

DISTANCE LEARNING PROGRAMME

(Academic Session: 2015 - 2016)

LEADER TEST SERIES / JOINT PACKAGE COURSE

TARGET: PRE-MEDICAL 2016

Test Type: ALL INDIA OPEN TEST (MAJOR) Test Pattern: AIPMT

TEST DATE: 17 - 04 - 2016

ANSWER KEY																				
Que	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	3	4	4	2	3	3	2	2	1	3	2	2	1	1	3	2	2	2	2
Que	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	4	3	2	2	2	3	2	4	4	2	4	2	1	3	2	4	2	4	1	1
Que	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	2	2	3	1	4	3	1	3	1	3	3	4	2	2	4	3	1	3	4	1
Que	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	4	2	3	1	1	4	3	2	3	1	2	3	4	2	1	3	3	2	3	4
Que	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	3	3	4	1	2	2	4	1	3	1	4	3	2	1	1	2	4	2	4	4
Que	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	4	3	2	4	2	3	4	2	1	3	4	2	1	3	3	4	3	2	1	4
Que	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans.	4	1	4	3	1	3	3	1	2	3	2	1	2	4	4	3	2	2	1	3
Que	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans.	4	1	3	1	2	2	4	4	4	1	2	1	4	4	4	1	2	2	3	3
Que	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans.	3	2	2	4	3	4	2	2	4	4	4	4	3	3	3	1	2	1	2	2

HINT - SHEET

1. Direction
$$\Rightarrow \frac{-4\hat{i}+3\hat{j}}{\left|-4\hat{i}+3\hat{j}\right|} = \frac{-4\hat{i}+3\hat{j}}{5}$$

$$\vec{v} = 10 \text{ m/s } \left(\frac{-4\hat{i}+3\hat{j}}{5}\right)$$

$$= \left(-8\hat{i}+6\hat{j}\right) \text{ m/s}$$

2. (I)
$$\frac{u}{M}$$
 $\frac{Rest}{m}$ $\frac{Rest}{m}$

In first collision between block A & B

$$V_1 = \left(\frac{M - m}{M + m}\right) u + 0$$

$$V_2 = \left(\frac{2M}{M+m}\right)u + 0$$

At the time of maximum compression velocities of blocks B and C become equal

$$mv_2 = mv + mv$$

$$mv_2 = 2mv$$

$$v = \frac{v_2}{2} = \left(\frac{M}{M+m}\right)u$$

velocity of C w.r.t. to A

$$=\frac{Mu}{M+m}-\left(\frac{M-m}{M+m}\right)u=\left(\frac{m}{M+m}\right)u$$

3.
$$\frac{dQ}{12} = \frac{k(2A)(T_1 - T_2)}{\ell}$$
 ...(1)

$$\frac{dQ}{t} = \frac{kA(T_1 - T_2)}{2\ell} \qquad ...(2)$$

from (1) & (2)

$$\frac{t}{12} = 4$$

$$t = 48 \text{ sec}$$

5.

$$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$$
 $\frac{\mu}{2r} - \frac{1}{-\infty} = \frac{\mu - 1}{r}$

$$\frac{\mu}{2r} - \frac{1}{-\infty} = \frac{\mu - 1}{r}$$

$$\frac{\mu}{2r} = \frac{\mu - 1}{r}$$
 $\Rightarrow \mu = 2\mu - 2 \Rightarrow \mu = 2$

6.
$$P = \vec{F} \cdot \vec{v}$$

$$F \longrightarrow \frac{F}{2}; v \longrightarrow \frac{v}{2}$$

Then
$$P \longrightarrow \frac{P}{4}$$

7.

