

Inteligência Artificial Aplicada

UniSenai PR-São José dos Pinhais

Categoria	Descrição	Algoritmos/técnicas	Exemplos de aplicação
Métodos de busca	Encontram soluções em um espaço de estados.	BFS, A*	GPS traçando a melhor rota.
Raciocínio temporal	Modelam eventos ao longo do tempo.	Cadeias de Markov, Redes Bayesianas	Previsão do tempo, reconhecimento de fala.
Lógica fuzzy	Lida com incertezas e valores intermediários.	Conjuntos fuzzy, Inferência fuzzy	Controle de temperatura em ar-condicionado.
Modelos de aprendizado	Ajustam pesos para identificar padrões em dados.	Redes Neurais (Perceptron, MLP)	Reconhecimento facial, chatbots.

Um dos primeiros modelos de rede neural (1958);

Modelo matemático inspirado em neurônios biológicos.

Composto por:

- 1. Entradas: vetor $x[x_1, x_2, ..., x_n]$
- 2. Pesos: vetor $w[w_1, w_2, ..., w_n]$
- 3. Soma ponderada: $y = f(x_1w_1 + x_2w_2 + \cdots + x_nw_n + b)$
- 4. Bias b (termo de ajuste)
- 5. Função de ativação (degrau): $f(u) = \begin{cases} 1, se \ u \ge 0 \\ 0, se \ u < 0 \end{cases}$

Elemento	Símbolo	Função
Entrada	x_1, x_2, \dots, x_n	Características do dado de entrada.
Pesos	W_1, W_2, \dots, W_n	Definem a importância de cada entrada.
Bias (viés)	b	Constante adicionada à soma ponderada; permite deslocar a decisão.
Soma ponderada	$u = \vec{x}^* \vec{w} + b$	Combina entradas com seus pesos e o bias
Função de ativação	f(u)	Define a saída com base na soma: degrau

Elemento	Símbolo	Função
Saída prevista	y _{pred}	Resultado da função de ativação; a predição do modelo.
Saída real	y	Valor esperado nos dados de treinamento.
Erro	$\varepsilon = y - y_{pred}$	Diferença entre saída esperada e prevista
Taxa de aprendizado	π	Controla o tamanho do ajuste nos pesos e no bias.
Época		Rodadas de treinamento.

Redes Neurais (Multi Layer Perceptron-MLP)

Rede neural artificial composta por múltiplas camadas.

Composto por:

1. Camada de entradas: recebe os dados;

2. Camada oculta: processa os dados; permite resolver problemas mais complexas;

3. Camada de saída: produz a resposta final.

Imagine que a rede neural é como uma dobradura de papel.

- Função linear (f(x) = x) é como **tentar dobrar um papel com régua só permite linhas retas**. Isso **funciona se a figura** que você quer formar **é plana**;
- Para formar um avião de papel, é necessário dobrar em ângulos, curvas, torções — ou seja, não linearidades.

Um MLP com ao menos uma camada oculta com função de ativação não linear consegue resolver esse problema, porque:

 A camada oculta transforma os dados em um espaço onde a separação linear é possível.

 A não linearidade da função de ativação permite que o modelo aprenda limites de decisão mais complexos.

Exemplo solucionado com Perceptron (AND)

Exemplo solucionado com Perceptron (OR)

Exemplo <u>não solucionado</u> com Perceptron (XOR)

Passo a passo:

- 1. Recebe os dados de entrada;
- 2. Cada neurônio da camada oculta faz:
 - Multiplica cada entrada pelo seu peso;
 - Soma os resultados + bias;
 - Passa essa soma por uma função de ativação (ReLU, sigmoide ou degrau).
- 3. A saída da camada oculta é usada como entrada na camada de saída;
- 4. O resultado final é a previsão da rede.
- 5. A rede compara com a resposta real;
- 6. Se estiver errada, ajusta os pesos com base no erro.

