# **SBML Model Report**

# Model name: "Wajima2009\_BloodCoagulation\_PTtest"



May 5, 2016

# 1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah<sup>1</sup> and Michael Schubert<sup>2</sup> at July fifth 2011 at 5:07 p. m. and last time modified at February eighth 2016 at 2:36 p. m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

| Element           | Quantity | Element              | Quantity |
|-------------------|----------|----------------------|----------|
| compartment types | 0        | compartments         | 1        |
| species types     | 0        | species              | 54       |
| events            | 2        | constraints          | 0        |
| reactions         | 115      | function definitions | 5        |
| global parameters | 56       | unit definitions     | 2        |
| rules             | 4        | initial assignments  | 25       |

#### **Model Notes**

This model is from the article:

A comprehensive model for the humoral coagulation network in humans.

Wajima T, Isbister GK, Duffull SB. <u>Clinical Pharmacology and therapeutics</u> Volume 86, Issue 3, 10 June 2009, EPub 19516255,

<sup>&</sup>lt;sup>1</sup>EMBL-EBI, viji@ebi.ac.uk

<sup>&</sup>lt;sup>2</sup>EBI, schubert@ebi.ac.uk

#### **Abstract:**

Coagulation is an important process in hemostasis and comprises a complicated interaction of multiple enzymes and proteins. We have developed a mechanistic quantitative model of the coagulation network. The model accurately describes the time courses of coagulation factors following in vivo activation as well as in vitro blood coagulation tests of prothrombin time (PT, often reported as international normalized ratio (INR)) and activated partial thromboplastin time (aPTT). The model predicts the concentration-time and time-effect profiles of warfarin, heparins, and vitamin K in humans. The model can be applied to predict the time courses of coagulation kinetics in clinical situations (e.g., hemophilia) and for biomarker identification during drug development. The model developed in this study is the first quantitative description of the comprehensive coagulation network.

#### 2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

#### 2.1 Unit time

Name time

**Definition** 3600 s

#### 2.2 Unit substance

Name substance

**Definition** nmol

#### 2.3 Unit volume

**Notes** Litre is the predefined SBML unit for volume.

**Definition** 1

#### 2.4 Unit area

**Notes** Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

**Definition** m<sup>2</sup>

#### 2.5 Unit length

**Notes** Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

**Definition** m

# 3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

| Id            | Name          | SBO | Spatial Dimensions | Size | Unit  | Constant | Outside |
|---------------|---------------|-----|--------------------|------|-------|----------|---------|
| compartment_1 | compartment_1 |     | 3                  | 1    | litre |          |         |

# **3.1 Compartment** compartment\_1

This is a three dimensional compartment with a not constant size of one litre.

Name compartment\_1

4

# 4 Species

This model contains 54 species. The boundary condition of three of these species is set to true so that these species' amount cannot be changed by any reaction. Section 11 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

| Id          | Name      | Compartment             | Derived Unit                         | Constant | Boundary  |
|-------------|-----------|-------------------------|--------------------------------------|----------|-----------|
|             |           |                         |                                      |          | Condi-    |
|             |           |                         |                                      |          | tion      |
| IIa         | IIa       | ${\tt compartment\_1}$  | $nmol \cdot l^{-1}$                  |          |           |
| VIII        | VIII      | ${\tt compartment\_1}$  | $\mathrm{nmol}\cdot\mathrm{l}^{-1}$  | $\Box$   |           |
| VIIIa       | VIIIa     | ${\tt compartment\_1}$  | $nmol \cdot l^{-1}$                  | $\Box$   |           |
| APC_PS      | APC_PS    | ${	t compartment}_{-}1$ | $nmol \cdot l^{-1}$                  | $\Box$   |           |
| IX          | IX        | ${\tt compartment\_1}$  | $nmol \cdot l^{-1}$                  |          |           |
| IXa         | IXa       | ${\tt compartment\_1}$  | $\mathrm{nmol}\cdot \mathrm{l}^{-1}$ |          |           |
| XIa         | XIa       | ${\tt compartment\_1}$  | $\mathrm{nmol}\cdot \mathrm{l}^{-1}$ | $\Box$   | $\Box$    |
| XI          | XI        | ${\tt compartment\_1}$  | $\mathrm{nmol}\cdot \mathrm{l}^{-1}$ |          |           |
| XIIa        | XIIa      | ${\tt compartment\_1}$  | $nmol \cdot l^{-1}$                  |          |           |
| VII         | VII       | ${\tt compartment\_1}$  | $nmol \cdot l^{-1}$                  |          |           |
| VIIa        | VIIa      | ${\tt compartment\_1}$  | $nmol \cdot l^{-1}$                  |          |           |
| X           | X         | ${\tt compartment\_1}$  | $nmol \cdot l^{-1}$                  |          |           |
| Ха          | Xa        | ${\tt compartment\_1}$  | $\mathrm{nmol}\cdot \mathrm{l}^{-1}$ |          |           |
| $IXa_VIIIa$ | IXa_VIIIa | ${\tt compartment\_1}$  | $\mathrm{nmol}\cdot \mathrm{l}^{-1}$ |          |           |
| V           | V         | ${\tt compartment\_1}$  | $\mathrm{nmol}\cdot \mathrm{l}^{-1}$ |          |           |
| Va          | Va        | ${\tt compartment\_1}$  | $nmol \cdot l^{-1}$                  | $\Box$   |           |
| II          | II        | ${\tt compartment\_1}$  | $nmol \cdot l^{-1}$                  | $\Box$   |           |
| F           | F         | ${\tt compartment\_1}$  | $nmol \cdot l^{-1}$                  |          |           |
| Fg          | Fg        | ${\tt compartment\_1}$  | $nmol \cdot l^{-1}$                  |          |           |
| DP          | DP        | ${\tt compartment\_1}$  | $\mathrm{nmol}\cdot \mathrm{l}^{-1}$ | $\Box$   | $\square$ |
| P           | P         | ${\tt compartment\_1}$  | $nmol \cdot l^{-1}$                  |          |           |

| Id                     | Name             | Compartment            | Derived Unit                        | Constant | Boundary<br>Condi-<br>tion |
|------------------------|------------------|------------------------|-------------------------------------|----------|----------------------------|
| XF                     | XF               | ${\tt compartment\_1}$ | $nmol \cdot l^{-1}$                 |          |                            |
| XIII                   | XIII             | ${\tt compartment\_1}$ | $nmol \cdot l^{-1}$                 |          |                            |
| Pg                     | Pg               | ${\tt compartment\_1}$ | $nmol \cdot l^{-1}$                 |          |                            |
| APC                    | APC              | ${\tt compartment\_1}$ | $\mathrm{nmol}\cdot\mathrm{l}^{-1}$ |          |                            |
| $IIa\_Tmod$            | IIa_Tmod         | compartment_1          | $nmol \cdot l^{-1}$                 |          |                            |
| PC                     | PC               | compartment_1          | $nmol \cdot l^{-1}$                 |          |                            |
| Tmod                   | Tmod             | ${	t compartment\_1}$  | $nmol \cdot l^{-1}$                 |          |                            |
| TF                     | TF               | ${	t compartment\_1}$  | $nmol \cdot l^{-1}$                 |          |                            |
| VIIa_TF                | VIIa_TF          | compartment_1          | $nmol \cdot l^{-1}$                 |          |                            |
| VII_TF                 | VII_TF           | ${	t compartment\_1}$  | $nmol \cdot l^{-1}$                 |          |                            |
| Xa_TFPI                | Xa_TFPI          | compartment_1          | $\mathrm{nmol}\cdot\mathrm{l}^{-1}$ |          |                            |
| TFPI                   | TFPI             | compartment_1          | $nmol \cdot l^{-1}$                 |          |                            |
| PS                     | PS               | ${\tt compartment\_1}$ | $nmol \cdot l^{-1}$                 |          |                            |
| VKH2                   | VKH2             | ${\tt compartment\_1}$ | $nmol \cdot l^{-1}$                 |          |                            |
| Va_Xa                  | Va_Xa            | compartment_1          | $nmol \cdot l^{-1}$                 |          |                            |
| CA                     | CA               | ${\tt compartment\_1}$ | $nmol \cdot l^{-1}$                 | $\Box$   |                            |
| XII                    | XII              | ${\tt compartment\_1}$ | $\mathrm{nmol}\cdot\mathrm{l}^{-1}$ | $\Box$   |                            |
| K                      | K                | ${\tt compartment\_1}$ | $\mathrm{nmol}\cdot\mathrm{l}^{-1}$ |          |                            |
| ${\tt ATIII\_Heparin}$ | ATIII_Heparin    | ${\tt compartment\_1}$ | $\mathrm{nmol}\cdot\mathrm{l}^{-1}$ |          |                            |
| Xa_ATIII_Heparin       | Xa_ATIII_Heparin | ${\tt compartment\_1}$ | $nmol \cdot l^{-1}$                 | $\Box$   |                            |
| VK                     | VK               | ${\tt compartment\_1}$ | $nmol \cdot l^{-1}$                 | $\Box$   |                            |
| $C_{\mathtt{warf}}$    | C_warf           | ${\tt compartment\_1}$ | $nmol \cdot l^{-1}$                 |          |                            |
| VKO                    | VKO              | ${\tt compartment\_1}$ | $\mathrm{nmol}\cdot\mathrm{l}^{-1}$ |          |                            |
| Pk                     | Pk               | ${\tt compartment\_1}$ | $\mathrm{nmol}\cdot\mathrm{l}^{-1}$ |          |                            |
| FDP                    | FDP              | ${\tt compartment\_1}$ | $nmol \cdot l^{-1}$                 | $\Box$   |                            |
| D                      | D                | ${\tt compartment\_1}$ | $nmol \cdot l^{-1}$                 |          | $\Box$                     |
| TAT                    | TAT              | ${\tt compartment\_1}$ | $nmol \cdot l^{-1}$                 |          |                            |

| Id                          | Name              | Compartment            | Derived Unit        | Constant | Boundary<br>Condi-<br>tion |
|-----------------------------|-------------------|------------------------|---------------------|----------|----------------------------|
| VIIa_TF_Xa_TFPI             | VIIa_TF_Xa_TFPI   | compartment_1          | $nmol \cdot l^{-1}$ |          | $\Box$                     |
| XIIIa                       | XIIIa             | ${\tt compartment\_1}$ | $nmol \cdot l^{-1}$ |          |                            |
| ${\tt IIa\_ATIII\_Heparin}$ | IIa_ATIII_Heparin | ${\tt compartment\_1}$ | $nmol \cdot l^{-1}$ |          |                            |
| $A\_{warf}$                 | $A_{-}$ warf      | ${\tt compartment\_1}$ | $nmol \cdot l^{-1}$ |          |                            |
| $IXa\_ATIII\_Heparin$       | IXa_ATIII_Heparin | ${\tt compartment\_1}$ | $nmol \cdot l^{-1}$ |          | $\Box$                     |
| $VK_{-}p$                   | $VK_{-}p$         | ${\tt compartment\_1}$ | $nmol \cdot l^{-1}$ |          |                            |

# **5 Parameters**

This model contains 56 global parameters.

Table 4: Properties of each parameter.

| Id                   | Name            | SBO     | Value                            | Unit | Constant                |
|----------------------|-----------------|---------|----------------------------------|------|-------------------------|
| I_max                | I_max           |         | 1.000                            |      | Ø                       |
| IC50                 | IC50            |         | 0.340                            |      | $ \mathbf{Z} $          |
| IIO                  | II(0)           |         | 1394.400                         |      | $ \mathbf{Z} $          |
| VIIO                 | VII(0)          |         | 10.000                           |      | $ \mathbf{Z} $          |
| IXO                  | IX(0)           |         | 89.600                           |      | $ \mathbf{Z} $          |
| XO                   | X(0)            |         | 174.300                          |      | $ \mathbf{Z} $          |
| PC0                  | PC(0)           |         | 60.000                           |      |                         |
| PS0                  | PS(0)           |         | 300.000                          |      | $\overline{\mathbf{Z}}$ |
| VKH20                | VKH2(0)         |         | 0.100                            |      | $ \mathbf{Z} $          |
| $d_{-}II$            | d_II            | 0000035 | 0.010                            |      | $\overline{\mathbf{Z}}$ |
| $d_{VII}$            | $d_{-}VII$      | 0000035 | 0.120                            |      | $ \mathbf{Z} $          |
| $d_{-}IX$            | $d_{-}IX$       | 0000035 | 0.029                            |      | $ \mathbf{Z} $          |
| $d_X$                | $d_X$           | 0000035 | 0.018                            |      |                         |
| $d_{-}PC$            | d_PC            | 0000035 | 0.050                            |      | $\overline{\mathbf{Z}}$ |
| d_PS                 | d_PS            | 0000035 | 0.017                            |      | $\overline{\mathbf{Z}}$ |
| ${\tt VitaminK\_Vc}$ | VitaminK_Vc     |         | 24.000                           |      | $\overline{\mathbf{Z}}$ |
| d_VK2                | $d_VK2$         |         | 0.023                            |      | $\overline{\mathbf{Z}}$ |
| $d_VKH2$             | $d_VKH2$        | 0000035 | 0.228                            |      | $\overline{\mathbf{Z}}$ |
| $d_VKO$              | $d_{-}VKO$      |         | 0.228                            |      | $\overline{\mathbf{Z}}$ |
| VKO                  | VK(0)           |         | 1.000                            |      | $\overline{\mathbf{Z}}$ |
| VKOO                 | VKO(0)          |         | 0.100                            |      | $\overline{\mathbf{Z}}$ |
| VitaminK-<br>_k21_Vc | VitaminK_k21/Vc | 0000038 | $5.08333333333333 \cdot 10^{-4}$ |      | $\overline{Z}$          |
| VitaminK_k12         | VitaminK_k12    | 0000035 | 0.059                            |      | $\square$               |
| Heparin_ke           | Heparin_ke      | 0000035 | 0.693                            |      | $\mathbf{Z}$            |
| Warfarin_ka          | Warfarin_ka     |         | 1.000                            |      | $ \mathbf{Z} $          |
| Warfarin_Vd          | Warfarin_Vd     |         | 10.000                           |      | $\overline{\mathbf{Z}}$ |
| Warfarin_CL          | Warfarin_CL     |         | 0.200                            |      | <b>Z</b>                |
| Warfarin_ke          | Warfarin_ke     |         | 0.020                            |      | $\overline{\mathbf{Z}}$ |
| Integral-            | Integral_Fibrin |         | 0.000                            |      |                         |
| _Fibrin              | C               |         |                                  |      |                         |
| $d_XII$              | d_XII           | 0000035 | 0.012                            |      |                         |
| $d_{VIII}$           | $d_{-}VIII$     | 0000035 | 0.058                            |      | $\mathbf{Z}$            |
| $d_XI$               | d_XI            |         | 0.100                            |      | $ \mathbf{Z} $          |
| $d_{-}V$             | $d_{-}V$        | 0000035 | 0.043                            |      | $\mathbf{Z}$            |
| d_Fg                 | d_Fg            | 0000035 | 0.032                            |      | $\mathbf{Z}$            |
| d_XIII               | d_XIII          | 0000035 | 0.004                            |      | <b>Z</b>                |
|                      |                 |         |                                  |      |                         |

| Id            | Name             | SBO     | Value    | Unit | Constant                     |
|---------------|------------------|---------|----------|------|------------------------------|
| d_Pg          | d_Pg             | 0000035 | 0.050    |      |                              |
| $d_Tmod$      | $d_{-}Tmod$      | 0000035 | 0.050    |      | $\square$                    |
| $d_{-}TFPI$   | d_TFPI           | 0000035 | 20.000   |      |                              |
| d_Pk          | d_Pk             | 0000035 | 0.050    |      | $   \overline{\mathscr{A}} $ |
| XIIO          | XII(0)           |         | 375.000  |      | $   \overline{\mathscr{A}} $ |
| VIIIO         | VIII(0)          |         | 0.700    |      | $   \overline{\mathscr{A}} $ |
| XIO           | XI(0)            |         | 30.600   |      |                              |
| VO            | V(0)             |         | 26.700   |      |                              |
| Fg0           | Fg(0)            |         | 8945.500 |      |                              |
| XIIIO         | XIII(0)          |         | 70.300   |      | $\overline{\mathbb{Z}}$      |
| Pg0           | Pg(0)            |         | 2154.300 |      | $\overline{\mathbf{Z}}$      |
| Tmod0         | Tmod(0)          |         | 50.000   |      | $\overline{\mathbf{Z}}$      |
| TFPI0         | TFPI(0)          |         | 2.500    |      | $\overline{\mathbf{Z}}$      |
| Pk0           | Pk(0)            |         | 450.000  |      | $\overline{\checkmark}$      |
| R1            | R1               |         | 0.141    |      | $   \overline{\mathscr{L}} $ |
| R2            | R2               |         | 1.000    |      | $   \overline{\mathscr{L}} $ |
| c44           | c44              | 0000036 | 0.120    |      | $\overline{\mathbf{Z}}$      |
| c45           | c45              | 0000036 | 0.850    |      | $\overline{\checkmark}$      |
| c46           | c46              | 0000036 | 0.850    |      | $\overline{\mathbf{Z}}$      |
| clottingTime- | clottingTime [s] |         | 0.000    |      |                              |
| _\$           |                  |         |          |      |                              |
| $d_VK$        | $d_{-}VK$        | 0000035 | 0.205    |      | $\checkmark$                 |

# 6 Initialassignments

This is an overview of 25 initial assignments.

