

GATE | PSUs

Text Book:

Theory with worked out Examples and Practice Questions

ELECTROMAGNETICS

Chapter 1

Static Fields

(Solutions for Text Book Practice Questions)

01. Ans: 1

Sol:
$$\vec{V} = x \cos^2 y \hat{i} + x^2 e^z \hat{j} + z \sin^2 y \hat{k}$$

= $x \cos^2 y \hat{a}_x + x^2 e^z \hat{a}_y + z \sin^2 y \hat{a}_z$

From divergence theorem

$$\iint \overline{\mathbf{V}}.\hat{\mathbf{n}} \, d\mathbf{s} = \int_{\mathbf{v}} (\nabla \cdot \overline{\mathbf{D}}) d\mathbf{v} \dots 1$$

$$\nabla .\overline{D} = \frac{\partial}{\partial x} (x \cos^2 y) + \frac{\partial}{\partial y} (x^2 e^z) + \frac{\partial}{\partial z} (z \sin^2 y)$$
$$= \cos^2 y + \sin^2 y = 1$$

$$dv = dxdydz$$

Putting these value in equation 1 we have

$$\oint \overline{V} \cdot \hat{n} \, ds = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} 1 \times dx \, dy \, dz$$

$$= \int_{0}^{1} dx \int_{0}^{1} dy \int_{0}^{1} dz = 1$$

02. Ans: (c)

Sol: Given
$$\vec{A} = x y \vec{a}_x + x^2 \vec{a}_y$$

Let $I = \oint \overrightarrow{A} \cdot d \overrightarrow{\ell}$, I is evaluated over the path shown in the Fig., as follows

 $I = \oint \vec{A} \cdot dx \vec{a}_x$, y = 1, $x = \text{from } \frac{1}{\sqrt{3}}$ to $\frac{2}{\sqrt{3}}$

$$+\int \vec{A} \cdot dy \, \vec{a}_y, \quad x = \frac{2}{\sqrt{3}}, y = \text{from 1 to 3}$$

$$-\int \vec{A} \cdot dx \, \vec{a}_x, \quad y = 3, x = \text{from } \frac{1}{\sqrt{3}} \text{ to } \frac{2}{\sqrt{3}}$$

$$-\int \vec{A} \cdot dy \, \vec{a}_y, \quad x = 1/\sqrt{3}, \quad y = \text{from 1 to 3}$$

$$= \int xy \, dx + \int x^2 \, dy - \int xy \, dx - \int x^2 \, dy$$

$$= y \frac{x^2}{2} \Big|_{1/\sqrt{3}}^{2/\sqrt{3}} + x^2 y \Big|_{1}^{3} - y \frac{x^2}{2} \Big|_{1/\sqrt{3}}^{2/\sqrt{3}} - x^2 y \Big|_{1}^{3}$$
at $y = 1$ $x = 2/\sqrt{3}$ $y = 3$ $x = 1/\sqrt{3}$

$$= \frac{1}{2} \left(\frac{4}{3} - \frac{1}{3} \right) + \frac{4}{3} (3 - 1) - \frac{3}{2} \left(\frac{4}{3} - \frac{1}{3} \right) - \frac{1}{3} (3 - 1)$$

$$= \frac{1}{2} + \frac{8}{3} - \frac{3}{2} - \frac{2}{3} = -1 + 2 = 1$$

03. Ans: (d)

Sol:
$$\overline{F} = \rho a_{\rho} + \rho \sin^2 \phi \ a_{\phi} - z a_z$$

= $F_{\rho} a_{\rho} + F_{\phi} a_{\phi} + F_z a_z$

$$\nabla \cdot \overline{F} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho F_{\rho}) + \frac{1}{\rho} \frac{\partial}{\partial \phi} (F_{\phi}) + \frac{\partial}{\partial z} (F_{z})$$

$$= \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho^{2}) + \frac{1}{\rho} \frac{\partial}{\partial \phi} (\rho \sin^{2} \phi) + \frac{\partial}{\partial z} (-z)$$

$$= 2 + 2 \sin\phi \cos\phi - 1$$

$$= 1 + 2 \sin\phi \cos\phi$$

$$\nabla .\overline{F}\Big|_{\phi=\frac{\pi}{4}}=2,\ \nabla .\overline{F}\Big|_{\phi=0}=1$$

$$\left. \nabla.\, \overline{F} \right|_{\phi = \frac{\pi}{4}} = 2 \nabla.\, \overline{F} \Big|_{\phi = 0}$$

04. Ans: (c)

Sol:
$$\overline{D} = 2\hat{a}_x - 2\sqrt{3}\hat{a}_Z$$
 $\overline{D} = |\overline{D}|\overline{a}_n$
 $|\overline{D}| = \sqrt{16} = 4$ $= \rho_s \hat{a}_n$

$$\therefore \overline{D} = 4 \left\{ \frac{2\hat{a}_{x} - 2\sqrt{3}\hat{a}_{z}}{4} \right\}$$
$$= \rho_{s}\hat{a}_{n} \qquad \therefore \rho_{s} = 4 \frac{C}{m^{2}}$$

Sol:
$$V = 10y^4 + 20x^3$$

 $E = -\nabla V = -60x^2 \hat{a}_x - 40y^3 \hat{a}_y$
 $D = \varepsilon_0 E = -60x^2 \varepsilon_0 \hat{a}_x - 40y^3 \varepsilon_0 \hat{a}_y$
 $\nabla .D = \rho_v$

$$\begin{split} \rho_{v} &= \frac{\partial}{\partial x} (-60x^{2} \epsilon_{0}) + \frac{\partial}{\partial y} (-40y^{3} \epsilon_{0}) \\ &= -120 \ x \epsilon_{0} - 120 \ y^{2} \epsilon_{0} \end{split}$$

$$\rho_{\nu}(\text{at } 2, 0) = -120 \times 2\epsilon_{0} - 120 \times 0^{2} \epsilon_{0}$$

$$= -240 \epsilon_{0}$$

06. Ans: (d)

Sol: Given

$$V(x, y, z) = 50 x^{2} + 50 y^{2} + 50 z^{2}$$

$$\stackrel{\rightarrow}{E}(x, y, z) \text{ in free space} = -\text{grad }(V)$$

$$= -\nabla V$$

$$= -\left[\frac{\partial}{\partial x} \overrightarrow{V} \overrightarrow{a_x} + \frac{\partial}{\partial y} \overrightarrow{V} \overrightarrow{a_y} + \frac{\partial}{\partial z} \overrightarrow{V} \overrightarrow{a_z}\right]$$
$$= -\left[100x \overrightarrow{a_x} + 100y \overrightarrow{a_y} + 100z \overrightarrow{a_z}\right] V/m$$

$$\vec{E} (1,-1,1) = -\left[100 \vec{a}_x - 100 \vec{a}_y + 100 \vec{a}_z\right] V/m$$

$$\vec{E} (1,-1,1) = 100 \sqrt{(-1)^2 + (1)^2 + (-1)^2}$$

$$= 100\sqrt{3}$$

Direction of the electric field is given by the unit vector in the direction of $\stackrel{\rightarrow}{E}$.

$$\vec{a}_E = \frac{\vec{E}(1, -1, 1)}{\left| E(1, -1, 1) \right|} = \frac{1}{\sqrt{3}} \left[-\vec{a}_x + \vec{a}_y - \vec{a}_z \right]$$
or in i, j, k notation, $\vec{a}_E = \frac{1}{\sqrt{3}} \left[-i + j - k \right]$

07. Ans: (b)

Sol: For valid B, ∇ .B = 0

$$\left(\frac{\partial}{\partial x}a_x + \frac{\partial}{\partial y}a_y + \frac{\partial}{\partial z}a_z\right)(x^2a_x - xya_y - Kxza_z) = 0$$

$$2x - x - Kx = 0$$

$$\Rightarrow 2 - 1 - K = 0$$

$$\therefore K = 1$$

08. Ans: (d)

Sol: The two infinitely long wires are oriented as shown in the Fig.

The infinitely long wire in the y-z plane carrying current along the \vec{a}_y direction produces the magnetic field at the origin in the direction of $\vec{a}_y \times -\vec{a}_z = -\vec{a}_x$.

