Fundamentals of Algorithms*

* Slides are based on Chapter 4 of the following book: Electronic Design Automation: Synthesis, Verification, and Test, edited by L.-T. Wang, Y.-W. Chang, K.-T. Cheng, Morgan Kaufmann, 2009.

Algorithm

- What is an "algorithm"?
 - A sequence of well-defined instructions for completing a task or solving a problem
 - Can be described in a natural language, pseudo code, a flow chart, or even a programming language

Example of an Algorithm

- Problem
 - Whether a specific number is contained in a given sequence of numbers
- Algorithm: Linear Search

Evaluation of an Algorithm

- Is the algorithm in the previous slide efficient?
 - Can we make a better algorithm?
- Can the algorithm complete the task within an acceptable amount of time for a specific set of data derived from a practical application?
 - How to quantify the "efficiency" of an algorithm?

Some Well-Developed Algorithms

Graph algorithms

- Converting problems into graphs, and using existing graph algorithms to solve them
- Breadth-First Search and Depth-First Search, Topological Sort,
 Shortest and Longest Path Algorithms, etc.

Heuristic algorithms

- Fact: Many (or most) EDA problems are intrinsically very difficult because finding an optimal solution within a reasonable runtime is not always possible
- → Find an acceptable solution first. If time or computer resources permit, further improve the result incrementally

Mathematical programming

- Transforming problems into certain mathematical models, such as linear inequalities or non-linear equations
- Well developed algorithms or even tools are available to solve these mathematical formulae very efficiently

Computational Complexity

- Computational Complexity
 - A measurement of efficiency of algorithms
 - Measured with *memory* and *time* used
 - Space complexity: used memory
 - Time complexity: used time, more important than space complexity
 - A mathematical function of the *input size*
 - Sorting *n* words: input size *n*
 - Graph: #vertices (/V/) and #edges (/E/)

Average- and Worst-Case Complexity

- Time complexity
 - Amount of required elementary computational steps
 - Differs from input to input because of the existence of conditional constructs
 - If-else statements
 - Average-case complexity is needed to leverage the differences among inputs
 - Hard to compute, however
 - Use worst-case complexity instead in practice

Asymptotic Notations

- Asymptotic functions
 - Expressions of complexity, or runtime
 - Only care about the rate of growth, or the order of growth
 - When expressed in functions of the input size n
 - Lower-order terms ignored, e.g., $n^2 + n \rightarrow n^2$
 - Coefficients ignored, e.g., $3n \rightarrow n$
 - Most used notations
 - O, Θ and Ω

O-notation

- O: upper bounds of complexity functions
- Definition:
 - $-O(g(n)) = \{ f(n) : c, n_0 > 0 \text{ exist such that } 0 \le f(n) \le c \cdot g(n) \text{ for all } n \ge n_0 \}$
 - Conventionally written as f(n) = O(g(n)), but it's NOT equivalence
- Examples

$$-n^3 + 1000n^2 + n = O(n^3)$$
$$-n^2 = O(2^n)$$

Common O-notations

- Polynomial-time complexity: $O(n^k)$, where n is the input size and k is a constant
 - -O(1): constant time
 - $-O(\lg n)$: logarithmic time
 - -O(n): linear time
 - $-O(n^2)$: quadratic time
 - $-O(n^3)$: cubic time
- Non-polynomial time complexity:
 - $-O(2^n)$, $O(3^n)$: exponential time
 - -O(n!): factorial time

Ω -notation

- Ω -notation
 - the inverse of *O*-notation

•
$$f(n) = O(g(n))$$
 iff $g(n) = \Omega(f(n))$

- lower bounds of complexity functions
- Definition:
 - $-\Omega(g(n)) = \{ f(n) : c, n_0 > 0 \text{ exist such that } 0 \le c \cdot g(n) \le f(n) \text{ for all } n \ge n_0 \}$
- Much less common than O-notation

Θ-notation

- Θ-notation
 - tight bounds of complexity functions
 - $f(n) = \Theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$
- Definition:
 - $-\Theta(g(n)) = \{ f(n) : c_1, c_2, n_0 > 0 \text{ exist such that } 0$ $\le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \text{ for all } n \ge n_0 \}$
- Examples
 - $-0.1n^2 + 1000n = \Theta(n^2)$
 - $-10000n^2 + 2^n = \Theta(2^n)$

Decision Problems

- Decision problems
 - Can only be answered with "yes" or "no"
 - Names in capital letters

HAMILTONIAN CYCLE

 Given a graph, whether a loop that goes through all nodes exists

Optimization Problems

- An optimization problem
 - Looks for an optimum of the objective function
 - Can be decomposed into a series of decision problems by binary search
- Traveling Salesman Problem (TSP)
 - Finding a shortest route for a salesman who needs to visit a set of cities in a round tour

Complexity Classes

- Complexity classes
 - A set of problems with the same degree of complexity, where the complexity of a problem is the complexity of its most efficient possible algorithm
- 4 most frequently seen classes
 - P (Polynomial)
 - NP (Nondeterministic Polynomial)
 - NP-complete
 - NP-hard

Complexity Class P

- Complexity Class P
 - P stands for polynomial
 - Contains the problems that can be solved in polynomial time in terms of the input size on a deterministic computer
 - For a problem in P with input size n, an algorithm of complexity $O(n^k)$ exists, where k is a constant
 - Problems in P are considered tractable

Complexity Class NP

- Problems in class NP (Nondeterministic Polynomial)
 - Decision problems
 - Can be solved in polynomial time on a nondeterministic computer
 - The solutions can be verified for correctness in polynomial time on a *deterministic* computer
- P is contained in NP
- But the question of if P = NP remains open

Polynomial Transformation

- Polynomial transformation from problems P_a to P_b
 - Expresses an instance of P_a as an instance of P_b
 - The transformation is in polynomial time complexity
- P_a is polynomially reducible to P_b
 - A polynomial transformation (or reduction) from P_a to P_b exists

Complexity Class NP-complete (NPC)

- Informal definition
 - The most difficult problems in class NP
- Formal definition
 - The problem P_b is in NPC if
 - P_b is in NP
 - For any problem P_a in NP, a polynomial transformation from P_a to P_b always exists
- Problems in NPC are *polynomially reducible* to one another

Complexity Class NPC

- Checking if a problem P_a is in NPC
 - $-P_a$ is in NP
 - Solution checking can be done in polynomial time
 - A known NPC problem is polynomially reducible to P_a
- P = NP iff P = NPC
 - Still an open question

(b) P = NP

Complexity Class NP-hard

- NP-hard problems
 - At least as hard as NPC problems (most of the time harder)
 - Solution checking cannot be done in polynomial time
- In practice, most optimization versions of NPC problems are NP-hard
 - TSP as the optimization version of TRAVELING
 SALESMAN: if a round tour of length under a constant k exists

Graph

- Graph
 - Models pairwise relationships among items of certain form
 - We can model circuits with directed graphs

- Defined by 2 sets: a vertex (node) set V and an edge set E
 - Edges can be either directed or undirected

Graph Terminology

- An undirected graph G = (V, E)
 - $-V = \{v_1, v_2, v_3, v_4, v_5\}, |V| = 5$
 - $-E = \{e_1, e_2, e_3, e_4, e_5\}, |E| = 5$
 - An edge has 2 endpoints, e.g., $e_1 = (v_1, v_2)$
 - v_1 and v_2 are adjacent
 - e_1 is incident with v_1 and v_2
 - Degree of a vertex: number of incident edges
 - degree $(v_3) = 3$, degree $(v_5) = 2$

Graph Terminology (Cont'd)

- Path: $\langle v_5, e_4, v_3, e_3, v_4 \rangle$, its length (number of edges in the path) is 2
- Cycle: $\langle v_5, e_4, v_3, e_3, v_4, e_5, v_5 \rangle$ starts and ends at the same vertex
- Simple path: no cycles in the path

Graph Terminology (Cont'd)

