

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8 Ω + 0.6 jΩ
Return Loss	- 40.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$46.9 \Omega + 0.6 j\Omega$
Return Loss	- 29.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.218 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	August 20, 2009	

DASY5 Validation Report for Head TSL

Date: 23.06.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1023

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.37$ S/m; $\varepsilon_r = 39$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.92 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.37 W/kg; SAR(10 g) = 5 W/kg Maximum value of SAR (measured) = 11.9 W/kg

0 dB = 11.9 W/kg = 10.76 dBW/kg

Certificate No: D1750V2-1023_Jun15 Page 5 of 8

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.06.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1023

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; σ = 1.49 S/m; ϵ_r = 51.3; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.88, 4.88, 4.88); Calibrated: 30.12.2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.37 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 16.2 W/kg

SAR(1 g) = 9.48 W/kg; SAR(10 g) = 5.12 W/kgMaximum value of SAR (measured) = 11.9 W/kg

0 dB = 11.9 W/kg = 10.76 dBW/kg

Impedance Measurement Plot for Body TSL

1900 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1900V2-5d142_Jun15

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 5d142

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: June 23, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15	
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15	
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15	
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16	
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16	
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15	
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check	
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16	
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15	

Calibrated by: Name
Michael Weber

Function Laboratory Technician

Approved by: Katja Pokovic

Technical Manager

Issued: June 23, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the sign

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.48 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.7 \Omega + 6.0 j\Omega$	
Return Loss	- 23.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.6 \Omega + 6.9 jΩ$
Return Loss	- 22.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 23.06.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d142

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.41 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.36 W/kgMaximum value of SAR (measured) = 12.9 W/kg

0 dB = 12.9 W/kg = 11.11 dBW/kg

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d142_Jun15

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 23.06.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d142

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.53$ S/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.53 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.48 W/kgMaximum value of SAR (measured) = 13.0 W/kg

0 dB = 13.0 W/kg = 11.14 dBW/kg

Impedance Measurement Plot for Body TSL

ANNEX I SPOT CHECK TEST

As the test lab for 5017E from TCL Communication Ltd., we, CTTL (Shouxiang), declare on our sole responsibility that, according to "Declaration of changes" provided by applicant, only the Spot check test should be performed. The test results are as below.

I.1 Conducted power of selected case

Table I.1: The conducted power results for GSM850/1900

GSM 850MHz	Conducted Power (dBm)						
	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)				
OSUIVINZ	33.13	/	/				
CCM		Conducted Power(dBm)					
GSM 1900MHz	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)				
	29.81	/	/				

Table I.2: The conducted power results for GPRS

GSM 850	Measured Power (dBm)				
GPRS (GMSK)	251	190	128		
2 Txslot	31.13	/			
PCS1900	Mea	sured Power (d	Bm)		
GPRS (GMSK)	810	661	512		
4 Txslots	25.96	/	/		

Table I.3: The conducted power results for WCDMA

ltom	band		FDD V result	
Item	ARFCN	4233 (846.6MHz)	4182 (836.4MHz)	4132 (826.4MHz)
WCDMA	١	/	/	22.79
Item	band		FDD II result	
item	ARFCN	9538 (1907.6MHz)	9400 (1880MHz)	9262 (1852.4MHz)
WCDMA	١	/	22.56	22.54

Table I.4: The conducted power results for LTE Band2

	1900 (19100)		
1RB-Middle (50)	1880 (18900)	23.22	
	1860 (18700)		

Table I.5: The conducted power results for LTE Band4

	1745 (20300)		
1RB-High (99)	1732.5 (20175)	23.18	
	1720 (20050)		

Table I.6: The conducted power results for LTE Band7

	2560 (21350)		
1RB-Low (0)	2535 (21100)	22.99	
	2510 (20850)	22.74	

I.2 Spot Check test results

Table I.7: SAR Values (GSM 850 MHz Band - Head)

