Final

Shengzhi Luo

06/05/2022

Data load and pre-process

```
# Load data, clean column names, eliminate indexs containing NA entries
heartattack = read_csv("heartattack.csv") %>%
              mutate(
                sex = factor(sex,ordered=TRUE),
                exng = factor(exng,ordered = TRUE),
                cp = factor(cp,ordered = TRUE),
                fbs = factor(fbs, ordered = TRUE),
                restecg = factor(restecg, ordered = TRUE),
                output = factor(case_when(output== 0 ~ "less",
                                    output == 1 ~ "more")),
                output = fct_relevel(output, "less")
              )%>%
  na.omit()%>%
  dplyr::select(-thall, -slp)
knitr::opts_chunk$set(warning = FALSE, message = FALSE, fig.align = "center")
theme_set(theme_minimal() + theme(legend.position = "bottom"))
options(
  ggplot2.continuous.colour = "viridis",
  ggplot2.continuous.fill = "viridis"
scale_colour_discrete = scale_colour_viridis_d
scale_fill_discrete = scale_fill_viridis_d
set.seed(100)
# Partition data into training/test sets
indexTrain = createDataPartition(y = heartattack$output,
                                  p = 0.7
                                  list = FALSE)
training_df = heartattack[indexTrain, ]
testing_df = heartattack[-indexTrain, ]
# Create matrices for future analysis
# Training data
x_train = model.matrix(output~.,training_df)[, -11]
y_train = training_df$output
# Testing data
x_test <- model.matrix(output~.,testing_df)[, -11]</pre>
y_test <- testing_df$output</pre>
x_train_df = data.frame(x_train)
```

summary(heartattack)

##	age	sex	ср	trtbps	chol	fbs
##	Min. :29.00	0: 96	0:143	Min. : 94.0	Min. :126.0	0:258
##	1st Qu.:47.50	1:207	1: 50	1st Qu.:120.0	1st Qu.:211.0	1: 45
##	Median :55.00		2: 87	Median :130.0	Median :240.0	
##	Mean :54.37		3: 23	Mean :131.6	Mean :246.3	
##	3rd Qu.:61.00			3rd Qu.:140.0	3rd Qu.:274.5	
##	Max. :77.00			Max. :200.0	Max. :564.0	
##	restecg tha	lachh	exng	oldpeak	caa	output
	0 4 4 7 34 1	. 71 0	0 001			7 120
##	0:147 Min.	: 71.0	0:204	Min. :0.00	Min. :0.0000	less:138
## ##	0:147 Min. 1:152 1st Qu			Min. :0.00 1st Qu.:0.00		
##	1:152 1st Qu					
##	1:152 1st Qu 2: 4 Median	.:133.5		1st Qu.:0.00	1st Qu.:0.0000	
##	1:152 1st Qu 2: 4 Median Mean	.:133.5 :153.0		1st Qu.:0.00 Median :0.80	1st Qu.:0.0000 Median :0.0000 Mean :0.7294	

skimr::skim_without_charts(heartattack)

Table 1: Data summary

Name	heartattack
Number of rows	303
Number of columns	12
Column type frequency:	
factor	6
numeric	6
Group variables	None

Variable type: factor

skim_variable	n_missing	$complete_rate$	ordered	n_unique	top_counts
sex	0	1	TRUE	2	1: 207, 0: 96
cp	0	1	TRUE	4	0: 143, 2: 87, 1: 50, 3: 23
fbs	0	1	TRUE	2	0: 258, 1: 45
restecg	0	1	TRUE	3	1: 152, 0: 147, 2: 4
exng	0	1	TRUE	2	0: 204, 1: 99
output	0	1	FALSE	2	mor: 165, les: 138

