PATENT ABSTRACTS OF JAPAN

(11) Publication number:

03-037071

(43)Date of publication of application: 18.02.1991

61) htC L

A61L 27/00

Q1)Application number: 01-171435 (22)Date of filing:

03.07.1989

(71)Applicant:

JGC CORP

(72) hventor:

SUDA AK D

HARADA YOSHUI

HONDA MASASHI

64) HIGH STRENGTH ART FICIAL BONE AND ITS MANUFACTURE

67) Abstract:

PURPOSE: To obtain an artificial bone with necessary strength and organism ic activity and no peeling on a surface layer by coating ceram is with an organism is activity made of hydroxy apatite and a specific additional ceram ic on the surface of a ceram ic core with high-strength. CONSTITUTION: A film 3 made of an ceram ic organism ic activity is coated on the surface of a high strength core 2 to constitute an artificial bone 1. A lum ina, z irconia and their mixed ceram ic raw material are used for the material of the high strength core 2, and the high strength core with the core strength about 50-60kg/mm 2 or above is preferably used in particular. The ceram ic surry with organism ic activity made of 99-34w t% hydroxy apatite and one or two or more kinds of 1-66wt% additional ceram is selected among alumina, zirconia and titania is coated on a mod with a shape corresponding to the artificial bone 1 by the cast moding method to form a surface layer. Then the ceram ic surry for the high strength core 2 is filled to form a composite body, and the composite body is baked at 1300-1450°C to manufacture the high strength artificial bone 1.

.EGAL STATUS

Date of request for exam ination]

Date of sending the exam iner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

Date of final disposal for application]

[Patent num ber]

Date of registration]

[Number of appeal against examiner's decision of rejection]

Date of requesting appeal against examiner's decision of rejection]

Date of extinction of right]

Copyright C): 1998,2003 Japan Patent Office

◎ 公 開 特 許 公 報 (A) 平3-37071

⑤Int. Cl. *

識別配号 庁内察理番号 (3)公開 平成3年(1991)2月18日

A 61 L 27/00

K 6971-4C

審査請求 未請求 請求項の数 2 (全6 頁)

高強度人工骨材およびその製造方法 の発明の名称

②特 顯 平1-171435

20出 頭 平1(1989)7月3日

山形県山形市東山形1丁目5-26 昭 男 向発 明 者 須 田

宫城県黒川郡富谷町東向陽台 2丁目18-11 芳 次 原田 伽発 明 者

宮城県仙台市太白区中田町字鎌ケ渕111-6 @発 明 者 本 田 政 志

日 揮 株 式 会 社 東京都千代田区大手町2丁目2番1号 の出 願 人

弁理士 志賀 正武 外2名 @代 理 人

1. 発明の名称

高強度人工骨材およびその製造方法

2. 特許請求の範囲

(1.) セラミック製高強度芯材の表面に、ヒド ロキシアパタイト99~34里量%と、アルミナ とジルコニアとチタニアのうちから専択される1 種類あるいは2種類以上の添加セラミック1~6 6 重量%とからなる生体活性セラミックを放復し てなる高強度人工骨材。

(2) 作製すべき人工骨材に対応した形状を育 する型に、鈎込み成形法によってヒドロキシアパ タイト99~34重量%と、アルミナとジルコニ .アとチタニアのうちから選択される1種類あるい は2種類以上の斡加セラミック1~66質量%と からなる生体活性セラミック泥漿を着肉させて寂 面別を形成させ、次いで高強度芯材用セラミック 記憶を注入して複合体とし、次いでこの複合体を 1300~1450℃で娘成することを特徴とする高強度 人工骨材の製造方法。

3. 発明の詳細な説明

「 産業上の利用分野 」

本発明は、人工骨、人工関節、人工歯根などの 生体インプラント材に使用される人工骨材に係わ り、特にリン酸カルシウム系化合物を用いた高強 应の人工骨材およびその製造方法に関する。

