CONTEÚDO

Lista de Símbolos			
1	Intro	odução à Teoria da Medida	5
	1.1	Espaços e funções mensuráveis	5
	1.2	Medida	8
		1.2.1 Construindo uma medida para $\mathbb R$	9
	1.3	Integral de Lebesgue	10
	1.4	Espaços \mathcal{L}^p	27

2 CONTEÚDO

LISTA DE SÍMBOLOS

\mathfrak{B}	Álgebra de Borel
$\widehat{\mathfrak{B}}$	Álgebra de Borel em $\overline{\mathbb{R}}$
XΕ	Função caracteristica do conjunto <i>E</i>
ð	σ -álgebra
f^+	Parte positiva da função f
f^-	Parte negativa da função f
$f\sim_{\mu} g$	f e g são μ -equivalentes i.e., $f=g$ em quase toda parte em X
$\mathcal{L}(X,\eth,\mu)$	Espaço das funções integraveis em relação a medida μ .
$\mathcal{L}^p(X,\eth,\mu)$	Espaço de Lebesgue \mathcal{L}^p .
$\mathcal{M}(X,\eth)$	Espaço das funções $f:X o \overline{\mathbb{R}}$ mensuráveis
$\mathcal{M}^+(X,\eth)$	Espaço das funções $f:X o \overline{\mathbb{R}}$ mensuráveis não negativas
$\mu(E)$	Medida do conjunto E
$N_{\mu}(\cdot)$	Semi-norma em relação a medida μ .
$\mathcal{P}(X)$	Conjunto das partes do conjunto X
$\overline{\mathbb{R}}$	Reta extendida i.e., $\mathbb{R} \cup \{-\infty, +\infty\}$

4 CONTEÚDO

INTRODUÇÃO À TEORIA DA MEDIDA

A teoria da medida é um ramo fundamental da matemática que estuda a generalização da noção de tamanho, volume e probabilidade. Originada das necessidades da análise e da teoria da probabilidade, essa teoria oferece uma estrutura rigorosa para tratar de conjuntos, funções e integrais em contextos mais abstratos e complexos. Este capítulo explora os conceitos-chave da teoria da medida, suas principais definições e teoremas.

1.1 Espaços e funções mensuráveis

Nesta seção trataremos especificamente dos conceitos de espaços e funções mensuráveis. Para este fim, precisamos inicialmente definir o significado de σ -álgebra. A partir deste conceito estaremos prontos para estabelecer o que chamamos de espaços mensuráveis

Definição 1.1. Seja X um conjunto não vazio. Uma família \eth de subconjuntos de X é uma σ -álgebra se satisfaz as seguintes condições

- 1. \emptyset , X ∈ \eth
- 2. Se $S \in \mathfrak{F}$ então $S^{\mathcal{C}} = X \setminus S \in \mathfrak{F}$
- 3. Se (S_n) é uma sequência de elementos de \eth então $\bigcup_{n=1}^{\infty} S_n \in \eth$

O par (X, \eth) é dito espaço mensurável e os subconjuntos de \eth são chamados de conjuntos mensuráveis (ou \eth -mensuráveis)

Exemplo 1.2. Seja X um conjunto não vazio e considere $\eth = \{\emptyset, X\}$. Afirmamos que \eth é uma σ -álgebra. Com efeito,

- 1. \emptyset , $X \in \eth$ pela definição.
- 2. $\emptyset^{\mathcal{C}} = X \in \mathfrak{F} \ \mathrm{e} \ X^{\mathcal{C}} = \emptyset \in \mathfrak{F}$
- 3. $U\emptyset = \emptyset \in \eth$ ou $UX = X \in \eth$

Exemplo 1.3. Seja $X = \{a, b, c, d\}$. $\eth = \{\emptyset, \{a, b\}, \{a, c\}, \{a, b, c, d\}\}$ não é uma *σ*-álgebra de X pois $\{a, b\}^{C} = \{c, d\} \notin \eth$

Observação: Seja (S_{α}) uma coleção de conjuntos quaisquer. Pela Regra de De Morgan tem-se

$$\left(\bigcup_{\alpha} S_{\alpha}\right)^{\mathcal{C}} = \bigcap_{\alpha} S_{\alpha}^{\mathcal{C}} \ e \ \left(\bigcap_{\alpha} S_{\alpha}\right)^{\mathcal{C}} = \bigcup_{\alpha} S_{\alpha}^{\mathcal{C}}$$

Dessa forma, se (S_n) é uma sequência de elementos de uma σ -álgebra, então $\bigcap_{n=1}^{\infty} S_n \in \eth$

Observação:

Observação:

Exemplo 1.4. Seja X um conjunto não enumerável e considere

$$\eth = \{S \subseteq X : S \text{ \'e enumer\'avel ou } S^{\mathcal{C}} \text{ \'e enumer\'avel}\}$$

Afirmamos que \eth é uma σ -álgebra. De fato

- 1. $\emptyset \in \eth$ pois é enumerável e $X \in \eth$ pois $X^{\mathcal{C}} = \emptyset$ que é enumerável
- 2. se $S \in \mathfrak{F}$ temos as seguintes possibilidades

S é enumerável, então $S^{\mathcal{C}} \in \eth$ pois $(S^{\mathcal{C}})^{\mathcal{C}} = S$ é enumerável

 $\mathcal{S}^{\mathcal{C}}$ é enumerável, então pela definição da σ -álgebra, $\mathcal{S}^{\mathcal{C}} \in \eth$

3. Seja (S_n) uma sequência de subconjuntos em \eth , isto é, $S_n \in \eth$ para todo $n \in \mathbb{N}$, aqui temos três possibilidades a serem consideradas

 S_n é enumerável para todo $n \in \mathbb{N}$. Então $\bigcup_{n=1}^\infty S_n$ é enumerável, portanto está em \mathfrak{F}

 $S_n^{\mathcal{C}}$ é enumerável para todo $n \in \mathbb{N}$. Então

$$\left(\bigcup_{n=1}^{\infty}\right)^{\mathcal{C}} = \bigcap S_n^{\mathcal{C}} \subseteq S_{n_0}^{\mathcal{C}}$$

é enumerável pois é subconjunto de um conjunto enumerável $S_{n_0}^{\mathcal{C}}$, portanto está em \eth Se existem $i,j\in\mathbb{N}$ tais que

$$S_i \subseteq X$$
 e $S_i^{\mathcal{C}} \subseteq X$ são enumeráveis

podemos afirmar que $\bigcup_{n=1}^{\infty} S_n$ não é enumerável, pois $S_j^{\mathcal{C}}$ é enumerável, e como X não é enumerável, segue que S_j também não é enumerável, fazendo com que a união se torne não enumerável. Dito isso, mostremos que $\left(\bigcup_{n=1}^{\infty} S_n\right)^{\mathcal{C}}$ é enumerável. Com efeito, observe que

$$\left(\bigcup_{n=1}^{\infty} S_n\right)^{\mathcal{C}} = \bigcap_{n=1}^{\infty} S_n^{\mathcal{C}} \subseteq S_j^{\mathcal{C}}$$

ou seja, o complementar da união é subconjunto de um conjunto enumerável, logo é um conjunto enumerável. Portanto $\bigcup_{n=1}^{\infty} S_n \in \eth$.

Dessa forma, \eth é uma σ -álgebra

Exemplo 1.5. Seja X um conjunto não vazio. Se \eth_1 e \eth_2 são σ -álgebras de X então $\eth = \eth_1 \cap \eth_2$ também é uma σ -álgebra de X.

Dado um conjunto cujos elementos são subconjuntos de X, o resultado abaixo nos diz como encontrar a menor σ -álgebra contendo este.

Proposição 1.6. Sejam X um conjunto não vazio e $A \subseteq \mathcal{P}(X)$ uma coleção não vazia de subconjuntos de X. Então a interseção de todas as σ -álgebras de subconjuntos de X que contem A é a menor σ -álgebra que contém A.

Agora definimos uma σ -álgebra bastante importante para o estudo da teoria da medida conhecida como álgebra de Borel

Definição 1.7. Seja $\mathbb R$ o conjunto dos números reais. A álgebra de Borel é a σ -álgebra $\mathfrak B$ gerada por todos os intervalos abertos (x,y) em $\mathbb R$, ou seja, considerando o conjunto

$$A = \{(x_{\alpha}, y_{\alpha}); x_{\alpha}, y_{\alpha} \in \mathbb{R}, x_{\alpha} < y_{\alpha}\}$$

temos que

$$\mathfrak{B}=\bigcap_{\alpha}\mathfrak{F}_{\alpha}$$
,

onde cada \eth_{α} é uma σ -álgebra que contem A.

Equivalentemente, podemos dizer que \mathfrak{B} é a σ -álgebra gerada por todos conjuntos abertos de \mathbb{R} . É fácil ver que essa equivalência é válida pois qualquer conjunto aberto de \mathbb{R} pode ser expresso como união de intervalos abertos. Ainda mais, expressando \mathfrak{B} dessa forma é possível ver que não precisamos que \mathfrak{B} seja uma σ -álgebra de \mathbb{R} mas sim de qualquer espaço topólogico (X, \mathcal{T}) , nesse caso dizemos que \mathfrak{B} é a σ -álgebra gerada pela topólogia \mathcal{T} . Nesse trabalho a notação \mathfrak{B} será utilizada apenas para a álgebra de Borel em \mathbb{R} .

O resultado abaixo apresenta uma outra forma de definir a álgebra de Borel

Proposição 1.8. \mathfrak{B} é a σ -álgebra gerada por todos intervalos fechados

Demonstração. □

Exemplo 1.9. Alguns exemplos de conjuntos que estão em ${\mathfrak B}$ são

- Todo conjunto fechado é um conjunto em $\mathfrak B$ pois é o complementar de um conjunto aberto.
- Todo conjunto enumerável está em \mathfrak{B} pois se $B = \{x_1, x_2, \dots\}$, então $B = \bigcup_{n=1}^{\infty} \{x_n\}$ que é um conjunto em \mathfrak{B} pois cada $\{x_n\}$ é um conjunto fechado.
- Todo intervalo do tipo [a, b) ou (a, b] com $a, b \in \mathbb{R}$ é um conjunto em \mathfrak{B} pois $[a, b) = \bigcap_{n=1}^{\infty} (a \frac{1}{k}, b)$ e $(a, b] = \bigcap_{n=1}^{\infty} (a, b + \frac{1}{n})$.

A sensação é de que a álgebra de Borel contem todos os subconjuntos de \mathbb{R} , isto é $\mathfrak{B}=\mathcal{P}(\mathbb{R})$. Porem este não é o caso, pois existem subconjuntos de \mathbb{R} que são bastante dificeis de definir (vide [??]) que não estão em \mathfrak{B} . Mas se esses conjuntos são tão dificeis de definir por que precisamos de uma σ -álgebra que exclui eles.

Na seção a seguir estudaremos o conceito de medida e suas propiedades, em um exemplo veremos que ao tentar definir uma medida no espaço $(\mathbb{R},\mathcal{P}(\mathbb{R}))$ uma propiedade importante não é satisfeita, mas restrigindo para o espaço $(\mathbb{R},\mathfrak{B})$ conseguimos definir a mesma medida de forma que todas propiedades são satisfeitas.

