Markov Models

Uncertainty and Time

- Often, we want to reason about a sequence of observations where the state of the underlying system is changing
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
 - Global climate

Need to introduce time into our models

Markov Models (aka Markov chain/process)

$$P(X_t = x \mid X_{t-1} = y) = S(xy)$$

$$X_0$$
 X_1 X_2 X_3 X_4 X_5 X_4 X_5 X_5 X_5 X_5 X_6 X_6

- Value of X at a given time is called the state
- The transition model $P(X_t \mid X_{t-1})$ specifies how the state evolves over time
- Stationarity assumption: transition probabilities are the same at all times
- Markov assumption: "future is independent of the past given the present"
 - X_{t+1} is independent of X_0, \ldots, X_{t-1} given X_t

Example: Random walk in one dimension

- State: location on the unbounded integer line
- Initial probability: starts at 0
- Transition model: $P(X_t = k | X_{t-1} = k\pm 1) = 0.5$
- Applications: particle motion in crystals, stock prices, etc.

Example: n-gram models

- State: word at position t in text (can also build letter n-grams)
- Transition model (probabilities come from empirical frequencies):
 - Unigram (zero-order): P(Word_t = i)
 - "logical are as are confusion a may right tries agent goal the was . . . "
 - Bigram (first-order): P(Word_t = i | Word_{t-1} = j)
 - "systems are very similar computational approach would be represented . . ."
 - Trigram (second-order): P(Word_t = i | Word_{t-1} = j, Word_{t-2} = k)
 - "planning and scheduling are integrated the success of naive bayes model is .
 .."
- Applications: text classification, spam detection, author identification, language classification, speech recognition

Example: Web browsing

- State: URL visited at step t
- Transition model:
 - With probability p, choose an outgoing link at random
 - With probability (1-p), choose an arbitrary new page
- Question: What is the stationary distribution over pages?
 - I.e., if the process runs forever, what fraction of time does it spend in any given page?
- Application: Google page rank

Example: Weather

• States {rain, sun}

Initial	distribu	tion <i>P</i> (X_{\cap}
---------------------------	----------	-----------------	------------

P(X _o)		
sun	rain	
0.5	0.5	

• Transition model $P(X_t \mid X_{t-1})$

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

Two ways to represent Markov chains

Weather prediction

• Time 0: <0.5,0.5>

				Mary in	
X _{t-1}	P(X	(X _{t-1}	 P(X-1,X+)		$P(x_t)$
	sun	rain			
sun	0.9	0.1			
rain	0.3	0.7			

What is the weather like at time 1?

$$P(X_1) = \sum_{X_0} P(X_1, X_0 = X_0)$$

$$= \sum_{X_0} P(X_0 = X_0) P(X_1 | X_0 = X_0)$$

$$= 0.5 < 0.9, 0.1 > + 0.5 < 0.3, 0.7 > = <0.6, 0.4 > 0.0$$

Weather prediction, contd.

• Time 1: <0.6,0.4>

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

What is the weather like at time 2?

$$P(X_2) = \sum_{X_1} P(X_2, X_1 = X_1)$$

$$= \sum_{X_1} P(X_1 = X_1) P(X_2 \mid X_1 = X_1)$$

$$= 0.6 < 0.9, 0.1 > + 0.4 < 0.3, 0.7 > = < 0.66, 0.34 >$$

Weather prediction, contd.

• Time 2: <0.66,0.34>

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

What is the weather like at time 3?

$$P(X_3) = \sum_{X_2} P(X_3, X_2 = x_2)$$

$$= \sum_{X_2} P(X_2 = x_2) P(X_3 \mid X_2 = x_2)$$

$$= 0.66 < 0.9, 0.1 > + 0.34 < 0.3, 0.7 > = < 0.696, 0.304 >$$

Forward algorithm (simple form)

What is the state at time *t*?

$$P(X_{t}) = \sum_{X_{t-1}} P(X_{t}, X_{t-1} = X_{t-1})$$

$$= \sum_{X_{t-1}} P(X_{t-1} = X_{t-1}) P(X_{t} | X_{t-1} = X_{t-1})$$

Forward algorithm in Matrices

What is the weather like at time 2?