「 従来の技術およびその課題 」

上記人工骨などの生体インプラント材としては、 従来、ステンレス鋼やチタン合金等の金額材料あ るいはアルミナ等のセラミック材料が使用されて

これらのうち金国材料は、機械的強度および成 彩加工性に優れた材料であるが、生体インプラン ト材として使用した場合に、電気化学的腐食によ り金閣イオンが済出したり、摩耗特性が劣るなど の問題があった。

またセラミック材料は、上記金銭材料の弊容を もたず、体液による腐食も認められず、毒性、ア レルギー性、免疫反応等病理学的な面で優れてい δ.

骨細胞は、絶えず骨の吸収と増殖を同時に進めているが、アルミナまたはジルコニアが骨に挿入された後、セラミックを通して長時間荷重が加わると、吸収、増殖のバランスがくずれ、骨溶解現象が起こり、その結果、生体骨とセラミックとの間に"ゆるみ"(loosening)が発生することになる。

一方、ヒドロキシアパタイト (Caio(PO4)e (OH):)は、骨、歯を構成する成分であり、生体

ム素材を溶射またはコーティングして強度改良を図る方法も種々研究がなされており、例えば特開昭 59-112908号、特開昭 53-118411号、特開昭 62-2316 67250号、特開昭 61-40884号および特開昭 62-2316 69号公報記載の発明がある。しかしこれらの材料は、表面層の剥離および生体骨への接着性に問題がある。

本発明は、上記事情に鑑みてなされたもので、一般に人工骨材に必要とされる強度、すなわち生体骨の2~3倍程度(生体骨強度は約18Kg/mm*の強度。)である50~60Kg/mm*の強度を有し、かつ生体活性があり、表面層に剥離を生じることのない人工骨材の提供を目的としている。

「森窟を解決するための手段」

上記録歴を解決するための手段として、本発明の高強度人工骨材は、請求項 1 に記載したように、セラミック製高強度芯材の表面に、ヒドロキシアパタイト 9 9 ~ 3 4 重量%と、アルミナとジルコニアとチタニアのうちから選択される 1 種類めるいは 2 種類以上の添加セラミック 1 ~ 8 8 重量%

内ではこれを異物として認識せず、顔能性コラー ゲン膜を形成しないので、直接生体骨と結合させ ることができるなど優れた生体特性を有している。

しかしながら、このヒドロキシアパタイトは機 他的強度の点で他のセラミック材料よりも劣るという関連があった。例えばヒドロキシアパタイト をHIP法 (無関節水圧焼箱法)等の焼結技術を用 いてヒドロキシアパタイト焼結体を作製しても、 この焼結体の強度はアルミナ焼結体の半分にも違 していない。

このヒドロキシアパタイト挽結体の強配向上を 目的とした預明としては、特開昭 6 4 - 2 4 0 1 1 号および特開平 1 - 1 1 1 7 6 3 号公報記数の 類明があり、これらの発明ではヒドロキシアパタ イトとジルコニア、アルミナ、チタニア等との複 合化を行い、強度の改良を行ったが、これら複合 セラミックは強度の点で改良の余地が殺されてい

また強度改良の方法としては、金属インブラン ト材またはセラミック材の表面にリン酸カルシウ

とからなる生体活性セラミックを被覆してなるも のである。

また上記高強度人工骨材の製造方法としては、 請求項2に記載したように、作製すべき人人工骨材 に対応した形状を育する型に、60 込み成形法によっ でヒドロキシアパタイト99~34重量%と、ア ルミナとグルコニアとチタニアのうちから選択さ れる1種類あるいは2種類以上の添加セラミック 1~66 毎重悪%とからなる生体活性セラミック泥 類を着肉させて表面圏を形成させ、次いで高強度 芯材用セラミック泥漿を注入して複合体とした いでこの複合体を1300~1450℃で焼成する方法が 好趣に使用される。

「作用」

この高独度人工分材は、高独度芯材の表面にと ドロキシアパタイトを含む生体活性セラミックの 被理を投けたことにより、生体活性が得られる。 またこの生体活性セラミックは、ヒドロキシアパ タイトと承加セラミックとからなるものなので、 芯材のセラミックに強固に接合させることができ δ.

