111-35 345727

> Report 11193 July 1998

GENCORP AEROJET

Integrated Advanced Microwave Sounding Unit-A (AMSU-A)

Performance Verification Report
METSAT AMSU-A2 Receiver Assembly,
P/N 1356441-1, S/N F02

Contract No. NAS 5-32314 CDRL 208

Submitted to:

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Submitted by:

Aerojet 1100 West Hollyvale Street Azusa, California 91702

PERFORMANCE VERICATION TEST REPORT METSAT AMSU-A2 RECEIVER ASSEMBLY FOR INTEGRATED ADVANCED MICROWAVE SOUNDING UNIT-A (AMSU-A)

CONTRACT NO. NAS5-32314 CDRL PAR 3.3.2.1

JULY 1998

SUBMITTED TO

NATIONAL AERONAUTICS AND SPACE ADMINISTERATION GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND 20771

SUBMITTED BY

AEROJET ELECTRONIC SYSTEMS PLANT 1100 WST HOLLYVALE STREET AZUSA, CALIFORNIA 91702

AMSU-A RECEIVER VERIFICATION TEST REPORT

LEVEL OF ASSEMBLY:

SUBASSEMBLY

TEST ITEM:

AMSU-A2 RECEIVER ASSEMBLY

P/N: 1356441-1, S/N: F02

TYPE OF HARDWARE:

METSAT FLIGHT MODEL (FM)

TYPE OF TEST:

FUNCTIONAL PERFORMANCE

VERIFICATION TEST PROCEDURE:

AE-26002/6A

TEST FACILITY LOCATION:

AESP

AZUSA, CALIFORNIA

SIGNATURE:

TEST ENGINEER: Ren Kapper for DATE: 7/27/98

Young MA

TABLE OF CONTENTS

SECTION		PAGE
1.0	INTRODUCTION	1
2.0	REASON FOR TEST	1
3.0	ACCEPTANCE TEST	1
4.0	ORGANIZATION OF TEST DATA	4
5.0	SUMMARY AND RECOMMENDATIONS	5
6.0	TEST DATA	5

1.0 INTRODUCTION

The AMSU-A receiver subsystem comprises two separated receiver assemblies; AMSU-A1 and AMSU-A2 (P/N 1356441-1). The AMSU-A1 receiver contains 13 channels and the AMSU-A2 receiver 2 channels. The AMSU-A1 receiver assembly is further divided into two parts; AMSU-A1-1 (P/N 1356429-1) and AMSU-A1-2 (P/N 1356409-1), which contain 9 and 4 channels, respectively. Figures 1 and 2 illustrate the functional block diagrams of the AMSU-A1 and AMSU-A2 receivers.

The AMSU-A receiver subsystem stands in between the antenna and signal processing subsystems of the AMSU-A instrument and comprises the RF and IF components from isolators to attenuators as shown in Figures 1 and 2. It receives the RF signals from the antenna subsystem, down-converts the RF signals to IF signals, amplifies and defines the IF signals to proper power level and frequency bandwidth as specified for each channel, and inputs the IF signals to the signal processing subsystem.

The test reports for the METSAT AMSU-A receiver subsystem are prepared separately for the A1 and A2 receivers so that each receiver stands alone during integration of instruments into the spacecraft. This test report presents the test data of the METSAT AMSU-A2 Flight Model No. 2 (FM-2) receiver. The tests are performed per the Acceptance Test Procedure for the AMSU-A Receiver Subsystem, AE-26002/6A. The functional performance tests are conducted either at the component or subsystem level. While the component-level tests are performed over the entire operating temperature range predicted by thermal analysis, the subsystem-level tests are conducted at ambient temperature only.

2.0 REASON FOR TEST

The Acceptance Test Procedure for the AMSU-A Receiver Subsystem, AE-26002/6A, is prepared to describe in detail the configuration of the test setups and how the tests are to be conducted to verify that the receiver subsystem meets the specifications as required either in the AMSU-A Instrument Performance and Operation Specification, S-480-80, or in AMSU-A Receiver Subsystem Specification, AE-26608, derived by the Aerojet System Engineering. Test results that verify the conformance to the specifications demonstrates the acceptability of that particular receiver.

3.0 ACCEPTANCE TEST

The acceptance tests for the AMSU-A receiver subsystem are performed either at the component or subsystem level. The component-level tests are conducted per the Acceptance Test Procedure of each component at supplier's facilities. The subsystem-level tests are conducted per the Acceptance Test Procedure, AE-26002/6A at Aerojet Azusa facility.

Figure 1. AMSU-A1 Receiver Functional Block Diagram

Figure 2. AMSU-A2 Receiver Functional Block Diagram

The component-level tests include the center frequency, center frequency stability, bandpass characteristics, gain stability, and gain compression. Although the bandpass characteristics can change slightly in subsystem level, these performance are mainly dependent on the component characteristics. The subsystem-level tests include the center frequency, IF output power, bandpass characteristics, noise figure, noise power stability, and the tunable short test.

The subsystem-level tests are performed on the AMSU-A2 receiver. However, since the diplexer of the AMSU-A2 system is inseparably integrated to the receiver, the acceptance tests are conducted with the feedhorn directly connected to the diplexer that precedes the receiver. These tests are performed at room ambient temperature only.

Wire connections between the D-sub connectors and platinum resistance temperature (PRT) sensors and thermistors, and D-sub connector and survival heaters through the thermal switches are verified by measuring either the resistances between the respective two pins or the voltages across the two respective pins. The component bias voltages are verified by measuring the voltages across the two respective banana jacks of the breakout box that are connected to corresponding pins of the D-sub connector.

A marginal noise figure of 4.39dB was measured for the channel 1 against the specification of 4.5dB. Channel 1 had employed the mixer/IF amplifier, S/N:7A01, the same unit which failed in the EOS AMSU-A2 receiver testing since no other unit was available at the time of test. Because of this marginal performance, the noise figure of the unit was measured over the operating temperature range. The noise figure was improved to 4.42dB at +40°C but degraded to 5.5dB at -5°C resulting in an out-of-specification condition. This anomaly is addressed in F/AR No. 090. The unit (S/N: 7A01) was subsequently replaced by another (S/N: 7A21). With the replaced mixer/IF amplifier, the pre-detection IF output power was measured to be -27.19dB, a slight decrease from -26.86dB. The noise figure was improved to 3.96 dB. The test data for the 3dB bandpass characteristic, noise figure and noise stability are included in the test report.

Tunable short tests were not performed as they were performed on previous EOS AMSU-A2 receiver.

4.0 ORGANIZATION OF TEST DATA

The test data are organized in the following formats. The test data obtained at the component level are first summarized for each category for all applicable receiver channels. The bandpass characteristics of the filters are summarized only for the data measured at mid-temperature. Supporting component test data over the operating temperature range then follows the summaries. The subsystem-level test data then

follows the component test data. Test data recorded in the test sheet as prepared in the Acceptance Test Procedure and related test plots are included in this test report.

5.0 SUMMARY AND RECOMMENDATIONS

Marginal noise figure was measured for channel 1 at room ambient temperature and the noise figure was degraded at low temperature extreme of -5°C. The same mixer/IF amplifier (S/N: 7A01) had performed poorly in previous EOS AMSU-A2 receiver testing and consequently returned to the supplier for rework. We suspect that the poor noise figure performance is due to different impedance matching at the RF port of the mixer.

With the channel 1 mixer/IF amplifier replaced by another (S/N: 7A21), the METSAT AMSU-A2 FM-2 receiver subsystem successfully passed all performance requirements and was delivered to the System Engineering for system integration and test. The test data indicated adequate margins for all performance specifications.

Only limited trouble-shooting was allowed for the flight hardware with tight delivery schedule. Lack of similar hardware has thus far limited us from conducting sufficient trouble-shooting and subsequent root-cause analyses on above-mentioned anomaly.

6.0 TEST DATA

In the following, the component and subsystem-level test data are organized as delineated in Paragraph 4.0.

CENTER FREQUENCY AND FREQUENCY STABILITY

FOR

LOCAL OSCILLATORS (LOs) (DROs)

CENTER FREQUENCY OF LOs

Channel No.	1	2
Specification (GHz) Setting Accuracy (+/-GHz)	23.8 0.002	31.4 0.002
Measured (GHz)	23.80041	31.39940

FREQUENCY STABILITY OF LOS

Channel No.	1	2
Short-Term Specification (+/-MHz)	8	8
Setting Accuracy (+/-MHz)	2	2
W/ Temp. & Voltage (+/-MHz)	6	6
Measured (MHz) Total	+4.51,	+0.79,
<u>Long-Term</u> Specification (+/-MHz)	2	2
By Design or Analysis * (+/-MHz)	0.1	0.1

^{*} Based on accelerated life-test data of DROs.

Channel 1 LO

DRO (P/N: 1336610-1, S/N: 85002)

Solid State

TEST DATA SHEET 7.2 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET FINAL DATA SET

INITIAL DATA	SET FINAL DATA S	SET _/
LITTON TYPE LS <u>K 9604 CF</u> SERIAL NUMBER: <u>8500 2</u>	QUAL TEST	AESD 1336610 ACCEPT TEST
Basic Electrical Test: Ref. Test Para. 5.2.2		
SPECIFICATION	MEASUREMENT AT Tnom ±	±1°C LIMIT
Measurement at Vop=10 VDC		· ·
Temperature	<u>17. 4</u> °C	Table IIIB
Input Voltage	VDC	$10.0 \pm 0.2 \text{ VDC}$
Input Current	69 mA	Table IIIB
Input Power, P _{diss}	W DC	P _{diss} max
Frequency, f _{Tnom}	23,800 41 GHz	Table IIIB
RF Output Power, P _{Tnom}	lu.G dBm	12 to 17 dBm
Frequency Setting Accuracy,	+,4/ MHz	12 to 1. ubii
$\Delta f_{S} = f_{Tnom} - F_{o}$.
Frequency and RF Output Power Variation With Measurement at 9.5 VDC or at9.5 VDC Temperature	h Voltage, Ref. Test Para 5.2.3	Table IIIB
Input Voltage	10VDC	9.5 VDC or Para. 5.2.3.2
Input Current	69 mA	Table IIIB
Frequency, f _{meas}	23.80042 GHz	Table IIIB
RF Output Power, P _{meas}	14.6 dBm	12 to 17 dBm
Measurement at 10.5 VDC or at <u>10.5</u> VDC Temperature Input Voltage Input Current	°C VDC 	Table IIIB 10.5 VDC or Para. 5.2.3.3 Table IIIB
Frequency, f _{meas}	23.80042 GHz	Table IIIB
RF Output Power, P _{meas}	14.6 dBm	12 to 17 dBm
		12 to 17 tibili
Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{Tnos}$	m	
Δf_V at 9.5 VDC or at VDC =	+, o/ MHz	
Δf_V at 10.5 VDC or at VDC =		
Calculate RF Output Power Variation, $\Delta P_V = P_n$	neas - P _{Tnom} ,	
ΔP_V at 9.5 VDC or at VDC = ΔP_V at 10.5 VDC or at VDC =		
·. Acce	ept Reject	
Test Performed by Litton QA	Date 11_19_97 Date NOV 2 5 1997	

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 38 OF 68
56348	Α	1300823	B3	
I ITTONI / COI II	2.000 4.000 12.0	THOUSAND OF COMM		

Solid State

TEST DATA SHEET 7.3

I	FUNCTIONAL	PERFORMANO	CE TESTS	,
INITIAL DA	TA SET	FINAL I	DATA SET _	<u>/</u>
LITTON TYPE LS K 9604C) 1336610- <u>/</u>
SERIAL NUMBER: 85002	QUAL	TEST	ACCI	EPT TEST
Temperature Testing at T=10°C, R	ef. Test Para. 5.2	2.5.1		
SPECIFICATION	MEASUREM	ENT AT T=10°	° ±1°C	LIMIT
Measurement at Vop=10 VDC				
Temperature	•	1.2°C		10° ± 1°C
Input Voltage		o VDC		$10.0 \pm 0.2 \text{ VDC}$
Input Current		69 mA		Table IIIB
Input Power, P _{diss}		69 W DC		Pdiss max
Frequency, $f_{10^{\circ}C}$				Table IIIB
	23.8			12 to 17 dBm;
RF Output Power, P _{10°C}		LLLL dBm		12 to 17 dbm;
Frequency and RF Output Power V Measurement at 9.5 VDC or at		oltage, Ref. Test	t Para 5.2.5.1	**
Temperature		<u>9.₂</u> °C		Table IIIB
Input Voltage		9.5 VDC		9.5 VDC or Para. 5.2.3.2
Input Current		69 mA	•	Table IIIB
Frequency, f _{meas}		olga GHz		Table IIIB
RF Output Power, P _{meas}		ц.ц dBm		12 to 17 dBm
The state of the s				
Measurement at 10.5 VDC or at	10.5 VDC			
Temperature		<u>२.२</u> °C	- Jane	Table IIIB
Input Voltage		O.5 VDC		10.5 VDC or Para. 5.2.3.3
Input Current		mA	소설/중심성	Table IIIB
Frequency, f _{meas}		SOI 88 GHZ		Table IIIB
RF Output Power, P _{meas}	المنافعة المحتولية أأران	L.U dBm		12 to 17 dBm
Ta Gatpat 1 5 Wors, 1 meas				
Calculate Frequency Variation, Δf _V	$=\mathbf{f}_{\text{meas}}-\mathbf{f}_{10^{\circ}\text{C}}$		•	
Δf_V at 9.5 VDC or at	VDC =	+.01	MHz	:
Δf _V at 10.5 VDC or at	VDC =	+.01	MHz	
Δf_T at 10.0 VDC (= $f_{10^{\circ}C}$ - $\overline{f_{Tnom}}$)	==	+1.46	MHz	
The state of the s			•	
Calculate RF Output Power Variati	on, $\Delta P_V = P_{\text{meas}}$	• P _{10°C:} :		
$\Delta P_{\rm V}$ at 9.5 VDC or at	VDC =	<u>\$</u>	dB	
$\Delta P_{\rm V}$ at 10.5 VDC or at	VDC =	<i></i>	dB	
ΔP_T at 10.0 VDC (= $P_{10^{\circ}C}$ - P_{Tnom})	=	-,2	dB	
1 10 C HOUD				
		Accept	Re	ject
Test Performed by			7-97	
Litton Q.A.	7	Date NOV	2 5 1997	
(82	·/			
CODE IDENT NO. S12		MBER	REV	SHEET 39 OF 68
56348 A	. 13	300823	B3	

