

Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- $60V,35A,R_{DS(ON).max}=20m\Omega@V_{GS}=10V$
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- UPS
- DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 60V \\ R_{DS(on).max} @ V_{GS} {=} 10V & 20 m\Omega \\ I_D & 35A \end{array}$

Pin Configuration

TO-251

Schematic

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	60	V
Continuous drain current (T _C = 25°C)		35	А
Continuous drain current (T _C = 100°C)	— I _D	22	A
Pulsed drain current ¹⁾	Ірм	140	A
Gate-Source voltage	V _{GSS}	±20	V
Avalanche energy ²⁾	Eas	39	mJ
Power Dissipation (T _C = 25°C)	P _D	50	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	Rejc	2.5	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VSM34N06-TC	TO-220C	VSM34N06-TC
VSM34N06-T2	TO-252	VSM34N06-T2
VSM34N06-T1	TO-251	VSM34N06-T1

Electrical Characteristics T_J = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics	1			1	I	
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	60			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	1.0	1.6	2.5	V
Drain-source leakage current		V _{DS} =60 V, V _{GS} =0 V, T _J = 25°C			1	μA
	I _{DSS}	V _{DS} =48 V, V _{GS} =0 V, T _J = 125°C			10	μA
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA
	Б	V _{GS} =10 V, I _D =20 A		16	20	mΩ
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =4.5 V, I _D =10 A		19	25	mΩ
Forward transconductance	g _{fs}	V _{DS} =5 V , I _D =20A		43		S
Dynamic characteristics						
Input capacitance	C _{iss}	V 05.V.V 0.V		1465		pF
Output capacitance	Coss	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$		151		
Reverse transfer capacitance	Crss	- F = 1MHz		103		
Turn-on delay time	t _{d(on)}			11.5		- ns
Rise time	t _r	, , , , , , , , , , , , , , , , , , ,		105		
Turn-off delay time	t _{d(off)}	$V_{DD} = 30V, V_{GS} = 10V, I_D = 20 A$		127		
Fall time	t _f			30		
Gate resistance	Rg	V _{GS} =0V, V _{DS} =0V, F=1MHz		2.62		Ω
Gate charge characteristics						
Gate to source charge	Q _{gs}	.,		6.2		
Gate to drain charge	Q_{gd}	V _{DS} =25 V, I _D =20A,		6.1		nC
Gate charge total	Qg	- V _{GS} = 10 V		29.5		
Drain-Source diode characteristi	cs and Maxii	num Ratings		'		
Continuous Source Current	Is				35	А
Pulsed Source Current ³⁾	Ism]			140	А
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =20A, T _J =25℃			1.2	V
Reverse Recovery Time	t _{rr}			24.8		ns
Reverse Recovery Charge	Qrr	Is=20A,di/dt=100A/us, T₃=25℃		31.1		nC

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: V_{DD}=25V, V_{GS}=10V, L=0.5mH, I_{AS}=12.5A, R_G=25 Ω , Starting T_J=25 $^{\circ}$ C.
- 3: Pulse Test: Pulse Width $\leq 300~\mu$ s, Duty Cycle $\leq 2\%$.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 2. Transfer Characteristics

Figure 3. Capacitance Characteristics

Figure 4. Gate Charge Waveform

Figure 5. Body-Diode Characteristics

Figure 6. Rdson-Drain Current

Figure 8. Maximum Safe Operating Area

Figure 9. Normalized Maximum Transient Thermal Impedance

Square Wave Pluse Duration(sec)

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

