Module 5 (Database)

1. What do you understand By Database

- Database It is a collection of data in a format that can be easily accessed
- We can't access database directly
- We have to use DBMS (Database management system) to access data it works on backend and gives or provide required information.

2. What is Normalization?

- Normalization refers to a process that makes something clearer and understanding (Normal or regular).
- It optimizes storage space.
- Also helps to organize the data in the database.
- It is a multi-step process that sets the data into tabular form and removes the duplicated data from the relational tables.

3. What is Difference between DBMS and RDBMS?

DBMS	RDBMS
Data stored in file format	Data stored in table format
Supports a single user	Supports a multiple user

VISHWA PATEL

We can store data in small quantity	We can store data in large quantity
No connection between data	Data are linked to each other
The requirement of software and hardware are low	The requirement of software and hardware are low

4. What is MF Cod Rule of RDBMS Systems?

- Null values must be uniformly treated as "missing information," not as empty strings, blanks, or zeros.
- Null values can also be interpreted as 'inapplicable data' or we can say 'unknown information'.
- It should be handled consistently
- Expression on NULL must give null, primary key must not be null, ever.

5. What do you understand By Data Redundancy?

- It occurs when identical copies of the same data are stored in multiple locations, leading to a range of problems
- it can occur either intentionally or accidentally (Due to complex processes or inefficient coding).
- It is concern because it can lead to inconsistencies, update anomalies, database performance etc.

6. What is DDL Interpreter?

- Data definition language Describe the portion of SQL that creates, alters, and deletes database objects.
- It includes schemas, table, catalogs, variables and many more.
- We can create table (using link also).

7. What is DML Compiler in SQL?

- DML- Data manipulation language.
- It is the component of the SQL statements.
- List of DML commands Insert (For inserting data into table), Update (For updating existing data within data), Delete (For delete records), Lock (Table control concurrency)

VISHWA PATEL

8. What is SQL Key Constraints writing an Example of SQL Key Constraints

- Primary key (Uniquely identifies)
- Foreign key (Referencing key)
- A primary key is a combination of fields that uniquely identify a record in a table, so that an individual record can be located without confusion.
- A foreign key sometimes called a referencing key used to link two tables together.
- Example: create table student (
 Roll no int,
 Name varchar,
 Number int,
 Primary key (Roll no),
 Foreign key (Number) REFERENCES students (Roll no);

9. What is save Point? How to create a save Point write a Query?

- Rolling back any transaction.
- Also known as nested transactions.
- A special mark inside a transaction that allows all commands that are executed after it was established to be rolled back.

 Syntax for save point command: SAVEPOINT_NAME;(Creation of save point among all the transaction) ROLLBACK to the SAVEPOINT are ROLLBACK to SAVEPOINT_NAME.

10. What is trigger and how to create a Trigger in SQL?

- Trigger allows you to specify SQL actions that should be executed automatically when a specific event occurs in the database.
- SQL triggers are generally associated with a particular table, this
 means that when the table is deleted, all its associated triggers
 are deleted accordingly.
- Trigger creation in SQL:

'games'. AFTER
INSERT
ON
'games'. 'USERS' FOR EACH row BEGIN
INSERT INTO
another Table ()

SQL (QUERIES)

1. Create Table Name: Student and Exam

Primary Key Student		Foreign Ke	Exam			
Rollno	Name	Branch	Rollno	S_code	Marks	P_code
1			1	CS11	50	CS
1	Jay	Computer Science	1	CS12	60	CS
2	Suhani	Electronic and Com	2	EC101	66	EC
3	Kriti	Electronic and Com	2	EC102	70	EC
					0.00	
			3	EC101	45	EC
			3	EC102	50	EC

Student:

CREATE TABLE Student(
Rollno int NOT null PRIMARY KEY,
Name varchar(10),
Branch varchar(20)

);

INSERT INTO student VALUES(1, 'Jay', 'Computer Science'); INSERT INTO student VALUES(2, 'Suhani', 'Electronic and Com'); INSERT INTO student VALUES(3, 'Kriti', 'Electronic and Com');

Rollno	Name	Branch
1	Jay	Computer Science
2	Suhani	Electronic and Com
3	Kriti	Electronic and Com

```
CREATE TABLE Exam (
Rollno int,
S_code varchar(5),
Marks int,
P_code varchar(3),

FOREIGN KEY (Rollno) REFERENCES student (Rollno)
);

INSERT INTO exam VALUES(1,'CS11',50,'CS');
INSERT INTO exam VALUES(1,'CS12',60,'CS');
INSERT INTO exam VALUES(2,'EC101',66,'EC');
INSERT INTO exam VALUES(2,'EC101',46,'EC');
INSERT INTO exam VALUES(3,'EC101',45,'EC');
INSERT INTO exam VALUES(3,'EC101',45,'EC');
INSERT INTO exam VALUES(3,'EC101',45,'EC');
```