- Loop
 - An edge starting and ending at the same vertex
- Parallel edges
 - Plural edges incident with the same two vertices
- Simple graph: no loops or parallel edges
- |V| and |E| can be simply V and E inside asymptotic notations, e.g. O(V+E)
- Weighted graphs
 - Various values (weights) are assigned to edges

Terminology for Directed Graphs

- Edge: $e_1 = (v_1, v_2) \neq (v_2, v_1)$
 - $-e_1$ is incident from v_1 to v_2
 - $-v_2$ is the head of e_1
 - $-v_1$ is the tail of e_1

- Path: $\langle v_4, e_4, v_2, e_2, v_3 \rangle$
 - $-v_4$ appears before v_3 in the path
 - $-v_4$ is v_3 's predecessor; v_3 is v_4 's successor
- DAG: directed acyclic graphs

Representation: Adjacency Matrix

• A $|V| \times |V|$ matrix

$$-A_{mn} = 1 \text{ if } (v_m, v_n) \in E$$

$$-A_{mn} = 0 \text{ if } (v_m, v_n) \notin E$$

- Symmetric for undirected graphs
- $\Theta(V^2)$ space, efficient for dense graphs

$$e_2$$
 v_4 e_4 v_5

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Representation: Adjacency List

- An array of |V| linked lists each of which stores all the adjacent vertices to a respective vertex in V
- $\Theta(V+E)$ space, efficient for sparse graphs

Breadth-First Search (BFS)

```
BFS(Graph G, Vertex s)
   FIFO_Queue Q = \{s\};
2 for (each v \in V){
3
     v.visited = false;
     v.distance = \infty;
     v.predecessor = NIL;
   s.visited = true;
   s.distance = 0;
   while (Q \neq \emptyset){
      Vertex u = Dequeue(Q);
10
11
      for (each (u, w) \in E)
12
        if (!(w.visited)){
13
          w.visited = true;
14
          w.distance = u.distance + 1;
15
          w.predecessor = u;
          Enqueue(Q, w);
16
17
18
19
```

- BFS: visit neighbors of the source first, then neighbors of neighbors, and so on
- s: source of the graph
- distance: length of the shortest path from source to the vertex

Breadth-First Search (BFS) (Cont'd)

• BFS

- Builds a breadth-first tree (thick edges)
- Finds connected components (nodes with finite distances)
- Finds shortest paths to the source in unweighted graphs

Depth-First Search (DFS)

```
DFS(Graph G)
   for (each vertex v \in V){
     v.visited = false;
     v.predecessor = NIL;
5 time = 0;
6 for (each vertex v \in V)
     if (!(v.visited)) DFSVisit(v);
DFSVisit(Vertex v)
   v.visited = true;
  for (each (v, u) \in E)
     if (!(u.visited)){
      u.predecessor = v;
      DFSVisit(u);
6
  time = time + 1;
  v.PostOrderTime = time;
```

- DFS: traverse as deeply as possible before backtracking
- PostOrderTime: the visiting sequence of each node in post order
- Time complexity:

$$O(V+E)$$

Depth-First Search (DFS) (Cont'd)

- Values in the nodes: PostOrderTime
- Guaranteed to visit all vertices
 - Forms a depth-first forest (instead of a tree)
- Important applications
 - _ E.g., topological sort

Topological Sort

- Applied on DAGs
- Gives a linear ordering of vertices, where no vertex appears before its predecessors
- O(V + E) complexity (because of DFS)

TopologicalSortByDFS(Graph G)

- call DFS(G), and insert v onto the front of a linked list L as PostOrderTime of each vertex v is computed;
- 2 return L;

Topological sort of the graph on the previous page

Strongly Connected Components

- Strongly connected graphs
 - Directed
 - All vertices can reach each other through directed edges
- Strongly connected components (SCC)
 - Partitioning of a directed graph
 - Each partition is
 - Strongly connected
 - Maximal, no vertex can be added

Strongly Connected Components

SCC(Graph G)

- 1 call DFS(G) for PostOrderTime;
- 2 $G^T = transpose(G);$
- 3 call DFS(G^T), replacing line 6 of DFS with a procedure examining vertices in order of decreasing PostOrderTime;
- 4 return different trees in depth-first forest built in DFS(G^T) as separate SCCs;
- Algorithm:
 - A DFS, a transpose, then another DFS
 - -O(V+E) time complexity (because of DFS)
- Resultant SCCs form a DAG

Shortest Path Algorithms

- Applied on directed, weighted graphs
- Different algorithms for different graphs
 - DAG shortest path algorithm: on DAGs
 - Dijkstra's Algorithm: no negative weights
 - The Bellman-Ford Algorithm: most general
- All 3 algorithms share the same kernel
 - initialization and relaxation

Initialization and Relaxation

```
Initialize(graph G, Vertex s)

1 for (each vertex v \in V){

2 pre(v) = NIL;

3 est(v) = \infty;

4 }

5 est(s) = 0;
```

```
• source s: the origin of shortest paths
```

- pre(v): predecessor of node v
- est(v): shortest-path estimate of v, changes along the algorithm

```
Relax(Vertex u, Vertex v)

1  if (est(v) > est(u) + w((u, v))){

2  est(v) = est(u) + w((u, v));

3  pre(v) = u;

4 }
```

• Relaxation:

checks if the shortest path
from source s to v can be
shortened (relaxed) by taking
a path through u

DAG Shortest Path Algorithm

- Perform a topological sort first
- Visit each node in topological order and relax all edges incident from it
- $\Theta(V+E)$ runtime

DAGShortestPaths(Graph G, vertex s)

- 1 topologically sort the vertices of G;
- 2 Initialize(G, s);
- 3 for (each vertex u in topological sorted order)
- 4 for (each vertex v such that $(u, v) \in E$)
- 5 Relax(u, v);

Dijkstra's Algorithm

- Works on graphs with non-negative weights
- Needs a priority queue minQ with est(v) as keys
- Extracts the node u with minimum est(u) in minQ and relaxes all edges incident from u to all nodes still in minQ

```
Dijkstra(Graph G, Vertex s)
1    Initialize(G, s);
2    Priority_Queue minQ = {all vertices in V};
3    while (minQ ≠ Ø){
4        Vertex u = ExtractMin(minQ); // minimum est(u)
5        for (each v ∈ minQ such that (u, v) ∈ E)
6        Relax(u, v);
7    }
```

Dijkstra's Algorithm (Cont'd)

	Predecessors			Shortest-Path Estimates		
	V_0	v_1	V_2	v_0	V_1	V_2
Dijkstra's	ΝIL	V_0	V_0	0	2	3
Correct path	NIL	V_2	V_0	0	1	3

- Produces incorrect results if weights are negative
- Time complexity depends on the implementation of the priority queue *minQ*
 - A linear array: $O(V^2)$
 - A Fibonacci heap: $O(E + V \cdot \lg V)$

The Bellman-Ford Algorithm

- Relax every edge (|V| 1) times
 - Since negative cycles should not exist in a shortest-path problem
- The most general algorithm
 - Also the most time-consuming: O(VE)

```
Bellman-Ford(Graph G, Vertex s)
1 Initialize(G, s);
2 for (counter = 1 to |V| - 1)
3 for (each edge (u, v) ∈ E)
4 Relax(u,v);
5 for (each edge (u, v) ∈ E)
6 if (est(v) > est(u) + w((u, v)))
7 report "negative-weight cycles exist";
```

The Longest Path Problem

- Similar to the shortest-path problem if no positive-cycle exists
 - Changing the value of est(v) to -∞ in initialization and ">" to "<" in relaxation finds longer paths
- If positive cycles exist and want to find the longest simple path
 - An NP-hard problem

Minimum Spanning Tree (MST)

- Spanning trees
 - Defined on undirected, weighted graphs
 - Connects all vertices without cycles
 - Tree weight: sum of all edge weights
- Minimum Spanning Tree
 - A spanning tree with minimum tree weight

