Projet n°5 - Segmentez des clients d'un site e-commerce

OLIST

Introduction

- Qu'est ce qu'Olist ?
 - Plateforme de ventes en ligne, basée au Brésil
- Ma mission :
 - Aider les équipes d'Olist à comprendre les différents types d'utilisateurs en créant une segmentation des clients utilisable pour leurs campagnes de communication

Exemple d'un produit sur la market place

Smartphone Motorola Moto G6 Play Dual Chip Android Oreo - 8.0 Tela 5.7" Octa-Core 1.4 GHz 32GB 4G Câmera 13MP -Indigo (Cód.133453169) *** ** ** (215) Caixa de Som ANKER SoundCore Bluetooth 12W - Preta Pegue na loja mais próxima, no mesmo dia :) peque na loja hoje! Escolha uma loja abaixo e compre vendido e entregue por olist R\$ 1.299.00 R\$ 1.299,00 10x de R\$ 129,90 s/ juros m comprar Corra! Temos apenas 5 no estoque R\$ 975,00 R\$ 22,94 - 5 a 6 dias úteis R\$ 1.299,00 em até 12x de R\$ 108,25 s/ juros Mais opções deste produto a em até 24x de R\$ 54,12 s/ partir de R\$ 959,00 formas de parcelamento Este produto é vendido por uma loja parceira

Table des matières

- A. Problématique et pistes envisagées
- B. Présentation des données
- C. Nettoyage et features engineering
- D. Exploration
- E. Les modélisations
- F. Clusters: analyse et visualisation
- G. Maintenance

A. Problématique et pistes envisagées

Problématique

Objectifs:

- Créer une segmentation des clients en fonction de leur comportement d'achat et de leurs données personnelles
- Fournir une description actionnable des groupes de clients
- Proposer un contrat de maintenance

Moyens:

- Utilisation de méthodes non supervisées pour regrouper les clients de profil similaire

B. Présentation des données

Les données (1)

• Base de données relationnelle composée de plusieurs jeux de données

Les jeux de données :

- Clients
- Vendeurs
- Géolocatisaion
- Produits
- Categories
- Commandes
- Commandes (produits)
- Commandes (paiement)
- Commandes (avis)

Les données (2)

- Les données ont été regroupées en un data set unique en utilisant les clés primaires et étrangères qui lient les tables
- Caractéristiques de ce jeu de données :
 - 17 799 100 lignes
 - 45 variables

C. Nettoyage et features engineering

Actions diverses avant sélection

• Données manquantes ?

- Les méthodes .info() et .describe() nous indiquent que le jeu de données ne présente pas de valeurs manquantes

Ajout de variables :

- 'same_state': variable booléenne qui renvoie 1 si l'acheteur et le vendeur habitent dans le même état et 0 dans l'autre cas
- 'volume': longueur * hauteur * largeur

• Types de variables :

- Les variables relatives aux dates sont encodées en tant que *object*, elles ont été transformées en datetime

Pré-sélection de variables

- Liste des 19 variables sélectionnées parmi les 45
 - Client: 'customer_unique_id', 'customer_city', 'customer_state', 'geolocation_lat', 'geolocation_lng'
 - Commande: 'order_id', 'order_purchase_timestamp', 'order_status', 'seller_id', 'price', 'review_score', 'same_state'
 - Produits: 'product_id', 'product_category_name_english'
 - Livraison: 'freight_value', 'volume', 'product_weight_g', 'delivery_time'
 - Paiement: 'payment_type', 'payment_installments'

Modifications

- Simplification et homogénéisation des catégories (De 71 à 22)
- Regroupement sur un plan sémantique, par exemple :
 - Les catégories 'books_general_interest', 'books_technical', 'books_imported' ont été regroupé sous la catégorie 'books'
- Objectif : créer des groupes de tailles homogènes et réduire le nombre de catégories pour faciliter l'analyse

Création des variables : (1)

De nouvelles variables on été créées en effectuant des groupby sur l'ID client

RFM (Récence, Fréquence, Montant) :

