

Mastering Amazon SageMaker

Distributed Training & Deployment using Amazon SageMaker

Name: Mani Khanuja

Role: Sr. AI/ML Specialist SA

Email: mankhanu@amazon.com

Agenda

- SageMaker Training Deep Dive
 - Distributed Training
 - SageMaker Inference
 - Autoscaling
 - SageMaker Batch Transform
 - Async Inference
 - SageMaker Inference Pipelines
 - SageMaker Multi-model Endpoints
 - SageMaker Model Monitoring
- Q&A
- Survey

Reduced training time

Reduce training time by 25% with synchronization across GPUs

Optimized for AWS

Achieve near-linear scaling efficiency with data parallelism designed for AWS

Distributed training

The fastest and easiest way to train large deep learning models

Support for popular ML framework APIs

Re-use existing APIs such as Horovod without custom training code

Automatic and efficient model partitioning

Avoid experimentation with automated model profiling and partitioning

Minimal code change

Implement model parallelism with fewer than 10 lines of code change

Efficient pipelining

Maximize resource usage with pipelining of microbatches that keeps all GPUs active

How it works: Data parallelism library

How it works: Model parallelism library

Training time slows down development

Model	RoBERTa
Dataset	300+ GB
Cluster	64 p3dn.24xl
Training time	Several days

Credit: https://xkcd.com/303/

Data parallelism in a nutshell

Model parallel – think "massive models"

Deep learning models are growing in size

MODEL

BERT

GPT-2

T5

GPT-3

RELEASED

Oct 2018

Feb 2019

Oct 2019

Jul 2020

PARAMETERS

340 M

1.5 B

11 B

175 B

But hardware improvements are not keeping up

HARDWARE CAPACITY GROWS TOO - BUT NOT AS FAST

The speed of model size growth is outpacing hardware improvements, leading to memory bottlenecks.

Memory bottlenecks in training large models

Model sizes can be limited by memory of a single GPU

Large models cause OOM errors

Naive approaches to model parallel replicate the entire model across all GPUS

 Wasteful when model is large, gets you even more OOM errors

Hardware limitations without optimal usage can limit both research and applications

Model parallelism on Amazon SageMaker (SMP)

Automated model partitioning

Interleaved pipelined training

Managed SageMaker training

Clean framework integration

1. Use SMP to automate your model partitioning

ANALYZED MODEL

- Graph structure
- Sizes of trainable weights
- Sizes of exchanged tensors (using SageMaker Debugger)

RUN GRAPH PARTITIONING ALGORTIHM

- Balance stored weights and activations
- Minimize communication

PLACE PARTITIONS ON DEVICES

 To be executed in a pipelined manner

2. Interleave pipeline execution to stabilize GPU utilization

- Split minibatches into N "microbatches"
- Feed microbatches sequentially, but process them to keep GPU utilization more even
- Minimize "idle" time on GPUs

SageMaker Hosting Deep Dive

Deploy ML models

Fully managed deployment for inference at scale

Wide selection of infrastructure

70+ instance types with varying levels of compute and memory to meet the needs of every use case

Single-digit millisecond overhead latency

For use cases requiring real-time responses

Asynchronous inference

Supports large models with long-running processing times

Cost-effective deployment

Multi-model/multi-container endpoints, serverless inference, and elastic scaling

Built-in integration for MLOps

ML workflows, CI/CD, lineage tracking, and catalog

Automatic deployment recommendations

Optimal instance type/count and container parameters, and fully managed load testing

SageMaker inference options

NEW

Real-time inference

Low latency
Ultra high throughput
Multi-model endpoints
A/B testing

Batch transform

Process large datasets

Job-based system

Asynchronous inference

Near real-time

Large payloads (1 GB)

Long timeouts (15 mins)

Serverless Inference Fully managed offering

Managed infrastructure

Serverless

Automatically scale out, in, and down to 0

Security

Monitoring

Logging

Built in availability and fault tolerance

No need to select instance types or provision capacity

Choose memory options based on inference processing needs

No need to set scaling policies

Amazon SageMaker Deployment

SageMaker Endpoints (Private API)

