Name: Ayaan. S. Shaikh

Entry No:2024VST9006

Department of Chemical Engineering

MCL732 ASSIGNMENT-3 REPORT

1.Aethalometer Model MATLAB code:

```
filename = 'F:\c data\desktop\Desktop\AYAAN MCL732 ASSIGNMENT-
3\BC_aethalometer_AVGFinal.xlsx';
data = readtable(filename, 'PreserveVariableNames', true);
MAE 370 = 18.47;
MAE_880 = 7.77;
BC1 = data.BC1;
BC6 = data.BC6;
b_abs_370 = BC1 * MAE_370;
b_abs_880 = BC6 * MAE_880;
wavelength_ratio = (880/370);
AAE bb = 1.8;
b_abs_880_ff = ((wavelength_ratio^AAE_bb * b_abs_880) - b_abs_370) /
(wavelength_ratio^AAE_bb - wavelength_ratio);
b_abs_880_bb = b_abs_880 - b_abs_880_ff;
BC6_ff = b_abs_880_ff / MAE_880;
BC6_bb = b_abs_880_bb / MAE_880;
BC6_ff_contribution = (BC6_ff ./ BC6) * 100;
BC6_bb_contribution = (BC6_bb ./ BC6) * 100;
avg BC6 ff = mean(BC6 ff contribution, 'omitnan');
avg_BC6_bb = mean(BC6_bb_contribution, 'omitnan');
fprintf('Average BC6_ff Contribution: %.2f%\\n', avg_BC6_ff);
fprintf('Average BC6_bb Contribution: %.2f%\\n', avg_BC6_bb);
BC6_table = table(BC6_ff, BC6_bb, repmat(avg_BC6_ff, size(BC6_ff)),
repmat(avg_BC6_bb, size(BC6_bb)), 'VariableNames', {'BC6_ff', 'BC6_bb',
'Avg_BC6_ff', 'Avg_BC6_bb'});
writetable(BC6_table, filename, 'Sheet', 'BC6_Data');
```


Computation of contributions of biomass burning(BCbb) and Fossil Fuel Burning(BCff) to total BC6.

Average BC6_ff Contribution: **83.00%** Average BC6_bb Contribution: **17.00%**

$\underline{\textbf{2.Diurnal and Daily variation of } \textbf{BC}_{\textbf{ff}} \textbf{ and } \textbf{BC}_{\textbf{bb}} \textbf{ based on Aethalometer model results:}}$

2.1 Diurnal variation:

2.2 Daily variation:

3).BC SOURCE APPORTIONMENT USING PMF MODEL:

Results:

From Conc. Excel file of Assignment-2:

PMF MODEL:

BC SOURCE DISTRIBUTION ACROSS IDENTIFIED PMF FACTORS:

<u>Factors</u>	<u>Source</u>	BC-Nomenclature	% contribution of BC to the source		
Factor-1	Waste Incineration	BC _{WI}	6%		
Factor-2	Secondary Chloride	BC _{SC}	1%		
Factor-3	Power Plants	BC _{PP}	1%		
Factor-4	Dust	BCD	0%		
Factor-5	Lead Rich or local coal combustion.	BC _{Pb-Rich}	7%		
Factor-6	Biomass Burning	BC _{BB}	39%		
Factor-7	Industrial Emission	BC _{IE}	14%		
Factor-8	Vehicular Emission	BC _{VE}	32%		

TIME SERIES ANALYSIS OF EACH BC FACTOR:

Y-AXIS:-MASS CONC. OF BC(micro-g/m3,earlier in assignment-2 the conc.was in nano-g/m3).

X-AXIS:-TIME

Daily variation:

Diurnal variation:

4)<u>CATEGORIZATION OF PMF-DERIVED BC SOURCES INTO FOSSIL FUEL BC(BC_{ff}),BIOMASS BURNING BC(BC_{bb}),MISCELLANEOUS SOURCES(BC_{misc.)}</u>

BCff:Power plants,vehicular emission.

BCbb:Biomass burning

BC(misc.): Waste Incineration, Pb-rich, Industrial Emission, Secondary chloride.

Aethelometer model:

Average BC6_ff Contribution: **83.00%**Average BC6_bb Contribution: **17.00%**

Discussion:

Comparison of results of Aethalometer model and PMF Model:

	BCbb	BCff		BCmisc.			
	% and (mean % and (mean			% and (mean			
	conc.+-	conc.+-		conc.+-			
	std.)microgram/	std.)microgram/		std.)microgram/			
	m3	m3		m3			
Aethalomet	17%	83%		N/A			
er model	(1.49 ± 0.98)	(7.29 ± 4.18)					
PMF	BC _{BB}	BC _{VE}	BCPP	BCwi	BCIE	BC _{Pb} .	BCsc
Model						rich	
	(4.1±2.1)	(2.94±1.84)	(2.37	(1.09 ± 0.87)	(1.62	$(0.7\pm0$	(4.15±
			±0.81		±1.3	.96)	5.74)
)		8)		
	39%	32%	1%	6%	14%	7%	1%

Graphical Comparison:

