Задача 7. Да се докаже, че за всеки три множества A , B и C е изпълнено, че $(A \cup B) \cap C = A \cup (B \cap C) \Rightarrow A \subseteq C$.

Доказателство:

(\Rightarrow) Нека множествата A, B и C са такива, че $(A \cup B) \cap C = A \cup (B \cap C)$. Ще покажем, че $A \subseteq C$.

За целта нека $x \in A$ е произволен елемент. Тогава $x \in A \subseteq A \cup (B \cap C) = (A \cup B) \cap C$, следователно $x \in C$. Тоест за произволно $x \in A$ доказахме, че $x \in C \Rightarrow A \subseteq C$.

- (\Leftarrow) Нека $A\subseteq C$. Ще покажем, че $(A\cup B)\cap C=A\cup (B\cap C)$.
 - (\subseteq) Нека $x \in (A \cup B) \cap C$. Тогава $x \in (A \cup B)$ и $x \in C$.
 - Ako $x \in A$, to $x \in A \cup (B \cap C)$
 - Ако $x \notin A$, то $x \in B$ (тъй като $x \in A \cup B$)

Следователно, $x \in B \cap C \Rightarrow x \in A \cup (B \cap C) \Rightarrow (A \cup B) \cap C \subseteq A \cup (B \cap C)$ (тук никъде не използвахме, че $A \subseteq C$).

- (\supseteq) Нека $x \in A \cup (B \cap C)$
 - Ако $x \in A$, то $x \in A \cup B$ (тъй като $A \subseteq A \cup B$). Но $A \subseteq C$ по условие, откъдето следва че $x \in (A \cup B) \cap C$.
 - Ако $x \notin A$, то $x \in B \cap C$, откъдето следва че $x \in B \wedge x \in C$. Последното води до $x \in A \cup B$ и $x \in (A \cup B) \cap C$.