Introduction to probability - MA2110

Amit Tripathi

Indian Institute of Technology, Hyderabad

July 29, 2019

References

Some references for this course:

- A First Course in Probability Sheldon Ross.
- Introductory Probability and Statistical Applications Paul Meyer.
- Elementary Probability Theory Chung.

Marking etc

- Weekly take home quizzes $4 \times 5\% = 20\%$.
- One class test 10%.
- Final exam 70%.
- Test and Exam will have subjective type questions. Quizzes will be objective type.
- Email: amittr@iith.ac.in

Final exam and Test dates

- Final exam is on 31st August (Saturday) from 14:00 16:00.
- Test is on 14th August during class time.

Why is probability theory important?

In mathematics, probability theory is useful to solve (otherwise intractable) problems in

- Number theory,
- 2 Combinatorics,
- Graph Theory and
- Statistics etc

Outside mathematics, it has applications in

- Weather predictions.
- Machine learning.
- Risk assessment in business.
- Insurance sector.
- Stock Market etc

Probability applied to study prime numbers

Question

Give an arithmetic progression of length 3 consisting entirely of prime numbers?

Question

Give an arithmetic progression of length 5 consisting entirely of prime numbers?

What about length $6,7,\cdots$? Best bound using computers is k=26:

$$43, 142, 746, 595, 714, 191 + 23, 681, 770 \cdot 223, 092, 870 \cdot n$$

For $n = 0, 1, \dots, 25$.

Probability applied to study prime numbers

Question

Given any k, can we always find an arithmetic progression of length k consisting entirely of prime numbers?

Theorem of Ben Green and Terence Tao - Yes!

Proof uses probability theory in a non-trivial manner.

Experiment

Definition

An experiment or trial is a procedure which can be repeated as often as we like and its set of possible outcomes are known in advance.

- Outcome of a toss.
- 2 Runs scored in a given cricket match.
- Temperature at some place on a given day.
- Price of a commodity on a given day.

Sample Space

Definition

The set of all possible outcomes of an experiment is called the **sample space** and is denoted usually by S or Ω .

There may be more than one sample space associated with an experiment. Suppose we toss a coin twice:

- If we are interested in the outcome of two tosses then the sample space is $S = \{HH, TH, HT, TT\}$.
- ② If we are interested in the number of heads in two tosses then the sample space is $S = \{0, 1, 2\}$.

Example

Suppose a dice is thrown n times, then one possible sample space is

$$S = \{1, 2, 3, 4, 5, 6\}^n$$

Event

Definition

An event E is any subset of S i.e. $E \subseteq S$.

- **1** Two events E, F are **disjoint** or **mutually exclusive** if $E \cap F = \emptyset$.
- ② A collection of events $\{E_1, \ldots\}$ is **exhaustive** if $\bigcup_i E_i = S$.

Question

What is the difference between an outcome and an event?

Events

Notation:

- **1** The **complement of** E is written as E^c .
- ② Given events E, F, the **union of** E and F is the event $E \cup F$.
- **3** Given events E, F, the **intersection of** E, F is the event $E \cap F$ (usually written as EF).

Events

Example

 Suppose we toss a coin thrice. Set of all possible outcomes (sample space) is

$$S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.$$

- Any point in this space is an outcome e.g. HHH is one possible outcome.
- **③** The event E that "at least two heads appear" is $E = \{HHH, HHT, HTH, THH\}$. Similarly the event that "at least two tails appear" is $F = \{HTT, THT, TTH, TTT\}$.
- Clearly E and F are mutually exclusive or disjoint.
- **3** Also $\{E, F\}$ are **exhaustive**.

[Kolmogorov (1933)] - Let S be the sample space for an experiment. We say that P describes a probability on S, if for any event $E \subseteq S$ there exists a number P(E) satisfying following axioms:

- $P(E) \ge 0$ for all $E \subseteq S$.
- **2** P(S) = 1.
- **3** Let $E_j \subseteq S, j = 1, \ldots$, be a disjoint set of events i.e. $E_j \cap E_k = \emptyset$ when $j \neq k$. Then

$$P(\cup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} P(E_j)$$

The number P(E) is called the **probability of the event** E.

