Осциллограф цифровой C8-54 Инструкция по программированию

1 Введение в программирование

1.1 Прежде, чем приступить к использованию осциллографа в измерительной системе, внимательно изучите данный документ. В нем изложены все необходимые данные о составе команд, их назначениях и взаимодействиях, синтаксисе программных сообщений, правилах образования имен команд.

Осциллограф может быть включен в измерительную систему посредством универсального последовательного интерфейса USB или через локальную вычислительную сеть.

Осциллограф может дистанционно программироваться путем программных посылок, синтаксис которых соответствует стандарту SCPI-99 - Standard Commands for Programmable Instruments (Стандартные команды для программируемых приборов).

Эти программные посылки состоят из последовательности программных блоков, представленных программными командами или запросами. Программная команда или запрос, в свою очередь, состоит из последовательности функциональных элементов, которые включают в себя разделители, заголовок команды, программные данные и символ окончания команды. Все это пересылается в осциллограф посредством системного интерфейса в коде **ASCII**.

Пример программной посылки представлен ниже.

Заголовок команды Программные данные

Заголовок команды - это программная мнемоника, представляющая действия, которые должен выполнить осциллограф.

Пробел применяется для отделения мнемоники команды от программных данных.

Разделитель «:» в начале команды не обязателен.

Например:

CHANNEL1:SCALE 0.2V

1.2 Простые заголовки команд содержат единственную мнемонику. Например, :**AUTOSET** или :**STOP** являются простыми заголовками, используемыми в осциллографе. Простой заголовок может содержать также программные данные.

Синтаксис программного сообщения для этих случаев будет следующий:

- :<программная мнемоника><символ окончания команды>
- или, при наличии программных данных,
- :<программная мнемоника><пробел><программные данные><символ окончания команды>.
- 1.3 Сложный заголовок команды является комбинацией из двух и более программных мнемоник. Первая мнемоника определяет подсистему команд, вторая мнемоника определяет команду из выбранной подсистемы. Мнемоники сложного заголовка команды разделяются между собой двоеточием.

Синтаксис программы будет следующий:

:<подсистема>:<команда><пробел><программные данные><символ окончания команды>

В одной командной строке могут быть записаны команды, принадлежащие разным подсистемам. В этом случае каждая команда отделяется от последующей точкой с запятой.

Например:

:CHANNEL1:SCALE 1V; TIMEBASE:SCALE 1MS

Одинаковые команды могут использоваться в различных подсистемах команд. Например, команда **SCALE** может изменять как коэффициент деления в тракте вертикального отклонения, так и коэффициент разверток осциллографа. Подсистема определяет, в каком узле осциллографа будут производиться действия по данной команде.

1.4 Команда переводится в запросную форму постановкой знака вопроса после мнемоники команды.

Например:

:CHANNEL1:SCALE?

После получения такой команды осциллограф помещает ответ в очередь на выход. Выходное сообщение остается в очереди до тех пор, пока его не прочитают или не выполнится другая команда. Запросные команды используются для определения текущей конфигурации осциллографа, для получения результатов измерений, проведенных осциллографом, и выдачи захваченного сигнала.

Например:

Команда :MEASURE:PARAMETER1? выводит измеряемый параметр.

Команды нечувствительны к регистру. Ответы на запросные команды выводятся в верхнем регистре.

Например, запросная команда может быть задана:

TIMEBASE:SCALE?
TIMebase:SCALe?
timebase:scale?
TiMeBase:ScALe?
Othet: 100MS
500NS

1.5 Программные мнемоники могут использоваться как в длинной, так и в короткой форме. Короткая форма мнемоники образуется из длинной по следующим правилам.

В качестве краткой формы мнемоники используются первые четыре буквы полной мнемоники. Исключением является случай, когда полная мнемоника содержит более четырех символов и четвертая буква - гласная. В таких случаях гласная опускается, и в качестве краткой формы используются первые три символа полной.

Например: UTILITY:BALANCE

меаsure

полная форма,

UTIL:BAL короткая форма.

1.6 Программные данные используются для представления различных типов параметров, относящихся к командам.

Программные данные могут быть как буквенные, так и цифровые.

Буквенные программные данные определяют режим, устанавливаемый командой. Например:

:CHANNEL1: DISPLAY ON

Здесь буквенные программные данные определяют режим работы канала 1- включен.

Цифровые программные данные определяют численное значение параметра, устанавливаемого программой:

:CHANNEL1:OFFSET 100

Окончание ввода командной строки определяется получением кодов \mathbf{CR} (возврат каретки, код $\mathbf{0DH}$) или \mathbf{LF} (перевод строки, код $\mathbf{0AH}$).

1.7 При получении ошибочной команды осциллограф выдает сообщение: **COMMAND ERROR**.

При получении ошибочных программных данных в команде осциллограф выдает сообшение: **DATA ERROR**.