# **6.1 Initialassignment VIII**

Derived unit contains undeclared units

Math VIII0

# **6.2 Initialassignment IX**

**Derived unit** contains undeclared units

Math IX0

# **6.3 Initialassignment XI**

#### Math XI0

# **6.4 Initialassignment VII**

**Derived unit** contains undeclared units

Math VII0

# 6.5 Initialassignment X

Derived unit contains undeclared units

Math X0

# 6.6 Initialassignment V

**Derived unit** contains undeclared units

Math V0

# 6.7 Initialassignment II

**Derived unit** contains undeclared units

Math II0

# **6.8 Initialassignment Fg**

**Derived unit** contains undeclared units

Math Fg0

# **6.9 Initialassignment XIII**

**Derived unit** contains undeclared units

Math XIII0

# 6.10 Initialassignment Pg

**Derived unit** contains undeclared units

Math Pg0

# **6.11 Initialassignment PC**

**Derived unit** contains undeclared units

Math PC0

# 6.12 Initialassignment Tmod

**Derived unit** contains undeclared units

Math Tmod0

# **6.13 Initialassignment TFPI**

**Derived unit** contains undeclared units

Math TFPI0

# 6.14 Initialassignment PS

Derived unit contains undeclared units

Math PS0

# **6.15 Initialassignment** VKH2

**Derived unit** contains undeclared units

Math VKH20

# **6.16 Initialassignment XII**

Derived unit contains undeclared units

Math XII0

# **6.17 Initialassignment VK**

**Derived unit** contains undeclared units

Math VK0

# 6.18 Initialassignment VKO

**Derived unit** contains undeclared units

Math VKO0

# 6.19 Initialassignment Pk

**Derived unit** contains undeclared units

Math Pk0

# 6.20 Initialassignment d\_VKH2

**Derived unit** contains undeclared units

# 6.21 Initialassignment d\_VKO

**Derived unit** contains undeclared units

 $\begin{array}{ll} \text{Math} & \frac{d\_VK2 \cdot VK0}{VK00} \end{array}$ 

# 6.22 Initialassignment VitaminK\_k21\_Vc

**Derived unit** contains undeclared units

#### 6.23 Initialassignment Warfarin\_ke

**Derived unit** contains undeclared units

# 6.24 Initialassignment c44

Derived unit contains undeclared units

Math c45 · R1

#### 6.25 Initialassignment c46

Derived unit contains undeclared units

Math c45·R2

# 7 Function definitions

This is an overview of five function definitions.

#### 7.1 Function definition Irreversible\_association

Name Irreversible association

Arguments s1, s2, c

**Mathematical Expression** 

$$\frac{s1 \cdot s2}{s} \tag{1}$$

# 7.2 Function definition Hyperbolic\_rate\_law

Name Hyperbolic rate law

Arguments v, substrate, enzyme, k

**Mathematical Expression** 

$$\frac{v \cdot substrate \cdot enzyme}{k + enzyme}$$
 (2)

# 7.3 Function definition Factor\_production

Name Factor production

**Arguments** initial, degradation

**Mathematical Expression** 

# **7.4 Function definition** VKH2mediated\_factor\_production

Name VKH2-mediated factor production

Arguments d\_factor, factor\_initial, [VKH2], VKH2\_initial

**Mathematical Expression** 

$$\frac{d\_factor \cdot factor\_initial \cdot [VKH2]}{VKH2\_initial}$$
 (4)

#### **7.5 Function definition** Warfarin\_inhibited\_first\_order\_kinetics

Name Warfarin inhibited first order kinetics

Arguments Imax, Cwarf, IC50, substrate, degradation

**Mathematical Expression** 

$$degradation \cdot substrate \cdot \left(1 - \frac{Imax \cdot Cwarf}{IC50 + Cwarf}\right) \tag{5}$$

#### 8 Rules

This is an overview of four rules.

# 8.1 Rule DP

Rule DP is an assignment rule for species DP:

$$DP = [FDP] + [D] \tag{6}$$

Derived unit  $nmol \cdot l^{-1}$ 

#### 8.2 Rule C warf

Rule C\_warf is a rate rule for species C\_warf:

$$\frac{d}{dt}C_{-}warf = \frac{Warfarin_{ka} \cdot [A_{-}warf]}{Warfarin_{Vd}} - Warfarin_{ke} \cdot [C_{-}warf]$$
 (7)

#### 8.3 Rule A\_warf

Rule A\_warf is a rate rule for species A\_warf:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{A}_{-}\mathbf{warf} = \mathbf{Warfarin}_{-}\mathbf{ka} \cdot [\mathbf{A}_{-}\mathbf{warf}] \tag{8}$$

**Derived unit**  $n \text{mol} \cdot l^{-1}$ 

#### 8.4 Rule Integral\_Fibrin

Rule Integral\_Fibrin is a rate rule for parameter Integral\_Fibrin:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Integral\_Fibrin} = [\mathrm{F}] \tag{9}$$

**Derived unit**  $nmol \cdot l^{-1}$ 

#### 9 Events

This is an overview of two events. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

#### 9.1 Event clottingTime\_event

Name clottingTime event

Integral Fibrin 
$$\cdot 3600 > 1500$$
 (10)

**Assignment** 

clottingTime\_s = time 
$$\cdot$$
 3600 (11)

# 9.2 Event dilution\_event

Name dilution event

$$\label{eq:time} \text{Trigger condition} \\ \text{time} > 0 \tag{12}$$

**Assignment** 

$$vol(compartment_1) = vol(compartment_1) \cdot 3$$
 (13)

# 10 Reactions

This model contains 115 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

| No | Id                | Name | Reaction Equation                                                                  | SBO |
|----|-------------------|------|------------------------------------------------------------------------------------|-----|
| 1  | r1_               | r1   | VIII <sup>III</sup> a VIIIa                                                        |     |
|    | r2_               | r2   | VIIIa $\xrightarrow{\text{APC\_PS}} \emptyset$                                     |     |
| 3  | r3_               | r3   | $IX \xrightarrow{XIa} IXa$                                                         |     |
| 4  | $\mathtt{r4}_{-}$ | r4   | $XI \xrightarrow{XIIa} XIa$                                                        |     |
| 5  | r5_               | r5   | $XI \xrightarrow{IIa} XIa$                                                         |     |
| 6  | r6_               | r6   | VII <sup>II</sup> a VIIa                                                           |     |
| 7  | r7_               | r7   | $X \xrightarrow{IXa} Xa$                                                           |     |
| 8  | r8_               | r8   | $X \xrightarrow{IXa\_VIIIa} Xa$                                                    |     |
| 9  | $\mathtt{r9}_{-}$ | r9   | $X \xrightarrow{VIIa} Xa$                                                          |     |
| 10 | r10               | r10  | $V \xrightarrow{IIa} Va$                                                           |     |
| 11 | r11               | r11  | $Va \xrightarrow{APC\_PS} \emptyset$                                               |     |
| 12 | r12               | r12  | II Va_Xa IIa                                                                       |     |
| 13 | r13               | r13  | $II \xrightarrow{Xa} IIa$                                                          |     |
| 14 | r14               | r14  | $\operatorname{Fg} \overset{\operatorname{IIa}}{\longrightarrow} \operatorname{F}$ |     |
| 15 | r15               | r15  | $Fg \xrightarrow{P} FDP$                                                           |     |
| 16 | r16               | r16  | $F \xrightarrow{XIIIa} XF$                                                         |     |

| N⁰ | Id    | Name | Reaction Equation                                        | SBO |
|----|-------|------|----------------------------------------------------------|-----|
| 17 | r17   | r17  | $F \xrightarrow{P} FDP$                                  |     |
| 18 | r18   | r18  | $XF \xrightarrow{P} D$                                   |     |
| 19 | r19   | r19  | $XF \xrightarrow{APC\_PS} D$                             |     |
| 20 | r20   | r20  | $XIII \xrightarrow{IIa} XIIIa$                           |     |
| 21 | r21   | r21  | $Pg \xrightarrow{IIa} P$                                 |     |
| 22 | r22   | r22  | $Pg \xrightarrow{F} P$                                   |     |
| 23 | r23   | r23  | $Pg \xrightarrow{APC\_PS} P$                             |     |
| 24 | r24   | r24  | $PC \xrightarrow{IIa\_T mod} APC$                        |     |
| 25 | r25   | r25  | $Va_Xa \xrightarrow{APC_PS} \emptyset$                   |     |
| 26 | r26   | r26  | $IXa + VIIIa \longrightarrow IXa_VIIIa$                  |     |
| 27 | r27   | r27  | $Va + Xa \longrightarrow Va\_Xa$                         |     |
| 28 | r28   | r28  | $IIa + Tmod \longrightarrow IIa\_Tmod$                   |     |
| 29 | r29   | r29  | $VIIa + TF \longrightarrow VIIa\_TF$                     |     |
| 30 | r30   | r30  | $VII + TF \longrightarrow VII\_TF$                       |     |
| 31 | r31   | r31  | $VIIa\_TF + Xa\_TFPI \longrightarrow VIIa\_TF\_Xa\_TFPI$ |     |
| 32 | r32   | r32  | $Xa + TFPI \longrightarrow Xa\_TFPI$                     |     |
| 33 | r33   | r33  | $VII\_TF \xrightarrow{Xa} VIIa\_TF$                      |     |
| 34 | r34   | r34  | $X \xrightarrow{VIIa\_TF} Xa$                            |     |
| 35 | r35   | r35  | $IX \xrightarrow{VIIa\_TF} IXa$                          |     |
| 36 | r36   | r36  | $VII\_TF \xrightarrow{TF} VIIa\_TF$                      |     |
| 37 | r37   | r37  | $APC+PS \longrightarrow APC\_PS$                         |     |
| 38 | r38   | r38  | $VII \xrightarrow{Xa} VIIa$                              |     |
| 39 | r39   | r39  | VII VIIa_TF VIIa                                         |     |
| -  | = = = | == < |                                                          |     |

| Nº | Id        | Name      | Reaction Equation SBO                                                  |  |
|----|-----------|-----------|------------------------------------------------------------------------|--|
| 40 | r40       | r40       | $VII \xrightarrow{IXa} VIIa$                                           |  |
| 41 | r41       | r41       | $XII \xrightarrow{CA} XIIa$                                            |  |
| 42 | r42       | r42       | $XII \xrightarrow{K} XIIa$                                             |  |
| 43 | r43       | r43       | $\operatorname{Pk} \xrightarrow{\operatorname{XIIa}} \operatorname{K}$ |  |
| 44 | r44       | r44       | IIa + ATIII_Heparin → IIa_ATIII_Heparin                                |  |
| 45 | r45       | r45       | $Xa + ATIII_Heparin \longrightarrow Xa\_ATIII_Heparin$                 |  |
| 46 | r46       | r46       | IXa + ATIII_Heparin → IXa_ATIII_Heparin                                |  |
| 47 | r47       | r47       | $VK \xrightarrow{C\_warf} VKH2$                                        |  |
| 48 | r48       | r48       | $VKO \xrightarrow{C\_warf} VK$                                         |  |
| 49 | pII_VKH2  | pII_VKH2  | $\emptyset \xrightarrow{VKH2} II$                                      |  |
| 50 | pVII_VKH2 | pVII_VKH2 | $\emptyset \xrightarrow{VKH2} VII$                                     |  |
| 51 | pIX_VKH2  | pIX_VKH2  | $\emptyset \xrightarrow{VKH2} IX$                                      |  |
| 52 | pX_VKH2   | pX_VKH2   | $\emptyset \xrightarrow{VKH2} X$                                       |  |
| 53 | pPC_VKH2  | pPC_VKH2  | $\emptyset \xrightarrow{\text{VKH2}} \text{PC}$                        |  |
| 54 | pPS_VKH2  | pPS_VKH2  | $\emptyset \xrightarrow{\text{VKH2}} \text{PS}$                        |  |
| 55 | dFg       | dFg       | $Fg \longrightarrow FDP$                                               |  |
| 56 | dF        | dF        | $F \longrightarrow FDP$                                                |  |
| 57 | dXF       | dXF       | $XF \longrightarrow D$                                                 |  |
| 58 | dII       | dII       | $\Pi \longrightarrow \emptyset$                                        |  |
| 59 | dIIa      | dIIa      | $IIa \longrightarrow TAT$                                              |  |
| 60 | dTF       | dTF       | $TF \longrightarrow \emptyset$                                         |  |
| 61 | dV        | dV        | $V \longrightarrow \emptyset$                                          |  |
| 62 | dVa       | dVa       | $Va \longrightarrow \emptyset$                                         |  |
| 63 | dVII      | dVII      | $	ext{VII} \longrightarrow \emptyset$                                  |  |

| N₀ | Id                     | Name       | Reaction Equation                      | SBO |
|----|------------------------|------------|----------------------------------------|-----|
| 64 | dVIIa                  | dVIIa      | $VIIa \longrightarrow \emptyset$       |     |
| 65 | dVIII                  | dVIII      | $VIII \longrightarrow \emptyset$       |     |
| 66 | dVIIIa                 | dVIIIa     | VIIIa $\longrightarrow \emptyset$      |     |
| 67 | dX                     | dX         | $X \longrightarrow \emptyset$          |     |
| 68 | dXa                    | dXa        | $Xa \longrightarrow \emptyset$         |     |
| 69 | dIX                    | dIX        | $IX \longrightarrow \emptyset$         |     |
| 70 | dIXa                   | dIXa       | $IXa \longrightarrow \emptyset$        |     |
| 71 | dXII                   | dXII       | $XII \longrightarrow \emptyset$        |     |
| 72 | dXIIa                  | dXIIa      | $XIIa \longrightarrow \emptyset$       |     |
| 73 | dXIII                  | dXIII      | $XIII \longrightarrow \emptyset$       |     |
| 74 | dXIIIa                 | dXIIIa     | XIIIa $\longrightarrow \emptyset$      |     |
| 75 | dPk                    | dPk        | $Pk \longrightarrow \emptyset$         |     |
| 76 | dK                     | dK         | $K \longrightarrow \emptyset$          |     |
| 77 | dPg                    | dPg        | $Pg \longrightarrow \emptyset$         |     |
| 78 | dP                     | dP         | $P \longrightarrow \emptyset$          |     |
| 79 | dPC                    | dPC        | $PC \longrightarrow \emptyset$         |     |
| 80 | dAPC                   | dAPC       | $APC \longrightarrow \emptyset$        |     |
| 81 | dPS                    | dPS        | $PS \longrightarrow \emptyset$         |     |
| 82 | dFDP                   | dFDP       | $FDP \longrightarrow \emptyset$        |     |
| 83 | dD                     | dD         | $D \longrightarrow \emptyset$          |     |
| 84 | dTFPI                  | dTFPI      | $TFPI \longrightarrow \emptyset$       |     |
| 85 | $dVIIa\_TF$            | dVIIa_TF   | $VIIa\_TF \longrightarrow \emptyset$   |     |
| 86 | $dVII_{-}TF$           | dVII_TF    | $VII\_TF \longrightarrow \emptyset$    |     |
| 87 | dAPC_PS                | dAPC_PS    | $APC\_PS \longrightarrow \emptyset$    |     |
| 88 | dVa_Xa                 | dVa_Xa     | $Va\_Xa \longrightarrow \emptyset$     |     |
| 89 | $\mathtt{dIXa\_VIIIa}$ | dIXa_VIIIa | $IXa\_VIIIa \longrightarrow \emptyset$ |     |
| 90 | dTmod                  | dTmod      | $Tmod \longrightarrow \emptyset$       |     |
| 91 | ${\tt dIIa\_Tmod}$     | dIIa_Tmod  | $IIa\_Tmod \longrightarrow \emptyset$  |     |
| 92 | dXa_TFPI               | dXa_TFPI   | $Xa_{-}TFPI \longrightarrow \emptyset$ |     |
|    |                        |            |                                        |     |

| N⁰  | Id                    | Name             | Reaction Equation                               | SBO |
|-----|-----------------------|------------------|-------------------------------------------------|-----|
| 93  | dVIIa_TF_Xa-<br>_TFPI | dVIIa_TF_Xa_TFPI | $VIIa\_TF\_Xa\_TFPI \longrightarrow \emptyset$  |     |
| 94  | dTAT                  | dTAT             | $TAT \longrightarrow \emptyset$                 |     |
| 95  | dCA                   | dCA              | $CA \longrightarrow \emptyset$                  |     |
| 96  | dXIa                  | dXIa             | $XIa \longrightarrow \emptyset$                 |     |
| 97  | dVKH2                 | dVKH2            | $VKH2 \longrightarrow VKO$                      |     |
| 98  | VK_transport          | VK_transport     | $VK \rightleftharpoons VK_p$                    |     |
| 99  | eHeparin              | eHeparin         | ATIII_Heparin $\longrightarrow \emptyset$       |     |
| 100 | eHeparinXa            | eHeparinXa       | $Xa\_ATIII\_Heparin \longrightarrow \emptyset$  |     |
| 101 | eHeparinIXa           | eHeparinIXa      | $IXa\_ATIII\_Heparin \longrightarrow \emptyset$ |     |
| 102 | eHeparinIIa           | eHeparinIIa      | IIa_ATIII_Heparin → Ø                           |     |
| 103 | dXI                   | dXI              | $XI \longrightarrow \emptyset$                  |     |
| 104 | pXII                  | pXII             | $\emptyset \longrightarrow XII$                 |     |
| 105 | pVIII                 | pVIII            | $\emptyset \longrightarrow VIII$                |     |
| 106 | pXI                   | pXI              | $\emptyset \longrightarrow XI$                  |     |
| 107 | pV                    | pV               | $\emptyset \longrightarrow V$                   |     |
| 108 | pFg                   | pFg              | $\emptyset \longrightarrow \mathrm{Fg}$         |     |
| 109 | pXIII                 | pXIII            | $\emptyset \longrightarrow XIII$                |     |
| 110 | pPg                   | pPg              | $\emptyset \longrightarrow Pg$                  |     |
| 111 | pTmod                 | pTmod            | $\emptyset \longrightarrow Tmod$                |     |
| 112 | pTFPI                 | pTFPI            | $\emptyset \longrightarrow TFPI$                |     |
| 113 | pPk                   | pPk              | $\emptyset \longrightarrow Pk$                  |     |
| 114 | pVK                   | pVK              | $\emptyset \longrightarrow VK$                  |     |
| 115 | dVK                   | dVK              | $VK \longrightarrow \emptyset$                  |     |

#### 10.1 Reaction r1\_

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name r1

# **Reaction equation**

$$VIII \xrightarrow{IIa} VIIIa$$
 (14)

#### Reactant

Table 6: Properties of each reactant.

| Id   | Name | SBO     |
|------|------|---------|
| VIII | VIII | 0000010 |

#### **Modifier**

Table 7: Properties of each modifier.

| Id  | Name | SBO     |
|-----|------|---------|
| IIa | IIa  | 0000461 |

#### **Product**

Table 8: Properties of each product.

| Id    | Name  | SBO     |
|-------|-------|---------|
| VIIIa | VIIIa | 0000011 |

#### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_1 = \text{vol}(\text{compartment\_1}) \cdot \text{Hyperbolic\_rate\_law}(v, [VIII], [IIa], k)$$
 (15)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{16}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{17}$$

Table 9: Properties of each parameter.

| Id | Name | SBO     | Value     | Unit | Constant   |
|----|------|---------|-----------|------|------------|
| v  | V    | 0000025 | 50000.000 |      | lacksquare |
| k  | k    | 0000371 | $10^{-6}$ |      |            |

#### 10.2 Reaction r2\_

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

#### Name r2

#### **Reaction equation**

$$VIIIa \xrightarrow{APC\_PS} \emptyset$$
 (18)

#### Reactant

Table 10: Properties of each reactant.

| Id    | Name  | SBO     |
|-------|-------|---------|
| VIIIa | VIIIa | 0000010 |

# **Modifier**

Table 11: Properties of each modifier.

| Id     | Name   | SBO     |
|--------|--------|---------|
| APC_PS | APC_PS | 0000461 |

#### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_2 = \text{vol} (\text{compartment\_1}) \cdot \text{Hyperbolic\_rate\_law} (v, [\text{VIIIa}], [\text{APC\_PS}], k)$$
 (19)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{20}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{21}$$

Table 12: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant       |
|----|------|---------|-------|------|----------------|
| v  | V    | 0000025 | 50.0  |      | $\overline{Z}$ |
| k  | k    | 0000371 | 1.0   |      | $\square$      |

# 10.3 Reaction r3\_

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name r3

# **Reaction equation**

$$IX \xrightarrow{XIa} IXa$$
 (22)

## Reactant

Table 13: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| IX | IX   | 0000010 |

#### **Modifier**

Table 14: Properties of each modifier.

| Id  | Name | SBO     |
|-----|------|---------|
| XIa | XIa  | 0000461 |

#### **Product**

Table 15: Properties of each product.

| Id  | Name | SBO     |
|-----|------|---------|
| IXa | IXa  | 0000011 |

#### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

**Derived unit** contains undeclared units

$$v_3 = vol\left(compartment\_1\right) \cdot Hyperbolic\_rate\_law\left(v,[IX],[XIa],k\right) \tag{23}$$

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{24}$$

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{25}$$

Table 16: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| v  | v    | 0000025 | 7.0   |      |          |
| k  | k    | 0000371 | 10.0  |      | Ø        |

#### 10.4 Reaction r4\_

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

# Name r4

#### **Reaction equation**

$$XI \xrightarrow{XIIa} XIa$$
 (26)

#### Reactant

Table 17: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| XI | XI   | 0000010 |

#### **Modifier**

Table 18: Properties of each modifier.

| Id   | Name | SBO     |
|------|------|---------|
| XIIa | XIIa | 0000461 |

#### **Product**

Table 19: Properties of each product.

| Id  | Name | SBO     |
|-----|------|---------|
| XIa | XIa  | 0000011 |

#### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_4 = \text{vol}(\text{compartment\_1}) \cdot \text{Hyperbolic\_rate\_law}(v, [XI], [XIIa], k)$$
 (27)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{28}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{29}$$

Table 20: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant                  |
|----|------|---------|-------|------|---------------------------|
| ν  | V    | 0000025 | 7.0   |      | $ \overline{\checkmark} $ |
| k  | k    | 0000371 | 1.0   |      |                           |

#### 10.5 Reaction r5\_

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name r5

# **Reaction equation**

$$XI \xrightarrow{IIa} XIa$$
 (30)

#### Reactant

Table 21: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| XI | XI   | 0000010 |

#### **Modifier**

Table 22: Properties of each modifier.

| Id  | Name | SBO     |
|-----|------|---------|
| IIa | IIa  | 0000461 |

#### **Product**

Table 23: Properties of each product.

| Id  | Name | SBO     |
|-----|------|---------|
| XIa | XIa  | 0000011 |

#### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_5 = \text{vol}\left(\text{compartment\_1}\right) \cdot \text{Hyperbolic\_rate\_law}\left(v, [XI], [IIa], k\right)$$
 (31)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, \text{substrate}, \text{enzyme}, k\right) = \frac{v \cdot \text{substrate} \cdot \text{enzyme}}{k + \text{enzyme}} \tag{32}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, \text{substrate}, \text{enzyme}, k\right) = \frac{v \cdot \text{substrate} \cdot \text{enzyme}}{k + \text{enzyme}} \tag{33}$$

Table 24: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant       |
|----|------|---------|-------|------|----------------|
| v  | V    | 0000025 | 10.0  |      | $\overline{Z}$ |
| k  | k    | 0000371 | 10.0  |      |                |

#### 10.6 Reaction r6\_

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name r6

# **Reaction equation**

$$VII \xrightarrow{IIa} VIIa$$
 (34)

#### Reactant

Table 25: Properties of each reactant.

| Id  | Name | SBO     |
|-----|------|---------|
| VII | VII  | 0000010 |

# **Modifier**

Table 26: Properties of each modifier.

| Id  | Name | SBO     |
|-----|------|---------|
| IIa | IIa  | 0000461 |

#### **Product**

Table 27: Properties of each product.

| Id   | Name | SBO     |
|------|------|---------|
| VIIa | VIIa | 0000011 |

#### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

Derived unit contains undeclared units

$$v_6 = \text{vol}\left(\text{compartment}_1\right) \cdot \text{Hyperbolic}_{\text{rate}}[\text{law}\left(v, [\text{VII}], [\text{IIa}], k\right)\right)$$
 (35)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{36}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{37}$$

Table 28: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant     |
|----|------|---------|-------|------|--------------|
| V  | V    | 0000025 | 0.1   |      | Ø            |
| k  | k    | 0000371 | 10.0  |      | $\mathbf{Z}$ |

#### 10.7 Reaction r7\_

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

## Name r7

#### **Reaction equation**

$$X \xrightarrow{IXa} Xa$$
 (38)

#### Reactant

Table 29: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| Х  | X    | 0000010 |

#### **Modifier**

Table 30: Properties of each modifier.

| Id  | Name | SBO     |
|-----|------|---------|
| IXa | IXa  | 0000461 |

#### **Product**

Table 31: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| Хa | Xa   | 0000011 |

#### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

Derived unit contains undeclared units

$$v_7 = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{Hyperbolic\_rate\_law} \left( v, [X], [IXa], k \right)$$
 (39)

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{40}$$

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{41}$$

Table 32: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant                  |
|----|------|---------|-------|------|---------------------------|
| v  | v    | 0000025 | 0.02  |      | $ \overline{\checkmark} $ |
| k  | k    | 0000371 | 10.00 |      |                           |

#### 10.8 Reaction r8\_

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name r8

#### **Reaction equation**

$$X \xrightarrow{IXa\_VIIIa} Xa$$
 (42)

#### Reactant

Table 33: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| X  | X    | 0000010 |

#### **Modifier**

Table 34: Properties of each modifier.

| Id        | Name      | SBO     |
|-----------|-----------|---------|
| IXa_VIIIa | IXa_VIIIa | 0000461 |

#### **Product**

Table 35: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| Хa | Xa   | 0000011 |

#### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_8 = \text{vol}(\text{compartment\_1}) \cdot \text{Hyperbolic\_rate\_law}(v, [X], [IXa\_VIIIa], k)$$
 (43)

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{44}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, \text{substrate}, \text{enzyme}, k\right) = \frac{v \cdot \text{substrate} \cdot \text{enzyme}}{k + \text{enzyme}} \tag{45}$$

Table 36: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant                |
|----|------|---------|-------|------|-------------------------|
| v  | V    | 0000025 | 2.0   |      | $\overline{Z}$          |
| k  | k    | 0000371 | 0.1   |      | $\overline{\mathbf{Z}}$ |

#### 10.9 Reaction r9\_

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name r9

# **Reaction equation**

$$X \xrightarrow{VIIa} Xa$$
 (46)

#### Reactant

Table 37: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| X  | X    | 0000010 |

#### **Modifier**

Table 38: Properties of each modifier.

| Id   | Name | SBO     |
|------|------|---------|
| VIIa | VIIa | 0000461 |

## **Product**

Table 39: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| Хa | Xa   | 0000011 |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

#### **Derived unit** contains undeclared units

$$v_9 = \text{vol}\left(\text{compartment}_1\right) \cdot \text{Hyperbolic\_rate\_law}\left(v, [X], [VIIa], k\right)$$
 (47)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{48}$$

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{49}$$

Table 40: Properties of each parameter.

| Id | Name | SBO     | Value     | Unit | Constant                  |
|----|------|---------|-----------|------|---------------------------|
| v  | V    | 0000025 | $10^{-9}$ |      | $\overline{\hspace{1cm}}$ |
| k  | k    | 0000371 | 10.000    |      | $\checkmark$              |

# **10.10 Reaction** r10

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

# Name r10

# **Reaction equation**

$$V \xrightarrow{IIa} Va$$
 (50)

#### Reactant

Table 41: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| V  | V    | 0000010 |

#### **Modifier**

Table 42: Properties of each modifier.

| Id  | Name | SBO     |
|-----|------|---------|
| IIa | IIa  | 0000461 |

#### **Product**

Table 43: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| Va | Va   | 0000011 |

#### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

**Derived unit** contains undeclared units

$$v_{10} = \text{vol}\left(\text{compartment\_1}\right) \cdot \text{Hyperbolic\_rate\_law}\left(v, [V], [IIa], k\right)$$
 (51)

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{52}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{53}$$

Table 44: Properties of each parameter.

| Id | Name | SBO     | Value   | Unit | Constant  |
|----|------|---------|---------|------|-----------|
| V  | v    | 0000025 | 50000.0 |      |           |
| k  | k    | 0000371 | 10.0    |      | $\square$ |

# **10.11 Reaction** r11

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

#### Name r11

#### **Reaction equation**

$$Va \xrightarrow{APC\_PS} \emptyset \tag{54}$$

#### Reactant

Table 45: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| Va | Va   | 0000010 |

#### **Modifier**

Table 46: Properties of each modifier.

| Id     | Name   | SBO     |
|--------|--------|---------|
| APC_PS | APC_PS | 0000461 |

#### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

Derived unit contains undeclared units

$$v_{11} = \text{vol}(\text{compartment\_1}) \cdot \text{Hyperbolic\_rate\_law}(\text{v}, [\text{Va}], [\text{APC\_PS}], \text{k})$$
 (55)

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{56}$$

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{57}$$

Table 47: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant       |
|----|------|---------|-------|------|----------------|
| V  | V    | 0000025 | 50.0  |      | $\overline{Z}$ |
| k  | k    | 0000371 | 1.0   |      |                |

#### **10.12 Reaction** r12

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name r12

#### **Reaction equation**

$$II \xrightarrow{Va\_Xa} IIa \tag{58}$$

#### Reactant

Table 48: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| II | II   | 0000010 |

#### **Modifier**

Table 49: Properties of each modifier.

| Id    | Name  | SBO     |
|-------|-------|---------|
| Va_Xa | Va_Xa | 0000461 |

#### **Product**

Table 50: Properties of each product.

| Id  | Name | SBO     |
|-----|------|---------|
| IIa | IIa  | 0000011 |

#### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_{12} = \text{vol}(\text{compartment\_1}) \cdot \text{Hyperbolic\_rate\_law}(v, [II], [Va\_Xa], k)$$
 (59)

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{60}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, \text{substrate}, \text{enzyme}, k\right) = \frac{v \cdot \text{substrate} \cdot \text{enzyme}}{k + \text{enzyme}} \tag{61}$$

Table 51: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant                |
|----|------|---------|-------|------|-------------------------|
| v  | V    | 0000025 | 100.0 |      | $\overline{Z}$          |
| k  | k    | 0000371 | 10.0  |      | $\overline{\mathbf{Z}}$ |

# **10.13 Reaction** r13

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name r13

# **Reaction equation**

$$II \xrightarrow{Xa} IIa$$
 (62)

#### Reactant

Table 52: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| II | II   | 0000010 |

#### **Modifier**

Table 53: Properties of each modifier.

| Id | Name | SBO     |
|----|------|---------|
| Хa | Xa   | 0000461 |

# **Product**

Table 54: Properties of each product.

| Id  | Name | SBO     |
|-----|------|---------|
| IIa | IIa  | 0000011 |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

#### **Derived unit** contains undeclared units

$$v_{13} = \text{vol}(\text{compartment\_1}) \cdot \text{Hyperbolic\_rate\_law}(v, [II], [Xa], k)$$
 (63)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{64}$$

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{65}$$

Table 55: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| V  | V    | 0000025 | 9.0   |      |          |
| k  | k    | 0000371 | 500.0 |      |          |

# **10.14 Reaction** r14

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name r14

# **Reaction equation**

$$Fg \xrightarrow{IIa} F \tag{66}$$

#### Reactant

Table 56: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| Fg | Fg   | 0000010 |

#### **Modifier**

Table 57: Properties of each modifier.

| Id  | Name | SBO     |
|-----|------|---------|
| IIa | IIa  | 0000461 |

## **Product**

Table 58: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| F  | F    | 0000011 |

### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

**Derived unit** contains undeclared units

$$v_{14} = \text{vol} (\text{compartment\_1}) \cdot \text{Hyperbolic\_rate\_law} (v, [Fg], [IIa], k)$$
 (67)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{68}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{69}$$

Table 59: Properties of each parameter.

| Id | Name | SBO     | Value   | Unit | Constant       |
|----|------|---------|---------|------|----------------|
| v  | v    | 0000025 | 20000.0 |      | $\blacksquare$ |
| k  | k    | 0000371 | 0.5     |      | $\square$      |

# **10.15 Reaction** r15

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

## Name r15

## **Reaction equation**

$$Fg \xrightarrow{P} FDP \tag{70}$$

## Reactant

Table 60: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| Fg | Fg   | 0000010 |

## **Modifier**

Table 61: Properties of each modifier.

| Id | Name | SBO     |
|----|------|---------|
| Р  | P    | 0000461 |

### **Product**

Table 62: Properties of each product.

| Id  | Name | SBO     |
|-----|------|---------|
| FDP | FDP  | 0000011 |

### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_{15} = \text{vol}\left(\text{compartment}_{-1}\right) \cdot \text{Hyperbolic}_{-\text{rate}\_\text{law}}\left(v, [\text{Fg}], [\text{P}], k\right)$$
 (71)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{72}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{73}$$

Table 63: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant  |
|----|------|---------|-------|------|-----------|
| v  | v    | 0000025 | 500.0 |      |           |
| k  | k    | 0000371 | 500.0 |      | $\square$ |

## **10.16 Reaction** r16

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name r16

# **Reaction equation**

$$F \xrightarrow{\text{XIIIa}} XF \tag{74}$$

#### Reactant

Table 64: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| F  | F    | 0000010 |

#### **Modifier**

Table 65: Properties of each modifier.

| Id    | Name  | SBO     |
|-------|-------|---------|
| XIIIa | XIIIa | 0000461 |

### **Product**

Table 66: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| XF | XF   | 0000011 |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_{16} = \text{vol}\left(\text{compartment\_1}\right) \cdot \text{Hyperbolic\_rate\_law}\left(v, [F], [XIIIa], k\right)$$
 (75)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{76}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{77}$$

Table 67: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant       |
|----|------|---------|-------|------|----------------|
| ν  | V    | 0000025 | 7.0   |      | $\overline{Z}$ |
| k  | k    | 0000371 | 10.0  |      | $\checkmark$   |

## **10.17 Reaction** r17

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

## Name r17

# **Reaction equation**

$$F \xrightarrow{P} FDP \tag{78}$$

## Reactant

Table 68: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| F  | F    | 0000010 |

# **Modifier**

Table 69: Properties of each modifier.

| Id | Name | SBO     |
|----|------|---------|
| Р  | P    | 0000461 |

## **Product**

Table 70: Properties of each product.

| Id  | Name | SBO     |
|-----|------|---------|
| FDP | FDP  | 0000011 |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

Derived unit contains undeclared units

$$v_{17} = \text{vol}\left(\text{compartment}_{-1}\right) \cdot \text{Hyperbolic}_{-\text{rate}_{-}\text{law}}\left(v, [F], [P], k\right)$$
 (79)

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{80}$$

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{81}$$

Table 71: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant                  |
|----|------|---------|-------|------|---------------------------|
| v  | V    | 0000025 | 7.0   |      | $ \overline{\checkmark} $ |
| k  | k    | 0000371 | 10.0  |      |                           |

### **10.18 Reaction** r18

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

## Name r18

## **Reaction equation**

$$XF \xrightarrow{P} D$$
 (82)

#### Reactant

Table 72: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| XF | XF   | 0000010 |

### **Modifier**

Table 73: Properties of each modifier.

| Id | Name | SBO     |
|----|------|---------|
| Р  | P    | 0000461 |

## **Product**

Table 74: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| D  | D    | 0000011 |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

Derived unit contains undeclared units

$$v_{18} = \text{vol}\left(\text{compartment\_1}\right) \cdot \text{Hyperbolic\_rate\_law}\left(v, [XF], [P], k\right)$$
 (83)

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{84}$$

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{85}$$

Table 75: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| V  | v    | 0000025 | 7.0   |      |          |
| k  | k    | 0000371 | 100.0 |      |          |

### **10.19 Reaction** r19

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

## Name r19

## **Reaction equation**

$$XF \xrightarrow{APC\_PS} D$$
 (86)

#### Reactant

Table 76: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| XF | XF   | 0000010 |

#### **Modifier**

Table 77: Properties of each modifier.

| Id     | Name   | SBO     |
|--------|--------|---------|
| APC_PS | APC_PS | 0000461 |

#### **Product**

Table 78: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| D  | D    | 0000011 |

### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_{19} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{Hyperbolic\_rate\_law} \left( v, [XF], [APC\_PS], k \right)$$
 (87)

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{88}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{89}$$

Table 79: Properties of each parameter.

|    |      | •       |       |      |                |
|----|------|---------|-------|------|----------------|
| Id | Name | SBO     | Value | Unit | Constant       |
| v  | v    | 0000025 | 1.0   |      | $\overline{Z}$ |
| k  | k    | 0000371 | 1.0   |      |                |

## **10.20 Reaction** r20

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

## Name r20

# **Reaction equation**

$$XIII \xrightarrow{IIa} XIIIa$$
 (90)

## Reactant

Table 80: Properties of each reactant.

| Id   | Name | SBO     |
|------|------|---------|
| XIII | XIII | 0000010 |

### **Modifier**

Table 81: Properties of each modifier.

| Id  | Name | SBO     |
|-----|------|---------|
| IIa | IIa  | 0000461 |

## **Product**

Table 82: Properties of each product.

| Id    | Name  | SBO     |
|-------|-------|---------|
| XIIIa | XIIIa | 0000011 |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

## **Derived unit** contains undeclared units

$$v_{20} = \text{vol}\left(\text{compartment}_{-1}\right) \cdot \text{Hyperbolic\_rate\_law}\left(v, [XIII], [IIa], k\right)$$
 (91)

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{92}$$

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{93}$$

Table 83: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant     |
|----|------|---------|-------|------|--------------|
| V  | V    | 0000025 | 7.0   |      |              |
| k  | k    | 0000371 | 1.0   |      | $\checkmark$ |

# **10.21 Reaction** r21

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

# Name r21

# **Reaction equation**

$$Pg \xrightarrow{IIa} P \tag{94}$$

#### Reactant

Table 84: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| Pg | Pg   | 0000010 |

### **Modifier**

Table 85: Properties of each modifier.

| Id  | Name | SBO     |
|-----|------|---------|
| IIa | IIa  | 0000461 |

### **Product**

Table 86: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| P  | P    | 0000011 |

### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

**Derived unit** contains undeclared units

$$v_{21} = \text{vol}\left(\text{compartment\_1}\right) \cdot \text{Hyperbolic\_rate\_law}\left(v, [Pg], [IIa], k\right)$$
 (95)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{96}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{97}$$

Table 87: Properties of each parameter.

| Id | Name | SBO     | Value  | Unit | Constant   |
|----|------|---------|--------|------|------------|
| V  | V    | 0000025 | 7.0    |      | lacksquare |
| k  | k    | 0000371 | 5000.0 |      | $\square$  |

# **10.22 Reaction** r22

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

## Name r22

## **Reaction equation**

$$Pg \xrightarrow{F} P \tag{98}$$

## Reactant

Table 88: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| Pg | Pg   | 0000010 |

## **Modifier**

Table 89: Properties of each modifier.

| Id | Name | SBO     |
|----|------|---------|
| F  | F    | 0000461 |

### **Product**

Table 90: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| Р  | P    | 0000011 |

### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_{22} = \text{vol}\left(\text{compartment}_{-1}\right) \cdot \text{Hyperbolic}_{-\text{rate}_{-}\text{law}}\left(v, [Pg], [F], k\right)$$
 (99)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{100}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{101}$$

Table 91: Properties of each parameter.

| Id | Name | SBO     | Value   | Unit | Constant       |
|----|------|---------|---------|------|----------------|
| v  | V    | 0000025 | 5.0     |      | $\overline{Z}$ |
| k  | k    | 0000371 | 10000.0 |      | $\checkmark$   |

## **10.23 Reaction** r23

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name r23

# **Reaction equation**

$$Pg \xrightarrow{APC\_PS} P \tag{102}$$

#### Reactant

Table 92: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| Pg | Pg   | 0000010 |

#### **Modifier**

Table 93: Properties of each modifier.

| Id     | Name   | SBO     |
|--------|--------|---------|
| APC_PS | APC_PS | 0000461 |

### **Product**

Table 94: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| Р  | P    | 0000011 |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_{23} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{Hyperbolic\_rate\_law} \left( v, [Pg], [APC\_PS], k \right)$$
 (103)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{104}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{105}$$

Table 95: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| ν  | V    | 0000025 | 2.0   |      |          |
| k  | k    | 0000371 | 1.0   |      |          |

## **10.24 Reaction** r24

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

## Name r24

# **Reaction equation**

$$PC \xrightarrow{IIa\_Tmod} APC \tag{106}$$

## Reactant

Table 96: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| PC | PC   | 0000010 |

# **Modifier**

Table 97: Properties of each modifier.

| Id       | Name     | SBO     |
|----------|----------|---------|
| IIa_Tmod | IIa_Tmod | 0000461 |

# **Product**

Table 98: Properties of each product.

| Id  | Name | SBO     |
|-----|------|---------|
| APC | APC  | 0000011 |

### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

Derived unit contains undeclared units

$$v_{24} = \text{vol} (\text{compartment\_1}) \cdot \text{Hyperbolic\_rate\_law} (v, [PC], [IIa\_Tmod], k)$$
 (107)

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{108}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{109}$$

Table 99: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant                  |
|----|------|---------|-------|------|---------------------------|
| v  | V    | 0000025 | 7.0   |      | $ \overline{\checkmark} $ |
| k  | k    | 0000371 | 1.0   |      |                           |

### **10.25 Reaction** r25

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name r25

## **Reaction equation**

$$Va_Xa \xrightarrow{APC_PS} \emptyset$$
 (110)

#### Reactant

Table 100: Properties of each reactant.

| Id    | Name  | SBO     |
|-------|-------|---------|
| Va_Xa | Va_Xa | 0000010 |

### **Modifier**

Table 101: Properties of each modifier.

| Id     | Name   | SBO     |
|--------|--------|---------|
| APC_PS | APC_PS | 0000461 |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

**Derived unit** contains undeclared units

$$v_{25} = \text{vol}(\text{compartment\_1}) \cdot \text{Hyperbolic\_rate\_law}(\text{v}, [\text{Va\_Xa}], [\text{APC\_PS}], \text{k})$$
 (111)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, \text{substrate}, \text{enzyme}, k\right) = \frac{v \cdot \text{substrate} \cdot \text{enzyme}}{k + \text{enzyme}} \tag{112}$$

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{113}$$

Table 102: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant  |
|----|------|---------|-------|------|-----------|
| v  | v    | 0000025 | 2.0   |      |           |
| k  | k    | 0000371 | 1.0   |      | $\square$ |

### **10.26 Reaction** r26

This is an irreversible reaction of two reactants forming one product.

Name r26

### **Reaction equation**

$$IXa + VIIIa \longrightarrow IXa_VIIIa$$
 (114)

#### **Reactants**

Table 103: Properties of each reactant.

| Id  | Name | SBO     |
|-----|------|---------|
| IXa | IXa  | 0000010 |

| Id    | Name  | SBO     |
|-------|-------|---------|
| VIIIa | VIIIa | 0000010 |

## **Product**

Table 104: Properties of each product.

| 14010 10 11 11 | sperios or ea | en product. |
|----------------|---------------|-------------|
| Id             | Name          | SBO         |
| IXa_VIIIa      | IXa_VIIIa     | 0000011     |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

**Derived unit** contains undeclared units

$$v_{26} = \text{vol}\left(\text{compartment\_1}\right) \cdot \text{Irreversible\_association}\left([\text{IXa}],[\text{VIIIa}],c\right)$$
 (115)

$$Irreversible\_association(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (116)

$$Irreversible\_association(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (117)

Table 105: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| С  | c    | 0000036 | 0.01  |      |          |

## **10.27 Reaction** r27

This is an irreversible reaction of two reactants forming one product.

### Name r27

## **Reaction equation**

$$Va + Xa \longrightarrow Va\_Xa$$
 (118)

# Reactants

Table 106: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| Va | Va   | 0000010 |
| Хa | Xa   | 0000010 |

### **Product**

Table 107: Properties of each product.

| Id    | Name  | SBO     |
|-------|-------|---------|
| Va_Xa | Va_Xa | 0000011 |

# **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

Derived unit contains undeclared units

$$v_{27} = \text{vol}\left(\text{compartment\_1}\right) \cdot \text{Irreversible\_association}\left([\text{Va}], [\text{Xa}], c\right)$$
 (119)

Irreversible\_association 
$$(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (120)

Irreversible\_association 
$$(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (121)

Table 108: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| С  | c    | 0000036 | 0.5   |      |          |

### **10.28 Reaction r28**

This is an irreversible reaction of two reactants forming one product.

Name r28

## **Reaction equation**

$$IIa + Tmod \longrightarrow IIa\_Tmod$$
 (122)

## **Reactants**

Table 109: Properties of each reactant.

| Id   | Name | SBO     |
|------|------|---------|
| IIa  | IIa  | 0000010 |
| Tmod | Tmod | 0000010 |

### **Product**

Table 110: Properties of each product.

| Id          | Name     | SBO     |
|-------------|----------|---------|
| $IIa\_Tmod$ | IIa_Tmod | 0000011 |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

**Derived unit** contains undeclared units

$$v_{28} = \text{vol}\left(\text{compartment\_1}\right) \cdot \text{Irreversible\_association}\left([\text{IIa}], [\text{Tmod}], c\right)$$
 (123)

$$Irreversible\_association(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (124)

$$Irreversible\_association(s1, s2, c) = \frac{s1 \cdot s2}{c} \tag{125}$$

Table 111: Properties of each parameter.

| Id | Name | SBO Value   | e Unit Con | stant |
|----|------|-------------|------------|-------|
| С  | c    | 0000036 0.5 | <u> </u>   | 1     |

## **10.29 Reaction** r29

This is an irreversible reaction of two reactants forming one product.

Name r29

## **Reaction equation**

$$VIIa + TF \longrightarrow VIIa\_TF$$
 (126)

## **Reactants**

Table 112: Properties of each reactant.

| Id   | Name | SBO     |
|------|------|---------|
| VIIa | VIIa | 0000010 |
| TF   | TF   | 0000010 |

### **Product**

Table 113: Properties of each product.

| Id      | Name    | SBO     |
|---------|---------|---------|
| VIIa_TF | VIIa_TF | 0000011 |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_{29} = \text{vol} (\text{compartment\_1}) \cdot \text{Irreversible\_association} ([\text{VIIa}], [\text{TF}], c)$$
 (127)

Irreversible\_association 
$$(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (128)

$$Irreversible\_association(s1, s2, c) = \frac{s1 \cdot s2}{c} \tag{129}$$

Table 114: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant       |
|----|------|---------|-------|------|----------------|
| С  | c    | 0000036 | 0.5   |      | $ \mathbf{Z} $ |

## **10.30 Reaction r30**

This is an irreversible reaction of two reactants forming one product.

Name r30

# **Reaction equation**

$$VII + TF \longrightarrow VII_{-}TF$$
 (130)

## **Reactants**

Table 115: Properties of each reactant.

| Id  | Name | SBO     |
|-----|------|---------|
| VII | VII  | 0000010 |
| TF  | TF   | 0000010 |

## **Product**

Table 116: Properties of each product.

| Id     | Name   | SBO     |
|--------|--------|---------|
| VII_TF | VII_TF | 0000011 |

### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_{30} = \text{vol}\left(\text{compartment\_1}\right) \cdot \text{Irreversible\_association}\left([\text{VII}], [\text{TF}], c\right)$$
 (131)

Irreversible\_association 
$$(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (132)

Irreversible\_association 
$$(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (133)

Table 117: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| С  | c    | 0000036 | 0.1   |      |          |

## **10.31 Reaction r31**

This is an irreversible reaction of two reactants forming one product.

## Name r31

## **Reaction equation**

$$VIIa\_TF + Xa\_TFPI \longrightarrow VIIa\_TF\_Xa\_TFPI$$
 (134)

#### **Reactants**

Table 118: Properties of each reactant.

| Id      | Name    | SBO     |
|---------|---------|---------|
| VIIa_TF | VIIa_TF | 0000010 |
| Xa_TFPI | Xa_TFPI | 0000010 |

#### **Product**

Table 119: Properties of each product.

| Id              | Name            | SBO     |
|-----------------|-----------------|---------|
| VIIa_TF_Xa_TFPI | VIIa_TF_Xa_TFPI | 0000011 |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_{31} = \text{vol} (\text{compartment\_1}) \cdot \text{Irreversible\_association} ([\text{VIIa\_TF}], [\text{Xa\_TFPI}], c)$$
 (135)

$$Irreversible\_association(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (136)

Irreversible\_association 
$$(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (137)

Table 120: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| С  | c    | 0000036 | 0.5   |      |          |

## **10.32 Reaction r32**

This is an irreversible reaction of two reactants forming one product.

Name r32

# **Reaction equation**

$$Xa + TFPI \longrightarrow Xa_{-}TFPI$$
 (138)

#### **Reactants**

Table 121: Properties of each reactant.

| Id   | Name | SBO     |
|------|------|---------|
| Хa   | Xa   | 0000010 |
| TFPI | TFPI | 0000010 |

#### **Product**

Table 122: Properties of each product.

| Id      | Name    | SBO     |
|---------|---------|---------|
| Xa_TFPI | Xa_TFPI | 0000011 |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_{32} = \text{vol}(\text{compartment\_1}) \cdot \text{Irreversible\_association}([Xa], [TFPI], c)$$
 (139)

$$Irreversible\_association(s1, s2, c) = \frac{s1 \cdot s2}{c} \tag{140}$$

$$Irreversible\_association(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (141)

Table 123: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| С  | c    | 0000036 | 0.5   |      |          |

## **10.33 Reaction r33**

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

## Name r33

# **Reaction equation**

$$VII\_TF \xrightarrow{Xa} VIIa\_TF \tag{142}$$

## Reactant

Table 124: Properties of each reactant.

| Id     | Name   | SBO     |
|--------|--------|---------|
| VII_TF | VII_TF | 0000010 |

## **Modifier**

Table 125: Properties of each modifier.

| Id | Name | SBO     |
|----|------|---------|
| Хa | Xa   | 0000461 |

## **Product**

Table 126: Properties of each product.

| Id      | Name    | SBO     |
|---------|---------|---------|
| VIIa_TF | VIIa_TF | 0000011 |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

## Derived unit contains undeclared units

$$v_{33} = \text{vol}(\text{compartment\_1}) \cdot \text{Hyperbolic\_rate\_law}(\text{v}, [\text{VII\_TF}], [\text{Xa}], \text{k})$$
 (143)

$$\label{eq:hyperbolic_rate_law} Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{144}$$

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{145}$$

Table 127: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant                  |
|----|------|---------|-------|------|---------------------------|
| V  | V    | 0000025 | 70.0  |      | $ \overline{\checkmark} $ |
| k  | k    | 0000371 | 1.0   |      |                           |

# **10.34 Reaction r34**

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

## Name r34

# **Reaction equation**

$$X \xrightarrow{\text{VIIa-TF}} Xa$$
 (146)

#### Reactant

Table 128: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| X  | X    | 0000010 |

#### **Modifier**

Table 129: Properties of each modifier.

| Id      | Name    | SBO     |
|---------|---------|---------|
| VIIa_TF | VIIa_TF | 0000461 |

### **Product**

Table 130: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| Хa | Xa   | 0000011 |

### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

**Derived unit** contains undeclared units

$$v_{34} = \text{vol} (\text{compartment\_1}) \cdot \text{Hyperbolic\_rate\_law} (v, [X], [VIIa\_TF], k)$$
 (147)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{148}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{149}$$

Table 131: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant   |
|----|------|---------|-------|------|------------|
| v  | V    | 0000025 | 900.0 |      | lacksquare |
| k  | k    | 0000371 | 200.0 |      | $\square$  |

# **10.35 Reaction r**35

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name r35

## **Reaction equation**

$$IX \xrightarrow{VIIa\_TF} IXa \tag{150}$$

## Reactant

Table 132: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| IX | IX   | 0000010 |

## **Modifier**

Table 133: Properties of each modifier.

| Id      | Name    | SBO     |  |
|---------|---------|---------|--|
| VIIa_TF | VIIa_TF | 0000461 |  |

### **Product**

Table 134: Properties of each product.

| Id  | Name | SBO     |
|-----|------|---------|
| IXa | IXa  | 0000011 |

### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_{35} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{Hyperbolic\_rate\_law} \left( v, [IX], [VIIa\_TF], k \right)$$
 (151)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{152}$$

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{153}$$

Table 135: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| v  | V    | 0000025 | 70.0  |      |          |
| k  | k    | 0000371 | 1.0   |      |          |

## **10.36 Reaction r36**

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name r36

# **Reaction equation**

$$VII\_TF \xrightarrow{TF} VIIa\_TF$$
 (154)

#### Reactant

Table 136: Properties of each reactant.

| Id     | Name   | SBO     |
|--------|--------|---------|
| VII_TF | VII_TF | 0000010 |

#### **Modifier**

Table 137: Properties of each modifier.

| Id | Name | SBO     |
|----|------|---------|
| TF | TF   | 0000461 |

### **Product**

Table 138: Properties of each product.

| Id      | Name    | SBO     |  |
|---------|---------|---------|--|
| VIIa_TF | VIIa_TF | 0000011 |  |

### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_{36} = \text{vol}(\text{compartment\_1}) \cdot \text{Hyperbolic\_rate\_law}(\text{v}, [\text{VII\_TF}], [\text{TF}], \text{k})$$
 (155)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{156}$$

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{157}$$

Table 139: Properties of each parameter.

| Id | Name | SBO     | Value  | Unit | Constant  |
|----|------|---------|--------|------|-----------|
| V  | V    | 0000025 | 1000.0 |      |           |
| k  | k    | 0000371 | 1.0    |      | $\square$ |

## **10.37 Reaction r37**

This is an irreversible reaction of two reactants forming one product.