Prim's Algorithm

- Builds a set with a starting vertex
 - Incrementally adds the shortest edge to the set
 - The set ends with an MST

```
PrimMST(Graph G)
   Priority_Queue minQ = {all vertices in V};
2 for (each vertex u \in minQ) u.key = \infty;
   randomly select a vertex r in V as root;
4 r.key = 0;
   r.predecessor = NIL;
6 while (\min Q \neq \emptyset)
     vertex u = ExtractMin(minQ);
     for (each vertex v such that (u, v) \in E)
8
9
       if (v \in minQ \text{ and } w((u, v)) < v.key) {
10
          v.predecessor = u;
          v.key = w((u, v));
11
12
13 }
  Unit 2
```

- Use a priority queue
 - key: edge weight
- Runtime depends on minQ
 - Like Dijkstra's Algortihm
 - $O(V^2)$ with an array
 - $-O(E + V \lg V)$ with a Fibonacci heap

Flow Network

- A variant of connected, directed graphs
- Two special nodes

- Source s: no edge incident to s
- Sink t: no edge incident from t
- Every flow starts at s and ends at t
- Every edge (u, v) has two attributes
 - Capacity c(u, v): the flow it can hold
 - Flow f(u, v) satisfies 3 constraints
 - Capacity constraint: $f(u, v) \le c(u, v)$
 - Skew symmetry: f(u, v) = -f(v, u)
 - Flow conservation (exceptions: s and t): $\sum_{v \in V} f(u, v) = 0$

Maximum-Flow Problem

- The value of a flow: $|f| = \sum f(s, v)$
- Maximum flow problem $v \in V$
 - Finds a flow with the maximum value in a flow network

• Numbers on edges: f(u, v)/c(u, v)

- |f| = 19, not maximum
 - More flow can be pushed into path $s \rightarrow v_2 \rightarrow v_3 \rightarrow t$
 - An augmenting path

Residual Network

- Facilitates finding augmenting paths
- Residual capacity
 - Defined with respect to a flow f
 - $c_f(u, v) = c(u, v) f(u, v)$
 - For both directions of every pairs of nodes
- $G_f = (V, E_f)$
 - $-E_f$: edges with residual capacity as weights

Residual Network (Cont'd)

- Augmenting paths
 - Paths in the residual network from s to t

$$- \text{ E.g.}, p = s \rightarrow v_2 \rightarrow v_3 \rightarrow t$$

- Residual capacity of a path
 - Minimum edge weight on the path

$$-c_f(p) = c_f(v_3, t) = 2$$

- Intuitive algorithm for maximum flow
 - Finds augmenting paths in residual networks and push flows equal to their residual capacity
 - Updates residual networks according to the new flows until no augmenting paths can be found

The Ford-Fulkerson Method

- An intuitive method that repeats the following steps
 - Finds an augmenting path p on the residual network
 - Push more flow according to $c_f(p)$
 - Update the residual network

```
Ford-Fulkerson(Graph G, Source s, Sink t)

1 for (each (u, v) \in E) f[u, v] = f[v, u] = 0;

2 Build a residual network G_f based on flow f;

3 while (there is an augmenting path p in G_f){

4 c_f(p) = \min(c_f(u, v) : (u, v) \in p);

5 for (each edge (u, v) \in p){

6 f[u, v] = f[u, v] + c_f(p);

7 f[v, u] = -f[u, v];

8 }

9 Rebuild G_f based on new flow f;

10 }
```

- Time complexity: $O(E \cdot |f^*|)$
 - $-f^*$: the maximum flow
 - $-|f^*|$ can be very large
 - Very inefficient if $|f^*|$ is large

The Edmonds-Karp Algorithm

- In Ford-Fulkerson, how to find augmenting paths is unspecified
- Edmonds-Karp algorithm uses breadth-first search to find an augmenting path with a minimum number of edges
- Time complexity: $O(VE^2)$

- Resultant network
 - The maximum flow
 - $-|f^*|=23$

Cuts in Flow Networks

- A cut (S, T)
 - A partition of the node set V into S and T = V S
 - Source $s \in S$ and sink $t \in T$
 - $S = \{s, v_2, v_3\}, T = \{t, v_1\}$
 - Net flow across the cut, f(S, T): $f(S, T) = \sum_{u \in S, v \in T} f(u, v)$
 - f(S, T) = 21
 - Capacity of the cut, c(S, T): $c(S, T) = \sum_{u \in S, v \in T} c(u, v)$
 - c(S, T) = 23
 - $f(S, T) \le c(S, T)$

