CLAIMS

1. A compound of formula I:

$$\begin{array}{c|c} R^1 \\ NH \\ Z^1 \\ Z^2 \\ (T)_m R^x Z^6 \\ Z^5 Z^4 \end{array}$$

I

or a pharmaceutically acceptable salt thereof, wherein:

 R^1 is Q-Ar¹,

wherein Q is a C₁₋₂ alkylidene chain wherein one methylene unit of Q is optionally replaced by O, NR, NRCO, NRCONR, NRCO₂, CO, CO₂, CONR, OC(O)NR, SO₂, SO₂NR, NRSO₂, NRSO₂NR, C(O)C(O), or C(O)CH₂C(O);

Ar¹ is a 5-7 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; wherein Ar¹ is optionally substituted with q independent occurrences of Z-R^Z; wherein q is 0-5, Z is a bond or is a C₁-C₆ alkylidene chain wherein up to two non-adjacent methylene units of Z are optionally and independently replaced by CO, CO₂, COCO, CONR, OCONR, NRNR, NRNRCO, NRCO, NRCO₂, NRCONR, SO, SO₂, NRSO₂, SO₂NR, NRSO₂NR, O, S, or NR; and each occurrence of R^Z is independently selected from R', halogen, NO₂, CN, OR', SR', N(R')₂, NR'COR', NR'CON(R')₂, NR'CO₂R', COR', CO₂R', OCOR', CON(R')₂, OCON(R')₂, SOR', SO₂R', SO₂N(R')₂, NR'SO₂R', NR'SO₂N(R')₂, COCOR', or COCH₂COR';

each occurrence of R is independently hydrogen or an optionally substituted C_{1-6} aliphatic group; and each occurrence of R is independently hydrogen or an optionally substituted C_{1-6}

aliphatic group, a 3-8-membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; or R and R', two occurrences of R, or two occurrences of R', are taken together with the atom(s) to which they are bound to form an optionally substituted 3-12 membered saturated, partially unsaturated, or fully unsaturated monocyclic or bicyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur;

Z¹ is N or CH:

 Z^7 is N or $C(U)_n R^Y$;

T and U are each independently a bond or a saturated or unsaturated C₁₋₆ alkylidene chain, wherein up to two methylene units of the chain are optionally and independently replaced by CO, CO₂, COCO, CONR, OCONR, NRNR, NRNRCO, NRCO, NRCO₂, NRCONR, SO, SO₂, NRSO₂, SO₂NR, NRSO₂NR, O, S, or NR;

m and n are each independently 0 or 1;

 R^{X} and R^{Y} are each independently selected from R or Ar^{I} ;

 Z^2 is N or CR^2 ; Z^3 is N or CR^3 ; Z^4 is N or CR^4 ; Z^5 is N or CR^5 ; and Z^6 is N or CR^6 , wherein each occurrence of R^2 , R^3 , R^4 , R^5 or R^6 is independently R^U or $(V)_p R^V$, provided that a) no more than three of Z^2 , Z^3 , Z^4 , Z^5 or Z^6 is N, and b) at least one of Z^3 , Z^4 or Z^5 is CR^3 , CR^4 , or CR^5 , respectively, and at least one of R^3 , R^4 , or R^5 is R^U ,

each occurrence of R^U is NRCOR⁷, CONR(R⁷), SO₂NR(R⁷), NRSO₂R⁷, NRCONR(R⁷), NRSO₂NR(R⁷), or CONRNR(R⁷), wherein R⁷ is (CH₂)_t-Y-R⁸, and t is 0, 1, or 2, Y is a bond or is O, S, NR⁹, -OCH₂-, -SCH₂, -NR⁹CH₂, O(CH₂)₂-, -S(CH₂)₂, or -NR⁹(CH₂)₂, and R⁸ is Ar², or R⁸ and R⁹, taken together with the nitrogen atom, form an optionally substituted 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur;

each occurrence of V is a bond or a saturated or unsaturated C_{1-6} alkylidene chain, wherein up to two methylene units of the chain are optionally and independently replaced by CO, CO₂, COCO, CONR, OCONR, NRNR, NRNRCO, NRCO, NRCO₂, NRCONR, SO, SO₂, NRSO₂, SO₂NR, NRSO₂NR, O, S, or NR;

each occurrence of p is 0 or 1;

each occurrence of RV is R or Ar2; and

Ar² is a 5-7 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; wherein Ar² is optionally substituted with r independent occurrences of W-R^W; wherein r is 0-3, W is a bond or is a C₁-C₆ alkylidene chain wherein up to two non-adjacent methylene units of W are optionally replaced by CO, CO₂, COCO, CONR, OCONR, NRNR, NRNRCO, NRCO, NRCO₂, NRCONR, SO, SO₂, NRSO₂, SO₂NR, NRSO₂NR, O, S, or NR; and each occurrence of R^W is independently selected from R', halogen, NO₂, CN, OR', SR', N(R')₂, NR'COR', NR'CON(R')₂, NR'CO₂R', COR', CO₂R', OCOR', CON(R')₂, OCON(R')₂, SOR', SO₂R', SO₂N(R')₂, NR'SO₂R', NR'SO₂R', NR'SO₂N(R')₂, COCOR', or COCH₂COR';

provided that:

- a) when Z^1 is N, Z^7 is CH; and ring B is phenyl and at least one of R^3 or R^4 is NHCOR⁷, then R^1 is not phenyl only substituted with two or three occurrences of OR'; and
- b) when Z^1 is N, Z^7 is CH; and ring B is phenyl and at least one of R^3 of R^4 is NHCOR⁷, SO₂R⁷, CONRR⁷, then R¹ is not phenyl only substituted with one occurrence of -CON(R')₂ in the para position.
- 2. The compound according to claim 1, wherein Z^1 is N and the compound has the structure II:

$$\begin{array}{c|c}
R^{1} & NH \\
N & N \\
R^{Y}_{n}(U) & & Z^{2} \\
(T)_{m}R^{x}Z^{6} & B \\
II
\end{array}$$

3. The compound of claim 1, wherein Z^1 is CH and amino pyridines of general formula III are provided:

$$R^{1} \longrightarrow NH$$

$$N \longrightarrow A$$

$$(T)_{m}R^{x}Z^{0} \longrightarrow Z^{2}$$

$$Z^{2} \longrightarrow Z^{3}$$

$$Z^{3} \longrightarrow Z^{4}$$

$$III$$

- 4. The compound of claim 1, wherein R¹ is an optionally substituted phenyl, cyclohexyl, cyclopentyl, pyridyl, morpholino, piperazinyl, or piperidinyl group
- 5. The compound of claim 1, wherein R¹ is an optionally substituted from phenyl, cyclohexyl, or pyridyl group.
- 6. The compound of claim 1, wherein \mathbb{R}^1 is optionally substituted phenyl.
- 7. The compound of claim 1, wherein q is 0, 1, 2, or 3 and each independent occurrence of ZR^Z is C₁₋₄alkyl, N(R')₂, OR', SR', CON(R')₂, NR'COR', NR'SO₂R', or SO₂N(R')₂.
- 8. The compound of claim 1, wherein q is 1 and \mathbb{ZR}^Z is -NH₂, -OH, C₁₋₄alkoxy, or -S(O)₂NH₂.
- 9. The compound of claim 1, wherein q is 1, and ZR^Z is in the meta position and ZR^Z is NH₂, -OH, C_{1.4}alkoxy, or -S(O)₂NH₂.
- 10. The compound of claim 1, wherein $(T)_m R^X$ and $(U)_n R^Y$ are hydrogen, halogen, NO₂, CN, OR, SR or N(R)₂, or C₁₋₄aliphatic optionally substituted with oxo, OR, SR, N(R)₂, halogen, NO₂ or CN.
- 11. The compound of claim 1, wherein $(T)_m R^X$ and $(U)_n R^Y$ are each independently hydrogen, Me, OH, OMe or $N(R)_2$.

- 12. The compound of claim 1, wherein $(T)_m R^X$ and $(U)_n R^Y$ are each hydrogen.
- 13. The compound of claim 1, wherein ring B is one of rings i-xiv:

- 14. The compound of claim 1, wherein t is 0, Y is a bond, and R⁸ is an optionally substituted aryl or heteroaryl moiety.
- 15. The compound of claim 1, wherein t is 0, Y is a bond, and R⁸ is an optionally substituted heteroaryl moiety.
- 16. The compound of claim 1, wherein R^7 is $-CH_2-Y-R^8$, and Y is NR^9 , O or S, and R^8 is an optionally substituted aryl or heteroaryl moiety.
- 17. The compound of claim 1, wherein R^7 is $-CH_2-Y-R^8$, and Y is NR^9 , O or S, and R^8 is an optionally substituted aryl moiety.
- 18. The compound of claim 1, wherein t is 0 or 1, Y is NR⁹, and R⁸ and R⁹, taken together with the nitrogen atom, form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur.
- 19. The compound of claim 1, wherein R^8 is a 5- or 6-membered aryl or heteroaryl group having one of the formulae:

20. The compound of claim 1, wherein R^8 is a 5- or 6-membered heteroaryl group having one of the formulae:

21. The compound of claim 1, wherein R⁸ and R⁹, taken together, form a group having one of the formulae:

- 22. The compound of claim 1, wherein r is 0 or 1.
- 23. The compound of claim 19, 20, or 21, wherein r is 1, 2, or 3, and each occurrence of halogen, C_{1-4} alkyl, $-(R)_2$, -OR, -SR, $-SO_2N(R)_2$, $-N(R)SO_2R$, -N(R)COR, $-N(R)_2$, $-CH_2OR$, $-CH_2N(R)_2$, or $-CH_2SR$.
- 24. The compound of claim 19, 20, or 21, wherein t is 0, Y is a bond, and R^8 is an optionally substituted heteroaryl moiety selected from one of groups **b** through **r**.

