

Hendrik Santoso Sugiarto

IBDA2032 – Artificial Intelligence

## Capaian Pembelajaran

- Decision Tree
- Alternatif Algoritma
- Decision Tree Regressor





- Paradigma machine learning yang menggunakan perspektif logika
- Dapat digunakan untuk regresi, klasifikasi, unsupervised
- Mudah diinterpretasi
- Dapat dijadikan probabilistik



- Algoritma non-parametrik
- Menggunakan sejumlah aturan berbentuk hirarki pertanyaan if/else
- Tujuan: sesedikit mungkin aturan if/else untuk menghasilkan prediksi yang akurat
- Jika depth decision tree besar -> cenderung overfitting
- Tidak memerlukan feature scaling > invarian terhadap berbagai jenis ukuran



## **Pohon Keputusan**

 Mulai dengan pertanyaan, kita membentuk pohon dengan nodes (features): root node (starting feature)  $\rightarrow$  branch (decision/rule)  $\rightarrow$  leaf nodes (outcomes)

Apa saja features yang ada di contoh pohon ini ?
 Saluy , community time, free (apple)
 Bagaimana membentuk decision tree ?

Bagaimana menentukan root node?

Bagaimana menentukan *nodes* berikutnya?

Berbagai algoritma: CART, CHAID, ID3, dll.





accept

decision nodes

commute more

than 1 hour

offers free coffee

decline

offer

no

salary at least \$50,000

decline

offer

leaf nodes

decline

#### Contoh Pohon Keputusan untuk menentukan Fraud





## Contoh Hasil Pembelajaran Pohon Keputusan

 Siapa yang selamat dari tragedy titanic? sex <= 0.5 wanith Jalin 3 gini = 0.4944samples = 834 value = [461, 373] class = Died False True pclass <= 2.5 age <= 10.0 OMUV gini = 0.3025gini = 0.3379samples = 323 samples = 511 value = [60, 263] value = [401, 110] class = Survived class = Died fare <= 26.125 fare <= 26.65 sibsp <= 3.0 pclass <= 1.5 aini = 0.4999qini = 0.375gini = 0.1274qini = 0.3006samples = 234 samples = 89 samples = 28 samples = 483 value = [16, 218] value = [44, 45] value = [7, 21] value = [394, 89] class = Survived class = Survived class = Died class = Survived gini = 0.2449aini = 0.0617gini = 0.4913qini = 0.2604qini = 0.1653aini = 0.2778gini = 0.4474gini = 0.2057samples = 77 samples = 157 samples = 76 samples = 13 samples = 22 samples = 6 samples = 335 samples = 148 value = [98, 50] value = [296, 39] value = [11, 66] value = [5, 152] value = [33, 43] value = [11, 2] value = [2, 20]value = [5, 1] class = Survived class = Survived class = Survived class = Survived class = Died class = Died class = Died class = Died



## Apa yang Decision Tree lakukan terhadap Data





# Alternatif Algortima



#### Konsep ketidakmurnian (impurity)

• Ilustrasi: 3 buah wadah masing-masih terdiri dari 4 bola

Kasus 1: 1 bola diambil acak dari wadah 1. Warna apa? Merah (100%)

Kasus 2: 1 bola diambil acak dari wadah 2. Warna apa? Merah (75%), hijau (25%)

Kasus 3: 1 bola diambil acak dari wadah 3. Warna apa? Merah (50%), hijau (50%)

• Wadah 1  $\rightarrow$  murni (*pure node*) sedangkan Wadah 3  $\rightarrow$  most *impure* 





#### **Uji Pemahaman**

- Manakah diantara ketiga kasus di atas yang paling banyak elemen "surprise"? wadah 3
- Manakah diantara ketiga kasus di atas yang paling sedikit elemen "surprise"? wα λως 1



# Pengukuran *impurity* – entropi



- Apa itu entropi?
- Definisi termodinamika: tendensi suatu zat atau sistem menuju ketidakberaturan (molecular disorder)
- Definisi teori informasi (information theory) dari Wikipedia:

The entropy of a random variable is the average level of "information", "surprise", or "uncertainty" inherent in the variable's possible outcomes

- Contoh: pelemparan koin mata uang  $\rightarrow$  kemungkinan hanya *Head or tail,* maka:
- Jika koin tidak bias  $\rightarrow$  probabilitas head  $p_H = 1/2$ , tail  $p_T = 1 p_H = 1/2$  (sama)
- Jika koin itu bias  $\rightarrow$  p<sub>H</sub> dan p<sub>T</sub> tidak sama (misal p<sub>H</sub> = 3/4, p<sub>T</sub> = 1/4)
- Kasus ekstrim:  $p_H = 1$ ,  $p_T = 0 \rightarrow pasti head$



#### Pengukuran impurity - entropi

Apa itu entropi?

Derajat "keterkejutan" nilai luaran dari suatu variabel random, atau Seberapa banyak informasi yang diperlukan untuk dapat secara akurat mendeskripsikan sampel

• Semakin *impure* suatu dataset, maka informasi yang diperlukan semakin banyak (derajat keterkejutan lebih tinggi) untuk dapat menggolongkan setiap sampel dengan akurat



## Pengukuran *impurity* – indeks Gini

- Derajat / ukuran ketidakseragaman (inequality) dalam sampel → antara 0 dan 1
- Nilai 0 → sampel homogen → semuanya dari 1 kelas
  Nilai 1 → sampel tidak seragam seluruhnya
- Sum of squares of probabilities dari setiap kelas (n = jumlah kelas, n = 2 : biner)

Indeks 
$$Gini(K) = \sum_{i=1}^{n} p_{i,K} (1 - p_{i,K}) = 1 - \sum_{i=1}^{n} p_{i,K}^{2}$$

 $p_{i,K}$  adalah probabilitas bahwa kategori K memiliki kelas i

Impurity → ukuran ketidakseragaman



#### Pengukuran impurity - Chi-square

Ho

• Chi-squared (dibaca "kai squared") merupakan contoh <u>uji hipotesis</u> untuk menguji <u>independensi</u> antara variabel kategorial.

