

Predicting Student Performance for Targeted Intervention

15.072: Advanced Analytics Edge

Professor Rahul Mazumder

N. Nerur, B. Olafsson, J. Pinter, A. Xie, & Y. Yu

Meet Jimmy

A high school junior at risk of failing

Jimmy's Challenges:

- Struggles to focus during lectures and falls behind in class
- Lacks access to tutoring and a quiet study space due to financial difficulties

Impact on his Academic Performance:

- Struggles with foundational concepts, especially in math
- Dreams of attending college, a dream difficult to realize without support

Relevance to our Project:

- Identify key factors in academic success and struggles like Jimmy's
- Guide interventions for support tutoring, counseling, additional resources
- Focused support for students like Jimmy to succeed

Existing Methods

Traditional Methods:

- Descriptive statistics and regression analysis
- Identify correlations between variables and academic outcomes
- Limitations: Overlook non-linear relationships and complex patterns

Recent Advancements:

- Machine learning algorithms show promise e.g., Naïve Bayes and K-Nearest Neighbor
- Enhanced prediction accuracy on educational datasets

Limitations of Current Approaches:

- Data challenges: Limited sample sizes, data acquisition difficulties
- Methodological issues: Reliance on few algorithms, single-point data collection
- Interpretability concerns: Complex models sacrifice interpretability

Datasets – Original & Augmented

Kaggle dataset

- Target Variable:
 - Final exam score (Regression)
- Feature groups:
 - Classroom discipline: Hours_Studied, Attendance
 - Home environment: Parental_Involvement, Family_Income, Internet_Access
 - Extracurricular: Extracurricular_Activities, Physical_Activity
- Data Augmentation
 - Balanced class distribution using Synthetic Minority Oversampling Technique (SMOTE)
 - Generate new datapoints that resemble distribution of existing data with Gaussian Mixture Models (GMMs)

Feature Engineering

- Class Engagement Interaction
 - Hours Studied * Attendance
- Home Support
 - Parental Involvement * Access to Resources
- Learning Engagement
 - Motivation Level * Tutoring Sessions
- Study Sleep Ratio
 - Hours Studied / Sleep Hours
- Health Balance
 - Physical Activity * Sleep Hours

MiT

Correlation Matrix for Numeric Features

1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

Feature Relationship with Target

Bin	Count
Excellent	2131
Good	1625
Average	1468
Low	1383

Regression

Classification

Regression Models Overview

Model Groups	Interpretability	Drawbacks	
Linear Models (Linear Regression, Lasso L1 Regularization, Ridge L2 Regularization, Elastic Net L1-L2)	 Coefficients have direct and intuitive interpretations. Easy to explain to non-technical stakeholders. 	 Assumes linear relationships, which may not capture complex patterns. Sensitive to outliers and multicollinearity. 	
Individual Regression Decision Tree	 Provides visual explanations through the tree structure. Easy to interpret feature splits and decision rules. 	 Prone to overfitting without pruning or regularization. Less stable (small changes in data can lead to different trees). 	
Ensemble Black Box Methods (Random Forest, Gradient Boosting, Neural Networks)	 Difficult to interpret as they combine multiple models. Techniques like SHAP or feature importance can help explain predictions. 	 Computationally intensive. Require more tuning and may lack transparency for decision-making. 	

Regression: Baseline Results

Best Baseline Model: Linear Regression

Out-of-Sample R-Squared: 77.11%

Regression: Hyperparameter Tuning

Best Model: Elastic Net

Out-of-Sample R-Squared:

77.14%

ElasticNet: Key Features

Regression: Hyperparameter Tuning

Bayesian Optimization: Uses probabilistic models to predict the performance of hyperparameters and selects the most promising ones to test

Best Hyperparameters

- Best $\alpha \approx 0.004$
 - Controls the overall strength of regularization. A smaller α indicates weaker regularization, meaning the model relies more on the data itself and less on regularization penalties
 - Makes sense because linear regression performs very well already without tuning
- Best L1 Ratio (ρ) ≈ 0.5
 - Specifies the balance between L1 (Lasso) and L2 (Ridge) regularization
 - The model is applying an equal mix of Lasso (sparsity) and Ridge (shrinkage)

Regression: Ensembling (Tuned Models)

Best Model: Elastic Net, Ridge, and Linear Regression

Out-of-Sample R-Squared: 77.10%

Ensembling is unnecessary

Classification Models Overview

Model Groups	Interpretability	Drawbacks	
Instance-Based Models (K-Nearest Neighbors)	Simple, intuitive approachNo assumptions about distribution	Computationally intensiveSensitive to feature scaling and irrelevant features	
Kernel-Based Models (Support Vector Machine)	Effective for both linear and non- linear decision boundariesRobust to high-dimensional datasets	Difficult to interpretRequires careful parameter tuning for optimal performance	
Neural Network Models	- Flexible and capable of capturing complex non-linear relationships	 Black-box nature limits interpretability significant computational resources and prone to avoid overfitting 	

Classification: Baseline Results

Key Insights

Best Baseline Model: Logit

Classification: Tuned Results

Key Insights

a clear improvement in model performance after fine-tuning.

Best Tuned Models: SVC >= Logit (achieving near-optimal AUC scores of 0.99)

Classification Recommendation

Table II: Fine-Tuned Model Performance Metrics

Model	Accuracy (In-Sample)	Accuracy (OOS)	F1 (In-Sample)	F1 (OOS)
Support Vector Machine	0.962	0.963	0.962	0.963
Logistic Regression	0.952	0.955	0.952	0.955
Neural Network	0.964	0.937	0.964	0.938
XGBoost	0.996	0.870	0.996	0.871
Random Forest	0.997	0.759	0.997	0.756
Naive Bayes	0.679	0.695	0.683	0.700
K-Nearest Neighbors	1.000	0.685	1.000	0.688
CART	0.855	0.655	0.854	0.655

We recommend Logistic Regression as the primary model, offering a strong balance between performance and interpretability!

Using Augmented Data for Classification

Key Insights

- AUC scores remained consistently high across models, suggesting good classification ability
- SVM achieved perfect (1.0) insample accuracy & 0.95 out-ofsample accuracy

Regression: Original vs. Augmented Data

Key Insights

- GMM augmentation unnecessarily added noise to numeric values
- Additional observations not worth the irreducible error

Key Results

Classification

- Binned students into 4 performance levels
- Achieved AUC of 95% on original test data with Logistic Regression
- Maintained AUC of 95% on augmented data with SVMs

Regression

- Predicted final exam scores
- Achieved OSR² of 77.1% on original test data with ElasticNet
- Augmentation decreased OSR² to 59.2%

Impact

- Enables targeted intervention of struggling students
- Equitable access to quality education