5. Second order partial differential equations in two variables

The general second order partial differential equations in two variables is of the form

$$F(x, y, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial^2 u}{\partial x^2}, \frac{\partial^2 u}{\partial x \partial y}, \frac{\partial^2 u}{\partial y^2}) = 0.$$

The equation is *quasi-linear* if it is linear in the highest order derivatives (second order), that is if it is of the form

$$a(x, y, u, u_x, u_y)u_{xx} + 2b(x, y, u, u_x, u_y)u_{xy} + c(x, y, u, u_x, u_y)u_{yy} = d(x, y, u, u_x, u_y)$$

We say that the equation is *semi-linear* if the coefficients a, b, c are independent of u. That is if it takes the form

$$a(x, y) u_{xx} + 2b(x, y) u_{xy} + c(x, y) u_{yy} = d(x, y, u, u_x, u_y)$$

Finally, if the equation is semi-linear and d is a *linear* function of u, u_x and u_y , we say that the equation is *linear*. That is, when F is linear in u and all its derivatives.

We will consider the semi-linear equation above and attempt a change of variable to obtain a more convenient form for the equation.

Let $\square = \square(x, y)$, $\square = \square(x, y)$ be an invertible transformation of coordinates. That is,

$$\frac{\partial(\square,\square)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial\square}{\partial x} & \frac{\partial\square}{\partial y} \\ \frac{\partial\square}{\partial x} & \frac{\partial\square}{\partial y} \end{vmatrix} \neq 0.$$

By the chain rule

$$u_x = u_{\square}\square_x + u_{\square}\square_x, \ u_y = u_{\square}\square_y + u_{\square}\square_y$$

$$u_{xx} = u_{\square}\square_{xx} + \square_{x}\left(u_{\square}\square_{x} + u_{\square}\square_{x}\right) + u_{\square}\square_{xx} + \square_{x}\left(u_{\square}\square_{x} + u_{\square}\square_{x}\right)$$

$$= u_{\square}\square_{x}^{2} + 2u_{\square}\square_{x}\square_{x} + u_{\square}\square_{x}^{2} + \text{ first order derivatives of } u$$

Similarly,

$$u_{yy} = u_{\square\square\square_y}^2 + 2u_{\square\square\square_y\square_y} + u_{\square\square\square_y}^2 + \text{ first order derivatives of } u$$

$$u_{xy} = u_{\square\square\square_x\square_y} + u_{\square\square}(\square_x\square_y + \square_y\square_x) + u_{\square\square\square_x\square_y} + \text{ first order derivatives of } u$$

Substituting into the partial differential equation we obtain,

$$A(\boxed{\square})u_{\boxed{\square}} + 2B(\boxed{\square})u_{\boxed{\square}} + C(\boxed{\square})u_{\boxed{\square}} = D(\boxed{\square}, \boxed{\square}, u, u_{\boxed{\square}}, u_{\boxed{\square}})$$

where

$$A([], []) = a[]_x^2 + 2b[]_x[]_y + c[]_y^2$$

$$B([], []) = a[]_x[]_x + b([]_x[]_y + []_x[]_y) + c[]_y[]_y$$

$$C([], []) = a[]_x^2 + 2b[]_x[]_y + c[]_y^2.$$

It easily follows that

$$B^{2} - AC = (b^{2} - ac) \begin{bmatrix} \frac{\partial(\Box,\Box)}{\partial(x,y)} \end{bmatrix}^{2}.$$

Therefore $B^2 - AC$ has the same sign as $b^2 - ac$. We will now choose the new coordinates $\Box = \Box(x, y)$, $\Box = \Box(x, y)$ to simplify the partial differential equation.

