Formal Methods (形式化方法)

Lecture 13. More about Logic

智能与计算学部 章衡

2021年上学期

Language

2 Deductive System

Outline

Language

2 Deductive System

- E: the set of all even numbers
- P: the set of all primes

- E: the set of all even numbers
- P: the set of all primes
- x + y: x + y is the sum of x and y

- E: the set of all even numbers
- P: the set of all primes
- x + y: x + y is the sum of x and y
- x = y: x equals to y
- x > y: x is greater than y

- E: the set of all even numbers
- P: the set of all primes
- x + y: x + y is the sum of x and y
- x = y: x equals to y
- x > y: x is greater than y
- \bullet \forall x: for all x we have that \cdots
- ∃x: there is some x such that ···

- E: the set of all even numbers
- P: the set of all primes
- x + y: x + y is the sum of x and y
- x = y: x = y: x = y: x = y: x = y:
- x > y: x is greater than y
- \bullet $\forall x$: for all x we have that \cdots
- \bullet $\exists x$: there is some x such that \cdots
- $\bullet \ \forall x : E \bullet (x > 2 \rightarrow \exists y : P \bullet \exists z : P \bullet x = y + z)$
- m-ary predicates: propositions with m parameters
 - E, P: unary predicates; =, >: binary predicates

- E: the set of all even numbers
- P: the set of all primes
- x + y: x + y is the sum of x and y
- x = y: x = y: x = y: x = y:
- x > y: x is greater than y
- \bullet $\forall x$: for all x we have that \cdots
- ∃x: there is some x such that ···
- $\bullet \ \forall x : E \bullet (x > 2 \rightarrow \exists y : P \bullet \exists z : P \bullet x = y + z)$
- m-ary predicates: propositions with m parameters
 - E, P: unary predicates; =, >: binary predicates
- m-ary functions
 - +: a binary function

- E: the set of all even numbers
- P: the set of all primes
- x + y: x + y is the sum of x and y
- x = y: x = y: x = y: x = y: x = y:
- x > y: x is greater than y
- \bullet \forall x: for all x we have that ...
- \bullet $\exists x$: there is some x such that \cdots
- $\bullet \ \forall x : E \bullet (x > 2 \rightarrow \exists y : P \bullet \exists z : P \bullet x = y + z)$
- m-ary predicates: propositions with m parameters
 - E, P: unary predicates; =, >: binary predicates
- m-ary functions
 - +: a binary function
- universal quantifier ∀, existential quantifier ∃

- E: the set of all even numbers
- P: the set of all primes
- x + y: x + y is the sum of x and y
- x = y: x = y equals to y
- x > y: x is greater than y
- $\forall x$: for all x we have that \cdots
- \bullet $\exists x$: there is some x such that \cdots
- $\bullet \ \forall x : E \bullet (x > 2 \rightarrow \exists y : P \bullet \exists z : P \bullet x = y + z)$
- m-ary predicates: propositions with m parameters
 - E, P: unary predicates; =, >: binary predicates
- m-ary functions
 - +: a binary function
- universal quantifier ∀, existential quantifier ∃
- constants,

- E: the set of all even numbers
- P: the set of all primes
- x + y: x + y is the sum of x and y
- x = y: x equals to y
- x > y: x is greater than y
- $\forall x$: for all x we have that ...
- $\exists x$: there is some x such that ...
- $\bullet \ \forall x : E \bullet (x > 2 \rightarrow \exists y : P \bullet \exists z : P \bullet x = y + z)$
- m-ary predicates: propositions with m parameters
 - E, P: unary predicates; =, >: binary predicates
- m-ary functions
 - +: a binary function
- universal quantifier ∀, existential quantifier ∃
- constants, variables

Definition (Term)

Terms are precisely those expressions which can be obtained by finitely many applications of the following rules:

Definition (Term)

Terms are precisely those expressions which can be obtained by finitely many applications of the following rules:

Variables and constants are terms.

Definition (Term)

Terms are precisely those expressions which can be obtained by finitely many applications of the following rules:

- Variables and constants are terms.
- ② If t_1, \ldots, t_m are terms and f an m-ary function for some $m \ge 0$, then $f(t_1, \ldots, t_m)$ is also a term.

Definition (Term)

Terms are precisely those expressions which can be obtained by finitely many applications of the following rules:

- Variables and constants are terms.
- ② If t_1, \ldots, t_m are terms and f an m-ary function for some $m \geq 0$, then $f(t_1, \ldots, t_m)$ is also a term.

Example

Definition (Term)

Terms are precisely those expressions which can be obtained by finitely many applications of the following rules:

- Variables and constants are terms.
- ② If t_1, \ldots, t_m are terms and f an m-ary function for some $m \geq 0$, then $f(t_1, \ldots, t_m)$ is also a term.

Example

Definition (Term)

Terms are precisely those expressions which can be obtained by finitely many applications of the following rules:

- Variables and constants are terms.
- ② If t_1,\ldots,t_m are terms and f an m-ary function for some $m\geq 0$, then $f(t_1,\ldots,t_m)$ is also a term.

Example

- x, y, c
- f(x, c), g(y)

Definition (Term)

Terms are precisely those expressions which can be obtained by finitely many applications of the following rules:

- Variables and constants are terms.
- ② If t_1, \ldots, t_m are terms and f an m-ary function for some $m \geq 0$, then $f(t_1, \ldots, t_m)$ is also a term.

Example

- x, y, c
- f(x,c), g(y)
- f(f(x,c),g(y))

Definition (Formula)

Definition (Formula)

First-order formulas (or simply, formulas) are those expressions obtained by finitely many applications of the following rules:

 $\textbf{0} \ \ \text{If} \ t_1, \ldots, t_m \ \text{are terms and} \ P \ \text{an m-ary predicate, then} \ P(t_1, \ldots, t_m) \ \text{and} \ (t_1 = t_2) \ \text{are formulas};$

Definition (Formula)

First-order formulas (or simply, formulas) are those expressions obtained by finitely many applications of the following rules:

① If t_1, \ldots, t_m are terms and P an m-ary predicate, then $P(t_1, \ldots, t_m)$ and $(t_1 = t_2)$ are formulas; such formulas are called atomic formulas.

Definition (Formula)

- ① If t_1, \ldots, t_m are terms and P an m-ary predicate, then $P(t_1, \ldots, t_m)$ and $(t_1 = t_2)$ are formulas; such formulas are called atomic formulas.

Definition (Formula)

- ① If t_1, \ldots, t_m are terms and P an m-ary predicate, then $P(t_1, \ldots, t_m)$ and $(t_1 = t_2)$ are formulas; such formulas are called atomic formulas.
- $\textbf{ If } \varphi \text{ and } \psi \text{ are formulas, then } (\neg \varphi), (\varphi \land \psi), (\varphi \lor \psi), (\varphi \Rightarrow \psi), (\varphi \Leftrightarrow \psi) \text{ are formulas.}$
- **6** If φ is a formula, x a variable, and S a unary predicate, then $\forall x: S \bullet \varphi$ and $\exists x: S \bullet \varphi$ are formulas;

Definition (Formula)

- ① If t_1, \ldots, t_m are terms and P an m-ary predicate, then $P(t_1, \ldots, t_m)$ and $(t_1 = t_2)$ are formulas; such formulas are called atomic formulas.
- 2 If φ and ψ are formulas, then $(\neg \varphi)$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \Rightarrow \psi)$, $(\varphi \Leftrightarrow \psi)$ are formulas.
- **3** If φ is a formula, x a variable, and S a unary predicate, then $\forall x: S \bullet \varphi$ and $\exists x: S \bullet \varphi$ are formulas; in both formulas, φ is called the scope of quantifiers $\forall x: S$ and $\exists x: S$, respectively.

