





# Sistema de simulación y reconocimiento de patrones de falla en el método de extracción de crudo por bombeo Electrosumergible (BES) con maquinas de aprendizaje

Presentado por:
Angel Leonardo Duarte Montes

Noviembre 2017

#### **OBJETIVO GENERAL**

Realizar un Sistema computacional para simulación y reconocimiento de Patrones de Fallas en el proceso de Levantamiento artificial de crudo por Bombeo Electrosumergible (BES) usando herramientas de máquinas de aprendizaje (Machine Learning)

#### **OBJETIVOS ESPECIFICOS**

- 1. Conocer en qué consiste el Proceso de Levantamiento de Crudo por Bombeo Electrosumergible.
- 2. Conocer Técnicas de Maquinas de Aprendizaje.
- Desarrollar el sistema para simulación y reconocimiento de Patrones de fallas en un sistema BES.
- 4. Realizar pruebas del Sistema computacional para reconocimiento de fallas
- 5. Desarrollar escenarios de prueba para la evaluación y análisis estadístico del sistema
- 6. Elaborar la documentación relacionada con la instalación y uso del sistema



# DESARROLLO Y RESULTADOS DEL PLAN DE TRABAJO

#### Etapa I:

Investigar, estudiar y comprender el método de levantamiento artificial por bombeo electrosumergible (BES)



#### SISTEMA DE LEVANTAMIENTO ARTIFICIAL BES



### CARTAS AMPERIMÉTRICAS





**Operación Normal** 

TRABA POR QAS

TRABA POR QAS

BLOQUED POR GAS

TRANS AND

COMMY MINE

COMMY MI

**Picos de Corriente** 



Bloqueo por Gas en la Bomba

Excesivos ciclos de operación

#### **Etapa II:**

Recolectar, aprender, clasificar y delimitar las alternativas que proponen las máquinas de aprendizaje para resolver problemas de reconocimiento de patrones, aplicar un algoritmo de aprendizaje que, teóricamente y basado en experiencias previas se ajuste a las condiciones descritas.

#### En esencia:

#### **Necesita**

- Vectores de entrada (inputs)  $\{x_i, i = 1, ..., n\} \subseteq X \subseteq R^d$
- Valores de salida (outputs)  $\{y_i, i = 1, ..., n\} \subseteq Y \subseteq R$

**Genera->**Operador objetivo S: arroja una salida según una función de distribución condicional  $F_{y/X=x_i}(y)$ 

#### MSV:

recibe -> Z=  $\{(x_1, y_1), ..., (x_n, y_n)\} \subseteq X \ x \ Y = Z$  devuelve -> aproximación del operador objetivo

#### ESQUEMA DE UNA MÁQUINA DE APRENDIZAJE.



#### **ESQUEMA DE UNA MSV.**

BARRERA DE DECISIÓN LINEAL.



BARRERA DE DECISIÓN NO LINEAL.





#### FUNCIÓN DE COSTO.

$$J(\theta) = \frac{1}{m} \sum_{i=0}^{m} costo\left((h_{\theta}(x)^{(i)}, y^{(i)}) + termino \ de \ regularizacion\right)$$

$$J(\theta)C * \left[ \sum_{i=0}^{m} \mathbf{y}^{(i)} * \mathbf{cost}_{1}(\theta^{T} * \mathbf{x}^{(i)}) + (1 - \mathbf{y}^{(i)}) * \mathbf{cost}_{0}(\theta^{T} * \mathbf{x}^{(i)}) \right] + \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2}$$

#### **KERNEL GAUSSIANO**

$$f_{i} = \exp(-\frac{\|x - l^{i}\|}{2\sigma^{2}})$$

#### Etapa III:

Diseñar y elaborar el sistema computacional de simulación y reconocimiento de patrones de fallas en procesos de levantamiento artificial







