Boomhower (2019):

Drilling Like There's No Tomorrow: Bankruptcy, Insurance, and Environmental Risk

Hulai Zhang

Env.Climate

June 24, 2025

Central Research Question

- The effect of bankruptcy protection on industry structure and environmental outcomes
- Judgment-proof problem
 - Firms with assets less than their potential worst-case liabilities face inadequate incentives for safety.
 - This can lead to excessive environmental and public health risks.
- The study uses oil and gas extraction in Texas as a case study, exploiting a change in insurance requirements.

The Judgment-Proof Problem: Key Distortions

The ability to discharge debts in bankruptcy can distort behavior and markets:

• **Distorted Safety Incentives:** Firms are insulated from the full cost of worst-case outcomes, leading them to take on excessive environmental risk.

Distorted Industry Structure:

- Bankruptcy protection creates a private cost advantage for small, undercapitalized firms.
- This may increase the market share of small firms, even if larger firms have lower social costs of production.

Distorted Production Decisions:

It may encourage low-value production where social cost exceeds social benefit.

The Texas Oil & Gas Industry

This industry is an ideal setting to study the judgment-proof problem:

- **High Environmental Risk:** Onshore production carries significant risk of groundwater contamination from oil, gas, and wastewater.
- Many Small Producers: The industry includes thousands of small operators, many with few assets besides their income from oil and gas.
- Pervasive Regulatory Challenge:
 - Before the policy change, Texas was unable to collect 68% of assessed penalties for rule violations.
 - The most common reason was firm bankruptcy.

Policy Response & Natural Experiment

- A common policy tool to mitigate the judgment-proof problem is requiring **financial assurance** (e.g., bonds or insurance).
- This paper exploits a natural experiment: Texas Senate Bill 310.
 - Passed in 2001, it mandated that all oil and gas producers post a bond to cover environmental damages.
 - Implementation was phased in from March 2002 to February 2003.
- Most firms (97%) purchased surety bonds from private insurers.
 - This forced firms to internalize expected environmental costs through ongoing, risk-based premium payments.

Empirical Design

Regression Discontinuity (RD):

- Exploits the sharp policy change at a firm's annual license renewal month.
- The timing of renewal is exogenously assigned by the regulator.

Event Study / Difference-in-Differences:

- Leverages the quasi-random 12-month phase-in of the policy.
- It compares firms that have just become bonded to those not yet bonded in the same time period.

Data Sources

A novel dataset was constructed by merging administrative databases from the **Railroad Commission of Texas (RRC)**.

- **Production & Ownership:** Monthly production data for 257,318 leases from 1993-2012.
- Firms: Entry and exit dates for 10,489 producers.
- Environmental Outcomes:
 - Orphan Wells: Wells abandoned by insolvent firms without being safely plugged. A major source
 of groundwater contamination.
 - Rules Violations: Field inspection records for violations of "Water Protection" and "Plugging" rules.
 - Well Blowouts: Records of blowouts and well control problems.

Descriptive Evidence: Small Firms, Large Share of Problems

The smallest firms, which account for 20% of total production, were associated with:

- 100% of orphan wells
- 98% of field rules violations
- 41% of well blowouts

This highlights the potential scale of the limited liability problem.

Firm-Level Results: Exit

1[Exit]_{it} =
$$\alpha + \beta_1$$
1[Implemented]_t + $\beta_2 T_t + X_t \beta_3 + \eta_{it}$ (1)

Firm-Level Results: Exit

Panel E Eith quintile

	Q1	Q2	Q3	Q4	Q5
1[Implemented]	0.093	0.126	0.058	0.030	0.007
	(0.041)	(0.015)	(0.024)	(0.020)	(0.013)
Constant	0.220	0.158	0.091	0.061	0.063
	(0.016)	(0.012)	(0.020)	(0.018)	(0.008)
Observations	1,872	2,064	2,220	2,424	2,557

- The effect was strongly concentrated among **small firms**.
 - >10 p.p. increase for the smallest firms.
 - No effect for the largest firms.

