DESIGN AND ANALYSIS OF ALGORITHMS

CS 4120/5120 SORTING - HEAPSORT

AGENDA

- Data structure
 - Binary tree
 - Неар
- Max-heapify
- Building heap
- Heapsort

HEAPSORT

- A new algorithm design technique: using a data structure.
 - Example
 - Solve binary search problem by constructing a binary search tree.
- Heapsort sorts a given array using a data structure called the **heap**.

BINARY TREE

- A binary tree T is a structure defined on a finite set of nodes that either
 - contains no nodes, or
 - is composed of three disjoint set of nodes:
 - a **root** node,
 - a binary tree called its left subtree, and
 - a binary tree called its *right subtree*.
- Each node of a binary tree has a degree no more than 2.

BINARY TREE TERMS

- The value of a node is referred to as the **key** of the node.
- The height of a binary tree with n nodes is the deepest level
 - $depth = \lg n$, where $\lg n$ is the height of the tree.

• A complete binary tree is a binary tree in which every level, except possibly the last, is

completely filled, and all nodes are as far left as possible.

HEAP NEARLY COMPLETE BINARY TREE

- A heap can be implemented by an array, denoted as A.
 - The array has two attributes
 - A. length: the number of elements in the array, and
 - *A. heap-size*: the number of elements in the heap that are stored within array *A*.
 - Only the elements in $A[\mathbf{1}..A.heap\text{-}size]$, where $0 \le A.heap\text{-}size \le A.length$ are valid elements of the heap.
 - Note that element A[1] is always in the heap.

HEAP AND ARRAY

- Element A[1] is the root.
- Given the index i of a node, we can easily compute
 the indices of its parent, left, and right child.

1	2	3	4	5_	6	7	8	9	10
	$\overline{}$	\sim		\geq	_				
16	14	10	8	7	9	3	2	4	1
		=		2					

PARENT (i)				
l return $\lfloor i/2 \rfloor$				

LEFT (i)	
lreturn 2i	

The **equivalent** array and tree representations.

HEAP PROPERTIES MAX-HEAP

- For every node i other than the root, $A[PARENT(i)] \ge A[i]$
 - Facts
 - The value of a node is **at most** the value of its parents.
 - Element A[1] is the largest element in a max-heap and is stored at the root.
 - The subtree rooted at a node contains values no larger than that contained at the node itself.
- The choice of this course.

HEAP PROPERTIES MIN-HEAP

- For every node i other than the root, $A[PARENT(i)] \leq A[i]$
 - Facts
 - The value of a node is **at least** the value if its parents.
 - Element A[1] is the smallest element in a min-heap and is stored at the root.
 - The subtree rooted at a node contains values no smaller than that contained at the node itself.

HEAP PROPERTIES PRACTICE

• Consider the following array implementation of heaps. Fill out the blanks. Fill NA if necessary.

• $A[PARENT(7)] = ____.$

Index

A[12]

	2	3	4	5	6	7	8	9	10		12
	6	7		20	16	40	22	18	19	3 I	50

• Determine the *heap-size* of the array by finding the far-right element that does not maintain heap properties.

HEAP PROPERTIES PRACTICE

• Consider the following array implementation of heaps. Fill out the blanks. Fill NA if necessary.

• $B[RIGHT(4)] = ____.$

Index B[10]

	2	3	4	5	6	7	8	9	10
44	39	37	26	2	30	22	3	25	0

HEAP PROPERTIES PRACTICE

• Consider the following array implementation of heaps. Fill out the blanks. Fill NA if necessary.

• $C[LEFT(6)] = ____.$

Index

C[15]

	2	3	4	5	6	7	8	9	10	П	12	13	14	15
35	26	24	23	19	17	14	12	6	\equiv	3	13	4	20	25

MAX-HEAPIFY

Consider the example below

Index A[10]

	2	3	4	5	6	7	8	9	10
9	7	6	5	3	2	4	10	8	I

- Does A qualify as a MAX-HEAP?
 - No, the subtree rooted at $A[__] = ___$ is not a MAX-HEAP.
- How to locally rearrange array elements to transform the subtree into a MAX-HEAP?
- Is the resulting array a MAX-HEAP?

