DISCHARGE LAMP LIGHTING DEVICE

Patent number:

(7P25628(6B) JP63307695 A

Publication date:

1988-12-15

Inventor:

NISHIMURA KOJI

Applicant:

MATSUSHITA ELECTRIC WORKS LTD

Classification: - international:

H05B41/18; H05B41/18; (IPC1-7): H05B41/18

- european:

Application number: Priority number(s):

JP19870141885 19870605 JP19870141885 19870605

Report a data error here

Abstract of JP63307695 A

PURPOSE: To reduce the generation of electric noise and deterioration of wiring after the quenching by repeating the igniting operation with the time sufficient for the initial start of a high-pressure discharge lamp in the time sufficient for the restart of the high-pressure discharge lamp.

CONSTITUTION: The first timer TM1 measuring the time sufficient for the initial start of a high-pressure discharge lamp DL and enabling an igniter IGN only during the measured time, the second timer TM2 repeatedly operating the first timer TM1, and the third timer TM3 prohibiting the operation of the igniter IGN after the measured time elapses are provided. When a luminescent lamp is restarted from the hot state after quenching occurs while the high-pressure discharge lamp DL is continuously lit, starting high-voltage pulses occur intermittently. An adverse effect to the acoustic equipment and computer equipment due to the occurrence of electric noise can be thereby reduced.

Data supplied from the esp@cenet database - Worldwide

BEST AVAILABLE COPY

(19)日本国特許庁(JP)

(12)特許公報 (B2)

(11)特許番号

第2562816号

(45)発行日 平成8年(1996)12月11日

(24)登録日 平成8年(1996)9月19日

(51)Int. Cl. 6

識別記号 庁内整理番号

FI

技術表示箇所

H O 5 B 41/18

340

H 0 5 B 41/18

X

340

発明の数 1

(全7頁)

(21)出願番号 😑

特願昭62-141885

(22)出願日

昭和62年(1987)6月5日

(65)公開番号

特開昭63-307695

(43)公開日

昭和63年(1988)12月15日

(73)特許権者 999999999

松下電工株式会社

大阪府門真市大字門真1048番地

(72)発明者 西村 広司

門真市大字門真1048番地 松下電工株式会

社内

(74)代理人 弁理士 倉田 政彦

審査官 関 信之

(56)参考文献 特開 昭59-221994 (JP, A)

特開 昭58-194294 (JP, A)

(54) 【発明の名称】放電灯点灯装置

1

(57)【特許請求の範囲】

【請求項1】始動に高圧パルスを要する高圧放電灯を負荷とし、上記高圧パルス発生用のイグナイタを備える放電灯点灯装置において、少なくとも上記高圧放電灯の初始動に充分な時間を計時し、該計時時間中にのみ上記イグナイタを動作可能とする第1のタイマーと、第1のタイマーを繰り返し動作させる第2のタイマーと、少なくとも上記高圧放電灯の再始動に充分な時間を計時し、該計時時間の経過後は上記イグナイタの動作を禁止する第3のタイマーとを備えて成ることを特徴とする放電灯点10灯装置。

【発明の詳細な説明】

(技術分野)

本発明は、始動に高圧バルスを要する高圧放電灯を負荷とする放電灯点灯装置に関するものである。

(背景技術)

第5図は従来の高圧放電灯点灯装置の原理説明用の回路図である。交流電源 V_1 には、限流要素たるチョークコイル L_1 を介して高圧放電灯DLが接続されている。チョークコイル L_1 は、巻線の途中にタップを備えており、高圧放電灯DLの始動用の高圧ILルスを発生するためのILルストランスを兼用している。巻線 V_1 とは夫々上記ILルストランスのI次巻線及 V_2 と次巻線に相当する。IL次巻線IL1、は、コンデンサIL2の直列回路が接続されている。IL2 は電圧応答スイッチング索子であり、コンデンサIL2の充電電圧が所定値以上となったときに導通して、トライアックIL2のが一トをトリガするものである。

第5図に示す回路の動作を第6図の波形図を参照しな

がら、簡単に説明する。第6図(イ)は高圧放電灯DLの 両端電圧、同図(ロ)はコンデンサC₂の充電電圧を夫々 示しており、実線は高圧放電灯DLの始動前の状態、破線 は高圧放電灯DLの定常点灯時の状態を示している。