- 25. The compound of claim 24, wherein R⁸ is an optionally substituted heteroaryl group **b-i**, **k-i**, or **l-i**.
- 26. The compound of claim 1, wherein t is 1, Y is O, S or NR⁹, and R⁸ is optionally substituted phenyl.
- 27. The compound of claim 1, wherein t is 0 or 1, Y is NR^9 , and R^8 and R^9 , taken together form an optionally substituted group selected from s, u or v.
- 28. The compound of claim 1, wherein Z^3 or Z^5 is CR^3 or CR^5 , respectively, and R^3 or R^5 is $NRC(O)R^7$, wherein R^7 is $(CH_2)_t$ -Y- R^8 , wherein t is 0, 1 or 2, wherein Y is a bond or is O, S, NR^9 , -OCH₂-, -SCH₂, -NR⁹CH₂, O(CH₂)₂-, -S(CH₂)₂, or -NR⁹(CH₂)₂, and wherein R^8 is Ar^2 , or R^8 and R^9 , taken together with the nitrogen atom, form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur, and compounds have the formula **II-A** or **III-A**:

29. The compound of claim 28, wherein for compounds of formula II-A ring B is selected from i, ii, iii, iv, v, vii, viii, ix, x, xi, xii, or xiii and compounds have one of formulas II-A-i, II-A-ii, II-A-iii, II-A-iv, II-A-vii, II-A-viii, II-A-viii, II-A-xi, II-A-xi, II-A-xiii;

$$R^1$$
 NH
 R^2
 R^3
 R^3
 R^4
 R^5

II-A-i

$$R^1$$
 NH R^2 R R^3 R R^4 R^4 R^4

II-A-iii

$$\begin{array}{c|ccccc}
R^1 & & & & & & \\
N & N & & R^2 & R & & & \\
R^Y_{n}(U) & & & & & & & & \\
R^X(T)_m & & & & & & & & \\
R^5 & & & & & & & \\
\end{array}$$

II-A-iv

$$\begin{array}{c|c} R^1 & & & \\ NH & & & \\ N & N & R^2 & \\ R^Y_n(U) & & & & \\ R^X(T)_m & & & \\ R^6 & & & N \end{array} \stackrel{R^2}{\longrightarrow} \begin{array}{c} R & \\ N & O \end{array}$$

II-A-v

$$\begin{array}{c|c}
R^{1} & NH \\
N & N \\
R^{Y}_{n}(U) & R^{X}(T)_{m} & R^{6} & R^{4} & R^{4}
\end{array}$$

II-A-vii

$$R^1$$
 NH
 R^2
 R^3
 R^4
 R^4
 R^4
 R^4
 R^4

II-A-viii

II-A-ix

$$R^1$$
 NH
 R^2
 R^3
 R^4
 R^3
 R^4
 R^6
 R^5

II-A-x

II-A-xi

$$\begin{array}{c|c}
R^{1} & NH \\
N & N & R \\
R^{Y}_{n}(U) & N & R \\
R^{X}(T)_{m} & N & R \\
N & N & R^{4}
\end{array}$$

$$\begin{array}{c|c}
R^1 & NH \\
N & N \\
R^Y_{n}(U) & R^X(T)_{m} & R^6 & N & O
\end{array}$$

II-A-xii

II-A-xiii

30. The compound of claim 28, wherein for compounds of formula III-A ring B is selected from one of i, ii, iii, iv, v, vii, viii, ix, x, xi, xii, or xiii and compounds have one of formulas III-A-i, III-A-ii, III-A-iii, III-A-iv, III-A-viii, III-A-viii, III-A-xi, III-A-xi, III-A-xiii, or III-A-xiii:

$$R^1$$
 NH
 R^2 R
 R^3 R
 R^4 R^5

$$R^1$$
 NH
 $R^Y_n(U)$ $R^X(T)_m$ R^M R^M

III-A-i

III-A-ii

$$R^{Y}_{n}(U)$$
 $R^{X}(T)_{m}$
 R^{6}
 R^{4}
 R^{4}
 R^{4}

III-A-iii

$$\begin{array}{c|c}
R^1 & NH \\
N & A & R^2 & R \\
R^Y_n(U) & N & N & N & N
\end{array}$$

$$\begin{array}{c|c}
R^2 & R & N & R^7 \\
R & N & N & N & N
\end{array}$$

$$\begin{array}{c|c}
R^1 \\
NH \\
R^{Y}_{n}(U)
\end{array}$$

$$\begin{array}{c|c}
R^2 \\
R^{N} \\
N \\
\end{array}$$

$$\begin{array}{c|c}
R^7 \\
R^7
\end{array}$$

III-A-v

III-A-vii

$$R^1$$
 NH
 $R^Y_n(U)$
 $R^X(T)_m$
 R^6
 R^5
 R^4
 R^7

$$\begin{array}{c|c} R^1 \\ NH \\ R^Y_n(U) \\ R^X(T)_m \\ R^6 \\ \end{array} \begin{array}{c} R^2 \\ R \\ N \\ \end{array} \begin{array}{c} R \\ R^7 \\ \end{array}$$