• Chi-squared:

$$\chi^2 = \sum_{i} \frac{(O_i - E_i)^2}{E_i}$$

H, dependency

|        | Yes | No | Total | Expected | Chi-square<br>Yes | Chi-square No |
|--------|-----|----|-------|----------|-------------------|---------------|
| Weak   | 5   | 2  | 7     | 3.5      | 0.802             | 0.802         |
| Strong | 3   | 3  | 6     | 3        | 0.000             | 0.000         |





- Pada awalnya seluruh data termasuk dalam root node
- Pilih impurity measure
- Hitung impurity untuk berbagai alternatif fitur
- Pilih fitur dengan impurity terbesar, lalu lakukan splitting
- Ulangi proses splitting sampai semua anggota masuk ke dalam kategori yang sama





petal width (cm) ≤ 1.65

qini = 0.0408

samples = 48

value = [0, 47, 1]

class = versicolor

#### **Pruning**

- https://developers.google.com/machine-learning/decision-forests/overfitting-andpruning
- Pruning adalah usaha untuk mengurangi overfitting dengan memangkas sebagian batang dan daun
- Bentuk pohon setelah pruning akan menjadi lebih sederhana





## **CHAID - Chi-square automatic interaction detection**

- Digunakan untuk menghasilkan pohon klasifikasi dan pohon regresi
- Klasifikasi multikelas: menggunakan chi-square untuk mengevaluasi pembagian dalam pemilihan urutan fitur.
- Chi-square adalah statistical measure untuk menemukan perbedaan antara child dan parent nodes

$$\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$



#### CART - Classification And Regression Tree

- Digunakan untuk menghasilkan pohon klasifikasi dan pohon regresi
- Klasifikasi biner: menggunakan indeks Gini sebagai cost function untuk mengevaluasi pembagian (split) dalam pemilihan urutan fitur
- Regresi: menggunakan least squares sebagai cost function

$$Gini = 1 - \sum_{i=1}^{C} (p_i)^2$$



#### **ID3 - Iterative Dichotomizer**

- Singkatan dari iterative dichotomizer
- Menggunakan entropi dan information gain sebagai metrik

$$Entropy(S) = -\sum P(I) \times \log_2(P(I))$$
 
$$Information\ Gain(S,A) = Entropy(S) - \sum P(S|A) \times Entropy(S|A)$$



#### C4.5 & C5

- C4.5 merupakan pengembangan dari ID3
- Jauh lebih cepat dari ID3 dan melibatkan pre-pruning
- Tidak dapat digunakan untuk boosting dan tidak dapat menerima missing value
- C5 merupakan pengembangan dari C4.5
- Dapat digunakan untuk boosting dan dapat menerima missing value



## Perbandingan

|                   | CHAID      | CART             | ID3            | C4.5 / C5        |
|-------------------|------------|------------------|----------------|------------------|
| Aturan segmentasi | Chi-square | Gini             | Entropy        | Entropy          |
| Aturan trimming   | Otomatis   | Estimasi error   | Estimasi error | Estimasi error   |
| Split             | Multiple   | Biner            | Multiple       | Multiple         |
| Variabel          | Kategori   | Numerik/kategori | Kategori       | Numerik/kategori |
| Bentuk            | Melebar    | Memanjang        | Balance        | Balance          |







# Decision Tree Regressor



#### Regresi dengan decision tree

- Luaran adalah nilai prediksi
- Model ini memiliki *depth = 2*
- Misalnya mau prediksi *output*  $\hat{y}$  dari *input* x1 = 0.6
- Dari root node turun ke kanan
- Lalu turun ke *leaf node* dengan MSE = 0.015 dan *value*  $\hat{y}$  = 0.111
- Nilai dan MSE di atas adalah hasil rerata 110 sampel
- Bagaimana menentukan best split? Goal: max. variance reduction



$$Var\ Reduction = Var(parent) - \sum w_i\ Var(child_i)$$

$$w_i = \frac{\#sample \ in \ child \ i}{\#sample \ in \ parent}$$



#### Regresi dengan decision tree

• Gambar di kiri: prediksi dengan depth = 2, sedangkan kanan : depth = 3

Nilai prediksi di setiap wilayah (region) = rerata dari sampel latihan di wilayah itu

• Algoritma decision tree membag wilayah sehingga hampir semua training instances berada dekat

pada nilai prediksi





#### Kompleksitas decision tree

- Pure leaf: daun dimana semua instances ada di satu kategori atau target value
- Melatih pohon sampai semua daun pure  $\rightarrow$  model sangat kompleks  $\rightarrow$  overfit
- Regularisasi pre-pruning (early stopping) dengan hyperparameters seperti decrease max. depth, max. no. of leaf nodes, max. no. of features evaluated for splitting, increase min. no. of samples in leaf, min. no. of samples in node to split
- Regularisasi post-pruning (memangkas nodes tappa menaikkan error secara signifikan):
  reduced error pruning, cost complexity pruning (https://en.wikipedia.org/wiki/Decision\_tree\_pruning)



## Tuhan Memberkati

