PB17111614_王嵘晟.md 2020/6/17

HW12

PB17111614

王嵘晟

1, 1	$X^{(c)} = (1, 1)$) ^T : ¿t# X	(k)=AX(k-1) 好徒	
K	X(k)	X, (k)	$X_{i}^{(k)}/X_{i}^{(k-1)}$	$X_{2}^{(k)}/X_{2}^{(k-1)}$
0	1			
	3	(3	6
2	15	18	5	3
3	5	90	3,4	5 .
4	23	306	4529412	3,4
<u> </u>	843	1386	3,649351	4,529412.
	収入= 4.5	29412		
	V ≈ x (t) =	- (8B, 138	36)	
7 使用		外缘的原		
2 1/10	(r(k) =	X(x)/ 11/xx)110		
· · · · · · · · · · · · · · · · · · ·	1(A-PT)	(KH) = / (K)	· K=0,1/	
ন	主次2件的对大	M. Ning X最	bh A的特征被为入	$= x + \frac{1}{\lambda}$
	1.121010	1. (). 110. 11		

3. P= $Q^{(0)} = A^{(0)} = A$, $Q^{(0)} = Q^{(0)} = Q^{$
$\frac{1}{160} = \frac{\alpha_{11}(0) - \alpha_{11}(0)}{2\alpha_{12}(0)} = -\frac{3}{2} + \frac{3}{2} + $
$\frac{1}{160000000000000000000000000000000000$
$(Q_1 = Q(P, Q, Q) = Q_2Q SinQ Q_197892 -01897840)$
$\frac{7.302175}{1.914184} = \frac{7.302175}{0.579568} = 7.$