4.8: Volumes of Solids of Revolution

Mathematics 3 Lecture 25 Dartmouth College

March 03, 2010

Example 1

Before we begin, let's test our knowledge of integration. Consider the indefinite integral:

$$\int x\sqrt{x+1}\,dx$$

a.) Evaluate by using integration by parts:

$$\int u \, dv = uv - \int v, du$$

$$\begin{cases} u = f(x) & v = g(x) \\ du = f'(x) dx & dv = g'(x) dx \end{cases}$$

b.) Evaluate by using a substitution u = g(x):

$$\int f'(g(x))g'(x) dx = \int f(u) du$$

Volume of a Right Prism

Right Prism with base (cross-sectional) area A and height $h\colon V=Ah$

Cavalieri's Principle

Bonaventura Cavalieri (1598 - 1647) stated a principle for volumes of solids that anticipated the integral calculus:

Suppose two solids in three dimensions are included between two parallel planes. If every plane parallel to these two planes intersects both solids in cross-sections of equal area, then the two solids have the **same volumes**.

NOTE: Cavalieri's principle also holds for regions in 2D which have the same cross-sectional lengths and, thus, have the same areas.

Volume by Slicing (Loafbread)

A loaf of bread is sliced into n thin slices (of equal width Δx) which we approx as prisms:

Volume
$$V = \sum_{i=1}^{n} V(x_i) \approx \sum_{i=1}^{n} A(x_i) \Delta x$$

Volume by Slicing (Loafbread)

The actual volume should be the limit as $n \to \infty$ ($\Delta x \to 0$):

Volume by Slicing (General Solid)

Suppose that a three-dimensional solid lies along the x-axis covering the inteval [a,b] and the cross-sectional area at x is a continuous function, call it it A(x). How do we define/compute it's volume V?

NB: This works in full generality for ANY Solid Object in 3D!

Example 2

Compute the volume of a sphere of radius r=2 at the origin by the Volume by Slicing method.

$$V = \int_{-2}^{2} A(x) dx = \int_{-2}^{2} \pi (4 - x^{2}) = \frac{32}{3} \pi = \frac{4}{3} \pi 2^{3}$$

Proof of Cavalieri's Principle

Suppose two solids S_1 and S_2 have the same height and cross-sectional areas:

Volumes by slicing
$$\Rightarrow V_1 = \int_a^b A(x) dx = V_2 \quad \checkmark \odot$$

Example 3 A solid object has as its base the circular region defined by the unit circle. Every cross section of the object perpendicular to the x-axis is a triangle whose base vertices are on the circle and whose height equals the length of the base. Find the volume of this object.

Solids of Revolution

Solids of Revolution are commonly used in engineering and manufacturing, such as axles, funnels, pills, bottles, and pistons.

Solids of Revolution

A Solid of Revolution is generated by taking a region in the plane, say the area under the graph of a function y = f(x) over [a, b], and **rotating** it about an axis (e.g., x-axis or another line) in three dimensions.

Solids of Revolution

Every perpendicular cross-section at x is a circle of radius r=f(x), so the area function A(x) is given by:

$$A(x) = \pi r^2 = \pi [f(x)]^2.$$

Thus, from Volumes by Slicing, the volume V is the definite integral:

$$V = \int_{a}^{b} A(x) \, dx = \int_{a}^{b} \pi [f(x)]^{2} \, dx$$

Example 4: Find the volume of the solid of revolution generated by revolving the region bounded by the x-axis, the curve $y = x^3 - x + 1$ and the vertical lines x = -1 and x = 1 around the x-axis.

$$V = \int_{-1}^{1} \pi (x^3 - x + 1)^2 dx = \frac{226\pi}{105}$$

Example 5: Find the volume of the solid of revolution generated by revolving the region bounded by $f(x)=2-x^2$ and g(x)=1 about the line y=1.

$$V = \int_{-1}^{1} A(x) dx = \int_{-1}^{1} \pi((2-x^2)-1)^2 dx = \int_{-1}^{1} \pi(1-x^2)^2 dx = \frac{16\pi}{5}$$

Example 6: Find the volume of the solid of revolution generated by revolving the region between the y-axis and the curve $xy=2, \quad 1 \le y \le 4$, around the y-axis.

$$V = \int_{1}^{4} A(y) \, dy = \int_{1}^{4} \pi(r(y))^{2} \, dy = \pi \int_{1}^{4} \frac{4}{y^{2}} \, dy = 3\pi$$