THE MAX-HEAPIFY PROCEDURE

- Algorithm: MAX-HEAPIFY
 - Input: An array A[1..n], an index i into the array.
 - Output: A the subtree rooted at i is a max-heap.

Goal: The max-heap properties are preserved for the subtree.

• In the previous example, we can think of it as the result of calling MAX-HEAPIFY (A, 4).

THE MAX-HEAPIFY ALGORITHM

- Input: array A and index i into array A.
 - Find the largest of a parent-children structure
 - the parent (the node indexed by *i*)
 - the left child (the node indexed by 2*i* if it exists)
 - the right child (the node indexed by 2i + 1 if it exists)
 - Put the largest as the parent
 - Recurse to maintain max-heap property if possible
- Output?

```
MAX-HEAPIFY (A, i)

l = \text{LEFT } (i)

2 r = \text{RIGHT } (i)

3 \text{ if } l \leq A. \text{ leap-size } \text{ and } A[l] > A[i]

4 \quad \text{largest} = l

5 \text{ else } \text{ largest} = i

6 \text{ if } r \leq A. \text{ heap-size } \text{ and } A[r] > A[\text{largest}]

7 \quad \text{largest} = r

8 \text{ if } \text{ largest} \neq i

9 \quad \text{exchange } A[i] \text{ with } A[\text{largest}]

10 \quad \text{MAX-HEAPIFY } (A, \text{largest})
```

THE MAX-HEAPIFY ALGORITHM IN ACTION

• Perform MAX-HEAPIFY (A, 4) on the instance. Show the recursions in the order of their invocations. Assume A.length = A.leap-size.

Index A[10]

	2	3	4	5	6	7	8	9	10
9	7	6	5	3	2	4	10	8	I

• What is the resulting array?

Index A[10]

	2	3	4	5	6	7	8	9	10
9	7	6	10	3	2	4	5	8	I

MΑ	X-HEAPIFY (A, i)
I	l = LEFT(i)
2	r = RIGHT(i)
3	if $l \le A$. leap-size and $A[l] > A[i]$
4	largest = l
5	else $largest = i$
6	if $r \le A$. heap-size and $A[r] > A[largest]$
7	largest = r
8	if largest ≠ i
9	exchange $A[i]$ with $A[largest]$
10	MAX-HEAPIFY (A, largest)

THE MAX-HEAPIFY ALGORITHM

- Input: array A and index i into array A.
- Output: The subtree rooted at *i* is a max-heap.

MΑ	X-HEAPIFY (A, i)
I	$l = LEFT\;(i)$
2	r = RIGHT(i)
3	if $l \leq A$. leap-size and $A[l] > A[i]$
4	largest = l
5	else $largest = i$
6	if $r \le A$. heap-size and $A[r] > A[largest]$
7	largest = r
8	if $largest \neq i$
9	exchange $A[i]$ with $A[largest]$
10	MAX-HEAPIFY (A, largest)

THE MAX-HEAPIFY ALGORITHM RUNNING TIME ANALYSIS - HEAP

- Consider a max-heap with n elements.
 - If the max-heap happens to be a **complete** binary tree with the bottom level **completely filled**, the height of the tree is g(n+1)-1.
 - There are (n + 1)/2 nodes at the bottom level.

THE MAX-HEAPIFY ALGORITHM **RUNNING TIME ANALYSIS - HEAP**

- Consider a max-heap with n elements.
 - If the max-heap happens to be complete binary tree with the bottom level exactly half filled, the height of the tree is $\lg(2(n+1)/3)$.
 - There are (n+1)/3 nodes at the bottom level.

height ····

THE MAX-HEAPIFY ALGORITHM WORST-CASE RUNNING TIME

- What is the worst-case scenario?
 - Call MAX-HEAPIFY (A, ____)
 - The original element A[i] floats down to _____.
 - In other words, the algorithm recurses on the shaded subtree in the worst-case scenario
 - Recursing on the bigger subtree

