Chapitre 18: Intégration

Dans tout le chapitre, [a,b] désigne un segment de \mathbb{R} .

I. Intégrale d'une fonction continue

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue positive. L'aire (exprimée en unités d'aire) de la portion de plan située entre l'axe des abscisses, la courbe de la fonction f et les droites d'équations x=a et x=b est appelée intégrale de f entre a et b et notée

 $\int_{a}^{b} f(x) \mathrm{d}x.$

Remarque. On note également $\int_a^b f$.

Définition 1

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue. L'intégrale de f entre a et b, encore notée $\int_a^b f(x) dx$, est la différence entre :

- la somme des aires des zones situées au dessus de l'axe des abscisses et entre cet axe et la courbe;
- la somme des aires des zones situées en dessous de l'axe des abscisses et entre cet axe et la courbe.

Exercices 1 et 2

Définition 2

Les exemples suivants sont discutés en exercices.

Exemple 1 $\int_{1}^{4} \left(\frac{2}{3}x + \frac{1}{3}\right) dx = \frac{(B+b) \times h}{2} = \frac{(3+1) \times 3}{2} = 6.$ $y = \frac{2}{3}x + \frac{1}{3}$ (aire d'un trapèze)

Exemple 2

Si v(t) donne la vitesse d'une voiture au temps t, alors

$$\int_{a}^{b} v(t) dt$$

est la distance totale parcourue entre les temps t = a et t = b.

La vitesse moyenne de la voiture est alors

$$\frac{1}{b-a} \int_{a}^{b} v(t) dt.$$

Remarque (Intégrale d'une fonction constante). Remarque (Inversion des bornes). On pose On rappelle que si c est une constante :

$$\int_{a}^{b} c \mathrm{d}x = c(b - a).$$

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx.$$

II. Calcul intégral

Théorème 1 (théorème fondamental de l'analyse)

Si $f:[a,b] \to \mathbb{R}$ est une fonction continue et si F est une primitive de f sur [a, b], alors :

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

Remarque. Lorsque les bornes sont « à l'envers », la formule devient : $\int_b^a f(x) dx = F(a) - F(b)$.

Les tableaux dans la proposition ci-dessous recensent les primitives usuelles.

Proposition 1 (C désigne une constante réelle)

Primitives du lycée		
Fonctions	Primitives	
$e^{ax} (a \neq 0)$	$\frac{1}{a}e^{ax} + C$	
$\frac{1}{x}$	$\ln x + C$	
sin x	$-\cos x + C$	
cos x	$\sin x + C$	

Nouvelles fonctions usuelles		
Fonctions	Primitives	
$x^{\alpha} \ (\alpha \neq -1)$	$\frac{1}{\alpha+1}x^{\alpha+1} + C$	
$\frac{1}{1+x^2}$	$\arctan x + C$	
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x + C$	
$-\frac{1}{\sqrt{1-x^2}}$	$\arccos x + C$	

Opérations sur les primitives			
(u et v sont des fonctions)			
Fonctions	Primitives		
$\frac{u'}{u}$	ln(u) + C		
$u'e^u$	$e^u + C$		
$u'u^{\alpha} \ (\alpha \neq -1)$	$\frac{1}{\alpha+1}u^{\alpha+1}+C$		
$\frac{u'}{1+u^2}$	$\arctan u + C$		
$u' \times v' \circ u$	$v \circ u + C$		

Remarques.

- On prendra garde aux ensembles de définition.
- Le cas de $x \mapsto x^{\alpha}$ contient bien sûr les fonctions de la forme $x \mapsto x^n$, avec $n \in \mathbb{N}$; mais aussi par exemple $x \mapsto \frac{1}{\sqrt{x}} = \frac{1}{x^{1/2}} = x^{-1/2}$, dont les primitives sont les $x \mapsto 2x^{1/2} + C = 2\sqrt{x} + C$.
- Les quatre 1^{res} lignes du tableau de droite sont des cas particuliers (les plus utiles) de la 5^e ligne.

