# 1 Aufgabe D1 - ER-Modellierung

## 1.1 Teilaufgabe a)

|                                                                          | Richtig | Falsch |
|--------------------------------------------------------------------------|---------|--------|
| Es kann Gutachter geben, die keiner Konferenz zugewiesen sind            |         | abla   |
| Es ist sichergestellt, dass eine Publikation von mehreren Gutachtern be- | abla    |        |
| wertet wird.                                                             |         |        |
| Jede Konferenz besitzt zugewiesene Gutachter                             |         | abla   |
| Jeder Autor steht über seine Publikationen mit mindestens drei Gutach-   | abla    |        |
| tern in Verbindung.                                                      |         |        |
| Es kann auch Konferenzen geben, auf denen nichts veröffentlicht wird.    | abla    |        |
| Es gilt immer: $N(Publikationen) \ge N(Autor)$                           |         | abla   |
| Es gilt immer: $N(Konferenz) \ge N(Publikation)$                         |         | abla   |
| Es gilt immer: $N(Gutachter) \ge N(Publikation)$                         | abla    |        |

## 1.2 Teilaufgabe b)

ER-Modelierung ist kapazitätserhöhend? (Beispiel? TODO)

## 2 Aufgabe D2 - Normalformen

## 2.1 Teilaufgabe a)

A ist Schlüsselkandidat.

## 2.2 Teilaufgabe b)

 $R = \{\,\underline{A}, B, C, D\,\}$  hat

- 1NF, da jedes Attribut atomar ist
- 2NF, da es bein einem einzelnen Attribut als Schlüssel niemals ein Nicht-Schlüssel von einer Teilmenge abhängig sein kann
- $\bullet\,$ nicht 3NF, da  $A\to B\to C.$  Der Nicht-Schlüssel Cist also vom Schlüssel A transitiv abhängig.

## 2.3 Teilaufgabe c)

| Zerlegung                                                          | 3NF | ver-<br>bund-<br>treu | ab-<br>hängigkeits-<br>treu | Bemerkung                                                                                                             |
|--------------------------------------------------------------------|-----|-----------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------|
| $S_1 = \{ \underline{ABC}, \underline{CD} \}$                      | ×   | Х                     | Х                           | nur 2NF, da $A \to B \to C$<br>Im Schnitt ist nur $C$ , aber $C \to ABC$ und $C \to CD$<br>$C \to D$ ist nicht in $F$ |
| $S_2 = \{ \underline{A}B, \underline{B}C, \underline{C}D \}$       | ✓   | ×                     | ×                           | $C \to D$ ist ment in $F$ $C \to D$ ist nicht in $F$ Gegenbeispiel für verbundtreue gefunden                          |
| $S_3 = \{ \underline{AB}, \underline{BCD} \}$                      | 1   | ✓                     | ✓                           | 5                                                                                                                     |
| $S_4 = \{ \underline{\overline{A}B}, \underline{\overline{C}D} \}$ | ✓   | <i>x</i>              | Х                           | $C \to D$ nicht in $F$<br>nicht verbundtreu, da beide<br>Relation nur per Natural Join<br>verbunden werden können     |

## 3 Aufgabe D3 - SQL

#### 3.1 Teilaufgabe a)



#### 3.2 Teilaufgabe b)

```
1 CREATE TABLE Kunden2Berater (
2    kunden_id INTEGER,
3    berater_id INTEGER,
4    PRIMARY KEY (kunden_id, berater_id),
5    FOREIGN KEY (berater_id) REFERENCES Berater (berater_id),
6    FOREIGN KEY (kunden_id) REFERENCES Kunden (kunden_id)
7 );
8
9 ALTER TABLE Kunden
DROP COLUMN berater_id;
```

Problem: Nun kann es auch Kunden geben, die gar nicht beraten werden!

#### 3.3 Teilaufgabe c)

```
1 SELECT name FROM Berater b
2     JOIN Kunden2Berater kb ON kb.berater_id = b.berater_id
3     JOIN Kunden k ON k.kunden_id = kb.kunden_id
4     WHERE k.name = "Müller"
```

#### 3.4 Teilaufgabe d)

```
1 CREATE VIEW Beratungsanzahl AS (
2     SELECT berater_id, COUNT(kb.kunden_id) AS anzahl
3     FROM Berater b
4     LEFT OUTER JOIN Kunden2Berater kb ON b.berater_id = kb.berater_id
5     GROUP BY berater_id
6 )
```

#### 3.5 Teilaufgabe e)

1 SELECT berater\_id, name, anzahl

- FROM Beratungsanzahl
- JOIN Berater ON Berater.berater\_id = Beratungsanzahl.berater\_id
- WHERE anzahl = (SELECT MAX(anzahl) FROM Beratungsanzahl)

#### 4 D4 - Transaktionen und Histories

## 4.1 Teilaufgabe a)



#### 4.2 Teilaufgabe b) und c)

|                            | RC | ACA | ST |
|----------------------------|----|-----|----|
| $T_4$ reads $d$ from $T_3$ | 1  | ✓   | ✓  |
| $T_4$ reads $c$ from $T_2$ | 1  | ✓   | ✓  |
| $T_1$ reads $a$ from $T_2$ | 1  | ✓   | ✓  |

#### 4.3 Teilaufgabe d)

Eine History H ist  $ST \Leftrightarrow w_j(x) < o_i(x): i \neq j \Rightarrow a_j < o_i(x) \lor c_j < o_i(x)$ , wobei  $o_i(x) \in \{r_i(x), w_i(x)\}$ 

## 4.4 Teilaufgabe e)

 $w_5[b]$  hinter  $c_4$  verschieben