3. Find a function f such that $f'(x) = x^3$ and the line x + y = 0 is tangent to the graph of f.

$$f'(x) = x^3 = x^{T} + C$$
.
 $f(x_0) = x^3 = -1 = x_0 = -1$
So $x_0^3 = -1 = x_0 = -1$

Thus
$$(-1, f(-1))$$
 is on the line $x+y=0$

$$-1 + \frac{(-1)^4}{4} + C = 0 \implies C = \frac{3}{4}$$
Thus $f(x) = \frac{x^4}{4} + \frac{3}{4}$.

4. A stone was dropped off a cliff and hit the ground with a speed of 98 m/s. What is the height of the cliff? [Use the fact that acceleration due to gravity is $-9.8 \ m/s^2$.]

$$S''(t) = -9.8 \text{ m/s}^2$$

 $S'(t) = (-9.8t + C) \text{ m/s}$, since the initial velocity is 0, $C = 0$.
 $= -9.8t \text{ m/s}$. (The stone was "dropped")
 $S(t) = (-4.9t^2 + D) \text{ m}$.
Shee when $S = 0 \text{ m}$, $S'(t) = 9.8 \text{ m/s}$, solving $-9.8t = -9.8$, we get $t = 10$

Shee when
$$S=0$$
 m, $S'(t)=98$ m/s, solving $-9.8t=-98$, ne get $t=10$.
Plug 1h $S(10)=0$, ne get $0=-49\times10^2+D$, thus $D=490$
So $S(t)=(-4.9t^2+4.90)$ m.
Thus the height of the cliff 13 $S(0)=490$ m.