- $P(E) \ge 0 \text{ for all } E \subseteq S.$
- **2** P(S) = 1.
- **3** Let $E_j \subseteq S, j = 1, \ldots$, be a disjoint set of events i.e. $E_j \cap E_k = \emptyset$ when $j \neq k$. Then

$$P(\cup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} P(E_j)$$

Question

What is $P(\emptyset)$? Show that $P(E) \le 1$ for all events. Show that $P(E^c) = 1 - P(E)$.

- $P(E) \ge 0 \text{ for all } E \subseteq S.$
- **2** P(S) = 1.
- **3** Let $E_j \subseteq S, j = 1, \ldots$, be a disjoint set of events i.e. $E_j \cap E_k = \emptyset$ when $j \neq k$. Then

$$P(\cup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} P(E_j)$$

Question

- **1** If $E \subseteq F$ then show that $P(E) \le P(F)$.
- ② For any two events, show that $P(E \cup F) = P(E) + P(F) P(E \cap F)$.

- $P(E) \ge 0 \text{ for all } E \subseteq S.$
- **2** P(S) = 1.
- **3** Let $E_j \subseteq S, j = 1, \ldots$, be a disjoint set of events i.e. $E_j \cap E_k = \emptyset$ when $j \neq k$. Then

$$P(\cup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} P(E_j)$$

Question

Suppose the experiment consists of choosing a real number uniformly from the interval (0,1). What is the probability that a rational number is picked?

Axioms of probability - example

Example

We toss a fair coin twice. Sample space is

$$S = \{HH, HT, TH, TT\}$$

Set consisting of all events is the power set of S and has $2^4 = 16$ elements with P(S) = 1 and $P(\emptyset) = 0$. For every other event 0 < P(E) < 1.

We observe that $S = HH \cup HT \cup TH \cup TT$ and they are mutually exclusive events. Since the coin is fair, all outcomes are equally likely i.e. P(HH) = P(HT) = P(TH) = P(TT). By third axiom

$$P(HH) + P(HT) + P(TH) + P(TT) = P(S) = 1$$

So every outcome has probability 1/4.

Probability

More generally - if the sample space is a finite set and every outcome is equally likely then probability of an event E is given by the classical formula

$$P(E) = \frac{|E|}{|S|}$$

Some inequalities

Lemma

Let E_1, \dots, E_n be any events. Then

- **1** Boole's inequality: $P(\bigcup_{r=1}^n E_r) \leq \sum_{r=1}^n P(E_r)$.
- **2** As a corollary we deduce **Bonferroni's inequality:** $P(\cap_{r=1}^n E_r) \ge \sum_{r=1}^n P(E_r) (n-1).$

Principle of Inclusion and Exclusion

Exercise

Let E_1, \dots, E_n be events. Show that

$$P(\bigcup_{r=1}^{n} E_r) = \sum_{r=1}^{n} P(E_r) - \sum_{i < j} P(E_i E_j) + \dots + \\ + (-1)^{r+1} \sum_{i_1 < \dots < i_r} P(E_{i_1} \cdots E_{i_r}) \\ + \dots + (-1)^{n+1} P(E_1 \cdots E_n).$$

Principle of Inclusion and Exclusion

Example

N persons named x_i $(i=1,\ldots,N)$ are asked to sit on chairs numbered $i=1,\ldots,N$. Find the probability that each i,x_i doesn't sits on the chair numbered i. Define events:

$$E_i = \{x_i \text{ sits on the chair } i\}.$$

In terms of E_i , what is the event we are looking at? We need to know the values of $P(E_{i_1} \cdots E_{i_k})$. The event $E_{i_1} \cdots E_{i_k}$ means that we are left with N-k positions free which can be arranged in (N-k)! ways. Thus

$$P(E_{i_1}\cdots E_{i_k})=\frac{(N-k)!}{N!}$$

Now apply inclusion-exclusion!

