11 Intégrales et primitives

I - Intégrale et aire

1 - Unité d'aire

Soit $(O, \vec{\imath}, \vec{\jmath})$ un repère orthogonal du plan. L'unité d'aire, notée u.a., est l'aire du rectangle unitaire OIKJ avec I(1,0), J(0,1) et K(1,1).

2 - Intégrale d'une fonction continue et positive

Définition 11.1 – Soit f une fonction définie, continue et positive sur un intervalle [a,b] et C_f sa courbe représentative dans le plan muni d'un repère orthogonal $(O,\vec{\imath},\vec{\jmath})$.

L'intégrale de f entre a et b est l'aire, exprimée en unités d'aire, du domaine \mathcal{D}_f compris entre la courbe \mathcal{C}_f , l'axe des abscisses et les droites d'équations x = a et x = b.

Ce nombre est noté $\int_a^b f(x) dx$.

Remarque 11.2 -

- $\int_a^b f(x) dx$ se lit "intégrale de a à b de f(x) dx".
- Les réels a et b sont appelés les **bornes** de l'intégrale $\int_a^b f(x) dx$.
- La variable x est dite "muette", elle n'intervient pas dans le résultat. C'est-à-dire qu'on peut la remplacer par n'importe quelle autre variable distincte des lettres a et b: $\int_a^b f(x) dx = \int_a^b f(t) dt = \int_a^b f(u) du$.
- $\int_{a}^{a} f(x) dx = 0$, car le domaine \mathcal{D}_f est alors réduit à un segment.

3 - Intégrale d'une fonction continue et négative

Si f est une fonction continue et négative sur un intervalle [a, b] alors, la fonction g définie sur l'intervalle [a, b] par g = -f est une fonction continue et positive sur cet intervalle.

Par symétrie par rapport à l'axe des abscisses, l'aire du domaine \mathcal{D}_f compris entre la courbe \mathcal{C}_f , l'axe des abscisses et les droites d'équations x = a et x = b est égale à l'aire du domaine \mathcal{D}_g compris entre la courbe C_g , l'axe des abscisses et les droites d'équations x = a et x = b.

Définition 11.4 – Soit f une fonction définie, continue et négative sur un intervalle [a,b] et \mathcal{C}_f sa courbe représentative dans le plan muni d'un repère orthogonal (O, \vec{i}, \vec{j}) .

L'intégrale de la fonction f entre a et b est égale à l'opposé de l'aire A, exprimée en unités d'aire, du domaine \mathcal{D}_f comprise ntre la courbe \mathcal{C}_f , l'axe des abscisses et les droites d'équations x = a et x = b:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = -\mathcal{A}.$$

4 - Lien entre intégrale et dérivée

Soit f une fonction continue sur un intervalle [a, b]. On peut définir une nouvelle fonction F qui à tout réel x de l'intervalle [a,b], associe l'intégrale de f entre a et x: $F(x) = \int_{a}^{x} f(t) dt$.

Théorème 11.5

Soit f une fonction continue sur un intervalle [a, b].

La fonction F définie sur [a, b] par $F(x) = \int_a^x f(t) dt$ est dérivable sur [a, b] et a pour dérivée f.

Exemple 11.6 – Soit f la fonction définie sur l'intervalle [-1,4] par $f(x) = -\frac{1}{2}x + \frac{5}{2}$.

II - Primitives

1 – Définition

Définition 11.7 – Soit f une fonction définie sur un intervalle I. On dit que F est une **primitive de la fonction** f **sur** I si F est dérivable et que

$$\forall x \in I, \quad F'(x) = f(x).$$

Exemple 11.8 –

• $F: x \mapsto x^3 + 3x^2 - 1$ est une primitive sur **R** de $f: x \mapsto 3x^2 + 6x$.

• $G: x \mapsto 2\sqrt{x}$ est une primitive sur \mathbb{R}_+^* de $g: x \mapsto \frac{1}{\sqrt{x}}$.

