- 4. Ordená utilizando \sqsubset e \approx los órdenes de las siguientes funciones. No calcules límites, utilizá las propiedades algebraicas.
 - (a) $n \log 2^n$ $2^n \log n$ $n! \log n$ 2^n
 - (b) $n^4 + 2\log n$ $\log(n^{n^4})$ $2^{4\log n}$ 4^n $n^3\log n$
 - (c) $\log n!$ $n \log n$ $\log(n^n)$
 - a) $n * log(2^n) = n * n * log(2) = n^2 log(2)$
 - \therefore n log(2ⁿ) \square 2ⁿ \approx 2ⁿ log(n) \square n! log(n)
 - **b)** $\log(n^{n^4}) = n^4 \log(n)$ $2^{4 \log(n)} = 16^{\log(n)}$
 - \therefore n³ log(n) \Box log(n⁴) \approx n⁴ + 2 log(n) \Box 2^{4 log(n)} \Box 4ⁿ
 - c) $log(n^n) = n log(n)$

log(n!) y **log(n**ⁿ): tomo $f(n) = \log(n)$, g(n) = n!, $h(n) = n^n$. Véase que $g(x) \vdash h(x)$, en este caso $n! \vdash n^n$; entonces por propiedad $f(g(n)) \vdash f(h(n))$. Es decir $\log(n!) \vdash \log(n^n)$.

∴ $\log(n!) \square \log(n^n) \approx n \log(n)$