Game Finite State Machine

State	R_1R_0	Meaning
H_WIN	00	Hidden player wins
RIGHT	01	Guessing player turn; RIGHT to win
LEFT	10	Guessing player turn; LEFT to win
G_WIN	11	Guessing player wins

(B=0 corresponds to left, B=1 is right)

3.2)

State	В	Next state
H_WIN	0	LEFT
H_WIN	1	RIGHT
RIGHT	0	H_WIN
RIGHT	1	G_WIN
LEFT	0	G_WIN
LEFT	1	H_WIN
G_WIN	0	LEFT
G_WIN	1	RIGHT

3.5)

State	R ₁	R ₀	D ₁	D ₀
H_WIN	0	0	0	1
RIGHT	0	1	0	0
LEFT	1	0	0	0
G_WIN	1	1	1	1

D	0	R	0	
		0	1	
R_{i}	0 ((\top)	0	
	l	0)

 $D_0 = R_1'R_0' + R_1R_0$

3.7)

R ₁	R ₀	В	R ₁ ⁺	R_0^+
0	0	0	1	0
0	0	1	0	1
0	1	0	0	0
0	1	1	1	1
1	0	0	1	1
1	0	1	0	0
1	1	0	1	0
1	1	1	0	1

NAND-NAND Expressions (using DeMorgans Law):

$$\begin{split} R_{1}^{+} &= \left((R_{0}'B')' + (R_{1}'R_{0}B)' + (R_{1}R_{0}B')' \right)' \\ R_{0}^{+} &= \left((R_{1}'B)' + (R_{0}B)' + (R_{1}R_{0}'B')' \right)' \end{split}$$

Implementation

4.2)

Ref.	Part no.
U1	SN7404
U2	SN7400
U3	SN7400
U4	SN7410
U5	SN7410
U6	SN74175
U7	SN7402