LITTON / SOLID STATE DIVISION / 3251 OLCOTT ST / SANTA CLARA, CA 95054

TEST DATA SHEET 7.4

FUNCTIONAL PERFORMANCE TESTS					
INITIAL DATA SET	FI	NAL DATA SET _	<u> </u>		
LITTON TYPE LS K 9604 CF SERIAL NUMBER: 85002	QUAL TEST _	AESD ACCE	0 1336610- <u>/</u> EPT TEST		
Temperature Extreme Testing at Tmin, Ref	. Test Para. 5.2.5	.2			
SPECIFICATION	MEASUREME	NT AT Tmin ±1°C	LIMIT		
Measurement at Vop=10 VDC Temperature Input Voltage Input Current Input Power, P _{diss} Frequency, f _{Tmin} RF Output Power, P _{Tmin}	68 -68 23,80383	°C VDC mA W DC GHz dBm	Table IIIB 10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 12 to 17 dBm		
Frequency and RF Output Power Variation Measurement at 9.5 VDC or at 9.5 VT Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{meas}	DC 	°C VDC nA GHz	Table IIIB 9.5 VDC or Para 5.2.3.2 Table IIIB Table IIIB 12 to 17 dBm		
Measurement at 10.5 VDC or at 10.5 V	5.3° 10.5\ 68r 23.80384(PC VDC nA GHz iBm	Table IIIB 10.5 VDC or Para 5.2.3.3 Table IIIB Table IIIB 12 to 17 dBm		
Calculate Frequency Variation, $\Delta f_V = f_{meas} - \Delta f_V$ at 9.5 VDC or at VDC = Δf_V at 10.5 VDC or at VDC = Δf_T at 10.0 VDC (= f_{Tmin} - f_{Tnom})	=				
Calculate RF Output Power Variation, $\Delta P_V = \Delta P_V$ at 9.5 VDC or at VDC = ΔP_V at 10.5 VDC or at VDC = ΔP_T at 10.0 VDC (= P_{Tmin} - P_{Tnom})	=	<i>∮</i> dB dB − , <i>4</i> dB			
Test Performed by Litton Q.A. Acception 1	D	ct <u>U-19-97</u> 10V 2 5 1997	- •		
CODE IDENT NO. SIZE 56348 A	NUMBER 1300823	REV B3	SHEET 40 OF 68		

LITTON / SOLID STATE DIVISION / 3251 OLCOTT ST / SANTA CLARA, CA. 95054

Solid State

	TEST DATA SHEET /.		
	ONAL PERFORMANC		,
INITIAL DATA SE	T FINAL D	AIA SEI	<u></u>
LITTON TYPE LS <u>K 96a4 CF</u> SERIAL NUMBER: <u>85002</u>	OUAL TEST /	AESD	1336610- <u>/</u>
SERIAL NUMBER: 85002	QUAL TEST	ACCE	EPI IESI
Temperature Testing at T=30°C, Ref. Test I	Para. 5.2.5.3		
SPECIFICATION	MEASUREMENT AT	T=30° ±1°C	LIMIT
Measurement at Vop=10 VDC			
Temperature	<u> </u>		30° ± 1°C
Input Voltage	loVDC		$10.0 \pm 0.2 \text{ VDC}$
Input Current	70 mA		Table IIIB
Input Power, P _{diss}	W DC		Pdiss max
Frequency, f _{30°C}	23.79937 GHz		Table IIIB
RF Output Power, P _{30°C}	14.65 dBm		12 to 17 dBm.
Frequency and RF Output Power Variation Measurement at 9.5 VDC or at 9.5 V	With Voltage, Ref. Test	Para 5.2.5.3	
Temperature	30.5 °C		Table IIIB
Input Voltage	9.5 VDC		9.5 VDC or Para. 5.2.3.2
Input Current	70 mA		Table IIIB
Frequency, f _{meas}	23.79935 GHz		Table IIIB
RF Output Power, P _{meas}	14.65 dBm		12 to 17 dBm
The state of the s			
Measurement at 10.5 VDC or at	VDC		
Temperature	<u>30.5</u> ℃		Table IIIB
Input Voltage	10.5VDC		10.5 VDC or Para. 5.2.3.3
Input Current	mA		Table IIIB
Frequency, f _{meas}	23.79937 GHz		Table IIIB
RF Output Power, P _{meas}	14.65 dBm		12 to 17 dBm
	_		
Calculate Frequency Variation, $\Delta f_V = f_{meas}$			
Δf_{V} at 9.5 VDC or at VDC		MHz	
Δf_V at 10.5 VDC or at VDC		MHz	
Δf_T at 10.0 VDC (= $f_{30^{\circ}C}$ - f_{Tnom})	= -1.04	MHz	
Calculate RF Output Power Variation, ΔP _V ΔP _V at 9.5 VDC or at VDC		dB	
ΔP_V at 9.5 VDC or at VDC ΔP_V at 10.5 VDC or at VDC		dB	
ΔP_T at 10.0 VDC (= $P_{30^{\circ}C}$ - $P_{T_{nom}}$)	= +.05	dB	
Art at 10.0 VDC (-r 30°C -1 Tnom)		4	
	Accept	V Rejec	t
Test Performed by	Date 11-19	1-97_	,
Litton Q.A.	Date NOV 2		
CODE IDENT NO. SIZE	NUMBER	REV	SHEET 41 OF 68
56348 A	1300823	B 3	

LITTON / SOLID STATE DIVISION / 3251 OLCOTT ST / SANTA CLARA, CA 95054

TEST DATA SHEET 7.6 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET_____ FINAL DATA SET ____

LITTON TYPE LS <u>R 9604 CF</u> SERIAL NUMBER: <u>85002</u>	QUAL TEST	•	1336610- / PT TEST
Temperature Extreme Testing at Tmax, Ref.	Test Para. 5.2.5.4		
SPECIFICATION	MEASUREMENT AT	Tmax ±1°C	LIMIT
Measurement at Vop=10 VDC			
Temperature	<u> 40</u> °C		Table IIIB
Input Voltage	<u> </u>		$10.0 \pm 0.2 \text{ VDC}$
Input Current	mA		Table IIIB
Input Power, P _{diss}	W DC		Pdiss max
Frequency, f _{Tmax}	23.797 87 GHz		Table IIIB
RF Output Power, P _{Tmax}	14.7 dBm		12 to 17 dBm
Frequency and RF Output Power Variation Measurement at 9.5 VDC or at V		Para 5.2.5.4	•
Temperature	<u> 40</u> °C		Table IIIB
Input Voltage	VDC		9.5 VDC or Para 5.2.3.2
Input Current	TI mA		Table IIIB
Frequency, f _{meas}	23.79788 GHz		Table IIIB
RF Output Power, P _{meas}	14.7 dBm		12 to 17 dBm
Measurement at 10.5 VDC or at 10.5	VDC		
Temperature	°C		Table IIIB
Input Voltage			10.5 VDC or Para 5.2.3.3
Input Current	71 mA		Table IIIB
Frequency, f _{meas}	23.797 89 GHz		Table IIIB
RF Output Power, P _{meas}	dBm		12 to 17 dBm
Calculate Frequency Variation, $\Delta f_V = f_{meas} - \Delta f_V$ at 9.5 VDC or at VDC = Δf_V at 10.5 VDC or at VDC = Δf_T at 10.0V (= f_{Tmax} - f_{Tnom})	- <u>+.01</u> - <u>+.02</u>	MHz MHz MHz	•
Calculate RF Output Power Variation, $\Delta P_V = \Delta P_V$ at 9.5 VDC or at VDC = ΔP_V at 10.5 VDC or at VDC =	= <u>\$</u>	dB dB	
ΔP_T at 10.0 VDC (= P_{Tmax} - P_{Tnom})	-+./	dB	
Test Performed by Litton Q.A. Acce O9 W NOLLI7	Date 11-19-	97 5 1997	
			7
CODE IDENT NO. SIŽE	NUMBER	REV	SHEET 42 OF 68
56348 A	1300823	B3	CLADA CA 05054

TEST DATA SHEET 7.7 FUNCTIONAL PERFORMANCE TESTS FINAL DATA SET INITIAL DATA SET

LITTON TYPE LS K 9604 CF SERIAL NUMBER: 85002 QUA	AESD 133	36610- <u>1</u>
Power Supply Immunity, Ref. Test Para, 5,2,4		
SPECIFICATION	MEASUREMENT AT Tnom ±1°C	LIMIT
Initial Measurement		e e e
Temperature	<u>17.5</u> _ ℃	Table IIIB
Input Voltage		$10.0 \pm 0.2 \text{ VDC}$
Input Current	<u>69</u> mA	Table IIIB
Input Power	W DC	Pdiss max
Frequency (f _{Tnom})	23.80042 GHz	Table IIIB
RF Output Power	14.6dBm	12 to 17 dBm
Frequency Setting Accuracy, Δf_S (= f_{Tnom} - F_o)		
Performance After Short Circuit on Power Supply	: Ref Test Para 5.2.4.2	
Input Voltage	VDC	10.0 ± 0.2 VDC
Input Current	69mA	Table IIIB
Input Power	W DC	Pdiss max
Frequency	23,800 43 GHz	Table IIIB
RF Output Power	14.6dBm	12 to 17 dBm
Over Voltage: Ref Test Para 5.2.4.3		
Overvoltage Input Voltage	28VDC	+28V
Performance After Input Overvoltage		
Input Voltage	VDC ·	10.0 ± 0.2 VDC
Input Current	<u>69</u> mA	Table IIIB
Input Power	69WDC	Pdiss max
Frequency	23.80045 GHz	Table IIIB
RF Output Power	14.6 dBm	12 to 17 dBm
Reverse Polarity: Ref Test Para 5.2.4.4		
Reverse Input Voltage	VDC	$-10.0 \pm 0.2 \text{ VDC}$
Performance After Reverse Input Voltage		
Input Voltage	16VDC	10.0 ± 0.2 VDC
Input Current	<u>69</u> mA	Table IIIB
Input Power	W DC	Pdiss max
Frequency, f _{Tnom}	23.80047 GHz	Table IIIB
RF Output Power	<u>ц, 6</u> dВm	12 to 17 dBm
Frequency Setting Accuracy, $\Delta f_S = f_{Tnom} - F_o$		
	Accept Reject	
Test Performed by	Date 11-19-97	
Litton Q.A. O9 W	Date <u>NOV 2 5 1997</u>	
CODE IDENT NO. SIZE	NUMBER REV	SHEET 43 OF 68
56348 A	1300823 B3	31221 73 01 00
	VISION / 3251 OF COTT ST / SAN	TACLADA CA 05054

	TEST DATA FUNCTIONAL PER	SHEET 7.23B FORMANCE TEST	rs .	·
INITIA	AL DATA SET	FINAL DATA SE	ET	
LITTON TYPE LS K 960 SERIAL NUMBER: 850	002 QUAL TE	ST	AESD 1336 ACCEPT T	
Frequency Pulling and Load V	VSWR 2.5:1 max. all phase	es. Ref Test Para. 5	.9	
TEST DESCRIPTION		I	LIMITS	
Output Open and Short. Ref.	Test Para. 5.9.5			
Temperature Frequency: RF Output Power: Input Voltage Input Current: Results:	23.7 °C 23.800.8 GHz 14.6 dBm 10 VDC 70 mA Acceptable	T 1 1 T	24°C ± 5°C Table IIIB 2 to 17 dBm 0 ± 0.2 VDC Table IIIB No Damage or Deg	radation
Calculate maximum Frequence $\Delta f_{acc} = \Delta f_{S}$ (Use worst-case A	by Accuracy (both positive Δf_S from 7.2, 7.7, and 7.22.	and negative), A) + Δf_H (from 7.22)	A) + Δf_L (from 7.2	3A):
Maximum $\Delta f_{acc} =$	1.08 MHz (Pos	itive) T gative) T	Table IIIB Table IIIB	
Calculate maximum Short-ter $\Delta f_{V+T} = \Delta f_V + \Delta f_T \text{ (Use worst)}$			tive),	
Maximum $\Delta f_{V+T} =$	+3.43 MHz (Pos -2.56 MHz (Neg	-	Table IIIB Table IIIB	
Calculate maximum overall R $\Delta P_{OV} = \Delta P_V + \Delta P_T$ (Use wor	RF Output Power Stability est-case ΔP_V and ΔP_T from	(both positive and no 7.2 thru 7.6) + ΔP_H (egative), (from 7.22A) + ΔP	(from 7.23A):
Maximum $\Delta P_{OV} =$	dB (Positi dB (Negat	ve) 1 tive) -	1.0 dB 1.0 dB	
	Accept	Reject		
Test Performed by	04 (83	Date	,2-97	
Litton Q.A.	EZ	Date <u>NOV</u>	1 2 5 1997	

	CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 61 OF 68	Į
1	56348	A	1300823	B3		į
1	LITTON / SOLII	O STATE D	IVISION / 3251 OF COTT	ST / SANTA	CLARA CA 95054	

Channel 2 LO

DRO (P/N: 1336610-2, S/N: 85009)

TEST DATA SHEET 7.2 FUNCTIONAL PERFORMANCE TESTS FINAL DATA SET _____ INITIAL DATA SET_

LITTON TYPE LS A 9635 CF		AESD	1336610	
	QUAL TEST		PT TEST	
SERIAL NUMBER: 85009	QUAL IESI	_ ACCE	FI IESI	
Basic Electrical Test: Ref. Test Para. 5.2.2				
SPECIFICATION	MEASUREMENT AT T	nom ±1°C	LIMIT	
Measurement at Vop=10 VDC	77 45		.m	
Temperature	<u>17-3</u> °C		Table IIIB	
Input Voltage	<u>lo.o</u> VDC		$10.0 \pm 0.2 \text{ VDC}$	
Input Current	128 _mA		Table IIIB	
Input Power, P _{diss}	W DC	:	P _{diss} max	
Frequency, f _{Tnom}	31,399404 GHz		Table IIIB	
RF Output Power, P _{Tnom}	14.6dBm		12 to 17 dBm	
Frequency Setting Accuracy,	<u>-0.60</u> MHz		:	
$\Delta f_S (= f_{Tnom} - F_o)$				
Frequency and RF Output Power Variation With	h Voltage Def Test Para	5 2 3		
	ii voltage, itel. lest i ala .			
	17.2 °C		Table IIIB	
Temperature	9.5 VDC		9.5 VDC or Para. 5.2.3.2	:
Input Voltage	128 mA		Table IIIB	
Input Current	31,399408GHz		Table IIIB	
Frequency, f _{meas}	14.6 dBm		12 to 17 dBm	
RF Output Power, P _{meas}			12 to 17 dbiii	
Measurement at 10.5 VDC or at VDC				
Temperature	17.2 °C		Table IIIB	
Input Voltage	10.5 VDC		10.5 VDC or Para. 5.2.3.3	
Input Current	(28 mA		Table IIIB	
Frequency, f _{meas}	31,399413GHz		Table IIIB	
RF Output Power, P _{meas}	14.6 dBm	. •	12 to 17 dBm	
Tid Output 1 5 meas				
Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{Tno}$	om>			
Δf_V at 9.5 VDC or at VDC =	+,004	MHz		
Δf_V at 10.5 VDC or at VDC =		MHz		
Calculate RF Output Power Variation, $\Delta P_V = P_t$	meas - P _{Tnom} ,		1	
÷	B		•	
ΔP_{V} at 9.5 VDC or at VDC =		dB		
ΔP_V at 10.5 VDC or at VDC =	= 4	dB		
Acc	ept Reject			
Acc	ehr veleci	•		
Test Performed by	Date 11-20-97			
Litton QA (LITTON)	Data			
M 60	NOV 2 5 1997		-	
CODE IDENT NO. SIZE	NUMBER	REV	SHEET 38 OF 68	1
56348 A	1300823	B3		•
LITTON / SOLID STATE DIVIS			TIARA CA 95054	