Definição 1.10. O conjunto $\overline{\mathbb{R}}$ é dita reta extendida e é definido por

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\} = [-\infty, +\infty]$$

Observação: Operações com ∞ em $\overline{\mathbb{R}}$

Proposição 1.11. Seja $\overline{\mathbb{R}}$ a reta estendida. Considere $E_1 = E \cup \{-\infty\}$, $E_2 = E \cup \{+\infty\}$, $E_3 = E \cup \{-\infty, +\infty\}$ e $\widehat{\mathfrak{B}} = \{E_1, E_2, E_3, E\}$ com E variando na álgebra de Borel \mathfrak{B} . Então $\widehat{\mathfrak{B}}$ é uma σ -álgebra em $\overline{\mathbb{R}}$ denominada álgebra estendida de Borel.

Demonstração. □

Figura 1.1: À esquerda o gráfico de f e à direita o gráfico de f_1 e f_2 Fonte: Autoral

Definição 1.12. Uma função $f: X \to \mathbb{R}$ é dita ser \eth -mensurável (ou simplesmente mensurável) se para cada $\alpha \in \mathbb{R}$, o conjunto

$$\{x \in X : f(x) > \alpha\}$$

pertence a σ -álgebra.

Exemplo 1.13. A função constante $x \mapsto c$ é mensurável. Com efeito, se $\alpha \geqslant c$, então

$$\{x \in X : f(x) > \alpha\} = \emptyset \in \eth$$

pois o único valor que a função assume é c. Se $\alpha < c$, então

$$\{x \in X : f(x) > \alpha\} = X \in \eth$$

Exemplo 1.14. A função caracteristica χ_S de um subconjunto $S \in \eth$ é mensurável

Exemplo 1.15. Se $f: X \to \mathbb{R}$ com $X \in \mathfrak{B} \subseteq \mathbb{R}$ é contínua, então f é mensurável. De fato, basta notar que

$$\{x \in X ; f(x) > \alpha\} = f^{-1}((\alpha, \infty)).$$

Pela contínuidade de f, o conjunto $f^{-1}((\alpha, \infty))$ é aberto para todo $\alpha \in \mathbb{R}$. Dessa forma $\{x \in X : f(x) > \alpha\} \in \mathfrak{B}$. Portanto f é mensurável.

Exemplo 1.16. Dada uma função f mensurável. A função t runcagem de f (Figura 1.1) dada por

$$f_n(x) = \begin{cases} f(x) & \text{se } |f(x)| \leqslant n \\ n & \text{se } f(x) > n \\ -n & \text{se } f(x) < -n \end{cases}$$

é mensurável para todo $n \in \mathbb{N}$

1.2 Medida

1.2. MEDIDA 9

Definição 1.17. Uma medida é uma função $\mu: \eth \to \bar{\mathbb{R}}$ que satisfaz

- 1. $\mu(\emptyset) = 0$
- 2. $\mu(S) \ge 0$ para todo $S \in \eth$
- 3. se $(S_n) \subseteq \eth$ é uma sequência de subconjuntos disjuntos em \eth , então

$$\mu\left(\bigcup_{n=1}^{\infty}S_n\right)=\sum_{n=1}^{\infty}\mu(S_n)$$

Exemplo 1.18. Seja (\mathbb{N}, \eth) um espaço mensurável, onde $\eth = \mathcal{P}(\mathbb{N})$. A função $\mu : \eth \to \overline{\mathbb{R}}$ definida por $\mu(E) = \#E$, se E é finito, e $\mu(E) = \infty$ se E é infinito, é uma medida em \eth . Com efeito,

- 1. $\mu(\emptyset) = 0$ por vacuidade
- 2. $\mu(E) \geqslant 0$ por definição
- 3. .

1.2.1 Construindo uma medida para \mathbb{R}

Nosso objetivo agora é construir uma medida para \mathbb{R} e mostrar o motivo de utlizar a algebra de Borel ao inves de $\mathcal{P}(\mathbb{R})$.

Definição 1.19. O comprimento de um intervalo aberto I é uma função ℓ dada por

$$\ell(I) = \begin{cases} b - a & \text{se } I = (a, b) \text{ com } a, b \in \mathbb{R} \text{ e } a < b \\ 0 & \text{se } I = \emptyset \\ \infty & \text{se } I = (-\infty, a) \text{ ou } I = (a, \infty) \text{ com } a \in \mathbb{R} \\ \infty & \text{se } I = (-\infty, \infty). \end{cases}$$

Seja $A \in \mathcal{P}(\mathbb{R})$. O tamanho de A deve ser no máximo a soma dos comprimentos de uma sequência de intervalos abertos tais que a união contem A. A definição abaixo formaliza essa ideia

Definição 1.20. A medida exterior $m(\cdot)$ de um conjunto $A \in \mathcal{P}(\mathbb{R})$ é definida por

$$m(A) = \left\{ \sum_{k=1}^{\infty} \ell(I_k); I_1, I_2, \dots, \text{ são intervalos abertos tais que } A \subseteq \bigcup_{k=1}^{\infty} I_k \right\}.$$

Essa definição envolve uma suoma infinita de uma sequência t_1, t_2, \ldots , de elementos de $[0, \infty]$, que é ∞ se pelo menos algum $t_k = \infty$, ou se a série definida pelas somas parciais de t_k é divergente. Dito isso

$$\sum_{n=1}^{\infty} t_k = \lim_{n \to \infty} \sum_{k=1}^{n} t_k.$$

Exemplo 1.21. Conjuntos finitos tem medida exterior nula. Seja $A = \{a_1, \ldots, a_n\} \in \mathcal{P}(\mathbb{R})$ um conjunto finito. Dado $\varepsilon > 0$ defina a sequência I_k de intervalos abertos por

$$I_k = \begin{cases} (a_k - \varepsilon, a_k + \varepsilon) & \text{se } k \leqslant n \\ \emptyset & \text{se } k > n \end{cases}$$

Então l_1, l_2, \ldots , é uma sequência de intervalos abertos tais que a união contem A. Dito isso

$$\sum_{n=1}^{\infty} \ell(I_k) = 2\varepsilon n.$$

Logo, $m(A) \leqslant 2\varepsilon n$. Como ε é arbitrário, temos que m(A) = 0

A proposição abaixo generaliza esse exemplo para conjuntos enumeráveis

Proposição 1.22. Conjuntos enumeráveis tem medida exterior nula.

Demonstração. Seja $A = \{a_1, a_2, \dots\} \in \mathcal{P}(\mathbb{R})$ um conjunto enumerável. Dado $\varepsilon > 0$, para todo $k \in \mathbb{N}$ defina a sequência

$$I_k = \left(a_k - \frac{\varepsilon}{2^k}, a_k + \frac{\varepsilon}{2^k}\right).$$

Dessa forma, l_1, l_2, \ldots , é uma sequência de intervalos abertos tais que a união contem A. Como

$$\sum_{k=1}^{\infty} \ell(I_k) = 2\varepsilon$$

temos que $m(A) < 2\varepsilon$. Pelo fato de ε ser arbitrário, temos que m(A) = 0.

Uma outra propiedade da medida exterior é sua invariância a translação

Proposição 1.23. Seja $t \in \mathbb{R}$ e $A \in \mathcal{P}(\mathbb{R})$. Então

$$m(A) = m(t + A),$$

onde

$$t + A = \{t + a; a \in A\}$$

Demonstração. Seja I_1, I_2, \ldots , uma sequência de intervalos abertos tais que a união contem A. Dito isso $t+I_1, t+I_2, \ldots$, é uma sequência de intervalos abertos tais que a união contem t+A. Logo

$$m(t+A) \leqslant \sum_{k=1}^{\infty} \ell(t+I_k) = \sum_{k=1}^{\infty} \ell(I_k).$$

Fazendo o ínfimo do ultimo termo, temos que $m(t + A) \leq m(A)$.

Para verificar a desigualdade na outra direção note que A = -t + (t + A), então utilizando a desigualdade que acabamos de provar temos

$$m(A) = m(t - (t + A)) \leq (t + A)$$
.

Portanto m(A) = m(t + A)

1.3 Integral de Lebesgue

A integral de Lebesgue é uma extensão da integral de Riemann, projetada para lidar com uma classe mais ampla de funções e conjuntos. Ela permite calcular integrais considerando a medida dos valores que a função assume, tornando-se uma ferramenta fundamental na teoria da medida e análise funcional.

Figura 1.2: Henri Lebesgue (1875 – 1941)

The "point" of Lebesgue integration is not that it's a way to do standard integrals of calculus by some new method. It's that the definition of the integral is more theoretically powerful: it leads to more elegant formalism and cleaner results (like the dominated convergence theorem) that are very useful in harmonic/functional analysis and probability theory.

Nesta seção, abordaremos os conceitos fundamentais da integral de Lebesgue, destacamos importância aos teoremas da convergência monotona e convergência dominada. Vale ressaltar que nessa seção estaremos trabalhando em um espaço de medida (X, \mathfrak{M}, μ) fixo.

Definição 1.24. Uma função $\varphi: X \to \mathbb{R}$ é simples se assume apenas um número finito de valores em sua imagem $(\#\varphi(X) < \infty)$

Uma função φ simples e mensurável pode ser representada da seguinte forma

$$\varphi = \sum_{j=1}^{n} a_j \chi_{E_j} \tag{1.1}$$

onde $a_j \in \mathbb{R}$ e χ_{E_j} é a função caracteristica do conjunto $E_j \in \mathfrak{F}$. Essa representação é única pelo fato de todos a_j serem distintos, os conjuntos E_j serem disjuntos para todo $j=1,\ldots,n$, além disso, $X=\bigcup_{j=1}^n E_j$.

Definição 1.25. Seja $\varphi \in \mathcal{M}^+(X, \eth)$ uma função simples com a representação (1.1). Definimos a integral de φ em relação a μ por

$$\int \varphi \, d\mu = \sum_{j=1}^n a_j \mu(E_j)$$

Observação: Adotamos a convenção $0 \cdot \infty = 0$. Dessa forma a integral da função identicamente nula é 0 indepdendente se o conjunto tem medida finita ou infinita.

Lema 1.26. Dadas funções simples $\varphi, \psi \in M^+(X, \eth)$ e $c \ge 0$ tem-se

(a)
$$\int c\varphi \, d\mu = c \int \varphi \, d\mu$$

(b)
$$\int (\varphi + \psi) d\mu = \int \varphi d\mu + \int \psi d\mu$$

(c) A aplicação $\lambda(E) = \int \varphi \chi_E d\mu$ para todo $E \in \mathfrak{F}$ é uma medida em \mathfrak{F} .

Demonstração.

(a) Mostremos que

$$\int c\varphi\,d\mu=c\int\varphi\,d\mu.$$

Com efeito, para c = 0,

$$\int c\varphi\,d\mu=0=c\int\varphi\,d\mu.$$

por outro lado, para c>0, podemos escrever $c\varphi$ da seguinte forma

$$c\varphi = \sum_{i=1}^{n} ca_{i}\chi_{E_{i}}$$

Dito isso,

$$\int c\varphi \, d\mu = \sum_{j=1}^n c a_j \mu(E_j) = c \sum_{j=1}^n a_j \mu(E_j) = c \int \varphi \, d\mu$$

(b) Agora, mostremos que

$$\int (\varphi + \psi) \, d\mu = \int \varphi \, d\mu + \int \psi \, d\mu$$

Para isso, podemos considerar as representações padrões das funções simples $\varphi, \psi \in \mathcal{M}^+(X, \eth)$

$$\varphi = \sum_{i=1}^n a_i \chi_{E_i}$$
 e $\psi = \sum_{k=1}^m b_k \chi_{F_k}$,

dessa forma, obtemos uma representação para $\varphi + \psi$ dada por

$$\varphi + \psi = \sum_{j=1}^{n} a_j \chi_{E_j} + \sum_{k=1}^{m} b_k \chi_{F_k}.$$

No entanto, essa representação não necessáriamente é a representação padrão, pois é possível que existam $j_0, j_1 \in \{1, \ldots, n\}$ e $k_0, k_1 \in \{1, \ldots, m\}$, tais que $a_{j_0} + b_{k_0} = a_{j_1} + b_{k_1}$.

