Concours National Commun - Session 2014

Corrigé de l'épreuve de mathématiques I Filière MP

À propos de l'unimodularité des zéros d'un polynôme auto-inverse. Extremums

Corrigé par M.TARQI¹

Exercice

- 1. Pour tout $(x,y) \in [0,1]^2$, on a $(1-\sqrt{xy})^2-(1-x)(1-y)=x+y-2\sqrt{xy}=(\sqrt{x}-\sqrt{y})^2 \geq 0$, donc $(1-x)(1-y) \leq (1-\sqrt{xy})^2$.
- 2. Il est clair que f est continue sur $[0,1]^2\setminus]\{(1,1)\}$, comme rapport de deux fonctions continues. De plus l'inégalité précédente montre que $\forall (x,y) \in [0,1]^2\setminus]\{(1,1)\}$, $|F(x,y)| \leq xy(1-\sqrt{xy})$, donc

$$\lim_{(x,y)\to(1,1)} F(x,y) = 0 = F(1,1),$$

donc F est continue sur $[0,1]^2$.

- 3. $[0,1]^2$ étant un compact de \mathbb{R}^2 , donc par théorème de continuité sur les compacts, F est bornée sur $[0,1]^2$ et atteint ses bornes.
- 4. On remarque que $\forall (x,y) \in [0,1]^2$, $F(x,y) \geq 0 = F(1,1)$ donc $\inf_{(x,y) \in [0,1]^2} F(x,y) = 0$. De plus $\forall x \in [0,1]$, F(x,1) = F(1,x) = F(x,0) = F(0,x) = 0, donc $\inf_{(x,y) \in [0,1]^2} F(x,y)$ est atteint sur la frontière du carré $[0,1]^2$.
- 5. On voit que F est de classe \mathscr{C}^1 sur l'ouvert $]0,1[^2$ comme rapport de deux fonctions de classe \mathscr{C}^1 et $\forall (x,y) \in]0,1[^2$, on a :

$$\frac{\partial F}{\partial x}(x,y) = \frac{y(1-y)(1-2x+x^2y)}{(1-xy)^2}.$$

Puisque F est symétrique, alors

$$\frac{\partial F}{\partial y}(x,y) = \frac{x(1-x)(1-2y+xy^2)}{(1-xy)^2}.$$

6. $(x_0,y_0)\in]0,1[^2$ est un point critique si et seulement si (x_0,y_0) vérifie le système

$$\begin{cases} 1 - 2x + x^2y = 0\\ 1 - 2y + xy^2 = 0 \end{cases}$$

Ceci implique que $x_0=y_0$ et donc $1-2x_0+x_0^3=0$. Les racines de l'équation $1-2x+x^3=0$ sont $1, \frac{-1+\sqrt{5}}{2}$ et $\frac{-1-\sqrt{5}}{2}$, donc nécessairement $x_0=\frac{-1+\sqrt{5}}{2}$. D'où l'unique point critique de $F:\left(\frac{-1+\sqrt{5}}{2},\frac{-1+\sqrt{5}}{2}\right)$.

7. On obtient $F(x_0, y_0) = \frac{5\sqrt{5-11}}{2}$. D'autre part on sait que la borne supérieure de F sur $[0,1]^2$ existe et atteint, donc nécessairement $F(x_0,y_0) = \sup_{(x,y)\in[0,1]^2} F(x,y)$.

^{1.} Veuillez adresser toute remarque, correction ou suggestion à l'auteur : medtarqi@yahoo.fr

Problème

A props de l'unimodularité des zéros d'un polynôme auto-inverse

Première partie : Résultats préliminaires

- 1.1 On sait que, pour tout $z\in\mathbb{C}$ tel que |z|<1, la série géométrique $\sum_{m\in\mathbb{N}}z^m$ converge et que $\sum_{m\in\mathbb{N}}z^m=\frac{1}{1-z}.$ Le rayon de convergence est 1.
- 1.2 On remarque que $\frac{e^{it}}{e^{it}-\beta}=\frac{1}{1-\beta e^{-it}}$. Donc si $|\beta|<1$, alors pour tout $t\in\mathbb{R}$, $|\beta e^{-it}|<1$, donc

$$\frac{e^{it}}{e^{it}-\beta} = \sum_{m=0}^{\infty} \left(\beta e^{-it}\right)^m = \sum_{m=0}^{\infty} \beta^m e^{-imt}.$$

