

1. 概述

Bio-M001A 是一款一体化多参数健康监测模块。它测量和处理包括 ECG (心电), RESP (呼吸), HR (心率), PPG (脉搏波), SPO2 (血氧), GSR (皮电), BIA (人体阻抗分析)和计步运动/睡眠等多类型基础生物数据。

该模块集成红(660nm)、绿(520nm)和红外(940nm)三种光收发传感电路,实现 PPG 相关应用;支持 4 电极接入,实现人体电及阻抗活动的相关应用;板载 14 位三轴 Gsensor,实现运动功能需求。

同时,模块内嵌带生物模拟前端和 24 位模数转换器的 MCU/DSP 单元,运行的算法核能完成滤波、人体综合行为判定等数据分析,比如运动识别等。硬件接口支持 SPI/I2C/UART 可选,FPC 连接器参考 DF37NB-30DS-0.4V。

2. 应用

- 可穿戴设备(手环/手表等);
- 健康监测设备;
- 手持便携设备;

3. 功能详情

- 集成单导心电(ECG):
- 三电极配置, 支持右腿驱动;
- 导联脱落检测;
- 四电极生物阻抗测量:
- 内置 DAC 和多频率波形发生电路:
- 支持 RESP (呼吸),BIA (人体阻抗分析)和皮肤电(GSR)等;
- ▶ 脉搏波 (PPG) 电路:
- 支持 520nm,660nm 和 940nm 三波长 led, 灵活的时序控制器;
- 支持心率(HR),血氧(SPO2)和红外接近感应等模式;
- 电极感应电路:
- 支持导联脱落检测:
- 自主开发的电极新型功能支持;
- 运动计步:
- 内置 14 位三轴 Gsensor, 可选范围±2g, ±4g, ±8g, ±16g;
- 支持运动计步与识别等;
- 通讯接口:
- SPI/UART/I2C 可选;
- FPC 连接器参考 DF37NB-30DS-0.4V,制造商为 hirose;
- 超小体积,适合手环(表)装配使用:
- 22×26mm;

4. 硬件接口

4. 1 FPC 接口说明

Bio-M001A 提供一个 30 管脚的 fpc 连接器(参考 DF37NB-30DS-0.4V),用于模拟和数字信号的存取。

4. 1. 1 FPC 管脚

Table 1:

Name	No.	Type	Function
P0_2	1	I/0	GPO.2; hardware intface switch
P0_0	2	I/0	GPO.0; hardware intface switch
PO_1_INT	3	I/0	GPO.1; INT Output, the rising edge active
P0_4	4	I/0	GPO.4; firmware upgrade mode switch
VSS	5	POWER	Ground
LD_LA_TOUCH	6	AO	Lead-off detection analog output from left arm
VOPT	7	POWER	Power supply driving PPG led
PO_7_SPI_SDI_SDA	8	I/0	GPO.7; SDI of slave spi; SDA of slave I2C
P1_0_SPI_SCK_SCL	9	I/0	GP1.0; SCK of slave spi; SCL of slave I2C
LD_RA_TOUCH	10	AO	Lead-off detection analog output0 from right arm
RH_KEY_TOUCH	11	AO	Lead-off detection analog output1 from right arm
P1_3_SPI_SDO_RX	12	I/0	GP1.3; SDO of slave spi; RX of UART
P2_5_UTX	13	I/0	GP2.5; TX of UART
P1_2_SPI_SCS	14	I/0	GP1.2; SCS of slave spi
P3_2	15	I/0	GP3. 2
P3_3	16	I/0	GP3. 3
	17		
LH_DRV	18	S0	Drive source about left hand, ECG RLD output
	19		
LH_REC	20	SI	Input about ECG/impedance from left hand
RH_REC	21	SI	Input about ECG/impedance from right hand
	22		
RH_DRV	23	S0	Drive source about right hand
	24		
AVSS	25	POWER	Analog ground
VSS	26	POWER	Ground
ECG_SIG	27	AO	ECG analog output
IMP_DC	28	AO	Body impedance analog DC output
OPT_PPG	29	AO	PPG analog output
VDD33	30	POWER	Power supply

