Chapter 12

Entity-Relationship Modeling

Chapter 12 - Objectives

- How to use Entity-Relationship (ER) modeling in database design.
- Basic concepts associated with ER model.
- Diagrammatic technique for displaying ER model using Unified Modeling Language (UML).
- How to identify and resolve problems with ER models called connection traps.
- How to build an ER model from a requirements specification.

ER diagram of Branch user views of *DreamHome*

Concepts of the ER Model

- Entity types
- Relationship types
- Attributes

Entity Type

- Entity type
 - Group of objects with same properties, identified by enterprise as having an independent existence.
- Entity occurrence
 - Uniquely identifiable object of an entity type.

Examples of Entity Types

Physical existence

Staff Part

Property Supplier

Customer Product

Conceptual existence

Viewing Sale

Inspection Work experience

ER diagram of Staff and Branch entity types

Relationship Types

- Relationship type
 - Set of meaningful associations among entity types.
- Relationship occurrence
 - Uniquely identifiable association, which includes one occurrence from each participating entity type.

Semantic net of *Has* relationship type

ER diagram of Branch Has Staff relationship

Relationship Types

- Degree of a Relationship
 - Number of participating entities in relationship.
- Relationship of degree :
 - two is binary
 - three is ternary
 - four is quaternary.

Binary relationship called POwns

Ternary relationship called Registers

Quaternary relationship called Arranges

Relationship Types

- Recursive Relationship
 - Relationship type where same entity type participates more than once in different roles.
- Relationships may be given role names to indicate purpose that each participating entity type plays in a relationship.

Recursive relationship called Supervises with role names

Entities associated through two distinct relationships with role

names

- Attribute
 - Property of an entity or a relationship type.
- Attribute Domain
 - Set of allowable values for one or more attributes.

- Simple Attribute
 - Attribute composed of a single component with an independent existence.
- Composite Attribute
 - Attribute composed of multiple components, each with an independent existence.

- Single-valued Attribute
 - Attribute that holds a single value for each occurrence of an entity type.
- Multi-valued Attribute
 - Attribute that holds multiple values for each occurrence of an entity type.

- Derived Attribute
 - Attribute that represents a value that is derivable from value of a related attribute, or set of attributes, not necessarily in the same entity type.

Keys

Candidate Key

Minimal set of attributes that uniquely identifies each occurrence of an entity type.

Primary Key

Candidate key selected to uniquely identify each occurrence of an entity type.

Composite Key

A candidate key that consists of two or more attributes.

ER diagram of Staff and Branch entities and their attributes

Entity Type

- Strong Entity Type
 - Entity type that is not existence-dependent on some other entity type.
- Weak Entity Type
 - Entity type that is existence-dependent on some other entity type.

Strong entity type called Client and weak entity type called Preference

Relationship called Advertises with attributes

Structural Constraints

- Main type of constraint on relationships is called multiplicity.
- Multiplicity number (or range) of possible occurrences of an entity type that may relate to a single occurrence of an associated entity type through a particular relationship.
- Represents policies (called business rules) established by user or company.

Structural Constraints

- The most common degree for relationships is binary.
- Binary relationships are generally referred to as being:
 - **one-to-one** (1:1)
 - one-to-many (1:*)
 - many-to-many (*:*)

Semantic net of Staff Manages Branch relationship type

Multiplicity of Staff Manages Branch (1:1) relationship

Semantic net of Staff Oversees PropertyForRent relationship type

Multiplicity of Staff Oversees PropertyForRent (1:*) relationship type

Semantic net of Newspaper Advertises PropertyForRent relationship type

Multiplicity of Newspaper Advertises PropertyForRent (*:*) relationship

Structural Constraints

- Multiplicity for Complex Relationships
 - Number (or range) of possible occurrences of an entity type in an *n*-ary relationship when other (*n*-1) values are fixed.

Semantic net of ternary Registers relationship with values for Staff and Branch entities fixed

Multiplicity of ternary Registers relationship

Summary of multiplicity constraints

Alternative ways to represent multiplicity constraints	Meaning
01 11 (or just 1) 0* (or just *) 1* 510 0, 3, 6–8	Zero or one entity occurrence Exactly one entity occurrence Zero or many entity occurrences One or many entity occurrences Minimum of 5 up to a maximum of 10 entity occurrences Zero or three or six, seven, or eight entity occurrences

Structural Constraints

Multiplicity is made up of two types of restrictions on relationships: cardinality and participation.

Structural Constraints

Cardinality

Describes maximum number of possible relationship occurrences for an entity participating in a given relationship type.

Participation

Determines whether all or only some entity occurrences participate in a relationship.

Multiplicity as cardinality and participation constraints

Problems with ER Models

- Problems may arise when designing a conceptual data model called connection traps.
- Often due to a misinterpretation of the meaning of certain relationships.
- Two main types of connection traps are called fan traps and chasm traps.

Problems with ER Models

Fan Trap

Where a model represents a relationship between entity types, but pathway between certain entity occurrences is ambiguous.

Chasm Trap

Where a model suggests the existence of a relationship between entity types, but pathway does not exist between certain entity occurrences.

An Example of a Fan Trap

Semantic Net of ER Model with Fan Trap

At which branch office does staff number SG37 work?

Restructuring ER model to remove Fan Trap

Semantic Net of Restructured ER Model with Fan Trap Removed

SG37 works at branch B003.

An Example of a Chasm Trap

Semantic Net of ER Model with Chasm Trap

At which branch office is property PA14 available?

ER Model restructured to remove Chasm Trap

Semantic Net of Restructured ER Model with Chasm Trap

Removed