Solid State

TEST DATA SHEET 7.3 FUNCTIONAL PERFORMANCE TESTS

	ET FINAL DATA	
LITTON TYPE LS A 9635 CF		AESD 1336610- 3
SERIAL NUMBER: 8509	QUAL TEST	ACCEPT TEST V
Temperature Testing at T=10°C,Ref. Te	est Para. 5.2.5.1	
SPECIFICATION ME	EASUREMENT AT T=10° ±1°C	LIMIT
		1. 6
Measurement at Vop=10 VDC	/o.3 °C	100 - 100
Temperature		10° ± 1°C
nput Voltage	VDC	$10.0 \pm 0.2 \text{ VDC}$
nput Current	/ <u></u>	Table IIIB
nput Power, P _{diss}		Pdiss max
Frequency, f _{10°C}	31.399753 GHz	Table IIIB
RF Output Power, P _{10°C}		12 to 17 dBm
Frequency and RF Output Power Variation	on With Voltage Ref Test Para	5251
Measurement at 9.5 VDC or at	VDC	J. M. J. L
	\0.2 °C	Table IIIB
Temperature		
nput Voltage		9.5 VDC or Para. 5.2.3.2
nput Current	/28mA	Table IIIB
requency, f _{meas}	31.39975J GHz	Table IIIB
RF Output Power, P _{meas}		12 to 17 dBm
Measurement at 10.5 VDC or at	VDC	
Temperature		Table IIIB
nput Voltage	- 10.5 VDC	10.5 VDC or Para. 5.2.3.3
nput Current	/28 mA	Table IIIB
•	31,399762 GHz	Table IIIB
Frequency, f _{meas}		
CF Output Power, P _{meas}		12 to 17 dBm
Calculate Frequency Variation, $\Delta f_V = f_{mea}$	_{10°C} :	7.356
" "	$C = \frac{+.005}{MHz}$	
•	$C = \frac{+.o/2}{MHz}$	
Δf_T at 10.0 VDC (= $f_{10^{\circ}C}$ - f_{Tnom})	= +.346 MHz	
		·
Calculate RF Output Power Variation, ΔI	$P_{V} = P_{\text{meas}} - P_{10^{\circ}\text{C}}$:	, ,
ΔP_{V} at 9.5 VDC or at VD		•
	$C = \frac{\varphi}{dB}$	
· · · · · · · · · · · · · · · · · · ·		
ΔP _V at 10.5 VDC or at VD	$C = \frac{\varphi}{dB} dB$ $= \frac{-t \cdot /}{dB}$, . Dojaat
ΔP_{V} at 10.5 VDC or at VD ΔP_{T} at 10.0 VDC (= $P_{10^{\circ}\text{C}}$ - $P_{T_{nom}}$)	$C = \frac{\cancel{A}}{4} dB$ $= \frac{\cancel{A}}{4} dB$ Accept \cancel{V}	
ΔP_{V} at 10.5 VDC or at VD ΔP_{T} at 10.0 VDC (= $P_{10^{\circ}C}$ - P_{Tnom})	$C = \frac{\cancel{A}}{4 \cdot / dB}$ $= \frac{\cancel{A} \cdot / dB}{Accept} \frac{\cancel{V}}{Date}$ Date $\frac{\cancel{(I-2I-97)}}{2}$	
ΔP_{V} at 10.5 VDC or at VD ΔP_{T} at 10.0 VDC (= $P_{10^{\circ}C}$ - $P_{T_{nom}}$) Test Performed by LITTON	$C = \frac{\cancel{A}}{4} dB$ $= \frac{\cancel{A}}{4} dB$ Accept \cancel{V}	
ΔP_{V} at 10.5 VDC or at VD ΔP_{T} at 10.0 VDC (= $P_{10^{\circ}C}$ - P_{Tnom}) Test Performed by UITTON M 60	$C = \frac{\cancel{4}}{4} dB$ $= \frac{\cancel{4} \cdot \cancel{4}}{4} dB$ $= \frac{\cancel{4} \cdot \cancel{4}}{4} dB$ Accept $\cancel{4}$ Date $\frac{\cancel{4} \cdot \cancel{4}}{1} - \frac{\cancel{4} \cdot \cancel{4}}{1} = \frac{\cancel{4}}{1}$ Date $\frac{\cancel{4} \cdot \cancel{4}}{1} - \frac{\cancel{4} \cdot \cancel{4}}{1} = \frac{\cancel{4}}{1}$	1997
ΔP_{V} at 10.5 VDC or at VD ΔP_{T} at 10.0 VDC (= $P_{10^{\circ}C}$ - $P_{T_{nom}}$) Test Performed by LITTON	$C = \frac{\cancel{\phi}}{\text{dB}} \text{dB}$ $= \frac{\cancel{-1 \cdot /}}{\text{dB}} \text{dB}$ $= \frac{\text{Accept } \cancel{V}}{\text{Date}}$ $= \frac{(1-21-97)}{\text{NOV 25}}$ $= 1000000000000000000000000000000000000$	

TEST DATA SHEET 7.4

INITI	FUN AL DATA	CTIONAL PERFO SET I			
111111	AL DATA	3L1 I	INAL	DATA SET_	<u></u>
LITTON TYPE LS A 9	635 CF			AESI	D 1336610- 2
	5009	QUAL TEST		ACC	EPT TEST
Temperature Extreme Testin	ng at Tmin,	Ref. Test Para. 5.2.	.5.2		
SPECIFICATION		MEASUREM	ENT A	T Tmin ±1°C	LIMIT
Measurement at Vop=10 VI	OC .	•			
Temperature	-	-6	°C		Table IIIB
Input Voltage		10.0.	VDC		10.0 ± 0.2 VDC
Input Current		127	mA		Table IIIB
Input Power, P _{diss}		1.27	WDC		Pdiss max
Frequency, f _{Tmin}		31.400 160	_		Table IIIB
RF Output Power, P _{Tmin}		14.8	dBm		12 to 17 dBm
Frequency and RF Output I Measurement at 9.5 VDC or			Ref. Tes	st Para 5.2.5.2	
Temperature		-6	_°C		Table IIIB
Input Voltage		9.5	VDC		9.5 VDC or Para 5.2.3.2
Input Current		127	mA		Table IIIB
Frequency, f _{meas}		31.400160	GHz		Table IIIB
RF Output Power, P _{meas}		14.8	dBm		12 to 17 dBm
Measurement at 10.5 VDC of	or at	VDC			
Temperature	4-11	-6	°C		Table IIIB
Input Voltage		10.0	VDC		10.5 VDC or Para 5.2.3.3
Input Current		127	mA		Table IIIB
Frequency, f _{meas}	•	31.400 166	-		Table IIIB
RF Output Power, P _{meas}		14.8	dBm		12 to 17 dBm
Calculate Frequency Variati	on, $\Delta f_V = f_m$	_{cas} - f _{Tmin} :			
Δf_V at 9.5 VDC or at		C =	4	MHz	
Δf _V at 10.5 VDC or at	VI	OC =	7.0	o6 MHz	
Δf_T at 10.0 VDC (= f_{Tmin} - f_{Tn}	om)			756 MHz	•
Calculate RF Output Power	Variation. Δ	$P_{v} = P_{} - P_{T}$			•
ΔP_V at 9.5 VDC or at		C =	ć	ø dB	
ΔP _V at 10.5 VDC or at		OC =		ø dB	
ΔP_T at 10.0 VDC (= P_{Tmin} - P_T		=	+,		
Zir [de 10.0 V DC (I Imin I)	(nom)			•	
Tank Daniel 11	./	ccept Rej			
Test Performed by	DA FILLON	Date	11-2	1-97	•
Litton Q.A.		Date	NOV_2	5 897	
CODE IDENT NO.	SIZE	NUMBER		REV	SHEET 40 OF 68
56348	Α	1300823		B3	

LITTON / SOLID STATE DIVISION / 3251 OLCOTT ST / SANTA CLARA, CA 95054

Solid State

TEST DATA SHEET 7.5 FUNCTIONAL PERFORMANCE TESTS

INIT	TIAL DATA	SETFINAL I	DATA SET _	<u></u>
LITTON TYPE LS A 9		OHAL TEST		D 1336610- 2
SERIAL NUMBER:	5007	QUAL TEST	ACC	EPT TEST
Temperature Testing at T=3	0°C, Ref. Te	est Para. 5.2.5.3		
SPECIFICATION		MEASUREMENT A	T T=30° ±1°C	LIMIT
Measurement at Vop=10 VI	OC	•		
Temperature		<u>~~29</u> ℃		30° ± 1°C
Input Voltage		10.0 VDC		$10.0 \pm 0.2 \text{ VDC}$
Input Current	:	129 mA		Table IIIB
Input Power, P _{diss}	•	1,29 W DC	•	Pdiss max
Frequency, $f_{30^{\circ}C}$		31, 398 470 GHz		Table IIIB
				12 to 17 dBm:
RF Output Power, P _{30°C}				12 to 17 dBm.
Frequency and RF Output Pe	ower Variati	on With Voltage, Ref. Tes	t Para 5.2.5.3	
Measurement at 9.5 VDC or				
Temperature		29 ℃		Table IIIB
-		9.5 VDC		9.5 VDC or Para. 5.2.3.2
Input Voltage				Table IIIB
Input Current				
Frequency, f _{meas}		31.398482 GHz		Table IIIB
RF Output Power, P _{meas}				12 to 17 dBm
Measurement at 10.5 VDC of	or at	VDC		
Temperature		_ 29 °C	-	Table IIIB
Input Voltage		10.5 VDC		10.5 VDC or Para. 5.2.3.3
Input Current				Table IIIB
		31.39848/ GHz		Table IIIB
Frequency, f _{meas}		74.7 dBm	y *	12 to 17 dBm
RF Output Power, P _{meas}		dbiii		12 to 17 dbm
Calculate Frequency Variati	on. $\Delta f_v = f_{max}$	- f200c:		
Δf_V at 9.5 VDC or at			MHz	
Δf_V at 10.5 VDC or at		C = 4.011	MHz	
Δf_T at 10.0 VDC (= $f_{30^{\circ}C}$ - f_{Tno}		=934	MHz	
217 at 10.0 VDC (-130-C-17m	om)		_ 1122.22	
Calculate RF Output Power	Variation, Δ	$P_{V} = P_{meas} - P_{30^{\circ}C}$		
ΔP_V at 9.5 VDC or at		OC =	dB	·
ΔP_V at 10.5 VDC or at		OC = 9	dB	
ΔP_T at 10.0 VDC (= $P_{30^{\circ}C}$ - P_{7}		= +.1	dB	
21 T at 10.0 VDC (-1 30°C-1 -	[nom]		_ ub	• •
		Accept	√ Řejec	et
Test Performed by	MOLLIN THE		1-97	•
Litton Q.A.	M 60		V 2 5 1997	
CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 41 OF 68
56348	Α	1300823	B3	·

Solid State

TEST DATA SHEET 7.6 FUNCTIONAL PERFORMANCE TESTS SITIAL DATA SET FINAL DATA SET

INIT	TAL DATA	SETFINAL D	ATA SET _	<u>/</u>
LITTON TYPE LS <u>A</u> 9	635 CF			D 1336610
SERIAL NUMBER:	5009	QUAL TEST	ACCI	EPT TEST
Temperature Extreme Testin	g at Tmax, I	Ref. Test Para. 5.2.5.4		
SPECIFICATION		MEASUREMENT AT	Tmax ±1°C	LIMIT
Measurement at Vop=10 VD	C	_		
Temperature		<u>40.7</u> °C		Table IIIB
Input Voltage		VDC		$10.0 \pm 0.2 \text{ VDC}$
Input Current		/19 mA		Table IIIB
Input Power, P _{diss}		1.29 WDC		Pdiss max
Frequency, f _{Tmax}		31.397210 GHz		Table IIIB
RF Output Power, P _{Tmax}		dBm		12 to 17 dBm
- IDEO D	37 '	West Walks on Def Tree	D 5 2 5 4	:
Frequency and RF Output Po			Para 5.2.5.4	
Measurement at 9.5 VDC or	at			Table IIID
Temperature				Table IIIB
Input Voltage		<u>9.5</u> VDC		9.5 VDC or Para 5.2.3.2
Input Current		/29mA		Table IIIB
Frequency, f _{meas}		31.397195 GHz		Table IIIB
RF Output Power, P _{meas}		14.5dBm		12 to 17 dBm
Measurement at 10.5 VDC o	or at	_ VDC		
Temperature		<u>40,8</u> _ °C		Table IIIB
Input Voltage		10.5 VDC		10.5 VDC or Para 5.2.3.3
Input Current		129 mA		Table IIIB
Frequency, f _{meas}		31,397,200 GHz	,	Table IIIB
RF Output Power, P _{meas}		/4.5 dBm	م هر انه ر	12 to 17 dBm
Calculate Frequency Variation	on, $\Delta f_V = f_{me}$	f _{Tmer} :		
$\Delta f_{\rm V}$ at 9.5 VDC or at		C =015	MHz	
Δf_v at 10.5 VDC or at		C =		
Δf_T at 10.0V (= f_{Tmax} - f_{Tnom})		= -2.194		
•	Variation A	D - D D		
Calculate RF Output Power		OC = Thom.	dB	• -
ΔP _V at 9.5 VDC or at			dB	
ΔP_V at 10.5 VDC or at		$C = \frac{\phi}{\phi}$		
ΔP_T at 10.0 VDC (= P_{Tmax} - P	Tnom)	=	dB	
•	A	ccept V Reject	<u> </u>	
Test Performed by	DM.	Date //-2	1-97	
Litton Q.A.	18	Date Date		
	(5,8)	· · · · · · · · · · · · · · · · · · ·		
CODE IDENTALO	SIZE	NUMBER	REV	SHEET 42 OF 68
CODE IDENT NO. 56348	SIZE A	1300823	B3	CIMILI II OI OO

TEST DATA SHEET 7.7 FUNCTIONAL PERFORMANCE TESTS

INITIA	L DATA SET FINAL`DATA S	ET
LITTON TYPE LS A 9635 CF	AFSI	D 1336610- Z
SERIAL NUMBER: 85009	QUAL TEST ACCEPT TES	T
SERIAL NUMBER		
Power Supply Immunity, Ref. Test Para, 5	1.2.4	•
SPECIFICATION	MEASUREMENT AT Thom ±1	°C LIMIT
Initial Measurement	,	
Temperature	<u>17. l</u> °C	Table IIIB
Input Voltage	VDC	$10.0 \pm 0.2 \text{ VDC}$
Input Current	<u>128.5</u> mA	Table IIIB
Input Power	1.28 W DC	Pdiss max
Frequency (f _{Tnom})	31.39937 GHz	Table IIIB
RF Output Power	14.45 dBm	12 to 17 dBm
Frequency Setting Accuracy, Δf_s (= $f_{T_{nom}}$ -)		
Frequency Setting Accuracy, ΔI_S (" ITnom")		
Performance After Short Circuit on Power	Supply: Ref Test Para 5.2.4.2	:
Input Voltage	<u>lo</u> VDC	10.0 ± 0.2 VDC
Input Current	<u>128.5</u> mA	Table IIIB
Input Power	1.28 W DC	Pdiss max
•	31.39936 GHz	Table IIIB
Frequency BE Output Power	14.45 dBm	12 to 17 dBm
RF Output Power		
Over Voltage: Ref Test Para 5.2.4.3		
Overvoltage Input Voltage	2gVDC	+28V
Performance After Input Overvoltage		
Input Voltage	ιο VDC	$10.0 \pm 0.2 \text{ VDC}$
•	128.5 mA	Table IIIB
Input Current	1.28 W DC	Pdiss max
Input Power	31.39934 GHz	Table IIIB
Frequency	14. 45 dBm	12 to 17 dBm
RF Output Power		
Reverse Polarity: Ref Test Para 5.2.4.4		
Reverse Input Voltage	VDC	$-10.0 \pm 0.2 \text{ VDC}$
Performance After Reverse Input Voltage	ł	
Input Voltage	10 VDC	10.0 ± 0.2 VDC
Input Current	128.5 mA	Table IIIB
Input Power	1.28 W DC	Pdiss max
Frequency, f _{Tnom}	31.39930 GHz	Table IIIB
	14.45 dBm	12 to 17 dBm
RF Output Power		
Frequency Setting Accuracy, Δf_S (= f_{Tnom}		•
	Accept Reject	
Test Performed by	Date 11-24-97	•
Litton Q.A.	Date NOV 2 5 891	
CODE IDENT NO. SIZ	ZE NUMBER	REV SHEET 43 OF 68
10022.22.2	1300823	B3
J0340 F	1300023	