THE MAX-HEAPIFY ALGORITHM WORST-CASE RUNNING TIME

- In the worst-case scenario
 - The algorithm recurses on the shaded subtree.
 - The # of nodes in the shaded subtree is

$$\sum_{k=1}^{height} 2^{k-1} = 2^{1-1} \cdot \frac{2^{height} - 2^{1-1}}{2-1}$$

$$= 1 \cdot 2^{\lg\left(\frac{2(n+1)}{3}\right)} - 1$$

$$= \frac{2n}{3} - \frac{1}{3}$$

THE MAX-HEAPIFY ALGORITHM RUNNING TIME FUNCTION

- In the worst-case scenario, the algorithm will recurse on at most _____ nodes of the tree.
- The running time function can be formulated as $T(n) \le T(2n/3) + \Theta(1)$
- $T(n) = O(\lg n)$

MAX-HEAPIFY REVIEW

- MAX-HEAPIFY (A, i)
 - Outcome
 - The subtree rooted at A[i] is a max-heap.
 - Locally max-heapified
- How to make the array globally max-heapified?
- Which element to begin with?
 - 5, 8, 1, 2, or 4?

BUILD A HEAP

- To build a heap out of an array, there is no point in MAX-HEAPIFYing the leaves.
- The most efficient way is to **start** with the far-right **non-leaf** nodes.
- Consider the equivalent implementations shown on the right. The far-right non-leaf node is indexed by ______.
- What about when A.length = n?

BUILD A HEAP START AT A[n/2]

- Consider an array implementation A[1..n] of a MAX-HEAP.
 - The far-right **non-leaf** node is indexed by $\lfloor n/2 \rfloor$.
 - If you are interested in the work, you may try to answer the questions below.
 - The # of nodes of levels $0 \sim h 1$ is _____.
 - There are _____ leaves remaining at level h.
 - There are ____ leaves at level h-1.
 - The far-right _____ elements are leaves.

BUILD A HEAP START AT A[n/2]

- Consider an array implementation A[1..n] of a MAX-HEAP.
 - The far-right **non-leaf** node is indexed by $\lfloor n/2 \rfloor$.
 - If you are interested in the work, you may try to answer the questions below.
 - The # of nodes of levels $0 \sim h 1$ is _____.
 - There are _____ leaves remaining at level h.
 - There are ____ leaves at level h-1.
 - The far-right _____ elements are leaves.

- Use the MAX-HEAPIFY procedure in a **bottom-up manner** to convert an array A[1..n], where n = A.length, into a max-heap.
 - Starting at A[[n/2]].
- Instance
 - Given a random array. Build a MAX-HEAP out of the array.
 - Input

•	Output
	Output

Index	1	2	3	4	5	6	7	8	9	10
A	4	1	3	2	16	9	10	14	8	7

Index	1	2	3	4	5	6	7	8	9	10
A	16	14	10	8	7	9	3	2	4	1

• Build a MAX-HEAP out of the given array.

Index	1	2	3	4	5	6	7	8	9	10
A	4	1	3	2	16	9	10	14	8	7

- Show the **changes in the stack** for each iteration.
 - Iteration
 - Stack_push MAX-HEAPIFY (A, 5)
 - Stack_pop MAX-HEAPIFY (A, 5)

Build a MAX-HEAP out of the given array.

Index	1	2	3	4	5	6	7	8	9	10
A	4	1	3	2	16	9	10	14	8	7

- Show the **changes in the stack** for each iteration.
 - Iteration 2
 - Stack push MAX-HEAPIFY (A, 4)
 - Stack_push MAX-HEAPIFY (A, 8)
 - Stack pop MAX-HEAPIFY (A, 8)
 - Stack_pop MAX-HEAPIFY (A, 4)

Build a MAX-HEAP out of the given array.

Index	1	2	3	4	5	6	7	8	9	10
A	4	1	3	14	16	9	10	2	8	7

- Show the **changes in the stack** for each iteration.
 - Iteration 3
 - Stack push MAX-HEAPIFY (A, 3)
 - Stack_push MAX-HEAPIFY (A, 7)
 - Stack_pop MAX-HEAPIFY (A, 7)
 - Stack_pop MAX-HEAPIFY (A, 3)

Build a MAX-HEAP out of the given array.

