# Lectures 8-9 CMS 165

**Spectral Methods** 

## Spectral Methods

- Utilize spectral decomposition of matrices (and tensors)
- Review of Eigen Decomposition

For a matrix S, u is an eigenvector if  $Su = \lambda u$  and  $\lambda$  is eigenvalue.

- ullet For symm.  $S \in \mathbb{R}^{d \times d}$ , there are d eigen values.
- $S = \sum_{i \in [d]} \lambda_i u_i u_i^{\top}$ . U is orthogonal.

#### Rayleigh Quotient

For matrix S with eigenvalues  $\lambda_1 \geq \lambda_2 \dots \lambda_d$  and corresponding eigenvectors  $u_1, \dots u_d$ , then

$$\max_{\|z\|=1} z^{\top} S z = \lambda_1, \quad \min_{\|z\|=1} z^{\top} S z = \lambda_d,$$

and the optimizing vectors are  $u_1$  and  $u_d$ .

#### **Optimal Projection**

$$\max_{\substack{P:P^2=I \ \mathrm{Rank}(P)=k}} \mathrm{Tr}(P^ op SP) = \lambda_1 + \lambda_2 \ldots + \lambda_k \ ext{and} \ P \ ext{spans} \ \{u_1,\ldots,u_k\}.$$

## Simplest Spectral Method: PCA

### Optimization problem

For (centered) points  $x_i \in \mathbb{R}^d$  , find projection P with  $\mathrm{Rank}(P) = k$  s.t.

$$\min_{P \in \mathbb{R}^{d \times d}} \frac{1}{n} \sum_{i \in [n]} ||x_i - Px_i||^2.$$



Result: If S = Cov(X) and  $S = U\Lambda U^{\top}$  is eigen decomposition, we have  $P = U_{(k)}U_{(k)}^{\top}$ , where  $U_{(k)}$  are top-k eigen vectors.

#### **Proof**

- By Pythagorean theorem:  $\sum_i \|x_i Px_i\|^2 = \sum_i \|x_i\|^2 \sum_i \|Px_i\|^2$ .
- Maximize:  $\frac{1}{n} \sum_i \|Px_i\|^2 = \frac{1}{n} \sum_i \operatorname{Tr} \left[ Px_i x_i^\top P^\top \right] = \operatorname{Tr} [PSP^\top].$

## PCA on Gaussian Mixtures

- k Gaussians: each sample is x = Ah + z.
- $\bullet$   $h \in [e_1, \ldots, e_k]$ , the basis vectors.  $\mathbb{E}[h] = w$ .
- $A \in \mathbb{R}^{d \times k}$ : columns are component means.
- Let  $\mu := Aw$  be the mean.
- $z \sim \mathcal{N}(0, \sigma^2 I)$  is white Gaussian noise.

$$V(0,\sigma^2I)$$
 is white Gaussian noise. 
$$\mathbb{E}[(x-\mu)(x-\mu)^{ op}] = \sum_{i\in[k]} w_i(a_i-\mu)(a_i-\mu)^{ op} + \sigma^2I.$$

How the above equation is obtained

$$\mathbb{E}[(x-\mu)(x-\mu)^{\top}] = \mathbb{E}[(Ah-\mu)(Ah-\mu)^{\top}] + \mathbb{E}[zz^{\top}]$$
$$= \sum_{i \in [k]} w_i (a_i - \mu)(a_i - \mu)^{\top} + \sigma^2 I.$$

## PCA on Gaussian Mixtures Cont.

$$\mathbb{E}[(x-\mu)(x-\mu)^{\top}] = \sum_{i \in [k]} w_i (a_i - \mu)(a_i - \mu)^{\top} + \sigma^2 I.$$

- The vectors  $\{a_i \mu\}$  are linearly dependent:  $\sum_i w_i(a_i \mu) = 0$ . The PSD matrix  $\sum_{i \in [k]} w_i(a_i \mu)(a_i \mu)^{\top}$  has rank  $\leq k 1$ .
- (k-1)-PCA on covariance matrix  $\cup \{\mu\}$  yields span(A).

#### Learning A through Spectral Clustering

- Project samples x on to span(A).
- Distance-based clustering (e.g. k-means).
- A series of works, e.g. Vempala & Wang.