Name r37

# **Reaction equation**

$$APC + PS \longrightarrow APC\_PS$$
 (158)

#### **Reactants**

Table 140: Properties of each reactant.

| Id  | Name      | SBO                |
|-----|-----------|--------------------|
| APC | APC<br>PS | 0000010<br>0000010 |
| PS  | гэ        | 0000010            |

## **Product**

Table 141: Properties of each product.

| Id     | Name   | SBO     |
|--------|--------|---------|
| APC_PS | APC_PS | 0000011 |

### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_{37} = \text{vol}(\text{compartment}_{-1}) \cdot \text{Irreversible}_{-\text{association}}([\text{APC}], [\text{PS}], c)$$
 (159)

Irreversible\_association 
$$(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (160)

$$Irreversible\_association(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (161)

Table 142: Properties of each parameter.

| Id | Name | SBO V   | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| С  | c    | 0000036 | 0.5   |      |          |

## 10.38 Reaction r38

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

## Name r38

# **Reaction equation**

$$VII \xrightarrow{Xa} VIIa$$
 (162)

## Reactant

Table 143: Properties of each reactant.

| Id  | Name | SBO     |
|-----|------|---------|
| VII | VII  | 0000010 |

### **Modifier**

Table 144: Properties of each modifier.

| Id | Name | SBO     |
|----|------|---------|
| Хa | Xa   | 0000461 |

## **Product**

Table 145: Properties of each product.

| Id   | Name | SBO     |
|------|------|---------|
| VIIa | VIIa | 0000011 |

| Id | Name | SBO |  |
|----|------|-----|--|
|    |      |     |  |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

**Derived unit** contains undeclared units

$$v_{38} = \text{vol}(\text{compartment\_1}) \cdot \text{Hyperbolic\_rate\_law}(v, [VII], [Xa], k)$$
 (163)

$$\label{eq:hyperbolic_rate_law} Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{164}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{165}$$

Table 146: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant       |
|----|------|---------|-------|------|----------------|
| V  | V    | 0000025 | 1.0   |      | $\overline{Z}$ |
| k  | k    | 0000371 | 10.0  |      | $\mathbf{Z}$   |

## **10.39 Reaction** r39

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

## Name r39

## **Reaction equation**

$$VII \xrightarrow{VIIa\_TF} VIIa$$
 (166)

#### Reactant

Table 147: Properties of each reactant.

| Id  | Name | SBO     |
|-----|------|---------|
| VII | VII  | 0000010 |

## **Modifier**

Table 148: Properties of each modifier.

| Id      | Name    | SBO     |
|---------|---------|---------|
| VIIa_TF | VIIa_TF | 0000461 |

### **Product**

Table 149: Properties of each product.

| Id   | Name | SBO     |
|------|------|---------|
| VIIa | VIIa | 0000011 |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

**Derived unit** contains undeclared units

$$v_{39} = \text{vol} (\text{compartment\_1}) \cdot \text{Hyperbolic\_rate\_law} (v, [VII], [VIIa\_TF], k)$$
 (167)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{168}$$

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{169}$$

Table 150: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| V  | V    | 0000025 | 1.0   |      |          |
| k  | k    | 0000371 | 10.0  |      |          |

## **10.40 Reaction** r40

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

### Name r40

## **Reaction equation**

$$VII \xrightarrow{IXa} VIIa$$
 (170)

#### Reactant

Table 151: Properties of each reactant.

| Id  | Name | SBO     |
|-----|------|---------|
| VII | VII  | 0000010 |

#### **Modifier**

Table 152: Properties of each modifier.

| Id  | Name | SBO     |  |  |
|-----|------|---------|--|--|
| IXa | IXa  | 0000461 |  |  |

#### **Product**

Table 153: Properties of each product.

| Id   | Name | SBO     |  |  |
|------|------|---------|--|--|
| VIIa | VIIa | 0000011 |  |  |

### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_{40} = \text{vol}\left(\text{compartment\_1}\right) \cdot \text{Hyperbolic\_rate\_law}\left(v, [\text{VII}], [\text{IXa}], k\right)$$
 (171)

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{172}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, \text{substrate}, \text{enzyme}, k\right) = \frac{v \cdot \text{substrate} \cdot \text{enzyme}}{k + \text{enzyme}} \tag{173}$$

Table 154: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant                  |
|----|------|---------|-------|------|---------------------------|
| v  | V    | 0000025 | 0.2   |      | $\overline{Z}$            |
| k  | k    | 0000371 | 10.0  |      | $ \overline{\mathbf{Z}} $ |

# **10.41 Reaction** r41

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

## Name r41

# **Reaction equation**

$$XII \xrightarrow{CA} XIIa$$
 (174)

## Reactant

Table 155: Properties of each reactant.

| Id  | Name | SBO     |  |  |
|-----|------|---------|--|--|
| XII | XII  | 0000010 |  |  |

### **Modifier**

Table 156: Properties of each modifier.

| Id | Name | SBO     |  |  |
|----|------|---------|--|--|
| CA | CA   | 0000461 |  |  |

# **Product**

Table 157: Properties of each product.

| Id   | Name | SBO     |
|------|------|---------|
| XIIa | XIIa | 0000011 |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

## Derived unit contains undeclared units

$$v_{41} = \text{vol}\left(\text{compartment\_1}\right) \cdot \text{Hyperbolic\_rate\_law}\left(v, [XII], [CA], k\right)$$
 (175)

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{176}$$

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{177}$$

Table 158: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant      |
|----|------|---------|-------|------|---------------|
| V  | V    | 0000025 | 7.0   |      | $   \sqrt{} $ |
| k  | k    | 0000371 | 1.0   |      | $\checkmark$  |

# **10.42 Reaction** r42

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

## Name r42

# **Reaction equation**

$$XII \xrightarrow{K} XIIa$$
 (178)

### Reactant

Table 159: Properties of each reactant.

| Id  | Name | SBO     |  |  |
|-----|------|---------|--|--|
| XII | XII  | 0000010 |  |  |

#### **Modifier**

Table 160: Properties of each modifier.

| Id | Name | SBO     |  |  |
|----|------|---------|--|--|
| K  | K    | 0000461 |  |  |

### **Product**

Table 161: Properties of each product.

| Id   | Name | SBO     |  |  |
|------|------|---------|--|--|
| XIIa | XIIa | 0000011 |  |  |

### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

**Derived unit** contains undeclared units

$$v_{42} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{Hyperbolic\_rate\_law} \left( v, [XII], [K], k \right)$$
 (179)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{180}$$

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{181}$$

Table 162: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant        |
|----|------|---------|-------|------|-----------------|
| v  | V    | 0000025 | 70.0  |      | $ \mathcal{L} $ |
| k  | k    | 0000371 | 1.0   |      | $\square$       |

# **10.43 Reaction** r43

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

## Name r43

## **Reaction equation**

$$Pk \xrightarrow{XIIa} K \tag{182}$$

## Reactant

Table 163: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| Pk | Pk   | 0000010 |

## **Modifier**

Table 164: Properties of each modifier.

| Id   | Name | SBO     |
|------|------|---------|
| XIIa | XIIa | 0000461 |

#### **Product**

Table 165: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| K  | K    | 0000011 |

#### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

$$v_{43} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{Hyperbolic\_rate\_law} \left( v, [Pk], [XIIa], k \right)$$
 (183)

$$\label{eq:hyperbolic_rate_law} \text{Hyperbolic\_rate\_law}\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{184}$$

$$Hyperbolic\_rate\_law\left(v, substrate, enzyme, k\right) = \frac{v \cdot substrate \cdot enzyme}{k + enzyme} \tag{185}$$

Table 166: Properties of each parameter.

| T.J | Nome | CDO     | 17a1a | T India | Constant |
|-----|------|---------|-------|---------|----------|
| Id  | Name | SBO     | Value | Unit    | Constant |
| v   | V    | 0000025 | 7.0   |         |          |
| k   | k    | 0000371 | 1.0   |         |          |

## **10.44 Reaction** r44

This is an irreversible reaction of two reactants forming one product.

Name r44

# **Reaction equation**

$$IIa + ATIII_{-}Heparin \longrightarrow IIa_{-}ATIII_{-}Heparin$$
 (186)

## **Reactants**

Table 167: Properties of each reactant.

| Id                    | Name          | SBO     |
|-----------------------|---------------|---------|
| IIa                   | IIa           | 0000010 |
| ${	t ATIII\_Heparin}$ | ATIII_Heparin | 0000010 |

## **Product**

Table 168: Properties of each product.

| Id                | Name              | SBO     |
|-------------------|-------------------|---------|
| IIa_ATIII_Heparin | IIa_ATIII_Heparin | 0000011 |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

**Derived unit** contains undeclared units

$$v_{44} = \text{vol}(\text{compartment\_1}) \cdot \text{Irreversible\_association}([\text{IIa}], [\text{ATIII\_Heparin}], c44)$$
 (187)

Irreversible\_association 
$$(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (188)

Irreversible\_association 
$$(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (189)

## **10.45 Reaction** r45

This is an irreversible reaction of two reactants forming one product.

Name r45

$$Xa + ATIII\_Heparin \longrightarrow Xa\_ATIII\_Heparin$$
 (190)

#### **Reactants**

Table 169: Properties of each reactant.

| Id            | Name          | SBO     |
|---------------|---------------|---------|
| Xa            | Xa            | 0000010 |
| ATIII_Heparin | ATIII_Heparin | 0000010 |

#### **Product**

Table 170: Properties of each product.

| Id               | Name             | SBO     |
|------------------|------------------|---------|
| Xa_ATIII_Heparin | Xa_ATIII_Heparin | 0000011 |

#### **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

Derived unit contains undeclared units

$$v_{45} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{Irreversible\_association} \left( [Xa], [ATIII\_Heparin], c45 \right)$$
 (191)

Irreversible\_association 
$$(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (192)

Irreversible\_association 
$$(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (193)

## **10.46 Reaction** r46

This is an irreversible reaction of two reactants forming one product.

Name r46

# **Reaction equation**

$$IXa + ATIII\_Heparin \longrightarrow IXa\_ATIII\_Heparin$$
 (194)

Table 171: Properties of each reactant

| 14010 1711110          | Table 171. Properties of each reactain. |         |  |  |
|------------------------|-----------------------------------------|---------|--|--|
| Id                     | Name                                    | SBO     |  |  |
| IXa                    | IXa                                     | 0000010 |  |  |
| ${\tt ATIII\_Heparin}$ | ATIII_Heparin                           | 0000010 |  |  |

Table 172: Properties of each product.

| Id                | Name              | SBO     |
|-------------------|-------------------|---------|
| IXa_ATIII_Heparin | IXa_ATIII_Heparin | 0000011 |

## **Kinetic Law**

**SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes

Derived unit contains undeclared units

 $v_{46} = \text{vol} (\text{compartment\_1}) \cdot \text{Irreversible\_association} ([\text{IXa}], [\text{ATIII\_Heparin}], c46)$  (195)

Irreversible\_association 
$$(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (196)

Irreversible\_association 
$$(s1, s2, c) = \frac{s1 \cdot s2}{c}$$
 (197)

#### **10.47 Reaction** r47

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

## Name r47

# **Reaction equation**

$$VK \xrightarrow{C\_warf} VKH2$$
 (198)

Table 173: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| VK | VK   | 0000010 |

#### **Modifier**

Table 174: Properties of each modifier.

| Id     | Name   | SBO     |
|--------|--------|---------|
| C_warf | C_warf | 0000019 |

## **Product**

Table 175: Properties of each product.

| Id   | Name | SBO     |
|------|------|---------|
| VKH2 | VKH2 | 0000011 |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_{47} = \text{vol}(\text{compartment\_1})$$

$$\cdot \text{Warfarin\_inhibited\_first\_order\_kinetics}(\text{I\_max}, [\text{C\_warf}], \text{IC50}, [\text{VK}], \text{d\_VK2})$$
(199)

$$Warfarin\_inhibited\_first\_order\_kinetics (Imax, Cwarf, IC50, substrate, degradation) \\ = degradation \cdot substrate \cdot \left(1 - \frac{Imax \cdot Cwarf}{IC50 + Cwarf}\right)$$
 (200)

$$\begin{aligned} & Warfarin\_inhibited\_first\_order\_kinetics (Imax, Cwarf, IC50, substrate, degradation) \\ &= degradation \cdot substrate \cdot \left(1 - \frac{Imax \cdot Cwarf}{IC50 + Cwarf}\right) \end{aligned} \tag{201}$$

# **10.48 Reaction** r48

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

## Name r48

$$VKO \xrightarrow{C\_warf} VK$$
 (202)

#### Reactant

Table 176: Properties of each reactant.

| Id  | Name | SBO     |
|-----|------|---------|
| VKO | VKO  | 0000010 |

#### **Modifier**

Table 177: Properties of each modifier.

| Id     | Name   | SBO     |
|--------|--------|---------|
| C_warf | C_warf | 0000019 |

#### **Product**

Table 178: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| VK | VK   | 0000011 |

#### **Kinetic Law**

$$v_{48} = \text{vol} (\text{compartment\_1})$$

$$\cdot \text{Warfarin\_inhibited\_first\_order\_kinetics} (\text{I\_max}, [\text{C\_warf}], \text{IC50}, [\text{VKO}], \text{d\_VKO})$$
(203)

$$Warfarin\_inhibited\_first\_order\_kinetics (Imax, Cwarf, IC50, substrate, degradation) \\ = degradation \cdot substrate \cdot \left(1 - \frac{Imax \cdot Cwarf}{IC50 + Cwarf}\right)$$
 (204)

$$Warfarin\_inhibited\_first\_order\_kinetics (Imax, Cwarf, IC50, substrate, degradation) \\ = degradation \cdot substrate \cdot \left(1 - \frac{Imax \cdot Cwarf}{IC50 + Cwarf}\right)$$
 (205)

# 10.49 Reaction pII\_VKH2

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name pII\_VKH2

#### **Reaction equation**

$$\emptyset \xrightarrow{\text{VKH2}} \text{II} \tag{206}$$

Modifier

Table 179: Properties of each modifier.

| Id   | Name | SBO     |
|------|------|---------|
| VKH2 | VKH2 | 0000019 |

#### **Product**

Table 180: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| II | II   | 0000011 |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_{49} = vol (compartment_1) \cdot VKH2 mediated\_factor\_production (d_II, II0, [VKH2], VKH20)$$
(207)

## 10.50 Reaction pVII\_VKH2

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name pVII\_VKH2

$$\emptyset \xrightarrow{\text{VKH2}} \text{VII}$$
 (210)

#### **Modifier**

Table 181: Properties of each modifier.

| Id   | Name | SBO     |
|------|------|---------|
| VKH2 | VKH2 | 0000019 |

#### **Product**

Table 182: Properties of each product.

| Id  | Name | SBO     |
|-----|------|---------|
| VII | VII  | 0000011 |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{50} = vol (compartment\_1) \cdot VKH2 mediated\_factor\_production (d\_VII, VII0, [VKH2], VKH20)$$
(211)

$$VKH2 mediated\_factor\_production (d\_factor, factor\_initial, [VKH2], VKH2\_initial) \\ = \frac{d\_factor \cdot factor\_initial \cdot [VKH2]}{VKH2\_initial}$$

$$(212)$$

# 10.51 Reaction pIX\_VKH2

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

# Name $pIX_VKH2$

#### **Reaction equation**

$$\emptyset \xrightarrow{\text{VKH2}} \text{IX} \tag{214}$$

Table 183: Properties of each modifier.

| Id   | Name | SBO     |
|------|------|---------|
| VKH2 | VKH2 | 0000019 |

Table 184: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| IX | IX   | 0000011 |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{51} = vol\left(compartment\_1\right) \cdot VKH2 mediated\_factor\_production\left(d\_IX, IX0, [VKH2], VKH20\right) \tag{215}$$

# 10.52 Reaction pX\_VKH2

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name  $pX_VKH2$ 

## **Reaction equation**

$$\emptyset \xrightarrow{VKH2} X \tag{218}$$

Table 185: Properties of each modifier.

| Id   | Name | SBO     |
|------|------|---------|
| VKH2 | VKH2 | 0000019 |

Table 186: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| X  | X    | 0000011 |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{52} = vol\left(compartment\_1\right) \cdot VKH2 mediated\_factor\_production\left(d\_X, X0, [VKH2], VKH20\right) \tag{219}$$

# 10.53 Reaction pPC\_VKH2

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name pPC\_VKH2

# **Reaction equation**

$$\emptyset \xrightarrow{\text{VKH2}} \text{PC} \tag{222}$$

Table 187: Properties of each modifier.

| Id   | Name | SBO     |  |
|------|------|---------|--|
| VKH2 | VKH2 | 0000019 |  |

Table 188: Properties of each product.

| Id | Name | SBO     |  |  |
|----|------|---------|--|--|
| PC | PC   | 0000011 |  |  |

## **Kinetic Law**

Derived unit contains undeclared units

$$v_{53} = vol (compartment_1) \cdot VKH2 mediated\_factor\_production (d\_PC, PC0, [VKH2], VKH20)$$
(223)

$$VKH2 mediated\_factor\_production (d\_factor\_factor\_initial, [VKH2], VKH2\_initial) \\ = \frac{d\_factor\_factor\_initial \cdot [VKH2]}{VKH2\_initial}$$

$$(225)$$

# 10.54 Reaction pPS\_VKH2

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name pPS\_VKH2

## **Reaction equation**

$$\emptyset \xrightarrow{\text{VKH2}} \text{PS} \tag{226}$$

Table 189: Properties of each modifier.

| Id   | Name | SBO     |  |
|------|------|---------|--|
| VKH2 | VKH2 | 0000019 |  |

Table 190: Properties of each product.

| Id | Name | SBO     |  |  |
|----|------|---------|--|--|
| PS | PS   | 0000011 |  |  |

## **Kinetic Law**

Derived unit contains undeclared units

$$v_{54} = vol (compartment_1) \cdot VKH2 mediated\_factor\_production (d\_PS, PS0, [VKH2], VKH20)$$
(227)

$$VKH2 mediated\_factor\_production (d\_factor\_factor\_initial, [VKH2], VKH2\_initial) \\ = \frac{d\_factor\_factor\_initial \cdot [VKH2]}{VKH2\_initial}$$

$$(229)$$

# **10.55 Reaction** dFg

This is an irreversible reaction of one reactant forming one product.

 $\textbf{Name}\ dFg$ 

# **Reaction equation**

$$Fg \longrightarrow FDP$$
 (230)

Table 191: Properties of each reactant.

| Id | Name | SBO     |  |  |
|----|------|---------|--|--|
| Fg | Fg   | 0000010 |  |  |

Table 192: Properties of each product.

| Id  | Name | SBO     |
|-----|------|---------|
| FDP | FDP  | 0000011 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{55} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{d\_Fg} \cdot [\text{Fg}]$$
 (231)

## 10.56 Reaction dF

This is an irreversible reaction of one reactant forming one product.

