Course 4: Combinatorial Game Theory

Summary

Last session

- Unsupervised learning discover structure from unlabeled data
- Clustering
- Decomposition sparse dictionary learning

Today's session

Combinatorial Game Theory

Examples

- Game theory is a very rich and broad scientific domain,
- In economics, we are interested in equilibriums and payoff games
- In mathematics, we are interested in showing existence of objects
- And many others...
- We focus in this course on very particular games (sequential with perfect information) under the scope of combinatorial game theory.
 - Following the literature, we consider two players called Eve and Adam.

- Game theory is a very rich and broad scientific domain,
- In economics, we are interested in equilibriums and payoff games,
- In mathematics, we are interested in showing existence of objects
- And many others...
- We focus in this course on very particular games (sequential with perfect information) under the scope of combinatorial game theory.
 - Following the literature, we consider two players called Eve and Adam.

- Game theory is a very rich and broad scientific domain,
- In economics, we are interested in equilibriums and payoff games,
- In mathematics, we are interested in showing existence of objects,
- And many others...
- We focus in this course on very particular games (sequential with perfect information) under the scope of combinatorial game theory.
 - Following the literature, we consider two players called Eve and Adam.

- Game theory is a very rich and broad scientific domain,
- In economics, we are interested in equilibriums and payoff games,
- In mathematics, we are interested in showing existence of objects,
- And many others...
- We focus in this course on very particular games (sequential with perfect information) under the scope of combinatorial game theory.
 - Following the literature, we consider two players called Eve and Adam.

- Game theory is a very rich and broad scientific domain,
- In economics, we are interested in equilibriums and payoff games,
- In mathematics, we are interested in showing existence of objects,
- And many others...
- We focus in this course on very particular games (sequential with perfect information) under the scope of combinatorial game theory.

Following the literature, we consider two players called Eve and Adam.

- Game theory is a very rich and broad scientific domain,
- In economics, we are interested in equilibriums and payoff games,
- In mathematics, we are interested in showing existence of objects,
- And many others...
- We focus in this course on very particular games (sequential with perfect information) under the scope of combinatorial game theory.
 - Following the literature, we consider two players called Eve and Adam.

Graph

- A graph G is a pair $\langle V, E \rangle$ where V is the finite set of vertices and $E \subseteq V \times V$ is the set of edges,
- An **arena** is a triple $\langle G, V_E, V_A \rangle$ where V_E, V_A is a bipartition of V,
- We suppose each vertex in V is associated with at least one outgoing edge.
- $lue{}$ We will also use the term "state" when referring to vertices of V.

Graph

- A graph G is a pair $\langle V, E \rangle$ where V is the finite set of vertices and $E \subseteq V \times V$ is the set of edges,
- An **arena** is a triple $\langle G, V_E, V_A \rangle$ where V_E, V_A is a bipartition of V,
- We suppose each vertex in V is associated with at least one outgoing edge.
- $lue{}$ We will also use the term "state" when referring to vertices of V.

Beware not to confuse an arena with a bipartite graph. (**) ** > 000

Graph

- A graph G is a pair $\langle V, E \rangle$ where V is the finite set of vertices and $E \subseteq V \times V$ is the set of edges,
- An **arena** is a triple $\langle G, V_E, V_A \rangle$ where V_E, V_A is a bipartition of V,
- We suppose each vertex in V is associated with at least one outgoing edge.
- $lue{}$ We will also use the term "state" when referring to vertices of V.

Graph

- A graph G is a pair $\langle V, E \rangle$ where V is the finite set of vertices and $E \subseteq V \times V$ is the set of edges,
- An **arena** is a triple $\langle G, V_E, V_A \rangle$ where V_E, V_A is a bipartition of V,
- We suppose each vertex in V is associated with at least one outgoing edge.
- $lue{}$ We will also use the term "state" when referring to vertices of V.