「 突 施 例 」

以下、図面を参照して本発明を詳細に説明する。 取 1 図は、簡求項 1 に記載した発明の一裏施例 を示す図であって、図中符号 1 は高強度人工骨材 (以下、人工骨材という)である。

この人工骨材」は、高強度芯材2の表面に、生体活性セラミックからなる被覆3を設けて構成されている。

上記高強度芯材 2 の材料としては、アルミナ、ジルコニアおよびこれらの混合セラミック原料などが使用され、特に芯材強度が 5 0 ~ 6 0 Kg/am² 程度あるいはそれ以上の高強度材料が好適に使用される。

上記生体活性セラミックは、ヒドロキシアパタイト(以下、アパタイトという) 9 9 ~ 3 4 重量%と、アルミナとジルコニアとチタニアのうちから 選択される 1 種類あるいは 2 種類以上の添加セラミック 1 ~ 6 6 重量%とからなる材料が使用される。アパタイトの量が 9 9 重量%以上で添加セラ

定される。また人工骨材 1 における被覆 3 の厚さは一定でなくても良く、部分的に被覆 3 が厚い或いは薄い部分を形成することも可能である。

この人工骨材 I は、セラミック製高強度芯材 2 の 表面に、アパタイトを含む生体活性セラミックの 被覆 3 を設けて構成したので、良好な生体骨額 和性を育するとともに、生体インブラント材として必要とされる強度以上の強度を得ることができ

なお第1図に示す実施例では、請求項1記載の 発明を、人体骨格のうちの大腿骨に適用させた場合を示したが、この発明は大腿骨に限定されることなく他の人体骨格を構成する骨や股関節、膝関節、舞関節などの関節部分および歯根などの各生体インブラント材として適用させることもできる。

次に、請求項2に記載した発明を説明する。第 2 図ないし第5 図は、この発明による製造方法を 工程順に説明するための図である。

この製造方法により第1図に示す人工骨材 I を製造するには、まず、製造すべき人工骨材 I 成型

ミックの量が1 重量光以下であると、生体活性は 得られるものの高強度芯材 2 との密発性が悪くなり、高強度芯材 2 から生体活性セラミックの被覆 3 が剥離してしまう不具合を生じるおそれがある。 またアパタイトの量が 3 4 重量光以下で添加セラー ミックの量が 6 6 重量光以上であると、被覆 3 の 高強度芯材 2 への密整性は良好となるものの、この被覆 3 の生体活性が悪くなってしまう。

また被覆3の表面は、平滑でなく細孔が多数形成された状態であることが望ましく、このように観孔が多数形成されることによって純アパタイトと同様の生体骨額和性を得ることができる。この細孔の直径平均値(以下、細孔径という)は0.2~5.0μ m の短囲であることが望ましい。細孔径が0.2μ m 以下では生体骨類和性の効果が弱くなる。また細孔径を6.0μ m 以上とすると、波覆3の強度が弱くなる。

またこの被覆3の厚さは特に限定されず、製造すべき人工骨材のサイズや罹額によって、また被覆3による生体活性が十分に発揮される厚さに設

用の型4を作製する(第2図)。この型4は、簡易に作製が可能な石膏型でも良く、耐久性に優れ、 鉢込みに避した他材料による型でも良い。

次いで、この型4内に、上述の生体活性セラミックを含む泥漿を流し込み、焼成後に希望の被質3の厚さとなるように生体活性セラミックを着肉させ、この後に型4内の泥漿を排泥し、型4の空間 製而に生体活性セラミックの着肉5を形成する。 すなわち排泥舞込を行う。(第3図)

