

Lecture 4: Random Variable, Part II

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes KAIST EE

April 27, 2021

Roadmap

- (1) Continuous Random Variable and PDF (Probability Density Function)
- (2) CDF (Cumulative Distribution Function)
- (3) Exponential RVs
- (4) Gaussian (Normal) RVs
- (5) Continuous RVs: Joint, Conditioning, and Independence
- (6) Bayes' rule for RVs

Roadmap

3 / 32

- (1) Continuous Random Variable and PDF (Probability Density Function)
- (2) CDF (Cumulative Distribution Function)
- (3) Exponential RVs
- (4) Gaussian (Normal) RVs
- (5) Continuous RVs: Joint, Conditioning, and Independence
- (6) Bayes' rule for RVs

- Many cases when random variables have "continuous values", e.g., velocity of a car

- Many cases when random variables have "continuous values", e.g., velocity of a car

A rv X is continuous if \exists a function f_X , called probability density function (PDF), s.t. $\mathbb{P}(X \in B) = \int_{\mathbb{R}} f_X(x) dx, \quad \text{every subset } B \in \mathbb{R}$

- Many cases when random variables have "continuous values", e.g., velocity of a car

A rv X is continuous if \exists a function f_X , called probability density function (PDF), s.t. $\mathbb{P}(X \in B) = \int_B f_X(x) dx, \quad \text{every subset } B \in \mathbb{R}$

- All of the concepts and methods (expectation, PMFs, and conditioning) for discrete rvs have continuous counterparts

- Many cases when random variables have "continuous values", e.g., velocity of a car

A rv X is continuous if \exists a function f_X , called probability density function (PDF), s.t. $\mathbb{P}(X \in B) = \int_{B} f_X(x) dx, \quad \text{every subset } B \in \mathbb{R}$

$$\mathbb{P}(X \in B) = \int_B f_X(x) dx,$$

- All of the concepts and methods (expectation, PMFs, and conditioning) for discrete rvs have continuous counterparts

- $\mathbb{P}(a \le X \le b) = \sum_{x:a \le x \le b} p_X(x)$ $p_X(x) \ge 0$, $\sum_x p_X(x) = 1$

- Many cases when random variables have "continuous values", e.g., velocity of a car

A rv X is continuous if \exists a function f_X , called

$$\mathbb{P}(X \in B) = \int_B f_X(x) dx$$
, every subset $B \in \mathbb{R}$

probability density function (PDF) , s.t.

- All of the concepts and methods (expectation, PMFs, and conditioning) for discrete rvs have continuous counterparts

- $\mathbb{P}(a \le X \le b) = \sum_{x:a \le x \le b} p_X(x)$ $p_X(x) \ge 0$, $\sum_x p_X(x) = 1$

- $\mathbb{P}(a \le X \le b) = \int_a^b f_X(x) dx$ $f_X(x) \ge 0$, $\int_{-\infty}^{\infty} f_X(x) dx = 1$

5 / 32

•
$$\mathbb{P}(a \leq X \leq a + \delta) \approx$$

Examples

5 / 32

•
$$\mathbb{P}(a \leq X \leq a + \delta) \approx |f_X(a) \cdot \delta|$$

Examples

5 / 32

•
$$\mathbb{P}(a \leq X \leq a + \delta) \approx \boxed{f_X(a) \cdot \delta}$$

•
$$\mathbb{P}(X = a) = 0$$

Examples

•
$$\mathbb{P}(a \leq X \leq a + \delta) \approx \boxed{f_X(a) \cdot \delta}$$

•
$$\mathbb{P}(X = a) = 0$$

Examples

- $\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx =$
- $\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 f_X(x) dx =$
- var[X] =

•
$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_a^b \frac{x}{b-a} dx = \frac{1}{b-a} \frac{b^2 - a^2}{2} = \frac{b+a}{2}$$

•
$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 f_X(x) dx =$$

•
$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_a^b \frac{x}{b-a} dx = \frac{1}{b-a} \frac{b^2 - a^2}{2} = \frac{b+a}{2}$$

•
$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 f_X(x) dx = \int_a^b \frac{x^2}{b-a} dx = \frac{1}{b-a} \frac{b^3 - a^3}{3} = \frac{a^2 + ab + b^2}{3}$$

•
$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_a^b \frac{x}{b-a} dx = \frac{1}{b-a} \frac{b^2 - a^2}{2} = \frac{b+a}{2}$$

•
$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 f_X(x) dx = \int_a^b \frac{x^2}{b-a} dx = \frac{1}{b-a} \frac{b^3 - a^3}{3} = \frac{a^2 + ab + b^2}{3}$$

•
$$var[X] = \frac{a^2 + ab + b^2}{3} - \frac{a^2 + 2ab + b^2}{4}$$

Roadmap

7 / 32

- (1) Continuous Random Variable and PDF (Probability Density Function)
- (2) CDF (Cumulative Distribution Function)
- (3) Exponential RVs
- (4) Gaussian (Normal) RVs
- (5) Continuous RVs: Joint, Conditioning, and Independence
- (6) Bayes' rule for RVs

• Discrete: PMF, Continuous: PDF

- Discrete: PMF, Continuous: PDF
- Can we describe all rvs with a single mathematical concept?

- Discrete: PMF, Continuous: PDF
- Can we describe all rvs with a single mathematical concept?

$$F_X(x) = \mathbb{P}(X \le x) =$$

$$\begin{cases} \sum_{k \le x} p_X(k), & \text{discrete} \\ \int_{-\infty}^x f_X(t) dt, & \text{continuous} \end{cases}$$

- Discrete: PMF, Continuous: PDF
- Can we describe all rvs with a single mathematical concept?

$$F_X(x) = \mathbb{P}(X \le x) =$$

$$\begin{cases} \sum_{k \le x} p_X(k), & \text{discrete} \\ \int_{-\infty}^x f_X(t) dt, & \text{continuous} \end{cases}$$

• always well defined, because we can always compute the probability for the event $\{X \leq x\}$

- Discrete: PMF. Continuous: PDF
- Can we describe all rvs with a single mathematical concept?

$$F_X(x) = \mathbb{P}(X \le x) =$$

$$\begin{cases} \sum_{k \le x} p_X(k), & \text{discrete} \\ \int_{-\infty}^x f_X(t) dt, & \text{continuous} \end{cases}$$

- always well defined, because we can always compute the probability for the event $\{X \le x\}$
- CCDF (Complementary CDF): $\mathbb{P}(X > x)$

L4(2)

- Discrete: PMF, Continuous: PDF
- Can we describe all rvs with a single mathematical concept?

$$F_X(x) = \mathbb{P}(X \le x) =$$

$$\begin{cases} \sum_{k \le x} p_X(k), & \text{discrete} \\ \int_{-\infty}^x f_X(t) dt, & \text{continuous} \end{cases}$$

- always well defined, because we can always compute the probability for the event $\{X \le x\}$
- CCDF (Complementary CDF): $\mathbb{P}(X > x)$

- Discrete: PMF, Continuous: PDF
- Can we describe all rvs with a single mathematical concept?

$$F_X(x) = \mathbb{P}(X \le x) =$$

$$\begin{cases} \sum_{k \le x} p_X(k), & \text{discrete} \\ \int_{-\infty}^x f_X(t) dt, & \text{continuous} \end{cases}$$

- always well defined, because we can always compute the probability for the event $\{X \le x\}$
- CCDF (Complementary CDF): $\mathbb{P}(X > x)$

L4(2) April 27, 2021 9 / 32

9 / 32

Non-decreasing

- Non-decreasing
- $F_X(x)$ tends to 1, as $x \to \infty$ and $F_X(x)$ tends to 0, as $x \to -\infty$

- Non-decreasing
- $F_X(x)$ tends to 1, as $x \to \infty$ and $F_X(x)$ tends to 0, as $x \to -\infty$
- If X is discrete,
 - $F_X(x)$ is a piecewise constant function of x.

$$\circ \ p_X(k) = F_X(k) - F_X(k-1)$$

- Non-decreasing
- $F_X(x)$ tends to 1, as $x \to \infty$ and $F_X(x)$ tends to 0, as $x \to -\infty$
- If X is discrete,
 - $F_X(x)$ is a piecewise constant function of x.

$$\circ \ p_X(k) = F_X(k) - F_X(k-1)$$

- If X is continuous
 - \circ $F_X(x)$ is a continuous function of x.

