Formúlublað í STÆ 403

Diffurreglur

f(x)	f'(x)
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
x ^a	a⋅x ^{a–1}
sin(x)	cos(x)
cos(x)	-sin(x)
tan(x)	$\frac{1}{\cos^2(x)}$ 1+ tan ² (x)
e ^x	e ^x
ln(x)	$\frac{1}{x}$
a ^x	a ^x ⋅ln(a)
log _a (x)	$\frac{1}{x \cdot \ln(a)}$

j(x)	j'(x)
f(x)+g(x)	f'(x) + g'(x)
f(x)-g(x)	f'(x)-g'(x)
$f(x) \cdot g(x)$	$f'(x) \cdot g(x) + f(x) \cdot g'(x)$
$\frac{f(x)}{g(x)}$	$\frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$
f ∘ g(x)	$f'(g(x)) \cdot g'(x)$
(f ⁻¹)'(y)	$\frac{1}{f'(x)}$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$y - f(x_0) = f'(x_0)(x - x_0)$$

Hornaföll:

$$\sin^2(v) + \cos^2(v) = 1$$

$$\tan^2(v) + 1 = \frac{1}{\cos^2(v)}$$

$$sin(2v) = 2sin(v) \cdot cos(v)$$

$$\cos(2v) = \cos^2(v) - \sin^2(v)$$

$$\cos(2v) = 1 - 2\sin^2(v)$$

$$\cos(2v) = 2\cos^2(v) - 1$$

$$\tan(2v) = \frac{2\tan(v)}{1-\tan^2(v)}$$

$$sin(u) - sin(v) = 2cos\left(\frac{u+v}{2}\right) \cdot sin\left(\frac{u-v}{2}\right)$$

$$\cos(u) - \cos(v) = -2\sin\left(\frac{u+v}{2}\right) \cdot \sin\left(\frac{u-v}{2}\right)$$

Lograreglur

$$\log(a \cdot b) = \log(a) + \log(b)$$

$$\log\left(\frac{a}{b}\right) = \log(a) - \log(b)$$

$$\log(a^n) = n \cdot \log(a)$$

$$\sin(u) - \sin(v) = 2\cos\left(\frac{u+v}{2}\right) \cdot \sin\left(\frac{u-v}{2}\right)$$

$$\sin(u) + \sin(v) = 2\sin\left(\frac{u+v}{2}\right) \cdot \cos\left(\frac{u-v}{2}\right)$$

$$\cos(u) - \cos(v) = -2\sin\left(\frac{u+v}{2}\right) \cdot \sin\left(\frac{u-v}{2}\right)$$

$$\cos(u) + \cos(v) = 2\cos\left(\frac{u+v}{2}\right) \cdot \cos\left(\frac{u-v}{2}\right)$$

Formúlublað í STÆ 503

f(x)	F(x)
x ^a	$\frac{1}{a+1}x^{a+1}$
sin(x)	- cos(x)
cos(x)	sin(x)
$\frac{1}{\cos^2(x)}$ $1 + \tan^2(x)$	tan(x)
e ^x	e ^x
$\frac{1}{x}$	In x
a ^x	a ^x In(a)
$sin(ax), a \neq 0$	$-\frac{1}{a}\cos(ax)$
$cos(ax), a \neq 0$	$\frac{1}{a}$ sin(ax)
e^{ax} , $a \neq 0$	$\frac{1}{a}e^{ax}$
$\frac{1}{\sqrt{1-x^2}}$	arcsin(x)
$-\frac{1}{\sqrt{1-x^2}}$	arccos(x)
$\frac{1}{1+x^2}$	arctan(x)