- Panier moyen
- Dernier achat en nombre de jours
- Total par client
- Fréquence d'achat
- Note: le panier moyen et le total par client sont identiques lorsqu'un client n'a effectué qu'un seul achat

Création des variables (2)

- Note moyenne attribuée
- Volume moyen des colis
- Poids moyen des colis
- Nombre de paiements moyen
- Type de paiement le plus commun
- Temps de livraison moyen
- Frais de port moyen
- Distance vendeur-acheteur la plus commune('same_state')

D. Exploration

L'index

- Deux candidats :
 - 'customer_id' : 96987 valeurs uniques. L'identifiant client est variable en fonction de la commande
 - 'customer_unique_id': 93829 valeurs uniques. L'identifiant est unique.
- 'customer_unique_id' est donc retenu en tant qu'index

Les paiements

olist

Répartition des types de paiement

Proportion par nombre de paiements

Nombre de paiements	Proportion
1	50,3 %
2	11,3 %
3	10 %
4	6,6 %
10	5,9 %

Fréquence d'achat

La proportion des clients par fréquence d'achat

Fréquence	Proportion
1	96,97 %
2	2,78 %
3	0,19 %
4	0,03 %

Corrélations entre les variables

-0.1

-0.0

- -0.1

Heatmap des corrélations

Corrélations positives :

- Panier moyen et montant des commandes
- Poids/Dimensions du colis et montant des frais de port

Corrélations négatives :

- Temps de livraison et note
- Temps de livraison et la variable booléenne 'same_state'
- Montant des frais de port et la variable booléenne 'same_state'

Distribution des données numériques

Distribution des variables rouge = données originales et bleu = données avec transformation de log x +1

E. Les modélisations

Avant-propos

- Etant donné que le jeu de données est assez volumineux, je décide d'éliminer le regroupement hiérarchique qui n'est pas performant pour ce type de dataset
- Deux algorithmes de clustering seront utilisés :
 - K-means
 - DBScan (ou plus exactement **OPTICS** un algorithme proche de DBscan mais plus efficace pour les jeux de données important)
- Afin de visualiser les clusters, j'utiliserai deux algorithmes de réduction de dimensions :
 - L'Analyse en composantes principales (ACP)
 - T-SNE

Preprocessing

- Variables numériques :
 - Pipeline:
 - 1. Valeur Absolue
 - 2. Log(x+1)
 - 3. Standard Scaler
- Variables catégorielles nominales
 - One Hot Encoding

K-means

olist

Silhouette et inertie

- La courbe de l'inertie n'a pas de coude évident
- On distingue deux pics sur la courbe des scores silhouette : 5 et 8 clusters
- Dans le but d'identifier des profils d'utilisateurs plus fins pour une segmentation **marketing**, je décide de choisir un nombre de clusters de 8

K-means

olist

Taille et score silhouette des clusters

- Avec le paramètre n_clusters = 8 :
 - Les groupes ont des tailles similaires
 - Chacun des groupes à un score supérieur à la moyenne

Analyse en Composantes Principales

Eboulis des valeurs propres

L'éboulis des valeurs propres indique que le premier plan factoriel explique environ 40% de la variance

Analyse en Composantes Principales olist

- Les variables les mieux représentées sur le cercles des corrélations sont :
 - Le panier moyen
 - le montant total des achats
 - Le temps de le livraison
 - Les frais de ports

K-means - visualisation des clusters

Premier plan factoriel de l'ACP

TSNE à deux dimensions

DBScan

Visualisation des clusters du DBScan sur le premier plan factoriel de l'ACP

- J'ai utilisé l'implémentation OPTICS sous sklearn, qui est un algorithme proche de DBScan mais qui plus adapté au dataset volumineux
- En utilisant des hyperparamètres standards, l'algorithme n'a pas réussi à séparer les clients en des clusters exploitables

Choix du modèle

- Le **K-means** permet d'identifier plusieurs groupes tandis que l'implémentation du DBscan n'a pas été concluante
- C'est donc le K-means que je sélectionne
- Caractéristiques de l'algorithme :
 - Distance et similarités : la distance euclidienne a été retenu
 - Forme des clusters : grâce au score à l'utilisation du score silhouette, j'ai sélectionné un nombre de clusters qui tendent à être resserrés sur eux mêmes et loins les uns des autres
 - Stabilité des clusters : les paramètres init='k-means++' et n_init=10 permettent de contrôler la stabilité des clusters

