# A crash course on Systems Biology for Plant sciences

Uriel Urquiza Edinburgh

### Astronomers have revealed the first ever image of a black hole

Go Physics



## Ready for a new way of doing biology

### What is systems biology?

- A systems thinking approach to biology
  - Life emerges from complex non-linear interactions
    - general systems theory, K. Ludwig von Bertalanffy
- Tackle complexity with formal languages
  - Mathematics
  - Computational sciences

### Aim

- Treat biology formally (mathematical and computationally)
  - A tradition in physics and chemistry
- More adopted in biology now though
  - Figure 1 theory Meets Figure 2 experiments
    - (Rob Philips et al. 2018)

### Disciplines

- Biology
- Chemistry (chemical kinetics, allosteric regulation)
- Physics (thermodynamics, statistical mechanics)
- Computer sciences (information theory)
- Engineering (control theory) -> synthetic biology

## Why using computational tools?

- Theoretical hypothesis can be tested faster
  - many proposed equations are not analytically tractable
    - even if solvable difficult analytic tools and slow
  - numerical solvers to the rescue for simulating dynamics
  - Parameter inference of non-linear systems requires numerical methods, Maximum Likelihood, Bayesian methods.

## The problem, in practice how do we implement all this theory for our benefit

## Open tools for systems biology







## Reproducibility in systems biology

- Computational tools are not treated with the same standards as experimental results why?
- Lack of understanding for reviews. How to asses reproducibility?
- How to solve this?

## Tools for reproducible computational research





reproducible OS environment

### Documenting your progress



#### Lets do some Physical chemistry