Considere os elementos distintos do conjunto

$$H = \{a_j + b_k; j \in \{1, ..., n\}, k \in \{1, ..., m\}\}$$

e denominamos os elementos por c_h com $h=1,\ldots,\#H$, e G_h a união de todos os conjuntos $E_j\cap F_k$ tais que $a_j+b_k=c_h$

Afirmamos que os conjuntos G_h são dois-a-dois disjuntos. De fato

$$G_h \cap G_H = (E_i \cap F_k) \cap (E_J \cap F_K) = E_i \cap E_J \cap F_k \cap F_K = \emptyset \cap \emptyset = \emptyset,$$

sendo assim

$$\mu(G_h) = \widetilde{\sum} \mu(E_j \cap F_k)$$

onde o somatório $\widetilde{\Sigma}$ está relacionado aos indices $1 \leqslant j \leqslant n$ e $1 \leqslant k \leqslant m$ tais que $a_j + b_k = c_h$ Portanto definimos a representação padrão de $\varphi + \psi$ por

$$\varphi + \psi = \sum_{h=1}^{\#H} c_h \chi_{G_h},$$

deste modo

$$\int (\varphi + \psi) d\mu = \sum_{h=1}^{\#H} c_h \mu(G_h)$$

$$= \sum_{h=1}^{\#H} \sum_{k=1}^{\#H} c_h \mu(E_j \cap F_k)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{m} (a_j + b_k) \mu(E_j \cap F_k)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{m} a_j \mu(E_j \cap F_k) + \sum_{j=1}^{n} \sum_{k=1}^{m} b_k \mu(E_j \cap F_k)$$

como X é a união das famílias $\{E_j\}$ e $\{F_k\}$, temos que

$$\mu(E_j) = \sum_{k=1}^m \mu(E_j \cap F_k) \quad e \quad \mu(F_k) = \sum_{j=1}^n \mu(E_j \cap F_k).$$

Portanto

$$\int (\varphi + \psi) d\mu = \sum_{j=1}^n a_j \mu(E_j) + \sum_{k=1}^m b_k \mu(F_k) = \int \varphi d\mu + \int \psi d\mu.$$

(c) Por fim, queremos mostrar que

$$\lambda(E) = \int \varphi \chi_E \, d\mu$$

é uma medida em ð. Com efeito,

1.
$$\lambda(\emptyset) = \int \varphi \chi_{\emptyset} d\mu = \int 0 d\mu = 0$$

2. Note que como $\varphi \in \mathcal{M}^+(X, \eth)$ os elementos a_j na representação padrão são não negativos. Com efeito, sabemos que $0 \leqslant \varphi(x)$ para todo $x \in X$, daí

$$0 \leqslant \varphi(x) = \sum_{j=1}^{n} a_j \chi_{E_j}(x),$$

porem, como os conjuntos E_j são disjuntos, existe um único $1 \leqslant j_0 \leqslant n$ tal que $x \in E_{j_0}$. Dessa forma, para todo $j \neq j_0$, $\chi_{E_j}(x) = 0$, então

$$0 \leqslant \varphi(x) = \sum_{i=1}^{n} a_j \chi_{E_j}(x) = a_{j_0}$$

Daí,

$$\lambda(E) = \int \varphi \chi_E \, d\mu = \sum_{j=1}^n a_j \mu(E \cap E_j) \geqslant 0$$

pois mostramos que $a_i > 0$ para todo $1 \le j \le n$ e μ é uma medida.

3. Considere $(F_k) \subseteq \eth$ uma sequência disjunta de conjuntos

$$\lambda \left(\bigcup_{k=1}^{\infty} F_k \right) = \int \varphi \chi_{\mathsf{U}F_k}$$

$$= \sum_{j=1}^{n} a_j \mu \left(\left(\bigcup_{k=1}^{\infty} F_k \right) \cap E_j \right)$$

$$= \sum_{j=1}^{n} a_j \mu \left(\bigcup_{k=1}^{\infty} (F_k \cap E_j) \right)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{\infty} \mu(F_k \cap E_j)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{\infty} a_j \mu(F_k \cap E_j)$$

$$= \sum_{k=1}^{\infty} \sum_{j=1}^{n} a_j \mu(F_k \cap E_j)$$

$$= \sum_{k=1}^{\infty} \int \varphi \chi_{F_k} d\mu$$

$$= \sum_{k=1}^{\infty} \lambda(F_k)$$

Exemplo 1.27. A função

$$\chi_{\mathbb{Q}} = \begin{cases} 1 & \text{se } x \in \mathbb{Q} \\ 0 & \text{se } x \notin \mathbb{Q} \end{cases}$$

é um exemplo clássico nos cursos de análise na reta de uma função que não é integrável. Porem essa afirmação é válida apenas quando estamos trabalhando com a integral de Riemann, pois utlizando a integral de Lebesgue, essa função tem integral com resultado bem definido De fato, considere o espaço de medida $(\mathbb{R},\mathfrak{B},\mu)$ onde \mathfrak{B} é a álgebra de Borel e μ é medida exterior (de Lebesgue). Dessa forma

$$\int \chi_{\mathbb{Q}} d\mu = \mu(\mathbb{Q}) = 0.$$

pois Q é enumerável.

Agora, podemos extender a definição da integral de Lebesgue para qualquer função mensurável não negativa (não necessáriamente simples)

Definição 1.28. A integral de uma função $f \in \mathcal{M}^+(X, \eth)$ em relação a μ é definida por

$$\int f \, d\mu = \sup_{\varphi} \int \varphi \, d\mu$$

onde φ são funções simples em $\mathcal{M}^+(X,\eth)$ tais que $0 \leqslant \varphi(x) \leqslant f(x)$ para todo $x \in X$.

Além disso, definimos a integral da função f sobre um conjunto mensurável

Definição 1.29. A integral de $f \in \mathcal{M}^+(X, \eth)$ sobre um conjunto $E \in \eth$ é dada por

$$\int_{E} f \, d\mu = \int f \chi_{E} \, d\mu$$

. . .

Lema 1.30. Sejam $f, g \in \mathcal{M}^+(X, \eth)$ e $E, F \in \eth$. Então são válidas as afirmações abaixo

(a) se $f \leqslant g$ tem-se

$$\int f \, d\mu \leqslant \int g \, d\mu$$

(b) se $E \subseteq F$ tem-se

$$\int_{F} f \, d\mu \leqslant \int_{F} f \, d\mu$$

Demonstração.

(a) Seja φ uma função simples em M^+ , então

$$\int f \, d\mu = \sup_{\substack{0 \leqslant \varphi \leqslant f \\ \varphi \text{ simples} \\ \varphi \in M^+}} \int \varphi \, d\mu \leqslant \sup_{\substack{0 \leqslant \varphi \leqslant g \\ \varphi \text{ simples} \\ \varphi \in M^+}} \int \varphi \, d\mu = \int g \, d\mu$$

(b) Como $f\chi_E \leqslant f\chi_F$, segue do item anterior que

$$\int f\chi_E\,d\mu\leqslant\int f\chi_F\,d\mu,$$

dito isso

$$\int_{F} F \, d\mu \leqslant \int_{F} f \, d\mu.$$

Um dos resultados mais importantes da teoria da medida é o Teorema da Convergência Monótona, que será enunciado e demonstraado a seguir.

Teorema 1.31 (Teorema da Convergência Monótona). Seja (f_n) uma sequência monótona crescente de funções mensuráveis não-negativas convergindo para f, então,

$$\int f \, d\mu = \lim \int f_n \, d\mu.$$

Demonstração. Como $f_n \to f$ onde $(f_n) \subseteq \mathcal{M}^+(X, \eth)$, pelo corolário ?? temos que $f \in \mathcal{M}^+(X, \eth)$. Pela monotonicidade da sequência $f_n \leqslant f_{n+1} \leqslant f$, pelo item **(a)** do lema anterior

$$\int f_n d\mu \leqslant \int f_{n+1} d\mu \leqslant \int f d\mu$$

para todo $n \in \mathbb{N}$. Dito isso

$$\lim \int f_n \, d\mu \leqslant \int f \, d\mu.$$

Por outro lado, seja $0<\alpha<1$ e φ uma função simples mensurável tal que $0\leqslant \varphi\leqslant f$ e considere

$$A_n = \{x \in X ; f_n(x) \geqslant \alpha \varphi(x)\} = \{x \in X ; [f_n - \alpha \varphi](x) \geqslant 0\}$$

como f_n e φ são funções mensuráveis, temos que $A_n \in \eth$. Além disso, $A_n \subseteq A_{n+1}$ já que $f_n \leqslant f_{n+1}$ e $X = \bigcup_{n=1}^{\infty} A_n$ pois $\sup\{f_n\} = f$, $\alpha \in (0,1)$ e $0 \leqslant \varphi \leqslant f$. Daí, pelo lema anterior

$$\int_{A_n} \alpha \varphi \, d\mu \leqslant \int_{A_n} f_n \, d\mu \leqslant \int f_n \, d\mu. \tag{1.2}$$

Dessa forma, a sequência (A_n) é monótona crescente e tem união X, segue dos lemas ?? e ?? que

$$\int \varphi \, d\mu = \lim \int_{A_n} \varphi \, d\mu$$

Com efeito, sabemos que

$$\lambda(E) = \int \varphi \chi_E \, d\mu$$

é uma medida, assim

$$\int \varphi \, d\mu = \int \varphi \chi_{\mathsf{U} A_n} \, d\mu = \lambda \left(\bigcup_{n=1}^{\infty} A_n \right) = \lim \lambda(A_n) = \lim \int \varphi \chi_{A_n} \, d\mu = \lim \int_{A_n} \varphi \, d\mu$$

... fazendo $n \to \infty$ em 1.2

$$\alpha \int \varphi \, d\mu \leqslant \lim \int f_n \, d\mu.$$

Como a equação acima é válida para todo $0 < \alpha < 1$, obtemos

$$\int \varphi \, d\mu \leqslant \lim \int f_n \, d\mu,$$

ainda mais, segue do fato de φ ser uma função simples tal que $0 \leqslant \varphi \leqslant f$ tem-se que

$$\int f d\mu = \sup_{\substack{0 \leqslant \varphi \leqslant f \\ \varphi \text{ simples} \\ \alpha \in M^+}} \int \varphi d\mu \leqslant \lim \int f_n d\mu.$$

Assim

$$\int f \, d\mu \leqslant \lim \int f_n \, d\mu$$

Portanto por ?? e ??, chegamos a

$$\int f \, d\mu = \lim \int f_n \, d\mu$$

O Lema 1.26 sobre as operações elementares envolvendo a integral de funções simples mensuráveis e não-negativas, tambem é válido para funções mensuráveis não-negativas quaisquer como mostra o corolário abaixo

Corolário 1.32. Sejam $f, g \in \mathcal{M}^+(X, \eth)$ e c > 0, então são válidas as seguintes afirmações

(a)
$$\int cf \, d\mu = c \int f \, d\mu$$

(b)
$$\int (f+g) d\mu = \int f d\mu + \int g d\mu$$

Demonstração.

