WO 2005/017148

PCT/US2003/041600

Fig. 3

SDS-PAGE Analysis of 2H7 scFvIgG1 (SSS-S)H WCH2 WCH3 Protein.

Fig. 4A

Complement Mediated B Cell Killing After Binding of CD20-targeted 2H7 scFvIgG1 (SSS-S)H WCH2 WCH3:

2H7scFv-Ig Concentration		RAMOS	\mathbf{BJ}	AB
	# live	cells/total cells	# liv	e cells/total cells
20 μg/ml + complement	_	0.16	: _	0.07
5 μg/ml + complement	_	0.2		N.D.
1.25 μg/ml + complement	: : : :	0.32		0.1
Complement alone	-	0.98	And a state a paracolaman as a second	0.94

^{*}Viability was determined by trypan blue exclusion and is tabulated as the fraction of viable cells out of the total number of cells counted.

Fig. 4B

Antibody-dependent cellular cytotoxicity (ADCC) mediated by 2H7scFv-IgG1 (SSS-S)H WCH2 WCH3:

^{**}N.D. (not determined).

Fig. 5

Effects of Crosslinking of CD20 and CD40 Cell Surface Receptors on B Cell Proliferation:

CPM INCORPORATED (counts per minute)

Fig. 6

Effect of Simultaneous ligation of CD20 and CD40 on CD95 and apoptosis.

Fig. 7A

2H7-CD154 L2 cDNA and predicted amino acid sequence:

NcoI 2H7 V_L Leader Peptide → HindIII M D F Q V Q I F S F L L I S A S AAGCTTGCCG CC ATGGATTT TCAAGTGCAG ATTTTCAGCT TCCTGCTAAT CAGTGCTTCA $2H7 V_L \rightarrow$ VIIARGQ I V L S Q S P AIL S A S GTCATAATTG CCAGAGGACA AATTGTTCTC TCCCAGTCTC CAGCAATCCT GTCTGCATCT 61 PGEKVTM TCR ASSS V SY 121 CCAGGGGAGA AGGTCACAAT GACTTGCAGG GCCAGCTCAA GTGTAAGTTA CATGCACTGG BamHI P G S S P K Y Q Q K PWIYAPS 181 TACCAGCAGA AGCCAGGATC CTCCCCCAAA CCCTGGATTT ATGCCCCATC CAACCTGGCT S G V P A R F S G S G S G T SYS 241 TCTGGAGTCC CTGCTCGCTT CAGTGGCAGT GGGTCTGGGA CCTCTTACTC TCTCACAATC SRVEAEDAAT Y Y C Q Q W S AGCAGAGTGG AGGCTGAAGA TGCTGCCACT TATTACTGCC AGCAGTGGAG TTTTAACCCA 301 (Gly₄Ser)₃ Linker → PTFGAGTKLE LKGGGGGGG 361 CCCACGTTCG GTGCTGGGAC CAAGCTGGAG CTGAAAGGTG GCGGTGGCTC GGGCGGTGGT $2H7 V_H \rightarrow$ G S G G G S S O A Y L Q Q S G A GGATCTGGAG GAGGTGGGAG CTCTCAGGCT TATCTACAGC AGTCTGGGGC TGAGCTGGTG 421 R P G A S V K M S C K A S G Y T F T S Y 481 AGGCCTGGGG CCTCAGTGAA GATGTCCTGC AAGGCTTCTG GCTACACATT TACCAGTTAC N M H W V K Q T P R QGLE WIG 541 AATATGCACT GGGTAAAGCA GACACCTAGA CAGGGCCTGG AATGGATTGG AGCTATTTAT P G N G D T S YNQKFKG K A T 601 CCAGGAAATG GTGATACTTC CTACAATCAG AAGTTCAAGG GCAAGGCCAC ACTGACTGTA D K S S STAYMQLSSL TSE DSA GACAAATCCT CCAGCACAGC CTACATGCAG CTCAGCAGCC TGACATCTGA AGACTCTGCG 661 A R V V Y Y S N S Y W Y F GTCTATTTCT GTGCAAGAGT GGTGTACTAT AGTAACTCTT ACTGGTACTT CGATGTCTGG 721

Fig. 7A (continued)

