Cours de compilation

Arnaud Lefebvre

5 février 2024

Code source

Code source C, Java. . .

```
Binclude catdlib.hb
sinclude catdlib.hb
int fibonacci(int n);
int main(void) {
    int rang:
        print('qual rang do lo suite de Fibonacci
        print('qual rang do lo suite de Fibonacci
        print('qual rang do lo suite de Fibonacci
        print('ferreur de saisin'n');
        exit(EXIT_FAILURE);
        exit(EXIT_FAILURE);
        print('FiboNacci(rang);
        print('FiboNacci(rang);
        return EXIT_BUCCESS);
```


Code source C, Java. . .

```
Binclude catdlib.hb
sinclude catdlib.hb
int fibonacci(int n);
int main(roid) {
    int range | range |
```

Code cible (natif)

Code source C, Java...

```
Binclude satellib.b
int fibonacci(int n);
int main(void) {
    int fibonacci(int n);
    int rang;
    print("sol rang do lo suite do fibonacci
        print("sol", &rang) != 1 [] rang < 0) {
        print("force de saisin");
        exit(EXIT_FALUME);
        int no fibonacci(rang);
        print("fibolible) = %div", rang, fn);
        return EXIT_BOUCES;
    }
}</pre>
```

```
Code cible (natif)
assembleur, byte code, binaire...
```


Un compilateur c'est un logiciel qui sait :

Un compilateur c'est un logiciel qui sait :

• traduire d'un langage (code source) à un autre (code cible)

Un compilateur c'est un logiciel qui sait :

- traduire d'un langage (code source) à un autre (code cible)
- analyser le code source :
 - analyse lexicale
 - analyse syntaxique
 - analyse sémantique

Un compilateur c'est un logiciel qui sait :

- traduire d'un langage (code source) à un autre (code cible)
- analyser le code source :
 - analyse lexicale
 - analyse syntaxique
 - analyse sémantique
- optimiser le code cible :
 - supprimer le code mort
 - générer du code rapide
 - ...

Architecture d'un compilateur

Un compilateur : comment?

Développer un compilateur est très difficile et nécessite de solides connaissances théoriques et pratiques :

- types de données abstraits : piles, arbres, automates,...
- théorie des langages (grammaires)
- théorie des arbres (arbres syntaxiques. . .)
- théorie des automates (expressions régulières...)
- assembleur(s) (langages cibles)
- . . .

Des outils puissants

Heureusement pour nous, il existe des outils très puissants d'aide au développement d'un compilateur. Nous en utiliserons deux dans le cadre de ce cours :

- flex : générateur d'analyseur lexical
- bison : générateur d'analyseur syntaxique

Le langage utilisé dans ce cours est le C.

Architecture d'un compilateur

Ce qu'il « reste » à faire

- implanter la table des symboles
- donner au générateur d'analyseur lexical les expressions régulières adaptées au langage à compiler
- donner au générateur d'analyseur syntaxique la grammaire associée au langage à compiler
- en profiter pour vérifier la sémantique
- générer du code assembleur (si possible optimisé)

Le processeur cible

Un processeur est composé :

- d'un registre d'instruction : contient l'adresse de la prochaine instruction
- de registres généraux : contiennent les données qui vont être utilisées
- d'un registre d'état : contient des informations sur le résultat de la dernière instruction exécutée. Ces informations sont stockées sous forme de bits (flags)
- d'un pointeur de pile : contient l'adresse du sommet de pile
- de la mémoire cache
- des unités arithmétiques, logiques, de calculs en virgules flottantes, des bus, une unité de contrôle...

Le processeur cible

Chaque processeur possède son propre langage assembleur, en fonction du nombre et de la taille de ses registres et de son jeu d'instructions. Le développement d'un compilateur doit prendre en compte tous ces

Le développement d'un compilateur doit prendre en compte tous ces paramètres.

Dans le cadre de ce cours, nous utiliserons un émulateur de processeur (SIPro) ainsi que le programme d'assemblage (ASIPro) qui lui est associé, développés par N. Bedon et disponibles sur github :

https://github.com/NicolasBedon/asipro.git.

L'outil flex

flex est un générateur d'analyseur lexical. Il permet :

- d'analyser une entrée écrite dans un certain langage (C, Java, LATEX,
 ...) en fonction d'expressions régulières
- de produire un flux de tokens, c'est-à-dire de couples (unité lexicale, valeur optionnelle) décrivant l'entrée : ce flux constituera l'entrée de l'analyseur syntaxique
- de détecter certaines erreurs dans le code source

$$a = 5 * (b + 2);$$

$$a = 5 * (b + 2);$$

$$a = 5 * (b + 2);$$

$$a = 5 * (b + 2);$$

$$a = 5 * (b + 2);$$

$$a = 5 * (b + 2);$$

Format d'un fichier flex

```
%{
  Code C
%}
  Définitions flex
%%
               {code C}
regex<sub>1</sub>
               {code C}
regex<sub>2</sub>
               {code C}
regex<sub>n</sub>
%%
  Code C
```

Exemple de fichier flex

```
%{
#include<stdlib.h>
#include<stdio.h>
%}
%%
[a-zA-Z]* {printf("%s\n", yytext);}
%%
int main(void) {
 yylex();
 return EXIT SUCCESS;
```

Les expressions régulières dans flex

Les expressions régulières s'écrivent au moyen de :

- les caractères standards s'écrivent littéralement : a correspond au caractère 'a'...
- . :tout sauf la fin de ligne
- \n : le caractère de fin de ligne
- [caractères] : classe de caractères
- [a-zA-Z] : les minuscules et majuscules
- [^ caractères] : classe de caractères définie par négation
- [a-z]{-}[mn] : classe de caractères définie par différence ensembliste
- ^ : début de ligne
- \$: fin de ligne

Les expressions régulières dans flex

Les expressions régulières s'écrivent au moyen de :

- * : s'applique à un ensemble, pour le répéter un nombre quelconque de fois (y compris 0 fois)
- + : s'applique à un ensemble, pour le répéter un nombre quelconque de fois (au moins une fois)
- {nombre} : s'applique à un ensemble, pour le répéter nombre fois
- {nombre1,nombre2} : s'applique à un ensemble pour le répéter entre nombre1 et nombre2 fois

Les expressions régulières dans flex

Les expressions régulières s'écrivent au moyen de :

- \caractère : despécialisation du caractère
- "...": tout ce qui se trouve entre les guillemets est interprété littéralement
- | : la disjonction
- :digit : : la classe des chiffres
- r₁/r₂: expression contextuelle, r₁ seulement si elle est suivie immédiatement de r₂
- ...

flex un peu plus en profondeur

- yylex : chaine de caractères de longueur égale au motif lu
- yyleng : longueur de yytext (motif lu)
- ECHO : envoie le motif lu sur la sortie
- yymore() : flex concatènera le prochain motif reconnu au motif actuel
- yyless(n) : flex remet dans le flux d'entrée le motif lu privé de son préfixe de longueur n
- yyterminate() : arrête l'analyse lexicale

flex par la pratique

Voyons comment flex fonctionne...

Grammaire hors contexte

Une grammaire hors contexte G est définie par un quadruplet $\{N, T, S, P\}$ où :

- N est un ensemble de symboles non-terminaux
- T est un ensemble de symboles terminaux
- S un axiome
- $P \subset \{N \times (N \cup T)^*\}$ un ensemble de règles de dérivations ou productions

Un exemple de grammaire pour les expressions arithmétiques est :

$$\begin{array}{ll} E \rightarrow & number \\ E \rightarrow & E + E \\ E \rightarrow & E - E \\ E \rightarrow & E \times E \\ E \rightarrow & E/E \\ E \rightarrow & (E) \end{array}$$

Un exemple de grammaire pour les expressions arithmétiques est :

$$E \rightarrow number$$

 $E \rightarrow E + E$
 $E \rightarrow E - E$
 $E \rightarrow E \times E$
 $E \rightarrow E/E$
 $E \rightarrow (E)$

Cette grammaire est simple mais :

Un exemple de grammaire pour les expressions arithmétiques est :

$$\begin{array}{ll} E \rightarrow & number \\ E \rightarrow & E + E \\ E \rightarrow & E - E \\ E \rightarrow & E \times E \\ E \rightarrow & E/E \\ E \rightarrow & (E) \end{array}$$

Cette grammaire est simple mais :

• elle est ambigüe

Un exemple de grammaire pour les expressions arithmétiques est :

$$E \rightarrow number$$

 $E \rightarrow E + E$
 $E \rightarrow E - E$
 $E \rightarrow E \times E$
 $E \rightarrow E/E$
 $E \rightarrow (E)$

Cette grammaire est simple mais :

- elle est ambigüe
- elle est récursive à gauche

Un exemple de grammaire pour les expressions arithmétiques est :

$$E \rightarrow number$$

 $E \rightarrow E + E$
 $E \rightarrow E - E$
 $E \rightarrow E \times E$
 $E \rightarrow E/E$
 $E \rightarrow (E)$

Cette grammaire est simple mais :

- elle est ambigüe
- elle est récursive à gauche
- pas de priorité sur les opérateurs arithmétiques

$$E \rightarrow E + E|E - E|E \times E|E/E|(E)|$$
number

Cette grammaire est ambigüe car, par exemple, deux arbres de dérivation pour l'expression $1+2\times 3$ sont possibles :

Gérer la priorité des opérateurs

Plus un opérateur est « éloigné » de l'axiome en terme de dérivation, plus il sera bas dans l'arbre et plus il sera prioritaire.

$$E \rightarrow E + E|E - E|E \times E|E/E|(E)|$$
number

Gérer la priorité des opérateurs

Plus un opérateur est « éloigné » de l'axiome en terme de dérivation, plus il sera bas dans l'arbre et plus il sera prioritaire.

$$E
ightarrow E + E|E - E|E imes E|E/E|(E)|$$
 number priorisation \Downarrow $E
ightarrow E + T|E - T|T$ $T
ightarrow T imes F|T/F|F$ $F
ightarrow (E)|$ number

Nouvel arbre de dérivation

L'arbre de dérivation pour $1 + 2 \times 3$ est maintenant :

$$\begin{array}{ll} E \rightarrow & E + T|E - T|T \\ T \rightarrow & T \times F|T/F|F \\ F \rightarrow & (E)|number \end{array}$$

Analyse descendante

Dans le cas de certaines grammaires non contextuelles (context free grammars), il est possible de réaliser une analyse descendante dite LL à condition :

- qu'elle ne soit pas récursive à gauche
- qu'elle soit factorisée à gauche
- qu'elle ne soit pas ambigüe

Analyse descendante

LL signifie que l'entrée est analysée de gauche à droite (Left to right) et que la dérivation se fait sur l'élément le plus à gauche (Leftmost derivation). On construit donc un arbre syntaxique depuis la racine vers les feuilles tout en lisant l'entrée de gauche à droite et en dérivant systmatiquement le non-terminal le plus à gauche.

Ce type d'analyse nécessite une pile contenant les symboles à analyser ainsi qu'une table d'analyse permettant de savoir quelle règle de la grammaire appliquer en fonction du sommet de pile et du prochain lexème lu sur l'entrée.

Supprimer la récursivité gauche

Il existe deux types de récursivité gauche :

- la récursivité directe : $A \rightarrow A\alpha$
- la récursivité indirecte : $A \to \gamma B \beta$ et $B \to \theta A \alpha$ où γ et θ peuvent se dériver en mot vide

$$A \to A\alpha_1 | \cdots | A\alpha_n | \beta_1 | \cdots | \beta_k$$

$$A \to A\alpha_1 | \cdots | A\alpha_n | \beta_1 | \cdots | \beta_k$$

$$\downarrow \downarrow$$

$$A \to A\alpha_1 | \cdots | A\alpha_n | \beta_1 | \cdots | \beta_k$$

$$A \to A\alpha_1 | \cdots | A\alpha_n | \beta_1 | \cdots | \beta_k$$

$$\downarrow \downarrow$$

$$A \to A\alpha_1 | \cdots | A\alpha_n | \beta_1 | \cdots | \beta_k$$

$$A' \to$$

$$A \to A\alpha_1 | \cdots | A\alpha_n | \beta_1 | \cdots | \beta_k$$

$$\downarrow \downarrow$$

$$A \to \beta_1 A' | \cdots | \beta_k A'$$

$$A' \to \alpha_1 A' | \cdots | \alpha_n A' | \varepsilon$$

$$A \to A\alpha_{1} | \cdots | A\alpha_{n} | \beta_{1} | \cdots | \beta_{k}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$A \to \beta_{1} A' | \cdots | \beta_{k} A'$$

$$A' \to \alpha_{1} A' | \cdots | \alpha_{n} A' | \varepsilon$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$A \to \beta_{1} A' | \cdots | \beta_{k} A' | \beta_{1} | \cdots | \beta_{k}$$

$$A' \to \alpha_{1} A' | \cdots | \alpha_{n} A' | \alpha_{1} | \cdots | \alpha_{n}$$

$$A \rightarrow BC, B \rightarrow CA|b, C \rightarrow AB$$

$$A \rightarrow BC, B \rightarrow CA|b, C \rightarrow AB$$

$$\downarrow \downarrow$$

$$A_1 \rightarrow A_2A_3$$

$$A_2 \rightarrow A_3A_1|b$$

$$A_3 \rightarrow A_1A_2$$

$$A \rightarrow BC, B \rightarrow CA|b, C \rightarrow AB$$

$$\downarrow \downarrow$$

$$A_1 \rightarrow A_2A_3$$

$$A_2 \rightarrow A_3A_1|b$$

$$A_3 \rightarrow A_2A_3A_2$$

$$A \rightarrow BC, B \rightarrow CA|b, C \rightarrow AB$$

$$\downarrow \downarrow$$

$$A_1 \rightarrow A_2A_3$$

$$A_2 \rightarrow A_3A_1|b$$

$$A_3 \rightarrow A_3A_1A_3A_2|bA_3A_2$$

$$A \rightarrow BC, B \rightarrow CA|b, C \rightarrow AB$$

$$\downarrow \downarrow$$

$$A_1 \rightarrow A_2A_3$$

$$A_2 \rightarrow A_3A_1|b$$

$$A_3 \rightarrow A_3A_1A_3A_2|bA_3A_2$$

$$A \rightarrow BC, B \rightarrow CA|b, C \rightarrow AB$$

$$\downarrow \downarrow$$

$$A \rightarrow BC$$

$$B \rightarrow CA|b$$

$$C \rightarrow CACB|bCB$$

Il ne reste plus qu'à éliminer la récursivité directe.

$$A o BC, B o CA|b, C o AB$$

$$\downarrow \downarrow$$
 $A o BC$
 $B o CA|b$
 $C o bCBD$
 $D o ACBD|\varepsilon$

Factorisation à gauche

Une grammaire n'est pas factorisée à gauche ssi un non terminal se dérive en plusieurs productions commençant par un même symbole ou une suite de mêmes symboles α :

$$A \rightarrow \alpha \beta_1 | \dots | \alpha \beta_n | \gamma_1 | \dots | \gamma_k$$

L'opération de factorisation consiste en :

- l'ajout d'un non terminal A' produisant les suffixes β_i
- le remplacement de l'ensemble des productions de la forme $A \to \alpha \beta_i$ par une unique production $A \to \alpha A'$

$$A \rightarrow \alpha A' |\gamma_1| \dots |\gamma_k|$$

 $A' \rightarrow \beta_1| \dots |\beta_n|$

Cette opération est à recommencer tant que des factorisations à gauche sont possibles.

Retour au cas d'école

$$\begin{array}{ll} E \rightarrow & E + T|E - T|T \\ T \rightarrow & T \times F|T/F|F \\ F \rightarrow & (E)|number \end{array}$$

Retour au cas d'école

$$\begin{array}{ccc} E \rightarrow & TE' \\ E' \rightarrow & +TE' | -TE' | \varepsilon \\ T \rightarrow & T \times F | T / F | F \\ F \rightarrow & (E) | number \end{array}$$

Retour au cas d'école

$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

Étant donnée une grammaire $G = \{N, T, S, P\}$ l'analyse LL de cette grammaire repose sur :

Annulable

Annulable est l'ensemble des non terminaux pouvant être dérivés en ε .

$\mathsf{Premier}(\alpha)$

Premier(α), $\alpha \in \{N \cup T\}^+$, est l'ensemble des terminaux $a \in T$ tel qu'il existe une dérivation $\alpha \stackrel{*}{\Rightarrow} a\beta$, β pouvant être annulable.

$Suivant(\alpha)$

Pour toute production de la forme $S \to \alpha B\beta$:

- Suivant(B) = Premier(β)
- si $\beta = \varepsilon$ ou bien β est annulable alors on ajoute Suivant(S) à Suivant(B)

Reprenons notre cas d'école :

$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

Annulable = $\{E', T'\}$

$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

```
Annulable = \{E', T'\}

Premier(E)

Premier(E')

Premier(T)

Premier(T')

Premier(F)
```

 $E \rightarrow TE'$

Annulable, Premier, Suivant

$$E' \rightarrow +TE'|-TE'|\varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow \times FT'|/FT'|\varepsilon$$

$$F \rightarrow (E)|number$$
 Annulable = $\{E', T'\}$ Premier (E) = Premier (TE')

Premier(T) Premier(T') Premier(F) $E \rightarrow TE'$

Annulable, Premier, Suivant

```
E' \rightarrow +TE'|-TE'|\varepsilon
                                T \rightarrow FT'
                               T' \rightarrow \times FT'|/FT'|\varepsilon
                                F \rightarrow (E)|number
Annulable = \{E', T'\}
Premier(E) = Premier(TE') = Premier(T)
Premier(E')
Premier(T)
Premier(T')
Premier(F)
```

$$E \rightarrow TE'$$

$$E' \rightarrow +TE'| - TE'|\varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow \times FT'|/FT'|\varepsilon$$

$$F \rightarrow (E)|number$$

```
Annulable = \{E', T'\}

Premier(E) = Premier(TE') = Premier(T) = Premier(FT')

Premier(E')

Premier(E')

Premier(E')

Premier(E')
```


$$E \rightarrow TE'$$

$$E' \rightarrow +TE'| - TE'|\varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow \times FT'|/FT'|\varepsilon$$

$$F \rightarrow (E)|number$$

```
Annulable = \{E', T'\}

Premier(E) = Premier(TE') = Premier(T) = Premier(FT') = Premier(F)

Premier(T)
```

Premier(T')

Premier(F)

$$E \rightarrow TE'$$

$$E' \rightarrow +TE'| - TE'|\varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow \times FT'|/FT'|\varepsilon$$

$$F \rightarrow (E)|number$$

```
Annulable = \{E', T'\}

Premier(E) = Premier(F)

Premier(E')

Premier(T)

Premier(T')

Premier(F)
```


$$E \rightarrow TE'$$

$$E' \rightarrow +TE'| - TE'|\varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow \times FT'|/FT'|\varepsilon$$

$$F \rightarrow (E)|number$$

```
Annulable = \{E', T'\}

Premier(E) = Premier(F)

Premier(E') = \{+, -\}

Premier(T)

Premier(T')

Premier(F)
```

$$E \rightarrow TE'$$

$$E' \rightarrow +TE'| - TE'|\varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow \times FT'|/FT'|\varepsilon$$

$$F \rightarrow (E)|number$$

```
Annulable = \{E', T'\}

Premier(E) = Premier(F)

Premier(E') = \{+, -\}

Premier(T) = Premier(FT')

Premier(T')

Premier(F)
```


$$E \rightarrow TE'$$

$$E' \rightarrow +TE'| - TE'|\varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow \times FT'|/FT'|\varepsilon$$

$$F \rightarrow (E)|number$$

```
Annulable = \{E', T'\}

Premier(E) = Premier(F)

Premier(E') = \{+, -\}

Premier(T) = Premier(FT') = Premier(F)

Premier(T')

Premier(F)
```

$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

```
Annulable = \{E', T'\}

Premier(E) = Premier(F)

Premier(E') = \{+, -\}

Premier(T) = Premier(F)

Premier(T')

Premier(F)
```


$$E \rightarrow TE'$$

$$E' \rightarrow +TE'| - TE'|\varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow \times FT'|/FT'|\varepsilon$$

$$F \rightarrow (E)|number$$

```
Annulable = \{E', T'\}

Premier(E) = Premier(F)

Premier(E') = \{+, -\}

Premier(T) = Premier(F)

Premier(T') = \{\times, /\}

Premier(F)
```

$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

```
Annulable = \{E', T'\}

Premier(E) = Premier(F)

Premier(E') = \{+, -\}

Premier(T) = Premier(F)

Premier(T') = \{\times, /\}

Premier(F) = \{(, number\})
```


$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

```
Annulable = \{E', T'\}

Premier(E) = \{(, number)\}

Premier(E') = \{+, -\}

Premier(T) = Premier(F)

Premier(T') = \{\times, /\}

Premier(F) = \{(, number)\}
```


$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

```
Annulable = \{E', T'\}

Premier(E) = \{(, number)\}

Premier(E') = \{+, -\}

Premier(T) = \{(, number)\}

Premier(T') = \{\times, /\}

Premier(F) = \{(, number)\}
```


$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

```
 \begin{array}{ll} \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) \\ \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') \\ \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) \\ \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') \\ \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) \\ \end{array}
```


$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

Annulable =
$$\{E', T'\}$$

```
\begin{aligned} & \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$\} \cup \{)\} \\ & \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') \\ & \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) \\ & \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') \\ & \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) \end{aligned}
```


$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

```
Annulable = \{E', T'\}
```

```
 \begin{array}{ll} \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, \}\} \\ \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') \\ \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) \\ \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') \\ \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) \\ \end{array}
```

$$\begin{array}{ccc} E \rightarrow & TE' \\ E' \rightarrow & +TE' | -TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

```
\begin{aligned} & \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, )\} \\ & \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') = \mathsf{Suivant}(E) \\ & \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) \\ & \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') \\ & \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) \end{aligned}
```


$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

Annulable =
$$\{E', T'\}$$

```
 \begin{array}{ll} \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, \}\} \\ \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') = \{\$, \}\} \\ \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) \\ \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') \\ \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) \\ \end{array}
```


$$\begin{array}{ccc} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

```
 \begin{array}{ll} \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, )\} \\ \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') = \{\$, )\} \\ \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) = \mathsf{Premier}(E') \\ \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') \\ \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) \end{array}
```


$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

```
 \begin{array}{ll} \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, )\} \\ \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') = \{\$, )\} \\ \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) = \{+, -\} \\ \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') \\ \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) \\ \end{array}
```

$$\begin{array}{ccc} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

```
\begin{array}{ll} \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, )\} \\ \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') = \{\$, )\} \\ \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) = \{+, -\} \cup \mathsf{Suivant}(E) \\ \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') \\ \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) \end{array}
```

$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

```
\begin{aligned} & \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$,)\} \\ & \mathsf{Premier}(E') = \{+,-\} & \mathsf{Suivant}(E') = \{\$,)\} \\ & \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) = \{+,-\} \cup \{\$,)\} \\ & \mathsf{Premier}(T') = \{\times,/\} & \mathsf{Suivant}(T') \\ & \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) \end{aligned}
```

$$E \rightarrow TE'$$

$$E' \rightarrow +TE'| - TE'|\varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow \times FT'|/FT'|\varepsilon$$

$$F \rightarrow (E)|number$$

```
\begin{aligned} &\mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, )\} \\ &\mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') = \{\$, )\} \\ &\mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) = \{+, -\} \cup \{\$, )\} \cup \mathsf{Suivant}(E') \\ &\mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') \\ &\mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) \end{aligned}
```

$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

Annulable =
$$\{E', T'\}$$

```
 \begin{array}{ll} \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, )\} \\ \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') = \{\$, )\} \\ \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) = \{+, -, \$, )\} \\ \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') \\ \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) \\ \end{array}
```


$$E \rightarrow TE'$$

$$E' \rightarrow +TE'| - TE'|\varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow \times FT'|/FT'|\varepsilon$$

$$F \rightarrow (E)|number$$

Annulable =
$$\{E', T'\}$$

```
\begin{array}{ll} \operatorname{Premier}(E) = \{(, number\} & \operatorname{Suivant}(E) = \{\$, )\} \\ \operatorname{Premier}(E') = \{+, -\} & \operatorname{Suivant}(E') = \{\$, )\} \\ \operatorname{Premier}(T) = \{(, number\} & \operatorname{Suivant}(T) = \{+, -, \$, )\} \\ \operatorname{Premier}(T') = \{\times, /\} & \operatorname{Suivant}(T') = \operatorname{Suivant}(T) \\ \operatorname{Premier}(F) = \{(, number\} & \operatorname{Suivant}(F) \end{array}
```


