Functional Analysis

Alef Sterk a.e.sterk@rug.nl

Lecture 1 Monday 5 February 2024

Topics:

- §1.1: Linear spaces
- §1.2: Linear operators
- §1.3: Quotient spaces
- §1.4: Isomorphisms
- §1.5: Dual Spaces

Linear spaces

A linear space X over a field \mathbb{K} is a set with two operations:

- $x, y \in X \Rightarrow x + y \in X$ addition:
- scalar multiplication: $x \in X, \ \lambda \in \mathbb{K} \Rightarrow \lambda x \in X$
- 8 axioms

Linear spaces and operators •00000000

[In analysis: $\mathbb{K} = \mathbb{R}$ or \mathbb{C}]

Linear spaces

A familiar example:

Linear spaces and operators 00000000

$$\mathbb{K}^n = \{(x_1,\ldots,x_n) : x_i \in \mathbb{K}\}$$

Infinite-dimensional examples:

$$\mathbb{K}^{\infty} = \{(x_1, x_2, x_3, \dots) : x_i \in \mathbb{K}\}$$

$$\mathcal{F}(S,\mathbb{K}) = \{f: S \to \mathbb{K}\}$$
 [where S is an infinite set]

[The last two spaces are "too large" for analysis purposes]

Linear spaces

Important examples:

$$\ell^p = \left\{ (x_1, x_2, x_3, \dots) : x_i \in \mathbb{K}, \quad \sum_{i=1}^{\infty} |x_i|^p < \infty \right\} \qquad (p \ge 1)$$

$$\ell^{\infty} = \left\{ (x_1, x_2, x_3, \dots) : x_i \in \mathbb{K}, \quad \sup_{i \in \mathbb{N}} |x_i| < \infty \right\}$$

$$\mathcal{C}([a,b],\mathbb{K}) = \{f : [a,b] \to \mathbb{K} : f \text{ is continuous}\}$$

Let X, Y be linear spaces over \mathbb{K}

Definition: a map $T: X \to Y$ is called linear if

- dom T is a linear subspace of X
- T(x + y) = Tx + Ty, $x, y \in X$
- $T(\lambda x) = \lambda(Tx), \quad \lambda \in \mathbb{K}, \quad x \in X$

Notation:

Linear spaces and operators 000000000

$$L(X,Y) = \{T : X \rightarrow Y : T \text{ is linear and dom } T = X\}$$

[If X = Y, then write L(X, Y) as L(X)]

Definition: $P \in L(X)$ is called a projection if $P^2 = P$

Example:

$$P: \mathbb{R}^2 \to \mathbb{R}^2, \qquad (x_1, x_2) \mapsto (0, x_2)$$

Lemma: if $P \in L(X)$ is a projection, then

1. I - P is a projection

- 2. $\operatorname{ran} P = \ker(I P)$
- 3. $\ker P = \operatorname{ran}(I P)$
- 4. $X = \ker P + \operatorname{ran} P$ is a direct sum [i.e. $\operatorname{ran} P \cap \ker P = \{0\}$]

Let $P \in L(X)$ be a projection

Claim: I - P is a projection

Proof:

$$(I-P)^2 = (I-P)(I-P)$$

$$= I-P-P+P^2$$

$$= I-2P+P$$

$$= I-P$$

Let $P \in L(X)$ be a projection

Claim: ran $P = \ker(I - P)$ and $\ker P = \operatorname{ran}(I - P)$

Proof:

$$x \in \operatorname{ran} P \Leftrightarrow x = Py \text{ for some } y \in X$$

$$\Leftrightarrow Px = P^2y = Py = x$$

$$\Leftrightarrow (I - P)x = 0$$

Let $P \in L(X)$ be a projection

Claim: $X = \ker P + \operatorname{ran} P$, direct sum

Proof:

Linear spaces and operators

00000000

"⊃": trivial

"
$$\subset$$
": $x = (I - P)x + Px$ for all $x \in X$

If $x \in \operatorname{ran} P \cap \ker P$, then

$$\begin{cases} x &= Py \\ Px &= 0 \end{cases} \Rightarrow x = Py = P^2y = Px = 0$$

Equivalence relations

Definition: \sim is an equivalence relation on a set X if

- 1. $x \sim x$ for all $x \in X$
- 2. $x \sim y \Rightarrow y \sim x$
- 3. $x \sim y$ and $y \sim z \Rightarrow x \sim z$

Equivalence class of x: $[x] := \{y \in X : x \sim y\}$

Set of equivalence classes: $X/\sim := \{[x] : x \in X\}$

Natural map: $\pi: X \to X/\sim, x \mapsto [x]$

Equivalence relations

Example: $X = \{ \text{ books with a single author } \}$

 $x \sim y \Leftrightarrow x$ and y have the same author

is an equivalence relation on X

"The Hobbit" \sim "The Lord of the Rings"

"The Hobbit" ≈ "Harry Potter"

[Does this example still work with books that have multiple authors?]

Equivalence relations

Example: on $X = \mathbb{Z}$ define the equivalence relation

$$x \sim y \Leftrightarrow x - y$$
 is even

Equivalence classes:

$$[0] = \{\dots, -4, -2, 0, 2, 4, \dots\}$$
$$[1] = \{\dots, -5, -3, -1, 1, 3, \dots\}$$
$$\mathbb{Z}/\sim = \{[0], [1]\}$$

Quotient spaces

Lemma: let X be a linear space and $V \subset X$ a linear subspace

$$x \sim y \Leftrightarrow x - y \in V$$

is an equivalence relation on X

Proof: since V is a linear subspace we have

1.
$$x - x = 0 \in V$$

2.
$$x - y \in V \Rightarrow y - x = (-1) \cdot (x - y) \in V$$

3.
$$x - y \in V$$
 and $y - z \in V \Rightarrow x - z = (x - y) + (y - z) \in V$

Quotient spaces

Recall: $x \sim y \Leftrightarrow x - y \in V$

Equivalence classes:

$$[x] = \{ y \in X : x \sim y \}$$

$$= \{ y \in X : x - y \in V \}$$

$$= \{ x - v \in X : v \in V \}$$

$$= \{ x + v \in X : v \in V \}$$

$$= x + V$$

Note: [x + v] = [x] for all $v \in V$

Quotient spaces

Recall:
$$x \sim y \quad \Leftrightarrow \quad x - y \in V$$

Proposition: $X/V := X/\sim$ becomes a linear space with

$$(x + V) + (y + V) := (x + y) + V$$

$$\lambda(x+V):=(\lambda x)+V$$

where $x, y \in X$ and $\lambda \in \mathbb{K}$

Note: need to show that these operations are well defined!

Isomorphisms •000

Theorem: if X, Y are linear spaces, $T \in L(X, Y)$, and $V \subset \ker T$ a linear subspace, then

$$\widehat{T}: X/V \to Y, \quad [x] = x + V \mapsto T(x)$$

is well defined and linear

Proof: \widehat{T} is well defined since

$$[x] = [y] \Rightarrow x - y \in V \subset \ker T$$
$$\Rightarrow T(x - y) = 0$$
$$\Rightarrow T(x) = T(y)$$

