

Informatique

Définition

- Terme crée en 1962 par Philippe Dreyfus
 - « Société d'Informatique Appliquée »
- Informatique = Information + Automatique

• Dictionnaire de l'Académie française (1967) : « Science du traitement rationnel, notamment à l'aide de machines automatiques, de l'information, considérée

comme le support de connaissances dans les domaines Scientifique, Économique et social »

Définition

- Science: Ensemble de connaissances.
- Traitement rationnel : Raisonnement, utilisation de méthodes précises, fondées, réplicables.

Texte

Vidéo

Son

- Machine automatique : Machine capables de mettre en œuvre ces méthodes.
- <u>Information</u>: Texte, image, vidéo, son, etc.

Définition

Dictionnaire de l'académie française (2021)

- 1. Science du traitement rationnel et automatique de l'information ; l'ensemble des applications de cette science.
- 2. Système informatique, ensemble des moyens qui permettent de conserver, de traiter et de transmettre l'information.

Domaines d'application de l'informatique

Médicine

Automobile

Télédétection

Télécommunication

Astronomie

Robotique et intelligence artificielle

Ordinateur

 Dictionnaire Larousse (2021) : Un ordinateur est une machine automatique de traitement de l'information, obéissant à des programmes formés par des suites d'opérations arithmétiques et logiques.

Architecture de von Neumann

John von Neumann est un mathématicien et physicien

ll a introduit en 1945 un modèle pour l'architecture des ordinateurs

- Ce modèle utilise une structure de stockage unique pour conserver à la fois les instructions et les données (entrées/ sorties)
- Ce modèle régit toujours l'architecture des ordinateurs

Architecture de von Neumann aujourd'hui

- 1. Les entrées-sorties, initialement commandées par l'unité centrale, sont contrôlées par des processeurs autonomes
- 2. Les ordinateurs comportent maintenant des processeurs multiples

La mémoire est le composant principale de l'ordinateur

Processeur

Le processeur est le cerveau de l'ordinateur

4th Gen Intel® Core® i7

Le processeur est une puce électronique

 Il permet d'exécuter les instructions machine d'un programme informatique

Processeur

- Unité de Commande : Elle commande et contrôle le fonctionnement de l'UAL, elle se charge de :
 - Chercher l'instruction à exécuter
 - Décoder cette instruction
 - Envoyer cette instruction à l'UAL
- Unité Arithmétique et Logique : Elle prend en charge les calculs, elle exécute les :
 - Opérations Arithmétiques
 - Opérations Logiques

Transistor

- Un processeur est un ensemble de circuits électroniques qui compte en autre des milliards de transistors
- Un transistors est un composant électronique semi-conducteur

Système de numération binaire

- Le transistor peut se trouver dans l'un de ces deux états, soit :
 - Fermé : Il laisse passer le courant
 - Ouvert : Il ne laisse pas passer le courant
- Par convention ces deux états sont notés :
 - 0 -> Ouvert Binary Digit = bit
 - 1 -> Fermé
- Système de numération à deux chiffres : numération en base 2 / numération binaire

Traitement de l'information

Codage de l'information

- Texte:
 - Chiffres et numéros :
 - Entiers naturels
 - Entiers signés
 - o Réels
 - Caractères alphabétiques
 - Caractères spéciales
- Image
- Son
- Vidéo

Codage de l'information textuelle

- Texte :
 - Chiffres et numéros
 - Caractères alphabétiques et mots
 - Caractères spéciales
- Exemple:
 - 234 = 11101010
 - -560 = 1000110000

Système de numérotation

- Un système de numérotation est un ensemble de règles et de signes permettant de former des nombres
- Trois éléments composent un système de numérotation :
 - La base b du système : C'est un nombre entier
 - Les digits du système : Ils sont des caractères tous différents et représentent chacun un élément de la base; il y en a donc b au total
 - Le poids du digit selon son rang

Le système de numérotation décimal

- Exemple: 345, 6, 100, 230, 1367.
 - La base : 10
 - Les digits : 0,1, 2, 3, 4, 5, 6, 7, 8, 9
 - Les poids: 1367 = 7 * 1 + 6 * 10 + 3 * 100 + 1 * 1000 $1367 = 7 * 10^{\circ} + 6 * 10^{1} + 3 * 10^{2} + 1 * 10^{3}$
 - Le poids du premier digit est 10° =1 (Unité)
 - Le poids du deuxième digit est 10¹=10 (Dizaine)
 - Le poids du troisième digit est10² =100 (Centaine)
 - Le poids du quatrième digit est 10³=1000 (Milliers)