Suppose A and B are two events in a sample space S and we are asked to compute the probability of A given that B has already happens. This is the notion of conditional probability written as P(A|B).

Example

Suppose our experiment consists of rolling two dice. Then the sample space is $S = \{(i,j)\}$ where $1 \le i,j \le 6$.

- Event *A* is that the first dice shows 4.
- 2 Event B is that the sum of two dice is 9.

P(A) = 6/36 = 1/6. But if we are given the **additional** information that B has already happened. Then?

Clearly then possibilities for A are given by the event $A \cap B$ and total possibilities are |B| = 4. Thus

$$P(A|B) = \frac{|A \cap B|}{|B|} = 1/4.$$

Based on this example we define

Definition

The conditional probability of event A given that B has already occured is

$$P(A|B) = \frac{P(AB)}{P(B)}$$
 where $P(B) \neq 0$

Exercise

Conditional probability is a probability.

Independent events

Definition

We say an event E is independent of another event F if knowing that F has happened doesn't affect the probability of E i.e. P(E|F) = P(E). Using the definition of conditional probability this is equivalent to saying

$$P(EF) = P(E)P(F)$$

We take the latter formula as the definition of independence of two events. The former formula P(E|F) = P(E) implicitly assumes that P(F) = 0 but latter one is free of this assumption.

Independent events

Example

Consider an arbitrary *n* digit binary number. Define events

 $H = \{\text{number has both 0 and 1 in its binary representation}\}\$

and

$$A = \{ \text{there is at most one } 1 \}$$

Then
$$P(H) = 1 - \frac{1}{2^{n-1}}$$
, and $P(A) = \frac{1+n}{2^n}$.

The event \overline{AH} represent precisely one 1 and rest 0s and thus

$$P(AH) = \frac{n}{2^n}$$

Are A and H independent events?

Independent events

Example

$$P(A)P(H) = \frac{2^{n-1} - 1}{2^{n-1}} \frac{n+1}{2^n} > = < \frac{n}{2^n} = P(AH)$$

$$\iff \frac{2^{n-1} - 1}{2^{n-1}} > = < \frac{n}{n+1}$$

$$\iff 2^{n-1} > = < n+1$$

Thus we get

$$P(A)P(H)$$
 $\begin{cases} < P(AH), & n = 2 \\ = P(AH), & n = 3 \\ > P(AH), & n > 3 \end{cases}$

In particular, when n = 3 then these two events are independent!

Multiplication Rule

Lemma

Let E_1 , E_2 be events then

$$P(E_1E_2) = P(E_1)P(E_2|E_1)$$

Lemma (Generalized Multiplication Rule)

Let E_1, \dots, E_n be events then

$$P(E_1E_2\cdots E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)\cdots P(E_n|E_1\cdots E_{n-1})$$

Multiplication Rule

Example

A box contains r red balls and w white balls. We draw k balls from the box <u>without replacement</u>. Find the probability that all are red balls?

One way is to define event E_i as ith ball is red. Then we are interested in $P(E_1E_2\cdots E_k)$. We use **multiplication rule**,

$$P(E_1E_2\cdots E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)\cdots P(E_n|E_1\cdots E_{n-1})$$

Thus we get

$$P(E_1E_2\cdots E_k) = \frac{r(r-1)\cdots(r-k+2)(r-k+1)}{(r+w)(r+w-1)\cdots(r+w-k+1)}$$

Law of total probability

Theorem

Let E and F be two events. Then

$$P(E) = P(E|F)P(F) + P(E|F^{c})P(F^{c})$$

Corollary

Suppose $S = F_1 \cup F_2 \cup \cdots \cup F_k$ where F_i are mutually disjoint events. Then

$$P(E) = \sum_{i} P(E|F_i)P(F_i)$$

Law of total probability

Example

Insurance companies classify people in two categories - Health wise high risk and low risk. Probability that a high risk person will have some medical emergency in a year is p and the probability that a low risk person will have some medical emergency in a year is q.