## Hidden Markov Models

Observation sequence

- Why HMMs?
  - Handle temporally-dependent data
  - Succinct "factored" representation when state space is low-dimensional (c.f. autoregressive model)
- Some uses of HMMs:
  - Monitor "belief state" of dynamical system
  - Infer latent variables from time series
  - Density estimation

### Discrete Hidden Markov Models

- $\mathbb{P}[h_{t+1} = i | h_t = j] = T_{i,j}$ .
- $\bullet \ \mathbb{E}[x_t|h_t=j]=Oe_j.$
- $\pi$ : Initial distribution (of  $x_1$ ).
- Three view model.  $w := T\pi$ .



$$egin{aligned} \mathbb{E}[x_1|h_2] &= O \mathsf{Diag}(\pi) T^{ op} \mathsf{Diag}(w)^{-1} h_2 \ \mathbb{E}[x_2|h_2] &= O h_2 \ \mathbb{E}[x_3|h_2] &= O T h_2. \end{aligned}$$

#### Condition for non-degeneracy

- $O \in \mathbb{R}^{d \times k}$  has full column rank.
- T is invertible,  $\pi$  and  $T\pi$  have positive entries.

## Observable operator in HMM

### Discrete HMMs: observation operators

For  $x \in \{1, \ldots, n\}$ : define

$$A_x \triangleq \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} O_{x,1} & 0 \\ 0 & O_{x,m} \end{bmatrix} \in \mathbb{R}^{m \times m}$$

$$[A_x]_{i,j} = \Pr[h_{t+1} = i \land x_t = x \mid h_t = j].$$

The  $\{A_x\}$  are observation operators (Schützenberger, '61; Jaeger, '00).



## Observable operator in HMM contd.

#### Using observation operators

Matrix multiplication handles "local" marginalization of hidden variables: e.g.

$$\Pr[x_1, x_2] = \sum_{h_1} \Pr[h_1] \cdot \sum_{h_2} \Pr[h_2 | h_1] \Pr[x_1 | h_1] \cdot \sum_{h_3} \Pr[h_3 | h_2] \Pr[x_2 | h_2]$$
$$= \vec{1}_m^\top A_{x_2} A_{x_1} \vec{\pi}$$

where  $\vec{1}_m \in \mathbb{R}^m$  is the all-ones vector.

Upshot: The  $\{A_x\}$  contain the same information as T and O.

# Learning Observable Operators in HMM

Key rank condition: require  $T \in \mathbb{R}^{m \times m}$  and  $O \in \mathbb{R}^{n \times m}$  to have rank m (rules out pathological cases from hardness reductions)

Define 
$$P_1 \in \mathbb{R}^n$$
,  $P_{2,1} \in \mathbb{R}^{n \times n}$ ,  $P_{3,x,1} \in \mathbb{R}^{n \times n}$  for  $x = 1, \ldots, n$  by

$$[P_1]_i = \Pr[x_1 = i]$$
  
 $[P_{2,1}]_{i,j} = \Pr[x_2 = i, x_1 = j]$   
 $[P_{3,x,1}]_{i,j} = \Pr[x_3 = i, x_2 = x, x_1 = j]$ 

(probabilities of singletons, doubles, and triples).

<u>Claim</u>: Can recover equivalent HMM parameters from  $P_1$ ,  $P_{2,1}$ ,  $\{P_{3,x,1}\}$ , and these quantities can be estimated from data.

# Learning Observable Operators in HMM cont.

"Thin" SVD:  $P_{2,1} = U \Sigma V^{\top}$  where  $U = [\vec{u}_1 | \dots | \vec{u}_m] \in \mathbb{R}^{n \times m}$  Guaranteed m non-zero singular values by rank condition.



New parameters (based on U) implicitly transform hidden states

$$\vec{h}_t \mapsto (U^{\top}O)\vec{h}_t = U^{\top}\mathbb{E}[\vec{x}_t|\vec{h}_t]$$

(i.e. change to coordinate representation of  $\mathbb{E}[\vec{x}_t|\vec{h}_t]$  w.r.t.  $\{\vec{u}_1,\ldots,\vec{u}_m\}$ ).