Exemple 3

On calcule $I = \int_0^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin^2 x} dx$. On reconnaît la formule $\frac{u'}{1 + u^2}$, avec $u(x) = \sin x$, donc

$$I = \left[\arctan(\sin x)\right]_0^{\frac{\pi}{2}} = \arctan\left(\sin\frac{\pi}{2}\right) - \arctan(\sin 0) = \arctan 1 - \arctan 0 = \frac{\pi}{4} - 0 = \frac{\pi}{4}.$$

Proposition 2 (relation de Chasles)

Pour toute fonction f continue sur un intervalle I, pour tous réels a, b, c dans I:

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx.$$

On a déjà énoncé et utilisé la proposition suivante dans le chapitre 3.

Proposition 3 (linéarité de l'intégrale)

Pour toutes fonctions f, g continues sur [a, b], pour tous

$$\alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx = \int_{a}^{b} (\alpha f(x) + \beta g(x)) dx.$$

Si f est positive sur [a, b], le nombre $\int_a^b f(x) dx$ est une aire. Il est donc positif:

Proposition 4 (positivité de l'intégrale)

Soit *f* une fonction continue et positive sur l'intervalle [a,b]. Dans ce cas

$$\int_{a}^{b} f(x) \mathrm{d}x \ge 0.$$

Proposition 5 (croissance de l'intégrale)

Soient f, g deux fonctions continues sur l'intervalle [a, b]. Si $f(x) \le g(x)$ pour tout $x \in [a, b]$, alors

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx.$$

Proposition 6 (inégalité triangulaire)

Si $f:[a,b] \to \mathbb{R}$ est continue, alors

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} \left| f(x) \right| dx.$$

Soient x < y deux réels. On a

$$\int_{x}^{y} \cos t \, \mathrm{d}t = \left[\sin t\right]_{x}^{y} = \sin y - \sin x,$$

donc

$$\left|\sin y - \sin x\right| = \left|\int_{r}^{y} \cos t \, \mathrm{d}t\right| \le \int_{r}^{y} \left|\cos t\right| \, \mathrm{d}t.$$

Or $|\cos t| \le 1$ pour tout réel t, donc

$$\int_{x}^{y} |\cos t| \, \mathrm{d}t \le \int_{x}^{y} 1 \, \mathrm{d}t = 1 (y - x) = y - x = |y - x|.$$

Conclusion:

$$\left|\sin y - \sin x\right| \le |y - x|.$$

Remarque. On peut aussi démontrer cette inégalité en utilisant l'IAF.

Théorème 2 (intégration par parties)

Soient u, v deux fonctions de classe \mathscr{C}^1 sur l'intervalle [a,b]. Dans ce cas :

$$\int_{a}^{b} u'(x)v(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u(x)v'(x)dx.$$

Exemple 5

On calcule $\int_1^e \ln x dx$.

$$u'(x) = 1$$

$$v(x) = \ln x$$

$$u(x) = x$$

$$v'(x) = \frac{1}{x}.$$

Chacune des fonctions u et v est de classe \mathscr{C}^1 sur [1,e],

Pour cela, on écrit
$$\int_1^e \ln x dx = \int_1^e 1 \times \ln x dx$$
 et on intègre par parties : on pose
$$\int_1^e \ln x dx = \int_1^e 1 \times \ln x dx = \left[\frac{x}{u(x)} \times \ln x \right]_1^e - \int_1^e \frac{x}{u(x)} \times \frac{1}{x} dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

$$= e \ln e - 1 \ln 1 - \int_1^e 1 dx$$

Théorème 3 (changement de variable)

Si φ est de classe \mathscr{C}^1 sur un intervalle I et si f est continue sur $\varphi(I)$, alors pour tous a, b dans I:

$$\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_{a}^{b} f(\varphi(t)) \varphi'(t) dt.$$

Remarques.

- On peut très bien avoir $a \ge b$.
- En pratique, on pose $x = \varphi(t)$ et on dérive « à la physicienne » :

$$dx = \varphi'(t)dt$$
.