Assume that in a population the probability that a random person is health wise high risk is r.

Question - what is the probability that a new policy holder will have some medical emergency within a year of purchasing a policy?

Law of total probability

Example

High risk will have some medical emergency = p, Low risk will have some medical emergency = q, a random person is high risk = r.

Question - what is the probability that a new policy holder will have some medical emergency within a year of purchasing a policy?

Let E be the event that a new policy holder will have some medical emergency within a year of purchasing a policy. Let A be the event that policy holder is high risk. We don't know P(E) but we know P(E|A) = p and also $P(E|A^c) = q$. Using Law of total probability:

$$P(E) = P(E|A)P(A) + P(E|A^{c})(1 - P(A)) = pr + q(1 - r)$$

Bayes' Theorem

Theorem (Bayes)

Suppose E, F be two events. Then

$$P(F|E) = \frac{P(EF)}{P(E)} = \frac{P(E|F)P(F)}{P(E)}$$

Bayes' Theorem

Example

High risk will have some medical emergency = p, Low risk will have some medical emergency = q, a random person is high risk = r. **Question** - A policy holder has some medical emergency within one year of purchasing a policy. What is the probability that he/she was high risk? Recall:

 $E = \{a \text{ new policy holder will have some medical emergency}\}\$ $A = \{a \text{ new policy holder is high risk}\}\$

We are looking for P(A|E). We already calculated P(E) = pr + q(1 - r). Therefore

$$P(A|E) = P(AE)/P(E) = P(E|A)P(A)/P(E) = \frac{pr}{pr + q(1-r)}$$

Bayes' Theorem

Theorem (General version of Bayes' theorem)

Suppose $S = F_1 \cup F_2 \cup \cdots \cup F_k$ where F_i are mutually disjoint events. Then

$$P(F_i|E) = \frac{P(EF_i)}{P(E)} = \frac{P(EF_i)}{\sum_i P(E|F_i)P(F_i)} = \frac{P(E|F_i)P(F_i)}{\sum_i P(E|F_i)P(F_i)}$$

Random variables

Definition

A random variable $X:S\to\mathbb{R}$ is a real valued function on the sample space.

Example

Suppose we roll a dice twice. Sample space

$$S = \{(i,j) | 1 \le i,j \le 6\}$$

Let X denote the random variable that is equal to the sum of both dices. Thus, if the outcome is (1,2) then X(1,2)=3.

Random variables - More examples

Sample space

 $S = \{\text{List of cricket players who played in CWC 2019}\}\$

Define $X : S \to \mathbb{R}$ where X(S) is the total number of runs scored by the player S.

- ② Define $Y:S\to\mathbb{R}$ where $Y(\omega)$ is the total number of wickets taken by the player ω .
- **③** Define a third random variable $Z: S \to \mathbb{R}$ as

$$Z(\omega) = \lambda X(\omega) + \mu Y(\omega)$$

as some measure of all-round performance by the player ω where λ and μ are some real numbers (depending upon the model).

Random variables

- **①** A random variable takes an outcome ω and gives back a real number $X(\omega)$.
- ② If X, Y are random variables, then clearly $X \pm Y$ are also random variables with $(X \pm Y)(\omega) = X(\omega) \pm Y(\omega)$.
- **③** For any $a \in \mathbb{R}$, $\{X = a\}$ denotes the event $\{\omega \mid X(\omega) = a\}$.
- Similarly, $\{X \leq a\}$ will denote the event

$$\{\omega \in S \mid X(\omega) \leq a\}$$

Random variables

Quick questions -

- **1** What is $P(\{X \le a\}) + P(\{X > a\})$?
- 2 Toss a fair coin 5 times. Sample space is

$$S = \{HHHHH, HHHHT, HHHTH, HHHTT, \cdots\}$$

For any outcome ω , define $X(\omega)$ to be the number of H (heads) in ω .

