

EL169866322

Please type a plus sign (+) inside this box → PTO/SB/05 (12/97)
Approved for use through 09/30/00. OMB 0651-0032

Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

UTILITY PATENT APPLICATION TRANSMITTAL

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Attorney Docket No.	MI40-179	Total Pages	147
First Named Inventor or Application Identifier			
David K. Ovard			
Express Mail Label No.		EL169866322US	

525 U.S.
09/26/01 3

03/09/99

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

1. Fee Transmittal Form
(Submit an original, and a duplicate for fee processing)
2. Specification [Total Pages 45]
(preferred arrangement set forth below)
 - Descriptive title of the Invention
 - Cross References to Related Applications
 - Statement Regarding Fed sponsored R & D
 - Reference to Microfiche Appendix
 - Background of the Invention
 - Brief Summary of the Invention
 - Brief Description of the Drawings (if filed)
 - Detailed Description
 - Claim(s)
 - Abstract of the Disclosure
3. Drawing(s) (35 USC 113) [Total Sheets 7]
4. Oath or Declaration [Total Pages 2]
 - a. Newly executed (original or copy)
 - b. Copy from a prior application (37 CFR 1.63(d))
(for continuation/divisional with Box 17 completed)
[Note Box 5 below]
 - i. DELETION OF INVENTOR(S)
Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b).
5. Incorporation By Reference (useable if Box 4b is checked)
The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein.

ADDRESS TO:
Assistant Commissioner for Patents
Box Patent Application
Washington, DC 20231

6. Microfiche Computer Program (Appendix)
7. Nucleotide and/or Amino Acid Sequence Submission
(if applicable, all necessary)
 - a. Computer Readable Copy
 - b. Paper Copy (identical to computer copy)
 - c. Statement verifying identity of above copies

ACCOMPANYING APPLICATION PARTS

8. Assignment Papers (cover sheet & document(s))
9. 37 CFR 3.73(b) Statement
(when there is an assignee) Power of Attorney
10. English Translation Document (if applicable)
11. Information Disclosure Statement (IDS)/PTO-1449 Copies of IDS Citations
12. Preliminary Amendment
13. Return Receipt Postcard (MPEP 503)
(Should be specifically itemized)
14. Small Entity Statement filed in prior application, Statement(s) Status still proper and desired
15. Certified Copy of Priority Document(s)
(if foreign priority is claimed)
16. Other: Check in the amount of
\$1,430.00

17. If a CONTINUATING APPLICATION, check appropriate box and supply the requisite information:
 Continuation Divisional Continuation-in-part (CIP) of prior application No: _____
18. CORRESPONDENCE ADDRESS
 Customer Number or Bar Code Label 021567
(Insert Customer No. or Attach bar code/label here)
or Correspondence address below

NAME	Signature:			Dated: March 9, 1999
	James D. Shaurette, Reg. #39,833, Wells, St. John, Roberts, Gregory & Matkin P.S.			
ADDRESS				
CITY	STATE		ZIP CODE	
COUNTRY	TELEPHONE		FAX	

Burden Hour Statement: This form is estimated take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICATION FOR LETTERS PATENT

* * * * *

**WIRELESS COMMUNICATION SYSTEMS,
INTERROGATORS AND METHODS OF
COMMUNICATING WITHIN A WIRELESS
COMMUNICATION SYSTEM**

* * * * *

INVENTORS

**David K. Ovard
Roy Greeff**

ATTORNEY'S DOCKET NO. MI40-179

1 **WIRELESS COMMUNICATION SYSTEMS, INTERROGATORS AND**
2 **METHODS OF COMMUNICATING WITHIN A WIRELESS**
3 **COMMUNICATION SYSTEM**

4 **TECHNICAL FIELD**

5 The present invention relates to wireless communication systems,
6 interrogators and methods of communicating within a wireless
7 communication system.

8 **BACKGROUND OF THE INVENTION**

9 Electronic identification systems typically comprise two devices
10 which are configured to communicate with one another. Preferred
11 configurations of the electronic identification systems are operable to
12 provide such communications via a wireless medium.

13 One such configuration is described in U.S. Patent Application
14 Serial Number 08/705,043, filed August 29, 1996, assigned to the
15 assignee of the present application, and incorporated herein by
16 reference. This application discloses the use of a radio frequency (RF)
17 communication system including communication devices. The disclosed
18 communication devices include an interrogator and a remote transponder,
19 such as a tag or card. Another example of a wireless communication
20 system including a backscatter system is described in U.S. Patent
21 No. 5,649,296 to MacLellan et al. which is also incorporated herein by
22 reference.

23 Such communication systems can be used in various applications
24 such as identification applications. The interrogator is configured to

1 output a polling or interrogation signal which may comprise a radio
2 frequency signal including a predefined interrogation code using which
3 remote transponders may be addressed by the interrogator. The remote
4 transponders of such a communication system are operable to transmit
5 an identification signal responsive to receiving an appropriate polling or
6 interrogation signal.

7 More specifically, the appropriate transponders are configured to
8 recognize the predefined code. The transponders receiving the code can
9 subsequently output a particular identification signal which is associated
10 with the transmitting transponder. Following transmission of the polling
11 signal, the interrogator is configured to receive the identification signals
12 enabling detection of the presence of corresponding transponders.

13 Such communication systems are useable in identification
14 applications such as inventory or other object monitoring. For example,
15 a remote identification device can be attached to an object of interest.
16 Responsive to receiving the appropriate polling signal, the identification
17 device is equipped to output an identification signal. Generating the
18 identification signal identifies the presence or location of the
19 identification device and the article or object attached thereto.

20 It may be desired to communicate with remote communication
21 devices located at greater distances in particular applications. Such
22 distances may exceed the range of the communication system. Typical
23 conventional arrangements require the utilization of numerous
24 interrogators for communication with the remote communication devices

1 located at such distances. Alternatively, the movement of a single
2 interrogator from one area to another is required.

3

4 SUMMARY OF THE INVENTION

5 The present invention provides wireless communication systems,
6 interrogators and methods of communicating within a wireless
7 communication system.

8 According to one aspect of the present invention, a wireless
9 communication system includes an interrogator including a housing having
10 circuitry configured to generate a forward link communication signal.
11 The interrogator further includes communication circuitry configured to
12 communicate the forward link communication signal.

13 The wireless communication system also includes a communication
14 station which is coupled with the communication circuitry and is
15 remotely located with respect to the housing. The communication
16 station is configured to receive the forward link communication signal
17 from the communication circuitry. The communication station is further
18 configured to radiate a forward link wireless signal corresponding to the
19 forward link communication signal. The wireless communication system
20 also includes at least one remote communication device configured to
21 receive the forward link wireless signal.

22 In one configuration, the communication station includes automatic
23 gain control circuitry configured to adjust the power level of the
24 forward link communication signals. Amplifiers can be provided within

one or both of the interrogator housing and the communication station to increase the power level of the forward link communication signals. Plural communication stations and plural communication circuits are coupled with a single interrogator housing in some embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention are described below with reference to the following accompanying drawings.

Fig. 1 is a block diagram of an exemplary communication system according to one embodiment of the present invention.

Fig. 2 is a front view of a wireless remote communication device according to one embodiment of the invention.

