Homework 10

Math 55b Due Tuesday, 14 April 2009.

Notation: $\Delta = \{z : |z| < 1\}.$

- 1. Let $p(z) = z^3 + z^n$ with $n \ge 3$. Prove that p(z) = 1 for some z with $\operatorname{Re} z < 0$.
- 2. Give an expression for $\sin(x+iy)$ in terms of real-valued spherical and hyperbolic sines and cosines. Where are the zeros of the function $\sin(z)$ on \mathbb{C} ?
- 3. Suppose $f(z) = \sum a_n z^n$ is analytic for |z| < 1. Prove that for any r < 1, we have

$$\int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \sum |a_n|^2 r^{2n}.$$

- 4. Given $J \in M_2(\mathbb{R})$, let $\mathbb{R}[J] \subset M_2(\mathbb{R})$ denote the set of matrices of the form aI + bJ, $a, b \in \mathbb{R}$. (i) Prove that $\mathbb{R}[J]$ is closed under addition and (matrix) multiplication. (ii) When do these two operations make $\mathbb{R}[J]$ into a field?
- 5. Prove that for any polynomial p(z) there exists a $z \in S^1$ such that $|\overline{z} p(z)| \ge 1$.
- 6. Let $u \in C(\overline{\Delta})$ be a real-valued continuous function on the unit disk which is harmonic on its interior. Prove that for any $p \in \Delta$, we have

$$u(p) = \frac{1}{2\pi} \int_{S^1} \frac{1 - |p|^2}{|z - p|^2} u(z) \, |dz|.$$

(Hint: for p=0 this is just the mean value theorem; reduce to this case using a Möbius transformation $f: \Delta \to \Delta$ such that f(p)=0.)

- 7. Prove Hadamard's 3-circles theorem: if f(z) is analytic on the annulus $R_1 < |z| < R_2$, and $M(r) = \sup_{S^1(r)} |f(z)|$, then $\log M(e^s)$ is a convex function of $s \in (\log R_1, \log R_2)$. (Hint: apply the maximum principle to the function $z^{\alpha}f(z)$ for suitable $\alpha \in \mathbb{R}$.)
- 8. Let u and v be smooth functions on $\overline{\Delta}$ such that $u|\Delta$ is harmonic and $u|S^1=v|S^1$. Show that

$$\int_{\Delta} |\nabla v|^2 \ge \int_{\Delta} |\nabla u|^2.$$

- 9. Let $\sum a_n z^n$ be the Laurent series for $f(z) = 1/(e^z 1)$ near z = 0. Find a_n for all $n \leq 3$. What is the radius of convergence of this series?
- 10. Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function satisfying f(a+b) = f(a)f(b) for all $a, b \in \mathbb{C}$. Prove that either f(z) = 0 or $f(z) = \exp(\alpha z)$ for some $\alpha \in \mathbb{C}$.