(1) Let $A, B \subset \mathbb{R}^1$ be two bounded sets such that $x \leq y$ for any $x \in A$ and $y \in B$. Prove that $\sup A \leq \inf B$.

Since
$$\forall x \in A$$
. $x \in y_0$ y_0 is an upper bound of A so this contradicts with the definition of sup A

(2) Prove the following inequality (called Triangle Inequality) by induction: for any positive integer $n \in \mathbb{Z}_+$ and any real number s a_1, a_2, \ldots, a_n ,

$$\left| \sum_{i=1}^m a_i \right| \leqslant \sum_{i=1}^m |a_i| \,.$$

Suppose the inequality holds when $m=k\in\mathbb{Z}_+$

i.e.
$$\left|\sum_{i=1}^{k} a_i\right| \leq \sum_{i=1}^{k} |a_i|$$

then
$$\left|\sum_{i=1}^{k+1} ai\right| = \left(\left(\sum_{i=1}^{k} a_i\right) + a_{k+1}\right) \le \left|\sum_{i=1}^{k} a_i\right| + \left|a_{k+1}\right|$$

$$\leq \left(\sum_{\overline{t}=1}^{k} |\alpha_i|\right) + |\alpha_{k+1}| = \sum_{\overline{t}=1}^{k+1} |\alpha_i|.$$

so the inequality holds for any mEN.

(3) Let $f:[0,1] \to \mathbb{R}$ be a real-valued function. Assume that there exists some number Q > 0 such that for any choice of a finite number of points p_1, \ldots, p_n in [0,1],

$$\left|\sum_{i=1}^n f(\mathbf{p_i})\right| \leqslant Q.$$

Prove the following:

(a) We define $\Sigma \equiv \{x \in [0,1] | f(x) \neq 0\}$. Show that

$$\Sigma = \bigcup_{m=1}^{\infty} \Sigma_m$$
, where $\Sigma_m \equiv \left\{ x \in [0,1] \middle| |f(x)| \geqslant \frac{1}{m} \right\}$.

(b) Σ is countable.

(a). Pf.
$$f(x) \neq 0 \Leftrightarrow |f(x)| > 0$$

suppose |fxx| = 2 > 0. Let $m = \lceil \frac{1}{2} \rceil + 1$. > 0

by definition $0 < \frac{1}{m} < |f(\alpha)|$

i.e.
$$\chi \in \sum_{m}$$

So $\forall y \in f([0,1])$, $\exists m \in \mathbb{N}$. s.t. $x \in \Sigma_m$ and y = f(x)

So
$$\sum = \bigcup_{m=1}^{\infty} \sum_{m}$$
 (I)

From the other direction.

$$\forall m \in \mathbb{N}. \sum_{m} \subset \Sigma$$
 by definition so. $\bigcup_{m=1}^{\infty} \Sigma_{m} \subset \Sigma$ (II)

Pry (I) and (I).
$$\sum = \bigcup_{m=1}^{\infty} \sum_{m}$$
.

Cb). Pf. Claim. Vme N. Im is finite.

if ∃mo∈N. ∑mo is infinite.

$$\sum_{m_o} = \sum_{m_o}^+ \sqcup \sum_{m_o}^- \text{ where } \sum_{m_o}^+ := \sum_{m_o} \cap f^{-1}(\mathbb{R}_{>0})$$

$$\sum_{m_o}^- := \sum_{m_o} \cap f^{-1}(\mathbb{R}_{<0})$$

So at least one of $\sum_{m_0}^{+}$ and $\sum_{m_0}^{-}$ should be infinite.

W.L.O.G. suppose In is infinite.

pick N= [m. 0]+1. elements from $\sum_{m_0}^{+}$ denoted as $\{p_i\}_{i=1}^{N}$

$$\left| \sum_{i=1}^{N} f(p_i) \right| = \sum_{i=1}^{N} f(p_i) > \frac{\lceil m_i \otimes 7 + 1 \rceil}{m_o} > Q \quad \text{contradiction},$$

so our claim is true

Countable union of finite sets is countable.

