Day 9: Classification Algorithms - Logistic Regression

Why Classification?

To date, we have focused on *regression* algorithms. While useful, there is a critical feature of regression tools worth noting:

• Do not understand different "groups" of data when presented as a dependent variable, just one sliding scale in $\ensuremath{\mathbb{R}}$

When to Choose Classification

When we have discrete dependent variables

- Binary variables
- Categorical Data
- When there is no clear dependent variable, or when we don't exactly know what we are looking for

Regression vs Classification

Regression asks:

• What is the predicted price of commodity \boldsymbol{x} in the next period?

Classification asks

• Does the price of commodity \boldsymbol{x} rise or fall in the next period?

Classification - Logistic Regression

What about Linear Probability Models?

Good:

- Just use OLS to estimate likelihood of outcome
- Has the advantage of simplicity

Bad:

 Assumes continuity of outcomes (which is not true in a classification problem)

What about Linear Probability Models?

Ugly:

- Is not restricted to the [0,1] interval!
- Can have meaningless probabilities (greater than 1, and less than 0)

Logistic Regression

What if we transform our regression model in a way that requires it to remain within the $\left[0,1\right]$ interval?

Logistic Regression

- We no longer have a linear function (linear functions are not bounded to our unit interval)
- We no longer assume that treatments have constant effect
- But our output can now be interpreted as

$$p(y = 1)$$

Logistic Transformation

The transformation that is required in order to coerce our output to remain between 0 and 1 is

$$p(y=1|x) = rac{exp(x'eta)}{1+exp(x'eta)} = \Lambda(x'eta)$$

and is called the **logistic transformation**.

Maximum Likelihood Estimation

OLS Log-Likelihood function:

$$ln~\mathcal{L}(heta|y,x) = -rac{n}{2}ln(2\pi) - rac{n}{2}ln(\sigma^2) - rac{1}{2\sigma^2}(y-xeta)'(y-xeta)$$

Logistic Log-Likelihood function:

$$egin{aligned} ln~\mathcal{L}(heta|y,x) &= \sum_{i=1}^n (y_i~ln(\Lambda(x_i'eta)) + \ & (1-y_i)~ln(1-\Lambda(x_i'eta))) \end{aligned}$$

Marginal Effects in a Logit Model

In order to obtain a point estimate of the marginal effect of a given input on y, we must use the function

$$rac{\partial E(y|x)}{\partial x} = \Lambda(x'eta)\cdot (1-\Lambda(x'eta))\cdot eta$$

Thus, our marginal effects will depend on the values of our inputs.

Note: the Lambda (Λ) function is defined on the previous slide

Marginal Effects in Regressions

OLS:

$$rac{\partial E(y|x)}{\partial x} = eta$$

Logit:

$$rac{\partial E(y|x)}{\partial x} = \Lambda(x'eta)\cdot (1-\Lambda(x'eta))\cdot eta$$

```
import numpy as np
import patsy as pt
import statsmodels.api as sm
data = pd.read_csv('passFailTrain.csv')
y, x = pt.dmatrices('G3 \sim G1 + age + goout', data = data)
model = sm.Logit(y, x)
reg = model.fit()
print(reg.summary())
```

```
import numpy as np
import patsy as pt
import statsmodels.api as sm
```

We need to import our libraries, and particularly, import the statsmodels library.

```
data = pd.read_csv('passFailTrain.csv')
y, x = pt.dmatrices('G3 ~ G1 + age + goout', data = data)
```

Recall that we generate our y and x matrices in order to use them in our model. Output goes on the left of the "~", inputs on the right, separated by "+"

Note: this is also the formula that R uses when performing regressions.

```
model = sm.Logit(y, x)
reg = model.fit()
print(reg.summary())
```

First, we create our Logit model, then we store the fitted model as reg. Afterward, we can print out our summary table.

