(11) E

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 19.06.1996 Bulletin 1996/25

(12)

19.06.1996 Bulletin 1996/25
(21) Application number: 90913117.9

(22) Date of filing: 17.08.1990

(51) Int CL6: C07K 7/02. C07K 7/06

(86) International application number: PCT/US90/04646

(87) International publication number: WO 91/02746 (07.03.1991 Gazette 1991/06)

(54) THERAPEUTIC PEPTIDES

HEILMITTELPEPTIDE

PEPTIDES THERAPEUTIQUES

(84) Designated Contracting States:

AT BE CH DE DK ES FR GB IT LI LU NL SE

(30) Priority: 21.08.1989 US 397169 30.03.1990 US 502438

(43) Date of publication of application: 10.06.1992 Bulletin 1992/24

(73) Proprietors:

BIOMEASURE INC.

Hopkinton MA 01748 (US)
 The Administrators of
 The Tulane Educational Fund
 New Orleans Louisiana 70112 (US)

(72) Inventors:

COY, David, H.
 New Orleans, LA 70115 (US)

MOREAU, Jacques-Pierre

Upton, MA 01568 (US)
• KIM, Sun, Hvuk

KIM, Sun, Hyuk Chestnut Hill, MA 02167 (US) (74) Representative: Deans, Michael John Percy et al Lloyd Wise, Tregear & Co., Commonwealth House, 1-19 New Oxford Street London WC1A 1LW (GB)

(56) References cited.

EP-A- 0 309 297 US-A- 4 803 261

J.E. RIVIER et al. (eds.), "PEPTIDES".

Proceedings of the 11th American Peptide Symposium, 09-14 July 1989, La Jolla, CA (US); 1990, ESCOM, Leiden (NL)

 JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 263, no. 11, 15 April 1988; COY et al., pp. 5056-5060

 PROCEEDINGS OF THE NATL. ACADEMY OF SCIENCES USA, vol. 82, November 1985, Washington, DC (US); ZACHARY et al., pp. 7616-7620

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

15

25

30

35

55

This invention relates to peptides useful, e.g., for treatment of benian or malignant proliferation of tissue, for gastrointestinal disorders, and for diabetes, or pharmaceutically acceptable salts thereof.

The amphibian peptide bombesin, pGlu-Gln-Arg-Leu-Gly-Asn-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH. (Anastasi et al., Experientia 27:166-167 (1971)), is closely related to the mammalian gastrin-releasing peptides (GRP), e.g., the porcine GRP, H2N-Ala-Pro-Val-Ser-Val-Gly-Gly-Gly-Thr-Val-Leu-Ala-Lys-Met-Tyr-Pro-Arg-Gly-Asn-His-Trp-Ala-Val-Gly-His-Leu-Met-(NH_o) (McDonald et al., Biochem, Biophys, Res, Commun, 90:227-233 (1979)) and human GRP. H₂N-Val-Pro-Leu-Pro-Ala-Gly-Gly-Gly-Gly-His-Leu-Thr-Lys-Met-Tyr-Pro-Arg-Gly-Asn-His-Trp-Ala-Val-Gly-His-Leu-Met (NH2). Bombesin has been found to be a growth factor for a number of human cancer cell lines, including smallcell lung carcinoma (SCLC), and has been detected in human breast and prostate cancer (Haveman et al., eds. Recent Results in Cancer Research - Peptide Hormones in Lung Cancer, Springer-Verlag, New York: 1986). A number of these cancers are known to secrete peptide hormones related to GRP or bombesin. Consequently, antagonists to bombesin have been proposed as agents for the treatment of these cancers

Cuttitta et al. demonstrated that a specific monoclonal antibody to bombesin inhibited in vivo the growth of a human small-cell lung cancer cell line xenografted to nude mice (Cuttitta et al., Cancer Survey 4:707-727 (1985)). In 3T3 murine fibroblasts which are responsive to the mitotic effect of bombesin. Zachary and Rozengurt observed that a substance P antagonist (Spantide) acted as a bombesin antagonist (Zachary et al., Proc. Natl. Acad. Sci. (USA), 82: 7616-7620 (1985)). Heinz-Erian et al. replaced His at position 12 in bombesin with D-Phe and observed bombesin antagonist activity in dispersed acini from quinea pig pancreas (Heinz-Erian et al., Am. J. of Physiol, 252:G439-G442 (1987)). Rivier reported work directed toward restricting the conformational freedom of the bioactive C-terminal decapeptide of bombesin by incorporating intramolecular disulfide bridges; however, Rivier mentioned that, so far, bombesin analogs with this modification fail to exhibit any antagonist activity (Rivier et al., "Competitive Antagonists of Peptide Hormones," in Abstracts of the International Symposium on Bombesin-Like Peptides in Health and Disease, Rome, Italy (October, 1987).

Certain peptide analogues of bombesin and gastrin releasing peptides have, however, been shown to exhibit bombesin antagonist activity, as observed in EP 0 309 297 (The Administrators of the Tulane Educational Fund). Further analogues and their activities are reported in "Peptides - Proceedings of the 11th American Peptide Symposium" July 9-14, 1989, La Jolla, California by Heimbrook et al (p56-59) and Camble et al (p174-176).

Abbreviations (uncommon):

Pal = 3-pyridyl-alanine β -leu = β - homoleucine γ-leu = gamma - homoleucine D-Cpa = D-p-chlorophenylalanine

Met = methionine

HyPro = hydroxyproline

Nal = naphthylalanine

Sar = sarcosine

5

10

15

25

F₅-Phe = penta-fluoro-Phenylalanine

R = right (D) configuration. S = left (L) configuration; racemate = equal mix of R and S

1-methyl-His; 3-methyl-His = methyl (CH₃) group on nitrogen at positions 1 or 3 of Histidine:

The locations of the modifications that give rise to antagonists are determined by the location of the active site in the naturally occurring peptide. For example, the linear peptides for which introduction of a non-peptide bond between the carboxyl terminal and adjacent amino acid residues, or the replacement of the natural carboxyl terminal and adjacent amino acid residue, or the deletion ("des") of the C-terminal amino acid residue are useful in creating or enhancing antagonist activity are those in which activity is associated with the two C-terminal amino acid residues of the amino acid chain Similarly, where the active site is located in the amino terminal portion of the naturally occurring septide, the corresponding analogs of the invention will possess modifications in their amino terminal portions.

By non-peptide bond is meant that the carbon atom participating in the bond between two residues is reduced from a carbonyl carbon to a metrylenc earbon, i.e. O.Hz-NH. or, less preferably that CO-NH is replaced with any of CH₂-S, CH₂-O, CH₂-CH₂, CH₂-CO, or CO-CH₂. (A detailed discussion of the chemistry of non-peptide bonds is given in Coy et al. (1986) Tetrahedron 44. 3.835-841, hereby incorporated by reference, Dume (1985) Jansser Chim. Acta 3.9-15, 17-18, hereby incorporated by reference, and Spatiols (1983) in Chemistry and Biochemistry of Amino-Sci. Spatiolical, Spatidiss, and Proteins, (B. Weinstein, ed.) M. Dekker, New York and Basel, pp. 267-357, hereby incorporated by reference).

One modification of the naturally occurring peptide to create an antagonist is of the amino terminal end of the molecule, such as those described for the amino terminal positions in the generic formula below; for example, the N-terminal amino acid residue, which is A⁰ or, if A⁰ and A¹ are deleted, is A⁰ below, may be an aromatic D-isomer, or may be an alkylated amino acid residue. (Where "D* is not designated as the configuration of an amino acid, L is intended; furthermore, where R or S is designated in the generic formulae, the D (R) or L (S) form of an amino acid may occur at any position.

There is provided in accordance with a first aspect of the present invention a compound comprising a peptide having eight or nine amino acid residues, or a pharmaceutically acceptable salt thereof; said peptide being an analog of one of the following naturally occurring peptides terminating at the carboxy-terminus with a Met residue: (a) litorin; (b) the ten amino acid carboxy-terminal region of mammalian gastrin releasing peptide; and (c) the ten amino acid carboxy-terminal region of amphibian bombesin; said peptide being of the formula:

$$\sum_{R_2} \lambda^0 - \lambda^1 - \lambda^2 - \text{Trp} - \lambda^4 - \lambda^5 - \lambda^6 - \lambda^7 - \text{NH} - CH - R_3 - C - V,$$

wherein

45

50

55

A⁰ = Gly, Nle, α-aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β-Nal, or is deleted;

 $A^1 = F_5$ -D-Phe;

A² = Giy, Ala, Val, Gin, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, β-Nal, His, 1-methyl-His, or 3-methyl-His;

A⁴ = Ala, VaÍ, GIn, Asn, GIy, Leu, lie, NIe, α-aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β-Nal;

A⁵ = Gln, Asn, Gly, Ala, Leu, Ile, Nle, α-aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH₃),

Trp. Thr. or B-Nal:

A⁶ = Sar, Gly, Ala, N-methyl-Ala, Val, Gin, Asn, Leu, IIe, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β-Nal;

A7 = 1-methyl-His, 3-methyl-His, or His;

wherein

5

10

15

20

25

35

40

45

50

55

R₃ is CHR₂₀-(CH₂)_{0.1} (where R₂₀ is either of H or OH; and n1 is either of 1 or 0), or is deleted;

 Z_1^{-} is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br NQ, OH, or CH₃), F₅-Phe, Trp, Cys, Met, Pro, Hypro, cyclohexyl-Ala, or β -nat; and V is either OF_a , or

where

 R_4 is any of $C_{1.20}$ alkyl, $C_{3.20}$ alkenyl, $C_{3.20}$ alkenyl, phenyl, naphthyl, or $C_{7.10}$ phenylalkyl, and each R_5 , and R_6 , independently, is any of H, $C_{1.12}$ alkyl, $C_{7.10}$ phenylalkyl, lower acyl, or,

whore

 R_{22} is any of H, C_{1-12} alkyl, C_{7-10} phenylalkyl, or lower acyl; provided that, when one of R_6 or R_6 is -NHR₂₂, the other is H:

and further provided that any asymmetric carbon atom can be R, S or a racemic mixture, and further provided that each R₁ and R₂, independently, is H, C_{1-12} alklyl, C_{7-10} phenylalklyl, C_{0-10} phenylalkyl, C_{3-20} alkenyl, C_{3-20} alkenyl, C_{3-20} alkenyl, C_{3-20} alkenyl, C_{3-20} alkenyl, phenyl, naphthyl, or C_{7-10} phenylalkyl) or lower acyl, and R₁ and R₂ are bonded to the N-terminal armino acid of said peptide, and further provided that when one of R₁ or R₂ is C_{0-1} the other must be H. in preferred embodiments, the peptide has the formula $A^0 = G_{W}$, D-Phe, or is deleted.

