

PROPIEDADES DE LA MEDIDA EXTERIOR

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 07) 01.FEBRERO.2023

Las siguientes propiedades relacionan la medida exterior de Lebesgue con la existencia de ciertos conjuntos especiales.

Recordemos que una topología para un espacio X es una colección de conjuntos

$$\tau = \{A \subseteq X\}$$
, que satisface

- 1) $\varnothing, X \in \tau$,
- 2) $\{A_{\ell}\}_{\ell} \in \tau \implies \bigcup_{\ell} A_{\ell} \in \tau$,
- 3) $\{A_i\}_{i=1}^n \in \tau \implies \bigcap_{i=1}^n A_i \in \tau.$

Por otro lado, una σ -álgebra en X, es una colección de conjuntos $\mathcal{A} = \{A \subseteq X\}$ que satisface

- 1) $\varnothing, X \in \mathcal{A}$,
- 2) $\{A_{\ell}\}_{\ell=1}^{\infty} \in \mathcal{A} \implies \bigcup_{\ell=1}^{\infty} A_{\ell} \in \mathcal{A}$,
- 3) $A \in \mathcal{A} \implies A^c \in \mathcal{A}$ (2 y 3 $\implies \bigcap_{\ell=1}^{\infty} A_{\ell} \in \mathcal{A}$).

La Jerarquía de Borel

Definición

Sea X un espacio topológico. Un conjunto $G \subseteq X$ es G_{δ} (o **de tipo** G_{δ}) si es de la forma

$$G = \bigcap_{i=1}^{\infty} A_i$$
, donde los A_i son abiertos.

Nota: G_{δ} viene de *Gebiet* (abierto en alemán) y *Durchschnitt* (intersección).

Definición

Sea X un espacio topológico. Un conjunto $F \subseteq X$ es F_{σ} (o **de tipo** F_{σ}) si es de la forma

$$F = \bigcup_{i=1}^{\infty} C_i$$
, donde los C_i son cerrados.

Nota: F_{σ} viene de *Fermé* (cerrado en francés) y *Somme* (suma o unión).

La Jerarquía de Borel

Podemos definir también generalizaciones de estos tipos de conjuntos. Por ejemplo,

- un conjunto $G_{\delta\sigma}$ es de la forma $\bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} G_{ij}$.
- un conjunto $F_{\sigma\delta}$ es de la forma $\bigcap_{j=1}^{\infty} \bigcup_{i=1}^{\infty} F_{ij}$.
- un conjunto $G_{\delta\sigma\delta}$ es de la forma $\bigcap_{k=1}^{\infty}\bigcup_{i=1}^{\infty}\bigcap_{j=1}^{\infty}G_{ijk}$.
- un conjunto $F_{\sigma\delta\sigma}$ es de la forma $\bigcup_{k=1}^{\infty}\bigcap_{j=1}^{\infty}\bigcup_{i=1}^{\infty}F_{ijk}$
- ...

Esto se puede formalizar de una forma más sistemática.

La Jerarquía de Borel

Definición

Sea X un espacio topológico. La **jerarquía de Borel** de X consiste de clases de conjuntos Σ_n° , Π_n° y Δ_n° , dadas por:

- Un conjunto $A \subseteq X$ está en Σ_1^0 si, y sólo si, es abierto.
- Un conjunto $A \subseteq X$ está en Π_n° si, y sólo si, su complemento está en Σ_n° .
- Un conjunto $A \subseteq X$ está en Σ_n^o , n > 1, si y sólo si, es de la forma $A = \bigcap_{i=1}^{\infty} A_i$, con cada $A_i \in \Pi_{n_i}^o$, $n_i < n$.
- Un conjunto $A \subseteq X$ está en Δ_n^o , si, y sólo si, está en Σ_n^o y en Π_n^o .

Definición

La colección de subconjuntos de X dada por $\mathcal{B}(X) = \bigcup_{n \geq 1} \Sigma_n^{\circ} \cup \bigcup_{n \geq 1} \Pi_n^{\circ} \cup \bigcup_{n \geq 1} \Delta_n^{\circ}$, se llama el **álgebra de Borel** de X.

Proposición

Sea $E \subseteq \mathbb{R}^n$. Dado $\varepsilon > 0$, existe un conjunto abierto G de \mathbb{R}^n tal que $E \subseteq G$ y

$$|G|_e \leq |E|_e + \varepsilon$$
.