Isomorphisms 0000

Corollary: let X, Y be linear spaces and $T \in L(X, Y)$, then

$$\widehat{T}: X/\ker T \to \operatorname{ran} T, \quad x + \ker T \mapsto T(x)$$

is an isomorphism, so $X/\ker T$ and ran T are isomorphic

Proof: \widehat{T} is injective since

$$\widehat{T}(x + \ker T) = 0 \implies T(x) = 0$$

 $\Rightarrow x \in \ker T$
 $\Rightarrow x + \ker T = 0 + \ker T$

Surjectivity of \widehat{T} is trivial

Theorem: if X is a linear space and $V \subset X$ a linear subspace, then

$$\dim X < \infty \quad \Rightarrow \quad \dim X/V = \dim X - \dim V$$

Proof: extend a basis of V to a basis of X:

$$V = \operatorname{span}\{e_1, \dots, e_k\}$$

 $X = \operatorname{span}\{e_1, \dots, e_k, e_{k+1}, \dots, e_n\}$

Define the linear map $P: X \to X$ by

$$P(c_1e_1 + \cdots + c_ne_n) = c_{k+1}e_{k+1} + \cdots + c_ne_n$$

Since X/V and ran P are isomorphic we have

$$\dim(X/V) = \dim(\operatorname{ran} P) = n - k = \dim X - \dim V$$

0000

Theorem: if X is a linear space and $V \subset X$ a linear subspace, then

$$\dim X < \infty \quad \Rightarrow \quad \dim X/V = \dim X - \dim V$$

Corollary: if dim
$$X < \infty$$
 and $T \in L(X, Y)$, then

$$\dim X = \dim(\ker T) + \dim(\operatorname{ran} T)$$

Definition: let X be a linear space over \mathbb{K} , then

$$X' = L(X, \mathbb{K}) = \{f : X \to \mathbb{K} : f \text{ is linear } \}$$

is called the dual space of X

Elements in X' are called functionals on X

Lemma: $\dim X = n < \infty \implies \dim X' = n$

Proof: let $X = \text{span}\{e_1, \dots, e_n\}$, and define

$$f_i: X \to \mathbb{K}, \quad c_1e_1 + \cdots + c_ne_n \mapsto c_i$$

Claim: $X' = \text{span}\{f_1, \dots, f_n\}$

•
$$\sum_{j=1}^{n} a_j f_j(x) = 0 \ \forall x \in X \quad \Rightarrow \quad a_i = \sum_{j=1}^{n} a_j f_j(e_i) = 0 \ \forall i$$

•
$$f \in X'$$
 \Rightarrow $f(x) = \sum_{i=1}^{n} f(e_i)f_i(x)$

[true for $x = e_i$ and hence for all x by linearity]

Definition: let X be a linear space over \mathbb{K} , then

$$X'' = L(X', \mathbb{K}) = \{ \varphi : X' \to \mathbb{K} : \varphi \text{ is linear } \}$$

is called the second dual space of X

We define the natural map as

$$J: X \to X'', \quad J(x)(f) = f(x), \quad x \in X, \quad f \in X'$$

Corollary: dim $X < \infty \Rightarrow J : X \to X''$ is bijective

[If dim $X = \infty$, then J need not be surjective!]

Proof (*J* **injective):** let $X = \text{span}\{e_1, \dots, e_n\}$ and

$$f_i: X \to \mathbb{K}, \quad x = c_1 e_1 + \cdots + c_n e_n \mapsto c_i$$

Then $f_i \in X'$ and

$$J(x) = 0 \Rightarrow J(x)(f) = 0 \qquad \forall f \in X'$$

$$\Rightarrow J(x)(f_i) = 0 \qquad \forall i = 1, ..., n$$

$$\Rightarrow f_i(x) = 0 \qquad \forall i = 1, ..., n$$

$$\Rightarrow c_i = 0 \qquad \forall i = 1, ..., n$$

$$\Rightarrow x = 0$$

Proof (*J* surjective): recall that

$$\dim X = \dim(\ker J) + \dim(\operatorname{ran} J) = \dim(\operatorname{ran} J)$$

The previous lemma implies

$$\dim X'' = \dim X' = \dim X = \dim(\operatorname{ran} J)$$

Functional analysis > linear algebra!

Key word: topology

Using metrics induced by norms or inner products we can study:

- sequences, limits
- open, closed, compact sets
- continuity
- completeness