Laborator 9: Reducerea Suprafaței de Atac în Aplicații Embedded (ESP32)

Echipa 3

May 22, 2025

1. Identificarea corectă a punctelor de expunere ale aplicației (25%)

Suprafața de atac identificată

Componentă	Descriere	Risc potențial
WiFi SSID/Password	Hardcodate în cod sursă ESP32	Expunere la inter-
		ceptare sau brute-
		force
MQTT (port 1883)	Folosit în unele fișiere .ino fără criptare TLS	Trafic nesecurizat,
		posibilitate de MITM
Topice MQTT globale	Comenzi primite fără autentificare/ACL-uri	Abuz prin comenzi
		neautorizate (ex: acti-
		vare cameră)
Certificate TLS	Includere directă în cod sursă	Posibilitate de scurg-
		ere a cheilor dacă
		sursa e compromisă
Acces cameră live	Activabil prin topic MQTT	Expunere a imaginilor
		video fără control de
		acces
Broker MQTT	IP fix, fără autentificare în unele cazuri	Expunere în rețea lo-
		cală fără protecție su-
		plimentară

Tool-uri utilizate pentru analiză

- OWASP ZAP pentru testare web (dacă se adaugă interfață HTTP)
- Nikto pentru scanare servere web în viitor
- Trivy / Grype folosite pentru containere Mosquitto (acolo unde se aplică)
- Wireshark pentru analiză pachete MQTT (securizare traficului)

2. Implementarea măsurilor de reducere a suprafeței de atac (30%)

Măsuri aplicate în codul sursă și infrastructură

- Eliminare componente neesențiale: dezactivarea funcționalităților inactive (mod live, flash neutilizat).
- Autentificare MQTT: activarea autentificării cu username/parolă pentru fiecare dispozitiv ESP32.
- Limitare acces topicuri: configurare ACL pe broker pentru fiecare topic (ex: dev123/commands).
- Rate limiting: introducere limitări de frecvență pentru trimitere de imagini (ex: max 1/sec).
- Validare comenzi: parsarea JSON cu validare completă (valori acceptabile, formate).
- Izolare topice MQTT: separare clară între topicuri de comandă și status.
- Stocare certificatelor: mutarea certificatelor TLS în SPIFFS sau criptarea acestora.

3. Aplicarea securizării containerelor și infrastructurii (30%)

Mediu containerizat auxiliar (ex: broker Mosquitto în Docker)

- Imagine minimală: utilizarea Alpine Linux pentru containerele Docker, reducând dependențele inutile.
- Utilizator non-root: rularea containerelor cu un UID/GID non-privilegiat în loc de root.
- Politici de izolare: activarea profilurilor AppArmor și Seccomp în Docker pentru limitarea accesului la sistemul de operare.
- Permisiuni restrânse: montarea volumelor ca read-only acolo unde este posibil.
- Limitarea porturilor: expunerea doar a porturilor strict necesare (ex: doar 1883 pentru MQTT).

Măsuri suplimentare pentru ESP32

- Separare fizică a rețelelor: rularea ESP32 într-o rețea VLAN dedicată pentru IoT.
- Limitarea firmware-ului: eliminarea librăriilor și funcțiilor neutilizate pentru a reduce vectorii de atac.

• Semnarea firmware-ului: opțional, adăugarea verificării semnăturii binare la boot.

4. Integrarea măsurilor în pipeline-ul $\mathrm{CI/CD}\ (15\%)$

- **GitHub Actions**: configurare workflow care verifică codul C++/Arduino cu **arduino-lint** sau cppcheck.
- **Dependabot**: activare pentru actualizări automate ale bibliotecilor utilizate în proiect (ex: Adafruit, PubSubClient).
- Scanare SAST: integrare cu tool-uri de static analysis pentru identificarea vulnerabilitătilor în codul sursă.
- Policy de patching: revizie lunară a dependențelor, însoțită de un changelog pentru fiecare versiune de firmware.