Sąsūkų kodai

Tiesiniai registrai ir daugianarių daugyba	2
Daugyba naudojantis registrų sistema	3
Daugyba naudojantis registrais	4
Patobulinta sistema	5
Kaip supinti du srautus į vieną?	6
Sisteminis kodavimas	7
Sąsūkų kodas	8
Dar vienas pavyzdys	9
Sąsūkų kodo vaizdavimas būsenų diagrama	0
Grotelių diagrama	1
Keliai būsenų diagramoje 1	2
Kodavimas	3
Srauto iškraipymai	4
Viterbi algoritmas	5
Viterbi algoritmas	6

Tiesiniai registrai ir daugianarių daugyba

Generatorius

$$g(x) = 1 + x + x^2,$$

daugianaris iš informacinių bitų:

$$u(x) = u_0 + u_1 x + u_2 x^2 + \ldots + u_n x^n, \quad u_i \in \mathbb{F}_2.$$

Jų sandauga yra daugianaris $v(x) = v_0 + v_1 x + \ldots + v_n x^n + v_{n+1} x^{n+1} + v_{n+2} x^{n+2}$. Koeficientai randami taip:

$$v_k = u_k + u_{k-1} + u_{k-2}, \quad k = 2, 3, \dots, n.$$

Kad ši lygybė tiktų ir $v_0, v_1, v_{n+1}, v_{n+2}$ reikia susitarti, kad $u_{-2} = u_{-1} = u_{n+1} = u_{n+2} = 0$. v(x) koeficientai gaunami "susukant" į vieną tris u(x) koeficientus.

2/16

Daugyba naudojantis registrų sistema

Visus daugianario v(x) koeficientus generuos šis paprastas įrenginys, jeigu į jį įvesime $u_0u_1 \dots u_n00$. Taigi šis paprastas tiesinių registrų įrenginys atlieka daugianarių daugybą!

Daugyba naudojantis registrais

Kaip sukonstruoti tiesinių registrų sistemą, kuri daugianarius daugintų iš

$$g(x) = c_0 + c_1 x + \ldots + c_n x^n, \quad c_n \neq 0$$
?

Sprendimas paprastas:

Kiekvienam įvesties bitui u_i sukuriamas išvesties bitas v_i .

4/16

Patobulinta sistema

Dabar įvesties bitų žodžiui ${\bf u}$ sistema sukuria du išvesties žodžius ${\bf v}_1$ ir ${\bf v}_2$, t.y. kiekvienam įvesties daugianariui u(x) sukuriami du daugianariai:

$$v_1(x) = u(x)g_1(x), \quad g_1(x) = 1 + x^2$$

 $v_2(x) = u(x)g_2(x), \quad g_2(x) = 1 + x + x^2.$

Kaip supinti du srautus j viena?

Norėtume "supinti" abu išvesties srautus į vieną, pavyzdžiui, padaryti taip, kad kiekvieną srauto \mathbf{v}_1 bitą sektų atitinkamas \mathbf{v}_2 bitas.

Tokį supintą srautą galima užrašyti daugianariu, kurio koeficientai prie lyginių laipsnių yra skolinti iš $v_1(x)$, o prie nelyginių – iš $v_2(x)$. Tokį daugianarį paprasta sudaryti:

$$v(x) = v_1(x^2) + xv_2(x^2) = u(x^2)(g_1(x^2) + xg_2(x^2))$$

 $v(x) = u(x^2)(1 + x + x^3 + x^4 + x^5).$

6/16

Sisteminis kodavimas

Šios schemos sukurtas srautas \mathbf{v}_1 – tiesiog įvesties srauto kopija. Šitaip koduojant į duomenų srautą tiesiog įterpiami simboliai, reikalingi klaidoms taisyti.