Prueba: Tomemos $\{I_k\}_{k\geq 1}$ una cobertura enumerable de E por intervalos cerrados en \mathbb{R}^n , de modo que

$$E \subseteq \bigcup_{k} I_{k}$$
 y $\sum_{k} v(I_{k}) < |E|_{e} + \frac{\varepsilon}{2}$.

Consideramos ahora intervalos cerrados $\{I_k^*\}_{k\geq 1}$, tales que

$$I_k \subseteq \operatorname{int}(I_k^*) \qquad y \qquad V(I_k^*) < V(I_k) + \frac{\varepsilon}{2^{k+1}}, \qquad \forall \ k \geq 1.$$

Definamos $G = \bigcup_{k \geq 1} \operatorname{int}(I_k^*)$. Observe que G es un abierto de \mathbb{R}^n y que

$$E \subseteq \bigcup_{k>1} I_k \subseteq \bigcup_{k>1} \operatorname{int}(I_k^*) = G.$$

Además, como $G \subseteq \bigcup I_h^*$, vale

$$|G|_{e} \leq \sum_{k\geq 1} v(I_{k}^{*}) < \sum_{k\geq 1} \left(v(I_{k}) + \frac{\varepsilon}{2^{k+1}}\right) < \sum_{k\geq 1} v(I_{k}) + \varepsilon \sum_{k\geq 1} \frac{1}{2^{k+1}} = \sum_{k\geq 1} v(I_{k}) + \frac{\varepsilon}{2}$$

$$< |E|_{e} + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = |E|_{e} + \varepsilon. \square$$

Obs!

De la propiedad anterior, dado $E\subseteq\mathbb{R}^n$, entonces para todo $\varepsilon>$ 0 podemos hallar un abierto $G\subseteq\mathbb{R}^n$ tal que $E\subseteq G$ y $|G|_{\mathfrak{E}}\leq |E|_{\mathfrak{E}}+\varepsilon.$

En consecuencia, la medida exterior de E puede recuperarse como

 $|E|_e = \inf |G|_e$, donde el ínfimo se toma sobre todos los abiertos $G \supseteq E$.

Proposición

Sea E $\subseteq \mathbb{R}^n$. Existe un conjunto H $\subseteq \mathbb{R}^n$ de tipo G $_\delta$ tal que E \subseteq H y

$$|H|_e = |E|_e$$
.

Prueba: De la proposición anterior, para todo $k \in \mathbb{Z}^+$, existe un abierto $G_k \subseteq \mathbb{R}^n$ tal que

$$E\subseteq G_k \qquad y \qquad |G_k|_e<|E|_e+rac{1}{k}, \qquad orall \; k=1,2,3,\ldots$$

Consideramos la intersección $H = \bigcap_{k>1} G_k$, un conjunto de tipo G_δ , que satisface $E \subseteq H$.

Luego,

$$|E|_{e} \leq |H|_{e} \leq |G_{k}|_{e} < |E|_{e} + \frac{1}{k}, \quad \forall k = 1, 2, 3, \dots$$

Haciendo $k \to \infty$, obtenemos $|E|_e \le |H|_e \le |E|_e$, de modo que $|E|_e = |H|_e$.

Al definir la noción de medida exterior, hemos usado intervalos I con bordes paralelos a los ejes coordenados de \mathbb{R}^n . Surge la pregunta de si la medida exterior de un conjunto depende de la posición de los ejes de coordenadas (ortogonales).

Respuesta: No. Para probar esto, consideraremos simultáneamente el sistema de coordenadas habitual en \mathbb{R}^n y una rotación fija de este sistema. Las nociones pertenecientes al sistema rotado se denotarán con una prima '. Así, por ejemplo, I' denotará a un intervalo con bordes paralelos a los ejes de coordenadas rotados, y $|E|_e'$ denotará la medida exterior de un subconjunto E relativa a estos intervalos rotados:

$$|E|'_e = \inf_S \sum V(I'_k).$$

donde el ínfimo se toma sobre todas las coberturas S' de E por intervalos rotados I'_k .

El volumen v(I) de un intervalo claramente no cambia por la rotación. (Ver pág. 8 en Sección 1.3 de Wheeden y Zygmund).

