

Preparatory work for the Master Thesis

Machine learning for analysis of EEG signals in neurosciences.

Lemahieu Antoine

Faculté des Sciences Université Libre de Bruxelles

March 24, 2021

What has been done (From 03/03 to 24/03):

- ► Keep reading articles and gathering information about EEG and object recognition.
- Started looking into real EEG data and implementation (ThoughtViz)

Ventral Stream Pathway & Timings

How does the brain perform object recognition ?

Ventral stream pathway [1]

Ventral Stream pathway & Timings

What are the timings for objects recognition?

Onset and peak decoding times [2]

Based on Carlson et al. [3] and Cichy et al. [4]

Datasets and implementation

MindBigData,
"IMAGENET" of the brain.
I ink

: http://www.mindbigdata.com/opendb/imagenet.html

Uses the "Emotiv Insight" headset.
Commercial and low-priced.
Covers 5 channels following the "10-20" system.

AF3, AF4, T7, T8 and Pz (cyan).

Electrodes placement

Lemahieu Antoine

Datasets and implementation

EEG available for lots of different classes of images (more than 500), but a few EEG data for each class (around 20-25).

However, no articles using the dataset.

Example of EEG data of the MindBigData "IMAGENET" dataset

Datasets and implementation

Other datasets:

- MindBigData, "MNIST" of the brain. Link: http://www.mindbigdata.com/opendb/index.html
- ► ThoughtViz [5]

Advantages of "MNIST" of the brain, made with multiple headsets. Largest dataset with the headset "Emotiv EPOC".

Around 90.000 EEG samples per digit.

The ThoughtViz uses another dataset [6], also made with "Emotiv EPOC".

The used dataset and the implementation are available.

Link : https://github.com/ptirupat/ThoughtViz

Datasets and implementation

The "Emotiv EPOC" headset has 14 channels (2 channels are references).

Electrodes placement on the "Emotiv EPOC" headset [6]

Datasets and implementation

The ThoughtViz article [5] is based on the article "Envisioned speech recognition using EEG sensors" [6] and does more than EEG classification.

The EEG classification uses CNN, LSTM and a combination of these architectures.

Biggest part is the generation of images from the EEG.

Datasets and implementation

Sample of 10 classes of objects generated. Columns 1-9 are generated images, last column is an random image from the training set.

Planning

- ► Keep reading articles and have as much information as possible.
- ▶ Try implementing the EEG classifier of [5] and [6].

Lemahieu Antoine

References I

- [1] James J. DiCarlo, Davide Zoccolan, and Nicole C. Rust. "How Does the Brain Solve Visual Object Recognition?" In: Neuron 73.3 (2012), pp. 415–434. ISSN: 0896-6273. DOI: https://doi.org/10.1016/j.neuron.2012.01.010.
- [2] Erika W. Contini, Susan G. Wardle, and Thomas A. Carlson. "Decoding the time-course of object recognition in the human brain: From visual features to categorical decisions". In: Neuropsychologia 105 (2017). Special Issue: Concepts, Actions and Objects: Functional and Neural Perspectives, pp. 165–176. ISSN: 0028-3932. DOI: https://doi.org/10.1016/j.neuropsychologia.2017.02.013.
- [3] Thomas Carlson et al. "Representational dynamics of object vision: The first 1000 ms". In: Journal of Vision 13.10 (Aug. 2013), pp. 1-1. ISSN: 1534-7362. DOI: 10.1167/13.10.1. eprint: https://arvojournals.org/arvo/content_public/journal/jov/932805/i1534-7362-13-10-1.pdf.
- [4] Radoslaw Martin Cichy, Dimitrios Pantazis, and Aude Oliva. "Resolving human object recognition in space and time". In: Nature Neuroscience 17.3 (2014), pp. 455–462. DOI: 10.1038/nn.3635.

References II

- [5] Praveen Tirupattur et al. "ThoughtViz: Visualizing Human Thoughts Using Generative Adversarial Network". In: Proceedings of the 26th ACM International Conference on Multimedia. MM '18. Seoul, Republic of Korea: Association for Computing Machinery, 2018, pp. 950–958. ISBN: 9781450356657. DOI: 10.1145/3240508.3240641.
- [6] Pradeep Kumar et al. "Envisioned speech recognition using EEG sensors". In: Personal and Ubiquitous Computing 22.1 (Feb. 2018), pp. 185–199. ISSN: 1617-4917. DOI: 10.1007/s00779-017-1083-4.