1.3 De même , on a $\frac{e^{it}}{e^{it}-\beta}=-\frac{e^{it}}{\beta}\frac{1}{1-\beta^{-1}e^{it}}.$ Par conséquent si $|\beta|>1$, alors $|\beta^{-1}e^{it}|<1$, et donc

$$\frac{e^{it}}{e^{it} - \beta} = -\frac{e^{it}}{\beta} \sum_{m=0}^{\infty} (\beta^{-1}e^{it})^m = -\frac{e^{it}}{\beta} \sum_{m=0}^{\infty} \beta^{-m}e^{imt}.$$

$$|\beta > 1$$

1.4 • Cas $|\beta| < 1$: D'après la définition, on a :

$$\int_{\gamma} \frac{\mathrm{d}z}{z-\beta} = \int_{0}^{2\pi} \frac{ie^{it}}{e^{it}-\beta} \,\mathrm{d}t = i \int_{0}^{2\pi} \sum_{m=0}^{\infty} \beta^{m} e^{-imt} \,\mathrm{d}t.$$

D'autre part la série de fonctions $\sum_{m=0}^{\infty} \beta^m e^{-imt}$ converge uniformément sur $[0,2\pi]$, puisque

 $\forall t \in [0, 2\pi], |\beta^m e^{-imt}| \le |\beta|^m$ et la série $\sum_{m=0}^{\infty} |\beta|^m$ converge. Donc on peut intégrer terme à terme :

$$\int_{\gamma} \frac{\mathrm{d}z}{z - \beta} = i \sum_{m=0}^{\infty} \beta^m \int_{0}^{2\pi} e^{-imt} \, \mathrm{d}t = 2i\pi.$$

• Cas $|\beta|>1$: De la même façon on montre que la série de fonctions $\frac{-1}{\beta}\sum_{m\geq 0}\beta^{-m}e^{-i(m+1)t}$ converge uniformément sur $[0,2\pi]$, donc

$$\int_{\gamma} \frac{\mathrm{d}z}{z - \beta} = i \int_{0}^{2\pi} \sum_{m=0}^{\infty} \beta^{m} e^{-imt} \, \mathrm{d}t = \frac{-1}{\beta} \sum_{m=0}^{\infty} \beta^{-m} \int_{0}^{2\pi} e^{-i(m+1)t} \, \mathrm{d}t = 0.$$

D'où:

$$\int_{\gamma} \frac{\mathrm{d}z}{z - \beta} = \begin{cases} 2i\pi & \text{si } |\beta| < 1\\ 0 & \text{si } |\beta| > 1 \end{cases}$$

1.5 Montrons d'abord le résultat suivant : si z et z' sont deux nombres complexes tels que |z+z'|=|z|+|z'|, avec $z\neq 0$, alors il existe $\alpha>$ tel que $z'=\alpha z$. En effet, l'égalité $|z+z'|^2=(|z|+|z'|)^2$ s'écrit encore $z\overline{z'}+z'\overline{z}=2|z||z'|$, d'où $\operatorname{Re}(z'\overline{z})=|z||z'|=|zz'|$. Donc $z'\overline{z}=r\in\mathbb{R}_+$ et $z'\overline{z}z=z'|z|^2=rz$, d'où $z'=\frac{r}{|z|^2}z$.

D'autre part, par l'inégalité triangulaire, on a $|\lambda v + \mu w| \le |\lambda v| + |\mu v| = \lambda + \mu = 1$ (*). Supposons maintenant que $|\lambda v + \mu w| = 1 = |\lambda v| + |\mu v|$, alors d'après ce qui précède il existe $\alpha > 0$ tel que $\mu w = \alpha \lambda v$.

