2

Re-Wind Analyse zum Produkt: hhh

Annahmen zu den Produkteigenschaften

Anzahl Re-Assemblys je linearem Lebenszyklus

Ökonomie spezifisch	
Fußabdruck der 1. Re-Assembly bezogen auf den Fußabdruck einer Neuproduktion	10 %
Steigung des Fußabdrucks von einer Re-Assembly zur nächsten	10 %-punkte
Fußabdruck der 1. großen Re-Assembly bezogen auf die Kosten einer Neuproduktion	40 %

Steigung des Fußabdrucks von einer großen Re-Assembly zur nächsten 5 %-punkte Fußabdruck der Nutzung bezogen auf den Fußabdruck der Neuproduktion 50 % Stärke der vorzeitigen Effizienzsteigerung durch Re-Assembly 5 (0-10)

Kundennutzen spezifisch

Särke des Innovationsrückgangs 5 (0-10)

Ökologie spezifisch

Kosten der 1. kleinen Re-Assembly bezogen auf die Kosten einer Neuproduktion

Steigung der Kosten von einer kleinen Re-Assembly zur nächsten

5 %-punkte
Kosten der 1. großen Re-Assembly bezogen auf die Kosten einer Neuproduktion

Steigung der Kosten von einer großen Re-Assembly zur nächsten

5 %-punkte

Höhe der Subskriptionserlöse in einem linearen Lebenszyklus bezogen auf den Verkaufset 26 Marge: Anteil der Herstellungskosten am Verkaufspreis 60 (0-10)

Gesamtergebnis in den drei Dimensionen

1	8	20
1	17	33

Ökologie Diagramm

Kundennutzen Diagramm

Ökonomie Diagramm

