Оглавление

Оглавление	2
Введение	3
Основная часть	5
1 Неградиентный поиск экстремума по точечным значениям по	оля5
2 Классический (централизованный) метод роя частиц	7
3 Сравнение с градиентным подъёмом	13
4 Децентрализованный метод роя частиц	15
5 Исследование робастности алгоритма	17
Список использованных источников	19
Приложение А	20
Приложение Б	36

Введение

В данной работе рассматривается задача управления мобильными роботами с целью выведения их в точку (или ее малую окрестность) физического пространства, в которой некоторое скалярное поле достигает своего экстремума, при этом поле априори неизвестно. Примерами таких полей могут служить: концентрация опасного химического агента в среде обитания, соленость морской воды, распределение температуры и т.д. Как правило, ввиду больших размеров зоны поиска применение распределенных по этой зоне ансамблей статических сенсоров требует высокой плотности распределения и большого числа сенсоров, что часто ставит под сомнение эффективность данного подхода. Использование мобильных роботов, напротив, является привлекательной стратегией: небольшое число роботов, способных проводить измерения, может исследовать достаточно большую область определения поля за разумное время.

Многие подходы к решению задачи поиска экстремума используют информацию о градиенте поля [1, 2]. Поскольку градиент редко доступен непосредственному измерению, большинство методов этой группы используют его оценки, построенные на основе одновременного измерения значения поля в нескольких точках пространства, образующих его аффинный базис. Такой способ адекватен при использовании крупноформатных роботов с большим числом датчиков или группы роботов, обменивающихся данными друг с другом [3, 4].

Тем не менее, если такой подход для нас неудобен, или если мы работаем над созданием альтернативных алгоритмов, имеет смысл обратить внимание на биомиметику. Биомиметика — это метод создания материалов и устройств, при котором ученые находят удачные идеи в природе и заимствуют их для своих разработок. Преимущество такого подхода в том, что решения, которыми пользуется животный и растительный мир, как правило, не запатентованы, поэтому они бесплатны никем ДЛЯ исследователей. К тому же за многолетнюю историю эволюции в природе закрепились определенные структуры и механизмы, которые помогают существам выживать разных условиях. Поэтому В ученые ориентироваться на самые эффективные решения природы, видоизменять их под задачи проектирования и создавать разных роботов, похожих на представителей окружающего мира.

Именно таким образом был разработан *метод роя частиц* (Particle Swarm Optimization, PSO) [5]. Он основан на моделировании поведения стаи птиц или роя насекомых. Идея заключается в том, что каждый робот в группе рассматривается как "частица", которая движется в пространстве состояний в поисках оптимального решения. Частицы обмениваются информацией о своих текущих положениях и наилучших найденных решениях, что позволяет им совместно искать оптимальное решение для всей группы. Преимущество метода роя частиц заключаются в его способности к адаптации и поиску оптимального решения в сложных и динамичных средах. Благодаря возможности обмена информацией и координации между роботами, группа может эффективно справляться с задачами, такими как поиск, исследование или патрулирование. В данной статье мы рассмотрим применение нескольких версий метода роя частиц для управления группой мобильных роботов и его преимущества. Будут потенциальные представлены результаты экспериментов и анализ эффективности данного подхода.

Основная часть

1 Неградиентный поиск экстремума по точечным значениям поля

Пусть на плоскости определено скалярное поле $D(x,y) \in R$. Задача заключается в поиске его экстремума, где под поиском понимается физическое перемещение автономного робота или группы роботов в точку экстремума. При этом ни один из них не способен измерять градиент поля, однако каждый робот измеряет значение поля в своей текущей локации. Помимо этого, роботы способны к коммуникации друг с другом в пределах некоторого радиуса связи, либо роботы способны коммуницировать с некоторым центром. Конкретный тип связи, используемый роботами, будет уточнён ниже.

Для всех наших экспериментов мы использовали поле размера 10x10 условных единиц, определяемое формулой:

$$D(x, y) = \frac{1}{10\sqrt{2\pi}} e^{-\left(\frac{(x-5)^2}{10} + \frac{(y-5)^2}{10}\right)}$$
(1.1)

На изображениях ниже вы можете наблюдать линии уровня данной функции и поверхность, которую она описывает:

Рисунок 1.1 – линии уровня функции (1.1)

Как вы можете видеть, наша целевая функция представляет собой двумерную функцию Гаусса, чей центр был смещён в точку (5, 5), а дисперсия равняется 10, что обеспечивает достаточно медленное убывание функции.

Рисунок 1.2 – поверхность, описываемая функцией (1.1)

В силу тех ограничений, что мы наложили на функционал роботов выше, мы не может измерять значение градиента. Тем не менее, вполне традиционный выход из такой ситуации — построение оценок градиента. Это, однако, требует доступа к значениям поля в нескольких близких точках, распределенных в двух измерениях. Группа из трех и более роботов может получить доступ к таким значениям (при условии адекватного взаимного позиционирования роботов). Этот факт лежит в основе неградиентных алгоритмов поиска экстремума группами общающихся друг с другом роботов.

Однако, данная работа нацелена на разработку и анализ альтернативных методов поиска экстремума, мотивированных биологическими прототипами.

