Roll No:			
KOII NO:		l .	

CO₁ CL₃

PADRE CONCEIÇÃO COLLEGE OF ENGINEERING, VERNAGOA

TUTORIAL NO: 6 (Batch 1)

Semester: II (RC 2019-'20)
Course Instructor: Prof. Komal Paroolkar

Course Instructor: Prof. Komal Paroolkar

Topic: Double Integration in Polar coordinates.

Q1.	Evaluate $\int 3r sin\theta \ dr d\theta$ over the region $\{(r,\theta)/r \le 1, r \le 1 + cos\theta, 0 \le \theta \le \pi\}$	CO1	
Q2	Convert to polar and hence evaluate $\int_0^\infty \int_y^\infty e^{-3(x^2+y^2)} dx dy$	CO1	CL3
Q3	Evaluate $\iint r \sin\theta + 3 dr d\theta$ over the region $1 \le r \le 1 + \cos\theta$.	CO1	CL3
Q4.	Change to polar and evaluate $\int_0^2 \int_0^{\sqrt{4-y^2}} \frac{1}{1+\sqrt{x^2+y^2}} dxdy$	CO1	CL3
Q5.	am am 2		

Change to polar and evaluate $\int_0^\infty \int_0^\infty \frac{2}{1+(x^2+y^2)^2} dxdy$

<u>CO</u>

<u>CL</u>

PADRE CONCEIÇÃO COLLEGE OF ENGINEERING, VERNA-**GOA**

TUTORIAL NO: 6 (Batch 2)

Course: FE210 **Semester:** II (RC 2019-'20) Course Instructor: Prof. Komal Paroolkar Mathematics-II

Topic: Double Integration in Polar coordinates.

Q1.	Change to polar and evaluate $\int_0^\infty \int_0^\infty \frac{2}{1 + (x^2 + y^2)^2} dx dy$	CO1	CL3
Q2	Evaluate $\int \int r^2 sin\theta \ dr d\theta$ over the region bounded by $r = a \ and \ r = 2acos\theta$ above the initial line.	CO1	CL3
Q3	Evaluate $\int \int r + 3\cos\theta \ dr d\theta$ over the region bounded by $r = a(1 + \cos\theta)$ above the initial line.	CO1	CL3
Q4.	Evaluate $\int_0^a \int_0^{\sqrt{ax-x^2}} (a^2 - x^2 - y^2)^{3/2} dx dy$	CO1	CL3
Q5.	Convert to polar and hence evaluate $\int_0^a \int_0^{\sqrt{a^2-x^2}} e^{(x^2+y^2)} dx dy$	CO1	CL3

Roll No:							
----------	--	--	--	--	--	--	--

PADRE CONCEIÇÃO COLLEGE OF ENGINEERING, VERNAGOA

TUTORIAL NO: 6 (Batch 3)

Semester: II (RC 2019-'20)

Course Instructor: Prof. Komal Paroolkar

Mathematics-II

Topic: Double Integration in Polar coordinates.

Q1. Change to polar and evaluate
$$\frac{\text{CO}}{\text{CD1}} \frac{\text{CL}}{\text{CL3}}$$

$$\int_0^{2a} \int_0^{\sqrt{2ax-x^2}} y e^{\sqrt{(x^2+y^2)}} dx dy$$

Q2 Change to polar and evaluate
$$\int_0^\infty \int_0^\infty \frac{2}{1+(x^2+y^2)^2} dx dy$$
 CO1 CL3

Q3 Evaluate
$$\int_0^a \int_0^{\sqrt{a^2 - x^2}} y^2 \sqrt{x^2 + y^2} dx dy$$
 CO1 CL3

Q4. Evaluate
$$\iint r sin\theta + 3 dr d\theta$$
 over the region $\{(r, \theta); r \le 2 cos\theta, 0 \le \theta \le \pi\}$

Q5. Evaluate
$$\int \int r^2 + 3\sin\theta \ dr d\theta$$
 over the region $r \le 1$ above the initial line