• Les fonctions $F: x \mapsto x^2$, $G: x \mapsto x^2 + 1$, mais aussi $H = x \mapsto x^2 + c$, $c \in \mathbf{R}$ sont des primitives sur \mathbf{R} de la fonction $f: x \mapsto 2x$.

Remarque 11.9 -

- Comme *F* est dérivable sur *I*, la fonction *F* est en particulier continue sur *I*.
- Il n'y a pas unicité de la primitive d'une fonction donnée f. C'est pourquoi on parle **d'une** primitive de la fonction f et non de **la** primitive de la fonction f.

Théorème 11.10

- Toute fonction continue sur un intervalle *I* admet au moins une primitive sur *I*.
- Si F est une primitive de f sur I, alors toute autre primitive de f sur I est la forme F+c où c est une constante.
- Il existe une et une seule primitive de f sur I qui prend une valeur donnée en un point donné. Si $x_0 \in I$ et $y_0 \in \mathbb{R}$, il existe une unique primitive F_0 de f sur I telle que $F_0(x_0) = y_0$.

Exemple 11.11 – La fonction F définie sur \mathbf{R} par $F(x) = x^2 - 1$ est une primitive de $f: x \mapsto 2x$ vérifiant F(1) = 0.

2 - Primitives des fonctions usuelles

Les opérations sur les fonctions dérivables et la définition d'une primitive conduisent aux résultats suivants.

- Si F et G sont des primitives des fonctions f et g sur un intervalle I, alors F + G est une primitive de f + g sur I.
- Si F est une primitive de la fonction f sur un intervalle I et λ un réel, alors λF est une primitive de λf sur I.

f est définie sur I par	une primitive F est donnée par	validité
$f(x) = a \qquad (a \in \mathbf{R})$	F(x) = ax	sur R
$f(x) = x^n \qquad (n \in \mathbf{N})$	$F(x) = \frac{x^{n+1}}{n+1}$	sur R
$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x}$	sur] $-\infty$, 0[ou sur] 0, $+\infty$ [
$f(x) = \frac{1}{x^n} \qquad (n > 2 \text{ entier})$	$F(x) = -\frac{1}{(n-1)x^{n-1}}$	sur] – ∞ , 0[ou sur] 0, + ∞ [
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x}$	sur]0,+∞[

Exemple 11.12 – Calculer les primitives des fonctions suivantes.

1.
$$f(x) = 3x^2$$

2.
$$f(x) = x + \frac{3}{2}$$

3.
$$f(x) = (2x+1)(x-3)$$

4.
$$f(x) = \frac{1}{x^2}$$

7.
$$f(x) = x + 2 + \frac{1}{\sqrt{x}}$$

5.
$$f(x) = x^2 + 3x + \frac{1}{x^2}$$

8.
$$f(x) = \frac{6x^2 - 8x + 2}{5}$$

6.
$$f(x) = \frac{1}{x^5}$$

9.
$$f(x) = -\frac{6}{x^4}$$

3 - Primitive des fonctions composées usuelles

Soit u une fonction dérivable sur un intervalle I.

Conditions	fonction f	une primitive F est donnée par
$n \in \mathbb{N}, n > 0$	$f = u' \times u^n$	$F = \frac{u^{n+1}}{n+1}$
u ne s'annule pas sur I	$f = \frac{u'}{u^2}$	$F = -\frac{1}{u}$
u ne s'annule pas sur I et $n > 1$	$f = \frac{u'}{u^n}$	$F = -\frac{1}{(n-1)u^{n-1}}$
u strictement positive sur I	$f = \frac{u'}{\sqrt{u}}$	$F = 2\sqrt{u}$

Exemple 11.13 – Calculer des primitives des fonctions suivantes.

