Homework 2016-03-02

Chuan Lu 13300180056

March 4, 2016

Problem 1.

Proof. The code is shown as follows.

```
1 % homework1
2 % author: chuanlu
3 % 2016-03-02
4 format long
5 xx = 10 .^ [-1:-1:-16];
6 yy = (1 - cos(xx)) ./ (xx .^ 2);
7 semilogx(xx, yy);
```

The result is shown as follows.

Problem 2.

- (1) Prove: If $[a] \in \mathbb{Z}_n$ is a unit, then [a] is not a zero divisor.
- (2) Prove: If $[b] \in \mathbb{Z}_n$ is a zero divisor, then [b] is not a unit.

Proof.

Problem 3.

Show that every nonzero element of \mathbb{Z}_n is either a unit or a zero divisor.

Proof.

Problem 4.

Suppose that [a] is a unit in \mathbb{Z}_n and [b] is an element of \mathbb{Z}_n . Prove that the equation [a]x = b has exactly one solution in \mathbb{Z}_n

Proof. \Box

Problem 5.

Suppose that [a] and [b] are both units in \mathbb{Z}_n . Show that the product $[a] \cdot [b]$ is also a unit in \mathbb{Z}_n . (Note that this confirms closure under multiplication in the group U_n).

Proof.

Problem 6.

Which of the following are Groups? Which of the following are not groups, and why?

- (1) $G = \{2, 4, 6, 8\}$ in \mathbb{Z}_{10} . Where $a \star b = ab$
- (2) $G = \mathbb{Q}^*$, where $a \star b = \frac{a}{b}$
- (3) $G = \mathbb{Z}$, where $a \star b = a b$
- (4) $G = \{2^x \mid x \in \mathbb{Q}\}, \text{ where } a \star b = ab$

Proof.

Problem 7.

Consider the set $Q=\{\ \pm 1,\ \pm {\rm i},\ \pm {\rm j},\ \pm {\rm k}\}$ of the complex matrices as follows:

$$1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$i = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$$

$$j = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$k = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$$

Show that Q is a group under matrix multiplication by writing out its multiplication table. (Note: Q is called the quartenion group).

Proof.