Exemple 6

On calcule

$$I = \int_0^1 \sqrt{1 - x^2} \, \mathrm{d}x.$$

On pose

$$x = \sin t$$
 $dx = \cos t dt$

et on complète le tableau de valeurs (il faut deviner les valeurs à la 2^e ligne – il y a plusieurs possibilités pour t):

$x = \sin t$	0	1
t	0	$\frac{\pi}{2}$

Le théorème de changement de variable donne ^a :

$$I = \int_0^{\frac{\pi}{2}} \sqrt{1 - \sin^2 t} \cos t \, \mathrm{d}t.$$

Or $\sqrt{1-\sin^2 t} = \sqrt{\cos^2 t} = \cos t$, lorsque $t \in \left[0, \frac{\pi}{2}\right]$, donc

$$I = \int_0^{\frac{\pi}{2}} \cos t \times \cos t \, dt = \int_0^{\frac{\pi}{2}} \cos^2 t \, dt.$$

Pour finir, $cos(2t) = 2cos^2 t - 1$ pour tout réel t, donc $cos^2 t = \frac{1 + cos(2t)}{2}$. On a donc

$$I = \int_{0}^{\frac{\pi}{2}} \frac{1 + \cos(2t)}{2} dt = \int_{0}^{\frac{\pi}{2}} \left(\frac{1}{2} + \frac{1}{2}\cos(2t)\right) dt = \left[\frac{1}{2}t + \frac{1}{4}\sin(2t)\right]_{0}^{\frac{\pi}{2}} = \left(\frac{1}{2} \times \frac{\pi}{2} + \frac{1}{4}\sin\left(2 \times \frac{\pi}{2}\right)\right) - \left(\frac{1}{2} \times 0 + \frac{1}{4}\sin(2 \times 0)\right) = \frac{\pi}{4}.$$

a. Formellement, on a posé $\varphi: [0, \frac{\pi}{2}] \to [0, 1], \ t \mapsto \sin t.$

Remarque.

La réponse est évidente si l'on fait une figure : $y=\sqrt{1-x^2}$ $(x\in[0,1])$ est l'équation de la partie en haut à droite du cercle trigonométrique. L'intégrale I représente donc le quart de l'aire du disque de centre O de rayon 1 :

$$I = \frac{1}{4} \times \pi \times 1^2 = \frac{\pi}{4}.$$

Exercices 14 à 16

III. Sommes de Riemann

Soit f une fonction continue sur un intervalle [a, b]. Lorsqu'on ne parvient pas à trouver de primitive de f, on peut approcher $\int_a^b f(x) dx$ par différents algorithmes. On utilise par exemple :

Exemple 7 (méthode des rectangles)

Exemple 8 (méthode des trapèzes)

On peut s'attendre à ce que l'approximation de $\int_a^b f(x) \mathrm{d}x$ par la méthode des rectangles soit d'autant meilleure que la largeur desdits rectangles est petite; et même qu'à la limite, lorsque cette largeur tend vers 0, la somme de leurs aires tende vers la valeur de l'intégrale. Dans l'exercice 17, on a vu que c'était vrai pour la fonction $x \mapsto x^2$, sur l'intervalle [0,1]. Le résultat est en fait valable dans un cadre beaucoup plus général :

Théorème 4 (sommes de Riemann)

Si f est de classe \mathscr{C}^1 sur [a, b], alors:

$$\frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) \underset{n \to +\infty}{\longrightarrow} \int_{a}^{b} f(x) dx.$$

L'expression de gauche ci-dessus est appelée somme de Riemann pour f sur l'intervalle [a,b].

Exemple 9

Pour tout entier naturel non nul n, on pose $S_n = \sum_{k=0}^{n-1} \frac{n}{n^2 + k^2}$.

On réécrit de façon astucieuse, pour faire apparaître une somme de Riemann :

$$\forall n \in \mathbb{N}^*, \ S_n = \frac{1}{n} \sum_{k=0}^{n-1} \frac{n^2}{n^2 + k^2} = \frac{1}{n} \sum_{k=0}^{n-1} \frac{\frac{n^2}{n^2}}{\frac{n^2 + k^2}{n^2}} = \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{1 + \left(\frac{k}{n}\right)^2}.$$

Il s'agit d'une somme de Riemann, pour la fonction $f: x \mapsto \frac{1}{1+x^2}$, sur l'intervalle [0,1].

