ВЕКТОРИ

Означення. Вектор – це напрямлений відрізок.

Вектори характеризуються не тільки своїм числовим значенням, а й напрямом. Якщо початком вектора ϵ точка A, а кінцем — точка B, то вектор позначають \overrightarrow{AB} або \overrightarrow{a} .

Означення. *Нульовим вектором* називають вектор, початок і кінець якого збігаються. Такий вектор позначають $\vec{0}$, його довжина дорівнює нулю, напрям не визначений.

Означення. Вектор, довжина якого дорівнює одиниці, називається одиничним або нормованим.

Означення. Вектори, які лежать на одній або на пара-лельних прямих, називаються колінеарними.

Означення. Вектори, які ϵ колінеарними, однаково напрямленими, які мають однакову довжину, називаються *рівними*. Позначаємо це так: $\vec{a} = \vec{b}$.

Означення. Вектори, які є колінеарними, протилежно напрямленими, які мають однакову довжину, називаються *протилежними*. Вектор, протилежний до вектора \vec{a} , позначається $(-\vec{a})$.

Означення. Вектори, які лежать в одній або в паралельних площинах, називаються компланарними.

Дії з векторами

Означення. Вектор \vec{c} , початок якого збігається з початком вектора \vec{a} , кінець — з кінцем вектора \vec{b} , за умови, що початок вектора \vec{b} збігається з кінцем вектора \vec{a} , називається *сумою векторів* \vec{a} та \vec{b} , $\vec{c} = \vec{a} + \vec{b}$.

Такий спосіб додавання векторів називають правилом трикутника.

Якщо вектори виходять з однієї точки, то їх додають за правилом паралелограма.

Твердження. Операція додавання векторів має такі властивості:

1)
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
;

2)
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c});$$

3)
$$\vec{a} + \vec{0} = \vec{a}$$
;

4)
$$\vec{a} + (-\vec{a}) = \vec{0}$$
.

3 цього твердження випливає правило додавання довільної скінченної кількості векторів. Сумою n векторів є вектор, початок якого збігається з початком першого вектора, а кінець — з кінцем останнього вектора, за умови, що початок кожного наступного вектора збігається з кінцем попереднього. Геометрично цей спосіб називають правилом многокутника.

Означення. Вектор \vec{d} , який треба додати до вектора \vec{b} , щоб одержати вектор \vec{a} , називається різницею векторів \vec{a} та \vec{b} , $\vec{d} = \vec{a} - \vec{b}$.

Означення. Добутком вектора \vec{a} на число (скаляр) λ називається вектор $\vec{b} = \lambda \vec{a}$, який є колінеарним до вектора \vec{a} , $|\vec{b}| = |\lambda| \cdot |\vec{a}|$ і напрям вектора \vec{b} збігається з напрямом вектора \vec{a} , якщо $\lambda > 0$, або протилежний векторові \vec{a} , якщо $\lambda < 0$.

Твердження. Множення вектора на скаляр має такі властивості:

- 1) $\lambda(\mu \vec{a}) = (\lambda \mu)\vec{a}$;
- 2) $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$;
- 3) $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$.

База. Координати вектора

Означення. Вектори $\vec{a}_1, \vec{a}_2, \vec{a}_3$ називають *лінійно залежними*, якщо існують такі числа $\lambda_1, \lambda_2, \lambda_3$, з яких хоча б одне не дорівнює нулю, за яких справджується рівність

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \lambda_3 \vec{a}_3 = \vec{0}.$$

Означення. Вектори $\vec{a}_1, \vec{a}_2, \vec{a}_3$ називають *лінійно незалежними*, якщо ця рівність можлива лише у випадку, коли всі числа $\lambda_1, \lambda_2, \lambda_3$ дорівнюють нулю.

Прикладом системи лінійно незалежних векторів ϵ три некомпланарні вектори у просторі. Будьякі чотири вектори простору — лінійно залежні. На площині будь-які два неколінеарні вектори лінійно незалежні, а довільні три вектори — лінійно залежні.

Означення. *Базою* множини векторів у просторі називається така впорядкована система векторів $\vec{e}_1, \vec{e}_2, \vec{e}_3$, що будь-який вектор \vec{a} виражається через ці вектори, тобто

$$\vec{a} = \lambda_1 \vec{e}_1 + \lambda_2 \vec{e}_2 + \lambda_3 \vec{e}_3,$$

причому скаляри $\lambda_1,\lambda_2,\lambda_3$ визначаються однозначно.

Базою у просторі може бути будь-яка впорядкована трійка некомпланарних векторів, на площині — будь-яка впорядкована пара неколінеарних векторів, а на прямій довільний ненульовий вектор.

Означення. Якщо $\vec{a} = \lambda_1 \vec{e}_1 + \lambda_2 \vec{e}_2 + \lambda_3 \vec{e}_3$, то коефіцієнти $\lambda_1, \lambda_2, \lambda_3$ цього розкладення називаються координатами вектора \vec{a} в базі $\vec{e}_1, \vec{e}_2, \vec{e}_3$ і записуватимемо це так:

$$\vec{a} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix}$$
 and $\vec{a} = (\lambda_1, \lambda_2, \lambda_3)$.

Координати вектора визначають однозначно у цій базі, тому два вектори будуть рівними тоді і тільки тоді, коли рівні їхні відповідні координати у фіксованій базі.

При додаванні (відніманні) векторів їхні відповідні координати додаються (віднімаються), а при множенні вектора на скаляр множаться на цей скаляр.

Система координат

Виберемо в просторі базу $\vec{e}_1, \vec{e}_2, \vec{e}_3$ і точку O (початку координат).

Означення. Декартовою системою координат називається сукупність точки O (початку координат) і бази $\vec{e}_1, \vec{e}_2, \vec{e}_3$.

Кожній точці M простору поставимо у відповідність її радіус-вектор \overrightarrow{OM} .

Означення. Координати радіуса-вектора \overrightarrow{OM} в базі $\vec{e}_1, \vec{e}_2, \vec{e}_3$ називають *координатами точки М* y системі координат $O_{\vec{e}_1, \vec{e}_2, \vec{e}_3}$.

Якщо $\overrightarrow{OM} = x\vec{e}_1 + y\vec{e}_2 + z\vec{e}_3$, то M(x,y,z), причому перша координата x називається абсцисою точки M, друга y – ординатою, третя z – аплікатою.

Означення. Декартова система координат $O_{\vec{e}_1,\vec{e}_2,\vec{e}_3}$ називається *прямокутною*, якщо $|\vec{e}_1| = |\vec{e}_2| = |\vec{e}_3| = 1$ і кути між базовими векторами прямі. Тоді базові вектори позначають через \vec{i} , \vec{j} , \vec{k} .

Якщо розглядати декартову систему координат на площині, то база буде складатися тільки з двох векторів, тому кожна точка теж матиме тільки дві координати M(x, y).

Нехай у прямокутній декартовій системі координат в просторі задано дві точки $A(x_1,y_1,z_1)$ і $B(x_2,y_2,z_2)$. Знайдемо координати вектора \overrightarrow{AB} . За означенням $\overrightarrow{OA}(x_1,y_1,z_1)$ і $\overrightarrow{OB}(x_2,y_2,z_2)$. Оскільки $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$, то

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1).$$

Отже, щоб знайти координати вектора \overrightarrow{AB} , треба від координат кінця вектора відняти координати його початку.

Полярна система координат

Якщо на площині вибрати точку O (полюс) і промінь OP (полярну вісь), то утвориться *полярна система координат*. Нехай r – відстань від деякої точки M до полюса O, а φ – кут між полярною віссю і променем OM. Тоді числа $r \ge 0$ і φ ($0 \le \varphi < 2\pi$) називаються полярними координатами точки M (рис. 3.8).

Між полярними та прямокутними координатами існує такий зв'зок:

$$\begin{cases} x = r\cos\varphi, \\ y = r\sin\varphi \end{cases} \qquad i \qquad r = \sqrt{x^2 + y^2}, tg\varphi = \frac{y}{x}.$$

Циліндрична система координат

Координати точки $M(\rho, \varphi, z)$ в циліндричній системі визначають так:

ho – відстань від осі Oz до точки M ; $ho \geq 0$.

 φ – кут між проєкцією радіус-вектора точки M на площину xOy з додатним напрямом осі Ox; $0 \le \varphi < 2\pi$.

z – відстань від точки M до площини xOy; $-\infty < z < \infty$.

Між циліндричними та прямокутними координатами існує такий зв'зок:

$$\begin{cases} x = \rho \cos \varphi, \\ y = \rho \sin \varphi, \\ z = z \end{cases}$$

Сферична система координат

Координати точки $M(r, \varphi, \theta)$ в циліндричній системі визначають так:

r – відстань від початку координат до точки M ; $r \ge 0$.

 φ – кут між проекцією радіус-вектора точки M на площину xOy з додатним напрямом осі Ox ; $0 \le \varphi < 2\pi$.

 θ – кут між радіус-вектором точки M з додатним напрямом осі Oz ; $0 \leq \theta \leq \pi$.

Між сферичними та прямокутними координатами існує такий зв'зок:

$$\begin{cases} x = r \sin \theta \cos \varphi, \\ y = r \sin \theta \sin \varphi, \\ z = r \cos \theta \end{cases}$$

Проекція вектора на вісь

Розглянемо поняття проекції вектора на вісь. Нехай заданий вектор \overrightarrow{AB} і вісь l. З точок A і B опустимо перпендикуляри на вісь l. Одержимо точки A_1 та B_1 – проекції точок A і B на вісь l.

Означення. Проекцією вектора $\vec{a} = \overrightarrow{AB}$ на вісь називається довжина вектора $\overrightarrow{A_1B_1}$, яку взяли зі знаком "+", якщо напрям $\overrightarrow{A_1B_1}$ збігається з напрямом осі та зі знаком "-", якщо напрями протилежні. Позначають $pr_i\vec{a}$.

Знайдемо $pr_l\vec{a}$. Якщо ϕ – кут між вектором \overrightarrow{AB} і віссю l, то в першому випадку

$$pr_l\vec{a} = |\overrightarrow{A_1B_1}| = |\vec{a}|\cos\varphi$$
,

у другому випадку

$$pr_{l}\vec{a} = -|\overrightarrow{A_{l}B_{l}}| = -|\overrightarrow{a}|\cos(180^{\circ} - \varphi) = |\overrightarrow{a}|\cos\varphi.$$

Отже, проекція вектора на вісь дорівнює добутку довжини вектора на косинус кута між вектором і віссю.

Координатами вектора в прямокутній системі координат будуть проекції вектора на осі координат.

Нехай вектор \vec{a} має координати a_x, a_y, a_z , тобто $\vec{a} = (a_x, a_y, a_z)$ і утворює з осями координат кути α, β, γ , відповідно. Тоді $a_x = |\vec{a}| \cos \alpha$, $a_y = |\vec{a}| \cos \beta$, $a_z = |\vec{a}| \cos \gamma$.

Числа $\cos \alpha, \cos \beta, \cos \gamma$ називають *напрямними косинусами вектора \vec{a}*. З попередніх формул одержуємо

$$\cos \alpha = \frac{a_x}{|\vec{a}|}, \cos \beta = \frac{a_y}{|\vec{a}|}, \cos \gamma = \frac{a_z}{|\vec{a}|}.$$

Поділ відрізка у заданому відношенні

Нехай задано дві точки: $A(x_1,y_1,z_1)$ і $B(x_2,y_2,z_2)$. Знайдемо точку M(x,y,z), яка ділить відрізок AB у відношенні λ , тобто $\frac{|\overrightarrow{AM}|}{|\overrightarrow{MB}|} = \lambda$. Цю умову можна записати у вигляді $\overrightarrow{AM} = \lambda \cdot \overrightarrow{MB}$. Оскільки

$$\overrightarrow{AM} = (x - x_1, y - y_1, z - z_1), \quad \overrightarrow{MB} = (x_2 - x, y_2 - y, z_2 - z),$$

$$x - x_1 = \lambda(x_2 - x);$$

 $y - y_1 = \lambda(y_2 - y);$
 $z - z_1 = \lambda(z_2 - z).$

Розв'яжемо кожне з цих рівнянь стосовно x, y, z і одержимо формули для визначення координат точки M

$$x = \frac{x_1 + \lambda x_2}{1 + \lambda}, \ y = \frac{y_1 + \lambda y_2}{1 + \lambda}, \ z = \frac{z_1 + \lambda z_2}{1 + \lambda}.$$

Зокрема, якщо точка M ділить відрізок AB навпіл, то $\lambda=1$ і координати точки M можна знайти за формулами

$$x = \frac{x_1 + x_2}{2}$$
, $y = \frac{y_1 + y_2}{2}$, $z = \frac{z_1 + z_2}{2}$.

