第 11 章

線形写像の階数

線形写像の像と列空間

ベクトル $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n$ の張る空間の記号を用いると、ベクトルが張る空間 [第 10 章] での $\operatorname{Im} A$ に関する考察は次のようにまとめられる。

Im
$$A = \langle \boldsymbol{a}_1, \ldots, \boldsymbol{a}_n \rangle$$

つまり、A の列ベクトルが張る空間が $\operatorname{Im} A$ である。 このことから、 $\operatorname{Im} A$ を A の列空間と呼ぶこともある。

♣ theorem - 線形写像の像と表現行列の列空間の一致

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ の像 $\operatorname{Im} f$ は、f の表現行列の列ベクトルが張る空間である。

証明

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ の表現行列を $A = (\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_n)$ とするとき、 $\boldsymbol{v} \in \mathbb{R}^n$ に対して、

$$f(\boldsymbol{v}) = A\boldsymbol{v} = v_1\boldsymbol{a}_1 + v_2\boldsymbol{a}_2 + \cdots + v_n\boldsymbol{a}_n$$

なので、

$$oldsymbol{u} \in \operatorname{Im} f$$
 $\iff \exists oldsymbol{v} \in \mathbb{R}^n \ s.t. \ oldsymbol{u} = f(oldsymbol{v})$
 $\iff \exists v_1, \dots, v_n \in \mathbb{R} \ s.t. \ oldsymbol{u} = v_1 oldsymbol{a}_1 + \dots + v_n oldsymbol{a}_n$
 $\iff oldsymbol{u} \in \langle oldsymbol{a}_1, oldsymbol{a}_2, \dots, oldsymbol{a}_n \rangle$

したがって、

$$\operatorname{Im} f = \operatorname{Im} A = \langle \boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n \rangle$$

が成り立つ。

上述の証明の

$$\boldsymbol{u} \in \operatorname{Im} f \Longleftrightarrow \exists \boldsymbol{v} \in \mathbb{R}^n \ s.t. \ \boldsymbol{u} = f(\boldsymbol{v})$$

という変形に着目すると、この定理は次のように線型方程式の文脈で言い換えられる。

♣ theorem - 線形写像の像空間と方程式の解の存在

 $\boldsymbol{b} \in \mathbb{R}^m$ に対して

 $\boldsymbol{b} \in \operatorname{Im} A \iff$ 方程式 $A\boldsymbol{x} = \boldsymbol{b}$ が解を持つ

 $oldsymbol{b} \in \mathbb{R}^m$ が $\operatorname{Im} A$ に属するかどうかを調べるためには $\operatorname{theorem}$ 8.2 「拡大係数行列と解の存在条件」が使える。

線形写像の像空間の基底

線形写像の像空間は表現行列の列ベクトルによって張られるが、列ベクトルの集合は一般に は線型独立ではない。

像空間の基底を得るためには、列ベクトルの部分集合、たとえば def 9.1 「主列ベクトル」 を考えるのが自然である。

「Todo 1: book: 行列と行列式の基礎 p97 定理 3.1.10]

線形写像の階数

次の定理は、行列の階数のさらに本質的な意味を明らかにし、行列の階数が行変形の仕方に よらずに決まることを念押しするような定理である。

🕏 theorem - 行列の階数と像空間の次元の一致

行列の階数は像空間の次元である。

すなわち、A を $m \times n$ 型行列とするとき、

rank A = dim Im A

theorem 11.1 「主列ベクトルによる像空間の基底の構成」で示したように、A の

主列ベクトル \boldsymbol{a}_{i_1} , \boldsymbol{a}_{i_2} , . . . , \boldsymbol{a}_{i_r} は $\operatorname{Im} A$ の基底を成す。

よってその個数 $r = \operatorname{rank} A$ は $\operatorname{Im} A$ の次元である。

この定理から、線形写像に対して、像空間の次元をその階数と定める。

★ def 11.1 - 線形写像の階数

 $f: \mathbb{R}^n \to \mathbb{R}^m$ を線形写像とするとき、f の<mark>階数</mark>を

$$rank f = dim Im f$$

と定義する。

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ の表現行列を A とするとき、

$$\operatorname{Ker} f = \{ \boldsymbol{v} \in \mathbb{R}^n \mid A\boldsymbol{v} = \boldsymbol{o} \}$$

