# Foundations of Elliptic Curves Cryptosystems

Gianluca Dini

Dept. of Ingegneria dell'Informazione

University of Pisa

Email: gianluca.dini@unipi.it

Version: 2024-04-08

1

#### ECC in a nutshell



- Mid-1980s
- GDLP in ECC
  - DHKE and DL-systems can be redefined in ECCs
- Same level of security of RSA and DL-system with considerably shorter operands
  - 160–256-bit vs 1024–3072 bit → Performance advantages over RSA and DL-systems
  - However, RSA with short public parameter is faster than ECC

08/04/2024

Foundations of Elliptic Curves Cryptosystem

2

#### Key Lenghts and Security Level



- An algorithm has security level of n bit, if the best known algorithm requires 2<sup>n</sup> steps
- Symmetric algorithms with security level of n have a key of length of n bits
- In asymmetric algorithms, the relationship between security level and cryptographic strengh is no as straightforward

08/04/2024

Foundations of Elliptic Curves Cryptosystem

3

3

#### Key Lenghts and Security Level



| Algorithm Family         | Cryptosystem     | Security Level |          |          |           |
|--------------------------|------------------|----------------|----------|----------|-----------|
|                          |                  | 80             | 128      | 192      | 256       |
| Integer<br>Factorization | RSA              | 1024 bit       | 3072 bit | 7680 bit | 15360 bit |
| Discrete<br>Logarithm    | DH, DSA, ElGamal | 1024 bit       | 3072 bit | 7680 bit | 15360 bit |
| Elliptic curves          | ECDH, ECDSA      | 160 bit        | 256 bit  | 384 bit  | 512 bit   |
| Symmetric key            | AES, 3DES        | 80 bit         | 128 bit  | 192 bit  | 256 bit   |

RULE OF THUMB - The computational complexity of the three public key algorithm families grows roughly with the cube of bit length

08/04/2024

Foundations of Elliptic Curves Cryptosystem

4

Elliptic Curves Cryptosystem

#### HOW TO COMPUTE WITH ECC

08/04/2024

oundations of Elliptic Curves Cryptosysten

5

5

## How to Compute with ECC



- ECC is based on GDLP, so we have to accomplish two tasks
  - Task 1: Define an elliptic-curve-based cyclic group
    - Task 1.1: Define a set of elements
    - Task 1.2: Define the group operations
  - Task 2: Show that DLP is hard in that group

08/04/2024

Foundations of Elliptic Curves Cryptosystem

6

#### Polynomials and curves



- We can form curves from polynomial equations
  - A curve is the set of points (x, y) which are the solutions of the equations
- Examples (in ℝ)
  - $-x^2 + v^2 = r^2$  is a circle
  - $-a \cdot x^2 + b \cdot y^2 = c$  is an ellipse

08/04/2024

Foundations of Elliptic Curves Cryptosystem

7

7

#### EC – definition



- We consider  $GF(p) = \{0, 1, ..., p-1\}$ 
  - Intuitively, GF is a finite set where you can add, subtract, multiply and invert
- Definition
  - The elliptic curve over  $\mathbb{Z}_p$ , p > 3, is the set of points  $(x,y)\in\mathbb{Z}_p$  which fulfils

$$y^2 \equiv x^3 + a \cdot x + b \bmod p$$

- together with an imaginary point of infinity  $\mathcal{O}$ ,
- where  $a, b \in \mathbb{Z}_p$ , and  $4 \cdot a^3 + 27 \cdot b^2 \neq 0 \mod p$ 
  - The curve is non-singular (no vertices, no self-intersections)

08/04/2024

Foundations of Elliptic Curves Cryptosystem

8

#### Group elements (Task 1.1)



- Plotting in  $\mathbb{R}$  for the sake of illustration
- Observations
  - 1, 3 intersections with x axis
  - Symmetric with respect to x axis
- Group elements are the points of the curve



