Onisciência Lógica.

Nilton Flávio Sousa Seixas.

15 de novembro de 2013

Sumário

1	Lóg	Lógica Modal.			
	1.1	Sintax	e	2	
	1.2	Semân	tica	3	
		1.2.1	Satisfatibilidade em um estado	3	
		1.2.2	Satisfatibilidade em um modelo de Kripke	4	
		1.2.3	Exemplo para satisfatibilidade em um estado.	4	
		1.2.4	Classes de enquadramentos	5	
		1.2.5	Classe de modelos de kripke	-	
		1.2.6	Validade em um estado	-	
		1.2.7	Exemplo para validade em um estado.	1	
		1.2.8	Validade de uma fórmula	6	
		1.2.9	Consequência lógica Local	6	
		1.2.10	Consequência lógica Global	6	
		1.2.11	Exemplo para consequência lógica global	7	
		1.2.12	Exemplo para consequência lógica local	7	
2	Sist	emas A	Axiomáticos Modais.	8	
		2.0.13	Derivação	8	
			Fórmulas modais atômicas.	8	
		2.0.15	Regras de inferência	8	
			Sistema K	G	
			Sistema T	Ĝ	
				Ĝ	
				10	

Capítulo 1

Lógica Modal.

1.1 Sintaxe.

Agora vou introduzir a sintaxe usada pela lógica modal proposicional. Irei fazê-lo em dois passos: o primeiro é a definição do alfabeto modal e depois, a linguagem modal induzida pelo alfabeto modal sobre o conjunto P.

Seja P um conjunto não-vazio de fórmulas atômicas que pode ser finito para um n qualquer tal que P = $\{p_1, p_2, p_3, ..., p_n\}$ ou infinito tal que P = $\{p_i, p_{i+1}, ...\}$, para $i \geq 1$, sendo que o mais importante é que os membros de P possam ser enumerados. Então temos como sintaxe da lógica modal:

- (1) Qualquer que seja p_i , tal que $p_i \in P$, para $i \geq 1$.
- (2) O simbolo da contradição \perp .
- (3) Operadores lógicos binários : \rightarrow , \vee , \wedge , sendo implicação, disjunção e conjunção respectivamente.
 - (4) Os operadores modais \square (necessidade) e \lozenge (possibilidade).
 - (5) Os símbolos auxiliares (,).
 - (6) Operador unário de negação ¬.

Agora apresento a definição da linguagem modal, induzida pelo alfabeto modal sobre o conjunto de fórmulas atômicas P. Seja FormM o cojunto mínimo de fórmulas da lógica modal, FormM satisfaz as seguintes propriedades:

- (7) $p_i \in FormM$ para qualquer $pi \in P$, $i \geq 1$.
- (8) $\perp \in \text{FormM}$.
- (9) Se $\varphi, \varphi' \in \text{FormM}$, então as fórmulas: $(\varphi \to \varphi')$, $(\varphi \land \varphi')$, $(\varphi \lor \varphi)$, $\Box \varphi$, $\Diamond \varphi \in \text{FormM}$.
- (10) Se $\varphi, \varphi' \in \text{FormM}$, então as fórrmulas $(\Box \varphi), (\Diamond \varphi), (\neg \varphi) \in \text{FormM}$.

1.2 Semântica.

Para representar a semântica da lógica modal é necessário representar o modelo de Kripke. Mas para isso, preciso introduzir noções de enquadramento.

Um enquadramento E é representado por uma tupla E = (S,R), onde:

S é um conjunto não-vazio de estados.

R é uma relação binária entre os estados. Quando um estado s se relaciona com outro estado s', denotamos a relação como R(s,s').

Seja V uma função que valora as variáveis nos estados, ela é denotada por:

V: $S \to (P \to \{1,0\})$, onde P é o conjunto das fórmulas atômicas, 1 representa a valoração verdade, e 0 a valoração falsa. S é o conjunto de estados do enquadramento.

Um modelo de Kripke é denotado por M = (E,V), onde E é um enquadramento e V uma função que atribui 1 ou 0 para as fórmulas nos estados. Um modelo de Kripke nada mais é do que uma estrutura de interpretação para fórmulas da lógica modal. Um mundo de kripke W, é a composição de um modelo de kripke W, com um estado W0 W1. Basicamente é o mesmo que especificar um único estado de um modelo. Um estado, a depender da lógica modal, pode ser interpretado como um mundo, ou situação. Aqui eu tratarei como estado.

