Galois Theory Assignment 2

Questions will be marked both on correctness and clarity of presentation. If outside resources are used in completing the assignment, references are expected.

- 1. The following question is from Dummit and Foote, cf. Milne 3-3. Let $\alpha = \sqrt{(2+\sqrt{2})(3+\sqrt{3})}$, where we take only positive real square roots. Set $E = \mathbb{Q}(\alpha)$.
 - (a) Show that $a=(2+\sqrt{2})(3+\sqrt{3})$ is not a square in $F=\mathbb{Q}(\sqrt{2},\sqrt{3})$. [Hint: Suppose $a=c^2$ for some $c\in F$. If $\phi\in Gal(F/\mathbb{Q})$ fixes $\mathbb{Q}(\sqrt{2})$, show $a\phi(a)=(c\phi(c))^2$ and that $c\phi(c)=N_{F/\mathbb{Q}(\sqrt{2})}(c)\in\mathbb{Q}(\sqrt{2})$, implying $\sqrt{6}\in\mathbb{Q}(\sqrt{2})$.]
 - (b) Use (a) to conclude that $[E:\mathbb{Q}]=8$. Prove that the roots of the minimal polynomial for α over \mathbb{Q} are $\pm\sqrt{(2\pm\sqrt{2})(3\pm\sqrt{3})}$.
 - (c) Show that E is a Galois extension. One way to do this is to show that if $\beta = \sqrt{(2 \sqrt{2})(3 + \sqrt{3})}$ then $\alpha\beta \in F$, so $\beta \in E$, similarly for other roots. Other approaches are welcome. Explain why the elements of $Gal(E/\mathbb{Q})$ are exactly the eight automorphisms determined by sending α to one of the 8 roots in (b).
 - (d) Let $\sigma \in Gal(E/\mathbb{Q})$ be the element mapping α to β , show that σ is an element of order 4. [Hint: Show that $\sigma(\alpha^2) = \sigma(\beta^2)$ and so $\sigma(\sqrt{2}) = -\sqrt{2}$, and $\sigma(\sqrt{3}) = \sqrt{3}$. Conclude $\sigma(\alpha\beta) = -\alpha\beta$ and so $\sigma(\beta) = -\alpha$.]
 - (e) Define τ by $\tau(\alpha) = \sqrt{(2+\sqrt{2})(3-\sqrt{3})}$, show that τ has order four and that σ and τ generate $Gal(E/\mathbb{Q})$. Prove that $\sigma^2 = \tau^2$, and that $\sigma \tau = \tau \sigma^3$. Use these relations to show that the Galois group is Q_8 , by establishing an isomorphism between the group described by the generators τ, σ with relations as above, and one of the standard presentations of Q_8 .
- 2. Compute the Galois group of $x^4 + px + p$, where p is and odd prime [Hint: There are three cases to consider].
- 3. (Milne) Show that if f(x) is an irreducible polynomial over \mathbb{Q} with both real and nonreal roots, then its Galois group is nonabelian. Can we drop the assumption that f(x) is irreducible? If not, provide a counterexample to show why not.
- 4. (Milne) Show that any finite extension of \mathbb{Q} can contain at most finitely many roots of 1.
- 5. The following question is from Dummit and Foote. Show that the primitive n^{th} roots of unity form a basis over \mathbb{Q} for the cyclotomic field of n^{th} roots of unity if and only if n is square-free. (Remark: You may be able to develop a shorter proof than intended by Dummit and Foote, by appealing to the normal basis theorem).
- 6. Suppose that G is the Galois group of L/K, a finite Galois extension. Since G acts on L, we can consider L as a KG-module. Show that L/K has a normal basis if and only if L is a free KG-module.

7. Suppose that $K = \mathbb{F}_{p^n}$, p > 2, and let L be a finite extension of K such that L/K is Galois. Compute the size of the kernel of $N_{L/K}$, i.e. the number of elements $\alpha \in L$ satisfying $N_{L/K}(\alpha) = 1$.