Graph

- A graph G is a pair $\langle V, E \rangle$ where V is the finite set of vertices and $E \subseteq V \times V$ is the set of edges,
- An **arena** is a triple $\langle G, V_E, V_A \rangle$ where V_E, V_A is a bipartition of V,
- We suppose each vertex in V is associated with at least one outgoing edge.
- $lue{}$ We will also use the term "state" when referring to vertices of V.

Beware not to confuse an arena with a bipartite graph.

Cops and robbers

- First, the cop chooses a vertex to start at,
- Then, the robber chooses a vertex to start at,
- Then, alternatively each player chooses one neighbor vertex of its current vertex to go to,
- The cop wins if and only if at some turn he and the robber are at the same vertex.

Cops and robbers

- First, the cop chooses a vertex to start at,
- Then, the robber chooses a vertex to start at,
- Then, alternatively each player chooses one neighbor vertex of its current vertex to go to,
- The cop wins if and only if at some turn he and the robber are at the same vertex.

Cops and robbers

- First, the cop chooses a vertex to start at,
- Then, the robber chooses a vertex to start at,
- Then, alternatively each player chooses one neighbor vertex of its current vertex to go to,
- The cop wins if and only if at some turn he and the robber are at the same vertex.

Cops and robbers

- First, the cop chooses a vertex to start at,
- Then, the robber chooses a vertex to start at,
- Then, alternatively each player chooses one neighbor vertex of its current vertex to go to,
- The cop wins if and only if at some turn he and the robber are at the same vertex.

Cops and robbers

- First, the cop chooses a vertex to start at,
- Then, the robber chooses a vertex to start at,
- Then, alternatively each player chooses one neighbor vertex of its current vertex to go to,
- The cop wins if and only if at some turn he and the robber are at the same vertex.

Cops and robbers

- First, the cop chooses a vertex to start at,
- Then, the robber chooses a vertex to start at,
- Then, alternatively each player chooses one neighbor vertex of its current vertex to go to,
- The cop wins if and only if at some turn he and the robber are at the same vertex.

Cops and robbers

- First, the cop chooses a vertex to start at,
- Then, the robber chooses a vertex to start at,
- Then, alternatively each player chooses one neighbor vertex of its current vertex to go to,
- The cop wins if and only if at some turn he and the robber are at the same vertex.

Partial arena (symmetric configurations are not represented)

Playout

- **A playout** λ is an infinite walk on G,
- The initial vertex of a playout is called the **starting position**.

Winning conditions

Denote $F \subseteq V$ a set of final states. Eve wins a playout *if and only if*:

- **Reachability:** λ goes through at least one final state (e.g. Go),
- Co–Reachability: λ never goes through a final state (e.g. model-checking),

Other reachability conditions exist (Büchi, co-Büchi), in which we consider final states finitely / infinitely often.

Note that in most practical cases in AI, reachability is considered.

Playout

- **A playout** λ is an infinite walk on G,
- The initial vertex of a playout is called the **starting position**.

Winning conditions

Denote $F \subseteq V$ a set of final states. Eve wins a playout *if and only if*:

- **Reachability:** λ goes through at least one final state (e.g. Go),
- Co-Reachability: λ never goes through a final state (e.g. model-checking),

Other reachability conditions exist (Büchi, co-Büchi) , in which we consider final states finitely / infinitely often.

Note that in most practical cases in AI, reachability is considered.

Playout

- **A playout** λ is an infinite walk on G,
- The initial vertex of a playout is called the **starting position**.

Winning conditions

Denote $F \subseteq V$ a set of final states. Eve wins a playout *if and only if*.

- **Reachability:** λ goes through at least one final state (e.g. Go),
- Co-Reachability: λ never goes through a final state (e.g. model-checking),

Other reachability conditions exist (Büchi, co-Büchi) , in which we consider final states finitely / infinitely often.