と定めると、 $f(\boldsymbol{v}) = A\boldsymbol{v}$ という関係から、 $\operatorname{Ker} f$ と $\operatorname{Ker} A$ は同じものを指す。

 $\operatorname{Ker} A$ すなわち $\operatorname{Ker} f$ とは、f によって o に写ってしまうような、つまり $A\boldsymbol{x} = o$ となるような \boldsymbol{x} すべての集合である。

つまり、Ker A とは、斉次形の方程式 Ax = o の解空間そのものである。

核空間と一般解のパラメータ表示

解のパラメータ表示の再解釈 [第8章] で述べたように、Ax = b の解をすべて見つけるには、

- 1. 1 つの解(特殊解) **x**₀ を見つける
- 2. Ax = 0 の一般解を求める
- 3. それらの和が Ax = b の一般解となる

という考え方を使うことができた。

このことを Ker A を用いて定式化できる。

\$ theorem - 特殊解と核の元による別解の構成

 \mathbf{x}_0 が $A\mathbf{x} = \mathbf{b}$ の解であるとき、 $\operatorname{Ker} A$ に属する任意のベクトル \mathbf{u} を用いて、 $\mathbf{x}_0 + \mathbf{u}$ もまた $A\mathbf{x} = \mathbf{b}$ の解となる。

証明

 \mathbf{x}_0 が $A\mathbf{x} = \mathbf{b}$ の解であることから、

$$A\boldsymbol{x}_0 = \boldsymbol{b}$$

 $\exists c. u \in \operatorname{Ker} A \exists b.$

$$Au = o$$

よって、

$$A(\mathbf{x}_0 + \mathbf{u}) = A\mathbf{x}_0 + A\mathbf{u}$$

$$= A\mathbf{x}_0 + \mathbf{o}$$

$$= \mathbf{b}$$

となり、 $\mathbf{x}_0 + \mathbf{u}$ もまた $A\mathbf{x} = \mathbf{b}$ の解であることがわかる。

そして、どんな解もこの方法で作ることができる。

♣ theorem - 特殊解と核空間による一般解の構成

 $A\mathbf{x} = \mathbf{b}$ を満たす 1 つの解 \mathbf{x}_0 が見つかれば、 $A\mathbf{x} = \mathbf{b}$ の一般解は、 $A\mathbf{x} = \mathbf{o}$ の一般解 \mathbf{u} を用いて、 $\mathbf{x}_0 + \mathbf{u}$ と表される。

証明

 $A\mathbf{x} = \mathbf{b}$ の 1 つの解を \mathbf{x}_0 、もう 1 つの解を \mathbf{x}_1 とおくと、

$$A x_0 = b$$
, $A x_1 = b$

が成り立つので、

$$A\boldsymbol{x}_1 - A\boldsymbol{x}_0 = \boldsymbol{b} - \boldsymbol{b} = \boldsymbol{o}$$

 $\therefore A(\boldsymbol{x}_1 - \boldsymbol{x}_0) = \boldsymbol{o}$

となり、 $\mathbf{x}_1 - \mathbf{x}_0$ は $A\mathbf{x} = \mathbf{o}$ の解である。

ここで、 $A\mathbf{x} = \mathbf{o}$ の一般解 \mathbf{u} が得られているなら、 $\mathbf{x}_1 - \mathbf{x}_0$ も \mathbf{u} で表すことができる。

したがって、 $\mathbf{x}_0 + \mathbf{u}$ は $A\mathbf{x} = \mathbf{b}$ のすべての解を網羅する。

解が1つ見つかれば、その解 \boldsymbol{x}_0 は固定して、 $\operatorname{Ker} A$ に属するベクトル \boldsymbol{u} をいろいろ変えることにより、 $\boldsymbol{x}_0 + \boldsymbol{u}$ ですべての解が得られる。

