

Noida Institute of Engineering and Technology, Greater Noida

Algebraic Structures

UNIT-3

Discrete Structures

B.Tech (CSE)
IIIrd Sem

RAHUL KUMAR Assistant Professor

NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER NOIDA(An

Autonomous Institute EVALUATION SCHEME SEMESTER-III

Sl.	Subject Codes	Subject Name	P	eriod	ods Evaluation Schemes			Carra a a 4 a m		End Semester Total		Credit	
No.		Subject Mame	L	Т	P	СТ	TA	TOTAL	PS	TE	PE	Total	Credit
		WEEKS CO	MPU	LSO	RY	NDUC	TION	PROGRAI	VI				
1	AAS0303	Statistics and Probability	3	1	0	30	20	50		100		150	4
2	ACSE0306	Discrete Structures	3	0	0	30	20	50		100		150	3
3	ACSE0305	Computer Organization & Architecture	3	0	0	30	20	50		100		150	3
4	ACSE0302	Object Oriented Techniques using Java	3	0	0	30	20	50		100		150	3
5	ACSE0301	Data Structures	3	1	0	30	20	50		100		150	4
6	ACSDS0301	Foundations of Data Science	3	0	0	30	20	50		100		150	3
7	ACSE0352	Object Oriented Techniques using Java Lab	0	0	2				25		25	50	1
8	ACSE0351	Data Structures Lab	0	0	2				25		25	50	1
9	ACSDS0351	Data Analysis Lab	0	0	2				25		25	50	1
10	ACSE0359	Internship Assessment-I	0	0	2				50			50	1
11	ANC0301 / ANC0302	Cyber Security* / Environmental Science*(Non Credit)	2	0	0	30	20	50		50		100	0
12		MOOCs (For B.Tech.	Discret	e Stru	ctures	(ACSE	0306)	Unit					
2/28/2022		GRAND TOTAL		3	3							1100	24

B. TECH. SECOND YEAR (3rd Semester))-CSE/IT/CS/M.Tech. Integrated/Data Science/AI/AI-ML/IoT

Course code		L	T	P	Credits
Course title	DISCRETE STRUCTURES	3	0	0	3

Course objective:

The subject enhances one's ability to develop logical thinking and ability to problem solving. The objective of discrete structure is to enables students to formulate problems precisely, solve the problems, apply formal proofs techniques and explain their reasoning clearly.

Pre-requisites:

- 1. Basic Understanding of mathematics
- Basic knowledge algebra.
- 3. Basic knowledge of mathematical notations

	Course Contents / Syllabus	
Unit 1	Set Theory, Relation, Function	8 Hours
	v: Introduction to Sets and Elements, Types of sets, Venn Diagrams, Set Opera irs. Proofs of some general Identities on sets.	tions, Multisets,
	Definition, Operations on relations, Pictorial Representatives of Relations, Proper Relations, Recursive definition of relation, Order of relations.	ties of relations,
Functions:	Definition, Classification of functions, Operations on functions, Growth of Func	ctions.
Combinate	ories: Introduction, basic counting Techniques, Pigeonhole Principle.	
	e Relation & Generating function: Recursive definition of functions, Recurs solving Recurrences.	ive Algorithms,
Proof tech	niques: Mathematical Induction, Proof by Contradiction, Proof by Cases, Direct	Proof.
Unit 2	Algebraic Structures	8 Hours
Algebraic	Structures: Definition, Operation, Groups, Subgroups and order, Cyclic Groups,	, Cosets,

Rings, Internal Domains, and Fields.

Lagrange's theorem, Normal Subgroups, Permutation and Symmetric Groups, Group Homomorphisms,

Unit 3 Lattices and Boolean Algebra

8 Hours

Ordered set, Posets, Hasse Diagram of partially ordered set, Lattices: Introduction, Isomorphic Ordered set, Well ordered set, Properties of Lattices, Bounded and Complemented Lattices, Distributive Lattices.

Boolean Algebra: Introduction, Axioms and Theorems of Boolean Algebra, Algebraic Manipulation of Boolean Expressions, Simplification of Boolean Functions.

Unit 4 Propositional Logic

8 Hours

Propositional Logic: Introduction, Propositions and Compound Statements, Basic Logical Operations, Wellformed formula, Truth Tables, Tautology, Satisfiability, Contradiction, Algebra of Proposition, Theory of Inference.

Predicate Logic: First order predicate, Well-formed formula of Predicate, Quantifiers, Inference Theory of Predicate Logic.

Unit 5	Tree and Graph	8 Hours							
Trees: Def	Trees: Definition, Binary tree, Complete and Extended Binary Trees, Binary Tree Traversal, Binary Search								
Tree.									
_	Definition and terminology, Representation of Graphs, Various types of Graphs and Homeomorphism of Graphs, Euler and Hamiltonian Paths, Graph Cole								
Course outcome: After completion of this course students will be able to:									
Unit 1	Apply the basic principles of sets, relations & functions and mathematical	K3							
	induction in computer science & engineering related problems.								
Unit 2	Understand the algebraic structures and its properties to solve complex problems.	K2							
Unit 3	Describe lattices and its types and apply Boolean algebra to simplify digital circuit.	K2, K3							
Unit 4	Infer the validity of statements and construct proofs using predicate logic formulas.	K3, K5							
Unit 5	Design and use the non-linear data structure like tree and graphs to solve real world problems.	K3, K6							

Rahul Kumar Discrete Structures (ACSE0306) Unit

Application in CSE

- 1. Discrete Structures are useful in studying and describing objects and problems in branches of computer science such as computer algorithms, programming languages.
- 2. Computer implementations are significant in applying ideas from discrete mathematics to realworld problems, such as in operations research.
- 3. It is a very good tool for improving reasoning and problem-solving capabilities.
- 4. Discrete mathematics is used to include theoretical computer science, which is relevant to computing.
- 5. Discrete structures in computer science with the help of process algebras.

7

Course Objective

- The subject enhances one's ability to develop logical thinking and ability to problem solving.
- The objective of discrete structure is to enables students to formulate problems precisely, solve the problems, apply formal proofs techniques and explain their reasoning clearly.

8

Course Outcome

Course Outcome (CO)	At the end of course, the student will be able to	Bloom's Knowledge Level (KL)
CO1	Apply the basic principles of sets, relations & functions and mathematical induction in computer science & engineering related problems	K3
CO2	Understand the algebraic structures and its properties to solve complex problems	K2
CO3	Describe lattices and its types and apply Boolean algebra to simplify digital circuit.	K2,K3
CO4	Infer the validity of statements and construct proofs using predicate logic formulas.	K3,K5
CO5	Design and use the non-linear data structure like tree and graphs to solve real world problems (ACSE0306) Unit	K3,K6

Program Outcome

Engineering Graduates will be able to Understand:

- 1. Engineering knowledge
- 2. Problem analysis
- 3. Design/development of solutions
- 4. Conduct investigations of complex
- 5. Modern tool usage
- 6. The engineer and society
- 7. Environment and sustainability
- 8. Ethics
- 9. Individual and team work
- 10. Communication
- 11. Project management and finance
- 12. Life-long learning

CO-PO Mapping

CO-PO correlation matrix Discrete Structures (ACSE0306)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ACSE0306.1	2	2	3	3	2	2	-	-	2	1	-	3
ACSE0306.2	1	3	2	3	2	2	-	1	1	1	2	2
ACSE0306.3	2	2	3	2	2	2	-	2	2	1	2	3
ACSE0306.4	2	2	2	3	2	2	-	2	2	1	1	3
ACSE306.5	3	2	2	2	2	2	-	2	1	1	1	2
Average	2	2.2	2.4	2.6	2	2	-	1.4	1.6	1	1.2	2.6

Printed page:	Subject	Code:
No:	Roll	
NOIDA INSTITUTE OF ENGINEERING AND T	ECHNOL	OGY ,GREATER NOIDA
(An Autonomous Institute Affiliated to	AKTU,	Lucknow)
B.Tech/B.Voc./MBA/MCA/M.	Tech (Int	egrated)
(SEM: THEORY EXAMI	NATION	(2020-2021)
Subject	•••	
Time: 3 Hours		Max. Marks:100

General Instructions:

- All questions are compulsory. Answers should be brief and to the point.
- ➤ This Question paper consists ofpages & ...8......questions.
- > It comprises of three Sections, A, B, and C. You are to attempt all the sections.
- Section A Question No- 1 is objective type questions carrying 1 mark each, Question No- 2 is very short

Section B - Question No-3 is Long answer type -I questions with external choice carrying 6 marks each.

You need to attempt any five out of seven questions given.

Section C - Question No. 4-8 are Long answer type -II (within unit choice) questions carrying 10 marks each. You need to attempt any one part <u>a or b.</u>

> Students are instructed to cross the blank sheets before handing over the answer sheet to the invigilator.

No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

		$\underline{\mathbf{SECTION}-\mathbf{A}}$		CO
1.	Attem	npt all parts-	0×1=10]	
	1-a.	Question-	(1)	
	1-b.	Question-	(1)	
	1-с.	Question-	(1)	
	1-d.	Question-	(1)	
	1-е.	Question-	(1)	
	1-f.	Question-	(1)	
	1-g.	Question-	(1)	
	1-h.	Question-	(1)	
	1-i.	Question-	(1)	
	1-j.	Question-	(1)	

2.	Atten	upt all parts-	[5×2=10]	CO
	11001	pr in pines	[02 10]	
	2-a.	Question-	(2)	
	2-b.	Question-	(2)	
	2-с.	Question-	(2)	
	2-d.	Question-	(2)	
	2-е.	Question-	(2)	

		SECTION – B		CO
3.	Answe	[5×6=30]		
	3-a.	Question-	(6)	
	3-b.	Question-	(6)	
	3-с.	Question-	(6)	
	3-d.	Question-	(6)	
	3-е.	Question-	(6)	
	3-f.	Question-	(6)	
	3-g.	Question-	(6)	

		<u>SECTION – C</u>		CO
4	Answe	[5×10=50]		
	4-a.	Question-	(10)	
	4-b.	Question-	(10)	
5.	Answe	er any one of the following-		
	5-a.	Question-	(10)	
	5-b.	Question-	(10)	

6.	Answer any one of the following-						
	6-a.	Question-	(10)				
	6-b.	Question-	(10)				
7.	Answ	er any one of the following-					
	7-a.	Question-	(10)				
	7- b .	Question-	(10)				
8.	Answ	er any one of the following-					
	8-a.	Question-	(10)				
	8-b.	Question-	(10)				

Prerequisite and Recap

• Brief review of Relations and Equivalence of Relations.

Brief Introduction about the subject with video

Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic.

- https://www.youtube.com/watch?v=C-C2mtqMVfo
- •https://www.youtube.com/watch?v=35YXM8PcloY

Unit Content

- Bounded and complemented lattice
- Distributive Lattice
- Introduction of Boolean algebra
- Axioms and Theorems of Boolean algebra
- Algebraic manipulation of Boolean expressions
- Truth table & Logic gates
- Principle of duality
- Digital circuits and Boolean algebra
- Canonical form
- Simplification of Boolean Functions
- Karnaugh maps

Unit

Content

- Video links
- Daily Quiz
- Weekly Assignment
- MCQ
- Old Question papers
- Expected Question for University Exam
- Summary
- References.

Unit Objective

- Student will able to understand represent a finite partially ordered set, in the form of a drawing of its transitive reduction.
- Define Join and Meet.
- Student will able to draw Hasse Diagram.

Topic Objectives: Lattice and Boolean Algebra (CO3)

The student will be able to:

- Represent a Hasse Diagram.
- Give examples of finite and infinite sets.
- Build new sets from existing sets by applying various combinations of the set operations for example intersection union, difference, and complement.
- Determine Posets.
- Sets are used to define the concepts of relations and functions. The study of geometry, sequences, probability, etc. requires the knowledge of sets.

Ordered Sets & Posets

- A **Set** is a collection of elements. The elements that make up a set can be any kind of mathematical objects: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets.
- Example: A collection of natural numbers, as in, N = {1,2,3,4,5...}.
- A relation can also be used to define an order on a set.
- An **Ordered set** is a relational structure (S, ≤) such that the realtion ≤ is an ordering.
- An **ordered pair** is a pair of numbers (x,y) written in a particular order

Terminologies

• Cartesian Product: the product of two sets A and B such that every element of set A relates to every other element of set B to form ordered pairs.

$$A*B = \{(a,1),(a,2),(b,1),(b,2)\}$$

Reflexive Relation:

A relation R, over a set A, is **reflexive** if every element of the set is 'related' to itself.

