Анализ и обучение моделей машинного обучения

Дата создания: 2025-05-04 19:30:06

Содержание

- 1. Обзор проекта
- 2. Анализ данных
- 3. Предобработка данных
- 4. Обучение моделей
- 5. Метрики и оценка
- 6. Результаты
- 7. Выводы

1. Обзор проекта

Цель проекта:

- Разработка системы машинного обучения для классификации данных
- Оптимизация процесса обучения моделей
- Обеспечение интерпретируемости результатов

2. Анализ данных

Используемые данные:

- Промышленные данные о производстве продукции
- Временные ряды параметров производства
- Категориальные и числовые признаки
- Целевая переменная: качество продукции (0 брак, 1 годная продукция)

Распределение классов в данных

Рисунок 1. Распределение классов в данных

Рисунок 2. Матрица корреляций признаков

Рисунок 3. Важность признаков

3. Предобработка данных

Этапы предобработки:

- Очистка данных от пропущенных значений
- Кодирование категориальных признаков (One-Hot Encoding)
- Масштабирование числовых признаков (StandardScaler)
- Балансировка классов:
- SMOTE
- ADASYN
- RandomUnderSampler

4. Обучение моделей

Сравнение метрик моделей:

Рисунок 4. Сравнение метрик качества моделей

Рисунок 5. ROC-кривые моделей

5. Результаты

Рисунок 6. Матрица ошибок лучшей модели

Рисунок 7. Время обучения моделей

6. Выводы

Основные результаты:

• Лучшая модель: Extra Trees

• Метод балансировки: ADASYN

• ROC AUC: 0.979 • F1-score: 0.995

• Precision: 0.995

• Recall: 0.995