Teorema da Aproximação Universal

Caio Lins

9 de março de 2021

1 Teorema da aproximação de Weierstrass

Desejamos mostrar que dada uma função contínua $f:[a,b]\to\mathbb{R}$, podemos aproximá-la arbitrariamente bem por funções polinomiais $p:[a,b]\to\mathbb{R}$.

Em outras palavras, seja C([a,b]) o espaço das funções contínuas em [a,b]. Indicamos por $\|\varphi\|_{\infty}$ a norma do supremo de uma função limitada $\varphi:[a,b]\to\mathbb{R}$, ou seja,

$$\|\varphi\|_{\infty} = \sup\left\{ |\varphi(x)| \; ; \; x \in [a, b] \right\}.$$

Então é verdade que

Teorema 1.1. Dada $f \in C([a,b])$, para todo $\varepsilon > 0$ existe um polinômio $p : [a,b] \to \mathbb{R}$ tal que

$$||f-p||_{\infty}<\varepsilon.$$

Inicialmente, observamos que basta provar o teorema para o caso $f \in C([0,1])$. De fato, dada $f \in C([a,b])$, considere o homeomorfismo $\varphi : [0,1] \to [a,b]$ dado por $\varphi(x) = a + (b-a)x$, cuja inversa é $\varphi^{-1} : [a,b] \to [0,1]$ dada por $\varphi^{-1}(x) = \frac{x-a}{b-a}$. Então a função $g = f \circ \varphi$ pertence a C([0,1]) e, dado $\varepsilon > 0$, se existe um polinômio p(x) com $||g-p||_{\infty} < \varepsilon$, temos também, como φ^{-1} é um polinômio de grau 1,

$$\|g \circ \varphi^{-1} - p \circ \varphi^{-1}\|_{\infty} < \varepsilon.$$

Como $g \circ \varphi^{-1} = f$ e $p \circ \varphi^{-1}$ é um polinômio, o resultado vale também para C([a,b]).

Em seguida, devemos definir a classe de polinômios que utilizaremos na demonstração.

Definição 1.1. Dada $g: X \to \mathbb{R}$ definimos o n-ésimo polinômio de Bernstein de g como

$$B_n(x,g) \stackrel{\text{def}}{=} \sum_{k=0}^n g\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}. \tag{1}$$

Note a semelhança entre os polinômios de Bernstein e a expansão binomial de $(1 + (1 - x))^n$. De fato, temos $B_n(x, 1) = (1 + (1 - x))^n = 1$. Mais geralmente, para toda constante $c \in \mathbb{R}$ tem-se $B_n(x, c) = c$. Utilizaremos essa semelhança para obter algumas identidades essenciais para a demonstração do Teorema 1.1. Dados p e q reais, começamos considerando a expansão binomial de $(p+q)^n$:

$$(p+q)^n = \sum_{k=0}^n \binom{n}{k} p^k q^{n-k}.$$

Considerando ambos lados da igualdade como funções de p, podemos derivá-los com relação a essa variável, obtendo

$$n(p+q)^{n-1} = \sum_{k=0}^{n} k \binom{n}{k} p^{k-1} q^{n-k}.$$

Multiplicando ambos lados por p/n, ficamos com

$$p(p+q)^{n-1} = \sum_{k=0}^{n} \frac{k}{n} \binom{n}{k} p^{k} q^{n-k}.$$
 (2)

Essa é a primeira identidade, válida para todos $p, q \in \mathbb{R}$. Derivando novamente com relação a p e multiplicando ambos lados por p/n obtemos

$$p^{2}\left(1-\frac{1}{n}\right)(p+q)^{n-2} + \frac{p}{n}(p+q)^{n-1} = \sum_{k=0}^{n} \frac{k^{2}}{n^{2}} \binom{n}{k} p^{k} q^{n-k},\tag{3}$$

a segunda identidade que utilizaremos.

Como consideramos $f, g \in C([0,1])$, segue da Definição 1.1 que se $f \ge 0$, então $B_n(x, f) \ge 0$ e, se $f \le g$, então $B_n(x, f) \le B_n(x, g)$.