•
$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$
 and $f_X(x) = \frac{dF_X}{dx}(x)$

Example: Maximum of Random Variables

- Take a test three times, and your final score will be the maximum of test scores
- $X = \max\{X_1, X_2, X_3\}$, and $X_i \in \{1, 2, \dots, 10\}$ uniformly at random
- Question. $p_X(x)$?
- Approach 1: $\mathbb{P}(\max\{X_1, X_2, X_3\} = x)$?
- Approach 2

$$F_X(x) = \mathbb{P}(\max\{X_1, X_2, X_3\} \le x) = \mathbb{P}(X_1 \le x, X_2 \le x, X_3 \le x)$$
$$= \mathbb{P}(X_1 \le x) \cdot \mathbb{P}(X_2 \le x) \cdot \mathbb{P}(X_3 \le x) = \left(\frac{x}{10}\right)^3$$

Thus,

$$p_X(x) = \left(\frac{x}{10}\right)^3 - \left(\frac{x-1}{10}\right)^3, \quad x = 1, 2, \dots, 10$$

Roadmap

- (1) Continuous Random Variable and PDF (Probability Density Function)
- (2) CDF (Cumulative Distribution Function)
- (3) Exponential RVs
- (4) Gaussian (Normal) RVs
- (5) Continuous RVs: Joint, Conditioning, and Independence
- (6) Bayes' rule for RVs

12 / 32

12 / 32

• A rv X is called exponential with λ , if

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

12 / 32

• A rv X is called exponential with λ , if

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

• CDF
$$F_X(x) = \int_0^x \lambda e^{-\lambda s} ds = 1 - e^{-\lambda x}$$

• A rv X is called exponential with λ , if

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

- CDF $F_X(x) = \int_0^x \lambda e^{-\lambda s} ds = 1 e^{-\lambda x}$
- CCDF $\mathbb{P}(X > x) = e^{-\lambda x}$

Exponential RV with parameter $\lambda > 0$

• A rv X is called exponential with λ , if

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

- CDF $F_X(x) = \int_0^x \lambda e^{-\lambda s} ds = 1 e^{-\lambda x}$
- CCDF $\mathbb{P}(X > x) = e^{-\lambda x}$
- (Check) $\mathbb{E}[X] = 1/\lambda$, $\mathbb{E}[X^2] = 2/\lambda^2$, $var[X] = 1/\lambda^2$

Exponential RV: Mean and Variance

• $\mathbb{E}(X) = 1/\lambda$. Use integration by parts: $\int u dv = uv - \int v du$

$$\int_0^\infty x\lambda e^{-\lambda x}dx = \left(-xe^{-\lambda x}\right)\Big|_0^\infty + \int_0^\infty e^{-\lambda x}dx = 0 - \frac{e^{-\lambda x}}{\lambda}\Big|_0^\infty = \frac{1}{\lambda}$$

• $\mathbb{E}(X^2)$

$$\int_0^\infty x^2 \lambda e^{-\lambda x} dx = \left(-x^2 e^{-\lambda x}\right)\Big|_0^\infty + \int_0^\infty 2x e^{-\lambda x} dx = 0 + \frac{2}{\lambda} \mathbb{E}(X) = \frac{2}{\lambda^2}$$

• $\operatorname{\mathsf{var}}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \frac{1}{\lambda^2}$

•
$$\mathbb{P}(X > x) = e^{-\lambda x}$$

- $\mathbb{P}(X > x) = e^{-\lambda x}$
- Appropriate for modeling a waiting time until an incident of interest takes place
 - $\mathbb{P}(X > x)$: exponentially decays
 - message arriving at a computer, some equipment breaking down, a light bulb burning out, etc

- $\mathbb{P}(X > x) = e^{-\lambda x}$
- · Appropriate for modeling a waiting time until an incident of interest takes place
 - $\mathbb{P}(X > x)$: exponentially decays
 - message arriving at a computer, some equipment breaking down, a light bulb burning out, etc
- (Q) What is the discrete rv which models a waiting time? Geometric

- $\mathbb{P}(X > x) = e^{-\lambda x}$
- · Appropriate for modeling a waiting time until an incident of interest takes place
 - $\mathbb{P}(X > x)$: exponentially decays
 - message arriving at a computer, some equipment breaking down, a light bulb burning out, etc
- (Q) What is the discrete rv which models a waiting time? Geometric
- What is the relationship between exponential rv and geometric rv? We will see this relationship soon, but let's look at an example first.

L4(3)

Example

15 / 32

• A very small meteorite first lands anywhere in Korea

L4(3) April 27, 2021

Example

15 / 32

• A very small meteorite first lands anywhere in Korea

• Time of landing is modeled as an exponential rv with mean 10 days

Example¹

A very small meteorite first lands anywhere in Korea

- Time of landing is modeled as an exponential rv with mean 10 days
- The current time is midnight. What is the probability that a meteorite first lands some time between 6 a.m. and 6 p.m. of the first day?

 VIDEO PAUSE

Example

· A very small meteorite first lands anywhere in Korea

- Time of landing is modeled as an exponential rv with mean 10 days
- The current time is midnight. What is the probability that a meteorite first lands some time between 6 a.m. and 6 p.m. of the first day?

 VIDEO PAUSE
- (Solution)
 - $\circ \ \mathbb{E}(X) = 1/\lambda = 10$. Thus, $\lambda = \frac{1}{10}$.

Example^l

· A very small meteorite first lands anywhere in Korea

- Time of landing is modeled as an exponential rv with mean 10 days
- The current time is midnight. What is the probability that a meteorite first lands some time between 6 a.m. and 6 p.m. of the first day?

 VIDEO PAUSE
- (Solution)
 - $\circ \ \mathbb{E}(X) = 1/\lambda = 10.$ Thus, $\lambda = \frac{1}{10}$.
 - \circ 6 a.m. from midnight = 1/4 day, 6 p.m. from midnight = 3/4 day

$$\mathbb{P}(1/4 \le X \le 3/4) = \mathbb{P}(X \ge 1/4) - \mathbb{P}(X \ge 3/4) = e^{-1/40} - e^{-3/40} = 0.0476$$

L4(3)

16 / 32

• Models a system evolution over time: Continuous time vs. Discrete time.

- Models a system evolution over time: Continuous time vs. Discrete time.
 - Example. Customer arrivals at my shop
 - Modeling 1: Every 30 minute I record the number of customers for each 30-min window
 - Modeling 2: I record the exact time of each customer's arrival

- Models a system evolution over time: Continuous time vs. Discrete time.
 - Example. Customer arrivals at my shop
 - Modeling 1: Every 30 minute I record the number of customers for each 30-min window
 - Modeling 2: I record the exact time of each customer's arrival
 - In modeling 1, every 10 minute? every 1 minute? every 1 sec? every 0.0000001 sec?

- Models a system evolution over time: Continuous time vs. Discrete time.
 - Example. Customer arrivals at my shop
 - Modeling 1: Every 30 minute I record the number of customers for each 30-min window
 - Modeling 2: I record the exact time of each customer's arrival
 - In modeling 1, every 10 minute? every 1 minute? every 1 sec? every 0.0000001 sec?
- In many cases, continuous case is some type of limit of its corresponding discrete case.

- Models a system evolution over time: Continuous time vs. Discrete time.
 - Example. Customer arrivals at my shop
 - Modeling 1: Every 30 minute I record the number of customers for each 30-min window
 - Modeling 2: I record the exact time of each customer's arrival
 - In modeling 1, every 10 minute? every 1 minute? every 1 sec? every 0.0000001 sec?
- In many cases, continuous case is some type of limit of its corresponding discrete case.
- Can we mathematically describe how geometric and exponential rvs meet each other in the limit?