2 Классический (централизованный) метод роя частиц

Метод роя частиц был предложен группой американских исследователей в 1995 года [5]. Через 3 года те же авторы опубликовали его улучшенную версию [6]. За последующие 25 лет было предложено несколько модификаций, мы же будет ориентироваться на версию 1998 года.

Псевдокод этого алгоритма представлен ниже:

- 1. Для каждого агента i = 1, ..., S выполнить
 - а. Проинициализировать положение агента вектором из многомерного равномерного распределения: $x_i \sim \mathrm{U}(b_{_{\mathrm{Hижh.}}}, b_{_{\mathrm{Bepxh.}}})$
 - b. Проинициализировать лучшее положение, известное агенту, его текущей позицией: $p_i \leftarrow x_i$
 - с. Если $f(p_i) > f(g)$, тогда обновить лучшее положение роя: $g \leftarrow p_i$
 - d. Проинициализировать начальную скорость агента:

$$v_i \sim \mathrm{U}(-\mid b_{\mathrm{Bedxh.}} - b_{\mathrm{Huwh.}}\mid,\mid b_{\mathrm{Bedxh.}} - b_{\mathrm{Huwh.}}\mid)$$

- 2. Пока не выполнен критерий останова выполнить:
 - а. Для каждого агента i = 1, ..., S выполнить:
 - і. Выбрать случайные величины r_{p} , $r_{q} \sim U(0, 1)$
 - іі. Обновить скорость агента:

$$v_{i} \leftarrow w v_{i} + c_{1} r_{p} (p_{i} - x_{i}) + c_{2} r_{q} (g - x_{i})$$

ііі. Обновить положение агента:

$$x_i \leftarrow x_i + v_i$$

- iv. Если $f(p_i) > f(x_i)$, обновить лучшее положение, известное агенту: $p_i \leftarrow x_i$
- v. Если $f(p_i) > f(g)$, обновить лучшее положение, известное рою: $g \leftarrow p_i$

Использованные выше обозначения:

- S -количество агентов;
- p_i лучшее положение, известное агенту i;
- g лучшее положение, известное рою;
- w параметр инерции, обычно 1;
- c_1 и c_2 множители перед теми компонентами скорости, что генерируются лучшей позицией частицы и лучшей позицией роя, обычно 2;
- $b_{\text{нижн.}}$ и $b_{\text{верхн.}}$ ограничения снизу и сверху соответственно;

Поскольку этот метод был предложен именно как алгоритм оптимизации, к управлению группой роботов он пока не совсем применим:

- 1. Агенты могут иметь начальное положение в центре поля, что невозможно реализовать физически, ведь робот не может просто материализовать посреди объекта;
- 2. Скорость агента вполне может быть такой, что он за одну итерацию преодолеет всё поле, что может иметь место только в случае поля небольшого размера (в пределах нескольких десятков метров);
- 3. Как правило, количество агентов довольно большое. Считается, что оптимально их количество это 20 50 [7]. Едва ли такое количество роботов можно себе позволить на практике.
- 4. Выбор параметра *w*, который отвечает за инерцию, очень важен. Если взять его слишком большим, то алгоритм будет расходиться.
- 5. Обычно критерий останова в этом алгоритме это количество итераций, что может быть слишком грубым условием;
- 6. В данном алгоритме агенты могут коммуницировать с некоторой базой сервером, который хранит лучшее найденное роем положение. Реализовать такой механизм может быть затратно, а иногда и невозможно;

Поэтому нами был предложен ряд модификаций:

- 1. В начальный момент времени роботы расположены по периметру поля:
 - а. Агенты располагаются независимо друг от друга в произвольном месте на периметре поля. Эту стратегию далее мы именуем «edge»;
 - b. Все агенты располагаются в небольшом "пятне", расположенном на периметре поля. Эту стратегию далее мы именуем «*spot*»;
- 2. Если модуль скорости превышает размер поля, уменьшенный в 50 раз. то мы производим нормировку скорости так, чтобы её модуль стал равен размеру поля, уменьшенному в 50 раз. Таким образом, в лучшем случае агент преодолеет всё поле за 50 итераций. Такое ограничение выбрано из тех соображений, что гражданский квадрокоптер средней ценовой категории, например, «DJI Mavic 3», может развивать скорость до 20 м/с. В то же время, более серьёзные БПЛА, например, «Орлан-30», могут развивать скорость до 30 м/с. Таким образом, мы можем моделировать работу алгоритма на поле, чей линейный размер составляет несколько километров;
- 3. Здесь мы нацелены на реальное применение алгоритма, поэтому будем использовать небольшое количество агентов: от 2 до 20;
- 4. Каждые 100 итераций мы уменьшаем w на 25%: $w \leftarrow w * 0.75$. Это достаточно сильно улучшает сходимость;
- 5. Помимо количества итераций, алгоритм останавливается, если норма скорости стала слишком маленькой, либо, если 75% агентов находятся в малой окрестности некоторой точки;
- 6. Мы также рассмотрим версии алгоритма, в которых агенты общаются напрямую друг с другом, без сервера, в пределах некоторого радиуса связи. Также было бы интересно изучить влияние радиуса связи на результаты работы алгоритма.

