다중분류모델 성능측정

(1) Confusion Matrix

Which model performs better?

(2) Performance Measures

- Accuracy
- Precision
- Recall
- F1 score
- TP (True Positive)
- TN (True Negative)
- FP (False Positive)
- FN (False Negative)

predictions ———							
		А	В	С	D		
actual	А	9	1	0	0		
actual values	В	1	15	3	1		
*	С	5	0	24	1		
	D	0	4	1	15		

1) True Positive

correctly identified prediction for each class

2) True Negative for A

correctly rejected prediction for certain class (A)

3) True Negative for D

correctly rejected prediction for certain class (D)

4) False Positive for A

incorrectly identified predictions for certain class (A)

5) False Positive for B

incorrectly identified predictions for certain class (B)

6) False Negative for A

incorrectly rejected for certain class (A)

(3) Accuracy

 Accuracy is calculated as the total number of correct predictions divided by the total number of dataset

predictions (output) ———>						
		А	В	С	D	
actual	Α	9	1	0	0	
class (input)	В	1	15	3	1	
(input) *	С	5	0	24	1	
	D	0	4	1	15	

correctly identified prediction for each class / total dataset 9+15+24+15 / 80 accuracy = 0.78

Accuracy Comparison

Accuracy on imbalanced data misleads performance

(4) F1 Score

F1 score is good metric when data is imbalanced

Given a class, will the classifier detect it? (recall)

	Α	В	С	D
Α	100	80	10	10
В	0	9	0	1
С	0	1	8	1
D	0	1	0	9

Given a class prediction from the classifier, how likely is it to be correct? (precision)

F1 Score is harmonic mean of recall and precision

X Harmonic Mean

h is half the harmonic mean

Harmonic Mean punishes extreme value more

h is half the harmonic mean

F1 Score = 2 x
$$\frac{Precision*Recall}{Precision+Recall}$$

Precision of Model1 (macro average)

Precision = TP / (TP + FP) P(A) = 1 P(B) = 9/91 P(C) = 8/18 P(D) = 9 / 21

average precision = P(A) + P(B) + P(C) + P(D) / 4 = 0.492

Recall of Model1 (macro average)

	predictions					
	Α	В	С	D		
Α	100	80	10	10	TP: 100, FN: 100	R(A) = 100 / 200
В	0	9	0	1	TP: 9, FN: 1	R(B) = 9/10
С	0	1	8	1	TP: 8, FN: 2	R(C) = 8/10
D	0	1	0	9	TP: 9, FN: 1	R(D) = 9/10

Recall = TP / (TP + FN) average recall = R(A) + R(B) + R(C) + R(D) / 4 = 0.775

F1 Score of Model1

F1 Score on imbalanced data

Model1 predicts well on multiple class classification on imbalanced given data,

and F1 score is the metric to quantify its performance.