Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica

Engenharia eletrônica

✓ Redes de Computadores Projeto 2020/1

Etapa b.2: Implementar a leitura dos sensores de temperatura e umidade

1. Esquemático do microcontrolador e sensores

As leituras de temperatura e umidade serão feitas utilizando-se o sensor DHT11. O microcontrolador estará conectado ao sensor e LEDs para comunicação visual conforme figura 1.

Figura 1 - Esquemático de conexão da raspberry pi, microcontrolador e sensor

Dica: Para leituras das grandezas físicas, recomenda-se utilizar a biblioteca DHT sensor library (https://github.com/adafruit/DHT-sensor-library) e a Adafruit Unified Sensor. A própria IDE do Arduino pode ser usada para programação do microcontrolador.

2. Protocolo de comunicação com o microcontrolador

A interface de comunicação entre o microcontrolador e a raspberry pi será a porta serial /dev/ttyACM0 (porta emulada na conexão USB). Desta maneira, a saída dos dados do ATMega328p se dará através dos pinos 0 (Rx) e 1 (Tx) da placa Arduino Uno.

Haverão dois códigos: o do microcontrolador, que lerá os valores de temperatura e umidade do sensor; e o da raspberry, que requisitará as leituras ao microcontrolador. O formato das requisições e respostas é descrito abaixo.

Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica

✓ Redes de Computadores

Projeto 2020/1

Para o protocolo de comunicação o *frame* da tabela 1 deve ser implementado.

Número da requisição	Comando	Dados	Checksum 16 bits complemento de um
N_REQ	СМД	DATA	CHECKSUM
4 bytes	1 byte	4 bytes	2 bytes

Os campos do frame de dados podem ser feitos através de *structs* em linguagem C ou através das *dataclasses* em Python.

(https://docs.python.org/3/library/dataclasses.html)

Comandos:

N REQ = número aleatório

CMD = 0x54h Leitura de temperatura ou

CMD = 0x48 Leitura de umidade

DATA = 0x000000000h

CHECKSUM = O checksum deve ser feito como o complemento de um da soma simples dos campos N_REQ, CMD e DATA (em C -> checksum= ~ soma)

As respostas do microcontrolador devem ser:

N_REQ = mesmo número enviado na requisição

CMD = 0xFFh Resposta do comando de leitura

DATA = valor de temperatura ou umidade (4 bytes)

CHECKSUM = O checksum deve ser feito como o complemento de um da soma simples dos campos N_REQ, CMD e DATA (em C -> checksum= ~ soma)

OBS.: Sempre deve-se verificar se existe erro na comunicação através da análise do checksum recebido.

3. Acesso remoto

O acesso remoto aos hardwares será feito através de uma sessão ssh (Secure

Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica

✓ Redes de Computadores

Projeto 2020/1

Socket Shell). Para isso, é necessária a chave privada *rpi_rsa* que foi enviada por e-mail. A passphrase da chave é *aluno*

Comando:

ssh -i path_to_key/rpi_rsa user@189.34.36.204 -p 12000 Enter passphrase for key 'rpi rsa': aluno

Para visualização dos LEDs, pode-se visitar a webcam do projeto:

http://189.34.36.204:12666

4. Transferência de arquivos

Para transferir arquivos para a Raspberry Pi, pode-se utilizar o comando scp.

a. Exemplo para transferência de um arquivo .hex:

scp -P 12000 -i rpi_rsa /tmp/build13772453501128518130.tmp/humidity.cpp.hex user@189.34.36.204:/home/user/

5. Script para gravar o código do microcontrolador

Uma vez compilado o código do microcontrolador ATMega328p, presente na placa Arduino Uno, o binário de saída será carregado utilizando-se o script load uC.sh.

OBS.: a flag -e deve ser indicada como um, conforme exemplo de uso abaixo.

Usage: ./load_uC.sh -e exp -b binary

- -e Selecionar o experimento: um, dois, tres, quatro
- -b Arquivo que sera carregado na memoria do microcontrolador da placa Arduino

Exemplo de uso:

./load_uC.sh -e um -b humidity.cpp.hex

Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica

✓ Redes de Computadores Projeto 2020/1

6. Entrega da tarefa

Os códigos devem estar armazenados dentro da pasta /home/user/sensing (user é o nome do usuário criado para cada dupla) até o dia 17/09.

Cronograma de entrega

Etapas	Deliverable	Data Limite
b.1	Apresentação de 10 minutos sobre o broker MQTT escolhido e seu funcionamento.	03/09/2020
b.2	Códigos e demonstração da leitura dos sensores.	17/09/2020
b.3	Códigos e demonstração da comunicação MQTT de leitura dos sensores	24/09/2020
b.4	Códigos e demonstração do visualização Web	08/10/2020