Le système de numérotation binaire

- Exemple: 101, 1101, 100, 101, 110111
 - La base : 2
 - Les digits : 0, 1
 - Les poids : 1101= $1*2^0 + 0*2^1 + 1*2^2 + 1*2^3$
 - Le poids du premier digit est $2^0 = 1$
 - Le poids du deuxième digit est 2¹ = 2
 - Le poids du troisième digit est $2^2 = 4$
 - Le poids du quatrième digit est 2³= 8

- Identifier à quelle base (décimale ou binaire) appartiennent les chiffres suivants:
- 136, 121, 45, 2019, 1000000, 110101, 111000101.

Base 10	Base 2

- Identifier à quelle base (décimale ou binaire) appartiennent les chiffres suivants:
- 136, 121, 45, 2019, 1000000, 110101, 111000101.

Base 10	Base 2
136	100000
121	110101
45	111000101
2019	20

- Identifier à quelle base (décimale ou binaire) appartiennent les chiffres suivants:
- 136, 121, 45, 2019, 1000000, 110101, 111000101.

Base 10	Base 2
136, 121, 45, 2019	100000
100000	110101
110101	111000101
111000101	21

Conversion: Binaire -> Décimal

- Un nombre est composé de digits (chiffres) :
 - En base 10, on note $(C_nC_{n-1}....C_2C_1C_0)_{10}$
 - En base 2, on note $(C_nC_{n-1}....C_2C_1C_0)_2$
- Afin de convertir un nombre binaire en décimal on procède comme suit :

$$(C_nC_{n-1}....C_1C_0)_2 = C_0*2^0 + C_1*2^1 + + C_{n-1}*2^{n-1} + C_n+2^n$$

Exemple :

$$-(11001)_2 = 1*2^0 + 0*2^1 + 0*2^2 + 1*2^3 + 1*2^4 = (25)_{10}$$

Convertir en décimal

- $-(00100001)_2 = ??$
- $-(00110011)_2 = ??$
- $-(00011100)_2 = ??$
- $-(01011000)_2 = ??$

Convertir en décimal

- $-(00100001)_2 = (33)_{10}$
- $-(00110011)_2 = (51)_{10}$
- $-(00011100)_2 = (28)_{10}$
- $-(01011000)_2 = (88)_{10}$

Conversion: Décimal -> Binaire

- La conversion du décimal au binaire revient à rechercher des multiples des puissances successives de 2
- En pratique, on fait une succession de division euclidienne par 2 jusqu'à obtenir un quotient nul, puis on écrit les restes du dernier au premier

Conversion: Décimal -> Binaire

• Exemple: $(13)_{10} = ????$

• $(13)_{10} = (1101)_2$

Convertir en binaire

- $-(33)_{10} = ???$
- $-(51)_{10} = ???$
- $-(28)_{10} = ???$
- $-(88)_{10} = ???$

Convertir en binaire

- $-(33)_{10} = (100001)_2$
- $-(51)_{10} = (110011)_2$
- $-(28)_{10} = (11100)_2$
- $-(88)_{10} = (1011000)_2$

Le système de numérotation octal

- Exemple: 156, 12, 10, 234
 - La base : 8
 - Les digits : 0,1, 2, 3, 4, 5, 6, 7
 - Les poids : $234 = 4 * 8^0 + 3 * 8^1 + 2 * 8^2$
 - Le poids du premier digit est $8^{\circ} = 1$
 - Le poids du deuxième digit est 81 = 8
 - Le poids du troisième digit est $8^2 = 64$
 - Le poids du quatrième digit est 8³= 512

Conversion: Octal -> Décimal

- Un nombre est composé de digits (chiffres) :
 - En base 10, on note $(C_nC_{n-1}....C_2C_1C_0)_{10}$
 - En base 8, on note $(C_nC_{n-1}....C_2C_1C_0)_8$
- Afin de convertir un nombre octal en décimal on procède comme suit :

$$(C_nC_{n-1}....C_1C_0)_{8} = C_0*8^0 + C_1*8^1 + + C_{n-1}*8^{n-1} + C_n + 8^n$$