Let's consider set A as follows:

$$A = \{p,q,r\}$$

Therefore, $A*A = \{(p,p),(p,q),(p,r),(q,p),(q,q),(q,r),(r,p),(r,q),(r,r)\}$

Then the reflexive pairs in A*A would be all the diagonal elements of the matrix

i.e. $\{(p,p),(q,q),(r,r)\}$ as every element relates to itself.

$A \times A$			
	p	q	r
p	pp	pq	pr
q	qp	qq	qr
r	rp	rq	rr

Terminologies

Symmetric: A relation R on a set A is called symmetric if (b, a) ∈ R whenever (a, b) ∈ R, for all a, b ∈ A.

• Anti-symmetric Relation: : A relation R on a set A such that for all a, b ∈ A, if (a, b) ∈ R and (b, a) ∈ R, then a = b is called antisymmetric.

Note:

- A relation can be both symmetric and antisymmetric.
- A relation can be neither symmetric nor antisymmetric.

Terminologies

Transitive: A relation R on a set A is called transitive if whenever (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R, for all a, b, c ∈ A.

Relation $R=\{(1,2),(2,3),(1,3)\}$ on set $A=\{1,2,3\}$ is transitive.

Asymmetric relation: Asymmetric relation is opposite of symmetric relation. A relation R on a set A is called asymmetric if no $(b,a) \in R$ when $(a,b) \in R$.

POSET(Partially Ordered Set).

A relation R, over a set A, is a partial order relation if it is **reflexive**, **anti-symmetric** and **transitive**.

For this, we will

- 1. Check if it is reflexive
- 2. Check if it is anti-symmetric
- 3. Check if it is transitive
- **Step 1:** The subset is **reflexive** as it contains the pairs, (p,p), (q,q) and (r,r).
- **Step 2**: the relation R is said to be antisymmetric on a set A, if xRy and yRx hold when x = y. Or it can be defined as, relation R is antisymmetric if either $(x,y) \notin R$ or $(y,x) \notin R$ whenever $x \neq y$.
- **Step 3**: The subset contains (p,p) and (p,r). Therefore according to the definition of a transitive relation, it must contain (p,r), which, you can see, is already present in it. Hence it is **transitive.**

Since all the three conditions are satisfied, we could now call the subset as a **partially ordered set**.

POSET(Partially Ordered Set).

Elements of POSET:

- **1. Maximal Element:** An element $a \in A$ is called a maximal element of A if there is no element in c in A such that $a \le c$.
- **2. Minimal Element:** An element $b \in A$ is called a minimal element of A if there is no element in c in A such that $c \le b$.

Example: Determine all the maximal and minimal elements of the poset whose Hasse diagram is shown in fig:

The maximal elements are b and f.

The minimal elements are d and e.

POSET(Partially Ordered Set).

Comparable Elements: Consider an ordered set A. Two elements a and b of set A are called comparable if $a \le b$ or $b \le a$

Non-Comparable Elements:

Consider an ordered set A. Two elements a and b of set A are called non-comparable if neither $a \le b$ nor $b \le a$.

Example: Consider $A = \{1, 2, 3, 5, 6, 10, 15, 30\}$ is ordered by divisibility. Determine all the comparable and non-comparable pairs of elements of A.

Solution: The comparable pairs of elements of A are:

The non-comparable pair of elements of A are:

Hasse Diagram

A **POSET** can be represented in the form of a simple diagram called the Hasse diagram.

Let us consider a set $B = \{3,4,5,6\}$

$$B*B = \{(3,3), (3,4), (3,5), (3,6), (4,3), (4,4), (4,5), (4,6), (5,3), (5,4), (5,5), (5,6), (6,3), (6,4), (6,5), (6,6)\}$$

From this Cartesian product, let us create another set R having the following pairs of elements:

$$R = \{(3,3), (3,4), (3,5), (3,6), (4,4), (4,5), (4,6), (5,5), (5,6), (6,6)\}$$

Now represent each of the pair in the graph

To further simplify the graph omit the self-loops and transitive edges in order to avoid repetition. The simplified graph would then look like this:

Example: Consider the set $A = \{4, 5, 6, 7\}$. Let R be the relation \leq on A. Draw the directed graph and the Hasse diagram of R.

Solution: The relation \leq on the set A is given by

 $R = \{\{4, 5\}, \{4, 6\}, \{4, 7\}, \{5, 6\}, \{5, 7\}, \{6, 7\}, \{4, 4\}, \{5, 5\}, \{6, 6\}, \{7, 7\}\}\}$

The directed graph of the relation R

To draw the Hasse diagram of partial order, apply the following points:

- 1. Delete all edges implied by reflexive property i.e. (4, 4), (5, 5), (6, 6), (7, 7)
- 2. Delete all edges implied by transitive property i.e. (4, 7), (5, 7), (4, 6)
- 3. Replace the circles representing the vertices by dots.
- Omit the arrows.

- **Upper Bound:** Consider B be a subset of a partially ordered set A. An element $x \in A$ is called an upper bound of B if $y \le x$ for every $y \in B$.
- **Lower Bound:** Consider B be a subset of a partially ordered set A. An element $z \in A$ is called a lower bound of B if $z \le x$ for every $x \in B$.

- **Upper Bound:** Consider B be a subset of a partially ordered set A. An element $x \in A$ is called an upper bound of B if $y \le x$ for every $y \in B$.
- Lower Bound: Consider B be a subset of a partially ordered set A. An element $z \in A$ is called a lower bound of B if $z \le x$ for every $x \in B$.

Example: Consider the poset $A = \{a, b, c, d, e, f, g\}$ be ordered shown in fig. Also let $B = \{c, d, e\}$. Determine the upper and lower bound of B.

Solution:

The upper bound of B is e, f, and g because every element of B is '\(\leq\) e, f, and g.

The lower bounds of B are a and b because a and b are '≤' every elements of B.

