

Programming Language Theory

Untyped λ -Calculus

陳亮廷 Chen, Liang-Ting 2020 邏輯、語言與計算暑期研習營 Formosan Summer School on Logic, Language, and Computation

Institute of Information Science, Academia Sinica

Assessment guidelines

```
Deadline 17:00, 20 Aug
Assessment Assignment (10% + 10% + 10%)

Exam (100%)

Email liang.ting.chen.tw(at)gmail(dot)com
Please follow the instructions for assignments below.
```

- 1. Write down your name and your student number.
- 2. Use A4 paper only in physical form or in non-scanned PDF.
- 3. Be brief but comprehensive.
- 4. Submit assignments in person or by email with subject [FLOLAC] PL HW%x% attachment PL-HW%x% - %STDNO% - %NAME%.pdf body (optional)

Untyped λ -Calculus: Statics

λ -calculus: Terms

Let $V := \{x, y, z, ...\}$ be a countably infinite set of *variables*.

Definition 1 (Syntax of λ -calculus)

The formation $M: \mathbf{Term}_{\lambda}$ is defined by

1. Variable: with the side condition that $x \in V$

$$\overline{x: \mathsf{Term}_{\lambda}}$$
 (var)

2. Function application of M to the argument N:

$$\frac{M: \mathsf{Term}_{\lambda} \qquad N: \mathsf{Term}_{\lambda}}{M \; N: \mathsf{Term}_{\lambda}} \; (\mathsf{app})$$

3. Function abstraction with an argument *x* and a function body *M*:

$$\frac{M:\mathsf{Term}_{\lambda} \quad x \in V}{\lambda x.\,M:\mathsf{Term}_{\lambda}} \,(\mathsf{abs})$$

Examples and non-examples

- 1. $(x \ y) \ z$
- 2. x(yz)
- 3. $\lambda x. y$
- 4. $\lambda x. x$
- 5. $\lambda s. (\lambda z. (s z))$
- 6. λa. (λb. (a (λc. a b)))
- 7. $(\lambda x. x) (\lambda y. y)$

The following are NOT examples

- 1. $\lambda(\lambda x.x).y$
- 2. λx .
- 3. $\lambda . x$
- 4. ...

Conventions

Consecutive abstractions

$$\lambda x_1 x_2 \dots x_n . M := \lambda x_1 . (\lambda x_2 . (\dots (\lambda x_n . M) \dots))$$

Consecutive applications

$$M_1 M_2 M_3 \ldots M_n := (\ldots((M_1 M_2) M_3) \ldots) M_n$$

Function body extends as far right as possible

$$\lambda x. M N := \lambda x. (M N)$$

instead of $(\lambda x. M) N$.

For example, λx_1 . $(\lambda x_2. x_1) \equiv \lambda x_1 x_2. x_1$ and x y z means (x y) z. Warning. We apply these rules in our *meta*-language.

Meta-language and object-language

- *Meta-language* is the language we use to describe the object of study. E.g. English, or naive set theory.
- Object-language is the object of study. E.g., arithmetic expressions and λ -terms.

Naming a function is not supported in λ -calculus, so the following

$$id := \lambda x. x$$

happens in the meta-language.

- 1. id is a symbol different from ' $\lambda x. x$ ' in the meta-language.
- 2. id and λx . x are syntactically equivalent denoted by

$$id \equiv \lambda x. x$$

in the object language.

Example 2 (Identity function)

$$id := \lambda x. x$$

Example 3 (Projections)

$$fst := \lambda x. \lambda y. x$$
 and $snd := \lambda x. \lambda y. y$

Example 4 (Church encoding of Natural numbers)

 $c_0 := \lambda f x. x$ $c_1 := \lambda f x. f x$ $c_2 := \lambda f x. f(f x)$ $c_3 := \lambda f x. f(f(f(x)))$

α -equivalence, informally

Definition 5

Two terms M an N are α -equivalent

$$M =_{\alpha} N$$

if variables *bound* by abstractions can be renamed to derive the same term.