The infinitely long wire in the x-y plane carrying current along the \vec{a}_x direction produces the magnetic field at the origin in the direction of $\vec{a}_x \times -\vec{a}_y = -\vec{a}_z$.

where \vec{a}_x , \vec{a}_y and \vec{a}_z are unit vectors along the 'x', 'y' and 'z' axes respectively.

 \therefore x and z components of magnetic field are non-zero at the origin.

09. Ans: (a)

Sol: $\nabla . \mathbf{B} = 0$

A divergence less vector may be a curl of some other vector

$$\overline{\mathbf{B}} = \nabla \times \overline{\mathbf{A}}$$

$$\nabla \times \overline{\mathbf{A}} = \overline{\mathbf{B}}$$

$$\oint \overline{A} . \overline{dl} = \int \overline{B} . \overline{ds}$$

 $\int\limits_s \overline{B} \,.\, \overline{ds} \quad \text{is equal to magnetic flux } \psi$ through a surface.

10. Ans: (c)

Sol: In general, for an infinite sheet of current density K A/m

$$H = \frac{1}{2}K \times a_{n}$$

$$H = \frac{1}{2}(8\overline{a}_{x} \times \overline{a}_{z})$$

$$= -4 \overline{a}_{y} (: \overline{a}_{x} \times \overline{a}_{z} = -\overline{a}_{y})$$

11. Ans: (b)

Sol:

$$\varepsilon_{\rm r} = 1$$
 $\overline{E}_2 = a_{\rm x}$

$$\varepsilon_{r} = 2 \qquad \overline{E}_{1} = 2a_{x}$$

$$D_{n_{2}} - D_{n_{1}} = \rho_{S} \rightarrow (a)$$

$$D_{n_{2}} = \varepsilon E_{n_{2}} = \varepsilon_{0} a_{x}$$

$$D_{n_{1}} = \varepsilon_{0} 2 \times 2a_{x} = 4\varepsilon_{0} a_{x}$$
From (a)
$$(\varepsilon_{0} - 4 \varepsilon_{0}) a_{x} = \rho_{S} \Rightarrow \rho_{S} = -3\varepsilon_{0}$$

12. Ans: (a)

Sol:

$$\mu_{r_1} = 2$$
 $\mu_{r_2} = 1$
 $z = 0$

$$B_1 = 1.2 \,\overline{a}_x + 0.8 \,\overline{a}_y + 0.4 \,\overline{a}_z$$

$$B_{n_1} = 0.4 \overline{a}_z$$

(Since z = 0 has normal component a_x)

$$B_{t_1} = 1.2 \ \overline{a}_x + 0.8 \ \overline{a}_y$$

We know magnetic flux density is continuous

$$\mathbf{B}_{\mathbf{n}_1} = \mathbf{B}_{\mathbf{n}_2}$$

$$B_{n_2} = 0.4 \overline{a}_z$$

Surface charge, $\overline{k} = 0$

$$H_{t_2} - H_{t_1} = 0$$

$$H_{t_2} = H_{t_1}$$

$$\mu_1 B_{t_2} = \mu_2 B_{t_1}$$

$$B_{t_2} = \frac{1}{2} (1.2 a_x + 0.8 a_y)$$

$$B_2 = B_{t_2} + B_{n_2} = 0.6 \, \overline{a}_x + 0.\overline{4} \, a_y + 0.4 \, \overline{a}_z$$

$$\mu_0 \, \mu_{r_y} \, H_2 = 0.6 \, \overline{a}_x + 0.\overline{4} \, a_y + 0.4 \, \overline{a}_z$$

$$H_2 = \frac{1}{\mu_0} [0.6 \ \overline{a}_x + 0.\overline{4} a_y + 0.4 \overline{a}_z] A/m$$

13. Ans: (b)

1995

Since

Sol: Tangential components of electric fields are continuous $(E_{t_1} = E_{t_2})$

$$E_1 \sin \alpha_1 = E_2 \sin \alpha_2 - - - - (1)$$

Normal component of electric flux densities are continuous across a charge free interface

$$D_{n_1} = D_{n_2}$$

$$3E_1 \cos \alpha_1 = \sqrt{3}E_2 \cos \alpha_2 - - - - (2)$$

$$\alpha_{1} = 60^{0}$$

$$\frac{(1)}{(2)} \Rightarrow \frac{\tan \alpha_1}{3} = \frac{\tan \alpha_2}{\sqrt{3}} \Rightarrow \tan \alpha_2 = 1$$

$$\alpha_2 = 45^0$$

Chapter 2

Maxwell's Equations & EM Waves

Identify polarization of following (Page number 71 in Volume –I booklet)

01.
$$\overline{E} = 20 \sin(\omega t - \beta x) \hat{a}_y V/m$$

Sol: At
$$x = 0$$

$$\overline{E} = 20\sin(\omega t)\hat{a}_{y} V/m$$

Let
$$\theta = \omega t$$

$$\theta = 0 \Rightarrow \overline{E} = 0$$

$$\theta = \frac{\pi}{2} \implies \overline{E} = 20 \hat{a}_y$$

$$\theta = \pi \Rightarrow \overline{E} = 0$$

$$\theta = \frac{3\pi}{2} \implies \overline{E} = -20 \hat{a}_y$$

$$\theta = \pi \Rightarrow \overline{E} = 0$$

i.e., linear polarization and also vertical polarization with respect to \hat{x} – axis

$$\mathbf{02.} \quad \overline{\mathbf{H}} = 45\cos(\omega t - \beta z)\hat{\mathbf{a}}_{x} \mathbf{A}/\mathbf{m}$$

Sol: This is linear polarization

03.
$$\overline{E} = 20\sin(\omega t - \beta z)\hat{a}_x + 30\sin(\omega t - \beta z)\hat{a}_y$$

Sol: phase difference between \hat{a}_x component and \hat{a}_y component is 0°

So that it is linear polarization

Note: for phase difference 0° & 180°, irrespective of their amplitudes it must be in linear polarization.

04.
$$\overline{E} = 55\cos(\omega t - \beta z)\hat{a} + 55\sin(\omega t - \beta z)\hat{a}$$

Sol: Phase difference between \hat{a}_x component and

$$\hat{a}_{y}$$
 component is $\frac{\pi}{2}$

Amplitudes are same.

So it is circular polarization

at
$$z = 0$$
 and let $\theta = \omega t$

$$\theta = 0 \Rightarrow \overline{E} = 55\hat{a} + 0\hat{a}$$

$$\theta = \frac{\pi}{2} \Longrightarrow \overline{E} = 0 \hat{a}_x + 55 \hat{a}_y$$

It is CCW direction i.e. RHCP

05.
$$\overline{E} = 40 \sin(\omega t - \beta y) \hat{a}_x + 50 \cos(\omega t - \beta y) \hat{a}_z$$

Sol: Phase difference =
$$\frac{\pi}{2}$$

Amplitudes = not same

So it is elliptical polarization. To decide direction of rotation follow below procedure.

At
$$y = 0$$
, and Let $\theta = \omega t$

$$\theta = 0 \Rightarrow \overline{E} = 0 \hat{a} + 50 \hat{a}$$

$$\theta = \frac{\pi}{2} \Rightarrow \overline{E} = 40 \hat{a}_x + 0 \hat{a}_z$$

$$\theta = \pi \Rightarrow \overline{E} = 0 \hat{a}_x - 50 \hat{a}_z$$

$$\theta = \frac{3\pi}{2} \Rightarrow \overline{E} = -40 \hat{a}_x + 0 \hat{a}_z$$

It is Anti clock wise direction i.e., Right Hand Elliptical Polarization.