高圧放電灯DLの始動前においては、高圧放電灯DLの両 端には交流電源V1の電源電圧(便宜上V1とする)と略等 しい電圧が印加されており、コンデンサC2は電源電圧V1 の各半サイクルの初期より抵抗R₁を介して充電され、コ ンデンサC2の充電電圧が電圧応答スイッチング素子Q2の 応答電圧に達すると、電圧応答スイッチング素子Q2が導 10 通し、コンデンサC2の充電電荷がトライアックQ1のゲー トに放電されて、トライアックQ₁がトリガされる。これ によって、トライアックQ₁が導通し、交流電源V₁、チョ ークコイルLiのA 次巻線Ni、コンデンサCiの閉回路が形 成され、1次巻線Mには急峻な電流が流れて、パルス状 電圧が発生する。このパルス状電圧は、2次巻線N2にも 誘起され、電源電圧V1と重畳されて、始動用高圧パルス として高圧放電灯DLの両端に印加される。これ以後、電 源電圧V1の当該半サイクルの終期まで、電圧応答スイッ チング素子Q2は導通状態を維持する。そして、上記半サ 20 イクルの終期で、電源電圧V1の極性が反転することによ り、電圧応答スイッチング素子Qzは非導通となる。電源 電圧V₁の次の半サイクルにおいても、上記の動作が繰り 返され、高圧放電灯DLには、電源電圧V₁の各半サイクル に1回づつ始動用の高圧パルスが電源電圧V1と重畳され た形で印加されることになる (第6図 (イ) の実線参 照)。

高圧放電灯DLが上記の始動用高圧バルスによって始動すると、高圧放電灯DLの両端電圧は第6図(イ)の破線に示すようになる。一般に、高圧放電灯DLの点灯状態に 30 おける両端電圧は、電源電圧V₁の約半分程度になるので、コンデンサC₂の充電電圧は、電圧応答スイッチング素子Q₂の応答電圧には達せず、第6図(ロ)の破線に示すようになり、したがって、高圧放電灯DLの点灯状態においては、トライアックQ₁がトリガされず、前述のような始動用の高圧バルスは発生しない。

第5図の回路は上記のごとき動作するものであって、 高圧放電灯DLを始動させるための高圧バルス発生回路 (いわゆるイグナイタIGN) は、高圧放電灯DLが点灯状 態になったときのみ動作を停止する。したかって、高圧 40 放電灯DLが放電灯点灯装置から切り離されている状態 (いわゆる無負荷状態) にあっても、また、高圧放電灯 DLの寿命等で高圧放電灯DLが接続されているにも拘わら す、高圧放電灯DLが定常点灯に移行できない状態にあっ ても、イグナイタIGNは動作を継続し、交流電源V₁が投 入されている間中、高圧放電灯DLの両端には、高圧バル スの印加が継続される。

このような長時間に亘るイグナイタIGNの動作は、電 気雑音の継続的発生をもたらし、音響機器やコンピュー タ機器への悪影響の可能性が増大するという問題があ る。また、第5図の回路において、イグナイタIGNと高 圧放電灯DLとの間に送り配線(いわゆる管灯回路)が介 在するような場合には、イグナイタIGNの発生する継続 的な高圧パルスの印加により送り配線が劣化したり、最 悪の場合には焼損する可能性もあった。

そこで、イグナイタIGNの動作を高圧放電灯DLの状態 に応答させるのではなく、タイマーを使用して或る一定 の時間で強制的にイグナイタIGNの動作を停止させるこ とが考えられる。ところで、高圧放電灯の場合、一旦定 常点灯状態に入った後、何らかの原因 (代表的には瞬時 停電)で立ち消えすると、その後、再始動するまでに は、例えば、5~20分程度の時間を要するのが一般的で ある。これは、高圧放電灯の定常点灯時にあっては、発 光管が極めて高温になっており、この発光管温度が充分 に低い温度に下がるまでは、前述の始動用高圧パルスで は高圧放電灯を始動させることができないからである。 したがって、前述のイグナイタIGNを停止させるまでの 或る一定の時間としては、代表的には20分程度とするの が妥当である。しかしながら、20分もの時間にわたっ て、高圧パルスの印加が継続されるのでは、前述のよう な電気雑音の継続的発生や送り配線の劣化・焼損といっ た問題を充分に解決することはできない。

