Key	Input Order	Defaults	Remarks
bm	Wx, Wy (waist sizes), WDistx, WDisty (waist	Wx = 1.mm, Wy = 1.mm, WDistx = 0.,	Alpha = 0. \leftrightarrow eigen X is \perp
	positions from beam origin), W1, P, X, Y, Z (po-	WDisty = $0.$, W1 = $1064.$ nm, P = $1.$ W,	to beam direction and has maxi-
	sition of origin in space), Theta, Phi (orienta-	X = 0., Y = 0., Z = 0., Theta = pi/2.,	mum Z component. If direction
	tion), Alpha (rotation of eigenbase for orthog-	Phi = 0 ., Alpha = 0 ., Name = "Beam",	is $\pm e_Z$ then eigen X is $\pm e_X$
	onal beams), Name, Ref	Ref = None	
mr	X, Y, Z (position of center of HR chord), Theta,	X = 0., Y = 0., Z = 0.,	Wedges are counted positive if
	Phi (orientation of HR Norm, pointing out),	Theta = $pi/2$., Phi = 0., Wedge = 0.,	you add material when you in-
	Wedge, Alpha (wedge and wedge rotation),	$ \texttt{Alpha} = 0., \ \texttt{HRK} = 0.01, \ \texttt{ARK} = 0., $	crease the wedge.
	HRK, ARK (curvatures), Diameter, Thickness	Diameter = $10.\mathrm{cm}$, Thickness = $2.\mathrm{cm}$,	
	(of the construction cylinder), N, HRr, HRt,	N = 1.4585, HRr = .99, HRt = .01,	
	ARr, ARt (power reflectances and transmit-	\mid ARr = .1, ARt = .9, KeepI = False,	
	tances), KeepI, Name, Ref	Name = "Mirror", Ref = None	
th	X, Y, Z (position of center of lens), Theta,	X = 0., Y = 0., Z = 0., Theta = pi/2.,	All parameters which are not
	Phi (orientation of HR Norm, pointing out),	ho Phi = 0., Focal = 10.cm,	present here are internally
	Focal (focal length), Diameter, R, T (power	Diameter = $5.cm$, R = $.1$, T = $.9$,	ajusted in order to fit the in-
	reflectance and transmittance), KeepI, Name,	\mid KeepI = False, Name = "Thinlens",	put Focal, Diameter and a
	Ref	Ref = False	N = 1.4584 value for the optical
			index
tk	X, Y, Z (position of apex of HR face of	X = 0., Y = 0., Z = 0., Theta = pi/2.,	Thickness: on optical axis (from
	lens), Theta, Phi (orientation of HR Norm,	\mid Phi = 0., K1 = .01, K2 = .001,	apex to apex)
	pointing out), K1, K2 (curvatures), Diameter,	Diameter = $5.\mathrm{cm}$, Thickness = $2.\mathrm{cm}$,	
	Thickness, N, R, T (power reflectance and	\mid N = 1.4585, R = .1, T = .9,	
	transmittance), KeepI, Name, Ref	KeepI = False, Name = "Thicklens",	
		Ref = None	
bd	X, Y, Z (position of center of HR), Theta,	X = 0., Y = 0., Z = 0., Theta = pi/2.,	
	Phi (orientation of HR Norm, pointing out),	ho Phi = 0., Diameter = 5.cm,	
	Diameter, Thickness, Name, Ref	Thickness = $2.cm$, Name = "Beam-	
		Dump, $Ref = None$	

Units. (km, m = 1., cm, mm, um, nm), (kW, W = 1., mW, uW, nW), (THz, GHz, MHz, kHz, Hz = 1., mHz, uHz), (ppm = 1.e-6, rad = 1., deg), pi

Functions. sin, cos, tan, arcsin, arccos, arctan, sqrt, exp

Notes.

- ullet Theta, Phi are spherical coordinates around e_Z and Phi = 0. \leftrightarrow $+e_X$
- All constructors can be called without arguments, all parameters have default values.