Example 6

- 1. $\lambda x. x$ and $\lambda y. y$ are distinct λ -terms but $\lambda x. x =_{\alpha} \lambda y. y$.
- 2. $\lambda x. \lambda y. y =_{\alpha} \lambda z. \lambda y. y.$
- 3. $\lambda x. \lambda y. x \neq_{\alpha} \lambda x. \lambda y. y.$

 α -equivalent terms are programs of the same structure.

Evaluation, informally

The evaluation of λ -calculus happens in this form

$$\underbrace{(\lambda x. M) N}_{\beta\text{-redex}} \longrightarrow \underbrace{M [N/x]}_{\text{substitution of } N \text{ for a free variable } x \text{ in } M$$

For example, $(\lambda x. x + 1)$ 3 \rightarrow 3 + 1.

How to evaluate the following terms?

- 1. $(\lambda x.x)z$
- 2. $(\lambda x y. x) y$
- 3. $(\lambda y y. y) x$

Free and bound variables

Definition 7

The set FV of free variables of a term M is defined by

$$FV(x) = \{x\}$$

$$FV(\lambda x. M) = FV(M) - \{x\}$$

$$FV(M N) = FV(M) \cup FV(N)$$

Definition 8

- 1. A variable y in M is free if $y \in FV(M)$.
- 2. A λ -term M is closed if $FV(M) = \emptyset$.

Exercise: free variables

$$FV(x (\lambda y. y) z) = FV(x (\lambda y. y)) \cup FV(z)$$

$$= FV(x) \cup (FV(y) - \{y\}) \cup \{z\}$$

$$= \{x\} \cup (\{y\} - \{y\}) \cup \{z\}$$

$$= \{x, z\}$$

Calculate the set of free variables of following terms:

- 1. x(yz)
- 2. λx. y
- 3. $\lambda x.x$
- 4. $\lambda s z. (s z)$
- 5. $(\lambda x. x) \lambda y. y$

Exercise: bound variables

Define

- Var(M) the set of variables of a term M by structural recursion on Λ .
- BV(M) the set of bound variables.

Untyped λ -Calculus: Substitution

Substitution

A substitution is a process of replacing *free* variables by another terms (on the meta-level).

The name of a variable does not matter but the location does. So, ...

- 1. bound variables should remain bound after substitution.
- 2. other free variables should remain free after substitution.

Concretely, we want to avoid ...

- 1. $(\lambda y. y)[x/y] \equiv (\lambda y. x)$
- 2. $(\lambda y. x)[y/x] \equiv (\lambda y. y)$

Naive substitution I

Definition 9

For $x \in V$ and $L : \mathbf{Term}_{\lambda}$, the substitution of L for x is defined by

$$x[L/x] = L$$

$$y[L/x] = y if x \neq y$$

$$(M N)[L/x] = M[L/x] N[L/x]$$

$$(\lambda y. M)[L/x] = \lambda y. M[L/x]$$

A bound variable may become free.

$$(\lambda x. x)[y/x] = \lambda x. y$$

Naive substitution II

Definition 10

For $x \in V$ and $L : \mathbf{Term}_{\lambda}$, the substitution of L for x is defined by

$$x[L/x] = L$$

$$y[L/x] = y if x \neq y$$

$$(M N)[L/x] = M[L/x] N[L/x]$$

$$(\lambda y. M)[L/x] = \lambda y. M[L/x] if x \neq y$$

$$(\lambda y. M)[L/x] = \lambda y. M if x = y$$

A variable may be captured by an abstraction.

$$(\lambda x.y)[x/y] = \lambda x.x$$

Capture-avoiding substitution

Capture-avoiding substitution¹ of L for the free occurrences of x is a partial function $(\cdot)[L/x]$: $\operatorname{Term}_{\lambda} \to \operatorname{Term}_{\lambda}$ defined by

$$x[L/x] = L$$

$$y[L/x] = y if x \neq y$$

$$(M N)[L/x] = (M[L/x] N[L/x])$$

$$(\lambda x. M)[L/x] = \lambda x. M$$

$$(\lambda y. M)[L/x] = \lambda y. M[L/x] if x \neq y \text{ and } y \notin FV(L)$$

Definition 11 (Freshness)

A variable y is fresh for L if $y \notin FV(L)$.