A2 = Leu, Gln, His, 1-methyl-His, or 3-methyl-His;

A⁴ = Ala; A⁵ = Val;

A⁶ = Sar, Gly, D-Phe, N-methyl-D-Ala, or D-Ala;

A7 = His:

either (1) R₃

is CH₂ or CH₂-CH₂, and Z₁ is the identifying group of Leu or Phe, or (2) R₃ is CHOH-CH₂, and Z₁ is the identifying group of Leu, cyclohexyl-Ala, or Phe and each R_c and R_c is H; V is NHR_c, where

R₆ is NH₂; and each R₁ and R₂, independently, is H, lower alkyl, or lower acyl.

Preferably, the peptide is of the formula wherein V is OR_4 , and R_4 is any of C_{1-20} alkyl, C_{3-20} alkenyl, C_{3-20} alkinyl, phenyl, naphthyl, or C_{7-10} phenylalkyl.

The compound in a second and alternative aspect of the invention comprises a peptide having eight or nine amino acid residues, or a pharmaceutically acceptable settl thereof; said peptide being an analog of one of the following naturally occurring peptides terminating at the carboxy-terminus with a Met residue; (a) litorin; (b) the ten amino acid carboxy-terminal region of mammitaling asstrin releasing peptide, and (c) the ten amino acid carboxy-terminal region of amphiblian bombesin; said peptide being of the formula:

$$\begin{matrix} R_1 \\ \\ \lambda^0 - \lambda^1 - \lambda^2 - \mathrm{Trp} - \lambda^4 - \lambda^5 - \lambda^6 - \lambda^7 - N - \mathrm{CH} - \mathrm{R}_4 \\ \end{matrix} = \begin{matrix} 2_2 & 0 \\ - \mathrm{CH} - \mathrm{R}_4 \\ - \mathrm{CH} - \mathrm{C} - \mathrm{V} \end{matrix},$$

wherein

5

15

25

30

35

45

50

Gly, NIe, a-aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, IIe, Met, p-X-Phe (where X = 10 F, CI, Br, NO₂, OH, H or CH₃), Trp, Cys, or β-NaI, or is deleted;

 $A^1 = F_s$ -D-Phe;

A2 = Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃). Trp, Cys, β-Nal, His, 1-methyl-His, or 3-methyl-His;

Ala, Val, Gln, Asn, Gly, Leu, Ile, Nle, α-aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO2, OH, H or CH2), Trp. Cvs. or B-Nal;

Gln, Asn, Gly, Ala, Leu, Ile, Nie, α-aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CHa), Trp. Thr. or B-Nat:

A6 = Sar, Gly, Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO2, OH, H or CH3), Trp. Cvs. or B-Nal:

20 A7 = 1-methyl-His, 3-methyl-His, or His;

> wherein R4 is CH2-NH, CH2-S, CH2-O, CO-CH2, CH2-CO, or CH2-CH2, and each Z1 and Z2, independently, can be the identifying group of any one of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, β-Nal, p-X-Phe (where X = H, F, CI, Br, NO2, OH or CH3), Trp, Cys, Met, Pro, HyPro, or cylcohexyl-Ala; and V is either OR5 or

where each R₃, R₅, R₆, and R₇, independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; provided that any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each R, and Ro, independently. is H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, COE₁ (where E₁ is C₁₋₂₀ alkyl, C₃₋₂₀ alkenyl. C₃₋₂₀ alkinyl, phenyl, naphthyl, or C₇₋₁₀ phenylalkyl), or lower acyl, and R₁ and R₂ are bonded to the N-terminal amino acid of said peptide; and further provided that when one of R1 or R2 is COE1, the other must be H.

In preferred embodiments, the peptide is of the formula

A⁰ = Glv. D-Phe. or is deleted:

A2 = Leu Gln, His, 1-methyl-His, or 3-methyl-His;

A4 = Ala:

A⁵ = Val;

A6 = Sar, Gly, D-Phe, N-methyl-D-Ala, or D-Ala;

A7 = His:

R4 is CH2-NH or CH2-O, each Z1 and Z2, independently is the identifying group of Leu or Phe; and each R, and R2, independently, is H, lower alkyl, or lower acyl.

Preferably, the analogue is of the formula wherein R₄ is CH₅-NH, and said carbon atom is bonded to Z₂ is of said R configuration.

According to a third alternative aspect of this invention, there is provided a compound comprising a peptide having eight or nine amino acid residues, or a pharmaceutically acceptable salt thereof; said peptide being an analog of one of the following naturally occurring peptides terminating at the carboxy-terminus with a Met residue; (a) litorin; (b) the ten amino acid carboxy-terminal region of mammalian gastrin releasing peptide; and (c) the ten amino acid carboxyterminal region of amphibian bombesin; said peptide being of the formula:

55

$$\begin{array}{c} R_1 \\ \\ A^0 - A^1 - A^2 - \text{Trp-} A^4 - A^5 - A^6 - A^7 - \begin{array}{c} Z_4 \\ Y_1 \\ Y_2 \\ \end{array} \begin{array}{c} Z_2 \\ Y_3 \\ Z_3 \end{array}$$

wherein

5

20

35

50

6 A⁰ = Gly, NIe, α-aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, IIe, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β-Nal, or is deleted;

A' = F_6 -D-Pne; A² = Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃). Trp, Cys, β -Nal, His,

1-methyl-His, or 3-methyl-His;

A⁴ = Ala, Val, Gln, Asn, Gly, Leu, lle, Nle, α-aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or

 CH_3), Trp, Cys, or β -Nal; $A^5 = Gln$, Asn, Gly, Als, A

A⁶ = Sar, Gly, Ala, N-methyl-Ala, Val, Gln, Asn, Leu, IIe, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃),
Trp, Cvs, or β-Nai;

A7 = 1-methyl-His, 3-methyl-His, or His;

 Z_1 is the identifying group of any one of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asp, Glu, β -Nal, Gin, p-X-Phe (where X = H, F, Cl, Br, NO₂, OH or CH₃), F_5 -Phe, Trp, Cys, Met, Pro, or HyPro;

25 and each Z₂, Z₃, and Z₄, independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl;

further provided that any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each R₁ and R₂ independently, is H, C₁₋₁₂ alkly, C₇₋₁₀ phenylalkyl COE₁ (where E₁ is C₁₋₂₀ alkly, C₃₋₂₀ alkinyl, or lower acyl, and R₁ and R₂ are bonded to the N-terminal amino acid of said peptide; and further provided that when one of R₁ or R₂ is COE₁, the other must be H.

In preferred embodiments, the peptide is of the formula

A⁰ = Glv. D-Phe, or is deleted:

A2 = Leu, Gln, His, 1-methyl-His, or 3-methyl-His;

 $A^4 = Ala$:

A⁵ = Val

A6 = Sar, Gly, D-Phe, N-methyl-D-Ala, or D-Ala;

A7 = His:

where Z₁ is the identifying group of any one of the amino acids Leu, F₅-Phe, or p-X-Phe (where X = H, F, CI, Br, NO₂, OH or CH₂); and each Z₂, Z₂ and Z₄,

independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and each R₁ and R₂, independently, is H, lower alkyl, or lower acyl.

According to a fourth and yet further atternative aspect of this invention, we provide a compound comprising peptide having between seven and nine amino acid residues, inclusive, or a pharmaceutically acceptable salt thereof, said peptide being an analog of one of the following naturally occurring peptides terminating at the carboxy-terminus with a Met residue (a) litorn; (b) the ten amino acid carboxy-terminal region of mammalian gastrin releasing peptide, and (c) the ten amino acid carboxy-terminal region of aminhibian bombesin; said peptide being of the formula

$$\sum_{R_2}^{R_1} \lambda^{0} - \lambda^{1} - \lambda^{2} - \text{Trp} - \lambda^{4} - \lambda^{5} - \lambda^{6} - \lambda^{7} - N$$

$$Z_{20}$$

55 wherein

 $A^0 = Gly$, NIe, α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, IIe, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal, or is deleted;

- $A^1 = F_{\epsilon}$ -D-Phe:
- A² = Giy, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, β-Nal, His, 1-methyl-His, or 3-methyl-His:
- A⁴ = Ala, Val, Gin, Asn, Gly, Leu, Ile, Nle, α-aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₂), Trp, Cys, or β-Nal;
- A⁵ = Gln, Asn, Gly, Ala, Leu, Ile, Nle, α-aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH₃), Trp, Thr, or β-Nal;
- A⁶ = Sar, Gly, Ala, N-methyl-Ala, Val, Gln, Asn, Leu, IIe, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H, or CH₃), Trp, Cys, or β-Nal;
- 10 A7 = 1-methyl-His, 3-methyl-His, or His;

wherein each Z₂₀ and Z₃₀, independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl;

provided that, when either of Z_{20} or Z_{30} is other than H, A^7 is His, A^6 is Gly, A^5 is Val, A^4 is Ala, A^2 is His, and either of R_1 or R_2 is other than H;

further provided that any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each R, and R₂ independently, is H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, COE, (where E, is C₁₋₁₂ alkyl, C₂₋₂₀ alkenyl, C₃₋₂₀ alk

In preferred embodiments, the peptide is of the formula

- A⁰ = Gly, D-Phe, or is deleted;
 - A2 = Leu. Gln. His. 1-methyl-His, or 3-methyl-His;
 - $A^4 = Ala;$ $A^5 = Val;$

15

20

40

45

50

55

- 5 A⁶ = Sar, Gly, D-Phe, N-methyl-D-Ala, or D-Ala;
 - $A^7 = His$:

and, where each Z₂₀ and Z₂₀, is H; and each R₁ and R₂, independently, is H, lower alkyl, or lower acyl

In other preferred embodiments, the analogue is at least 25% homologous, and preferably at least 50% homologous, with litorin, mammalian gastrin-releasing peptide amphibian bombesin.