注: AO--Analog Output,SO--Source Output,SI--Source Input

4. 1. 2 Strapping 管脚

Bio-M001A 有三个 strapping 管脚:

- P0 2
- P0_0
- P0 4

模块复位期间,会通过采样 **strapping** 管脚电压级别来配置工作模式和数字接口方式。确定的数字接口方式将决定 P0_7, P1_0, P1_3, P2_5 和 P1_2 这五个管脚的实际功能。

模块内部本身有弱上拉,用户可外接电阻完成下拉功能。复位结束后, strapping 管脚能恢复到正常功能使用。参考如下表:

硬件接口方式选择:

Table 2:

	Hardware intface method									
pin default SPI UART I2C(Address=0x66) I2C(Address=0x67)										
P0_0	pull-up	1	0	1	0					
P0_2	pull-up	1	0	0	1					

模块工作模式选择:

Table 3:

Work mode								
pin default Normal Boot								
P0_4	pull-up	1	0					

4. 1. 3 管脚布局

Figure 2

4. 2 通讯接口

Bio-M001A 支持三种数字接口: SPI, I2C 和 UART, 用来与主机设备通讯。 其选择方式参考表 2。各硬件接口对应的管脚分配如表 4:

Table 4:

Hardware intface pins map									
intface	P0_7	P1_0	P1_2	P1_3	P2_5				
SPI	SDI	SCK	SCS	SD0	X				
I2C	SDA	SCL	X	X	X				
UART	X	X	X	RX	TX				

4. 2. 1 I2C 操作

Bio-M001A 支持 slave I2C 接口,如图 3 所示,I2C 总线采用 SCL 和 SDA 作为信号线。两条线路都通过上拉电阻与外部电源连接,因此当总线空闲时,它们被拉高。Bio-M001A 的 I2C 设备地址如表 5 所示。7 位设备地址的 LSB 位是通过 P0 0, P0 2 引脚来配置的,具体配置方式参考表 2。

Figure 3 Slave Address Start SRW: ACK SCL SDA Data Stop SCL SDA · S=Start (1 bit) SA=Slave Address (7 bits) SR=SRW bit (1 bit) M=Slave device send acknowledge bit (1 bit) D=Data (8 bits) A=ACK P=Stop (1 bit) SR D D D D Р s SA Μ s SA SR M Α Α

I2C 通信时序图

Table 5:

	I2C Address										
SAD6 SAD5 SAD4 SAD3 SAD2 SAD1 SAD0 W/F							W/R				
1	1	0	0	1	1	LSB	0/1				

4. 2. 2 SPI 操作

Bio-M001A 支持 4 线 slave SPI 接口,如图 3 所示,SCS 的下降沿与SCK 的上升沿相结合,决定数据帧的开始。数据长度为 8 位,MSB first 模式。

4. 3 传感器布局

Bio-M001A 集成三大部分传感器:

- A. 采集 PPG 信号的光收发传感,如图 5 所示,R/G/IR LED 为红、绿和红外光发射区,PD 为光敏接收二极管;
- B. 采集人体电及阻抗活动信号的电极传感,图中 xH_REC 接人体电和阻抗活动感应肢体导联,xH_DRV 接阻抗感应激励电极;
- C. 运动感知的 GSensor。

R/G/IR LED PD Gsensor FPC Connector

Figure 5

LH_REC LH_DRV

RH REC RH DRV

正面背面

5 寄存器

5. 1 寄存器布局

表 6 描述了 Bio-M001A 所包含的寄存器列表。

Table 6:

名称	地址	类型	描述	缺省值
Reg_INT_DATAL	0x00	R	中断数据低8位	0x00
Reg_INT_DATAM	0x01	R	中断数据中间8位	0x00
Reg_INT_DATAH	0x02	R	中断数据高8位	0x00
Reg_INT_DATATYPE	0x03	R	中断数据类型	0x00
Reg_DEVICE_ID	0x04	R	设备 ID	0x21/0xA1
Reg_FIRMWARE_VER	0x05	R	固件版本号	0xXX
Reg_BL_VERSION	0x06	R	引导程序版本号	0x01/x81
Reg_PSTATUS	0x07	R	保留	0x00
Reg_FUN_CMD0	0x08	R/W	功能命令0	0x00
Reg_MODE_CMD1	0x09	R/W	模式和功能命令1	0x00
Reg_BL_DATA	0x0A	W	固件升级写数据	0x00

