CSE 350 Digital Electronics and Pulse Techniques

Comparator and Schmitt Trigger

Course Instructor: Shomen Kundu (SDU)

Mail: shomen.kundu@bracu.ac.bd

Desk: 4N166

CSE 350

Op-Amp

Ideal characteristics of Op-Amp Open loop configuration,

- > Input current zero
- ightarrow If $V_+ > V_-$, $V_o = V_H$
- > If $V_+ < V_-$, $V_o = V_L$

Op-Amp Comparator

Comparator can be inverting and non-inverting.

In Inverting Comparator input is connected to the V_{-} terminal.

In Non-Inverting Comparator input is connected to the V_+ terminal.

Non-Inverting Comparator

Here, $V_+ = V_I$ and $V_- = V_{REF}$ We know when, $V_+ > V_ \Rightarrow V_I > V_{REF}$ $V_O = V_H$ When, $V_+ < V_ \Rightarrow V_I < V_{REF}$ $V_o = V_L$

Inverting Comparator

Here, $V_{-}=V_{I}$ and $V_{+}=V_{REF}$ We know when, $V_{+} > V_{-}$ $\Rightarrow V_{REF} > V_I$ $\Rightarrow V_I < V_{REF}$ $V_O = V_H$ When, $V_{+} < V_{-}$ $\Rightarrow V_{REF} < V_I$ $\Rightarrow V_I > V_{REF}$ $V_o = V_L$

Non-Inverting Comparator with Divider

Here, $V_{-}=0$ V [As no current is passing through V_{-} terminal]

Node analysis at V_+ terminal, $\frac{V_{+} - V_{REF}}{R_{1}} + \frac{V_{+} - V_{I}}{R_{2}} = 0$ $\Rightarrow V_{+} = V_{I} \frac{R_{1}}{R_{1} + R_{2}} + V_{REF} \frac{R_{2}}{R_{1} + R_{2}}$

$$\Rightarrow V_{+} = V_{I} \frac{}{R_{1} + R_{2}} + V_{REF} \frac{}{R_{1} + R_{2}}$$

When,
$$V_{+} > V_{-} \Rightarrow V_{I} > -\frac{R_{2}}{R_{1}} V_{REF}$$

$$V_o = V_H$$

And,

$$V_I < -\frac{R_2}{R_1} V_{REF}, \dots, V_0 = V_L$$

Inverting Comparator with Divider

Here, $V_{+} = 0 V$ [As no current is passing through V_+ terminal]

Node analysis at V_{-} terminal,

$$\frac{V_{-} - V_{REF}}{R_1} + \frac{V_{-} - V_I}{R_2} = 0$$

$$\frac{V_{-} - V_{REF}}{R_{1}} + \frac{V_{-} - V_{I}}{R_{2}} = 0$$

$$\Rightarrow V_{-} = V_{I} \frac{R_{1}}{R_{1} + R_{2}} + V_{REF} \frac{R_{2}}{R_{1} + R_{2}}$$

When,
$$V_+ > V_- \Rightarrow V_I < -\frac{R_2}{R_1} V_{REF}$$

$$V_o = V_H$$

And,

Exercise

The wave is connected as input of the given circuit. Find the output waveform of the circuit.

Given,
$$V_{\rm H} = 15 \ {
m V}$$
, $V_{\rm L} = -15 \ {
m V}$, $R1 = R2 = 10 k$, $V_{REF} = 4 \ {
m V}$

Exercise

Design a comparator circuit that will show the given transfer curve. You need to use 5 V as reference voltage.

Exercise

Design a comparator for street light control system. The photodetector detect light intensity and outputs a corresponding voltage. The detector output is 0 V when intensity of light is 0% of Max intensity and 5 V when the intensity of light Maximum. Design the comparator such that it can turn on the street light when the intensity is below 15% of the Max Light intensity.

You must satisfy all the mentioned criteria, and assume any component values accordingly.