Preferred peptides include D-F5-Phe-GIn-Trp-Ala-Val-D-Ala-His-Leu-methylester.

The antagonists described herein are useful for treating diseases involving the malignant or benign proliferation of tissue, such as all forms of cancer where bombes in-related or GRP-related substances act as autocrine or peracrine mitotic factors, e.g., cancers of the gastrointestinal tract, pancreatic cancer, colon cancer, fung cancer, particularly the small cell subtype, prostate or breast cancer; or for treating artherosclerosis, and disorders of gastrointestinal tissues related to gastric and pancreatic secretions and motility, for example, for causing the suppression of amylase secretion, or for appetite control.

In the generic formulae given above, any R or Z group is an aromatic, lipophilic group, the <u>in vivo</u> activity can be long lasting, and delivery of the compounds of the invention to the target tissue can be facilitated.

The identifying group of an α -amino acid is the atom or group of atoms, other than the α -carbonyl carbon atom, the α -amino nitrogen atom, or the H atom, bound to the asymmetric α -carbon atom. To illustrate by examples, the identifying group of atlanine is CH₃\chi_1 + the identifying group of valine is (H_3) \chi_1 + the identifying group of yaline is (H_3) \chi_1 + the identifying group of yaline is (H_3) \chi_1 + the identifying group of yaline is (H_3) \chi_1 + the identifying group of yaline is (H_3) \chi_1 + the identifying group of yaline is (H_3) \chi_2 + the identifying group of a β - or γ -amino acid is the analagous atom or group of atoms bound to respectively, the β - or the γ -carbon atom. Where the identifying group of an amino acid is not specified if may be α . B or β -

Other features and advantages will be apparent from the following description of the preferred embodiments there-

We first briefly describe the drawing in which the single figure sets out a series of amino acid sequences of naturally occurring peotides of which peotides of the invention are analogues.

Some peptides described herein have a non-peptide bond, namely the carbon atom participating in the bond between two residues is reduced from a carbonyl carbon to a methylene carbon. The peptide bond reduction method which yields his non-peptide bond is described in Coy et al., U.S. patent application, Serial No. 879,348, assigned to the same assignee as the present application, hereby incorporated by reference. Any one of the amino acids in positions, 0. and 9 of the litorin antaqonists may be deleted from the peotides, and the peotities are still active as antaponists.

Our peptides can be provided in the form of pharmaceutically acceptable salts. Examples of preferred salts are those with therapeutically acceptable organic acids, e.g., acetic, lactic, malaic, citric, malic, ascorbic, succinic, benzoic, salicylic, methanesulfonic, toluenesulfonic, or pamoic acid, as well as polymeric acid such as tannic acid or carboxymethyl cellulose, and salts with inorganic acids such as the hydrohalic acids, e.g., hydrochloric acid, sulfuric acid, or

phosphoric acid.

15

20

25

30

Synthesis of D-F₅. Phe-Gln-Trp-Ala-Val-D-Ala-His(Tos)-Leu-O-Resin is as follows: Alpha-t-butxoycarbory/(Boc)-Leu-O-Merriheid resin (1.0 g. 0.5 mmole) is placed in the reaction vessel of an Advanced Chem Tech ACT 200 automatic peptide synthesizer programmed to perform the following reaction/wash cycle: (a) methylene othoride; (b) 33% trifluorcacetic acid in methylene chloride (2 times for 1 and 25 min. each); (c) propanol; (d) dimethylformamide; (e) dimethylformamide; (b) and the chloride (a) 10% trithylamine in dimethylformamide; (f) dimethylformamide).

The neutralized resin is stirred with Boc-Ni^m-tosyl-histidine and diisopropylcarbodiimide (1.5 mmole each) in methylogram. The chloride for 1 h. and the resulting amino acid resin is then cycled through steps (a) to (f) in the above wash program. The Boc group is then removed by TFA treatment. The following amino acids (1.5 mmole) are then coupled successively by the same procedure: Boc-D-Ala, Boc-Val, Boc-Ala, Boc-Trp, Boc-Gln (coupled in the presence of 1 equiv. hydroxybenzo/rizable), and Boc-D+F₆-Phe. After the last coupling was complete, the final Boc group was removed by TFA treatment.

Synthesis of D-F_cPhe-Gln-Trp-Ala-Val-D-Ala-His-Leu-methyl ester is as follows.

This peptide is cleaved from the Merrifield resin described above under the same conditions to give 198 mg of the product as a white, fluffy powder, this product is found to be homogeneous by hole and tle.

Amino acid analysis of an acid hydrolysate confirms the composition of the octapeptide and fast atom bombardment mass spectrometry gives the expected molecular weight for the peptide. Other bombesin or GFP antagonists can be prepared by making appropriate modifications to the synthetic methods described above.

Other compounds can be prepared as above and tested for effectiveness as agonists or antagonists in the test program described below.

A statine, AHPPA, ACHPA, β-amino acid, or Y-amino acid residue is added in the same way as is a natural α-amino acid residue, by coupling as a Boc derivative.

Phase 1 - 3T3 Peptide Stimulate [3H] Thymidine Uptake Assay

Cell Culture. Stock cultures of Swiss 3T3 cells are grown in Dulbecco's Modified Eagles Medium (DMEM) supplemented with 10% fetal call serum in humidified atmosphere of 10% CO₂90% air at 37%. For experimental use, the cells are seeded into 24-well cluster trays and used four days after the last change of medium. The cells are arrested in the G1/90 phase of the cell cycle by changing to serum-free DMEM 24 hours prior to the thymidine uptake assay.

Assay of DNA Synthesis. The cells are washed twice with Int aliquots of DNEM (-serum) then incubated with DMEM (-serum). 0.5 IMI [methyl-3t] thymidine (2002/immole, New England Nuclean), bombesin (6.nM), and initially four concentrations of the test compounds (1, 10, 100, 1000nM) in a final volume of 1.0 ml. After 28 hours at 37°C [methyl-1t] hymidine incorporation into acid-insoluble pools is assayed as follows. The cells are washed twice with ice-cidd 0.9% NaCl (film aliquots), and acid soluble radioactivity is removed by a 30 min. (4°C) incubation with 5% into-croactic acid (TCA). The cultures are then washed once (1ml) with 95% othand and prepared by homogenization in 50MM TrisHCI containing 0.19% bovine serum albumin and 0.1 mg/ml bacitization followed by two centrifugations (39,000xgx15 min., 4°C) with an intermediate resuspension in fresh buffer. For assay, aliquots (0.5 ml) are incubated with 0.5 ml (126)[3FP (~2000 Ci/mmol. Amersham Corp.) and various concentrations of the test compounds in a final volume of 0.5 ml. After a 30 minute incubation at 4°C, the binding reaction is terminated by rapid filtration through Whatiman GF/C litters and tubes are washed three times with 4 mil aliquots of ice-cold buffer, and the radioactivity traped on the filters is counted by gamma-spectrometry. Specific binding is defined as the total [126][GFP bound minus that bound in the presence of 10,000M bombesion or a related cellotic from a teletic decider.

45 Phase 5- Inhibition of Gastrin Release

The stomachs of anesthetized rats are perfused with saline collected over 15 minute periods via pyloric cannulation while the test peptide is infused through the femoral vein for periods between 0 and 150 minutes.

Phase 6- In Vivo Antitumor Activity

NCI-H69 small cell lung carcinoma cells were transplanted from <u>in vitro</u> culture by implanting each animal with the equivalent of 5 confluent 75 cm² issue culture flasks in the right flank. <u>In vitro</u> NCI-H69 cells grow as a suspension of cellular aggregates. Therefore, no attempt was made to disaggregate the cell agglomerates by physical or chemical means. Tumor size was calculated as the average of two diameters, i.e., (lendth and width/2) mm.

Results of Assays of Test Peptides

A number of analogs of bombesin or GFIP, each containing a non-peptide bond or a statine, AHPPA or ACHPA, β-amino acid, or Y-amino acid residue, can be synthesized and tested in one or more of the above-described Phase 1 - 6 assays D-F_g-Pho-GIn-Tip-Ala-Val-D-Ala-His-Leu-methylester was examined for its abilities to displace ¹²⁶-labelled bombesin from rat pancreatic acini cells and to inhibit amylase release from these cells produced by bombesin itself. The analogue subhibits potencies in the half-maximal effective dose range of 5-10 nM and is thus a potent bombesin receptor analogonist.

The peptides described herein may be administered to a mammal, particularly a human, in one of the traditional modes (e.g., orally, parenterally, transdermally, or transmucosally), in a sustained release formulation using a biodegradable biocompatible polymer, or by on-site delivery (e.g., in the case of anti-cancer bombesin to the lungs) using micelles cells and licosomes.

The bombesin antagonists described herein are suitable for the treatment of all forms of cancer where bombesinrelated substances act as autocrine or peracrine mitotic agents, periturally small-cell lung carcinoma. The peptides can also be used for the inhibition of gastric acid secretion and motility disorders of the GI tradt, the symptomatic relief and/or treatment of exocrine pancreatic adenocarcinoma, and the restoration of appetite to cachexic patients. The peptides can be administered to a human patient in a dosage of 0.5 jufkyddys to 5 myklyddys. For some forms of cancer, e.g., small cell lung carchoma, the preferred dosage for curative treatment is 250mg/baje-invfdxy.