- What is P(X = 1)?
- **②** What is $P(X \ge 1)$?
- **3** What is $P(1 \le X \le 4)$?

Probability Mass Function

Definition

The **probability mass function or PMF** of X is defined as

$$MF_X(a) = P(X = a)$$

Question

If the range of X is countable (say) $\{a_1, \dots, \}$, then

$$\sum_{i=1} MF_X(a_i) = ?$$

Discrete Random variables

Definition

If the set $X(S) \subset \mathbb{R}$ is countable then X is said to be discrete random variable (DRV).

Example

Number of heads in n tosses of a coin, out come of a throw of dice etc are all DRVs.

Question

If S is countable, does it mean that X is discrete?

Question

If X is discrete, does it mean that S is countable?

Cumulative Distribution Function

Definition

The **cumulative distribution function or CDF** of *X* is defined as

$$F_X(a) = P(X \leq a)$$

Cumulative Distribution Function

Question

Is CDF always monotonic?

Question

Is CDF left continuous? right continuous?

Question

What is $F_X(\infty)$? What is $F_X(-\infty)$?

Fact - Any non-decreasing, right continuous function, satisfying $F(-\infty)=0$ and $F(\infty)=1$, is CDF of some random variable.

Some questions

Question

If the probability mass function (of a DRV) is

$$MF_X(k) = \frac{c\lambda^k}{k!}$$
 for $k = 0, 1, 2, ...$

Find c (in terms of λ)?

Question

Suppose CDF of X is F_X . Express $P(a < X \le b)$ in terms of F_X ?

Discrete Random variables

Definition

If the set $X(S) \subset \mathbb{R}$ is finite or countably infinite then X is said to be discrete random variable (DRV).

Example

Number of heads in n tosses of a coin, out come of a throw of dice etc are all DRVs.

Question

If S is countably infinite, does it mean that X is discrete?

Question

If X is discrete, does it mean that S is finite or countably infinite?

Probability Mass Function

Definition

The **probability mass function or PMF** of X is defined as

$$MF_X(a) = P(X = a)$$

Question

If the range of X is countable (say) $\{a_1, \dots, \}$, then

$$\sum_{i=1} MF_X(a_i) = ?$$

A question

$$F(x) = \begin{cases} 0, & x \le 0 \\ \frac{1}{2} + \frac{x}{2}, & 0 < x < 1 \\ 1, & 1 \le x \end{cases}$$

Does F describes cumulative distribution function of some random variable?

Cumulative Distribution Function

Trivial fact - <u>Cumulative distribution function</u> is always non-decreasing, right continuous and satisfies $F(-\infty) = 0$ and $F(\infty) = 1$.

(Not so important but interesting) Fact - Conversely, any non-decreasing, right continuous function, satisfying $F(-\infty)=0$ and $F(\infty)=1$, is CDF of some random variable.

Some questions

Question

If the probability mass function (of a DRV) is

$$MF_X(k) = \begin{cases} \frac{c\lambda^k}{k!}, & \text{for } k = 0, 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}$$

Find c (in terms of λ)?

Some questions

Question

Suppose CDF of X is F_X . Express $P(a < X \le b)$ in terms of F_X ?

Let X be a random variable. Define a random variable $\left|X\right|$ as follows

$$|X| = \begin{cases} X, & X \ge 0 \\ -X, & X < 0 \end{cases}$$

Then |X| is a RV with distribution function given as

$$F_{|X|}(x) = P(|X| \le x) = \begin{cases} F_X(x) - F_X(-x) + P(X = -x), & x > 0 \\ P(X = 0), & x = 0 \\ 0, & x < 0 \end{cases}$$

Expectation

Definition

Expected value of a discrete RV with probability mass function $MF_X(k)$ then the **expected value** of X denoted by E[X] is defined by

$$E[X] = \sum_{k:MF_X(k)>0} kMF_X(k) = \sum_{k:MF_X(k)>0} k \cdot P(X=k)$$

Think of it as the weighted average of the possible values that X takes (weight assigned according to the probability of X being equal to that value).