Deployment / Hosting Amazon SageMaker ML Compute Instances

Amazon SageMaker Deployment

SageMaker Endpoints (Public API)

Deployment / Hosting Amazon SageMaker ML Compute Instances

Real time Inference

```
from time import gmtime, strftime
from sagemaker.tensorflow.model import TensorFlowModel
tensorflow_model = TensorFlowModel(model_data=model_path,
                                   role=role,
                                   framework_version="2.3.1")
endpoint_name = "DEMO-tf2-california-housing-model-monitor-" + strftime(
    "%Y-%m-%d-%H-%M-%S", qmtime()
predictor = tensorflow_model.deploy(
    initial_instance_count=1,
    instance_type="ml.m5.xlarge",
    endpoint_name=endpoint_name,
```


Serverless Inference

Step1: Create Model

Step2: Create Endpoint Configuration

Step3: Create Endpoint

```
endpoint_name = "xgboost-serverless-ep" + strftime("%Y-%m-%d-%H-%M-%S", gmtime())

create_endpoint_response = client.create_endpoint(
    EndpointName=endpoint_name,
    EndpointConfigName=xgboost_epc_name,|
)

print("Endpoint Arn: " + create_endpoint_response["EndpointArn"])
```


Amazon SageMaker Deployment Batch Hosting

Batch Transform

- Predictions for an entire dataset
- Transient resources (instances provisioned and terminated once job is done)
- No infrastructure to manage
- Can associate prediction results with input
- Supports Built-In/Bring-Your-Own

Batch Inference

```
from sagemaker.tensorfllow import TensorflowModel
serving = TensorflowModel(
    model_data = 's3 location',
    role=role,
    framework_version="2.3",
    sagemaker_session=sagemaker_session,
    entry point = 'inference.py',
    source dir = 'code'
input_data_path = "s3://sagemaker-sample-data-{}/tensorflow/california_housing_data/batch.csv".format(
    sagemaker_session.boto_region_name
output_data_path = "s3://{}/{}/".format(bucket, prefix, "batch-predictions")
batch instance count = 2
batch_instance_type = "ml.g4dn.2xlarge"
concurrency = 32
max_payload_in_mb = 1
transformer = serving.transformer(
    instance_count=batch_instance_count,
    instance_type=batch_instance_type,
    max_concurrent_transforms=concurrency,
    max_payload=max_payload_in_mb,
    output_path=output_data_path,
transformer.transform(data=input_data_path, content_type="text/csv")
transformer_wait()
```


Async Inference

Inference Pipelines for sequential execution of models

Execute data processing on inference requests, maintain single copy of data processing code for training and inference

Built-in containers— Scikit-Learn and Apache Spark MLLib

Add up to 5 containers; execute sequentially

Containers co-located on instance for low latency

Amazon SageMaker Deployment

Model

Artifacts

fix = SalesForecast/

Multi-Model Endpoints

- Scalable/Cost Effective for large number of models
- Works best when models are of similar size and latency
- Automatic memory handling

Code

SageMaker Model Monitoring

Model Monitor: how it works

DEMO

Amazon SageMaker

Next Steps

Onboarding & Processing

- https://docs.aws.amazon.com/sa gemaker/latest/dg/gs-studioonboard.html
- https://docs.aws.amazon.com/sa gemaker/latest/dg/processingjob.html

Training

- https://docs.aws.amazon.com/ sagemaker/latest/dg/trainmodel.html
- https://docs.aws.amazon.com/ sagemaker/latest/dg/distribute d-training.html
- https://aws.amazon.com/sage maker/debugger

https://github.com/aws/amazon-sagemaker-examples

https://sagemaker.readthedocs.io/en/stable/index.html

Deployment

- https://docs.aws.amazon.com/sage maker/latest/dg/realtimeendpoints.html
- https://docs.aws.amazon.com/sage maker/latest/dg/serverlessendpoints.html
- https://docs.aws.amazon.com/sage maker/latest/dg/asyncinference.html
- https://docs.aws.amazon.com/sage maker/latest/dg/batchtransform.html

Q & A

Please Complete the session Survey

Thank you!