Name dF

# **Reaction equation**

$$F \longrightarrow FDP$$
 (232)

## Reactant

Table 193: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| F  | F    | 0000010 |

#### **Product**

Table 194: Properties of each product.

| Id  | Name | SBO     |  |  |
|-----|------|---------|--|--|
| FDP | FDP  | 0000011 |  |  |

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

Derived unit contains undeclared units

$$v_{56} = \text{vol}(\text{compartment}_{-1}) \cdot \text{k1} \cdot [\text{F}]$$
 (233)

Table 195: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| k1 | k1   | 0000035 | 0.05  |      |          |

## 10.57 Reaction dXF

This is an irreversible reaction of one reactant forming one product.

Name dXF

# **Reaction equation**

$$XF \longrightarrow D$$
 (234)

# Reactant

Table 196: Properties of each reactant.

| Id | Name | SBO     |  |  |
|----|------|---------|--|--|
| XF | XF   | 0000010 |  |  |

#### **Product**

Table 197: Properties of each product.

| Id | Name | SBO     |  |  |
|----|------|---------|--|--|
| D  | D    | 0000011 |  |  |

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{57} = \text{vol} \left( \text{compartment}_{-1} \right) \cdot \text{k1} \cdot [\text{XF}]$$
 (235)

Table 198: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| k1 | k1   | 0000035 | 0.05  |      |          |

## 10.58 Reaction dII

This is an irreversible reaction of one reactant forming no product.

Name dII

#### **Reaction equation**

$$II \longrightarrow \emptyset$$
 (236)

#### Reactant

Table 199: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| II | II   | 0000010 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{58} = \text{vol} \left( \text{compartment}_{-1} \right) \cdot \text{d}_{-}\text{II} \cdot \left[ \text{II} \right]$$
 (237)

## 10.59 Reaction dIIa

This is an irreversible reaction of one reactant forming one product.

Name dIIa

$$IIa \longrightarrow TAT \tag{238}$$

#### Reactant

Table 200: Properties of each reactant.

| Id  | Name | SBO     |
|-----|------|---------|
| IIa | IIa  | 0000010 |

## **Product**

Table 201: Properties of each product.

| Id  | Name | SBO     |
|-----|------|---------|
| TAT | TAT  | 0000011 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{59} = \text{vol} \left( \text{compartment}_{-1} \right) \cdot \text{k1} \cdot [\text{IIa}]$$
 (239)

Table 202: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| k1 | k1   | 0000035 | 67.4  |      |          |

# 10.60 Reaction dTF

This is an irreversible reaction of one reactant forming no product.

# Name dTF

## **Reaction equation**

$$TF \longrightarrow \emptyset$$
 (240)

Table 203: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| TF | TF   | 0000010 |

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{60} = \text{vol}\left(\text{compartment}_{-1}\right) \cdot \text{k1} \cdot [\text{TF}]$$
 (241)

Table 204: Properties of each parameter.

| Id | Name | SBO V   | Value Unit | Constant |
|----|------|---------|------------|----------|
| k1 | k1   | 0000035 | 0.05       |          |

#### 10.61 Reaction dV

This is an irreversible reaction of one reactant forming no product.

Name dV

## **Reaction equation**

$$V \longrightarrow \emptyset$$
 (242)

## Reactant

Table 205: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| V  | V    | 0000010 |

#### **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

$$v_{61} = \text{vol} \left( \text{compartment}_{-1} \right) \cdot \text{d}_{-} \text{V} \cdot \left[ \text{V} \right]$$
 (243)

## 10.62 Reaction dVa

This is an irreversible reaction of one reactant forming no product.

Name dVa

# **Reaction equation**

$$Va \longrightarrow \emptyset$$
 (244)

## Reactant

Table 206: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| Va | Va   | 0000010 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{62} = \text{vol}\left(\text{compartment}_{-1}\right) \cdot \text{k1} \cdot [\text{Va}]$$
 (245)

Table 207: Properties of each parameter.

| Id | Name | SBO V     | alue Unit | Constant |
|----|------|-----------|-----------|----------|
| k1 | k1   | 0000035 2 | 0.0       |          |

## 10.63 Reaction dVII

This is an irreversible reaction of one reactant forming no product.

Name dVII

## **Reaction equation**

$$VII \longrightarrow \emptyset \tag{246}$$

Table 208: Properties of each reactant.

| Id  | Name | SBO     |
|-----|------|---------|
| VII | VII  | 0000010 |

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{63} = \text{vol}\left(\text{compartment}_{-1}\right) \cdot \text{d}_{-}\text{VII} \cdot \left[\text{VII}\right]$$
 (247)

#### 10.64 Reaction dVIIa

This is an irreversible reaction of one reactant forming no product.

Name dVIIa

## **Reaction equation**

$$VIIa \longrightarrow \emptyset \tag{248}$$

#### Reactant

Table 209: Properties of each reactant.

| Id   | Name | SBO     |
|------|------|---------|
| VIIa | VIIa | 0000010 |

#### **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

$$v_{64} = \text{vol}(\text{compartment}_1) \cdot \text{k1} \cdot [\text{VIIa}]$$
 (249)

Table 210: Properties of each parameter.

| Id | Name | SBO Value    | Unit Constant |
|----|------|--------------|---------------|
| k1 | k1   | 0000035 20.0 |               |

## 10.65 Reaction dVIII

This is an irreversible reaction of one reactant forming no product.

Name dVIII

# **Reaction equation**

$$VIII \longrightarrow \emptyset \tag{250}$$

## Reactant

Table 211: Properties of each reactant.

| Id   | Name | SBO     |
|------|------|---------|
| VIII | VIII | 0000010 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{65} = \text{vol}(\text{compartment}_{-1}) \cdot \text{d}_{-}\text{VIII} \cdot [\text{VIII}]$$
 (251)

## 10.66 Reaction dVIIIa

This is an irreversible reaction of one reactant forming no product.

Name dVIIIa

# **Reaction equation**

$$VIIIa \longrightarrow \emptyset \tag{252}$$

Table 212: Properties of each reactant.

| Id    | Name  | SBO     |
|-------|-------|---------|
| VIIIa | VIIIa | 0000010 |

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{66} = \text{vol}(\text{compartment\_1}) \cdot \text{k1} \cdot [\text{VIIIa}]$$
 (253)

Table 213: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| k1 | k1   | 0000035 | 20.0  |      |          |

## 10.67 Reaction dX

This is an irreversible reaction of one reactant forming no product.

Name dX

#### **Reaction equation**

$$X \longrightarrow \emptyset$$
 (254)

#### Reactant

Table 214: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| Х  | X    | 0000010 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{67} = \text{vol}(\text{compartment}_{-1}) \cdot \text{d}_{-}X \cdot [X]$$
 (255)

## 10.68 Reaction dXa

This is an irreversible reaction of one reactant forming no product.

Name dXa

$$Xa \longrightarrow \emptyset$$
 (256)

#### Reactant

Table 215: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| Хa | Xa   | 0000010 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{68} = \text{vol} \left( \text{compartment}_{-1} \right) \cdot \text{k1} \cdot [\text{Xa}]$$
 (257)

Table 216: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant       |
|----|------|---------|-------|------|----------------|
| k1 | k1   | 0000035 | 20.0  |      | $\overline{Z}$ |

## 10.69 Reaction dIX

This is an irreversible reaction of one reactant forming no product.

## Name dIX

# **Reaction equation**

$$IX \longrightarrow \emptyset$$
 (258)

Table 217: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| IX | IX   | 0000010 |

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{69} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{d\_IX} \cdot \left[ \text{IX} \right]$$
 (259)

#### 10.70 Reaction dIXa

This is an irreversible reaction of one reactant forming no product.

Name dIXa

## **Reaction equation**

$$IXa \longrightarrow \emptyset \tag{260}$$

#### Reactant

Table 218: Properties of each reactant.

| Id  | Name | SBO     |
|-----|------|---------|
| IXa | IXa  | 0000010 |

#### **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{70} = \text{vol}(\text{compartment}_{-1}) \cdot \text{k1} \cdot [\text{IXa}]$$
 (261)

Table 219: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant |
|----|------|----------------|----------|
| k1 | k1   | 0000035 20.0   |          |

## 10.71 Reaction dXII

This is an irreversible reaction of one reactant forming no product.

Name dXII

$$XII \longrightarrow \emptyset$$
 (262)

#### Reactant

Table 220: Properties of each reactant.

| Id  | Name | SBO     |
|-----|------|---------|
| XII | XII  | 0000010 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{71} = \text{vol}\left(\text{compartment}_{-1}\right) \cdot \text{d}_{-}\text{XII} \cdot [\text{XII}]$$
 (263)

#### 10.72 Reaction dXIIa

This is an irreversible reaction of one reactant forming no product.

Name dXIIa

## **Reaction equation**

$$XIIa \longrightarrow \emptyset$$
 (264)

## Reactant

Table 221: Properties of each reactant.

| Id   | Name | SBO     |
|------|------|---------|
| XIIa | XIIa | 0000010 |

#### **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

$$v_{72} = \text{vol} \left( \text{compartment}_{-1} \right) \cdot \text{k1} \cdot \left[ \text{XIIa} \right]$$
 (265)

Table 222: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant      |
|----|------|---------|-------|------|---------------|
| k1 | k1   | 0000035 | 20.0  |      | $ \mathbf{Z}$ |

## 10.73 Reaction dXIII

This is an irreversible reaction of one reactant forming no product.

Name dXIII

# **Reaction equation**

$$XIII \longrightarrow \emptyset$$
 (266)

#### Reactant

Table 223: Properties of each reactant.

| Id   | Name | SBO     |
|------|------|---------|
| XIII | XIII | 0000010 |

#### **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{73} = \text{vol}(\text{compartment}_{-1}) \cdot \text{d}_{-}\text{XIII} \cdot [\text{XIII}]$$
 (267)

## 10.74 Reaction dXIIIa

This is an irreversible reaction of one reactant forming no product.

Name dXIIIa

## **Reaction equation**

$$XIIIa \longrightarrow \emptyset$$
 (268)

Table 224: Properties of each reactant.

| Id    | Name  | SBO     |
|-------|-------|---------|
| XIIIa | XIIIa | 0000010 |

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{74} = \text{vol} \left( \text{compartment}_{-1} \right) \cdot \text{k1} \cdot \left[ \text{XIIIa} \right]$$
 (269)

Table 225: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| k1 | k1   | 0000035 | 0.69  |      |          |

#### 10.75 Reaction dPk

This is an irreversible reaction of one reactant forming no product.

Name dPk

## **Reaction equation**

$$Pk \longrightarrow \emptyset \tag{270}$$

## Reactant

Table 226: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| Pk | Pk   | 0000010 |

#### **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

$$v_{75} = \text{vol}(\text{compartment\_1}) \cdot \text{d\_Pk} \cdot [\text{Pk}]$$
 (271)

## 10.76 Reaction dK

This is an irreversible reaction of one reactant forming no product.

Name dK

# **Reaction equation**

$$K \longrightarrow \emptyset$$
 (272)

## Reactant

Table 227: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| K  | K    | 0000010 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{76} = \text{vol}\left(\text{compartment}_{-1}\right) \cdot \text{k1} \cdot [\text{K}]$$
 (273)

Table 228: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| k1 | k1   | 0000035 | 20.0  |      |          |

# 10.77 Reaction dPg

This is an irreversible reaction of one reactant forming no product.

Name dPg

## **Reaction equation**

$$Pg \longrightarrow \emptyset \tag{274}$$

Table 229: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| Pg | Pg   | 0000010 |

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{77} = \text{vol}(\text{compartment\_1}) \cdot \text{d\_Pg} \cdot [\text{Pg}]$$
 (275)

## 10.78 Reaction dP

This is an irreversible reaction of one reactant forming no product.

Name dP

## **Reaction equation**

$$P \longrightarrow \emptyset$$
 (276)

#### Reactant

Table 230: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| Р  | P    | 0000010 |

#### **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

$$v_{78} = \text{vol}\left(\text{compartment}_{-1}\right) \cdot \text{k1} \cdot [P]$$
 (277)

Table 231: Properties of each parameter.

| Id | Name | SBO Value    | Unit Constant |
|----|------|--------------|---------------|
| k1 | k1   | 0000035 20.0 |               |

## 10.79 Reaction dPC

This is an irreversible reaction of one reactant forming no product.

Name dPC

# **Reaction equation**

$$PC \longrightarrow \emptyset$$
 (278)

## Reactant

Table 232: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| PC | PC   | 0000010 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{79} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{d\_PC} \cdot \left[ \text{PC} \right]$$
 (279)

## 10.80 Reaction dAPC

This is an irreversible reaction of one reactant forming no product.

Name dAPC

# **Reaction equation**

$$APC \longrightarrow \emptyset \tag{280}$$

Table 233: Properties of each reactant.

| Id  | Name | SBO     |
|-----|------|---------|
| APC | APC  | 0000010 |

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{80} = \text{vol} \left( \text{compartment}_{-1} \right) \cdot \text{k1} \cdot [\text{APC}]$$
 (281)

Table 234: Properties of each parameter.

| Id | Name | SBO V   | /alue Unit | Constant |
|----|------|---------|------------|----------|
| k1 | k1   | 0000035 | 20.4       |          |

## 10.81 Reaction dPS

This is an irreversible reaction of one reactant forming no product.

Name dPS

#### **Reaction equation**

$$PS \longrightarrow \emptyset \tag{282}$$

#### Reactant

Table 235: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| PS | PS   | 0000010 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{81} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{d\_PS} \cdot [\text{PS}]$$
 (283)

## 10.82 Reaction dFDP

This is an irreversible reaction of one reactant forming no product.

Name dFDP

$$FDP \longrightarrow \emptyset$$
 (284)

#### Reactant

Table 236: Properties of each reactant.

| Id  | Name | SBO     |
|-----|------|---------|
| FDP | FDP  | 0000010 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{82} = \text{vol} \left( \text{compartment}_{-1} \right) \cdot \text{k1} \cdot [\text{FDP}]$$
 (285)

Table 237: Properties of each parameter.

| Id | Name | SBO Value Un | it Constant |
|----|------|--------------|-------------|
| k1 | k1   | 0000035 3.5  |             |

## 10.83 Reaction dD

This is an irreversible reaction of one reactant forming no product.

# Name dD

# **Reaction equation**

$$D \longrightarrow \emptyset$$
 (286)

Table 238: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| D  | D    | 0000010 |

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{83} = \text{vol}(\text{compartment}_{-1}) \cdot \text{k1} \cdot [\text{D}]$$
 (287)

Table 239: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| k1 | k1   | 0000035 | 0.1   |      |          |

## 10.84 Reaction dTFPI

This is an irreversible reaction of one reactant forming no product.

Name dTFPI

#### **Reaction equation**

$$TFPI \longrightarrow \emptyset \tag{288}$$

#### Reactant

Table 240: Properties of each reactant.

| Id   | Name | SBO     |
|------|------|---------|
| TFPI | TFPI | 0000010 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{84} = \text{vol}(\text{compartment\_1}) \cdot \text{d\_TFPI} \cdot [\text{TFPI}]$$
 (289)

## 10.85 Reaction dVIIa\_TF

This is an irreversible reaction of one reactant forming no product.

Name dVIIa\_TF

$$VIIa\_TF \longrightarrow \emptyset \tag{290}$$

#### Reactant

Table 241: Properties of each reactant.

| Id      | Name    | SBO     |
|---------|---------|---------|
| VIIa_TF | VIIa_TF | 0000010 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{85} = \text{vol}(\text{compartment}_{-1}) \cdot \text{k1} \cdot [\text{VIIa}_{-}\text{TF}]$$
 (291)

Table 242: Properties of each parameter.

| Id | Name | SBO Value    | Unit Constant |
|----|------|--------------|---------------|
| k1 | k1   | 0000035 20.0 |               |

## 10.86 Reaction dVII\_TF

This is an irreversible reaction of one reactant forming no product.

Name dVII\_TF

# **Reaction equation**

$$VII\_TF \longrightarrow \emptyset \tag{292}$$

Table 243: Properties of each reactant.

| Id     | Name   | SBO     |
|--------|--------|---------|
| VII_TF | VII_TF | 0000010 |

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{86} = \text{vol}(\text{compartment\_1}) \cdot \text{k1} \cdot [\text{VII\_TF}]$$
 (293)

Table 244: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| k1 | k1   | 0000035 | 0.7   |      |          |

## 10.87 Reaction dAPC\_PS

This is an irreversible reaction of one reactant forming no product.

Name dAPC\_PS

#### **Reaction equation**

$$APC\_PS \longrightarrow \emptyset \tag{294}$$

#### Reactant

Table 245: Properties of each reactant.

| Id     | Name   | SBO     |
|--------|--------|---------|
| APC_PS | APC_PS | 0000010 |

#### **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

$$v_{87} = \text{vol}(\text{compartment}_{-1}) \cdot \text{k1} \cdot [\text{APC\_PS}]$$
 (295)

Table 246: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant      |
|----|------|---------|-------|------|---------------|
| k1 | k1   | 0000035 | 20.0  |      | $ \mathbf{Z}$ |

## 10.88 Reaction dVa\_Xa

This is an irreversible reaction of one reactant forming no product.

Name dVa\_Xa

## **Reaction equation**

$$Va_{-}Xa \longrightarrow \emptyset$$
 (296)

## Reactant

Table 247: Properties of each reactant.

| Id    | Name  | SBO     |
|-------|-------|---------|
| Va_Xa | Va_Xa | 0000010 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{88} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{k1} \cdot \left[ \text{Va\_Xa} \right]$$
 (297)

Table 248: Properties of each parameter.

| Id | Name | SBO Value    | Unit | Constant |
|----|------|--------------|------|----------|
| k1 | k1   | 0000035 20.0 |      |          |

## 10.89 Reaction dIXa\_VIIIa

This is an irreversible reaction of one reactant forming no product.

Name dIXa\_VIIIa

## **Reaction equation**

$$IXa\_VIIIa \longrightarrow \emptyset$$
 (298)

#### Reactant

Table 249: Properties of each reactant.

| Id        | Name      | SBO     |
|-----------|-----------|---------|
| IXa_VIIIa | IXa_VIIIa | 0000010 |

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{89} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{k1} \cdot \left[ \text{IXa\_VIIIa} \right]$$
 (299)

Table 250: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| k1 | k1   | 0000035 | 20.0  |      |          |

#### 10.90 Reaction dTmod

This is an irreversible reaction of one reactant forming no product.

