Faculté des Mathématiques USTHB

Master 1 ISMTID

Module: Processus Stochastiques 2

Année 2012/2013 03/06/2013 Durée: 1h 30m

Epreuve Finale

Exercice 1 (6 pts) Soit X une variable aléatoire intégrable sur un espace de probabilité (Ω, \mathcal{F}, P) .

- 1/ Montrer que si $\mathcal{A} = \{\emptyset, \Omega\}$, alors $E(X/\mathcal{A}) = E(X)$ p.s.
- 2/ Soit $Y_n = E(X/\mathcal{F}_n)$ où $(\mathcal{F}_n)_n$ est une filtration. Montrer que Y_n est une martingale relativement à la filtration \mathcal{F}_n .

Exercice 2 (8 pts) Soit X_n une marche aléatoire symétrique, i.e., $X_n = \xi_1 + \xi_2 + ... + \xi_n$ où $(\xi_n)_{n\geq 1}$ est une suite de v.a. indépendantes et identiquement distribuées avec $P(\xi_n = -1) = P(\xi_n = +1) = 1/2$, et $\mathcal{F}_n = \sigma(\xi_1, ..., \xi_n)$.

- 1/ Montrer que $Y_n = (-1)^n \cos(\pi X_n)$ est une martingale relativement à la filtration \mathcal{F}_n .
- $2/Soit K \in \mathbb{N}^* \ et \ T = \min \{n \geq 1 : |X_n| = K\}$. Montrer que T est un temps d'arrêt.
- 3/ Montrer que $X_n^2 n$ est une martingale relativement à la filtration \mathcal{F}_n .
- 4/ Trouver $\lim_{n\to\infty} P(T>2Kn)$ en justifiant votre résultat.
- 5/ Montrer que $P(T=\infty)=0$.
- 6/ Montrer que $E(|X_T^2 T|) < \infty$.
- 7/ Trouver $\lim_{n\to\infty} E\left(X_n^2 1_{\{T>n\}}\right)$. Déduire $\lim_{n\to\infty} E\left((X_n^2-n) 1_{\{T>n\}}\right)$.
- 8/ Trouver $E(X_T^2 T)$. En déduire E(T).

Exercice 3 (6 pts) Soit W(t) un mouvement brownien.

- 1/ Calculer $E\left[(W(t) W(s))^3\right]$, pour s < t.
- 2/ Montrer que $W(t)^2$ t est une martingale relativement à la filtration naturelle \mathcal{F}_t de W(t).
- 3/ Montrer que $W(t)^3 3tW(t)$ est une martingale relativement à la filtration naturelle \mathcal{F}_t de W(t).