Ecuación de Euler-Lagrange

Los problemas marcados con (*) tienen alguna dificultad adicional, no dude en consultar.

1. **Péndulo rígido ideal** [Marion (english) ex. 7.2]

Péndulo de punto de suspensión libre y péndulo doble [Landau §5 ejs. 1 y 2]

Aplique en la ecuación de Euler-Lagrange los Lagrangianos obtenidos en la guía anterior para obtener las ecuaciones de la dinámica de los sistemas:

2. Péndulo de masas acopladas en movimiento restringido

Dos partículas de masa m_1 y m_2 están unidas por un hilo inextensible de longitud $l; m_1$ se mueve solo sobre el eje $x y m_2$ solo sobre el y. Las condiciones iniciales son las que indica la figura.

- a) Obtenga con la ecuación de Euler-Lagrange la ecuación de la dinámica en función de θ .
- b) ¿Cuál es el período de movimiento de θ para el caso $m_1 = m_2 = m$? Suponga que θ solo puede tomar valores pequeños.
- c) (*) Resuelva la ecuación de la dinámica para obtener $\theta(t)$ en el caso que el sistema parte del reposo con un $\theta_0 \neq 0$.

3. Máquina de Atwood simple

- a) Obtenga con la ecuación de Euler-Lagrange la ecuación de la diná-x1 mica. Simplifique el problema considerando que la poleas de radio Rtiene masa nula (M=0).
- b) Compare las aceleraciones con las obtenidas usando ecuaciones de Newton.

4. Maquina de Atwood compuesta [Marion (english) ex. 7.8]

- a) Obtenga las aceleraciones en este sistema resolviendo las ecuaciones de Euler-Lagrange. Las coordenadas se reducen a dos, $x \in y$, pues con el vínculo de las cuerdas establece la posición de todas las masas y de la polea inferior. Simplifique el problema considerando que las poleas de radio R tienen masa nula (M = 0).
- b) (*) Contemple ahora la masa de las poleas. Recuerde que el momento de inercia de un cilíndro es $MR^2/2$
- c) (*) Compare las aceleraciones con las obtenidas usando ecuaciones de Newton.