17 / 32

• 'slot' is one unit time, e.g., 1 hour, 30 mins, 1 min, 10 sec, etc.

17 / 32

- 'slot' is one unit time, e.g., 1 hour, 30 mins, 1 min, 10 sec, etc.
- Continuous system = Discrete system with
 - infinitely many slots whose duration is infinitely small.
 - success probability p over one slot decreases to 0 in the limit

L4(3) April 27, 2021

17 / 32

- 'slot' is one unit time, e.g., 1 hour, 30 mins, 1 min, 10 sec, etc.
- Continuous system = Discrete system with
 - infinitely many slots whose duration is infinitely small.
 - success probability p over one slot decreases to 0 in the limit
- Given $X^{exp} \sim \exp(\lambda)$, let us construct a geometric RV X^{geo}_{δ}

L4(3) April 27, 2021

- 'slot' is one unit time, e.g., 1 hour, 30 mins, 1 min, 10 sec, etc.
- Continuous system = Discrete system with
 - infinitely many slots whose duration is infinitely small.
 - success probability p over one slot decreases to 0 in the limit
- Given $X^{exp} \sim \exp(\lambda)$, let us construct a geometric RV X_{δ}^{geo}
 - $\circ~$ Set the length of a slot to be $\delta,$ which is a parameter.

- 'slot' is one unit time, e.g., 1 hour, 30 mins, 1 min, 10 sec, etc.
- Continuous system = Discrete system with
 - infinitely many slots whose duration is infinitely small.
 - success probability p over one slot decreases to 0 in the limit
- Given $X^{exp} \sim \exp(\lambda)$, let us construct a geometric RV X^{geo}_{δ}
 - $\circ\,$ Set the length of a slot to be $\delta,$ which is a parameter.
 - Set the success probability p_δ over a slot to be $p_\delta=1-e^{-\lambda\delta}$ (this looks magical, whose secrete will be uncovered soon)

L4(3)

- 'slot' is one unit time, e.g., 1 hour, 30 mins, 1 min, 10 sec, etc.
- Continuous system = Discrete system with
 - infinitely many slots whose duration is infinitely small.
 - success probability p over one slot decreases to 0 in the limit
- Given $X^{exp} \sim \exp(\lambda)$, let us construct a geometric RV X^{geo}_{δ}
 - Set the length of a slot to be δ , which is a parameter.
 - Set the success probability p_{δ} over a slot to be $p_{\delta}=1-e^{-\lambda\delta}$ (this looks magical, whose secrete will be uncovered soon)

$$\circ \ \mathbb{P}(X^{geo}_{\delta} \leq n) = 1 - (1 - p_{\delta})^n = 1 - e^{-\lambda \delta n}$$

18 / 32

• Note that $\mathbb{P}(X^{exp} \leq x) = 1 - e^{-\lambda x}$. Then, when $x = n\delta, n = 1, 2, ...$

$$\mathbb{P}(X^{exp} \le x) = 1 - e^{-\lambda \delta n} =$$

L4(3)

• Note that $\mathbb{P}(X^{exp} \le x) = 1 - e^{-\lambda x}$. Then, when $x = n\delta$, n = 1, 2, ...

$$\mathbb{P}(X^{exp} \le x) = 1 - e^{-\lambda \delta n} = \mathbb{P}(X^{geo}_{\delta} \le n)$$

L4(3)

18 / 32

• Note that $\mathbb{P}(X^{exp} \le x) = 1 - e^{-\lambda x}$. Then, when $x = n\delta$, n = 1, 2, ...

$$\mathbb{P}(X^{\mathsf{exp}} \leq x) = 1 - e^{-\lambda \delta n} = \mathbb{P}(X^{\mathsf{geo}}_{\delta} \leq n)$$

• If we choose sufficiently small δ , the slot length \downarrow and $p_{\delta} \downarrow$

$$\mathbb{P}(X_{\delta}^{geo} \leq n) \xrightarrow{\delta \to 0} \mathbb{P}(X^{exp} \leq x), x = n\delta$$

Roadmap

19 / 32

- (1) Continuous Random Variable and PDF (Probability Density Function)
- (2) CDF (Cumulative Distribution Function)
- (3) Exponential RVs
- (4) Gaussian (Normal) RVs
- (5) Continuous RVs: Joint, Conditioning, and Independence
- (6) Bayes' rule for RVs

L4(4) April 27, 2021

Normal: PDF, Expectation, Variance

• Standard Normal $\mathcal{N}(0,1)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

- $\mathbb{E}[X] = 0$
- $\bullet \ \operatorname{var}[X] = 1$

Normal: PDF, Expectation, Variance

• Standard Normal $\mathcal{N}(0,1)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

- $\mathbb{E}[X] = 0$
- var[X] = 1

• General Normal $\mathcal{N}(\mu, \sigma^2)$

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

- $\mathbb{E}[X] = \mu$
- $\operatorname{var}[X] = \sigma^2$

21 / 32

• PDF's normalization property: $\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-(x-\mu)^2/2\sigma^2}dx=1$

- PDF's normalization property: $\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-(x-\mu)^2/2\sigma^2}dx=1$
 - A little bit boring :-). See Problem 14 at pp 189.

21 / 32

- PDF's normalization property: $\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-(x-\mu)^2/2\sigma^2}dx=1$
 - A little bit boring :-). See Problem 14 at pp 189.
- Expectation
 - $f_X(x)$ is symmetric in terms of $x = \mu$. Thus, we should have $\mathbb{E}(X) = \mu$.

L4(4) April 27, 2021

- PDF's normalization property: $\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-(x-\mu)^2/2\sigma^2}dx=1$
 - A little bit boring :-). See Problem 14 at pp 189.
- Expectation
 - $f_X(x)$ is symmetric in terms of $x = \mu$. Thus, we should have $\mathbb{E}(X) = \mu$.
- Variance

$$var(X) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} (x - \mu)^2 e^{-(x - \mu)^2/2\sigma^2} dx \stackrel{y = \frac{x - \mu}{\sigma}}{=} \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y^2 e^{-y^2/2} dy$$
$$= \frac{\sigma^2}{\sqrt{2\pi}} (-ye^{-y^2/2}) \Big|_{-\infty}^{\infty} + \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-y^2/2} dy = \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-y^2/2} dy = \sigma^2$$

$$\int u dv = uv - \int v du$$
: $u = y$ and $dv = ye^{-y^2/2} \rightarrow du = dy$ and $v = -e^{-y^2/2}$

L4(4)

Normality: Preserved under Linear Transformation

22 / 32

Normality: Preserved under Linear Transformation

22 / 32

• Linear transformation preserves normality (we will verify this in Lecture 5)

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then for $a \neq 0$ and $b, \ Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

Normality: Preserved under Linear Transformation

• Linear transformation preserves normality (we will verify this in Lecture 5)

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then for $a \neq 0$ and $b, \ Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

Normality: Preserved under Linear Transformation

• Linear transformation preserves normality (we will verify this in Lecture 5)

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then for $a \neq 0$ and $b, \ Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

• Thus, every normal rv can be standardized :

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then $Y = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$

L4(4)

Normality: Preserved under Linear Transformation

• Linear transformation preserves normality (we will verify this in Lecture 5)

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then for $a \neq 0$ and $b, \ Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

• Thus, every normal rv can be standardized: If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Y = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$

• Thus, we can make the table which records the following CDF values:

$$\Phi(y) = \mathbb{P}(Y \leq y) = \mathbb{P}(Y < y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-t^2/2} dt$$

Example

• Annual snowfall X is modeled as $\mathcal{N}(60, 20^2)$. What is the probability that this year's snowfall is at least 80 inches?

L4(4) April 27, 2021 23 / 32

Example

- Annual snowfall X is modeled as $\mathcal{N}(60, 20^2)$. What is the probability that this year's snowfall is at least 80 inches?
- $Y = \frac{X-60}{20}$.