$$P(X_2) = 0.6 < 0.9, 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 >$$

• In matrix-vector form:

$$P(X_2) = \begin{pmatrix} 0.9 & 0.3 \\ 0.1 & 0.7 \end{pmatrix} \begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} = \begin{pmatrix} 0.66 \\ 0.34 \end{pmatrix}$$

\mathbf{X}_{t-1}	P(X _t X _{t-1})		
	sun	rain	
sun	0.9	0.1	
rain (0.3	0.7	

Stationary Distributions

- The limiting distribution is called the *stationary distribution* P_{∞} of the chain
- It satisfies $P_{\infty} = P_{\infty+1} = T^{\mathsf{T}} P_{\infty}$ Stationary distribution is <0.75,0.25> regardless of starting distribution

$$\begin{pmatrix} 0.9 & 0.3 \\ 0.1 & 0.7 \end{pmatrix} \quad \begin{pmatrix} p \\ 1-p \end{pmatrix} = \begin{pmatrix} p \\ 1-p \end{pmatrix}$$

Hidden Markov Models

Hidden Markov Models

- Usually the true state is not observed directly
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe evidence E at each time step
 - X_t is a single discrete variable; E_t may be continuous and may consist of several variables

Example: Weather HMM

W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

An HMM is defined by:

• Initial distribution: $P(X_0)$

• Transition model: $P(X_t|X_{t-1})$

• Sensor model: $P(E_t|X_t)$

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

HMM as probability model

- Joint distribution for Markov model: $P(X_0, ..., X_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1})$
- Joint distribution for hidden Markov model:

$$P(X_0, E_0, X_1, E_1, ..., X_T, E_T) = P(X_0) \prod_{t=1:T} P(X_t | X_{t-1}) P(E_t | X_t)$$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

Real HMM Examples

- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options
- Robot tracking:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)
- Molecular biology:
 - Observations are nucleotides ACGT
 - States are coding/non-coding/start/stop/splice-site etc.

Inference tasks

Useful notation:

$$X_{a:b} = X_a, X_{a+1}, ..., X_b$$

- Filtering: P(X_t|e_{1:t})
 - belief state—input to the decision process of a rational agent
- Prediction: $P(X_{t+k}|e_{1:t})$ for k > 0
 - evaluation of possible action sequences; like filtering without the evidence
- Smoothing: $P(X_k|e_{1:t})$ for $0 \le k < t$
 - better estimate of past states, essential for learning
- Most likely explanation arg max_{X1:t} P(x_{1:t} | e_{1:t})
 - speech recognition, decoding with a noisy channel

Inference tasks

Filtering: $P(X_t|e_{1:t})$

Smoothing: $P(X_k|e_{1:t})$, k<t

Prediction: $P(X_{t+k}|e_{1:t})$

Explanation: $P(X_{1:t}|e_{1:t})$

Filtering / Monitoring

 Filtering, or monitoring, or state estimation, is the task of maintaining the distribution P(X_t|e_{1:t}) over time

(transition) (emission)
$$P(Xt|X_{t-1}) \qquad P(et|X_t)$$

The Kalman filter (continuous variables, linear dynamics, Gaussian noise) was invented in 1960 and used for trajectory estimation in the Apollo program.

Example from Michael Pfeiffer

Prob

Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake Transition model: action may fail with small prob.

t=0

Prob

Exact Inference in HMM

Filtering

$$P(X_1) \qquad P(X_t \mid X_{t-1}) \qquad X_1 \qquad X_2 \qquad X_3 \qquad X_4$$

$$P(E_t \mid X_t) \qquad e_1 \qquad e_2 \qquad e_3 \qquad e_4$$

$$P(X_t \mid e_{1:t}) = ?$$

$$=\frac{P(X_1,e_1)}{P(e_1)}$$

 $P(X_1 | e_1) \propto P(X_1, e_1) = P(X_1)P(e_1|X_1)$ Base case:

Passage of time:

Suppose we have $P(X_t \mid e_{1:t})$.

