Théorème de Hilbert 90

BENSAID Mohamed

December 7, 2024

Boîte à outils

Lemma 1 (de Dedekind). Soit $\sigma_1, ..., \sigma_n$ des automorphismes distincts sur un corps E, alors

$$\sum_{i=1}^{n} \lambda_i \sigma_i = 0 \Longrightarrow \lambda_i = 0$$

Proof. On raisonne par l'absurde, supposons qu'il existe des λ_i qui ne sont pas nuls, quitte à réordonner, r l'entier minimal tel que $\lambda_1, ..., \lambda_r$ non nuls.

Prenons $z \in E$ tel que $\sigma_1(z) \neq \sigma_2(z)$, alors par hypothèse pour tout $x \in E$ on a

$$\sum_{i=1}^{r} \lambda_i \sigma_i(x) = 0$$

et donc

$$\sum_{i=1}^{r} \lambda_i \sigma_i(xz) = \sum_{i=1}^{r} \lambda_i \sigma_i(x) \sigma_i(z) = 0$$

Ansi

$$\sum_{i=2}^{r} \lambda_i (\sigma_i(z) - \sigma_1(z)) \sigma_i(x) = 0$$

Ce qui contredit la minimalité de r.

Definition 2 (Extention normale). On dit que l'extention $K \subset E$ est normale (ou encore quasi-galoisienne) si elle est algébrique et pour tout $x \in E$, le polynôme minimal de x a toutes ses racines dans E.

Definition 3 (Extention séparable). On dit qu' un élément $x \in E$ est séparable si son polynôme minimal (sur K) n'a que des racines simples.

Dans la suite, on suppose que l'extention E/K est finie

Definition 4. On dit que E/K est une extention galoissiene si elle est séparable et normale

Theorem 5. Si E/K est une extention finie galoissiene on a #Gal(E/K) = [E, K]

Une petite introduction de la Cohomologie de Groupe

Dans cette courte section on discutera seulement de la définition de la cohomologie de groupe, mais nous interessant just a la premier cohomologie.

Definition 6. Soit G un groupe, un G-module M est un groupe abelien avec l'action de G sur M. Notons $g \cdot m$ notre action.

Remark 1. Les axioms de l'action de G sur M dépendent de loi de groupes choisie. En effet, notons (G,*) et (M,\times)

$$1 \cdot m = m$$
$$(g_1 * g_2) \cdot m = g_1 \cdot (g_2 \cdot m)$$
$$g \cdot (m \times n) = (g \cdot m) \times (g \cdot n)$$

Pour donner une définition générale des groupes de cohomologie d'un groupe fini (G, *). On considère un groupe commutatif M, noté multiplicativement, muni d'une action de G (c'est-à-dire, un G-module M)

La cohomologie de G à coefficents dans M est définie à l'aide des cochaines complexes;

$$C^0(G, M) = M$$

et pour tout $n \ge 1$

$$C^{n}(G, M) = \{ f : G \times \dots \times G \longrightarrow M \}$$

Definition 7. La formule

$$d_n f(g_1, ..., g_{n+1}) = (g_1 \cdot f(g_2, ..., g_{n+1})) \prod_{i=1}^n f^{(-1)^i}(g_1, ..., g_i * g_{i+1}, ..., g_{n+1}) f^{(-1)^{n+1}}(g_1, ..., g_n)$$

définit un morphisme $d_n: \mathbb{C}^n \longrightarrow \mathbb{C}^{n+1}$

Proposition 8. On a pour tout $n \geq 2$,

$$d_n \circ d_{n-1} = 0$$

Proof. Laissée au lecteur, c'est un calcul sophistiqué

Definition 9 (n-cocycle). Soit M un G-module, un n-cocycle est un élément de $Z^n(G, M) := Ker(d_n)$

Definition 10 (n-Cobord). Un n-cobord de G sur M est un élément de $B^n(G,M) := Im(d_{n-1})$

Remark 2. Par la proposition 8, on en déduit que $B^n \subset Z^n$

Definition 11. On definit le n-ieme groupe de cohomologie par

$$H^n(G, M) = Z^n(G, M)/B^n(G, M)$$

Pour
$$n = 0$$
, $H^0(G, M) = Ker(d_0) = \{m \in M | g \cdot m = m\} = M^G$.

Example 12. Pour n = 1, on obtient

$$Z^{1}(G,M) = \{ f: G \longrightarrow M | f(g_{1} * g_{2}) = (g_{1} \cdot f(g_{2}))f(g_{1}) \}$$
$$B^{1}(G,M) = \{ f: G \longrightarrow M | \exists m \in M, f(g) = (g \cdot m)m^{-1}, \forall g \in G \}$$

Autour des Traces et Normes

Definition 13. Soit E/K une extention de corps, donc E peut-être vue comme un K-espace vectoriel. Soit alors $a \in E$, on définit l'application linéaire L_a par $L_a(x) = ax$ pour tout $x \in E$.

Norme La norme de a pour cette extention est $N_{E/K}(a) = \det(L_a)$

Trace La trace de a pour cette extention est $Tr_{E/K}(a) = Tr(L_a)$

Example 14. Pour bien comprendre ces notation nous donnrons un exemple sur les extentions quadratiques de corpe de nombres. Soit d un rationnel qui n'est pas un carrée parfait dans \mathbb{Q} . On sait que $\{1, \sqrt{d}\}$ est une base de $\mathbb{Q}(\sqrt{d})$.

Calcoulons la norme et la trace de $z = a + b\sqrt{d}$ pour cette extention.