¹Sign, this definition is nevertheless ill-defined.

Renaming of bound variables

If a variable y is *fresh* for M, the bound variable x of λx . M can be renamed to y without changing the meaning.

Definition 12 (α -conversion)

 $\alpha\text{-conversion}$ is an judgement $\mathsf{M}\to_\alpha \mathsf{N}$ between two terms defined by

$$y$$
 is fresh for M
 $\lambda x. M \longrightarrow_{\alpha} \lambda y. M[y/x]$

Yet, $M(\lambda x. x) \longrightarrow_{\alpha} M(\lambda y. y)$ does not hold.

α -equivalence

Definition 13

x is a variable
$$x =_{\alpha} x$$
 $M_1 =_{\alpha} M_2$
 $M_1 N_1 =_{\alpha} M_2 N_2$ $M_1 \rightarrow_{\alpha} M_2$
 $M_1 =_{\alpha} M_2$ $M_1 =_{\alpha} M_2$
 $\lambda x. M_1 =_{\alpha} \lambda x. M_2$

$$N = \alpha N$$

$$\frac{M_1 =_{\alpha} M_2}{\lambda x. M_1 =_{\alpha} \lambda x. M_2}$$

Lemma 14

 α -equivalence is an equivalence, i.e.

reflexivity $M =_{\alpha} M$ for any term M; symmetry $N =_{\alpha} M$ if $M =_{\alpha} N$; **transitivity** $L =_{\alpha} N$ if $L =_{\alpha} M$ and $M =_{\alpha} N$.

Proof of reflexivity

By induction on the formation of *M*.

- 1. M = x for some $x \in V$. Then, by definition $x =_{\alpha} x$ holds.
- 2. $M=M_1~M_2$. Then, by induction hypothesis, we have derivations D_1 and D_2 for $M_1=_{\alpha}M_1$ and $M_2=_{\alpha}M_2$ respectively. Therefore, we have the desired derivation

$$\frac{\vdots}{M_1 =_{\alpha} M_1} D_1 \quad \frac{\vdots}{M_1 =_{\alpha} M_2} D_2 \\ \frac{M_1 M_2 =_{\alpha} M_1 M_2}{M_1 M_2}$$

3. $M = \lambda x. M'$. By induction hypothesis, we have a derivation D for $M' =_{\alpha} M'$. Hence,

$$\frac{\vdots}{M' =_{\alpha} M'} D$$

$$\frac{\lambda x. M' =_{\alpha} \lambda x. M'}{\lambda x. M'}$$

Proof of symmetry

By induction on the derivation D of $M=_{\alpha}N$. The only interesting case is that D is derived from an α -conversion, i.e.

$$\lambda x. M' \rightarrow_{\alpha} \lambda y. M'[y/x]$$

and y is fresh for M'. We know that $x \notin FV(M'[y/x])$ since the substitution [y/x] replaces² the free variable x by y. Therefore, we have λx . $M'[y/x][x/y] \equiv \lambda x$. M'. It follows that

$$\lambda y.M'[y/x] \rightarrow_{\alpha} \lambda x.M'$$

Hence, $N =_{\alpha} M$.

²We actually need to show that $x \notin FV(M[y/x])$ whenever FV(M[y/x]) is defined.

Proof of transitivity

By induction on the derivations D_1 and D_2 of $L =_{\alpha} M$ and $M =_{\alpha} N$ respectively. The interesting case is when D_i 's are given by α -conversion

$$\lambda x. M' \rightarrow_{\alpha} \lambda y. M'[y/x] \rightarrow_{\alpha} \lambda z. M'[y/x][z/y].$$

It follows that

$$\lambda x. M' \rightarrow_{\alpha} \lambda z. M'[z/x]$$

where the freshness condition clearly holds (why?) and also that

$$M'[y/x][z/y] \equiv M'[z/x].$$

Hence, transitivity holds for this case.

