Галина Сергеевна Бондарева,

Лабораторные работы МЕТОДЫ ВЫЧИСЛЕНИЙ

Методические указния

В авторской редакции. Компьютерный набор и верстьа Вондаревой Галины Сергеевны

Подписано в печать 24.06.2002. Формат 60 × 84 1/16. Печать офестная. Усы, неч. л. 5,2. — Уч.-изд. л.5,2. Тираж 200 экз. — Заказ N 633

426034, Ижевск, Университетская, 1. кори. 4. Редакционно-издательский отдел УдГУ. Типография Удмуртского университета

Г.С. Бондарева

Методические указания и лабораторные работы МЕТОДЫ ВЫЧИСЛЕНИЙ

Ижевск

Министерство образования Российской Федерации Удмуртский государственный университет

Г.С. Бондарева

Методические указания и лабораторные работы МЕТОДЫ ВЫЧИСЛЕНИЙ

Нжевск

2003

УДК 519.2 ББК 22.171; 22.172 Б81

Рецензент доктор физ.-мат.наук, профессор Г.Г.Исламов

Бондарева Г.С.

Б 81 Методические указания и лобораторные работы МЕТОДЫ ВЫЧИСЛЕНИЙ / УдГУ, Ижевск, 2003. 101 с.

ББК 22.171; 22.172

⊙Удмурткий государственный университет, 2003
 ⊙Г.С.Бондарева, 2003

Содержание

	Введение	5
1	Лабораторная работа "Элементы теории погрешностей"	5
-	1.1 Краткий теоретический материал	5
	1.2 Примеры	7
	1.3 Вопросы и задачи для самостоятельной работы	9
	1.4 Задание к лабораторной работе	9
2	Лабораторная работа "Интерполяция и приближение функций"	10
_	2.1 Краткий теоретический материал	10
	· ·	13
		19
	2.3 Вопросы и задачи для самостоятельной работы	19
		20
3	Лабораторная работа "Численное интегрирование"	20
	3.1 Краткий теоретический материал	22
	3.2 Примеры	23
	3.3 Вопросы и задачи для самостоятельной работы	24
	3.4 Задание к лабораторной работе	2-
4	Лабораторная работа "Методы решения нелинейных уравнений и си-	-
	ctem"	2
	4.1 Краткий теоретический материал	23
	4.2 Примеры	25
	4.3 Вопросы и задачи для самостоятельной работы	3:
	4.4 Задание к лабораторной работе	3.
5	Лабораторная работа "Методы решения систем линейных алгебраиче	-
	ских уравнений"	3
	5.1 Краткий теоретический материал	3
	5.2 Примеры	3
	5.3 Вопросы и задачи для самостоятельной работы	4
	5.4 Задание к лабораторной работе	4
•	7.6 UT	4
6		4
	6.1 Краткий теоретический материал	4
	6.2 Примеры	
	6.3 Вопросы и задачи для самостоятельной работы	5
	6.4 Задание к лабораторной работе	J
7	Лабораторная работа "Методы решения задачи Коши для ОДУ первог	0
	порядка"	5
	7.1 Краткий теоретический материал	Ę
	7.2 Примеры	
	7.3 Вопросы и задачи для самостоятельной работы	(
	7.4. За пашме и пабоматорной паботе	

8	. Габораторная работа "Методы решения краевых задач для ОДУ второг	,O
	порядка"	64
	8.1 Краткий чеоретический материал	64
	8.2 Примеры	69
	8.3 Вопросы и задачи для самостоятельной работы	72
	8.4. Задание к лабораторной работе	
9	Лабораторная работа "Метод сеток для задачи Дирихле"	74
	9.1 Краткий теоретический материал	7.4
	9.2 Примеры	
	9.3 Вопросы и задачи для самостоятельной работы	80
	9.4 Задание к лабораторной работе	
10	Лабораторная работа "Метод сеток при решении нестационарных задач	" 81
	10.1 Краткий теоретический материал	81
	10.2 Примеры	85
	10.3 Вопросы и задачи для самостоятельной работы	90
	10.4 Задание к лабораторной работе	91
11	Лабораторная работа "Решение уравнений Фредгольма второго рода"	93
	11.1 Краткий теоретический материал	93
	11.2 Примеры	95
	11.3 Вопросы и задачи для самостоятельной работы	97
	11.4 Задание к лабораторной работе	97
	Список литературы	100

Введение

В предлагаемом пособии, предназначениом для студентов математических специальностей, изучающих курсы "Численные методы", "Методы вычислений", изложены основные теоремы и формулы, необходимые для решения типовых задач по изучаемому курсу.

Предлагаемые методы иппроко известны и имеют огромное значение при решении прикладных задач. Однако, если размерность задачи велика, то описанные методы могут потребовать слишком большого объема вычислений, и следовательно, большого времени работы. Сократить это время можно, используя возможности современной вычислительной техники. В частности, для задач вычислительной математики огромное значение приобретает использование параллельных вычислений.

Однако написание адгоритмов парадлельного программирования — очень сложная задача, поэтому имеет смысл использовать готовые пакеты прикладных программ для нарадлельных вычислений (ScaLAPACK, PINEAPL, NAG, PARASOL, PETSc. PRISM, CLIPS, ISIS и т.п.). В настоящее время такие накеты доступны, в основном они включают в себя программы для решения систем линейных уравнений, поиска собственных векторов и собственных значений, реже — программы итерационных методов решения систем линейных и нелинейных уравнений, задач математической физики, интегральных уравнений, задач оптимизации и некоторые другие задачи, в основном, сводящиеся к решению некоторых систем линейных уравнений.

Перечисленные выше пакеты будут полезны при выполнении лабораторных работ 5, 6, 8, 9, 11. В случае, если есть возможность использовать лабораторию высокопроизводительных вычислений и транспыотеров УдГУ, рекомендуется вместо задания 1 к перечисленным выше лабораторным работам выполнять задание 2.

Для решения задач из раздела "Вопросы и задачи для самостоятельной работы", теоретического материала, помещенного в методических указаниях, недостаточно. Для их решения рекомендуем пользоваться литературой, указанной в конце пособия.

1 Лабораторная работа "Элементы теории погрешностей"

1.1 Краткий теоретический материал

Приближенным числом a называется число, незначительно отличающееся от точного значення A и заменяющее его в вычислениях.

Предельной абсолюнной погрешностью приближенного чиста a называется величина Δ , такая что $|a-A| \leq \Delta$.

Предельной относительной погрешностью приближенного чиста a называется величина δ , такая что $\left|\frac{a-A}{a}\right| \leq \delta$.

 ${\rm H}_3$ определений следует, что $a-\Delta \le A \le a+\Delta$. Для краткости пользуются записью $A=a\pm\Delta$.

Всякое положительное число a может быть представлено в виде конечной или бесконечной десятичной дроби

$$a = \alpha_m 10^m + \alpha_{m-1} 10^{m-1} + \dots + \alpha_{m-n+1} 10^{m-n+1} + \dots$$

где α_i – цифры числа a. ($\alpha_i=0,1,\ldots,9$). На практике мы преимущественно имеем дело с приближенными числами, представляющие собой конечные десятичные дроби.

$$a = \alpha_m 10^m + \alpha_{m-1} 10^{m-1} + \dots + \alpha_{m-n+1} 10^{m-n+1}, \quad \alpha_m \neq 0.$$

Значащей цифрой приближенного числа называется всякая цифра в его изображении, кроме нуля, и нуль, если он находится между значащимим цифрами или является представителем сохраненного разряда.

Значащая цифра называется верной, если абсолютная погрешность числа не превышает половины единицы разряда, соответствующей этой цифре.

Действия над приближенными числами

Пусть имеются два числа $A=a\pm\Delta a$, $B=b\pm\Delta b$.

Погрешность суммы чисел A и B (обозначается $\Delta(A+B)$) равна сумме погрешностей чисел A и B , или

$$\Delta(A+B) = \Delta A + \Delta B.$$

Имеют место следующие формулы

$$\Delta(A - B) = \Delta A + \Delta B,$$

$$\Delta(A \cdot B) = |B|\Delta A + |A|\Delta B,$$

$$\Delta\left(\frac{A}{B}\right) = \frac{|B|\Delta A + |A|\Delta B}{B^2},$$

$$\Delta(f(A)) = |f'(A)|\Delta A,$$

где f – некоторая дифференцируемая функция.

Вычисление значений многочлена по схеме Горнера

При решении практических задач часто необходимо вычислять значения многочленов в некоторой точке x. Если коэффициенты многочлена или точка x заданы с погрешностью, то при вычислении степеней x погрешность

может сильно накапливаться. В этих случаях для уменьшения вычислительной погрешности применяют алгоритм вычисления значений многочлена по схеме Горнера.

Рассмотрим

$$P(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n =$$

$$= (\dots (((a_0 x + a_1) x + a_2) x + a_3) x + \dots) x + a_n$$

Из последнего представления многочлена видно, что возможен следующий алгоритм счета

$$P_0 = a_0, \quad P_k = P_{k-1}x + a_k, \quad k = 1, 2, \dots, n$$
 (1)

Тогда $P_n=P(x)$ — значение многочлена в точке x , а

$$f(y) = P_0 y^{n-1} + P_1 y^{n-2} + \dots + P_{n-2} y + P_{n-1}$$

– является многочленом, полученным при делении многочлена P(y) на (y-x).

Рассмотрим, как накапливается погрешность при применении схемы Горнера.

$$\Delta P_0 = \Delta a_0, \quad \Delta P_1 = \Delta P_0 |x| + |P_0| \Delta a_0, \text{ и т.д.}$$
 (2)

Таким образом, при такой схеме учитывается только погрешность сложения и погрешность умножения.

1.2 Примеры

1. Найти верные и значащие цифры числа $A=1203.456\pm0.37$ Решение

Все цифры являются значащими, так как единственный ноль, который имеется в десятичном представлении числа A, заключен между значащими цифрами 2 и 3.

Проверим, какие цифры являются верными. Проверку начней с последней цифры в записи числа (6). 6 соотвествует разряд 10^{-3} . $0.37 > \frac{1}{2}10^{-3}$, значит, по определению, цифра 6 не является значащёй. Цифре 5 соответствует разряд 10^{-2} . $0.37 > \frac{1}{2}10^{-2}$, Аналогично имеем $0.37 > \frac{1}{2}10^{-1}$, значит, цифра 4 не является верной. $0.37 < \frac{1}{2}10^0$, значит, цифра 3, (следовательно и все предыдущие цифры) являются верными.

Ответ: значащие цифры 1 2 0 3 4 5 6, верные цифры 1 2 0 3.

2. Даны числа $x=1.2\pm0.1$. $y=2.3\pm0.3$ Найти x+y . x-y . xy . $\frac{y}{x}$. x^3 . $\cos y$.

Решение.

Найдем погрешности указанных действий

$$\Delta(x+y) = \Delta x + \Delta y = 0.1 + 0.3 = 0.4.$$

Тогда $x + y = (1.2 + 2.3) \pm 0.4 = 3.5 \pm 0.4$.

$$\Delta(x-y) = \Delta x + \Delta y = 0.4. \quad (x-y) = (1.2-2.3) \pm 0.4 = -1.1 \pm 0.4.$$

$$\Delta(x+y) = |x|\Delta y + |y|\Delta x = 1.2 \cdot 0.3 + 2.3 \cdot 0.1 = 0.59.$$

$$xy = (1.2 \cdot 2.3) \pm 0.59 = 2.76 \pm 0.59.$$

$$\Delta\left(\frac{y}{x}\right) = \frac{|y|\Delta x + |x|\Delta y}{x^2} = \frac{2.3 \cdot 0.1 + 1.2 \cdot 0.3}{1.2^2} = 0.41,$$

$$\frac{y}{x} = \frac{2.3}{1.2} \pm 0.41 = 1.98 \pm 0.41,$$

$$\Delta(x^3) = |3x^2|\Delta x = 3 \cdot 1.2^2 \cdot 0.1 = 0.43,$$

$$x^3 = 1.2^3 \pm 0.43 = 1.728 \pm 0.43,$$

$$\Delta(\cos y) = |-\sin y|\Delta y = |\sin 2.3| \cdot 0.3 = 0.224,$$

$$\cos y = \cos 2.3 \pm 0.224 = -0.667 \pm 0.224.$$

3. Найти значение многочлена $y = 3x^3 + 2x + 2$ в точке 5 по схеме Горнера.

Решение.

Воспользуемся формулой (1)

$$P_0 = 3$$
, $P_1 = 3 \cdot 5 + 0 = 15$, $P_2 = 15 \cdot 5 + 2 = 77$, $P_3 = 77 \cdot 5 + 2 = 387$.

Значит P(5) = 387.

4. Найти многочлен, получающийся при делении многочлена

$$P(x) = 4x^4 + 5x^3 - 3x^2 + 9$$

na x - 2.

Воспользуемя схемой Горнера

$$P_0 = 4$$
, $P_1 = 4 \cdot 2 + 5 = 13$, $P_2 = 13 \cdot 2 - 3 = 23$, $P_3 = 23 \cdot 2 + 0 = 46$.

Имеем

$$\frac{P(x)}{x-2} = 4x^3 + 13x^2 + 23x + 46.$$

1.3 Вопросы и задачи для самостоятельной работы

- 1. Округляя следующие числа до трех значащих цифр, определить абсолютную и относительные погрешности полученных приближенных чисел.
 - а) 0.34567 б) 34.6754 в) 0.0009 г) 0.98723 д) -1.674523 е) -10.6734
- 2. Определить абсолютную погрешность следующих приближенных чисел по их относительным погрешностям
- a) a=1345 , $\delta=0.1\%$ 6) a=0.6785 , $\delta=5\%$, B) a=13.45 , $\delta=10\%$. The contraction of the contraction
- 3. Определить количество верных знаков в числе a, если известна его относительная погрешность a) a=1345, $\delta=0.1\%$ б) a=0.6785, $\delta=5\%$. в) a=13.45, $\delta=10\%$. г) a=-232,78, $\delta=13\%$.
- 4. Доказать, что относительная погрешность суммы нескольких чисел одного и того же знака заключена между наименьшей и наибольшей погрешностями слагаемых.
- 5. Доказать, что относительная погрешность разности двух положительных чисел бозыше относительных погрешностей этих чисел.
- 6. Высота h и раднус R основання цилиндра измерены с точностью до 0.5%. Какова предельная относительная погрешность вычисления объема инлиндра?
- 7. С какой точностью следует определить радиус основания R и высоту h цилиндра, чтобы его объем можно было измерить с точностью 1%?

1.4 Задание к лабораторной работе

Найти значение многочлена

$$P(x) = a_0 x^5 + 0.387x^4 + 1.4789x^3 + 1.0098x^2 + 1.222x + a_5$$

в точке $x=x_0$, используя схему Горнера. Известно, что $a_0=1.234\pm0.001$, $a_5=-2.345\pm N\cdot 10^{-4}$, $x=0.234N\pm 3\cdot 10^{-3}$. (N – количество букв в вашем ФИО).

Рассчитать погрешность полученного значения. Найти верные и значащие цифры результата. Рассчитать, какой бы была погрешность, если бы вычисления велись без применения схемы Горнера, и сравнить с погрешностью, полученной при применении схемы Горнера.

Найти коэффициенты многочлена, полученного при делении многочлена P(x) на x-c, где $c=0.987\pm N\cdot 10^{-4}$.

Лабораторная работа "Интерполяция и приближение функций"

2.1 Краткий теоретический материал

Пусть на отрезке [a,b] задана $cem\kappa a$ из n+1 узла $x_1 < x_2 < \cdots < x_n$. В узлах значения некоторой функции $y_i = y(x_i)$, $i=0,\ldots,n$. Требуется ностроить многочлен L(x) степени не выше n, такой что $L(x_i) = y_i$, $i=0,\ldots,n$.

Многочлен L(x) называется интерполяционным многочленом для функции y(x), построенным по узлам (x_i, y_i) , $i = 1, \ldots, n$.

Величина r(x) = y(x) - L(x) характеризует точность приближения функции y(x) многочленом L(x) в точке x и называется погрешностью интерноляции в точке x.

Верна следующая оценка

$$|r(x)| \le \frac{M}{(n+1)!} |\omega(x)|,\tag{5}$$

rae $M = \max_{\xi \in [a,b]} |y^{(n+1)}(\xi)|$, $\omega(x) = (x - x_0)(x - x_1)...(x - x_n)$.

Способы построения интерполяционного многочлена.

Многочлен Лагранжа

$$L(x) = \sum_{i=0}^{n} y_i l_i(x),$$

где

$$l_i(x) = \frac{(x - x_0)(x - x_1)\dots(x - x_{i-1})(x - x_{i+1})\dots(x - x_n)}{(x_i - x_0)(x_i - x_1)\dots(x_i - x_{i-1})(x_i - x_{i+1})\dots(x_i - x_n)}.$$

Многочлен Ньютона

$$N(x) = y_0 + p(x_0)(x - x_0) + p(x_0, x_1)(x - x_0)(x - x_1) + \cdots + p(x_0, x_1, \dots, x_{n-1})(x - x_0)(x - x_1) \dots (x - x_{n-1}),$$
 (6)

где через $p(x_0,\dots,x_{k-1})$ обозначена разделенная разность k-того порядка.

Разделенные разности считаются по следующему правилу:

Разность первого порядка

$$p(x_0) = \frac{y_1 - y_0}{x_1 - x_0};$$

10

Разность второго порядка

$$p(x_0, x_1) = \frac{p(x_1) - p(x_0)}{x_2 - x_0}$$
:

Разность k-го порядка

$$p(x_0, x_1, \dots, x_{k-1}) = \frac{p(x_1, x_2, \dots, x_{k-1}) - p(x_0, x_1, \dots, x_{k-2})}{x_k - x_0}.$$

Многочлен Ньютона дла равноотстоящих узлов

Пусть сетка на отрезке [a,b] такова, что $x_i = x_0 + ih$, $i = 0, \ldots, n$, h некоторая постоянная, называемая *шагом сетки*. Такая сетка называется равномерной, а узлы этой сетки – равноотстоящими.

Многочлен Ньютона в этом случае имеет вид:

$$N(x) = y_0 + \frac{\Delta y_0}{h}(x - x_0) + \frac{\Delta^2 y_0}{h^2 2!}(x - x_0)(x - x_1) + \cdots + \frac{\Delta^n y_0}{h^n n!}(x - x_0)(x - x_1) \dots (x - x_{n-1}), \quad (7)$$

тде через $\Delta^k y_0$ обозначена конечная разность k-того порядка.

Конечные разности считаются по следующему правилу:

Разность первого порядка $\Delta y_0 = y_1 - y_0$.

Разность второго порядка $\Delta^2 y_0 = \Delta y_1 - \Delta y_0$.

Разность k-го порядка $\Delta^k y_0 = \Delta^{k-1} y_1 - \Delta^{k-1} y_0$.

Разности удобно вычислять, помещая их значения в таблицу

·~	T-100	or said to min B recommy		
y	Δy	$\Delta^2 y$	$\Delta^3 y$	
y_0	$y_1 - y_0 = \Delta y_0$	$\Delta y_1 - \Delta y_0 = \Delta^2 y_0$	$\Delta^2 y_1 - \Delta^2 y_0 = \Delta^3 y_0$	
y_1	1		$\Delta^2 y_2 - \Delta^2 y_1 = \Delta^3 y_1$	
y_2			$\Delta^2 y_3 - \Delta^2 y_2 = \Delta^3 y_2$	
y_3	$y_4 - y_3 = \Delta y_3$	$\Delta y_4 - \Delta y_3 = \Delta^2 y_3$	$\Delta^2 y_4 - \Delta^2 y_3 = \Delta^3 y_3$	
y_4	$y_5 - y_4 = \Delta y_4$	$\Delta y_5 - \Delta y_4 = \Delta^2 y_4$		
y_5	$y_6 - y_5 = \Delta y_5$			
y_6				

Каждое значение таблицы получено вычитанием двух соседних значений предыдущего столбца. Аналогично можно составить таблицу разделенных разностей.

Сплайн-интерполяция

Интерноляционный многочлен при больших n зачастую сильно осциллирует, поэтому погрешности значений функций в промежуточных точках бывают слишком велики. Поэтому рекомендуется при больших n использовать сплайи k-го порядка, (k < n), то есть функцию s(x), которая на каждом из отрезков $[x_i, x_{i+1}]$ является многочленом не выше k-й степени, кроме того, функция s(x) и все ее производные до k-1 порядка непрерывны на отрезке $[x_0, x_n]$, и в заданных значениях x_i $[s(x_i)] = y_i$.

Онишем процесс построения сплайна второго порядка (параболического сплайна).

Пусть

$$s(x) = \begin{cases} a_0(x - x_0)^2 + b_0(x - x_0) + c_0, & \text{при } x \in [x_0, x_1], \\ a_1(x - x_1)^2 + b_1(x - x_1) + c_1, & \text{при } x \in [x_1, x_2], \\ a_2(x - x_2)^2 + b_2(x - x_2) + c_2, & \text{при } x \in [x_2, x_3], \\ \dots \\ a_{n-1}(x - x_{n-1})^2 + b_{n-1}(x - x_{n-1}) + c_{n-1}, & \text{при } x \in [x_{n-1}, x_n]. \end{cases}$$

Задача построения сплайна заключается в определении коэффициситов $a_i, b_i, c_i, i = 0, \dots, n-1$.

Из условия $s(x_i) = y_i$ имеем

$$c_i = y_i, \quad , i = 0, \dots n-1.$$
 (8)

 $\Pi_{\mathcal{F}}$ условий непрерывности функции s и ее производной s' имеем

$$a_i h_i^2 + b_i h_i = y_{i+1} - y_i, \quad i = 0, \dots, n-1,$$
 (9)

$$2a_ih_i + b_i = b_{i+1}, \quad i = 0, \dots, n-2.$$
 (10)

Здесь через h_i обозначена разность $x_{i+1} - x_i$.

Заметим, что число неизвестных системы (9-10) на единицу больше числа уравнений, поэтому можно ввести дополнительное условие, например $s'(x_0) = 0$. Получим $b_0 = 0$. Выразив a_i из уравнения (10), и подставив в уравнение (9), получим следующую реккурентную формулу

$$b_0 = 0;$$
 $b_{i+1} = \frac{2(y_{i+1} - y_i)}{h_i} - b_i, \quad i = 1, \dots, n-1.$ (11)

Затем последовательно найдем все a_i :

$$a_i = \frac{b_{i+1} - b_i}{2h_i}, \quad i = 1, \dots, n.$$
 (12)

Приближение функций методом наименьших квадратов

Пусть заданы точки (x_i,y_i) , $i=1,\ldots,n$. Требуется среди функций специального вида

$$\varphi(x) = \sum_{j=1}^{m} a_j \varphi_j(x)$$

выбрать ту, график которой проходит как можно ближе к заданным точкам.

Здесь $\varphi_j(x)$, $j=1,\ldots,m$ - заданная система базисных чебышевских функций. a_j , $j=1,\ldots,m$ - коэффициенты, подлежащие определению.

"Меру близости" функции $\varphi(x)$ к заданным точкам можно рассчитать как

$$S = \sum_{i=1}^{n} (\varphi(x_i) - y_i)^2.$$

Для определения коэффициентов a_j , $j=1,\ldots,m$ решают систему линейных уравнений

$$Ca = b$$
,

где $C = \{c_{kl}\}$ — матрица $m \times m$. Коэффициенты матрицы $c_{kl} = \sum_{i=1}^{n} \varphi_k(x_i) \varphi_l(x_i)$, b — вектор-столбец с элементами $b_k = \sum_{i=1}^{n} \varphi_k(x_i) y_i$. a — вектор-столбец неизвестных коэффициентов $a = \operatorname{col}(a_1, \ldots, a_m)$.

Наиболее распространенные наборы функций φ_i :

$$\{1, x, x^{2}, \dots, x^{m-1}\},\$$

$$\{1 - x, x(1 - x), x^{2}(1 - x), \dots, x^{m-1}(1 - x)\},\$$

$$\{1, \sin x, \cos x, \sin 2x, \cos 2x, \dots\},\$$

$$\{1, e^{x}, e^{2x}, \dots, e^{(m-1)x}\}.$$

Заметим, что если $\varphi_j=x^{j-1}$, и m=n, то функция φ совпадает с интерполяционным многочленом, построенном по набору значений (x_i,y_i) , $i=1,\ldots,n$.

2.2 Примеры

1. Дана таблица значений функции y(x)

Построить интерполяционный многочлен L(x), проходящий через заданные узлы.

Решение.

n=3. т.к. $x_0=1$, $x_3=6$. Построим многочлены l_0, l_1, \ldots, l_3 .

$$l_0 = \frac{(x-4)(x-5)(x-6)}{(1-4)(1-5)(1-6)} = 2 - 1.233x + 0.25x^2 - 0.0167x^3,$$

$$l_1 = \frac{(x-1)(x-5)(x-6)}{(4-1)(4-5)(4-6)} = -5 + 6.833x - 2x^2 + 0.1667x^3,$$

$$l_2 = \frac{(x-1)(x-4)(x-6)}{(5-1)(5-4)(5-6)} = 6 - 8.5x + 2.75x^2 - 0.25x^3,$$

$$l_3 = \frac{(x-1)(x-4)(x-5)}{(6-1)(6-4)(6-5)} = -2 + 2.9x - x^2 + 0.1x^3.$$

Тогла

$$L(x) = 2l_0(x) + 3l_1(x) + 2l_2(x) + 3l_3(x) = -5 + 9.733x - 3x^2 + 0.2667x^3.$$

2.~C какой погрешностью можно найти $\log_2 0.9$ по известным значениям $\log_2 \frac{1}{2}$, $\log_2 \frac{1}{4}$, $\log_2 1$?

Решение.

Для оценки погрешности воспользуемся формулой (5). Имеем

$$f(x) = \log_2(x)$$
, $n = 2$, $f'''(x) = \frac{1}{2\ln 2 - x^3}$; $\max_{t \in [\frac{1}{4}, 1]} |f'''(t)| = f'''(\frac{1}{4}) = \frac{64}{2\ln 2}$. Тоеда

$$|r(0.9)| \le \frac{32}{3! \ln 2} \left| \left(0.9 - \frac{1}{4} \right) \left(0.9 - \frac{1}{2} \right) (0.9 - 1) \right| = 0.2.$$

3. Дана таблица значений функции

 $\overline{\textit{Используя интерполяционный многочлен Ньютона, найти } y(3)$.

Решение.

Узлы не являются равноотстоящими, т.к. $2-1 \neq 4-2$.

Построим таблицу разделенных разностей.

			A Comment To the same	
X	y	$p(x_i)$	$p(x_i, x_{i+1})$	$p(x_i, x_{i+1}, x_{i+2})$
1	2	$\frac{-1-2}{2-1} = -3$	$\frac{-0.5+3}{4-1} = 0.83$	$\frac{-0.37-0.83}{6-1} = -0.24$
2	-1	$\frac{-2+1}{4-2} = -0.5$	$\frac{-2 \div 0.5}{6-2} = -0.37$	
4	-2	$\frac{-6+2}{6-4} = -2$		
6	-6	Ų I		

Для построения многочлена Ньютона нам необходима верхняя строка построенной таблицы.

