0.1 Theoretical properties of the test

To start with, we introduce the auxiliary statistic

$$\widehat{\Phi}_{n,T} = \max_{1 \le i < j \le n} \widehat{\Phi}_{ij,T},\tag{0.1}$$

where

$$\widehat{\Phi}_{ij,T} = \max_{(u,h) \in \mathcal{G}_T} \left\{ \left| \frac{\widehat{\phi}_{ij,T}(u,h)}{\{\widehat{\sigma}_i^2 + \widehat{\sigma}_i^2\}^{1/2}} \right| - \lambda(h) \right\}$$

and $\widehat{\phi}_{ij,T}(u,h) = \sum_{t=1}^{T} w_{t,T}(u,h) \left\{ (\varepsilon_{it} - \bar{\varepsilon}_i) + \boldsymbol{\beta}_i^{\top} (\mathbf{X}_{it} - \bar{\mathbf{X}}_i) - (\varepsilon_{jt} - \bar{\varepsilon}_j) - \boldsymbol{\beta}_j^{\top} (\mathbf{X}_{jt} - \bar{\mathbf{X}}_j) \right\}$ with $\bar{\varepsilon}_i = \bar{\varepsilon}_{i,T} = T^{-1} \sum_{t=1}^{T} \varepsilon_{it}$ and $\bar{\mathbf{X}}_i = \bar{\mathbf{X}}_{i,T} = T^{-1} \sum_{t=1}^{T} \mathbf{X}_{it}$ respectively. Our first theoretical result characterizes the asymptotic behaviour of the statistic $\widehat{\Phi}_{n,T}$.

Theorem 0.1. Suppose that the error processes $\mathcal{E}_i = \{\varepsilon_{it} : 1 \leq t \leq T\}$ are independent across i and satisfy ??-?? for each i. Moreover, let ??-?? be fulfilled and assume that $\widehat{\sigma}_i^2 = \sigma_i^2 + o_p(\rho_T)$ with $\rho_T = o(1/\log T)$ for each i. Then

$$\mathbb{P}(\widehat{\Phi}_{n,T} \le q_{n,T}(\alpha) | \{\mathbf{X}_{it} : 1 \le t \le T, 1 \le i \le n\}) = (1 - \alpha) + o(1) \ a.s.$$

1 Proof of the Theorem 0.1

In this section, we prove the theoretical results from Section ??. We use the following notation: The symbol C denotes a universal real constant which may take a different value on each occurrence. For $a, b \in \mathbb{R}$, we write $a_+ = \max\{0, a\}$ and $a \vee b = \max\{a, b\}$. For any set A, the symbol |A| denotes the cardinality of A. The notation $X \stackrel{\mathcal{D}}{=} Y$ means that the two random variables X and Y have the same distribution. Finally, $f_0(\cdot)$ and $F_0(\cdot)$ denote the density and distribution function of the standard normal distribution, respectively.

Auxiliary results using strong approximation theory

The main purpose of this section is to prove that there is a version of the multiscale statistic $\widehat{\Phi}_{n,T}$ defined in (0.1) which is close to a Gaussian statistic whose distribution is known. More specifically, we prove the following result.

Proposition A.1. Under the conditions of Theorem 0.1, there exist statistics $\widetilde{\Phi}_{n,T}$ for $T = 1, 2, \ldots$ with the following two properties: (i) $\widetilde{\Phi}_{n,T}$ has the same distribution as $\widehat{\Phi}_{n,T}$ for any T, and (ii)

$$\begin{aligned} \left| \widetilde{\Phi}_{n,T} - \Phi_{n,T} \right| &= o_p \left(\frac{T^{1/q}}{\sqrt{T h_{\min}}} + \rho_T \sqrt{\log T} + \rho_T \max_{1 \le i \le n} \left| \sum_{s=1}^T \widehat{\boldsymbol{\beta}}_i^\top (\mathbf{X}_{is} - \bar{\mathbf{X}}_i) \right| + \\ &+ \frac{T^{-1/2}}{\sqrt{T h_{\min}}} \max_{1 \le i \le n} \max_{1 \le t \le T} \left| \sum_{s=1}^t (\mathbf{X}_{is} - \bar{\mathbf{X}}_i) \right| \right), \end{aligned}$$

where $\Phi_{n,T}$ is a Gaussian statistic as defined in (??).

