

EXERCISE 3.4

Question 1:

Find the principal and general solutions of the equation $\tan x = \sqrt{3}$

 $\tan x = \sqrt{3}$

It is known that
$$\tan \frac{\pi}{3} = \sqrt{3}$$
 and $\tan \left(\frac{4\pi}{3}\right) = \tan \left(\pi + \frac{\pi}{3}\right) = \tan \frac{\pi}{3} = \sqrt{3}$

Therefore, the principal solutions are $x = \frac{\pi}{3}$ and $\frac{4\pi}{3}$.

Now,
$$\tan x = \tan \frac{\pi}{3}$$

$$\Rightarrow x = n\pi + \frac{\pi}{3}$$
, where $n \in \mathbb{Z}$

Therefore, the general solution is $x = n\pi + \frac{\pi}{3}$, where $n \in \mathbb{Z}$

Question 2:

Find the principal and general solutions of the equation $\sec x = 2$

 $\sec x = 2$

It is known that
$$\sec \frac{\pi}{3} = 2$$
 and $\sec \frac{5\pi}{3} = \sec \left(2\pi - \frac{\pi}{3}\right) = \sec \frac{\pi}{3} = 2$

Therefore, the principal solutions are $x = \frac{\pi}{3}$ and $\frac{5\pi}{3}$.

Now,
$$\sec x = \sec \frac{\pi}{3}$$

$$\Rightarrow \cos x = \cos \frac{\pi}{3}$$

$$\Rightarrow \cos x = \cos \frac{\pi}{3}$$
 $\left[\sec x = \frac{1}{\cos x} \right]$

$$\Rightarrow$$
 x = 2n $\pi \pm \frac{\pi}{3}$, where n \in Z

Therefore, the general solution is $x = 2n\pi \pm \frac{\pi}{3}$, where $n \in \mathbb{Z}$

Question 3:

Find the principal and general solutions of the equation $\cot x = -\sqrt{3}$

Ans:

$$\cot x = -\sqrt{3}$$

It is known that
$$\cot \frac{\pi}{6} = \sqrt{3}$$

$$\therefore \cot\left(\pi - \frac{\pi}{6}\right) = -\cot\frac{\pi}{6} = -\sqrt{3} \text{ and } \cot\left(2\pi - \frac{\pi}{6}\right) = -\cot\frac{\pi}{6} = -\sqrt{3}$$
i.e., $\cot\frac{5\pi}{6} = -\sqrt{3}$ and $\cot\frac{11\pi}{6} = -\sqrt{3}$

Therefore, the principal solutions are $x = \frac{5\pi}{6}$ and $\frac{11\pi}{6}$.

Now,
$$\cot x = \cot \frac{5\pi}{6}$$

$$\Rightarrow \tan x = \tan \frac{5\pi}{6} \qquad \left[\cot x = \frac{1}{\tan x}\right]$$

$$\Rightarrow x = n\pi + \frac{5\pi}{6}, \text{ where } n \in Z$$

Therefore, the general solution is $x = n\pi + \frac{5\pi}{6}$, where $n \in \mathbb{Z}$

Question 4:

Find the general solution of cosec x = -2

Ans:

It is known that

$$\csc \frac{\pi}{6} = 2$$

$$\therefore \csc \left(\pi + \frac{\pi}{6}\right) = -\csc \frac{\pi}{6} = -2 \text{ and } \csc \left(2\pi - \frac{\pi}{6}\right) = -\csc \frac{\pi}{6} = -2$$
i.e., $\csc \frac{7\pi}{6} = -2$ and $\csc \frac{11\pi}{6} = -2$

Therefore, the principal solutions are $x = \frac{7\pi}{6}$ and $\frac{11\pi}{6}$.

Now,
$$\cos \operatorname{ec} x = \cos \operatorname{ec} \frac{7\pi}{6}$$

$$\Rightarrow \sin x = \sin \frac{7\pi}{6} \qquad \left[\cos \operatorname{ec} x = \frac{1}{\sin x} \right]$$

$$\Rightarrow x = n\pi + (-1)^n \frac{7\pi}{6}, \text{ where } n \in \mathbb{Z}$$

Therefore, the general solution is $x = n\pi + (-1)^n \frac{7\pi}{6}$, where $n \in Z$

Question 5:

Find the general solution of the equation $\cos 4x = \cos 2x$

Ans:

$$\cos 4x = \cos 2x$$

$$\Rightarrow \cos 4x - \cos 2x = 0$$

$$\Rightarrow -2\sin\left(\frac{4x+2x}{2}\right)\sin\left(\frac{4x-2x}{2}\right) = 0$$

$$\left[\because \cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \right]$$

$$\Rightarrow \sin 3x \sin x = 0$$

$$\Rightarrow \sin 3x = 0$$
 or $\sin x = 0$

$$\therefore 3x = n\pi$$
 or $x = n\pi$, where $n \in Z$

$$\Rightarrow x = \frac{n\pi}{2}$$
 or $x = n\pi$, where $n \in \mathbb{Z}$

Ouestion 6

Find the general solution of the equation $\cos 3x + \cos x - \cos 2x = 0$

Ans:

 $\cos 3x + \cos x - \cos 2x = 0$

$$\Rightarrow 2\cos\left(\frac{3x+x}{2}\right)\cos\left(\frac{3x-x}{2}\right)-\cos 2x=0 \quad \left[\cos A+\cos B=2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)\right]$$

$$\Rightarrow 2\cos 2x\cos x - \cos 2x = 0$$

$$\Rightarrow \cos 2x(2\cos x - 1) = 0$$

$$\Rightarrow \cos 2x = 0$$
 or $2\cos x - 1 = 0$

$$\Rightarrow \cos 2x = 0$$
 or $\cos x = \frac{1}{2}$

$$\therefore 2x = \left(2n+1\right)\frac{\pi}{2} \qquad \text{ or } \qquad \cos x = \cos\frac{\pi}{3}, \text{ where } n \in Z$$

$$\Rightarrow$$
 x = $(2n+1)\frac{\pi}{4}$ or $x = 2n\pi \pm \frac{\pi}{3}$, where $n \in Z$

Question 7:

Find the general solution of the equation $\sin 2x + \cos x = 0$

Ans:

$$\sin 2x + \cos x = 0$$

$$\Rightarrow 2\sin x \cos x + \cos x = 0$$

$$\Rightarrow \cos x (2\sin x + 1) = 0$$

$$\Rightarrow \cos x = 0$$
 or $2\sin x + 1 = 0$

Now,
$$\cos x = 0 \Rightarrow \cos x = (2n+1)\frac{\pi}{2}$$
, where $n \in \mathbb{Z}$

$$2\sin x + 1 = 0$$

$$\Rightarrow \sin x = \frac{-1}{2} = -\sin\frac{\pi}{6} = \sin\left(\pi + \frac{\pi}{6}\right) = \sin\left(\pi + \frac{\pi}{6}\right) = \sin\frac{7\pi}{6}$$

$$\Rightarrow x = n\pi + (-1)^n \frac{7\pi}{6}$$
, where $n \in \mathbb{Z}$

Therefore, the general solution is $(2n+1)\frac{\pi}{2}$ or $n\pi + (-1)^n \frac{7\pi}{6}$, $n \in \mathbb{Z}$

Question 8:

Find the general solution of the equation $\sec^2 2x = 1 - \tan 2x$

Ans:

$$\sec^2 2x = 1 - \tan 2x$$

$$\Rightarrow$$
 1 + tan² 2x = 1 - tan 2x

$$\Rightarrow \tan^2 2x + \tan 2x = 0$$

$$\Rightarrow \tan 2x (\tan 2x + 1) = 0$$

$$\Rightarrow \tan 2x = 0$$
 or $\tan 2x + 1 = 0$

Now,
$$\tan 2x = 0$$

$$\Rightarrow \tan 2x = \tan 0$$

$$\Rightarrow 2x = n\pi + 0$$
, where $n \in Z$

$$\Rightarrow x = \frac{n\pi}{2}$$
, where $n \in Z$

$$\tan 2x + 1 = 0$$

$$\Rightarrow \tan 2x = -1 = -\tan \frac{\pi}{4} = \tan \left(\pi - \frac{\pi}{4}\right) = \tan \frac{3\pi}{4}$$

$$\Rightarrow 2x = n\pi + \frac{3\pi}{4}$$
, where $n \in \mathbb{Z}$

$$\Rightarrow x = \frac{n\pi}{2} + \frac{3\pi}{8}$$
, where $n \in \mathbb{Z}$

Therefore, the general solution is $\frac{n\pi}{2}$ or $\frac{n\pi}{2} + \frac{3\pi}{8}$, $n \in \mathbb{Z}$.

Question 9:

Find the general solution of the equation $\sin x + \sin 3x + \sin 5x = 0$

Ans:

$$\sin x + \sin 3x + \sin 5x = 0$$

$$\Rightarrow \sin 3x (2\cos 2x + 1) = 0$$

$$\Rightarrow \sin 3x = 0$$
 or $2\cos 2x + 1 = 0$

Now, $\sin 3x = 0 \Rightarrow 3x = n\pi$, where $n \in Z$

i.e.,
$$x = \frac{n\pi}{3}$$
, where $n \in Z$

$$2\cos 2x + 1 = 0$$

$$\Rightarrow \cos 2x = \frac{-1}{2} = -\cos\frac{\pi}{3} = \cos\left(\pi - \frac{\pi}{3}\right)$$

$$\Rightarrow \cos 2x = \cos \frac{2\pi}{3}$$

$$\Rightarrow 2x = 2n\pi \pm \frac{2\pi}{3}$$
, where $n \in \mathbb{Z}$

$$\Rightarrow$$
 x = n $\pi \pm \frac{\pi}{3}$, where n \in Z

$$(\sin x + \sin 5x) + \sin 3x = 0$$

$$\Rightarrow \left[2\sin\left(\frac{x+5x}{2}\right)\cos\left(\frac{x-5x}{2}\right)\right] + \sin 3x = 0 \qquad \left[\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)\right]$$

$$\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

$$\Rightarrow 2\sin 3x \cos(-2x) + \sin 3x = 0$$

$$\Rightarrow 2\sin 3x\cos 2x + \sin 3x = 0$$

********* FND *******