Name dTmod

## **Reaction equation**

$$\mathsf{Tmod} \longrightarrow \emptyset \tag{300}$$

## Reactant

Table 251: Properties of each reactant.

| Id   | Name | SBO     |
|------|------|---------|
| Tmod | Tmod | 0000010 |

#### **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

$$v_{90} = \text{vol}(\text{compartment}_{-1}) \cdot \text{d}_{-}\text{Tmod} \cdot [\text{Tmod}]$$
 (301)

## 10.91 Reaction dIIa\_Tmod

This is an irreversible reaction of one reactant forming no product.

Name dIIa\_Tmod

## **Reaction equation**

$$IIa\_Tmod \longrightarrow \emptyset \tag{302}$$

## Reactant

Table 252: Properties of each reactant.

| Id       | Name     | SBO     |
|----------|----------|---------|
| IIa_Tmod | IIa_Tmod | 0000010 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{91} = \text{vol}(\text{compartment\_1}) \cdot \text{k1} \cdot [\text{IIa\_Tmod}]$$
 (303)

Table 253: Properties of each parameter.

| Id | Name | SBO V     | alue Unit | Constant |
|----|------|-----------|-----------|----------|
| k1 | k1   | 0000035 2 | 0.0       |          |

## 10.92 Reaction dXa\_TFPI

This is an irreversible reaction of one reactant forming no product.

Name dXa\_TFPI

## **Reaction equation**

$$Xa\_TFPI \longrightarrow \emptyset$$
 (304)

## Reactant

Table 254: Properties of each reactant.

| Id      | Name    | SBO     |
|---------|---------|---------|
| Xa_TFPI | Xa_TFPI | 0000010 |

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{92} = \text{vol}(\text{compartment}_{-1}) \cdot \text{k1} \cdot [\text{Xa}_{-}\text{TFPI}]$$
 (305)

Table 255: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| k1 | k1   | 0000035 | 20.0  |      |          |

#### 10.93 Reaction dVIIa\_TF\_Xa\_TFPI

This is an irreversible reaction of one reactant forming no product.

Name dVIIa\_TF\_Xa\_TFPI

## **Reaction equation**

$$VIIa\_TF\_Xa\_TFPI \longrightarrow \emptyset$$
 (306)

## Reactant

Table 256: Properties of each reactant.

| Id              | Name            | SBO     |
|-----------------|-----------------|---------|
| VIIa_TF_Xa_TFPI | VIIa_TF_Xa_TFPI | 0000010 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

$$v_{93} = \text{vol} (\text{compartment\_1}) \cdot \text{k1} \cdot [\text{VIIa\_TF\_Xa\_TFPI}]$$
 (307)

Table 257: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant      |
|----|------|---------|-------|------|---------------|
| k1 | k1   | 0000035 | 20.0  |      | $ \mathbf{Z}$ |

## 10.94 Reaction dTAT

This is an irreversible reaction of one reactant forming no product.

Name dTAT

## **Reaction equation**

$$TAT \longrightarrow \emptyset \tag{308}$$

#### Reactant

Table 258: Properties of each reactant.

| Id  | Name | SBO     |
|-----|------|---------|
| TAT | TAT  | 0000010 |

#### **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{94} = \text{vol} \left( \text{compartment}_{-1} \right) \cdot \text{k1} \cdot [\text{TAT}]$$
 (309)

Table 259: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| k1 | k1   | 0000035 | 0.2   |      |          |

## 10.95 Reaction dCA

This is an irreversible reaction of one reactant forming no product.

## Name dCA

## **Reaction equation**

$$CA \longrightarrow \emptyset$$
 (310)

#### Reactant

Table 260: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| CA | CA   | 0000010 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{95} = \text{vol}(\text{compartment}_{-1}) \cdot \text{k1} \cdot [\text{CA}]$$
 (311)

Table 261: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| k1 | k1   | 0000035 | 0.05  |      | Ø        |

## 10.96 Reaction dXIa

This is an irreversible reaction of one reactant forming no product.

Name dXIa

## **Reaction equation**

$$XIa \longrightarrow \emptyset$$
 (312)

#### Reactant

Table 262: Properties of each reactant.

| Id  | Name | SBO     |
|-----|------|---------|
| XIa | XIa  | 0000010 |

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{96} = \text{vol} \left( \text{compartment}_{-1} \right) \cdot \text{k1} \cdot [\text{XIa}]$$
 (313)

Table 263: Properties of each parameter.

| Id | Name | SBO     | Value | Unit | Constant |
|----|------|---------|-------|------|----------|
| k1 | k1   | 0000035 | 20.0  |      |          |

## 10.97 Reaction dVKH2

This is an irreversible reaction of one reactant forming one product.

## Name dVKH2

#### **Reaction equation**

$$VKH2 \longrightarrow VKO$$
 (314)

#### Reactant

Table 264: Properties of each reactant.

| Id   | Name | SBO     |
|------|------|---------|
| VKH2 | VKH2 | 0000010 |

## **Product**

Table 265: Properties of each product.

| Id  | Name | SBO     |
|-----|------|---------|
| VKO | VKO  | 0000011 |

#### **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

$$v_{97} = \text{vol} \left( \text{compartment}_{-1} \right) \cdot \text{d}_{-}\text{VKH2} \cdot \left[ \text{VKH2} \right]$$
 (315)

## 10.98 Reaction VK\_transport

This is a reversible reaction of one reactant forming one product.

Name VK\_transport

## **Reaction equation**

$$VK \rightleftharpoons VK_p$$
 (316)

#### Reactant

Table 266: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| VK | VK   | 0000010 |

## **Product**

Table 267: Properties of each product.

| Id   | Name | SBO     |
|------|------|---------|
| VK_p | VK_p | 0000011 |

### **Kinetic Law**

**SBO:0000080** mass action rate law for first order forward, first order reverse, reversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$\textit{v}_{98} = vol\left(compartment\_1\right) \cdot \left(VitaminK\_k12 \cdot \left[VK\right] - VitaminK\_k21\_Vc \cdot \left[VK\_p\right]\right) \quad (317)$$

# 10.99 Reaction eHeparin

This is an irreversible reaction of one reactant forming no product.

Name eHeparin

## **Reaction equation**

$$ATIII\_Heparin \longrightarrow \emptyset$$
 (318)

#### Reactant

Table 268: Properties of each reactant.

| Id            | Name          | SBO     |
|---------------|---------------|---------|
| ATIII_Heparin | ATIII_Heparin | 0000010 |

#### **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{99} = \text{vol} (\text{compartment\_1}) \cdot \text{Heparin\_ke} \cdot [\text{ATIII\_Heparin}]$$
 (319)

## 10.100 Reaction eHeparinXa

This is an irreversible reaction of one reactant forming no product.

Name eHeparinXa

#### **Reaction equation**

$$Xa\_ATIII\_Heparin \longrightarrow \emptyset$$
 (320)

#### Reactant

Table 269: Properties of each reactant.

| 14010 2071110    | permes or each reach |         |
|------------------|----------------------|---------|
| Id               | Name                 | SBO     |
| Xa_ATIII_Heparin | Xa_ATIII_Heparin     | 0000010 |

#### **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{100} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{Heparin\_ke} \cdot \left[ \text{Xa\_ATIII\_Heparin} \right]$$
 (321)

## 10.101 Reaction eHeparinIXa

This is an irreversible reaction of one reactant forming no product.

Name eHeparinIXa

#### **Reaction equation**

$$IXa\_ATIII\_Heparin \longrightarrow \emptyset$$
 (322)

#### Reactant

Table 270: Properties of each reactant.

| Id                | Name              | SBO     |
|-------------------|-------------------|---------|
| IXa_ATIII_Heparin | IXa_ATIII_Heparin | 0000010 |

#### **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{101} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{Heparin\_ke} \cdot \left[ \text{IXa\_ATIII\_Heparin} \right]$$
 (323)

## 10.102 Reaction eHeparinIIa

This is an irreversible reaction of one reactant forming no product.

Name eHeparinIIa

## **Reaction equation**

$$IIa\_ATIII\_Heparin \longrightarrow \emptyset$$
 (324)

## Reactant

Table 271: Properties of each reactant.

| Id                | Name              | SBO     |
|-------------------|-------------------|---------|
| IIa_ATIII_Heparin | IIa_ATIII_Heparin | 0000010 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

$$v_{102} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{Heparin\_ke} \cdot \left[ \text{IIa\_ATIII\_Heparin} \right]$$
 (325)

## 10.103 Reaction dXI

This is an irreversible reaction of one reactant forming no product.

Name dXI

## **Reaction equation**

$$XI \longrightarrow \emptyset$$
 (326)

## Reactant

Table 272: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| XI | XI   | 0000010 |

## **Kinetic Law**

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{103} = \text{vol}\left(\text{compartment}_{-1}\right) \cdot \text{k1} \cdot [\text{XI}]$$
 (327)

Table 273: Properties of each parameter.

| Id | Name | SBO Val    | ue Unit | Constant |
|----|------|------------|---------|----------|
| k1 | k1   | 0000035 0. | 1       |          |

## 10.104 Reaction pXII

This is an irreversible reaction of no reactant forming one product.

## Name pXII

## **Reaction equation**

$$\emptyset \longrightarrow XII$$
 (328)

## **Product**

Table 274: Properties of each product.

| Id  | Name | SBO     |
|-----|------|---------|
| XII | XII  | 0000011 |

**Derived unit** contains undeclared units

$$v_{104} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{Factor\_production} \left( \text{XII0}, \text{d\_XII} \right)$$
 (329)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (330)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (331)

## 10.105 Reaction pVIII

This is an irreversible reaction of no reactant forming one product.

Name pVIII

## **Reaction equation**

$$\emptyset \longrightarrow VIII$$
 (332)

#### **Product**

Table 275: Properties of each product.

| Id   | Name | SBO     |
|------|------|---------|
| VIII | VIII | 0000011 |

## **Kinetic Law**

$$v_{105} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{Factor\_production} \left( \text{VIII0}, \text{d\_VIII} \right)$$
 (333)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (334)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (335)

## 10.106 Reaction pXI

This is an irreversible reaction of no reactant forming one product.

Name pXI

## **Reaction equation**

$$\emptyset \longrightarrow XI$$
 (336)

## **Product**

Table 276: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| XI | XI   | 0000011 |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{106} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{Factor\_production} \left( \text{XIO}, \text{d\_XI} \right)$$
 (337)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (338)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (339)

## 10.107 Reaction pV

This is an irreversible reaction of no reactant forming one product.

Name pV

## **Reaction equation**

$$\emptyset \longrightarrow V$$
 (340)

### **Product**

Table 277: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| V  | V    | 0000011 |

**Derived unit** contains undeclared units

$$v_{107} = \text{vol}\left(\text{compartment}_{-1}\right) \cdot \text{Factor\_production}\left(\text{V0}, \text{d}_{-}\text{V}\right)$$
 (341)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (342)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (343)

## 10.108 Reaction pFg

This is an irreversible reaction of no reactant forming one product.

Name pFg

## **Reaction equation**

$$\emptyset \longrightarrow Fg$$
 (344)

#### **Product**

Table 278: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| Fg | Fg   | 0000011 |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{108} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{Factor\_production} \left( \text{Fg0,d\_Fg} \right)$$
 (345)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (346)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (347)

## 10.109 Reaction pXIII

This is an irreversible reaction of no reactant forming one product.

Name pXIII

## **Reaction equation**

$$\emptyset \longrightarrow XIII$$
 (348)

#### **Product**

Table 279: Properties of each product.

| Id   | Name | SBO     |
|------|------|---------|
| XIII | XIII | 0000011 |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{109} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{Factor\_production} \left( \text{XIII0, d\_XIII} \right)$$
 (349)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (350)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (351)

# 10.110 Reaction pPg

This is an irreversible reaction of no reactant forming one product.

Name pPg

## **Reaction equation**

$$\emptyset \longrightarrow Pg$$
 (352)

## **Product**

Table 280: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| Pg | Pg   | 0000011 |

#### **Kinetic Law**

$$v_{110} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{Factor\_production} \left( \text{Pg0,d\_Pg} \right)$$
 (353)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (354)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (355)

## 10.111 Reaction pTmod

This is an irreversible reaction of no reactant forming one product.

Name pTmod

## **Reaction equation**

$$\emptyset \longrightarrow \text{Tmod}$$
 (356)

#### **Product**

Table 281: Properties of each product.

| Id   | Name | SBO     |
|------|------|---------|
| Tmod | Tmod | 0000011 |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{111} = \text{vol}\left(\text{compartment}_{-1}\right) \cdot \text{Factor\_production}\left(\text{Tmod0}, \text{d}_{-}\text{Tmod}\right)$$
 (357)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (358)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (359)

## 10.112 Reaction pTFPI

This is an irreversible reaction of no reactant forming one product.

Name pTFPI

## **Reaction equation**

$$\emptyset \longrightarrow TFPI$$
 (360)

### **Product**

Table 282: Properties of each product.

| Id   | Name | SBO     |
|------|------|---------|
| TFPI | TFPI | 0000011 |

#### **Derived unit** contains undeclared units

$$v_{112} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{Factor\_production} \left( \text{TFPIO}, \text{d\_TFPI} \right)$$
 (361)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (362)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (363)

## 10.113 Reaction pPk

This is an irreversible reaction of no reactant forming one product.

### Name pPk

## **Reaction equation**

$$\emptyset \longrightarrow Pk$$
 (364)

#### **Product**

Table 283: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| Pk | Pk   | 0000011 |

## **Kinetic Law**

$$v_{113} = \text{vol} \left( \text{compartment\_1} \right) \cdot \text{Factor\_production} \left( \text{Pk0}, \text{d\_Pk} \right)$$
 (365)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (366)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (367)

## 10.114 Reaction pVK

This is an irreversible reaction of no reactant forming one product.

Name pVK

## **Reaction equation**

$$\emptyset \longrightarrow VK$$
 (368)

## **Product**

Table 284: Properties of each product.

| Id | Name | SBO     |
|----|------|---------|
| VK | VK   | 0000011 |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{114} = \text{vol}\left(\text{compartment\_1}\right) \cdot \text{Factor\_production}\left(\text{VK0}, \text{d\_VK}\right)$$
 (369)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (370)

Factor\_production (initial, degradation) = initial 
$$\cdot$$
 degradation (371)

#### 10.115 Reaction dVK

This is an irreversible reaction of one reactant forming no product.

Name dVK

## **Reaction equation**

$$VK \longrightarrow \emptyset$$
 (372)

### Reactant

Table 285: Properties of each reactant.

| Id | Name | SBO     |
|----|------|---------|
| VK | VK   | 0000010 |

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

**Derived unit** contains undeclared units

$$v_{115} = \text{vol}(\text{compartment}_{-1}) \cdot \text{d}_{-}\text{VK} \cdot [\text{VK}]$$
 (373)

# 11 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

## 11.1 Species IIa

Name IIa

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in twelve reactions (as a reactant in r28, r44, dIIa and as a product in r12, r13 and as a modifier in r1\_, r5\_, r6\_, r10, r14, r20, r21).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{IIa} = |v_{12}| + |v_{13}| - |v_{28}| - |v_{44}| - |v_{59}| \tag{374}$$

## 11.2 Species VIII

Name VIII

Initial concentration 0.7 nmol·l<sup>-1</sup>

Initial assignment VIII

This species takes part in three reactions (as a reactant in r1\_, dVIII and as a product in pVIII).

$$\frac{d}{dt}VIII = |v_{105}| - |v_1| - |v_{65}| \tag{375}$$

## 11.3 Species VIIIa

Name VIIIa

Initial concentration  $0 \text{ nmol} \cdot 1^{-1}$ 

This species takes part in four reactions (as a reactant in  $r2_-$ , r26, dVIIIa and as a product in  $r1_-$ ).

$$\frac{d}{dt}VIIIa = |v_1| - |v_2| - |v_{26}| - |v_{66}|$$
(376)

## 11.4 Species APC\_PS

Name APC\_PS

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in seven reactions (as a reactant in dAPC\_PS and as a product in r37 and as a modifier in r2\_, r11, r19, r23, r25).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{APC}.\mathrm{PS} = |v_{37}| - |v_{87}| \tag{377}$$

## 11.5 Species IX

Name IX

Initial concentration 89.6 nmol·1<sup>-1</sup>

Initial assignment IX

This species takes part in four reactions (as a reactant in r3\_, r35, dIX and as a product in pIX\_VKH2).

$$\frac{\mathrm{d}}{\mathrm{d}t}IX = |v_{51}| - |v_3| - |v_{35}| - |v_{69}| \tag{378}$$

## 11.6 Species IXa

Name IXa

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in seven reactions (as a reactant in r26, r46, dIXa and as a product in  $r3_-$ , r35 and as a modifier in  $r7_-$ , r40).

$$\frac{\mathrm{d}}{\mathrm{d}t} IXa = |v_3| + |v_{35}| - |v_{26}| - |v_{46}| - |v_{70}| \tag{379}$$

## 11.7 Species XIa

Name XIa

Initial concentration  $0 \text{ nmol} \cdot 1^{-1}$ 

This species takes part in four reactions (as a reactant in dXIa and as a product in  $r4_-$ ,  $r5_-$  and as a modifier in  $r3_-$ ).

$$\frac{d}{dt}XIa = |v_4| + |v_5| - |v_{96}| \tag{380}$$

## 11.8 Species XI

Name XI

Initial concentration  $30.6 \text{ nmol} \cdot l^{-1}$ 

Initial assignment XI

This species takes part in four reactions (as a reactant in r4-, r5-, dXI and as a product in pXI).

$$\frac{\mathrm{d}}{\mathrm{d}t}XI = |v_{106}| - |v_4| - |v_5| - |v_{103}| \tag{381}$$

## 11.9 Species XIIa

Name XIIa

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in five reactions (as a reactant in dXIIa and as a product in r41, r42 and as a modifier in r4\_, r43).

$$\frac{\mathrm{d}}{\mathrm{d}t}XIIa = |v_{41}| + |v_{42}| - |v_{72}| \tag{382}$$

## 11.10 Species VII

Name VII

Initial concentration  $10 \text{ nmol} \cdot 1^{-1}$ 

Initial assignment VII

This species takes part in seven reactions (as a reactant in r6\_, r30, r38, r39, r40, dVII and as a product in pVII\_VKH2).