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986

L4(4) April 27, 2021 23 / 32

Example

- Annual snowfall X is modeled as $\mathcal{N}(60, 20^2)$. What is the probability that this year's snowfall is at least 80 inches?
- $Y = \frac{X-60}{20}$.

$$\mathbb{P}(X \ge 80) = \mathbb{P}(Y \ge \frac{80 - 60}{20})$$
$$= \mathbb{P}(Y \ge 1) = 1 - \Phi(1)$$
$$= 1 - 0.8413 = 0.1587$$

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	-7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986

L4(4) April 27, 2021 23 / 32

Normal RVs: Why Important?

- Central limit theorem
 - One of the most remarkable findings in the probability theory
 - \circ Sum of any random variables \approx Normal random variable
- · Modeling aggregate noise with many small, independent noise terms
- Convenient analytical properties, allowing closed forms in many cases
- Highly popular in communication and machine learning areas

Roadmap

25 / 32

- (1) Continuous Random Variable and PDF (Probability Density Function)
- (2) CDF (Cumulative Distribution Function)
- (3) Exponential RVs
- (4) Gaussian (Normal) RVs
- (5) Continuous RVs: Joint, Conditioning, and Independence
- (6) Bayes' rule for RVs

Continuous: Joint PDF and CDF (1)

Two continuous rvs are if a non-negative function $f_{X,Y}(x,y)$

(called joint PDF) satisfies: for every subset B of the two dimensional plane,

$$\mathbb{P}((X,Y)\in B)=\iint_{(x,y)\in B}f_{X,Y}(x,y)dxdy,$$

Continuous: Joint PDF and CDF (1)

26 / 32

Two continuous rvs are jointly continuous if a non-negative function $f_{X,Y}(x,y)$ (called joint PDF) satisfies: for every subset B of the two dimensional plane,

$$\mathbb{P}((X,Y)\in B)=\iint_{(x,y)\in B}f_{X,Y}(x,y)dxdy,$$

Continuous: Joint PDF and CDF (1)

Two continuous rvs are jointly continuous if a non-negative function $f_{X,Y}(x,y)$ (called joint PDF) satisfies: for every subset B of the two dimensional plane,

$$\mathbb{P}((X,Y)\in B)=\iint_{(x,y)\in B}f_{X,Y}(x,y)dxdy,$$

1. The joint PDF is used to calculate probabilities

$$\mathbb{P}\big[(X,Y)\in B\big]=\iint_{(x,y)\in B}f_{X,Y}(x,y)dxdy$$

Our particular interest: $B = \{(x, y) \mid a \le x \le b, c \le y \le d\}$

L4(5)

Continuous: Joint PDF and CDF (2)

27 / 32

2. The marginal PDFs of X and Y are from the joint PDF as:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy, \quad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

Continuous: Joint PDF and CDF (2)

27 / 32

2. The marginal PDFs of X and Y are from the joint PDF as:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy, \quad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

3. The joint CDF is defined by $F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y)$, and determines the joint PDF as:

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{x,y}}{\partial x \partial y}(x,y)$$

Continuous: Joint PDF and CDF (2)

27 / 32

2. The marginal PDFs of X and Y are from the joint PDF as:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy, \quad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

3. The joint CDF is defined by $F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y)$, and determines the joint PDF as:

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{x,y}}{\partial x \partial y}(x,y)$$

4. A function g(X, Y) of X and Y defines a new random variable, and

$$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dxdy$$

* Conditional PDF, given an event A

* Conditional PDF, given $\{X \in C\}$

Notation: A is an event, but B and C is a subset that includes the possible values which can be taken by the rv X. Sorry for the confusion, if any.

- * Conditional PDF, given an event A
- $f_X(x) \cdot \delta \approx \mathbb{P}(x \le X \le x + \delta)$ • $f_{X|A}(x) \cdot \delta \approx \mathbb{P}(x \le X \le x + \delta|A)$

* Conditional PDF, given $\{X \in C\}$

- * Conditional PDF, given an event A
- $f_X(x) \cdot \delta \approx \mathbb{P}(x \le X \le x + \delta)$ • $f_{X|A}(x) \cdot \delta \approx \mathbb{P}(x \le X \le x + \delta|A)$
- $\mathbb{P}(X \in B) = \int_B f_X(x) dx$ $\mathbb{P}(X \in B|A) = \int_B f_{X|A}(x) dx$

* Conditional PDF, given $\{X \in C\}$

* Conditional PDF, given an event A

•
$$f_X(x) \cdot \delta \approx \mathbb{P}(x \le X \le x + \delta)$$

• $f_{X|A}(x) \cdot \delta \approx \mathbb{P}(x \le X \le x + \delta|A)$

- $\mathbb{P}(X \in B) = \int_B f_X(x) dx$ $\mathbb{P}(X \in B|A) = \int_B f_{X|A}(x) dx$
- $\int f_{X|A}(x)dx = 1$

* Conditional PDF, given $\{X \in C\}$

- * Conditional PDF, given an event A
- $f_X(x) \cdot \delta \approx \mathbb{P}(x \le X \le x + \delta)$ $f_{X|A}(x) \cdot \delta \approx \mathbb{P}(x \le X \le x + \delta|A)$
- $\mathbb{P}(X \in B) = \int_B f_X(x) dx$ $\mathbb{P}(X \in B|A) = \int_B f_{X|A}(x) dx$
- $\int f_{X|A}(x)dx = 1$

* Conditional PDF, given $\{X \in C\}$

$$f_{X|\{X\in C\}}(x)\cdot\delta\approx\mathbb{P}(x\leq X\leq x+\delta|X\in C)$$

$$f_{X|\{X\in C\}}(x) = \begin{cases} 0, & \text{if } x \notin C \\ \frac{f_X(x)}{\mathbb{P}(X\in C)}, & \text{if } x \in C \end{cases}$$

- * Conditional PDF, given an event A
- $f_X(x) \cdot \delta \approx \mathbb{P}(x \le X \le x + \delta)$ $f_{X|A}(x) \cdot \delta \approx \mathbb{P}(x \le X \le x + \delta|A)$
- $\mathbb{P}(X \in B) = \int_B f_X(x) dx$ $\mathbb{P}(X \in B|A) = \int_B f_{X|A}(x) dx$
- $\int f_{X|A}(x)dx = 1$

* Conditional PDF, given $\{X \in C\}$

$$f_{X|\{X\in C\}}(x)\cdot\delta\approx\mathbb{P}(x\leq X\leq x+\delta|X\in C)$$

$$f_{X|\{X\in C\}}(x) = \begin{cases} 0, & \text{if } x \notin C \\ \frac{f_X(x)}{\mathbb{P}(X\in C)}, & \text{if } x \in C \end{cases}$$

(Q) In the discrete, we consider the event $\{X = x\}$, not $\{X \in B\}$. Why?

• $\mathbb{E}[X] = \int x f_X(x) dx$ $\mathbb{E}[X|A] = \int x f_{X|A}(x) dx$

- $\mathbb{E}[X] = \int x f_X(x) dx$ $\mathbb{E}[X|A] = \int x f_{X|A}(x) dx$
- $\mathbb{E}[g(X)] = \int g(x)f_X(x)dx$ $\mathbb{E}[g(X)|A] = \int g(x)f_{X|A}(x)dx$

$$A = \left\{ \frac{a+b}{2} \le X \le b \right\}$$

•
$$\mathbb{E}[X] = \int x f_X(x) dx$$

 $\mathbb{E}[X|A] = \int x f_{X|A}(x) dx$

•
$$\mathbb{E}[g(X)] = \int g(x) f_X(x) dx$$

 $\mathbb{E}[g(X)|A] = \int g(x) f_{X|A}(x) dx$

$$\mathbb{E}[X|A] =$$

$$\mathbb{E}[X^2|A] =$$

$$A = \left\{ \frac{a+b}{2} \le X \le b \right\}$$

•
$$\mathbb{E}[X] = \int x f_X(x) dx$$

 $\mathbb{E}[X|A] = \int x f_{X|A}(x) dx$

•
$$\mathbb{E}[g(X)] = \int g(x) f_X(x) dx$$

 $\mathbb{E}[g(X)|A] = \int g(x) f_{X|A}(x) dx$

$$\mathbb{E}[X|A] = \int_{(a+b)/2}^{b} x \frac{2}{b-a} dx = \frac{a}{4} + \frac{3b}{4}$$

$$\mathbb{E}[X^{2}|A] = \int_{(a+b)/2}^{b} x^{2} \frac{2}{b-a} dx =$$

• Remember: Exponential rv is a continuous counterpart of geometric rv.