	Ambient Temperature: 22.0 °C Liquid Temperature: 21.8 °C											
Frequency	F:	Conducted	Max.	Measured	Reported	Measured	Reported	Power				
·	, T	Side		Figure No.		Power	tune-upPow	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift
MHz	Ch.				(dBm)	er (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)	
848.8	251	Left	Touch	Fig.1	33.13	33.3	0.225	0.23	0.297	0.31	-0.12	

Table I.8: SAR Values (GSM 850 MHz Band-Body)

	Ambient Temperature: 22.0 °C Liquid Temperature: 21.8 °C										
Frequ	encv	Mode	Toot	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
	I	(number of	Test	Figure	Power	tune-upPow	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift
MHz	Ch.	timeslots)	Position	No.	(dBm)	er (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
848.8	251	GPRS (2)	Rear	Fig.2	31.13	31.5	0.516	0.56	0.676	0.74	-0.04

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table I.9: SAR Values (GSM 1900 MHz Band - Head)

				Ambient	Temperature:	22.0 °C L	iquid Tempera	ture: 21.8°C			
Freque	ency		Test	Eiguro	Conducted	Max.	Measured	Reported	Measured	Reported	Power
- ,	Side		Figure	Power	tune-upPow	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift	
MHz	Ch.		Position	No.	(dBm)	er (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
1909.8	1909.8 810		Touch	Fig.3	29.81	30.3	0.0952	0.11	0.16	0.18	0.05

Table I.10: SAR Values (GSM 1900 MHz Band-Body)

			Ambi	ent Temp	erature: 22.0 $^{\circ}$	C Liquid To	emperature:	21.8°C						
Frequ	encv	Mode	Toot	Eiguro	Conducted	Max.	Measured	Reported	Measured	Reported	Power			
	Frequency (number of		Test Position	Figure	Power	tune-upPowe	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
MHz	Ch.	timeslots)	Position	No.	(dBm)	r (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
1909.8	810	GPRS (4)	Rear	Fig.4	25.96	26	0.244	0.25	0.421	0.42	0.12			

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table I.11: SAR Values (WCDMA 850 MHz Band - Head)

				Ambient	Temperature:	22.0 °C Li	quid Tempera	ture: 21.8°C			
Frequ	uency		Toot	Eiguro	Conducted	Max.	Measured	Reported	Measured	Reported	Power
	,	Side	Side Test Position	Figure	Power	tune-upPowe	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift
MHz	Ch.			Position No.	(dBm)	r (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
826.4	4132	Left	Touch	Fig.5	22.79	24	0.157	0.21	0.207	0.27	-0.13

©Copyright. All rights reserved by CTTL.

Table I.12: SAR Values (WCDMA 850 MHz Band-Body)

			Ambi	ent Temperatu	ıre: 22.0°C	Liquid Tempe	erature: 21.8°	CC		
Frequ	uency	Toot	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
rrequency	Test	Figure	Power	tune-upPowe	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift	
MHz	Ch.	Position	No.	(dBm)	r (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
826.4	4132	Rear	Fig.6	22.79	24	0.307	0.41	0.404	0.53	-0.12

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table I.13: SAR Values (WCDMA1900 MHz Band - Head)

					Ambient	Temperature:	22.0 °C Li	quid Tempera	ture: 21.8°C			
	Freque	ency		Test	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
_	MHz Ch. Side	Side		Figure	Power	tune-upPowe	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift	
		Position	No.	(dBm)	r (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)		
	1880 9400 Right Touch		Fig.7	22.56	23.5	0.188	0.23	0.311	0.39	0.09		

Table I.14: SAR Values (WCDMA1900 MHz Band-Body)

					` `			<i>3</i> /		
			Ambie	nt Temperature	e: 22.0 °C	Liquid Tempe	rature: 21.8°	C		
Fregu	Frequency	T4	F:	Conducted	Max.	Measured	Reported	Measured	Reported	Power
- 1094		Test Position	Figure	Power	tune-upPowe	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift
MHz	Ch.		No.	(dBm)	r (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
1852.4	9662	Rear	Fig.8	22.54	23.5	0.379	0.47	0.657	0.82	-0.09

