Lesson 19: Riccati Equations with Known Particular Solution

ODE 1 - Prof. Adi Ditkowski

1 Definition and Recognition

Definition 1 (Riccati Equation). A Riccati differential equation has the form:

$$\frac{dy}{dx} = q_0(x) + q_1(x)y + q_2(x)y^2$$

where $q_0(x)$, $q_1(x)$, and $q_2(x)$ are continuous functions and $q_2(x) \not\equiv 0$.

Special Cases:

- If $q_2(x) \equiv 0$: Linear equation
- If $q_0(x) \equiv 0$: Bernoulli equation with n = 2
- If $q_1(x) \equiv 0$: Separable after substitution
- General case: Requires particular solution or transformation to second-order

2 The Fundamental Transformation

Theorem 1 (Riccati to Bernoulli Reduction). If $y_p(x)$ is a particular solution of the Riccati equation, then the substitution

$$y = y_p + v$$

transforms the Riccati equation into the Bernoulli equation:

$$\frac{dv}{dx} = (q_1 + 2q_2y_p)v + q_2v^2$$

Proof. Given: $y' = q_0 + q_1y + q_2y^2$ and $y'_p = q_0 + q_1y_p + q_2y_p^2$ Substitute $y = y_p + v$:

$$y_p' + v' = q_0 + q_1(y_p + v) + q_2(y_p + v)^2$$
(1)

$$y_p' + v' = q_0 + q_1 y_p + q_1 v + q_2 y_p^2 + 2q_2 y_p v + q_2 v^2$$
(2)

$$v' = q_1v + 2q_2y_pv + q_2v^2 \quad \text{(using } y_p' = q_0 + q_1y_p + q_2y_p^2)$$
(3)

$$v' = (q_1 + 2q_2y_p)v + q_2v^2 \quad \Box \tag{4}$$

Complete Solution Algorithm:

- 1. Find or verify particular solution y_p
- 2. Substitute $y = y_p + v$
- 3. Obtain Bernoulli equation: $v' = (q_1 + 2q_2y_p)v + q_2v^2$
- 4. Use substitution $w = v^{-1}$ (since n = 2)
- 5. Solve linear equation: $w' = -(q_1 + 2q_2y_p)w q_2$
- 6. Back-substitute: v = 1/w, then $y = y_p + v$

3 Finding Particular Solutions

Method 1 (Inspection Techniques). Common forms to try:

- 1. Constants: Try $y_p = c$ when coefficients allow
- 2. **Linear:** Try $y_p = ax + b$ for polynomial coefficients
- 3. **Rational:** Try $y_p = a/x$ or $y_p = a/(x+b)$
- 4. **Exponential:** Try $y_p = ae^{bx}$ for constant coefficients
- 5. **Trigonometric:** Try $y_p = a \tan(bx)$ or $a \cot(bx)$
- 6. Special: $y_p = -q_1/(2q_2)$ when this ratio is constant

Example 1 (Polynomial Particular Solution). Solve: $y' = \frac{2}{x^2} - \frac{2y}{x} + y^2$ **Finding** y_p : Try $y_p = \frac{a}{x}$

$$-\frac{a}{x^2} = \frac{2}{x^2} - \frac{2a}{x^2} + \frac{a^2}{x^2}$$
$$-a = 2 - 2a + a^2 \implies a^2 - a + 2 = 0$$

This gives a = 2 or a = -1. Use $y_p = \frac{2}{x}$. Transformation: Let $y = \frac{2}{x} + v$

$$v' = -\frac{2v}{x} + \frac{4v}{x} + v^2 = \frac{2v}{x} + v^2$$

Bernoulli to Linear: Let $w = v^{-1}$

$$w' = -\frac{2w}{r} - 1$$

Solution: $w = \frac{C}{x^2} - \frac{x}{3}$ Final Answer: $y = \frac{2}{x} + \frac{1}{C/x^2 - x/3}$

4 Special Riccati Forms

Constant Coefficient Riccati: $y' = a + by + cy^2$

- If $b^2 4ac > 0$: Two constant particular solutions
- If $b^2 4ac = 0$: One constant particular solution
- If $b^2 4ac < 0$: No real constant solutions

For $b^2 - 4ac < 0$, try $y_p = \alpha \tan(\beta x)$ where $\beta = \sqrt{4ac - b^2}/(2c)$

Example 2 (Trigonometric Particular Solution). Solve: $y' = 1 + y^2$

Observation: This matches $\frac{d}{dx}[\tan x] = \sec^2 x = 1 + \tan^2 x$

Particular solution: $y_p = \tan x$ General solution: Let $y = \tan x + v$

$$v' = 2\tan x \cdot v + v^2$$

After solving the Bernoulli equation:

$$y = \tan x + \frac{\sin x}{C - \cos x}$$

5 Connection to Linear Second-Order

Theorem 2 (Riccati-Linear Duality). The Riccati equation $y' = q_0 + q_1y + q_2y^2$ is equivalent to the second-order linear equation:

$$u'' - (q_1 + \frac{q_2'}{q_2})u' + q_0q_2 \cdot u = 0$$

via the transformation $y = -\frac{1}{q_2} \cdot \frac{u'}{u}$

Prof. Ditkowski's Patterns:

- Often provides y_p or strong hints ("verify that...")
- Tests connection to Bernoulli reduction
- Likes rational particular solutions $y_p = a/x$
- May ask for multiple particular solutions
- Tests the second-order connection
- Partial credit for correct transformation setup

6 Geometric Interpretation

Lemma 1 (Cross-Ratio Property). If y_1, y_2, y_3, y_4 are four solutions of a Riccati equation, their cross-ratio:

$$\frac{(y_1 - y_3)(y_2 - y_4)}{(y_1 - y_4)(y_2 - y_3)}$$

is constant (independent of x).

Common Pitfalls:

- Not verifying that y_p satisfies the equation
- Sign errors in the transformation to Bernoulli
- Forgetting that Bernoulli with n=2 needs $w=v^{-1}$
- Missing singular solutions when v = 0

7 Solution Structure

General Solution Form:

$$y = y_p + \frac{1}{w(x)}$$

where w(x) satisfies the linear equation:

$$w' + (q_1 + 2q_2y_p)w = -q_2$$

The general solution has the structure:

$$y = y_p + \frac{1}{\phi(x) + C\psi(x)}$$

where ϕ and ψ depend on the particular solution chosen.