Definition (Formula)

First-order formulas (or simply, formulas) are those expressions obtained by finitely many applications of the following rules:

- ① If t_1, \ldots, t_m are terms and P an m-ary predicate, then $P(t_1, \ldots, t_m)$ and $(t_1 = t_2)$ are formulas; such formulas are called atomic formulas.
- 2 If φ and ψ are formulas, then $(\neg \varphi)$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \Rightarrow \psi)$, $(\varphi \Leftrightarrow \psi)$ are formulas.
- **6** If φ is a formula, x a variable, and S a unary predicate, then $\forall x: S \bullet \varphi$ and $\exists x: S \bullet \varphi$ are formulas; in both formulas, φ is called the scope of quantifiers $\forall x: S$ and $\exists x: S$, respectively.

Example

Let P be a unary predicate, and T be a binary predicate. Is $\exists x: P \bullet \exists y: P \bullet (R(x,y) \land \forall y: P \bullet T(x,y))$ a formula?

Definition (Formula)

First-order formulas (or simply, formulas) are those expressions obtained by finitely many applications of the following rules:

- ① If t_1, \ldots, t_m are terms and P an m-ary predicate, then $P(t_1, \ldots, t_m)$ and $(t_1 = t_2)$ are formulas; such formulas are called atomic formulas.
- 2 If φ and ψ are formulas, then $(\neg \varphi)$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \Rightarrow \psi)$, $(\varphi \Leftrightarrow \psi)$ are formulas.
- **3** If φ is a formula, x a variable, and S a unary predicate, then $\forall x : S \bullet \varphi$ and $\exists x : S \bullet \varphi$ are formulas; in both formulas, φ is called the scope of quantifiers $\forall x : S$ and $\exists x : S$, respectively.

Example

Let P be a unary predicate, and T be a binary predicate. Is $\exists x: P \bullet \exists y: P \bullet (R(x,y) \land \forall y: P \bullet T(x,y))$ a formula? T(x,y)

Definition (Formula)

First-order formulas (or simply, formulas) are those expressions obtained by finitely many applications of the following rules:

- If t_1, \ldots, t_m are terms and P an m-ary predicate, then $P(t_1, \ldots, t_m)$ and $(t_1 = t_2)$ are formulas; such formulas are called atomic formulas.
- $\textbf{ If } \varphi \text{ and } \psi \text{ are formulas, then } (\neg \varphi), (\varphi \land \psi), (\varphi \lor \psi), (\varphi \Rightarrow \psi), (\varphi \Leftrightarrow \psi) \text{ are formulas.}$
- **1** If φ is a formula, x a variable, and S a unary predicate, then $\forall x: S \bullet \varphi$ and $\exists x: S \bullet \varphi$ are formulas; in both formulas, φ is called the scope of quantifiers $\forall x: S$ and $\exists x: S$, respectively.

Example

Let P be a unary predicate, and T be a binary predicate. Is $\exists x : P \bullet \exists y : P \bullet (R(x, y) \land \forall y : P \bullet T(x, y))$ a formula? T(x, y)

$$\forall y : P \bullet T(x, y)$$

Definition (Formula)

First-order formulas (or simply, formulas) are those expressions obtained by finitely many applications of the following rules:

- ① If t_1, \ldots, t_m are terms and P an m-ary predicate, then $P(t_1, \ldots, t_m)$ and $(t_1 = t_2)$ are formulas; such formulas are called atomic formulas.
- 2 If φ and ψ are formulas, then $(\neg \varphi)$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \Rightarrow \psi)$, $(\varphi \Leftrightarrow \psi)$ are formulas.
- **6** If φ is a formula, x a variable, and S a unary predicate, then $\forall x: S \bullet \varphi$ and $\exists x: S \bullet \varphi$ are formulas; in both formulas, φ is called the scope of quantifiers $\forall x: S$ and $\exists x: S$, respectively.

Example

Let P be a unary predicate, and T be a binary predicate. Is $\exists x : P \bullet \exists y : P \bullet (R(x, y) \land \forall y : P \bullet T(x, y))$ a formula? T(x, y)

$$\forall y : P \bullet T(x, y)$$

$$(R(x,y) \wedge \forall y: P \bullet T(x,y))$$

Definition (Formula)

First-order formulas (or simply, formulas) are those expressions obtained by finitely many applications of the following rules:

- ① If t_1, \ldots, t_m are terms and P an m-ary predicate, then $P(t_1, \ldots, t_m)$ and $(t_1 = t_2)$ are formulas; such formulas are called atomic formulas.
- 2 If φ and ψ are formulas, then $(\neg \varphi)$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \Rightarrow \psi)$, $(\varphi \Leftrightarrow \psi)$ are formulas.
- **6** If φ is a formula, x a variable, and S a unary predicate, then $\forall x: S \bullet \varphi$ and $\exists x: S \bullet \varphi$ are formulas; in both formulas, φ is called the scope of quantifiers $\forall x: S$ and $\exists x: S$, respectively.

Example

Let P be a unary predicate, and T be a binary predicate. Is $\exists x: P \bullet \exists y: P \bullet (R(x,y) \land \forall y: P \bullet T(x,y))$ a formula? T(x,y)

$$\forall y : P \bullet T(x, y)$$

$$(R(x,y) \wedge \forall y: P \bullet T(x,y))$$

$$\exists y: Q \bullet (R(x,y) \land \forall y: P \bullet T(x,y))$$

Definition (Formula)

First-order formulas (or simply, formulas) are those expressions obtained by finitely many applications of the following rules:

- ① If t_1, \ldots, t_m are terms and P an m-ary predicate, then $P(t_1, \ldots, t_m)$ and $(t_1 = t_2)$ are formulas; such formulas are called atomic formulas.
- $\textbf{ If } \varphi \text{ and } \psi \text{ are formulas, then } (\neg \varphi), (\varphi \land \psi), (\varphi \lor \psi), (\varphi \Rightarrow \psi), (\varphi \Leftrightarrow \psi) \text{ are formulas.}$
- **6** If φ is a formula, x a variable, and S a unary predicate, then $\forall x: S \bullet \varphi$ and $\exists x: S \bullet \varphi$ are formulas; in both formulas, φ is called the scope of quantifiers $\forall x: S$ and $\exists x: S$, respectively.

Example

Let P be a unary predicate, and T be a binary predicate. Is $\exists x: P \bullet \exists y: P \bullet (R(x, y) \land \forall y: P \bullet T(x, y))$ a formula? T(x, y)

$$\forall y: P \bullet T(x,y)$$

$$(R(x, y) \land \forall y : P \bullet T(x, y))$$

$$\exists y : Q \bullet (R(x, y) \land \forall y : P \bullet T(x, y))$$

$$\exists x : P \bullet \exists y : Q \bullet (R(x, y) \land \forall y : P \bullet T(x, y))$$

章衡

Definition (Free occurrence and free variable)

An occurrence of a variable x is called free w.r.t. some formula φ if it is not quantified in φ , i.e., not in the scope of any quantifier in φ .

Definition (Free occurrence and free variable)

An occurrence of a variable x is called free w.r.t. some formula φ if it is not quantified in φ , i.e., not in the scope of any quantifier in φ . A variable x is called free w.r.t. φ if there is at least one free occurrence of x in φ .

Definition (Free occurrence and free variable)

An occurrence of a variable x is called free w.r.t. some formula φ if it is not quantified in φ , i.e., not in the scope of any quantifier in φ . A variable x is called free w.r.t. φ if there is at least one free occurrence of x in φ .

Example

 $T(\boldsymbol{x},\boldsymbol{y})$

Definition (Free occurrence and free variable)

An occurrence of a variable x is called free w.r.t. some formula φ if it is not quantified in φ , i.e., not in the scope of any quantifier in φ . A variable x is called free w.r.t. φ if there is at least one free occurrence of x in φ .

