

Statistics Ex 7.1 Q9

Answer:

Given:

$Age(in years):x_i$	15	16	17	18	19	20
No. of students: f_i	3	8	10	10	5	4

First of all prepare the frequency table in such a way that its first column consist of the values of the variate (x_i) and the second column the corresponding frequencies (f_i) .

Thereafter multiply the frequency of each row with corresponding values of variable to obtain third column containing $(f_i x_i)$.

Then, sum of all entries in the column second and denoted by $\sum f_i$ and in the third column to obtain $\sum f_i x_i$.

$Age(in years): x_i$	No. of students : f_i	$f_i x_i$
15	3	45
16	8	128
17	10	170
18	10	180
19	5	95
20	4	80
	$\sum_{i} f_i = 40$	$\sum f_i x_i = 698$

We know that mean,
$$\overline{X} = \frac{\sum f_i x_i}{\sum f_i}$$

$$\overline{X} = \frac{698}{40}$$
= 17.45

Hence, the mean age of the students = 17.45 years

Statistics Ex 7.1 Q10

Answer:

Given:

Schools	I	II	III	IV
No.of candicates: x_i	60	48	Not Availeble	40
Average score: f_i	75	80	55	50

Mean score of the candidates = 66

Let the number of candidates that appeared from school \emph{III} be \emph{x} .

First of all prepare the frequency table in such a way that its first column consists of the values of the variate (x_i) and the second column the corresponding frequencies (f_i) .

Thereafter multiply the frequency of each row with corresponding values of variable to obtain third column containing $(f_i x_i)$.

Then, sum of all entries in the column second and denoted by $\sum f_i$ and in the third column to obtain $\sum f_i x_i$.

No.of candicates: x_i	Average score: f_i	$f_i x_i$
60	75	4500
48	80	3840
x	55	55x
40	50	2000
	$\sum f_i = 260$	$\sum f_i x_i = 10340 + 55x$

We know that mean,
$$\overline{X} = \frac{\sum f_i x_i}{\sum f_i}$$

$$66 = \frac{10340 + 55x}{260}$$

By using cross multiplication method,

$$10340 + 55x = 17160$$

$$55x = 17160 - 10340$$

$$x = \frac{6820}{55}$$
= 124

Hence, the number of candidates that appeared from school III is 124.

******* END *******