Aufgabe 1 (20 Punkte)

L sei die Sprache, die aus allen Wörtern über dem Alphabet $\{a,b\}$ gebildet wird, die mindestens ein Zeichen dreimal hintereinander enthalten.

Beispielwörter: aabbaababababababababa, baaaab

(a) Geben Sie einen endlichen deterministischen Automaten A an mit L(A) = L.

(b) Konstruieren Sie systematisch aus A eine lineare Grammatik G, welche L(A) erzeugt und geben Sie die Definition der Grammatik vollständig in Tupelschreibweise an.

Aufgabe 2 (15 Punkte)

Minimieren Sie folgenden Automaten $A=(\{0,1\}, \{s0, s1, s2, s3, s4, s5, s6, s7\}, s0, \delta_A, \{s3, s5, s6, s7\})$ und geben Sie das Resultat in Form des Zustandsgraphen an.

$\delta_{\!A}$	0	1
s0	s7	s5
s1	s6	s1
s2	s7	s3
s3	s2	s3
s4	s3	s5
s5	s0	s3
s6	s1	s0
s7	s1	s2

Aufgabe 3 (10 Punkte)

Gegeben seien drei endliche zusammenhängende Automaten A1, A2 und A3.

A1 habe 6 Zustände, davon 2 Endzustände. A2 und A3 haben jeweils 4 Zustände, davon ebenfalls jeweils 2 Endzustände.

Ferner gelte: A2 ist zu A1 minimal.

Was können Sie über die Äquivalenz und Isomorphie der Automaten A1, A2, A3 zueinander sagen, wenn A1 und A3 äquivalent sind? Begründen Sie jeweils kurz.

Beachten Sie:

- Nur begründete Antworten werden gewertet!
- Falsche Antworten werden wie nicht beantwortete Fragen gewertet.
- Die Reihenfolge der Bearbeitung können Sie frei bestimmen.

A1, A3 isomorph ja nein	
Begründung:	
A1, A2 äquivalent ja nein	A1, A2 isomorph ja nein
Begründung:	
A2, A3 äquivalent ja nein	A2, A3 isomorph ja nein
Begründung:	

Aufgabe 4 (25 Punkte)

Sei $L = \{x \in \{a,b\}^+ \mid /x/_a = /x/_b\}$ gegeben.

(a) Beweisen Sie, dass L nicht regulär ist.

(b) Geben Sie einen Kellerautomaten K mit $L(K) = L$ in Form seines Zustandsgraphen an. Die formale Definition des Automaten in Tupelschreibweise ist nicht erforderlich.				
Geben Sie hier an, welches Akzeptanzkriterium Sie wählen:				
	über Endzustand		über leerem Keller	

Aufgabe 5 (10 Punkte)

Sei $G = (\{S\}, \{a,b,c\}, S, \{S \rightarrow SaSbS \mid SbSaS \mid cS \mid \varepsilon \})$ gegeben.

(a) Geben Sie einen Strukturbaum für das Wort abbca an.

(b) Geben Sie die durch G erzeugte Sprache in Mengenschreibweise oder in ihren eigenen Worten an.

Aufgabe 6 (20 Punkte)

Sei $L = \{a^n b^{2n} | n \ge 0\}$ gegeben. Beispielwörter: *abb*, *aaaabbbbbbbb*

(a) Welchen Typ besitzt die Sprache L in der Chomsky-Hierarchie? (kurze Begründung, kein formaler Beweis)

(b) Konstruieren Sie einen Turingautomaten, der L akzeptiert, und geben Sie dessen Zustandsgraphen an! Die formale Definition in Tupelschreibweise ist nicht erforderlich.

(Fortsetzung Aufgabe 6)

- (c) Geben Sie die Konfigurationsfolge des Automaten für das Beispielwort *abb* als Eingabe an. Geben Sie dazu die Konfigurationen als Tupel an **oder** notieren Sie diese in einer Tabelle mit drei Spalten, die für jeden Verarbeitungsschritt angibt:
 - i. den aktuellen Zustand des Automaten
 - ii. den Bandinhalt links vom Schreib-Lese-Kopf
 - iii. den Bandinhalt rechts vom Schreib-Lese-Kopf, einschließlich des Zeichens unter diesem