Supervised LearningTree-based methods

Gilles Louppe (@glouppe)

October 17, 2016

Outline

1 Decision trees

2 Forests of randomized trees

3 Boosting

4 Interpreting tree-based models

Running example

From physicochemical properties (alcohol, acidity, sulphates, ...),

learn a model

to predict wine taste preferences.

Supervised learning

- Data comes as a finite learning set $\mathcal{L} = (X, y)$ where
 - Input samples are given as an array of shape (n_samples, n_features)

E.g., feature values for wine physicochemical properties:

■ Output values are given as an array of shape (n_samples,)

```
E.g., wine taste preferences (from 0 to 10): y = [5 5 5 \dots 6 7 6]
```

• The goal is to build an estimator $f: \mathcal{X} \mapsto \mathcal{Y}$ minimizing

$$Err(f) = \mathbb{E}_{X,Y}\{L(Y, f(X))\}.$$

Decision trees (Breiman et al., 1984)

(Demo)

Composability of decision trees

Decision trees can be used to solve several machine learning tasks by swapping the impurity and leaf model functions:

0-1 loss (classification)

$$\widehat{y}_t = \operatorname{arg\,max}_{c \in \mathbb{Y}} p(c|t), \ i(t) = \operatorname{entropy}(t) \ \operatorname{or} \ i(t) = \operatorname{gini}(t)$$

Mean squared error (regression)

$$\widehat{y}_t = \mathsf{mean}(y|t)$$
, $i(t) = \frac{1}{N_t} \sum_{\mathbf{x}, y \in \mathcal{L}_t} (y - \widehat{y}_t)^2$

Least absolute deviance (regression)

$$\widehat{y}_t = \mathsf{median}(y|t), \ i(t) = \frac{1}{N_t} \sum_{\mathbf{x}, y \in \mathcal{L}_t} |y - \widehat{y}_t|$$

Density estimation

$$\widehat{y}_t = \mathcal{N}(\mu_t, \Sigma_t), \ i(t) = \text{differential entropy}(t)$$

Sample weights

Sample weights can be accounted for by adapting the impurity and leaf model functions.

Weighted mean squared error

$$\begin{split} \widehat{y}_t &= \frac{1}{\sum_w w} \sum_{\mathbf{x}, y, w \in \mathcal{L}_t} wy \\ i(t) &= \frac{1}{\sum_w w} \sum_{\mathbf{x}, y, w \in \mathcal{L}_t} w(y - \widehat{y}_t)^2 \end{split}$$

Weights are assumed to be non-negative since these quantities may otherwise be undefined. (E.g., what if $\sum_{w} w < 0$?)

sklearn.tree

Visualize and interpret

```
# Display tree
from sklearn.tree import export_graphviz
export_graphviz(estimator, out_file="tree.dot",
                          feature_names=feature_names)
                                           alcohol <= 10 6250
                                         mse = 0.768883373306
                                            samples = 4872
                            volatile acidity <= 0.2375
                                                      alcohol <= 11.6167
                             mse = 0.564452173089
                                                     mse = 0.758473635525
                                samples = 2905
                                                        samples = 1967
                                 mse = 0.4633
                                                    volatile acidity <= 0.3875
             mse = 0.6022
                                                                                mse = 0.6616
            samples = 800
                                samples = 2105
                                                     mse = 0.731511512621
                                                                               samples = 918
           value = [ 5.936251
                              value = [5.374821851]
                                                        samples = 1049
                                                                             value = [6.514161221]
                                              mse = 0.6817
                                                                    mse = 0.7287
                                             samples = 811
                                                                   samples = 238
                                          value = [ 6.13193588]
                                                                value = [ 5.65966387]
```

Strengths and weaknesses of decision trees

- Non-parametric model, proved to be consistent.
- Support heterogeneous data (continuous, ordered or categorical variables).
- Flexibility in loss functions (but choice is limited).
- Fast to train, fast to predict.
 - In the average case, complexity of training is $\Theta(pN \log^2 N)$.
- Easily interpretable.
- Low bias, but usually high variance
 - Solution: Combine the predictions of several randomized trees into a single model.