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100
age	0	1	54.37	9.08	29	47.5	55.0	61.0	77.0
trtbps	0	1	131.62	17.54	94	120.0	130.0	140.0	200.0
chol	0	1	246.26	51.83	126	211.0	240.0	274.5	564.0
thalachh	0	1	149.65	22.91	71	133.5	153.0	166.0	202.0
oldpeak	0	1	1.04	1.16	0	0.0	0.8	1.6	6.2
caa	0	1	0.73	1.02	0	0.0	0.0	1.0	4.0

glm

penalized glm

model.glmn\$bestTune lambda ## alpha 0 0.4936728 ## 12 myCol<- rainbow(15)</pre> myPar <- list(superpose.symbol = list(col = myCol),</pre> superpose.line = list(col = myCol)) plot(model.glmn, par.settings = myPar, xTrans = function(x) log(x)) Mixing Percentage 0 0.3 0.6 0.9 0.1 0.7 0.4 0.2 0.5 8.0 0.9 ROC (Cross-Validation) 8.0 0.7 0.6 0.5 0 -2 -1 2 Regularization Parameter

Mars

coef(model.mars\$finalModel) %>% knitr::kable(col.names = "Coefficient")

	Coefficient
(Intercept)	-1.7741033
h(-0.223607-cp.L)	-5.1683707
h(3.2-oldpeak)	1.0065639
h(1-caa)	1.8692254
sex.L	-0.9708507

LDA

```
partimat(output~age+caa+trtbps+chol+thalachh, method = "lda", data = heartattack)
```

Partition Plot


```
lda.fit$scaling
##
                            LD1
## age 0.0066864838
## sex.L -0.6091628623
## cp.L 1.1073026498
## cp.Q -0.2684478839
## cp.C 0.3307629074
## trtbps -0.0063575621
## chol -0.0005054975
## fbs.L 0.1732598970
## restecg.L -0.1344302825
## restecg.Q -0.1050512674
## thalachh 0.0153301665
## exng.L -0.3222138032
## oldpeak -0.4002979962
## caa
             -0.3158398231
set.seed(100)
model.lda = train(output ~ . , heartattack,
                      subset = indexTrain,
                      method = "lda",
                      metric = "ROC",
                      trControl = ctrl)
```

CTREE

```
set.seed(100)

tree1 <- rpart(formula = output ~ . ,data = heartattack, subset = indexTrain, control = rpart.control(c)
rpart.plot(tree1)</pre>
```


printcp(tree1)

```
##
## Classification tree:
## rpart(formula = output ~ ., data = heartattack, subset = indexTrain,
##
       control = rpart.control(cp = 0))
##
## Variables actually used in tree construction:
## [1] caa
                                  oldpeak sex
                                                     thalachh
                ср
                         exng
##
## Root node error: 97/213 = 0.4554
##
## n= 213
##
##
            CP nsplit rel error xerror
                                             xstd
## 1 0.4948454
                    0
                        1.00000 1.00000 0.074930
## 2 0.0515464
                        0.50515 0.50515 0.063323
                    1
## 3 0.0309278
                    3
                        0.40206 0.54639 0.065048
## 4 0.0103093
                    4
                        0.37113 0.51546 0.063770
## 5 0.0051546
                        0.36082 0.53608 0.064633
                        0.35052 0.53608 0.064633
## 6 0.0000000
                    7
cpTable <- tree1$cptable</pre>
plotcp(tree1)
```

size of tree


```
minErr <- which.min(cpTable[,4])
tree2 <- prune(tree1, cp = cpTable[minErr,1])
rpart.plot(tree2)</pre>
```


Random Tree

Minimal Node Size 2 4 ■ 6 + 8 ■ 10

AdaBoost


```
# Boosting Iterations → 2000 → 3000 → 4000 → 5000
```

```
\#gbmA.pred \leftarrow predict(gbmA.fit, newdata = dat[-rowTrain,], type = "prob")[,1]
```