Rollno	S_code	Marks	P_code
1	CS11	50	CS
1	CS12	60	CS
2	EC101	66	EC
2	EC102	70	EC
3	EC101	45	EC
3	EC102	50	EC

2. Create table given below: Employee and Incentive Table

Employee_i	First_name	Last_name	Salary	Joining dat	Department
1	3ohn	Abraham	1000000	01-JAN-13 12.00.00 AM	Banking
2	Michael	Clarke	800000	01-JAN-13 12-00-00 AM	Insurance
3	Roy	Thomas	700000	01-FEB-13 12.00.00 AM	Banking
-4	Tom	Jose	600000	01-FEB-13 12.00.00 AM	Insurance
s	Jerry	Pinto	650000	01-FEB-13 12.00.00 AM	Insurance
6	Philip	Mathew	750000	01-JAN-13 12.00.00 AM	Services
7	TestName1	123	650000	01-JAN-13 12.00.00 AM	Services
-8	TestName2	Lname%	600000	01-FEB-13 12.00.00 AM	Insurance

Name: Employee
Table Name:
Incentive

CREATE TABLE employee(

employee_id int not null PRIMARY KEY,

Employee_ref_id	Incentive_date	Incentive_amount	
1	01-FEB-13	5000	
2	01-FEB-13	3000	
3	01-FEB-13	4000	
1	01-JAN-13	4500	
2	01-JAN-13	3500	

Employee:

);

```
First_name varchar(10),
Last_name varchar(10),
Salary int(50),
joining_date datetime,
Department varchar(30)

INSERT INTO employee VALUES(7,'John','Abraham',1000000'2013-01-01 12:00:00 AM','Banking');
INSERT INTO employee VALUES(2,'Michael','Clarke',800000,'2013-01-01 12:00:00 AM','Banking');
INSERT INTO employee VALUES(3,'Roy','Thomas',700000,'2013-01-02 12:00:00 AM','Banking');
INSERT INTO employee VALUES(4,'Tom','Jose',600000,'2013-01-02 12:00:00 AM','Banking');
INSERT INTO employee VALUES(5,'Jerry','Pinto',650000,'2013-02-01 12:00:00 AM','Banking');
INSERT INTO employee VALUES(6,'Philip','Mathew',750000,'2013-01-01 12:00:00 AM','Banking');
INSERT INTO employee VALUES(7,'TestName1','123',650000,'2013-01-01 12:00:00 AM','Banking');
INSERT INTO employee VALUES(1,'TestName2','Lname%',600000,'2013-02-01 12:00:00 AM','Banking');
```

VISHWA PATEL

	d First serve	1	0-1 :-:-:		Damantonant
<pre>employee_i</pre>	d First_name	Last_name	Salary joini	ing_date	Department
Э	1 John	Abraham	1000000 2013	3-01-01 12:00:00	Banking
9	2 Michael	Clarke	800000 2013	3-01-01 12:00:00	Banking
)	3 Roy	Thomas	700000 2013	3-01-02 12:00:00	Banking
9	4 Tom	Jose	600000 2013	3-01-02 12:00:00	Banking
9	5 Jerry	Pinto	650000 2013	3-02-01 12:00:00	Banking
9	6 Philip	Mathew	750000 2013	3-01-01 12:00:00	Banking
)	7 TestName1	123	650000 2013	3-01-01 12:00:00	Banking
9	8 TestName2	Lname%	600000 2013	3-02-01 12:00:00	Banking

Incentive Table:

CREATE TABLE Incentive (Employee_ref_id int, Incentive_date date, Incentive_amount int(10),

FOREIGN KEY Employee_ref_id REFERENCES employee(employee_id)

);

INSERT INTO incentive VALUES(1,'2013-02-01',5000); INSERT INTO incentive VALUES(2,'2013-02-01',3000); INSERT INTO incentive VALUES(3,'2013-02-01',4000); INSERT INTO incentive VALUES(1,'2013-01-01',4500); INSERT INTO incentive VALUES(2,'2013-01-01',3500);

Employee_ref_id	Incentive_date	Incentive_amount
1	2013-02-01	5000
2	2013-02-01	3000
3	2013-02-01	4000
1	2013-01-01	4500
2	2013-01-01	3500

3. Get First Name from employee table using Tom name "Employee Name".

SELECT * FROM Employee WHERE First_name="Tom";

4. Get FIRST_NAME, Joining Date, and Salary from employee table.

SELECT First_name, joining_date, Salary FROM employee;

First_name	joining_date	Salary
John	2013-01-01 12:00:00	1000000
Michael	2013-01-01 12:00:00	800000
Roy	2013-01-02 12:00:00	700000
Tom	2013-01-02 12:00:00	600000
Jerry	2013-02-01 12:00:00	650000
Philip	2013-01-01 12:00:00	750000
TestName1	2013-01-01 12:00:00	650000
TestName2	2013-02-01 12:00:00	600000

5. Get all employee details from the employee table order by First Name Ascending and Salary descending?

1 SELECT * FROM employee ORDER BY First_name ASC, Salary DESC;

6. Get employee details from employee table whose first name contains 'J'.

1 SELECT * FROM employee WHERE First_name LIKE 'J%';

7/8. Get department wise maximum salary from employee table order by salary ascending?

