FIT1043 Introduction to Data Science

Module 6: Data Curation and Management

Lecture 12

Monash University

Reminders

- SETU time: see SETU Unit Evaluation link in Moodle
- Reminders:
 - Final assignment due this Sunday!
 - if you haven't tried to download the data yet
 - no tutorial this week

Discussion: Privacy and Security

In last week's tutorial we investigated issues related to security and privacy of data.

- Legal requirements for companies dealing with sensitive user data.
- Example of private data (ENRON email corpus)
 - Very easy (with a couple of shell commands) to discover very sensitive information (mobile phone numbers, credit card information, etc.)
- Famous information leaks
 - Some very scary leaks
- Example website privacy policies:
 - What information is Google storing about you?
 - Why are they keeping that information?
 - What control do they provide you with over the information they collect.

Unit Schedule: This Week

Module	Week	Content
1.	1	overview and look at projects
	2	(job) roles, and the impact
2.	3	data business models
	4	application areas and case studies
3.	5	characterising data and "big" data
	6	data sources and case studies
4.	7	resources and standards
	8	resources case studies
5.	9	data analysis theory
	10	data analysis process
6.	11	issues in data management
	12	data management frameworks

Unit Schedule: This Week

Module	Week	Content
1.	1	overview and look at projects
	2	(job) roles, and the impact
2.	3	data business models
	4	application areas and case studies
3.	5	characterising data and "big" data
	6	data sources and case studies
4.	7	resources and standards
	8	resources case studies
5.	9	data analysis theory
	10	data analysis process
6.	11	issues in data management
	12	EXAM INFO

The Exam

- Content of the Exam
 - What is examinable?
- Format of the Exam
 - What will the exam paper look like?

Content of the Exam

- Everything discussed in the lectures is examinable.
- ▶ That includes the "Brief Introduction to ..." slides:
 - only a few questions here
 - on Python, R, SAS, Unix Shell, Decision Trees
 - but you do not need to memorise all the syntax!
- Content linked from lecture slides is not directly examinable
 - i.e. you do not need to learn everything that is linked too
 - but sometimes the definitions/explanations of the content discussed in the lectures is given in the linked content,
- Content on Alexandria provides a useful description of the content of the course
 - ▶ is not directly examinable, except where in slides
- Content of the tutorials explains concepts from the slides

Format of the Exam

What will the exam paper look like?

- Exam consists of two parts:
 - ▶ 50 multiple-choice questions (worth 50% of total mark)
 - 25 short-answer questions (worth 50% of total mark)
- Duration 3 hours
- Open book
- No need to bring a calculator
- Sample questions available on Moodle ...

Unit

So, what did we cover in this unit?

Quick overview of what we learnt

- What is data science?
- What is machine learning?
- What is big data?
- Data science process and data science value chain

- What does a data scientist do?
- What skills do they need?
- Impact data science is having
 - cloud services, effect on science, social good
- Tutorial
 - Investigated Motion charts as a data visualisation tool
 - Jobs in data science

- Data business models
- Analytics levels: Descriptive, Predictive and Prescriptive Analytics
- Modeling decision problems with Influence Diagrams
- Data business models:
 - information brokering services
 - information-based differentiation services
 - information-based delivery network services
 - data providers
- Introduction to Python for data science
- Tutorial
 - Modeling with influence diagrams
 - Getting familiar with Python

- Data science case studies
- Characterising them in terms of:
 - data sources
 - data volume, velocity, variety, veracity
 - software, analytics, processing
 - security, privacy
- Tutorial:
 - Visual analytics with SAS

- Characterising big data:
 - Volume, Velocity, Variety, Veracity, Variability, Visualisation, Value
- What is metadata?
 - different types of metadata
- Growth laws related to big data:
 - Moore's law, Koomey's law, Bell's Law and Zimmerman's Law
- Introduction to R for data science
- Tutorial:
 - Exploratory analysis of big data in R

- Processing big data
 - different types of databases (SQL, semi-structured, graph, noSQL, etc.)
 - different types of processing (interactive, streaming, batch)
 - distributed processing (map-reduce, spark, etc.)
- Introduction to Unix Shell commands for data science
- Tutorial:
 - Manipulating large files in the shell
 - Understanding map-reduce

- Resources and the use of big data
- What is open data?
- What is data wrangling?
- Standards for publishing data and models
- Tutorial:
 - Wrangling with SAS, DataWrangler and Python

- Common tools used (Hadoop and related Apache tools)
- APIs and Software-as-a-Service
- Case studies
- Tutorial:
 - Wrangling big text data (from Twitter) using shell commands

- Types of data analysis:
 - prediction, prediction with unknown variables, clustering, forecasting, etc.
- Learning theory
 - error vs loss functions
 - linear and polynomial regression
 - overfitting due to overly complicated model / insufficient data
 - training and test split
 - signal to noise
 - ensembling multiple models
- Tutorial:
 - understanding learning theory though examples in Python

- Correlation vs Causation and the need for controlled experiments
- Imputing missing values
- Examples of analytic software
- Case studies
- Introduction to Decision/Regression trees
- Tutorial:
 - building predictive models with BigML

- Ethics and privacy
- Regulatory compliance
- What is Data Governance
- Data Management case studies
- Tutorial:
 - Understanding Privacy, Legal Requirements and the Prevention of Information Leaks

Phew! We've covered a lot of stuff in this unit!

THE END

- I hope you've enjoyed the unit
- No tutorial this week
- Do consider follow-on units, where you'll learn the full stuff:
 - FIT2079 Data visualisation
 - FIT2086 Modelling data
 - FIT3152 Data analytics
 - more 3rd year units ...

Best of luck for your revision and the exam!