Fig. 3 is a front view of an employee badge according to another embodiment of the invention.

Fig. 4 is a functional block diagram of a transponder included in the remote communication device of Fig. 2.

Fig. 5 is a functional block diagram of one embodiment of a portion of an interrogator of the invention.

Fig. 6 is a functional block diagram of one embodiment of an RF section of the interrogator of Fig. 5.

Fig. 7 is a functional block diagram of exemplary communication circuitry shown in Fig. 1.

Fig. 8 is a functional block diagram of exemplary transmit circuitry of a communication station shown in Fig. 1.

1 Fig. 9 is a functional block diagram of exemplary receive circuitry
2 of the communication station shown in Fig. 1.

3 Fig. 10 is a functional block diagram of exemplary adjustment
4 circuitry within a housing of the interrogator.

5

6 **DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS**

7 This disclosure of the invention is submitted in furtherance of the
8 constitutional purposes of the U.S. Patent Laws "to promote the
9 progress of science and useful arts" (Article 1, Section 8).

10 Fig. 1 illustrates a communication system 10 embodying the
11 invention. Communication system 10 comprises an electronic
12 identification system in the embodiment described herein.
13 Communication system 10 may be configured for backscatter
14 communications as described in detail below. Other communication
15 protocols are utilized in other embodiments.

16 The depicted communication system 10 includes a plurality of
17 remote communication devices 12 and an interrogator 26. Wireless
18 (e.g., radio frequency) communications can occur intermediate remote
19 communication devices 12 and interrogator 26 for use in identification
20 systems and product monitoring systems as exemplary applications.

21 Remote communication devices 12 can include radio frequency
22 identification devices (RFID) or remote intelligent communication (RIC)
23 devices in the embodiments described herein. Exemplary remote
24 communication devices 12 are disclosed in U.S. Patent Application

1 Serial No. 08/705,043. Plural remote communication devices 12 typically
2 communicate with interrogator 26.

3 In one embodiment, remote communication devices 12 individually
4 comprise a wireless identification device such as the MicroStamp (TM)
5 integrated circuit available from Micron Communications, Inc., 3176 S.
6 Denver Way, Boise, Idaho 83705. Such a remote communication
7 device 12 can be referred to as a tag or card as illustrated and
8 described below.

9 Remote communication devices 12 are configured to interface with
10 interrogator 26 using a wireless medium in one embodiment. More
11 specifically, communications intermediate remote communication
12 devices 12 and interrogator 26 occur via an electromagnetic link, such
13 as a radio frequency link in the described embodiment. Exemplary
14 communications occur at microwave frequencies. Other configurations
15 for communication are possible.

16 As described in detail below, interrogator 26 is configured to
17 output forward link communications. Further, interrogator 26 is
18 operable to receive reply or return link communications from remote
19 communication devices 12 responsive to the outputting of forward link
20 communications. In accordance with the above, forward link
21 communications and return link communications comprise wireless signals,
22 such as radio frequency signals, in the described embodiment. Other
23 forms of electromagnetic communication, such as infrared, acoustic, etc.,
24 are possible.

1 The depicted configuration of communication system 10 illustrates
2 interrogator 26 communicating with a plurality of remote communication
3 devices 12 located in a plurality of corresponding communication
4 ranges 15, also referred to as read zones. The depicted interrogator 26
5 includes a housing 14 coupled with a plurality of communication
6 paths 17 individually positioned and configured to communicate with
7 remote communication devices 12 located within corresponding
8 communication ranges 15. Communication paths 17 individually include
9 communication circuitry 106 and a corresponding communication
10 station 120 in the described embodiment.

11 As described in detail below, housing 14 of interrogator 26
12 includes circuitry (not shown in Fig. 1) configured to generate a
13 plurality of forward link communication signals. Such forward link
14 communication signals are communicated within communication
15 circuitry 106 of selected communication paths 17 to respective
16 communication stations 120 having antennas X1, X2 ... XN. Such
17 communication stations 120 are configured to emit forward link wireless
18 signals 27 which correspond to the forward link communication signals.
19 In addition, communication stations 120 can individually emit a
20 continuous wave signal during backscatter mode of operations of
21 communication system 10.

22 As illustrated, communication stations 120 are preferably configured
23 to radiate the forward link wireless signals 27 to associated remote
24 communication devices 12 within respective communication ranges 15.

1 Responsive to the reception of forward link wireless signals 27,
2 individual remote communication devices 12 are operable to reply with
3 return link wireless signals 29.

4 Communication stations 120 also respectively include receive
5 antennas R1, R2 ... RN which are configured to receive return link
6 wireless signals 29 from remote communication devices 12.
7 Communication stations 120 generate return link communication signals
8 corresponding to the received return link wireless signals.
9 Communication circuitry 106 communicates the return link communication
10 signals to interrogator housing 14.

11 Communication stations 120 of interrogator 26 preferably
12 individually include receive circuitry configured to receive the return link
13 wireless signals 29 and apply return link communication signals to
14 interrogator housing 14 for processing as described in detail below.
15 Further receive operations of interrogator 26 are described in a
16 copending U.S. patent application filed the same day as the present
17 application, having the title "Wireless Communication Systems,
18 Interrogators and Methods of Communicating Within a Wireless
19 Communication System", assigned to assignee hereof, having attorney
20 docket number MI40-180, naming David Ovard and Roy Greeff as
21 inventors, and incorporated herein by reference.

22 Fig. 1 is an illustrative representation of wireless communication
23 system 10. More specifically, communication ranges 15 may be spread
24 out over a relatively large geographic range. The wireless

1 communication system 10 of the present invention provides the
2 advantages of utilizing a single interrogator housing 14 and associated
3 communication circuitry therein to communicate with remote
4 communication devices 12 located in plural communication ranges 15.

5 Further, wireless communication system 10 of the present invention
6 permits a single interrogator housing 14 and associated circuitry to
7 service multiple communication ranges 15 which may be located several
8 hundred feet apart or further, or in harsh environments. For example,
9 one interrogator housing 14 can be utilized to service read zones or
10 communication ranges 15 within spaced warehouses. Individual
11 communication ranges 15 may be spaced from one another at distances
12 which exceed the communication range of the devices. Additionally,
13 adjacent communication ranges 15 may overlap in some applications.

14 As previously mentioned, individual communication paths 17 include
15 communication circuits 106 and associated communication stations 120.
16 Communication stations 120 are preferably positioned to communicate
17 with respective communication ranges 15. Communication circuits 106
18 are configured in the depicted arrangement to communicate forward link
19 communication signals from interrogator housing 14 to corresponding
20 communication stations 120. Communication circuits 106 are also
21 configured to communicate return link communication signals received
22 within corresponding communication stations 120 to interrogator
23 housing 14.

1 In the described embodiment, communication circuits 106 are
2 located outside of interrogator housing 14. In addition, communication
3 stations 120 are remotely located with respect to interrogator
4 housing 14. Communication stations 120 are individually configured to
5 receive forward link communication signals from interrogator housing 14
6 via communication circuitry 106 and radiate forward link wireless
7 signals 27 corresponding to the forward link communications signals
8 using associated antennas X1, X2 ... XN.