Index	1	2	3	4	5	6	7	8	9	10
A	4	1	10	14	16	9	3	2	8	7

- Show the **changes in the stack** for each iteration.
 - Iteration 4
 - Stack push MAX-HEAPIFY (A, 2)
 - Stack_push MAX-HEAPIFY (A, 5)
 - Stack_push MAX-HEAPIFY (A, 10)
 Stack_pop MAX-HEAPIFY (A, 2)
- Stack pop MAX-HEAPIFY (A, 10)
- Stack pop MAX-HEAPIFY (A, 5)

MAX-HEAPIFY (A)

• Build a MAX-HEAP out of the given array.

Index	1	2	3	4	5	6	7	8	9	10
A	4	16	10	14	7	9	3	2	8	1

- Show the **changes in the stack** for each iteration.
 - Iteration 5
 - Stack_push MAX-HEAPIFY (A, 1)
 - Stack_push MAX-HEAPIFY (A, 2)
 - Stack push MAX-HEAPIFY (A, 4)
 - Stack push MAX-HEAPIFY (A, 9)

- Stack pop MAX-HEAPIFY (A, 9)
- Stack pop MAX-HEAPIFY (A, 4)
- Stack_pop MAX-HEAPIFY (A, 2)
- Stack pop MAX-HEAPIFY (A, 1)

MAX-HEAPIFY (A, 9)

MAX-HEAPIFY (A, 4)

MAX-HEAPIFY (A, 2)

MAX-HEAPIFY (A, 1)

THE BUILD-MAX-HEAP ALGORITHM

- Input: Array A[1..n]
- The running time function T(n) =

В	UILD-MAX-HEAP (A)	Cost	Time
I	A.heap-size = $A.length$	Θ(1)	1
2	for $i = \lfloor A. length/2 \rfloor$ downto 1	Θ(1)	[n/2] + 1
3	MAX-HEAPIFY (A, i)	$O(\lg n)$	[n/2]

• The asymptotic upper-bound of T(n) is $T(n) = O(n \lg n)$

THE OUTPUT OF THE BUILD-MAX-HEAP ALGORITHM

• Before BUILD-MAX-HEAP (A)

Index	_	_	_	-	_	_	•	_	_	10
A	4	1	3	2	16	9	10	14	8	7

Is the resulting array sorted?

• After BUILD-MAX-HEAP (A)

Index	1	2	3	4	5	6	7	8	9	10
\boldsymbol{A}	16	14	10	8	7	9	3	2	4	1

HEAPSORT USING THE BUILD-MAX-HEAP ALGORITHM

- The array is **nearly/partially** sorted.
- A[1] is the largest number in the array.

Index 1	2	3	4	5	6	7	8	9	10	Remove	Index	1	2	3	4	5	6	7	8	9	10
A 10	6 14	10	8	7	9	3	2	4	1	<u>A[1]</u>	A	1	14	10	8	7	9	3	2	4	16

THE HEAPSORT PROCEDURE STARTUP

• Input, i = A. length = 10

Index	1	2	3	4	5	6	7	8	9	10
A	4	1	3	2	16	9	10	14	8	7

• BUILD-MAX-HEAP(A)