1.
$$f(x) = (2x+1)^2$$

2.
$$f(x) = \frac{1}{(x+1)^2}$$

3.
$$f(x) = \frac{1}{(1-3x)^2}$$

4.
$$f(x) = (2x-1)(x^2-x+1)^3$$

5.
$$f(x) = \frac{1}{\sqrt{x+2}}$$

III - Intégrale d'une fonction continue

1 - Définition

Définition 11.14 – Soit f une fonction continue sur un intervalle I et a et b deux éléments de I. Soit F une primitive de f sur I. L'intégrale de f entre a et b est le nombre réel égal à F(b) - F(a).

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Remarque 11.15 -

• La différence F(b) - F(a) se note $\left[F(x) \right]_a^b$. Ainsi

$$\int_{a}^{b} f(x) dx = \left[F(x) \right]_{a}^{b} = F(b) - F(a).$$

• Le résultat ne dépend pas de la primitive *F* choisie.

Exemple 11.16 -

•
$$\int_{1}^{3} 3t^2 + 2t - 1 dt$$

$$\bullet \int_1^2 \frac{1}{t^2} \, \mathrm{d}t$$

Proposition 11.17

Soit f une fonction continue sur un intervalle I et a et b dans I. Soit F une primitive de f sur I. On a alors

$$\int_{a}^{a} f(t) dt = 0 \quad \text{et} \quad \int_{a}^{b} f(t) dt = -\int_{b}^{a} f(t) dt.$$

2 - Premières propriétés

Proposition 11.18

Soient a et b deux réels tels que $a \le b$. Soit f une fonction continue et positive sur [a,b]. Soit \mathcal{C}_f la courbe représentative de f. Alors $\int_a^b f(t) \, \mathrm{d}t$ est l'aire de la surface comprise entre \mathcal{C}_f , l'axe des abscisses et les droites d'équation x = a et x = b.

Proposition 11.19

- Si f est continue et paire sur [-a, a], alors $\int_{-a}^{a} f(t) dt = 2 \int_{0}^{a} f(t) dt$.
- Si f est continue et impaire sur [-a, a], alors $\int_{-a}^{a} f(t) dt = 0$.

Exemple 11.20 -

- $\int_{-1}^{1} t^3 \sqrt{t^2 + 1} \, dt$
- $\bullet \int_{-1}^1 t^2 + |t| \, \mathrm{d}t$

Proposition 11.21 - Relation de Chasles

Soit f une fonction continue sur un intervalle I et soient a, b et c dans I. Alors

$$\int_a^c f(t) dt = \int_a^b f(t) dt + \int_b^c f(t) dt.$$

Exemple 11.22 - Interprétation graphique

Dans le cas où f est une fonction continue et positive sur [a, b].

L'aire du domaine compris entre la courbe \mathcal{C}_f , l'axe des abscisses et les droites d'équations x=a et x=c est égale à la somme des aires du domaine compris entre la courbe \mathcal{C}_f , l'axe des abscisses et les droites d'équations x=a et x=b et du domaine compris entre la courbe \mathcal{C}_f , l'axe des abscisses et les droites d'équations x=b et x=c.

Proposition 11.23 - Linéarité de l'intégrale

Soient f et g deux fonctions continues sur un intervalle [a,b]. Alors, pour tout réel λ , on a

$$\int_a^b \left(f(x) + g(x) \right) \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x + \int_a^b g(x) \, \mathrm{d}x \quad \text{ et } \quad \int_a^b \lambda f(x) \, \mathrm{d}x = \lambda \int_a^b f(x) \, \mathrm{d}x.$$

Exemple 11.24 – Soit a un réel et f la fonction définie sur [-1,1] par

$$f(x) = \begin{cases} \frac{1-a}{2} & \text{si } -1 \leqslant x \leqslant 0\\ \frac{1+a}{2} & \text{si } 0 < x \leqslant 1 \end{cases}$$

Vérifier que
$$\int_{-1}^{1} f(x) dx = 1$$
.