Package 'pathwayPCA'

March 23, 2018

Title Test Pathways for Statistically Significant Relationships

Type Package

```
Version 0.0.0.9000
Maintainer Gabriel Odom <gabriel.odom@med.miami.edu>
Description Apply the Supervised PCA and Adaptive, Elastic-Net, Sparse PCA
      methods to extract principal components from each pathway. Use these pathway-
      specific principal components as the design matrix relating the response to
      each pathway. Return the model fit statistic p-values, and adjust these values
      for False Discovery Rate. Return a data frame of the pathways sorted by their
      adjusted p-values.
      This package has corresponding vignettes hosted in the "Articles" page of
      <a href="https://gabrielodom.github.io/pathwayPCA/index.html">https://gabrielodom.github.io/pathwayPCA/index.html</a>, and the website for
      the development information is hosted at
      <a href="https://github.com/gabrielodom/pathwayPCA">https://github.com/gabrielodom/pathwayPCA>.</a>
License GPL-2
Depends R (>= 2.10)
Imports corpcor,
      lars,
      methods,
      parallel,
      survival
Suggests knitr,
      reshape2,
      rmarkdown,
      tidyverse
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Collate 'adjust and sort pValues.R'
      'aesPC calculate AESPCA.R'
      'aesPC_calculate_LARS.R'
      'createClass_OmicsPath.R'
      'createClass validOmics.R'
      'subsetExpressed-omes.R'
      'aesPC_extract_OmicsPath_PCs.R'
      'createClass_OmicsSurv.R'
```

2 R topics documented:

'aesPC_permtest_CoxPH.R'
'createClass_OmicsCateg.R'
'aesPC_permtest_GLM.R'
'createClass_OmicsReg.R'
'aesPC_permtest_LS.R'
'aesPC_unknown_matrixNorm.R'
'aesPC_wrapper.R'
'calculate_gene_rank.R'
'calculate_matrixRoot.R'
'calculate_multtest_pvalues.R'
'create_Omics_All.R'
'data_colonSubset.R'
'data_genesetSubset.R'
'superPC_model_CoxPH.R'
'superPC_model_GLM.R'
'superPC_model_LS.R'
'superPC_model_tStats.R'
'superPC_modifiedSVD.R'
'superPC_optimWeibullParams.R'
'superPC_optimWeibull_pValues.R'
'superPC_pathway_pValues.R'
'superPC_pathway_tControl.R'
'superPC_pathway_tScores.R'
'superPC_permuteSamples.R'
'superPC_train.R'
'superPC_wrapper.R'

VignetteBuilder knitr

URL https://github.com/gabrielodom/pathwayPCA

 $\pmb{BugReports} \ \, \texttt{https://github.com/gabrielodom/pathwayPCA/issues}$

R topics documented:

ndjustRaw_pVals	 	 	 3
adjust_and_sort	 	 	 5
nespca	 	 	 6
AESPCA_pVals	 	 	 7
colonGenesets_ls	 	 	 9
colonSurv_df	 	 	 10
coxTrain_fun	 	 	 10
create_OmicsPath	 	 	 11
expressedOmes	 	 	 13
extract_aesPCs	 	 	 14
glmTrain_fun	 	 	 16
ars.lsa	 	 	 17
matrixRoot	 	 	 18
nysvd	 	 	 18
normalize	 	 	 19
olsTrain_fun	 	 	 20
OmicsCateg-class	 	 	 21
OmicsPathway-class	 	 	 22

adjustRaw_pVals 3

adju	stRaw_pVals Adjust p-values for simple multiple-testing procedures	
Index		40
	_ _	
	weibullMix_pValues	
	weibullMix_optimParams	37
	valid_OmicsSurv	36
	topGenes	35
	superPCA_pVals	33
	superpc.train	32
	superpc.st	31
	randomControlSample	30
	permTest_OmicsSurv	
	permTest_OmicsReg	
	permTest_OmicsCateg	
	pathway_tScores	
	pathway_tControl	24
	pathway_pValues	
	OmicsSurv-class	
	OmicsReg-class	22

Description

This is a modification of the mt.rawp2adjp function from the Bioconductor package multtest. We did not write the original function. For more information, see https://www.bioconductor.org/packages/3.7/bioc/manuals/multtest/man/multtest.pdf.

Usage

```
adjustRaw_pVals(rawp, proc = c("Bonferroni", "Holm", "Hochberg", "SidakSS",
   "SidakSD", "BH", "BY", "ABH", "TSBH"), alpha = 0.05, na.rm = FALSE,
   as.multtest.out = FALSE)
```

Arguments

rawp	A vector of raw (unadjusted) p -values for each hypothesis under consideration. These could be nominal p -values, for example, from t -tables, or permutation p -values.
proc	A vector of character strings containing the names of the multiple testing procedures for which adjusted p -values are to be computed. This vector should include any of the options listed in the "Details" Section. Adjusted p -values are computed for simple FWER- and FDR- controlling procedures based on a vector of raw (unadjusted) p -values.
alpha	A nominal Type-I error rate, or a vector of error rates, used for estimating the number of true null hypotheses in the two-stage Benjamini & Hochberg procedure ("TSBH"). Default is 0.05.
na.rm	An option for handling NA values in a list of raw p - values. If FALSE, the number of hypotheses considered is the length of the vector of raw p -values. Otherwise, if TRUE, the number of hypotheses is the number of raw p -values which were not NAs.

4 adjustRaw_pVals

as.multtest.out

Should the output match the output from the mt.rawp2adjp function? If not, the output will match the input (a vector). Defaults to FALSE.

Details

This function computes adjusted *p*-values for simple multiple testing procedures from a vector of raw (unadjusted) *p*-values. The procedures include the Bonferroni, Holm (1979), Hochberg (1988), and Sidak procedures for strong control of the family-wise Type-I error rate (FWER), and the Benjamini & Hochberg (1995) and Benjamini & Yekutieli (2001) procedures for (strong) control of the false discovery rate (FDR). The less conservative adaptive Benjamini & Hochberg (2000) and two-stage Benjamini & Hochberg (2006) FDR-controlling procedures are also included.

The proc options are

- "Bonferroni": Bonferroni single-step adjusted *p* values for strong control of the FWER.
- "Holm": Holm (1979) step-down adjusted p-values for strong control of the FWER.
- "Hochberg" : Hochberg (1988) step-up adjusted *p* values for strong control of the FWER (for raw (unadjusted) *p* values satisfying the Simes inequality).
- "SidakSS": Sidak single-step adjusted p-values for strong control of the FWER (for positive orthant dependent test statistics).
- "SidakSD": Sidak step-down adjusted p-values for strong control of the FWER (for positive orthant dependent test statistics).
- "BH": Adjusted p-values for the Benjamini & Hochberg (1995) step-up FDR-controlling procedure (independent and positive regression dependent test statistics).
- "BY" : Adjusted *p*-values for the Benjamini & Yekutieli (2001) step-up FDR-controlling procedure (general dependency structures).
- "ABH": Adjusted p-values for the adaptive Benjamini & Hochberg (2000) step-up FDR-controlling procedure. This method amends the original step-up procedure using an estimate of the number of true null hypotheses obtained from p-values.
- "TSBH": Adjusted p-values for the two-stage Benjamini & Hochberg (2006) step-up FDR-controlling procedure. This method amends the original step-up procedure using an estimate of the number of true null hypotheses obtained from a first-pass application of "BH". The adjusted p-values are α dependent, therefore α must be set in the function arguments when using this procedure.

Value

A vector of the same length and order as rawp, unless the user specifies that the output should match the output from the multtest package. In that case, the use should specify as.multtest.out = TRUE and this function will return output identical to that of the mt.rawp2adjp function from package multtest. That output is as follows:

- adjp: A matrix of adjusted p-values, with rows corresponding to hypotheses and columns to multiple testing procedures. Hypotheses are sorted in increasing order of their raw (unadjusted) p-values.
- index: A vector of row indices, between 1 and length(rawp), where rows are sorted according to their raw (unadjusted) p-values. To obtain the adjusted p-values in the original data order, use adjp\[order(index),\].
- h0.ABH: The estimate of the number of true null hypotheses (as proposed by Benjamini & Hochberg (2000)) used when computing adjusted p-values for the "ABH" procedure (see Dudoit et al., 2007).

adjust_and_sort 5

 h0.TSBH: The estimate (or vector of estimates) of the number of true null hypotheses (as proposed by Benjamini et al. (2006)) when computing adjusted p-values for the "TSBH" procedure (see Dudoit et al., 2007).

