

Figure 1: MOT luminescence intensity with background as a function of the polarization angle before the first MOT pass-through of one beam.

Figure 2: MOT luminescence intensity with background as a function of the polarization angle before the second MOT pass-through of one beam.

1 new things

1.1 Polarization direction dependence

As it is visible on Figure 1, the MOT luminosity changes periodically, following a π periodic dependence; the fitted function

$$f(x) = A\cos\left(\frac{\pi x}{180^{\circ}} - \varphi\right) + B$$

serves the purpose of confirming the periodicity, as the fitting is otherwise distorted by the abundance of near-maximum points compared to those near the minimum. Figure 2 shows the unadjusted luminosity as a function of the polarization angle of the beam changed before the second passing through the sample. Here, the strong fluctuations make it impossible to notice fine angle-dependent changes. The underlying function is likely a constant function, shown as the red dashed fitted line.

Figure 3: MOT luminescence intensity with background as a function of the polarization angle before the second MOT pass-through of one beam.

1.2 Detuning of the cooling laser

To quantify the ideal detuning of the cooling laser, we used a slow periodic signal to scan through the spectrum slow enough that the changes in the MOT can be recorded on an oscilloscope. The detected peaks (F \rightarrow F1 and MOT fluorescence peak):

 $3 \rightarrow 2, 4: (4.708 \pm 0.024) \text{ s}$ $3 \rightarrow 3, 4: (4.956 \pm 0.024) \text{ s}$ $3 \rightarrow 4: (5.556 \pm 0.016) \text{ s}$ $MOT: (5.456 \pm 0.008) \text{ s}$

By matching the difference of peaks 1, 2 and peaks 2, 3 with the frequencies of the transitions, averaging the results yields a frequency scale of

$$C = (114.161 \pm 11.163) \frac{\text{MHz}}{\text{s}}$$

The optimal detuning is the difference between the MOT and the $3 \rightarrow 4$ peaks:

$$\Delta \nu = C \cdot (0.100 \pm 0.008) \,\text{s} = (11.4161 \pm 1.4423) \,\text{MHz} \,(1)$$

1.3 Detuning of the pumping laser

We found the following peaks:

 $3 \rightarrow 2, 4: (4.708 \pm 0.024) \, \mathrm{s}$ $3 \rightarrow 3, 4: (4.956 \pm 0.024) \, \mathrm{s}$ $3 \rightarrow 4: (5.556 \pm 0.016) \, \mathrm{s}$ $MOT: (5.456 \pm 0.008) \, \mathrm{s}$

1.4 Population of MOT

$$R = \frac{\Gamma}{2} \frac{\frac{I}{I_{\text{sat}}}}{1 + \frac{I}{I_{\text{sat}}} + \left(\frac{2\Delta\nu}{\Gamma}\right)^2} = (18.4915 \pm 0.0434) \,\text{MHz}, (2)$$

where $\Gamma=2\pi\cdot(6.0666\pm0.0018)$ MHz is the natural linewidth of the transition, $I_{\rm sat}=(1.66932\pm0.00035)\frac{\rm mW}{\rm cm^2},$ $I=\frac{2P}{\pi w^2}=(73.9409~pm3.00633)\frac{\rm mW}{\rm cm^2}$ the total cooling laser intensity $(P=10.60\pm0.05~{\rm mW}$ is the total power), and $\Delta\nu$ is the detuning of the cooling laser (eqn. 1). The total intercepted power at a distance ρ from the MOT by a lens with radius r, when the MOT has a radiation power $P_{\rm MOT},$ is

$$P = \frac{P_{\text{MOT}}}{4\pi\rho^2} \cdot \pi r^2,$$

from which $(\rho = (10.5 \pm 1.0) \text{ cm}, 2r = (2.5 \pm 0.1) \text{ cm})$

$$P_{\text{MOT}} = 47.4 \pm 9.8 \,\mu\text{W}$$
 (3)

The main error source is the distance measurement, but the lens diameter also has a significant uncertainty. The number of trapped atoms can be calculated now, as

$$P_{\text{MOT}} = NRh\nu,$$

giving

$$N = 1.00687 \cdot 10^7 \pm 2.0811 \cdot 10^6 \tag{4}$$

for the population size.

References

¹ Unspecified Author, FP Experiment: Rubidium MOT (University of Bonn, 2014).

² D. A. Steck, *Rubidium 85 D Line Data*, http://steck.us/alkalidata/rubidium85numbers.pdf