human CD154/amino acid 48→

													Bc1	/Ba	m h	ybr.	iđ	site		
	G	Т	G	Т	T	v	T	ν	S	D	P	R	R	L	D	K	I	E	D	E
781																		AGAA		
	R	N	L	Н	E	D	F	V	F	M	K	T	I	Q	R.	C	И	\mathbf{T}	G	E
841																		CACA		
	R	s	L	S	L	L	N	С	E	E	I	K	S	Q	F	\mathbf{E}	G	F	V	K
901																		CTTT		
																			B	clI
	D	I	M	L	N	K	E	E	${f T}$	K	K	\mathbf{E}	N	s	F	E	M	Q	ĸ	G
961	GAT	ATA	ATG	r TA	AAC.	AAA	GA	GGAG	ACG	AAG	AAA	GAA	AAC	A GO	TTT	GAA	ΑT	GCAA	AAA	GGT
	Bcl	I																		
	~~~																			
	D	Q	N	P	Q	I	A	Α	H	V	I	$\mathbf{s}$	E	A	S	S	K	${f T}$	${f T}$	S
L021	GAT	CAC	AAT	C CI	CAA	TTA	GC	GGC	ACAT	GTC	ATA	AGT	GAG	G C	CAGC	AGT	AA	AACA	ACA	TCT
	V	L	Q	W	A	E	K	G	Y	Y	T	M	S	N	$\mathbf{N}$	L	V	$\mathbf{T}$	L	E
1081	GTG	TTP	CAG'	r Go	3GCT	GAA	AA	AGG	ATAC	TAC	ACC	ATG	AGC	A A	CAAC	TTG	GT	AACC	CTG:	GAA
	N	G	K	Q	L	$\mathbf{T}$	V	K	R	Q	G	L	Y	Y	I	Y	A	Q	V	T
1141	raa	rggc	AAA	C A	GCTG	ACC	GT	TAA	AAGA	CAA	GGA	CTC	'TAT'	r A	TATC	TAT	'GC	CCAZ	4GTC	ACC
								III												
								~~~				_			_	_	_	_	_	
			S		R	E	A	S	S	Q	A	P	F	_ I.	A.		L	C		K
1201	TT(CTG	rtcc	A A'	rcge	GAA	\GC	TTC	GAGI	rcaa	GC?	rcca	ATTT.	A T.	AGCC	:AGC	CT	CTG	CTA	AAG
									_	_	_	_	_				~	~	_	
	ន		G		F	E	R	I	L	L	R	A	A	N -	' <u>l</u> ' 	H	S	S	A ~~~	K.
1261	TC	CCC	CGGT	'A G	ATTC	CGAG	GAG	AAT	CTTZ	ACTC	AG	AGC'I	l'GCA	A A	TACC	CAC	AG	TTC	النازر	:AAA
											_		_	_	_	_	_	~		~
	Þ	C	G	Q	Q	S	I	H	L	G	G	V	F'	E	L	Q	۲. ۲	G	A. maar	S
1321	CC'	TTG	CGGG	C A	ACA	YTC(TAC	TCA	CTT	3GGA	GG	AGTA	4,TTT.	G A	ATT(3CAA	7CC	AGG	1.GC.1	rrce
													**	_						
													Nco ~~~		•					
						_	_			_						~	177	m		יבו
	V	F	V	N	V	Т	_ L	,	. S	Q	V	כ מים	777	יכי כי	T	יט דיסמי	r	T	ב משמיי	ւ Դատո
1381	GT	GTT	TGTC	CA A	TGT	GAC'	ГGA	TCC	AAG	CCAA	GT	GAG	CCAI	· (iUAU.	TGG	1"1".	CAC	GTC	-T.T.T
					_,-•					5 - ~										
									X											
								. 4												
1441	G	L	L	K	L	E	ب م	* *	S	K.	77									
1441	G	GCT	TAC:	ГСА	AAC'	TCG.	AG'	G AT	AA T	C.T.A.	÷A.									

Fig. 7B.

2H7scFv-CD154 S4 cDNA and predicted amino acid sequence:

	HindIII NcoI ~~~~2H7 V _L Leader Peptide→
	M D F Q V Q I F S F L L I S A S
1	AAGCTTGCCG CC ATGGATTT TCAAGTGCAG ATTTTCAGCT TCCTGCTAAT CAGTGCTTCA
	2H7 V _L →
<i>c</i> a	V I I A R G Q I V L S Q S P A I L S A S GTCATAATTG CCAGAGGACA AATTGTTCTC TCCCAGTCTC CAGCAATCCT GTCTGCATCT
61	GTCATAATTG CCAGAGGACA AATTGTTCTC TCCCAGTCTC CAGCAATCCT GTCTGCATCT
	PGEKVTMTCRASSSVSYMHW
121	CCAGGGGAGA AGGTCACAAT GACTTGCAGG GCCAGCTCAA GTGTAAGTTA CATGCACTGG
	BamHI
	Y Q Q K P G S S P K P W I Y A P S N L A
181	TACCAGCAGA AGCCAGGATC CTCCCCCAAA CCCTGGATTT ATGCCCCCATC CAACCTGGCT
	S G V P A R F S G S G S G T S Y S L T I
241	TCTGGAGTCC CTGCTCGCTT CAGTGGCAGT GGGTCTGGGA CCTCTTACTC TCTCACAATC
	S R V E A E D A A T Y Y C Q Q W S F N P
301	AGCAGAGTGG AGGCTGAAGA TGCTGCCACT TATTACTGCC AGCAGTGGAG TTTTAACCCA
	(Gly ₄ Ser) ₃ Linker →
2.55	P T F G A G T K L E L K G G G G G G CCCACGTTCG GTGCTGGAACGTGGAC CTGAAAGGTG GCGGTGGCTC GGGCGGTGGT
361	CCCACGTTCG GTGCTGGGAC CAAGCTGGAG CIGAAAGGIG GCGGIGGCIC GGGCGGIGGI
	2H7 V _H →
421	G S G G G S S Q A Y L Q Q S G A E L V GGATCTGGAG GAGGTGGGAG CTCTCAGGCT TATCTACAGC AGTCTGGGGC.TGAGCTGGTG
421	GGATCIGGAG GAGGIGGGAG CICICAGGCI INICINENCO NGIGIGGGGG, IGNOCIGE
	R P G A S V K M S C K A S G Y T F T S Y AGGCCTGGGG CCTCAGTGAA GATGTCCTGC AAGGCTTCTG GCTACACATT TACCAGTTAC
481	
	NMHWVKQTPRQGLEWIGAIY
541	AATATGCACT GGGTAAAGCA GACACCTAGA CAGGGCCTGG AATGGATTGG AGCTATTTAT
	P G N G D T S Y N Q K F K G K A T L T V
601	CCAGGAAATG GTGATACTTC CTACAATCAG AAGTTCAAGG GCAAGGCCAC ACTGACTGTA
	D K S S S T A Y M Q L S S L T S E D S A
661	GACAAATCCT CCAGCACAGC CTACATGCAG CTCAGCAGCC TGACATCTGA AGACTCTGCG
	V Y F C A R V V Y Y S N S Y W Y F D V W
721	GTCTATTTCT GTGCAAGAGT GGTGTACTAT AGTAACTCTT ACTGGTACTT CGATGTCTGG

Fig. 7B

human CD154/amino acid 108 →

	Bcl/Bam hybrid site					
781	Bcli G T G T T V T V S D P E N S F E M Q K G GGCACAGGGA CCACGGTCAC CGTCTC <i>TGAT CC</i> AGAAAACA GCTTTGAAAT GCAAAAAGGT					
	BclI					
841	D Q N P Q I A A H V I S E A S S K T T S GATCAGAATC CTCAAATTGC GGCACATGTC ATAAGTGAGG CCAGCAGTAA AACAACATCT					
901	V L Q W A E K G Y Y T M S N N L V T L E GTGTTACAGT GGGCTGAAAA AGGATACTAC ACCATGAGCA ACAACTTGGT AACCCTGGAA					
