Contents

1	Introduzione				
	1.1	Intro		. 2	
2	Introduction 3				
	2.1	Formu	ıle di Logica modale e significato	3	
		2.1.1	Relazione seriale	3	
		2.1.2	Funzione parziale	3	
		2.1.3	Funzione totale	4	
		2.1.4	Relazione euclidea	4	
3	Semantica				
	3.1	Simboli secessari			
	3.2	Logich	ne	6	

Chapter 1

Introduzione

1.1 Intro

Se voi signorine finirete questo corso, e se sopravviverete sarete dispensatori di fbf e pregherete per modellizzare sistemi assurdi in modo ancora più assurdo, ma fino a quel giorno non siete altro che buoni annulla convinti che tutti i cretesi sono stupidi e forse mentono.

Lasciate il formaggio fuori dall'aula.

Chapter 2

Introduction

aè vera nel mondo $\alpha,$ e scriviamo $\mu \models_{\alpha} a$ se

- a è una lettera enunciativa allora deve valere $a \in V(\alpha)$
- a è del tipo: $a \vee b$ allora.... $\mu \models_{\alpha} a$ oppure $\mu \models_{\alpha} b$

2.1 Formule di Logica modale e significato

2.1.1 Relazione seriale

Ip) Frame F con relazione R seriale

Ts)
$$\Box a \implies \diamond a$$

Dimostrazione:

Se non vale: $\mu \models_{\alpha} \Box a$ allora immediatemente si ha la tesi in quanto l'antecedente è falso.

Se invoce: $\mu \models_{\alpha} \Box a$ allora

 $\forall \beta : \alpha R \beta \Rightarrow \mu \models_{\beta} a \text{ per definizione di box,}$

inoltre dato che R seriale per Ip si ha anche che $\exists \beta : (\alpha, \beta) \in R$

da cui: $\mu \models_{\alpha} \diamond a$ per definizione di diamond (esiste β in relazione con α per la serialità e in α vale a dato che $\mu \models_{\alpha} \Box a$)

- Ip) $\Box a \implies \diamond a$
- Ts) Frame F con relazione R seriale

2.1.2 Funzione parziale

$\diamond a \Rightarrow \Box a$ funzione parziale	$\forall \alpha : \alpha R \beta, \ \beta R \gamma \Rightarrow \beta = \gamma$
---	--

Funzione parziale, dimostrazione

. Ip) funzione parziale

Ts) $\diamond a \Rightarrow \Box a$

 $\diamond a$ falsa allora dato che l'antecedente è falso di ha $\diamond a \Rightarrow \Box a$

 $\diamond a$ vera allora $\exists \beta {:} \alpha R \beta$ e
∈ $V(\beta),$ ma dato che la funzione è parziale questo
 β è unico !

da cui $\mu \models \diamond a \Rightarrow \Box a$

.

Ip) $\diamond a \Rightarrow \Box a$

Ts) funzione parziale

.

Per assurdo: suppongo non che la funzione non sia parziale. Se è così $\exists \alpha$: $\alpha R\beta$, $\alpha R\gamma$, considero un modello in cui $V(A) = \{\beta\}$, $\Box A$ non vale in α dato che A è falsa in γ , il che contraddice l'ipotesi (BAM!)

2.1.3 Funzione totale

 $\diamond a \iff \Box a \mid \text{funzione totale} \mid \forall \alpha \exists ! \beta : \alpha R \beta$

non ci sono "conti" da fare, R è seriale sse R è seriale $\Box a \implies \diamond a$, e se R è una funzione parziale $\diamond a \Rightarrow \Box a$

quindi dato che l'implica prevede un and di implica da una parte e dall'altra per definizione abbiamo la tesi

.

