

GBI Tutorium Nr. 41

Foliensatz 13

Vincent Hahn - vincent.hahn@student.kit.edu | 31. Januar 2013

Outline/Gliederung

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

- Wiederholung
- 2 Unentscheidbare Probleme

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

- Wiederholung
- 2 Unentscheidbare Probleme
- 3 Äquivalenzrelationen

Wiederholung

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

- Irgendwas zu Turingmaschinen
- Irgendwas zu Codierungen
- Irgendwas zu Relationen
- Reflexiv
- Transitiv
- Symmetrisch

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Wiederholung

Äquivalenzrelationen

Unentscheidbare Probleme

Unentscheidbare Probleme

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Es gibt Probleme, die lassen sich mit einer Turing-Maschine (oder äquivalent: einem Java-Programm) nicht lösen. (Auch nicht mit unendlich viel Zeit und Platz.)

Ein solches Problem ist nicht entscheidbar

Entscheidbarkeit

Für ein entscheidbares Problem gibt es eine Turingmaschine, die für jede Eingabe hält und das Eingabewort entweder akzeptiert oder nicht.

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Codierung von Turingmaschinen

Bisher haben wir eine Turingmaschine formal so geschrieben $T=(Z,Z_0,X,f,g,m)$. Wir bauen uns eine Codierung, die die ganze Turingmaschine in ein Wort w_1 "packt".

Dieses Wort w_1 übergeben wir dann einer universellen Turingmaschine U, die

- übeprüft, ob w₁ eine Turingmaschine T codiert
- lacktriangle dann die Turingmaschine T "simuliert" und als Eingabe w_2 verwendet
- und schließlich das Ergebnis davon ausgibt

Halteproblem

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Satz

Es ist nicht möglich, eine Turingmaschine U zu bauen, die für jede Turingmaschine T (codiert als w_1) und jede Eingabe w_2 entscheidet, ob T bei der Eingabe von w_2 hält.

Das lässt sich auch beweisen.

8/8

Wiederholung

Unentscheidbare Probleme

Vincent Hahn - vincent.hahn@student.kit.edu

Überblick

 $Vincent\ Hahn-vincent.hahn@student.kit.edu$

Wiederholung

Unentscheidbare Probleme

- 1 Wiederholung
- Unentscheidbare Probleme
- 3 Äquivalenzrelationen