Introduction

Technical Presentation "Grape Capital – Wine Investment Thesis"

Analyst: Bart Teeuwen **Date:** February 13th, 2021

Agenda

- Problem Summary
- Technical Approach
- Key insights & recommendations
- Wine analysis
 - Wine quality
 - Wine countries
 - Wine ratings
 - Wine varieties
 - Wine price & points
 - Wine climate
 - Wine climate prediction
- Recap
- Winery investments
- Q&A

Problem Summary

1. Grape Capital

- Venture capital firm investing in high growth industries
- Witnessed high growth in wine industry
- Looking to acquire a stake in this industry
- Initial investment of \$10M in wineries in next 5 years with 20% ROI

2. Problem

- No previous knowledge of wine industry
 - Wine quality
 - Wineries
 - Wine climate
 - Wine countries

- Research wine industry:
 - Wine quality understanding
 - Wine ratings, points, and price foundation
 - Wine varieties & country locations
 - Effect of climate change
- Recommendations for which wineries to invest in based on thorough data analysis

Technical Approach

Elements to explore

Python

Wine quality

- Used Jupyter Notebook to analyze what variables of wine determine quality for red and white wine by performing descriptive and inferential statistical analysis with libraries statsmodels, seaborn, and pandas.
- Visualization tools boxplots, heatmaps, quartiles, barplot, and OLS regression to look at wine variables and how they correlate to wine quality ratings

Tableau

- Wine reviews
- Wine varieties
- Wine countries
 - Wine price
- Wine points
- Wine climate & prediction

- Used Tableau to analyze wine reviews by taster, points, winery, and country for insights
- Used Tableau to analyze wine varieties on its own and by average price for insights
- Used Tableau to analyze wine varieties on its own, with wine points, with wineries and wine reviews, average price, and climate temperature for insights
- Used Tableau to analyze wine price with wine variety, country, winery, taster, points, and wine reviews for insights
- Used Tableau to analyze wine price with country, taster, wine reviews, and average price for insights
- Used Tableau to analyze average temperature with time in years and countries for insights

Excel

 Excel was used for data cleaning and reordering to prep transformation in Tableau

Powerpoint

 Powerpoint was used to bring the data together from the Jupyter Notebook and Tableau dashboards

Key Insights & Recommendations

Recommendations

- Split the \$10M in two investment groups of short and long-term investments:
 - o Short-term Invest 70% in four wineries based in the US and Portugal between 2021 and 2025
 - o Long-term Invest 30% in three wineries based in Argentina, Spain, and Australia
- Advise wineries of nuances in wine variety preferences for red/white wine to help better market wines
- · Consider creating another investment fund if wineries perform above expectation

Key learnings

- Creating high quality red and white wine requires a delicate balance of variables, with density as the main driver
- American wines have more ratings and a lower price points than French wines, which stand out with a high average price
- Wine varieties produced in small regions in a complex climate tends to differ by country and has a higher average price point
- Red wine varieties seemed more popular than white wines based on wine ratings
- Most wineries are in the US followed by France and Italy. Other EU countries are up and coming
- The top 3 winery locations also score most wine review points followed by Mediterranean countries
- A higher wine price does not ensure higher point reviews by (experienced) tasters
- Typically, countries with a Mediterranean climate are a better choice to operate wineries
- Countries not known as a wine country are hosting more wineries, which could prove to become an opportunity eventually
- Europe is well suited for producing wine based on average temperature
- The average climate temperature is set to reach 20 degrees Celsius by 2025, which may provide some countries with a better climate to produce wine while other countries climate could become disadvantageous

Problem

- Grape Capital invests in high growth industries but has observed a large growth in the wine industry
- The company wants a piece of the pie and plans on investing \$10M in wineries that it thinks can generate an ROI of 20%
- Grape Capital doesn't have extensive knowledge about the global wine industry and which wineries are successful
- A data analyst is hired to perform data analyses across four datasets: wine quality (1), wineries (2), wine countries (3), and climate change (4)
- The goal is to make recommendation for which wineries Grape Capital should invest its money to achieve it's ROI

Wine analysis:
Wine quality

Red Wine Quality – Data suggests that red wine with a higher wine quality rating has between 6-15 and 15-42 values for free and total sulfur dioxide versus lower quality red wine with a wider range