Для большей наглядности, ниже продемонстрированы положения роя в начальный момент времени при различных стратегиях:

Для сравнения различных версий метода роя частиц мы будем использовать метод Монте-Карло [8]. А именно, мы будем запускать алгоритм 1000 раз для каждой из его вариаций и логировать такие метрики, как: количество итераций – аналог времени работы, абсолютную и относительную ошибку алгоритма, путь, пройденный всем роем, и средний путь, пройденный агентом – последние две метрики показывают, какое количество абстрактного топлива требуется для работы алгоритма.

Для начала исследуем централизованный алгоритм – то есть такой, где агенты общаются через сервер, а не напрямую. Соответственно, к методу, чей псевдокод представлен выше, применим наши модификации 1. – 5., без пункта 6. – о децентрализованном алгоритме речь пойдёт ниже. На графиках ниже точкой отмечено среднее значение метрики по итогам симуляции, а вертикальные линии – это стандартное отклонение. Синий цвет соответствует стратегии начального расположения агентов «edge», оранжевый – стратегии «spot». Мы будем варьировать количество агентов, которые участвуют в поиске максимума – в идеале, мы хотим использовать как можно меньше роботов, сохранив, при этом, хороший результат.

Рисунок 2.3 – количество итераций для различных версий централизованного алгоритма

Рисунок 2.4 – абсолютная ошибка для различных версий централизованного алгоритма

Рисунок 2.5 – относительная ошибка (в долях) для различных версий централизованного алгоритма

Рисунок 2.6 – суммарный путь, пройденный роем, для различных версий централизованного алгоритма

Рисунок 2.7 – средний путь, пройденный агентом, для различных версий централизованного алгоритма

Из рисунков 2.3 – 2.7 мы можем сделать следующие выводы:

- 1. Начиная с 10 агентов, алгоритм работает безошибочно при любой начальной стратегии. Если же в нашем распоряжении только 5 роботов, имеет смысл использовать стратегию «edge» тогда ошибка составит не более 2%. Использование меньшего количества агентов нецелесообразно при такой конфигурации алгоритм довольно сильно ошибается.
- 2. Стратегия «spot» показывает более слабый результат, чем стратегия «edge». Это связано с тем, что, находясь на, скажем, противоположных

краях карты, при взаимодействии агентов происходит следующее: на предыдущей итерации 1-ый робот находит точку, которую рой признаёт наилучшей – на текущей итерации 2-ой робот имеет компоненту скорости, направленную к этой точке, эта компонента скорости заставляет 2-ого агента двигаться по направлению к центру, поскольку роботы расположены на противоположных сторонах поля. Из-за вида целевой функции — она имеет максимум в центре поля, 2-ой агент находит точку, более близкую к центру поля, чем та, из которой он начинал текущую итерацию. Однако, этот эффект нивелируется с увеличением числа агентов — из-за случайной инициализации скорости при большом количестве агентов они всё же способны грамотно исследовать поле и в дальнейшем найти точку максимума целевой функции.

- 3. На лицо ожидаемый trade-off: за большую точность приходится платить большим расходом топлива средний путь, пройденный агентов, растёт с увеличением числа самих агентов.
- 4. Если у нас в распоряжении есть хотя бы 10 агентов, имеет смысл использовать стратегию «spot», ведь она, как и стратегия «edge», гарантирует нам нахождение искомой точки, в то время, как количество итераций будет на 5-10 меньше, а пройденный путь уменьшится более, чем в 2 раза.

3 Сравнение с градиентным подъёмом

Как мы выяснили выше, наш алгоритм хорошо показал себя, если в рое есть хотя бы 5 агентов. Однако, поскольку он разрабатывается, как конкурент градиентным методам, хотелось бы сравнить качество работы с одним из их представителей, например, градиентным подъёмом. Для этого воспользуемся той же стратегией — методом Монте-Карло.

Таблица 2.1 — Сравнение градиентного подъёма и метода роя частиц со стратегией «edge»

Метрика	Алгоритм				
		Цен	трализованный	й метод роя час	тиц
	Градиент- ный подъём	2 агента	3 агента	4 агента	5 агентов
Относительная ошибка, в долях	3.13e-07 ± 7.23e-10	1.286e-01 ± 1.717e-01	2.325e-02 ± 7.162e-02	6.232e-03 ± 3.766e-02	9.023e-04 ± 1.255e-02
Пройденны й путь	5.76 ± 0.63	88.47090376 ± 34.23426822	155.851 ± 39.029	223.351 ± 39.686	290.768 ± 39.861
Количество итераций	2296.584 ± 159.23	163.849 ± 8.67	170.057 ± 5.945	172.052 ± 5.245	168.811 ± 4.136

Метрика		Алгоритм				
	Централиз	ованный метод	роя частиц			
	10 агентов					
Относительная ошибка, в долях	4.043e-07 ± 2.808e-06	1.638e-08 ± 1.339e-07	2.09e-09 ± 1.272e-08			
Пройденны й путь	599.589 ± 44.367	904.923 ± 49.657	1202.836 ± 55.715			
Количество итераций	168.936 ± 2.994	168.361 ± 2.609	167.773 ± 2.125			

Выводы, которые мы можем сделать из этой таблицы:

- 1. Начиная с 10 агентов, алгоритм демонстрирует сравнимую с градиентным подъёмом точность, а при увеличении числа роботов даже превосходит по этому параметру своего конкурента;
- 2. Снова возникает старый trade-off: при сопоставимой точности наш алгоритм требует в 87 126 больше топлива на передвижение. В то же время, он требует в 12 14 раз меньше итераций, а поскольку в реальности агенты двигаются независимо друг от друга и одновременно, выигрыш по времени также составит 12 14 раз;

4 Децентрализованный метод роя частиц

Как я уже писал выше, далеко не всегда мы хотим или даже можем использовать некий сервер, который можем общаться с каждым из агентов и хранить некую информацию, которая от них поступает. Именно по этой причине хотелось бы промоделировать поведение группы роботов в ситуации, когда агенты могут связываться друг с другом напрямую, но только в пределах некоторого ограниченного радиуса связи. Алгоритм, по которому в таком случае группа ищет максимум, мы назвали «Децентрализованный метод роя частиц». Его главные отличия от модифицированного алгоритма, что мы описали в разделе 2 текущей главы:

- 1. Вместо общего сервера, который хранит наибольшее найденное значение и позицию, которая ему соответствует, теперь каждый робот хранит эту информацию внутри себя. То есть, у каждого агента теперь есть отдельная переменная, отвечающая за лучшее положение, найденное роем;
- 2. После этапа движения агент связывается со всеми другими агентами, что попадают в его радиус связи (включая самого этого агента). Если существуют агенты, что смогли найти точку, значение в которой

больше, чем то, которое агент смог получить от роя ранее, то агент обновляет свою собственную переменную, отвечающую за информацию. полученную от роя;

Ознакомиться с таблицами метрик, которые может достигнуть децентрализованный алгоритм в его различных конфигурациях, вы можете в Приложении А. Здесь же мы проанализируем эти данные и сделаем выводы о применимости алгоритма на практике:

- 1. Если вы используйте стратегию «edge», то минимальный радиус связи, при котором алгоритм способен гарантировать нахождение точки экстремума это 5% от размера поля. В случае, если вы применяете стратегию «spot» (которая более реализуема на практике), то для аналогичного результата понадобится уже 10+агентов;
- 2. Суммарный пройденный группой путь в среднем уменьшается при увеличении радиуса связи. Это может быть важно, если топливо в дефиците;
- 3. Количество итераций, которое можно считать аналогом времени, при увеличении радиуса связи незначительно возрастает для стратегии «edge» и заметно уменьшается для стратегии «spot». Если время работы довольно критично, то стоит обратить внимание на этот факт;
- 4. При уменьшении радиуса связи с 5% от размера поля алгоритм начинает терять в точности работы. Таким образом, даже при наибольшем числе агентов алгоритм ошибается в среднем на 2% и вплоть до 6% независимо от начального положения группы;

5 Исследование робастности алгоритма

Поскольку мы исследуем, насколько реально применим метод роя частиц для управлением группой роботов, стоит узнать, насколько агент может преодолеть шум, который появляется при измерении чего-либо датчиком. Для этого, при симуляции добавим шум в измерения при каждом обращении агента к полю.

Этот шум должен обладать следующими свойствами:

- 1. Чем дальше от экстремума находится агент, тем сильнее шум должен влиять на результаты измерений;
- 2. При наибольшем удалении от экстремума шум может достигать такой величины, что его значение превысит значение поля в искомой точке максимума. Таким образом, особо невезучий агент может остаться где-то на окраине поля до окончания работ. Более того, при достаточном радиусе связи он привлечёт в этот ложный сектор и других агентов, чем саботирует работу группы;

Ориентируясь на эти 2 условия, мы выбрали 2 варианта шума:

- 1. Шум из равномерного распределения U(-1, 1)x|| положение агента $-(5, 5)||_2 x = 0.0057$
- 2. Шум из нормального распределения $N(0, || \text{положение агента} (5, 5)||_2 x 0.0057)$

Понимая, что такой сильный шум способен серьёзно повлиять на работу алгоритма, мы также рассмотрим его ослабленные, чтобы понять, в какой момент алгоритм может прийти в негодность.

Таким образом, у нас получились следующие варианты шума:

- 1. Для равномерного распределения:
 - а. U(-1, 1)x||положение агента $-(5, 5)||_2 x 0.001425;$
 - b. U(-1, 1)x||положение агента $-(5, 5)||_2 x 0.00285;$
 - с. U(-1, 1)x||положение агента $-(5, 5)||_2 x 0.004275;$

- d. U(-1, 1)x||положение агента $-(5, 5)||_2 x 0.0057$
- 2. Для нормального распределения:
 - а. N(0, ||положение агента $-(5, 5)||_2 \times 0.00063)$
 - b. N(0, ||положение агента $-(5, 5)||_2 \times 0.00126)$
 - с. N(0, ||положение агента $-(5, 5)||_2 \times 0.00189)$

Далее мы исследуем, насколько наш децентрализованный алгоритм способен этому шуму противостоять. Возможно, агент – лидер окажется способным вывести группу из зашумлённого региона. Также возможно, что влияние шума скажется на поведении алгоритма самым плохим образом.