Имеем по формуле (6)

$$N(x) = 2 + (-3)(x-1) + 0.83(x-1)(x-2) - 0.24(x-1)(x-2)(x-4)$$

или

$$N(x) = 8.58 - 8.85x + 2.51x^2 + 0.24x^3$$

$$y(3) = N(3) = -1.86$$

Заметим, что из-за округлений значений разделеных разностей возникает некоторая погрешность при вычислении N(6) .

4. Построить многочлен наименьшей степени, принимающий в данных точках заданные значения

$$\begin{bmatrix} x & 0.1 & 0.2 & 0.3 & 0.4 \\ y & 6 & 0 & 2 & 6 \end{bmatrix}$$

Узлы являются равноотстоящими, т.к. 0.2-0.1=0.3-0.2=0.4-0.3. поэтому построим многочлен Ньютона для равноотстоящих узлов. h=0.1.

Построим таблицу конечных разностей.

TT/// 1				
X	y	Δy	$\Delta^2 y$	$\Delta^3 y$
0.1	6	0 - 6 = -6	2 + 6 = 8	2 - 8 = -6
0.2	0	2 - 0 = 2	4 - 2 = 2	
0.3	2	6 - 2 = 4		
0.4	6			
	X 0.1 0.2	x y 0.1 6 0.2 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Для построения многочлена Ньютона нам необходима верхняя строка построенной таблицы.

Имеем по формуле (7)

$$N(x) = 6 + \frac{-6}{0.1}(x - 0.1) + \frac{8}{0.1^2 \cdot 2}(x - 0.1)(x - 0.2) + \frac{-6}{0.1^3 \cdot 6}(x - 0.1)(x - 0.2)(x - 0.4),$$

пли

$$N(x) = 26 - 290x + 1000x^2 - 1000x^3.$$

5. Для функции $y = e^x$ построить многочлен второй степени наилучшего среднеквадратичного приближения, используя значение функции в 5 узлах на отрезке [-1,1].

Решение

Выберем 5 узлов на отрезке [-1,1], $x_1=-1$, $x_2=-0.5$, $x_3=0$, $x_4=0.5$, $x_5=1$.

Найдем $y_i=e^{x_i},\ y_1=e^{-1}=0.3860,\ y_2=0.607,\ y_3=1,\ y_4=1.649,\ y_5=2.718$.

Так как требуется приблизить функцию многочленом второй степени $\varphi=1+a_2x+a_3x^2$, то $\varphi_1(x)=1$, $\varphi_2(x)=x$, $\varphi_3(x)=x^2$. Таким образом, m=3. Найдем коэффициенты матрицы C.

$$c_{11} = \sum_{i=1}^{5} \varphi_1(x_i)\varphi_1(x_i) = \sum_{i=1}^{5} 1 = 5,$$

$$c_{12} = \sum_{i=1}^{5} \varphi_1(x_i)\varphi_2(x_i) = \sum_{i=1}^{5} x_i = 0,$$

$$c_{13} = \sum_{i=1}^{5} \varphi_1(x_i)\varphi_3(x_i) = \sum_{i=1}^{5} x_i^2 = \frac{5}{2},$$
$$c_{21} = c_{12},$$

$$c_{22} = \sum_{i=1}^{5} \varphi_2(x_i)\varphi_2(x_i) = \sum_{i=1}^{5} x_i^2 = \frac{5}{2},$$

$$c_{23} = \sum_{i=1}^{5} \varphi_2(x_i)\varphi_3(x_i) = \sum_{i=1}^{5} x_i^3 = 0,$$

$$c_{31} = c_{13}.$$

$$c_{32} = c_{23},$$

$$c_{33} = \sum_{i=1}^{5} \varphi_3(x_i)\varphi_3(x_i) = \sum_{i=1}^{5} x_i^4 = \frac{17}{8}.$$

Также найдем элементы столбца b.

$$b_1 = \sum_{i=1}^{5} \varphi_1(x_i) y_i = \sum_{i=1}^{5} e^{x_i} = 6.341,$$

$$b_2 = \sum_{i=1}^{5} \varphi_2(x_i) y_i = \sum_{i=1}^{5} x_i e^{x_i} = 2.872,$$

$$b_3 = \sum_{i=1}^{5} \varphi_3(x_i) y_i = \sum_{i=1}^{5} x_i^2 e^{x_i} = 3.650.$$

Решим систему уравнений

$$\begin{pmatrix} 5 & 0 & \frac{5}{2} \\ 0 & \frac{5}{2} & 0 \\ \frac{5}{2} & 0 & \frac{17}{8} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 6.341 \\ 2.872 \\ 3.650 \end{pmatrix}.$$

Получим $a_1 = 0.944$, $a_2 = 1.147$, $a_3 = 0.5477$.

Таким образом, имеем многочлен $\varphi(x) = 0.944 + 1.147x + 0.5477x^2$.

Многочлен $\varphi(x)$ хорошо приближает функцию $y=e^x$. Это можно видеть на рисунке 1.

Рис. 1: Среднеквадратичное приближение функции $y = e^x$ многочленом второй степени

б. Построить параболический сплайн для таблично заданной функции.

					4	
Х	1	2	3	4	5	6
у	2	3	5	3	4	6

Решение.

Ищем функцию s(x) в виде

$$s(x) = \begin{cases} a_0(x-1)^2 + b_0(x-1) + 2, & \text{при } x \in [1,2], \\ a_1(x-2)^2 + b_1(x-2) + 3, & \text{при } x \in [2,3], \\ a_2(x-3)^2 + b_2(x-3) + 5, & \text{при } x \in [3,4], \\ a_3(x-4)^2 + b_3(x-4) + 3, & \text{при } x \in [4,5], \\ a_4(x-5)^2 + b_4(x-5) + 4, & \text{при } x \in [5,6], \end{cases}$$

Здесь мы уже подставили значения $c_i=y_i$. Все $h_i=1$. Воспользуемся формулой (11)

$$b_0 = 0; \quad b_1 = \frac{2(y_1 - y_0)}{h_0} - b_0 = 2(3 - 2) - 0 = 2,$$

$$b_2 = \frac{2(y_2 - y_1)}{h_1} - b_1 = 2(5 - 3) - 2 = 2,$$

$$b_3 = \frac{2(y_3 - y_2)}{h_2} - b_2 = 2(3 - 5) - 2 = -6,$$

$$b_4 = \frac{2(y_4 - y_3)}{h_3} - b_3 = 2(4 - 3) + 6 = 8,$$

$$b_5 = \frac{2(y_5 - y_4)}{h_4} - b_4 = 2(6 - 4) - 8 = -4,$$

Найдем теперь a_i по формуле (12)

$$a_{i} = \frac{b_{i+1} - b_{i}}{2h_{i}},$$

$$a_{0} = \frac{b_{1} - b_{0}}{2h_{0}} = \frac{2 - 0}{2} = 1,$$

$$a_{1} = \frac{b_{2} - b_{1}}{2h_{1}} = \frac{2 - 2}{2} = 0,$$

$$a_{2} = \frac{b_{3} - b_{2}}{2h_{2}} = \frac{-6 - 2}{2} = -4,$$

$$a_{3} = \frac{b_{4} - b_{2}}{2h_{3}} = \frac{8 + 6}{2} = 7,$$

$$a_{4} = \frac{b_{5} - b_{4}}{2h_{4}} = \frac{-4 - 8}{2} = -6.$$

Тогда

$$s(x) = \begin{cases} (x-1)^2 + 2, & \text{при } x \in [1,2], \\ 2(x-2) + 3, & \text{при } x \in [2,3], \\ -4(x-3)^2 + 2(x-3) + 5, & \text{при } x \in [3,4], \\ 7(x-4)^2 - 6(x-4) + 3, & \text{при } x \in [4,5], \\ -6(x-5)^2 + 8(x-5) + 4, & \text{при } x \in [5,6]. \end{cases}$$

Нетрудно проверить, что условия интерполяции, непрерывности для функции s(x) выполнены, а также выполнено условие непрерывности производной.

2.3 Вопросы и задачи для самостоятельной работы

- 1. Построить многочлен Лагранжа для равноотстоящих узлов.
- 2. Функция y(x) задана таблицей

۷. ۱	Pyr	11/11	IIN	g(x)
х	1	4	5	8
y	2	3	5	13

Как можно найти x, при котором y(x) = 4?

- 3. Зная значения $\sin x$ при $x=0,\frac{\pi}{6},\frac{\pi}{4},\frac{\pi}{3},\frac{\pi}{2},$ найти $\sin\frac{\pi}{12}$ и оценить погрешность.
- 4. Дана таблица патуральных логарифмов чисел от 1 до 10. Какова погрешность линейной интерполяции, если шаг равен 0.001?
 - 5. Можно ли применять метод наименьших квадратов, если m > n?
- 6. Для таблично заданной функции построить функцию наилучшего среднеквадратичного приближения, полагая $\varphi_1(x)=1$, $\varphi_2(x)=\sin x$, $\varphi_3(x)=$

$$\cos x \cdot \begin{bmatrix} x & -1 & 0 & 2 & 3 \\ y & 2 & 3 & 5 & 3 \end{bmatrix}$$

- 7. Описать алгоритм построения сплайна первого порядка (линейного сплайна).
- 8. Получить формулы для вычисления коэффициентов кубического сплайна. Сколько дополнительных условий на функцию s придется ввести?
 - 9. Как определить погрешность сплайн-интерполяции?
- 10. С помощью силайн-интерполяции определить значение таблично заданной функции y(x) в точке x=0.9.

- 11. Показать, что имеется не более одного многочлена степени не выше n. такого, что $L(x_i) = y_i$, $i = 0, \ldots, n$.
- 12. Провести для интерполяционного многочлена Ньютона оценку остаточного члена.

2.4 Задание к лабораторной работе

Для фукции y(x), заданной таблично, построить многочлен Ньютона или Лагранжа (по выбору), параболический сплайн и функцию наилучшего среднеквадратичного приближения, полагая

$$arphi_1 = 1 - x, \quad arphi_2 = x(1 - x)^{i-1}, \quad i = 2, \dots, 5, \text{ если } N = 3k,$$
 $arphi_1 = 1 - x, \quad arphi_i = x^{i-1}(1 - x), \quad i = 2, \dots, 5, \text{ если } N = 3k + 1,$
 $arphi_1 = 1, \quad arphi_2 = \sin x, \quad arphi_3 = \cos x, \quad arphi_4 = \sin 2x, \quad arphi_5 = \cos 2x,$

если N = 3k + 2, где N - количество букв в Ф.И.О.

Уметь определять	значения	функции	В !	произвольной точке.	

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
y	0.2N	$0.3 \mathrm{m}$	0.5k	0.6N	$0.7 \mathrm{m}$	k	0.8 N	1.2k	$1.3 \mathrm{m}$	N

Здесь m-количество букв в фамилии, k-количество букв в имени.

Лабораторная работа "Численное интегрирование"

3.1 Краткий теоретический материал

Для приближенного вычисления интеграла $I=\int_a^b f(x)dx$ рассматривается число $I_n = \sum_{i=1}^n c_i f(x_i)$. Последняя формула, служащая для приближенного вычисления интеграла, называется квадратурной формулой. Числа c_i (не зависящие от выбора функции f(x)) называются коэффициентами квадратурной формулы, а значення $x_i: a \leq x_1 < x_2 < \cdots < x_n \leq b - узлами$ квадратурной формулы.

Погрешностью квадратурной формулы называется величина

$$R_n(f) = \int_a^b f(x) dx - \sum_{i=1}^n c_i f(x_i),$$
 или $R_n(f) = I - I_n.$

Коэффициенты и узлы квадратурной формулы имеет смысл выбирать так, чтобы минимизировать величину погрешности.

Простые квадратурные формулы для вычисления интеграла $\int_a^b f(x)dx$:

Формула прямоугольников $I_1=(b-a)f(\xi)$, где ξ – некоторая точка отрезка [a,b]. Если $\xi=a$, то формула называется формулой левых прямоугольников, если $\xi = b$, то формула называется формулой правых прямоугольников, если $\xi = (a+b)/2$, то формула называется формулой сред*них прямоугольников.* (Узлом здесь является точка $x_1 = \xi$, коэффициентом $c_1 = b - a$.)

Формула трапеций $I_2 = \frac{(b-a)}{2} (f(a) + f(b))$. (Узлами здесь являются точки $x_1 = a$, $x_2 = b$, коэффициентами $c_1 = c_2 = (b - a)/2$.)

Формула Симпсона $I_3=\frac{(b-a)}{6}\left(f(a)+4f(\frac{a+b}{2})+f(b)\right)$. (Узлами здесь являются точки $x_1=a$, $x_2=\frac{a+b}{2}$, $x_3=b$, коэффициентами $c_1=c_3=\frac{b-a}{6}$, $c_2 = \frac{2}{3}(b-a)$.)

Оценками для погрешностей этих формул являются соответствено

$$|R_1| \le \frac{(b-a)^3}{24} \max_{t \in [a,b]} |f''(t)| \quad (\text{ести } \xi = (a+b)/2),$$
 (16)

$$|R_2| \le \frac{(b-a)^3}{12} \max_{t \in [a,b]} |f''(t)|. \tag{17}$$

$$|R_3| \le \frac{(b-a)^5}{1536} \max_{t \in [a,b]} |f^{(4)}(t)|. \tag{18}$$

Как видно, при достаточно большом отрезке [a, b] погрешность может быть велика, поэтому вместо простых квадратурных формул часто применяют составные формулы.

На отрезке [a,b] вводится сетка с шагом h=(b-a)/m (m-некоторое целое число). $x_i = a + ih$, i = 0, ..., m.

На каждом из отрезков $[x_i, x_{i+1}]$ применяют простую квадратурную формулу. Результат суммируют.

В результате получают следующие составные формулы:

Составная формула левых прямоугольников $I_m = \sum_{i=0}^{m-1} hf(x_i)$. Составная формула правых прямоугольников $I_m = \sum_{i=1}^m hf(x_i)$.

Составная формула трапеций $I_m = \frac{f(x_0) + f(x_m)}{2} h + \sum_{i=1}^{m-1} h f(x_i)$.

Составная формула Симпсона
$$I_m = \frac{f(x_0) + f(x_m)}{6}h + \sum_{i=1}^{m-1} \frac{h}{3}f(x_i) + \sum_{i=0}^{m-1} \frac{2h}{3}f(x_i + \frac{h}{2}).$$

Константу m следут выбирать так, чтобы погрешность интегрирования не превосходила заданную точность ε . Это можно сделать, используя правило Рунге практической оценки погрешности.

Правило Рунге состоит в следующем: возьмем произвольное m ($h = \frac{b-a}{m}$) и по составной формуле найдем I_m . Затем увеличим вдвое число узлов и вычислим по той же составной формуле I_{2m} . Найдем величину $\varepsilon_m = \frac{|I_m - I_{2m}|}{2^s - 1}$ (s=1) для составной формулы прямоугольников; s=2 для составной формулы трапеций; s=4 для составной формулы Симпсона).

Если $\varepsilon_m \leq \varepsilon$, то $I = I_{2m} \pm \varepsilon$ и вычисления заканчивают, в другом случае вновь увеличивают вдвое число $\,m\,$ и повторяют описанную выше процедуру, полагая m := 2m.

Формулами высокой точности являются квадратурные формулы Гауссова muna. Напомним, что квадратурная формула I_n является $mouno\tilde{u}$ для многочленов степени m, если для любого многочлена p(x) степени меньше либо равной m точное значение интеграла $I(p) = I_n(p)$.

Узлы квадратуры Гауссова типа $I_n = \sum_{i=0}^n A_i f(x_i)$ можно определить из следующей системы:

$$\int_{a}^{b} (x - x_0)(x - x_1) \dots (x - x_n)x^l dx = 0, \quad l = 0, 1, \dots, n - 1.$$
 (19)

Коэффициенты Гауссовой квадратуры находятся по формуле:

$$A_{k} = \int_{a}^{b} \frac{(x - x_{0})(x - x_{1}) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_{n})}{(x_{k} - x_{0})(x_{k} - x_{1}) \dots (x_{k} - x_{k-1})(x_{k} - x_{k+1}) \dots (x_{k} - x_{n})} dx, \quad (20)$$

$$k = 0 \qquad m$$

Квадратура Гауссова типа I_n точна для многочленов степени 2n-1 .

3.2 Примеры

1. Вычислить $\int_0^1 x^2 f(x) dx$, если f(0) = -1, $f(\frac{1}{2}) = 1$, $f(1) = 2\frac{1}{2}$. Решение.

Воспользуемся простой формулой Симсона.

$$\int_0^1 x^2 f(x) dx = \frac{1-0}{6} \left(0^2 f(0) + 4 \left(\frac{1}{2} \right)^2 f\left(\frac{1}{2} \right) + 1^2 f(1) \right) =$$

$$= \frac{1}{6} (0 + \frac{1}{4} \cdot 1 + 1 \cdot 2.5) = 0.46.$$

2. С какой погрешностью вычисляется интеграл $\int_{-1}^{0} \sin x dx$ по формуле средних прямоугольников?

Решение.

Воспользуемся формулой (17.)

$$|R_2| \le \frac{(0 - (-1))^3}{12} \max_{t \in [-1, 0]} |(\sin x)''| = \frac{1}{12} \max_{t \in [-1, 0]} |(\sin x)| \le \frac{\sin 1}{12} = 0.07.$$

3. Найти узлы и коэффициенты Гауссовой квадратуры $\int_0^1 f(x)dx = A_0 f(x_0) + A_1 f(x_1)$.

Решение.

n=2 (два узла, два коэффициента). Воспользуемся формулой (19) для ноиска узлов. Имеем

$$\begin{cases} \int_0^1 (x - x_0)(x - x_1) dx = 0, \\ \int_0^1 (x - x_0)(x - x_1) x dx = 0. \end{cases}$$

Раскроем скобки и приведем подобные члены

$$\begin{cases} \int_0^1 x^2 - (x_0 + x_1)x + x_0 x_1 dx = 0, \\ \int_0^1 x^3 - (x_0 + x_1)x^2 + x_0 x_1 x dx = 0. \end{cases}$$

Введем замену $x_0 + x_1 = u$, $x_0 x_1 = v$. Тогда

$$\begin{cases} \frac{1}{3} + u\frac{1}{2} + v = 0, \\ \frac{1}{4} + u\frac{1}{3} + v\frac{1}{2} = 0. \end{cases}$$

Решением этой системы являются $u=-1, v=\frac{1}{6}$, или $x_1=\frac{\sqrt{3}-1}{2\sqrt{3}}$ $x_2=\frac{\sqrt{3}+1}{2\sqrt{3}}$.

Определим теперь коэффициенты по формуле (20).

$$\int_{0}^{1} \frac{x - \frac{\sqrt{3} - 1}{2\sqrt{3}}}{\frac{\sqrt{3} - 1}{2\sqrt{3}} - \frac{\sqrt{3} + 1}{2\sqrt{3}}} dx = \frac{1}{2},$$

$$\int_{0}^{1} \frac{x - \frac{\sqrt{3} + 1}{2\sqrt{3}}}{\frac{\sqrt{3} + 1}{2\sqrt{3}} - \frac{\sqrt{3} - 1}{2\sqrt{3}}} dx = \frac{1}{2}.$$

Таким образом $\int_0^1 f(x)dx = \frac{1}{2}f(\frac{\sqrt{3}-1}{2\sqrt{3}}) + \frac{1}{2}f(\frac{\sqrt{3}+1}{2\sqrt{3}})$

3.3 Вопросы и задачи для самостоятельной работы

- 1. Оценить погрешность составных формул прямоугольников, транеций, Симпсона и определить погрешность вычисления $\int_{-1}^1 \frac{x}{1+x^2} dx$ по составной формуле Симпсона с шагом h=0.01.
- 2. Повторите, что называется квадратурной формулой интерполяционного типа и решите следующую задачу: Вычислить $\int_{-2}^3 x f(x) dx$, если известно, что f(0) = 1, f(3) = 4, f(-1) = 1. Можно ли оценить погрешность интегрирования, если известно, что |f'''(x)| < 4?
- 3. Являются ли интерполяционными формулы Симпсона, трапеций, составная формула прямоугольников, составная формула транеций?
- 4. Выведите кубатурные формулы типа Симисона, прямоугольников, трапеций.
- 5. Для вычисления интеграла предложена квадратурная формула Гауссова типа $\int_{-1}^1 f(x)dx = A_0f(x_0) + A_1f(x_1) + A_2f(x_2)$. Найти значения ее узлов и коэффициентов.
- 6. Определить, в каких случаях формула прямоугольников (трапеций) дает верхнюю оценку для интеграла, в каких нижнюю оценку.
- 7. Для вычисления интеграла с особенностью предложена квадратурная формула Гауссова типа $\int_{-1}^1 \delta(x) f(x) dx = A_0 f(x_0) + A_1 f(x_1) + A_2 f(x_2)$. ($\delta(x)$

- фукция, имеющая особенность на отрезке [-1,1]). Как найти значения ее узлов и коэффициентов?
- 8. Для вычисления интеграла предложена квадратурная формула Гауссова типа $\int_{-1}^1 f(x) dx = A_0 f(x_0) + A_1 f(x_1) + A_2 f(x_2)$. Как использовать ее для вычисления $\int_a^b f(x) dx$?

3.4 Задание к лабораторной работе

- 1. С точностью $\varepsilon = 10^{-4}$ найти значение интеграла $\int_a^b f(x) dx$. Значения a,b, функция f определяются вариантом задания.
- 2. Найти значение интеграла $\int_a^b f(x) dx$ по квадратурной формуле Гаусса с тремя узлами.

Номер варианта определяется как остаток от деления N на 15. N – количество букв в $\Phi.H.O.$

тчество букв	чество букв в Ф.И.О.									
Номер	f(x)	[a,b]	вид составной							
варианта			квадратурной формулы							
1	$\frac{1}{1+10x}$	[0,1]	левых прямоугольников							
2	$\frac{1}{1+x^2}$	[0, 1]	правых прямоугольников							
3	$\frac{1}{1+10x^3}$	[0, 1]	левых прямоугольников							
4	$\frac{x^2}{1-x-x^2}^2$	[0, 1]	транеций							
5	$\frac{0.1+x^2\sin x}{x^2+0.5}$	[-0.2, 0.4]	трапеций							
6	$\sin \frac{1}{1+10x}$	[0, 1]	Симисона							
7	$\sqrt{2-\cos\frac{1}{1+x^2}}$	[0, 1]	левых прямоугольников							
8	$e^{\frac{-1}{1+r}}$	[0,1]	правых прямоугольников							
9	$\cos \frac{1}{1+x^2}$	$\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$	транеций							
10	$\sqrt{\pi - \arctan \frac{1}{1+x^2}}$	$\left[\frac{\pi}{4},\frac{\pi}{2}\right]$	правых прямоугольников							
11	$\sqrt{1+\sin^2\frac{1}{1+x^2}}$	$[0,\pi]$	Симпсона							
12	$\sin \frac{1}{1+x^2}$	$[0, \frac{\pi}{2}]$	трапеций							
13	$\ln\left(1+e^{\frac{1}{1+x^2}}\right)$	[0, 1]	правых прямоугольников							
14	$\cos \frac{1}{2-r^2}$	[0, 1]	левых прямоугольников							
0	$\sqrt{1+e^{\frac{2}{1+x^2}}}$	[0,1]	Симисона							

4 Лабораторная работа "Методы решения нелинейных уравнений и систем"

4.1 Краткий теоретический материал

Пусть на отрезке [a,b] уравнение f(x)=0 имеет и притом единственный корень. (Отрезок [a,b] можно определить, например, графически). Предположим, что функция y=f(x) является непрерывной на отрезке [a,b] и принимает на концах отрезка разные знаки :

$$f(a)f(b) < 0. (21)$$

В этом случае для поиска корней можно воспользоваться методом половиниого деления (методом дихотомий). Метод этот заключается в последовательном делении отрезка пополам. На одном из двух получившихся отрезков оказывается корень, причем отрезок, который будем вновь делить, определяем с номощью условия вида (21). Процесс деления отрезка прекращается, когда длина отрезка становится меньше заданной точности ε . Тогда приближенное значение корня равно середине отрезка.

Пусть теперь функция y=f(x) имеет на отрезке [a,b] непрерывные производные f'(x) и f''(x). Кроме того, производные не меняют знак на отрезке [a,b]. Выберем начальное приближение $x_0 \in [a,b]$ так, что

$$f(x_0)f''(x_0) > 0. (22)$$

Тогда

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, \dots$$
 (23)

Итерационный процесс прекращают, когда одна из величин $|x_{n+1}-x_n|$ или $|f(x_{n+1})|$ становится меньше заданной точности ε .

Описанный метод носит название метода Ньютона.

Отметим, что метод Ньютона имеет квадратичную скорость сходимости, т.е.

$$|x_{n+1} - x^*| = O|x_n - x^*|^2$$

где x^* – точное значение корня уравнения f(x) = 0.

В случаях громоздкой производной метод Ньютона можно несколько изменить.

Модифицированный метод Ньютона

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}, \quad n = 0, 1, \dots$$
 (24)

Рис. 2: Геометрическая интерпретация метода Ньютона

Метод секущих

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}, \quad n = 0, 1, \dots$$
 (25)

Заметим, что метод является двухшаговым, так как для вычисления n+1-й итерации надо знать два предыдущих значения x_n и x_{n-1} . Поэтому x_0 можно определить произвольно, а x_1 – например, по формуде (23).

Метод хорд

Для уменьшения вычислительной работы применяют следующую модификацию метода секущих:

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - x_0)}{f(x_n) - f(x_0)}, \quad n = 0, 1, \dots$$
 (26)

В описанных выше методах требования к функциям такие же, как в методе Ньютона. Условие окончания итераций также остается неизменным.

Все описанные выше методы являются частным случаем метода простой итерации.

Общий вид метода простой итерации

Если h(x) – некоторая функция, не обращающаяся в 0 на отреже [a,b], то уравнение f(x)=0 эквивалентно уравнению x=x+h(x)f(x). Обозначим

 $\varphi(x) = x + h(x) f(x)$ и рассмотрим решение уравнения $x = \varphi(x)$ при условии, что существует положительное число q < 1, такое что на отрезке [a,b]

$$|\varphi'(x)| \le q. \tag{27}$$

Тогда, полагая x_{0} — любое число на отрезке [a,b], организуем итерационный процесс по правилу

$$x_{n+1} = \varphi(x_n), \quad n = 0, 1, \dots$$
 (28)

Итерационный процесс оканчивается, когда выполнено условие

$$|x_{n+1} - x_n| < \frac{1 - q}{q} \varepsilon,$$

где € заданная точность.

Предварительно число итераций, требуемое для достижения точности ε . можно оценить по формуле

$$N = \left[\log_q \frac{\varepsilon(1-q)}{|x_1 - x_0|}\right] + 1. \tag{29}$$

В последней формуле квадратные скобки обозначают целую часть числа.

Мегод простой итерации в общем случае имеет линейную скорость сходимости, т.е.

$$|x_{n+1} - x^*| = O|x_n - x^*|,$$

где x^* — точное значение кория уравнения f(x) = 0.