Playout

- **A playout** λ is an infinite walk on G,
- The initial vertex of a playout is called the **starting position**.

Winning conditions

Denote $F \subseteq V$ a set of final states. Eve wins a playout *if and only if*.

- **Reachability:** λ goes through at least one final state (e.g. Go),
- **Co–Reachability:** λ never goes through a final state (e.g. model-checking),

Other reachability conditions exist (Büchi, co-Büchi), in which we consider final states finitely / infinitely often.

Playout

- **A playout** λ is an infinite walk on G,
- The initial vertex of a playout is called the **starting position**.

Winning conditions

Denote $F \subseteq V$ a set of final states. Eve wins a playout *if and only if*.

- **Reachability:** λ goes through at least one final state (e.g. Go),
- Co-Reachability: λ never goes through a final state (e.g. model-checking),

Other reachability conditions exist (Büchi, co-Büchi), in which we consider final states finitely / infinitely often.

Note that in most practical cases in AI, reachability is considered.

Playout

- **A playout** λ is an infinite walk on G,
- The initial vertex of a playout is called the **starting position**.

Winning conditions

Denote $F \subseteq V$ a set of final states. Eve wins a playout *if and only if*:

- **Reachability:** λ goes through at least one final state (e.g. Go),
- **Co–Reachability:** λ never goes through a final state (e.g. model-checking),

Other reachability conditions exist (Büchi, co-Büchi), in which we consider final states finitely / infinitely often.

Note that in most practical cases in AI, reachability is considered.

The case of cops and robbers

Here the winning condition is of type reachability for the cop and co-reachability for the robber.

Final states are:

Strategy

- lacksquare A **strategy** for Eve is a partial function $\phi_E:V^* o V$,
- A randomized strategy is a partial function $\phi_E : V^* \to P(V)$, where P(V) is the set of probability distributions over V.

Induced playout

An **induced playout** associated with ϕ_E and ϕ_A is a playout λ such that:

$$\forall i > 0, \lambda_i = \left\{ \begin{array}{ll} \phi_E(\lambda_0 \dots \lambda_{i-1}) & \text{if } \lambda_{i-1} \in V_E \\ \phi_A(\lambda_0 \dots \lambda_{i-1}) & \text{if } \lambda_{i-1} \in V_A \end{array} \right.,$$

we write it $\lambda(\phi_E, \phi_A, V_0)$, where V_0 is the starting position

■ For randomized strategies, one can make use of the Carathéodory's extension theorem.

Strategy

- lacksquare A **strategy** for Eve is a partial function $\phi_E:V^* o V$,
- A randomized strategy is a partial function $\phi_E : V^* \to P(V)$, where P(V) is the set of probability distributions over V.

Induced playout

An **induced playout** associated with ϕ_E and ϕ_A is a playout λ such that:

$$\forall i > 0, \lambda_i = \left\{ \begin{array}{ll} \phi_E(\lambda_0 \dots \lambda_{i-1}) & \text{if } \lambda_{i-1} \in V_E \\ \phi_A(\lambda_0 \dots \lambda_{i-1}) & \text{if } \lambda_{i-1} \in V_A \end{array} \right.,$$

we write it $\lambda(\phi_E, \phi_A, V_0)$, where V_0 is the starting position.

For randomized strategies, one can make use of the Carathéodory's extension theorem.

Strategy

- lacksquare A **strategy** for Eve is a partial function $\phi_E:V^* o V$,
- A randomized strategy is a partial function $\phi_E : V^* \to P(V)$, where P(V) is the set of probability distributions over V.

Induced playout

• An **induced playout** associated with ϕ_E and ϕ_A is a playout λ such that:

$$\forall i > 0, \lambda_i = \begin{cases} \phi_E(\lambda_0 \dots \lambda_{i-1}) & \text{if } \lambda_{i-1} \in V_E \\ \phi_A(\lambda_0 \dots \lambda_{i-1}) & \text{if } \lambda_{i-1} \in V_A \end{cases},$$

we write it $\lambda(\phi_E, \phi_A, V_0)$, where V_0 is the starting position.