核空間の基底と基本解

「**u** をいろいろ変えることにより」という部分をもう少し精密に述べよう。

いろいろ動かしてすべての解を網羅するには、解空間 $\ker A$ の基底が必要である。すなわち、 \mathbf{u} は $\ker A$ の基底 \mathbf{u}_i を用いた次のような形で表される。

$$\mathbf{u} = c_1 \mathbf{u}_1 + \cdots + c_d \mathbf{u}_d$$

ここで、 c_1, \ldots, c_d は任意であるので、この式は斉次形方程式 $A\mathbf{x} = \mathbf{o}$ の基本解のパラメータ表示そのものである。

♣ theorem - 斉次形方程式の基本解と核空間の基底

 $A \in m \times n$ 型行列とし、 $\boldsymbol{u}_1, \ldots, \boldsymbol{u}_d \in A\boldsymbol{x} = \boldsymbol{o}$ の基本解とするとき、 $\{\boldsymbol{u}_1, \ldots, \boldsymbol{u}_d\}$ は Ker A の基底である。

言い換えると、 $\operatorname{Ker} A$ の元 $\operatorname{\boldsymbol{u}}$ は、 $\operatorname{\boldsymbol{Ax}} = \operatorname{\boldsymbol{o}}$ の基本解 $\operatorname{\boldsymbol{u}}_1, \ldots, \operatorname{\boldsymbol{u}}_d$ を使ってパラメータ表示できる。

パラメータの空間と座標部分空間

つまり、基本解 $m{u}_1,\ldots,m{u}_d$ を基準として固定すれば、 $\ker A$ の元を 1 つ指定することは、パラメータの値の組

$$egin{pmatrix} t_1 \ dots \ t_d \end{pmatrix} \in \mathbb{R}^d$$

を指定することと同じである。

斉次形方程式 Ax = o の主変数を x_{i_1}, \ldots, x_{i_r} 、自由変数を x_{j_1}, \ldots, x_{j_d} とすると、解のパラメータの空間は $\det 10.1$ 「座標部分空間」 $\mathbb{R}^{\{j_1,\ldots,j_d\}}$ である。

そして、そのパラメータ付けは、

$$\mathbb{R}^{\{j_1,\ldots,j_d\}}
igcides\sum_{k=1}^d t_koldsymbol{e}_{j_k}\longmapsto \sum_{k=1}^d t_koldsymbol{u}_k\in\mathsf{Ker}\,\mathcal{A}$$

によって与えられる。

核空間の次元と解の自由度

 $m{b} = m{o}$ でない一般の連立方程式 $m{A} m{x} = m{b}$ においても、解の自由度 [第 8 章] で述べたように、基本解の個数 $m{d}$ は解の自由度であり、 $m{u}_1, \ldots, m{u}_d$ は $m{Ker} \, m{A}$ の基底をなすため、

Ker A の次元は、Ax = b の解の自由度と一致する

ということがいえる。

次元定理

連立方程式 Ax = b の解の自由度 [第8章] は、

解の自由度
$$=$$
 (変数の個数) $-$ rank A

で表された。

そして、核空間の次元と解の自由度 [第 11 章] より、この解の自由度は **Ker** *A* の次元と一致する。

$$\dim \operatorname{Ker} A = (変数の個数) - \operatorname{rank} A$$

ここで、次のような線形写像

を考えると、次のように対応づけられる。

- 行列 A は、線形写像 f を表す
- ullet 変数の個数は、 $oldsymbol{x}$ の動く空間 \mathbb{R}^n の次元 n に対応する