1.2.1 Satisfatibilidade em um estado.

Seja M um modelo de Kripe tal que M=(E,V) e $s\in S,$ $S\subseteq E.$ A satisfatibilidade de uma formula $\varphi,$ $\varphi\in FormM,$ é denotada por :

$$M.s \models \varphi$$

e segui-se indutivamente as definições:

- (1) $M,s \models p :\Leftrightarrow V(s)(p) = 1$ para $p \in P$, ou seja, Uma fórmula é satisfeita em um estado se somente se, a valoração da fórmula naquele estado é 1.
- (2) M,s $\vDash \varphi \land \varphi' :\Leftrightarrow$ M,s $\vDash \varphi$ e M,s $\vDash \varphi'$. A valoração de φ em s é igual a 1, bem como a valoração de φ' .
 - (3) $M,s \models \varphi \lor \varphi' :\Leftrightarrow M,s \models \varphi \text{ ou } M,s \models \varphi'.$
 - (4) $M,s \vDash \varphi \rightarrow \varphi' : \Leftrightarrow M,s \nvDash \varphi \in M,s \vDash \varphi'^{1}$.
- (5) M,s $\vDash \neg \varphi : \Leftrightarrow M,s \nvDash \varphi$. Essa definição nos faz pensar no fato: M,s $\vDash \varphi \Leftrightarrow M,s \nvDash \varphi'$, que é verdade, porém tem que ser demonstrado antes de fazer parte de uma prova.
- (6) M,s $\vDash \Box \varphi$ se para cada t \in S tal que R(s,t), M,t $\vDash \varphi$. Veja que não necessariamente M,s $\vDash \varphi$ para que M,s $\vDash \Box \varphi$
 - (7) M,s $\vDash \Diamond \varphi$ se existe t, tal que M,t $\vDash \varphi$ e R(s,t)².

¹definição alternativa: se M,s $\vDash \varphi$, então M,s $\vDash \varphi$

 $^{^{2}}$ Quando digo R(s,t), afirmo que há uma relação de acessibilidade do estado s ao estado t considerado pelo agente em questão.

1.2.2 Satisfatibilidade em um modelo de Kripke.

Seja M, um modelo de Kripke tal que M = (E,V). M satisfaz uma fórmula φ , $\varphi \in$ FormM, denotada por :

$$M \vDash \varphi$$

se M,s $\vDash \varphi$ para todo s \in S, S \subseteq E, ou seja, φ tem valoração 1 em todos os estados daquele modelo de Kripke. Dizemos que M é um modelo para φ .

1.2.3 Exemplo para satisfatibilidade em um estado.

Seja as fórmulas atômicas $\{x,y,z\}\subseteq P$. Considere um modelo de Kripke M tal que:

 $S = s_1, s_2, s_3, s_4, s_5.$

R é uma relação tal que $1 \le i, j \le 5$, $s_i R s_j$ se j = i+1.

 $V(s_2)(x) = 1.$

 $V(s_3)(x) = 1.$

Para todo $s_i \in S$, $\pi(s_i)(y) = v$, para i = 1,2,3,4,5.

$$V(s_2)(\neg z) = 1.$$

Sejam as relações entre os estados:

 $s_1 R s_2$

 $s_2 R s_3$

 $s_3 R s_4$

 $s_4 R s_5$

segue-se que:

- (1) $M,s_2 \models x \land (\neg z)$, pois $M,s_2 \models x$, e $M,s_2 \models (\neg z)$.
- (2) $M,s_1 \models \Box x$, pois $M,s_2 \models x$, e ele é o único estado que se relaciona com s_1 , logo a afirmação procede.
- (3) $M,s_2 \models \Box x$. É similar ao anterior, porém no estado s_2 , o estado possível considerado por um agente é o s_3 . Tornando a única relação apartir de s_2 , seguindo a definição 6 da seção 1.3.
- (4) $M,s_3 \nvDash \square x$, pois $M,s_4 \nvDash x$.
- (5) $M,s_1 \nvDash (\square x) \to x$, pois $M,s_1 \models \square x$ porém $M,s_1 \nvDash x$.
- (6) $M,s_1 \models \Diamond(\Box x)$ pois $M,s_2 \models (\Box x)$ e pela definição 7 da seção 1.3, basta que exista um estado que satisfaça a fórmula x.
- (7) $M,s_1 \lozenge (x \land (\neg z))$ pois $M,s_2 \models x \in M,s_2 \models \neg z$.
- (8) $M,s_5 \nvDash \Diamond$ ($\neg z$). Teria que haver um estado $s \in S$ tal que s_5Rs ou seja, uma relação $R(s_5,s)$.
- (9) M, $s_i \models y$. Pois para todo $s_i \in S$, $V(s_i)(y) = v$, para i = 1,2,3,4,5.

