Reconocimiento de especies de tiburón mediante Deep Learning

Bootcamp Data Science - The Bridge - EDEM

Miguel Vela Planas

Indice

- Necesidad a resolver
- Contexto
- Modelo Deep learning
- Resultados
- ➢ Conclusiones

Necesidad a resolver

L'Oceanogràfic de Valencia quiere monitorizar las diferentes especies de tiburones de su principal hábitat, océanos, con cámaras de vigilancia para:

- Controlar la dieta de los tiburones.
- Hacer seguimiento de los animales enfermos.
- Controlar si atacan a otros animales.
- Posibilidad de implementar a futuro realidad aumentada con identificación de especies.

Contexto

L'Oceanogràfic de Valencia, integrado dentro de la Ciudad de las Artes y las Ciencias, es el mayor acuario de Europa con 110.000 metros cuadrados y 42 millones de litros de agua el cual alberga más de 20.000 ejemplares de unas 650 especies diferentes.

Contexto

- Tiburón azul o tintorera: aletas pectorales largas, coloración azul.
- <u>Tiburón ballena</u>: gran tamaño, patrón de puntos y rallas en la piel, filtrador de plancton.
- Tiburón blanco: Cuerpo robusto, aletas pectorales grandes y triangulares.
- Tiburón lamia: Cabeza aplanada y redondeada, cuerpo fornido.
- <u>Tiburón limón</u>: Coloración amarillo limón, aletas dorsales prominentes.
- Tiburón mako o marrajo: Cuerpo estilizado y afilado, aletas dorsales largas.
- Tiburón martillo: Cabeza con forma de martillo, ojos en los extremos de la cabeza

Contexto

Tiburón nodriza: Cuerpo plano, Barbillones cerca de las narinas.

<u>Tiburón peregrino</u>: Boca grande y aletas pectorales pequeñas, filtradores de plancton.

Tiburón punta blanca oceánico: Punta blanca en las aletas pectorales y dorsal, aletas de gran tamaño y coloración general gris.

<u>Tiburón punta negra</u>: Punta negra en las aletas pectorales y dorsal.

Tiburón tigre: Patrones de rayas oscuras en el cuerpo, cabeza ancha

Tiburón toro: cuero robusto y cabeza corta.

<u>Tiburón zorro</u>: Cola alargada en forma de látigo, aletas dorsales pequeñas.

Modelo Deep Learning

Se han utilizado 1904 imágenes (1520 de train y 384 de test).

Las imágenes se han obtenido de un repositorio en línea y realizando web scraping de un banco de imágenes.

Modelo Deep Learning

El modelo empleado es un modelo secuencial con capas convolucionales y densas.

Además, se ha utilizado OpenCV para mejorar y definir los contornos de las imágenes de entrenamiento con la idea que el modelo capture mejor las formas.

Diseño modelo	Acc. Checkpoint	Acc. Modelo final
Conv 64 x3 Dense 180,100	0,1279	0,1645
Resnetv2 Dense 180,100	0,0938	0,0574
Conv 32,64 Dense 100 Adam lr=0.00001	0,1488	0,1410

Diseño modelo	Acc. Checkpoint	Acc. Modelo final
Conv 64 x3 Dense 180,100 Eliminando 1 especie	0,1512	0,1325
Conv 64 x3 Dense 180,100 Eliminando 2 especies	0,0751	0,1246

Diseño modelo	Acc. Checkpoint	Acc. Modelo final
Conv 32,64x2 Dense 100 Adam lr=0.00001 Filtro Canny	0,1510	0,1875
Conv 64x3 Dense 100,180 Adam lr=0.00001 Filtro Canny	0,2240	0,2422

Clasificador de tiburones

Conclusiones

- Se necesitan más imágenes para poder entrenar el modelo y mejorar su accuracy.
- Fase inicial del proyecto, el siguiente paso es conseguir un modelo de identificación y seguimiento de individuos a través de video en directo.