GAM

```
method="gam",
                 metric = "ROC",
                 tuneGrid = data.frame(method = "GCV.Cp", select=c(TRUE, FALSE)),
                 trControl = ctrl)
model.gam$bestTune
     select method
## 2
     TRUE GCV.Cp
model.gam$results
   method select
                         ROC
                                  Sens
                                            Spec
                                                      ROCSD
                                                               SensSD
                                                                           SpecSD
## 1 GCV.Cp FALSE 0.8461364 0.7433333 0.8106061 0.10954792 0.1330707 0.08681875
             TRUE 0.8647222 0.7533333 0.8121212 0.07637024 0.1245899 0.11604078
## 2 GCV.Cp
model.gam$finalModel
##
## Family: binomial
## Link function: logit
##
## Formula:
## .outcome ~ sex.L + cp.Q + fbs.L + restecg.Q + exng.L + restecg.L +
       cp.L + cp.C + caa + s(oldpeak) + s(age) + s(trtbps) + s(thalachh) +
##
##
       s(chol)
##
## Estimated degrees of freedom:
## 0.911 0.000 0.251 0.826 0.000 total = 11.99
## UBRE score: -0.1567041
NB
                      fL = 1,
                      adjust = seq(.1, 1, by = .1))
```



```
res <- resamples(list(GLM = model.glm, GLMNET = model.glmn, MARS = model.mars, CTREE = model.ctree, RPA
trainROC <- bwplot(res, metric = "ROC")
summary(res)</pre>
```

```
##
## Call:
## summary.resamples(object = res)
## Models: GLM, GLMNET, MARS, CTREE, RPART, LDA, RF, GBMA, NB, GAM
  Number of resamples: 10
##
##
## ROC
##
                     1st Qu.
                                Median
              Min.
                                            Mean
                                                   3rd Qu.
         ## GLM
                                                                       0
  GLMNET 0.7833333 0.8671717 0.8944444 0.8934596 0.9397727 0.9750000
         0.7666667 0.8853220 0.9036616 0.8965152 0.9340909 1.0000000
## MARS
                                                                       0
## CTREE
         0.6250000 0.8003788 0.8416667 0.8269318 0.8843750 0.9494949
                                                                       0
         0.5583333 0.7767992 0.8162247 0.8137500 0.8765152 0.9797980
## RPART
                                                                       0
## LDA
         0.7666667 0.8626894 0.9027778 0.8841919 0.9232955 0.9666667
                                                                       0
## RF
         0.8240741 0.8511364 0.8693182 0.8944781 0.9424242 0.9833333
                                                                       0
         0.8148148 0.8528409 0.9049242 0.9026768 0.9311869 1.0000000
## GBMA
                                                                       0
## NB
         0.7583333  0.8604167  0.8888889  0.8844949  0.9414773  0.9750000
                                                                       0
##
  GAM
         0.7416667 0.8058712 0.8736111 0.8647222 0.9333333 0.9454545
                                                                       0
##
##
  Sens
##
              Min.
                     1st Qu.
                                Median
                                                   3rd Qu. Max. NA's
                                            Mean
## GLM
         0.5000000 0.7777778 0.7888889 0.7533333 0.8000000
## GLMNET 0.5000000 0.6166667 0.6833333 0.6888889 0.8000000
                                                           0.8
                                                                  0
## MARS
         0.5000000 0.6750000 0.7388889 0.7444444 0.8000000
```

```
0.6000000 0.7000000 0.7388889 0.7566667 0.8000000
## CTREE
                                                                      0
## RPART
          0.5000000 0.6750000 0.7888889 0.7544444 0.8000000
                                                                      0
          0.5000000 0.7000000 0.7388889 0.7233333 0.7777778
## LDA
                                                                      0
          0.555556 0.6750000 0.7500000 0.7477778 0.8000000
## RF
                                                                      0
##
  GBMA
          0.555556 0.6166667 0.7388889 0.7500000 0.8000000
                                                                      0
          0.6666667 0.7194444 0.8000000 0.7944444 0.8000000
                                                                      0
## NB
##
  GAM
          0.5000000 0.7194444 0.7777778 0.7533333 0.8000000
##
## Spec
                                                                   Max. NA's
##
               Min.
                      1st Qu.
                                 Median
                                              Mean
                                                     3rd Qu.
## GLM
          0.6666667 0.7670455 0.8712121 0.8363636 0.9147727 0.9166667
  GLMNET 0.7500000 0.8181818 0.8712121 0.8621212 0.9147727 1.0000000
                                                                           0
##
          0.6666667 0.8333333 0.8712121 0.8636364 0.9166667 1.0000000
                                                                           0
  MARS
  CTREE
          0.5000000 0.7329545 0.7840909 0.7666667 0.8295455 0.9166667
                                                                           0
## RPART
          0.4166667 0.7329545 0.7840909 0.7681818 0.8333333 0.9166667
                                                                           0
## LDA
          0.5833333 0.7708333 0.9090909 0.8371212 0.9147727 0.9166667
                                                                           0
## R.F
          0.6666667 0.7329545 0.9090909 0.8356061 0.9166667 0.9166667
                                                                           0
          0.6363636 0.8409091 0.9128788 0.8772727 0.9166667 1.0000000
## GBMA
                                                                           0
## NB
          0.5833333 0.6647727 0.8181818 0.7765152 0.8901515 0.9166667
                                                                           0
          0.5833333 0.7537879 0.8333333 0.8121212 0.9090909 0.9166667
## GAM
                                                                           0
trainROC
```