Sol:
$$\overline{E} = \text{Re}\left\{\left[\hat{a}_{x} + j\hat{a}_{y}\right]e^{j(\omega t - \beta Z)}\right\}$$

$$\overline{E} = \text{Re}\left[\frac{(\cos(\omega t - \beta z) + j\sin(\omega t - \beta z))\hat{a}_{x} + j(\cos(\omega t - \beta z) + j^{2}\sin(\omega t - \beta z)\hat{a}_{y})}{\left[\left[\cos(\omega t - \beta z)\hat{a}_{x} - \sin(\omega t - \beta z)\hat{a}_{y}\right]\right]}$$

$$\overline{E} = \left(\cos(\omega t - \beta z)\hat{a}_{x} - \sin(\omega t - \beta z)\hat{a}_{y}\right)$$

Magnitudes of amplitudes are same, phase difference is $\frac{\pi}{2}$; So it is circular polarization. Now we proceed to decide direction of rotation.

Here

$$\overline{E} = \cos(\omega t - \beta z)\hat{a}_{x} - \sin(\omega t - \beta z)\hat{a}_{y}$$

At
$$z = 0$$
 & let $\theta = \omega t$

$$\theta = 0 \Rightarrow \overline{E} = \hat{a}_x - 0\hat{a}_y$$

$$\theta = \frac{\pi}{2} \Rightarrow \overline{E} = 0 \, \hat{a}_x - \hat{a}_y$$

$$\theta = \pi \Rightarrow \overline{E} = -\hat{a}_x + 0\hat{a}_y$$

$$\theta = \frac{3\pi}{2} \Rightarrow \overline{E} = 0 \, \hat{a}_{x} - \hat{a}_{y}$$

i.e., we get clock wise rotation i.e., Left Hand Circular Polarization

07. not a valid EM wave representation

08.

Sol:
$$\overline{E} = 5\cos(\omega t - \beta r)\hat{a}_{\alpha}$$

Let
$$r = 0 \& \theta = \omega t$$

at
$$\theta = 0 \Rightarrow \overline{E} = 5\hat{a}_{\theta}$$

$$\theta = \frac{\pi}{2} \Longrightarrow \overline{E} = 0 \hat{a}_{\theta}$$

$$\theta = \pi \Rightarrow \overline{E} = -5\hat{a}$$

$$\theta = \frac{3\pi}{2} \Rightarrow \overline{E} = 0\hat{a}_{\theta}$$

i.e., linear polarization

09.

Sol:
$$\overline{E} = \text{Im}\{[\hat{a}_x + 2j\hat{a}_z]e^{j(\omega t - \beta y)}\}\$$

$$= \text{Im}\{[\cos(\omega t - \beta y) + j\sin(\omega t - \beta y)]\hat{a}_x + 2j[\cos(\omega t - \beta y) + j\sin(\omega t - \beta y)]\hat{a}_z\}$$

$$= \sin(\omega t - \beta y) \hat{a} + 2\cos(\omega t - \beta y) \hat{a}$$

$$= \sin(\omega t - \beta y) \hat{a} + 2\cos(\omega t - \beta y) \hat{a}$$

Let
$$y = 0 \& \theta = \omega t$$

$$\theta = 0 \Rightarrow \overline{E} = 0\hat{a} + 2\hat{a}$$

$$\theta = \frac{\pi}{2} \Rightarrow \overline{E} = \hat{a}_x + 0\hat{a}_z$$

$$\theta = \pi \Rightarrow \overline{E} = 0\hat{a} - 2\hat{a}$$

$$\theta = \frac{3\pi}{2} \Longrightarrow \overline{E} = -\hat{a}_x + 0\hat{a}_z$$

So it is Right Hand Elliptical Polarization

10.
$$\overline{E} = 20 \sin(\omega t - \beta y) \hat{a}_x + 30 \sin(\omega t - \beta y + 45^\circ) \hat{a}_z$$

Sol: let
$$y = 0 \& \theta = \omega t$$

At
$$\theta = 0$$

$$\Rightarrow \overline{E} = 0\hat{a}_x + 30\sin 45^{\circ} \hat{a}_z$$

$$= 0\hat{a}_x + \frac{30}{\sqrt{2}}\hat{a}_z$$
At $\theta = \frac{\pi}{2} \Rightarrow \overline{E} = 20\hat{a}_x + 30\sin(135^{\circ})\hat{a}_z$

$$= 20\hat{a}_x + \frac{30}{\sqrt{2}}\hat{a}_z$$
At $\theta = \pi \Rightarrow \overline{E} = 0\hat{a}_x + 30\sin(225^{\circ})\hat{a}_z$

$$= 0\hat{a}_x - \frac{30}{\sqrt{2}}\hat{a}_z$$
At $\theta = \frac{3\pi}{2} \Rightarrow \overline{E} = -20\hat{a}_x + 30\sin(315^{\circ})\hat{a}_z$

$$= -20\hat{a}_x - \frac{30}{\sqrt{2}}\hat{a}_z$$

Note: $\theta = 62.76^{\circ}$ is the maximum values direction obtained by

$$\frac{d\overline{E}}{d\theta} = 0 \text{ at } y = 0 \text{ \& } \omega t = \theta$$

at
$$\theta = -\frac{\pi}{4} \Rightarrow \overline{E} = \frac{-20}{\sqrt{2}} \hat{a}_x + 0 \hat{a}_z$$

at
$$\theta = \frac{\pi}{4} \implies \overline{E} = \frac{20}{\sqrt{2}} \hat{a}_x + 30 \hat{a}_z$$

So it is RHEP

11. $\overline{E} = 20\sin(\omega t - \beta z)\hat{a}_x + 20\sin(\omega t - \beta z + 45^\circ)\hat{a}_y$

Sol: Valid EM wave but polarization can not defined.

This is a valid EM wave representation but it is not satisfy anyone of the polarization principle

Text Book Practice Solutions

01. Ans: (c)

Sol: Given flux $\phi = (t^3-2t)$ mWb

Magnitude of inducted emf $|e'| = \left| \frac{d\phi}{dt} \right|_{t=4sec}$

$$|e'| = 3t^2 - 2|_{t=4 \text{ sec}}$$

= 3(4)²-2
= 46mWb

This 'e' for one turn; but for 100 turns

$$|\mathbf{e}| = N|\mathbf{e}'| = 100 \times 46 \text{mWb}$$

$$|e| = 4.6 \text{ volts}$$

02. Ans: (d)

Sol: Given,

$$E = 120 \pi \cos (10^6 \pi t - \beta x) \hat{a}_y V/m$$

$$H = A \cos (10^6 \pi t - \beta x) \hat{a}_z A/m$$

$$\varepsilon_r = 8; \mu_r = 2$$

We know that,
$$\frac{E_y}{H_z} = \eta = \sqrt{\frac{\mu}{\epsilon}}$$

$$H_z = \frac{E_y}{120\pi\sqrt{\frac{2}{8}}} = \frac{2E_y}{120\pi} = 2A/m$$

$$H_z = 2 \cos (10^6 \pi t - \beta x) \hat{a}_z A/m$$

$$\therefore A = 2$$

$$\beta = \omega \sqrt{\mu \epsilon} = \frac{10^6 \pi \times \sqrt{2 \times 8}}{3 \times 10^8}$$

= 0.0418 rad/m

03. Ans: (b)

Sol: This question relates to normal incidence of a UPW on the air (medium 1) to glass (medium 2) interface as shown in Fig.

$$\begin{array}{c|cccc} \text{Medium, 1} & & \text{Medium, 2} \\ \text{Ai} & & \text{Glass slab} \\ \\ n_1 = 1 & & & \\ \mu_1 = \mu_0 & & & \\ \epsilon_1 = \epsilon_0 & & \epsilon_2 = \epsilon_0 \epsilon_r \\ \\ \hline \text{Fig.} \\ \end{array}$$

If n_1 and n_2 are the refractive indices and v_1 and v_2 are the velocities

$$\frac{\mathbf{n}_1}{\mathbf{n}_2} = \frac{\mathbf{v}_2}{\mathbf{v}_1} = \frac{\sqrt{\mu_1 \in_1}}{\sqrt{\mu_2 \in_2}}$$

$$= \sqrt{\frac{\epsilon_1}{\epsilon_2}} \quad \text{for } \mu_1 = \mu_2 = \mu_0$$

For
$$n_1 = 1$$
, $n_2 = 1.5$

$$\sqrt{\frac{\epsilon_1}{\epsilon_2}} = \frac{1}{1.5} = \frac{2}{3}$$

Reflection coefficient,

$$\frac{E_{r}}{E_{i}} = \frac{\sqrt{\frac{\epsilon_{1}}{\epsilon_{2}}} - 1}{\sqrt{\frac{\epsilon_{1}}{\epsilon_{2}}} + 1} = \frac{\frac{2}{3} - 1}{\frac{2}{3} + 1} = -\frac{1}{5}$$

$$\therefore \frac{P_r}{P_i} = \frac{|E_r|^2}{|E_i|^2} = \frac{1}{25} = 4\%$$

04. Ans: (d)

Sol: Normal incidence is shown in Fig.

Given: $E_{max} = 5 E_{min}$ in medium 1.

: VSWR,
$$S = \frac{E_{max}}{E_{min}} = 5$$

 $|K| = \frac{S-1}{S+1} = \frac{5-1}{5+1} = \frac{2}{3}$

Reflection coefficient,

$$K = \frac{E_r}{E_i} = \frac{\frac{\eta_2}{\eta_1} - 1}{\frac{\eta_2}{\eta_1} + 1} = \frac{-2}{3}$$

$$-3\frac{\eta_2}{\eta_1} + 3 = 2\frac{\eta_2}{\eta_1} + 2$$

$$\therefore \frac{\eta_2}{\eta_1} = \frac{1}{5}, \quad \eta_2 = \frac{1}{5}\eta_1$$

$$\eta_1 = \sqrt{\frac{\mu_0}{\epsilon_0}}$$

$$= \sqrt{4\pi \times 10^{-7} \times 36\pi \times 10^9}$$

$$= (120\pi) \Omega$$

... Intrinsic impedance of the dielectric medium, $\eta_2 = \frac{1}{5} \times 120 \,\pi = 24\pi$

05. Ans: (a)

Sol: Given:

$$\vec{E} = 10(\hat{a}_y + j\hat{a}_z) e^{-j25x}$$
 in free space.

$$\vec{E} = (E_v \vec{a}_v + E_z \vec{a}_z) e^{-j\beta x}$$

$$\beta = 25 = \frac{\omega}{c} \Rightarrow$$

$$\omega = 25 \ c = 25 \times 3 \times 10^8 \ rad/s$$

$$f = 1.19 \text{ GHz} \approx 1.2 \text{ GHz}$$

$$E_y = 10, E_z = j \cdot 10$$

At
$$x = 0$$

Let
$$E_v = 10 \cos(\omega t)$$

then
$$E_z = 10 \cos (\omega t + 90^\circ)$$

A Left Hand screw is to be turned in the direction along the circle as time increases so that the screw moves in the direction of propagation, 'x'.

.. The wave is left circularly polarized.

06. Ans: (b)

Since

Sol:
$$\overline{H} = 0.2\cos(\omega t - \beta x)\hat{a}_z$$

Wave is progressing along + X direction \rightarrow (+X)

$$\frac{E_y}{H_z} = \eta = -\frac{E_z}{H_y}$$

$$\therefore \overline{E} = 0.2 \eta \cos(\omega t - \beta x) \hat{a}_y$$

$$\overline{P}_{avg} = \frac{1}{2} \overline{E}_s \times \overline{H}_s^*$$
$$= \frac{1}{2} (0.2)^2 \, \eta \, \hat{a}_x$$

$$= \frac{1}{2} (0.2)^2 (120\pi) \hat{a}_x \text{ w/m}^2$$

$$x = 1 \text{ plane} \Rightarrow \overline{d}s = dydz \hat{a}_x$$

$$W_{avg} = \int_{S} \overline{P}_{avg}.\overline{d}s \text{ watts}$$

$$= \frac{1}{2} (0.2)^2 (120\pi) \iint dydz$$

$$= \left[\frac{1}{2} ((0.2)^2 (120\pi)) \right] \left[\pi(5)^2 \right] \times 10^{-4}$$

$$= 0.0592 \text{ Watts}$$

$$= 59.2 \text{ mW} \sim 60 \text{ mW}$$

07. Ans: (a)

Sol:
$$P \propto \frac{1}{r^2}$$

$$\frac{P_Q}{P_p} = \frac{r_p^2}{r_Q^2} = \frac{(R)^2}{\left(\frac{R}{2}\right)^2}$$

$$\frac{P_Q}{P_P} = \frac{4}{1} = 4:1$$

08. Ans: (b)

Sol:
$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}} = \sqrt{\frac{1}{\pi f\mu\sigma}}$$

$$\delta \alpha \sqrt{\frac{1}{f}} \Rightarrow \frac{\delta_1}{\delta_2} = \sqrt{\frac{f_2}{f_1}}$$

$$\frac{1.5}{\delta} = \sqrt{\frac{8 \times 10^9}{2 \times 10^9}}$$

$$\delta = \frac{1.5}{2} = 0.75 \,\mu\text{m}$$

Similarly

$$\frac{1.5}{\delta} = \sqrt{\frac{18 \times 10^9}{2 \times 10^9}} = 3$$

$$\delta = \frac{1.5}{3} = 0.5 \mu m$$

09. Ans: (b)

Sol:
$$\frac{\sigma}{\omega \varepsilon} = \frac{5}{2 \times \pi \times 25 \times 10^3 \times 80 \times 8.854 \times 10^{-12}}$$

= 44938.7

Since $\frac{\sigma}{\omega \varepsilon} >> 1$ hence sea water is a good

conductor

Where attenuation is 90%, transmission is 10%, then $e^{-\alpha x} = 0.1$

Where α is attenuation constant

$$\alpha = \sqrt{\frac{\omega\mu\sigma}{2}}$$

$$= \sqrt{\frac{2 \times \pi \times 25 \times 10^3 \times 4\pi \times 10^{-7} \times 5}{2}}$$

$$\alpha = 0.7025$$

$$-\alpha x = ln(0.1)$$

$$-0.7025x = -2.3$$

$$x = 3.27m$$

10. Ans: (b)

Sol:
$$\delta = \frac{1}{\alpha} = \frac{1}{2\pi} = 0.159$$

11. Ans: (c)

Sol: E is minimum
H is maximum
i.e., 'c' is the option

$$E_{Tan_1} = E_{Tan_2} = 0$$

[perfect conductor $E_{Tan_2} = 0$]

$$\boldsymbol{H}_{\text{Tan}_{1}} = \boldsymbol{J}_{\text{S}} \times \boldsymbol{a}_{\text{n}} + \boldsymbol{H}_{\text{Tan}_{2}}$$

$$\boldsymbol{H}_{Tan_{_{\boldsymbol{1}}}}=\boldsymbol{J}_{_{\boldsymbol{S}}}\!\times\!\boldsymbol{a}_{_{\boldsymbol{n}}}$$

[perfect conductor $H_{Tan_2} = 0$]

12. Ans: (d)

Sol: $\vec{H} = 0.5 e^{-0.1x} \cos(10^6 t - 2x) \hat{a}_z A/m \rightarrow (+X)$

$$\frac{E_y}{H_z} = \eta = -\frac{E_z}{H_y}$$

Wave frequency = 10^6 radians/s

Phase constant $\beta = 2 \text{ rad/m}$

$$\beta = \frac{2\pi}{\lambda} = 2 \text{ rad/m}$$

$$\lambda = \pi = 3.14$$
m.

The wave is traveling along +X direction, Given wave is polarized along Y.

: It has Y-component of electric field

13. Ans: (a)

Sol: The normal incidence of a plane wave traveling in positive y - direction is shown at the interface y = 0 in Fig.

