\vec{n} , $=\langle 2, -1, 1 \rangle$
$\vec{n}_2 = \langle l, l, -l \rangle$
$\vec{v} = (1-1, -(-2-1), 2+1)$
= (0,3,3) Creal
Find a peint on \vec{v}
2x - y + z = 9 $x + y - z = 3$
y = 2x + 2 - 9 y = 3 + 2 - x
2 x x Z - 9 = 3 x Z - X
3x = 12
X = 4
Sclue for y and 2
4+4-7=3

Determine parametric equations of the line segment from point P(2, 4, -7) to Q(-6, 3, 1). (Enter your answers as a comma-separated list of equations. Let $0 \le t \le 1$ be the parameter.)

$$\vec{V} = Q - P$$

$$= \langle -8, -1, 8 \rangle$$

$$Combine \vec{V} \text{ and } P$$

$$x = -8t + 2$$

$$y = -1t + 4$$

$$z = 8t - 7$$

$$L_1$$
: $x = 2 + t$, $y = 1 - 3t$, $z = 8 + 2t$
 L_2 : $x = 5 - 4s$, $y = 12s$, $z = -2 - 8s$

- O parallel
- intersecting
- O neither

Determine an equation for the plane passing through the three points P(5, 0, 1), Q(0, 4, -1), and R(-1, 3, 0).

V, = P - Q	cactual numbers
= (5, -4, 2)	
ν ₃ = P-R	
$= \langle 6, -3, 1 \rangle$ $\overrightarrow{V}_{1} = \overrightarrow{V}_{1} \times \overrightarrow{V}_{3}$	5 -4 2 6 -3 1
= (-4+6,-(5-12),-1S+24)	
= < 2 , 7, 9 >	

Combine	Vn civ	id P					
2Cx-5) + 7(y -0)	+9(2	2 -1) =	- 0		

ermine an equation for the plane passing through the point $P(-4, 2, 0)$ and containing the li	ine with parametric equations $oldsymbol{x}$	= 3 + 7t, y = 1 - 3t, and z = -2 +	5t.
$\overrightarrow{V} = \begin{pmatrix} x = 3 + 7t \\ y = 1 - 3t \\ 2 = -2 + 5t \end{pmatrix}$		Not actual	numbers
2=-2+5t		,	
V = (7, -3, 5) Point Where vector starts	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V ₂ V,	
Vie = (3, 1, -2)			
$\vec{\nabla}_{z} = \vec{\rho} - \vec{\nabla}_{z}$			
= (-4,2,0)-(3,1,-2)			
= < -7, 1, 2 >		7 -2	5
$\vec{\nabla}_{n} = \vec{\nabla}_{1} \times \vec{\nabla}_{2}$		-7 [2
= (-6-5, -(14+35), 7-9	417		
=<-11,-49,-14>			
Combine Vn and point Vio			

Plane = -11(x-3)-49(y-1)-14(z+2)=0

Determine an equation for the plane passing through the line of intersection of the two planes, Plane #1, x - 2y = 3, and Plane #2, y + 3z = 9, and perpendicular to Plane #3, 7x + 2y - z = -8. Consult the figure below for a visualization of how Plane #4 relates to the other three.

$$\vec{n}_{1} = \langle 1, -2, 0 \rangle$$

$$\vec{n}_{2} = \langle 0, 1, 3 \rangle$$

$$\vec{V} = \vec{n}_{1} \times \vec{n}_{2}$$

$$= \langle -6, -(3), 1 \rangle$$

$$= \langle -6, -3, 1 \rangle$$

$$\vec{n}_{3} = \langle 7, 2, -1 \rangle$$

$$\vec{n}_{4} = \vec{V} \times \vec{n}_{3}$$

$$= \langle 3 - 2, -(6 - 7), -12 + 21 \rangle$$

$$= \langle 1, 1, 9 \rangle$$

Find a paint	on the	line of	Y inte	vseeticu	n cf	plane	land 2
x - 2y = 3 y + 3z = 9							
Let y = 0							
X = 3							
32=9							
2=3							
P=(3,0,	3)						
Combine na a	ind p						
Plane = 1(x-3)) + (y-C	j) + 9,	(2-3)	=0			

Determine the point at which the line passing through the points P(1, 0, 6) and Q(9, -1, 9) intersects the plane given by the equation x + y - z = 7.

$$(x, y, z) = \left(\begin{array}{c} \\ \end{array}\right)$$

$$\vec{V}_L = P - Q$$

$$= \langle -8, 1, -3 \rangle$$

Pavametric Equations of L	
x = -8t +1 y = t	
Plus into plane equation and solve for t	
(-8t+1)+(t)-(-3t+6)=7	
-8t+1+t+3t-6=7	
-4t=12	
Peint of intersection = (24+1, -3, 9+6)	
= (25, -3, [5)	

ind the angle in degrees between the two planes x - 10y - 7z = 1 and 2x + 5y + 7z = 11. (Round your answer to two decimal places.)

$$\vec{n}_1 = \langle 1, -10, -7 \rangle$$

$$\vec{n}_2 = \langle 2, 5, 7 \rangle$$
Find the angle between the normal verters

$$|\vec{n}_{1}| = \sqrt{1 + 100 + 40}$$

$$|\vec{n}_{2}| = \sqrt{4 + 25 + 40}$$

$$|\vec{n}_{1} \cdot \vec{n}_{2}| = 2 - 50 - 40$$

$$= -97$$

$$|\vec{n}_{1} \cdot \vec{n}_{2}| = |\vec{n}_{1}| |\vec{n}_{2}| \cos(\theta)$$

$$|\vec{n}_{3}| = |\vec{n}_{3}| |\vec{n}_{3}| \cos(\theta)$$

$$= |\vec{n}_{3}| = |\vec{n}_{3}| |\vec{n}_{3}| \cos(\theta)$$

$$= |\vec{n}_{3}| = |\vec{n}_{3}| \cos(\theta)$$

$$|\vec{n}_{3}| = |\vec{n}_{3}| \cos(\theta)$$

$$= |\vec{n}_{3}| = |\vec{n}_{3}| \cos(\theta)$$

Find the distance from the point P to the given line L.

P(0, -1, 2) and L: x = 2 + 3t, y = -1 - 2t, z = -1 + 2t

r=P-Lo	
$r = P - L_0$ $= \langle -2, 0, 3 \rangle$ $d = \frac{ \vec{r} \times \vec{v} }{ \vec{v} }$	-2 0 3
- Ko,-(-4-9), 471 - V9+4+4	
\(9 + 4 + 4 \) = \(\langle 6, 13, 4 > 1 \)	
= 1221	
- T7	

Find the distance from the point *P* to the given plane.

P(-3, -1, 0) and the plane is 4x - 2y - 6z = 5

[3	= r · v							
Find								
	= Q-P							
	= \(\times_0 - \times_							
	r into $= \frac{1}{A} (x_a)$							
Id		•						
	$= \frac{ ACx_c }{ ACx_c }$	$(-X_1) + B_1$ $\sqrt{A^2 + B_1}$	$\left(\frac{\gamma_{o}-\gamma_{1}}{\beta^{2}+C^{2}}\right)$	<u>(</u> (} 0-	7,)			