Author(s)

```
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine
Yongchao Ge, yongchao.ge@mssm.edu
Houston Gilbert, http://www.stat.berkeley.edu/~houston
```

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Call this function through AESPCA_pVals() or superPCA_pVals() instead.
```

adjust_and_sort

Adjust and sort pathway p-values

Description

Adjust the pathway p-values, then return a data frame of the relevant pathway information, sorted by adjusted significance.

Usage

```
adjust_and_sort(pVals_vec, genesets_ls, adjust = TRUE,
   proc_vec = c("Bonferroni", "Holm", "Hochberg", "SidakSS", "SidakSD", "BH",
   "BY", "ABH", "TSBH"), ...)
```

Arguments

pVals_vec

A named vector of permutation p-values returned by the permTest_OmicsSurv, permTest_OmicsReg, or permTest_OmicsCateg functions when the analysis performed was AES-PCA. Otherwise, when the analysis was performed with Supervised PCA, a named vector of p-values from the weibullMix_pValues function.

genesets_ls

A list of known gene pathways. This pathway list must contain:

- pathways: A named list of character vectors where each vector contains the names of the genes in that specific pathway.
- TERMS : A character vector the same length as pathways containing the full pathway descriptions.
- setsize: An integer vector the same length as pathways containing the number of genes contained in the original pathway set.
- trim_setsize: An integer vector the same length as pathways containing the number of genes present in the pathway after trimming. Pathway set trimming is done in the expressedOmes function.

adjust proc_vec

Should you adjust the *p*-values for multiple comparisons? Defaults to TRUE.

Character vector of procedures. The returned data frame will be sorted in ascending order by the first procedure in this vector, with ties broken by the unadjusted p-value. If only one procedure is selected, then it is necessarily the first procedure.

... Additional arguments to pass to the adjustRaw_pVals function.

6 aespca

Details

This is a wrapper function for the adjustRaw_pVals function. The number of p-values passed to the pVals_vec argument must equal the number of pathways and set size values in the genesets_ls argument. If you trimmed a pathway from p-value calculation, then pad this missing value with an NA.

Value

A data frame with columns

- pathways: The names of the pathways in the Omics* object (stored in object@pathwaySet\$pathways).
- setsize: The number of genes in each of the original pathways (as stored in the object@pathwaySet\$setsize object).
- terms: The pathway description, as stored in the object@pathwaySet\$TERMS object.
- rawp: The unadjusted p-values of each pathway.
- ...: Additional columns as specified through the adjustment argument.

The data frame will be sorted in ascending order by the method specified first in the adjustment argument. If adjustpValues = FALSE, then the data frame will be sorted by the raw p-values. If you have the suggested tidyverse package suite loaded, then this data frame will print as a tibble. Otherwise, it will stay a simple data frame.

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Call this function through AESPCA_pVals() or superPCA_pVals() instead.
```

aespca

Adaptive, elastic-net, sparse principal component analysis

Description

A function to perform adaptive, elastic-net, sparse principal component analysis (AES-PCA).

Usage

```
aespca(X, d = 1, max.iter = 10, eps.conv = 0.001, adaptive = TRUE,
   para = NULL)
```

Arguments

X	A pathway design matrix: the data matrix should be $n \times p$, where n is the sample size and p is the number of variables included in the pathway.
d	The number of principal components (PCs) to extract from the pathway. Defaults to 1.
max.iter	The maximum number of times an internal while() loop can make calls to the lars.lsa() function. Defaults to 10.
eps.conv	A numerical convergence threshold for the same while() loop. Defaults to 0.001.
adaptive	Internal argument of the lars.lsa() function. Defaults to TRUE.
para	Internal argument of the lars.lsa() function. Defaults to NULL.

AESPCA_pVals 7

Details

This function calculates the loadings and reduced-dimension predictor matrix using both the Singular Value Decomposition and AES-PCA Decomposition (as described in Efron et al (2003)) of the data matrix.

See https://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf.

For potential enhancement details, see the comment in the "Details" section of normalize.

Value

A list of four elements containing the loadings and projected predictors:

- loadings : A $p \times d$ projection matrix of the d AES-PCs.
- B0 : A $p \times d$ projection matrix of the d PCs from the singular value decomposition (SVD).
- score : An $n \times d$ predictor matrix: the original n observations loaded onto the d AES-PCs.
- oldscore : An $n \times d$ predictor matrix: the original n observations loaded onto the d SVD-PCs.

See Also

```
normalize; lars.lsa; extract_aesPCs; AESPCA_pVals
```

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Call this function through AESPCA_pVals() instead.
```

AESPCA_pVals

Test pathway association with AES-PCA

Description

Given a supervised OmicsPath object (one of OmicsSurv, OmicsReg, or OmicsCateg), extract the first k adaptive, elastic-net, sparse principal components (PCs) from each expressed pathway in the -Omics assay design matrix, test their association with the response matrix, and return a data frame of the adjusted p-values for each pathway.

Usage

```
AESPCA_pVals(object, numPCs = 1, min.features = 3, numReps = 1000,
   parallel = FALSE, numCores = NULL, adjustpValues = TRUE,
   adjustment = c("Bonferroni", "Holm", "Hochberg", "SidakSS", "SidakSD", "BH",
   "BY", "ABH", "TSBH"), ...)

## $4 method for signature 'OmicsPathway'

AESPCA_pVals(object, numPCs = 1, min.features = 3,
   numReps = 1000, parallel = FALSE, numCores = NULL,
   adjustpValues = TRUE, adjustment = c("Bonferroni", "Holm", "Hochberg",
   "SidakSS", "SidakSD", "BH", "BY", "ABH", "TSBH"), ...)
```

8 AESPCA_pVals

Arguments

object An object of class OmicsPathway with a response matrix or vector.

numPCs The number of PCs to extract from each pathway. Defaults to 1.

min. features What is the smallest number of genes allowed in each pathway? This argument

must be kept constant across all calls to this function which use the same path-

way list. Defaults to 3.

numReps The number of permutations to take of the data to calculate a p-value for each

pathway. Defaults to 1000.

parallel Should the computation be completed in parallel? Defaults to FALSE.

numCores If parallel = TRUE, how many cores should be used for computation? Defaults

to NULL.

adjustpValues Should you adjust the p-values for multiple comparisons? Defaults to TRUE.

adjustment Character vector of procedures. The returned data frame will be sorted in as-

cending order by the first procedure in this vector, with ties broken by the unadjusted p-value. If only one procedure is selected, then it is necessarily the first procedure. See the documentation for the adjustRaw_pVals function for the

adjustment procedure definitions and citations.

... Dots for additional internal arguments.

Details

This is a wrapper function for the expressedOmes, extract_aesPCs, permTest_OmicsSurv, permTest_OmicsReg, and permTest_OmicsCateg functions.

Value

A data frame with columns:

- pathways: The names of the pathways in the Omics* object (given in object@pathwaySet\$pathways.)
- setsize: The number of genes in each of the original pathways (given in the object@pathwaySet\$setsize object).
- terms: The pathway description, as given in the object@pathwaySet\$TERMS object.
- rawp : The unadjusted p-values of each pathway.
- ...: Additional columns as specified through the adjustment argument.

Some of the pathways in the supplied pathway set list will be removed, or "trimmed", during function execution. These trimmed pathways will have p-values given as NA. For an explanation of pathway trimming, see the documentation for the <code>expressedOmes</code> function.

The data frame will be sorted in ascending order by the method specified first in the adjustment argument. If adjustpValues = FALSE, then the data frame will be sorted by the raw p-values. If you have the suggested tidyverse package suite loaded, then this data frame will print as a tibble. Otherwise, it will print as a data frame.

See Also

expressedOmes; create_OmicsPath; create_OmicsSurv; create_OmicsReg; create_OmicsCateg;
extract_aesPCs; permTest_OmicsSurv; permTest_OmicsReg; permTest_OmicsCateg; adjust_and_sort

colonGenesets_ls 9

Examples

```
## Not run:
  ### Load the Example Data ###
  data("colonSurv_df")
  data("colonGenesets_ls")
  ### Create an OmicsSurv Object ###
  colon_OmicsSurv <- create_OmicsSurv(assayData_df = colonSurv_df[, -(1:2)],</pre>
                                       pathwaySet_ls = colonGenesets_ls,
                                       eventTime_vec = colonSurv_df$0S_time,
                                   eventObserved_vec = as.logical(colonSurv_df$OS_event))
  ### Calculate Pathway p-Values ###
  colonSurv_pVals_df <- AESPCA_pVals(object = colon_OmicsSurv,</pre>
                                      numReps = 500,
                                      parallel = TRUE,
                                      numCores = 2,
                                      adjustpValues = TRUE,
                                      adjustment = c("Hoch", "SidakSD"))
## End(Not run)
```

colonGenesets_ls

Gene Pathway Subset

Description

An example Canonical Pathways Gene Subset from the Broad Institute: File: c2.cp.v6.0.symbols.gmt.

Usage