Отметим, что выбор функции h(x), такой, чтобы было выполнено условие (27) – непростая задача. В случаях, когда это затруднительно, разумно пользоваться готовыми формулами (23)-(26)

Решение систем нелинейных уравнений методом Ньютона

Рассмотрим систему двух уравнений с двумя неизвестными

$$\begin{cases} f(x,y) = 0, \\ g(x,y) = 0. \end{cases}$$

Согласно методу Ньютона последовательные приближения вычисляются по формулам

$$\begin{cases} x_{n+1} = x_n - \frac{\Delta_r(x_n, y_n)}{\Delta(x_n, y_n)}, \\ y_{n+1} = y_n - \frac{\Delta_y(x_n, y_n)}{\Delta(x_n, y_n)}, \end{cases} \quad n = [0, 1, \dots]$$

где

$$\Delta_x(x,y) = \begin{vmatrix} f(x,y) & f'_y(x,y) \\ g(x,y) & g'_y(x,y) \end{vmatrix}, \quad \Delta_y(x,y) = \begin{vmatrix} f'_x(x,y) & f(x,y) \\ g'_x(x,y) & g(x,y) \end{vmatrix},$$

$$\Delta(x,y) = \begin{vmatrix} f'_x(x,y) & f'_y(x,y) \\ g'_x(x,y) & g'_y(x,y) \end{vmatrix},$$

 $\Delta(x,y) \neq 0$.

Начальные приближения определяются графически или грубой прикидкой.

Метод простой итерации для систем нелинейных уравнений

Пусть дана система двух уравнений с двумя неизвестными, записанная в следующем виде

$$\begin{cases} x = \phi(x, y), \\ y = \psi(x, y). \end{cases}$$
 (30)

Пусть, кроме того, в некоторой замкнутой окрестности $R(a \le x \le A, b \le y \le B)$ имеется ровно одно решение системы (30), функции ϕ , ψ определены и испрерывно дифференцируемы в R, и в R выполнены неравенства

$$\begin{cases}
\left|\frac{\partial \phi}{\partial x}\right| + \left|\frac{\partial \psi}{\partial x}\right| \le q_1 < 1, \\
\left|\frac{\partial \phi}{\partial y}\right| + \left|\frac{\partial \psi}{\partial y}\right| \le q_2 < 1.
\end{cases}$$
(31)

Тогда процесс итераций

$$\begin{cases} x_{n+1} = \phi(x_n, y_n), \\ y_{n+1} = \psi(x_n, y_n). \end{cases}$$
 $n = 0, 1, \dots$ (32)

с начальным приближением $(x_0, y_0) \in R$ сходится к точному решению системы с любой заданной точностью ε .

Итерации можно прекратить, если выполнено условие

$$|x_{n+1} - x_n| + |y_{n+1} - y_n| \le \frac{1 - M}{M} \varepsilon,$$

где M – наибольшее из чисел q_1 , q_2 .

Приведение системы уравнений к виду, удобному для итераций Пусть дана система

$$\begin{cases} f(x,y) = 0, \\ g(x,y) = 0. \end{cases}$$

Будем искать функции ϕ и ψ системы (30) в виде

$$\phi(x,y) = x + \alpha_{11}f(x,y) + \alpha_{12}g(x,y), \psi(x,y) = y + \alpha_{21}f(x,y) + \alpha_{22}g(x,y),$$

где коэффициенты α_{ij} , i=1,2, j=1,2 определяются приближение из системы

$$\begin{cases}
1 + \alpha_{11} \frac{\partial f(x_0, y_0)}{\partial x} + \alpha_{12} \frac{\partial g(x_0, y_0)}{\partial x} = 0, \\
\alpha_{11} \frac{\partial f(x_0, y_0)}{\partial y} + \alpha_{12} \frac{\partial g(x_0, y_0)}{\partial y} = 0, \\
\alpha_{21} \frac{\partial f(x_0, y_0)}{\partial x} + \alpha_{22} \frac{\partial g(x_0, y_0)}{\partial x} = 0, \\
1 + \alpha_{21} \frac{\partial f(x_0, y_0)}{\partial y} + \alpha_{22} \frac{\partial g(x_0, y_0)}{\partial y} = 0.
\end{cases}$$
(33)

При таком выборе условие (31) будет выполнено, если частные производные функций f и g изменяются не очень быстро в окрестности точки (x_0, y_0) .

4.2 Примеры

1. Найти корень квадратный из числа a=2 с точностью $\varepsilon=10^{-3}$. Решение.

Рассмотрим уравнение $x^2-a=0$. (Именно его корнем является число \sqrt{a}). Воспользуемся методом Ньютона. $f(x)=x^2-a$, f'(x)=2x, f''(x)=2. По формуле (23) $x_{n+1}=x_n-\frac{c_n^2-a}{2x_n}$ или

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right), \quad n = 0, 1, \dots$$

Для нашей задачи a=2, значит, грубой прикидкой находим, что корень находится на отрезке [1,1.5]. В качестве x_0 возьмем число 1.5, так как по условию (22) $f(1.5)f''(1.5)=2.25\cdot 2>0$. Тогда последовательные приближения

$$x_{1} = \frac{1}{2} \left(1.5 + \frac{2}{1.5} \right) = 1.417, \quad |x_{1} - x_{0}| = 0.083 > 10^{-3};$$

$$x_{2} = \frac{1}{2} \left(1.417 + \frac{2}{1.417} \right) = 1.414, \quad |x_{2} - x_{1}| = 0.003 > 10^{-3};$$

$$x_{3} = \frac{1}{2} \left(1.414 + \frac{2}{1.414} \right) = 1.412, \quad |x_{3} - x_{2}| = 0.002 > 10^{-3};$$

$$x_{4} = \frac{1}{2} \left(1.412 + \frac{2}{1.412} \right) = 1.412, \quad |x_{4} - x_{3}| = 0.000 < 10^{-3}.$$

Значит, $\sqrt{2} = 1.412 \pm 10^{-3}$.

2. Методом простой итерации решить уравнение $\sqrt{x}-\cos 0.387x=0$. Оценить, сколько итераций потребуется, чтобы найти корень с точностью 10^{-4} .

Решение.

Преобразуем уравнение к виду $x=\cos^2 0.387x$. Тогда положим $\varphi(x)=\cos^2 0.387x$. Тогда $\varphi'(x)=-2\cos 0.387x\sin 0.387x\cdot 0.387=0.387\sin 0.774x$. Тогда $|\varphi'(x)|\leq 0.387=q<1$. Так как условие (27) выполнено, то метод простой итерации можно применять, положив, например $x_0=0$. Тогда $x_1=\cos^2 0.387\cdot 0=1$.

Оценим, сколько итераций потребуется. Согласно (29)

$$N = \left[\log_{0.387} \frac{10^{-3}(1 - 0.387)}{|1 - 0|}\right] + 1 = 8.$$

Тогда

$$x_2 = \cos^2 0.387 \cdot 1 = 0.8575;$$

 $x_3 = \cos^2 0.387 \cdot 0.8575 = 0.8938;$
 $x_4 = \cos^2 0.387 \cdot 0.8938 = 0.8850;$
 $x_5 = \cos^2 0.387 \cdot 0.8850 = 0.8872;$
 $x_6 = \cos^2 0.387 \cdot 0.8872 = 0.8867;$
 $x_7 = \cos^2 0.387 \cdot 0.8867 = 0.8868;$
 $x_8 = \cos^2 0.387 \cdot 0.8868 = 0.8868.$

Значит, $x = 0.887 \pm 0.001$.

3. Найти вещественные корни системы

$$\begin{cases} 2x^3 - y^2 - 1 = 0, \\ xy^3 - y - 4 = 0. \end{cases}$$

Решение

Грубой прикидкой находим начальное приближение $x_0=1\,,\;y_0=2\,.$

$$\Delta_{x}(x,y) = \begin{vmatrix} 2x^{3} - y^{2} - 1 & -y \\ xy^{3} - y - 4 & 3xy^{2} - 1 \end{vmatrix} =$$

$$= (2x^{3} - y^{2} - 1)(3xy^{2} - 1) - (-y)(xy^{3} - y - 4).$$

$$\Delta_{y}(x,y) = \begin{vmatrix} 6x^{2} & 2x^{3} - y^{2} - 1 \\ y^{3} & xy^{3} - y - 4 \end{vmatrix} =$$

$$= 6x^{2}(xy^{3} - y - 4) - y^{3}(2x^{3} - y^{2} - 1).$$

$$\Delta(x,y) = \begin{vmatrix} 6x^{2} & -2y \\ y^{3} & 3xy^{2} - 1 \end{vmatrix} =$$

$$= 6x^{2}(3xy^{2} - 1) - (-2y)(y^{3}).$$

$$x_1 = 1 - \frac{\Delta_x(1,2)}{\Delta(1,2)} = 1.2551,$$

$$y_1 = 2 - \frac{\Delta_y(1,2)}{\Delta(1,2)} = 1.6327,$$

$$x_2 = 1.2551 - \frac{\Delta_x(1.2551, 1.6327)}{\Delta(1.2551, 1.6327)} = 1.2345,$$

$$y_2 = 1.6327 - \frac{\Delta_y(1.2551, 1.6327)}{\Delta(1.2551, 1.6327)} = 1.6615,$$

$$x_3 = 1.2345 - \frac{\Delta_x(1.2345, 1.6615)}{\Delta(1.2345, 1.6615)} = 1.2343,$$

$$y_3 = 1.6615 - \frac{\Delta_y(1.2345, 1.6615)}{\Delta(1.2345, 1.6615)} = 1.6615,$$

$$x_4 = 1.2343 - \frac{\Delta_x(1.2343, 1.6615)}{\Delta(1.2343, 1.6615)} = 1.2343,$$

$$y_4 = 1.6615 - \frac{\Delta_y(1.2343, 1.6615)}{\Delta(1.2343, 1.6615)} = 1.6615.$$

Видим, что при последующих итерациях с точностью до четырех знаков после запятой решение не изменяется. Значит $x=1.2343\pm 10^{-4}$, $y=1.6615\pm 10^{-4}$.

4. Для системы

$$\begin{cases} x^3 + y^3 - 6x + 3 = 0, \\ x^3 - y^3 - 6y + 2 \end{cases}$$

найти положительные корни с тремя верными знаками.

Решение

Персиншем данную систему в виде

$$\begin{cases} x = \frac{x^3 + y^3}{6} + \frac{1}{2} = \phi(x, y), \\ y = \frac{x^3 - y^3}{6} + \frac{1}{3} = \psi(x, y). \end{cases}$$

Рассмотрим квадрат $R: (0 \le x \le 0.9, 0 \le y \le 0.9)$. Для точек этого квадрата имеем

$$\begin{cases} \left| \frac{\partial \phi}{\partial x} \right| + \left| \frac{\partial \psi}{\partial x} \right| = \frac{x^2}{2} + \frac{y^2}{2} \le 0.95 < 1, \\ \left| \frac{\partial \phi}{\partial y} \right| + \left| \frac{\partial \psi}{\partial y} \right| = \frac{x^2}{2} + \left| \frac{-y^2}{2} \right| \le 0.95 < 1. \end{cases}$$

M=0.95 < 1, значит, можно применять метод итераций, полагая $x_0=0.5$,

 $y_0 = 0.5$.

$$x_{1} = \frac{0.5^{3} + 0.5^{3}}{6} + \frac{1}{2} = 0.542, \quad y_{1} = \frac{0.5^{3} - 0.5^{3}}{6} + \frac{1}{3} = 0.333,$$

$$|0.5 - 0.542| + |0.5 - 0.333| = 0.209 > \frac{0.95}{1 - 0.95} 10^{-4} = 1.9 \cdot 10^{-3};$$

$$x_{2} = \frac{0.542^{3} + 0.333^{3}}{6} + \frac{1}{2} = 0.533, \quad y_{2} = \frac{0.542^{3} - 0.333^{3}}{6} + \frac{1}{3} = 0.354,$$

$$|0.542 - 0.533| + |0.333 - 0.354| = 0.03 > 1.9 \cdot 10^{-3};$$

$$x_{3} = \frac{0.533^{3} + 0.354^{3}}{6} + \frac{1}{2} = 0.533, \quad y_{3} = \frac{0.533^{3} - 0.354^{3}}{6} + \frac{1}{3} = 0.351,$$

$$|0.533 - 0.533| + |0.354 - 0.351| = 0.003 > 1.9 \cdot 10^{-3};$$

$$x_{3} = \frac{0.533^{3} + 0.351^{3}}{6} + \frac{1}{2} = 0.532, \quad y_{3} = \frac{0.533^{3} - 0.351^{3}}{6} + \frac{1}{3} = 0.351,$$

$$|0.533 - 0.532| + |0.351 - 0.351| = 0.001 > 1.9 \cdot 10^{-3};$$

$$x_{4} = \frac{0.532^{3} + 0.351^{3}}{6} + \frac{1}{2} = 0.532, \quad y_{4} = \frac{0.532^{3} - 0.351^{3}}{6} + \frac{1}{3} = 0.351,$$

$$|0.532 - 0.532| + |0.351 - 0.351| < 1.9 \cdot 10^{-3}.$$

5. Привести систему к виду, удобному для итераций

$$\begin{cases} x^2 + y^2 - 1 = 0, \\ x^3 - y = 0, \end{cases}$$

полагая $x_0 = 0.8$, $y_0 = 0.55$.

Решение

$$f(x,y) = x^2 + y^2 - 1, g(x,y) = x^3 - y.$$

Составим систему (33). Имеем

$$\frac{\partial f}{\partial x} = 2x, \quad \frac{\partial f(x_0, y_0)}{\partial x} = 1.6, \quad \frac{\partial f}{\partial y} = 2y, \quad \frac{\partial f(x_0, y_0)}{\partial y} = 1.1,$$

$$\frac{\partial g}{\partial x} = 3x^2, \quad \frac{\partial g(x_0, y_0)}{\partial x} = 1.92, \quad \frac{\partial g}{\partial y} = -1, \quad \frac{\partial g(x_0, y_0)}{\partial y} = -1,$$

Получаем систему

$$\begin{cases} 1 + 1.6\alpha_{11} + 1.92\alpha_{12} = 0, \\ 1.1\alpha_{11} - \alpha_{12} = 0, \\ 1.6\alpha_{21} + 1.92\alpha_{22} = 0, \\ 1 + 1.1\alpha_{21} - \alpha_{22} = 0. \end{cases}$$

Решая, получим

$$\alpha_{11} = -0.3$$
, $\alpha_{12} = -0.3$, $\alpha_{21} = -0.5$, $\alpha_{22} = 0.4$.

Тогда

$$\begin{cases} \phi(x,y) = x - 0.3(x^2 + y^2 - 1) - 0.3(x^3 - y), \\ \psi(x,y) = y - 0.5(x^2 + y^2 - 1) + 0.4(x^3 - y). \end{cases}$$

4.3 Вопросы и задачи для самостоятельной работы

- 1. Почему методы (23)-(26) являются частными случаями метода простой итерации? Как в каждом из случаев выглядит функция h(x)?
- 2. Составить алгоритм поиска корня p-й степени из заданного числа a. Сколько итераций потребуется, чтобы найти корень третьей степени из числа $235\ c$ точностью 10^{-4} ?
 - 3. Привести систему к виду, удобному для итераций

$$\begin{cases} x^2y^2 - 3x^2 - 6y^3 + 8 = 0, \\ x^4 - 9y + 2 = 0. \end{cases}$$

4. Найти константы q_1, q_2 для системы

$$\begin{cases} \sin x - y = 1.32, \\ \cos y - x = -0.85. \end{cases}$$

- 5. Изобразить графическую интерпретацию метода хорд.
- 6. Для каких положительных значений x сходится $x^{x^{x^{n-1}}}$, то есть последовательность $\varphi_n(x)=x^{\varphi_{n-1}(x)},\ n=1,2,\ldots,\ \varphi_0(x)=1$?
- 7. Какие особенности возникают при решении уравнения $x^2=0\,$ по методу Ньютона?
- 8. Как можно обобщить метод Ньютона и метод простой итерации для систем уравнений с n неизвестными?

4.4 Задание к лабораторной работе

Определите номер задания как остаток от деления числа N на 4. (N – суммарное количество букв в вашем Ф.И.О). Число m равно количеству букв в вашем полном имени.

Задание **A.** Найти положительные корни уравнения с точностью $\varepsilon = 10^{-4}$.

1.
$$x^5 - ax + b = 0$$
, $a = 3 + 0.1m$, $b = 0.4 + 0.03m$. Методом Ньютона.

 $(2, x^7 - ax - b = 0, a = 2 + 0.05m, b = 0.1 + 0.01m$. Методом Ньютона.

 $3. e^{-x} + x^2 - a = 0$, a = 2 + 0.05m. Методом простой итерации.

 $(0, e^{-x} - (x-a)^2 = 0, a = 1 + 0.04m$. Методом простой итерации.

Задание Б

1. Найти решения системы методом простой итерации

$$\begin{cases} ax^3 - y^2 - 1 = 0, \\ xy^3 - y - 4 = 0, \end{cases} \qquad a = 1 + 0.5m$$

с точностью $\varepsilon = 10^{-2}$.

2. Найти решения системы методом простой итерации

$$\begin{cases} ax^2 - xy - 5x + 1 = 0, \\ x + 3\lg x - y^2 = 0, \end{cases} \qquad a = 2 + 0.1m$$

с точностью $\varepsilon = 10^{-3}$.

3. Найти решения системы методом Ньютона

$$\begin{cases} \operatorname{tg}(xy+b) = x^2, \\ ax^2 + 2y^2 = 1, \end{cases} \quad a = 0.5 + 0.1m, \quad b = 0.01m$$

с точностью $\varepsilon = 10^{-3}$.

0. Найти решения системы методом Ньютона

$$\begin{cases} e^{xy} = x^2 - y + a, \\ (x + 0.5)^2 + y^2 = b, \end{cases} \qquad a = 1 + 0.1m, \quad b = 0.6 + 0.01m$$

с точностью $\varepsilon = 10^{-3}$.

5 Лабораторная работа "Методы решения систем линейных алгебраических уравнений"

5.1 Краткий теоретический материал

Методы решения систем линейных алгебранческих уравнений (СЛАУ) Ax=b можно разделить на две основные группы: прямые методы и итерационные. Из прямых методов наибольшее распространение получили метод Гаусса (несомненно, уже известный студентам), метод квадратного корня, метод Холецкого. Из итерационных наиболее известны некоторые модификации метода простой итерации: метод Якоби, метод Зейделя.

Приведем алгоритмы вышеперечисленных методов.

Метод квадратного корня применяется, если матрица A — симметричная (A' = A).

Прямой ход. Представим матрицу A в виде произведения A = T'T, где T – верхняя треугольная матрица, T' – транспонированная к ней.

$$T = \begin{pmatrix} t_{11} & t_{12} & \dots & t_{1n} \\ 0 & t_{22} & \dots & t_{2n} \\ \dots & & & \\ 0 & 0 & \dots & t_{nn} \end{pmatrix}.$$

Коэффициенты t_{ij} , i=1,n, j=i,n матрицы T определяются по следующим формулам

$$\begin{cases}
t_{11} = \sqrt{a_{11}}, & t_{1j} = \frac{a_{1j}}{t_{1j}}, & j = 2, \dots, n, \\
t_{ii} = \sqrt{a_{ii}} - \sum_{k=1}^{i-1} t_{ki}^{2}, & i = 2, \dots, n, \\
t_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} t_{ki} t_{kj}}{t_{ii}}, & i = 2, \dots, n, \quad j = i+1, n.
\end{cases}$$
(35)

Обративый ход. Так как $Ax = b \Leftrightarrow T'(Tx) = b$. Сделаем замену Tx = y. Тогда T'y = b. Последовательно находим решения систем T'y = b, Tx = y. Это удобно делать по следующим формулам:

$$y_1 = \frac{b_1}{t_{11}}, \quad y_i = \frac{b_i - \sum_{k=1}^{i-1} t_{ki} y_k}{t_{ii}}, \quad i = 2, \dots, n$$
 (36)

$$x_n = \frac{y_n}{t_{nn}}, \quad x_i = \frac{y_i - \sum_{k=i+1}^n t_{ik} x_k}{t_{ii}}, \quad i = n-1, \dots, 1$$
 (37)

Заметим, что в некоторых случаях получаются чисто мнимые t_{ij} . Метод остается применимым и в этом случае.

Метод Холецкого

Прямой ход. Представим матрицу A в виде произведения двух матриц A=PC, где C - верхияя треугольная матрица с единицами на днагонали, P - нижняя треугольная матрица.

$$=\begin{pmatrix}c_{11} & c_{12} & \dots & c_{1n}\\0 & 1 & \dots & c_{2n}\\ \dots & & & & \\0 & 0 & \dots & {}_{nn}\end{pmatrix}, \quad P=\begin{pmatrix}p_{11} & 0 & \dots & 0\\p_{21} & p_{22} & \dots & 0\\ \dots & & & \\p_{n1} & p_{n2} & \dots & p_{nn}\end{pmatrix}.$$

Коэффициенты c_{ij} , $i=1,\ldots n,\ j=i,\ldots n,\ p_{ij},\ i=1,\ldots n,\ j=1,\ldots i$

матриц C. P определяются по следующим формулам

$$p_{i1} = a_{i1}, \quad p_{ij} = a_{ij} - \sum_{k=1}^{j-1} p_{ik} c_{kj}, \quad i = 1, \dots, j = 1, \dots, i,$$
 (38)

$$c_{1j} = \frac{a_{1j}}{p_{11}}, \quad c_{ij} = \frac{1}{p_{ii}} \left(a_{ij} - \sum_{k=1}^{i-1} p_{ik} c_{kj} \right), \quad j = i+1, \dots n.$$
 (39)

Отсюда искомый вектор x может быть найден из цепи уравнений Py=b . Cx=y .

$$y_1 = \frac{b_1}{p_{11}}, \quad y_i = \frac{b_i - \sum_{k=1}^{i-1} p_{ik} y_k}{p_{ii}}, \quad i = 2, \dots n,$$
 (40)

$$x_n = y_n, \quad x_i = y_i - \sum_{k=i+1}^n c_{ik} x_k, \quad i = n-1, \dots 1.$$
 (41)

Метод простой итерации состоит в замене системы Ax=b эквивалентной системой x=Bx+d, и организации итераций по правилу $x_{n+1}=Bx_n+d$, $n=0,1,\ldots$ Начальное приближение x_0 задается произвольно. Процесс итераций сходится, если ||B||=q<1. Чтобы найти решение с точностью ε итерационный процесс надо продолжать, пока не выполнится неравенство $||x_{n+1}-x_n||<\frac{q}{1-a}\varepsilon$.

Метод Якоби. Пусть A — матрица с диагональным преобладанием, т.е. $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$. $i = 1, \ldots, n$.

Перенинем систему Ax = b в виде x = Bx + d, где

$$B = \begin{pmatrix} 0 & -\frac{a_{12}}{a_{11}} & -\frac{a_{13}}{a_{11}} & \dots & -\frac{a_{1k}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & -\frac{a_{23}}{a_{22}} & \dots & -\frac{a_{2k}}{a_{22}} \\ \dots & & & & \\ -\frac{a_{k1}}{a_{kk}} & -\frac{a_{k2}}{a_{kk}} & \dots & -\frac{a_{kk-1}}{a_{kk}} & 0 \end{pmatrix}, \quad d = \begin{pmatrix} \frac{b_1}{a_{11}} \\ \frac{b_2}{a_{22}} \\ \dots \\ \frac{b_k}{a_{kk}} \end{pmatrix}.$$

Положим $x_0 = b$. Далее $x_{n+1} = Bx_n + d$, $n = 0, 1, 2 \dots$ В этом случае

$$q = \max_{i} \frac{\sum_{j \neq i} |a_{ij}|}{|a_{ii}|}.$$

Заметим, что для матрицы с диагональным преобладанием всегда q < 1. Метод Зейделя. Пусть A - матрица с диагональным преобладанием. Рассмотрим систему x = Bx + d, где матрица B и столбец d такие же,

как в предыдущем методе. Построим следующий итерационный процесс

$$\begin{cases}
x_1^{n+1} = b_{11}x_1^n + b_{12}x_2^n + \dots + b_{1k}x_k^n, \\
x_2^{n+1} = b_{21}x_1^{n+1} + b_{22}x_2^n + \dots + b_{2k}^n x_k^n, \\
x_3^{n+1} = b_{31}x_1^{n+1} + b_{32}x_2^{n+1} + \dots + b_{3k}^n x_k^n, \\
\dots \\
x_k^{n+1} = b_{k1}x_1^{n+1} + b_{k2}x_2^{n+1} + \dots + b_{kk}x_k^{n+1}.
\end{cases} (42)$$

Заметим, что здесь для вычисления, например x_5^{n+1} используются значения, вычисленные на n+1 итерации (это $x_1^{n+1}, x_2^{n+1}, x_3^{n+1}, x_4^{n+1}$) и значения, вычисленные на предыдущей итерации ($x_5^n, x_5^n, \ldots, x_k^n$).

Процесс сходится несколько быстрее метода Якоби, однако можно использовать те же условия окончания итераций.

5.2 Примеры

1. Методом квадратного кория решить систему

$$\begin{cases}
-4x_1 + x_2 + x_3 = 2, \\
x_1 - 9x_2 + 3x_3 = 5, \\
x_1 + 2x_2 - 16x_3 = 13.
\end{cases}$$

Решение

Матрица
$$U = \begin{pmatrix} -4 & 1 & 1 \\ 1 & -9 & 3 \\ 1 & 2 & -16 \end{pmatrix}$$
 не является симметричной, поэтому до-

множим слева систему на матрицу, транспонированную к U. Имеем систему

$$\begin{pmatrix} 18 & -11 & -17 \\ -11 & 86 & -58 \\ -17 & -58 & 266 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 10 \\ -17 \\ -191 \end{pmatrix}$$

с симметричной матрицей A.

Найдем элементы матрицы T по формулам (35).

$$t_{11} = \sqrt{18} = 4.24, \quad t_{12} = \frac{-11}{4.24} = -2.59, \quad t_{13} = \frac{-17}{4.24} = -4.01,$$

$$t_{22} = \sqrt{86 - (-2.59)^2} = 8.90, t_{23} = \frac{-58 - (-2.59)(-4.01)}{8.90} = -7.68,$$

$$t_{33} = \sqrt{266 - (-4.01)^2 - (-7.68)^2} = 13.82.$$

Непосредственной проверкой можно убедиться, что $T^{\prime}T=A$, где

$$T = \begin{pmatrix} 4.24 & -2.59 & -4.01 \\ 0 & 8.9 & -7.68 \\ 0 & 0 & 13.82 \end{pmatrix}.$$

Проведем обратный ход по формулам (36)-(37).

$$y_{1} = \frac{10}{4.24} = 2.36, \quad y_{2} = \frac{-17 - (-2.59)2.36}{8.9} = -1.22,$$

$$y_{3} = \frac{-191 - (-4.01)2.36 - (-7.68)(-1.22)}{13.82} = -13.81,$$

$$x_{3} = \frac{-13.81}{13.82} = -1.00, \quad x_{2} = \frac{-1.22 - (-7.68)(-1.00)}{8.9} = -1,$$

$$x_{1} = \frac{2.36 - (-2.59)(-1) - (-4.01)(-1)}{4.24} = -1.$$

Таким образом, решение системы $x_1 = -1, x_2 = -1, x_3 = -1$.

