Perfect and Pretty Good State Transfer in Weighted Discrete Quantum Walks

Lucia O'Toole

Irotoole@wpi.edu

Advised by Professor Hanmeng Zhan Professor William Martin

Quantum Computing

Faster computers. Very horrifying. All the damage computers have made will happen faster. On the other hand the good results from Computing will also work faster.

[3, 5, 6, 7]

Continuous Model

Let M be the Hermitian matrix associated to a graph X. The transistion matrix

for a continuous quantum walk on X relative to M at time t is

$$U(t) = e^{itM}$$

Continuous Model

Let $a \neq b$. If $U(t)e_a = \gamma e_b$ for some $\gamma \in \mathbb{C}$ then we say there is perfect state transfer (PST) from a to b at time t.

Discrete Model

We now look at the model where time is discrete.

$$(N_t)_{u,(a,b)} =$$

$$\begin{cases} w_{ab}, & u = a, \\ 0, & u \neq a, \end{cases}$$

$$U = R(2N_t^*N_t - I)$$

Discrete Model

We are interested in two types of state transfer. We say a quantum walk on X admits *perfect state transfer* (PST) from a to b at time $t \in \mathbb{Z}$ if there is a unimodular number $\gamma \in \mathbb{C}$ such that

$$U^t x_a = \gamma x_b.$$

8 / 50

Unfair (Weighted) Result C₄

Next we look at a quantum walk with unfair coins on C_4 where it is more likely to traverse towards the opposite level (up/down) than to the opposite side (left/right). The unfair weighted tail-arc incidence matrix is encoded in Figure 1.

[1, Theorem 2.2]

From now on, we will only consider quantum walks defined by real weighted tail-arc incidence matrices N. The following results are special cases of characterizations of perfect and pretty good state transfer in [2, 8].

Theorem

- [1, Theorem 2.2] Let X be a graph with real weighted tail-arc incidence matrix N. Let H be the real weighted adjacency matrix of X associated with N. Let a and b be two vertices of X. The quantum walk on X with respect to N admits perfect state transfer from a to b at time t if and only if the following hold:
 - (i) a and b are strongly cospectral;
- (ii) If $\lambda \in \Lambda_{ab}^+$, then $\lambda = \cos(j\pi/t)$ for some even integer j;
- (iii) If $\lambda \in \Lambda_{ab}^-$ then $\lambda = \cos(j\pi/t)$ for some odd integer j.

[8, Theorem 3.6]

Theorem

- [8, Theorem 3.6] Let X be a graph with real weighted tail-arc incidence matrix N. Let H be the real weighted adjacency matrix of X associated with N. Let A and A be two vertices of A. The quantum walk on A with respect to A admits pretty good state transfer from A to A if and only if the following hold:
 - (i) a and b are strongly cospectral;
- (ii) For any set $\{\ell_{\lambda} : \lambda \in \Lambda_{a}\}$ of integers such that

$$\sum_{\lambda \in \Lambda_a} \ell_\lambda rccos \lambda \equiv 0 \pmod{2\pi} \; ,$$

we have

$$\sum_{\lambda \in \Lambda_{-k}^-} \ell_\lambda \equiv 0 \pmod{2}$$
 .

Unfair (Weighted) Result C₄

Figure: A weighted quantum walk on C_4

Unfair (Weighted) Result C_4

The associated Hermitian adjacency matrix H is

$$H = \begin{bmatrix} 0 & 1/4 & 0 & 3/4 \\ 1/4 & 0 & 3/4 & 0 \\ 0 & 3/4 & 0 & 1/4 \\ 3/4 & 0 & 1/4 & 0 \end{bmatrix}.$$

Unfair (Weighted) Result C₄

Theorem

Let X be the graph from Figure 1. Let

$$H = \begin{bmatrix} 0 & 1/4 & 0 & 3/4 \\ 1/4 & 0 & 3/4 & 0 \\ 0 & 3/4 & 0 & 1/4 \\ 3/4 & 0 & 1/4 & 0 \end{bmatrix} .$$

PST occurs at time 3 between adjacent vertices a and b for which $H_{ab} = 1/4$. From the definition of H these are the vertex pairs (0,1) and (2,3).