Si on pose $v=e^{i\theta_1'}$ et $w=e^{i\theta_2}$, l'égalité précédente montre que $e^{i(\theta_1-\theta_2)}\in\mathbb{R}$, donc $\theta_1-\theta_2\in 2\pi\mathbb{Z}$, ce qui implique que w=v, ceci est absurde. Finalement l'inégalité (*) est stricte.

Deuxième partie :

Deux résultats de localisation des racines d'un polynôme

2.1 Posons, pour chaque $k \in \{1, 2, ..., r\}$, $P = (X - z_k)^{\alpha_k}Q$. Donc

$$P' = \alpha_k (X - z_k)^{\alpha_k - 1} Q + (X - z_k)^{\alpha_k} Q'.$$

On trouve alors

$$\frac{P'}{P} = \frac{\alpha_k}{X - \alpha_k} + \frac{Q'}{Q}.$$

Or z_k n'est pas une racine de Q, donc $\frac{Q'}{Q}$ n'admet pas z_k pour pôle et $\frac{\alpha_k}{X-\alpha_k}$ est la partie polaire de $\frac{P'}{P}$ relative à z_k . On reprend le même raisonnement mais cette fois avec la fraction $\frac{Q'}{Q}$.

Finalement si $P = a \prod_{k=1}^{r} (X - z_k)^{\alpha_k}$, on trouve

$$\frac{P'}{P} = \sum_{k=1}^{r} \frac{\alpha_k}{X - z_k}.$$

Ainsi, pour tout $z \in \mathbb{C} \setminus \{z_1, z_2, ..., z_r\}$, $\frac{P'(z)}{P(z)} = \sum_{k=1}^r \frac{\alpha_k}{z - z_k}$.

- 2.2 Soit w une racine de P' qui n'est pas une racine de P.
 - 2.2.1 L'égalité de la question 2.1 entraı̂ne $0=\sum_{k=1}^r \frac{\alpha_k}{w-z_k}$. On multiplie ensuite chaque dénominateur par son conjugué, et on prend le conjugué de tout cela. On obtient l'égalité demandée :

$$\sum_{k=1}^{r} \frac{\alpha_k(w-z_k)}{|w-z_k|} = 0.$$

2.2.2 Posons, pour chaque $k \in \{1,2,...,r\}$, $\lambda_k = \frac{\alpha_k}{|w-z_k|^2} > 0$ et $\lambda = \lambda_1 + \lambda_2 + ... + \lambda_r$. On obtient alors

$$w = \sum_{k=1}^{r} \left(\frac{\lambda_k}{\lambda}\right) z_k.$$

Donc il suffit de prendre $\beta_k = \frac{\lambda_k}{\lambda}$.

- 2.3 Si w est une racine de P qui n'est pas une racine de P, le résultat est bien démontré dans la question 2.2.2. Le cas d'une racine multiple w est evident puisque w figure parmi les racines de P.
- 2.4
 - 2.4.1 L'ensemble $\{z_1, z_2, ..., z_n\}$ étant fini, donc il est fermé et par conséquent $\mathbb{C}\setminus\{z_1, z_2, ..., z_n\}$ est un ouvert de \mathbb{C} . La fonction $z\mapsto \frac{P'(z)}{P(z)}$ est continue sur $\mathbb{C}\setminus\{z_1, z_2, ..., z_n\}$ comme rapport de deux fonctions continues sur $\mathbb{C}\setminus\{z_1, z_2, ..., z_n\}$.
 - 2.4.2 D'après la question 2.1, on a :

$$\int_{\gamma} \frac{P(z)}{P'(z)} dz = \sum_{k=1}^{r} \int_{\gamma} \frac{dz}{z - z_k}.$$

En changeant le numérotage, on peut supposer $|z_1| < 1, ..., |z_s| < 1$ et $|z_{s+1}| > 1, ..., |z_r| > 1$. On obtient alors, en utilisant le résultat de la question 1.4,

$$\int_{\gamma} \frac{P(z)}{P'(z)} dz = \sum_{k=1}^{r} \int_{\gamma} \frac{dz}{z - z_k} = \sum_{k=1}^{s} 2i\pi.$$

D'où $\frac{1}{2i\pi}\int_{\gamma}\frac{P(z)}{P'(z)}dz=s$; c'est nombre de racines de P dont le module est strictement inférieure à 1.