Example

$$T(\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y}$$

Definition (Free occurrence and free variable)

An occurrence of a variable x is called free w.r.t. some formula φ if it is not quantified in φ , i.e., not in the scope of any quantifier in φ . A variable x is called free w.r.t. φ if there is at least one free occurrence of x in φ .

$$T(\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y}$$

$$\forall y: P \bullet T(\textcolor{red}{x}, y)$$

Definition (Free occurrence and free variable)

An occurrence of a variable x is called free w.r.t. some formula φ if it is not quantified in φ , i.e., not in the scope of any quantifier in φ . A variable x is called free w.r.t. φ if there is at least one free occurrence of x in φ .

$$T(\textcolor{red}{\textbf{x}},\textcolor{red}{\textbf{y}}) \quad : \quad x,y$$

$$\forall y: P \bullet T(\textcolor{red}{\mathbf{x}}, y) \quad : \quad x$$

Definition (Free occurrence and free variable)

An occurrence of a variable x is called free w.r.t. some formula φ if it is not quantified in φ , i.e., not in the scope of any quantifier in φ . A variable x is called free w.r.t. φ if there is at least one free occurrence of x in φ .

$$\begin{array}{rcl} T(x,y) & : & x,y \\ \\ \forall y: P \bullet T(x,y) & : & x \end{array}$$

$$(R(x,y) \wedge \forall y: P \bullet T(x,y))$$

Definition (Free occurrence and free variable)

An occurrence of a variable x is called free w.r.t. some formula φ if it is not quantified in φ , i.e., not in the scope of any quantifier in φ . A variable x is called free w.r.t. φ if there is at least one free occurrence of x in φ .

```
T(\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y}
```

$$\forall y : P \bullet T(\mathbf{x}, y) : x$$

$$(R(\mathbf{x}, \mathbf{y}) \land \forall y : P \bullet T(\mathbf{x}, y)) : x, y$$

Definition (Free occurrence and free variable)

An occurrence of a variable x is called free w.r.t. some formula φ if it is not quantified in φ , i.e., not in the scope of any quantifier in φ . A variable x is called free w.r.t. φ if there is at least one free occurrence of x in φ .

```
\begin{split} T(\textbf{x},\textbf{y}) &: & x,y \\ \forall y: P \bullet T(\textbf{x},y) &: & x \\ (R(\textbf{x},\textbf{y}) \land \forall y: P \bullet T(\textbf{x},y)) &: & x,y \\ \exists y: Q \bullet (R(\textbf{x},y) \land \forall y: P \bullet T(\textbf{x},y)) &: & \end{split}
```


Definition (Free occurrence and free variable)

An occurrence of a variable x is called free w.r.t. some formula φ if it is not quantified in φ , i.e., not in the scope of any quantifier in φ . A variable x is called free w.r.t. φ if there is at least one free occurrence of x in φ .

```
T(x, y) : x, y
```

$$\forall y : P \bullet T(\mathbf{x}, y) : x$$

$$(R(\textcolor{red}{\textbf{x}},\textcolor{red}{\textbf{y}}) \land \forall y: P \bullet T(\textcolor{red}{\textbf{x}},y)) \quad : \quad x,y$$

$$\exists y: Q \bullet (R(\textcolor{red}{\textbf{x}}, y) \land \forall y: P \bullet T(\textcolor{red}{\textbf{x}}, y)) \quad : \quad x$$

Definition (Free occurrence and free variable)

An occurrence of a variable x is called free w.r.t. some formula φ if it is not quantified in φ , i.e., not in the scope of any quantifier in φ . A variable x is called free w.r.t. φ if there is at least one free occurrence of x in φ .

```
\begin{split} T(\textbf{x},\textbf{y}) &: & \textbf{x},\textbf{y} \\ \forall \textbf{y}: P \bullet T(\textbf{x},\textbf{y}) &: & \textbf{x} \\ (R(\textbf{x},\textbf{y}) \land \forall \textbf{y}: P \bullet T(\textbf{x},\textbf{y})) &: & \textbf{x},\textbf{y} \\ \exists \textbf{y}: Q \bullet (R(\textbf{x},\textbf{y}) \land \forall \textbf{y}: P \bullet T(\textbf{x},\textbf{y})) &: & \textbf{x} \\ \exists \textbf{x}: P \bullet \exists \textbf{y}: Q \bullet (R(\textbf{x},\textbf{y}) \land \forall \textbf{y}: P \bullet T(\textbf{x},\textbf{y})) &: & \end{split}
```


Definition (Free occurrence and free variable)

An occurrence of a variable x is called free w.r.t. some formula φ if it is not quantified in φ , i.e., not in the scope of any quantifier in φ . A variable x is called free w.r.t. φ if there is at least one free occurrence of x in φ .

```
T(\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y}
```

$$\forall y : P \bullet T(\mathbf{x}, y) : x$$

$$(R(\mathbf{x}, \mathbf{y}) \land \forall y : P \bullet T(\mathbf{x}, y))$$
 : x, y

$$\exists y: Q \bullet (R(\textcolor{red}{\textbf{x}}, y) \land \forall y: P \bullet T(\textcolor{red}{\textbf{x}}, y)) \quad : \quad x$$

$$\exists x: P \bullet \exists y: Q \bullet (R(x,y) \land \forall y: P \bullet T(x,y))$$
 : no free variable

Definition (Free occurrence and free variable)

An occurrence of a variable x is called free w.r.t. some formula φ if it is not quantified in φ , i.e., not in the scope of any quantifier in φ . A variable x is called free w.r.t. φ if there is at least one free occurrence of x in φ .

```
T(\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y}
```

$$\forall y : P \bullet T(\mathbf{x}, y) : x$$

$$(R(\mathbf{x}, \mathbf{y}) \land \forall y : P \bullet T(\mathbf{x}, y))$$
 : x, y

$$\exists y: Q \bullet (R(\textcolor{red}{\textbf{x}}, y) \land \forall y: P \bullet T(\textcolor{red}{\textbf{x}}, y)) \quad : \quad x$$

$$\exists x: P \bullet \exists y: Q \bullet (R(x,y) \land \forall y: P \bullet T(x,y))$$
 : no free variable

Definition (Free occurrence and free variable)

An occurrence of a variable x is called free w.r.t. some formula φ if it is not quantified in φ , i.e., not in the scope of any quantifier in φ . A variable x is called free w.r.t. φ if there is at least one free occurrence of x in φ .

Example

```
T(\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y} \forall \mathbf{y} : P \bullet T(\mathbf{x}, \mathbf{y}) : \mathbf{x}
```

$$(R(\mathbf{x}, \mathbf{y}) \land \forall y : P \bullet T(\mathbf{x}, y))$$
 : x, y

$$\exists y: Q \bullet (R(\textcolor{red}{x}, y) \land \forall y: P \bullet T(\textcolor{red}{x}, y)) \quad : \quad x$$

 $\exists x: P \bullet \exists y: Q \bullet (R(x,y) \land \forall y: P \bullet T(x,y)) \quad : \quad \text{no free variable}$

Definition (Sentence)

Every sentence is a formula without free variable.

