How to Present Tables in Plot Devices

Peter Carl

Chicago R User Group Meetup: R Output

Outline

1 Overview

2 Example

3 Potential Solutions

2/15

Overview

Graphics in R are plotted on a graphics device

- Depending on the OS, in an interactive R session the default device is the screen, using windows(), X11(), or quartz().
- Common graphics file formats use the bmp(), jpeg(), png(), and tiff() devices.
- Other useful file devices include postscript(), pdf(), pictex(), xfig(), and bitmap().

Why would we display tabular data on a plot device?

- Reviewing results in a terminal isn't usually effective
- Garner benefits from formatting
- Combining graphics and tables can be very powerful

Some solutions, with a focus on textplot

3/15

Set up an example

```
> library('PerformanceAnalytics')
> data(managers)
> #managers=read.csv("/home/peter/dev/R/managers.csv",row.names=1)
> head(managers)
              HAM1 HAM2
                          HAM3
                                   HAM4 HAM5 HAM6 EDHEC LS EQ SP500 TR
1996-01-31
           0.0074
                     NA
                        0.0349 0.0222
                                          NA
                                               NΑ
                                                           NΑ
                                                                0.0340
1996-02-29 0.0193
                     NA
                        0.0351
                                0.0195
                                          NΑ
                                               NA
                                                           NΑ
                                                                0.0093
1996-03-31 0.0155
                     NA
                        0.0258 - 0.0098
                                               NΑ
                                                           NΑ
                                                                0.0096
1996-04-30 -0.0091
                    NΑ
                        0.0449 0.0236
                                                                0.0147
                                          NΑ
                                               NΑ
                                                           NΑ
1996-05-31 0.0076
                    NA
                        0.0353 0.0028
                                          NΑ
                                               NΑ
                                                           NΑ
                                                                0.0258
1996-06-30 -0.0039
                     NA -0.0303 -0.0019
                                          NΑ
                                               NΑ
                                                           NΑ
                                                                0.0038
           US 10Y TR US 3m TR
1996-01-31
             0.00380
                     0.00456
1996-02-29 -0.03532
                     0.00398
1996-03-31 -0.01057
                     0.00371
1996-04-30 -0.01739 0.00428
1996-05-31 -0.00543 0.00443
1996-06-30
            0.01507
                      0.00412
> dim(managers)
[1] 132
       10
> colnames(managers)
 [1]
    "HAM1"
                   "CMAH"
                                 "HAM3"
                                               "HAM4"
                                                             "HAM5"
 [6] "HAM6"
                   "EDHEC LS EQ" "SP500 TR"
                                               "US 10Y TR"
                                                             "US 3m TR"
```

Set up an example

Construct a table example

> ham1.downside

			Demi Dev.	Tacion Gai	n bev	Tacion	LUSS DE	VIACION			
HAM1			(0.0191		0.0169	1	0.0211			
EDHEC	LS	ΕQ	(0.0145		0.0143		0.0118			
SP500	TR		(0.0325		0.0250	1	0.0300			
HAM2			(0.0201		0.0347		0.0107			
EMAH.			(0.0237		0.0290	1	0.0191			
HAM4			(0.0395		0.0311		0.0365			
HAM5			(0.0324		0.0313		0.0324			
HAM6			(0.0175		0.0149		0.0128			
			${\tt Downside}$	Deviation	(MAR	=10%)	Downside	${\tt Deviation}$	(Rf = 3)	3%)	
HAM1					0	.0178			0.0	154	
EDHEC	LS	ΕQ			0	.0138			0.0	109	
SP500	TR				0	.0323			0.02	295	
HAM2					0	.0164			0.0	129	
EMAH.					0	.0214			0.0	185	
HAM4					0	.0381			0.03	353	
HAM5					0	.0347			0.03	316	
HAM6					0	.0161			0.0	133	
			${\tt Downside}$	Deviation	(0%)	Maxim	um Drawd	own Histori	ical V	/aR (95%)	
HAM1				0	.0145		0.1	518		-0.0258	
EDHEC	LS	ΕQ		0	.0098		0.10	075		-0.0203	
SP500	TR			0	.0283		0.4	173		-0.0669	
HAM2				0	.0116		0.2	399		-0.0294	
EMAH				0	.0174		0.2	394		-0.0425	
HAM4				0	.0341		0.2	374		-0.0799	
HAM5				0	.0304		0.3	105		-0.0733	
HAM6				0	.0121		0.0	788	4 □	-0.50341	Ξ

Semi Deviation Gain Deviation Loss Deviation

gplots:::textplot

Gregory R. Warnes' package, gplots, includes the textplot function

- Displays text output in a graphics window
- Provides the equivalent of print
- Creates a new plot and displays a table using the largest font that will fit in the plotting region
- Several other good things in the package, too

gplots:::textplot example

```
> library(gplots)
```

- > #args(gplots:::textplot)
- > gplots:::textplot(ham1.downside); box(col="lightblue")

Hmisc:::format.df

The Hmisc package by Frank E. Harrell, Jr., and Richard M. Heiberger contains several functions useful for data analysis

- Includes functions for advanced table making, character string manipulation, and conversion of S objects to LaTeX code, and many others.
- format.df does rounding and decimal alignment for data.frames, similar to format in base
- Generates a character matrix containing the formatted data
- Useful for formating tables in LaTeX or HTML, as well

