Egzamin z Mikroekonomii II

prof. Łukasz Woźny

21/09/2020

Czas na rozwiązanie zadań to 60 minut.

Proszę przesłać skany rozwiazań do swojego ćwiczeniowca do godziny 11:00.

Artur Krawczyk: ak56589@doktorant.sgh.waw.pl

Przemysław Siemaszko: ps50943@doktorant.sgh.waw.pl

W temacie pracy proszę podać słowo 'egzamin'.

Zadanie 1. [5 pkt.]

Na przykladzie preferencji cechujacych sie sklonnoscia do ryzyka i przykladzie binarnej loterii graficznie przedstaw premie za ryzyko. W jakich jednostkach jest ona wyrazona?

Zadanie 2. [20 pkt.]

W tym zadaniu przeanalizujesz międzyokresowy wybór konsumenta żyjącego dwa okresy. Załózmy, ze w pierwszym okresie konsument posiada majątek w wysokości w, który moze przeznaczyć na konsumpcję (c_1) i oszczędności (s). W drugim okresie jego majątek jest równy oszczędnościom poczynionym w pierwszym okresie, powiększonym o stałą stopę procentową r, który w całosci jest konsumowany. Użyteczność konsumenta ma postać $u(c_1, c_2) = (\alpha_1 c_1)(\alpha_2 c_2)^{\delta}$, gdzie c_1 , c_2 oznaczają odpowiednio poziom konsumpcji w pierwszym i drugim okresie.

- (i) Zapisz problem konsumenta maksymalizującego użyteczność w całym życiu. Zapisz odpowiadającą mu funkcję Lagrange'a.
- (ii) Rozwiąż problem, okreslając optymalne poziomy konsumpcji (c_1, c_2) i oszczędności (s).
- (iii) Jakiego rodzaju dobrami jest konsumpcja w pierwszym i drugim okresie? Czym w tym przypadku jest stopa procentowa r? Jak od niej zależy decyzja odnosnie konsumpcji w obydwu okresach?

Zadanie 3. [7 pkt.]

Dla poniższej funkcji wyprowadź odpowiadającą jej funkcje kosztów długookresowych: $f(\mathbf{x}) = (\alpha_1 x_1)^{\beta} (\alpha_2 x_2)^{1-\beta}$ (funkcja Cobba-Douglasa).

Zadanie 4. [8 pkt.]

Znajdź równowagi Nasha w strategiach czystych i mieszanych gry w "kamień, nożyczki, papier" pomiędzy dwoma graczami (I i II), każdy ze strategiami R, S, P i z wypłatami:

	R	S	P
R	1,1	2,0	0,2
S	0,2	1,1	2,0
Р	2,0	0,2	1,1

Zadanie 5. [20 pkt.]

Fabryka celulozy produkuje używając technologii o kosztach krańcowych $MC_f(Q)=2Q$. Krańcowe koszty zewnetrzne (zanieczyszcze) są zadane $MC_s(Q)=Q$. Popyt na dobra firmy jest dany przez funkcję odwrotnego popytu P(Q)=280-2Q. Dla przypadku monopolu, policz wysokość podatku Pigou pozwalającego internalizować negatywne efekty zewnętrzne.

Zadanie 6. [10 pkt.]

Podaj przykład taryfy mixed-bundling, która zwiększa zyski sprzedawcy. Jak ją zastosować? Kiedy będzie skuteczna?