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table I.15: SAR Values (LTE Band2 - Head)

						0 ,	· (• •			
			Amb	ient Temp	erature	22.7°C	Liquid	Temperatur	e: 22.2 °C			
Frequ MHz	Ch.	Mode	Side	Test Position	Figure No.	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
1880	18900	1RB_Mid	Right	Touch	Fig.9	23.22	23.5	0.233	0.25	0.382	0.41	0.02

Note1: The LTE mode is QPSK_20MHz.

Table I.16: SAR Values (LTE Band2 - Body)

						•		<i>,</i>			
			Ambient 7	Tempera	ture: 22.7 °C	Liqui	d Temperat	ure: 22.2°0	3		
Freq MHz	uency Ch.	Mode	Test Position	Figure No.	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
1880	18900	1RB_Mid	Rear	Fig.10	23.22	23.5	0.389	0.41	0.674	0.72	0.04

Note1: The distance between the EUT and the phantom bottom is 10mm. Note2: The LTE mode is QPSK_20MHz.

Table I.17: SAR Values (LTE Band4 - Head)

			Amb	ient Temp	erature:	22.7°C	Liquid	Temperatur	e: 22.2°C			
Frequ	uency	Mada		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Mode	Side	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1732.5	20175	1RB_High	Left	Touch	Fig.11	23.18	23.5	0.14	0.15	0.216	0.23	-0.02

Note1: The LTE mode is QPSK_20MHz.

Table I.18: SAR Values (LTE Band4 - Body)

			Ambient	Temper	ature: 22.7 $^\circ$	°C Liquio	d Temperat	ure: 22.2°C	l ,		
Fregu	uency		Test	Figure	Conducted	May tung up	Measured	Reported	Measured	Reported	Power
Trequency	Mode		Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.	_ IVIOGE	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1732.5	20175	1RB_High	Rear	Fig.12	23.18	23.5	0.488	0.53	0.832	0.90	0.07

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_20MHz.

Table I.19: SAR Values (LTE Band7 - Head)

							•		,			
			Amb	ient Temp	erature:	22.5 °C	Liquid	Temperatur	e: 22.0 °C			
Frequ	iency	Mode		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Mode	Side	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
2535	21100	1RB_Low	Right	Touch	Fig.13	22.99	23.5	0.175	0.20	0.316	0.36	0.07

Note1: The LTE mode is QPSK_20MHz.

Table I.20: SAR Values (LTE Band7 - Body)

			Ambient 1	Tempera	ture: 22.5 °C	Liqui	d Temperat	ure: 22.0°0	C		
Frequ	uency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
2510	20850	1RB_Low	Rear	Fig.14	22.74	23.5	0.398	0.47	0.853	1.02	0.19

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_20MHz.

I.3 Measured SAR Comparison

SAR Values (GSM 850 MHz Band - Head)

Freque	ency	Side	Test	Pottory Type	SAR(1g) (W/kg)		
MHz	Ch.	Side	Position	Battery Type	Original data	Spot check data	
848.8	251	Left	Touch	CAB1780000C2	0.54	0.31	

SAR Values (GSM 850 MHz Band - Body)

Freque	ency		Toct	Spacing		SAR(1g) (W/kg)	
MHz	Ch.	Mode/Band	Test Position	(mm)	Battery Type	Original data	Spot check data
848.8	251	GPRS	Rear	10	CAB1780000C2	0.89	0.74

SAR Values (PCS1900 MHz Band - Head)

Freque	Frequency		Test	Battery Type	SAR(1g) (W/kg)		
MHz	Ch.	Side	Position	вашегу туре	Original data	Spot check data	
1909.8	810	Right	Touch	CAB1780000C2	0.38	0.18	

SAR Values (PCS1900 MHz Band - Body)

