Euclidiens

Exercise 1 Soit $\varphi: ((x,y),(x',y')) \mapsto 2xx' + xy' + x'y + yy'$

- $^{\blacksquare \blacksquare}$ Montrer que φ est un PS sur \mathbb{R}^2
- Déterminer les vecteurs orthogonaux à (1,1) pour ce PS

Exercice 2 Soit $\varphi:(P,Q)\mapsto \int_0^1 tP(t)Q(t)dt$

- Montrer que φ est un PS sur $\mathbb{R}[X]$
- Déterminer tous les polynômes de $\mathbb{R}_2[X]$ orthogonaux à X^2

Exercice 3 Montrer que $\varphi: ((x,y),(x',y')) \mapsto xx' + 2xy' + 2x'y + 5yy'$ est un PS sur \mathbb{R}^2

 \blacksquare Construire une BON pour φ

Exercice 4 Montrer que $\varphi: ((x,y,z),(x',y',z')) \mapsto xx' + xy' + yx' + 2yy' + xz' + zx' + 2yz' + 2y'z + 3zz'$ est un PS sur \mathbb{R}^3

 \square Construire une BON pour φ

Exercice 5 Montrer que $\varphi:(P,Q)\mapsto \int_{-1}^1 t^2 P(t)Q(t)dt$ est un PS sur $\mathbb{R}[X]$

- On note
 - \Leftrightarrow $\langle .|. \rangle$ ce produit scalaire
 - ➡ ||.|| la norme euclidienne associée
 - Arr la famille de polynômes de coefficients dominant 1 obtenus par la méthode d'orthogonalisation de Gram-Schmidt à partir de la base canonique de $\mathbb{R}[X]$
- \square Calculer P_0, P_1, P_2 et P_3
- \blacksquare Montrer que P_n a la même parité que n
- Montrer que pour tout entier naturel n on a $P_{n+1} = XP_n \frac{\|P_n\|^2}{\|P_{n-1}\|^2} \cdot P_{n-1}$
- Montrer que P_n a n racines simples comprises strictement entre -1 et 1

Exercice 6 Soient a, b, c, d des réels

On suppose que $a^2 + b^2 + c^2 + d^2 = ab + bc + cd + da$ Montrer que a = b = c = d

Exercise 7 Soit $N:(x,y) \mapsto \sqrt{x^2 + xy + y^2}$

 ${}^{\blacksquare \!\!\!\!\square}$ Montrer que N est une norme sur \mathbb{R}^2

Exercice 8 Soient

- \mathbb{R} E un \mathbb{R} -ev
- $u \in L(E)$

 \blacksquare ||.|| une norme sur E

$$N: x \mapsto \|u(x)\|$$

Donner une CNS pour que N soit une norme sur E

Exercice 9 Soient

 \mathbb{R} E un \mathbb{R} -espace vectoriel

$$\mathbb{R} N: E \to \mathbb{R}$$

On suppose:

$$\forall x \in E \quad \forall \lambda \in \mathbb{R}, N(\lambda . x) = |\lambda| . N(x)$$

$$\forall x, y \in E \quad N(x+y) \leqslant N(x) + N(y)$$

Montrer que:

$$N(0) = 0$$

$$\forall x \in E \quad N(x) \geqslant 0$$

Exercice 10 L'application $N:(x,y,z)\mapsto \sqrt{x^2+2y^2+4z^2}$ est-elle une norme sur \mathbb{R}^3 ?

Exercice 11 La norme $\|.\|_1$ dans \mathbb{R}^2 est-elle une norme euclidienne?

Exercice 12
$$N: \mathbb{R}[X] \to \mathbb{R}$$
 $P \mapsto \sqrt{\int_0^1 P^2(t) + P'^2(t) dt}$ est-elle une norme?

Exercice 13 \square Soit E un espace vectoriel réel

$${\bf Soit}\ N$$
 une norme sur E

la boule de centre 0 et de rayon 1 est $B_N(0,1) = \{x \in E/N(x) \leq 1\}$ On demande de dessiner dans \mathbb{R}^2 la boule de centre 0 et de rayon 1 pour :

$$\mathbb{R} \|.\|_2$$

$$\| \cdot \|_{\infty}$$

Exercice 14 On pose $\langle (x,y,z)|(x',y',z')\rangle=xx'+xy'+yx'+2yy'+zz'$

$${}^{\blacksquare \blacksquare}$$
 Vérifier que $\langle.|.\rangle$ est un PS dans \mathbb{R}^3

Exercice 15 Montrer que $\langle P|Q\rangle = \int_{-1}^{1} (1-t^2)P(t)Q(t)dt$ définit un produit scalaire dans $\mathbb{R}[X]$