961	N G K Q L T V K R Q G L Y Y I Y A Q V T AATGGGAAAC AGCTGACCGT TAAAAGACAA GGACTCTATT ATATCTATGC CCAAGTCACC					
	HindIII					
1021	F C S N R E A S S Q A P F I A S L C L K TTCTGTTCCA ATCGGGAAGC TTCGAGTCAA GCTCCATTTA TAGCCAGCCT CTGCCTAAAG					
1081	S P G R F E R I L L R A A N T H S S A K TCCCCCGGTA GATTCGAGAG AATCTTACTC AGAGCTGCAA ATACCCACAG TTCCGCCAAA					
1141	P C G Q Q S I H L G G V F E L Q P G A S CCTTGCGGGC AACAATCCAT TCACTTGGGA GGAGTATTTG AATTGCAACC AGGTGCTTCG					
	NcoI					
1201	V F V N V T D P S Q V S H G T G F T S F GTGTTTGTCA ATGTGACTGA TCCAAGCCAA GTGAGCCATG GCACTGGCTT CACGTCCTTT					
	XhoI XbaI					
1261	G L L K L E * * S R GGCTTACTCA AACTCGAGTG ATAATCTAGA					

Fig. 8
Simultaneous Binding of 2H7scFv-CD154
Fusion Proteins to CD20 and CD40

CD20 CHO cell targets + (control or fusion protein) + Biotin-CD40Ig + PE-SA

Fig. 9

Induction of Apoptosis Measured by Binding of Annexin V after incubation with 2H7scFv-CD154

Fig. 10

Proliferation of T51 B Cell Line After Incubation with 2H7 scFv-CD154 S4 or 2H7 scFv-CD154 L2 Constructs

Fusion Protein

Fig. 11
Schematic Representation of 2H7 scFvIg Constructs

Fig. 12

Figure 12: SDS-PAGE Analysis of CytoxB Derivatives. Purified fusion protein derivatives of CytoxB-scFvIg molecules and Rituximab were resuspended SDS sample buffer, boiled, loaded onto 10% Novex Tris-Bis gels (Invitrogen, San Diego, CA) and subjected to nonreducing (left panel) or reducing (right panel) SDS-PAGE electrophoresis at 175 volts. Two different molecular weight markers, BioRad prestained markers, and Novex Multimark molecular weight markers were also loaded onto each gel and the approximate size in kDa of each marker band is indicated along each side of the photographed gels. Gels were stained in Coomassie Blue stain and photographed with a SONY Mavica Digital camera. The mutant hinge forms of 2H7 scFvIgGI migrate at approximately 70 kDa under both nonreducing and reducing conditions, indicating that these molecules are monomeric rather than dimeric in structure. The IgA hinge form of 2H7scFvIg migrates at approximately 75 kDa under reducing conditions, but migrates predominately as a dimer of 140 kDa with a fraction of the protein migrating at 75 kDa under nonreducing conditions. Under nonreducing conditions, rituximab migrates as a diffuse band of between 150 and 200 kDa. The heavy and light chains resolve into separate bands of approximately 32 and 50 kDa when rituximab is reduced and subjected to SDS-PAGE.

Fig. 13

ADCC Activity of CytoxB (2H7 scFvIg) Constructs.

Figure 13: ADCC Activity of CytoxB Derivatives Compared to Rituximab. ADCC activity of CytoxB Derivatives or Rituximab was measured *in vitro* against BJAB B lymphoma cell line as target and using fresh human PBMC as effector cells. Effector to target ratios were varied as follows: 70:1, 35:1, and 18:1, with the number of BJAB cells per well remaining constant but varying the number of PBMC. Bjab cells were labeled for 2 hours with ⁵¹Cr and aliquoted at a cell density of 5x10⁴ cells/well to each well of flatbottom 96 well plates. Purified fusion proteins or rituximab were added at a concentration of 10 mg/ml, and PBMC were added at 9x10⁵ cells/well (18:1), 1.8x10⁶ cells/well (35:1), or 3.6x10⁶ cells/well (70:1), in a final volume of 200 μl. Spontaneous release was measured without addition of PBMC or fusion protein, and maximal release was measured by the addition of detergent (1% NP-40) to the appropriate wells. Reactions were incubated for 4 hours, and 100 ml culture supernatant harvested to a Lumaplate (Packard Instruments) and allowed to dry overnight prior to counting cpm released on a Packard Top Count NXT Microplate Scintillation Counter.

Fig. 14

CDC of Cytox B (2H7 scFvIg) Constructs