2. Методом Холецкого решить систему

$$\begin{cases}
-4x_1 + x_2 + x_3 = 2, \\
x_1 - 9x_2 + 3x_3 = 5, \\
x_1 + 2x_2 - 16x_3 = 13
\end{cases}$$

Решение.

Найдем элементы матринC, P по формулам (38)-(39)

$$p_{11} = a_{11} = -4, \quad p_{21} = a_{21} = 1, \quad p_{31} = a_{31} = 1.$$

$$c_{11} = 1,$$

$$c_{12} = \frac{a_{12}}{p_{11}} = \frac{1}{-4} = -0.25,$$

$$c_{13} = \frac{a_{13}}{p_{11}} = \frac{1}{-4} = -0.25;$$

$$p_{22} = a_{22} - p_{21}c_{12} = -9 - 1(-0.25) = -8.75,$$

$$p_{32} = a_{32} - p_{31}c_{12} = 2 - 1(-0.25) = 2.25;$$

$$c_{23} = \frac{1}{p_{22}} (a_{23} - p_{21}c_{13}) = \frac{1}{-8.75} (3 - 1(-0.25)) = -0.37,$$

$$c_{22} = 1;$$

$$p_{33} = a_{33} - p_{31}c_{13} - p_{32}c_{23} = -16 - 1(-0.25) - 2.25(-0.37) = -14.91;$$

$$c_{33} = 1.$$

Произведение матриц $P = \begin{pmatrix} -4 & 0 & 0 \\ 1 & -8.75 & 0 \\ 1 & 2.25 & -14.91 \end{pmatrix}$ в $C = \begin{pmatrix} 1 & -0.25 & -0.25 \\ 0 & 1 & -0.37 \\ 0 & 0 & 1 \end{pmatrix}$ равно исходной матрице.

Обрагный ход осуществим по формулам (40)-(41).

$$y_1 = \frac{2}{-4} = -0.5,$$

$$y_2 = \frac{5 - 1(\div 0.5)}{-8.75} = -0.63.$$

$$y_3 = \frac{13 - 1(-0.5) - 2.25(-0.63)}{-14.91} = -1.0.$$

$$r_3 = -1.0,$$

 $r_2 = -0.63 - (-0.37)(-1) = -1,$
 $x_3 = -0.5 - (-0.25)(-1) - (-0.25)(-1) = -1.$

3. Методом Якоби решитъ систему с точностью $\varepsilon = 2 \cdot 10^{-2}$

$$\begin{cases} -4x_1 + x_2 + x_3 = 2, \\ x_1 - 9x_2 + 3x_3 = 5, \\ x_1 + 2x_2 - 16x_3 = 13 \end{cases}$$

Перенишем систему в виде

$$\begin{cases} x_1 = \frac{1}{4}x_2 + \frac{1}{4}x_3 + \frac{1}{4}(-2), \\ x_2 = \frac{1}{9}x_1 + \frac{1}{9}3x_3 + \frac{1}{9}(-5), \\ x_3 = \frac{1}{16}x_1 + \frac{1}{16}2x_2 + \frac{1}{16}(-13), \end{cases}$$

или x=Bx+d, где $B=\begin{pmatrix}0&\frac{1}{4}&\frac{1}{4}\\\frac{1}{9}&0&\frac{1}{3}\\\frac{1}{16}&\frac{1}{8}&0\end{pmatrix}$, $d=\operatorname{col}-\left(\frac{1}{2}&\frac{5}{9}&\frac{13}{16}\right)$. Найдем $q=\max(0+\frac{1}{4}+\frac{1}{4},\frac{1}{2}+0+\frac{1}{3},\frac{1}{16}+\frac{1}{8}+0)=\frac{1}{2}$, тогда условие окончание итераций

$$||x^{n+1}-x^n||<rac{1-0.5}{0.5}arepsilon=arepsilon$$
 . Выберем $x^0=\left(0,\,0,\,0
ight)$, гогда

$$x^{1} = Bx^{0} + d = d = -\begin{pmatrix} \frac{1}{2} \\ \frac{1}{9} \\ \frac{13}{16} \end{pmatrix},$$

$$x^{2} = \begin{pmatrix} 0 & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{9} & 0 & \frac{1}{3} \\ \frac{1}{16} & \frac{1}{8} & 0 \end{pmatrix} x^{1} - \begin{pmatrix} \frac{1}{2} \\ \frac{1}{9} \\ \frac{13}{16} \end{pmatrix} = \begin{pmatrix} -0.5 \\ -0.56 \\ -0.81 \end{pmatrix},$$

$$||x^{2} - x^{1}|| = \max(0.5, 0, 56, 0.81) = 0.81 > 2 \cdot 10^{-2};$$

$$x^{3} = \begin{pmatrix} 0 & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{9} & 0 & \frac{1}{3} \\ \frac{1}{16} & \frac{1}{8} & 0 \end{pmatrix} x^{2} - \begin{pmatrix} \frac{1}{2} \\ \frac{5}{9} \\ \frac{1}{13} \end{pmatrix} = \begin{pmatrix} -0.84 \\ -0.88 \\ -0.91 \end{pmatrix},$$

$$||x^{3} - x^{2}|| = \max(0.34, 0, 33, 0.10) = 0.34 > 2 \cdot 10^{-2};$$

$$x^{4} = \begin{pmatrix} 0 & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{9} & 0 & \frac{1}{3} \\ \frac{1}{16} & \frac{1}{8} & 0 \end{pmatrix} x^{3} - \begin{pmatrix} \frac{1}{2} \\ \frac{5}{9} \\ \frac{13}{16} \end{pmatrix} = \begin{pmatrix} -0.95 \\ -0.95 \\ -0.98 \end{pmatrix},$$

$$||x^{4} - x^{3}|| = \max(0.11, 0, 07, 0.06) = 0.11 > 2 \cdot 10^{-2};$$

$$x^{5} = \begin{pmatrix} 0 & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{9} & 0 & \frac{1}{3} \\ \frac{1}{16} & \frac{1}{8} & 0 \end{pmatrix} x^{4} - \begin{pmatrix} \frac{1}{2} \\ \frac{5}{9} \\ \frac{13}{16} \end{pmatrix} = \begin{pmatrix} -0.98 \\ -0.99 \\ -0.99 \end{pmatrix},$$

$$||x^{5} - x^{4}|| = \max(0.03, 0, 03, 0.02) = 0.03 > 10^{-2};$$

$$x^{6} = \begin{pmatrix} 0 & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{9} & 0 & \frac{1}{3} \\ \frac{1}{16} & \frac{1}{8} & 0 \end{pmatrix} x^{5} - \begin{pmatrix} \frac{1}{2} \\ \frac{5}{9} \\ \frac{13}{16} \end{pmatrix} = \begin{pmatrix} -0.99 \\ -1.0 \\ -1.0 \end{pmatrix},$$

$$||x^{5} - x^{4}|| = \max(0.01, 0, 01, 0.01) = 0.01 < 2 \cdot 10^{-2}.$$

Последнее значение x^5 можно принять за неизвестное x с точностью $\varepsilon = 2 \cdot 10^{-2}$.

4. Методом Зейделя решить систему с точностью $\varepsilon = 10^{-2}$

$$\begin{cases}
-4x_1 + x_2 + x_3 = 2, \\
x_1 - 9x_2 + 3x_3 = 5, \\
x_1 + 2x_2 - 16x_3 = 13
\end{cases}$$

Перенишем систему в виде

$$\begin{cases} x_1 = \frac{1}{4}x_2 + \frac{1}{4}x_3 - \frac{1}{2}, \\ x_2 = \frac{1}{9}x_1 + \frac{1}{3}x_3 - \frac{5}{9}, \\ x_3 = \frac{1}{16}x_1 + \frac{1}{8}x_2 - \frac{13}{16} \end{cases}$$

(см. предыдущий пример). Матрица такая же, как и в предыдущем примере. поэтому условие окончание итераций $||x^{n+1}-x^n||=\max_{i=1}^3(|x_i^{n+1}-x_i^n|)<\varepsilon$ Зададим итерационный процесс

$$\begin{cases} x_1^{n+1} = \frac{1}{4}x_2^n + \frac{1}{4}x_3^n - \frac{1}{2}, \\ x_2^{n+1} = \frac{1}{9}x_1^{n+1} + \frac{1}{3}x_3^n - \frac{5}{9}, \\ x_3^{n+1} = \frac{1}{16}x_1^{n+1} + \frac{1}{2}x_2^{n+1} - \frac{13}{16}. \end{cases}$$

Выберем

$$x^0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Тогла

$$\begin{cases} x_1^1 = \frac{1}{4}x_2^0 + \frac{1}{4}x_3^0 - \frac{1}{2} = -0.5, \\ x_2^1 = \frac{1}{9}x_1^1 + \frac{1}{3}x_3^0 - \frac{5}{9} = -0.61, \\ x_3^1 = \frac{1}{16}x_1^1 + \frac{1}{8}x_2^1 - \frac{13}{16} = -0.92, \end{cases}$$

$$||x^1 - x^0|| = \max(0.5, 0.61, 0.92) = 0.92 > 10^{-2};$$

$$\begin{cases} x_1^2 = \frac{1}{4}(-0.61) + \frac{1}{4}(-0.92) - \frac{1}{2} = -0.88, \\ x_2^2 = \frac{1}{9}(-0.88) + \frac{1}{3}(-0.92) - \frac{5}{9} = -0.96, \\ x_3^2 = \frac{1}{16}(-0.88) + \frac{1}{8}(-0.96) - \frac{13}{16} = -0.99, \end{cases}$$

$$||x^2 - x^1|| = \max(0.38, 0.35, 0.07) = 0.38 > 10^{-2};$$

$$\begin{cases} x_1^3 = \frac{1}{4}(-0.96) + \frac{1}{4}(-0.99) - \frac{1}{2} = -0.98, \\ x_2^3 = \frac{1}{9}(-0.98) + \frac{1}{3}(-0.99) - \frac{5}{9} = -0.99, \\ x_3^3 = \frac{1}{16}(-0.98) + \frac{1}{8}(-0.99) - \frac{13}{16} = -1.00, \end{cases}$$

$$||x^3 - x^2|| = \max(0.10, 0.03, 0.01) = 0.1 > 10^{-2};$$

$$\begin{cases} x_1^4 = \frac{1}{4}(-0.99) + \frac{1}{4}(-1.00) - \frac{1}{2} = -1.00, \\ x_2^4 = \frac{1}{9}(-1.00) + \frac{1}{3}(-1.00) - \frac{5}{9} = -1.00, \\ x_3^4 = \frac{1}{16}(-1.00) + \frac{1}{8}(-1.00) - \frac{13}{16} = -1.00, \end{cases}$$

$$\begin{aligned} ||x^4 - x^3|| &= \max(0.02, 0.01, 0.00) = 0.02 > 10^{-2}; \\ \begin{cases} x_1^5 &= \frac{1}{4}(-1.00) + \frac{1}{4}(-1.00) - \frac{1}{2} = -1.00, \\ x_2^5 &= \frac{1}{9}(-1.00) + \frac{1}{3}(-1.00) - \frac{5}{9} = -1.00, \\ x_3^5 &= \frac{1}{16}(-1.00) + \frac{1}{8}(-1.00) - \frac{13}{16} = -1.00, \\ ||x^5 - x^4|| &= \max(0.00, 0.00, 0.00) < 10^{-2}. \end{aligned}$$

Значит

$$x = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} \pm \begin{pmatrix} -0.01 \\ -0.01 \\ -0.01 \end{pmatrix}.$$

5.3 Вопросы и задачи для самостоятельной работы

1. Как можно использовать метод Холецкого и метод квадратного кория для вычисления определителей? Найти определители матриц

$$A = \begin{pmatrix} -5 & 1 & 1 \\ -1 & 5 & 1 \\ -1 & 1 & -5 \end{pmatrix}, \quad B = \begin{pmatrix} -25 & 3 & 1 \\ 3 & -25 & 1 \\ 1 & 3 & -25 \end{pmatrix}.$$

2. Можно ли использовать методы Холецкого и квадратного корпя для систем, магрицы которых имеют нулевой определитель? Как в этом случае искать решение? Найти решение систем

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ 15 \\ 24 \end{pmatrix}, \quad \begin{pmatrix} 5 & 1 & 1 \\ 6 & 1 & 1 \\ 8 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -7 \\ -8 \\ -10 \end{pmatrix}.$$

3. Решить систему методом квадратного корня

$$\begin{pmatrix} -9 & 1 & 1 \\ 1 & -16 & 1 \\ 1 & 1 & -81 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 7 \\ 14 \\ 79 \end{pmatrix}.$$

- 4. Удовлетворяет ли число $||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$ аксиомам векторной пормы?
- 5. Может ли быть число $||A|| = \sum_{i,j} |a_{ij}|$ быть нормой матрицы, подчиненной искоторой векторной норме?
 - 6. Удовлетворяет ли число $||A|| = \sum_{i,j} |a_{ij}|$ аксиомам матричной норме?

7. Если для оценки погрешности выбрана следующая векториая норма

$$||x|| = \sum_{i=1}^{n} |x_i|,$$

то какую норму матрицы следует брать для вычисления числа q?

8. Как применить метод простой итерации (метод Якоби, метод Зейделя) для системы

$$\begin{pmatrix} 1 & 26 & 1 \\ 45 & 1 & 1 \\ 1 & 2 & 34 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}?$$

Оценить, сколько итераций потребуется, чтобы получить решение с точностью 10^{-4} ?

5.4 Задание к лабораторной работе

Задание 1. Пусть число k – количество букв в вашем Ф.И.О., m — количество букв в вашем полном имени.

Решить систему

$$\begin{pmatrix} 12+k & 2 & m/4 & 1 & 2 \\ 4 & 113+k & 1 & m/10 & m-4 \\ 1 & 2 & -24-k & 3 & 4 \\ 1 & 2/m & 4 & 33+k & 4 \\ -1 & 2 & -3 & 3+m & -44-k \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$

методами

Холецкого и Зейделя, если m — четное,

квадратного корня и Якоби, если m – нечетное.

В итерационных методах решение найти с точностью $\varepsilon=10^{-4}$.

Проверить выполнение условий сходимости применяемых итерационных методов.

Оценить число шагов, достаточных для достижения заданной точности.

Сделать проверку решения.

Задание 2. Рассмотрим систему линейных уравнений Ax=b с трехдиа-

тэнальной матрицей

$$A = \begin{pmatrix} a_0 & c_0 & 0 & \dots & \dots & 0 & 0 \\ b_1 & a_1 & c_1 & 0 & & \dots & \dots & 0 \\ 0 & b_2 & a_2 & c_2 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & b_i & a_i & c_i & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & 0 & b_{n-1} & a_{n-1} & c_{n-1} \\ 0 & \dots & \dots & \dots & 0 & 0 & b_n & a_n \end{pmatrix}.$$

equ a=500 , $a_i=1+h^2i\cos^2Nih$, $b_i=c_i=-h\sin^2Nih$, $i=0,\dots 500$ $h=10^{-4},\ N$ — количество букв в Ф.П.О. Элементы столбца b определяются по формуле $b_i = (i\hbar)^2 + i$. Используя подпрограмму накета ScaLAPACK для решения систем линейных уравнений с трехдиагональной матрицей, решить систему. Сделать проверку, используя процедуру для умножения матриц.

.Лабораторная работа "Проблема собственных значений"

6.1 Краткий теоретический материал

Проблема собственных значений заключается в отыскании всех собственных значений квадратной матрины A и соответствующих им собственных векгоров (полная проблема), или в отыскании максимального по модулю собственного значения и соответствующего ему вектора (частичная проблема).

Наномним, что ненулевой вектор y является co6cm6cm6m для матрицы A , если существует константа λ (называемая собственным значением). такая что

$$Ay = \lambda y$$
.

Отметим, что предлагаемые методы можно использовать для квадратных матриц, собственные значения которых вещественны и понарио различны.

Пусть
$$|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$$
.

Частичная проблема

Метод простой итерации.

Пусть A – квадрагная матрица $(n \times n)$. Выберем пачальное приближение $x^0 \neq \operatorname{col}(0,0,\dots,0)$. Построим последовательность

$$x^{i+1} = Ax^i, \quad i = 0, 1, \dots$$
 (43)

Аля каждого і пайдем числа

$$\lambda_j^i = \frac{x_j^{i+1}}{x_j^i}, \quad j = 0, \dots, n,$$

где $|x_i^i| = j$ -ая компонента вектора $|x^i|$. Если для некоторого |i| выполнено $\lambda_1^i=\lambda_2^i=\dots=\lambda_n^i$ с некоторой заданной точностью arepsilon, то с этой точностью максимальное по модулю собственное значение λ равно любому из чиссл $\lambda_1^i,\ \lambda_2^i,\dots$ При этом собственный вектор $y=rac{x^i}{\|x^i\|}.$ В некоторых случаях возникает деление на 0, тогда рекомендуется выбрать другое начальное приближение.

Метод скалярных произведений

Пусть A – квадратная матрица $(n{ imes}n)$. Выберем начальные приближения $x^0 = y^0 \neq {
m col}(0,0,\dots,0)$. Построим две последовательности

$$x^{i+1} = Ax^i, \quad i = 0, 1, \dots$$
 (44)

$$y^{i+1} = A'y^i, \quad i = 0, 1, \dots$$
 (45)

Здесь A^\prime – матрица, транспонированная к A. Для каждого i найдем число

$$\lambda^i = \frac{(x^{i+1}, y^i)}{(x^i, y^i)},$$

где (\cdot,\cdot) - скалирное произведение векторов. Начиная с некоторого $i^-|\lambda^{i+1} |\lambda'|<arepsilon$, где arepsilon – некоторая заданная точность. Тогда с этой точностью максимальное по модулю собственное значение λ равно λ^i . При этом собственный вектор $y = \frac{x'}{||x'|||}$.

Полная проблема

Решение полной проблемы состоит из трех этапов:

Этап 1. Нахождение коэффициентов p_i , $i=1,\ldots,n$ характеристического многочлена

$$P(\lambda) = \lambda^{n} - p_{1}\lambda^{n-1} - p_{2}\lambda^{n-1} - \dots - p_{n-1}\lambda - p_{n}.$$
 (46)

Этан 2. Поиск всех корней уравнения $P(\lambda)=0$ — всех собственных значений.

Этан 3. Определение собственных векторов, соответствующих каждому, собственному значению.

Метод Данилевского. Напомним, что матрицы A и B называются nodoбными,если существует такая неособенная матрица S , что $A=S^{-1}BS$.

Идея метода Данилевского – найти матрину P, подобную исходной матрице A, имеющую вид

$$P = \begin{pmatrix} p_1 & p_2 & \dots & p_{n-1} & p_n \\ 1 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}. \tag{47}$$

Тогда характеристический многочлен имеет вид

$$P(\lambda) = \lambda^n - p_1 \lambda^{n-1} - p_2 \lambda^{n-2} - \dots - p_n.$$

Чеобы привести матрицу A к виду (47), надо домножить ең последовательно на матрицы M_{n-1} (справа), M_{n-1}^{-1} (слева), M_{n-2} (справа), M_{n-2}^{-1} (слева) . . . , M_1 (справа), M_1^{-1} (слева). Матрицы M_k имеют вид

$$k = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ m_{k1} & m_{k2} & \dots & m_{kn-1} & m_{kn} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}, \tag{48}$$

rge

$$m_{kk} = \frac{1}{a'_{k+1k}}, \quad m_{ki} = -\frac{a'_{k+1i}}{a'_{k+1k}}, \quad i \neq k,$$

где u'_{ki} — элементы матрицы $A_k = M_{k+1}^{-1} \dots M_{n-2n-1}^{-1} A M_{n-1} M_{n-2} \dots M_{k+1}$ (если $k=n-2,\dots,1$), или элементы матрицы A, если k=n-1. Матрица M_k получена из единичной заменой k-той строки на строку, содержащую m_{ki} .

. Тегко проверить, что матрицей, обратной к
 M_k , является следующая магрица

$$\frac{-1}{k} = \begin{pmatrix}
1 & 0 & \dots & 0 & 0 \\
0 & 1 & \dots & 0 & 0 \\
\dots & \dots & \dots & \dots & \dots \\
a'_{k+11} & a'_{k+12} & \dots & a'_{k+1n-1} & a'_{k+1n} \\
\dots & \dots & \dots & \dots & \dots \\
0 & 0 & \dots & 0 & 1
\end{pmatrix},$$
(49)

где a_{ki}^{\prime} – элементы матрицы A_k .

Матрица M_k^{-1} получена из единичной заменой k-той строки на k+1-ю строку матрицы A_k , полученной на предыдущем шаге.

Таким образом, имеем

$$P = M_1^{-1} M_2^{-1} \dots M_{n-1}^{-1} A M_{n-1} \dots M_2 M_1.$$

Взяв перьую строку полученной матрицы P и построив таким образом характеристический многочлен, найдем его кории (все собственные числа).

Теперь наша задача, найти соответсвующие собственным значениям собственные векторы. Рассмотрим некоторое собственное число λ . Составим вектор

$$y = col(\lambda^{n-1}, \lambda^{n-2}, \dots, \lambda, 1).$$

Тогда собственным является следующий вектор

$$x = M_{n-1}M_{n-2}\dots M_1y.$$

Метод Крылова

Этап 1. Метод основан на применении тождества Гамильтона-Кели: матрица является корнем своего характеристического многочлена

$$A^{n} - p_{1}A^{n-1} - p_{2}A^{n-1} - \dots - p_{n-1}A - p_{n}E = 0.$$

Выберем x^0 — произвольный ненулевой начальный вектор. Определим $x^{i+1} = Ax_i$, $i = 1, \ldots, n$. Тогда

$$x^{n} - p_{1}x^{n-1} - p_{2}x^{n-1} - \dots - p_{n-1}x^{1} - p_{n}x^{0} = 0.$$

или пмеем систему уравнений $Cp=x^n$, где

$$C = \begin{pmatrix} x_1^{n+1} & x_1^{n+2} & \dots & x_1^0 \\ x_2^{n+1} & x_2^{n+2} & \dots & x_2^0 \\ \vdots & & & & \\ x_n^{n+1} & x_n^{n+2} & \dots & x_n^0 \end{pmatrix}, \quad p = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{pmatrix}.$$

Здесь $x_j^i = j$ - я компонента вектора x^i . Решив полученную систему, найдем неизвестные коэффициенты p_1, p_2, \ldots, p_n .

Этап 2. Подставим найденные коэффициенты в уравнение

$$\lambda^n - p_1 \lambda^{n-1} - p_2 \lambda^{n-1} - \dots - p_{n-1} \lambda - p_n = 0$$

и решим его одинм из описанных в лабораторной работе 4 методом.

Этап 3. Для каждого λ ; найдем коэффициенты β_{i1} , β_{i2} , ..., β_{in} по формулам:

$$\beta_{i1} = 1, \quad \beta_{ij} = \beta_{1j-1}\lambda_i - p_{j-1}, \quad j = 2, 3, \dots, n.$$
 (53)

Тогда собственный вектор y_i , соответствующий собственному значению λ_i , можно найти сдедующим образом

$$y_i = \beta_{i1} x^{n-1} + \beta_{i2} x^{n-2} + \dots + \beta_{in} x^{\theta}.$$
 (54)

6.2 Примеры

1. Найти максимальное по модулю собственное значение матрицы

$$A = \begin{pmatrix} 8 & 1 & 1 \\ -1 & 4 & 1 \\ 1 & 1 & 25 \end{pmatrix}$$

методом простой итерации с точностью $\varepsilon = 4 \cdot 10^{-1}$.

Решение.

Выберем

$$x^0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}. \text{ Torga } x^1 = \begin{pmatrix} 10 \\ 4 \\ 7 \end{pmatrix}.$$

$$\lambda_1^0 = \frac{10}{1} = 10, \quad \lambda_2^0 = \frac{4}{1} = 4, \quad \lambda_3^0 = \frac{27}{1} = 27,$$

$$x^2 = \begin{pmatrix} 1111 \\ 33 \\ 689 \end{pmatrix},$$

$$\lambda_1^1 = \frac{111}{10} = 11.1, \quad \lambda_2^1 = \frac{33}{4} = 8.25, \quad \lambda_3^1 = \frac{689}{27} = 25.51.$$

Продолжаем вычисления аналогично. На седьмой итерации имеем

$$x^{7} = \begin{pmatrix} 4.240 \\ 3.070 \\ 69.108 \end{pmatrix} \cdot 10^{8},$$

$$\lambda_{1}^{6} = 25.02, \quad \lambda_{2}^{6} = 25.14, \quad \lambda_{3}^{6} = 25.11,$$

$$x^{8} = \begin{pmatrix} 1.061 \\ 0.715 \\ 17.350 \end{pmatrix} \cdot 10^{10},$$

$$\lambda_{1}^{7} = 25.08, \quad \lambda_{2}^{7} = 25.12, \quad \lambda_{3}^{7} = 25.10.$$

Разность между последними λ не превосходит 0.4 , поэтому можно положить $\lambda = 25.1 \pm 4 \cdot 10^{-1}$.

Чтобы вычислить собственный вектор y , найдем $||x^7|| = \max_i(|x_i^7|) =$ 17.350 · 10¹⁰ . Тогда

$$y = \begin{pmatrix} 0.06 \\ 0.04 \\ 1 \end{pmatrix}.$$

Проверим

$$Ay - \lambda y = \begin{pmatrix} 0.014 \\ 0.009 \\ 0.000 \end{pmatrix}.$$

 $||Ay - \lambda y|| = 0.014 < 4 \cdot 10^{-1}$.

