

- Agrupamento Vertical de Ourique -

ESCOLA EB2,3/S de Ourique

Relatório da Atividade Laboratorial A.L. 1.2

Data de realização: 12 de novembro de 2014;

Disciplina: Física e Química A;

Discentes:

Henrique Dias, nº 12;

João Pratas, nº14;

Mariana Jorge, nº 18;

Mollie Brooke, nº 19.

1 ÍNDICE

1	Índice	1
2	Objetivos	
3	Introdução	3
4	Material utilizado	4
5	Reagentes	5
6	Procedimento experimental	6
7	Observações	8
8	Tratamento e Análise dos Resultados Experimentais	9
9	Conclusão	. 11
10	Bibliografia e Webgrafia	. 12

2 OBJETIVOS

O objetivo da atividade experimental foi descobrir como reconhecer elementos químicos constituintes de sais não identificados. Para respondermos a esta questão, baseámo-nos no princípio de que a cor da chama de cada elemento a arder o identifica.

3 Introdução

Na atividade experimental elaborada no dia 5 de novembro de 2014, analisámos diversas amostras de sais de forma a identificarmos os elementos químicos neles presentes.

Um **elemento químico** caracteriza-se por todos os átomos que possuem um número de protões iguais (o mesmo número atómico, *Z*). O elemento Oxigénio, por exemplo, caracteriza-se por possuir 8 (oito) protões na sua constituição.

No seguimento da explicação anterior, os átomos são **corpúsculos** – todo aquilo que pelo qual a matéria é constituída. **Corpúsculos** podem ser **átomos, moléculas** ou **iões**. O modelo atualmente mais aceite pela comunidade científica para representar um átomo é o **modelo da nuvem eletrónica**.

Modelo da Nuvem Eletrónica

Sais são compostos químicos moleculares – compostos por moléculas - constituídos por um catião, o ião positivo, e por um anião, o ião negativo. Estes compostos são formados através de reações químicas que neutraliza a carga da molécula. Na tabela seguinte pode visualizar a formação de diversos sais:

Composto Químico	Equação Química
Cloreto de Sódio	Na ⁺ + Cl ⁻ →NaCl
Cloreto de Cálcio	Ca ⁺ + Cl ⁻ → CaCl
Sulfato de Cobre (II)	$Cu^+ + SO_4^- \rightarrow CuSO_4$

Esta atividade experimental identifica-se como A.L. 1.2 do Caderno de Atividades Laboratoriais do conjunto "Jogo de Partículas A 10º ano" da editora Texto.

4 MATERIAL UTILIZADO

Os materiais utilizados na realização desta atividade laboratorial foram os seguintes:

- 6 Cadinhos;
- Álcool Etílico (Etanol) 70%
- Álcool Etílico (Etanol) 96%;
- Fósforos;
- Espátulas;
- Sais cujos catiões correspondiam aos seguintes elementos:
 - o Potássio;
 - o Sódio;
 - o Cobre;
 - o Lítio;
 - o Bário;
 - o Cálcio.

Cadinho

Etanol 96%

Fósforos

Espátulas

Diversos Sais

5 REAGENTES

Na atividade laboratorial foi necessário o uso de diversos reagentes químicos que são as diversas substâncias que são consumidas durante o decurso de reações químicas.

Conjunto de Reagentes

Os reagentes químicos utilizados durante esta atividade prático-laboratorial foram os seguintes, listados numa tabela:

Nome	Fórmula Química	Concentração (em caso de solução)
Etanol (Álcool Etílico)	C ₂ H ₆ O	96%
Etanol	C ₂ H ₆ O	70%
Potássio	K	
Sódio	Na	
Cobre	Cu	Não aplicável pois estes reagentes não
Lítio	Li	são soluções.
Bário	Ва	
Cálcio	Ca	

6 PROCEDIMENTO EXPERIMENTAL

No início da atividade experimental, os três grupos existentes dividiram-se por três carteiras da sala. Nós fomos para a maior mesa da sala que se localizava num dos seus cantos. O segundo grupo juntou duas carteiras de forma a ter espaço suficiente. O terceiro grupo localizou-se na carteira à frente da bancada central que contém uma torneira.

De seguida, todos os grupos receberam os seus respetivos materiais sendo que cada grupo ficou com dois tipos de sais e a professora desligou as luzes da sala para que os alunos pudessem visualizar melhor a cor da chama.