(a) Se
$$c = 0$$

$$\int cf \, d\mu = 0 = c \int f \, d\mu.$$

Se c>0, considere (φ_n) uma sequência monótona crescente de funções simples em $\mathcal{M}^+(X,\eth)$ convergindo para f (lema ??). Dito isso, $(c\varphi_n)$ é um sequência monótona crescente que converge para cf. Pelo Lema 1.26 e pelo Teorema da Convergência Monótona, temos que

$$\int cf \, d\mu = \lim \int c\varphi_n \, d\mu = c \lim \int \varphi_n \, d\mu = c \int f \, d\mu.$$

(b) De forma análoga considere (φ_n) e (ψ_n) sequências monótonas crescentes de funçoes simplies em $\mathcal{M}^+(X,\eth)$ que convergem para f e g respectivamente. Dessa forma $(\varphi_n + \psi_n)$ é uma sequência monótona crescente que converge para f + g. Portanto

$$\int (f+g) d\mu = \lim \int (\varphi_n + \psi_n) d\mu = \lim \int \varphi_n d\mu + \lim \int \psi_n d\mu = \int f d\mu + \int g d\mu.$$

Um outro resultado importante dessa seção é o lema de Fatou que será apresentado a seguir.

Lema 1.33 (Lema de Fatou). Se $(f_n) \subseteq M^+(X, \eth)$, então

$$\int \liminf f_n \, d\mu \leqslant \liminf \int f_n \, d\mu.$$

 $Demonstraç\~ao$. Seja $g_m=\inf\{f_m,f_{m+1},\dots\}$, dessa forma $g_m\leqslant f_n$ para todo $m\leqslant n$. Sendo assim,

$$\int g_m \, d\mu \leqslant \int f_n \, d\mu$$

para todo $m \leqslant n$. Desse modo

$$\int g_m \, d\mu \leqslant \liminf \int f_n \, d\mu.$$

Por outro lado, temos que (g_m) é crescente e converge para seu supremo, ou seja, liminf f_n . Portanto pelo Teorema da Convergência Monótona

$$\int \liminf f_n \, d\mu = \lim \int g_m \, d\mu \leqslant \liminf \int f_n \, d\mu.$$

Da mesma forma que definimos uma medida através de uma função simples em $\mathcal{M}^+(X,\eth)$ podemos generalizar esse resultado para funções que não são necessáriamente simples

Corolário 1.34. Seja $f \in \mathcal{M}^+(X, \eth)$. A aplicação $\lambda : \eth \to \overline{\mathbb{R}}$ definida por

$$\lambda(E) = \int f \chi_E \, d\mu$$

é uma medida.

Demonstração.

1.
$$\lambda(\emptyset) = \int_{\emptyset} f d\mu = \int f \chi_{\emptyset} d\mu = \int 0 d\mu = 0.$$

- 2. Como $f \in \mathcal{M}^+(X,\eth)$ temos que $\lambda(E) = \int_E f \ d\mu \geqslant \int_E 0 \ d\mu = 0$.
- 3. Sejam E_n uma sequência de conjuntos disjuntos em \eth , $E = \bigcup_{n=1}^{\infty} E_n$ e considere f_n definida por

$$f_n = \sum_{k=1}^n f \chi_{E_k}$$

Desse modo, pelo Corolário ?? e por indução temos que

$$\int f_n \, d\mu = \int \sum_{k=1}^n f \chi_{E_k} \, d\mu = \sum_{k=1}^n \int f \chi_{E_k} = \sum_{k=1}^n \lambda(E_k).$$

Além diso, podemos escrever

$$\lim f_n = \lim \sum_{k=1}^n f \chi_{E_k} = \sum_{k=1}^\infty f \chi_{E_k} = f \chi_E$$

desde que (E_n) é uma sequência de conjuntos disjuntos.

Por fim, como (f_n) é uma sequência crescente em M^+ que converge para $f\chi_E$, pelo Teorema da Convergência Monótona tem-se que

$$\lambda(E) = \int f \chi_E \, d\mu = \int \lim f_n \, d\mu = \lim \int f_n \, d\mu = \sum_{k=1}^{\infty} f \chi_{E_k}$$

Portanto, λ é uma medida.

Corolário 1.35. Seja $f \in \mathcal{M}^+(X,\eth)$. Então, f(x) = 0 em quase toda parte de X se, e somente se,

$$\int f \, d\mu = 0$$

Demonstração. Suponha que $\int f d\mu = 0$ e considere o conjunto

$$E_n = \left\{ x \in X \, ; f(x) > \frac{1}{n} \right\}$$

para todo $n \in \mathbb{N}$, de modo que $f \geqslant \frac{1}{n}\chi_{E_n}$. Note que

$$0 = \int f d\mu \geqslant \frac{1}{n} \int \chi_{E_n} d\mu = \frac{1}{n} \mu(E_n) \geqslant 0.$$

Isto nos diz que $\mu(E_n)=0$ para todo $n\in\mathbb{N}$. Além disso

$$E = \{x \in X ; f(x) > 0\} = \bigcup_{n=1}^{\infty} E_n$$

pois se $x\in\bigcup_{n=1}^\infty E_n$, então existe $n_0\in\mathbb{N}$ tal que $x\in E_{n_0}$, logo

$$f(x) > \frac{1}{n_0} > 0.$$

Assim, $x \in E$.

Por outro lado, se $x \in E$, temos que f(x) > 0. Utilizando a propiedade Arquimediana, existe $n_0 \in \mathbb{N}$ tal que

$$\frac{1}{f(x)} < n_0 \iff f(x) > \frac{1}{n_0},$$

isto é, $x \in E_{n_0} \subseteq \bigcup_{n=1}^{\infty} E_n$.

Portanto $E = \bigcup_{n=1}^{\infty} E_n$ como queriamos mostrar. Dito isso

$$\mu(E) = \mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim \mu(E_n) = 0$$

desde que (E_n) é uma sequência crescente. Isto nos diz que f(x) = 0, para todo $x \in E^{\mathcal{C}}$ com $\mu(E) = 0$, ou seja f(x) = 0 em quase toda parte em X.

Reciprocamente, suponha que f(x)=0 em quase toda parte em X. Se $E=\{x\in X\,;\, f(x)>0\}$, então $\mu(E)=0$. Sendo assim, considerando $f_n=n\chi_E$ para todo $n\in\mathbb{N}$, temo que $f\leqslant \liminf f_n$ e pelo Lema de Fatou

$$0 \leqslant \int f \, d\mu \leqslant \liminf \int f_n \, d\mu = \liminf n\mu(E) = 0$$

Portanto

$$\int f \, d\mu = 0.$$

Corolário 1.36. Seja $f \in \mathcal{M}^+(X, \eth)$, então a aplicação $\lambda : \eth \to \mathbb{R}$ definida por

$$\lambda(E) = \int_E f \, d\mu.$$

Então, a medida λ é absolutamente contínua em relação a μ , isto é, se $\mu(E)=0$, então $\lambda(E)=0$

Demonstração. Se $\mu(E) = 0$, então

$$f\chi_E(x) = \begin{cases} f(x) & x \in E \\ 0 & x \notin E \end{cases}$$

isto é, $f\chi_E=0$ em quase toda parte. Portanto

$$\lambda(E) = \int_{E} f \, d\mu = \int f \chi_{E} \, d\mu = 0.$$

O corolário abaixo é uma versão mais geral do Teorema da Convergência Monótona.

Corolário 1.37. Se (f_n) é uma sequência monótona crescente de funções em $\mathcal{M}^+(X,\eth)$ que converge em quae toda parte de X para a função $f \in \mathcal{M}^+(X,\eth)$, então

$$\int f \, d\mu = \lim \int f_n \, d\mu$$

Demonstração. Seja N um conjunto de medida nula. Suponha que (f_n) converge para f em todo o pontos de $M = N^C$. Dessa forma, a sequência $(f_n \chi_M)$ converge para $f \chi_M$, pelo Teorema da Convergência Monótona, temos que

$$\int f\chi_M d\mu = \lim \int f_n \chi_M d\mu.$$

Além disso, podemos escrever f e f_n da seguinte forma

$$f = f\chi_M + f\chi_N$$
 e $f_n = f_n\chi_M + f_n\chi_N$,

pois $M = N^{\mathcal{C}}$. Como $\mu(N) = 0$, as funções $f\chi_N$ e $f_n\chi_N$ são nulas em quase toda parte. Dito isso, pelo Corolário 1.35, seque que

$$\lim \int f_n d\mu =$$

O resultado abaixo ...

Corolário 1.38. Seja (g_n) uma sequência em $\mathcal{M}^+(X,\eth)$. Então

$$\int \left(\sum_{n=1}^{\infty} g_n\right) d\mu = \sum_{n=1}^{\infty} \int g_n d\mu.$$

Demonstração. Seja $f_n=g_1+\cdots+g_n$ para todo $n\in\mathbb{N}$. Como $g_n\geqslant 0$, temos que (f_n) é uma sequência crecente que converge para $f=\sum_{n=1}^\infty g_n$. Pelo Teorema da Convergência Monótona, seque que

$$\lim_{k\to\infty}\int\left(\sum_{n=1}^kg_n\right)\,d\mu=\lim_{k\to\infty}\int f_k\,d\mu=\int f\,d\mu=\int\left(\sum_{n=1}^\infty g_n\right)\,d\mu.$$

Por outro lado, como $g_n \in \mathcal{M}^+(X, \eth)$, para todo $n \in \mathbb{N}$, utilizando indução e o Corolário ??

$$\lim_{k \to \infty} \int \left(\sum_{n=1}^{k} g_n \right) d\mu = \lim_{k \to \infty} \sum_{n=1}^{k} \int g_n d\mu = \sum_{n=1}^{\infty} \int g_n d\mu$$

Portanto

$$\int \left(\sum_{n=1}^{\infty} g_n\right) d\mu = \sum_{n=1}^{\infty} \int g_n d\mu.$$

Finalmente, podemos definir a integral de uma função mensurável qualquer

Definição 1.39. O conjunto $\mathcal{L}(X,\eth,\mu)$ das funções integráveis consite em todas as funções $f:X\to\mathbb{R}$ mensuráveis, tai que as integrais

$$\int f^+ d\mu$$
 e $\int f^- d\mu$

são finitas. Neste caso, definimos a integral de f em relação a μ por

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu,$$

e se E é um conjunto mensurável

$$\int_{F} f d\mu = \int_{F} f^{+} d\mu - \int_{F} f^{-} d\mu.$$

Qualquer representação de f como subtrações de funções integráveis não-negativas resulta no mesmo valor da integral da definição acima. Com efeito seja f uma função integravel e escreva f como $f = f_1 - f_2$, onde f_1 e f_2 são funções integráveis não negativas, então

$$\int f d\mu = \int f_1 d\mu - \int f_2 d\mu.$$

Note que

$$f^+ - f^- = f = f_1 - f_2 \iff f^+ + f_2 = f_1 + f^-.$$

Dessa forma, pelo Corolário ?? temos que

$$\int f^{+} d\mu + \int f_{2} d\mu = \int f_{1} d\mu + \int f^{-} d\mu.$$

Como f_1 , f_2 , f^+ , $f^- \in \mathcal{L}(X, \eth, \mu)$, segue que

$$\int f^+ d\mu - \int f^- d\mu = \int f_1 d\mu - \int f_2 d\mu.$$

Isto é

$$\int f d\mu = \int f_1 d\mu + \int f_2 d\mu.$$

Da mesma forma que definimos um medida a partir da integral de uma função não-negativa, podemos definir uma carga partindo da integral de uma função integrável qualquer como exibe o lema abaixo

Lema 1.40. Seja $f \in \mathcal{L}(X, \eth, \mu)$. A aplicação $\lambda : \eth \to \mathbb{R}$ definida por

$$\lambda(E) = \int_{E} f \, d\mu$$

é uma carga, denominada integral indefinida de f (em relação a μ).

