上海交通大学试卷

(20<u>20</u> 至 20<u>21</u> 学年 第<u>1</u>学期 <u>2020</u>年 <u>10</u>月 <u>28</u>日)

班级号	学号	姓名
课程名称	《数学分析 I》(秦譽) (测验)	成绩

题 号	_	1	111	四	五	六	七	总分
满分	20	12	10	32	10	8	8	100
得分								

- 一、填空题(每小题4分,共20分)
- **1.** "数列 $\{x_n\}$ 非无穷大"的肯定叙述为:
- 2. "函数 f(x) 在 I 上非一致连续"的肯定叙述为:
- 3. 设 $f(x) = \cos 2x, x \in \left[\frac{\pi}{2}, \pi\right]$,则 f(x)的反函数

$$f^{-1}(x) =$$
______.

- **4.** 设 $x_n = \frac{n-1}{n+1}\cos\frac{2n\pi}{3}$ $(n \in \mathbb{N})$, 则 $\sup_{n \in \mathbb{N}} \{x_n\} = \underline{\qquad}$, $\inf_{n \in \mathbb{N}} \{x_n\} = \underline{\qquad}$.
- 5. $\lim_{n\to\infty} \sum_{k=1}^{n} \sin\frac{k\pi}{n^2} =$ ______.
- 二、单项选择题(每小题3分,共12分)
- **6.** 设函数 f(x) 在 $U(x_0,\delta)$ 内单调,其中 $\delta>0$,则 f(x) 在点 x_0 处 ……【 】
 - (A) 左、右极限必存在,且都等于 $f(x_0)$.
 - (**B**) 左、右极限必存在,且至少一个等于 $f(x_0)$.
 - (C) 左、右极限必存在,但都未必等于 $f(x_0)$.
 - (D) 左、右极限都未必存在.

7.	考虑下列断语,则有【					
	I. 若函数 $f(x)$ 在 (a,b) 内无界,则 $f(x)$ 在 (a,b) 内必不一致连续.					
	II. 若函数 $f(x)$ 在 R 上连续且有界,则 $f(x)$ 在 R 上必一致连续.					
	(A) I 正确, II 不正确. (B) I 不正确, II 正确.					
	(C) I 和 II 都正确. (D) I 和 II 都不正确.					
8.	设 $x_1 = 1$, $x_{n+1} = 1 + \frac{x_n^2}{2} (n \in \mathbb{N})$. 以下关于数列 $\{x_n\}$ 叙述正确的是 【]				
	(A) $\{x_n\}$ 单调增加且收敛. (B) $\{x_n\}$ 单调增加且为正无穷大.					
	(C) $\{x_n\}$ 不单调但收敛. (D) $\{x_n\}$ 不单调但为正无穷大.					
9.	考虑下列断语,则有【]				
	① 不存在闭区间[0,1]上的连续函数,使它的值域为开区间(0,1).					
	② 不存在 ℝ上的连续函数,使它的每一函数值都恰好被取到两次.					
	③ 不存在 ℝ上的连续函数,使它的每一函数值都恰好被取到三次.					
	(A) ①和②正确, ③不正确. (B) ①和③正确, ②不正确.					
	(C) ②和③正确, ①不正确. (D) ①, ②和③都正确.					
Ξ	、证明题(本题共 10 分)					

10. 用"
$$\varepsilon$$
-N"定义证明: $\lim_{n\to\infty} \frac{3n^2 + 2n - 1}{n^2 - 2} = 3$.

四、求下列极限(每小题8分,共32分)

11.
$$\lim_{n\to\infty} \frac{1+2\sqrt{2}+3\sqrt[3]{3}+\cdots+n\sqrt[n]{n}}{n^2}.$$

12.
$$\lim_{x\to 0} \frac{1-\cos x \cos 2x}{x^2}$$
.

13.
$$\lim_{x\to 0} (e^x + 2x)^{\frac{1}{x}}$$
.

14. 设 $a_1 = \sin 1$, $a_{n+1} = \sin a_n$ $(n \in \mathbb{N})$. 证明数列 $\{a_n\}$ 收敛,并求其极限值.

五、证明题(本题共10分)

15. 若无限集A与自然数集 \mathbb{N} 之间存在一一对应,则称集合A是**可列集**. 不可列的无限集称为**不可列集**. 请用闭区间套定理证明:实数集 \mathbb{R} 是不可列集.

六、证明题(本题共8分)

16. 设函数 f(x) 在 $[a,+\infty)$ 上有定义,在 $[a,+\infty)$ 的任一有限子区间有界,且 $\lim_{x\to+\infty} \left(f(x+1)-f(x)\right) = l$ (有限数). 证明: $\lim_{x\to+\infty} \frac{f(x)}{x} = l$.

七、证明题(本题共8分)

17. 设 $f \in C(\mathbb{R})$ 且为周期函数. 令 $E = \{T | T > 0$ 且T为 f(x)的周期 $\}$, $T_0 = \inf E$. 证明: 若 $T_0 = 0$, 则 $f(x) \equiv C$ (常数).