CS-2050-All-Sections CS 2050 Homework 8 (HOWARD, FAULKNER, ELLEN)

Vidit Dharmendra Pokharna

TOTAL POINTS

89.5 / 100

OUESTION 1

1 Question 1 23 / 25

√ - 0 pts Correct

Introduction (cap at -6)

√ - 2 pts Did not define / incorrectly defined

\$\$P(n)\$\$ before using it

- 2 pts Used predicate as a non-boolean
- 2 pts Incorrect/missing domain

Basis step (cap at -6)

- 2 pts Minor math error
- 5 pts Does not use correct value for the basecase. Correct Base Cases are: \$\$P(7), P(8)\$\$
 - 6 pts No/Completely incorrect basis step

IH and Inductive step (cap at -16)

- 2 pts Does not explicitly assume \$\$P(k)\$\$
- 2 pts Incorrect/missing new variable domain definition (e.g. not saying \$\$k \in \mathbb{Z}^{\geq 0}\$\$)
- 2 pts Using \$\$n\$\$ in the inductive step instead of a new variable
- **2 pts** Switching between booleans and numbers
- **4 pts** Not citing inductive hypothesis when it is used
- 2 pts Minor math error

- 4 pts Major math error
- 3 pts Minor jump in logic
- 6 pts Major jump in logic
- 5 pts Did not provide any reasonings
- 2 pts Did not provide any reasonings for algebra steps
 - 10 pts Assumed \$\$P(k+1)\$\$ is true
- 12 pts Not reaching \$\$P(k+1)\$\$
- 14 pts Assumed \$\$P(k)\$\$ correctly, but did not attempt to reach \$\$P(k+1)\$\$
- 3 pts Missing or incorrect inductive step conclusion (e.g. only concluded P(k+1) instead of $P(k) \to P(k+1)$
- 16 pts Missing/ completely incorrect inductive step
- **2 pts** Missing inductive step conclusion (i.e. "this concludes the inductive step")

Conclusion

- 1 pts No/Incorrect mention of \$\$P(n)\$\$ being true
- 1 pts No mention of domain of \$\$n\$\$ or incorrect domain for \$\$n\$\$ mentioned (domain for \$\$n\$\$ should be \$\$n \in \mathbb{Z}^{\endalign}\$)
- 1 pts No/incorrect mention of principle of mathematical induction

- 25 pts No answer
- 25 pts Did not use mathematical induction
- 1 next time, try to start with $\$\$3^k < k!\$\$$ and build up to $\$\$3^{k+1} < (k+1)!\$\$$
- 2 You need to define \$\$P(n)\$\$

QUESTION 2

2 Question 2 21 / 25

- 0 pts Correct

Introduction (cap at -6)

- √ 2 pts Did not define / incorrectly defined

 \$\$P(n)\$\$ before using it
 - 2 pts Used predicate as a non-boolean
 - 2 pts Incorrect/missing domain

Basis step (cap at -6)

- 2 pts Minor math error
- 5 pts Does not use correct value for the basecase. Correct Base Cases are: \$\$P(1)\$\$
 - 6 pts No/Completely incorrect basis step

IH and Inductive step (cap at -16)

- 2 pts Does not explicitly assume \$\$P(k)\$\$
- 2 pts Incorrect/missing new variable domain definition (e.g. not saying \$\$k \in \mathbb{Z}^{\geq 0}\$\$)
- 2 pts Using \$\$n\$\$ in the inductive step instead of a new variable
- √ 2 pts Switching between booleans and numbers
- 4 pts Not citing inductive hypothesis when it is used
 - 2 pts Minor math error
 - **4 pts** Major math error
 - 3 pts Minor jump in logic

- 6 pts Major jump in logic
- 5 pts Did not provide any reasonings
- 2 pts Did not provide any reasonings for algebra steps
 - 10 pts Assumed \$\$P(k+1)\$\$ is true
 - 12 pts Not reaching \$\$P(k+1)\$\$
- 14 pts Assumed \$\$P(k)\$\$ correctly, but did not attempt to reach \$\$P(k+1)\$\$
- **3 pts** Missing or incorrect inductive step conclusion (e.g. only concluded \$\$P(k+1)\$\$ instead of \$\$P(k) \to P(k+1)\$\$
- 16 pts Missing/ completely incorrect inductive step
- 2 pts Missing inductive step conclusion (i.e."this concludes the inductive step")

Conclusion

- 1 pts No/Incorrect mention of \$\$P(n)\$\$ being true
- 1 pts No mention of domain of \$\$n\$\$ or incorrect domain for \$\$n\$\$ mentioned (domain for \$\$n\$\$ should be \$\$n \in \mathbb{Z}^{\endalign}\$)
- **1 pts** No/incorrect mention of principle of mathematical induction
- 25 pts No answer
- 25 pts Did not use mathematical induction
- 3 statements need to be equations with an equal sign
- 4 Need to define \$\$P(n)\$\$

QUESTION 3

3 Question 3 23 / 25

- 0 pts Correct

Minimum \$\$x\$\$

- 0 pts \$\$x=28\$\$
- **5 pts** \$\$ x \neq 28 \$\$

✓ - 2 pts Did not define / incorrectly defined \$\$P(n)\$\$ before using it

- 1 pts Did not refer to \$\$n\$\$ in the definition of \$\$P(n)\$\$.

E.g. "\$\$P(n):\$\$ any amount of postage 28 cents or more can be formed with 5 and 8 cent stamps" is incorrect

- 2 pts Used predicate as a non-boolean

Basis step (cap at -6)

- 2 pts Minor math error
- 3 pts Missing 1 case
- **5 pts** Missing 2+ cases
- 6 pts No/completely incorrect basis step

IH and Inductive step (cap at -16)

- 0 pts Completely correct
- 2 pts Does not explicitly assume IH that\$\$\forall j P(j)\$\$ or equivalent
- 2 pts Incorrect bounds for \$\$j\$\$ (e.g. not saying \$\$x \leq j \leq k\$\$)
- 2 pts Incorrect/missing new variable domain definition (e.g. not saying \$\$j, k \in \mathbb{Z}^{\\geq 32}\$\$)
- 2 pts Incorrect/mismatched bounds for \$\$k\$\$
 (e.g. if the last base case is \$\$P(x)\$\$, need to have
 \$\$k \geq x\$\$)
- 2 pts Using \$\$n\$\$ in the inductive step instead of a new variable
- 4 pts Not citing inductive hypothesis when it is used

- 2 pts Minor math error
- 4 pts Major math error
- 3 pts Minor jump in logic
- 6 pts Major jump in logic
- 5 pts Did not provide any reasonings
- 2 pts Did not provide any reasonings for algebra steps
 - 10 pts Assumed \$\$P(k+1)\$\$ is true
 - 12 pts Not reaching \$\$P(k+1)\$\$
- 14 pts Assumed IH correctly, but did not attempt to reach \$\$P(k+1)\$\$
- **3 pts** Missing or incorrect inductive step conclusion (e.g. only concluded \$\$P(k+1)\$\$ instead of \$\$(\forall j P(j)) \to P(k+1)\$\$ or equivalent)
- 16 pts Missing/ completely incorrect inductive step

Conclusion

- 1 pts No/Incorrect mention of \$\$P(n)\$\$ being true
- 1 pts No mention of domain of \$\$n\$\$ or incorrect domain for \$\$n\$\$ mentioned (domain for \$\$n\$\$ should be \$\$n \in \mathbb{Z}^{\endaligned}
- 1 pts No/incorrect mention of principle of strong induction
 - 25 pts No answer
 - 25 pts Did not use strong induction
- 5 need to define P(n) before using it

OUESTION 4

4 Question 4 20 / 25

- 0 pts Correct

- √ 2 pts Did not define / incorrectly defined

 \$\$P(n)\$\$ before using it
 - 2 pts Used predicate as a non-boolean

Basis step (cap at -6)

- 2 pts Minor math error/missing base case
- **5 pts** Does not use \$\$P(2)\$\$ and \$\$P(3)\$\$ for the base case
 - 6 pts No/Completely incorrect basis step

IH and Inductive step (cap at -16)

- 2 pts Does not explicitly assume IH that \$\$P(j)\$\$ is true for all \$\$j\$\$ in the bounds \$\$2 \leq j \leq k\$\$
- 2 pts Incorrect/missing new variable domain
 definition (e.g. not saying \$\$k \in
 \mathbb{Z}^{\\geq 3}\$\$ or that \$\$j \in
 \mathbb{Z}\$\$)
- 2 pts Using \$\$n\$\$ in the inductive step instead of a new variable
- 2 pts Switching between booleans and numbers
- **4 pts** Not citing inductive hypothesis when it is used
 - 2 pts Minor math error
 - 4 pts Major math error
 - 3 pts Minor jump in logic
 - 6 pts Major jump in logic
 - 5 pts Did not provide any reasonings
- 2 pts Did not provide any reasonings for algebra steps
 - 10 pts Assumed \$\$P(k+1)\$\$ is true
 - 12 pts Not reaching \$\$P(k+1)\$\$
- 14 pts Assumed IH correctly, but did not attempt to reach \$\$P(k+1)\$\$ (whether by direct

proof or contradiction)

- ✓ 3 pts Missing or incorrect inductive step conclusion (e.g. only concluded \$P(k+1)\$ instead of \$(forall j P(j)) to F(k+1)\$ or equivalent)
- 16 pts Missing/ completely incorrect inductive step

Conclusion

- 1 pts No/Incorrect mention of \$\$P(n)\$\$ being true
- 1 pts No mention of domain of \$\$n\$\$ or incorrect domain for \$\$n\$\$ mentioned (domain for \$\$n\$\$ should be \$\$n \in \mathbb{Z}^{\geq} 2}\$\$)
- 1 pts No/incorrect mention of principle of strong induction
 - 25 pts No answer
 - 25 pts Did not use Strong induction
- oneed to define P(n)
- 7 need to conclude the IS

QUESTION 5

- 5 Page Matching 0 / 0
 - √ 0 pts Correct
 - 5 pts Incorrect

QUESTION 6

- 6 On Time 2.5 / 0
 - √ + 2.5 pts On Time (Before Thursday)
 - 0 pts On Time (Friday)
 - 10 pts 1 day late
 - 25 pts 2 days late

CS 2050 HW 8

1.

I will use mathematical induction to prove that $3^n < n!$ for all integers n > 7.

Line	Statement	Reason
1	$3^n < n!, n > 7$	Given Statement
2	$3^8 < 8!$	Basis Step
	6561 < 40320 ✓	
3	$3^k < k!, k > 7$	Inductive Hypothesis: Assume original
		statement is true for $n = k$
4	$\frac{3^k}{k!} < 1$	Simplify by dividing <i>k</i> ! on both sides
	$\frac{1}{k!} < 1$	
1 5	Check if $3^{k+1} < (k+1)!$	Inductive Step Start
6	Check if $3 \cdot 3^k < (k+1) \cdot k!$	Simplify by factoring out
7	Check if $3^k < \frac{(k+1)\cdot k!}{3}$	Simplify by dividing 3 on both sides
	3	
8	Check if $\frac{3^k}{k!} < \frac{(k+1)}{3}$	Simplify by dividing <i>k</i> ! on both sides
	Check if $\frac{1}{k!} < \frac{3}{3}$	
9	$\frac{(k+1)}{2} > 1$	Because $k > 7$, the value of $\frac{(k+1)}{3}$ must
	3	be greater than 1 as the numerator will
		be greater than the denominator
10	3^k $(k+1)$	Inductive Step Proven using (4) and (9)
	$\frac{3^k}{k!} < 1 < \frac{(k+1)}{3}$	

We can see that $3^{k+1} < (k+1)!$ is true whenever $3^k < k!$ is true, along with the base case of $3^k < 8!$ being true as well. This completed the inductive step.

∴ By mathematical induction, $3^n < n!$ for all integers n > 7

1 Question 1 23 / 25

√ - 0 pts Correct

Introduction (cap at -6)

- √ 2 pts Did not define / incorrectly defined \$\$P(n)\$\$ before using it
 - 2 pts Used predicate as a non-boolean
 - 2 pts Incorrect/missing domain

Basis step (cap at -6)

- 2 pts Minor math error
- 5 pts Does not use correct value for the base case. Correct Base Cases are: \$\$P(7), P(8)\$\$
- 6 pts No/Completely incorrect basis step

IH and Inductive step (cap at -16)

- 2 pts Does not explicitly assume \$\$P(k)\$\$
- 2 pts Incorrect/missing new variable domain definition (e.g. not saying \$k \in \mathbb{Z}^{\geq 0}\$\$)
 - 2 pts Using \$\$n\$\$ in the inductive step instead of a new variable
 - 2 pts Switching between booleans and numbers
 - 4 pts Not citing inductive hypothesis when it is used
 - 2 pts Minor math error
 - 4 pts Major math error
 - 3 pts Minor jump in logic
 - 6 pts Major jump in logic
 - 5 pts Did not provide any reasonings
 - 2 pts Did not provide any reasonings for algebra steps
 - 10 pts Assumed \$\$P(k+1)\$\$ is true
 - 12 pts Not reaching \$\$P(k+1)\$\$
 - 14 pts Assumed \$\$P(k)\$\$ correctly, but did not attempt to reach \$\$P(k+1)\$\$
 - 3 pts Missing or incorrect inductive step conclusion (e.g. only concluded \$\$P(k+1)\$\$ instead of \$\$P(k)

\to P(k+1)\$\$

- **16 pts** Missing/ completely incorrect inductive step
- 2 pts Missing inductive step conclusion (i.e. "this concludes the inductive step")

Conclusion

- 1 pts No/Incorrect mention of \$\$P(n)\$\$ being true

- 1 pts No mention of domain of \$\$n\$\$ or incorrect domain for \$\$n\$\$ mentioned (domain for \$\$n\$\$ should be $$n \in \mathbb{Z}^{\ }\$
 - 1 pts No/incorrect mention of principle of mathematical induction
 - 25 pts No answer
 - 25 pts Did not use mathematical induction
- 1 next time, try to start with $\$3^k < k!\$$ and build up to $\$3^k < k+1 < (k+1)!\$$
- 2 You need to define \$\$P(n)\$\$

I will use mathematical induction to prove that $3 \mid n^3 + 2n$ for all integers $n \ge 0$.

Line	Statement	Reason
1	$3 \mid n^3 + 2n, n > 0$ $3 \mid 1^3 + 2(1)$	Given Statement
2	$3 \mid 1^3 + 2(1)$	Basis Step
	3 3	
	$\frac{3}{3} = 1 \checkmark$	
3	$3 \mid k^3 + 2k, k > 0$	Inductive Hypothesis: Assume
		original statement is true for $n = k$
4	$\frac{k^3 + 2k}{3} = a, a \in \mathbb{Z}$	Definition of "divides" (3)
5	Check if $3 (k+1)^3 + 2(k+1)$	Inductive Step Start
6	Check if $3 k^3 + 3k^2 + 3k +$	Simplify by multiplying out
	1 + 2k + 2	
7	$1 + 2k + 2$ Check if $3 \mid k^3 + 3k^2 + 5k + 3$	Simplify by adding like terms
8		Definition of "divides" (7)
	3	
9	$\frac{k^3+2k}{3}+\frac{3k^2+3k+3}{3}$	Switch around values (8)
	3 + 3	
10	$a + k^2 + k + 1$	Simplify and substitute (4) into (9)
11	$a + k^2 + k + 1 = b, b \in \mathbb{Z}$	Closure of integers under addition
		and multiplication
12	$\frac{k^3 + 3k^2 + 5k + 3}{3} = b, b \in \mathbb{Z}$	Substitute (11) into (8)
	$ = b, b \in \mathbb{Z} $	
13	$3 \mid k^3 + 3k^2 + 5k + 3$	Definition of "divides" (12)
14	$3 (k+1)^3 + 2(k+1)$	Simplify (13)

We can see that $3 \mid (k+1)^3 + 2(k+1)$ is true whenever $3 \mid k^3 + 2k$ is true, along with the base case of $3 \mid 1^3 + 2(1)$ being true as well. This completed the inductive step.

∴ By mathematical induction, $3 \mid n^3 + 2n$ for all integers n > 0

2 Question 2 21 / 25

- 0 pts Correct

Introduction (cap at -6)

- $\sqrt{-2 pts}$ Did not define / incorrectly defined \$\$P(n)\$\$ before using it
 - 2 pts Used predicate as a non-boolean
 - 2 pts Incorrect/missing domain

Basis step (cap at -6)

- 2 pts Minor math error
- 5 pts Does not use correct value for the base case. Correct Base Cases are: \$\$P(1)\$\$
- 6 pts No/Completely incorrect basis step

IH and Inductive step (cap at -16)

- 2 pts Does not explicitly assume \$\$P(k)\$\$
- 2 pts Incorrect/missing new variable domain definition (e.g. not saying \$k \in \mathbb{Z}^{\geq 0}\$\$)
 - 2 pts Using \$\$n\$\$ in the inductive step instead of a new variable
- √ 2 pts Switching between booleans and numbers
 - 4 pts Not citing inductive hypothesis when it is used
 - 2 pts Minor math error
 - 4 pts Major math error
 - 3 pts Minor jump in logic
 - 6 pts Major jump in logic
 - 5 pts Did not provide any reasonings
 - 2 pts Did not provide any reasonings for algebra steps
 - 10 pts Assumed \$\$P(k+1)\$\$ is true
 - 12 pts Not reaching \$\$P(k+1)\$\$
 - 14 pts Assumed \$\$P(k)\$\$ correctly, but did not attempt to reach \$\$P(k+1)\$\$
 - 3 pts Missing or incorrect inductive step conclusion (e.g. only concluded \$\$P(k+1)\$\$ instead of \$\$P(k)

\to P(k+1)\$\$

- **16 pts** Missing/ completely incorrect inductive step
- 2 pts Missing inductive step conclusion (i.e. "this concludes the inductive step")

Conclusion

- 1 pts No/Incorrect mention of \$\$P(n)\$\$ being true

- 1 pts No mention of domain of \$\$n\$\$ or incorrect domain for \$\$n\$\$ mentioned (domain for \$\$n\$\$ should be $$n \in \mathbb{Z}^{\ }\$
 - 1 pts No/incorrect mention of principle of mathematical induction
 - 25 pts No answer
 - 25 pts Did not use mathematical induction
- 3 statements need to be equations with an equal sign
- 4 Need to define \$\$P(n)\$\$

The smallest value of x is 28 cents, such that you can form postage of 28 cents and greater using only 5 cent and 8 cent stamps. I will use strong induction to prove this.

Line	Statement	Reason
1	$28 = 5 + 5 + 5 + 5 + 8 \checkmark$	We need 5 basis steps (as a
	$29 = 5 + 8 + 8 + 8 \checkmark$	6 th step would just add 5
	$30 = 5 + 5 + 5 + 5 + 5 + 5 \checkmark$	from the 1 st step, so there is
	$31 = 5 + 5 + 5 + 8 + 8 \checkmark$	no need for more than 5
	$32 = 8 + 8 + 8 + 8 \checkmark$	steps)
2	Assume that you can form	Inductive Hypothesis
2	postage of j cents using only 5	madeuve Trypomesis
	cent and 8 cent stamps, where	
	$28 \le j \le k$ and k is a fixed	
	arbitrary integer and $k \ge 32$.	
3	Consider postage of $k + 1$	Inductive Step
	cents. Subtract 5 cents from	_
	there gives us $k-4$ cents.	
	Since $k \ge 32$, $k - 4 \ge 28$.	
	Thus, by the Inductive	
	Hypothesis, $k-4$ cent postage	
	can be made using 5 cent and 8	
	cent stamps. Using an	
	additional 5 cent stamp, you can make $k + 1$ postage. Thus,	
	you can form postage of $k + 1$	
	cents using only 5 cent and 8	
	cent stamps assuming the	
	inductive hypothesis is true.	

[∴] By strong induction, you can form postage of n cents using only 5 cent and 8 cent stamps for $n \ge 28$

3 Question 3 23 / 25

- 0 pts Correct

Minimum \$\$x\$\$

- 0 pts \$\$x=28\$\$
- **5 pts** \$\$ x \neq 28 \$\$
- $\sqrt{-2 pts}$ Did not define / incorrectly defined \$\$P(n)\$\$ before using it
 - 1 pts Did not refer to \$\$n\$\$ in the definition of \$\$P(n)\$\$.

E.g. "\$\$P(n):\$\$ any amount of postage 28 cents or more can be formed with 5 and 8 cent stamps" is incorrect

- 2 pts Used predicate as a non-boolean

Basis step (cap at -6)

- 2 pts Minor math error
- 3 pts Missing 1 case
- **5 pts** Missing 2+ cases
- 6 pts No/completely incorrect basis step

IH and Inductive step (cap at -16)

- 0 pts Completely correct
- 2 pts Does not explicitly assume IH that \$\$\forall j P(j)\$\$ or equivalent
- 2 pts Incorrect bounds for \$\$j\$\$ (e.g. not saying \$\$x \leq j \leq k\$\$)
- **2 pts** Incorrect/missing new variable domain definition (e.g. not saying \$\$j, k \in \mathbb{Z}^{\\geq} 32}\$\$)
- - 2 pts Using \$\$n\$\$ in the inductive step instead of a new variable
 - 4 pts Not citing inductive hypothesis when it is used
 - 2 pts Minor math error
 - 4 pts Major math error
 - 3 pts Minor jump in logic
 - 6 pts Major jump in logic
 - 5 pts Did not provide any reasonings
 - 2 pts Did not provide any reasonings for algebra steps

- 10 pts Assumed \$\$P(k+1)\$\$ is true
- 12 pts Not reaching \$\$P(k+1)\$\$
- 14 pts Assumed IH correctly, but did not attempt to reach \$\$P(k+1)\$\$
- 3 pts Missing or incorrect inductive step conclusion (e.g. only concluded P(k+1) instead of P(j) to P(k+1) or equivalent)
 - 16 pts Missing/ completely incorrect inductive step

Conclusion

- 1 pts No/Incorrect mention of \$\$P(n)\$\$ being true
- 1 pts No mention of domain of \$\$n\$\$ or incorrect domain for \$\$n\$\$ mentioned (domain for \$\$n\$\$ should be $$n \in \mathbb{Z}^{\ }$
 - 1 pts No/incorrect mention of principle of strong induction
 - 25 pts No answer
 - 25 pts Did not use strong induction
- 5 need to define P(n) before using it

4. The value of a_n is defined as follows: $a_0 = 1$, $a_1 = 3$, and $a_t = a_{t-1} + a_{t-2}$, $t \in \mathbb{Z}^{\geq 2}$. I will use strong induction to prove that $a_n \leq 2^n$ for all $n \geq 2$.

