EE 6240-RF Integrated Circuits Ang-Nov 11
Textbooks: i) RF Minoelectroniu (Systems) by Behzad Razavi
Prentice Hell of India
2) The design of CMOS Radio
Fredhenry Integrated circuits (Octo)
by Thomas H. Lee Cambridge University Press
other reg! 3) VLSI for Wireless Communication
prentice Hell Electronics & VLSI Series
Course Format: 4 Projects = 40 %.
1 Find Exam = 30 y. 5-6 HW = 10y.
5-6 HW = 10%. Journal Paper Seminar = 20 %.
* All HW & projects are due at the beginning
of duts (on the due date)
Pre-reginisites!) EE 5390 - Analog IC Denign (or similar)
2) Understanding of MOSPET
operation
3) understanding of basic rignals &
systems - Fourier Series, Fourier
Transforms (i.e. able to think in
both time and frequency domains)

Topius Covered in this course:
-> RF basis, Andog 4 Dig-modulation
-> 5-parameters, resonance, impedance matching
-> Endudos, caps, varatre etc.
-> short-channel Mos speaking
-> Tuto to voise 4 distribus
-> RF Tx & Rx architectures
-> LNA, minel, VW, PA design 4 operations
-> RF agont

Lecture #1 - Introduction to RF

RF = Radio Frequency

- any frequency that carries information

(wired or wirelessly)

e-g. AM-FM radio, TV, cellular, W, Fi...

RFICS >> 1) Derign of LNAS, Mixers etc. 2) New Circuit topologies
multi-disciplinary!
rignal transceived priopagation and. Delign RF Delign Mare theory
CAD Comm. Stds. Tools Theory
RF Design Tradeoffs:
Novie > POWE
Lineariti
Linearity Frequency
Supply = hain
Note: CAD tools are inhis pensible! however: rely on viruit derign knowledge

Why cmos? cmos digital hates: m -> require very four devices per gate contract ~1'th~ may) -> dissipate porer only while switching)

-> dimensions of Mos devices com Bipolar 4 'Ga As tech. longer be easily scaled down true! -> lower fabrication ust (simple mark set etc.) CMOS for analy: -> porsibility of Soc (system-on-chip) -> reduce cost Issus with amos: -> cmos is no longer cheap! * # of made is large + lithography is getting very expensive -> leakage current => static power consumption for Analy, MOSPETS were sloved & noisier than BJTs (gap has Shrink due to scaling) Moore's Law: # of tramintors on an IC doubles every 2 years time (years)

Path los: Power & d2 (heary) Tx Replective Rx loss ady (empirical) Multipath Fading: Diversity: Redundany is Tx or Rx path Space/Antenna div. = 2 or more antennas Frequency dir. = 2 or more called freq. (frequency hopping) Time div. = data is sent more than mee to overcome short-turn fading