第2章 拓扑空间与连续性

2.1 开集与闭集

回忆我们上一章中给拓扑空间下的定义:

定义 2.1 (拓扑结构)

设 N 是集合 X 上的基准开邻域结构. 如果 X 的子集 U 是每一个元素 $x \in U$ 的邻域,则 称 U 为一个 开集 (open set).

秋 X 上所有开集构成的子集族 τ 为一个由 \mathcal{N} 生成 (generate) 的 拓扑结构 (topological structure),简称 拓扑 (topology).

X 和 τ 合在一起, 称为一个 拓扑空间 (topological space), 记做 (X, τ) .

定义 2.2 (开集)

设X为拓扑空间,如果X的子集O是自己每个点的邻域,则称O为开集.

a.

命题 2.1

一个集合是开集当且仅当它是若干个基准开邻域的并集.

证明 如果 U 是开集,则任取 $x \in U$,存在一个 x 的基准开邻域 $B_x \subset U$,因此 U 是所有含于 U 的基准开邻域的并集.

反过来,如果 U 是若干基准开邻域的并集,则任取 $x \in U$,存在一个基准开邻域 B,使得 $x \in B \subset U$,由基准开邻域的公理我们可以知道存在 x 的基准开邻域 $A_x \subset B \subset U$,从而 U 是开集.

则按照公理: "若 $N \in \mathcal{X}$ 的邻域, $U \to \mathcal{X}$ 的子集,它包含 N ,则 $U \in \mathcal{X}$ 的邻域"与" \mathcal{X} 的任何两个邻域的交集为 \mathcal{X} 的一个邻域" 我们容易得到下面的结论:

定理 2.1

- (1) 任意一组开集的并是开集.
- (2) 任意有限多个开集的交是开集.

笔记 整个空间 X 与空集 \emptyset 是开集; 一点 x 的邻域 N 的内部是一个开集(由公理"若 N 是 x 的邻域,并且若 N° 表示集合 $\{z \in N \mid N \in Z \text{ 的邻域}\}$,则 N° 是 x 的邻域" 保证).

但是上面的讨论是从基准开邻域结构出发,在实际应用中可能并不是非常方便,所以我们尝试从另一个方向着手,从开集的概念出发,对于每个点构造出一组邻域出来.

于是假定对于集合 X,给定了它的一组子集(称为开集),使得任意多个开集的并集仍然是开集,任意有限多个开集的交是开集,整个 X 与空集也是开集. 对于 X 的点 x,我们称 X 的子集 N 为 x 的邻域,如果可以找到开集 O 使得 $x \in O \subset N$.

实际上,这样一个邻域的定义使 X 成为一个拓扑空间,容易验证满足四条公理.

此时我们会提出疑问:从一组所谓的开集出发,构造出一个拓扑空间 X,然后再来看这个空间内的开集,这两个"开"的概念是否一致呢?回答是肯定的:因为若 O 是原来的开集,按照邻域的概念,O 是它自己每点的邻域,因此它是拓扑空间 X 内的一个开集.反之,若 U 是拓扑空间 X 的一个开集,它是它自己每点的邻域,因此对于 $x \in U$,可以找到原来的 O_x 使得 $x \in O_x \subset U$,于是 $U = \bigcup O_x$ 是原来意义下的开集.

通过上面的讨论,我们有充足的根据将拓扑空间的定义以开集为出发点来重述.

定义 2.3 (拓扑与拓扑空间)

集合 X 上的一个**拓扑**是由 X 的子集所构成的一个非空组(记为 τ), 这个非空组的成员叫做开集,它们满足以下要求:

- (1) 任意多个开集的并是开集;
- (2) 任意有限多个开集的交是开集;
- (3) X 与空集是开集.

集合配备了它上面的一个拓扑以后叫做**拓扑空间**,记为 (X,τ) .

我们在后面的叙述中都将采用这个定义1.

注 每当提起 \mathbb{E}^n 时,我们都认为当对任意 $x \in U$, $\exists \varepsilon > 0$ 使得 $\{y : |x - y| \le \varepsilon\} \subset U$,则集合 U 是开集.

