0000 년 00 학기 00 고사		과	물리학 27장	학 과	학 년	감 독	
출 제	공동 출제	목		학 번		교수	
편 집	송 현 석	명	기출문제 답안지	성 명		확 인	
				0		점 수	
시험일시	0000. 00. 00				O	召丁	

[주의 사항] 1. 계산기는 사용할 수 없습니다.

2. 단위가 필요한 단에는 반드시 SI 체계로 단위를 표기하시오.

[2014년 2학기 기말고사 11번] - 예제 27.1 참고

1. 라듐 (Ra_{88}^{226}) 이 lpha-붕괴하여 라돈(Rn)으로 될 때, 핵반응 식을 완성하시오.

$$\operatorname{Ra}_{88}^{226} \longrightarrow \operatorname{Rn}_{86}^{222} + \operatorname{He}_{2}^{4} (\alpha \, \stackrel{\circ}{\sqcup} \, \stackrel{}{\nearrow} \,)$$

[2011년 2학기 기말고사 11번] - 예제 27.1 참고

2. 라듐 (Ra_{ss}^{226}) 이 α -붕괴하여 라돈(Rn)으로 될 때, 라돈에서 중성자의 개수는?

$$m Ra_{88}^{226}
ightarrow
m Rn_{86}^{222} + He_2^4 \, (\alpha 임자)$$
 $N = A - Z = 222 - 86 = 134$ (134 개)

[2010년 2학기 기말고사 12번] - 예제 27.1 참고

 $U_{92}^{238} \rightarrow Th_x^y + \alpha$

3. 우라듐 (\mathbf{U}_{92}^{238}) 이 α -붕괴하여 토륨 (\mathbf{Th}) 이 되었다. 아래 반응식에서 x 와 y 에 들어갈 값은 각각 얼마인가?

$$\alpha$$
 일 자 = He_2^4 \Rightarrow $\begin{cases} y = 238 - 4 = 234 \\ x = 92 - 2 = 90 \end{cases}$ ($x = 234$, $y = 90$)

[2009년 2학기 기말고사 12번] - 예제 27.1 참고

4. 중성인 원자 상태로 있는 동위원소 Co_{27}^{60} 에 들어 있는 중성자와 전자의 개수를 각각 구하시오.

$$X_Z^A \implies A = N + Z \implies A : 질량수, N: 중성자수, Z: 양성자수$$
 $Co_{27}^{60} \implies egin{cases} A = 60 \ Z = 27 \ N = 33 \end{cases}$ ($N = 33$, $e = 27$)

[2014년 2학기 기말고사 12번] - 예제 27.3, 연습문제 27.1, 27.2, 27.4 참고

5. ${\rm I}^{131}$ 의 반감기는 8일이다. 처음에 ${\rm I}^{131}$ 핵이 1.6×10^{22} 개가 존재하였다. 16일이 지난 후에 남아있는 ${\rm I}^{131}$ 핵의 개수를 구하시오.

16일은 반감기 8일이 두 번 지난 시간이므로 남아있는 양은 원래의 $\frac{1}{4}$ 이다.

따라서
$$\frac{1}{4} \times (1.6 \times 10^{22}) = 0.4 \times 10^{22} = 4.0 \times 10^{21}$$
 (0.4×10^{22} or 4.0×10^{21})

[2010년 2학기 기말고사 11번] - 연습문제 27.1 참고

6. 오래 된 고분에서 발굴된 나무에서 \mathbf{C}_6^{14} 의 비율을 측정해 보니, 현재의 나무에 존재하는 비율의 25%였다. \mathbf{C}_6^{14} 의 반감기가 5700년 이라면, 이 고분의 나무는 대략 몇 년 전의 것인가?

$$25\%$$
 \Rightarrow $\frac{1}{2^2} = \frac{1}{4}$ \Rightarrow $n = 2$ \Rightarrow $2 \times (5700 년) = 11400 년$

(11400 년)

[2012년 2학기 기말고사 12번] — 연습문제 27.7 참고

[2008년 2학기 기말고사 12번]