Troisième partie:

Une condition suffisante d'unimodularité de zéros d'un polynôme auto-inverse

3.1 Notons $a_k = k - n$, $k \in \{0, ..., 2n\}$ les coefficients du polynôme S_n , $k \in \{0, ..., 2n\}$, on a

$$\overline{a_{2n-k}} = 2n - k - n = n - k = a_k,$$

donc S_n est auto-inverse avec $\varepsilon = 1$.

- 3.2 Soit $P = \sum_{k=0}^{d} a_k X^k$ un polynôme à coefficients complexes de degré d et $\varepsilon \in \mathbb{C}^*$.
 - 3.2.1 Si P est auto-inverse de paramètre ε , alors $a_k = \varepsilon \overline{a_{d-k}}$, pour tout $k \in \{0,1,...,d\}$, en particulier $P(0) = \varepsilon \overline{a_d} \neq 0$ (le coefficient dominant est non nul). On a aussi,

$$a_k = \varepsilon \overline{a_{d-k}} = \varepsilon^2 \overline{\overline{a_{d-(d-k)}}} = \varepsilon a_k.$$

On obtient donc, pour k=d, $a_d=\varepsilon^2 a_d$, donc ε^2 et puis $|\varepsilon|=1$.

3.2.2 Si P est auto-inverse de paramètre ε , alors pour tout $z \in \mathbb{C}^*$,

$$P(z) = \sum_{k=0}^{d} a_k z^k$$

$$= \varepsilon \sum_{k=0}^{d} \overline{a_{d-k}} z^k$$

$$= \varepsilon z^d \sum_{k=0}^{d} \overline{a_{d-k}} z^{k-d} = \varepsilon z^d \overline{P} \left(\frac{1}{z}\right)$$

Réciproquement, soit P un polynôme tel que $\forall z \in \mathbb{C}^*$, $P(z) = \varepsilon z^d \overline{P}\left(\frac{1}{z}\right)$, alors on obtient l'égalité $\sum_{k=0}^d a_k z^k = \varepsilon \sum_{k=0}^d \overline{a_{d-k}} z^k$, comme \mathbb{C}^* est infini, alors $\forall k \in \{0,1,...,d\}$, $a_k = \varepsilon \overline{a_{d-k}}$, donc P est auto-inverse de paramètre ε .

3.3 On peut vérifier facilement que $\overline{P+Q}=\overline{P}+\overline{Q}$ et $\overline{PQ}=\overline{PQ}$.

3.4

3.4.1 Supposons $P = \sum_{k=0}^{d} a_k X^k$ auto-inverse de paramètre ε . Notons b_k , $k \in \{0, 1, ..., d+1\}$ les coefficients de (X-1)P, on a :

$$(X-1)P = -a_0 + \sum_{k=1}^{d} (a_{k-1} - a_k)X^k + a_d X^{d+1}.$$

Donc $b_0 = a_0$, $b_k = a_{k-1} - a_k$, $k \in \{1, 2, ..., d\}$ et $b_{d+1} = a_d$, on a donc $b_0 = \varepsilon \overline{b_{d+1}}$, $b_k = a_{k-1} - a_k = \varepsilon (\overline{a_{d-k+1} - a_{d-k}}) = \varepsilon \overline{b_{d+1-k}}$ $k \in \{1, 2, ..., d\}$ et $b_{d+1} = a_d = \varepsilon \overline{a_0} = \varepsilon \overline{b_0}$.

Donc (X-1)P est auto-inverse de paramètre ε .