Schmitt Trigger circuit

We will study 4 types of Schmitt Trigger circuit

- Inverting ST
- 2. Non-inverting ST
- 3. Inverting ST with Ref
- 4. Non-inverting with Ref

CSE 350

Here,
$$V_{-} = V_{I}$$
 , $V_{+} = V_{o} \frac{R_{1}}{R_{1} + R_{2}}$

We need to know previous output for calculating the next output.

Case 01:

If V_I large positive, no doubt $V_- > V_+$ $V_o = V_L$

For sustaining, $V_o = V_L$

$$V_- > V_+$$

Inspiring Excellence

$$V_I > V_L \frac{R_1}{R_1 + R_2}$$

$$\therefore V_{TL} = V_L \frac{R_1}{R_1 + R_2}$$

Case 02:

If V_I large negative, no doubt $V_- < V_+$ $V_o = V_H$

For sustaining, $V_o = V_H$

$$V_+ > V_-$$

Inspiring Excellence

$$V_H \frac{R_1}{R_1 + R_2} > V_1$$

$$V_I < V_H \; \frac{R_1}{R_1 + R_2}$$

$$V_{TH} = V_H \frac{R_1}{R_1 + R_2}$$

 V_{TH} = Upper Threshold

 V_{TL} = Lower Threshold

 V_S = Center voltage

 V_{HW} = Hysteresis width

$$V_S = \frac{V_{TH} + V_{TL}}{2}$$
 $V_{HW} = V_{TH} - V_{TL}$

If $V_L = -V_H$, $V_S = 0$

BRAC and $V_{HW} = 2 * V_H * \frac{R_1}{R_1 + R_2}$

Non-inverting ST

Non-inverting ST

Formula,
$$V_{TH} = -\frac{R_1}{R_2} V_L$$

$$V_{TL} = -\frac{R_1}{R_2} V_H$$

$$V_{S} = \frac{V_{TH} + V_{TL}}{2}$$

$$V_{HW} = V_{TH} - V_{TL}$$

$$IF V_{L} = -V_{H}$$

$$V_{S} = 0, V_{HW} = 2V_{H} \frac{R_{1}}{R_{2}}$$

Inverting ST with Ref

Inverting ST with Ref

Formula, $V_{TH} = V_{REF} \frac{R_2}{R_1 + R_2} + V_H \frac{R_1}{R_1 + R_2}$ $V_{TL} = V_{REF} \frac{R_2}{R_1 + R_2} + V_L \frac{R_1}{R_1 + R_2}$ $V_S = \frac{V_{TH} + V_{TL}}{2}$ $V_{HW} = V_{TH}^{-} - V_{TL}$ IF $V_H = -V_L$ $V_S = V_{REF} \frac{R_2}{R_1 + R_2} \text{ and } V_{HW} = 2V_H \frac{R_1}{R_1 + R_2}$

Non-inverting ST with Ref

Non-inverting ST with ref

$$V_{TH} = \frac{R_1 + R_2}{R_2} V_{REF} - \frac{R_1}{R_2} V_L$$

$$V_{TL} = \frac{R_1 + R_2}{R_2} V_{REF} - \frac{R_1}{R_2} V_H$$

$$V_S = \frac{V_{TH} + V_{TL}}{2}$$
$$V_{HW} = V_{TH} - V_{TL}$$

Inspiring Excellence

$$V_{S} = \frac{-V_{L}}{R_{1} + R_{2}} V_{REF}, V_{HW} = 2V_{H} \frac{R_{1}}{R_{2}}$$

Exercise:

- Design a Schmitt trigger that will produce the same VTC.
- b. IF the input signal of the Schmitt trigger is $x(t) = 12\cos 2\pi f t$, find the output of the Schmitt trigger circuit.

Exercise:

Suppose you want to design a street light controller. You have a sensor that gives output as voltage as proportional to the light intensity. You need to switch off the light when the output of the sensor is above 5V. You need to switch on the light when the sensor output is below the 5V. There is a noise source of 1V peak-peak. Your instructor has told you to use a Schmitt trigger circuit to improve performance. (You can assume the VH and VL value)