• Least Upper Bound(SUPREMUM): Let A be a subset of a partially ordered set S. An element M in S is called an upper bound of A if M succeeds every element of A, i.e. if, for every x in A, we have x <=M

If an upper bound of A precedes every other upper bound of A, then it is called the supremum of A and is denoted by Sup (A)

• **Greatest Lower Bound** (INFIMUM): An element m in a poset S is called a lower bound of a subset A of S if m precedes every element of A, i.e. if, for every y in A, we have m <=y If a lower bound of A succeeds every other lower bound of A, then it is called the infimum of A and is denoted by Inf (A)

Example: Determine the least upper bound and greatest lower bound of $B = \{a, b, c\}$ if they exist, of the poset whose Hasse diagram is

Solution: The least upper bound is c.

The greatest lower bound is k.

Lattice

A lattice is a poset in (L, \leq) in which every subset $\{a,b\}$ consisiting of two elements has a least upper bound and a greatest lower bound.

 $LUB({a,b})$ is denoted by a v b and is called the join of a and b.

GLB($\{a.b\}$) is denoted by a Λ b and is called the meet of a and b.

a) Is a lattice

Unit 3

b) Is not a lattice because f V g does not exist

Bounded Lattices:

- A lattice L is called a bounded lattice if it has greatest element 1 and a least element 0.
- Example:
- The power set P(S) of the set S under the operations of intersection and union is a bounded lattice since \emptyset is the least element of P(S) and the set S is the greatest element of P(S).
- The set of +ve integer I_+ under the usual order of \leq is not a bounded lattice since it has a least element 1 but the greatest element does not exist.
- Sub-Lattices:
- Consider a non-empty subset L_1 of a lattice L. Then L_1 is called a sub-lattice of L if L_1 itself is a lattice i.e., the operation of L i.e., a V b $\in L_1$ and a \wedge b $\in L_1$ whenever a $\in L_1$ and b $\in L_1$.

Ex: Determine all the sub-lattices of D_{30} that contain at least four elements, $D_{30} = \{1,2,3,5,6,10,15,30\}$.

- Solution: The sub-lattices of D_{30} that contain at least four elements are as follows:
- 1. {1, 2, 6, 30}
 2. {1, 2, 3, 30}
 3. {1, 5, 15, 30}
 4. {1, 3, 6, 30}
 5. {1, 5, 10, 30}
 6. {1, 3, 15, 30}
 7. {2, 6, 10, 30}
- Isomorphic Lattices:
- Two lattices L_1 and L_2 are called isomorphic lattices if there is a bijection from L_1 to L_2 i.e., $f: L_1 \rightarrow L_2$, such that $f(a \land b) = f(a) \land f(b)$ and $f(a \lor b) = f(a) \lor f(b)$
- **Example:** Determine whether the lattices shown in fig are isomorphic.
- **Solution:** The lattices shown in fig are isomorphic. Consider the mapping $f = \{(a, 1), (b, 2), (c, 3), (d, 4)\}$. For example $f(b \land c) = f(a) = 1$. Also, we have $f(b) \land f(c) = 2 \land 3 = 1$

Distributive Lattice:

- A lattice L is called distributive lattice if for any elements a, b and c of L, it satisfies following distributive properties:
- $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$
- a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
- If the lattice L does not satisfies the above properties, it is called a non-distributive lattice.
- Example: The power set P (S) of the set S under the operation of intersection and union is a distributive function. Since, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
 a ∪ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for any sets a, b and c of P(S).
- The lattice shown in fig II is a distributive. Since, it satisfies the distributive properties for all ordered triples which are taken from 1, 2, 3, and 4.

12/28/2022

Types of Lattice

Complements and complemented lattices:

Let L be a bounded lattice with lower bound o and upper bound I. Let a be an element if L. An element x in L is called a complement of a if a \vee x = I and a \wedge x = 0

A lattice L is said to be complemented if L is bounded and every element in L has a complement.

Example: Determine the complement of a and c in fig.:

Solution: The complement of a is d. Since, a \vee d = 1 and a \wedge d = 0

Question: Find out complemented and Distributive Lattice from the Figure given below.

Topic Objective: Boolean Algebra (CO3)

After learning Boolean algebra students will be able to

- Perform the three basic logic operations.
- Describe the operation of and construct the truth tables for the AND, NAND, OR, and NOR gates, and the NOT (INVERTER) circuit.
- Implement logic circuits using basic AND, OR, expression for the logic gates and combinations of logic gates. and NOT gates.
- Appreciate the potential of Boolean algebra to simplify complex logic expressions.
- Use De-Morgan's theorems to simplify logic expressions.

Boolean Algebra(CO3)

- An algebra which is use for simplifying the presentation & manipulation of propositional logic.
- It is also known as Switching Algebra.
- Invented by George Boole in 1854.
- Boolean algebra is mainly use for simplify and manipulate electronic logic circuits in computers.

Boolean Algebra(CO3)

• Boolean Algebra:

- A complemented distributive lattice is known as a Boolean Algebra. It is denoted by $(B, \Lambda, V, ', 0, 1)$, where B is a set on which two binary operations Λ (*) and V(+) and a unary operation (complement) are defined. Here 0 and 1 are two distinct elements of B.
- Since (B,Λ,V) is a complemented distributive lattice, therefore each element of B has a unique complement.
- Sub-Algebra:
- Consider a Boolean-Algebra (B, *, +,', 0,1) and let A ⊆ B. Then (A,*, +,', 0,1) is called a sub-algebra or Sub-Boolean Algebra of B if A itself is a Boolean Algebra i.e., A contains the elements 0 and 1 and is closed under the operations *, + and '.
- Example: Consider the Boolean algebra D₇₀ whose Hasse diagram is shown in fig
- A= $\{1, 7, 10, 70\}$ and B = $\{1, 2, 35, 70\}$ is a sub-algebra of D₇₀. Since both A and B are closed under operation Λ , Vand '.

35

Basic concepts of Boolean algebra (CO1)

- It is denoted by (B, +, ., ', 0, 1), where
 - \triangleright B = non-empty set
 - \triangleright + is the binary operation denoting logical OR
 - > . is the binary operation denoting logical AND
 - ➤ ' is the unary operation denoting logical NOT
 - \triangleright 0 and 1 are distinct elements known as identity elements of + and . operation
- It deals with the binary number system {0,1}.
- Truth Table -It is a tabular representation of all the combination of values for input and their corresponding outputs.