An example

Example

A man buys a lottery priced at r with winning prize worth R. Suppose his probability of winning is p. Let X denotes the DRV representing his earnings. Then

$$X \in \{R-r, -r\}$$

$$P(X = -r) = 1 - p \text{ and } P(X = R - r) = p.$$
 Thus

$$E[X] = p(R-r) + (1-p)(-r) = pR - r$$

Another example

Example

Suppose we flip a coin which has a probability p of coming up heads. We keep flipping it until either a head comes or up to n trials. Let X be the number of times we have to flip it. Then

$$P(X = 1) = p, P(X = 2) = (1 - p)p \cdots$$

 $P(X = k) = (1 - p)^{k-1}p$

for k < n and $P(X = n) = (1 - p)^{n-1}p + (1 - p)^n$. Thus

$$E[X] = \sum_{i=1}^{n} i(1-p)^{i-1}p + n(1-p)^{n} = \frac{1-(1-p)^{n}}{p}$$

Can the expectation of a finite valued random variable be infinite?

Example

Let probability mass function of a random variable be given as

$$P(X=m) = egin{cases} rac{\lambda}{m^2}, & m \in \mathbb{N} \ 0, & ext{otherwise} \end{cases}$$

By a Theorem of Euler, $\lambda = \frac{6}{\pi^2}$.

$$E[X] = \sum_{m>0} mP(X=m) = \sum_{m>0} \frac{\lambda}{m} = \infty$$

Expectation - alternate viewpoint

$$E[X] = \sum_{\omega \in S} X(\omega) p(\omega)$$

Thus X is the **weighted average** as X ranges over outcomes in S.

Expectation - alternate viewpoint

Proof.

Suppose
$$X(S) = \{x_1, \dots\}$$
. Let $E_i = \{\omega \mid X(\omega) = x_i\}$. In particular $S = \sqcup_i E_i$

By definition

$$E[X] = \sum_{i} x_{i} P(X = x_{i})$$

$$= \sum_{i} x_{i} \sum_{\omega \in E_{i}} p(\omega)$$

$$= \sum_{i} \sum_{\omega \in E_{i}} X(\omega) p(\omega)$$

$$= \sum_{\omega \in S} X(\omega) p(\omega)$$

Linearity of expectation

Lemma

$$E[X + Y] = E[X] + E[Y]$$

We use weighted average interpretation of expectation - Suppose Z = X + Y. Then

$$E[Z] = \sum_{\omega \in S} Z(\omega) p(\omega)$$

$$= \sum_{\omega \in S} (X(\omega) + Y(\omega)) p(\omega)$$

$$= \sum_{\omega \in S} X(\omega) p(\omega) + \sum_{\omega \in S} Y(\omega) p(\omega)$$

$$= E[X] + E[Y]$$

Indicator random variable

Definition

Let A be any event. We define the **indicator random variable** I_A of A as

$$I_A = \begin{cases} 1, & A \text{ happens} \\ 0, & A \text{ doesn't happens} \end{cases}$$

What is expected value of I_A ?

Then $E[I_A] = 0 \cdot P(A \text{ doesn't happens}) + 1 \cdot P(A \text{ happens}) = P(A)$.

Variance

Definition

Let X be a RV with mean μ . Then the **variance** of X, denoted Var(X) is defined by

$$Var(X) = E[(X - \mu)^2]$$

Usually denoted as σ_X^2 .

Question

Suppose P(A) = p and I_A is indicator random variable. What is $Var(I_A)$?

