Exercicis 1.6 i 1.7

1.6

Afegiu tantes instruccions "NOOP" com creieu al codi següent per tal que pugui funcionar en un pipeline de 5 etapes del processador RISC-V sense "Forward Unit".

Recordeu quetenim 32 registres que van des de l'x0 fins a l'x31.

	1	2	3	4	5	6	7	8
addi x11, x12, 5								
add x13, x11, x12								
addi x14, x11, 15								
add x15, x11, x11								

	1	2	3	4	5	6	7	8
addi x11, x12, 5	IF							
add x13, x11, x12								
addi x14, x11, 15								
add x15, x11, x11								

	1	2	3	4	5	6	7	8
addi x11, x12, 5	IF	ID						
add x13, x11, x12		IF						
addi x14, x11, 15								
add x15, x11, x11								

	1	2	3	4	5	6	7	8
addi x11, x12, 5	IF	ID	EX					
add x13, x11, x12		IF	ID					
addi x14, x11, 15			IF					
add x15, x11, x11								

	1	2	3	4	5	6	7	8
addi x11 , x12, 5	IF	ID	EX	MEM	WB			
add x13, x11 , x12		IF	ID 🕶	RAW	: Read Aft	er Write		
addi x14, x11, 15			IF					
add x15, x11, x11								

Cicles

Cicles

Cicles

	1	2	3	4	5	6	7	8	9	10	11
addi x11 , x12, 5	IF	ID	EX	MEM	WB						
nop		IF	ID	EX	MEM	WB					
пор			IF	ID	EX	MEM	WB				
add x13, x11 , x12				IF	ID	EX	MEM	WB			
addi x14, x11 , 15					IF	ID	EX	MEM	WB		
add x15, x11 , x11							IF	ID	EX	MEM	WB

1.7

En un processador RISC-V de 5 etapes examinem com afecta el pipeline al temps de cicle del rellotge del processador. Les qüestions d'aquest exercici suposen que cada etapa triga un temps diferent en executar-se, en particular els temps d'execució de cada etapa són els següents:

IF	ID	EX	MEM	WB
250 ps	350 ps	150 ps	300 ps	200 ps

Suposeu també que les instruccions executades pel processador es desglossen de la manera següent:

ALU/Logic	Jump/Branch	Load	Store
45%	20%	20%	15%

1.7. Pregunta 1: Mida del cicle de rellotge

Quin és el temps de cicle de rellotge mínim (en ps) en un processador amb pipeline i en un sense pipeline?

1.7. Pregunta 1: Mida del cicle de rellotge

Quin és el temps de cicle de rellotge mínim (en ps) en un processador amb pipeline i en un sense pipeline?

1.7. Pregunta 2: temps d'execució d'un load

Quant temps triga en executar-se una instrucció de tipus Load en un processador amb pipeline i en un sense pipeline?

1.7. Pregunta 2: temps d'execució d'un load

Quant temps triga en executar-se una instrucció de tipus Load en un processador amb pipeline i en un sense pipeline?

1.7. Pregunta 3: subdividir una etapa

Si podem dividir una etapa del pipeline en dues noves etapes, cadascuna trigarà la meitat de temps en executar-se que l'etapa original, quina etapa dividiríeu i quin és el nou temps de cicle del rellotge del processador amb pipeline?

1.7. Pregunta 3: subdividir una etapa

Si podem dividir una etapa del pipeline en dues noves etapes, cadascuna trigarà la meitat de temps en executar-se que l'etapa original, quina etapa dividiríeu i quin és el nou temps de cicle del rellotge del processador amb pipeline?

1.7. Pregunta 4: temps d'execució d'un load

Suposant que no hi ha "stalls" ni "hazards", quina és percentatge d'utilització de la memòria de dades per a les instruccions?

1.7. Pregunta 4: temps d'execució d'un load

Suposant que no hi ha "stalls" ni "hazards", quina és percentatge d'utilització de la memòria de dades per a les instruccions?

La memòria de dades s'utilitza en les instruccions de load i store:

Load: 20% de les instruccions

Store: 15% de les instruccions

Quan no s'executa cap d'aquestes instruccions, la memòria no es fa servir. Per tant, només s'usa durant el 35% del temps.

1.7. Pregunta 5: temps d'execució d'un load

Suposant que no hi ha "stalls" ni "hazards", quina és percentatge d'utilització del port d'escriptura dels registres per a les instruccions executades pel processador amb pipeline?

1.7. Pregunta 5: temps d'execució d'un load

Suposant que no hi ha "stalls" ni "hazards", quina és percentatge d'utilització del port d'escriptura dels registres per a les instruccions executades pel processador amb pipeline?

Les instruccions que desen el resultat en un registre són:

ALU/Logic: 45% de les instruccions

Load: 20% de les instruccions

Quan no s'executa cap d'aquestes instruccions, el port d'escriptura dels registres s'ignora. Per tant, s'usa durant el 65% del temps.