対称行列のランクと固有値

n 次対称行列 A の列の任意の線形結合

ref: 線形代数セミナー p19

$$c_1 \boldsymbol{a}_1 + \cdots + c_n \boldsymbol{a}_n = \begin{pmatrix} \boldsymbol{a}_1 & \cdots & \boldsymbol{a}_n \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = A\boldsymbol{c}$$

を考える

A の n 個の固有値のうち、0 でないものの個数を r とすれば、A のスペクトル分解の式において、 $\lambda_{r+1},\ldots,\lambda_n=0$ とおいて、

$$A\mathbf{c} = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^{\mathsf{T}} \mathbf{c} + \dots + \lambda_r \mathbf{u}_r \mathbf{u}_r^{\mathsf{T}} \mathbf{c}$$
$$= \lambda_1 (\mathbf{u}_1^{\mathsf{T}} \mathbf{c}) \mathbf{u}_1 + \dots + \lambda_r (\mathbf{u}_r^{\mathsf{T}} \mathbf{c}) \mathbf{u}_r$$

すなわち、A の列の任意の線形結合は、互いに直交する $oldsymbol{u}_1,\dots,oldsymbol{u}_r$ の線形結合で書ける

互いに直交するベクトルは線型独立であることから、

- $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n$ の張る部分空間(線形結合の集合)の次元は r である
- n 本の列のうち、r 本しか線型独立ではない

ということがいえる

行列 A の n 本の列のうち、線型独立なものの個数を A のランクあるいは階数というので、

行列 A のランク r は、非零の固有値の個数に等しい

A は対称行列であるから、行についても同じことがいえる

スペクトル分解による対称行列の対角化

スペクトル分解の式を用いることで、対称行列の対角化について簡潔に議 論できるようになる

ref: 線形代数セミナー p19~20

対称行列 A のスペクトル分解の式

$$A = \lambda_1 \boldsymbol{u}_1 \boldsymbol{u}_1^\top + \dots + \lambda_n \boldsymbol{u}_n \boldsymbol{u}_n^\top$$

は、次のように書き換えられる

$$egin{aligned} A &= egin{pmatrix} \lambda_1 oldsymbol{u}_1 & \cdots & \lambda_n oldsymbol{u}_n \end{pmatrix} egin{pmatrix} oldsymbol{u}_1^{ op} \ oldsymbol{u}_n^{ op} \end{pmatrix} \ &= egin{pmatrix} oldsymbol{u}_1 & \cdots & oldsymbol{u}_n \end{pmatrix} egin{pmatrix} oldsymbol{u}_1^{ op} \ \vdots \ oldsymbol{u}_n^{ op} \end{pmatrix} \ &= oldsymbol{U}^{ op} \ & \ddots & oldsymbol{\lambda}_n \end{pmatrix} oldsymbol{U}^{ op} \end{aligned}$$

ここで、

$$U = \begin{pmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_n \end{pmatrix}$$

は、列が正規直交系をなすことから直交行列である

そして、U が直交行列であれば、その転置 U^{T} も直交行列である それゆえ、直交行列の行も正規直交系をなす

A の式の両辺に左から U^{T} 、右から U をかけると、

$$U^{\top}AU = U^{\top}U \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} U^{\top}U$$

直交行列の定義 $U^{\mathsf{T}}U = E$ より、

$$U^{\top}AU = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

として、対称行列 A は、直交行列 U によって対角化できることがわかる