Circuitos Lógicos

DIM 0109.0

Aula 16

Unidade Lógica Aritmética

Edgard de Faria Corrêa

Objetivo

- Unidade Lógica Aritmética:
 - O que é uma ULA?
 - Conceito
 - Quais as vantagens da utilização de uma ULA?
 - Como construir uma ULA?
 - Projeto

ULA - Unidade Lógica e Aritmética:

- Circuito capaz de executar operações lógicas e aritméticas
- Operações lógicas:
 - AND, OR, NOT, XOR, XNOR, ...
 - Deslocamento
- Operações aritméticas
 - Adição
 - Subtração

Exemplos de Operações de uma ULA:

M	S1	S0	Operação
0	0	0	$F = \overline{A}$
0	0	1	F = A and B
0	1	0	F = A xor B
0	1	1	F = A or B
1	0	0	F = A – 1
1	0	1	F = A + B
1	1	0	F = A - B
1	1	1	F = A + 1

Exemplos de Operações de uma ULA:

M	S1	S0	Operação
0	0	0	$F = \overline{A}$
0	0	1	F = A and B
0	1	0	F = A xor B
0	1	1	F = A or B
1	0	0	F = A – 1
1	0	1	F = A + B
1	1	0	F = A - B
1	1	1	F = A + 1

Problemas com esse tipo de circuito?

Problemas com esse tipo de circuito:

- Todas as operações são executadas antes do MUX escolher qual das entradas será a saída do circuito.
- O MUX terá muitas entradas.
 - Exemplo: palavra binária de 8 bits, e MUX com oito entradas
 - Resultado: 64 pinos de entrada no MUX

Problemas com esse tipo de circuito:

- Todas as operações são executadas antes do MUX escolher qual das entradas será a saída do circuito.
- O MUX terá muitas entradas.
 - Exemplo: palavra binária de 8 bits, e MUX com oito entradas
 - Resultado: 64 pinos de entrada no MUX

Não é solução adequada!

ULA - Unidade Lógica e Aritmética:

- Realiza todas estas operações de forma mais eficiente.
- Reduz:
 - área ocupada,
 - energia consumida e
 - atraso do circuito
- Componentes da ULA
 - Componente lógico
 - Somador

ULA - Unidade Lógica e Aritmética:

- Realiza todas estas operações de forma mais eficiente.
- Reduz:
 - área ocupada,
 - energia consumida e
 - atraso do circuito
- Componentes da ULA
 - Componente lógico
 - Somador

Diagrama de Blocos:

M	S ₁	S ₀	Nome da Função	Operação
0	0	0	complemento	$F = \overline{A}$
0	0	1	E	F = A and B
0	1	0	XOR	F = A xor B
0	1	1	OU	F = A or B
1	0	0	decremento	F = A - 1
1	0	1	soma	F = A + B
1	1	0	subtração	F = A - B
1	1	1	incremento	F = A + 1

extensor

M	S ₁	S ₀	Nome da Função	F	Х	Υ	C ₀
0	0	0	complemento	Ā	Ā	0	0
0	0	1	Е	A and B	A and B	0	0
0	1	0	XOR	A xor B	A xor B	0	0
0	1	1	OU	A or B	A or B	0	0
1	0	0	decremento	A-1	Α	todos 1	0
1	0	1	soma	A + B	Α	В	0
1	1	0	subtração	A – B	Α	\overline{B}	1
1	1	1	incremento	A + 1	Α	todos 0	1

Projeto do "Extensor Aritmético"

M	S ₁	S ₀	Nome da Função	F	Х	Υ	C ₀
0	0	0	complemento	Ā	Ā	0	0
0	0	1	E	A and B	A and B	0	0
0	1	0	XOR	A xor B	A xor B	0	0
0	1	1	OU	A or B	A or B	0	0
1	0	0	decremento	A-1	Α	todos 1	0
1	0	1	soma	A + B	Α	В	0
1	1	0	subtração	A – B	Α	\overline{B}	1
1	1	1	incremento	A + 1	Α	todos 0	1

Projeto do "Extensor Aritmético"

M	S ₁	S ₀	Nome da Função	F	Х	Y	C ₀
0	0	0	complemento	Ā	Ā	0	0
0	0	1	E	A and B	A and B	0	0
0	1	0	XOR	A xor B	A xor B	0	0
0	1	1	OU	A or B	A or B	0	0
1	0	0	decremento	A-1	Α	todos 1	0
1	0	1	soma	A + B	Α	В	0
1	1	0	subtração	A – B	Α	B	1
1	1	1	incremento	A + 1	Α	todos 0	1

S ₁	S ₀	B _i	Y _i
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Projeto do "Extensor Aritmético"

S ₁	S ₀	B _i	Y _i
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

S_1S_0	00	01	11	10
0	1	0	0	1
1	1	1	0	0

$$Y_i = \overline{S}_1 \cdot B_i + \overline{S}_0 \cdot \overline{B}_i$$

(para M=1)

Incluindo M na equação anterior, segue:

$$Y_i = M \cdot \overline{S}_1 \cdot B_i + M \cdot \overline{S}_0 \cdot \overline{B}_i$$

Projeto do "Extensor Aritmético"

$$Y_i = M \cdot \overline{S}_1 \cdot B_i + M \cdot \overline{S}_0 \cdot \overline{B}_i$$

M	S ₁	S ₀	Nome da Função	F	Х	Υ	C ⁰
0	0	0	complemento	Ā	Ā	0	0
0	0	1	Е	A and B	A and B	0	0
0	1	0	XOR	A xor B	A xor B	0	0
0	1	1	OU	A or B	A or B	0	0
1	0	0	decremento	A-1	Α	todos 1	0
1	0	1	soma	A + B	Α	В	0
1	1	0	subtração	A – B	Α	\overline{B}	1
1	1	1	incremento	A + 1	Α	todos 0	1

