The Transport Layer

Michael Brodskiy

Professor: E. Bernal Mor

October 5, 2023

- Transport Services and Protocols
 - Provide logical communication between application processes running on different hosts
 - Transport protocols actions in end systems:
 - * Sender: breaks application messages into segments, passes to Network layer
 - * Receiver: reassembles segments into messages, passes to Application layer
 - Two transport protocols available to internet applications
 - 1. TCP
 - 2. UDP
- Transport vs. Network Layer
 - Network layer: logical communication between two hosts
 - Transport layer: logical communication between processes
 - * Relies on, enhances, network layer services
- Two Internet Transport Protocols
 - TCP: Transmission Control Protocol
 - * Reliable, in-order delivery
 - * Congestion Control
 - * Flow Control
 - * Connection set-up
 - UDP: User Datagram Protocol
 - * Unreliable, unordered delivery
 - * No-frills extension of "best-effort" IP

- Services not available:
 - * Delay guarantees
 - * Throughput guarantees
- Multiplexing/Demultiplexing
 - Multiplexing at sender: Handle data from multiple sockets, add transport header (later used for demultiplexing)
 - How demultiplexing works
 - * Host receives IP packets
 - · Each packet has source IP address, destination IP address
 - · Each packet carries one transport-layer segment
 - · Each segment has source, destination port number
 - * Host uses IP address and port numbers to direct segment to appropriate socket
 - Connectionless Demultiplexing
 - * Create a socket in the client, the Transport layer automatically assigns a host-local port number to the socket
 - * When data is sent into UDP socket, must specify
 - · Destination IP address
 - · Destination port number
 - * When a host receives UDP segment, the Transport layer:
 - · Checks destination port number in segment
 - · Directs UDP segment to socket with that port number
 - * IP datagrams with same destination port number but different source IP addresses and/or source port numbers will be directed to same socket at destination
 - Connection-Oriented Demultiplexing
 - * TCP socket identified by 4-tuple:
 - · Source IP address
 - · Source port number
 - · Destination IP address
 - · Destination port number
 - * Demultiplexing receiver users all four values to direct segment to appropriate socket
 - * A server may support simultaneous TCP sockets:
 - · Each socket identified by its own 4-tuple
 - · Each socket associated with a different connecting client

- * Note: the TCP server has a welcoming socket
 - · Each time a client initiates a TCP connection to the server, a new socket is created for this connection
 - · To support n simultaneous connections, the server would need n+1 sockets
- Connectionless Transport: UDP
 - "No frills", "bare bones" Internet transport protocol
 - "Best effort" service, UDP segments may be:
 - * Lost
 - * Delivered out-of-order to application
 - Connectionless:
 - * No handshaking between UDP sender, receiver
 - * Each UDP segment handled independently of others
 - Why is there a UDP?
 - * No connection establishment (which can add RTT delay)
 - * Simple: no connection state at sender, receiver
 - * Small header size
 - * No congestion control
 - · UDP can blast away as fast as desired
 - · It can function in the face of congestion
 - UDP used in:
 - * Streaming multimedia apps (loss tolerant, rate sensitive)
 - * DNS
 - * HTTP/3
 - If reliable transfer or other services needed over UDP (like in HTTP/3)
 - * Add needed reliability at application layer
 - * Add congestion control at application layer