Figure 14: Complement Dependent Cytoxicity (CDC) Activity of CytoxB Derivatives Compared to Rituximab. 2H7 scFvIgG1 (SSS-S)H WCH2 WCH3, 2H7 scFvIgG1 (SSS-S)H WCH2 WCH3, and 2H7scFv IgA WH IgG1 WCH2 WCH3 derivatives and Rituximab were compared for their ability to mediate complement dependent cytoxicity. Rabbit complement (Pel-Freez) was diluted 1:10 and added to BJAB cells along with dilutions of each antibody derivative (20 μ g/ml, 10 μ g/ml, and 5 μ g/ml). Controls were also included without addition of complement (C') or scFv derivative. Reactions were allowed to continue for 1 hour, and cells from each well were then stained with trypan blue and the cell viability counted using a hemacytometer. Data is graphed as % of dead cells/total cells counted for each condition assayed.

Fig. 15

2H7 (anti-CD20) scFv IgG1 (SSS-S)H WCH2 WCH3
In Vivo Half Life

Macaque A99314

	Day	Binding intensity (LFE) @1:50 dilution of serum	estimated concentration (µg/ml)
Injection_#1	-7	0.213	<0.1
	0	0.227	<0.1
	1	7.79	25.1
	3	5.51	15.6
Injection #2	7	3.37	9.4
	8	11.33	41.7
	10	5.45	15.4
	14	0.27	<0.1

Macaque F98081

	Day	Binding intensity (LFE) @ 1:50 dilution of serum	estimated concentration (µg/ml)
Injection #1 Injection #2	-7 0 1 3 7 8 10	0.208 0.219 6.73 6.14 3.04 9.83 4.77 0.231	<0.1 <0.1 21.9 19.3 8.7 33.8 14.4 <0.1

Fig. 16

B Cell Depletion in macaques mediated by Cytox B20 (2H7 scFv IgG1 (SSS-S)H WCH2 WCH3) Construct

- CytoxB20 injections of 6mg/kg yields 3 week B-cell depletion
- 3-4 day half-life in vivo
- CD20 saturation in lymph node B-cells at d14
- No first dose effects
- No anti-chimeric antibody development

Fig. 17

Production Levels of HD37 scFvIg Constructs by CHO Cell Lines

Clone/Isolate	Mean LFE a	t 1:100	Estimated Concentration
Bulk HD37 scFv			
IgA WH IgG1 WCH2 \	NCH3	11.2	> 60 ug/ml
1B2	-	10.4	>50 ug/ml
6C5	•	10.5	>50 ug/ml
4B1		8.6	>40 ug/ml
Bulk HD37 scFv			
IgG1 (SSS-S)H WCH	2 WCH3	10.9	> 50 ug/ml
2G8		10.6	> 50 ug/ml
3F3		8.3	>40 ug/ml
3D9		11.1	> 60 ug/ml

Fig. 18

Production of L6 scFvIg constructs by CHO Cells

Construct	Mean LFE 1:20	Estimated Concentration
L6scFv IgA WH IgG1 WCH2 WCH3 unamplified CHO sup	51.1	6.25 ug/ml
L6scFv IgG1(SSS-S)H WCH2 WCH3 unamplified CHO sup	23.0	3.2 ug/ml

Fig. 19

ADCC Activity of 2H7 scFvIg, G28-1 scFvIg, and HD37 scFvIg Constructs

ADCC Activity of scFvs Targeted to B Cell Antigens

B. G28-1 (anti-CD37) scFv constructs

Fig. 20

ADCC Activity of L6 scFvIg Constructs

ADCC Activity of L6scFvlg Constructs with 2981 Targets

SDS-PAGE Analysis of L6 and 2H7 scFvIg Fusion Proteins.

Fig. 21

Fig. 22

SDS-PAGE Analysis of G28-1 and HD37
scFvlg Constructs.

WO 2005/017148

PCT/US2003/041600

Fig. 23

Sequence alignment of human and llama Fc regions.

HINGE

$CH2 \rightarrow$

			l
an	IgG1:	DQEPKSCDKTHTCPPC DQEPKTPKPQPQPQPQPNPTTESKCPKC	P.
ma	IgG2:	DQEPKTPKPQPQPQPQPNPTTESKCPKC	P.
ma	IgG1:	EPHGGCTCPQC	P.
ma	IgG3:	AHHSEDPTSKCPKC	P

PAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDG PAPELLGGPSVFIFPPKPKDVLSISGRPEVTCVVVDVGQEDPEVSFNWYIDG PAPELPGGPSVFVFPPKPKDVLSISGRPEVTCVVVDVGKEDPEVNFNWYIDG PGPELLGGPTVFIFPPKAKDVLSITRKPEVTCLWWTWVKKTLRSSSSWSVDD

VEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLT TAEVRANTRPKEEQFNSTYRVVSVLPIQHQDWLTGKEFKCKVNNKALPAPIEKTISKAKGQTREPQVYTLAPHREELAKDTVSVT VEVRTANTKPKEEQFNSTYRVVSVLPIQHQDWLTGKEFKCKVNNKALPAPIERTISKAKGQTREPQVYTLAPHREELAKDTVSVT TEVHTAETKPKEEQFNSTYRVVSVLPIQHQDWLTGKEFKCKVNNKALPAPIERTISKAKGQTREPQVYTLAPHREELAKDTVSVT

CLVKGFYPSDIAVEWESNGQPEN—NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK CLVKGFYPPDINVEWQRNGQPESXGTYATTPPQLDNDGTYFLXSKXSVGKNTWQQGETFTCVVMHEALHNHYTQKSITQSSGK CLVKGFYPADINVEWQRNGQPESEGTYANTPPQLDNDGTYFLYSRLSVGKNTWQRGETLTGVVMHEALHNHYTQKSITQSSGK CLVKGFFPADINVEWQRNGQPESEGTYANTPPQLDNDGTYFLYSKLSVGKNTWQQGEVFTCVVMHEALHNHSTQKSITQSSGK WO 2005/017148

PCT/US2003/041600

Fig. 24

Fig. 25

PCT/US2003/041600

http://www.patentions.net/

WO 2005/017148

Fig. 26

2H7 scFvIg Llama Tails binding Assay with CD20 CHO Cells

http://www.patentions.net/

Fig. 27

Fig. 28

ADCC Assay with BJAB Cells And Llama PBMC Effectors

WO 2005/017148

PCT/US2003/041600

Fig. 29

http://www.patentions.net/

Fig. 30

Fig. 31

Ig Constructs and Nomenclature:

Name Identifier	Hinge Sequence	CH2 Sequence	CH3 Sequence
hIgG1 (CCC-P)H WCH2 WCH3	IgG1 WT Hinge (CCC-P)	Wild Type CH2	Wild Type CH3
hIgG1 (SSS-S)H WCH2 WCH3	IgG1 Mutant Hinge (SSS-S)	Wild type CH2 (IgG1)	Wild type CH3 (IgG1)
VH L11S hIgG1 (SSS-S)H WCH2 WCH3	IgG1 Mutant Hinge (SSS-S)	Wild type CH2 (IgG1)	Wild type CH3 (IgG1)
