Workshop in Molecular Evolution Protein Evolution / Similarity Searching

What BLAST Does / Why BLAST works

Bill Pearson wrp@virginia.edu

1

Sequence Similarity - Conclusions

- <u>Homologous</u> sequences share a common ancestor, but most sequences are <u>non-homologous</u>
- Always compare Protein Sequences
- Sequence Homology can be reliably inferred from statistically significant similarity (non-homology cannot from non-similarity)
- Homologous proteins share common structures, but not necessarily common functions
- Sequence statistical significance estimates are accurate (verify this yourself)10⁻⁶ < E() < 10⁻³ is statistically significant
- Scoring matrices set evolutionary look back horizons not every discovery is distant
- PSI-BLAST can be more sensitive, but with lower statistical accuracy

Establishing homology from statistically significant similarity Why BLAST works

- For most proteins, homologs are easily found over long evolutionary distances (500 My – 2 By) using standard approaches (BLAST, FASTA)
- Difficult for distant relationships or very short domains
- Most default search parameters are optimized for distant relationships and work well

3

This talk is not about:

- Alignment
 - Alignment quality may be more sensitive to parameter choice
 - Multiple sequences for biologically accurate alignments
- Inferring Protein Function
 - Homology (common ancestry) implies common structure (guaranteed), not necessarily common function
 - Homologs have different functions
 - Non-homologs have similar (or identical) functions
- The best sequences for building trees
 - Protein sequences are clearly best for establishing homology, but DNA sequences may be better for resolving recent divergence

Protein Evolution and Sequence Similarity

- · What is Homology and how do we recognize it?
- How do we measure sequence similarity alignments and scoring matrices?
- DNA vs protein comparison
- · Alignment Algorithms/Local sequence alignments
- · Similarity scoring matrices
- When are we certain that an alignment is significant - similarity score statistics?
- · When to trust similarity statistics?
- Improving sensitivity with PSI-BLAST

5

MIT 7.91J / 7.36J / 20.490J Foundations of Computational and Systems Biology

Lect. 1 Introduction/Sequence Comparison and Dynamic Programming

Definitions

· Homologue:

a relatively non-specific term (meaningless?) that conveys the idea that two sequences are somehow related

• Orthologue:

When can we infer non-homology?

Bovine trypsin (5ptp) Structure: E()<10⁻²³

RMSD 0.0 A Sequence: $E()<10^{-84}$

100% 223/223

Non-homologous proteins have different structures

Subtilisin (1sbt) E() >100

E()<280; 25% 159/275

Cytochrome c4 (1etp) E() > 100

E()<5.5; 23% 171/190

9

Homology is confusing I: Homology defined Three(?) Ways

- Proteins/genes/DNA that share a common ancestor
- Specific positions/columns in a multiple sequence alignment that have a 1:1 relationship over evolutionary history
 - sequences are 50% homologous ???
- Specific (morphological/functional) characters that share a recent divergence (clade)
 - bird/bat/butterfly wings are/are not homologous

Homology defined My Way

- Sequences are inferred to share a common ancestor based on statistically significant excess similarity. Any evidence of excess similarity can be used to infer homology
- Lack of evidence cannot be used to infer nonhomology.
 - Proteins with different structures are nonhomologous
- There are always two alternative hypotheses: homology (common ancestry), or convergence – one must weigh the evidence for each hypothesis (convergence is the *null* hypothesis).

What BLAST does:

Similarity ? Homology

Why BLAST works:

Statistical ? Biological Significance <=> Significance

Divergence ? Convergence

13

Some important dates in history

^aBillions of years ago

Protein Family	PAMs ^a /100 res. /10 ⁸ years	Protein Lookback time ^b				
Pseudogenes	400	45°	Primates,Rodents			
Fibrinopeptides	90	200	Mammalian Radiation			
Lactalbumins	27	670	Vertebrates			
Ribonucleases	21	850	Animals			
Hemoglobins	12	1.5 ^d	Plants/Animals			
Acid Proteases	8	2.3	Prokayrotic/Eukarotic			
Triosphosphate isomerase	9 3	6	Archaen			
Glutamate dehydrogenase	e 1	18	?			

 $^{\rm a}\text{PAMs},$ point accepted mutations. $^{\rm b}\text{Useful}$ lookback time, 360 PAMs,15% identity. $^{\rm c}\text{Millions}$ of years. $^{\rm d}\text{Billions}$ of years.

E. CO	li pro	oteir	ns vs Human – A	ncient Protein D	omains
expect	+ %_id	 alen	E coli descr	Human descr	sp_name
 2.7e-206	 53.8	+ 944	glycine decarboxylase, P	Glycine dehydrogenase [de	GCSP HUMAN
1.2e-176	59.5	706	methylmalonyl-CoA mutase	Methylmalonyl-CoA mutase,	MUTA HUMAN
3.8e-176	50.6	803	glycogen phosphorylase [E	Glycogen phosphorylase, 1	PHS1 HUMAN
9.9e-173	55.6	1222	B12-dependent homocystein	5-methyltetrahydrofolate-	METH HUMAN
1.8e-165	41.8	1031	carbamoyl-phosphate synth	Carbamoyl-phosphate synth	CPSM HUMAN
5.6e-159	65.7	542	glucosephosphate isomeras	Glucose-6-phosphate isome	G6PI HUMAN
8.1e-143	53.7	855	aconitate hydrase 1 [Esch	Iron-responsive element b	IRE1 HUMAN
2.5e-134	73.0	459	membrane-bound ATP syntha	ATP synthase beta chain,	ATPB HUMAN
3.3e-121	55.8	550	succinate dehydrogenase,	Succinate dehydrogenase [DHSA HUMAN
1.5e-113	60.6	401	putative aminotransferase	Cysteine desulfurase, mit	NFS1 HUMAN
4.4e-111	60.9	460	fumarase C= fumarate hydr	Fumarate hydratase, mitoc	FUMH_HUMAN
1.5e-109	56.1	474	succinate-semialdehyde de	Succinate semialdehyde de	SSDH_HUMAN
3.6e-106	44.7	789	maltodextrin phosphorylas	Glycogen phosphorylase, m	PHS2_HUMAN
1.4e-102	53.1	484	NAD+-dependent betaine al	Aldehyde dehydrogenase, E	DHAG_HUMAN
3.8e-98	53.0	449	pyridine nucleotide trans	NAD(P) transhydrogenase,	NNTM_HUMAN
5.8e-96	49.9	489	glycerol kinase [Escheric	Glycerol kinase, testis s	GKP2_HUMAN
2.1e-95	66.8	328	glyceraldehyde-3-phosphat	Glyceraldehyde 3-phosphat	G3P2_HUMAN
5.0e-91	62.5	368	alcohol dehydrogenase cla	Alcohol dehydrogenase cla	ADHX_HUMAN
6.7e-91	56.5	393	protein chain elongation	Elongation factor Tu, mit	EFTU_HUMAN
9.5e-91	56.6	392	protein chain elongation	Elongation factor Tu, mit	EFTU_HUMAN
2.2e-89	59.1	369	methionine adenosyltransf	S-adenosylmethionine synt	METK_HUMAN
6.5e-88	53.3	422	enolase [Escherichia coli	Alpha enolase (2-phospho-	ENOA_HUMAN
9.2e-88	43.3	536	NAD-linked malate dehydro	NADP-dependent malic enzy	MAOX_HUMAN
7.3e-86	55.5	389	2-amino-3-ketobutyrate Co	2-amino-3-ketobutyrate co	KBL_HUMAN
5.2e-83	44.4	543	degrades sigma32, integra	AFG3-like protein 2 (Para	AF32 HUMAN

Orthologs preserve function, but can be difficult to infer

- Over modest distances (human/mouse), postspeciation duplication is common
- Over large distances (human/fly, bacteria), duplication/loss/replacement may be common
- Homology inferences have false-negatives, but the false-positive rate can be reliably controlled
- Orthology inferences will have both false positives and false negatives
- Paralogous proteins often have similar functions

Protein Evolution and Sequence Similarity

- · What is Homology and how do we recognize it?
- How do we measure sequence similarity alignments and scoring matrices?
- DNA vs protein comparison
- Alignment Algorithms/Local sequence alignments
- · Similarity scoring matrices
- When are we certain that an alignment is significant - similarity score statistics?
- · When to trust similarity statistics?
- Improving sensitivity with PSI-BLAST