Freque	ncy		Test	Spacing		SAR(1g) (W/kg)	
MHz	Ch.	Mode/Band	Position	Spacing (mm)	Battery Type	Original data	Spot check data
1909.8	810	GPRS	Rear	10	CAB1780000C2	0.91	0.42

SAR Values (WCDMA850 MHz Band - Head)

Frequ	ency	Side	Test	Pottory Type	SAR(1g) (W/kg)		
MHz	Ch.	Side	Position	Battery Type	Original data	Spot check data	
826.4	4132	Left	Touch	CAB1780000C2	0.48	0.27	

SAR Values (WCDMA850 MHz Band - Body)

Frequ	iency	Test	Spacing	Battery Type	SAR(1	g) (W/kg)
MHz	Ch.	Position	(mm)	battery Type	Original data	Spot check data
826.4	4132	Rear	10	CAB1780000C2	0.95	0.53

SAR Values (WCDMA1900 MHz Band - Head)

Frequ	Frequency		Test	Battery Type	SAR(1g) (W/kg)		
MHz	Ch.	Side	Position	Battery Type	Original data	Spot check data	
1880	9800	Right	Touch	CAB1780000C2	0.74	0.39	

SAR Values (WCDMA1900 MHz Band - Body)

Frequ	ency	Test	Spacing	Pattory Type	SAR(1g) (W/kg)	
MHz	Ch.	Position	(mm)	Battery Type	Original data	Spot check data
1852.4	9662	Rear	10	CAB1780000C2	1.10	0.82

SAR Values (LTE Band2 - Head)

Frequ	iency	Mode	Gido	Test	Pattory Type	SAR(1	g) (W/kg)
MHz	Ch.	Wiode	Side	Position	Battery Type	Original data	Spot check data
1880	18900	1RB_Low	Left	Touch	CAB1780000C2	0.71	0.41

SAR Values (LTE Band2 - Body)

Frequ	iency	Mode	Test	Spacing	Pattory Type	SAR(1g) (W/kg)	
MHz	Ch.	Wiode	Position	(mm)	Battery Type	Original data	Spot check data
1880	18900	1RB_Low	Rear	10	CAB1780000C2	1.18	0.72

SAR Values (LTE Band4 - Head)

Frequ	iency	Mode	Side	de Position Battery Type	SAR(1g) (W/kg)		
MHz	Ch.	Wode	Side		Бацегу туре	Original data	Spot check data
1732.5	20175	1RB_Low	Left	Touch	CAB1780000C2	0.54	0.23

SAR Values (LTE Band4 - Body)

Frequ	iency	Mada	Test	Spacing	Pottom: Time	SAR(1g) (W/kg)	
MHz	Ch.	Mode	Position	(mm)	Battery Type	Original data	Spot check data
1732.5	20175	1RB_Low	Rear	10	CAB1780000C2	1.05	0.90

SAR Values (LTE Band7 - Head)

Frequency		Modo	Side	Test	Pottomy Type	SAR(1g) (W/kg)	
MHz	Ch.	Mode	Side	Position	Battery Type	Original data	Spot check data
2535	21100	1RB_Low	Left	Touch	CAB1780000C2	0.78	0.36

SAR Values (LTE Band7 - Body)

Frequency		Mode	Test	Spacing	cing Bottomy Type	SAR(1g) (W/kg)	
MHz	Ch.	wode	Position	(mm)	Battery Type	Original data	Spot check data
2510	20850	1RB_Low	Rear	10	CAB1780000C2	1.10	1.02