	•	TEST DATA SHEET 7.2	3B				
FUNCTIONAL PERFORMANCE TESTS							
INITI	AL DATA SI	ET FINAL D.	ATA SET	\checkmark			
LITTON TYPE LS A 96	35 /下	•	•	AESD 1336610- ≥			
SERIAL NUMBER: 8'	50.09	OUAL TEST		ACCEPT TEST V			
SERIAL NOVIDER	3001		······				
Frequency Pulling and Load VSWR 2.5:1 max. all phases. Ref Test Para. 5.9							
TEST DESCRIPTION		•	LIMIT	<u>rs</u>			
Output Open and Short. Ref. Test Para. 5.9.5							
	: 30 (b	°C	24°C =	± 5°C			
Temperature	22.4		Table				
Frequency:	31,39878	·					
RF Output Power:	14.3			17 dBm			
Input Voltage	10.0			.2 VDC			
Input Current:	129	_ mA	Table				
Results:		Acceptable	No Da	mage or Degradation			
Calculate maximum Frequency Accuracy (both positive and negative), $\Delta f_{acc} = \Delta f_S$ (Use worst-case Δf_S from 7.2, 7.7, and 7.22A) + Δf_H (from 7.22A) + Δf_L (from 7.23A):							
Maximum $\Delta f_{acc} =$		MHz (Positive)	Table				
	884	MHz (Negative)	Table	ШБ			
Calculate maximum Short-te $\Delta f_{V+T} = \Delta f_V + \Delta f_T$ (Use wors	Calculate maximum Short-term Frequency Stability (both positive and negative), $\Delta f_{V+T} = \Delta f_V + \Delta f_T$ (Use worst-case Δf_V and Δf_T from 7.2 thru 7.6):						
Maximum $\Delta f_{V+T} =$	4.768	MHz (Positive)	Table	IIIB			
11111111111111111111111111111111111111		9 MHz (Negative)	Table	IIIB			
Calculate maximum overall $\Delta P_{OV} = \Delta P_V + \Delta P_T$ (Use wo	RF Output Porst-case ΔP _V	ower Stability (both position and ΔP_T from 7.2 thru 7.6)	ve and negative) + ΔP_H (from	7e), $7.22A$) + ΔP_L (from $7.23A$):			
Maximum $\Delta P_{OV} =$	+.35	dB (Positive)	1.0 dB	S			
	25	dB (Negative)	-1.0 d	В ,			
(*)							
•.	Ac	cept Reject					
Test Performed by	LITTON	Date	11-24-9				
Liman O A	M 60	Date	NOV 2	5 1997			
Litton Q.A.							
	O.C.) II II II II II I	REV	SHEET 61 OF 68			
CODE IDENT NO.	SIZE	NUMBER	1	SHEET OF OF OO			
56348	A	1300823	B3				

BANDPASS CHARACTERISTICS

FOR

IF FILTERS

3 dB BANDWIDTH OF IF FILTERS

Channel No.	1	2
Specification (MHz)	135	90
3 dB bandwidth (MHz) *	127	82
f _L - f _H (MHz)	8-135	8-90
Measured (MHz)		
3 dB bandwidth (MHz)	125.51	80.35
$f_L - f_H (MHz)$	8.72-134.23	8.77-89.12

^{*} Actual specifications for IF filters.

Channel 1 Bandpass Filter

IF Filter (S/N: 1331559-6, S/N: P232-002)

APPENDIX F	QUALIFIC/	ATION TEST REP	ORT	- 100
BANDPASS FILTER MODEL HLT AEROJET 1331559-6 REV.	⁷ 2.5-125-10S —-	SS1 S/N <u>P232</u> -	-002	
3.0 dB BANDWIDTH QUALIFICATION TEST PROCED 63-0005-010 PARA 4.5.3	URE	-10°C	+15°C	+40°C
{7} UPPER 3.0 dB BANDEDGE		1 <u>34.44</u> MHz (133.0-135.0)	<u>134.23</u> Mhz (133.0-135.0)	1 <u>34.03</u> MHz (133.0-135.0)
{8} LOWER 3.0 dB BANDEDGE		8.73 MHz (8.0-10.0)	<u>8.72</u> Mhz (8.0-10.0)	<u>%.7८</u> MHz (8.0-10.0)
(9) 3.0 dB RELATIVE BANDWIDT	Н	<u>25.71</u> MHz (123.0-127.0)	1 <u>75.51</u> Mhz (123.0-127.0)	I 2 <u>5.33</u> мHz (123.0-127.0)
{10} ADD {7} AND {8} ÷ 2 =	÷	71.59 MHz (72.5 NOM)	71.48 MHz (72.5 NOM)	7 <u>1.37</u> Mhz (72.5 NOM)
{10a} RECORD MEASURED TEM	PERATURE	(-15.0 TO -10.0)	(12.5 TO 17.5)	+ <u>47.9</u> °C (40.0 TO 45.0)
(6) ATTACH TRANSMISSION LOS PERFORMANCE X-Y PLOT	38	<u> </u>	<u>√</u> (√)	<u>√</u> (√)
PASSBAND RIPPLE QUALIFICATION TEST PROCEDU 63-0005-010 PARA 4.5.4	JRE	-10°C	+15°C	+40°C
{11a} MIN INSERTION LOSS FRE	EQ.	32.64 MHz	32.64 Mhz	30.24 MHz
MIN INSERTION LOSS PER	RFORMANC	E <u>-0.16</u> dB	- <u>0.16</u> dB	- <u>0.17</u> dB
{11b} 75% BW LOWER BANDEDO	SE FREQ	1 <u>0.33</u> MHz	10.26 Mhz	10.25 MHz
75% BW LOWER BANDED	GE I.L. PERF	= - <u>0.39</u> dB	- <u>0.41</u> dB	- <u>0.43</u> dB
{11c} 75% BW UPPER BANDEDG	E FREQ	1 <u>04.08</u> MHz	1 <u>04.01</u> Mhz	104.00MHz
75% BW UPPER BANDEDO	E I.L. PERF	- <u>0,39</u> dB	- <u>0.41</u> dB	- <u>О.43</u> dв
{11d} PERFORMANCE DELTA (I.L. @ {11b} - I.L. @ {11a})		<u>0.23</u> dB	<u>0.25</u> dB	0.26 dB
{11e} PERFORMANCE DELTA (I.L. @ {11c} - I.L. @ {11a})	,	<u>O.23</u> dB	0.25 dB	0.26 dB
epared in accordance with MIL-STD-100				
ONTRACT NO.	SIZE O	CAGE CODE 57032	DWG. NO. 63-0005-010	REV.

57032

FILE: ACAD/63/0510APFH.DOC

63-0005-010

SHEET

Н

12

Α

ADEN-ANTHONY ASSOCIATES INC.

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P232-002

-10C DATA

-10C DATA
OPR: R. HOGGATT DATE 11 25 90 conel 2 MARKER PARAME.L...

MARKER 1	16.250000 MHz OFF	72.500000 MHz 2613 dB
MARKER 2	128.750000 MHz OFF	71.588180 MHz OFF
MARKER 3	25.625000 MHz OFF	8.733006 MHz -3.2613 dB
MARKER 4	119.375000 MHz OFF	134.443355 MHz -3.2613 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	89.425802 MHz. -3.2342 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE MARKER TRACKING	OFF CONTINUOUS OFF -14 dB -3 dB OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF
DETAILED THE PONTING	OT 1	○1.

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P232-002 +15C DATA

OPR: R. HOGGATT DATE 11 25 96

OFF

MARKER TRACKING

THINKEN TANGETERS	Chamie, 1	Chainer 2
MARKER 1	16.250000 MHz OFF	72.500000 MHz 2686 d§
MARKER 2	128.750000 MHz OFF	71.475766 MHz- OFF
MARKER 3	25.625000 MHz OFF	8.718196 MHz -3.2686 dB
MARKER 4	.119.375000 MHz OFF	134.233336 MHz -3.2686 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	89.4258Ø2 MHz -3.2342 dB
	OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF

OFF

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P232-002

+40C DATA

MARKER PARAME. OPR: R. HOGGATT DATE 11 25 94

MARKER 1	16.250000 MHz OFF	72.500000 MHz 2817 dB
MARKER 2	128.750000 MHz OFF	71.368297 MHz OFF
MARKER 3	25.625000 MHz OFF	8.702047 MHz -3.2818 dB
MARKER 4	119.375000 MHz OFF	134.034548 MHz -3.2818 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	89.425802 MHz -3.2342 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE MARKER TRACKING	OFF CONTINUOUS OFF -14 dB -3 dB OFF OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF

APPENDIX F **QUALIFICATION TEST REPORT** BANDPASS FILTER MODEL HL72.5-125-10SS1 S/N_P232 -002 AEROJET 1331559-6 REV. PASSBAND RIPPLE (CON'T) {11f} RECORD PASS/FAIL (0.5 dB MAX) PASS)FAIL PASS)FAIL (11g) ATTACH PASSBAND RIPPLE PERFORMANCE X-Y PLOT(S) **OUT-OF-BAND REJECTION** QUALIFICATION TEST PROCEDURE -10°C +15°C +40°C 63-0005-010 PARA 4.5.5 Fc=72.5 MHz. REF (5A) FOR INSERTION LOSS @ Fc **{12} WORST CASE REJECTION FROM** >100 dB >100 dB >100 dB 0.300 MHz TO 1.0 MHz (40.0 dB MIN) (40.0 dB MIN) (40.0 dB MIN) -67.3 dB -68.4 dB (13a) WORST CASE REJECTION FROM -69.4 dB 153.75 MHz TO 1000.0 MHz (40.0 dB MIN) (40.0 dB MIN) (40.0 dB MIN) {13c} RECORD MEASURED TEMPERATURE -12.9 °C +15.1 ℃ +43.0°C (-15.0 TO -10.0) (12.5 TO 17.5) (40.0 TO 45.0) **{14} ATTACH REJECTION PERFORMANCE** X-Y PLOT(S) TEST PERFORMED BY K. LOGGATT DATE II NOTE IF TEST WITNESSED BY AESD: _ ***** END OF FUNCTIONAL PERFORMANCE TEST **** **OUTLINE AND MOUNTING DIMENSIONS VERIFICATION {16} REFERENCE CUSTOMER DRAWING 1331559 DESCRIPTION OF DIMENSION AND ACTUAL MEASUREMENT** TOLERANCE **MEASUREMENT OVER ALL LENGTH** $3.50 \pm .03$ 3.501 MOUNTING HOLE CENTER $0.125 \pm .010$.125 BETWEEN UPPER MOUNTING HOLES 3.250 3.250 3.249 BETWEEN LOWER MOUNTING HOLES 3.250 epared in accordance with MIL-STD-100 ONTRACT NO. SIZE CAGE CODE DWG. NO. REV. 57032 63-0005-010 Н

FILE: ACAD/63/0510APFH.DOC

SHEET

13

ADEN-ANTHONY ASSOCIATES INC.

FINAL FUNCTIONAL PERFORMANCE REJECTION PERFORMANCE SERIAL NO. P232-002

MARKER 1	1.000000 MHz OFF	72.500000 MHz 0 dB
MARKER 2	5.000000 MHz OFF	153.750000 MHz -67.332 dB
MARKER 3	5.000000 MHz OFF	153.750000 MHz OFF
MARKER 4	5.000000 MHz OFF	1000.000000 MHz OFF
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIBTH VALUE MARKER TRACKING	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF	MARKER 1 CONTINUOUS OFF -3 dB -3 dB OFF OFF

FINAL FUNCTIONAL PERFORMANCE REJECTION PERFORMANCE SERIAL NO. P232-002 +15C DATA

MARKER PARAMETERS OPR: R. HOGGATT DATE 11 25/96 Channel 2

MARKER 1	1.000000 MHz OFF	72.500000 MHz 0 dB
MARKER 2	5.000000 MHz OFF	153.750000 MHz -68.356 dB
MARKER 3	5.000000 MHz OFF	153.750000 MHz OFF
MARKER 4	5.000000 MHz OFF	1000.000000 MHz OFF
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB
REFERENCE MARKER PLACEMENT	OFF CONTINUOUS	MARKER 1 CONTINUOUS
MARKER SEARCH	OFF	OFF ·
TARGET VALUE MARKER WIDTH VALUE	-3 dB -3 dB OFF	-3 dB -3 dB OFF
MARKER TRACKING	OFF	OFF

FINAL FUNCTIONAL PERFORMANCE REJECTION PERFORMANCE SERIAL NO. P232-002 +40C DATA

OPR: R. HOGGATT DATE 11 25 94 MORKER PARAME

MARKER TRACKING

MARKER PARAMETERS	minimer T	channel Z
MARKER 1	1.000000 MHz OFF	72.500000 MHz 0 dB
MARKER 2	5.000000 MHz OFF	153.750000 MHz -69.4 dB
MARKER 3	5.000000 MHz OFF	153.750000 MHz OFF
MARKER 4	5.000000 MHz OFF	1000.000000 MHz OFF
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB ·
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE	OFF CONTINUOUS OFF -3 dB	MARKER 1 CONTINUOUS OFF -3 dB -3 dB

OFF

OFF

OFF

OFF

APPENDIX F

QUALIFICATION TEST REPORT

BANDPASS FILTER MODEL HL72.5-125-10SS1 S/N P232-COZ AEROJET 1331559-6 REV. €

BANDPASS CHARACTERISTICS MEASUREMENT

PER QTP PARA 4.6

(REF: AE-24687, PARA 4.8.2)

RECORD THE AMBIENT ROOM TEMPERATURE. <u>+22.3</u>°C (+19°C TO +29.0°C)

