VISUALIZATION & CLUSTERING OF GEOLOCATION DATA

Sibo Ding Nov 28, 2022

METHODS

Animate Plot heatmap Cluster Convert address to coordinates clusters (GIF) coordinates sklearn.cluster matplotlib. googlemaps gmaps animation matplotlib.pyplot

DATA SOURCE

Companies' websites in HK

https://www.mcdonalds.com.hk/en/find-a-restaurant/

Fairwood

https://www.fairwood.com.hk/en/stores

Café de Coral

https://www.eatcdc.com/eng/main/terms.jsp?id=B2D 0P2M0R0Y891E8L1D18188M4G0A802

Starbucks

https://www.starbucks.com.hk/en/store-locator/#86

There are 251 McDonald's near you

SHOP A, 1/F, MANDARIN PLAZA MONGKOK, NO.11 NELSON STREET AND NOS,240-244 PORTLAND STREET, MONG KOK, KOWLOON Tel: 35144562

Hoi Tat

Shop No. 1-03, P1/F, Hoi Tat Estate (Phase 3), Sham Shui Po, Kowloon Tel: 25595727

Pak Tin

Shop No. LG403, LG4/F, Pak Tin Commercial Centre, Pak Tin Estate Phases 7 & 8, Sham Shui Po, Kowloon Tel: 29157338

Harbour City

Shop 4002, Level 4, Gateway Arcade, Kowloon Tel: 37047246

Charming Garden

Shon No. 664, G/E. Monako West New Reclamation Zone 20, Charming.

CONVERSION TO COORDINATES AND CLEANING

CONVERSION TO COORDINATES AND CLEANING

- Problem 1: Some addresses are unrecognized
 Narrow the scope and find the unrecognized one, manually add/change/delete street, district info, etc.
- Problem 2: Some addresses are not in HK (Aberdeen in the UK)
- Find min and max and compare with the coordinates of HK

Output data frame

	Α	В	С	D
1	name	address	lat	Ing
2	MPM	SHOP A, 1,	22.3186	114.169
3	Hoi Tat	Shop No. 1	22.3289	114.152
4	Pak Tin	Shop No. L	22.3365	114.167
5	Harbour C	Shop 4002	22.2988	114.168
6	Charming	Charming	22.3142	114.165

HEATMAP

HEATMAP

McDonald's

Café de Coral

Fairwood

Starbucks

K-MEANS CLUSTERING

- Unsupervised learning (algorithm learns patterns from untagged data)
- Partition \underline{n} observations into \underline{k} clusters (\underline{k} is determined by human)
- Each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid)
- Inertia: Within-cluster sum-of-squares, measuring how internally coherent clusters are

K-MEANS CLUSTERING

Convert "Ing" and "lat" columns to lists; combine them into a tuple

Train K-means model

Plot different clusters; "c" means different colors

plt.show()

```
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
def k_means(csv_in, elbow_clusters, plot clusters):
    df = pd.read csv(csv in)
    x = df['lng'].to list()
                                                         This part generates
    y = df['lat'].to list()
                                                         "elbow" graph, can be
   coor = [*zip(x, y)]
                                                         omitted to speed up.
    inertias = []
    for i in range(1, elbow clusters+1):
        kmeans = KMeans(n clusters=i)
                                                         Add the inertia of
        kmeans.fit(coor)
        inertias.append(kmeans.inertia ) 
                                                         each cluster
                                                         number to a list
    plt.plot(range(1, elbow clusters+1), inertias
    marker='o')
    plt.title('Elbow method')
                                                         Plot the inertia list
    plt.xlabel('Number of clusters')
    plt.ylabel('Inertia')
    plt.show()
                                                         kmeans.lables_: An array of
    kmeans = KMeans(n clusters=plot clusters)
                                                         numbers ranging
    kmeans.fit(coor)
                                                         (0, num_clusters - 1),
                                                         indicating different clusters
    plt.scatter(x, y, c=kmeans.labels )
    plt.title(f'No. of clusters: {plot clusters}')
```

