ENT 603: Introduction to Entrepreneurship

Product Innovation 3rd October 2024

Process for Start up Creation

How many opportunities has your team identified for your project?

How would you determine if the opportunities your team has identified are exceptional?

Opportunity Identification

How would you select the best players from IITB for the national tournament?

Opportunity Identification

Generate many opportunities

Step 1: Compile Bug Lists Based on Your Experience

Recall and note down all frustrations or annoyances you have encountered with your bicycle. Identify as many instances of dissatisfaction as possible related to its use.

Step 2: Study Customers

Observe how people use bicycles in real life, noting what they struggle with or avoid. Identify unmet needs or issues that current bicycle designs fail to address.

Generate many opportunities

Step 3: Pull Opportunities from Capabilities

List the unique strengths or resources of your team members. Identify areas where these strengths could add value by offering a new product, software, service, or policy related to bicycles.

Step 4: Consider Implications of Trends

List current trends in technology, the environment, or social norms. Explore how these trends could lead to new innovations or features in bicycle design.

Generate many opportunities

Step 5: Innovate at Realization/Service-System/Supply Chain/Business

Think of ways to innovate within the realization, service system, supply chain, or business model while maintaining the core bicycle design.

Opportunity Identification

Select Exceptional Opportunities

- Will it make money?
- Do we have the resources and the cash to do this?
- Are the risks acceptable to us?
- Can we have a competitive advantage?

- Is the product feasible?
- Can it be made?
- Is the technology available?
- Does it satisfy the needs?

Economic Viability

Technical Human Feasibility Desirability

Exceptional Opportunities

- Is there a need?
- Can/ will the customer buy?
- Is there a relative advantage to other products?

©DSSE

Opportunity Identification

Process for Start up Creation

What is Design? (Noun)

Artificial:

"produced by the art rather than by nature, not genuine or natural; affected; not pertaining to essence of matter." [1]

Products:

"Products are artifacts conceived, produced, transacted and used by people because of their properties and functions they may perform" [2]

^[1] Simon, H.A., 1996. The sciences of the artificial. MIT press.

^[2] Roozenburg, N.F. and Eekels, J., 1995. Product design: fundamentals and methods (Vol. 2). John Wiley & Sons Inc.

What is Design? (Verb)

Product Design

"Designing a product is a goal directed thinking process by which problems are analyzed, objectives are defined and adjusted, proposals for solutions are developed and the quality of those solutions is assessed." [2]

Systematic product design approach: Prescriptive Models:

- French
- Pahl & beitz
- Roozenburg & Eckels
- Nigel Cross
- Ulrich & Eppinger

[1] Simon, H.A., 1996. The sciences of the artificial. MIT press.

[2] Roozenburg, N.F. and Eekels, J., 1995. Product design: fundamentals and methods (Vol. 2). John Wiley & Sons Inc.

Product Development Process: Outcome view

Product Design Process: Outcome view

Concepts

PoCs

Prototypes

Needs

Requirements

InsuFlo: An Affordable Insulin Pump: A Case Study

Diabetes in India

Type 1 diabetes (T1DM)

8.1 Lakhs people [1]

By 2040

Almost double [1]

Solution

- Multiple Daily Injections (MDI)
- Continuous Subcutaneous Insulin Infusion (CSII)

[1] The Lancet Diabetes and Endocrinology, 2021

InsuFlo: An Affordable Insulin Pump: A Case Study

Markets in in the United States, Europe and Australia

iarkets in in the office states, Europe and Australia

Accu Check

Markets in in India

Medtronic

Cost

Baseline pump: ₹3.6 lakhs, Flagship: ₹5.5 lakhs

- Lead screw/nut
- Precision micro-motor

"An affordable insulin pump for people with diabetes"

InsuFlo: An Affordable Insulin Pump: A Case Study

Mr Deval Karia M.Des, Batch 2018, CPDM, IISc

Stage 1: Need Identification

List of stakeholders

User segments

- Age
- Lifestyle
- Gender
- Pain points (Examples)
- Women tend to hide the pump under clothing to prevent discovery
- Make use of a washroom every time they need to administer a bolus dosage or monitor delivery
- •

List of stakeholder needs

Rank	List of Stakeholder Requirements
1	Extremely precise insulin delivery as dictated by medical requirements
2	Malfunctioning of the device in extreme environments must be informed to the user
3	Adequate alarms/response to Hypo-glycaemic and Hyper-glycaemic episodes
4	Device performance should be reasonably independent of external environmental conditions
5	Provision to vary the Basal delivery rate across the day
6	The initial investment on the pump and recurring costs must be affordable to a majority of the Total Addressable Market (TAM)
•••	

Functions

Mounting the cannula into the subcutaneous tissue

Mechanical actuation to precisely drive insulin into the tissue

Detecting obstruction in delivery (occlusion detection)

• •

Ideas

Stepper motor with lead screw

Piezoelectric actuation

Thermo-pneumatic/Thermo-peristaltic micro-pumps

Shape memory alloy

Diaphragm pump

...