Proof of Proposition A.1. For the proof, we draw on strong approximation theory for each stationary process $\mathcal{E}_i = \{\varepsilon_{it} : 1 \leq t \leq T\}$ that fulfill the conditions ??-??. By Theorem 2.1 and Corollary 2.1 in Berkes et al. (2014), the following strong approximation result holds true: On a richer probability space, there exist a standard Brownian motion \mathbb{B} and a sequence $\{\widetilde{\varepsilon}_t : t \in \mathbb{N}\}$ such that $[\widetilde{\varepsilon}_1, \dots, \widetilde{\varepsilon}_T] \stackrel{\mathcal{D}}{=} [\varepsilon_1, \dots, \varepsilon_T]$ for each T and

$$\max_{1 \le t \le T} \left| \sum_{s=1}^{t} \widetilde{\varepsilon}_s - \sigma \mathbb{B}(t) \right| = o(T^{1/q}) \quad \text{a.s.}, \tag{1.1}$$

where $\sigma^2 = \sum_{k \in \mathbb{Z}} \text{Cov}(\varepsilon_0, \varepsilon_k)$ denotes the long-run error variance. To apply this result, we define

$$\widetilde{\Phi}_{n,T} = \max_{1 \le i < j \le n} \widetilde{\Phi}_{ij,T},\tag{1.2}$$

where

$$\widetilde{\Phi}_{ij,T} = \max_{(u,h) \in \mathcal{G}_T} \left\{ \left| \frac{\widetilde{\phi}_{ij,T}(u,h)}{\{\widehat{\sigma}_i^2 + \widehat{\sigma}_i^2\}^{1/2}} \right| - \lambda(h) \right\},\,$$

where $\widetilde{\phi}_{ij,T}(u,h) = \sum_{t=1}^{T} w_{t,T}(u,h) \left\{ (\widetilde{\varepsilon}_{it} - \overline{\widetilde{\varepsilon}}_i) + \boldsymbol{\beta}_i^{\top} (\mathbf{X}_{it} - \overline{\mathbf{X}}_i) - (\widetilde{\varepsilon}_{jt} - \overline{\widetilde{\varepsilon}}_j) - \boldsymbol{\beta}_j^{\top} (\mathbf{X}_{jt} - \overline{\mathbf{X}}_j) \right\}$ and $\widetilde{\sigma}_i^2$ are the same estimators as $\widehat{\sigma}_i^2$ with $Y_{it} = (\boldsymbol{\beta}_i - \widehat{\boldsymbol{\beta}}_i)^{\top} \mathbf{X}_{it} + m_i(t/T) + (\alpha_i - \widehat{\alpha}_i) + \varepsilon_{it}$ replaced by $\widetilde{Y}_{t,T} = (\boldsymbol{\beta}_i - \widehat{\boldsymbol{\beta}}_i)^{\top} \mathbf{X}_{it} + m_i(t/T) + (\alpha_i - \widehat{\alpha}_i) + \widetilde{\varepsilon}_{it}$ for $1 \leq t \leq T$. In addition, we let

$$\Phi_{n,T} = \max_{1 \le i < j \le n} \Phi_{ij,T} = \max_{1 \le i < j \le n} \max_{(u,h) \in \mathcal{G}_T} \left\{ \left| \frac{\phi_{ij,T}(u,h)}{\{\widehat{\sigma}_i^2 + \widehat{\sigma}_j^2\}^{1/2}} \right| - \lambda(h) \right\}$$

$$\Phi_{n,T}^{\diamond} = \max_{1 \le i < j \le n} \Phi_{ij,T}^{\diamond} = \max_{1 \le i < j \le n} \max_{(u,h) \in \mathcal{G}_T} \left\{ \left| \frac{\phi_{ij,T}(u,h)}{\{\widehat{\sigma}_i^2 + \widehat{\sigma}_j^2\}^{1/2}} \right| - \lambda(h) \right\}$$