The compound can be administered to a mammal, e.g., a human, in the dosages used for growth hormone releasing factor or, because of their decreased potency, in larger dosages. The compounds can be administred to a mammal, e.g., a human, in a dosage of 0.01 to 1000 mcg/kg/day, preferably 0.1 to 100 mcg/kg/day.

Claims

Olean

15

20

25

30

35

40

45

50

55

 A compound comprising a peptide having eight or nine amino acid residues, or a pharmacoutically acceptable sait thereof, said peptide being an analogue of one of the following naturally occurring peptides terminating at the carboxy-terminus with a Met residue: (a) litorin; (b) the ten amino acid carboxy-terminal region of mammmalian gastrin releasing peptide; and (c) the ten amino acid carboxy-terminal region of amphibian bombesin; said peptide being of the formula:

wherein

A⁰ = Gly, NIe, α-aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Aln, Leu, IIe, Met, p-x-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β-Nal, or is deleted;

 $A^1 = F_c-D-Phe$;

A² = Gİy, Ala, Val, Gİn, Asn, Leu, Ile, Met, p-X-Phe (where X = F, CI, Br, NO₂, OH, H or CH₃), Trp, Cys, β-Nal, His. 1-methyl-His. or 3-methyl-His.

A⁴ = Ala, Val, Gin, Asn, Gly, Leu, Ile, Nie, α-aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cvs, or β-Nat.

A⁵ = Gln, Asn, Gly, Ala, Leu, Ile, Nle, α-aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH₃), Trp. Thr. or β-Nat:

A⁶ = Sar, Gly, Ala, N-methyl-Ala, Val, Gln, Asn. Leu, IIe, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Tro. Cvs. or B-Nal:

A7 = 1-methyl-His, 3-methyl-His, or His;

wherein

 R_3 is CHR $_{20^{\circ}}(CH_2)_{n1}$ (where R_{20} is either of H or OH; and n1 is either of 1 or 0), or is deleted; Z, is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gin, p-X-Phe (where X = H, F, Cl, Br, NO $_2$, OH, or CH $_3$), F_5 -Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or β -nal; and V is either OR, or

whore

5

10

15

20

30

35

40

45

50

55

 R_4 is any of $C_{1:20}$ alkyl, $C_{3:20}$ alkenyl, $C_{3:20}$ alkinyl, phenyl, naphthyl, or $C_{7:10}$ phenylalkyl, and each R_5 , and R_6 , independently, is any of H, $C_{1:12}$ alkyl, $C_{7:10}$ phenylalkyl, lower acyl, or,

 R_{22} is any of H, C_{1-12} alkyl, C_{7-10} phenylalkyl, or lower acyl; provided that, when one of R_5 or R_6 is -NHR₂₂, the other is H:

and further provided that any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each R, and R_2 , independently, is H, C_{1+2} alkyl, C_{7+0} phenylalkyl, COE_1 (where E_1 is C_{1+20} alkyl, C_{3+20} alkenyl, C_{3+20} alkenyl, C_{3+20} alkenyl, C_{3+20} alkenyl, and C_{3+20} alkenyl, approximation and C_{3+20} alkenyl, C_{3+20} alkenyl, approximation and C_{3+20} alkenyl, approximation C_{3+20} are bonded to the N-terminal amino acid of said peptide, and further provided that when one of R, or R, is COE_1 , the other must be R.

A compound according to Claim 1, wherein

A⁰ = Gly. D-Phe, or is deleted:

A2 = Leu, Gln, His, 1-methyl-His, or 3-methyl-His:

A4 = Ala:

A5 = Val:

A6 = Sar, Glv. D-Phe, N-methyl-D-Ala, or D-Ala;

A7 = 1

either (1) R_3 is CH_2 or CH_2 - CH_2 , and Z_1 is the identifying group of Leu or Phe, or (2) R_3 is $CHOH-CH_2$, and Z_1 is the identifying group of Leu, cyclohoxyl-Ala, or Phe and each R_3 and R_3 is H:V is NHR_6 , where R_3 is NH_5 , and each R_1 , and R_2 , independently, is H, lower legtly, or lower sole.

3. A compound comprising a peptide having eight or nine amino acid residues, or a pharmaceutically acceptable sait thereof, said peptide being an analog of one of the following naturally occurring peptides terminating at the acrossyterminus with a Met residue. (a) littorin; (b) the ten amino acid carboxy-ferminal region of mammalian gastrin releasing peptide; and (c) the ten amino acid carboxy-terminal region of amphibian bombesin; said peptide being of the formula:

wherein

A⁰ = Gly, Nle, α-aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β-Nal, or is deleted;

 $A^1 = F_5$ -D-Phe;

A² = Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, β-Nal, His, 1-methyl-His, or 3-methyl-His;

A⁴ = Ala, Val, Gin, Asn, Gly, Leu, Ile, NIe, α-aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₂), Trp, Cvs, or β-Nat.

A⁵ = Gln, Asn, Gly, Ala, Leu, Ile, Nle, α-aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH₃),

Trp. Thr. or β-Nat:

6 = Sar, Gly, Ala, N-methyl-Ala, Val, Gin, Asn, Leu, IIe, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp. Cvs. or β-Nal:

A7 = 1-methyl-His, 3-methyl-His, or His;

wherein R₄ is CH₂-NH, CH₂-S, CH₂-O, CO-CH₂. CH₂-CO, or CH₂-CH₂, and each Z₁ and Z₂, independently, can be the identifying group of any one of the amino acids Gly, Ale, Val. Leu. Ille, Ser, Asp, Asn, Glu, Gin, β-Nal, p-X-Phe (Where X = H, F. Cl. Br. NO₃. OH or CH₂). The Cvs. Mel. Pro. HVPro. or cyclophoxyl-Alg, and V is either CPs.

where each R₂, R₂, R₃, and R₇, independently, is H. lower alkyl, lower phenylatkyl, or lower naphthylatkyl, provided that any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each R₁ and R₂, independently, is H. C₁₋₁₂ alklyl, C₇₋₁₀ phenylatkyl, CC₅₋₁₀ (where E₁ is C₁₋₂₀ alklyl, C₂₋₂₀, alkanyl, C₃₋₂₀ alkanyl, C₃₋₂₀ alkanyl, C₃₋₂₀ alkanyl, C₃₋₂₀ alkanyl, C₃₋₂₀ alkanyl, C₃₋₂₀ alkanyl, C₃₋₂₀, and C₃₋₂₀ alkanyl, C₃₋₂₀ alkany

4. A compound according to Claim 3, wherein

A0 = Gly, D-Phe, or is deleted;

A² = Leu, Gln, His, 1-methyl-His, or 3-methyl-His;

25 A⁴ = Ala;

5

10

15

20

30

40

50

55

A5 = Val;

A⁶ = Sar, Gly, D-Phe, N-methyl-D-Ala, or D-Ala; A⁷ = His:

where

R₄ is CH₂-NH or CH₂-O, each Z₁ and Z₂, independently is the identifying group of Leu or Phe; and each R₁ and R₂, independently, is H, lower alkyl, or lower acyl.

5. A compound comprising a peptide having eight or nine amino acid residues, or a pharmaceutically acceptable sait thereof: said peptide being an analog of one of the following naturally occurring peptides terminating at the carboxyterminus with a Mat residue: (a) litorin; (b) the ten amino acid carboxy-terminal region of mammalian gastrin releasing peptide; and (c) the ten amino acid carboxy-terminal region of amphibian bombesin; said peptide being of the formula:

45 wherein

A⁰ = Gly, Nle, α-aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β-Nal, or is deleted;

 $A^1 = F_5$ -D-Phe

A² = Giy, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, β-Nal, His, 1-methyl-His, or 3-methyl-His;

A⁴ = Ala, Val, Gin, Asn, Gly, Leu, IIe, Nie, α-aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₂), Trp, Cys, or β-Nal;

A⁵ = Gin, Asn, Gly, Ala, Leu, Ile, Nie, α-aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH₃), Trp, Thr. or β-Nal;

A⁶ = Sar, Giy, Ala, N-methyl-Ala, Val, Gin, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cvs. or B-Nat:

A7 = 1-methyl-His, 3-methyl-His, or His;

 Z_1 is the identifying group of any one of the amino acids Gly, Ala, Val, Lou, Ile, Ser, Asp, Asn, Giu, β -Nai, Gin, p-X-Phe (where X = H, F, Cl. Br, NO $_2$, OH or CH $_3$), F_6 -Phe, Trp, Cys, Met, Pro + HyPro; and each Z_2 - Z_3 - and Z_4 , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl;

provided that any asymmetric carbon atom can be R, S or a racemic mixture, and further provided that each R₁ and R₂, independently, is H, C₁₋₁₂ alikyl, C₂₋₂₀ alikenyl, C₃₋₂₀ alikenyl

10 6. A compound according to Claim 5, wherein

A⁰ = Glv. D-Phe, or is deleted:

A2 = Leu, Gln. His, 1-methyl-His, or 3-methyl-His.

 $A^4 = Ala$:

5

15

20

25

30

40

45

50

55

 $A^5 = Val;$

A6 = Sar, Glv. D-Phe. N-methyl-D-Ala, or D-Ala;

A⁷ = His;

where Z_1 is the identifying group of any one of the amino acids Leu, F_5 -Phe, or p-X-Phe (where X = H, F, Cl, Br, NO₂, OH or CH₃); and each Z_2 , Z_3 and Z_4 .

independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and each R₁ and R₂, independently, is H, lower alkyl, or lower acyl.

7. A compound comprising a peptide having seven or eight amino acid residues, or a pharmaceutically acceptable satt thereof; said apptice being an analog of one of the following naturally occurring peptides terminating at the carboxy-terminus with a Met residue: (a) litorin; (b) the ten amino acid carboxy-terminal region of mammalian gastrin releasing peptide, and (c) the ten amino acid carboxy-terminal region of amphibian bombesin; said peptide being of the formula:

35 wherein

A⁰ = Gly, Nie, α-aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β-Nal, or is deleted;

 $A^1 = F_5$ -D-Phe;

A² = Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, β-Nal, His, 1-methyl-His, or 3-methyl-His;

A⁴ = Ala, Val, Gin, Asn, Gly, Leu, Ile, NIe, α-aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₂). Trp. Cvs. or β-Nat.