Outline

Decision trees

2 Forests of randomized trees

- 3 Boosting
- 4 Interpreting tree-based models

Bias-variance decomposition in regression

Theorem. For the squared error loss, the bias-variance decomposition of the expected generalization error at $X = \mathbf{x}$ is

$$\mathbb{E}_{\mathcal{L}}\{\textit{Err}(\phi_{\mathcal{L}}(\mathbf{x}))\} = \mathsf{noise}(\mathbf{x}) + \mathsf{bias}^2(\mathbf{x}) + \mathsf{var}(\mathbf{x})$$

where

$$\begin{split} & \mathsf{noise}(\mathbf{x}) = \textit{Err}(\phi_{\mathcal{B}}(\mathbf{x})), \\ & \mathsf{bias}^2(\mathbf{x}) = (\phi_{\mathcal{B}}(\mathbf{x}) - \mathbb{E}_{\mathcal{L}}\{\phi_{\mathcal{L}}(\mathbf{x})\})^2, \\ & \mathsf{var}(\mathbf{x}) = \mathbb{E}_{\mathcal{L}}\{(\mathbb{E}_{\mathcal{L}}\{\phi_{\mathcal{L}}(\mathbf{x})\} - \phi_{\mathcal{L}}(\mathbf{x}))^2\}. \end{split}$$

Bias-variance decomposition

Diagnosing the generalization error of a decision tree

- (Residual error: Lowest achievable error, independent of $\phi_{\mathcal{L}}$.)
- Bias: Decision trees usually have low bias.
- Variance: They often suffer from high variance.
- Solution: Combine the predictions of several randomized trees into a single model.

Random Forests (Breiman, 2001; Geurts et al., 2006)

Randomization

- Bootstrap samples
- Random selection of $K \leqslant p$ split variables
- Random selection of the threshold

Random Forests

Extra-Trees

Bias-variance decomposition

Theorem. For the squared error loss, the bias-variance decomposition of the expected generalization error $\mathbb{E}_{\mathcal{L}}\{Err(\psi_{\mathcal{L},\theta_1,\ldots,\theta_M}(\mathbf{x}))\}$ at $X=\mathbf{x}$ of an ensemble of M randomized models $\varphi_{\mathcal{L},\theta_m}$ is

$$\mathbb{E}_{\mathcal{L}}\{\textit{Err}(\psi_{\mathcal{L},\theta_1,\ldots,\theta_M}(\mathbf{x}))\} = \mathsf{noise}(\mathbf{x}) + \mathsf{bias}^2(\mathbf{x}) + \mathsf{var}(\mathbf{x}),$$

where

$$\begin{split} \text{noise}(\mathbf{x}) &= \textit{Err}(\phi_{\mathcal{B}}(\mathbf{x})), \\ \text{bias}^2(\mathbf{x}) &= (\phi_{\mathcal{B}}(\mathbf{x}) - \mathbb{E}_{\mathcal{L},\theta}\{\phi_{\mathcal{L},\theta}(\mathbf{x})\})^2, \\ \text{var}(\mathbf{x}) &= \rho(\mathbf{x})\sigma_{\mathcal{L},\theta}^2(\mathbf{x}) + \frac{1-\rho(\mathbf{x})}{M}\sigma_{\mathcal{L},\theta}^2(\mathbf{x}). \end{split}$$

and where $\rho(\mathbf{x})$ is the Pearson correlation coefficient between the predictions of two randomized trees built on the same learning set.

Interpretation of $\rho(\mathbf{x})$ (Louppe, 2014)

Theorem.
$$\rho(\textbf{x}) = \frac{\mathbb{V}_{\mathcal{L}}\{\mathbb{E}_{\theta|\mathcal{L}}\{\phi_{\mathcal{L},\theta}(\textbf{x})\}\}}{\mathbb{V}_{\mathcal{L}}\{\mathbb{E}_{\theta|\mathcal{L}}\{\phi_{\mathcal{L},\theta}(\textbf{x})\}\} + \mathbb{E}_{\mathcal{L}}\{\mathbb{V}_{\theta|\mathcal{L}}\{\phi_{\mathcal{L},\theta}(\textbf{x})\}\}}}$$

In other words, it is the ratio between

- the variance due to the learning set and
- the total variance, accounting for random effects due to both the learning set and the random perburbations.
- $ho(\mathbf{x})
 ightarrow 1$ when variance is mostly due to the learning set; $ho(\mathbf{x})
 ightarrow 0$ when variance is mostly due to the random perturbations; $ho(\mathbf{x}) \geqslant 0$.

