

Normal sampling model

Roger Federer

Serving in tennis

- Roger seems very "efficient" in his serving style
- Often wins service games quickly
- How long, on average, does it take Roger to serve?

Sampling model for time-to-serve

- Roger's time-to-serve measurements are normally distributed
- Mean M and standard deviation s (measured in seconds)
- Assume we know $\mathbf{s} = 4$ seconds

Normal(M, s) model for time-to-serve

Prior beliefs about M

- Discrete prior (e.g. 15, 16, 17, ..., 22 seconds)
- No reason to prefer any of these values
- Assign M a uniform prior on these values

Graph of the prior

```
> library(TeachBayes)
> bayes_df <- data.frame(M = 15:22, Prior = rep(1/8, 8))
> prob_plot(bayes_df) + ylim(0, 0.25)
```


Deciding between 8 normal models

```
> library(TeachBayes)
> Models <- list(c(15, 4), c(16, 4), c(17, 4), c(18, 4),
                 c(19, 4), c(20, 4), c(21, 4), c(22, 4))
> many_normal_plots(Models)
```


Observe data

- Record the time-to-serve for 20 of Roger's serves
- Compute the mean value: $\bar{y} = 17.2$
- Associated standard error: $se = \frac{S}{\sqrt{n}} = \frac{4}{\sqrt{20}} = 0.89$

Note: standard error is another way to say standard deviation of the sample mean

Likelihood function

- Likelihood is sampling density of \bar{y} Normal(mean = M, sd = se)
- Substitute known values of \bar{y} and standard deviation
- View as function of M

Use bayesian_crank() to compute posterior

```
> library(TeachBayes)
> bayes_df <- bayesian_crank(bayes_df)</pre>
> round(bayes_df, 3)
   M Prior Likelihood Product Posterior
1 15 0.125
                0.021
                        0.003
                                   0.021
2 16 0.125 0.181
                        0.023
                                   0.181
3 17 0.125
                0.437
                       0.055
                                   0.437
                       0.037
                                          Posterior values sum to 1
4 18 0.125
                0.299
                                   0.299
5 19 0.125
                0.058
                                   0.058
                        0.007
6 20 0.125
                0.003
                        0.000
                                   0.003
7 21 0.125
                0.000
                        0.000
                                   0.000
8 22 0.125
                0.000
                        0.000
                                   0.000
```


Plot prior and posterior of M

Let's practice!

Bayes with a continuous prior

Learning about time-to-serve

- Interested in how long Roger Federer takes to serve
- Assume times are normally distributed with mean M and standard deviation s (unit = seconds)
- Focus on the mean time-to-serve M

Normal sampling model

Prior beliefs about M

- Previously, assumed M was discrete
- Now, assume M is continuous
- Represent prior by a Normal(Mo, So) curve
 - Mo best guess at M
 - So standard deviation indicating how sure you are about your guess

Joe's prior

- Joe: "I believe strongly M is close to 18 seconds."
- He uses $M_o = 18$ and a small value for S_o

Sue's prior

- Sue: "Maybe M is close to 18 seconds, but I really don't know much about serving times in tennis."
- Uses $M_0 = 18$ but chooses a large value for S_0

Normal prior by 2 quantiles

- Remember a quantile is a value of M such that the chance of being smaller than the value is a given probability
- Think about 2 quantiles of M:
 - 0.50 quantile for M is 18 seconds
 - 0.90 quantile for M is 20 seconds

normal.select()

My prior for M

- > library(TeachBayes)
- > normal_draw(c(18, 1.56))

Any prior is an approximation to my opinion

- Prior is approximate
- Check if prior makes sense:
 - normal_area()
 - normal_percentile()
 - normal_interval()

Find 0.25 quantile of my prior

- > library(TeachBayes)
- > normal_quantile(0.25, c(18, 1.56))

Let's practice!

Updating the normal prior

Learning about time-to-serve

- Interested in how long Roger Federer takes to serve
- My prior for M is Normal(18, 1.56) (unit = seconds)

Observe data

- Record the time-to-serve for 20 of Roger's serves
 - Compute the mean value: $\bar{y} = 17.2$
 - Associated standard error: $se=\frac{S}{\sqrt{n}}=\frac{4}{\sqrt{20}}=0.89$
 - > # Store likelihood in bayes_df:
 - > bayes_df\$Likelihood <- dnorm(17.2, mean = bayes_df\$M, sd = 0.89)

Posterior of M?

- Posterior = Prior x Likelihood
- Posterior = Normal(M, 18, 1.56) x Normal(17.2, M, 0.89)
- Posterior curve turns out to be Normal!