Exemple :

$$-(31)_8 = 1*8^0 + 3*8^1 = (25)_{10}$$

Convertir en décimal

- $-(323)_8 = ??$
- $-(525)_8 = ??$
- $-(317)_8 = ??$
- $-(213)_8 = ??$

Convertir en décimal

- $-(323)_8 = (211)_{10}$
- $-(525)_8 = (341)_{10}$
- $-(317)_8 = (207)_{10}$
- $-(213)_8 = (139)_{10}$

Conversion: Décimal -> Octal

• Exemple: $(13)_{10} = ????$

•
$$(13)_{10} = (15)_{8}$$

Convertir en octal

- $-(211)_{10} = ???$
- $-(341)_{10} = ???$
- $-(207)_{10} = ???$
- $-(139)_{10} = ???$

Convertir en octal

- $-(211)_{10}=(323)_{8}$
- $-(341)_{10}=(525)_{8}$
- $-(207)_{10}=(317)_{8}$
- $-(139)_{10}=(213)_{8}$

Le système de numérotation hexadécimal

- Exemple: 176, A12, EF, 910
 - La base : 16
 - Les digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - Les poids : A12= $2 * 16^{0} + 1 * 16^{1} + A * 16^{2}$
 - Le poids du premier digit est $16^0 = 1$
 - Le poids du deuxième digit est 16¹ = 16
 - Le poids du troisième digit est 16^2 = 256
 - Le poids du quatrième digit est 16³= 4096

Conversion: Hexadécimal -> Décimal

- Un nombre est composé de digits (chiffres) :
 - En base 10, on note $(C_nC_{n-1}....C_2C_1C_0)_{10}$
 - En base 16, on note $(C_nC_{n-1}....C_2C_1C_0)_{16}$
- Afin de convertir un nombre hexadécimal en décimal on procède comme suit :

$$(C_nC_{n-1}....C_1C_0)_{16} = C_0*16^0 + C_1*16^1 + + C_{n-1}*16^{n-1} + C_n+16^n$$

Exemple :

$$-(19)_{16} = 9*16^{0}+1*16^{1} = (25)_{10}$$

- $-(D3)_{16} = ???$
- $-(155)_{16} = ???$
- $-(CF)_{16} = ???$
- $-(8B)_{16} = ???$

- $-(D3)_{16} = (211)_{10}$
- $-(155)_{16} = (341)_{10}$
- $-(CF)_{16} = (207)_{10}$
- $-(8B)_{16} = (139)_{10}$

Conversion: Décimal -> Hexadécimal

• Exemple: $(113)_{10} = ????$

•
$$(113)_{10} = (71)_{16}$$

- $-(211)_{10} = ???$
- $-(341)_{10} = ???$
- $-(207)_{10} = ???$
- $-(139)_{10} = ???$

- $-(211)_{10}=(D3)_{16}$
- $-(341)_{10}=(155)_{16}$
- $-(207)_{10} = (CF)_{16}$
- $-(139)_{10}=(8B)_{16}$

Formalisme: base b -> Décimal

- Un nombre est composé de digits (chiffres) :
 - En base 10, on note $(C_nC_{n-1}....C_2C_1C_0)_{10}$
 - En base b, on note $(C_nC_{n-1}....C_2C_1C_0)_b$
- Afin de convertir un nombre en base b en décimal on procède comme suit :

$$(C_nC_{n-1}....C_1C_0)_{b=1} = C_0*b^0 + C_1*b^1 + + C_{n-1}*b^{n-1} + C_n + b^n$$

- Exemple:
 - $(19)_b = 9*b^0+1*b^1$

Formalisme: Décimal -> base b

 Afin de convertir un nombre en base 10 en base b, il faut accomplir une succession de division euclidienne par b jusqu'à obtenir un quotient nul, puis écrire les restes du dernier au premier

Conversion: base b₁-> base b₂

- Afin de convertir un nombre en base b₁
 à un nombre en base b₂, Il faut passer par une base intermédiaire : la base 10
- L'idée est de convertir le nombre de la base b1 à la base 10, ensuite convertir le résultat de la base 10 à la base b2.