定义 2.4 (闭集)

设F是拓扑空间 (X,τ) 的一个子集,如果F的补集 $F^c=X\setminus F\in \tau$,即补集为开集,则称F是一个闭集.

利用 De Morgan 律将开集公理转换为闭集公理是平凡的2:

- C1 ∅ 和 *X* 都是闭集;
- C2 如果 U_1 和 U_2 都是闭集,则 $U_1 \cup U_2$ 也是闭集;
- C3 如果对任意 $\lambda \in \Lambda$, U_{λ} 都是闭集,则 $\bigcap_{\lambda \in \Lambda} U_{\lambda}$ 也是闭集.

接下来介绍几个常见的拓扑

- **平凡拓扑**即诱导了只要在 X 上无论怎么样都算接近 x 的一个拓扑.
- 若 X 为拓扑空间,Y 为 X 的子集,Y 上的**子空间拓扑**,或者称之为**诱导拓扑**是以 X 的开集与 Y 的交集作为作为这个拓扑空间的开集而得到的.

每当我们说起拓扑空间 X 的一个子空间 Y 时,总是理解为 Y 是 X 的子集,并配备了子空间拓扑。

¹1935 年,Alexandrov 和 Hopf 在他们撰写的《拓扑学(*I*)》一书中,将开集公理作为拓扑空间的定义,相较于 Hausdorff 的定义更加简洁且易于使用,因而得到了广泛的采纳,成为拓扑空间的标准定义.

²在某些特定问题里,闭集公理更适用.

- 如果只令 $\{x\}$ 作为 x 的基准开邻域,换句话说,即 X 的所有子集都是开集,此时我们称之为 X 上的**离散拓扑**,有着"只有等于 x 才算和 x 充分接近".
- 设 X 含有无穷多个元素,定义 $\tau_f = \{A \subseteq X | A = \emptyset$ 或 A^c 有限 $\}$,则 τ 是个拓扑结构,称为 X 上的**余有限拓扑**.
- 设 X 含有不可数个元素,仿照上面的定义我们可以定义 X 上的**余可数拓扑**.
- 在度量空间上, 我们可以利用度量生成度量拓扑.

义 Zariski 拓扑,该拓扑主要用于代数几何的研究.

- Zariski 拓扑: 设 $X = \mathbb{C}^n$, $R = \mathbb{C}[z_1, \cdots, z_n]$,即具有复系数的 n 元多项式环,定义 $\mathscr{T}_{\text{Zariski}} = \{U \subset \mathbb{C}^n | \exists f_1, \cdots, f_m \in R \ \text{使得} \ U^c \ \text{为} \ f_1, \cdots, f_m \ \text{的公共零点集} \}$ 可以说明这是一个拓扑(利用闭集公理更方便一些). 更一般的,可以在任何交换环上定
- Sorgenfrey 拓扑: 设 $X = \mathbb{R}$,定义

$$\mathscr{T}_{Sorgenfrey} = \{ U \subset \mathbb{R} | \forall x \in U, \exists \varepsilon > 0, \text{s.t.}, [x, x + \varepsilon) \subset U \}$$

可以看做一条具有方向歧性的直线.

定义 2.5 (拓扑的比较)

设 \mathcal{T}_1 与 \mathcal{T}_2 是 X 上的两个拓扑^a,我们称 \mathcal{T}_1 弱于 \mathcal{T}_2 ,或等价的,称 \mathcal{T}_2 强于^b \mathcal{T}_1 ,如果有 $\mathcal{T}_1 \subseteq \mathcal{T}_2$.

"并不是任何两个拓扑都可以比较.

b也有用粗糙于与精细于来替代弱于与强于的.

定理 2.2 (拓扑的交仍是拓扑)

给定 X 上的任意一族拓扑 \mathcal{T}_{α} , 则 $\bigcap \mathcal{T}_{\alpha}$ 是 X 上的一个拓扑.

拓扑空间中的一些基本概念 接下来要介绍的概念都会从开集出发去定义,然后再利用基准 开邻域说明如何去计算.

定义 2.6 (从开集出发定义的邻域)

一个子集 $A \in \mathcal{X}$ 的邻域当且仅当存在开集 U,使得 $x \in U \subset A$.