How to calculate $P(X_{t+1} \mid e_{1:t+1})$?

$$P(X_{t} \mid e_{1:t}) \longrightarrow P(X_{t+1}, X_{t} \mid e_{1:t}) \longrightarrow P(X_{t+1}, e_{t+1}, X_{t} \mid e_{1:t}) \longrightarrow P(X_{t+1}, e_{t+1} \mid e_{1:t}) \longrightarrow P(X_{t+1} \mid e_{1:t+1})$$

Joining $P(X_{t+1} | X_t)$ Joining $P(e_{t+1} | X_{t+1})$

Marginalize out X_t

Normalize

$$P(X_{t+1} | e_{1:t+1}) \propto \sum_{x_t} P(x_t | e_{1:t}) P(X_{t+1} | x_t) P(e_{t+1} | X_{t+1})$$

Time complexity?

Exercise

$$P(W_1 \mid U_1 = T) = \frac{|W_1|P(W_1|U_1 = T)}{s}$$

$$\frac{s}{2}$$

$$\frac{2}{11}$$

$$r \mid \frac{9}{11}$$

$$P(W_2 | U_{1:2} = (T, F)) = ?$$

$$P(W_{i}|U_{i}=T) \propto P(W_{i},U_{i}=T) = P(W_{i})P(U_{i}=T|W_{i})$$

$$= \begin{cases} W_{i} = San : 0.5 \times 0.2 \\ W_{i} = Fein : 0.5 \times 0.9 \end{cases}$$

W_{t-1}	.P(W _t W _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	$P(U_t W_t)$	
	T (F
sun	0.2	0.8
rain	0.9	0.1

$$P(W_{2} \mid U_{1}=T, U_{2}=F) \approx \sum_{w_{1}} P(w_{1} \mid U_{1}=T) P(W_{2} \mid w_{1}) P(U_{2}=F \mid W_{2})$$

$$= P(W_{1}=T) P(W_{2} \mid w_{1}=S) P(U_{2}=F \mid w_{2})$$

$$+ P(w_{1}=T \mid U_{1}=T) P(w_{2} \mid w_{1}=r) P(U_{2}=F \mid W_{2})$$

Prediction

$$P(X_{t+k} \mid e_{1:t}) = ?$$

We already have $P(X_t | e_{1:t})$ by filtering

$$P(X_{t+1} \mid e_{1:t}) = \sum_{x_t} P(x_t \mid e_{1:t}) P(X_{t+1} \mid x_t)$$

$$P(X_{t+2} \mid e_{1:t}) = \sum_{x_{t+1}} P(x_{t+1} \mid e_{1:t}) P(X_{t+2} \mid x_{t+1})$$
:

$$P(X_{t+k} \mid e_{1:t}) = \sum_{x_{t+k-1}} P(x_{t+k} \mid e_{1:t}) P(X_{t+k} \mid x_{t+k-1})$$

Smoothing

$$P(X_k \mid e_{1:t}) = ?$$
 for some $k < t$

Here we introduce an approach slightly different from variable elimination.

$$P(X_k \mid e_{1:t}) \propto P(X_k, e_{k+1:t} \mid e_{1:k}) = \underbrace{P(X_k \mid e_{1:k})}_{\neq k} \underbrace{P(e_{k+1:t} \mid X_k)}_{\neq k}$$

Forward algorithm (filtering) Backward algorithm

Just with one forward pass and one backward pass, we can calculate $P(X_k \mid e_{1:t})$ for all k.