For randomized strategies, one can make use of the *Carathéodory's extension theorem*.

Strategy

- lacksquare A **strategy** for Eve is a partial function $\phi_E:V^* o V$,
- A randomized strategy is a partial function $\phi_E : V^* \to P(V)$, where P(V) is the set of probability distributions over V.

Induced playout

• An **induced playout** associated with ϕ_E and ϕ_A is a playout λ such that:

$$\forall i > 0, \lambda_i = \begin{cases} \phi_E(\lambda_0 \dots \lambda_{i-1}) & \text{if } \lambda_{i-1} \in V_E \\ \phi_A(\lambda_0 \dots \lambda_{i-1}) & \text{if } \lambda_{i-1} \in V_A \end{cases},$$

we write it $\lambda(\phi_E, \phi_A, V_0)$, where V_0 is the starting position.

 For randomized strategies, one can make use of the Carathéodory's extension theorem.

Winning strategies and memory

Winning strategy

■ A strategy $\phi_{\mathcal{E}}$ for Eve is said to be winning from $V_0 \in V$ if:

$$\forall \phi_A, \lambda(\phi_E, \phi_A, V_0)$$
 is winning for Eve

 For randomized strategies, we are typically interested in almost-surely winning strategies.

Positional strategy

lacksquare A strategy ϕ_E for Eve is said positional if $\exists \phi_E^{
ho}: V o V$ such that

$$\forall i \in \mathbb{N}, \forall V_0 V_1 \dots V_{i-1} \in V^i, \forall V_i \in V_E,$$
$$\phi_E(V_0 V_1 \dots V_{i-1} V_i) = \phi_E^{\rho}(V_i).$$

A positional strategy is sometimes termed "without memory".

Winning strategies and memory

Winning strategy

■ A strategy ϕ_E for Eve is said to be winning from $V_0 \in V$ if:

$$\forall \phi_A, \lambda(\phi_E, \phi_A, V_0)$$
 is winning for Eve

 For randomized strategies, we are typically interested in almost-surely winning strategies.

Positional strategy

lacksquare A strategy $\phi_{\it E}$ for Eve is said positional if $\exists \phi_{\it E}^{\it p}: V
ightarrow V$ such that

$$\forall i \in \mathbb{N}, \forall V_0 V_1 \dots V_{i-1} \in V^i, \forall V_i \in V_E,$$

$$\phi_E(V_0 V_1 \dots V_{i-1} V_i) = \phi_E^p(V_i).$$

A positional strategy is sometimes termed "without memory".

Winning strategies and memory

Winning strategy

■ A strategy ϕ_E for Eve is said to be winning from $V_0 \in V$ if:

$$\forall \phi_A, \lambda(\phi_E, \phi_A, V_0)$$
 is winning for Eve

 For randomized strategies, we are typically interested in almost-surely winning strategies.

Positional strategy

lacksquare A strategy ϕ_E for Eve is said positional if $\exists \phi_E^{\mathcal{P}}: V o V$ such that

$$\forall i \in \mathbb{N}, \forall V_0 V_1 \dots V_{i-1} \in V^i, \forall V_i \in V_E,$$

$$\phi_E(V_0 V_1 \dots V_{i-1} V_i) = \phi_E^p(V_i).$$

A positional strategy is sometimes termed "without memory".

Game

- A game \mathbb{G} is a tuple $\langle G, V_E, V_A, F, W \rangle$, where
 - $\langle G = \langle V, E \rangle, V_E, V_A \rangle$ is an arena,
 - $F \subseteq V$ is the set of final states,
 - lacksquare W is a winning condition.

Determined games

A game is said determined if for each starting position, either Eve or Adam admits a winning strategy.