Realização do Teste da Chama

Começámos por colocar um pouco de etanol no cadinho, iniciando a sua combustão com um fósforo. Logo se seguida, utilizámos a espátula para retirar um pouco de **Potássio** do recipiente que o continha, colocando-o dentro do cadinho com o etanol (cuja chama é azul) em combustão. Com isto, podemos verificar que a cor da chama correspondente ao elemento Potássio é **lilás.** Depois desta verificação, cessámos a combustão que estava a decorrer bloqueando o oxigénio (comburente) que chegava ao combustível.

Cadinho semelhante aos utilizados

Seguidamente repetimos o processo cinco vezes de forma a conhecermos a cor da chama dos elementos sódio, cobre, lítio, bário e cálcio. A cor das chamas é, respetivamente, amarelo, verde, rosa, laranja e vermelho.

Espetroscópio de Bolso

Depois, tentámos observar o espetro de cada um dos elementos anteriormente observados através de um espetroscópio de bolso porém, devido a problemas técnicos de iluminação, não podemos observar os espetros com clareza suficiente de forma a pudermos registar a cor dos mesmos.

7 OBSERVAÇÕES

Seguidamente encontram-se os registos de todas as observações efetuadas começando com a cor da chama de cada elemento.

Amostra	Cor da Chama	Elemento (catião) presente na amostra	Descrição sumária do espetro
Α	Lilás	Potássio	
В	Amarelo	Sódio	
С	Verde	Cobre	Devido a problemas técnicos de iluminação, não podemos visualizar os espetros.
D	Rosa	Lítio	
E	Laranja	Bário	
F	Vermelho	Cálcio	

8 Tratamento e Análise dos Resultados Experimentais

Depois de obtermos os resultados, conseguimos alcançar, em parte, o nosso objetivo. Verificámos, através do nosso Caderno de Atividade Laboratorial e da InfoEscola, que a chama dos seguintes elementos tem, efetivamente, a cor que observámos: **potássio, sódio, cobre** e **cálcio** ou seja, as cores lilás, amarelo, verde e vermelho, respetivamente.

Chama verde, característica do elemento Cobre (Cu)

Porém, os resultados que obtivemos em relação aos elementos **lítio** e **bário** não foram os esperados. O resultado que deveríamos ter obtido em relação ao lítio deveria ser **avermelhado** e não rosa. Devíamos ter obtido uma chama **verde-azulada** para o bário porém obtivemos uma chama laranja.

Chama avermelhada, característica do elemento Lítio (Li)

Isto deveu-se ao facto de termos colocado os sais dentro do etanol a arder. Deveríamos ter colocado os sais dentro de uma espátula um pouco acima da chama do etanol a arder para que este

entrasse em combustão e a sua chama não se misturasse com a do álcool etílico **ou** poderíamos ter utilizado um bico de Bunsen, tal como sugerido no Caderno de Atividades Laboratoriais, de forma a minimizar a probabilidade de erro.

Bico de Bunsen

Também não registámos os espetros dos elementos pois, devido a problemas relacionado com a iluminação, não foi possível observar os espetros dos diversos elementos com clareza.

9 CONCLUSÃO

Concluímos que é possível identificar um elemento através da cor da sua chama. Para que possamos observar a chama de cada elemento com clareza, devemos efetuar a atividade experimental de forma rigorosa, não cometendo quaisquer erros.

Então, para reconhecer elementos químicos constituintes de sais não identificados – o problema – devemos recorrer ao **teste da chama**.

A análise elementar por via seca (ou teste da chama) consiste na queima de diversas amostras, que estão no estado sólido, de forma a observar a cor da chama emitida. Esta cor é característica de cada elemento porém devemos sempre confirmar a identificação de um elemento ao analisar o seu espetro através de um espetroscópio.

Análise Elementar por Via Seca

10 BIBLIOGRAFIA E WEBGRAFIA

Dantas, M. d. (2014). Jogo de Partículas A . Texto.

InfoEscola. (s.d.). *Teste da Chama - Química - InfoEscola*. Obtido em 18 de 11 de 2014, de InfoEscola: http://www.infoescola.com/quimica/teste-da-chama/

Os sais - Mundo da Educação. (s.d.). Obtido em 15 de 11 de 2014, de Mundo da Educação: http://www.mundoeducacao.com/quimica/os-sais.htm