5. 2 寄存器描述

5. 2. 1 Reg_INT_DATAL (00H)

新的中断发生时将更新此寄存器数据,具体内容含义由 Reg_INT_DATATYPE 字段定义。当 Bio-M001A 处于 Boot(引导)模式时,此寄存器内容为固件升级命令应答值,相关定义参考如下表 7:

Table 7:

固件升级应答说明								
RSP Name	RSP Value	描述						
BL_RSP_OK	0x01	应答 ok						
BL_RSP_PARA_ERROR	0x02	参数错误						
BL_RSP_CMD_ERROR	0x03	命令错误						
BL_RSP_ERASE_ERROR	0x04	FLASH 擦除错误						
BL_RSP_PROGRAM_ERROR	0x05	编程错误						
BL_RSP_CRC_ERROR	0x06	CRC 校验错误						
BL_RSP_VERIFY_ERROR	0x07	编程校验错误						
BL_RSP_UNKNOW	0x08	未知错误						

5. 2. 2 Reg INT DATAM (01H)

新的中断发生时将更新此寄存器数据,具体内容含义由 Reg_INT_DATATYPE 字段定义。

5. 2. 3 Reg_INT_DATAH (02H)

新的中断发生时将更新此寄存器数据,具体内容含义由 Reg_INT_DATATYPE 字段定义。

5. 2. 4 Reg INT DATATYPE (03H)

新的中断发生时将更新此寄存器和其它地址为 0x00H-0x02H 的上述三个寄存器数据,数据类型由此寄存器的高 4 位 Data Type 字段标定,具体定义参考表 9;当数据类型由 Bio-M001A 内嵌的 24 位模数转换器(AD)产生时,此寄存器的低 4 位 AD Sample Sequence 字段标示 AD 采样数据的队列号;通过此队列号能确认数据是否连续,并未丢数据包。

Table 8:

Reg_INT_DATATYPE								
	Data Type				amp1e	Sequ	ence	
0	0	0	0	0	0	0	0	

Table 9:

		Data Type Map		
Data Type	Reg_INT_DATAL	Reg_INT_DATAM	Reg_INT_DATAH	
0h	绿光直流 PPG 低 8 位 AD 数据	绿光直流 PPG 中 8 位 AD 数据	绿光直流 PPG 高 8 位 AD 数据	
1h	红光直流 PPG 低 8 位 AD 数据	红光直流 PPG 中 8 位 AD 数据	红光直流 PPG 高 8 位 AD 数据	
2h	红外直流 PPG 低 8 位 AD 数据	红外直流 PPG 中 8 位 AD 数据	红外直流 PPG 高 8 位 AD 数据	
3h	肢体阻抗低 8 位 AD 数据	肢体阻抗中 8 位 AD 数据	肢体阻抗高 8 位 AD 数据	
4h	皮肤电阻抗低 8 位 AD 数据	皮肤电阻抗中 8 位 AD 数据	皮肤电阻抗高 8 位 AD 数据	
5h	保留	保留	保留	
6h	保留	保留	保留	
7h	绿光交流 PPG 低 8 位 AD 数据	绿光交流 PPG 中 8 位 AD 数据	绿光交流 PPG 高 8 位 AD 数据	
8h	红光交流 PPG 低 8 位 AD 数据	红光交流 PPG 中 8 位 AD 数据	红光交流 PPG 高 8 位 AD 数据	
9h	红外交流 PPG 低 8 位 AD 数据	红外交流 PPG 中 8 位 AD 数据	红外交流 PPG 高 8 位 AD 数据	
Ah	呼吸波阻抗低 8 位 AD 数据	呼吸波阻抗中 8 位 AD 数据	呼吸波阻抗高 8 位 AD 数据	
Bh	心电低 8 位 AD 数据	心电中 8 位 AD 数据	心电高 8 位 AD 数据	
Ch	保留	保留	保留	
Dh	GSensor	GSensor	GSensor	
Eh	保留	保留	保留	
Fh	固件升级命令应答值	保留	保留	

5. 2. 5 Reg DEVICE ID (04H)

