Reference:

Reference: Graph Theory

Reference: Graph Theory by Reinhard Diestel

Reference: Graph Theory by Reinhard Diestel

Definition.

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V"

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair

G

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E),

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices",

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G))

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and E

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x, y\}\}$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x, y\} \mid x, y \in V\}$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges,

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition.

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph,

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G|

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

$$x, y \in V(G),$$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

$$x, y \in V(G), xy := \{x, y\}$$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

```
x, y \in V(G), xy := \{x, y\} \in E(G)
\|G\| := |E(G)|
```

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset)$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition.

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

 $x, y \in V(G), xy := \{x, y\} \in E(G)$ ||G|| := |E(G)| $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G,

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

 $x, y \in V(G), xy := \{x, y\} \in E(G)$ ||G|| := |E(G)| $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge e

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

 $x, y \in V(G), xy := \{x, y\} \in E(G)$ ||G|| := |E(G)| $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$.

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

 $x, y \in V(G), xy := \{x, y\} \in E(G)$ ||G|| := |E(G)| $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

 $E(v) := \{ e \in E(G) \mid v \in e \}$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

 $E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

 $E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$

Definition.

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

 $E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$

Definition. For any $v \in V(G)$, the degree,

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v)$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$. The average degree,

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$. The average degree, d(G)

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$. The average degree, $d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$. The average degree, $d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$. The average degree, $d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$

What is the relationship between $\epsilon(G)$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$. The average degree, $d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$. The average degree, $d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$. The average degree, $d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$. The average degree, $d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$

$$\sum d_G(v)$$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$. The average degree, $d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$

$$\sum d_G(v) = 2|E(G)|$$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$. The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

$$\sum d_G(v)$$
 is even

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

$$\sum d_G(v)$$
 is even, so,

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so, The number of vertices with odd degree

Reference: Graph Theory by Reinhard Diestel

Definition (Graph). A graph "on a set V" is a pair G = (V, E), where V is a set (the "set of vertices", denoted V(G)), and $E = \{\{x,y\} \mid x,y \in V\}$ (the "set of edges, denoted E(G))

Definition. The order of a graph, |G| := |V(G)|, is the number of vertices.

Notation:

$$x, y \in V(G), xy := \{x, y\} \in E(G)$$

 $||G|| := |E(G)|$
 $\emptyset := (\emptyset, \emptyset) \text{ (trivial / empty graph)}$

Definition. Given a graph G, a vertex $v \in V(G)$ is incident to an edge $e \in E(G)$ if $v \in e = \{a, b\}$. Then, e is said to be an edge "at v".

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v)\}\$$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\}\$$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v)\}$$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\}$$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2$$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \le \epsilon(G)$,

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1)??\epsilon(G)$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

Deleting v_1 with $d_{G_1}(v_0) \leq \epsilon(G_1)$,

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

Deleting v_1 with $d_{G_1}(v_0) \leq \epsilon(G_1)$, to obtain G_2 ,

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree, $d(G) := \frac{1}{1-1} \sum_{i=1}^{n} d_{G}$

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between $\epsilon(G) := |E(G)|/|V(G)|$ and d(G)?

$$d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum_{i=1}^{n} d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

Deleting
$$v_1$$
 with $d_{G_1}(v_0) \leq \epsilon(G_1)$, to obtain G_2 ,
Observe $\epsilon(G_2) \geq \epsilon(G_1)$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between $\epsilon(G) := |E(G)|/|V(G)|$ and d(G)?

$$d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$. The average degree,

 $d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$

What is the relationship between $\epsilon(G) := |E(G)|/|V(G)|$ and d(G)?

$$d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so, The number of vertices with odd degree is even

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

. . .

until no $v \in V(G)$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between $\epsilon(G) := |E(G)|/|V(G)|$ and d(G)?

$$d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

. . .