$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

```
\begin{array}{ll} \operatorname{Premier}(E) = \{(, number\} & \operatorname{Suivant}(E) = \{\$, )\} \\ \operatorname{Premier}(E') = \{+, -\} & \operatorname{Suivant}(E') = \{\$, )\} \\ \operatorname{Premier}(T) = \{(, number\} & \operatorname{Suivant}(T) = \{+, -, \$, )\} \\ \operatorname{Premier}(T') = \{\times, /\} & \operatorname{Suivant}(T') = \{+, -, \$, )\} \\ \operatorname{Premier}(F) = \{(, number\} & \operatorname{Suivant}(F) \end{array}
```

$$E \rightarrow TE'$$

$$E' \rightarrow +TE'| - TE'|\varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow \times FT'|/FT'|\varepsilon$$

$$F \rightarrow (E)|number$$

```
\begin{array}{ll} \operatorname{Premier}(E) = \{(, number\} & \operatorname{Suivant}(E) = \{\$, )\} \\ \operatorname{Premier}(E') = \{+, -\} & \operatorname{Suivant}(E') = \{\$, )\} \\ \operatorname{Premier}(T) = \{(, number\} & \operatorname{Suivant}(T) = \{+, -, \$, )\} \\ \operatorname{Premier}(T') = \{\times, /\} & \operatorname{Suivant}(T') = \{+, -, \$, )\} \\ \operatorname{Premier}(F) = \{(, number\} & \operatorname{Suivant}(F) = \operatorname{Premier}(T') \\ \end{array}
```

$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

```
\begin{array}{ll} \operatorname{Premier}(E) = \{(, number\} & \operatorname{Suivant}(E) = \{\$, )\} \\ \operatorname{Premier}(E') = \{+, -\} & \operatorname{Suivant}(E') = \{\$, )\} \\ \operatorname{Premier}(T) = \{(, number\} & \operatorname{Suivant}(T) = \{+, -, \$, )\} \\ \operatorname{Premier}(T') = \{\times, /\} & \operatorname{Suivant}(T') = \{+, -, \$, )\} \\ \operatorname{Premier}(F) = \{(, number\} & \operatorname{Suivant}(F) = \{\times, /\} \end{array}
```

$$E \rightarrow TE'$$

$$E' \rightarrow +TE'| - TE'|\varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow \times FT'|/FT'|\varepsilon$$

$$F \rightarrow (E)|number$$

Annulable =
$$\{E', T'\}$$

```
\begin{aligned} & \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, )\} \\ & \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') = \{\$, )\} \\ & \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) = \{+, -, \$, )\} \\ & \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') = \{+, -, \$, )\} \\ & \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) = \{\times, /\} \cup \mathsf{Suivant}(T) \end{aligned}
```

$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

```
\begin{array}{ll} \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, \}\} \\ \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') = \{\$, \}\} \\ \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) = \{+, -, \$, \}\} \\ \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') = \{+, -, \$, \}\} \\ \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) = \{\times, /\} \cup \{+, -, \$, \}\} \end{array}
```

$$E \rightarrow TE'$$

$$E' \rightarrow +TE'| - TE'|\varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow \times FT'|/FT'|\varepsilon$$

$$F \rightarrow (E)|number$$

Annulable =
$$\{E', T'\}$$

```
\begin{array}{ll} \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, )\} \\ \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') = \{\$, )\} \\ \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) = \{+, -, \$, )\} \\ \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') = \{+, -, \$, )\} \\ \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) = \{\times, /\} \cup \{+, -, \$, )\} \cup \\ & \mathsf{Suivant}(T') \end{array}
```

$$\begin{array}{ll} E \rightarrow & TE' \\ E' \rightarrow & +TE' | - TE' | \varepsilon \\ T \rightarrow & FT' \\ T' \rightarrow & \times FT' | / FT' | \varepsilon \\ F \rightarrow & (E) | number \end{array}$$

```
\begin{array}{ll} \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, )\} \\ \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') = \{\$, )\} \\ \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) = \{+, -, \$, )\} \\ \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') = \{+, -, \$, )\} \\ \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) = \{\times, /, +, -, \$, )\} \end{array}
```

```
TALL(G)

1 for each X \to \alpha \in G do

2 for each a \in Premier(\alpha) do

3 (X, a) \leftarrow X \to \alpha

4 if \alpha est annulable then

5 for each b \in Suivant(\alpha) do

6 (X, b) \leftarrow X \to \alpha
```

```
\begin{aligned} & \mathsf{Annulable} = \{E', T'\} \\ & \mathsf{Premier}(E) = \{(, number\} \mid \mathsf{Suivant}(E) = \{\$, )\} \\ & \mathsf{Premier}(E') = \{+, -\} \quad \mathsf{Suivant}(E') = \{\$, )\} \\ & \mathsf{Premier}(T) = \{(, number\} \mid \mathsf{Suivant}(T) = \{+, -, \$, )\} \\ & \mathsf{Premier}(T') = \{\times, /\} \quad \mathsf{Suivant}(T') = \{+, -, \$, )\} \\ & \mathsf{Premier}(F) = \{(, number\} \mid \mathsf{Suivant}(F) = \{\times, /, +, -, \$, )\} \end{aligned}
```

```
Premier(E) = {(, number} Suivant(E) = {$,)}

Premier(E') = {+, -} Suivant(E') = {$,)}

Premier(T) = {(, number} Suivant(T) = {+, -, $,)}

Premier(T') = {×,/} Suivant(T') = {+,-,$,)}

Premier(F) = {(, number} Suivant(F) = {×,/,+,-,$,}}
```

	+	-	×	/	()	numb.	\$
Ε								
E'								
T								
T'								
F								

```
Premier(E) = {(, number} Suivant(E) = {$, )}

Premier(E') = {+, -} Suivant(E') = {$, )}

Premier(T) = {(, number} Suivant(T) = {+, -, $, )}
```

$$\mathsf{Premier}(T') = \{\times, /\} \qquad \mathsf{Suivant}(T') = \{+, -, \$, \}$$

$$\mathsf{Premier}(F) = \{(, \mathit{number}\} \ \mathsf{Suivant}(F) = \{\times, /, +, -, \$,)\}$$

	+	_	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$			
E'								
T								
T'								
F								

```
Premier(E) = {(, number} Suivant(E) = {$,)}
Premier(E') = {+,-} Suivant(E') = {$,)}
```

$$Premier(T) = \{(, number\} \ Suivant(T) = \{+, -, \$,)\}$$

$$\mathsf{Premier}(\mathit{T'}) = \{\times,/\} \qquad \mathsf{Suivant}(\mathit{T'}) = \{+,-,\$,)\}$$

$$Premier(F) = \{(, number\} \ Suivant(F) = \{\times, /, +, -, \$,)\}$$

	+	_	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		$E \rightarrow TE'$	
E'								
T								
T'								
F								

```
Annulable = \{E', T'\}
```

```
\begin{array}{ll} \text{Premier}(E) = \{(, number\} & \text{Suivant}(E) = \{\$, )\} \\ \text{Premier}(E') = \{+, -\} & \text{Suivant}(E') = \{\$, )\} \\ \text{Premier}(T) = \{(, number\} & \text{Suivant}(T) = \{+, -, \$, )\} \\ \text{Premier}(T') = \{\times, /\} & \text{Suivant}(T') = \{+, -, \$, )\} \\ \text{Premier}(F) = \{(, number\} & \text{Suivant}(F) = \{\times, /, +, -, \$, )\} \end{array}
```

	+	-	×	/	()	numb.	\$
Ε					E → TE'		$E \rightarrow TE'$	
E'	$E' \rightarrow +TE'$							
T								
T'								
F								

```
Annulable = \{E', T'\}
```

```
\begin{array}{ll} \text{Premier}(E) = \{(, number\} & \text{Suivant}(E) = \{\$, )\} \\ \text{Premier}(E') = \{+, -\} & \text{Suivant}(E') = \{\$, )\} \\ \text{Premier}(T) = \{(, number\} & \text{Suivant}(T) = \{+, -, \$, )\} \\ \text{Premier}(T') = \{\times, /\} & \text{Suivant}(T') = \{+, -, \$, )\} \\ \text{Premier}(F) = \{(, number\} & \text{Suivant}(F) = \{\times, /, +, -, \$, )\} \end{array}
```

	+	-	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		$E \rightarrow TE'$	
E'	$E' \rightarrow +TE'$	$E' \rightarrow -TE'$						
T								
T'								
F								

```
Annulable = \{E', T'\}
```

```
\begin{array}{ll} \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, )\} \\ \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') = \{\$, )\} \\ \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) = \{+, -, \$, )\} \\ \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') = \{+, -, \$, )\} \\ \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) = \{\times, /, +, -, \$, )\} \end{array}
```

	+	_	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		$E \rightarrow TE'$	
E'	$E' \rightarrow +TE'$	$E' \rightarrow -TE'$				$E' \to \varepsilon$		
T								
T'								
F								

```
Annulable = \{E', T'\}
```

```
\begin{array}{ll} \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, )\} \\ \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') = \{\$, )\} \\ \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) = \{+, -, \$, )\} \\ \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') = \{+, -, \$, )\} \\ \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) = \{\times, /, +, -, \$, )\} \end{array}
```

	+	_	×	/	()	numb.	\$
Ε					E → TE'		$E \rightarrow TE'$	
E'	$E' \rightarrow +TE'$	$E' \rightarrow -TE'$				$E' \to \varepsilon$		$E' \to \varepsilon$
T								
T'								
F								

```
Annulable = \{E', T'\}
```

```
\begin{array}{ll} \text{Premier}(E) = \{(, number\} & \text{Suivant}(E) = \{\$, )\} \\ \text{Premier}(E') = \{+, -\} & \text{Suivant}(E') = \{\$, )\} \\ \text{Premier}(T) = \{(, number\} & \text{Suivant}(T) = \{+, -, \$, )\} \\ \text{Premier}(T') = \{\times, /\} & \text{Suivant}(T') = \{+, -, \$, )\} \\ \text{Premier}(F) = \{(, number\} & \text{Suivant}(F) = \{\times, /, +, -, \$, )\} \end{array}
```

	+	_	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		$E \rightarrow TE'$	
E'	$E' \rightarrow +TE'$	$E' \rightarrow -TE'$				$E' \to \varepsilon$		$E' \to \varepsilon$
T					$T \rightarrow FT'$			
T'								
F								

Annulable =
$$\{E', T'\}$$

```
\begin{array}{ll} \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, )\} \\ \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') = \{\$, )\} \\ \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) = \{+, -, \$, )\} \\ \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') = \{+, -, \$, )\} \\ \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) = \{\times, /, +, -, \$, )\} \end{array}
```

	+	_	×	/	()	numb.	\$
Ε					E → TE'		$E \rightarrow TE'$	
E'	$E' \rightarrow +TE'$	$E' \rightarrow -TE'$				$E' \to \varepsilon$		$E' \to \varepsilon$
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'								
F								

```
Annulable = \{E', T'\}
```

```
\begin{array}{ll} \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, )\} \\ \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') = \{\$, )\} \\ \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) = \{+, -, \$, )\} \\ \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') = \{+, -, \$, )\} \\ \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) = \{\times, /, +, -, \$, )\} \end{array}
```

	+	_	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		$E \rightarrow TE'$	
E'	$E' \rightarrow +TE'$	$E' \rightarrow -TE'$				$E' \to \varepsilon$		$E' \to \varepsilon$
T					$T \rightarrow FT'$		$T \to FT'$	
T'	$T' \to \varepsilon$							
F								

```
Annulable = \{E', T'\}
```

```
\begin{array}{ll} \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, )\} \\ \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') = \{\$, )\} \\ \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) = \{+, -, \$, )\} \\ \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') = \{+, -, \$, )\} \\ \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) = \{\times, /, +, -, \$, )\} \end{array}
```

	+	_	×	/	()	numb.	\$
Ε					E → TE'		$E \rightarrow TE'$	
E'	$E' \rightarrow +TE'$	$E' \rightarrow -TE'$				$E' \to \varepsilon$		$E' \to \varepsilon$
T					$T \rightarrow FT'$		$T \to FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$						
F								

```
Annulable = \{E', T'\}
```

```
\begin{array}{ll} \text{Premier}(E) = \{(, number\} & \text{Suivant}(E) = \{\$, )\} \\ \text{Premier}(E') = \{+, -\} & \text{Suivant}(E') = \{\$, )\} \\ \text{Premier}(T) = \{(, number\} & \text{Suivant}(T) = \{+, -, \$, )\} \\ \text{Premier}(T') = \{\times, /\} & \text{Suivant}(T') = \{+, -, \$, )\} \\ \text{Premier}(F) = \{(, number\} & \text{Suivant}(F) = \{\times, /, +, -, \$, )\} \end{array}
```

	+	_	×	/	()	numb.	\$
Ε					E → TE'		$E \rightarrow TE'$	
E'	$E' \rightarrow +TE'$	$E' \rightarrow -TE'$				$E' \to \varepsilon$		$E' \to \varepsilon$
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \to \times FT'$					
F								

Annulable =
$$\{E', T'\}$$

```
\begin{array}{ll} \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, )\} \\ \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') = \{\$, )\} \\ \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) = \{+, -, \$, )\} \\ \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') = \{+, -, \$, )\} \\ \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) = \{\times, /, +, -, \$, )\} \end{array}
```

	+	-	×	/	()	numb.	\$
Ε					E → TE'		$E \rightarrow TE'$	
E'	$E' \rightarrow +TE'$	$E' \rightarrow -TE'$				$E' \to \varepsilon$		$E' \to \varepsilon$
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \to \times FT'$	$T' \rightarrow /FT'$				
F								

```
Annulable = \{E', T'\}
```

```
\begin{array}{ll} \text{Premier}(E) = \{(, number\} & \text{Suivant}(E) = \{\$, )\} \\ \text{Premier}(E') = \{+, -\} & \text{Suivant}(E') = \{\$, )\} \\ \text{Premier}(T) = \{(, number\} & \text{Suivant}(T) = \{+, -, \$, )\} \\ \text{Premier}(T') = \{\times, /\} & \text{Suivant}(T') = \{+, -, \$, )\} \\ \text{Premier}(F) = \{(, number\} & \text{Suivant}(F) = \{\times, /, +, -, \$, )\} \end{array}
```

	+	_	×	/	()	numb.	\$
Ε					E → TE'		$E \rightarrow TE'$	
E'	$E' \rightarrow +TE'$	$E' \rightarrow -TE'$				$E' \to \varepsilon$		$E' \to \varepsilon$
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \to \times FT'$	$T' \rightarrow /FT'$		$T' \to \varepsilon$		
F								

```
Annulable = \{E', T'\}
```

```
\begin{array}{ll} \text{Premier}(E) = \{(, number\} & \text{Suivant}(E) = \{\$, )\} \\ \text{Premier}(E') = \{+, -\} & \text{Suivant}(E') = \{\$, )\} \\ \text{Premier}(T) = \{(, number\} & \text{Suivant}(T) = \{+, -, \$, )\} \\ \text{Premier}(T') = \{\times, /\} & \text{Suivant}(T') = \{+, -, \$, )\} \\ \text{Premier}(F) = \{(, number\} & \text{Suivant}(F) = \{\times, /, +, -, \$, )\} \end{array}
```

	+	-	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		$E \rightarrow TE'$	
E'	$E' \rightarrow +TE'$	$E' \rightarrow -TE'$				$E' \to \varepsilon$		$E' \to \varepsilon$
T					$T \rightarrow FT'$		$T \to FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \to \times FT'$	$T' \rightarrow /FT'$		$T' \to \varepsilon$		$T' \to \varepsilon$
F								

```
Annulable = \{E', T'\}
```

```
\begin{array}{ll} \text{Premier}(E) = \{(, number\} & \text{Suivant}(E) = \{\$, )\} \\ \text{Premier}(E') = \{+, -\} & \text{Suivant}(E') = \{\$, )\} \\ \text{Premier}(T) = \{(, number\} & \text{Suivant}(T) = \{+, -, \$, )\} \\ \text{Premier}(T') = \{\times, /\} & \text{Suivant}(T') = \{+, -, \$, )\} \\ \text{Premier}(F) = \{(, number\} & \text{Suivant}(F) = \{\times, /, +, -, \$, )\} \end{array}
```

	+	-	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		$E \rightarrow TE'$	
E'	$E' \rightarrow +TE'$	$E' \rightarrow -TE'$				$E' \to \varepsilon$		$E' \to \varepsilon$
T					$T \rightarrow FT'$		$T \to FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \to \times FT'$	$T' \rightarrow /FT'$		$T' \to \varepsilon$		$T' \to \varepsilon$
F					F → (E)			

```
Annulable = \{E', T'\}
```

```
\begin{array}{ll} \mathsf{Premier}(E) = \{(, number\} & \mathsf{Suivant}(E) = \{\$, )\} \\ \mathsf{Premier}(E') = \{+, -\} & \mathsf{Suivant}(E') = \{\$, )\} \\ \mathsf{Premier}(T) = \{(, number\} & \mathsf{Suivant}(T) = \{+, -, \$, )\} \\ \mathsf{Premier}(T') = \{\times, /\} & \mathsf{Suivant}(T') = \{+, -, \$, )\} \\ \mathsf{Premier}(F) = \{(, number\} & \mathsf{Suivant}(F) = \{\times, /, +, -, \$, )\} \end{array}
```

	+	-	×	/	()	numb.	\$
Ε					E → TE'		$E \rightarrow TE'$	
E'	$E' \rightarrow +TE'$	$E' \rightarrow -TE'$				$E' \to \varepsilon$		$E' \to \varepsilon$
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \to \times FT'$	$T' \rightarrow /FT'$		$T' \to \varepsilon$		$T' \to \varepsilon$
F					F → (E)		$F \rightarrow \text{numb}$.	

Annulable = $\{E', T'\}$

Premier(T') = { \times , /}

 $Premier(F) = \{(. number\} \ Suivant(F) = \{\times . /. +. -. \$. \}\}$

	()	(()	,	()	,,,,,,	, · , , , ,		
	+	_	×	/	()	numb.	\$
Ε					E → TE'		E → TE′	
E'	$E' \rightarrow +TE'$	$E' \rightarrow -TE'$				$E' \to \varepsilon$		$E' \to \varepsilon$
T					$T \rightarrow FT'$		$T \to FT'$	
T'	$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$	$T' \to \times FT'$	$T' \rightarrow /FT'$		$T' \rightarrow \varepsilon$		$T' \rightarrow \varepsilon$

Suivant(T') = {+, -, \$, }}

 $F \rightarrow (E)$

Aucune entrée multiple dans la table d'analyse, la grammaire est LL(1).

 $F \rightarrow \text{numb}$

	+	_	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		E → TE'	
E'	$E' \longrightarrow$	$E' \longrightarrow$				$E' \to \varepsilon$		$E' \to \varepsilon$
	+ <i>TE'</i>	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' o \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	T' \rightarrow		$T' \to \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					F → (E)		$F \rightarrow$ numb.	

	+	-	×	/	()	numb.	\$
Ε					E → TE'		E → TE'	
E'	$E' \longrightarrow$	$E' \longrightarrow$				$E' \rightarrow \varepsilon$		$E' \to \varepsilon$
	$E' \rightarrow +TE'$	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	T' \rightarrow	T' \rightarrow		$T' \rightarrow \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					F → (E)		$F \rightarrow$ numb.	

pile	entrée	sortie
\$ <i>E</i>	$(\mathit{numb}. + \mathit{numb}.) \times \mathit{numb}.$	

	+	_	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		E → TE'	
E'	$E' \rightarrow$	$E' \longrightarrow$				$E' \to \varepsilon$		$E' \to \varepsilon$
	+ <i>TE'</i>	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	T' \rightarrow		$T' \to \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		$F \rightarrow$ numb.	

pile	entrée	sortie
\$ <i>E</i>	$(numb. + numb.) \times numb.$ \$	E o TE'

	+	-	×	/	()	numb.	\$
Ε					E → TE'		E → TE'	
E'	$E' \rightarrow +TE'$	$E' \longrightarrow$				$E' \rightarrow \varepsilon$		$E' \to \varepsilon$
	+TE'	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	$T' \longrightarrow$		$T' \rightarrow \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		$F \rightarrow$ numb.	

pile	entrée	sortie
\$ <i>E'T</i>	$(\mathit{numb}. + \mathit{numb}.) \times \mathit{numb}.$ \$	$T \rightarrow FT'$

	+	-	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		E → TE'	
E'	$E' \longrightarrow$	$E' \longrightarrow$				$E' \to \varepsilon$		$E' \to \varepsilon$
	+ <i>TE</i> ′	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	T' \rightarrow	$T' \longrightarrow$		$T' \to \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		$F \rightarrow$ numb.	

pile	entrée	sortie
\$ <i>E'T'F</i>	$(\mathit{numb}. + \mathit{numb}.) \times \mathit{numb}.$ \$	$F \rightarrow (E)$

	+	-	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		$E \rightarrow TE'$	
E'	$E' \longrightarrow$	$E' \longrightarrow$				$E' \to \varepsilon$		$E' \to \varepsilon$
	+ <i>TE</i> ′	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	T' \rightarrow		$T' \to \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		$F \rightarrow$ numb.	

pile	entrée	sortie
\$ <i>E'T'</i>) <i>E</i> ($(numb. + numb.) \times numb.$ \$	

	+	-	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		$E \rightarrow TE'$	
E'	$E' \rightarrow$	$E' \longrightarrow$				$E' \rightarrow \varepsilon$		$E' \to \varepsilon$
	+TE'	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	T' \rightarrow		$T' \rightarrow \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		F onumb.	

pile	entrée	sortie
\$ <i>E'T'</i>) <i>E</i>	$numb. + numb.) \times numb.$ \$	E o TE'

	+	_	×	/	()	numb.	\$
Ε					E → TE'		E → TE'	
E'	$E' \rightarrow$	$E' \longrightarrow$				$E' \to \varepsilon$		$E' \to \varepsilon$
	$E' \rightarrow +TE'$	-TE'						
T					$T \rightarrow FT'$		$T \to FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	T' \rightarrow		$T' \to \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					<i>F</i> → (<i>E</i>)		$F \rightarrow$ numb.	

pile entrée sortie
$$|\$E'T')E'T \qquad \qquad numb. + numb.) \times numb.\$ \qquad T \rightarrow FT'$$

	+	-	×	/	()	numb.	\$
Ε					E → TE'		E → TE'	
E'	$E' \longrightarrow$	$E' \longrightarrow$				$E' \rightarrow \varepsilon$		$E' \to \varepsilon$
	+ <i>TE</i> ′	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	$T' \longrightarrow$		$T' \to \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		$F \rightarrow$ numb.	

pile	entrée	sortie
\$ <i>E'T'</i>) <i>E'T'F</i>	$numb. + numb.) \times numb.$ \$	F o numb.

	+	-	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		E → TE'	
E'	$E' \longrightarrow$	$E' \longrightarrow$				$E' \rightarrow \varepsilon$		$E' \to \varepsilon$
	+ <i>TE</i> ′	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	T' \rightarrow		$T' \to \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		$F \rightarrow$ numb.	

pile	entrée	sortie
$ E'T'\rangle E'T'$ numb.	$numb. + numb.) \times numb.$ \$	

	+	-	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		E → TE'	
E'	$E' \longrightarrow$	$E' \longrightarrow$				$E' \to \varepsilon$		$E' \to \varepsilon$
	+ <i>TE</i> ′	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' o \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	$T' \longrightarrow$		$T' \to \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		$F \rightarrow$ numb.	

pile entrée sortie
$$|\$E'T')E'T'$$
 $+numb.) \times numb.\$$ $T' \rightarrow \varepsilon$

	+	_	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		E → TE'	
E'	$E' \longrightarrow$	$E' \rightarrow$				$E' \rightarrow \varepsilon$		$E' \to \varepsilon$
	+ TE'	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	T' \rightarrow		$T' \to \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		$F \rightarrow$ numb.	

pile entrée sortie
$$|\$E'T')E'$$
 + numb.) \times numb. $\$$ $E' \to +TE'$

	+	-	×	/	()	numb.	\$
Ε					E → TE'		E → TE'	
E'	$E' \longrightarrow$	$E' \longrightarrow$				$E' \to \varepsilon$		$E' \to \varepsilon$
	$E' \rightarrow +TE'$	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	T' \rightarrow		$T' \to \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		F onumb.	

pile	entrée	sortie
\$ <i>E'T'</i>) <i>E'T</i> +	+numb. $) imes$ numb. $$$	

	+	-	×	/	()	numb.	\$
Ε					E → TE'		E → TE'	
E'	$E' \longrightarrow$	$E' \longrightarrow$				$E' \rightarrow \varepsilon$		$E' \to \varepsilon$
	+ <i>TE</i> ′	-TE'						
T					$T \rightarrow FT'$		$T \to FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	$T' \longrightarrow$		$T' \to \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		$F \rightarrow$ numb.	

pile	entrée	sortie
\$ <i>E'T'</i>) <i>E'T</i>	$numb.) \times numb.\$$	T o FT'

	+	-	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		E → TE'	
E'	$E' \rightarrow$	$E' \longrightarrow$				$E' \rightarrow \varepsilon$		$E' \to \varepsilon$
	+ <i>TE'</i>	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	T' \rightarrow	$T' \longrightarrow$		$T' \rightarrow \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					F → (E)		F ightarrow numb.	

pile	entrée	sortie
\$ <i>E'T'</i>) <i>E'T'F</i>	numb.) × numb.\$	F o numb.

	+	-	×	/	()	numb.	\$
Ε					E → TE'		E → TE'	
E'	$E' \rightarrow$	$E' \longrightarrow$				$E' \rightarrow \varepsilon$		$E' \to \varepsilon$
	+ <i>TE'</i>	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	$T' \longrightarrow$		$T' \to \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		F ightarrow numb.	

pile	entrée	sortie
\$E'T')E'T'numb.	$numb.) \times numb.$ \$	

	+	_	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		E → TE'	
E'	$E' \rightarrow$	$E' \longrightarrow$				$E' \to \varepsilon$		$E' \to \varepsilon$
	+ <i>TE'</i>	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	$T' \longrightarrow$		$T' o \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		$F \rightarrow$ numb.	

pile entrée sortie
$$|\$E'T')E'T' \qquad) \times \textit{numb.}\$ \qquad T' \rightarrow \varepsilon$$

	+	-	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		E → TE'	
E'	$E' \rightarrow$	$E' \longrightarrow$				$E' \to \varepsilon$		$E' \to \varepsilon$
	+ <i>TE'</i>	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \rightarrow \varepsilon$	$T' \longrightarrow$	T' \rightarrow		$T' \to \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		$F \rightarrow$ numb.	

pile	entrée	sortie
\$ <i>E'T'</i>) <i>E'</i>	$) \times numb.\$$	$E' o \varepsilon$

	+	-	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		E → TE'	
E'	$E' \longrightarrow$	$E' \longrightarrow$				$E' \rightarrow \varepsilon$		$E' \to \varepsilon$
	+ <i>TE</i> ′	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	T' \rightarrow	T' \rightarrow		$T' \rightarrow \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		$F \rightarrow$ numb.	

pile	entrée	sortie
\$ <i>E'T'</i>)) × numb.\$	

	+	-	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		E → TE'	
E'	$E' \longrightarrow$	$E' \longrightarrow$				$E' \to \varepsilon$		$E' \to \varepsilon$
	+ <i>TE</i> ′	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \rightarrow \varepsilon$		$T' \longrightarrow$		$T' \to \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		$F \rightarrow$ numb.	

pile	entrée	sortie
\$ <i>E'T'</i>	×numb.\$	$T' \rightarrow \times FT'$

	+	-	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		E → TE'	
E'	$E' \longrightarrow$	$E' \longrightarrow$				$E' \rightarrow \varepsilon$		$E' \to \varepsilon$
	+ <i>TE</i> ′	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	T' \rightarrow	T' \rightarrow		$T' \rightarrow \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		$F \rightarrow$ numb.	

pile	entrée	sortie
\$ <i>E'T'F</i> ×	×numb.\$	

	+	-	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		E → TE'	
E'	$E' \rightarrow +TE'$	$E' \longrightarrow$				$E' \to \varepsilon$		$E' \to \varepsilon$
	+ <i>TE'</i>	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	$T' \longrightarrow$		$T' \to \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		F ightarrow numb.	

pile	entrée	sortie
\$ <i>E'T'F</i>	numb.\$	F o numb.

	+	-	×	/	()	numb.	\$
Ε					E → TE'		E → TE'	
E'	$E' \rightarrow$	$E' \longrightarrow$				$E' \to \varepsilon$		$E' \to \varepsilon$
	+ <i>TE'</i>	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	T' \rightarrow		$T' \to \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					<i>F</i> → (<i>E</i>)		$F \rightarrow$ numb.	

pile	entrée	sortie
\$ <i>E'T'numb</i> .	numb.\$	

	+	-	×	/	()	numb.	\$
Ε					E → TE'		E → TE'	
E'	$E' \longrightarrow$	$E' \longrightarrow$				$E' \to \varepsilon$		$E' \to \varepsilon$
	+ <i>TE'</i>	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \rightarrow \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	T' \rightarrow		$T' \to \varepsilon$		$T' o \varepsilon$
			×FT'	/FT'				
F					<i>F</i> → (<i>E</i>)		$F \rightarrow$ numb.	

pile	entrée	sortie
\$ <i>E'T'</i>	\$	T' o arepsilon

	+	-	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		E → TE'	
E'	$E' \rightarrow$	$E' \longrightarrow$				$E' \rightarrow \varepsilon$		$E' \to \varepsilon$
	$E' \rightarrow +TE'$	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	$T' \longrightarrow$		$T' \to \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		F ightarrow numb.	

pile	entrée	sortie
\$ <i>E</i> ′	\$	$E' o \varepsilon$

	+	-	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		E → TE'	
E'	$E' \rightarrow$	$E' \longrightarrow$				$E' \to \varepsilon$		$E' \to \varepsilon$
	+ <i>TE</i> ′	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' \to \varepsilon$	$T' \to \varepsilon$	$T' \longrightarrow$	$T' \longrightarrow$		$T' \to \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					$F \rightarrow (E)$		$F \rightarrow$ numb.	

pile	entrée	sortie
\$	\$	

	+	_	×	/	()	numb.	\$
Ε					$E \rightarrow TE'$		$E \rightarrow TE'$	
E'	$E' \longrightarrow$	$E' \longrightarrow$				$E' \rightarrow \varepsilon$		$E' \to \varepsilon$
	+ <i>TE'</i>	-TE'						
T					$T \rightarrow FT'$		$T \rightarrow FT'$	
T'	$T' o \varepsilon$	$T' \rightarrow \varepsilon$	$T' \longrightarrow$	$T' \longrightarrow$		$T' \rightarrow \varepsilon$		$T' \to \varepsilon$
			×FT'	/FT'				
F					F → (E)		$F \rightarrow$ numb.	

pile	entrée	sortie
\$	\$	

La pile est vide et le flux d'entrée a été consommé entièrement, l'expression $(numb. + numb.) \times numb$. est conforme à la grammaire.

$$S \rightarrow (L)|a$$

 $L \rightarrow L, S|S$

$$S \rightarrow (L)|a$$

 $L \rightarrow L, S|S$

 $Annulable = \emptyset$

$$S \rightarrow (L)|a$$

 $L \rightarrow L, S|S$

Annulable =
$$\emptyset$$

Premier(S) = Premier(L) = $\{(, a)\}$

$$S \rightarrow (L)|a$$

 $L \rightarrow L, S|S$

```
Annulable = \emptyset

Premier(S) = Premier(L) = \{(, a\}

Suivant(S) = \{\$,',',\}

Suivant(L) = \{',',\}
```


$$S \rightarrow (L)|a$$

 $L \rightarrow L, S|S$

 $L \rightarrow S$

 $Annulable = \emptyset$

 $L \rightarrow S$

Analyse ascendante

Contrairement à une analyse descendante, une analyse ascendante construit l'arbre syntaxique depuis les feuilles vers la racine.

Pour cela, l'analyse se fait par lecture de l'entrée de gauche à droite.

Lorsqu'un suffixe de la partie lue est égal à une partie droite de production, ce suffixe est remplacé par la partie gauche de cette même production.

$$S \rightarrow (L)|a$$

 $L \rightarrow L, S|S$

$$((a,a),a)$$

$$S \rightarrow (L)|a$$

 $L \rightarrow L, S|S$

$$S \rightarrow (L)|a$$

 $L \rightarrow L, S|S$

$$((a, a), a)$$
 $((a, a), a)$
 $((a, a), a)$
 $((a, a), a)$
 (A, a)

```
((a, a), a)

((a, a), a)

((a, a), a)

((a, a), a)
```

$$S \rightarrow (L)|a$$

 $L \rightarrow L, S|S$

a


```
((a, a), a)
((S, a), a)
(S, a)
(S, a)
```

(

(

.

```
((a, a), a) \\ ((S, a), a) \\ ((L, a), a) \\ (L \rightarrow L, S | S)
```

```
((a, a), a) \\ ((a, a), a) \\
```

```
((a, a), a) \\ ((S, a), a) \\ ((L, a), a) \\ (L \rightarrow L, S | S)
((L, a), a) \\ ((L, a), a) \\ (L \rightarrow L, S | S)
```

```
((a, a), a)
                                         ((a, a), a)
                                         ((a,a),a)
                                         ((a, a), a)
                                         ((S,a),a)
S \rightarrow (L)|a ((L,a),a) ((L,a),a) ((L,a),a) ((L,a),a) ((L,a),a) ((L,S),a)
```

$$((a, a), a) \\ ((a, a), a) \\ ((a, a), a) \\ ((a, a), a) \\ ((a, a), a) \\ ((b, a), a) \\$$

$$((a, a), a) \\ ((a, a), a) \\ ((a, a), a) \\ ((a, a), a) \\ ((a, a), a) \\ ((S, a), a) \\ ((L, a), a) \\ (L \rightarrow L, S | S)$$

$$((L, a), a) \\ ((L, a), a$$

$$S \rightarrow (L)|a \qquad ((L, a), a) \\ ((L, a), a) \\ ((A, a), a) \\ (($$

$$S \rightarrow (L)|a \qquad ((L, a), a) \\ ((L, a), a) \\ ((A, a), a) \\ ((A, a), a) \\ ((B, a), a) \\ (($$

$$S \rightarrow (L)|a \qquad ((L,a),a) \\ ((L,$$

$$S \rightarrow (L)|a \qquad ((L, a), a) \\ ((L, a), a) \\ ((A, a), a) \\ ((A, a), a) \\ ((B, a), a) \\ (($$

$$S \rightarrow (L)|a \qquad ((L,a),a) \\ ((L,$$

$$S \rightarrow (L)|a \qquad ((L, a), a) \\ ((L, a), a) \\ ((A, a), a) \\ (($$

((a, a), a)

$$S \rightarrow (L)|a \qquad ((L,a),a) \\ ((L,$$

((a, a), a)

$$S \rightarrow (L)|a \qquad ((L,a),a) \\ (L,a) \\ (L,a) \\ (L,a) \\ (L,a) \\ (L,b) \\ (L,a) \\ (L,b) \\ (L,b$$

Analyse LR : le principe général

Une analyse LR repose sur le principe de décalage/réduction. L'analyse LR d'une entrée w\$ repose sur une pile et deux tables (ou fonction) :

- la pile contient des symboles (terminaux et non terminaux) et des états de l'analyseur, le sommet de pile contenant toujours l'état courant de l'analyseur
- la table des actions indique, en fonction du sommet de pile et du caractère courant de l'entrée, s'il faut procéder à un décalage ou bien à une réduction
- la table des successeurs indique le prochain état courant de l'analyseur en cas de réduction

Analyse LR : le principe général

```
AnalyseLR(Action, Successeur, w$)
   1 ▷ La pile est initialisée avec l'état initial de l'analyseur
      ▷ p pointe sur le premier caractère de l'entrée
   3
      repeat
         s \leftarrow \text{sommet de pile}
         a \leftarrow \text{symbole pointé par } p
         if Action[s, a] = décaler s' then
           \triangleright empiler a puis s'
   8
           ▷ avancer p
   9
         else
 10
           if Action[s, a] = réduire par A \rightarrow \alpha then
 11
              \triangleright dépiler 2 \times |\alpha| symboles
              s' \leftarrow \text{sommet de pile}
 12
 13
              \triangleright empiler A puis Successeur[s', A]
 14
              15
           else
 16
              if Action[s, a] = accepter then
 17

⊳ signaler l'acceptation et quitter

 18
              else
  19
```

Analyse LR: items et fermeture

item

Un item est de la forme $A \to \alpha_1 \cdot \alpha_2$ où $A \to \alpha_1 \alpha_2$ est une production et où le point signifie que α_1 a déjà été analysé, mais pas encore α_2 : un item correspond donc à un état de l'analyseur.

fermeture

Soit I un item de la forme $A \to \alpha \cdot B\beta$, placer I dans sa fermeture puis :

- pour toute production de la forme $B \to \gamma$, placer $B \to {}^{\bullet}\gamma$ dans la fermeture de l
- itérér l'étape précédente pour tous les nouveaux items ajoutés

Analyse LR : fermeture

```
Fermeture(I)

1 J \leftarrow I

2 repeat

3 for each A \rightarrow \alpha \cdot B\beta \in J do

4 if B \rightarrow \gamma \in G, B \rightarrow \cdot \gamma \not\in J then

5 \triangleright ajouter B \rightarrow \cdot \gamma à J

6 until aucun nouvel item n'a été ajouté à J
```


Analyse LR: transition

Transition(I, X)

Soient I un ensemble d'items et X un symbole de la grammaire.

Transition(I, X) est l'ensemble des items de la forme $A \to \alpha X \cdot \beta$ tel que $A \to \alpha \cdot X \beta \in I$.

On applique alors l'opération de fermeture sur cet ensemble.

Analyse LR : grammaire augmentée

Grammaire augmentée

Soit G une grammaire d'axiome S, on appelle G' la grammaire augmentée de G telle que S' est le nouvel axiome et $S' \to S$.

Analyse LR : collection d'items

```
Items(G')

1 C \leftarrow \{\text{Fermeture}(\{S' \rightarrow \bullet S\})\}

2 repeat

3 for each I \in C, X \in \{N \times T\},

Transition(I, X) \notin C (et non vide) do

4 \triangleright Ajouter Transition(I, X) à C

5 until aucun nouvel ensemble d'items ajouté à C
```

$$S \rightarrow (L)|a \ L \rightarrow L, S|S$$

(0)
$$S' \rightarrow S$$

$$(1)$$
 $S
ightarrow (L)$

$$(2) \quad S \rightarrow \quad a$$

$$\begin{array}{ccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & (L) \end{array}$$

$$(2) \quad S \rightarrow \quad a$$

$$(3) L \to L, S$$

$$(4) L \to S$$

(0)
$$S' \rightarrow S$$

$$(1)$$
 $S \rightarrow (L)$

$$(2) S \rightarrow a$$

$$(3) L \to L, S$$

$$(4) L \rightarrow S$$

$$I_1 \mid S' \rightarrow S$$

(0)
$$S' \rightarrow S'$$

$$(2) S \rightarrow a$$

$$(3) L \rightarrow L, S$$

$$(4) L \rightarrow S$$

$$egin{array}{c|c} I_0 & S'
ightarrow \cdot S \ S
ightarrow \cdot (L) \ S
ightarrow \cdot a \ \end{array}$$
 $I_1 & S'
ightarrow S \cdot$

$$I_1 \mid S' \rightarrow S \bullet$$

$$(0)$$
 $S' \rightarrow S$

$$(1)$$
 $S \rightarrow (L)$

$$(2) \quad 3 \rightarrow a$$

$$\begin{array}{cccc} (1) & S \rightarrow & (L) \\ (2) & S \rightarrow & a \\ (3) & L \rightarrow & L, S \\ (4) & L \rightarrow & S \end{array}$$

$$(4) L \rightarrow S$$

$$egin{array}{c|c} I_0 & S'
ightarrow \cdot S \ S
ightarrow \cdot (L) \ S
ightarrow \cdot a \ \end{array}$$
 $I_1 & S'
ightarrow S \cdot$

$$\begin{array}{c|c} I_2 & S \rightarrow ({}^{\bullet}L) \\ L \rightarrow {}^{\bullet}L, S \\ L \rightarrow {}^{\bullet}S \\ S \rightarrow {}^{\bullet}(L) \\ S \rightarrow {}^{\bullet}a \end{array}$$

$$I_3 \mid S \rightarrow a^{\bullet}$$

$$egin{array}{lll} (0) & S'
ightarrow & S \ (1) & S
ightarrow & (L) \ (2) & S
ightarrow & a \ \end{array}$$

$$(3) \quad L \rightarrow \quad L, S$$

$$(4)$$
 $L \rightarrow S$

$$\begin{array}{c|c}
I_0 & S' \to \cdot S \\
S \to \cdot (L) \\
S \to \cdot a
\end{array}$$

$$I_1 & S' \to S \cdot$$

$$egin{array}{c|c} I_4 & S
ightarrow (L ullet) \ L
ightarrow L ullet, S \end{array}$$

 $I_5 \mid L \rightarrow S \cdot$

$$egin{array}{c|c} I_0 & S'
ightarrow \cdot S \ S
ightarrow \cdot (L) \ S
ightarrow \cdot a \ \end{array}$$

$$\begin{array}{c|c} I_2 & S \rightarrow ({}^{\bullet}L) \\ L \rightarrow {}^{\bullet}L, S \\ L \rightarrow {}^{\bullet}S \\ S \rightarrow {}^{\bullet}(L) \\ S \rightarrow {}^{\bullet}a \end{array}$$

$$\begin{array}{c|c} I_3 & S \rightarrow a {}^{\bullet} \\ I_4 & S \rightarrow (L {}^{\bullet}) \\ L \rightarrow L {}^{\bullet}, S \end{array}$$

(0)
$$S' \to S$$

(1) $S \to (L)$
(2) $S \to a$
(3) $L \to L, S$
(4) $L \to S$

 $I_5 \mid L \rightarrow S \cdot \ I_6 \mid S \rightarrow (L) \cdot \$

$$egin{array}{c|c} I_0 & S'
ightarrow \cdot S \ S
ightarrow \cdot (L) \ S
ightarrow \cdot a \ \end{array}$$
 $I_1 & S'
ightarrow S \cdot$

$$\begin{array}{c|c} I_2 & S \rightarrow (\cdot L) \\ & L \rightarrow \cdot L, S \\ & L \rightarrow \cdot S \\ & S \rightarrow \cdot (L) \\ & S \rightarrow \cdot a \end{array}$$

$$\begin{array}{c|c} I_3 & S \rightarrow a \cdot \\ & L \rightarrow L \cdot, S \end{array}$$

$$\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & (L) \\ (2) & S \rightarrow & a \\ (3) & L \rightarrow & L, S \end{array}$$

$$(4)$$
 $L \rightarrow S$

$$\begin{array}{c|c} I_0 & S' \to {\boldsymbol{\cdot}} S \\ S \to {\boldsymbol{\cdot}} (L) \\ S \to {\boldsymbol{\cdot}} a \end{array}$$

$$I_1 & S' \to S{\boldsymbol{\cdot}} \\ I_2 & S \to ({\boldsymbol{\cdot}} L) \\ I_1 \to {\boldsymbol{\cdot}} L \end{array}$$

$$\begin{array}{c|c} I_2 & S \rightarrow (\cdot L) \\ L \rightarrow \cdot L, S \\ L \rightarrow \cdot S \\ S \rightarrow \cdot (L) \\ S \rightarrow \cdot a \end{array}$$

$$egin{array}{c|c} I_3 & S
ightarrow a \cdot \\ I_4 & S
ightarrow (L ullet) \\ L
ightarrow L ullet, S \\ I_5 & L
ightarrow S ullet \\ I_6 & S
ightarrow (L) ullet \end{array}$$

$$\begin{vmatrix}
L \to L, \cdot S \\
S \to \cdot (L) \\
S \to \cdot a
\end{vmatrix}$$

$$\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & (L) \\ (2) & S \rightarrow & a \\ (3) & L \rightarrow & L, S \\ (4) & L \rightarrow & S \end{array}$$

$$\begin{array}{c|c} I_0 & S' \to {}^{\bullet}S \\ S \to {}^{\bullet}(L) \\ S \to {}^{\bullet}a \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot$$

$$\begin{array}{c|c} I_2 & S \to (\bullet L) \\ L \to \bullet L, S \\ L \to \bullet S \\ S \to \bullet (L) \end{array}$$

$$\begin{array}{c|c} I_3 & S \rightarrow a \bullet \\ I_4 & S \rightarrow (L \bullet) \\ & L \rightarrow L \bullet, S \\ I_5 & L \rightarrow S \bullet \end{array}$$

$$I_6 \mid S \rightarrow (L)$$

$$J_7 \mid L \to L, {\,}^{\bullet}S \\ S \to {\,}^{\bullet}(L) \\ S \to {\,}^{\bullet}a$$

$$I_8 \mid L \rightarrow L, S$$
.

 $\begin{array}{c|c} I_{\mathbf{4}} & S \to (L \bullet) \\ L \to L \bullet, S \end{array}$

Table d'Analyse LR(0)

$$\begin{array}{cccc} (0) & S' \to & S \\ (1) & S \to & (L) \\ (2) & S \to & a \end{array}$$

$$\begin{array}{ccc} (2) & S \rightarrow & a \\ (3) & L \rightarrow & L, . \end{array}$$

$$(4)$$
 $L \rightarrow$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \to \bullet S \\ S \to \bullet (L) \\ S \to \bullet a \end{array}$$

$$I_1 \mid S' \rightarrow S$$
.

	action	successeur						
		()	а	,	\$	S	L
0	décalage	2		3			1	
1	accepte							
2	décalage	2		3			5	4
3	réduction $S \rightarrow a$							
4	décalage		6		7			
5	réduction $L \rightarrow S$							
6	réduction $S \rightarrow (L)$							
7	décalage	2		3			8	
8	réduction $L \rightarrow L, S$							

 $l_8 \mid L \rightarrow L, S \bullet$

- 5

- $\begin{array}{ccc} S \rightarrow & (L) \\ S \rightarrow & a \\ L \rightarrow & L, S \\ L \rightarrow & S \end{array}$

	action	successeur					
		()	а	,	\$ S	L
0	décalage	2		3		1	
1	accepte						
2	décalage	2		3		5	4
3	réduction $S \rightarrow a$						
4	décalage		6		7		
5	réduction $L \rightarrow S$						
6	réduction $S \rightarrow (L)$						
7	décalage	2		3		8	
8	réduction $L \rightarrow L, S$						

pile

entrée

action

S

 $\begin{array}{ccc} S \rightarrow & (L) \\ S \rightarrow & a \\ L \rightarrow & L, S \\ L \rightarrow & S \end{array}$

pile	entrée	action
0	((a, a), a)\$	

	action	successeur					
		()	а	,	\$ S	L
0	décalage	2		3		1	
1	accepte						
2	décalage	2		3		5	4
3	réduction $S \rightarrow a$						
4	décalage		6		7		
5	réduction $L \rightarrow S$						
6	réduction $S \rightarrow (L)$						
7	décalage	2		3		8	
8	réduction $L \rightarrow L, S$						

S

 $\begin{array}{ccc} S \rightarrow & (L) \\ S \rightarrow & a \\ L \rightarrow & L, S \\ L \rightarrow & S \end{array}$

pile	entrée	action
0	((a, a), a)\$	décalage

	action	successeur						
		()	а	,	\$	S	L
0	décalage	2		3			1	
1	accepte							
2	décalage	2		3			5	4
3	réduction $S \rightarrow a$							
4	décalage		6		7			
5	réduction $L \rightarrow S$							
6	réduction $S \rightarrow (L)$							
7	décalage	2		3			8	
8	réduction $L \rightarrow L, S$							

S

 $\begin{array}{ccc} S \rightarrow & (L) \\ S \rightarrow & a \\ L \rightarrow & L, S \\ L \rightarrow & S \end{array}$

pile	entrée	action
0	((a, a), a)\$ (a, a), a)\$	décalage
0 (2	(a, a), a)\$	

	action	successeur						
		()	а	,	\$	S	L
0	décalage	2		3			1	
1	accepte							
2	décalage	2		3			5	4
3	réduction $S \rightarrow a$							
4	décalage		6		7			
5	réduction $L \rightarrow S$							
6	réduction $S \rightarrow (L)$							
7	décalage	2		3			8	
8	réduction $L \rightarrow L, S$							

(0)	$S' \rightarrow$	5
(1)	$S \rightarrow$	(L)

- (1) $3 \rightarrow (L)$
- $(3) \qquad I \rightarrow \qquad I$
- $(3) \qquad L \rightarrow \qquad L, 3$ $(4) \qquad I \rightarrow \qquad S$

pile	entrée	action
0	((a, a), a)\$	décalage
0 (2	(a, a), a)\$	décalage

	action	successeur						
		()	а	,	\$	S	L
0	décalage	2		3			1	
1	accepte							
2	décalage	2		3			5	4
3	réduction $S \rightarrow a$							
4	décalage		6		7			
5	réduction $L \rightarrow S$							
6	réduction $S \rightarrow (L)$							
7	décalage	2		3			8	
8	réduction $L \rightarrow L, S$							

(0)	\rightarrow	3
(1)	$S \rightarrow$	(L)
(2)	$S \rightarrow$	a

 $\begin{array}{cccc} (2) & S \rightarrow & a \\ (3) & I \rightarrow & I \end{array}$

 $(4) \qquad L \rightarrow \qquad L, 3$

pile	entrée	action
0	((a, a), a)\$	décalage
0 (2	(a, a), a)\$	décalage
0 (2 (2	a, a), a)\$	

	action	successeur					
		()	а	,	\$ S	L
0	décalage	2		3		1	
1	accepte						
2	décalage	2		3		5	4
3	réduction $S \rightarrow a$						
4	décalage		6		7		
5	réduction $L \rightarrow S$						
6	réduction $S \rightarrow (L)$						
7	décalage	2		3		8	
8	réduction $L \rightarrow L, S$						

(0)	\rightarrow	3
(1)	$S \rightarrow$	(L)
(2)	$S \rightarrow$	а
(3)	$L \rightarrow$	L, 5
(4)	$L \rightarrow$	S

pile	entrée	action
0	((a, a), a)\$	décalage
0 (2	(a, a), a)\$	décalage
0 (2 (2	a, a), a)\$	décalage

	action	successeur					
		()	а	,	\$ S	L
0	décalage	2		3		1	
1	accepte						
2	décalage	2		3		5	4
3	réduction $S \rightarrow a$						
4	décalage		6		7		
5	réduction $L \rightarrow S$						
6	réduction $S \rightarrow (L)$						
7	décalage	2		3		8	
8	réduction $L \rightarrow L, S$						

(0)	J -	9
(1)	$S \rightarrow$	(L)
(2)	$S \rightarrow$	а
(3)	$L \rightarrow$	L, 5
(4)	$L \rightarrow$	S

pile	entrée	action
0	((a, a), a)\$	décalage
0 (2	(a, a), a)\$	décalage
0 (2 (2	a, a), a)\$	décalage
0 (2 (2 a 3	, a), a)\$	

	action	l	successeur					
		()	а	,	\$	S	L
0	décalage	2		3			1	
1	accepte							
2	décalage	2		3			5	4
3	réduction $S \rightarrow a$							
4	décalage		6		7			
5	réduction $L \rightarrow S$							
6	réduction $S \rightarrow (L)$							
7	décalage	2		3			8	
8	réduction $L \rightarrow L, S$							

(0)	$S' \rightarrow$	5
(1)	$S \rightarrow$	(L)
(2)	$S \rightarrow$	а
(3)	$L \rightarrow$	L, S

(2)	\rightarrow	a
(3)	$L \rightarrow$	L, S
(4)	$L \rightarrow$	S

pile	entrée	action
0	((a, a), a)\$	décalage
0 (2	(a, a), a)\$	décalage
0 (2 (2	a, a), a)\$	décalage
0 (2 (2 a <mark>3</mark>	,a), a)\$	réduction $S \rightarrow a$
		'

	action	successeur					
		()	а	,	\$ S	L
0	décalage	2		3		1	
1	accepte						
2	décalage	2		3		5	4
2	réduction $S \rightarrow a$						
4	décalage		6		7		
5	réduction $L \rightarrow S$						
6	réduction $S \rightarrow (L)$						
7	décalage	2		3		8	
8	réduction $L \rightarrow L, S$						

(0)	<i>J</i>	9
(1)	$S \rightarrow$	(L)
(2)	$S \rightarrow$	a
(2)	1 .	1 0

(3)	$L \rightarrow$	L, S
(4)	1 -	S

(5)	- /	-, -
(4)	$L \rightarrow$	S

pile	entrée	action
0	((a, a), a)\$	décalage
0 (2	(a, a), a)\$	décalage
0 (2 (2	a, a), a)\$	décalage
0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
0 (2 (2 S 5	, a), a)\$	

	action	successeur						
		()	а	,	\$	S	L
0	décalage	2		3			1	
1	accepte							
2	décalage	2		3			5	4
3	réduction $S \rightarrow a$							
4	décalage		6		7			
5	réduction $L \rightarrow S$							
6	réduction $S \rightarrow (L)$							
7	décalage	2		3			8	
8	réduction $L \rightarrow L, S$							

(0)	$S' \rightarrow$	5
(1)	$S \rightarrow$	(L)
(2)	$S \rightarrow$	а
(3)	$L \rightarrow$	L, S
(4)	/ →	S

pile	entrée	action
0	((a, a), a)\$	décalage
0 (2	(a, a), a)\$	décalage
0 (2 (2	a, a), a)\$	décalage
0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
0 (2 (2 S 5	,a), a)\$	réduction $L \rightarrow S$

	action	successeur						
		()	а	,	\$	S	L
0	décalage	2		3			1	
1	accepte							
2	décalage	2		3			5	4
3	réduction $S \rightarrow a$							
4	décalage		6		7			
5	réduction $L \rightarrow S$							
6	réduction $S \rightarrow (L)$							
7	décalage	2		3			8	
8	réduction $L \rightarrow L, S$							

(U)	\rightarrow	3
(1)	$S \rightarrow$	(L)
(2)	$S \rightarrow$	а

pile	entrée	action
0	((a, a), a)\$	décalage
0 (2	(a, a), a)\$	décalage
0 (2 (2	a, a), a)\$	décalage
0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
0 (2 (2 1 4	2) 2)\$	

	action	successeur						
		()	а	,	\$	S	L
0	décalage	2		3			1	
1	accepte							
2	décalage	2		3			5	4
3	réduction $S \rightarrow a$							
4	décalage		6		7			
5	réduction $L \rightarrow S$							
6	réduction $S \rightarrow (L)$							
7	décalage	2		3			8	
8	réduction $L \rightarrow L, S$							

\rightarrow	3
$S \rightarrow$	(L)
$S \rightarrow$	а
$L \rightarrow$	L, S
	$\begin{array}{c} \mathcal{S} \rightarrow \\ \mathcal{S} \rightarrow \end{array}$

(2)	$s \rightarrow$	а
(3)	$L \rightarrow$	L, S
(4)		C

(3)	_ /	L, J
(4)	$L \rightarrow$	S

pile	entrée	action			
0	((a, a), a)\$	décalage			
0 (2	(a, a), a)\$	décalage			
0 (2 (2	a, a), a)\$	décalage			
0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$			
0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$			
0 (2 (2 L 4	,a), a)\$	décalage			

	action	successeur								
		()	а	,	\$	S	L		
0	décalage	2		3			1			
1	accepte									
2	décalage	2		3			5	4		
3	réduction $S \rightarrow a$									
4	décalage		6		7					
5	réduction $L \rightarrow S$									
6	réduction $S \rightarrow (L)$									
7	décalage	2		3			8			
8	réduction $L \rightarrow L, S$									

(1)	$s \rightarrow$	(L)								0
(2)	$S \rightarrow$	а								0 (2
(3)	$L \rightarrow$	L, S								0 (2 (2
(4)	$L \rightarrow$	S								0 (2 (2 a 3
										0(2(255
										0 (2 (2 L 4
	action		l		suc	ccess	eur			0 (2 (2 L 4 , 7
			()	а	,	\$	S	L	-
0	décalage		2		3			1		-
1	acconto									

pile	entrée	action			
0	((a, a), a)\$	décalage			
0 (2	(a, a), a)\$	décalage			
0 (2 (2	a, a), a)\$	décalage			
0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$			
0(2(255	, a), a)\$	réduction $L \rightarrow S$			
0 (2 (2 L 4	, a), a)\$	décalage			
0(2(2L4.7	a). a)\$				

		()	а	,	\$ S	L
0	décalage	2		3		1	
1	accepte						
2	décalage	2		3		5	4
3	réduction $S \rightarrow a$						
4	décalage		6		7		
5	réduction $L \rightarrow S$						
6	réduction $S \rightarrow (L)$						
7	décalage	2		3		8	
8	réduction $L \rightarrow L, S$						

(1)	$S \rightarrow$	(L)								0
(2)	$s \rightarrow$	a								0 (2
(3)	$L \rightarrow$	L, S								0 (2 (2
(4)	$L \rightarrow$	S								0 (2 (2 a 3
. ,										0 (2 (2 S 5
										0 (2 (2 L 4
	action				suc	cess	eur			0 (2 (2 L 4 , 7
			()	а	,	\$	S	L	-
0	décalage		2		3			1		-

pile	entrée	action		
0	((a, a), a)\$	décalage		
0 (2	(a, a), a)\$	décalage		
0 (2 (2	a, a), a)\$	décalage		
0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$		
0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$		
0 (2 (2 L 4	, a), a)\$	décalage		
0 (2 (2 L 4 , 7	a), a)\$	décalage		

		()	а	,	\$ S	L
0	décalage	2		3		1	
1	accepte						
2	décalage	2		3		5	4
3	réduction $S \rightarrow a$						
4	décalage		6		7		
5	réduction $L \rightarrow S$						
6	réduction $S \rightarrow (L)$						
7	décalage	2		3		8	
8	réduction $L \rightarrow L, S$						

(0)	$S' \rightarrow S$								pile	entrée	action
(1)	$S \rightarrow (L)$								0	((a, a), a)\$	décalage
(2)	$S \rightarrow a$								0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$								0 (2 (2	a, a), a)\$	décalage
(4)	L o S								0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
. ,									0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
									0 (2 (2 L 4	, a), a)\$	décalage
	action	İ		su	ccesseı	ır			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	а	,	\$	S	L	⁻ 0 (2 (2 L 4 , 7 a 3), a)\$	
0	décalage	2		3			1		-		
1	accepte										
2	décalage	2		3			5	4			
3	réduction $S \rightarrow a$										
4	décalage		6		7						
5	réduction $L \rightarrow S$										
6	réduction $S \rightarrow (L)$										
7	décalage	2		3			8				
8	réduction $I \rightarrow I$ S										

(0) $S' \rightarrow S$

décalage réduction $L \to S$ réduction $S \to (L)$ décalage

(1)	$S \rightarrow$	(L)								0	((a, a), a)\$	décalage
(2)	$S \rightarrow$	а								0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow$	L, S								0 (2 (2	a, a), a)\$	décalage
(4)		S								0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
										0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
										0 (2 (2 L 4	, a), a)\$	décalage
	action				su	ccess	eur			0 (2 (2 L 4 , 7	a), a)\$	décalage
			()	а	,	\$	S	L	⁻ 0 (2 (2 L 4 , 7 a <mark>3</mark>), a)\$	réduction $S \rightarrow a$
0	décalage		2		3			1		_		
1	accepte											
2	décalage		2		3			5	4			
3	réduction	$S \rightarrow a$										

8

3

pile

réduction $L \rightarrow L, S$

action

entrée

(0)	$S' \rightarrow S$							pile	entrée	action
(1)	$S \rightarrow (L)$						0		((a, a), a)\$	décalage
(2)	S ightarrow a						0 (2		(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$						0 (2	(2	a, a), a)\$	décalage
(4)	L o S						0 (2	(2 a 3	, a), a)\$	réduction $S \rightarrow a$
							0 (2	(2S5	, a), a)\$	réduction $L \rightarrow S$
							0 (2	(2 L 4	, a), a)\$	décalage
	action			SU	ccesseur			(2L4,7	a), a)\$	décalage
		()	а	, 9	S S		(2L4,7a3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3		1	— 0 (2	(2L4,7S8), a)\$	
1	accepte									
2	décalage	2		3		5	4			
3	réduction $S \rightarrow a$									
4	décalage		6		7					
5	réduction $L \rightarrow S$									
6	réduction $S \rightarrow (L)$									
7	décalage	2		3		8				
8	réduction $L \rightarrow L, S$									

-:1-

(0)	$S' \rightarrow S$								pile	entrée	action
(1)	$S \rightarrow (L)$								0	((a, a), a)\$	décalage
(2)	S ightarrow a								0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$								0 (2 (2	a, a), a)\$	décalage
(4)	$L \rightarrow S$								0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
									0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
									0 (2 (2 L 4	, a), a)\$	décalage
	action			SU	ccesse	ur			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	а		\$	S	L	-0(2(2L4,7a3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3			1		-0(2(2L4,7S <mark>8</mark>), a)\$	réduction $L \to L, S$
1	accepte										
2	décalage	2		3			5	4			
3	réduction $S \rightarrow a$										
4	décalage		6		7						
5	réduction $L \rightarrow S$										
6	réduction $S \rightarrow (L)$										
7	décalage	2		3			8				
8	réduction $L \rightarrow L, S$										

(0)	$S' \rightarrow S$							pile	entrée	action
(1)	$S \rightarrow (L)$							0	((a, a), a)\$	décalage
(2)	S ightarrow a							0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$							0 (2 (2	a, a), a)\$	décalage
(4)	L o S							0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
								0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
								0 (2 (2 L 4	, a), a)\$	décalage
	action			SU	ccesseur			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	а	. 9	S	L	⁻ 0(2(2L4,7a3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3	, ,	1		-0(2(2L4,7S8), a)\$	réduction $L \to L, S$
1	accepte							0 (2 (2 L 4), a)\$	
2	décalage	2		3		5	4			
3	réduction $S \rightarrow a$									
4	décalage		6		7					
5	réduction $L \rightarrow S$									
6	réduction $S \rightarrow (L)$									
7	décalage	2		3		8				
8	réduction $L \rightarrow L, S$									

(0)	$S' \rightarrow S$							pile	entrée	action
(1)	$S \rightarrow (L)$							0	((a, a), a)\$	décalage
(2)	S ightarrow a							0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$							0 (2 (2	a, a), a)\$	décalage
(4)	L o S							0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
								0(2(255	, a), a)\$	réduction $L \rightarrow S$
								0 (2 (2 L 4	, a), a)\$	décalage
	action			su	ccesseur			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	a	. 9	5 S	L	-0 (2 (2 L 4 , 7 a 3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3	, ,	1		⁻ 0(2(2L4,7S8), a)\$	réduction $L \to L, S$
1	accepte							0 (2 (2 L <mark>4</mark>), a)\$	décalage
2	décalage	2		3		5	4			
3	réduction $S \rightarrow a$									
4	décalage		6		7					
5	réduction $L \rightarrow S$									
6	réduction $S \rightarrow (L)$									
7	décalage	2		3		8				
8	réduction $L \rightarrow L, S$									

(0)	$S' \rightarrow S$							pile	entrée	action
(1)	$S \rightarrow (L)$						_	0	((a, a), a)\$	décalage
(2)	S ightarrow a							0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$							0 (2 (2	a, a), a)\$	décalage
(4)	$L \rightarrow S$							0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
								0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
								0 (2 (2 L 4	, a), a)\$	décalage
	action			SU	ccesseur			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	а	. \$	S	L	⁻ 0(2(2L4,7a3), a)\$	réduction $S o a$
0	décalage	2		3		1		-0(2(2L4,7S8), a)\$	réduction $L \to L, S$
1	accepte							0 (2 (2 L 4), a)\$	décalage
2	décalage	2		3		5	4	0 (2 (2 L 4) 6	, a)\$	
3	réduction $S \rightarrow a$									
4	décalage		6		7					
5	réduction $L \rightarrow S$									
6	réduction $S \rightarrow (L)$									
7	décalage	2		3		8				
8	réduction $L \rightarrow L, S$									

(0)	S' o S							pile	entrée	action
(1)	$S \rightarrow (L)$							0	((a, a), a)\$	décalage
(2)	S → a							0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$							0 (2 (2	a, a), a)\$	décalage
(4)	L o S							0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
								0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
								0 (2 (2 L 4	, a), a)\$	décalage
	action			SU	ccesseur			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	а	. \$	S	L	⁻ 0(2(2L4,7a3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3		1		-0(2(2L4,7S8), a)\$	réduction $L \to L, S$
1	accepte							0 (2 (2 L 4), a)\$	décalage
2	décalage	2		3		5	4	0 (2 (2 L 4) 6	,a)\$	réduction $S \rightarrow (L)$
3	réduction $S \rightarrow a$									
4	décalage		6		7					
5	réduction $L \rightarrow S$									
6	réduction $S \rightarrow (L)$									
7	décalage	2		3		8				
8	réduction $L \rightarrow L, S$									

(0)	$S' \rightarrow S$							pile	entrée	action
(1)	$S \rightarrow (L)$							0	((a, a), a)\$	décalage
(2)	S ightarrow a							0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$							0 (2 (2	a, a), a)\$	décalage
(4)	$L \rightarrow S$							0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
								0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
								0 (2 (2 L 4	, a), a)\$	décalage
	action	l		SUC	cesseur			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	а	. \$	S	L	-0 (2 (2 L 4 , 7 a 3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3	, ,	1		⁻ 0(2(2L4,7S8), a)\$	réduction $L \rightarrow L, S$
1	accepte	_						0 (2 (2 L 4), a)\$	décalage
2	décalage	2		3		5	4	0 (2 (2 L 4) 6	, a)\$	réduction $S \rightarrow (L)$
3	réduction $S \rightarrow a$	_						0 (2 S 5	, a)\$	
4	décalage		6		7					
5	réduction $L \rightarrow S$									
6	réduction $S \rightarrow (L)$									
7	décalage	2		3		8				
8	réduction $L \rightarrow L, S$									

(0)	$S' \rightarrow S$								piie	entree	action
(1)	$S \rightarrow (L)$								0	((a, a), a)\$	décalage
(2)	S ightarrow a								0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$								0 (2 (2	a, a), a)\$	décalage
(4)	L o S								0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
									0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
									0 (2 (2 L 4	, a), a)\$	décalage
	action			su	ccessei	ur			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	а		\$	S	L	[—] 0 (2 (2 L 4 , 7 a 3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3			1		-0(2(2L4,7S8), a)\$	réduction $L \to L, S$
1	accepte								0 (2 (2 L 4), a)\$	décalage
2	décalage	2		3			5	4	0 (2 (2 L 4) 6	, a)\$	réduction $S \rightarrow (L)$
3	réduction $S \rightarrow a$								0 (2 S 5	,a)\$	réduction $L \rightarrow S$
4	décalage		6		7						
5	réduction $L \rightarrow S$										
6	réduction $S \rightarrow (L)$										
7	décalage	2		3			8				
8	réduction $L \rightarrow L, S$										

-:1-

(0)	$S' \rightarrow S$						pile	entrée	action
(1)	$S \rightarrow (L)$						0	((a, a), a)\$	décalage
(2)	S ightarrow a						0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$						0 (2 (2	a, a), a)\$	décalage
(4)	L o S						0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
							0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
							0 (2 (2 L 4	, a), a)\$	décalage
	action			suc	ccesseur		0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	а	. \$	S	0(2(2L4,7a3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3		1	0(2(2L4,7S8), a)\$	réduction $L \rightarrow L, S$
1	accepte						0 (2 (2 L 4), a)\$	décalage
2	décalage	2		3		5	4 0 (2 (2 L 4) 6	, a)\$	réduction $S \rightarrow (L)$
3	réduction $S \rightarrow a$						0 (2 S 5	, a)\$	réduction $L \rightarrow S$
4	décalage		6		7		0 (2 L 4	, a)\$	
5	réduction $L \rightarrow S$								
6	réduction $S \rightarrow (L)$								
7	décalage	2		3		8			
8	réduction $L \rightarrow L, S$								

(0)	$S' \rightarrow S$						pile	entrée	action
(1)	$S \rightarrow (L)$						0	((a, a), a)\$	décalage
(2)	S ightarrow a						0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$						0 (2 (2	a, a), a)\$	décalage
(4)	L o S						0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
							0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
							0 (2 (2 L 4	, a), a)\$	décalage
	action			suc	ccesseur		0 (2 (2 L 4 , 7		décalage
		()	а	. \$	S	0(2(2L4,7		réduction $S \rightarrow a$
0	décalage	2		3	, .	1	0(2(2L4,7		réduction $L \rightarrow L, S$
1	accepte						0 (2 (2 L 4), a)\$	décalage
2	décalage	2		3		5	4 0 (2 (2 L 4) 6		réduction $S \rightarrow (L)$
3	réduction $S \rightarrow a$						0 (2 S 5	, a)\$	réduction $L \rightarrow S$
4	décalage		6		7		0 (2 L <mark>4</mark>	,a)\$	décalage
5	réduction $L \rightarrow S$								
6	réduction $S \rightarrow (L)$								
7	décalage	2		3		8			
8	réduction $L \rightarrow L, S$								

(0)	$S' \rightarrow S$								pile	entrée	action
(1)	$S \rightarrow (L)$								0	((a, a), a)\$	décalage
(2)	S ightarrow a								0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$								0 (2 (2	a, a), a)\$	décalage
(4)	L o S								0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
									0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
									0 (2 (2 L 4	, a), a)\$	décalage
	action			suc	ccesse	eur			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	а		\$	S	L	⁻ 0(2(2L4,7a3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3			1		-0(2(2L4,7S8), a)\$	réduction $L \rightarrow L, S$
1	accepte								0 (2 (2 L 4), a)\$	décalage
2	décalage	2		3			5	4	0 (2 (2 L 4) 6	, a)\$	réduction $S \rightarrow (L)$
3	réduction $S \rightarrow a$								0 (2 S 5	, a)\$	réduction $L \rightarrow S$
4	décalage		6		7				0 (2 L 4	, a)\$	décalage
5	réduction $L \rightarrow S$								0 (2 L 4 , 7	a)\$	
6	réduction $S \rightarrow (L)$										
7	décalage	2		3			8				
8	réduction $L \rightarrow L, S$										

(0)	$S' \rightarrow S$							pile	entrée	action
(1)	$S \rightarrow (L)$							0	((a, a), a)\$	décalage
(2)	S ightarrow a							0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$							0 (2 (2	a, a), a)\$	décalage
(4)	L o S							0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
								0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
								0 (2 (2 L 4	, a), a)\$	décalage
	action			suc	ccesseur			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	а	. \$	S	L	[—] 0 (2 (2 L 4 , 7 a 3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3		1		-0(2(2L4,7S8), a)\$	réduction $L \rightarrow L, S$
1	accepte							0 (2 (2 L 4), a)\$	décalage
2	décalage	2		3		5	4	0 (2 (2 L 4) 6	, a)\$	réduction $S \rightarrow (L)$
3	réduction $S \rightarrow a$							0 (2 S 5	, a)\$	réduction $L \rightarrow S$
4	décalage		6		7			0 (2 L 4	, a)\$	décalage
5	réduction $L \rightarrow S$							0 (2 L 4 , 7	a)\$	décalage
6	réduction $S \rightarrow (L)$									
7	décalage	2		3		8				
8	réduction $L \rightarrow L, S$									