Inferring Homology from Statistical Significance

- Real UNRELATED sequences have similarity scores that are indistinguishable from RANDOM sequences
- If a similarity is NOT RANDOM, then it must be NOT UNRELATED
- Therefore, NOT RANDOM (statistically significant) similarity must reflect RELATED sequences

```
Query: atp6 human.aa ATP synthase a chain - 226 aa
                      Library: 5190103 residues in 13351 sequences
The best scores are: ( len) s-w bits E(13351) % id % sim sp|P00846|ATP6_HUMAN ATP synthase a chain (AT ( 226) 1400 325.8 5.8e-90 1.000 1.000 sp|P00847|ATP6_BOVIN ATP synthase a chain (AT ( 226) 1157 270.5 2.5e-73 0.779 0.951
                                                                                                  226
                                                                                                  226
sp P00848 ATP6_MOUSE ATP synthase a chain (AT ( 226) 1118 261.7 1.2e-70 0.757 0.916
sp|P00849|ATP6_XENLA ATP synthase a chain (AT ( 226) 745 176.8 4.0e-45 0.533 0.847
sp P00851 ATP6 DROYA ATP synthase a chain (AT ( 224) 473 115.0 1.7e-26 0.378 0.721 sp P00854 ATP6 YEAST ATP synthase a chain pre ( 259) 428 104.7 2.3e-23 0.353 0.694
sp|P00852|ATP6_EMENI ATP synthase a chain pre ( 256) 365 90.4 4.8e-19 0.304 0.691
sp|P14862|ATP6\_COCHE ATP synthase a chain (AT ( 257) 353 87.7 3.2e-18 0.313 0.650
sp|P68526|ATP6 TRITI ATP synthase a chain (AT ( 386) 309 77.6 5.1e-15 0.289 0.651
sp | P05499 | ATP6 TOBAC ATP synthase a chain (AT ( 395) 309 77.6 5.2e-15 0.283 0.635
sp P07925 ATP6 MAIZE ATP synthase a chain (AT (
                                                        291)
                                                              283 71.7 2.3e-13 0.311 0.667
sp POAB98 ATP6 ECOLI ATP synthase a chain (AT ( 271) sp POC2Y5 ATPI ORYSA Chloroplast ATP synth (A ( 247)
                                                              178 47.9 3.2e-06 0.233 0.585
                                                              144 40.1 0.00062 0.242 0.580
sp | P06452 | ATPI_PEA Chloroplast ATP synthase a ( 247) 143 39.9 0.00072 0.250 0.586
sp P27178 ATP6 SYNY3 ATP synthase a chain (AT ( 276) 142 39.7 0.00095 0.265 0.571 sp P06451 ATP1 SPIOL Chloroplast ATP synthase ( 247) 138 38.8 0.0016 0.242 0.580
                                                                                                  231
sp|P08444|ATP6_SYNP6_ATP_synthase a chain (AT ( 261) 127 36.3 0.0095 0.263 0.557
                                                                                                  167
                                                             126 36.0 0.01 0.221 0.571
sp|P69371|ATPI_ATRBE Chloroplast ATP synthase ( 247)
sp|P06289|ATPI_MARPO Chloroplast ATP synthase ( 248)
                                                              126 36.0 0.011 0.240 0.575
                                                                                                  167
sp|P30391|ATPI_EUGGR Chloroplast ATP synthase ( 251) 123 35.4 0.017 0.257 0.579 214
sp|P19568|TLCA_RICPR ADP,ATP carrier protein ( 498) 122 35.0 0.043 0.243 0.579 152
sp|P24966|CYB_TAYTA Cytochrome b
sp P03892 NU2M BOVIN NADH-ubiquinone oxidored ( 347) 107 31.7 0.31
                                                                                   0.261 0.479
                                                     ( 379) 104 31.0 0.54
sp P68092 CYB_STEAT Cytochrome b
                                                                                   0.277 0.547 137
sp|P03891|NU2M HUMAN NADH-ubiquinone oxidored ( 347) 103 30.8 0.58
                                                                                   0.201 0.537
sp P00156 CYB_HUMAN Cytochrome b
                                                     (380) 102 30.5 0.74
                                                                                   0.268 0.585
sp|P15993|AROP_ECOLI Aromatic amino acid tr
                                                             103 30.7 0.78
                                                                                   0.234 0.622
sp P24965 CYB_TRANA Cytochrome b
sp P29631 CYB_POMTE Cytochrome b
                                                       379)
                                                             101 30.3 0.87
                                                                                   0.234 0.563
                                                                                                  158
                                                     (308)
                                                               99 29.9 0.95
                                                                                   0.274 0.584
                                                                                                  113
sp P24953 CYB_CAPHI Cytochrome b
                                                     (379)
                                                              99 29.8 1.2
                                                                                   0.236 0.564
                                                                                                140
```

>>sp|POAB98|ATP6_ECOLI ATP synthase a chain (ATPase protein 6) g (271 aa) s-w opt: 178 Z-score: 218.2 bits: 47.9 E(): 3.2e-06 Smith-Waterman score: 178; 23.3% identity (58.5% similar) in 236 aa overlap (8-222:45-264) human ${\tt MNENLFASFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQQ}$:...::: E coli NMTPQDYIGHHLNNLQLDLRTFSLVDPQNPPATFWTINIDSMFFSVVLGL---LFLVLFRSVAKKATSG-VPGKFQTAIE $\verb| human | WLIKLTSKQMMTMHNTKGRTWSLMLVSLIIFIATTNLLGLLP------HSF------TPTTQLSMNLAMAIPLWAG | Fig. 1. | Fig.$ ${\tt human} \quad {\tt TVIMGFRSKIKNALAHFLPQGTPTPL----IPMLVIIETISLLIQPMALAVRLTANITAGHLLMHLIGSATLAMSTINL}$ E coli -ILILFYSIKMKGIGGFTKELTLQPFNHWAFIPVNLILEGVSLLSKPVSLGLRLFGNMYAGELIFILIAGLLPWWSQWIL $\verb|human| | \verb|PSTLIIFTILILLTILEIAVALIQAYVFTLLVSLYLHDNT| \\$ 11 111. .::..: .:. .:: E coli NVPWAIFHILIIT------LQAFIFMVLTIVYLSMASEEH

Where do scoring matrices come from?

frequency of replacement in homologs

$$\lambda S = \log \left(\frac{q_{ij}}{p_i p_j} \right)$$

frequency of alignment by chance

- Scoring matrices can be designed for different evolutionary distances (less=shallow; more=deep)
- Deep matrices allow more substitution