Скалярний добуток векторів

Означення. *Скалярним добутком* векторів \vec{a} та \vec{b} називається добуток довжин цих векторів на косинус кута між ними, тобто $(\vec{a}, \vec{b}) = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\vec{a} \cdot \vec{b})$.

Зокрема, скалярний квадрат вектора дорівнює квадратові його довжини, тобто $(\vec{a})^2 = (\vec{a}, \vec{a}) = |\vec{a}| \cdot |\vec{a}| \cdot \cos(\vec{a} \wedge \vec{a}) = |\vec{a}|^2$.

Властивості скалярного добутку такі:

- 1) $(\vec{a}, \vec{b}) = (\vec{b}, \vec{a});$
- 2) $(\lambda \vec{a}, \vec{b}) = \lambda(\vec{a}, \vec{b});$
- 3) $(\vec{a} + \vec{b}, \vec{c}) = (\vec{a}, \vec{c}) + (\vec{b}, \vec{c});$
- 4) $(\vec{a}, \vec{a}) \ge 0$ i $(\vec{a}, \vec{a}) = 0 \Leftrightarrow \vec{a} = \vec{0}$;
- 5) $(\vec{a}, \vec{b}) = 0 \Leftrightarrow \vec{a} \perp \vec{b}$.

Нехай у прямокутній декартовій системі координат $\vec{a}=(a_1,a_2,a_3),\ \vec{b}=(b_1,b_2,b_3)$, тобто

$$\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$
, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$.

Тоді

$$(\vec{a}, \vec{b}) = (a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k})(b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}) =$$

$$= a_1 b_1 \vec{i} \cdot \vec{i} + a_1 b_2 \vec{i} \cdot \vec{j} + a_1 b_3 \vec{i} \cdot \vec{k} + a_2 b_1 \vec{j} \cdot \vec{i} + a_2 b_2 \vec{j} \cdot \vec{j} + a_2 b_3 \vec{j} \cdot \vec{k} + a_3 b_1 \vec{k} \cdot \vec{i} + a_3 b_2 \vec{k} \cdot \vec{j} + a_3 b_3 \vec{k} \cdot \vec{k}.$$

Оскільки $|\vec{i}|=|\vec{j}|=|\vec{k}|=1$ і вектори \vec{i} , \vec{j} , \vec{k} взаємно перпендикулярні, то

$$\vec{i} \cdot \vec{j} = \vec{i} \cdot \vec{k} = \vec{j} \cdot \vec{k} = 0, \qquad \vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1,$$

тобто

$$(\vec{a}, \vec{b}) = a_1b_1 + a_2b_2 + a_3b_3.$$

Отже, $(\vec{a}, \vec{b}) = a_1 b_1 + a_2 b_2 + a_3 b_3$ — формула скалярного добутку векторів, заданих координатами. Очевидно, що довжина вектора

$$|\vec{a}| = \sqrt{\vec{a} \cdot \vec{a}} = \sqrt{a_1^2 + a_2^2 + a_3^2}$$
.

Векторний добуток векторів

Означення. Лінійно незалежні вектори \vec{a} , \vec{b} і \vec{c} утворюють *праву трійку векторів*, якщо з кінця вектора \vec{c} найкоротший поворот від вектора \vec{a} до вектора \vec{b} видно проти годинникової стрілки, в іншому випадку говорять про ліву трійку векторів.

Означення. Векторним добутком векторів \vec{a} і \vec{b} називається такий вектор $\vec{c} = \vec{a} \times \vec{b}$, який має довжину $|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\vec{a} \hat{b})$, є перпендикулярним до площини, утвореної векторами \vec{a} і \vec{b} і вектори \vec{a} , \vec{b} і \vec{c} утворюють праву трійку векторів.

Властивості векторного добутку:

- 1) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$;
- 2) $(\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b});$
- 3) $(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$;
- 4) $\vec{a} \times \vec{a} = \vec{0}$;
- 5) $\vec{a} \times \vec{b} = \vec{0} \Leftrightarrow$ вектори \vec{a} і \vec{b} колінеарні.

Нехай у прямокутній декартовій системі координат $\vec{a}=(a_1,a_2,a_3),\ \vec{b}=(b_1,b_2,b_3),$ тобто

$$\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$
, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$.

$$\vec{a} \times \vec{b} = (a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}) \times (b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}) =$$

$$=a_1b_1\vec{i}\times\vec{i}+a_1b_2\vec{i}\times\vec{j}+a_1b_2\vec{i}\times\vec{k}+a_2b_1\vec{j}\times\vec{i}+a_2b_2\vec{j}\times\vec{j}+a_2b_3\vec{j}\times\vec{k}+a_3b_1\vec{k}\times\vec{i}+a_3b_2\vec{k}\times\vec{j}+a_3b_3\vec{k}\times\vec{k}.$$

Оскільки

$$\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = \vec{0}, \qquad \vec{i} \times \vec{j} = \vec{k}, \ \vec{j} \times \vec{k} = \vec{i}, \ \vec{k} \times \vec{i} = \vec{j},$$

то

$$\vec{a} \times \vec{b} = a_1 b_2 \vec{k} - a_1 b_3 \vec{j} - a_2 b_1 \vec{k} + a_2 b_3 \vec{i} + a_3 b_1 \vec{j} - a_3 b_2 \vec{i} = (a_2 b_3 - a_3 b_2) \vec{i} - (a_1 b_3 - a_3 b_1) \vec{j} + (a_1 b_2 - a_2 b_1) \vec{k} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Отже,
$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 — формула векторного добутку векторів, заданих координатами.

Геометричний зміст векторного добутку полягає в тому, що площа паралелограма, побудованого на векторах \vec{a} і \vec{b} як на сторонах, дорівнює модулю векторного добутку цих векторів. Це випливає з означення векторного добутку.

Мішаний добуток векторів

Означення. *Мішаним добутком* трьох упорядкованих векторів \vec{a} , \vec{b} і \vec{c} називається число

$$\vec{a}\cdot\vec{b}\cdot\vec{c}=(\vec{a}\times\vec{b})\cdot\vec{c}\;.$$

Властивості мішаного добутку:

- 1) $\vec{a} \cdot \vec{b} \cdot \vec{c} = \vec{b} \cdot \vec{c} \cdot \vec{a} = \vec{c} \cdot \vec{a} \cdot \vec{b}$;
- 2) $\vec{a} \cdot \vec{b} \cdot \vec{c} = -\vec{b} \cdot \vec{a} \cdot \vec{c} = -\vec{c} \cdot \vec{b} \cdot \vec{a}$;
- 3) $\vec{a} \cdot \vec{b} \cdot \vec{c} = 0 \iff$ вектори \vec{a} , \vec{b} і \vec{c} компланарні.

Нехай у прямокутній декартовій системі координат $\vec{a}=(a_1,a_2,a_3),\ \vec{b}=(b_1,b_2,b_3),\ \vec{c}=(c_1,c_2,c_3),$ тобто

$$\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$
, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$, $\vec{c} = c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}$.

Тоді

$$\vec{a} \cdot \vec{b} \cdot \vec{c} = (\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} (c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}) = \begin{pmatrix} |a_2 & a_3| \\ b_2 & b_3| \vec{i} + |a_3 & a_1| \\ b_3 & b_1| \vec{j} + |a_1 & a_2| \\ b_1 & b_2| \vec{k} \end{pmatrix} (c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}) = \begin{bmatrix} |a_2 & a_3| \\ b_2 & b_3| \vec{i} + |a_3 & a_1| \\ b_3 & b_1| \vec{j} + |a_1 & a_2| \\ b_1 & b_2| \vec{k} \end{pmatrix} (c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}) = \begin{bmatrix} |a_1 & a_2 & a_3| \\ b_1 & b_2 & b_3| \\ c_1 & c_2 & c_3 \end{bmatrix}$$

Отже,
$$\vec{a} \cdot \vec{b} \cdot \vec{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
 — формула мішаного добутку векторів, заданих координатами. Об'єм паралелепіпеда, побудованого на трьох некомпланарних векторах, дорівнює

Об'єм паралелепіпеда, побудованого на трьох некомпланарних векторах, дорівнює модулю мішаного добутку цих векторів.

Пряма на площині

Нехай на площині задано декартову прямокутну систему координат xOy і деяку лінію L.

Рівняння G(x, y) = 0, що зв'язує дві змінні x і y, називається рівнянням лінії L в обраній системі координат, якщо координати будь-якої точки цієї лінії L задовольняють рівняння, а будь-які інші координати точок, що не належать лінії L, не задовольняють зазначене рівняння.

Нагадаємо, що лінія на площині ϵ прямою тоді і тільки тоді, коли її рівняння ϵ лінійним стосовно декартової системи координат.

Знайти рівняння прямої — це означає записати залежність між координатами x, y довільної точки прямої (M(x; y) — поточна точка) і параметрами, які визначають розміщення прямої стосовно системи координат. Залежно від заданих параметрів можна отримати різні рівняння прямої.

Рівняння прямої, яка проходить через задану точку паралельно до заданого вектора

Означення. Ненульовий вектор, паралельний до прямої, називається напрямним вектором прямої.

Нехай пряма l проходить через точку $M_0(x_0;y_0)$ паралельно до заданого вектора $\vec{s}(m;n)$. Якщо M(x;y) — довільна точка прямої, то вектор $\overrightarrow{M_0M}(x-x_0;y-y_0)$ паралельний до вектора $\vec{s}(m;n)$, а координати цих векторів пропорційні. Тому

$$\frac{x - x_0}{m} = \frac{y - y_0}{n}$$

- рівняння прямої l, яке називається *канонічним рівнянням прямої*.

Прирівнявши відношення з канонічного рівняння прямої до деякого параметра t, отримаємо $\frac{x-x_0}{m}=\frac{y-y_0}{n}=t$, або

$$\begin{cases} x = x_0 + mt, \\ y = y_0 + nt \end{cases}$$

- параметричне рівняння прямої l.

З канонічного рівняння прямої одержуємо

$$y - y_0 = \frac{n}{m}(x - x_0).$$

Позначимо $\frac{n}{m} = k$. Тоді рівняння запишемо у вигляді

$$y - y_0 = k(x - x_0)$$

– рівняння прямої з кутовим коефіцієнтом.

Якщо пряма l проходить через точку $M_{\,_0}(0;b)$, то рівняння запишеться у вигляді y-b=k(x-0) , тобто

$$y = kx + b$$
,

де $k = tg\alpha$, α — кут нахилу прямої до додатного напряму осі Ox, b — відрізок, який пряма відтинає на осі Oy.

Рівняння прямої, що проходить через дві точки

Нехай пряма l проходить через точки $M_1(x_1; y_1)$ та $M_2(x_2; y_2)$.

Тоді вектор $\overrightarrow{M_1M_2}(x_2-x_1;y_2-y_1)$ буде напрямним вектором прямої l. Запишемо канонічне рівняння цієї прямої, врахувавши, що пряма проходить через точку $M_1(x_1;y_1)$. Одержимо

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

– рівняння прямої, що проходить через дві точки.

Запишемо рівняння прямої, що проходить через точки розміщені на осях координат, тобто $M_1(a;0)$, $M_2(0;b)$. Тоді $\frac{x-a}{-a} = \frac{y}{b}$, або

$$\frac{x}{a} + \frac{y}{b} = 1$$

– рівняння прямої у відрізках.

Рівняння прямої, що проходить через задану точку перпендикулярно до заданого вектора

Означення. Вектор, перпендикулярний до прямої, називається нормальним вектором прямої.

Нехай пряма проходить через точку $M_0(x_0;y_0)$ і вектор $\vec{n}(A;B)$ є нормальним вектором цієї прямої.