It should look something like this:

Logit Regression Results

Dep. Variable:			G3 No.	Observations:		296
Model:		Lo	ogit Df R	esiduals:		292
Method:			MLE Df N	lodel:		3
Date:	Th	u, 23 Mar 2	2017 Pseu	ıdo R-squ.:		0.3567
Time:		16:21	1:12 Log-	Likelihood:		-119.01
converged:		7	True LL-N	ull:		-185.01
			LLR	p-value:	2	2.010e-28
==========						======
	coef	std err	Z	P> z	[95.0% Con	nf. Int.]
Intercept	6.9131	2.282	3.030	0.002	2.441	11.386
G1	3.1671	0.344	9.218	0.000	2.494	3.840
age	-0.4124	0.136	-3.043	0.002	-0.678	-0.147
goout	-0.3163	0.147	-2.150	0.032	-0.605	-0.028

Predictions from Logit Model

Now, we may want to use our logit model to make predictions about new observations.

All we need are new values:

```
New Observation: [Term 1 Grade: Pass, Age: 16,
```

Frequency of Going Out: 4]

Predictions from Logit Model

```
reg.predict((1,1,16,4))
# OR
xpred = pt.build_design_matrices([x.design_info],
    testData)[0] # Recycle patsy model w/ test data
reg.predict(xpred) # Use test data to generate predictions
```

Note that we have to include values for all necessary variables, as well as a 1 for the intercept term.

Marginal Effects from Logit Model

```
reg = model.fit() # We need to start with a fitted model

mEff = reg.get_margeff(
   at='overall', # Where the ME is estimated
   method='eydx', # Calculates d(ln y)/dx, or % effect
   dummy=True, # Caclulates effects on dummies as 0 to 1
   count=True) # Calculates effects on count as value + 1

mEff.summary()
```

Using the <code>get_mareff</code> method, we can easily estimate the marginal effects of our regressors on the dependent variable. (No ugly home-made functions needed!)

Notes on \mathbb{R}^2

While R^2 values are not always helpful in a regression setting, they are very valuable when forecasting using regressions.

- Tell us how much of the variance our model is capable of explaining
- If our \mathbb{R}^2 is 0.3567 (like it was for the regression earlier), then the model explains 35.67% of the variation in pass/fail outcomes among students in our sample.

Notes on \mathbb{R}^2

Even **more** useful in a forecasting setting is the out-of-sample ${\cal R}^2$

- Tell us how much of the variance our model is capable of explaining with respect to **new** observations
- Basically, it tells us if we are doing a good job creating accurate forecasts

Generating a Tjur \mathbb{R}^2

Since we cannot use the standard R^2 measure for Logit models, we need to calculate a pseudo- R^2 , and statsmodels does not calculate out-of-sample R^2 automatically.

Generating a Tjur \mathbb{R}^2

Tjur (2009) suggested an R^2 measure for Logit models calculated as the difference between the mean value of predictions for "failures" and "successes" in a binary model.

$$Tjur~R^2=ar{\hat{y}}_{successes}-ar{\hat{y}}_{failures}$$

 $Tjur R^2 = Mean prediction for successes$

-Mean prediction for failure

Generating a Tjur \mathbb{R}^2

Tjur (2009) suggested an R^2 measure for Logit models calculated as the difference between the mean value of predictions for "failures" and "successes" in a binary model.

$$Tjur~R^2 = ar{\hat{y}}_{successes} - ar{\hat{y}}_{failures}$$

The measure is bounded by 1 and 0, and gives us a measure of how well we separate our two outcomes

Lab for Today

- 1. Fit a Logit model predicting whether or not a marketing campaign initiated by a bank results in successful sales of a financial product (CD's in this case)
- 2. Create a function that will take a fitted logit model, and y and x matrices, and return the Tjur \mathbb{R}^2 value for that sample
- 3. Do your best to find a model with the **highest** Tjur \mathbb{R}^2 value given the data that was provided to you (always feel free to compare code and models with others!)