PHT / 2021 - INF 280 - Prova 3 - ID: 43

Werikson Alves - 96708 Universidade Federal de Viçosa (UFV), Viçosa, Brasil e-mails: werikson.alves@ufv.br 28 de Março de 2022

Questão 1

Um laboratório de pesquisas possui 35 computadores que devem ser usados para executar 29 simulações. Os computadores não são todos iguais, sendo 10 máquinas do tipo I, 14 do tipo II e 11 do tipo III. De modo semelhante, as simulações são divididas em cinco algoritmos diferentes, sendo 4 instâncias da simulação S1, 6 da simulação S2, 7 da S3, 7 da S4 e 5 da S5. Os gastos em energia para que cada tipo de computador execute uma instância de cada tipo de simulação são dados na tabela abaixo

		Tipo de Simulação					
		S1	S2	S3	S4	S5	
Tipo de	I	600	600	400	450	650	
Máquina	II	300	370	360	390	320	
	III	420	440	410	490	440	

Deseja-se executar todas as 29 simulações gastando a menor quantidade total de energia possível. Resolva o problema e marque a opção abaixo que representa corretamente o resultado ótimo.

a) 11010 b) 11020 c) 11030 d) 11040 e) 11050 f) 11060 g) 11070 h) 11080

Solução

Problema de transporte

Oferta		Demanda				Dj:	
Oleita	S1	S2	S3	S4	S5		υj.
I			2	7		10	8 1
II	4		5		5	14	10 5 0
III		6				11	5
	4	6	7	7	5		
Si:	0	0	2	0	0		
			0				

			Tipo o	de Simu	ulação	
		S1	S2	S3	S4	S5
	I	600	600	400	450	650
Tipo de	II	300	370	360	390	320
Máquina	III	420	440	410	490	440

```
Min = 600*x11 + 600*x12 + 400*x13 + 450*x14 + 650*x15 + 300*x21 + 370*x22 + 360*x23 + 390*x24 + 320*x25 + 420*x31 + 440*x32 + 410*x33 + 490*x34 + 440*x35;

x11 + x12 + x13 + x14 + x15 <= 10;
x21 + x22 + x23 + x24 + x25 <= 14;
x31 + x32 + x33 + x34 + x35 <= 11;

x11 + x21 + x31 = 4;
x12 + x22 + x32 = 6;
x13 + x23 + x33 = 7;
x14 + x24 + x34 = 7;
x15 + x25 + x35 = 5;
```

Row	Slack or Surplus	Dual Price
1	11080.00	-1.000000
2	0.000000	10.00000
3	0.000000	70.00000
4	6.000000	0.000000
5	0.000000	-370.0000
6	0.000000	-440.0000
7	0.000000	-410.0000
8	0.000000	-460.0000
9	0.000000	-390.0000

Custo = 4*300+6*440+5*360+2*400+7*450+5*320 = 11190

Variable	Value	Reduced Cost
X11	0.000000	240.0000
X12	0.000000	170.0000
X13	7.000000	0.000000
X14	3.000000	0.000000
X15	0.000000	270.0000
X21	4.000000	0.000000
X22	1.000000	0.000000
X23	0.000000	20.00000
X24	4.000000	0.000000
X25	5.000000	0.000000
X31	0.000000	50.00000
X32	5.000000	0.000000
X33	0.000000	0.000000
X34	0.000000	30.00000
X35	0.000000	50.00000

Pelo método do menor custo encontramos uma possível solução, contudo pelo lingo vemos que a solução ótima é 11080, portanto letra h).

Questão 2

O grafo abaixo representa uma rede de computadores, onde os valores nas arestas mostram o tempo em ms (milissegundos) que uma mensagem leva para trafegar entre os computadores. Determine a árvore de distâncias mostrando o caminho mais curto do computador 1 até todos os outros computadores. Marque abaixo a opção que contêm a soma de todas menores distâncias (veja exemplo abaixo).

Tabela 1: Matriz de adjacência

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1		2						4			3	3		
2	2		4					3		4				
3		4		7										3
4			7		7						4	4		
5				7		2							3	
6					2		2		3					7
7						2		2		6			7	
8	4	3					2		5					
9						3		5		2				
10		4					6		2		4			
11	3			4						4		4		
12	3			4							4		3	
13					3		7					3		5
14			3			7							5	

a) 73 b) 74 c) 75 d) 76 e) 77 f) 78 g) 79 h) 80

Solução

d_i	p_i
0	-
2	1
6	2
1	12
9	13
8	7
6	8
	1
8	10
6	2
3	1
3	1
6	12
9	13
77	-
	d_i 0 2 6 7 9 8 6 4 8 6 3 3 6 9

A soma de todas menores distâncias é 77, portanto letra e).

Questão 3

Considere a mesma rede mostrada na Questão 2, mas desta vez considere que os valores nas arestas representam os comprimentos dos cabos que interligam os computadores. Determine a Árvore Geradora de Custo Mínimo (AGM) para essa rede e marque abaixo o item que corresponde ao valor total da AGM (soma dos custos das arestas).

a) 31 b) 32 c) 33 d) 34 e) 35 f) 36 g) 37 h) 38

Solução

O valor total da AGM é 36, portanto letra f).

Questão 4

Uma empresa dispõe de cinco técnicos, que trabalham em home office, para cobrir quatro pedidos de conserto de geladeira. A tabela a seguir mostra o custo de transporte de cada técnico para cada local de serviço. Determine a atribuição de técnicos que minimiza a soma dos custos necessária para cobrir todos os pedidos, e marque abaixo a opção que corresponde ao valor ótimo.

a) 55 b) 56 c) 57 d) 58 e) 59 f) 60 g) 61 h) 62

		Pedido			
		1	2	3	4
	1	22	27	30	17
	2	23	21	28	27
Técnico	3	33	34	22	28
	4	28	16	27	22
	5	6	10	6	10

Solução

Problema de designação

	Tabela 1: Tabela equilibrada									
22	27	30	17	0						
23	21	28	27	0						
33	34	22	28	0						
28	16	27	22	0						
6	10	6	10	0						

Tabela 2: Menor valor de cada linha								
22	27	30	17	0				
23	21	28	27	0				
33	34	22	28	0				
28	16	27	22	0				
6	10	6	10	0				

Tabela 3: Menor valor de cada coluna								
22	27	30	17	0				
23	21	28	27	0				
33	34	22	28	0				
28	16	27	22	0				
6	10	6	10	0				

Tabela 4: Matriz de custo reduzido								
16	17	24	7	0				
17	11	22	17	0				
27	24	16	18	0				
22	6	21	12	0				
0	0	0	0	0				

Tabela 5: 2 linhas cruzando zeros				
16	17	24	7	<u>0</u>
17	11	22	17	<u>0</u>
27	24	16	18	<u>0</u>
22	6	21	12	<u>0</u>
<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>

	Tabela 6: 3 linhas cruzando zeros				
	10	<u>11</u>	18	1	<u>0</u>
ı	11	<u>5</u>	16	11	<u>0</u>
	21	<u>18</u>	10	12	<u>0</u>
	16	<u>0</u>	15	6	<u>0</u>
	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>6</u>

Tabela 6: 3 linhas cruzando zeros					
10	<u>11</u>	18	1	<u>0</u>	
11	<u>5</u>	16	11	<u>0</u>	
21	<u>18</u>	10	12	<u>0</u>	
16	<u>0</u>	15	6	<u>0</u>	
<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>6</u>	

Tabela 7: 4 linhas cruzando zeros				
9	<u>11</u>	17	<u>0</u>	<u>0</u>
10	<u>5</u>	15	<u>10</u>	<u>0</u>
20	<u>18</u>	9	<u>11</u>	<u>0</u>
15	<u>0</u>	14	<u>5</u>	<u>0</u>
<u>0</u>	<u>1</u>	<u>0</u>	<u>0</u>	<u>7</u>

