

ЗВО: Національний університет «Львівська політехніка» **Навчальний рік:** 2024/2025

Семестр: весняний

Навчальна дисципліна: Комп'ютерна

схемотехніка та архітектура комп'ютерних систем **Лабораторна робота**

№ 3:

Мінімізація логічних функцій

функі

Кафедра систем автоматизованого

проектування

Викладач: доц. Стефанович Т.О.

Група: ПП-12 Студент: Венгрин Владислав Тарасович

Варіант: 3

Мета роботи

Вивчення методів проектування комбінаційних схем в заданому базисі логічних елементів.

Теоретичні відомості

Логічні функції можна задавати різними способами.

За табличного способу задання логічна функція подається як **таблиця істинності**, в яку записують всі можливі набори аргументів, і для кожного набору встановлюється значення функції як 0, або 1. Від таблиці істинності можна перейти до **алгебраїчної форми подання функції**. В цій формі зручно проводити її перетворення, наприклад, з метою мінімізації.

Мінтерм — це кон'юнкція, в яку входять всіх п вхідних змінних в прямій або інверсній формі. **Макстерм** — диз'юнкція, в яку входять всіх п вхідних змінних в прямій або інверсній формі. **ДДНФ логічної функції** — це диз'юнкція мінтермів, які відповідають наборам вхідних змінних, для яких функція рівна 1.

ДКНФ логічної функції — це кон'юнкція макстермів, які відповідають наборам вхідних змінних, для яких функція рівна 0.

ДДНФ і ДКНФ використовуються для початкового подання логічних функцій, але, як правило, ці форми не є оптимальними для побудови комбінаційних схем. Тому шукають таку форму подання функції, для якої вираз буде складатися з мінімальної кількості змінних. З метою мінімізації застосовують склеювання суміжних мінтермів або макстермів. Кон'юнкції або диз'юнкції, які отримують в результаті, мають назву імплікант. Для спрощення мінімізації застосовують карти Карно. Для приведення мінімізованих логічних функцій до одного з базисів І-НЕ (NAND) або АБО-НЕ (NOR) використовують теореми де Моргана.

Завдання, хід роботи, результати

- 1. Мінімізація функції трьох змінних.
- 1.1. Таблиця істинності

x_2	x_1	x_0	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

1.2. Досконала диз'юнктивна нормальна форма (ДДНФ)

$$Y = \overline{x}_2 \overline{x}_1 x_0 + \overline{x}_2 x_1 x_0 + x_2 \overline{x}_1 \overline{x}_0 + x_2 x_1 \overline{x}_0$$

Логічні елементи в NI Multisim: NOT — 3; AND3 — 4; OR4 — 1

1.3. Досконала кон'юнктивна нормальна форма (ДКНФ)

$$Y = (x_2 + x_1 + x_0)(x_2 + \overline{x}_1 + x_0)(\overline{x}_2 + x_1 + \overline{x}_0)(\overline{x}_2 + \overline{x}_1 + \overline{x}_0)$$

Логічні елементи в NI Multisim: NOT — 3; OR3 — 4; AND4 — 1

1.4. Схеми у NI Multisim

1.4.1. ДДНФ з Word Generator

1.4.2. ДДНФ з Logical Converter

1.4.3. ДКНФ з Word Generator

1.4.4. ДКНФ з Logical Converter

1.5. Мінімізація логічної функції з допомогою карт Карно

Мінімальна диз'юнктивна форма (МДФ)

11 () / /		
	x_0	\overline{x}_0
$\overline{x}_2\overline{x}_1$	1	
$\overline{x}_2 x_1$	1	
x_2x_1		1
$x_2\overline{x}_1$		1

