Sheet 3: Bipolar Junction Transistors (BJTs)

- 1- A transistor given in Figure 1 with $\beta = 100$. If $V_{CC} = 10V$, $R_C = 2.7K\Omega$, $R_B = 180K\Omega$. Determine the value of the collector-to-emitter voltage (V_{CE}) and the collector current (I_C) .
- 2- The circuit shown in Figure 2 uses a transistor with $\beta=100$, $R_C=0.5K\Omega$, $R_E=1K\Omega$, $R_B=44K\Omega$, $V_{CC}=15V$, $V_{EE}=-15V$, and $V_{BB}=0$. Determine the value of the collector voltage (V_C) and the emitter voltage (V_E) .
- 3- The circuit shown in Figure 2 uses a transistor with $\beta = 50$, $R_C = 0.5K\Omega$, $R_E = 1K\Omega$, $R_B = 44K\Omega$, $V_{CC} = 5V$, $V_{EE} = 0$, and $V_{BB} = -2V$. Determine the value of the collector voltage (V_C) and the emitter voltage (V_E) .
- 4- For the circuit shown in Figure 2, determine the value of the collector-to-emitter voltage (V_{CE}) and the collector current (I_C) . When a transistor has $\beta=100$. Assume $R_C=1K\Omega$, $R_B=270K\Omega$, $R_E=1K\Omega$, $V_{CC}=0$, $V_{EE}=-10V$, and $V_{BB}=0$.
- 5- For the circuit shown in Figure 3, determine the value of R_B to yield $I_C=5mA$. Assume $\beta=60$, $V_{EB}=0.7V$, $R_C=0.5K\Omega$, $R_E=100\Omega$, $V_{CC}=-6V$.
- 6- If $\alpha=0.97$ and $V_{BE}=0.7V$, find R in the circuit shown in Figure 4 to yield $I_E=2mA$, $R_C=2K\Omega$, $R_E=100\Omega$, $R_1=25K\Omega$, $V_{CC}=10V$.

Figure 2

Figure 3

Figure 4