- Remember: Exponential rv is a continuous counterpart of geometric rv.
- Thus, expected to be memoryless. Remember the definition?

- Remember: Exponential rv is a continuous counterpart of geometric rv.
- Thus, expected to be memoryless. Remember the definition?

Definition. A random variable X is called memoryless if, for any $n, m \ge 0$,

- Remember: Exponential rv is a continuous counterpart of geometric rv.
- Thus, expected to be memoryless. Remember the definition?

Definition. A random variable X is called memoryless if, for any $n, m \ge 0$,

$$\mathbb{P}(X > n + m | X > m) = \mathbb{P}(X > n)$$

• Proof. Note that the exponential rv's CCDF $\mathbb{P}(X>x)=e^{-\lambda x}$.

- Remember: Exponential rv is a continuous counterpart of geometric rv.
- Thus, expected to be memoryless. Remember the definition?

Definition. A random variable X is called memoryless if, for any $n, m \ge 0$,

$$\mathbb{P}(X > n + m | X > m) = \mathbb{P}(X > n)$$

• Proof. Note that the exponential rv's CCDF $\mathbb{P}(X>x)=e^{-\lambda x}$. Then,

$$\mathbb{P}(X>n+m|X>m)=\frac{\mathbb{P}(X>n+m)}{\mathbb{P}(X>m)}=\frac{e^{-\lambda(n+m)}}{e^{-\lambda m}}=e^{-\lambda n}=\mathbb{P}(X>n)$$

L4(5)

31 / 32

Partition of Ω into A_1, A_2, A_3, \dots

* Discrete case

* Continuous case

Partition of Ω into A_1, A_2, A_3, \dots

* Discrete case

Total Probability Theorem

$$p_X(x) = \sum_i \mathbb{P}(A_i)\mathbb{P}(X = x|A_i)$$

= $\sum_i \mathbb{P}(A_i)p_{X|A_i}(x)$

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_i \mathbb{P}(A_i) \mathbb{E}[X|A_i]$$

* Continuous case

Partition of Ω into A_1, A_2, A_3, \dots

* Discrete case

Total Probability Theorem

$$p_X(x) = \sum_i \mathbb{P}(A_i)\mathbb{P}(X = x|A_i)$$

$$= \sum_i \mathbb{P}(A_i)p_{X|A_i}(x)$$

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_i \mathbb{P}(A_i) \mathbb{E}[X|A_i]$$

* Continuous case

Total Probability Theorem

$$f_X(x) = \sum_i \mathbb{P}(A_i) f_{X|A_i}(x)$$

Partition of Ω into A_1, A_2, A_3, \dots

* Discrete case

Total Probability Theorem

$$p_X(x) = \sum_i \mathbb{P}(A_i) \mathbb{P}(X = x | A_i)$$
$$= \sum_i \mathbb{P}(A_i) p_{X|A_i}(x)$$

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_i \mathbb{P}(A_i) \mathbb{E}[X|A_i]$$

* Continuous case

Total Probability Theorem

$$f_X(x) = \sum_i \mathbb{P}(A_i) f_{X|A_i}(x)$$

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_{i} \mathbb{P}(A_i) \mathbb{E}[X|A_i]$$

KAIST EE

32 / 32

- The train's arrival every quarter hour (0, 15min, 30min, 45min).
- Your arrival $\sim \mathcal{U}(7:10, 7:30)$ am.

- The train's arrival every quarter hour (0, 15min, 30min, 45min).
- Your arrival $\sim \mathcal{U}(7:10, 7:30)$ am.
- What is the PDF of waiting time for the first train?

- The train's arrival every quarter hour (0, 15min, 30min, 45min).
- Your arrival $\sim \mathcal{U}(7:10, 7:30)$ am.
- What is the PDF of waiting time for the first train?
- X : your arrival time, Y : waiting time.

- The train's arrival every quarter hour (0, 15min, 30min, 45min).
- Your arrival $\sim \mathcal{U}(7:10, 7:30)$ am.
- What is the PDF of waiting time for the first train?
- X : your arrival time, Y : waiting time.
- The value of X makes a different waiting time. So, consider two events:

$$A = \{7:10 \le X \le 7:15\}$$
$$B = \{7:15 \le X \le 7:30\}$$

Example: Train Arrival

- The train's arrival every quarter hour (0, 15min, 30min, 45min).
- Your arrival $\sim \mathcal{U}(7:10, 7:30)$ am.
- What is the PDF of waiting time for the first train?
- ullet X: your arrival time, Y: waiting time.
- The value of X makes a different waiting time. So, consider two events:

$$A = \{7:10 \le X \le 7:15\}$$
$$B = \{7:15 \le X \le 7:30\}$$

VIDEO PAUSE

$$f_Y(y) = \mathbb{P}(A)f_{Y|A}(y) + \mathbb{P}(B)f_{Y|B}(y)$$
 for $0 \le y \le 5$

for
$$5 < y \le 15$$

Example: Train Arrival

- The train's arrival every quarter hour (0, 15min, 30min, 45min).
- Your arrival $\sim \mathcal{U}(7:10,~7:30)$ am.
- What is the PDF of waiting time for the first train?
- X : your arrival time, Y : waiting time.
- The value of X makes a different waiting time. So, consider two events:

$$A = \{7:10 \le X \le 7:15\}$$
$$B = \{7:15 \le X \le 7:30\}$$

$$f_{Y}(y) = \mathbb{P}(A)f_{Y|A}(y) + \mathbb{P}(B)f_{Y|B}(y)$$

$$f_{Y}(y) = \frac{1}{4}\frac{1}{5} + \frac{3}{4}\frac{1}{15} = \frac{1}{10}, \text{ for } 0 \le y \le 5$$

for
$$5 < y \le 15$$

Example: Train Arrival

- The train's arrival every quarter hour (0, 15min, 30min, 45min).
- Your arrival $\sim \mathcal{U}(7:10,~7:30)$ am.
- What is the PDF of waiting time for the first train?
- X : your arrival time, Y : waiting time.
- The value of X makes a different waiting time. So, consider two events:

$$A = \{7:10 \le X \le 7:15\}$$
$$B = \{7:15 \le X \le 7:30\}$$

$$f_{Y}(y) = \mathbb{P}(A)f_{Y|A}(y) + \mathbb{P}(B)f_{Y|B}(y)$$

$$f_{Y}(y) = \frac{1}{4}\frac{1}{5} + \frac{3}{4}\frac{1}{15} = \frac{1}{10}, \text{ for } 0 \le y \le 5$$

$$f_{Y}(y) = \frac{1}{4}0 + \frac{3}{4}\frac{1}{15} = \frac{1}{20}, \text{ for } 5 < y \le 15$$

33 / 32

•
$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

33 / 32

- $p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$
- Similarly, for $f_Y(y) > 0$,

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

•
$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

• Similarly, for $f_Y(y) > 0$,

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

• Remember: For a fixed event A, $\mathbb{P}(\cdot|A)$ is a legitimate probability law.

