1. 一条静态流水线有 6 个功能段组成,加法操作使用其中的 1、2、3、6 功能段,乘法操作使用其中的 1、4、5、6 功能段,每个功能段的延迟时间均相等。流水线的输出端与输入端之间有直接的数据通路,而且设置有足够的缓冲寄存器。用这条流水线计算 $F = \sum_{i=1}^{6} (A_i \times B_i)$,画出流水线时空图,并计算流水线的实际吞吐率、加速比和效率。

分析:

加法和乘法的流水线时空图分别为

加法

	1	2	3	4
1	√			
2		√		
3			√	
4				
5				
6				√

乘法

	1	2	3	4
1	√			
2				
3				
4		√		
5			√	
6				√

下面分情况讨论公式 $F = \sum_{i=1}^6 A_i \times B_i$ 执行时的时空图情况 1: 对于公式 $F = \sum_{i=1}^6 A_i \times B_i$ 按照如下代码计算,即加法和乘法交替进行

1. for(int i=1;i<=6;++i)

2. F+=Ai*Bi;

则流水线的时空图为(m表示乘法, a表示加法)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	m	a	m	a	m	a	m	a	m	a	m	a			
2			a		a		a		a		a		a		
3				a		a		a		a		a		a	
4		m		m		m		m		m		m			
5			m		m		m		m		m		m		
6				m	a	m	a	m	a	m	a	m	a	m	a

此时吞吐率=
$$\frac{12}{15\times\Delta t} = \frac{4}{5\Delta t}$$
加速比= $12 \times \frac{4}{15} = 3.2$
效率= $\frac{12\times4}{6\times15} = \frac{8}{15}$

情况 2: 对于公式 $F = \sum_{i=1}^6 A_i \times B_i$,如果按照先执行 6 次乘法,之后执行 6 次加法,则流水线的时空图如下所示:(m 表示乘法,a 表示加法)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	m	m	m	m	m	m				a	a	a	a	a	a			
2											a	a	a	a	a	a		
3												a	a	a	a	a	a	
4		m	m	m	m	m	m											
5			m	m	m	m	m	m										
6				m	m	m	m	m	m				a	a	a	a	a	a

此时吞吐率=
$$\frac{12}{18 \times \Delta t} = \frac{2}{3 \Delta t}$$

加速比=12 ×
$$\frac{4}{18}$$
 = $\frac{8}{3}$

效率=
$$\frac{12\times4}{6\times18} = \frac{4}{9}$$

2. 一条由 4 个功能段组成的非线性流水线的预约表如下,每个功能段的延迟时间都 为Δt,

	1	2	3	4	5	6
S ₁	×					×
S ₂		×		×		
S ₃			×			
S ₄				×	×	

- 1) 写出流水线的禁止向量和初始冲突向量。
- 2) 画出调度流水线的状态图。
- 3) 求流水线的最小启动循环和最小平均启动距离。
- 1. 根据题中流水线执行的时空图可知,禁止向量C = (5,2,1) 初始冲突向量 $v_0 = (1,0,0,1,1)$
- 2. 将初始冲入向量不断向右移位,并与初始冲突向量进行按位或运算,如下所示

右移位数	5	4	3	2	1	Op	5	4	3	2	1	=	5	4	3	2	1
3	0	0	0	1	0	V	1	0	0	1	1	=	1	0	0	1	1
4	0	0	0	0	1	V	1	0	0	1	1	=	1	0	0	1	1
6	0	0	0	0	0	V	1	0	0	1	1	=	1	0	0	1	1

因此可以画出流水线的状态转化图

3. 调度方案如下

调度方案	启动距离
3	3
4	4
3,4	3.5
3,4,3	3.3
3,3,4	3.3
4,3,3	3.3
6	6

因此,最小启动循环为(3),最小启动距离为3,此时流水线执行的时空图为

	1	2	3	4	5	6	7	8	9	10	11
1	F1			F2			F3				
2		F1		F1	F2		F2	F3		F3	
3			F1			F2			F3		
4				F1	F1		F2	F2		F3	F3

3. 假设向量长度均为 64, 在 CRAY-1 机上所用浮点功能部件的执行时间分别为:相加 6 拍, 相乘 7 拍, 求倒数近似值 14 拍;在存储器读数 6 拍, 打入寄存器及启动功能部件各 1 拍。问下列各指令组内的哪些指令可以链接?哪些指令不可链接?不能链接的原因是什么?分别计算出各指令组全部完成所需的拍数。

分析:

(1) 不可以,因为三条指令之间不存在写入相关,因此可以三条指令同时并行执行,如下所示:

此时需要花费的时间为

$$t = \max\{1 + 6 + 1 + (64 - 1), 1 + 6 + 1 + (64 - 1), 1 + 7 + 1 + (64 - 1)\} = 72$$

(2) 可以,第三条指令需要用到第二条指令的执行结果,存在写入相关,因此可以连接成为一个大的流水线。执行示意图如下

此时执行时间

$$t = \max\{1 + 7 + 1 + (64 - 1), 1 + 6 + 1 + 1 + 6 + 1 + (64 - 1)\} = 79$$

(3) 可以,指令 1,2,3 可以链接执行,但是指令 4 也需要使用加法器,因此 无法与指令 1,2,3 同时链接执行。因此指令执行示意图为

此时执行时间为t = 1 + 6 + 1 + 1 + 7 + 1 + 1 + 6 + 1 + (64 - 1) + 1 + 6 + 1 + (64 - 1) = 88 + 71 = 159

(4) 指令1到指令4可以链接为一个大的流水线,此时示意图为

此时执行时间为

$$t = (1+6+1) + (1+14+1) + (1+7+1) + (1+6+1) + 64 - 1 = 104$$