COMPUTER SCIENCE E-20, SPRING 2014 In-class Problems - Group 5 3.2

1. Prove by induction that the decimal representation of every power of 3 ends in one of the digits 1, 3, 7, or 9.

Solution:

- Proof: By induction on n that decimal representation of every power of 3 ends in one of the digits 1, 3, 7, or 9.
- The Induction hypothesis P(n), is: 3^n ends in 1, 3, 7, or $9 \forall n \geq 0$
- Base Case (n = 0): $3^0 = 1$. This satisfies the base case.
- Inductive Step : Assume P(n) is true \forall n \geq 0, and prove P(n+1) : $3^{n+1} = 3^n * 3^1$

From the inductive step:

 3^n is a number that ends in 1, 3, 7, or 9 and

$$3^1 = 3$$

substituting 3^n with 1, 3, 7, or 9

- -3^n ends in 1 = 1 * 3 = 3
- -3^n ends in 3 = 3 * 3 = 9
- -3^n ends in 7 = 7 * 3 = 21
- -3^n ends in 9 = 9 * 3 = 27

This proves P(n+1), completing the proof by induction.