

Victorian Certificate of Education Year

SPECIALIST MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.

A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

SM FORMULA SHEET 2

Mensuration

area of a circle segment	$\frac{r^2}{2}(\theta - \sin(\theta))$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$	sine rule	$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$
volume of a pyramid	$\frac{1}{3}Ah$	cosine rule	$c^2 = a^2 + b^2 - 2ab\cos(C)$

Algebra, number and structure (complex numbers)

$z = x + iy = r(\cos(\theta) + i\sin(\theta)) = r\operatorname{cis}(\theta)$	$ z = \sqrt{x^2 + y^2} =$	= r
$-\pi < \operatorname{Arg}(z) \le \pi$	$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta)$	$\theta_1 + \theta_2$
$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$	de Moivre's theorem	$z^n = r^n \operatorname{cis}(n \theta)$

Data analysis, probability and statistics

	$E(aX_1 + b) = a E(X_1) + b$		
for independent random variables $X_1, X_2 \dots X_n$	$E(a_1X_1 + a_2X_2 + \ldots + a_nX_n)$		
	$= a_1 \mathbb{E}(X_1) + a_2 \mathbb{E}(X_2) + \dots + a_n \mathbb{E}(X_n)$		
	$\operatorname{Var}(aX_1 + b) = a^2 \operatorname{Var}(X_1)$		
	$\operatorname{Var}\left(a_{1}X_{1} + a_{2}X_{2} + \ldots + a_{n}X_{n}\right)$		
	$= a_1^2 \text{Var}(X_1) + a_2^2 \text{Var}(X_2) + \dots + a_n^2 \text{Var}(X_n)$		
for independent identically distributed	$E(X_1 + X_2 + \ldots + X_n) = n\mu$		
variables $X_1, X_2 \dots X_n$	$\operatorname{Var}(X_1 + X_2 + \dots X_n) = n\sigma^2$		
approximate confidence interval for μ	$\left(\overline{x} - z \frac{s}{\sqrt{n}}, \overline{x} + z \frac{s}{\sqrt{n}}\right)$		
distribution of sample mean \bar{X}	mean	$E(\overline{X}) = \mu$	
	variance	$\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}$	

Calculus

$\frac{d}{dx}(x^n) = n x^{n-1}$	$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$
$\frac{d}{dx}(e^{ax}) = ae^{ax}$	$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$
$\frac{d}{dx} \left(\log_e(x) \right) = \frac{1}{x}$	$\int \frac{1}{x} dx = \log_e x + c$
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$	$\int \sin(ax) dx = -\frac{1}{a} \cos(ax) + c$
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$	$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$
$\frac{d}{dx}(\tan(ax)) = a\sec^2(ax)$	$\int \sec^2(ax) dx = \frac{1}{a} \tan(ax) + c$
$\frac{d}{dx}(\cot(ax)) = -a\csc^2(ax)$	$\int \csc^2(ax)dx = -\frac{1}{a}\cot(ax) + c$
$\frac{d}{dx}(\sec(ax)) = a\sec(ax)\tan(ax)$	$\int \sec(ax)\tan(ax)dx = \frac{1}{a}\sec(ax) + c$
$\frac{d}{dx}(\csc(ax)) = -a\csc(ax)\cot(ax)$	$\int \csc(ax)\cot(ax)dx = -\frac{1}{a}\csc(ax) + c$
$\frac{d}{dx}\left(\sin^{-1}(ax)\right) = \frac{a}{\sqrt{1 - (ax)^2}}$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c, \ a > 0$
$\frac{d}{dx}\left(\cos^{-1}(ax)\right) = \frac{-a}{\sqrt{1 - (ax)^2}}$	$\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1} \left(\frac{x}{a}\right) + c, \ a > 0$
$\frac{d}{dx}\left(\tan^{-1}(ax)\right) = \frac{a}{1 + (ax)^2}$	$\int \frac{a}{a^2 + x^2} dx = \tan^{-1} \left(\frac{x}{a}\right) + c$
	$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$
	$\int \frac{1}{ax+b} dx = \frac{1}{a} \log_e ax+b + c$

