USC Marshall

School of Business
Full-Time MBA Program

ISA

Welcome Class of 2027 Orientation

JumpStart Sessions *Business Math*July 23, 2025

Business Math Topics

- Order of Operations & Basic Algebra Techniques
- Linear Equations
- Non-linear Equations
 - Quadratic, Polynomial, Exponential
- Exponential & Logarithmic Functions
- Descriptive Statistics

Order of Operations

- Parentheses
- Exponents
- Multiplication
- Division
- Addition
- Subtraction

Order of Operations: Examples

$$3 \times 7^2 + 2^3 =$$

$$10 \div 2 + 3 =$$

$$(2 \times 3)^2 \times 5 =$$

$$6 + 8/2 + 2^3 =$$

$$2 \times 3^2 \times 5 =$$

$$3 \times (7^2 + 2^3) =$$

Other Mathematical Rules

Distributive law:
$$a(b+c) = ab + ac$$

Multiplying fractions:
$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

Dividing fractions:
$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

Adding Fractions

Common denominator: $\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$ No common denominator: $\frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{c}{db} = \frac{ad+cb}{bc}$

Algebra: Application

• A used car salesman makes \$500 per month plus \$100 for every car he sells.

• Let Y be his total monthly income and X be the number of cars he sells.

How can we write Y as a function of X?

• X and Y are variables, and the function relating them is an example of a linear equation.

• A straight line is a linear equation, but planes (or hyperplanes) in multiple dimensions can also be linear.

• In general, linear equations are the easiest functions to work with, so we often try to convert other forms into something linear.

Linear Equations: Application

Total Cost = Fixed Cost + Variable Cost

- Each additional pair of shoes produced by a shoe factory costs \$7.
- The shoe factory has fixed costs totaling \$100,000.
- What is the linear function for the total cost of shoes produced?
- What is the actual total cost of producing 5000 pairs of shoes?

Linear Equations: Slopes

Since each extra pair costs \$7, we can write:

$$\frac{Cost\ of\ Producing\ Extra\ Shoes}{Number\ of\ Extra\ Pairs\ Produced} = \$7$$

- The slope of an equation tells us how much *Y* changes when *X* changes by one unit.
- The slope formula is: $m = \frac{y_2 y_1}{x_2 x_1}$

Linear Equations: Basics

A (two-dimensional) line is determined by two pieces of information:

- Two points on the line, which are used to determine the slope
- One point on the line and the line's slope

Popular ways of writing a line's equation:

- Point-slope formula: $y y_1 = m(x x_1)$
- Slope-intercept form:
 - (1) Algebra: y = mx + b (2) Statistics: $y = b_0 + b_1 x$

Simultaneous Linear Equations

Suppose demand and supply for a product are

(1)
$$D = 49 - P$$
 and (2) $S = 1 + 2P$

where D is demand, S is supply, and P is price.

- What price should be set so that demand = supply?
- What number of products are expected to be sold?

Simultaneous Eqns: Supply & Demand

Economics suggests choosing P so that supply = demand.

Solving for *P*:

$$49 - P = 1 + 2P$$

$$\rightarrow 48 = 3P$$

$$\rightarrow P = 16$$

Plugging in to get *D*:

$$D = 49 - P$$

= $49 - 16$
= 33

Non-Linear Equations

Often, situations are more complicated than what can be represented through linear functions.

For example, linear functions don't explain:

- Value of an investment over time
- Relationship between profit and price
- Pace of technological development over time

We need more complex equations to explain these.

Non-Linear Equations: Example

Assume Q is the number of units (in thousands) a firm expects to sell at price P.

- Suppose Q = 5 P.
- Also let R be the firm's revenue.
- How can we write R as a function of price, P?

Quadratic Functions

These functions take the form of

$$y = ax^2 + bx + c$$

where a, b, and c are just numbers.

- The graph of a quadratic function is curved.
- Unlike simple linear equations, quadratic functions have optimal, or best, values at either *minimum* or *maximum* points.

Quadratic Functions: Application

Suppose the firm from the previous slide has costs of \$4000 (or just "4" if written in thousands).

- What function should be used to write profit in terms of price?
- What price should be charged to break even?

The Quadratic Equation

There are two common ways to solve a quadratic function.