Example 15

$$(\lambda y. y) (\lambda x. x) =_{\alpha} (\lambda x. x) (\lambda y. y)$$

Why? We use the fact that $=_{\alpha}$ is an equivalence!

Proof. $\frac{\lambda x. x \to_{\alpha} \lambda y. x[y/x]}{\lambda x. x =_{\alpha} \lambda y. y} \qquad \frac{\lambda y. y \to_{\alpha} \lambda x. y[x/y]}{\lambda y. y =_{\alpha} \lambda x. x}$ $\frac{(\lambda y. y) (\lambda x. x) =_{\alpha} (\lambda y. y) (\lambda y. y)}{(\lambda y. y) (\lambda x. x) =_{\alpha} (\lambda x. x) (\lambda y. y)}$ $\frac{\lambda y. y \to_{\alpha} \lambda x. y[x/y]}{\lambda y. y =_{\alpha} \lambda x. x}$ $\frac{(\lambda y. y) (\lambda x. x) =_{\alpha} (\lambda x. x) (\lambda y. y)}{(\lambda y. y) (\lambda x. x) =_{\alpha} (\lambda x. x) (\lambda y. y)}$

Exercise

Which of the following pairs are α -equivalent? Why?

- 1. *x* and *y*
- 2. $\lambda x y. y$ and $\lambda z y. y$
- 3. $\lambda x y. x$ and $\lambda y x. y$
- 4. $\lambda x y. x$ and $\lambda x y. y$

Convention

Terms are equal up to α -equivalence of bound variables.

Feel free to rename any bound variable whenever convenient.

Untyped λ -Calculus: Dynamics

β -conversion

Definition 16 (β -conversion)

 β -conversion is defined by

$$\underbrace{(\lambda x. M) N}_{\beta\text{-redex}} \longrightarrow_{\beta} M[N/x]$$

$$((\lambda x. \lambda y. x) M) \longrightarrow_{\beta} (\lambda y. x)[M/x]$$
$$\equiv \lambda y. x[M/x] \equiv \lambda y. M$$

$$((\lambda x y. x) M) N \longrightarrow_{\beta} ?$$

One-step full β -reduction

Definition 17

The one-step full β -reduction is defined by

$$(\lambda x. M) N \longrightarrow_{\beta 1} M[N/x]$$

$$\frac{M_1 \longrightarrow_{\beta 1} M_2}{\lambda x. M_1 \longrightarrow_{\beta 1} \lambda x. M_2}$$

$$M_1 \longrightarrow_{\beta 1} M_2$$
 $M_1 N \longrightarrow_{\beta 1} M_2 N$

$$\begin{array}{c}
N_1 \longrightarrow_{\beta_1} N_2 \\
M N_1 \longrightarrow_{\beta_1} M N_2
\end{array}$$

$$((\lambda x y. x) M) N \longrightarrow_{\beta 1} (\lambda y. M) N$$
$$\longrightarrow_{\beta 1} M[N/y]$$

Multi-step full β -reduction

Definition 18

$$\frac{-}{M \longrightarrow_{\beta *} M} \text{ (0-step)}$$

$$\frac{L \longrightarrow_{\beta 1} M \qquad M \longrightarrow_{\beta *} N}{L \longrightarrow_{\beta *} N} \text{ (n + 1-steps)}$$

α -conversion during β -conversion

Renaming of bound variables may need to happen during reduction:

$$(\lambda y. y y) (\lambda z x. z x) \longrightarrow_{\beta 1} (\lambda z x. z x) (\lambda z x. z x)$$

$$\longrightarrow_{\beta 1} \lambda x. (\lambda z x. z x) x$$

$$=_{\alpha} \lambda x. (\lambda z y. z y) x$$

$$\longrightarrow_{\beta 1} \lambda x. (\lambda y. x y)$$

Even worse, we actually need infinitely many variables:

$$(\lambda y. y s y) (\lambda t z x. z (t x) z)$$

Exercise

Evaluate the above term.