(0)	$S' \rightarrow S$							pile	entrée	action
(1)	$S \rightarrow (L)$							0	((a, a), a)\$	décalage
(2)	S ightarrow a							0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$							0 (2 (2	a, a), a)\$	décalage
(4)	L o S							0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
								0 (2 (2 S 5	, a), a)\$	réduction $L o S$
								0 (2 (2 L 4	, a), a)\$	décalage
	action			succ	cesseur			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	а	. \$	S	L	⁻ 0(2(2L4,7a3), a)\$	réduction $S o a$
0	décalage	2		3		1		-0(2(2L4,7S8), a)\$	réduction $L \to L, S$
1	accepte							0 (2 (2 L 4), a)\$	décalage
2	décalage	2		3		5	4	0 (2 (2 L 4) 6	, a)\$	réduction $S \rightarrow (L)$
3	réduction $S \rightarrow a$	_		-		_	-	0 (2 S 5	, a)\$	réduction $L \to S$
4	décalage		6		7			0 (2 L 4	, a)\$	décalage
5	réduction $L \rightarrow S$							0 (2 L 4 , 7	a)\$	décalage
6	réduction $S \rightarrow (L)$							0 (2 L 4 , 7 a 3)\$	
7	décalage	2		3		8				
8	réduction $L \rightarrow L, S$									

(0)	$S' \rightarrow S$								pile	entrée	action
(1)	$S \rightarrow (L)$								0	((a, a), a)\$	décalage
(2)	S o a								0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$								0 (2 (2	a, a), a)\$	décalage
(4)	L o S								0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
									0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
									0 (2 (2 L 4	, a), a)\$	décalage
	action			su	ccesse	ur			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	а		\$	S	L	⁻ 0(2(2L4,7a3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3			1		-0(2(2L4,7S8), a)\$	réduction $L \to L, S$
1	accepte								0 (2 (2 L 4), a)\$	décalage
2	décalage	2		3			5	4	0 (2 (2 L 4) 6	, a)\$	réduction $S \rightarrow (L)$
3	réduction $S \rightarrow a$	_		_			-		0 (2 S 5	, a)\$	réduction $L \to S$
4	décalage		6		7				0 (2 L 4	, a)\$	décalage
5	réduction $L \rightarrow S$								0 (2 L 4 , 7	a)\$	décalage
6	réduction $S \rightarrow (L)$								0 (2 L 4 , 7 a <mark>3</mark>)\$	réduction $S \rightarrow a$
7	décalage	2		3			8				
8	réduction $L \to L, S$	_		-							

(0)	$S' \rightarrow S$								pile	entrée	action
(1)	$S \rightarrow (L)$								0	((a, a), a)\$	décalage
(2)	S ightarrow a								0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$								0 (2 (2	a, a), a)\$	décalage
(4)	L o S								0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
									0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
									0 (2 (2 L 4	, a), a)\$	décalage
	action			su	ccess	eur			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	а	-	\$	S	L	⁻ 0(2(2L4,7a3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3			1		-0(2(2L4,7S8), a)\$	réduction $L \rightarrow L, S$
1	accepte								0 (2 (2 L 4), a)\$	décalage
2	décalage	2		3			5	4	0 (2 (2 L 4) 6	, a)\$	réduction $S \rightarrow (L)$
3	réduction $S \rightarrow a$								0 (2 S 5	, a)\$	réduction $L \rightarrow S$
4	décalage		6		7				0 (2 L 4	, a)\$	décalage
5	réduction $L \rightarrow S$								0 (2 L 4 , 7	a)\$	décalage
6	réduction $S \rightarrow (L)$								0 (2 L 4 , 7 a 3)\$	réduction $S \rightarrow a$
7	décalage	2		3			8		0 (2 L 4 , 7 S 8)\$	
8	réduction $L \rightarrow L, S$										

(0) $S' \rightarrow S$

(0)	5 / 5								p.i.c	0.1.2.00	action.
(1)	$S \rightarrow (L)$							_	0	((a, a), a)\$	décalage
(2)	S ightarrow a								0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$								0 (2 (2	a, a), a)\$	décalage
(4)	$L \rightarrow S$								0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
									0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
									0 (2 (2 L 4	, a), a)\$	décalage
	action			SU	ccess	eur			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	а	-	\$	S	L	⁻ 0(2(2L4,7a3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3			1		-0(2(2L4,7S8), a)\$	réduction $L \rightarrow L, S$
1	accepte								0 (2 (2 L 4), a)\$	décalage
2	décalage	2		3			5	4	0 (2 (2 L 4) 6	, a)\$	réduction $S \rightarrow (L)$
3	réduction $S \rightarrow a$								0 (2 S 5	, a)\$	réduction $L \rightarrow S$
4	décalage		6		7				0 (2 L 4	, a)\$	décalage
5	réduction $L \rightarrow S$								0 (2 L 4 , 7	a)\$	décalage
6	réduction $S \rightarrow (L)$								0 (2 L 4 , 7 a 3)\$	réduction $S \rightarrow a$
7	décalage	2		3			8		0 (2 L 4 , 7 S <mark>8</mark>)\$	réduction $L \rightarrow L, S$
8	réduction $L \rightarrow L, S$										

(0)	$S' \rightarrow S$							_	pile	entrée	action
(1)	$S \rightarrow (L)$								0	((a, a), a)\$	décalage
(2)	S ightarrow a								0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$								0 (2 (2	a, a), a)\$	décalage
(4)	L o S								0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
									0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
									0 (2 (2 L 4	, a), a)\$	décalage
	action			su	ccesseu	ır			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	a		\$ 5	s	L	0(2(2L4,7a3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3		-	1	_	-0(2(2L4,7S8), a)\$	réduction $L \rightarrow L, S$
1	accepte	-		,		-	-		0 (2 (2 L 4), a)\$	décalage
2	décalage	2		3			5	4	0 (2 (2 L 4) 6	, a)\$	réduction $S \rightarrow (L)$
				3			9	4	0(2\$5	, a)\$	réduction $L \rightarrow S$
3	réduction $S \rightarrow a$										
4	décalage		6		7				0 (2 L 4	, a)\$	décalage
5	réduction $L \rightarrow S$								0 (2 L 4 , 7	a)\$	décalage
6	réduction $S \rightarrow (L)$								0 (2 L 4 , 7 a 3)\$	réduction $S \rightarrow a$
7	décalage	2		3			В		0 (2 L 4 , 7 S 8)\$	réduction $L \rightarrow L, S$
		_		3		•	0		0 (2 L 4) \$	· ·
8	réduction $L \rightarrow L, S$								0 (2 L 7) 5	

(0) (1)	$S' \rightarrow S \\ S \rightarrow (L)$							pile 0	entrée ((a, a), a)\$	action décalage
(2)	$S \rightarrow a$							0 (2	((a, a), a)\$ (a, a), a)\$	décalage
(3)	$L \rightarrow L, S$							0(2(2	a, a), a)\$	décalage
(4)	$L \rightarrow S$							0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
()								0(2(255	, a), a)\$	réduction $L \rightarrow S$
								0 (2 (2 L 4	, a), a)\$	décalage
	action			SII	ccesseu	r		0 (2 (2 L 4 , 7	a), a)\$	décalage
	dellon	(1	a		\$ S		⁻ 0(2(2L4,7a3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3	,	1		-0(2(2L4,7S8), a)\$	réduction $L \rightarrow L, S$
1	accepte	_		3		1		0 (2 (2 L 4), a)\$	décalage
2	décalage	2		3		5	1	0 (2 (2 L 4) 6	, a)\$	réduction $S \rightarrow (L)$
3	réduction $S \rightarrow a$	_		3		3	4	0(2\$5	, a)\$	réduction $L \rightarrow \hat{S}$
4	décalage		6		7			0 (2 L 4	, a)\$	décalage
5	réduction $L \rightarrow S$		U		'			0 (2 L 4 , 7	a)\$	décalage
-								0 (2 L 4 , 7 a 3)\$	réduction $S \rightarrow a$
6	réduction $S \rightarrow (L)$							0 (2 L 4 , 7 S 8)\$	réduction $L \to L, S$
7	décalage	2		3		8				
8	réduction $L \to L, S$							0 (2 L <mark>4</mark>)\$	décalage

(0)	S' o S								pile	entrée	action
(1)	$S \rightarrow (L)$								0	((a, a), a)\$	décalage
(2)	$S \rightarrow a$								0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$								0 (2 (2	a, a), a)\$	décalage
(4)	L o S								0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
									0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
									0 (2 (2 L 4	, a), a)\$	décalage
	action			su	ccess	eur			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	а		\$	S	L	⁻ 0(2(2L4,7a3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3			1		-0(2(2L4,7S8), a)\$	réduction $L \rightarrow L, S$
1	accepte	_		-			_		0 (2 (2 L 4), a)\$	décalage
2	décalage	2		3			5	4	0 (2 (2 L 4) 6	, a)\$	réduction $S \rightarrow (L)$
3	réduction $S \rightarrow a$	-		3			•	-	0 (2 \$ 5	, a)\$	réduction $L \rightarrow \hat{S}$
4	décalage		6		7				0 (2 L 4	, a)\$	décalage
5	réduction $L \rightarrow S$		O		'				0 (2 L 4 , 7	a)\$	décalage
-									0 (2 L 4 , 7 a 3)\$	réduction $S \rightarrow a$
6	réduction $S \rightarrow (L)$								0 (2 L 4 , 7 S 8		réduction $L \to L, S$
7	décalage	2		3			8)\$	
8	réduction $L \rightarrow L, S$								0 (2 L 4)\$	décalage
	·								0 (2 L 4) 6	\$	

(0)	$S' \rightarrow S$								pile	entrée	action
(1)	$S \rightarrow (L)$								0	((a, a), a)\$	décalage
(2)	S → a								0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$								0 (2 (2	a, a), a)\$	décalage
(4)	L o S								0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
. ,									0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
									0 (2 (2 L 4	, a), a)\$	décalage
	action	1		SII	ccesse	ur			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	a		\$	S	L	⁻ 0 (2 (2 L 4 , 7 a 3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3			1		-0(2(2L4,7S8), a)\$	réduction $L \rightarrow L, S$
1	accepte	_		•			-		0 (2 (2 L 4), a)\$	décalage
2	décalage	2		3			5	4	0 (2 (2 L 4) 6	, a)\$	réduction $S \rightarrow (L)$
3	réduction $S \rightarrow a$	-		3			3	-	0 (2 \$ 5	, a)\$	réduction $L \rightarrow \hat{S}$
4	décalage		6		7				0 (2 L 4	, a)\$	décalage
5	réduction $L \rightarrow S$		U		,				0 (2 L 4 , 7	a)\$	décalage
6	reduction $E \rightarrow S$ réduction $S \rightarrow (L)$								0 (2 L 4 , 7 a 3)\$	réduction $S \rightarrow a$
7	décalage → (L)	2		3			8		0 (2 L 4 , 7 S 8)\$	réduction $L \rightarrow L, S$
8				3			0		0 (2 L 4)\$	décalage
8	réduction $L \to L, S$	l							0 (2 L 4) 6	'\$	réduction $S \rightarrow (L)$

(0)	$\mathcal{S}' o \mathcal{S}$								pile	entrée	action
(1)	$S \rightarrow (L)$								0	((a, a), a)\$	décalage
(2)	$S \rightarrow a$								0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$								0 (2 (2	a, a), a)\$	décalage
(4)	L o S								0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
									0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
									0 (2 (2 L 4	, a), a)\$	décalage
	action	l		SU	ccesse	ur			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	а		\$	S	L	-0(2(2L4,7a3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3			1		-0(2(2L4,7S8), a)\$	réduction $L \rightarrow L, S$
1	accepte	_		•			-		0 (2 (2 L 4), a)\$	décalage
2	décalage	2		3			5	4	0 (2 (2 L 4) 6	, a)\$	réduction $S \rightarrow (L)$
3	réduction $S \rightarrow a$	_		•			•	•	0 (2 \$ 5	, a)\$	réduction $L \rightarrow S$
4	décalage		6		7				0 (2 L 4	, a)\$	décalage
5	réduction $L \rightarrow S$		•		•				0 (2 L 4 , 7	a)\$	décalage
6	réduction $S \rightarrow (L)$								0 (2 L 4 , 7 a 3)\$	réduction $S \rightarrow a$
7	décalage	2		3			8		0 (2 L 4 , 7 S 8)\$	réduction $L \rightarrow L, S$
8	réduction $L \rightarrow L, S$	_		,			3		0 (2 L 4)\$	décalage
0	reduction L -7 L, 3	ı							0 (2 L 4) 6	\$	réduction $S \rightarrow (L)$
									0 Š 1	\$	` '

(0)	S' o S								pile	entrée	action
(1)	$S \rightarrow (L)$								0	((a, a), a)\$	décalage
(2)	$S \rightarrow a$								0 (2	(a, a), a)\$	décalage
(3)	$L \rightarrow L, S$								0 (2 (2	a, a), a)\$	décalage
(4)	L o S								0 (2 (2 a 3	, a), a)\$	réduction $S \rightarrow a$
									0 (2 (2 S 5	, a), a)\$	réduction $L \rightarrow S$
									0 (2 (2 L 4	, a), a)\$	décalage
	action			su	ccess	eur			0 (2 (2 L 4 , 7	a), a)\$	décalage
		()	a		\$	S	L	⁻ 0 (2 (2 L 4 , 7 a 3), a)\$	réduction $S \rightarrow a$
0	décalage	2		3			1		⁻ 0(2(2L4,7S8), a)\$	réduction $L \rightarrow L, S$
1	accepte	_		•			-		0 (2 (2 L 4), a)\$	décalage
2	décalage	2		3			5	4	0 (2 (2 L 4) 6	, a)\$	réduction $S \rightarrow (L)$
3	réduction $S \rightarrow a$	_		•			•	•	0 (2 \$ 5	, a)\$	réduction $L \rightarrow S$
4	décalage		6		7				0 (2 L 4	, a)\$	décalage
5	réduction $L \rightarrow S$		·		•				0 (2 L 4 , 7	a)\$	décalage
6	réduction $S \rightarrow (L)$								0 (2 L 4 , 7 a 3)\$	réduction $S \rightarrow a$
7	décalage	2		3			8		0 (2 L 4 , 7 S 8)\$	réduction $L \rightarrow L, S$
8	réduction $L \rightarrow L, S$	_		•			•		0 (2 L 4)\$	décalage
•		l							0 (2 L 4) 6	` \$	réduction $S \rightarrow (L)$
									0 S 1	\$	acc

Analyse LR : conflits

Lors de la construction des tables d'analyse, nous pouvons nous rendre compte de l'apparition de conflits. Il en existe de deux types :

- décalage/réduction : si un ensemble d'items contient deux productions de la forme $A \to \alpha$ et $A \to \alpha$ a β
- réduction/réduction : si un ensemble d'items contient deux productions de la forme $A \to \alpha$ •

Analyse LR : conflits

$$\begin{array}{c|c} I_{\mathbf{0}} & E' \rightarrow \bullet E \\ E \rightarrow \bullet E + T \\ E \rightarrow \bullet T \\ T \rightarrow \bullet T \times F \\ T \rightarrow \bullet F \\ F \rightarrow \bullet (E) \\ F \rightarrow \bullet number \end{array}$$

$$\begin{array}{c|c} E' \to E \cdot \\ E \to E \cdot + T \end{array}$$

$$\begin{array}{c|c} I_{\mathbf{2}} & E \to T \bullet \\ T \to T \bullet \times F \end{array}$$

$$I_3 \mid T \rightarrow F \cdot$$

$$E \rightarrow \bullet E + T$$

$$E \rightarrow \bullet T$$

$$T \rightarrow \bullet T \times F$$

$$T \rightarrow \bullet F$$

$$F \rightarrow \bullet (E)$$

$$F \rightarrow \bullet \text{ number}$$

$$F \rightarrow number$$

$$\begin{array}{c|c} \textbf{16} & E \rightarrow E + \bullet T \\ T \rightarrow \bullet T \times F \\ T \rightarrow \bullet F \\ F \rightarrow \bullet (E) \\ F \rightarrow \bullet \textit{number} \end{array}$$

$$\begin{array}{c|c} I_{7} & T \rightarrow T \times \bullet F \\ F \rightarrow \bullet (E) \\ F \rightarrow \bullet number \end{array}$$

$$I_8 \mid F \rightarrow (E \cdot) \\ F \rightarrow E \cdot + T$$

$$\begin{array}{c|c} I_{\mathbf{g}} & E \to E + T \bullet \\ T \to T \bullet \times F \end{array}$$

$$I_{10} \mid T \rightarrow T \times F$$

$$I_{11} \mid F \rightarrow (E)$$

Analyse LR: conflits

$$\begin{array}{ccc} I_{\mathbf{0}} & E' \to \bullet E \\ E \to \bullet E + T \\ E \to \bullet T \\ T \to \bullet T \times F \\ T \to \bullet F \\ F \to \bullet (E) \\ E \to \bullet number. \end{array}$$

$$\begin{array}{c|c} I_1 & E' \to E \cdot \\ E \to E \cdot + T \end{array}$$

$$\begin{array}{c|c} I_2 & E \to T \cdot \\ T \to T \cdot \times F \end{array}$$

$$T \rightarrow F$$

$$E \rightarrow \cdot E + T$$

$$E \rightarrow \cdot T$$

$$T \rightarrow \cdot T \times F$$

$$T \rightarrow \cdot F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow \cdot number$$

$$F \rightarrow number$$

$$\begin{array}{c|c} \textbf{I6} & E \rightarrow E + \boldsymbol{\cdot} T \\ T \rightarrow \boldsymbol{\cdot} T \times F \\ T \rightarrow \boldsymbol{\cdot} F \\ F \rightarrow \boldsymbol{\cdot} (E) \\ F \rightarrow \boldsymbol{\cdot} number \end{array}$$

$$\begin{array}{c|c} I_{7} & T \rightarrow T \times \bullet F \\ F \rightarrow \bullet (E) \\ F \rightarrow \bullet number \end{array}$$

$$I_{\mathbf{8}} \mid F \to (E \cdot)$$

 $F \to E \cdot + T$

$$\begin{array}{c|c} I_{\mathbf{g}} & E \to E + T \bullet \\ T \to T \bullet \times F \end{array}$$

$$I_{10} \mid T \rightarrow T \times F$$

$$I_{11} \mid F \rightarrow (E)$$

Analyse LR : conflits

$$(0) \quad E' \rightarrow \quad E$$

$$(1) \quad E \rightarrow \quad E + T$$

$$(2) \quad E \rightarrow \quad T$$

$$(3) \quad T \rightarrow \quad T \times F$$

$$(4) \quad T \rightarrow \quad F$$

$$(5) \quad F \rightarrow \quad (E)$$

$$(6) \quad F \rightarrow \quad number$$

$$\begin{array}{c|c} I_0 & E' \rightarrow \bullet E \\ E \rightarrow \bullet E + T \\ E \rightarrow \bullet T \\ T \rightarrow \bullet T \times F \\ T \rightarrow \bullet F \\ F \rightarrow \bullet (E) \\ F \rightarrow \bullet number \end{array}$$

$$I_5 \mid F \rightarrow number \bullet$$
 $I_6 \mid E \rightarrow E + \bullet T$

$$\begin{array}{c|c} I_{6} & E \rightarrow E + \cdot T \\ T \rightarrow \cdot T \times F \\ T \rightarrow \cdot F \\ F \rightarrow \cdot (E) \\ F \rightarrow \cdot number \end{array}$$

$$\begin{array}{c|c} I_{7} & T \rightarrow T \times \bullet F \\ F \rightarrow \bullet (E) \\ F \rightarrow \bullet number \end{array}$$

$$\begin{array}{c|c} I_{8} & F \to (E \cdot) \\ F \to E \cdot + T \end{array}$$

$$\begin{array}{c|c}
E \to E + T \bullet \\
T \to T \bullet \times F
\end{array}$$

$$I_{10} \mid T \rightarrow T \times F$$

$$I_{11} \mid F \rightarrow (E)$$

Analyse SLR(1)

L'analyse SLR(1) se différencie de l'analyse LR(0) par le fait que l'on va prendre en compte un symbole supplémentaire sur l'entrée afin de prendre une décision en cas de conflit.

Cela va se faire en utilisant l'ensemble *Suivant* que nous avons vu lors des analyses descendantes.

Analyse SLR(1) : utilisation de Suivant

$$\begin{array}{cccc} (0) & E' \rightarrow & E \\ (1) & E \rightarrow & E + T \\ (2) & E \rightarrow & T \\ (3) & T \rightarrow & T \times F \\ (4) & T \rightarrow & F \\ (5) & F \rightarrow & (E) \\ (6) & F \rightarrow & number \\ \end{array}$$

$$\begin{array}{c|c} E' \rightarrow \bullet E \\ E \rightarrow \bullet E + T \\ E \rightarrow \bullet T \\ T \rightarrow \bullet T \times F \\ T \rightarrow \bullet F \\ F \rightarrow \bullet (E) \\ F \rightarrow \bullet number \end{array}$$

$$I_1 \mid E' \to E \bullet \\ E \to E \bullet + T$$

$$\begin{array}{c|c} I_{\mathbf{2}} & E \to T \bullet \\ T \to T \bullet \times F \end{array}$$

$$I_3 \mid T \rightarrow F \bullet$$

$$F \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + T$$

$$E \rightarrow \cdot T$$

$$T \rightarrow \cdot T \times F$$

$$T \rightarrow \cdot F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow \cdot number$$

$$I_5 \mid F \rightarrow number \bullet$$

$$\begin{array}{c|c} I_{\mathbf{6}} & E \rightarrow E + \bullet T \\ T \rightarrow \bullet T \times F \\ T \rightarrow \bullet F \\ F \rightarrow \bullet (E) \\ F \rightarrow \bullet \ number \end{array}$$

$$\begin{array}{c|c} I_{7} & T \rightarrow T \times \bullet F \\ F \rightarrow \bullet (E) \\ F \rightarrow \bullet number \end{array}$$

$$\begin{vmatrix}
I_{\mathbf{8}} & F \to (E \cdot) \\
F \to E \cdot + T
\end{vmatrix}$$

$$\begin{vmatrix}
I_{\mathbf{9}} & E \to E + T \cdot
\end{vmatrix}$$

$$\begin{array}{c|c} I_{\mathbf{9}} & E \to E + T \cdot \\ T \to T \cdot \times F \end{array}$$

$$I_{10} \mid T \rightarrow T \times F$$

$$I_{11} \mid F \rightarrow (E)$$
.

Suivant(E') =
$$\{\$\}$$

Suivant(E) = $\{+, \}$, $\$\}$
Suivant(T) = $\{\times, +, \}$, $\$\}$
Suivant(F) = $\{\times, +, \}$, $\$\}$

Analyse SLR(1) : utilisation de Suivant

$$\begin{array}{c|c} E' \rightarrow \cdot E \\ E \rightarrow \cdot E + T \\ E \rightarrow \cdot T \\ T \rightarrow \cdot T \times F \\ T \rightarrow \cdot F \\ F \rightarrow \cdot (E) \\ F \rightarrow \cdot number \end{array}$$

$$\begin{array}{c|c} I_1 & E' \to E \cdot \\ E \to E \cdot + T \end{array}$$

$$\begin{array}{c|c} I_{\mathbf{2}} & E \to T \bullet \\ T \to T \bullet \times F \end{array}$$

$$I_3 \mid T \rightarrow F \cdot$$

$$E \rightarrow \bullet E + T$$

$$E \rightarrow \bullet T$$

$$T \rightarrow \bullet T \times F$$

$$T \rightarrow \bullet F$$

$$F \rightarrow \bullet (E)$$

$$F \rightarrow \bullet \text{ number}$$

$$I_5 \mid F \rightarrow number \bullet$$

$$\begin{array}{c|c} I_{\mathbf{6}} & E \rightarrow E + \bullet T \\ T \rightarrow \bullet T \times F \\ T \rightarrow \bullet F \\ F \rightarrow \bullet (E) \\ F \rightarrow \bullet \ number \end{array}$$

$$\begin{array}{c|c} I_{7} & T \rightarrow T \times \bullet F \\ F \rightarrow \bullet (E) \\ F \rightarrow \bullet number \end{array}$$

$$egin{array}{c|c} I_{\mathbf{8}} & F
ightarrow (E \cdot) \\ F
ightarrow E \cdot + T \end{array}$$
 $egin{array}{c|c} I_{\mathbf{9}} & E
ightarrow E + T \cdot \end{array}$

$$\begin{array}{c|c} I_{\mathbf{9}} & E \to E + T \cdot \\ T \to T \cdot \times F \end{array}$$

$$I_{10} \mid T \rightarrow T \times F$$

$$I_{11} \mid F \rightarrow (E)$$

$$Suivant(E') = \{\$\}$$

 $Suivant(E) = \{+, \}, \$\}$
 $Suivant(T) = \{\times, +, \}, \$\}$
 $Suivant(F) = \{\times, +, \}, \$\}$

Analyse SLR(1): utilisation de Suivant

$$\begin{array}{ccc}
E' \to \bullet E \\
E \to \bullet E + T \\
E \to \bullet T \\
T \to \bullet T \times F \\
T \to \bullet F \\
F \to \bullet (E)
\end{array}$$

$$\begin{vmatrix}
F & \rightarrow \cdot \text{number} \\
I_1 & E' & \rightarrow E \cdot \\
E & \rightarrow E \cdot + T
\end{vmatrix}$$

$$\begin{array}{c|c} I_2 & E \to T \cdot \\ T \to T \cdot \times F \end{array}$$

$$E \rightarrow \bullet E + T$$

$$E \rightarrow \bullet T \times F$$

$$T \rightarrow \bullet T \times F$$

$$T \rightarrow \bullet F$$

$$F \rightarrow \bullet (E)$$

$$F \rightarrow \bullet number$$

$$I_5 \mid F \rightarrow number \bullet$$

$$\begin{array}{c|c} \textbf{I6} & E \rightarrow E + \bullet T \\ T \rightarrow \bullet T \times F \\ T \rightarrow \bullet F \\ F \rightarrow \bullet (E) \\ F \rightarrow \bullet \ number \end{array}$$

$$\begin{array}{c|c} I_7 & T \rightarrow T \times \bullet F \\ F \rightarrow \bullet (E) \\ F \rightarrow \bullet number \end{array}$$

$$l_8 \mid F \to (E \cdot) F \to E \cdot + T$$

$$\begin{array}{c|c} I_{\mathbf{9}} & E \to E + T \bullet \\ T \to T \bullet \times F \end{array}$$

$$I_{10} \mid T \rightarrow T \times F \cdot$$

$$I_{11} \mid F \rightarrow (E)$$
.