```
colonGenesets_ls
```

Format

A list of two elements:

- pathways: A list of 15 character vectors. Each vector contains the names of the individual genes within that pathway as a vector of character strings.
- TERMS: A character vector of length 15 containing the names of the gene pathways.

Details

This is a subset of 15 pathways from the Broad Institute gene set list. This subset contains seven pathways which are related to the response information in the colonSurv_df data file.

Source

http://software.broadinstitute.org/gsea/msigdb/collections.jsp

10 coxTrain_fun

colonSurv_df

Colon Cancer -Omics Data

Description

Subset of a colon cancer survival data set, with subject response and assay values.

Usage

```
colonSurv_df
```

Format

A subset of a data frame containing 656 of 2022 genes measured on 250 subjects. The first two columns are the Overall Survival time (OS_time) and death indicator (OS_event).

Source

Xi Steven Chen

coxTrain_fun

Train Cox Proportional Hazards model for supervised PCA

Description

Main and utility functions for training the Cox PH model.

Usage

```
coxTrain_fun(x, y, censoring.status, s0.perc = NULL)
```

Arguments

x A "tall" pathway data frame $(p \times n)$.

y A response vector of follow-up / event times.

censoring.status

A censoring vector.

s0.perc A stabilization parameter. This is an optional argument to each of the functions

called internally. Defaults to NULL.

Details

See https://web.stanford.edu/~hastie/Papers/spca_JASA.pdf, Section 5, for a description of Supervised PCA applied to survival data. The internal utility functions defined in this file (.coxscor, .coxvar, and .coxstuff) are not called anywhere else, other than in the coxTrain_fun function itself. Therefore, we do not document these functions.

NOTE: No missing values allowed.

create_OmicsPath 11

Value

A list containing:

• tt : The scaled p-dimensional score vector: each value has been divided by the respective standard deviation plus the fudge value.

- numer: The original p-dimensional score vector. From the internal .coxscor function.
- sd: The standard deviations of the scores. From the internal .coxvar function.
- fudge: A regularization scalar added to the standard deviation. If s0.perc is supplied, fudge = quantile(sd, s0.perc).

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Use superPCA_pVals() instead
```

create_OmicsPath

Generation functions for -Omics*-class objects

Description

These functions create valid objects of class OmicsPathway, OmicsSurv, OmicsReg, or OmicsCateg.

Usage

```
create_OmicsPath(assayData_df, pathwaySet_ls)
create_OmicsSurv(assayData_df, pathwaySet_ls, eventTime_vec, eventObserved_vec)
create_OmicsReg(assayData_df, pathwaySet_ls, response_num)
create_OmicsCateg(assayData_df, pathwaySet_ls, response_fact)
```

Arguments

assayData_df $\mbox{ \ \ }$ An $N\times p$ data frame with named columns.

pathwaySet_ls A list of known gene pathways with two elements:

- pathways: A named list of character vectors. Each vector contains the names of the individual genes within that pathway as a vector of character strings. The names contained in these vectors must have non-empty overlap with the *column names* of the assayData_df data frame. The names of the pathways (the list elements themselves) should be the a shorthand representation of the full pathway name.
- TERMS: A character vector the same length as the pathways list with the proper names of the pathways.

eventObserved_vec

A logical vector with N observations indicating right-censoring. The values will be FALSE if the observation was censored (i.e., we did not observe an event).

12 create_OmicsPath

response_num A numeric vector of length N: the dependent variable in an ordinary regression

exercise.

response_fact A factor vector of length N: the dependent variable of a generalized linear

regression exercise.

Details

Please note that the classes of the parameters are *not* flexible. The -Omics measurement data *must* be or extend the class data. frame, and the response values (for a survival, regression, or classification object) *must* match their expected classes *exactly*. The reason for this is to encourage the end user to pay attention to the quality and format of their input data. Because the functions internal to this package have only been tested on the classes described in the Arguments section, these class checks prevent unexpected errors (or worse, incorrect computational results without an error). These draconian input class restrictions protect the accuracy of your data analysis.

Also note the following: if the supplied pathways object within your pathwaySet_ls list has no names, then this pathway list will be named path1, path2, path3, ...; if any of the pathways are missing names, then the missing pathways will be named noName followed by the index of the pathway. For example, if the 112th pathway in the pathways list has no name (but other pathways do), then this pathway will be named noName112. Furthermore, if any of the pathway names are duplicated, then the duplicates will have .1, .2, .3, ... appended to the duplicate names until all pathway names are unique. Once all pathways have been verified to have unique names, then the pathway names are attached as attributes to the TERMS and setsize vectors (the setsize vector is calculated at object creation).

Value

A valid object of class OmicsPathway, OmicsSurv, OmicsReg, or OmicsCateg.

OmicsPathway

Valid OmicsPathway objects will have no response information, just the mass spectrometry or bioassay ("design") matrix and the pathway list. OmicsPathway objects should be created only when unsupervised pathway extraction is needed (not possible with Supervised PCA). Because of the missing response, no pathway testing can be performed on an OmicsPathway object.

OmicsSurv

Valid OmicsSurv objects will have two response vectors: a vector of the most recently recorded follow-up times and a logical vector if that time marks an event (TRUE: observed event; FALSE: right- censored observation).

OmicsReg and OmicsCateg

Valid OmicsReg and OmicsCateg objects with have one response vector of continuous (numeric) or categorial (factor) observations, respectively.

See Also

OmicsPathway, OmicsSurv, OmicsReg, and OmicsCateg

expressedOmes 13

Examples

```
## Not run:
  ### Load the Example Data ###
  data("colonSurv_df")
  data("colonGenesets_ls")
  ### Create an OmicsPathway Object ###
  colon_OmicsPath <- create_OmicsPath(assayData_df = colonSurv_df[, -(1:2)],</pre>
                                       pathwaySet_ls = colonGenesets_ls)
  ### Create an OmicsSurv Object ###
  colon_OmicsSurv <- create_OmicsSurv(assayData_df = colonSurv_df[, -(1:2)],</pre>
                                       pathwaySet_ls = colonGenesets_ls,
                                       eventTime_vec = colonSurv_df$0S_time,
                                   eventObserved_vec = as.logical(colonSurv_df$0S_event))
  ### Create an OmicsReg Object ###
  colon_OmicsReg <- create_OmicsReg(assayData_df = colonSurv_df[, -(1:2)],</pre>
                                     pathwaySet_ls = colonGenesets_ls,
                                     response_num = colonSurv_df$0S_time)
  ### Create an OmicsCateg Object ###
  colon_OmicsCateg <- create_OmicsCateg(assayData_df = colonSurv_df[, -(1:2)],</pre>
                                         pathwaySet_ls = colonGenesets_ls,
                                        response_fact = as.factor(colonSurv_df$0S_event))
## End(Not run)
```

expressedOmes

Extract expressed -Omes matching a gene set from a mass spectrometry or assay data frame

Description

Given a bio-assay design matrix and a gene pathways list (each within an Omics*-class object), extract the genes / proteins / lipids / metabolomes / transcriptomes contained in each gene pathway set which are expressed in the assay data frame.

Usage

```
expressedOmes(object, trim = 3, message = TRUE, ...)
## S4 method for signature 'OmicsPathway'
expressedOmes(object, trim = 3, message = TRUE,
...)
```

Arguments

 ${\tt object} \qquad \qquad {\tt An \ object \ of \ class \ OmicsPathway, \ OmicsSurv, \ OmicsReg, \ or \ OmicsCateg.}$

trim The minimum cutoff of expressed -Ome measures before a pathway is excluded.

Defaults to 3.

14 extract_aesPCs

message

Should this function return diagnostic messages? Messages concern the percentage of genes included in the pathway set but not measured in the data, genes measured in the data but not called for in the pathways, and the number of pathways ignored due to too few number of genes present after trimming. Defaults to TRUE.

.. Dots for additional internal arguments (as necessary).

Details

This function takes in a data frame with named columns and a pathway list, all through one of the Omics* classes. This function will then iterate over the list of pathways, extract columns from the bio-assay design matrix which match the genes listed in that pathway, and remove any pathways with fewer than trim expressed genes. The genes not expressed in the bio-assay design matrix are removed from the pathway list.

NOTE: some genes will be included in more than one pathway, so these pathways are not mutually exclusive. Further note that there may be many genes in the assay design matrix that are not included in the pathway sets, so these will not be extracted to the list. It is then vitally important to use either a very broad and generic pathway set list or a pathway set list that is appropriate for the assay data supplied.

Value

A valid Omics*-class object. This output object will be identical to the input object, except that any genes present in the pathways list, but not present in the MS design matrix, will have been removed. Additionally, the pathway list will have the number of genes in each trimmed pathway stored as the trim_setsize object.

Examples

extract_aesPCs

Extract AES-PCs from expressed pathway-subsets of a mass spectrometry or bio-assay data frame

extract_aesPCs 15

Description

Given a clean OmicsPath object (cleaned by the expressedOmes function), extract the first principal components from each expressed pathway in the assay design matrix.