Нехай M(x;y) — довільна точка прямої. Вектор $\overrightarrow{M_0M}(x-x_0;y-y_0)$ перпендикулярний до вектора $\overrightarrow{n}(A;B)$, скалярний добуток цих векторів дорівнює нулю, тому

$$A(x-x_0) + B(y-y_0) = 0$$

– рівняння прямої, що проходить через задану точку перпендикулярно до заданого вектора

Нормальне рівняння прямої

Означення. Перпендикуляр, опущений з початку координат на пряму, називається *нормаллю* цієї прямої.

Нехай довжина нормалі p і нормаль утворює кут α з додатним напрямом осі Ox . Нехай P — основа нормалі.

Тоді вектор $\overrightarrow{OP}(p\cos\alpha;p\sin\alpha)$ і, відповідно, точка $P(p\cos\alpha;p\sin\alpha)$. Запишемо рівняння прямої, що проходить через точку P, перпендикулярно до вектора \overrightarrow{OP}

$$p\cos\alpha(x-p\cos\alpha)+p\sin\alpha(y-p\sin\alpha)=0$$
.

Поділимо це рівняння на р і розкриємо дужки, тоді

$$x\cos\alpha - p\cos^2\alpha + y\sin\alpha - p\sin^2\alpha = 0,$$

$$x\cos\alpha + y\sin\alpha - p(\cos^2\alpha + \sin^2\alpha) = 0.$$

Оскільки $\cos^2 \alpha + \sin^2 \alpha = 1$, то

$$x\cos\alpha + y\sin\alpha - p = 0$$

- нормальне рівняння прямої.

Зауважимо, що нормальне рівняння прямої має такі властивості:

- сума квадратів коефіцієнтів біля x та y дорівнює одиниці;
- вільний член цього рівняння від'ємний.

Загальне рівняння прямої

В рівнянні прямої, що проходить через задану точку перпендикулярно до заданого вектора

$$A(x-x_0) + B(y-y_0) = 0$$
,

розкриємо дужки. Тоді $Ax - Ax_0 + By - By_0 = 0$.

Позначимо $-Ax_0 - By_0 = C$. Отже,

$$Ax + By + C = 0$$

– загальне рівняння прямої.

Нагадаємо, що вектор $\vec{n}(A;B)$ є нормальним вектором цієї прямої. Оскільки вектор $\vec{s}(-B;A)$ є перпендикулярним до вектора $\vec{n}(A;B)$ (бо скалярний добуток $(\vec{n},\vec{s})=0$), то вектор

$$\vec{s}(-B; A)$$

— напрямний вектором прямої Ax + By + C = 0.

Розглянемо випадки, коли загальне рівняння прямої ϵ неповним.

- 1. Якщо C=0, то точка O(0;0) задовольняє рівняння прямої Ax+By=0, тому пряма проходить через початок координат.
- 2. Якщо A = 0, то напрямним вектором прямої By + C = 0 буде вектор $\vec{s}(-B; 0)$, який паралельний до осі Ox, тому пряма паралельна до осі Ox.
- 3. Якщо B=0, то напрямним вектором прямої Ax+C=0 буде вектор $\vec{s}(0;A)$, який ϵ паралельним до осі Oy, тому пряма паралельна до осі Oy.
- 4. Якщо A = C = 0, то пряма By = 0 ϵ паралельною до осі Ox і проходить через початок координат, тому ця пряма збігається з віссю Ox.
- 5. Якщо B = C = 0, то пряма Ax = 0 є паралельною до осі Oy і проходить через початок координат, тому ця пряма збігається з віссю Oy.

Зведення загального рівняння прямої до нормального вигляду

Нехай задано загальне рівняння прямої Ax + By + C = 0, зведемо його до нормального вигляду. Домножимо рівняння на число $\mu \neq 0$. Таке число називають нормувальним множником. Отримаємо рівняння $\mu Ax + \mu By + \mu C = 0$. Для того, щоб рівняння стало нормальним, треба, щоб виконувалися дві умови: вільний член цього рівняння повинен бути від'ємним, тобто $\mu C < 0$, і сума квадратів коефіцієнтів біля x та y повинна дорівнювати одиниці, тобто $(\mu A)^2 + (\mu B)^2 = 1$. Тоді

$$\mu = \pm \frac{1}{\sqrt{A^2 + B^2}}$$
,

причому знак перед дробом вибираємо так, щоб він був протилежним до знака вільного члена C. Тобто

$$\frac{Ax + By + C}{\pm \sqrt{A^2 + B^2}} = 0$$

нормальне рівняння прямої.

Відстань від точки до прямої

Нехай на площині задано пряму l нормальним рівнянням $x\cos\alpha + y\sin\alpha - p = 0$. Знайдемо відстань d від точки $M_0(x_0;y_0)$ до цієї прямої.

Проведемо через точку $M_0(x_0;y_0)$ пряму l_1 , яка паралельна до прямої l. Оскільки прямі паралельні, то їхні нормалі p і p_1 утворюють однакові кути α з додатним напрямом осі Ox. Крім того, $p_1=p+d$, якщо точка $M_0(x_0,y_0)$ і початок координат O(0;0) лежать по різні сторони від прямої l, і $p_1=p-d$, якщо $M_0(x_0;y_0)$ і O(0;0) лежать по одну сторону від цієї прямої. Тому нормальним рівнянням прямої l_1 буде

$$x\cos\alpha + y\sin\alpha - (p\pm d) = 0$$
.

Оскільки точка $M_0(x_0; y_0)$ належить прямій l_1 , то її координати задовольняють рівняння цієї прямої, тому

$$x_0 \cos \alpha + y_0 \sin \alpha - (p \pm d) = 0$$
.

Звілси

$$\pm d = x_0 \cos \alpha + y_0 \sin \alpha - p$$
.

Оскільки відстань $d \ge 0$, то

$$d = x_0 \cos \alpha + y_0 \sin \alpha - p$$

– формула відстані від точки $M_0(x_0; y_0)$ до прямої

$$x\cos\alpha + y\sin\alpha - p = 0$$
.

Якщо пряма l задана загальним рівнянням Ax+By+C=0, то спочатку зводимо його до нормального вигляду $\dfrac{Ax+By+C}{\pm\sqrt{A^2+B^2}}=0$. Тоді

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

-формула відстані від точки $M_0(x_0; y_0)$ до прямої Ax + By + C = 0

Кут між прямими

а) Нехай дві прямі на площині задані канонічними рівняннями, тобто $l_1: \frac{x-x_1}{m_1} = \frac{y-y_1}{n_1},$ $l_2: \frac{x-x_2}{m_2} = \frac{y-y_2}{n_2}.$

Кут α між прямими l_1 та l_2 дорівнює куту між їхніми напрямними векторами $\vec{s}_1(m_1;n_1)$ та $\vec{s}_2(m_2;n_2)$. Тому

$$\cos \alpha = \cos(\vec{s}_1, \vec{s}_2) = \frac{(\vec{s}_1, \vec{s}_2)}{|\vec{s}_1| \cdot |\vec{s}_2|} = \frac{m_1 m_2 + n_1 n_2}{\sqrt{m_1^2 + n_1^2} \sqrt{m_2^2 + n_2^2}},$$

отже, кут між прямими, заданими канонічними рівняннями, обчислюється за формулою

$$\cos\alpha = \frac{m_1 m_2 + n_1 n_2}{\sqrt{m_1^2 + n_1^2} \sqrt{m_2^2 + n_2^2}} \ .$$

Зауважимо таке: якщо $\cos \alpha > 0$, то знаходимо гострий кут між прямими, якщо ж $\cos \alpha < 0$, то знайдемо тупий кут між прямими.

Для того, щоб прямі l_1 та l_2 були паралельними, необхідно, щоб їхні напрямні вектори були паралельними, а тому координати векторів повинні бути пропорційними. Тому

$$\frac{m_1}{m_2} = \frac{n_1}{n_2}$$

- умова паралельності прямих, заданих канонічними рівняннями.

Для того, щоб прямі l_1 та l_2 були перпендикулярними, необхідно, щоб їхні напрямні вектори були перпендикулярними, тому скалярний добуток $(\vec{s}_1, \vec{s}_2) = 0$, тобто

$$m_1 m_2 + n_1 n_2 = 0$$

- умова перпендикулярності прямих, заданих канонічними рівняннями.
- б) Нехай дві прямі на площині задані загальними рівняннями, тобто $l_1:A_1x+B_1y+C_1=0$ і $l_2:A_2x+B_2y+C_2=0$.

Кут α між прямими l_1 та l_2 дорівнює куту між їхніми нормальними векторами $\vec{n}_1(A_1;B_1)$ та $\vec{n}_2(A_2;B_2)$

Тому

$$\cos \alpha = \cos(\vec{n}_1, \vec{n}_2) = \frac{(\vec{n}_1, \vec{n}_2)}{|\vec{n}_1| \cdot |\vec{n}_2|} = \frac{A_1 A_2 + B_1 B_2}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}}.$$

Отже, кут між прямими, заданими загальними рівняннями, обчислюють за формулою

$$\cos \alpha = \frac{A_1 A_2 + B_1 B_2}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}}.$$

Якщо прямі $l_{\scriptscriptstyle 1}$ та $l_{\scriptscriptstyle 2}$ паралельні, то координати їхніх нормальних векторів пропорційні, тобто

$$\frac{A_1}{A_2} = \frac{B_1}{B_2}$$

- умова паралельності прямих, заданих загальними рівняннями.

Якщо прямі l_1 та l_2 перпендикулярні, то скалярний добуток їхніх нормальних векторів дорівнює нулю, тобто

$$A_1 A_2 + B_1 B_2 = 0$$

- умова перпендикулярності прямих, заданих загальними рівняннями.
- в) Нехай дві прямі на площині задані рівняннями з кутовими коефіцієнтами, тобто $l_1: y=k_1x+b_1$ і $l_2: y=k_2x+b_2$.

Нехай пряма l_1 утворює кут α_1 з додатним напрямом осі Ox, пряма l_2 кут α_2 , відповідно. Очевидно, що $\lg \alpha_1 = k_1$ і $\lg \alpha_2 = k_2$. Якщо α — кут між прямими l_1 та l_2 , то $\alpha_2 = \alpha + \alpha_1$, оскільки зовнішній кут трикутника дорівнює сумі двох внутрішніх кутів, не суміжних з ним. Тому $\alpha = \alpha_2 - \alpha_1$, тоді

$$tg\alpha = tg(\alpha_2 - \alpha_1) = \frac{tg\alpha_2 - tg\alpha_1}{1 + tg\alpha_1 \cdot tg\alpha_2} = \frac{k_2 - k_1}{1 + k_1k_2}.$$

Отже, кут між прямими, заданими рівняннями з кутовим коефіцієнтом, обчислюють за формулою

$$tg\alpha = \frac{k_2 - k_1}{1 + k_1 k_2}.$$

Якщо прямі l_1 та l_2 паралельні, то $\alpha=0$, тоді $\operatorname{tg}\alpha=0$, тобто

$$k_1 = k_2$$

– умова паралельності прямих, заданих рівняннями з кутовим коефіцієнтом.

Якщо прямі l_1 та l_2 перпендикулярні, то $\alpha=90^{\circ}$, тоді $\lg \alpha$ не існує, тобто $1+k_1k_2=0$. Отже,

$$k_2 = -\frac{1}{k_1}$$

- умова перпендикулярності прямих, заданих рівняннями з кутовим коефіцієнтом.

Рівняння плошини

Нехай у просторі задано декартову прямокутну систему координат Oxyz і деяку поверхню S .

Рівняння G(x,y,z)=0, яке зв'язує змінні x,y,z, називається рівнянням поверхні S в обраній прямокутній системі координат, якщо координати будь-якої точки цієї поверхні S задовольняють рівняння, а координати будь-яких інших точок, що не належать поверхні S, не задовольняють зазначене рівняння.

Рівняння площини, що проходить через точку, перпендикулярно до заданого вектора

Означення. Ненульовий вектор, перпендикулярний до площини, називається *нормальним* вектором площини.

Нехай площина π проходить через точку $M_0(x_0; y_0; z_0)$ перпендикулярно до вектора $\vec{n}(A; B; C)$.