La fonction f est de classe \mathscr{C}^1 sur [0,1], donc

$$S_n \underset{n \to +\infty}{\longrightarrow} \int_0^1 \frac{1}{1+x^2} dx = \left[\arctan x\right]_0^1 = \arctan 1 - \arctan 0 = \frac{\pi}{4} - 0 = \frac{\pi}{4}.$$

IV. Fonction définie par une intégrale

Théorème 5

Soit f une fonction continue sur un intervalle I et soit $x_0 \in I$. On définit

$$F: I \to \mathbb{R}, \ x \mapsto \int_{x_0}^x f(t) dt.$$

La fonction F est l'unique primitive de f s'annulant en x_0 . Autrement dit :

$$-- \forall x \in I, \ F'(x) = f(x);$$

$$- F(x_0) = 0.$$

Remarque.

Toute fonction continue sur un intervalle I y admet donc une primitive!

Exemple 10

La fonction $f: x \mapsto \int_0^x \frac{1}{1+t^4} dt$ est dérivable sur \mathbb{R} , et sa dérivée est $f': x \mapsto \frac{1}{1+x^4}$.

V. Exercices

Sans utiliser de primitive, calculer $\int_{-2}^{4} (-0.5x + 1) dx$ et

Exercice 2.

1. Si v(t) donne la vitesse (en m/s) d'une voiture au temps t (en s), que représente le nombre

$$\int_2^8 v(t) dt?$$

2. Exprimer la vitesse moyenne de la voiture entre les temps t = 2 et t = 8 à l'aide d'une intégrale.

Exercice 3 $(\hat{\mathbf{m}})$.

Calculer les intégrales :

1.
$$I = \int_1^2 \frac{2}{t} dt$$

5.
$$M = \int_0^1 e^{2x} dx$$

2.
$$J = \int_0^{\frac{\pi}{3}} \tan t \, dt$$

6.
$$N = \int_{-1}^{1} 2x e^{-x^2} dx$$

1.
$$I = \int_{1}^{2} \frac{2}{t} dt$$
.
2. $J = \int_{0}^{\frac{\pi}{3}} \tan t dt$.
3. $K = \int_{0}^{\pi} \cos^{2} x dx$.
4. $L = \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^{2}}} dx$.
5. $M = \int_{0}^{1} e^{2x} dx$.
6. $N = \int_{-1}^{1} 2x e^{-x^{2}} dx$.
7. $O = \int_{1}^{8} x^{\frac{1}{3}} dx$.

7.
$$O = \int_1^8 x^{\frac{1}{3}} dx$$

Exercice 4 $(\hat{\mathbf{m}})$.

Déterminer des primitives des fonctions.

1.
$$t \mapsto \frac{\ln t}{t} \operatorname{sur} (0, +\infty)$$

1.
$$t \mapsto \frac{\ln t}{t} \sup]0, +\infty[$$
. 3. $x \mapsto x\sqrt{x} \sup]0, +\infty[$. 2. $x \mapsto \frac{x-1}{1+v^2}$. 4. $t \mapsto t \sin(t^2)$.

2.
$$x \mapsto \frac{x-1}{1+x^2}$$
.

$$4. \quad t \mapsto t \sin\left(t^2\right)$$

1.
$$I = \int_0^2 \frac{2t+3}{t+1} dt$$
.

4.
$$L = \int_1^2 \frac{1}{x(x+1)} dx$$
.

Calcular les integrales :
1.
$$I = \int_0^2 \frac{2t+3}{t+1} dt$$
. **4.** $L = \int_1^2 \frac{1}{x(x+1)} dx$. **2.** $J = \int_0^1 \frac{t^2}{1+t^2} dt$. **5.** $M = \int_1^e \frac{\sqrt{\ln x}}{x} dx$. **3.** $K = \int_0^\pi \sin^3 t dt$. **6.** $N = \int_0^1 |3x - 1| dx$.

5.
$$M = \int_1^e \frac{\sqrt{\ln x}}{x} dx$$

3.
$$K = \int_0^{\pi} \sin^3 t \, dt$$

6.
$$N = \int_0^1 |3x - 1| dx$$

Exercice 6.

Soit $0 \le a \le 1$. Prouver que

$$\int_0^1 \min(x, a) dx = a - \frac{1}{2} a^2.$$

Exercice 7 $(\hat{\mathbf{1}})$.

1. Déterminer deux réels a, b tels que pour tout $x \in$ $\mathbb{R} \setminus \{-1;0\}$:

$$\frac{2x-1}{x(x+1)} = \frac{a}{x} + \frac{b}{x+1}$$
.