Commercially available pumps New design

Embodiment 1: Infusion set

Embodiment 2: Patch based

Prototype insulin pump and remote

©DSSE Credit : Deval Karia, IISc

Stage 4: Concept Testing

Stage 4: Concept Testing

Pump

Insuflo

M722G

Programmed Bolus Value (U)

1 (0.01 ml)

Delivery Error Mean (%)

2.62 ± 0.066

 -0.26 ± 0.019

©DSSE

Credit: Deval Karia, IISc

Stage 4: Concept Testing

Pre-clinical animal investigation at a GLP-certified facility

Delivery accuracy comparable to competitor device

Go to Market

An **affordable** insulin pump for people with diabetes

people with diabetes

Product Design Process: Activity view

Stage 1: Need Identification

Interaction with Users

- Interaction with multiple users
- Interaction with multiple segments of the users

Types of user statement

- Problem
- Desire
- Likings
- Disliking
- Improvement

Interaction with Users

- •When and why do you use the bicycle?
- "I use my bicycle mostly for commuting to class every day."
- "I ride it to visit Padmavati temple because it is faster than walking."
- "I use it for exercise on the weekends."
- "It is my main mode of transport for short trips around the Powai."
- •Walk me through a typical journey with the bicycle you have.
- "I unlock it, hop on, and ride to the Lecture Complex. Then I lock it there."
- "I usually ride through some shortcuts, so the ride becomes uncomfortable."
- "I have to carry it up and down stairs at my hostel since it is very costly"
- "When I arrive, finding a safe spot to park it can be a hassle."

Interaction with Users

- •What do you like and dislike about your bicycle?
- "I like how lightweight it is, but it doesn't feel sturdy."
- "I love the speed, but I hate that the seat is uncomfortable."
- "It is easy to manoeuvre, but it doesn't have enough gears for hillside areas."
- "It is a simple design, but the tyres get flat too often."

•What improvements would you make to your bicycle?

"I wish it had a better lock, so I don't worry about theft while I am in the hostel/ classrooms/ labs."

- "It needs more comfortable handlebars for longer rides."
- "It would be great if it could fold up for easier storage."
- "I would add a basket for carrying groceries or small items."

Stage 1: Need Identification

Converting Problem Statement into Need Statement

User statement

I unlock it, hop on, and ride to the Lecture Complex. Then I lock it there.

I usually ride through some shortcuts, so the ride becomes uncomfortable

I wish it had a better lock, so I don't worry about theft while I am in the hostel/ classrooms/ labs.

It would be great if it could fold up for easier storage.

Need/ Desired condition

The bicycle should be easy to secure at public locations.

The bicycle should offer a smooth and comfortable ride on uneven surfaces.

- The bicycle should incorporate a better lock.
- The bicycle should incorporate security against theft.
- 💢e bicycle should have a folding mechanism.
- The bicycle should be easy to store in small or compact spaces.

Stage 1: Need Identification

Converting Need Statement into Specifications

Need/ Desired condition

The bicycle should offer a smooth and comfortable ride on uneven surfaces.

Specifications

Suspension: front suspension fork to absorb shocks on bumpy roads.

Tire width: wider tires (e.g., 2.0-2.5 inches) for added cushioning.

Tire type: durable, puncture-resistant tires for outdoor use.

The bicycle should provide a comfortable seating experience.

Seat: ergonomic, padded seat with adjustable height.

Seat design: shock-absorbing seat post for extra comfort.

The bicycle should incorporate security against theft.

©DSSE

Idea Generation: From function to form

Making wheelchairs navigate patients across stairs

"Navigating stairs (ascend and descend) for patients, regardless of the staircase's configuration"

Track based Mechanism

Tri-Wheel Mechanism

Curved-Spoke Tri-Wheel Mechanism

Stair lift

Idea Generation: From function to form

"How might we prevent bicycle theft when left unattended for bicycle owners in a way that ensures convenience (doesn't compromise convenience)?"

Idea modification

- Feasibility
- Utility
- User-friendliness
- Safety
- Environmental aspects
- Economic aspects
- Simplicity

Languages of design

Structure diagram

Sketch

Network diagram

3D model

Languages of design

Abstract

©DSSE

Concept prototypes

"A preliminary version of a final product and it can represent both aesthetic and functional features."

"an approximation of the product along one or more dimensions of interest"

Purpose

- Learning
- Communication
- Demonstration
- Decision-making

DSSE

Concept prototypes

Paper

Functional

Foam

3D printed

Cardboard

CAD

Scaled down

Augmented reality

Concept prototypes

Figma

Product Design Process: Activity view

Need Identification

Concepts Generation

Concepts Consolidation

Concept Testing

- Observation
- Interaction
- Experience

- Ideation
- Inspiration
- Syntheses

- Sketching
- Prototyping

- Analysis
- Evaluation
- Selection