By COLM

$$mucos\theta = \left(\frac{3m}{4}\right)V^1 \implies V^1 = \frac{4}{3} \ (u \ cos \ \theta)$$

so total Range become

$$\frac{R}{2} + \frac{2R}{3} = \frac{3R + 4R}{6} = \frac{7R}{6}$$

$$R = \frac{u^2 \sin 2\theta}{g} = \frac{100 \times 100 \times 2 \times \frac{3}{5} \times \frac{4}{5}}{10}$$

$$= 960 \text{ m}$$

Total range =
$$7/6 \times 960 = 1120 \text{ m}$$

In the curves 1-2 and 3-4, we find that the pressure is directly proportional to temperature. So, the volume remains unchanged, i.e., gas does not work. The work done during the isobaric processes 2-3 and 1-4 are as follows:

$$W_{2-3} = P_2(V_3 - V_2)$$

 $W_{1-4} = P_1(V_1 - V_4)$

Total work done = $P_2(V_3 - V_2) + P_1(V_1 - V_4)$ $W_T = P_2V_3 - P_2V_2 + P_1V_1 - P_1V_4$

Three moles has been given, so

PV = nRT = 3RT

$$W_{T} = 3RT_{3} - 3RT_{2} + 3RT_{1} - 3RT_{4}$$

$$= 3R[T_{1} + T_{3} - T_{2} - T_{4}]$$

$$= 3R[400 + 2400 - 800 - 1200]$$

$$= 3R \times 800 = 20 \times 10^{3} J = 20 \text{ kJ}.$$

Potential gradient (x) = $\frac{IR}{r}$ 9.

$$= \frac{e}{10r} \cdot \frac{9r}{L}$$
$$= \frac{9e}{10I}$$

$$\because \frac{e}{2} = x \times \ell_{AJ}$$

$$\ell_{AJ} = \frac{e}{2} \times \frac{10L}{9e} = \frac{5L}{9}$$

 $\ell_{AJ} = \frac{e}{2} \times \frac{10L}{9e} = \frac{5L}{9}$ Displacement = $\frac{t \sin(i - r)}{\cos r}$ and 10. $1 \times \sin i = n \times \sin i$

> Since i and r are small angles.and i = nrDisplacement = t(i-r)

$$\therefore \text{ Displacement} = t i \left(1 - \frac{r}{i} \right) = t \theta \left(1 - \frac{1}{n} \right)$$
$$= \frac{t\theta (n-1)}{n}$$

11.
$$x = \sqrt{V+1}$$

 $x^2 = V + 1$

$$2x \frac{dx}{dV} = 1$$

$$2x = \frac{dV}{dx}$$

$$\frac{dV}{dx} = 10 \text{ (at } x = 5)$$

$$ax = V \frac{dV}{dx}$$

a =
$$V \frac{dV}{dx}$$

at x = 5 \Rightarrow V = $x^2 - 1$ = 25 - 1 = 24

So a =
$$V \frac{dv}{dx} = 24 \times 10 = 240$$
 unit

12. : total mechanical energy
$$E = -\frac{GMm}{2r}$$

$$\therefore \frac{E_1}{E_2} = \frac{m_1}{m_2} \times \frac{r_2}{r_1} = \frac{3}{1} \times \frac{4r}{r} = \frac{12}{1}$$

13.
$$\rho = \frac{PM_w}{RT}$$

or
$$\rho \propto \frac{P}{T}$$

or
$$\left(\frac{P}{T}\right)_{A} = \frac{P_0}{T_0} \text{ and } \left(\frac{P}{T}\right)_{B} = \frac{3}{2} \frac{P_0}{T_0}$$

$$\left(\frac{P}{T}\right)_{B} = \frac{3}{2} \left(\frac{P}{T}\right)_{A}$$

$$\therefore \qquad \qquad \rho_{B} = \frac{3}{2}\rho_{A} = \frac{3}{2}\rho_{0}$$

14.
$$\frac{40}{60} = \frac{R}{S}$$
, $\frac{2}{3} = \frac{R}{S}$ (1)

$$\frac{64}{36} = \frac{R(12+S)}{12S} \qquad \frac{16}{9} = \frac{R(12+S)}{12S} \dots (2)$$
(1)/(2)

$$S = 20\Omega, R = \frac{40}{3}\Omega$$

15. As D >>d &
$$\lambda <<$$
 d.

Hence we can use
$$\beta = \frac{\lambda D}{d}$$

so distance between 5th bright fringe and 3rd dark fringe = $5\beta - (2\beta + \beta/2)$