2 Соглашение о синтаксисе

- 2.1 Обозначения символов, используемых в командах осциллографа:
- идентификаторы, заключенные в «<>», обозначают, что должны быть предоставлены данные определенного типа;
 - [] части, заключенные в «[]», могут быть опущены;
- $\{\}$ части, заключенные в « $\{\}$ », обозначаю mmт выбор одного элемента из множества. Отдельные элементы разделены символом «|»;
 - , запятая служит разделителем между параметрами;
 - ... три точки обозначают диапазон (пропущенные обязательные параметры).

3 Описание команд осциллографа

3.1 Команды осциллографа и их описание приведены в таблице 1.

Краткая форма команд представлена в таблице прописными символами.

Команда	Описание функции, заданной командой			
Обязательные SCPI-99 команды				
*IDN?	Выводит идентификатор (данные об осциллографе): тип, производитель, тип, серийный номер, версия ПО			
*RST	Сброс режимов – в состояние по умолчанию			
Управление каналами вертикального отклонения				
:CHANnel <n>:DISPlay {OFF ON}</n>	Выключает - OFF (0) или включает - ON (1)			
	отображение соответствующего канала. n - номер канала <1 2>			
:CHANnel <n>:DISPlay ?</n>	Выводит отображения состояния канала: OFF или ON. n - номер канала <1 2>			
:CHANnel <n>:BALance</n>	Балансировка канала n – номер канала<1 2>			
:CHANnel <n>:PROBe {1 1/10}</n>	Включает режим работы канала с делителем: без делителя -1 , с делителем $1/10-1/10$. n - номер канала $<1/2>$			
:CHANnel <n>:PROBe ?</n>	Выводит режим работы канала с выбранным делителем. п - номер канала <1 2>			
:CHANnel <n>:INVert {OFF ON}</n>	Выключает - OFF (0) или включает - ON (1) инвертирование по каналу 1 или 2. n - номер канала <1 2>			
:CHANnel <n>:INVert ?</n>	Выводит режим инвертирования канала: OFF или ON. n - номер канала <1 2>			
:CHANnel <n>:COUPling {GND AC DC}</n>	Включает заземление канала - GND, связь по переменному току - AC, связь по постоянному току - DC. п - номер канала <1 2>			
:CHANnel <n>:COUPling?</n>	Выводит режим выбранной связи в канале: GND , AC или DC . n - номер канала <1 2>			
:CHANnel <n>:BWLimit {OFF ON}</n>	Выключает - OFF или включает - ON ограничение полосы пропускания соответствующего канала. п - номер канала <1 2>			
:CHANnel <n>:BWLimit ?</n>	Выводит режим ограничения полосы пропускания канала: OFF или ON. n - номер канала <1 2>			
:CHANnel <n>:SCALe {2mV500mV 1V5V}</n>	Устанавливает коэффициент отклонения канала в диапазоне от 2 мВ/дел до 5 В/дел (без учета делителя). п - номер канала <1 2>			

:CHANnel <n>:SCALe ?</n>	Выводит установленный коэффициент	
	отклонения канала: 2MV20V (без учета	
	делителя).	
	n - номер канала <1 2>	
:CHANnel <n>:OFFSet <-240240></n>	Регулирует перемещение нулевой линии	
	канала по вертикали в диапазоне от -240 до	
	240. Единица смещения равна одному	
	пикселю экрана.	
	n - номер канала <1 2>	
:CHANnel <n>:OFFSet ?</n>	Выводит установленное значение	
	положения нулевой линии канала:	
	-240240.	
	n - номер канала <1 2>	
:CHANnel <n>:DATA ?</n>	Выдает захваченный сигнал выбранного	
	канала. Значения выводятся в пикселях	
	экрана. Нижней границе соответсвует 2,	
	середине – 127, верхенй границе – 252.	
	Количество выдаваемых байтов равно	
	длине памяти.	
	n - номер канала {1 2}	
Управление ра	азверткой	
:TIMEbase:SCALe	Устанавливает коэффициент развертки в	
$\{2ns500ns 1us500us 1ms500ms 1s10s\}$	диапазоне от 2 нс/дел до 10 с/дел.	
:TIMEbase:SCALe?	Выводит установленный коэффициент	
	Развертки.	
:TIMEbase:OFFSet <-819216000>	Задает позицию выводимого на экран	
	фрагмента памяти.	
	Минимальное значение зависит от	
	выбранной привязки синхронизации к экрану	
	(TPOS) и размера памяти.	
	1 единица засылаемого значения	
THE STEEL CONTROL OF	соответствуте двум пикселям на экране.	
:TIMEbase:OFFSet?	Выводит позицию выводимого на экран	
	фрагмента памяти	
:TIMEbase:TPOS {LEFT CENTER RIGHT}	Задаёт точку привязки нулевого	
	смещения по времени к экрану:	
	левый край – LEFT,	
	центр – CENTER,	
TIMEL TDOC 9	правый край – RIGHT.	
:TIMEbase:TPOS ?	Возвращает точку привязки нулевого	
TIME hospide A IZ detact (OFFICN)	смщения по времени к эрану.	
:TIMEbase:PEAKdetect {OFF ON}	Включает и отключает режим пикового	
:TIMEbase:PEAKdetect ?	детектора Выводит режим пикового детектора	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	сточником синхронизации	
:TRIGger:SOURce	Выбирает источник синхронизации:	
{CHANnel1 CHANnel2 EXTernal}	канал 1 - CHANnel1,	
	канал 2 - CHANnel2,	
1	внешний - EXTernal	