 $\textbf{0} \ \ P(t_1,\ldots,t_m) \text{: the relation (represented by P) holds for the tuple of objects (represented by)} \ t_1,\ldots,t_m;$

 $\textbf{0} \ \ P(t_1,\ldots,t_m) \text{: the relation (represented by P) holds for the tuple of objects (represented by)} \ t_1,\ldots,t_m;$

 $(t_1 = t_2)$: the objects (represented by) t_1 and t_2 are the same;

- $(t_1 = t_2)$: the objects (represented by) t_1 and t_2 are the same;
- $(\neg \varphi)$: the property (represented by) φ does not hold;

- $(t_1 = t_2)$: the objects (represented by) t_1 and t_2 are the same;
- ($\neg \varphi$): the property (represented by) φ does not hold;
- $(\varphi \wedge \psi)$: both properties (represented by) φ and ψ hold;

- $(t_1 = t_2)$: the objects (represented by) t_1 and t_2 are the same;
- $(\neg \varphi)$: the property (represented by) φ does not hold;
- **4** $(\varphi \wedge \psi)$: both properties (represented by) φ and ψ hold;
- **6)** $(\varphi \lor \psi)$: either the property (represented by) φ or the property (represented by) ψ holds;

- $(t_1 = t_2)$: the objects (represented by) t_1 and t_2 are the same;
- $(\neg \varphi)$: the property (represented by) φ does not hold;
- $(\varphi \wedge \psi)$: both properties (represented by) φ and ψ hold;
- **6)** $(\varphi \lor \psi)$: either the property (represented by) φ or the property (represented by) ψ holds;
- $(\varphi \Rightarrow \psi)$: if the property (represented by) φ holds, then the property (represented by) ψ also holds;

- $\{0\}$ $P(t_1, \ldots, t_m)$: the relation (represented by P) holds for the tuple of objects (represented by) t_1, \ldots, t_m ;
- ($t_1 = t_2$): the objects (represented by) t_1 and t_2 are the same;
- $(\neg \varphi)$: the property (represented by) φ does not hold;
- $(\varphi \wedge \psi)$: both properties (represented by) φ and ψ hold;
- $(\varphi \lor \psi)$: either the property (represented by) φ or the property (represented by) ψ holds;
- \bigcirc $(\varphi \Rightarrow \psi)$: if the property (represented by) φ holds, then the property (represented by) ψ also holds;
- \bigcirc ($\varphi \Leftrightarrow \psi$): the property (represented by) φ holds if, and only if the property (represented by) ψ holds;

- $(t_1 = t_2)$: the objects (represented by) t_1 and t_2 are the same;
- ($\neg \varphi$): the property (represented by) φ does not hold;
- **4** $(\varphi \wedge \psi)$: both properties (represented by) φ and ψ hold;
- **6** $(\varphi \lor \psi)$: either the property (represented by) φ or the property (represented by) ψ holds;
- $(\varphi \Rightarrow \psi)$: if the property (represented by) φ holds, then the property (represented by) ψ also holds;
- ($\varphi \Leftrightarrow \psi$): the property (represented by) φ holds if, and only if the property (represented by) ψ holds;
- **6** $\forall x : S \bullet \varphi$: for every object x, if x in S then the property (represented by) φ holds;

- $\textbf{0} \ P(t_1,\ldots,t_m) \text{: the relation (represented by P) holds for the tuple of objects (represented by)} \ t_1,\ldots,t_m;$
- $(t_1 = t_2)$: the objects (represented by) t_1 and t_2 are the same;
- **(** $\neg \varphi$): the property (represented by) φ does not hold;
- $(\varphi \wedge \psi)$: both properties (represented by) φ and ψ hold;
- **6** $(\varphi \lor \psi)$: either the property (represented by) φ or the property (represented by) ψ holds;
- \bigcirc $(\varphi \Rightarrow \psi)$: if the property (represented by) φ holds, then the property (represented by) ψ also holds;
- \bigcirc $(\varphi \Leftrightarrow \psi)$: the property (represented by) φ holds if, and only if the property (represented by) ψ holds;
- **6** $\forall x : S \bullet \varphi$: for every object x, if x in S then the property (represented by) φ holds;
- \bigcirc $\exists x: S \bullet \varphi$: there is some object x such that x in S and the property (represented by) φ holds.

- $\textbf{0} \ \ P(t_1,\ldots,t_m) \text{: the relation (represented by P) holds for the tuple of objects (represented by)} \ t_1,\ldots,t_m;$
- $(t_1 = t_2)$: the objects (represented by) t_1 and t_2 are the same;
- ($\neg \varphi$): the property (represented by) φ does not hold;
- $(\varphi \wedge \psi)$: both properties (represented by) φ and ψ hold;
- **6** $(\varphi \lor \psi)$: either the property (represented by) φ or the property (represented by) ψ holds;
- \bigcirc $(\varphi \Rightarrow \psi)$: if the property (represented by) φ holds, then the property (represented by) ψ also holds;
- \bigcirc $(\varphi \Leftrightarrow \psi)$: the property (represented by) φ holds if, and only if the property (represented by) ψ holds;
- ∀x : S φ : for every object x, if x in S then the property (represented by) φ holds;
- \bigcirc $\exists x: S \bullet \varphi$: there is some object x such that x in S and the property (represented by) φ holds.

Definition (Logical consequence (逻辑推论), informal definition)

Suppose $\Sigma = \{\varphi_1, \dots, \varphi_n\}$, and $\varphi_1, \dots, \varphi_n, \psi$ are sentences. We call ψ a logical consequence of Σ , denoted $\Sigma \models \psi$ (or $\varphi_1, \dots, \varphi_n \models \psi$), if the property $\varphi_1 \wedge \dots \wedge \varphi_n \Rightarrow \psi$ holds.

- $(t_1 = t_2)$: the objects (represented by) t_1 and t_2 are the same;
- ($\neg \varphi$): the property (represented by) φ does not hold;
- **(** $\varphi \wedge \psi$ **)**: both properties (represented by) φ and ψ hold;
- **6** $(\varphi \lor \psi)$: either the property (represented by) φ or the property (represented by) ψ holds;
- \bigcirc $(\varphi \Rightarrow \psi)$: if the property (represented by) φ holds, then the property (represented by) ψ also holds;
- ($\varphi \Leftrightarrow \psi$): the property (represented by) φ holds if, and only if the property (represented by) ψ holds;
- ∀x : S φ : for every object x, if x in S then the property (represented by) φ holds;
- \bigcirc $\exists x: S \bullet \varphi$: there is some object x such that x in S and the property (represented by) φ holds.

Definition (Logical consequence (逻辑推论), informal definition)

Suppose $\Sigma = \{\varphi_1, \dots, \varphi_n\}$, and $\varphi_1, \dots, \varphi_n, \psi$ are sentences. We call ψ a logical consequence of Σ , denoted $\Sigma \models \psi$ (or $\varphi_1, \dots, \varphi_n \models \psi$), if the property $\varphi_1 \wedge \dots \wedge \varphi_n \Rightarrow \psi$ holds. In this case, we say that ψ is derivable from Σ .

- (0) $P(t_1, \ldots, t_m)$: the relation (represented by P) holds for the tuple of objects (represented by) t_1, \ldots, t_m ;
- $(t_1 = t_2)$: the objects (represented by) t_1 and t_2 are the same;
- ($\neg \varphi$): the property (represented by) φ does not hold;
- **4** $(\varphi \wedge \psi)$: both properties (represented by) φ and ψ hold;
- **6** $(\varphi \lor \psi)$: either the property (represented by) φ or the property (represented by) ψ holds;
- \bigcirc $(\varphi \Rightarrow \psi)$: if the property (represented by) φ holds, then the property (represented by) ψ also holds;
- $(\varphi \Leftrightarrow \psi)$: the property (represented by) φ holds if, and only if the property (represented by) ψ holds;
- **1** $\forall x : S \bullet \varphi$: for every object x, if x in S then the property (represented by) φ holds;
- \bigcirc $\exists x: S \bullet \varphi$: there is some object x such that x in S and the property (represented by) φ holds.