Demonstração. Como f^+ , $f^- \in M^+(X, \eth, \mu)$, pelo Corolário ?? temos que as funções λ^+ , λ^- : $\eth \to \mathbb{R}$ dadas por

$$\lambda^+(E) = \int_E f^+ d\mu$$
 e $\lambda^-(E) = \int_E f^- d\mu$.

são medidas em \eth e são finitas pelo fato de f ser uma função integrável. Como $\lambda = \lambda^+ - \lambda^-$ temos que λ é uma carga.

Como a aplicação λ definida acima é uma carga, vemos que se (E_n) é uma sequência de conjuntos disjuntos tal que $\bigcup_{n=1}^{\infty} E_n = E$, então

$$\int_{E} f \, d\mu = \lambda(E) = \lambda\left(\bigcup_{n=1}^{\infty} E_{n}\right) = \sum_{n=1}^{\infty} \lambda(E_{n}) = \sum_{n=1}^{\infty} \int_{E_{n}} f \, d\mu,$$

ou seja

$$\int_{E} f \, d\mu = \sum_{n=1}^{\infty} \int_{E_{n}} f \, d\mu$$

Agora, estamos prontos para estudar algumas propiedades elementares das integrais de funções mensuráveis

Teorema 1.41. Seja $f: X \to \mathbb{R}$ uma função mensurável. Então $f \in \mathcal{L}(X, \eth, \mu)$ se, e somente se, $|f| \in \mathcal{L}(X, \eth, \mu)$. Além disso

$$\left| \int f \, d\mu \right| \leqslant \int |f| \, d\mu. \tag{1.3}$$

Demonstração. Seja f uma função integrável, mostremos que |f| também o é. Primeiramente note que

$$|f|^+ = |f| = f^+ + f^-$$
 e $|f|^- = 0$,

Dito isso

$$\int |f|^+ d\mu = \int f^+ d\mu + \int f^- d\mu$$

é finita pois f é integrável, e

$$\int |f|^- d\mu = \int 0 d\mu = 0$$

que é finita. Portanto |f| é integrável.

Reciprocamente, suponha que |f| é integrável, dessa forma

$$f^+ \le f^+ + f^- = |f|$$

 $f^- \le f^+ + f^- = |f|$

sendo assim

$$\int f^{+} d\mu \leqslant \int |f| d\mu$$
$$\int f^{-} d\mu \leqslant \int |f| d\mu$$

ambas finitas pois |f| é integrável. Portanto f é integrável.

Para mostrar a desigualdade (1.3) basta utilizar a definição de função integravel e a desigualdade triangular.

$$\left| \int f \, d\mu \right| = \left| \int f^+ \, d\mu - \int f^- \, d\mu \right| \leqslant \left| \int f^+ \, d\mu \right| + \left| \int f^- \, d\mu \right| = \int f^+ \, d\mu + \int f^- \, d\mu = \int |f| \, d\mu$$

Corolário 1.42. Se $f \in \mathcal{M}(X, \eth)$, $g \in \mathcal{L}(X, \eth, \mu)$ e $|f| \leq |g|$, então $f \in \mathcal{L}(X, \eth, \mu)$ e

$$\int |f| \, d\mu \leqslant \int |g| \, d\mu$$

Demonstração. Se g é integrável então pelo Teorema anterior |g| também o é. Além disso, como $|f| \leq |g|$

$$\int |f| \, d\mu \leqslant \int |g| \, d\mu,$$

como |g| é integrável a sua integral é finita, implicando na integral de |f| também ser finita, ou seja, |f| é integrável e novamente pelo Teorema anterior, f é integrável.

Teorema 1.43. Sejam $f, g \in \mathcal{L}(X, \eth, \mu)$ e $c \in \mathbb{R}$, então $cf, f + g \in \mathcal{L}(X, \eth, \mu)$ e

(a)
$$\int cf \, d\mu = c \int f \, d\mu$$

(b)
$$\int (f+g) d\mu = \int f d\mu + \int g d\mu$$

Demonstração.

(a) Se $c \ge 0$. Note que $(cf)^+ = cf^+$ e $(cf)^- = cf^-$. Dito isso

$$\int cf \, d\mu = \int cf^+ - cf^- \, d\mu$$

como cf^+ e cf^- são funções mensuráveis não negativas, podemos utilizar o Corolário 1.32

$$\int cf \, d\mu = c \int f^+ - f^- \, d\mu = c \int f \, d\mu$$

Se c < 0 a demonstração é análoga, basta perceber que $(cf)^+ = -cf^-$ e $(cf)^- = -cf^+$ ambas funções não negativas pois -c > 0.

(b) Sejam $f, g \in \mathcal{L}(X, \eth, \mu)$, então pelo Teorema 1.41 $|f|, |g| \in \mathcal{L}(X, \eth, \mu)$, como $|f + g| \leq |f| + |g|$ temos que f + g é integrável. Note que

$$f + g = f^{+} - f^{-} + g^{+} - g^{-} = (f^{+} + g^{+}) - (f^{-} + g^{-}),$$

onde $f^+ + g^+$ e $f^- + g^-$ são funções integráveis não negativas. Dessa forma

$$\int (f+g) \, d\mu = \int (f^+ + g^+) \, d\mu - \int (f^- + g^-) \, d\mu$$

Utilizando o Corolário 1.34 e reorganizando os termos

$$\int (f+g) \, d\mu = \int f^+ \, d\mu + \int g^+ \, d\mu - \int f^- \, d\mu - \int g^- \, d\mu$$
$$= \int f^+ \, d\mu - \int f^- \, d\mu + \int g^+ \, d\mu - \int g^- \, d\mu$$
$$= \int f \, d\mu + \int g \, d\mu.$$

O teorema a seguir é um dos mais importantes da teoria da medida, envolvendo convergência de sequência de funções e integrais.

Teorema 1.44 (Teorema da Convergência Dominada). Seja (f_n) uma sequência de funções integráveis que converge em quase toda parte para a função mensurável f. Se existe uma função integrável g tal que $|f_n| \leq g$ em quase toda parte, para todo $n \in \mathbb{N}$, então f é integrável

 $\int f \, d\mu = \lim \int f_n \, d\mu.$

Demonstração. Redefinindo as funções f_n e f no conjunto de medida nula, podemos afirmar que a convergência acontece em todo X. Note que

$$\lim |f_n| \leqslant g \implies |f| \leqslant |g|$$

como por hipótese f é mensurável e g é integrável, segue pelo Corolário 1.42 que f é integrável. Além disso, como $-g\leqslant f_n\leqslant g$ temos que $g+f_n\geqslant 0$ para todo $n\in\mathbb{N}$. Utilizando o Lema de Fatou e o Teorema 1.41 temos que

$$\int g \, d\mu + \int f \, d\mu = \int (g+f) \, d\mu$$

$$= \int (g+\lim f_n) \, d\mu$$

$$= \int \lim (g+f_n) \, d\mu$$

$$= \int \lim \inf (g+f_n) \, d\mu$$

$$\leqslant \lim \inf \int (g+f_n) \, d\mu$$

$$= \lim \inf \left(\int g \, d\mu + \int f_n \, d\mu \right)$$

$$= \int g \, d\mu + \lim \inf \int f_n \, d\mu,$$

que implica em

$$\int f \, d\mu \leqslant \liminf \int f_n \, d\mu. \tag{1.4}$$

Por outro lado, $g - f_n \geqslant 0$, de forma análoga mostramos que

$$\limsup \int f_n \, d\mu \leqslant \int f \, d\mu. \tag{1.5}$$

Pelas desigualdades (1.4) e (1.5)

$$\limsup \int f_n \, d\mu \leqslant \int f \, d\mu \leqslant \liminf \int f_n \, d\mu,$$

isto é¹

$$\int f d\mu = \lim \int f_n d\mu.$$

Finalizando a demonstração do teorema.

No restante da seção focaremos nossa atenção em funções $f: X \times [a,b] \to \mathbb{R}$ onde a aplicação $x \mapsto f(x,t)$ é mensurável para todo $t \in [a,b]$.

 $^{^{1}}$ lim sup $x_{n} \leqslant x \leqslant \liminf x_{n}$ para todo $n \in \mathbb{N} \implies \lim x_{n} = x$

Corolário 1.45. Suponha que para algum $t_0 \in [a, b]$, tenhamos

$$f(x, t_0) = \lim_{t \to t_0} f(x, t),$$

para cada $x \in X$ e que existe uma função integrável $g: X \to \mathbb{R}$ tal que $|f(x,t)| \leq g(x)$, para todo $x \in X$ e $t \in [a,b]$. Então

$$\int f(x, t_0) d\mu(x) = \lim_{t \to t_0} \int f(x, t) d\mu(x)$$

Demonstração. Seja t_n uma sequência em [a,b] que converge para t_0 e considere a sequência (f_n) dada por $f_n(x) = f(x,t_n)$. Então como $|f_n(x)| = |f(x,t_n)| \le g(x)$ para todo $n \in \mathbb{N}$ e $x \in X$ com g integrável, segue pelo Teorema da Convergência Dominada que

$$\int f(x, t_0) d\mu(x) = \int \lim_{t \to t_0} f(x, t) d\mu(x)$$

$$= \int \lim f_n(x) d\mu(x)$$

$$= \lim \int f_n(x) d\mu(x)$$

$$= \lim \int f(x, t_n) d\mu(x)$$

Consequentemente,

$$\int f(x, t_0) \, d\mu(x) = \lim_{t \to t_0} \int f(x, t) \, d\mu(x)$$

Uma consequência imediata do corolário será apresentada abaixo

Corolário 1.46. Se a aplicação $t\mapsto f(x,t)$ for contínua em [a,b] para cada $x\in X$, e se existir uma função integrável $g:X\to\mathbb{R}$ tal que $|f(x,t)|\leqslant g(x)$ para todo $x\in X$ e $t\in [a,b]$. Então a função F dada por

$$F(t) = \int f(x, t) \, d\mu(x)$$

é contínua.

Demonstração. Mostremos que $\lim_{t\to t_0} F(t) = F(t_0)$. Com efeito

$$\lim_{t \to t_0} F(t) = \lim_{t \to t_0} \int f(x, t) \, d\mu(x) = \int f(x, t_0) \, d\mu(x) = F(t_0)$$

Corolário 1.47. Suponha que ara algum $t_0 \in [a, b]$, a função $x \to f(x, t_0)$ seja integrável em X, que $\partial_t f$ existe em $X \times [a, b]$ e que existe uma função integrável g em X tal que

$$\left| \frac{\partial f}{\partial t}(x,t) \right| < g(x)$$

para todo $x \in X$ e $t \in [a, b]$. Então a função F definida por

$$F(t) = \int f(x, t) \, d\mu(x)$$

é diferenciável em [a, b] e

$$\frac{\mathrm{d}F}{\mathrm{d}t}(t) = \int \frac{\partial f}{\partial t}(x, t) \, d\mu(x)$$

Demonstração. Seja (t_n) uma sequência em [a,b] que converge para t, com $t \neq t_n$ para todo $n \in \mathbb{N}$. Então, podemos escrever

$$\frac{\partial f}{\partial t}(x, t) = \lim \frac{f(x, t_n) = f(x, t)}{t_n - t}$$

para todo $x \in X$. Desde modo a função $x \mapsto \partial f/\partial t (x, t)$ é mensurável pois é o limite de funções mensuráveis.

