

Dpto. Teoría de la Señal, Telemática y Comunicaciones

E.T.S. Ingeniería Informática y de Telecomunicación C/ Periodista Daniel Saucedo Aranda, S/N 18071- Granada

FUNDAMENTOS DE REDES

Febrero de 2019 - Examen de teoría

Apellidos y nombre:	
	Grupo:

TEORÍA

NOTA: Cada 2 respuestas incorrectas resta 1 respuesta correcta del test. Las preguntas tipo test se evalúan con 3 puntos sobre 6 del total.

- 1. La capa o nivel de red de OSI
 - a. Involucra entidades salto a salto
 - b. Ofrece el servicio de control de flujo salto a salto
 - c. Involucra entidades extremo a extremo
- 2. En el modelo TCP/IP
 - a. Se exige la misma red subyacente en todos los saltos
 - b. No hay capa de sesión
 - c. No se necesita red subyacente
- 3. En TCP/IP
 - a. La capa de transporte se utiliza en hosts
 - b. La capa de transporte se utiliza en hosts y routers
 - c. La capa de transporte se utiliza en routers
- 4. Los retardos de transmisión salto a salto
 - a. Dependen de la distancia
 - b. Dependen de la distancia y del tamaño del paquete
 - c. Dependen del tamaño del paquete y de la velocidad en bits por segundo
- 5. Un servicio orientado a conexión
 - a. Implica menos tiempo que un servicio no orientado a conexión
 - b. Exige simultaneidad temporal de las entidades
 - c. Ninguna de las anteriores
- 6. Un operador Tier-3 se caracteriza por
 - a. Poder alcanzar cualquier IP sólo con acuerdos de peering
 - Obtener una contraprestación económica por cursar tráfico en sus infraestructuras mediante acuerdos de peering
 - c. Poder alcanzar cualquier IP sólo con acuerdos de tránsito
- 7. Para que el mensaje de respuesta de un servidor llegue al cliente
 - a. Necesita conocer el puerto y la dirección IP del cliente de antemano
 - b. Necesita conocer la IP de antemano, el puerto viene en el mensaje de solicitud
 - c. Puerto e IP vienen en el mensaje de solicitud

TIPO A

- 8. El modelo cliente-servidor
 - a. Implica que el cliente esté activo y escuchando
 - b. Implica que el servidor esté activo y escuchando
 - c. Ninguna de las anteriores
- 9. HTTP persistente
 - a. Mantiene la conexión TCP para descargar varios objetos
 - b. Mantiene una página web abierta persistentemente
 - c. Es utilizado sólo para transmisión multimedia, como Youtube
- 10. Se utiliza TCP principalmente
 - a. Para servicios sin tolerancia a delay
 - b. Para servicios sin tolerancia a jitter
 - c. Para servicios sin tolerancia a pérdida de datos
- 11. Elegir el servicio menos tolerante a delay
 - a. Vídeo almacenado
 - b. Vídeo interactivo
 - c. Correo electrónico
- 12. EL parámetro If-Modified-Since, utilizado para el uso de caché web, aparece
 - a. En el mensaje de solicitud
 - b. En el mensaje de respuesta
 - c. En ambos
- 13. HTTP
- a. Es un protocolo state-less
- b. Es un protocolo state-full
- c. La versión v1.0 es state-less y v1.1 es state-full
- 14. SMTP
- a. No es orientado a conexión, aunque va sobre TCP
- b. Es un servicio orientado a conexión
- c. No es orientado a conexión, y va sobre UDP
- 15. POP
- a. Es un servicio orientado a conexión
- b. No es orientado a conexión, aunque va sobre TCP
- c. No es orientado a conexión, y va sobre UDP
- 16. Si entre A y B se envía $K^{+B}(M) \mid K^{-A}(H(M))$
 - a. No se garantiza confidencialidad, pero si integridad
 - b. Se garantiza confidencialidad e integridad
 - c. Ninguna de las anteriores
- 17. El protocolo IPSEC
 - a. Es un protocolo de configuración
 - b. Es un protocolo seguro que opera en el nivel de red
 - c. Es un protocolo seguro que opera sobre UDP o TCP
- 18. La cabecera TCP
 - a. Cambia salto a salto en los routers hasta llegar al destino
 - b. Incluye información de fragmentación
 - c. Incluye información de puertos origen y destino
- 19. UDP
- a. Es orientado a conexión y full-duplex
- b. Permite detección de errores
- c. Las dos anteriores

