

Fundamentos de Algoritmos

Tema I Clase 2

Tipo de Datos:
Representación Binaria
Conversiones

Datos

Son representaciones simbólicas de objetos, hechos, instituciones, conocimientos.

Ejemplos

15

25° C

25 m

04-11-2010

Febrero

María Pérez

¿Cómo representamos los datos en el computador?

Datos en el Computador

Para representar los datos en el computador se necesita:

- (1) Utilizar representación binaria,
- (2) Definir los distintos tipos de datos, los valores que pueden tomar y las operaciones que se pueden hacer con ellos.

Representación Binaria

- 1 bit es la unidad mas pequeña de medida de información.
- Bit es el acrónimo de Binary digit. (dígito binario).
- Un bit es un dígito del sistema de numeración binario.

Definición:

Un sistema de numeración es un conjunto de símbolos y reglas de generación que permiten construir todos los números válidos dentro de ese sistema.

Sistemas de Numeración Posicionales:

- El número de símbolos permitidos en un sistema de numeración posicional se conoce como base del sistema de numeración.
- Si un sistema de numeración posicional tiene base b significa que disponemos de b símbolos diferentes para escribir los números.
- En cualquier sistema de numeración posicional, el valor de los dígitos depende de la posición en que se encuentren.

Sistema de Numeración Decimal:

base b = 10. Símbolos: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

10 símbolos

 5	4	3	2	1	0	-1	-2	-3	
10 ⁵	10 ⁴	10 ³	10 ²	10 ¹	10 ⁰	10 ⁻¹	10-2	10 ⁻³	
100.000	10.000	1.000	100	10	1	0,1	0,01	0,001	
		9	4	2	8	2	5		

$$9428,25 = 9 \times 10^{3} + 4 \times 10^{2} + 2 \times 10^{1} + 8 \times 10^{0} + 2 \times 10^{-1} + 5 \times 10^{-2}$$

$$= 9 \times 1.000 + 4 \times 100 + 2 \times 10 + 8 \times 1 + 2 \times 0,1 + 5 \times 0,01$$

$$= 9.000 + 400 + 20 + 8 + 0,2 + 0,05$$

Sistema de Numeración Binario:

base b = 2. Símbolos: 0, 1

2 símbolos

•••	5	4	3	2	1	0	-1	-2	-3	
	2 ⁵	24	2 ³	22	21	20	2-1	2-2	2-3	
	32	16	8	4	2	1	1/2 = 0,5	1/4 = 0,25	1/8 = 0,125	
			1	1	0	1	0	1		

$$1101,01 = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2}$$

$$= 1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1 + 0 \times 0,5 + 1 \times 0,25$$

$$= 8 + 4 + 0 + 1 + 0 + 0,25$$

$$= 13,25$$

De este modo tenemos la conversión $(1101,01)_2 = (13,25)_{10}$

Binario a Decimal

11	10	9	8	7	6	5	4	3	2	1	0
211	2 ¹⁰	2 ⁹	28	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20
2048	1024	512	256	128	64	32	16	8	4	2	1
	1	0	0	1	1	0	0	0	0	1	1

$$10011000011_2 = 1 + 2 + 64 + 128 + 1024$$

$$10011000011_2 = 1219_{10}$$

Decimal a Binario

11	10	9	8	7	6	5	4	3	2	1	0
211	210	2 ⁹	28	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
2048	1024	512	256	128	64	32	16	8	4	2	1
	1	0	0	1	1	0	0	0	0	1	1

$$1219_{10} = 1219 - 1024 = 195 - 128 = 67 - 64 = 3 - 2 = 1$$

$$1219_{10} = 10011000011_2$$

Decimal a Binario

$$1219_{10} = 10011000011_2$$

Sistema de Numeración Octal:

base b = 8. Símbolos: (0, 1, 2, 3, 4, 5, 6, 7)

8 símbolos

 5	4	3	2	1	0	-1	-2	-3	
8 ⁵	84	83	8 ²	8 ¹	80	8-1	8-2	8-3	
32.768	4.096	512	64	8	1	1/8 = 0,125		1/512 = 0,001953	
		3	2	0	7	3	3		

$$3207,33 = 3 \times 8^3 + 2 \times 8^2 + 0 \times 8^1 + 7 \times 8^0 + 3 \times 8^{-1} + 3 \times 8^{-2}$$

= $3 \times 512 + 2 \times 64 + 0 \times 8 + 7 \times 1 + 3 \times 0,125 + 3 \times 0,015625$
= $1536 + 128 + 0 + 7 + 0,375 + 0,046875$
= $1671,42188$

