Ostatnio zastanawialiśmy się nad taką sytuacją, że mieliśmy operator $P_a(x)$ i on miał być zwężający.

$$P_a(x): X \to X$$
 - zwężający.

$$c \in X : \{c, P_a(c), P_a(P_a(c)) \to \tilde{x}(a)\}, \text{ gdzie } P(\tilde{x}(a)) = \tilde{x}(a).$$

Dowód 1 Chcemy pokazać, że

$$\forall .. \exists .. \forall d(a, a') < \delta \implies d(\tilde{x}(a), \tilde{x}(a')) < \varepsilon.$$

Wiemy, że P_a - ciągła ze względu na a:

$$\forall . \exists . \forall d(a, a') < \delta_1 \implies d(P_a, P_{a'}) < \varepsilon$$
(1)

Wiemy, $\dot{z}e \underset{c' \in X}{\forall} ciąg \{c', P_{a'}(c'), P_{a'}(P_{a'}(c')) \ldots\} \rightarrow \tilde{x}(a')$ Ale, jeżeli przyjmiemy $za \ c = \tilde{x}(a')$, to ciąg:

$$\{\tilde{x}(a'), P_a(\tilde{x}(a')), P_a(P_a(\tilde{x}(a')))\} \rightarrow \tilde{x}(a).$$

Ale z zasady banacha wiemy, że jeżeli P_a - zwężający, to

$$d(\tilde{x}(a), x_0) \leqslant \frac{1}{1 - q} d(x_1, x_0).$$

Wybierzmy $x_0 = \tilde{x}(a')$. Wówczas

$$d(\tilde{x}(a), \tilde{x}(a')) \leqslant \frac{1}{1-q} d(P_a(\tilde{x}(a')), \tilde{x}(a')) =$$

$$= \frac{1}{1-q} d(P_a(\tilde{x}(a')), P_{a'}(\tilde{x}(a'))).$$

Pytanie 1 Jak ten obiekt ma się do $d(P_a, P_{a'})$?

$$d(P_a, P_{a'}) = \sup_{x \in X} d(P_a(x), P_{a'}(x)).$$

Więc, jeżeli $d(P_{a'}, P_a) < \varepsilon_1$, to znaczy, że $d(P_a(\tilde{x}(a')), P_{a'}(\tilde{x}(a'))) < \varepsilon_1$

Czyli
$$d(\tilde{x}(a), \tilde{x}(a')) \leqslant \frac{1}{1-q} \varepsilon_1.$$

Czyli jeżeli otrzymamy ε_1 , to biorąc ε_1 taki, że $\varepsilon_1 \frac{1}{1-q} < \varepsilon$ i znajdujemy δ_1 z zależności ?? i wiemy, że jeżeli

$$d(a',a) < \delta_1 \implies d(\tilde{x}(a'),\tilde{x}(a)) < \varepsilon \quad \Box.$$

Przykład 1 (odwzorowanie zwężające)

$$\int \frac{dx(t)}{dt} = f(t,x), x(t_0) = x_0.$$

Wiemy, $\dot{z}e \ x(t) \ jest \ punktem \ stałym \ odwzorowania$

$$P(g) = x_0 + \int_{t_0}^{t} f(s, g(s)) ds \implies g_0, P(g_0), P(P(g_0)) \dots \to x(t).$$

$$\frac{dx}{dt} = t + x, x(0) = 0.$$

$$f(t, x) = t + x \cdot t_0 = 0, x_0 = 0.$$

Czy f jest lipszycowalna?

$$\bigvee_{t \in [a,b]} ||t + x - (t + x')|| = ||x - x'|| = 1||x - x'|| \implies L = 1.$$

Czyli jest. Policzymy kilka wyrazów ciągu

$$g_0, P(g_0), P(P(g_0)), \dots$$

 $x^0(t), x^1(t), x^2(t)$

$$\begin{split} x^0(t) &= x_0(t) = 0 \\ x^1(t) &= P(x^0(t)) = P(0) = 0 + \int_0^t f(s, x^0(s)) ds = \int_0^t s ds = \frac{t^2}{2} \\ x^2(t) &= P(x^1(t)) = P(\frac{t^2}{2}) = 0 + \int_0^t f(s, x^1(s)) ds = \int_0^t (s + \frac{s^2}{2}) ds = \frac{t^2}{2} + \frac{t^3}{2 \times 3} \\ x^3(t) &= P(x^2(t)) = 0 + \int_0^t \left(s + \frac{s^2}{2} + \frac{s^3}{2 \times 3} \right) ds = \frac{t^2}{2} + \frac{t^3}{2 \times 3} + \frac{t^4}{2 \times 3 \times 4} \\ \vdots \\ &\vdots \to \infty \\ e^t - t - 1. \end{split}$$

Przykład 2
$$\frac{dx}{dt} = 2tx$$
, $x(0) = 1$, czyli $f(t, x) = 2tx$, $t_0 = 0$ $dla \bigvee_{t \in [a,b]}$ $||2tx - 2tx'|| \le \sup_{t \in [a,b]} |t|2||x - x'||$.