F. Analyse des groupes

Radar Plot du groupe 0

Variable(s) de distinction :

- last_purchase
- Description :
 - Ancien client, ils ont effectué leur dernier achat il y a longtemps sans effectuer une deuxième commande
- Proposition d'action :
 - Leur présenter les nouveautés

- Variable(s) de distinction :
 - last_purchase
- Description:
 - Nouveau client, leur dernier achat est très récent
- Proposition d'action :
 - Effectuer une enquête de satisfaction

- Variable(s) de distinction :
 - payment_installments
- Description:
 - Les clients ayant payés en plusieurs fois
- Proposition d'action :
 - Leur proposer des facilités de paiement

Radar Plot du groupe 3

Variable(s) de distinction :

- basket_avg
- total_amount
- avg_weight
- avg_freight_value

• Description:

- Clients ayant effectués des achats onéreux. Leur colis est volumineux et les frais de port élevés
- Proposition d'action :
 - Invitation à des événements premiums (vente privée exclusive)

- Variable(s) de distinction :
 - Frequency
- Description:
 - Clients ayant effectués plusieurs achats
- Proposition d'action :
 - Leur proposer un abonnement annuel à la plate-forme

Radar Plot du groupe 5

Variable(s) de distinction :

- same_state
- Description :
 - Clients ayant effectués des petites commandes près de chez eux
- Proposition d'action :
 - Proposer un nouveau service de vente/ location d'objet pour répondre à des urgences

- Variable(s) de distinction :
 - avg_vol_pack
- Description:
 - Clients ayant attribués des mauvaises notes, leur commande a en général des délais de livraisons qui sont longs
- Proposition d'action :
 - Effectuer une enquête de satisfaction afin de comprendre l'origine de leur insatisfaction (Qu'est-ce-qui à causer ce long délai de livraison)

- Variable(s) de distinction :
 - basket_avg
 - total_amount
- Description :
 - Clients ayant effectués des petits achats
- Proposition d'action :
 - Communiquer sur des catégories de produits adaptés

Analyse du groupe 7 : catégories

- Catégorie préférentielle :
 - Technology

Origine géographique

group 0 6 2 1 7

Quelques tendances:

- Le groupe n°5 (achats près de chez soi) est concentré autour d'une ville
- Les clients du groupe n°3 (achats onéreux) ont des points isolés

G. Maintenance et stratégie pour les nouveaux clients

Contrat de maintenance

Evolution du score ARI dans le temps

Qu'est-ce que le score ARI ?

L'Adjusted Rand Index est un score compris entre 0 et 1 qui permet de comparer la similitude de deux clusterings. Dans ce cas, on peut l'utiliser pour comparer notre clustering à t et t +1.

Graphiquement, on constate que le score ARI se dégrade dans le temps

Afin de préserver la qualité du modèle, on peut par exemple le mettre à jour tous les 3, 6 ou 9 mois en fonction du niveau de précision souhaité.

Stratégie pour les nouveaux clients

- Les nouveaux clients seront attachés au groupe dont le centroïde est le plus proche grâce au KNN
- Cependant, comme il existe un groupe qui caractérise les nouveaux clients, je vais donc utiliser le KNN sans la dimension 'last_purchase'

Conclusion

- Le clustering des données effectué à l'aide du K-means, nous a permis de d'identifier 8 groupes d'utilisateurs ayant des comportements distinctifs
- Ces clients sont potentiellement actionnables par les équipes marketing de l'Olist
- En modifiant le nombre de clusters, il est possible d'ajuster la finesse de la segmentation des clients

Pistes d'amélioration

- Effectuer une analyse fine des variables de distinction des groupes
- Pousser l'analyse géographique des clusters (relief, infrastructure, etc.)
- Optimiser la recherche d'hyperparamètres pour l'OPTICS