

FIGURE 1 (PRIOR ART)

FIGURE 2

FIG 3

Required D	ata Input			CEX
Fluid Data	Conditions	Formation Properties	Well Geometry	Trip Conditions
-Fluid Model:	Power-Law Old Mud w		D PG	
(N.B.) 1 2.1	Roughness of Drille ed with Bingham plastic (String 0.00 i	n	
Mo Mo	Gas Specific Gravity (air le Fraction of CO2 in Gas le Fraction of H2S in Gas	Kick:		
	Surface Tempe Mud Temperature Gr	rature: 70.00 adient: 1.00	deg F deg F/100 ft	
_Input Data Type	'Søb <u>-4-4'</u>	adient: -0.90	deg F/100 ft	Bit Nozzle Diameter
€ . Shear Stress	Shear Stre	ss Reading @ 300 rpm		16.00 in/32nd 16.00 in/32nd 16.00 in/32nd
C Plastic Visco	city	Plastic Viscocity Yield Point Stress	*1 * ******* *	0.00 in/32nd
	(OK Light Light Car	ncel	

Table 2 – Surface Tension of Water-Gas System

Pressure	Surface	Surface tension (dynes/cm)		
(psia)	74 °F	280 °F		
0	75	53		
1000	63	46		
2000	59	40		
3000	57	33		
4000	54	26		
5000	52	21		
6000	52	21		
7000	51	22		
8000	50	23		
9000	49	24		

F16 5

FIG. 6

FIG. 7

FIG. 8

P16.9

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15