$$=\frac{5}{2}\beta=\frac{5}{2}\times\frac{6.5\times10^{-7}\times1}{10^{-3}}$$

$$= 1.625 \text{ mm}$$

17. Acceleration of a uniform body of radius R and mass M and moment of inertia I rolls down (without slipping) on an inclined plane making an angle θ with the horizontal is given by

$$a = \frac{g \sin \theta}{1 + \frac{I}{MR^2}}$$

18.
$$F = -kx$$

For first case: x = 5 cm = 0.05 m

and
$$F = mg = 10 \text{ N}$$

∴ $10 = k \times 0.05$

or
$$k = \frac{10}{0.05} = 200$$

For second case: Consider simple harmonic motion,

$$y = A \sin \omega t$$

$$\frac{dy}{dt}\Big|_{max}$$
 = $A\omega\cos\omega t\Big|_{max}$ = $A\omega$

$$\therefore v_{\text{max}} = A\sqrt{\frac{k}{m}} = 0.1\sqrt{\frac{200}{2}}$$
$$= 0.1\sqrt{100} = 1\text{m/s}$$

19.
$$R = \frac{3 \times 6}{3 + 6} = 2K\Omega$$

$$2k\Omega \qquad R = 2k\Omega$$

voltage reading:

$$V = \frac{2}{2+2} \times 10 = 5 \text{ Volt}$$

20.
$$\frac{1}{f} = (\mu - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

$$\frac{1}{30} = (\mu - 1) \left[\frac{1}{10} - \frac{1}{-\infty} \right]$$

$$\frac{1}{36} = (\mu - 1)\frac{1}{10}$$

$$\mu = 1 + \frac{1}{3} = \frac{4}{3}$$

21.

$$N_A \sin 60^\circ = N_B \sin 30^\circ$$

$$N_{A} \cdot \frac{\sqrt{3}}{2} = N_{B} \frac{1}{2}$$

$$\sqrt{3}\;N_{_{\rm A}}=N_{_{\rm B}}$$

$$\sqrt{3} N_A = N_B$$

22.
$$I = 5 \times mR^2$$

= $5 \times 2000 \times (10)^2$
= 10^6 gm-cm^2

23.
$$y_1 = \sin\left(4t - 2x + \frac{\pi}{2}\right)$$

$$y_2 = \sin\left(4t - 2x + \frac{\pi}{4}\right)$$

Phase difference between two waves is,

$$\Delta \varphi = \left(4t - 2x + \frac{\pi}{4}\right) - \left(4t - 2x + \frac{\pi}{2}\right) = \frac{\pi}{4} - \frac{\pi}{2} = -\frac{\pi}{4}$$

24.
$$i = 5 + 5 \sin (100 \omega t)$$

average value

$$<$$
 i $>$ = 5 + 5 $<$ sin (100 ω t) $>$

In one time period $\langle \sin(100\omega t) \rangle = 0$

$$= 5A$$

25.
$$100 = n \times \frac{hc}{\lambda} = \frac{n \times 6.67 \times 10^{-34} \times 3 \times 10^8}{5000 \times 10^{-10}}$$

$$100 = \frac{n \times 20 \times 10^{-26}}{5 \times 10^{-7}}$$

$$25 \times 10^{19} = n$$

$$2.5 \times 10^{20} = n$$

26.
$$x = t^2 + 4t$$
 at $t = 0$ $v_1 = 4$ m/s $v = (2t + 4)$ $t = 2$ $v_2 = 8$ m/s

$$W = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2$$

$$= \frac{1}{2}(2) [(8)^2 - (4)^2]$$
$$= 64 - 16 = 48 \text{ J}$$

27.
$$\Delta \ell = \frac{FL}{AY}$$

$$\frac{\Delta \ell_{S}}{\Delta \ell_{B}} = \frac{F_{S}}{F_{B}} \times \frac{L_{S}}{L_{B}} \times \frac{A_{B}}{A_{S}} \times \frac{Y_{B}}{Y_{S}}$$
$$= \frac{3M}{2M} \times a \times \frac{1}{b^{2}} \times \frac{1}{c} = \frac{3a}{2b^{2}c}$$

