1 Introdução

Ao estudar as diferentes propriedades dos materiais biológicos, nos deparamos com questões fundamentais de serem estudas. As mesmas pode

2 Objetivo

Determinação do Módulo de Elasticidade (Módulo de Young).

3 Materiais e Métodos

Os seguintes materiais foram empregados no experimento:

- 1. Batata Inglesa;
- 2. Cortador de batata cilíndrico;
- 3. Paquímetro digital;
- 4. Máquina Universal de Ensaios;
- 5. Software para aquisição de dados.

Corpo de Prova	Diâmetro (mm)	Altura (mm)	Velocidade (mm/s)
1	13.16	30.83	0.5
2	12.89	31.34	0.5
3	13.20	30.85	0.5
4	13.25	31.80	0.5
5	13.15	32.25	0.5
6	12.81	30.75	0.8
7	12.89	31.78	0.8
8	13.44	31.14	0.8
9	13.60	30.91	0.8
10	13.52	31.03	0.8
11	13.15	31.50	1.2
12	13.35	30.70	1.2
13	13.53	30.71	1.2
14	13.32	31.40	1.2
15	13.28	32.51	1.2

Tabela 1: Dimensão dos corpos de prova submetidos aos testes de compressão para três valores de velocidade

4 Resultados e discussão

A partir dos gráficos obtidos, nota-se que ao elevar a velocidade de deformação dos corpos de prova cilíndricos ocorre elevação nos valores de módulo de elasticidade. Na primeira parte do experimento, sob velocidade de $0.5\,\mathrm{mm/s}$, foi obtido um valor de $\mathrm{E}_1=3.22\,\mathrm{MPa}$ com base no ajuste realizado. Na segunda etapa, a $0.8\,\mathrm{mm/s}$ o comportamento mecânico da batata inglesa ocasionou aumento de $0.32\,\mathrm{MPa}$ ($\mathrm{E}_2=3.54\,\mathrm{MPa}$) e, por fim, na bateria final ($v_3=1.2\,\mathrm{mm/s}$), o valor de E foi novamente incrementado levando a um $\mathrm{E}_3=3.77\,\mathrm{MPa}$.

Figura 1: Gráfico da tensão (σ , em MPa) em função da deformação (ϵ) sob compressão a $0.5\,\mathrm{mm/s}$

5 Conclusão

Figura 2: Gráfico da tensão ($\sigma,$ em MPa) em função da deformação ($\epsilon)$ sob compressão a $0.8\,\mathrm{mm/s}$

Figura 3: Gráfico da tensão (σ , em MPa) em função da deformação (ϵ) sob compressão a 1.2 mm/s

Figura 4: Comportamento do módulo de elasticidade médio do corpo de prova sob diferentes velocidades na compressão.