Pam40					Pam2	250					
A R	N	D E	I	L	A	R	N	D	E	I	L
A 8					A 2						
R -9 1	2				R -2	6					
N -4 -	7 11				N 0	0	2				
D -4 -1	3	11			D 0	-1	2	4			
E -3 -1	-2	4 11			E 0	-1	1	3	4		
I -6 -	7 -7 -	10 -7	12		I -1	-2	-2	-2	-2	5	
L -8 -1	L - 9 -	16 -12	-1	10	L -2	- 3	-3	-4	- 3	2	6

```
Smith-Waterman score: 123; 25.7% identity (57.9% similar) in 214 aa overlap (21-222:50-243)
                                 20
                                        30
                    MNENLFASFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQQWLIKLTSKQMMTM
human
                                  {\tt Euglena~VNMFISGIFQIANVEVGQHFYWSILGFQIHGQVLINSWIVILIIGF-LSIYTTKNL--TLVPANKQIFIELVTEFITDI}
                  30
                         40
                                  50
                                          60
     HNTK-GRT----WSLMLVSLIIFIATTNLLG-LLPHSFT--PTTQL--SMNLAMAIPLWAGTVIMGFRSKI-KNALAHF
human
Euglena SKTQIGEKEYSKWVPYIGTMFLFIFVSNWSGALIPWKIIELPNGELGAPTNDINTTAGLAILTSLAYFYAGLNKKGLTYF
             100 110 120 130 140 150
            140
                   150
                          160
                                  170
                                         180
                                                190
    \verb|LPQGTPTPLIPMLVIIETISLLIQPMALAVRLTANITAGHLLMHLIGSATLAMSTINLPSTLIIFTILILLTILEIAVAL|
190
                               200
       170
              180
                                      210
     210
            220
    IQAYVFTLLVSLYLHDNT
human
      ::: .:. : . :.
Euglena IQALIFATLSGSYIGEAMEGHH
    230
           240
                                                                  26
```

```
Query: atp6_human.aa ATP synthase a chain - 226 aa
                  Library: 5190103 residues in 13351 sequences
                                              ( len) s-w bits E(13351) % id % sim alen
The best scores are:
sp|P00846|ATP6_HUMAN ATP synthase a chain (AT
                                                226)
                                                     1400 325.8 5.8e-90 1.000 1.000
sp|P00847|ATP6_BOVIN ATP synthase a chain (AT
                                                226) 1157 270.5 2.5e-73 0.779 0.951
                                                                                      226
                                              ( 226) 1118 261.7 1.2e-70 0.757 0.916
sp|P00848|ATP6 MOUSE ATP synthase a chain (AT
                                                                                      226
sp|P00849|ATP6_XENLA ATP synthase a chain (AT
                                                      745 176.8 4.0e-45 0.533 0.847
                                              (226)
                                                                                      229
sp P00851 ATP6_DROYA ATP synthase a chain (AT
                                                      473 115.0 1.7e-26 0.378 0.721
                                                224)
sp|P00854|ATP6 YEAST ATP synthase a chain pre
                                                2591
                                                      428 104.7 2.3e-23 0.353 0.694
                                                                                      232
sp|P00852|ATP6 EMENI ATP synthase a chain pre
                                                256)
                                                      365 90.4 4.8e-19 0.304 0.691
                                                                                      230
                                                           87.7 3.2e-18 0.313 0.650
sp|P14862|ATP6_COCHE ATP synthase a chain (AT
                                                257)
sp|P68526|ATP6_TRITI ATP synthase a chain (AT
                                                386)
                                                      309
                                                           77.6 5.1e-15 0.289 0.651
                                                                                      235
sp P05499 ATP6 TOBAC ATP synthase a chain (AT
                                                3951
                                                      309
                                                           77.6 5.2e-15 0.283 0.635
                                                                                      233
sp|P07925|ATP6_MAIZE ATP synthase a chain (AT
                                                           71.7 2.3e-13 0.311 0.667
                                                291)
sp|POAB98|ATP6_ECOLI ATP synthase a chain (AT
                                              (271)
                                                      178
                                                           47.9 3.2e-06 0.233 0.585
                                                247)
sp|POC2Y5|ATPI_ORYSA Chloroplast ATP synth (A (
                                                      144
                                                           40.1 0.00062 0.242 0.580
                                                                                      231
                                                           39.9 0.00072 0.250 0.586
sp|P06452|ATPI PEA Chloroplast ATP synthase a ( 247)
                                                      143
                                                                                      232
sp P27178 ATP6_SYNY3 ATP synthase a chain (AT ( 276)
                                                           39.7 0.00095 0.265 0.571
                                                      142
                                                                                      170
                                                247)
sp P06451 ATPI_SPIOL Chloroplast ATP synthase
                                                      138
                                                           38.8
                                                                 0.0016 0.242 0.580
                                                                                      231
sp|P08444|ATP6 SYNP6 ATP synthase a chain (AT ( 261)
                                                      127
                                                           36.3 0.0095 0.263 0.557
                                                                                      167
sp|P69371|ATPI ATRBE Chloroplast ATP synthase ( 247)
                                                      126
                                                           36.0
                                                                 0.01
                                                                        0.221 0.571
                                                                                      231
sp|P06289|ATPI_MARPO Chloroplast ATP synthase ( 248)
                                                      126
                                                           36.0
                                                                 0.011
                                                                        0.240 0.575
                                                                                      167
sp P30391 ATPI_EUGGR Chloroplast ATP synthase ( 251)
                                                      123
                                                           35.4
                                                                 0.017
                                                                        0.257 0.579
                                                                                      214
sp|P19568|TLCA RICPR ADP, ATP carrier protein ( 498)
                                                      122
                                                                 0.043 0.243 0.579
                                                           35.0
                                                379)
sp|P24966|CYB_TAYTA Cytochrome b
                                                           33.0
                                                                  0.13
                                                                         0.234 0.532
sp|P03892|NU2M BOVIN NADH-ubiquinone oxidored
                                              (347)
                                                      107
                                                           31.7
                                                                 0.31
                                                                         0.261 0.479
                                                                                      211
sp|P68092|CYB_STEAT Cytochrome b
                                                           31.0
                                                                         0.277 0.547
                                                347)
sp|P03891|NU2M_HUMAN NADH-ubiquinone oxidored
                                                           30.8
                                                                         0.201 0.537
                                                      103
                                                                  0.58
                                                                                      149
sp|P00156|CYB_HUMAN Cytochrome b
                                                380)
                                                      102
                                                           30.5
                                                                 0.74
                                                                         0.268 0.585
                                                                                      205
sp|P15993|AROP ECOLT Aromatic amino acid tr
                                                457)
                                                      103
                                                           30.7
                                                                 0.78
                                                                         0.234 0.622
                                                                                      111
sp|P24965|CYB_TRANA Cytochrome b
                                                379)
                                                      101
                                                           30.3
                                                                 0.87
                                                                         0.234 0.563
                                                                                      158
sp|P29631|CYB_POMTE Cytochrome b
                                                308)
                                                       99
                                                           29.9
                                                                 0.95
                                                                         0.274 0.584
                                                                                      113
sp|P24953|CYB CAPHI Cvtochrome b
                                              (379)
                                                       99
                                                           29.8
                                                                 1.2
                                                                         0.236 0.564
                                                                                      140
                                                                                          27
```

```
Query: atp6 ecoli.aa ATP synthase a - 271 aa
                       Library: 5190103 residues in 13351 sequences
The best scores are: ( len) s-w bits E(13351) %_id %_sim sp|POAB98|ATP6_ECOLI ATP synthase a chain (AT ( 271) 1774 416.8 3.e-117 1.000 1.000
                                                                                               271
                                                      247)
sp P06451 ATPI_SPIOL Chloroplast ATP synthase (
                                                            274
                                                                  70.4 5.8e-13 0.270 0.616
                                                                                                211
                                                      247)
 sp P69371 ATPI_ATRBE Chloroplast ATP synthase
                                                             271
                                                                  69.7 9.3e-13 0.270 0.607
                                                                                               211
                                                     261)
sp|P08444|ATP6 SYNP6 ATP synthase a chain (AT (
                                                             271
                                                                  69.7 9.9e-13 0.267 0.600
                                                                                               240
sp | P06452 | ATPI_PEA Chloroplast ATP synthase a (
sp | P30391 | ATPI_EUGGR Chloroplast ATP synthase (
                                                                  68.5 2.1e-12 0.274 0.614
68.3 2.5e-12 0.298 0.596
sp POC2Y5 ATPI_ORYSA Chloroplast ATP synthase
                                                                   67.2 5.4e-12 0.259 0.603
                                                                                                239
sp|P27178|ATP6 SYNY3 ATP synthase a chain (AT ( 276)
                                                             260
                                                                  67.1 6.1e-12 0.264 0.578
                                                                                               258
sp|P06289|ATPI MARPO Chloroplast ATP synthase ( 248)
                                                             250
                                                                  64.8 2.7e-11 0.261 0.621
                                                                                               211
sp|P07925|ATP6_MAIZE ATP synthase a chain (AT (
                                                                   56.7 8.7e-09 0.259 0.578
sp P68526 ATP6 TRITI ATP synthase a chain (AT (
                                                      386)
                                                             209
                                                                  55.3 3.1e-08 0.259 0.603
                                                                                               239
sp|P00854|ATP6 YEAST ATP synthase a chain pre ( 259)
                                                             204
                                                                  54.2 4.5e-08 0.235 0.578
                                                                                               277
sp P05499 ATP6 TOBAC ATP synthase a chain (AT (
                                                                   50.7 7.8e-07 0.220 0.582
                                                      395)
                                                             189
                                                                                                268
sp P00846 ATP6 HUMAN ATP synthase a chain (AT (
                                                                   48.2 2.5e-06 0.237 0.589
sp P00852 ATP6 EMENI ATP synthase a chain pre ( 256) sp P00849 ATP6 XENLA ATP synthase a chain (AT ( 226)
                                                             178
                                                                  48.2 2.8e-06 0.209 0.590
                                                                                               244
                                                                  47.1 5.5e-06 0.261 0.630
                                                             173
                                                                                                165
sp|P00847|ATP6_BOVIN ATP synthase a chain (AT ( 226)
                                                                  46.8 6.5e-06 0.233 0.581
                                                             172
sp P14862 ATP6_COCHE ATP synthase a chain (AT ( 257)
                                                             171
                                                                  46.6 8.7e-06 0.204 0.608
                                                                                               265
sp|P00848|ATP6 MOUSE ATP synthase a chain (AT ( 226)
                                                             166
                                                                  45.5 1.7e=05 0.259 0.617
                                                                                                193
sp|P00851|ATP6 DROYA ATP synthase a chain (AT ( 224)
                                                                  39.2 0.0013 0.225 0.549
                                                                                               253
                                                             139
sp|P24962|CYB_STELO Cytochrome b
                                                      379)
                                                             125
                                                                  35.9
                                                                         0.021
                                                                                 0.223 0.575
                                                                                                193
sp P09716 US17_HCMVA Hypothetical protein HVL ( 293)
                                                             109
                                                                                 0.260 0.565
                                                                  32.3
                                                                         0.21
                                                                                               131
sp P68092 CYB_STEAT Cytochrome b
                                                      379)
                                                             109
                                                                  32.2
                                                                         0.27
                                                                                 0.211 0.562
                                                                                                194
sp|P24960|CYB_ODOHE Cytochrome b
                                                      379)
                                                             104
                                                                  31.1
                                                                         0.61
                                                                                 0.210 0.555
                                                                                               200
sp P03887 NUIM BOVIN NADH-ubiquinone oxidored (
                                                      318)
                                                              98
                                                                  29.7
                                                                         1.3
                                                                                 0.287 0.545
                                                                                               167
sp|P24992|CYB_ANTAM Cytochrome b
                                                                                 0.192 0.565
                                                      379)
                                                                  29.9
                                                                         1.4
                                                                                               193
                                                                                                    28
```


