Binary Sequences with Structural Delays

Yujie Jiang

Department of Mathematics

4th August 2016

• Suppose $\mathcal{F}_1, \dots, \mathcal{F}_r$ are finite sets of positive integers.

- Suppose $\mathcal{F}_1, \dots, \mathcal{F}_r$ are finite sets of positive integers.
- ullet Let $s=\max\left\{igcup_{1\leq i\leq r}\mathcal{F}_i
 ight\}$. (Maximum delay)

- Suppose $\mathcal{F}_1, \dots, \mathcal{F}_r$ are finite sets of positive integers.
- ullet Let $s=\max\left\{igcup_{1\leq i\leq r}\mathcal{F}_i
 ight\}$. (Maximum delay)
- Consider the sequence

$$y_n = \begin{cases} 0 & \text{if } \exists i \text{ s.t. } y_{n-j} = 0 \ \forall j \in \mathcal{F}_i \\ 1 & \text{otherwise} \end{cases}$$
 (1)

- Suppose $\mathcal{F}_1, \dots, \mathcal{F}_r$ are finite sets of positive integers.
- ullet Let $s=\max\left\{igcup_{1\leq i\leq r}\mathcal{F}_i
 ight\}$. (Maximum delay)
- Consider the sequence

$$y_n = \begin{cases} 0 & \text{if } \exists i \text{ s.t. } y_{n-j} = 0 \ \forall j \in \mathcal{F}_i \\ 1 & \text{otherwise} \end{cases}$$
 (1)

 We want to determine under which circumstances these sequences converge for all initial values.

Let $\mathcal{F}_1=\{1,5\}$ and $\mathcal{F}_2=\{3,6\}$, i.e.

$$y_n = \begin{cases} 0 & \text{if } y_{n-1} = y_{n-5} = 0 \text{ or } y_{n-3} = y_{n-6} = 0 \\ 1 & \text{otherwise} \end{cases} . (2)$$

Let $\mathcal{F}_1=\{1,5\}$ and $\mathcal{F}_2=\{3,6\}$, i.e.

$$y_n = \begin{cases} 0 & \text{if } y_{n-1} = y_{n-5} = 0 \text{ or } y_{n-3} = y_{n-6} = 0 \\ 1 & \text{otherwise} \end{cases} . (2)$$

•
$$s = 6$$

Let $\mathcal{F}_1=\{1,5\}$ and $\mathcal{F}_2=\{3,6\}$, i.e.

$$y_n = \begin{cases} 0 & \text{if } y_{n-1} = y_{n-5} = 0 \text{ or } y_{n-3} = y_{n-6} = 0 \\ 1 & \text{otherwise} \end{cases} . (2)$$

- s = 6
- "Initial Values:" $y_{-6} = y_{-4} = y_{-3} = y_{-1} = 1$ and $y_{-5} = y_{-2} = 0$.

Let $\mathcal{F}_1=\{1,5\}$ and $\mathcal{F}_2=\{3,6\}$, i.e.

$$y_n = \begin{cases} 0 & \text{if } y_{n-1} = y_{n-5} = 0 \text{ or } y_{n-3} = y_{n-6} = 0 \\ 1 & \text{otherwise} \end{cases} . (2)$$

- s = 6
- "Initial Values:" $y_{-6} = y_{-4} = y_{-3} = y_{-1} = 1$ and $y_{-5} = y_{-2} = 0$.
- Continuation of the sequence:

n	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
Уn	1	0	1	1	0	1							

Let $\mathcal{F}_1=\{1,5\}$ and $\mathcal{F}_2=\{3,6\}$, i.e.

$$y_n = \begin{cases} 0 & \text{if } y_{n-1} = y_{n-5} = 0 \text{ or } y_{n-3} = y_{n-6} = 0 \\ 1 & \text{otherwise} \end{cases} . (2)$$

- s = 6
- "Initial Values:" $y_{-6} = y_{-4} = y_{-3} = y_{-1} = 1$ and $y_{-5} = y_{-2} = 0$.
- Continuation of the sequence:

n	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
Уn	1	0	1	1	0	1	1						

Let $\mathcal{F}_1=\{1,5\}$ and $\mathcal{F}_2=\{3,6\}$, i.e.