そこで、高圧放電灯DLの初始動(上記立ち消え直後の 再始動と区別する意味で、最初の始動を"初始動"と称 する) に充分な時間のみイグナイタIGNを動作させるタ イマーを設け、当該時間づつのイグナイタ動作を周期的 に繰り返すことが考えられる。高圧放電灯DLの初始動に 充分なイグナイタIGNの動作時間とは、代表的には7~1 0秒であり、この短時間のイグナイタ動作を、例えば、 2分毎に繰り返すことにより、前述の再始動にも充分に 対応できると考えられる。しかしながら、このような方 式でもいわゆ無負荷の場合においては、7~10秒の断続 的な電気雑音の発生が2分毎にいつまでも繰り返される ことになり、また、前述の送り配線の劣化についても、 短期的な実効ストレスについては軽減されるものの、長 時間にわたって高圧パルス印加によるストレスを積算し て行けば、必ずしも有効とは言い切れない面がある。 (発明の目的)

本発明は上述のような点に鑑みてなされたものであり、その目的とするところは、高圧放電灯始動用の高圧 パルスの継続的印加による不都合を解消した放電灯点灯 装置を提供するにある。

(発明の開示)

本発明に係る放電灯点灯装置にあっては、上記の目的を達成するために、第1図乃至第4図に示すように、始動に高圧パルスを要する高圧放電灯DLを負荷とし、上記高圧パルス発生用のイグナイタIGNを備える放電灯点灯装置において、少なくとも上記高圧放電灯DLの初始動に充分な時間を計時し、該計時時間中にのみ上記イグナイタIGNを動作可能とする第1のタイマーTM」と、第1のタ

イマー TM_1 を繰り返し動作させる第2のタイマー TM_2 と、少なくとも上記高圧放電灯DLの再始動に充分な時間を計時し、該計時時間の経過後は上記イグナイタIGNの動作を禁止する第3のタイマー TM_3 とを備えて成るものである。

すなわち、本発明にあっては、前述の高圧パルス印加の強制的解除の思想のそれぞれの特徴を最大限に生かしながら、パルス発生期間を考えられる最小値にすることによって、前述の難点の解消を図ろうとするものであり、高圧放電灯DLの初始動に必要な時間(代表的には10 10 秒)を計時する第1のタイマーTM1を設け、この第1のタイマーTM1が一定周期(代表的には2分)で間欠的に動作するように、第2のタイマーTM2を設け、これら第1及び第2のタゴマーTM1,TM2が少なくとも高圧放電灯DLの再始動に充分な時間(代表的には20分)以上動作するように、第3のタイマーTM3を設けたものであり、第1のタイマーTM1の計時時間中にのみイグナイタIGNを動作させ、第3のタイマーTM3の計時時間の経過後はイグナイタIGNを動作させないようにしたものである。

したがって、本発明にあっては、高圧放電灯DLの点灯 20 状態継続中に何らかの原因 (例えば、瞬時停電)により 立ち消えを起こした後、高圧放電灯DLの発光管が熱い状態より再始動する場合においても、高圧放電灯DLの始動 用の高圧パルス発生が間欠的に行われるので、再始動するまで継続的に高圧パルスを発生させる従来の方式に比べて、電気雑音の発生による音響機器やコンピュータ機器への悪影響の確率が低減でき、また、イグナイタIGNと高圧放電灯DLとの間の送り配線(いわゆる管灯回路)の劣化や焼損の可能性を低減できる。のみならず、高圧放電灯DLが初始動、再始動共に不可の状態(例えば、球30切れ)に陥ったとしても、タイマーTM3の存在により上記の間欠的な高圧パルスの発生が、再始動に要する時間よりも長く継続されることはないものである。

