全国大学生测绘学科创新创业智能大赛

测绘程序设计比赛

《试题册》

比赛说明2
一、比赛要求2
二、成果说明2
三、无效成果认定3
评分说明4
试题:激光点云数据的平面分割5
一、数据文件读取5
二、程序算法6
1. 基于栅格投影的点云分割算法6
2. 随机抽样一致 (RANSAC) 平面分割 7
3. 点云水平截面投影10
三、计算结果报告10
四、用户界面设计11

2023年7月

比赛说明

一、比赛要求

- 1. 比赛形式:参赛小组由1人组成,每人配置1台电脑。请考生提前准备好硬件设备和网络环境。
- 2. 比赛流程: 比赛时间为 4 小时, 比赛开始时, 分发《试题册》和数据文件。
- 3. 编程环境与编程语言:考试软件为 Visual studio 2017。编程语言限制为 Basic、C/C++、C#,不允许使用二次开发平台(如 Matlab、AutoCAD、ArcGIS等)。
- 4. 特殊情况处理:比赛过程中,如果需要上厕所,需要在"2023 全国测绘程序设计比赛群(871237110)"或"2023 全国测绘程序设计 比赛二群(群号: 873068421)"留言报告。

二、成果说明

1. 计算成果要求: 在成果的任何地方都不得出现参赛编号、学校信息或参赛队员信息。

2、成果一:程序正确性

在考生端"程序正确性"界面,根据试题要求填写计算结果。该 成果用于程序正确性评分,提交方式如图1所示。

图 1 程序正确性提交方式

3、成果二: P2023. rar

源程序命名为: "P2023. rar", 内容包括: 源码文件、可执行文件等。严格按照图 2 目录组织和文件命名, 提交方法如图 3 所示。

- (1) 源码文件:保存所编写的程序代码,及其工程等相关文件
- (2)可执行文件;保存可执行文件(.exe)和动态连接库文件(.dl1)。
- (3) result. txt: 根据《试题册》要求,利用"正式数据. txt"的 计算结果。

图 2 成果文件组织标准

图 3 源码成果上传方式

三、无效成果认定

有以下任何情况之一,成果将被认定为无效:

- 1. 比赛过程中浏览了历史项目文件、或者平时训练成果文件;
- 2. 比赛过程中进行了浏览互联网、微信和 QQ, 接打电话等操作。

评分说明

测绘程序设计比赛满分 100 分,其中比赛用时成绩 20 分,程序正确性成绩 60 分,程序规范性和优化性成绩 20 分。比赛用时成绩和程序正确性成绩由计算机自动评分,程序规范性和优化性由专家团队评分。

1. 程序正确性评分(60分)

根据《试题册》要求,编程完成相关算法,根据"程序正确性"给分点要求,将相关计算结果填写考生端"程序正确性"界面,并提交。

本项内容用于检验算法的正确性, 该项成绩由计算机自动评阅。

2. 比赛用时评分(20分)

比赛用时成绩总分为 20 分,记为 \mathbf{S}_0 。第 i 组参赛选手提交的时间设为 \mathbf{T}_i ,其本项成绩得分 \mathbf{S}_i 的计算公式为:

$$S_i = \left(1 - \frac{T_i - T_1}{T_n - T_1} \times 40\%\right) \times S_0$$

式中: T_1 是第一组"程序正确性成绩 \geq 30分"参赛队伍的比赛时间。 T_n 是在规定时间内最后一组参赛队伍的比赛时间。由该公式可知:第一组的时间得分为 20分, T_n 组的时间分为 12分。

特殊情况说明: (1) 第一组之前提交的参赛选手,本项成绩为 15 分; (2) 比赛用时超过比赛规定时间 15 分钟以内,本项成绩为 7 分; (3) 比赛用时超过比赛规定时间 15 分钟以上,取消比赛资格。

3. 专家评分(20分)

评测内容	评分细则说明
和片垣井川	计算成果显示规范(4分)
程序规范性 (10分)	程序结构完整、函数与类结构设计清晰(3分)
(10 37-)	注释规范、类、函数和变量命名规范(3分)
和片小儿园	人机交互界面设计良好(4分)
程序优化性 (10分)	算法、显示等功能符合要求 (3分)
	容错性、鲁棒性好(3分)

试题:激光点云数据的平面分割

点云数据分割的目标是将具有相似特征的点聚类成均匀区域,主要方法有基于边缘信息的分割、基于模型拟合的分割、基于属性的分割等多种方法。本题主要基于采用基于栅格投影的点云分割算法和随机抽样一致(RANSAC)平面分割方法。

一、数据文件读取

数据文件名称为"正式数据"文件。数据由二大部分组成,第一部分是点云数据的个数,第二大部分是各个点的坐标信息,分别是点名,x坐标,y坐标,Z坐标,以m为单位。数据内容如表1所示。

表 1 数据内容和格式说明

数据内容	格式说明
1000	点云数量
P1,80.872,46.799,1.096	点名,x,y,z
P2, 35. 028, 71. 675, 1. 165	
P3, 74. 658, 13. 928, 1. 172	
P4,71.048,41.082,1.061	
P5, 1. 498, 7. 312, 3. 073	
P6, 14. 731, 13. 271, 1. 198	

【程序正确性】记录 P5 的坐标值,并统计所有点的极值,结果保留 3 位小数。(已经填写的数据仅供参考)。

序号	说明	输出格式要求
1	P5 的坐标分量 x	1. 498
2	P5 的坐标分量 y	*. ***
3	P5 的坐标分量 z	3. 073
4	坐标分量 x 的最小值 x_{min}	*. ***
5	坐标分量 x 的最大值 x_{max}	*. ***
6	坐标分量 y 的最小值 ymin	*. ***
7	坐标分量 y 的最大值 ymax	99. 935
8	坐标分量z的最小值zmin	*. ***
9	坐标分量z的最大值zmax	5. 668

二、程序算法

1. 基于栅格投影的点云分割算法

将原始点云进行栅格化, 计算栅格单元高度差、平均高度和高度方差信息, 综合三个 指标实现地面点云快速分割。

1.1 点云数据栅格化

如图 1 所示,将研究区域分成 10×10 个栅格,栅格单元的长(dx)和宽(dy)取值 为 10m。

激光点 P 可根据其坐标(x_p , y_p)分配至栅格(i, j)中,栅格的行(i)和列(j)的计算公式如下:

$$\begin{cases}
i = floor(\frac{y_p}{dy}) \\
j = floor(\frac{x_p}{dx})
\end{cases}$$
(1)

式中, floor (•) 为向下取整函数。原始点云数据经过栅格化处理, 每个点都会唯一对应一个栅格序号, 最终将激光点云全部存储在栅格矩阵中。

【程序正确性】计算 P5 所在的栅格,如图 1 所示,选择栅格 C 为测试栅格单位,统计栅格单元 C 中的点云数目,结果为整数。(已经填写的数据仅供参考)。

10	P5 点的所在栅格的行 i	*
11	P5 点的所在栅格的列 j	0
12	栅格C中的点的数量	*

1.2 计算栅格单元的几何特征信息

计算栅格单元的几何特征信息。主要计算栅格单元平均高度、高度差和高度方差。

(1) 计算栅格单元的平均高度

对于栅格单元 ceil(i,j), 其平均高度为:

$$\overline{z}(i,j) = \frac{1}{size(ceil(i,j))} \sum_{k \in ceil(i,j)} z_k$$
 (2)

式中 i、j 表示栅格单元 ceil (i, j) 的行号和列号, size (•) 表示求栅格单元存储点云的数量,k 为栅格单元 ceil (i, j) 中的点, Z_k 表示 k 点的 Z 值。

(2) 计算栅格单元的高度差

对于栅格单元 ceil (i, j), 其高度差为:

$$z_{diff}(i,j) = z_{\text{max}} - z_{\text{min}} \tag{3}$$

式中, Zmax 和 Zmin 分别为栅格单元 ceil (i, j) 的高度的最大值和最小值。

对于一般平坦地面场景, 非平面点云栅格单元高度差一般较大。

(3) 计算栅格单元的高度方差

对于栅格单元 ceil (i, j), 其高度方差为:

$$\sigma^{2}(i,j) = \frac{1}{size(ceil(i,j))} \sum_{k \in ceil(i,j)} \left[z_{k} - \overline{z}(i,j) \right]^{2}$$