2. Найти максимальное по модулю собственное значение матрицы

$$A = \begin{pmatrix} 8 & 1 & 1 \\ -1 & 4 & 1 \\ 1 & 1 & 25 \end{pmatrix}$$

методом скалярных произведений с точностью $arepsilon=10^{-1}$. Решение.

$$A' = \begin{pmatrix} 8 & -1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 25 \end{pmatrix}.$$

$$x^{0} = y^{0} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}. \text{ Torga } x^{1} = \begin{pmatrix} 10 \\ 4 \\ 7 \end{pmatrix}, \quad y^{1} = \begin{pmatrix} 8 \\ 6 \\ 27 \end{pmatrix},$$

$$\lambda^{1} = \frac{(x^{1}, y^{0})}{(x^{0}, y^{0})} = \frac{10 \cdot 1 + 4 \cdot 1 + 27 \cdot 1}{1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1} = 13.67,$$

$$x^{2} = \begin{pmatrix} 111 \\ 33 \\ 689 \end{pmatrix}, \quad y^{2} = \begin{pmatrix} 85 \\ 59 \\ 689 \end{pmatrix},$$

$$\lambda^{2} = \frac{(x^{2}, y^{1})}{(x^{1}, y^{1})} = \frac{111 \cdot 8 + 33 \cdot 6 + 689 \cdot 27}{10 \cdot 8 + 4 \cdot 6 + 27 \cdot 27} = 23.64,$$

$$|\lambda^{2} - \lambda^{1}| = 9.97 > \varepsilon.$$

$$x^{3} = \begin{pmatrix} 1610 \\ 710 \\ 17369 \end{pmatrix}, \quad y^{3} = \begin{pmatrix} 1310 \\ 1010 \\ 17369 \end{pmatrix},$$

$$\lambda^{3} = \frac{(x^{3}, y^{2})}{(x^{2}, y^{2})} = 24.99, \quad |\lambda^{3} - \lambda^{2}| = 1.35 > \varepsilon.$$

$$x^{4} = \begin{pmatrix} 702816 \\ 479982 \\ 1.096 \cdot 10^{7} \end{pmatrix}, \quad y^{4} = \begin{pmatrix} 628538 \\ 554260 \\ 1.096 \cdot 10^{7} \end{pmatrix},$$

$$\lambda^{4} = \frac{(x^{4}, y^{3})}{(x^{3}, y^{3})} = 25.09, \quad |\lambda^{4} - \lambda^{3}| = 0.1 \ge \varepsilon.$$

$$x^{5} = \begin{pmatrix} 1.707 \\ 1.218 \\ 27.526 \end{pmatrix} \cdot 10^{7}, \quad y^{5} = \begin{pmatrix} 1.541 \\ 1.381 \\ 27.526 \end{pmatrix} \cdot 10^{7},$$

$$\lambda^{5} = \frac{(x^{5}, y^{4})}{(x^{4}, y^{4})} = 25.10, \quad |\lambda^{5} - \lambda^{4}| = 0.01 < \varepsilon.$$

Разность между последними λ не превосходит ε , поэтому можно положить $\lambda=25.1\pm10^{-1}$.

$$y = \begin{pmatrix} 0.06 \\ 0.04 \\ 1. \end{pmatrix}$$

(Вычисляется как в предыдущем примере).

3. Найти собственные значения и сответствующие им собственные вскторы матрицы

$$A = \begin{pmatrix} 8 & 1 & 1 \\ -1 & 4 & 1 \\ 1 & 1 & 25 \end{pmatrix}$$

методом Крылова.

Решение.

Выберем

$$x^0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
. Тогда $x^1 = \begin{pmatrix} 10 \\ 4 \\ 27 \end{pmatrix}$, $x^2 = \begin{pmatrix} 111 \\ 33 \\ 689 \end{pmatrix}$, $x^3 = \begin{pmatrix} 1610 \\ 710 \\ 17369 \end{pmatrix}$.

Матрица C (см. метод Крылова) имеет вид

$$C = \begin{pmatrix} 111 & 10 & 1 \\ 33 & 4 & 1 \\ 689 & 27 & 1 \end{pmatrix}.$$

Решим систему

$$\begin{pmatrix} 111 & 10 & 1 \\ 33 & 4 & 1 \\ 689 & 27 & 1 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 1610 \\ 710 \\ 17369 \end{pmatrix}.$$

Получим $p_1=37$, $p_2=-331$, $p_3=813$. Имеем уравнение

$$\lambda^3 - 37\lambda^2 + 331\lambda - 813 = 0.$$

Решаем его, отделяя кории и применяя метод Ньютона. Имеем

$$\lambda_1 = 25.11, \quad \lambda_2 = 4.22, \quad \lambda_3 = 7.68.$$

Найдем теперь собственные векторы.

Вектор, соответствующий λ_1 по формуле (53)

$$\beta_{11} = 1$$
, $\beta_{12} = \beta_{11}\lambda_1 - p_1 = 25.11 - 37 = -11.89$, $\beta_{13} = \beta_{12}\lambda_1 - p_2 = (-11.89)25.11 \cdot +331 = 32.44$,

$$y_1 = \begin{pmatrix} 111\\33\\689 \end{pmatrix} - 11.89 \begin{pmatrix} 10\\4\\27 \end{pmatrix} + 32.44 \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} 25.54\\17.88\\400.41 \end{pmatrix}.$$

После пормировки имеем

$$y_1 = \begin{pmatrix} 0.06 \\ 0.04 \\ 1.00 \end{pmatrix}.$$

Вектор, соответствующий λ_2

$$\beta_{21} = 1$$
, $\beta_{22} = \beta_{21}\lambda_2 - p_1 = 4.22 - 37 = -32.78$, $\beta_{23} = \beta_{22}\lambda_2 - p_2 = (-32.78) \cdot 4.22 + 331 = 192.67$.

$$y_2 = \begin{pmatrix} 111\\33\\689 \end{pmatrix} - 32.78 \begin{pmatrix} 10\\4\\27 \end{pmatrix} + 192.67 \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} -24.13\\94.55\\-3.39 \end{pmatrix}.$$

После нормировки имеем

$$y_2 = \begin{pmatrix} -0.26 \\ 1 \\ -0.04 \end{pmatrix}$$
.

Вектор, соответствующий λ_3

$$\beta_{31} = 1$$
, $\beta_{32} = \beta_{31}\lambda_2 - p_1 = 7.68 - 37 = -29.32$, $\beta_{33} = \beta_{32}\lambda_2 - p_2 = (-29.32) \cdot 7.68 + 331 = 105.822$

$$y_3 = \begin{pmatrix} 111\\33\\689 \end{pmatrix} - 29.32 \begin{pmatrix} 10\\4\\27 \end{pmatrix} + 105.822 \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} -76.38\\21.54\\3.18 \end{pmatrix}.$$

После пормировки имеем

$$y_3 = \begin{pmatrix} 1 \\ -0.28 \\ -0.04 \end{pmatrix}$$
.

4. Найти собственные значения и сответствующие им собственные векторы матрицы

$$A = \begin{pmatrix} 5 & 1 & 1 \\ -4 & 10 & 1 \\ 1 & 1 & 12 \end{pmatrix}$$

методом Данилевского.

Решение.

Найдем матрицу M_2

$$m_{21} = -\frac{a_{31}}{a_{32}} = -1$$
, $m_{22} = \frac{1}{a_{32}} = 1$, $m_{23} = \frac{-a_{33}}{a_{32}} = -12$, $M_2 = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & -12 \\ 0 & 0 & 1 \end{pmatrix}$

Матрина M_2^{-1}

$$M_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 12 \\ 0 & 0 & 1 \end{pmatrix}$$

Найдем

$$M_2^{-1}AM_2 = \begin{pmatrix} 4 & 1 & -11 \\ -10 & 23 & -130 \\ 0 & 1 & 0 \end{pmatrix}$$

Найдем матрицу M_1

$$m_{11} = \frac{1}{a'_{21}} = -\frac{1}{10}, \quad m_{12} = -\frac{a'_{22}}{a'_{21}} = \frac{23}{10}, \quad m_{13} = -\frac{a'_{23}}{a'_{21}} = -\frac{130}{10}.$$

$$M_1 = \begin{pmatrix} -\frac{1}{10} & \frac{23}{10} & -13\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Матрица M_1^{-1}

$$M_1^{-1} = \begin{pmatrix} -10 & 23 & -130 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Найдем

$$M_1^{-1}M_2^{-1}AM_2M_1 = \begin{pmatrix} 27 & -232 & -630 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Используем верхиюю строку полученной матрицы для составления характеристического многочлена.

$$D(\lambda) = \lambda^3 - 27\lambda^2 + 232\lambda - 630.$$

Применив метод Ньютона, найдем кории $\lambda_1=9$, $\lambda_2=5.68$ $\lambda_3=12.32$. Найдем соответствующие собственные векторы. Для λ_1 имеем

$$y = \begin{pmatrix} \lambda^2 \\ \lambda \\ 1 \end{pmatrix} = \begin{pmatrix} 81 \\ 9 \\ 1 \end{pmatrix}.$$

Собственный вектор

$$x = M_2 M_1 y = \begin{pmatrix} -\frac{2}{5} \\ -\frac{13}{5} \\ 1 \end{pmatrix}.$$

Проверка

$$Ax - 9x = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \end{pmatrix},$$

Для λ_2 имеем

$$y = \begin{pmatrix} \lambda^2 \\ \lambda \\ 1 \end{pmatrix} = \begin{pmatrix} 32.30 \\ 5.68 \\ 1 \end{pmatrix}.$$

Собственный вектор

$$x = M_2 M_1 y = \begin{pmatrix} -3.16 \\ -3.16 \\ 1 \end{pmatrix}.$$

Проверка

$$Ax - 5.68x = \begin{pmatrix} -0.01 \\ -0.01 \\ 0.0 \end{pmatrix}.$$

Для λ_3 имеем

$$y = \begin{pmatrix} \lambda^2 \\ \lambda \\ 1 \end{pmatrix} = \begin{pmatrix} 151.70 \\ 12.32 \\ 1 \end{pmatrix}.$$

Собственный вектор

$$x = M_2 M_1 y = \begin{pmatrix} 0.16 \\ 0.16 \\ 1 \end{pmatrix}.$$

Проверка

$$Ax - 12.32x = \begin{pmatrix} 0.001 \\ -0.001 \\ -0.004 \end{pmatrix}.$$

Заметим, что небольшая погрешность возникает из-за приближенного решеня уравнения методом Ньютона, а также из-за ошибок округления.

6.3 Вопросы и задачи для самостоятельной работы

- 1. Можно ди при вычислении x^1, x^2, \ldots в методах простой итерации и методе скалярных произведений нормировку производить на каждом шаге? Что тогда нужно брать за λ^i ?
- 2. Можно ди применять методы простой итерации и скалярных произведений, если имеются кратные собственные числа, но они не являются максимальными по модулю?
- 3. Почему нельзя применять методы Данилевского и Крылова в случае кратных собственных чисел? Можно ли при этих условиях правильно найти коэффициенты характеристического многочлена?
- 4. Может ли в процессе применения метода Крылова получиться система линейных уравнений с линейно зависимой матрицей? Что в этом случае можно сказать о характеристическом многочлене?

6.4 Задание к лабораторной работе

Задание 1. Пусть k – количество букв в вашем Ф.И.О. Номер варианта равен 1, если k – четное, и 2, если k – нечетное.

Вариант 1

Решить частичную и полную проблемы для матрицы

$$A = \begin{pmatrix} 123 - k & k & 1 & -1 \\ k - 10 & -167 & 1 & -23 \\ k & 12 & 345 + k & -k \\ k - 10 & 2 & 3 & -10k \end{pmatrix}$$

методами простой итерации и методом Крылова соответственно. $\varepsilon=10^{-2}$. Сделать проверку для каждого из собственных значений.

Решить частичную и полиую проблемы для матрины

$$A = \begin{pmatrix} 127 - 2k & 1 & 1 & -1 \\ k - 10 & -167 - 10k & -1 & -3 \\ k & 12 & 34k & -k \\ k - 1 & 2 & 3 & -12k \end{pmatrix}$$

методами скалярных произведений и методом Данилевского соответсвению. $\varepsilon = 10^{-2}$.

Сделать проверку для каждого из собственных значений.

Задание 2. Для матрицы A из задания 2 лабораторной работы 5 найти все собственные значения и соответствующие им собственные векторы, используя подпрограмму для решения проблемы собственных значений трехдиагональной матрицы пакета ScaLAPACK. Сделать проверку для каждого из найденных значений.

7 Лабораторная работа "Методы решения задачи Коши для ОДУ первого порядка"

7.1 Краткий теоретический материал

Напомиим постановку задачи Копии: Найти дифференцируемую на отрезке $[x_0 \le x < X]$ функцию y(x), удолетворяющую уравнению

$$y'(x) = f(x, y), \tag{57}$$

и начальному условию

$$y(x_0) = y_0. (58)$$

Будем предполагать, что функция f(x,y) такова, что решеник задачи (57-58) существует и единственно.

Из аналитических методов решения задачи Коши приведем здесь метод последовательных приближений и метод последовательного дифференцирования.

Метод последовательных приближений

Решение y(x) получают как предел последовательности $y_n(x)$, которые находятся по реккурентной формуле

$$y_0(x) = y_0, \quad y_n(x) = y_0 + \int_{x_0}^x f(x, y_{n-1}) dx, \quad n = 1, 2, \dots$$
 (59)

Если в некотором прямоугольнике $R\{|x-x_0| \le a, |y-y_0| \le b\}$ функция f удовлетворяет условию Лишина по y

$$|(f(x, y_1) - f(x, y_2)| \le N|y_1 - y_2|, \quad N = \text{const.}$$
 (60)

го независимо от выбора нудевого приближения последовательность $\{y_n(x)\}$ еходится к решению y(x) задачи (57–58) на некотором отрезке $[x_0, x_0 + h]$.

Метод последовательного дифференцирования

Предположим, что в окрестности точки x_0 существуют производные $y^k(x)$ решения задачи Коши. Тогда решение можно разложить в ряд Тейлора

$$y(x) = y(x_0) + \frac{y'(x_0)}{1!}(x - x_0) + \frac{y''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{y^{(n)}}{n!}(x - x_0)^n + \dots$$
(61)

Так как известны

$$y(x_0), y'(x_0) = f(x_0, y_0),$$

итйки онжом от

$$y''(x) = \frac{df}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} f,$$

$$y''(x_0) = \frac{df}{dx}(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0) + \frac{\partial f}{\partial y}(x_0, y_0) f(x_0, y_0),$$

$$y'''(x) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x \partial y} f + \left(\frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y^2} f\right) f + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} f\right),$$

и т.д.

Метод не всегда удобен, так как производные функции f могут иметь сложную структуру.

Рассмотрим некоторые численные методы решения задачи Коши. *Численными* методами называют методы решения, позволяющие получить приблыженное решение в виде таблицы значений.

Выбрав достаточно маленький шаг h, построим систему равноотстоящих узлов $x_i = x_0 + ih$, $i = 1, \ldots, n$.

Метод Эйлера

В этом методе приближенные значения $u_i = y(x_i)$, $i = 1, 2, \ldots$ вычистяются последовательно по формулам

$$u_0 = y_0, \quad u_{i+1} = u_i + hf(x_i, u_i), \quad i = 0, \dots, n.$$

Если в некотором прямоугольнике $R\{|x-x_0| \leq a, |y-y_0| \leq b\}$ функция f удовлетворяет условиям

$$|(f(x, y_1) - f(x, y_2)| \le N|y_1 - y_2|, \quad N = \text{const.}$$

 $\left|\frac{\partial f}{\partial x} + f\frac{\partial f}{\partial y}\right| \le M, \quad M = \text{const.}$

то имеет место следующая оценка погрешности

$$|y(x_i) - u_i| \le \frac{hM}{2N} \left((1 + hN)^i - 1 \right).$$

Метод имеет первый порядок течности, т.е. $[u_i - y(x_i)] = O(h)$.

Модифицированный метод Эйлера

В этом методе приближенные значения $u_i=y(x_i)\,,\;i=1,2,\ldots$ вычисляются последовательно по формулам

$$u_{i+\frac{1}{2}} = u_i + \frac{h}{2} f(x_i, u_i),$$

$$u_{i+1} = u_i + h f(x_{i+\frac{1}{2}}, u_{i+\frac{1}{2}}), \quad i = 0, \dots, n,$$

$$u_0 = u_0.$$

Метод имеет второй порядок точности, т.е. $[u_i - y(x_i)] = O(h^2)$.

Итерационный метод Эйлера

Этот метод состоит в том, что сначала вычисляется "пробное значение" u_i^0 , которое затем уточияется при последовательных вычислениях u_i^1 , u_i^2 , ..., u_i^k , пока не станст $|u_i^k - u_i^{k-1}| < \varepsilon$. После этого полагают $y(x_i) = u_i = u_i^k$. "Пробное значение"вычисляется по методу Эйлера

$$u_i^0 = u_{i-1} + hf(x_{i-1}, u_{i-1}).$$

"Уточнение"происходит по формуле

$$u_i^k = u_{i-1} + \frac{h}{2} \left[f(x_{i-1}, u_{i-1}) + f(x_i, u_i^{k-1}) \right].$$

Точность решения $|u_i - y(x_i)| = O(h^2, \varepsilon)$.

Метод Рунге-Кутта второго порядка состоит в том, что для каждого i сначала вычисляются вспомогательные величины

$$\varphi_0 = hf(x_i, u_i), \quad \varphi_1 = hf(x_i + \frac{2}{3}h, y_i + \frac{2}{3}\varphi_0),$$

и затем вычисляется приближенное значение решения в точке x_{i+1} :

$$u_{i+1} = u_i + \frac{1}{4}(\varphi_0 + 3\varphi_1),$$

причем $u_0 = y_0$.

Величина погрешности для этого метода пропорциональна h^2 .

Метод Рунге-Кутта третьего порядка состоит в том, что для каждого i сначала вычисляются вспомогательные величины

$$\varphi_0 = hf(x_i, u_i), \quad \varphi_1 = hf(x_i + \frac{h}{3}, y_i + \frac{\varphi_0}{3}),$$

$$\varphi_2 = hf(x_i + \frac{2h}{3}, y_i + \frac{2\varphi_1}{3}),$$

и затем вычисляется приближенное значение решения в точке x_{i+1} :

$$u_{i+1} = u_i + \frac{1}{4}(\varphi_0 + 3\varphi_2),$$

причем $u_0 = y_0$.

Имеет место оценка $|y(x_i) - u_i| = O(h^3)$.

Метод Рунге-Кутта четвертого порядка состоит в том, что для каждого i сначала вычисляются вспомогательные величины

$$\varphi_{0} = hf(x_{i}, u_{i}), \quad \varphi_{1} = hf(x_{i} + \frac{h}{3}, y_{i} + \frac{\varphi_{0}}{3}),$$

$$\varphi_{2} = hf(x_{i} + \frac{2h}{3}, y_{i} - \frac{\varphi_{0}}{3} + \varphi_{1}), \varphi_{3} = hf(x_{i} + h, y_{i} + \varphi_{0} - \varphi_{1} + \varphi_{2}),$$

и затем вычисляется приближенное значение решения в точке x_{i+1} :

$$u_{i+1} = u_i + \frac{1}{8}(\varphi_0 + 3\varphi_1 + 3\varphi_2 + \varphi_3),$$

причем $u_0 = y_0$.

Имеет место оценка $|u(x_i) - u_i| = O(h^4)$.

Все вышенеречисленные методы относятся к одношаговым методам, так как для вычисления значения в точке x_{i+1} используются только значения функции в точке x_i .

Методы Рунге-Кутта и Эйлера (простой и модифицированный) являются явными, а итерационный метод – неявным.

7.2 Примеры

1. Применяя метод последовательного дифференцирования, найти решение задачи Коши в виде частичной суммы ряда (ограничиться четырьмя членами).

$$y' = y^2 + x^2$$
, $y(0) = \frac{1}{2}$.

Решение.

Будем искать решение в виде ряда

$$y(x) = y(0) + y'(0)x + \frac{y''(0)}{2}x^2 + \frac{y'''(0)}{6}x^3 + \frac{y^{(4)}(0)}{24}x^4 + \dots$$

Ho условно $y(0) = \frac{1}{2}$.

$$y'(0) = y^{2}(0) + 0^{2} = \frac{1}{4}.$$

$$y'' = \frac{d}{dx}(y^{2} + x^{2}) = 2yy' + 2x, \quad y''(0) = 2 \cdot \frac{1}{2} \cdot \frac{1}{4} + 2 \cdot 0 = \frac{1}{4}.$$

$$y''' = 2(y')^{2} + 2yy'' + 2, \quad y'''(0) = 2\left(\frac{1}{4}\right)^{2} + 2 \cdot \frac{1}{2} \cdot \frac{1}{4} + 2 = 2\frac{3}{8}.$$

$$y^{(4)} = 4y'y'' + 2y'y'' + 2yy''' \quad y^{(0)} = 4 \cdot \frac{1}{4} \cdot \frac{1}{4} + 2 \cdot \frac{1}{4} \cdot \frac{1}{4} + 2 \cdot \frac{1}{2} \cdot (2\frac{3}{8}) = 2\frac{3}{4}.$$

Пмеем

$$y(x) = \frac{1}{2} + \frac{1}{4}x + \frac{1}{8}x^2 + \frac{19}{48}x^3 + \frac{11}{96}x^4 + \dots$$

2. Применяя метод последовательных приближений, найти решение задачи Коша в виде частичной суммы ряда (ограничиться четырьмя членами).

$$y' = y^2 + x^2$$
, $y(0) = \frac{1}{2}$.

Решение

Выберем $y_0(x) \equiv y_0 = \frac{1}{2}$. По формуле (59) имеем

$$y_1(x) = \frac{1}{2} + \int_0^x \left[\left(\frac{1}{2} \right)^2 + x^2 \right] dx = \frac{1}{2} + \frac{1}{4}x + \frac{1}{3}x^2.$$

$$y_2(x) = \frac{1}{2} + \int_0^x \left[\left(\frac{1}{2} + \frac{1}{4}x + \frac{x^3}{3} \right)^2 + x^2 \right] dx =$$

$$= \frac{1}{2} + \frac{1}{4}x + \frac{x^2}{8} + \frac{17x^3}{48} + \dots,$$

$$y_3(x) = \frac{1}{2} + \int_0^x \left[\left(\frac{1}{2} + \frac{1}{4}x + \frac{x^2}{8} + \frac{17x^3}{48} \right)^2 + x^2 \right] dx =$$

$$= \frac{1}{2} + \frac{1}{4}x + \frac{x^2}{8} + \frac{19x^3}{48} + \frac{21x^4}{192} + \dots.$$

Так как первые три члена не изменяются при последующих итерациях, можно записать

$$y = \frac{1}{2} + \frac{1}{4}x + \frac{x^2}{8} + \frac{19x^3}{48} + \dots$$

3. Используя метод Эйлера, численно решить задачу Коши

$$y' = \frac{1}{2}xy$$
, $y(0) = 1$,

на отрезке [0,1] с шагом h=0.01 .

Решение.

Построим сетку на отрезке [0.1]. $x_i=0+i0.01=0.01i$, $i=0,\dots,100$. $u_0=y_0=1$. По методу Эйлера

$$u_{i+1} = u_i + 0.01 \left(\frac{1}{2}x_i u_i\right) = u_i + 0.01 \left(\frac{1}{2} \cdot 0.01 i u_i\right), \quad i = 0, \dots, 100.$$

$$u_1 = u_0 + 0.01 \left(\frac{1}{2} \cdot 0 \cdot u_0\right) = 1,$$

$$u_2 = 1 + 0.01 \left(\frac{1}{2} \cdot 0.01 \cdot 1\right) = 1.00005,$$

$$u_3 = 1.00005 + 0.01 \left(\frac{1}{2} \cdot 0.02 \cdot 1.00005\right) = 1.00015,$$

$$u_4 = 1.00015 + 0.01 \left(\frac{1}{2} \cdot 0.03 \cdot 1.00015\right) = 1.0003,$$

Сравнить точное решение данного дифференциального уравнения $y=e^{\frac{x^2}{4}}$ с рассчитанным по методу Эйлера можно по рисункам (3)–(4).

4. Применяя итерационный метод Эйлера, найти решение уравнения $y'=x+\sqrt{y}$. y(0)=1 на отрезке [0,1] с шагом h=0.2 .

Решение.

Построим сетку на отрезке [0.1]. $x_i=0+i0.2=0.2i\,,\;i=0,\dots 5$. $u_0=y_0=1\,.$ По итерационному методу Эйлера

$$u_{i+1}^{0} = u_{i} + 0.2 (x_{i} + \sqrt{u_{i}}),$$

$$u_{i+1}^{k} = u_{i} + 0.1 (x_{i} + \sqrt{u_{i}} + x_{i+1} + \sqrt{u_{i+1}^{k}}), \quad i = 0, \dots, 5.$$

Начнем вычислительный процесс

$$u_1^0 = 1 + 0.2 \left(0 + \sqrt{1} \right) = 1.2.$$

Рис. 3: Численное решение уравнения $y'=\frac{1}{2}xy,\quad y(0)=1$, полученное методом Эйлера

Уточняем решение

$$u_1^1 = 1 + 0.1 \left(0 + \sqrt{1} + 0.2 + \sqrt{1.2} \right) = 1.223,$$

 $u_1^2 = 1 + 0.1 \left(0 + \sqrt{1} + 0.2 + \sqrt{1.223} \right) = 1.230.$

Разность между u_1^2 и u_1^1 менее 0.01, поэтому процесс уточнения прекращаем и полагаем $u_1=1.230$.

$$u_2^0 = 1.230 + 0.2 \left(0.2 + \sqrt{1.230}\right) = 1.493.$$

Уточняем решение

$$u_2^1 = 1.230 + 0.1 \left(0.2 + \sqrt{1.230} + 0.3 + \sqrt{1.439} \right) = 1.524.$$

 $u_2^2 = 1.230 + 0.1 \left(0.2 + \sqrt{1.230} + 0.3 + \sqrt{1.524} \right) = 1.525.$

Разность между u_2^2 и u_2^1 менее 0.01 , поэтому процесс уточнения прекращаем и полагаем $u_2=1.525$.

. Puc. 4: Аналитическое решение уравнения $y' = \frac{1}{2}xy$, y(0) = 1

$$u_3^0 = 1.525 + 0.2\left(0.3 + \sqrt{1.525}\right) = 1.852.$$

Уточняем решение

$$u_3^1 = 1.525 + 0.1 \left(0.3 + \sqrt{1.525} + 0.4 + \sqrt{1.852} \right) = 1.885,$$

 $u_3^2 = 1.525 + 0.1 \left(0.3 + \sqrt{1.525} + 0.4 + \sqrt{1.885} \right) = 1.886.$

Разность между u_3^2 и u_3^1 менее 0.01, поэтому процесс уточнения прекращаем и полагаем $u_3=1.886$.

Продолжая этот же процесс для u_4 и u_5 получим следующее численное решение

При желании полученные точки можно нанести на координатную плоскость и посмотреть характер поведения функции.

7.3 Вопросы и задачи для самостоятельной работы

- 1. Показать, что метод Эйлера имеет первый порядок точности, а модифицированный метод Эйлера второй.
 - 2. Какая разница между невязкой и погрешностью?
- 3. Можно ли добиться высокой точности в методе Эйлера, если взять очень маленький шаг?
 - 4. Можно ли применять метод последовательных приближений к задаче

$$y' = \frac{1}{xy}, \quad y(1) = 1.$$

∷Ссии да, то как это еделать?

5. Почему расходится итерационный метод Эйлера для задачи

$$y' = x^2 + y^4$$
, $y(0) = 1$?

6. Как обобщить метод Эйлера для системы двух уравнений

$$\begin{cases} u' = f(u, v, x), \\ v' = g(u, v, x), \\ u(x_0) = u_0, \\ v(x_0) = v_0? \end{cases}$$

7.4 Задание к лабораторной работе

І. Для задачи Коши

$$y' = f(x, y), \quad y(0) = y_0$$

найти ее решение на отрезке [0,1] с шагом 0.05 следующими одношаговыми методами

- 1. Методом Эйлера, уравнение $y' = 1 + my \sin x ly^2$, $y_0 = 0$, если N = 6k + 1.
- 2. Модифицированным методом Эйлера, уравнение $y'=my^2+\frac{l}{(r+1)^2},$ $y_0=1$, если N=6k+2 .
- 3. Итерационным методом, уравнение $y'=\frac{m}{(x+1)^2}-\frac{y}{x+1}-ly^2$, $y_0=1$, если N=6k+3.
- 4. Методом Рунге-Кутта второго порядка, уравнение $y'=mx+\cos ly$, $y_0=0$, если N=6k+4 .
- 5. Методом Рунге-Кутта третьего порядка, уравнение $y'=-my^2+lx^2$, $y_0=0.5$, если N=6k+5 .