Given: $\vec{E}_i = E_{iz} \vec{a}_z$ where $E_{iz} = 24 \cos (3 \times 10^8 t - \beta y) \text{ V/m}$ $\omega = 3 \times 10^8 \text{ rad/s}, \ \beta = \frac{\omega}{v},$ For free space, $v = v_0 = 3 \times 10^8 \text{ m/s}$

$$\therefore \beta = 1 \text{ rad/m}$$

$$\eta_1 = \eta_0 = \frac{E_{iz}}{H_{ix}}$$

$$\therefore H_{ix} = \frac{E_{iz}}{\eta_0} = \frac{24 \cos (3 \times 10^8 t - \beta y)}{120 \pi}$$

$$\vec{H}_i = H_{ix} \vec{a}_x$$

$$\frac{H_{r}}{H_{i}} = \frac{\eta_{1} - \eta_{2}}{\eta_{1} + \eta_{2}} = \frac{\frac{\eta_{1}}{\eta_{2}} - 1}{\frac{\eta_{1}}{\eta_{2}} + 1},$$
Where
$$\frac{\eta_{1}}{\eta_{2}} = \frac{\sqrt{\mu_{1} \in_{2}}}{\sqrt{\in_{1} \mu_{2}}} = \sqrt{\frac{\in_{2}}{\in_{1}}} = \sqrt{\frac{9 \in_{0}}{\in_{0}}} = 3$$

$$\therefore \frac{H_{r}}{H_{i}} = \frac{3 - 1}{3 + 1} = \frac{1}{2}$$

$$\vec{H}_{r} = \frac{1}{2} \frac{24}{120 \pi} \cos (3 \times 10^{8} t + 1y) \vec{a}_{x}$$

$$= \frac{1}{10 \pi} \cos (3 \times 10^{8} t + 1y) \vec{a}_{x} A/m$$

Note that \vec{H}_r is reflected wave which travels in negative y direction, which corresponds to $+\beta y$ term with $\beta=1$ in the expression for \vec{H}_r .

14. Ans: (b)

Sol: Brewster's angle $\theta_{\rm B} = \tan^{-1} \sqrt{\frac{\varepsilon_2}{\varepsilon_1}}$

$$\theta_{\rm B} = \tan^{-1} \sqrt{\frac{1}{3}} = 30^{\rm o}$$

At this angle there is no reflected wave when wave is parallel polarized.

$$\begin{aligned} &n_1 sin\theta_i = n_2 sin\theta_t \\ &\sqrt{\varepsilon_1} sin\theta_i = \sqrt{\varepsilon_2} sin\theta_t \\ &sin\theta_t = \sqrt{\frac{\varepsilon_1}{\varepsilon_2}} sin\theta_i \\ &sin\theta_t = \sqrt{3} \frac{1}{2} \Big(\theta_i = 30^\circ\Big) \\ &\theta_t = 60^\circ \end{aligned}$$

15. Ans: (d)

Sol: Given that

$$E_t = -2E_r$$

Where

Et is electric field of transmitted wave

E_r is electric field of reflected wave

$$\frac{E_t}{E_r} = -2$$

If E_i is electric field of incident wave.

But
$$-\frac{2E_{r}}{E_{i}} = \frac{2\eta_{2}}{\eta_{2} + \eta_{1}}$$

and
$$\frac{E_r}{E_i} = \frac{-\eta_2}{\eta_1 + \eta_2}$$

and also
$$\frac{E_{r}}{E_{i}} = \frac{\eta_{2} - \eta_{1}}{\eta_{2} + \eta_{1}}$$

so
$$\frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} = \frac{-\eta_2}{\eta_2 + \eta_1}$$

$$\eta_1 = 2\eta_2$$

$$\frac{\eta_1}{\eta_2} = 2 \implies \sqrt{\frac{\varepsilon_2}{\varepsilon_1}} = 2 \implies \frac{\varepsilon_2}{\varepsilon_1} = 4$$

Sol: Given that, $\sigma = 5$ S/m

$$\varepsilon_r = 1$$

$$E = 250 \sin(10^{10} t) V/m$$
.

We know that conduction current density,

$$J_c = \sigma E$$

Putting the values we get,

$$J_C = 5 \times 250 \sin(10^{10} t)$$

$$J_C = 1250 \sin(10^{10} t) A/m^2$$

Displacement current density, $J_D = \frac{\partial D}{\partial t}$

$$J_{D} = \frac{\partial (\epsilon E)}{\partial t} = \epsilon \frac{\partial E}{\partial t}$$

$$\begin{split} J_{D} &= \epsilon_{0} \epsilon_{r} \frac{\partial}{\partial t} \left(250 \sin \left(10^{10} \, t \right) \right) \\ &= \epsilon_{0} \times 250 \times 10^{10} \cos \left(10^{10} \, t \right) \end{split}$$

$$J_{D} = 22.125 \cos(10^{10} \, t) A / m^{2}$$

Since given that

 $|J_c| = |J_D|$, we have to find the frequency

$$|\sigma E| = |i\omega \varepsilon E|$$

$$\omega = \frac{\sigma}{c}$$

$$f = \frac{\sigma}{2\pi\varepsilon_0\varepsilon_r} = \frac{5}{2\pi \times \frac{1}{2\varepsilon_0} \times 10^{-9}} = 90GHz$$

Chapter 3

Transmission Lines

01. Ans: (b)

Sol:
$$Z_{in} = Z_0 \frac{Z_R + jZ_0 \tan \beta \ell}{Z_0 + jZ_R \tan \beta \ell}$$

Phase velocity

$$v_{p} = \frac{\omega}{\beta}$$

$$v_{p} = \frac{2\pi f}{\beta}$$

$$\beta = \frac{2\pi f}{v_{p}} = \frac{2 \times \pi \times 10^{8}}{2 \times 10^{8}} = \pi$$

$$R = \pi / \pi \Rightarrow \pi / G = 1$$

$$\beta \ell = \pi . \ell \implies \pi \text{ (Given } l = 1\text{m)}$$

 $\tan \beta \ell = 0$

$$Z_{in} = Z_{R}$$
$$= (30 - j40)\Omega$$

02. Ans: (a)

Sol:

$$\begin{split} K_{x} &= \frac{C_{2}}{C_{1}} e^{2j\beta X} \\ K_{A} &= \frac{C_{2}}{C_{1}} e^{j4\beta} \text{ at } (x=2) \\ K_{B} &= \frac{C_{2}}{C_{1}} e^{2j\beta(0)} \text{ at } (x=0) \\ \frac{K_{B}}{K_{A}} &= \frac{\frac{C_{2}}{C_{1}} e^{2j\beta(0)}}{\frac{C_{2}}{C_{1}} e^{j4\beta}} = e^{-j4\beta} \\ \upsilon_{P} &= \frac{\omega}{\beta} \Longrightarrow \beta = \frac{\pi}{2} \end{split}$$

Given f = 50 MHz

$$\begin{split} \upsilon_p &= 2 \times 10^8 \text{ m/s} \\ \frac{K_B}{K_A} &= e^{-j4\left(\frac{\pi}{2}\right)} = e^{-j2\pi} = 1 \text{ (or) } \frac{\Gamma_i}{\Gamma_R} = 1 \end{split}$$

03. Ans: (b)

Sol:

Since

$$V = C_1 e^{-j\beta x} + C_2 e^{+j\beta x}$$

$$K_x = \frac{C_2}{C_1} e^{2j\beta x}$$

$$K_A = 0.3e^{-j30^0} = \frac{C_2}{C_1} e^{2j\beta x}$$

$$K_{\rm B} = \frac{C_2}{C_1} e^{2j\beta(x-0.1\lambda)}$$

$$\frac{K_{B}}{K_{A}} = \frac{\frac{C_{2}}{C_{1}} e^{2j\beta x} e^{-j4\frac{\pi}{\lambda}0.1\lambda}}{\frac{C_{2}}{C_{1}} e^{2j\beta x}}$$

$$K_{B} = K_{A} \cdot e^{-j \cdot 4\pi}$$

$$= 0.3e^{-j30^{0}} e^{-72^{0}}$$

$$= 0.3 e^{-j102^{0}}$$

Note: In the options $0.3\,e^{j102^0}$ is given. But correct answer is $0.3\,\bar{e}^{j102^0}$

04. Ans: (c)

Sol: From the voltage SW pattern,

$$V_{min} = 1$$
, $V_{max} = 4$, $VSWR = S = 4$
 $Z_0 = R_0 = 50 \Omega$

Let the resistive load be R_L

For Resistive loads

$$S = \frac{R_L}{R_0} \quad \text{for } R_L > R_0$$
$$= \frac{R_0}{R_L} \quad \text{for } R_0 > R_L$$

:.
$$R_L = S R_0 = 4 \times 50 = 200 \Omega$$
 for $R_L > R_0$
 $R_L = R_0/S = 50/4 = 12.5 \Omega$ for $R_0 > R_L$

As voltage minimum is occurring at the load point, $R_L = 12.5 \Omega$.