- 1. Factoring. Break down the equation into non-quadratic elements and solve.
- 2. Using the quadratic equation. Plug appropriate values into:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

where the original equation is written as:

$$ax^2 + bx + c = 0$$

Quadratic Functions: Application

The earlier firm most likely *doesn't* just want to break even but wants to make a profit, though.

- What price should it charge to maximize profit?
- Recall Q = 5 P and costs are \$4000 (or "4" in thousands).

Quadratic Functions: Optimality

A quadratic function can have up to 2 roots (solutions), but only one optimal value.

Using the Quadratic Equation, the optimal point is x = -b/2a.

- If a > 0, x is a minimum
- If a < 0, x is a maximum

Quadratic Functions: Application

Assume your average cost for producing something is 0.2Q + 4 + (400/Q). If you produce Q items, you must price them at P = 400 - 2Q to sell them all.

- Write revenue as a function of Q.
- Write total cost as a function of Q.
- Write profit as a function of Q.

How much should you produce to *maximize* profit?

Higher-Order Polynomials

An n^{th} order polynomial is written as:

$$y = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

A cubic function (n = 3) is:

$$y = a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

In general, higher powers add more bumps to the polynomial.

Exponential Functions

There is quite a large difference between x^2 and 2^x .

When x = 10, $x^2 = 100$ but $2^x = 1024$.

Functions like 2^x are called exponential functions.

• Most common bases for exponential functions are 2, 10, and $e=2.718\ldots$

Exponential Functions: Application

Exponentials are at the heart of compound interest.

• If you invest \$P\$ at an interest rate of $100 \times i\%$ compounded annually, after n years you will have $P \times (1+i)^n$.

Exponential Functions: Future Value

The standard single-sum equation for future value is:

$$FV = PV \times (1+i)^n$$

where FV = Future value

PV = Present value

i = Interest rate

n = Number of time periods

Single-Sum Future Value: Application

Suppose \$120 is invested at an annual interest rate of 6% for 7 years. What is its future value?

$$FV = PV \times (1+i)^n$$

 $FV = 120 \times (1+0.06)^7$
 $FV = 180.44

Compound Interest: Application

- How much will you have in 10 years if you invest \$1000 at 8% interest compounded annually?
- How much will you have in 20 years? In 30 years?
- What if the compounding were done monthly?

Rules for Exponents & Powers

•
$$a^{x+y} = a^x a^y$$

a is called the base and x, y are the exponents

Examples:

$$2^{3+2} = 2^3 2^2 = 8 \times 4 = 32$$

$$a^{xy} = (a^x)^y$$

$$2^{2\times3} = (2^2)^3 = 4^3 = 64$$

Logarithms & Rules

Logarithms undo exponentials.

• $log_b(x)$ asks "to what power must you raise b to get x?"

For any b > 0:

- $log_b(b^x) = x$
- $b^{\log_b(x)} = x$

Other rules:

- log(ab) = log(a) + log(b)
- log(a/b) = log(a) log(b)
- $log(a^b) = b log(a)$

Logarithms: Calculating Periods

Using the previous rules, how long will it take to *double* a portfolio if it grows at a compound annual rate of 8%?

Solving for
$$n: FV = PV \times (1+i)^n \to \frac{FV}{PV} = (1+i)^n$$

$$log\left(\frac{FV}{PV}\right) = log(1+i)^n = nlog(1+i)$$

$$n = \frac{log\frac{FV}{PV}}{log(1+i)}$$

$$n = \frac{log2}{log(1.08)} \approx 9.$$

Logarithms: Examples

$$log_28 =$$

$$log_{10}1000 =$$

$$ln e^{23} =$$

$$2^{log_28} =$$

Just simplify these!

$$2log5 - 3log3$$

$$6 \ln x + 4 \ln y$$

Logarithms & Radicals

• Logarithms are useful for solving equations like $a^x = b$ because $x \log(a) = \log(b)$.

- We can also now solve equations of the form $x^n = b$ using the fact that $(x^n)^{1/n} = x$, so that $x = b^{1/n}$.
- $b^{1/n}$ is the " n^{th} root of b." For example, $b^{1/2} = \sqrt{b}$.