So
$$\sum := \bigcup_{m=1}^{\infty} \sum_{m} is countable.$$

- (4) Determine all the limit points of the following sets and decide whether the sets are open or closed or neither (justify your answers):
 - (a) $A_1 = (a, b];$
 - (b) $A_2 = \{1/n^2 | n \in \mathbb{Z}_+\};$
 - (c) $A_3 = \{2^{-n} + 3^{-m} | m, n \in \mathbb{Z}_+\}.$

(a) $A_i = [a, b]$. A_i is not open. not closed. Pf. a 15 a limit point because $\forall r > 0 \quad (\beta_r(a)/\{a\}) \cap A_r = (a. a+r) \neq \emptyset$ b is a limit point because $\forall r>0. \left(\beta_{r(b)}\backslash \{b\}\right) \cap A_{r} = (b-r, b] \neq \emptyset$ $\forall x_0 \in (a.b), x_0 \text{ is a limit point because.}$ $\forall r>0$. Let $r_0 = \min \{x_0 - a, b - x_0\}$ $(\beta_r(x_0) \setminus \{x_0\}) \cap A_1 > \beta_{r_0}(x_0) \setminus \{x_0\} \neq \emptyset$ If $x_0 < a$. $x_0 \notin A'$ because let $r = \frac{1}{2}(a - x_0) \cdot (B_r(x_0) \setminus \{x_0\}) \cap A_1 = \emptyset$ so A' = [a,b]. Similarly if xo>b, xo∉ A' A' \(A \) so A, is not closed No ball containing b can be a subset of A1. so A, is not open. (b) $A_2 = 50$ A_2 is not open. not closed. Pf. 0 is a limit point because $\forall r>0 \quad (B_{r(0)}\setminus \{0\}) \cap A_{=} = \left\{ \frac{1}{n^{2}} \mid n > n_{0} \cdot n \in \mathbb{N} \right\} \text{ where } n_{0} = \left[\frac{1}{\sqrt{r}} \right]$

If
$$x_0 < 0$$
 then $x_0 \notin A_2'$ because $B_{-\frac{x_0}{2}}(x_0) \subseteq \mathbb{R}_{< 0} \quad \left(B_{\frac{x_0}{2}}(x_0) \setminus \{x_0\}\right) \cap A_2 = \emptyset$

If $x_0 = \frac{1}{n^2}$ for some $n \in \mathbb{N}$ then $x_0 \notin A_2'$ because.

Let $\Gamma_0 = \frac{1}{n^2} - \frac{1}{(n+1)^2}$
 $\left(B_{\Gamma_0}(x_0) \setminus \{x_0\}\right) \cap A_2 = \emptyset$

If $x_0 > 0$ and $x_0 \notin A_2$ then $x_0 \notin A_2'$ because.

 $\exists n_0 \in \mathbb{N}$. $\frac{1}{(n_{ot1})^2} < x_0 < \frac{1}{n_0^2}$

Let $\Gamma_0 = \min \left\{\frac{1}{n_0^2} - x_0, x_0 - \frac{1}{(n_{ot1})^2}\right\}$

Let
$$r_0 = \min \left\{ \frac{1}{n_0^2} - x_0, x_0 - \frac{1}{(n_0+1)^2} \right\}$$

$$\left(\beta_{r_0}(x_0) \setminus \{x_0\} \right) \cap A_2 = \phi$$

51 Az = 803

Sime Az # Az. so Az is not closed.

Hr>0. Br(1) ∩ A2 > (1, Hr) ≠ φ, so A2 is not open.

(c)
$$A_3 = \left\{ \frac{1}{2^n} \middle| n \in \mathbb{Z}_+ \right\} \cup \left\{ \frac{1}{3^n} \middle| n \in \mathbb{Z}_+ \right\} \cup \left\{ 0 \right\}$$

 A_3 is not closed. Not open.

pf. 0 is a limit point because. $\forall r > 0$ Let $m = \lceil \log_2 \frac{2}{r} \rceil + 1$, $n = \lceil \log_3 \frac{2}{r} \rceil + 1$. $0 < 2^{-m} + 3^{-n} < \frac{r}{2} + \frac{r}{2} = r$

If $x_0 \in \{\frac{1}{2^n} | n \in \mathbb{Z}_+ \}$ $\forall r > 0$. Let $m_0 = \log_3 [\frac{1}{r} + 1]$ $\left(\frac{B_r(x_0)}{x_0}\right) \cap A_3 \supset \{x_0 + 3^{-n} | n > m_0\} \neq \emptyset$ So any element in $\{2^{-n} | n \in \mathbb{Z}_+ \}$ would be a limit point.