Agora seja $x \in X$. Pelo Teorema do Valor Médio, existe s_0 , entre t_0 e t tal que

$$f(x,t) - f(x,t_0) = (t-t_0)\frac{\partial f}{\partial t}(x,s_0)$$

Dessa forma, temos que

$$|f(x,t)| = \left| f(x,t_0) + (t-t_0) \frac{\partial f}{\partial t}(x,s_0) \right| \leqslant |f(x,t_0)| + |t-t_0| \left| \frac{\partial f}{\partial t}(x,s_0) \right|$$

Como f é mensurável e a aplicação $x\mapsto |f(x,t_0)|+|t-t_0|\,|\partial f/\partial t\,(x,s_0)|$ é integrável, pois é a soma de funções integráveis. Pelo Corolário 1.42 temos que f é integrável. Por outro lado

$$\frac{F(t_n) - F(t)}{t_n - t} = \int \frac{f(x, t_n) - f(x, t)}{t_n - t} d\mu(x)$$

Além disso, por hipótese, podemos deduzir que

$$\lim \left| \frac{f(x, t_n) - f(x, t)}{t_n - t} \right| = \left| \lim \frac{f(x, t_n) - f(x, t)}{t_n - t} \right| = \left| \frac{\partial f}{\partial t}(x, t) \right| < g(x)$$

para todo $x \in X$. Consequentemente

$$\left|\frac{f(x,t_n)-f(x,t)}{t_n-t}\right| < g(x)$$

para valores de n suficientemente grande. Pelo Teorema da Convergência Dominada, temos

$$\frac{\mathrm{d}F}{\mathrm{d}t}(t) = \lim \frac{F(t_n) - F(t)}{t_n - t} = \lim \int \frac{f(x, t_n) - f(x, t)}{t_n - t} \, d\mu(x) = \int \frac{\partial f}{\partial t}(x, t) \, d\mu(x).$$

Assim, concluindo a prova do corolário.

1.4. $ESPAÇOS \mathcal{L}^p$ 27

1.4 Espaços \mathcal{L}^p

Nesta seção, estudaremos os famosos espaços de Lebesgue \mathcal{L}^p , que desempenham um papel fundamental na análise funcional e em várias áreas da matemática aplicada. Esses espaços são construídos para acomodar funções cujas potências p-ésimas são integráveis, permitindo uma abordagem flexível e poderosa para o estudo de propriedades de funções em contextos como as equações diferenciais.

Proposição 1.48. Seja (X,\eth,μ) um espaço de medida. A aplicação $N_{\mu}:\mathcal{L}(X,\eth,\mu)\to\mathbb{R}$ dada por

$$N_{\mu}(f) = \int |f| \, d\mu$$

é uma semi-norma. Além disso $N_{\mu}(f)=0 \iff f\equiv 0$ em quase toda parte em X.

Demonstração. Note que

1.
$$N_{\mu}(f) = \int |f| d\mu \geqslant \int 0 d\mu = 0.$$

2.
$$N_{\mu}(\lambda f) = \int |\lambda f| d\mu = \int |\lambda| |f| d\mu = |\lambda| \int |f| d\mu = |\lambda| N_{\mu}(f).$$

3.
$$N_{\mu}(f+g) = \int |f+g| d\mu \leqslant \int |f| d\mu + \int |g| d\mu = N_{\mu}(f) + N_{\mu}(g).$$

Portanto N_{μ} é uma semi-norma.

Além disso é fácil ver que

$$N_{\mu}(f) = 0 \iff \int |f| \, d\mu = 0 \iff |f| \equiv 0 \text{ qtp em } X \iff f \equiv 0 \text{ qtp em } X.$$

Observação: Note que $\mathcal{L}(X,\eth,\mu)$ é um espaço vetorial com a operações usuais

$$(f+g)(x) = f(x) + g(x)$$
$$(\lambda f)(x) = \lambda f(x)$$

para todo $f, g \in \mathcal{L}(X, \eth, \mu)$ e $\lambda \in \mathbb{R}$. Isto se deve ao fato que $\mathcal{L}(X, \eth, \mu)$ é um subespaço vetorial do espaço de funções $\mathcal{F}(X, \mathbb{R}) = \{f : X \to \mathbb{R}\}.$

Estamos interessados em transformar $\mathcal L$ em um espaço vetorial normado. Para isso, precisamos da seguinte definição

Definição 1.49. Sejam $f, g \in \mathcal{L}(X, \eth, \mu)$. Dizemos que f e g são μ -equivalentes $(f \sim_{\mu} g)$ se $f \equiv g$ em quase toda parte em X.

O espaço

$$\mathcal{L}^1 = \mathcal{L}^1(X, \eth, \mu) = \{[f]; f \in \mathcal{L}\}$$

onde

$$[f] = \{ g \in \mathcal{L}(X, \eth, \mu) ; g \sim_{\mu} f \}$$

é dito Espaço de Lebesgue \mathcal{L}^1 . Esse espaço, munido das operações

$$[f] + [g] = [f + g]$$
$$[\lambda f] = \lambda [f]$$

para todo $f, g \in \mathcal{L}(X, \eth, \mu)$ e $\lambda \in \mathbb{R}$ é um espaço vetorial.

Proposição 1.50. Seja (X, \eth, μ) um espaço de medida. A aplicação $\|\cdot\|_1 : \mathcal{L}^1 \to \mathbb{R}$ dada por

$$||[f]||_1 = \int |f| \, d\mu$$

para todo $[f] \in \mathcal{L}^1$ é uma norma

Demonstração. Note que apenas precisamos mostrar que $||[f]||_1 = 0 \iff [f] = [0]$, pois as outras propiedades são análogas à demonstração da Proposição 1.48. Com efeito

$$\|[f]\|_1 = 0 \iff \int |f| \, d\mu = 0 \iff |f| \equiv 0 \text{ qtp em } X \iff f \equiv 0 \text{ qtp em } X \iff [f] = [0].$$

Portanto $\|\cdot\|_1$ é uma norma e $(\mathcal{L}^1, \|\cdot\|_1)$ é um espaço vetorial normado.

No restante do texto, adotaremos a notação [f] = f, ignorando as classes de equivalência e trabalhando apenas com o seus representantes.

Definição 1.51. Seja $1 \le p < \infty$ um número real. O espaço

$$\mathcal{L}^p = \mathcal{L}^p(X, \eth, \mu) = \left\{ f: X \to \mathbb{R} \, ; f \text{ \'e mensur\'avel}, \int |f|^p \, d\mu < \infty
ight\}$$

é dito Espaço de Lebesque \mathcal{L}^p .

Nosso intuito agora é mostrar que \mathcal{L}^p é um espaço vetorial normado, onde

$$||f||_p = \left(\int |f|^p \, d\mu\right)^{\frac{1}{p}}$$

é sua norma. Mas antes, precisamos demonstrar algumas desigualdades importantes desses espaços que serão necessárias para mostrar que $\|\cdot\|_p$ é uma norma em \mathcal{L}^p .

Teorema 1.52 (Desigualdade de Young). Sejm $A, B \geqslant 0, 1 \leqslant p < \infty$ e $q \in \mathbb{R}$ tal que p e q são expoentes conjuntados^a. Então

$$AB \leqslant \frac{A^p}{p} + \frac{B^q}{q}$$

onde a igualdade é válida se, e somente se, $A^p = B^q$.

Demonstração. Seja $\alpha \in (0,1)$ e defina $\varphi : [0,\infty) \to \mathbb{R}$ por

$$\varphi(t) = \alpha t - t^{\alpha}$$
.

Note que $\varphi'(t) = \alpha - \alpha t^{\alpha - 1} = \alpha (1 - t^{\alpha - 1})$. Dessa forma

 $^{^{}a}p$ e q são ditos expoentes conjugados se $\frac{1}{p} + \frac{1}{q} = 1$

1.4. $ESPAÇOS \mathcal{L}^p$

- $-t \in (0,1)$ então $\varphi'(t) < 0$ pois $t^{\alpha-1} > 1$ e então $1-t^{\alpha-1} < 0$
- $-t\in(1,\infty)$ então arphi'(t)>0 pois $t^{\alpha-1}<1$ e então $1-t^{\alpha-1}>0$

Isto nos diz que φ é decrescente em (0,1) e crescente em $(1,\infty)$. Ou seja, como φ é contínua, temos que 1 é um ponto de mínimo. Dito isso $\varphi(t) \geqslant \varphi(1)$ para todo $t \geqslant 0$ e $\varphi(t) = \varphi(1)$ se, e somente se, t=1. Assim

$$\varphi(t) \geqslant \varphi(t) \implies \alpha t - t^{\alpha} \geqslant \alpha - 1 \implies t^{\alpha} \leqslant \alpha t + (1 - \alpha).$$

Sejam a, b > 0, então para $t = \frac{a}{b}$ temos

$$\left(\frac{a}{b}\right)^{\alpha} \leqslant \alpha \frac{a}{b} + 1 - \alpha.$$

Daí

$$a^{\alpha}b^{-\alpha} \leqslant \alpha \frac{a}{b} + 1 - \alpha.$$

Multiplicando a desigualdade acima por b, encontramos

$$a^{\alpha}b^{1-\alpha} \leq \alpha a + (1-\alpha)b$$
.

Além disso, note que a desigualdade é uma igualdade se, e somente se t=1, isto é a=b. Agora considere que $\alpha=\frac{1}{p}\in(0,1)$, ou seja, $1< p<\infty$. Dessa forma obtemos

$$a^{\frac{1}{p}}b^{1-\frac{1}{p}} \leqslant \frac{a}{p} + \left(1 - \frac{1}{p}\right)b,$$

e por hipótese $\frac{1}{p} + \frac{1}{q} = 1$. Logo

$$a^{\frac{1}{p}}b^{\frac{1}{q}}\leqslant \frac{a}{p}+\frac{b}{q}.$$

Por fim, fazendo $a = A^p$ e $b = B^q$, temos o resultado desejado

$$AB \leqslant \frac{A^p}{p} + \frac{B^q}{q}$$
,

que é uma igualdade quando $A^p = B^q$.

Teorema 1.53 (Desigualdade de Hölder). Sejam $f \in \mathcal{L}^p$ e $g \in \mathcal{L}^q$ onde $1 \leqslant p < \infty$ e $q \in \mathbb{R}$ tal que p e q são expoentes conjugados. Então $fg \in \mathcal{L}^1$ e

$$||fg||_1 \leq ||f||_p + ||g||_q$$

Demonstração. Se $\|f\|_p=0$ ou $\|g\|_q=0$ então $f\equiv 0$ qtp em X ou $g\equiv 0$ qtp em X. Dessa forma

$$||fg||_1 = \int |fg| \, d\mu = 0.$$

Com isso, a desigualdade de Holder é trivial.

Agora considere que $||f||_p \neq 0$ e $||g||_q \neq 0$. Sendo assim, utilizando a Desigualdade de Young com

$$A = \frac{|f|}{\|f\|_p} \ \ \mathbf{e} \ \ B = \frac{|g|}{\|g\|_q}$$

obtemos

$$\frac{|fg|}{\|f\|_p \|g\|_q} \leqslant \frac{|f|^p}{p\|f\|_p^p} + \frac{|g|^p}{q\|g\|_q^q}.$$
 (1.6)

Como $f \in \mathcal{L}^p$ e $g \in \mathcal{L}^q$, então $|f|^p$ e $|g|^q$ são integráveis. Logo

$$\left(\frac{1}{p\|f\|_p^p}\right)|f|^p + \left(\frac{1}{q\|g\|_q^q}\right)|g|^q$$

é integrável. Além disso, pelo Corolário 1.42

$$\left(\frac{1}{\|f\|_p \|g\|_q}\right) |fg|$$

é integrável e portanto |fg| é integrável, isto é, $fg \in \mathcal{L}^1$.

