UNIVERSIDAD DE LAS AMÉRICAS PUEBLA

Simulación de una Distribución Normal Temas Selectos I

Dr. Rubén Blancas Rivera

Universidad de las Américas Puebla

Otoño 2025

Content

Generación de una variable aleatoria normal estándar

Algoritmo

Variable Aleatoria Normal

Generación de una variable aleatoria normal estándar

Considere una variable aleatoria Z con distribución normal estándar, es decir, la media es 0 y la varianza es 1). La función de densidad de $\left|Z\right|$

$$f(x) = \frac{2}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$
 $0 < x < \infty$

Método de Rechazo

Paso 1: Usamos Y una variable aleatoria exponencial $(\lambda = 1)$. La función de densidad g correspondiente es

$$g(x) = e^{-x} \quad 0 < x < \infty$$

Paso 2: Hacer

$$\frac{f(x)}{g(x)} = \sqrt{2/\pi}e^{x-x^2/2}$$

y así el valor máximo de f(x)/g(x) ocurre en el valor x que maximiza $x-x^2/2$.

Método de Rechazo

Así el valor máximo es:

$$x = 1$$

► Paso 3: Calcular

$$c = Max \frac{f(x)}{g(x)} = \frac{f(x)}{g(1)} = \sqrt{2e/\pi}$$

Método de Rechazo

$$\frac{f(x)}{cg(x)} = \exp\{-\frac{(x-1)^2}{2}\}\$$

Algoritmo

El Algoritmo para generar el valor abosoluto de una variable aleatoria Normal estándar es Z

- Paso 1: Generar Y, una variable aleatoria exponencial con media 1
- Paso 2: Generar un número pseudoaleatorio U.
- Si $U \le \exp\{-(Y-1)^2\}$, ponga X = Y. En caso contrario, ir al Paso 1.

Algoritmo

- Paso 1: Generar Y_1 y Y_2 variables aleatorias exponenciales con media 1.
- Paso 2: Si $Y_2 \ge (Y_1-1)^2/2$, pongamos X=Y. En caso contrario, ir al paso 1.

Variable aleatoria Normal

Para generar Z una variable aleatoria normal estándar con media 0 y varianza 1. El algoritmo es el siguiente:

- Paso 1: Generar Y_1, Y_2 variables aleatorias exponenciales con media 1
- Paso 2: Si $Y_2 \ge (Y_1 1)^2/2$, pongamos X = Y. En caso contrario, ir al paso 1.
- ightharpoonup Paso 3: Generar un número pseudoaleatorio U y pongamos

$$Z = \begin{cases} Y_1 & si \ U \le 1/2 \\ -Y_1 & si \ U > 1/2 \end{cases}$$

Variable Aleatoria Normal

$$X = \sigma Z + \mu$$