- Trouver une base orthonormée de $\mathbb{R}_2[X]$ pour ce produit scalaire
- \square Calculer la projection orthogonale de X^3 sur $\mathbb{R}_2[X]$

Exercice 16 Soit
$$\varphi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$
 $(x,y),(x',y') \mapsto xx' + \frac{1}{3}(xy' + yx' + yy')$

- 1. Montrer que φ est un produit scalaire
- 2. Trouver une base orthonormée B pour φ
- 3. Donner l'expression de $\varphi(u,v)$, u et v étant donnés par leurs composantes dans la base B

Exercice 17 Dans \mathbb{R}^3 muni de son produit scalaire usuel, construire une base orthonormée de P: x-y-z=0

Exercice 18 Construire une base orthonormée de $\mathbb{R}_3[X]$ muni du produit scalaire $\langle P|Q\rangle=\int_1^3 P(t)Q(t)dt$,

Exercice 19 Soit $E = C_{2\pi}(\mathbb{R})$ l'espace des fonctions continues périodiques de période 2π

$$c_0: t \mapsto 1$$

$$\forall n \in \mathbb{N}^* \quad c_n : t \mapsto \sqrt{2}\cos(nt)$$

$$\forall n \in \mathbb{N}^* \quad s_n : t \mapsto \sqrt{2}\sin(nt)$$

$$F = \{c_0\} \bigcup \{c_n\}_{n \in \mathbb{N}^*} \bigcup \{s_n\}_{n \in \mathbb{N}^*}$$

Montrer que la famille F est orthonormale

Exercice 20 Déterminer dans \mathbb{R}^3 les supplémentaires orthogonaux des sous-espaces vectoriels suivants :

$$A: x + y - 2z = 0$$

$$\mathbf{B}: \left\{ \begin{array}{l} x - y + z = 0 \\ 2x + 3y = 0 \end{array} \right.$$

Exercice 21 Déterminer les sous-espaces orthogonaux des sous-espaces vectoriels suivants :

1.
$$F = \{M \in M_2(\mathbb{R})/\operatorname{tr}(M) = 0\}$$
 (pour le produit scalaire $\langle A|B\rangle = \operatorname{tr}({}^t\!A.B)$)

2.
$$G = \{P \in \mathbb{R}_2[X]/P(1) = 0\}$$
 (pour le produit scalaire $(P,Q) \mapsto \int_0^1 P(x)Q(x)dx$)

Exercice 22 Soient

$$(a,b) \in \mathbb{R}^2$$
 tel que $a < b$

$$\mathbf{F} = C([a,b], \mathbb{R}_+^*)$$

On demande

Calculer
$$\inf_{f \in F} \left\{ \left(\int_a^b f(t) dt \right) \left(\int_a^b \frac{dt}{f(t)} \right) \right\}$$

 \blacksquare Trouver les f donnant le minimum

Exercice 23 Soit $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ est un vecteur unitaire de \mathbb{R}^3

$$P: \alpha x + \beta y + \gamma z = 0$$

 π la projection orthogonale sur P

 $\blacksquare s$ la symétrie orthogonale par rapport à P

 \square Calculer $M_{bc}(\pi)$ et $M_{bc}(s)$

$$D: x - 2y = 0$$

 \blacksquare Expliciter p la projection orthogonale sur D

Exercice 25 Dans \mathbb{R}^3 on considère V: x+y+2z=0 et w=(3,2,1)

 $\ \, \blacksquare \ \,$ Calculer la projection orthogonale de w sur V

- \Rightarrow En utilisant une BON de V
- 🖒 En utilisant la méthode des moindres carrés

Exercice 26 Dans $\mathbb{R}_2[X]$ on pose :

$$\langle P|Q\rangle = P(0)Q(0) + P'(0)Q'(0) + P''(0)Q''(0)$$

$$\mathbb{F} = \operatorname{Vect}(1 - X, X^2)$$

 $\ \ \pi$ la projection orthogonale sur F

On demande de :

 $ightharpoonup Vérifier que \langle .|. \rangle$ est un PS dans $\mathbb{R}_2[X]$

 \bowtie calculer $M_{bc}(\pi)$

Exercice 27 \square Soit E un euclidien

$$(e_1,\ldots,e_n)$$
 une BON de E

 \square D une droite de E

p la projection orthogonale sur DMontrer que $\sum_{i=1}^{n} \|p(e_i)\|^2 = 1$

Exercice 28 Soient

 (e_1, e_2, e_3) la base canonique de \mathbb{R}^3

$$A \in M_3(\mathbb{R})$$
 telle que $\forall i, j \quad A_{i,j} = \varphi(e_i, e_j)$

On demande:

- 1. Montrer que φ est un PS sur \mathbb{R}^3
- 2. Trouver les réels λ tels que $\det(A \lambda I) = 0$
- 3. Pour chaque solution λ , trouver une matrice colonne X non nulle telle que $AX = \lambda X$

4. Trouver une base de \mathbb{R}^3 qui soit à la fois orthogonale pour le produit scalaire φ et pour le produit scalaire usuel

Exercice 29 On note

- $\|.\|$ la norme associée à $\langle .|.\rangle$
- $\mathbb{R} L_n = \frac{d^n}{dX^n} \left(1 X^2\right)^n$ le n^{e} polynôme de Legendre

On demande de :

- montrer que la famille $(L_n)_{n\in\mathbb{N}}$ est orthogonale $\langle .|.\rangle$
- \square calculer $||L_n||$

Exercice 30 Soient

- \blacksquare E un espace vectoriel euclidien
- $B = (e_1, \ldots, e_n)$ une famille de vecteurs unitaires tels que pour tout $x \in E$:

$$||x||^2 = \sum_{i=1}^n \langle x|e_i\rangle^2$$

Montrer que B est une base orthonormale de E.

Exercice 31 Soient

- ightharpoonspip P un plan euclidien
- \square u et v deux vecteurs unitaires de P
- $s = \langle u|v\rangle$

Montrer que

- 1. (u, v) est libre si et seulement si $|s| \neq 1$.
- 2. On suppose (u, v) libre: pour tout $(a, b) \in \mathbb{R}^2$, il existe un unique vecteur x de P tel que $\langle u|x\rangle = a$ et $\langle v|x\rangle = b$

Exercice 32 Soient

- φ un produit scalaire sur \mathbb{R}^n
- $e = (e_1, \dots, e_n)$ la base canonique de \mathbb{R}^n
- $A \in M_n(\mathbb{R})$ définie par $A_{i,j} = \varphi(e_i, e_j)$

Montrer qu'il existe $P \in \mathrm{GL}_n(\mathbb{R})$ telle que $A = {}^t\!PP$

Exercice 33 Soit

 \blacksquare E un ev euclidien

On demande

1. Montrer qu'il existe $u \in E$ tel que $H = \{x \in E / \langle u | x \rangle = 0\}$

2. Déterminer H^{\perp}

Exercice 34 \square Dans \mathbb{R}^3 muni du ps canonique

$$F: x + y - 2z = 0$$

Déterminer

1. une BON $b=(b_1,b_2,b_3)$ de \mathbb{R}^3 telle que (b_1,b_2) soit une base de F

2. la matrice de passage de bc à b et celle de b à bc

Exercice 35 Soient

 \blacksquare E un espace préhibertien réel

F et G deux ssev de E

Montrer

1.
$$F \subset G \Rightarrow G^{\perp} \subset F^{\perp}$$

2.
$$F^{\perp} \cap G^{\perp} = (F + G)^{\perp}$$

3.
$$F^{\perp} + G^{\perp} \subset (F \cap G)^{\perp}$$

4. On suppose E de dim finie et $E=F\oplus G$

$$E = F^\perp \oplus G^\perp$$

Exercice 36 Soient

$$\mathbf{F} = C([0,1], \mathbb{R})$$

$$\langle u|v\rangle = \int_0^1 u(t)v(t)dt$$

$$H = \{ u \in E \ / \ u(0) = 0 \}$$

1. Déterminer H^{\perp}

2. Déterminer $H^{\perp\perp}$

3. A-t-on
$$E = H \oplus H^{\perp}$$
?

Exercice 37 Soient

 ${}^{\blacksquare \blacksquare} E$ un espace euclidien de dimension finie $n \geqslant 3$

 $f: E \to E$ définie par $f(x) = \langle x | a \rangle b - \langle x | b \rangle a$

Montrer que $\operatorname{Im} f = (\ker f)^{\perp}$

Exercice 38 Dans $\mathbb{R}[X]$ muni du PS $\langle P|Q\rangle=\int_0^1P(t)Q(t)dt$

- 1. Déterminer le projeté orthogonal de X^2 sur $\mathbb{R}_1[X]$
- 2. Déterminer le projeté orthogonal de X sur $\mathrm{Vect} X^2$

Exercice 39 Soient

$$E = C([-1,1],\mathbb{R})$$

$$\langle u|v\rangle = \int_{-1}^{1} u(t)v(t)dt$$

$$F = \{u \in E/u|_{[0,1]} = 0\}$$

Montrer que

$$F^{\perp} = \{ u \in E/u |_{[-1,0]} = 0 \}$$

$$F^{\perp\perp}$$
?

$$F + F^{\perp} = \{ u \in E/u(0) = 0 \}$$