数据分析作业2

——医疗数据分析

16337053 信息安全 杜锦文

环境及工具

SAS STUDIO UNIVERSITY EDITION

数据分析实例

1. 线性回归分析

假设误差服从分布 N(0,sigma2),建立个人医疗费用和 3 个定量变量之间的线性回归方程并研究相应的统计推断问题。

用前 1333 条数据进行线性回归拟合。

用最后 5 条数据进行测试。预测他的个人医疗费用,并给出置信度为 95%的置信区间。

分析思路

导入文件;

利用SAS的reg过程对模型charges=age bmi children进行分析;

选项cli进行预测,计算置信区间,设置显著性水平为0.05。

CODE

```
PROC IMPORT DATAFILE='/folders/myfolders/data.csv' REPLACE

DBMS=CSV

OUT=data0;

GETNAMES=YES;

RUN;

proc reg data=data0;

model charges=age bmi children/cli alpha=0.05;
```

结果详情见文件'\result\1.pdf'

SAS 结果

参数估计								
变量	自由度	参数 估计	标准 误差	t 值	Pr > t			
Intercept	1	-6872.96706	1761.15212	-3.90	<.0001			
age	1	237.74407	22.38976	10.62	<.0001			
bmi	1	333.74999	51.40407	6.49	<.0001			
children	1	546.27972	259.03701	2.11	0.0351			

REG 过程									
	模型: MODEL1								
	因变量: charges								
	输出统计量								
	因	预测	标准 误差 均值		残差				
观测	变量	值	预测	95% 置信	95% 置信预测				
1334	10601	16997	621.3538	-5346	39340	-6396			
1335	2206	8004	632.5175	-14340	30348	-5798			
1336	1630	9641	723.7985	-12714	31996	-8011			
1337	2008	6691	609.0028	-15650	29033	-4683			
1338	29141	17377	662.4615	-4970	39725	11764			

SAS 分析

如图,可以得到线性拟合方程 charges=237.74age+333.75bmi+546.28children-6872.97

2. 方差分析

1. 假设个人医疗费用服从方差分析模型,比较不同性别对个人医疗费用是否有显著(显著水平为 0.05)差异。

分析思路

导入文件;

利用SAS的anova过程对模型charges=sex进行分析可以得到结果;

Class选项设置非参数单因素为sex;

means语句计算主效应sex不同水平所对应的因变量均值,设置显著性水平为0.05。

CODE

```
PROC IMPORT DATAFILE='/folders/myfolders/data.csv' REPLACE

DBMS=CSV

OUT=data0;

GETNAMES=YES;

RUN;

proc anova data=data0;

class sex;

model charges=sex;

means sex/alpha=0.05;

run;
```

SAS 结果

	ANOVA 过程									
因变量: charges										
源 自由度 平方和 均方 F值 Pr >									·F	
模	型	1	64359018	643590180.13		0180.13		4.40	0.03	61
误	差	1336	195430631388		146280	0412.72				
校	校正合计 1337		196074221568							
		R方	变异系数	均方	根误差	cha	arges	均值		
	0.003282		91.13986	12094.64			13270.42			
	源	自由度	Anova SS		坞	方	F值	Pi	' > F	
	sex	1	643590180	.1 6	4359018	0.1	4.40	0.0	0361	

结果详情见文件'\result\2a.pdf'

SAS 分析

可以看到 sex 的 p 值为 0.0361, 小于 0.05, 拒绝原假设, 认为不同性别对个人医疗费用有显著差异。

2. 利用方差分析知识(两因素等重复试验下),假设个人医疗费用服从两因素的方差分析模型,对性别、是否吸烟两个因素,对方差进行分析(显著水平为0.05)。

分析思路

导入文件;

利用SAS的glm过程对模型charges=sex smoker进行分析可以得到结果;

Sex smoker是指对sex、smoker和sex*smoker进行分析;

Class选项设置非参数因素为sex smoker;

means语句计算主效应sex smoker不同水平所对应的因变量均值,SNK为SNK测验,设置显著性水平为0.05。

SAS 结果

源	自由度	I型 SS	均方	F值	Pr > F
sex	1	643590180.13	643590180.13	11.59	0.0007
smoker	1	120877734754	120877734754	2177.28	<.0001
sex*smoker	1	492339740.81	492339740.81	8.87	0.0030
源	自由度	III 型 SS	均方	F值	Pr > F

源	自由度	III型SS	均方	F值	Pr > F
sex	1	151971572.34	151971572.34	2.74	0.0983
smoker	1	117186564802	117186564802	2110.80	<.0001
sex*smoker	1	492339740.81	492339740.81	8.87	0.0030

SAS 分析

从图得到 smoker 的 p 值均小于 0.05, sex 的 p 值存在大于 0.05 的现象,则认为是否吸烟对个人医疗费用有显著影响,而性别不是。

更明显的关系我们可以从下面的箱线图中看到:

SAS 分析

很明显,可以说性别对个人医疗支出没有显著影响,而是否吸烟对个人医疗支出有显著影响。