A⁵ = Gln, Asn, Gly, Ala, Leu, Ile, Nle, α-aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH₃),
Tro. The α β-Nal:

A⁶ = Sar, Gly, Ala, N-methyl-Ala, Val, Gln, Asn, Leu, IIe, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H, or CH₃), Tro. Cvs. or β-Nat:

A7 = 1-methyl-His, 3-methyl-His, or His;

wherein each Z₂₀ and Z₃₀, independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl;

provided that, when either of Z_{20} or Z_{30} is other than H, A^7 is His, A^6 is Gly, A^5 is Val, A^4 is Ala, A^2 is His, and either of B_1 or B_2 is other than H;

further provided that any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each R, and R₂, independently, is H, C₁₋₁₂ alikyl, C₂₋₁₂, phenylalkyl, COE, (where E₁ is C₁₋₂₀ alikyl), C₃₋₂₀ aliknyl, henyl, naphtyl, or lower acyl, and R₁ and R₂ are bonded to the N-terminal amino acid of said peptide, and further provided that when one of R₁ or R₂ is COE₇, the other must be H.

8. A compound according to claim 7, wherein

EP 0 489 089 B1

A⁰ = Glv. D-Phe, or is deleted:

A2 = Leu Gln His 1-methyl-His or 3-methyl-His:

A4 = Ala:

A5 = Val: A7 = His:

A6 = Sar, Gly, D-Phe, N-methyl-D-Ala, or D-Ala;

and, where each Z₂₀ and Z₂₀, is H; and each R₁ and R₂, independently, is H, lower alkyl, or lower acyl,

- 9. A compound according to any one of Claims 1, 3, 5 and 7, wherein said analogue is at least 25% homologous. 10 and preferably at least 50% homologous with litorin, mammalian gastrin-releasing peptide, or amphibian bombesin.
 - 10. A compound according to Claim 3, wherein B, is CH₂-NH, and the carbon atom bonded to Z₂ is of R configuration,
 - 11. A compound according to Claim 1, wherein V is OR4, and R4 is any of C1-20 alkyl, C3-20 alkenyl, C3-20 alkinyl, phenyl, naphthyl, or C7-10 phenylalkyl.
 - 12. A compound according to Claim 11, wherein said peptide has the formula
 - D-Fc-Phe-Gin-Trp-Ala-Val-D-Ala-His-Leu-methylester.

Patentansprüche

20

25

30

40

45

55

- 1. Verbindung, die ein Peptid mit acht oder neuen Aminosäureresten oder ein pharmazeutisch nutzbares Salz davon umfaßt, wobei das Peptid ein Analoges eines der folgenden, natürlich vorkommenden Peptide ist, die an ihrer Carboxylterminalposition einen Met-Rest aufweisen: (a) Litorin, (b) der 10-Aminosäure-Carboxylterminalbereich von Säugetiergastrin-Releasing-Peptid und (c) der 10-Aminosäure-Carboxylterminalbereich von Amphibienbornbesin: wobei das Peptid die Formel
 - $^{(1)}$ A^{0} A^{1} A^{2} $^{-}$ Trp- A^{4} A^{5} A^{6} A^{7} $^{-}$ NH-CH-R, -C-V
- 35 hat, worin
 - A⁰ = Gly, Nie, α-Aminobuttersāure oder das D-Isomer von Ala, Val, Gln, Asn, Leu, IIe, Met, p-X-Phe (wobei X = F. Cl, Br, NO2, OH, H oder CH3), Trp, Cys oder β-Nal oder wegfällt;
 - $A^1 = F_5-D-Phe$;
 - A² = Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (wobei X = F, Cl, Br, NO₂, OH, H oder CH₃), Trp, Cys, β-Nal, His, 1-Methyl-His oder 3-Methyl-His);
 - A4 = Ala, Val, Gln, Asn, Gly, Leu, IIe, NIe, α-Aminobuttersäure, Met, p-X-Phe (wobei X = F, CI, Br, NO₂, OH, H oder CH₃), Trp, Cys oder β-Nal:
 - A⁵ = Gln, Asn, Gly, Ala, Leu, Ile, Nle, α-Aminobuttersäure, Met, Val, p-X-Phe (wobei X = F, Cl, Br, OH, H oder CH₂), Trp. Thr oder B-Nal:
 - A6 = Sar, Gly, Ala, N-Methyl-Ala, Val, Gln, Asn, Leu, IIe, Met, p-X-Phe (wobei X = F, Cl, Br, NO₂, OH, H oder CHa), Trp. Cvs oder B-Nal;
 - A7 = 1-Methyl-His, 3-Methyl-His oder His;
- 50 worin R3 für CHR20-(CH2) n1 steht (wobei R20 entweder H oder OH bedeutet und n1 entweder 1 oder 0 bedeutet)
 - Z₁ die charakteristische Gruppe einer der Aminosäuren Glv. Ala, Val. Leu, IIe, Ser, Asp, Asn, Glu. Gln. p-X-Phe (wobei X = H, F, Cl, Br, NO₂, OH oder CH₃), F_ε-Phe, Trp, Cys, Met, Pro, HyPro, Cyclohexyl-Ala oder β-Nal ist; und V entweder OR₄ oder

bedeutet, worin R_4 für C_{1-20} Alkyl, C_{3-20} Alkenyl, C_{3-20} Alkinyl, Phenyl, Naphthyl oder C_{7-10} Phenylalkyl steht und R_5 und R_6 jeweils unabhängig voneinander H, C_{1-12} Alkyl, C_{1-12} Phenylalkyl, niederes Acyl oder

bedeutet, wobei R₂₂ für H, C₁₋₁₂Alkyl, C₇₋₁₀Phenylalkyl oder niederes Acyl steht; vorausgesetzt, daß, wenn R₅ bzw R₆ für -NHR₂₀ steht, das jeweils andere H ist;

und weiterhin vorausgesetzt, daß es sich bei einem beliebigen asymmetrischen Kohlenstoffatom um R, S oder eine racemische Mischung handeln kann, und darüber hinaus vorausgesetzt, daß R, und Rg jeweils unabhängig vonelnander H, C₁₋₁₂Allyl, C₇₋₇₀Penbrylälyl, COS₂ (wobei E, F - C₁₋₂₀Allyl, C₂₋₃₀Alkenyl, C₂₋₃₀Alkenyl, C₂₋₃₀Alkiny), Phapyl, Naphthyl oder C₇₋₁₀Pennylalkyl) oder niederes Acyl bedeuten und R₁ und R₂ an die N-terminale Aminosäure dieses Peptids gebunden sind, und außerdem vorausgesetzt, daß, wenn R₁ bzw. R₂ für COE₁ steht, das jeweils andere H sein muß.

- 2. Verbindung nach Anspruch 1. dadurch gekennzeichnet, daß
 - A⁰ = Gly oder D-Phe oder wegfällt;
 - A² = Leu, Gln, His, 1-Methyl-His oder 3-Methyl-His;
 - A4 = Ala:
 - $A^{5} = Aia;$ $A^{5} = Val;$

5

10

15

20

25

30

35

40

45

50

55

 $A^7 = His$:

entweder (1) R_3 für CH_2 oder CH_2 - CH_2 steht und Z_1 die charakteristische Gruppe von Leu oder Phe bedeutet, oder (Z) R_3 für $CHOH-CH_2$ steht und Z_1 die charakteristische Gruppe von Leu, Cyclohexyl-Ala oder Phe bedeutet und R_2 und R_3 lewells H bedeuten:

- V für NHR₆ steht, wobei R₆ für NH₂ steht und R₁ und R₂ jeweils unabhängig voneinander H, niederes Alkyl oder niederes Acyl bedeuten.
 - 3. Verbindung, die ein Peptid mit acht oder neuen Aminosäureresten oder ein pharmazeutisch nutzbares Satz davon umfaßt wobei das Peptid ein Analoges eines der folgenden, natürlich vorkommenden Peptide ist, die an ihrer Carboxyllerminalposition einen Met-Fest aufweisen: (a) Librin, (b) der 10-Aminosäure-Carboxylterminalbereich von Säugellergastrin-Releasing-Peptid; und (c) der 10-Aminosäure-Carboxylterminalbereich von Amphiblenbombesin. wobei das Pedtid für Formal

hat, worin

 $A^0 = \quad \text{Giy, Nle, } \alpha \cdot \text{Aminobuttersaure oder das D-Isomer von Ala, Val, Gin, Asn, Leu, Ile, Met, p-X-Phe (wobei X = F. Cl, Br, NO₂, OH, H oder CH₃), Trp, Cys oder <math>\beta$ -Nal oder wegfällt;

 $A^1 = F_5-D-Phe$;

A² = Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (wobei X = F, Cl, Br, NO₂, OH, H oder CH₃), Trp, Cys, β-Nal, His, 1-Methyl-His oder 3-Methyl-His);

A⁴ = Ala, Val, Gin, Asn, Gly, Leu, IIe, NIe, α-Aminobuttersäure, Met, p-X-Phe (wobei X = F, Cl, Br, NO₂, OH, H oder CH₃), Trp, Cys oder β-Nal.