Low Red Wine Quality - 3

 Lower quality red wine seems to have a wider range of values in fixed acidity, free & total sulfur dioxide, and alcohol percentage

High Red Wine Quality - 8

 Higher quality red wine seems to have a narrow range of values in fixed acidity, free & total sulfur dioxide, and alcohol percentage

The data for both red and white wine shows there seem to be outliers involved

^{*} Red wine quality ranges between ratings 3 to 8

White Wine Quality – Data suggests that white wine with a higher wine quality rating has between 22-30 and 115-125 values for free and total sulfur dioxide versus lower quality white wine with a wider range

Low White Wine Quality - 3

 Lower quality white wine seems to have a wider range of values in free & total sulfur dioxide, and a lower alcohol percentage

High White Wine Quality - 9

 Higher quality white wine seems to have a narrow range of values in free & total sulfur dioxide, and a higher alcohol percentage

The data for both red and white wine shows there seem to be outliers involved

* White wine quality ranges between ratings 3 to 9

Removing Outliers Red & White Wine — Removing the outliers did not seem to have an adverse affect on the value ranges that point to a higher quality wine rating

High Red Wine Quality - 8

- Removing the outliers (420 26%) did not seem to have a major impact on the values that impact higher quality wine
- Main value ranges are:
 - Fixed acidity 8-10
 - Free sulfur dioxide 5-15
 - Total sulfur dioxide 18-42

High White Wine Quality - 9

- Removing the outliers (1044 21%) did not seem to have a major impact on the values that determine higher quality wine
- Main value ranges are:
 - Free sulfur dioxide 29-35
 - Total sulfur dioxide 115-125

Wine Quality Correlation – Heat maps showed that both red wine (pH & fixed acidity) and white wine (alcohol & density) had multilinearity which made it more difficult to determine exactly what wine variables correlate with wine quality

Creating a high-quality wine is a delicate balance of variables where ingredients should not be used either too much or too little

Red Wine Quality Correlation Red wine correlation: • Volatile acidity = - 0.39 (medium negative) Sulphates = 0.25 (weak positive) Alcohol = 0.48 (medium positive) Heatmap Correlations All Variables for dataframe red Medium negative correlation Correlated to -0.2fixed acidity Weak positive correlation -0.4 Medium positive -0.042 correlation

White Wine Quality Correlation

White wine correlation:

- Volatile acidity = 0.19 (weak negative)
- Density = 0.25 (medium positive)
- Alcohol = 0.48 (medium positive)

OLS Regression — Removing insignificant variables (P- value >0.05) for both red and white wine singled out chlorides and density for having the largest impact on wine quality

Red Wine: Significant wine variables

- Volatile acidity, chlorides, and pH are negatively correlated to wine quality (more of them results in lower wine quality)
- Density, sulphates, and alcohol are positively correlated to wine quality (more of them results in higher wine quality)

		•			_		•		
	Dep. Variable:		quality	R-s	quared	(uncente	red):	0.987	
	Model:		OLS	Adj. R-s	quared	(uncente	red):	0.987	
	Method:	Least	Squares			F-stat	istic:	1.736e+04	
	Date:	Sun, 28 F	eb 2021		Prob	(F-stati	stic):	0.00	
	Time:	1	8:24:13		Lo	g-Likelih	ood:	-1573.6	
No.	. Observations:		1599				AIC:	3161.	
	Df Residuals:		1592				BIC:	3199.	
	Df Model:		7						
Co	ovariance Type:	no	nrobust						
		coef	std err	t	P> t	[0.025	0.975]		
	volatile acidity	-1.0395	0.100	-10.350	0.000	-1.237	-0.843		Medium negative
	chlorides	-1.9948	0.398	-5.012	0.000	-2.775	-1.214		Strong negative
tota	al sulfur dioxide	-0.0024	0.001	-4.657	0.000	-0.003	-0.001		correlation
	density	4.2274	0.394	10.730	0.000	3.455	5.000		
	рН	-0.4207	0.115	-3.656	0.000	-0.646	-0.195		Strong positive correlation