Computational meaning

Definition 19

M and N have the same computational meaning if $M =_{\beta} N$ where $=_{\beta}$ is defined inductively by

$$\frac{M \longrightarrow_{\beta 1} N}{M =_{\beta} N}$$

$$M =_{\beta} M$$

$$\frac{M =_{\beta} N}{N =_{\beta} M}$$

$$\frac{L =_{\beta} M \qquad M =_{\beta} N}{L =_{\beta} N}$$

- $\cdot \mathbf{c}_2 =_{\beta} (\lambda x y.y) \mathbf{c}_1 \mathbf{c}_2$
- $\lambda z. (\lambda x y.x) z =_{\beta} \lambda z y. z$

Equality, equality, equality!

So far, we have notions of equality and reduction.

- $1+1 \neq_{\alpha} 2$
- 1+1 $\longrightarrow_{\beta*}$ 2 but 2 $/\longrightarrow_{\beta*}$ 1+1
- $1+1=_{\beta} 2$

Each of above statements says the following.

- 1+1 is a different expression from 2.
- 1 + 1 reduces to 2, but 2 does not reduce to 1 + 1.
- \cdot 1 + 1 and 2 have the same computational meaning.

Programming in λ -Calculus

Church encoding of boolean values

Boolean and conditional can be encoded as combinators.

Boolean

True
$$:= \lambda x y. x$$

False
$$:= \lambda x y. y$$

Conditional

$$\mathbf{if} := \lambda b \times y. \ b \times y$$

$$\mathbf{if} \ \mathsf{True} \ M \ N \longrightarrow_{\beta*} M$$

$$\mathbf{if} \ \mathsf{False} \ M \ N \longrightarrow_{\beta*} N$$

for any two λ -terms M and N.

Church Encoding of natural numbers i

Natural numbers can be encoded as λ -terms, so can arithmetic operations.

Church numerals

$$\begin{array}{lll} \mathbf{c}_0 & := & \lambda f x. \, x \\ \mathbf{c}_1 & := & \lambda f x. \, f x \\ \mathbf{c}_2 & := & \lambda f x. \, f (f x) \\ \mathbf{c}_{n+1} & := & \lambda f x. \, f^{n+1} (x) \end{array}$$

where
$$f^{1}(x) := f x$$
 and $f^{n+1}(x) := f(f^{n}(x))$.

Church Encoding of natural numbers ii

Successor

$$succ := \lambda n. \lambda f x. f(nfx)$$

$$succ c_n \longrightarrow_{\beta*} c_{n+1}$$

for any natural number $n \in \mathbb{N}$.

Addition

add :=
$$\lambda n \, m. \, \lambda f \, x. \, n \, f \, (m \, f \, x)$$

add $\mathbf{c}_n \, \mathbf{c}_m \longrightarrow_{\beta*} \mathbf{c}_{n+m}$

Church Encoding of natural numbers iii

Conditional

$$\begin{array}{ll} \text{ifz} & := \lambda n \, x \, y. \, n \, (\lambda z. \, y) \, x \\ \\ \text{ifz} \, c_0 \, M \, N & \longrightarrow_{\beta *} \, M \\ \\ \text{ifz} \, c_{n+1} \, M \, N & \longrightarrow_{\beta *} \, N \end{array}$$

Predecessor

$$\begin{array}{lll} \text{pred} & := & \lambda n. \, \lambda f x. \, ? \\ \\ \text{pred} \, c_0 & \longrightarrow_{\beta*} & c_0 \\ \\ \text{pred} \, c_{n+1} & \longrightarrow_{\beta*} & c_n \end{array}$$

Exercise

1. Define the *flip* operation, i.e. a λ -term flip such that

flip
$$M N P =_{\beta} M P N$$

- 2. Define Boolean operations not, and, and or.
- 3. Evaluate succ c_0 and add c_1 c_2 .
- 4. Define the multiplication mult over Church numerals.
- 5. (Hard) Define **pred** so that **pred** $\mathbf{c}_0 =_{\beta} \mathbf{c}_0$ and **pred** $\mathbf{c}_{n+1} =_{\beta} \mathbf{c}_n$.