05. Ans: (a)

Sol: Reflection coefficient:

$$\Gamma = \frac{R_L - R_0}{R_L + R_0} = \frac{12.5 - 50}{12.5 + 50} = -0.6$$

06. Ans: (d)

Sol: The interconnection of TL's is shown in Fig.

$$Z_{i1} = \frac{(50)^2}{100} = 25\Omega$$

 $Z_{i2} = \frac{(50)^2}{200} = 12.5\Omega$

$$Z_{L} = 25 \parallel 12.5 = \frac{25}{3} \Omega$$

Reflection coefficient at PQ =
$$\frac{Z_L - Z_0}{Z_L + Z_0}$$

$$=\frac{\frac{25}{3}-50}{\frac{25}{3}+50}=-\frac{125}{175}=-\frac{5}{7}$$

:. At the input RS,

Reflection coefficient, $\Gamma = -\frac{5}{7} e^{-j2\beta \ell}$

As
$$\beta \ell = \frac{2\pi}{\lambda} \frac{\lambda}{4} = \frac{\pi}{2}$$

$$\Gamma = -\frac{5}{7} e^{-j\pi} = \frac{5}{7}$$

07. Ans: (d)

Sol:
$$Z_{in} = Z_0 \left[\frac{Z_L + jZ_0 \tan \beta \ell}{Z_0 + jZ_L \tan \beta \ell} \right]$$

i) For a shorted line,

$$Z_{L} = 0$$

$$\ell = \lambda/8$$

$$\beta \ell = \frac{2\pi}{\lambda} \times \frac{\lambda}{8} = \frac{\pi}{4}$$

$$Z_{in} = Z_{0} \left[\frac{0 + jZ_{0}}{Z_{0} + 0} \right]$$

$$Z_{in} = j Z_{0}$$

ii) For a shorted line means $Z_L = 0$

Given that
$$\ell = \frac{\lambda}{4}$$

$$\beta \ell = \frac{2\pi}{\lambda} \times \frac{\lambda}{4} = \frac{\pi}{2}$$

$$Z_{in} = \frac{Z_0^2}{Z_L} = \frac{Z_0^2}{0}$$

$$Z_{in} = \infty$$

iii) Open line means $Z_L = \infty$,

Given that
$$\ell = \frac{\lambda}{2}$$

$$\therefore \beta \ell = \frac{2\pi}{\lambda} \cdot \frac{\lambda}{2} = \pi \implies \tan \pi = 0$$

$$Z_{in} = Z_0 \left[\frac{Z_L + jZ_0 \tan \pi}{Z_0 + jZ_L \tan \pi} \right]$$

$$Z_{in} = Z_{L}$$

iv) For a matched line of any length

$$Z_{\rm L} = Z_0$$

$$Z_{in} = Z_0 \left[\frac{Z_0 + jZ_0 \tan \beta \ell}{Z_0 + jZ_0 \tan \beta \ell} \right] = Z_0$$

08. Ans: (c)

Sol: The line is matched as $Z_L = Z_0 = 50 \Omega$ and hence reflected wave is absent.

For the traveling wave, given:

Phase difference for a length of

 $2 \text{ mm} = \pi/4 \text{ rad}$

Frequency of excitation = 10 GHz

Phase velocity, $v_p = \frac{\omega}{\beta}$

 $\omega = 2\pi \times 10 \times 10^9 \text{ rad/sec}$

 β = Phase-shift per unit length

$$= \frac{\pi}{4 \times 2 \times 10^{-3}} \operatorname{rad/m}$$

$$v_p = \frac{2\pi \times 10^{10} \times 8}{\pi \times 10^3} = 1.6 \times 10^8 \text{ m/s}$$

09. Ans: (b)

Sol: [S] =
$$\begin{bmatrix} 0.3 \angle 0^0 & 0.9 \angle 90^0 \\ 0.9 \angle 90^0 & 0.2 \angle 0^0 \end{bmatrix}$$

For reciprocal; $S_{12} = S_{21}$

It is satisfied.

For lossless line $|S_{11}|^2 + |S_{12}|^2 = 1$

$$(0.3)^2 + (0.9)^2 = 0.9 \neq 1$$

∴ It is a lossy line

10. Ans: (b, c)

Sol: Given:

$$\ell - 2m$$

$$Z_{oc} = -j50\Omega$$

$$Z_{sc} = j200\Omega$$

$$Z_{\rm SC} = \sqrt{Z_{\rm OC} Z_{\rm SC}} = \sqrt{10000}$$

$$Z_0 = 100\Omega$$

Reflection coefficient, $\Gamma = \frac{Z_L - Z_O}{Z_L + Z_O}$

When open circuited $(Z_L = \infty)$

$$\Gamma = \frac{1 - \frac{Z_0}{Z_L}}{1 + \frac{Z_0}{Z_L}}$$

 $\Gamma = 1$

Since 199

When short circuit $(Z_L = 0)$

$$\Gamma = \frac{-Z_0}{Z_0} = -1$$

Waveguides

01. Ans: (b)

Sol: Evanescent modes means wave propagation.

> Dominant mode means, the guide has lowest cut-off frequency.

> TM_{01} and TM_{10} not possible, the minimum values of m, n for TM are at least 1, 1 respectively.

02. Ans: (a)

Sol: The mode which has lowest frequency is called dominant mode TE_{10} .

At 4GHz all modes are evanescent.

At 7GHz degenerate modes are possible TE_{11} and TM_{11} are degenerate.

$$f_{c \text{ TE}_{10}} = \frac{c}{2a} = \frac{3 \times 10^8}{2 \times 3 \times 10^{-2}} = 5 \text{ GHz}.$$

At 6 GHz dominant mode will propagate. At 11 GHz higher order modes are possible

03. Ans: (a)

Sol: Given: In a rectangular WG of cross-section : $(a \times b)$

$$\vec{E} = \frac{\omega \mu}{h^2} \left(\frac{\pi}{a} \right) H_0 \sin \left(\frac{2 \pi}{a} x \right) \sin (\omega t - \beta z) \hat{y}$$

traveling z-direction having E_v component only as function of 'x'. As there is no component of \vec{E} in the direction of propagation, \vec{a}_z the wave Transverse Electric Comparing the 'sin' term in E with the general expression: $\sin\left(\frac{m\pi}{a}x\right)$

expression:
$$\sin\left(\frac{m\pi}{a}x\right)$$

As there is no function of 'y' in \tilde{E} , n = 0... The mode of propagation in the WG is TE₂₀

04. Ans: (d)

Sol: Given

$$a = 4.755, b = 2.215,$$

$$f = 12 \text{ GHz}, c = 3 \times 10^8 \text{ m/s}$$

Cut off frequency

$$f_c = \frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

For TE₁₀, mode

$$f_c = \frac{c}{2a} = 3.15 \text{ GHz}$$

 $f > f_c$ (TE₁₀ mode) so it propagates

For TE₂₀ mode

$$f_{\rm C} ({\rm TE}_{20}) = \frac{c}{2} \sqrt{\left(\frac{2}{a}\right)^2}$$

= 2 [f_c(TE₁₀)] = 6.30 GHz

 $f > f_c$ [TE₂₀] so it propagates

For TE₀₁ mode

$$f_{C \text{ (TE01)}} = \frac{c}{2} \sqrt{\frac{1}{b^2}}$$

= $\frac{c}{2b} = 6.77 \text{GHz}$

 \therefore f > f_c (TE₀₁] so it propagate

For TE₁₁ mode

$$f_{c[TE_{11}]} = \frac{c}{2} \sqrt{\frac{1}{a^2} + \frac{1}{b^2}} = 7.47 \text{ GHz}$$

 $f > f_c (TE_{11})$ so it propagate

So, all modes are possible to propagate.