2. En déduire les primitives de

$$x \mapsto \frac{2x-1}{r(r+1)}$$
.

3. Déterminer de même les primitives de

$$x \mapsto \frac{-3x+4}{(2x-1)(x+2)}$$

Exercice 8 $(\hat{\mathbf{m}})$.

1. Prouver que pour tout réel t:

$$0 \le \frac{1}{1+t^2} \le 1.$$

2. En déduire que pour tous réels x < y:

$$0 \le \arctan y - \arctan x \le y - x$$
.

Exercice 9 ($\stackrel{\frown}{\blacksquare}$ $\stackrel{\frown}{\bullet}$).

Pour tout entier naturel n, on définit $I_n = \int_0^1 \frac{x^n}{1+x} dx$.

1. Justifier l'encadrement, pour tout entier naturel n, pour tout réel $0 \le x \le 1$:

$$0 \le \frac{x^n}{1+x} \le x^n.$$

En déduire la limite de $(I_n)_{n\in\mathbb{N}}$.

2. Prouver que pour tout entier naturel k:

$$I_k + I_{k+1} = \frac{1}{k+1}.$$

- 3. On pose $S_n = \sum_{k=0}^n \frac{(-1)^k}{k+1}$ pour tout entier naturel n. En utilisant la question précédente, prouver que $S_n = I_0 + (-1)^n I_{n+1}$.
- culer I_0 et en déduire la limite de $(S_n)_{n \in \mathbb{N}}$.

Exercice 10 (6).

1. Prouver que pour tout entier $k \ge 1$, pour tout réel

$$\frac{1}{k+1} \le \frac{1}{t} \le \frac{1}{k}.$$

En déduire que

$$\frac{1}{k+1} \le \ln(k+1) - \ln k \le \frac{1}{k}.$$

2. On pose $S_n = \sum_{k=1}^n \frac{1}{k}$ pour tout entier $n \ge 1$. Prouver que

$$ln(n+1) < S_n$$

puis déterminer la limite de la suite $(S_n)_{n \in \mathbb{N}^*}$

Exercice 11 $(\hat{\mathbf{1}})$.

Calculer les intégrales à l'aide d'une (ou plusieurs) inté-

- 1. $I = \int_0^1 x e^{-x} dx$. 2. $J = \int_1^e x \ln x dx$. 3. $K = \int_0^1 \arctan x dx$.

Exercice 12 (**1** 6).

Pour tout entier naturel n, on pose

$$I_n = \frac{1}{n!} \int_0^1 x^n e^{1-x} dx.$$

1. À l'aide d'une intégration par parties, prouver que pour tout entier naturel n:

$$I_{n+1} = -\frac{1}{(n+1)!} + I_n.$$

2. Démontrer par récurrence que pour tout entier na-

$$I_n = \mathbf{e} - \sum_{k=0}^n \frac{1}{k!}.$$

3. Prouver enfin que $e = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{1}{k!}$

Exercice 13 (intégrales de Wallis 6).

Pour tout entier naturel n, on pose

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x \mathrm{d}x.$$

- **1.** Calculer I_0 et I_1 .
- **2.** Soit $n \in \mathbb{N}$. En intégrant par parties I_{n+2} (poser $v(x) = \sin^{n+1} x$ et $u'(x) = \sin x$), prouver que

$$I_{n+2} = \frac{n+1}{n+2}I_n.$$

En déduire I_2 , I_4 et I_6 . Généraliser à I_{2n} , pour $n \in \mathbb{N}$.

Exercice 14 $(\hat{\mathbf{m}})$.

Calculer les intégrales à l'aide d'un changement de va-

- 1. $I = \int_1^4 \frac{1}{\sqrt{x}+1} dx$. 2. $J = \int_0^{\ln 3} \frac{1}{1+e^x} dx$. 3. $K = \int_0^2 \frac{1}{4+x^2} dx$.

Exercice 15 $(\hat{\mathbf{m}})$.

À l'aide d'un changement de variable, justifier l'égalité

$$\int_0^{\frac{\pi}{2}} \cos^2 u \, \mathrm{d}u = \int_0^{\frac{\pi}{2}} \sin^2 u \, \mathrm{d}u,$$

puis déterminer la valeur de chaque intégrale.

Exercice 16 (11).