Hmisc:::format.df example

◆ロト ◆昼 ト ◆ 昼 ト ● り へ ○

> ham1.f.downside = format.df(ham1.downside, na.blank=TRUE, numeric.dollar = FALSE, cdec=rep(4,d

Hmisc:::format.df example

> ham1.f.downside

```
Semi Deviation Gain Deviation Loss Deviation
HAM1
             "0.0191"
                             "0.0169"
                                             "0.0211"
EDHEC LS EQ "0.0145"
                             "0.0143"
                                             "0.0118"
SP500 TR
             "0.0325"
                             "0.0250"
                                             "0.0300"
HAM2
             "0.0201"
                             "0.0347"
                                             "0.0107"
HAM3
             "0.0237"
                             "0.0290"
                                             "0.0191"
HAM4
             "0.0395"
                             "0.0311"
                                             "0.0365"
HAM5
             "0.0324"
                             "0.0313"
                                             "0.0324"
HAM6
             "0.0175"
                             "0.0149"
                                             "0.0128"
             Downside Deviation (MAR=10\\%) Downside Deviation (Rf=3\\%)
HAM1
             "0.0178"
                                              "0.0154"
EDHEC LS EQ "0.0138"
                                              "0.0109"
SP500 TR.
             "0.0323"
                                              "0.0295"
HAM2
             "0.0164"
                                              "0.0129"
HAM3
             "0.0214"
                                              "0.0185"
HAM4
             "0.0381"
                                              "0.0353"
HAM5
             "0.0347"
                                              "0.0316"
HAM6
             "0.0161"
                                              "0.0133"
             Downside Deviation (0\\%) Maximum Drawdown Historical VaR (95\\%)
HAM1
                                         "0.1518"
             "0.0145"
                                                           "-0.0258"
EDHEC LS EQ "0.0098"
                                         "0.1075"
                                                           "-0.0203"
SP500 TR.
             "0.0283"
                                         "0.4473"
                                                           "-0.0669"
HAM2
             "0.0116"
                                         "0.2399"
                                                           "-0.0294"
EMAH
             "0.0174"
                                         "0.2894"
                                                           "-0.0425"
HAM4
             "0.0341"
                                         "0.2874"
                                                           "-0.0799"
HAM5
                                         "0.3405"
                                                           "-0.0733"
             "0.0304"
HAM6
             "0.0121"
                                         "0.0788"
                                                           "-0.034±" >
```

900

PerformanceAnalytics:::textplot

The PerformanceAnalytics package extends the gplots:::textplot function

- Equivalent of print except that the output is displayed as a plot
- Fixes some of the layout math
- Adds column and row name word wrapping
- Adds color to the table elements
- Adds vertical alignment for headers and data

PerformanceAnalytics:::textplot example

```
> require(PerformanceAnalytics)
> args(PerformanceAnalytics:::textplot)

function (object, halign = "center", valign = "center", cex,
    max.cex = 1, cmar = 2, rmar = 0.5, show.rownames = TRUE,
    show.colnames = TRUE, hadj = 1, vadj = NULL, row.valign = "center",
    heading.valign = "bottom", mar = c(0, 0, 0, 0) + 0.1, col.data = par("col"),
    col.rownames = par("col"), col.colnames = par("col"), wrap = TRUE,
    wrap.colnames = 10, wrap.rownames = 10, ...)
NULL.
```

PerformanceAnalytics:::textplot example

- > PerformanceAnalytics:::textplot(ham1.f.downside, halign = "center", valign = "top", row.valign
- > box(col="lightblue")

				Downside	Downside	Downside		Historicai		moairiea		
	Sem Deviation		Loss Deviation	Deviation (MAR=10\%)	Deviation (Rf=3\%)	Deviation (0\%)	Maximum Drawdown	VaR (95\%)	Historical ES (95\%)	VaR (95\%)	Modified ES (95\%)	
H	M1 0.019	1 0.0169	0.0211	0.0178	0.0154	0.0145	0.1518	-0.0258	-0.0513	-0.0342	-0.0610)
EDHEC	LS 0.014	5 0.0143	0.0118	0.0138	0.0109	0.0098	0.1075	-0.0203	-0.0342	-0.0235	-0.0346	i
SP500	TR 0.032	5 0.0250	0.0300	0.0323	0.0295	0.0283	0.4473	-0.0669	-0.0933	-0.0683	-0.0944	ŀ
H/	M2 0.020	1 0.0347	0.0107	0.0164	0.0129	0.0116	0.2399	-0.0294	-0.0331	-0.0276	-0.0514	ŀ
H/	M3 0.023	7 0.0290	0.0191	0.0214	0.0185	0.0174	0.2894	-0.0425	-0.0555	-0.0368	-0.0440)
H/	M4 0.039	5 0.0311	0.0365	0.0381	0.0353	0.0341	0.2874	-0.0799	-0.1122	-0.0815	-0.1176	i
H/	M5 0.032	4 0.0313	0.0324	0.0347	0.0316	0.0304	0.3405	-0.0733	-0.1023	-0.0676	-0.0974	ļ
H/	.M6 0.017	5 0.0149	0.0128	0.0161	0.0133	0.0121	0.0788	-0.0341	-0.0392	-0.0298	-0.0390)

Other Possibilities

What else is available?

- A very promising package presented at useR! 2010, tabulaR
- Dump results to a spreadsheet, perhaps with XLConnect
- Finally learn LATEX and Sweave
- What did I miss? Any feedback would be much appreciated . . .