Por fim, integrando (1.6) com respeito a μ , chegamos a

$$\int \frac{|fg|}{\|f\|_p \|g\|_q} d\mu \leqslant \int \left(\frac{|f|^p}{p\|f\|_p^p} + \frac{|g|^p}{q\|g\|_q^q}\right) d\mu$$

isto é

$$\frac{1}{\|f\|_p \|g\|_q} \int |fg| \, d\mu \leqslant \frac{1}{p\|f\|_p^p} \int |f|^p \, d\mu + \frac{1}{q\|g\|_q^q} \int |g|^p \, d\mu.$$

Pela definição da norma em \mathcal{L}^p segue que

$$\frac{1}{\|f\|_p \|g\|_q} \|fg\|_1 \leqslant \frac{1}{p\|f\|_p^p} \|f\|_p^p + \frac{1}{q\|g\|_q^q} \|q\|_p^p = \frac{1}{p} + \frac{1}{q} = 1.$$

Portanto

$$||fg||_1 \leq ||f||_p ||g||_q$$
.

Como queriamos demonstrar.

O corolário abaixo é um caso particular da Desigualdade de Hölder quando p=q, o que acontece apenas quando p=q=2.

Corolário 1.54 (Desigualdade de Cauchy-Schwarz). Se $f, g \in \mathcal{L}^2$, então $fg \in \mathcal{L}^1$ e

$$\left| \int fg \, d\mu \right| \leqslant \int |fg| \, d\mu \leqslant \int |f|^2 \, d\mu \int |g|^2 \, d\mu$$

Demonstração. A primeira desigualdade é o Teorema 1.41 e a segunda é uma aplicação direta da Desigualdade de Hölder. □

Teorema 1.55 (Desigualdade de Minkowski). Se $f,g\in\mathcal{L}^p$ com $1\leqslant p<\infty$, então $f+g\in\mathcal{L}^p$ e

$$||f + g||_p \le ||f||_p + ||g||_p$$

Demonstração. Na Proposição 1.48 já mostramos que a Desigualdade de Minkowski é válida para p=1. Dito isso, seja $1 . Como <math>f,g \in \mathcal{L}^p$, então f e g são mensuráveis. Dessa forma, f+g também é mensurável. Mostremos agora que $f+g \in \mathcal{L}^p$. Com efeito,

$$|f + g|^{p} \leq (|f| + |g|)^{p}$$

$$\leq (\max\{|f|, |g|\} + \max\{|f|, |g|\})^{p}$$

$$= 2^{p} \max\{|f|, |g|\}^{p}$$

$$\leq 2^{p} (|f|^{p} + |g|^{p}).$$

Daí

$$\int |f + g|^p \, d\mu \leqslant 2^p \int (|f|^p + |g|^p) \, d\mu \leqslant 2^p \left(\int |f|^p \, d\mu + \int |g|^p \, d\mu \right)$$

1.4. $ESPAÇOS \mathcal{L}^p$ 31

que é uma integral finita. Portanto $f + g \in \mathcal{L}^p$.

Também é fácil ver que

$$|f+g|^p = |f+g||f+g|^{p-1} \le |f||f+g|^{p-1} + |g||f+g|^{p-1}.$$

Agora, seja $q\in\mathbb{R}$ tal que $\frac{1}{p}+\frac{1}{q}=1$. Daí $|f+g|^{p-1}\in\mathcal{L}^q$. De fato,

$$\||f+g|^{p-1}\|_q^q = \int |f+g|^{q(p-1)} d\mu = \int |f+g|^p < \infty$$
 (1.7)

pois $f+g\in\mathcal{L}^p$. Portanto pela Desigualdade de Hölder e por (1.7) temos que

$$\int |f||f+g|^{p-1} d\mu = ||f|+|f+g|^{p-1}||_1 \leqslant ||f|||_p ||f+g|^{p-1}||_q = ||f||_p ||f+g||_p^{\frac{p}{q}}.$$
 (1.8)

Análogamente

$$\int |g| |f + g|^{p-1} d\mu \leqslant ||g||_p ||f + g||_p^{\frac{p}{q}}.$$
 (1.9)

Dito isso, chegamos a

$$\begin{split} \|f+g\|_{p}^{p} &= \int |f+g|^{p} d\mu \\ &\leqslant \int |f||f+g|^{p-1} + |g||f+g|^{p-1} d\mu \\ &= \int |f||f+g|^{p-1} d\mu + \int |g||f+g|^{p-1} d\mu \\ &\leqslant \|f\|_{p} \|f+g\|_{p}^{\frac{p}{q}} + \|g\|_{p} \|f+g\|_{p}^{\frac{p}{q}} \\ &= (\|f\|_{p} + \|g\|_{p}) \|f+g\|_{p}^{\frac{p}{q}}. \end{split}$$

Se $||f + g||_p = 0$, então

$$||f + g||_p = 0 \le ||f||_p + ||g||_p$$

Logo a desigualdade de Minkowski é válida. Agora, considere que $\|f+g\|_p \neq 0$ para obter

$$\frac{\|f+g\|_p^p}{\|f+g\|_p^q} \leqslant \|f\|_p + \|g\|_p$$

Consequentemente

$$||f + g||_p^{p - \frac{p}{q}} \le ||f||_p + ||g||_p.$$

Por fim, como peq são expoentes conjugados, segue que $p - \frac{p}{q} = 1$. Portanto

$$||f + g||_p \le ||f||_p + ||g||_p$$
.

Assim, mostramos que a desigualdade de Minkowski é válida para $1 \le p < \infty$.

Agora, vamos provar que $(\mathcal{L}^p, \|\cdot\|_p)$ é um espaço vetorial normado para $1 \leq p < \infty$.

Proposição 1.56. A aplicação $\|\cdot\|_{p}:\mathcal{L}^{p} \to \mathbb{R}$ dada por

$$||f||_p = \left(\int |f|^p \, d\mu\right)^{\frac{1}{p}}$$

é uma norma

Demonstração. Note que

1.
$$||f||_p = \left(\int |f|^p d\mu\right)^{\frac{1}{p}} \geqslant 0 \text{ pois } |f| \geqslant 0.$$

2.
$$||f||_p = 0 \iff \int |f|^p d\mu = 0 \iff f = 0 \ (f \sim_\mu 0)$$

3.
$$\|\lambda f\|_{p} = \left(\int |\lambda f|^{p} d\mu\right)^{\frac{1}{p}} = \left(\int |\lambda|^{p} |f|^{p} d\mu\right)^{\frac{1}{p}} = \left(|\lambda|^{p} \int |f|^{p} d\mu\right)^{\frac{1}{p}} = |\lambda| \left(\int |f|^{p} d\mu\right)^{\frac{1}{p}} = |\mu|^{p} \left(\int |f|^{p} d\mu\right)^{\frac{1}{p}} = |\mu|^{p} \left(\int |f|^{p} d\mu\right)^{\frac{1}{p}} = |\mu$$

4. $||f + g||_p \le ||f||_p + ||g||_p$ pela Desigualdade de Minkowski.

Portanto $\|\cdot\|_p$ é uma norma

Agora, nosso objetivo é mostrar que \mathcal{L}^p com $1 \leqslant p < \infty$ é um espaço de Banach, isto é, um espaço vetorial normado completo. Para isso precisamos das seguintes definições

Definição 1.57. Seja (f_n) uma sequência em \mathcal{L}^p com $1 \le p < \infty$. Dizemos que (f_n) é de Cauchy se dado $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que

$$||f_n - f_m||_p < \varepsilon$$

para todo $n, m \ge n_0$

Definição 1.58. Sejam (f_n) uma sequência em \mathcal{L}^p e $f \in \mathcal{L}^p$ com $1 \leq p < \infty$. Dizemos que (f_n) é convergente e converge para f se dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$||f_n - f||_p \leqslant \varepsilon$$

para todo $n \ge n_0$. Equivalentemente

$$\lim \|f_n - f\|_p = 0$$

Definição 1.59. Um espaço métrico (X, d) é completo se toda sequência de Cauchy é convergente.

Teorema 1.60 (Teorema de Riesz-Fischer). \mathcal{L}^p com $1 \leq p < \infty$ é um espaço de Banach.

Demonstração. Seja (f_n) uma sequência de Cauchy em \mathcal{L}^p . Mostremos que (f_n) é convergente. Com efeito, sabemos que dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$||f_n - f_m||_p < \varepsilon$$

para todo $n,m\geqslant n_0$. Esscolhendo ε de forma adequada e passando a uma subsequência se necessário, temos que

$$||f_{n+1} - f_n||_p < 2^{-n} (1.10)$$

Defina $g: X \to \overline{\mathbb{R}}$ por

$$g(x) = |f_1(x)| + \sum_{n=1}^{\infty} |f_{n+1}(x) - f_n(x)|.$$

1.4. $ESPAÇOS \mathcal{L}^p$ 33

Observe que $g \in \mathcal{M}^+(X, \eth)$, pois $g \geqslant 0$ e

$$g = |f_1| + \lim_{k \to \infty} \sum_{n=1}^{k} |f_{n+1} - f_n|$$

isto é, g é formado pela soma e pelo limite de funções mensuráveis (f_n é integrável, em particular, mensurável). Queremos mostrar que $g \in \mathcal{L}^p$. De fato

$$\int |g|^p d\mu = \int g^p d\mu,$$

pois $g \geqslant 0$. Pela definição de g temos

$$\int g^{p} d\mu = \int \left(|f_{1}| + \lim_{k \to \infty} \sum_{n=1}^{k} |f_{n+1} - f_{n}| \right)^{p} d\mu,$$

nesse caso, como o limite existe, segue que o limite é igual ao limite inferior, logo

$$\int \left(|f_1| + \lim_{k \to \infty} \sum_{n=1}^k |f_{n+1} - f_n| \right)^p d\mu = \int \liminf_{k \to \infty} \left(|f_1| + \sum_{n=1}^k |f_{n+1} - f_n| \right)^p d\mu.$$

Pelo Lema de Fatou temos que

$$\int \liminf_{k \to \infty} \left(|f_1| + \sum_{n=1}^k |f_{n+1} - f_n| \right)^p d\mu \leqslant \liminf_{k \to \infty} \int \left(|f_1| + \sum_{n=1}^k |f_{n+1} - f_n| \right)^p d\mu$$

e utilizando definição da norma em \mathcal{L}^p e a Desigualdade de Minkowski

$$\liminf_{k \to \infty} \left\| |f_1| + \sum_{n=1}^k |f_{n+1} - f_n| \right\|_p^p \leqslant \liminf_{k \to \infty} \left(\|f_1\|_p + \sum_{n=1}^k \|f_{n+1} - f_n\|_p \right)^p = \left(\|f_1\|_p + \sum_{n=1}^\infty \|f_{n+1} - f_n\|_p \right)^p.$$