- 6. Методом Рун
че-Кутта четвертого порядка, уравнение $y' = m\sqrt{y} + \frac{l}{s+1}$,
 $y_0 = 1$, если N = 6k .
- (N- количество букв в Ф.И.О., m- количество букв в имени, деленное на 100, l- количество букв в фамилии, деленное на 10).
- И. Получить в окрестности точки x=0 представление решения в виде степенного ряда методом последовательных приближений или методом последовательного дифференцирования (ограничиться четырьмя членами).

8 Лабораторная работа "Методы решения краевых задач для ОДУ второго порядка"

8.1 Краткий теоретический материал

Рассмотрим уравнение

$$y'' + p(x)y' + q(x)y = f(x), (62)$$

$$\gamma_0 y(a) + \gamma_1 y'(a) = A, \tag{63}$$

$$\delta_0 y(b) + \delta_1 y'(b) = B, \tag{64}$$

где p,q,f — известные непрерывные на [a,b] функции, γ_0 , γ_1 , δ_0 , δ_1 , A , B — заданные константы.

Требуется найти функцию y, которая внутри отрезка [a,b] удовлетворяет уравнению (62), а на краях — краевым условиям (63–64).

Метод замены производных разностными отношениями и метод прогонки

Введем на отрезке [a,b] сетку с шагом $h\frac{b-a}{n},\ n$ — целое. $x_i=a+ih$, $i=0,\dots,n$. Обозначим

$$p_i = p(x_i), \quad q_i = q(x_i), \quad f_i = f(x_i).$$

Функция, определенная на узлах сетки, называется сеточной функцией. Любую сеточную функцию $y(x_i)=y_i$ можно представить в виде вектора $Y=(y_0,y_1,\ldots y_n)$. Учитывая, что

$$y'_{i} = \frac{y_{i+1} - y_{i-1}}{2h} + O(h^{2}), \quad y''_{i} = \frac{y_{i+1} - 2y_{i} + y_{i-1}}{h^{2}} + O(h^{2}),$$
$$y'_{n} = \frac{y_{n} - y_{n-1}}{h} + O(h), \quad y'_{0} = \frac{y_{1} - y_{0}}{h} + O(h),$$

и подставляя в систему (62)–(64) вместо производных указанные разностные отношения (преиебрегая величинами порядка O(h)), получим следующую систему уравнений.

$$\frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} + p_i \frac{u_{i+1} - u_{i-1}}{2h} + q_i u_i = f_i, \quad i = 1, \dots, n-1.$$
 (65)

$$\gamma_0 u_0 + \gamma_1 \frac{u_1 - u_0}{h} = A,\tag{66}$$

$$\delta_0 u_n + \delta_1 \frac{u_n - u_{n-1}}{h} = B, (67)$$

где u_i — приближенное значение $y(x_i)$.

Имеем систему линейных уравнений с трехдиагональной матрицей

$$\begin{pmatrix} A_0 & B_0 & 0 & 0 & \dots & 0 \\ C_1 & A_1 & B_1 & 0 & \dots & 0 \\ 0 & C_2 & A_2 & B_1 & \dots & 0 \\ \dots & & & & & & \\ 0 & \dots & 0 & C_{n-1} & A_{n-1} & B_{n-1} \\ 0 & \dots & 0 & 0 & C_n & A_n \end{pmatrix} \begin{pmatrix} u_0 \\ u_1 \\ u_2 \\ \dots \\ u_{n-1} \\ u_n \end{pmatrix} = \begin{pmatrix} A \\ f_1 \\ f_2 \\ \dots \\ f_{n-1} \\ B \end{pmatrix}.$$

Здесь

$$A_i = \frac{-2}{h^2} + q_i, (68)$$

$$B_i = \frac{1}{h^2} - \frac{p_i}{2h} \tag{69}$$

$$C_i = \frac{1}{h^2} + \frac{p_i}{2h} \tag{70}$$

$$i=1,\ldots,n-1$$

$$A_0 = \gamma_0 - \frac{\gamma_1}{h}, \quad B_0 = \frac{\gamma_1}{h}, \quad C_n = -\frac{\delta_1}{h}, \quad A_n = \delta_0 + \frac{\delta_1}{h}.$$
 (71)

Такого рода системы уравнений удобно решать методом прогонки.

Метод прогонки подразделяется на 2 этапа.

Первый, называемый прямой прогонкой, состоит в вычислении прогоночных коэффициентов α_i , β_i , $i=1,2,\ldots n-1$ по формулам

$$\alpha_1 = -\frac{B_0}{A_0}, \quad \beta_0 = \frac{A}{A_0},$$

$$\alpha_{i+1} = \frac{-B_i}{C_i \alpha_i + A_i}, \quad \beta_{i+1} = \frac{f_i - C_i \beta_i}{C_i \alpha_i + A_i}.$$

Второй этап, называемый *обратной прогонкой*, состоит в вычислении решений системы по формулам

$$y_n = \frac{B - C_n \beta_n}{C_n \alpha_n + A_n}, \quad y_i = \alpha_{i+1} y_{i+1} + \beta_{i+1}, \quad i = n-1, \dots, 0.$$

Отметим важное свойство: пусть решение задачи (62-64) единственно, и непрерывно дифференцируемо на [a,b] до четвертого порядка включительно, и выполнено

$$\frac{h}{2} \max_{x \in [a,b]} |p(x)| < 1, \quad q(x) \le 0 \text{ при } x \in [a,b],$$

то сеточное решение u_i задачи (65–67) сходится к решению задачи (62–64) при $h \to 0$.

Метод пристрелки

Перепишем систему (62)-(64) в виде

$$\begin{cases} y' = z, \\ z' = -p(x)z - q(x)y + f(x), \\ \gamma_0 y(a) + \gamma_1 z(a) = A, \\ \delta_0 y(b) + \delta_1 z(b) = B, \end{cases}$$

Здесь h-шаг сетки.

Такую систему можно было бы решать как задачу Коши (например, методом Эйлера), если бы были заданы начальные условия $y(x_0), z(x_0)$.

Положим $y(x_0) = \xi$, где ξ – произвольное число.

Тогда
$$z(x_0) = (A - \gamma_0 \xi)/\gamma_1$$
.

Тогда метод Эйлера для последней задачи

$$\begin{cases} u_{i+1} = u_i + hv_i \\ v_{i+1} = v_i + h(-p_iv_i - q_iu_i + f_i), & i = 0, \dots, n \end{cases}$$
$$u_0 = \xi,$$
$$v_0 = (A - \gamma_0 \xi)/\gamma_1.$$

Здесь u_i – приближенное значение $y(x_i)$, v_i – приближенное значение $z(x_i)$. Проведя вычисления по методу Эйлера, получим некоторые значения u_n , v_n . Для них должно выполняться краевое условие

$$\delta_0 u_n + \delta_1 v_n = B.$$

Но так как начальное условие $u_0=\xi$ бралось произвольно, то реально будем иметь

$$\delta_0 u_n + \delta_1 v_n - B > 0 (< 0).$$

Тогда подберем другое начальное значение $u_0 = \xi'$, и проведем еще раз вычисления по методу Эйлера и получим новые значения u'_n , v'_n . Наша задача,

подобрать ξ' так, чтобы было выполнено условие

$$\delta_0 u_n' + \delta_1 v_n' - B < 0 (> 0).$$

Впачит, нужное начальное приближение ξ'' находится между ξ и ξ' . Положим

$$\xi'' = \frac{\xi + \xi'}{2}$$

и еще раз проведем вычисления по методу Эйлера. Например, теперь имеет место неравенство

$$\delta_0 u_n + \delta_1 v_n - B > 0 (< 0).$$

Значит, новое ξ вычислим как

$$\xi = \frac{\xi' + \xi''}{2}$$

и т.д. Заканчиваем этот процесс подбора ξ , когда будет выполнено условие

$$|\delta_0 u_n + \delta_1 v_n - B| < \varepsilon.$$

Последние рассчитанные значения u_0, u_1, \ldots, u_n и будут приближенным решением краевой задачи.

Метод Галеркина

Рассмотрим здесь задачу

$$y'' + p(x)y' + q(x)y = f(x),$$

$$y(a) = A,$$

$$y(b) = B_{\bullet}$$

Обозначим через L — дифференциальный оператор Lu=u''+pu'+qu . Выберем на отрезке [a,b] систему базисных функций

$$\varphi_0, \quad , \varphi_1, \ldots, \varphi_m,$$

так, чтобы были выполнены следующие условия:

- 1) Система функций является линейно независимой на отрезке $[a,b]_{oldsymbol{.}}$
- 2) Функция φ_0 удовлетворяет условиям $\varphi_0(a)=A$, $\varphi_0(b)=B$, а остальные базисные функции условиям $\varphi_j(a)=0$, $\varphi_j(b)=0$, $j=1,\ldots,m$.

Решение ищется в виде $y=\varphi=\varphi_0+c_1\varphi_1+c_2\varphi_2+\cdots+c_m\varphi_m$, где c_1 , c_2 , \ldots , c_m — константы, подлежащие определению.

Для их определения решают систему

$$Dc = g$$
,

где D - матрица, элементами которой являются числа

$$d_{ij} = \int_{a}^{b} L\varphi_{i} L\varphi_{j} dx,$$

g— вектор-столбец, элементами которого являются числа

$$g_i = \int_a^b L\varphi_i(f - L\varphi_0)dx,$$

c — неизвестный вектор-столбец, элементами которого являются коэффициенты c_i , $i=1,\ldots,m$.

В качестве функций φ часто берут следующую систему многочленов: $\varphi_j(x)=(x-a)(b-x)^j$, $j=1,\ldots,m$, в качестве φ_0 можно взять $\frac{B-A}{b-a}x+\frac{bA-aB}{b-a}$.

Метод Ритца

Рассмотрим задачу

$$y'' + p(x)y' + q(x)y = f(x),$$

$$y(a) = A,$$

$$y(b) = B,$$

L – дифференциальный оператор: Lu = u'' + pu' + qu.

Выберем на отрезке [a,b] систему базисных функций, отвечающих тем же условиям, что и в предыдущем методе.

Решение краевой задачи сводится к поиску минимума функционала

$$\Phi(y) = (Ly, y) - 2(f, y),$$

где (\cdot,\cdot) – скалярное произведение в пространстве L_2 .

Решение ищется в виде $y \approx \varphi = \varphi_0 + c_1\varphi_1 + c_2\varphi_2 + \cdots + c_m\varphi_m$, где c_1 , c_2 , ..., c_m – константы, определяемые из условия минимума функционала $\Phi[\varphi]$.

Для их определения решают систему

$$Dc = g$$

где $\,D\,$ – матрица, элементами которой являются числа

$$d_{ij} = \int_{a}^{b} \varphi_i L \varphi_j dx,$$

 $g=\mathrm{вектор\text{-}cronfe}$ ц, элементами которого являются числа

$$g_i = \int_a^b \varphi_i(f - L\varphi_0) dx,$$

— неизвестный вектор-столбец, элементами которого являются коэффицинты $c_i,\ i=1,\dots,m$.

8.2 Примеры

1. Методом Галеркина найти приближенное решение уравнения

$$y'' - xy' + y = 0,$$

$$y(0) = 1$$

$$y(1) = 0$$

Решение.

Выберем базисные функции

$$\varphi_0(x) = 1 - x$$
, $\varphi_1(x) = x(1 - x)$, $\varphi_2(x) = x^2(1 - x)$.

Рассчитаем $L\varphi_i = \varphi_i'' - x\varphi_i' + \varphi_i$, i = 0, 1, 2.

$$L\varphi_0 = -x(-1) + 1 - x = 1,$$

$$L\varphi_1 = -2 - x(1 - 2x) + x - x^2 = x^2 - 2,$$

$$L\varphi_2 = 2 - 6x - x(2x - 3x^2) - x^3 + x^2 = 2x^3 - x^2 - 6x + 2.$$

Рассчитаем коэффициенты матрицы D.

$$d_{11} = \int_{1}^{1} (x^{2} - 2)^{2} dx = \frac{43}{15},$$

$$d_{12} = d_{21} = \int_{0}^{1} (x^{2} - 2)(2x^{3} - x^{2} - 6x + 2) dx = \frac{29}{30},$$

$$d_{22} = \int_{0}^{1} (2x^{3} - x^{2} - 6x + 2)^{2} dx = \frac{104}{35},$$

и элементы столбца д

$$g_1 = \int_0^1 (x^2 - 2)(0 - 1)dx = \frac{5}{3},$$

$$g_2 = \int_0^1 (2x^3 - x^2 - 6x + 2)(0 - 1)dx = \frac{5}{6}.$$

Получена система линейных уравнений

$$\begin{pmatrix} \frac{43}{15} & \frac{29}{30} \\ \frac{29}{30} & \frac{104}{35} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} \frac{5}{3} \\ \frac{9}{6} \end{pmatrix}.$$

Решив ее, найдем $c_1 = 0.54681$. $c_2 = 0.10256$.

Таким образом.

$$\varphi(x) = 1 - x + 0.54681x(1 - x) + 0.10256x^{2}(1 - x), \text{ или}$$
$$\varphi(x) = 1 - 0.4532x + 0.4443x^{2} - 0.10256x^{3}.$$

Последняя функция среди всех многочленов второй степени лучше всего приближает решение y .

2. Используя метод пристрелки, найти приближенное решение красвой задачи, полагая h=0.1.

$$y'' - 2xy' + 2y = x,$$

$$y(0) + y'(0) = 1,$$

$$y(1) = 0.$$

Решение.

 $n=1/h=10\,.\,\,x_i=0+i0.1=0.1i\,.$ Пусть $\,\xi=0\,.$ Тогда по методу Эйлера имеем

$$\begin{cases} u_{i+1} = u_i + 0.1v_i \\ v_{i+1} = v_i + 0.1(-0.1iv_i - 2u_i + 0.1i), & i = 0, \dots, n \end{cases}$$
$$u_0 = \xi,$$
$$v_0 = 1 - \xi.$$

(u_i приближенное значение $y(x_i)$, v_i – приближенное значение $z(x_i)$.) Второе краевое условие $u_{10}=0$, поэтому процесс подбора ξ закончим, когда u_{10} станет достаточно близко к 0.

Процесс последующих вычислений приведен в таблицах

í	riponce	с последу	иних	выч	ислении	1 приведе	н в табл
	$\xi = 0$				$\xi = 2$		
	i	u	v		i	u	₍₁₎
	0	0	1	1	0	2	-1
	1	0.2	1.01		1	1.9	-1.4
I	•••			ŀ			
	9	0.995	1.458		9	-0.43	-5.312
	10	1.140	1.612		10	-0.96	-6.096
		$u_{10} > 0$,		$u_{10} < 0$	
							l

$\xi = \frac{0+2}{2}$				$\xi = \frac{2+1}{2}$					
i	u	v		i		u	ı	9	
0	1	0		0		1.5	-0	.5	
1	0.98	-0.394		1	1	1.45	-0	.8	
								'	
9	0.281	-1.929		9	-1	0.07	-3.	62	
10	0.088	-2.245		10	-1	0.43	-4.	17	
	$u_{10} > 0$		Γ		u_1	0 < 0			
$\xi = \frac{1+1.5}{2}$			· ·	$\xi = \frac{1+1}{2}$	<u>.25</u>				
i	u			i					
		v	1			u		ı	'
0	1.25	-0.25		0		$\frac{u}{1.12}$	5	-0.1	
$\begin{array}{c c} 0 \\ 1 \end{array}$		-		ļ					25
	1.25	-0.25		ļ		1.12		-0.1	25
1	1.25 1.225	-0.25	,	0		1.12	25	-0.1	25 35
1	1.25 1.225 	-0.25 -0.5 	i	0 1 		1.12 1.112 	25 2	-0.1 -0.	25 35 852

На следующей итерации было получено значение $u_{10}=0.01$, что достаточно близко к 0, поэтому последнее решение мы приведем полностью.

$\xi = \frac{1+1.125}{2} = 1.0625$	
i	u
0	1.0625
1	1.0608
2	1.0327
3	0.984
4	0.914
5	0.824
6	0.712
7	0.578
8	0.419
9	0.233
10	0.01

3. Решить приближенно уравнение методом прогонки с шагом h=0.2

$$y'' - 2xy' - 2y = -4x,$$

$$y(0) - y'(0) = 0,$$

$$y(1) = 1 + e.$$

Решение.

Построим сетку с шагом h. $x_i = 0 + i0.2 = 0.2i$, i = 0, ..., 5.

 $p_i = -2 \cdot 0.2i = -0.4i$, $q_i = -2$, $f_i = -4 \cdot 0.2i = -0.8i$. Составим систему уравнений, используя формулы (68–71).

$$A_{i} = \frac{-2}{0.2^{2}} - 2 = -52,$$

$$B_{i} = \frac{1}{0.2^{2}} + \frac{0.4i}{2 \cdot 0.2} = 25 + i,$$

$$C_{i} = \frac{1}{0.2^{2}} + \frac{-0.4i}{2 \cdot 0.2} = 25 - i,$$

$$i = 1, \dots, 4.$$

$$A_0 = 1 - \frac{-1}{0.2} = 6$$
, $B_0 = \frac{-1}{0.2} = -5$, $C_n = -\frac{0}{0.2} = 0$, $A_n = 1 + \frac{0}{0.2} = 1$.

Вычислим прогоночные коэффициенты

$$\alpha_1 = -\frac{-5}{6} = \frac{5}{6}, \quad \beta_0 = \frac{0}{6} = 0,$$

$$\alpha_2 = \frac{-26}{24 \cdot \frac{5}{6} - 52} = 0.8125, \quad \beta_2 = \frac{-0.8 - 24 \cdot 0}{24 \cdot \frac{5}{6} - 52 = 0.025}.$$

Продолжая этот процесс, имеем

i	1	2	3	4	5
α	0.833	0.8125	0.8105	0.8195	0.834
β	0	0.025	0.0653	0.1123	0.1597

Вычислим теперь

$$y_5 = \frac{1+e-0}{0+1} = 1+e,$$

Тогда

$$y_4 = 0.834(1+e) + 0.1597 = 3.25.$$
 $y_3 = 0.8195 \cdot 3.25 + 0.1123 = 2.78, \dots$

Продолжая аналогично вычисления, получим следующее табличное решение

i	0	1	2	3	4	5
\boldsymbol{x}	0	0.2	0.4	0.6	0.8	1
y	1.59	1.91	2.32	2.78	3.25	3.72

8.3 Вопросы и задачи для самостоятельной работы

1. Как обобщить метод пристрелки для уравнения

$$y''' - py'' + qy = f,$$

$$\alpha_0 y(a) + \gamma_1 y'(a) = A,$$

$$y''(a) = B,$$

$$\delta_0 y(b) + \delta_1 y'(b) = B.$$

2. Как изменить алгоритм метода прогонки, чтобы его можно было приченять для следующей системы?

$$\begin{pmatrix} A_0 & B_0 & 0 & 0 & \dots & 0 \\ C_1 & A_1 & B_1 & 0 & \dots & 0 \\ 0 & C_2 & A_2 & B_1 & \dots & 0 \\ \dots & & & & & & \\ 0 & \dots & 0 & C_{n-1} & A_{n-1} & B_{n-1} \\ 0 & \dots & 0 & B_n & C_n & A_n \end{pmatrix} \begin{pmatrix} u_0 \\ u_1 \\ u_2 \\ \dots \\ u_{n-1} \\ u_n \end{pmatrix} = \begin{pmatrix} f_0 \\ f_1 \\ f_2 \\ \dots \\ f_{n-1} \\ f_n \end{pmatrix}$$

3. Рассмотрим следующую систему базисных функций φ_i , $i=0,\ldots,n-1$ стя решения краевой задачи

$$y'' + p(x)y' + q(x)y = f(x),$$

 $y(0) = A,$
 $y(1) = B.$

$$\varphi_i = \begin{cases} 0, & \text{если } x \in [0, (i-1)h] \\ \frac{1}{h}x + 1 - i, & \text{если } x \in [(i-1)h, ih] \\ -\frac{1}{h}x + 1 + i, & \text{если } x \in [ih, (i+1)h] \\ 0, & \text{если } x \in [(i+1)h, 1], \end{cases}, \qquad i = 1, \dots n-1.$$

$$arphi_0 = egin{cases} A(-rac{1}{h}x+1), & ext{если } x \in [0,h], \ 0, & ext{если } x \in [h,1-h], \ B(rac{1}{h}x+1-rac{1}{h}), & ext{если } x \in [1-h,1], \end{cases}$$

 $h=\frac{1}{n}$.

Выписать коэффициенты матрицы C и столбца d для методов Галеркина и Ритца. Каким методом удобно решать систему уравнений в этом случае?

8.4 Задание к лабораторной работе

Задание 1. Найти решение краевой задачи указанным методом. Номер варианта определяется как остаток деления N на 4. Здесь N — количество букв в Φ .И.О., k — в имени. h=0.01.

Вариант 0.

$$y'' - 1.7xy' + \cos ay = 2x^2 + 2x - 4$$
$$y(0) = 0, \quad y(1) = 0,$$

a = 0.7 + 0.05k, метод прогонки.

Вариант 1.

$$y'' = 2 \cdot 0.1ke^{0.01kx^2}(1 + 0.1kx^2),$$

$$y'(0) = 0, \quad y'(1) + 2 \cdot 0.1xy(1) = -0.2,$$

метод пристрелки.

Вариант 2.

$$y'' - 0.1k\cos xy' + \sin 0.1ky = x^2 + kx,$$

$$y(-\pi) = 0, \quad y(\pi) = 0.$$

метод Галеркина.

Вариант 3.

$$y'' + 0.1kx^{2}y - xy = e^{k}x,$$

$$y(0) = 0, \quad y(1) = 0.$$

метод Ритца.

Задание 2.

Решить задачу задания 1, полагая $h=10^{-7}$, используя подпрограмму пакета ScaLAPACK для решения систем с трехдиагональной матрицей.

9 Лабораторная работа "Метод сеток для задачи Дирихле"

9.1 Краткий теоретический материал

Первая краевая задача, или задача Дирихле для уравнения Пуассона

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y) \tag{73}$$

состоит в поиске функции u=u(x,y), удовлетворяющей внутри прямоугольной области $G\{a\leq x\leq A,b\leq y\leq B\}$ уравнению (73), а на границе Γ этой области условию

$$u|_{\Gamma} = \varphi(x, y). \tag{74}$$

Выберем шаги $h_1=\frac{A-a}{n}\,,\;h_2=\frac{B-b}{m}$ по x и y сооответственно, и построим сетку

$$x_i = x_0 + ih_1$$
, $y_j = y_0 + jh_2$, $i = 0, ..., n$, $j = 0, ..., m$.

Сеточный метод решения данной задачи состоит в замене производных $\frac{\partial^2 u}{\partial x^2}$, $\frac{\partial^2 u}{\partial y^2}$ разностными отношениями, и последующей замене уравнения (73) разностным уравнением

$$\frac{v_{i+1,k} - 2v_{ik} + u_{i-1,k}}{h_1^2} + \frac{v_{i,k+1} - 2v_{ik} + u_{i,k-1}}{h_2^2} = f_{ik},$$

$$i = 1, \dots, n-1 \quad k = 1, \dots, m-1.$$
(75)

где $f_{ik} = f(x_i, y_k)$, v_{ik} - приближенное значение решения u в точке (x_i, y_k) . Значения v_{0k} , v_{i0} , v_{nk} , v_{im} определяются краевым условием (74).

Погрешность R_{ik} замены дифференциального уравнения разностным в точке (x_i, y_k) оценивается неравенством

$$R_{ik} \le \frac{h^2}{6}M,$$

гле

$$M = \max_{G} \left(\left| \frac{\partial^{4} u}{\partial x^{4}} \right|, \left| \frac{\partial^{4} u}{\partial y^{4}} \right| \right).$$

Систему уравнений (75) решают методом простой итерации или методом Зейделя.

Метод простой итерации

Рассмотрим краевые условия

$$v_{0,k} = \varphi(a, y_k), \quad v_{n,k} = \varphi(A, y_k), \quad k = 0, m,$$

$$v_{i,m} = \varphi(x_i, B), \quad v_{i,0} = \varphi(x_i, b), \quad i = 1, n - 1.$$

Зададим начальное приближение внутри сеточной области $v_{ik}^0=0$, $i=1,\dots,n-1$, $k=1,\dots,m-1$. Будем уточнять решение внутри сетки по формуле

$$v_{ik}^{j+1} = \frac{1}{\frac{2}{h_1^2} + \frac{2}{h_2^2}} \left((v_{i-1,k}^j + v_{i+1,k}^j) / h_1^2 + (v_{i,k+1}^j + v_{i,k-1}^j) / h_2^2 + f_{ik} \right), \quad j = 0, 1, \dots$$
(76)

или при $h_1 = h_2$

$$v_{ik}^{j+1} = \frac{1}{4} (v_{i-1,k}^j + v_{i+1,k}^j + v_{i,k+1}^j + v_{i,k-1}^j) + \frac{h^2}{2} f_{ik}, \quad j = 0, 1, \dots$$
 (77)

Процесс "уточнения"происходит до тех пор, пока не будет выполнено условие

$$||v^{j+1} - v^j|| < \varepsilon.$$

Метод Зейделя отличается от метода простой итерации только тем, что уточнение решения происходит не по формуле (76) а по следующей формуле

$$v_{ik}^{j+1} = \frac{1}{\frac{2}{h_1^2} + \frac{2}{h_2^2}} \left((v_{i-1,k}^{j+1} + v_{i+1,k}^j) / h_1^2 + (v_{i,k-1}^{j+1} + v_{i,k+1}^j) / h_2^2 + f_{ik} \right), \quad j = 0, 1, \dots$$
(78)

или при $h_1 = h_2$

$$v_{ik}^{j+1} = \frac{1}{4} (v_{i-1,k}^{j+1} + v_{i+1,k}^j + v_{i,k+1}^j + v_{i,k-1}^{j+1}) + \frac{h^2}{2} f_{ik}, \quad j = 0, 1, \dots$$
 (79)

9.2 Примеры

1. Методом простой итерации решить уравнение Пуассона $\Delta u = -1$ на единичном квадрате ABCD с краевыми условиями $u|_{AB} = 30y$, $u|_{BC} = 30(1-x^2)$, $u|_{CD} = 0$, $u|_{AD} = 0$ с шагом $h = \frac{1}{3}$. $\varepsilon = 0.1$

Решение

Имеем $h_1=h_2=\frac{1}{3}$. Тогда сетка $t_{ik}=(\frac{1}{3}i,\frac{1}{3}k)$, $i,k=0,\ldots,3$. Причем узлы t_{12} , t_{13} , t_{21} , t_{22} являются внутренними, остальные узлы – граничные. Значения в граничных узлах определим из краевых условий:

$$v_{00} = 30 \cdot 0 = 0$$
, $v_{01} = 30 \cdot \frac{1}{3} = 10$, $v_{02} = 30 \cdot \frac{2}{3} = 20$, $v_{03} = 30 \cdot \frac{3}{3} = 10$, $v_{13} = 30 \left(1 - \left(\frac{1}{3}\right)^2\right) = \frac{80}{3}$, $v_{23} = 30 \left(1 - \frac{2}{3}\right) = \frac{50}{3}$, $v_{33} = 30 \cdot 0 = 0$, $v_{10} = v_{20} = v_{30} = v_{31} = v_{32} = 0$.