Homology and Domains -Histone deacetylase PCAF The best scores are: s-w bits E(362341) %_id %_sim alen PCAF HUMAN Histone acetyltransferase PCAF; (832) 4876 1092 0 1.000 1.000 PCAF_MOUSE Histone acetyltransferase PCAF; (813) 4507 1010 0 0.716 0.864 GCNL2_HUMAN General control of amino acid synthesis protein 5-1 (837) 3535 793. (439) 1049 240. 5.2e-62 0.469 0.743 GCN5 YEAST Histone acetyltransferase GCN5 354 GCN5_ARATH Histone acetyltransferase GCN5; AtGCN5 (568) 956 219. 1.2e-55 0.435 0.733 BPTF_HUMAN Nucleosome-remodeling factor subunit BPTF NU301_DROME Nucleosome-remodeling factor subunit NURF301 (2669) 359 86.2 9.3e-15 0.511 0.787 CECR2 HUMAN Cat eye syndrome critical region protein 2 (1484) 306 74.6 1.6e-11 0.371 0.771 105 BRD4_HUMAN Bromodomain-containing protein 4; HUNK1 protein (1362) 288 70.6 2.3e-10 0.379 0.681 BRDT_MACFA Bromodomain testis-specific protein (947) 270 66.7 2.3e-09 0.353 0.690 FSH DROME Homeotic protein female sterile; Fragile-chorion memb (2038) 276 67.8 2.4e-09 0.341 0.651 129 BRDT HUMAN Bromodomain testis-specific protein; RING3-like prot (947) 266 65.9 4.3e-09 0.345 0.690 116 Y0777_DICDI Bromodomain-containing protein DDB_G0280777 (1823) 260 64.3 2.5e-08 0.385 0.725 BRDT_MOUSE Bromodomain testis-specific protein; RING3-like prot (956) 247 61.6 8.1e-08 0.328 0.647 BAZZB_HUMAN Bromodomain adjacent to zinc finger domain protein (1972) TAF1_DROME Transcription initiation factor TFIID subunit 1; Tra (2129) 247 61.3 2e=07 0.343 0.695 105 230 57.5 3.1e-06 0.349 0.689 82_SCHPO Bromodomain-containing protein C631.02 217 55.0 5.9e-06 0.320 0.587 BRD9_XENLA Bromodomain-containing protein 9 527) 214 54.5 6.2e-06 0.292 0.579 GTE6 ARATH Transcription factor GTE6; Protein GENERAL TRANSCRIP (369) 201 51.7 2.9e-05 0.290 0.601 183 BAZIB_MOUSE Bromodomain adjacent to zinc finger domain protein (1479) 212 53.7 3.1e-05 0.302 0.583 K2_SCHPO Bromodomain-containing protein C1450.02 (578) 204 52.2 3.3e-05 0.310 0.628 TAF1_HUMAN Transcription initiation factor TFIID subunit 1; Tra (1872) 212 53.6 4.2e-05 0.339 0.678 115

BAZIB_HUMAN Bromodomain adjacent to zinc finger domain protein (1483) 209 53.0 5e-05 0.397 0.705 TIF1A_HUMAN Transcription intermediary factor 1-alpha; TIF1-al (1050) 206 52.5 5.1e-05 0.384 0.698

(638)

200 51.3 6.9e-05 0.304 0.607

30

BDF2_YEAST Bromodomain-containing factor 2

Protein Evolution and Sequence Similarity

- What is Homology and how do we recognize it?
- How do we measure sequence similarity alignments and scoring matrices?
- DNA vs protein comparison
- · Practical Similarity Searching
- Similarity scoring matrices
- When are we certain that an alignment is significant - similarity score statistics?
- When to trust similarity statistics?
- Improving sensitivity with PSI-BLAST

DNA vs protein sequence comparison

The best scores	are:	DNA E(188,018)	tfastx3 E(187,524)	prot. E(331,956)
DMGST	D.melanogaster GST1-1	1.3e-164	4.1e-109	1.0e-109
MDGST1	M.domestica GST-1 gene	2e-77	3.0e-95	1.9e-76
LUCGLTR	Lucilia cuprina GST	1.5e-72	5.2e-91	3.3e-73
MDGST2A	M.domesticus GST-2 mRNA	9.3e-53	1.4e-77	1.6e-62
MDNF1	M.domestica nf1 gene. 10	4.6e-51	2.8e-77	2.2e-62
MDNF6	M.domestica nf6 gene. 10	2.8e-51	4.2e-77	3.1e-62
MDNF7	M.domestica nf7 gene. 10	6.1e-47	9.2e-77	6.7e-62
AGGST15	A.gambiae GST mRNA	3.1e-58	4.2e-76	4.3e-61
CVU87958	Culicoides GST	1.8e-41	4.0e-73	3.6e-58
AGG3GST11	A.gambiae GST1-1 mRNA	1.5e-46	2.8e-55	1.1e-43
BMO6502	Bombyx mori GST mRNA	1.1e-23	8.8e-50	5.7e-40
AGSUGST12	A.gambiae GST1-1 gene	2.3e-16	4.5e-46	5.1e-37
MOTGLUSTRA	Manduca sexta GST	5.7e-07	2.5e-30	8.0e-25
RLGSTARGN	R.legominosarum gstA	0.0029	3.2e-13	1.4e-10
HUMGSTT2A	H. sapiens GSTT2	0.32	3.3e-10	2.0e-09
HSGSTT1	H.sapiens GSTT1 mRNA	7.2	8.4e-13	3.6e-10
ECAE000319	E. coli hypothet. prot.	_	4.7e-10	1.1e-09
MYMDCMA	Methyl. dichlorometh. DH	_	1.1e-09	6.9e-07
BCU19883	Burkholderia maleylacetate rec	d.—	1.2e-09	1.1e-08
NFU43126	Naegleria fowleri GST	_	3.2e-07	0.0056
SP505GST	Sphingomonas paucim	_	1.8e-06	0.0002
EN1838	H. sapiens maleylaceto. iso.	_	2.1e-06	5.9e-06
HSU86529	Human GSTZ1	_	3.0e-06	8.0e-06
SYCCPNC	Synechocystis GST	_	1.2e-05	9.5e-06
HSEF1GMR	H.sapiens EF1g mRNA	_	9.0e-05	0.00065

33

Sequence Similarity - Conclusions

- <u>Homologous</u> sequences share a common ancestor, but most sequences are <u>non-homologous</u>
- Always compare Protein Sequences
- Sequence Homology can be reliably inferred from statistically significant similarity (non-homology cannot from non-similarity)
- Homologous proteins share common structures, but not necessarily common functions
- Sequence statistical significance estimates are accurate (verify this yourself)10⁻⁶ < E() < 10⁻³ is statistically significant
- Scoring matrices set evolutionary look back horizons not every discovery is distant
- PSI-BLAST can be more sensitive, but with lower statistical accuracy

Similarity Searching II

- 1. What question to ask?
- 2. What program to use?
- 3. What database to search?
- 4. How to avoid mistakes (what to look out for)
- 5. When to do something different
- 6. PSI-BLAST the most sensitive method

35

1. What question to ask?

- Is there an homologous protein (a protein with a similar structure)?
- Does that homologous protein have a similar function?
- Does XXX genome have YYY (kinase, GPCR, ...)?

Questions not to ask:

- Does this DNA sequence have a similar regulatory element (too short – never significant)?
- Does (non-significant) protein have a similar function/modification/antigenic site?

