Wstęp Do Sztucznej Interligencji

Algoryt
m \mathbf{A}^* rozwiązujący układankę Puzzle
15

Karol Janic

kwiecień 2023

1 Opis Rozwiązania

1.1 Opis ogólny

W celu rozwiązania problemu znalezienia optymalnej sekwencji ruchów rozwiązujących układankę Puzzle15 zaimplementowano algorytm \mathbf{A}^* .

Przykładowe rozwiązanie zagadki:

1 2 3 4	1 2 3 4	1 2 3 4
5 e 6 7	9 5 6 7	5 6 0 7
9 f 8 b	0 e f 8	9 a f 8
a d c 0	a d c b	d e c b
1 2 3 4	1 2 3 4	1 2 3 4
5 e 6 7	9 5 6 7	5 6 7 0
9 f 8 b	a e f 8	9 a f 8
a d c 0	0 d c b	d e c b
1 2 3 4	1 2 3 4	1 2 3 4
5 e 6 7	9 5 6 7	5 6 7 8
9 f 8 0	a e f 8	9 a f 0
a d c b	d 0 c b	d e c b
1 2 3 4	1 2 3 4	1 2 3 4
5 e 6 7	9 5 6 7	5 6 7 8
9 f 0 8	a 0 f 8	9 a f b
a d c b	d e c b	d e c 0
1 2 3 4	1 2 3 4	1 2 3 4
5 e 6 7	9 5 6 7	5 6 7 8
9 0 f 8	0 a f 8	9 a f b
a d c b	d e c b	d e 0 c
1 2 3 4	1 2 3 4	1 2 3 4
5 0 6 7	0 5 6 7	5 6 7 8
9 e f 8	9 a f 8	9 a 0 b
a d c b	d e c b	d e f c
1 2 3 4	1 2 3 4	1 2 3 4
0 5 6 7	5 0 6 7	5 6 7 8
9 e f 8	9 a f 8	9 a b 0
a d c b	d e c b	d e f c
		1 2 3 4 5 6 7 8 9 a b c d e f 0

1.2 Heurystyka: Metryka Miejska (MD)

Rysunek 1: Histogram przedstawiający liczbę odwiedzonych stanów dla heurystyki MD oraz 50 losowych stanów początkowych

Rysunek 3: Histogram przedstawiający czas rozwiązania dla heurystyki MD oraz 50 losowych stanów początkowych

Rysunek 2: Histogram przedstawiający długość rozwiązania dla heurystyki MD oraz 50 losowych stanów początkowych

Rysunek 4: Zależność pomiędzy liczbą odwiedzonych stanów a długością rozwiązania dla heurystyki MD oraz 50 losowych stanów początkowych

1.3 Heurystyka: Odległość Inwersyjna (ID)

Rysunek 5: Histogram przedstawiający liczbę odwiedzonych stanów dla heurystyki ID oraz 50 losowych stanów początkowych

Rysunek 7: Histogram przedstawiający czas rozwiązania dla heurystyki ID oraz 50 losowych stanów początkowych

Rysunek 6: Histogram przedstawiający długość rozwiązania dla heurystyki ID oraz 50 losowych stanów początkowych

Rysunek 8: Zależność pomiędzy liczbą odwiedzonych stanów a długością rozwiązania dla heurystyki ID oraz 50 losowych stanów początkowych

1.4 Heurystyka: max(metryka miejska, odległość inwersyjna)

Rysunek 9: Histogram przedstawiający liczbę odwiedzonych stanów dla heurystyki $\max(\text{MD, ID})$ oraz 50 losowych stanów początkowych

Rysunek 11: Histogram przedstawiający czas rozwiązania dla heurystyki max(MD, ID) oraz 50 losowych stanów początkowych

Rysunek 10: Histogram przedstawiający długość rozwiązania dla heurystyki max(MD, ID) oraz 50 losowych stanów początkowych

Rysunek 12: Zależność pomiędzy liczbą odwiedzonych stanów a długością rozwiązania dla heurystyki max(MD, ID) oraz 50 losowych stanów początkowych

1.5 Wnioski

- Najefektywniejszą z zaprezentowanych heurystyk jest heurystyka biorąca maksimum z wartości heurystyk 'Metryka Miejska' oraz 'Odległość Inwersyjna'.
- Najmniej skuteczną heurystyką z trzech przedstawionych jest metryka 'Odległość Inwersyjna'.
- Ponieważ 'Metryka Miejska' oraz 'Odległość Inwersyjna' są heurystykami dopuszczalnymi to branie wartości większej z nich także jest heurystyką dopuszczalną. Zatem dla każdej z zaproponowanych heurystyk podane przez algorytm rozwiązanie jest optymalne pod względem liczby kroków.