上記生体活性セラミックの記録は、アパタイトと添加セラミックとを複合化したものを仮焼した後粉砕した仮婚粉末を溶剤や有機系分飲剤と共に流動容易な泥漿としたものが使用される。上記仮焼粉末の平均粒径は、10~150μa程度とするのが知ましい。

型4内の特内5の厚さは特に限定されず、焼成後の被覆3の所定の厚さが得られる厚さに設定される。例えば焼成後の被覆3の厚さを0.5~2.0mm とする場合には、特内5の厚さを0.7~3.0mm程度に設定する。 次いで、生体活性セラミックからなる看肉 5 を 形成した型 4 内に、高強度芯材 2 の セラミック駅 料を含む泥漿を流し込み、固形卸込を行う。(第 4 図)

この死族は、先の生体活性セラミックを含むものと同様に、アルミナ、ジルコニア あるいはそれらの混合物からなる 原料 セラミック 粉末を溶剤、有機系分散剤と共に 定漿としたものが使用される。これらの各類込機作の後、成型物を脱型し、更に乾燥させて、高強度芯材用セラミック原料 6 の表面に、 生体活性セラミックが被覆された複合体を作製する。

次いで、複合体を1800~1450℃で焼成する。この焼成温度範囲で焼成することによって、生体活性セラミック中のアパタイトは他結晶系に変化することがない。焼成温度を1800℃以下とすると生体活性セラミックの被覆3と高強度芯材2との密種性が弱くなるとともに、高強度芯材2の焼結度が低くなって高強度が得られない。また焼成温度

例えば、アパタイトとジルコニアの共
法による を罹退合比のは料を作製し、これらを同一条件で 成形、焼成した後、水銀圧人法による細孔分布或 いはSEMで観察すると、明らかに細孔径や細孔 容積が異なってくる。アパタイトージルコニアの 組成比と細孔径との関係の例示すれば、アパタイト ト34 重量%、ジルコニア 6 6 重量%の場合の細 孔径は0.25μm、アパタイト 8 2 ~ 5 5 重量%、 ジルコニア 1 8 ~ 4 5 重量%の場合は 1.0~ 5.0 μα、アパタイト 9 6 .9 重量%、ジルコニア 3 . 1 重量%の場合は0.14μm以下であった。

この製造方法では、生体活性セラミックの記録を型4に入れ、排記録込を行って生体活性セラミックの記録の中空体の着内 5 を形成し、次いで着内 5 内に高強度芯材セラミック原料を貸込成形して複合体とし、この複合体を1300~1450℃で焼成して人工骨材 1 を作製することにより、高強度芯材 2 に生体活性セラミックを強固に密着させることができる。

を1450℃以上とするとアパタイト中に強度の低い α-T C P (tri calcium phosphate)が生成して 被覆3の強度低下を招いてしまうことになる。 また焼成時間は高強度芯材 2 および被覆3 の材料、 複合体の大きさ等の条件によって適宜設定される が、通常1~数時間程度で行なわれる。

この焼成処理によって、第5図に示すように高 強度芯材2の表面に、アパタイトを含む生体活性 セラミックの被覆3が設けられた人工骨材7が作 製される。この例によって作製された人工骨材7 は、第6図に示すように、例の部分を生体骨8に 挿人して双方を接続させて生体インブラント材と して用いられる。

ところで、先のように作製される人工骨材 ? の被覆 3 に形成される細孔径は、生体活性セラミックの記録中のセラミック 粒径を大きく 或いは小さくすることによって調整することができるが、生体活性セラミック中のアパタイトと、アルミナ、 ジルコニア、チタニア等添加セラミックとの比率 を調整することによっても調整することができる。

また蜂込み成形法を用いて高強度芯材セラミックの被覆を形成するので、石膏や代替材などの蜂型を自由に選択することができ、石膏蜂型を用いて人工骨材を低コストで少量生産し、また金属蟒型を用いて同一形状の人工骨材を大量生産することができる。