9 Further, communication stations 120 are individually configured to
10 receive return link wireless signals 29 from remote communication
11 devices 12 using associated antennas designated R1, R2 ... RN.
12 Communication stations 120 output return link communication signals
13 corresponding to the return link wireless signals 29 to interrogator
14 housing 14 using respective communication circuits 106.

15 Individual ones of communication stations 120 may be located at
16 varying distances from interrogator housing 14 depending upon a
17 particular application. Interrogator housing 14, communication
18 circuits 106 and communication stations 120 are configured to
19 communicate the forward link communication signals and return link
20 communication signals intermediate interrogator housing 14 and respective
21 communication stations 120 regardless of the varying distances.

22 Remote communication devices 12 are individually configured for
23 wireless communications in one embodiment as described in detail below.
24 Such remote communication devices 12 receive the forward link wireless

signals 27 and respond with the return link wireless signals 29 which are received within communication stations 120.

In one embodiment, return link wireless signals 29 are encoded with information that uniquely identifies or labels the particular device 12 that is transmitting so as to identify any object, animal or person with which communication device 12 is associated. More specifically, remote devices 12 are configured to output an identification signal within return link wireless signals 29 responsive to receiving forward link wireless signals 27. Interrogator 26 is configured to receive and recognize the identification signal within the return or return link communications 29. The identification signal can be utilized to identify the particular transmitting remote communication device 12.

Referring to Fig. 2, one embodiment of a remote communication device 12 is illustrated. The depicted communication device 12 includes a transponder 16 having a receiver and a transmitter as described below. Communication device 12 further includes a power source 18 connected to transponder 16 to supply operational power to transponder 16. In the illustrated embodiment, transponder 16 is in the form of an integrated circuit 19. However, in alternative embodiments, all of the circuitry of transponder 16 is not necessarily included in integrated circuit 19.

Power source 18 is a thin film battery in the illustrated embodiment, however, in alternative embodiments, other forms of power sources can be employed. If the power source 18 is a battery, the

battery can take any suitable form. Preferably, the battery type will be selected depending on weight, size and life requirements for a particular application. In one embodiment, battery 18 is a thin profile button-type cell forming a small, thin energy cell more commonly utilized in watches and small electronic devices requiring a thin profile. A conventional button-type cell has a pair of electrodes, an anode formed by one face and a cathode formed by an opposite face. In an alternative embodiment, the battery comprises a series connected pair of button type cells.

Communication device 12 further includes at least one antenna connected to transponder 16 for wireless transmission and reception. In the illustrated embodiment, communication device 12 includes at least one receive antenna 44 connected to transponder 16 for radio frequency reception by transponder 16, and at least one transmit antenna 46 connected to transponder 16 for radio frequency transmission by transponder 16. The described receive antenna 44 comprises a loop antenna and the transmit antenna 46 comprises a dipole antenna.

Remote communication device 12 can be included in any appropriate housing or packaging. Fig. 2 shows but one example of a housing in the form of a miniature housing 11 encasing device 12 to define a tag which can be supported by an object (e.g., hung from an object, affixed to an object, etc.).

Referring to Fig. 3, an alternative housing is illustrated. Fig. 3 shows a housing in the form of a card 13. Card 13 preferably

comprises plastic or other suitable material. Plastic card 13 houses communication device 12 to define an employee identification badge including the communication device 12. In one embodiment, the front face of card 13 has visual identification features such as an employee photograph or a fingerprint in addition to identifying text.

Although two particular types of housings have been disclosed, the communication device 12 can be included in any appropriate housing. Communication device 12 is preferably of a small size that lends itself to applications employing small housings, such as cards, miniature tags, etc. Larger housings can also be employed. The communication device 12, provided in any appropriate housing, can be supported from or attached to an object in any desired manner.

Fig. 4 is a high level circuit schematic of an embodiment of transponder 16 utilized in remote communication devices 12. In the embodiment shown in Fig. 4, transponder 16 is implemented within a monolithic integrated circuit 19. In the illustrated embodiment, integrated circuit 19 comprises a single die, having a size of 209 x 116 mils², including a receiver 30, a transmitter 32, a microcontroller or microprocessor 34, a wake up timer and logic circuit 36, a clock recovery and data recovery circuit 38, and a bias voltage and current generator 42. Integrated circuit 19 preferably comprises a small outline integrated circuit (SOIC) package. Receiver 30 and transmitter 32 comprise wireless communication circuitry configured to communicate wireless signals.

In one embodiment, communication devices 12 switch between a "sleep" mode of operation, and higher power modes to conserve energy and extend battery life during periods of time where no interrogation signal 27 is received by devices 12, using the wake up timer and logic circuitry 36.

In one embodiment, a spread spectrum processing circuit 40 is included in transponder 16. In this embodiment, signals transmitted and received by interrogator 26 and signals transmitted and received by communication device 12 are modulated spread spectrum signals. Many modulation techniques minimize required transmission bandwidth. However, the spread spectrum modulation techniques employed in the illustrated embodiment require a transmission bandwidth that is up to several orders of magnitude greater than the minimum required signal bandwidth. Although spread spectrum modulation techniques are bandwidth inefficient in single user applications, they are advantageous where there are multiple users, as is the case with the preferred radio frequency identification communication system 10 of the present invention.

The spread spectrum modulation technique of the illustrated embodiment is advantageous because the interrogator signal can be distinguished from other signals (e.g., radar, microwave ovens, etc.) operating at the same frequency. The spread spectrum signals transmitted by communication device 12 and interrogator 26 are pseudo random and have noise-like properties when compared with the digital

1 command or reply. The illustrated embodiment employs direct sequence
2 spread spectrum (DSSS) modulation.

3 In operation, interrogator 26 sends out a command that is spread
4 around a certain center frequency (e.g., 2.44 GHz). After the
5 interrogator transmits the command, and is expecting a response, the
6 interrogator switches to a continuous wave (CW) mode for backscatter
7 communications. In the continuous wave mode, interrogator 26 does not
8 transmit any information. Instead, the interrogator just transmits a
9 radio frequency continuous wave signal. In the described embodiment,
10 the continuous wave signal comprises a radio frequency 2.44 GHz carrier
11 signal. In other words, the continuous wave signal transmitted by
12 interrogator 26 is not modulated. After communication device 12
13 receives the forward link communication from interrogator 26,
14 communication device 12 processes the command.

15 If communication device 12 is operating in a backscatter mode,
16 device 12 modulates the continuous wave signal providing a modulated
17 continuous wave signal to communicate return link communication 29
18 responsive to reception of forward communication signal 27.
19 Communication device 12 may modulate the continuous wave signal
20 according to a subcarrier or modulation signal. Modulation by
21 device 12 comprises selective reflection of the continuous wave signal.
22 In particular, device 12 alternately reflects or does not reflect the
23 continuous wave signal from the interrogator to send its reply. For
24 example, in the illustrated embodiment, two halves of a dipole antenna

1 are either shorted together or isolated from each other to send a reply.
2 Alternatively, communication device 12 can communicate in an active
3 mode.

4 The modulated continuous wave signal communicated from
5 device 12 comprises a carrier component and plural side band
6 components about the carrier component resulting from the modulation.
7 More specifically, the modulated continuous wave signal output from
8 device 12 includes a radio frequency continuous wave signal having a
9 first frequency (2.44 GHz), also referred to as a carrier component, and
10 a subcarrier modulation signal having a different frequency (e.g., 600
11 kHz) which provides the side band components. In particular, the side
12 band components are at +/- 600 kHz of the carrier component.

