the time of the insertion such that the value of the counter C_1 equals $v_{q_i(y)}$. In both cases, C_1 is incremented by $v_{q_i(x)}$. To be able to recover the two increments from $C_1 = v_{q_i(x)} + v_{q_i(y)}$, we store a value $z \in [1, L-1]$ on C_2 . We compute z as follows: If $v_{g_i(x)} - L + 1$ is smaller than L, then $z = v_{g_i(x)} - 1$ L+1. Otherwise, if $v_{q_i(y)}-L+1$ is smaller than L, then $z = v_{q_i(y)} - L + 1$. Finally, if none of the above holds, then set z=1. We explain how together with c_1 the value of z enables to recover the two increments stored in C_1 . First, we check if