定义 2.7 (内点与内部)

如果 $A \in \mathcal{X}$ 的邻域,则称 \mathcal{X} 为 A 的**内点(interior point)**,全体内点构成的集合称为 A 的**内部(interior)**. 记为 A° .

定义 2.8 (聚点或极限点(Point of accumulation))

如果 x 的每个邻域中都含有 $A\setminus\{x\}$ 中的点,则称 x 为 A 的极限点或聚点.

定义 2.9 (导集(derived set)和闭包(closure))

全体聚点构成的集合 A' 称为 A 的导集, $\overline{A} = A \cup A'$ 称为 A 的闭包.

*

定理 2.3

一个集合为闭集, 当且仅当它包含了自己所有的极限点.

\odot

定理 2.4

A的闭包是最小的包含 A的闭集,换句话说,是包含 A的一切闭集之交.

定理 2.5

一个集合为闭集, 当且仅当它等于自己的闭包.

Cantor 三分集 在 \mathbb{E}^1 中,任意开区间都是开集,因此 $[a,b]^c = (-\infty,a) \cup (b,+\infty)$ 是开集,从而 [a,b] 是闭集,然而闭集可以比这样简单的构造复杂的多,下面我们取 $A_0 = [0,1]$,然后让 A_k 都是有限段互不相交的闭区间的并,并且是从 A_{k-1} 的每段闭区间上去掉正中间的 $\frac{1}{3}$ 段开区间得到的,那么交集 $A = \bigcap_{n=0}^{\infty} A_n$ 也是一个闭集,称为 Cantor 三分集(Cantor ternary set).

图 2.1: Cantor 集的构造

注意,A 中的点并不像看上去那么稀疏,事实上 A_n 的每一段闭区间上都含有 A 中无穷多个点.

命题 2.2

设A是Cantor三分集,则

- (1) [0,1]\A 是 [0,1] 的稠密子集.
- (2) A 中的每个点都是 A 的聚点.

命题 2.3

A 为全空间 X 的子集,则 $(A^c)^\circ = (\overline{A})^c$.

定义 2.10 (稠密(dense)与可分(separable))

如果 $\overline{A} = X$, 则称 A 在 X 中**稠密**, 如果 X 由只含可数多个元素的稠密子集, 则称 X **可分**.

 $\stackrel{igotimes}{igotimes}$ 笔记 如有理数集 ${\mathbb Q}$ 是 ${\mathbb E}^1$ 的可数子集,且 $\overline{{\mathbb Q}}={\mathbb E}^1$,故 ${\mathbb E}^1$ 可分,同理可知 ${\mathbb E}^n$ 可分.

笔记 用 τ_f 表示 \mathbb{R} 上的余有限拓扑,则 (\mathbb{R}, τ_f) 可分, \mathbb{N} 就是它的可数稠密子集(Why?).

笔记 用 τ_c 表示 \mathbb{R} 上的余可数拓扑,则 (\mathbb{R}, τ_c) 不可分(Why?).

定义 2.11 (边界(boundary))

定义 A 的边界 $\partial A = \overline{A} \cap \overline{A^c}$, 即 A 的闭包与 X - A 的闭包之交.

.

命题 2.4

我们可以有等价的定义 $\partial A = \overline{A} \backslash A^{\circ}$.

定义 2.12 (拓扑基)

设集合 X 上有一个拓扑, β 为这个拓扑的一组开集,使得每个开集可以写成 β 中成员的并集,则 β 叫做这个拓扑的一组**拓扑基**, β 的成员叫做基础开集.

🕏 笔记 注意到拓扑基和我们之前讲的基准开邻域是一个等价的概念.

定理 2.6

设 β 是由 X 的子集构成的一个非空组,若 β 内有限多个成员的交仍属于 β , 并且 $\bigcup \beta = X$, 则 β 是 X 上某个拓扑的拓扑基.

证明 取 β 成员中一切可能的并集作为开集结构,验证它们满足拓扑定义即可. 注 在拓扑空间上也可以定义子列的收敛,若感兴趣可以参考拓扑空间里的收敛与连续性(王作勤)

2.2 连续映射

我们用开集的概念来称述连续性,设 X 与 Y 为拓扑空间.

