Grenzwerte von Funktionen

Def Sei $D \subset \mathbb{R}$. $x_0 \in \overline{\mathbb{R}}$ heißt $H \ddot{a}u fungspunkt$ von D, falls es eine Folge (x_n) in $D \setminus \{x_0\}$ mit $x_n \to x_0$ gibt. Ein Punkt in D, der kein H \ddot{a}u fungspunkt von D ist, heißt $isolierter\ Punkt$ von D.

Def Sei $D \subset \mathbb{R}$, $f: D \to \mathbb{R}$ und $x_0 \in \overline{\mathbb{R}}$ Häufungspunkt von D. Wir sagen, f konvergiere (strebe) gegen $a \in \overline{\mathbb{R}}$ für $x \to x_0$, falls für jede Folge $(x_n)_{n \in \mathbb{N}}$ aus D mit $x_n \neq x_0$ für alle $n \in \mathbb{N}$ gilt:

$$x_n \to x_0 (n \to \infty) \Rightarrow f(x_n) \to a (n \to \infty)$$

(Schreibe: $\lim_{x \to x_0} f(x) = a$)

Def Sei $D \subset \mathbb{R}$, $f: D \to \mathbb{R}$.

1) Angenommen, x_0 ist Häufungspunkt von $D^+ := \{x \in D : x > x_0\}$. Falls

$$\lim_{\substack{x \to x_0 \\ x \in D^+}} f(x) = a$$

existiert, heißt a rechtsseitiger Grenzwert von f bei x_0 .

2) Angenommen, x_0 ist Häufungspunkt von $D^- := \{x \in D : x < x_0\}$. Falls

$$\lim_{\substack{x \to x_0 \\ x \in D^-}} f(x) = a$$

existiert, heißt a linksseitiger Grenzwert von f bei x_0 .

Andere Schreibweise: $\lim_{x\to x_0+} f(x) = a$, $\lim_{x\to x_0-} f(x) = a$

Satz 4.1 Sei $D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, x_0 Häufungspunkt sowohl von D^+ als auch von D^- , $a \in \overline{\mathbb{R}}$. Es sind äquivalent:

- $1) \lim_{x \to x_0} f(x) = a$
- 2) Die beiden einseitigen Grenzwerte von f in x_0 existieren und sind gleich a.

Satz 4.2 Sei $x_0 \in \mathbb{R}$ ein Häufungspunkt von $D \subset \mathbb{R}$, $f, g: D \to \mathbb{R}$. Für die Grenzwerte von f + g, fg, $\frac{f}{g}$ gelten die üblichen Rechenregeln. Zum Beispiel:

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x),$$

wenn die Grenzwerte $\lim_{x\to x_0} f(x)$ und $\lim_{x\to x_0} g(x)$ existieren.

Satz 4.3 (Äquivalente Charakterisierung des Grenzwertes)

Sei $D \subset \mathbb{R}, f \colon D \to \mathbb{R}, x_0 \in \mathbb{R}$ Häufungspunkt von $D, a \in \mathbb{R}$. Dann gilt:

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0 \forall x \in D : 0 < |x - x_0| < \delta \Rightarrow |f(x) - a| < \varepsilon$$