Suivant(
$$E'$$
) = {\$}
Suivant(E) = {+,), \$}
Suivant(T) = {×, +,), \$}
Suivant(F) = {×, +,), \$}

Analyse SLR(1)

```
SLR(G')
   1 C \leftarrow \text{Items}(G')
   2 for each I_i \in C do
          if A \to \alpha \cdot a\beta \in I_i, Transition(I_i, a) = I_i then
             Action[i, a] \leftarrow décaler j
        if A \rightarrow \alpha \cdot \in I_i then
             for each a \in Suivant(A) do
                 Action[i, a] \leftarrow réduire A \rightarrow \alpha
          if S' \to S \in I; then
   8
              Action[i, a] \leftarrow accepter
          for each A \in N do
  10
  11
              if Transition(I_i, A) = I_i then
                 Successeur[i, A] \leftarrow j
  12
```

```
(3)
(4)
```

$$(5) \quad F \rightarrow \quad (E)$$

(6)
$$F \rightarrow number$$

	I		a	ction		su	ccesse	
	+	×	()	num.	\$ Ε	T	F
0								
1								
2	İ							
2								
4								
4 5								
6								
7								
8								
9								
10								
11								
						'		

```
\begin{array}{cccc} E' \rightarrow & E \\ E \rightarrow & E + T \\ E \rightarrow & T \\ T \rightarrow & T \times F \\ T \rightarrow & F \\ F \rightarrow & (E) \end{array}
(3)
(4)
```

(5)
$$F \rightarrow (E$$

(6)
$$F \rightarrow numb$$

$$\begin{array}{lll} I_{\mathbf{0}} & E' \rightarrow \bullet E & Suivant(E') = \{\$\} \\ E \rightarrow \bullet E + T & Suivant(E) = \{+, \}, \$\} \\ E \rightarrow \bullet T & Suivant(T) = \{\times, +, \}, \$\} \\ T \rightarrow \bullet T \times F & Suivant(F) = \{\times, +, \}, \$\} \\ T \rightarrow \bullet (E) & F \rightarrow \bullet number \end{array}$$

			ac	tion		su	ccesse	eur
	+	×	()	num.	\$ Ε	T	F
0			d4		d5	1	2	3
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
						'		

```
E \rightarrow E + T
(1)
(2)

\begin{array}{ccc}
E \to & T \\
T \to & T \times F \\
T \to & F
\end{array}
```

(3) (4)

(5) (E)

number

$$\begin{array}{c|c} I_1 & E' \to E \cdot \\ E \to E \cdot + T \end{array}$$

 $Suivant(E') = \{\$\}$ Suivant(E) = $\{+, \}$, \$\\$ Suivant(T) = $\{\times, +, \}$, \$\\$ Suivant(F) = $\{\times, +, \}$, \$\}

			ac	ction			su	ccesse	eur
	+	×	()	num.	\$	Ε	T	F
0			d4		d5		1	2	3
1	d6					acc			
2									
3									
4	İ								
5									
6	İ								
7									
8									
9									
10									
11									
							'		

```
 \begin{array}{cccc} (0) & E' \rightarrow & E \\ (1) & E \rightarrow & E + T \\ (2) & E \rightarrow & T \\ (3) & T \rightarrow & T \times F \\ (4) & T \rightarrow & F \\ (5) & F \rightarrow & (E) \\ \end{array}
```

number

$$\begin{array}{c|c} I_2 & E \rightarrow T \bullet \\ \hline T \rightarrow T \bullet \times F \\ \hline Suivant(E') = \{\$\} \\ Suivant(T) = \{+,,,\$\} \\ Suivant(T) = \{\times,+,\},\$\} \\ Suivant(F) = \{\times,+,\},\$ \\ \end{array}$$

			a	ction			su	ccesse	eur
	+	×	()	num.	\$	Ε	T	F
0			d4		d5		1	2	3
1	d6					acc			
2	r2	d7		r2		r2			
3									
4	İ								
5									
6	l								
7									
8									
9									
10									
11									
							'		

- (1) (2) E + TT T × F F (3)
- (4) $T \rightarrow$
- (5) $F \rightarrow$ (E)
- number

- $I_3 \mid T \rightarrow F \cdot$
- $Suivant(E') = \{\$\}$
- Suivant(E) = $\{+, \}$, \$} Suivant(T) = $\{\times, +, \}$
- $Suivant(F) = \{\times, +, \}, \}$

			a	ction			su	ccesse	eur
	+	×	()	num.	\$	E	T	F
0			d4		d5		1	2	3
1	d6					acc			
2	r2	d7		r2		r2			
3	r4	r4		r4		r4			
4									
5									
6									
7									
8									
9									
10									
11									
							'		

 $(5) \quad F \rightarrow \quad (E)$

(6)
$$F \rightarrow number$$

$$\begin{array}{c|c} I_{\mathbf{4}} & F \to (\bullet E) \\ E \to \bullet E + T \\ E \to \bullet T \\ T \to \bullet T \times F \\ T \to \bullet F \\ F \to \bullet (E) \\ F \to \bullet number \end{array}$$

			a	ction			su	ccesse	eur
	+	×	()	num.	\$	Ε	T	F
0			d4		d5		1	2	3
1	d6					acc			
2	r2	d7		r2		r2			
3	r4	r4		r4		r4			
4	l		d4		d5		8	2	3
5									
6									
7									
8									
9									
10									
11									

 $Suivant(E') = \{\$\}$ $Suivant(E) = \{+, \}, \$\}$ $Suivant(T) = \{\times, +, \}, \$\}$ $Suivant(F) = \{\times, +, \}, \$\}$

- (1) (2) E + TT T × F F (3)
- (4)
- (5)
- number

$$I_5 \mid F \rightarrow number \cdot$$

- $Suivant(E') = \{\$\}$
- Suivant(E) = $\{+, \}$, \$} Suivant(T) = $\{\times, +, \}$
- $Suivant(F) = \{\times, +, \}, \}$

	I		a	ction			su	ccesse	eur
	+	×	()	num.	\$	Ε	T	F
0			d4		d5		1	2	3
1	d6					acc			
2	r2	d7		r2		r2			
3	r4	r4		r4		r4			
4	l		d4		d5		8	2	3
5	r6	r6		r6		r6			
6									
7	l								
8									
9									
10									
11									
							'		

 $\begin{array}{cccc} (4) & T \rightarrow & F \\ (5) & F \rightarrow & (E) \\ (6) & F \rightarrow & number \end{array}$

$$\begin{array}{lll} \textit{I6} & E \rightarrow E + \bullet T & \textit{Suivant}(E') = \{\$\} \\ & T \rightarrow \bullet T \times F & \textit{Suivant}(E) = \{+, \}, \$\} \\ & T \rightarrow \bullet F & \textit{Suivant}(T) = \{\times, +, \}, \$\} \\ & F \rightarrow \bullet (E) & \textit{Suivant}(F) = \{\times, +, \}, \$\} \\ & F \rightarrow \bullet \textit{number} & \text{Suivant}(F) = \{\times, +, \}, \$\} \\ \end{array}$$

	l		a	ction			su	ccesse	eur
	+	×	()	num.	\$	Ε	Т	F
0			d4		d5		1	2	3
1	d6					acc			
1 2 3	r2	d7		r2		r2			
	r4	r4		r4		r4			
4			d4		d5		8	2	3
5	r6	r6		r6		r6			
6 7			d4		d5			9	3
7									
8									
9									
10									
11									
							'		

$$\begin{array}{cccc} (3) & T \rightarrow & T \times \\ (4) & T \rightarrow & F \end{array}$$

$$\begin{array}{ccc}
(5) & F \rightarrow & (E) \\
(6) & F \rightarrow & (E)
\end{array}$$

(6)
$$F \rightarrow number$$

17	F -	→ •(E → • nu	imber		Suiva Suiva	ant(E) ant(F) ant(T) ant(F)	= {+ = {×	,), \$]), \$}
	l		a	ction			eur		
	+	×	()	num.	\$	Е	T	F
0			d4		d5		1	2	3
1	d6					acc			
2	r2	d7		r2		r2			
3	rΔ	rΔ		r1		r1			

 $Suivant(E') = \{\$\}$

10 11

	action						successeur		
	+	×	()	num.	\$	Ε	T	F
0			d4		d5		1	2	3
1	d6					acc			
2	r2	d7		r2		r2			
2	r4	r4		r4		r4			
4	İ		d4		d5		8	2	3
5 6	r6	r6		r6		r6			
6	İ		d4		d5			9	3
7	İ		d4		d5				10
8	d6			d11					
9	İ								
10									
11	ĺ								
							'		

number

(1) (2) E + T $\begin{array}{ccc} E \rightarrow & T \\ T \rightarrow & T \times F \end{array}$

(3) (4) $T \rightarrow$

(5) (E)

number

 $E \to E + T \cdot$ $T \to T \cdot \times F$

 $Suivant(E') = \{\$\}$ Suivant(E) = $\{+, \}$, \$\\$ Suivant(T) = $\{\times, +, \}$, \$\\$ Suivant(F) = $\{\times, +, \}$, \$\}

	action						successeur		
	+	×	()	num.	\$	Ε	T	F
0			d4		d5		1	2	3
1	d6					acc			
2	r2	d7		r2		r2			
3	r4	r4		r4		r4			
4 5	İ		d4		d5		8	2	3
5	r6	r6		r6		r6			
6	İ		d4		d5			9	3
7	İ		d4		d5				10
8	d6			d11					
9	r1	d7		r1		r1			
10									
11	İ								
	ĺ								

Analyse SLR(1): construction des tables

(1) (2) E + T $T \times F$

(3) (4) $T \rightarrow$

(5) $F \rightarrow$ (E)

 $F \rightarrow$ number $I_{10} \mid T \rightarrow T \times F$. $Suivant(E') = \{\$\}$

 $Suivant(E) = \{+, \}, \}$ $Suivant(T) = \{\times, +, \}, \}$

 $Suivant(F) = \{\times, +, \}, \}$

	l		ā	ction			SL	iccess	eur
	+	×	()	num.	\$	Ε	T	F
0			d4		d5		1	2	3
1	d6					acc			
2	r2	d7		r2		r2			
3	r4	r4		r4		r4			
1 2 3 4 5 6 7	İ		d4		d5		8	2	3
5	r6	r6		r6		r6			
6	İ		d4		d5			9	3
7			d4		d5				10
8	d6			d11					
9	r1	d7		r1		r1			
10	r3	r3		r3		r1 r3			
11	İ								
	ĺ								

Analyse SLR(1): construction des tables

- $\begin{array}{cccc} (0) & E' \rightarrow & E \\ (1) & E \rightarrow & E + T \\ (2) & E \rightarrow & T \\ (3) & T \rightarrow & T \times F \end{array}$
- $(3) T \rightarrow T \times$ $(4) T \rightarrow F$
- $\begin{array}{cccc} (4) & T \rightarrow & F \\ (5) & F \rightarrow & (E) \end{array}$
- (6) $F \rightarrow number$

- $I_{11} \mid F \rightarrow (E)$.
- $Suivant(E') = \{\$\}$
- $Suivant(E) = \{+, \}, \}$
- $Suivant(T) = \{\times, +, \}, \}$ $Suivant(F) = \{\times, +, \}, \}$

			á	ection			SL	iccess	eur
	+	×	()	num.	\$	Ε	Т	F
0			d4		d5		1	2	3
1	d6					acc			
2	r2	d7		r2		r2			
3	r4	r4		r4		r4			
4			d4		d5		8	2	3
5	r6	r6		r6		r6			
6	İ		d4		d5			9	3
7	İ		d4		d5				10
8	d6			d11					
9	r1	d7		r1		r1			
10	r3	r3		r3		r3			
11	r5	r5		r5		r5			

0	+	×	(d4)	num. d5	3
			,	action		
(6)		$F \rightarrow$		numb	oer	
(5)		$F \rightarrow$		(E)		
(4)		$T \rightarrow$		F		
(3)		$T \rightarrow$		$T \times$	F	
(2)		$E \rightarrow$		T		
(1)		$E \rightarrow$		E +	Τ	

(0) $E' \rightarrow E$

l	action							eur
+	×	()	num.	\$	Ε	Т	F
		d4		d5		1	2	3
d6					acc			
r2	d7		r2		r2			
r4	r4		r4		r4			
		d4		d5		8	2	3
r6	r6		r6		r6			
		d4		d5			9	3
		d4		d5				10
d6			d11					
r1	d7		r1		r1			
r3	r3		r3		r3			
r5	r5		r5		r5			
	r2 r4 r6 d6 r1 r3	d6 r2 d7 r4 r4 r6 r6 d6 r1 d7 r3 r3	+ × (d6 r2 d7 r4 r4 r6 r6 d4 d6 r1 d7 r3 r3	d6 d4 d4 d4 r2 d7 r2 r4 r4 r6 r6 d4 d4 d4 r1 r1 d7 r1 r3 r3 r3 r3	+ × () num. d6	+ × () num. 5 d6 d7 d8 d8 d8 d8 d8 d8 d8 d8 d8 d8 d8 d8 d8	+ × () num. \$ E d6 d5 1 c12 d7 c2 c2 c4 r4 r4 r4 r4 r4 c6 r6 d4 d5 r6 d4 d5 d6 d6 d1 c1 r1 c1 d7 r1 c1 d7 r1 r1 c1 d7 r1 r1 c1 d7 r1 r1 c1 d7 r1 r1 c1 d7 r1 r1 c1 d7 r1 r1 c1 d7 r1 r1 c1 d7 r1 r1 c1 d7 r1 r1 c1 d7 r1 r1 c1 d7 r1 r1 c1 d7 r1 r1 c1 d7 r1 r1 c1 d7 r1 r1 c1 d7 r1	+ × () num. \$ E T \\ d6 \\ d7 \\ r2 \\ r2 \\ r4 \\ r4 \\ r4 \\ r4 \\ r4 \\ r6 \\ r6 \\ r6 \\ r6 \\ d4 \\ d5 \\ d4 \\ d5 \\ d6 \\ d6 \\ d7 \\ r1 \\ r1 \\ d7 \\ r1 \\ r1 \\ r1 \\ r3 \\ r3 \\ r3 \\ r3 \\ r3 \\ r3 \\ r3 \\ r3 \\ r3 \\ r4 \\ r4 \\ r5 \\ r6 \\ r6 \\ r6 \\ r6 \\ r6 \\ r6 \\ r6 \\ r6 \\ r6 \\ r6 \\ r6 \\ r1 \\ r1 \\ r1 \\ r1 \\ r2 \\ r3 \\ r3 \\ r3 \\ r3 \\ r3 \\ r3 \\ r3 \\ r4 \\ r4 \\ r4 \\ r5 \\ r6

pile

entrée

action

(0)	$E' \rightarrow$	Ε
(1)	$E \rightarrow$	E + 7
(2)	$E \rightarrow$	T

(3)	$T \rightarrow$	$T \times F$
(4)	$T \rightarrow$	F
(5)	$F \rightarrow$	(E)
(6)	$F \rightarrow$	number

٠,									
	l	action							eur
	+	×	()	num.	\$	Ε	Т	F
0			d4		d5		1	2	3
1	d6					acc			
2	r2	d7		r2		r2			
3	r4	r4		r4		r4			
4			d4		d5		8	2	3
5	r6	r6		r6		r6			
1 2 3 4 5 6 7 8			d4		d5			9	3
7			d4		d5				10
	d6			d11					
9	r1	d7		r1		r1			

successeur

(0)	$E' \rightarrow$	Ε
(1)	$E \rightarrow$	E + T
(2)	$E \rightarrow$	T
(2)	T ,	T

(0)		, –	7	IIIIIII	Jei	
			а	ction		
	+	×	()	num.	- 5
0			d4		d5	
1	d6					ac

	+	×	()	num.	\$	Ε	Т	F
0			d4		d5		1	2	3
1	d6					acc			
1 2 3	r2	d7		r2		r2			
3	r4	r4		r4		r4			
4			d4		d5		8	2	3
5	r6	r6		r6		r6			
6			d4		d5			9	3
			d4		d5				10
8	d6			d11					
9	r1	d7		r1		r1			
10	r3	r3		r3		r3			
11	r5	r5		r5		r5			

pile	entrée	action
0	$num + num \times num$ \$	d5
0 num 5	+num × num\$	

(0)	$E' \rightarrow$	Ε
(1)	$E \rightarrow$	E + T
(2)	$E \rightarrow$	T
(3)	$T \rightarrow$	$T \times F$
(4)	$T \rightarrow$	F

pile	entrée	action		
0	$num + num \times num$ \$	d5		
0 num 5	$+num \times num$ \$	r6		
0 F 3	+num × num\$			

			ā	ction			SL	ccess	eur
	+	×	()	num.	\$	Ε	Т	F
-0			d4		d5		1	2	3
1	d6					acc			
2	r2	d7		r2		r2			
3	r4	r4		r4		r4			
4 5			d4		d5		8	2	3
5	r6	r6		r6		r6			
6			d4		d5			9	3
7			d4		d5				10
8	d6			d11					
9	r1	d7		r1		r1			
10	r3	r3		r3		r3			
11	r5	r5		r5		r5			

(0)	$E' \rightarrow$	E
(1)	$E \rightarrow$	E + T
(2)	$E \rightarrow$	T
(3)	$T \rightarrow$	$T \times F$
(4)	$T \rightarrow$	F
(5)	$F \rightarrow$	(E)
(6)	E \	number

(6)		F -	>	numb	er				
			ä	action			SL	ccess	eur
	+	×	()	num.	\$	Ε	T	F
0			d4		d5		1	2	3
1	d6					acc	1		
2	r2	d7		r2		r2			
3	r4	r4		r4		r4			
4			d4		d5		8	2	3
5	r6	r6		r6		r6			
6			d4		d5			9	3
7			d4		d5				10
1 2 3 4 5 6 7 8	d6			d11					
9	r1	d7		r1		r1			
10	r3	r3		r3		r3			
11	r5	r5		r5		r5			

pile	entrée	action
0	$num + num \times num$ \$	d5
0 num 5	$+num \times num$ \$	r6
0 F 3	+num × num\$	r4
0 T 2	+num × num\$	
	i	

(0)	$E' \rightarrow$	E
(1)	$E \rightarrow$	E + T
(2)	$E \rightarrow$	T
(3)	$T \rightarrow$	$T \times F$
(4)	$T \rightarrow$	F
(5)	$F \rightarrow$	(E)
(6)	$F \rightarrow$	number

(0)			,	manno					
	1		SL	ccess	eur				
	+	×	()	num.	\$	Ε	T	F
0			d4		d5		1	2	3
1	d6					acc			
1 2 3	r2	d7		r2		r2			
3	r4	r4		r4		r4			
4 5			d4		d5		8	2	3
5	r6	r6		r6		r6			
6			d4		d5			9	3
7			d4		d5				10
8	d6			d11					
9	r1	d7		r1		r1			
10	r3	r3		r3		r3			
11	r5	r5		r5		r5			

pile	entrée	action
0	$num + num \times num$ \$	d5
0 num 5	$+num \times num$ \$	r6
0 F 3	$+num \times num$ \$	r4
0 T 2	+num × num\$	r2
0 E 1	+num × num\$	

(0)				L					
(1)		E -		E +	T				
(2)		$E \rightarrow$		Τ					
(3)		$T \rightarrow$		$T \times$	F				
(4)		$T \rightarrow$		F					
(5)		$F \rightarrow$		(E)					
(6)		$F \rightarrow$		num	ber				
				action			SL	ccess	eur
	+	×	()	num.	\$	Ε	Т	F
0			d4		d5		1	2	3
1	d6					acc			
0 1 2	r2	d7		r2		r2			
3	-1	-4		-4		-4	1		

pile	entrée	action
0	$num + num \times num$ \$	d5
0 num 5	$+num \times num$ \$	r6
0 F 3	$+num \times num$ \$	r4
0 T 2	+num × num\$	r2
0 E 1	$+num \times num$ \$	d6
0 E 1 + 6	num × num\$	

		+	×	()	num.	\$	E	T	F
ľ	0			d4		d5		1	2	3
	1	d6					acc			
	1 2 3	r2	d7		r2		r2			
	3	r4	r4		r4		r4			
	4			d4		d5		8	2	3
	5	r6	r6		r6		r6			
	6			d4		d5			9	3
				d4		d5				10
	8	d6			d11					
	9	r1	d7		r1		r1			
	10	r3	r3		r3		r3			
	11	r5	r5		r5		r5			

(0)		E' -	>	E					
(1)		E -	>	E +	T				
(2)		E -	>	T					
(3)		T -	>	$T \times$	F				
(4)		T -	>	F					
(5)		F -	>	(E)					
(6)		F -	>	numl	ber				
- 1				action			SL	ccess	eur
	+	×	()	num.	\$	Ε	T	F
0			d4		d5		1	2	3
1	d6					acc			
2	r2	d7		r2		r2			
3	r4	r4		r4		r4			
4			d4		d5		8	2	3
0 1 2 3 4 5	r6	r6		r6		r6			
6			dA		dE		1	Ω	3

pile	entrée	action
0	num + num × num\$	d5
0 num 5	+num × num\$	r6
0 F 3	+num × num\$	r4
0 T 2	+num × num\$	r2
0 E 1	+num × num\$	d6
0 E 1 + 6	num × num\$	d5
0 E 1 + 6 num 5	× num\$	
•		'

(0)			r	_					
(1)		E -	-	E +	T				
(2)		E -	-	T					
(3)		T -	-	$T \times$	F				
(4)		T -		F					
(5)		F -		(E)					
(6)		F -	>	numl	oer				
- 1				action			SL	ccess	eur
	+	×	()	num.	\$	Ε	T	F
0			d4		d5		1	2	3
1	d6					acc			
2	r2	d7		r2		r2			
3	r4	r4		r4		r4			
4			d4		d5		8	2	3
5	r6	r6		r6		r6			
6			d4		d5			9	3
7			d4		d5				10
0 1 2 3 4 5 6 7 8	d6			d11					
	r1	d7		r1		r1			
10	r3	r3		r3		r3			
11	r5	r5		r5		r5			

(0) $F' \rightarrow F$

pile	entrée	action
0	$num + num \times num$ \$	d5
0 num 5	+num × num\$	r6
0 F 3	+num × num\$	r4
0 T 2	$+num \times num$ \$	r2
0 E 1	+num × num\$	d6
0 E 1 + 6	num × num\$	d5
0 E 1 + 6 num 5	× num\$	r6
0 E 1 + 6 F 3	× num\$	