On souhaite trouver une représentation matricielle de l'application linéaire. L_z .

$$L_z(1) = z = a + b\sqrt{d}$$
 et $L_z(\sqrt{d}) = \sqrt{d}z = \sqrt{d}a + db$

Donc la matrice de L_z dans la base canonique est

$$\begin{pmatrix} a & bd \\ b & a \end{pmatrix}$$

Donc la trace $Tr(L_z) = 2a$ et la norme est $det(L_z) = a^2 - db^2$.

Theorem 15. Soit E/K une extention galoissiene (finie) de groupe de galois G alors

$$N_{E/K}(x) = \prod_{\sigma \in G} \sigma(x)$$

et

$$Tr_{E/K}(x) = \sum_{\sigma \in G} \sigma(x)$$

Proof. Admis.

Théorème de Hilbert 90

Dans cette section, on va travailler sur les deux groupes $(Gal(E/K), \circ)$ et (E^{\times}, \cdot) où E/K est une extention galoissiene finie. $(E^{\times}$ a une strecture de Gal(E/K)-module)

Theorem 16 (Hilbert (Noether)). Soit E/K une extention galoissiene finie alors

$$H^1(Gal(E/K), E^{\times}) = 1$$

Proof. Il suffit de prouver que $Z^1(Gal(E/K), E^{\times}) \subset B^1(Gal(E/K), E^{\times})$. Notons G := Gal(E/K).

Soit $\phi \in Z^1(G, E^{\times})$, considerons l'application

$$\sum_{\mu \in G} \phi(\mu)\mu : E \longrightarrow E$$

l'application est bien definie, de plus elle est non nulle par le lemme 1

Il existe alors $x \in E$ tel que

$$y := \sum_{\mu \in G} \phi(\mu)\mu(x) \neq 0$$

Soit $\sigma \in G$

$$\begin{split} \sigma(y) &= \sum_{\mu \in G} \sigma(\phi(\mu)) \sigma \mu(x) \\ &= \sum_{\mu \in G} \phi^{-1}(\sigma) \phi(\sigma \mu) \sigma \mu(x) \\ &= \phi^{-1}(\sigma) y \end{split}$$

Ce qui se traduit par $\phi(\sigma) = \sigma(b)b^{-1}$ où $b = y^{-1}$

Theorem 17 (Hilbert original). Soit E/K une extension finie galoissiene et son groupe de galois G est cyclique de degré n, de générateur σ . Soit N la norme de E sur K, alors pour tout $x \in E$,

$$N(y) = 1 \iff \exists x \in E \ y = x\sigma^{-1}(x)$$

Proof. On pourrait prouver ce théorème directement en utilisant le lemme de Dedekind mais nous nous focalisons sur sa preuve par le biais du théorème précedent.

Il est évidant de ramarquee que E a une structure de G-module.

On souhiate reformuler le théorème 19 afin d'appliquer le théorème 17. Pour cela introduisons le **sous-groupe** $F = \{x\sigma^{-1}(x)|x \in K^{\times}\}\ de\ K^{\times}$

Et nous rappelons que la norme de l'extention E/K est difine dans ce cas par

$$N(x) = \prod_{i=1}^{i-1} \sigma^i(x)$$

Reformulation du théorème le théorème est vrai si $F \subset Ker(N)$ et $Ker(N)/F = H^1(G, E^{\times})$ (donc par le théorème 17 on a le résultat souhaité).

Vérification $F \subset Ker(N)$. Soit $x \in E^{\times}$

$$N(x\sigma^{-1}(x)) = \prod_{i=0}^{n-1} \sigma^{i}(x) \prod_{i=0}^{n-1} \sigma^{i-1}(x) = 1$$

Vérification de $Ker(N)/F=H^1(G,E^\times)$. Soit $g\in Z^1(G,E^\times)$, puisque G est cyclique d'ordre n alors

$$g(\sigma^k) = \prod_{i=0}^{n-1} \sigma^i(g(\sigma))$$

$$\psi: Ker(N) \longrightarrow Z^1(G, E^{\times})$$

$$a \longrightarrow g_a(\sigma^i) = \prod_{i=0}^{n-1} \sigma^i(g(\sigma))$$

cette application est un isomorphisme grâce au fait qu'un élément de $Z^1(G, E^{\times})$ est complétement detreminé par son image par σ . On peut également prouver que $\psi(F) = B^1(G, E^{\times})$ ce qui affirme le résultat.

Application: Soit K un corps et n un entier premier à sa caracteristique.

On suppose que K contient une racine primitive n-ième de l'unité. Alors

Soit E une extension galoissiene finie et son groupe de galois G cyclique d'ordre n alors $\exists x \in E$ tel que E = K(x) est que x est une racine de $X^n - a$ pour certain $a \in E$.

Soit y une racine primitive n-ième de l'unité dans K, et on pose par hypothèse que $G=<\sigma>$, par la formule de trace on obtient $N(y^{-1})=y^{-n}=1$ donc par le théorème de Hilbert précédent on en déduit qu'il existe $x\in K$ tel que $\sigma(x)=yx$. Comme $x\in K$, $\sigma(x)=y^ix$. Ainsi les éléments y^ix sont n-conjugués distincts de x sur K, d'où [K(x),K]=n. Mais comme [E,K]=n on a donc E=K(x). D'autre part $\sigma(x^n)=x^n$ et donc n est invariant par σ donc par toutes les puissances de σ et est donc un élément de F. Donc $x^n=a\in K$.