Teorema

 $|E|_e = |E|'_e$, para todo $E \subseteq \mathbb{R}^n$.

Prueba: Primero afirmamos que dado *I* intervalo cerrado y ε > 0, existe una cobertura $\{I'_{\ell}\}_{\ell}$ de *I* por intervalos cerrados rotados, tal que

$$I \subseteq \bigcup_{\ell} I'_{\ell}$$
 y $\sum_{\ell} v(I'_{\ell}) < v(I) + \varepsilon$.

(De forma similar, dado l' intervalo cerrado (no rotado) y $\varepsilon >$ 0, existe una cobertura $\{I_\ell\}_\ell$ de l' por intervalos cerrados, tal que

$$I' \subseteq \bigcup_{\ell} I_{\ell}$$
 y $\sum_{\ell} v(I_{\ell}) < v(I') + \varepsilon.)$

Sea $E \subseteq \mathbb{R}^n$ un subconjunto arbitrario. Dado $\varepsilon > 0$, elijamos una cobertura $\{I_k\}_{k \ge 1}$ de E tal que

$$E \subseteq \bigcup_k I_k$$
 y $\sum_k v(I_k) < |E|_e + \frac{\varepsilon}{2}$.

Para cada $k \ge 1$, elijamos $\{I'_{h\ell}\}_{\ell}$ una cobertura de I_k por intervalos rotados, tal que

$$I_k \subseteq \bigcup_\ell I'_{k\ell} \qquad y \qquad \sum_\ell v(I'_{k\ell}) < v(I_k) + \frac{\varepsilon}{2^{k+1}}.$$

Entonces

$$|E|'_{e} \leq \sum_{k\geq 1} \sum_{\ell\geq 1} v(I'_{k\ell}) < \sum_{k\geq 1} \left(v(I_{k}) + \frac{\varepsilon}{2^{k+1}}\right) < \sum_{k\geq 1} v(I_{k}) + \varepsilon \sum_{k\geq 1} \frac{1}{2^{k+1}} = \sum_{k\geq 1} v(I_{k}) + \frac{\varepsilon}{2}$$

$$< |E|_{e} + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = |E|_{e} + \varepsilon.$$

Como esto vale para todo $\varepsilon > 0$, portanto $|E|'_e \le |E|_e$.

Un argumento similar, invirtiendo los papeles de los I e I', produce $|E|'_e \geq |E|_e$. \Box

Definición

Sea $E \subseteq \mathbb{R}^n$. Diremos que E es un conjunto **Lebesgue-mesurable** (**mesurable**, o **medible**) si dado $\varepsilon > 0$, existe un abierto $G \subseteq \mathbb{R}^n$ tal que $E \subseteq G$ y

$$|\mathbf{G} - \mathbf{E}|_{\mathbf{e}} < \varepsilon$$
.

Cuando E es mesurable, definimos su **medida de Lebesgue** como

$$|E|=|E|_e$$
.

Obs: La condición de que E sea mesurable no debe confundirse con la conclusión del teorema anterior, el cual establece que existe un abierto G que contiene a E, tal que $|G|_e \leq |E|_e + \varepsilon$.

En general, dado que tenemos la unión disjunta $G = E \cup (G - E)$ cuando $E \subseteq G$, sólo tenemos que $|G|_e \le |E|_e + |G - E|_e$, y no podemos concluir de $|G|_e < |E|_e + \varepsilon$, que $|G - E|_e < \varepsilon$.

Ejemplo 1: Todo abierto $U \subseteq \mathbb{R}^n$ es Lebesgue-mesurable.

Tomemos G = U, un abierto de \mathbb{R}^n tal que $U \subseteq G$. Entonces

$$|G - U|_e = |U - U|_e = |\varnothing|_e = 0 < \varepsilon, \ \forall \ \varepsilon > 0.$$
 (¿por qué vacío mide o?)

Esto muestra que U es mesurable. \square

Ejemplo 2: Todo conjunto de \mathbb{R}^n con medida exterior nula, es Lebesgue-mesurable.

