Workshop 5

Exercise 1 Skip Lists

Problem 1. Recall from lectures that the height of a list at the insertion of an element into a skip-list is h where h is the number of flips of a coin that it takes until a head is achieved.

Given the information above, draw the development of a skip-list resulting from the insertion of the elements:

assume that the corresponding sequence of coin flips is:

where H stands for heads and T stands for tails. Show the skip-list after each insertion.

Exercise 2 Hash Tables

Problem 1. Insert the key sequence 7, 18, 2, 3, 14, 25, 1, 11, 12, 1332 with hashing by chaining in a hash table with size 11. Please show the final table by using the hash function $h(k) = k \mod 11$

Problem 2. Please show the final table if we use linear probing instead.

Problem 3. Investigate by yourself what is "quadratic probing" and "double hashing". Both can be considered improved versions of linear probing. Please find out where they improve upon linear probing.

insert
$$(3)$$
 H = 2

insert (45)
$$H = 2$$
 $-00 \longrightarrow 11 \longrightarrow 00$
 $-\infty \longrightarrow 3 \longrightarrow 11 \longrightarrow 17 \longrightarrow 20 \longrightarrow 45 \longrightarrow 20$

insert (76) $H = 4$
 $-00 \longrightarrow 11 \longrightarrow 76 \longrightarrow 20$
 $-\infty \longrightarrow 3 \longrightarrow 11 \longrightarrow 17 \longrightarrow 20 \longrightarrow 45 \longrightarrow 76 \longrightarrow 20$
 $-\infty \longrightarrow 3 \longrightarrow 11 \longrightarrow 17 \longrightarrow 20 \longrightarrow 45 \longrightarrow 76 \longrightarrow 20$
 $-\infty \longrightarrow 3 \longrightarrow 11 \longrightarrow 17 \longrightarrow 20 \longrightarrow 45 \longrightarrow 76 \longrightarrow 20$
 $-\infty \longrightarrow 3 \longrightarrow 11 \longrightarrow 23 \longrightarrow 45 \longrightarrow 76 \longrightarrow 20$
 $-\infty \longrightarrow 3 \longrightarrow 11 \longrightarrow 23 \longrightarrow 45 \longrightarrow 76 \longrightarrow 20$
 $-\infty \longrightarrow 3 \longrightarrow 11 \longrightarrow 23 \longrightarrow 45 \longrightarrow 76 \longrightarrow 20$
 $-\infty \longrightarrow 3 \longrightarrow 11 \longrightarrow 23 \longrightarrow 45 \longrightarrow 76 \longrightarrow 20$
 $-\infty \longrightarrow 3 \longrightarrow 11 \longrightarrow 23 \longrightarrow 23 \longrightarrow 24 \longrightarrow 76 \longrightarrow 20$

insert (14) $H = 1$
 $-\infty \longrightarrow 3 \longrightarrow 11 \longrightarrow 17 \longrightarrow 20 \longrightarrow 23 \longrightarrow 24 \longrightarrow 76 \longrightarrow 20$

-00 -> 3 -> 11 -> 17 -> 20 -> 23 -> 45 -> 76 -- 200

-----> 23 -7 45 --> 76 ---> 00°

- 00 · -----> || · -----

- 00 -- 3 -- 11

insert 18 kg = 7

insert 1 , key = 1

insert 3, key = 3

insert It key = 3

insert 25 , key = 3

insert (11) , key = 0

2. h(k) = 12 mod 11 , linear probing

insert(7), key = 7

insert 18 kg = 7

insert 2 , key = 2

insert 3, key = 3

insert It, key = 3

insert 25 , kg = 3

insert (1), lecy = 1

insert (11) , key = 0

insert (12), 1 < ey = 1

insert (1332), Key = 1

3 quadratic probing - instead of inserting directly
in the next available slot, we find the next slot
using a quadratic addition depending on how many
numbers have already been hashed

eg hash function = h-1.10

insert 5, leey = 5 -> no collisions insert 25, leey = 5 -> 1 collision, index = 5 + 1 insert 255, leey = 5 -7 2 collisions

double hashing - using another hash function
if collision occurs

eg insert 5, key = 5 (h 7.10) -> no collision insert 25, key = 5 (h 7.10) -> collision insert 25, key = 1, (h 7.24) -> no collision