Game Theory: Algorithms and Applications CS 539 Fall 2019 HomeWork 1 Solutions

1. In general, consider there are n players in total. First we notice that no cycle will exist in the equilibrium subgraph, for it costs a lab but brings no benefit. Therefore any Nash equilibrium is a tree or a forest. If a player pays for an edge, the edge must connect her to d players, where $d > c_1/C$ in order to keep the marginal utility positive. When $c_1 \geq C$, one possible Nash equilibrium is that no player connects to other players, for the marginal utility of buying any edge is not positive.

On the other hand, consider a "stable" tree T that does not contain all the vertices, "stable" in the sense that in T all the players want to keep the currently paid edges. We must have |T| > d. Then a player out of T would like to pay for an additional edge to connect to T. Therefore this process continues until every outside player connects to T to form 1 spanning tree. Any spanning tree in which an edge connects the buyer to $d \ge c_1/C$ players is a Nash equilibrium. This also implies that $c_1 \le (n-1)C$, otherwise no tree could satisfy $d \ge c_1/C$.

We observe that when $\frac{n-1}{2}C \le c_1 \le (n-1)C$, the equilibrium is a star, where every leaf pays for the edge to connect to the center of the star.

In the case of 5 labs, simply substitute n in the result above by 5.

- 2. We assume that a conflict is resolved in favor of the player with the lesser index.
 - First-Price: A Nash equilibrium is obtained when p_1 (player 1) bids a value $b_1 \in [v_1, v_2)$ and other players $p_i, i = \{2, 3, \dots, n\}$ bid any value v_i where $v_i \in [0, v_i]$.

Proof: By contradiction: Assume that b_1 is less than v_2 , then p_2 can bid her valuation and win the auction, and this would, therefore, not be a Nash equlibrium.

Special place for p_1 : She may bid any value over v_2 and win the auction.

• Second-Price:

 $b_1 \in [b_2, \infty)$ if $v_2 \le b_2 \le v_1$ and $b_3 \le v_2$.

 $b_2 \in [v_1, \infty) \text{ if } b_1 \leq v_2 \text{ and } b_3 \leq v_2.$

 $b_3 \in [v_1, \infty) \text{ if } b_1 \leq v_3 \text{ and } b_2 \leq v_3$

Proof: omitted

- 3. i At a Nash equilibrium, all consumers get distributed evenly accross all service providers. The difference between the number of consumers on any two providers is at most 1.
 - ii Assume $N \geq P$. First we observe that every provider must serve at least 1 consumer. Start with an arbitrary assignment of consumers. Consider the vector of transmission rates sorted in increasing order

$$R = [R_1, R_2, \cdots R_P], R_1 \le R_2 \le \cdots \le R_P$$

If a consumer currently with provider i wants to switch to provider j for some i < j, denote by R_i, R_j the current rates and by $R'_i = \frac{B_i}{n_i - 1}, R'_j = \frac{B_j}{n_j + 1}$ the rates after the switch, we must have

$$R_i < R'_j \& R_i < R'_i$$

Note that whether $R'_i < R'_j$ or not, the new sorted vector R' must increase in lexicographic order. Since each R_i is upper-bounded by $\frac{B_i}{1}$, the vector can only increase to a bounded value, therefore the system will converge to a Nash equilibrium.

4. Player i will keep increasing traffic until her marginal utility becomes zero (or less). Marginal utility is given by

$$\frac{\partial U_i}{\partial X_i} = K - 2\alpha X_i$$

The game is symmetric, $X_i = X_{i'}, \forall i, i'$ at Nash equilibrium.

$$X_i = \frac{K}{2\alpha}, \forall i @ NE$$

5. Assume that $K \geq \sqrt{x_1 + x_2}$. Differentiating U_i ,

$$\frac{\partial U_i}{\partial x_i} = K - \sqrt{x_i + x_{i'}} + x_i \cdot \frac{\partial (K - \sqrt{x_i + x_{i'}})}{\partial x_i} - 2x_i$$
$$= K - \sqrt{x_i + x_{i'}} - x_i \cdot \frac{1}{2\sqrt{x_i + x_{-i}}} - 2x_i$$

where i' is the *other* player

Since the game is symmetric between the players, $x_i = x_{i'}$ at NE. Using KKT conditions,

$$K - \frac{\sqrt{50}}{4}\sqrt{x_i} - 2x_i = 0$$

$$\implies \sqrt{x_i} = \frac{\pm\sqrt{50 + 128K} - \sqrt{50}}{16}$$

Since
$$\sqrt{x_i} \ge 0$$
, $x_i = \left(\frac{\sqrt{50+128K} - \sqrt{50}}{16}\right)^2 = \frac{25+32K-5\sqrt{25+64k}}{64}$, $i = 1, 2$ @NE.