Index	1	2	3	4	5	6	7	8	9	10
A	16	14	10	8	7	9	3	2	4	1

• A.heap-size = A.length = 10

• Iteration I, i = A.length - 0 = 10

Index	1	2	3	4	5	6	7	8	9	10
A	16	14	10	8	7	9	3	2	4	1

• "Remove" A[1] from array. A.heap-size = A.heap-size - 1 = 9

Index	1	2	3	4	5	6	7	8	9	10
A	1	14	10	8	7	9	3	2	4	16

Index	1	2	3	4	5	6	7	8	9	10
A	14	8	10	4	7	9	3	2	1	16

• Iteration 2, i = A. length - 1 = 9

Index	1	2	3	4	5	6	7	8	9	10
A	14	8	10	4	7	9	3	2	1	16

• "Remove" A[1] from array. A.heap-size = A.heap-size -1 = 9 - 1 = 8

Index	1	2	3	4	5	6	7	8	9	10
A	1	8	10	4	7	9	3	2	14	16

Index	1	2	3	4	5	6	7	8	9	10
A	10	8	9	4	7	1	3	2	14	16

• Iteration 3, i = A. length - 2 = 8

Index	1	2	3	4	5	6	7	8	9	10
A	10	8	9	4	7	1	3	2	14	16

• "Remove" A[1] from array. A.heap-size = A.heap-size -1 = 8 - 1 = 7

Index	1	2	3	4	5	6	7	8	9	10
A	2	8	9	4	7	1	3	10	14	16

Index	1	2	3	4	5	6	7	8	9	10
A	9	8	3	4	7	1	2	10	14	16

• Iteration 4, i = A. length - 3 = 7

Index	1	2	3	4	5	6	7	8	9	10
A	9	8	3	4	7	1	2	10	14	16

• "Remove" A[1] from array. A.heap-size = A.heap-size - 1 = 7 - 1 = 6

Index	1	2	3	4	5	6	7	8	9	10
A	2	8	3	4	7	1	9	10	14	16

• Iteration 5, i = A. length - 4 = 6

Index	1	2	3	4	5	6	7	8	9	10
Α	8	7	3	4	2	1	9	10	14	16

• "Remove" A[1] from array. A.heap-size = A.heap-size - 1 = 6 - 1 = 5

Index	1	2	3	4	5	6	7	8	9	10
Α	1	7	3	4	2	8	9	10	14	16

Index	1	2	3	4	5	6	7	8	9	10
A	7	4	3	1	2	8	9	10	14	16

• Iteration 6, i = A. length - 5 = 5

Index	1	2	3	4	5	6	7	8	9	10
A	7	4	3	1	2	8	9	10	14	16

• "Remove" A[1] from array. A. heap-size = A. heap-size $-1 = \mathbf{5} - 1 = \mathbf{4}$

Index	1	2	3	4	5	6	7	8	9	10
A	2	4	3	1	7	8	9	10	14	16

Index	1	2	3	4	5	6	7	8	9	10
A	4	2	3	1	7	8	9	10	14	16

• Iteration 7, i = A. length - 6 = 4

Index	1	2	3	4	5	6	7	8	9	10
Α	4	2	3	1	7	8	9	10	14	16

• "Remove" A[1] from array. A. heap-size = A. heap-size -1 = 4 - 1 = 3

Index	1	2	3	4	5	6	7	8	9	10
A	1	2	3	4	7	8	9	10	14	16

Index	1	2	3	4	5	6	7	8	9	10
A	3	2	1	4	7	8	9	10	14	16

• Iteration 8, i = A. length - 7 = 3

Index	1	2	3	4	5	6	7	8	9	10
A	3	2	1	4	7	8	9	10	14	16

• "Remove" A[1] from array. A.heap-size = A.heap-size - 1 = $\mathbf{3}$ - 1 = $\mathbf{2}$

Index	1	2	3	4	5	6	7	8	9	10
A	1	2	3	4	7	8	9	10	14	16

Index	1	2	3	4	5	6	7	8	9	10
A	2	1	3	4	7	8	9	10	14	16

• Iteration 9, i = A. length - 8 = 2

Index	1	2	3	4	5	6	7	8	9	10
Α	2	1	3	4	7	8	9	10	14	16

• "Remove" A[1] from array. A.heap-size = A.heap-size - 1 = $\mathbf{2}$ - 1 = $\mathbf{1}$

Index	1	2	3	4	5	6	7	8	9	10
A	1	2	3	4	7	8	9	10	14	16

• STOP!

HEAPSORT ALGORITHM RUNNING TIME

- Input: array A
- Running time, where n = A. length T(n) =

Н	EAPSORT (A)	Cost	Time	
I	BUILD-MAX-HEAP (A)	$O(n \lg n)$	1	
2	for $i = A.length$ downto 2	Θ(1)	n	
3	exchange $A[1]$ with $A[i]$	$\Theta(1)$	n-1	
4	A.heap-size = $A.heap$ -size - 1	Θ(1)	n-1	
5	MAX-HEAPIFY (A, 1)	$O(\lg n)$	n-1	

- Simplify the function T(n) =
- The asymptotic upperbound of T(n) is ______.