A⁵ = Gln, Asn, Gly, Ala, Leu, Ile, Nle, α-Aminobuttersäure, Met, Val, p-X-Phe (wobei X = F, Cl, Br, OH, H oder

CH2), Trp. Thr oder B-Nal;

A⁶ = Sar, Gly, Ala, N-Methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (wobei X = F, Cl, Br, NO₂, OH, H oder CH₂). Trp. Cvs oder β-Nal:

A7 = 1-Methyl-His, 3-Methyl-His oder His;

worin R₄ für CH₂-NH, CH₂-S, CH₂-O, CO-CH₂. CH₂-CO oder CH₂-CH₂ steht und Z₁ und Z₂ jeweils unabhängig voneinander die charakteristischen Gruppen einer der Aminosäuren Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, β-Nal p-X-Phe (wobei X = H, F, Cl, Br, NO₂, OH oder CH₃), Trp, Cys, Met, Pro, HyPro oder Cyclohexyl-Ala bedeuten:

10 und V entweder ORc oder

5

15

20

25

30

35

40

45

55

bedeutet, wobei R₉, R₆, R₆ und R₇ jeweils unabhängig voneinander niederes Alkyl, niederes Phenylalkyl oder niederes Naphthylalkyl bedeuten;

vorausgesetzt, daß es sich bei einem beliebigen asymmetrischen Kohlenstoffetom um R. S oder eine racemische Mischung handen kann; und weiterhin vorausgesetzt, daß R_1 und R_2 jeweils unabhängig voneinander H, C_{1-12} Alkyl, C_{2-72} Phenylalkyl, COE $_1$ (wobei $E_1 = C_{1-20}$ Alkyl, C_{2-20} Alkenyl, C_{2-20} Alkenyl, Pornyl, Naphthyl oder C_{7-1} Phenylalkyl) oder niederes Acyl bedouten und R_1 und R_2 an die N-terminate Aminosäure dieses Poptids gebunden sind. und außerdem vorausgesetzt, daß, wenn R_1 oder R_2 für COE_1 steht, das jeweils andere H sein muß.

4. Verbindung nach Anspruch 3. dadurch gekennzeichnet, daß

A0 = Gly oder D-Phe oder wegfällt;

A² = Leu, Gln, His, 1-Methyl-His oder 3-Methyl-His;

 $A^4 = Ala$;

A⁵ = Val:

A6 = Sar, Gly, D-Phe, N-Methyl-D-Ala oder D-Ala;

A7 = His;

worin R_4 für CH_2 -NH oder CH_2 -O steht und Z_1 und Z_2 jeweils unabhängig voneinander die charakteristischen Gruppen von Leu oder Phe sind; und R_1 und R_2 jeweils unabhängig voneinander H, niederes Alkyl oder niederes Acyl bedeuten.

5. Verbindung, die ein Peptid mit acht oder neun Aminosäureresten oder ein pharmazeutisch nutzbares Salz davon umfaßt; wobei das Peptid ein Analoges eines der folgenden, natürlich vorkommenden Peptide ist, die an ihrer Carboxylterminalposition einen Met-flest aufweisen: (a) Litorin, (b) der 10-Aminosäure-Carboxylterminalbereich von Säugeliergastrin-Releasing-Peptid und (c) der 10-Aminosäure-Carboxylterminalbereich von Amphibienbornbesin wobei das Peptid die Formel

$$R_1$$
 $A^0-A^1-A^2-Trp-A^4-A^5-A^6-A^7-N-CH-C-N$
 R_2

50 hat, worin

A⁰ = Gly, Nle, α-Aminobuttersäure oder das D-Isomer von Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (wobei X = F, Cl, Br, NO₂, OH, H oder CH₃), Trp, Cys oder β-Nal oder wegfällt;

 $A^1 = F_5$ -D-Phe;

A² = Giy, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (wobel X = F, Cl, Br, NO₂, OH, H oder CH₃), Trp, Cys, β-Nal, His, 1-Methyl-His oder 3-Methyl-His;

A⁴ = Ala, Val, Gin, Asn, Gly, Leu, Ile, NIe, α-Aminobuttersäure, Met, p-X-Phe (wobei X = F, Cl, Br, NO₂, OH, H oder CH₃), Trp, Cys oder β-Nal:

A⁵ = Gln, Asn, Gly, Ala, Leu, Ile, Nie, α-Aminobuttersäure, Met, Val, p-X-Phe (wobei X = F, Cl, Br, OH, H oder CH₂). Trp. Thr oder β-Nal:

A⁶ = Sar, Gly, Ala, N-Methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (wobei X = F, Cl, Br, NO₂, OH, H oder CH₃), Trp, Cys oder β-Nai;

A⁷ = 1-Methyl-His, 3-Methyl-His oder His:

Z, die charakteristische Gruppe einer der Aminosäuren Gly, Ala, Val, Lou, Ile, Ser, Asp, Asn, Glu, p-Nal, Gin, p-XPne (wobei X = H, F. Cl. Br. No₂, DH oder Chyl), Fg-Phe ; Tp, Cys, Mol, Prooder HyPro ist, und Z, Z, und Z_A jeweils unsabhängig voneinander H, niederes Alkyl, niederes Phenylaikyl oder niederes Naphthylaikyl bedeuten;

vorausgesetzt, daß es sich bei einem beliebigen asymmetrischen Kohlenstoffatom um R. S oder eine racemische Mischung handeln kann; und weiterhin vorausgesetzt, daß R₁ und R₂ jeweite inabhängig voreinander H, C₁₋₁₂AlfwJ, C₇₋₁₀PhenylalfwJ, CoET, (wobei E, e-1₂₀AlfwJ, C₂₀AlfwsJV, C₃₀AlfwJ, Phenyl., Naphthyl oder C₇₋₁₀PhenylalkyJ) oder niederes Acyl bedeuten und R₁ und R₂ an die N-terminale Aminosäure dieses Peptids gebunden sind. und außerdem vorausgesetzt, daß. wenn R₁ oder R₂ für COE₁ steht. das Jeweils andere H sein muß

6. Verbindung nach Anspruch 5. dadurch gekennzeichnet, daß

A⁰ = Gly oder D-Phe oder wegfällt:

A² = Leu. Gln. His. 1-Methyl-His oder 3-Methyl-His:

A4 = Ala;

 $A^5 = Val;$

A⁶ = Sar, Gly, D-Phe, N-Methyl-D-Ala oder D-Ala; A⁷ = His:

25

30

35

40

45

50

55

5

10

15

20

wobei Z_1 die charakteristische Gruppe einer der Aminosäuren Leu, F_5 -Phe oder p-X-Phe (wobei $X = H, F, Cl, Br, NO_2, CH oder CH_3) ist und <math>Z_2, Z_3$ und Z_4 jeweils unabhängig voneinander H, niederes Alkyl, niederes Phenylalkyl oder niederes Naphthylalkyl bedeuten; und B_1 und B_2 jeweils unabhängig voneinander H, niederes Alkyl oder niederes Acyl bedeuten.

7. Verbindung, die ein Pepild mit sieben oder acht Aminosäureresten oder ein pharmazeutisch nutzbares Salz davon umfaßt, wobei das Pepild ein Analoges eines der folgenden, natürlich vorkommenden Pepilde ist, die an ihrer Carboxylterminalposition einen Met-Rest aufweisen: (a) Litorin; (b) der 10-Aminosäure-Carboxylterminalbereich von Säugeltergastrin-Releasing-Pepild und (c) der 10-Aminosäure-Carboxylterminalbereich von Amphiblenbombesin: wobei das Pepild die Formel

$$R_{1} \xrightarrow{A^{0}-A^{1}-A^{2}-\text{Trp}-A^{4}-A^{5}-A^{6}-A^{7}-N} z_{10}$$

hat, worin

A⁰ = Gly, Nle, α-Aminobuttersäure oder das D-Isomer von Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (wobei X = F. Cl. Br. NO₃, OH. H oder CH₂). Trp. Cvs oder β-Nal oder wegfällt:

 $A^1 = F_5$ -D-Phe

A² = Giy, Ala, Val, Gin, Asn, Leu, Ile, Met, p-X-Phe (wobei X = F, Cl, Br, NO₂, OH, H oder CH₃), Trp, Cys, β-Nal, His, 1-Methyl-His oder 3-Methyl-His);

A⁴ = Ala, Val, Gln, Asn, Gly, Leu, Ile, Nle, α-Aminobuttersäure, Met, p-X-Phe (wobei X = F, Cl, Br, NO₂, OH, H oder CH₃). Trp. Cvs oder β-Nal;

A⁵ = Gln, Asn, Gly, Ala, Leu, Ile, Nle, α-Aminobuttersäure, Met, Val, p-X-Phe (wobei X = F, Cl, Br, OH, H oder CH₂), Trp. Thr oder B-Nal:

A⁶ = Sar, Gly, Ala, N-Methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (wobei X = F, Cl, Br, NO₂, OH, H oder CH₃). Tro. Cvs oder B-Nal:

A7 = 1-Methyl-His, 3-Methyl-His oder His;

worin Z₂₀ und Z₃₀ jeweils unabhängig voneinander H, niederes Alkyl, niederes Phenylalkyl oder niederes Naphthylalkyl bedeuten; vorausgesetzt, daß, wenn weder Z_{20} noch Z_{30} für H stehen, bedeutet A^7 = His, A^6 = Gly, A^5 = Val, A^4 = Ala, A^2 = His, und weder B_1 noch B_2 sind H;

und weiterhin vorausgesetzt, daß es sich bei einem beliebigen asymmetrischen Köhlenstoltatom um R. S. oder eine racemische Mischung handeln kann; und darüber hinaus vorausgesetzt, daß R₁ und R₂ jeweils unabhängig voneinander H. C_{1-12} Alleyl, C_{7-10} Phenylallyl, C_{0-10} Phenylallyl, C_{0-10} Phenylallyl, C_{0-10} Phenylallyl, C_{0-10} Phenylallyl) oder niederes Acyl bedeuten und R₁ und R₂ an die N-terminale Aminosäure dieses Pepitds gebunden sind, und außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10} Phenylallyl) außerdem vorausgesetzt, daß, wenn R₁ oder R₂ C_{0-10}

10 8. Verbindung nach Anspruch 7, dadurch gekennzeichnet, daß

A⁰ = Glv oder D-Phe oder wegfällt:

A2 = Leu. Gln. His, 1-Methyl-His oder 3-Methyl-His;

A⁴ = Ala;

15

20

25

35

40

45

55

A5 = Val;

A6 = Sar, Gly, D-Phe, N-Methyl-D-Ala oder D-Ala;

A7 = His;

und wobei Z_{20} und Z_{30} jeweils H bedeuten und R_1 und R_2 jeweils unabhängig voneinander H, niederes Alkyl oder niederes Acyl bedeuten.

