Program Structures and Algorithms Fall 2022(SEC 06)

NAME: Olasunkanmi Olayinka

NUID: 001512266

Task:

• Implement the code for the experiment

• Deduce the relationship between the distance(d) and number of steps(n) taken

Relationship Conclusion:

Distance(d) \approx k * $\sqrt{\text{no of steps(n)}}$

I can conclude that as the number of experiments increases $d \approx k * \sqrt{n}$, where k is a constant, distance(d) does go above or below it sometimes, but it usually revolves around this value. Also, distance(d) tends to increase with respect to the number of steps (n).

Evidence to support that conclusion:

The tables show the distance(d) from the lamp post, number of steps(n) taken, sqrt(n) and number of experiments to see the relationship between d an n.

Input arguments:

Test over 25 experiments:

Test over 50 experiments:

Test over 100 experiments:

Graphical Representation:

The line graphs below show us the relationship between the distance(d) moved and the square root of n. This gives us a better idea that $d \approx k \sqrt[*]{n}$ and this is clearer with higher experiment number.

Unit Test Screenshots:

