

Lab. Extensão IFES 2020/2 - EAD Eduarda Simões, Serenna Ferrari e Thais de Souza

SELEÇÃO DE DADOS

TITANIC

- Informações
 relacionadas aos
 passageiros do navio
- → Target: survived (0, 1)
- → 11 colunas

MANIA

- Informações sobre pacientes de um estudo sobre mania
- → Target: dsm_man (5, 1)
- 229 colunas

O PROCESSO

PRÉ PROCESSAMENTO

- Média para preencher dados faltantes;
- Remoção de colunas que não contribuem a análise;
- Label encoder para dados categóricos;

- Encaixotamento para lidar com a alta variação de preços de passagens;
- Exclusão outliers;

NÃO REALIZADO

- Tratamento dos dados duplicados após remoção de colunas
- Balanceamento

MANIA PRÉ PROCESSAMENTO

- Remoção de colunas nulas ou que não sabíamos as respostas
- Remoção de colunas com correlação maior que 0.85 absoluto
- Preenchimento de dados nulos pelos métodos: ffill e bfill

Remoção de linhas que não possuíam nenhuma resposta de Mania

MANIA PRÉ PROCESSAMENTO

- Seleção das 30 melhores características
- Balanceamento por oversampling
- Não houve tratamento de outliers

TITANIC - PRÉ TRATAMENTO ANÁLISE EXPLORATÓRIA

Dataset statistics	
Number of variables	12
Number of observations	891
Missing cells	866
Missing cells (%)	8.1%
Duplicate rows	0
Duplicate rows (%)	0.0%

Variable types	
Numeric	5
Categorical	7

name has a high cardinality: 891 distinct values	
ticket has a high cardinality: 681 distinct values	
cabin has a high cardinality: 147 distinct values	
age has 177 (19.9%) missing values	
cabin has 687 (77.1%) missing values	
PassengerId is uniformly distributed	
name is uniformly distributed	
ticket is uniformly distributed	
cabin is uniformly distributed	
PassengerId has unique values	
name has unique values	
siblingsSpousesOnboard has 608 (68.2%) zeros	
parentsChildrenOnboard has 678 (76.1%) zeros	

Dataset statistics	
Number of variables	7
Number of observations	891
Missing cells	0
Missing cells (%)	0.0%
Duplicate rows	280
Duplicate rows (%)	31.4%

Warnings	
Dataset has 280 (31.4%)	duplicate rows
siblingsSpousesOnboard	has 608 (68.2%) zeros
parentsChildrenOnboard	has 678 (76.1%) zeros

Variable types

Categorical

Numeric

MANIA - PRÉ TRATAMENTO ANÁLISE EXPLORATÓRIA

Dataset statistics			
Number of variables	229	n n	
Number of observations	5037	l III	_/
Missing cells	613493		
Missing cells (%)	53.2%	17	
Duplicate rows	0	Variable types	3
Duplicate rows (%)	0.0%	Categorical	141
3.72		Numeric	79
		Unsupported	9

Overview	Warnings 181	
Warnings		
	values warnings orted type warnings	149 9
Zeros percentage warnings 17 Highly skewed warnings 5		
Constant value warnings 1		

MANIA - PÓS TRATAMENTO ANÁLISE EXPLORATÓRIA

Dataset statistics	
Number of variables	153
Number of observations	1346
Missing cells	0
Missing cells (%)	0.0%
Duplicate rows	31
Duplicate rows (%)	2.3%

Variable types	
Categorical	111
Numeric	42

Warnings	
Dataset has 31 (2.3%) duplicate rows	Duplicate
M30G is highly skewed (γ 1 = 25.87298081)	Skewed
cc32 is highly skewed (γ 1 = 25.82124453)	Skewed
cc49B is highly skewed (γ 1 = 35.74166925)	Skewed
cc49D is highly skewed (γ 1 = 22.47488804)	Skewed
M20 has 137 (10.2%) zeros	Zeros
M21 has 349 (25.9%) zeros	Zeros

COMPARANDO ANÁLISE EXPLORATÓRIA

 Dataset Mania possui aproximadamente 4,5x mais registros que o de Titanic;

→ Mais problemas identificados no Dataset Mania;

Pré processamento distinto em cada dataset;