TIPO A

- 20. En una conexión TCP Tahoe
 - a. Los temporizadores son variables, y dependen del tiempo de confirmación de paquetes anteriores
 - b. Los temporizadores son variables, y dependen del parámetro WINDOW
 - c. Los temporizadores son fijos
- 21. En una conexión TCP Tahoe, si llega un segmento desordenado generando discontinuidad
 - a. Se envía un ACK con el último byte de este segmento recibido
 - b. Se envía un ACK con el siguiente byte a partir del segmento recibido
 - c. Se envía un ACK con el primer byte que se esperaba, que es previo a este segmento recibido
- 22. La cabecera de la red subyacente (ej. Ethernet)
 - a. Incluye información que identifica los puertos origen y destino
 - b. Cambia salto a salto en los routers hasta llegar al destino
 - c. Incluye información que identifica la IP origen y destino
- 23. En el control de flujo en TCP Tahoe
 - a. Una confirmación ACK siempre confirma al último segmento enviado
 - b. Una confirmación ACK incluye el siguiente byte que espera
 - c. Una confirmación ACK puede confirmar a varios segmentos enviados no consecutivos
- 24. La cabecera del Protocolo IPv4:
 - a. Incluye un checksum.
 - b. Tiene, al menos, 20 Bytes.
 - c. Las dos son ciertas.
- 25. ¿Qué técnica de conmutación reserva recursos?
 - a. circuitos
 - b. circuitos virtuales
 - c. datagramas
- 26. En una tabla de encaminamiento IP, una misma dirección de destino puede hacer matching en dos entradas
 - a. Nunca
 - b. Sí, y se re-envía el datagrama según las dos entradas
 - c. Sí, y se resuelve la colisión con la máscara más restrictiva
- 27. En una tabla de encaminamiento IP, una misma dirección de destino puede hacer matching en dos entradas con misma máscara
 - a. Nunca
 - b. Sí, y se re-envía el datagrama según las dos entradas
 - c. Sí, y se resuelve la colisión a partir del orden
- 28. La dirección de subred
 - a. Nunca puede tener 0's en la parte de dirección de host
 - b. Nunca puede tener 1's en la parte de dirección de host
 - c. Siempre acaba en 0 en el último octeto
- 29. El paquete de ICMP
 - a. Tiene una cabecera de 20 bytes
 - b. Tiene una cabecera de 4 bytes más, en muchas ocasiones, una copia del paquete que ocasionó un problema
 - c. Tiene sólo una cabecera de 4 bytes
- 30. La cabecera del paquete ARP
 - a. Es de tamaño variable, dependiendo de los protocolos que considera
 - b. No tiene carga útil, sólo cabeceras
 - c. Ambos son ciertos