•
$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

• Similarly, for $f_Y(y) > 0$,

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

- Remember: For a fixed event A, $\mathbb{P}(\cdot|A)$ is a legitimate probability law.
- Similarly, For a fixed y, $f_{X|Y}(x|y)$ is a legitimate PDF, since

$$\int_{-\infty}^{\infty} f_{X|Y}(x|y) \frac{dx}{dx} = \frac{\int_{-\infty}^{\infty} f_{X,Y}(x,y) dx}{f_{Y}(y)} = 1$$

•
$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

• Similarly, for $f_Y(y) > 0$,

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

- Remember: For a fixed event A, $\mathbb{P}(\cdot|A)$ is a legitimate probability law.
- Similarly, For a fixed y, $f_{X|Y}(x|y)$ is a legitimate PDF, since

$$\int_{-\infty}^{\infty} f_{X|Y}(x|y) \frac{dx}{dx} = \frac{\int_{-\infty}^{\infty} f_{X,Y}(x,y) dx}{f_{Y}(y)} = 1$$

Multiplication rule.
$$f_{X,Y}(x,y) = f_Y(y) \cdot f_{X|Y}(x|y) = f_X(x)f_{Y|X}(y|x)$$

•
$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

• Similarly, for $f_Y(y) > 0$,

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

- Remember: For a fixed event A, P(·|A) is a legitimate probability law.
- Similarly, For a fixed y, $f_{X|Y}(x|y)$ is a legitimate PDF, since

$$\int_{-\infty}^{\infty} f_{X|Y}(x|y) \frac{dx}{dx} = \frac{\int_{-\infty}^{\infty} f_{X,Y}(x,y) dx}{f_{Y}(y)} = 1$$

Multiplication rule.

$$f_{X,Y}(x,y) = f_Y(y) \cdot f_{X|Y}(x|y) = f_X(x) f_{Y|X}(y|x)$$

• Total prob./exp. theorem.

$$f_X(x) = \int_{-\infty}^{\infty} f_Y(y) f_{X|Y}(x|y) dy$$

$$\mathbb{E}[X|Y = y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} f_Y(y) \mathbb{E}[X|Y = y] dy$$

•
$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

• Similarly, for $f_Y(y) > 0$,

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

- Remember: For a fixed event A, P(·|A) is a legitimate probability law.
- Similarly, For a fixed y, $f_{X|Y}(x|y)$ is a legitimate PDF, since

$$\int_{-\infty}^{\infty} f_{X|Y}(x|y) \frac{dx}{dx} = \frac{\int_{-\infty}^{\infty} f_{X,Y}(x,y) dx}{f_{Y}(y)} = 1$$

Multiplication rule.

$$f_{X,Y}(x,y) = f_Y(y) \cdot f_{X|Y}(x|y) = f_X(x)f_{Y|X}(y|x)$$

• Total prob./exp. theorem.

$$f_X(x) = \int_{-\infty}^{\infty} f_Y(y) f_{X|Y}(x|y) dy$$

$$\mathbb{E}[X|Y = y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} f_Y(y) \mathbb{E}[X|Y = y] dy$$

Independence

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$
, for all x and y

(Prob 21 at pp. 191)

- Break a stick of length / twice
 - first break at $Y \sim \mathcal{U}[0, I]$
 - second break at $X \sim \mathcal{U}[0,\,Y]$

(Prob 21 at pp. 191)

- Break a stick of length / twice
 - first break at $Y \sim \mathcal{U}[0, I]$
 - second break at $X \sim \mathcal{U}[0, Y]$
- (a) joint PDF $f_{X,Y}(x,y)$?

L4(5)

$$f_Y(y) = \frac{1}{l}, \quad 0 \le y \le 1$$

$$f_{X|Y}(x|y) = \frac{1}{l}, \quad 0 \le x \le y$$

Using
$$f_{X,Y}(x,y) = f_Y(y)f_{X|Y}(x|y)$$
,

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{l} \cdot \frac{1}{y}, & 0 \le x \le y \le l, \\ 0, & \text{otherwise} \end{cases}$$

 $^{{}^0\}mathcal{U}[a,b]$: continuous uniform random variable over the interval [a,b]

(Prob 21 at pp. 191)

- Break a stick of length / twice
 - first break at $Y \sim \mathcal{U}[0, I]$
 - second break at $X \sim \mathcal{U}[0, Y]$
- (a) joint PDF $f_{X,Y}(x,y)$?

$$f_Y(y) = \frac{1}{l}, \quad 0 \le y \le 1$$

L4(5)

$$f_{X|Y}(x|y) = \frac{1}{y}, \quad 0 \le x \le y$$

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{l} \cdot \frac{1}{y}, & 0 \le x \le y \le l, \\ 0, & \text{otherwise} \end{cases}$$

Using $f_{X,Y}(x,y) = f_{Y}(y)f_{X|Y}(x|y)$,

b) marginal PDF $f_X(x)$?

$$f_X(x) = \int f_{X,Y}(x,y)dy = \int_x^I \frac{1}{Iy}dy$$
$$= \frac{1}{I}\ln(I/x), \quad 0 \le x \le I$$

 $^{{}^{0}\}mathcal{U}[a,b]$: continuous uniform random variable over the interval [a,b]

35 / 32

(c) Evaluate $\mathbb{E}(X)$, using $f_X(x)$

(d) Evaluate $\mathbb{E}(X)$, using $X = Y \cdot (X/Y)$

If $Y \perp \!\!\! \perp X/Y$, it becomes easy, but true?

(e) Evaluate $\mathbb{E}(X)$, using TET

(c) Evaluate $\mathbb{E}(X)$, using $f_X(x)$

$$\mathbb{E}(X) = \int_0^l x f_X(x) dx = \int_0^l \frac{x}{l} \ln(l/x) dx$$
$$= \frac{l}{4}$$

(d) Evaluate $\mathbb{E}(X)$, using $X = Y \cdot (X/Y)$ If $Y \perp \!\!\! \perp X/Y$, it becomes easy, but true? e) Evaluate $\mathbb{E}(X)$, using TET

(c) Evaluate $\mathbb{E}(X)$, using $f_X(x)$

$$\mathbb{E}(X) = \int_0^I x f_X(x) dx = \int_0^I \frac{x}{I} \ln(I/x) dx$$
$$= \frac{I}{4}$$

(d) Evaluate $\mathbb{E}(X)$, using $X = Y \cdot (X/Y)$

If $Y \perp \!\!\! \perp X/Y$, it becomes easy, but true? Yes, because whatever Y is, the fraction X/Y does not depend on it.

$$\mathbb{E}(X) = \mathbb{E}(Y)\mathbb{E}(X/Y) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

e) Evaluate $\mathbb{E}(X)$, using TET

(c) Evaluate $\mathbb{E}(X)$, using $f_X(x)$

$$\mathbb{E}(X) = \int_0^I x f_X(x) dx = \int_0^I \frac{x}{I} \ln(I/x) dx$$
$$= \frac{I}{4}$$

(d) Evaluate $\mathbb{E}(X)$, using $X = Y \cdot (X/Y)$

If $Y \perp \!\!\! \perp X/Y$, it becomes easy, but true? Yes, because whatever Y is, the fraction X/Y does not depend on it.

$$\mathbb{E}(X) = \mathbb{E}(Y)\mathbb{E}(X/Y) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

(e) Evaluate $\mathbb{E}(X)$, using TET

$$0\mathbb{E}[X] = \int_{-\infty}^{\infty} f_Y(y)\mathbb{E}[X|Y=y]dy$$
$$= \int_{0}^{1} \frac{1}{l} \mathbb{E}[X|Y=y]dy = \int_{0}^{1} \frac{1}{l} \frac{y}{2}dy = \frac{l}{4}$$

(c) Evaluate $\mathbb{E}(X)$, using $f_X(x)$

$$\mathbb{E}(X) = \int_0^I x f_X(x) dx = \int_0^I \frac{x}{I} \ln(I/x) dx$$
$$= \frac{I}{4}$$

(d) Evaluate $\mathbb{E}(X)$, using $X = Y \cdot (X/Y)$ If $Y \perp \!\!\! \perp X/Y$, it becomes easy, but true? Yes, because whatever Y is, the fraction X/Y does not depend on it.

$$\mathbb{E}(X) = \mathbb{E}(Y)\mathbb{E}(X/Y) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

(e) Evaluate $\mathbb{E}(X)$, using TET

$$0\mathbb{E}[X] = \int_{-\infty}^{\infty} f_Y(y)\mathbb{E}[X|Y=y]dy$$
$$= \int_{0}^{1} \frac{1}{l} \mathbb{E}[X|Y=y]dy = \int_{0}^{1} \frac{1}{l} \frac{y}{2}dy = \frac{l}{4}$$

 Message. There are many ways to rearch our goal. Of crucial importance is how to find the best way!