1 SELECT Department, MAX(Salary) as Maximum_salary FROM employee GROUP BY Department ORDER BY Salary asc;

9. Select first name, incentive amount from employee and incentives table for those employees who have incentives and incentive amount greater than 3000

```
1 SELECT e.First_name, i.amount AS incentive_amount
2 FROM employee e
3 INNER JOIN incentive i ON e.employee_id = i.employee_id
4 WHERE i.amount > 3000;
```

10. Create After Insert trigger on Employee table which insert records in view Table.

- 1 DELIMITER \$\$
- 2 CREATE TRIGGER INSERT_into_viewtable AFTER INSERT ON employee
- 3 FOR EACH ROW BEGIN
- 4 INSERT INTO Viewtable(e_id,name,Department,STATUS)
- 5 VALUES(new.e_id, new.e_name,new.department,'Insert Record');

TABLE NAME- SALSEPERSON

6 END;

11. Create table given below: Salesperson and Customer

Axelrod

TABLE-1

(PK)SNo

1001

1002

1004

1003

 SNAME
 CITY
 COMM

 Peel
 London
 .12

 Serres
 San Jose
 .13

 Motika
 London
 .11

 Rafkin
 Barcelona
 .15

New York

.1

TABLE-2

TABLE NAME- CUSTOMER

(PK)CNM.	CNAME	CITY	RATING	(FK)SNo
201	Hoffman	London	100	1001
202	Giovanne	Roe	200	1003
203	Liu	San Jose	300	1002
204	Grass	Barcelona	100	1002
206	Clemens	London	300	1007
207	Pereira	Roe	100	1004

```
TABLE-1
  1 CREATE TABLE salesperson(
         Sno int PRIMARY KEY not null,
         Sname varchar(10),
         City varchar(15),
  4
  5
         COMM float
  6);
1 INSERT INTO salesperson VALUES(1001, 'Peel', 'London', .12);
2 INSERT INTO salesperson VALUES(1002, 'Serres', 'San jose', .13);
3 INSERT INTO salesperson VALUES(1004, 'Motika', 'London', .11);
4 INSERT INTO salesperson VALUES(1007, 'Rafkin', 'Barcelona', .15);
5 INSERT INTO salesperson VALUES(1003, 'Axeriod', 'New York',.1);
Sno Sname City COMM
 1001 Peel
               London
1002 Serres
                             0.13
               San jose
 1003 Axeriod New York
                          0.1
1004 Motika London
                           0.11
 1007 Rafkin
               Barcelona
                             0.15
TABLE-2
1 CREATE TABLE customer(
     CNM int PRIMARY key not null,
     Cname varchar(20),
    City varchar(10),
    Rating int(10),
6
     sno int,
8
      {\tt FOREIGN\ KEY\ (sno)\ REFERENCES\ salesperson(sno)}
9);
1 INSERT INTO customer values(201, 'Hoffman', 'London', 100, 1001);
2 INSERT INTO customer values(202, 'Giovanne', 'Roe', 200, 1003);
3 INSERT INTO customer values(203, 'Liu', 'San jose',300,1002);
4 INSERT INTO customer values(204, 'Grass', 'Barcelona', 100, 1002);
5 INSERT INTO customer values(206, 'Clemens', 'London', 300, 1007);
6 INSERT INTO customer values(207, 'Perira', 'Reo',100,1004);
CNM Cname City Rating sno
  201 Hoffman London
                            100 1001
 202 Giovanne Roe
                            200 1003
  203 Liu
              San jose
                            300 1002
  204 Grass Barcelona
                            100 1002
  206 Clemens London
                            300 1007
  207 Perira Reo
                            100 1004
```

12. Retrieve the below data from above table 13. All orders for more than \$1000.

```
1 SELECT * FROM customer WHERE order_value > 1000;
```

14. Names and cities of all salespeople in London with commission above 0.12.

```
SELECT Sname, City from salesperson WHERE COMM>0.12;

Sname City
Serres San jose
Rafkin Barcelona
```

15.All salespeople either in Barcelona or in London

```
1 SELECT * FROM salesperson WHERE city='Barcelona' or city='Londan';

Sno Sname City COMM

1001 Peel London 0.12

1004 Motika London 0.11

1007 Rafkin Barcelona 0.15
```

16.All salespeople with commission between 0.10 and 0.12. (Boundary values should be excluded).