{15} ATTACH PASSBAND PERFORMANCE X-Y PLOT

{24} TEST POINT MATRIX

REF	FREQ	UNIT	VALUE	REF	FREQ	UNIT	VALUE
F1	0.5	MHz	-107.0 dB	F11	(*) 80.0	MHz	-0.31 dB
F2	1.0	MHz	- <u>94.6</u> dB	F12	(*) 100.0	MHz	- 0.40 dB
F3	5.0	MHz	<u>- 30.9</u> dB	F13	120.0	MHz	-0.62 dB
F4	7.5	MHz	<u>- 9.88 dB</u>	F14	130.0	MHz	- 1.62 dB
F5	10.0	MHz	<u>- 0.94 dB</u>	F15	135.0	MHz	- 4.89 dB
F6	15.0	MHz	-0.30 dB	F16	140.0	MHz	- Z0,8 dB
F7	25.0	MHz	-0.27 dB	F17	150.0	MHz	- 53.4 dB
F8	(*) 45.0	MHz	<u>-0.18</u> dB	F18	200.0	MHz	-74.7 dB
F9	(*) 65.0	MHz	-0,26 dB	F19	500.0	MHz	-99.5 dB
F10	72.5	MHz	-0.31 dB	F20	1000.0	MHz	-104.4 dB

TEST PERFORMED BY: R. HOGGAN DATE 11/25/96 NOTE IF TEST WITNESSED BY AESD

***** END OF BANDPASS CHARACTERISTICS TEST *****

NOT WITNESSED THIS TIME PO

FUNCTIONAL PERFORMANCE TEST

QUALIFICATION TEST PROCEDURE 63-0005-010 PARA 4.1

BRIEF TEST DESCRIPTION: THE TESTS DESCRIBED IN APPENDIX F PAGE 10 THRU PAGE 13 ARE PERFORMED TO DOCUMENT THE FUNCTIONAL PERFORMANCE OF THE UNIT AT THE CONCLUSION OF ALL ENVIRONMENTAL TESTING. THE TESTS ARE AS FOLLOWS AND IN ANY SEQUENCE:

- a.) VSWR PER QTP PARA 4.5.1.
- b.) INSERTION LOSS PER QTP PARA 4.5.2
- c.) INSERTION LOSS VS TEMPERATURE PER QTP PARA 4.5.6.
- d.) 3.0 dB BANDWIDTH PER QTP PARA 4.5.3.
- e.) CENTER FREQUENCY (fc) PER QTP PARA 4.5.7 (PART OF 3.0 dB B/W TEST)
- f.) PASSBAND RIPPLE PER QTP PARA 4.5.4 (PART OF INSERTION LOSS TEST).
- g.) OUT-OF-BAND REJECTION PER QTP PARA 4.5.5.

spared in accordance with MIL-21D-100				
ONTRACT NO.	SIZE	CAGE CODE	DWG. NO.	REV.
	Α	57032	63-0005-010	Н
ADEN-ANTHONY ASSOCIATES INC	EU E. AC	ADISSIDE ADARS LA DOC	CLIEET	40

SHEET

10

POST THERMAL CYCLE PASSBAND CHARACTERISTICS SERIAL NO. P232-002 AMBIENT

OPR: R. HOGGATT DATE 11 25 46
MARKER PARAMETERS Channel 2

MARKER 1	16.250000 MHz OFF	45.000000 MHz 1801 dB
MARKER 2	128.750000 MHz OFF	65.000000 MHz 2596 dB
MARKER 3	25.625000 MHz OFF	80.000000 MHz 3118 dB
MARKER 4	119.375000 MHz OFF	100.000000 MHz 3980 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	89.4258Ø2 MHz -3.2342 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE MARKER TRACKING	OFF CONTINUOUS OFF -14 dB -3 dB OFF OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF

Channel 2 Bandpass Filter

IF Filter (S/N: 1331559-3, S/N: P229-005)

	APPENDIX C	ACCEPTAN	ICE TEST REPO	RT	
	BANDPASS FILTER MODEL HLS AEROJET 1331559-3 REV.	50-80-10SS1 —	S/N <u>P2Z9-</u> 00)S	
	3.0 dB BANDWIDTH ACCEPTANCE TEST PROCEDU 63-0005-02 PARA 4.5.3	RE	-10°C	+15°C	+40°C
	{7} UPPER 3.0 dB BANDEDGE		89.23MHz (88.0-90.0)	<u>89.12</u> Mhz (88.0-90.0)	ଟ <u>ଃ.୩</u> ୧ MHz (88.0-90.0)
	{8} LOWER 3.0 dB BANDEDGE		8.78 MHz (8.0-10.0)	<u>8.77 Mhz</u> (8.0-10.0)	8 <u>.76</u> MHz (8.0-10.0)
	(9) 3.0 dB RELATIVE BANDWIDT	H	<u>80.45</u> MHz (78.0-82.0)	<u>80,35</u> Mhz (78.0-82.0)	8 <u>୦.22 </u> MHz (78.0-82.0)
	{10} ADD {7} AND {8} ÷ 2 =	į	49.01 MHz (50.0 NOM)	<u>48.95</u> MHz (50.0 NOM)	니 <u>영·87</u> Mhz (50.0 NOM)
	(10a) RECORD MEASURED TEMI	PERATURE	- <u>13.4</u> °C (-15.0 TO -10.0)	+ <u>14.0</u> °C (12.5 TO 17.5)	+ <u>43.8</u> °C (40.0 TO 45.0)
	(6) ATTACH TRANSMISSION LOS PERFORMANCE X-Y PLOT	SS	(√)	(√)	(√)
	PASSBAND RIPPLE ACCEPTANCE TEST PROCEDUR 53-0005-02 PARA 4.5.4	E	-10°C	+15°C	+40°C
{	11a) MIN INSERTION LOSS FRE	Q ,	23.86MHz	24.90 Mhz	27.26 MHz
	MIN INSERTION LOSS PER	FORMANCE	-0.16 dB	- <u>0.17</u> dB	- <u>0.17</u> dB
{	11b} 75% BW LOWER BANDEDG	E FREQ	10.94 MHz	10.85 Mhz	1 <u>0.75</u> MHz
idad Nasa Nasa	75% BW LOWER BANDEDG	SE I.L. PERF	- <u>0.36</u> dB	- <u>0.38</u> dB	- <u>0.40_</u> dB
{	11c} 75% BW UPPER BANDEDGE	FREQ	7 <u>0.94</u> MHz	70.85Mhz	70.75 MHz
	75% BW UPPER BANDEDG	E I.L. PERF	- <u>0.36</u> dB	- <u>0.38</u> dB	- <u>0.40</u> dB
{ '	11d} PERFORMANCE DELTA (I.L. @ {11b} - I.L. @ {11a})		O'SQ qB	0.21 dB	<u>0.23</u> dB
{1	1e} PERFORMANCE DELTA (I.L. @ {11c} - I.L. @ {11a})		<u>0.20</u> dB	O.ZI dB	<u>0.73</u> dB
repare ONT	ed in accordance with MIL-STD-100	SIZE	AGE CODE	DWC NO	
,		Α	57032	DWG. NO. 63-0005-02	REV.
ADI.	EN-ANTHONY ASSOCIATES IN	C FILE: ACAD/6	3/0502APCJ.DOC	SHEET	13

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P229-005

-10C DATA
OPR: R. HOGGATT DATE 11 26 96 Comment 2 MARKER PARAMETILS

MARKER 1	14.000000 MHz OFF	50.000000 MHz 2360 dB
MARKER 2	86.000000 MHz OFF	49.006507 MHz OFF
MARKER 3	20.000000 MHz OFF	8.783887 MHz -3.2361 dB
MARKER 4	80.000000 MHz OFF	89.229127 MHz -3.2361 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	89.425802 MHz -3.2342 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE	OFF CONTINUOUS OFF -14 dB -3 dB OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF
MARKER TRACKING	OFF	OFF

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P229-005

+15C DATA

+15C DATA
OPR: R. HOGGATT DATE 11 76 96 MARKER PARAME.L...

MARKER 1	14.000000 MHz OFF	50.000000 MHz 2471 dB
MARKER 2	86.000000 MHz OFF	48.943575 MHz OFF
MARKER 3	20.000000 MHz OFF	8.772071 MHz -3.2472 dB
MARKER 4	80.000000 MHz OFF	89.115079 MHz -3.2472 dB
MKR STIMULUS OFFSET	- · · ·	89.425802 MHz -3.2342 dB
PLACEMENT	OFF CONTINUOUS OFF -14 dB -3 dB OFF OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P229-005 +40C DATA

MARKER PARAMETERS OPR: R. HOGGATT DATE 11 26 96 Commet 2

TARGET VALUE

MARKER TRACKING

MARKER WIDTH VALUE

MARKER 1	14.000000 MHz OFF	50.000000 MHz 2622 dB
MARKER 2	86.000000 MHz OFF	48.871214 MHz OFF
MARKER 3	20.000000 MHz OFF	8.758128 MHz -3.2622 dB
MARKER 4	80.000000 MHz OFF	88.984300 MHz -3.2622 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	89.425802 MHz -3.2342 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH	OFF CONTINUOUS OFF	OFF CONTINUOUS OFF

-14 dB

-3 dB OFF

OFF

−3 ದ8

OFF

OFF

APPENDIX C **ACCEPTANCE TEST REPORT** BANDPASS FILTER MODEL HL50-80-10SS1 S/N PZZ9-00S AEROJET 1331559-3 REV. E PASSBAND RIPPLE (CON'T) {11f} RECORD PASS/FAIL (0.5 dB MAX) (PASS/FAIL (PASS)FAIL (PASS/FAIL (11g) ATTACH PASSBAND RIPPLE V (1) **✓**(√) PERFORMANCE X-Y PLOT(S) **OUT-OF-BAND REJECTION** ACCEPTANCE TEST PROCEDURE -10°C +15°C +40°C 63-0005-02 PARA 4.5.5 Fc=50.0 MHz. REF {5A} FOR INSERTION LOSS @ Fc {12} WORST CASE REJECTION FROM >100 dB >100 dB >100 dB 0.300 MHz TO 1.0 MHz (40.0 dB MIN) (40.0 dB MIN) (40.0 dB MIN) {13a} WORST CASE REJECTION FROM -54.2 dB - 55.9 dB -55,9 dB 102.0 MHz TO 1000.0 MHz (40.0 dB MIN) (40.0 dB MIN) (40.0 dB MIN) {13c} RECORD MEASURED TEMPERATURE -13.5 ℃ 111.0°C +44.0°C (-15.0 TO -10.0) (12.5 TO 17.5) (40.0 TO 45.0) {14} ATTACH REJECTION PERFORMANCE X-Y PLOT(S) TEST PERFORMED BY R. HOGGAN NOTE IF TEST WITNESSED BY AESD: GSI: WESSELLIM LOW ***** END OF FUNCTIONAL PERFORMANCE TEST **** THISTIME **OUTLINE AND MOUNTING DIMENSIONS VERIFICATION** {16} REFERENCE CUSTOMER DRAWING 1331559 **DESCRIPTION OF** DIMENSION AND **ACTUAL** MEASUREMENT TOLERANCE MEASUREMENT OVER ALL LENGTH 3.50Z $3.50 \pm .03$. 125 MOUNTING HOLE CENTER $0.125 \pm .010$ 3. 250 BETWEEN UPPER MOUNTING HOLES 3.250 3,250 BETWEEN LOWER MOUNTING HOLES 3.250

Prepared in accordance with MIL-STD-100				
CONTRACT NO.	SIZE	CAGE CODE	DWG. NO.	REV.
	Α	57032	63-0005-02	J
DADEN-ANTHONY ASSOCIATES INC.	FILE: AC	AD/63/0502APCJ.DOC	SHEET	14

FINAL FUNCTIONAL PERFORMANCE REJECTION PERFORMANCE SERIAL NO. P229-005

-10C DATA

MARKER TRACKING

OPR: R. I	HOGGATT DATE 11 26 9	ال - Guunnel 2
MARKER 1	1.000000 MHz OFF	50.000000 MHz 0 dB
MARKER 2	5.000000 MHz OFF	102.000000 MHz -54.173 dB
MARKER 3	5.000000 MHz OFF	102.000000 MHz OFF
MARKER 4	5.000000 MHz OFF	1000.000000 MHz OFF
MKR STIMULUS OFFSET	0.000000 MHz	0.000000 MHz 0 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE	OFF CONTINUOUS OFF -3 dB -3 dB	MARKER 1 CONTINUOUS OFF -3 dB -3 dB

OFF OFF

-3 dB

OFF

FINAL FUNCTIONAL PERFORMANCE REJECTION PERFORMANCE SERIAL NO. P229-005

+15C DATA

OPR: R. HOGGATT DATE 11/26/96

M	IARKER 1	1.000000 MHz 50.000000 M OFF 0 dB	1Hz
M	ARKER 2	5.000000 MHz 102.000000 M OFF -54.95 dB	1Hz
M	ARKER 3	5.000000 MHz 102.000000 M OFF OFF	1Hz
М	ARKER 4	5.000000 MHz 1000.000000 M OFF OFF	1Hz
М	KR STIMULUS OFFSET	0.000000 MHz 0.000000 M 0 dB	lHz
P M T M	EFERENCE MARKER LACEMENT ARKER SEARCH ARGET VALUE ARKER WIDTH VALUE ARKER TRACKING	OFF MARKER 1 CONTINUOUS OFF OFF -3 dB -3 dB -3 dB -3 dB OFF OFF	

FINAL FUNCTIONAL PERFORMANCE REJECTION PERFORMANCE SERIAL NO. P229-005 +40C DATA

OPR: R. HOGGATT DATE 11 26 96 MARKER PARAMETERS Channel 2

MARKER 1	1.000000 MHz OFF	50.000000 MHz 0 dB
MARKER 2	5.000000 MHz OFF	102.000000 MHz -S5.869 dB
MARKER 3	5.000000 MHz OFF	102.000000 MHz OFF
MARKER 4	5.000000 MHz OFF	1000.000000 MHz OFF
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE	OFF CONTINUOUS OFF -3 dB -3 dB OFF	MARKER 1 CONTINUOUS OFF -3 dB -3 dB OFF
MARKER TRACKING	OFF	OFF

APPENDIX C

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL50-80-10SS1 S/N P2Z9-COS AEROJET 1331559-3 REV. 🖹

BANDPASS CHARACTERISTICS MEASUREMENT

PER ATP PARA 4.6

(REF: AE-24687, PARA 4.8.2)

RECORD THE AMBIENT ROOM TEMPERATURE. + 23.5 °C (+19°C TO +29.0°C)

{15} ATTACH PASSBAND PERFORMANCE X-Y PLOT

{24} TEST POINT MATRIX

RE	F FREQ	UNIT	VALUE	REF	FREQ	UNIT	VALUE	
F1	0.5	MHz	<u>-100.4</u> dB	F11	(*) 60.0	MHz	-0:32 dB	
F2	1.0	MHz	<u>- 92.8 dB</u>	F12	(*) 70.0	MHz	<u>-0,39</u> dB	
F3	5.0	MHz	<u>- 30.2 dB</u>	F13	80.0	MHz	-0.59 dB	
F4	7.5	MHz	<u>-9.48</u> dB	F14	85.0	MHz	- <u>0.85</u> dB	
F5	10.0	MHz	-1.20 dB	F15	90.0	MHz	-5.77 dB	
F6	15.0	MHz	<u>-0.25</u> dB	F16	100.0	MHz	- <u>44.9</u> dB	
F7	20.0	MHz	<u>- 0.19</u> dB	F17	200.0	MHz	<u>-81.9</u> dB	
F8	(*) 30.0	MHz	<u>-0.18</u> dB	F18	300.0	MHz	-108.0 dB	
F9	(*) 40.0	MHz	- <u>0.21</u> dB	F19	500.0	MHz	-103,6 dB	
F1	0 50.0	MHz	<u>-0.24</u> dB	F20	1000.0	MHz	-101.8 dB	
T	TEST PERFORMED BY: 12. HOGGATT DATE 11/26/96							
OTE	OTE IF TEST WITNESSED BY AESDGSIGSI							
****	*** END OF BANDPASS CHARACTERISTICS TEST ***** This Line							

FUNCTIONAL PERFORMANCE TEST

ACCEPTANCE TEST PROGEDURE 63-0005-02 PARA 4.1

BRIEF TEST DESCRIPTION: THE TESTS DESCRIBED IN APPENDIX C PAGE 10 THRU PAGE 13 ARE PERFORMED TO DOCUMENT THE FUNCTIONAL PERFORMANCE OF THE UNIT AT THE CONCLUSION OF ALL ENVIRONMENTAL TESTING. THE TESTS ARE AS FOLLOWS AND IN ANY SEQUENCE:

- a.) VSWR PER ATP PARA 4.5.1.
- b.) INSERTION LOSS PER ATP PARA 4.5.2
- c.) INSERTION LOSS VS TEMPERATURE PER ATP PARA 4.5.6.
- d.) 3.0 dB BANDWIDTH PER ATP PARA 4.5.3.
- e.) CENTER FREQUENCY (fc) PER ATP PARA 4.5.7 (PART OF 3.0 dB B/W TEST)
- f.) PASSBAND RIPPLE PER ATP PARA 4.5.4 (PART OF INSERTION LOSS TEST).
- a.) OUT-OF-BAND REJECTION PER ATP PARA 4.5.5.