TIPO B

- 1. El paquete de ICMP
 - a. Tiene una cabecera de 20 bytes
 - b. Tiene una cabecera de 4 bytes más, en muchas ocasiones, una copia del paquete que ocasionó un problema
 - c. Tiene sólo una cabecera de 4 bytes
- 2. La cabecera del paquete ARP
 - a. Es de tamaño variable, dependiendo de los protocolos que considera
 - b. No tiene carga útil, sólo cabeceras
 - c. Ambos son ciertos
- 3. Un servicio orientado a conexión
 - a. Implica menos tiempo que un servicio no orientado a conexión
 - b. Exige simultaneidad temporal de las entidades
 - c. Ninguna de las anteriores
- 4. Un operador Tier-3 se caracteriza por
 - a. Poder alcanzar cualquier IP sólo con acuerdos de tránsito
 - b. Poder alcanzar cualquier IP sólo con acuerdos de peering
 - C. Obtener una contraprestación económica por cursar tráfico en sus infraestructuras mediante acuerdos de peering
- 5. Para que el mensaje de respuesta de un servidor llegue al cliente
 - a. Necesita conocer el puerto y la dirección IP del cliente de antemano
 - b. Necesita conocer la IP de antemano, el puerto viene en el mensaje de solicitud
 - c. Puerto e IP vienen en el mensaje de solicitud
- 6. El modelo cliente-servidor
 - a. Implica que el servidor esté activo y escuchando
 - b. Implica que el cliente esté activo y escuchando
 - c. Ninguna de las anteriores
- 7. La capa o nivel de red de OSI
 - a. Ofrece el servicio de control de flujo salto a salto
 - b. Involucra entidades salto a salto
 - c. Involucra entidades extremo a extremo
- 8. En el modelo TCP/IP
 - a. No hay capa de sesión
 - b. Se exige la misma red subyacente en todos los saltos
 - c. No se necesita red subyacente
- 9. Elegir el servicio menos tolerante a delay
 - a. Vídeo almacenado
 - b. Vídeo interactivo
 - c. Correo electrónico
- 10. EL parámetro If-Modified-Since, utilizado para el uso de caché web, aparece
 - a. En el mensaje de respuesta
 - b. En ambos
 - c. En el mensaje de solicitud
- 11. HTTP
 - a. La versión v1.0 es state-less y v1.1 es state-full
 - b. Es un protocolo state-full
 - c. Es un protocolo state-less
- 12. SMTP
 - a. Es un servicio orientado a conexión
 - b. No es orientado a conexión, aunque va sobre TCP
 - c. No es orientado a conexión, y va sobre UDP

TIPO B

13. En TCP/IP

- a. La capa de transporte se utiliza en hosts
- b. La capa de transporte se utiliza en hosts y routers
- c. La capa de transporte se utiliza en routers
- 14. Los retardos de transmisión salto a salto
 - a. Dependen de la distancia
 - b. Dependen de la distancia y del tamaño del paquete
 - c. Dependen del tamaño del paquete y de la velocidad en bits por segundo

15. HTTP persistente

- a. Mantiene una página web abierta persistentemente
- b. Mantiene la conexión TCP para descargar varios objetos
- c. Es utilizado sólo para transmisión multimedia, como Youtube

16. El protocolo IPSEC

- a. Es un protocolo seguro que opera en el nivel de red
- b. Es un protocolo seguro que opera sobre UDP o TCP
- c. Es un protocolo de configuración

17. La cabecera TCP

- a. Cambia salto a salto en los routers hasta llegar al destino
- b. Incluye información de fragmentación
- c. Incluye información de puertos origen y destino

18. UDP

- a. Es orientado a conexión y full-duplex
- b. Permite detección de errores
- c. Las dos anteriores
- 19. En una conexión TCP Tahoe
 - a. Los temporizadores son fijos
 - Los temporizadores son variables, y dependen del tiempo de confirmación de paquetes anteriores
 - c. Los temporizadores son variables, y dependen del parámetro WINDOW
- 20. En una conexión TCP Tahoe, si llega un segmento desordenado generando discontinuidad
 - a. Se envía un ACK con el último byte de este segmento recibido
 - b. Se envía un ACK con el siguiente byte a partir del segmento recibido
 - c. Se envía un ACK con el primer byte que se esperaba, que es previo a este segmento recibido
- 21. La cabecera de la red subyacente (ej. Ethernet)
 - a. Incluye información que identifica los puertos origen y destino
 - b. Cambia salto a salto en los routers hasta llegar al destino
 - c. Incluye información que identifica la IP origen y destino
- 22. Se utiliza TCP principalmente
 - a. Para servicios sin tolerancia a pérdida de datos
 - b. Para servicios sin tolerancia a delay
 - c. Para servicios sin tolerancia a jitter