with

$$\phi_{ij,T}(u,h) = \sum_{t=1}^{T} w_{t,T}(u,h) \left\{ \widehat{\sigma}_i(Z_{it} - \bar{Z}_i) + \widehat{\boldsymbol{\beta}}_i^{\top} (\mathbf{X}_{it} - \bar{\mathbf{X}}_i) - \widehat{\sigma}_j(Z_{jt} - \bar{Z}_j) - \widehat{\boldsymbol{\beta}}_j^{\top} (\mathbf{X}_{jt} - \bar{\mathbf{X}}_j) \right\}$$
and $Z_{it} = \mathbb{B}_i(t) - \mathbb{B}_i(t-1)$. With this notation, we can write

$$\left|\widetilde{\Phi}_{n,T} - \Phi_{n,T}\right| \le \left|\widetilde{\Phi}_{n,T} - \Phi_{n,T}^{\diamond}\right| + \left|\Phi_{n,T}^{\diamond} - \Phi_{n,T}\right|. \tag{1.3}$$

First consider $|\widetilde{\Phi}_{n,T} - \Phi_{n,T}^{\diamond}|$. Straightforward calculations yield that

$$\left|\widetilde{\Phi}_{n,T} - \Phi_{n,T}^{\diamond}\right| \le \left\{\widetilde{\sigma}_i^2 + \widetilde{\sigma}_j^2\right\}^{-1/2} \max_{1 \le i < j \le n} \max_{(u,h) \in \mathcal{G}_T} \left|\widetilde{\phi}_{ij,T}(u,h) - \phi_{ij,T}(u,h)\right|. \tag{1.4}$$

Using summation by parts, $(\sum_{i=1}^n a_i b_i = \sum_{i=1}^{n-1} A_i (b_i - b_{i+1}) + A_n b_n$ with $A_j = \sum_{j=1}^i a_j$) we further obtain that

$$\begin{aligned} \left| \widetilde{\phi}_{ij,T}(u,h) - \phi_{ij,T}(u,h) \right| &= \\ &= \left| \sum_{t=1}^{T} w_{t,T}(u,h) \left\{ (\widetilde{\varepsilon}_{it} - \overline{\widetilde{\varepsilon}}_{i}) + \boldsymbol{\beta}_{i}^{\top} (\mathbf{X}_{it} - \overline{\mathbf{X}}_{i}) - (\widetilde{\varepsilon}_{jt} - \overline{\widetilde{\varepsilon}}_{j}) - \boldsymbol{\beta}_{j}^{\top} (\mathbf{X}_{jt} - \overline{\mathbf{X}}_{j}) - \right. \\ &\left. - \widehat{\sigma}_{i} (Z_{it} - \overline{Z}_{i}) - \widehat{\boldsymbol{\beta}}_{i}^{\top} (\mathbf{X}_{it} - \overline{\mathbf{X}}_{i}) - \widehat{\sigma}_{j} (Z_{jt} - \overline{Z}_{j}) + \widehat{\boldsymbol{\beta}}_{j}^{\top} (\mathbf{X}_{jt} - \overline{\mathbf{X}}_{j}) \right\} \right| = \\ &= \left| \sum_{t=1}^{T-1} A_{ij,t} (w_{t,T}(u,h) - w_{t+1,T}(u,h)) + A_{ij,T} w_{t,T}(u,h) \right|, \end{aligned}$$

where

$$A_{ij,t} = \sum_{s=1}^{t} \left\{ (\widetilde{\varepsilon}_{is} - \bar{\widetilde{\varepsilon}}_{i}) + \boldsymbol{\beta}_{i}^{\top} (\mathbf{X}_{is} - \bar{\mathbf{X}}_{i}) - (\widetilde{\varepsilon}_{js} - \bar{\widetilde{\varepsilon}}_{j}) - \boldsymbol{\beta}_{j}^{\top} (\mathbf{X}_{js} - \bar{\mathbf{X}}_{j}) - \widehat{\boldsymbol{\sigma}}_{i} (Z_{it} - \bar{Z}_{i}) - \widehat{\boldsymbol{\beta}}_{i}^{\top} (\mathbf{X}_{it} - \bar{\mathbf{X}}_{i}) - \widehat{\boldsymbol{\sigma}}_{j} (Z_{jt} - \bar{Z}_{j}) + \widehat{\boldsymbol{\beta}}_{j}^{\top} (\mathbf{X}_{jt} - \bar{\mathbf{X}}_{j}) \right\}.$$

