

Slides Credits: Gunnar Gotshalks, Michael Langer, Mark Redekopp, David Kempe, Sandra Batista

Definition

- A hash table has the following components
 - » An array called a table of size N
 - » A mathematical function called a hash function that maps keys to valid array indices

hash_function: key → 0 .. N – 1

 Table entries are stored and retrieved by applying the hash function to the entry key to get the index used to probe the table.

Hash Function Basic Properties

- A hash function consists of two parts
 - » Hash code function

- » Compression function
 - > Maps the integer from the hash code function to the integer interval [0 , N 1]

compress (integer)
$$\rightarrow 0$$
.. N – 1

> Program function composition

compress (hash_code (key))
$$\rightarrow$$
 0 .. N – 1

© Gunnar Gotshalks

Hash Code

Example: Strings

- Use ASCII codes for each character and add them or group them
- "hello" => 'h' = 104, 'e'=101, 'l' = 108, 'l' = 108, 'o' = 111 = 532
- Hash function is then applied to the integer value 532 such that it maps to a value between 0 to M-1 where M is the table size

We will try to combine these two ideas as shown below....

... using a many-to-one "compression" map.

compression : $i \rightarrow |i| \mod m$,

where m is the length of the array.

Universal Hash Example

- Suppose we want a universal hash for words in English language
- First, we select a prime table size, m
- For any word, w made of the sequence of letters $w_1 w_2 ... w_n$ we translate each letter into its position in the alphabet (0-25).
- Consider the length of the longest word in the English alphabet has length z
- Choose a random key word, K, of length z, $K = k_1 k_2 ... k_z$
- The random key a is created once when the hash table is created and kept
- Hash function: $h(w) = \left(\sum_{i=1}^{len(w)} k_i \cdot w_i\right) \mod m$