Statistics 452: Statistical Learning and Prediction

Review of Key Ideas

Brad McNeney

2017-11-30

Focus on Supervised Learning

- ▶ Our focus (chapters 3-9) was on supervised learning, where there is a response to validate our models.
- ▶ Won't discuss unsupervised learning in this review.

Models

▶ The general model for a response *Y* is

$$Y = f(X) + \epsilon$$

where

- ► *f* is a fixed but unknown function that is the **systematic** component of the model
 - We usually take f(X) to be the mean of Y given X.
- ϵ is an error component, assumed to be independent of X and to have mean zero.
 - Even if Y is, say, binary, the errors have mean zero.
- We studied different approaches for
 - estimating f and
 - quantifying the accuracy of the estimate

Goals of Estimation

- 1. prediction
- 2. inference

Prediction

- Since the errors average to zero, f(X) is a reasonable prediction of a new Y.
- ▶ Based on and estimate \hat{f} of f the estimate, or prediction of Y is

$$\hat{Y} = \hat{f}(X)$$

- ▶ One school of thought treats \hat{f} as a "black box".
 - We do not really care about the details of \hat{f} , only that its predictions \hat{Y} are accurate.
 - Among statisticians, the chief proponent of this view was Leo Brieman.

Inference

- Or, should our goal be to "open the box" and see what's inside?
 - See first 4:30 of TED talk by Barbara Englehardt: https://www.youtube.com/watch?v=uC3SfnbCXmw
 - ▶ Reference: Brieman (2001). Statistical Modeling: The Two Cultures. Copy available on Canvas
- Classically, inference means inference of parameters in simple parametric models for f.
 - Could also include nonparametric methods such as smoothing splines, parametrized by a df, and for which df=1 is a linear model.

Flexibility versus Interpretability

- Most methods can be used for **both** prediction and inference; i.e., can't be classified strictly as closed or open box.
 - ► Can rate methods in terms of flexibility, which comes at the cost of interpretability. Schematically (text, Fig. 2.7):

Flexibility

Model Accuracy

Loss Functions

- ▶ Reference: Elements of Statistical Learning, Chapter 7.
- We measure the errors between Y and fit $\hat{f}(X)$ by a loss function $L(Y, \hat{f}(X))$.
- ▶ For quantitative *Y* we have used squared error loss

$$L(Y,\hat{f}(X)) = (Y - \hat{f}(X))^2$$

▶ For categorical response, *G*, we have not been explicit about loss functions, but have mentioned zero-one loss (misclassification error), logistic loss (logistic regression) and others.

Training Error

- ▶ The training error is the average loss over the training set.
- ► For example, using squared error loss

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2 = \overline{\text{err}}$$
 (1)

The Test Error

- ► For fixed x_0 and y_0 **not used to train** \hat{f} , the expected test error is $E(L(Y, \hat{f}(X)|y_0, x_0))$.
- ▶ For example, with square error loss we have the test MSE $E(y_0 \hat{f}(x_0))^2$, obtained by averaging over training data sets (repeated estimations of f).
- Test MSE can be decomposed as

$$E(y_0 - \hat{f}(x_0))^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon)$$

where

- ▶ $Var(\hat{f}(x_0))$ is the variance (spread) of the predictions,
- ▶ $Bias(\hat{f}(x_0))$ is the bias (systematic departure from truth) of the predictions, and
- $ightharpoonup Var(\epsilon)$ is the irreducible error term that is beyond our control
- ▶ The overall average test MSE, Err_T is calculated by averaging over a test set T of (x_0, y_0) pairs.

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error $\overline{\text{err}}$, while the light red curves show the conditional test error $\overline{\text{Err}}$ for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error $\overline{\text{Err}}$ and the expected training error $\overline{\text{E[err]}}$.

