Gaz parfait de bosons

Exercice 1: Gaz parfait de bosons, propriétés générales

On considère un système de N bosons sans spin, indépendants et soumis à un effet de confinement à l'intérieur d'une boîte rectangulaire (à deux dimensions, d=2) ou cubique (à trois dimensions, d=3) de côté L. On notera $V=L^d$ la surface ou le volume totale de la boîte.

- 1. Définir et calculer la densité d'états $\rho(\epsilon)$ à d=2,3 (réutiliser les résultats du tutorat précedent).
- 2. Rappeler l'expression de la fonction $N_B(\epsilon)$ de Bose-Einstein, qui exprime la probabilité qu'un niveau d'énergie ϵ soit occupé par un boson quand la température du système est T et son potentiel chimique μ . On notera $\beta = 1/(k_{\rm B}T)$ où $k_{\rm B}$ désigne la constante de Boltzmann.
- 3. Quelle condition fixe le potentiel chimique μ ? Montrer que si le volume V est fini, on a $\mu < 0$ pour un gaz parfait de Bosons.

Exercice 2: Gaz parfait de bosons à deux dimensions

- 1. Calculer la fonction qui lie μ à la densité superficielle n=N/V et à la temperature T dans la limite $V\to\infty$ en supposant que $\mu<0$. Tracer la courbe représentant μ en fonction de n, à T fixé. Montrer que l'hypothèse $\mu<0$ est verifiée pour toute valeur finie de n et que $\mu\to0$ quand $n\to\infty$. En conclure que le phénomène de condensation de Bose-Einstein ne se produit pas à deux dimensions.
- 2. Calculer μ en fonction de T à n fixé. Montrer que $e^{\beta\mu}=1-e^{-T_0/T}$ et donner l'expression de la temperature T_0 . En utilisant cette expression, écrire l'énergie du gaz pour $T\gg T_0$ et pour $T\ll T_0$ en utilisant l'égalité $\int_0^\infty dx \frac{x}{e^x-1}=\frac{\pi^2}{6}$. Commenter les deux résultats.

Exercice 3: Gaz parfait de bosons à trois dimensions

On considère maintenant le gaz à trois dimensions, et on discutera le phénomène de condensation de Bose-Einstein. Il sera utile d'introduire la fugacité $z=e^{\beta\mu}$. Vous serez amenés á utiliser les fonctions suivantes:

$$g_{\ell}(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^{\ell}} = \frac{1}{\Gamma(\ell)} \int_0^{\infty} \frac{x^{\ell-1} dx}{z^{-1} e^x - 1},\tag{1}$$

appelées quelque fois fonctions polylogarithmiques. Vous aurez à envisager les valeurs $\ell=3/2$ et 5/2. Pour $z\ll 1$, $g_\ell(z)\simeq z$, mais vous aurez surtout besoin d'examiner le comportement de $g_\ell(z)$ quand $z\to 1^-$. Pour $\ell>1,$ $g_\ell(1)=\zeta(\ell),$ où ζ est la fonction de Riemann, ce qui donne $g_{3/2}(1)=\zeta\left(\frac{3}{2}\right)\simeq 2,612$ et $g_{5/2}(1)=\zeta\left(\frac{5}{2}\right)\simeq 1,342.$ On rappelle que $\Gamma\left(\frac{3}{2}\right)=\sqrt{\pi}/2$ et que $\Gamma\left(\frac{5}{2}\right)=3\sqrt{\pi}/4.$ 1. Dans la limite $V\to\infty$ et en supposant que $\mu<0$, montrer que la condition qui lie μ à la densité n=N/V et à la temperature T est

$$n = \frac{1}{\Lambda^3} g_{3/2}(z) \ . \tag{2}$$

où Λ est la longueur d'onde thermique. Tracer de façon schematique la courbe représentant n en fonction de μ , à T fixé, et comparer avec le résultat obtenu à deux dimensions. Montrer que à trois dimensions n reste fini quand $\mu \to 0$ et trouver la valeur de densité n_c qui correspond à la limite $\mu \to 0$. Ceci semble conduire a une contradiction, parce que aucun valeur de μ ne correspond aux densités $n > n_c$.

2. Cette contradiction apparente nous amène à reflechir mieux aux hypothèses qu'on a fait. Quand on augmente la densité et on approche la limite $n \to n_c^-$, on trouve que $\mu \to 0^-$, ce qui contradit l'hypothèse qu'on a fait pour trouver l'equation (2). Répéter donc le calcul de la densité en fonction du potentiel chimique qu'on a fait au point 1 toujours en considerant V très grand, mais maintenir separée la contribution de l'état fondamental. Montrer qu'on trouve la condition

$$n = \frac{1}{V} \frac{1}{1-z} + \frac{1}{\Lambda^3} g_{3/2}(z) . \tag{3}$$

En déduire qu'il y un problème d'échange de limites entre $V \to \infty$ et $\mu \to 0$.

3. Sachant que pour $z \to 1^-$ on a $g_{3/2}(z) = g_{3/2}(1) - C\sqrt{1-z}$, montrer que pour V très grand:

$$z(n,T) = \begin{cases} z_0(n,T) , & n < n_c , \\ 1 - \left(\frac{\Lambda^3}{CV}\right)^{2/3} , & n = n_c , \\ 1 - \frac{1}{V} \frac{1}{n - n_c} , & n > n_c . \end{cases}$$
 (4)

où $z_0(n,T)$ est la solution de l'equation (2). Tracer de façon schematique la courbe représentant z en fonction de n. Discuter la limite $V \to \infty$.

- 4. Déduire du résultat précédent que le nombre de bosons dans l'état fondamental est donné par $N_0 = V(n n_c)$ pour $n > n_c$, et donc diverge quand $V \to \infty$. On appelle ce phénomène condensation de Bose-Einstein.
- 5. A chaque temperature T, on trouve une densité critique $n_c(T)$. Donner l'expression de $n_c(T)$. On definit une temperature critique $T_c(n)$ à travers de l'inversion de cette relation. Donner l'expression de $T_c(n)$. Tracer le diagramme de phase du gaz dans le plan (n, T).
- 6. Dans la même approximation qui conduit à l'equation (3), calculez l'expression de la fonction de partition grand canonique au dessus et en dessous de T_c . En déduire l'expressions du grand potentiel

$$\Omega = T \log(1-z) - \frac{TV}{\Lambda^3} g_{5/2}(z) ,$$
 (5)

de la pression, de l'énergie interne, et de l'entropie du système. Discutez les limites de haute et basse température.

- 7. Quelle est la différence avec le rayonnement du corps noir vu en travaux dirigés?
- 8. Recherche personnelle: quelles sont les réalisations expérimentale de cette "condensation de Bose-Einstein"? A quelles densités et températures correspondent-elles? Comparer avec l'expression de $T_c(n)$ qu'on a trouvé pour le gaz parfait.