28.
$$4m/s$$
 O $4m/s$

$$n' = n \left[\frac{v}{v - v_s} \right]$$

$$n'' = n \left[\frac{v}{v + v_s} \right]$$

$$\Delta n = n' - n''$$

$$= nv \left[\frac{1}{v - v_s} - \frac{1}{v + v_s} \right]$$

$$= nv \left[\frac{2v_s}{v^2 - v_s^2} \right]$$

$$\simeq \frac{2nv_s}{v} = \frac{2 \times 240 \times 4}{320}$$

$$=6$$

29. W = MB
$$(\cos\theta_1 - \cos\theta_2)$$

$$\sqrt{3} = MB (\cos 0^{\circ} - \cos 60^{\circ})$$

$$MB = 2\sqrt{3}$$

$$t = MB \sin \theta = 2\sqrt{3} \times \sin 60^\circ = 3J$$

30.
$$_{90}\text{Th}^{232} \longrightarrow {}_{82}\text{Pb}^{208} + 6_2\text{He}^4 + 4_{-1}\beta^0$$

No. of α - particle = 6

No. of
$$\beta$$
 - particle = 4

31.

32. In case of soap bubble,

W = T × 2 ×
$$\Delta$$
A
= 0.03 × 2× 40 × 10⁻⁴ = 2.4 × 10⁻⁴J.

33.
$$\frac{2kQ^2}{a} - \frac{kQq}{a} - \frac{2kQq}{a} > 0$$

$$\Rightarrow \frac{2kQ^2}{a} > \frac{3kQq}{a}$$
$$\Rightarrow 2Q > 3q$$

34.

$$B_{p} = \frac{\mu_{0}i}{4\pi a} (\cos \alpha_{1} - \cos \alpha_{2}) \odot$$

$$= \frac{\mu_{0}i}{4\pi a} (\cos 30^{\circ} - \cos 60^{\circ})$$

$$= \frac{\mu_{0}i}{8\pi a} (\sqrt{3} - 1) \odot$$

35.
$$R = R_0 \left(\frac{1}{2}\right)^{t/T_n}$$

$$322 = R_0 \left(\frac{1}{2}\right)^{4/T_n} \qquad \dots (1)$$

$$161 = R_0 \left(\frac{1}{2}\right)^{\frac{36}{T_n}} \qquad \dots (2)$$

$$eq^{n}(2) \div (1)$$

$$\left(\frac{1}{2}\right)^1 = \left(\frac{1}{2}\right)^{\left(\frac{36-4}{T_n}\right)}$$

$$1 = \frac{36-4}{T_n}$$

$$T_n = 32 \text{ min.}$$

36.
$$S_{n^{th}} = u + \frac{a}{2} (2n - 1)$$

$$55 = 0 + \frac{10}{2} (2n - 1)$$

$$11 = 2n - 1$$

$$\Rightarrow$$
 n = 6

so total distance fall by the particle

$$S = ut + \frac{1}{2} at^2$$

$$= 0 + \frac{1}{2} \times 10 \times (6)^2 = 180 \text{ m}$$

37.
$$3P = P + h\rho_w g \Rightarrow h\rho_w g = 2P$$

when water is drawn out, the pressure at bottom.

$$P^{l} = P + \left(h - \frac{h}{5}\right) \rho_{w} g = P + \frac{4}{5} h \rho_{w} g$$

$$P^1 = P + \frac{4}{5}(2P) = \frac{13}{5}P$$

39. B due to AB =
$$\frac{\mu_0 i}{4\pi R}$$
 sin 45°

$$=\frac{\mu_0 i}{4\pi R} \times \frac{1}{\sqrt{2}} \otimes$$

B due to BC =
$$\frac{\mu_0 i}{8R} \otimes$$

B due to semi infinite wire

$$=\frac{\mu_0 i}{4\pi R} \otimes$$

$$\Rightarrow \frac{\mu_0 i}{4\pi R} \left[\frac{1}{\sqrt{2}} + \frac{\pi}{2} + 1 \right]$$