$$\tag{4}$$

栅格单元的高度方差信息可以较好地反映栅格点云的高度分布。一般情况下,对于平面点云栅格,其栅格单元的高度方差较小,对于非平面点云栅格,其方差信息较大。

【程序正确性】计算栅格单元 C 的平均高度、高度的最大值、高度差和高度方差,统计栅格 C 中的点云数目,结果保留 3 位小数。(已经填写的数据仅供参考)。

13	栅格C中的平均高度	*. ***
14	栅格C中高度的最大值	1. 192
15	栅格C中的高度差	*. ***
16	栅格C中的高度方差	*. ***

2. 随机抽样一致 (RANSAC) 平面分割

随机抽样一致 (RANdom SAmple Consensus, RANSAC) 算法是 1981 年由 Fischler 和 Bolles 首次提出,它是一种迭代方法,用于从一组包含内部点 (Inliers) 和外部点

(outliers)数据中,通过迭代方式估计出数学模型的参数。内部点(Inliers)可以解释 为适合模型参数的一组点,外部点(outliers)则是不适合模型的点

RANSAC 是一种不确定的算法——它有一定的概率得出一个合理的结果,为了提高概率 必须提高迭代次数。为了便于评估程序正确性,本试题采用按照顺序方法选点,即在第一 次平面拟合时,选取前三个点(即: P1、P2、P3)用于平面拟合;在第二次迭代时,按顺序先后选择另外三个点(即: P4、P5、P6)用于平面拟合;第三次迭代时选择 P7、P8、P9用于平面拟合,依次类推。

在计算第一个最佳分割平面(J1)时,共迭代300次,计算第二个最佳分割平面(J2)时,共迭代100次。

2.1 平面拟合

从数据集中选取前三个点 P1 (x₁,y₁,z₁), P2(x₂,y₂,z₂), P3(x₃,y₃,z₃)用于平面拟合。 用于平面拟合的三个点不能在一条直线上。三点共线检测方法: 计算三点构成的面积, 当面积 S 大于某一阈值(计算时, 阈值取 **0.1m²**)时,则三点不共线。采用海伦公式计算三角形面积:

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$
 (5)

其中 p = (a+b+c)/2, a,b,c 是 P1-P2、P2-P3、P3-P1 之间的距离。

则构成的平面方程如下:

$$Ax + By + Cz + D = 0 (6)$$

其中A、B、C、D的计算公式如下:

$$A = (y_2 - y_1) \times (z_3 - z_1) - (y_3 - y_1) \times (z_2 - z_1)$$

$$B = (z_2 - z_1) \times (x_3 - x_1) - (z_3 - z_1) \times (x_2 - x_1)$$

$$C = (x_2 - x_1) \times (y_3 - y_1) - (x_3 - x_1) \times (y_2 - y_1)$$

$$D = -A \times x_1 - B \times y_1 - C \times z_1$$
(7)

【程序正确性】利用"正式数据. txt"的 P1、P2、P3 拟合一个平面(记为 S1), 计算其平面参数 A、B、C、D 值, 结果保留 6 位小数。

17	P1-P2-P3 构成三角形的面积	*. *****
18	拟合平面 S1 的参数 A	*. *****
19	拟合平面 S1 的参数 B	*. *****
20	拟合平面 S1 的参数 C	*. *****
21	拟合平面 S1 的参数 D	*. *****

2.2 内部点和外部点计算

计算数据集中的剩余点(共997个)与所构建平面之间的关系。计算方法如下:计算每个点到第一步(第2.1节)构建平面的距离,该距离小于某一阈值时(计算时,阈值取

0.1m), 那么将该点设为该平面的内部点。

点 PO (x_0, y_0, z_0) 到平面 Ax + By + Cz + D = 0 的距离公式如下:

$$d = \frac{\left| A * x_0 + B * y_0 + C * z_0 + D \right|}{\sqrt{A^2 + B^2 + C^2}}$$
(8)

【程序正确性】利用"正式数据. txt"的 P1000、P5 到拟合平面 S1 的距离,并统计平面 S1 的内部点和外部点数目,前 2 项结果保留 3 位小数,后 2 项结果输出为整数。(已经填写的数据仅供参考)。