Note that by construction $A_{ij,T} = 0$ for all pairs (i, j). Denoting

$$W_T(u,h) = \sum_{t=1}^{T-1} |w_{t+1,T}(u,h) - w_{t,T}(u,h)|,$$

we have

$$\left|\widetilde{\phi}_{ij,T}(u,h) - \phi_{ij,T}(u,h)\right| = \left|\sum_{t=1}^{T-1} A_{ij,t} \left(w_{t,T}(u,h) - w_{t+1,T}(u,h)\right)\right| \le W_T(u,h) \max_{1 \le t \le T} |A_{ij,t}|.$$
(1.5)

Now consider $\max_{1 \le t \le T} |A_{ij,t}|$:

$$\begin{split} \max_{1 \leq t \leq T} |A_{ij,t}| &\leq \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} \left(\widetilde{\varepsilon}_{is} - \widetilde{\varepsilon}_{i} \right) - \sigma_{i} \sum_{s=1}^{t} \left\{ Z_{is} - \overline{Z}_{i} \right\} \right| + \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} \left(\widetilde{\varepsilon}_{js} - \widetilde{\varepsilon}_{j} \right) - \sigma_{j} \sum_{s=1}^{t} \left\{ Z_{js} - \overline{Z}_{j} \right\} \right| + \\ &+ \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} \left(\beta_{i} - \widehat{\beta}_{i} \right)^{\top} (\mathbf{X}_{is} - \overline{\mathbf{X}}_{i}) \right| + \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} (\beta_{j} - \widehat{\beta}_{j})^{\top} (\mathbf{X}_{js} - \overline{\mathbf{X}}_{j}) \right| \leq \\ &\leq \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} \widetilde{\varepsilon}_{is} - \sigma_{i} \sum_{s=1}^{t} Z_{is} \right| + \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} \widetilde{\varepsilon}_{js} - \sigma_{j} \sum_{s=1}^{t} Z_{js} \right| + \\ &+ \max_{1 \leq t \leq T} \left| t (\widetilde{\varepsilon}_{i} - \sigma_{i} \overline{Z}_{i}) \right| + \max_{1 \leq t \leq T} \left| t (\widetilde{\varepsilon}_{j} - \sigma_{j} \overline{Z}_{j}) \right| + \\ &+ \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} (\beta_{i} - \widehat{\beta}_{i})^{\top} (\mathbf{X}_{is} - \overline{\mathbf{X}}_{i}) \right| + \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} (\beta_{j} - \widehat{\beta}_{j})^{\top} (\mathbf{X}_{js} - \overline{\mathbf{X}}_{j}) \right| \leq \\ &\leq 2 \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} \widetilde{\varepsilon}_{is} - \sigma_{i} \sum_{s=1}^{t} Z_{is} \right| + 2 \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} \widetilde{\varepsilon}_{js} - \sigma_{j} \sum_{s=1}^{t} Z_{js} \right| + \\ &+ \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} (\beta_{i} - \widehat{\beta}_{i})^{\top} (\mathbf{X}_{is} - \overline{\mathbf{X}}_{i}) \right| + \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} (\beta_{j} - \widehat{\beta}_{j})^{\top} (\mathbf{X}_{js} - \overline{\mathbf{X}}_{j}) \right| = \\ &= 2 \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} \widetilde{\varepsilon}_{is} - \sigma_{i} \sum_{s=1}^{t} \left(\mathbb{B}_{i}(s) - \mathbb{B}_{i}(s - 1) \right) \right| + 2 \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} \widetilde{\varepsilon}_{js} - \sigma_{j} \sum_{s=1}^{t} \left(\mathbb{B}_{j}(s) - \overline{\mathbb{B}}_{j}(s - 1) \right) \right| \\ &= 2 \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} \widetilde{\varepsilon}_{is} - \sigma_{i} \mathbb{B}_{i}(t) \right| + 2 \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} \widetilde{\varepsilon}_{js} - \sigma_{j} \mathbb{B}_{j}(t) \right| + \\ &+ \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} \widetilde{\varepsilon}_{is} - \sigma_{i} \mathbb{B}_{i}(t) \right| + 2 \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} \widetilde{\varepsilon}_{js} - \sigma_{j} \mathbb{B}_{j}(t) \right| + \\ &+ \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} (\beta_{i} - \widehat{\beta}_{i})^{\top} (\mathbf{X}_{is} - \overline{\mathbf{X}}_{i}) \right| + \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} (\beta_{j} - \widehat{\beta}_{j})^{\top} (\mathbf{X}_{js} - \overline{\mathbf{X}}_{j}) \right| = \\ &= 2 \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} (\beta_{i} - \widehat{\beta}_{i})^{\top} (\mathbf{X}_{is} - \overline{\mathbf{X}}_{i}) \right| + \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} (\beta_{j} - \widehat{\beta}_{j})^{\top} (\mathbf{X}_{js} - \overline{\mathbf{X}}_{j}) \right| = \\ &= 2 \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} (\beta_{i} - \widehat{\beta}_{i})$$