Elemento	O que é	Para que serve	Exemplo/Nota
Entrada	Valores de entrada da rede $(x_1, x_2,, x_n)$	Alimenta a rede com dados reais	Ex: pixel, nota, sensor, etc.
Pesos	Valores multiplicadores Co entre neurônios	Controlam a importância de cada entrada	Iniciados aleatoriamente
Bias	Valor extra somado antes da ativação	Garante flexibilidade na decisão	Pode ser 0 no início
Camada Oculta	Neurônios intermediários	Extraem padrões complexos dos dados	Pode ter 1 ou mais camadas
Função de Ativação	Função matemática (sigmoide, ReLU, etc.)	Decide se o neurônio "dispara" (ativa)	Ex: $f(x) = \frac{1}{(1+e^{-x})}$
Saída	Resposta final da rede	Resultado da predição	Ex: 0 ou 1, ou valor contínuo

Elemento	O que é	Para que serve	Exemplo/Nota
Forward Propagation	Passagem dos dados pela rede	Gera a saída com os pesos atuais	Multiplica + soma + ativa
Erro	Diferença entre saída real e prevista	Mede o quanto a rede errou	erro = $y - y_{pred}$
Backpropagation	Ajuste dos pesos e bias com base no erro	Treinamento: reduz o erro nas próximas rodadas	Derivadas da função de ativação
Derivada da Ativação	Inclinação da função de ativação	Mede sensibilidade do erro em relação ao peso	Ex: $sig(x) = 1 - sig(x)$
Taxa de Aprendizado Fator de velocidade de aprendizado	Evita mudanças muito grandes ou pequenas nos pesos	Típico: 0.01 a 0.1	
Época	Uma passada por todo o conjunto de dados de treino	Define o tempo de treinamento	Varia: 10, 100, 1000

Elemento MLP	Analogia com alunos/sala de aula	Explicação Didática
Entrada	As perguntas da prova	O que os alunos recebem como desafio ou estímulo
Pesos	O quanto o aluno estudou para cada tema	Mais estudo em um assunto = maior peso ao resolver aquela questão
Bias	Ajuda extra, como revisão do professor	Um empurrãozinho a mais para o aluno acertar, mesmo sem entender tudo
Camada Oculta	O "raciocínio interno" do aluno	Onde o aluno processa a questão, conecta ideias, faz contas
Função de Ativação A decisão de acertar ou errar		Se o raciocínio foi suficiente para chegar na resposta correta
Saída	A resposta final na prova (certa ou errada)	O que o aluno entrega depois de pensar

Elemento MLP	Analogia com alunos/sala de aula	Explicação Didática
Forward Propagation	Fazer a prova com o conhecimento atual	Aplicar o que sabe para resolver
Erro	Diferença entre a nota esperada e a nota real	Quanto o aluno errou na resposta
Backpropagation	Correção da prova + feedback do professor	Aprender com o erro e ajustar o modo de pensar para ir melhor da próxima vez
Derivada da Ativação	Quanto o erro depende do que foi pensado	Se o aluno quase acertou, aprende mais fácil; se errou feio, tem mais dificuldade
Taxa de Aprendizado	A vontade ou velocidade do aluno para aprender com o erro	Se for muito alta, ele muda tudo de uma vez; se for baixa, aprende bem devagar
Época	Quantas vezes o aluno faz simulados antes da prova final	Cada repetição melhora o desempenho até ele aprender de verdade

Função	Fórmula	Curva / Comportamento	Analogia Didática
Sigmoide	$f(x) = \frac{1}{(1+e^{-x})}$	Saída entre 0 e 1	Como um aluno que decide "quase acertei", "errei um pouco", "acertei bem"
Tanh	$f(x) = \tanh(x)$	Saída entre -1 e 1	Como um aluno que pode pensar positivamente ou negativamente sobre o resultado
ReLU	$f(x) = \max(0, x)$	Zera valores negativos, passa positivos	Se o aluno não entende nada, dá 0. Se entende, segue com a resposta
Softmax	$f(x_i) = \frac{e^{x_i}}{\sum_e x_j}$	Distribui probabilidades (usada na saída)	Como um aluno que escolhe a resposta mais provável numa múltipla escolha