定义 2.13 (连续映射(continuous map))

如果映射 $f: X \to Y$ 满足: 任取 $f(x_0)$ 的邻域 V,有 $f^{-1}(V)$ 是 x_0 的邻域,则称 f 在 x_0 处**连续**. 在定义域上处处连续的映射称之为**连续映射**.

注 定义要求的条件是"邻域的原像是邻域",而不是"邻域的像是邻域",思考一下后者不合理的地方.

图 2.2: 定义连续性

定理 2.7

从 X 到 Y 的映射是连续的,当且仅当 Y 的每个开集在 X 中的完全原像是 X 的开集.

证明 ⇒ 是显然的.

 \iff , 若 Y 的每个开集在 X 中的完全原像是开集,则任取 $f(x_0) \in Y$,取包含 $f(x_0)$ 的邻域 V,知道存在包含 $f(x_0)$ 的开集 $V_0 \subseteq V$ 的完全原像 U_0 是开集,又显然 $x_0 \in U$,所以我们知道 $U_0 = f^{-1}(V_0) \subseteq f^{-1}(V)$,所以 V 的完全原像是 x_0 的邻域,故连续映射得证.

定理 2.8

若 $f: X \to Y$ 在 x 点连续, $g: Y \to Z$ 在 f(x) 点连续, 则 $g \circ f: X \to Z$ 在 x 点连续.

证明 任取 $g \circ f(x) = g(f(x))$ 的邻域 V,则 $g^{-1}(V)$ 是 f(x) 的邻域,从而 $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ 是 x 的邻域.

注 这里利用开集来说明也是容易的,请自己尝试.

定理 2.9

设 $f:X\to Y$ 连续,并且设 $A\subseteq X$ 具有子空间拓扑,则限制映射 $f|_A:A\to Y$ 连续.

证明 设O为Y的开集,并注意

$$(f|_A)^{-1}(O) = A \cap f^{-1}(O)$$

由于 f 连续,故 $f^{-1}(O)$ 是 X 的开集,因此 $A \cap f^{-1}(O)$ 在子空间 A 内为开集,从而我们知道 $f|_A$ 连续.

定义 2.14 (恒等映射(identity map)与含入映射(inclusion map))

从 X 到 X 把每点映射到自己的映射叫做 X 的**恒等映射**,记作 1_X ,若将 1_X 限制在 X 的子空间 A 上,则得到**含入映射**:

$$i:A\to X$$

命题 2.5 (子空间的嵌入映射)

设 (X, \mathcal{I}) 为拓扑空间,赋予 $A \subset X$ 子空间拓扑,则含入映射: $\iota: A \hookrightarrow X$ 是连续的,且子空间拓扑是 A 上最弱的使得 ι 连续的拓扑.

证明 映射 ι 的连续性由子空间拓扑显然得到.

假设 \mathcal{T} 是 A 上的一个拓扑,使得 ι : $(A,\mathcal{T}) \to (X,\mathcal{T}_X)$ 为连续映射,则对于 X 中的任意开集 $U \in \mathcal{T}_X$,其原像 $\iota^{-1}(U) = U \cap A$ 是 \mathcal{T} 中的开集,于是我们知道 A 继承 X 的子空间拓扑包含于 \mathcal{T} 中,从而 \mathcal{T} 强于子空间拓扑。

定理 2.10

下面各条性质是等价的:

- (a) $f: X \to Y$ 是连续映射.
- (b) 若 β 是 Y 的一组拓扑基, β 内每个成员的原像为 X 的开集.
- (c) $f(\overline{A}) \subseteq \overline{f(A)}$, 对于 X 的任何子集 A.
- (d) $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$, 对 Y 的任何子集 B.
- (e) Y 内任何闭集的原像为 X 的闭集.