 $\Box(x,y) = \text{constant}$, $\Box(x,y) = \text{constant}$ defines two families of curves in \mathbf{R}^2 . On a member of the family $\Box(x,y) = \text{constant}$, we have that

$$\frac{d\square}{dx} = \square_x + \square_y \, y[=0.$$

Therefore substituting in the expression for $A(\square, \square)$ we obtain

$$A(\square,\square) = a \square_y^2 y \square^2 - 2b \square_y^2 y [+c\square_y^2]$$
$$= \square_y^2 [a y \square^2 - 2b y [+c].$$

We choose the two families of curves given by the two families of solutions of the ordinary differential equation

$$a y = -2b y + c = 0.$$

This nonlinear ordinary differential equation is called *the characteristic equation* of the partial differential equation and provided that $a \neq 0$, $b^2 - ac > 0$ it can be written as

$$y[= \frac{b \pm \sqrt{b^2 \square ac}}{a}$$

For this choice of coordinates A([], []) = 0 and similarly it can be shown that C([], []) = 0 also. The partial differential equation becomes

$$2 B(\square, \square) u_{\square} = D(\square, \square, u, u_{\square}, u_{\square})$$

where it is easy to show that $B(\square \square) \neq 0$. Finally, we can write the partial differential equation in the *normal form*

$$u_{\square} = D(\square, \square, u, u_{\square}, u_{\square})$$

The two families of curves $\Box(x, y) = \text{constant}$, $\Box(x, y) = \text{constant}$ obtained as solutions of the characteristic equation are called *characteristics* and the semi-linear partial differential equation is called *hyperbolic* if $b^2 - ac > 0$ whence it has two families of characteristics and a normal form as given above.

If $b^2 - ac < 0$, then the characteristic equation has *complex* solutions and there are no real characteristics. The functions $\Box(x,y)$, $\Box(x,y)$ are now complex conjugates. A change of variable to the *real* coordinates

results in the partial differential equation where the *mixed* derivative term vanishes,

$$u_{\square} + u_{\square} = D(\square, \square, u, u_{\square}, u_{\square}).$$

In this case the semi-linear partial differential equation is called *elliptic* if $b^2 - ac < 0$. Notice that the left hand side of the normal form is the Laplacian. Thus Laplaces equation is a special case of an elliptic equation (with D = 0).

If $b^2 - ac = 0$, the characteristic equation $y[=\frac{b}{a}]$ has only one family of solutions $\Box(x, y) = \text{constant}$. We make the change of variable

$$\Box = x$$
, $\Box = \Box(x, y)$.

Then

$$A(\square \square) = a$$

$$B(\square \square) = a\square_x + b\square_y$$

$$C(\square \square) = a\square_x^2 + 2b\square_x\square_y + c\square_y^2 = \frac{(a\square_x + b\square_y)^2 \square (b^2 \square ac)\square_y^2}{a} = \frac{B(\square,\square)^2}{a}$$

Also since $\Box(x, y) = \text{constant}$,

$$0 = \prod_{x} + \prod_{y} y [= \prod_{x} + \prod_{y} \frac{b}{a} = \frac{a \prod_{x} + b \prod_{y}}{a} = \frac{B(\prod, \prod)}{a}$$

Therefore B([], []) = 0, C([], []) = 0, $A([], []) \neq 0$ and the normal form in the case $b^2 - ac = 0$ is

$$A(\square,\square) u_{\square} = D(\square,\square,u,u_{\square},u_{\square})$$

or finally

$$u_{\square} = D(\square, \square, u, u_{\square}, u_{\square})$$

The partial differential equation is called *parabolic* in the case $b^2 - a = 0$. An example of a parabolic partial differential equation is the equation of *heat conduction*

$$\frac{\partial u}{\partial t} - \prod \frac{\partial^2 u}{\partial x^2} = 0$$
 where $u = u(x, t)$.

Example 1. Classify the following linear second order partial differential equation and find its general solution .

$$xyu_{xx} + x^2 u_{xy} - yu_x = 0.$$

In this example $b^2 - ac = \frac{\prod_{x}^2 \prod_{x=0}^2}{\prod_{x=0}^2} \ge 0$ the partial differential equation is hyperbolic provided $x \ne 0$, and parabolic for x = 0.

For $x \neq 0$ the characteristic equations are

$$y[= \frac{b \pm \sqrt{b^2 \, \Box \, ac}}{a} = \frac{\frac{x^2}{2} \pm \frac{x^2}{2}}{xy} = 0 \text{ or } \frac{x}{y}$$

If y = 0, y = constant.

