

# Estimating Petroleum Product Consumption at Terminals using Satellite Images and Weighted Voronoi Diagram

prepared by

Hyeonsup Lim, Ph.D. Shih-Miao Chin, Ph.D. Ho-Ling Hwang, Ph.D. Chieh (Ross) Wang, Ph.D.

Oak Ridge National Laboratory



### **Problem to Solve**

 How can we estimate movements of petroleum products at detailed geographical level (e.g., county)?

#### Flow of crude oil and gasoline to your local gas station



### **Problem to Solve**

 As the part of process in estimating the petroleum product movements, how can we better estimate the petroleum product consumptions?

#### Flow of crude oil and gasoline to your local gas station



Source: U.S. Energy Information Administration

## Challenges

- US Energy Information Administration (EIA) provides productions and consumptions at highly aggregated level (e.g., PADD and state).
- Input variables at different levels  $\hat{y} = f([x_1, x_2 | state], [x_3 | county], [x_4, x_5 | link], [x_6 | point], ...)$
- No y? No readily available data to validate the estimation results at the county level.
- There are location information of petroleum product terminals, but no consumption/termination information.
- Potentially, we can integrate other data sources, such as HPMS or FAF. But, how?

What are the available data sources?





• State level petroleum product consumptions (EIA)



• Locations of petroleum product terminals, but no consumption/capacity information.



 Vehicle Miles Traveled of Light Duty Vehicles and Medium/Heavy Duty Trucks (FAF/HPMS)

 $\hat{y} = f([x_1, x_2|state], [x_3|county], [x_4, x_5|link], [x_6|point], ...)$ 



#### **Estimation Process**

Process 1
Terminal Capacity



Process 2
Terminal Coverage



Process 3
VMT



Process 4

Consumption Estimate1 Validation/Calibration

$$[LFC12]_i = [LVMT12]_i \times [LAFC]$$

$$[TFC12]_i = [TVMT12]_i \times [TAFC]$$

 $\widehat{Y}$  vs Y

Process 5

State-level Estimates vs EIA

Calibrate weight parameters for Voronoi diagram

Process 6 (Final) – Adjustment by EIA's state level petroleum product consumptions





#### Circle Hough Transform (CHT)

• The circle candidates are produced by "voting" in the Hough parameter space and then select the local maxima in a so-called accumulator matrix.







#### Two Main Parameters in Hough Transform

Parameter 1: the higher threshold of the two passed to the Canny edge detector





#### Two Main Parameters in Hough Transform

• Parameter 2: the accumulator threshold for the circle centers at the detection stage. The smaller it is, the more false circles may be detected.



#### **Estimating Capacity from Radius**

•  $V = \pi r^2 h$ 



Estimated Capacity  $\propto \sum_{i=1}^{n} r^{\alpha}$ 

- Determine  $\alpha$  based on r-squared of estimated capacity in the validation set
- $\alpha$  is expected to be between 2 and 3



• If the petroleum product terminal capacity was not considered...



• Unweighted Voronoi Diagram (based on Euclidean Distance)



• Weighted Voronoi Diagram (based on Euclidean Distance + Estimated Capacity)  $Weight\ for\ Voronoi\ Diagram = [Estimated\ Capacity]^{\beta}$ 



• Weighted Voronoi Diagram (based on Euclidean Distance + Estimated Capacity)  $Weight\ for\ Voronoi\ Diagram = [Estimated\ Capacity]^{\beta}$ 



## Process 3 – Total VMT within the Coverage

#### **VMT** within the Coverage

• LVMT12 = VMT12 (HPMS) - TVMT12 (FAF4)



