5.a)	Find the complementary function and particular integral for the Egn
	and hence the general solution of the egn.
	$(D^{2}-1)Y = xe^{x} + cs^{2}x$ $m^{2}-1 = 0 \Rightarrow m = 1, -1$ $Y_{c} = c_{1}e^{x} + c_{2}e^{-x}$
Ϋ́P	$\frac{1}{D^{2}-1}(xe^{x}+cs^{2}x) = \frac{1}{D^{2}-1}xe^{x} + \frac{1}{D^{2}-1}(1+cs^{2}x)$
	$= e^{x} \frac{1}{(D+1)^{2}-1} + \frac{1}{2} \frac{1}{D^{2}-1} + \frac{1}{2} \frac{1}{D^{2}-1} + \frac{1}{2} \frac{1}{D^{2}-1}$
	$= \left(\begin{array}{ccc} \cdot \cdot & 1 & e^{\chi} & 1 & \\ \cdot & f(D) & & f(D+a) \end{array} \right)$
	$= e^{x} \frac{1}{D(D+2)} \times + \frac{1}{2(D^{2}-1)} e^{0x} + \frac{1}{2(-4-1)} (32x)$
	$= e^{x} \frac{1}{2} \frac{1}{2} \left(\frac{D}{2} + 1 \right)^{-1} x + \frac{1}{2} \frac{e^{0x}}{(0-1)} \frac{1}{10}$ $= e^{x} \frac{1}{2} \frac{1}{(1-D)} \frac{1}{2} \frac{1}{(0-1)} \frac{1}{10}$
	$= \frac{e^{x}}{2} \frac{1}{D} \left(1 - \frac{D}{2} + \dots \right) x - \frac{1}{2} + \frac{1}{10} \frac{cs^{2}x}{10}$ $= \frac{e^{x}}{2} \cdot \frac{1}{D} \left(x - \frac{1}{x} \right) - \frac{1}{2} - \frac{1}{10} \frac{cs^{2}x}{10}$
	$= \frac{e^{x}}{2} \int (x - \frac{1}{2}) dx - \frac{1}{2} - \frac{1}{2} GS2x$ Shot 6n One Plust) $= \frac{1}{2} - \frac{1}{2} GS2x$ By Dehra 2 (2) $= \frac{1}{2} - \frac{1}{2} GS2x$
	By Dehra 2 (2 2) 2 (0

