0

0

0

displayed $\binom{n}{4} + \binom{n}{2} + 1$ or $\frac{n^4}{24} - \frac{n^3}{4} + \frac{23n^2}{24} - \frac{3n}{4} + 1. \qquad \qquad 0$ Group supports answer 0 Group sanswer is rigorously verified 0 Group acknowledges leaps of faith (points are free if the answer is rigorous) 0 Readability 0	1 (2) 1 (2) 1 (2) 1
	1 2 2 1 2 2

Good work on nest.

The functions/ balls in boxes

Stuff apparently posel

Some trouble.

Let me Know if you'd entyt.

Let make me ther attempt.

SE2: Weirdly Walking

Citas Dia ala Mataia	
City-Block Metric	. 🗥
$[2.1] \ \pi = 4 = \frac{8}{2} $	SE4: Fun and Games
[2.1] Group uses def of π and of distance 0	$T_n = 3^n - 1 \text{ for } n \ge 0$
Readability	1 develops $T_n = 3T_n + 2$
Fluency0	1 /2 / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[2.2] Group discovers recurrence	and proves
[2.2] Group proves $\binom{X+Y}{YOYY}$ 0	includes initial conditions and domain
	How long? A: 1.0888 sextillion centuries
[2.2] Pascal's id	• Readability
[2.2] Count #Rs (Us) in R, U-sequence 0	1 (2) • Fluency:
Readability 0	NOT dots and boxes
Fluency0	1 (2)
·	Clear indication Player A can win
$p_n = \#\{U, R, L\}$ -paths of length n with no "RL" or "LR".	via choosing center edge
- · · · · · · · · · · · · · · · · · · ·	and "mirroring"
$p_n = 2p_{n-1} + p_{n-2}$	Attempt at proof of strategy
plus initial cond's & domain	1 2 is correct
attempts proof of recurrence	1 2 Readability & Clarity*
and succeeds	1 2 Fluency
attempts closed formula	1 (2)
obtains $p_n = \frac{1}{2}(1+\sqrt{2})^{n+1} - \frac{1}{2}(1-\sqrt{2})^{n+1}$	1 2 975 71
Readability 0	SE5 Distasteful insensitive problem about suicide
ž	• Group claims $S(n) = 2(n - 2^{\lfloor \log_2(n) \rfloor}) + 1$
Fluency:0	$(1) 2 \qquad \text{Group claims } S(it) = 2 (it - 2t + 32t + 3) + 1$
	Group gives an argument for the formula
SE3: The Twelve-Fold Way	. Chaum diamlare maguman as malations

			•
3/entry: Correct fmla + proof (3); correct fmla + lame p	roof (2)	; corı	rect
fmla (1); incorrect fmla plus convincing argument (1)			
Entry 1: $f: N_L \to X_L x^n$		2	3
Entry 2: $f: N_L \xrightarrow{1-1} X_L x^{\underline{n}} \dots 0$ Entry 3: $f: N_L \xrightarrow{\text{onto}} X_L x! \begin{Bmatrix} n \\ x \end{Bmatrix}$	1	2	(3)
Entry 3: $f: N_L \stackrel{\text{onto}}{\to} X_L x! \begin{Bmatrix} n \\ x \end{Bmatrix}$	1 (2	3
Entry 4: $f: N_U \to X_L$ $\binom{n}{x} = \binom{n+x-1}{x-1} \dots 0$	1	2	3 BSE
Entry 5: $f: N_U \stackrel{1-1}{\to} X_L = \binom{x}{n}$	(1)	2	3
Entry 6: $f: N_U \stackrel{\text{onto}}{\to} X_L \qquad \left(\binom{x}{n-x} \right) = \binom{n-1}{x-1} \dots 0$	1	2	(3)
Entry 7: $f: N_L \to X_U$ $\sum_{i=1}^{x} {n \choose x}$	(î)	2	3
Entry 8: $f: N_L \stackrel{1-1}{\rightarrow} X_U$ $[n \le x]$ 0		2	3
Entry 9: $f: N_L \stackrel{\text{onto}}{\to} X_U \qquad \begin{Bmatrix} n \\ r \end{Bmatrix}$	$ \approx $	2	3
Entry 10: $f: N_U \to X_U$ $\sum_{i=1}^{X} p_i(n) \dots 0$	(1)	2	3
Entry 11: $f: N_U \stackrel{1-1}{\to} X_U [n \le x]$	1	2	<u>3</u>) •
Entry 12: $f: N_U \stackrel{\text{onto}}{\longrightarrow} X_U p_x(n) \dots 0$	(î)	2	3
			56
			-

• Group claims $S(n) = 2(n - 2^{\lfloor \log_2(n) \rfloor}) + 1$	0	1	2
Group gives an argument for the formula	0	1 1 1	2
• Group displays recurrence relations	0	1	2
• Group argues the recurrence relations	0	1	2
ullet Group's argument for $S(n)$ is rigorous	0	1	2
• Readability	0	1	2
• Fluency:	0	1	2
E Number Theory			
			_

Group makes attempt Group claims no ordering yields a prime claims 11 divides any ordering gives a cogent arg 0 1

gives a rigorous arg
Readability
0
1

Presentation: Evidence of effort put forth

0 1 (2) 3 4

Points: X = 128;

Score: $X \cdot \sqrt{\frac{100}{124}} = 2$ (/100)

^{*}Reader knows how to use the strategy from reading this solution, as opposed to knowing the solution beforehand and interpreting.