Нехай M(x;y;z) — довільна точка площини π . Вектор $\overline{M_0M}(x-x_0;y-y_0;z-z_0)$ перпендикулярний до вектора $\vec{n}(A;B;C)$, скалярний добуток цих векторів дорівнює нулю, тому

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$

– рівняння площини, що проходить через точку, перпендикулярно до заданого вектора

Загальне рівняння площини

В рівнянні площини, що проходить через задану точку перпендикулярно до заданого вектора

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$
,

розкриємо дужки. Тоді

$$Ax - Ax_0 + By - By_0 + Cz - Cz_0 = 0$$
.

Позначимо $-Ax_0 - By_0 - Cz_0 = D$.

Отже.

$$Ax + By + Cz + D = 0$$

– загальне рівняння площини.

Нагадаємо, що вектор $\vec{n}(A;B;C)$ є нормальним вектором цієї площини.

Розглянемо випадки, коли загальне рівняння площини неповне.

- 1. Якщо D=0, то точка O(0;0;0) задовольняє рівняння площини Ax+By+Cz=0, тому площина проходить через початок координат.
- 2. Якщо A=0, то нормальним вектором площини By+Cz+D=0 буде вектор $\vec{n}(0;B;C)$, який перпендикулярний до осі Ox, тому площина, перпендикулярна до нього, паралельна до осі Ox.

Аналогічно, якщо B=0, то площина паралельна до осі Oy, якщо C=0, то площина паралельна до осі Oz.

3. Якщо A = B = 0, то площина Cz + D = 0 паралельна до осі Ox і до осі Oy, тому ця площина паралельна до координатної площини xOy.

Аналогічно, якщо A=C=0 , то площина паралельна до площини xOz , якщо B=C=0 , то до площини yOz .

4. Якщо A = D = 0, то площина By + Cz = 0 паралельна до осі Ox і проходить через початок координат, тому ця площина проходить через вісь Ox.

Аналогічно, якщо B=D=0, то площина проходить через вісь Oy, якщо C=D=0, то через вісь Oz.

5. Якщо A = B = D = 0, то площина Cz = 0 паралельна до площини xOy і проходить через початок координат, тому ця площина збігається з площиною xOy.

Аналогічно, якщо A=C=D=0 , то площина збігається з площиною xOz , якщо B=C=D=0 , то з площиною yOz .

Нормальне рівняння площини

Означення. Перпендикуляр, опущений з початку координат на площину, називається *нормаллю* цієї площини.

Нехай довжина нормалі p площини π і нормаль утворює кути α , β , γ з додатними напрямами осей Ox, Oy та Oz, відповідно. Нехай P — основа нормалі. Тоді вектор

$$\overrightarrow{OP}(p\cos\alpha; p\cos\beta; p\cos\gamma)$$

і, відповідно, точка

$$P(p\cos\alpha; p\cos\beta; p\cos\gamma)$$
.

Запишемо рівняння площини, що проходить через точку P, перпендикулярно до вектора \overrightarrow{OP} $p\cos\alpha(x-p\cos\alpha)+p\cos\beta(y-p\cos\beta)+p\cos\gamma(z-p\cos\gamma)=0 \ .$

Поділимо це рівняння на p і розкриємо дужки, тоді

$$x\cos\alpha - p\cos^2\alpha + y\cos\beta - p\cos^2\beta + z\cos\gamma - p\cos^2\gamma = 0$$
,

або

$$x\cos\alpha+y\cos\beta+z\cos\gamma-p(\cos^2\alpha+\cos^2\beta+\cos^2\gamma)=0\;.$$

Оскільки сума квадратів напрямних косинусів вектора дорівнює одиниці, тобто

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1,$$

то

$$x\cos\alpha + y\cos\beta + z\cos\gamma - p = 0$$

– нормальне рівняння площини.

Зауважимо, що нормальне рівняння площиної має такі властивості:

- сума квадратів коефіцієнтів біля x, y та z дорівнює одиниці;
- вільний член цього рівняння ϵ від'ємним.

Зведення загального рівняння площини до нормального вигляду

Нехай задано загальне рівняння площини

$$Ax + By + Cz + D = 0,$$

зведемо його до нормального вигляду. Домножимо рівняння на число $\mu \neq 0$. Таке число називають нормувальним множником. Отримаємо рівняння $\mu Ax + \mu By + \mu Cz + \mu D = 0$. Для того, щоб рівняння стало нормальним, треба, щоб виконувалися дві умови: вільний член цього рівняння повинен бути від'ємним, тобто $\mu D < 0$, і сума квадратів коефіцієнтів біля x, y та z повинна дорівнювати одиниці, тобто $(\mu A)^2 + (\mu B)^2 + (\mu C)^2 = 1$. Тоді

$$\mu = \pm \frac{1}{\sqrt{A^2 + B^2 + C^2}},$$

причому знак перед дробом вибираємо так, щоб він був протилежним до знака вільного члена D. Тобто

$$\frac{Ax + By + Cz + D}{\pm \sqrt{A^2 + B^2 + C^2}} = 0$$

– нормальне рівняння площини.

Рівняння площини, що проходить через три точки

Нехай відомі три точки, які не лежать на одній прямій $M_1(x_1; y_1; z_1)$, $M_2(x_2; y_2; z_2)$, $M_3(x_3; y_3; z_3)$.

Знайдемо рівняння площини π , яка проходить через ці точки. Нехай M(x;y;z) — довільна точка цієї площини. Оскільки точки M, M_1 , M_2 і M_3 належать одній площині, то вектори $\overline{M_1M}$, $\overline{M_1M_2}$ і $\overline{M_1M_3}$ компланарні і їхній мішаний добуток дорівнює нулю. Отже,

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

[–] рівняння площини, що проходить через три задані точки.

Якщо в рівняння площини, що проходить через три задані точки, підставити координати точок перетину площини з осями координат A(a;0;0), B(0;b;0) і C(0;0;c), то отримаємо рівняння площини у відрізках, які площина відтинає на осях координат.

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

– рівняння площини, у відрізках.

Рівняння площини, що проходить через точку паралельно до двох неколінеарних векторів

Нехай площина π проходить через точку $M_0(x_0;y_0;z_0)$ паралельно до пари неколінеарних векторів $\vec{s}_1(m_1;n_1;p_1)$ та $\vec{s}_2(m_2;n_2;p_2)$.

Нехай M(x; y; z) — довільна точка цієї площини. Оскільки вектори

$$\overrightarrow{M_0M}(x-x_0;y-y_0;z-z_0)$$
, $\overrightarrow{s}_1(m_1;n_1;p_1)$ ta $\overrightarrow{s}_2(m_2;n_2;p_2)$

є компланарними, то їхній мішаний добуток дорівнює нулю, тобто

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ m_1 & n_1 & p_1 \\ m_2 & n_2 & p_2 \end{vmatrix} = 0$$

– рівняння площини, що проходить через точку паралельно до двох неколінеарних векторів.

Відстань від точки до площини

Нехай задано площину π нормальним рівнянням $x\cos\alpha+y\cos\beta+z\cos\gamma-p=0$. Знайдемо відстань d від точки $M_0(x_0;y_0;z_0)$ до цієї площини.

Проведемо через точку $M_0(x_0;y_0;z_0)$ площину π_1 , яка паралельна до площини π . Оскільки площини паралельні, то їхні нормалі p і p_1 утворюють однакові кути α , β , γ з додатними напрямами осей Ox, Oy та Oz, відповідно. Крім того, $p_1=p+d$, якщо точка $M_0(x_0;y_0;z_0)$ і початок координат O(0;0;0) лежать по різні сторони від площини π , і $p_1=p-d$, якщо $M_0(x_0;y_0;z_0)$ і O(0;0;0) лежать по одну сторону від цієї площини. Тому нормальним рівнянням площини π_1 буде

$$x\cos\alpha + y\cos\beta + z\cos\gamma - (p\pm d) = 0$$
.

Оскільки точка $M_0(x_0;y_0;z_0)$ належить площині π_1 , то її координати задовольняють рівняння цієї площини, тому

$$x_0 \cos \alpha + y_0 \cos \beta + z_0 \cos \gamma - (p \pm d) = 0.$$

Звідси

$$\pm d = x_0 \cos \alpha + y_0 \cos \beta + z_0 \cos \gamma - p.$$

Оскільки відстань $d \ge 0$, то

$$d = x_0 \cos \alpha + y_0 \cos \beta + z_0 \cos \gamma - p$$

— формула відстані від точки $M_0(x_0;y_0;z_0)$ до прямої $x\cos\alpha+y\cos\beta+z\cos\gamma-p=0$.

Якщо площина π задана загальним рівнянням Ax + By + Cz + D = 0, то спочатку зводимо його до нормального вигляду

$$\frac{Ax + By + Cz + D}{\pm \sqrt{A^2 + B^2 + C^2}} = 0.$$

Тоді формула відстані від точки $M_0(x_0; y_0; z_0)$ до площини Ax + By + Cz + D = 0 матиме вигляд

$$d = \frac{\left| Ax_0 + By_0 + Cz_0 + D \right|}{\sqrt{A^2 + B^2 + C^2}}.$$

Кут між площинами

Нехай дві площини задані загальними рівняннями, тобто $\pi_1:A_1x+B_1y+C_1z+D_1=0$ і $\pi_2:A_2x+B_2y+C_2z+D_2=0$.

Кут α між площинами π_1 та π_2 дорівнює куту між їхніми нормальними векторами $\vec{n}_1(A_1;B_1;C_1)$ та $\vec{n}_2(A_2;B_2;C_2)$. Тому

$$\cos\alpha = \cos(\vec{n}_1, \vec{n}_2) = \frac{(\vec{n}_1, \vec{n}_2)}{|\vec{n}_1| \cdot |\vec{n}_2|} = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}.$$

Отже, кут між прямими, заданими загальними рівняннями, обчислюють за формулою

$$\cos \alpha = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}.$$

Якщо площини π_1 та π_2 паралельні, то координати їхніх нормальних векторів пропорційні, тобто

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$$

– умова паралельності площин, заданих загальними рівняннями.

Якщо площини π_1 та π_2 перпендикулярні, то скалярний добуток їхніх нормальних векторів дорівнює нулю, тобто

$$A_1 A_2 + B_1 B_2 + C_1 C_2 = 0$$

- умова перпендикулярності площин, заданих загальними рівняннями.

Рівняння прямої в просторі

Рівняння прямої, що проходить через задану точку

паралельно до заданого вектора

Означення. Ненульовий вектор, паралельний до прямої називається *напрямним* вектором прямої. Нехай пряма l проходить через точку $M_0(x_0; y_0; z_0)$ паралельно до заданого вектора $\vec{s}(m; n; p)$.

Нехай M(x;y;z) — довільна точка прямої. Тоді вектор $\overline{M_0M}(x-x_0;y-y_0;z-z_0)$ паралельний до вектора $\vec{s}(m;n;p)$, а координати цих векторів пропорційні. Тому

$$\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$$

-канонічне рівняння прямої в просторі.

Прирівнявши відношення з канонічного рівняння прямої до деякого параметра t, отримаємо $\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p} = t$, або

$$\begin{cases} x = x_0 + mt, \\ y = y_0 + nt, \\ z = z_0 + pt \end{cases}$$

– параметричне рівняння прямої в просторі.

Рівняння прямої, що проходить через дві точки

Нехай пряма l проходить через точки $M_1(x_1;y_1;z_1)$ та $M_2(x_2;y_2;z_2)$. Тоді вектор $\overline{M_1M_2}(x_2-x_1;y_2-y_1;z_2-z_1)$ буде напрямним вектором прямої l. Запишемо канонічне рівняння цієї прямої, врахувавши, що пряма проходить через точку $M_1(x_1;y_1;z_1)$. Тоді

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

– рівняння прямої в просторі, що проходить через дві точки.

Пряма як перетин двох площин

Якщо дві площини в просторі перетинаються, то вони перетинаються по прямій. Тому пряму в просторі можна задати за допомогою рівнянь тих площин, внаслідок перетину яких утворюється ця пряма. Тобто, загальне рівняння прямої в просторі набуде вигляду

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$

причому нормальні вектори площин $\vec{n}_1(A_1; B_1; C_1)$ та $\vec{n}_2(A_2; B_2; C_2)$ не повинні бути паралельними. Отже.