Definition (Logical consequence (逻辑推论), informal definition)

Suppose $\Sigma = \{\varphi_1, \dots, \varphi_n\}$, and $\varphi_1, \dots, \varphi_n$, ψ are sentences. We call ψ a logical consequence of Σ , denoted $\Sigma \vDash \psi$ (or $\varphi_1, \dots, \varphi_n \vDash \psi$), if the property $\varphi_1 \wedge \dots \wedge \varphi_n \Rightarrow \psi$ holds. In this case, we say that ψ is derivable from Σ .

We say that φ is logically equivalent to ψ , denoted $\varphi \equiv \psi$, if we have both $\varphi \vDash \psi$ and $\psi \vDash \varphi$.

 $\bullet \ \exists x: S \bullet (\varphi \wedge \psi) \text{ may be rewritten as } \exists x: S \mid \varphi \bullet \psi$

- $\bullet \ \exists \mathtt{x} : \mathtt{S} \bullet (\varphi \wedge \psi) \text{ may be rewritten as } \exists \mathtt{x} : \mathtt{S} \mid \varphi \bullet \psi$
- $\bullet \ \, \forall \mathbf{x}: \mathbf{S} \bullet (\varphi \Rightarrow \psi) \text{ may be rewritten as } \forall \mathbf{x}: \mathbf{S} \mid \varphi \bullet \psi$

- $\bullet \ \exists x: S \bullet (\varphi \wedge \psi) \text{ may be rewritten as } \exists x: S \mid \varphi \bullet \psi$
- $\forall x : S \bullet (\varphi \Rightarrow \psi)$ may be rewritten as $\forall x : S \mid \varphi \bullet \psi$
- $\exists x_1 : S \bullet \cdots \bullet \exists x_n : S \bullet \varphi$ may be rewritten as $\exists x_1, \ldots, x_n : S \bullet \varphi$
- $\forall x_1 : S \bullet \cdots \bullet \exists x_n : S \bullet \varphi$ may be rewritten as $\forall x_1, \ldots, x_n : S \bullet \varphi$

- $\exists x : S \bullet (\varphi \land \psi)$ may be rewritten as $\exists x : S \mid \varphi \bullet \psi$
- $\forall x : S \bullet (\varphi \Rightarrow \psi)$ may be rewritten as $\forall x : S \mid \varphi \bullet \psi$
- $\exists x_1 : S \bullet \cdots \bullet \exists x_n : S \bullet \varphi$ may be rewritten as $\exists x_1, \ldots, x_n : S \bullet \varphi$
- $\forall x_1 : S \bullet \cdots \bullet \exists x_n : S \bullet \varphi$ may be rewritten as $\forall x_1, \ldots, x_n : S \bullet \varphi$

Example

• $\forall x : E \bullet (x > 2 \Rightarrow \exists y : P \bullet \exists z : P \bullet x = y + z)$:

- $\exists x : S \bullet (\varphi \land \psi)$ may be rewritten as $\exists x : S \mid \varphi \bullet \psi$
- $\forall x : S \bullet (\varphi \Rightarrow \psi)$ may be rewritten as $\forall x : S \mid \varphi \bullet \psi$
- $\exists x_1 : S \bullet \cdots \bullet \exists x_n : S \bullet \varphi$ may be rewritten as $\exists x_1, \ldots, x_n : S \bullet \varphi$
- $\forall x_1 : S \bullet \cdots \bullet \exists x_n : S \bullet \varphi$ may be rewritten as $\forall x_1, \ldots, x_n : S \bullet \varphi$

Example

• $\forall x : E \bullet (x > 2 \Rightarrow \exists y : P \bullet \exists z : P \bullet x = y + z)$:

$$\forall x : E \mid x > 2 \bullet \exists y, z : P \bullet x = y + z$$

- $\exists x : S \bullet (\varphi \land \psi)$ may be rewritten as $\exists x : S \mid \varphi \bullet \psi$
- $\bullet \ \, \forall x:S \bullet (\varphi \Rightarrow \psi) \text{ may be rewritten as } \forall x:S \mid \varphi \bullet \psi$
- $\exists x_1 : S \bullet \cdots \bullet \exists x_n : S \bullet \varphi$ may be rewritten as $\exists x_1, \ldots, x_n : S \bullet \varphi$
- $\forall x_1 : S \bullet \cdots \bullet \exists x_n : S \bullet \varphi \text{ may be rewritten as } \forall x_1, \ldots, x_n : S \bullet \varphi$

Example

- $\forall x : E \bullet (x > 2 \Rightarrow \exists y : P \bullet \exists z : P \bullet x = y + z)$:
 - $\forall x : E \mid x > 2 \bullet \exists y, z : P \bullet x = y + z$

Built-in predicates, functions and constants

- Built-in predicates: $\mathbb{N}, \mathbb{Z}, <, \leq, >, \geq, \in, \subseteq, \subset, \dots$
- Built-in functions: $+, -, *, /, \dots$
- Built-in constants: $0, 1, 2, \dots$

Exercise

Ex. 1

Let us consider a directed graph G. Suppose V is a unary predicate intended to define the set of vertices in G, and E is a binary predicate intended to define the set of edges in G. Please use a first-order sentence to describe the following property:

The indegree of G is not greater than 3.

Ex. 2

Let P be a unary predicate. Please use a first-order sentence to assert that

P consists of the set of all primes.

Note that the bulit-in functions +, -, *, / and predicates $=, >, \ge, <, \le$ are allowed.

Outline

Language

2 Deductive System

Deductive system (演绎系统)

• Deductive systems provide a syntactic way to prove $\Sigma \vDash \psi$.

Deductive system (演绎系统)

- Deductive systems provide a syntactic way to prove $\Sigma \vDash \psi$.
- A deductive system consists of the finite set of inference rules of the following form:

Deductive system (演绎系统)

- Deductive systems provide a syntactic way to prove $\Sigma \vDash \psi$.
- A deductive system consists of the finite set of inference rules of the following form:

Definition (Inference rule (推理规则))

Every inference rule is of the following form:

$$\frac{\sum_{1} \vDash \varphi_{1} \cdots \sum_{n} \vDash \varphi_{n}}{\sum \vDash \psi} \text{ [name] < condition of application>}$$

Inference rules (1)

Reference and monotonicity

$$\varphi \vDash \varphi$$

[ref]

$$\frac{\Sigma \vDash \varphi}{\Sigma, \Gamma \vDash \varphi}$$

Inference rules (1)

Reference and monotonicity

$$\overline{\varphi \models \varphi}$$
 [ref]

$$\frac{\Sigma \vDash \varphi}{\Sigma, \Gamma \vDash \varphi} \quad [+]$$

_

$$\frac{\Sigma, \neg \varphi \vDash \psi \quad \Sigma, \neg \varphi \vDash \neg \psi}{\Sigma \vDash \varphi} \quad [\neg \neg]$$

Inference rules (2)

$$\wedge$$

$$\frac{\Sigma \vDash \varphi \land \psi}{\Sigma \vDash \varphi} \qquad [\land -1] \qquad \frac{\Sigma \vDash \varphi \land \psi}{\Sigma \vDash \psi} \qquad [\land -2]$$

$$\frac{\Sigma \vDash \varphi \quad \Sigma \vDash \psi}{\Sigma \vDash \varphi \land \psi} \qquad [\land +]$$

Inference rules (2)

 \wedge

$$\frac{\sum \vDash \varphi \land \psi}{\sum \vDash \varphi} \qquad [\land -_1] \qquad \frac{\sum \vDash \varphi \land \psi}{\sum \vDash \psi} \qquad [\land -_2]$$

$$\frac{\sum \vDash \varphi \quad \Sigma \vDash \psi}{\sum \vDash \varphi \land \psi} \qquad [\land +]$$