23. POP

- a. Es un servicio orientado a conexión
- b. No es orientado a conexión, aunque va sobre TCP
- c. No es orientado a conexión, y va sobre UDP
- 24. Si entre A y B se envía $K^{+B}(M) \mid K^{-A}(H(M))$
 - a. No se garantiza confidencialidad, pero si integridad
 - b. Ninguna de las anteriores
 - c. Se garantiza confidencialidad e integridad

TIPO B

- 25. ¿Qué técnica de conmutación reserva recursos?
 - a. circuitos virtuales
 - b. datagramas
 - c. circuitos
- 26. En una tabla de encaminamiento IP, una misma dirección de destino puede hacer matching en dos entradas
 - a. Nunca
 - b. Sí, y se re-envía el datagrama según las dos entradas
 - c. Sí, y se resuelve la colisión con la máscara más restrictiva
- 27. En una tabla de encaminamiento IP, una misma dirección de destino puede hacer matching en dos entradas con misma máscara
 - a. Nunca
 - b. Sí, y se re-envía el datagrama según las dos entradas
 - c. Sí, y se resuelve la colisión a partir del orden
- 28. La dirección de subred
 - a. Nunca puede tener 0's en la parte de dirección de host
 - b. Nunca puede tener 1's en la parte de dirección de host
 - c. Siempre acaba en 0 en el último octeto
- 29. En el control de flujo en TCP Tahoe
 - a. Una confirmación ACK siempre confirma al último segmento enviado
 - b. Una confirmación ACK incluye el siguiente byte que espera
 - c. Una confirmación ACK puede confirmar a varios segmentos enviados no consecutivos
- 30. La cabecera del Protocolo IPv4:
 - a. Incluye un checksum.
 - b. Tiene, al menos, 20 Bytes.
 - c. Las dos son ciertas.

- 1. (1 pto) Al inicio de una conexión TCP, en una línea sin congestión con 10 ms de tiempo de propagación y 5 Mbps de velocidad de transmisión, ¿cuánto tiempo se emplea en enviar y recibir confirmación de 50 KB con las siguientes asunciones (añada cualquier asunción adicional que crea conveniente)? Realice el diagrama de tiempos de la transmisión.
 - a) Ventana ofertada de control de flujo de 12 KB continuada.
 - b) Inicio lento configurado para comenzar a 2MSS
 - c) Todos los segmentos se ajustan a un MSS (Maximum segment Size) de 2 KB
 - d) Umbral de congestión de 8 KB
 - e) Respuesta ACK retardada en el receptor de acuerdo a la teoría.

Control de flujo = 12KB Umbral de Congestión = 8 KB

$$t_{prop.} = 10 \text{ ms.}$$

$$t_t = \frac{1MSS}{V_t} = \frac{2 \cdot 1024 \cdot 8}{5 * 10^6} = 3.28 \ ms.$$

$$Num_segmentos = \frac{Tama\~no\ mensaje}{Tama\~no\ MSS} = \frac{50KB}{2KB} = 25\ segmentos$$

Calculamos cuando el sistema dejará de entrar en tiempo muerto para pasar a transmisión continua:

$$2*t_{prop.}+2*t_t \leq N*t_t$$

$$\frac{2*10+2*3.28}{3.28} \le N \quad \rightarrow N = 9 \quad \text{Nunca ocurrirá}$$

$$t_{prop.} = 13 * t_{prop.} + 12 * t_t + 6 * t_{ACK} + 500ms \approx 664 ms$$

Si no considerásemos los t_{ACK}

$$t_{prop.} = 13 * t_{prop.} + 12 * t_t + 500ms \approx 654$$

- **2.** (1 pto) A partir de las tablas de encaminamiento siguientes, donde únicamente aparecen las redes directamente conectadas a cada router:
 - a) (0.5 ptos) Dibuje la topología de red.
 - b) (0.5 ptos) Complete las tablas de encaminamiento de cada router para conseguir que todos los dispositivos de la red puedan comunicarse entre ellos y sean capaces de acceder a internet. Hágalo considerando como criterio de optimización el menor número de entradas de en las tablas de encaminamiento.