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$

– загальне рівняння прямої в просторі.

Для того, щоб, маючи загальне рівняння прямої в просторі, записати її канонічне чи параметричне рівняння, треба знайти точку, через яку проходить пряма, та напрямний вектор цієї прямої. Щоб знайти необхідну точку, треба в загальне рівняння прямої підставити конкретне значення однієї невідомої, наприклад, z=0, потім з системи знайти інші невідомі x та y. Для того, щоб знайти напрямний вектор прямої \vec{s} , зауважимо, що \vec{s} перпендикулярний до векторів $\vec{n}_1(A_1;B_1;C_1)$ та $\vec{n}_2(A_2;B_2;C_2)$, тому як \vec{s} можна взяти векторний добуток векторів \vec{n}_1 та \vec{n}_2 , тобто $\vec{s}=\vec{n}_1\times\vec{n}_2$, або

$$\vec{s} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix}$$

формула напрямного вектора прямої в просторі, заданої загальним рівнянням.

Кут між прямими

Нехай дві прямі в просторі задані канонічними рівняннями, тобто

$$l_1: \frac{x-x_1}{m_1} = \frac{y-y_1}{n_1} = \frac{z-z_1}{p_1}, \qquad l_2: \frac{x-x_2}{m_2} = \frac{y-y_2}{n_2} = \frac{z-z_2}{p_2}.$$

Кут α між прямими l_1 та l_2 дорівнює куту між їхніми напрямними векторами $\vec{s}_1(m_1;n_1;p_1)$ та $\vec{s}_2(m_2;n_2;p_2)$. Тому

$$\cos\alpha = \cos(\vec{s}_1, \vec{s}_2) = \frac{(\vec{s}_1, \vec{s}_2)}{|\vec{s}_1| \cdot |\vec{s}_2|} = \frac{m_1 m_2 + n_1 n_2 + p_1 p_2}{\sqrt{m_1^2 + n_1^2 + p_1^2} \sqrt{m_2^2 + n_2^2 + p_2^2}},$$

отже, кут між прямими, заданими канонічними рівняннями, обчислюють за формулою

$$\cos \alpha = \frac{m_1 m_2 + n_1 n_2 + p_1 p_2}{\sqrt{m_1^2 + n_1^2 + p_1^2} \sqrt{m_2^2 + n_2^2 + p_2^2}}.$$

Для того, щоб прямі l_1 та l_2 були паралельними, необхідно, щоб їхні напрямні вектори були паралельними, тому координати векторів повинні бути пропорційними. Тому

$$\frac{m_1}{m_2} = \frac{n_1}{n_2} = \frac{p_1}{p_2}$$

- умова паралельності прямих, заданих канонічними рівняннями.

Для того, щоб прямі l_1 та l_2 були перпендикулярними, необхідно, щоб їхні напрямні вектори були перпендикулярними, тому скалярний добуток $(\vec{s}_1, \vec{s}_2) = 0$, тобто

$$m_1 m_2 + n_1 n_2 + p_1 p_2 = 0$$

– умова перпендикулярності прямих, заданих канонічними рівняннями.

Розміщення двох прямих у просторі

Дві прямі в просторі можуть бути мимобіжними, а можуть лежати в одній площині, тобто перетинатися чи бути паралельними. Нехай задано дві прямі в просторі

$$l_1: \frac{x-x_1}{m_1} = \frac{y-y_1}{n_1} = \frac{z-z_1}{p_1}, \qquad l_2: \frac{x-x_2}{m_2} = \frac{y-y_2}{n_2} = \frac{z-z_2}{p_2}.$$

Точка $M_1(x_1;y_1;z_1)$ належить прямій l_1 , напрямний вектор цієї прямої $\vec{s}_1(m_1;n_1;p_1)$. Аналогічно точка $M_2(x_2;y_2;z_2)$ належить прямій l_2 , напрямний вектор цієї прямої $\vec{s}_2(m_2;n_2;p_2)$. Для того, щоб прямі l_1 та l_2 лежали в одній площині, необхідно та достатньо, щоб вектори $\overline{M_1M_2}(x_2-x_1;y_2-y_1;z_2-z_1)$, $\vec{s}_1(m_1;n_1;p_1)$ і $\vec{s}_2(m_2;n_2;p_2)$ були компланарними, тобто, щоб виконувалася умова

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ m_1 & n_1 & p_1 \\ m_2 & n_2 & p_2 \end{vmatrix} = 0$$

- умова належності двох прямих одній площині.

Перетин прямої та площини

Знайдемо точку перетину прямої $l: \frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$ та площини $\pi: Ax+By+Cz+D=0$.

Запишемо параметричне рівняння прямої π : $\begin{cases} x = x_0 + mt, \\ y = y_0 + nt, \text{ та розв'яжемо систему рівнянь} \\ z = z_0 + pt \end{cases}$

$$\begin{cases} x = x_0 + mt, \\ y = y_0 + nt, \\ z = z_0 + pt, \\ Ax + By + Cz + D = 0. \end{cases}$$

Підставивши значення x, y, z з перших трьох рівнянь у четверте, одержимо рівняння

$$A(x_0 + mt) + B(y_0 + nt) + C(z_0 + pt) + D = 0,$$

$$(Am + Bn + Cp)t = -(Ax_0 + By_0 + Cz_0 + D).$$

Можливі такі три випадки.

1. Якщо $Am + Bn + Cp \neq 0$, то система має єдиний розв'язок

$$t = -\frac{Ax_0 + By_0 + Cz_0 + D}{Am + Bn + Cp},$$

$$x = x_0 - \frac{Ax_0 + By_0 + Cz_0 + D}{Am + Bn + Cp}m,$$

$$y = y_0 - \frac{Ax_0 + By_0 + Cz_0 + D}{Am + Bn + Cp} n,$$

$$z = z_0 - \frac{Ax_0 + By_0 + Cz_0 + D}{Am + Bn + Cp} p.$$

Тобто пряма перетинає площину.

- 2. Якщо Am + Bn + Cp = 0, $Ax_0 + By_0 + Cz_0 + D \neq 0$, то система не має розв'язку, пряма паралельна до площини.
- 3. Якщо Am + Bn + Cp = 0, $Ax_0 + By_0 + Cz_0 + D = 0$, то система має безліч розв'язків, пряма l належить плошині π .

Кут між прямою та площиною

Нехай задано пряму l з напрямним вектором $\vec{s}(m;n;p)$ і площину π з нормальним вектором $\vec{n}(A;B;C)$. Позначимо через φ кут між прямою l і площиною π , а через ψ – кут між векторами $\vec{s}(m;n;p)$ і $\vec{n}(A;B;C)$. Очевидно, що $\varphi=90^\circ-\psi$, якщо $\psi\leq 90^\circ$ (рис. 3.29) і $\varphi=\psi-90^\circ$, якщо $\psi>90^\circ$. Крім того, $\sin\varphi=|\cos\psi|$.

Обчислюємо

$$\cos \psi = \cos(\vec{s}, \vec{n}) = \frac{\vec{s} \cdot \vec{n}}{|\vec{s}| \cdot |\vec{n}|} = \frac{Am + Bn + Cp}{\sqrt{A^2 + B^2 + C^2} \cdot \sqrt{m^2 + n^2 + p^2}},$$

тому

$$\sin \varphi = \frac{|Am + Bn + Cp|}{\sqrt{A^2 + B^2 + C^2} \cdot \sqrt{m^2 + n^2 + p^2}}$$

– формула кута між прямою та площиною.

Пряма l та площина π паралельні, якщо вектори $\vec{s}(m;n;p)$ та $\vec{n}(A;B;C)$ перпендикулярні, тому

$$Am + Bn + Cp = 0$$

- умова паралельності прямої та площини.

Пряма l та площина π перпендикулярні, якщо вектори $\vec{s}(m;n;p)$ та $\vec{n}(A;B;C)$ паралельні, тому

$$\frac{A}{m} = \frac{B}{n} = \frac{C}{p}$$

- умова перпендикулярності прямої та площини.

Криві другого порядку

До кривих другого порядку належать еліпс, гіпербола та парабола. Рівняння цих кривих у прямокутній декартовій системі координат ϵ рівняннями другого степеня щодо x і y, тобто

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0;$$
 $A^{2} + B^{2} + C^{2} \neq 0.$

Коло

Означення. *Колом* називають множину точок площини, які знаходяться на однаковій відстані від фіксованої точки (центра кола).

Рівняння кола з центром у початку координат і радіусом R має вигляд:

$$x^2 + y^2 = R^2.$$

Рівняння кола з центом у точці O(a;b) і радіусом R має вигляд:

$$(x-a)^2 + (y-b)^2 = R^2$$
.

Еліпс

Означення. *Еліпсом* називають множину точок площини, сума відстаней від яких до двох фіксованих точок (ϕ окусів еліпса) є сталою.

Нехай F_1 і F_2 фокуси еліпса. Декартову систему координат виберемо так, щоб вісь Ox проходила через фокуси, а вісь Oy ділила відрізок F_2F_1 навпіл. Позначимо відстань між фокусами 2c. Тоді $F_1(-c;0)$ і $F_2(c;0)$. Нехай M(x;y) — довільна точка еліпса. Довжини відрізків F_1M і F_2M позначимо r_1 та r_2 , відповідно. Сума цих відстаней є деякою сталою величиною, яка характеризує еліпс. Цю сталу величину позначимо 2a. Тоді

$$r_1 = \sqrt{(x+c)^2 + y^2}$$
, $r_2 = \sqrt{(x-c)^2 + y^2}$

- фокальні радіуси точки M(x; y).

3 означення еліпса $r_1 + r_2 = 2a$, тому

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a$$
.

Звілси

$$\sqrt{(x+c)^2 + y^2} = 2a - \sqrt{(x-c)^2 + y^2}$$
.

Піднесемо обидві частини рівняння до квадрата, отримаємо

$$(x+c)^2 + y^2 = 4a^2 - 4a\sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2$$
.

Звівши подібні доданки, одержимо

$$4xc = 4a^2 - 4a\sqrt{(x-c)^2 + y^2}.$$

Звідси

$$a\sqrt{(x-c)^2 + y^2} = a^2 - cx$$
.

Знову обидві частини рівняння підносимо до квадрата, маємо

$$a^{2}((x-c)^{2} + y^{2}) = a^{4} - 2a^{2}cx + c^{2}x^{2}$$
.

Перегрупувавши доданки, отримаємо

$$(a^2-c^2)x^2+a^2y^2=a^2(a^2-c^2)$$
.

Нехай $b^2=a^2-c^2$ (це можливо, оскільки a>c). Тоді рівняння запишемо у вигляді $b^2x^2+a^2y^2=a^2b^2$. Поділимо рівняння на a^2b^2 . Матимемо *канонічне рівняння еліпса*

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
.

Точки $A_1(-a;0)$, $A_2(a;0)$, $B_1(0;-b)$, $B_2(0;b)$ називають вершинами еліпса ; відрізки $\left|A_1A_2\right|=2a$ і $\left|B_1B_2\right|=2b$ довжинами великої і малої осей еліпса; точки $F_1(-c;0)$, $F_2(c;0)$ — фокусами, а відрізки F_1M та F_2M — фокальними радіусами точки M(x;y), яка належить еліпсу.

Означення. *Ексцентриситет* еліпса — це відношеня відстані між фокусами еліпса до довжини його великої осі, тобто число $e = \frac{c}{a}$.

Оскільки в еліпса c < a, то e < 1. Через ексцентриситет еліпса можна виразити співвідношення його півосей

$$\frac{b}{a} = \sqrt{\frac{a^2 - c^2}{a^2}} = \sqrt{1 - \left(\frac{c}{a}\right)^2} = \sqrt{1 - e^2}$$

і фокальні радіуси

$$r_{1} = \sqrt{(x+c)^{2} + y^{2}} = \sqrt{(x+c)^{2} + b^{2} \left(1 - \frac{x^{2}}{a^{2}}\right)} =$$

$$= \sqrt{x^{2} + 2cx + c^{2} + b^{2} - \frac{b^{2}x^{2}}{a^{2}}} = \sqrt{\frac{a^{2} - b^{2}}{a^{2}}x^{2} + 2cx + c^{2} + a^{2} - c^{2}} =$$

$$= \sqrt{\frac{c^{2}x^{2}}{a^{2}} + 2xc + a^{2}} = \sqrt{\left(a + \frac{c}{a}x\right)^{2}} = \left|a + \frac{c}{a}x\right| = a + ex.$$

Отже, $r_1 = a + ex$, аналогічно $r_2 = a - ex$.