Usage

```
extract_aesPCs(object, trim = 3, numPCs = 1, parallel = FALSE,
   numCores = NULL, ...)
## S4 method for signature 'OmicsPathway'
extract_aesPCs(object, trim = 3, numPCs = 1,
   parallel = FALSE, numCores = NULL, ...)
```

Arguments

object	An object of class OmicsPathway.
trim	The minimum cutoff of expressed -Ome measures before a pathway is excluded. Defaults to 3.
numPCs	The number of PCs to extract from each pathway. Defaults to 1.
parallel	Should the computation be completed in parallel? Defaults to FALSE.
numCores	If parallel = TRUE, how many cores should be used for computation? Defaults to NULL.
	Dots for additional internal arguments (currently unused).

Details

This function takes in a data frame with named columns and a pathway list as an OmicsPathway object which has had unexpressed -Omes removed by the expressedOmes function. This function will then iterate over the list of pathways, extracting columns from the assay design matrix which match the genes listed in that pathway as a sub-matrix (as a data.frame object). This function will then call the aespca on each data frame in the list of pathway-specific design matrices, extracting the first numPCs AES principal components from each pathway data frame. These PC matrices are returned as a named list.

NOTE: some genes will be included in more than one pathway, so these pathways are not mutually exclusive. Further note that there may be many genes in the assay design matrix that are not included in the pathway sets, so these will not be extracted to the list. It is then vitally important to use either a very broad and generic pathway set list or a pathway set list that is appropriate for the assay data supplied.

Value

A list of matrices. Each element of the list will be named by its pathway, and the elements will be $N \times$ numPCs matrices containing the first numPCs principal components from each pathway. See "Details" for more information.

See Also

```
create_OmicsPath; expressedOmes; aespca
```

16 glmTrain_fun

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Use AESPCA_pVals() instead
```

glmTrain_fun Gene-specific Generalized Linear Model fit statistics for supervised PCA

Description

Model statistics for Generalized Linear Model (GLM) regression by gene

Usage

```
glmTrain_fun(x, y, family = binomial)
```

Arguments

x An $p \times n$ predictor matrix.

y A response vector.

family A description of the error distribution and link function to be used in the model.

The default is binomial(link = "logit").

Details

While this function currently supports any GLM family from the family function, this function is only called in the model fitting step (via the internal superpc.train) function and not in the test statistic calculation step (in the superpc.st function). We would like to support Poisson regression through the glm function, as well as n-ary classification through multinom and ordinal logistic regression through polr.

Value

The slope coefficient from the GLM for each gene.

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Use superPCA_pVals() instead
```

lars.lsa 17

lars.lsa	Least Angle Regression and LASSO	Regression
----------	----------------------------------	------------

Description

These are all variants of LASSO, and provide the entire sequence of coefficients and fits, starting from zero to the least squares fit.

Usage

```
lars.lsa(Sigma0, b0, n, type = c("lar", "lasso"), max.steps = NULL,
  eps = .Machine$double.eps, adaptive = TRUE, para = NULL)
```

Arguments

Sigma0	A Grammian / covariance matrix of pathway predictors.
b0	An eigenvector of Sigma0.
n	The sample size.
type	Option between "lar" and "lasso". Defaults to "lasso".
max.steps	How many steps should the LAR or LASSO algorithms take? Defaults to 8 times the pathway dimension.
eps	What should we consider to be numerically 0? Defaults to the machine's default error limit for doubles (.Machine\$double.eps).
adaptive	Ignore.
para	Ignore.

Details

LARS is described in detail in Efron, Hastie, Johnstone and Tibshirani (2002). With the "lasso" option, it computes the complete LASSO solution simultaneously for *all* values of the shrinkage parameter in the same computational cost as a least squares fit. This function is adapted from the lars function in the lars package to apply to covariance or Grammian pathway design matrices.

Value

```
An object of class "lars".
```

See Also

```
https://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf
```

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Use AESPCA_pVals() instead
```

18 mysvd

matrixRoot

Positive root of a symmetric matrix

Description

Calculate the matrix root of a symmetric matrix via the Spectral Decomposition.

Usage

```
matrixRoot(x, root = 2)
```

Arguments

x A symmetric (necessarily square) matrix.

root A positive real number.

Details

This function decomposes x into $V \times D \times V^T$ via the eigen function, sets any numerically negative eigenvalues to 0, calculates the root of these eigenvalues as D^r , then returns the matrix $V \times D^r \times V^T$.

See https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix.

Value

A matrix, that when multiplied by itself root times, yields x.

Examples

```
X <- matrix(rnorm(25), ncol = 5); xTx <- t(X) %*% X
matrixRoot(xTx)
matrixRoot(xTx, root = 3)</pre>
```

mysvd

Singular Value Decomposition wrapper for supervised PCA

Description

Center and compute the fast SVD of a matrix

Usage

```
mysvd(mat, n.components = NULL)
```

Arguments

mat

A matrix of data frame in "tall" format $(p \times n)$.

n.components

How many singular values / vectors to return? Must be an integer less than min(p,n). Best performance increase is for values much less than min(p,n).

Defaults to NULL.

normalize 19

Details

The mysvd function takes in a tall -Omics data matrix, extracts the feature means, centers the matrix on this mean vector, and calculates the Singular Value Decomposition (SVD) of the centered data matrix. Currently, the SVD is calculated via the fast.svd function from corpcor package. However, this function calculates all the singular vectors, even when n.components is non-NULL. We should experiment with other SVD functions, such as the rsvd function from the rsvd package. FIX THIS.

Value

A list containing:

- u: The first n. components left singular vectors of mat.
- d: The largest n. component singular values of mat.
- v: The first n. components right singular vectors of mat.
- feature.means: A named vector of the feature means of mat.

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Use superPCA_pVals() instead
```

normalize

Normalize and reconstruct the eigenvalues of a data matrix for supervised PCA

Description

Normalize the columns of a project matrix. For each eigenvector, swap the signs of the vector elements if the first entry is negative. See "Details" for more information.

Usage

```
normalize(B, d)
```

Arguments

B A projection matrix: often the matrix of the left singular vectors given by the Singular Value Decomposition of a data matrix or Grammian.

d The number of columns of B to normalize.

Details

This function is designed to reconstruct the original first d left singular vectors of a data matrix from the first d eigenvectors of the Grammian of that data matrix. Basically, after the data matrix has been centred, the left singular vectors of that data matrix and the left singular vectors of the Grammian of that data matrix are equal up to a sign. This function reverses that sign so that the two sets of singular vectors are equal.

Consider the internal workings of the aespca function. This "sign flipping" changes the eigenvectors of xtx into the left singular vectors of scale(X, center = TRUE, scale = TRUE). Instead

20 olsTrain_fun

of calculating the Grammian, regularising it (by adding some small λ value to the diagonal), taking the SVD of the regularized Grammian, and extracting the first d eigenvectors, why don't we just extract the first d singular vectors directly from the scaled data matrix itself? The regularisation effect only inflates the singular- or eigen-values anyway, so it has no effect on the singular vectors in any way. Moreover, the aespca function does not even call for the eigen-values at all, so this whole process is supurfluous. The only wrinkle is adapting the lars.lsa and aespca functions to only operate on the data matrix.

Furthermore, the lars function *can* take in the full data, instead of just a Grammian. As an enhancement, we should either update our copy of the lars function in lars.lsa, or make a call to the exported lars function. This will be an enhancement for a the next version.

Value

A matrix of the eigenvectors or left singular vectors in B transformed to be the left singular values of the original data matrix.

See Also

```
aespca; lars.lsa; AESPCA_pVals
```

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Use AESPCA_pVals() instead
```

olsTrain_fun

Gene-specific Regularized Ordinary Least Squares fit statistics for supervised PCA

Description

Model statistics for Ordinary Least Squares (OLS) regression by gene.

Usage

```
olsTrain_fun(x, y, s0.perc = NULL)
```

Arguments

x An $p \times n$ predictor matrix.

y A response vector.

sø.perc Percentile of the standard error of the slope estimate to be used for regulariza-

tion. The Default value of NULL will use the median of this distribution.

Details

This function calculates the Sxx, Syy, and Sxy sums from the gene- specific OLS models, then calculates estimates of the regression slopes for each gene and their corresponding regularized test statistics.

$$t = \hat{\beta}/(sd + e),$$

where e is a regularization parameter.

If s0. perc is NULL, then e is median of the sd values. Otherwise, e is set equal to quantile(sd, s0.perc).

OmicsCateg-class 21

Value

A list of OLS model statistics:

- tt : The Student's t test statistic the slopes (β) .
- numer : The estimate of β .
- sd: The standard error of the estimates for β (the standard error divided by the square root of Sxx).
- fudge : A regularization parameter. See Details for description.

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Use superPCA_pVals() instead
```

OmicsCateg-class

An S4 class for categorical responses within an OmicsPathway object

Description

This creates the OmicsCateg class which extends the OmicsPathway master class.