0.8813 0.110 7.999 0.000 0.665

0.017 17.593 0.000

1.097

White Wine: **Significant wine variables**

- Chlorides and volatile acidity are negatively correlated to wine quality (more of them results in lower wine quality)
- Density, sulphates, and pH are positively correlated to wine quality (more of them results in higher wine quality)

Dep. Variable:		quality	R-s	quared	(uncente	red):	0.98
Model:	l: OLS		Adj. R-squared (uncentered):			red):	0.98
Method:	Least	Squares		F-statistic:			3.034e+0
Date:	Sun, 28 F	eb 2021		Prob	(F-stati	stic):	0.0
Time:		15:57:56		Lo	g-Likelih	ood:	-6068.
No. Observations:		4898				AIC:	1.215e+0
Df Residuals:		4890				BIC:	1.221e+0
Df Model:		8					
Covariance Type:	Covariance Type: nonrobust						
	coef	std err	t	P> t	[0.025	0.975	5]
fixed acidity	-0.0638	0.016	-3.952	0.000	-0.095	-0.03	2
volatile acidity	-1.2791	0.122	-10.487	0.000	-1.518	-1.04	0
chlorides	-6.7818	0.563	-12.051	0.000	-7.885	-5.67	9
free sulfur dioxide	0.0072	0.001	7.824	0.000	0.005	0.00	9
total sulfur dioxide	-0.0047	0.000	-12.493	0.000	-0.005	-0.00	4
density	6.0856	0.355	17.159	0.000	5.390	6.78	1
рН	0.3402	0.089	3.810	0.000	0.165	0.51	5
sulphates	0.4987	0.107	4.651	0.000	0.288	0.70	9

Medium negative

Strong positive correlation

correlation

strong multicollinearity or other numerical problems.

alcohol

^[1] R2 is computed without centering (uncentered) since the model does not contain a constant

^[2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[3] The condition number is large, 2.47e+03. This might indicate that there are

Wine Quality Conclusion

- 1. The OLS regression model predicted wine quality values with 98% confidence
- 2. Both red wine and white wine variables showed multilinearity which could skew significance toward wine quality
- 3. Removing multilinearity variables fixed acidity for red wine, alcohol for white wine, and other non-significance variables created a stronger and clearer model for estimating how changes in the independent wine variables are associated with changes in the dependent wine quality variable
- 4. Both red and white wine regression data suggests density had a positive coef while volatile acidity and chlorides had a negative coef to wine quality

Wine Countries – The United States, France, and Italy host most wineries and points globally

Wine Countries

- The United States, France, and Italy are the top 3 winery destinations
- The US has more than double the number of wineries France has

Wine Points

- The United States, France, and Italy scored the most wine points
- Mediterranean countries seem to pick up in points
- The US has almost 2.5X more points than France

Wine Ratings – The top 15 wineries all have 100+ reviews but cost less than \$135 avg while the top 15 most expensive wineries have <30 reviews

Winery Reviews

- The United States has a lot of wineries that have a lot of reviews compared to other countries
- France still maintains its presence as a large wine country

Wineries with Most Reviews

=	Country1	
	Portugal	222
	United States	218
	Portugal	215
	United States	211
	France	199
	France	196
9	United States	194
	Chile	164
	United States	159
	United States	130
	United States	126
	United States	125
	United States	118
	Chile	117
	France	117
		Portugal United States Portugal United States France France United States Chile United States Chile

Winery avg Prices

- 93% of the top 15 most expensive wineries by avg price is France
- Each of the top 15 wineries has less than 30 reviews overall
- Wineries with the most reviews cost on avg cost less than \$135 a bottle

Wineries with Highest AVG Price

Winery1	Country1		
Château les Ormes Sorbet	France		3,300
Château Pétrus	France	2,250	
Domaine du Comte Liger-Belair	France	1,489	
Château Cheval Blanc	France	825	
Château d'Yquem	France	800	
Masseto	Italy	588	
Château Laville Haut-Brion	France	580	
Château Haut-Brion	France	572	
Château La Mission Haut-Brion	France	546	
Château d'Ausone	France	507	
Château Mouton Rothschild	France	479	
Château Lafite Rothschild	France	473	
Armand de Brignac	France	469	
Château Margaux	France	448	
Château Latour	France	437	

Wine Varieties – The most popular wine varieties are red wines, and there seems to be a large price difference by wine variety due to scarcity