until no $v \in V(G)$ such that $d_{G_i}(v_0) \leq \epsilon(G_i)$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between $\epsilon(G) := |E(G)|/|V(G)|$ and d(G)?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

. . .

until no $v \in V(G)$ such that $d_{G_i}(v_0) \leq \epsilon(G_i)$

$$G_i \subset G_{i-1} \subset \cdots \subset G_1 \subset G$$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between $\epsilon(G) := |E(G)|/|V(G)|$ and d(G)?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

. . .

until no $v \in V(G)$ such that $d_{G_i}(v_0) \leq \epsilon(G_i)$

$$H := G_i \subset G_{i-1} \subset \cdots \subset G_1 \subset G$$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between $\epsilon(G) := |E(G)|/|V(G)|$ and d(G)?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum_{\sigma} d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

. . .

until no $v \in V(G)$ such that $d_{G_i}(v_0) \leq \epsilon(G_i)$

$$H := G_i \subset G_{i-1} \subset \cdots \subset G_1 \subset G$$

$$\epsilon(H) := \epsilon(G_i) \ge \epsilon(G_{i-1}) \ge \cdots \ge \epsilon(G_1) \ge \epsilon(G)$$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between $\epsilon(G) := |E(G)|/|V(G)|$ and d(G)?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

. . .

until no $v \in V(G)$ such that $d_{G_i}(v_0) \leq \epsilon(G_i)$

$$H := G_i \subset G_{i-1} \subset \cdots \subset G_1 \subset G$$
$$\epsilon(H) \ge \epsilon(G)$$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between $\epsilon(G) := |E(G)|/|V(G)|$ and d(G)?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so, The number of vertices with odd degree is even

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

. . .

until no $v \in V(G)$ such that $d_{G_i}(v_0) \leq \epsilon(G_i)$

$$H := G_i \subset G_{i-1} \subset \cdots \subset G_1 \subset G$$

$$\delta(H) > \epsilon(H) \ge \epsilon(G)$$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

. . .

until no $v \in V(G)$ such that $d_{G_i}(v_0) \leq \epsilon(G_i)$

$$H := G_i \subset G_{i-1} \subset \cdots \subset G_1 \subset G$$

$$\delta(H) > \epsilon(H) \geq \epsilon(G)$$

There is a subgraph

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

. . .

until no $v \in V(G)$ such that $d_{G_i}(v_0) \leq \epsilon(G_i)$

$$H:=G_i\subset G_{i-1}\subset\cdots\subset G_1\subset G$$

$$\delta(H) > \epsilon(H) \ge \epsilon(G)$$

There is a subgraph, H,

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

. . .

until no $v \in V(G)$ such that $d_{G_i}(v_0) \leq \epsilon(G_i)$

$$H:=G_i\subset G_{i-1}\subset\cdots\subset G_1\subset G$$

$$\delta(H) > \epsilon(H) \ge \epsilon(G)$$

There is a subgraph, H, of G

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between $\epsilon(G) := |E(G)|/|V(G)|$ and d(G)?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

. . .

until no $v \in V(G)$ such that $d_{G_i}(v_0) \leq \epsilon(G_i)$

$$H := G_i \subset G_{i-1} \subset \cdots \subset G_1 \subset G$$

$$\delta(H) > \epsilon(H) \ge \epsilon(G)$$

There is a subgraph, H, of G with

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between c(C) := |F(C)|/|V(C)| and d(C)?

$$\epsilon(G) := |E(G)|/|V(G)| \text{ and } d(G)?$$

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

. . .

until no $v \in V(G)$ such that $d_{G_i}(v_0) \leq \epsilon(G_i)$

$$H := G_i \subset G_{i-1} \subset \cdots \subset G_1 \subset G$$

$$\delta(H) > \epsilon(H) \geq \epsilon(G)$$

There is a subgraph, H, of G with $\delta(H) > \epsilon(H) \ge \epsilon(G)$

$$E(v) := \{e \in E(G) \mid v \in e\} \text{ (set of edges at } v)$$

Definition. For any $v \in V(G)$, the degree, $d_G(v) := |E(v)|$.

