Лабораторное занятие №1

Вычисление показателей надежности для невосстанавливаемых объектов

Цель работы: изучение показателей надежности, вычисляемых на основе статистических данных об отказах, и освоение методов определения параметров надежности для невосстанавливаемых объектов.

Краткие теоретические сведения

Для невосстанавливаемых элементов дадим необходимые определения.

Невосстанавливаемый объект — объект, для которого не предусмотрено требованиями НТД и (или) КД восстановление работоспособного состояния.

Отметим, что отнесение объекта к восстанавливаемым или невосстанавливаемым влияет на выбор показателей надежности в каждом конкретном случае и определяется на основании анализа последствий возникновения отказа. Если восстановление работоспособности объекта после наступления отказа является неосуществимым или нецелесообразным, то объект относят к невосстанавливаемым. Кроме того, на результат решения оказывает влияние назначение объекта. Поэтому один и тот же объект может относиться к обоим типам в разные этапы его использования.

Неремонтируемый объект подразумевает невозможность ремонта или для него он не предусмотрен НТД, ремонтной и (или) КД.

Вероятность безотказной работы (по ГОСТ 27.002.89): вероятность p(t) того, что в пределах заданной наработки отказ объекта не возникнет. Или: p(t) — вероятность того факта, что время безотказной работы T будет больше заданного времени t. Основные свойства:

$$p(0) = 1$$
; $p(\infty) = 0$; $0 \le p(t) \le 1$.

Величиной, дополняющей вероятность событий — отказов до 100 % служит вероятность отказов q(t).

Вероятность отказа — вероятность того факта, что в пределах заданной наработки произойдет хотя бы один отказ объекта.

Гамма-процентная наработка до отказа – наработка, в течение которой отказ объекта не возникнет с определенной вероятностью, указанной в процентах.

Средняя наработка до отказа — математическое ожидание случайной величины наработки объекта до первого отказа.

Интенсивность отказов – условная плотность вероятности возникновения отказа объекта, определяемая при условии, что до рассматриваемого момента времени отказ не возник (по ГОСТ 27.002.89).

Для сложных объектов надежность можно разделить на следующие виды: аппаратурную, функциональную, эксплуатационную, программную и подсистемы человек-машина.

Частота отказов — это плотность распределения наработки до отказа:

$$f(t) = \frac{dq(t)}{dt} = \frac{d(1-p(t))}{dt} = -\frac{dp(t)}{dt}.$$

Статистически показатели надежности объектов определяются по результатам их испытаний на надежность с получением информации об отказах [27–31].

Типовые задания

Задание 1.1.

В результате испытаний N однотипных электронных блоков в течение времени t отказало n(t) блоков. Определите показатели надежности для этой партии блоков $(p^*(t), q^*(t), \lambda^*(t), f^*(t))$ и T_0^*).

Таблица 3 – Типовые варианты к заданию

тиолици з типовые виришты к зидинию				
Мо рорионто	Исходные данные			
№ варианта	<i>N</i> , шт.	n(t), шт.	t, 4	
1	1000	200	5000	
2	2000	100	10000	
3	4000	500	8000	
4	8000	200	9000	
5	4000	1000	10000	
6	2000	800	5000	
7	4000	300	4000	
8	6000	0	9000	
9	1000	600	10000	
10	1000	300	4000	
11	3000	400	5000	
12	3000	10	200	

Задание 1.2.

На испытания было поставлено N однотипных микропроцессоров. В течение времени t_1 отказало $n(t_1)$ микропроцессоров, а еще через время Δt отказало еще $n(t_1, t_1 + \Delta t)$ шт. Требуется найти показатели надежности партии процессоров: $p^*(t_1)$, $q^*(t_1)$, $p^*(t_1 + \Delta t)$, $q^*(t_1 + \Delta t)$, $\lambda^*(t_1, t_1 + \Delta t)$, $f^*(t_1, t_1 + \Delta t)$. Сделать вывод по полученным результатам.

Таблица 4 – Типовые варианты к заданию

No			Значения		
варианта	<i>N</i> , шт.	$n(t_1)$, шт.	<i>t</i> 1, Ч	$n(t_1, t_1+\Delta t)$, шт	Δt , ч
1	1000	200	7000	100	3000
2	3000	100	10000	50	1000
3	5000	200	100	300	100
4	7000	1000	5000	1000	100
5	8000	500	5000	700	7000
6	2500	250	8550	65	60
7	3700	400	8110	101	170
8	3100	110	6910	29	3
9	4000	65	5300	16	60
10	2900	285	1430	71	48
11	4600	350	7280	88	20
12	3600	30	310	8	6

Задание 1.3.

Определите какая должна быть средняя наработка до первого отказа процессора T_0 , чтобы вероятность безотказной работы была не менее $p(t)_{\min}$ в течение времени работы компьютера t.

Примечание: для расчетов можно принять: $e^{-\frac{a}{b}} \approx 1 - \frac{a}{b}$

Таблица 5 – Типовые варианты к заданию

тиолица з типовые варианты к заданию				
No populativo	Значения			
№ варианта	$p(t)_{\min}$	t, 4		
1	0,9	10000		
2	0,8	500		
3	0,7	4000		
4	0,99	20000		
5	1,0	500		
6	0,7	5320		
7	0,6	2620		
8	0,7	2230		
9	0,8	3420		
10	1,0	5380		
11	0,59	5200		
12	0,75	3100		

Задание 1.4.

Известно, что величина средней наработки до первого отказа электрорадиоэлемента составляет T_0 часов при экспоненциальном законе надежности. Необходимо определить величину вероятности безотказной работы p(t) для момента времени t, а также частоту отказов для момента времени t_1 .

Таблица 6 – Типовые варианты к заданию

тиолици о типовые виришты к зидинио				
$N_{\underline{0}}$	Значения			
варианта	То, ч	<i>t</i> 1, ч		
1	10000	8000	3000	
2	20000	15000	12000	
3	15000	10000	9000	
4	14000	9000	10000	
5	18000	10000	15000	
6	19500	6000	4000	
7	7000	6500	6000	
8	50	100	5600	
9	13000	2900	2800	
10	15000	2300	2000	
11	12000	2200	1500	
12	11700	1900	1600	

Задание 1.5.

На испытания было поставлено N однотипных реле. В течение времени t_1 отказало $n(t_1)$ реле, а еще через время Δt отказало еще $n(\Delta t)$ штук. Требуется найти показатели надежности партии реле: $p^*(t_1)$, $p^*(t_1+\Delta t)$, $p^*(t_2)$, $\lambda^*(t_2)$, $f^*(t_2)$, где $t_1+\Delta t > t_2 > t_1$.

Таблица 7 – Типовые варианты к заданию

Таолица	типовно варианты к заданию					
$\mathcal{N}_{\underline{0}}$	Значения					
варианта	<i>N</i> , шт.	<i>t</i> 1, Ч	$n(t_1)$, шт.	Δt , ч	$n(\Delta t)$, шт	<i>t</i> 2, ч
1	500	8000	100	50	40	8020
2	1000	5000	200	100	150	5050
3	8000	10000	500	2000	300	10500
4	4000	500	100	1000	10	700
5	800	1000	200	500	50	1400
6	13360	2500	652	700	10	3100
7	3800	3200	807	800	13	3800
8	10800	4200	990	500	31	4500
9	11700	2000	649	2100	32	3700
10	14800	2800	552	1000	51	3600
11	3400	1100	765	1500	26	2400
12	15900	1300	573	800	41	1900