- 1. При слабом влиянии шума (1.а. 2.а) преодолевается нашим алгоритмом при 10+ агентах и радиусе связи хотя бы 100% от размера поля. Если же уменьшить радиус связи до 50%, то потребуется уже минимум 15 агентов. Если уменьшить его до 25%, то для корректной работы алгоритмы нужно будет по крайней мере 20 агентов. При дальнейшем уменьшении радиуса связи алгоритм быстро теряет в качестве работы;
- 2. При среднем влиянии шума (1.b-c, 2.b) алгоритм справляется с шумом при 10+ агентах с радиусов связи 100% от размера поля, но уже при радиусе связи равном 50% относительная ошибка вырастает в среднем до 4% и вплоть до 12 % при 20 агентах. При дальнейшем уменьшении радиуса связи алгоритм становится всё менее пригодным для решения задачи;
- 3. При сильном влиянии шума (1.d, 2.c) алгоритм ошибается в среднем на 8% и вплоть до 16% даже при 20 агентах и связью, покрывающей всё поля. При уменьшении числа агентов или уменьшении радиуса связи алгоритм ошибается всё сильнее.
- 4. Во всех случаях успешной работы алгоритма была использованы стартегия «edge»;

Список использованных источников

- 1. N. Atanasov, J. Le Ny, N. Michael, G.J. Pappas // Stochastic source seeking in complex environments: Proceedings of the IEEE Conference on Robotics and Automation / Saint Paul, MN, 2012, P. 3013–3018.
- 2. Zhang C., Ord'onez R. Extremum-seeking control and applications: A numerical optimization-based approach // Advances in Industrial Control. Springer-Verlag, 2012.
- 3. Ogren P., Fiorelli E., Leonard N. Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed environment // IEEE Trans. Autom. Control, vol. 49, no. 8, 2004, P. 1292–1301.
- 4. Peterson C., Paley D. Multivehicle coordination in an estimated time-varying flowfield // Journal of Guidance, Control, and Dynamics, vol. 34, no. 1, 2011. P. 177–191.
- 5. Kennedy, J.; Eberhart, R. // Particle Swarm Optimization: Proceedings of IEEE International Conference on Neural Networks. IV. P. 1942—1948.
- 6. Y. Shi, R. Eberhart. A modified particle swarm optimizer: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence / Anchorage, AK, USA, 1998, P. 69-73,
- 7. A.P. Piotrowski, J.J. Napiorkowski, Piotrowska A. E. Population size in Particle Swarm Optimization // Swarm and Evolutionary Computation, vol. 58, 2020,
- 8. N. Metropolis, S. Ulam. The Monte Carlo Method // Journal of the American Statistical Association, vol. 44, no. 247, 1949, P. 335–341

Приложение А

(обязательное)

Метрики различных вариаций децентрализованного алгоритма

Ниже будут представлены метрики децентрализованного алгоритма при различных значениях радиуса связи.

Таблица A.1 – метрики алгоритма при радиусе связи, равном 142% от размера поля, стратегия «edge»

Метрика	Количество агентов				
	2 агента	3 агента	4 агента	5 агентов	
Относительная ошибка, в долях	1.275e-01 ± 1.806e-01	1.941e-02 ± 6.648e-02	2.51e-03 ± 1.652e-02	6.647e-04 ± 5.661e-03	
Пройденный путь	80.484 ± 28.806	147.477 ± 33.065	211.809 ± 37.897	275.239 ± 37.992	
Количество итераций	163.576 ± 8.54	170.205 ± 6.15	172.035 ± 5.12	169.345 ± 4.25	

Метрика	Количество агентов			
	10 агентов	15 агентов	20 агентов	
Относитель- ная ошибка, в долях	8.443e-07 ± 8.458e-06	3.427e-08 ± 3.704e-07	2.15e-09 ± 1.307e-08	
Пройденный путь	577.012 ± 41.772	874.062 ± 48.471	1171.336 ± 53.613	
Количество итераций	168.908 ± 3.18	168.369 ± 2.76	167.873 ± 2.17	

Таблица A.2 – метрики алгоритма при радиусе связи, равном 142% от размера поля, стратегия «spot»

Метрика	Количество агентов				
	2 агента	3 агента	4 агента	5 агентов	
Относитель- ная ошибка, в долях	1.274e-01 ± 1.806e-01	1.941e-02 ± 6.648e-02	2.51e-03 ± 1.652e-02	6.646e-04 ± 5.661e-03	
Пройденный путь	32.76 ± 8.995	57.349 ± 12.665	82.177 ± 16.034	107.958 ± 19.319	
Количество итераций	158.225 ± 9.876	163.113 ± 6.314	164.95 ± 5.881	161.87 ± 5.427	

Метрика	Количество агентов				
	10 агентов	15 агентов	20 агентов		
Относитель- ная ошибка, в долях	8.443e-07 ± 8.458e-06	3.427e-08 ± 3.704e-07	2.147e-09 ± 1.307e-08		
Пройденный путь	240.691 ± 36.997	375.914 ± 53.987	507.17 ± 71.856		
Количество итераций	162.973 ± 4.614	162.891 ± 4.756	162.623 ± 4.72		

Таблица A.3 – метрики алгоритма при радиусе связи, равном 100% от размера поля, стратегия «edge»

Метрика	Количество агентов				
	2 агента	3 агента	4 агента	5 агентов	
Относитель- ная ошибка, в долях	1.279e-01 ± 1.744e-01	2.696e-02 ± 2.853e-02	4.113e-03 ± 2.485e-02	1.295e-03 ± 1.571e-02	
Пройденный путь	86.857 ± 34.453	156.765 ± 38.692	225.463 ± 38.414	289.109 ± 39.235	
Количество итераций	163.849 ± 8.67	170.057 ± 5.945	172.022 ± 5.119	168.992 ± 4.256	