Unfair (Weighted) Result C_4

Proof. Here we use Theorem [8][Theorem 3.6]. The spectral decomposition of the matrix H is the following.

$$H = -1 \cdot E_{-1} + -0.5 \cdot E_{-0.5} + 0.5 \cdot E_{0.5} + 1 \cdot E_1 ,$$

$$E_{-1} = \frac{1}{4} \begin{bmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \end{bmatrix} ,$$

Unfair (Weighted) Result C₄

Unfair (Weighted) Result C₄

As we can see, all pairs of vertices are strongly cospectral. Therefore the pairs of vertices (0,1) and (2,3) are strongly cospectral, satisfying condition (i) in Theorem [1, Theorem 2.2. Additionally we can see that for both pairs of vertices, (0,1) and (2,3), the eigenvalue supports are partitioned into $\Lambda_{ab}^+ = \{1,-0.5\}$ and $\Lambda_{ab}^- = \{-1,0.5\}$. For instance, the columns for the vertices 0 and 1 are of equal, or opposite sign:

$$E_{-1}e_0 = -E_{-1}e_1$$
,
 $E_1e_0 = +E_1e_1$.

??

We found that PST occurs at time t=3, (see Section 4.3). We then see that to satisfy Theorem 1, j will be the even integers 0 and 4 for Λ_{ab}^+ and the odd integers 3 and 1 for Λ_{ab}^+ . Thus we satisfy condition (ii) in Theorem 1, so vertices (0,1) and (2,3) have PST at time 3.

Can we find perfect state transfer on any graph?

Now we introduce a diagonal matrix M that changes the weight of each arc in X, and we form a new unfair, weighted arc-tail incidence matrix N'_t .

$$N_t' = N_t M$$

where

$$M = diag(w'_{a_1}/w_{a_1}, w'_{a_2}/w_{a_2}, \cdots).$$

The numerators of each entry on the diagonal are the new weights for each arc, that is, w_{a_i} is the current weight of arc a_i , and w'_{a_i} is the new desired weight of arc a_i .

We have defined the orthonormal eigenbases V and V' for H and H' respectively:

$$H = VDV^*$$

$$H' = V'D'V'^*$$

Then we can find a matrix P that represents a change of basis matrix between the eigenbases of H and H', so,

$$PV = V'$$

and forall

$$i, Pv_i = v_i'$$

Where v_i is the i^{th} column of V and v_i' is the i^{th} column of V'.

At this point we assume that the matrix P preserves the grouping of eigenvectors. This simplifies the problem, and the proofs below. Further research is required to understand what happens without this assumtion.

Theorem 9.2

Theorem

Assume H and H' have the same eigenvector grouping. λ_i is any eigenvalue for H and λ_i' is the corresponding eigenvalue for H'. Then the eigenprojections of H and H' have the following relationship:

$$E'_{\lambda'_i} = PE_{\lambda_i}P^T$$

Theorem 10.1

Theorem

Vertex states x_a and x_b are strongly co-spectral relative to matrix H' if and only if P^Tx_a and P^Tx_b are strongly co-spectral relative to matrix H.

Theorem 10.2

Theorem

States x_c and x_d , defined as complex unit vectors on the vertices of X are strongly co-spectral relative to H if and only if

$$x_c = a_1 v_1 + \dots + a_n v_n$$

$$x_d = \alpha_1 a_1 v_1 + \dots + \alpha_n a_n v_n$$

where for all $i, |\alpha_i| = 1$, v_i are eigenvectors of H, and v_i, v_j have the same eigenvalue $\implies \alpha_i = \alpha_j$.

Theorem 10.3

Theorem

The relative spins (α_i) in each eigenprojection, as defined for the strongly co-spectral states x_c and x_d , are the same relative spins for the states x_a and x_b when $P^Tx_a = x_c$ and $P^Tx_b = x_d$. That is,

$$x_c = a_1 v_1 + \dots + a_n v_n$$

$$x_d = \alpha_1 a_1 v_1 + \dots + \alpha_n a_n v_n$$

where for all $i, |\alpha_i| = 1$, v_i are eigenvectors of H, and v_i, v_j have the same eigenvalue $\implies \alpha_i = \alpha_j$.

$$P^{\mathsf{T}} x_{\mathsf{a}} = x_{\mathsf{c}}$$
$$P^{\mathsf{T}} x_{\mathsf{b}} = x_{\mathsf{d}}$$

Theorem 10.3 (cont.)

