

MRT Technology (Suzhou) Co., Ltd

Phone: +86-512-66308358 Fax: +86-512-66308368 www.mrt-cert.com

Report No.: 1502RSU00404 Report Version: Issue Date: 11-24-2015

RF Exposure Evaluation Declaration

FCC ID: 2ABLK-8X4G-1V2

APPLICANT: Calix Inc.

Application Type: Certification

WIFI dual band 4 GE LAN GPON HGU **Product:**

Model No.: 844G-1, 854G-1, 844GE-1

Trademark: Calix

FCC Classification: Digital Transmission System (DTS)

Unlicensed National Information Infrastructure (UNII)

Reviewed By : Robin Wu (Robin Wu)

Approved By : Marlinchen

(Marlin Chen)

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

FCC ID: 2ABLK-8X4G-1V2

Page Number: 1 of 8

Revision History

Report No.	Version	Description	Issue Date
1502RSU00404	Rev. 01	Initial report	04-01-2015
1502RSU00404	Rev. 02	Added the model number "844GE-1"	11-24-2015

FCC ID: 2ABLK-8X4G-1V2 Page Number: 2 of 8

1. PRODUCT INFORMATION

1.1. Equipment Description

Product Name	WIFI dual band 4 GE LAN GPON HGU
Model No.	844G-1, 854G-1, 844GE-1
Frequency Range	For 2.4GHz Band:
	802.11b/g/n-HT20:
	2412 ~ 2462MHz
	802.11n-HT40:
	2422 ~ 2452MHz
	For 5GHz Band:
	For 802.11a/n-HT20:
	5180~5320MHz, 5500~5700MHz, 5745~5825MHz
	For 802.11ac-VHT20:
	5180~5320MHz, 5500~5720MHz, 5745~5825MHz
	For 802.11n-HT40:
	5190~5310MHz, 5510~5670MHz, 5755~5795MHz
	For 802.11ac-VHT40:
	5190~5310MHz, 5510~5710MHz, 5755~5795MHz
	For 802.11ac-VHT80:
	5210MHz, 5290MHz, 5530MHz, 5610MHz, 5690MHz, 5775MHz
Type of Modulation	802.11b: DSSS
	802.11g/a/n/ac: OFDM
Maximum Average Output	For 2.4GHz Band:
Power	802.11b: 24.02dBm
	802.11g: 23.74dBm
	802.11n-HT20: 26.30dBm
	802.11n-HT40: 23.46dBm
	For 5GHz Band:
	802.11a: 27.19dBm
	802.11n-HT20: 27.10dBm
	802.11n-HT40: 27.15dBm
	802.11ac-VHT20: 27.26dBm
	802.11ac-VHT40: 27.20dBm
	802.11ac-VHT80: 25.19dBm

Note: There is different laser module between models "844G-1" & "844GE-1".

FCC ID: 2ABLK-8X4G-1V2 Page Number: 3 of 8

1.2. Antenna Description

Antenna Type	Frequency Band (GHz)	T _X Paths	Directional Gain (dBi)
PCB Antenna	2.4	2	1.90

Antenna			Directional Gain (dBi)		
Type Band (GHz)		Beam Forming	CDD		
PCB Antenna	5.2	4	8.04	8.04	
	5.3	4	7.78	7.78	
	5.6	4	8.38	8.38	
	5.8	4	8.70	8.70	

Note:

- 1. Transmit at 2.4GHz support two antennas, and support four antennas at 5GHz transmit. There are different antenna gains between each antenna.
- 2. The EUT working on Beam Forming mode, and the Beam Forming support 802.11n/ac, not include 802.11a, and 802.11a working on CDD mode.
- 3. Correlated signals include, but are not limited to, signals transmitted in any of the following modes:
 - Any transmit Beam Forming mode, whether fixed or adaptive (e.g., phased array modes, closed loop MIMO modes, Transmitter Adaptive Antenna modes, Maximum Ratio Transmission (MRT) modes, and Statistical Eigen Beam Forming (EBF) modes).
- 4. Unequal antenna gains, with equal transmit powers. For antenna gains given by $G_1, G_2, ..., G_N$ dBi
 - transmit signals are correlated, then
 - Directional gain = 10 log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})²/N_{ANT}] dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]

