

INTERNET OF THINGS

PENERAPAN INTERNET OF THINGS (IOT)
DALAM TRANSFORMASI KEHIDUPAN
MODERN: SMART CITIES, ENERGY,
TRANSPORTATION, HOME, FACTORY,
HEALTH, DAN SECURITY

Titin Budi Wahyuni, S.T. Fardiansyah Nur Aziz, M.Pd.

Daftar Materi

Pengenalan IoT

Smart Cities, Energy, Transportation

Smart Home, Factory

Smart Health, Security

Protokol MQTT
 Pengenalan ESP32
 Wokwi, Praktikum IoT
 Penutup

05

06

07

80

Pengenalan IoT

Definisi

Jaringan perangkat yang saling terhubung untuk mengumpulkan dan bertukar data.

Peran

Peran loT dalam kehidupan modern: Meningkatkan efisiensi, produktivitas, dan kenyamanan.

Smart Cities, Energy, Transportation

Smart Cities

01

Mengintegrasikan teknologi untuk meningkatkan infrastruktur, efisiensi layanan publik, dan kenyamanan hidup. Contoh Penerapan: Sistem pengelolaan sampah pintar, Pencahayaan jalan otomatis.

02 Smart Energy ~ Grid

Jaringan listrik cerdas yang mengoptimalkan distribusi energi, mengukur penggunaan listrik secara real-time.

Smart Transportation

Sistem transportation borb

Sistem transportasi berbasis sensor dan GPS. Kendaraan otonom dan manajemen lalu lintas berbasis IoT. Contoh: Mobil Tesla, Pemberitahuan real-time kondisi jalan.

Smart Home, Smart Factory

Smart Home

Perangkat Pintar di Rumah: Kunci pintu pintar, CCTV yang terhubung dengan aplikasi, lampu pintar. Keunggulan: Kendali jarak jauh, penghematan energi, keamanan yang ditingkatkan.

Smart Factory

04

loT dalam Industri: Sensor pada mesin produksi, sistem pemeliharaan prediktif. Keuntungan: Produktivitas meningkat, pengendalian kualitas yang lebih baik.

Smart Health ~ Smart Security
Wearable devices untuk monitoring kesehatan pasien.

Keamanan: Kamera pengawas pintar, deteksi gerakan, alarm pintar.

Protokol MQTT

Overview

Protokol komunikasi ringan yang digunakan untuk komunikasi antar device yang terhubung dengan internet/IoT.

- Message Queuing Telemetry Transport
- Menggunakan sistem **publish-subscribe**
- Terdapat 4 komponen utama, yaitu
 Publisher, Subscriber, Broker dan Topic.
- Efisien untuk bandwidth rendah dan latensi tinggi

Protokol MQTT

Publisher

 Publisher mengirimkan pesan atau perintah dengan topik tertentu ke Broker.

Subscriber

 Subscriber menerima pesan dari Broker sesuai dengan topik yang di-subscribe.

Broker

 Broker mengelola dan mendistribusi pesan dari Publisher dan meneruskannya ke Subscriber.

Topic

 Saluran komunikasi yang digunakan untuk mengelompokkan pesan.

Apa itu ESP32?

ESP32 adalah mikrokontroler canggih dengan konektivitas Wi-Fi dan Bluetooth terintegrasi, dirancang untuk aplikasi IoT.

Spesifikasi Utama

- Prosesor: Dual-core, 32-bit, Xtensa LX6.
- Clock Speed: Hingga 240 MHz.
- Memori: RAM hingga 520 KB dan dukungan flash eksternal.

Fitur Kunci

- Konektivitas Wi-Fi 802.11 b/g/n.
- Bluetooth 4.2 dan BLE.
- Pin GPIO yang multifungsi.

Catatan Menarik: ESP32 adalah pilihan populer di kalangan hobiis dan profesional untuk proyek loT karena efisiensinya yang tinggi dan harga yang terjangkau.

Mengapa Memilih ESP32?

- Konektivitas yang Handal: Wi-Fi dan Bluetooth terintegrasi memungkinkan ESP32 berkomunikasi dengan perangkat lain secara nirkabel.
- Efisiensi Energi: Mode deep sleep dengan konsumsi daya rendah, cocok untuk aplikasi yang memerlukan penghematan energi.
- **Dukungan Ekosistem:** Kompatibel dengan Arduino IDE, MicroPython, dan berbagai platform pemrograman lainnya.
- Kemampuan Multi-tasking: Mendukung dua core CPU, dapat menjalankan beberapa fungsi secara paralel.

Smartwatch

Smarthome App

Wokwi: Simulasi Proyek IoT dan Elektronika di Dunia Maya

Apa itu Wokwi?

Platform simulasi online untuk merancang dan menguji proyek mikrokontroler.

Fitur Utama

- Simulasi Real-Time
- Editor Kode Terintegrasi
- Komponen Lumayan Lengkap

Keunggulan

- Efisiensi Biaya: Cocok untuk menguji prototipe tanpa membeli komponen.
- Aksesibilitas: Berbasis web, dapat digunakan di mana saja dengan koneksi internet.
- Belajar dan Berkolaborasi: Fasilitas berbagi proyek dengan komunitas untuk belajar bersama.

