LINGUAGENS REGULARES - EXPRESSÕES REGULARES

Prof. Alexandre Agustini alexandre.agustini@pucrs.br

Material original desenvolvidopelos profs. Júlio Machado, Renata Vieira, Alexandre Agustini e outros

Linguagens Regulares - definição

(Linguagens Regulares) Seja Σ um alfabeto. Então uma linguagem regular sobre Σ é definida de acordo com o as seguintes regras (definição indutiva):

- 1. Base: \emptyset , $\{\varepsilon\}$ e $\{a\}$ são linguagens regulares, para todo $a \in \Sigma$.
- Indução: Se L e M são linguagens regulares, então as seguintes linguagens são também regulares: L ∪ M, LM, L* (união, concatenação e concatenação sucessiva).

Exemplos de linguagens regulares

Exemplos de Linguagens Regulares

- ${}^{\bullet}\ \{\epsilon,\ 1\}{=}\ \{\epsilon\}\ \cup \{1\}.$
- $\{0,01\} = \{0\}\{\epsilon,1\}.$
- $\{\epsilon, 1, 11, \ldots, 1^n, \ldots\} = \{1\}^*$
- $^{\circ} \; \{0,01,011,...,\; 01^{n},...\} \!\! = \! \{0\} \! \{1\}^{*}$
- ${}^{\bullet}\;\{\epsilon,0,1,00,11,\ldots,\,0^n,1^n,\ldots\} {=}\;\{0\}^*\;\cup\;\{1\}^*$

Expressões Regulares (ER)

- Linguagens Regulares podem ser descritas de forma algébrica por expressões regulares.
- O significado de uma expressão regular é uma Linguagem Regular.

Expressões Regulares (ER)

▶ Conceito

Seja ∑ um alfabeto.

Então, expressões regulares sobre ∑ são definidas de acordo com as seguintes regras (definição indutiva):

- Base: ε, Ø e a são expressões regulares para todo a ∈ Σ.
- Indução: se R e S são expressões regulares então as seguintes expressões também são regulares: (R), R+S, RS e R*

Exemplos de expressões regulares

Assumindo Σ = {0,1}, as seguintes expressões são regulares sobre Σ : ϵ , \varnothing , 0, 1, ϵ +1,1*, 0+(10), (0+1)0, 01*, 0*+1*.

- Para evitar parênteses em excesso, assumimos a seguinte ordem de prioridade:
- 1. concatenação sucessiva (liga mais forte)
- 2. concatenação
- 3. união (liga mais fraco)
- ▶ Por exemplo, a expressão 0+10*, pode ser escrita com todos os parênteses da seguinte forma: (0+(1(0*))).

Semântica de expressões regulares

(Computação de Linguagem Regular) Seja ∑ um alfabeto. Para cada expressão regular R sobre ∑, podemos associar a linguagem regular L(R) associada a R, da seguinte forma:

- 1. L(∅)= Ø
- Δ(ε)= {ε}
- 3. $L(a) = \{a\}$, para todo $a \in \Sigma$
- 4. $L(R+S)=L(R)\cup L(S)$
- 5. L(RS) = L(R)L(S)
- 6. $L(R^*) = L(R)^*$

Linguagem de uma expressão regular

Linguagem gerada pela ER (a+b)*(aa+bb)

- a e b denotam {a} e {b}, respectivamente
- a+b denota $\{a\} \cup \{b\} = \{a, b\}$
- (a + b)* denota { a, b }*
- aa e bb denotam { a } { a } { a } = { aa } e { b } { b } = { bb },
 respectivemente
- $^{\circ}$ (aa + bb) denota { aa } \cup { bb } = { aa, bb }
- (a + b)*(aa + bb) denota { a, b }* { aa, bb }
- * Portanto, $\mathcal{L}((a+b)^*(aa+bb))$ é { aa, bb, aaa, abb, baa, bbb, aaaa, abbb, baaa, bbbb, baaa, bbbb,... }