$$x_a = b_1 v'_1 + \dots + b_n v'_n$$

$$x_b = \alpha_1 b_1 v'_1 + \dots + \alpha_n b_n v'_n$$

Lemma 11.3

Lemma

The second condition for PST in Theorem 2.3, is satisfied,

$$e^{it\theta_k}\mu_k=e^{it\theta_s}\mu_s$$

, if and only if

$$t \arccos \lambda_j + \theta_{\mu_k} = t \arccos \lambda_l + \theta_{\mu_s} \pmod{2\pi}$$

Theorem 11.3

Theorem

States x_a and x_b have perfect state transfer relative to the Hermitian adjacency matrix H which is from the quantum walk U if and only if:

1. Vertex states x_a and x_b are strongly co-spectral, that is, for all λ_j there exists $|\mu_j|=1$, such that

$$E_{\lambda_j}x_a = \mu_j E_{\lambda_j}x_b$$

2. There exists $t \in \mathbb{Z}$ such that for all

$$\lambda_j, \lambda_I$$

$$t \arccos \lambda_j + \theta_{\mu_k} = t \arccos \lambda_l + \theta_{\mu_s} \pmod{2\pi}$$

Theorem 11.2

Theorem

States x_a and x_b have perfect state transfer with respect to the matrix H' defined as

$$H' = PVD'V^*P^{-1}.$$

Where V is the eigenbasis of H, and D' is a diagonal matrix of eigenvalues maintaining the grouping of eigenvectors (Theorem 7.1),

if and only if:

Theorem 11.2 (cont.)

(i)

$$P^{T}x_{a} = x_{c} = a_{1}v_{1} + \dots + a_{n}v_{n}$$

 $P^{T}x_{b} = x_{d} = \mu_{1}a_{1}v_{1} + \dots + \mu_{n}a_{n}v_{n}$

where for all $i, |\mu_i| = 1$, v_i are eigenvectors of H, and v_i, v_j have the same eigenvalue $\implies \mu_i = \mu_j$, and $D' = diag(\cdots, \lambda_i, \cdots)$,

(ii) and there exists

$$t\in \mathbb{Z}$$

such that for all λ_j, λ_l

$$t \arccos \lambda_i + \theta_{\mu_k} = t \arccos \lambda_l + \theta_{\mu_s} \pmod{2\pi}$$

Theorem 11.2 (cont.)

where

$$\mu_{k}=\mathrm{e}^{i heta_{\mu_{k}}}$$
 $\mu_{s}=\mathrm{e}^{i heta_{\mu_{s}}}$

Theorem 12.1

We know the matrix P is invertible, and will be used in the following way to construct H':

$$H' = PVD'V^*P^{-1}$$

And we have requirements for the matrix H', representing the quantum walk. These are:

Theorem

H' represents a quantum walk on graph X if and only if

- 1. H' is Hermitian
- 2. H' respects the structure of graph X, i.e. is a weighted adjacency matrix.
- 3. $H' = N_t MRM^* N_t^*$ where M is such that $\sum_{a_i \in A_v} (|w_{a_i}|^2) = 1$, A_v is the set of all arcs that are outgoing from vertex v.

Results

At this point we need inverse eigenvalue problem results which I didn't have time to finish during this MQP.

Folded d-Cube - Pretty Good State Transfer

We say there is *pretty good state transfer* (PGST) from a to b if there is a unimodular $\gamma \in \mathbb{C}$ such that for any $\epsilon > 0$, there is a time $t \in \mathbb{Z}$ such that

$$\left|U^t x_{\mathsf{a}} - \gamma x_{\mathsf{y}}\right| < \epsilon.$$

[8]

Folded d-Cube - Model

Given an abelian group G and an inverse-closed subset C of $G\setminus\{0\}$, the Cayley graph over G with connection set C, denoted X(G,C), is the graph with vertex set G, where two vertices u and v are adjacent if they differ by an element in C. The folded G-cube graph, denoted G0, can be constructed from the G-cube by connecting each pair of antipodal vertices. Equivalently, it is the Cayley graph over \mathbb{Z}_2^d with connection set G1, G2, G3, G4.

Folded d-Cube - Model

Let A_i be the adjacency matrix for $X(\mathbb{Z}_2^d, \{e_i\})$, and A_1 the adjacency matrix for $X(\mathbb{Z}_2^d, \{\mathbf{1}\})$. Then the adjacency matrix for FQ_d is

$$A = A_1 + A_2 + \cdots + A_d + A_1$$
.