22	P1000 到拟合平面 S1 的距离	0. 262
23	P5 到拟合平面 S1 的距离	* ***
24	拟合平面 S1 的内部点数量	*
25	拟合平面 S1 的外部点数量	*

2.3 最佳分割平面计算

重复第 2.1 和 2.2 节的计算步骤,每次按顺序依次选择 3 个点(第 2 次选择 P4、P5、P6; 第 3 次择 P7、P8、P9, ……)用于平面拟合,共迭代计算 **300** 次,找到内点数最多的那个面,该平面则为最佳分割平面(记为 J1)。

【程序正确性】利用"正式数据.txt"全部数据,获得最佳分割平面(J1),给出J1的平面参数 A、B、C、D,以及内部点和外部点数目。前 4 项结果保留 6 位小数,后 2 项结果输出为整数。(已经填写的数据仅供参考)。

26	最佳分割平面 J1 的参数 A	*. *****
27	最佳分割平面 J1 的参数 B	*. *****
28	最佳分割平面 J1 的参数 C	*. *****
29	最佳分割平面 J1 的参数 D	*. *****
30	最佳分割平面 J1 的内部点数量	*
31	最佳分割平面 J1 的外部点数量	260

2.4 迭代计算平面分割

从数据集中除最佳分割面 J1 的内部点、及拟合 J1 平面的所用的三个点, 所剩余的 点构成一个新的数据集。

利用剩余点数据集,重复第 2.1、2.2 和 2.3 节的操作步骤,寻找第二个最佳分割面。共迭代计算 **80** 次,找到内点数最多的那个面,记为 J2。

【程序正确性】对剩余点构建第二个最佳分割平面(记为: J2),给出 J2 的平面参数 A、B、C、D,以及内部点和外部点数目。前 4 项结果保留 6 位小数,后 2 项结果输出为整数。(已经填写的数据仅供参考)。

32	分割平面 J2 的参数 A	*. *****
33	分割平面 J2 的参数 B	*. *****

34	分割平面 J2 的参数 C	*. *****
35	分割平面 J2 的参数 D	*. *****
36	分割平面 J2 的内部点数量	137
37	分割平面 J2 的外部点数量	*

3. 点云水平截面投影

假定不在平面上的三维空间坐标为 (x_0, y_0, z_0) ,其在平面上的投影点坐标为 (x_t, y_0, z_0)

yt, zt). 因为投影点到当前点与平面垂直, 根据垂直约束条件, 计算公式为:

$$\begin{cases} x_{t} = \frac{(B^{2} + C^{2})x_{0} - A(By_{0} + Cz_{0} + D)}{A^{2} + B^{2} + C^{2}} \\ y_{t} = \frac{(A^{2} + C^{2})y_{0} - B(Ax_{0} + Cz_{0} + D)}{A^{2} + B^{2} + C^{2}} \\ z_{t} = \frac{(A^{2} + B^{2})z_{0} - C(Ax_{0} + By_{0} + D)}{A^{2} + B^{2} + C^{2}} \end{cases}$$

$$(9)$$

可解得三维空间的点投影到某一平面的坐标(xt, yt, zt). 在得到投影后的坐标。

【程序正确性】计算 P5 点到最佳分割面(J1)的投影坐标,计算 P800 点到最佳分割面(J2)的投影坐标。计算结果保留 3 位小数。

38	P5 点到最佳分割面(J1)的投影坐标 x _t	*. ***
39	P5 点到最佳分割面(J1)的投影坐标 y _t	*. ***
40	P5 点到最佳分割面(J1)的投影坐标 z _t	*. ***
41	P800 点到最佳分割面(J1)的投影坐标 x _t	*. ***
42	P800 点到最佳分割面(J1)的投影坐标 yt	*. ***
43	P800 点到最佳分割面(J1)的投影坐标 zī	*. ***

三、计算结果报告

编程保存点云分割结果,结果保存在"result.txt"文件中。保存内容包括"点名,X,Y,Z,标识"。其中X、Y、Z保留3位小数,当点为J1内部点时,标识为J1,点为J2内部点时,标识为J2,其余情况的标识为0.

点名, X, Y, Z, 标识 P0,0.125,45.085,1.039,J1

.....

四、用户界面设计

- 4.1人机交互界面设计与实现要求:
 - (1) 包括菜单、工具栏、表格等功能。
 - (2) 要求功能正确、可正常运行,布局合理、直观美观、人性化;
- 4.2 计算报告的显示与保存

要求:

- (1) 将相关统计信息、计算报告在用户界面中显示;
- (2) 保存为文本文件 (*. txt);