Theoretical Foundation of KSIF Package

운용3팀 유승현

2016.11.06

1 Strategic Vector Space

We can define Strategy as a linear map as follows.

Definition 1. Strategy Strategy is a function $\S : \mathbb{T} \bigotimes \mathbb{F} \bigotimes \mathbb{D} \to \mathbb{T} \bigotimes$

Problem 1. Show that the $C^0[k_{min}, k_{max}]$ with $\|\cdot\|_{\infty}$ is Normed Vector Space.

Proof. Without loss of generality, we can set $k_{min} = 0$, and $k_{max} = 1$. Let's define (+) and scalar multiplication. All functions below are the elements of $C^0[0,1]$.

(addition)
$$(f+g)(x) = f(x) + g(x), \forall x \in [0,1].$$

(scalar multiplication) $(af)(x) = af(x), \forall x \in [0,1].$

Then the following holds, because (+) is commutative, and associative.

- (1) f + g = g + f;
- (2) (f+g) + h = f + (g+h);
- (3) there exists an zero function $0 \in C^0[0,1]$ such that 0+f=f;
- (4) for each f in $C^0[0,1]$ there exists an function $-f \in C^0[0,1]$ such that f+(-f)=0;
- (5) $c(f+g) = cf + cg, \forall c \in \mathbb{R};$
- (6) $(c+d)f = cf + df, \forall c, d \in \mathbb{R};$
- (7) $c(df) = (cd)f, \forall c, d \in \mathbb{R};$
- (8) 1f = f;

So, the $C^0[0,1]$ is vector space with addition and scalar multiplication. Also, $C^0[0,1]$ is normed vector space with sup norm $\|\cdot\|_{\infty}$, because following holds.

- (1) $||f||_{\infty} \ge 0$ and $||f||_{\infty} = 0$ iff f = 0; (:) $||f||_{\infty} \ge |f(x)| \ge 0$ for all $x \in [0, 1]$, and if $||f||_{\infty} = 0$, then for all $x \in [0, 1]$, f(x) = 0, i.e. f(x) = 0. Opposite direction is trivial.
- (2) $||cf||_{\infty} = |c|||f||_{\infty}$ for all $c \in \mathbb{R}$; $(:\cdot) ||cf||_{\infty} = \sup_{x} |cf(x)| = \sup_{x} |c||f(x)| = |c| \sup_{x} |f(x)| = |c|||f||_{\infty}$.

(3) $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$ (triangle inequality); (:`) $||f + g||_{\infty} = \sup_{x} |f(x) + g(x)| \le \sup_{x} (|f(x)| + |g(x)|) \le \sup_{x} |f(x)| + \sup_{x} |g(x)| = ||f||_{\infty} + ||g||_{\infty}.$

So, the $C^0[0,1]$ is normed vector space.

Problem 2. (Proposition 2) Show any compact set K in \mathbb{R}^n is complete.

Proof. According to *Heine-Borel theorem*, A subset of \mathbb{R}^n is compact iff it is closed and bounded. So, We have to show all *Cauchy Sequence* in K converges to a point in K. Because of K is compact, all *Cauchy Sequence* $\{x_n\}$ in K has a convergent subsequence $\{x_{n_k}\}$ which converges to x in K. Then, we can show that $\{x_n\}$ converges to x.

(:) We can find N such that,

$$|x_n - x| \le |x_n - x_{n_k}| + |x_{n_k} - x| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

for $n \geq N$ and $k \geq N_k \geq N$. In here, we use $n_k \geq k$ to show $|x_n - x_{n_k}| \leq \frac{\varepsilon}{2}$ So, K is complete. \Box

Problem 3. (Proof of Theorem 1)

Theorem 1. Let $C^0[k_{min}, k_{max}]$ be the set of all continuous functions $f: [k_{min}, k_{max}] \to \mathbb{R}$ with the sup norm, $||f|| = \sup_{k \in [k_{min}, k_{max}]} |f(k)|$. Then $C^0[k_{min}, k_{max}]$ is a Banach space (complete normed vector space).

Proof. We can use,

Proposition 1. if $f_n \in C^0[k_{min}, k_{max}]$ and $f_n \to f$ uniformly as $n \to \infty$, then $f \in C^0[k_{min}, k_{max}]$.

Proposition 2. any compact set K in \mathbb{R}^n is complete.

By **Problem 1**, it is suffices to show that $C^0[k_{min}, k_{max}]$ is complete, i.e. Cauchy Sequence $\{f_n\}$ converges to $f \in C^0[k_{min}, k_{max}]$. For all $x \in [k_{min}, k_{max}]$, there exist N such that,

$$|f_n(x) - f_m(x)| \le \sup_{y \in [k_{min}, k_{max}]} |f_n(y) - f_m(y)| = ||f_n - f_m|| \le \varepsilon$$

for all $n, m \geq N$.

So, $\{f_n(x)\}\$ is Cauchy Sequence.

And we know that \mathbb{R} is complete, that means we can find converging points f(x) of the Cauchy sequence $\{f_n(x)\}$ for each $x \in [k_{min}, k_{max}]$.

Then we can show $\{f_n\} \to f$ uniformly as $n \to \infty$, because we can find sufficiently large N such that,

$$|f_n(x) - f(x)| \le |f_n(x) - f_m(x)| + |f_m(x) - f(x)|$$

$$\le ||f_n - f_m|| + |f_m(x) - f(x)|$$

$$\le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

for $n \geq N$, and for all $x \in [k_{min}, k_{max}]$. In here, we are free to choose m (which must be depend on x) arbitrary large, that is $m \geq N_x \geq N$. By **Proposition 1**, $f \in C^0[k_{min}, k_{max}]$. So, $C^0[k_{min}, k_{max}]$ is a Banach space.

Problem 4. Show Bellman Operator T satisfies monotonicity and discounting.

Definition 2. Bellman Operator **T** is,

$$(\mathbf{T}V)(k_t) = \max_{k_{t+1} \in X} u(A_t(k_t)^{\alpha} + (1-\delta)k_t - k_{t+1}) + \beta V(k_{t+1})$$

with concave u and V.

a (monotonicity)

Proof. Let any f and $g \in C^0[k_{min}, k_{max}]$ satisfying $f(k) \leq g(k)$ for all $k \in [k_{min}, k_{max}]$. Then,

$$(\mathbf{T}f)(k) = \max_{k' \in X} u(A_t(k)^{\alpha} + (1 - \delta)k - k') + \beta f(k')$$

$$\leq \max_{k' \in X} u(A_t(k)^{\alpha} + (1 - \delta)k - k') + \beta g(k')$$

$$= (\mathbf{T}g)(k)$$

Here, the inequality holds because $\beta > 0$.

b (discounting)

Proof. For all $f \in C^0[k_{min}, k_{max}], a \ge 0$, and $k \in [k_{min}, k_{max}],$

$$[\mathbf{T}(f+a)](k) = \max_{k' \in X} \{ u(A_t(k)^{\alpha} + (1-\delta)k - k') + \beta(f(k') + a) \}$$

$$= \max_{k' \in X} \{ u(A_t(k)^{\alpha} + (1-\delta)k - k') + \beta f(k') + \beta a \}$$

$$= \max_{k' \in X} \{ u(A_t(k)^{\alpha} + (1-\delta)k - k') + \beta f(k') \} + \beta a$$

$$= (\mathbf{T}f)(k) + \beta a$$

So if we set β as modulus, then $[\mathbf{T}(f+a)](k) \leq (\mathbf{T}f)(k) + \beta a$ holds.

Ь