IgG1 (SSC-S)H WCH2 WCH3	IgG1 Mutant Hinge (SSC-S)	Wild type CH2 (IgG1)	Wild type CH3 (IgG1)
IgG1 (SCS-S)H WCH2 WCH3	IgG1 Mutant Hinge (SCS-S)	Wild type CH2 (IgG1)	Wild type CH3 (IgG1)
IgG1 (CSS-S)H WCH2 WCH3	IgG1 Mutant Hinge (CSS-S)	Wild type CH2 (IgG1)	Wild type CH3 (IgG1)
IgG1 (SSS-S)H P238S CH2 WCH3	IgG1 Mutant Hinge (SSS-S)	Mutant CH2 (IgG1) Pro→Ser 238	Wild type CH3 (IgG1)
IgA WH hIgG1 WCH2 WCH3	IgA Hinge	Wild type CH2 (IgG1)	Wild type CH3 (IgG1)
IgA WH IgA WCH2 WCH3	IgA Hinge	Wild type CH2 (IgA)	Wild type CH3 (IgA)
IgA WH IgA WCH2 T4CH3	IgA Hinge	Wild type CH2 (IgA)	Truncated CH3 (IgA) Missing 4 aa at COOH

Fig. 32

Fig. 33

PCT/US2003/041600

http://www.patentions.net/

WO 2005/017148

Fig. 34

Binding of 2H7 scFvIg Constructs with Alternative Tails to CD20 CHO Cells

Fig. 35

Immunoblot Analysis of protein immunoprecipitates from COS transfections of 2H7 scFvIg Constructs

Fig. 36

Binding to CD20 CHO cells by constructs that link anti-CD20 scFv to IgA Fc Domains

Fig. 37

Titration of CD20 specific scFvIg Constructs for ADCC Activity Using Whole Blood Effectors

Fig. 38

ADCC Assay of anti-CD20 constructs with alternative tails (Whole Blood Effectors / BJAB Targets

http://www.patentions.net/

WO 2005/017148 PCT/US2003/041600

Fig. 39

ADCC Assay of Anti-CD20 scFvIg Constructs Using Different Effector Populations Against BJAB Targets

Fig. 40

Immunoblot of 2H7 scFv Ig constructs from COS Transfections (1 µl/well) compared to a Concentration Standard

Figures 41A, 41B and 41C

Fig. 42

Fig. 43

Mixtures of K1735-WT and K1735-1D8 transfected tumor lines inhibit tumor outgrowth in C3H mice

Fig. 44

Expression of anti-mouse CD137 (1D8) scFv-hIgG1 (SSS-S)H P238SCH2 WCH3
On the surface of panned Ag104-1D8 Transfected Tumor Cells

Brightness

Fig. 45

Coomassie Stained SDS-PAGE Gel of 2H7 scFv Ig

Bio-Rad Prestained MW Standards (kDa)
2H7 scFv hlgG1 (SSS-S)H P238S CH2 WCH3
2H7 scFv hlgA WH lgG1 WCH2 WCH3
2H7 scFv/40.2.220 (anti-CD20/anti-CD40) scFv blgG1 (SSS-S)H P238SCH2 WCH3
Rituximab
Noves Multimark
MW Standards (kDa)

Fig. 46

ADCC mediated by 2H7 scFvIg Constructs by human PBMC effector cells against Bjab targets

- * 2H7 scFv hlgG1(SSS-S)H P238SCH2 WCH3
- 2H7 scFv hlgA WH lgG1 WCH2 WCH3
- 2H7 scFv hlgG1 (SSS-S)H WCH2 WCH3
- RITUXIMAB
- * CELLS ALONE (W/O AB)

Fig. 47

Cell surface expression of anti-human CD3 G19-4 scFv hIgG1 (SSS-S)H P238SCH2 WCH3-hCD80TM/CT on Reh and T51 Cells.
Reh anti-CD3 (G19-4) scFv hIgG1 (SSS-S)H P238SCH2 WCH3-hCD80TM/CT

T51 G19-4 scFv hlgG1 (SSS-S)H P238SCH2 WCH3-hCD80TM/CT:

PCT/US2003/041600

http://www.patentions.net/

WO 2005/017148

Figure 48.

Targeting of Cytotoxicity to Transfected Cell Lines by Surface expression of CD3 scFvIg

Cytotoxic activity of resting PBMC towards transfected Reh cells

Cytotoxic activity of resting PBMC towards transfected T51 lymphoblastoid cells

Fig. 49

Binding of 5B9, a mouse anti-human CD137 scFv hIgG1 (SSS-S)H WCH2WCH3 to stimulated human PBMC

Fig. 50

Effect of V_HL11S Mutation on CytoxB20 2H7 scFv hlgG1 (SSS-S)H WCH2 WCH3 Protein Expression

50A. Standard Curve: 2H7VH-L11S-IgG1 (SSS-S)H WCH2 WCH3

50B. CHO supernatant Brightness and Estimation of Protein concentrations from Standard Curve:

	CHO clone name					
	4F2	4F5	3E5	6B11A	2B8A	
Mean LFE						
1/100	71.7	40.6	31.5	99.7	101.5	
1/500	27.1	12.4	11.2	40.8	43	
approx conc. μg/ml	600	225	125	1000	1250	

WO 2005/017148

PCT/US2003/041600

Supernatant from

Fig. 51

Production Levels of 2H7scFv VH L11S hIgG1 (SSS-S)H WCH2 WCH3 From CHO Clone Culture Supernatants

Standard Curve

purified2H7scFv

Fig. 52

Effect of VHL11S Mutation on G28-1 scFvIg Construct Protein Production from COS cells

= < 100

WO 2005/017148

PCT/US2003/041600

Fig. 53

Immunoblot of G28-1 scFvIg Constructs

Increased Protein Levels in COS supernatants transfected with G28-1scFv hlgG1 (SSS-S)H WCH2 WCH3
After Substitution of Leucine with Serine at position 11 of VH (VHL11S)

Fig. 53A.

Purified G28-1 (11/6/01) scFv lgG1 (SSS-S)H WCH2 WCH3 G28-1 scFv hlgG1 (SSS-S)H WCH2 WCH3 1 ul/well

800,0 400,0 100,0 100,0 100,0

Fig. 53B.

Purified G28-1 G28-1VHL11S (11/6/01) scFv hlgG1 (SSS-S)H scFv hlgG1(SSS-S)H WCH2 WCH3 WCH2 WCH3 1 ul/well