Prepared in accordance with MIL-STD-100

CONTRACT NO.	SIZE	CAGE CODE 57032	DWG. NO.	REV.
	А	57032	63-0005-02	J
DADEN-ANTHONY ASSOCIATES INC.	FILE: AC	AD/63/0502APCJ.DOC	SHEET	11

POST THERMAL CYCLE
PASSBAND CHARACTERISTICS
SERIAL NO. P229-005
AMBIENT

MARKER PARAME. ... AMBIENT OPR: R. HOGGATT DATE 11 Z6 96 Channel 2

MARKER FARME, 2.13	oranici z	Challiet 2
MARKER 1	1.000000 MHz OFF	30.000000 MHz 1769 dB
MARKER 2	5.000000 MHz OFF	40.000000 MHz 2069 dB
MARKER 3	5.000000 MHz OFF	60.000000 MHz 3155 dB
MARKER 4	5.000000 MHz OFF	70.000000 MHz 3882 dB
MKR STIMULUS OFFSET	0 dB 0 000000 MHz	0.000000 MHz 0 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE MARKER TRACKING	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF	OFF CONTINUOUS OFF -9 dB -3 dB OFF OFF

GAIN STABILITY AND GAIN COMPRESSION FOR

MIXER/IF AMPLIFIERS

GAIN-TEMPERATURE SENSITIVITY FOR MIXER/AMPLIFIERS

Channel No.	1	2
Specification (+/-dB/°C)	0.02	0.02
Measured (dB/°C)	-0.015	-0.011

Channel 1 Mixer/Amplifier

Mixer/Amplifier (P/N: 1331562-11, S/N: 7A21)

TEST DATA SHEET NO. 6. AMPLIFIER TESTS

GAIN FLATNESS	TEST:	ATP PARAGRAPH 5.	1.3

GAIN FLATNESS

SPEC. GAIN FLATNESS

(dB)ppK

(dB)ppK

0.20

0,50

ACC REJ

GAIN VERSUS VOLTAGE SENSITIVITY TEST: ATP PARAGRAPH 5.1.4

AMPLIFIER

GAIN

VOLTAGE

READING (dBm)

ΔG/ΔV

SPEC.

ΔG/ΔV

ACC REJ

 $\begin{array}{cccc}
 9.96 & 70.97 \\
 10.00 & 71.05 \\
 10.04 & 71.13 \\
\hline
 \Delta Gv = 0.16 & dB
\end{array}$

2.0

DATE ACC REJ

PART NO. 1331562-116

SPACEK QA

6-29-28 QA

SER NO.

7A21

TEST FAILURE:

_...__

TESTED BY:

77 F

FAILURE ANALYSIS NO. __

END DATE:

6-5-98

END TIME:

1600

Spacek Labs, Inc. 212 E. Gutierrez St.

Santa Barbara, CA, 93101

(6) 051 89 Amplifier Gain (db) 69 94 96.9 00.01 40'01 Amb Temp +23°c Tested By Date 6-5-98 Serial No. 7A21 Amplifier Gain Model No. 1331562 - 11

(TAMA) WARALINAMA

TEST DATA SHEET NO. 7. AMPLIFIER TESTS

GAIN VERSUS TEMPERATURE SENSITIVITY TEST: ATP PARAGRAPH 5.1.5

Nominal Temperature (°C)	Relative (Gain	ΔG/ΔΤ	SPEC	ACC	REJ	
T1 -6	GT1 7/	1,52					
			* 0.009	0.035dB/°C	AQ N	Ì	
T2 + 8	GT2 7	1,39			1	1	
			* 0.000	0.020dB/°C		AQ	ECN
T3 + 28	Gтз 7	0.95				1	: CAMSU-1
			* 0.026	0.035dB/°C		- 1.	
T4 +40	GT4 7	0,64			dy.)	
						/	•
0 1 01 1	:	•		-			•
* Perform the following	g calculations	and re	ecord on the TI	OS	•		

$$\Delta G/\Delta T = \begin{array}{c} G_{Ti} - G_{Ti+1} \\ \hline ---- & i=1,2,3,4 \\ \hline T_i - T_{i+1} \end{array} \qquad \Delta G_T = \begin{array}{c} O - 28 \\ \hline \Delta G/\Delta T = \begin{array}{c} O - 28 \\ \hline - O - 2$$

 $\Delta G_{TOTAL} = \Delta G_V + \Delta G_T + 0.4 = \cancel{\cancel{1.44}} dB$ Spec 1.4dB

ACC	REJ QA	ECN
		CAMSU-135

352

DATE ACC REJ

PART NO. <u>1331562-116</u> SPACEK	PART NO.	1331562-116	SPACEK
------------------------------------	----------	-------------	--------

CER QA 6 47-10 _____

SER NO. 7A21 TEST FAILURE:

TESTED BY: 77/ FAILURE ANALYSIS NO.

END DATE: 6-5-98

END TIME: 1600 Spacek Labs, Inc.
212 E. Gutierrez St.
Sonto Royboro CA 03101

Santa Barbara, CA, 93101

TEST DATA SHEET NO. 8. AMPLIFIER TESTS

OUTPUT 1.0 dB COMPRESSION POINT TEST: ATP PARAGRAPH 5.1.6

DASH#					
11 12 13 14 15 16 17 18 19 20	FREQ.	P2 COMP	OUTPUT COMP.	SPEC.	
	(MHz)	(dBm)	at+10(dBm)	PT.(dBm)	ACC REJ
X X X X X X X X X	10	-2,2	0,8	1.0	(S.)
X	20			 	
X X	50		***************************************		
X X X X X X X X X	100	-72,3	0.7	1.0	5-
Х .	150	-23	0,7	1.0	* -
<u> </u>	200				

AMPLIFIER NOISE FIGURE AND TOTAL POWER TEST: ATP PARAGRAPH 5.1.7

400 500

1000

1500

DATE: 6-5-98 AMBIENT ROOM TEMPERATURE °C: 23°

X

X

- 66,6	- 6617	3.6	_1.19
-22,2	-22,8	7 .	. 10
AMBIENT (dBm)	(-77 K)(dBm)	(dB)	FIGURE (dB)
POWER	POWER	Y FACTOR	NOISE
OUTPUT	OUTPUT		AMPLIFIER
AMPLIFIER	AMPLIFIER		

Above data taken with Daden filter attached (except -19).

Intermediate test results for information only

PART NO. <u>1331562-JI &</u>	SPACEK QA	G-27-% (ST)
SER NO. 7A21	TEST FAILURE:	
TESTED BY: 77	FAILURE ANALYSI	S NO
END DATE: 6-5-98		
END TIME: (600	Spacek Labs, 212 E. Gutie Santa Barbar	rrez St.

TEST DATA SHEET NO. 13. MIXER-AMPLIFIER ASSEMBLY TESTS

DATE:_	6-24-98AM	BIENT ROOM	I TEMPERAT	JRE °C: <u> </u>	21		
UUT TEMP °C.	UUT CURRENT	MIXER- AMP. OUTPUT POWER (AMBIENT) (dBm)	MIXER- AMP. OUTPUT POWER (77 DEG K) (dBm)	Y FACTOR (dB)	MIXER- AMP. NOISE FIGURE (dB)	SPEC. MIXER- AMP. NOISE FIGURE (dB) AGC	REJ
-6	43.3	-21.30	-23,20	1.90	3,2	3.5	<i>)</i>
48	43.4	-21.50	-23.40	1.90	3.2	3.5	<u></u>
+28	43.5	-21.80	-23.70	1.90	3.2	3.5 QA	
+40	43.6	-22.00	-23.85	1.85	3.3	3.5 1	
Noise figure change							
ΝΕΔΤ-1	NOISE POW	ER STABILIT	Y TEST: ATP	PARAGRAPH	5.4.9		,
Date: 6-23-98 Ambient Room Temperature °C: 24							
Attach computer generated $NE \Delta T$ spreadsheet to this test data sheet.							
Record	the calculated	d Nps(K) from	spreadsheet da	ta: <u>0.054</u>	<u>/</u>		
Record	Record Nps(K) 0.07 for dash number from Aerojet specification AE-24869, Table II.						

Accept units if calculated Nps(K) is less than or equal to specified Nps(K), otherwise reject.

	DATE ACC REJ
PART NO. <u>1331562-11</u> B	SPACEK QA 6-29-78 (5-)
SER NO. 7A21	TEST FAILURE:
TESTED BY:	FAILURE ANALYSIS NO
END DATE: <u>6-24-78</u> END TIME: <u>1600</u>	Spacek Labs, Inc. 212 E. Gutierrez St. Santa Barbara, CA, 93101

5.4.14 Noise Power Profile

Model No.: 1331562-//

Serial No.: 7A21 Date: 6-29-98

Tested by: ()

Spectrum Analyzer Parameters

Vertical Scale: 2 dB/div.

Scan Width: 30 mhz/Div.

IF Band Width: 10 Khz

Scan Time:

3 sec/Div.

QA 1

Channel 2 Mixer/Amplifier

Mixer/Amplifier (P/N: 1331562-12, S/N: 7A12)

TEST DATA SHEET NO. 6. AMPLIFIER TESTS

4:00 PM

END TIME:

GAIN FLATNESS	SPEC. GAIN FLATNESS		•
(dB)ppK	(dB)ppK	ACC	REJ
· /		. QA	
0.26	0.5	1	

GAIN VERSUS VOLTAGE SENSITIVITY TEST: ATP PARAGRAPH 5.1.4

AMPLIFIER VOLTAGE	GAIN READING (dBm)	ΔG/ΔΥ	SPEC.	ACC REJ
10.00	70.67 70.61 70.52	1.875	2.0	QA
ΔGv =	0.15 dB		;	DATE ACC REJ
PART NO	D. <u>1331562-</u> [2 <i>G</i>	_ SPAC	EK QA	4-21-17 1
SER NO.	_7A12	TEST	FAILURE:	
TESTED	BY:	FAILURE	ANALYSI	S NO
END DA	TE: <u>4-21-97</u>	<u>.</u>		

Spacek Labs, Inc.

212 E. Gutierrez St.

Santa Barbara, CA, 93101

TEST DATA SHEET NO. 7. AMPLIFIER TESTS

Nominal Temperature	Relative Gain	ΔG/ΔT	SPEC	ACC	REJ	
(°C)				QN.		
T1 +40 -0.22	GT1 70.33			you	<u> </u>	
		* 0.018	0.035dB/°C	Q.4		
T2 +28 .0.61	GT2 70,55			1		, برسر
·		* 0.0295	0.020dB/°C		QA	EU
T3 +8 =0.12	GT3 71.14				1	CAM
0	,,,	* 0.011	0.035dB/°C	QA		
T4 - 6	GT4 71,3			1		

* Perform the following calculations and record on the TDS

$$\Delta G/\Delta T = G_{Ti} - G_{Ti+1}$$

$$\Delta G/\Delta T = G_{Ti} - G_{Ti+1}$$

$$T_{i} - T_{i+1}$$

$$i = 1,2,3,4$$

$$\Delta G_{T} = O/97 - dB$$

 $\Delta G_{TOTAL} = \Delta G_V + \Delta G_T + 0.4 = \frac{1.52}{1.52} dB$ Spec 1.4dB

ACC___REJ_1 CAMSU-1352

DATE ACC REJ

4-24-97 QA SPACEK QA PART NO. <u>1331562-12</u> **6**

SER NO. 7AIZ TEST FAILURE:

TESTED BY: FAILURE ANALYSIS NO.

END DATE: 4-24-97

Spacek Labs, Inc. END TIME: 4:00 Pm 212 E. Gutierrez St.

Santa Barbara, CA, 93101

TEST DATA SHEET NO. 8. AMPLIFIER TESTS

OUTPUT 1.0 dB COMPRESSION POINT TEST: ATP PARAGRAPH 5.1.6

DASH#					*,
		P2	OUTPUT	SPEC.	
11 12 13 14 15 16 17 18 19 20	FREQ. (MHz)	COMP (dBm)	COMP. at+10(dBm)	COMP. PT.(dBm)	ACC REJ
XXXXXXX	10 20	2,3	0.70	1.0	8-
X X X	50	-2,35	0,65	1,0	8 -
$X \times X \times$	100 150	-7.35	0165		
<u> </u>	200 400				
X X X	500 1000				
X	1500				
AMPLIFIER NOISE FIGURE AND TO	TAL POW	ER TEST: 2	ATP PARAGR	APH 5.1.7	
DATE: 4-20-97 AMBIENT ROOM TEM	PERATUI	E°C: 23	· ·		ı

AMPLIFIER OUTPUT POWER AMBIENT (dBm)	AMPLIFIER OUTPUT POWER (-77 K)(dBm)	Y FACTOR (dB)	AMPLIFIER NOISE FIGURE (dB)
-24.0	-27.7	3.7	1.10

Above data taken with Daden filter attached (except -19).

Intermediate test results for information only

	DATE ACC REJ
SPACEK QA	4- <u>20-97</u> (8-)
TEST FAILURE:	
FAILURE ANALYSIS	S NO
Snacek Labs.	Inc.
212 E. Gutier Santa Barbar	rrez St.
	TEST FAILURE: FAILURE ANALYSIS Spacek Labs, 212 E. Gutier

TEST DATA SHEET NO. 13. MIXER-AMPLIFIER ASSEMBLY TESTS

NOISE FIGURE, TOTAL POWER AND CURRENT VS. TEMPERATURE TEST: ATP PARA 5.4.8.