AND Operation(CO1)

- AND operation is used for logical multiplication.
- The **dot** symbol (".")used for representing AND operation.
- AND operator has an output 1 if all the inputs are 1 otherwise the output is 0.

Input	Input	Output
Α	В	C=A.B
0	0	0
0	1	0
1	0	0
1	1	1

OR Operation(CO1)

- OR operation is use for logical addition.
- The symbol ("+") used for represent OR operation.
- OR operator has an output 0 if all of the inputs are 0 otherwise the output is 1.

Input	Input	Output
Α	В	C =A+B
0	0	0
0	1	1
1	0	1
1	1	1

NOT operation (CO1)

- NOT gate performs the logical complementation operation.
- It is an electronic circuit that generates the reverse of the input signal as output signal.

Input	Output
Α	Y =A'
0	1
1	0

Postulates/Axioms of Boolean Algebra (CO1)

If a, b, $c \in B$, then

1. Closure Law

i.
$$a + b \in B$$

ii.

$$a.b \in B$$

2. Commutative Law

i.
$$a + b = b + a$$

ii.

$$a.b = b.a$$

3. Distributive Law

i.
$$a.(b + c) = a.b + a.c$$

ii.

$$a + (b.c) = (a + b).(a + c)$$

4. Identity Law

i.
$$a + 0 = a$$

ii.

$$a.1 = a$$

5. Complement Law

i.
$$a + a' = 1$$

ii.

$$a.a' = 0$$

Postulates/Axioms of Boolean Algebra (CO1)

6. Idempotent Law

i.
$$a + a = a$$

$$a.a = a$$

7. Boundness Law

i.
$$a + 1 = 1$$

$$a.0 = 0$$

8. Absorption Law

i.
$$a + a.b = a$$

$$a.(a+b)=a$$

Unit 3

9. Associative Law

i.
$$a + (b + c) = (a + b) + c$$

$$a.(b.c) = (a.b).c$$

Boolean function

- A Boolean function is a special kind of mathematical function f:Xn→X
 f:Xn→X of degree n, where X={0,1}X={0,1} is a Boolean domain and n is a
 non-negative integer. It describes the way how to derive Boolean output
 from Boolean inputs.
- Example Let, F(A,B)=A'B'F(A,B)=A'B'. This is a function of degree 2 from the set of ordered pairs of Boolean variables to the set {0,1}{0,1} where F(0,0)=1,F(0,1)=0,F(1,0)=0F(0,0)=1,F(0,1)=0,F(1,0)=0 and F(1,1)=0

•

Minimization of Boolean Algebra using laws (CO1)

1.
$$(A + B)(A + C) = A + BC$$

This rule can be proved as follows:
 $(A + B)(A + C) = AA + AC + AB + BC$ (Distributive law)
 $= A + AC + AB + BC$ (AA = A)
 $= A(1 + C) + AB + BC$ (1 + C = 1)
 $= A \cdot 1 + AB + BC$
 $= A(1 + B) + BC$ (1 + B = 1)
 $= A \cdot 1 + BC$ (A · 1 = A)
 $= A + BC$

Minimization of Boolean Algebra using laws (CO1)

2. •
$$AB + \overline{A}C + BC = AB + \overline{A}C$$
 (Consensus Theorem)

۷.	AD TAC TBC - AD TAC (CO	insensus Theorem)
	Proof Steps	Justification
	$AB + \overline{A}C + BC$	
	$= AB + \overline{A}C + 1 \cdot BC$	Identity element
	$= AB + \overline{A}C + (A + \overline{A}) \cdot BC$	Complement
	$= AB + \overline{A}C + ABC + \overline{A}BC$	Distributive
	$= AB + ABC + \overline{A}C + \overline{A}CB$	Commutative
	$= AB \cdot 1 + ABC + \overline{AC} \cdot 1 + \overline{ACB}$	Identity element
	$= AB (1+C) + \overline{A}C (1+B)$	Distributive
	$= AB \cdot 1 + \overline{A}C \cdot 1$	1+X=1
	$= AB + \overline{A}C$	Identity element

Minimization of Boolean Algebra using laws (CO1)

1.
$$\overline{A}\overline{B} + AB + \overline{A}B$$

$$\overline{A}\overline{B} + B(A + \overline{A})$$
 $\overline{A}\overline{B} + B \cdot 1$ (Complement law)
 $\overline{A}\overline{B} + B$
 $B + \overline{A}\overline{B}$
(B + \overline{A})(B + \overline{B}) (Distributive law)
(B + \overline{A}).1 (Complement law)

2.
$$(A + B) (A + \overline{B})$$

A +
$$B\overline{B}$$
 (Complement law)

A + 0

(Identity Law)

3.
$$\overline{A}B + A\overline{B} + AB + \overline{A}\overline{B}$$

$$B(A + \overline{A}) + \overline{B}(A + \overline{A})$$
 $B \cdot 1 + \overline{B} \cdot 1$ (Identity law)
$$B + \overline{B}$$
 (Complement law)

Other laws of Boolean Algebra (CO1)

If a, b, $c \in B$, then

1. Uniqueness of complement

If
$$a + x = 1$$
 and $a.x = 0$, then $x = a$

2. Involution Law

$$(a')' = a$$

3. De-Morgan's Law

i.
$$(a + b)' = a'.b'$$
 ii. $(a.b) = a' + b'$

Simplification: Example

$$(\overline{AB} + \overline{AB})(A + B) = \overline{AB}\overline{AB}(A+B)$$

$$= (\overline{A}+B)(A+\overline{B})(A+B)$$

$$= (\overline{A}+B)(AA+AB+\overline{BA}+\overline{BB})$$

$$= (\overline{A}+B)(A+AB+A\overline{B}+\overline{BB})$$

$$= (\overline{A}+B)(A(1+B+\overline{B})+\overline{BB})$$

$$= (\overline{A}+B)(A(1)+\overline{BB})$$

$$= (\overline{A}+B)A$$

$$= A\overline{A}+AB$$

$$= AB$$

Example of De-Morgan Law(CO1)

Example:

Apply DeMorgan's theorem to the given expressions:

$$F_2 = \overline{(\overline{X} + Z)(\overline{XY})}$$

$$F_2 = (\overline{\overline{X} + Z}) + (\overline{\overline{XY}})$$

$$F_{y} = (\overline{\overline{X} + Z}) + (XY)$$

$$F_{,=}(\overline{\overline{X}}\,\overline{Z})+(XY)$$

$$F_2 = (X \overline{Z}) + (XY)$$

$$F_{,=} X \overline{Z} + X Y$$

Unit 3

Boolean Function(CO1)

- Boolean function is an expression formed with binary variable.
- It is the combination of Boolean operators such as AND, OR & NOT operators.

$$X.(X'+Y)=X.Y$$

Input				Output	
х	Υ	$\overline{\mathbf{x}}$	X+Y	X.(X+ Y)	=X.Y
0	0	1	1	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	1	0	1	1	1

Truth table for Boolean function.