1.2.4 Classes de enquadramentos

Seja ε a classe de todos os enquadramentos. Temos as seguintes subclasses de enquadramento:

 $\varepsilon_{reflexivo}$ é a classe dos enquadramentos reflexivos. Ou seja, \forall s \in S, temos R(s,s).

 $\varepsilon_{transitivo}$ é a classe dos enquadramentos transitivos. \forall s, t ,u \in S, se R(s,t) e R(t,u), então R(s,u).

 $\varepsilon_{simetrico}$ é a classe dos enquadramentos simétricos. \forall s, t, \in S, se R(s,t) então R(t,s).

 $\varepsilon_{euclidiano}$ é a classe dos enquadramentos euclidianos. \forall s, t, u, \in S, se R(s,t) e R(s,u), então R(t,u).

 ε_{serial} é a classe dos enquadramentos seriais. \forall s, s \in S, \exists t, t \in S, tal que R(s,t).

1.2.5 Classe de modelos de kripke.

Defino Θ como a representação da classe de modelos de kripke, ou seja, a classe de interpretações para enquadramentos E.

1.2.6 Validade em um estado.

Seja M um modelo de Kripke, E um enquadramento modal, φ uma fórmula tal que $\varphi \in$ FormM. φ é válida em um estado s, tal que s \in S, S \subseteq E, denotada por

$$E,s \models \varphi,$$

se M,s $\models \varphi$ para todos os modelos de Kripke M, tal que o enquadramento permaneça constante, ou seja, qualquer modelo de kripke baseado neste enquadramento E.

1.2.7 Exemplo para validade em um estado.

Seja o enquadramento modal fixo E, uma fórmula φ , $\varphi \in$ FormM, que possui as seguintes relações e estados:

```
S = \{s_1, s_2, s_3, s_4\}.
```

 s_1Rs_2 .

 s_2Rs_3 .

 s_3Rs_4 .

 s_4Rs_1 .

Sejam as valorações V_1 :

$$V_1(s_1)(\varphi) = 0;$$

 $V_1(s_2)(\varphi) = 1;$

$$V_1(s_3)(\varphi) = 0;$$

```
V_1(s_4)(\varphi)=0; Seja M_1 um modelo de Kripe tal que M_1=(E,V_1). Sejam as valorações V_2: V_2(s_1)(\varphi)=1; V_2(s_2)(\varphi)=1; V_2(s_3)(\varphi)=0; V_2(s_4)(\varphi)=0; Seja M_2 um modelo de Kripe tal que M_2=(E,V_2). Sejam as valorações V_3: V_3(s_1)(\varphi)=0; V_3(s_1)(\varphi)=0; V_3(s_2)(\varphi)=1; V_3(s_3)(\varphi)=1; V_3(s_4)(\varphi)=0; Seja M_3 um modelo de Kripe tal que M_3=(E,V_3). Seja \Theta a classe dos modelos de Kripke e
```

suponha que $\Theta = \{M_1, M_2, M_3\}$. Observe que para todos os modelos de Kripke baseados em E, $M_x, s_2 \models \varphi$, para x = 1, 2, 3.

1.2.8 Validade de uma fórmula.

```
Seja uma fórmula \varphi, \varphi \in Form<br/>M. Uma fórmula é valida, sendo denotada por \vDash \varphi \ (\varphi \text{ é válido}) se M \vDash \varphi para todo M.³
```

1.2.9 Consequência lógica Local.

Sejam Ψ um conjunto de fórmulas tal que $\Psi \subseteq \text{FormM}$, φ , tal que $\varphi \in \text{FormM}$, M um modelo de Kripke dado por M = (E, V), \Vdash o símbolo da consequência lógica,

 φ é consequência lógica local de Ψ , denotado por $\Psi \Vdash_l \varphi$, onde ℓ representa local,

se para todo s, tal que s \in S, se M,s $\models \Psi$, então M,s $\models \varphi$. Essa definição atende apenas para um único modelo de Kripke.

1.2.10 Consequência lógica Global.

Seguindos as mesmas configurações da seção anterior para M, φ, Ψ e s:

 φ é consequência lógica global de Ψ , denotado por $\Psi \Vdash \varphi$,

se para todo modelo de Kripke M, se M $\models \Psi$ então M $\models \varphi$.