III-A-viii

III-A-ix

$$\begin{array}{c|c} R^1 & NH \\ N & A & R^2 \\ R^Y_n(U) & B & N \\ R^X(T)_m & B^6 & B^5 \end{array}$$

III-A-x

III-A-xi

III-A-xii

III-A-xiii

31. The compound of claim 1, wherein Z^4 is CR^4 , and R^4 is $NRC(O)R^7$, wherein R^7 is $(CH_2)_{t-}$ Y- R^8 , wherein t is 0, 1 or 2, wherein Y is a bond or is O, S, NR^9 , -OCH₂-, -SCH₂, -NR⁹CH₂, O(CH₂)₂-, -S(CH₂)₂, or -NR⁹(CH₂)₂, and wherein R^8 is Ar^2 , or R^8 and R^9 , taken together with the nitrogen atom, form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur, and compounds have one of formulas **II-B** or **III-B**:

$$R^1$$
 NH
 R^2
 R^3
 R^3
 R^3
 R^4
 R^5
 R^5
 R^7

$$R^1$$
 NH
 $R^Y_n(U)$
 $R^X(T)_m$
 N
 R^3
 R^3
 R^5
 R

II-B-i

II-B-iii

II-B-iv

$$R^1$$
 NH
 R^2
 R^1
 R^1
 R^1
 R^2
 R^3
 R^4
 R^5
 R^6
 R^6
 R^7

$$R^1$$
 NH
 $R^Y_n(U)$
 $R^X(T)_m$
 R^6
 R^5
 R^7

II-B-vi

II-B-viii

$$\begin{array}{c|c}
R^{1} & NH \\
N & N & R^{2} \\
R^{Y}_{n}(U) & B & R^{3} \\
R^{X}(T)_{m} & R^{6} & N & R^{7}
\end{array}$$

II-B-ix

II-B-xii

II-B-xiv

33. The compound of claim 31, wherein for compounds of formula III-B, ring B is selected from i, ii, iii, iv, vi, viii, ix, xii, or xiv and compounds have one of formulas III-B-i, III-B-ii, III-B-iii, III-B-ii, III-B-ii, III-B-ii, III-B-ii, III-B-ii, III-B-ii, III-B-ii, III-B-iii, III-

$$R^1$$
 NH
 R^2
 R^3
 R^3
 R^3
 R^4
 R^5
 R^5

III-B-i

III-B-ii

$$R^1$$
 NH
 R^2
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3

$$R^{1}$$
 NH
 $R^{Y}_{n}(U)$
 $R^{X}(T)_{m}$
 R^{6}
 R^{3}
 R^{7}
 R^{7}

III-B-iii

III-B-iv

$$R^{1}$$
 NH
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{6}
 R^{6}
 R^{7}
 R^{7}

$$R^1$$
 NH
 R^2
 R^3
 R^3
 R^3
 R^4
 R^6
 R^2
 R^3
 R^4
 R^5
 R^7

III-B-vi

III-B-viii

$$R^{1}$$
 NH
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{7}

III-B-ix

III-B-xiv

34. The compound of claim 1, wherein Z^3 or Z^5 is CR^3 or CR^5 , respectively, and R^3 or R^5 is $C(O)N(R)(R^7)$, wherein R^7 is $(CH_2)_{t^-}Y^-R^8$, wherein t is 0, 1 or 2, wherein Y is a bond or is O, S, NR^9 , $-OCH_2$ -, $-SCH_2$, $-NR^9CH_2$, $O(CH_2)_2$ -, $-S(CH_2)_2$, or $-NR^9(CH_2)_2$, and wherein R^8 is Ar^2 , or R^8 and R^9 , taken together with the nitrogen atom, form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur and compounds have one of formulas **II-C** or **III-C**:

$$R^1$$
 NH
 $N A$
 $N O$
 R^Y
 $R^X(T)_m$
 Z^0
 Z^0

$$R^1$$
 NH
 R^2
 R^3
 R^3

II-C

III-C

35. The compound of claim 34, wherein for compounds of formula II-C, ring B is selected from i, ii, iii, iv, v, vii, viii, ix, x, xi, xii, or xiii and compounds have one of formulas II-C-i, II-C-ii, II-C-iii, II-C-iv, II-C-viii, II-C-viii, II-C-xii, II-C-xiii:

II-C-i

 R^1 NH R^2 R^1 R^1 R^1 R^2 R^3 R^4 R^4 R^7

II-C-ii

$$\begin{array}{c|c}
R^1 & & & \\
NH & & & \\
N & N & & O \\
R^Y_n(U) & & & & \\
R^X(T)_m & & & & \\
R^6 & & & & \\
N & & & & \\
R^4 & & & & \\
\end{array}$$

