Interpretable Machine Learning

Xiaoyu Liu, Tong Wu

Intro

Discussion

"Explainable" is a vague word. What feathers should a good explanation possess? Think about how wikipedia try explaining a definition to you.

We have a model that can do image recognition and it works pretty well on our sample. The predictions reaches 94% accuracy. Can you come out a scenario that the model cannot be trusted?

Some possible issues

Work well for samples but terrible in practice

Work well in most cases but have serious problem with some cases

How a model tries to gain trust

Interpretable

Accuracy

A/B test

Voodoo

Netflix recommendation

Some potential problems

Interpretable: more accurate, less interpretable. Ex: decision trees

Accuracy: data leaking, training data vs real world, changing environment,

objective mismatch

A/B test: expensive, potential problems

Voodoo: hahaha

LIME(Local Interpretable Model-Agnostic Explanations)

Pick a model class interpretable by humans, use it to approximate unknown models

Good local approximation

More details of LIME

Interpretable: humans can easily interpret reasoning

Faithful: describes how the model actually behaves

Model-agnostic: can be sued for any ML model

LIME example for medical diagnosis

Christianity or Atheism

How does LIME explain?

Labrador or electric guitar

(a) Original Image

(b) Explaining Electric guitar (c) Explaining Acoustic guitar

(d) Explaining *Labrador*

Conclusions of LIME

LIME is trying to explain the model to you by a randomly selected sample and its predictions produced by model itself.

Advantage: Less prior knowledge of background needs to understand the model

Can we do better?

Submodular pick for explaining models

Feature engineering

A Unified Approach to Interpreting Model Predictions

Complex model

Simple model

Accurate

John, a bank customer

Additive feature attribution methods have an explanation model that is a linear function of binary variables:

$$g(z') = \phi_0 + \sum_{i=1}^{M} \phi_i z'_i$$

Features of Input

- 1. Income verified (Yes or No)
- 2. Debt to income ratio
- 3. Delinquent Payment (when)
- 4. Recent account opening (Yes or No)
- 5. Credit history (How long)

Shapley Value

The Shapley value is a solution concept in cooperative game theory. It was named in honor of Lloyd Shapley, who introduced it in 1951 and won the Nobel Prize in Economics for it in 2012.

$$\phi_i = \sum_{S \subseteq F \setminus \{i\}} \frac{|S|!(|F| - |S| - 1)!}{|F|!} \left[f_{S \cup \{i\}}(x_{S \cup \{i\}}) - f_S(x_S) \right]$$

Shapley Value

You will go to visit your friends after COVID, your friends will pay your flight.

St. Louis to Paris (round-trip) \$900

St. Louis to Rome(round-trip) \$1,100

St. Louis to Paris to Rome to St. Louis \$1,600

St. Louis Paul

How do I allocate the money

How do I allocate the money

Paul (Primary User) \$900 Rachel(Incremental User) \$700

Rachel (Primary User) \$1,100 Paul (Incremental User) \$500

Using the shapley value:

Paul should pay (\$900 + \$500)/2 = \$700

Rachel should pay (\$1,100 + \$700)/2 = \$900

St. Louis to Paris(Paul) (round-trip) \$900

St. Louis to Rome(Rachel)(round-trip) \$1,100

St. Louis to Paris to Rome to St. Louis \$1,600

Shapley values resulting from averaging over all possible orderings.

Local accuracy (additivity) - The sum of the local feature attributions equals the difference between the base rate and the model output.

Partial dependence plot

Help to find the unfairness of model

Help to find the unfairness of model

Discussion:

 Can you give one real-world scenario that ML/AI models do not need to be explainable? and why?

2. Interpretation is the process of giving explanations to human. How can we measure 'good' explanations in your opinion?

Questions

Thank you