Метрика	К	Количество агентов			
	10 агентов	15 агентов	20 агентов		
Относитель- ная ошибка, в долях	3.441e-07 ± 1.858e-06	1.69e-08 ± 1.927e-07	3.586e-09 ± 5.156e-08		
Пройденный путь	600.151 ± 43.016	904.495 ± 49.894	1206.238 ± 55.642		
Количество итераций	168.909 ± 3.169	168.302 ± 2.579	167.92 ± 2.209		

Таблица A.4 – метрики алгоритма при радиусе связи, равном 100% от размера поля, стратегия «spot»

Метрика	Количество агентов				
	2 агента	3 агента	4 агента	5 агентов	
Относитель- ная ошибка, в долях	1.14e-01 ± 1.912e-01	3.806e-02 ± 1.001e-01	1.551e-02 ± 5.256e-02	8.299e-03 ± 3.711e-02	
Пройденный путь	34.486 ± 9.511	61.065 ± 13.2	88.063 ± 16.747	117.691 ± 20.954	
Количество итераций	157.294 ± 8.589	163.383 ± 6.383	165.229 ± 5.705	162.49 ± 5.127	

Метрика	К	Количество агентов			
	10 агентов	15 агентов	20 агентов		
Относитель- ная ошибка, в долях	1.516e-03 ± 5.445e-03	7.201e-04 ± 3.767e-03	3.963e-04 ± 1.529e-03		
Пройденный путь	263.314 ± 37.88	415.587 ± 52.949	574.301 ± 76.216		
Количество итераций	164.051 ± 4.787	164.152 ± 4.67	164.327 ± 4.515		

Таблица A.5 – метрики алгоритма при радиусе связи, равном 50% от размера поля, стратегия «edge»

Метрика	Количество агентов			
	2 агента	3 агента	4 агента	5 агентов
Относитель- ная ошибка, в долях	1.316e-01 ± 1.776e-01	2.463e-02 ± 7.429e-02	5.22e-03 ± 3.428e-02	5.445e-04 ± 5.964e-03
Пройденный путь	87.203 ± 33.788	156.595 ± 37.95	223.985 ± 39.13	289.269 ± 39.703
Количество итераций	163.947 ± 8.465	170.208 ± 6.017	172.092 ± 5.085	168.969 ± 4.271

Метрика	К	оличество агенто	ЭВ
	10 агентов	15 агентов	20 агентов
Относитель- ная ошибка, в долях	2.822e-07 ± 1.719e-06	1.956e-08 ± 1.956e-07	3.383e-09 ± 5.08e-08
Пройденный путь	597.486 ± 46.008	905.04 ± 48.943	1204.276 ± 55.268
Количество итераций	168.727 ± 3.059	168.448 ± 2.475	167.924 ± 2.221

Таблица A.6 – метрики алгоритма при радиусе связи, равном 50% от размера поля, стратегия «spot»

Метрика	Количество агентов			
	2 агента	3 агента	4 агента	5 агентов
Относитель- ная ошибка, в долях	1.087e-01 ± 1.9e-01	3.873e-02 ± 1.103e-01	2.034e-02 ± 8.092e-02	9.331e-03 ± 4.683e-02
Пройденный путь	34.294 ± 9.302	60.74 ± 13.493	87.923 ± 16.262	117.107 ± 20.313
Количество итераций	157.587 ± 8.186	163.039 ± 5.98	165.228 ± 5.81	162.493 ± 5.254

Метрика	К	оличество агенто	рВ
	10 агентов	15 агентов	20 агентов
Относитель- ная ошибка, в долях	1.68e-03 ± 7.027e-03	8.046e-04 ± 3.405e-03	4.374e-04 ± 2.294e-03
Пройденный путь	264.615 ± 37.965	416.426 ± 57.692	572.223 ± 74.77
Количество итераций	163.987 ± 4.767	164.162 ± 4.704	164.023 ± 4.488

Таблица А.7 – метрики алгоритма при радиусе связи, равном 25% от размера поля, стратегия «edge»

Метрика	Количество агентов			
	2 агента	3 агента	4 агента	5 агентов
Относитель- ная ошибка, в долях	1.369e-01 ± 1.881e-01	2.622e-02 ± 7.33e-02	5.473e-03 ± 3.825e-02	6.21e-04 ± 4.41e-03
Пройденный путь	87.141 ± 34.317	156.14 ± 38.118	222.643 ± 38.769	288.284 ± 41.264
Количество итераций	163.94 ± 8.63	170.263 ± 5.81	171.953 ± 4.98	168.708 ± 4.26

Метрика	Количество агентов				
	10 агентов	15 агентов	20 агентов		
Относитель- ная ошибка, в долях	3.353e-06 ± 8.575e-05	5.173e-08 ± 9.1e-07	4.088e-09 ± 3.623e-08		
Пройденный путь	601.807 ± 42.61	903.447 ± 48.837	1201.956 ± 53.669		
Количество итераций	168.866 ± 3.11	168.291 ± 2.51	167.879 ± 2.14		