Slots

assayData_df An $N \times p$ data frame with named columns.

pathwaySet A list of known gene pathways with two elements:

- pathways: A named list of character vectors. Each vector contains the names of the individual genes within that pathway as a vector of character strings. The names contained in these vectors must have non-empty overlap with the *column names* of the assayData_df data frame. The names of the pathways (the list elements themselves) should be the a shorthand representation of the full pathway name.
- TERMS : A character vector the same length as the pathways list with the proper names of the pathways.
- setsize: A named integer vector the same length as the pathways list with the number of genes in each pathway. This list item is calculated during the creation step of a create_OmicsCateg function call.

response A factor vector of length N: the dependent variable of a generalized linear regression exercise. Currently, we support binary factors only. We expect to extend support to n-ary responses in the next package version.

See Also

OmicsPathway, create_OmicsCateg

22 OmicsReg-class

OmicsPathway-class An S4 cla	ss for mass spectrometry or bio-assay data and gene pathway
------------------------------	---

Description

An S4 class for mass spectrometry or bio-assay data and gene pathway lists

Slots

assayData_df An $N \times p$ data frame with named columns. pathwaySet A list of known gene pathways with two elements:

- pathways: A named list of character vectors. Each vector contains the names of the individual genes within that pathway as a vector of character strings. The names contained in these vectors must have non-empty overlap with the *column names* of the assayData_df data frame. The names of the pathways (the list elements themselves) should be the a shorthand representation of the full pathway name.
- TERMS: A character vector the same length as the pathways list with the proper names of the pathways.
- setsize: A named integer vector the same length as the pathways list with the number of genes in each pathway. This list item is calculated during the creation step of a create_OmicsPath function call.

See Also

create_OmicsPath

OmicsReg-class

An S4 class for continuous responses within an OmicsPathway object

Description

This creates the OmicsReg class which extends the OmicsPathway master class.

Slots

assayData_df An $N \times p$ data frame with named columns. pathwaySet A list of known gene pathways with two elements:

- pathways: A named list of character vectors. Each vector contains the names of the individual genes within that pathway as a vector of character strings. The names contained in these vectors must have non-empty overlap with the *column names* of the assayData_df data frame. The names of the pathways (the list elements themselves) should be the a shorthand representation of the full pathway name.
- TERMS: A character vector the same length as the pathways list with the proper names of the pathways.
- setsize: A named integer vector the same length as the pathways list with the number of genes in each pathway. This list item is calculated during the creation step of a create_OmicsReg function call.

response A numeric vector of length N: the dependent variable in a regression exercise.

OmicsSurv-class 23

See Also

OmicsPathway, create_OmicsReg

OmicsSurv-class

An S4 class for survival responses within an OmicsPathway object

Description

This creates the OmicsSurv class which extends the OmicsPathway master class.

Slots

assayData_df $\mbox{ An } N \times p \mbox{ data frame with named columns.}$

pathwaySet A list of known gene pathways with two elements:

- pathways: A named list of character vectors. Each vector contains the names of the individual genes within that pathway as a vector of character strings. The names contained in these vectors must have non-empty overlap with the *column names* of the assayData_df data frame. The names of the pathways (the list elements themselves) should be the a shorthand representation of the full pathway name.
- TERMS: A character vector the same length as the pathways list with the proper names of the pathways.
- setsize: A named integer vector the same length as the pathways list with the number of genes in each pathway. This list item is calculated during the creation step of a create_OmicsSurv function call.

eventTime A numeric vector with N observations corresponding to the last observed time of follow up.

eventObserved A logical vector with N observations indicating right-censoring. The values will be FALSE if the observation was censored (i.e., we did not observe an event).

See Also

OmicsPathway, create_OmicsSurv

pathway_pValues

Calculate the p-values from a mixture of Weibull Extreme Value Distributions for supervised PCA

Description

Calculate pathway-specific p-values for supervised PCA and their associated False Discovery Rates (FDR).

Usage

```
pathway_pValues(optimParams_vec, max_tScores_vec, genelist_ls,
    FDRadjust = TRUE, multTestProc = "BH")
```

24 pathway_tControl

Arguments

optimParams_vec

A named vector of the estimated values for the parameters which minimize the likelihood as returned by the function weibullMix_optimParams.

max_tScores_vec

A vector of the maximum absolute t-scores for each pathway when under the alternative model (the response vector as is).

genelist_ls

A list of three elements:

- pathways: A list of character vectors such that each vector contains the ID numbers (as a character) of the individual genes within that pathway as a vector of character strings.
- TERMS: A character vector containing the names of the gene pathways.
- setsize: A named integer vector containing the number of genes in each gene pathway.

FDRadjust

Should the *p*-values be adjusted for multiple comparisons? Defaults to TRUE.

multTestProc

If the p-values should be adjusted, which procedure should be used? Options are passed to the adjustRaw_pVals function. Specify multiple procedures via c(...). Defaults to "BH".

Details

This function takes in the optimal parameters returned by the weibullMix_optimParams function, the maximum t-scores for each gene pathway, and the list of gene pathway information. This function will calculate the p-value for each t-score given the Gumbel Extreme Value mixture distribution parametrized by the values returned by the weibullMix_optimParams function. If requested, this function will also calculate the FDR associated with all pathway p-values via requested FDR-adjustment procedure. The default procedure is the Benjamini & Hochberg (1995) step-up FDR-controlling procedure, but any procedure implemented in the adjustRaw_pVals function is available.

Value

A data frame with columns for the pathway names, pathway set sizes, raw pathway p-values, and a column of FDR-adjusted p-values for each adjustment method specified.

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Use superPCA_pVals() instead
```

pathway_tControl

Calculate pathway-specific Student's t-scores from a null distribution for supervised PCA

Description

Randomly permute or parametrically resample the response vector before model analysis. Then extract principal components (PCs) from the gene pathway, and return the test statistics associated with the first numPCs principal components at a set of threshold values based on the permuted values of the response.

pathway_tControl 25

Usage

```
pathway_tControl(pathway_vec, geneArray_df, response_mat,
  responseType = c("survival", "regression", "classification"),
  parametric = FALSE, n.threshold = 20, numPCs = 1, min.features = 3)
```

Arguments

pathway_vec	A character vector of the measured -Omes in the chosen gene pathway. These should match a subset of the rownames of the gene array.
geneArray_df	A "tall" pathway data frame $(p \times N)$. Each subject or tissue sample is a column, and the rows are the -Ome measurements for that sample.
response_mat	A response matrix corresponding to responseType. For "regression" and "classification", this will be an $N\times 1$ matrix of response values. For "survival", this will be an $N\times 2$ matrix with event times in the first column and observed event indicator in the second.
responseType	A character string. Options are "survival", "regression", and "classification".
parametric	Should the random sample be taken using a parametric bootstrap sample? Defaults to FALSE.
n.threshold	The number of bins into which to split the feature scores in the fit object returned internally by the superpotrain function.
numPCs	The number of PCs to extract from the pathway.
min.features	What is the smallest number of genes allowed in each pathway? This argument must be kept constant across all calls to this function which use the same pathway list. Defaults to 3.

Details

This is a wrapper function to call superpc.train and superpc.st after response sampling or permutation with the randomControlSample suite of functions. This response randomization will act as a null distribution against which to compare the results from the pathway_tScores function.

This wrapper is designed to facilitate apply calls (in parallel or serially) of these two functions over a list of gene pathways. When numPCs is equal to 1, we recommend using a simplify-style apply variant, such as sapply (shown in lapply) or parSapply (shown in clusterApply), then transposing the resulting matrix.

Value

A matrix with numPCs rows and n. threshold columns. The matrix values are model t-statistics for each PC included (rows) at each threshold level (columns).

See Also

```
\verb|pathway_tScores|; randomControlSample|; superpc.train|; superpc.st
```

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Use superPCA_pVals() instead
```

26 pathway_tScores

pathway_tScores	Calculate pathway-specific Student's t-scores for supervised PCA	
pathway_tScores	Calculate pathway-specific Student's t-scores for supervised PCA	

Description

Extract principal components (PCs) from the gene pathway, and return the test statistics associated with the first numPCs principal components at a set of threshold values.