13 In one embodiment, the clock for transponder 16 is extracted
14 from the incoming message itself by clock recovery and data recovery
15 circuitry 38. This clock is recovered from the incoming message and
16 used for timing for microcontroller 34 and all the other clock circuitry
17 on the chip and also for deriving the transmitter carrier or the
18 subcarrier, depending on whether the transmitter is operating in active
19 mode or backscatter mode.

20 In addition to recovering a clock, the clock recovery and data
21 recovery circuit 38 also performs data recovery on valid incoming
22 signals. The valid spread spectrum incoming signal is passed through
23 the spread spectrum processing circuit 40 which extracts the actual ones
24 and zeros of data from the incoming signal. More particularly, the

1 spread spectrum processing circuit 40 takes chips from the spread
2 spectrum signal and reduces individual thirty-one chip sections down to
3 a bit of one or zero, which is passed to microcontroller 34.

4 Microcontroller 34 includes a serial processor, or I/O, facility that
5 receives the bits from spread spectrum processing circuit 40. The
6 microcontroller 34 performs further error correction. More particularly,
7 a modified hamming code is employed, wherein each eight bits of data
8 is accompanied by five check bits used by the microcontroller 34 for
9 error correction. Microcontroller 34 further includes a memory, and
10 after performing the data correction, microcontroller 34 stores bytes of
11 the data bits in memory. These bytes contain a command sent by the
12 interrogator 26. Microcontroller 34 is configured to respond to the
13 command.

14 For example, interrogator 26 may send a command requesting that
15 any communication device 12 in the field respond with the device's
16 identification number. Status information can also be returned to
17 interrogator 26 from remote communication devices 12. Additionally,
18 remote communication devices 12 may be individually coupled with a
19 peripheral device and information regarding the peripheral device may
20 also be communicated.

21 Communications from interrogator 26 (i.e., forward link
22 communications) and devices 12 (i.e., return link communications) have
23 a similar format. More particularly, the forward and return
24 communications individually include a calibration period, preamble and

1 Barker or start code which are followed by actual data in the described
2 embodiment. The incoming forward link message and outgoing return
3 preferably also include a check sum or redundancy code so that
4 transponder 16 or interrogator 26 can confirm receipt of the entire
5 forward message or return message.

6 Communication devices 12 typically include an identification
7 sequence identifying the particular tag or device 12 sending the return
8 link signal. Such implements the identification operations of
9 communication system 10.

10 After sending a command, interrogator 26 sends the unmodulated
11 continuous wave signal. Return link data can be Differential Phase
12 Shift Key (DPSK) modulated onto the continuous wave signal using a
13 square wave subcarrier with a frequency of approximately 600 kHz
14 (e.g., 596.1 kHz in one embodiment). A data 0 corresponds to one
15 phase and data 1 corresponds to another, shifted 180 degrees from the
16 first phase.

17 The subcarrier or modulation signal is used to modulate antenna
18 impedance of transponder 16 and generate the modulated continuous
19 wave signal. For a simple dipole, a switch between the two halves of
20 the dipole antenna is opened and closed. When the switch is closed,
21 the antenna becomes the electrical equivalent of a single half-wavelength
22 antenna that reflects a portion of the power being transmitted by the
23 interrogator. When the switch is open, the antenna becomes the
24 electrical equivalent of two quarter-wavelength antennas that reflect very

1 little of the power transmitted by the interrogator. In one embodiment,
2 the dipole antenna is a printed microstrip half-wavelength dipole
3 antenna.

4 Referring to Fig. 5, one embodiment of interrogator housing 14
5 and the internal circuitry therein is illustrated. The depicted
6 interrogator housing 14 generally includes a microcontroller 70, a field
7 programmable gate array (FPGA) 72 and RF section 74. In the
8 depicted embodiment, microcontroller 70 comprises a MC68340
9 microcontroller available from Motorola, Inc. FPGA 72 comprises
10 an XC4028 device available from Xilinx, Inc. Further details of
11 components 70, 72 and 74 are described below.

12 Interrogator housing 14 also includes RAM 76, EPROM 78 and
13 flash memory 80 coupled with microcontroller 70 in the depicted
14 embodiment. Microcontroller 70 is configured to access an applications
15 program from EPROM 78 for controlling the interrogator 26 and
16 interpreting responses from remote communication devices 12.

17 The processor of microcontroller 70 is configured to control
18 communication operations with remote communication devices 12 during
19 normal modes of operation. The applications program can also include
20 a library of radio frequency identification device applications or
21 functions. These functions effect radio frequency communications
22 between interrogator 26 and associated remote communication devices 12.

23 Microcontroller 70 includes circuitry configured to generate forward
24 link communication signals to be communicated to remote communication

1 devices 12. Further, microcontroller 70 is also configured to process
2 return link communication signals received from remote communication
3 devices 12.

4 RF section 74 is configured to implement wireless (e.g., radio
5 frequency) communications with remote communication devices 12.
6 DPSK modulation techniques can be utilized for communications
7 intermediate devices 12 and interrogator 26. RF section 74 can include
8 downconversion circuitry for generating in-phase (I) and quadrature (Q)
9 signals which contain the DPSK modulated subcarrier for application
10 to FPGA 72 during return link communications.

11 Analog to digital (A/D) converters 82, 84 provide received
12 analog RF signals into a digital format for application to FPGA 72.
13 In particular, analog to digital converters 82, 84 are implemented
14 intermediate FPGA 72 and RF section 74 for both in-phase (I) and
15 quadrature (Q) communication lines.

16 An additional connection 85 is provided intermediate FPGA 72
17 and RF section 74 for forward link communication signals. Digital
18 signals to be communicated from interrogator 26 are outputted
19 from FPGA 72 via connection 85 and converted to RF forward link
20 communication signals by RF section 74. Connection 85 can additionally
21 be utilized to transmit phase lock loop (PLL) information and other
22 necessary communication information. During forward link
23 communications, FPGA 72 is configured to provide communication

1 packets received from microcontroller 70 into a proper format for
2 application to RF section 74 for communication.

3 FPGA 72 is configured to demodulate return link communications
4 received from remote communication devices 12 via RF section 74.
5 FPGA 72 is configured in the described embodiment to perform I
6 and Q combination operations during receive operations. The described
7 FPGA 74 further includes delay and multiplication circuitry to remove
8 the subcarrier. FPGA 74 can also include bit synchronization circuitry
9 and lock detection circuitry. Data, clock and lock detection signals
10 generated within FPGA 74 are applied to microcontroller 70 for
11 processing in the described embodiment.

12 Microcontroller 70 is configured to control operations of
13 interrogator 26 including outputting of forward link communications and
14 receiving return link communications. EPROM 78 is configured to store
15 original applications program codes and settings selected for the
16 particular application of communication system 10. Flash memory 80
17 is configured to receive software code updates which may be forwarded
18 to interrogator 26.

19 RAM device 76 is configured to store data during operations of
20 communication system 10. Such data can include information regarding
21 communications with associated remote communication devices 12 and
22 status information of interrogator 26 during normal modes of operation.