(1)		$E \rightarrow$	٠	E +	Ι				
(2)		$E \rightarrow$		T					
(3)		$T \rightarrow$		$T \times$	F				
(4)		$T \rightarrow$		F					
(5)		F -	٠	(E)					
(6)		F -		numb	er				
				action			SL	ccess	eur
	+	×	()	num.	\$	Ε	Т	F
0			d4		d5		1	2	3
0 1 2 3 4 5 6 7 8	d6					acc			
2	r2	d7		r2		r2			
3	r4	r4		r4		r4			
4			d4		d5		8	2	3
5	r6	r6		r6		r6			
6			d4		d5			9	3
7			d4		d5				10
8	d6			d11					
9	r1	d7		r1		r1 r3			
10	r3	r3		r3		r3			
11				-		-			

pile	entrée	action
0	$num + num \times num$ \$	d5
0 num 5	$+num \times num$ \$	r6
0 F 3	+num × num\$	r4
0 T 2	$+num \times num$ \$	r2
0 E 1	+num × num\$	d6
0 E 1 + 6	num × num\$	d5
0 E 1 + 6 num 5	× num\$	r6
0 E 1 + 6 F 3	× num\$	r4
0 E 1 + 6 T 9	× num\$	

(1)		$E \rightarrow$	٠	E +	Ι				
(2)		$E \rightarrow$		T					
(3)		$T \rightarrow$		$T \times$	F				
(4)		$T \rightarrow$		F					
(5)		$F \rightarrow$		(E)					
(6)		F -		numb	er				
- 1				action			SL	ccess	eur
	+	×	()	num.	\$	Ε	Т	F
0			d4		d5		1	2	3
0 1 2 3 4 5 6 7 8	d6					acc			
2	r2	d7		r2		r2			
3	r4	r4		r4		r4			
4			d4		d5		8	2	3
5	r6	r6		r6		r6			
6			d4		d5			9	3
7			d4		d5				10
8	d6			d11					
	r1	d7		r1		r1 r3			
10	r3	r3		r3		r3			
11				-		-			

pile	entrée	action
0	$num + num \times num$ \$	d5
0 num 5	+num × num\$	r6
0 F 3	$+num \times num$ \$	r4
0 T 2	$+num \times num$ \$	r2
0 E 1	$+num \times num$ \$	d6
0 E 1 + 6	num × num\$	d5
0 E 1 + 6 num 5	× num\$	r6
0 E 1 + 6 F 3	× num\$	r4
0 E 1 + 6 T 9	× num\$	d7
$0 E 1 + 6 T 9 \times 7$	num\$	

(1)		$E \rightarrow$		E +	Τ				
(2)		$E \rightarrow$		T					
(3)		$T \rightarrow$		$T \times$	F				
(4)		$T \rightarrow$		F					
(5)		$F \rightarrow$		(E)					
(6)		$F \rightarrow$		numl	ber				
				action			SL	ccess	eur
	+	×	()	num.	\$	Ε	T	F
0			d4		d5		1	2	3
1	d6					acc			
2	r2	d7		r2		r2			
3	r4	r4		r4		r4			
4			d4		d5		8	2	3
5	r6	r6		r6		r6			
6									
			d4		d5			9	3
7			d4 d4		d5 d5			9	3 10
7	d6			d11				9	
0 1 2 3 4 5 6 7 8 9	d6 r1	d7		d11 r1		r1		9	

 $(0) \quad E' \to \quad E$

pile entrée action 0 num + num × num\$ d5 0 num 5 +num × num\$ r6 0 F 3 +num × num\$ r4 0 T 2 +num × num\$ r2			
0 num 5 + num × num\$ r6 0 F 3 + num × num\$ r4	pile	entrée	action
0 F 3 +num × num\$ r4	0	$num + num \times num$ \$	d5
1,1211,1111,1111,1111,1111,1111,1111,1111,1111	0 num 5	$+num \times num$ \$	r6
0 T 2 + num × num\$ r2	0 F 3	$+num \times num$ \$	r4
0 1 2	0 T 2	$+num \times num$ \$	r2
0 E 1 + num × num\$ d6	0 E 1	$+num \times num$ \$	d6
0 E 1 + 6	0 E 1 + 6	num × num\$	d5
0 E 1 + 6 num 5 × num\$ r6	0 E 1 + 6 num 5	× num\$	r6
0 E 1 + 6 F 3 × num\$ r4	0 E 1 + 6 F 3	× num\$	r4
0 E 1 + 6 T 9 × num\$ d7	0 E 1 + 6 T 9	× num\$	d7
0 E 1 + 6 T 9 × 7	$0 E 1 + 6 T 9 \times 7$	num\$	d5
0 E 1 + 6 T 9 × 7 num	0 E 1 + 6 T 9 × 7 num	\$	
5	5		

(1) (2) (3) (4) (5) (6)		E	} } }	E + T T × F (E)	F				
(0)		•		action					
				action				ıccess	
	+	×	()	num.	\$	Ε	Т	F
0			d4		d5		1	2	3
1	d6					acc			
2	r2	d7		r2		r2 r4			
3	r4	r4		r4		r4			
4			d4		d5		8	2	3
5	r6	r6		r6		r6			
6			d4		d5			9	3
0 1 2 3 4 5 6 7 8			d4		d5		l		10
8	d6			d11					
	-	-					1		

pile	entrée	action
0	$num + num \times num$ \$	d5
0 num 5	$+num \times num$ \$	r6
0 F 3	+num × num\$	r4
0 T 2	$+num \times num$ \$	r2
0 E 1	$+num \times num$ \$	d6
0 E 1 + 6	num × num\$	d5
0 E 1 + 6 num 5	× num\$	r6
0 E 1 + 6 F 3	× num\$	r4
0 E 1 + 6 T 9	× num\$	d7
0 E 1 + 6 T 9 × 7	num\$	d5
0 E 1 + 6 T 9 × 7 num	\$	r6
5		
0 E 1 + 6 T 9 × 7 F 10	\$	
		'

(1) (2) (3) (4) (5) (6)		E		E + T × F (E) numb	F				
				action			SL	ccess	eur
	+	×	()	num.	\$	Ε	Т	F
0			d4		d5		1	2	3
0 1 2 3 4 5 6 7 8	d6					acc			
2	r2	d7		r2		r2 r4			
3	r4	r4		r4		r4			
4			d4		d5		8	2	3
5	r6	r6		r6		r6			
6			d4		d5			9	3
7			d4		d5				10
8	d6			d11					
9	r1	d7		r1		r1			
10	r3	r3		r3		r3	1		

pile	entrée	action
0	$num + num \times num$ \$	d5
0 num 5	$+num \times num$ \$	r6
0 F 3	+num × num\$	r4
0 T 2	$+num \times num$ \$	r2
0 E 1	$+num \times num$ \$	d6
0 E 1 + 6	num × num\$	d5
0 E 1 + 6 num 5	× num\$	r6
0 E 1 + 6 F 3	× num\$	r4
0 E 1 + 6 T 9	× num\$	d7
$0 E 1 + 6 T 9 \times 7$	num\$	d5
0 E 1 + 6 T 9 × 7 num	\$	r6
5		
$0 E 1 + 6 T 9 \times 7 F 10$	\$	r3
0 E 1 + 6 T 9	\$	

(1)		E -	-	E +	T				
(2)		E -	-	T					
(3)		T -	+	$T \times$	F				
(4)		T -	-	F					
(5)		F -	-	(E)					
(6)		F -	+	numl	ber				
				action			SL	ccess	eur
	+	×	()	num.	\$	Ε	T	F
0			d4		d5		1	2	3
0 1 2 3 4 5 6 7 8 9	d6					acc			
2	r2	d7		r2		r2			
3	r4	r4		r4		r4			
4			d4		d5		8	2	3
5	r6	r6		r6		r6			
6			d4		d5			9	3
7			d4		d5				10
8	d6			d11					
	r1	d7		r1		r1			
10	r3	r3		r3		r3			
11	r5	r5		-5		-5	1		

pile	entrée	action
0	$num + num \times num$ \$	d5
0 num 5	$+num \times num$ \$	r6
0 F 3	+num × num\$	r4
0 T 2	$+num \times num$ \$	r2
0 E 1	$+num \times num$ \$	d6
0 E 1 + 6	num × num\$	d5
0 E 1 + 6 num 5	× num\$	r6
0 E 1 + 6 F 3	× num\$	r4
0 E 1 + 6 T 9	× num\$	d7
$0 E 1 + 6 T 9 \times 7$	num\$	d5
0 E 1 + 6 T 9 × 7 num	\$	r6
5		
$0 E 1 + 6 T 9 \times 7 F 10$	\$	r3
0 E 1 + 6 T 9	\$ \$	r1
0 E 1	\$	

()		_ ′		_					
(1)		$E \rightarrow$		E +	T				
(2)		$E \rightarrow$		T					
(3)		$T \rightarrow$		$T \times$	F				
(4)		$T \rightarrow$		F					
(5)		$F \rightarrow$	٠	(E)					
(6)		$F \rightarrow$	٠	numl	ber				
1				action				ccess	
	+	×	()	num.	\$	Ε	T	F
0			d4		d5		1	2	3
1	d6					acc			
2	r2	d7		r2		r2			
3	r4	r4		r4		r4			
4			d4		d5		8	2	3
0 1 2 3 4 5 6 7 8	r6	r6		r6		r6			
6			d4		d5			9	3
7			d4		d5				10
8	d6			d11					
	r1	d7		r1		r1			
10	r3	r3		r3		r3			
11	r5	r5		r5		r5			

pile	entrée	action
0	$num + num \times num$ \$	d5
0 num 5	+num × num\$	r6
0 F 3	+num × num\$	r4
0 T 2	+num × num\$	r2
0 E 1	+num × num\$	d6
0 E 1 + 6	num × num\$	d5
0 E 1 + 6 num 5	× num\$	r6
0 E 1 + 6 F 3	× num\$	r4
0 E 1 + 6 T 9	× num\$	d7
$0 E 1 + 6 T 9 \times 7$	num\$	d5
0 E 1 + 6 T 9 × 7 num	\$	r6
5		
$0 E 1 + 6 T 9 \times 7 F 10$	\$	r3
0 E 1 + 6 T 9	\$	r1
0 E 1	\$	acc

Analyse LR(1): de nouveaux items

Les items d'un analyseur LR(1) sont différents de ceux utilisés par les analyseurs précédents.

Il sont de la forme $[A \to \alpha \cdot \beta, E]$. $A \to \alpha \beta$ est une production de la grammaire augmentée, $E \subseteq T \cup \{\$\}$.

Analyse LR(1): Fermeture

```
Fermeture(1)
  1 J \leftarrow I
  2 repeat
          for each [A \rightarrow \alpha \cdot B\beta, E] \in J,
                B \in N, \alpha, \beta \in (N \cup T)^*, E \subseteq T \cup \{\$\} do
              for each B \rightarrow \gamma do
                 E' \leftarrow Premier(\beta)
                 if \beta est annulable then
  6
                     E' \leftarrow E' \cup E
                 \triangleright ajouter [B \rightarrow \bullet \gamma, E'] à J
  8
      until aucun nouvel item n'a été ajouté à J
```

Analyse LR(1): Transition

Transition(I, X)

Soient I un ensemble d'items et X un symbole de la grammaire.

Transition(I, X) est l'ensemble des items de la forme [$A \to \alpha X \cdot \beta, E$] tel que [$A \to \alpha \cdot X\beta, E$] $\in I$.

On applique alors l'opération de fermeture sur cet ensemble.

Analyse LR(1): collection d'items

```
Items(G')

1 C \leftarrow \{\text{Fermeture}(\{[S' \rightarrow {}^{\bullet}S, \$]\})\}

2 repeat

3 for each I \in C, X \in \{N \cup T\},

Transition(I, X) \not\in C (et non vide) do

4 \triangleright Ajouter Transition(I, X) à C

5 until aucun nouvel ensemble d'items ajouté à C
```

Analyse LR(1): construction des tables

```
LR1(G')
    1 C \leftarrow \operatorname{Items}(G')
       for each I_i \in C do
           if [A \to \alpha \cdot a\beta, b] \in I_i, Transition(I_i, a) = I_i then
               Action[i, a] \leftarrow décaler i
           if [A \rightarrow \alpha \cdot, a] \in I_i then
   5
               Action[i, a] \leftarrow réduire A \rightarrow \alpha
           if [S' \rightarrow S \cdot, \$] \in I_i then
               Action[i, a] \leftarrow accepter
   9
           for each A \in N do
               if Transition(I_i, A) = I_i then
  10
                   Successeur[i, A] \leftarrow i
  11
```

$$f_{\mathbf{0}} \mid S' \rightarrow \bullet S, \{\$\}$$

- $\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \\ (3) & C \rightarrow & d \end{array}$

$$\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \\ (3) & C \rightarrow & d \end{array}$$

$$\begin{array}{cccc} (1) & 3 \rightarrow & cc \\ (2) & C \rightarrow & cC \\ (3) & C \rightarrow & d \end{array}$$

$$C \rightarrow cC$$
 $C \rightarrow d$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \to \bullet S, \{\$\} \\ S \to \bullet CC, \{\$\} \\ C \to \bullet cC, \{c, d\} \end{array}$$

$$\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \\ (3) & C \rightarrow & d \end{array}$$

$$\begin{array}{cccc} (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \end{array}$$

$$(3)$$
 $C \rightarrow c$

$$\begin{array}{c|c} \textbf{Io} & S' \rightarrow \bullet S, \{\$\} \\ S \rightarrow \bullet CC, \{\$\} \\ C \rightarrow \bullet cC, \{c, d\} \\ C \rightarrow \bullet d, \{c, d\} \end{array}$$

$$\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \\ (3) & C \rightarrow & d \end{array}$$

$$\begin{array}{cccc} (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \end{array}$$

$$\begin{array}{ccc} (2) & C \rightarrow & d \\ \end{array}$$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \rightarrow {}^{\bullet}S, \{\$\} \\ S \rightarrow {}^{\bullet}CC, \{\$\} \\ C \rightarrow {}^{\bullet}cC, \{c, d\} \\ C \rightarrow {}^{\bullet}d, \{c, d\} \end{array}$$

$$l_1 \mid S' \rightarrow S \cdot , \{\$\}$$

$$\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \\ (3) & C \rightarrow & d \end{array}$$

$$\begin{array}{cccc} (1) & 3 \rightarrow & cc \\ (2) & C \rightarrow & cC \\ (3) & C \rightarrow & d \end{array}$$

$$C \rightarrow C \rightarrow d$$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \rightarrow \bullet S, \{\$\} \\ S \rightarrow \bullet CC, \{\$\} \\ C \rightarrow \bullet cC, \{c, d\} \\ C \rightarrow \bullet d, \{c, d\} \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$I_1 \mid S' \to S \cdot, \{\$\}$$

$$I_2 \mid S \to C \cdot C, \{\$\}$$

$$\begin{array}{cccc} (0) & S' \to & S \\ (1) & S \to & CC \\ \end{array}$$

$$\begin{array}{cccc} (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \end{array}$$

$$\begin{array}{cccc} (2) & C \rightarrow & CC \\ (3) & C \rightarrow & d \end{array}$$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \rightarrow \bullet S, \{\$\} \\ S \rightarrow \bullet CC, \{\$\} \\ C \rightarrow \bullet cC, \{c, d\} \\ C \rightarrow \bullet d, \{c, d\} \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{2}} & S \rightarrow C \bullet C, \{\$\} \\ C \rightarrow \bullet cC, \{\$\} \end{array}$$

$$\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CC \\ \end{array}$$

$$(1)$$
 $S \rightarrow CC$
 (2) $C \rightarrow cC$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \rightarrow \bullet S, \{\$\} \\ S \rightarrow \bullet CC, \{\$\} \\ C \rightarrow \bullet cC, \{c, d\} \\ C \rightarrow \bullet d, \{c, d\} \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{2}} & S \to C \bullet C, \{\$\} \\ C \to \bullet cC, \{\$\} \\ C \to \bullet d, \{\$\} \end{array}$$

$$\begin{array}{ccc} (0) & S' \to & S \\ (1) & S \to & CC \end{array}$$

$$(1)$$
 $S \rightarrow CC$

$$(2)$$
 $C \rightarrow c$

$$(3)$$
 $C \rightarrow$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \rightarrow \bullet S, \{\$\} \\ S \rightarrow \bullet CC, \{\$\} \\ C \rightarrow \bullet cC, \{c, d\} \\ C \rightarrow \bullet d, \{c, d\} \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{2}} & S \rightarrow C \bullet C, \{\$\} \\ C \rightarrow \bullet cC, \{\$\} \\ C \rightarrow \bullet d, \{\$\} \end{array}$$

$$I_{\mathbf{3}} \mid C \rightarrow c \cdot C, \{c, d\}$$

$$(0)$$
 $S' \rightarrow S$

$$(2) \quad C \rightarrow \quad cC$$

$$\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \\ (3) & C \rightarrow & d \end{array}$$

$$C \rightarrow C$$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \to \bullet S, \{\$\} \\ S \to \bullet CC, \{\$\} \\ C \to \bullet cC, \{c, d\} \\ C \to \bullet d, \{c, d\} \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{2}} & S \to C \bullet C, \{\$\} \\ C \to \bullet cC, \{\$\} \\ C \to \bullet d, \{\$\} \end{array}$$

$$\begin{array}{|c|c|c|} \textbf{I3} & C \rightarrow c \bullet C, \{c,d\} \\ C \rightarrow \bullet cC, \{c,d\} \end{array}$$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \rightarrow \bullet S, \{\$\} \\ S \rightarrow \bullet CC, \{\$\} \\ C \rightarrow \bullet cC, \{c, d\} \\ C \rightarrow \bullet d, \{c, d\} \end{array}$$

- $\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \\ (3) & C \rightarrow & d \end{array}$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{2}} & S \rightarrow C \cdot C, \{\$\} \\ C \rightarrow \cdot cC, \{\$\} \\ C \rightarrow \cdot d, \{\$\} \end{array}$$

$$\begin{array}{c|c} \textbf{I3} & C \rightarrow c \cdot C, \{c, d\} \\ C \rightarrow \cdot cC, \{c, d\} \\ C \rightarrow \cdot d, \{c, d\} \end{array}$$

$$\begin{array}{c} I_{\mathbf{0}} & S' \rightarrow \bullet S, \{\$\} \\ S \rightarrow \bullet CC, \{\$\} \\ C \rightarrow \bullet cC, \{c, d\} \\ C \rightarrow \bullet d, \{c, d\} \end{array}$$

 $I_1 \mid S' \rightarrow S \cdot, \{\$\}$

$$(0)$$
 $S' \rightarrow S$

$$(1)$$
 $S \rightarrow CC$

(2)
$$C \rightarrow cC$$

$$(3) \qquad C \rightarrow$$

$$\begin{array}{c|c} I_{\mathbf{2}} & S \rightarrow C \bullet C, \{\$\} \\ C \rightarrow \bullet cC, \{\$\} \\ C \rightarrow \bullet d, \{\$\} \end{array}$$

$$\begin{array}{c|c} I_{3} & C \rightarrow c \cdot C, \{c, d\} \\ C \rightarrow \cdot cC, \{c, d\} \\ C \rightarrow \cdot d, \{c, d\} \end{array}$$

$$I_4 \mid C \rightarrow d \cdot, \{c, d\}$$

$$\begin{array}{c|c} \textbf{Io} & S' \rightarrow \bullet S, \{\$\} \\ S \rightarrow \bullet CC, \{\$\} \\ C \rightarrow \bullet cC, \{c, d\} \\ C \rightarrow \bullet d, \{c, d\} \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{cccc} (1) & S \rightarrow & CC \\ (2) & C \rightarrow & CC \end{array}$$

$$C \rightarrow cC$$

$$(3)$$
 $C \rightarrow$

$$\begin{array}{c|c} I_{\mathbf{2}} & S \rightarrow C \bullet C, \{\$\} \\ C \rightarrow \bullet cC, \{\$\} \\ C \rightarrow \bullet d, \{\$\} \end{array}$$

$$\begin{array}{c|c} \textbf{I3} & C \rightarrow c \cdot C, \{c, d\} \\ C \rightarrow \cdot cC, \{c, d\} \\ C \rightarrow \cdot d, \{c, d\} \end{array}$$

$$I_4 \mid C \rightarrow d \cdot, \{c, d\}$$

$$I_{\mathbf{5}} \mid S \rightarrow CC \bullet, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \to \bullet S, \{\$\} \\ S \to \bullet CC, \{\$\} \\ C \to \bullet cC, \{c, d\} \\ C \to \bullet d, \{c, d\} \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{cccc} (1) & S \rightarrow & CC \\ (2) & C \rightarrow & CC \end{array}$$

$$(3)$$
 $C \rightarrow$

$$\begin{array}{c|c} I_{\mathbf{2}} & S \rightarrow C \cdot C, \{\$\} \\ C \rightarrow \cdot cC, \{\$\} \\ C \rightarrow \cdot d, \{\$\} \end{array}$$

$$\begin{array}{c|c} I_{\mathbf{3}} & C \rightarrow c \bullet C, \{c, d\} \\ C \rightarrow \bullet cC, \{c, d\} \\ C \rightarrow \bullet d, \{c, d\} \end{array}$$

$$I_4 \mid C \rightarrow d \cdot, \{c, d\}$$

$$\textit{I}_{\textbf{5}} \;\; \big| \;\; \textit{S} \rightarrow \textit{CC} \, \boldsymbol{\cdot} \,, \, \{\$\}$$

$$I_{\mathbf{6}} \mid C \rightarrow c \cdot C, \{\$\}$$

$$\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \end{array}$$

$$\begin{array}{cccc} (2) & C \rightarrow & cC \\ (3) & C \rightarrow & d \end{array}$$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \to \bullet S, \{\$\} \\ S \to \bullet CC, \{\$\} \\ C \to \bullet cC, \{c, d\} \\ C \to \bullet d, \{c, d\} \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{2}} & S \rightarrow C \bullet C, \{\$\} \\ C \rightarrow \bullet cC, \{\$\} \\ C \rightarrow \bullet d, \{\$\} \end{array}$$

$$\begin{array}{c|c} \textbf{I_3} & C \rightarrow c \cdot C, \{c, d\} \\ C \rightarrow \cdot cC, \{c, d\} \\ C \rightarrow \cdot d, \{c, d\} \end{array}$$

$$I_{\mathbf{4}} \mid C \rightarrow d \cdot, \{c, d\}$$

$$I_5 \mid S \rightarrow CC \cdot, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{6}} & C \rightarrow c \bullet C, \{\$\} \\ C \rightarrow \bullet cC, \{\$\} \end{array}$$

$$\begin{array}{ccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \end{array}$$

$$\begin{array}{cccc} (1) & 3 \rightarrow & cC \\ (2) & C \rightarrow & cC \\ (3) & C \rightarrow & d \end{array}$$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \to \bullet S, \{\$\} \\ S \to \bullet CC, \{\$\} \\ C \to \bullet cC, \{c, d\} \\ C \to \bullet d, \{c, d\} \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{c|c} S \rightarrow C \cdot C, \{\$\} \\ C \rightarrow \cdot cC, \{\$\} \\ C \rightarrow \cdot d, \{\$\} \end{array}$$

$$\begin{array}{c|c} I_{\mathbf{3}} & C \rightarrow c \bullet C, \{c,d\} \\ C \rightarrow \bullet cC, \{c,d\} \\ C \rightarrow \bullet d, \{c,d\} \end{array}$$

$$I_{\mathbf{4}} \mid C \rightarrow d \cdot, \{c, d\}$$

$$I_5 \mid S \rightarrow CC \cdot, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{6}} & C \rightarrow c \bullet C, \{\$\} \\ C \rightarrow \bullet cC, \{\$\} \\ C \rightarrow \bullet d, \{\$\} \end{array}$$

$$\begin{array}{ccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & S \end{array}$$