2. RF Exposure Evaluation

2.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time	
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)	
	(A) Limits for Occupational/ Control Exposures				
300-1500		-	f/300	6	
1500-100,000			5	6	
(B) Limits for General Population/ Uncontrolled Exposures					
300-1500			f/1500	6	
1500-100,000			1	30	

f= Frequency in MHz

Calculation Formula: Pd = (Pout*G)/(4*pi*r2)

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

FCC ID: 2ABLK-8X4G-1V2 Page Number: 5 of 8

2.2. Test Result of RF Exposure Evaluation

Product	WIFI dual band 4 GE LAN GPON HGU
Test Item	RF Exposure Evaluation

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 1.90dBi for 2.4GHz, 8.04dBi for 5.2GHz, 7.78dBi for 5.3GHz, 8.38dBi for 5.6GHz and 8.70dBi for 5.80GHz in logarithm scale.

For 2.4GHz ISM Band:

Test Mode	Frequency Band (MHz)	Maximum Average Output Power (dBm)	Power Density at $R = 20 \text{ cm}$ (mW/cm^2)	Limit (mW/cm²)
802.11b	2412 ~ 2462	24.02	0.0778	1
802.11g	2412 ~ 2462	23.74	0.0729	1
802.11n-HT20	2412 ~ 2462	26.30	0.1314	1
802.11n-HT40	2422 ~ 2452	23.46	0.0683	1

For 5GHz UNII Band:

Test Mode	Frequency Band (MHz)	Maximum Average Output Power (dBm)	Power Density at $R = 20 \text{ cm}$ (mW/cm^2)	Limit (mW/cm²)
	5180 ~ 5240	24.27	0.3386	1
802.11a	5260 ~ 5320	20.65	0.1386	1
002.11a	5500 ~ 5700	20.01	0.1373	1
	5725 ~ 5825	27.19	0.7722	1
	5180 ~ 5240	24.33	0.3433	1
000 44 m LITO	5260 ~ 5320	20.50	0.1339	1
802.11n-HT20	5500 ~ 5700	20.47	0.1527	1
	5725 ~ 5825	27.10	0.7564	1
	5190 ~ 5230	24.67	0.3713	1
802.11n-HT40	5270 ~ 5310	21.16	0.1559	1
	5510 ~ 5670	21.10	0.1765	1
	5755 ~ 5795	27.15	0.7651	1

FCC ID: 2ABLK-8X4G-1V2 Page Number: 6 of 8

200.44	5180 ~ 5240	24.31	0.3418	1
	5260 ~ 5320	20.79	0.1431	1
802.11ac-VHT20	5500 ~ 5720	21.10	0.1765	1
	5725 ~ 5825	27.26	0.7847	1
	5190 ~ 5230	24.58	0.3637	1
	5270 ~ 5310	20.72	0.1408	1
802.11ac-VHT40	5510 ~ 5710	21.26	0.1831	1
	5755 ~ 5795	27.20	0.7740	1
802.11ac-VHT80	5210	16.77	0.0602	1
	5290	18.12	0.0774	1
	5530 ~ 5690	20.92	0.1693	1
	5775	25.19	0.4872	1

CONCULISON:

Both of the WLAN 2.4GHz Band and WLAN 5GHz Band can transmit simultaneously. Therefore, the Max Power Density at R (20 cm) = 0.1314mW/cm²+ 0.7847mW/cm² = 0.9161mW/cm² < 1mW/cm².

So the EUT complies with the requirement.

	——— The End ———	
FCC ID: 2ABLK-8X4G-1V2		Page Number: 8 of 8