R1			R4		
Red Destino	Máscara	Sig. Salto	Red Destino	Máscara	Sig. Salto
192.168.0.0	/24		192.168.2.0	/24	
200.200.200.0	/30		192.168.1.0	/24	
R2			R5		
Red Destino	Máscara	Sig. Salto	Red Destino	Máscara	Sig. Salto
192.168.0.0	/24		192.168.3.0	/24	
192.168.1.0	/24		192.168.4.0	/24	
			192.168.1.0	/24	
R3					
Red Destino	Máscara	Sig. Salto	R6		
192.168.0.0	/24		Red Destino	Máscara	Sig. Salto
192.168.10.0	/24		192.168.8.0	/24	
192.168.8.0	/24		192.168.9.0	/24	

Área de respuesta para apartato a). Dibuje en el siguiente cuadro la topologia resultante:

Área de respuesta para apartato b). Rellene las tablas de los routers en los espacion indicados:

R1			R4		
Red Destino	Máscara	Sig. Salto	Red Destino	Máscara	Sig. Salto
192.168.0.0	/24		192.168.2.0	/24	
200.200.200.0	/30		192.168.1.0	/24	
192.168.0.0	/21	192.168.0.2	192.168.3.0	/24	192.168.1.5
192.168.8.0	/22	192.168.0.3	192.168.4.0	/24	192.168.1.5
0.0.0.0	/0	200.200.200.1	0.0.0.0	/0	192.168.1.2
R2			R5		
Red Destino	Máscara	Sig. Salto	Red Destino	Máscara	Sig. Salto
192.168.0.0	/24		192.168.3.0	/24	
192.168.1.0	/24		192.168.4.0	/24	
192.168.0.0	/21	192.168.1.5	192.168.1.0	/24	
192.168.8.0	/22	192.168.0.3	192.168.2.0	/24	192.168.1.4
192.168.2.0	/24	192.168.1.4	0.0.0.0	/0	192.168.1.2
0.0.0.0	/0	192.168.0.1			
R3			R6		
Red Destino	Máscara	Sig. Salto	Red Destino	Máscara	Sig. Salto
192.168.0.0	/24		192.168.8.0	/24	
192.168.10.0	/24		192.168.9.0	/24	
192.168.8.0	/24		0.0.0.0	/0	192.168.8.3
192.168.9.0	/24	192.168.8.6			
192.168.0.0	/21	192.168.0.2			
0.0.0.0	/0	192.168.0.1			

3. (1 pto) Suponga la red mostrada en la siguiente figura. Ana desea enviarle un correo a Bea.

Suponiendo que todos los equipos tienen configurado completamente el encaminamiento, las tablas ARP llenas y el servidor DNS configurado y cachés vacías. El servidor DNS contiene todos los registros necesarios para resolver los dominios a.org y b.com. Con la ayuda de la tabla, explique el proceso completo y las diferentes solicitudes y respuestas de los protocolos implicados que los equipos deben realizar entre sí, desde que Ana le envía un correo a Bea hasta que ésta lo lee

Origen	Destino	Protocolo	Mensaje	Comentarios

Quyen	Destino	Paleale	Mensaje	Comentarios
AUA	p us	D nz	request IP MX a.org	Paquele únice Jobre UDP
pus	ANA	DUS	response IP HX along	Paquele únice sebre UDP
ΔυΔ	He away	SMTP/ HTT P	envío del Correo	Careción TCP incluyen interac per camendas (per ej: HELO) oi SMTP
M= a.org	Dus	DNS	request IP Me bicon	Pegrele únice Jebre UDP
Dns	Mr alorg	DNS	Mr b. com	Pag. Unice UDP
m a cong	Mx b.com	SMTP	envie del Cerres	Careación TCP interactiva
BEA	Ous	DNS	request IP Mr b. ern	Pag. Unico
DNP	BEA	DNO	responese IP Me been	Peg. Unico
BE A	Mx b.ecm	POP3 IMAP HTTP	descarge del Cerres	Ceneric Tel