The Max-Flow Min-Cut Theorem

- The following 3 things are equivalent
 - -f is a maximum flow in G
 - The residual network G_f has no augmenting paths
 - -|f| = c(S, T) for some cut of G
- Finding maximum flow = finding minimum cut

$$- |f^*| = 23 = c(S, T) =$$

$$c(\{s, v_2, v_3\}, \{t, v_1\})$$

Maximum Bipartite Matching

- A bipartite graph G = (V, E)
 - − *V* is partitioned into two sets *L* and *R*
 - For every edge $(u, v) \in E$, if $u \in L$, then $v \in R$, and vice versa
- A matching
 - A subset of edges $M \subseteq E$
 - For each vertex in V, at most
 one edge of M is incident on it
 - E.g., 3 thick edges in the bipartite graph

Maximum Bipartite Matching (Cont'd)

- Maximum bipartite matching finds a matching with a maximum number of edges
 - Add a source s and link s to all nodes in L
 - Add a sink t and link all nodes in R to t
 - Every edge has unit capacity
 - Solve the maximum flow problem
- Ford-Fulkerson method solves in O(VE)

Heuristic Algorithms

- Applies heuristics, or rules of thumb
- Finds good but not always optimal solutions
- Efficient in time
 - Best for hard (NPC or NP-hard) problems
- Solution quality cannot always be guaranteed
 - Nearest Neighbor for TSP
- Either directly searches the solution space
 - Greedy algorithm, dynamic programming, branch and bound
- Or exerts perturbations on solutions
 - Simulated annealing, genetic algorithms

Greedy Algorithm

- General idea
 - Stages the optimization problem
 - Makes locally optimal choices at each stage
- Real life example
 - Giving change with a minimum number of coins
 - Heuristic: pick the coin with the greatest value
 - -36 cents: quarter \rightarrow dime \rightarrow penny: 3 coins
- Two properties make greedy algorithms work
 - Greedy choice
 - Optimal substructure
- Applications: Dijkstra's, Prim's algorithms

Greedy Choice Property

- The global optimal solution can be made by making locally optimal, or greedy, choices
- Does not consider the impact of the current choice on future choices
- Counterexamples
 - Nearest Neighbor for TSP
 - Giving change of 40 cents if there were 20-cent coins
 - (Greedy) quarter \rightarrow dime \rightarrow nickel: 3 coins
 - (Optimal) 2 20-cent coins: 2 coins

Optimal Substructure Property

- The global optimal solution consists of optimal solutions to its subproblems
 - The problem is divisible into subproblems
 - The combination of optimal solutions to subproblems is globally optimal
- Giving change of 36 cents
 - into 26 cents + 10 cents:
 - (quarter → penny) + dime : global optimal

Unit 2 58

Dynamic Programming (DP)

- Combines solutions to its dependent subproblems by utilizing the dependency
 - Unlike divide-and-conquer: subproblems are independent
 - Avoids repeatedly solving the same subproblems
- Example: matrix-chain multiplication
 - Find the multiplication sequence with the least number of scalar multiplications
 - Matrices A, B, C: 30 x 100, 100 x 2, 2 x 50
 - (AB)C: #scalar multiplications = 9000
 - A(BC): #scalar multiplications = 160,000

Matrix-Chain Multiplication

- A chain of *n* matrices <M₁, M₂, ..., M_n>
 - M_i : dimension $v_{i-1} \times v_i$
- Search all possible multiplication orders
 - Exponential with *n*: infeasible
- m[i, j]: minimum number of scalar multiplications for $M_iM_{i+1}...M_j$
 - Recurrence relation:

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + v_{i-1}v_k v_j\} & \text{if } i < j. \end{cases}$$

- Target: find m[1, n]

Matrix-Chain Multiplication (Cont'd)

```
BottomUpMatrixChain(Vector v)
 1 n = v.size - 1;
2 for (i = 1 \text{ to } n) m[i, i] = 0;
    for (p = 2 \text{ to } n) // p: chain length
      for (i = 1 \text{ to } n - p + 1){
      j = i + p - 1;
        m[i, j] = \infty;
        for (k = i \text{ to } j - 1)
8
          temp = m[i, k] + m[k + 1, j]
                  + v_{i-1}v_kv_i;
9
           if (temp < m[i, j])
 10
              m[i, j] = temp;
 11
              d[i, j] = k;
 12
 13
 14
 15 return m and d:
Unit 2
```

- *d*[*i*, *j*]
 - where the separation is
- Constructs the m[i,j], $(0 \le i \le j \le n)$ table in a bottom-up fashion
- Avoids repeated calculations of m[i, j] in a naive recursive function
- Time complexity: $O(n^3)$

Two Properties for DP

- Overlapping Subproblems
 - The decomposed subproblems are dependent or overlapped
- Optimal Substructure
 - The same as in greedy algorithms
 - DP or greedy?
 - Whether the problem has "overlapping subproblems" or "greedy choice"
- Matrix-chain multiplication has both

Memoization

Constructs the table in a top-down, recursive fashion

```
TopDownMatrixChain(Vector v)
1 n = v.size - 1:
2 for (i = 1 \text{ to } n)
3 for (j = i \text{ to } n) \text{ m}[i, j] = \infty;
4 return Memoize(v, 1, n);
Memoize(Vector v, Index i, Index j)
1 if (m[i,j] < \infty) return m[i,j];
2 if (i = j) m[i, j] = 0;
  else for (k = i \text{ to } j - 1){
         temp = Memoize(v, i, k) +
            Memoize(v, k + 1, j) + v_{i-1}v_kv_j;
         if (\text{temp} < m[i, j]) m[i, j] = \text{temp};
  return m[i, j];
```

- "Memo"ization
 - Takes "memo"s
 - Records table items
 along the recursion
- Sometimes better than the bottom-up approach
 - If not all table entries must be visited

Branch and Bound

Branching

- Makes several choices at the same point to branch out into the search space
- The solution space forms a tree-like structure
- Fully-branched space: too vast to explore
- Bounding and pruning
 - Estimates a lower bound on solution quality to prune out obviously impossible branches
 - Efficiently reduces the solution space made with branching

Branch and Bound for TSP

- Branching: the next node on the route
- Bounding: use MST to estimate the cost lower bound of unvisited route

Simulated Annealing (SA)

- Mimics the process of controlled cooling
 - The heat gives molecules huge energy first
 - Large perturbations
 - Slow cooling gradually deprives the energy
 - Chances to reach stable crystalline configuration
- Analogies
 - Energy → cost function
 - Movements of molecules → perturbations in the solution space
 - Temperature \rightarrow control parameter T

Pseudocode for SA

```
Accept(temperature T, cost \Delta c)
   Choose a random number "rand" between 0 and 1;
2 return (e^{-\Delta c/T} > rand);
SimulatedAnnealing()
   solution sNow, sNext, sBest;
  temperature T, endingT;
   Initialize sNow, T and endingT;
   while (T > endingT){
     while(!ThermalEquilibrium(T)){
5
6
      sNext = Perturb(sNow);
      if (cost(sNext) < cost(sNow)){
8
        sNow = sNext;
9
        if (cost(sNow) < cost(sBest))
10
           sBest = sNow;
11
       else if (Accept(T, cost(sNext)-cost(sNow)))
12
13
        sNow = sNext;
14
15
      Decrease(T);
    return sBest:
```

- Cooling schedule
 - Combination of ThermalEquilibrium, Decrease, and endingT
 - Characterization of the SA
- Advantages
 - Can escape local optima
 - Flexible in running time

Genetic Algorithms (GA)

- Inspired by evolutional biology
 - Uses operations like crossover and mutation
 - Operates on a set of feasible solutions
 - "population"
 - Solutions encoded in math symbols like bits
 - "genes"
 - A feasible solution is a bit string
 - a "chromosome"
 - "Survival of the fittest"
 - Solutions are evaluated by a "fitness function"

Simple Genetic Algorithms (SGA)