# Learning Observable Operators in HMM cont.

For each  $x = 1, \ldots, n$ ,

$$B_x \stackrel{\triangle}{=} (U^\top P_{3,x,1}) (U^\top P_{2,1})^+ \qquad (X^+ \text{ is pseudoinv. of } X)$$
  
=  $(U^\top O) A_x (U^\top O)^{-1}$ . (algebra)

The  $B_x$  operate in the coord. system defined by  $\{\vec{u}_1,\ldots,\vec{u}_m\}$  (columns of U).

$$\Pr[x_{1:t}] = \vec{1}_m^{\top} A_{x_t} \dots A_{x_1} \vec{\pi} = \vec{1}_m^{\top} (U^{\top} O)^{-1} B_{x_t} \dots B_{x_1} (U^{\top} O) \vec{\pi}$$



$$\vec{u}_{2} \uparrow B_{x_{t}}(U^{\top}O\vec{h}_{t}) = U^{\top}(OA_{x_{t}}\vec{h}_{t})$$

Upshot: Suffices to learn  $\{B_x\}$  instead of  $\{A_x\}$ .

## Learning Algorithm for HMM

- 1. Look at triples of observations  $(x_1, x_2, x_3)$  in data; estimate frequencies  $\widehat{P}_1$ ,  $\widehat{P}_{2,1}$ , and  $\{\widehat{P}_{3,x,1}\}$
- 2. Compute SVD of  $\widehat{P}_{2,1}$  to get matrix of top m singular vectors  $\widehat{U}$  ("subspace identification")
- 3. Compute  $\widehat{B}_x \stackrel{\triangle}{=} (\widehat{U}^{\top} \widehat{P}_{3,x,1}) (\widehat{U}^{\top} \widehat{P}_{2,1})^+$  for each x ("observation operators")
- 4. Compute  $\hat{b}_1 \triangleq \hat{U}^{\top} \hat{P}_1$  and  $\hat{b}_{\infty} \triangleq (\hat{P}_{2,1}^{\top} \hat{U})^+ \hat{P}_1$

Joint probability calculations:

$$\widehat{\Pr}[x_1,\ldots,x_t] \stackrel{\triangle}{=} \widehat{b}_{\infty}^{\top} \widehat{B}_{x_t} \ldots \widehat{B}_{x_1} \widehat{b}_1.$$

• Conditional probabilities: Given  $x_{1:t-1}$ ,

$$\widehat{\Pr}[x_t|x_{1:t-1}] \triangleq \widehat{b}_{\infty}^{\top}\widehat{B}_{x_t}\widehat{b}_t$$

where

$$\widehat{b}_{t} \stackrel{\triangle}{=} \frac{\widehat{B}_{x_{t-1}} \dots \widehat{B}_{x_{1}} \widehat{b}_{1}}{\widehat{b}_{\infty}^{\top} \widehat{B}_{x_{t-1}} \dots \widehat{B}_{x_{1}} \widehat{b}_{1}} \approx (U^{\top} O) \mathbb{E}[\overrightarrow{h}_{t} | x_{1:t-1}].$$

"Belief states"  $\hat{b}_t$  linearly related to conditional hidden states. ( $b_t$  live in hypercube  $[-1,+1]^m$  instead simplex  $\Delta^m$ )

## Learning Guarantees

#### Sample complexity bound

Joint probability accuracy: with probability  $\geq 1 - \delta$ ,

$$O\left(\frac{t^2}{\epsilon^2} \cdot \left(\frac{m}{\sigma_m(O)^2 \sigma_m(P_{2,1})^4} + \frac{m \cdot n_0}{\sigma_m(O)^2 \sigma_m(P_{2,1})^2}\right) \cdot \log \frac{1}{\delta}\right)$$

observation triples sampled from the HMM suffices to guarantee

$$\sum_{x_1,\ldots,x_t} |\Pr[x_1,\ldots,x_t] - \widehat{\Pr}[x_1,\ldots,x_t]| \le \epsilon.$$

- m: number of states
- n<sub>0</sub>: number of observations that account for most of the probability mass
- $\sigma_m(M)$ : mth largest singular value of matrix M

Also have a sample complexity bound for conditional probability accuracy.

# Lots of other applications of spectral methods

- Extending HMMs to Partially observed Markov decision processes (POMDP) and Predictive state representations (PSR): passive vs active.
- POMDP: Action based on each observation and can influence Markovian evolution of hidden state
- PSR: No explicit Markovian assumption on hidden state. Directly predicts future (tests) based on past observations and actions (For linear PSR, similar to spectral updates in HMM)
- Stochastic bandits in a low rank subspace (ask TA Sahin about it)

### References

- Matrix computations (textbook) by Golub and Van Loan
- A spectral algorithm for learning hidden Markov models by Hsu, Kakade and Zhang.
- Spectral Approaches to Learning Predictive Representations by Byron Boots (PhD thesis)

https://apps.dtic.mil/dtic/tr/fulltext/u2/a566112.pdf