Logic Gate (CO1)

- Computer carries out all operations by the combination of signals that pass through standard blocks of built-in circuits.
- Logic gate is an elementary building block of digital electronic circuits that operates one or more input signals to produce standard output.
- The common use of logic gate elements is to act as switch.
- In computer logic gates are use to implement Boolean functions.

Logic Gates Symbol (CO1)

AND Gate

OR Gate

NOT Gate

Rahul Kumar

AND Gate (CO1)

- AND gate is use for logical multiplication input signals.
- If the input values for an AND gate are 1 then the output is 1 otherwise the output is 0.

OR Gate (CO1)

- OR gate performs the logical addition operation.
- It is an electronic circuit that generates an output signal 1 if any of the input signal is 1.

NOT Gate (CO1)

- NOT gate performs the logical complementation operation.
- It is an electronic circuit that generates the reverse of the input signal as output signal.

Exclusive OR gate(CO1)

OR Gate

IN	NPUT	OUTPUT
A	В	F
0	0	0
0	1	1 1
1	0	1 1
1	1	1 1

Exclusive OR Gate

INPUT		OUTPUT
Α	В	С
0	0	0
0	1	1
1	0	1
1	1	0

Exclusive NOR gate(CO1)

Exclusive-NOR gate

A	В	Output
О	О	1
О	1	О
1	О	О
1	1	1

Equivalent gate circuit

Universal Gates(CO1)

NAND & NOR gates

Unit 3

Summary of Logic Gates(CO1)

Input	Output
I	F
0	1
1	0

Inputs		Output
Α	В	F
0	0	0
1	0	0
0	1	0
1	1	1

Inputs		Output
Α	В	F
0	0	1
1	0	1
0	1	1
1	1	0

Inputs		Output
Α	В	F
0	0	0
1	0	1
0	1	1
1	1	1

Inputs		Output
Α	В	F
0	0	1
1	0	0
0	1	0
1	1	0

Principle of Duality(CO1)

This principle states that any algebraic equality derived from these axioms will still be valid whenever the OR and AND operators, and identity elements 0 and 1, have been interchanged. i.e. changing every OR into AND and vice versa, and every 0 into 1 and vice versa.

Example:

1.
$$X + 0 = X$$

2.
$$X \cdot 1 = X$$
 (dual of 1)

$$3. X + 1 = 1$$

4.
$$X \cdot 0 = 0$$
 (dual of 3)

5.
$$X + X = X$$

$$6. X \bullet X = X \quad (dual of 5)$$

7.
$$X + X' = 1$$

8.
$$X \cdot X' = 0$$
 (dual of 8)

Canonical/Standard forms(CO1)

We need to consider formal techniques for the simplification of Boolean functions.

- Identical functions will have exactly the same canonical form.
- Minterms and Maxterms.
- Sum-of-Minterms and Product-of- Maxterms.
- Product and Sum terms.
- Sum-of-Products (SOP) and Product-of-Sums (POS)

Terms of Canonical/standard forms(CO1)

- Literal: A variable or its complement.
- Product term: literals connected by •
- Sum term: literals connected by +
- Minterm: a product term in which all the variables appear exactly once, either complemented or un-complemented.
- Maxterm: a sum term in which all the variables appear exactly once, either complemented or un-complemented.

Minterms(CO1)

- Represents exactly one combination in the truth table.
- Denoted by mj, where j is the decimal equivalent of the minterm 's corresponding binary combination (bj).
- A variable in mj is complemented if its value in bj is 0, otherwise is uncomplemented.
- Example: Assume 3 variables (A,B,C), and j=3. Then, bj = 011 and its corresponding minterm is denoted by mj = A'BC

Maxterms(CO1)

- Represents exactly one combination in the truth table.
- Denoted by Mj, where j is the decimal equivalent of the maxterm's corresponding binary combination (bj).
- A variable in Mj is complemented if its value in bj is 1, otherwise is uncomplemented.
- Example: Assume 3 variables (A,B,C), and j=3. Then, bj = 011 and its corresponding maxterm is denoted by Mj = A+B'+C'

Simplification of Boolean Functions (CO1)

- An implementation of a Boolean Function requires the use of logic gates.
- A smaller number of gates, with each gate (other then Inverter) having less number of inputs, may reduce the cost of the implementation.
- There are 2 methods for simplification of Boolean functions: algebraic method and graphical method (K-maps).

Topic objective: K-maps(CO1)

- Simplification of Boolean functions and expressions using K-map.
- K-map implementation for circuit designing.

Prerequisite and recap of Topic: K-maps(CO1)

Prerequisite

- Boolean functions.
- Binary logic.
- SOP form
- POS form

Recap

• K-map is a graphical representation to solve the Boolean functions to reduce redundancy. It is easy to find the minimized expression of lengthy Boolean functions using K-maps.

K-Map (CO1)

- The **Karnaugh map** (**KM** or **K-map**) is a method of simplifying Boolean algebra expressions. Maurice Karnaugh introduced it in 1953.
- The Karnaugh map reduces the need for extensive calculations by taking advantage of humans' pattern-recognition capability. It also permits the rapid identification and elimination of potential race conditions.
- The required Boolean results are transferred from a truth table onto a twodimensional grid where, in Karnaugh maps, the cells are ordered in Gray code, and each cell position represents one combination of input conditions.
- Cells are also known as minterms, while each cell value represents the corresponding output value of the boolean function.
- Optimal groups of 1s or 0s are identified, which represent the terms of a canonical form of the logic in the original truth table. These terms can be used to write a minimal Boolean expression representing the required logic.