- 3.4.2 On a $P_{\mu}(z) = \sum_{k=0}^{d} a_k \mu^k z^k$ et $\forall k \in \{0, 1, ..., d\}$, $a_k \mu^k = \varepsilon \mu^d \overline{a_{d-k}} \overline{\mu^{d-k}}$ (car $\overline{\mu} = \frac{1}{\mu}$) donc P_{μ} est auto-inverse de paramètre $\varepsilon \mu^d$.
- 3.4.3 Posons $P=a\prod_{k=1}^r(z-z_k)^{\alpha_k}$ où les racines z_k sont de module 1. On a, pour tout $z\in\mathbb{C}^*$:

$$z^{d}\overline{P}\left(\frac{1}{z}\right) = \overline{a}z^{d}\prod_{k=1}^{r}\left(\frac{1}{z} - \overline{z_{k}}\right)^{\alpha_{k}}$$

$$= \overline{a}z^{d}\prod_{k=1}^{r}\left(\frac{1}{z} - \frac{1}{z_{k}}\right)^{\alpha_{k}}$$

$$= \frac{\overline{a}z^{d}}{z^{d}\prod_{k=1}^{r}z^{k}}\prod_{k=1}^{r}(z_{k} - z)^{\alpha_{k}}$$

Donc $P(z) = \varepsilon z^d \overline{P}\left(\frac{1}{z}\right)$ avec $\varepsilon = (-1)^d \frac{a \prod_{k=1}^r z^k}{\overline{a}}$. D'après 3.2.2, P est auto-inverse.

- 3.4.4 Le polynôme $X^2 X 1$ répond à la question.
- 3.5 Le polynôme $X^n\overline{Q}\left(\frac{1}{X}\right)$ est de degré $\leq n$, le polynôme $X^{d-n}Q$ est de degré d, donc $\deg R=d$.

D'autre part, pour tout $z \in \mathbb{C}^*$, on a :

$$\varepsilon z^d \overline{R} \left(\frac{1}{z} \right) = \varepsilon z^d \left(\frac{1}{z} \right)^{d-n} \overline{Q} \left(\frac{1}{z} \right) + \overline{\varepsilon} \varepsilon z^d \left(\frac{1}{z} \right)^n Q(z) = \varepsilon z^n \overline{Q} \left(\frac{1}{z} \right) + z^{d-n} Q(z) = R(z).$$

Donc R est auto-inverse.

- 3.6.1 Si $z \in \mathbb{U}$, on a $|Q_1(z)| = |z^{d-n}Q(z)| = |Q(z)|$ et $|Q_2(z)| = \left|\overline{Q}\left(\frac{1}{z}\right)\right|$. Mais $\overline{Q}\left(\frac{1}{z}\right) = |\overline{Q}(\overline{z})| = |\overline{Q}(z)| = |Q(z)|$, donc $|Q_1(z)| = |Q_2(z)|$.
- 3.6.2 Supposons qu'il existe $\lambda \in [0,1[$ et $z \in \mathbb{U}$ tels que $Q_1(z) + \lambda Q_2(z) = 0$, donc $Q_1(z) = -\lambda Q_2(z)$ en prenant le module, on obtient $|\lambda| = 1$, ce qui est absurde. Donc $\forall \lambda \in [0,1[$, $\forall z \in \mathbb{U}, Q_1(z) + \lambda Q_2(z) \neq 0$.
- $3.6.3 \ \ \text{L'application} \ \lambda \mapsto \frac{Q_1'(z) + \lambda Q_2'(z)}{Q_1(z) + \lambda Q_2(z)} \ \text{est bien définie et continue sur } [0,1[\text{, donc d'après le théorème de continuité des fonctions définies par des intégrales, la fonction}]$

$$\varphi: \lambda \mapsto \int_{\gamma} \frac{Q_1'(z) + \lambda Q_2'(z)}{Q_1(z) + \lambda Q_2(z)} dz$$

est continue sur [0, 1[.