7. $A1^{27}$ 핵에서 알파 입자를 강제로 제거하면 Na^{23} 핵이 된다. 이때 얼마의 에너지가 필요한가? (단, $A1^{27}$ 핵의 질량은 26.982u, Na^{23} 핵의 질량은 22.990u, 알파 입자의 질량은 4.002u 이며, 1.000u 에 해당하는 질량에너지는 $391.5\ Me\ V$ 이다.)

$$\Delta M = M_{Al} - (M_{Na} + \alpha) = 26.982 u - (22.990 u + 4.002 u) = -0.01 u$$

$$Q = \Delta M c^2 = 0.01 u \times \frac{931.5 \, Me \, V}{1 \, u} = 9.315 \, Me \, V$$

$$(Q = 9.315 \, Me \, V)$$

8. 자연에 존재하는 기본 힘은 중력, 전자기력, 강한 핵력, 약한 핵력의 네 가지로 구분할 수 있다. 이 네 가지 힘을 그 세기가 큰 것에서부터 작은 순서로 나열하시오. (강한 핵력 > 전자기력 > 약한 핵력 > 중력)

[주의 사항] 주관식 문제는 상세한 풀이과정이 없으면 영점처리 됩니다.

[2013년 2학기 기말고사 주관식 3번] - 예제 27.1, 27.2 참고 [주관식 1] [15점]

초기에 정지해 있던 라듐 원자(Ra)가 α 붕괴하여 라돈 원자(Rn)와 α 입자로 분열되었다. 붕괴 후 Rn과 α 입자는 서로 반대 방향으로 멀어졌으며, 붕괴 과정에서 Q의 에너지가 방출되었다. 이 때, 다음 질문들에 답하시오. (단, 라듐 원자에는 양성자가 88개, 중성자가 138개 존재한다.)

(1) 이 핵반응의 반응식을 완성하시오. [4점]

$$Ra_{88}^{226} \quad \rightarrow \quad Rn_{86}^{222} + He_2^4 \qquad \text{or} \qquad Ra_{88}^{226} \quad \rightarrow \quad Rn_{86}^{222} + \alpha$$

(2) 라돈의 질량을 M, α 입자의 질량을 m 이라고 할 때, α 입자의 운동에너지를 M, m, Q를 이용하여 나타내시오. (단, α 입자의 속력은 광속보다 매우 작아서 상대론적 효과는 무시한다.) [6점]

$$\begin{split} Mv_{Rn} + m\,v_\alpha &= 0 \quad \Rightarrow \quad v_{Rn} = -\frac{m}{M}v_\alpha \\ Q &= \frac{1}{2}Mv_{Rn}^2 + \frac{1}{2}m\,v_\alpha^2 = \frac{1}{2}M\biggl(-\frac{m}{M}v_\alpha\biggr)^2 + \frac{1}{2}m\,v_\alpha^2 = \frac{1}{2}\frac{m^2}{M}v_\alpha^2 + \frac{1}{2}m\,v_\alpha^2 \\ &= \biggl(\frac{m}{M} + 1\biggr)\frac{1}{2}m\,v_\alpha^2 = \biggl(\frac{m+M}{M}\biggr)\frac{1}{2}m\,v_\alpha^2 = \biggl(\frac{m+M}{M}\biggr)K_\alpha \\ &\Rightarrow \quad K_\alpha = \biggl(\frac{M}{m+M}\biggr)Q \qquad \qquad (K_\alpha = \biggl(\frac{M}{m+M}\biggr)Q \quad) \end{split}$$

(3) 라듐, 라돈, α 입자의 질량은 각각 $226.025\,u$, $222.017\,u$, $4.002\,u$ 이다. $1\,u$ 의 질량에 해당하는 에너지를 $930\,Me\,V$ 라고 할 때, Q는 몇 $Me\,V$ 인가? (답은 유효숫자 2개까지 나타내시오.) [5점]

$$\Delta M = M_{Ra} - (M_{Rn} + \alpha) = 226.025 u - (222.017 u + 4.002 u) = 0.006 u$$
$$Q = \Delta M c^2 = 0.006 u \times \frac{931.5 MeV}{1 u} = 5.589 MeV \approx 5.6 MeV$$

($Q=5.6\,Me\,V$)

<수고하셨습니다.>