Таблица A.8 – метрики алгоритма при радиусе связи, равном 25% от размера поля, стратегия «spot»

Метрика	Количество агентов			
	2 агента	3 агента	4 агента	5 агентов
Относитель- ная ошибка, в долях	1.224e-01 ± 2.01e-01	4.013e-02 ± 1.168e-01	1.613e-02 ± 6.582e-02	1.032e-02 ± 4.554e-02
Пройденный путь	34.247 ± 9.099	60.38 ± 12.996	88.292 ± 16.962	116.105 ± 19.439
Количество итераций	157.537 ± 8.17	163.214 ± 6.29	164.944 ± 5.66	162.378 ± 5.13

Метрика	Количество агентов				
	10 агентов	15 агентов	20 агентов		
Относитель- ная ошибка, в долях	1.287e-03 ± 5.187e-03	7.502e-04 ± 3.556e-03	4.846e-04 ± 2.198e-03		
Пройденный путь	263.947 ± 38.135	416.644 ± 53.546	572.627 ± 72.742		
Количество итераций	163.999 ± 4.77	164.233 ± 4.63	164.225 ± 4.63		

Таблица A.9 – метрики алгоритма при радиусе связи, равном 10% от размера поля, стратегия «edge»

	raterna «eage»			
Метрика	Количество агентов			
	2 агента	3 агента	4 агента	5 агентов
Относитель- ная ошибка, в долях	1.28e-01 ± 2	2.626e-02 ± 7.743e-02	5.785e-03 ± 3.496e-02	1.047e-03 ± 8.16e-03
Пройденный путь	87.925 ± 34.034	156.121 ± 39.637	221.628 ± 42.607	288.495 ± 38.325
Количество итераций	164.293 ± 8.459	169.945 ± 5.992	172.022 ± 4.859	168.941 ± 4.161

Метрика	К	оличество агенто)B
	10 агентов	15 агентов	20 агентов
Относитель- ная ошибка, в долях	8.588e-07 ± 1.535e-05	1.077e-08 ± 8.844e-08	3.676e-09 ± 3.03e-08
Пройденный путь	600.068 ± 44.946	903.137 ± 48.801	1206.752 ± 56.41
Количество итераций	168.79 ± 3.058	168.217 ± 2.55	167.903 ± 2.22

Таблица A.10 – метрики алгоритма при радиусе связи, равном 10% от размера поля, стратегия «spot»

	elparethix (open)				
Метрика		Количество агентов			
	2 агента	3 агента	4 агента	5 агентов	
Относитель- ная ошибка, в долях	1.198e-01 ± 2.001e-01	4.159e-02 ± 1.186e-01	1.963e-02 ± 7.432e-02	8.51e-03 ± 3.395e-02	
Пройденный путь	34.732 ± 9.143	60.739 ± 13.076	88.617 ± 16.863	117.994 ± 20.706	
Количество итераций	157.925 ± 8.397	163.1 ± 6.25	165.344 ± 5.721	162.626 ± 5.382	

Метрика	Количество агентов				
	10 агентов	15 агентов	20 агентов		
Относитель- ная ошибка, в долях	1.924e-03 ± 8.118e-03	6.846e-04 ± 2.968e-03	5.25e-04 ± 2.438e-03		
Пройденный путь	265.791 ± 39.961	413.226 ± 56.356	573.278 ± 74.507		
Количество итераций	163.886 ± 4.881	164.036 ± 4.716	164.354 ± 4.693		

Таблица А.11 – метрики алгоритма при радиусе связи, равном 5% от размера поля, стратегия «edge»

Метрика		Количество агентов			
	2 агента	3 агента	4 агента	5 агентов	
Относитель- ная ошибка, в долях	1.431e-01 ± 1.876e-01	2.783e-02 ± 8.965e-02	5.255e-03 ± 3.504e-02	4.642e-04 ± 3.511e-03	
Пройденный путь	86.187 ± 32.966	154.797 ± 38.531	223.347 ± 39.475	289.934 ± 39.736	
Количество итераций	163.397 ± 8.572	170.303 ± 5.813	172.036 ± 4.906	168.744 ± 4.064	

Метрика	Количество агентов				
	10 агентов	15 агентов	20 агентов		
Относитель- ная ошибка, в долях	4.983e-07 ± 5.74e-06	9.079e-09 ± 6.473e-08	3.03e-09 ± 3.388e-08		
Пройденный путь	599.4 ± 42.491	900.085 ± 49.852	1204.595 ± 53.599		
Количество итераций	169.009 ± 3.218	168.212 ± 2.525	168.001 ± 2.168		

Таблица A.12 – метрики алгоритма при радиусе связи, равном 5% от размера поля, стратегия «spot»

	i where we have the contract of the contract o				
Метрика		Количество агентов			
	2 агента	3 агента	4 агента	5 агентов	
Относитель- ная ошибка, в долях	1.207e-01 ± 2.019e-01	4.595e-02 ± 1.237e-01	2.054e-02 ± 7.178e-02	8.783e-03 ± 4.051e-02	
Пройденный путь	34.488 ± 9.254	61.171 ± 13.582	89.185 ± 16.543	116.681 ± 19.992	
Количество итераций	157.489 ± 8.398	163.209 ± 6.567	165.292 ± 5.805	162.542 ± 5.012	