The average degree,

$$d(G) := \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

What is the relationship between c(C) := |F(C)|/|V(C)| and d(C)?

$$\epsilon(G) := |E(G)|/|V(G)|$$
 and $d(G)$?

$$|d(G)|V(G)| = \sum d_G(v) = 2|E(G)|$$

So,
$$d(G) = 2\epsilon(G)$$

 $\sum d_G(v)$ is even, so,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

Definition. Graphs, G_1 and G_2 are called isomorphic if

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

Deleting v_1 with $d_{G_1}(v_0) \leq \epsilon(G_1)$, to obtain G_2 , Observe $\epsilon(G_2) \geq \epsilon(G_1) \geq \epsilon(G)$

. . .

until no $v \in V(G)$ such that $d_{G_i}(v_0) \leq \epsilon(G_i)$

$$H := G_i \subset G_{i-1} \subset \cdots \subset G_1 \subset G$$

$$\delta(H) > \epsilon(H) \ge \epsilon(G)$$

There is a subgraph, H, of G with $\delta(H) > \epsilon(H) \ge \epsilon(G)$

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\}$$
 (minumum degree)
 $\Delta(G) := \max\{d_G(v) \mid v \in V(G)\}$ (maximum degree)

Definition. Graphs, G_1 and G_2 are called isomorphic if there is a bijection

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

Deleting v_1 with $d_{G_1}(v_0) \leq \epsilon(G_1)$, to obtain G_2 , Observe $\epsilon(G_2) \geq \epsilon(G_1) \geq \epsilon(G)$

. . .

until no $v \in V(G)$ such that $d_{G_i}(v_0) \leq \epsilon(G_i)$

$$H := G_i \subset G_{i-1} \subset \cdots \subset G_1 \subset G$$

$$\delta(H) > \epsilon(H) \ge \epsilon(G)$$

There is a subgraph, H, of G with $\delta(H) > \epsilon(H) \ge \epsilon(G)$

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\}$$
 (minumum degree)
 $\Delta(G) := \max\{d_G(v) \mid v \in V(G)\}$ (maximum degree)

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

. . .

until no $v \in V(G)$ such that $d_{G_i}(v_0) \leq \epsilon(G_i)$

$$H := G_i \subset G_{i-1} \subset \cdots \subset G_1 \subset G$$

$$\delta(H) > \epsilon(H) \ge \epsilon(G)$$

There is a subgraph, H, of G with $\delta(H) > \epsilon(H) \ge \epsilon(G)$

Definition. Graphs, G_1 and G_2 are called isomorphic if there is a bijection $\phi: V(G_1) \to V(G_2)$ satisfying,

$$\delta(G) := \min\{d_G(v) \mid v \in V(G)\} \text{ (minumum degree)}$$

$$\Delta(G) := \max\{d_G(v) \mid v \in V(G)\} \text{ (maximum degree)}$$

$$\epsilon(G) = d(G)/2??\delta(G)$$

Deleting v_0 with $d_G(v_0) \leq \epsilon(G)$, to obtain G_1 ,
Observe $\epsilon(G_1) \geq \epsilon(G)$

. . .

until no $v \in V(G)$ such that $d_{G_i}(v_0) \leq \epsilon(G_i)$

$$H := G_i \subset G_{i-1} \subset \cdots \subset G_1 \subset G$$

$$\delta(H) > \epsilon(H) \ge \epsilon(G)$$

There is a subgraph, H, of G with $\delta(H) > \epsilon(H) \ge \epsilon(G)$

Definition. Graphs, G_1 and G_2 are called isomorphic if there is a bijection $\phi: V(G_1) \to V(G_2)$ satisfying, $\{x,y\} \in E(G_1) \iff \{\phi(x),\phi(y)\} \in E(G_2)$