Usage

```
pathway_tScores(pathway_vec, geneArray_df, response_mat,
  responseType = c("survival", "regression", "classification"),
  n.threshold = 20, numPCs = 1, min.features = 3)
```

Arguments

pa	thway_vec	A character vector of the measured -Omes in the chosen gene pathway. These should match a subset of the rownames of the gene array.
ge	neArray_df	A "tall" pathway data frame $(p \times N)$. Each subject or tissue sample is a column, and the rows are the -Ome measurements for that sample.
re	sponse_mat	A response matrix corresponding to responseType. For "regression" and "classification", this will be an $N \times 1$ matrix of response values. For "survival", this will be an $N \times 2$ matrix with event times in the first column and observed event indicator in the second.
re	sponseType	A character string. Options are "survival", "regression", and "classification".
n.	threshold	The number of bins into which to split the feature scores in the fit object returned internally by the superpc.train function.
nu	mPCs	The number of PCs to extract from the pathway.
mi	n.features	What is the smallest number of genes allowed in each pathway? This argument must be kept constant across all calls to this function which use the same pathway list. Defaults to 3.

Details

This is a wrapper function to call superpc.train and superpc.st. This wrapper is designed to facilitate apply calls (in parallel or serially) of these two functions over a list of gene pathways. When numPCs is equal to 1, we recommend using a simplify-style apply variant, such as sapply (shown in lapply) or parSapply (shown in clusterApply), then transposing the resulting matrix.

Value

A matrix with numPCs rows and n. threshold columns. The matrix values are model *t*-statistics for each PC included (rows) at each threshold level (columns).

See Also

```
superpc.train; superpc.st
```

permTest_OmicsCateg 27

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Use superPCA_pVals() instead
```

permTest_OmicsCateg

AES-PCA permutation test of categorical response for pathway PCs

Description

Given an OmicsCateg object and a list of pathway PCs from the extract_aesPCs function, test if each expressed pathway in the bio-assay design matrix is significantly related to the categorical response.

Usage

```
permTest_OmicsCateg(OmicsCateg, pathwayPCs_ls, numReps = 1000,
   parallel = FALSE, numCores = NULL, ...)

## S4 method for signature 'OmicsCateg'
permTest_OmicsCateg(OmicsCateg, pathwayPCs_ls,
   numReps = 1000, parallel = FALSE, numCores = NULL, ...)
```

Arguments

OmicsCateg	A data object of class ${\tt OmicsCateg},$ created by the ${\tt create_OmicsCateg}$ function.
pathwayPCs_ls	A list of pathway PC matrices returned by the extract_aesPCs function.
numReps	How many permuted models to fit? Defaults to 1000.
parallel	Should the computation be completed in parallel? Defaults to FALSE.
numCores	If parallel = TRUE, how many cores should be used for computation? Defaults to NULL.
	Dots for additional internal arguments (currently unused).

Details

This function takes in a list of the first principal components from each pathway and an object of class OmicsCateg. This function will then calculate the AIC of a multivariate generalized linear model (via the glm function with a binomial error family) with the original observations as response and the pathway principal components as the predictor matrix.

Then, this function will create numReps permutations of the classification response, fit models to each of these premuted responses (holding the path predictor matrix fixed), and calculate the AIC of each model. This function will return a named vector of permutation p-values, where the value for each pathway is the proportion of models for which the AIC of the permuted response model is less than the AIC of the original model.

In future versions, this function will also be able to calculate permuted p-values for multinomial logistic regression and proportional odds logistic regression models, for n-ary and ordered categorical responses, respectively.

28 permTest_OmicsReg

Value

A named vector of pathway permutation p-values.

See Also

```
create_OmicsCateg; extract_aesPCs; glm; binomial; sample_Classifresp
```

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Use AESPCA_pVals() instead
```

permTest_OmicsReg

AES-PCA permutation test of continuous response for pathway PCs

Description

Given an OmicsReg object and a list of pathway PCs from the extract_aesPCs function, test if each expressed pathway in the bio-assay design matrix is significantly related to the continuous response.

Usage

```
permTest_OmicsReg(OmicsReg, pathwayPCs_ls, numReps = 1000, parallel = FALSE,
   numCores = NULL, ...)

## S4 method for signature 'OmicsReg'
permTest_OmicsReg(OmicsReg, pathwayPCs_ls,
   numReps = 1000, parallel = FALSE, numCores = NULL, ...)
```

Arguments

OmicsReg A data object of class OmicsReg, created by the create_OmicsReg function.

pathwayPCs_ls A list of pathway PC matrices returned by the extract_aesPCs function.

How many permuted models to fit? Defaults to 1000.

parallel Should the computation be completed in parallel? Defaults to FALSE.

numCores If parallel = TRUE, how many cores should be used for computation? Defaults

to NULL.

... Dots for additional internal arguments (currently unused).

Details

This function takes in a list of the first principal components from each pathway and an object of class OmicsReg. This function will then calculate the AIC of a multivariate linear model (via the lm function) with the original observations as response and the pathway principal components as the predictor matrix.

Then, this function will create numReps permutations of the regression response, fit models to each of these premuted responses (holding the path predictor matrix fixed), and calculate the AIC of each model. This function will return a named vector of permutation p-values, where the value for each pathway is the proportion of models for which the AIC of the permuted response model is less than the AIC of the original model.

permTest_OmicsSurv 29

Value

A named vector of pathway permutation p-values.

See Also

```
create_OmicsReg; extract_aesPCs; lm; sample_Regresp
```

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Use AESPCA_pVals() instead
```

permTest_OmicsSurv

AES-PCA permutation test of survival response for pathway PCs

Description

Given an OmicsSurv object and a list of pathway principal components (PCs) from the extract_aesPCs function, test if each expressed pathway in the bio-assay design matrix is significantly related to the survival output.

Usage

```
permTest_OmicsSurv(OmicsSurv, pathwayPCs_ls, numReps = 1000,
   parallel = FALSE, numCores = NULL, ...)

## S4 method for signature 'OmicsSurv'
permTest_OmicsSurv(OmicsSurv, pathwayPCs_ls,
   numReps = 1000, parallel = FALSE, numCores = NULL, ...)
```

Arguments

OmicsSurv A data object of class OmicsSurv, created by the create_OmicsSurv function.

pathwayPCs_ls A list of pathway PC matrices returned by the extract_aesPCs function.

numReps How many permuted models to fit? Defaults to 1000.

parallel Should the computation be completed in parallel? Defaults to FALSE.

numCores If parallel = TRUE, how many cores should be used for computation? Defaults

to NULL.

Details

. . .

This function takes in a list of the first principal components from each pathway and an object of class OmicsSurv. This function will then calculate the AIC of a Cox Proportional Hazards model (via the coxph function) with the original observations as response and the pathway principal components as the predictor matrix.

Dots for additional internal arguments (currently unused).

Then, this function will create numReps permutations of the survival response, fit models to each of these premuted responses (holding the path predictor matrix fixed), and calculate the AIC of each model. This function will return a named vector of permutation p-values, where the value for each pathway is the proportion of models for which the AIC of the permuted response model is less than the AIC of the original model.

Value

A named vector of pathway permutation p-values.

See Also

```
create_OmicsSurv; extract_aesPCs; coxph; sample_Survivalresp
```

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Use AESPCA_pVals() instead
```

randomControlSample

Parametric bootstrap and non-parametric permutations of a response vector or matrix

Description

Create a random parametric bootstrap sample or a permutation of the input response vector or matrix (for survival outcomes).

Usage

```
sample_Survivalresp(response_vec, event_vec, parametric = FALSE)
sample_Regresp(response_vec, parametric = FALSE)
sample_Classifresp(response_vec, parametric = FALSE)
```

Arguments

response_vec	The dependent vector to sample from. For survival response, this is the vector of event times. For regression or n-ary classification, this is the vector of responses.
event_vec	The death / event observation indicator vector for survival response. This is coded as 0 for a right-censoring occurence and 1 for a recorded event.
parametric	Should the random sample be taken using a parametric bootstrap sample? Defaults to FALSE.

Details

The distributions (for parametric = TRUE) are Weibull for survival times, Normal for regression, and n-ary Multinomial for classification. Distributional parameters are estimated with their maximum likelihood estimates. When parametric = FALSE, the response vector or survival matrix is simply permuted by row.

Examples

```
# DO NOT CALL THESE FUNCTIONS DIRECTLY.
# Use AESPCA_pVals() or superPCA_pVals() instead
```

superpc.st 31

SU	per	nc	S	t

Extract and test principal components from supervised PCA

Description

Identify p_{path} significant features, extract principal components (PCs) from those specific features to construct a data matrix, predict the response with this data matrix, and record the model fit statistic of this prediction.

Usage

```
superpc.st(fit, data, n.threshold = 20, threshold.ignore = 0, n.PCs = 1,
min.features = 3, epsilon = 1e-06)
```

Arguments

fit An object of class superpc returned by the function superpc.train.

data A list of test data:

- x : A "tall" pathway data frame $(p_{path} \times N)$.
- y : A response vector corresponding to type.
- censoring.status: If type = "survival", the censoring indicator (1—the observed event indicator). Otherwise, NULL.
- featurenames : A character vector of the measured -Omes in x.

n.threshold

The number of bins into which to split the feature scores returned in the fit object.

threshold.ignore

Calculate the model for feature scores above this percentile of the threshold. We have observed that the smallest threshold values (0% - 40%) largely have no effect on model t-scores. Defaults to 0.00 (0%).

n.PCs The number of PCs to extract from the pathway.

min.features What is the smallest number of genes allowed in each pathway? This argument

must be kept constant across all calls to this function which use the same path-

way list. Defaults to 3.

epsilon I'm not sure why this is important. It's called when comparing the absolute

score values to each value of the threshold vector. Defaults to 10^{-6} .

Details

NOTE: the number of thresholds at which to test (n. threshold) can be larger than the number of features to bin. This will result in constant t-statistics for the first few bins because the model isn't changing.

See https://web.stanford.edu/~hastie/Papers/spca_JASA.pdf.

Value

A list containing:

• thresholds: A labelled vector of quantile values of the score vector in the fit object.

32 superpc.train

- n. threshold: The number of splits to make in the score vector.
- scor: A matrix of model fit statistics. Each column is the threshold level of predictors allowed
 into the model, and each row is a PC included. Which genes are included in the matrix before
 PC extraction is governed by comparing their model score to the quantile value of the scores
 at each threshold value.
- tscor: A matrix of model *t*-statistics for each PC included (rows) at each threshold level (columns).
- type: Which model was called? Options are survival, regression, or binary.

See Also

```
superpc.train; superPCA_pVals
```

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Use superPCA_pVals() instead
```

superpc.train

Train a supervised PCA model

Description

Computes feature scores for p_{path} features of a pathway via supervised principal component analysis.

Usage

```
superpc.train(data, type = c("survival", "regression", "classification"),
s0.perc = NULL)
```

Arguments

data

A list of test data:

- x : A "tall" pathway data frame $(p_{path} \times N)$.
- y : A response vector corresponding to type.
- censoring.status: If type = "survival", the censoring indicator (1—the observed event indicator. Otherwise, NULL.
- featurenames : A character vector of the measured -Omes in x.

type

What model relates y and x? Options are "survival", "regression", or "classification".

s0.perc

A stabilization parameter on the interval [0,1]. This is an internal argument to each of the called functions. The default value is NULL to ensure an appropriate value is determined internally.

Details

```
This function is a switch call to coxTrain_fun (for type = "survival"), olsTrain_fun (for type = "regression"), or glmTrain_fun (for type = "classification").
```

superPCA_pVals 33

Value

A list containing:

• feature.scores: The scaled *p*-dimensional score vector: each value has been divided by its respective standard deviation plus epsilon (governed by s0.perc). NA values returned by the logistic model are replaced with 0.

- type: The argument for type.
- s0.perc: The user-supplied value of s0.perc, or the internally-calculated default value from the chosen model.
- call: The output of match.call for the user- supplied function arguments.

See Also

```
superpc.st; superPCA_pVals
```

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Use superPCA_pVals() instead
```

superPCA_pVals

Test pathways with supervised PCA

Description

Given a supervised OmicsPath object (one of OmicsSurv, OmicsReg, or OmicsCateg), extract the first k principal components (PCs) from each expressed pathway in the -Omics assay design matrix, test their association with the response matrix, and return a data frame of the adjusted p-values for each pathway.

Usage

```
superPCA_pVals(object, n.threshold = 20, numPCs = 1, min.features = 3,
    parallel = FALSE, numCores = NULL, adjustpValues = TRUE,
    adjustment = c("Bonferroni", "Holm", "Hochberg", "SidakSS", "SidakSD", "BH",
    "BY", "ABH", "TSBH"), ...)

## S4 method for signature 'OmicsPathway'
superPCA_pVals(object, n.threshold = 20,
    numPCs = 1, min.features = 3, parallel = FALSE, numCores = NULL,
    adjustpValues = TRUE, adjustment = c("Bonferroni", "Holm", "Hochberg",
    "SidakSS", "SidakSD", "BH", "BY", "ABH", "TSBH"), ...)
```

Arguments

object

An object of superclass OmicsPathway with a response matrix or vector.

n.threshold

The number of bins into which to split the feature scores in the fit object returned internally by the superpc.train function to the pathway_tScores and pathway_tControl functions. Defaults to 20. Smaller values may result in less accurate pathway *p*-values while larger values increase computation time.

34 superPCA_pVals

numPCs The number of PCs to extract from each pathway. Defaults to 1.

min.features What is the smallest number of genes allowed in each pathway? This argument

must be kept constant across all calls to this function which use the same path-

way list. Defaults to 3.

parallel Should the computation be completed in parallel? Defaults to FALSE.

numCores If parallel = TRUE, how many cores should be used for computation? Defaults

to NULL.

adjustpValues Should you adjust the *p*-values for multiple comparisons? Defaults to TRUE.

adjustment Character vector of procedures. The returned data frame will be sorted in as-

cending order by the first procedure in this vector, with ties broken by the unadjusted p-value. If only one procedure is selected, then it is necessarily the first procedure. See the documentation for the adjustRaw_pVals function for the

adjustment procedure definitions and citations.

... Dots for additional internal arguments.

Details

This is a wrapper function for the pathway_tScores, pathway_tControl, weibullMix_optimParams, weibullMix_pValues, and adjust_and_sort functions.

Value

A data frame with columns:

- pathways: The names of the pathways in the Omics* object (given in object@pathwaySet\$pathways.)
- setsize: The number of genes in each of the original pathways (given in the object@pathwaySet\$setsize object).
- terms : The pathway description, as given in the object@pathwaySet\$TERMS object.
- ullet rawp: The unadjusted p-values of each pathway.
- ...: Additional columns as specified through the adjustment argument.

Some of the pathways in the supplied pathway set list will be removed, or "trimmed", during function execution. These trimmed pathways will have p-values given as NA. For an explanation of pathway trimming, see the documentation for the expressedOmes function.

The data frame will be sorted in ascending order by the method specified first in the adjustment argument. If adjustpValues = FALSE, then the data frame will be sorted by the raw p-values. If you have the suggested tidyverse package suite loaded, then this data frame will print as a tibble. Otherwise, it will print as a data frame.

See Also

expressedOmes; create_OmicsPath; create_OmicsSurv; create_OmicsReg; create_OmicsCateg;
pathway_tScores; pathway_tControl; weibullMix_optimParams; weibullMix_pValues; adjust_and_sort

Examples

```
## Not run:
    ### Load the Example Data ###
    data("colonSurv_df")
    data("colonGenesets_ls")
```

topGenes 35

topGenes

Rank -Omes by adjusted significance given in a ranked-pathways data frame

Description

Given a supervised Omics*-class object and a ranked pathways data frame returned by either the AESPCA_pVals or superPCA_pVals functions, calculate the weighted rank the genes / proteins / lipids / metabolomes / transcriptomes contained in each pathway by the significance of their container pathways.

Usage

```
topGenes(object, pVals_df, percentile = 0.01)
## S4 method for signature 'OmicsPathway'
topGenes(object, pVals_df, percentile = 0.01)
```

Arguments

object An object of class OmicsSurv, OmicsReg, or OmicsCateg.

pVals_df The ranked pathways data frame returned by either the AESPCA_pVals or superPCA_pVals

functions. Missing p-values (from trimmed pathways) are omitted.

percentile Return the most significant q percent of the features contained in all pathways.

Defaults to 0.01.

Details

This function takes in the pathway set information in a valid Omics*-class object and a data frame of ranked pathways (as returned by either the AESPCA_pVals or superPCA_pVals functions). This function creates a matrix with pathways as the columns and all genes included in those pathways as the rows: the i,j entry of the matrix equals 1 if gene i is an element of pathway j. (This is created after trimming the pathways to the assay data frame supplied using the expressedOmes function.) The topGenes function then multiplies each pathway membership indicator column by the negative natural logarithm of the adjusted p-values for that pathway; if multiple FDR adjustment methods are used, then the score is the average of each negative logged p-values. This function then returns two named numeric vectors: the sum of these gene scores and the means of the non-zero gene scores, sorted in descending order.

36 valid_OmicsSurv

Value

A list of two named numeric vectors. For both vectors, the names are the genes, and the values are the scores for those genes. The first vector is the sum of scores across all pathways; the second vector is this score sum divided by the number of pathways which contain that particular gene. The summed vector does not adjust for genes which appear more frequently in pathways, while the averaged vector does. See "Details" for more information.