23 In accordance with the described embodiment, RF section 74 of
24 interrogator housing 14 is coupled with plural communication circuits 106

1 as shown in Fig. 1. Microcontroller 70 is configured to select an
2 appropriate communication circuit 106 to implement forward link and
3 return link communications with desired remote communication
4 devices 12 within respective communication ranges 15. RF section 74
5 includes switching circuitry configured to selectively couple one of
6 communication circuits 106 with RF circuitry within RF section 74 as
7 well as connection 85 and analog to digital converters 82, 84. Such
8 switching is controlled by microcontroller 70 depending upon the
9 individual communication range 15 presently communicating with
10 interrogator 26.

11 For example, microcontroller 70 can initially select one of
12 communication paths 17 to provide communications of interrogator 26
13 with remote communication devices 12 within the communication
14 range 15 which corresponds to the originally selected path 17.
15 Thereafter, microcontroller 70 can select another one of communication
16 paths 17 using switching circuitry of RF section 74 to provide
17 communications of interrogator 26 with remote communication devices 12
18 within the communication range 15 which corresponds to the newly
19 selected path 17.

20 Exemplary switching operations of the communication paths 17 can
21 be performed under control of microcontroller 70 after individual
22 forward link communications to respective communication paths 17 and
23 corresponding communication ranges 15 occur in one operational mode.
24 Alternatively, microcontroller 70 can switch communication paths 17 after

1 forward link communications and return link communications occur with
2 a desired communication range 15. Other communication switching
3 protocols can be utilized in other configurations.

4 Referring to Fig. 6, an exemplary configuration of RF circuitry 74
5 is illustrated. The depicted RF circuitry 74 includes a transmit path 86
6 and a receive path 87. Communication paths 86, 87 are coupled
7 with RF control circuitry 97. Transmit path 86 is additionally coupled
8 with FPGA 72 shown in Fig. 5 via connection 85. Receive path 87 is
9 coupled with analog to digital converters 82, 84 shown in Fig. 5 via
10 the I and Q connection lines.

11 Forward link communication signals are communicated via path 86
12 while return link communication signals are communicated via path 87.
13 In the depicted embodiment, RF section 74 additionally includes a
14 transmitter 90 and driver amplifier 92 within transmit data path 86.
15 Receive path 87 includes a receiver 95 and adjustment circuitry 96 in
16 the described embodiment.

17 Transmitter 90 is configured to implement radio frequency
18 modulation operations in the described embodiment using the forward
19 link communication signal previously generated. The modulated forward
20 link communication signal outputted from transmitter 90 is applied to
21 driver amplifier 92. Driver amplifier 92 is configured to increase the
22 power level of the forward link communication signal. In typical
23 implementations, driver amplifier 92 is configured to provide a gain of
24 approximately 10-15 dB. Amplifiers providing more or less gain may

1 be utilized depending upon the specific application and expected loss
2 within communication circuitry 106.

3 Thereafter, driver amplifier 92 applies the amplified forward link
4 communication signal to an input of a selected communication
5 circuit 106 responsive to control from microcontroller 70 and using RF
6 control 97. In the described configuration, RF control 97 comprises
7 switching circuitry configured to selectively couple transmit path 86 and
8 receive path 87 with a selected one (or ones) of communication
9 circuitry 106. RF control 97 implements the switching operations to
10 selectively couple communication circuits 106 with transmit path 86 and
11 receive path 87 responsive to control from microcontroller 70.

12 Depending upon the particular application for use of
13 communication system 10 or location of associated communication
14 stations 120, communication circuits 106 can be individually implemented
15 in one of a variety of configurations. Communication circuits 106 are
16 located outside of interrogator housing 14 and are coupled with driver
17 amplifier 92 and adjustment circuitry 96 via RF control 97.
18 Communication circuits 106 are individually configured to communicate
19 the forward link communication signals and return link communication
20 signals within the corresponding communication path 17 intermediate
21 housing 14 and the corresponding communication station 120.

22 In some embodiments, communication circuits 106 individually
23 comprise coaxial RF cable. Depending upon the distance intermediate
24 housing 14 and the corresponding communication station 120, low-loss

1 coaxial RF cable may be utilized. Further, amplifiers having increased
2 gain may be utilized in addition to the described amplifiers to increase
3 the power level of the forward link communication signals and return
4 link communication signals being communicated within communication
5 circuitry 106. Various combinations of components can be utilized
6 depending upon the particular application and associated loss to ensure
7 that the forward link communication signals and return link
8 communication signals outputted from communication circuitry 106 are
9 at a power level sufficiently above the thermal noise.

10 Referring to Fig. 7, an alternative configuration of communication
11 circuitry 106 which may be utilized within individual communication
12 paths 17 is illustrated. The depicted communication circuitry 106
13 includes a plurality of transceivers 108, 109 individually coupled with one
14 of interrogator housing 14 and one of communication stations 120.
15 Transceivers 108, 109 operate to communicate forward link
16 communication signals and return link communication signals intermediate
17 interrogator housing 14 and the corresponding communication station 120.
18 In an exemplary configuration, transceivers 108, 109 are configured to
19 communicate utilizing electromagnetic signals, such as radio frequency
20 signals. Such signals are preferably communicated outside of the
21 frequency band of forward link wireless signals 27 and return link
22 wireless signals 29.

23 Referring to Fig. 8, an exemplary embodiment of one of
24 communication stations 120 is illustrated. The depicted communication

station 120 is coupled with communication circuitry 106. The depicted communication station 120 includes transmit circuitry 121 and receive circuitry 123. Transmit circuitry 121 is coupled with the X1 antenna 126 and receive circuitry 123 is coupled with the R1 antenna 128. One configuration of transmit circuitry 121 is described with reference to Fig. 8, and one configuration of receive circuitry 123 is described with reference to Fig. 9.

The depicted transmit circuitry 121 shown in Fig. 8 includes adjustment circuitry 122, a power amplifier 124 and a potentiometer 137. Forward link communication signals received from communication circuitry 106 are applied to transmit circuitry 121. Forward link wireless signals 27 corresponding to the forward link communication signals are radiated using antenna 126. Return link wireless signals 29 are received by R1 antenna 128 and applied to receive circuitry 123. Receive circuitry 123 outputs return link communication signals corresponding to the return link wireless signals to communication circuitry 106.

Referring to transmit operations, forward link communication signals from communication circuitry 106 are initially applied to adjustment circuitry 122 within transmit circuitry 121. Adjustment circuitry 122 is configured to receive the forward link communication signals from communication circuitry 106 and to adjust at least one electrical characteristic of the forward link communication signals. In

1 an exemplary configuration, adjustment circuitry 120 is configured to
2 adjust the power level of the forward link communication signal.

3 More specifically, the depicted adjustment circuitry 122 comprises
4 automatic gain control (AGC) circuitry. In particular, the automatic
5 gain control circuitry is configured to monitor the power of the forward
6 link communication signals, compare the power with a predetermined
7 threshold value and adjust the power of the forward link communication
8 signals responsive to the comparison.

9 Adjustment circuitry 122 comprising automatic gain control circuitry
10 includes a variable gain amplifier 130, a coupler 132, a detector 134
11 and a loop filter 136 in an exemplary configuration. Forward link
12 communication signals received from communication circuitry 106 are
13 applied to coupler 132. Coupler 132 directs a portion of the power
14 of the forward link communication signals to detector 134 which
15 converts the received power into a voltage.