K-MEANS CLUSTERING: MCDONALD'S

Split Sheung Shui and Tai Po

K-MEANS CLUSTERING: FAIRWOOD

Look for the "elbow" (where the inertia becomes more linear)

Split Tuen Mun and Yuen Long

Split West Kowloon and Middle Kowloon

K-MEANS CLUSTERING: CAFÉ DE CORAL

113.95 114.00 114.05 114.10 114.15 114.20 114.25

22.30

22.25

Split Sheung Shui and Tai Po

K-MEANS CLUSTERING: STARBUCKS

Look for the "elbow" (where the inertia becomes more linear)

Split Northern District and Ma On Shan, Sai Kung

Create Wan Chai and Tsim Sha Tsui

CLUSTER ANIMATION

To see dynamic changes with different numbers of clusters

McDonald's

Café de Coral

Fairwood

Starbucks

CLUSTER ANIMATION

```
from matplotlib.animation import FuncAnimation, PillowWriter
fig, ax = plt.subplots() <-</pre>
                                   Create a figure with one subplot
kmeans = KMeans(n clusters=2)
kmeans.fit(coor)
                                                        Create the initial
scat = plt.scatter(x, y, c=kmeans.labels , s=10)
                                                         scatter plot (2 clusters)
max clusters = 15
color data = np.array([])
                                                                     Append kmeans
for cluster in range(2, max clusters+1):
    kmeans = KMeans(n clusters=cluster)
                                                                     labels of each
    kmeans.fit(coor)
                                                                     cluster number to
    color data = np.append(color data, kmeans.labels /cluster)
                                                                     "color_data" array;
color data = color data.reshape(max clusters-1, len(coor))
                                                                     /cluster: Convert
                                                                     data to range [0,1)
```

Train K-means model

Reshape:

No. of clusters * No. of coordinates

CLUSTER ANIMATION (CONT.)

```
def update_plot(i, data, scat):
    scat.set_array(data[i])
    ax.set_title(f'No of clusters: {i+2}')
    return scat
```

Update scatter plots after the initial plot; Update colors; Update title

```
mpl animation
```

```
Export .gif file;
dpi: dots per inch;
fps: frames per second
```

FURTHER RESEARCH

- Extend to more chain restaurants (Michelin, Tam Jai, Tai Hing, etc.)
- Extend to other industries (HSBC, Wellcome, Centaline Property, etc.)
- Use machine learning to predict/select new location
- Calculate the distance (to nearest MTR, market, etc.)
- Combine with other sociodemographic/geographic layers

REFERENCE

Geocoding

https://www.natasshaselvaraj.com/a-step-by-step-guide-on-geocoding-in-python/https://developers.google.com/maps/documentation/geocoding/overview

Heatmap

https://www.storybench.org/how-to-build-a-heatmap-in-python/https://jupyter-gmaps.readthedocs.io/en/latest/tutorial.html https://jupyter-gmaps.readthedocs.io/en/latest/export.html

K-means Clustering

https://www.w3schools.com/python/python_ml_k-

means.asp#:~:text=K%2Dmeans%20is%20an%20unsupervised,the%20variance%20in%20each%20cluster.

https://medium.com/chung-yi/ml%E5%85%A5%E9%96%80-%E4%BA%8C%E5%8D%81%E4%B8%80-knn%E8%88%87k-

means%E5%B7%AE%E7%95%B0-7dc6ad0227fc

https://scikit-learn.org/stable/modules/clustering.html#k-means

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html

Matplotlib Animation

https://stackoverflow.com/questions/9401658/how-to-animate-a-scatter-plot

https://matplotlib.org/stable/api/_as_gen/matplotlib.animation.FuncAnimation.html

https://eli.thegreenplace.net/2016/drawing-animated-gifs-with-matplotlib/

https://stackoverflow.com/questions/68960005/saving-an-animated-matplotlib-graph-as-a-gif-file-results-in-a-different-looking