Метрика	К	оличество агенто	ЭВ
	10 агентов	15 агентов	20 агентов
Относитель- ная ошибка, в долях	1.919e-03 ± 1.156e-02	6.939e-04 ± 2.941e-03	5.277e-04 ± 2.312-03
Пройденный путь	264.594 ± 39.025	416.994 ± 55.059	570.117 ± 73.526
Количество итераций	164.087 ± 4.878	164.375 ± 4.778	164.468 ± 4.665

Таблица А.13 – метрики алгоритма при радиусе связи, равном 1% от размера поля, стратегия «edge»

Метрика	Количество агентов			
	2 агента	3 агента	4 агента	5 агентов
Относитель- ная ошибка, в долях	3.124e-01 ± 2.469e-01	2.301e-01 ± 2.206e-02	1.693e-01 ± 1.798e-01	1.337e-01 ± 1.581e-01
Пройденный путь	24.591 ± 6.159	36.675 ± 8.182	49.809 ± 9.141	62.039 ± 10.332
Количество итераций	133.334 ± 6.39	136.17 ± 4.261	137.772 ± 3.063	135.338 ± 3.241

Метрика	К	оличество агенто	ЭВ
	10 агентов	15 агентов	20 агентов
Относитель- ная ошибка, в долях	5.099e-02 ± 7.492e-02	2.355e-02 ± 4.106e-02	1.309e-02 ± 2.583e-02
Пройденный путь	124.058 ± 14.270	186.119 ± 17.911	247.896 ± 20.727
Количество итераций	136.732 ± 1.754	137.077 ± 1.431	137.228 ± 1.309

Таблица A.14 — метрики алгоритма при радиусе связи, равном 1% от размера поля, стратегия «spot»

Метрика	Количество агентов			
	2 агента	3 агента	4 агента	5 агентов
Относитель- ная ошибка, в долях	3.153e-01 ± 2.524e-01	2.227e-01 ± 2.177e-01	1.817e-01 ± 1.894e-01	1.294e-01 ± 1.592e-01
Пройденный путь	24.503 ± 6.521	36.602 ± 7.951	49.132 ± 8.967	61.149 ± 10.145
Количество итераций	133.295 ± 6.513	136.424 ± 4.084	137.882 ± 3.263	135.315 ± 3.458

Метрика	К	оличество агенто	В
	10 агентов	15 агентов	20 агентов
Относительная ошибка, в долях	5.228e-02 ± 7.651e-02	2.647e-02 ± 4.321e-02	1.784e-02 ± 3.226e-02
Пройденный путь	121.882 ± 15.169	181.863 ± 18.823	241.866 ± 22.683
Количество итераций	136.79 ± 1.955	137.153 ± 1.722	137.404 ± 1.621

Таблица A.15 — метрики алгоритма при радиусе связи, равном 0.5% от размера поля, стратегия «edge»

Метрика		Количест	во агентов	
	2 агента	3 агента	4 агента	5 агентов
Относитель- ная ошибка, в долях	3.129e-01 ± 2.506e-01	2.193e-01 ± 2.141e-01	1.608e-01 ± 1.857e-01	1.349e-01 ± 1.620e-01
Пройденный путь	24.333 ± 6.407	37.088 ± 8.035	49.891 ± 9.254	62.065 ± 9.909
Количество итераций	132.612 ± 6.704	136.417 ± 3.869	137.474 ± 3.121	135.204 ± 3.411

Метрика	К	оличество агенто	ЭВ
	10 агентов	15 агентов	20 агентов
Относитель- ная ошибка, в долях	5.091e-02 ± 7.955e-02	2.646e-02 ± 4.604e-02	1.606e-02 ± 3.135e-02
Пройденный путь	124.749 ± 14.777	186.780 ± 18.468	248.014 ± 20.674
Количество итераций	136.717 ± 1.747	136.976 ± 1.362	137.134 ± 1.161

Таблица A.16 – метрики алгоритма при радиусе связи, равном 0.5% от размера поля, стратегия «spot»

Метрика		Количест	во агентов	
	2 агента	3 агента	4 агента	5 агентов
Относитель- ная ошибка, в долях	3.015e-01 ± 2.396e-01	2.284e-01 ± 2.167e-01	1.601e-01 ± 1.777e-01	1.375e-01 ± 1.576e-01
Пройденный путь	24.587 ± 6.417	36.992 ± 7.949	49.745 ± 9.476	62.068 ± 10.242
Количество итераций	133.204 ± 6.994	136.59 ± 4.043	137.751 ± 3.115	135.429 ± 3.371

Метрика	К	оличество агенто)B
	10 агентов	15 агентов	20 агентов
Относитель- ная ошибка, в долях	4.694e-02 ± 7.099e-02	2.837e-02 ± 4.942e-02	1.831e-02 ± 3.399e-02
Пройденный путь	122.972 ± 14.263	184.791 ± 17.453	247.254 ± 21.135
Количество итераций	136.742 ± 1.821	136.979 ± 1.486	137.367 ± 1.314

Приложение Б

(справочное)

QR-код на репозиторий

Этот QR-код приведёт вас в репозиторий с проектом, где вы сможете найти графики, не вошедшие в отчёт, а также весь исходный код.

Рисунок Б. 1 – QR-код репозитория