Statement	Reason
$a_2 = a_1 + a_0 = 3 + 1 = 4 \le 2^2 = 4 \checkmark$	We need 2 basis steps (since the
	recursive term uses two terms from
	before)
Assume $a_j \le 2^j$ such that $2 \le j \le k$ and	Inductive Hypothesis
k is a fixed arbitrary integer and $k \ge 3$.	
, -	
$a_{k+1} = a_k + a_{k-1}$	Inductive Step (Definition of a_{k+1})
$a_k \le 2^k$	Inductive Step (known from Inductive
$a_{k-1} \le 2^{k-1}$	Hypothesis)
$a_k + a_{k-1} \le 2^k + 2^{k-1}$	Inductive Step (Add the inequalities
N I	from (4))
$2^k \le 2^k$	Inductive Step (known since $k \ge 3$)
$2^{k-1} \le 2^k$	
$2^k + 2^{k-1} \le 2^k + 2^k$	Inductive Step (Add the inequalities
	from (6))
$2^k + 2^{k-1} \le 2(2^k)$	Inductive Step (Combine like terms in
	(7))
$2^k + 2^{k-1} \le 2^{k+1}$	Inductive Step (Addition property of
	exponents from (8))
	Inductive Step (Combine (5) and (9))
$a_k + a_{k-1} \le 2^{k+1}$	Inductive Step (Definition of ≤)
$a_k + a_{k-1} = a_{k+1} \le 2^{k+1}$	Inductive Step (Substitute (3) into
	(11))
	$a_{2} = a_{1} + a_{0} = 3 + 1 = 4 \le 2^{2} = 4 \checkmark$ $a_{3} = a_{2} + a_{1} = 4 + 3 = 7 \le 2^{3} = 8 \checkmark$ Assume $a_{j} \le 2^{j}$ such that $2 \le j \le k$ and k is a fixed arbitrary integer and $k \ge 3$. $a_{k+1} = a_{k} + a_{k-1}$ $a_{k} \le 2^{k}$ $a_{k-1} \le 2^{k-1}$ $a_{k} + a_{k-1} \le 2^{k} + 2^{k-1}$ $2^{k} \le 2^{k}$ $2^{k-1} \le 2^{k}$ $2^{k} + 2^{k-1} \le 2^{k} + 2^{k}$ $2^{k} + 2^{k-1} \le 2(2^{k})$ $2^{k} + 2^{k-1} \le 2^{k+1}$ $a_{k} + a_{k-1} \le 2^{k} + 2^{k-1} \le 2^{k+1}$ $a_{k} + a_{k-1} \le 2^{k+1}$

∴ By strong induction, for the value a_n , $a_n \le 2^n$ for all $n \ge 2$

4 Question 4 20 / 25

- 0 pts Correct
- √ 2 pts Did not define / incorrectly defined \$\$P(n)\$\$ before using it
 - 2 pts Used predicate as a non-boolean

Basis step (cap at -6)

- 2 pts Minor math error/missing base case
- 5 pts Does not use \$\$P(2)\$\$ and \$\$P(3)\$\$ for the base case
- 6 pts No/Completely incorrect basis step

IH and Inductive step (cap at -16)

- 2 pts Does not explicitly assume IH that \$\$P(j)\$\$ is true for all \$\$j\$\$ in the bounds \$\$2 \leq j \leq k\$\$
- 2 pts Incorrect/missing new variable domain definition (e.g. not saying \$k \in \mathbb{Z}^{\geq 3}\$\$ or that \$i \in \mathbb{Z}\$\$)
 - 2 pts Using \$\$n\$\$ in the inductive step instead of a new variable
 - **2 pts** Switching between booleans and numbers
 - 4 pts Not citing inductive hypothesis when it is used
 - 2 pts Minor math error
 - 4 pts Major math error
 - 3 pts Minor jump in logic
 - 6 pts Major jump in logic
 - 5 pts Did not provide any reasonings
 - 2 pts Did not provide any reasonings for algebra steps
 - 10 pts Assumed \$\$P(k+1)\$\$ is true
 - 12 pts Not reaching \$\$P(k+1)\$\$
- **14 pts** Assumed IH correctly, but did not attempt to reach \$\$P(k+1)\$\$ (whether by direct proof or contradiction)
- $\sqrt{-3}$ pts Missing or incorrect inductive step conclusion (e.g. only concluded \$\$P(k+1)\$\$ instead of \$\$(\forall j P(j)) \to P(k+1)\$\$ or equivalent)
 - 16 pts Missing/ completely incorrect inductive step

Conclusion

- 1 pts No/Incorrect mention of \$\$P(n)\$\$ being true
- 1 pts No mention of domain of \$\$n\$\$ or incorrect domain for \$\$n\$\$ mentioned (domain for \$\$n\$\$ should be $$n \in \mathbb{Z}^{\ }$

- 1 pts No/incorrect mention of principle of strong induction
- 25 pts No answer
- 25 pts Did not use Strong induction
- 6 need to define P(n)
- 7 need to conclude the IS

5 Page Matching 0 / 0

- **√ 0 pts** Correct
 - **5 pts** Incorrect

6 On Time 2.5 / 0

- √ + 2.5 pts On Time (Before Thursday)
 - 0 pts On Time (Friday)
 - **10 pts** 1 day late
 - **25 pts** 2 days late