离散数学第一次作业

林陈冉

2017年3月3日

1.2.4

Alice 和 {1}

1.2.9

 $\{0, 1, 3, 4, 5\}$

1.2.17

$$\begin{split} |A \cap B| + |A \cup B| \\ = |A \cap B| + |A \setminus (A \cap B)| + |B \setminus A \cap B| + |A \cap B| \\ = (|A \setminus (A \cap B)| + |A \cap B|) + (|B \setminus (A \cap B)| + |A \cap B|) \\ = |A| + |B| \end{split}$$

1.3.2

 2^{n-1}

1.3.3

设 |A|=n . 若 n 是奇数, 则 A 的任意一个子集 B , 其补集 B^c 的奇偶性和 B 相反, 故奇子集个数等于偶子集.

若 n 是偶数, 则可以认为 A 是由具有 n-1 个元素的集合 A' 添加了元素 α 所得 ($\alpha \notin A'$). A 的子集可以分为两类: 含 α 的和不含 α 的.

其中, 不含 α 的那一类就是 A' 的子集, 已经证明 A' 的奇子集等于偶子集. 含有 α 的那一类子集, 偶(奇)子集可以看作是 A' 的奇(偶)子集添加 α 所得, 则偶子集还是等于奇子集. 故 A 的偶子集等于集子集

1.5.2

 $5 \times 4 \times 3 = 60$

1.8.2

表 1: $\binom{n}{k}$ 对应表

$\binom{n}{k}$		n					
		0	1	2	3	4	5
k	0	1	1	1	1	1	1
	1		1	2	3	4	5
	2			1	3	6	10
	3				1	4	10
	4					1	5
	5						1

1.8.12

- (a) Ø
- (b) $\{n : n = 10 * k, k \in \mathbb{Z}\}$

1.8.13

$${a,c}, {b,c}, {a,d}, {b,d}, {a,e}, {b,e}, {a,b,c}, {a,b,d}, {a,b,e}$$

1.8.17

$$A \cup (B \cap C) = (A \cap B) \cup (A \cap C) = (A \cap B) \cup C$$

1.8.19

$$\begin{split} &((A \setminus B) \cup (B \setminus A)) \cap C = ((A \setminus B) \cap C) \cup ((B \setminus A) \cap C) \\ =&((A \cap C) \setminus (B \cap C)) \cup ((B \cap C) \setminus (A \cap C)) \\ =&(((A \cap C) \setminus (B \cap C)) \cup (B \cap C)) \setminus (((A \cap C) \setminus (B \cap C)) \cup (A \cap C)) \\ =&(((A \cap C) \cup (B \cap C)) \setminus (B \cap C)) \setminus ((A \cap C) \setminus ((B \cap C) \cup (A \cap C)) \\ =&((A \cap C) \cup (B \cap C)) \setminus (A \cap B \cap C) \end{split}$$

1.8.23

 $\forall n \in \mathbb{N}^+$, $\exists k \in \mathbb{N}$, s.t. $2^k \le n < 2^{k+1}$;

 $\Leftrightarrow n_k = n$, \mathbb{R} $a_k \in \mathbb{N}^+$, $a_k \leq 9$, s.t. $a_k 2^k \leq n_k < (a_k + 1)2^k$;

令 $n_{k-1} = n_k - a_k 2^k$, 同样的方法得到 a_{k-1} ;

重复上面步骤, 得到 a_{k-2}, \dots, a_0 ;

由此我们求出 $\{a_k,a_{k-1},\cdots,a_0\}$, s.t. $n=\sum_{m=0}^k a_m 2^m$, 这就是 n 的二进制表示, 其唯一性是显然的. 假设 $\{a_k,a_{k-1},\cdots,a_0\}$, $\{b_k,b_{k-1},\cdots,b_0\}$ 都是 n 的二进制表示, $\{a_k,a_{k-1},\cdots,a_0\}\neq\{b_k,b_{k-1},\cdots,b_0\}$, 则 $\sum_{m=0}^k a_m 2^m - \sum_{m=0}^k b_m 2^m \neq 0$, 而 n 不可能有两个不同值, 矛盾.

1.8.33

$$\binom{n-2}{k} + 2\binom{n-2}{k-1} + \binom{n-2}{k-2}$$

$$= \binom{n-2}{k} + \binom{n-2}{k-1} + \binom{n-2}{k-1} + \binom{n-2}{k-2}$$

$$= \binom{n-1}{k} + \binom{n-1}{k-1} = \binom{n}{k}$$

补充1

若 $b \notin \mathbb{N}$,整数解数目为0组; 反之,整数解数目为 $\frac{(b+n)!}{b!}$ 组;

补充2

若 $b \notin \mathbb{N}$ 或 b < n+1,整数解数目为0组; 反之,整数解数目为 $\frac{(b-1)!}{(b-n-1)!}$ 组;