Consider a real-weighted adjacency matrix H of X:

$$H = w_1 A_1 + w_2 A_2 + \cdots + w_d A_d + w_1 A_1$$
.

We will find weights $w_1, w_2, \ldots, w_d, w_1$ so that any quantum walk on FQ_d with H as associated real weighted adjacency matrix admits pretty good state transfer between the antipodal vertices. Recall that $H = NRN^*$. To this end, we cite a sufficient condition for pretty good state transfer below.

Folded d-Cube Theorem 3.1

Theorem

[8, Theorem 5.1]. Let X be a connected graph. Let H be a symmetric non-negative adjacency matrix of X, with spectral radius p for some prime p. Let N be any real weighted tail-arc incidence matrix of X such that $H = NRN^T$. Suppose a and p are strongly cospectral relative to p, and p is a subset of

$$\{p-2r: r=0,1,\cdots,p\}$$
.

Then the quantum walk with transition matrix $U = R(2N^TN - I)$ admits pretty good state transfer between a and b if one of the following holds:

(i) for any pair $\lambda, -\lambda \in \Lambda_a$,

$$\lambda \in \Lambda_{ab}^{\pm} \iff -\lambda \in \Lambda_{ab}^{\pm}$$
;

(ii) for any pair $\lambda, -\lambda \in \Lambda_a$,

Folded d-Cube Theorem 3.2

Theorem

Let $X = X(\mathbb{Z}_2^d, \{c_1, c_2, \cdots, c_k\})$. For every element $g \in \mathbb{Z}_2^d$, the character ψ_g is an eigenvector for the weighted adjacency matrix

$$H = w_1 A(X(\mathbb{Z}_2^d, \{c_1\})) + w_2 A(X(\mathbb{Z}_2^d, \{c_2\})) + \cdots + w_k A(X(\mathbb{Z}_2^d, \{c_k\}))$$

and $\sum_{i=1}^{k} w_i \psi_g(c_i)$ is the associated eigenvalue. Equivalently, for every $g \in \mathbb{Z}_2^d$,

$$H\psi_{g} = \left(\sum_{i=1}^{k} w_{i} \psi_{g}(c_{i})\right) \psi_{g}.$$

Folded d-Cube Lemma 3.3

Lemma

Let H be the weighted adjacency matrix of the folded d-cube as defined in Equation (??). For each element $g \in \mathbb{Z}_2^d$, the character ψ_g defined by $\psi_g(a) = (-1)^{\langle g,a \rangle}$ for each $a \in \mathbb{Z}_2^d$, is an eigenvector for H with eigenvalue λ_g , where

$$\lambda_g = \begin{cases} 2d - 4\operatorname{wt}(g) + m, & \text{if } \operatorname{wt}(g) \equiv 0 \pmod{2} \\ 2d - 4\operatorname{wt}(g) - m, & \text{if } \operatorname{wt}(g) \equiv 1 \pmod{2} \end{cases}.$$

Folded d-Cube Lemma 3.4, Lemma 3.5

Lemma

The spectral radius of the weighted adjacency matrix H of the folded d-cube is 2d + m.

Lemma

Let

$$H = 2A_1 + 2A_2 + \cdots + 2A_d + mA_1$$

be a weighted adjacency matrix of the folded d-cube such that $\rho(H)$ is a prime p. Then the eigenvalues of H form a subset of

$$\{p-2r: r=0,1,\cdots,p\}$$
.

Folded d-Cube Lemma 3.6, Lemma 3.7

Lemma

Let g and h be two elements of \mathbb{Z}_2^d . Let λ_g and λ_h be the eigenvalues of H associated with the eigenvectors ψ_g and ψ_h . Then $\lambda_g = \lambda_h$ if and only if $\operatorname{wt}(g) = \operatorname{wt}(h)$.

Lemma

Let H be a real weighted adjacency matrix of X with order n. Let a and b be two vertices in X. Let $\{x_1, x_2, \ldots, x_n\}$ be a set of orthogonal eigenvectors of H. Then a and b are strongly cospectral relative to H if and only if the following hold.