また生体活性セラミックのアパタイトと添加セラミックの比率を調整することによって、被頂3の細孔径を調整することができるので、細孔径を適宜に設定し、生体活性、特に生体骨との親和性に優れた人工骨材を製造することができる。

以下、製造例を配し、本発明の効果を一層明瞭にする。

(製造例1)

リン酸ダニアンモニウム、硝酸カルシウム、硝酸 ジルコニルとアンモニアよりなる塩原より、共

沈法でアパタイト 3 4 重量%、ジルコニア 6 6 重 量%の組成の沈澱を作製し、これを乾燥、仮焼し、 更に粉砕して平均粒径100μmの粉末を作製した。 この財本にポリアクリル酸アンモニウム塩(有機系分散剤)と水(溶剤)を加えて混合し、泥漿を作製した。この泥漿を、石膏等型に形成した直径2ca、深さ10caの円筒状空間に流し込み、約10分間為肉させ、この後型内の泥漿を排泥した。排泥後の型内には約2aa厚の生体活性セラミックが登りしていた。次に、この中にジルコニア粉末、水水、上記分散剤とを混合して作製した泥漿を流し込み、泥漿を追加しながら固型等込を行った。60分放置後、塑内の複合体を脱型し、2日間窒息を増させた。乾燥後、複合体を1(30℃で3時間焼成し、人工骨材を得た。

得られた人工骨材の外観は、被覆剝離が全く見られず、また機械的剝離テストでも十分使用に耐えることが確認された。また内部のジルコニア層(高強度芯材)部分を切り出し、曲げ強度を測定した結果、曲げ強度は85kg/am/であった。

(知清例2)

上記共沈法による生体活性セラミックにおいて 硝酸ジルコニルの代わりに硝酸アルミニウムを用

材を切り取って曲げ強度を測定した結果、曲げ強度は13g/am*であった。

「発明の効果」

以上説明したように、本発明は上紀構成としたことにより、次のような効果を変する。

本発明の人工骨材は、セラミック製高強度芯材の表面に、アパタイトを含む生体活性セラミックの被関を設けて構成したので、良好な生体骨類和性を有するとともに、生体インブラント材として必要とされる強度以上の強度を得ることができる。

また、本発明による製造方法では、生体活性セラミックの泥漿を型に入れ、排泥等込を行って生体活性セラミック中空体を形成し、次いで高強度芯材セラミック原料を固型的込して複合体としるこの複合体を1300~1450℃で焼成して人工骨材ーを作製することにより、高強度芯材に生体活性セラミックを強固に密着させることができ、高強度で生体活性を有する人工骨材を作製することができて

また韓込み成形法を用いて高強度芯材セラミッ

(製造例3)

製造例1に記載した共沈法により、アパタイト82面景%、ジルコニア18面景%の粉末を作製し、この他は製造例2と同様の操作によって、アルミナ芯材表面に、上記組成の生体活性セラミック被償が設けられた人工骨材を作製した。

得られた人工骨材は、外観および剥離チストで 異常は認められなかった。また内部のアルミナ芯

ク 扱 面 に 生 体 活 性 セ ラミックの 被 限 を 形 成 す る の で 、 石 青 緑 型 や 全 属 犇 型 な ど の 舞 型 を 自 由 に 選 択 すること が で き 、 人 工 骨 材 の 製 違 を 容 島 化 す る こ と が で き る 。

また生体活性セラミックのアパタイトと添加セラミックの比率を調整することによって被関の細孔径を調整することができるので、細孔ボイド径を適宜に設定して生体活性、特に生体骨との親和性に優れた人工骨材を製造することができる。
4. 図面の簡単な説明

第1図は本発明の人工骨材の一実施例を示す外 観図、第2図ないし第5図は本発明による人工骨 材の製造方法を工程順に説明するための図、第6 図はこの人工骨材の使用例を示す外観図である。

出順人 日押株式会社