Означення. Директрисами еліпса називають дві прямі, перпендикулярні до великої осі еліпса, які розташовані симетрично щодо центра еліпса на відстані $\frac{a}{e}$ від нього. Рівняння директрис $x = \pm \frac{a}{e}$.

Якщо фокуси еліпса на осі Oy , то b>a і $c=\sqrt{b^2-a^2}$, то ексцентриситет $e=\frac{c}{b}$, рівняння директрис $y=\pm\frac{b}{a}$.

3.5.2. Гіпербола

Означення. *Гіперболою* називають множину точок площини, різниця відстаней яких від двох фіксованих точок (ϕ окусів) є сталою.

Цю сталу величину позначаємо 2a, відстань між фокусами — 2c, вважаємо, що 2c > 2a. Декартову систему координат вибираємо так, як і для виведення канонічного рівняння еліпса, тобто вісь абсцис проведемо через фокуси F_1 і F_2 гіперболи, а початком координат буде середина відрізка F_1F_2 .

Нехай M(x;y) — довільна точка гіперболи. Довжини відрізків F_1M і F_2M позначимо r_1 та r_2 , відповідно. Тоді

$$r_1 = \sqrt{(x+c)^2 + y^2}$$
, $r_2 = \sqrt{(x-c)^2 + y^2}$.

3 означення гіперболи | $r_1 - r_2 \models 2a$. Тоді

$$|\sqrt{(x+c)^2+y^2}-\sqrt{(x-c)^2+y^2}|=2a$$
.

Або

$$\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = \pm 2a.$$

Звідси

$$\sqrt{(x+c)^2 + y^2} = \pm 2a + \sqrt{(x-c)^2 + y^2}$$
.

Піднесемо обидві частини рівняння до квадрата, отримаємо

$$(x+c)^2 + y^2 = 4a^2 \pm 4a\sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2.$$

Звівши подібні доданки, одержимо

$$4xc = 4a^2 \pm 4a\sqrt{(x-c)^2 + y^2}$$
.

Звідси

$$\mp a\sqrt{(x-c)^2 + y^2} = a^2 - cx$$
.

Знову обидві частини рівняння підносимо до квадрата, отримаємо

$$a^{2}((x-c)^{2} + y^{2}) = a^{4} - 2a^{2}cx + c^{2}x^{2}$$
.

Перегрупувавши доданки, матимемо

$$(c^2-a^2)x^2-a^2y^2=a^2(c^2-a^2).$$

Нехай $b^2 = c^2 - a^2$ (це можливо, оскільки c > a). Тоді рівняння запишемо у вигляді $b^2 x^2 - a^2 y^2 = a^2 b^2$. Поділимо рівняння на $a^2 b^2$. Одержимо *канонічне рівняння гіперболи*

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

Точки $A_1(-a;0)$, $A_2(a;0)$ називають дійсними вершинами гіперболи; а відрізок $|A_1A_2|=2a$ довжиною дійсної осі гіперболи; точки $B_1(0;-b)$, $B_2(0;b)$ — уявними вершинами гіперболи; відрізок довжиною 2b — уявною віссю гіперболи; точки $F_1(-c;0)$, $F_2(c;0)$ — фокусами, а відрізки F_1M та F_2M — фокальними радіусами точки M(x;y) гіперболи.

Рівняння $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ — рівняння гіперболи, для якої вісь Oy — дійсна, Ox — уявна. Для такої гіперболи $F_1(0;-c)$, $F_2(0;c)$.

Означення. Прямі $y = \pm \frac{b}{a}x$ називаються асимптотами гіперболи.

Означення. *Ексцентриситетом* гіперболи називають відношеня відстані між фокусами гіперболи до довжини її дійсної осі, тобто число $e = \frac{c}{a} > 1$.

Через ексцентриситет гіперболи можна виразити співвідношення її півосей

$$\frac{b}{a} = \sqrt{e^2 - 1}$$

і фокальні радіуси

$$r_1 = \pm (ex + a), r_2 = \pm (ex - a),$$

де плюс (мінус) беремо для правої (лівої) гілки гіперболи.

Означення. Директрисами гіперболи називають прямі, перпендикулярні до дійсної осі гіперболи , які є на відстані $\frac{a}{e}$ від початку координат. Рівняння директрис $x = \pm \frac{a}{e}$.

Для гіперболи $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ рівняння директрис $y = \pm \frac{b}{e}$.

Парабола

Означення. *Параболою* називають множину всіх точок площини, рівновіддалених від фіксованої прямої (*директриси*) і фіксованої точки (*фокуса*), яка не належить цій прямій.

Виберемо систему координат так, щоб вісь Ox проходила через фокус перпендикулярно до директриси, а вісь Oy через середину перпендикуляра, опущеного з фокуса на директрису. Позначимо відстань від фокуса до директриси через p. Тоді координати фокуса $F(\frac{p}{2};0)$, а рівняння директриси $x=-\frac{p}{2}$. Нехай M(x;y) — довільна точка параболи. Тоді відстань від точки M до директриси дорівнює $x+\frac{p}{2}$, а довжина відрізка MF дорівнює $\sqrt{(x-\frac{p}{2})^2+y^2}$. З означення параболи

$$\sqrt{(x - \frac{p}{2})^2 + y^2} = x + \frac{p}{2}.$$

Піднесемо цю рівність до квадрата, одержимо

$$(x-\frac{p}{2})^2 + y^2 = x^2 + px + \frac{p^2}{4}$$
,

тоді

$$x^{2} - px + \frac{p^{2}}{4} + y^{2} = x^{2} + px + \frac{p^{2}}{4}$$
.

Матимемо канонічне рівняння параболи

$$y^2 = 2px.$$

Рівняння $x^2 = 2py$ теж є канонічними рівняннями параболи, симетричної стосовно осі Oy. Фокальний радіус точки, яка належить параболі,

$$r = x + \frac{p}{2}.$$

Директоріальна властивість кривих другого порядку

Теорема. Відношення довжини фокального радіуса кожної точки кривої другого порядку до відстані від цієї точки до відповідної директриси ϵ величиною сталою і дорівню ϵ ексцентриситету кривої, тобто

$$\frac{r}{d} = e$$
.

Доведення. Нехай M(x; y) — довільна точка на кривій другого порядку.

Для еліпса $r_1=a+ex$, $r_2=a-ex$ — фокальні радіуси, $d_1=x+\frac{a}{e}$, $d_2=\frac{a}{e}-x$ — відстані від точки до відповідних директрис. Тому

$$\frac{r_1}{d_1} = \frac{a+ex}{x+\frac{a}{e}} = \frac{(a+ex)e}{xe+a} = e,$$

$$\frac{r_2}{d_2} = \frac{a-ex}{a-x} = \frac{(a-ex)e}{a-ex} = e.$$

Для правої гілки гіперболи $r_1 = ex + a$, $r_2 = ex - a$, $d_1 = x + \frac{a}{e}$, $d_2 = x - \frac{a}{e}$, тому

$$\frac{r_1}{d_1} = \frac{a + ex}{x + \frac{a}{e}} = \frac{(a + ex)e}{xe + a} = e,$$

$$\frac{r_2}{d_2} = \frac{ex - a}{x - \frac{a}{e}} = \frac{(ex - a)e}{ex - a} = e.$$

Для лівої гілки гіперболи $r_1 = -ex - a$, $r_2 = a - ex$, $d_1 = -\frac{a}{e} - x$, $d_2 = \frac{a}{e} - x$. Тоді

$$\frac{r_1}{d_1} = \frac{-ex - a}{-\frac{a}{e} - x} = \frac{(-ex - a)e}{-a - ex} = e,$$

$$\frac{r_2}{d_2} = \frac{a - ex}{\frac{a}{e} - x} = \frac{(a - ex)e}{a - ex} = e.$$

Для параболи $r=d=x+\frac{p}{2}$, тому $\frac{r}{d}=1$, отже, ексцентриситет параболи дорівнює одиниці. Теорему доведено.

Полярні рівняння кривих другого порядку

Полярні рівняння кривих другого порядку одержуємо, використовуючи попередню теорему, тобто, що $\frac{r}{d} = e$.

Візьмемо за полярну вісь вісь абсцис, а за полюс — лівий фокус еліпса, або правий фокус гіперболи, або фокус параболи. Нехай у цій полярній системі координат точка на кривій другого порядку має координати $M(r; \varphi)$. Проведемо через фокус хорду, перпендикулярну до полярної осі, позначимо її довжину 2p. Верхній кінець хорди має координати $P(p; \frac{\pi}{2})$.

Число p називається полярним параметром кривої. Для всіх точок кривої правильною є рівність $\frac{r}{d}=e\ .$ Для точки P ця рівність набуде вигляду $\frac{p}{d_1}=e\ .$

Позначимо через A точку перетину полярної осі та директриси, через B — основу перпендикуляра, опущеного з точки M на полярну вісь. Тоді

$$d = AB = AF + FB = d_1 + r\cos\varphi.$$

Оскільки $d_1 = \frac{p}{e}$, то $d = \frac{p}{e} + r \cos \varphi$. Позаяк $\frac{r}{d} = e$, то

$$\frac{r}{\frac{p}{e} + r\cos\varphi} = e.$$

Звідси одержуємо полярне рівняння кривих другого порядку

$$r = \frac{p}{1 - e \cos \varphi},$$

яке у випадку e < 1 ϵ рівнянням еліпса, у випадку e > 1 – гіперболи, у випадку e = 1 – параболи.

Для еліпса та гіперболи $p = \frac{b^2}{a}$.

Поверхні другого порядку

Поверхнею другого порядку називається множина всіх точок M(x, y, z) простору \mathbf{R}^3 , координати яких задовольняють рівняння

$$f(x, y, z) = a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + 2b_1x + 2b_2y + 2b_3z + c = 0,$$

причому хоча б один з коефіцієнтів a_{ii} відмінний від нуля.

Теорема. Для довільної поверхні другого порядку існує прямокутна система координат, в якій рівняння цієї поверхні має один з таких виглядів:

1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 -$$
еліпсоїд;

2.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$$
 – уявний еліпсоїд;

3.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$$
 – точка;

4.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
 — однопорожнинний гіперболоїд;

5.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$
 – двопорожнинний гіперболоїд;

6.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$
 – еліптичний конус;

7.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2pz$$
 – еліптичний параболоїд;

8.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2pz$$
 – гіперболічний параболоїд;

9.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 – еліптичний циліндр;

10.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$
 – уявний циліндр;

11.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 – гіперболічний циліндр;

12.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$
 – Bics Oz ;

13.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$
 — пара площин $\frac{y}{b} = \pm \frac{x}{a}$, які перетинаються;

14.
$$x^2 = 2py$$
 — параболічний циліндр;

15.
$$x^2 = a^2$$
 — пара паралельних площин;

16.
$$x^2 = -a^2 -$$
пара уявних площин;

17.
$$x^2 = 0$$
 — пара площин, які збігаються.

Еліпсоїд

Означення. *Еліпсоїдом* називається поверхня (рис. 1), яка в деякій прямокутній системі координат задана канонічним рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Координатні площини ϵ площинами симетрії елепсоїда, еліпсоїд симетричний стосовно осей кооодинат і стосовно початку координат.

Еліпсоїд має шість вершин: $A_1(a;0;0)$, $A_2(-a;0;0)$, $B_1(0;b;0)$, $B_2(0;-b;0)$, $C_1(0;0;c)$, $C_2(0;0;-c)$. Відрізки $A_1A_2=2a$, $B_1B_2=2b$, $C_1C_2=2c$ називаються осями елепсоїда, а числа a, b та c – його півосями.

Якщо еліпсоїд перетнути площиною $xO\ y$, тобто площиною з рівнянням z=0, то утвориться еліпс $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$. Аналогічно перетином еліпсоїда і площин x=0 та y=0 є еліпси $\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$ та $\frac{x^2}{a^2}+\frac{z^2}{c^2}=1$, відповідно.