16 The converted voltage is directed to loop filter 136. Loop
17 filter 136 is additionally coupled with a potentiometer 137 in the
18 described configuration. Potentiometer 137 can be utilized to provide
19 an adjustable threshold reference voltage. Potentiometer 137 may be
20 varied to fine tune individual communication stations 120 depending
21 upon the distance intermediate the communication station 120 and
22 interrogator housing 14 (e.g., the threshold reference voltage can be
23 varied to accommodate varying amounts of loss intermediate individual

1 communication stations 120 and the corresponding interrogator
2 housing 14).

3 Loop filter 136 compares the received voltage from detector 134
4 representing the power level of the received forward link communication
5 signals with the adjustable reference voltage determined by
6 potentiometer 137. Thereafter, loop filter 136 outputs a control signal
7 to variable gain amplifier 130 to adjust the power of the forward link
8 communication signals applied to power amplifier 124 responsive to the
9 comparison.

10 Preferably, variable gain amplifier 130 provides forward link
11 communication signals to power amplifier 124 which have a substantially
12 constant input power level as determined by potentiometer 137. Such
13 is preferred to provide linear operation of power amplifier 124. Power
14 amplifier 124 amplifies the forward link communication signals. It is
15 preferred to provide forward link communication signals of
16 approximately 1 mW to power amplifier 124 which comprises a 1 watt
17 amplifier in one embodiment operable to provide approximately 30 dB
18 of gain.

19 The output of power amplifier 124 is applied to the X1
20 antenna 126. Preferably, the distance intermediate power amplifier 124
21 and the X1 antenna 126 is minimized. X1 antenna 126 is operable to
22 receive the amplified forward link communication signals 27 from power
23 amplifier 124 and to radiate forward link wireless signals 27
24 corresponding to the forward link communication signals. X1

1 antenna 126 of the corresponding communication station 120 is
2 preferably positioned to radiate the forward link wireless signals 27
3 within at least one of the plurality of communication ranges 15.

4 Referring to Fig. 9, details of receive circuitry 123 are illustrated.
5 Receive circuitry 123 is coupled with communication circuitry 106
6 and R1 antenna 128. The illustrated receive circuitry 123 includes a
7 low noise amplifier (LNA) 140 coupled with an amplifier 142. The R1
8 antenna 128 is coupled with low noise amplifier 140. R1 antenna 128
9 receives return link wireless signals 29 from remote communication
10 devices 12 located within one or more of communication ranges 15.
11 Antenna 128 outputs return link communication signals corresponding to
12 the return link wireless signals 29 to low noise amplifier 140.

13 Preferably, the distance intermediate the R1 antenna 128 and the
14 low noise amplifier 140 is minimized. The low noise amplifier 140 is
15 configured to receive the return link communication signals and increase
16 the power of the return link communication signals. Such amplification
17 preferably increases the level of the return link communication signals
18 to a sufficient degree above the thermal noise.

19 The return link communication signals are thereafter applied to
20 amplifier 142 which has a gain to further increase the power level of
21 the return link communication signals. In an exemplary configuration,
22 amplifiers 140, 142 individually have a gain of approximately 15 dB.
23 Receive circuitry 123 is merely exemplary and can be configured to
24 provide more or less gain depending upon the expected loss within

1 communication circuitry 106. In one configuration, amplifier 142 also
2 comprises a low noise amplifier.

3 Preferably, receive circuitry 123 and communication circuitry 106
4 are configured to provide return link communication signals to the
5 interrogator housing 14 having a sufficient signal-to-noise ratio. As
6 previously described, communication circuitry 106 comprising coaxial RF
7 cable, transceivers or other configurations communicates the return link
8 communication signals to interrogator housing 14.

9 Referring to Fig. 10, return link communication signals received
10 within communication station 120 and communicated using communication
11 circuitry 106 are applied to RF control 97 within interrogator
12 housing 14. RF control 97 operates to selectively couple one of
13 communication circuits 106 with receive path 87 responsive to control
14 from microcontroller 70 as described above.

15 Return link communication signals from RF control 97 are applied
16 to adjustment circuitry 96 within housing 14. Adjustment circuitry 96
17 is configured to receive the return link communication signals from RF
18 control 97 and to adjust at least one electrical characteristic of the
19 return link communication signals. In an exemplary configuration,
20 adjustment circuitry 96 is configured to adjust the power level of the
21 return link communication signals.

22 More specifically, the depicted adjustment circuitry 96 comprises
23 automatic gain control (AGC) circuitry. The automatic gain control
24 circuitry is configured to monitor the power of the return link

1 communication signals, compare the power with a threshold value and
2 adjust the power of the return link communication signals responsive to
3 the comparison.

4 Adjustment circuitry 96 comprising automatic gain control circuitry
5 includes a variable gain amplifier 150, a coupler 152, a detector 154
6 and a loop filter 156. Return link communication signals received
7 from RF control 97 are applied to variable gain amplifier 150 which
8 adjusts the power level of the return link communication signals
9 responsive to control from loop filter 156. Coupler 152 directs a
10 portion of the power of the return link communication signals to
11 detector 154 which converts the received power into a voltage. The
12 converted voltage is directed to loop filter 156.

13 Loop filter 156 compares the received voltage from detector 154
14 representing the power level of the return link communication signals
15 with a reference voltage. Thereafter, loop filter 156 outputs a control
16 signal to variable gain amplifier 150 which adjusts the power of the
17 return link communication signals applied to receiver 95 responsive to
18 the comparison. Although not shown, circuitry may be provided to
19 permit adjustment of the reference voltage of loop filter 156 similar to
20 that of potentiometer 137 of communication station 120.

21 Preferably, variable gain amplifier 150 provides return link
22 communication signals to receiver 95 which have a substantially constant
23 or fixed input level. In one embodiment, adjustment circuitry 96 is
24 configured to output return link communication signals having a power

1 level of approximately 3 dBm. Such is preferred to avoid saturation
2 of components (e.g., downconversion circuitry) within receiver 95. The
3 return link communication signals may be processed by
4 microcontroller 70 or other circuitry following demodulation of the
5 return link communication signals.

6 In compliance with the statute, the invention has been described
7 in language more or less specific as to structural and methodical
8 features. It is to be understood, however, that the invention is not
9 limited to the specific features shown and described, since the means
10 herein disclosed comprise preferred forms of putting the invention into
11 effect. The invention is, therefore, claimed in any of its forms or
12 modifications within the proper scope of the appended claims
13 appropriately interpreted in accordance with the doctrine of equivalents.

14

15

16

17

18

19

20

21

22

23

24

CLAIMS:

1. A wireless communication system comprising:
 - an interrogator including:
 - a housing including circuitry configured to generate a forward link communication signal;
 - communication circuitry configured to communicate the forward link communication signal; and
 - a communication station remotely located with respect to the housing and configured to receive the forward link communication signal from the communication circuitry and to radiate a forward link wireless signal corresponding to the forward link communication signal; and
 - a remote communication device configured to receive the forward link wireless signal.