05. Ans: (a)

Sol: Given a = 6 cm, b = 4 cm f = 3 GHz

Cut off frequency

$$f_c = \frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

$$TE_{10}$$
: $f_c = \frac{c}{2a} = 2.5 \text{ GHz}$

$$TE_{01}$$
: $f_c = \frac{c}{2b} = 3.75 \text{ GHz}$

TE₁₁:
$$f_c = \frac{c}{2}\sqrt{\frac{1}{a^2} + \frac{1}{b^2}} = 4.50 \text{ GHz}$$

$$TM_{11}$$
: $f_c = \frac{c}{2}\sqrt{\frac{1}{a^2} + \frac{1}{b^2}} = 4.50 \text{ GHz}$

06. Ans: (a)

Sol:
$$\frac{m\pi}{a} = \frac{2\pi}{a} \Rightarrow m = 2$$

$$\frac{n\pi}{b} = \frac{3\pi}{b} \Rightarrow n = 3$$

For TM wave propagating along z-direction $E_z \neq 0$ and $H_z = 0$

 TM_{23}

$$TM_{23} \Rightarrow f_c = \frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

Substitute $c = 3 \times 10^{10}$ cm/sec m = 2, a = 6 cmn = 3, b = 3 cm

we get $f_c = 15.811$ GHz

$$\eta_{\text{TM}} = \eta \sqrt{1 - \left(\frac{f_c}{f}\right)^2}$$

$$\omega = 10^{12} \implies f = \frac{10^{12}}{2\pi} = \frac{10^3}{2\pi} \text{ GHz}$$

and $\eta = 120 \pi$. & f_c = 15.811 GHz

Substitute all the above values and we get $\eta_{TM} = 375 \Omega$

07. Ans: (c)

Sol:
$$W_{avg} = \frac{1}{4} \frac{E_{yo}^2}{\eta_{TE_{10}}} a.b; \ \eta_{TE_{10}} = \frac{\eta}{\sqrt{1 - (\lambda/\lambda_c)^2}}$$

$$\eta = 120\pi$$
, $\lambda = \frac{c}{f} = \frac{3 \times 10^{10}}{11 \times 10^9} = 2.72 \text{cm}$

$$\lambda_c = 2a = 2 \times 2.29 = 4.58cm$$

So we get
$$\eta_{TE_{10}} = 469.52\Omega$$

Putting all the values

$$\therefore$$
 W_{avg} = 31.32kW

08. Ans: (a)

Sol:
$$f_{c_{10}} = \frac{c}{2a} = \frac{3 \times 10^{10}}{2 \times 2} = 7.5 \text{GHz}$$

For b = a/2, the next high order mode is TE_{01} or TE_{20}

$$\therefore f_{c_{01}} = f_{c_{20}} = \frac{3 \times 10^{10}}{2} = 15 \text{GHz}.$$

So the range of single mode (dominant mode propagation) is

09. Ans: (a)

Sol:
$$\frac{1}{\lambda^2} = \frac{1}{\lambda_g^2} + \frac{1}{\lambda_c^2}$$

$$f_c = 0.908 \, \text{GHz}$$

$$f_c = 0.908 \,\text{GHz}$$

 $\Rightarrow \lambda_c = \frac{3 \times 10^{10}}{0.908 \times 10^9} = 33.03 \,\text{cm}$

Substitute $\lambda_g = 40$ cm, $\lambda_c = 33.03$ cm

We get,
$$\lambda = 25.47 \text{ cm}$$

Since 1995 3×10^{10}

$$\Rightarrow f = \frac{3 \times 10^{10}}{25.47}$$
$$= 1.18 \text{ GHz}$$

10. Ans: (a)

Sol:
$$\frac{c}{2a} = 0.908 \,\text{GHz}$$

$$\Rightarrow a = \frac{3 \times 10^{10}}{2 \times (0.908) \times 10^9}$$

$$=16.51$$
cm

$$\Rightarrow$$
 b = $\frac{a}{2}$ = 8.26 cm

11. Ans: (a)

Sol:
$$\overline{\beta} = \beta \sqrt{1 - \left(\frac{f_c}{f}\right)^2}$$

$$= \frac{2\pi}{25.47} \sqrt{1 - \left(\frac{0.908}{1.18}\right)^2}$$

= 0.157 rad/cm

= 15.7 rad/m

12. Ans: (a, b, c)

Sol:
$$f_c = \frac{c}{2a} = \frac{3 \times 10^8}{2 \times 7 \times 10^{-2}} = 2.14 GHz$$

Phase velocity,

$$v_p = \frac{c}{\sqrt{1 - \left(\frac{f_c}{f}\right)^2}} = \frac{3 \times 10^8}{\sqrt{1 - \left(\frac{2.14}{3.5}\right)^2}}$$

 $= 3.79 \times 10^8 \,\mathrm{m/sec}$

$$\lambda_{g} = \frac{v_{p}}{f} = \frac{3.79 \times 10^{8}}{3.5 \times 10^{9}} = 0.1 \text{m}$$

$$Z_{TE} = \frac{\eta_{0}}{\sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}} = \frac{377}{\sqrt{1 - \left(\frac{2.14}{3.5}\right)^{2}}} = 476\Omega$$

Chapter 5

Antennas

01. Ans: (c)

Sol: Antenna receives 2 μ W of power: $P_r = 2 \mu$ W RMS value of incident E field = 20 mV/m

Power density, P_d

$$=\frac{E^2}{\eta} = \frac{(20 \times 10^{-3})^2}{377} \text{W/m}^2$$

Effective aperture area, $A_e = \frac{P_r}{P_d}$

$$=\frac{2\times10^{-6}}{\frac{(20\times10^{-3})^2}{377}}=\frac{377\times2}{400}=1.885 \text{ m}^2$$

02. Ans: (b)

Sol: Lossless antenna directive gain = 6 dB = 4 Input power to the antenna = 1 mW for lossless we get 100% efficiency

$$\frac{W_{rad}}{W_{in}} = \frac{G_o}{D_o} = 1$$

$$W_{rad} = W_{in}$$

$$W_{rad} = 1mW$$

03. Ans: (c)

Sol:
$$P_{rad} = \frac{A_0 \sin^2 \theta}{r^2} \hat{a}_r \quad W/m^2$$

$$\begin{split} W_{rad} &= \int\limits_{\phi=0}^{2\pi} \int\limits_{\theta=0}^{\pi} \frac{A_0 \sin^2 \theta}{r^2} r^2 \sin \theta d\theta d\phi \\ &= A_0 \, 2\pi \, \int\limits_{\theta=0}^{\pi} \sin^3 \theta d\theta \\ &= A_0 \, 2\pi \frac{4}{3} \\ W_{rad} &= A_0 \, \frac{8\pi}{3} \end{split}$$

$$U = r^2 P_{rad} = r^2 \frac{A_0 \sin^2 \theta}{r^2} = A_0 \sin^2 \theta$$

$$D_{max} = \frac{U_{max}}{W_{rad}} 4\pi = \frac{\left|A_0 \sin^2 \theta\right|_{max}}{\frac{8\pi}{3} A_0} \times 4\pi$$

$$=\frac{4\pi A_0}{8\pi A_0}\times 3$$

$$=\frac{3}{2}=D_{max}=1.5$$

04. Ans: (d)

Sol: Where
$$W_{rad} = \oint \overline{P}_{rad}.d\overline{s}$$

$$\overline{P}_{rad} = \frac{W_{rad}}{2\pi r^2} . \hat{a}_r = \frac{40}{\pi} \hat{a}_r \ \mu W/m^2$$