 $y^2 = x^3 - 3x + 3 \text{ over } \mathbb{R}$ 

08/04/2024

Foundations of Elliptic Curves Cryptosystem

9

## Group operations (Task 1.2)



 We call "addition" the group operation and denote it by "+" an operation that takes two points P = (x<sub>1</sub>, y<sub>1</sub>) and Q = (x<sub>2</sub>, y<sub>2</sub>) and produces a third point R = (x<sub>3</sub>, y<sub>3</sub>) as a result

$$P + Q = R$$

- Geometrical interpretation of + in  $\ensuremath{\mathbb{R}}$ 
  - Point Addition P + Q, Q  $\neq$  P
  - Point Doubling P + P

08/04/2024

Foundations of Elliptic Curves Cryptosystem

10

#### Group operations (task 1.2)



• Geometrical interpretation of "+" operation: the tangent-and-chord method

#### Point addition



#### **Point doubling**



08/04/2024

Foundations of Elliptic Curves Cryptosystem

11

## Group operations (task 1.2)



- Geometrical interpretation of +
  - The tangent-and-chord method only uses the four standard operations
- FACT
  - If addition + is defined this way, the group points fulfil most of necessary conditions of a group: closure, associativity, existence of an identity element and existence of an inverse

08/04/2024

Foundations of Elliptic Curves Cryptosystem

12

## Group operations (task 1.2)



 Analytic expressions of Point Addition and Point Doubling

$$-x_3 \equiv s^2 - x_1 - x_2 \mod p$$
  
-  $y_3 \equiv s \cdot (x_1 - x_3) - y_1 \mod p$ 

where

- $-s \equiv \frac{y_2 y_1}{x_2 x_1} \mod p$  if  $P \neq Q$  (point addition)
- $-s \equiv \frac{3 \cdot x_1^2 + a}{2 \cdot y_1} \mod p$  if P = Q (point doubling)
- with s the slope of chord/tangent

08/04/2024

Foundations of Elliptic Curves Cryptosysten

13

13

## Point at infinity (task 1.2)



- An identity (neutral) element  ${\cal O}$  is still missing
  - $\forall P \in E \colon P + \mathcal{O} = P$
- There exists not such a point on the curve
- Thus, we define  $\mathcal{O}$  as the point at infinity
  - Located at "plus" infinity towards the y-axis or at "minus" infinity towards the y-axis
- Now, we also define –P (inverse):  $P + (-P) = \mathcal{O}$

08/04/2024

Foundations of Elliptic Curves Cryptosystem

14

# Group operations (task 1.2)



- Inverse of a point P on an elliptic curve
  - Apply the tangent-and-chord method
- In ECC over GF(p)
  - Given P = (x, y) then -P = (x, p y)



08/04/2024

undations of Elliptic Curves Cryptosysten

15

# Elliptic Curve in GF(17) – an educational curve



16



08/04/2024

Foundations of Elliptic Curves Cryptosystem

Elliptic Curves Cryptosystem

#### **BUILDING DLP ON EC**

08/04/2024

Foundations of Elliptic Curves Cryptosystem

17

17

#### A useful theorem



- THM
  - The points on an elliptic curve together with ⊕ have cyclic subgroups. Under certain conditions all points on an elliptic curve form a cyclic group
    - A primitive element must exist such that its powers generate the entire group

08/04/2024

Foundations of Elliptic Curves Cryptosystem

18

# Example (1/3)



- E:  $y^2 \equiv x^3 + 2 \cdot x + 2 \mod 17$ 
  - #E (order of E) = 19
  - -P = (5, 1) primitive element
  - "Powers" of P

| • 2P = (6, 3) – point doubling         | 11P = (13, 10) |
|----------------------------------------|----------------|
| • 3P = (10, 6) – point addition 2P + P | 12P = (0, 11)  |
| • 4P = (3, 1)                          | 13P = (16, 4)  |
| • 5P = (9, 16)                         | 14P = (9, 1)   |
| • 6P = (16, 13)                        | 15P = (3, 16)  |
| • 7P = (0, 6)                          | 16P = (10, 11) |
| • 8P = (13, 7)                         | 17P = (6, 14)  |
|                                        |                |

• 9P = (7, 6)

• 10P = (7, 11)

