Notes de TD de Réseau

Yann Miguel

$17\ {\rm septembre}\ 2020$

Table des matières

1	TD	1																	2
	1.1	Exerci	ice	1 .															4
		1.1.1	\mathcal{C})ues	tion	1													6
		1.1.2	\mathcal{C})ues	tion	2													4
		1.1.3	\mathcal{C})ues	tion	3													
		1.1.4																	
	1.2	Exerci	ice	2 .															4
		1.2.1	\mathcal{C})ues	tion	1													6
		1.2.2	C)ues	tion	2													6
		1.2.3	C)ues	tion	3													,
		1.2.4		-	tion														
		1.2.5	C)ues	tion	5													,
		1.2.6		•	tion														•

1 TD1

1.1 Exercice 1

1.1.1 Question 1

Des connections qui permettent le dialogue bidirectionnel à l'alternat sont connues comme des connections **Half duplex**.

1.1.2 Question 2

Une transmission en bande de base correspond à une transmission en **numérique**.

1.1.3 Question 3

L'interconnexion de machine par l'intermédiare d'un Hub correspond à une topologie en **bus**.

1.1.4 Question 4

Si un message de 60 octets part de la couche réseau de la machine A, alors la couche réseau de la machine B reçevra un message de **60 octets**.

1.2 Exercice 2

1.2.1 Question 1

L'utilisation d'un protocole en couches permet de :

- changer une couche sans impacter les autres (maintenance)
- assurer l'interopérabilité entre les machines

et à comme principal défault que le message envoyé puisse devenir très lourd du aux en-tête placées par les couches intermédiares, ou au padding.

1.2.2 Question 2

Deux standards permettant l'interopérabilité:

- chargeur de smartphone à induction
- rails de train

Deux standards ne permettant pas l'interopérabilité :

- chargeurs de smartphone filiaire
- connectique vidéo

1.2.3 Question 3

La fibre optique à un débit élevé, et une latence élevée, surtout sur des grandes distances. La wifi, par contre, a un débit faible et une latence faible.

1.2.4 Question 4

Non, ils ne sont pas identiques. Le flux d'octets envoie des messages plus légers, mais sans doute désordonnées, alors que le message est une entité unique et indivisible à travers tout le réseau, et est donc plus lourd.

1.2.5 Question 5

Il y aura peu d'impacte, voir aucun, car le modèle en couche permet de changer une couche sans toucher les autres.

1.2.6 Question 6

	étoile	anneau	maillage complet
court	2	1	1
moyen	2	$\frac{n}{4}$	1
long	2	$\frac{n}{2}$	1

Le mailage complet est plus rapide, mais est plus cher à implémenter. Dans le cadre de cet exercice, l'anneau bidirectionnel priorisait le chemin le plus court.