このように行列 A を線形写像 f に対応させると、

$$\dim \operatorname{Ker} f = n - \operatorname{rank} f$$

さらに、def 11.1「線形写像の階数」から、

$$\dim \operatorname{Ker} f = n - \dim \operatorname{Im} f$$

という、次元に関する関係式が得られる。これを次元定理という。

♣ theorem 11.2 - 線形写像の次元定理

 $f: \mathbb{R}^n \to \mathbb{R}^m$ を線形写像とすると、次が成り立つ。

$$rank(f) = dim Im f = n - dim Ker(f)$$

写像の視点

f を n 次元線型空間から m 次元線型空間への線形写像とすると、

$$n - \dim \operatorname{Ker} f = \dim \operatorname{Im} f$$

という次元定理の式は、次のように読める。

元のn次元空間から、Ker fの次元分が潰れて、

残ったのが Im f の次元分

次元定理と単射性・全射性

 $m \times n$ 型行列 A によって表現される線形写像 f が単射・全射かどうかは、m と n の大小によって決まる。

A が横長 (m < n) の場合

このとき、A が表現する線形写像 f は単射ではない。

- 1. $\operatorname{Im} A$ は行き先の m 次元空間の一部なので、 $\dim \operatorname{Im} A \leq m$
- 2. m < n より、 $\dim \operatorname{Im} A < n$
- 3. 次元定理より、 $\dim \operatorname{Ker} A > 0$

単射となるときの核 [第 5 章] より、潰れる部分 $\ker A$ が $\{o\}$ でないことは、単射ではないことを意味する。

表現行列 A が横長 (m < n) だと単射にはなれない

A が縦長 (m > n) の場合

このとき、A が表現する線形写像 f は全射ではない。

- 1. 次元は 0 以上なので、 $\dim \operatorname{Ker} A \geq 0$
- 2. 次元定理より、 $\dim \operatorname{Im} A \leq n$
- $3. m > n \downarrow 0$, dim Im A < m

全射となるときの像 [第 5 章] より、Im A が写り先の空間全体をカバーしていないことは、 全射ではないことを意味する。

表現行列 A が縦長 (m > n) だと全射にはなれない

階数と単射性・全射性

線型写像の単射性・全射性は、その表現行列の階数によって判定することもできる。 また、その判定条件は、連立一次方程式の解の性質とも結びつく。

単射な線形写像と階数

Aの階数が元の空間(定義域)の次元と同じ場合、Aが表す線形写像は単射となる。

rank A = n

元のn次元空間が写した先でもn次元の広がりを保っているのなら、潰れていないはずだからである。

♣ theorem - 線形写像の単射性と表現行列

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ の表現行列を A とするとき、次はすべて同値である。

- i. *f* は単射
- ii. $A\mathbf{x} = \mathbf{o}$ は自明な解しか持たない
- iii. $\operatorname{rank} A = n$

$(i) \iff (ii)$

線形写像 f は、表現行列 A を用いて次のように表せる

$$f(\boldsymbol{x}) = A\boldsymbol{x}$$

f が単射であることの言い換えは、

$$f(\boldsymbol{x}) = \boldsymbol{o} \Longrightarrow \boldsymbol{x} = \boldsymbol{o}$$

であり、Ax = 0 が自明解しか持たないことは、

$$A\mathbf{x} = \mathbf{o} \Longrightarrow \mathbf{x} = \mathbf{o}$$

が成り立つということである

 $f(\mathbf{x}) = A\mathbf{x}$ であるから、これらの 2 つの条件は同値である

$(ii) \iff (iii)$

theorem 8.4「斉次形方程式の非自明解の存在条件」より、斉次形の方程式 Ax = o に自明解しか存在しないことと

$$rank A = n$$

と同値である。

全射な線形写像と階数

Aの階数が行き先の空間(値域)の次元と同じ場合、Aが表す線形写像は全射となる。

$$rank A = m$$

写した先でその空間全体と同じ m 次元の広がりを持っているのなら、空間全体をカバーしているはずだからである。

♣ theorem - 線形写像の全射性と表現行列

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ の表現行列を A とするとき、次はすべて同値である。

- i. f は全射
- ii. 任意の $\boldsymbol{b} \in \mathbb{R}^m$ に対して、 $A\boldsymbol{x} = \boldsymbol{b}$ には解が存在する
- iii. rank A = m

$(i) \iff (ii)$

線形写像 f は、表現行列 A を用いて次のように表せる

$$f(\boldsymbol{x}) = A\boldsymbol{x}$$

f が全射であることの言い換えは、

$$\forall \boldsymbol{b} \in \mathbb{R}^m, \exists \boldsymbol{x} \in \mathbb{R}^n, f(\boldsymbol{x}) = \boldsymbol{b}$$

