

Adonija ZIO

October 2022

Outline

Executive summary

Introduction and Application Idea

Data Mining

Exploratory Data Analysis (EDA)

Conclusion

Executive summary

Data mining

- Data selection
- Outlier identification
- Nan rows identification
- Nan filling methods

Exploratory Data analysis

- Dispersal analysis
- Features relationship analysis
- Dimension reduction analysis
- Statistics test

Application feasibility analysis

- Data visualisation and application
- Features relationship and application
- Data dimensionality and application
- Statistics test and Application

Introduction

Steady increase in diabetes cases

463 million adults (20-79 years) with diabetes worldwide in 2019

This is expected to rise to 700 million by 2045

Over **4 million people** identified in France in 2019

3,5 millions under treatment in France in 2020

10% des diabétiques sont de type 1

These treatments are very high cost for the French health system (**19 billion** per year according to CNAM)

Source: Santé Publique France

Introduction

High need for prevention

The National Health Strategy 2018-2022 and the National Priority Prevention Plan set the framework for diabetes prevention policy

Diet is recognised as an essential preventive element in the most common type of diabetes (Type 2) in the world and in France (90%)

How to support the population in implementing a healthy diet to prevent type 2 diabetes?

Application Idea

1. Diet characteristics

According to a doctor and according to user health profile

2. Product proposal

According to the diet characteristics, application must offer a name of product that satisfy the diet

3. Product analysis

Scan a product, then, application will make a classification and say if it satisfy the diet or not in which it will reject it and suggest a similar product

Value treatment

Traitement des valeurs aberrantes There are 44459 rows which contain absurd values

Traitement des valeurs dupliquées Il existe 31565 lignes dupliquées

Traitement des outliers There are 89591 rows which contain Interquartile Outliers Inter Quartile Range for energy_100g is 1284.0 Inter Quartile Range for proteins_100g is 9.41 Inter Quartile Range for salt_100g is 1.40602 Inter Quartile Range for sodium_100g is 0.480811023622047 Inter Quartile Range for additives_n is 3.0 Inter Quartile Range for sugars_100g is 27.41 Inter Quartile Range for fat_100g is 22.02 Inter Quartile Range for carbohydrates_100g is 50.33 Inter Quartile Range for saturated-fat_100g is 7.875 Inter Quartile Range for nutrition-score-fr_100g is 13.0 Inter Quartile Range for nutrition-score-uk_100g is 14.0 Inter Quartile Range for fiber_100g is 3.3 Inter Quartile Range for cholesterol_100g is 0.025 Inter Quartile Range for trans-fat_100g is 0.0 Inter Quartile Range for calcium_100g is 0.089 Inter Quartile Range for vitamin-c_100g is 0.005 Inter Quartile Range for iron_100g is 0.00203 Inter Quartile Range for vitamin-a_100g is 8.34e-05

Nan Filling

01

Filling discrete variables with 0

02

Filling in the secondary variables with the median

03

KNN imputation with 5 neighbourhoods for the key variable

04

Iterative imputation with sklearn for all the others numeric variables.

Univariate analysis

Displot

Boxplot

Histogram

Categorical features

Categorical features visualisation

Bivariate analysis

Features relationship

Correlation analysis

PCA

Statistic tests

	Chi-square	Degree of freedom	Critical value	p_value
pnns_groups_1	11171.42	44.	60.48	0.0
pnns_groups_2	18517.63	156	186.15	0.0
countries	5030.93	2180	2289.74	5.92.10 ⁻²²⁶
categories_fr	77966.73	34084	34514.59	0.0
additives_fr	104693.14	63472	64059.18	0.0

	df	sum_sq	mean_sq	F	PR(>F)
pnns_groups_1	11.0	5.48e+05	49809.45	11308.08	0.0
nutrition_grade_fr	4.0	1.06e+06	263771.33	59883.17	0.0
pnns_groups_1:nutrition_grade_fr	44.0	2.07e+04	469.62	106.62	0.0
Residual	29297.0	1.29e+05	4.40	NaN	NaN

• Our features not satisfy normality test

Data availability

Relationship between categorical features and healthy diet

Relationship between features

Statistical test

Attention!

Data reporting Nan filling

Application feasibility analysis

Thank You for your attention!