DATE: 1-5-98 AMBIENT ROOM TEMPERATURE °C: 122

		MIXER- AMP. OUTPUT	MIXER- AMP. OUTPUT POWER	Y	MIXER- AMP. NOISE	SPEC. MIXER- AMP. NOISE		
UUT	7 77 77	POWER	(77 DEG K)	FACTOR	FIGURE	FIGURE		
TEMP °C.	UUT CURRENT (m A)	(AMBIENT) (dBm)	(dBm)	(dB)	(dB)	(dB)	ACC	REJ
-6	42.8	-23,00	-25.15	2,15	2.8	3.2	QA /	
+8	42.9	-23,20	-25,35	2.15	2.8	3.2	QA 1	
+28	43.0	-23.40	-25.50	2,10	2,9	3.2		
+40	43.1	-23.50	-25.60	2.10	2.9	3.2	AQ	
		Soec S	is, 3da peak	to peak on -11	thm -19	10	محمية سيتاج جريا	
Noise fi	gure change		ec is .5dB peak	to peak on -	20 DE A		REJ	
		to be taken with						
			· · · · · · · · · · · · · · · · · · ·					

NEAT-NOISE POWER STABILITY TEST: ATP PARAGRAPH 5.4.9

Date: 1-19-98 Ambient Room Temperature °C: 23

Attach computer generated $NE \triangle T$ spreadsheet to this test data sheet.

Record the calculated Nps(K) from spreadsheet data: 0,055

Record Nps(K) 0.07 for dash number from Aerojet specification AE-24869, Table II. Accept units if calculated Nps(K) is less than or equal to specified Nps(K), otherwise reject.

من المناطقة	ACC REJ
PART NO. <u>1331562-12</u>	SPACEK QA DATE ACC REJ 1-21-98 S.
SER NO. 7A1Z	TEST FAILURE:
TESTED BY: DA	FAILURE ANALYSIS NO
END DATE: 1-19-98	
END TIME: 400 pm	Spacek Labs, Inc. 212 E. Gutierrez St. Santa Barbara,CA,93101

5.4.14 Noise Power Profile

Model No.: 1331562-/26

Serial No.: 7A/2

Date: 1-21-98

Tested by: DA

Spectrum Analyzer Parameters

Vertical Scale: 2 dB/div.

Scan Width: 30 mhz/Div.

50 ----

IF Band Width: 10 Khz

Scan Time: 3 sec/Div.

No video filter.

	TERRET NUMBER STED IN DE TERRETER DE SER DE SER DE SER ER ER ER ER ER ER ER ER DE SER DE FER DE LE DE LE DE L Terreter
100	
ORNER	
- 450	
	SUBSYSTEM-LEVEL TEST DATA
¥	
100	
5.53	u K
ψing.	
1.147	

TEST DATA

FOR

AMSU-A2 (P/N: 1356441-1, S/N: F02)

CENTER FREQUENCY OF LOS

Channel No.	1	2
Specification (GHz) * Setting Accuracy (+/-GHz)	23.8 0.008	31.4 0.008
Measured (GHz) **	23.800	31.399

^{*} Specification in vacuum condition.

^{**} Measured at ambient pressure (standard atmosphere).

TEST DATA SHEET 3 LO Frequency Test Data (Paragraph 3.5.1) (A2)

Test Setup Verified: 7, 7, 100 Signature	Baseplate Temperature (T_B) 23.7 °C
--	---

Compo- Channel		V _b (V) I _b (mA)			P _{dc} (mW)		f _o (GHz)		÷ 20	
nent -	No.			Required (Max)	Measured	Pass/ Fail	Required	Measured	Pass Fail	
. 2 2										
, ,, 4	1			2,000	·		23.800			
		10.01	69.6		696.7	ρ	± 0.008	23,800	P	
LO		<u> </u>		•		/	•			
20	··········									
· · ·										
	2	10,01	128.4	2,100	1285,3	P	31.400 ± 0.008	3/.399	P	
			72077							
	-									
Mixer/	All			900						
Amps	•	/0.00	84.0		840.0					
				5,000	2822.0					

Pass = P, Fail = F

Part No.: 1356 441-1	Test Engineer: That
Serial No.: FO2	Quality Assurance: QC 7/20/98
	Date: 6/2/98

CENTER 31.398 72 GHz RES BW 30 kHz

VBW 100 kHz

SPAN 2.00 MHz SWP 20.0 msec

TEST DATA SHEET 6 IF Output Test Data (Paragraph 3.5.2) (A2)

	A CONTRACTOR OF THE CONTRACTOR
Test Setup Verified: Y. Vrinh	Baseplate Temperature (T _B) <u>24.7</u> °C
Signature Signature	

Compo-	Channel V _b (V) I _b (mA) P _o		P _o (dBm)	P _o (dBm) Atten (dB)		P _o (dBm)		
nent	No.		- ,			Required	Measured	Pass Fail
		•						
	1	10.02	69.8	-21.87	5	-27.0 ± 1.0	-24.86	P
LO LO			•					
	\	-						
	2	10.02	128.3	-23.23	4	-27.0 ± 1.0	-27.31	P
Mixer/ Amps	All	10.01	84.0					

Pass = P, Fail = F

Part No.: 48497/	Test Engineer: Y. Think
Serial No.: FO2	Quality Assurance: QC 229 7/20/98
	Date: 06/3/98

SHEET	5	Oof	
BUE .	NO.	7	64

TEST DATA SHEET 9 100 Pt Bandpass Characteristics Test Data (Paragraph 3.5.3) (A2)

3 dB BW Frequency 3	
Compo- Channel V _b (V) I _b (mA) (MHz)	dB BW Frequency Pass/ (MHz) Fail
nent No. Lower Higher Required	MAX. Measured
LO 10.02 69.75 8.8 135.5 13.	
2 10.02 128.4 N/A 90	- [1//• 1
^Mixer/ All /0.00 83.62	
	dB BW Frequency Pass/
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(MHz) (REF. OUL) Fail
LO 1 N/A 351	
2 1/4 234	الم الم
Mixer/ All Amps	
190 190	
Part No.: 1356441-1 Test Engineer: 26	Sinf
Serial No.: Fo2 Quality Assurance: M	echal Stuly (30) 1/4 93
Date: 07/8/98	,

		O OF	
数PE 。	NO.	1764	

TEST DATA SHEET 9 See Bandpass Characteristics Test Data (Paragraph 3.5.3) (A2)

Test Setup Verified	44.1	2///
rest setup vermed	: Cunh	Baseplate Temperature (T _B) <u>24, 6</u> °C
	Signature	(-b) <u></u>
- , , , , ,		

Compo-	Channel	V _b (V)	l _b (mA)		Frequency (IHz)	3 dB BW F (MI		Pass. Fail
nent	No.	<u> </u>		Lower	Higher	Required MAX.	Measured	1 **
LO	1,1	10.02	69.8	8.4	133.9	135	125.5	P
tera. Ed	2	10.02	128.3	8.4	88.8	180° 90	80.4	P
Mixer/ Amps	All	10.01	84.0					

Compo-	Channel	· V _b (V)	l _b (mA)		V Frequency MHz)	40 dB BW i (MF	Pass/ Fail	
nent	No.			Lower	Higher	Required MAX.	Measured	
LO	1	10.02	69.8	3.4	147.0	351	143.6	P
	2	10.02	128.3	3.6	99.8	234	96.2	P
Mixer/ Amps	Ali	10.01	84.0					

Part No.: 1356441-1	Test Engineer: Y. Vrink
Serial No.: Fo2	Quality Assurance: (20) 7/20/98

SHEET $\frac{1}{NO}$ OF $\frac{1}{10}$ by

TEST DATA SHEET 10 (Sheet 4 of 10)

Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4)

A 5 X

Test Setup Verified: Y. Lind

Baseplate Temperature (TB) 22.5 °C

Compo-	Channel	V _b (V)	I _b (mA)	T _H (°C)	V _H	(V)	T _C (°C)	Vc	(V)
nent	No.	D(-)	D.C.	· // · /	Mean	Standard Deviation		Mean	Standard Deviation
·				22.4	-92333	.000205	-194.0	-6490	.000210
				22.4	79233	.000234	-194.0	:6499	.000356
	*			22.4	-9231	.000212	-194:0	76483	.000236
	1			22.4	-923;	.000209	-194.0	6478	.000314
LO	E	10.02	69.75	22.4	-9231	.000216	-194:0	-647 <i>4</i>	.000220
				22.4	-9228	.000234	-194.0	-6485	000392
				22.4	-9230	.000208	-194.0	-6472	.000439

Mixer/ All 10.02 83.62
IF Amps All N/A N/A

-9230

-9230

22.4

Part No.: 1356441-1

Serial No.: FO2

Test Engineer: 7 Yril

.000218 -194.0

.000221

1.6483

-194.0 -6476

.000366

.000355

Quality Assurance: (7A) 7/3/98

Date: 07/8/98

R. Kapper

TEST DATA SHEET 12 (Sheet 2 of 3)
Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A2)

Test Setup Verified:				Baseplat	e Temperatu	rre (T _B)	1.5. 13.18.		
	NF (dB)						NPS (K)		
Channel No.	Required (Max)	Measured .	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
. 1	3.85	3.98			0.89	0,021			
		3.95			\''' /	0:088			
		3,96				0,040			
		3,95			\ \	0,029			
		3.94.			\bigwedge	0.051.			
• • • • • • • • • • • • • • • • • • •	arm 17.71	3.96				0,088			
		3,94				0.020			
		3,96				0,056			
·		3,95				0.063			
		3.97				0,110			
	4.55		3,96	PASS	0.09		0.056	0.09	PASS
	4.5	and the second						Pass = P,	Fail = F
•			•.			• •			·
Part No.:	1356	991-1			Test Engin	eer: <u> </u>	Litt		(72)
Serial No	: Fo:	₹			Quality As	surance: //	uld S	th /3/	A (7A)
-	• •				Date:	7/8/9	8		

FOR REFERENCE CNLY

AMSU-A TEST

AMSU-A2, CH1, S/N: F02, NF & NPS TEST DATA, 7/8/98

SEQ	TEMP_TEST		VOLTAGE 92337649	STD_DEV .00020455	NF (dB)	NPS(K)
2	WARM TEST	295.55 79.15	64959739	.00020997	3.97522673	.02116788
3 4	WARM TEST	295.55 79.15	92329461 64792858	.00023447 .00035577	3.94954491	.08760735
5 6	WARM TEST	295.55 79.15	92313141 64825022	.00021229 .00023567	3.95648374	.03959782
7 8	WARM TEST	295.55 79.15	92311617 64781590	.00020941 .00031607	 3.94974441	.02852216
9	WARM TEST	295.55	92307952 64739210	.00021605	3.94342045	.05053992
1 Ø 1 1	COLD TEST WARM TEST	79.15 295.55	92282171	.00023425		
12 13	COLD TEST	79.15 295.55	64847566 92302654	.00039153 .00020770	3.96354355	.08771103
14 15	COLD TEST WARM TEST	79.15 295.55	64715346 92302650	.00043861 .00021815	3.94022287	.01945730
16	COLD TEST WARM TEST	79.15 295.55	64832981 92295330	.00036635 .00022125	3.95892473	.05606385
17 18	COLD TEST	79.15	64761976	.00025492	3.94844319	.06302613
19 20	WARM TEST	295.55 79.15	92292135 64864939	.00024919 .00036958	3.96519791	.11040914

CH. 1 ,126.8 MHz MHz

NOISE FIGURE AVERAGE (dB) = 3.95508741514

NOISE POWER STABILITY (K) = .0564102583209

NOISE POWER STABILITY DELTA (K) = .090951840151

NOTSE TOWER STREET, BEET, TR.

 $NPS_MAX(K) = .110409143024$ $NPS_MIN(K) = .0194573028728$

INTEGRATION TIME = .158

TEST DATA SHEET 10 (Sheet 4 of 10)

Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A

Baseplate Temperature (T_B) 24.9 °C Test Setup Verified:

Compo-	Channel	ν _b (ν)	I _b (mA)	T _H (°C)	V _H		T _C (°C)	ν _c	(V)
nent	No.				Mean	Standard Deviation		Mean	Standard Deviation
				22.4	-1.005	.000254	- 194.0	-733 j	.000171
				22.4	-1.005	000237	-194.0	7.7336	.000180
	X			22.4	-1.005	.600226	-194.0	77342	.000205
	7	,,,,	190	22.4	-1.006	-000219	-194.0	-7314	.000 205
LO	E	10.02	69.8	22.4	-1.006	-000244	-194.0	7342	.000200
*		ĺ		22.4	-1.004	-000257	-194.0	-7354	-000152
				22.4	-1.008	.000237	-194.0	-7362	-000207
				22.4	-1.003	-000237	-194.0	-7369	.000782
				22.4	-1.009	.000272	-194.0	-7378	.000192
				22.4	-1.009	. occ239	-194.0	-7375	.000202
Mixer/ Amps	All	10.01	84.0						
IF Amps	Ali	NA	N/A						

,356441-1	5/ 4/-
Part No.: 484977 1.70 6/17/98	Test Engineer: (20) 7/0/98
Serial No.: FOR	Quality Assurance: (229) 7/20/98
	Date: 6/17/98

TEST DATA SHEET 12 (Sheet 2 of 3)
Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A2)

Test Setup Verified:	7. Truon	Baseplate Temperature (T_B) $\frac{24.7}{}$ °C
	Signature	

	r i					·	·				
N		NF	(dB)			NPS (K)					
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail		
1	3.85	4,38			0.89	0,09					
	N	4,38			\	0.06					
- 19 - - - -		4.39				0,01					
	٠.	4,39				0,03					
		4.38				0.08.					
		4.39			\mathcal{L}	0.09					
		4,39				0.06					
		4.40				0,06					
<i>Y</i>		4,40				0.12					
	,	4.39				0,06					
	4.55		4.39	P	109		0,07	0.11	P		

Fail = F

1356441-1 Part No: 484974 7.777198	,
Part No.: 484974 7. 17198	Test Engineer: The Land
Serial No.: FO2	Quality Assurance: QC 2/20/98
•	Date: 6/17/98

TEST DATA SHEET 10 (Sheet 4 of 10)

Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Baseplate Temperature (T_B) 24.6 °C Test Setup Verified: Signature

Compo-	Channel	V _b (V)	I _b (mA)	T _H (°C)	V _H		T _C (°C)	Vc	(V)
nent	No.				Mean	Standard Deviation		Mean	Standard Deviation
			•	22.5	-87467	.000252	-194.0	-57056	.000253
				22.5	-87451	.000254	-194.0	-56876	.000241
	*			22,5	787472	.000276	-194.0	-57001	-000285
•	2 5		_	22.5	-87487	.000233	-194.0	-57013	.000223
LO	£ 10	10.02	128.3	22.5	87483	.000259	-194.0	756992	.000309
				22.5	-87490	.000250	-194.0	-56721	.000208
•				22.5	-87489	.000250	-194.0	-56721	.000278
				22.5	-87492	.000251	-194.0	-5682	.000242
				22.5	87506	.000258	-194.0	-56734	.000312
		·		22.5	- 87505	.000292	-194.0	-56715	.00039
Mixer/ Amps	All	10.01	84.0						
IF Amps	All	N/A	NA						

Part No.: 484971	Test Engineer: 7. Vrink
Serial No.: FO2	Quality Assurance: Michael Stuly 6/1498 (190)
	Date: 86/3/98

TEST DATA SHEET 12 (Sheet 3 of 3)
Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A2)