Now suppose that for all $1 \le i \le n$ we have $\beta_i - \widehat{\beta}_i = o_P(T^{-1/2})$ almost surely. Then applying the strong approximation result (1.1), we can infer that

$$\max_{1 \le t \le T} |A_{ij,t}| = o(T^{1/q}) + o_P(T^{-1/2}) \max_{1 \le t \le T} \left| \sum_{s=1}^{t} (\mathbf{X}_{is} - \bar{\mathbf{X}}_i) \right| + o_P(T^{-1/2}) \max_{1 \le t \le T} \left| \sum_{s=1}^{t} (\mathbf{X}_{js} - \bar{\mathbf{X}}_j) \right|$$
(1.6)

Standard arguments show that $\max_{(u,h)\in\mathcal{G}_T} W_T(u,h) = O(1/\sqrt{Th_{\min}})$. Plugging (1.6) in (1.5) and then in (1.4), we can thus infer that

$$\left|\widetilde{\Phi}_{n,T} - \Phi_{n,T}^{\diamond}\right| \leq \left\{\widetilde{\sigma}_{i}^{2} + \widetilde{\sigma}_{j}^{2}\right\}^{-1/2} \max_{(u,h)\in\mathcal{G}_{T}} W_{T}(u,h) \max_{1\leq i < j \leq n} \max_{1\leq t \leq T} |A_{ij,t}| \leq$$

$$\leq o\left(\frac{T^{1/q}}{\sqrt{Th_{\min}}}\right) + o_{P}\left(\frac{T^{-1/2}}{\sqrt{Th_{\min}}}\right) \max_{1\leq i \leq n} \max_{1\leq t \leq T} \left|\sum_{s=1}^{t} (\mathbf{X}_{is} - \bar{\mathbf{X}}_{i})\right|.$$
 (1.7)

Now consider $|\Phi_{n,T}^{\diamond} - \Phi_{n,T}|$. Since $\phi_{ij,T}(u,h)$ conditionally on $\{\mathbf{X}_{it}\}$ is distributed as $N(\widehat{\boldsymbol{\beta}}_i^{\top}(\mathbf{X}_{it} - \bar{\mathbf{X}}_i) - \widehat{\boldsymbol{\beta}}_j^{\top}(\mathbf{X}_{jt} - \bar{\mathbf{X}}_j), \sigma_i^2 + \sigma_j^2)$ for all $(u,h) \in \mathcal{G}_T$ and all $1 \leq i < j \leq n$, $|\mathcal{G}_T| = O(T^{\theta})$ for some large but fixed constant θ by Assumption (??), n is fixed and $\widehat{\sigma}_i^2 = \sigma_i^2 + o_p(\rho_T)$ as well as $\widetilde{\sigma}_i^2 = \sigma_i^2 + o_p(\rho_T)$, we can establish that

$$\left| \Phi_{n,T}^{\diamond} - \Phi_{n,T} \right| \leq \max_{1 \leq i < j \leq n} \max_{(u,h) \in \mathcal{G}_T} \left| \frac{\phi_{ij,T}(u,h)}{\{\widetilde{\sigma}_i^2 + \widetilde{\sigma}_j^2\}^{1/2}} - \frac{\phi_{ij,T}(u,h)}{\{\widehat{\sigma}_i^2 + \widehat{\sigma}_j^2\}^{1/2}} \right| =$$

$$= o_P(\rho_T \sqrt{\log T}) + o_P(\rho_T) \max_{1 \leq i \leq n} \left| \sum_{s=1}^T \widehat{\boldsymbol{\beta}}_i^{\mathsf{T}} (\mathbf{X}_{is} - \bar{\mathbf{X}}_i) \right|. \tag{1.8}$$

Plugging (1.7) and (1.8) in (1.3) completes the proof.