- (i) For each i, we have $\langle e_a, x_i \rangle = \pm \langle e_b, x_i \rangle$.
- (ii) If x_i and x_j are eigenvectors of H for the same eigenvalue, then either

$$\langle e_a, x_i \rangle = \langle e_b, x_i \rangle, \quad \langle e_a, x_i \rangle = \langle e_b, x_i \rangle,$$

Perfect and Pretty Good State Transfer in Wo

or

$$\langle e_a, x_i \rangle = -\langle e_b, x_i \rangle, \quad \langle e_a, x_j \rangle = -\langle e_b, x_j \rangle$$

Folded d-Cube Lemma 3.8, Corollary 3.9

Lemma

Let H be the adjacency matrix of the folded d-cube. The eigenvectors found by Theorem 13 are orthogonal.

Corollary

Let d be a positive integer. Let m be an odd integer such that 2d + m is a prime. Let

$$H = 2A_1 + 2A_2 + \cdots + 2A_d + mA_1$$

be the weighted adjacency matrix of the folded d-cube FQ_d . Then the vertices ${\bf 0}$ and ${\bf 1}$ are strongly cospectral relative to H.

Folded d-Cube Lemma 3.10

Lemma

The eigenvalue supports of a = 0 and b = 1 satisfy condition (ii) from Theorem 12 ([8, Theorem 5.1]).

Folded d-Cube Theorem 3.11

Theorem

Let

$$H = 2A_1 + 2A_2 + \cdots + 2A_d + mA_1$$

be a weighted adjacency matrix for the folded d-cube

$$FQ_d = X(\mathbb{Z}_2^d, \{e_1, e_2, \cdots, e_k, \mathbf{1}\})$$

such that 2d + m is prime. Let N be any real weighted arc-tail incidence matrix of FQ_d which satisfies the equation $H = NRN^*$. Then the quantum walk on FQ_d with transition matrix $U = R(2N^TN - I)$ has PGST between vertices $a = \mathbf{0}$ and $b = \mathbf{1}$.

[4, Chapter 6]

Folded d-Cube Theorem 3.11 Proof

Proof. The weighted folded d-cube has a non-negative adjacency matrix and by Lemma 15, has a spectral radius of 2d+m which is prime. Let p=2d+m. By Lemma 16 we have shown that the eigenvalues, and therefore the eigenvalue support Λ_a for vertex a is a subset of

$$\{p-2r: r=0,1,\cdots,p\}$$
.

By Lemma 20 we have shown that $\bf 0$ and $\bf 1$ are strongly cospectral vertices, thus $\Lambda_a=\Lambda_{ab}$. By Lemma 21 we have shown that the eigenvalue support of a, $\Lambda_a=\Lambda_{ab}$ satisfies condition (ii) in Theorem 12. Thus this weighting of the folded d-cube enables PGST between vertices $\bf 0$ and $\bf 1$.

References

- Jake Brady, Peter Cancilla, Kristen Heller, William Martin, Amulya Mohan, and Hanmeng Zhan, CS: MQP: Rare Phenomena in Quantum Walks, Tech. report.
- Ada Chan and Hanmeng Zhan, *Pretty good state transfer in discrete-time quantum walks*, Journal of Physics A: Mathematical and Theoretical **56** (2023), no. 16, 165305, Publisher: IOP Publishing.
- Kenneth Chang, Quantum Computing Advance Begins New Era, IBM Says, The New York Times (2023) (en-US).
- Chris Godsil, *Association schemes*, Combinatorics Optimization (2010).
- Lov K. Grover, A fast quantum mechanical algorithm for database search Proceedings of the twenty-eighth annual Author Perfect and Pretty Good State Transfer in W May 10, 2025

References

- Jake Brady, Peter Cancilla, Kristen Heller, William Martin, Amulya Mohan, and Hanmeng Zhan, CS: MQP: Rare Phenomena in Quantum Walks, Tech. report.
- Ada Chan and Hanmeng Zhan, *Pretty good state transfer in discrete-time quantum walks*, Journal of Physics A: Mathematical and Theoretical **56** (2023), no. 16, 165305, Publisher: IOP Publishing.
- Kenneth Chang, Quantum Computing Advance Begins New Era, IBM Says, The New York Times (2023) (en-US).
- Chris Godsil, *Association schemes*, Combinatorics Optimization (2010).
- Lov K. Grover, A fast quantum mechanical algorithm for database search. Proceedings of the twenty-eighth annual Author. Perfect and Pretty Good State Transfer in W. May 10, 2025

Thank you!

Thank you for listening, and thank you to Professor William Martin and Professor Hanmeng Zhan.