General Recursion, informally

The summation $\sum_{i=0}^{n} i$ for $n \in \mathbb{N}$ can be defined as

$$sum(n) = \begin{cases} 0 & \text{if } n = 0\\ n + sum(n-1) & \text{otherwise.} \end{cases}$$

We cannot define recursion via self-reference in λ -calculus, can we avoid it? Consider the function $G: (\mathbb{N} \to \mathbb{N}) \to (\mathbb{N} \to \mathbb{N})$ defined by

$$(Gf)(n) := \begin{cases} 0 & \text{if } n = 0\\ n + f(n-1) & \text{otherwise.} \end{cases}$$
 (1)

If there exists sum' with G(sum') = sum', then sum' = sum.

Curry's paradoxical combinator

Proposition 20

Define

$$Y := \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx)).$$

Then,

$$YF \longrightarrow_{\beta 1} (\lambda x. F(xx)) (\lambda x. F(xx))$$
$$\longrightarrow_{\beta 1} F((\lambda x. F(xx)) (\lambda x. F(xx)))$$

for every λ -term F.

Summation, formally

Using the combinators we have known so far, the equation (1) can be defined as λ -terms:

$$G := \lambda f n. ifz \ n \ c_0 \ (add \ n \ (f \ (pred \ n)))$$

$$sum := YG$$

For example

$$\begin{aligned} \operatorname{sum} \, \mathbf{c}_1 &\equiv (\operatorname{Y} G) \, \mathbf{c}_1 \\ \longrightarrow_{\beta 1} \, G' \, \mathbf{c}_1 \\ \longrightarrow_{\beta 1} \, G \, G' \, \mathbf{c}_1 \\ \longrightarrow_{\beta 1} \, (\lambda n. \, \operatorname{ifz} \, n \, \mathbf{c}_0 \, (\operatorname{add} \, n \, (G' \, (\operatorname{pred} \, n)))) \, \mathbf{c}_1 \\ \longrightarrow_{\beta 1} \, \operatorname{ifz} \, \mathbf{c}_1 \, \mathbf{c}_0 \, (\operatorname{add} \, \mathbf{c}_1 \, (G' \, (\operatorname{pred} \, \mathbf{c}_1))) \\ \longrightarrow_{\beta 1} \dots \end{aligned}$$

where $G' := ((\lambda x. G(x x)) (\lambda x. G(x x))).$

Turing's fixed-point combinator

Here is a fixed-point operator such that $\Theta F \longrightarrow_{\beta*} F(\Theta F)$.

Proposition 21

Define

$$\Theta := (\lambda x f. f(x x f)) (\lambda x f. f(x x f))$$

Then,

$$\Theta F \longrightarrow_{\beta *} F(\Theta F)$$

Try Turing's fixed-point combinator with G to define $\sum_{i=0}^{n} i$.

$$G := \lambda f n. ifz \ n \ c_0 \ (add \ n \ (f(pred \ n)))$$

 $sum := \Theta G$

Exercise

- 1. Evaluate $sum c_1$ to its normal form in detail.
- 2. Define the factorial n! on Church numerals with Turing's fixed-point combinator.

Properties of λ -Calculus

Example 22

Suppose $M : \mathbf{Term}_{\lambda}$ and $y \notin FV(M)$. Then, consider

$$(\lambda y. M) ((\lambda x. xx)(\lambda x. xx))$$

Observations:

- · Some evaluation may diverge while some may converge.
- Full β -reduction lacks for determinacy.

Question:

Does every path give the same evaluation?

Confluence

Theorem 23 (Church-Rosser)

Given N_1 and N_2 with $M \longrightarrow_{\beta*} N_1$ and $M \longrightarrow_{\beta*} N_2$, there is L such that $N_1 \longrightarrow_{\beta*} L$ and $N_2 \longrightarrow_{\beta*} L$.