I.4 Reported SAR Comparison

- O " "	T. 1. 5. 1	Reported SAR	Reported SAR
Exposure Configuration	Technology Band	1g (W/Kg): original	1g (W/Kg): spot check
	GSM 850	0.54	0.31
	PCS 1900	0.38	0.18
Head	UMTS FDD 5	0.48	0.27
(Separation Distance	UMTS FDD 2	0.74	0.39
0mm)	LTE Band2	0.71	0.41
	LTE Band4	0.54	0.23
	LTE Band7	0.78	0.36
	GSM 850	0.89	0.74
	PCS 1900	0.91	0.42
Body-worn	UMTS FDD 5	0.95	0.53
(Separation Distance	UMTS FDD 2	1.10	0.82
10mm)	LTE Band2	1.18	0.72
	LTE Band4	1.05	0.90
	LTE Band7	1.10	1.02

850 Left Cheek High

Date: 2015-8-19

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.935$ mho/m; $\epsilon r = 41.804$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3846 ConvF(9.18, 9.18, 9.18)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.346 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.999 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.376 W/kg

SAR(1 g) = 0.297 W/kg; SAR(10 g) = 0.225 W/kg

Maximum value of SAR (measured) = 0.341 W/kg

Fig.1 850MHz

850 Body Rear High

Date: 2015-8-19

Electronics: DAE4 Sn777 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.992$ mho/m; $\epsilon r = 54.348$; $\rho = 0.992$

 1000 kg/m^3

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:4

Probe: EX3DV4 - SN3846 ConvF(9.09, 9.09, 9.09)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.747 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.54 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.830 W/kg

SAR(1 g) = 0.676 W/kg; SAR(10 g) = 0.516 W/kg

Maximum value of SAR (measured) = 0.736 W/kg

Fig.2 850 MHz

1900 Right Cheek High

Date: 2015-8-20

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.431 \text{ mho/m}$; $\epsilon r = 40.625$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3846 ConvF(7.26, 7.26, 7.26)

Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.211 W/kg

Zoom Scan (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.881 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.253 W/kg

SAR(1 g) = 0.160 W/kg; SAR(10 g) = 0.095 W/kg

Maximum value of SAR (measured) = 0.210 W/kg

Fig.3 1900 MHz

1900 Body Rear High

Date: 2015-8-20

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.57 \text{ mho/m}$; $\epsilon r = 54.107$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C

Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:2

Probe: EX3DV4 - SN3846 ConvF(7.15, 7.15, 7.15)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.527 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.474 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.725 W/kg

SAR(1 g) = 0.421 W/kg; SAR(10 g) = 0.244 W/kg

Maximum value of SAR (measured) = 0.502 W/kg

Fig.4 1900 MHz

WCDMA 850 Left Cheek Low

Date: 2015-8-19

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.907$ mho/m; $\epsilon r = 41.39$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(9.18, 9.18, 9.18)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.234 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.077 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.254 W/kg

SAR(1 g) = 0.207 W/kg; SAR(10 g) = 0.157 W/kg

Maximum value of SAR (measured) = 0.236 W/kg

Fig.5 WCDMA 850

WCDMA 850 Body Rear Low

Date: 2015-8-19

Electronics: DAE4 Sn777 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.971$ mho/m; $\epsilon r = 54.01$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(9.09, 9.09, 9.09)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.444 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.23 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.502 W/kg

SAR(1 g) = 0.404 W/kg; SAR(10 g) = 0.307 W/kg

Maximum value of SAR (measured) = 0.442 W/kg

Fig.6 WCDMA 850

WCDMA 1900 Right Cheek Middle

Date: 2015-8-20

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.404 \text{ mho/m}$; $\epsilon r = 39.735$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C

Communication System: WCDMA 1900 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.26, 7.26, 7.26)

Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.381 W/kg

Zoom Scan (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.087 V/m; Power Drift = 0.09dB

Peak SAR (extrapolated) = 0.488 W/kg

SAR(1 g) = 0.311 W/kg; SAR(10 g) = 0.188 W/kgMaximum value of SAR (measured) = 0.410 W/kg

Fig.7 WCDMA1900

WCDMA 1900 Body Rear Low

Date: 2015-8-20

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.492$ mho/m; $\epsilon r = 53.975$; $\rho = 1.492$ mho/m; $\epsilon r = 53.975$; $\epsilon r = 53.975$

