

Contents

- Project Introduction
- Data Introduction
- Data Exploration Insights
- Models
 - Unsupervised Learning
 - Supervised Learning
 - Random Forest & Gradient Boosted Trees
- Conclusion

Project Introduction - Big Picture

• 42,915 people died in car accidents in 2021

0.0

- Car accident fatalities have increased by 32.13% from 2011 to 2021
- What can we do to decrease the number of yearly U.S. car accidents?

Project Introduction - Objectives

- **Objective 1:** Predict severity of car accidents to help protect people <u>after</u> a car accident has taken place.
- This information would be utilized by:
 - Fire Departments
 - Police
 - News Media Outlets

Project Introduction - Objectives

- **Objective 2:** Identify common causes of car accidents to help prevent car accidents **before** they happen.
- This information would be utilized in:
 - Academia
 - Automobile Industry

Data Introduction

- Period: Feb 2016 ~ Dec 2021
- Location: 49 states of USA (except Alaska and Hawaii)
- Number of datapoints: 2.8M

Data Introduction

Features

Weather

Period

Target: Severity of car accidents

Predict

Data Introduction

Data Exploration Insights - Time/Location

Probability

Data Exploration Insights - Weather

Data Exploration Insights - Weather

Data Exploration Insights - Traffic

Data Exploration Insights - Traffic

Data Exploration Insights - Sunlight

Unsupervised Learning - PCA

Unsupervised Learning - Clustering

cluster	accident ID
0	[A-6167, A-11427, A-30229, A-30727, A-48123, A
1	[A-177650, A-226739, A-233440, A-241868, A-246
2	[A-9622, A-171957, A-225704, A-226161, A-22782
3	[A-230878, A-510717, A-615765, A-693623, A-746
4	[A-229774, A-233646, A-233715, A-233935, A-240
5	[A-33485, A-37199, A-43927, A-44963, A-106437,
6	[A-95680, A-168806, A-222225, A-225232, A-2327
7	[A-29445, A-33213, A-34599, A-37419, A-38643,
8	[A-219, A-15193, A-33645, A-34018, A-34051, A
9	[A-166749, A-455630, A-820816, A-830190, A-943

Supervised Learning - Ordinal Logistic Regression

Supervised Learning - Ordinal Logistic Regression

ROC Curve

Supervised Learning - Ordinal Logistic Regression

Residual Plot

Supervised Learning - Logistic Regression

BinaryClassificationEvaluator: 0.6229

Distance	0.0112
Temperature	0.0017
Humidity	0.0044
Pressure	-0.2081
Visibility	0.0065
Wind Speed	0.0348
Precipitation	0.1192
Crossing	-0.5776
Junction	0.7239
Traffic Signal	0.6251
Sunrise_Sunset	-0.1742
Nautical Twilight	0.1324
Astronomical Twilight	-0.2928

Models - Decision Trees

Model	CV Folds	Evaluation Metric	Evaluation Value
Random Forest	3	AUC	0.71
Gradient Boosted	3	AUC	0.67

Models - Random Forest Predictions

ACTUAL

PREDICTED

TP 35	FP 155
FN 213	TN 4045

Models - Random Forest Inferences

Feature	Importance
Distance	0.34
Pressure	0.25
Temperature	0.14
Wind Speed	0.10
Humidity	0.10

Conclusion

- Using satellite or some other means to detect distance traveled after impact can increase odds of successfully identifying severe accidents
- Random Forest yielded the best results for predicting severity. Once fine-tuned, it can be shared with companies and industries previously mentioned
- Self-driving cars would be able to utilize the finalized machine learning algorithm to lead to safer driving during conditions that could potentially lead to a severe car accident
- High wind speeds are more dangerous than many people may think

References

- Moosavi, Sobhan, Mohammad Hossein Samavatian, Srinivasan Parthasarathy, and Rajiv Ramnath. "A Countrywide Traffic Accident Dataset.", 2019.
- Moosavi, Sobhan, Mohammad Hossein Samavatian, Srinivasan Parthasarathy, Radu Teodorescu, and Rajiv Ramnath. "Accident Risk Prediction based on Heterogeneous Sparse Data: New Dataset and Insights." In proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM, 2019.
- NHTSA's National Center for Statistics and Analysis. (n.d.). Early Estimate of Motor Vehicle Traffic Fatalities for the First 9 Months (January-September) of 2021. Retrieved April 22, 2023, from https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813240
- Simon, S. (2023, January 27). How many people die from car accidents each year? Forbes. Retrieved March 4, 2023, from https://www.forbes.com/advisor/legal/auto-accident/car-accident-deaths/

Appendix

Appendix