Foundations of Elliptic Curves Cryptosystem

19

18P = (5, 16) $19P = \emptyset = \#E \cdot P$ 

19

08/04/2024

# Example (2/3)



- The cyclic structure becomes visible
  - -20 P = 19P + P = 0 + P = P
  - -21P = 19P + 2P = 2P
  - **–** ...
- Furthermore
  - -19P = 0, thus 18P + P = 0, then  $P^{-1} = 18P$  and vice versa
  - Verification
    - P = (5, 1), 18P = (5, 16)
    - $x_p = x_{18P} = 5$
    - $y_p + y_{18p} \equiv 0 \mod 17$

08/04/2024

Foundations of Elliptic Curves Cryptosystem

20

# Example (3/3)



- G = (15, 13)
  - #E = 18
- G' = (5, 9)
  - #E' = 3
    - 1G' = (5, 9)
    - 2G' = (5, 8)
    - 3G' = 0



08/04/2024

Foundations of Elliptic Curves Cryptosystem

21

21

#### Hasse's Theorem



- Hasse's theorem
  - Given an elliptic curve E modulo p, the number of points on the curve is denoted by #E and is bounded by:

$$p+1-2\sqrt{p} \leq \#E \leq p+1+\sqrt{p}$$

- The number of points is roughly in the range of p (Hasse's bound)
- Example
  - If you need an EC with  $2^{160}$  points, you have to use a prime p of about 160 bit

08/04/2024

Foundations of Elliptic Curves Cryptosystem

22

# ECDLP - point multiplication



- Elliptic Curve Discrete Logarithm Problem (ECDLP)
  - Given an elliptic curve E. We consider a primitive element
     P and another element T. The DL problem is finding the integer d, where 1 ≤ d ≤ #E, such that:

$$P + P + \dots + P = d \cdot P = T$$
d times

- d is the private key, T is the public key
- Point multiplication  $\stackrel{\text{def}}{=}$  T = d⋅P

08/04/2024

Foundations of Elliptic Curves Cryptosystem

23

23

#### Square-and-multiply



- Point multiplication is analogue to exponentiation in multiplicative groups  $(\mathbb{Z}_p^*,\times)$   $\Longrightarrow$  we can adopt the square-and-multiply algorithm
- Example
  - $26P = (11010)_2P = (d_4d_3d_2d_1d_0)_2P$
  - Step
    - #0 P = **1**P
    - #1a P+P = 2P = **10**P
    - #1b 2P+P = 3P = 10P+1P = **11**P
    - #2a 3P+3P = 6P = 2(11P) = **110**P
    - #2b
    - #3a 6P+6P = 12P = 2(110P) = **1100**P
    - #3b 12P+P = 13P = 1100P+1P = **1101**P
    - #4a 13P+13P = 26P = 2(1101P) = **11010**P
    - #4h

init setting, bit processed: d<sub>4</sub>= 1 DOUBLE, bit processed: d<sub>2</sub>

ADD, since  $d_3 = 1$ 

DOUBLE, bit processed: d2

no ADD, since  $d_2 = 0$ 

DOUBLE, bit processed: d<sub>1</sub>

ADD, since  $d_1 = 1$ 

DOUBLE, bit processed:  $d_0$  no ADD, since  $d_0 = 0$ 

08/04/2024

Foundations of Elliptic Curves Cryptosystem

24

#### **EC Cryptosystem**



- Private key: d
  - Randomly generated integer
- · Public key: T
- Geometrical interpretation of ECDLP
  - Given P, we compute 2P, 3P,...,  $d \cdot P = T$ , we actually jump back and forth on the EC
  - Given the starting point P and the final point T (public key), the adversary has to figure out how often we "jumped" on the EC

08/04/2024

Foundations of Elliptic Curves Cryptosystem

25

25

#### Standard curves



- Elliptic Curve Cryptography, <u>NIST</u>
  - Standards for digital signatures and key establishment schemes
- RFC
  - Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation (RFC 5639)
  - Fundamental Elliptic Curve Cryptography Algorithms (<u>RFC</u> 6090)
  - Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier (<u>RFC</u> 8422)

08/04/2024

Foundations of Elliptic Curves Cryptosystem

26