 1000 kg/m^3

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C

Communication System: WCDMA 1900 Frequency: 1852.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.15, 7.15, 7.15)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.813 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.905 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.657 W/kg; SAR(10 g) = 0.379 W/kg

Maximum value of SAR (measured) = 0.796 W/kg

Fig.8 WCDMA1900

LTE Band2 Right Cheek Middle with QPSK_20M_1RB_Middle

Date: 2015-8-20

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.404 \text{ mho/m}$; $\epsilon r = 39.735$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C

Communication System: LTE Band2 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.26, 7.26, 7.26)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.527 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.321 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.595 W/kg

SAR(1 g) = 0.382 W/kg; SAR(10 g) = 0.233 W/kgMaximum value of SAR (measured) = 0.498 W/kg

Fig.9 LTE Band2

LTE Band2 Body Rear Middle with QPSK_20M_1RB_Middle

Date: 2015-8-20

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.529 \text{ mho/m}$; $\epsilon r = 53.916$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C

Communication System: LTE Band4 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.15, 7.15, 7.15)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.874 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.969 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.674 W/kg; SAR(10 g) = 0.389 W/kgMaximum value of SAR (measured) = 0.821 W/kg

Fig.10 LTE Band2

LTE Band4 Left Cheek Middle with QPSK_20M_1RB_High

Date: 2015-8-21

Electronics: DAE4 Sn777 Medium: Head 1750 MHz

Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.388$ mho/m; $\epsilon r = 39.737$; $\rho = 1.388$ mho/m; $\epsilon r = 39.737$; $\epsilon r = 39.737$

 1000 kg/m^3

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C

Communication System: LTE Band4 Frequency: 1732.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.64, 7.64, 7.64)

Area Scan (81x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.255 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.008 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.307 W/kg

SAR(1 g) = 0.216 W/kg; SAR(10 g) = 0.140 W/kg

Maximum value of SAR (measured) = 0.250 W/kg

Fig.11 LTE Band4

LTE Band4 Body Rear Middle with QPSK_20M_1RB_High

Date: 2015-8-21

Electronics: DAE4 Sn777 Medium: Body 1750 MHz

Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.457$ mho/m; $\epsilon r = 52.33$; $\rho = 1.457$

 1000 kg/m^3

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C

Communication System: LTE Band4 Frequency: 1732.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.43, 7.43, 7.43)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.06 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.344 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.832 W/kg; SAR(10 g) = 0.488 W/kg

Maximum value of SAR (measured) = 1.02 W/kg

Fig.12 LTE Band4

LTE Band7 Right Cheek Middle with QPSK_20M_1RB_Low

Date: 2015-8-22

Electronics: DAE4 Sn777 Medium: Head 2600 MHz

Medium parameters used: f = 2535 MHz; $\sigma = 1.953$ mho/m; $\epsilon r = 37.914$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: LTE Band7 Frequency: 2535 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(6.50, 6.50, 6.50)

Area Scan (81x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.429 W/kg

Zoom Scan (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.146 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.583 W/kg

SAR(1 g) = 0.316 W/kg; SAR(10 g) = 0.175 W/kg

Maximum value of SAR (measured) = 0.384 W/kg

Fig.13 LTE Band7

LTE Band7 Body Rear Low with QPSK_20M_1RB_Low

Date: 2015-8-22

Electronics: DAE4 Sn777 Medium: Body 2600 MHz

Medium parameters used: f = 2510 MHz; $\sigma = 2.026 \text{ mho/m}$; $\epsilon r = 51.198$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: LTE Band7 Frequency: 2510 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(6.68, 6.68, 6.68)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.11 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.133 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 1.80 W/kg

SAR(1 g) = 0.853 W/kg; SAR(10 g) = 0.398 W/kg

Maximum value of SAR (measured) = 1.10 W/kg

Fig.14 LTE Band7

ANNEX J Accreditation Certificate