Praktikum IoT MQTT

Beberapa Uji Coba

Pada pertemuan ini, praktikum loT yang akan dilakukan:

- 1. Kendali Smart Lamp + Alarm
- 2. Pemantau Jarak + Kendali Gerbang
- 3. Pemantau Suhu dan Kelembaban Kelas

Aplikasi MQTT

Pada pertemuan ini, kita menggunakan aplikasi yang Bernama "MQTT Dashboard Client".

Aplikasi ini bisa di download gratis melalui Google Play Store.

Praktikum Job 1 - Kendali Smart Lamp + Alarm

Tujuan:

- Memahami konsep dasar protokol komunikasi MQTT
- Menjelaskan peran broker, publisher, subscriber, dan topic
- Melakukan instalasi library dan aplikasi dashboard MQTT
- Membuat program kendali Smart Lamp dan Alarm menggunakan ESP32

Link Job 1 MQTT

https://unyku.id/blpt_job1mqtt

Struktur Kode Program

```
XOKWI 📄 SAVE
                                         ♥ BLPT 1 📝
                          libraries.txt Library Manager ▼
            diagram.json
       #include <WiFi.h>
       #include <PubSubClient.h>
       // Informasi kredensial WiFi
       const char* ssid = "Wokwi-GUEST";
       const char* password = "";
       // Alamat server MOTT
       const char* mqtt_server = "test.mosquitto.org";
       // Objek koneksi
       WiFiClient espClient;
       PubSubClient client(espClient);
  14
      // Fungsi koneksi WiFi
       void setup_wifi() {
         delay(10);
         Serial.begin(115200);
         Serial.println();
         Serial.print("Connecting to ");
         Serial.println(ssid);
  23
         WiFi.mode(WIFI_STA);
         WiFi.begin(ssid, password);
         while (WiFi.status() != WL_CONNECTED) {
  27
          delay(500);
           Serial.print(".");
  28
  29
         Serial.println("\nWiFi connected");
         Serial.println("IP address: ");
         Serial.println(WiFi.localIP());
  34
```

- Include library WiFi & MQTT
- Setup WiFi & koneksi broker
- Fungsi callback() → menangani perintah MQTT
- Loop → menjaga koneksi aktif

Hal yang perlu diperhatikan:

Topic: /diklat/blpt

MQTT Dashboard ~ Membuat Broker

- Buka aplikasi MQTT Dashboard Client yang ada di smartphone anda.
- Pada tampilan awal, klik icon "+" yang terletak di pojok kanan bawah.
- Pilih **Add broker**, lalu isilah bagian broker seperti pada gambar sebelah kiri.
- Klik done.
- Membuat Broker hanya dilakukan sekali saja.

Beberapa Broker MQTT Gratisan:

- broker.emqx.io
- mqtt.eclipseprojects.io
- test.mosquitto.org
- broker.hivemq.com

MQTT Dashboard ~ Membuat Widget

1. Kendali Smart Lamp + Alarm Buzzer

- Buka aplikasi MQTT Dashboard Client yang ada di smartphone anda.
- Pada tampilan awal, klik icon "+" yang terletak di pojok kanan bawah.
- Pilih **Create Widget**, lalu isilah bagian widget seperti pada gambar sebelah kiri.
- Widget pertama, kita buat untuk mengontrol kondisi lampu.

MQTT Dashboard ~ Membuat Widget

1. Kendali Smart Lamp + Alarm Buzzer

- Setelah widget suhu berhasil dibuat, lalu klik bagian widget parameter.
- Isilah bagian widget parameter seperti pada gambar sebelah kiri.
- Perlu diingat, bagian Topic harus sama persis dengan yang ada di kode program Arduino IDE sebelumnya. (/diklat/blpt).
- Klik done.

MQTT Dashboard ~ Action

1. Kendali Smart Lamp + Alarm Buzzer

- Perhatikan widget Lampu yang ada pada tampilan awal.
- Menggunakan prinsip seperti saklar, tekan sekali untuk menghidupkan atau memadamkan lampu.
- Kondisi saklar akan terpantau di berbagai device smartphone.

Kesimpulan

Transformasi Digital dengan IoT dan Alat Pendukungnya

- loT Mendorong Inovasi: Penerapan IoT dalam berbagai sektor memberikan dampak besar pada efisiensi, kenyamanan, dan keamanan.
- dan Bluetooth yang canggih, mendukung berbagai proyek loT dengan performa tinggi dan efisiensi energi.
- Wokwi: Platform simulasi berbasis web yang mempermudah pengembangan dan pengujian proyek mikrokontroler tanpa komponen fisik, ideal untuk pembelajaran dan eksperimen cepat.

TERIMAKASIH

"IoT bukan hanya teknologi, tapi solusi masa depan"

Titin Budi Wahyuni, S.T. Fardiansyah Nur Aziz, M.Pd.

© @fardiansaziz