D'après la question 2.4.2, cette intégrale représente le nombre de racines du polynôme $Q_1 + \lambda Q_2$ sur \mathbb{U} , donc c'est un entier.

- 3.6.4 L'image d'un connexe par arcs par une application continue est un connexe par arcs, comme [0,1[est connexe par arcs, donc l'image est un connexe par arcs, donc l'application est constante sur [0,1[, car elle est à valeurs entières.
- 3.6.5 D'après ce qui précède $\forall \lambda \in [0,1[, \ \varphi(\lambda) = \varphi(0), \text{c'est-à-dire}\ R_{\lambda} \text{ et } Q_1 \text{ ont le même nombre de racines dans } \mathbb{U}.\ Q_1 \text{ et } Q \text{ ont les mêmes racines, à l'exception de 0, les racines de } Q \text{ sont de module } <1, \text{ donc il est de même pour } R_{\lambda}.$

3.7

- 3.7.1 1 est un point adhérent à [0,1[, donc il existe une suite $(\mu)_m$ d'éléments de [0,1[qui converge vers 1. La suite $(z_{k,\mu_m})_m$ étant bornée car $\forall m, \ |z_{k,\mu_m}| < 1$, donc on peut extraire une sous-suite $(z_{k,\lambda_m})_m$ de la suite $(z_{k,\mu_m})_m$ qui converge vers un z_k , comme $\forall m, \ |z_{k,\mu_m}| < 1$, alors on obtient, par passage à la limite, $|z_k| \le 1$.
- 3.7.2 Pour tout $m \in \mathbb{N}$ et tout $z \in \mathbb{C}$, on a $R_{\lambda_m}(z) = Q_1(z) + \lambda_m Q_2(z) = a_d \prod_{k=1}^r (z z_{k,\lambda_m})$. Lorsque m tend vers l'infini on obtient l'égalité

$$R(z) = Q_1(z) + Q_2(z) = a_d \prod_{k=1}^{r} (z - z_k).$$

et comme z est quelconque, l'égalité précédente est une égalité entre polynômes :

$$R = Q_1 + Q_2 = a_d \prod_{k=1}^{r} (X - z_k).$$

3.7.3 On remarque que si z est une racine de R, alors $z \neq 0$ ($R(0) \neq 0$) et $\frac{1}{\overline{z}}$ est aussi une racine de R. En effet, on a R(z) = 0 si et seulement si $z^{d-n}Q(z) + \varepsilon z^n\overline{Q}\left(\frac{1}{z}\right) = 0$ égalité qui s'écrit encore, en prenant le conjugué du tout,

$$\varepsilon \left(\frac{1}{\overline{z}}\right)^n \overline{Q} \left(\frac{1}{\frac{1}{\overline{z}}}\right) + \left(\frac{1}{\overline{z}}\right)^{d-n} Q \left(\frac{1}{\frac{1}{\overline{z}}}\right) = 0,$$

c'est-à-dire
$$R\left(\frac{1}{\overline{z}}\right) = 0$$
.

Comme les z_k sont des racines de R, alors il est de même pour les $\frac{1}{\overline{z_k}}$ et donc, en tenant compte de la question 3.7.2, $\forall k, \left|\frac{1}{\overline{z_k}}\right| \leq 1$ ce qui donc $|z_k| \geq 1$. En conclusion, toutes les racines de R sont de module 1.

Quatrième partie : Quelques applications

- 4.1 Étude des racines du polynôme S_n
 - 4.1.1 On a $X^{n+1} 1 = (X-1)A_n$, donc les racines de A_n sont les racines n+1-ièmes de l'unité à l'exception de 1. Il sont simples et de module 1.
 - 4.1.2 Soit w une racine de A'_n , alors d'après la question 2.2.2, w est la barycentre des racines de A_n , et comme celles-ci sont de module 1, alors |w| < 1 (d'après la question 1.5).
 - 4.1.3 L'ensemble des racines de B_n est formé par 0 et les racines de A'_n , donc les racines de B_n , comme celles de A'_n , sont toutes de modules strictement inférieure à 1.
 - 4.1.4 On a:

$$\begin{split} S_n &= \sum_{k=0}^{2n} (k-n) X^k = \sum_{k=0}^{n-1} (k-n) X^k + \sum_{k=n+1}^{2n} (k-n) X^k \\ &= X^{2n-n} \sum_{l=1}^n l X^l + \sum_{k=0}^{n-1} (k-n) X^k \\ &= X^{2n-d} B_n + \sum_{k=0}^{n-1} (k-n) X^k \\ &= X^{2n-d} B_n + \sum_{k=0}^{n-1} (k-n) X^k \\ \text{Or } X^n \overline{B_n} \left(\frac{1}{X}\right) &= X^n \sum_{k=0}^{n-1} (k-n) \frac{1}{X}^k = \sum_{k=0}^{n-1} (k-n) X^{n-k}, \text{d'où} \\ \forall z \in \mathbb{C}^*, \ S_n(z) &= z^{2n-n} B_n(z) + z^n \overline{B}_n \left(\frac{1}{z}\right). \end{split}$$

Donc on peut appliquer les résultats de la troisième partie, puisque toutes les conditions sont vérifiées, donc les racines de S_n sont toutes de modules 1.

4.2 Une condition nécessaire et suffisante d'unimodularité des zéros d'un polynôme

Si toutes les racines de P sont de modules 1, alors P est auto-inverse (la question 3.4.3), et on sait que les racines de P' dans ce cas sont de modules strictement inférieure à 1 (la question 2.2.2).

Inversement, supposons que P auto-inverse et que les racines de P' sont de modules strictement inférieure à 1. On a $\forall z \in \mathbb{C}^*, \ P(z) = \varepsilon z^d \overline{P}\left(\frac{1}{z}\right)$ ou encore $\overline{P}(z) = \overline{\varepsilon} z^d P\left(\frac{1}{z}\right)$, d'où par dérivation :

$$\overline{P}'(z) = \overline{\varepsilon} dz^{d-1} P\left(\frac{1}{z}\right) + \overline{\varepsilon} z^d \frac{-1}{z^2} P'\left(\frac{1}{z}\right)$$
$$= \overline{\varepsilon} dz^{d-1} P\left(\frac{1}{z}\right) - \overline{\varepsilon} z^{d-2} P'\left(\frac{1}{z}\right)$$

D'où
$$\overline{P}'\left(\frac{1}{z}\right) = \overline{\varepsilon}d\left(\frac{1}{z}\right)^{d-1}P(z) - \overline{\varepsilon}\left(\frac{1}{z}\right)^{d-2}P'(z)$$
 et par conséquent

$$\forall z \in \mathbb{C}^*, \ P(z) = z \frac{P'(z)}{d} + \frac{1}{\varepsilon} z^{d-1} \frac{\overline{P}'(z)}{d}.$$

Donc on peut appliquer le résultat de la partie 3 avec $Q = \frac{\overline{P}'(z)}{d}$: les racines de P sont toutes de module 1.

- 4.3 Des conditions suffisantes d'unimodularité plus maniables
 - 4.3.1 Supposons d=2p. On a, pour tout $z\in\mathbb{C}^*$:

$$P(z) = \sum_{k=0}^{p-1} a_k z^k + \frac{a_p}{2} z^p + \frac{a_p}{2} z^p + \sum_{k=p+1}^{2p} a_k z^k$$

$$= z^p \left(\sum_{k=0}^{p-1} a_k \left(\frac{1}{z} \right)^{p-k} + \frac{a_p}{2} \right) + z^p \left(\frac{a_p}{2} + \sum_{k=p+1}^{2p} a_k z^{k-p} \right)$$

$$= z^p \left(\sum_{k=1}^p a_{p-k} \left(\frac{1}{z} \right)^k + \frac{a_p}{2} \right) + z^p \left(\frac{a_p}{2} + \sum_{k=1}^p a_{p+k} z^k \right)$$

