Interro MT - mardi 24 février 2015

20 pt	

Décidabilité du langage $\{0^n1^n \mid n \in \mathbb{N}\}$ (60 min)

On considère l'alphabet $\Sigma = \{0, 1, \#, \$, \square\}.$

Q1. Donnez les transitions d'une MT M_{swap} qui échange la position du symbole # courant avec le symbole binaire suivant.

Indication : Vous pouvez utiliser des multi-transitions notées $\xrightarrow{s/\dots:\dots}$

Q2. Donnez pour chaque multi-transitions de la question précédente, les transitions de bases correspondantes.

Q3. Donnez une MT $M_{\overrightarrow{dec}}$ qui à partir d'une configuration où la tête pointe sur le symbole #, décale les symboles suivants d'une case vers la gauche et amène le symbole # en dernière position avant les \square^{∞} .

Indication : Vous pouvez utilisez la MT M_{swap} de la question 1 en notant la transition $\xrightarrow{M_{swap}}$

Notre objectif est de concevoir une MT M_L qui décide le langage $L \stackrel{\text{def}}{=} \{0^n 1^n \mid n \in \mathbb{N}\}$ constitué des mots binaires formés de n symboles 0 suivis de n symboles 1.

 $\frac{2\,pt}{}$

Q4. Que signifie que la MT M_L décide le langage $L \subseteq \{0,1\}^*$?

Q5. (a,b,c,d)

- (a) Donnez le ruban initial correspondant à l'appel de ${\cal M}_L(0011)$:
- (b) À quel appel correspond le ruban initial $\boxed{\infty \square \ \$ \ \square^{\infty}}$?
- (c) Que doit donner l'exécution de M_L sur le ruban?
- (d) Que se passe t'il si on appelle $M_L(0101)$?

 $\frac{}{4 pt}$

Q6. Donnez les transitions de la MT M_L .

Q7. Supposons que votre MT démarre dans la configuration suivante :

Donnez l'état du ruban la première fois que l'exécution de votre MT passe dans chaque état.