80ng 40ng 20ng 10ng **v b c d e**

Fig. 54

Binding of 2H7 scFvIg Constructs with Altered Hinges and CH3 domains to CD20 CHO Cells

Fig. 55

ADCC Activity of 2H7 scFvlg constructs Against BJAB Targets and PBMC Effectors

Fig. 56

Complement Activity of 2H7 scFvIg Constructs With Ramos Target Cells

Fig. 57

Binding of 2H7 scFvIg Derivatives to CD20CHO Cells

- A. No fusion protein
- B. 🚆 2H7 scFv hlgE CH2CH3CH4
- C. 📓 2H7 scFv hlgA WH WCH2 WCH3
- D. 2H7 scFv hlgG1 (SSS-S)H WCH2 WCH3

FITC anti-hlgA

FITC anti-hlgE

PCT/US2003/041600

WO 2005/017148

http://www.patentions.net/

Fig. 58

Fig. 58A. 2H7 scFv VH L11S human IgE (WCH2 WCH3 WCH4)
Binding to CD20 CHO at 30 ug/ml

Fig. 58B. ADCC Activity of 2H7 VHL11S IgE (WCH2 WCH3 WCH4) Protein Fractions with **PBMC** Effectors and Bjab Targets

Fig. 59

Binding Data for COS derived α-CD20 (2H7) scFv VHL11S mIg E (WCH2 WCH3 WCH4) and mIgA (WH WCH2 WCH3)Tailed Molecules

Fig. 60

PCT/US2003/041600

http://www.patentions.net/

WO 2005/017148

Fig. 61

Fig. 62

http://www.patentions.net/

WO 2005/017148 PCT/US2003/041600

Fig. 63

Binding of Purified Proteins from COS Supernatants to CD20 CHO cells: Differential Effects of CH3 Mutations on Binding

0.01

0.1

WO 2005/017148 PCT/US2003/041600

Fig. 64

Concentration (ug/mL)

-▲- 2H7 scFv VH L11S hlgG1 (CSC-S)H WCH2 WCH3

-×- 2H7 scFv VH L11S hlgG1(CSS-S)H WCH2 WCH3

10

100

Fig. 65

Nonreducing SDS-PAGE on Protein A-Purified Lots of 2H7 scFv VHL11S hlg Constructs (10 ug/lane)

Fig. 66

Alterations in Human IgG Fc sequence that differentially change effector function efficiency

Figure 67.

Fig. 68

CD16(ED) hIgG1(SSS-S)H P238S CH2 WCH3 high and low affinity alleles expressed as soluble molecules

Fig. 69

Binding of soluble CD16-FITC high and low affinity fusion proteins to 2H7 scFv VHL11S hlgG1 (CSC-S)H WCH2WCH3 or (SSS-S)H (P238S)CH2WCH3 on CD20CHO Targets

Fig. 70

Binding of FITC Labeled, Recombinant Human CD16(ED) extracellular domain -Ig Fusion Protein to CytoxB Derivatives on CD20 CHO Cells

Expression of surface displayed SMIPs links modified cDNAs with the altered fusion proteins

Fig. 71

CD37 mAbs and scFvIg Induce Apoptosis

scFvIg	Bjab Staining	Annexin V Positive	
	No scFvlg	17.5	
	2H7 MH	27	
	G28-1 MH	30.6	
	G28-1 IgAH	28.9	
	HD37 MH	29.1	
	(2H7+G28-1)MH	41	
	(2H7+HD37) MH .	37.1	a the first of the season per) received in the sept with the september of
	(G28-1+HD37) MH	35.3	are without the second second of the first the second second second second second second second second second
		and the state of t	
mAbs			
			plus GAM
	Ramos	AnnexinV Positive	AnnexinV positive
	cells alone	3	3.3
	2H7 Mab	1.4	3.1
	G28-1 Mab	18.3	8.7
	HD37 Mab	3.7	3.1
	G28-5	3.9	8.3
	2H7+G28-1	32.3	35.7
	2H7+HD37	5	10.5
	2H7+G28-5	5.7	19.4
	HD37+G28-1	26.9	50
	HD37+G28-5	8.2	18.4
	G28-1+G28-5	39.5	68.3

WO 2005/017148

http://www.patentions.net/

PCT/US2003/041600

76/88

Treatment

cells and only one reagent were also included. of 100 microliters for sixty minutes. Aliquots were stained with trypan blue (Invitrogen), and counted using a Figure 76: CDC Activity of CytoxB20G SMIPS. CytoxB20G, CytoxB20GP238, or Rturximab were incubated at hemacytometer to determine the percentage of the cell population killed during treatment. Negative controls with increasing concentrations with 104 Bjab Target Cells and a 1:10 dilution of rabbit complement (PelFreez) in a volume

ADCC Activity of CytoxB20G SMIPS

WO 2005/017148

% Specific Killing 100 40 0 0 25 Effector:Target Ratio 75 100 —— Natural Killing CytoxB20G **→** RITUXIMAB CytoxB20G P238S Fig. 74