Rules for K-Map Simplification(CO1)

- Groups may not contain zero.
- We can group 1,2,4,8,...cells.
- Each group should be a large as possible.
- Groups may overlap.
- Opposite grouping and corner grouping are allowed.
- Grouping can not possible in diagonally manner.
- Cells contains 1 must be grouped.

Grouping:(CO1)

www.electricaltechnology.org

Groups of 4

12/28/2022

K-Maps Numbering (CO1)

- Cell numbers are written in the cells.
- 2-variable K-map

Examples of 2-variable K-Maps (CO1)

x_1	x_2	f
0	0	1
0	1	1
1	O	O
1	1	1

$$f = \overline{x}_1 + x$$

2-Variable K-Map SOP & POS:(CO1)

3-Variable K-Map Numbering:(CO1)

3-Variable K-Map Examples:(CO1)

$$f = \sum (4,5) = A \overline{B}$$

$$f = \sum (0,1,4,5) = \overline{B}$$

$$f = \sum (0,1,2,3) = \overline{A}$$

$$f = \sum (0,4) = \overline{A} C$$

$$f = \sum (4,6) = A \overline{C}$$

$$f = \sum (0,2) = \overline{A} \overline{C}$$

$$f = \sum (0,2,4,6) = \overline{C}$$

4-variable K-map Numbering (CO1)

12/28/2022

Unit 3

4-variable K-map Examples (CO1)

4-variable K-map simplification(CO1)

Out= $\overline{AB}CD + \overline{AB}CD + \overline{AB}CD + \overline{AB}\overline{CD} + \overline{AB}\overline{CD} + \overline{AB}\overline{CD} + \overline{AB}\overline{CD}$

Don't cares in K map(CO1)

A **don't-care** term (abbreviated DC, historically also known as redundancies, irrelevancies, optional entries, invalid combinations, vacuous combinations, forbidden combinations, or unused states) for a function is an input-sequence (a series of bits) for which the function output does not matter.

- ◆ Don't cares can be treated as 0s or 1s
 - \Rightarrow Example: minimize $F(A,B,C,D) = \Sigma m(1,3,5,7,9) + d(6,12,13)$
 - ♦ With and without using don't cares

Don't cares in K map(CO1)

Example: Simplify the Boolean function

$$F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15), dc(w, x, y, z) = \Sigma(0, 2, 5)$$

Unit 3

Practice Problems on K-map (CO1)

Simplify using SOP

1)
$$Z = (A,B,C) = \sum (1,3,6,7)$$
 Ans: (A'C+AB)

2)
$$F(P,Q,R,S) = \sum (0,2,5,7,8,10,13,15)$$
 Ans: (QS+Q'S')

Simplify using POS

1) $F(A,B,C)=\pi(0,3,6,7)$

Ans: (A' + B' + C)(B' + C')(A + B + C)

2) $F(A,B,C,D)=\pi(3,5,7,8,10,11,12,13)$

Ans: (C+D'+B').(C'+D'+A).(A'+C+D).(A'+B+C')

Daily Quiz (CO1)

- 1. Algebra of logic is termed as _____
 - a) Numerical logic
 - b) Boolean algebra
 - c) Arithmetic logic
 - d) Boolean number
- 2. Boolean algebra can be used _____
 - a) For designing of the digital computers
 - b) In building logic symbols
 - c) Circuit theory
 - d) Building algebraic functions
- 3. What is the definition of Boolean functions?
 - a) An arithmetic function with k degrees such that f:Y->Y^k
 - b) A special mathematical function with n degrees such that f:Yⁿ->Y
 - c) An algebraic function with n degrees such that $f:X^n \rightarrow X$
 - d) A polynomial function with k degrees such that $f:X^2 \rightarrow X^n$

Daily Quiz (CO1)

- 4. $F(X,Y,Z,M) = X^Y^Z^M$. The degree of the function is _____
- a) 2
- b) 5
- c) 4
- d) 1
- 5. K-map is used for _____
- a) logic minimization
- b) expression maximization
- c) summing of parity bits
- d) logic gate creation
- 6. A Poset in which every pair of elements has both a least upper bound and a greatest lower bound is termed as _____
- a) sublattice
- b) lattice
- c) trail
- d) walk

Unit 3

Daily Quiz (CO3)

- 7. Which of the following is a Simplification law?
- a) $M.(\sim M+N) = M.N$
- b) M+(N.O) = (M+N)(M+O)
- c) \sim (M+N) = \sim M. \sim N
- d) M.(N.O) = (M.N).O
- 8. What are the canonical forms of Boolean Expressions?
- a) OR and XOR
- b) NOR and XNOR
- c) MAX and MIN
- d) SOM and POM
- 9. Which of the following is/are the universal logic gates?
- a) OR and NOR
- b) AND
- c) NAND and NOR
- d) NOT

Daily Quiz (CO1)

11. The	of all the variables in direct or complemented from is a maxterm.
a) addition	
b) product	
c) moduler	
d) subtraction	
12 is	used to implement the Boolean functions.
a) Logical notation	is a second seco
b) Arithmetic logic	es
c) Logic gates	
d) Expressions	
13. Inversion of sin	ngle bit input to a single bit output using
a) NOT gate	
b) NOR gate	
c) AND gate	
d) NAND gate	

Daily Quiz (CO1)

14. There are _____ numbers of Boolean functions of degree n.

- a) n
- b) $2^{(2*n)}$
- $c) n^3$
- d) $n^{(n*2)}$

15. Minimization of function F(A,B,C) = A*B*(B+C) is _____

- a) AC
- b) B+C
- c) B`
- d) AB

16. The set for which the Boolean function is functionally complete is ______

- a) {*, %, /}
- **b**) {., +, -}
- c) $\{^{\wedge}, +, -\}$
- $d) \{\%, +, *\}$

Unit 3

Weekly Assignment

(CO3)

- Q1. Define Poset.
- Q2. Explain Join and Meet.
- Q3. Draw Karnaugh map and simplify the Boolean expression

Unit

Daily Quiz (CO1)

