

Boosting approaches with multi-label imbalanced data problem

Aleksandr Kolomeitsev, Yekaterina Smolenkova, Dmitriy Topchiy, Lada Karimullina

Machine Learning, 2024

19.03.2024

Project description

Explore methods for improving the performance of boosting algorithms in multi-label classification tasks, especially handling unbalanced datasets.

Experiment 1

Explore the impact of base learners under the boosting procedure

Experiment 2

Study preprocessing operators impact on the performance of the boosting algorithms

Experiment 3

Implement combined ensemble techniques with data-level approach resampling methods

References

SURVEY PAPER

Open Access

Boosting methods for multi-class imbalanced data classification: an experimental review

Jafar Tanha^{*} O, Yousef Abdi, Negin Samadi, Nazila Razzaghi and Mohammad Asadpour

*Correspondence: tanha@tabrizu.ac.ir Faculty of Electrical and Computer Engineering, University of Tabriz, PO. Box 51666-16471, Tabriz, Iran

Abstract

Since canonical machine learning algorithms assume that the dataset has equal number of samples in each class, binary classification became a very challenging task to discriminate the minority class samples efficiently in imbalanced datasets. For this reason, researchers have been paid attention and have proposed many methods to deal with this problem, which can be broadly categorized into data level and algorithm level. Besides, multi-class imbalanced learning is much harder than binary one and is still an open problem. Boosting algorithms are a class of ensemble learning methods in machine learning that improves the performance of separate base learners by combining them into a composite whole. This paper's aim is to review the most significant published boosting techniques on multi-class imbalanced datasets. A thorough empirical comparison is conducted to analyze the performance of binary and multi-class boosting algorithms on various multi-class imbalanced datasets. In addition, based on the obtained results for performance evaluation metrics and a recently proposed criteria for comparing metrics, the selected metrics are compared to determine a suitable performance metric for multi-class imbalanced datasets. The experimental studies show that the CatBoost and LogitBoost algorithms are superior to other boosting algorithms on multi-class imbalanced conventional and big datasets, respectively. Furthermore, the MMCC is a better evaluation metric than the MAUC and G-mean in multi-class imbalanced data domains.

Keywords: Boosting algorithms, Imbalanced data, Multi-class classification, Ensemble learning

Introduction

Imbalanced data set classification is a relatively new research line within the broader context of machine learning studies, which tries to learn from the skewed data distribution. A data set is imbalanced when the samples of one class consist of more instances than the rest of the classes in two-class and multi-class data sets [1]. Most of the standard machine learning algorithms show poor performance in this kind of data-sets, because they tend to favor the majority class samples, resulting in poor predictive accuracy over the minority class [2]. Therefore, it becomes tough to learn the rare but

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 40 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provided a link to the Creative Commons Incence, and indicate of thorages were made. The images or other third pary material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/incense/solv/41/.

Reference paper

J. Tanha, Y. Abdi, N. S. N. R. M. A. Boosting methods for multi-class imbalanced data classification: an experimental review. Journal of Big Data, pp. 1–47, 2020.

Datasets

UC Irvine Machine Learning Repository https://archive.ics.uci.edu/

Data description

15 small (<60k) and 1 big dataset (581k)

Data description

Boosters Team

5

- -MEBoost
- -AdaBoost
- -RUSBoost
- -LogitBoost
- -GradientBoosting

- -XGBoost
- -SMOTEBoost
- CatBoost

0000

Baseline

		Top-Performing	
Dataset	MeanIR	Algorithm	F1
Pen-Based_Recognition_of_Handwritten_Digits	0.961	XGBoost	0.989
Hayes_Roth	0.856	LogitBoost	0.891
Wine	0.836	AdaBoost	0.983
Contraceptive_Method_Choice	0.781	RUSBoost	0.461
Balance_Scale	0.723	AdaBoost	0.857
Differentiated_Thyroid_Cancer_Recurrence	0.696	LogitBoost	0.979
Vertebral_Column	0.689	AdaBoost	0.862
Dermatology	0.538	AdaBoost	0.98
Thyroid_Disease	0.478	CatBoost	0.962
Glass_Identification	0.469	LogitBoost	0.744
Heart_Disease	0.371	LogitBoost	0.561
Car_Evaluation	0.357	XGBoost	0.974
Yeast	0.321	AdaBoost	0.582
Covertype	0.293	XGBoost	0.87
Statlog_Shuttle	0.182	XGBoost	0.998

