

TP 01 : Introduction à l'informatique & systèmes de numération

Nous allons faire un petit TP de mise en application sur les bases de numération. Cette compétence vous sera utile bien des fois dans vos études.

Objectif pédagogique :

A l'issue de cette série de TP, vous serez capable de présenter l'information en utilisant les systèmes de codage ainsi que l'identification des différents types de représentation des données en mémoire.

Ce TP est divisé en deux partie :

1- La première partie consiste à se familiariser avec les composants matériels de l'ordinateur.

2- La deuxième partie manipule les différents systèmes de numération de l'information à travers des exercices d'application numérique.

- 1. Comptez à partir de zéro jusqu'à 20 en décimal en indiquant la valeur équivalente en binaire.
- 2. Dans le nombre (40 04)10, Qu'est-ce qui différencie le 4 de gauche de celui de droite?
- 3. Combien d'octets font 32 bits ?
- 4. Dans l'octet suivant: (10011010)2, quel est le bit de poids fort, et le bit de poids faible ?
- 5. Combien d'information peut-on représenter avec 7 bits ?

Exercice 2

Le passage de la base 2, 8, 16 vers 10

- 1. Convertir les nombres : (1100 0110)₂, (01001011)₂, (1245)₈, (3C5)₁₆ en décimal.
- 2. Combien vaut (A)₁₆ en décimal?
- 3. Combien vaut (4A)₁₆ en décimal ?
- 4. Convertir le nombre (DEC)₁₆ en base 10.

Le passage de la base 10 vers 2,8,16

- 1. Convertir en binaire $(1523)_{10}$, $(60)_{10}$, $(2708)_{10}$
- 2. Convertir le nombre (108)₁₀ en octal
- 3. Convertir (510)₁₀ en hexadécimal.
- 4. Quelle est la valeur binaire qui correspond à la valeur décimale 12 ?

Le passage de la base 2 vers 8,16

- 1. $(10110101010)_2 = (?)_8$
- 2. Convertir (1100 0110)₂ en hexadécimal.
- 3. Quelle est la valeur binaire qui correspond à la valeur Hexadécimale 8E5?

Le passage de la base 8,16 vers 2

- 1. $(743)_8 = (?)_2$
- 2. $(7B3A)_{16} = (?)_2$

Le passage de la base 8 vers 16

$$(6237)_8 = (?)_{16}$$

- 1. Quelle est le résultat de l'addition en binaire suivante : 11010+01011
- 2. Quelle est le résultat de l'addition en binaire suivante : 110111+11101
- 3. Quelle est le résultat de l'addition en hexadécimal suivante : 1A + C7
- 4. Quelle est le résultat de la soustraction en binaire suivante : 10110-10001
- 5. Quelle est le résultat de la multiplication en binaire suivante : 1010*101

TP 01 : Introduction à l'informatique & systèmes de numération

Nous allons faire un petit TP de mise en application sur les bases de numération. Cette compétence vous sera utile bien des fois dans vos études.

Objectif pédagogique :

A l'issue de cette série de TP, vous serez capable de présenter l'information en utilisant les systèmes de codage ainsi que l'identification des différents types de représentation des données en mémoire.

Ce TP est divisé en deux partie :

1- La première partie consiste à se familiariser avec les composants matériels de l'ordinateur.

2- La deuxième partie manipule les différents systèmes de numération de l'information à travers des exercices d'application numérique.

- 1. Comptez à partir de zéro jusqu'à 20 en décimal en indiquant la valeur équivalente en binaire.
- 2. Dans le nombre (40 04)10, Qu'est-ce qui différencie le 4 de gauche de celui de droite?
- 3. Combien d'octets font 32 bits ?
- 4. Dans l'octet suivant: (10011010)2, quel est le bit de poids fort, et le bit de poids faible ?
- 5. Combien d'information peut-on représenter avec 7 bits ?

Exercice 2

Le passage de la base 2, 8, 16 vers 10

- 1. Convertir les nombres : (1100 0110)₂, (01001011)₂, (1245)₈, (3C5)₁₆ en décimal.
- 2. Combien vaut (A)₁₆ en décimal?
- 3. Combien vaut (4A)₁₆ en décimal ?
- 4. Convertir le nombre (DEC)₁₆ en base 10.

Le passage de la base 10 vers 2,8,16

- 1. Convertir en binaire $(1523)_{10}$, $(60)_{10}$, $(2708)_{10}$
- 2. Convertir le nombre (108)₁₀ en octal
- 3. Convertir (510)₁₀ en hexadécimal.
- 4. Quelle est la valeur binaire qui correspond à la valeur décimale 12 ?

Le passage de la base 2 vers 8,16

- 1. $(10110101010)_2 = (?)_8$
- 2. Convertir (1100 0110)₂ en hexadécimal.
- 3. Quelle est la valeur binaire qui correspond à la valeur Hexadécimale 8E5?

Le passage de la base 8,16 vers 2

- 1. $(743)_8 = (?)_2$
- 2. $(7B3A)_{16} = (?)_2$

Le passage de la base 8 vers 16

$$(6237)_8 = (?)_{16}$$

- 1. Quelle est le résultat de l'addition en binaire suivante : 11010+01011
- 2. Quelle est le résultat de l'addition en binaire suivante : 110111+11101
- 3. Quelle est le résultat de l'addition en hexadécimal suivante : 1A + C7
- 4. Quelle est le résultat de la soustraction en binaire suivante : 10110-10001
- 5. Quelle est le résultat de la multiplication en binaire suivante : 1010*101