这个寄存器低7位标示这个设备的特别识别码(0x21),第8位指示当时运行模式,0为Boot模式,1为正常应用模式。

Table 10:

	Device ID									
MODE Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0							Bit0			
0/1	0	1	0	0	0	0	1			

5. 2. 6 Reg_FIRMWARE_VER (05H)

这个寄存器标示这个设备的固件版本号,具体的值可以参考发布的生产版本。

5. 2. 7 Reg BL VERSION (06H)

这个寄存器低7位标示这个设备的引导程序的版本号,具体的值可以参考发布的生产版本:第8位指示当时运行模式,0为Boot模式,1为正常应用模式。

Table 11:

	Device ID										
MODE Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0											
0/1	0	1	0	0	0	0	1				

5. 2. 8 Reg_PSTATUS (07H)

这个寄存器保留。

5. 2. 9 Reg FUN CMD0 (08H)

这是一个功能控制寄存器,它有两种运行方式;当寄存器 Reg_MODE_CMD1 高三位定义为 FW Upgrade 模式(见表 14 和表 16)时,此寄存器内容为固件升级命令,命令定义参考表 13;如果 Reg_MODE_CMD1 高三位未定义为 FW Upgrade 模式,则此寄存器内容如下表 12 所示,对应的功能位如果置 1,将使能相对应的功能。写此寄存器后,须接着写寄存器 Reg_MODE_CMD1 (09H),操作才会有效。功能命令的具体说明请参考表 15。

Table 12:

	Function CMD Map											
GSR RESP Impedance Preserve PPG_IR PPG_GREEN PPG_RED ECG_EXT_AD												
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
0	0	0	0	0	0	0	0					

Table 13:

固件升级命令说明					
BL CMD Name	CMD Value	描述			
BL_CMD_ERASEAPP	0x62	FLASH 擦除			
BL_CMD_JMPAPP	0x63	运行固件程序			
BL_CMD_APRDY	0x64	固件编程完成			
BL_CMD_PROGRAM	0x6F	固件编程			

5. 2. 10 Reg MODE CMD1 (09H)

这是一个模式设置和功能控制寄存器,一个正常的操作命令由三部分组成:功能模式(Function Mode)+功能命令(Function CMD)+启动位(Start);功能模式由此寄存器高三位定义,如表 14 和表 16 所示;当 Start 置 1 时,表示启动当前操作,而清零则表明终止所定义的操作。功能命令包括 Reg_FUN_CMD0 和本寄存器低 4 位。功能命令的具体说明请参考表 15。

Table 14:

Function CMD1 Map							
Fun	ction M	lode	Start	Preserve	Preserve	Preserve	ECG_INT_AD
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	0	0	0	0	0

Table 15:

功能命令说明			
Function	描述		
CMD			
ECG_EXT_AD	ECG 功能,外部 AD 采样		
PPG_RED	红光 PPG 功能		
PPG_GREEN	绿光 PPG 功能		
PPG_IR	红外 PPG 功能		
Impedance	肢体电阻抗		
RESP	呼吸波		
GSR	皮肤电活动		
ECG_INT_AD	ECG 功能,外部 AD 采样		
Preserve	保留		

Table 16:

Function Mode Map					
Function Mode Value		Value	模式	说明	
Bit7	Bit6	Bit5	沃八	<u></u>	
1	1	1	Halt mode	停止模式,最省电	
1	1	0	Obey mode	接受测量模式	
1	0	1	Watch mode	自主模式	
1	0	0	Calibration	校准模式	
0	1	1	FW Upgrade	固件升级模式	

5. 2. 11 Reg BL DATA (OAH)

这个寄存器用于Bio-M001A在引导模式下,固件升级时大数据块操作。固件原始的二进制数据块可以直接写到此寄存器,然后编程内部flash。

6 固件升级

Bio-M001A 复位上电,将按如图?? 所示流程开始启动,依据条件不同可分别进入 boot 和 app 两种工作模式; boot 模式用于固件 app 升级, app 模式为正常的应用模式; 在复位期间硬件上拉低管脚 P0_4 (参考 4.1.2) 或者 APP 模式期间命令申请(参考 5.2.10)都可以进入 boot 模式。

Figure 6