Airbnb Case Study

Architectural Requirements

```
# Context View
```

- **# Functional View**
- **# Constraints**
- # Quality View *
- # Assumptions

Context View

Functional View

Constraints

- Should not have affinity to a cloud vendor. Should be able to deploy it in Azure, Aws, GCP or on prem.
- Data should reside in the country where it data was created.
- Should support SCIM for Identity management.

Quality Requirements

Source (who)	Stimulus (action)	Artifact (which)	Environment (context)	Response (output)	Measure (scale)
A guest	Searching for a property	On the web portal	during peak hours	Should get property listing	In < 2 seconds.
A unknown identity	requests to add a property	In the Web Portal	during normal hours	The response is to block access to the data and record the access attempts	with 100% probability of detecting the attack, 100% probability of denying access, and 50% probability of identifying the location of the
A guest	Submits a booking	On the portal	Duplicate submit	The guest is not doubly charged	With a 100% probability of detecting the duplicate request
Developer	Want to add a new payment gateway	On the portal	During maintenance	The payment gateway is added	In < 2 man days
The Database	Failed	In the Data Centre	During Operational Hours	Secondary is made Primary	In < 2 minutes

Assumptions

 During peak load there will be an maximum of 100000 active users connected to the portal

Architectural Design

```
# Logical View
```

Deployment View

Security View

Logical View

- **# System Decomposition**
- # Persistence approach
- # Compute approach
- # Communication approach
- # cross cutting approach

Web Portal View Controller Model Current Booking **Property Cross Cutting Listing Service History Service Search Service Booking Service** Framework Api Api Api Api **Debug Log Exception Audit Log Domain Domain** Cache **Domain Domain Input Validation Data Layer Data Layer Data Layer Data Layer** mongoDB File Storage elasticsearch

	Polling	Trigger	CDC	EDA
Scale	No	No	Yes	Yes
Causes extra load on db	Yes	Yes	No	No
Vendor locking	No	Yes	Yes	No
Low coupling	Yes	Yes	Yes	Yes

Deployment View

#

docka

dockar

Current Booking Service

dockar

Property
Search Service

Architectural Justification

Evaluation (ATAM | ARID | SAAM |)

1. identify all Architectural approaches

- Ad1: Use Cloud file Storage for image and videos
- Ad2: use document db for listing
- Ad3: use RDBMS for booking
- Ad4: move booking history to a wide column data store and use rdbms only for current booking
- Ad5: use elastic search for property search
- Ad6 : decompose system by Domain (Poperty, booking, ...)
- Ad7: decompose portal using interaction pattern
- Ad 8: decompose domain services using layered pattern
- Ad 9: use Managed K8s to deploy Domain services and portal
- Ad 10: use managed services for database deployments

2. identify all quality requirements

- qs1. A guest Searching for a property On the web portal during peak hours Should get property listing In < 2 seconds.
- qs2. A unknown identity requests to add a property In the Web Portal during normal hours The response is to block access to the data and record the access attempts with 100% probability of detecting the attack, 100% probability of denying access, and 50% probability of identifying the location of the individual.
- qs3. A guest Submits a booking On the portal Duplicate submit The guest is not doubly charged With a 100% probability of detecting the duplicate request.
- qs4. Developer Want to add a new payment gateway On the portal During maintenance The payment gateway is added In < 2 man days.
- qs5, The Database Failed In the Data Centre During Operational Hours Secondary is made Primary In < 2 minutes.

3. analyse Scenario -> Approach

Quality Scenario	Approach	Risk ?	
Qs1	Ad1, Ad2, Ad5	Low	Sync design TBD
Qs2	?	High	TBD
Qs3	Ad3	Med	Booking service should be designed for idemptoency
QS4	Ad6, Ad8	Med	Design for pluggablility
QS5	Ad9, Ad10	Low	

Bidding Case Study

Architectural Requirements

```
# Context View
```

- **# Functional View**
- # Constraints (removed)
- # Quality View *
- **# Assumptions**

Context View

Functional view

Quality View

Quality	Source (who)	Stimulus (action)	Artifact (which)	Environment (context)	Response (output)	Measure (scale)
Performance	As a Bidder	I should be able to see the Bids placed by other bidders	In the portal	When there are 100,000 bidders bidding	The Highest bid is shown to the bidder	In < 1 sec

Assumptions

- User will only use Mobile Application. There is no web interface for the application.
- maximum bidding during peak load will be less then 1000 bids.

Architectural Design

```
# Logical View
```

- **# Deployment View**
- # Security View (removed)

Logical View

- **# System Decomposition**
- # Persistence approach
- # Compute approach
- # Communication approach
- # cross cutting approach

Admin Portal

Product Service

Deployment View

#

- Pull
 - Short polling (time interval ?)
 - Long polling
- Push
 - SSE
 - Web socket

Ecommerce Case Study

Architectural Requirements

```
# Context View
```

Functional View

Constraints (removed)

Quality View

Assumptions (removed)

Context View

Functional view

Quality View

Quality	Source (who)	Stimulus (action)	Artifact (which)	Environment (context)	Response (output)	Measure (scale)
Scale	As a Buyer	I should be able to place an order	In the portal	During peak load.	The order is placed.	Should support 1 million users

Architectural Design

```
# Logical View
```

- **# Deployment View**
- # Security View (removed)

Logical View

- **# System Decomposition**
- # Persistence approach
- # Compute approach
- # Communication approach
- # cross cutting approach

Deployment View

#

DropBox Logical View

API Gateway /API Management / WAF (Http)

Load Balancer

Cluster

Nodes

Kubernetes ingress/ Istio Ingress / nginx reverse proxy

Notification Service

File
Authorization
Service
<<API>>

Metadata Service <<API>> User
Management
<<API>>

Message Queue

Uber reference architecture

Uber/Lyft/Ola System Design

Stock exchange Case Study