Sąsūkų kodas

$$u(x) \mapsto \langle v_1(x), v_2(x) \rangle$$
, arba $u(x) \mapsto v(x)$,

čia

$$v_1(x) = u(x)g_1(x), \quad g_1(x) = 1 + x^2$$

 $v_2(x) = u(x)g_2(x), \quad g_2(x) = 1 + x + x^2$
 $v(x) = u(x^2)g(x), \quad g(x) = 1 + x + x^3 + x^4 + x^5.$

Registrų sistema (arba daugianarių atitiktys) apibrėžia sąsūkų kodą su parametrais $(k,m,n)=(1,2,2).\ k$ – viename žingsnyje į sistemą įvedamų bitų skaičius, m – sistemos registrų skaičius, n – viename žingsnyje išvedamų bitų skaičius. Santykį k/n vadinsime sąsūkų kodo koeficientu. Taigi mūsų sistema apibrėžia sąsūkų kodą su koeficientu 1/2.

8/16

Dar vienas pavyzdys

Į brėžinyje pavaizduotą registrų sistemą kiekviename žingsnyje paduodami du bitai, o išvedami trys. Taigi tokio kodo koeficientas yra 2/3.

Sąsūkų kodo vaizdavimas būsenų diagrama

Koduojant pagal pateiktą diagramą

$$\mathbf{u} = 10011010... \mapsto 1101001110100001... = \mathbf{v}.$$

10 / 16

Grotelių diagrama

Jeigu briauna veda į viršų – įvesties bitas lygus nuliui. Jeigu žemyn – vienetas. Yra du atvejai, kai briaunos lygiagrečios laiko ašiai: kai iš 00 grįžtama į 00 ir iš 11 į 11. Pirmuoju atveju įvesties bitas nulis, antruoju – vienetas.

Keliai būsenų diagramoje

Kievienas kodavimo eigą atitinkantis kelias prasideda nuo nulinės būsenos. Mūsų pavyzdyje yra iš viso $4\times 4\times \ldots \times 4=4^m$ kelių, vedančių iš pradinės būsenos į kurią nors m-ojo žingsnio būseną. Tačiau ne visi keliai atitinka kokių nors srautų kodavimo eigą. "Tikrų" kodavimo kelių yra tik 2^m .

12 / 16

Kodavimas

Tarkime, kodavimui naudojamas tas sąsūkų kodas, kurį nagrinėjome anksčiau.

Bus koduojama po r srauto bitų, po to dar bus įvedami du nuliniai bitai, kad sistema sugrįžtų į būseną 00. Taigi iš tiesų į sistemą bus įvedami žodžiai $u_0u_1 \dots u_{r-1}00$.

Po r+2 žingsnių sistema sugrįš į pradinę padėtį ir vėl bus koduojama iš naujo.

Jeigu sistemoje būtų s atminties registrų, tada prie koduojamo bloko reiktų pridėti iš viso s nulių.

13 / 16

Srauto iškraipymai

Kiekvieną žodį $u_0u_1\dots u_{r-1}00$ grotelių diagramoje atitinka kelias iš būsenos 00 į 00. Tokių kodavimo kelių yra 2^r . Į kanalą perduodamas 2(r+2) ilgio žodis

$$\mathbf{v} = v_0^{(1)} v_0^{(2)} v_1^{(1)} v_1^{(2)} \dots v_{r+1}^{(1)} v_{r+1}^{(2)}.$$

Kanalas yra simetrinis ir be atminties. Tada jis su vienodomis tikimybėmis iškraipo perduodamus simbolius ir gavėjas vietoje srauto ${\bf v}$ gaus iškraipytą srautą

$$\mathbf{w} = w_0^{(1)} w_0^{(2)} w_1^{(1)} w_1^{(2)} \dots w_{r+1}^{(1)} w_{r+1}^{(2)}.$$

Viterbi algoritmas

Tarkime, iš kanalo gautas toks bitų srautas $w=11\ 01\ 10\ 00\ 10\ 11.$ leškosime, kuris iš galimų srautų mažiausiai skiriasi nuo gautojo.

15/16

Viterbi algoritmas

O prisiminę, kad kryptis žemyn reiškia, kad buvo įvestas 1, aukštyn – 0, galime iškart atkurti ir pradinį, į sistemą įvestą žodį: $\mathbf{v}=101100$.