Bias-Variance Tradeoff

- ► Generally, the more flexible the method for estimating *f* the higher the variance and the lower the bias.
 - ▶ Initially as we increase flexibility, the variance increase is offset by a decrease in bias, and the test MSE decreases.
 - At some point though the variance increase exceeds the decrease in bias and the expected test MSE increases.
- Flexibility can be increased by adding more predictors, powers of predictors, basis functions, etc.
- Flexibility can be reduced by restricting model terms or shrinking coefficients.

FIGURE 7.2. Schematic of the behavior of bias and variance. The model space is the set of all possible predictions from the model, with the "closest fit" labeled with a black dot. The model bias from the truth is shown, along with the variance, indicated by the large yellow circle centered at the black dot labeled "closest fit in population." A shrunken or regularized fit is also shown, having additional estimation bias, but smaller prediction error due to its decreased variance.

Estimating Accuracy

Estimated Test MSE

▶ If the training observations $\{(x_1, y_1), \dots, (x_n, y_n)\}$ are used to produce \hat{f} , and we had a large number of test observations (x_0, y_0) , the test MSE

$$Ave(y_0 - \hat{f}(x_0))$$

reflects how well \hat{f} predicts new observations.

- ▶ We would like to develop methods that minimize the test MSE.
- Validation and cross-validation (CV) are tools to estimate the test MSE.

Validation and Cross-Validation

- Validation: Split the data into two parts, a training set and a validation, or hold-out set.
 - Use the training set for fitting and the validation set for estimating the test error.
- Cross-Validation (CV): Split the data into multiple "folds" of approximately equal size.
 - ▶ Common numbers of folds are k = n, 10 and 5.
 - ▶ Train on all but one hold-out fold, and test on the hold-out to get MSE_i ; i = 1, ..., k. Repeat for each fold and average the estimated test MSEs:

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i.$$

Estimation

Common Themes in Estimation

- ▶ Parametric *versus* non-parametric forms for *f*
- Additive models and basis functions.
- Model selection or shrinkage to control flexibility (complexity).

Parametric Methods

- Specify a form for f that depends on a finite number of parameters, and estimate these parameters by minimizing a criterion function for training data.
 - ► Examples include least squares or penalized least squares regression.
- ▶ The true *f* may not be well-approximated by the functional form we choose for our parametric model.
- We can choose a very flexible parametric family, but if too flexible we may overfit; i.e., the fitted model may follow the error terms.

Non-parametric Methods

- ► An model-free specification of the functional form of *f*, fit to the training data.
 - Examples include smoothing splines and KNN.
- Avoid over-fitting by limiting the roughness, or wigglyness of the fitted curve.
 - ▶ E.G., df of the smoothing spline, neighborhood size for KNN.
- ▶ Non-parametric methods require more data that a parametric method to train the model to obtain accurate estimates.

Additive Models and Basis Functions

A general additive models is of the form

$$f(x;\alpha,\gamma) = \sum_{m=1}^{M} \alpha_m b(x;\gamma_m)$$

for coefficients α and basis function parameters γ

- We studied linear and logistic regression with basis functions such as power, and piecewise-cubic splines.
- Generalized additive models can use local regression or smoothing spline basis functions.
- Boosting uses decision trees as basis functions.

Model Selection

- ► Select the number of model terms that minimizes the test error, estimated by CV.
- ► We typically don't consider all possible models, but rather choose a search strategy, such as forward stagewise selection.

Minimize Loss Plus Complexity

- ▶ The lasso and ridge regression minimize squared error or logistic loss, plus a tuning parameter times an ℓ_1 or ℓ_2 complexity penalty.
- ▶ SVM: hinge loss plus tuning parameter times ℓ_2 penalty.
- Select the tuning parameter by CV

Curse of Dimensionality

- We may think that more predictors is a good thing, but too many predictors that are unrelated to the response lead to poor performance.
- Referenced most often for KNN
- Also saw that shrinkage methods performed poorly when there are many useless predictors.