2. What program to run?

- · What is your query sequence?
 - protein BLAST (NCBI), SSEARCH (EBI)
 - protein coding DNA (EST) –
 BLASTX (NCBI), FASTX (EBI)
 - DNA (structural RNA, repeat family) BLASTN (NCBI), FASTA (EBI)
- Does XXX genome have YYY (protein)?
 - TBLASTX YYY vs XXX genome
 - TFASTX YYY vs XXX genome
- Does my protein contain repeated domains?
 - LALIGN (UVa http://fasta.bioch.virginia.edu)

3. What database to search?

- Search the smallest comprehensive database likely to contain your protein
 - vertebrates human proteins (40,000)
 - fungi S. cerevisiae (6,000)
 - bacteria E. coli, gram positive, etc. (<100,000)
- Search a richly annotated protein set (SwissProt, 450,000)
- Always search NR (~10 million) LAST
- Never Search "GenBank" (DNA)

43

Extreme value distribution

$$S' = \lambda S_{raw} - ln K m n$$

 $S_{bit} = (\lambda S_{raw} - ln K)/ln(2)$
 $P(S'>x) = 1 - exp(-e^{-x})$
 $P(S_{bit} > x) = 1 - exp(-mn2^{-x})$
 $E(S'>x ID) = P D$

Statistical Significance and Database Size

atp6_human vs E. coli >>reflNP_290377.1I F0F1 ATP synthase subunit [E. ecoli] (271 aa) s-w opt: 178 Z-score: 188.8 bits: 42.4 E(): 4.4e-05 Smith-Waterman score: 178; 23.3% identity (58.5% similar) in 236 aa overlap (8-222:45-264)

Database	Entries	Length	E()	hits	time (s)
E. coli	4,237	1.3 E 06	1.5 E-06*	1	< 0.5
S. cerevisiae	5,866	2.9 E 06	2.1 E-06	1	< 0.5
Human	38,114	18.4 E 06	1.2 E-05	1	1.1
Swiss Prot	4.3 E 05	1.5 E 08	2.4 E-05*	393	7.1
Refseq NP only	7.1 E 05	2.6 E 08	0.00017*	504	10.8
Refseq	7.3 E 06	2.5 E 09	0.0017*	2767	124
NR	9.9 E 06	3.4 E 09	0.0032*	7773	151

45

NCBI - selecting sequences with Entrez

Similarity Searching II

- 1. What question to ask?
- 2. What program to use?
- 3. What database to search?
- 4. How to avoid mistakes (what to look out for)
- 5. When to do something different
- 6. PSI-BLAST the most sensitive method

47

Inferring Homology from Statistical Significance

- Real UNRELATED sequences have similarity scores that are indistinguishable from RANDOM sequences
- If a similarity is NOT RANDOM, then it must be NOT UNRELATED
- Therefore, NOT RANDOM (statistically significant) similarity must reflect RELATED sequences

Smith-Waterman (ssearch)

```
The best scores are:
                                     s-w bits E(115640)
                                                        % id alen
GTM1 MOUSE Glutathione S-trans ( 218) 1497 363.5 2e-100
                                                        1.000
GTM2_CHICK Glutathione S-trans ( 220) 958 234.9 1.1e-61 0.619
                                                               218
GTP_HUMAN Glutathione S-trans ( 210)
                                     356 91.2 1.8e-18
                                                        0.308
                                                               211
                              (199)
PGD2 MOUSE Glutathione-req.
                                     262
                                          68.8 9.7e-12
                                                       0.319
                                                               204
                                          60.9 2.6e-09
GTA1_MOUSE Glutathione S-trans ( 223)
                                                        0.284
SC1 OCTDO S-crystallin 1 OL1 (215)
                                     228
                                          60.7 3.0e-09
                                                       0.269
                                                               219
GTS_MUSDO Glutathione S-trans ( 241) 228
                                          60.6 3.4e-09 0.264
                                                               201
GTS1_CAEEL Prob. Glut. S-trans ( 210)
                                          58.8 1.1e-08 0.284
                                     220
                                                               225
GTS_OMMSL Glutathione S-trans ( 203) 196
                                          53.0 5.5e-07 0.258
                                                               209
GTH3_ARATH Glutathione S-trans ( 215) 142
                                          40.1 0.0045 0.310
GTT2_HUMAN Glutathione S-trans ( 244) 132
                                          37.7
                                                 0.027
GT24 DROME Glutathione S-trans ( 216) 131
                                          37.5
                                                 0.028 0.255
                                                               153
YFCG ECOLI Hypothetical GST
                              (215) 112
                                          33.0
                                                 0.64
                                                        0.235
                                                               187
YJY1 YEAST hypothetical 30.5
                              (261)
                                     110
                                          32.4
                                                *1.1*
                                                        0.248
                                                               149
DCMA_METS1 dichloromethane DM ( 267) 103
                                          30.8
                                                3.7
                                                        0.214
                                                               210
YA42_HAEIN Hypothetical prot. (617)
                                      108
                                           31.7
                                                *4.6*
                                                        0.283
                                                               120
GTO1 RAT Glutathione trans
                              (241) 100
                                                        0.234
                                          30.1
                                                 5.4
                                                               158
DP41_BACHD DNA polymerase I
                                                *5.4*
                              (413)
                                     104
                                          30.8
                                                        0.234
                                                               184
GTH1_WHEAT Glutathione S-trans ( 229)
                                                 7.0
                                                               171
                                      98
                                          29.6
                                                        0.246
LGUL_SOYBN Lactoylglutathione ( 219)
                                       97
                                          29.4
                                                 7.8
                                                        0.200 190
```

Highest scoring unrelated sequence E() ~ 1.0

49

Unrelated ≠ Random (low complexity)

```
Search with complete grou_drome:
The best scores are:
                                                          opt bits E(14548)
RGHUB1 GTP-binding regulatory protein beta-1 chai ( 341)
                                                               46.6
                                                                    3.5e-05
RGBOB1 GTP-binding regulatory protein beta-1 chai (341)
                                                          237
                                                               46.6
                                                                     3.5e-05
RGHUB3 GTP-binding regulatory protein beta-3 chai (341)
                                                          233 46.0 5.2e-05
RGMSB4 GTP-binding regulatory protein beta-4 chai ( 341)
                                                          232 45.8 5.7e-05
PIHUPF salivary proline-rich glycoprotein precurs
                                                  (252)
                                                          224
                                                              44.5 *0.00010*
RGFFB GTP-binding regulatory protein beta chain
                                                  (347)
                                                          223 44.5 0.00014
PIRT3 acidic proline-rich protein precursor - rat ( 207)
                                                          199
                                                               40.8 *0.0011*
PIHUB6 salivary proline-rich protein precursor PR ( 393)
                                                              41.6 *0.0012*
CGBO2S collagen alpha 2(I) chain - bovine (fragme ( 403)
                                                          195 40.5 *0.0027*
WMBEW6 capsid protein - human herpesvirus 1 (stra ( 636) 192 40.2 *0.0051*
Search with seg-ed grou_drome: (low complexity regions removed)
The best scores are:
                                                          opt bits E(14548)
```

```
RGHUB3 GTP-binding regulatory protein beta-3 chai
                                                  (341)
                                                         233 56.5 3.6e-08
RGMSB4 GTP-binding regulatory protein beta-4 chai
                                                  (341)
                                                              56.3 4.1e-08
                                                         232
RGHUB2 GTP-binding regulatory protein beta-2 chai
                                                              55.5 7.2e-08
                                                  (341)
                                                         228
RGBOB1 GTP-binding regulatory protein beta-1 chai
                                                  (341)
                                                         225
                                                              54.9 1.1e-07
RGFFB GTP-binding regulatory protein beta chain
                                                  (347)
                                                         223
                                                              54.5 1.5e-07
BVBYMS MSI1 protein - yeast (Saccharomyces cerevi
                                                  (423)
                                                         135
                                                              37.0 *0.033*
ERHUAH coatomer complex alpha chain homolog - hum
                                                  (1225)
                                                         134
                                                              37.1 *0.088*
A28468 chromogranin A precursor - human
                                                  (458)
                                                         122
                                                              34.4 *0.21*
RGOOBE GTP-binding regulatory protein beta chain
                                                  ( 342) 120 33.9 0.22
```

pseg removes low-complexity regions

>gi|17380405|sp|P16371|GROU_DROME Groucho protein (Enhancer of split M9/10)