V

$$\frac{\Sigma, \varphi \vDash \chi \quad \Sigma, \psi \vDash \chi}{\Sigma, \varphi \lor \psi \vDash \chi} \quad [\lor -]$$

$$\frac{\Sigma \vDash \varphi}{\Sigma \vDash \varphi \lor \psi} \quad [\lor +_1] \qquad \frac{\Sigma \vDash \varphi}{\Sigma \vDash \psi \lor \varphi} \quad [\lor +_2]$$

Inference rules (3)

$$\Rightarrow$$

$$\frac{\Sigma \vDash \varphi \Rightarrow \psi \quad \Sigma \vDash \varphi}{\Sigma \vDash \psi} \quad [\Rightarrow -]$$

$$\frac{\Sigma, \varphi \vDash \psi}{\Sigma \vDash \varphi \Rightarrow \psi} \quad [\Rightarrow +]$$

Inference rules (3)

$$\Rightarrow$$

$$\frac{\Sigma \vDash \varphi \Rightarrow \psi \quad \Sigma \vDash \varphi}{\Sigma \vDash \psi} \quad [\Rightarrow -]$$

$$\frac{\Sigma, \varphi \vDash \psi}{\Sigma \vDash \varphi \Rightarrow \psi} \quad [\Rightarrow +]$$

$$\Leftrightarrow$$

$$\frac{\Sigma \vDash \varphi \Leftrightarrow \psi \quad \Sigma \vDash \varphi}{\Sigma \vDash \psi} \quad [\Leftrightarrow -1]$$

$$\frac{\Sigma \vDash \varphi \Leftrightarrow \psi \quad \Sigma \vDash \psi}{\Sigma \vDash \varphi} \quad [\Leftrightarrow -2]$$

$$\frac{\Sigma, \varphi \vDash \psi \quad \Sigma, \psi \vDash \varphi}{\Sigma \vDash \varphi \Leftrightarrow \psi} \quad [\Leftrightarrow +]$$

Definition (Formal proof)

Let Σ be a set of formulas, φ a formula. We say that $\Sigma \vDash \varphi$ is formally provable if there is a finite sequence of the form

$$\Sigma_1 \vDash \varphi_1, \Sigma_2 \vDash \varphi_2, \dots, \Sigma_n \vDash \varphi_n$$
 (1)

such that

Definition (Formal proof)

Let Σ be a set of formulas, φ a formula. We say that $\Sigma \vDash \varphi$ is formally provable if there is a finite sequence of the form

$$\Sigma_1 \vDash \varphi_1, \Sigma_2 \vDash \varphi_2, \dots, \Sigma_n \vDash \varphi_n$$
 (1)

such that(1) for $k=1,\ldots,n,\ \Sigma_k\vDash\varphi_k$ is obtained from

$$\Sigma_1 \vDash \varphi_1, \dots, \Sigma_{k-1} \vDash \varphi_{k-1}$$

by some inference rule presented previously,

Definition (Formal proof)

Let Σ be a set of formulas, φ a formula. We say that $\Sigma \vDash \varphi$ is formally provable if there is a finite sequence of the form

$$\Sigma_1 \vDash \varphi_1, \Sigma_2 \vDash \varphi_2, \dots, \Sigma_n \vDash \varphi_n$$
 (1)

such that(1) for $k=1,\ldots,n,\ \Sigma_k\vDash\varphi_k$ is obtained from

$$\Sigma_1 \vDash \varphi_1, \dots, \Sigma_{k-1} \vDash \varphi_{k-1}$$

by some inference rule presented previously,(2) $\Sigma_n = \Sigma$

Definition (Formal proof)

Let Σ be a set of formulas, φ a formula. We say that $\Sigma \vDash \varphi$ is formally provable if there is a finite sequence of the form

$$\Sigma_1 \vDash \varphi_1, \Sigma_2 \vDash \varphi_2, \dots, \Sigma_n \vDash \varphi_n$$
 (1)

such that(1) for $k=1,\ldots,n,\ \Sigma_k\vDash\varphi_k$ is obtained from

$$\Sigma_1 \vDash \varphi_1, \dots, \Sigma_{k-1} \vDash \varphi_{k-1}$$

by some inference rule presented previously,(2) $\Sigma_n = \Sigma$ and (3) $\varphi_n = \varphi$.

Definition (Formal proof)

Let Σ be a set of formulas, φ a formula. We say that $\Sigma \vDash \varphi$ is formally provable if there is a finite sequence of the form

$$\Sigma_1 \vDash \varphi_1, \Sigma_2 \vDash \varphi_2, \dots, \Sigma_n \vDash \varphi_n$$
 (1)

such that(1) for $k=1,\ldots,n,\ \Sigma_k\vDash\varphi_k$ is obtained from

$$\Sigma_1 \vDash \varphi_1, \dots, \Sigma_{k-1} \vDash \varphi_{k-1}$$

by some inference rule presented previously,(2) $\Sigma_n = \Sigma$ and (3) $\varphi_n = \varphi$. In this case, the above sequence is called a formal proof of $\Sigma \models \varphi$.

Definition (Formal proof)

Let Σ be a set of formulas, φ a formula. We say that $\Sigma \vDash \varphi$ is formally provable if there is a finite sequence of the form

$$\Sigma_1 \vDash \varphi_1, \Sigma_2 \vDash \varphi_2, \dots, \Sigma_n \vDash \varphi_n$$
 (1)

such that(1) for $k=1,\ldots,n,\ \Sigma_k\vDash\varphi_k$ is obtained from

$$\Sigma_1 \vDash \varphi_1, \dots, \Sigma_{k-1} \vDash \varphi_{k-1}$$

by some inference rule presented previously,(2) $\Sigma_n = \Sigma$ and (3) $\varphi_n = \varphi$. In this case, the above sequence is called a formal proof of $\Sigma \models \varphi$.

Example

Below is a formal proof of $\varphi \wedge \psi \vDash \varphi$:

- (1) $\varphi \wedge \psi \models \varphi \wedge \psi$ [ref]
- (2) $\varphi \wedge \psi \models \varphi$ $[\wedge -1], (1)$

Example

Please prove the following by deductive system: If $\varphi \in \Sigma$ then $\Sigma \models \varphi$.

Example

Please prove the following by deductive system: If $\varphi \in \Sigma$ then $\Sigma \vDash \varphi$.

Proof.

Suppose $\varphi \in \Sigma$, and let $\Sigma_0 == \Sigma \setminus \{\varphi\}$.

Example

Please prove the following by deductive system: If $\varphi \in \Sigma$ then $\Sigma \vDash \varphi$.

Proof.

Suppose $\varphi \in \Sigma$, and let $\Sigma_0 == \Sigma \setminus \{\varphi\}$. Then the following is a formal proof of $\Sigma_0, \varphi \models \varphi$.

- (1) $\varphi \models \varphi$ [ref]
- (2) $\Sigma_0, \varphi \vDash \varphi$ [+], (1)

Example

Please prove the following by deductive system: If $\varphi \in \Sigma$ then $\Sigma \models \varphi$.

Proof.

Suppose $\varphi \in \Sigma$, and let $\Sigma_0 == \Sigma \setminus \{\varphi\}$. Then the following is a formal proof of $\Sigma_0, \varphi \models \varphi$.

- (1) $\varphi \models \varphi$ [ref]
- (2) $\Sigma_0, \varphi \vDash \varphi$ [+], (1)

We thus have that $\Sigma \vDash \varphi$.

Example

Please prove the following by deductive system: If $\varphi \in \Sigma$ then $\Sigma \models \varphi$.

Proof.

Suppose $\varphi \in \Sigma$, and let $\Sigma_0 == \Sigma \setminus \{\varphi\}$. Then the following is a formal proof of $\Sigma_0, \varphi \models \varphi$.