 \Diamond

证明 我们按照 $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (a)$ 的顺序验证:

- $(a) \Rightarrow (b)$ 显然.
- $(b) \Rightarrow (c)$: 显然我们有 $f(A) \subseteq \overline{f(A)}$, 所以我们只需要证明若 $x \in \overline{A} A$ 且 $f(x) \notin f(A)$, 则 f(x) 为 f(A) 的极限点. 取 N 为 f(x) 在 Y 中的邻域,我们可以找到 β 内的开集 B 使得 $f(x) \in B \subseteq N$,则我们知道 $f^{-1}(B)$ 为 X 的开集,从而为 X 的一个邻域,而 x 为 A 的极限点,则 $f^{-1}(B)$ 中必含有 A 中的点,因此 B 含有 f(A) 的点,从而 N 含有 f(A) 的点,得证.
 - $(c) \Rightarrow (d)$: 取 $A = f^{-1}(B) \in X$,则知道 $f(\overline{A}) \subseteq \overline{f(A)} = \overline{f(f^{-1}(B))} = \overline{B}$,所以我们有 $\overline{f^{-1}(B)} = \overline{A} = f^{-1}(f(\overline{A})) \subset f^{-1}(\overline{B})$
 - $(d) \Rightarrow (e)$: 注意若 $B \not\in Y$ 中的闭集,则 $\overline{B} = B$,从而

$$\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B}) = f^{-1}(B)$$

所以 $f^{-1}(B)$ 是 X 中的闭集.

(e) ⇒ (a): 注意到一个有趣的事实:

$$f^{-1}(U)^c = f^{-1}(U^c)$$

从而取 U 为开集, $f^{-1}(U)$ 为开集当且仅当 $f^{-1}(U^c)$ 为闭集,而这个由假设已经得到,所以得证开集的原像是开集,故由定理 2.7 我们知道 f 为连续映射.

注 在连续映射下,开集的原像是开集,闭集的原像都是闭集,但一般来说,很容易找到例子表明:

- 开集在连续映射下的像不一定是开集;
- 闭集在连续映射下的像不一定是闭集.

定义 2.15 (开映射与闭映射)

对于拓扑空间之间的映射 $f:(X,\mathcal{I}_X)\to (Y,\mathcal{I}_Y)$,

- (1) 如果 X 中的任意开集 U 的像 f(U) 在 Y 中是开集,则称 f 为开映射.
- (2) 如果 X 中的任意闭集 F 的像 f(F) 在 Y 中是闭集,则称 f 为闭映射.

笔记 虽然开闭映射更加自然,但是他们在拓扑中没有我们所定义的连续映射方便,原因在

于:相比于"求映射的像","取映射的原像"这一操作可以更好地保持集合的交并补运算, 具体来说, 我们总是有

$$f^{-1}(\bigcup_{\alpha} B_{\alpha}) = \bigcup_{\alpha} f^{-1}(B_{\alpha}), \quad f^{-1}(\bigcap_{\alpha} B_{\alpha}) = \bigcap_{\alpha} f^{-1}(B_{\alpha}), \quad f^{-1}(Y \backslash B) = X \backslash f^{-1}(B)$$
但是一般来说,我们只有

$$f(\bigcup_{\alpha} A_{\alpha}) = \bigcup_{\alpha} f(A_{\alpha}), \quad f(\bigcap_{\alpha} A_{\alpha}) \subset \bigcap_{\alpha} f(A_{\alpha}), \quad f(X \setminus A) \supset f(X) \setminus f(A)$$

但是, 开闭映射确实出现在其他一些数学分支之中, 并且起到了非常重要的作用:

- 泛函分析中最重要的定理之一,开映射定理,断言 Banach 空间之间的连续满射线性算 子都是开映射.
- 在复分析中也有一个开映射定理, 指出在复平面的连通开子集上定义的任何非常值全 纯函数都是开映射.
- 拓扑学中的 Brouwer 区域不变性定理:如果 $U \subset \mathbb{R}^n$ 是一个开集,那么任何单射连续映 $f: U \to \mathbb{R}^n$ 是一个开映射.

定义 2.16 (同胚(homeomorphism))

如果 $h: X \to Y$ 是一个双射, 并且 h 和 h^{-1} 都连续, 则称 h 为**同胚**, 并称 X 与 Y **同 胚(homeomorphic)** 或 拓扑等价(topological equivalent), 记为 $X \cong Y$.

筆记 同胚的空间本质上具有一样的连续性,但是需要注意,严格的数学定义和"橡皮泥变 形"的通俗说法还是有区别、它并不是一个缓慢地、渐渐变形的过程、而是一个一步到位的 映射.