Необходимо найти значения $v_{11}\,,\,v_{12}\,,\,v_{21}\,,\,v_{22}\,.$ Положим

$$v_{11}^{0} = 0, v_{12}^{0} = 0, v_{21}^{0} = 0, v_{22}^{0} = 0.$$

Произведем перерасчет по формуле (77)

$$v_{ik}^1 = \frac{1}{4}(v_{i-1,k}^0 + v_{i+1,k}^0 + v_{i,k+1}^0 + v_{i,k-1}^0) + \frac{1}{18} \cdot (-1), \quad i, k = 1, 2,$$

H.TH

$$\begin{split} v_{11}^1 &= \frac{1}{4}(10+0+0+0) + \frac{1}{18} \cdot (-1) = \frac{22}{9}, \\ v_{21}^1 &= \frac{1}{4}(0+0+0+0) + \frac{1}{18} \cdot (-1) = \frac{-1}{18}, \\ v_{12}^1 &= \frac{1}{4}(20+\frac{80}{3}+0+0) + \frac{1}{18} \cdot (-1) = \frac{209}{18}, \\ v_{22}^1 &= \frac{1}{4}(0+0+\frac{50}{3}+0) + \frac{1}{18} \cdot (-1) = \frac{37}{9}, \end{split}$$

$$||v^{1} - v^{0}|| = \max\left(\left|\frac{22}{9} - 0\right| + \left|\frac{-1}{18} - 0\right| \cdot \left|\frac{209}{18} - 0\right| + \left|\frac{37}{9} - 0\right|\right) = \frac{209}{18} > \varepsilon.$$

$$v_{11}^{2} = \frac{1}{4}(10 + 0 - \frac{1}{18} + \frac{209}{18}) + \frac{1}{18} \cdot (-1) = \frac{16}{3},$$

$$v_{21}^{2} = \frac{1}{4}(0 + \frac{22}{9} + \frac{37}{9} + 0) + \frac{1}{18} \cdot (-1) = \frac{19}{12},$$

$$v_{12}^{2} = \frac{1}{4}(20 + \frac{80}{3} + \frac{37}{9} + \frac{22}{9}) + \frac{1}{18} \cdot (-1) = \frac{53}{4},$$

$$v_{22}^{2} = \frac{1}{4}(\frac{209}{18} + \frac{-1}{18} + \frac{50}{3} + 0) + \frac{1}{18} \cdot (-1) = 7,$$

$$||u^2 - v^1|| = \max\left(\left|\frac{16}{3} - \frac{22}{9}\right| + \left|\frac{19}{12} - \frac{-1}{18}\right|, \left|\frac{53}{4} - \frac{209}{18}\right| + \left|7 - \frac{37}{9}\right|\right) = 4.5 > \varepsilon.$$

Аля удобства дальше будем записывать значения решения во внутренних узлах в виде

$$v = \begin{pmatrix} v_{21} & v_{22} \\ v_{11} & v_{12} \end{pmatrix}.$$

Продолжая процесс пересчета, получаем

$$v^{3} = \begin{pmatrix} \frac{529}{36} & \frac{563}{72} \\ \frac{443}{72} & \frac{169}{36} \end{pmatrix}, ||v^{3} - v^{2}|| = 2.3 > \varepsilon, \quad v^{4} = \begin{pmatrix} 15.10 & 8.54 \\ 6.88 & 3.44 \end{pmatrix}, ||v^{4} - v^{3}|| = 1.2 > \varepsilon,$$

$$v^{5} = \begin{pmatrix} 15.47 & 8.75 \\ 7.07 & 3.80 \end{pmatrix}, ||v^{5} - v^{4}|| = 0.56 > \varepsilon, \quad v^{6} = \begin{pmatrix} 15.57 & 8.93 \\ 7.26 & 3.90 \end{pmatrix}, ||v^{6} - v^{5}|| = 0.28 > \varepsilon.$$

$$v^{7} = \begin{pmatrix} 15.66 & 8.98 \\ 7.31 & 3.99 \end{pmatrix}, ||v^{7} - v^{6}|| = 0.14 > \varepsilon, \quad v^{8} = \begin{pmatrix} 15.68 & 9.02 \\ 7.36 & 4.02 \end{pmatrix}, ||v^{8} - v^{7}|| = 0.07 < \varepsilon.$$

Поэтому окончательное решение

$$v = \begin{pmatrix} 30 & \frac{80}{3} & \frac{50}{3} & 0\\ 20 & 15.68 & 9.02 & 0\\ 10 & 7.36 & 4.02 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Здесь нижняя строка матрицы соответствует нижней стороне квадрата AD, первый столбец – левой стороне AB, верхняя строка – стороне квадрата BC, и, последний столбец – стороне CD.

2. Методом Зейделя решить уравнение Пуассона $\Delta u = -1$ на единичном квадрате ABCD с краевыми условиями $u|_{AB} = 30y$, $u|_{BC} = 30(1-x^2)$, $u|_{CD} = 0$, $u|_{AD} = 0$ с шагом $h = \frac{1}{3}$. $\varepsilon = 0.1$.

Решение. Для удобства решение на j – той итерации будем записывать в виде

$$v^{j} = \begin{pmatrix} v_{30} & v_{31} & v_{32} & v_{33} \\ v_{20} & v_{21} & v_{22} & v_{23} \\ v_{10} & v_{11} & v_{12} & v_{13} \\ v_{00} & v_{01} & v_{02} & v_{03} \end{pmatrix}.$$

Имеем $h_1=h_2=\frac{1}{3}$. Сетка $t_{ik}=(\frac{1}{3}i,\frac{1}{3}k)$, $i,k=0,\ldots,3$. Причем узлы t_{12} , t_{13} , t_{21} , t_{22} являются внутренними, остальные узлы – граничные.

Значения в граничных узлах определим из краевых условий:

$$v_{00} = 30 \cdot 0 = 0$$
, $v_{01} = 30 \cdot \frac{1}{3} = 10$, $v_{02} = 30 \cdot \frac{2}{3} = 20$, $v_{03} = 30 \cdot \frac{3}{3} = 10$, $v_{13} = 30(1 - \frac{1}{3}^2) = \frac{80}{3}$, $v_{23} = 30(1 - \frac{2}{3}^2) = \frac{50}{3}$, $v_{33} = 30 \cdot 0 = 0$, $v_{10} = v_{20} = v_{30} = v_{31} = v_{32} = 0$.

Необходимо найти значения $\,v_{11}\,,\;v_{12}\,,\;v_{21}\,,\;v_{22}\,.$ Положим

$$v_{11}^0 = 0, v_{12}^0 = 0, v_{21}^0 = 0, v_{22}^0 = 0.$$

Произведем перерасчет по формуле (79)

$$v_{ik}^{1} = \frac{1}{4}(v_{i-1,k}^{0} + v_{i+1,k}^{0} + v_{i,k+1}^{0} + v_{i,k-1}^{0}) + \frac{1}{18} \cdot (-1), \quad i, k = 1, 2,$$

нли

$$\begin{aligned} v_{11}^1 &= \frac{1}{4}(10+0+0+0) + \frac{1}{18} \cdot (-1) = \frac{22}{9}, \\ v_{21}^1 &= \frac{1}{4}(\frac{22}{9}+0+0+0) + \frac{1}{18} \cdot (-1) = \frac{5}{9}, \\ v_{12}^1 &= \frac{1}{4}(20+\frac{80}{3}+\frac{22}{9}+0) + \frac{1}{18} \cdot (-1) = \frac{110}{9}, \\ v_{22}^1 &= \frac{1}{4}(\frac{5}{9}+\frac{110}{9}+\frac{50}{3}+0) + \frac{1}{18} \cdot (-1) = \frac{263}{36}, \\ ||v^1 - v^0|| &= \max\left(\left|\frac{22}{9} - 0\right| + \left|\frac{5}{9} - 0\right|, \left|\frac{110}{9} - 0\right| + \left|\frac{263}{36}\right|\right) = \frac{110}{9} > \varepsilon. \end{aligned}$$

Пмеем

$$v^{1} = \begin{pmatrix} 30 & \frac{80}{3} & \frac{50}{3} & 0\\ 20 & \frac{110}{9} & \frac{263}{36} & 0\\ 10 & \frac{22}{2} & \frac{5}{9} & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$v_{11}^2 = \frac{1}{4}(10 + 0 - \frac{5}{9} + \frac{110}{0}) + \frac{1}{18} \cdot (-1) = \frac{103}{30},$$

$$v_{21}^2 = \frac{1}{4}(\frac{203}{36} + 0 + \frac{263}{36} + 0) + \frac{1}{18} \cdot (-1) = \frac{229}{72},$$

$$v_{12}^2 = \frac{1}{4}(20 + \frac{203}{36} + \frac{263}{36} + \frac{80}{3}) + \frac{1}{18} \cdot (-1) = \frac{1069}{72},$$

$$v_{22}^2 = \frac{1}{4}(\frac{1069}{72} + \frac{229}{72} + \frac{50}{3} + 0) + \frac{1}{18} \cdot (-1) = \frac{1241}{144},$$

$$||v^2 - v^1|| = \max\left(\left|\frac{203}{36} - \frac{22}{9}\right| + \left|\frac{229}{72} - \frac{5}{9}\right|, \left|\frac{1069}{72} - \frac{110}{9}\right| + \left|\frac{1241}{144} - \frac{263}{36}\right|\right) = 5.8 > \varepsilon.$$

$$v^2 = \begin{pmatrix} 30 & \frac{80}{3} & \frac{50}{3} & 0\\ 20 & \frac{1062}{72} & \frac{1241}{144} & 0\\ 10 & \frac{203}{36} & \frac{59}{72} & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Продолжая аналогично пересчитывать значения внутри сетки, имеем

$$v^{3} = \begin{pmatrix} 30 & \frac{80}{3} & \frac{50}{3} & 0 \\ 20 & 15.50 & 8.95 & 0 \\ 10 & 6.95 & 3.84 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, ||v^{3} - v^{2}|| = 1.95 > \varepsilon,$$

$$v^{4} = \begin{pmatrix} 30 & \frac{80}{3} & \frac{50}{3} & 0 \\ 20 & 15.67 & 9.02 & 0 \\ 10 & 7.27 & 4.0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, ||v^{4} - v^{3}|| = 0.48 > \varepsilon,$$

$$v^{5} = \begin{pmatrix} 30 & \frac{80}{3} & \frac{50}{3} & 0 \\ 20 & 15.71 & 9.05 & 0 \\ 10 & 7.36 & 4.04 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, ||v^{5} - v^{4}|| = 0.12 > \varepsilon,$$

$$v^{6} = \begin{pmatrix} 30 & \frac{80}{3} & \frac{50}{3} & 0 \\ 20 & 15.72 & 9.05 & 0 \\ 10 & 7.38 & 4.05 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, ||v^{6} - v^{5}|| = 0.03 < \varepsilon,$$

поэтому последнее найденое решение можно считать приближенным значением решения $u(x_i,y_k)$ в узлах сетки.

9.3 Вопросы и задачи для самостоятельной работы

- 1. Почему метод простой итерации (метод Зейделя) для системы (75) сходится? Выписать условие сходимости.
- 2. Как доказать, что система (75) аппроксимирует задачу (73) с погрешностью $O(h^2)$?
- 3. Как обобщить метод простой итерации (метод Зейделя) на случай, если область G не является прямоугольником?
 - 4. Используя результаты предыдущего вопроса, решить следующие задачи

$$\Delta u = -xy \text{ B } G,$$

$$u|_{\Gamma} = x^2 + y^2,$$
(82)

где G – круг единичного радиуса с центром в точке (0,0) .

$$\Delta u = -2 \text{ B } G,$$

$$u|_{\Gamma} = x + y,$$
(83)

где G — треугольник с вершинами в точках (0,1), (0,-1), (1,0). h=0.2. Как в каждом из этих случаев аппроксимировать граничные условия? Какова будет погрешность аппроксимации?

5. Для аппроксимации дифференциального уравнения (73) предложено следующее разностное уравнение

$$\frac{v_{i+1,k+1} - 2v_{ik} + u_{i-1,k+1}}{h_1^2} + \frac{v_{i-1,k+1} - 2v_{ik} + u_{i-1,k+1}}{h_2^2} = f_{ik},$$

$$i = 1, \dots, n-1 \quad k = 1, \dots, m-1.$$

С каким порядком оно аппроксимирует уравнение (73)? В каких случаях удобнее пользоваться такой аппроксимацией?

9.4 Задание к лабораторной работе

Задание 1. Применяя метод простой итерации (если N – четное), или метод Зейделя (N – нечетное), с шагом h=0.1, найти решение задачи Дирихле

$$\Delta u = -f$$

в квадрате с вершинами A(0,0), B(0,1), C(1,1), D(1,0). Краевые условия определяются из таблицы. Номер варианта – остаток от деления числа N на 10.

Вариант	$u _{AB}$	$u _{BC}$	$u _{CD}$	$u _{AD}$
0	30y	$30(1-x^2)$	0	0
1	30y	$30\cos\frac{pix}{2}$	$30\cos\frac{\pi y}{2}$. 0
2	$50y(1-y^2)$	0	0	$50\sin\pi x$
3	20y	20	$20y^2$	50x(1-x)
4	0	50x(1-x)	$50y(1-y^2)$	50x(1-x)
5	$30\sin \pi y$	20x	20y	30x(1-x)
6	30(1-y)	$20\sqrt{x}$	20y	30(1-x)
7	$50\sin \pi y$	$30\sqrt{x}$	$30y^2$	$50\sin \pi x$
8	$40y^{2}$	40	40	$40\sin\frac{\pi x}{2}$
9	50y	50(1-x)	0	0

$$f(x) = \begin{cases} 1, \text{ если } N = 3k, \\ xy, \text{ если } N = 3k+1, \\ x^2 + y^2, \text{ если } N = 3k+2. \end{cases}$$

Решение найти с точностью $\varepsilon = 10^{-2}$.

Залание 2.

Выполнить задачу предыдущего задания, полагая $h=10^{-7}$. Найти сеточное решение с точностью 10^{-8} , используя подпрограмму пакета PINEAPL для решения эллиптических уравнений.

10 Лабораторная работа "Метод сеток при решении нестационарных задач"

10.1 Краткий теоретический материал

Рассмотрим следующее уравнение теплопроводности

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + f(x, t), \tag{84}$$

$$u(x,0) = \varphi(x), \tag{85}$$

$$u(0,t) = \phi_1(t), \quad u(1,t) = \phi_2(t).$$
 (86)

Пусть $h=\frac{1-0}{n}$, au – некоторый шаг по t. (Как h может зависеть от au, будет показано позже). Тогда $x_j=0+jh$, $j=0,\ldots,n$, $t_k=0+k au$, $k=0,\ldots,m$. $\Omega_{h,\tau}=\{(x_j,t_k),j=0,\ldots,n,k=0,\ldots,m\}$ – сеточная область, или сетка. Множество узлов (x_j,t_k) , $j=0,\ldots,n$ при постоянном k называется k-м слоем сетки.

Множество узлов сетки, участвующих в аппроксимации уравнения (84), называется *шаблоном*.

Воспользуемся следующими разностными аппроксимациями

$$\frac{\partial u}{\partial t}(x_j, t_k) = \frac{u(x_j, t_{k+1}) - u(x_j, t_k)}{\tau} + O(\tau), \tag{87}$$

$$\frac{\partial^2 u}{\partial x^2}(x_j, t_k) = \frac{u(x_{j+1}, t_k) - 2u(x_j, t_k) + u(x_{j-1}, t_k)}{h^2} + O(h^2), \tag{88}$$

Имеет место следующая аппроксимация уравнения (84)

$$\frac{u(x_j, t_{k+1}) - u(x_j, t_k)}{\tau} = \frac{u(x_{j+1}, t_k) - 2u(x_j, t_k) + u(x_{j+1}, t_k)}{h^2} + f(x_j, t_k),$$
(89)

В этом случае для анпроксимации значения в точке (x_j, t_k) используются также узлы (x_{j+1}, t_k) , (x_{j+1}, t_k) , (x_j, t_{k+1}) . Такой шаблон называется явиым четырехточечным. Он изображен на рис. 5.

Рис. 5: Явный четырехточечный шаблон

Используя аппроксимацию (89) и значения на границах сеточной области, получим следующую систему уравнений

$$\frac{v_{j,k+1} - v_{j,k}}{\tau} = \frac{v_{j+1,k} - 2v_{j,k} + v_{j-1,k}}{h^2} + f_{j,k},\tag{90}$$

$$v_{j,0} = \varphi(x_j), \quad j = 0, \dots, n \tag{91}$$

$$v_{0,k} = \phi_1(t_k), \quad v_{n,k} = \phi_2(t_k), \quad k = 1, \dots, m.$$
 (92)

Здесь v_{jk} — приближенное значение решения u(x,y) в узле (x_j,t_k) .

Последнюю систему легко решить, послойно высчитывая значения в узлах сетки.

Для этого заполним по формулам (91)-(92) значения в граничных узлах. (Таким образом, мы полностью знаем $v_{j,0}$ – решение на нулевом слое). Пусть

неперь известно решение на k-м слое. Тогда, по формуле (90) значения на k+1-м слое рассчитываются как

$$v_{j,k+1} = v_{j,k} + \frac{\tau}{h^2}(v_{j+1,k} - 2v_{j,k} + v_{j-1,k}) + \tau f_{jk}, \quad j = 1, \dots, n-1.$$

Значения k+1-го слоя $v_{0,k+1}$, $v_{n,k+1}$ определяются из условия (92).

Большое распространение приобрела вычислительная схема, построенная на основе неявного четырехточечного шаблона, использующего узлы (x_{j-1},t_{k+1}) , (x_{j+1},t_{k+1}) , (x_j,t_{k+1}) , (x_j,t_k) . В этом случае система уравнений для определения значений в узлах сетки имеет вид

$$\frac{v_{j,k+1} - v_{j,k}}{\tau} = \frac{v_{j+1,k+1} - 2v_{j,k+1} + v_{j-1,k+1}}{h^2} + f_{j,k},$$

$$v_{j,0} = \varphi(x_j), \quad j = 0, \dots, n$$

$$v_{0,k} = \phi_1(t_k), \quad v_{n,k} = \phi_2(t_k), \quad k = 1, \dots, m.$$
(93)

В этом случае также вычисления ведутся послойно. По формуле (91) заполняем 0-вой слой.

Пусть k-й слой уже заполнен. Тогда значения k+1-го слоя находятся из решения системы уравнений

$$v_{j,k+1}\left(\frac{1}{\tau} + \frac{2}{h^2}\right) - v_{j+1,k+1}\frac{1}{h^2} - v_{j-1,k+1}\frac{1}{h^2} = f_{j,k} + v_{j,k}\frac{1}{\tau}, j = 1,\dots, n-1.$$

$$v_{0,k+1} = \phi_1(t_{k+1}), \quad v_{n,k+1} = \phi_2(t_{k+1}).$$
(94)

Полученная система уравнений является системой с трехдиагональной матрицей, поэтому может быть решена методом прогонки. Решив ее, получим значения $v_{0,k+1}, v_{1,k+1}, \ldots, v_{n,k+1}$, т.е. все значения на k+1-м слое.

Построить разностную схему по заданному шаблону можно с помощью метода пеопределенных коэффициентов. Идея метода состоит в следующем. Пусть шаблон содержит точки (x_j,t_k) , (x_{j+1},t_{k+1}) , (x_j,t_{k-1}) и т.д. Значит, при аппроксимации уравнения (84) будет иметь место выражение

$$L_h u(x_j, t_k) = \alpha_1 u(x_j, t_k) + \alpha_2 u(x_{j+1}, t_{k+1}) + \alpha_3 u(x_j, t_{k-1}) + \dots + O(h^s, \tau^r),$$

где $\alpha_1, \alpha_2, \ldots$ – неизвестные пока коэффициенты, зависящие от h, τ . Подбор этих коэффициентов осуществляется из условия минимизации невязки

$$\psi_h = \frac{\partial u}{\partial t}(x_j, t_k) - \frac{\partial^2 u}{\partial x^2}(x_j, t_k) - L_h u(x_j, t_k).$$

Разложим каждое из значений $u(x_j,t_k)$, $u(x_{j+1},t_{k+1})$, $u(x_j,t_{k+1})$ и т.д. в ряд Тейлора в окрестности точки (x_j,t_k) и представим невязку в виде

$$\psi_h = (\dots)u(x_k, t_j) + (\dots)\frac{\partial u}{\partial x}(x_k, t_j) + \\ + (\dots)\frac{\partial u}{\partial t}(x_k, t_j) + (\dots)\frac{\partial^2 u}{\partial x^2}(x_k, t_j) + \dots$$

где в круглых скобках — некоторые линейные комбинации коэффициентов α_1,α_2,\dots

Для обеспечения апироксимации необходимо, чтобы $\psi_h \to 0$, поэтому следует подобрать коэффициенты так, чтобы выражения в скобках оказались равными пулю.

Количество уравнений должно быть равно числу неизвестных α , поэтому количество членов, выписываемых в разложении в ряд Тейлора, удобно брать равным числу неизвестных α плюс 1.

Устойчивость разностной схемы

Исследование устойчивости разностной схемы основано на методе разделения переменных.

Представим решение разностной задачи в виде

$$v_{jk} = \lambda^k e^{ij\varphi},\tag{95}$$

где $i=\sqrt{-1}\,,\; \varphi$ - действительное число.

Подставляя решение в виде (95) в разностную схему с $f(x,t)\equiv 0$, и производя ряд упрощений, получим уравнение относительно λ .

Если все решения последнего уравнения λ по модулю меньше единицы при любых h, τ , то разностная схема называется абсолютно устойчивой, если все $|\lambda|$ меньше единицы при некотором соотношении между h и τ , то разностная схема называется условно устойчивой, если же хотя бы одно решение $|\lambda|$ больше единицы при любых h, τ , то такая схема называется неустойчивой.

При определении величины λ часто удобно пользоваться критерием Гурвица.

Все корни квадратного уравнення $x^2 + ax + b$ по модулю не превышают единицы тогда и только тогда, когда выполнены условия

$$|a| \le 1 + b, \quad |b| \le 1.$$

10.2 Примеры

1. Построить разностную схему для краевой задачи, используя пятиточечный шаблон (см. рис. 6)

Рис. 6: Пятиточечный шаблон

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \sin(xt),$$

$$u(x,0) = \sin\frac{\pi}{2}x,$$

$$u(0,t) = 0, \quad \frac{\partial u}{\partial x}(1,t) = \phi_2(t).$$
(96)

Решение.

Построим разностную аппроксимацию уравнения (96) методом неопределенных коэффициентов. Имеем

$$L_h u(x_j, t_k) = \alpha_1 u(x_j, t_k) + \alpha_2 u(x_{j+1}, t_k) + \alpha_3 u(x_j, t_{k-1}) + \alpha_4 u(x_{j-1}, t_k) + \alpha_5 u(x_j, t_{k+1}) + (h^s, \tau^r).$$
 (97)

Найдем значения коэффициентов и определим s,r. Для этого воспользуемся следующими разложениями в ряд Тейлора

$$ux_{j}, t_{k\pm 1} = u(x_{j}, t_{k}) \pm \tau \frac{\partial u}{\partial t}(x_{j}, t_{k}) + \frac{\tau^{2}}{2} \frac{\partial^{2} u}{\partial t^{2}}(x_{j}, t_{k}) \pm \frac{\tau^{3}}{6} \frac{\partial^{3} u}{\partial t^{3}}(x_{j}, t_{k}) + O(\tau^{4}),$$

$$ux_{j\pm 1}, t_{k} = u(x_{j}, t_{k}) \pm h \frac{\partial u}{\partial x}(x_{j}, t_{k}) + \frac{h^{2}}{2} \frac{\partial^{2} u}{\partial x^{2}}(x_{j}, t_{k}) \pm \frac{h^{3}}{6} \frac{\partial^{3} u}{\partial x^{3}}(x_{j}, t_{k}) + O(h^{4})$$

Запишем невязку

$$\psi_{h} = \frac{\partial u}{\partial t}(x_{j}, t_{k}) - \frac{\partial^{2} u}{\partial x^{2}}(x_{j}, t_{k}) - L_{h}u(x_{j}, t_{k}) =$$

$$\frac{\partial u}{\partial t}(x_{j}, t_{k}) - \frac{\partial^{2} u}{\partial x^{2}}(x_{j}, t_{k}) - \alpha_{1}u(x_{j}, t_{k}) -$$

$$-\alpha_{2}\left(u(x_{j}, t_{k}) + h\frac{\partial u}{\partial x}(x_{j}, t_{k}) + \frac{h^{2}}{2}\frac{\partial^{2} u}{\partial x^{2}}(x_{j}, t_{k}) + \frac{h^{3}}{6}\frac{\partial^{3} u}{\partial x^{3}}(x_{j}, t_{k}) + O(h^{4})\right) -$$

$$-\alpha_{3}\left(u(x_{j}, t_{k}) - \tau\frac{\partial u}{\partial t}(x_{j}, t_{k}) + \frac{\tau^{2}}{2}\frac{\partial^{2} u}{\partial t^{2}}(x_{j}, t_{k}) - \frac{\tau^{3}}{6}\frac{\partial^{3} u}{\partial t^{3}}(x_{j}, t_{k}) + O(\tau^{4})\right) -$$

$$-\alpha_{4}\left(u(x_{j}, t_{k}) - h\frac{\partial u}{\partial x}(x_{j}, t_{k}) + \frac{h^{2}}{2}\frac{\partial^{2} u}{\partial x^{2}}(x_{j}, t_{k}) - \frac{h^{3}}{6}\frac{\partial^{3} u}{\partial x^{3}}(x_{j}, t_{k}) + O(h^{4})\right) -$$

$$-\alpha_{5}\left(u(x_{j}, t_{k}) + \tau\frac{\partial u}{\partial t}(x_{j}, t_{k}) + \frac{\tau^{2}}{2}\frac{\partial^{2} u}{\partial t^{2}}(x_{j}, t_{k}) + \frac{\tau^{3}}{6}\frac{\partial^{3} u}{\partial t^{3}}(x_{j}, t_{k}) + O(\tau^{4})\right) =$$

$$= (-\alpha_{1} - \alpha_{2} - \alpha_{3} - \alpha_{4} - \alpha_{5})u(x_{k}, t_{j}) + (-\alpha_{2} + \alpha_{4})h\frac{\partial u}{\partial x}(x_{k}, t_{j}) +$$

$$(1 + \alpha_{3}\tau - \alpha_{5}\tau)\frac{\partial u}{\partial t}(x_{k}, t_{j}) +$$

$$(-1 - \alpha_{2}\frac{h^{2}}{2} - \alpha_{4}\frac{h^{2}}{2})\frac{\partial^{2} u}{\partial x^{2}}(x_{k}, t_{j}) + (-\alpha_{3} - \alpha_{5})\frac{\tau^{2}}{2}\frac{\partial^{2} u}{\partial t^{2}}(x_{k}, t_{j}) +$$

$$(-\alpha_{2} + \alpha_{4})\frac{h^{3}}{6}\frac{\partial^{3} u}{\partial x^{3}}(x_{k}, t_{j}) + (-\alpha_{3} + \alpha_{5})\frac{\tau^{3}}{3}\frac{\partial^{3} u}{\partial t^{3}}(x_{k}, t_{j}) + O(\dots).$$

Имеем систему линейных уравнений

$$\begin{cases} -\alpha_1 - \alpha_2 - \alpha_3 - \alpha_4 - \alpha_5 = 0, \\ -\alpha_2 + \alpha_4 = 0, \\ 1 + \alpha_3 \tau - \alpha_5 \tau = 0, \\ 1 - \alpha_2 \frac{h^2}{2} - \alpha_4 \frac{h^2}{2} = 0, \\ -\alpha_3 - \alpha_5 = 0. \end{cases}$$

Решив ее, найдем

$$\alpha_3 = -\alpha_5 = -\frac{1}{2\tau}, \quad \alpha_2 = \alpha_4 = \frac{1}{h^2}, \quad \alpha_1 = \frac{-2}{h^2}$$

Найдем порядок аппроксимации, рассматривая коэффициенты перед членами

$$\frac{\partial^3 u}{\partial x^3}(x_k,t_j), \quad \frac{\partial^3 u}{\partial x^3}(x_k,t_j),$$

то есть теми членами, коэффициенты перед которыми не участвовали в составлении системы.