- (1) $\varphi \models \varphi$ [ref]
- (2) $\Sigma_0, \varphi \vDash \varphi$ [+], (1)

We thus have that $\Sigma \vDash \varphi$.

$$\Sigma \vDash \varphi$$

$$[\in]$$
 $\langle \varphi \in \Sigma \rangle$

Transitivity of inference

Rule of transitivity

$$\begin{array}{ccc} \Sigma \vDash \varphi_1 & \cdots & \Sigma \vDash \varphi_n & \varphi_1, \dots, \varphi_n \vDash \psi \\ \hline & & & \\ \Sigma \vDash \psi & & & \\ \end{array}$$
 [trans]

Transitivity of inference

Rule of transitivity

 $\Sigma \vDash \psi$

(m)

$$\frac{\Sigma \vDash \varphi_1 \quad \cdots \quad \Sigma \vDash \varphi_n \quad \varphi_1, \dots, \varphi_n \vDash \psi}{\Sigma \vDash \psi} \quad \text{[trans]}$$

Proof (by deductive system).

 $[\Rightarrow -]$, (m-2), (m-1)

Example

Please give a formal proof of $\neg \varphi \Rightarrow \psi \vDash \neg \psi \Rightarrow \varphi$.

Example

Please give a formal proof of $\neg \varphi \Rightarrow \psi \vDash \neg \psi \Rightarrow \varphi$.

Proof.

(1)
$$\neg \varphi \Rightarrow \psi, \neg \psi, \neg \varphi \vDash \neg \varphi \Rightarrow \psi \quad [\in]$$

(2)
$$\neg \varphi \Rightarrow \psi, \neg \psi, \neg \varphi \models \neg \varphi$$
 [\in]

(3)
$$\neg \varphi \Rightarrow \psi, \neg \psi, \neg \varphi \models \psi$$
 $[\Rightarrow -], (1), (2)$

$$(4) \quad \neg \varphi \Rightarrow \psi, \neg \psi, \neg \varphi \vDash \neg \psi \qquad [\in]$$

(5)
$$\neg \varphi \Rightarrow \psi, \neg \psi \models \varphi$$
 $[\neg -], (3), (4)$

(6)
$$\neg \varphi \Rightarrow \psi \vDash \neg \psi \Rightarrow \varphi$$
 $[\Rightarrow +], (5)$

Example

Please give a formal proof of $\varphi \Rightarrow \psi, \psi \Rightarrow \chi \vDash \varphi \Rightarrow \chi$.

Example

Please give a formal proof of $\varphi \Rightarrow \psi, \psi \Rightarrow \chi \vDash \varphi \Rightarrow \chi$.

Proof.

(1)
$$\varphi \Rightarrow \psi, \psi \Rightarrow \chi, \varphi \models \varphi \Rightarrow \psi \quad [\in]$$

(2)
$$\varphi \Rightarrow \psi, \psi \Rightarrow \chi, \varphi \models \varphi$$
 [\in]

(3)
$$\varphi \Rightarrow \psi, \psi \Rightarrow \chi, \varphi \models \psi$$
 $[\Rightarrow -], (1), (2)$

(4)
$$\varphi \Rightarrow \psi, \psi \Rightarrow \chi, \varphi \models \psi \Rightarrow \chi \quad [\in]$$

(5)
$$\varphi \Rightarrow \psi, \psi \Rightarrow \chi, \varphi \models \chi$$
 $[\Rightarrow -], (4), (3)$

(6)
$$\varphi \Rightarrow \psi, \psi \Rightarrow \chi \vDash \varphi \Rightarrow \chi$$
 $[\Rightarrow +], (5)$

Exercise

Ex. 3

Please prove the following by deductive system:

- ② If Σ is finite, and we have both $\Sigma, \varphi \vDash \psi$ and $\Sigma, \varphi \vDash \neg \psi$, then we also have $\Sigma \vDash \neg \varphi$.

First-order inference rules (1)

 \forall

$$\frac{\sum \models \forall \mathbf{x} : \mathbf{S} \bullet \varphi}{\sum \models \mathbf{t} \in \mathbf{S} \Rightarrow \varphi[\mathbf{t}/\mathbf{x}]} \quad [\forall -]$$

$$\frac{\Sigma \vDash x \in S \Rightarrow \varphi}{\Sigma \vDash \forall x : S \bullet \varphi} \quad [\forall +] \quad \langle x \text{ has no free occurrence in } \Sigma \rangle$$

where $\varphi[t/x]$ denote the formula obtained from φ by substituting t for all occurrences of x.

First-order inference rules (1)

 \forall

$$\frac{\sum \vDash \forall x : S \bullet \varphi}{\sum \vDash t \in S \Rightarrow \varphi[t/x]} \quad [\forall -]$$

$$\frac{\Sigma \vDash x \in S \Rightarrow \varphi}{\Sigma \vDash \forall x : S \bullet \varphi} \quad [\forall +] \quad \langle x \text{ has no free occurrence in } \Sigma \rangle$$

where $\varphi[t/x]$ denote the formula obtained from φ by substituting t for all occurrences of x.

 \exists

$$\frac{\Sigma, \mathbf{x} \in \mathbf{S}, \varphi \vDash \psi}{\Sigma, \exists \mathbf{x} : \mathbf{S} \bullet \varphi \vDash \psi} \quad [\exists -] \quad <\mathbf{x} \text{ has no free occurrence in } \Sigma \text{ and } \psi >$$

$$\frac{\Sigma \vDash t \in S \land \varphi(t)}{\Sigma \vDash \exists x : S \bullet \varphi(x)} \quad [\exists +]$$

where $\varphi(x)$ is obtained from $\varphi(t)$ by substituting x for some occurrences of t.

First-order inference rules (2)

$$\frac{\Sigma \vDash \varphi(t) \quad \Sigma \vDash t = t'}{\Sigma \vDash \varphi(t')} \quad [=-]$$

$$\frac{}{\vDash x = x} \quad [=+]$$

where $\varphi(t')$ is obtained from $\varphi(t)$ by substituting t' for some occurrences of t.

Example

Prove the following by deductive systems: $\forall x: S \bullet \forall y: T \bullet \varphi(x,y) \equiv \forall y: T \bullet \forall x: S \bullet \varphi(x,y)$.

Example

Prove the following by deductive systems: $\forall x: S \bullet \forall y: T \bullet \varphi(x,y) \equiv \forall y: T \bullet \forall x: S \bullet \varphi(x,y).$

Proof.

Due to the symmetry, only prove $\forall x: S \bullet \forall y: T \bullet \varphi(x,y) \models \forall y: T \bullet \forall x: S \bullet \varphi(x,y)$.