- Vorbindung nach einem der Ansprüche 1, 3, 5 und 7, dadurch gekennzeichnet, daß besagtes Analoges zu mindestens 25 % hormolog ist und vorzugsweise zu mindestens 50 % hornolog mit Litorin, Säugetlergastrin-Releasing-Peptid bzw. Amphibienbornbesin ist.
- Verbindung nach Anspruch 3, dadurch gekennzeichnet, daß R₄ für CH₂-NH steht und das an Z₂ gebundene Kohlenstoffatorn eine R-Konfiguration aufweist.
- Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß V für OR₄ steht und R₄ für C₁₋₂₀Alkyl, C₃₋₂₀Alkenyl,
 C₃₋₂₀Alkinyl, Phenyl, Naphthyl oder C₇₋₁₀Phenylalkyl steht.
 - Verbindung nach Anspruch 11, dadurch gekennzeichnet, daß das besagte Peptid die Formel D-F₅-Phe-Gin-Trp-Ala-Val-D-Ala-His-Leu-Methylester hat.

Revendications

1. Composé comprenant un peptide ayant 8 ou 9 résidus d'acides aminés, ou un sel pharmaceutiquement acceptable de celui-ci. Jedit peptide étant un analogue de l'un des peptides naturels avixants qui se terminent au niveau de l'extrémité carboxy-terminale par un résidu Met. (a) la litorine, (b) la région carboxy-terminale de 10 acides aminés du peptide libérant la gastrine de mammiflère, et (c) la région carboxy-terminale de 10 acides aminés de la bombésine d'amphiblen, ledit peptide étant de formule :

50 dans laquelle

 $A^0=Gly$, NIe, acide α -aminobutyrique ou l'isomère D de l'un quelconque des acides aminés Ala, Val, Gin, Asn, Leu, Ile, Met, p-X-Phe (où X = F, Cl, Br, NO₂, OH, H ou OH₃), Trp, Cys ou β -Nal, ou est délété ; $A^1=F_{\epsilon}$ -D-Phe :

 $A^2 = \overrightarrow{Gly}$, Ala, Val, Gin, Asn, Leu, Ile, Met, p-X-Phe (où X = F, Cl, Br, NO₂, OH, H ou CH₃), Trp, Cys, β -Nal, His, 1-méthyl-His ou 3-méthyl-His;

 A^4 = Ala, Val, Gin, Asn, Gly, Leu, IIe, Nie, acide α -aminobutyrique, Met, p-X-Phe (où X = F, Cl, Br, NO₂, OH, H ou CH₃), Trp, Cys ou β -Nal;

 $A^5 = GIn$, Asn, Gly, Ala, Leu, IIe, NIe, acide α -aminobutyrique, Met, Val, p-X-Phe (où X = F, Cl, Br, OH, H ou CH₃). Tro, Thr ou B-Nat :

 $A^6 = Sar$, Gly, Ala, N-méthyl-Ala, Val, Gin, Asn, Leu, IIe, Met, p-X-Phe (où X = F, Cl, Br, NO₂, OH, H ou CH₃), Trp, Cys ou β -Nal;

A7 = 1-méthyl-His, 3-méthyl-His ou His :

5

10

15

20

25

30

40

50

55

où H_3 est CH H_{20} *(CH $_2$) $_{11}$ (où H_{20} est H ou OH, et n1 est 1 ou 0), ou est délété ; Z_1 est le groupe identificateur de l'un quelconque des acides aminés Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (où X = H, F, Cl, Br, NO $_2$, OH ou CH $_3$), F_6 -Phe, Trp. Cys, Met, Pro, HyPro, cyclohexyl-Ala ou β -Nal ; et V est V est V0 est V1, ou

 $N < R_5$

où $\rm H_4$ est un groupe quelconque parmi alkyle en $\rm C_1$ - $\rm C_{20}$, alcényle en $\rm C_3$ - $\rm C_{20}$, alcynyle en $\rm C_3$ - $\rm C_{20}$, by that $\rm H_2$ in the properties of $\rm H_2$ in the properties $\rm H_2$ in the pr

où $B_{\rm pc}$ est l'un quelconque des groupes H. allyle en C_1 - $C_{\rm pc}$, bhénylallyle en C_7 - $C_{\rm pc}$) u acyle inférieur, à condition que, lorsque l'un des substituants $B_{\rm pc}$ ou $B_{\rm pc}$ est hiH $B_{\rm pc}$. l'autre soit H, et à condition également que tout atome de carbone asymétrique puisse être B. So ou un mélange racémique, et à condition encore que chaque substituant B_1 et B_2 , indépendamment, soit H, alkyle en C_1 - $C_{\rm pc}$, phénylallyle en C_1 - $C_{\rm pc}$, COE₁ (oU E_1 est alkyle en C_1 - $C_{\rm pc}$) acide/lyle en C_2 - $C_{\rm pc}$, alchyle en C_3 - $C_{\rm pc}$, alchyle en C_3 - $C_{\rm pc}$ herityle, naphtyle ou phénylallyle en C_7 - $C_{\rm pc}$), ou exple inférieur, et B_1 explication encore que lorsque l'un des substituants B_1 , ou B_2 est C_2 , l'autre doit être H.

Composé selon la revendication 1, dans lequel A⁰ = Gly D-Phe ou est délété;

A2 = Leu, Gln, His, 1-méthyl-His ou 3-méthyl-His;

 $A^4 = Ala$:

 $A^4 = Aia$; $A^5 = Vai$

A6 = Sar, Gly, D-Phe, N-méthyl-D-Ala ou D-Ala;

A7 = His :

(1) R_3 est CH $_2$ ou CH $_2$ -CH $_2$ et Z $_1$ est le groupe identificateur de Leu ou Phe, ou (2) R_3 est CHOH-CH $_2$ et Z $_1$ est le groupe identificateur de Leu, cyclohexyi-Ala ou Phe et chaque substituant R_5 et R_6 est H ; V est NHR. où

R₆ est NH₂, et chaque substituant R₁ et R₂, indépendamment, est H, alkyle inférieur ou acyle inférieur.

45 3. Composé comprenant un peptide ayant 8 ou 9 résidus d'acides aminés, ou un sel pharmaceutiquement acceptable de celui-ci, ledit peptide étant un analogue de l'un des peptides naturels suivants qui se terminent au niveau de l'extrémité carboxy-terminale par un résidu Met (a) la litorino, (b) la région carboxy-terminale de 10 acides aminés du peptide libérant la gastrine de mammifière, ct (c) la région carboxy-terminale de 10 acides aminés de la bombésine d'armohibien, ledit ocalidé etant de formule:

dans laquelle

 $A^0 = Gly$, NIe, acide α -aminobutyrique ou l'isomère D de l'un quelconque des acides aminés Ala, Val, Gin, Asn, Leu, Ile, Mot, p-X-Phe (où X = F, Cl, Br, NO₂, OH, H ou CH₃), Trp, Cys ou β -Nal, ou est délété ; $A^1 = F_{\tau}D$ -Phe :

 $A^2 = Giy$, Ala, Val, Gin, Asn, Leu, Ile, Met, p-X-Phe (où X = F, Cl, Br, NO_2 , OH, H ou CH_3), Trp, Cys, β -Nal, His. 1-méthyl-His ou 3-méthyl-His .

 A^4 = Ala, Val, Gln, Asn, Gly, Leu, IIe, NIe, acide α -aminobutyrique, Met, p-X-Phe (où X = F, Cl, Br, NO₂, OH, H ou CH₃), Trp, Cys ou β -Nal;

 A^5 = Gin, Asn, Giy, Ala, Leu, Ile, NIe, acide α -aminobutyrique, Met, Val, p-X-Phe (où X = F, Cl, Br, OH, H ou CH₂), Trp, Thr ou β -Nal;

 A^0 = Sar, Gly, Ala, N-méthyl-Ala, Val, Gln, Asn, lieu, IIe, Met, p-X-Phe (cù X = F, Cl, Br, NO₂, OH, H ou CH₃), Trp, Cys ou β -Nal;

A7 = 1-méthyl-His. 3-méthyl-His ou His :

cù P₄ est CH₂-NH, CH₂-S, CH₂-O, CO-CH₂, CH₂-CO cu CH₂-CH₂ ot chaque substituant Z₁ et Z₂, indépendamment, peut être le groupe identificateur de l'un quelconque des acides aminés Gly, Ala, Val, lieu, Ile, Ser, Asp, Asn, Glu, Gln, β-Nal, p-X-Phe (où X = H, F, Cl, Br, NO₂. OH ou CH₃), Trp. Cys. Met, Pro, HyPro ou cyclohexyl-Ala; et V est CP₆ ou

où chaque substituant R₃, R₅, R₆ et R₇, indépendamment, est H, alkyle inférieur, phénylalkyle inférieur cu naphtylalkyle inférieur :

à condition que tout atome de carbone asymétrique puisse être R, S ou un mélange racémique, et à condition également que chaque substituant R, et R_2 indépendamment, soit R, alté en C_1 - C_{12} , phénylaliyie en C_2 - C_{10} . COE_1 (COE_1 est altiyle en C_1 - C_{20} , alchyriyle en C_2 - C_{20} , alchyriyle en C_2 - C_{20} , phényle, naphtyle ou phénylaliyle en C_3 - C_{20} , or phényle, naphtyle ou phénylaliyle en C_3 - C_{20} , phényle, naphtyle ou phénylaliyle en C_3 - C_{20} , phényle, naphtyle ou phénylaliyle en C_3 - C_3

4. Composé selon la revendication 3, dans lequel

A0 = Glv. D-Phe ou est délété :

A2 = Leu, Gln, His, 1-méthyl-His ou 3-méthyl-His;

 $A^4 = Ala$:

 $A^5 = Val$

A6 = Sar, Gly, D-Phe, N-méthyl-D-Ala ou D-Ala;

A⁷ = His :

où

5

10

15

20

25

30

35

40

45

50

55

 R_4 est CH_2 -NH ou CH_2 -O, chaque substituant Z_1 et Z_2 , indépendamment, est le groupe identificateur de Leu ou Phe, et chaque substituant R_1 et R_2 , indépendamment, est H, alkyle inférieur ou acyle inférieur.