40.
$$_{1}H^{1} + _{1}H^{3} \rightarrow {}_{1}H^{2} + _{1}H^{2} + Q$$

$$Q = \Delta m \times 931.5 \mu eV$$

$$\Delta m = [m(_1H^1) + m(_1H^3) - 2m(_1H^2)]$$

$$\Delta m = [4.023874 - 2 \times 2.014102] u$$

$$Q = \Delta m \times 931.5 \text{ MeV}$$

$$Q = -4.03 \text{ MeV}$$

$$mgsin\theta - f = ma$$

$$mgsin\theta - \mu mgcos\theta = ma$$

$$\theta = 60^{\circ}$$
 a = g/2

$$g(\sin 60^\circ - \mu \cos 60^\circ) = g/2$$

$$\frac{\sqrt{3}}{2} - \mu \left(\frac{1}{2}\right) = \frac{1}{2}$$

$$\sqrt{3}-1=\mu$$

42. An anisotropic material means a material which shows different properties along different directions. Consider a cuboid of length x, width y and height z, Its volume is V = xyz.

Taking log,

 $\log V = \log x + \log y + \log z$...(i) Suppose the body is heated through d θ °C; then differentiating equation (i),

$$\frac{1}{V}\frac{dV}{d\theta} = \frac{1}{x}\frac{dx}{d\theta} + \frac{1}{y}\frac{dy}{d\theta} + \frac{1}{z}\frac{dz}{d\theta}$$

But,
$$dV = V \gamma d\theta$$
$$dx = x\alpha_1 d\theta$$
$$dy = y\alpha_2 d\theta$$
$$dz = z\alpha_3 d\theta$$

Therefore, $\gamma = \alpha_1 + \alpha_2 + \alpha_3$

43.

$$E_{net} = E' - \sqrt{2} E$$

$$= \frac{2\sqrt{2}K \times 10^{-6}}{1} - \frac{\sqrt{2} \cdot \sqrt{2} \times 10^{-6} K}{2}$$

$$= 16.46 \times 10^{3} \text{ N/C}$$

- 46. He $\xrightarrow{\text{IP}(\downarrow)}$ Xe

 Max IP He

 Min IP Xe
- **47.** SF_6 = Octahedral all six S F bond length are same
- **48.** pH range for titration is 6 to 11.
- **49.** Addition takes place by following Markovnikov's rule.
- **50.** MgSO₄ . 7H₂O (s) \rightarrow MgSO₄(s) + 7H₂O(ℓ) 234 g 126 g 234 g MgSO₄. 7H₂O gives = 126 g H₂O 2.34 g MgSO₄. 7H₂O gives = 1.26 g H₂O
- **51.** Ionisation energy of $T\ell$ is higher than $A\ell$

53.
$$\frac{\mathbf{r}_1}{\mathbf{r}_2} = \sqrt{\frac{\mathbf{d}_2}{\mathbf{d}_1}} = \sqrt{\frac{16}{1}}$$

= 4 : 1

54.
$$CH_3-CH_2-CH_2-CH_2-CH_3-CH_3-CH_3-CH_3$$

$$CH_3 \qquad CH_3 \qquad CH_$$

- **55.** Fact
- **57.** Degree of Hydrolysis ∞ Covalent character order of covalent character

59. 3° alcohol reacts with HCl at room temperature

60.
$$E_{Cu|Cu^{+2}} = E_{Cu|Cu^{+2}}^{\circ} - \frac{0.0591}{2} log[Cu^{2+}]$$

$$0 = -0.34 - \frac{0.0591}{2} log \left[Cu^{2+} \right]$$

$$\log \text{Cu}^{2+} = \frac{-0.34 \times 2}{0.059} = -11.51$$

$$[Cu^{2+}] \simeq 3 \times 10^{-12} \text{ M}$$

- **62.** NO₂ is brown coloured gas while in dimer it colourless
- **63.** Geometrical isomers are diastereomers also
- **64.** Benzoylation of phenol is known as schotten Baumann reaction.