Test Setup Verified: Y Signature Baseplate Temperature (T _B) 24.6 °C Signature									
		NF ((dB)				NPS (K)		
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
2 (3.55	3.28			0.00	0.041			
		3. 25				0.047			
-	Value	3.27				0.09			
	·	. 3.27			\bigvee	0.054			
		3.27			Λ	0.060			
		3.23			2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.035			
		3.23				0.033			
		3.24				0.035			
	•	3.23				0.057			
	علا	3.23				0.082			
	4,20		3.25	P	0.09		0.053	0.058	P
	3,95			. ,				Pass = P,	Fail = F
		,							
Part No.:_ Serial No		4971 Foz			Test Engine Quality Ass	urance:	tricky	H. 1 6/	19/4 (P)
				-	Date:	04/3	/78		

06/3/98 8/0: 484971 FOR REFERENCE ONLY

AMSU-A TEST

						*
AMS	J-A2, S/N	: F02, CH2,	NF & NPS TES	T DATA	6/3/98	
				STD_DEV .00025198	NF (dB)	NPS(K)
1 2	COLD TEST		87466939 57056018	.00025835	3.27915686	.04071343
	COLD TES	79.15	87450806 56876293	.00025425	3.25483466	.04719068
6	WARM TEST	79.15	87471507 57001331	.00027631	3.27085435	.09020299
7 8	WARM TEST	79.15	87486699 57012820	.00023332	3.27108299	.05416052
9 10	WARM TEST	79.15	87482569 56991708	.00025972	3.26843440	.06027504
11	COLD TEST	79.15	8749 03 28 5672 0 512	.00025033 .00020834	3.22890622	.03453138
13 14		r 79.15	87489411 5672 0 546	.00024980 .00027844	3.22899577	.03258535
15 16	WARM TEST	79.15	87492231 56816608	.00025051 .00024200	3.24243970	.03525605
17 18	WARM TEST	79.15	875 0 5596 56734261	.00025836 .00031804	3.22945461	.05660204
19 20	WARM TEST		87504915 56714673	.00027181 .00039314	3.22672827	.08201884
сн.	2 ,80.4 1	MHz MH	z			
NOI	SE FIGURE	AVERAGE (d	B) = 3.2501	3483616	•	

NOISE POWER STABILITY (K) = .0533536319268

NOISE POWER STABILITY DELTA (K) = .057617642447

 $NPS_MAX (K) = .0902029877624$ $NPS_MIN (K) = .0325853453154$

INTEGRATION TIME = .158

TEST DATA SHEET 18
Temperature Sensor and Thermistor Test Data (Paragraph 3.6.1) (A2)

Baseplate Temperature (T_B) 22.2 °C Test Setup Verified: Signature

Reference Designation	Specification	Measured Value	Pass/Fail
RT 12	2200 ± 100 Ω	2175 0	P
RT 19	2200 ± 100 Ω	2170 Ω	P
RT 20	2200 ± 100 Ω	2170 Ω	P
RT 13	2200 ± 100 Ω	2174 Ω	P
RT 14	2200 ± 100 Ω	2/7/ Ω	P
RT 17	2200 ± 100 Ω	2/7/ Ω	an and production
TB 58	3000 ± 100 Ω	·· 3002 Ω	P
TB 59	3000 ± 100 Ω	3003 Q	P
TB 53	4.1 – 4.6 V	4.35 V	P

Pass = P, Fail = F

Part No.: 1356441-1	Test Engineer: Y. Grind	
Serial No.: FO2	Quality Assurance:	20/98

Date: 06/2/98

TEST DATA SHEET 22
Survival Heater and Thermal Switch Test Data (Paragraph 3.6.3) (A2)

Test Setup Verified: Signature Bas	seplate Temperature (T _B) <u> </u>
-------------------------------------	--

1000	Open S	Switch	Closed Switch			
Reference Designation	>10 MΩ	Pass/Fail	Specification	Measured Value	Pass/Fail	
HR1/TS1	750 MD	P		54.20	P	
	> 50 MQ	P	50 - 65 Ω	54.20	P	
HR2/TS2	>50MD	P		55.72	P	
·	750MD	P		55.7.2	,	

Part No.: 1356441-1	Test Engineer: 7. Yr.
Serial No.: FO2	Quality Assurance: QC 229 7/20/98
	Date: 06/2/98

,	al	OF
SHEE'	r_1	2 OF
ECH	NO.	

TEST DATA SHEET 23 (Sheet 3 of 3) Bias Voltage Verification Test Data (Paragraph 3.6.4) (A2)

Test Setup Verified: 7- 2000 Baseplate Temperature (T_B) 22.4 °C

Reference Designation	Specification :	Measured Value (V)	Pass/Fail
Mixer/IF AMP Ch 1, 2	+10 ±0.1	10.04	P
DRO Ch 1	+10 ±0.1	10.01 V	P
DRO Ch 2	+10 ±0.1	10.01 V	P

Part No.: 1356441-1
Serial No.: FO2

Test Engineer: 2. Teinh

Quality Assurance: (229) 7/20/98

Date: 06/2/98

FORMS

		· · · · · · · · · · · · · · · · · · ·		·		
National Aeronautics and Space Administration Report Documentation Page						
1. Report No.	2. Government Accession N	lo.	3. Recipient's Catalog	No.		
				140.		
4. Title and Subtitle			5. Report Date			
			July 1998	3		
Integrated Advanced Mic	Jule-A					
(AMSU-A), Performance		6. Performing Organizat	lion Code			
7. Author(s)			Performing Organizat	ion Report No		
			11193	aon report No.		
R. Kapper			10. Work Unit No.			
1		 	TO. WORK OHILING.			
 Performing Organization Name and Aerojet 	Address					
1100 W. Ho	Marala		11. Contract or Grant No	= :		
Azusa, CA	•			5-32314		
12. Sponsoring Agency Name and Ado	······································		13. Type of Report and	Period Covered		
NASA	11655		Final			
1	pace Flight Center		14. Sponsoring Agency	Code		
1	Maryland 20771					
16. ABSTRACT (Maximum 200 words) This is the Performance \ 1356441-1, S/N F02 for the						
17. Key Words (Suggested by Author(s))	18. Distribution	n Statement			
FOS		Unclassified Un	timeter a			
	Microwave System			limited		
19. Security Classif. (of this report)	20. Security Classif. (of t	l his page)	21. No. of pages	22. Price		
Unclassified	Unclassified					
NASA FORM 1636 OCT 86			L	l		

PREPARATION OF THE REPORT DOCUMENTATION PAGE

The last page of a report facing the third cover is the Report Documentation Page, RDP. Information presented on this page is used in announcing and cataloging reports as well as preparing the cover and title page. Thus, it is important that the information be correct. Instructions for filing in each block of the form are as follows:

- Block 1. Report No. NASA report series number, if preassigned.
- Block 2. Government Accession No. Leave blank.
- Block 3. <u>Recipient's Catalog No.</u>. Reserved for use by each report recipient.
- Block 4. <u>Title and Subtitle</u>. Typed in caps and lower case with dash or period separating subtitle from title.
- Block 5. Report Date. Approximate month and year the report will be published.
- Block 6. Performing Organization Code . Leave blank.
- Block 7. <u>Authors.</u> Provide full names exactly as they are to appear on the title page. If applicable, the word editor should follow a name.
- Block 8. <u>Performing Organization Report No.</u> NASA installation report control number and, if desired, the non-NASA performing organization report control number.
- Block 9. <u>Performing Organization Name and Address.</u> Provide affiliation (NASA program office, NASA installation, or contractor name) of authors.
- Block 10. <u>Work Unit No.</u> Provide Research and Technology Objectives and Plants (RTOP) number.
- Block 11. Contract or Grant No. Provide when applicable.
- Block 12. <u>Sponsoring Agency Name and Address.</u> National Aeronautics and Space Administration, Washington, D.C. 20546-0001. If contractor report, add NASA installation or HQ program office.
- Block 13. <u>Type of Report and Period Covered</u>. NASA formal report series; for Contractor Report also list type (interim, final) and period covered when applicable.
- Block 14. Sponsoring Agency Code. Leave blank.
- Block 15. Supplementary Notes. Information not included

- elsewhere: affiliation of authors if additional space is required for Block 9, notice of work sponsored by another agency, monitor of contract, information about supplements (file, data tapes, etc.) meeting site and date for presented papers, journal to which an article has been submitted, note of a report made from a thesis, appendix by author other than shown in Block 7.
- Block 16. Abstract. The abstract should be informative rather than descriptive and should state the objectives of the investigation, the methods employed (e.g., simulation, experiment, or remote sensing), the results obtained, and the conclusions reached.
- Block 17. <u>Key Words.</u> Identifying words or phrases to be used in cataloging the report.
- Block 18. <u>Distribution Statement.</u> Indicate whether report is available to public or not. If not to be controlled, use "Unclassified-Unlimited." If controlled availability is required, list the category approved on the Document Availability Authorization Form (see NHB 2200.2, Form FF427). Also specify subject category (see "Table of Contents" in a current issue of <u>STAR</u>) in which report is to be distributed.
- Block 19. <u>Security Classification</u> (of the report). Selfexplanatory.
- Block 20. <u>Security Classification</u> (of this page). Self-explanatory.
- Block 21. <u>No. of Pages.</u> Count front matter pages beginning with iii, text pages including internal blank pages, and the RDP, but not the title page or the back of the title page.
- Block 22. <u>Price Code</u>. If Block 18 shows "Unclassified-Unlimited," provide the NTIS price code (see "NTIS Price Schedules" in a current issue of STAR) and at the bottom of the form add either "For sale by the National Technical Information Service, Springfield, VA 22161-2171" or "For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402-0001," whichever is appropriate.

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188		
Public reporting burden fothis collection ofinfor gathering andmaintaining thedata needed, and collection of information, including suggestoffs Davis Highway, Suite 1204, Arlington, VA 2220	mation is estin completing an r reducing this 02-4302, and t	natedo average 1 hour per res dreviewing thecollectioninform burdento Washington Headqu o the Office of Management a	ponse i ation. S rarters nd Bud	including the Send comme ServicesDirect get, Paperwo	timefor reviewing instruntsregardingthis burde storate for information ork Reduction Project (ictionssearching existing data source enestimate or any other aspect of this Operationsand Reports, 1215 Jefferso 0704-0188). Washington, DC 20503.	
1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AN blank)					RT TYPE AND DA	TES COVERED	
4. TITLE AND SUBTITLE Integrated Advanced Microwave Sounding Unit-A (AMSU-A), Performance Verification Report				5. F	5. FUNDING NUMBERS NAS 5-32314		
6. AUTHOR(S) R. Kapper							
7. PERFORMING ORGANIZATION Aerojet 1100 W. Hollyv		AND ADDRESS(ES)			PERFORMING OF REPORT NUMBE 11193		
Azusa, CA 917	702				July 1998		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) NASA Goddard Space Flight Center				10.	10. SPONSORING/MONITORING AGENCY REPORT NUMBER		
Greenbelt, Mar	yland 20	771					
11. SUPPLEMENTARY NOTES							
12a. DISTRIBUTION/AVAILABILITY	STATEM	ENT		12b.	DISTRIBUTION	CODE	
13. ABSTRACT (Maximum 200 words)						·	
This is the Performance \ 1356441-1, S/N F02 for the							
14. SUBJECT TERMS						15. NUMBER OF PAGES	
EOS							
Microwave System						16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT	18. SECURIT	Y CLASSIFICATION PAGE		ECURITY C	CLASSIFICATION	20. LIMITATION OF ABSTRACT	
Unclassified		nclassified	Ì		assified	SAR	

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filing in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only(Leave blank)

Block 2. Report Date Full publication date including day, month, andyear, if available (e.g.,1 Jan 88). Must cite at least the year.

Block 3. <u>Type of Report and Dates Covered</u> State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g., 10 Jun 87 - 30 Jun 88).

Block 4. <u>Title and Subtitle</u> A title is taken from the part of the report that provides the most meaningful and complete information. When a report iprepared in more than one volume report the primary title, add volume number and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. <u>Funding Numbers</u> To include contract and grant numbers; may include program element number(s), project number(s), tasksnumber(s), andwork unit number(s). Use the following labels:

 C
 Contract
 PR
 Project

 G
 Grant
 TA
 Task

 PE
 Program
 WU
 Work Unit

 Element
 Accession No.

Block 6. <u>Author(s)</u> Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of thereport. If editor or compiler, this should follow the name(s).

Block 7. <u>Performing Organization Name(s) and Address(es).</u> Self-explanatory.

Block 8. <u>Performing Organization Report Number.</u> Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. <u>Sponsoring/Monitoring Agency Name(s) and Address(es)</u> Self-explanatory.

Block 10. Sponsoring/MonitoringAgency Reports Number. (if known).

Block 11. <u>SupplementaryNotes.</u> Enter informationnot included elsewhere such as: Prepared in cooperation with...; Trans. of ...; To be published in ... When a report is revised, include a statementwhether the new report supersedes or supplements the older report.

Block 12.a <u>Distribution/Availability Statement</u>Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g., NOFORN, REL, ITAR).

DOD - See DoDD 5230.24 Distribution Statement on Technical Documents

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12.b Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank. NTIS - Leave blank.

Block 13. <u>Abstract.</u> Include a brief *Maximum 200 words* factual summary of the most significant information contained in the report.

Block 14. <u>Subject Terms.</u> Keywords or phases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. <u>Price Code.</u> Enter appropriate price code\(T/S\)

Block 17 - 19. <u>Security Classifications</u>. Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. <u>Limitation of Abstract.</u>This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

DOCUMENT APPROVAL SHEET

IIILE	DOCUMENT NO.		
Performance Verification Report	Report 11193		
METSAT AMSU-A2 Receiver Assembly	-		
<u> </u>		July 1998	
INPUT FROM: DATE CDRL:	SPECIFICATION ENGINEER:		DATE
R. Kapper 208			DATE
1. Napper			
CHECKED BY: DATE	JOB NUMBER:		DATE
CHECKED BY.	JOB NUMBER.		DATE
APPROVED SIGNATURES		DEPT. NO.	DATE
:			
- · · - · · · · · · · · · · · · · · · ·			-1-7/00
Product Team Leader R. Kapper) () Kop	001	8661	1/2/190
$\alpha \alpha $,		7/27/98 7/29/98
Systems Engineer (R. Platt)	•	8311	7/26/98
Cyclomic Engineer (18.1 late)		0011	1/21110
- Allen			7/29/90
Design Assurance (E. Lorenz)	· · · · · · · · · · · · · · · · · · ·	8331	1/ -///0
Quality Assurance (R. Taylor) Rhu Taylor		7831	7.27-98
quality / tooditation (i.e. raylor)			,
T 1 1 1 1 1 1 1 1 1	191	4004	-10/00
Technical Director/PMO (R. Hauerwaas)	Janewas.	4001	7/29/98
	\wedge		
Configuration Management (J. Cavanaugh)	Amariano 1	8361	1/29/98
Johnston Wanagomont (b. Gavanaugn)		0001	1.0
()			
By my signature, I certify the above document has been reviewed by me a requirements related to my area of responsibility.	nd concurs with the technical		
requirements related to my area or responsibility.			
DELEACE (Data Cartes) EINIAI			
RELEASE (Data Center) FINAL			
Please return this sheet and the reproducible master to Jim Kirk (Bldg.	1/Dept. 8631), ext. 2081.		