Auxiliary results using anti-concentration bounds

In this section, we establish some properties of the Gaussian statistic $\Phi_{n,T}$ defined in (??). We in particular show that $\Phi_{n,T}$ does not concentrate too strongly in small regions of the form $[x - \delta_T, x + \delta_T]$ with δ_T converging to zero.

Proposition A.2. Under the conditions of Theorem 0.1, it holds that

$$\sup_{x \in \mathbb{R}} \mathbb{P}\Big(|\Phi_{n,T} - x| \le \delta_T |\{\mathbf{X}_{it} : 1 \le i \le n, 1 \le t \le T\}\Big) = o(1) \ a.s.,$$

where $\delta_T = T^{1/q} / \sqrt{T h_{\min}} + \rho_T \sqrt{\log T}$.

Proof of Proposition A.2. The main technical tool for proving Proposition A.2 are anti-concentration bounds for Gaussian random vectors. The following proposition slightly generalizes anti-concentration results derived in Chernozhukov et al. (2015), in particular Theorem 3 therein.

Proposition A.3. Let $(X_1, \ldots, X_p)^{\top}$ be a Gaussian random vector in \mathbb{R}^p with $\mathbb{E}[X_j] = \mu_j$ and $\operatorname{Var}(X_j) = \sigma_j^2 > 0$ for $1 \leq j \leq p$. Define $\overline{\mu} = \max_{1 \leq j \leq p} |\mu_j|$ together with $\underline{\sigma} = \min_{1 \leq j \leq p} \sigma_j$ and $\overline{\sigma} = \max_{1 \leq j \leq p} \sigma_j$. Moreover, set $a_p = \mathbb{E}[\max_{1 \leq j \leq p} (X_j - \mu_j)/\sigma_j]$ and $b_p = \mathbb{E}[\max_{1 \leq j \leq p} (X_j - \mu_j)]$. For every $\delta > 0$, it holds that

$$\sup_{x \in \mathbb{R}} \mathbb{P}\Big(\big|\max_{1 \le j \le p} X_j - x\big| \le \delta\Big) \le C\delta\Big\{\overline{\mu} + a_p + b_p + \sqrt{1 \vee \log(\underline{\sigma}/\delta)}\Big\},$$

where C > 0 depends only on $\underline{\sigma}$ and $\overline{\sigma}$.

The proof of Proposition A.3 is provided in Khismatullina and Vogt (2018). To apply Proposition A.3 to our setting at hand, we introduce the following notation: We write x = (u, h) along with $\mathcal{G}_T = \{x : x \in \mathcal{G}_T\} = \{x_1, \dots, x_p\}$, where $p := |\mathcal{G}_T| \leq O(T^{\theta})$ for some large but fixed $\theta > 0$ by our assumptions. Moreover, for $j = 1, \dots, p$, we set

$$X_{2j-1} = \frac{\phi_T(x_{j1}, x_{j2})}{\sigma} - \lambda(x_{j2})$$
$$X_{2j} = -\frac{\phi_T(x_{j1}, x_{j2})}{\sigma} - \lambda(x_{j2})$$

with $x_j = (x_{j1}, x_{j2})$. This notation allows us to write

$$\Phi_T = \max_{1 \le j \le 2p} X_j,$$

where $(X_1,\ldots,X_{2p})^{\top}$ is a Gaussian random vector with the following properties: (i) $\mu_j:=\mathbb{E}[X_j]=-\lambda(x_{j2})$ and thus $\overline{\mu}=\max_{1\leq j\leq 2p}|\mu_j|\leq C\sqrt{\log T}$, and (ii) $\sigma_j^2:=\mathrm{Var}(X_j)=1$ for all j. Since $\sigma_j=1$ for all j, it holds that $a_{2p}=b_{2p}$. Moreover, as the variables $(X_j-\mu_j)/\sigma_j$ are standard normal, we have that $a_{2p}=b_{2p}\leq \sqrt{2\log(2p)}\leq C\sqrt{\log T}$. With this notation at hand, we can apply Proposition A.3 to obtain that

$$\sup_{x \in \mathbb{R}} \mathbb{P}\left(\left|\Phi_T - x\right| \le \delta_T\right) \le C\delta_T \left[\sqrt{\log T} + \sqrt{\log(1/\delta_T)}\right] = o(1)$$

with $\delta_T = T^{1/q}/\sqrt{Th_{\min}} + \rho_T\sqrt{\log T}$, which is the statement of Proposition ??.

