-CH2-CH2-	(a-3),
-CH=CH-	(a-4),

wherein in the bivalent radicals of formula (a-1) or (a-2) the hydrogen atom may optionally be replaced by C₁₋₆alkyl or phenyl;

X¹ is carbon or nitrogen;

 X^2 presents CH and X^3 represents nitrogen; or X^2 represents nitrogen and X^3 represents CH; or X^2 and X^3 represent nitrogen;

 R^1 is C_{1-6} alkyl;

aryl¹;

C₁₋₆alkyl substituted with hydroxy, C₃₋₆cycloalkyl, aryl¹ or naphthalenyl; C₃₋₆alkenyl;

C₃₋₆alkenyl substituted with aryl¹;

C₁₋₄alkyloxyC₁₋₄alkanediyl optionally substituted with aryl¹;

or when -Y¹-Y²- is a radical of formula (a-1) than R¹ may be taken together with Y² to form a radical of formula -CH=CH-CH=CH- wherein each hydrogen may optionally be replaced by a substituent independently selected from C_{1-4} 4alkyl, C_{1-4} alkyloxy, trifluoromethyl or aryl¹;

wherein aryl¹ is phenyl; or phenyl substituted with from one or two substituents each independently selected from C₁₋₄alkyl, C₁₋₄alkyloxy, halo, or trifluoromethyl;

R² is hydrogen, C₁₋₄alkyl, or halo;

A is C₁₋₆alkanediyl;

C₁₋₆alkanediyl substituted with one or two groups selected from aryl² and heteroaryl¹;

whereinaryl² is phenyl; or phenyl substituted with from one or two substituents each independently selected from C₁₋₄alkyl or halo; heteroaryl¹ is thienyl or pyridinyl.

Claim 12. (Previously Presented) The process according to claim 10, further comprising converting the compound of formula (I) into an acid addition salt.

Claim 13. (Currently Amended) A method of treating a warm-blooded animal suffering from a disorder selected from the group consisting of atherosclerosis, pancreatitis, obesity, hypertriglyceridemia, hypercholesterolemia, hyperlipidemia, diabetes and type II diabetes, caused by an excess of very low density lipoproteins (VLDL) or low density lipoproteins (LDL) comprising administering to the animal a therapeutically effective amount of a compound of claim 1.

Claim 14. (Cancelled)

Claim 15. (Currently Amended) The method of treatment according to claim <u>1312</u> wherein the disorder is hyperlipidemia, obesity, atherosclerosis or type II diabetes.