Average fitness: 3
Highest fitness: 4

Average fitness: **3.5** Highest fitness: **5**

Mathematical Programming

- Problem formulation
 - \Rightarrow Minimize (or maximize) f(x);
 - \Rightarrow Subject to $X = \{ x \mid g_i(x) \le b_i, i = 1...m \};$ where
 - $-x = (x_1,...,x_n)$ are optimization (or decision) variables,
 - $-f: \mathbb{R}^n \rightarrow \mathbb{R}$ is the objective function
 - $-g_i: R^n \rightarrow R$ and $b_i \in R$ form the constraints for the valid values of x.

Categories of Mathematical Programming Problems

- 1. If $X = \mathbb{R}^n$, the problem is unconstrained.
- 2. If f and all the constraints are linear, the problem is called a linear programming (LP) problem.
 - Constraints can then be represented in the matrix form $Ax \le B$, where A is an $m \times n$ matrix corresponding to the coefficients in $g_i(x)$.
- 3. If the problem is linear, and all the variables are constrained to integers, the problem is called an integer linear programming (ILP) problem.
 - If only some of the variables are integers, it is called a mixed integer linear programming (MILP) problem.

Categories of Mathematical Programming Problems (Cont'd)

- 4. If the constraints are linear, but the objective function *f* contains some quadratic terms, the problem is called a quadratic programming (QP) problem.
- 5. If f or any of $g_i(x)$ is not linear, it is called a nonlinear programming (NLP) problem
- 6. If all the constraints have the following convexity property: $g_i(\alpha x_a + \beta x_b) \le \alpha g_i(x_a) + \beta g_i(x_b)$ where $\alpha \ge 0$, $\beta \ge 0$, and $\alpha + \beta = 1$ then the problem is called a convex programming or convex optimization problem.
- 7. If the set of feasible solutions defined by *f* and *X* are discrete, the problem is called a discrete or combinatorial optimization problem.

Linear Programming (LP) Problem

• Intuition: solving LP problems should be simpler than solving the general mathematical optimization problems

• Fact: A polynomial-time algorithm was not available until 1970's

Unit 2 73

LP Formulation

- One linear equation forms a hyper-plane.
- One linear inequality (constraint) forms a hyper half-space.
- The set of linear constraints forms a polyhedron in a multi-dimensional space.
- The optimal value of a linear objective function over a set of linear constraints occurs at an extreme point of the polyhedron.

Simplex Method

- Developed by George Dantzig in 1947
 - First practical procedure used to solve the LP problem
- Finds a basic feasible solution that satisfies all the constraints
 - A basic solution is conceptually a *vertex* (i.e., an extreme point) of the convex polyhedron
- Moves along the edges of the polyhedron in the direction towards finding a better value of the objective function
 - Guaranteed to eventually terminate at the optimal solution

Integer Linear Programming (ILP) Problem

• Fact:

- Many EDA problems are best formulated with integer variables
 - E.g., signal values in a digital circuit are under a modular number system
 - E.g., problems that need to enumerate the possible cases, or are related to scheduling of certain events
- In general more difficult than the LP counterpart

Unit 2 76

An ILP Example

maximize

$$- f$$
: $12x + 7y$

• subject to

$$-g_1: 2x - 3y \le 6$$

$$-g_2$$
: $7x + 4y \le 28$

$$-g_3$$
: $-x + y \le 2$

$$-g_4$$
: $-2x - y \le 2$

where $x, y \in Z$

 p_1 and p_2 are two possible points for optimal solution

LP Relaxation and Branch-and-Bound Procedure

Convex Optimization Problem

- Convexity property
 - $g_i(\alpha x_a + \beta x_b) \le \alpha g_i(x_a) + \beta g_i(x_b)$
 - For a convex function, a local optimal solution is also a global optimal solution

Interior-Point Method

• An effective method that can solve the convex optimization problem in polynomial time within a reasonably small number of iterations

• Idea

- Obtains an initial feasible solution which is approximated as an interior point
- Iterates along a path, called a central path, as the approximation improves towards the optimal solution

Unit 2 80