## Process 4 – Estimating Petroleum Product Consumptions

#### Fuel Consumption Estimates from the VMT at Process 3

- $[LFC12]_i = [LVMT12]_i \times [LAFC]$  ,  $[TFC12]_i = [TVMT12]_i \times [TAFC]$
- LAFC/TAFC is the average fuel consumption per VMT

| FID | Company                         | State | PADD | Sum_LFC12        | Sum_TFC12     |
|-----|---------------------------------|-------|------|------------------|---------------|
| 0   | BUCKEYE CARRIBEAN TERMINALS LLC | PR    | 6    | 0                | 0             |
| 1   | PETRO 49 INC                    | AK    | 5    | 32773194.462     | 8485580.098   |
| 2   | CPD ALASKA LLC                  | AK    | 5    | 998789.558       | 167389.544    |
| 3   | CHEVRON USA INC                 | CA    | 5    | 546308615.214    | 256061637.798 |
| 4   | HOLLY ENERGY PARTNERS OPER LP   | NE    | 2    | 90431862.75      | 59542537.438  |
| 5   | CENTER POINT TERMINAL LLC       | WV    | 1    | 276696926.584    | 107566817.861 |
| 6   | TRISTAR TERMINALS GUAM INC      | GU    | 7    | 0                | 0             |
| 7   | PAR HAWAII INC                  | HI    | 5    | 81041024.386     | 8494075.432   |
| 8   | TRANSMONTAIGNE PRODT SVCS INC   | FL    | 1    | 677645397.178001 | 237807367.526 |
| 9   | ARGUINDEGUI OIL CO II LTD       | TX    | 3    | 2935484.55       | 793527.124    |
| 10  | PAR HAWAII REFINING LLC         | HI    | 5    | 20142217.118     | 2331811.862   |
| 11  | PLAINS LPG SERVICES LP          | CA    | 5    | 107797071.736    | 32242624.308  |
| 12  | HOLLY ENERGY PARTNERS OPER LP   | AZ    | 5    | 30594646.406     | 64316443.183  |
| 13  | WESTERN REFINING SOUTHWEST INC  | NM    | 3    | 815970619.755999 | 160629303.309 |
| 14  | JP ENERGY CADDO LLC             | TX    | 3    | 176977663.014    | 97016084.996  |
| 15  | TRANSMONTAIGNE PRODT SVCS INC   | MS    | 3    | 237004265.458    | 62715702.008  |
| 16  | PHILLIPS 66                     | GA    | 1    | 79122332.764     | 30250625.806  |



### Process 5 – State Level Validation and Calibration

#### Compare State-level Estimates vs EIA

• To calibrate model parameters (weighting factor for Voronoi diagram)  $Weight\ for\ Voronoi\ Diagram = [Estimated\ Capacity]^{\beta}$ 

| Terminal ID               | terminal estimate $\widehat{oldsymbol{\hat{y}}}$ | State          | state estimate $\widehat{Y}$ | EIA<br>state consumption<br>Y |
|---------------------------|--------------------------------------------------|----------------|------------------------------|-------------------------------|
| 0001<br>:<br>0047         | 359<br>:<br>:<br>122                             | AK             | 6,091                        | 6,661                         |
| 0048<br>:<br>0082         | 704<br>:<br>1,331                                | AL             | 49,326                       | 60,653                        |
| 0083<br>:                 | 4,014                                            | <b>AR</b><br>: | <b>53,806</b><br>:           | <b>33,732</b><br>:            |
| K RIDGE<br>aal Laboratory |                                                  | •              | ·                            | •                             |

CIA

## **Final Results**

#### Final Petroleum Consumption at Terminal





| Terminal ID       | Adjusted $\widehat{oldsymbol{\hat{y}}}^*$        | State   | Adjusted<br>Ŷ*               | EIA<br>state consumption<br>Y |
|-------------------|--------------------------------------------------|---------|------------------------------|-------------------------------|
| 0001<br>:<br>0047 | 359 -> <b>392</b><br>:<br>:<br>122 -> <b>134</b> | AK      | 6,091 -> <b>6,661</b>        | 6,661                         |
| 0048<br>:<br>0082 | 704 -> <b>866</b> : 1,331 -> <b>1,637</b>        | AL      | 49,326 -> <b>60,653</b>      | 60,653                        |
| 0083<br>:         | 4,014 -> <b>2,516</b>                            | AR<br>: | 53,806 -> <b>33,732</b><br>: | 33,732                        |
| K RIDGE           |                                                  |         |                              |                               |

#### **Conclusions**

#### Common research questions to be answered...

- Is there a better method to estimate fuel consumptions?
- How can we validate the results?
- Other data sources?

### Other things that we can do with AI/ML...

- Verifying inactive/invalid petroleum product terminal locations
- Access of transportation mode at a certain location