であり、これは

$$\forall b \in \mathbb{R}^m$$
, $A\mathbf{x} = \mathbf{b}$ に解が存在する

と同値である

よって、これらの2つの条件は同値である

$(ii) \iff (iii)$

theorem 8.3 「解の存在条件の系」より、rank A = m は、次の条件

$$\forall \boldsymbol{b} \in \mathbb{R}^m$$
. $A\boldsymbol{x} = \boldsymbol{b}$ の解が存在する

全単射な線形変換と階数

一般の線形写像と対比して、線形変換の大きな特徴は次が成り立つことである。

単射と全射は、一般には一方から他方が導かれるわけではない 2 つの性質だが、 \mathbb{R}^n からそれ自身への線形写像(線形変換)の場合は同値になる。

\$ theorem 11.3 - 線形代数における鳩の巣原理

 $f \in \mathbb{R}^n$ の線形変換とし、 $A \in f$ の表現行列とするとき、次はすべて同値である。

- i. *f* は単射
- ii. *f* は全射
- iii. *f* は全単射
- iv. rank A = n

証明

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ において、表現行列を A とすると、

$$f$$
 が単射 \iff rank $A=n$ f が全射 \iff rank $A=m$

である。

線形変換は、線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ の m=n の場合であるので、f が単射であることも、全射であることも、

$$rank A = n$$

という条件と同値になる。

つまり、線形変換は単射かつ全射であり、これは全単射であることも意味する。

この定理は、いわば線形代数版「鳩の巣原理」である。

北 theorem - 鳩の巣原理

有限集合 $X = \{1, 2, \dots, n\}$ からそれ自身への写像 f に対して、単射と全射は同値である

鳩の巣原理は、歴史的には部屋割り論法とも呼ばれ、

n 個のものを m 個の箱に入れるとき、n>m であれば、 少なくとも 1 個の箱には 1 個より多いものが中にある

ことを指す。

ここで鳩の巣原理と呼んだのはこの命題そのものではないが、その変種と考えてよい。

正則の判定

ここまでの議論により、さまざまな正則判定法が得られる。

階数による正則判定

theorem 11.3「線形代数における鳩の巣原理」から、次のことがいえる。

♣ theorem 11.4 - 階数による正則の判定

n 次正方行列 A に対して、

A が正則行列 \iff rank A = n

この定理は、線形変換 f (もしくは正方行列 A) が正則かどうかについて、階数という 1 つの数値で判定できることを示している。

列ベクトルの線型独立性による正則の判定

北 theorem 11.5 - 列ベクトルの線型独立性による正則の判定

 a_1, \ldots, a_n を列ベクトルとする n 次正方行列 A に対して、次が成り立つ。

A が正則行列 $\iff \boldsymbol{a}_1, \ldots, \boldsymbol{a}_n$ が線型独立

証明 証明

theorem 9.1「列ベクトルの線型独立性と階数」より、 $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n\in\mathbb{R}^n$ が線型独立であることは、 $\operatorname{rank} A=n$ と同値である。

theorem 11.4「階数による正則の判定」より、rank A = n は A が正則行列であることと同値である

核空間の次元による正則の判定

次元定理から、次のような正則判定法が得られる。

北 theorem 11.6 - 核空間の次元による正則判定 n 次正方行列 A に対して、

$$A$$
 が正則行列 \iff $\operatorname{Ker} A = \{o\}$ \iff $\operatorname{dim} \operatorname{Ker} A = 0$

証明

theorem 11.4 「階数による正則の判定」より、A が正則であることは、

rank A = n

であることと同値である。

ここで、次元定理より、

 $\operatorname{rank} A + \dim \operatorname{Ker} A = n$

 $\operatorname{rank} A = n$ を代入し、整理すると、

 $\dim \operatorname{Ker} A = 0$

が得られる。

Zebra Notes

Туре	Number
todo	1