1-8 MYPSPVRH paaggpppqgp 9-19

20-131

 ${\tt IKFTIADTLERIKEEFNFLQAQYHSIKLEC}$ EKLSNEKTEMORHYVMYYEMSYGLNVEMHK QTEIAKRLNTLINQLLPFLQADHQQQVLQA VERAKQVTMQELNLIIGQQIHA

qqvpggppqpmg 132-143

144-281

ALNPFGALGATMGLPHGPQGLLNKPPEHHR PDIKPTGLEGPAAAEERLRNSVSPADREKY RTRSPLDIENDSKRRKDEKLOEDEGEKSDO DLVVDVANEMESHSPRPNGEHVSMEVRDRE

SLNGERLEKPSSSGIKQE

282-297 rppsrsgssssrstps

311-330

298-310 LKTKDMEKPGTPG

akartptpnaaapapgvnpk 331-351 qmmpqgpppagypgapyqrpa

352-719

DPYQRPPSDPAYGRPPPMPYDPHAHVRTNG TPHPSALTGGKPAYSFHMNGEGSLOPVPFP PDALVGVGIPRHAROINTLSHGEVVCAVTI SNPTKYVYTGGKGCVKVWDISQPGNKNPVS OLDCLORDNYIRSVKLLPDGRTLIVGGEAS NI.STWDI.ASPTPRTKAELTSAAPACYALAT SPDSKVCFSCCSDGNIAVWDLHNEILVRQF QGHTDGASCIDISPDGSRLWTGGLDNTVRS WDLREGROLOOHDFSSOIFSLGYCPTGDWL AVGMENSHVEVLHASKPDKYOLHLHESCVL SLRFAACGKWFVSTGKDNLLNAWRTPYGAS IFQSKETSSVLSCDISTDDKYIVTGSGDKK ATVYEVIY

51

Statistical estimates from random shuffles

- BLAST estimates statistical significance from simulations of "normal" (average composition) proteins
- FASTA estimates statistical significance from the distribution of similarity scores obtained during the database search (selects 60,000 unrelated sequence scores from the database of *real* proteins)
- What if the sequences are different from most proteins, but similar to each other, e.g. membrane proteins?
- PRSS estimates statistical significance by producing hundreds of shuffled (random) sequences with the same length and composition, and then estimates λ and K from comparisons against those proteins

prss - uniform and window shuffle

```
>LWEC6 H+-transporting ATP synthase (EC 3.6.1.34) protein 6 - Escherichia coli
MASENMTPOD YIGHHLNNLQ LDLRTFSLVD PQNPPATFWT INIDSMFFSV VLGLLFLVLF
 RSVAKKATSG VPGKFQTAIE LVIGFVNGSV KDMYHGKSKL IAPLALTIFV WVFLMNLMDL
 LPIDELPYTA EHVLGLPALR VVPSADVNVT LSMALGVFIL ILFYSIKMKG IGGFTKELTL
 OPFNHWAFIP VNILLEGVSL LSKPVSLGLR LFGNMYAGEL IFILIAGLLP WWSQWILNVP
 WAIFHILIT LOAFIEMVLT IVYLSMASEE H
 >1wec6 0 shuffled
 GMPISVLLFK PPEVLLVFLL SVMGTNFPAW GGFIMKGFKI VSFVGWVRFV AVAGHLALYK
 ITRDVNIVKS AVFGSALLHP LLLQLSELNL VFVNLLNIKI RTAYVHGMTL LSHIPLFPAS
 GEGVFSDMLM IITWNSASVL SGLDMFANIA LLGNPLLMTN IVIILQRKFI ATTKFSLADI
 HLHKQYSWDG MMSHTLIIFS ALELWVQNGD IFIPLNEYIL PFTLYVPNWL ITQALVVALV
 ELPGQQIDAE PLFLLPIPFS EKTWYGDIMF L
PRSS34 - 1000 shuffles; uniform shuffle
 unshuffled s-w score: 178; bits(s=178|n_1=271): 34.8 p(178) < 2.005e-06
For 10000 sequences, a score >= 178 is expected 0.02005 times
 >lwec6 0 shuffled window: 10
EDSMANTMPO HONILGYHLN DLRTSDFVLL FTQAPWPTPN SMNIDIVFSF VLLVLLFFGL
 SRGAVKATKS EQVTGIKFAP VVSGVILGFN HDKGMSLYKK VLPIIFLAAT DWLMNFVLLM
 IIDLYLLAPP ERVGHPLLAL APNVVVSVDT MLFLIGSALV IFSLMKGIKY TTIFGLEKGL
 OAWNFFPHIP NLSVEVGLLI GLPVRSSLKL MFLELAGNGY PFGILILILA SLINVWPWQW
 IAIIWTIFHL VQMTFFLAIL VSESELMIYA H
PRSS34 - 1000 shuffles; window shuffle, window size: 20
unshuffled s-w score: 178; bits(s=178|n_1=271): 34.5 p(178) < 2.601e-06
For 10000 sequences, a score >= 178 is expected 0.02602 times
                                                                                   53
```

Similarity Searching II

- 1. What question to ask?
- 2. What program to use?
- 3. What database to search?
- 4. How to avoid mistakes (what to look out for)
- 5. When to do something different (changing scoring matrices)
- 6. PSI-BLAST the most sensitive method

Local alignments - calmodulin

```
mchu
mchu
     MKDTDSEEEI---REAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDG
                      100 110
     NGTIDFPEFLTMMARK
mchu
mchu
     DGQVNYEEFVQMMTAK
        140
 34.3% identity in 105 aa overlap (11-111:47-147); score: 187 E(10000): 6.7e-08 20 30 40 50 60 chu AEFKEAFSLFDKDGDGTITTKELGTVM-RSLGQNPTEAELQDMINEVDADGNGTIDFPEF
mchu
     80
100
                   70
90
     ---LTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMT
     mchu
                       130
            120
 34.2% identity in 38 aa overlap (1-37:113-146); score: 68 E(10000): 10 20 30
mchu
     MADQLTEEQIAEF-KEAFSLFDKDGDGTITTKELGTVM
     mchu
         120
                   130
                                                              55
```

Repeated domains with local alignments

More about scoring matrices ...

PAM series:

- Evolutionary model extrapolated from PAM1
- PAM20: 20% change (mammals)
- PAM250: 250% change (<20% identity)
- · Gap penalties should vary
- shallow matrices (PAM10-40) for short sequences and short distances

BLOSUM series

- Empirically determined, no extrapolation (no model)
- BLOSUM45-50 distant (1/3 bits)
- BLOSUM80 -very highly conserved (not small change), high info/position
- BLOSUM62 1/2 bits

Where do scoring matrices come from?

Pam40		Pam250	
A R	N D E	I L A R N	D E I L
A 8		A 2	
R -9 12		R -2 6	
N - 4 - 7	11	N 0 0 2	
D -4 -13	3 11	D 0 -1 2	4
E -3 -11	- 2 4 11	E 0 -1 1	3 4
I -6 -7	-7 -10 -7	12 I -1 -2 -2	-2 -2 5
L - 8 - 11	-9 -16 -12	-1 10 L -2 -3 -3	-4 -3 2 6

 q_{ij} : replacement frequency at PAM40, 250

 $p_R = 0.051$

 $q_{R:N (40)} = 0.000435$ $q_{R:N (250)} = 0.002193$

 $p_N = 0.043$

 $\lambda_2 S_{ij} = \lg_2 (q_{ij}/p_ip_j) \quad \lambda_e S_{ij} = \ln(q_{ij}/p_ip_j) \quad p_B p_N = 0.002193$

 $\lambda_2 S_{R:N(40)} = \lg_2 (0.000435/0.00219) = -2.333$

 $\lambda_2 = 1/3; \; S_{R:N(~40)} = -2.333/\lambda_2 = -7$

 $\lambda S_{R:N(250)} = Ig2 (0.002193/0.002193) = 0$

59

PAM matrices and alignment length

Scoring Matrices - Summary

- PAM and BLOSUM matrices greatly improve the sensitivity of protein sequence comparison – low identity with significant similarity
- PAM matrices have an evolutionary model lower number, less divergence – lower=closer; higher=more distant
- BLOSUM matrices are sampled from conserved regions at different average identity – higher=more conservation
- · Short alignments require shallow matrices
- Shallow matrices set maximum look-back time

Similarity Searching II

- 1. What question to ask?
- 2. What program to use?
- 3. What database to search?
- 4. How to avoid mistakes (what to look out for)
- 5. When to do something different
- 6. PSI-BLAST the most sensitive method