Logarithms & Radicals: Application

A classic application here is calculating interest, or growth, rates. Assume you began with \$125, and after 4 years it had grown to \$265. What was the compound growth rate? Solve for i.

$$i = \left(\frac{FV}{PV}\right)^{1/n} - 1$$

$$i = \left(\frac{265}{125}\right)^{1/4} - 1 = 0.2067 = 20.67\%$$

Logarithms & Radicals: Application

• If your money doubles in value after 10 years, what annual interest rate must you be earning?

• How long must you leave \$1000 at 10% interest before you have \$2000?

How long before you have \$1,000,000?

Logarithms: Cobb-Douglas Function

In Economics, the Cobb-Douglas Production Function assumes three inputs affect the amount of output one can produce: capital (K), labor (L), and materials (M).

$$Q = \beta_0 K^{\beta_1} L^{\beta_2} M^{\beta_3}$$

• This looks complicated, but *logarithms* help a lot here.

Logarithms: Cobb-Douglas Function

Some suggestions:

- Take *logs* of both sides of the equation
- Treat log(K), for example, as a new variable
- Now the Cobb-Douglas equation becomes linear

$$log(Q) = log(\beta_0) + \beta_1 log(K) + \beta_2 log(L) + \beta_3 log(M)$$

Natural Logs: Reversing

- The most common version of logarithms is the natural log. When using this, we will need to "back out" of our results to get the calculation we need.
- Luckily, the exponential function is the inverse of the natural log, so we simply need to apply that concept.

$$e^{\ln x} = x$$
 and $\ln(e^x) = x$

Descriptive Statistics Topics

- Basic Terminology
- Scales of Measurement
- Numerical Measures
 - Central tendency
 - Dispersion
- Skewness: Shape of Distributions

MPG for 153 Hybrid Cars

Population

MPG for 153 Hybrid Cars

Population: Set of all items of interest in a statistical problem.

Parameter: Descriptive measure of population

- *N* = population size
- μ = population average
- σ = population standard deviation

Population: 153 Hybrid Cars

- N = 153
- μ = mean = average = 34.80 mpg
- σ = standard deviation = typical fluctuation = 10.97 mpg

Sample

MPG for 39 Hybrid SUV Cars

Sample: Set of data drawn from the population

Statistic: Descriptive measure of sample

- n = sample size
- \bar{x} = sample average
- s =sample standard deviation

Sample: 39 Hybrid SUV Cars

- n = 39
- \bar{x} = mean = average = 26.01 mpg
- s = standard deviation = typical fluctuation = 4.60 mpg

Types of Data & Related Graphs

Numerical (quantitative)

- Natural measurement system
- Ratios and comparisons make sense

Histograms
Boxplots
Scatterplots

TERM 2,
Week 1

Categorical (qualitative)

- Nominal: no inherent ordering
- Ordinal: ordered, but distance between classes may vary

Bar Charts
Pie Charts
Side-by-side Boxplots

TERM 2,
Week 1

Scales of Measurement

Discrete: Possible number of values is countable

- Number of Hybrid SUV Cars
- Number of Comedy films released in 2017
- Number of games in any given World Series

Continuous: Possible number of values is uncountably infinite

- MPG of Hybrid Cars
- Height, weight, distance

Cross-sectional: Snapshot of data at a specific point in time

 Economic indicators for several countries in 2019

Time Series: Result of tracking one or more variables over time

• Economic indicators for only the US from 1990-2023

Measures of Central Tendency

How do we describe a dataset, especially if it is rather large, without having to present a table of meaningless numbers?

Generally, just two numbers are needed:

- 1. Measure of central tendency (i.e. typical value, or location),
- 2. Measure of dispersion (fluctuation).

Common measures of central tendency:

Mean (μ): Average or expected value

Median (M_d): Middle point of ordered observations

Mode (M_0) : Most frequent value

Central Tendency: Population Mean

The **mean** of a **population** of *N* measurements x_1, \dots, x_N :

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i = \frac{1}{N} (x_1 + x_2 + \dots + x_N)$$

Eg: If our Hybrid Car MPG data as a population, the population mean is

$$\mu = \frac{1}{153} \sum_{i=1}^{153} x_i = \frac{1}{153} (41.26 + 54.1 + \dots + 37) = 34.7975 \text{ mpg}$$

Central Tendency: Sample Mean

The **mean** of a **sample** of *n* measurements x_1, \dots, x_n :

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$

Eg: Assessing only the SUV cars from the Hybrid Car MPG dataset, of which there are 39 rows, the sample mean is

$$\bar{x} = \frac{1}{39} \sum_{i=1}^{39} x_i = \frac{1}{39} (18.82 + 21 ... + 33.64) = 26.0077 \text{ mpg}$$

Central Tendency: Drawbacks

We can use \bar{x} as an estimate of μ , but we then need to assess the *accuracy* of this and draw conclusions, or *make inferences*, about μ .

