

Frequency

• Frequency is how often something occurs.

Frequency Distribution

• A frequency distribution tells how frequencies are distributed over values.

Summarizing Data

• We can derive Summary about the data with the help of these characteristics of Frequency Distribution, Lets see how!

Modality

- Tells you about the peaks in the distribution
- The modality of a distribution is determined by the number of peaks it contains.

Symmetry

Skewness

Normal Distribution

A Data is normally Distributed if your data is symmetrical, bell-shaped and unimodal.

Measures Of Central Tendency (mean, median, mode)

- Describe the "location" of the data
- Fail to describe the "shape" of the data
 - mean ="calculated average"
 - median ="middle value"
 - mode ="most occurring value

Mean vs. Median

- The mean can be influenced by outliers.
- The mean of {2,3,2,3,2,12} is 4
- The median is 2.5
- The median is much closer to most of the values in the series!

Measures Of Spread (Range, Variance and SD)

- How wide individuals values are distributed
 - Range Max Min
 - range should suggest how diversely spread out the values are
 - Standard Deviation and Variance –
 Deviation from the Mean
 - How far a set of numbers is spread out from their average value.

Coefficient Of Variation

It represents the ratio of the standard deviation to the mean.

- Less Coefficient of variance means less risk and more consistency.
- More coefficient of variance means more risk and less consistency.

Box and Whisker plots

Helps you find Outliers

Causation

• Does Age 'cause' Hair loss?

Causation

• Does Age 'cause' Hair loss? - NO

Correlation vs Covariance

Covariance vs Correlation

BASIS FOR COMPARISON	COVARIANCE	CORRELATION
Meaning	Covariance is a measure indicating the extent to which two random variables change in tandem.	Correlation is a statistical measure that indicates how strongly two variables are related.
Values	Lie between -∞ and +∞	Lie between -1 and +1

Central Limit theorem

- Population mean $-\mu$ Population SD $-\sigma$
- •Take sufficiently large random samples from the population with replacement, then the distribution of the sample means will be approximately normally distributed

Standard Error

• Standard error of the mean describes how far the sample mean may be deviated from the population mean

Confidence Interval

A **Confidence Interval** is a range of values we are fairly sure our true value lies in

A margin of error tells you how many percentage points your results will differ from the real population value

ME = z * SE
 Where z is the z score, and SE is the Standard Error

HYPOTHESIS TESTING STEPS

- I. State the Null Hypothesis (H0) and Alternate Hypothesis (H1)
- 2. Choose the Level of Significance
- 3. Find Critical Values
- 4. Find test Statistic
- 5. Draw your conclusion

Null and Alternate Hypothesis

Null Hypothesis

 H_0

A statement about a population parameter.

We test the likelihood of this statement being true in order to decide whether to accept or reject our alternative hypothesis.

Can include =, ≤, or ≥ sign.

Alternative Hypothesis

 H_a

A statement that directly contradicts the null hypothesis.

We determine whether or not to accept or reject this statement based on the likelihood of the null (opposite) hypothesis being true.

Can include a ≠, >, or < sign.

Level of Significance

• The **significance level**, also denoted as alpha or α , is the **probability** of rejecting the null hypothesis

Critical Values

In hypothesis testing, a critical value is a point on the test distribution that is compared to the test **statistic** to determine whether to reject the null hypothesis Critical Critical Value Value

Test Statistc

• A **test statistic** is a random variable that is calculated from sample data and used in a hypothesis **test**.

 You can use test statistics to determine whether to reject the null hypothesis.

Test statistic	Associated test	Sample size	Information given	Distribution	Test question
z-score	z-test	large samples (n > 30)	 Standard deviation of the population (this will be given as σ) Population mean or proportion 	Normal	Do these two populations differ?
t-statistic	t-test	Two small samples (n < 30)	 Standard deviation of the sample (this will be given as s) Sample mean 	Normal	Do these two samples differ?
f-statistic	ANOVA	Three or more samples	 Group sizes Group means Group standard deviations	Normal	Do any of these three or more samples differ from each other?
chi- squared	chi-squared test	Two samples	Number of observations for each categorical variable	Any	Are these two categorical variables independent?