- 17. _____ and ____ are the two binary operations defined for lattices.
- a) Join, meet
- b) Addition, subtraction
- c) Union, intersection
- d) Multiplication, modulo division
- 18. The graph given below is an example of
- a) non-lattice poset
- b) semilattice
- c) partial lattice
- d) bounded lattice

- 19. In the poset $(Z^+, |)$ (where Z^+ is the set of all positive integers and | is the divides relation) are the integers 9 and 351 comparable?
- a) comparable
- b) not comparable
- c) comparable but not determined
- d) determined but not comparable

96

Daily Quiz (CO1)

- 17. _____ and ____ are the two binary operations defined for lattices.
- a) Join, meet
- b) Addition, subtraction
- c) Union, intersection
- d) Multiplication, modulo division
- 18. The graph given below is an example of
- a) non-lattice poset
- b) semilattice
- c) partial lattice
- d) bounded lattice

- 19. In the poset $(Z^+, |)$ (where Z^+ is the set of all positive integers and | is the divides relation) are the integers 9 and 351 comparable?
- a) comparable
- b) not comparable
- c) comparable but not determined
- d) determined but not comparable

- 1. Algebra of logic is termed as _____
 - a) Numerical logic

b) Boolean algebra

c) Arithmetic logic

- d) Boolean number
- 2. Boolean algebra can be used _____
 - a) For designing of the digital computers
 - b) In building logic symbols
 - c) Circuit theory
 - d) Building algebraic functions
- 3. What is the definition of Boolean functions?
 - a) An arithmetic function with k degrees such that f:Y->Y^k
 - b) A special mathematical function with n degrees such that f:Yⁿ->Y
 - c) An algebraic function with n degrees such that f:Xⁿ->X
 - d) A polynomial function with k degrees such that $f:X^2->X^n$

4. $F(X,Y,Z,M) = X^Y^Z^M$. The degree of the function is _____

Rahul Kumar

a) 2c) 4

- b) 5
- d) 1

5. K-map is used for _____

- a) logic minimization
- c) summing of parity bits
- 6. Simplify the expression: XY' + X' + Y'X'.
 - a) X' + Y
 - b) XY'
 - c) (XY)'
 - d) Y' + X
- 7. Find the simplified term Y'(X' + Y')(X + X'Y)?
 - a) XY'
 - b) X'Y
 - c) X + Y
 - d) X'Y'

- b) expression maximization
- d) logic gate creation

- 8. To display time in railway stations which digital circuit is used?
 - a) seven segment decoder
 - b) eight segment encoder
 - c) 8:3 multiplexer
 - d) 9 bit segment driver
- 9. When designing a circuit to emulate a truth table, both Product-of-Sums (POS) expressions and Sum-of-Products (SOP) expressions can be derived from?
 - a) k-map
 - b) NAND gate
 - c) NOR gate
 - d) X-NOR gate
- 10. Addition of two or more bits produces how many bits to construct a logic gate?
 - a) 108
 - b) 2
 - c) 32
 - d) 64

- 11. Who has invented K-map?
 - a) Maurice Karnaugh
 - b) Edward Veitch
 - c) George Boole
 - d) Adam Smith
- 12. In Gray coding, the adjacent code values differ by _____
 - a) single bit
 - b) 3 bits
 - c) 10 bits
 - d) 0 bit
- 13. Simplify the expression using K-maps: $F(A,B,C) = \pi(0,2,4,5,7)$.
 - a) (x+y)(y+z)(x+z)(x'+z')
 - b) (x+z')(y+z)(x+y)
 - c) (x+y'+z)(x+z')
 - d) (y'+z')(x'+y)(z+y')

Old Question Papers (CO1)

1. Draw Karnaugh map and simplify the Boolean expression

2. Simplify the following Boolean function using K-map:

$$F(x,y,z)=\Sigma(0,2,3,7)$$

- 3. Find the values of the Boolean function represented by F(x, y, z) = xy + z'.
- 4. Simplify the given 2-variable Boolean equation by using K-map F = X Y' + X'Y + X'Y'.
- 5. Simplify the given 4-variable Boolean equation by using k-map. F(W, X, Y, Z) = (1, 5, 12, 13).
- 6. What is De-Morgan's Law. Explain with example.
- 7. What are Boolean axioms?
- 8. Minimize the Boolean function without using K map: A+AB.
- 9. How many NAND gates are required for XOR gate?
- 10. Describe Boolean duality principle.

Old Question Papers (CO1)

- 11. Design logic circuit using AND, OR, Not gate to solve following problem:
 - (i) input two bits x,y and output two bits representing x-y(1-1=00,1-0=01,0-0=00,0-1=11)
 - (ii) input three bits x,y,z and output one bit which is majority of three input bits.

For more Previous year Question papers:

https://drive.google.com/drive/folders/1xmt08wjuxu71WAmO9Gxj2iDQ0lQf-so1

Expected Questions for University Exam (CO1)

- 1. Draw Karnaugh map and simplify the Boolean expression: A'B'C'D'+ A'B C'D + A'B'C D + A'B'C D' + A'B C D
- 2. Simplify the following Boolean function using K-map:

$$F(x,y,z)=\Sigma(0,2,3,7)$$

- 3. Simplify the given 4-variable Boolean equation by using k-map. F(W, X, Y, Z) = (1, 5, 12, 13).
- 4. How many NAND gates are required for XOR gate?
- 5. Describe Boolean duality principle.
- 6. Define SOP and POS.
- 7. Design logic circuit using AND, OR, Not gate to solve following problem:
 - (i) input two bits x,y and output two bits representing x-y(1-1=00,1-0=01,0-0=00,0-1=11)
 - (ii) input three bits x,y,z and output one bit which is majority of three input bits.
- 8. How many NAND gates are required for XOR gate?
- 9. What is the definition of Boolean functions?
- 10. Simplify the expression: A'(A + BC) + (AC + B'C).

UNIT Recap (CO3)

- Boolean algebra simplifies logic circuits to increase work efficiency of digital device.
- Logic circuits can be built for any binary electric or electronic devices including switches, relays, electron tubes and transistors.
- The subject enhances one's ability to develop logical thinking and ability to problem solving.

Thank You

12/28/2022 Rahul Kumar Discrete Structures (ACSE0306) Unit 3