2.1.4 Relazione euclidea

- Ip) relazione euclidea
- Ts) $\diamond a \Rightarrow \Box \diamond a$

Suppongo sia vero l'antecedente (se falso ho finito), quindi vale: $\diamond a$ da cui: $\mu \models \diamond a$

dato che $\diamond a$ si ha che esiste almeno un β tale che in beta vale a solo un beta: autoanello perché euclidea e quindi $\square \diamond a$

diversi beta: ognuno dei vari β' , β'' , ecc. sono in relazione con β , dato che la relazione è euclidea, pertanto dato che in β vale a, in ognuno di loro vale $\diamond a$

 $Ip) \diamond a \Rightarrow \Box \diamond a$

Ts) relazione euclidea

Per assurdo, suppondo valga ip) ma non la tesi

Considero un Frame in cui: $\alpha R\beta$, $\alpha R\gamma$, $\beta R\gamma$ ma NON $\beta R\gamma$ cioè si ha un frammento in cui non vale l'euclidea. Poniamo che il modello sia tale che $V(A) = \{\gamma\}$

In queste ipotesi vale $\diamond a$ dato che in γ vale a. In β non vale a e neppure $\diamond a$ perché non ha "uscite", da cui in a non vale $\square \diamond a$ contraddicendo così l'ipotesi (BAM!)

Chapter 3

Semantica

3.1 Simboli secessari

 $a \vdash b$ cio
è a è conseguenza semantica di b, se in ogni Frame, Modello e Mondo in cu
i $\mu \models b$ si ha anche $\mu \models a$

Vale anche da destra a sinistra, dimostrazione simile.

3.2 Logiche

Una logica Λ su L è un insieme di fbf su L che:

- contiene tutte le tautologie
- è chiusa rispetto al Modus Ponens

Ad esempio; $PL(\phi)$ cioè i teoremi della logica proposizionale Altro esempio $\Lambda_C = \{a \mid F \models a \ per \ ogni \ F \in C\}$ infatti:

- contiene tutte le tautologie perché sono vere mondo per mondo dappertutto
- MP : suppongo che in un mondo α accada che: $\mu \nvDash_{\alpha} b$, $\mu \models_{\alpha} a$. Se vale anche $\mu \models_{\alpha} a \Rightarrow b$... l'antecedente è vero, quindi dato che l'implicazione

è vera, deve essere vero anche il conseguente da cui non può che essere $\mu \models_{\alpha} b$

Una logica si dice **uniforme** se è chiusa rispetto a sostituzioni uniformi cioè se sostituendo a una lettere uguali formule uguali in una tautologia, ottengo una tautologia.

Es. $\Lambda_C = \{a \mid F \models a \ per \ ogni \ F \in C\}$ NON è uniforme infatti se considero V(A) = S, dove S sono tutti gli stati possibili (mondi), vale anche $\mu \models_{\alpha} A$, e cioè A è una tautologia, se al posto di A sostituisco $B \land \sim B$ (falsa in ogni modello e mondo) non ottengo una tautologia.

Teorema

Sono equivalenti:

- 1. Λ è normale
- 2. per ogni intero n ≥ 0 ,

$$\vdash_{\Lambda} a1 \land a2 \land \dots \land an \implies a \text{ implica} \vdash_{\Lambda} \Box a1 \land \Box a2 \land \dots \land \Box an \implies \Box a$$

- 3. valgono:
 - (a) $\vdash_{\Lambda} \Box T$
 - (b) $\vdash_{\Lambda} \Box a \land \Box b \implies \Box (a \land b)$
 - (c) $\vdash_{\Lambda} a \Rightarrow b \text{ implica } \vdash_{\Lambda} \Box a \implies \Box b$

Dimostrazione

 $1 \implies 2$

per induzione.

se n = 0 allora $\vdash_{\Lambda} a$ allora $\vdash_{\Lambda} \Box a$ per la regola RN che vale in Λ per ipotesi se n > 0 (passo induttivo) suppongo valga l'antecedente, altrimenti 2 vale senz'altro;

Ricordiamo che $a1 \land a2 \land ... \land an \implies a \equiv a1 \land a2 \land ... a_{n-1} \implies (an \implies a)$