

Automatic Concussion Evaluation (A.C.E.)

John Tarasidis - EE
Brian Sang - CompE
Sean Kim - EE
Michael Lee - CompE
Jonathan Park - EE
Dale Shober - BME

Thank you to our sponsors:

Our Solution

Example of a clinical EEG

Rendering of the ACE mini EEG

10 devices currently being manufactured!

Mockup of the ACE mini EEG inside of a Military Helmet

CREATING THE NEXT

Implications – The New Standard of Care

- Reduces screening uncertainty from 30-60% down to 10%
- Currently working with Ft. Benning through NSIN to test prototypes
- Proper care of mTBI can reduce long term symptoms and the prevalence of comorbidities such as PTSD or CTE

New Care Sequence

Current Care Sequence

Screening

Neuroimaging
(MRI, etc.)

Treatment

Our Solution

Neuroimaging (Optional)

maybe dashed arrow? or more opaque arrows (from ace to neuroimaging)

I want to keep font still somewhat big so it doesn't look squished

Automatic Concussion Evaluation

Treatment

Real World Implementation?? Don't like saying business

Technical Slides

Helmets

- Limited space on helmet due to volumetric constraints
- EEG electrodes placed mainly near occipital lobe
- Unit should fit within 70mm x 70mm x 5mm (W x L x H)
 - 2cm thick pads
 - Rigid PCB placed in rear (position 4)
 - Margin of 1cm
 - Max height of component housing ~5mm

A Sensitive Tool for the Quantitative Screening of Head Injuries

- Electroencephalogram (EEG) analysis compared to neurological exams^[5]
 - EEG analysis is shown to be more sensitive than qualitative neurological exams

Linear acceleration-time curves

	Peak Resultant Acceleration		
Impact Event	Linear (g)	Rotational (rad/s ²)	
Fall/Ice	264.4 (33.8)	11.204 (1867)	
Collision/shoulder	112.5 (8.6)	9659 (728.5)	
Punch	87.9 (9.8)	14.001 (1003)	
Projectile (puck)	105.6 (14.6)	12.187 (2104)	

8-Channel System Overview

and External Export

Electrodes

- Hot-pluggable systems allows for flexibility in electrode selection
- Most promising so far pictured below
- What mechanical connector should we use?
 - Direct through-hole solder joint seems most reliable for shock & vibration

https://www.fri-fl-shop.com/product/reusable-5mm-ag-agcl-spike-snap -electrode-tde-212/

ADS1299 - Deciding Factors

Pros:

- High Integration/Small Footprint
- Simple Power Control
- Flexible Body Potential Bias Schemes
- High Resolution

Cons:

Cost

versus

Bottom Line: While discretes were explored the ADS1299 offers the complete package, making up for its cost in reduced development time

STM32L4 - Deciding Factors

Pros

- Low Cost
- Best-in-Class Ultra Low Power
- Best-in-Class Development Environment
 - ST HAL, STM32CubeIDE, CMSIS
 - MBED Enabled

Cons

SDMMC 4 bit bus has silicon errata

Bottom Line: The STM32 microcontroller family is an industry staple. Tried and true, it just makes sense.

ADXL372 - Deciding Factors

Pros

- Best-in-Class Ultra Low Power
- High Impact Capable
- Programmable Automated Interrupt Generation

Cons

Cost

Bottom Line: While the ADXL372 is expensive, it is unparalleled in capability for our application - where power, measurement range, and interrupt handling are key factors.

Mass Flash Storage - SDMMC

Pros:

- Cheap
- Easily interfaceable with ST HAL SDMMC
- Allows for simple export to an external PC
 - Good for exploratory algorithm development

Cons:

- Large footprint
- Weak link in environmental resilience
- Requires FatFs, a large middleware library

Power Consumption

- Alternate between analysis and low-power sleep modes
- Current Consumption

Op Mode	ADS1299	STM32L4	ADXL372	Total
Analysis	8.14mA	2.6mA	22uA	~11mA
Sleep	1.2uA	22nA	1.4uA	2.622uA

- Power supplied by coin cells
- Estimated battery life: 6-9 months

Power Delivery - Digital

Single Cell, Unregulated

Discharge Characteristics

IC	Operating Voltage		
	Min	Max	
ADS1299	1.8	3.6	
ADXL372	1.6	3.5	
STM32L4	1.71	3.6	

Power Deliver - Analog

- Low-Noise LDO Regulated
- Center-tapped AGND
- Ganged EN Pins to uController GPIO for absolute no-current state in idle mode
 - ADS1299 SHTDWN pin and LDO EN pins will be brought up in a single GPIO port mask

The Screening Signal Path

Relative amplitude

Firmware State Flow