Problem: \bar{x} is extremely sensitive to outliers.

- Outliers may be due to errors in recording data
- May be real (but exceptional) observations
- Usually set aside outliers before computing
- Can also use median

Whenever a dataset has extreme values, the **median** is the preferred measure of central location.

Central Tendency: Median

Given *n* measurements arranged in order of magnitude,

Median = Middle value if n is odd, or

Average of two middle values if *n* is even.

Eg: CEO compensation for 5 food processing firms:

Pillsbury	\$698,000
Borden	\$1,200,000
Campbell Soup	\$646,000
Hershey Foods	\$573,000
Ralston Purina	\$750,000

Central Tendency: Median

Converting to multiples of \$1,000 and arranging in order:

573, 646, 698, 750, 1200

Median compensation is? \$698,000

Mean compensation is? \$773,400

• Mean > median because of outlier, Borden.

Removing Borden, *mean* = \$666,750 < \$672,000 = *median*

- Divides data set into two equal parts
- Half of data lies below median, half lies above it
- Resistant to outliers

Measures of Dispersion

Mean and **median** do not completely summarize a dataset... we also need to know how spread out the data is.

Lightbulb Lifetimes (hrs): GE vs Philips

- GE exhibits better quality control: not much variation
- Philips has more fluctuation although average is same as GE

Measures of Dispersion: Range

Range: Largest minus smallest measurement

- Crude measure with little info about dispersion of values
- No resistance to outliers

Eg: Range of Hybrid Car MPG dataset

- Highest value: 72.92 mpg (Prius Alpha V)
- Lowest value: 17 mpg (Silverado 2WD)

Range =
$$72.92 \text{ mpg} - 17 \text{ mpg} = 55.92 \text{ mpg}$$

Dispersion: Variance & Std Deviation

Population Variance:

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

Population Standard Deviation:

$$\sigma = \sqrt{\sigma^2}$$

Sample Variance:

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Sample Standard Deviation:

$$s = \sqrt{s^2}$$

Dispersion: Variance & Std Deviation

MPG of Population of 153 Hybrid Cars:

Mean:
$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i = \frac{1}{153} (41.26 + 54.1 + \dots + 37) = 34.8 \text{ mpg}$$

Variance:
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

= $\frac{1}{153} [(41.26 - 34.8)^2 + \dots + (37 - 34.8)^2] = 120.3958 \text{ mpg}^2$

Standard Deviation: $\sigma = \sqrt{\sigma^2} = 10.9725 \text{ mpg}$

Dispersion: Variance & Std Deviation

MPG of Sample of 39 SUV Hybrid Cars:

Mean:
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{39} (18.82 + 21 + \dots + 33.64) = 26 \text{ mpg}$$

Variance:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

= $\frac{1}{38} [(18.82 - 26)^2 + \dots + (33.64 - 26)^2] = 21.149 \text{ mpg}^2$

Standard Deviation:
$$s = \sqrt{s^2} = 4.599 \text{ mpg}$$

Distribution Shapes

Histograms and boxplots help uncover distribution shape:

Symmetrical (roughly equal tails)

Bell-Shaped Distribution.

Positively Skewed – skewed right (long tail on right)

Income Distributions.

Negatively Skewed – skewed left (long tail on left)

Scores on an easy exam.

Distribution Shapes

Symmetric Distribution

Phillips Stock Prices*:

Mean ≈ Median and Median is somewhat close to being about halfway between 25th and 75th percentiles.

Right-Skewed Distribution

LA Used Car Prices:

Mean > Median and Mean is closer to the 75th percentile than to the 25th percentile.

Statistics

Variable	Ν	Mean	StDev	Minimum	Q1	Median	Q3	Maximum
Price	110	33598	16314	9950	22991	31210	39220	99999

Left-Skewed Distribution

Top Movies in China, Rotten Tomatoes Score:

Mean < Median and Median is closer to 25th than to 75th percentile.