$$= \varepsilon z^p \left(\sum_{k=1}^p \overline{a_{p+k}} \left(\frac{1}{z} \right)^k + \varepsilon \frac{\overline{a_p}}{2} \right) + z^p Q(z)$$

$$= \varepsilon z^p \overline{Q} \left(\frac{1}{z} \right) + z^{2p-p} Q(z)$$

Donc pour conclure il suffit de montrer que les racines de Q sont toutes de module inférieure à 1. En effet, par l'absurde supposons que Q admet une racine z tel que

$$|z|>1$$
, donc $\frac{a_p}{2}+\sum_{k=1}^p a_{p+k}z^p=0$ et donc $a_dz^d=-\frac{a_p}{2}-\sum_{k=1}^{p-1} a_{p+k}z^k$ ou encore $a_d=-\frac{a_p}{2z^d}-\sum_{k=1}^{p-1} a_{p+k}\left(\frac{1}{z}\right)^{d-k}$, puis, par inégalité triangulaire, on obtient :

$$|a_d| < \frac{|a_p|}{2} + \sum_{k=1}^{p-1} |a_{p+k}| \ (**).$$

D'autre part, on a par hypothèse,

$$|a_d| \ge \frac{1}{2} \sum_{k=1}^{d-1} |a_k| = \frac{|a_p|}{2} + \frac{1}{2} \sum_{k=1}^{p-1} |a_k| + \frac{1}{2} \sum_{k=p+1}^{d-1} |a_k| = \frac{|a_p|}{2} + \frac{1}{2} \sum_{k=1}^{p-1} |a_k| + \frac{1}{2} \sum_{k=1}^{p-1} |a_{p+k}| + \frac{1}{2} \sum_{k=1}^{p-1} |a_k| + \frac{1}{2} \sum_{k=1}^{p-1}$$

Mais $a_k = \varepsilon \overline{a_{2p-k}}$ pour tout k. Donc l'inégalité précédente devient

$$|a_d| \ge \frac{|a_p|}{2} + \sum_{k=1}^{p-1} |a_{p+k}|$$

Cette inégalité est en contradiction avec (**).

En conclusion, les racines de Q sont toutes de module ≤ 1 et par conséquent celles de P sont de module 1.

Le même raisonnement se fait pour le cas de d = 2p + 1.

4.3.2 D'abord on sait que (X - 1)P est auto-inverse (la question 3.4.1), de plus on a

$$(X-1)P = \sum_{k=0}^{d+1} b_k X^k = -a_0 + \sum_{k=1}^{d} (a_{k-1} - a_k) X^k + a_d X^{d+1}.$$

Comme $\frac{1}{2}\sum_{k=1}^d |b_k| = \frac{1}{2}\sum_{k=1}^d |a_{k-1} - a_k| \le |a_d|$, alors la condition de la question 4.3.1 est vérifie, donc les racines (X-1)P sont toutes de module inférieure à 1, il est de même pour les racines du polynôme P.

4.3.3 Par continuité et compacité, il existe $\mu \in \mathbb{U}$ tel que

$$\inf_{\nu \in \mathbb{U}} \sum_{k=0}^{d-1} |a_k - \nu a_{k+1}| = \sum_{k=0}^{d-1} |a_k - \mu a_{k+1}|.$$

Puisque $|\mu|=1$ alors si les racines de P_μ sont de module ≤ 1 , il est de même pour les racines de P. D'après 4.3.2, il suffit de montrer le résultat pour le polynôme $(X-1)P_\mu$ qui est auto-inverse. On a

$$(X-1)P_{\mu} = \sum_{k=0}^{d+1} b_k X^k = -a_0 + \sum_{k=0}^{d-1} (a_k - \mu a_{k+1}) \mu^k X^k + a_d \mu^k X^{d+1}.$$

Donc le polynôme $(X-1)P_{\mu}$ vérifie la condition de 4.3.2, donc les racines de P_{μ} et par suite celles de P sont toutes de module ≤ 1 .

• • • • • • • • •