Recap for Tutorial 10

MH1101

April 3, 2025

1 Convergence Tests

Definition 1 (Absolute Convergence). A series $\sum a_n$ is called absolute convergent if $\sum |a_n|$ converges.

Definition 2 (Conditional Convergence). A series $\sum a_n$ is called conditionally convergent if it converges but $\sum |a_n|$ diverges.

Theorem 1. If $\sum a_n$ converges absolutely, then $\sum a_n$ is convergent.

Theorem 2 (Alternating Series Test). Suppose $(a_n)_{n\geq 1}$ is a positive, decreasing sequence and $\lim a_n=0$, then

$$\sum_{n=1}^{\infty} (-1)^n a_n \quad \text{converges.}$$

Theorem 3 (Ratio Test). Let $(a_n)_{n\geq 1}$ be a sequence and assume that the following limit exists

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

- If $\rho < 1$, then $\sum a_n$ converges absolutely.
- If $\rho > 1$, then $\sum a_n$ diverges.
- If $\rho = 1$, then the test is inconclusive.

Theorem 4 (Root Test). Let $(a_n)_{n\geq 1}$ be a sequence and assume that the following limit exists

$$L = \lim_{n \to \infty} |a_n|^{1/n}.$$

- If L < 1, then $\sum a_n$ converges absolutely.
- If L > 1, then $\sum a_n$ diverges.
- If L=1, then the test is inconclusive.

2 Extra Exercises

Problem 1. Determine whether the following series converges or diverges.

$$\bullet \sum_{n=1}^{\infty} \frac{10^n}{(n+1)4^{2n+1}}.$$

$$\bullet \sum_{n=1}^{\infty} \frac{\cos(n\pi/3)}{n!}.$$

$$\bullet \sum_{n=1}^{\infty} \left(\frac{n^2 + 1}{2n^2 + 1} \right)^n.$$

•
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2} + \sqrt[3]{n(n+1)} + \sqrt[3]{(n+1)^2}}.$$

•
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{1 + (-1)^n}{n} + \frac{1 + (-1)^{n+1}}{n^2} \right)$$
.