Calculus – continued

product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$
quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
integration by parts	$\int u \frac{dv}{dx} dx = u v - \int v \frac{du}{dx} dx$
Euler's method	If $\frac{dy}{dx} = f(x, y)$, $x_0 = a$ and $y_0 = b$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + h \times f(x_n, y_n)$.
arc length parametric	$\int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
surface area Cartesian about <i>x</i> -axis	$\int_{x_1}^{x_2} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$
surface area Cartesian about <i>y</i> -axis	$\int_{y_1}^{y_2} 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$
surface area parametric about <i>x</i> -axis	$\int_{t_1}^{t_2} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
surface area parametric about <i>y</i> -axis	$\int_{t_1}^{t_2} 2\pi x \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$

Kinematics

acceleration	$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = 1$	$v\frac{dv}{dx} = \frac{d}{dx} \left(\frac{1}{2}v^2\right)$
constant acceleration	v = u + at	$s = ut + \frac{1}{2}at^2$
formulas	$v^2 = u^2 + 2as$	$s = \frac{1}{2}(u+v)t$

Vectors in two and three dimensions

$\underline{\mathbf{r}}(t) = x(t)\underline{\mathbf{i}} + y(t)\underline{\mathbf{j}} + z(t)\underline{\mathbf{k}}$	$ \mathbf{r}(t) = \sqrt{x(t)^2 + y(t)^2 + z(t)^2}$
	$\dot{\underline{r}}(t) = \frac{d\underline{r}}{dt} = \frac{dx}{dt}\dot{\underline{i}} + \frac{dy}{dt}\dot{\underline{j}} + \frac{dz}{dt}\dot{\underline{k}}$
	vector scalar product $ \begin{aligned} \underline{\mathbf{r}}_{1} \cdot \underline{\mathbf{r}}_{2} &= \left \underline{\mathbf{r}}_{1} \right \left \underline{\mathbf{r}}_{2} \right \cos(\theta) = x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2} \end{aligned} $
for $x_1 = x_1 \dot{x} + y_1 \dot{y} + z_1 \dot{k}$ and $x_2 = x_2 \dot{x} + y_2 \dot{y} + z_2 \dot{k}$	vector cross product $\begin{vmatrix} \dot{z} & \dot{y} & \dot{k} \\ x_1 \times x_2 = \begin{vmatrix} \dot{z} & \dot{y} & \dot{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = (y_1 z_2 - y_2 z_1) \dot{z} + (x_2 z_1 - x_1 z_2) \dot{z} + (x_1 y_2 - x_2 y_1) \dot{k}$
vector equation of a line	$ \underline{\mathbf{r}}(t) = \underline{\mathbf{r}}_1 + t\underline{\mathbf{r}}_2 = (x_1 + x_2 t)\underline{\mathbf{i}} + (y_1 + y_2 t)\underline{\mathbf{j}} + (z_1 + z_2 t)\underline{\mathbf{k}} $
parametric equation of a line	$x(t) = x_1 + x_2t$ $y(t) = y_1 + y_2t$ $z(t) = z_1 + z_2t$
vector equation of a plane	$ \underline{\mathbf{r}}(s,t) = \underline{\mathbf{r}}_0 + s\underline{\mathbf{r}}_1 + t\underline{\mathbf{r}}_2 = (x_0 + x_1 s + x_2 t)\underline{\mathbf{i}} + (y_0 + y_1 s + y_2 t)\underline{\mathbf{j}} + (z_0 + z_1 s + z_2 t)\underline{\mathbf{k}} $
parametric equation of a plane	$x(s, t) = x_0 + x_1 s + x_2 t, \ y(s, t) = y_0 + y_1 s + y_2 t, \ z(s, t) = z_0 + z_1 s + z_2 t$
Cartesian equation of a plane	ax + by + cz = d

Circular functions

$\cos^2(x) + \sin^2(x) = 1$	
$1 + \tan^2(x) = \sec^2(x)$	$\cot^2(x) + 1 = \csc^2(x)$
$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$	$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$	$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$
$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$	$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$
$\sin(2x) = 2\sin(x)\cos(x)$	
$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$	$\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}$
$\sin^2(ax) = \frac{1}{2} \left(1 - \cos(2ax) \right)$	$\cos^2(ax) = \frac{1}{2} \left(1 + \cos(2ax) \right)$