#### CARTAS AMPERIMÉTRICAS GENERADAS



#### RECONOCIMIENTO DE PATRONES DE FALLA

#### PROCESO KDD (KNOWLEDGE DISCOVERY IN DATABASES)





#### Etapa IV:

Realizar pruebas del sistema computacional para reconocimiento de fallas

#### Etapa V:

Desarrollar escenarios de prueba para la evaluación y análisis estadístico del sistema





#### **GRÁFICAS ROC POR CLASES**



#### **GRÁFICA ROC PROMEDIO**



#### **EJEMPLO MATRIZ DE CONFUSION**

| a) Acierto pesimita  Matriz de Confusion:  [[42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7]  [ 0 0 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0]  [ 0 0 0 37 0 0 0 0 0 0 0 0 0 0 0 0 0]  [ 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0]  [ 0 0 0 0 0 48 0 0 0 0 0 0 0 0]  [ 0 0 0 0 0 0 39 0 0 0 0 0 0]  [ 0 0 0 0 0 0 39 0 0 0 0 0 0]  [ 0 0 0 0 0 0 0 41 0 0 0 0 0]  [ 0 0 0 0 0 0 0 2 35 0 0 0 0]  [ 0 0 0 0 0 0 0 0 34 0 0 0]  [ 0 0 0 0 0 0 0 0 35 0 0 0]  [ 0 0 0 0 0 0 0 0 0 36 0 0]  [ 0 0 0 0 0 0 0 0 0 0 0 23 0]  [ 0 0 0 0 0 0 0 0 0 0 0 0 23 0] | Bot | ast | trap | o nu | mer | 0   | ı de | 9 5 |      |     |      |    |   |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|------|-----|-----|------|-----|------|-----|------|----|---|------|
| [[42 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [2 26 0 0 0 0 0 0 0 0 0 0 0 0 0 7] [0 0 37 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 37 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 34 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 48 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 39 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 39 0 0 0 0 0 0] [0 0 0 0 0 0 0 41 0 0 0 0 0] [0 0 0 0 0 0 0 2 35 0 0 0 0] [0 0 0 0 0 0 0 0 34 0 0 0] [0 0 0 0 0 0 0 0 0 34 0 0 0] [0 0 0 0 0 0 0 0 0 34 0 0 0] [0 0 0 0 0 0 0 0 0 0 36 0 0] [0 0 0 0 0 0 0 0 0 0 0 23 0]                                   |     |     |      |      |     |     |      |     |      |     |      |    |   |      |
| [ 2 26 0 0 0 0 0 0 0 0 0 0 0 7] [ 0 0 37 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 37 0 0 0 0 0 0 0 0 0 0 0 4] [ 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 48 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 39 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 41 0 0 0 0 0] [ 0 0 0 0 0 0 0 41 0 0 0 0 0] [ 0 0 0 0 0 0 0 2 35 0 0 0 0] [ 0 0 0 0 0 0 0 0 34 0 0 0] [ 0 0 0 0 0 0 0 0 0 34 0 0 0] [ 0 0 0 0 0 0 0 0 0 34 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 36 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 23 0]                                                             | Mat | r   | iz o | ie C | onf | us: | ion: | :   |      |     |      |    |   |      |
| [ 0 0 37 0 0 0 0 0 0 0 0 0 0 0 0 ] [ 0 0 0 37 0 0 0 0 0 0 0 0 0 0 0 4] [ 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 48 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 39 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 41 0 0 0 0 0] [ 0 0 0 0 0 0 0 41 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 2 35 0 0 0 0] [ 0 0 0 0 0 0 0 0 34 0 0 0] [ 0 0 0 0 0 0 0 0 0 34 0 0 0] [ 0 0 0 0 0 0 0 0 0 36 0 0] [ 0 0 0 0 0 0 0 0 0 0 23 0] [ 0 4 0 0 0 0 0 0 0 0 0 29]]                                                                                                 | [[4 | 12  | 0    | 0    | 0   | 0   | 0    | 0   | 0    | 0   | 0    | 0  | 0 | 0]   |
| [ 0 0 0 37 0 0 0 0 0 0 0 0 4] [ 0 0 0 34 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 48 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 39 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 41 0 0 0 0 0] [ 0 0 0 0 0 0 0 2 35 0 0 0 0] [ 0 0 0 0 0 0 0 0 34 0 0 0] [ 0 0 0 0 0 0 0 0 0 36 0 0] [ 0 0 0 0 0 0 0 0 0 0 23 0] [ 0 4 0 0 0 0 0 0 0 0 0 29]]                                                                                                                                                                                                          | Ī   | 2   | 26   | 0    | 0   | 0   | 0    | 0   | 0    | 0   | 0    | 0  | 0 | 7]   |
| [ 0 0 0 0 34 0 0 0 0 0 0 0 0 0 ] [ 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 ] [ 0 0 0 0 0 0 39 0 0 0 0 0 0 0 ] [ 0 0 0 0 0 0 0 41 0 0 0 0 0 0 ] [ 0 0 0 0 0 0 0 0 2 35 0 0 0 0 ] [ 0 0 0 0 0 0 0 0 0 34 0 0 0 ] [ 0 0 0 0 0 0 0 0 0 36 0 0 ] [ 0 0 0 0 0 0 0 0 0 0 23 0 ] [ 0 4 0 0 0 0 0 0 0 0 0 29 ] ]                                                                                                                                                                                                                      | ]   | 0   | 0    | 37   | 0   | 0   | 0    | 0   | 0    | 0   | 0    | 0  | 0 | 0]   |