$$\frac{\mathrm{d}}{\mathrm{d}t}VII = |v_{50}| - |v_{6}| - |v_{30}| - |v_{38}| - |v_{39}| - |v_{40}| - |v_{63}|$$
(383)

## 11.11 Species VIIa

Name VIIa

Initial concentration  $0 \text{ nmol} \cdot 1^{-1}$ 

This species takes part in seven reactions (as a reactant in r29, dVIIa and as a product in  $r6_{-}$ , r38, r39, r40 and as a modifier in  $r9_{-}$ ).

$$\frac{\mathrm{d}}{\mathrm{d}t}VIIa = |v_6| + |v_{38}| + |v_{39}| + |v_{40}| - |v_{29}| - |v_{64}|$$
(384)

## **11.12 Species** X

Name X

Initial concentration  $174.3 \text{ nmol} \cdot l^{-1}$ 

Initial assignment X

This species takes part in six reactions (as a reactant in r7\_, r8\_, r9\_, r34, dX and as a product in pX\_VKH2).

$$\frac{\mathrm{d}}{\mathrm{d}t}X = v_{52} - v_7 - v_8 - v_9 - v_{34} - v_{67} \tag{385}$$

## 11.13 Species Xa

Name Xa

Initial concentration  $0 \text{ nmol} \cdot 1^{-1}$ 

This species takes part in eleven reactions (as a reactant in r27, r32, r45, dXa and as a product in r7, r8, r9, r34 and as a modifier in r13, r33, r38).

$$\frac{\mathrm{d}}{\mathrm{d}t} X a = v_7 + v_8 + v_9 + v_{34} - v_{27} - v_{32} - v_{45} - v_{68}$$
 (386)

#### 11.14 Species IXa\_VIIIa

Name IXa\_VIIIa

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in dIXa\_VIIIa and as a product in r26 and as a modifier in r8\_).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IXa\_VIIIa} = |v_{26}| - |v_{89}| \tag{387}$$

## **11.15 Species V**

#### Name V

Initial concentration  $26.7 \text{ nmol} \cdot l^{-1}$ 

#### Initial assignment V

This species takes part in three reactions (as a reactant in r10, dV and as a product in pV).

$$\frac{\mathrm{d}}{\mathrm{d}t}V = |v_{107} - v_{10}| - |v_{61}| \tag{388}$$

## 11.16 Species Va

#### Name Va

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in four reactions (as a reactant in r11, r27, dVa and as a product in r10).

$$\frac{\mathrm{d}}{\mathrm{d}t} Va = |v_{10}| - |v_{11}| - |v_{27}| - |v_{62}| \tag{389}$$

## **11.17 Species** II

#### Name II

Initial concentration  $1394.4 \text{ nmol} \cdot l^{-1}$ 

## Initial assignment II

This species takes part in four reactions (as a reactant in r12, r13, dII and as a product in pII\_VKH2).

$$\frac{\mathrm{d}}{\mathrm{d}t}II = |v_{49}| - |v_{12}| - |v_{13}| - |v_{58}| \tag{390}$$

#### 11.18 Species F

#### Name F

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in five reactions (as a reactant in r16, r17, dF and as a product in r14 and as a modifier in r22).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{F} = |v_{14}| - |v_{16}| - |v_{17}| - |v_{56}| \tag{391}$$

## 11.19 Species Fg

Name Fg

Initial concentration  $8945.5 \text{ nmol} \cdot l^{-1}$ 

Initial assignment Fg

This species takes part in four reactions (as a reactant in r14, r15, dFg and as a product in pFg).

$$\frac{d}{dt}Fg = |v_{108}| - |v_{14}| - |v_{15}| - |v_{55}| \tag{392}$$

## 11.20 Species DP

Name DP

Initial concentration  $0 \text{ nmol} \cdot 1^{-1}$ 

Involved in rule DP

One rule determines the species' quantity.

## **11.21 Species** P

Name P

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in seven reactions (as a reactant in dP and as a product in r21, r22, r23 and as a modifier in r15, r17, r18).

$$\frac{\mathrm{d}}{\mathrm{d}t}P = |v_{21}| + |v_{22}| + |v_{23}| - |v_{78}| \tag{393}$$

# 11.22 Species XF

Name XF

Initial concentration  $0 \text{ nmol} \cdot 1^{-1}$ 

This species takes part in four reactions (as a reactant in r18, r19, dXF and as a product in r16).

$$\frac{\mathrm{d}}{\mathrm{d}t}XF = |v_{16}| - |v_{18}| - |v_{19}| - |v_{57}| \tag{394}$$

## 11.23 Species XIII

Name XIII

Initial concentration  $70.3 \text{ nmol} \cdot l^{-1}$ 

Initial assignment XIII

This species takes part in three reactions (as a reactant in r20, dXIII and as a product in pXIII).

$$\frac{\mathrm{d}}{\mathrm{d}t}XIII = |v_{109}| - |v_{20}| - |v_{73}| \tag{395}$$

## 11.24 Species Pg

Name Pg

Initial concentration  $2154.3 \text{ nmol} \cdot l^{-1}$ 

Initial assignment Pg

This species takes part in five reactions (as a reactant in r21, r22, r23, dPg and as a product in pPg).

$$\frac{\mathrm{d}}{\mathrm{d}t} Pg = |v_{110}| - |v_{21}| - |v_{22}| - |v_{23}| - |v_{77}|$$
(396)

## 11.25 Species APC

Name APC

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in r37, dAPC and as a product in r24).

$$\frac{d}{dt}APC = |v_{24}| - |v_{37}| - |v_{80}| \tag{397}$$

#### 11.26 Species IIa\_Tmod

Name IIa\_Tmod

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in dIIa\_Tmod and as a product in r28 and as a modifier in r24).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IIa}_{-}\mathrm{Tmod} = |v_{28}| - |v_{91}| \tag{398}$$

## 11.27 Species PC

Name PC

Initial concentration  $60 \text{ nmol} \cdot 1^{-1}$ 

Initial assignment PC

This species takes part in three reactions (as a reactant in r24, dPC and as a product in pPC-\_VKH2).

$$\frac{\mathrm{d}}{\mathrm{d}t}PC = |v_{53}| - |v_{24}| - |v_{79}| \tag{399}$$

### 11.28 Species Tmod

Name Tmod

Initial concentration  $50 \text{ nmol} \cdot l^{-1}$ 

Initial assignment Tmod

This species takes part in three reactions (as a reactant in r28, dTmod and as a product in pTmod).

$$\frac{d}{dt} \text{Tmod} = |v_{111}| - |v_{28}| - |v_{90}| \tag{400}$$

## 11.29 Species TF

Name TF

Initial concentration  $300 \text{ nmol} \cdot l^{-1}$ 

This species takes part in four reactions (as a reactant in r29, r30, dTF and as a modifier in r36).

$$\frac{d}{dt}TF = -v_{29} - v_{30} - v_{60} \tag{401}$$

#### 11.30 Species VIIa\_TF

Name VIIa\_TF

Initial concentration  $0 \text{ nmol} \cdot 1^{-1}$ 

This species takes part in eight reactions (as a reactant in r31, dVIIa\_TF and as a product in r29, r33, r36 and as a modifier in r34, r35, r39).

$$\frac{d}{dt}VIIa\_TF = |v_{29}| + |v_{33}| + |v_{36}| - |v_{31}| - |v_{85}|$$
(402)

## 11.31 Species VII\_TF

Name VII\_TF

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in four reactions (as a reactant in r33, r36, dVII\_TF and as a product in r30).

$$\frac{d}{dt}VII\_TF = |v_{30}| - |v_{33}| - |v_{36}| - |v_{86}|$$
 (403)

## 11.32 Species Xa\_TFPI

Name Xa\_TFPI

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in r31, dXa\_TFPI and as a product in r32).

$$\frac{d}{dt}Xa_{-}TFPI = |v_{32}| - |v_{31}| - |v_{92}|$$
 (404)

# 11.33 Species TFPI

Name TFPI

Initial concentration  $2.5 \text{ nmol} \cdot l^{-1}$ 

Initial assignment TFPI

This species takes part in three reactions (as a reactant in r32, dTFPI and as a product in pTFPI).

$$\frac{d}{dt}TFPI = |v_{112}| - |v_{32}| - |v_{84}|$$
 (405)

## 11.34 Species PS

Name PS

Initial concentration 300 nmol·l<sup>-1</sup>

Initial assignment PS

This species takes part in three reactions (as a reactant in r37, dPS and as a product in pPS-\_VKH2).

$$\frac{d}{dt}PS = |v_{54}| - |v_{37}| - |v_{81}| \tag{406}$$

## 11.35 Species VKH2

Name VKH2

Initial concentration  $0.1 \text{ nmol} \cdot l^{-1}$ 

Initial assignment VKH2

This species takes part in eight reactions (as a reactant in dVKH2 and as a product in r47 and as a modifier in pII\_VKH2, pVII\_VKH2, pIX\_VKH2, pX\_VKH2, pPC\_VKH2, pPS\_VKH2).

$$\frac{d}{dt}VKH2 = |v_{47}| - |v_{97}| \tag{407}$$

## 11.36 Species Va\_Xa

Name Va\_Xa

Initial concentration  $0 \text{ nmol} \cdot 1^{-1}$ 

This species takes part in four reactions (as a reactant in r25, dVa\_Xa and as a product in r27 and as a modifier in r12).

$$\frac{d}{dt} Va_X a = |v_{27}| - |v_{25}| - |v_{88}| \tag{408}$$

## 11.37 Species CA

Name CA

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in dCA and as a modifier in r41).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CA} = -v_{95} \tag{409}$$

## 11.38 Species XII

Name XII

Initial concentration  $375 \text{ nmol} \cdot l^{-1}$ 

Initial assignment XII

This species takes part in four reactions (as a reactant in r41, r42, dXII and as a product in pXII).

$$\frac{\mathrm{d}}{\mathrm{d}t}XII = |v_{104}| - |v_{41}| - |v_{42}| - |v_{71}| \tag{410}$$

## **11.39 Species K**

#### Name K

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in dK and as a product in r43 and as a modifier in r42).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{K} = |v_{43}| - |v_{76}| \tag{411}$$

## 11.40 Species ATIII\_Heparin

Name ATIII\_Heparin

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in four reactions (as a reactant in r44, r45, r46, eHeparin).

$$\frac{d}{dt}ATIII_{\text{Heparin}} = -v_{44} - v_{45} - v_{46} - v_{99}$$
(412)

## 11.41 Species Xa\_ATIII\_Heparin

Name Xa\_ATIII\_Heparin

Initial concentration  $0 \text{ nmol} \cdot 1^{-1}$ 

This species takes part in two reactions (as a reactant in eHeparinXa and as a product in r45).

$$\frac{d}{dt}Xa\_ATIII\_Heparin = |v_{45}| - |v_{100}|$$
(413)

## 11.42 Species VK

Name VK

Initial concentration  $1 \text{ nmol} \cdot l^{-1}$ 

Initial assignment VK

This species takes part in five reactions (as a reactant in r47, VK\_transport, dVK and as a product in r48, pVK).

$$\frac{\mathrm{d}}{\mathrm{d}t}VK = |v_{48}| + |v_{114}| - |v_{47}| - |v_{98}| - |v_{115}| \tag{414}$$

## 11.43 Species C\_warf

Name C\_warf

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

Involved in rule C\_warf

This species takes part in two reactions (as a modifier in r47, r48). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

## 11.44 Species VKO

Name VKO

Initial concentration  $0.1 \text{ nmol} \cdot l^{-1}$ 

Initial assignment VKO

This species takes part in two reactions (as a reactant in r48 and as a product in dVKH2).

$$\frac{\mathrm{d}}{\mathrm{d}t} VKO = |v_{97}| - |v_{48}| \tag{415}$$

## 11.45 Species Pk

Name Pk

Initial concentration  $450 \text{ nmol} \cdot 1^{-1}$ 

Initial assignment Pk

This species takes part in three reactions (as a reactant in r43, dPk and as a product in pPk).

$$\frac{\mathrm{d}}{\mathrm{d}t} Pk = |v_{113}| - |v_{43}| - |v_{75}| \tag{416}$$

## 11.46 Species FDP

Name FDP

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in five reactions (as a reactant in dFDP and as a product in r15, r17, dFg, dF).

$$\frac{d}{dt}FDP = |v_{15}| + |v_{17}| + |v_{55}| + |v_{56}| - |v_{82}|$$
(417)

## 11.47 Species D

#### Name D

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in four reactions (as a reactant in dD and as a product in r18, r19, dXF).

$$\frac{\mathrm{d}}{\mathrm{d}t}D = |v_{18}| + |v_{19}| + |v_{57}| - |v_{83}| \tag{418}$$

## 11.48 Species TAT

Name TAT

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in dTAT and as a product in dIIa).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TAT} = |v_{59}| - |v_{94}| \tag{419}$$

## 11.49 Species VIIa\_TF\_Xa\_TFPI

Name VIIa\_TF\_Xa\_TFPI

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in dVIIa\_TF\_Xa\_TFPI and as a product in r31).

$$\frac{d}{dt}VIIa\_TF\_Xa\_TFPI = v_{31} - v_{93}$$
 (420)

## 11.50 Species XIIIa

Name XIIIa

Initial concentration  $0 \text{ nmol} \cdot 1^{-1}$ 

This species takes part in three reactions (as a reactant in dXIIIa and as a product in r20 and as a modifier in r16).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{XIIIa} = |v_{20}| - |v_{74}| \tag{421}$$

## 11.51 Species IIa\_ATIII\_Heparin

Name IIa\_ATIII\_Heparin

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in eHeparinIIa and as a product in r44).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{IIa\_ATIII\_Heparin} = |v_{44}| - |v_{102}| \tag{422}$$

## 11.52 Species A\_warf

Name A\_warf

Initial concentration  $0 \text{ nmol} \cdot 1^{-1}$ 

Involved in rule A\_warf

One rule determines the species' quantity.

## 11.53 Species IXa\_ATIII\_Heparin

Name IXa\_ATIII\_Heparin

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in eHeparinIXa and as a product in r46).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IXa\_ATIII\_Heparin} = |v_{46}| - |v_{101}| \tag{423}$$

## 11.54 Species VK\_p

Name  $VK_{-}p$ 

Initial concentration  $0 \text{ nmol} \cdot l^{-1}$ 

This species takes part in one reaction (as a product in VK\_transport).

$$\frac{\mathrm{d}}{\mathrm{d}t} V \mathbf{K}_{-} \mathbf{p} = v_{98} \tag{424}$$

# A Glossary of Systems Biology Ontology Terms

- **SBO:0000010 reactant:** Substance consumed by a chemical reaction. Reactants react with each other to form the products of a chemical reaction. In a chemical equation the Reactants are the elements or compounds on the left hand side of the reaction equation. A reactant can be consumed and produced by the same reaction, its global quantity remaining unchanged
- **SBO:0000011 product:** Substance that is produced in a reaction. In a chemical equation the Products are the elements or compounds on the right hand side of the reaction equation. A product can be produced and consumed by the same reaction, its global quantity remaining unchanged
- **SBO:0000019 modifier:** Substance that changes the velocity of a process without itself being consumed or transformed by the reaction
- **SBO:0000025** catalytic rate constant: Numerical parameter that quantifies the velocity of an enzymatic reaction
- **SBO:0000028** enzymatic rate law for irreversible non-modulated non-interacting unireactant enzymes: Kinetics of enzymes that react only with one substance, their substrate. The enzymes do not catalyse the reactions in both directions.
- **SBO:000035** forward unimolecular rate constant, continuous case: Numerical parameter that quantifies the forward velocity of a chemical reaction involving only one reactant. This parameter encompasses all the contributions to the velocity except the quantity of the reactant. It is to be used in a reaction modelled using a continuous framework
- **SBO:000036 forward bimolecular rate constant, continuous case:** Numerical parameter that quantifies the forward velocity of a chemical reaction involving two reactants. This parameter encompasses all the contributions to the velocity except the quantity of the reactants. It is to be used in a reaction modelled using a continuous framework
- **SBO:0000038** reverse unimolecular rate constant, continuous case: Numerical parameter that quantifies the reverse velocity of a chemical reaction involving only one product. This parameter encompasses all the contributions to the velocity except the quantity of the product. It is to be used in a reaction modelled using a continuous framework
- **SBO:000049** mass action rate law for first order irreversible reactions, continuous scheme:

  Reaction scheme where the products are created from the reactants and the change of a product quantity is proportional to the product of reactant activities. The reaction scheme does not include any reverse process that creates the reactants from the products. The change of a product quantity is proportional to the quantity of one reactant. It is to be used in a reaction modelled using a continuous framework.
- SBO:0000080 mass action rate law for first order forward, first order reverse, reversible reactions, continuous scheme: Reaction scheme where the products are created from the

reactants and the change of a product quantity is proportional to the product of reactant activities. The reaction scheme does include a reverse process that creates the reactants from the products. The rate of the forward process is proportional to the quantity of one reactant. The rate of the reverse process is proportional to the quantity of one product. It is to be used in a reaction modelled using a continuous framework.

**SBO:0000371** Michaelis constant in quasi-steady state situation: Michaelis constant derived using a steady-state assumption for enzyme-substrate and enzyme-product intermediates. For example see Briggs-Haldane equation (SBO:0000031)

**SBO:0000461 essential activator:** A substance that is absolutely required for occurrence and stimulation of a reaction

SML2ATEX was developed by Andreas Dräger<sup>a</sup>, Hannes Planatscher<sup>a</sup>, Dieudonné M Wouamba<sup>a</sup>, Adrian Schröder<sup>a</sup>, Michael Hucka<sup>b</sup>, Lukas Endler<sup>c</sup>, Martin Golebiewski<sup>d</sup> and Andreas Zell<sup>a</sup>. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

<sup>&</sup>lt;sup>a</sup>Center for Bioinformatics Tübingen (ZBIT), Germany

<sup>&</sup>lt;sup>b</sup>California Institute of Technology, Beckman Institute BNMC, Pasadena, United States

<sup>&</sup>lt;sup>c</sup>European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

<sup>&</sup>lt;sup>d</sup>EML Research gGmbH, Heidelberg, Germany