Finding posterior distribution

$$Precision = \frac{1}{SD^2}$$
 Useful for combining information in the prior and the data

Source	Mean	Precision	Stand_Dev
Prior			
Data			
Posterior			

Step 1: Input known information

Source	Mean	Precision	Stand_Dev
Prior	18		1.56
Data	17.2		0.89
Posterior			

Step 2: Compute precisions

> Precisions <- 1 / c(1.56, 0.89)^2</pre>

Source	Mean	Precision	Stand_Dev
Prior	18	0.41	1.56
Data	17.2	1.26	0.89
Posterior			

Step 3: Compute posterior precision and SD

```
> Post_Precision <- sum(Precisions)</pre>
```

> Post_SD <- 1 / sqrt(Post_Precision)</pre>

Source	Mean	Precision	Stand_Dev
Prior	18	0.41	1.56
Data	17.2	1.26	0.89
Posterior		1.67	0.77

Step 4: Compute posterior mean

> Post_mean <- weighted.mean(x = c(18, 17.2), w = c(0.41, 1.26))

Source	Mean	Precision	Stand_Dev
Prior	18	0.41	1.56
Data	17.2	1.26	0.89
Posterior	17.4	1.67	0.77

Use normal_update() function

- Input prior vector (mean, sd) and data vector (mean, sd)
- Outputs posterior mean and standard deviation

Compare prior and posterior curves for M

- > library(TeachBayes)
- > many_normal_plots(list(c(18, 1.56), c(17.4, 0.77)))

Testing problem

- Someone claims that Roger takes on average *at least* 19 seconds to serve
- Is this reasonable?

Classical approach

Test the hypothesis $H: M \ge 19 \ seconds$

Test statistic: $Z = \frac{\bar{y}-19}{se}$

```
> # Compute Z score
> (z < -(17.2 - 19) / 0.89)
[1] -2.022472
> # Compute p-value
> (p_value <- pnorm(z))</pre>
[1] 0.02156381 < 0.05 so reject H<sub>o</sub>
```


Bayesian approach

Current belief is represented by posterior for M: Normal(17.4, 0.77)

```
> # Compute Prob(M >= 19)
> 1 - pnorm(19, 17.4, 0.77)
[1] 0.01885827 This is small, so conclude this claim is unlikely to be true
```


Let's practice!

Simulation

Learning about time-to-serve

- Interested in mean time M that Roger Federer takes to serve
- My posterior for M (mean serving time) is Normal(17.4, 0.77)

Posterior simulation

- One way to learn about M is by simulation
- Take a large sample from the posterior density
- Summarize the sample of simulated draws

```
> M_{sim} <- rnorm(1000, mean = 17.4, sd = 0.77)
```


Inference: A probability interval

- Suppose I want a 80% probability interval for M
- Take 0.10 and 0.90 sample quantiles of M_sim

```
> (Q <- round(quantile(M_sim, c(0.10, 0.90)), 1))
10% 90%
16.4 18.4 So Prob(16.4 < M < 18.4) = 0.80
```


Prediction

- Instead of learning about Roger's mean time-to-serve
 M, suppose I want to predict the time y that he takes on his next serve
- Interested in the **predictive density** of y, the distribution of times-to-serve **in the future**

Simulating predictive distribution

- Suppose we knew Roger's mean time-to-serve was exactly M = 17 seconds
- Then we could obtain 1000 (future) times-to-serve y by simulating from the sampling N(17, 4) density

```
> y_sim <- rnorm(1000, mean = 17, sd = 4)
```

But we don't know the exact value of M

Add uncertainty about M

- We don't know the exact value of M
- But my current beliefs about M are summarized with the N(17.4, 0.77) posterior
- Use simulations from the posterior as a first step to obtain simulations of future time-to-serve

Idea

- To simulate one value from the predictive distribution:
 - Simulate a value M from N(17.4, 0.77) posterior
 - Simulate a value y from sampling density N(M, 4.0)

Here's the first simulated M (and normal curve):

Simulating another M:

Five simulated M's:

For each Normal(M, S) curve, simulate y:

1000 values from predictive density

```
> # Simulate from posterior of M
> M_{sim} < - rnorm(1000, mean = 17.4, sd = 0.77)
> # Simulate from predictive density
                                                 Summarize y_sim to predict future
> y_{sim} <- rnorm(1000, mean = M_{sim}, sd = 4)
                                                 time-to-serve
```


80% predictive interval

```
> (Q <- round(quantile(y_sim, c(0.10, 0.90)), 1))</pre>
10% 90%
12.5 22.9
```


Compare two 80% intervals

The predictive interval for y is much wider than the probability interval for M:

- Why? The prediction of y has two sources of uncertainty:
 - Don't know M (inference)
 - Don't know y given M (sampling)

Let's practice!