G51FAI Fundamentals of AI

Instructor: Siang Yew Chong

Overview

Objectives

- ☐ The need for AI study
- Combinatorial Explosion & Example Problems
- Brief history of AI
- □ Introduce some important AI tests and terminologies

Questions

Why do we need AI anyway?

The Travelling Salesman Problem (TSP)

- □ A salesperson has to visit a number of cities
- □ (S)He can start at any city and must finish at that same city
- The salesperson must visit each city only once
 - for examples, with 5 cities a possible tour is:

- Solving the TSP means finding the minimum cost solution:
 - given a set of cities and distances between them, the optimal tour is the one with the shortest total distance

The Travelling Salesman Problem (TSP)

- ☐ Suppose we have n cities
 - for 1st city we have n choices
 - for 2nd city we have (n-1) choices....
 - possible number of routes is thus n*(n-1)*(n-2)*....*1
 - Hence, we have n! sequences
- Note: If reversed sequence is considered the same tour, n!/2 possible tours

Combinatorial Explosion

A 10 city TSP has around 1.8*10⁶ possible solutions.

50 City TSP has 1.52*10⁶⁴ possible solutions

Age of the universe is about $45 * 10^{16}$ seconds

A 10GHz computer might do 109 tours per second

Running since start of universe, it would still only have done 10²⁶ tours

Not even close to evaluating all tours!

Need to be clever about how to solve such search problems!

Scaling Properties

- \square Big Oh notation: O(f(n))
 - n is a measure of problem size or runtime
 - Function f(n) is an upper bound on the asymptotic behavior (as n gets very large)
 - E.g. $(5n^2 + 4n)$ is $O(n^2)$
 - "Polynomial" means O(n^k) for some fixed k
 e.g., O(n²)
 - "Exponential" means O(2^{an}) for some fixed a
 e.g., O(2^{n/20})

Scaling Properties

- Why is exponential so much worse than polynomial?
- □ Let's say we have two problems A and B with scaling properties for the runtimes of the best algorithms:
 - A: O(n²) polynomial (quadratic)
 - B: O(2^{n/20}) exponential
- □ Suppose that currently, for A and B, can manage to solve problems of size n=1000 in 10 mins
- \square Now, suppose we need to solve n=1100
 - A: will take $(1100/1000)^2 * 10 = 12.1$ mins
 - B: will take $(2^{1100/20}/2^{1000/20}) * 10 = 2^{100/20} * 10 = 320$ mins

Combinatorial Explosion

Combinatorial Explosion

Running on a computer capable of 1 million instructions/second

	10	20	50	100	200
N^2	1/10,000 second	1/2500 second	1/400 second	1/100 second	1/25 second
N ⁵	1/10 second	3.2 seconds	5.2 minutes	2.8 hours	3.7 days
2 ^N	1/1000 second	1 second	35.7 years	> 400 trillion centuries	45 digit no. of centuries
N ^N	2.8 hours	3.3 trillion years	70 digit no. of centuries	185 digit no. of centuries	445 digit no. of centuries

Ref: Harel, D. 2000. Computer Ltd.: What they really can't do, Oxford University Press

One of the main thrusts of AI is to find ways to control or circumvent this fundamental issue of combinatorial explosion

A Brief History of AI

- ☐ The gestation of AI (1943 1956):
 - 1943: McCulloch & Pitts: Boolean circuit model of brain
 - 1950: Turing's "Computing Machinery and Intelligence", Shannon's seminal paper on computer Chess $\sim 10^{120}$
 - 1956: McCarthy's name "Artificial Intelligence" adopted
- ☐ Early enthusiasm, great expectations (1952 1969):
 - Early successful AI programs: Samuel's checkers,
 Newell & Simon's General Problem Solver, Gelernter's
 Geometry Theorem Prover
 - 1958: McCarthy's AI programming language LISP
 - 1965: Robinson's complete algorithm for logical reasoning, Zadeh publish his famous paper "Fuzzy Sets"

A Brief History of AI

- ☐ A dose of reality (1966 1974):
 - -AI discovered computational complexity
 - -Early experiments in machine evolution (now genetic algorithms)
- ☐ Knowledge-based systems (1969 1988):
 - Intelligence needs knowledge (strong as opposed to weak methods)
 - 1976: MYCIN by Shortliffe (blood infection diagnosis)
 - Expert systems industry booms

A Brief History of AI

- The return of NNs and novel AI (1986 onward):
 - Mid 80's: Back-propagation learning algorithm reinvented
 - Expert systems industry busts
 - 1988: Novel AI (ALife, GAs, Soft Computing, ...)
 - Split in AI approaches: neat vs scruffy
 - Emergence of intelligent agents

The Turing Test

Source: Juan Alberto Sánchez Margallo - https://commons.wikimedia.org/wiki/File:Test_de_Turing.jpg

- ☐ The interrogator C only knows the person and machine as A and B, i.e., C cannot see A and B.
- Using a teletype, the interrogator, can ask A and B any question he/she wishes. The aim of the interrogator is to determine which is the person and machine.
- ☐ If the machine succeeds in fooling the interrogator into thinking that it is a person, the machine is deemed intelligent.
- □ https://www.youtube.com/watch?v=IFIW8KphZo0

The Chinese Room

- ☐ In 1980 John Searle devised a thought experiment which he called the Chinese Room (Searle, 1980)
 - Searle, J.R. 1980. Minds, Brains and Programs. *Behavioural and Brain Sciences*, 3: 417-457, 1980

The Chinese Room

- ☐ The system comprises:
 - a human, who only understands English
 - a rule book, written in English
 - two stacks of paper.
 - o One stack of paper is blank.
 - o The other has indecipherable symbols on them.
 - In computing terms
 - the human is the CPU
 - the rule book is the program
 - the two stacks of paper are storage devices.
- □ The system is housed in a room that is totally sealed with the exception of a small opening

Chinese Room: Process

- ☐ The human sits inside the room waiting for pieces of paper to be pushed through the opening.
- ☐ The pieces of paper have indecipherable symbols written upon them.
- ☐ The human has the task of matching the symbols from the "outside" with the rule book.
- □ Once the symbol has been found the instructions in the rule book are followed.
 - may involve writing new symbols on blank pieces of paper,
 - or looking up symbols in the stack of supplied symbols.
- □ Eventually, the human will write some symbols onto one of the blank pieces of paper and pass these out through the opening.

Searle's Claim

- We have a system that is capable of passing the Turing Test and is therefore intelligent according to Turing.
- □ But the system does not understand Chinese as it just comprises a rule book and stacks of paper which do not understand Chinese.

Summary

- □ Understand what is meant by combinatorial explosion (esp. w.r.t. TSP).
- □ The Turing Test and Chinese Room
 - Read the papers, and AIMA section 26.1,
 26.2 and understand their relationship
- Read section 1.1, 1.3, 1.4 of AIMA

Acknowledgements

Most of the lecture slides are adapted from the same module taught in Nottingham UK by
Professor Graham Kendall,
Dr. Rong Qu and
Dr. Andrew Parker