Суміжні мінтерми:

$$\overline{x}_2 \overline{x}_1 x_0 i \overline{x}_2 x_1 x_0 \Rightarrow \overline{x}_2 x_0$$

$$x_2 x_1 \overline{x}_0 \text{ i } x_2 \overline{x}_1 \overline{x}_0 \Rightarrow x_2 \overline{x}_0$$

$$Y = \overline{x}_2 x_0 + x_2 \overline{x}_0$$

Логічні елементи в NI Multisim: NOT — 2; AND2 — 2; OR2 — 1

Мінімальна кон'юнктивна форма (МКФ)

1 1 \		
	x_0	\overline{x}_0
$\overline{x}_2\overline{x}_1$		0
$\overline{x}_2 x_1$		0
x_2x_1	0	
$x_2\overline{x}_1$	0	

Суміжні макстерми:

$$\overline{x}_2 \overline{x}_1 \overline{x}_0 i \overline{x}_2 x_1 \overline{x}_0 => \overline{x}_2 \overline{x}_0$$

$$x_2 x_1 x_0 i x_2 \overline{x}_1 x_0 => x_2 x_0$$

$Y = (\overline{x}_2 + \overline{x}_0)(x_2 + x_0)$

Логічні елементи в NI Multisim: NOT — 2; OR2 — 3; AND3 — 1

1.6. Схеми у NI Multisim

1.6.1. МДФ з Word Generator

1.6.2. МДФ з Logical Converter

1.6.3. МКФ з Word Generator

1.6.4. МКФ з Logical Converter

2. Мінімізація функції чотирьох змінних

2.1. Таблиця істинності

х3	x_2	x_1	x_0	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

2.2. Мінімізація логічної функції з допомогою карт Карно

ДДНФ функції

$$F(x_3, x_2, x_1, x_0) = \overline{x_3 x_2 x_1 x_0} \vee \overline{x_3 x_2} x_1 \overline{x_0} \vee \overline{x_3} x_2 \overline{x_1 x_0} \vee \overline{x_3} x_2 x_1 \overline{x_0} \vee x_3 \overline{x_2 x_1 x_0} \vee x_3 \overline{x_2} x_1 \overline{x_0} \vee x_3 \overline{x_2} \overline{x_1} x_0 \vee x_3 \overline{x_2} x_1 \vee x_0 \vee x_1 \vee$$

ДКНФ функції

$$F(x_3, x_2, x_1, x_0) = (x_3 \lor x_2 \lor x_1 \lor \overline{x_0}) \land (x_3 \lor x_2 \lor \overline{x_1} \lor \overline{x_0}) \land (x_3 \lor \overline{x_2} \lor x_1 \lor \overline{x_0}) \land (x_3 \lor \overline{x_2} \lor \overline{x_1} \lor \overline{x_0})$$

$$\land (\overline{x_3} \lor x_2 \lor x_1 \lor \overline{x_0}) \land (\overline{x_3} \lor x_2 \lor \overline{x_1} \lor \overline{x_0}) \land (\overline{x_3} \lor \overline{x_2} \lor x_1 \lor x_0) \land (\overline{x_3} \lor \overline{x_2} \lor \overline{x_1} \lor x_0)$$

Мінімальна диз'юнктивна форма (МДФ)

	$x_I x_0$			
x_3x_2	$\overline{x}_1\overline{x}_0$	$\overline{x}_1 x_0$	x_1x_0	$x_1\overline{x}_0$
$\overline{x}_3\overline{x}_2$	1			1
$\overline{x}_3 x_2$	1			1
x_3x_2		1	1	
$x_3\overline{x}_2$	1			1

