

In 2015 a 7.8 Mw Gorkha Earthquake occurred on April 25, 2015 in Nepal

- Economic cost = \$10 billion nearly half of its GDP of \$19billion
- 9,000 lives lost

Goal:

Use machine learning classification to predict building damage

Data

Nepal carried out a household survey for 11 severely affected districts to assess building damage.

- 750k +rows , 42 features

- Target: Damage Grade

- Features: Building data

Examples:

- Year built
- Construction material
- Building height & floor area
- Land surface

Grade 1	Thin cracks in plaster
Grade 2	Cracks in many walls
Grade 3	Large and extensive cracks
Grade 4	Walls collapse, failure of roof/floor
Grade 5	Total or near collapse

Baseline model

Logistic Regression

Log loss score: 1.32

Should we consider Binary model?

Multiclass

Class	Description		Low	High	Midpoint
Grade 1	no need/some minor		-	1,000	500
Grade 2	minor repair		1,000	2,500	1,750
Grade 3	major repair		2,500	10,000	6,250
Grade 4	reconstruction/some		10,000	25,000	17,500
Grade 5	reconstruction		25,000	50,000	37,500
Class	Count of Predicted	Predicte	ed Cost	Count of Actual	Actual Cost
Grade 1	79,250		\$40m	62,752	\$31m
Grade 2	10,158		\$18m	69,526	\$122m
Grade 3	30,929		\$193m	108,645	\$679m
Grade 4	47,212		\$826m	146,536	\$2,564m
Grade 5	439,619		\$16.486m	219,709	\$8.239m
	607,168		\$17,563m	607,168	\$11,636m

Model miss: \$6 billion

Binary

Class	Description	Low	High	Midpoint
	0 No need/Minor repair	-	2,500	1,250
	1 Major repair/reconstruction	5,000	50,000	27,500
Class	Count of Predicted	Predicted Cost	Count of Actual	Actual Cost
0	89,408	\$112m	132,278	\$66m
1	517,760	\$14,238m	474,890	\$831m
	607,168	\$14,350m ²	607,168	\$897m

Model miss:

\$13 billion

Comparison stage 1

Classifiers	
	Log loss score
Logistic Regression (baseline)	1.32
Logistic Regression (One v Rest)	1.31
Random Forest Classifier (SMOTE)	1.24
XG Boost Classifier (SMOTE)	1.27

Regressors	
	RMSE
Linear Regression (baseline)	1.12
Random Forest Regressor (SMOTE)	0.99
XG Boost Regressor (SMOTE)	1.02

Comparison stage 2

Random Forest Classifier F1 score on final holdout : 0.45

F1 score (micro)

RF Regressor (SMOTE)
RF Classifier (SMOTE)
XGB Regressors (SMOTE)
XGB Classifier (SMOTE)

Model Deployment

Top 6 features were used to deploy a simple proof of concept model

Please visit at:

https://share.streamlit.io/amyyunekim/course_4_classification/main/app/app.py

Future development

- Further tuning of hyperparameters
- Use cloud computing for faster processing on large data sets

Discussion

- Overfitting problem training score was higher than test score.
 - > CV only included 3 folds
 - > Use cloud computing for faster processing on large data sets
- Further tuning of hyperparameters

Do you have any questions?

amyyunekim@gmail.com

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**