Roadmap

36 / 32

- (1) Continuous Random Variable and PDF (Probability Density Function)
- (2) CDF (Cumulative Distribution Function)
- (3) Exponential RVs
- (4) Gaussian (Normal) RVs
- (5) Continuous RVs: Joint, Conditioning, and Independence
- (6) Bayes' rule for RVs

Bayes Rule for Continuous

37 / 32

- X: state/cause/original value $\rightarrow Y$: result/resulting action/noisy measurement
- Given: $\mathbb{P}(X)$ and $\mathbb{P}(Y|X)$ (cause \to result)
- Inference: $\mathbb{P}(X|Y)$?

Bayes Rule for Continuous

- X: state/cause/original value $\rightarrow Y$: result/resulting action/noisy measurement
- Given: $\mathbb{P}(X)$ and $\mathbb{P}(Y|X)$ (cause o result)
- Inference: $\mathbb{P}(X|Y)$?

$$p_{X,Y}(x,y) = p_X(x)p_{Y|X}(y|x)$$

$$= p_Y(y)p_{X|Y}(x|y)$$

$$p_{X|Y}(x|y) = \frac{p_X(x)p_{Y|X}(y|x)}{p_Y(y)}$$

$$p_Y(y) = \sum_{x'} p_X(x')p_{Y|X}(y|x')$$

$$f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y|x)$$

$$= f_Y(y)f_{X|Y}(x|y)$$

$$f_{X|Y}(x|y) = \frac{f_X(x)f_{Y|X}(y|x)}{f_Y(y)}$$

$$f_Y(y) = \int f_X(x')f_{Y|X}(y|x')dx'$$

• A light bulb $Y \sim \exp(\lambda)$. However, there are some quality control problems. So, the parameter λ of Y is actually a random variable, denoted by Λ , which is $\Lambda \sim \mathcal{U}[1,3/2]$. We test a light bulb and record its lifetime.

L4(6) April 27, 2021 38 / 32

- A light bulb $Y \sim \exp(\lambda)$. However, there are some quality control problems. So, the parameter λ of Y is actually a random variable, denoted by Λ , which is $\Lambda \sim \mathcal{U}[1,3/2]$. We test a light bulb and record its lifetime.
- Question. What can we say about the underlying paramter λ ? In other words, what is $f_{\Lambda|Y}(\lambda|y)$?

April 27, 2021 38 / 32

- A light bulb $Y \sim \exp(\lambda)$. However, there are some quality control problems. So, the parameter λ of Y is actually a random variable, denoted by Λ , which is $\Lambda \sim \mathcal{U}[1,3/2]$. We test a light bulb and record its lifetime.
- Question. What can we say about the underlying paramter λ ? In other words, what is $f_{\Lambda|Y}(\lambda|y)$?
- $f_{\Lambda}(\lambda) = 2$ for $1 \le \lambda \le 3/2$ and $f_{Y|\Lambda}(y|\lambda) = pdf$ of $exp(\lambda)$. Then, the inference about the parameter given the lifetime of a light bulb is:

L4(6) April 27, 2021 38 / 32

- A light bulb $Y \sim \exp(\lambda)$. However, there are some quality control problems. So, the parameter λ of Y is actually a random variable, denoted by Λ , which is $\Lambda \sim \mathcal{U}[1,3/2]$. We test a light bulb and record its lifetime.
- Question. What can we say about the underlying paramter λ ? In other words, what is $f_{\Lambda|Y}(\lambda|y)$?
- $f_{\Lambda}(\lambda) = 2$ for $1 \le \lambda \le 3/2$ and $f_{Y|\Lambda}(y|\lambda) = pdf$ of $exp(\lambda)$. Then, the inference about the parameter given the lifetime of a light bulb is:

$$f_{\Lambda|Y}(\lambda|y) = \frac{f_{\Lambda}(\lambda)f_{Y|\Lambda}(y|\lambda)}{\int_{-\infty}^{\infty} f_{\Lambda}(t)f_{Y|\Lambda}(y|t)dt}$$

L4(6) April 27, 2021 38 / 32

Using Bayes Rule for Parameter Learning

39 / 32

- X: parameter → Y: result of my model
- Given: $\mathbb{P}(X)$ and $\mathbb{P}(Y|X)$ (parameter \to model)
- Inference: $\mathbb{P}(X|Y)$? Probabilistic feature of the parameter given the result of the model?

Example.

Using Bayes Rule for Parameter Learning

- X: parameter → Y: result of my model
- Given: $\mathbb{P}(X)$ and $\mathbb{P}(Y|X)$ (parameter \to model)
- Inference: $\mathbb{P}(X|Y)$? Probabilistic feature of the parameter given the result of the model?

Example.

1. Light bulb's lifetime $Y \sim \exp(\lambda)$. Given the lifetime y, the modified belief about λ ?

Using Bayes Rule for Parameter Learning

- X: parameter → Y: result of my model
- Given: $\mathbb{P}(X)$ and $\mathbb{P}(Y|X)$ (parameter \to model)
- Inference: $\mathbb{P}(X|Y)$? Probabilistic feature of the parameter given the result of the model?

Example.

- 1. Light bulb's lifetime $Y \sim \exp(\lambda)$. Given the lifetime y, the modified belief about λ ?
- 2. Romeo and Juliet start dating, but Romeo will be late by a random variable $Y \sim \mathcal{U}[0, \theta]$. Given the time of being late y, the modified belief about θ ?

K: discrete, Y: continuous

K: discrete, Y: continuous

• Inference of K given Y

• Inference of Y given K

K: discrete, Y: continuous

• Inference of K given Y

$$p_{K|Y}(k|y) = \frac{p_K(k)f_{Y|K}(y|k)}{f_Y(y)}$$
$$f_Y(y) = \sum_{k'} p_K(k')f_{Y|K}(y|k')$$

Inference of Y given K

K: discrete, Y: continuous

• Inference of K given Y

$$p_{K|Y}(k|y) = \frac{p_K(k)f_{Y|K}(y|k)}{f_Y(y)}$$
$$f_Y(y) = \sum_{k'} p_K(k')f_{Y|K}(y|k')$$

• $f_{Y|K}(y|k) = f_{Y|A}(y)$, where $A = \{K = k\}$

Inference of Y given K

K: discrete. Y: continuous

• Inference of K given Y

$$p_{K|Y}(k|y) = \frac{p_K(k)f_{Y|K}(y|k)}{f_Y(y)}$$
$$f_Y(y) = \sum_{k'} p_K(k')f_{Y|K}(y|k')$$

• $f_{Y|K}(y|k) = f_{Y|A}(y)$, where $A = \{K = k\}$

• Inference of Y given K

$$f_{Y|K}(y|k) = \frac{f_Y(y)p_{K|Y}(k|y)}{p_K(k)}$$
$$p_K(k) = \int f_Y(y')p_{K|Y}(k|y')dy'$$

K: discrete. Y: continuous

• Inference of K given Y

$$p_{K|Y}(k|y) = \frac{p_K(k)f_{Y|K}(y|k)}{f_Y(y)}$$
$$f_Y(y) = \sum_{k'} p_K(k')f_{Y|K}(y|k')$$

• $f_{Y|K}(y|k) = f_{Y|A}(y)$, where $A = \{K = k\}$

• Inference of Y given K

$$f_{Y|K}(y|k) = \frac{f_Y(y)p_{K|Y}(k|y)}{p_K(k)}$$
$$p_K(k) = \int f_Y(y')p_{K|Y}(k|y')dy'$$

• Wait! $p_{K|Y}(k|y)$? Well-defined?

$$p_{K|Y}(k|y) = \frac{\mathbb{P}(K=k, Y=y)}{\mathbb{P}(Y=y)} = \frac{0}{0}$$

$p_{K|Y}(k|y)$?