渐渐变形的过程对应拓扑学的另外一个概念(同时也是代数拓扑的核心概念之一):同伦.

定理 2.11

同胚是拓扑空间之间的等价关系。

证明 我们有:

- $X \cong X$: 因为 $\mathrm{Id}: (X, \mathscr{T}_X) \to (X, \mathscr{T}_X)$ 是同胚.
- $X \cong Y \Rightarrow Y \cong X$: 如果 $f: X \to Y$ 是同胚, 那么 $f^{-1}: Y \to X$ 是同胚.
- $X \cong Y, Y \cong Z \Rightarrow X \cong Z$: 如果 $f: X \to Y$ 和 $q: Y \to Z$ 是同胚, 那么 $q \circ f: X \to Z$ 是 双射, 且我们知道 $q \circ f = (q \circ f)^{-1} = f^{-1} \circ q^{-1}$ 都连续, 从而同胚.

命题 2.6 (同胚与开/闭映射)

设 $f: X \to Y$ 是一个连续双射,则 f 是同胚当且仅当 f 是开映射或者闭映射.

证明 我们注意到 f^{-1} 是连续的当且仅当 f 是开映射或者闭映射.

 S^n 除去任意一点后同胚于 \mathbb{E}^n 设 S^n 为 n 维球面,由 \mathbb{E}^{n+1} 中到原点距离为 1 的点构成,并 采取子空间拓扑. 我们下断言:从 S^n 上扣掉一个单独的点所得到的空间同胚于 \mathbb{E}^n . 至于除去 哪一点是无所谓的,因为可以通过旋转归结于同样的情况,为了下面的叙述方便,我们不妨设除去的点为 $p = (0,0,\dots,0,1)$,而 \mathbb{E}^{n+1} 中最后一个坐标为 0 的所有点构成的子集,在子空间拓扑之上显然同胚于 \mathbb{E}^n . 我们按照下面方式定义**球极平面投影**

$$h \colon S^n - \{p\} \to \mathbb{E}^n$$

若 $x \in S^n - \{p\}$,则过 $x \ni p$ 的直线与 \mathbb{E}^n 的交点定义为 h(x),显然 h 是双射,且容易验证 $h \ni h^{-1}$ 的连续性,因此 h 是同胚.

定义 2.17 (圆盘)

圆盘是指同胚于 \mathbb{E}^2 内单位闭圆盘 D 的任何拓扑空间.

*

定义 2.18 (圆盘的边界)

若 A 为圆盘, $h: A \to D$ 为同胚, 则 $h^{-1}(C)$ 称为 A 的边界(其中 C 为单位圆周).

引理 2.1

圆盘边界到自身的任何同胚可以扩张成圆盘自身的同胚.

证明 设 A 为圆盘,C 为单位圆周,并选定同胚 $h: A \to D$,对于给定的同胚 $g: \partial A \to \partial A$,不难按照下述方式将 $hgh^{-1}: C \to C$ 扩张为整个 D 的自同胚:

- (1) 将 0 映为 0;
- (2) 对于 $x \in D \{0\}$, 将 x 映为点 $||x|| hgh^{-1}(\frac{x}{||x||})$.

即作辐式的扩张,把这个扩张叫做 f,则 $h^{-1}fh$ 是同胚 g 在整个 A 上的扩张.

引理 2.2

设A = B为沿着边界弧而相交的两个圆盘,则 $A \cup B$ 为圆盘.

证明 设 γ 为弧 $A \cap B$,用 α 与 β 来记 $A \in B$ 边界上除去 γ 后分别余下的部分.

图 2.3: 圆盘的并

利用上面的引理,按下述方式构造一个一个从 $A \cup B$ 到D的同胚. 平面上的y轴将D分割为两个圆盘 D_1 与 D_2 的并集.

按照上图右边将 D_1, D_2 的边界的三个弧记为 α', β', γ' .

其中 α 和 α' 都同胚于闭区间 [0,1], 因此, 有从 α 到 α' 的同胚. 先将这个同胚扩张到 γ 上, 给出从 $\alpha \cup \gamma$ 到 $\alpha' \cup \gamma'$ 的一个同胚(这非常容易做到).