Similarly any element in $\{3^{-n} | n \in \mathbb{Z}_+ \}$ is a limit point.

If $x_0 > \frac{5}{6}$. Then $\forall x \in A_3 : x < x_0$

If $x_0 > \frac{5}{6}$. then $\forall x \in A_3 : x < x_0$ take $r_0 = x_0 - \frac{5}{6}$ ($\beta_{r_0}(x_0) \setminus \{x_0\}$) $\cap A_3 = \emptyset$.

Similarly if x.<0 xo cannot be a limit point.

If 0<x0<\f. and x0\f\2-n |n\E_+\3U\3-n |n\E_+\3.

plot $\Gamma>0$ that is sufficiently small s.t. $B_{\Gamma}(x_0) \subset A_3$.

find mo, $n_0 \in \mathbb{Z}_+$ s.t. $2^{-m_0} < \chi_0 < 2^{-m_0+1}$ $3^{-m_0} < \chi_0 < 3^{-n_0+1}$

let $\Delta = \frac{1}{2} \cdot \min \left\{ \chi_0 - 2^{-m_0}, \chi_0 - 3^{-n_0}, 3^{-n_0+1} - \chi_0, 2^{-m_0+1} - \chi_0 \right\}$

Let
$$\Gamma = \Delta$$
.

Claim $\left| B_{\Gamma}(x_0) \cap A_3 \right| < \infty$

If $(m,n) \in \mathbb{Z}_+^2 \cdot 2^{-m} + 3^{-n} \in B_{\Gamma}(x_0)$.

by definition $m \ge m_0$

and $\forall m \cdot n \le \left| \log_3 \left(\frac{1}{x - 2^{-m}} \right) \right|$ (I)

If m is large enough s.t. $2^{-m} + 3^{-n_0} < x_0 - r$

i.e. $m > \left| \log_2 \left(\frac{1}{x - r - 3^{-n_0}} \right) \right|$ then $\not\equiv n$ s.t. $2^m + 3^{-n} \in B_{\Gamma}(x_0)$

so m is bounded, and for each m , only finite $n \in \mathbb{Z}_+$

satisfies that $2^{-m} + 3^{-n} \in B_{\Gamma}(x_0)$

so $\left(B_{\Gamma}(x_0) \setminus \{x_0\} \right) \cap A_3$ is finite.

 $A_3 \not\equiv A_3$ so A_3 is not closed

let $r_0 = \frac{1}{2} \min \left\{ |x - x_0|^2 \right\}$ where $x \in \left(B_{\frac{A}{2}} \left(x_0 \right) \setminus \{x_0\} \right) \cap A_3$.

then $B_{\Gamma_0}(x_0) \cap A_3^{\mathcal{L}} = B_{\Gamma_0}(x_0) \setminus \{x_0\} \neq \emptyset$ so A_3 is not open

(5) Let $A, B \subseteq \mathbb{R}^n$ be two subsets. Show that $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$.

Pf. $\overline{A} \cap \overline{B} = (A \cap B) \cup (A \cap B)'$ $\overline{A} \cap \overline{B} = (A \cap B) \cup (A' \cap B')$ we only need to show that $(A \cap B)' = A' \cap B'$. $x \in (A \cap B)'$

 \iff $\forall r > 0$. $\exists p \in (A \cap B) \setminus \{x\}$. $\|x - p\| < r$ Since $p \in A \cap B$. we have $p \in A$ and $p \in B$

 $\Rightarrow \forall r > 0. \exists p \in A \setminus \{x\} \mid |x-p|| < r$ and $p \in B \setminus \{x\} \mid |x-p|| < r$

 $\Rightarrow \chi \in A' \text{ and } \chi \in B'$

⇒ XEA'NB'

50 (A∩B) ' = A'∩B'

SO ANB = ANB