lda.pred <- predict(model.lda, newdata = heartattack[-indexTrain,], type = "prob")[,2]
rpart.pred <- predict(model.rpart, newdata = heartattack[-indexTrain,],type = "prob")[,2]
ctree.pred <- predict(model.ctree, newdata = heartattack[-indexTrain,],type = "prob")[,2]
glm.pred <- predict(model.glm, newdata = heartattack[-indexTrain,], type = "prob")[,2]
glmn.pred <- predict(model.glmn, newdata = heartattack[-indexTrain,], type = "prob")[,2]
mars.pred <- predict(model.mars, newdata = heartattack[-indexTrain,], type = "prob")[,2]
rf.pred <- predict(model.rf, newdata = heartattack[-indexTrain,], type = "prob")[,2]
gbmA.pred <- predict(model.gbmA, newdata = heartattack[-indexTrain,], type = "prob")[,2]</pre>

```
nb.pred <- predict(model.nb, newdata = heartattack[-indexTrain,], type = "prob")[,2]</pre>
gam.pred <- predict(model.gam, newdata = heartattack[-indexTrain,], type = "prob")[,2]</pre>
roc.lda <- roc(heartattack$output[-indexTrain], lda.pred)</pre>
roc.rpart <- roc(heartattack$output[-indexTrain], rpart.pred)</pre>
roc.ctree <- roc(heartattack$output[-indexTrain], ctree.pred)</pre>
roc.glm <- roc(heartattack$output[-indexTrain], glm.pred)</pre>
roc.glmn <- roc(heartattack$output[-indexTrain], glmn.pred)</pre>
roc.mars <- roc(heartattack$output[-indexTrain], mars.pred)</pre>
roc.rf <- roc(heartattack$output[-indexTrain], rf.pred)</pre>
roc.gbmA <- roc(heartattack$output[-indexTrain], gbmA.pred)</pre>
roc.nb <- roc(heartattack$output[-indexTrain], nb.pred)</pre>
roc.gam <- roc(heartattack$output[-indexTrain], gam.pred)</pre>
auc <- c(roc.lda$auc[1],roc.rpart$auc[1], roc.ctree$auc[1], roc.glm$auc[1], roc.glmn$auc[1], roc.rf$auc
plot(roc.lda, legacy.axes = TRUE)
        0.8
        9.0
   Sensitivity
        0.4
        0.0
                                                   0.5
                             0.0
                                                                          1.0
                                             1 - Specificity
plot(roc.rpart, legacy.axes = TRUE)
plot(roc.ctree, col = 2, add = TRUE)
plot(roc.glm, col = 2, add = TRUE)
plot(roc.glmn, col = 2, add = TRUE)
plot(roc.mars, col = 2, add = TRUE)
plot(roc.rf, col = 2, add = TRUE)
plot(roc.gbmA, col = 2, add = TRUE)
plot(roc.nb, col = 2, add = TRUE)
plot(roc.gam, col = 2, add = TRUE)
```



```
modelNames <- c("lda", "rpart", "ctree", "glm", "glmn", "mars", "rf", "gbmA", "nb", "gam")

ggroc(list(roc.lda, roc.rpart ,roc.ctree, roc.glm, roc.glmn, roc.mars, roc.rf, roc.gbmA, roc.nb, roc.gam),
scale_color_discrete(labels = pasteO(modelNames, " (", round(auc,3),")"),
name = "Models (AUC)") +
geom_abline(intercept = 0, slope = 1, color = "grey")</pre>
```


Variable Importance

```
glm.vip <- varImp(model.glm)$importance
glmn.vip <- varImp(model.glmn)$importance
mars.vip <- varImp(model.mars)
rpart.vip <- varImp(model.rpart)$importance
vip1 <- vip(model.mars$finalModel)
vip2 <- vip(model.glmn$finalModel)
vip <- grid.arrange(vip1,vip2)</pre>
```