- All games considered in this course are determined.
- Moreover, winning strategies can always be chosen positional.

Game

- A game \mathbb{G} is a tuple $\langle G, V_E, V_A, F, W \rangle$, where
 - $\langle G = \langle V, E \rangle, V_E, V_A \rangle$ is an arena,
 - ullet $F \subseteq V$ is the set of final states,
 - W is a winning condition.

Determined games

A game is said **determined** if for each starting position, either Eve or Adam admits a winning strategy.

- All games considered in this course are determined,
- Moreover, winning strategies can always be chosen positional.

Game

- A game \mathbb{G} is a tuple $\langle G, V_E, V_A, F, W \rangle$, where
 - $lacktriangledown \langle \mathcal{G} = \langle V, E \rangle, V_E, V_A \rangle$ is an arena,
 - ullet $F\subseteq V$ is the set of final states,
 - lacksquare W is a winning condition.

Determined games

A game is said **determined** if for each starting position, either Eve or Adam admits a winning strategy.

- All games considered in this course are determined,
- Moreover, winning strategies can always be chosen positional

Game

- A game \mathbb{G} is a tuple $\langle G, V_E, V_A, F, W \rangle$, where
 - $\langle G = \langle V, E \rangle, V_E, V_A \rangle$ is an arena,
 - ullet $F\subseteq V$ is the set of final states,
 - lacksquare W is a winning condition.

Determined games

A game is said **determined** if for each starting position, either Eve or Adam admits a winning strategy.

- All games considered in this course are determined,
- Moreover, winning strategies can always be chosen positional.

A : Attractor

T: Trap

A: Attractor

T: Trap

Arena

$$F_0 = F$$

A: Attractor

T: Trap

Arena

A: Attractor

T: Trap

A: Attractor

T: Trap

Arena

A: Attractor

T: Trap

A: Attractor

T: Trap

A: Attractor

T: Trap

Arena

A: Attractor

T: Trap

$$\bigcup_{i=0}^{+\infty} F_i$$

Winning region for Eve

$$V - \bigcup_{i=0}^{+\infty} F_i$$

Winning region for Adam

Playout tree

■ The **playout tree** rooted at vertex V_0 is the infinite tree of all possible plays starting at V_0 .

Playout tree

■ The **playout tree** rooted at vertex V_0 is the infinite tree of all possible plays starting at V_0 .

Playout tree

■ The **playout tree** rooted at vertex V_0 is the infinite tree of all possible plays starting at V_0 .

Finding winning strategies

- In practice, it is possible to use the construction of the proof of Theorem 1 to find winning strategies,
- ullet When V is too large, it may be better to search the playout tree.

Exploring large playout trees

- Even when playouts are finite, playouts trees can quickly become untractably large,
- Randomly explore to find interesting strategies,
- A possible such method is Monte-Carlo Tree-Search (MCTS) or to derive machine learning strategies.

Playout tree

■ The **playout tree** rooted at vertex V_0 is the infinite tree of all possible plays starting at V_0 .

Finding winning strategies

- In practice, it is possible to use the construction of the proof of Theorem 1 to find winning strategies,
- When *V* is too large, it may be better to search the playout tree.

Exploring large playout trees

- Even when playouts are finite, playouts trees can quickly become untractably large,
- Randomly explore to find interesting strategies,
- A possible such method is Monte-Carlo Tree-Search (MCTS) or to derive machine learning strategies.

Lab Session 4

TP Combinatorial Game Theory (TP3)

- Pyrat game with the python playing using a greedy approach (closest cheese)
- Program an exhaustive playout tree search for the rat to beat the python

Challenge annoucement!

Solo pyrat game against a Greedy algorithm, followed by a tournament on December 5th.

- Complete rules and modalities (deadline, etc) are on Moodle
- Baseline with supervised learning
- Oral presentation (10+5 minutes) of your solution

More details on Moodle (section : Challenge Information).