Examples

```
## Not run:
  ### Load the Example Data ###
  data("colonSurv_df")
  data("colonGenesets_ls")
  ### Create an OmicsSurv Object ###
  colon_OmicsSurv <- create_OmicsSurv(assayData_df = colonSurv_df[, -(1:2)],</pre>
                                      pathwaySet_ls = colonGenesets_ls,
                                      eventTime_vec = colonSurv_df$OS_time,
                                  eventObserved_vec = as.logical(colonSurv_df$OS_event))
  ### Calculate Pathway p-Values ###
  colonSurv_pVals_df <- superPCA_pVals(object = colon_OmicsSurv,</pre>
                                       parallel = TRUE,
                                        numCores = 2,
                                        adjustpValues = TRUE,
                                        adjustment = c("Hoch", "SidakSD"))
  ### Find the Top Genes ###
  topGenes(object = colon_OmicsSurv, pVals_df = colonSurv_pVals_df)
## End(Not run)
```

valid_OmicsSurv

Check validity of new Omics*-class objects

Description

These functions check the validity of new objects created in the OmicsSurv, OmicsReg, and OmicsCateg classes.

Usage

```
valid_OmicsSurv(object)
valid_OmicsReg(object)
valid_OmicsCateg(object)
```

Arguments

object

An object potentially of class OmicsSurv, OmicsReg, or OmicsCateg.

Details

We have currently written checks to make sure the dimensions of the mass spectrometry or bio-assay data frame and response matrices or vectors match. Other checks should be added in response to user feedback during or after beta testing. FIX THIS.

Value

TRUE if the object is a valid object, else an error message with the rule broken.

OmicsSurv

Valid OmicsSurv objects will have two response vectors: a vector of the most recently recorded follow-up times and a logical vector if that time marks a death or event (TRUE: observed event; FALSE: right-censored observation).

OmicsReg and OmicsCateg

Valid OmicsReg and OmicsCateg objects with have one response vector of continuous (numeric) or categorial (factor) observations, respectively.

weibullMix_optimParams

Calculate the optimal parameters for a mixture of Weibull Extreme Value Distributions for supervised PCA

Description

Calculate the parameters which minimise the negative log- likelihood of a mixture of two Weibull Extreme Value distributions.

Usage

```
weibullMix_optimParams(max_tControl_vec, pathwaySize_vec, initialVals = c(p = 0.5, mu1 = 1, s1 = 0.5, mu2 = 1, s2 = 0.5), optimMethod = "L-BFGS-B", lowerBD = c(0, -Inf, 0, -Inf, 0), upperBD = c(1, Inf, Inf, Inf, Inf))
```

Arguments

max_tControl_vec

A vector of the maximum absolute *t*-scores for each pathway (returned by the pathway_tControl function) when under the null model. Under the null model, the response vector will have been randomly generated or parametrically bootstrapped.

pathwaySize_vec

A vector of the number of genes in each pathway.

initialVals

A named vector of initial values for the Weibull parameters. The values are

- p: The mixing proportion between the Gumbel minimum and Gumbel maximum distributions. This parameter is bounded by [0, 1] and defaults to 0.5.
- μ_1 : The mean of the first distribution. This parameter is unbounded and defaults to 1.

38 weibullMix_pValues

• s_1 : The precision of the first distribution. This parameter is bounded below by 0 and defaults to 0.5.

- \(\mu_2 : \) The mean of the second distribution. This parameter is unbounded and defaults to 1.
- s_2 : The precision of the second distribution. This parameter is bounded below by 0 and defaults to 0.5.

optimMethod

Which numerical optimization routine to pass to the optim function. Defaults to "L-BFGS-B", which allows for lower and upper bound constraints. When this option is specified, lower and upper bounds for ALL parameters must be supplied.

lowerBD A vector of the lower bounds on the initial Vals. Defaults to c(0, -Inf, 0, -Inf, 0).

A vector of the upper bounds on the initial Vals. Defaults to c(1, Inf, Inf, Inf, Inf).

Details

The likelihood function is equation (4) in Chen et al (2008): a mixture of two Gumbel Extreme Value probability density functions, with mixing proportion p. Within the code of this function, the values mu1, mu2 and s1, s2 are placeholders for the mean and precision, respectively.

A computational note: the "L-BFGS-B" option within the optim function requires a bounded function or likelihood. We therefore replaced Inf with 10 ^ 200 in the check for boundedness. As we are attempting to minimise the negative log-likelihood, this maximum machine value is effectively +Inf.

See https://doi.org/10.1093/bioinformatics/btn458 for more information.

Value

A named vector of the estimated values for the parameters which minimize the negative log-likelihood of the mixture Weibull Extreme Value distributions.

See Also

```
optim; weibullMix_pValues; pathway_tControl; superPCA_pVals
```

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
# Use superPCA_pVals() instead.
```

weibullMix_pValues

Calculate the p-values from an optimal mixture of Weibull Extreme Value distributions for supervised PCA

Description

Calculate the p-values of test statistics from a mixture of two Weibull Extreme Value distributions.

Usage

```
weibullMix_pValues(tScore_vec, pathwaySize_vec, optimParams_vec)
```

weibullMix_pValues 39

Arguments

 $tScore_vec$ A vector of the maximum absolute t-scores for each pathway (returned by the

pathway_tScores function) when under the alternative model.

pathwaySize_vec

A vector of the number of genes in each pathway.

optimParams_vec

The *NAMED* vector of optimal Weibull Extreme Value mixture distribution parameters returned by the weibullMix_optimParams function.

Details

The likelihood function is equation (4) in Chen et al (2008): a mixture of two Gumbel Extreme Value probability density functions, with mixing proportion p. Within the code of this function, the values mu1, mu2 and s1, s2 are placeholders for the mean and precision, respectively.

See https://doi.org/10.1093/bioinformatics/btn458 for more information.

Value

A named vector of the estimated raw p-values for each gene pathway.

See Also

```
weibullMix_optimParams; pathway_tScores; superPCA_pVals
```

Examples

```
# DO NOT CALL THIS FUNCTION DIRECTLY.
```

Use superPCA_pVals() instead.

Index

*Topic datasets	match.call, 33		
colonGenesets_ls, 9	matrixRoot, 18		
colonSurv_df, 10	multinom, 16		
adjust and cost 5 9 24	mysvd, 18		
adjust_and_sort, 5, 8, 34	normalize, 7, 19		
adjustRaw_pVals, 3, 5, 6, 8, 24, 34	1101 111011120, 7, 13		
aespca, 6, 15, 19, 20	olsTrain_fun, 20, 32		
AESPCA_pVals, 7, 7, 20, 35 AESPCA_pVals, OmicsPathway-method	OmicsCateg, 12		
· · · · · · · · · · · · · · · · · · ·	OmicsCateg-class, 21		
(AESPCA_pVals), 7	OmicsPathway, 12, 21, 23		
hinamial 27 20	OmicsPathway-class, 22		
binomial, 27, 28	OmicsReg, 12		
clusterApply, 25, 26	OmicsReg-class, 22		
colonGenesets_ls, 9	OmicsSurv, 12		
colonSurv_df, 9, 10	OmicsSurv-class, 23		
coxph, 29, 30	optim, <i>38</i>		
coxTrain_fun, 10, 32			
create_OmicsCateg, 8, 21, 27, 28, 34	pathway_pValues, 23		
create_OmicsCateg (create_OmicsPath), 11	pathway_tControl, 24, 33, 34, 37, 38		
create_OmicsPath, 8, 11, 15, 22, 34	pathway_tScores, 25, 26, 33, 34, 39		
create_OmicsReg, 8, 23, 28, 29, 34	permTest_OmicsCateg, 5, 8, 27		
create_OmicsReg (create_OmicsPath), 11	permTest_OmicsCateg,OmicsCateg-method		
create_OmicsSurv, 8, 23, 29, 30, 34	(permTest_OmicsCateg), 27		
create_OmicsSurv (create_OmicsPath), 11	permTest_OmicsReg, 5, 8, 28		
create_omicosarv (create_omicos atm), 11	permTest_OmicsReg,OmicsReg-method		
eigen, <i>18</i>	(permTest_OmicsReg), 28		
expressedOmes, 5, 8, 13, 15, 34, 35	permTest_OmicsSurv, 5, 8, 29		
expressedOmes,OmicsPathway-method	permTest_OmicsSurv,OmicsSurv-method		
(expressedOmes), 13	(permTest_OmicsSurv), 29		
extract_aesPCs, 7, 8, 14, 27-30	polr, <i>16</i>		
extract_aesPCs,OmicsPathway-method	randomControlSample, 25, 30		
(extract_aesPCs), 14	rsvd, <i>19</i>		
family, <i>16</i>	sample_Classifresp, 28		
fast.svd, <i>19</i>	sample_Classifresp		
	(randomControlSample), 30		
glm, 16, 27, 28	sample_Regresp, 29		
$glmTrain_fun, 16, 32$	<pre>sample_Regresp(randomControlSample), 30</pre>		
	sample_Survivalresp, 30		
lapply, 25, 26	sample_Survivalresp		
lars, 17, 20	(randomControlSample), 30		
lars.lsa, 7, 17, 20	superpc.st, 16, 25, 26, 31, 33		
lm, 28, 29	superpc.train, 16, 25, 26, 31, 32, 32, 33		

INDEX 41