

Machine-Learning-Guided Diagnosis for Heliobacter Pylori

Katharina Alexa Lang & Nico Enghardt, 7. Jan 2024

- Bacteria colonizes stomach
- 40% global incidence
- Often asymptomatic
- 10-20% develop ulcerus
- 0.5-2% develop stomach cancer

Use case:

symptoms of stomach infection or high genetic risk of stomach cancer

Methods:

Stomach biopsy or antibody detection in blood

Treatment:

Patients receive antibiotics

- samples of gastric mucosa
- very large images (120000 x 16000 pixels)

Infected tissue

Immunostained H.Pylori are visible as dark brown spots

Healthy tissue

Tissue is free of H.Pylori

Pictures are just grids of numbers

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Height: 4 Units

Pictures is grid of pixels. Each pixel contains number, eg for grayscale

Often >1 grid per picture to encode colour

Convolutional operations

original

Method:

Apply specialized filters (kernels) to each pixel

convolved

Function:

Extract features like edges, textures & shapes.

Mathematics of kernels

Source layer

5	2	6	8	7	9	1	2
4	3	4	5	1	9	6	3
3	9	2	4	7	7	6	9
1	3	4	6	8	2	2	1
8	4	6	2	3	1	8	8
5	8	9	0	1	0	2	3
9	2	6	6	3	6	2	1
9	8	8	2	6	3	4	5

Convolutional kernel

-1	0	1
2	1	2
1	-2	0

Destination layer

5						
	5	5	5	5	5	5

$$(-1\times5) + (0\times2) + (1\times6) +$$

 $(2\times4) + (1\times3) + (2\times4) +$
 $(1\times3) + (-2\times9) + (0\times2) = 5$

Examples of kernels

Original

0	0	0]
$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	1	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
0	0	0

<u>Blur</u>

$$\frac{1}{9} \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

Edge Detection

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Network Design

Training

https://api.wandb.ai/links/reyiouniversitat-aut-noma-debarcelona/z8gdzvj4

Trainined Kernels

 Kernels of first convolutional layer

Training Results

- 2400 samples for training
- 600 samples for evaluation

[eval]	neg diagnosis	pos diagnosis
healthy	53 % ± 12	3,5 % ± 3,5
sick	2,4 % ± 1,1	41 % ± 10

- 120 patients for training
- 30 patients for evaluation

$$\frac{\text{correct diagnoses}}{\text{all diagnoses}} = 94 \% \pm 4$$

Next: dimension reduction via pooling