$$y_n = \begin{cases} 0 & \text{if } y_{n-1} = y_{n-5} = 0 \text{ or } y_{n-3} = y_{n-6} = 0 \\ 1 & \text{otherwise} \end{cases} . (2)$$

- s = 6
- "Initial Values:" $y_{-6} = y_{-4} = y_{-3} = y_{-1} = 1$ and $y_{-5} = y_{-2} = 0$.
- Continuation of the sequence:

n	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
Уn	1	0	1	1	0	1	1	0					

Let $\mathcal{F}_1=\{1,5\}$ and $\mathcal{F}_2=\{3,6\},$ i.e.

$$y_n = \begin{cases} 0 & \text{if } y_{n-1} = y_{n-5} = 0 \text{ or } y_{n-3} = y_{n-6} = 0 \\ 1 & \text{otherwise} \end{cases} . (2)$$

- s = 6
- "Initial Values:" $y_{-6} = y_{-4} = y_{-3} = y_{-1} = 1$ and $y_{-5} = y_{-2} = 0$.
- Continuation of the sequence:

n	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
Уn	1	0	1	1	0	1	1	0	1				

Let $\mathcal{F}_1=\{1,5\}$ and $\mathcal{F}_2=\{3,6\},$ i.e.

$$y_n = \begin{cases} 0 & \text{if } y_{n-1} = y_{n-5} = 0 \text{ or } y_{n-3} = y_{n-6} = 0 \\ 1 & \text{otherwise} \end{cases} . (2)$$

- s = 6
- "Initial Values:" $y_{-6} = y_{-4} = y_{-3} = y_{-1} = 1$ and $y_{-5} = y_{-2} = 0$.
- Continuation of the sequence:

n	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
Уn	1	0	1	1	0	1	1	0	1	1			

Let $\mathcal{F}_1=\{1,5\}$ and $\mathcal{F}_2=\{3,6\}$, i.e.

$$y_n = \begin{cases} 0 & \text{if } y_{n-1} = y_{n-5} = 0 \text{ or } y_{n-3} = y_{n-6} = 0 \\ 1 & \text{otherwise} \end{cases} . (2)$$

- s = 6
- "Initial Values:" $y_{-6} = y_{-4} = y_{-3} = y_{-1} = 1$ and $y_{-5} = y_{-2} = 0$.
- Continuation of the sequence:

n	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
Уn	1	0	1	1	0	1	1	0	1	1	0		

Let $\mathcal{F}_1=\{1,5\}$ and $\mathcal{F}_2=\{3,6\}$, i.e.

$$y_n = \begin{cases} 0 & \text{if } y_{n-1} = y_{n-5} = 0 \text{ or } y_{n-3} = y_{n-6} = 0 \\ 1 & \text{otherwise} \end{cases} . (2)$$

- s = 6
- "Initial Values:" $y_{-6} = y_{-4} = y_{-3} = y_{-1} = 1$ and $y_{-5} = y_{-2} = 0$.
- Continuation of the sequence:

		l	-4	ı		l	ı		l .			l .	
Уn	1	0	1	1	0	1	1	0	1	1	0	1	

Let $\mathcal{F}_1=\{1,5\}$ and $\mathcal{F}_2=\{3,6\}$, i.e.

$$y_n = \begin{cases} 0 & \text{if } y_{n-1} = y_{n-5} = 0 \text{ or } y_{n-3} = y_{n-6} = 0 \\ 1 & \text{otherwise} \end{cases} . (2)$$

- s = 6
- "Initial Values:" $y_{-6} = y_{-4} = y_{-3} = y_{-1} = 1$ and $y_{-5} = y_{-2} = 0$.
- Continuation of the sequence:

			-5											
Γ	Уn	1	0	1	1	0	1	1	0	1	1	0	1	1

•
$$s = 5$$

- s = 5
- Continuation of the sequence:

n	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Уn	1	1	0	0	1								

- *s* = 5
- Continuation of the sequence:

n	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Уn	1	1	0	0	1	0							

- *s* = 5
- Continuation of the sequence:

n	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Уn	1	1	0	0	1	0	1						

- *s* = 5
- Continuation of the sequence:

n	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Уn	1	1	0	0	1	0	1	0					

- s = 5
- Continuation of the sequence:

n	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Уn	1	1	0	0	1	0	1	0	1				

- *s* = 5
- Continuation of the sequence:

п	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Уn	1	1	0	0	1	0	1	0	1	1			

- s = 5
- Continuation of the sequence:

n	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Уn	1	1	0	0	1	0	1	0	1	1	1		

- *s* = 5
- Continuation of the sequence:

n	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Уn	1	1	0	0	1	0	1	0	1	1	1	1	

- s = 5
- Continuation of the sequence:

n	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Уn	1	1	0	0	1	0	1	0	1	1	1	1	1

Open Question

Open Question

For fixed r > 1, determine all sets $\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_r$ such that all solutions $\{y_n\}$ converge.

Related Concepts

Related Concepts

- Fibonacci linear feedback shift register sequences (LFSRs; looking for long periods for all initial values, rather than short).
- Generalizations of Schur's Theorem (Coin Problem, Postage Stamp Problem).

Consecutive Delays

The case
$$\mathcal{F}_1 = \{a, a+1\}$$
 and $\mathcal{F}_2 = \{b, b+1\}$

Consecutive Delays

The case $\mathcal{F}_1 = \{a, a+1\}$ and $\mathcal{F}_2 = \{b, b+1\}$

Conjecture

Suppose $a, b \ge 1$. All solutions to $\{y_n\}$, where

$$y_n = \begin{cases} 0 & \text{if } y_{n-a} = y_{n-a-1} = 0 \text{ or } y_{n-b} = y_{n-b-1} = 0\\ 1 & \text{otherwise} \end{cases}$$
 (3)

are convergent if and only if, for

$$g \stackrel{\text{def}}{=} \max\{\gcd(a, b+1), \gcd(a+1, b)\},\tag{4}$$

we have $g \leq 2$.

Isolated 0's

Conjecture

Suppose
$$\mathcal{F}=\{a,a+1\}$$
 and $\mathcal{F}=\{b,b+1\}$. The set

$$S \stackrel{def}{=} \{ n \ge 0 : y_{n-1} = y_{n+1} = 1 \text{ and } y_n = 0 \}$$

is finite.

Theorem (Assuming no isolated 0's)

The case
$$\mathcal{F}_1 = \{a, a+1\}$$
 and $\mathcal{F}_2 = \{b, b+1\}$

Theorem (Assuming no isolated 0's)

The case
$$\mathcal{F}_1 = \{a, a+1\}$$
 and $\mathcal{F}_2 = \{b, b+1\}$

Theorem

(Berenhaut and Patsolic) Suppose $a,b \geq 1$ and the set $\mathcal S$ is finite. Then all solutions to

$$y_n = \begin{cases} 0 & \text{if } y_{n-a} = y_{n-a-1} = 0 \text{ or } y_{n-b} = y_{n-b-1} = 0\\ 1 & \text{otherwise} \end{cases}$$
 (5)

are convergent if and only if $g \leq 2$, where

$$g \stackrel{\text{def}}{=} \max\{\gcd(a, b+1), \gcd(a+1, b)\}. \tag{6}$$

Question: Can there be infinitely many isolated 0's?

Example 1:
$$\mathcal{F}_1 = \{2,3\}$$
 and $\mathcal{F}_2 = \{5,6\}$

1 010100

Question: Can there be infinitely many isolated 0's?

Example 1:
$$\mathcal{F}_1 = \{2,3\}$$
 and $\mathcal{F}_2 = \{5,6\}$

Example 2:
$$\mathcal{F}_1 = \{8,9\}$$
 and $\mathcal{F}_2 = \{15,16\}$

0 0010001001001010

Example 2:
$$\mathcal{F}_1 = \{8, 9\}$$
 and $\mathcal{F}_2 = \{15, 16\}$

001000100100100100110011001010100
 1101110011111100111111100
 11111100111111100111111100
 11111100111111100111111100
 11111100111111100111111100
 11111100111111100111111100
 11111100111111100111111100
 11111100111111100111111100
 11111100111111100111111100

Example 3:
$$\mathcal{F}_1 = \{6,7\}$$
 and $\mathcal{F}_2 = \{11,12\}$

1 010010101000

Example 3:
$$\mathcal{F}_1 = \{6,7\}$$
 and $\mathcal{F}_2 = \{11,12\}$

Related Theorem for Min-Max Sequences

It is not difficult to prove the following (employing the earlier result).

$\mathsf{Theorem}$

Suppose $\mathcal{F}_1 = \{a, a+1\}$ and $\mathcal{F}_2 = \{b, b+1\}$, and the minimal value in the period is "non-isolated". Then all solutions to

$$y_n = \min_{1 \le i \le r} \left\{ \max_{j \in \mathcal{F}_i} \{ y_{n-j} \} \right\}, \qquad n \ge 0$$
 (7)

are convergent if and only if $g \le 2$.

Suppose $\mathcal{F}_1=\{2,3\}, \mathcal{F}_2=\{4,5\}$ and the initial values in the sequence are 23512.

Suppose $\mathcal{F}_1=\{2,3\}, \mathcal{F}_2=\{4,5\}$ and the initial values in the sequence are 23512.

Suppose $\mathcal{F}_1=\{2,3\}, \mathcal{F}_2=\{4,5\}$ and the initial values in the sequence are 23512.

п	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Уn	2	3	5	1	2								

Suppose $\mathcal{F}_1=\{2,3\}, \mathcal{F}_2=\{4,5\}$ and the initial values in the sequence are 23512.

п	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Уn	2	3	5	1	2	3							

Suppose $\mathcal{F}_1=\{2,3\}, \mathcal{F}_2=\{4,5\}$ and the initial values in the sequence are 23512.

п	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Уn	2	3	5	1	2	3	2						

Suppose $\mathcal{F}_1=\{2,3\}, \mathcal{F}_2=\{4,5\}$ and the initial values in the sequence are 23512.

п	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Уn	2	3	5	1	2	3	2	3					

Suppose $\mathcal{F}_1=\{2,3\}, \mathcal{F}_2=\{4,5\}$ and the initial values in the sequence are 23512.

п	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Уn	2	3	5	1	2	3	2	3	2				

Suppose $\mathcal{F}_1=\{2,3\}, \mathcal{F}_2=\{4,5\}$ and the initial values in the sequence are 23512.

n	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Уn	2	3	5	1	2	3	2	3	2	3			

Suppose $\mathcal{F}_1=\{2,3\}, \mathcal{F}_2=\{4,5\}$ and the initial values in the sequence are 23512.

n	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Уn	2	3	5	1	2	3	2	3	2	3	3		

Suppose $\mathcal{F}_1=\{2,3\}, \mathcal{F}_2=\{4,5\}$ and the initial values in the sequence are 23512.

п	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Уn	2	3	5	1	2	3	2	3	2	3	3	3	

Suppose $\mathcal{F}_1=\{2,3\}, \mathcal{F}_2=\{4,5\}$ and the initial values in the sequence are 23512.

n	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Уn	2	3	5	1	2	3	2	3	2	3	3	3	3

Generalized conjecture for the case r = 2

The case $\mathcal{F}_1 = \{a, a+k\}$ and $\mathcal{F}_2 = \{b, b+k\}$, with k odd.

Generalized conjecture for the case r = 2

The case $\mathcal{F}_1 = \{a, a+k\}$ and $\mathcal{F}_2 = \{b, b+k\}$, with k odd.

Conjecture

Suppose $a, b \ge 1$ and $k \ge 1$ is odd. Then all solutions to

$$y_n = \begin{cases} 0 & \text{if } y_{n-a} = y_{n-a-k} = 0 \text{ or } y_{n-b} = y_{n-b-k} = 0 \\ 1 & \text{otherwise} \end{cases}$$
 (8)

are convergent if and only if $g \leq 2$, where

$$g \stackrel{\text{def}}{=} \max\{\gcd(a, b+k), \gcd(a+k, b)\}. \tag{9}$$

Professor Kenneth S. Berenhaut

- Professor Kenneth S. Berenhaut
- Wake Forest Research Funding

- Professor Kenneth S. Berenhaut
- Wake Forest Research Funding
- MAA

Thank you!

