Name:	Roll No:
1 (41110.	1011101

Pre-lab Quiz for EE Expt 2 / Sample Set

Duration: 10 min. Marks: 5×1 mark = 5 marks. No partial marks for any of the questions. Do your rough work in this paper itself. No extra sheets will be given. No clarifications/explanations will be given.

- 1) The inverting amplifier circuit of Expt 2 is shown in the figure, Given: $v_{in}(t) = 0.5$ sin $(\omega t + \theta)$ V of frequency 1 kHz, $R_1 = 4$ k Ω , $R_F = 1$ k Ω . Mark **all the correct options** with regard to this circuit.
 - A) The voltage gain is -4.
 - B) The voltage gain is -0.25.
 - C) V_{in} is a differential signal, and V_{out} is a single-ended signal.
 - D) V_{in} is a single-ended signal, and V_{out} is also a single-ended signal.

- G) The circuit qualifies as an amplifier because it can provide a power gain larger than unity.
- H) The circuit qualifies as an amplifier because the output voltage amplitude is larger than the input voltage amplitude.

Answer(s):	

- 2) In the circuit shown above, $R_1 = 2 \text{ k}\Omega$, $R_F = 20 \text{ k}\Omega$. Assume that the v_{out} limits are $+V_{cc}$ and $-V_{cc}$. Mark **all the correct options** with regard to this circuit.
 - A) The input $v_{in}(t)$ is a triangular wave going from -2 V to +2V. The output $v_{out}(t)$ will also be a triangular wave.
 - B) The input $v_{in}(t)$ is a square wave with the maximum and minimum levels of +2 V and -2 V. The output $v_{out}(t)$ will be a square wave with the maximum and minimum levels of +20 V and -20 V.
 - C) The input $v_{in}(t)$ is a square wave with the maximum and minimum levels of +2 V and -2 V. The output $v_{out}(t)$ will be a square wave with the maximum and minimum levels +12 V and -12 V.
 - D) If the connections to the op amp input terminals are interchanged, the circuit will not work as a linear amplifier.
 - E) If the connections to the op amp input terminals are interchanged, the circuit will work as a non-inverting amplifier.

Answer	(c)•		
Answer	usi:		

3&4) The current-to-voltage converter circuit of Expt 2 is shown in the figure. Given: $R_1 = 10 \text{ k}\Omega$, $R_F = 20 \text{ k}\Omega$, $+V_{cc} = +12 \text{ V}$, $-V_{cc} = -12 \text{ V}$.

A rectifier diode is connected as the device-under-test (DUT) with its cathode at terminal B and anode at terminal C. The diode I-V characteristic has a forward voltage drop of 0.6 V, and negligible reverse saturation current. Calculate the current through the device (I_{DUT}) and the voltage across it (V_{DUT}) at the instant when $V_{AFG} = +5.6 \text{ V}$.

$$I_{\text{DUT}} = \underline{\qquad} \text{mA}$$
 $V_{\text{DUT}} = \underline{\qquad} \text{V}$

5) In the circuit shown above, $R_1 = 10 \text{ k}\Omega$, $R_F = 20 \text{ k}\Omega$, $+V_{cc} = +12 \text{ V}$, $-V_{cc} = -12 \text{ V}$. A resistor of 2 kΩ is connected across the nodes B and C as the device-under-test (DUT). Calculate output voltage (V_{out}) at the instant when $V_{AFG} = -3 \text{ V}$.

 $V_{\text{out}} = \underline{\hspace{1cm}} V$