If $y = \frac{x}{y}$, $x^2 - y^2 = \text{constant}$. Therefore two families of characteristics are

$$\Pi = x^2 - y^2$$
, $\Pi = y$.

Using the chain rule a number of times we calculate the partial derivatives

$$\begin{aligned} u_x &= u_{\square} \ 2x + u_{\square} \ 0 = 2x u_{\square} \\ \\ u_{xx} &= 2u_{\square} + 2x (u_{\square\square} \ 2x + u_{\square\square} \ 0) = 2u_{\square} + 4x^2 \ u_{\square\square} \\ \\ u_{xy} &= 2x \Big(u_{\square\square} (\square 2y) \ + \ u_{\square\square} \ 1 \Big) = - 4xy u_{\square\square} + 2x u_{\square\square} \end{aligned}.$$

Substituting into the partial differential equation we obtain the normal form

$$u_{\Pi\Pi} = 0 \text{ (provided } x \neq 0).$$

Integrating this equation with respect to □

$$u_{\prod} = f(\underline{\Gamma}),$$

where f is an arbitrary function of one real variable. Integrating again with respect to \square

$$u([], []) = \prod f([])d[] + G([]) = F([]) + G([])$$

where F, G are arbitrary functions of one real variable. Reverting to the original coordinates we find the general solution

$$u(x, y) = F(x^2 - y^2) + G(y)$$

Example 2. Classify, reduce to normal form and obtain the general solution of the partial differential equation

$$x^2 u_{xx} + 2xyu_{xy} + y^2 u_{yy} = 4x^2$$

For this equation $b^2 - ac = (xy)^2 - x^2y^2 = 0$ [] the equation is parabolic everywhere in the plane (x, y). The characteristic equation is

$$y' = \frac{b}{a} = \frac{xy}{x^2} = \frac{y}{x}$$
.

Therefore there is one family of characteristics $\frac{y}{x}$ = constant.

Let $\square = x$ and $\square = \frac{y}{x}$. Then using the chain rule,

$$u_{x} = u_{\square} + u_{\square} + u_{\square} + u_{\square} = u_{\square} - \frac{y}{x^{2}} u_{\square}$$

$$u_{y} = u_{\square} + u_{\square} + \frac{1}{x} = \frac{1}{x} u_{\square}$$

$$u_{xx} = u_{\square} + u_{\square} + \frac{2y}{x^{2}} + \frac{2y}{x^{3}} u_{\square} - \frac{y}{x^{2}} + \frac{2y}{x^{3}} u_{\square}$$

$$u_{yy} = \frac{1}{x} u_{\square} + \frac{y^{2}}{x^{4}} u_{\square} + \frac{2y}{x^{3}} u_{\square}$$

$$u_{yy} = -\frac{1}{x^{2}} u_{\square} + \frac{1}{x} u_{\square} + \frac{1}{x^{2}} u_{\square} + \frac{y}{x^{2}} u_{\square}$$

$$u_{yx} = -\frac{1}{x^{2}} u_{\square} + \frac{1}{x} u_{\square} + \frac{1}{x^{2}} u_{\square} + \frac{1}{x^{2}} u_{\square}$$

$$u_{yz} = -\frac{1}{x^{2}} u_{\square} + \frac{1}{x^{2}} u_{\square} - \frac{1}{x^{2}} u_{\square}$$

Substituting into the partial differential equation we obtain the normal form

$$u_{\prod} = 4$$
.

Integrating with respect to □

$$u_{\prod} = 4 \prod + f(\prod)$$

where f is an arbitrary function of a real variable. Integrating again with respect to \prod

$$u(\bigcap_{i}\bigcap_{j})=2\bigcap_{i}^{2}+\bigcap_{j}(\bigcap_{i})+g(\bigcap_{j}),$$

Therefore the general solution is given by

$$u(x, y) = 2x^2 + xf\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right)$$

where f, g are arbitrary functions of a real variable.