Exercises 6

1

- 1. Let \mathbb{RP}^n be the topological space constructed by quotient $\mathbb{R}^{n+1}\setminus 0$ with \mathbb{R}^* . And let \mathbb{P}^n be the scheme of projective space over R. Recall a section of $p:A\to B$ is a morphism $f:B\to A$ s.t $p\circ f=\mathrm{id}$.
 - (a) Let $q: \mathbb{R}^{n+1} \setminus 0 \to \mathbb{RP}^n$ be the obvious projection. Show that q has no section.
 - (b) Let $D_+(x_i)_n$ be the affine open subscheme of \mathbb{P}^n . Define morphisms $q: D_{x_i} \subset \mathbb{A}^{n+1} \setminus 0 \to D_+(x_i)_n$ induced by

$$q^{\#}: R[\frac{x_0}{x_i}, \dots, \frac{x_n}{x_i}] \to R[x_0, \dots, x_n][x_i^{-1}], \frac{x_j}{x_i} \mapsto x_j x_i^{-1}$$

Show that we can glue q into morphism $q: \mathbb{A}^{n+1} \setminus 0 \to \mathbb{P}^n$. Then show that q has no section.

- (c) Let $a, b \in \mathbb{R}$, $f : \mathbb{RP}^1 \to \mathbb{RP}^2 \setminus [0, 0, 1]$ by f([x, y]) = [x, y, ax + by] and $p : \mathbb{RP}^2 \setminus [0, 0, 1] \to \mathbb{RP}^1$ by p([x, y, z]) = [x, y]. Check they are well-defined map, f is a section of p and $p^{-1}(t \in \mathbb{RP}^1) \cong \mathbb{R}^1$. Then show that $\mathbb{RP}^2 \setminus [0, 0, 1]$ is homeomorphic to a Mobius band.
- (d) For $n \leq m$, we define morphisms $i: D_+(x_i)_n \to D_+(x_i)_m$, $p: D_+(x_i)_m \to D_+(x_i)_n$ induced by

$$i^{\#}: R[\frac{x_0}{x_i}, \dots \frac{x_m}{x_i}] \to R[\frac{x_0}{x_i}, \dots \frac{x_n}{x_i}], \frac{x_j}{x_i} \mapsto \frac{x_j}{x_i}, j \le n; 0, j > n$$
$$p^{\#}: R[\frac{x_0}{x_i}, \dots \frac{x_n}{x_i}] \to R[\frac{x_0}{x_i}, \dots \frac{x_m}{x_i}], \frac{x_j}{x_i} \mapsto \frac{x_j}{x_i}$$

Show that we can glue i, p into morphisms

$$i: \mathbb{P}^n = D_+(x_0)_n \cup \ldots \cup D_+(x_n)_n \to U_{n,m} = D_+(x_0)_m \cup \ldots \cup D_+(x_n)_m \subset \mathbb{P}^m$$

and $p: U_{n,m} \to \mathbb{P}^n$.

(e) * Show that sections of $p:U_{1,2}\to \mathbb{P}^1$ correspond to linear polynomials $\{ax+by,a,b\in R\}$

¹find also these exercises on https://github.com/iamcxds/AG-exercise, you can skip a question with * if it is difficult.

- 2. (Gluing 3 schemes) Let $X_i, i=1,2,3$ be three schemes. And for pairs i,j, there are open subsets U_{ij} and isomorphisms $\varphi_{ij}:U_{ij}\stackrel{\sim}{\to} U_{ji}$. Now, if the isomorphisms are compatible in the sense: for each i,j,k,
 - $(1) \varphi_{ij} = \varphi_{ji}^{-1},$
 - $(2) \varphi_{ij}(U_{ij} \cap U_{ik}) = U_{ji} \cap U_{jk},$
 - (3) $\varphi_{jk} \circ \varphi_{ij} = \varphi_{ik} \text{ on } U_{ij} \cap U_{ik},$

then there exists a scheme X, as gluing of X_i .