ATP synthase - matrices, gaps, algorithms

Matrix:	BLOSUM50	BLOSUM62	BLASTP
Gap open/extend	-10/-2	-11/-1	-11/-1
The best scores are:	bits E(13351)	bits E(13351)	bits E()
ATP6_HUMAN ATP synthase a chai	297.7 1.7e-81	373.6 2.4e-104	296 3e-81
ATP6_BOVIN ATP synthase a chai	252.4 7.2e-68	310.7 2.0e-85	253 2e-68
ATP6_MOUSE ATP synthase a chai	246.4 4.5e-66	302.9 4.4e-83	245 5e-66
ATP6_XENLA ATP synthase a chai	111.9 1.4e-25	125.9 8.7e-30	142 9e-35
ATP6_YEAST ATP synthase a ch	78.7 1.6e-15	90.1 5.7e-19	93 5e-20
ATP6_EMENI ATP synthase a chai	66.3 8.4e-12		75 2e-14
ATP6_DROYA ATP synthase a chai	65.6 1.2e-11	75.4 1.4e-14	
ATP6_COCHE ATP synthase a cha	53.6 5.5e-08	60.6 4.6e-10	75 1e-14
ATP6_ECOLI ATP synthase a ch		49.1 1.4e-06	42 1e-04
ATP6_TRITI ATP synthase a ch	45.0 3.3e-05	50.7 6.5e-07	83 5e-17
ATP6_TOBAC ATP synthase a chai	40.4 0.00084	47.0 8.6e-06	80 3e-16
ATP6_MAIZE ATP synthase a chai	39.6 0.001	44.9 2.6e-05	
ATPI_PEA Chloroplast ATP syn	35.8 0.013		
ATPI_SPIOL Chloroplast ATP syn	35.5 0.015		
ATPI_ATRBE Chloroplast ATP s	34.0 0.044	36.3 0.0086	
ATPI_MARPO Chloroplast ATP syn	33.2 0.075		
HBA_ODOVI Hemoglobin subunit a		31.9 0.11	
*AROP_ECOLI Aromatic amino ac	32.1 0.31	31.4 0.5 *	
ATPI_EUGGR Chloroplast ATP syn	31.1 0.32	32.2 0.15	
ATP6_SYNP6 ATP synthase a chai	31.1 0.34	31.8 0.21	
TLCA_RICPR ADP,ATP carrier pro	31.5 0.49	29.7 1.7	
ATP6_SYNY3 ATP synthase a chai	30.6 0.51	31.8 0.22	28 1.9
ATPI_ORYSA Chloroplast ATP	30.1 0.65	32.2 0.15	
GLUC_MYOSC Glucagon precursor	28.7 0.65	34.4 0.013	
VP6_BPPH6 Protein P6	29.1 0.85	28.6 1.3	
GLUC_LEPSP Glucagon precursor	27.7 1.	32.7 0.033	
ADH1_MOUSE Alcohol dehydrogena	29.8 1.2	34.4 0.013	

67

Metazoan ATP Synthases

```
CLUSTAL W (1.81) multiple sequence alignment
```

```
ATP6_BOVIN MNENLFTSFITPVILGLPLVTLIVLFPSLLF--PTSNRLVSNRFVTLQQWMLQLVSKQMMSIHNSKGQTWT-LML ATP6 MOUSE MNENLFASFITPTMMGFPIVVAIIMFPSILF--PSSKRLINNRLHSFQHWLVKLIIKQMMLIHTPKGRTWT-LMI
ATP6_MOUSE
ATP6_HUMAN
                               MNENLFASFIAPTILGLPAAVLIILFPPLLI--PTSKYLINNRLITTQQWLIKLTSKQMMTMHNTKGRTWS-LML
 ATP6_XENLA
                                {\tt MNLSFFQFMSPVILGIPLIAIAMLDPFTLISWPIQSNGFNNRLITLQSWFLHNFTTIFYQLTSP-GHKWA-LLL}
ATP6_DROYA
                               {\tt MMTNLFSVFDPSAIFNLSLNWLSTFLGLLMI--PSIYWLMPSRYNIFWNSILLTLHKEFKTLLGPSGHNGSTFIF}
                                                   * ...::.:.
                                                                                                              :: *
                                                                                                                                                                      ::
ATP6_BOVIN
                                {\tt MSLILFIGSTNLLGLLPHSFTPTTQLSMNLGMAIPLWAGAVITGFRNKTKASLAHFLPQGTPTPLIPMLVIIETI}
ATP6 MOUSE
                                VSLIMFIGSTNLLGLLPHTFTPTTOLSMNLSMAIPLWAGAVITGFRHKLKSSLAHFLPOGTPISLIPMLIIIETI
ATP6_HUMAN
                                VSLIIFIATTNLLGLLPHSFTPTTQLSMNLAMAIPLWAGTVIMGFRSKIKNALAHFLPQGTPTPLIPMLVIIETI
                                TSLMLLLMSLNLLGLLPYTFTPTTQLSLNMGLAVPLWLATVIMASKP-TNYALGHLLPEGTPTPLIPVLIIIETI
ATP6 XENLA
ATP6_DROYA
                                {\tt ISLFSLILFNNFMGLFPYIFTSTSHLTLTLSLALPLWLCFMLYGWINHTQHMFAHLVPQGTPAILMPFMVCIETI}
                                                                                                                                           :: .
                                                           *::**:*: **.*::*::.::*:**
                                                                                                                                                                          :.*::*:**
ATP6_BOVIN
                                {\tt SLFIQPMALAVRLTANITAGHLLIHLIGGATLALMSISTTTALITFTILILLTILEFAVAMIQAYVFTLLVSLYLHDNT}
ATP6_MOUSE
                               {\tt SLFIQPMALAVRLTANITAGHLLMHLIGGATLVLMNISPPTATITFIILLLLILLEFAVALIQAYVFTLLVSLYLHDNT\\ {\tt SLLIQPMALAVRLTANITAGHLLMHLIGSATLAMSTINLPSTLIIFTILLLLTILLEIAVALIQAYVFTLLVSLYLHDNT\\ {\tt SLRIQPMALAVRLTANITAGHLLMHLIGSATLAMSTINLPSTLIIFTILLLTILLEIAVALIQAYVFTLLVSLYLHDNT\\ {\tt SLRIQPMALAVRLTANITAGHLMHLIGSATLAMSTINLPSTLIIFTILLLTILLEIAVALIQAYVFTLLVSLYLHDNT\\ {\tt SRRIQPMALAVRLTANITAGHLMHLIGSATLAMSTINLPSTLIIFTILLLTILLEIAVALIQAYVFTLLVSLYLHDNT\\ {\tt SRRIQPMALAVRLTANITAGHLMHLIGSATLAMSTINLPSTLIIFTILLLTILLEIAVALIQAYVFTLLVSLYLHDNT\\ {\tt SRRIQPMALAVRLTANITAGHLMHLIGSATLAMSTINLPSTLIIFTILLLTILLEIAVALIQAYVFTLLVSLYLHDNT\\ {\tt SRRIQPMALAVRLTANITAGHLMHLIGSATLAMSTINLPSTLIIFTILLLTILLEIAVALIQAYVFTLLVSLYLHDNT\\ {\tt SRRIQPMALAVRLTANITAGHLMHLIGSATLAMSTINLPSTLIIFTILLILLTILLEIAVALIQAYVFTLLVSLYLHDNT\\ {\tt SRRIQPMALAVRLTANITAGHLMHLIGSATLAMSTINLPSTLIIFTILLILLTILLEIAVALIQAYVFTLLVSLYLHDNT\\ {\tt SRRIQPMALAVRLTANITAGHLMHLIGSATLAMSTINLPSTLIIFTILLILLTILLEIAVALIQAYVFTLLVSLYLHDNT\\ {\tt SRRIQPMALAVRLTANITAGHLMHLIGSATLAMSTINLPSTLIIFTILLILLTILLITAGHLMHLIGSATLAMSTINLPSTLIIFTILLITAGHLMHLIGSATLAMSTINLPSTLIIFTILLITAGHLMHLIGSATLAMSTINLPSTLIIFTILLITAGHLMHLIGSATLAMSTINLPSTLIIFTILLITAGHLMHLIGSATLAMSTINLPSTLIIFTILLTILLTAGHLMHLIGSATLAMSTINLPSTLIIFTILLTAGHLMHLIGSATLAMSTINLPSTLIIFTILLTAGHLMHLIGSATLAMSTINLPSTLIIFTILLTAGHLMHLIGSATLAMSTINLPSTLIIFTILLTAGHLMHLIGSATLAMSTINLPSTLIIFTILLTAGHLMHLIGSATLAMSTINLPSTLIIFTILLTAGHLMHLIGSATLAMSTINLPSTLIIFTILLTAGHLMHLIGSATLAMSTINLPSTLIIFTILLTAGHLMHLIGSATLAMSTINLPSTLIIFTILLTAGHLMHLIGSATLAMSTINLPSTLIIFTILLTAGHLMHLIGGATLAMSTINLPSTLIIFTILLTAGHLMHLIGGATLAMSTINLPSTLIIFTILLTAGHLMHLIGGATLAMSTINLPSTLIIFTILLTAGHLMHLIGGATLAMSTINLPSTLITAGHLMHLIGGATLAMSTINLPSTLITAGHLMHLIGGATLAMSTINLPSTLITAGHLMHLIGGATLAMSTINLPSTLITAGHLMHLIGGATLAMSTINLPSTLITAGHLMHLIGGATLAMSTINLPSTLITAGHLMHLIGGATLAMSTINLPSTLITAGHLMHLIGGATLAMSTINLPSTLITAGHLMHLIGGATLAMSTINLPSTLITAGHLMHLIGGATLAMSTINLPSTLITAGHLMHLIGGATLAMSTINLPSTLAMSTINLPSTLITAGHLMHLIGGATLAMSTINLPSTLITAGHLMHLIGGATLAMSTINLPSTLITAGHLMHLIGGATLAMSTINLPSTLITAGHLMHLIGGATLAMSTINLPSTLITAGHLMHLIGGATLAMSTINLPSTLITAGHLMHLIGGATLAMSTINLPSTLITAGHLMHLIGGATLAMSTINLPST
ATP6_HUMAN
ATP6_XENLA
ATP6_DROYA
                               {\tt SLFIRPLALGVRLTANLTAGHLLIQLIATAAFVLLSIMPTVAILTSIVLFLLTLLEIAVAMIQAYVFVLLLSLYLQENV}
                               \verb|SNIIRPGTLAVRLTANMIAGHLLLTLLGNTGPSMSYLLVTFLLVAQIALLVL--- ESAVTMIQSYVFAVLSTLYSSEVN|
                                 * :*:* :*.*****: ****: *:. :
                                                                                                                       : : .
                                                                                                                                                                *::*
                                                                                                                                                                                  * **::**:**:* :**
```

