CS 267: Automated Verification

Lectures 4: μ-calculus

Instructor: Tevfik Bultan

μ-Calculus

 μ -Calculus is a temporal logic which consist of the following:

- Atomic properties AP
- Boolean connectives: ¬ , ∧ , ∨
- Precondition operator: EX
- Least and greatest fixpoint operators: μ y . $\mathcal F$ y and ν y. $\mathcal F$ y
 - $-\mathcal{F}$ must be syntactically monotone in y
 - meaning that all occurrences of y in within \mathcal{F} fall under an even number of negations

μ-Calculus

- μ-calculus is a powerful logic
 - Any CTL* property can be expressed in μ-calculus
- So, if you build a model checker for μ-calculus you would handle all the temporal logics we discussed: LTL, CTL, CTL*
- One can write a μ-calculus model checker using the basic ideas about fixpoint computations that we discussed
 - However, there is one complication
 - Nested fixpoints!

Mu-calculus Model Checking Algorithm

eval(f: mu-calculus formula): a set of states

```
case: f \in AP return \{s \mid L(s,f)=true\};
case: f \equiv \neg p return S - eval(p);
case: f \equiv p \land q return eval(p) \cap eval(q);
case: f \equiv p \lor q return eval(p) \cup eval(q);
case: f \equiv EX p return EX(eval(p));
```

Mu-calculus Model Checking Algorithm

```
eval(f) ... case: f = \mu y \cdot g(y) y := False; repeat { y_{old} := y; y := eval(g(y)); } until y = y_{old} return y;
```

Mu-calculus Model Checking Algorithm

```
eval(f)
...

case: f = v y \cdot g(y)

y := True;

repeat {

y_{old} := y;

y := eval(g(y));
} until y = y_{old}

return y;
```

Nested Fixpoints

Here is a CTL property

EG EF
$$p = v y \cdot (\mu z \cdot p \vee EX z) \wedge EX y$$

- The fixpoints are not nested.
- Inner fixpoint is computed only once and then the outer fixpoint is computed
- Fixpoint characterizations of CTL properties do not have nested fixpoints
- Here is a CTL* property
 EGF p = v y . μ z . ((p v EX z) ∧ EX y)
 - The fixpoints are nested.
 - Inner fixpoint is recomputed for each iteration of the outer fixpoint

Nested Fixpoint Example

0 |= EG EF p

EG EF p =
$$v$$
 y . (μ z . p v EX z) \wedge EX y

 \mathcal{F}_1

EG {0,1} fixpoint

 $S=\{0,1,2\}$

$$\varnothing$$
 S={0,1,2}
 $\mathcal{F}_{1}(\varnothing) = \{1\}$ $\mathcal{F}_{2}(S) = \{0,1\}$
 $\mathcal{F}_{1}^{2}(\varnothing) = \{0,1\}$ $\mathcal{F}_{2}^{2}(S) = \{0\}$
 $\mathcal{F}_{1}^{3}(\varnothing) = \{0,1\}$ $\mathcal{F}_{2}^{3}(S) = \{0\}$

EG EF
$$p = \{0\}$$

$$0 \not\models EGF p$$

$$EGF p = v y . \mu z . ((p v EX z) \wedge EX y)$$

$$\mathcal{F}_3$$

nested fixpoint

\mathcal{F}_3	У	Z
0,0	{0,1,2}	\varnothing
0,1		{1}
0,2		{0,1}
0,3		{0,1}
1,0	{0,1}	\varnothing
<u>1,1</u>		\varnothing
2,0	Ø	\varnothing
2,1		\varnothing
3,0	Ø	

EGF p =
$$\emptyset$$