CLAIMS

We claim:

2

1	1.	A method for treating a metal-containing liquid, wherein the metal-containing liquid
2		also comprises reducing agents, the method comprising:
3		providing a reaction vessel containing an anode, a cathode, and a hydrogen
4		ion-permeable membrane separating the anode and the cathode;
5		disposing the metal-containing liquid to be treated in the reaction vessel in
6		contact with the anode;
7		disposing a catholyte solution in contact with the cathode;
8		a first placing of the anode and cathode in electrical communication with a
9		power source and driving an electrical current through the anode and the cathode until
10		at least a majority of the reducing agents in the metal-containing liquid are oxidized to
11		create an intermediate liquid and a used catholyte solution;
12		removing the used catholyte solution from contact with the cathode and the
13		intermediate liquid from contact with the anode, optionally from the reaction vessel
14		separately to a first and a second reservoir respectively;
15		disposing the intermediate liquid in contact with the cathode;
16		disposing an anolyte solution in contact with the anode; and
17		a second placing of the anode and cathode in electrical communication with a
18		power source and driving an electrical current through the anode and the cathode until
19		a majority of the metal ions in the intermediate liquid are plated onto the cathode to
20		provide a treated solution.
1	2.	The method of claim 1, wherein the catholyte solution is a solution of a non-
2		electrochemically reactive salt, having an approximately equivalent ionic
3		concentration as the metal-containing liquid.
1	3	The method of claim 2, wherein the catholyte solution is a ferric sulfate solution and

the used catholyte solution is a ferrous sulfate solution.

- The method of claim 3, additionally comprising regenerating a ferric sulfate solution 4. 1 from the ferrous sulfate solution by bubbling a gas through the ferrous sulfate 2 solution, wherein the gas is selected from the group consisting of air and oxygen. 3 5. The method of claim 3, wherein the analyte solution is a solution of approximately 1 equal ionic concentration as the intermediate liquid, selected from the group 2 consisting of sodium salt solutions and sulfate salt solutions. 3 6. The method of claim 5, wherein the analyte solution is selected from the group 1 consisting of sodium sulfate and ferrous sulfate. 2 7. The method of claim 1, wherein the analyte solution is a solution of approximately 1 equal ionic concentration as the intermediate liquid, selected from the group 2 consisting of sodium salt solutions and sulfate salt solutions. 3
- 1 8. The method of claim 7, wherein the analyte solution is selected from the group consisting of sodium sulfate and ferrous sulfate.
- The method of claim 1, wherein the electrical current in at least one of the first and second placing of the anode and cathode in electrical communication with a power source is between about 1 ampere and about 10 amperes.
- 1 10. A method for treating a metal-containing liquid, wherein the metal-containing liquid 2 also comprises reducing agents, the method comprising:

3

4

5

6

7

8

9

10

11

providing a reaction vessel containing an anode, a cathode, and a hydrogen ion-permeable membrane separating the anode and the cathode;

disposing the metal-containing liquid in the reaction vessel in contact with the cathode;

disposing an anolyte solution in the reaction vessel in contact with the anode;

placing the anode and cathode in electrical communication with a power source and driving an electrical current through the anode and the cathode until at least a majority of the metal ions in the metal-containing liquid are plated onto the cathode to produce an intermediate liquid;

12		removing the intermediate liquid from contact with the cathode and the
13		anolyte solution from contact with the anode, optionally from the reaction vessel
14		separately to a first and a second reservoir respectively;
15		disposing the intermediate liquid in contact with the anode;
16		disposing a catholyte solution in contact with the cathode; and
17		a second placing the anode and cathode in electrical communication with a
18		power source and driving an electrical current through the anode and the cathode until
19		at least a majority of the reducing agents in the metal-containing liquid are oxidized to
20		provide a treated solution.
1	11.	The method of claim 10, wherein the catholyte solution is a solution of a ferric salt,
2		having an approximately equivalent ionic concentration as the intermediate liquid.
1	12.	The method of claim 11, wherein the ferric salt is ferric sulfate and the used catholyte
2		solution is a ferrous sulfate solution.
1	13.	The method of claim 12, additionally comprising regenerating a ferric sulfate solution
2		from the ferrous sulfate solution by bubbling a gas through the ferrous sulfate
3		solution, wherein the gas is selected from the group consisting of air and oxygen.
1	14.	The method of claim 12, wherein the anolyte solution is a solution of approximately
2		equal ionic concentration as the intermediate liquid, selected from the group
3		consisting of sodium salt solutions and sulfate salt solutions.
1	15.	The method of claim 14, wherein the anolyte solution is selected from the group
2		consisting of sodium sulfate and ferrous sulfate.
1	16.	The method of claim 10, wherein the anolyte solution is a solution of approximately
2		equal ionic concentration as the intermediate liquid, selected from the group
3		consisting of sodium salt solutions and sulfate salt solutions.
1	17.	The method of claim 16, wherein the anolyte solution is selected from the group
2		consisting of sodium sulfate and ferrous sulfate.

1 18. The method of claim 8, wherein the electrical current in at least one of the first and second placing of the anode and cathode in electrical communication with a power source is between about 1 ampere and about 10 amperes.

13