分數欄

110 學年度第二學期五專(資工一乙)期中考

學號:______ 姓名:_____

一、單一選擇題(共70分,每題10分)

1. (D) 試求
$$\sum_{k=1}^{20} k(k+2) = ?$$
 (A)2990 (B)3090 (C)3190 (D)3290

解析:
$$\sum_{k=1}^{20} k(k+2) = \sum_{k=1}^{20} k^2 + 2\sum_{k=1}^{20} k = \frac{20 \times 21 \times 41}{6} + 2 \times \frac{20 \times 21}{2} = 3290$$

2. (A) 若
$$x \times 2x + 3 \times 4x + 5$$
三數成等差數列,則 x 之值為何? (A)1 (B)2 (C)3 (D)4

解析: ::公差=後項-前項

$$(4x+5)-(2x+3)=(2x+3)-x \Rightarrow 2x+2=x+3 \Rightarrow x=1$$

解析:
$$S_6 = \frac{a_1(3^6 - 1)}{3 - 1} = 1456 \Rightarrow a_1 = 4$$

$$\therefore a_4 = a_1 r^3 = 4 \times 3^3 = 108$$

4.(**D**)利用綜合除法計算多項式
$$f(x) = 2x^4 + ax^3 + bx^2 + cx - 10$$
 除以 $2x - 1$,過程如下,則下列敘述何者正確?

$$2 \left[2 - 4 + g + h \right]$$
 |-11 (A) $a = -3$ (B) $b = 6$ (C) $f(x)$ 除以 $4x - 2$ 的餘式為 -22 (D) $f(x)$ 1 $+i$ $+3$ $+j$

除以
$$2x-1$$
的商式為 x^3-2x^2+3x-1

解析: (A) a = -5

(B)
$$b = 8$$

(C)
$$f(x)$$
 除以 $4x-2$ 的餘式為 -11

(D)
$$f(x)$$
 除以 $2x-1$ 的商式為 x^3-2x^2+3x-1

$$2|2-4+6-2|-11$$

1-2+3-1

5. (D) 若
$$f(x) = x^3 + mx^2 + nx - 4$$
 有因式 $x + 1$ 及 $x + 2$,則 $(m, n) = ?$ (A) $(4,1)$ (B) $(-1,4)$ (C) $(-4,-1)$ (D) $(1,-4)$

解析:由因式定理可知,
$$\begin{cases} f(-1) = -1 + m - n - 4 = 0 \\ f(-2) = -8 + 4m - 2n - 4 = 0 \end{cases} \Rightarrow \begin{cases} m = 1 \\ n = -4 \end{cases}$$

6. (C) 若
$$z = \frac{1-i}{1+i}$$
 , 則 z 的共軛複數為 (A)0 (B)1 (C) i (D) $-i$

解析:
$$z = \frac{1-i}{1+i} = \frac{(1-i)^2}{(1+i)(1-i)} = \frac{-2i}{2} = -i$$
, z 之共軛複數為 i

7. (D)
$$1+i+i^2+i^3+\cdots+i^{149} =$$
 (A) i (B) 0 (C) $-i$ (D) $1+i$
EXAMPLE 1 $i+i^2+i^3+i^4=0$, $\sum i+i^2+i^3+i^4+\cdots+i^{148}=0$
 $1+i+i^2+i^3+i^4+\cdots+i^{149}=1+0+i=1+i$

二、計算與證明題(共30分,每題10分)

設四負數 $a \cdot b \cdot c \cdot d$ 成等比數列,若 $a+c=-70 \cdot b+d=-210$,則此數列的公比 為____。 答案:3

解析: 設此數列為 $a \cdot ar \cdot ar^2 \cdot ar^3$

$$\begin{cases} a+c = -70 \\ b+d = -210 \end{cases} \Rightarrow \begin{cases} a+ar^2 = -70 \\ ar+ar^3 = -210 \end{cases}$$

$$\Rightarrow \begin{cases} a(1+r^2) = -70 \cdot \dots \cdot \mathbb{O} \\ ar(1+r^2) = -210 \cdot \dots \cdot \mathbb{O} \end{cases}$$

$$\frac{2}{1}$$
得 $r=3$

$$\Rightarrow a = -7 \cdot b = -21 \cdot c = -63 \cdot d = -189$$

2. 設 k 為複數,若方程式 $x^2 - (1+i)x + k = 0$ 有一根為 1+2i,試求 k 之值。

答案: 設另一根為α

利用根與係數關係知

$$\begin{cases} \alpha + 1 + 2i = 1 + i \cdots \oplus \\ \alpha(1 + 2i) = k \cdots \oplus 2 \end{cases}$$

由
$$0$$
知另一根 $\alpha = -i$

$$\alpha = -i \text{ (1 + 2i)} = 2 - i$$

3. 設 $a \cdot b$ 為實數月5-4i 為 $2x^2+ax+b=0$ 的一根,試求 $a \cdot b$ 之值。

答案:由實係數方程式虛根成對知

另一根為5+4i

利用根與係數的關係知

$$\begin{cases} (5-4i) + (5+4i) = -\frac{a}{2} \\ (5-4i)(5+4i) = \frac{b}{2} \end{cases} \Rightarrow \begin{cases} 10 = -\frac{a}{2} \\ 5^2 + 4^2 = \frac{b}{2} \end{cases}$$