II-C-iii

II-C-iv

$$R^{1}$$
 NH R^{2} O R^{7} R^{7}

II-C-v

II-C-vii

$$\begin{array}{c|c}
R^1 \\
NH \\
N \\
R^{Y}_{n}(U)
\end{array}$$

$$\begin{array}{c|c}
R^1 \\
N \\
R \\
N
\end{array}$$

$$\begin{array}{c|c}
N \\
R \\
R^7
\end{array}$$

$$\begin{array}{c|c}
R^7 \\
R \\
R^5
\end{array}$$

II-C-viii

II-C-ix

$$R^1$$
 NH
 R^2
 R^1
 R^1
 R^2
 R^3
 R^4
 R^5
 R^5

$$\begin{array}{c|cccc}
R^1 & & & & & \\
N & & & & & & \\
N & & & & & & \\
R^Y_n(U) & & & & & & \\
R^X(T)_m & & & & & & \\
R^6 & & & & & & \\
R^5 & & & & & \\
\end{array}$$

II-C-x

II-C-xi

$$R^1$$
 NH
 $N O$
 $R^Y_n(U)$
 $R^X(T)_m$
 $N B$
 $N R^4$

$$\begin{array}{c|c}
R^1 & & & \\
NH & & & & \\
N & N & & & \\
R^Y_{n}(U) & & & & \\
R^X(T)_m & & & & \\
R^6 & & & & \\
R^5 & & & & \\
\end{array}$$

II-C-xii

II-C-xiii

36. The compound of claim 34, wherein for compounds of formula III-C, ring B is selected from i, ii, iii, iv, v, vii, viii, ix, x, xi, xii, or xiii and compounds have one of formulas III-C-i, III-C-ii, III-C-iii, III-C-iv, III-C-vii, III-C-viii, III-C-ix, III-C-xi, III-C-xi, III-C-xii, or III-C-xiii are provided as depicted below:

$$R^{1}$$
 NH
 $R^{Y}_{n}(U)$
 $R^{X}(T)_{m}$
 R^{6}
 R^{5}
 R^{4}

$$R^{1}$$
 NH N A O R^{7} R^{2} R^{3} R^{4} R^{5}

III-C-i

$$R^1$$
 NH
 R^2
 R^3
 R^4
 R^3
 R^4
 R^4
 R^7

III-C-ii

$$\begin{array}{c|c}
 & N & O \\
 & N & N & O \\
 & R^{Y}_{n}(U) & R^{X}(T)_{m} & R^{6} & N & R^{4}
\end{array}$$

III-C-iii

$$\begin{array}{c|c}
R^1 \\
NH \\
R^{Y}_{n}(U)
\end{array}$$

$$\begin{array}{c|c}
R^2 & O \\
R^{X}(T)_{m} & B^{2} \\
R^{6} & N
\end{array}$$

$$\begin{array}{c|c}
R^2 & O \\
R & R
\end{array}$$

III-C-v

III-C-vii

$$R^{1}$$
 NH O R^{2} R^{1} R^{1} R^{1} R^{2} R^{3} R^{4} R^{5} R^{4} R^{5}

 R^1 NH R^2 O R^7 R^7 R^8 R^8 R^8 R^8

III-C-viii

III-C-ix

$$\begin{array}{c|c}
R^{1} & NH \\
N & A & R^{2} & O \\
R^{Y}_{n}(U) & B & N & R^{7}
\end{array}$$

$$\begin{array}{c|c} R^1 & & & \\ NH & & & \\ NA & & & \\ R^Y_{n}(U) & & & \\ R^X(T)_m & & & \\ R^5 & & & \\ \end{array}$$

III-C-x

III-C-xi

$$\begin{array}{c|c}
R^1 & NH \\
N & A & O \\
R^Y_n(U) & B & N & R
\end{array}$$

III-C-xii

III-C-xiii

37. The compound of claim 1, wherein Z^4 is CR^4 , and R^4 is $C(O)N(R)(R^7)$, wherein R^7 is $(CH_2)_{t-}Y-R^8$, wherein t is 0, 1 or 2, wherein Y is a bond or is O, S, NR^9 , $-OCH_{2^-}$, $-SCH_2$, $-NR^9CH_2$, $O(CH_2)_{2^-}$, $-S(CH_2)_2$, or $-NR^9(CH_2)_2$, and wherein R^8 is Ar^2 , or R^8 and R^9 , taken together with the nitrogen atom, form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur and compounds have one of formulas **II-D or III-D:**

38. The compound of claim 37, wherein for compounds of formula II-D, ring B is selected from i, ii, iii, iv, vi, viii, ix, xii, or xiv and compounds have one of formulas II-D-i, II-D-ii, II-D-iii, II-D-iv, II-D-vi, II-D-viii, II-D-xii, or II-D-xiv:

II-D-iii II-D-iv

$$R^1$$
 NH
 R^2
 R^3
 R^3
 R^4
 R^5
 R^6
 R^6
 R^7

$$R^1$$
 NH
 $R^Y_n(U)$
 $R^X(T)_m$
 R^6
 R^5
 R^5

II-D-vi

II-D-viii

$$R^{1}$$
 NH
 $R^{Y}_{n}(U)$
 $R^{X}(T)_{m}$
 R^{6}
 R^{9}
 R^{7}
 R^{7}
 R^{7}

II-D-xii

$$R^1$$
 NH
 $R^Y_n(U)$
 $R^X(T)_m$
 R^6
 R^6
 R^7
 R^7

II-D-xiv

39. The compound of claim 37, wherein for compounds of formula III-D, ring B is selected from i, ii, iii, iv, vi, viii, ix, xii, or xiv and compounds have one of formulas III-D-ii, III-D-iii, III-D-iii, III-D-iii D-iii, III-D-iv, III-D-vi, III-D-viii, III-D-ix, III-D-xii, or III-D-xiv:

$$R^1$$
 NH
 R^2
 R^3
 R^3
 R^3
 R^4
 R^5
 R^5

III-D-i

$$\begin{array}{c|c} R^1 & NH \\ N & A & R^2 \\ R^Y_{n}(U) & & B & R^3 \\ R^X(T)_m & & N & N & N \\ \end{array}$$

$$\begin{array}{c|c}
R^1 \\
NH \\
R^Y_n(U) \\
R^X(T)_m \\
R^6
\end{array}$$

$$\begin{array}{c|c}
N \\
B \\
N \\
O
\end{array}$$

$$\begin{array}{c|c}
R^3 \\
N \\
R^7
\end{array}$$

III-D-iii

III-D-iv

$$R^{1}$$
 NH
 R^{2}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{7}

$$R^1$$
 NH
 R^2
 R^1
 R^2
 R^3
 R^4
 R^5
 R^6
 R^6
 R^6
 R^7

III-D-vi

III-D-viii

$$R^1$$
 NH
 R^2
 R^3
 R^3
 R^3
 R^4
 R^5
 R^7

$$\begin{array}{c|c} R^1 & NH \\ N & N \\ R^{Y}_{n}(U) & N \\ R^{X}(T)_{m} & N \\ N & N \\ \end{array}$$

III-D-ix

$$R^{1}$$
 NH
 $R^{Y}_{n}(U)$
 $R^{X}(T)_{m}$
 R^{6}
 R^{5}
 R^{7}
 R^{7}

III-D-xiv

40. The compound of claim 1, where R¹ is optionally substituted phenyl and ring B is an optionally substituted phenyl group and compounds have the general formulas IV or V:

$$q(R^{Z}Z) \xrightarrow{NH} NH$$

$$R^{Y}_{n}(U) \xrightarrow{R^{X}(T)_{m}} R^{6} \xrightarrow{R^{4}} R^{4}$$

$$R^{Y}_{n}(U) \xrightarrow{NA} R^{2} R^{3}$$

$$R^{Y}_{n}(U) \xrightarrow{NA} R^{6} \xrightarrow{R^{4}} R^{4}$$

$$R^{Y}_{n}(U) \xrightarrow{NA} R^{6} \xrightarrow{R^{4}} R^{4}$$

41. The compound of claim 40, wherein, R³ is NRCOR⁷ and compounds have the general formulae IV-A-(i) or V-A-(i):

$$q(R^{Z}Z) \xrightarrow{NH} NH$$

$$R^{Y}_{n}(U) \xrightarrow{NA} R^{g} \xrightarrow{R} R^{4} O$$

$$IV-A-(i)$$

$$q(R^{Z}Z) \xrightarrow{NH} NH$$

$$R^{Y}_{n}(U) \xrightarrow{NA} R^{g} \xrightarrow{R} R^{2} \xrightarrow{R} R^{4} O$$

$$V-A-(i)$$

42. The compound of claim 40, wherein R⁴ is NRCOR⁷ and compounds have the general formulae IV-B-(i) or V-B-(i):

$$q(R^{Z}Z) \xrightarrow{NH} NH$$

$$R^{Y}_{n}(U) \xrightarrow{NA} R^{g} \xrightarrow{R^{3}} R^{3} O$$

$$R^{Y}_{n}(U) \xrightarrow{R^{X}(T)_{m}} R^{g} \xrightarrow{R^{3}} R^{g} O$$

43. The compound of claim 40, wherein R³ is CONRR⁷ and compounds have the general formulae IV-C-(i) or V-C-(i):

$$q(R^{Z}Z) \xrightarrow{NH} NH$$

$$R^{Y}_{n}(U) \xrightarrow{NA} R^{B} R^{4}$$

$$R^{Y}_{n}(U) \xrightarrow{R^{X}(T)_{m}} R^{6} \xrightarrow{R^{5}} R^{4}$$

$$IV-C-(i)$$

$$q(R^{Z}Z) \xrightarrow{NH} NH$$

$$R^{Y}_{n}(U) \xrightarrow{NA} R^{2} \xrightarrow{NA} R^{2}$$

$$R^{Y}_{n}(U) \xrightarrow{R^{X}(T)_{m}} R^{6} \xrightarrow{R^{5}} R^{4}$$

$$V-C-(i)$$

44. The compound of claim 40, wherein R⁴ is CONRR⁷ and compounds have the general formulae IV-D-(i) or VII-D-(i):

$$q(R^{Z}Z) \xrightarrow{NH} NH$$

$$R^{Y}_{n}(U) \xrightarrow{NA} R^{2}$$

$$R^{X}(T)_{m} R^{6} \xrightarrow{R} R^{3}$$

$$R^{Y}_{n}(U) \xrightarrow{R^{X}(T)_{m}} R^{6} \xrightarrow{R^{5}} R^{3}$$

45. The compound of claim 40, wherein R^1 is optionally substituted phenyl, ring A is pyrimidinyl or pyridyl, ring B is phenyl, and R^2 , R^5 , and R^6 are each hydrogen, and compounds have the general formulae VI and VII:

- 46. The compound of claim 40 or 45, wherein
 - a. q is 0 or 1 and ZRZ is -NH2, -OH, C1-4alkoxy, or -SO2NH2;
 - b. R³ is NRCOR⁷, wherein R⁷ is (CH₂)_t-Y-R⁸, and t is 0, Y is a bond, and R⁸ is phenyl (a), or is an optionally substituted heteroaryl moiety selected from one of groups b through **r**, and wherein r is 0 or 1, and WR^W substituents are halogen, C₁₋₄alkyl, -(R)₂, -OR, -SR, -SO₂N(R)₂, -N(R)SO₂R, -N(R)COR, -N(R)₂, -CH₂OR, -CH₂N(R)₂, or -CH₂SR; and
 - c. R⁴ is hydrogen.
- 47. The compound of claim 40 or 45, wherein:
 - a. q is 0 or 1 and ZR^Z is -NH₂, -OH, C₁₋₄alkoxy, or -SO₂NH₂;

- b. R^3 is $CONRR^7$, wherein R^7 is $(CH_2)_t$ -Y- R^8 , and t is 0, Y is a bond, and R^8 is phenyl (a) or is an optionally substituted heteroaryl moiety selected from one of groups **b** through **r**, and wherein r is 0 or 1, and WR^W substituents are halogen, C_1 . 4alkyl, -(R)₂, -OR, -SR, -SO₂N(R)₂, -N(R)SO₂R, -N(R)COR, -N(R)₂, -CH₂OR, -CH₂N(R)₂, or -CH₂SR; and
- c. R⁴ is hydrogen.

48. The compound of claim 40 or 45, wherein:

- a. $q ext{ is } 0 ext{ or } 1 ext{ and } ZR^Z ext{ is -NH}_2, -OH, C_{1-4} ext{alkoxy, or -S(O)}_2 ext{NH}_2;$
- b. R^4 is $NRCOR^7$, wherein R^7 is $(CH_2)_t$ -Y- R^8 , and t is 0, Y is a bond, and R^8 is phenyl (a) or an optionally substituted heteroaryl moiety selected from one of groups b through z, and wherein r is 0 or 1, and WR^W substituents are halogen, C_{1-4} alkyl, - $(R)_2$, -OR, -SR, -SO₂N(R)₂, -N(R)SO₂R, -N(R)COR, -N(R)₂, -CH₂OR, -CH₂N(R)₂, or -CH₂SR; and
- c. R³ is hydrogen.

49. The compound of claim 40 or 45, wherein:

- a. $q ext{ is } 0 ext{ or } 1 ext{ and } ZR^Z ext{ is -NH}_2, ext{-OH}, C_{1-4} ext{alkoxy, or -S(O)}_2 ext{NH}_2;$
- b. R^4 is $CONRR^7$, wherein R^7 is $(CH_2)_t$ -Y- R^8 , and t is 0, Y is a bond, and R^8 is phenyl (a) or an optionally substituted heteroaryl moiety selected from one of groups b through **z**, and wherein r is 0 or 1, and WR^W substituents are halogen, C_{1-4} alkyl, $(R)_2$, -OR, -SR, -SO₂N(R)₂, -N(R)SO₂R, -N(R)COR, -N(R)₂, -CH₂OR, -CH₂N(R)₂, or -CH₂SR; and
- c. R³ is hydrogen.

50. The compound of claim 40 or 45, wherein:

- a. $q ext{ is } 0 ext{ or } 1 ext{ and } ZR^Z ext{ is -NH}_2, -OH, C_{1-4} ext{alkoxy, or -S(O)}_2 ext{NH}_2;$
- b. R^3 is NRCOR⁷, wherein R^7 is $(CH_2)_t$ -Y-R⁸, and t is 0 or 1, Y is NR⁹, and R⁸ and R⁹, taken together with the nitrogen atom, form a group selected from s, t, u, or v, and wherein r is 0 or 1, and WR^W substituents are halogen, C_{1-4} alkyl, -(R)₂, -OR, -SR, -SO₂N(R)₂, -N(R)SO₂R, -N(R)COR, -N(R)₂, -CH₂OR, -CH₂N(R)₂, or -CH₂SR; and