Wine Varieties & Avg Price

- Ramisco, Terrantez, and RosenMuscateller have the highest avg price (rare Portugese/Australian grapes)
- Wine varieties range in price by geography

Wine Varieties with High Price

Wine Varieties

- Pinot Noir, Chardonnay, Cabernet Sauvignon, Red Blend, and Bordeaux-Style Red Blends are the popular wine varieties
- Red wine varieties seem to be more popular than white wine varieties

Most Popular Wine Varieties

Variety1 =	
Pinot Noir	13,272
Chardonnay	11,753
Cabernet Sauvignon	9,472
Red Blend	8,946
Bordeaux-style Red Blend	6,915
Riesling	5,189
Sauvignon Blanc	4,968
Syrah	4,142
Rosè	3,564
Merlot	3,102
Nebbiolo	2,804
Zinfandel	2,714
Sangiovese	2,707
Malbec	2,652
Portuguese Red	2,466

Wine Price & Points Comparison – A higher wine price does not ensure higher point reviews by (experienced) tasters

Rating Count & Points by Taster

- Roger Voss, Michael Schachner, and Kerin O, ÄôKeefe gave out the most wine ratings from all tasters
- Roger Voss gave 1.7X more wine ratings than the 2nd closest taster in terms of wine ratings

Wine Rating Count and Points by Taster

	Count	of	
Taster Name	Wine rating	as Points	
Roger Voss	25,514	2,263,296	
Michael Schachner	15,134	1,315,258	
Kerin O,ÄôKeefe	10,776	957,641	
Virginie Boone	9,537	850,828	
Paul Gregutt	9,532	849,135	
Matt Kettmann	6,332	569,935	
Joe Czerwinski	5,147	455,696	
Sean P. Sullivan	4,966	440,761	
Anna Lee C. Iijima	4,415	390,355	
Jim Gordon	4,177	370,192	
Anne Krebiehl MW	3,685	333,723	
Lauren Buzzeo	1,835	161,002	
SUnited Statesan Kostrze	1,085	93,971	
Mike DeSimone	514	45,798	
Jeff Jenssen	491	43,365	
Alexander Peartree	415	35,630	
Carrie Dykes	139	12,009	
Fiona Adams	27	2,346	
Christina Pickard	6	527	

Comparing avg Rating Points With avg Price & Reviews

- Price does not seem to correlate to more review points
- A large percentage (50% of total) of wines receives a score of at least 86 points
- On average, Anne Krebiehl has given the most points for wine reviews while Virginie Boone review most expensive wines on average
- Michael Schachner and Roger Voss have reviewed most wines from all tasters

Average Points & Price per Wine Review by Taster

Taster Name	= p	Avg. Points	Avg. Price	Cou nt =	Percen tile (5
Roger Voss		89	39	25,514	88
Michael Schachner		87	25	15,134	87
Kerin O,ÄôKeefe		89	42	10,776	89
Virginie Boone		89	47	9,537	90
Paul Gregutt		89	34	9,532	89
Matt Kettmann		90	39	6,332	90
Joe Czerwinski		89	35	5,147	89
Sean P. Sullivan		89	34	4,966	89
Anna Lee C. Iijima		88	30	4,415	88
Jim Gordon		89	27	4,177	89
Anne Krebiehl MW		91	31	3,685	90
Lauren Buzzeo		88	24	1,835	88
SUnited Statesan Kost	rze	87	23	1,085	87
Mike DeSimone		89	28	514	89
Jeff Jenssen		88	22	491	89
Alexander Peartree		86	29	415	86
Carrie Dykes		86	31	139	87
Fiona Adams		87	31	27	87
Christina Pickard		88	29	6	88

Wine Climate – Countries in Africa and South America have a better wine climate despite more wines coming from moderate climates

Country Climate Country Climate Filter The AVG temperature differs by country but follows Filter list of countries with AVG the general equator climate zones temperatures to match countries from the wine ratings dataset Countries and AVG Temperature **Country Climate Filter** 3.96 11.26 Sub tropical/ **Tropical zone** 20.89 5.69

Ideal Country Climate

- India, Brazil, and Egypt are the top 3 countries based on AVG temperature
- Europe has most countries with ideal climate