Якщо a=b, то еліпсоїд задається рівнянням $\frac{x^2+y^2}{a^2}+ +\frac{z^2}{c^2}=1$ і називається *еліпсоїдом* обертання навколо осі Oz. Аналогічно можна одержати еліпсоїди обертання навколо осей Ox та Oy.

Якщо a = b = c, то еліпсоїд є сферою $x^2 + y^2 + z^2 = a^2$.

Рис. 1

Однопорожнинний гіперболоїд

Означення. Однопорожнинним гіперболоїдом називається поверхня (рис.2), яка в деякій прямокутній системі координат задана канонічним рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$$

Координатні площини є площинами симетрії однопорожнинного гіперболоїда $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$, а початок координат – його центром симетрії (рис. 2).

Однопорожнинний гіперболоїд має чотири вершини: $A_1(a;0;0)$, $A_2(-a;0;0)$, $B_1(0;b;0)$, $B_2(0;-b;0)$. Відрізки $A_1A_2=2a$, $B_1B_2=2b$ називаються осями однопорожнинного гіперболоїда, а числа a, b та c – його півосями.

Якщо однопорожнинний гіперболоїд перетнути площиною xO y , тобто площиною з рівнянням z=0 , то утвориться еліпс $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$. Перетином однопорожнинного гіперболоїда і площин x=0 та y=0 є гіперболи $\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$ та $\frac{x^2}{a^2}-\frac{z^2}{c^2}=1$, відповідно. Якщо однопорожнинний гіперболоїд перетнути площиною z=h , де $h\in \mathbf{R}$, то утвориться еліпс $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1+\frac{h^2}{c^2}$.

Двопорожнинний гіперболоїд

Означення. Двопорожнинним гіперболоїдом називається поверхня (рис. 3), яка в деякій прямокутній системі координат задана канонічним рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1.$$

Координатні площини є площинами симетрії двопорожнинного гіперболоїда $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$, а початок координат – його центром симетрії (рис. 3).

Двопорожнинний гіперболоїд має дві вершини: $C_1(0;0;c)$, $C_2(0;0;-c)$. Відрізок $C_1C_2=2c$ є віссю симетрії, а числа a, b та c – півосями двопорожнинного гіперболоїда.

Перетином двопорожнинного гіперболоїда і площин x=0 та y=0 є гіперболи $\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1$ та $\frac{x^2}{a^2}-\frac{z^2}{c^2}=-1$. Якщо двопорожнинний гіперболоїд перетнути площиною z=h, де $h\in {\bf R}$, |h|>c, то утвориться еліпс $\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{h^2}{c^2}-1$.

Конус

Означення. *Еліптичним конусом* називається поверхня (рис. 4), яка в деякій прямокутній системі координат задана канонічним рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0.$$

Конус утворюється прямими, які проходять через початок координат. Справді, треба довести, що пряма, яка з'єднує початок координат та довільну точку $M_0(x_0;y_0;z_0)$ конуса, повністю лежить на конусі. Очевидно, що $\frac{{x_0}^2}{a^2} + \frac{{y_0}^2}{b^2} - \frac{{z_0}^2}{c^2} = 0$. Якщо деяка точка M(x;y;z) належить прямій, то її координати $M(tx_0;ty_0;tz_0)$, де t- деяке число. Підставимо координати цієї точки в рівняння конуса, одержимо рівність $\frac{{x_0}^2}{a^2} + \frac{{y_0}^2}{b^2} - \frac{{z_0}^2}{c^2} = 0$.

Перетином конуса та площини z=h, де $h\in \mathbf{R}$, ϵ крива $\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{h^2}{c^2}$, тобто еліпс $\frac{x^2}{a^2h^2}+\frac{y^2}{b^2h^2}=1$.

Еліптичний параболоїд

Означення. *Еліптичним параболоїдом* називається поверхня (рис. 5), яка в деякій прямокутній системі координат задана канонічним рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2pz.$$

Координатні площини xOz та yOz є площинами симетрії еліптичного параболоїда $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2\,pz\,,$ вісь Oz – його віссю симетрії, а початок координат – його вершиною (рис. 5).

Рис. 5

Перетином еліптичного параболоїда та площин x=0 та y=0 є, відповідно, параболи $y^2=2b^2\,pz$ та $x^2=2a^2\,pz$. Якщо еліптичний параболоїд перетнути площиною z=h, де $h\in {\bf R}$, |h|>0, то утвориться еліпс $\frac{x^2}{a^2}+\frac{y^2}{b^2}=2\,ph$.

Гіперболічний параболоїд

Означення. *Гіперболічним параболоїдом* називається поверхня (рис. 6), яка в деякій прямокутній системі координат задана канонічним рівнянням

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2pz.$$

Координатні площини xOz та yOz є площинами симетрії гіперболічного параболоїда, вісь Oz — його віссю симетрії, а початок координат — його вершиною (рис. 6).

Рис. 6

Перетином гіперболічного параболоїда та площин x=0 і y=0 є, відповідно, параболи $y^2=-2b^2pz$ та $x^2=2a^2pz$. Якщо гіперболічний параболоїд перетнути площиною z=h, де $h\in {\bf R}$, $h\neq 0$, то утвориться гіпербола $\frac{x^2}{a^2}-\frac{y^2}{b^2}=2ph$. Перетином гіперболічного параболоїда та площини z=0 є пара прямих

$$\frac{x}{a} - \frac{y}{b} = 0$$
 ta $\frac{x}{a} + \frac{y}{b} = 0$.

Циліндри

Означення. *Циліндром* називається поверхня, яка в деякій прямокутній системі координат задана канонічним рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

– еліптичний циліндр (рис. 7), або

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

- гіперболічний циліндр (рис. 8), або

$$x^2 = 2py$$

– параболічний циліндр (рис. 9).

Циліндри утворені прямими лініями, паралельними осі Oz, на це вказує відсутність координати z в рівняннях.

Рис. 7

Рис. 8

Власні значення і власні вектори матриці

Нехай $A = (a_{ij})$ — деяка квадратна матриця розміру $n \times n$ з дійсними елементами, λ — деяке невідоме число.

Означення Ненульовий вектор \vec{x} називається власним вектором матриці A, що відповідає власному значенню λ , якщо $A \cdot \vec{x} = \lambda \vec{x}$.

Геометричний зміст полягає в тому, що під дією матриці A власний вектор переходить у колінеарний до нього, а число λ є коефіцієнтом розтягу.

Тоді
$$A \cdot \vec{x} - \lambda \vec{x} = \vec{0}$$
,
$$(A - \lambda E) \cdot \vec{x} = \vec{0}$$
,
$$\begin{pmatrix} a_{11} - \lambda & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & a_{23} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix}.$$

Дістанемо однорідну систему лінійних рівнянь

$$\begin{cases} (a_{11} - \lambda)x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + (a_{22} - \lambda)x_2 + \dots + a_{2n}x_n = 0, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + (a_{nn} - \lambda)x_n = 0. \end{cases}$$
(1)

$$\begin{pmatrix}
a_{11} & a_{1n} \\
a_{n1} & a_{nn}
\end{pmatrix}
\begin{pmatrix}
x_{1} \\
x_{n}
\end{pmatrix}$$

$$\begin{pmatrix}
\lambda & 0 & 0 \\
0 & \lambda & 0
\end{pmatrix}$$

$$\chi_1 = \chi_2 = \dots = \chi_N = 0$$

Система (1) має ненульовий розв'язок ($\vec{x} \neq \vec{0}$), якщо $\det(A - \lambda E) = 0$.

Означення. Рівняння $\det(A - \lambda E) = 0$ називається характеристичним рівнянням матриці A, а його корені — власними значеннями матриці A.

Означення. Множина власних значень матриці A називається спектром матриці.

Для кожного λ_i знаходимо розв'язок системи лінійних рівнянь $(A - \lambda_i E)\vec{x} = \vec{0}$. Ненульові розв'язки цієї системи будуть власними векторами, відповідними власному значенню λ_i . Ці власні вектори утворюють фундаментальну систему розв'язків системи (1).

Властивості власних векторів та власних значень матриці

1. Власні вектори лінійного оператора, які відповідають різним власним значенням, лінійно незалежні.

- 2. Власні значення симетричної матриці ϵ дійсні, а власні вектори, що відповідають різним власним значенням, перпендикулярні.
- 3. Якщо власні значенння матриці A різні, то існує матиця T, складена з власних векторів матриці A, що матриця $B = T^{-1}AT$ діагональна з власними значеннями по діагоналі.

Приклад. Знайти власні значення та власні вектори матриці $A = \begin{pmatrix} 1 & 4 \\ -2 & 7 \end{pmatrix}$.

$$det(A-\lambda E) = \begin{vmatrix} 1-\lambda & 4 \\ -2 & 7-\lambda \end{vmatrix} = 0$$

$$(1-\lambda)(7-\lambda)+8=0$$

 $7-\lambda-7\lambda+\lambda^2+8=0$

$$\lambda^{2} - 8\lambda + 15 = 0$$

$$\lambda_1 = 3$$
 $\lambda_2 = 5 - b$ nachi z Karenhl

$$\begin{cases} (a_{11} - \lambda)x + a_{12}y = 0 \\ a_{21}x + (a_{22} - \lambda)y = 0 \end{cases}$$

$$a_{21} \times + (a_{22} - \lambda) y = 0$$

$$\begin{pmatrix} -2 & 4 \\ -2 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 \\ 0 & 0 \end{pmatrix}$$
 y-bissua

$$\vec{X}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 bracken bentop, uso bignob. $\lambda = 3$

r=rang A=1 h=2

N=Z

n-7=1 birera

$$\begin{pmatrix} -4 & 4 \\ -2 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \qquad \begin{array}{c} x - y = 0 \\ y - bi henq \end{array}$$

$$\tilde{\chi}_{2}=\begin{pmatrix}1\\1\end{pmatrix}$$
 - brachen bentop,
yo bignob. brach,
znorenno $\lambda=5$

Приклад. Знайти власні значення та власні вектори матриці $A = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}$. $\begin{vmatrix} 2 - \lambda & -2 & 0 \\ -2 & 1 - \lambda & -2 \end{vmatrix} = (2 - \lambda)(1 - \lambda)(-\lambda) - 4(2 - \lambda) + 4\lambda = 0$ $\begin{vmatrix} -2 & -\lambda & -2 \\ 0 & -2 & -\lambda \end{vmatrix} = (2 - 2\lambda - \lambda + \lambda^2)(-\lambda) - 8 + 4\lambda + 4\lambda = 0$ $= -2\lambda + 3\lambda^{2} - \lambda^{3} - 8 + 8\lambda = -\lambda^{3} + 6\lambda + 3\lambda^{2} - 8 = 0$ $\lambda^3 - 3\lambda^2 - 6\lambda + 8 = 0$ ±1, ±2, ±4, ±8 $\lambda = 1 \quad 13 - 3 \cdot 1^{2} - 6 \cdot 1 + 8 = 0 \quad \text{YPA, um bragary}$ $- \frac{\lambda^{3} - 3 \lambda^{2} - 6 \lambda + 8}{\lambda^{3} - \lambda^{2}} = \frac{\lambda - 1}{\lambda^{2} - 2\lambda - 8}$ $- \frac{\lambda^{3} - \lambda^{2}}{-2 \lambda^{2} - 6\lambda} = \frac{\lambda - 1}{\lambda^{2} - 2\lambda - 8}$ $\frac{-2\lambda^{2}+2\lambda}{-8\lambda+8} \qquad (\lambda-1)\cdot(\lambda^{2}-2\lambda-8)=0$ $\lambda-1=0 \qquad \lambda^{2}-2\lambda-8$ $\lambda_{1}=1 \qquad \lambda_{1}=-2$ $\lambda - 1 = 0 \qquad \lambda^2 - 2\lambda - 8 = 0$ $\lambda_2 = -2$ $\lambda_3 = 4$ Dru 1=1 $\begin{cases} x - 2y = 0 \\ 2y + z = 0 \end{cases}$ y=1 2.1+2=0 $\vec{x}_1 = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$ beknop gre $\lambda = 1$ 7=-2 X-2=0 X=2 $\chi_2 = \begin{pmatrix} 1/2 \\ 1 \end{pmatrix}$

$$\begin{pmatrix}
4 & -2 & 0 \\
-2 & 3 & -2 \\
0 & -2 & 2
\end{pmatrix} \sim \begin{pmatrix}
2 & -1 & 0 \\
0 & 2 & -2 \\
0 & -2 & 2
\end{pmatrix} \sim \begin{pmatrix}
2 & -1 & 0 \\
0 & 1 & -1
\end{pmatrix} = 3$$

$$\begin{cases}
2x - y = 0 & 2 = 1 & y - 1 = 0 & y = 1 \\
y - 2 = 0 & 2x - 1 = 0 & 2x - 1 = 0
\end{cases} = \begin{pmatrix}
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\
1/2 \\$$

X=2

Приклад. Знайти власні значення та власні вектори матриці
$$A = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$$
.

