

Inventors: HONGZHOU LIU et al.

"METHOD AND APPARATUS FOR QUANTIFYING TRADEOFFS FOR MULTIPLE COMPETING GOALS IN CIRCUIT DESIGN"

Attorney Docket No.: 2879-030565

Fig 1

Inventors: HONGZHOU LIU et al.
 "METHOD AND APPARATUS FOR QUANTIFYING TRADEOFFS FOR MULTIPLE COMPETING GOALS IN CIRCUIT DESIGN"
 Attorney Docket No.: 2879-030565

Fig 2

Device(s)			Synthesized Performance Specification(s)*
Device #	Device Variable(s)	Device Constants(s)	
D1 (Input Transistor)	Length & width	Area	
D2 (Input Transistor)	"	"	Gain (G)
D3 (Input Transistor)	"	"	Slew Rate (SR)
D4 (Resistor)	Resistance	Length & width	Unity Gain Freq (UGF)
D5 (Capacitor)	Capacitance	"	Input Offset (IO)
D6 (Resistor)		"	Phase Margin (PM)
D7 (Capacitor)		"	Setting Time (ST)
D8 (Resistor)	Resistance		Power Usage (P)
D9 (Resistor)	"		Estimated Total Area (ETA)
D10 (Resistor)	"		
D11 (Output Transistor)	Length & width	Area	
D12 (Output Transistor)	"	Area	

* Performance Specifications to be compared to circuit performances determined by a circuit synthesizer.

Fig 3

Synthesized
Design Population

12

Design Point	Circuit Topology	Original Performance(s)	Cost	Domination Cost	Tradeoff Cost	Relative Efficiency
DP1	T _{DP1}	G _{P-DP1} SR _{P-DP1} ; ETA _{P-DP1}	OC _{DP1}	DC _{DP1}	TC _{DP1}	RE _{DP1}
DPS	T _{DPS}	G _{P-DPS} SR _{P-DPS} ; ETA _{P-DPS}	OC _{DPS}	DC _{DPS}	TC _{DPS}	RE _{DPS}
DP7	T _{DP7}	G _{P-DP7} SR _{P-DP7} ; ETA _{P-DP7}	OC _{DP7}	DC _{DP7}	TC _{DP7}	RE _{DP7}

DPX	T _{DPX}	G _{P-DPX} SR _{P-DPX} ; ETA _{P-DPX}	OC _{DPX}	DC _{DPX}	TC _{DPX}	RE _{DPX}
-----	------------------	--	-------------------	-------------------	-------------------	-------------------

Inventors: HONGZHOU LIU et al.
"METHOD AND APPARATUS FOR QUANTIFYING TRADEOFFS FOR MULTIPLE COMPETING
GOALS IN CIRCUIT DESIGN"
Attorney Docket No.: 2879-030565

Fig 8

Layout Performance Specifications *	1.4
Gain (G)	
Slew Rate (SR)	
Unity Gain Freq. (UGF)	
Input Offset (IO)	
Phase Margin (PM)	
Settling Time (ST)	
Power (Usage) (P)	
Actual Total Area (ATA)	
Yield Estimate (YE)	
Design Rule Compliance (DRC)	

* performance specifications to be
compared to circuit performances determined
by a circuit simulator.

Fig 9

16

Layout Design Population

Layout Design Point	Circuit Layout	Performance(s)	Original Cost	Domination Cost	Tradeoff Cost	Relative Efficiency
LDP1	L_{LDP1}	G_P-LDP1 SR_P-LDP1 \vdots DRC_P-LDP1	OC_{LDP1}	DC_{LDP1}	TC_{LDP1}	RE_{LDP1}
LDP5	L_{LDP5}	G_P-LDP5 SR_P-LDP5 \vdots DRC_P-LDP5	OC_{LDP5}	DC_{LDP5}	TC_{LDP5}	RE_{LDP5}
LDP7	L_{LDP7}	G_P-LDP7 SR_P-LDP7 \vdots DRC_P-LDP7	OC_{LDP7}	DC_{LDP7}	TC_{LDP7}	RE_{LDP7}

LDPX	L_{LDPX}	G_P-LDPX SR_P-LDPX \vdots DRC_P-LDPX	OC_{LDPX}	DC_{LDPX}	TC_{LDPX}	RE_{LDPX}
------	------------	---	-------------	-------------	-------------	-------------

○ = Layout Design Point Generated from Design Points with Lowest Tradeoff Cost

○ = New Layout Design Point Generated from Layout Design Points Generated from Design Points with Lowest Tradeoff Costs