dry overnight prior to counting cpm released on a Packard Top Count NXT Microplate Scintillation Counter. omission of SMIP or MAb. Spontaneous release was measured without addition of PBMC or fusion protein, and concentration of 10 μ g/ml, and PBMC were added at 1.25 x 10⁶ cells/well (25:1), 2.5 x 10⁶ cells/well (50:1), or 5 x cells/well to each well of flat-bottom 96 well plates. Purified fusion proteins or rituximab were added at a incubated for 5 hours, and 100 μl culture supernatant harvested to a Lumaplate (Packard Instruments) and allowed to maximal release was measured by the addition of detergent (1% NP-40) to the appropriate wells. 106 cells/well (100:1), in a final volume of 200 μl. Natural Killing was measured at each effector:target ratio by varying the number of PBMC. Bjab cells were labeled for 2 hours with ⁵¹Cr and aliquoted at a cell density of 5x10⁴ ratios were varied as follows: 100:1, 50:1, and 25:1, with the number of BJAB cells per well remaining constant but vitro against BJAB B lymphoma cell line as target and using fresh human PBMC as effector cells. Effector to target Figure 77: ADCC Activity of CytoxB20G SMIPS. ADCC activity of CytoxB20G or Rituximab was measured in Reactions were

Binding of soluble FITC-CD16 to CytoxB20G on CD20 CHO

washed in PBS/2% FBS and incubated with serial dilutions of 0.5 mg/ml FITC-CD16 for one hour on ice. Cells analyzed using Expo analysis software and normalized fluorescence units graphed as a function of concentration. washed and specific binding measured by flow cytometry using a Beckman-Coulter Epics C machine. Results 1 saturating amounts of CytoxB20G or CytoxB20G P238S(10 ug/ml) for one hour on ice in PBS/2% FBS. Cells re 78: Binding of soluble FITC-CD16 to CytoxB20G on CD20 CHO cells. CD20 CHO cells (106) were incubated

http://www.patentiens.net/

WO 2005/017148 PCT/US2003/041600

CytoxB20G and CytoxB20G P238S SMIPS bind to U937 Cells Expressing FcyRl High Affinity FcR

yzed using Expo analysis software, and fluorescence intensity graphed as a function of SMIP concentration. washed and incubated for one hour on ice with FITC-goat anti-human IgG1 (Fc specific) (Caltag) at a final dilution re 79: CytoxB20G SMIPs bind similarly to U937 cells expressing the high affinity FcR (FcγRI, CD64). U937 cells 100. Cells were washed and fluorescence analysed on a Beckman-Coulter EpicsC flow cytometer. Data was expressing CD64 were incubated in PBS/2%FBS for one hour on ice with CytoxB20G orCytoxB20G P238S. Cells

W

WO 2005/017148

PCT/US2003/041600

er over time relative to the initial pre-injection time point level of B cells (maximum). tions. Data are plotted as the number of CD40 positive blood B cells tabulated in thousands of cells per FITC or PE conjugates of antibodies against CD40, CD19,CD20, IgG, CD3, CD8 were used in various n was estimated by performing CBC (complete blood counts) and two color flow cytometry analysis on monkey heral blood. Blood samples were drawn from injected animals at days -7,0,1,3,7,8,10,14, 28, and 43. B cell sions given one week apart. The effect on circulating B cells was measured by detection of CD40 positive B cells ĕ CytoxB20G or CytoxB20G P238S were administered to macaques by intravenous injection at 6 mg/kg, with

Figure 81: SEC on CytoxB37G SMIPs containing SSS and SSC hinge Domains from Human IgG1

size 5 µm. The flow rate was 1ml/min, in PBS, pH 7.2 running buffer. Migration rates of indicated in blue, while the CytoxB37G (CSS)H is indicated in red. molecular weight standards are indicated below the tracing. The CytoxB37G (SSS)H SMIP μg were subjected to HPLC over a Tosoh Biosep, Inc. TSK 3000 SWXL HPLC column, por CHO culture supernatants by Protein A affinity chromatography. Purified aliquots of 10-25 Figure 81: SEC (Size Exclusion Chromatography) CytoxB37G SMIPs were purified from

gure 82: Binding of CytoxB37G SMIPs to B Cell Lymphoma Cell Lines

lyzed by flow cytometry using a FACsCalibur (Becton-Dickinson) and FITC goat anti-human IgG F(ab')2 (CalTag) at 1:100 each, on ice for 45 minutes. Samples were washed and

PCT/US2003/041600

103

104

PI 10²

Media only

Figure 84: Thymidine Incorporation (Growth Inhibition) in Ramos cells after a 48 Hour Incubation with anti-CD37 SMIPS

rporated versus protein concentration. Each SMIP show increasing inhibition of proliferation with nting on a TopCount NXT microplate (Packard) scintillation counter. Data are plotted as cpm g a Packard harvester, dried, and 25 µl Microscint scintillation fluid added to each well prior to 12 hours of a 48 hour incubation (0.75 μCi/well). Cells were harvested onto 96-well GFC plates ie culture dishes (Costar) at 37°C, 5%CO₂ for 36 hours prior to pulsing with ³H-thymidine for the er the IgG1 hinge identified as (SSS)H or (SSC)H. Cultures were incubated in 96 well flat bottom re 84: Ramos B cells were incubated with serial dilutions of purified CD37G SMIPS containing easing protein concentration.