15 2. The wireless communication system according to claim 1
16 further comprising a driver amplifier coupled with the circuitry and
17 configured to increase the power of the forward link communication
18 signal and to apply the forward link communication signal to an input
19 of the communication circuitry.

1 3. The wireless communication system according to claim 1
2 wherein the communication station includes adjustment circuitry
3 configured to receive the forward link communication signal from the
4 communication circuitry and to adjust an electrical characteristic of the
5 forward link communication signal.

6
7 4. The wireless communication system according to claim 3
8 wherein the adjustment circuitry comprises automatic gain control
9 circuitry.

10
11 5. The wireless communication system according to claim 4
12 wherein the automatic gain control circuitry is configured to monitor the
13 power of the forward link communication signal and adjust the power
14 of the forward link communication signal responsive to the monitoring.

15
16 6. The wireless communication system according to claim 1
17 wherein the communication station includes a power amplifier configured
18 to receive the forward link communication signal from the
19 communication circuitry and to amplify the forward link communication
20 signal.

1 7. The wireless communication system according to claim 1
2 wherein the communication station includes an antenna configured to
3 receive the forward link communication signal from the power amplifier
4 and to radiate the forward link wireless signal.

5

6 8. The wireless communication system according to claim 1
7 wherein the remote communication device includes a radio frequency
8 identification device.

9

10 9. The wireless communication system according to claim 1
11 wherein the communication circuitry includes a coaxial RF cable.

12

13 10. The wireless communication system according to claim 1
14 wherein the communication circuitry includes a plurality of transceivers
15 individually coupled with one of the housing and the communication
16 station.

1 11. An interrogator of a wireless communication system
2 comprising:

3 a housing including circuitry configured to generate a forward link
4 communication signal;

5 communication circuitry outside of the housing and coupled with
6 the circuitry and configured to communicate the forward link
7 communication signal; and

8 a communication station remotely located with respect to the
9 housing and including an antenna coupled with the communication
10 circuitry and configured to radiate a forward link wireless signal
11 corresponding to the forward link communication signal.

12
13 12. The interrogator according to claim 11 further comprising a
14 driver amplifier coupled with the circuitry and configured to increase the
15 power of the forward link communication signal and to apply the
16 forward link communication signal to an input of the communication
17 circuitry.

18
19 13. The interrogator according to claim 11 wherein the
20 communication station includes adjustment circuitry configured to receive
21 the forward link communication signal from the communication circuitry
22 and to adjust at least one electrical characteristic of the forward link
23 communication signal.

1 14. The interrogator according to claim 11 wherein the
2 adjustment circuitry comprises automatic gain control circuitry.

3

4 15. The interrogator according to claim 14 wherein the
5 automatic gain control circuitry is configured to monitor the power of
6 the forward link communication signal and adjust the power of the
7 forward link communication signal responsive to the monitoring.

8

9 16. The interrogator according to claim 11 wherein the
10 communication station includes a power amplifier configured to receive
11 the forward link communication signal from the communication circuitry
12 and to amplify the forward link communication signal.

13

14 17. The interrogator according to claim 11 wherein the
15 communication station includes an antenna configured to receive the
16 forward link communication signal from the power amplifier and to
17 radiate the forward link wireless signal.

18

19 18. The interrogator according to claim 11 wherein the remote
20 communication device comprises a radio frequency identification device.

21

22 19. The interrogator according to claim 11 wherein the
23 communication circuitry includes a coaxial RF cable.

1 20. The wireless communication system according to claim 11
2 wherein the communication circuitry includes a plurality of transceivers
3 individually coupled with one of the housing and the communication
4 station.

5
6 21. An interrogator of a wireless communication system
7 comprising:

8 a housing including circuitry configured to generate a plurality of
9 forward link communication signals; and

10 a plurality of communication stations remotely located with respect
11 to the housing and individually configured to receive at least one of the
12 forward link communication signals from the housing and radiate a
13 forward link wireless signal corresponding to the at least one forward
14 link communication signal.

15
16 22. The interrogator according to claim 21 wherein the
17 communication stations individually include adjustment circuitry configured
18 to receive the at least one forward link communication signal and to
19 adjust at least one electrical characteristic of the forward link
20 communication signal.

21
22 23. The interrogator according to claim 22 wherein the
23 adjustment circuitry includes automatic gain control circuitry.

1 24. The interrogator according to claim 21 further comprising a
2 plurality of communication circuits individually configured to communicate
3 at least one forward link communication signal intermediate the housing
4 and one of the communication stations.

5
6 25. The interrogator according to claim 21 wherein the
7 communication stations are individually positioned to radiate the forward
8 link wireless signal within one of a plurality of communication ranges.

1 26. An interrogator of a radio frequency identification system
2 comprising:

3 a housing including:
4 circuitry configured to generate a forward link communication
5 signal; and

6 a driver amplifier coupled with the circuitry and configured
7 to increase the power of the forward link communication signal;

8 a coaxial RF cable outside of the housing and coupled with the
9 driver amplifier and configured to communicate the forward link
10 communication signal; and

11 a communication station remotely located with respect to the
12 housing and including:

13 automatic gain control circuitry coupled with the coaxial RF
14 cable and configured to monitor the power of the forward link
15 communication signal, compare the power with a predetermined threshold
16 value, and adjust the power of the forward link communication signal
17 responsive to the comparison;

18 a power amplifier coupled with the automatic gain control
19 circuitry and configured to increase the power of the forward link
20 communication signal; and

21 an antenna coupled with the power amplifier and configured
22 to radiate a forward link wireless signal corresponding to the forward
23 link communication signal.

1 27. A method of communicating within a wireless communication
2 system comprising:

3 providing an interrogator and at least one remote communication
4 device;

5 generating a forward link communication signal using circuitry
6 within a housing of the interrogator;

7 communicating the forward link communication signal from the
8 housing using communication circuitry;

9 receiving the forward link communication signal from the
10 communication circuitry within a communication station of the
11 interrogator remotely located from the housing;

12 radiating a forward link wireless signal corresponding to the
13 forward link communication signal using the communication station; and

14 receiving the forward link wireless signal within the at least one
15 remote communication device.

16
17 28. The method according to claim 27 further comprising
18 amplifying the forward link communication signal before the
19 communicating.

20
21 29. The method according to claim 27 further comprising
22 adjusting at least one electrical characteristic of the forward link
23 communication signal before the radiating.

1 30. The method according to claim 29 wherein the adjusting
2 comprises adjusting using automatic gain control circuitry.

3

4 31. The method according to claim 29 wherein the adjusting
5 includes:

6 monitoring the power of the forward link communication signal
7 within the communication station; and

8 adjusting the power of the forward link communication signal
9 responsive to the monitoring.

10

11 32. The method according to claim 31 wherein the monitoring
12 includes:

13 adjusting a threshold value corresponding to a distance
14 intermediate the housing and the communication station; and

15 comparing the power of the forward link communication signal
16 received from the communication circuitry with the threshold value.

17

18 33. The method according to claim 27 further comprising
19 amplifying the forward link communication signal within the
20 communication station before the radiating.

21

22 34. The method according to claim 27 wherein the providing at
23 least one remote communication device comprises providing a radio
24 frequency identification device.