Por (1.10) temos que

$$\left(\|f_1\|_{\rho} + \sum_{n=1}^{\infty} \|f_{n+1} - f_n\|_{\rho}\right)^{\rho} \leqslant \left(\|f_1\|_{\rho} + \sum_{n=1}^{\infty} 2^{-n}\right) < \infty$$

que é finito pois o somatório é uma série geométrica com razão menor que 1. Logo

$$\int |g|^p d\mu < \infty.$$

Portanto, $g \in \mathcal{L}^p$. Agora seja, $E = \{x \in X : g(x) < \infty\} \in \eth$. Dito isso, $N = E^{\mathcal{C}} = \{x \in X : g(x) = \infty\} \in \eth$. Mostremos que N tem medida nula. Com efeito, suponha que $\mu(N) > 0$, dessa forma

$$\int_X |g|^p \geqslant \int_N |g|^p = \infty \mu(N) = \infty,$$

o que implicaria em

$$\int |g|^p = \infty$$

que é uma contradição pois $g \in \mathcal{L}^p$. Dessa forma $\mu(N) = 0$, isto é, $g < \infty$ em quase toda parte em X. Sendo assim, defina $f: X \to \mathbb{R}$ por

$$f(x) = \begin{cases} f_1(x) + \sum_{n=1}^{\infty} (f_{n+1}(x) - f_n(x)) & \text{se } x \in E \\ 0 & \text{se } x \notin E. \end{cases}$$

Mostremos que $f \in \mathcal{L}^p$. Note que

$$f(x) = \left(f_1(x) + \sum_{n=1}^{\infty} (f_{n+1}(x) - f_n(x))\right) \chi_E.$$

Daí

$$|f| = \left| f_1 + \sum_{n=1}^{\infty} (f_{n+1} - f_n) \right| |\chi_E| \le |f_1| + \sum_{n=1}^{\infty} |f_{n+1} - f_n| = g.$$

Consequentemente, $|f|^p < g^p$. Logo

$$\int |f|^p d\mu \leqslant \int g^p d\mu < \infty.$$

Portanto, $f \in \mathcal{L}^p$. Por outro lado, para todo $x \in E$

$$f(x) = f_1(x) + \sum_{n=1}^{\infty} (f_{n+1}(x) - f_n(x))$$

$$= f_1(x) + \lim_{k \to \infty} \sum_{n=1}^{k} (f_{n+1}(x) - f_n(x))$$

$$= \lim_{k \to \infty} (f_1(x) + f_2(x) - f_1(x) + f_3(x) - f_2(x) + \dots + f_{k+1}(x) - f_k(x))$$

$$= \lim_{k \to \infty} f_{k+1}(x) = \lim_{k \to \infty} f_k(x).$$

Como $\mu(N) = 0$, então $\lim f_n = f$ em quase toda parte em X. É fácil ver que

$$|f_k| = \left| f_1 + \sum_{n=1}^{k-1} (f_{n+1} - f_n) \right| \le |f_1| + \sum_{n=1}^{k-1} |f_{n+1} - f_n| \le |f_1| + \sum_{n=1}^{\infty} |f_{n+1} - f_n| = g.$$
 (1.11)

Por isso

$$|f_p - f|^p \le (|f_p| + |f|)^p \le (2a)^p = 2^p a^p$$

para todo $n \in \mathbb{N}$. Como $g \in \mathcal{L}^p$, então $2^p g^p \in \mathcal{L}^1$. Dessa forma, pelo Teorema da Convergência Dominada, chegamos a

$$\lim \|f_n - f\|_p = \lim \left(\int |f_n - f|^p \, d\mu \right)^{\frac{1}{p}} = \int \lim |f_n - f|^p \, d\mu = 0$$

Isto prova que \mathcal{L}^p é completo.

Agora introduzimos o espaço de Lebesgue, \mathcal{L}^{∞} explorando suas características fundamentais e o papel que desempenha em diversos problemas da análise funcional.

Definição 1.61. Seja (X, \eth, μ) um espaço de medida. O espaço

$$\mathcal{L}^{\infty} = \mathcal{L}^{\infty}(X, \eth, \mu) = \{f : X \to \mathbb{R}; f \text{ \'e mensur\'avel e limitada qtp em } X\}$$

é chamado Espaço de Lebesgue \mathcal{L}^{∞} . Para cada $f \in \mathcal{L}^{\infty}$, definimos

$$||f||_{\infty} = \inf\{M \geqslant 0 : |f(x)| \leqslant M \text{ qtp em } X\}$$

Por fim, dizemos que f é uma função essencialmente limitada.

Observação: Note que

$$||f||_{\infty} = \inf\{M \geqslant 0 ; \mu(\{x \in X ; |f(x)| > M\} = 0)\}.$$

sto segue da seguinte equivalência

1.4. ESPAÇOS \mathcal{L}^p 35

$$|f(x)| \leq M$$
 qtp em $X \iff \mu(\{x \in X : |f(x)| > M\}) = 0$.

De fato, $|f(x)| \le M$ em quase toda parte em X se, e somente se, existe $N \in \eth$ tal que $\mu(N) = 0$ e $|f(x)| \le M$ para todo $x \in N^{\mathcal{C}}$. Note que $\{x \in X : |f(x)| > M\} \subseteq N$, dessa forma

$$\mu(\{x \in X ; |f(x)| > M\}) \leq \mu(N) = 0$$

Portanto, $\mu(\{x \in X ; |f(x)| > M\}) = 0.$

Reciprocamente, se $\mu(\{x \in X ; |f(x)| > M\}) = 0$, então $|f(x)| \leq M$ para todo $x \in \{|f(x)| > M\}^{\mathcal{C}}$, isto é, $|f(x)| \leq M$ em quase toda parte em X.

Proposição 1.62. Seja (X, \eth, μ) um espaço de medida. Então

$$|f(x)| \leq ||f||_{\infty}$$
 qtp em X

para todo $f \in \mathcal{L}^{\infty}$

Demonstração. Se $f \in \mathcal{L}^{\infty}$, então existe $M \geqslant 0$ tal que $|f(x)| \leqslant M$ em quase toda parte em X. Daí, como $||f||_{\infty} = \inf\{M_0 \geqslant 0 \, ; |f(x)| \leqslant M_0$ qtp em $X\}$, temos que dado $\varepsilon > 0$ conseguimos encontrar $M_{\varepsilon} \geqslant 0$ tal que $|f(x)| \leqslant M_{\varepsilon}$ em quase toda parte em X.

$$\begin{array}{c|c}
M_{\varepsilon} \\
 & + + + + \\
\|f\|_{\infty} & \|f\|_{\infty} + \varepsilon
\end{array}$$

Como $M_{\varepsilon} < \|f\|_{\infty} + \varepsilon$, então

$$|f(x)| \leq M_{\varepsilon} < ||f||_{\infty} + \varepsilon.$$

Fazendo $\varepsilon \to 0$ chegamos a

$$|f(x)| \leqslant ||f||_{\infty} \text{ qtp em } X$$

Agora mostremos que \mathcal{L}^{∞} é um espaço vetorial normado

Proposição 1.63. A aplicação $\|\cdot\|_{\infty}:\mathcal{L}^{\infty}\to\mathbb{R}$ dada por

$$||f||_{\infty} = \inf\{M \geqslant 0; |f(x)| \leqslant M \text{ qtp em } X\}$$

é uma norma

Demonstração. Note que

- 1. $||f||_{\infty} \ge 0$ pois 0 é cota inferior de $\{M \ge 0 ; |f(x)| \le M \text{ qtp em } X\}$.
- 2. $||f||_{\infty} = 0$, assim dado $\varepsilon > 0$ existe $M_{\varepsilon} \ge 0$ tal que $|f(x)| \le M_{\varepsilon}$ em quase toda parte em X, com $M_{\varepsilon} < \varepsilon$. Daí, $|f(x)| < \varepsilon$ em quase toda parte em X. Fazendo $\varepsilon \to 0$, encontramos

$$|f(x)| \leq 0$$
 qtp em X

Dessa forma, f(x) = 0 em quase toda parte em X.

Reciprocamente,
$$||0||_{\infty} = \inf\{M \ge 0; 0 \le M \text{ qtp em } X\} = \inf[0, \infty) = 0$$

3. $\|\lambda f\|$

4. (Desigualdade de Minkowski em \mathcal{L}^{∞}) Se $f, g \in \mathcal{L}^{\infty}$ então as funções são limitadas em quase toda parte em X, dito isso, f+g também é limitada em quase toda parte em X. Logo $f+g \in \mathcal{L}^{\infty}$.

Por outro lado, como $f,g\in\mathcal{L}^{\infty}$, então existem $M,\hat{M}\in\eth$ tais que $\mu(M)=\mu(\hat{M})=0$ e $|f(x)|\leqslant \|f\|_{\infty}$ para todo $x\not\in M$ e $|g(x)|\leqslant \|g\|_{\infty}$ para todo $x\not\in \hat{M}$. Seja $N=M\cup\hat{M}\in\eth$. Daí $\mu(N)=\mu(M\cup\hat{M})\leqslant \mu(M)+\mu(\hat{M})=0+0=0$. Além disso

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty}$$
 qtp em X

para todo $x \notin N$, com $\mu(N) = 0$. Dessa forma

$$||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}.$$

Portanto, $\|\cdot\|_{\infty}$ é uma norma.

Proposição 1.64 (Desigualdade de Hölder em \mathcal{L}^{∞}). Seja (X, \eth, μ) um espaço de medida. Se $f \in \mathcal{L}^1$ e $g \in \mathcal{L}^{\infty}$, então $fg \in \mathcal{L}^1$ e

$$||fg||_1 \le ||f||_1 ||g||_{\infty}$$

Demonstração. Note que se $g\in \mathcal{L}^\infty$ então $|g|\leqslant \|g\|_\infty$ em quase toda parte em X. Consequentemente

$$\|fg\|_1 = \int |fg| \, d\mu = \int |f| \, |g| \, d\mu \leqslant \int |f| \|g\|_{\infty} \, d\mu = \|g\|_{\infty} \int |f| \, d\mu = \|g\|_{\infty} \|f\|_1$$

O próximo passo é mostrar que \mathcal{L}^{∞} também é um espaço de Banach, como já mostramos que é um espaço vetorial normado, basta mostrar a completude

Teorema 1.65 (Teorema de Riesz-Fischer). \mathcal{L}^{∞} é um espaço completo

Agora vamos construir os espaços ℓ^p que são um caso particular dos espaços \mathcal{L}^p

Exemplo 1.66. Sejam $X = \mathbb{N}$, $\eth = \mathcal{P}(\mathbb{N})$ e $\mu : \mathcal{P}(\mathbb{N}) \to [0, \infty]$ dada por

$$\mu(E) = \begin{cases} \#E & \text{se } E \text{ \'e finito} \\ \infty & \text{se } E \text{ \'e infinito} \end{cases}$$

Note que

$$\mathcal{L}^p(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu) = \left\{ (x_n) \subseteq \mathbb{R} : \sum_{n=1}^{\infty} |x_n| < \infty \right\}$$

BIBLIOGRAFIA

- [1] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 2010.
- [2] Jean Leray. «Sur le mouvement d'un liquide visqueux emplissant l'espace». Em: *Acta Mathematica* 63 (1934), pp. 193–248.
- [3] Jean Leray e Robert Terrell. *On the motion of a viscous liquid filling space*. 2016. arXiv: 1604.02484 [math.HO].
- [4] Robert G. Bartle. *The Elements of Integration and Lebesgue Measure*. John Wiley e Sons, 1995.
- [5] Elon Lages Lima. Espaços Métricos. sexta. IMPA, 2020.
- [6] Sheldon Axler. Measure, Integration and Real Analysis. Springer, 2024.