Assignment 3

Symbols:
$$p \equiv \frac{\partial z}{\partial x}$$
, $q \equiv \frac{\partial z}{\partial y}$, $r \equiv \frac{\partial^2 z}{\partial x^2}$, $s \equiv \frac{\partial^2 z}{\partial x \partial y}$, $t \equiv \frac{\partial^2 z}{\partial y^2}$; $u_x \equiv \frac{\partial u}{\partial x}$, $u_{xx} \equiv \frac{\partial^2 u}{\partial x^2}$, $u_{xy} = u_{yx} \equiv \frac{\partial^2 u}{\partial x \partial y}$; $f'(v) \equiv \frac{\mathrm{d}f}{\mathrm{d}v}$, $f''(v) \equiv \frac{\mathrm{d}^2 f}{\mathrm{d}v^2}$; Operators: $D \equiv \frac{\partial}{\partial x}$, $D' \equiv \frac{\partial}{\partial y}$, $DD' \equiv \frac{\partial^2}{\partial x \partial y}$, $D^2 \equiv \frac{\partial^2}{\partial x^2}$, $D'^2 \equiv \frac{\partial^2}{\partial y^2}$

Topics: First order PDE→ Compatibility of two PDEs. Charpit's Method to find CI of PDE. To find GI (from CI), PI, SI (if exists) of PDE.

1. Check compatibility of following pairs of 1^{st} order PDEs, and if compatible, find common solution z(x, y):

a)
$$xp - yq = 0$$
, $z(xp + yq) - 2xy = 0$

b)
$$xp - yq = x$$
, $x^2p + q = xz$

c)
$$xpq - yq = xy$$
, $x^2p + q^2 = z$

2. Solve following 1st order PDEs by Charpit's method:

a)
$$q + \ln p = 2 \ln 2$$

b)
$$pz + q = 1$$

3. Find complete integral (CI) of following PDE by Charpit's method:

a)
$$p^3y(1+x^2) = qx^3$$

b)
$$z = px + qy + \sin(pq)$$

5. Find singular integral, if any, of $(p^2 + q^2)y - qz = 0$

END