PDP

Individual conditional expectation (ICE) curves

Support Vector

Performance of 'svm'


```
#summary(linear.tune)
linear.tune$best.parameters
##
           cost
## 6 0.01376379
best.linear <- linear.tune$best.model</pre>
summary(best.linear)
##
## Call:
## best.svm(x = output ~ ., data = training_df, cost = exp(seq(-5, 2,
       len = 50)), kernel = "linear", scale = TRUE)
##
##
## Parameters:
##
      SVM-Type: C-classification
    SVM-Kernel: linear
##
          cost: 0.01376379
##
##
## Number of Support Vectors: 144
##
##
   (7272)
##
##
## Number of Classes: 2
##
## Levels:
```

less more

```
pred.linear <- predict(best.linear, newdata = testing_df)</pre>
confushion_test <- confusionMatrix(data = pred.linear,</pre>
                reference = heartattack$output[-indexTrain])
confushion_test
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction less more
         less 28
##
         more
              13 46
##
##
                  Accuracy: 0.8222
                    95% CI: (0.7274, 0.8948)
##
       No Information Rate: 0.5444
##
       P-Value [Acc > NIR] : 2.84e-08
##
##
##
                     Kappa : 0.6343
##
##
   Mcnemar's Test P-Value: 0.02445
##
##
               Sensitivity: 0.6829
##
               Specificity: 0.9388
            Pos Pred Value : 0.9032
##
##
            Neg Pred Value: 0.7797
##
                Prevalence: 0.4556
##
            Detection Rate: 0.3111
      Detection Prevalence: 0.3444
##
##
         Balanced Accuracy: 0.8109
##
##
          'Positive' Class : less
##
set.seed(5009)
radial.tune <- tune.svm(output ~ . ,</pre>
                        data = training_df,
                        kernel = "radial",
                        cost = exp(seq(-1,4,len=20)),
                        gamma = exp(seq(-6,-2,len=20)))
plot(radial.tune, transform.y = log, transform.x = log,
    color.palette = terrain.colors)
```

Performance of 'svm'


```
# summary(radial.tune)
radial.tune$best.parameters
##
           gamma
## 333 0.0310026 24.79213
best.radial <- radial.tune$best.model</pre>
summary(best.radial)
##
## Call:
## best.svm(x = output ~ ., data = training_df, gamma = exp(seq(-6,
##
       -2, len = 20)), cost = exp(seq(-1, 4, len = 20)), kernel = "radial")
##
##
## Parameters:
     SVM-Type: C-classification
##
    SVM-Kernel: radial
         cost: 24.79213
##
##
## Number of Support Vectors: 104
##
    (5351)
##
##
##
## Number of Classes: 2
##
## Levels:
## less more
```

```
pred.radial <- predict(best.radial, newdata = heartattack[-indexTrain,])</pre>
confusionMatrix(data = pred.radial,
                reference = heartattack$output[-indexTrain])
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction less more
               32
##
         less
##
         more
                 9
                     42
##
##
                  Accuracy : 0.8222
                    95% CI: (0.7274, 0.8948)
##
##
       No Information Rate: 0.5444
       P-Value [Acc > NIR] : 2.84e-08
##
##
##
                     Kappa : 0.6402
##
   Mcnemar's Test P-Value: 0.8026
##
##
##
               Sensitivity: 0.7805
##
               Specificity: 0.8571
##
            Pos Pred Value: 0.8205
##
            Neg Pred Value: 0.8235
                Prevalence: 0.4556
##
##
            Detection Rate: 0.3556
##
      Detection Prevalence: 0.4333
##
         Balanced Accuracy: 0.8188
##
##
          'Positive' Class : less
##
heartattack_dat = heartattack %>% as.data.frame()
hc.complete <- hclust(dist(heartattack_dat), method = "complete")</pre>
fviz_dend(hc.complete, k = 3,
          cex = 0.3,
          palette = "jco",
          color_labels_by_k = TRUE,
          rect = TRUE, rect_fill = TRUE, rect_border = "jco",
          labels_track_height = 2.5)
```

Cluster Dendrogram