Normal form

We say that M is in normal form if $M \longrightarrow_{\beta 1}$.

Lemma 24

Suppose that M is in normal form. Then $M \longrightarrow_{\beta*} N \implies M =_{\alpha} N$.

Corollary 25 (Uniqueness of normal forms)

Suppose that N_1 and N_2 are in normal form. Then,

Computationally equal terms have a confluent term

Corollary 26

If $M =_{\beta} N$, then there exists L satisfying

Proof sketch.

By induction on the derivation of $M =_{\beta} N$.

For example, if $M \longrightarrow_{\beta 1} N$, then choose L as N.

Evaluation strategies i

An evaluation strategy is a procedure of selecting β -redexes to reduce. It is a subset $\longrightarrow_{\text{ev}}$ of the full β -reduction $\longrightarrow_{\beta 1}$.

Innermost β **-redex** does not contain any β -redex.

Outermost β **-redex** is not contained in any other β -redex.

Evaluation strategies ii

the leftmost-outermost (normal order) strategy reduces the leftmost outermost β -redex in a term first. For example,

$$\frac{(\lambda x. (\lambda y. y) x)}{(\lambda x. (\lambda y. yy) x)} \frac{(\lambda x. (\lambda y. yy) x)}{(\lambda x. (\lambda y. yy) x)}$$

$$\longrightarrow_{\beta_1} (\lambda x. (\lambda y. yy)) \quad \underline{x}$$

$$\longrightarrow_{\beta_1} (\lambda x. xx)$$

$$\xrightarrow{\beta_1} (\lambda x. xx)$$

Evaluation strategies iii

the leftmost-innermost strategy reduces the leftmost innermost β -redex in a term first. For example,

$$(\lambda x. \underline{(\lambda y. y)} \underline{x}) (\lambda x. (\lambda y. yy) x)$$

$$\longrightarrow_{\beta 1} (\lambda x. x) (\lambda x. \underline{(\lambda y. yy)} \underline{x})$$

$$\longrightarrow_{\beta 1} \underline{(\lambda x. x)} \underline{(\lambda x. xx)}$$

$$\longrightarrow_{\beta 1} (\lambda x. xx)$$

$$\xrightarrow{}_{\beta 1}$$

the rightmost-innermost/outermost strategy are defined similarly where terms are reduced from right to left instead.

CBV versus CBN

Call-by-value strategy rightmost-outermost but not under any abstraction

Call-by-name strategy leftmost-outermost but not under any abstraction

Proposition 27 (Determinacy)

Each of evaluation strategies is deterministic, i.e. if $M \longrightarrow_{\beta 1} N_1$ and $M \longrightarrow_{\beta 1} N_2$ then $N_1 = N_2$.

Exercise

Define following terms

$$\Omega := (\lambda x. xx) (\lambda x. xx)$$

$$K_1 := \lambda xy. x$$

Evaluate

$$K_1 Z \Omega$$

using the call-by-value and the call-by-name strategy respectively.

Normalisation

Definition 28

- 1. *M* is in *normal form* if $M \rightarrow \beta_1 N$ for any *N*.
- 2. *M* is weakly normalising if $M \longrightarrow_{\beta*} N$ for some N in normal form.
- 1. Ω is not weakly normalising.
- 2. K_1 is normal and thus weakly normalising.
- 3. $K_1 z \Omega$ is weakly normalising.

Theorem 29

The normal order strategy reduces every weakly normalising term to a normal form.

Homework

- 1. (25%) Show that $\longrightarrow_{\beta*}$ is transitive, i.e. $L \longrightarrow_{\beta*} N$ whenever $L \longrightarrow_{\beta*} M$ and $M \longrightarrow_{\beta*} N$. **Hint**. By induction on $L \longrightarrow_{\beta*} M$.
- 2. (25%) Show Lemma 24
- 3. (25%) Show Corollary 25
- 4. (25%) Show Corollary 26.