5. Composé comprenant un peptide ayant 8 cu 9 résidus d'acides aminés, ou un sel pharmaceutiquement acceptable de celui-ci, ledit peptide étant un analogue de l'un des peptides naturels suivants qui se terminent au niveau de l'extrémité carboxy-terminale par un résidu Met. (a) la litorine, (b) la région carboxy-terminale de 10 acides aminés du peptide libérant la gastrine de mammilére, et (c) la région carboxy-terminale de 10 acides aminés de la bombásine d'amphibien, ledit peptide átant de formule :

dans laquelle

A⁰ = Gly, NIe, acide α-aminobutyrique ou l'isomère D de l'un quelconque des acides aminés Ala, Val, Gln,

EP 0 489 089 B1

Asn, Leu, IIe, Met, p-X-Phe (où X = F, Cl, Br, NO₂, OH, H ou CH₃), Trp, Cys ou β -Nal, ou est délété ; A¹ = F_e-D-Phe :

 $A^2 = Gly$, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (où X = F, Cl, Br, NO_2 , OH, H ou CH_3), Trp, Cys, β -Nal, His, 1-méthyl-His ou 3-méthyl-His;

A⁴ = Ala, Val, Gln, Asn, Gly, Leu, IIe, NIe, acide α-aminobutyrique, Met, p-X-Phe (où X = F, Cl, Br, NO₂, OH, H ou CH₂), Trp, Cys ou β-Nal;

 A^5 = GIn, Asn, Gly, Ala, Leu, Ile, NIe, acide α -aminobutyrique, Met, Val, p-X-Phe (où X = F, Cl, Br, OH, H ou CH₂), Tro. Thr ou B-Nal:

A⁶ = Sar, Gly, Ala, N-méthyl-Ala, Val, Gln, Asn, Leu, IIe, Met, p-X-Phe (οù X = F, Cl, Br, NO₂, OH, H ou CH₃), Tro. Cvs ου β-Nal:

A7 = 1-méthyl-His, 3-méthyl-His ou His;

Z₁ est le groupe identificateur de l'un quelconque des acides aminés Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, β-Nal, Gln, p-X-Phe (οù X = H, F, Cl. Br, NO₂, OH ou CH₃), F₅-Phe, Trp, Cys, Met, Pro ou HyPro;

et chaque substituant Z₂, Z₃ et Z₄, indépendamment, est H, alkyle inférieur, phénylalkyle inférieur ou naphtylalkyle inférieur,

à condition que tout atome de carbone asymétrique puisse être R, S ou un mélange racémique, et à condition également que chaque substituant R_1 et R_2 indépendamment, soit H, altiyle en C_1 - C_{12} , phénylaliyle en C_2 - C_{20} , altiynyle en C_3 - C_{20} , phényle, naphyle ou phénylaliyle en C_3 - C_{20} , phényle, naphyle ou phénylaliyle en C_3 - C_{20} , phényle, naphyle ou phénylaliyle en C_3 - C_{20} , ou acyle inférieur, et que R_1 et R_2 soient liés à facide aminé N-terminal dudit peptide, et à condition en outre que lorsque l'un des substituants R_1 ou R_2 set CC_2 , l'autre doit être H.

- 6. Composé selon la revendication 5. dans lequel
- A⁰ = Gly, D-Phe ou est délété ;
 - A2 = Leu, Gln, His, 1-méthyl-His ou 3-méthyl-His :
 - $A^4 = Ala$:
 - $A^5 = Val$:
 - A⁶ = Sar, Gly, D-Phe, N-méthyl-D-Ala ou D-Ala;
 - $A^7 = Gar, Gry, D^{-r}$ $A^7 = His$:

οù

5

10

15

20

25

30

35

40

45

50

55

 Z_1 est le groupe identificateur de l'un quelconque des acides aminés Leu, F_5 -Phe ou p-X-Phe (où X=H,F,C,I), R_1 , R_2 , R_3 et R_4 indépendamment, est R_4 , R_4 inférieur, phénylalikyle inférieur, et chaque substituant R_1 et R_2 , indépendamment, est R_4 , alkyle inférieur ou acyle inférieur.

7. Composé comprenant un peptide ayant 7 ou 8 résidus d'acides aminés, ou un sel pharmaceutiquement acceptable de celui-ci, ledit peptide étant un analogue de l'un des peptides naturels suivants qui se terminent au nivaeu de l'extrémité carboxy-terminale par un résidu Metr. (a) la littorine, (b) la région carboxy-terminale de 10 acides aminés du peptide libérant la gastrine de mammifère, et (c) la région carboxy-terminale de 10 acides aminés de la bombésine d'amphibine. ledit bentide stant de formule :

$$\stackrel{R_1}{\sim} A^0 - A^1 - A^2 - Trp - A^4 - A^5 - A^6 - A^7 - N \stackrel{Z_{20}}{\sim} Z_{20}$$

dans laquelle

A⁰ = Gly, Nie, acide α-aminobutyrique ou l'isomère D de l'un quelconque des acides aminés Ala, Val, Gin, Asn, Leu, IIe, Met. p-X-Phe (οù X = F. Cl. Br. NO₂, OH, H ou CH₂), Trp, Cvs ou β-Nal, ou est délété :

 $A^1 = F_5$ -D-Phe:

 $A^2 = Gly$, Ala, Val, Gln, Asn, Leu, IIe, Met, p-X-Phe (où X = F, Cl, Br, NO₂, OH, H ou CH₃), Trp, Cys, β -Nal, His, 1-méthyl-His ou 3-méthyl-His;

 A^4 = Ala, Val, Gln, Asn, Gly, Leu, Ile, Me, acide α -aminobutyrique, Met, p-X-Phe (où X = F, Cl, Br, NO₂, OH, H ou CH₃), Trp, Cys ou β -Nal;

A⁵ = GIn, Asn. Gly, Ala, Leu, ne, Nie, acide α-aminobutyrique, Met, Val, p-X-Phe (où X = F, Cl, Br, OH, H ou

FP 0 489 089 B1

CH_a), Trp, Thr ou β-Nal;

 $A^6 = Sar$, Gly, Ala, N-méthyl-Ala, Val, Gin, Asn, Leu, IIe, Met, p-X-Phe (où X = F, Cl, Br, NO₂, OH, H ou CH₃), Tro. Cvs ou β -Nal:

A7 = 1-méthyl-His, 3-méthyl-His ou His;

où chaque substituant Z₂₀ et Z₃₀, indépendamment, est H, alkyle inférieur, phénylalkyle inférieur, naphtylalkyle inférieur:

à condition que lorsque l'un quelconque des substituants Z_{20} ou Z_{30} n'est pas H, A^7 soit His, A^6 soit Gly, A^5 soit Val, A^4 soit Ala, A^2 soit His et l'un quelconque des substituants B_1 ou B_2 ne soit pas H;

à condition également que tout atome de carbone asymétrique puisse être R. So u un mélange racémique, et à condition en outre que chaque substituant R_1 et R_2 , indépendamment, soit H, altique en C_1 - C_{12} , phénylalkyle en C_2 - C_{10} , CDE_1 (où E_1 est altique en C_2 - C_{20} , alchylue en C_3 - C_{20} , phényle, naphtyle ou phényle altique en C_3 - C_{20}), ou acyle inférieur, et que R_1 et R_2 soient liés à l'acide aminé N-terminal dudit peptide, et à condition en outre que lorsque if un des substituants R_1 ou R_2 ex CDE_1 , fautre doit àtre H.

8. Composé selon la revendication 7. dans lequel

A0 = Gly, D-Phe ou est délété;

A² = Leu, Gln, His. 1-méthyl-His ou 3-méthyl-His :

 $A^4 = Ala$:

5

10

15

20

30

35

40

45

50

55

A⁵ = Val; A⁶ = Sar, Gly, D-Phe, N-méthyl-D-Ala ou D-Ala;

A7 = His :

- et où chaque substituant Z₂₀ et Z₃₀ est H, et chaque substituant R₁ et R₂, indépendamment, est H, alkyle inférieur ou acyle inférieur.
 - 9. Composé selon l'une quelconque dos revendications 1, 3, 5 e 17, dans lequel ledit analogue est homologue à raison d'au moins 25 %, et de préférence homologue à raison d'au moins 50 %, de la litorine, du peptide libérant la gastrine de mammillère ou de la bombésine d'amphiblien.
 - 10. Composé selon la revendication 3, dans lequel R4 est CH2-NH et l'atome de carbone lié à Z2 est de configuration R.
 - Composé selon la revendication 1, dans lequel V est OR₄, et R₄ est l'un quelconque des groupes alkyle en C₁-C₂₀, alcényle en C₂-C₂₀, alcynyle en C₃-C₂₀, phényle, naphtyle ou phénylalkyle en C₇-C₁₀.
 - 12. Composé selon la revendication 11, dans lequel ledit peptide a la formule :

D-F₅-Phe-Gin-Trp-Ala-Val-D-Ala-His-Leu-méthylester.

FIG. 1

Litorin

A1 A2 A3 A4 A5 A6 A7 A8 A9 pGlu-Gln-Trp-Ala-Val-Gly-His-Phe-Met

Neuromedin C

AO A1 A2 A3 A4 A5 A6 A7 A8 A9
Gly-Ser-His-Trp-Ala-Val-Gly-His-<u>Leu-Met</u>
w

Bombesin (last 10 amino acids)

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 Gly-Asn-Gln-Trp-Ala-Val-Gly-His-<u>Leu-Met</u> W

human GRP (last 10 amino acids)

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9
Gly-Asn-His-Trp-Ala-Val-Gly-His-<u>Leu-Met</u>
...