65. In bcc
$$\sqrt{3} a = 4r$$

$$\frac{\sqrt{3}}{2} a = 2r$$

$$\therefore 2r = \frac{\sqrt{3}}{2} \times 4 \times 10^{-10} = 3.46 \times 10^{-10} \text{ m}$$

- 66. EAN $Ni(CO)_4$ 36 $Ni(CO)_4$]²⁻ 34
- **68.** Canonical structure having all atoms with complete octet is more stable than having atom with incomplete octet

- **69.** Fehling sol. does not oxidise ketone and aromatic aldehyde.
- **70.** Rate const of a reaction does not depend. upon staichiometry of the reaction.
- 71. +ve charge on CMA $(\uparrow) = M - C$ bond strength (\downarrow) = C - O bond strength (\uparrow)
- 73. Allylic > $3^{\circ}(6H_{x}) > 2^{\circ}(4H_{x})$
- 74. $R-C-OH+NaHCO_3 \rightleftharpoons R-C-ONa+H_2^*CO_3 \rightleftharpoons ^*CO_3+H_2O_3$
- 75. x_3y_2 (aq) $\rightarrow 3x^{+2}$ (aq) $+ 2y^{-3}$ (aq) $i = 1 - \alpha + n\alpha$ $\Delta T_b = i \times K_b \times m$ $= 2 \times 0.52 \times 2$ = 2.08 $T_b = 373 + 2.08 = 375.08$
- 77. $K' = \sqrt{K} = \sqrt{49} = 7$
- **78.** Sucrose = Glucose + Fructose Disaccharides
- **79.** Benzyl halide involves formation of relatively more stable carbocation in SN¹ reaction.
- 81. $XeF_4 \Rightarrow Square planner$ $ICl_4^- \Rightarrow Square planner$ $PCl_5 \Rightarrow T.B.P$ $BrF_5 \Rightarrow Square Pyramidal$ $NO_2^+ \Rightarrow Linear$
- **83.** Buna-S as well as Neoprene both are synthetic rubber.
- **84.** Cannizzaro reaction is redox reaction does not involve C C bond formation.
- 85. $\text{NV} = (\text{NV})_{\text{Base}} (\text{NV})_{\text{acid}}$ $\text{N}(100+100) = 0.2 \times 100 - 0.1 \times 100$

$$N = \frac{10}{200}$$
 {Here $N = OH^{-}$ }

$$POH = -\log [OH^{-}]$$

POH =
$$-\log \frac{1}{20} = 1.3$$

$$pH = 14 - 1.3 = 12.7$$

- **86.** Lattic energy $\propto q_1q_2$
- 87. $N^{+5} \rightarrow N^{\circ}$ n = 5
- **89.** Fact.
- 90. $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(\ell)$ $q_p = \Delta H = -x \text{ kJ/g} \times 16 \text{ g/mol} = -16 \text{ x kJ/mol}$ $\Delta H = \Delta E + \Delta n_g \text{ RT}$

$$(-16x) = \Delta E + (-2) \times \frac{8.31}{1000} \times 300$$

$$\Delta E = -16x + 4.986$$

- **94.** NCERT XI Pg # 219
- 100. NCERT XIIth, Page no. 80 (E), 88 (H)
- **104.** NCERT XI Pg # 213
- **120.** NCERT XIIth, Page no. 182 (E), 198 (H)
- 130. NCERT XIIth, Page no. 88 (E), 96 (H)
- **132.** NCERT-I Page No. # 60
- **134.** NCERT XI Pg # 248,249,250
- **140.** NCERT XIIth, Page no. 71 (E), 79 (H)
- **142.** NCERT-I Page No. # 69, Figure 4.5
- **144.** NCERT XI Pg # 232
- **146.** Module, Page no. 186,188,189
- **150.** NCERT XIIth, Page no. 201, 202 (E), 218, 220(H)
- **156.** Module, Page no. 171
- **160.** NCERT XIIth, Page no. 91 (E), 99 (H)
- **161.** NCERT-XI Pg. # 34, fig 3.2 (b)
- **166.** NCERT, Page no. 127
- 170. NCERT XIIth, Page no. 201 (E), 219 (H)
- **173.** NCERT XI Pg # 197
- **176.** NCERT, Page no. 131
- 179. NCERT XIIth, Page no. 72 (E), 80 (H)
- **180.** NCERT XIIth, Page no. 74, 75 (E), 82, 83 (H)