

$Department \\ of \\ Electronics \ and \ communication \ Engineering$

Analog Electronics Circuits Dr . Anshu Sarje

Lab: 0

Name: Macharla Harish Roll no: 2020102062 Date: 23/08/2021

August 23, 2021

1 Objectives

 Analysing the circuit(Parallel Resistors and Current Division)theoretically and simulation using LT-spice of DC operating point and Transient Analysis.

2 Components used

- Voltage source.
- Three resistors.
- connecting wires.
- Ground.

3 Theoretical Calculation:

3.1 DC operating point:

Here we can see Resistance R1 12 Ω and R2 6 Ω are in parallel, $R_{result1}=4\Omega$ and also R3 10 Ω and R4 40 Ω are also in parallel, $R_{result2}=8\Omega$, these resultant resistances are in Series.

 $R_{equivalent} = 12\Omega.$

The current in the entire circuit

$$i = \frac{V}{R}$$
$$= \frac{30}{12} = 2.5$$

.

Voltage across $R_{result1}: V = I \times R_{result1} = 2.5 \times 4 = 10V.$

Current through R1:

$$= \frac{10}{12}$$
$$= 0.8333A$$

Current through R2:

$$=\frac{10}{6}$$
$$=1.667A$$

.

Voltage across $R_{result2}: V = I \times R_{result2} = 2.5 \times 8 = 20V$.

Since R3 and R4 are in parallel they have same voltages.

Current through R3:

$$= \frac{20}{10}$$
$$= 2A$$

Current through R4:

$$= \frac{20}{40}$$
$$= 0.5A$$

.

4 Observations:

• I observed that both Theoretical and simulation in LT-spice results were same.

Operating Point		
V(a):	30	voltage
V(b):	20	voltage
I(R2):	1.66667	device_current
I(R1):	0.833333	device_current
I(R4):	0.5	device_current
I(R3):	2	device_current
I(V1):	-2.5	device_current

5 Plots

Plots of above DC operating values using Transient analysis.

Plots of current across the resistors.

Plot of voltage drop across A and B.

Plot of voltage drop across B and ground

6 Conclusion

- LT -spice is a good tool which helps us to understand the subject both theoretically and conceptually.
- I conclude that both the results DC operating values, theoretical and Transient Analysis were same.