1)
$$S \rightarrow CC$$

$$\begin{array}{cccc} (2) & C \rightarrow & cC \\ (3) & C \rightarrow & d \end{array}$$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \rightarrow \bullet S, \{\$\} \\ S \rightarrow \bullet CC, \{\$\} \\ C \rightarrow \bullet cC, \{c, d\} \\ C \rightarrow \bullet d, \{c, d\} \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{c|c}
S \to C \cdot C, \{\$\} \\
C \to \cdot cC, \{\$\} \\
C \to \cdot d, \{\$\}
\end{array}$$

$$\begin{array}{|c|c|c|} I_{\mathbf{3}} & C \rightarrow c \cdot C, \{c, d\} \\ C \rightarrow \cdot cC, \{c, d\} \\ C \rightarrow \cdot d, \{c, d\} \end{array}$$

$$I_4 \mid C \rightarrow d \cdot, \{c, d\}$$

$$I_{\mathbf{5}} \mid S \rightarrow CC \cdot, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{6}} & C \rightarrow c \bullet C, \{\$\} \\ C \rightarrow \bullet cC, \{\$\} \\ C \rightarrow \bullet d, \{\$\} \\ \end{array}$$

$$\textit{I}_{7} \;\; \big| \;\; \textit{C} \,\rightarrow\, \textit{d} \, \raisebox{1pt}{\text{$\scriptstyle\bullet$}} \,, \, \{\$\}$$

$$\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \\ (3) & C \rightarrow & d \end{array}$$

$$\begin{array}{cccc} (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \\ \end{array}$$

$$(3)$$
 $C \rightarrow$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \rightarrow \bullet S, \{\$\} \\ S \rightarrow \bullet CC, \{\$\} \\ C \rightarrow \bullet cC, \{c, d\} \\ C \rightarrow \bullet d, \{c, d\} \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{c|c} S \rightarrow C \cdot C, \{\$\} \\ C \rightarrow \cdot cC, \{\$\} \\ C \rightarrow \cdot d, \{\$\} \end{array}$$

$$\begin{array}{c|c} I_{\mathbf{3}} & C \to c \cdot C, \{c, d\} \\ C \to \cdot cC, \{c, d\} \\ C \to \cdot d, \{c, d\} \end{array}$$

$$I_{\mathbf{4}} \mid C \rightarrow d \cdot, \{c, d\}$$

$$I_5 \mid S \rightarrow CC \cdot, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{6}} & C \rightarrow c \bullet C, \{\$\} \\ C \rightarrow \bullet cC, \{\$\} \\ C \rightarrow \bullet d, \{\$\} \end{array}$$

$$I_7 \mid C \rightarrow d \cdot, \{\$\}$$

$$l_8 \mid C \rightarrow cC \cdot, \{c, d\}$$

$$\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \\ (3) & C \rightarrow & d \end{array}$$

$$\begin{array}{c|c} \textbf{Io} & S' \rightarrow \boldsymbol{\cdot} S, \{\$\} \\ S \rightarrow \boldsymbol{\cdot} CC, \{\$\} \\ C \rightarrow \boldsymbol{\cdot} cC, \{c, d\} \\ C \rightarrow \boldsymbol{\cdot} d, \{c, d\} \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{c|c} S \rightarrow C \cdot C, \{\$\} \\ C \rightarrow \cdot cC, \{\$\} \\ C \rightarrow \cdot d, \{\$\} \end{array}$$

$$\begin{array}{c|c} \textbf{I_3} & C \rightarrow c \cdot C, \{c, d\} \\ C \rightarrow \cdot cC, \{c, d\} \\ C \rightarrow \cdot d, \{c, d\} \end{array}$$

$$I_4 \mid C \rightarrow d \cdot, \{c, d\}$$

$$I_{\mathbf{5}} \mid S \rightarrow CC \cdot, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{6}} & C \rightarrow c \bullet C, \{\$\} \\ C \rightarrow \bullet cC, \{\$\} \\ C \rightarrow \bullet d, \{\$\} \end{array}$$

$$I_7 \mid C \rightarrow d \cdot, \{\$\}$$

$$l_8 \mid C \rightarrow cC \cdot, \{c, d\}$$

$$l_9 \mid C \rightarrow cC \cdot, \{\$\}$$

$$\begin{array}{ccc} (0) & S' \to & S \\ (1) & S \to & C \end{array}$$

$$\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CC \\ (2) & C \rightarrow & CC \end{array}$$

$$\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \\ (3) & C \rightarrow & d \end{array}$$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \rightarrow \bullet S, \{\$\} \\ S \rightarrow \bullet CC, \{\$\} \\ C \rightarrow \bullet cC, \{c, d\} \\ C \rightarrow \bullet d, \{c, d\} \\ \hline \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{2}} & S \rightarrow C \bullet C, \{\$\} \\ C \rightarrow \bullet cC, \{\$\} \\ C \rightarrow \bullet d, \{\$\} \end{array}$$

$$\begin{array}{c|c} I_{3} & C \rightarrow c \cdot C, \{c, d\} \\ C \rightarrow \cdot cC, \{c, d\} \\ C \rightarrow \cdot d, \{c, d\} \end{array}$$

$$I_4 \mid C \rightarrow d \cdot, \{c, d\}$$

$$I_{\mathbf{5}} \mid S \rightarrow CC \cdot, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{6}} & C \rightarrow c \cdot C, \{\$\} \\ C \rightarrow \cdot cC, \{\$\} \\ C \rightarrow \cdot d, \{\$\} \end{array}$$

$$I_7 \mid C \rightarrow d \cdot, \{\$\}$$

$$l_8 \mid C \rightarrow cC \cdot, \{c, d\}$$

$$\textit{lg} \;\; \big| \;\; \textit{C} \rightarrow \textit{cC} \, \boldsymbol{\cdot} \,, \, \{\$\}$$

$$S' \rightarrow S$$

$$\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CG \end{array}$$

$$\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \\ (3) & C \rightarrow & d \end{array}$$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \to \bullet S, \{\$\} \\ S \to \bullet CC, \{\$\} \\ C \to \bullet cC, \{c, d\} \\ C \to \bullet d, \{c, d\} \end{array}$$

С

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{2}} & S \rightarrow C \bullet C, \{\$\} \\ C \rightarrow \bullet cC, \{\$\} \\ C \rightarrow \bullet d, \{\$\} \end{array}$$

$$\begin{array}{c|c} I_{\mathbf{3}} & C \to c \cdot C, \{c, d\} \\ C \to \cdot cC, \{c, d\} \\ C \to \cdot d, \{c, d\} \end{array}$$

$$I_4 \mid C \rightarrow d \cdot, \{c, d\}$$

$$I_{\mathbf{5}} \mid S \rightarrow CC \bullet, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{6}} & C \rightarrow c \cdot C, \{\$\} \\ C \rightarrow \cdot cC, \{\$\} \\ C \rightarrow \cdot d, \{\$\} \end{array}$$

$$I_7 \mid C \rightarrow d \cdot, \{\$\}$$

$$l_8 \mid C \rightarrow cC \cdot, \{c, d\}$$

$$l_{\mathbf{g}} \mid C \rightarrow cC \cdot, \{\$\}$$

	action			succ	esseur
	С	d	\$	S	С
0	d3	d4		1	2
1			acc		
2	d6	d7			5
3	d3	d4		İ	8
4	r3	r3			
1 2 3 4 5 6	İ		r1		
6	d6	d7			9
7 8			r3		
8	r2	r2		İ	
9			r2		

Analyse LALR(1)

L'analyse LR(1) étant diffcile à mettre en œuvre, car très consommatrice de mémoire, une version allégée est utilisée en pratique : l'analyse LALR(1). Le principe est le suivant :

- construire la collection d'items LR(1)
- fusionner tous les états ayant le même cœur, c'est-à-dire le même ensemble d'items en ne considérant pas leurs secondes parties : une union de ces deuxièmes parties est réaliée
- vérifier qu'il n'y a pas de conflits dans les ensembles obtenus
- soient $I = I_1 \cup \ldots \cup I_i$ et $J = J_1 \cup \ldots \cup J_j$ deux ensembles d'items obtenus par fusion, alors si le cœur de $Transition(I_1, X)$ est aussi le cœur de J alors Transition(I, X) = J
- construire les tables d'analyse avec le même algorithme que pour l'analyse LR(1)

$$\begin{array}{ccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & C \end{array}$$

$$\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \\ (3) & C \rightarrow & d \end{array}$$

$$(3) \qquad C \rightarrow$$

$$\begin{array}{c|c}
I_0 & S' \rightarrow \bullet S, \{\$\} \\
S \rightarrow \bullet CC, \{\$\} \\
C \rightarrow \bullet cC, \{c, d\} \\
C \rightarrow \bullet d, \{c, d\}
\end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{2}} & S \rightarrow C \bullet C, \{\$\} \\ C \rightarrow \bullet cC, \{\$\} \\ C \rightarrow \bullet d, \{\$\} \end{array}$$

$$I_{3} \begin{vmatrix} C \rightarrow \bullet d, \{\$\} \\ C \rightarrow c \bullet C, \{c, d\} \\ C \rightarrow \bullet cC, \{c, d\} \end{vmatrix}$$

 $C \rightarrow \bullet d, \{c, d\}$

$$I_{\mathbf{4}} \mid C \rightarrow d \cdot , \{c, d\}$$

$$I_5 \mid S \rightarrow CC \cdot, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{6}} & C \rightarrow c \cdot C, \{\$\} \\ C \rightarrow \cdot cC, \{\$\} \\ C \rightarrow \cdot d, \{\$\} \end{array}$$

$$I_7 \mid C \rightarrow d \cdot, \{\$\}$$

$$l_8 \mid C \rightarrow cC \cdot, \{c, d\}$$

$$l_{\mathbf{9}} \mid C \rightarrow cC \cdot, \{\$\}$$

$$\begin{array}{ccc} (0) & S' \to & S \\ (1) & S \to & C \\ \end{array}$$

$$\begin{array}{cccc} (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \\ (3) & C \rightarrow & d \end{array}$$

$$\begin{array}{cccc} (2) & C \rightarrow & cc \\ (3) & C \rightarrow & d \end{array}$$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \rightarrow \bullet S, \{\$\} \\ S \rightarrow \bullet CC, \{\$\} \\ C \rightarrow \bullet cC, \{c, d\} \\ C \rightarrow \bullet d, \{c, d\} \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{c|c} I_2 & S \to C \cdot C, \{\$\} \\ & C \to \cdot cC, \{\$\} \\ & C \to \cdot d, \{\$\} \\ & C \to c \cdot C, \{c, d, \$\} \end{array}$$

$$I_{3} \mid C \rightarrow c \cdot C, \{c, d, \$\}$$

$$C \rightarrow c \cdot C, \{c, d, \$\}$$

$$C \rightarrow c \cdot C, \{c, d, \$\}$$

$$C \rightarrow d, \{c, d, \$\}$$

$$I_4 \mid C \rightarrow d \cdot, \{c, d\}$$

$$I_5 \mid S \rightarrow CC \cdot, \{\$\}$$

$$\textit{I}_{7} \;\mid\; \textit{C} \rightarrow \textit{d} \, \boldsymbol{\cdot} \,, \, \{\$\}$$

$$l_8 \mid C \rightarrow cC \cdot, \{c, d\}$$

$$l_{\mathbf{9}} \mid C \rightarrow cC \cdot, \{\$\}$$

$$\begin{array}{ccc} (0) & S' \to & S \\ (1) & S \to & C \end{array}$$

$$\begin{array}{cccc} (1) & S \rightarrow & CC \\ (2) & C \rightarrow & cC \end{array}$$

$$\begin{array}{cccc} (2) & C \rightarrow & C \\ (3) & C \rightarrow & C \end{array}$$

$$\begin{array}{c|c} S' \rightarrow \bullet S, \{\$\} \\ S \rightarrow \bullet CC, \{\$\} \\ C \rightarrow \bullet cC, \{c, d\} \\ C \rightarrow \bullet d, \{c, d\} \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{2}} & S \rightarrow C \bullet C, \{\$\} \\ C \rightarrow \bullet cC, \{\$\} \\ C \rightarrow \bullet d, \{\$\} \end{array}$$

$$\begin{array}{c|c} & C \rightarrow \bullet d, \{\$\} \\ & C \rightarrow c \bullet C, \{c, d, \$\} \\ & C \rightarrow \bullet cC, \{c, d, \$\} \\ & C \rightarrow \bullet d, \{c, d, \$\} \end{array}$$

$$I_{\mathbf{4}} \mid C \rightarrow d \cdot, \{c, d, \$\}$$

$$I_{\mathbf{5}} \mid S \rightarrow CC \cdot, \{\$\}$$

Is
$$\mid C \rightarrow cC \cdot, \{c, d\}$$

$$l_{\mathbf{9}} \mid C \rightarrow cC \bullet, \{\$\}$$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \rightarrow \bullet S, \{\$\} \\ S \rightarrow \bullet CC, \{\$\} \\ C \rightarrow \bullet cC, \{c, d\} \\ C \rightarrow \bullet d, \{c, d\} \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CC \end{array}$$

$$(2) \qquad C \rightarrow \qquad cC$$

$$\begin{array}{cccc} 2) & C \rightarrow & cC \\ 3) & C \rightarrow & d \end{array}$$

$$\begin{array}{c|c}
S \to C \cdot C, \{\$\} \\
C \to \cdot cC, \{\$\} \\
C \to \cdot d, \{\$\}
\end{array}$$

$$\begin{array}{c|c} \textbf{I3} & C \rightarrow c \cdot C, \{c, d, \$\} \\ C \rightarrow \cdot cC, \{c, d, \$\} \\ C \rightarrow \cdot d, \{c, d, \$\} \end{array}$$

$$I_4 \mid C \rightarrow d \cdot, \{c, d, \$\}$$

$$I_5 \mid S \rightarrow CC \cdot, \{\$\}$$

$$l_{\mathbf{8}} \mid C \rightarrow cC \cdot, \{c, d, \$\}$$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \rightarrow \bullet S, \{\$\} \\ S \rightarrow \bullet CC, \{\$\} \\ C \rightarrow \bullet cC, \{c, d\} \\ C \rightarrow \bullet d, \{c, d\} \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

$$\begin{array}{cccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & CC \end{array}$$

$$(2) C \rightarrow cC$$

$$\begin{vmatrix} S \rightarrow C \cdot C, \{\$\} \\ C \rightarrow \cdot cC, \{\$\} \\ C \rightarrow \cdot d, \{\$\} \end{vmatrix}$$

$$\begin{array}{c|c} \textbf{I_3} & C \rightarrow c \cdot C, \{c, d, \$\} \\ C \rightarrow \cdot cC, \{c, d, \$\} \\ C \rightarrow \cdot d, \{c, d, \$\} \end{array}$$

$$I_4 \mid C \rightarrow d \cdot, \{c, d, \$\}$$

$$I_5 \mid S \rightarrow CC \cdot, \{\$\}$$

$$l_{\mathbf{6}} \mid C \rightarrow cC \cdot, \{c, d, \$\}$$

$$\begin{array}{c|c} I_{\mathbf{0}} & S' \to \bullet S, \{\$\} \\ S \to \bullet CC, \{\$\} \\ C \to \bullet cC, \{c, d\} \\ C \to \bullet d, \{c, d\} \end{array}$$

$$I_1 \mid S' \rightarrow S \cdot, \{\$\}$$

- $\begin{array}{ccc} (0) & S' \rightarrow & S \\ (1) & S \rightarrow & C \end{array}$
- (2) $C \rightarrow cC$
- $\begin{array}{cccc} (2) & C \rightarrow & C \\ (3) & C \rightarrow & d \end{array}$

$$\begin{array}{c|c}
S \to C \cdot C, \{\$\} \\
C \to \cdot cC, \{\$\}
\end{array}$$

$$\begin{array}{c|c} I_{\mathbf{3}} & C \rightarrow c \cdot C, \{c, d, \$\} \\ C \rightarrow \cdot cC, \{c, d, \$\} \\ C \rightarrow \cdot d, \{c, d, \$\} \end{array}$$

$$\textit{I}_{\textbf{4}} \; \mid \; \textit{C} \rightarrow \textit{d} \bullet, \{\textit{c}, \textit{d}, \$\}$$

$$\textit{I}_{\textbf{5}} \;\; \big| \;\; \textit{S} \rightarrow \textit{CC} \, \boldsymbol{\cdot} \,, \, \{\$\}$$

$$l_{\mathbf{6}} \mid C \rightarrow cC \cdot, \{c, d, \$\}$$

	action			succ	esseur
	С	d	\$	S	С
0	d3	d4		1	2
1			acc		
1 2 3	d3	d4			5
	d3	d4			6
4 5	r3	r3	r3		
5			r1		
6	r2	r2	r2		

Analyse sémantique

L'analyse sémantique consiste à se poser des questions de sens. Ce n'est pas parce qu'un code source est syntaxiquement correcte qu'il a du sens. Par exemple $5 \times a$ est une expression arithmétique syntaxiquement correcte car elle correspond à la multiplication de l'entier 5 par la valeur de la variable a. Mais qu'en est-il si la variable a est de type booléen par exemple?

L'analyse sémantique sert donc à la fois à au typage des données, et à la vérification de la cohérence des types

Analyse dirigée par la syntaxe : les attributs

Pour réaliser une analyse sémantique, il faut associer à chaque symbole de la grammaire des attributs qui seront hérités et/ou synthétisés.

De manière formelle, un attribut v d'un symbole A est noté A.v.

Attribut hérité

Un attribut hérité est calculé à partir des atributs du père et/ou des frères gauches du symbole.

Par exemple, dans une production de la forme $A \to A_1 \dots A_n$, un attribut hérité de A_i est calculé à partir des attributs des symboles $A, A_1, \dots A_{i-1}$.

Attribut synthétisé

Un attribut synthétisé est calculé à partir des attributs des fils du symbole. Par exemple, dans une production de la forme $A \to A_1 \dots A_n$, un attribut synthétisé de A est calculé à partir des attributs de ses fils A_1, \dots, A_n .

Analyse dirigée par la syntaxe : les attributs

les terminaux

Les terminaux n'ont pas d'attribut hérité, mais uniquement des attributs synthétisés, généralement par l'analyseur lexical.

Par exemple, une variable possède un attribut synthétisé qui est son identifiant : il lui est attribué par l'analyseur lexical.

Analyse dirigée par la syntaxe : grammaires S-attribuées et L-attribuées

Une grammaire est dite L-attribuée si ses symboles possèdent des attributs synthétisés et/ou hérités.

Une grammaire est dite S-attribuée si ses symboles ne possèdent que des attributs synthétisés.

Analyse dirigée par la syntaxe : les attributs

Grammaire L-attribuée	règles sémantiques
D o TL	L.t = T.t
$ au ightarrow ext{int}$	T.y = int
T o char	T.y = char
$L \rightarrow L_1, I$	$L_1.t = L.t, I.t = L.t$
$L \rightarrow I$	I.t = L.t

Notation : attention, en cas d'ambigüité dans les règles sémantiques lorsqu'un même symbole apparait plusieurs fois dans une même production, le nom du non terminal à gauche de la production reste inchangé, les non-terminaux à droite sont quant à eux numérotés.

Analyse dirigée par la syntaxe : les attributs

Grammaire S-attribuée	règles sémantiques
$E \rightarrow T + E$	$E.v = T.v + E_1.v$
E o T	E.v = T.v
T ightarrow num	T.v = value(num)

Notation : attention, en cas d'ambigüité dans les règles sémantiques lorsqu'un même symbole apparait plusieurs fois dans une même production, le nom du non terminal à gauche de la production reste inchangé, les non-terminaux à droite sont quant à eux numérotés.

Flex / Bison : gestion des attributs

```
%union {
  char* id;
  type_synth type;
%type<type> TYPE
%token INT
%token CHAR
%token<id> ID
%start DECL
%%
DECL: TYPE { printf("Type de la déclaration : %d (%s)\n",
                      $1, ($1 == 0 ? "INT_T": "CHAR_T")); }
       LID ';';
TYPE:
  INT \{ \$\$ = INT_T; \}
I CHAR { $$ = CHAR T: }
LID:
  LID ',' ID { printf("Ajouter la variable \"%s\" de type %d (%s)
                       à la table des symboles\n",
                       3, <type>-1, (<type>-1 == 0 ? "INT_T": "CHAR_T")); }
| ID { printf("Ajouter la variable \"%s\" de type %d (%s)
               à la table des symboles\n",
               $1, <tvpe>-1, (<tvpe>-1 == 0 ? "INT T": "CHAR T")); }
%%
```

Flex / Bison : gestion des attributs

```
%union {
  char* id;
 type_synth type;
%type<type> TYPE
%token INT
%token CHAR
%token<id> ID
%start DECL
%%
DECL : TYPE { $<tvpe>$ = $1: } LID ':' :
TYPE:
  INT { $$ = INT_T; }
 CHAR \{ $$ = CHAR_T; \}
LID:
  LID ',' ID { printf("Ajouter la variable \"%s\" de type %d (%s)
                       à la table des symboles\n".
                       $3, $<tvpe>0, ($<tvpe>0 == 0 ? "INT T":"CHAR T")); }
| ID { printf("Ajouter la variable \"%s\" de type %d (%s)
               à la table des symboles\n",
               $1, $<type>0, ($<type>0 == 0 ? "INT_T": "CHAR_T")); }
```

Analyse dirigée par la syntaxe : remarques

Grammaires S-attribuées

Les grammaires S-attribuées sont particulièrement adaptées aux analyses ascendantes.

Circularité

En cas de grammaire L-attribuée, attention aux cycles dans les règles sémantiques.

Génération de code

L'analyse syntaxique permet donc, simultanément, de réaliser une analyse sémantique à l'aide d'attributs associés aux symboles de la grammaire et d'un ensemble de règles sémantiques prédéfinies.

Mais c'est aussi l'occasion de produire du code (intermédiaire).

Organisation en mémoire d'un programme en cours d'exécution

- code : contient le code des différentes fonctions
- données globales : contient les constantes et autre données statiques
- pile : contient les enregistrements d'activation des fonctions en cours d'exécution, sert aussi aux calculs
- tas : zone réservée pour les données allouées dynamiquement

Les enregistrements d'activation

Un enregistrement ou bloc d'activation est un emplacement mémoire (généralement sur la pile) contenant l'ensemble des informations nécessaires à l'appel d'une fonction.

Il existe autant d'organisation d'enregistrement que de langage, de compilateur, d'architecture...

temporaires locales état sauvegardé lien d'accès lien de contrôle paramètres valeur de retour

données temporaires variables locales sauvegarde du contexte lien vers données non locales lien vers l'appelant zone de stockage des paramètres zone de stockage

temporaires sauvegarde bp de l'appelant adresse retour paramètres variables locales valeur de retour

Le protocole d'appel est alors le suivant.

La fonction appelante :

- réserve sur la pile de la place pour la valeur de retour
- réserve sur la pile de la place pour les variables locales de la fonction appelée
- empile les valeurs des paramètres de la fonction appelée
- appelle la fonction (l'adresse de la prochaine instruction après le retour d'appel est automatiquement empilée) : ceci est fait par un call

La fonction appelée :

- empile l'adresse de la base de pile de l'appelant
- remplace la valeur de bp par le sommet de pile actuel (le calcul des adresses des paramètres et variables locales se fera par rapport à bp
- sauvegarde les registres sur la pile
- effectue ses calculs sur la pile
- sauvegarde le résultat dans la zone prévue à cet effet
- rétabli les valeurs des registres sauvegardés
- remet l'adresse de la base de la pile à son ancienne valeur
- met l'adresse de retour dans le registre prévu à cet effet (compteur ordinal) : ceci est fait automatiquement par un ret

La fonction appelante :

- dépile les paramètres et données locales
- récupère le résultat

Enregistrements d'activation et tables des symboles

Que ce soient les variables globales, locales, paramètres ou fonctions, ces informations doivent être gérées par une table des symboles. Celle-ci doit permettre :

- d'assurer le problème de portée des variables
- s'assurer que deux variables ou fonctions de même nom ne sont pas dans un même bloc (conflit)
- prévoir la construction des enregistrements d'activation des fonctions et de calculer les adresses des paramètres et variables locales
- . . .

Lors de l'analyse d'une fonction, elle est ajoutée à la table des symboles ainsi que ses paramètres et variables locales. Lorsque son analyse est terminée, tous les symboles la concernant sont supprimés da la table. Il en est de même pour chaque bloc d'instruction.