1 35. A method of communicating within a wireless communication
2 system comprising:

3 providing an interrogator having a housing and at least one
4 communication station remotely located from the housing;

5 generating a forward link communication signal using circuitry
6 within the housing;

7 communicating the forward link communication signal from the
8 housing using communication circuitry;

9 receiving the forward link communication signal from the
10 communication circuitry within the communication station; and

11 radiating a forward link wireless signal corresponding to the
12 forward link communication signal using the communication station.

13
14 36. The method according to claim 35 further comprising
15 amplifying the forward link communication signal before the
16 communicating.

17
18 37. The method according to claim 35 further comprising
19 adjusting at least one electrical characteristic of the forward link
20 communication signal before the radiating.

21
22 38. The method according to claim 37 wherein the adjusting
23 includes adjusting using automatic gain control circuitry.

1 39. The method according to claim 37 wherein the adjusting
2 includes:

3 monitoring the power of the forward link communication signal
4 within the communication station; and

5 adjusting the power of the forward link communication signal
6 responsive to the monitoring.

7

8 40. The method according to claim 39 wherein the monitoring
9 includes:

10 adjusting a threshold value corresponding to a distance
11 intermediate the housing and the communication station; and

12 comparing the power of the forward link communication signal
13 received from the communication circuitry with the threshold value.

14

15 41. The method according to claim 35 further comprising
16 amplifying the forward link communication signal within the
17 communication station before the radiating.

18

19 42. The method according to claim 35 wherein the providing
20 comprises providing a plurality of communication stations remotely
21 located from the housing, and the communication stations are
22 individually positioned to transmit a forward link wireless signal within
23 one of a plurality of communication ranges.

1 **ABSTRACT OF THE DISCLOSURE**

2 A wireless communication system includes an interrogator including
3 a housing including circuitry configured to generate a forward link
4 communication signal; communication circuitry configured to communicate
5 the forward link communication signal; and a communication station
6 remotely located with respect to the housing and configured to receive
7 the forward link communication signal from the communication circuitry
8 and to radiate a forward link wireless signal corresponding to the
9 forward link communication signal; and at least one remote
10 communication device configured to receive the forward link wireless
11 signal. A method of communicating within a wireless communication
12 system includes providing an interrogator and at least one remote
13 communication device; generating a forward link communication signal
14 using circuitry within a housing of the interrogator; communicating the
15 forward link communication signal from the housing using communication
16 circuitry; receiving the forward link communication signal from the
17 communication circuitry within a communication station of the
18 interrogator remotely located from the housing; radiating a forward link
19 wireless signal corresponding to the forward link communication signal
20 using the communication station; and receiving the forward link wireless
21 signal within the at least one remote communication device.

22

23

24

1 / 7

2/7

E E S S

5/7

6/7

7/7

1 **DECLARATION OF JOINT INVENTORS FOR PATENT APPLICATION**

2 As the below named inventor, I hereby declare that:

3 My residence, post office address and citizenship are as stated
4 below next to my name.

5 I believe I am the original, first and joint inventor of the subject
6 matter which is claimed and for which a patent is sought on the
7 invention entitled: Wireless Communication Systems, Interrogators and
8 Methods of Communicating Within a Wireless Communication System, the
9 specification of which is attached hereto.

10 I hereby state that I have reviewed and understand the contents
11 of the above-identified specification, including the claims.

12 I acknowledge the duty to disclose information known to me to
13 be material to patentability as defined in Title 37, Code of Federal
14 Regulations §1.56.

15 **PRIOR FOREIGN APPLICATIONS:**

16 I hereby state that no applications for foreign patents or inventor's
17 certificates have been filed prior to the date of execution of this
18 declaration.

19 I hereby declare that all statements made herein of my own
20 knowledge are true and that all statements made on information and
21 belief are believed to be true; and further that these statements were
22 made with the knowledge that willful false statements and the like so
23 made are punishable by fine or imprisonment, or both, under
24 Section 1001 of Title 18 of the United States Code and that such willful

1 false statement may jeopardize the validity of the application or any
2 patent issued therefrom.

3 * * * * *

4 Full name of inventor: **David K. Ovard**

5 Inventor's Signature:

3/2/99

6 Date:

7 Residence:

Meridian, Idaho

8 Citizenship:

United States of America

9 Post Office Address:

**1019 East Dominica
Meridian, Idaho 83642**

10 * * * * *

11 Full name of inventor: **Roy Greeff**

12 Inventor's Signature:

3-2-99

13 Date:

14 Residence:

Boise, Idaho

15 Citizenship :

United States of America

16 Post Office Address:

**9759 West Mill Hollow Street
Boise, Idaho 83709**

18

19

20

21

22

23

24

1 **IN THE UNITED STATES PATENT AND TRADEMARK OFFICE**

2 Application Serial No. Unknown
 3 Filing Date Filed herewith
 4 Inventor David K. Ovard et al.
 5 Assignee Micron Communications, Inc.
 6 Group Art Unit Unknown
 7 Examiner Unknown
 8 Attorney's Docket No. MI40-179
 9 Title: Wireless Communication Systems, Interrogators and Methods of
 Communicating Within a Wireless Communication System

7

8 **POWER OF ATTORNEY BY ASSIGNEE AND**
 9 **CERTIFICATE BY ASSIGNEE UNDER 37 CFR §3.73(b)**

10 To: Assistant Commissioner for Patents
 11 Washington, D.C. 20231

12 Sir:

13 **MICRON COMMUNICATIONS, INC.**, the Assignee of the entire
 14 right, title and interest in the above-identified patent application by
 15 assignment attached hereto, hereby appoints the attorneys and agents of
 16 the firm of WELLS, ST. JOHN, ROBERTS, GREGORY & MATKIN

17 P.S., listed as follows:

18 Richard J. St. John	Reg. No. 19,363
19 David P. Roberts	Reg. No. 23,032
20 Randy A. Gregory	Reg. No. 30,386
21 Mark S. Matkin	Reg. No. 32,268
22 James L. Price	Reg. No. 27,376
23 Deepak Malhotra	Reg. No. 33,560
24 Mark W. Hendricksen	Reg. No. 32,356
David G. Latwesen	Reg. No. 38,533
George G. Grigel	Reg. No. 31,166
Keith D. Grzelak	Reg. No. 37,144
Lance R. Sadler	Reg. No. 38,605
James D. Shaurette	Reg. No. 39,833

1 and also attorneys Michael L. Lynch (Reg. No. 30,871) and Lia Pappas
2 Dennison (Reg. No. 34,095) of Micron Communications, Inc., as its
3 attorneys with full power of substitution to prosecute this application and
4 transact all business in the Patent and Trademark Office connected
5 therewith.

6 The Assignee certifies that the above-identified Assignment has
7 been reviewed and to the best of Assignee's knowledge and belief, title
8 is in the Assignee.

9 Please direct all correspondence regarding this application to:

10 Wells, St. John, Roberts, Gregory & Matkin P.S.
11 Attn: James D. Shaurette
12 601 West First Avenue, Suite 1300
13 Spokane, WA 99201-3828

14 Telephone: (509) 624-4276
15 Facsimile: (509) 838-3424

16 MICRON COMMUNICATIONS, INC.

17 Dated: 3/2/99 By:

18 Name: James E. O'Toole
19 Title: Chairman and President

20
21
22
23
24