TECNICAS DE INTEGRACION

Ing. Iván Jaramillo J.

<u>ijaramilloj@unal.edu.co</u>

<u>www.gmun.unal.edu.co/~ijaramilloj</u>

II-2013

INVERSOR CMOS

Figure 4.53 The CMOS inverter.

OPERACIÓN INVERSOR

Figure 4.54 Operation of the CMOS inverter when v_I is high: (a) circuit with $v_I = V_{DD}$ (logic-1 level, or V_{OH}); (b) graphical construction to determine the operating point; (c) equivalent circuit.

OPERACIÓN INVERSOR

Figure 4.55 Operation of the CMOS inverter when v_I is low: (a) circuit with $v_I = 0$ V (logic-0 level, or V_{OL}); (b) graphical construction to determine the operating point; (c) equivalent circuit.

CARACTERISTICA V-I

Figure 4.56 The voltage transfer characteristic of the CMOS inverter.

RESPUESTA INVERSOR

Figure 4.57 Dynamic operation of a capacitively loaded CMOS inverter: (a) circuit; (b) input and output waveforms; (c) trajectory of the operating point as the input goes high and C discharges through Q_N ; (d) equivalent circuit during the capacitor discharge.

INVERSOR CMOS MODELO PRIMER ORDEN ANÁLISIS DC

 $V_{OL} = 0$ $V_{OH} = V_{DD}$ $V_{M} = f(R_{n}, R_{p})$

 $V_{in} = 0$

INVERSOR CMOS: RESPUESTA

INVERSOR CMOS CARACTERÍSTICA DE

CARGA

OPERACION DC: TRANSFERENCIA DE VOLTAJE

RUIDO EN CIRCUITOS DIGITALES

NIVELES DE LAS SEÑALES DIGITALES

Margen de Ruido

FAN-IN Y FAN-OUT

COMPUERTA IDEAL

$$R_i = \infty$$

$$R_i = \infty$$

$$R_o = 0$$

CARACTERÍSTICA REAL DEL INVERSOR

INVERSOR CMOS VTC

Modelo de Conmutación del Transistor MOS

INVERSOR CMOS: ESTADO ESTACIONARIO

TIEMPOS DE RESPUESTA CMOS

CIRCUITOS EQUIVALENTES

$$0 \le V_{\text{out}} \le V_{\text{DD}} - V_{\text{tn}}$$

T_F --> TIEMPO DE BAJADA

En Zona de Saturación

$$C_{L} \frac{dV_{out}}{dt} + \frac{\beta_{n}}{2} (V_{DD} - V_{tn})^{2} = 0 \qquad I_{ds} = \beta \frac{(V_{gs} - V_{t})^{2}}{2}, \qquad 0 < V_{gs} - V_{t} < V_{ds}$$

$$t_{f} = t_{f1} + t_{f2} \qquad t_{f1} = -2 \frac{C_{L}}{\beta_{n} (V_{DD} - V_{tn})^{2}} \int_{0.9 \text{ V}_{DD}}^{V_{DD} - V_{tn}} (dV_{out})$$

$$t_{f1} = \frac{2 C_L (V_{tn} - 0.1 V_{DD})}{\beta_n (V_{DD} - V_{tn})^2}$$

$T_F \longrightarrow TIEMPO DE$ BAJADA(1)

En Zona Lineal

$$C_L \frac{dV_{out}}{dt} + \beta_n [(V_{DD} - V_{tn}). V_{out} - \frac{V_{out}^2}{2}] = 0$$

$$I_{ds} = \beta \cdot \left[(V_{gs} - V_t) \cdot V_{ds} - \frac{{V_{ds}}^2}{2} \right], \qquad 0 < V_{ds} < V_{gs} - V_t$$

$$t_{f2} = -\frac{C_{L}}{\beta_{n} (V_{DD} - V_{tn})} \cdot \int_{V_{DD} - V_{tn}}^{0.1 V_{DD}} \left(\frac{dV_{out}}{\frac{V_{out}^{2}}{2 (V_{DD} - V_{tn})} - V_{out}} \right) t_{f2} = \frac{C_{L}}{\beta_{n} (V_{DD} - V_{tn})} \cdot \ln \left(\frac{19 V_{DD} - 20 V_{tn}}{V_{DD}} \right)$$

$$t_f = t_{f1} + t_{f2}$$

$$t_f = t_{f1} + t_{f2}$$
 $t_f = 2 \frac{CL}{\beta_n \cdot V_{DD} \cdot (1-n)} \left[\frac{n-0.1}{1-n} + \frac{\ln(19-20.n)}{2} \right]$

$T_F \longrightarrow TIEMPO DE$ BAJADA(2)

$$t_f = 2 \frac{C_L}{\beta_{n.} V_{DD.} (1-n)} \left[\frac{n-0.1}{1-n} + \frac{\ln (19-20.n)}{2} \right]$$

$$\label{eq:betanapprox} \begin{array}{lll} \textbf{donde} & n = \frac{V_{tn}}{V_{DD}} & \beta_n = \frac{\boldsymbol{\mathcal{E}} \text{ SiO}_2. \ \boldsymbol{\mu}_n}{T_{ox}} \cdot \frac{W_n}{L_n} \end{array}$$

$$\beta_{\rm n} = \frac{1}{T_{\rm ox}} \cdot \frac{1}{L_{\rm r}}$$

$$t_f \cong k_n \cdot \frac{T_{ox} \cdot L_n \cdot C_L}{\varepsilon_{SiO_2} \cdot \mu_n \cdot W_n \cdot V_{DD}}$$