SPACE COMPLEXITY

- A sorting algorithm that sorts the numbers *in place* means that the algorithm **rearranges** the numbers *within* the array *A*, with at most a constant number of them stored outside the array any time.
- Which of the following algorithms is/are in place sorting algorithm?
 - Bubblesort √
 - Insertion sort
 - Mergesort
 - Quicksort √
 - − Heapsort √

SPACE COMPLEXITY ANALYSIS OF

MERGESORT

- Extra space used by MERGE-SORT algorithm to sort A[1..n]
 - The recursive running time $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$

Level k of the recursion tree requires ______ extra space.

MERGE-SORT(A, p, r)				
lif p	< r			
2	$q = \lfloor (p+r)/2 \rfloor$			
3	MERGE- $SORT(A, p, q)$			
4	MERGE- $SORT(A, q + 1, r)$			
5	MERGE(A, p, q, r)			

ME	DCE(Amam)
	$\mathbf{RGE}(A, p, q, r)$
I	$n_1 = q - p + 1$
2	$n_2 = r - q$
3	Let $L[1n_1+1]$ and $R[1n_2+1]$ be new arrays
	<u> </u>
4	for $i = 1$ to n_1
5	L[i] = A[p+i-1]
6	for $j = 1$ to n_2
7	R[j] = A[q+j]
8	$L[n_1+1] = \infty$
9	$R[n_2+1] = \infty$
10	i = 1
- 11	j = 1
12	for $k = p$ to r
13	if $L[i] \leq R[j]$
14	A[k] = L[i]
15	i = i + 1
16	else A[k] = R[j]
17	j = j + 1

SPACE COMPLEXITY MERGESORT

- Extra space used by MERGE-SORT algorithm to sort A[1..n]
 - The total space cost of the algorithm is

$$S(n) = \sum_{k=0}^{\lg n} 2^k \left(\frac{n}{2^k} + 2\right)$$

$$= \sum_{k=0}^{\lg n} (n + 2^{k+1})$$

$$= \sum_{k=0}^{\lg n} (n + 2^{k+1})$$

$$= \sum_{k=0}^{\lg n} n + \sum_{k=0}^{\lg n} 2^{k+1} = n(\lg n + 1) + (2 \cdot \frac{2^{\lg n + 1} - 1}{2 - 1})$$

$$= n \lg n + 5n - 2 = O(n \lg n)$$
Level Per-level Space Cost of 2° × (n+2)
$$= 2^2 \times (n/2^2 + 2)$$

$$\vdots$$

$$= n \lg n + 5n - 2 = O(n \lg n)$$

MERGE- $SORT(A, p, r)$				

ME	$\mathbf{RGE}(A, p, q, r)$
I	$n_1 = q - p + 1$
2	$n_2 = r - q$
2	Let $L[1n_1 + 1]$ and $R[1n_2 + 1]$
3	be new arrays
4	$\mathbf{for}\ i = 1\ \mathbf{to}\ n_1$
5	L[i] = A[p+i-1]
6	for $j = 1$ to n_2
7	R[j] = A[q+j]
8	$L[n_1+1] = \infty$
9	$R[n_2+1] = \infty$
10	i = 1
- 11	j = 1
12	$\mathbf{for}k=p\;\mathbf{to}r$
13	if $L[i] \leq R[j]$
14	A[k] = L[i]
15	i = i + 1
16	else A[k] = R[j]
17	j = j + 1

SORTING ALGORITHMS

• Differences of sorting algorithms that sort any given array A[1..n].

Technique	Algorithm	Time Complexity Bound $(T(n))$	Space Complexity Bound $(S(n))$	
	Bubblesort			
Naïve approach	Insertion sort	Best-case:		
		Worst-case:		
	Mergesort			
Divide-and-conquer	Quicksort	Best-case:		
		Worst-case:		
Building a data structure	Heapsort			

NEXT UP DYNAMIC PROGRAMMING

REFERENCE