50 Exercise 1

of the set $A = \{1, 2, ..., r\}$. Thus, by definition, S(r, n) counts the number of *n*-partitions of A, and therefore

$$\sum_{n=1}^{r} S(r,n) = \text{ the number of partitions of } \{1,2,...,r\}$$

$$= \text{ the number of equivalence relations on } \{1,2,...,r\}.$$

The sum $\sum_{n=1}^{r} S(r, n)$, usually denoted by B_r , is called a *Bell number* after E.T. Bell (1883 - 1960). The first few Bell numbers are:

$$B_1 = 1$$
, $B_2 = 2$, $B_3 = 5$, $B_4 = 15$, $B_5 = 52$, $B_6 = 203$, ...

Exercise 1

- 1. Find the number of ways to choose a pair $\{a,b\}$ of distinct numbers from the set $\{1,2,...,50\}$ such that
 - (i) |a-b|=5; (ii) $|a-b| \le 5$.
- 2. There are 12 students in a party. Five of them are girls. In how many ways can these 12 students be arranged in a row if
 - (i) there are no restrictions?
 - (ii) the 5 girls must be together (forming a block)?
 - (iii) no 2 girls are adjacent?
 - (iv) between two particular boys A and B, there are no boys but exactly 3 girls?
- 3. m boys and n girls are to be arranged in a row, where $m, n \in \mathbb{N}$. Find the number of ways this can be done in each of the following cases:
 - (i) There are no restrictions;
 - (ii) No boys are adjacent $(m \le n+1)$;
 - (iii) The n girls form a single block;
 - (iv) A particular boy and a particular girl must be adjacent.
- 4. How many 5-letter words can be formed using A, B, C, D, E, F, G, H, I, J,
 - (i) if the letters in each word must be distinct?
 - (ii) if, in addition, A, B, C, D, E, F can only occur as the first, third or fifth letters while the rest as the second or fourth letters?

- 5. Find the number of ways of arranging the 26 letters in the English alphabet in a row such that there are exactly 5 letters between x and y.
- Find the number of odd integers between 3000 and 8000 in which no digit is repeated.
- 7. Evaluate

$$1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \cdots + n \cdot n!$$

where $n \in \mathbb{N}$.

8. Evaluate

$$\frac{1}{(1+1)!} + \frac{2}{(2+1)!} + \cdots + \frac{n}{(n+1)!},$$

where $n \in \mathbb{N}$.

9. Prove that for each $n \in \mathbb{N}$,

$$(n+1)(n+2)\cdots(2n)$$

is divisible by 2ⁿ. (Spanish Olympiad, 1985)

- 10. Find the number of common positive divisors of 10⁴⁰ and 20³⁰.
- 11. In each of the following, find the number of positive divisors of n (inclusive of n) which are multiples of 3:
 - (i) n = 210; (ii) n = 630; (iii) n = 151200.
- 12. Show that for any $n \in \mathbb{N}$, the number of positive divisors of n^2 is always odd.
- 13. Show that the number of positive divisors of " $\underbrace{111...1}_{1992}$ " is even.
- 14. Let $n, r \in \mathbb{N}$ with $r \leq n$. Prove each of the following identities:
 - (i) $P_r^n = nP_{r-1}^{n-1}$,
 - (ii) $P_r^n = (n-r+1)P_{r-1}^n$,
 - (iii) $P_r^n = \frac{n}{n-r} P_r^{n-1}$, where r < n,
 - (iv) $P_r^{n+1} = P_r^n + rP_{r-1}^n$,
 - (v) $P_r^{n+1} = r! + r(P_{r-1}^n + P_{r-1}^{n-1} + \dots + P_{r-1}^r).$
- 15. In a group of 15 students, 5 of them are female. If exactly 3 female students are to be selected, in how many ways can 9 students be chosen from the group
 - (i) to form a committee?
 - (ii) to take up 9 different posts in a committee?