(1)
$$\forall x : S \bullet \forall y : T \bullet \varphi(x, y), x \in S, y \in T \models \forall x : S \bullet \forall y : T \bullet \varphi(x, y)$$
 [\in]

$$(2) \qquad \forall x: S \bullet \forall y: T \bullet \varphi(x,y), x \in S, y \in T \vDash x \in S \Rightarrow \forall y: T \bullet \varphi(x,y) \qquad [\forall -], (1)$$

(3)
$$\forall x : S \bullet \forall y : T \bullet \varphi(x, y), x \in S, y \in T \vDash x \in S$$

$$(4) \qquad \forall \mathbf{x}: \mathbf{S} \bullet \forall \mathbf{y}: \mathbf{T} \bullet \varphi(\mathbf{x}, \mathbf{y}), \mathbf{x} \in \mathbf{S}, \mathbf{y} \in \mathbf{T} \vDash \forall \mathbf{y}: \mathbf{T} \bullet \varphi(\mathbf{x}, \mathbf{y}) \qquad \qquad [\Rightarrow -], (2), (3)$$

$$(5) \qquad \forall \mathbf{x}: \mathbf{S} \bullet \forall \mathbf{y}: \mathbf{T} \bullet \varphi(\mathbf{x}, \mathbf{y}), \mathbf{x} \in \mathbf{S}, \mathbf{y} \in \mathbf{T} \vDash \mathbf{y} \in \mathbf{T} \Rightarrow \varphi(\mathbf{x}, \mathbf{y}) \qquad [\forall -], (4)$$

(6)
$$\forall x : S \bullet \forall y : T \bullet \varphi(x, y), x \in S, y \in T \vDash y \in T$$

$$\forall \mathbf{x}: \mathbf{S} \bullet \forall \mathbf{y}: \mathbf{T} \bullet \varphi(\mathbf{x}, \mathbf{y}), \mathbf{x} \in \mathbf{S}, \mathbf{y} \in \mathbf{T} \vDash \varphi(\mathbf{x}, \mathbf{y}) \qquad \qquad [\Rightarrow -], (5), (6)$$

(8)
$$\forall x : S \bullet \forall y : T \bullet \varphi(x, y), y \in T \models x \in S \Rightarrow \varphi(x, y)$$
 $[\Rightarrow +], (7)$

$$(9) \qquad \forall \mathbf{x}: \mathbf{S} \bullet \forall \mathbf{y}: \mathbf{T} \bullet \varphi(\mathbf{x}, \mathbf{y}), \mathbf{y} \in \mathbf{T} \vDash \forall \mathbf{x}: \mathbf{S} \bullet \varphi(\mathbf{x}, \mathbf{y}) \qquad \qquad [\forall +], (8)$$

$$(10) \qquad \forall x: S \bullet \forall y: T \bullet \varphi(x,y) \vDash y \in T \Rightarrow \forall x: S \bullet \varphi(x,y) \\ [\Rightarrow +], (9)$$

$$(11) \qquad \forall x: S \bullet \forall y: T \bullet \varphi(x,y) \vDash \forall y: T \bullet \forall x: S \bullet \varphi(x,y) \qquad [\forall +], (10)$$

[=]

[=]

Example

Prove the following by deductive systems: $\neg \forall x : S \bullet \varphi(x) \equiv \exists x : S \bullet \neg \varphi(x)$.

Example

Prove the following by deductive systems: $\neg \forall x : S \bullet \varphi(x) \equiv \exists x : S \bullet \neg \varphi(x)$.

Proof.

Only prove $\neg \forall x : S \bullet \varphi(x) \vDash \exists x : S \bullet \neg \varphi(x)$.

$$(1) \quad \neg \forall x : S \bullet \varphi(x), \neg \exists x : S \bullet \neg \varphi(x), x \in S, \neg \varphi(x) \vDash x \in S$$

$$(2) \quad \neg \forall x : S \bullet \varphi(x), \neg \exists x : S \bullet \neg \varphi(x), x \in S, \neg \varphi(x) \vDash \neg \varphi(x)$$
 [\in]

$$(3) \qquad \neg \forall x : S \bullet \varphi(x), \neg \exists x : S \bullet \neg \varphi(x), x \in S, \neg \varphi(x) \vDash x \in S \land \neg \varphi(x) \qquad [\land +], (1), (2)$$

$$(4) \quad \neg \forall x : S \bullet \varphi(x), \neg \exists x : S \bullet \neg \varphi(x), x \in S, \neg \varphi(x) \vDash \exists x : S \bullet \neg \varphi(x) \qquad [\exists +], (3)$$

$$(5) \quad \neg \forall x : S \bullet \varphi(x), \neg \exists x : S \bullet \neg \varphi(x), x \in S, \neg \varphi(x) \vDash \neg \exists x : S \bullet \neg \varphi(x) \quad [\in]$$

(6)
$$\neg \forall x : S \bullet \varphi(x), \neg \exists x : S \bullet \neg \varphi(x), x \in S \models \varphi(x)$$
 $[\neg \neg], (5)$

(7)
$$\neg \forall x : S \bullet \varphi(x), \neg \exists x : S \bullet \neg \varphi(x) \models x \in S \Rightarrow \varphi(x)$$

$$(8) \quad \neg \forall x : S \bullet \varphi(x), \neg \exists x : S \bullet \neg \varphi(x) \models \forall x : S \bullet \varphi(x)$$

$$[\forall +], (7)$$

(9)
$$\neg \forall x : S \bullet \varphi(x), \neg \exists x : S \bullet \neg \varphi(x) \vDash \neg \forall x : S \bullet \varphi(x)$$
 [\in]

$$(10) \quad \neg \forall x : S \bullet \varphi(x) \vDash \exists x : S \bullet \neg \varphi(x)$$

[=]

 $[\Rightarrow +], (6)$

Example 3 (one-point rule)

Example (Prove the following property by deductive system)

 $\bullet \ \ \text{If } \Sigma \vDash \exists x : S \bullet (\varphi \wedge x = t) \text{ and } x \text{ does not occur in t, then } \Sigma \vDash t \in S \wedge \varphi[t/x].$

Example 3 (one-point rule)

Example (Prove the following property by deductive system)

• If $\Sigma \vDash \exists x : S \bullet (\varphi \land x = t)$ and x does not occur in t, then $\Sigma \vDash t \in S \land \varphi[t/x]$.

Proof.

(1)
$$x \in S \land \varphi \land x = t \models x \in S \land \varphi \land x = t$$
 [ref]

(2)
$$x \in S \land \varphi \land x = t \models x = t$$
 $[\land -2], (1)$

(3)
$$x \in S \land \varphi \land x = t \models x \in S \land \varphi$$
 $[\land -1], (1)$

(4)
$$x \in S \land \varphi \land x = t \models t \in S \land \varphi[t/x]$$
 [= -], (3)

(5)
$$\exists x : S \bullet (\varphi \land x = t) \models t \in S \land \varphi[t/x] \quad [\exists -], (4)$$

(6)
$$\Sigma \models \exists x : S \bullet (\varphi \land x = t)$$
 Assumption

(7)
$$\Sigma \models t \in S \land \varphi[t/x]$$
 [trans], (6), (5)

Example 3 (one-point rule)

Example (Prove the following property by deductive system)

• If $\Sigma \vDash \exists x : S \bullet (\varphi \land x = t)$ and x does not occur in t, then $\Sigma \vDash t \in S \land \varphi[t/x]$.

Proof.

(1)
$$x \in S \land \varphi \land x = t \models x \in S \land \varphi \land x = t$$
 [ref]

(2)
$$x \in S \land \varphi \land x = t \models x = t$$
 $[\land -2], (1)$

(3)
$$x \in S \land \varphi \land x = t \models x \in S \land \varphi$$
 $[\land -1], (1)$

(4)
$$x \in S \land \varphi \land x = t \models t \in S \land \varphi[t/x]$$
 [= -], (3)

(5)
$$\exists x : S \bullet (\varphi \land x = t) \models t \in S \land \varphi[t/x] \qquad [\exists -], (4)$$

(6)
$$\Sigma \models \exists x : S \bullet (\varphi \land x = t)$$
 Assumption

(7)
$$\Sigma \models t \in S \land \varphi[t/x]$$
 [trans], (6), (5)

One-point rule (单点规则)

$$\frac{\Sigma \models \exists x : S \bullet (\varphi \land x = t)}{\Sigma \models t \in S \land \varphi[t/x]} \quad [1-point] \quad \leq x \text{ does not occur in } t > t$$

Assignments

Prove the following by deductive system:

- **⑤** If x does not occur in ψ , then $\exists x : S \bullet (\varphi(x) \Rightarrow \psi) \vDash (\forall x : S \bullet \varphi(x)) \Rightarrow \psi$.