Czyli
$$f$$
 - lipszycowalna z $L = \sup_{t \in [a,b]} |t| \times 2$

$$x^{0}(t) = 1$$

$$x^{1}(t) = P(x^{0}(t)) = 1 + \int_{0}^{t} f(s, 1)ds = 1 + \int_{0}^{t} 2sds = 1 + t^{2}$$

$$x^{2}(t) = P(x^{1}(t)) = 1 + \int_{0}^{t} 2s(1 + s^{2})ds = 1 + t^{2} + \frac{t^{4}}{2}$$

$$x^{3}(t) = P(x^{2}(t)) = 1 + \int_{0}^{t} 2s(1 + s^{2} + \frac{t^{4}}{2}) = 1 + t^{2} + \frac{t^{4}}{2} + \frac{t^{6}}{3}$$

$$\vdots \to \infty$$

$$e^{t^{2}}.$$

Przykład 3

$$\frac{d}{dt} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} x_2(t) \\ -x_1(t) \end{bmatrix}, x_1(0) = 0, x_2(0) = 1.$$

$$f(t,x) = f(t, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

$$\begin{split} x^{0}(t) &= \begin{bmatrix} x_{1}^{0}(t) \\ x_{2}^{0}(t) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ x^{1}(t) &= P(x^{0}(t)) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \int_{0}^{t} \begin{bmatrix} 1 \\ -0 \end{bmatrix} ds = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} t \\ 0 \end{bmatrix} = \begin{bmatrix} t \\ 1 \end{bmatrix} \\ x^{2}(t) &= P\left(\begin{bmatrix} x_{1}^{1} \\ x_{1}^{2} \end{bmatrix}\right) = P\left(\begin{bmatrix} t \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \int_{0}^{1} \begin{bmatrix} 1 \\ -s \end{bmatrix} ds = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} t \\ -\frac{t^{2}}{2} \end{bmatrix} = \begin{bmatrix} t \\ 1 - \frac{t^{2}}{2} \end{bmatrix} \\ x^{3} &= P\left(\begin{bmatrix} x_{1}^{2} \\ x_{2}^{2} \end{bmatrix}\right) = P\left(\begin{bmatrix} t \\ 1 - \frac{t^{2}}{2} \end{bmatrix}\right) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \int_{0}^{t} \begin{bmatrix} 1 - \frac{s^{2}}{2} \\ -s \end{bmatrix} ds = \begin{bmatrix} t - \frac{t^{3}}{2 \times 3} \\ 1 - \frac{t^{2}}{2} \end{bmatrix} \end{split}$$

$$\vdots \to \infty$$

$$\begin{bmatrix} \sin t \\ \cos t \end{bmatrix}$$

Twierdzenie 1 Jeżeli odwzorowania

$$t \in [a, b] \to A(t)$$

 $t \in [a, b] \to b(t)$.

Rysunek 1

Gdzie $A(t) \in L(x,x), b(t) : \mathbb{R}^1 \to X$ są ciągłe, to równanie

$$\frac{d}{dt}x(t) = A(t)x(t) + b(t), \quad x(t_0) = x_0.$$

Ma dla dowolnych $t_0 \in [a,b], x_0 \in X$ jednoznacznie określone rozwiązanie na $t \in]a,b[$

Czym to się różni od twierdzenia o jednoznaczności warunku Cauchy? Nie ma tutaj mowy o żadnej lipszycowalności. Zawężono za to klasę funkcji występującej w równaniu. Zamiast $]t_0 - \varepsilon, t_0 + \varepsilon[\times \mathcal{O}, mamy]a, b[\times X]$

Dowód 2 Chcemy sprawdzić, czy f(t,x) = A(t)x(t) + b(t) spełnia warunek Lipschitza. Wiemy, że A(t) i b(t) są ciągłe na przedziałe domkniętym [a,b]. Zatem, istnieje $\sup_{t \in [a,b]} \|b(t)\| = C$, a $A: X \to X$ i A jest liniowe zatem istnieje

 $norma\ tego\ odwzorowania$

$$\sup_{t \in [a,b]} ||A(t)|| = L.$$

Zatem

$$\underset{t \in [a,b]}{\forall} \|A(t)x + b(t) - (A(t)x' + b(t)\| = \|A(t)(x - x')\| \leqslant \sup_{t \in [a,b]} \|A(t)\| \|x - x'\| = L\|x - x'\|.$$

Z twierdzenia o jednoznaczności wiemy, że istnieją przedziały] $t_0 - \varepsilon, t_0 + \varepsilon$ [oraz $\mathcal{O} = K(x_0, r_2)$ takie, że dla

$$\varepsilon = \min\left\{ |a - t_0|, r_1, \frac{r_2}{M}, |b - t_0|, \frac{1}{L} \right\}$$
 (2)

Gdzie r_1, r_2 były takie, że na zbiorze $K(t_0, r_1) \times K(x_0, r_2)$ funkcja f(t, x) była ograniczona. Zależy nam na tym, aby w warunku $\ref{eq:condition}$ wyeliminować r_2 Ale $\|A(t)x + b(t)\| \leqslant \|A(t)x\| + \|b(t)\|$ dla $x \in K(x_0, r_2)$

$$= ||A(t)x|| + C \le L||x|| + C =$$

$$= L||x - x_0 + x_0|| + C \le$$

$$\le L||x - x_0|| + L||x_0|| + C \le$$

$$\le Lr_2 + L||x_0|| + C.$$