Association Analysis Part 1

Dr. Sanjay Ranka
Professor
Computer and Information Science and Engineering
University of Florida

Mining Associations

• Given a set of records, find rules that will predict the occurrence of an item based on the occurrences of other items in the record

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

TID	Bread	Milk	Diaper	Beer	Eggs	Coke
1	1	1	0	0	0	0
2	1	0	1	1	1	0
3	0	1	1	1	0	1
4	1	1	1	1	0	0
5	1	1	1	0	0	1

Data Mining Sanjay Ranka Spring 2011

Definition of Association Rule

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Association Rule:
$$X \Longrightarrow y$$

Support: $s = \frac{\sigma(X \cup y)}{|T|} (s = P(X, y))$

Confidence: $c = \frac{\sigma(X \cup y)}{\sigma(X)} (c = P(y \mid X))$

Goal:

Discover all rules having support \geq *minsup* and confidence \geq *minconf* thresholds.

Example: $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

How to Mine Association Rules?

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)

{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)

{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)

{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)

{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)

{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observations:

- All the rules above correspond to the same itemset: {Milk, Diaper, Beer}
- Rules obtained from the same itemset have identical support but can have different confidence

How to Mine Association Rules?

- Two step approach:
 - 1. Generate all frequent itemsets (sets of items whose support > *minsup*)
 - 2. Generate high confidence association rules from each frequent itemset
 - Each rule is a binary partition of a frequent itemset
- Frequent itemset generation is more expensive operation

Itemset Lattice

Generating Frequent Itemsets

- Naive approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

Candidates

Fransactions

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

- Complexity \sim O(NM) => Expensive since M = 2^d !!!

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

Data Mining Sanjay Ranka Spring 2011

$$R = \sum_{k=1}^{d-1} \left[\begin{pmatrix} d \\ k \end{pmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{pmatrix} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R = 602 rules

Approach for Mining Frequent Itemsets

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use Apriori heuristic to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow \sigma(X) \geq \sigma(Y)$$

- Support of an itemset never exceeds the support of any of its subsets
- This is known as the anti-monotone property of support

Using Apriori Principle for Pruning Candidates

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

If every subset is considered,
${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$
With support-based pruning,
6 + 6 + 1 = 13

Itemset	Count
{Bread,Milk,Diaper}	3

Reducing Number of Comparisons

- Candidate counting:
 - Scan the database of transactions to determine the support of candidate itemsets
 - To reduce number of comparisons, store the candidates using a hash structure

Association Rule Discovery: Hash Tree for Fast Access

Association Rule Discovery: Hash Tree for Fast Access

Association Rule Discovery: Hash Tree for Fast Access

Candidate Counting

- Given a transaction $L = \{1, 2, 3, 5, 6\}$
- Possible subsets of size 3:

```
{1,2,3} {2,3,5} {3,5,6} 

{1,2,5} {2,3,6} 

{1,2,6} {2,5,6} 

{1,3,5} 

{1,3,6} 

{1,5,6}
```

• If width of transaction is w, there are 2^w-1 possible non-empty subsets

Association Rule Discovery: Subset Operation

Association Rule Discovery: Subset Operation ...

Rule Generation

- Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \to L f$ satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,

• If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an antimonotone property
 - But confidence of rules generated from the same itemset has an anti-monotone property
 - $L = {A,B,C,D}:$

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is non-increasing as number of items in rule consequent increases University of Florida CISE department Gator Engineering

Rule Generation for Apriori Algorithm

• Lattice corresponds to partial order of items in the rule consequent

D=>ABC

Rule Generation for Apriori Algorithm ...

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- join(CD=>AB,BD=>AC)
 would produce the candidate
 rule D => ABC
- Prune rule D=>ABC if its subset AD=>BC does not have high confidence

Other Frequent Itemset Algorithms

- Traversal of Itemset Lattice
 - Apriori uses breadth-first (level-wise) traversal
- Representation of Database
 - Apriori uses horizontal data layout
- Generate-and-count paradigm