| [ 0 0 0 0 0 48 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 39 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 41 0 0 0 0 0] [ 0 0 0 0 0 0 0 2 35 0 0 0 0] [ 0 0 0 0 0 0 0 0 34 0 0 0] [ 0 0 0 0 0 0 0 0 0 36 0 0] [ 0 0 0 0 0 0 0 0 0 0 23 0] [ 0 4 0 0 0 0 0 0 0 0 0 29]]                                                                                                                                                                                                                                                                            | 1   | 0   | 0    | 0    | 37  | 0   | 0    | 0   | 0    | 0   | 0    | 0  | 0 | 4]   |
| [0 0 0 0 0 0 39 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 41 0 0 0 0 0] [0 0 0 0 0 0 0 0 2 35 0 0 0 0] [0 0 0 0 0 0 0 0 0 34 0 0 0] [0 0 0 0 0 0 0 0 0 36 0 0] [0 0 0 0 0 0 0 0 0 0 23 0] [0 4 0 0 0 0 0 0 0 0 0 29]]                                                                                                                                                                                                                                                                                                           | 1   | 0   | 0    | 0    | 0   | 34  | 0    | 0   | 0    | 0   | 0    | 0  | 0 | 0]   |
| [0 0 0 0 0 0 0 41 0 0 0 0 0] [0 0 0 0 0 0 0 0 2 35 0 0 0 0] [0 0 0 0 0 0 0 0 0 34 0 0 0] [0 0 0 0 0 0 0 0 0 36 0 0] [0 0 0 0 0 0 0 0 0 0 23 0] [0 4 0 0 0 0 0 0 0 0 0 29]]                                                                                                                                                                                                                                                                                                                                          | ]   | 0   | 0    | 0    | 0   | 0   | 48   | 0   | 0    | 0   | 0    | 0  | 0 | 0]   |
| [0 0 0 0 0 0 0 2 35 0 0 0 0] [0 0 0 0 0 0 0 0 0 34 0 0 0] [0 0 0 0 0 0 0 0 0 36 0 0] [0 0 0 0 0 0 0 0 0 0 23 0] [0 4 0 0 0 0 0 0 0 0 0 29]]                                                                                                                                                                                                                                                                                                                                                                         | ]   | 0   | 0    | 0    | 0   | 0   | 0    | 39  | 0    | 0   | 0    | 0  | 0 | 0]   |
| [0 0 0 0 0 0 0 0 0 34 0 0 0]<br>[0 0 0 0 0 0 0 0 0 0 36 0 0]<br>[0 0 0 0 0 0 0 0 0 0 23 0]<br>[0 4 0 0 0 0 0 0 0 0 0 29]]                                                                                                                                                                                                                                                                                                                                                                                           | [   | 0   | 0    | 0    | 0   | 0   | 0    | 0   | 41   | 0   | 0    | 0  | 0 | 0]   |
| [0 0 0 0 0 0 0 0 0 0 36 0 0]<br>[0 0 0 0 0 0 0 0 0 0 0 23 0]<br>[0 4 0 0 0 0 0 0 0 0 0 29]]                                                                                                                                                                                                                                                                                                                                                                                                                         | [   | 0   | 0    | 0    | 0   | 0   | 0    | 0   | 2    | 35  | 0    | 0  | 0 | 0]   |
| [ 0 0 0 0 0 0 0 0 0 0 0 23 0]<br>[ 0 4 0 0 0 0 0 0 0 0 0 29]]                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ]   | 0   | 0    | 0    | 0   | 0   | 0    | 0   | 0    | 0   | 34   | 0  | 0 | 0]   |
| [0 4 0 0 0 0 0 0 0 0 0 29]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1   | 0   | 0    | 0    | 0   | 0   | 0    | 0   | 0    | 0   | 0    | 36 | 0 | 0]   |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ]   | 0   |      |      |     |     |      |     |      |     |      |    |   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [   | 0   | 4    | 0    | 0   | 0   | 0    | 0   | 0    | 0   | 0    | 0  | 0 | 29]] |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |     |      | ٠.   |     |     |      |     |      |     |      |    |   |      |
| Acierto: de un 96.04166666666667 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ac: | iei | to:  | : de | un  | 1 5 | 96.( | 141 | 5666 | 666 | 5666 | 57 | 6 |      |