$$t_f \cong k_n' \cdot \frac{L_n \cdot C_L}{W_n}$$

Tecnología específica

CIRCUITOS EQUIVALENTES

TIEMPO DE SUBIDA

$T_R \longrightarrow TIEMPO DE$ SUBIDA

$$t_r = 2 \frac{C_L}{\beta_{p.} V_{DD.} (1-p)} \left[\frac{p-0.1}{1-p} + \frac{\ln (19-20.p)}{2} \right]$$

$$\mathbf{donde} \quad \mathbf{p} = \frac{|\mathbf{V}_{t_p}|}{\mathbf{V}_{DD}}$$

donde
$$p = \frac{|V_{tp}|}{V_{DD}}$$
 $\beta_p = \frac{\mathcal{E}_{SiO_2}. \mu_p}{T_{ox}} \cdot \frac{W_p}{L_p}$

$$t_r \approx k_p \cdot \frac{T_{ox} \cdot L_p \cdot C_L}{\mathcal{E}_{SiO_2} \cdot \mu_p \cdot W_p \cdot V_{DD}}$$

$$t_r \cong k_p' \cdot \frac{L_p \cdot C_L}{W_p}$$

Tecnología específica

T_{DF}--> TIEMPO DE RETARDO DE BAJADA

$$t_{df} = \frac{C_L}{\beta_n \cdot V_{DD} \cdot (1-n)} \left[\frac{2 \cdot n}{1-n} + \ln(3-4 \cdot n) \right]$$

$$t_{df} \cong c_n \cdot \frac{T_{ox} \cdot L_n \cdot C_L}{\varepsilon_{SiO_2} \cdot \mu_n \cdot W_n \cdot V_{DD}}$$

$$t_{df} \cong c_n' \cdot \frac{L_n \cdot C_L}{W_n \cdot V_{DD}}$$

T_{dr}--> Tiempo de Retardo de Subida

$$t_{dr} = \frac{C_L}{\beta_{p.} V_{DD.} (1+p)} \left[\frac{-2.p}{1+p} + ln(3+4.p) \right]$$

$$t_{dr} \cong c_p \cdot \frac{T_{ox} \cdot L_p \cdot C_L}{\varepsilon_{SiO_2} \cdot \mu_p \cdot W_p \cdot V_{DD}}$$

$$t_{dr} \cong c_{p'} \cdot \frac{L_{p} \cdot C_{L}}{W_{p} \cdot V_{DD}}$$

DISIPACION DE POTENCIA

i_s: Corriente de saturación inversa

V : Voltaje del diodo

q : Carga del electrón

k: Constante de Boltzman

T^o: Temperatura [^oK]

$i_0 = i_s \left(e^{\frac{q \cdot V}{k \cdot T^o}} - 1 \right)$

POTENCIA ESTATICA

 $Ps = \sum_{i=1}^{n} corriente de fuga \times voltaje de alimentación$

n : Número de dispositivos

POTENCIA DINAMICA

$$P_{d} \ = \ \frac{1}{t_{p}} \left(\int_{0}^{tp/2} i_{n}(t) \ . \ V_{out}(t) \ . \ dt \ + \ \int_{tp/2}^{tp} i_{p}(t) \ . \ (V_{DD} \ - \ V_{out}(t)) \ . \ dt \right)$$

$$i_n(t) = C_L \frac{dV_{out}}{dt}$$
 $i_p(t) = C_L \frac{d(V_{DD} - V_{out})}{dt}$

$$P_{d} = \frac{C_{L} \cdot V_{DD}^{2}}{t_{p}}$$

$$P_d = C_L \cdot V_{DD}^2 \cdot f_p$$

$$i_{n}: \text{Corriente transitoria del dispositivo n}$$

$$i_{p}: \text{Corriente transitoria del dispositivo p}$$

$$i_{n}(t) = C_{L} \frac{dV_{\text{out}}}{dt} \quad i_{p}(t) = C_{L} \frac{d(V_{\text{DD}} - V_{\text{out}})}{dt}$$

$$P_{d} = \frac{C_{L} \cdot V_{\text{DD}}^{2}}{t_{p}} \cdot f_{p}$$

$$P_{d} = \frac{C_{L} \cdot V_{\text{DD}}^{2}}{t_{p}} \cdot f_{p}$$

$$P_{d} = \frac{C_{L} \cdot V_{\text{DD}}^{2}}{t_{p}} \cdot f_{p}$$

Modelo Pequeña Señal MOSFET

	g_m	r_o
linear	kV_{DS}	$[k(V_{GS} V_T V_{DS})]^{-1}$
saturation	$k(V_{GS} - V_T)$	1/N _D

Determinando V_{IH} y V_{IL}

At
$$V_{IH}$$
 (V_{IL}):
$$\frac{\partial V_{out}}{\partial V_{in}} = -1$$

small-signal model of inverter

$$g = \frac{v_{out}}{v_{in}} = -(g_{mn} + g_{mp}) \times (r_{on} || r_{op}) = -1$$

MATHTYPE 6.7.ZIP

Aproximación simplificada

CAPACITANCIAS EQUIVALENTES

TEMA DE TRABAJO

PROBLEMAS DE CIRCUITOS MICROLECTRONICOS SEDRA/SMITH:

5.92, 5.93, 5.94, 5.95