South African Mathematics Olympiad Third Round 2000

Answer all questions. No calculators or other technological accessories are allowed except the usual geometric drawing instruments.

Time: 4 hours.

- 1. A number x_n of the form 1010101 ... 1 has n ones. Find all n such that x_n is prime.
- 2. Solve for x, given $36x^4 + 36x^3 7x^2 6x + 1 = 0$.
- 3. Let $c \ge 1$ be an integer, and define the sequence a_1, a_2, a_3, \ldots , by

$$a_1 = 2;$$

 $a_{n+1} = c a_n + \sqrt{(c^2 - 1)(a_n^2 - 4)}, \text{ for } n = 1, 2, 3,$

Prove that a_n is an integer for all n.

- 4. ABCD is a square of side 1. P and Q are points on AB and BC such that $\widehat{PDQ} = 45^{\circ}$. Find the perimeter of $\triangle PBQ$.
- 5. Find all $f: \mathbb{Z} \to \mathbb{Z}$ (where \mathbb{Z} is the set of all integers) such that

$$2000f(f(x)) - 3999f(x) + 1999x = 0$$
 for all $x \in \mathbb{Z}$.

6. There are three ways to tile a 2×3 rectangle using 2×1 tiles:

Let A_n be the number of ways to tile a $4 \times n$ rectangle using 2×1 tiles. Prove that A_n is divisible by 2 if and only if A_n is divisible by 3.