ФГБОУ ВПО МГТУ «СТАНКИН»

Факультет информационных технологий и систем управления Кафедра информационных систем

Выпускная квалификационная работа по направлению 230400.62 «Информационные системы и технологии»

Разработка программной среды аналитического моделирования практико-ориентированных информационных систем

Студент группы ИДБ-11-01: Лакеев Р.Д. Научный руководитель: д.т.н., проф. Климанов В.П.

Москва, 2015 г.

Введение

Цель

Анализ критериев времени и надёжности доставки информации в информационно-вычислительных сетях.

Задачи

- 1. Изучение методики разработки моделей сетей.
- 2. Разработка аналитических математических моделей ИВС.
- 3. Разработка программы для вычисления стационарных и интегральных вероятностных характеристик заданной ИВС.
- 4. Проведение модельного эксперимента.

Введение

- 1. Составление уравнений баланса интенсивностей потоков.
- 2. Вычислеие коэффициентов передачи из уравнений баланса.
- 3. Вычисление стационарных вероятностно-временных характеристик (BBX) для каждого отдельного элемента CeMO.
- 4. Вычисиление интегральных BBX при взаимодействии двух любых абонентов сети.
- 5. Вычисление плотностей распределения сообщений в самом коротком и длинном маршруте.
- 6. Вычисления коэффициента структурной надёжности сети.

Программная платформа

Реализация выполнена на языке C# и программной платформе Mono. Mono — кроссплатформенная реализация Microsoft .Net Framework с открытым исходным кодом. Среда разработки — MonoDevelop.

Исходные данные

Исходными параметрами модели являются интенсивности обслуживающих узлов сети μ_i^m , интенсивности поступления сообщений из внешнего источника λ_i^m и маршрутная матрица P^m для каждого входного потока $m=\overline{1,F}$.

Интенсивности узлов сети μ_i^m рассчитываются в соответствии с выбранной технологией Ethernet и длиной сообщения.

Технология	Битовая ско-	Длина кадра	Интенсивность
Ethernet	рость	(байт)	μ (кадр/мс)
Fast Ethernet	100 Мбит/с	72	148.800
i ast Linemet		1526	8.127
Gigabit Ethernet	1 Гбит/с	72	1488.095
		1526	81.274
10G Ethernet	10 Гбит/с	72	14880.952
10G Ethernet		1526	812.744
40G Ethernet	40 Гбит/с	72	59523.800
		1526	3250.975
100G Ethernet	100 Гбит/с	72	148809.524
		1526	8127.438

```
<NetworkConfiguration Name="Full-mesh topology">
  <RoutingMatrix>
    <Row>0; -; -; -; -</Row>
    <Row>0.25; 0; 0.25; 0.25; 0.25</Row>
    <Row>0.25; 0.25; 0; 0.25; 0.25</Row>
    <Row>0.25; 0.25; 0.25; 0; 0.25</Row>

  \begin{array}{c}
    19 \\
    20 \\
    21 \\
    22 \\
    24 \\
    25 \\
  \end{array}

                                                                              <M11>
    <Row>0.25; 0.25; 0.25; 0.25; 0</Row>
  </RoutingMatrix>
  <Nodes Count="4">
     <Stream Index="1">
                                                                      </Nodes>
       <Lambda>860: 930: 670: 710</Lambda>
         <Mu>
            <Ethernet Type="_10G"
              FrameLength="128"/>
         </M11>
       </Stream>
```

Результаты вычислений

Результаты вычисления уравнений баланса

Поток	Характ.	Узел 1	Узел 2	Узел 3	Узел 4
	e_i	1.017035	1.034700	0.969085	0.979180
1	$\lambda_{i}^{'}$	3224.000	3280.000	3072.000	3104.000
	ρ_i	0.361088	0.367360	0.344064	0.347648
	e_i	0.997849	0.988018	1.008909	1.005223
2	$\lambda_{i}^{'}$	649.600	643.200	656.800	654.400
	$ ho_i$	0.538388	0.533084	0.544356	0.542367

Результаты вычислений

Стационарные вероятностно-временные характеристики

Поток	Характ.	Узел 1	Узел 2	Узел 3	Узел 4
	W_i	0.004841	0.004851	0.004389	0.004441
	U_i	0.004953	0.004963	0.004501	0.004553
1	L_i	15.608149	15.911909	13.482236	13.785019
	N_i	15.969237	16.279269	13.826300	14.132667
	U_i	0.005670	0.005680	0.005218	0.005270
2	L_i	3.144868	3.120287	2.882530	2.906223
	N_i	3.683256	3.653371	3.426886	3.448590

Результаты вычислений

Все маршруты между узлами

1 И 4		
Маршрут	Вероятность	
$1 \rightarrow 4$	0.615385	
$1 \rightarrow 2 \rightarrow 4$	0.153846	
$1 \to 3 \to 4$	0.153846	
$\boxed{1 \rightarrow 2 \rightarrow 3 \rightarrow 4}$	0.038462	
$\boxed{1 \rightarrow 3 \rightarrow 2 \rightarrow 4}$	0.038461	

Коэффициент структурной надёжности сети

5

MUTOFDARI III IO RRY

интегральные вых				
Поток	Харат.	Значение		
	W	0.011486		
	U	0.011761		
1	L	36.550228		
	N	37.426723		
	U	0.013526		
2	L	7.472934		
	N	8.800595		

Плотности распределения количества сообщений

Модельный эксперимент

Модельный эксперимент был проведён для следующих сетевых топологий:

- 1. Шина
- Звезда
- 3. Кольцо
- 4. Дерево
- 5. Двухменая квадратная решётка
- 6. Двухмерная треугольная решётка
- 7. Трёхмерная квадратная решётся
- 8. Пирамидальная топология
- 9. Полносвязная топология

Топология	Среднее вре-	Коэффициент	Количество
	мя в маршру-	структурной	связей
	те (мс)	надёжности	
Шина	0.153211	1	9
Звезда	0.055320	1	9
Кольцо	0.014307	1	10
Дерево	0.064059	1	9
Двухменая	0.082925	4.844444	24
квадратная			
Двухмерная	0.089373	50.733333	18
треугольная			
Трёхмерная	0.069486	24.2	15
квадратная			
Пирамидальная	0.008404	503.522222	24
топология			
Полносвязная	0.013876	109601	45
топология			

Заключение

В дипломной работе выполнено следующее:

- 1. Изучена методика построения моделей информационновычислительных сетей.
- 2. Разработанна программа, автоматизирующая вычисления стационарных и интегральных вероятностно-временных характеристик, плотностей распределения сообщений в маршрутах сети и среднего количества маршрутов между любыми двумя узлами сети на основе заданной модели сети.
- 3. Разработаны модели сетей с раными топологиями и с помощью разработанной программы проведён модельный эксперимент по их сравнению по времени и надёжности доставки сообщений.