Sea $E\subseteq\mathbb{R}^n$ con $|E|_e=0$. De la Proposición 1, para todo $\varepsilon>0$, existe un abierto $G\subseteq\mathbb{R}^n$ tal que $E\subseteq G$ y $|G|_e<|E|_e+\varepsilon=\varepsilon.$

Luego, como $G-E\subseteq G$, entonces $|G-E|_e\le |G|_e<\varepsilon$, lo que muestra que E es Lebesgue-mesurable. \square

Ejemplo 3: Toda unión enumerable $E = \bigcup_{k \ge 1} E_k$ de conjuntos Lebesgue-mesurables $E_k \subseteq \mathbb{R}^n$, es Lebesgue-mesurable. Además

$$|E| = \Big|\bigcup_{k} E_{k}\Big| \leq \sum_{k} |E_{k}|.$$

Tomemos $E = \bigcup_{k \ge 1} E_k$, donde los $E_k \subseteq \mathbb{R}^n$ son todos mesurables. Para cada $k \ge 1$, de la Propiedad 1, existe un abierto G_k , tal que $E_k \subseteq G_k$ y $|G_k - E_k|_e < \frac{\varepsilon}{2k}$.

Sea $G=\bigcup_k G_k$. G es un abierto de \mathbb{R}^n , y $E=\bigcup_k E_k\subseteq\bigcup_k G_k=G$. Además, como $G-E\subseteq\bigcup_k (G_k-E_k)$, tenemos

$$|G-E|_e \leq \Big|\bigcup_{k\geq 1} (G_k-E_k)\Big|_e \leq \sum_{k\geq 1} |G_k-E_k|_e \leq \sum_{k\geq 1} \frac{\varepsilon}{2^k} = \varepsilon.$$

Esto muestra que *E* es Lebesgue-mesurable. Luego.

$$|E| = |E|_e \le \Big| \bigcup_{k \ge 1} E_k \Big|_e \le \sum_{k \ge 1} |E_k|_e = \sum_{k \ge 1} |E_k|.$$

Ejemplo 4: Todo intervalo *n*-dimensional *I* es Lebesgue-mesurable, y vale |I| = v(I).

Prueba:

I es la unión de su interior y su frontera, esto es, $I = I^{\circ} \cup \partial I$.

De los ejemplos anteriores:

- Ya vimos que I° es mesurable, ya que es un abierto de \mathbb{R}^n (Ejemplo 1).
- Por otro lado, I° es un conjunto de medida nula (ya que al ser el borde de un objeto n-dimensional, ∂I es (n-1)-dimensisonal, y no tiene volumen en \mathbb{R}^n . (Ejemplo 2). Portanto, ∂I es mesurable.

De ahí que $I=I^\circ\cup\partial I$ es unión de dos mesurables, portanto es Lebesgue-mesurable (Ejemplo 3). \Box

Corolario

Si $\{I_k\}_{k=1}^N$ es una colección finita de intervalos n-dimensionales que no se traslapan, entonces $\bigcup_{k=1}^N I_k$ es Lebesgue-mesurable $y \mid \bigcup_{k=1}^N I_k \mid = \sum_{k=1}^N |I_k|$.

Recordemos que la distancia entre dos conjuntos $E_1, E_2 \subseteq \mathbb{R}^n$ está dada por

$$d(E_1, E_2) = \inf\{||\mathbf{x}_1 - \mathbf{x}_2||: \ \mathbf{x}_1 \in_1, \ \mathbf{x}_2 \in_2\}.$$

Lema

Si
$$d(E_1, E_2) > 0$$
, entonces $|E_1 \cup E_2|_e = |E_1|_e + |E_2|_e$.

Ejemplo 5: Todo cerrado $F \subseteq \mathbb{R}^n$ es Lebesgue-mesurable.

Ejemplo 6: El complemento E^c de cualquier conjunto $E \subseteq \mathbb{R}^n$ Lebesgue-mesurable, es Lebesgue-mesurable.

Ejemplo 7: Toda intersección enumerable $E = \bigcap_{k \geq 1} E_k$ de conjuntos Lebesgue-mesurables $E_k \subseteq \mathbb{R}^n$, es Lebesgue-mesurable.

Ejemplo 8: Si $E_1, E_2 \subseteq \mathbb{R}^n$ son Lebesgue-mesurables, entonces $E_1 - E_2$ es Lebesgue-mesurable.

Proposición

La colección de conjuntos Lebesgue-mesurables de \mathbb{R}^n es una σ -álgebra.

(Ver las pruebas de todas estas propiedades en el capítulo 3 de Wheeden y Zygmund.)