17.All customers excluding those with rating <= 100 unless they are located in Rome

```
1 SELECT * FROM customer WHERE Rating <=100 or City='Rome';

CNM Cname City Rating sno
201 Hoffman London 100 1001
204 Grass Barcelona 100 1002
207 Perira Reo 100 1004
```

18. Write a SQL statement that displays all the information about all salespeople

```
      salesman_id | name | city | commission

      5001 | James Hoog | New York | 0.15

      5002 | Nail Knite | Paris | 0.13

      5005 | Pit Alex | London | 0.11

      5006 | Mc Lyon | Paris | 0.14

      5007 | Paul Adam | Rome | 0.13

      5003 | Lauson Hen | San Jose | 0.12
```

1 SELECT * FROM salesperson;

 From the following table, write a SQL query to find orders that are delivered by a salesperson with ID. 5001. Return ord_no, ord_date, purch_amt.

Sample table: orders

ord_no	purch_amt	ord_date	customer_id	salesman_id
70001	150.5	2012-10-05	3005	5002
70009	270.65	2012-09-10	3001	5005
70002	65.26	2012-10-05	3002	5001
70004	110.5	2012-08-17	3009	5003
70007	948.5	2012-09-10	3005	5002
70005	2400.6	2012-07-27	3007	5001
70008	5760	2012-09-10	3002	5001
70010	1983.43	2012-10-10	3004	5006
70003	2480.4	2012-10-10	3009	5003
70012	250.45	2012-06-27	3008	5002
70011	75.29	2012-08-17	3003	5007
70013	3045.6	2012-04-25	3002	5001

- 1 SELECT ord_no,ord_date,purch_amt FROM orders
- 2 WHERE salesman_id = 5001;

 From the following table, write a SQL query to select a range of products whose price is in the range Rs.200 to Rs.600. Begin and end values are included. Return pro_id, pro_name, pro_price, and pro_com.

Sample table: item_mast

PRO_ID PRO_NAME		PRO_PRICE	PRO_COM
101 102	Mother Board Key Board	3200.00 450.00	15 16
103	ZIP drive	250.00	14
104	Speaker	550.00	16
105	Monitor	5000.00	11
106	DVD drive	900.00	12
107	CD drive	800.00	12
108	Printer	2600.00	13
109	Refill cartridge	350.00	13
110	Mouse	250.00	12

- 1 SELECT PRO_ID, PRO_NAME, PRO_PRICE, PRO_COM FROM item_mast
- 2 WHERE PRO_PRICE BETWEEN 200 AND 600;
- 21. From the following table, write a SQL query to calculate the average price for a manufacturer code of 16. Return avg.

Sample table: item_mast

PRO PRICE	PRO COM
3200.00	15
450.00	16
250.00	14
550.00	16
5000.00	11
900.00	12
800.00	12
2600.00	13
350.00	13
250.00	12
	3200.00 450.00 250.00 550.00 5000.00 900.00 800.00 2600.00 350.00

- 1 SELECT AVG(pro_price) AS Average_avg
- 2 FROM item_mast WHERE PRO_COM = 16;

22. From the following table, write a SQL query to display the pro_name as 'Item Name' and pro_priceas 'Price in Rs.'

Sample table: item_mast

PRO_ID PRO_NAME		PRO_PRICE	PRO_COM
101	Mother Board	3200.00	15
102	Key Board	450.00	16
103	ZIP drive	250.00	14
104	Speaker	550.00	16
105	Monitor	5000.00	11
106	DVD drive	900.00	12
107	CD drive	800.00	12
108	Printer	2600.00	13
109	Refill cartridge	350.00	13
110	Mouse	250.00	12

- 1 SELECT POR_NAME AS 'Item Name',
- 2 CONCAT('Price in Rs. ', FORMAT(PRO_PRICE,2)) AS 'Price in Rs.' FROM item mast;
- 23. From the following table, write a SQL query to find the items whose prices are higher than or equal to \$250. Order the result by product price in descending, then product name in ascending. Return pro_name and pro_price.

Sample table: item_mast

PRO_ID PRO_NAME	PRO_PRICE	PRO_COM
101 Mother Board	3200.00	15
102 Key Board	450.00	16
103 ZIP drive	250.00	14
104 Speaker	550.00	16
105 Monitor	5000.00	11
106 DVD drive	900.00	12
107 CD drive	800.00	12
108 Printer	2600.00	13
109 Refill cartridge	350.00	13
110 Mouse	250.00	12

- 1 SELECT PRO_NAME, PRO_PRICE FROM item_mast WHERE PRO_PRICE >=250.00
- 2 ORDER BY PRO_PRICE DESC, PRO_NAME ASC;