Experiment 1: base_estimators

SupportVectorClassifier

DecisionTreeClassifier

ExtraTreeClassifier

DecisionTreeRegressor

LogisticRegression

Experiment 1: base_estimators

Results comparison for the Vertebral dataset

Top-Performing Algorithm	Top-Performing base_learner	F1	F1_baseline
MEBoost	DecisionTreeClassifier	0.847	0.753
AdaBoost	DecisionTreeClassifier	0.904	0.862
LogitBoost	DecisionTreeRegressor	0.848	0.816
GradientBoostingClassifier	DecisionTreeRegressor	0.875	0.857
SMOTEBoost	ExtraTreeClassifier	0.841	0.546
RUSBoost	DecisionTreeClassifier	0.844	0.739

Experiment 2: Preprocessing

Results comparison for the Vertebral dataset

Top-Performing Algorithm	Top-Performing Resampler	F1	F1_baseline	
MEBoost	normalizer	0.784	0.753	
AdaBoost	polynomial	0.913	0.862	
LogitBoost	polynomial	0.927	0.816	
GradientBoostingClassifier	polynomial	0.905	0.857	
XGBClassifier	normalizer	0.924	0.906	
CatBoostClassifier	polynomial	0.912	0.877	

Experiment 3: Using samplers

- RUS (written from scratch)
- RandomOverSampler
- SMOTE
- BorderlineSMOTE
- ClusterCentroids
- NearMiss
- EditedNearestNeighbours
- RepeatedEditedNearestNeighbo
- CondensedNearestNeighbour
- OneSidedSelection
- NeighbourhoodCleaningRule

Taken from: https://imbalanced-learn.org/stable/under-sampling.html

The influence of the sampler on the effectiveness of learning (Via F1).

Dataset: Wine (MeanIR = 0.836). Algorithm: LogitBoost

The influence of the sampler on the effectiveness of learning (Via F1).

Dataset: Dermatology (MeanIR = 0.538). Algorithm: LogitBoost

The influence of the sampler on the effectiveness of learning (Via F1). Dataset: Balance_Scale (MeanIR = 0.723). Algorithm: AdaBoost

Experiment 3: Using samplers

Results comparison for the Vertebral dataset

Top-Performing Algorithm	Top-Performing Resampler	F1	F1_baseline	
MEBoost	SMOTE	0.858	0.753	
AdaBoost	BorderlineSMOTE	0.865	0.862	
LogitBoost	BorderlineSMOTE	0.856	0.816	
GradientBoostingClassifier	OneSidedSelection	0.86	0.857	
XGBClassifier	BorderlineSMOTE	0.912	0.906	
CatBoostClassifier	BorderlineSMOTE	0.892	0.877	

All results

Experiment 1

AdaBoost with DecisionTreeClassifier base-learner showed the best F1 score on almost all datasets in compared with other combinations of algorithms and base-learners as well as the base result.

Experiment 2

LogidBoost with polynomial resampler showed the best F1 score in compare with other combinations of algorithms and resamplers and also with baseline score. AdaBosot with various preprocessors - such as the polynomial resampler consistently yielded high F1 scores above the baseline.

Experiment 3

XGBClassifie with BorderlineSMOTE resampler showed the best F1 score in compare with other combinations of algorithms and resamplers and also with baseline score. However, It is worth to notice that combination MEBoost with SMOTE resampler has significantly increased F1 score in compare with baseline result.

All results

Defeat	Marado	Top-Performing	E4 local conference	
Dataset	MeanIR	Algorithm	F1 best performance	F1 baseline
Pen-Based_Recognition	0.961	AdaBoost	0.995	0.989
Hayes_Roth	0.856	AdaBoost	0.908	0.891
Wine	0.836	AdaBoost	0.989	0.983
Contraceptive_Method_Choice	0.781	GradientBoost	0.681	0.461
Balance_Scale	0.723	AdaBoost	0.956	0.857
Differentiated_Thyroid	0.696	GradientBoost	0.987	0.979
Vertebral_Column	0.689	AdaBoost	0.904	0.862
Dermatology	0.538	AdaBoost	0.987	0.98
Thyroid_Disease	0.478	AdaBoost	0.981	0.962
Glass_Identification	0.469	AdaBoost	0.841	0.744
Heart_Disease	0.371	AdaBoost	0.824	0.561
Car_Evaluation	0.357	AdaBoost	0.974	0.974
Yeast	0.321	AdaBoost	0.836	0.582
Statlog_Shuttle	0.182	GradientBoost	0.998	0.998

Boosters team

Aleksandr Kolomeitsev

LOGITBoost MEBoost 3rd experiment

Yekaterina Smolenkova

RUSBoost 1st experiment

Lada Karimullina

ADABoost Baseline

Dmitriy Topchiy

GradientBoost

2nd experiment