1. Prouver que

$$\int_0^{\frac{\pi}{2}} \frac{\cos t}{\cos t + \sin t} dt = \int_0^{\frac{\pi}{2}} \frac{\sin t}{\cos t + \sin t} dt = \frac{\pi}{4}.$$

2. En déduire la valeur de

$$I = \int_0^1 \frac{1}{u + \sqrt{1 - u^2}} du$$
.

Exercice 17.

On a tracé ci-dessous la courbe de la fonction $x \mapsto x^2$.

- 1. Prouver que la somme S_5 des aires des rectangles dessinés est égale à 0,44.
- **2.** Généralisation : on coupe l'intervalle [0,1] en n intervalles de même amplitude et on construit n rectangles comme ci-dessus.

Compléter le code Python qui calcule la somme S_n des aires des rectangles.

```
def aire(n):
         Somme = 0
         for k in range(...):
         return Somme
```

Donner la valeur de S_{1000} obtenue avec ce code.

3. Prouver que la somme S_n des aires des rectangles

$$\frac{(n+1)(2n+1)}{6n^2}.$$

Déterminer $\lim_{n\to+\infty} S_n$.

Exercice 18.

On utilise la même méthode des rectangles que dans l'exercice précédent, mais cette fois pour la fonction $x \mapsto \sin x$, sur l'intervalle $[0, \pi]$.

- 1. Écrire un code Python qui calcule la somme S_n des aires des rectangles. Il faudra charger le module **math**, pour avoir la fonction sin et le nombre π .
- **2.** Calculer S_{1000} et comparer à $\int_0^{\pi} \sin x dx$.

Exercice 19.

- On reprend l'exercice 17. Modifier le code pour qu'il calcule la somme T_n des aires de n trapèzes comme sur la figure ci-dessous.
- **2.** Donner la valeur de T_{1000} obtenue avec ce code.

Exercice 20 (**1 6**).

En utilisant des sommes de Riemann, calculer les limites ou déterminer un équivalent lorsque n tend vers $+\infty$ de:

1.
$$S_n = \sum_{k=0}^{n-1} \frac{1}{n+k}$$

3.
$$U_n = \sum_{k=0}^{n-1} \frac{1}{n^2 + k^2}$$

1.
$$S_n = \sum_{k=0}^{n-1} \frac{1}{n+k}$$
.
2. $T_n = \sum_{k=0}^{n-1} \frac{1}{n} \cos\left(\frac{k\pi}{n}\right)$.
3. $U_n = \sum_{k=0}^{n-1} \frac{1}{n^2+k^2}$.
4. $V_n = \sum_{k=0}^{n-1} \sqrt{n+k}$.

4.
$$V_n = \sum_{k=0}^{n-1} \sqrt{n+k}$$

Exercice 21 $(\hat{\mathbf{m}})$.

Construire le tableau de variations de $F: [0, +\infty[\to \mathbb{R}, x \mapsto \int_0^x \frac{e^{-t}}{1+t^2} dt.$

Exercice 22 $(\hat{\mathbf{m}})$.

À l'aide d'une IPP, déterminer la primitive de la fonction ln qui s'annule en 1.

Exercice 23 (11).

À l'aide d'une IPP, déterminer la primitive de la fonction arcsin qui s'annule en 0.

Exercice 24.

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue positive telle que $\int_a^b f(t)\mathrm{d}t=0$.

On pose $F(x) = \int_a^x f(t) dt$ pour $x \in [a, b]$.

- 1. Étudier les variations de F et calculer F(a) et F(b).
- **2.** En déduire que f est la fonction nulle.

Exercice 25 ($\widehat{\underline{\mathbf{m}}}$ $\widehat{\mathbf{o}}$).

Soit $F:]0, +\infty[\to \mathbb{R}, x \mapsto \int_{x}^{2x} \frac{e^{-t}}{t} dt.$

1. Prouver que pour tout x > 0:

$$e^{-2x} \ln 2 \le F(x) \le e^{-x} \ln 2$$
.

2. En déduire la limite de F en $+\infty$ et en 0.

Exercice 26 (%).

Soit $f:[0,+\infty[\to\mathbb{R}$ une fonction continue. Calculer la dérivée de $G:x\mapsto \int_x^{2x}f(t)\mathrm{d}t$.