NCERT 11.9.3

ee23btech11223 - Soham Prabhakar More

Question: Which term of the following se- Substituting Values, quences:

(a)
$$2, 2\sqrt{2}, 4...$$
 is 128 (b) $\sqrt{3}, 3, 3\sqrt{3}...$ is 729 (c) $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}...$ is $\frac{1}{19683}$

Answer: (a) Let $a_1 = 2$, $a_2 = 2\sqrt{2}$, $a_3 = 4$. Since, $\frac{a_2}{a_1} = \frac{a_3}{a_2}$, the sequence a_1, a_2, a_3 is a G.P Series. Let $r = \frac{a_2}{a_2} = \sqrt{2}$, then the general term is $a_n = a_1 r^{n-1}$.

Assume n^{th} term is 128, which gives:

$$a_n = a_1 r^{n-1} = 128$$

$$\implies r^{n-1} = \frac{128}{a_1}$$

$$\implies n - 1 = \log_r \frac{128}{a_1}$$

Substituting Values,

$$\implies n - 1 = \log_{\sqrt{2}} \frac{128}{2}$$

$$\implies n - 1 = \log_{\sqrt{2}} 64$$

$$\implies n - 1 = \log_{\sqrt{2}} \sqrt{2^{12}}$$

$$\implies n - 1 = 12$$

$$\therefore n = 13$$

Thus the 13^{th} term of the G.P a_n is 128.

(b) Let
$$b_1 = \sqrt{3}$$
, $b_2 = 3$, $b_3 = 3\sqrt{3}$.
Since $\frac{b_2}{b_1} = \frac{b_3}{b_2}$, the sequence b_1, b_2, b_3 is a G.P Series.
Let $r = \frac{b_2}{b_2} = \sqrt{3}$, then the general term is $b_n = b_1 r^{n-1}$.

Assume n^{th} term is 729, which gives:

$$b_n = b_1 r^{n-1} = 729$$

$$\implies r^{n-1} = \frac{729}{b_1}$$

$$\implies n - 1 = \log_r \frac{729}{b_1}$$

$$\implies n - 1 = \log_{\sqrt{3}} \frac{729}{\sqrt{3}}$$

$$\implies n - 1 = \log_{\sqrt{3}} \frac{3^6}{\sqrt{3}}$$

$$\implies n - 1 = \log_{\sqrt{3}} \sqrt{3}^{11}$$

$$\implies n - 1 = 11$$

$$\therefore n = 12$$

Thus the 12^{th} term of the G.P b_n is 729.

(c) Let
$$c_1 = \frac{1}{3}$$
, $c_2 = \frac{1}{9}$, $c_3 = \frac{1}{27}$.
Since $\frac{c_2}{c_1} = \frac{c_3}{c_2}$, the sequence c_1, c_2, c_3 is a G.P Series.
Let $r = \frac{c_2}{c_2} = \frac{1}{3}$, then the general term is $c_n = c_1 r^{n-1}$.
Assume n^{th} term is $\frac{1}{19683}$, which gives:

$$c_n = c_1 r^{n-1} = \frac{1}{19683}$$

$$\implies r^{n-1} = \frac{1}{19683c_1}$$

$$\implies n - 1 = \log_r \frac{1}{19683c_1}$$

Substituting Values,

$$\implies n - 1 = \log_{\frac{1}{3}} \frac{1}{19683\frac{1}{3}}$$

$$\implies n - 1 = \log_{\frac{1}{3}} \frac{1}{6561}$$

$$\implies n - 1 = \log_{\frac{1}{3}} 3^{-8}$$

$$\implies n - 1 = 8$$

$$\therefore n = 9$$

Thus the 9th term of the G.P c_n is $\frac{1}{19683}$.