Firm-Level Results: Production Reduction

	(1)	(2)	(3)
1[Bonded]	-0.036		
450 1 11 04 4	(0.013)	2 2 4 2	
$1[Bonded] \times Q1-4$		-0.048	
4FD 1 11 04		(0.017)	0.400
$1[Bonded] \times Q1$			-0.108
			(0.065)
$1[Bonded] \times Q2$			-0.059
			(0.036)
$1[Bonded] \times Q3$			-0.043
			(0.032)
$1[Bonded] \times Q4$			-0.018
			(0.018)
$1[Bonded] \times Q5$		-0.004	-0.004
		(0.016)	(0.016)

$$\ln \left(\text{ Production }_{it} \right) = \gamma + \psi \mathbf{1} \left[\text{ Bonded } \right]_{it} + \delta_i + \tau_t + \nu_{it}$$

Lease-Level Results: Reallocation

	Observations	Impl. Year (%)	Baseline (%)	Excess (%)				
	Panel A: Transfers, All Leases							
Q1-3	83,310	16.1	9.4	6.6				
Q4	86,442	11.2	9.8	1.4				
Q5	261,090	10.0	10.8	-0.8				
Panel B: Transfers, High-Quality Leases								
Q1-3	9,621	13.3	4.0	9.3				
Q4	11,505	11.0	10.2	0.8				
Q5	92,576	11.2	11.6	-0.4				
Panel C: Shut-ins, All Leases								
Q1-3	83,310	6.2	4.2	2.0				
Q4	86,442	3.8	3.7	0.0				
Q5	261,090	4.4	4.1	0.2				
Panel D: Shut-ins, Low-Quality Leases								
Q1-3	35,787	9.1	6.7	2.4				
Q4	27,734	5.9	5.7	0.2				
Q5	38,433	7.4	7.3	0.1				

Lease-Level Results: Reallocation

What happened to the wells operated by small firms?

• Reallocation (Prediction I):

- There was a 6.6 percentage point "excess" rate of lease transfers from small firms to other operators during the policy implementation year.
- These transfers were concentrated among relatively high-quality (i.e., high-producing) leases.

Shutdown (Prediction II):

- There was a 2.0 percentage point "excess" rate of lease shut-ins by small firms.
- These shut-ins were concentrated among low-quality (i.e., low-producing) leases, where environmental risk is most likely to exceed the value of production.

Lease-Level Results: Environmental Outcomes

Lease-Level Results: Environmental Outcomes

The policy led to sharp improvements in environmental performance.

• Orphan Wells:

- The rate of well orphaning fell dramatically and permanently.
- The policy reduced the industry-wide orphan well rate by 65%.
- This represents an approximately 70% decrease in orphan wells created by insolvent firms.
- The effect was driven entirely by small producers.

Rules Violations:

• The industry-wide rate of water protection rule violations fell by 25%.

Well Blowouts:

• The rate of well blowouts per active drilling rig also saw a sharp and sustained drop.

Welfare Impacts

Large Environmental Benefits:

- Back-of-the-envelope calculation suggests the policy averted ~3,900 orphan wells since enactment.
- This implies avoided environmental damages of approximately \$470 million.
- The costs to firms for plugging these wells were much smaller (\$22-\$90 million), implying substantial net welfare gains.

Efficient Industry Reallocation:

- Production was reallocated from small, high-risk firms to larger firms.
- The most socially inefficient projects (low-production, high-risk) were shut down.
- Overall oil and gas output for the state was essentially unaffected by these changes.

Conclusion

- The ability to avoid liability through bankruptcy is a **significant determinant of market structure and safety** in hazardous industries.
- Requiring firms to internalize environmental risks via an insurance mandate proved highly effective:
 - It induced the exit of the highest-risk firms.
 - It reallocated production to safer operators and shut down socially inefficient projects.
 - It led to substantial and lasting improvements in environmental outcomes.
- Policy Implication: The results strongly support increasing bond requirements in other oiland gas-producing jurisdictions, as many remain well below the levels in Texas and are still below potential damages.

References I

Boomhower, Judson, "Drilling Like There's No Tomorrow: Bankruptcy, Insurance, and Environmental Risk," *American Economic Review*, 2019, 109 (2), 391–426.