M	S ₁	S ₀	Nome da Função	F	Х	Y	C ₀
0	0	0	complemento	Ā	Ā	0	0
0	0	1	E	A and B	A and B	0	0
0	1	0	XOR	A xor B	A xor B	0	0
0	1	1	OU	A or B	A or B	0	0
1	0	0	decremento	A-1	Α	todos 1	0
1	0	1	soma	A + B	Α	В	0
1	1	0	subtração	A – B	Α	\overline{B}	1
1	1	1	incremento	A + 1	Α	todos 0	1

X _i	S ₀	S ₁	М
\overline{A}_{i}	0	0	0
\mathbf{A}_{i} and \mathbf{B}_{i}	1	0	0
A _i xor B _i	0	1	0
A_i or B_i	1	1	0
A_{i}	?	?	1

X _i	S ₀	S ₁	M
$\overline{\mathbf{A}}_{i}$	0	0	0
A _i and B _i	1	0	0
A _i xor B _i	0	1	0
A _i or B _i	1	1	0
A _i	?	?	1

$$X_i = \overline{M} \cdot \overline{S}_1 \cdot \overline{S}_0 \cdot \overline{A}_i + \overline{M} \cdot \overline{S}_1 \cdot \overline{A}_i \cdot \overline{B}_i + \overline{S}_1 \cdot \overline{A}_i \cdot \overline{B}_i + \overline{S}_0 \cdot \overline{A}_i \cdot \overline{B}_i + \overline{M} \cdot \overline{A}_i$$

$$X_i = \overline{M} \cdot \overline{S}_1 \cdot \overline{S}_0 \cdot \overline{A}_i + \overline{M} \cdot S_1 \cdot \overline{A}_i \cdot \overline{B}_i + S_1 \cdot \overline{A}_i \cdot \overline{B}_i + S_0 \cdot \overline{A}_i \cdot \overline{B}_i + M \cdot \overline{A}_i$$

Circuito Final:

Símbolos:

Funcionamento:

М	S ₁	S ₀	Nome da Função	Operação
0	0	0	complemento	$F = \overline{A}$
0	0	1	E	F = A and B
0	1	0	XOR	F = A xor B
0	1	1	OU	F = A or B
1	0	0	decremento	F = A - 1
1	0	1	soma	F = A + B
1	1	0	subtração	F = A - B
1	1	1	incremento	F = A + 1

ou

Resumo

ULA

- Circuito capaz de executar operações lógicas e aritméticas
 - Operações lógicas:
 - AND, OR, NOT, XOR, XNOR, ...
 - Deslocamento.
 - Operações aritméticas:
 - Adição, Subtração.
- Realiza todas estas operações de forma mais eficiente.
- Reduz: área ocupada, energia consumida e atraso do circuito.

Resumo

- Componentes da ULA:
 - Componente lógico
 - Somador

Resumo

Componentes da ULA:

$\begin{array}{c} A & B \\ M \longrightarrow \\ S_1 \longrightarrow \\ S_0 \longrightarrow \\ \end{array}$ $\begin{array}{c} C \\ Out \longrightarrow \\ \end{array}$ $\begin{array}{c} C \\ in \longrightarrow \\ \end{array}$ $\begin{array}{c} C \\ in \longrightarrow \\ \end{array}$

Componente lógico:

- Conjunto de multiplexadores que realizam operações bit a bit.
- Valores dos seletores (M, S_1 e S_0) determinam operação que será realizada em cada par de bits.
- Nº de MUXs depende do tamanho da palavra binária.
- Último MUX calcula c_{in} (usado em algumas operações aritméticas).
- Resultado lógico é armazenado em X.
- No caso de operações aritméticas:
 - Nenhuma operação é realizada: X=A, Y=? e C_{in}=0 ou 1.

Componentes da ULA:

Somador:

- Utilizado em operações aritméticas:
 - $MS_1S_0=100$: $F=A-1 \rightarrow X=A, Y="11...11" e <math>C_{in}=0$.
 - $MS_1S_0=101$: $F=A+B \rightarrow X=A$, Y=B e $C_{in}=0$.
 - $MS_1S_0=110$: $F=A-B \rightarrow X=A, Y=\overline{B}$ e $C_{in}=1$.
 - $MS_1S_0=111$: $F=A+1 \rightarrow X=A, Y="00...00" e <math>C_{in}=1$.
- No caso de operações lógicas:
 - X=A, Y=0 e $C_{in}=0$.
 - A saída será igual à entrada.

Próxima Aula

Projeto de Circuitos Combinacionais

Bibliografia

- TOCCI, Ronald J; WIDMER, Neal S; MOSS, Gregory L. Sistemas digitais: princípios e aplicações. 11. ed. São Paulo: Pearson, 2011. 817 p. ISBN: 9788576050957.
- PEDRONI, Volnei A. Eletrônica digital moderna e VHDL. Rio de Janeiro: Elsevier, c2010. 619 p. ISBN: 9788535234657.
- WAGNER, Flávio R.; REIS, André I.; RIBAS, Renato P.
 Fundamentos de circuitos digitais. Porto Alegre: Bookman,
 2008. 166 p. (Série Livros Didáticos, n. 17) ISBN: 9788577803453.
- VAHID, Frank. Sistemas digitais: projeto, otimização e HDLS.
 Rio Grande do Sul: Artmed Bookman, 2008. 558 p.
 ISBN: 9788577801909.
- WAKERLY, John F. Digital design: principles and practices.
 4. ed. Upper Saddle River, N.J.: Pearson/Prentice Hall, c2006. xxiv, 895 p. ISBN: 0131863894.