ΜЛФ

$$\overline{x_0x_3} \vee \overline{x_1x_3} \vee x_0x_1x_3$$

$$\begin{array}{l} \overline{x}_3\overline{x}_2\overline{x}_1\overline{x}_0\ i\ \overline{x}_3x_2\overline{x}_1\overline{x}_0\Rightarrow\overline{x}_3\overline{x}_1\overline{x}_0\\ \overline{x}_3\overline{x}_2x_1\overline{x}_0\ i\ \overline{x}_3x_2x_1\overline{x}_0\Rightarrow\overline{x}_3x_1\overline{x}_0\\ \overline{x}_3\overline{x}_1\overline{x}_0\ i\ \overline{x}_3x_1\overline{x}_0\Rightarrow\overline{x}_3\overline{x}_0 \end{array}$$

$$\begin{array}{l} \overline{x}_3\overline{x}_2\overline{x}_1\overline{x}_0\ i\ x_3\overline{x}_2\overline{x}_1\overline{x}_0\Rightarrow \overline{x}_2\overline{x}_1\overline{x}_0\\ \overline{x}_3\overline{x}_2x_1\overline{x}_0\ i\ x_3\overline{x}_2x_1\overline{x}_0\Rightarrow \overline{x}_2x_1\overline{x}_0\\ \overline{x}_2\overline{x}_1\overline{x}_0\ i\ \overline{x}_2x_1\overline{x}_0\Rightarrow \overline{x}_2\overline{x}_0 \end{array}$$

$$x_3x_2\overline{x}_1x_0\ i\ x_3x_2x_1x_0\Rightarrow x_3x_2x_0$$

МДФ:

$$F = \overline{x}_3 \overline{x}_0 + \overline{x}_2 \overline{x}_0 + x_3 x_2 x_0$$

Мінімальна кон'юнктивна форма (МКФ)

	x_1x_0			
x_3x_2	$\overline{x}_1\overline{x}_0$	$\overline{x}_1 x_0$	x_1x_0	$x_1\overline{x}_0$
$\overline{x}_3\overline{x}_2$		0	0	
$\overline{x}_3 x_2$		0	0	
x_3x_2 $x_3\overline{x}_2$	0			0
$x_3\overline{x}_2$		0	0	

МКФ:

$$Y = (x_3 + \overline{x_0}) \cdot (x_2 + \overline{x_0}) \cdot (\overline{x_3} + \overline{x_2} + x_0)$$

2.3. Схеми у NI Multisim

2.3.1. МДФ з Word Generator

2.3.2. МДФ з Logical Converter

2.3.3. МКФ з Word Generator

2.3.4. МКФ з Logical Converter

- 3. Приведення логічної функції чотирьох змінних до одного базису
- 3.1. Базис I-HE (NAND)

$$F = \overline{x}_3 \overline{x}_0 + \overline{x}_2 \overline{x}_0 + x_3 x_2 x_0$$

Застосуємо теорему де Моргана.

$$Y = x_3 x_2 x_0 + x_3 \overline{x}_2 \overline{x}_0 + \overline{x}_3 \overline{x}_0 = \overline{\overline{x}_3 \overline{x}_0} \cdot \overline{\overline{x}_2 \overline{x}_0} \cdot \overline{x}_3 \overline{x}_2 \overline{x}_0$$

3.2. Базис АБО-НЕ (NOR)

$$Y = (x_3 + \overline{x_0}) \cdot (x_2 + \overline{x_0}) \cdot (\overline{x_3} + \overline{x_2} + x_0)$$

Застосуємо теорему де Моргана.

$$Y = (x_3 + \overline{x_0}) \cdot (x_2 + \overline{x_0}) \cdot (\overline{x_3} + \overline{x_2} + x_0) = \overline{(\overline{x_3} + \overline{x_0})} + \overline{(\overline{x_2} + \overline{x_0})} + \overline{(\overline{x_3} + \overline{x_2} + x_0)}$$

- 3.3. Схеми у NI Multisim
- 3.3.1. Базис I-HE (NAND) з Word Generator

3.3.3. Базис I-HE (NOR) з Word Generator

3.3.4. Базис I-AБO (NOR) з Logic Converter

- 3.4. Схеми у NI Multisim на базі мікросхем 4000 серії
- 3.4.1. Базис I-HE (NAND) з Word Generator

У лабораторній роботі я вивчив методи проєктування комбінаційних схем в заданому базисі логічних елементів.