以下、本発明の実施例について説明する。 実施例1

第1図は本発明の一実施例の回路図である。第1図の回路において、第5図の従来例と同一の機能を有する部分には、同一の符号を付して重複する説明は省略する。交流電源V1の電源電圧は、電源トランスTf1にて降圧され、全波整流回路DB1及びコンデンサC3にて整流平滑されて、第1乃至第3のタイマーTM1~TM3の制御用電源電圧が得られる。

第1のタイマー TM_1 は、汎用のタイマー $ICtm_1$ (例えば、NECの μ PC1555)と、このタイマー $ICtm_1$ の制御素子たる抵抗 R_{11} , R_{12} 及びコンデンサ C_{11} , C_{12} , C_{13} より構成されている。

第2のタイマー TM_2 は、汎用のタイマー $ICtm_2$ (例えば、ナショナルAN6780) と、このタイマー $ICtm_2$ の制御素子たる抵抗 R_{21} 及びコンデンサ C_{21} , C_{22} より構成されている。

第3のタイマー TM_3 は、汎用のタイマー $ICtm_3$ (例えば、ナショナルAN6780) と、このタイマー $ICtm_3$ の制御素子たる抵抗 R_{31} , R_{32} 及びコンデンサ C_{31} , C_{32} , C_{33} より構成されている。

トライアック Q_1 のトリガ用のコンデンサ C_2 には、全波整流回路 DB_2 の交流側端子を接続し、全波整流回路 DB_2 の直流側端子には、前述の第1のタイマー TM_1 の出力端が接続されている。タイマー TM_1 の動作開始のためのトリガは、第2のタイマー TM_2 の出力により行われ、タイマー TM_2 の動作開始のためのトリガは、第3のタイマー TM_3 の出力により行われる。

第2図は第1図回路におけるイグナイタIGNの動作状況を説明するための動作波形図である。

第2図(イ)は、タイマーICtm₃の出力端子(6番ピン)から得られるタイマーTM₃の出力信号の波形図であって、電源電圧V₁の投入後、抵抗R₃₁及びコンデンサC₃₁で決まる時刻t₃までタイマーTM₃の出力信号が発生していること示す。タイマーICtm₃は、ストップ端子(2番ピン)が "High"レベルで、リセット端子(3番ピン)が "High"レベルという条件下で発振し、リセット端子(3番ピン)は出力端子(6番ピン)に接続されているので、電源電圧V₁の投入後、時刻t₃にて出力端子(6番ピン)が "Low"レベルになった状態で発振を停止し、その後、その状態を維持する。

第2図(ロ)は、タイマー $ICtm_2$ の出力端子(6番ピン)から得られるタイマー IM_2 の出力信号の波形図であって、電源電 EV_1 の投入後、抵抗 R_{21} とコンデンサ C_{22} の値で決まる発振周期 T_2 で出力信号が発生していることを示す。ストップ端子(2番ピン)は常に"High"レベルであり、リセット端子(3番ピン)は前述の時刻 t_3 のタイミングまで"High"レベルを維持する。

第2図(ハ)は、タイマーICtm₁の出力端子(3番ピン)から得られるタイマーTM₁の出力信号の波形図であって、電源電圧V₁の投入後、タイマーICtm₁のトリガ端子(2番ピン)が"Low"レベルに落ちる度に、抵抗R₁₂とコンデンサC₁₃の値で決まる時間T₁で出力信号が"High"レベルとなっていることを示す。なお、電源電圧V₁の投入直後のタイマーICtm₂の出力は号"High"レベルであるが、抵抗R₁₁とコンデンサC₁₁の存在により、コンデンサC₁₁の端子電圧は極めて短時間(コンデンサC₁₁がタイマーICtm₁の電源電圧の1/3以上に充電されるまでの間)は"Low"レベルとなっているので、電源電圧V₁の投入直後、タイマーICtm₁はトリガされ、時間T₁の間、タイマーICtm₁の出力端子(3番ピン)は"High"レベルとなる。

第1図回路のタイマーTM」~TM』は上述のように動作するが、抵抗R」とコンデンサC2及び電圧応答スイッチング案子Qで構成されるトライアックQ」のトリガ回路に着目すると、タイマーTM」の出力が"Low"レベルの期間においては、タイマーICtm」の出力端子(3番ビン)とアー