- $-(211)_8 = ???$
- $-(341)_8 = ???$
- $-(207)_8 = ???$
- $-(132)_8 = ???$

- $-(211)_8 = (89)_{16}$
- $-(341)_8 = (E1)_{16}$
- $-(207)_8 = (87)_{16}$
- $-(132)_8 = (5A)_{16}$

Conversion: Binaire -> Octal

- Chaque trois bits représentent une valeur en base 8 : 8 = 2³
- Regrouper les bits par trois à partir du bit du poids faible (de droite à gauche)
- Remplacer chaque regroupement par la valeur octal correspondante

	1
Octal	Binaire
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

- Exemple :
 - $-(11100101)_2=(011100101)_2=(345)_8$

Convertir en Octal

- $-(1100100101)_2 = ???$
- $-(11100110101)_2 = ???$
- $-(10000001)_2 = ???$
- $-(1001111111)_2 = ???$

Convertir en Octal

- $-(1100100101)_2 = (001100100101)_2 = (1445)_8$
- $-(11100110101)_2 = (011100110101)_2 = (3465)_8$
- $-(10000001)_2 = (010 000 001)_2 = (201)_8$
- $-(10111111)_2 = (101111111)_2 = (577)_8$

Conversion: Binaire -> Hexadécimal

- Chaque quatre bits représentent une valeur en base 16 : 16 = 2⁴
- Regrouper les bits par quatre à partir du bit du poids faible (de droite à gauche)
- Remplacer chaque regroupement par la valeur hexadécimal correspondante
- Exemple :
 - $-(1100101)_2=(0110\ 0101)_2=(65)_{16}$

Hexa	Binaire
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
E	1110
F	1111

- $-(1100100101)_2 = ???$
- $-(11100110101)_2 = ???$
- $-(10000001)_2 = ???$
- $-(1001111111)_2 = ???$

- $-(100100101)_2 = (0001 0010 0101)_2 = (125)_{16}$
- $-(11100110101)_2 = (0111 0011 0101)_2 = (735)_{16}$
- $-(10001010)_2 = (10001010)_2 = (8A)_{16}$
- $-(100111111)_2 = (0010 0111 1111)_2 = (27F)_{16}$

Conversion: Octal -> binaire

 Remplacer chaque chiffre dans la base octal par sa valeur en binaire sur trois bits (faire des éclatements sur 3 bits).

Exemple :

- $-(325)_8=(011\ 010\ 101)_2$
- $-(120)_8 = (001\ 010\ 000)_2$

Octal	Binaire
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Convertir en Binaire

- $-(1445)_8 = ???$
- $-(3465)_8 = ???$
- $-(201)_8 = ???$
- $-(577)_8 = ???$

Convertir en Binaire

- $-(1445)_8 = (001100100101)_2$
- $-(3465)_8 = (011100110101)_2$
- $-(201)_8 = (010\ 000\ 001)_2$
- $-(577)_8 = (101111111)_2$

Conversion: Hexadécimal -> Binaire

 Remplacer chaque chiffre dans la base hexadécimal par sa valeur en binaire sur quatre bits (faire des éclatements sur 4 bits).

 Exempl 	e	:
----------------------------	---	---

- $-(12A)_{16}=(0001\ 0010\ 1010)_2$
- $-(1E0)_{16} = (000111100000)_2$

Hexa	Binaire
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Convertir en Binaire

- $-(325)_{16} = ???$
- $-(735)_{16} = ???$
- $-(8A)_{16} = ???$
- $-(27F)_{16} = ???$

Convertir en Binaire

- $-(325)_{16} = (0011\ 0010\ 0101)_2$
- $-(735)_{16}=(0111\ 0011\ 0101)_2$
- $-(8A)_{16}=(1000\ 1010)_2$
- $-(27F)_{16} = (0010 0111 1111)_2$

Caractéristique du système binaire

Soit une mémoire de 3 bit

- La plus petite valeur: 000
- La plus grande valeur : 111
- La plage de valeur possible : [0, 7]
 - 7= 2³-1
- Le nombre de valeur possible : 8
 - $8=2^3$

3 bits
000
001
010
011
100
101
110
111

Caractéristique du système binaire

- Soit une mémoire de taille n bits :
 - La plus petite valeur : $(0_{n-1}.....0_10_0)$
 - La plus grande valeur : $(1_{n-1}.....1_1)$
 - La plage de valeur possible : [0, 2ⁿ-1]
 - Le nombre de valeur possible : 2ⁿ