Tabela 8: 5 linhas cruzando zeros				
<u>0</u>	<u>11</u>	<u>8</u>	<u>0</u>	0
1	5	6	10	<u>0</u>
<u>11</u>	<u>18</u>	<u>0</u>	<u>11</u>	<u>0</u>
<u>6</u>	<u>0</u>	<u>5</u>	<u>5</u>	0
<u>0</u>	<u>10</u>	<u>0</u>	<u>9</u>	<u>16</u>

Tabela 9: Solução ótima e viável				
0	11	8	0	0
1	5	6	10	0
11	18	0	11	0
6	0	5	5	0
0	10	0	9	16

Tabela 10: Solução				
22	27	30	17	
23	21	28	27	
33	34	22	28	
28	16	27	22	
6	10	6	10	

$$f = 6 + 16 + 22 + 17 = 61$$

Resposta: Letra g)

Questão 5

Resolva o Problema de Fluxo Máximo da rede de transporte de gás natural representada pelo grafo abaixo. Marque a opção abaixo que corresponde ao valor ótimo da Função Objetivo.

a) 115 b) 117 c) 119 d) 121 e) 123 f) 125 g) 127 h) 129

Solução

```
!Max = x79 + x89+x69;
                                                   Row
                                                         Slack or Surplus
                                                                             Dual Price
Max = x12 + x13;
                                                             123.0000
                                                                                1.000000
                                                    1
                                                   R19
                                                             0.000000
                                                                                0.000000
[R19]x12 + x13 - x79 - x89 - x69 = 0;
                                                   R2
                                                            0.000000
                                                                                -1.000000
[R2] x24 + x25 - x12 = 0;
                                                   R3
                                                             0.000000
                                                                                -1.000000
[R3] x34 + x35 - x13 = 0;
                                                   R4
                                                             0.000000
                                                                                0.000000
[R4] x47 + x48 + x46 - x24 - x34 = 0;
                                                   R5
                                                             0.000000
                                                                                -1.000000
[R5] x58 + x56 - x25 - x35 = 0;
                                                                                0.000000
                                                             0.000000
                                                   R6
[R6] x69 - x46 - x56 = 0;
[R7] x79 - x47 = 0;
                                                    R7
                                                             0.000000
                                                                                 0.000000
                                                   R8
                                                             0.000000
                                                                                0.000000
[R8] x89 - x48 - x58 = 0;
                                                   10
                                                             48.00000
                                                                                0.000000
                                                             51.00000
                                                                                 0.000000
                                                    11
x12 <= 117;
                                                    12
                                                             0.000000
                                                                                 1.000000
x13 <= 105;
                                                             0.000000
                                                    13
                                                                                0.000000
x24 <= 20;
                                                             0.000000
                                                                                1.000000
                                                    14
x25 <= 49;
                                                    15
                                                             7.000000
                                                                                 0.000000
x34 <= 24;
                                                    16
                                                             35.00000
                                                                                0.000000
x35 <= 37;
                                                    17
                                                             24.00000
                                                                                0.000000
x47 <= 35;
                                                    18
                                                             17.00000
                                                                                 0.000000
x48 <= 40;
                                                    19
                                                             0.000000
                                                                                 1.000000
x46 <= 45;
                                                             0.000000
                                                                                1.000000
                                                    20
x58 <= 37;
                                                    21
                                                             0.000000
                                                                                0.000000
x56 <= 42;
                                                    22
                                                             50.00000
                                                                                 0.000000
x69 <= 70;
                                                             27.00000
                                                                                 0.000000
                                                    23
x79 <= 50;
x89 <= 80;
```

O valor ótimo é 123, portanto, a resposta é letra e)

Variable	Value	Reduced Cost
X12	69.00000	0.000000
X13	54.00000	0.000000
X79	0.000000	0.000000
X89	53.00000	0.000000
X69	70.00000	0.000000
X24	20.00000	0.000000
X25	49.00000	0.000000
X34	24.00000	0.000000
X35	30.00000	0.000000
X47	0.000000	0.000000
X48	16.00000	0.000000
X46	28.00000	0.000000
X58	37.00000	0.000000
X56	42.00000	0.000000