TASK 1: IRIS FLOWER

```
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
iris = load_iris()
X = iris.data
                 # Feature measurements
y = iris.target
                 # Species labels (0: setosa, 1: versicolor, 2: virginica)
target_names = iris.target_names
df = pd.DataFrame(X, columns=iris.feature_names)
df['species'] = y
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
clf = RandomForestClassifier(n_estimators=100, random_state=42)
clf.fit(X_train_scaled, y_train)
y_pred = clf.predict(X_test_scaled)
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred, target_names=target_names))
```

```
mse = mean_squared_error(y_test, y_pred)

rmse = np.sqrt(mse)

r2 = r2_score(y_test, y_pred)

print("\nEvaluation Metrics:")

print(f"Mean Squared Error: {mse:.2f}")

print(f"Root Mean Squared Error: {rmse:.2f}")

print(f"R-squared: {r2:.2f}")
```

OUTPUT:

Accuracy: 1.0 Confusion Matrix: [[19 0 0] [0 13 0] [0 0 13]]

Classification Report:

	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	19
versicolor	1.00	1.00	1.00	13
virginica	1.00	1.00	1.00	13
accuracy			1.00	45
macro avg	1.00	1.00	1.00	45
weighted avg	1.00	1.00	1.00	45