Zaimplementuj poniższy wzór rekurencyjny umożliwiający wyznaczanie wartości symbolu Newtona:

$$\binom{n}{k} = \left\{ \begin{matrix} 1 & \text{dla } k = 0 \text{ lub } k = n \\ \binom{n-1}{k-1} + \binom{n-1}{k} & \text{dla } 0 < k < n \end{matrix} \right.$$

Z2

W układzie współrzędnych dana jest figura ograniczona dwiema prostymi: $\mathbf{y} = \mathbf{0}$, $\mathbf{x} = \mathbf{1}$ oraz krzywą $\mathbf{y} = \mathbf{sin}(\mathbf{x})$ (zobacz rys.). Pole tej figury wyrazić można jako stosunek liczby punktów należących do figury do liczby wszystkich punktów z obszaru zaznaczonego na rysunku ($x \in [0,1]$ i $y \in [0,1]$). Napisz program zawierający metodę do obliczania pola tej figury za pomocą \mathbf{metody} \mathbf{Monte} \mathbf{Carlo} . Za pomocą wywołania utworzonej metody wyznacz pole tej figury (dla 100 losowych punktów należących do zaznaczonego obszaru). Wykorzystaj wzór:

$$Pole = \frac{liczba~losowych~punktów~należących~do~figury}{całkowita~liczba~losowych~punktów}$$