³Para todo os modelos de Kripke.

1.2.11 Exemplo para consequência lógica global.

$$\varphi \Vdash \Box \varphi$$
.

Prova. Por hipótese temos que: Qualquer que seja M, M $\models \varphi$ implica que M $\models \Box \varphi$; Isso equivale a : se M,s $\models \Psi$ então M,s $\models \Box \varphi$. Para todo s, s \subseteq S, S \subseteq M; Logo para todo t, tal que R(s,t), t \subseteq S, M,t $\models \varphi$. Concluindo, M $\models \Box \varphi$.

1.2.12 Exemplo para consequência lógica local.

$$\{\Box(\varphi \to \varphi'), \Diamond\varphi\} \Vdash_l \Diamond\varphi'.$$

Prova. Se M,s $\models \Box(\varphi \rightarrow \varphi')$ e M,s $\models \Diamond \varphi$ então M,s $\models \Diamond \varphi$ para todo s \in S.

Por contradição, suponha que $M,s \nvDash \Diamond \varphi'$. Isso implica que: Qualquer que seja t, tal que R(s,t), $t \in S, M,t \nvDash \varphi'$. Daí temos que:

 $M,s \models \Box(\varphi \rightarrow \varphi')$ e $M,s \models \Diamond \varphi$ por hipótese.

Logo existe t, tal que M,t $\models \varphi$, R(s,t) para que M,s $\models \Diamond \varphi$. E como para todo t, tal que R(s,t), M,t $\not\models \varphi'$, logo M,s $\not\models \Box(\varphi \to \varphi')$. Contradição! Logo se M,s $\models \Box(\varphi \to \varphi')$ e M,s $\models \Diamond \varphi$ então M,s $\models \Diamond \varphi$ para todo s \in S.

Capítulo 2

Sistemas Axiomáticos Modais.

Para apresentar sistemas axiomáticos modais, preciso definir conceitos para a definição do sistema axiomático K, que é o mais básico dos sistemas aximáticos e que representa a interseção de todos os outros sistemas axiomáticos.

2.0.13 Derivação.

Sejam \vdash o símbolo da derivação, Ψ um conjunto de fórmulas tal que $\Psi \subseteq$ FormM e $\varphi_1, ..., \varphi_n \in \Psi$, se $\Psi \vdash \varphi$ (psi deriva phi) então φ é um axioma, ou $\varphi \in \Psi$ ou $\chi \in \Psi$, $\chi \to \varphi \in \Psi$ e φ é obtida por meio da regra de inferência modus ponens.

2.0.14 Fórmulas modais atômicas.

Seja PA o conjunto das fórmulas proposicionalmente atômicas, PA é definido por: $PA = P \cup \{\Box \varphi : \varphi \in FormM\} \cup \{\Diamond \varphi : \varphi \in FormM\}$

Os elementos do conjunto PA podem ser vistos como um conjunto de símbolos proposicionais e sendo assim, fazem parte da linguagem proposicional. Desse modo, podemos substituir por seus elementos, variáveis dos axiomas da lógica proposicional, a exemplo de $\Box \varphi \rightarrow (\psi \rightarrow \Box \varphi)$ que é uma instancia do axioma $\varphi \rightarrow (\psi \rightarrow \varphi)$.

2.0.15 Regras de inferência.

Seja $\Phi \subseteq \text{FormM}$, Φ é fechado para o modus ponens se: $\varphi \to \varphi' \in \Phi$ e $\varphi \in \Phi$, então $\varphi' \in \Phi$.

O conjunto $\Phi \subseteq \text{FormM}$ é fechado para a regra de inferência necessitação (do inglês necessitation):

Se $\varphi \in \Phi$ então $\Box \varphi \in \Phi$.

2.0.16 Sistema K.

O sistema axiomático K é definido por:

K1: Todos os axiomas da lógica proposicional.

K2: $\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$.

O sistema K é fechado para as regras de necessitação e modus ponens, podendo derivar ou instanciar fórmulas através dos axiomas da lógica proposicional.

2.0.17 Sistema T.

O sistema T é uma extensão do sistema K com a adição do axioma:

T1: $\Box \varphi \to \varphi$.

o que representa a classe dos enquadramentos reflexivos, ou seja, o axioma é válido somente para enquadramentos cuja relação possui a propriedade reflexiva.