Пмеем

$$\begin{split} \left(-\frac{1}{h^2} + \frac{1}{h^2} \right) \left(\frac{h^3}{6} \frac{\partial^3 u}{\partial x^3}(x_k, t_j) \right) + \frac{1}{h^2} O(h^4) + \frac{1}{h^2} O(h^4) + \\ \left(\frac{1}{2\tau} + \frac{1}{2\tau} \right) \left(\frac{\tau^3}{6} \frac{\partial^3 u}{\partial x^3}(x_k, t_j) + O(\tau^4) \right) = O(h^2) + O(\tau^2). \end{split}$$

Таким образом, имеем разностную схему

$$\frac{v_{jk+1} - v_{jk-1}}{2\tau} = \frac{v_{j+1k} - 2v_{jk} + v_{j-1k}}{h^2} + f_{jk}, \quad j = 1, \dots, n-1, k = 1, \dots$$

$$v_{j0} = \varphi(x_j), \quad j = 0, \dots, n$$

$$v_{0k} = \phi_1(t_k), \quad v_{nk} = \phi_2(t_k), \quad k = 1, \dots, m.$$

По пей нельзя вычислять, так как неизвестны значения на первом слое. Доопределим их, используя разложение в ряд Тейлора в окрестности точки $(x_i, 0)$.

$$u(x_j, \tau) = u(x_j, 0) + \tau \frac{\partial u}{\partial t} + O(\tau^2) =$$

$$u(x_j, 0) + \tau \left(\frac{\partial^2 u(x_j, 0)}{\partial x^2} + f(x_j, 0)\right) + O(\tau^2) =$$

$$u(x_j, 0) + \tau \left(\frac{\partial^2 \varphi(x_j)}{\partial x^2} + f(x_j, 0)\right) + O(\tau^2).$$

Таким образом,

$$v_{j1} = v_{j0} + \tau \left(\frac{\partial^2 \varphi(x_j)}{\partial x^2} + f_{j0} \right),$$

и разностная схема полностью определена.

2. Проверить устойчивость для построенной выше разностной схеми. Решение.

Представим решение разностной задачи в виде

$$v_{jk} = \lambda^k e^{ij\varphi}$$

и подставим его в однородное разностное уравнение

$$\frac{\lambda^{k+1}e^{ij\varphi} - \lambda^{k-1}e^{ij\varphi}}{2\tau} = \frac{\lambda^k e^{i(j+1)\varphi} - \lambda^k e^{ij\varphi}\lambda^k e^{i(j-1)\varphi}}{h^2}.$$

Разделим уравнение на величину $\lambda^{k-1}e^{ij\varphi}$. Имеем

$$\frac{\lambda^2 - 1}{2\tau} = \lambda \frac{e^i - 2 + e^{-i}}{h^2}.$$

Пользуясь известным тождеством $e^{i}-2+e^{-i}=(2i\sin\frac{\varphi}{2})^{2}=-4\sin^{2}\frac{\varphi}{2}$, имеем

$$\frac{\lambda^2 - 1}{2\tau} + \frac{4\lambda \sin^2 \frac{\varphi}{2}}{h^2} = 0,$$

H.TH

$$\lambda^2 + 4\frac{2\tau}{h^2}\sin^2\frac{\varphi}{2} - 1 = 0.$$

Применим критерий Гурвица.

$$|b| = |-1| \le 1$$
 (верно), $|a| = \left| 4 \frac{2\tau \sin^2 \frac{\varphi}{2}}{h^2} \right| \le 1 + (-1) = 0$,

не выполнено ни для каких h, τ .

Следовательно, разностная схема, построенная в предыдущем примере не является устойчивой.

3. Проверить устойчивость разностного уравнения

$$\frac{v_{jk+1} - v_{jk}}{\tau} = \frac{v_{j+1k+1} - 2v_{jk+1} + v_{j-1k+1}}{h^2}.$$

Решение.

Решение разностной задачи в виде

$$v_{jk} = \lambda^k e^{ij\varphi}$$

подставим его в однородное разностное уравнение

$$\frac{\lambda^{k+1}e^{ij\varphi}-\lambda^ke^{ij\varphi}}{\tau}=\frac{\lambda^{k+1}e^{i(j+1)\varphi}-\lambda^{k+1}e^{ij\varphi}\lambda^{k+1}e^{i(j-1)\varphi}}{b^2}.$$

Разделим уравнение на величину $\lambda^k e^{ij\varphi}$. Имеем

$$\frac{\lambda - 1}{\tau} = \lambda \frac{e^i - 2 + e^{-i}}{h^2}.$$

Пользуясь тождеством $e^{i}-2+e^{-i}=-4\sin^{2}\frac{\varphi}{2}$, имеем

$$\frac{\lambda - 1}{\tau} + \frac{4\lambda \sin^2 \frac{\varphi}{2}}{h^2} = 0,$$

 $H\Gamma_{c}\Pi_{c}$

$$\lambda = \frac{h^2}{h^2 + 4\tau \sin^2 \frac{\varphi}{2}},$$

откуда видно, что при любых $h, \tau, \lambda < 1$. Значит, разностное уравнение абсолютно устойчиво.

4. Найти решение разностной задачи

$$\frac{v_{jk+1} - v_{jk}}{\tau} = \frac{v_{j+1k+1} - 2v_{jk+1} + v_{j-1k+1}}{h^2} + x_j^2, j = 1, \dots, n$$

$$v_{j0} = 0, \quad j = 0, \dots, n$$

$$v_{0k} = t_k, \quad v_{nk} = t_k, \quad k = 1, \dots, m,$$

c шагом $h=\frac{1}{3}$ на трех слоях сетки.

Решение.

Так как разностная схема абсолютно устойчива, выберем $\, au \,$ произвольно, например. $\, au = h \, . \,$

$$n = \frac{1 - 0}{1/3} = 3.$$

Заполним нулевой слой сетки

$$v_{00} = 0$$
, $v_{10} = 0$, $v_{20} = 0$, $v_{30} = 0$.

Определим решение на нервом слое из системы уравнений (94)

$$v_{j,1}\left(\frac{1}{1/3} + \frac{2}{1/9}\right) - v_{j+1,1}\frac{1}{1/9} - v_{j-1,1}\frac{1}{1/9} = x_j + 0 \cdot \frac{1}{\tau}, j = 1, \dots, 2.$$
$$v_{0,1} = t_1 = \frac{1}{3}, \quad v_{3,1} = t_1 = \frac{1}{3}.$$

нли

$$\begin{cases} v_{01} = \frac{1}{3}, \\ 21v_{11} - 9v_{21} - 9v_{61} = \frac{1}{3}, \\ 21v_{21} - 9v_{31} - 9v_{11} = \frac{2}{3}, \\ v_{31} = \frac{1}{3}. \end{cases}$$

Решив ее, получим все значения первого слоя:

$$v_{01} = \frac{1}{3}$$
, $v_{11} = \frac{709}{2520}$, $v_{21} = \frac{103}{360}$, $v_{31} = \frac{1}{3}$.

Рассмотрим следующий слой

$$v_{j,2}\left(\frac{1}{1/3} + \frac{2}{1/9}\right) - v_{j+1,2}\frac{1}{1/9} - v_{j-1,2}\frac{1}{1/9} = x_j + v_{j,1} \cdot \frac{1}{\tau}, j = 1, \dots, 2.$$
$$v_{0,2} = t_2 = \frac{2}{3}, \quad v_{3,2} = t_2 = \frac{2}{3}.$$

H.TH

$$\begin{cases} v_{02} = \frac{2}{3}, \\ 21v_{12} - 9v_{22} - 9v_{02} = \frac{1}{3} + \frac{709}{2520} \cdot 3, \\ 21v_{22} - 9v_{32} - 9v_{12} = \frac{2}{3} + \frac{103}{360} \cdot 3, \\ v_{32} = \frac{2}{3}. \end{cases}$$

Решив се, получим все значения второго слоя:

$$v_{02} = \frac{2}{3}$$
, $v_{12} = \frac{2569}{7200}$, $v_{21} = \frac{2063}{5600}$, $v_{32} = \frac{2}{3}$.

Решения на следующем слое определим из системы

$$\begin{cases} v_{03} = \frac{3}{3}, \\ 21v_{13} - 9v_{23} - 9v_{03} = \frac{1}{3} + \frac{2569}{7200} \cdot 3, \\ 21v_{23} - 9v_{33} - 9v_{13} = \frac{2}{3} + \frac{2063}{5600} \cdot 3, \\ v_{32} = \frac{3}{3}. \end{cases}$$

ит.д.

10.3 Вопросы и задачи для самостоятельной работы

1. Как применить метод сеток для уравнения гиперболического типа (волнового уравнения)

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + f(x, t),$$

$$u(x, 0) = \varphi(x), \quad \frac{\partial u}{\partial t}(x, 0) = \Phi(x),$$

$$u(0, t) = \phi_1(t), \quad u(1, t) = \phi_2(t)?$$

2. Как измениться разностная схема для уравнения (84), если заменить начальное условие (85) на следующее $\frac{\partial u}{\partial t}(x,0) = \varphi_0$?

Как при этом изменится вычислительный алгоритм?

3. При анпроксимации уравнения (84) с начальным условием (85) и краевыми условиями

$$\frac{\partial u}{\partial x}(0,t) = \phi_1(t), \quad u(1,t) = \phi_2(t).$$

для аппроксимации краевого условия предложено следующее разностное уравнение

$$\frac{v_{1k} - v_{0k}}{h} = \phi_1(t_k), \quad k = 0, \dots$$

Каков будет порядок аппроксимации дифференциальной задачи разностной, если остальные уравнения соответствуют схеме (90)-(91)?

4. Построить разностную схему для уравнения (84)-(86), используя следующий шаблон (см. рис. 7).

Рис. 7: Шестититочечный шаблон для задачи 4

Оценить погрешность анпроксимации. Проверить, при каких h, au схема является устойчивой.

Описать вычислительный алгоритм послойного вычисления приближенного решения.

10.4 Задание к лабораторной работе

Задание 1

Построить разностную схему для уравнения (84)-(86),

используя предложенный шаблон, с шагом $\,h=0,1\,$ на 20 слоях сетки.

Оценить погрешность аппроксимации, исследовать устойчивость разностной схемы.

Шаг au выбрать, исходя из устойчивости схемы.

Если N = 5k, ваш шаблон изображен на рисунке (6),

N = 5k + 1, шаблон на рисунке (8),

N = 5k + 2, шаблон на рисунке (9),

N = 5k + 3, шаблон на рисунке (10),

N = 5k + 4, шаблон на рисунке (11).

Рис. 8:

Рис. 9:

Функции $f(x,t), \ \varphi(x), \ \phi_l(t), \ \phi_l(t)$ определяется по номеру варианта l (остаток от деления N на 6).

_		- 1160 0) .		
l	f(x,t)	$\varphi(x)$	$\phi_(t)$	$\phi_2(t)$
0	ch(x+t)	$\sin \pi x$	0	0
1	sh(x+t)	$\cos \pi x$	0	0
2	$e^{x+t}\sin x$	$\sin \frac{\pi}{2}x$	0	0
3	$e^{x+t}\cos x$	$\cos \frac{\pi}{2}x$	0	0
4	$(1+e^{x-t})\sin x$	$4\sin 0.5x \cdot (1-x)$	0	0
5	$(1+e^{x-t})\cos x$	$4\sin 0.8x \cdot (1-x)$	0	0

Задание 2

Решить задачу задания 1, полагая $h=10^{-6}\,$ на 200 слоях сетки, используя

Рис. 10:

Рис. 11:

эгроцедуру пакета PINEAPL.

11 Лабораторная работа "Решение уравнений Фредгольма второго рода"

11.1 Краткий теоретический материал

Рассмотрим интегральное уравнение Фредгольма второго рода

$$y(x) - \lambda \int_{a}^{b} k(x, s)y(s)ds = f(x)$$
(98)

Идея метода конечных сумм заключается в замене определенного интерала конечной суммой с помощью одной из квадратурных формул (см. лаб. раб.3).

Нусть $h=\frac{b-a}{n}$, n -целое. Введем сетку на отрезке $[a,b]\colon x_i=a+ih$, $i=0,\ldots,n$.

Воспользуемся какой-либо из составных квадратурных формул (прямоугольников, трапеций, Симпсона)

$$\int_a^b F(x)dx = \sum_{i=0}^n A_i F(x_i),$$

коэффициенты которой A_i известны.

Тогда заменим интеграл в правой части уравнения (98) выбранной квадратурной формулой, и рассмотрим $y(x_j)=u_j$. $j=0,\ldots,n$. Имеем

$$u_j = f_j + \lambda \sum_{i=0}^n A_i k_{ji} u_i, \quad j = 0, \dots, n.$$
 (99)

Здесь $f_j = f(x_j), k_{ji} = k(x_j, x_i).$

Имеем систему линейных уравнений

$$\begin{pmatrix} 1 - \lambda A_0 k_{00} & -\lambda A_1 k_{01} & -\lambda A_2 k_{02} & \dots & -\lambda A_n k_{0n} \\ -\lambda A_0 k_{10} & 1 - \lambda A_1 k_{11} & -\lambda A_2 k_{12} & \dots & -\lambda A_n k_{1n} \\ -\lambda A_0 k_{20} & -\lambda A_2 k_{21} & 1 - \lambda A_2 k_{22} & \dots & -\lambda A_n k_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ -\lambda A_0 k_{n0} & -\lambda A_1 k_{n1} & -\lambda A_2 k_{n2} & \dots & 1 - \lambda A_n k_{nn} \end{pmatrix} \cdot \begin{pmatrix} u_0 \\ u_1 \\ u_2 \\ \dots \\ u_n \end{pmatrix} = \begin{pmatrix} f_0 \\ f_1 \\ f_2 \\ \dots \\ f_n \end{pmatrix}$$

Значения коэффициентов

Для составной формулы левых прямоугольников

$$A_0 = A_1 = \dots = A_{n-1} = h, \quad A_n = 0.$$

Для составной формулы правых прямоугольников

$$A_1 = A_2 = \cdots = A_n = h, \quad A_0 = 0.$$

Для составной формулы трапеций

$$A_1 = A_2 = \dots = A_{n-1} = h, \quad A_n = A_0 = \frac{h}{2}.$$

Для формулы Симпсона

$$n = 2m$$
, $A_0 = A_{2m} = \frac{h}{3}$, $A_1 = A_3 = \dots = A_{2m-1} = \frac{4h}{3}$, $A_2 = A_4 = \dots = A_{2m-2} = \frac{2h}{3}$.

Погрешность найденного решения зависит от погрешности выбранной квадратурной формулы.

Метод замены ядра на вырожденное

Ядро K(x,s) называется вырожденным, если оно представимо в виде

$$K(x,s) = \sum_{i=1}^{n} \alpha_i(x)\beta_i(s).$$

Идея метода состоит в замене ядра K(x,s) приближенно равным ему вырожденным $K'(x,s) = \sum_{i=1}^{n} \alpha_i(x)\beta_i(s)$.

В этом случае решение уравнения (98) ищется в виде

$$y(x) = f(x) + \lambda \sum_{i=1}^{n} c_i \alpha_i(x).$$

Коэффициенты c_i определяются из системы линейных уравнений

$$c_i - \lambda \sum_{j=1}^n c_j A_{ij} = b_i, \quad i = 1, 2, \dots, n,$$
 (100)

где

$$A_{ij} = \int_a^b \alpha_j(s)\beta_i(s)ds, \quad b_i = \int_a^b \beta_i(s)f(s)ds. \tag{101}$$

В качестве вырожденного ядра K'(x,s) можно взять отрезок ряда Тейпора для функции K(x,s).

11.2 Примеры

1.Используя квадратурную формулу трапеций с n=3 найти приближенное решение интегрального уравнения

$$y(x) + \int_0^1 x e^{xs} y(s) ds = e^x.$$

Решение

$$\begin{array}{l} h=\frac{1-0}{3}=\frac{1}{3}\,,\;x_0=0\,,\;x_1=\frac{1}{3}\,,\;x_2=\frac{2}{3}\,,\;x_3=1\,.\\ \text{Имеем}\;\;A_0=A_3=\frac{1}{6}\,,\;A_1=A_2=\frac{1}{3}\,,\;\lambda=-1\,. \end{array}$$

Запишем систему линейных уравнений

$$\begin{pmatrix} 1 + \frac{1}{6}e^{0\cdot 0} & \frac{1}{3}e^{0\cdot \frac{1}{3}} & \frac{1}{3}e^{0\cdot \frac{2}{3}} & \frac{1}{6}e^{0\cdot 1} \\ \frac{1}{6}e^{\frac{1}{3}\cdot 0} & 1 + \frac{1}{3}e^{\frac{1}{3}\cdot \frac{1}{3}} & \frac{1}{3}e^{\frac{1}{3}\cdot \frac{2}{3}} & \frac{1}{6}e^{\frac{1}{3}\cdot 1} \\ \frac{1}{6}e^{\frac{2}{3}\cdot 0} & \frac{1}{3}e^{\frac{2}{3}\cdot \frac{1}{3}} & 1 + \frac{1}{3}e^{\frac{2}{3}\cdot \frac{2}{3}} & \frac{1}{6}e^{\frac{2}{3}\cdot 1} \\ \frac{1}{6}e^{1\cdot 0} & \frac{1}{3}e^{1\cdot \frac{1}{3}} & \frac{1}{3}e^{1\cdot \frac{2}{3}} & 1 + \frac{1}{6}e^{1\cdot 1} \end{pmatrix} \cdot \begin{pmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} e^0 \\ e^{\frac{1}{3}} \\ e^{\frac{2}{3}} \\ e^{1} \end{pmatrix}.$$

Гевив полученную систему, получим

$$u_0 = 0.288$$
, $u_1 = 0.509$, $u_2 = 0.832$, $u_3 = 1.303$.

2. Найти приближенное решение уравнения

$$y(x) - \int_0^1 \cos(xs)y(s)ds = x^2$$

методом замены ядра на вырожеденное.

Решение.

Заменни K(x,s) суммой первых трех членов ряда Тейлора $K'(x,s)=1-\frac{(ss)^2}{s}+\frac{(xs)^4}{s^4}$.

Ником решение в виде

$$y(x) = x^2 + c_1 \cdot 1 + c_2 x^2 + c_3 x^4$$

$$\beta_1 = 1$$
, $\beta_2 = \frac{s^2}{2}$, $\beta_3 = \frac{s^4}{4!}$, $f(x) = x^2$.

Определим коэффициенты системы (100) по формулам (101).

$$b_1 = \int_0^1 \beta_1 f(s) ds = \int_0^1 s^2 ds = \frac{1}{3}.$$

$$b_2 = \int_0^1 \beta_2 f(s) ds = \int_0^1 \frac{s^2}{2} s^2 ds = \frac{1}{10},$$

$$b_3 = \int_0^1 \beta_3 f(s) ds = \int_0^1 \frac{s^4}{4!} s^2 ds = \frac{1}{168}.$$

$$A_{11} = \int_{0}^{1} 1 \cdot 1 ds = 1, \quad A_{12} = \int_{0}^{1} s^{2} \cdot 1 ds = \frac{1}{3}, \quad A_{13} = \int_{0}^{1} s^{4} \cdot 1 ds = \frac{1}{5},$$

$$A_{21} = \int_{0}^{1} \frac{s^{2}}{2} ds = \frac{1}{6}, \quad A_{22} = \int_{0}^{1} s^{2} \cdot \frac{s^{2}}{2} ds = \frac{1}{10}, \quad A_{23} = \int_{0}^{1} s^{4} \cdot \frac{s^{2}}{2} ds = \frac{1}{14},$$

$$A_{21} = \int_{0}^{1} \frac{s^{4}}{24} ds = \frac{1}{120}, \quad A_{22} = \int_{0}^{1} s^{2} \cdot \frac{s^{4}}{24} ds = \frac{1}{168}, \quad A_{23} = \int_{0}^{1} s^{4} \cdot \frac{s^{4}}{24} ds = \frac{1}{216}.$$

Имеем систему

$$\begin{cases} c_1 = c_1 + \frac{1}{3}c_2 + \frac{1}{5}c_3 + \frac{1}{3}, \\ c_2 = \frac{1}{6}c_1 + \frac{1}{10}c_2 + \frac{1}{14}c_3 + \frac{1}{10}, \\ c_3 = \frac{1}{120}c_1 + \frac{1}{168}c_2 + \frac{1}{216}c_3 + \frac{1}{168}. \end{cases}$$

Решив ее методом Якоби, получим

$$c_1 = -5.83$$
. $c_2 = -0.97$. $c_3 = -0.05$.

Таким образом, приближенное решение уравнения имеет вид

$$y(x) = x^2 - 5.83 - 0.97x^2 - 0.05x^4.$$

(1.3 Вопросы и задачи для самостоятельной работы

1. Рассмотрим уравнение Вольтерра второго рода

$$y(x) - \lambda \int_{a}^{x} K(x, s)y(s)ds = f(x).$$

Как можно воспользоваться методом конечных сумм для его решения?

- 2. Каким методом удобнее решать систему линейных уравнений, полученную при применении метода конечных сумм для уравнения Вольтерра чторого рода?
- 3. Как оценить погрешность решения уравнения Фредгольма методом конечных сумм по формуле прямоугольников?
- 4. Можно ли применять метод конечных сумм или метод замены ядра на вырожденное для решения уравнения Фредгольма первого рода

$$\int_{a}^{b} K(x,s)y(s)ds = f(s)?$$

11.4 Задание к лабораторной работе

Задание 1

Методом конечных сумм (n=10) и методом замены ядра на вырожденное (число членов ряда Тейлора равно 3) решить уравнение Фредгольма второго рода. Номер варианта определяется как остаток от деления числа N на 3.

Вариант 0.

$$y(x) - \int_0^1 \frac{\sin(axs)}{s} y(s) ds = \frac{1}{2\sqrt{x}}, \quad a = 0.6 + 0.2k.$$

Вариант 1.

$$y(x) - \int_0^1 (1+s)(e^{axs} - 1)y(s)ds = \frac{1}{x}, \quad a = 0.2 + 0.1k.$$

Вариант 2.

$$y(x) - \int_0^1 \frac{xs}{\sqrt{1+axs}} y(s) ds = e^{-x}, \quad a = -0.1 + 0.01k.$$

Здесь N — количество букв в Ф.И.О., k — количество букв в имени.

Сравнить решения, полученные двумя предложенными методами. Решения представить графически.

Задание 2

Решитъ задачу задания 1, полагая $n=10^5\,.$ Число членов ряда Тейлора взядъ равным 10.

Приложение

Пакеты для параллельных вычислений

Вторую часть заданий к лабораторным работам 5,6,8,9,11 практически невозможно выполнить, не прибегая к параллельным вычислениям. Шаг сетки порядка $h=10^{-7}$ приведет к решнию системы порядка $10^7\times 10^7$, это потребует порядка $(10^7)^3$ операций. Даже очень хорошему процессору для решения такой задачи потребуется очень много времени, а для некоторых процессоровова может оказаться просто неразрешимой.

Однако для студентов математического факультета УдГУ имеется прекрасная возможность работать в лаборатории высокопроизводительных вычислений и транспьютеров УдГУ, и решать задачи большой размерности, используя готовые пакеты.

Для решения систем линейных алгебраических уравнений можно воспользоваться пакетом ScaLAPACK (Scalable Linear Algebra Package). Этот пакет включает в себя процедуры для решения систем уравнений с матрицами общего вида, техдиагональными, ленточными, симметричными, эрмитовыми и г.д., а также процедуры решения проблем собственных значений для матриц такого вида. Кроме того, существуют процедуры для представления (факторизации) матриц в виде $A = T^T \cdot T$, A = PC, T, T^T —треугольная и гранспонированная к ней матрица соответственно, P, C—нижняя и верхняя греугольная матрицы соответственно.

Дополнительную информацию о пакете можно получить по адресу http://www.netlib.org/scalapack/index.html

Описанный выше пакет можно использовать в каждой из лабораторных работ 5,6,8,9,11, так как в каждой из них требуется решать системы уравнений высокой размерности, однако, для решения задач из работ 8,9 можно воспользоваться более приспособленными пакетами, такими как PINEAPL(Parallel Industrial NumErical Applications and Portable Libraries). В нем, помимо подпрограмм для решения систем линейных уравнений и проблемы собственных значения, содержатся подпрограммы для решения уравнений в частных производных второго-третьего порядка, в том числе уравнения Пуассона (задача Дирихле), уравнения теплопроводности и т.п.

Дополнительную информацию о возможностях PINEAPL можно получить по адресу http://www.nag.co.uk/Projects/Pineapl

Список литературы

- [1] Allan R.J., Hu Y.F., Lockey P. Parallel Application Software on High Performance Computers Survey of Parallel Numerical Analysis Software www.cls.urc.ac.uk/Activity/HPCI, 1999.
- [2] Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Наука, 1987.
- [3] Боглаев Ю.П. Вычислительная математика и программирование. М.: Высш. шк., 1990.
- [4] Демидович, Марон И.А. Основы вычислительной математики.
- [5] Конченова Н.В., Марон И.А. Вычислительная математика в примерах и задачах. М.: Наука, 1972.
- [6] Мак-Кракен Д., Дорн У. Численные методы и программирование на ФОРТРАНе. М.: Мир, 1977.
- [7] Новикова Т.С. Методы вычислений и вычислительный практикум // Метод. указания. Ижевск, 1990.
- [8] Самарский А.А. Введение в численные методы. М.: Наука, 1982.