AVG Temperature by Country

	'		, ,
Ī	Country1 =		<u>Continents</u>
	India	25.81	Asia
	Brazil	22.85	South America
	Egypt	20.90	Africa
	South Africa	18.22	Africa
	Morocco	17.18	Africa
	Peru	16.77	South America
	Mexico	15.72	North America
	Australia	15.19	Oceania
	Turkey	13.79	Europe
	Italy	11.97	Europe
	China	11.79	Asia
	Spain	11.45	Europe
	United States	11.26	North America
	France	10.40	Europe
	United Kingdom	9.46	Europe
	Germany	8.92	Europe
	Ukraine	7.04	Europe
	Chile	5.69	South America

5.11

North America

Canada

<u>Rank</u>	<u>Score</u>
Europe	7
South America	3
Africa	3
North America	3
Asia	2
Oceania	1

Wine climate prediction – Globally the average temperature is set to rise 0.15 degrees Celsius by 2025

Country Climate Prediction

Avg Temperature Prediction

- Avg temperature is set to rise by 0.15 degrees Celsius between 2013-2025
- Not all countries experience the same change in avg temperature due to climate change, economic policies, or other factors

Country Climate Effect

- Countries with historically lower avg temperature could suddenly bloom into a wine region
- Countries with increasing avg temperature due to climate change, economic policies, or other factors could negatively impact wine production

Recap

So far, we've discussed the following:

- Wine Capital problem.
- Technical approach
- Key insights & recommendations
- Wine analysis

> Investment recommendations

Winery Investments — Based on our data analysis of wine variables, countries, ratings, varieties, prices & points, and climate, Grape Capital should consider investing its money in 7 wineries across 5 countries that produce 12 wine varieties

	Country	Winery	Variety	Investment
Short Term	United States	Testarossa Williams Selyem Chateau Ste. Michelle	Pinot Noir Chardonnay Zinfandel White Riesling	\$6M
2021-2025	Portugal	Wines & Winemakers	Portugese Red Touriga Nacional	\$1M
	Argentina	Trapiche (AR)	Shira- Viognier Malbec	\$1M
Long Term 2025-2030	Spain	CVNE (ES)	Tempranillo Tempranillo Blend	\$1M
	Australia	D' Arenberg (AUS)	Shiraz Riesling	\$1M
ROI	5 countries	7 wineries	12 varieties	\$200K (20% * \$10M)

Q&A

Image Sources

Slide 2, 6, and 20: https://www.markettraders.com/blog/how-to-trade-triangle-chart-patterns/

All slides' grapes: https://www.clipartkey.com/view/ohRToT grape-transparent-wine-cabernet-sauvignon-wine-grapes/

Dataset Limitations & Assumptions

Dataset 1 - Wine Quality for red and white wine:

This datasets is related to red and white variants of the Portuguese "Vinho Verde" wine and is part of the UCI machine learning repository (UCI, 2015). The data was collected from May 2004 to February 2007, included 4898 wine samples for each wine variant, and was evaluated by a minimum of three sensory assessors through blind tastings. Each tasting was given a score on a scale that ranges from 0 to 10, that matches to very bad to excellent quality, respectively (white wine scores ranged between 3 and 9).

Dataset 2 - Wine ratings:

The dataset is pretty large with 150K rows and contains 10 columns of wine reviews scraped from WineEnthusiast during June of 2017. Each record in the dataset represents a single wine review from an online user of <u>Wine Enthusiast Magazine</u>.

Dataset 3 - Climate temperature

This dataset was put together by <u>Berkeley Earth</u> for their Berkeley Earth Surface Temperature Study. It combines 1.6 billion temperature reports from 16 pre-existing archives.

Assumptions

- Wine quality data was assumed to be general for the entire white and red wines available
- Wine reviews from 2017 are assumed to have stayed consistent in quality as to warrant the investment recommendations
- Climate temperature data from countries did not match most of the countries listed in the wine rating dataset. The wine rating dataset was chosen as the main dataset feeding into the recommendations
- The climate temperature dataset with bigger list of countries was primarily used to showcase and predict the average temperature changes over time and matched to countries from wine ratings dataset
- ROI is a projection and may not be generated by the projected date as mentioned