TITANIC MACHINE LEARNING

```
solvers = ['liblinear', 'newton-cg', 'lbfgs', 'saga']
c_values = [1.99, 1.9, 1.0, 0.1, 0.01]
```

```
grid = dict(solver = solvers, C = c_values)
cv = RepeatedStratifiedKFold(n_splits = 10,
n_repeats = 3, random_state = 1)
grid_search = GridSearchCV(estimator = model,
param_grid = grid, n_jobs = -1, cv = cv,
scoring = 'accuracy', error_score = 0)
grid_result = grid_search.fit(x,y)
```

```
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
    print("%f (%f) with: %r" % (mean, stdev, param))
```

```
Best: 0.822703 using {'C': 1.99, 'solver': 'liblinear'}
0.822703 (0.053345) with: {'C': 1.99, 'solver': 'liblinear'}
0.819747 (0.052302) with: {'C': 1.99, 'solver': 'newton-cg'}
0.819747 (0.052302) with: {'C': 1.99, 'solver': 'lbfgs'}
0.799056 (0.042214) with: {'C': 1.99, 'solver': 'saga'}
0.822703 (0.053345) with: {'C': 1.9, 'solver': 'liblinear'}
0.819747 (0.052302) with: {'C': 1.9, 'solver': 'newton-cg'}
0.819747 (0.052302) with: {'C': 1.9, 'solver': 'lbfgs'}
0.799056 (0.041525) with: {'C': 1.9, 'solver': 'saga'}
0.822703 (0.053345) with: {'C': 1.0, 'solver': 'liblinear'}
0.819747 (0.052302) with: {'C': 1.0, 'solver': 'newton-cg'}
0.819747 (0.052302) with: {'C': 1.0, 'solver': 'lbfgs'}
0.799056 (0.041525) with: {'C': 1.0, 'solver': 'saga'}
0.813835 (0.053079) with: {'C': 0.1, 'solver': 'liblinear'}
0.821232 (0.049097) with: {'C': 0.1, 'solver': 'newton-cg'}
0.821232 (0.049097) with: {'C': 0.1, 'solver': 'lbfgs'}
0.798076 (0.040416) with: {'C': 0.1, 'solver': 'saga'}
```

TITANIC MACHINE LEARNING

```
Best: 0.799622 using {'bootstrap': True, 'max_depth': 15, 'n_estimators': 400}
```

```
print(rf.get_params())

param_grid = {
    'bootstrap' : [True, False],
    'max_depth' : [10, 15, 20],
    'n_estimators' : [200, 300, 400]
}

automl = autosklearn.classification.AutoSklearnClassifier(
    time_left_for_this_task = 120,
    per_run_time_limit = 30
    #include_estimators = ["decision_tree", "random_forest", "extra_trees"]
    , tmp_folder = '/tmp/autosklearn_classification_example_tmp'
    , output_folder = '/tmp/autosklearn_classification_example_out',
    )
    automl.fit(X_train, Y_train)
```

rf = RandomForestClassifier(random state = 0)

print('Parâmetros em uso: \n')

MACHINE LEARNING

NÃO REALIZADO

Uso de hiperparâmetros

→ Aplicação de cross validate

MANIA MACHINE LEARNING

```
automl = autosklearn.classification.AutoSklearnClassifier(
    time_left_for_this_task = 120,
    per_run_time_limit = 30,
    tmp_folder='/tmp/autosklearn_classification_example_tmp',
    output_folder='/tmp/autosklearn_classification_example_out'
)
automl.fit(X_train, Y_train)
'/tmp/autosklearn_classification_example_out'
```

```
predictions = automl.predict(X_test)

#CRIANDO A MATRIZ DE CONFUSÃO E REPORT
matrix = confusion_matrix(Y_test, predictions)

print('=== Conf. Matrix ====')
print(matrix)

report = classification_report(Y_test, predictions)
print('\n=== Report ====')
print(report)
```

```
print('Accuracy score: ', sklearn.metrics.accuracy_score(Y_test, predictions))
print('Accuracy AUC: ', sklearn.metrics.roc_auc_score(Y_test, predictions))
print('Precision score: ', sklearn.metrics.precision_score(Y_test, predictions))
print('Recall score: ', sklearn.metrics.recall_score(Y_test, predictions))
print('F1 score: ', sklearn.metrics.f1_score(Y_test, predictions))
```

TITANIC RESULTADOS

MATRIZ DE CONFUSÃO

102 5 24 39

REPORT

0	0.81	0.95	0.88
	0.89	0.62	0.73
	P R E C	R E C A	F 1 - S

ACURÁCIAS

SCORE	0.82
AUC	0.72

0	-
	a
	-4
	V

198	0
0	206

REPORT

	1.0	1.0	1.0
5	1.0	1.0	1.0
	P R	R E	F 1

ACURÁCIAS

SCORE	1.0
AUC	1.0

COMPARANDO RESULTADOS

TITANIC REPORT

0.81	0.95	0.88
0.89	0.62	0.73

MANIA REPORT

1	1.0	1.0	1.0
5	1.0	1.0	1.0
	Р	R	F