- c. R⁴ is hydrogen.
- 51. The compound of claim 40 or 45, wherein:
 - a. q is 0 or 1 and $\mathbb{ZR}^{\mathbb{Z}}$ is -NH₂, -OH, $\mathbb{C}_{1\text{-}4}$ alkoxy, or -S(O)₂NH₂;
 - b. R^3 is $CONRR^7$, wherein R^7 is $(CH_2)_{t^2}Y^2R^8$, and t is 0 or 1, Y is NR^9 , and R^8 and R^9 , taken together with the nitrogen atom, form a group selected from **s**, **t**, **u**, or **v**, and wherein r is 0 or 1, and WR^W substituents are halogen, C_{1-4} alkyl, $-(R)_2$, -OR, -SR, $-SO_2N(R)_2$, $-N(R)SO_2R$, -N(R)COR, $-N(R)_2$, $-CH_2OR$, $-CH_2N(R)_2$, or $-CH_2SR$; and
 - c. R⁴ is hydrogen.
- 52. The compound of claim 40 or 45, wherein:
 - a. q is 0 or 1 and $\mathbb{Z}\mathbb{R}^{\mathbb{Z}}$ is -NH₂, -OH, \mathbb{C}_{1-4} alkoxy, or -S(O)₂NH₂;
 - b. R^4 is $NRCOR^7$, wherein R^7 is $(CH_2)_{t-}Y-R^8$, and t is 0 or 1, Y is NR^9 , and R^8 and R^9 , taken together with the nitrogen atom, form a group selected from s, t, u, or v, and wherein r is 0 or 1, and WR^W substituents include halogen, C_{1-4} alkyl, NH_2 , OH, SH, SO_2NH_2 , C_{1-4} alkoxy, C_{1-4} thioalkyl, CH_2OR , $CH_2N(R)_2$, or CH_2SR ; and
 - c. R³ is hydrogen.
- 53. The compound of claim 40 or 45, wherein:
 - a. q is 0 or 1 and $\mathbb{Z}\mathbb{R}^{\mathbb{Z}}$ is -NH₂, -OH, $\mathbb{C}_{1\text{-4}}$ alkoxy, or -S(O)₂NH₂;
 - b. R^4 is $CONRR^7$, wherein R^7 is $(CH_2)_t$ -Y- R^8 , and t is 0 or 1, Y is NR^9 , and R^8 and R^9 , taken together with the nitrogen atom, form a group selected from **s**, **t**, **u**, or **v**, and wherein r is 0 or 1, and WR^W substituents are halogen, C_{1-4} alkyl, - $(R)_2$, -OR, -SR, - $SO_2N(R)_2$, - $N(R)SO_2R$, -N(R)COR, - $N(R)_2$, - CH_2OR , - $CH_2N(R)_2$, or - CH_2SR ; and c. R^3 is hydrogen.
- 54. The compound of claim 1, having one of the following structures:

IV-A(i)-1

IV-A(i)-2

IV-A(i)-6

IV-A(i)-7

IV-A(i)-8

IV-A(i)-9

IV-A(i)-10

IV-B(i)-1

IV-B(i)-2

IV-B(i)-3

IV-B(i)-4

IV-B(i)-5

IV-B(i)-6

IV-B(i)-7

V-A(i)-1

V-A(i)-2

V-A(i)-3

V-A(i)-4

V-A(i)-5

V-A(i)-6

V-A(i)-7

V-B(i)-1

V-B(i)-2

V-B(i)-3

V-B(i)-4

V-B(i)-5

V-B(i)-6

V-B(i)-7

V-C(i)-8

V-C(i)-9

V-C(i)-10

V-C(i)-11

V-C(i)-13

V-D(i)-1

V-D(i)-2

V-D(i)-3

V-D(i)-5

V-D(i)-6

- 55. A pharmaceutical composition comprising a compound according to claim 1, and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- 56. The composition of claim 55, further comprising an additional therapeutic agent selected from a chemotherapeutic or anti-proliferative agent, a treatment for Alzheimer's Disease, a treatment for Parkinson's Disease, an agent for treating Multiple Sclerosis (MS), a treatment for asthma, an agent for treating schizophrenia, an anti-inflammatory agent, an immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating destructive bone disorders, an agent for treating liver disease, an agent for treating a blood disorder, or an agent for treating an immunodeficiency disorder.
- 57. A method of inhibiting JAK kinase activity in a biological sample or a patient, comprising the step of contacting said biological sample or patient with:
 - a) the composition of claim 55; or
 - b) the compound of claim 1.
- 58. A method of treating or lessening the severity of a disease or disorder selected from an immune response, an autoimmune disease, a neurodegenerative disorder, or a solid or hematologic malignancy comprising administering to a patient in need thereof a compound of claim 1 or a composition of claim 55.

59. The method of claim 58, wherein the disease is an allergic or type I hypersensitivity reaction, asthma, transplant rejection, graft versus host disease, rheumatoid arthritis, amyotrophic lateral sclerosis, multiple sclerosis, Familial amyotrophic lateral sclerosis (FALS), leukemia, or lymphoma.