GATI-MFG User's Guide

Manyan Huang

2023-04-02

1. Introduction

The gene-based association test of interactions for maternal-fetal genotypes (GATI-MFG) is developed to test the joint effect of maternal and fetal genes on disease risk while allowing for maternal-fetal genotype interaction.

The proposed method has several advantages:

- It may account for the complex relationships between maternal and fetal genes during the embryogenesis.
- It is a gene-based test that can integrate the collective effect of multiple genetic variants, including both common and rare variants.
- It is especially suited for detecting the joint effects due to rare variants with a larger sample, which may be missed by the conventional single-variant-based association tests.

This document includes 1) an example pipeline for processing genetic data; 2) detailed description for GATI-MFG function, input and output data with an example; and 3) an example of simulating phenotype under various disease scenarios.

1.1 Dependencies

The GATI-MFG function requires the following R packages to be installed:

```
library(Matrix)
library(SPAtest)
library(BEDMatrix)
library(MGLM)
library(SKAT)
library(MASS)
library(survival)
library(compiler)
```

2. Data pre-processing

This document demonstrates the processing of genetic data for gene-based association tests. Depending on the specific requirements of their study, the user has the flexibility to select suitable data pre-processing strategies.

2.1 Genotype data processing

In our study, DNA samples of the infants and their mothers were collected by the National Birth Defects Prevention Study. Each sample was genotyped for approximately 5 million SNPs, including both common and rare variants, by using Illumina® Infinium HumanOmni5Exome BeadChip in the Hobbs Laboratory in Arkansas Children's Research Institute. Detailed information can be found elsewhere. ¹

For genetic data, we extracted maternal and fetal genotype in phase I and phase II from the genome data set. We removed the genetic variants with high missing rate. Software PLINK 1.9² was applied to process the genetic data in the instruction below. You can find comprehensive guidelines on how to use PLINK at https://www.cog-genomics.org/plink/.

```
s1=discv mb
s2=rep_mb
d=aim1aim2.ACGT.final
out1=discv_mb_geno
out2=rep_mb_geno
plink \
      --bfile $d \
      --keep $s1 \
      --geno 0.05 \
      --keep-allele-order \
      --make-bed \
      --out $out1
plink
      --bfile $d \
      --keep $s2 \
      --geno 0.05 \
      --keep-allele-order \
      --make-bed \
      --out $out2
```

2.2 Extraction of genetic data based on gene regions

To conduct gene-based association tests, we used the UCSC Genome Browser (as-sembly GRCh37/hg19) to define gene regions as biologically meaningful units for association with CHD. An extended region from 7.5K upstream and downstream of the genomic region was defined as a testing unit.

```
discovery_sd=region_extracted_discovery
replication_sd=region_extracted_replication

p1=discv_mb_geno
p2=rep_mb_geno
```

75. doi: 10.1086/519795. Epub 2007 Jul 25. PMID: 17701901; PMCID: PMC1950838.

¹Rashkin SR, Cleves M, Shaw GM, Nembhard WN, Nestoridi E, Jenkins MM, Romitti PA, Lou XY, Browne ML, Mitchell LE, Olshan AF, Lomangino K, Bhattacharyya S, Witte JS, Hobbs CA; National Birth Defects Prevention Study. A genome-wide association study of obstructive heart defects among participants in the National Birth Defects Prevention Study. Am J Med Genet A. 2022 Aug;188(8):2303-2314. doi: 10.1002/ajmg.a.62759. Epub 2022 Apr 22. PMID: 35451555; PMCID: PMC9283270.

²Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007 Sep;81(3):559-

```
while read chrstr begin_pos end_pos st gene
do
    chr="${chrstr:3}"
    # specify the output filename for each region
   out_discv=${discovery_sd}/${chr}_${begin_pos}_mb
   out_rep=${replication_sd}/${chr}_${begin_pos}_mb
    # extend the region 7.5kb upstream and downstream
   fr=$[begin_pos-7500]
    if [ $fr -lt 0 ]
   then
   fi
   to=$[end_pos+7500]
    # extract the genotype based on chromoson, start and end position
   plink --bfile $p1 --chr $chr --from-bp $fr --to-bp $to --make-bed --out $out_discv
   plink --bfile $p2 --chr $chr --from-bp $fr --to-bp $to --make-bed --out $out_rep
done < /geode2/home/u030/huanshan/Carbonate/manyan/GbyG/Rochy_application/refGene.merged.bed
```

The sample input of region information file (as refGene.merged.bed above):

```
End Strand
##
      Chr Start
## 1 chr1 11868 14409
## 2 chr1 14361 29370
## 3 chr1 30365 30503
## 4 chr1 34610 36081
## 5 chr1 69090 70008
## 6 chr1 134772 140566
##
                                                                                                Gene
## 1
                                                            NR 046018&DDX11L1,NR 148357&LOC102725121
## 2 NR_024540&WASH7P,NR_106918&MIR6859-1,NR_107062&MIR6859-2,NR_107063&MIR6859-3,NR_128720&MIR6859-4
                   NR_036051&MIR1302-2,NR_036266&MIR1302-9,NR_036267&MIR1302-10,NR_036268&MIR1302-11
## 4
                                                                 NR 026818&FAM138A,NR 026820&FAM138F
## 5
                                                                                  NM 001005484&OR4F5
## 6
                                                                                 NR_039983&L0C729737
```