Diagnosing the error of random forests (Louppe, 2014)

- Bias: Identical to the bias of a single randomized tree.
- Variance: $\operatorname{var}(\mathbf{x}) = \rho(\mathbf{x})\sigma_{\mathcal{L},\theta}^2(\mathbf{x}) + \frac{1-\rho(\mathbf{x})}{M}\sigma_{\mathcal{L},\theta}^2(\mathbf{x})$ As $M \to \infty$, $\operatorname{var}(\mathbf{x}) \to \rho(\mathbf{x})\sigma_{\mathcal{L},\theta}^2(\mathbf{x})$
 - The stronger the randomization, $\rho(\mathbf{x}) \to 0$, $var(\mathbf{x}) \to 0$.
 - The weaker the randomization, $\rho(\mathbf{x}) \to 1$, $\text{var}(\mathbf{x}) \to \sigma^2_{\mathcal{L},\theta}(\mathbf{x})$

Bias-variance trade-off. Randomization increases bias but makes it possible to reduce the variance of the corresponding ensemble model. The crux of the problem is to find the right trade-off.

Tuning randomization in sklearn.ensemble

```
from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor
from sklearn.cross_validation import ShuffleSplit
from sklearn.learning_curve import validation_curve
# Validation of max_features, controlling randomness in forests
param_range = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
_, test_scores = validation_curve(
   RandomForestRegressor(n_estimators=100, n_jobs=-1), X, y,
    cv=ShuffleSplit(n=len(X), n_iter=10, test_size=0.25),
    param_name="max_features", param_range=param_range,
    scoring="mean_squared_error")
test_scores_mean = np.mean(-test_scores, axis=1)
plt.plot(param_range, test_scores_mean, label="RF", color="g")
_, test_scores = validation_curve(
    ExtraTreesRegressor(n_estimators=100, n_jobs=-1), X, y,
    cv=ShuffleSplit(n=len(X), n_iter=10, test_size=0.25),
    param_name="max_features", param_range=param_range,
    scoring="mean_squared_error")
test_scores_mean = np.mean(-test_scores, axis=1)
plt.plot(param_range, test_scores_mean, label="ETs", color="r")
```

Tuning randomization in sklearn.ensemble

Best-tradeoff: ExtraTrees, for max_features=6.

Strengths and weaknesses of forests

- One of the best off-the-self learning algorithm, requiring almost no tuning.
- Fine control of bias and variance through averaging and randomization, resulting in better performance.
- Moderately fast to train and to predict.
 - ullet $\Theta(MK\widetilde{N}\log^2\widetilde{N})$ for RFs (where $\widetilde{N}=0.632N$)
 - lacksquare $\Theta(MKN \log N)$ for ETs
- Embarrassingly parallel (use n_jobs).
- Less interpretable than decision trees.

Outline

Decision trees

2 Forests of randomized trees

- 3 Boosting
- 4 Interpreting tree-based models

AdaBoost (Freund and Schapire, 1995)

Can we build a strong learner from multiple weak learners?

- Ensemble: each member is an expert on the errors of its predecessor;
- Iteratively re-weights training examples based on errors.

AdaBoost (Freund and Schapire, 1995)

Huge success

• Viola-Jones Face Detector (2001)

Freund & Schapire won the Gödel prize (2003)

Gradient Boosted Machines (Friedman, 2001)

Statistical view of boosting:

• Ultimately, we are interested in finding

$$f^* = \arg\min_{f} \mathbb{E}_{X,Y}[L(Y, f(X))]$$

for an arbitrary loss L;

• Under the boosting assumption that f^* can be expressed as an additive model \hat{f} of the form

$$\hat{f} = c + \sum_{m=1}^{M} \rho_m h_m.$$

Greedy approximation

The ensemble is built in a forward stagewise fashion:

$$f_m = f_{m-1} + \rho_m h_m$$

• In accordance with the empirical risk minimization principle, the weak learner $\rho_m h_m$ is chosen to minimize the loss L on the training set, given the current model f_{m-1} :

$$f_m = f_{m-1} + \arg\min_{\rho,h} \sum_{i=1}^{N} L(y_i, f_{m-1}(x_i) + \rho h(x_i))$$
 $f_0 = \arg\min_{c} \sum_{i=1}^{N} L(y_i, c)$

• Solving for ρ , h at each step for an arbitrary loss L and/or abitrary family $\mathcal H$ is a difficult optimization problem.