Розв'язування.

Обчислимо характеристичний многочлен матриці А

$$\det(A - \lambda E) = \begin{vmatrix} \frac{2}{3} - \lambda & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} - \lambda & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} - \lambda \end{vmatrix} = \frac{1}{27} \begin{vmatrix} 2 - 3\lambda & -1 & -1 \\ -1 & 2 - 3\lambda & -1 \\ -1 & -1 & 2 - 3\lambda \end{vmatrix} = \frac{1}{27} ((2 - 3\lambda)^3 - 1 - 1 - 3(2 - 3\lambda)) = \frac{1}{27} (8 - 36\lambda + 54\lambda^2 - 27\lambda^3 - 8 + 9\lambda) = -\lambda^3 + 2\lambda^2 - \lambda = 0$$

$$-\lambda \left(\lambda^2 - 2\lambda + 1\right) = 0$$

$$-\lambda = 0$$

$$\lambda^2 - 2\lambda + 1 = 0$$

$$\lambda = 0$$

$$\lambda = 0$$

$$\lambda = 0$$

$$\lambda = 0$$

Коренями цього многочлена ϵ власні значення $\,\lambda_1^{}=0\,,\,\,\lambda_2^{}=\lambda_3^{}=1\,.$

Знайдемо власний вектор для власного значення $\lambda = 0$ як ненульовий розв'язок системи лінійних рівнянь

$$\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Зведемо матрицю системи до східчастого вигляду

$$\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 \\ 2 & -1 & -1 \\ -1 & -1 & 2 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 \\ 0 & 3 & -3 \\ 0 & -3 & 3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Система лінійних рівнянь набуде вигляду

$$\begin{cases}
-x + 2y - z = 0, \\
y - z = 0.
\end{cases}$$

Нехай
$$z = 1$$
, тоді $\begin{cases} -x + 2y = 1, \\ y = 1, \end{cases}$, $x = 1$. Отже, $\vec{x}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ – власний вектор, який відповідає власному

значенню $\lambda = 0$.

Для $\lambda_2 = \lambda_3 = 1$ власні вектори знайдемо з системи

$$\begin{pmatrix} -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Зведемо матрицю системи до східчастого вигляду

$$\begin{pmatrix}
-\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3}
\end{pmatrix} \sim \begin{pmatrix}
-\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \sim \begin{pmatrix}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}.$$

$$x + y + z = 0.$$

 $\begin{pmatrix} -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \end{pmatrix} \sim \begin{pmatrix} -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$ Система лінійних рівнянь набуде вигляду x + y + z = 0. $\begin{cases} y = 1 & z = 0 \\ y = 2 & z = 1 \\ 0 & x_3 = 1 \\ 0 & y = 1 \end{cases}$ Одержуємо два власні вектори $\vec{x}_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\vec{x}_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, знайдені як фундаментальна система

розв'язків для цієї системи лінійних рівнянь.

Отже,
$$\vec{x}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 — власний вектор, який відповідає власному значенню $\lambda = 0$, $\vec{x}_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\vec{x}_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ —

власні вектори, які відповідають власному значенню $\lambda = 1$.

Приклад. Знайти власні значення та власні вектори матриці

$$A = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 1 \end{pmatrix}.$$

Знайти таку невироджену матрицю T, щоб матриця $A' = T^{-1}AT$ була діагональною.

Розв'язування. Знайдемо власні значення лінійного оператора як корені характеристичного многочлена

$$\det(A - \lambda E) = \begin{vmatrix} 3 - \lambda & 2 & 0 \\ 2 & 2 - \lambda & 2 \\ 0 & 2 & 1 - \lambda \end{vmatrix} =$$

$$= (3 - \lambda) \begin{vmatrix} 2 - \lambda & 2 \\ 2 & 1 - \lambda \end{vmatrix} - 2 \begin{vmatrix} 2 & 2 \\ 0 & 1 - \lambda \end{vmatrix} =$$

$$= (3 - \lambda)(\lambda^2 - 3\lambda + 2 - 4) - 2(2 - 2\lambda) =$$

$$= -\lambda^3 + 6\lambda^2 - 3\lambda - 10 . \implies \bigcirc$$

$$\lambda^{3} - 6\lambda^{2} + 3\lambda + 10 = 0$$
 $\pm 1 \pm 2 \pm 5 \pm 10$

$$\lambda=1 \quad 1-6+3+10 \neq 0$$

$$\lambda = -1 \quad -1-6-3+10 = 0$$

$$\lambda^{3} - 6\lambda^{2} + 3\lambda + 10 \quad | \lambda+1 \rangle$$

$$- \lambda^{3} + \lambda^{2} \quad | \lambda^{2} - 7\lambda + 10 \rangle$$

$$- \gamma^{2} + 3\lambda$$

$$- \gamma^{2} + 3\lambda$$

$$- \gamma^{2} - 7\lambda$$

$$- \gamma^{2} + 3\lambda$$

$$- \gamma^{2} - 7\lambda$$

$$- \gamma^{2} - \gamma^{2} + 10$$

$$- \gamma^{2} - \gamma^{2$$

Корені цього многочлена $\lambda_1=-1$, $\lambda_2=2$, $\lambda_3=5$.

Обчислимо відповідні власні вектори.

Для $\lambda = -1$ розв'язуємо систему рівнянь

$$\begin{pmatrix} 4 & 2 & 0 \\ 2 & 3 & 2 \\ 0 & 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Зводимо її матрицю до східчастого вигляду

$$\begin{pmatrix} 4 & 2 & 0 \\ 2 & 3 & 2 \\ 0 & 2 & 2 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 2 \\ 0 & -4 & -4 \\ 0 & 2 & 2 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Система лінійних рівнянь набуде вигляду

$$\begin{cases} 2x+3y+2z=0, \\ y+z=0. \end{cases}$$

Розв'зком цієї системи ϵ , наприклад, x = 1, y = -2, z = 2, тому відповідний власний вектор

$$\vec{x}_1 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}.$$

Аналогічно знаходимо інші власні вектори

$$\vec{x}_2 = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}, \qquad \vec{x}_3 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}.$$

Знайдемо матрицю T , стовпцями якої ϵ координатні стовпці власних векторів. Отже,

$$T = \begin{pmatrix} 1 & 2 & 2 \\ -2 & -1 & 2 \\ 2 & -2 & 1 \end{pmatrix}.$$

Знаходимо матрицю
$$T^{-1} = \frac{1}{27} \begin{pmatrix} 3 & -6 & 6 \\ 6 & -3 & -6 \\ 6 & 6 & 3 \end{pmatrix}$$
.

Звідси одержуємо

$$A' = T^{-1}AT = \frac{1}{27} \begin{pmatrix} 3 & -6 & 6 \\ 6 & -3 & -6 \\ 6 & 6 & 3 \end{pmatrix} \begin{pmatrix} 3 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 \\ -2 & -1 & 2 \\ 2 & -2 & 1 \end{pmatrix},$$
$$A' = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$$

Квадратичні форми

Означення. *Квадратичною формою* від змінних $x_1, x_2, ..., x_n$ називається однорідний многочлен другого степеня вигляду

$$Q(x_1, x_2, ..., x_n) = \sum_{i=1}^n \sum_{i=1}^n a_{ij} x_i x_j,$$

де $a_{ij} = a_{ji}, a_{ij} \in \mathbb{R}$.

перетворення.

Використовуючи матрично-векторні позначення, квадратичну форму $Q(x_1, x_2, ..., x_n)$ записуватимемо у вигляді

$$Q(\vec{x}) = (x_1 \quad x_2 \quad \dots \quad x_n) \begin{pmatrix} a_{11} & a_{12} & \dots & a_{nn} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \vec{x}^T A \vec{x},$$

де
$$\vec{x} \in \mathbf{R}^n$$
, $A = (a_{ii})$, $A = A^T$.

Матрицю A називають *матрицею квадратичної форми* $Q(\vec{x})$.

Означення. Квадратична форма має *канонічний вигляд*, якщо її матриця діагональна, $a_{ij} = 0$ при $i \neq j$, тобто:

$$Q(x_1, x_2, ..., x_n) = a_1 x_1^2 + a_2 x_2^2 + ... + a_n x_n^2$$

Означення. Квадратична форма має *нормальний вигляд*, якщо в її канонічному вигляді коефіцієнти $a_i \in \{-1,1\}$.

Твердження. Кожну квадратичну форму за допомогою невиродженого лінійного перетворення координат можна звести до канонічного та нормального вигляду.

Квадратичну форму можна звести до канонічного вигляду *методом виділення повних квадратів*, який відомий як *метод Лагранжа*.

Квадратичну форму можна зводити до канонічного вигляду методом зведенням до головних осей.

Щоб звести квадратичну форму до головних осей, треба записати матрицю A цієї квадратичної форми, знайти її власні значення λ_i . Тоді зведена квадратична форма матиме канонічний вигляд $\sum_{i=1}^n \lambda_i x_i^2$. Якщо ж треба знайти відповідне перетворення, то для кожного власного значення λ_i знаходимо власний вектор. Система векторів, які відповідають різним власним значенням, є ортогональною. Пронормувавши систему власних векторів, складаємо з них матрицю T і записуємо

Означення. Квадратична форма $Q(\vec{x})$ називається *додатно визначеною*, якщо для довільного $\vec{x} \in \mathbf{R}^n$, $\vec{x} \neq \vec{0}$, $Q(\vec{x}) > 0$.

Означення. Квадратична форма $Q(\vec{x})$ називається *від'ємно визначеною*, якщо для довільного $\vec{x} \in \mathbf{R}^n$, $\vec{x} \neq \vec{0}$, $Q(\vec{x}) < 0$.

Якщо квадратична форма $Q(\vec{x})$ може набувати додатних і від'ємних значень, то вона називається знакозмінною.

Правильні такі умови додатної визначеності.

- 1. Квадратична форма $Q(\vec{x})$ додатно визначена тоді і тільки тоді, коли всі коефіцієнти в канонічному вигляді квадратичної форми додатні.
- 2. Квадратична форма $Q(\vec{x})$ додатно визначена тоді і тільки тоді, коли всі власні значення матриці квадратичної форми додатні.
- 3. Якщо квадратична форма $Q(\vec{x})$ додатно визначена, то визначник \ddot{i} матриці додатний. Обернене твердження неправильне.

Вироджена квадратична форма (rangA < n) не може бути додатно визначеною, і лише знакозмінна або невід'ємна.

Головними мінорами матриці
$$A = (a_{ij})$$
 називаються мінори $\Delta_1 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \cdots, \ \Delta_n = \det A$.

Справджується теорема (критерій Сильвестра).

Квадратична форма $Q(\vec{x})$ ϵ додатно визначеною тоді і тільки тоді, коли всі головні мінори її матриці додатні. Тобто:

$$Q(\vec{x}) > 0 \iff \begin{cases} \Delta_1 > 0 \\ \Delta_2 > 0 \\ \Delta_3 > 0 \\ \dots \\ \Delta_n > 0 \end{cases}$$

Квадратична форма $Q(\vec{x})$ є від'ємно визначена тоді і тільки тоді, коли знаки кутових мінорів чергуються, причому $\Delta_1 < 0$. Тобто:

$$Q(\vec{x}) < 0 \iff \begin{cases} \Delta_1 < 0 \\ \Delta_2 > 0 \\ \Delta_3 < 0 \\ \Delta_4 > 0 \\ \dots \end{cases}$$