ure 85: The Induction of Apoptosis in Ramos B-cells after a 20 hour incubation with different combinations of CD20 and CD37 targeted SMIPS

percentage of annexin V positive cells identified by their staining in the right quadrants gure 85: Ramos B cells were incubated with CD20 and/or CD37 targeted SMIPs (10 the dot plots w cytometry using a FACsCalibur flow cytometer (Becton-Dickinson). The graph show nexinV and propidium iodide using a staining kit from Immunotech prior to two color /ml) in solution for 20 hours. Cells were then harvested, washed, and incubated in

the cell population killed during treatment. Negative controls with cells and only one reagent were also stained with trypan blue (Invitrogen), and counted using a hemacytometer to determine the percentage of a 1:10 dilution of rabbit complement (PelFreez) in a volume of 150 µl for 90 minutes. Aliquots were Figure 86: CDC Activity of CytoxB37G SMIPS. CytoxB20G, CytoxB37 (SSS)H G, CytoxB37 (SCS)H, included. CytoxB37 (CSS)H, or CytoxB37 (SSC)H were incubated at 10 µg/ml with 10⁴ Ramos Target Cells and

PCT/US2003/041600

INTERNATIONAL SEARCH REPORT International application No. PCT/US03/41600 CLASSIFICATION OF SUBJECT MATTER IPC(7) C12N 15/00; A61K 39/395; C07K 16/00 US CL 530/387.3, 388.85, 391.3; 424/130.1; 536/23.4; 435/320.1, 69.6 According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) U.S.: 530/387.3, 388.85, 391.3; 424/130.1; 536/23.4; 435/320.1, 69.6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Continuation Sheet DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category * Relevant to claim No. HAYDEN et al. Single-chain mono- and bispecific antibody derivatives with novel Y 1-7, 20-28, 31-40, 53biological properties and antitumor activity from COS cell transient expression system. 57, 59, 62-63, 65-75, Therapeutic Immunology. 1994, Vol. 94, pages 3-15, especially Figure 1, Methods. 116-119, 129-137, 140-150, 161-169, 171-181, 238, 240-243, 251-259, 261-267, 282-285, 287-295, 399-411 Y US 6,147,203 A (PASTAN et al.) 14 November 200 (14.11.2000), see entire document, 1-7, 20-28, 31-40, 53especially abstract, column5-6. 57, 59, 62-63, 65-75, 116-119, 129-137, 140-150, 161-169, 171-181, 238, 240-243, 251-259, 261-267, 282-285, 287-295, 399-411 Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the document defining the general state of the art which is not considered to be principle or theory underlying the invention of particular relevance "X" document of particular relevance; the claimed invention cannot be "E" earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art document published prior to the international filing date but later than the document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 29 October 2004 (29.10.2004) Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US Commissioner for Patents P.O. Box 1450 Telephone No. Alexandria, Virginia 22313-1450

Form PCT/ISA/210 (second sheet) (July 1998)

Facsimile No. (703) 305-3230

INTERNATIONAL SEARCH REPORT

PCT/US03/41600

tegory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	US 6,074,644 A (PASTAN et al.) 13 June 2000 (13.06.2000), see entire document, especially column 20.	26, 28, 32, 135, 13 142, 257, 259, 26
Y	US 5,677,425 A (BODMER et al.) 14 October 1997 (14.10.1997), see entire document, especially abstract, column 3-4.	65-75, 116, 172-18 288-295
Y	US 6,482,919 B2 (LEDBETTER et al.) 19 November 2002 (19.11.2002), see entire document.	180
•		
	•	

INTERNATIONAL SEARCH REPORT	PCT/US03/41600
	v
Continuation of B. FIELDS SEARCHED Item 3: CAPLUS, MEDLINE, WEST, BIOSIS Search terms: inventor name, scfv, hinge, cysteine, fusion protein, CD19, CD3, destabilized, constnat region.	
stabilized, constnat region.	eleted hinge, altered hinge, IgG1, IgA, IgE, disulfide
-	
Form PCT/ISA/210 (second sheet) (July 1998)	<u> </u>