Com essas ferramentas, podemos então apresentar a

Demonstração do Teorema 1.1. Observamos inicialmente que como f é uma função contínua definida em um compacto, é uniformemente contínua. Portanto, dado $\varepsilon > 0$, existe $\delta > 0$ tal que se $x,y \in [0,1]$ satisfazem $|x-y| < \delta$ então

$$|f(x) - f(y)| < \frac{\varepsilon}{2}.$$

Agora, definimos $M\stackrel{\text{def}}{=}\|f\|_{\infty}$ e fixamos $\xi\in[0,1]$. Logo, se $|x-\xi|\geq\delta$ temos

$$|f(x) - f(\xi)| \le 2M \le 2M \left(\frac{x - \xi}{\delta}\right)^2.$$

Combinando as duas últimas desigualdades, concluímos que para todo $x \in [0,1]$ vale

$$|f(x) - f(\xi)| \le 2M \left(\frac{x - \xi}{\delta}\right)^2 + \frac{\varepsilon}{2}.$$
 (4)

Vamos aproximar f pelos seus polinômios de Bernstein. Seja $B_n(x, f)$ o n-ésimo polinômio de Bernstein de f, avaliado em x. Então

$$|B_n(x,f) - f(\xi)| = |B_n(x,f - f(\xi))|$$
(5)

$$\leq B_n \left(x, 2M \left(\frac{x-\xi}{\delta} \right)^2 + \frac{\varepsilon}{2} \right)$$
 (6)

$$= \frac{2M}{\delta^2} B_n(x, (x-\xi)^2) + \frac{\varepsilon}{2}$$
 (7)

$$+\frac{2M}{\delta^2}\left(B_n(x,x^2) + B_n(x,-2x\xi) + \xi^2\right) + \frac{\varepsilon}{2} \tag{8}$$

$$= \frac{2M}{\delta^2} \left(B_n(x, x^2) - 2\xi B_n(x, x) + \xi^2 \right) + \frac{\varepsilon}{2}. \tag{9}$$

Aqui fizemos uso das propriedades de $B_n(x, f)$ que seguem de $x \in [0, 1]$, discutidas anteriormente. Utilizando as equações (2) e (3), com a substituição p = x e q = 1 - x, concluímos que

$$B_n(x,x) = x$$

e que

$$B_n(x, x^2) = x^2 \left(1 - \frac{1}{n}\right) + \frac{x}{n}.$$

Substituindo em (9), ficamos com

$$\frac{2M}{\delta^2} \left(B_n(x, x^2) - 2\xi B_n(x, x) + \xi^2 \right) + \frac{\varepsilon}{2} = \frac{2M}{\delta^2} \left(x^2 \left(1 - \frac{1}{n} \right) + \frac{x}{n} - 2\xi x + \xi^2 \right) + \frac{\varepsilon}{2}$$
 (10)

$$= \frac{2M}{\delta^2} \left(x^2 + \frac{x - x^2}{n} - 2\xi x + \xi^2 \right) + \frac{\varepsilon}{2}$$
 (11)

$$= \frac{\varepsilon}{2} + \frac{2M}{n\delta^2}(x - x^2) + \frac{2M}{\delta^2}(x - \xi)^2.$$
 (12)

Sendo assim,

$$|B_n(x,f) - f(\xi)| \le \frac{\varepsilon}{2} + \frac{2M}{n\delta^2}(x - x^2) + \frac{2M}{\delta^2}(x - \xi)^2.$$
 (13)

Como essa desigualdade vale para todo $x \in [0,1]$, em especial é válida para $x = \xi$. Fazendo essa substituição, obtemos

$$|B_n(\xi, f) - f(\xi)| \le \frac{\varepsilon}{2} + \frac{2M}{n\delta^2} (\xi - \xi^2). \tag{14}$$

Facilmente podemos verificar que $\xi - \xi^2 \leq \frac{1}{4}$ para todo $\xi \in [0,1]$. Logo,

$$|B_n(\xi, f) - f(\xi)| \le \frac{\varepsilon}{2} + \frac{M}{2n\delta^2}.$$
 (15)

Por fim, tomando $n > \frac{M}{\varepsilon \delta^2}$, temos $\frac{M}{2n\delta^2} < \frac{\varepsilon}{2}$ e, assim,

$$|B_n(\xi, f) - f(\xi)| < \varepsilon. \tag{16}$$

Como o valor de n obtido para que essa desigualdade seja satisfeita depende apenas de ε (lembramos que δ depende apenas de ε , pela continuidade uniforme de f), ela é válida para todo $\xi \in [0, 1]$, ou seja,

$$||B_n(\cdot,f)-f||_{\infty}<\varepsilon.$$