#### TABLA VALIDACIÓN CRUZADA

| Numero de validación | Porcentaje de aciertos |
|----------------------|------------------------|
| 1                    | 98.46153846153847      |
| 2                    | 100.0                  |
| 3                    | 98.46153846153847      |
| 4                    | 99.23076923076923      |
| 5                    | 100.0                  |
| 6                    | 98.46153846153847      |
| 8                    | 98.46153846153847      |
| 9                    | 96.15384615384616      |
| 10                   | 98.46153846153847      |
| Promedio total:      | 98.61538461538461      |

#### TABLA VALIDACIÓN BOTSTRAP

|           |            | Porcentaje |           |                 |  |  |  |  |
|-----------|------------|------------|-----------|-----------------|--|--|--|--|
| Numero de |            | Acierto    | Acierto   | Bootstrap 0.636 |  |  |  |  |
|           | validación | pesimista  | optimista |                 |  |  |  |  |
|           | 1          | 95.61586   | 98.38461  | 96.62369        |  |  |  |  |
|           | 2          | 96.70103   | 98.76923  | 97.45385        |  |  |  |  |
|           | 3          | 96.56652   | 98.76923  | 97.36830        |  |  |  |  |
|           | 4          | 97.13114   | 98.92307  | 97.78340        |  |  |  |  |
|           | 5          | 97.64957   | 99.15384  | 98.19712        |  |  |  |  |
|           | 6          | 97.89473   | 99.23076  | 98.38105        |  |  |  |  |
|           | 7          | 97.20430   | 99.00000  | 97.85793        |  |  |  |  |
|           | 8          | 97.72727   | 99.15384  | 98.24654        |  |  |  |  |
|           | 9          | 97.40259   | 99.07692  | 98.01205        |  |  |  |  |
|           | 10         | 96.04166   | 98.53846  | 96.95050        |  |  |  |  |
|           | Promedio   | 96.99347   | 98.90000  | 97.68744        |  |  |  |  |
|           |            |            |           |                 |  |  |  |  |

#### Etapa VI:

# Elaborar la documentación relacionada con la instalación y uso del sistema





# CONCLUSIONES

## RECOMENDACIONES

# **MUCHAS GRACIAS!!**