Proof of Theorem 0.1

To prove Theorem 0.1, we make use of the two auxiliary results derived above. By Proposition A.1, there exist statistics $\widetilde{\Phi}_{n,T}$ for $T=1,2,\ldots$ which are distributed as $\widehat{\Phi}_T$ for any $T\geq 1$ and which have the property that

$$\left| \widetilde{\Phi}_{n,T} - \Phi_{n,T} \right| = o_p \left(\frac{T^{1/q}}{\sqrt{Th_{\min}}} + \rho_T \sqrt{\log T} + \rho_T \max_{1 \le i \le n} \left| \sum_{s=1}^T \widehat{\beta}_i^\top (\mathbf{X}_{is} - \bar{\mathbf{X}}_i) \right| + \frac{T^{-1/2}}{\sqrt{Th_{\min}}} \max_{1 \le i \le n} \max_{1 \le t \le T} \left| \sum_{s=1}^t (\mathbf{X}_{is} - \bar{\mathbf{X}}_i) \right| \right), \tag{1.9}$$

where $\Phi_{n,T}$ is a Gaussian statistic as defined in (??). The approximation result (1.9) allows us to replace the multiscale statistic $\widehat{\Phi}_{n,T}$ by an identically distributed version $\widetilde{\Phi}_{n,T}$ which is close to the Gaussian statistic $\Phi_{n,T}$. In the next step, we show that

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P}(\widetilde{\Phi}_T \le x) - \mathbb{P}(\Phi_T \le x) \right| = o(1), \tag{1.10}$$

which immediately implies the statement of Theorem 0.1. For the proof of (1.10), we use the following simple lemma:

Lemma A.4. Let V_T and W_T be real-valued random variables for T=1,2,... such that $V_T-W_T=o_p(\delta_T)$ with some $\delta_T=o(1)$. If

$$\sup_{x \in \mathbb{R}} \mathbb{P}(|V_T - x| \le \delta_T) = o(1), \tag{1.11}$$

then

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P}(V_T \le x) - \mathbb{P}(W_T \le x) \right| = o(1). \tag{1.12}$$

The statement of Lemma A.4 can be summarized as follows: If W_T can be approximated by V_T in the sense that $V_T - W_T = o_p(\delta_T)$ and if V_T does not concentrate too strongly in small regions of the form $[x - \delta_T, x + \delta_T]$ as assumed in (1.11), then the distribution of W_T can be approximated by that of V_T in the sense of (1.12). We now apply this lemma with $V_T = \Phi_T$, $W_T = \widetilde{\Phi}_T$ and $\delta_T = T^{1/q}/\sqrt{Th_{\min}} + \rho_T\sqrt{\log T}$: From (??), we already know that $\widetilde{\Phi}_T - \Phi_T = o_p(\delta_T)$. Moreover, by Proposition ??, it holds that

$$\sup_{x \in \mathbb{R}} \mathbb{P}\Big(|\Phi_T - x| \le \delta_T\Big) = o(1). \tag{1.13}$$

Hence, the conditions of Lemma A.4 are satisfied. Applying the lemma, we obtain (??), which completes the proof of Theorem 0.1.

References

- BERKES, I., LIU, W. and WU, W. B. (2014). Komlós-Major-Tusnády approximation under dependence. *Annals of Probability*, **42** 794–817.
- Chernozhukov, V., Chetverikov, D. and Kato, K. (2015). Comparison and anticoncentration bounds for maxima of Gaussian random vectors. *Probability Theory and Related Fields*, **162** 47–70.
- KHISMATULLINA, M. and VOGT, M. (2018). Multiscale inference and long-run variance estimation in nonparametric regression with time series errors. *Preprint*.