Algorithms for Telecom

Project 1

Bárbara da Silva Oliveira

1. Give 2 examples of graphs of order a least 6 for which we have $z(G, \chi(G)) = 0$. That is one can find a coloring π using $k = \chi(G)$ colors and such that $B(G, \pi) = 0$. Recall that $\chi(G)$ is the minimum number of colors needed to color the vertices of G.

2. Give 2 examples of graphs of order a least 5 for which we have $z(G, \chi(G)) > 0$.

3. Write a ILP that, given a graph G = (V, E) and a number k of colors, finds z(G, k). That is, the ILP finds a coloring π of the vertices that uses k colors and such that $B(G, \pi)$ is minimized. You must ensure that the k colors are used.

4	What	Wl no	ud do	model	,			
	- Varia	les			16			
	·Xvc -	color	rue if	and	only if	ventex V	o ang	ed de
	· Yc -	ith	True if	and	nly if	at last	me von	ax is
	· mc-	the	D'Manala	alor	iontox.	arrigned to) one	color.
	. 15 -	the	differen	ice le	tween the	h max a	nd mis	me
	1	inne	B (G,41)	. We n	tanta	Valance	d celering
70	1	he mo	1	nolly	way p	oritle H	he graph	
	color and	the	nna	lest	set of	vertices a	righed	to color
	mir	0 13						
		maint,	10	specific	And	owny.	node i	n amaga
to			exacti	you	000	one sum	over	Il color
an	igned to	,	node	XVC	iol do			
	· W.	e noed	10	avoid	hat the	e same	A	asigned
10	two	ad in	ad hu	do. 1	iven a	Colo II am		0

at most one of them can have the color. So, we must be at most of them must be ture E, c EC xue + xve 41 We need to arwie that if any node is set for a color, ye is I so, if the ventex vis arisped to c, xvc s true and, if this happens, ye must be also true. We can get ye as an upper bound for every xvc, so it's not possible to xvc be true and ye de false. Trevice C XVC EYC set of various per solor and the minimum set of services per color. First, we take the rum of vendoes per teec, Exe = Me between all the maximum of the difference between the larger set of ventices pen color and the smallest set: tije C mj-mi & B of colors used must be K: E yc = K

5. Propose a method to find a coloring π such that B(G, π) \leq 2 and the number k of colors is minimized.

We modify the constraint used in guasdion 4, setting
We incolve the ILP with the chromatic number,
of all variables 4c, counting how many times this variable was true for assigning a color to at least one variable.
min & YC cec
The Uhl is then:
min Eyc
s.t. xuc+xvc = 1 +u, v EE
Exvc=1, tveV
XVC \(\frac{4}{2}\), \(\frac{4}{2}\) \(\frac{2}{2}\), \(\frac{4}{2}\) \(\frac{2}{2}\), \(\frac{4}{2}\) \(\frac{2}{2}\).
xvc € 10,19 yc € 60,19 mc 70