Prova. Por contradição, suponha que $\Box \varphi \to \varphi$ não é válido, ou seja, existe um modelo de kripke M, e um estado s, s \subseteq S, S \subseteq E, E = (S,R), R com propriedade reflexiva, tal que M,s $\models \Box \varphi$ e M,s $\nvDash \varphi$. Para que M,s $\models \Box \varphi$, então para todo s', tal que R(s,s'), M,s' $\models \varphi$. Mas como a relação R é reflexiva, então s = s', logo M,s $\models \varphi$ para todo s, o que é uma contradição pois, por hipótese, M,s $\nvDash \varphi$. De outra mão, o axioma T1 não é válido para modelos de kripke cujo enquadramento não possua relação reflexiva. Suponha um modelo de kripke M' = (E',V'), onde E' não possui relacionamento reflexivo. Seja um estado s, s \in S' ta que M',s' $\nvDash \varphi$ e para todo t, tal que R(s,t), M',t $\models \varphi$. Logo tem-se que M',s $\models \Box \varphi$ e M',s $\nvDash \varphi$. O que mostra que $\Box \varphi \to \varphi$ não é válido.

2.0.18 Sistema S4.

O sistema S4 é composto pelo axioma:

S4: $\Box \varphi \to \Box \Box \varphi$

e pelo sistema T. Se uma fórmula é necessariamente verdadeira, então necessariamente, ela é necessariamente verdadeira. Esse axioma caracteriza a classe dos enquadramentos transitivos. Agora vou mostrar que para qualquer que seja o modelo de kripke cujo enquadramento possui a relação de propriedade transitiva, o axioma S4 é válido.

Prova. Sejam os estados s,s',s" \in S, S \subseteq M, M qualquer. Sejam os seguintes relacionamentos: R(s,s'), R(s',s") e pela propriedade da transitividade, R(s,s"). Por contradição, suponha que $\Box \varphi \to \Box \Box \varphi$ não é válida, logo existe a seguinte configuração: M,s $\models \Box \varphi$ e M,s $\not\models \Box \Box \varphi$. Se M,s $\models \Box \varphi$, então para todo s' tal que R(s,s', M,s' $\models \varphi$. E pela suposição contraditória, M,s $\not\models \Box \Box \varphi$, então M,s" $\not\models \varphi$. Mas aí, temos a contradição, pois se M,s" $\not\models \varphi$, então M,s $\not\models \Box \varphi$. Veja que por outro lado, esse axioma não é valido em modelos cujos enquadramentos não possuem a propriedade transitiva. Sejam s,s',s" \in S, S \subseteq E, E um enquadramento que não possui propriedade transitiva. Sejam as seguintes relações: R(s,s') e R(s',s"). Sejam as seguintes

interpretações: $M,s \models \Box \varphi$ e $M,s \nvDash \Box \Box \varphi$. Daí temos que para todo s', tal que R(s,s'), $M,s' \models \varphi$ e que $M,s'' \nvDash \varphi$. Logo, fica claro que $M,s \nvDash \Box \Box \varphi$, e que portanto, o axioma não é válido para enquadramentos que não sejam transitivos.

2.0.19 Sistema S5.

O sistema axiomático S5 é composto pelo sistema S4 e pelo axioma: S5: $\Diamond \Box \varphi \rightarrow \varphi$,

e caracteriza a classe dos enquadramentos simétricos. Prova. Seja um modelo de Kripke M qualquer, tal que o enquadramento E possui propriedade da simetria no relacionamento entre os estados. Sejam os estados s,s',s" e os relacionamentos R(s,s') e R(s',s''). Por contradição, suponha que $\Diamond\Box\varphi\to\varphi$ não é válido, ou seja, existe $M,s\models\Diamond\Box\varphi$ e $M,s\nvDash\varphi$. Mas aí temos que $M,s'\models\varphi$ para todo s' R(s,s') e $M,s''\models\varphi$. Mas pela propriedade da simetria, existe a relação R(s'',s'), o que nos leva a uma contradição pois, se $M,s'\not\models\Box\varphi$ então $M,s\not\models\Diamond\Box\varphi$. É fácil verificar que o axioma não é válido em um enquadramento que não possui a propriedade simétrica. Usando o mesmo exemplo, se não há relacionamento simétrico entre os estados, principalmente por s, s', $M,s\models\Diamond\Box\varphi$ e $M,s\not\models\varphi$, mostrando que o axioma S5 não é valido para enquadramentos cuja propriedade simétrica no relacionamento não existe.