PSI-BI	AST	ATP6	HUMAN	- 4	iterations
1 01 01	., 10 1	,,,,	I I CIVII VI V		itorations

Results from round:	(1)		(2		(3		(4)	_
	Score	E	Score	E	Score	E	Score	E
	(bits) 296	Value 3e-81	(bits) 257	le-69	(bits) 241	2e-62	(bits) 222	5e-59
TP6_HUMAN ATP synthase a chain (ATPase protein 6)	253	2e-68	257	1e-69 2e-69	239	2e-62 8e-65	230	2e-61
TP6_BOVIN ATP synthase a chain (ATPase protein 6)								
TP6_MOUSE ATP synthase a chain (ATPase protein 6)	245	5e-66	247	3e-66	234	4e-64	225	6e-60
TP6_XENLA ATP synthase a chain (ATPase protein 6)	142	9e-35	227	1e-60	189	3e-49	177	2e-45
TP6_DROYA ATP synthase a chain (ATPase protein 6)	101	2e-22	206	3e-54	209	5e-55	196	4e-51
2)	0.0	F - 00	0.7	2 . 21	100	4 - 50	101	0 - 40
TP6_YEAST ATP synthase a chain precursor (ATPase prot	93	5e-20	97	3e-21	199	4e-52	191	2e-49
TP6_TRITI ATP synthase a chain (ATPase protein 6)	83	5e-17	96	5e-21	218	1e-57	236	4e-63
3)	0.0	2. 16	0.0	4 - 10	200	0 - 50	220	2 - 61
TP6_TOBAC ATP synthase a chain (ATPase protein 6)	80 76	3e-16	90	4e-19	200	2e-52	230	3e-61
TP6_MAIZE ATP synthase a chain (ATPase protein 6)		5e-15	88	1e-18 9e-18	198	1e-51	219	5e-58
TP6_COCHE ATP synthase a chain (ATPase protein 6)	75	1e-14	86		100	F - 00	197	2e-51
TP6_EMENI ATP synthase a chain precursor (ATPase prot	75	2e-14	84	3e-17	123	5e-29	181	2e-46
4) TP6 ECOLI ATP synthase a chain (ATPase protein 6)	42	1e-04	40	5e-04	46	8e-06	49	1e-06
TPI SPIOL Chloroplast ATP synthase a chain precursor	42	1e-04	32	0.12	36	0.006	39	0.001
TP6 SYNY3 ATP synthase a chain (ATPase protein 6)	28	1.9	32	0.12	44	5e-05	45	1e-05
TPI MARPO Chloroplast ATP synthase a chain precursor	20	1.9	31	0.16	44	4e-05	44	3e-05
TPI_MARPO Chloroplast ATP synthase a chain precursor TPI PEA Chloroplast ATP synthase a chain precursor (A			31	0.21	37	0.005	44	3e-05
AMA2 MOUSE Laminin subunit alpha-2 precursor (Laminin			31	0.32	3/	0.005		
TPI ATRBE Chloroplast ATP synthase a chain precursor			31	0.34	41	2e-04		
TP6 SYNP6 ATP synthase a chain (ATPase protein 6)			28	1.7	41	2e-04 2e-04		
TPI EUGGR Chloroplast ATP synthase a chain precursor			20	1./	39	0.001		
TPI ORYSA Chloroplast ATP synthase a chain precursor			28	1.9	36	0.001		
TPI ATRBE Chloroplast ATP synthase a chain precursor			20	1.9	36	0.008	38	0.002
TP6 ASPAM ATP synthase a chain (ATPase protein 6)					30	0.009	36	0.002
OLG KUNJM Genome polyprotein [Contains: Capsid protei	27	5.0					30	0.000
OLG_KONOM Genome polyprotein [Contains: Capsid protei OL HTL1C Gag-Pro-Pol polyprotein (Pr160Gag-Pro-Pol) [5.0						
OL_HTLIC Gag-Pro-Pol polyprotein (Pribugag-Pro-Pol) [OLG DEN2J Genome polyprotein [Contains: Capsid protei		5.0	26	7.0				
OLG_DENZO Genome poryprotern [Contains: Capsid protei	. 21	5.2	26	7.0				

69

Position-Specific Scores ATP Synthase, 4 iterations

- PSI-BLAST and Dali provide estimates that off by 10-100-fold
- Other structure comparison methods provide wild over estimates of statistical significance - BEWARE of claims of significant structural similarity

71

Sensitive searches with PSI-BLAST

- PSI-BLAST improves sensitivity by building a Position Specific Scoring Matrix (PSSM)
 - models ancestral sequence (consensus distribution)
 - similar to PFAM HMM (but less sophisticated weights,
- Sensitivity improves with additional iterations
 - model moves to base of tree
- Statistical estimates are difficult
 - once a sequence is in, it is "significant" validation must be done before a sequence is included
- Very diverse families may not produce a well defined **PSSM**
 - similar problems with HMMs have led to "clans"

Sequence Similarity II - Conclusions

- Always compare Protein Sequences
 - use BLASTP or SSEARCH for protein-protein
 - blastx or fastx for DNA protein
- Search small (comprehensive) databases never search NR or GenBank
- Scoring matrices set evolutionary look back horizons - not every discovery is distant
- Shallow scoring matrices for short domains
- Accurate statistics => highest unrelated E() ~ 1.0
- PSI-BLAST can be more sensitive, but with lower statistical accuracy

73

Discussion questions

- 1. What is the difference between similarity and homology? When does high identity not imply homology? What conclusions can be drawn from homology?
- 2. What is the difference between homology and common ancestry?
- 3. In practical terms, how is "orthology" more useful than "homology" or "paralogy"?
- 4. When the *M. janaschii* genome was first sequenced, Venter and his colleagues stated that almost 60% of the open reading frames (proteins or genes) were novel to this organism. (For eubacterial like *E. coli* or *H. influenzae*, a similar number would be 20 40%.) On what would they base such a statement? Is it likely to be correct?
- 5. Name two reasons why protein sequence comparison is more effective (longer evolutionary look-back time) than DNA sequences?
- 6. What is the range of an expectation value (E()-value)? If you compare a sequence to 50,000 random(unrelated) sequences, what should the expectation value for the highest of the 50,000 similarity scores be (on average)?
- 7. In a sequence similarity database search, you identify a statistically significant similarity (*E*()<0.005), but the alignment is relatively short (50 aa). How might you determine whether the alignment reflects a genuine homology, or a random sequence match?
- 8. How can a sequence be homologous if you search a small database (e.g. human, 40,000 sequences), but not share significant similarity if you search a complete database (>4 million sequences)?
- 9. What scoring matrix should be used to identify protein orthologs that have diverged over the past 100 My (e.g. human/mouse)?