05. Ans: (b)

Sol:
$$R_{rad} = 30 \Omega$$
, $R_l = 10\Omega$

$$G_D = 4, G_p = ?$$

$$\eta = \frac{R_{rad}}{R_{rad} + R_{\ell}} = \frac{30}{40} = 0.75$$

$$G_p = \eta G_D$$

$$= 0.75 \times 4 = 3$$

06. Ans: (c)

Sol:
$$D_g = 30 \text{ dB} = 1000$$

$$P_T = 7.5 \text{ kW}$$

$$D_{g} = \frac{4\pi \times Radiation intensity}{Radiated Power}$$

$$D_g = 4\pi \frac{U}{W_{rad}}$$

$$\therefore U = \frac{7.5 \times 10^3 \times 1000}{4\pi}$$

$$\Rightarrow$$
 U = $r^2 P_{rad}$

P_{rad}: Power density we have to find

$$P_{rad}$$
 at $r = 40 \times 10^3$ m

$$\begin{split} P_{rad} &= \frac{U}{r^2} \\ &= \frac{7.5 \times 10^3 \times 1000}{4\pi \times (40 \times 10^3)^2} \, \text{W/m}^2 \end{split}$$

07. Ans: (d)

Sol:
$$W_{rad} = 10kW$$

$$E_{max} = 120 \text{ mV/m}$$

$$R = 20km$$

$$n = 98\%$$

$$P_{rad} = \frac{E_0^2}{2\eta_0}$$

$$=\frac{(120\times10^{-3})^2}{2\times120\pi}$$

$$= 1.909 \times 10^{-5}$$

$$U_{\text{max}} = (20 \times 10^3)^2 \times 1.909 \times 10^{-5}$$
$$= 7636$$

$$D_{_0} = 4\pi \frac{U_{_{max}}}{W_{_{rad}}}$$

$$D_0 = 4\pi \frac{7639.43}{10 \times 10^3} = 9.59$$

$$\eta = \frac{G_0}{D_0} = 0.98$$

$$G_0 = 0.98 \times 9.59$$

= 9.407

Sol: Given:

Antenna length, l = 1 cm

Frequency, f = 1 GHz

Distance, $r = 100\lambda$

Wave length,
$$\lambda = \frac{C}{f}$$

$$=\frac{3\times10^8}{10^9}$$

$$= 30 \text{ cm}$$

$$\frac{d\ell}{\lambda} = \frac{1}{30}$$
, hence the given antenna is

Hertzian dipole.

In the far field, the tangential electric field

is given by,
$$E_{\theta} = \frac{j\eta Id\ell \sin \theta}{4\pi} \frac{\beta}{r}$$

$$=\frac{j377\times100\times10^{-3}\times2\pi\times10^{-2}\times1}{30\times10^{-2}\times4\pi\times100\times30\times10^{-2}}$$

$$|E_{\theta}| = 0.21 \text{V/cm}$$

09. Ans: (c)

Sol: Given:

Length of dipole, $\ell = 0.01\lambda$

As it is very small, compared with wavelength, hence it can be approximated to Hertzian dipole

$$R_{rad} = 80\pi^2 \left(\frac{d\ell}{\lambda}\right)^2$$
$$= 80\pi^2 (0.01)^2$$

$$R_{rad} = 0.08 \; \Omega$$

10. Ans: (d)

Sol: AF =
$$\frac{\sin\frac{n\phi}{2}}{\sin\frac{\phi}{2}}$$

take limit

$$\frac{Lt}{\frac{\frac{n\phi}{2} \to 0}{2} \cdot \frac{\frac{n\phi}{2}}{\frac{n\phi}{2}} \cdot \frac{n\phi}{2}}{\frac{\sin\frac{\phi}{2}}{\frac{\phi}{2}} \cdot \frac{\phi}{2}} = n$$

$$\frac{Lt}{\frac{\phi}{2} \to 0} \frac{\sin\frac{\phi}{2}}{\frac{\phi}{2}} \cdot \frac{\phi}{2}$$

11. Ans: (b)

Sol: In broad side array the BWFN is given by

$$BWFN = \frac{2\lambda}{L}(rad)$$

Where, L = length of the array

$$L = (n-1) d$$

Given: n = 9

Spacing, $d = \frac{\lambda}{4}$

BWFN =
$$\frac{2\lambda}{(9-1)\frac{\lambda}{4}}$$
$$= \frac{2\lambda}{2\lambda} \times \frac{180}{\pi}$$

:. BWFN =
$$57.29^{\circ}$$

12. Ans: (d)

Sol: The directivity of n-element end fire array is given by

$$D = \frac{4L}{\lambda}$$

Where,
$$L = (n-1)d$$

$$L \cong nd \ (\because n = 1000, very large)$$

$$D = \frac{4 \times nd}{\lambda}$$
$$= \frac{4 \times 1000\lambda}{\lambda \times 4}$$

Directivity, (in dB) = 30

13. Ans: 7.78

Sol: Directivity,
$$D = 4\pi \frac{U_{max}}{P_{rad}}$$

Given: $U(\theta, \phi) = 2\sin\theta \sin^3\phi$; $0 \le \theta \le \pi$,

$$0 \le \phi \le \pi$$

$$U_{\text{max}} = 2$$

$$P_{rad} = \int_{\theta=0}^{\pi} \int_{\phi=0}^{\pi} 2\sin\theta \sin^3\phi \sin\theta d\theta d\phi$$

$$=2\int_{\theta=0}^{\pi}\int_{\phi=0}^{\pi}\sin^2\theta\sin^3\phi d\theta d\phi$$

$$=2\left(\frac{\pi}{2}\right)\left(\frac{4}{3}\right)$$

$$=\frac{4\pi}{3}$$

$$D = 4\pi \times \frac{2}{\left(\frac{4\pi}{3}\right)}$$

$$D = 6$$

Since 1995

Directivity, (in dB) = $10\log 6 = 7.7815$

14. Ans: 2793

Sol: For Hertzian dipole the directivity, D is given by D = 1.5

$$D = \left(\frac{4\pi}{\lambda^2}\right) A_e$$

$$A_e = 1.5 \times \frac{\lambda^2}{4\pi}$$

$$A_e = 0.119 \lambda^2$$

Wavelength,
$$\lambda = \frac{3 \times 10^8}{10^8} = 3m$$

$$\therefore A_e = 0.119 \times 9$$

$$A_e = 1.074 \text{ m}^2$$

Aperture area of antenna is given by

$$A_e = \frac{P_r}{P}$$

Where, P_r = power received at the antenna load terminals.

P = power density of incident wave

$$P = \frac{P_r}{A_e}$$

$$=\frac{3\times10^{-6}}{1.074}$$

$$P = 2.793 \, \mu \text{W/m}^2 \text{ (or) } 2793 \, \text{nW/m}^2$$

15. Ans: (c)

Sol:

Given: No. of elements, n = 4

Spacing,
$$d = \frac{\lambda}{4}$$

Direction of main beam (or) principal lobe,

$$\theta_{\text{max}} = 60^{\circ}$$

Array phase function, ψ is given by

$$\psi = \beta d\cos\theta + \alpha$$

To form a major lobe. $\psi = 0$

$$\alpha = -\beta d\cos\theta_{max}$$

$$\alpha = -\frac{2\pi}{\lambda} \times \frac{\lambda}{4} \cos 60$$

$$\alpha = -\frac{\pi^{C}}{4}$$

The phase shaft between the elements required is $\alpha = -\frac{\pi^{C}}{4}$.

16. Ans: (a, b, c)

Sol:

(a) The wavelength,
$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{50 \times 10^6} = 6 \text{m}$$

Hence, the length of half wave dipole is

$$\ell = \frac{\lambda}{2} = \frac{6}{2} = 3m$$

(b)
$$\left| E_{\phi s} \right| = \frac{\eta_0 I_0 \cos \left(\frac{\pi}{2} \cos \theta \right)}{2\pi r \sin \theta}$$

$$I_{0} = \frac{\left|E_{\phi s}\right| 2\pi r \sin \theta}{\eta_{0} \cos \left(\frac{\pi}{2} \cos \theta\right)}$$

$$= \frac{10 \times 10^{-6} \times 2\pi \times 500 \times 10^{3} \times 1}{120\pi \times 1} = 83.33 \text{mA}$$

(c) For half wave dipole antenna, $R_{rad} = 73\Omega$

$$P_{\text{rad}} = \frac{1}{2} I_0^2 R_{\text{rad}} = \frac{1}{2} (83.33)^2 \times 10^{-6} \times 73$$
$$= 253.5 \text{mW}$$

So a, b, c is correct