$$P(e_{k+1:t} \mid X_k) \qquad | < t \qquad p(x_t, e_t \mid X_{t-1})$$

$$Base Case : P(e_t \mid X_{t-1}) = \sum_{x_t} P(x_t \mid X_{t-1}) P(e_t \mid X_t)$$

$$(k=t-1)$$

$$P(e_{k+1:t} \mid X_k) = \sum_{x_{k+1}} P(x_{k+1}, e_{k+1:t} \mid X_k)$$

$$= \sum_{x_{k+1}} P(x_{k+1} \mid X_k) P(e_{k+1:t} \mid X_{k+1})$$

$$P(e_{k+1:t} \mid X_{k}) = \sum_{X_{k+1}} P(X_{k+1}, e_{k+1:t} \mid X_{k})$$

$$= \sum_{X_{k+1}} P(X_{k+1} \mid X_{k}) P(e_{k+1:t} \mid X_{k+1})$$

$$= \sum_{X_{k+1}} P(X_{k+1} \mid X_{k}) P(e_{k+1:t} \mid X_{k+1}) P(e_{k+2:t} \mid X_{k+1})$$

$$= \sum_{X_{k+1}} P(X_{k+1} \mid X_{k}) P(e_{k+1:t} \mid X_{k+1}) P(e_{k+2:t} \mid X_{k+1})$$

$$= \sum_{X_{k+1}} P(X_{k+1} \mid X_{k}) P(e_{k+1:t} \mid X_{k+1}) P(e_{k+2:t} \mid X_{k+1})$$

Most-Likely Sequence

$$\underset{X_{1:t}}{\operatorname{argmax}} P(X_{1:t} \mid e_{1:t}) = ?$$

Find the sequence that maximizes the probability (e.g., speech recognition, sequence decoding)

Find a sequence, e.g. $X_1 = b$, $X_2 = a$, ..., $X_t = z$ that maximize $P(X_{1:t}, e_{1:t})$

Most-Likely Sequence through Dynamic Programming

Viterbi Algorithm

For each state s, let $Prob[1][s] = P(X_1 = s) P(e_1|X_1 = s)$

For k = 2, ..., t:

For each states s, let $Prob[k][s] = \max_{s'} Prob[k-1][s'] \times P(X_k = s \mid X_{k-1} = s') \times P(e_k \mid X_k = s)$

Approximate Inference in HMM

Particle Filtering

Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store P(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|
 - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0
 - More particles, more accuracy
- For now, all particles have a weight of 1

Particles: (3,3) (2,3) (3,3) (3,2) (3,3) (3,2) (1,2) (3,3) (3,3) (2,3)

Particle Filtering: Elapse Time

 Each particle is moved by sampling its next position from the transition model

$$x' = \text{sample}(P(X'|x))$$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particle Filtering: Observe

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

$$w(x) = P(e|x)$$

 As before, the probabilities don't sum to one, since all have been downweighted

Particles: (3,2)(2,3)(3,2)(3,1)(3,3)(3,2)(1,3)(2,3)(3,2)(2,2)Particles: (3,2) w=.9 (2,3) w=.2 (3,2) w=.9 (3,1) w=.4 (3,3) w=.4 (3,2) w=.9 (1,3) w=.1

(2,3) w=.2 (3,2) w=.9 (2,2) w=.4

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is similar to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

(3,2)

Recap: Particle Filtering

• Particles: track samples of states rather than an explicit distribution

Robot Localization

- In robot localization:
 - We know the map, but not the robot's position
 - Observations may be vectors of range finder readings
 - State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
 - Particle filtering is a main technique

Particle Filter Localization (Sonar)

Particle Filter Localization (Laser)

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
 - We do not know the map or our location
 - State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

Particle Filter SLAM – Video 1

Particle Filter SLAM – Video 2

Particle Filtering

Localization: https://www.youtube.com/watch?v=NrzmH_yerBU&ab_channel=MATLAB

SLAM: https://www.youtube.com/watch?v=saVZtgPyyJQ&ab_channel=MATLAB

Some Failure Modes of Particle Filtering

Too few particles

- Particle
- × True location

→ The particle has to be dense enough to cover the true state

Some Failure Modes of Particle Filtering

Moderate number of particles but very static state transition

- Particle
- × True location

Suppose every state always transitions to itself.

- → All particles and the true location will never move.
- → After several rounds of re-sampling, particles will accumulate to a single position.