• For small δ (in other words, taking the limit as $\delta \to 0$).

Let
$$A = \{K = k\}.$$

$$\frac{p_{K|Y}(k|y)}{\mathbb{P}(A|y \leq Y \leq y + \delta)} = \frac{\mathbb{P}(A)\mathbb{P}(y \leq Y \leq y + \delta|A)}{\mathbb{P}(y \leq Y \leq y + \delta)} \\
\approx \frac{\mathbb{P}(A)f_{Y|A}(y)\delta}{f_{Y}(y)\delta} \\
= \frac{\mathbb{P}(A)f_{Y|A}(y)}{f_{Y}(y)}$$

L4(6)

Example: Signal Detection (1)

42 / 32

Inference of discrete K given continuous Y:

$$p_{K|Y}(k|y) = \frac{p_K(k)f_{Y|K}(y|k)}{f_Y(y)}, \quad f_Y(y) = \sum_{k'} p_K(k')f_{Y|K}(y|k')$$

42 / 32

Inference of discrete K given continuous Y:

$$p_{K|Y}(k|y) = \frac{p_K(k)f_{Y|K}(y|k)}{f_Y(y)}, \quad f_Y(y) = \sum_{k'} p_K(k')f_{Y|K}(y|k')$$

• K: -1, +1, original signal, equally likely. $p_K(1) = 1/2, p_K(-1) = 1/2$.

Inference of discrete K given continuous Y:

$$p_{K|Y}(k|y) = \frac{p_K(k)f_{Y|K}(y|k)}{f_Y(y)}, \quad f_Y(y) = \sum_{k'} p_K(k')f_{Y|K}(y|k')$$

- K: -1, +1, original signal, equally likely. $p_K(1) = 1/2$, $p_K(-1) = 1/2$.
- Y: measured signal with Gaussian noise, $Y=K+W,\ W\sim \mathcal{N}(0,1)$

April 27 2021

42 / 32

Inference of discrete K given continuous Y:

$$p_{K|Y}(k|y) = \frac{p_K(k)f_{Y|K}(y|k)}{f_Y(y)}, \quad f_Y(y) = \sum_{k'} p_K(k')f_{Y|K}(y|k')$$

- K: -1, +1, original signal, equally likely. $p_K(1) = 1/2$, $p_K(-1) = 1/2$.
- Y: measured signal with Gaussian noise, Y = K + W, $W \sim \mathcal{N}(0,1)$
- Your received signal = 0.7. What's your guess about the original signal?

Inference of discrete K given continuous Y:

$$p_{K|Y}(k|y) = \frac{p_K(k)f_{Y|K}(y|k)}{f_Y(y)}, \quad f_Y(y) = \sum_{k'} p_K(k')f_{Y|K}(y|k')$$

- K: -1, +1, original signal, equally likely. $p_K(1) = 1/2$, $p_K(-1) = 1/2$.
- Y: measured signal with Gaussian noise, $Y = K + W, \ W \sim \mathcal{N}(0,1)$
- Your received signal = 0.7. What's your guess about the original signal?
- Your received signal = -0.2. What's your guess about the original signal?

Inference of discrete K given continuous Y:

$$p_{K|Y}(k|y) = \frac{p_K(k)f_{Y|K}(y|k)}{f_Y(y)}, \quad f_Y(y) = \sum_{k'} p_K(k')f_{Y|K}(y|k')$$

- K: -1, +1, original signal, equally likely. $p_K(1) = 1/2, p_K(-1) = 1/2$.
- Y: measured signal with Gaussian noise, $Y = K + W, \ W \sim \mathcal{N}(0,1)$
- Your received signal = 0.7. What's your guess about the original signal? +1
- Your received signal = -0.2. What's your guess about the original signal? -1
- Your intuition: If positive received signal, +1. If negative received signal, -1. How can we mathematically verify this?

• $Y|\{K=1\} \sim \mathcal{N}(1,1)$ and $Y|\{K=-1\} \sim \mathcal{N}(-1,1)$. (Remind: linear transformation preserves normality.)

• $Y|\{K=1\} \sim \mathcal{N}(1,1)$ and $Y|\{K=-1\} \sim \mathcal{N}(-1,1)$. (Remind: linear transformation preserves normality.)

$$f_{Y|K}(y|k) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(y-k)^2}, \quad k = 1, -1$$

43 / 32

• $Y|\{K=1\} \sim \mathcal{N}(1,1)$ and $Y|\{K=-1\} \sim \mathcal{N}(-1,1)$. (Remind: linear transformation preserves normality.)

$$f_{Y|K}(y|k) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-k)^2}, \quad k = 1, -1$$

$$f_{Y}(y) = \frac{1}{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y+1)^2} + \frac{1}{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-1)^2}$$
 (from TPT)

• $Y|\{K=1\} \sim \mathcal{N}(1,1)$ and $Y|\{K=-1\} \sim \mathcal{N}(-1,1)$. (Remind: linear transformation preserves normality.)

$$f_{Y|K}(y|k) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-k)^2}, \quad k = 1, -1$$

$$f_{Y}(y) = \frac{1}{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y+1)^2} + \frac{1}{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-1)^2}$$
 (from TPT)

• Probability that K = 1, given Y = y? After some algebra,

$$p_{K|Y}(1|y) = \frac{1}{1 + e^{-2y}}$$

• $Y|\{K=1\} \sim \mathcal{N}(1,1)$ and $Y|\{K=-1\} \sim \mathcal{N}(-1,1)$. (Remind: linear transformation preserves normality.)

$$f_{Y|K}(y|k) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-k)^2}, \quad k = 1, -1$$

$$f_{Y}(y) = \frac{1}{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y+1)^2} + \frac{1}{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-1)^2}$$
 (from TPT)

• Probability that K = 1, given Y = y? After some algebra,

$$p_{K|Y}(1|y) = rac{1}{1 + e^{-2y}}$$

• $Y|\{K=1\} \sim \mathcal{N}(1,1)$ and $Y|\{K=-1\} \sim \mathcal{N}(-1,1)$. (Remind: linear transformation preserves normality.)

$$\begin{split} f_{Y|K}(y|k) &= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-k)^2}, \quad k = 1, -1 \\ f_{Y}(y) &= \frac{1}{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y+1)^2} + \frac{1}{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-1)^2} \end{split} \tag{from TPT}$$

• Probability that K = 1, given Y = y? After some algebra,

$$ho_{K|Y}(1|y) = rac{1}{1 + e^{-2y}}$$

• If y > 0, the inference probability for K = 1 exceeds $\frac{1}{2}$. So, original signal = 1.

• $Y|\{K=1\} \sim \mathcal{N}(1,1)$ and $Y|\{K=-1\} \sim \mathcal{N}(-1,1)$. (Remind: linear transformation preserves normality.)

$$\begin{split} f_{Y|K}(y|k) &= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-k)^2}, \quad k = 1, -1 \\ f_{Y}(y) &= \frac{1}{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y+1)^2} + \frac{1}{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-1)^2} \end{split} \tag{from TPT}$$

• Probability that K = 1, given Y = y? After some algebra,

$$ho_{K|Y}(1|y) = rac{1}{1 + e^{-2y}}$$

- If y > 0, the inference probability for K = 1 exceeds $\frac{1}{2}$. So, original signal = 1.
- Similarly, compute $p_{K|Y}(-1|y)$ and then do the inference

Questions?

Review Questions

- 1) What is PDF and CDF?
- 2) Why do we need CDF?
- 3) What are joint/marginal/conditional PDFs?
- 4) Explain memorylessness of exponential random variables.
- Explain the version of Bayes' rule for continuous and mixed random variables.