1

Assignment 16

Jayati Dutta

Abstract—This is a simple document explaining how to determine whether a set of polynomials are linearly independent or not.

Download all and latex-tikz codes from

svn co https://github.com/gadepall/school/trunk/ncert/geometry/figs

1 Problem

Let S be a set of non-zero polynomials over a field F. If no two elements of S have the same degree, show that S is an independent set in F[x].

2 Solution

Hence, it is proved that S is an independent set in F[x].

Given	\mathbf{S} be a set of non-zero polynomial over a field F
	No two elements of S have the same degree
To prove	\mathbf{S} is an independent set in $\mathbf{F}[\mathbf{x}]$
Linear Independency	Let $f_1, f_2,, f_n$ are the polynomials and they will be linearly independent if $a_1f_1 + a_2f_2 + + a_nf_n = \theta$ for $a_1 = a_2 = = a_n = 0$ where $a_1, a_2,, a_n$ are scalars from field F
Proof	Let the degrees of $f_1, f_2,, f_n$ are $d_1, d_2,, d_n$ respectively such that the degree of $f_i = d_i \neq d_j$ for $j=1,2,,n$ and $i \neq j$ Now, let $a_1f_1 + a_2f_2 + + a_nf_n = \theta$ and the the degree of $f_i = d_i = d$ which is the largest degree among all the polynomials and f_i has the co-efficient a_i then if $a_1f_1 + a_2f_2 + + a_nf_n = \theta$ and $d_i = d \neq d_j$ for $j=1,2,,n$ and $i \neq j$ then it must be $a_i = 0$ Now, consider the second largest degree d_k and it is the degree of the polynomial f_k a_k is the coefficient of f_k $d_k \neq d_j$ for $j=1,2,,n$ and $k \neq j$, so similarly $a_k = 0$ In this way, it can be proved that $a_1 = a_2 = = a_n = 0$ for $a_1f_1 + a_2f_2 + + a_nf_n = \theta$ $\implies f_1, f_2,, f_n$ are linearly independent