Table 1: Revision History

Date	Developer(s)	Change
October 19^{th}	All	Initial Draft

Hazard Analysis for SE 4G06 An AI-based Approach to Designing Board Games

Team #6, Board Gamers Ilao Michael, ilaom Bedi Hargun, bedih Dang Jeffrey, dangj12 Ada Jonah, karaatan Mai Tianzheng, mait6

October 19, 2022

Contents

1	Introduction and Purpose of Hazard Analysis									
2	2 Scope and Definition of Hazard 3 System Boundary and Components									
3										
4	4 Critical Assumptions									
5	Failure Modes and Effects Analysis5.1Hazards Out of Scope5.2Failure Modes and Effects Analysis Table	3 3								
6	Safety and Security Requirements 6.1 Access Requirements 6.2 Integrity Requirements 6.3 Privacy Requirements 6.4 Audit Requirements 6.5 Immunity Requirements	ca ca ca								
7	Roadman	F								

1 Introduction and Purpose of Hazard Analysis

This document aims to analyze, assess, and find ways to eliminate or mitigate potential safety and security hazards that are applicable to our project. Hazard analysis will highlight the various types of hazards, the likelihood of encountering these hazards, and their severity and will try to outline potential actions upon encountering those hazards. The analysis will further help us specify new, and update existing safety and security requirements for our project.

2 Scope and Definition of Hazard

A hazard for our AI-based game simulation engine will be any threat, vulnerability, system failure, or potential errors that our system is susceptible to. Hazards and risks related to the environment, society and user error will be considered out of the scope for this document. Risks and hazards associated with our project will be based on ones that can be discovered during the development of our project and of similar existing systems. Safety and security requirements that arise from the hazard analysis will be listed at the end of the document. These requirements will be an addition to the requirements presented in our SRS document.

3 System Boundary and Components

Hazard analysis will be conducted on the following components of our project:

- AI Agent
- Game Engine
- Data Visualization
- Physical Computer

The physical computer being used to run our system and the reliability of the AI agent are not controlled by Board Gamers. They are an essential part of our system which is why they are included in the hazard analysis.

4 Critical Assumptions

There are no critical assumptions being made.

5 Failure Modes and Effects Analysis

The failure modes and effect analysis (FMEA) was the chosen hazard analysis tool to help identify, analyze, and find solutions to the hazards and risks pertaining to our project.

5.1 Hazards Out of Scope

- Failures of the external AI libraries being used
- Game Rules
- Physical Computer

Board Gamers will not be responsible for the hazards listed above as they are either controlled by 3rd party developers or the external user. We will attempt to minimize the effect of these hazards, however, complete mitigation is not guaranteed.

5.2 Failure Modes and Effects Analysis Table

Table 2: Failure Modes

Component	Failure	Effects of	Causes of	Recommended	Requirements
	Modes	Failure	Failure	Action	
Training Model	Training data is	Valuable train-	Destination	Validate folder	AR4
	deleted	ing model is	folder is not	destination be-	
		lost and model	found by the	fore training	
		training cannot	system, Dele-	model is saved	
		progress effectively	tion by user		
Simulation	Simulation logs	Valuable simu-	Logs deleted by	Automatically	IR4
Logs	are deleted	lation data that	users or errors	save simulation	
		is needed for	in the system	logs after ev-	
		game balancing		ery completed	
		is lost		iteration	
Simulation	Bad state in	Computer re-	Errors in code	Adjust a	IR5
Runtime	simulation	sources will be	in Simula-	capped number	
	causing infinite	heavily used for	tion, AI Game	of simulation	
	loop	incorrect out-	Agents, or	moves and time	
		put	Game Engine	for simulation	
			Rules	runtime	
	Simulation is	Cannot run the	Mismatch in	Ensure versions	IR5
	not compatible	simulation for a	versioning or	are compati-	
	on the com-	long period of	compatibility	ble or create	
	puter cluster	time on an effi-	on the com-	a standalone	
G 1	G. 1	cient computer	puter cluster	executable	ID4 0 ID4
General	Simulation	Lost data on	Runtime er-	Write logs as	IR1 & IR4
	closes unex-	that simulation	rors, OS errors	simulation pro-	
	pectedly		or User acci-	gresses, if sim-	
			dents (Can be	ulation crashes,	
			many different	there is an	
			causes)	event log up	
Data Visualiza-	Visualization	C	D : 1	until the crash	IR4
	does not render	Game designer and other users	Errors in logs or errors in	Check each log on the visual-	11\(\frac{4}{4}\)
tion	properly	cannot under-	visualization	ization system	
	broberry	stand the data	system. Edge	to see if the	
		stand the data	cases that are	system ren-	
			not properly	ders or crashes,	
			checked	if so check	
			CHUCKU	what edge case	
				caused it	
				causeu II	

6 Safety and Security Requirements

6.1 Access Requirements

AR1: Only admins can access and modify the product's source code.

AR2: Users will be able to install and access the software in the required systems

AR3: Only the admins will be able to release a new version of the product.

AR4: The system should be able to check if a file location exists.

6.2 Integrity Requirements

IR1: The execution of the product will not damage the users' operating systems.

IR2: The game engine will not modify the game state data unnecessarily.

IR3: The AI agent will not make changes to game engine data unrelated to its execution.

IR4: The data visualization chart will only be able to create if the game engine and AI agent successfully output the information log.

IR5: The system will not harm the device it runs on nor it will cause any resource locks for more than 10 minutes per simulation.

6.3 Privacy Requirements

PR1: The software will not expose users' confidential information.

PR2: Only authorized users can obtain the installer to install the product in their systems.

6.4 Audit Requirements

N/A

6.5 Immunity Requirements

N/A

7 Roadmap

The hazard analysis has concluded a number of new safety and security requirements. Sufficient crucial requirements will be implemented in the finished application. However, some of them with low priority may not be implemented due to the hard project deadline constraints. The hazard analysis will efficiently help us keep track and find out what risks need to be solved during the development process.