

Bivariate Data Analysis

Bivariate Data Analysis

- Covariance
- Correlation
- Collinearity
- Multicolline % (ty)
- Variance inflation Factor
- Hom/scedasticity
- Heteroscedasticity

COVARIANCE

COVARIANCE

Large Positive Covariance

Nearly Zero Covariance

Large Negative Covariance

COVARIANCE

Population Covariance Formula

$$Cov(x,y) = \frac{\sum (x,-\overline{x})(y,-\overline{y})}{N}$$

Sample Covariance

$$Cov(x,y) = \frac{\sum (x,-\overline{x})(y,-y)}{N-1}$$

Notations in Covariance Formulas

- x_i = data value of x
- y_i = data value of y
- x̄ = mean of x
- ȳ = mean of y
- N = number of data values.

CORRELATION

$$r_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$

Where:

- \mathbf{r}_{xy} the correlation coefficient of the linear relationship between the variables x and y
- x_i the values of the x-variable in a sample
- $\bar{\mathbf{x}}$ the mean of the values of the x-variable
- y_i the values of the y-variable in a sample
- \bar{y} the mean of the values of the y-variable

ALL ABOUT CORRELATION

SEE THE PICTURE AND TELL THE STORY

TYPES OF CORRELATION:: LINEAR TYPE WITH TWO VARIABLES

POSITIVE CORRELATION

Independent Variable is directly proportional to Dependant Variable

 $I.V \alpha D.V$

NEGATIVE CORRELATION

Independent Variable is indirectly proportional to Dependent Variable

ZERO CORRELATION

ZERO CORRELATION

No pattern between Independent Variable
And Dependant Variable