ス端子(1番ピン)との間のバイパス回路の存在によ り、コンデンサC₂の両端がショートされていることにな り、抵抗R1を介してコンデンサC2への充電は行われず、 コンデンサC₂の充電電圧は上昇しない。したがって、ト ライアックQ1は非導通状態を維持し、高圧放電灯DLの状 態が如何なる場合においても、始動用の高圧パルスの発 生は起こらない。また、タイマーTM1の出力が"High"レ ベルの期間においては、上記トリガ回路は前述の従来例 と同様の動作を行い、高圧放電灯DLが始動した場合にお いては、その時点で高圧放電灯DLの始動用高圧パルスの 10 発生は停止され、もし、高圧放電灯DLが点灯装置から実 質的に取り外されているような場合には、いわゆる無負 荷状態にあっても、高圧放電灯DLの始動用高圧パルス は、第2図 (ハ→の期間T1にのみ発生するものであり、 しかも、少なくとも第2図(イ)の時刻ta以降において は、高圧放電灯DLがどのような状態であっても、始動用 高圧パルスの発生は行われない。

実施例2

第3図は本発明の他の実施例の回路図である。本実施例において、第1図の回路と同一の機能を有する部分に 20 は同一の符号を付して重複する説明は省略する。本実施例と第1図の回路との相違点は、第1図の回路では、抵抗R1とコンデンサC2との直列回路を高圧放電灯DLの両端に接続していたのに対し、第3図の回路では、抵抗R1とコンデンサC2との直列回路を電源電源V1の両端に接続している点である。このような回路構成を採ると、高圧放電灯DLが初始動、再始動共に可能な状況下にあっては、高圧放電灯DLの始動後少なくともタイマーTM1で決まる期間は、高圧放電灯DLが始動したかどうかに拘わらず、高圧放電灯DLが初始動、再始動共に不可の状況下にあっては、タイマーTM3、TM2、TM1の存在により、前述と同様の動作を行う。

なお、第3図の回路構成では、抵抗R1に高圧放電灯ULの始動用の高圧パルスが印加されないので、第1図の回

路構成を用いる場合に比べて、抵抗R1の耐圧についての考慮が不要になるという点で優れているものである。 実施例3

第4図は本発明のさらに他の実施例の回路図である。 本実施例において、第1図の回路と同一の機能を有する 部分には同一の符号を付して重複する説明は省略する。 第1図の回路において、電源電圧V₁の瞬時停電により高 圧放電灯DLに立ち消えが生じた場合には、タイマーTM。 に自動的にリセットがかかるが、例えば、電源電圧V1の 急減などにより高圧放電灯DLに立ち消えが生じた場合に は、タイマーTMaにリセットがかからず、交流電源Vaを 一旦オフにするまでは高圧放電灯DLの不点灯状態が継続 する。第4図の回路では、この点を考慮して、第1図の 回路にタイマーTMaのリセット要素Aを追加したもので ある。リセット要素Aは、交流電源V1の投入状態で高圧 放電灯DLが点灯状態から不点灯状態に移行したときの み、タイマーTM3へリセット信号を送るようにしたもの である。したがって、第4図の回路では、交流電源V1の 投入された状態で高圧放電灯DLが点灯状態から不点灯状 態へ移行した場合に、不点灯状態の継続が生じることを 防止できるものである。

(発明の効果)

・本発明は上述のように、高圧放電灯の初始動に充分な時間のイグナイタ動作を高圧放電灯の再始動に充分な時間以内で繰り返し行い得るようにしたので、立ち消え後の再始動が確実に行われ、しかも、電気雑音の発生や配線の劣化の可能性を可及的に低減することができるという効果がある。

【図面の簡単な説明】

第1図は本発明の一実施例の回路図、第2図は同上の動作波形図、第3図は本発明の他の実施例の回路図、第4図は本発明のさらに他の実施例の回路図、第5図は従来例の回路図、第6図は同上の動作波形図である。 DLは高圧放電灯、IGNはイクナイタ、TM1~TM3はタイマーである。

【第2図】

【第1図】

【第5図】

【第6図】