Steepest descent in function space

Solution: approximate using steepest descent in function space, by choosing a function h that is the most parallel to the negative gradient $\{g_m(x_i)\}_{i=1}^N$ on the training data:

$$g_m(x) = \mathbb{E}_{Y|X=x} \left[\frac{\partial L(Y, f(x))}{\partial f(x)} \right]_{f(x) = f_{m-1}(x)}$$

$$h_m = \arg\min_{h} \sum_{i=1}^{N} (-g_m(x_i) - h(x_i))^2$$

$$\rho_m = \arg\min_{Y} L(y_i, f_{m-1}(x_i) + \rho h_m(x_i))$$

where the second equation is solved using a standard regression algorithm (e.g. decision trees) and the third using line search.

In short

- GBM fits an additive model of the form $\hat{f} = c + \sum_{m=1}^{M}
 ho_m h_m$.
- Where h_m are regression trees approximating the negative gradient step $-\left[\frac{\partial L(Y,f(x))}{\partial f(x)}\right]_{f(x)=f_{m-1}(x)}$.
- For $L(Y, f(X)) = (Y f(X))^2$, regression trees h_m approximate the residuals $y_i f_{m-1}(x_i)$.

Example

from sklearn.ensemble import GradientBoostingRegressor
est = GradientBoostingRegressor(n_estimators=100).fit(X, y)

Model complexity and overfitting

GBM provides a number of knobs to control overfitting:

- Shrinkage
- Tree structure
- Stochastic Gradient Boosting

Regularization: shrinkage

- Slow learning by shrinking tree predictions with 0 < learning_rate <= 1
- Lower learning_rate requires higher n_estimators

Regularization: tree structure

- The max_depth of the trees controls the degree of features interactions
- Use min_samples_leaf to have a sufficient nr. of samples per leaf.

Regularization: stochastic gradient boosting

- Samples: random subset of the training set (subsample)
- Features: random subset of features (max_features)
- Improved accuracy reduced runtime

Hyperparameter tuning

- 1. Set n_estimators as high as possible (eg. 3000)
- 2. Tune hyperparameters via grid search.

3. Finally, set n_estimators even higher and tune learning_rate.

Strengths and weaknesses of Boosting

- Often more accurate than random forests.
- Flexible framework, that can adapt to arbitrary loss functions.
- Fine control of under/overfitting through regularization (e.g., learning rate, subsampling, tree structure, penalization term in the loss function, etc).
- Careful tuning required.
- Slow to train, fast to predict.

Outline

Decision trees

2 Forests of randomized trees

- Boosting
- 4 Interpreting tree-based models

Variable selection/ranking/exploration

Tree-based models come with built-in methods for variable selection, ranking or exploration.

The main goals are:

- To reduce training times;
- To enhance generalisation by reducing overfitting;
- To uncover relations between variables and ease model interpretation.

Variable importances

```
# Variable importances with Random Forest, default parameters
forest = RandomForestRegressor(n_estimators=10000, n_jobs=-1).fit(X, y)
forest.feature_importances_
```

Variable importances

Importances are measured only through the eyes of the model. They may not tell the entire nor the same story! (Louppe et al., 2013)

Partial dependence plots

Relation between the response Y and a subset of features, marginalized over all other features.

References

- Breiman, L. (2001). Random Forests. Machine learning, 45(1):5-32.
- Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and regression trees.
- Freund, Y. and Schapire, R. E. (1995). A desicion-theoretic generalization of on-line learning and an application to boosting. In *European conference on computational learning theory*, pages 23–37. Springer.
- Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. *Annals of Statistics*, pages 1189–1232.
- Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. *Machine Learning*, 63(1):3–42.
- Louppe, G. (2014). Understanding random forests: From theory to practice. arXiv preprint arXiv:1407.7502.
- Louppe, G., Wehenkel, L., Sutera, A., and Geurts, P. (2013). Understanding variable importances in forests of randomized trees. In *Advances in Neural Information Processing Systems*, pages 431–439.