

Università degli studi di Catania

Corso di Laurea in Fisica - Primo livello - A.A. 2014-2015 Esame di informatica del 17 giugno 2015 Prof. Marco Russo

Si supponga di disporre del file binario dati.bin generato da un rivelatore piano. I dati all'interno del file si susseguono nel seguente ordine:

$ n_{\rm d} x_1 x_2 \dots x_{n_{\rm d}} y_1 y_2 \dots y_{n_{\rm d}}$

Laddove il valore intero n_d indica il numero totale di dati rilevati. Ogni dato corrisponde alle coordinate (intere) del punto di impatto di una particella e nel file vengono prima riportate i valori delle ascisse e poi delle ordinate

Si supponga inoltre di disporre di un altro file binario rettangoli.bin così composto:

$n_{\rm c}$	x_{11}	y_{11}	x_{12}	y_{12}		x_{n_c1}	y_{n_c1}	x_{n_c2}	y_{n_c2}
-------------	----------	----------	----------	----------	--	------------	------------	------------	------------

Dove sono specificate le informazioni relative a n_c rettangoli (con n_c intero). Per ogni rettangolo sono date le coordinate intere dei due punti della diagonale dove il primo punto è quello con le coordinate con i valori inferiori.

Occorre scrivere un programma in C che sia in grado di fornire per ciascun rettangolo r_i il numero di particelle v_i (con $1 \le i \le n_c$) che hanno avuto il punto d'impatto strettamente all'interno del rettangolo. Inoltre, considerate tutte le v_i particelle individuate per ciascun rettangolo r_i , occorre individuare il rettangolo r_i' incluso in r_i che contiene esattamente tutte le particelle che stanno dentro r_i .

I dati calcolati vanno inseriti nel file di testo elab.txt uno per ogni riga alla seguente maniera:

$y_1 \mid x_{11} \mid y_{11} \mid x_{12} \mid y_{12}$	$ \dots v_{n_c 1}$	$x_{n_c1} \mid y_{n_c1}$	$x_{n_c2} \mid y_{n_c2}$	
---	-----------------------	--------------------------	--------------------------	--

Ad esempio se il file dati.bin contiene i seguenti valori:

5	10	12	11	20	25	33	35	30	80	85

ed il file rettangoli.bin:

3	5	25	15	36	18	75	30	90	11	33	15	80

Avremo come file di output:

3	10	30	12	35	2	20	80	25	85	1	12	35	12	35

Attenzione: nel programma è vietato l'utilizzo di array statici.

Valutazione del compito.

	, aratanione dei compilor
5 punti	Lettura e salvataggio in memoria del file dati.bin
5 punti	Lettura e salvataggio in memoria del file rettangoli.bin
10 punti	Calcolo del numero di particelle per ogni rettangolo
10 punti	Calcolo dei nuovi rettangoli
5 punti	Scrittura del file elab.txt