De este modo tenemos la conversión $(3207,33)_8 = (1671,42188)_{10}$

Octal a Decimal

11	10	9	8	7	6	5	4	3	2	1	0
811	810	8 9	88	87	86	8 ⁵	84	8 ³	8 ²	8 ¹	80
							4096	512	64	8	1
								2	3	0	3

$$2303_8 = 3x1 + 3x64 + 2x512 = 1219_{10}$$

Decimal a Octal

Se divide la cantidad decimal entre 8 hasta que el cociente sea menor que 8.

$$1219_{10} = 2303_8$$

Sistema de Numeración Hexadecimal:

base b = 16. Símbolos: (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,

16 símbolos

 5	4	3	2	1	0	-1	-2	-3	
16 ⁵	16 ⁴	16 ³	16 ²	16¹	16 ⁰	16 ⁻¹	16 ⁻²	16 ⁻³	
1.048.576	65.536	4.096	256	16	1	1/16 = 0,0625	1 / 256 = 0,0039	1/4.096 = 0,0002	
			4	D	Α	1	Е		

$$4DA,1E = 4 \times 16^{2} + D \times 16^{1} + A \times 16^{0} + 1 \times 16^{-1} + E \times 16^{-2}$$

= $4 \times 256 + 13 \times 16 + 10 \times 1 + 1 \times 0,0625 + 14 \times 0,0039$
= $1.024 + 208 + 10 + 0,0625 + 0,0546$
= $1242,1171$

De este modo tenemos la conversión $(4DA,1E)_{16} = (1242,1171)_{10}$

Hexadecimal a Decimal

11	10	9	8	7	6	5	4	3	2	1	0
16 ¹¹	16 ¹⁰	16 ⁹	16 ⁸	16 ⁷	16 ⁶	16 ⁵	16 ⁴	16 ³	16 ²	16 ¹	16 ⁰
								4096	256	16	1
									4	12	3

$$4C3_{16} = 3x1 + 12x16 + 4x256 = 1219_{10}$$

Decimal a Hexadecimal

Se divide la cantidad decimal entre 16 hasta que el cociente sea menor que 16 y luego se toman el último cociente y todos los restos desde el más reciente hasta el menos reciente.

1219	16	
3	76	16
	12	4
		4

Los números hexadecimales son representados de la siguiente manera:

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F

$$1219_{10} = 4C3_{16}$$

Binario a Octal

3 dígitos binarios representan un dígito octal.

El número binario dado, se procesa agrupando de derecha a izquierda, los bits en bloques de 3. Posteriormente, se convierte cada bloque a su equivalente octal según la tabla:

Bi	naı	rio	Octal
4	2	1	
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	2 3 4 5 6
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

$$10011000011_{2}$$
 $010 \ 011 \ 000 \ 011_{2}$
 $2 \ 3 \ 0 \ 3_{8}$

$$10011000011_2 = 2303_8$$

Octal a Binario

Cada dígito octal se convierte a su equivalente binario directamente mediante la tabla anteriormente dada.

$$2303_8 = 010 \ 011 \ 000 \ 011_2 = 010011000011_2$$

Binario a Hexadecimal

4 dígitos binarios representan un dígito hexadecimal.

El número binario dado, se procesa agrupando de derecha a izquierda, los bits en bloques de 4. Posteriormente, se convierte cada bloque a su equivalente hexadecimal según la tabla:

	E	3in	ari	0	Hexadecimal
	8	4	2	1	
	0	0	0	0	0
	0	0	0	1	1
	0	0	1	0	2
	0	0	1	1	3
	0	1	0	0	2 3 4 5 6 7 8 9
	0	1	0	1	5
	0	1	1	0	6
	0	1	1	1	7
	1	0	0	0	8
	1	0	0	1	
	1	0	1	0	Α
	1	0	1	1	A B C
	1	1	0	0	С
	1	1	0	1	D E F
	1	1	1	0	Е
FaC	1	1	1	1	F
	1				

$$10011000011_2 = 4C3_{16}$$

Hexadecimal a Binario

Cada dígito hexadecimal se convierte a su equivalente binario directamente mediante la tabla anteriormente dada.

$$4C3_{16} = 0100 \ 1100 \ 0011_2 = 010011000011_2$$

Octal a Hexadecimal

Se lleva el número a su equivalente en binario y luego se aplica el proceso ya visto para convertir el número binario en hexadecimal.

$$2303_8 = 010 \ 011 \ 000 \ 011_2 = 010011000011_2$$

$$010011000011_2 = 0100 \ 1100 \ 0011_2 = 4C3_{16}$$

Hexadecimal a Octal

Se lleva el número a su equivalente en binario y luego se aplica el proceso ya visto para convertir el número binario en octal.

$$4C3_{16} = 0100 \ 1100 \ 0011_2 = 010011000011_2$$

$$010011000011_2 = 010 011 000 011_2 = 2303_8$$