Окончание таблицы А.1	
:TRIGger:SOURce?	Выводит выбранный источник
	синхронизации.
:TRIGger:SLOPe {RISE FALL}	Выбирает синхронизацию по срезу
	импульса по фронту – RISE, либо по
*TDIC comCl ODe?	cpesy – FALL
:TRIGger:SLOPe?	Выводит выбранную синхронизацию.
:TRIGger:MODE {AUTO NORMal SINGLe}	Установка режима запуска:
	автоматический – AUTO,
	нормальный (ждущий) – NORMal,
TDIC MODE 9	одиночный – SINGLe.
:TRIGger:MODE ?	Выводит установленный режим
*TDIC comCOUDIng (LEIDCIA CILE)	синхронизации.
:TRIGger:COUPling {LF DC AC HF}	Включает режим связи в канале синхронизации:
	полный сигнал - DC,
	переменный сигнал –
	АС, фильтр НЧ – LF,
	фильтр ВЧ - HF
:TRIGger:COUPling ?	Выводит выбранный режим связи в канале
	синхронизации:
:TRIGger:LEVel <-240240>	Устанавливает уровень синхронизации в
	диапазоне от -240 до 240.
	Единица уровня синхронизации равна
	одному пикселю экрана
:TRIGger:LEVel ?	Выводит выбранный уровень синхрониза-
	ции из диапазона.
Управлени	е дисплеем
:DISPlay:MAPPING {DOTS VECTORS}	Выбирает точечное - DOTS или векторное -
	VECTors представление сигнала
:DISPlay:MAPPING ?	Выводит выбранное представление сигнала.
:DISPlay:GRID:TYPE {1 2 3 4}	Выбирает вид шкалы.
:DISPlay:GRID:TYPE ?	Выводит вид шкалы.
DICH CDID DDICHT 40 100	D. C
:DISPlay:GRID:BRIGHTness <0100> :DISPlay:GRID:BRIGHTness ?	Выбирает яркость свечения шкалы
:DISPlay:ACCUMulate:NUMber	Выводит яркость свечения шкалы Выбирает количество накоплений.
{1 2 4 8 16 32 64 128 INFINITY}	выопрает количество накоплении.
:DISPlay:ACCUMulate:NUMber?	Выводит количество накоплений
:DISPlay:ACCUMulate:MODE {NORESET	Выбор режима очистки экрана в режиме
RESET}	накопления при наборе установленного
•	кличества измерений:
	не очищать дислей – NORESET,
	очищать дисплей – RESET.
:DISPlay:ACCUMulate:MODE ?	Выводит режим очистки экрана в режиме
DIGDL ACCUMANA OF EAD	накопления.
:DISPlay:ACCUMulate:CLEAR	Очистка экрана
:DISPlay:AVErage :NUMber {1 2 4 8 16 32 64 128 256 512}	Выбирает количество усреднений
:DISPlay:AVErage:NUMber ?	Выводит количество усреднений
DICH AVE MODE (A COUR A CV)	D C

Выбирает режим усреднения:

:DISPlay:AVErage:MODE {ACCURACY|

APPROXIMATE}	точный – ACCURACY,
,	приблизительный – APPROXIMATE.
:DISPlay:AVErage:MODE ?	Выводит установленный режим усреднения.
:DISPlay:LPFilter <110>	Задаёт количество точек для работы
	сглаживающего фильтра.
:DISPlay:LPFilter ?	Выводит количество точек для работы
	сглаживющего фильтра.

Управление памятью		
:MEMory:LENgth {512 1K 2K 4K 8K 16K}	Выбирает длину памяти сигнала: 1K, 2K, 4K, 8K, 16K	
:MEMory:LENgth ?	Выводит выбранную длину памяти сигнала.	
Управление утилитами		
:UTILity:CALibrator {AC DC GND}	Выбирает режим калибратора:	
	меандр – АС,	
	постоянное напряжение – DC,	
	отключён – GND.	
:UTILity:CALibrator ?	Выводит режим калбратора.	

Кнопочные функции		
:RUN	Запускает процесс сбора информации о входном сигнале.	
:STOP	Останавливает процесс сбора информации о входном сигнале	
:KEY:{MENU 1 2 3 4 5 CURSors MEASures DISPLay HELP MEMory SERVice START CHANNEL1 CHAN1 CHANNEL2 CHAN2 TIME TRIG} {DOWN UP}	Нажатие кнопки	
:GOVERNOR:{RSHIFT1 RSHIFT2 RANGE1 RANGE2 SET TSHIFT TBASE TRIGLEV} {LEFT RIGHT}	Поворот ручки	