Homework

PB22010344 黄境

2024年10月28日

EXERCISE 1. Affine Sets

SOLUTION. 1.(a) (\Rightarrow) Since U is an affine set, for all $\mathbf{x}, \mathbf{y} \in U$ and $\theta \in \mathbb{R}$, we have

$$\theta \mathbf{x} + (1 - \theta) \mathbf{y} \in U.$$

Since $\mathbf{0} \in U$, let $\mathbf{y} = \mathbf{0}$. Therefore, for all $\mathbf{x} \in U$ and $\theta \in \mathbb{R}$, we have $\theta \mathbf{x} \in U$. Let $\theta = \frac{1}{2}$, then

$$\forall \mathbf{x}, \mathbf{y} \in U, \mathbf{x} + \mathbf{y} = 2(\frac{\mathbf{x} + \mathbf{y}}{2}) \in U.$$

Thus, U is a subspace.

 (\Leftarrow) Since U is a subspace, for all $\mathbf{x}, \mathbf{y} \in U$ and $\theta \in \mathbb{R}$, we have

$$\theta \mathbf{x} \in U, (1 - \theta)\mathbf{y} \in U \Rightarrow \theta \mathbf{x} + (1 - \theta)\mathbf{y} \in U.$$

Thus, U is an affine set.

(b) Suppose that V_1 and V_2 are two subspaces that satisfy the condition. Let $\mathbf{u}_0 \in U$. Then we have

$$V_1 = U - \mathbf{u}_0 = V_2,$$

which implies that V must be unique.

Now, let $V = U - \mathbf{u}_0$, then V is also an affine set. Since $\mathbf{0} = \mathbf{u}_0 - \mathbf{u}_0 \in V$, from exercise 1.1(a) we know that V is a subspace. Let \mathbf{u}_1 be an arbitrary vector in U. We will prove that

$$V + \mathbf{u}_1 = U$$
.

In fact, for all $\mathbf{u}_2 \in U$, since \mathbf{u}_1 and $\mathbf{u}_0 \in U$, let $\theta = \frac{1}{2}$. We have

$$\frac{\mathbf{u}_1 + \mathbf{u}_0}{2}, \quad \frac{\mathbf{u}_2 + \mathbf{u}_0}{2} \in U \Rightarrow \frac{\mathbf{u}_1 - \mathbf{u}_0}{2}, \quad \frac{\mathbf{u}_2 - \mathbf{u}_0}{2} \in V.$$

Since V is a subspace, we have

$$\mathbf{u}_2 - \mathbf{u}_1 = 2\left(\frac{\mathbf{u}_2 - \mathbf{u}_0}{2} - \frac{\mathbf{u}_1 - \mathbf{u}_0}{2}\right) \in V \Rightarrow \mathbf{u}_2 \in V + \mathbf{u}_1.$$

Therefore, we conclude that

$$U \subset V + \mathbf{u}_1$$
.

Since

$$|V + \mathbf{u}_1| = |U - \mathbf{u}_0 + \mathbf{u}_1| = |U|,$$

we have

$$V + \mathbf{u}_1 = U, \forall \mathbf{u}_1 \in U.$$

Thus, we conclude that

$$U = \mathbf{u} + V, \forall \mathbf{u} \in U.$$

2.(a) Suppose that $\mathbf{x}_1, \, \mathbf{x}_2 \in C$ and $\theta \in \mathbb{R}$, then we have

$$\mathbf{A}(\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2) = \theta \mathbf{A}\mathbf{x}_1 + (1 - \theta)\mathbf{A}\mathbf{x}_2$$
$$= \theta \mathbf{b} + (1 - \theta)\mathbf{b} = \mathbf{b},$$

which implies that $\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2 \in C$. Thus C is an affine set.

(b) From exercise 1.1(b), let $\mathbf{u}_0 \in U$. Then $V = U - \mathbf{u}_0$ is a subspace. Let $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ be a basis of V, where $k \leq n$.

Since $\mathbf{X} = (\mathbf{x}_1^T, \mathbf{x}_2^T, \dots, \mathbf{x}_k^T)^T \in \mathbb{R}^{k \times n}$, the equation $\mathbf{X}\mathbf{a} = \mathbf{0}$ has at least one nontrivial solution, denoted by \mathbf{a}_0 . Therefore, we have

$$\mathbf{a}_0^T \mathbf{x}_i = 0, \quad i = 1, 2, \dots, k.$$

Let $\mathbf{A} = (\mathbf{a}_0, \mathbf{a}_0, \dots, \mathbf{a}_0)^T \in \mathbb{R}^{m \times n}$. Since

$$\mathbf{u} - \mathbf{u}_0 = \sum_{i=1}^k \lambda_i \mathbf{x}_i, \forall \mathbf{u} \in U,$$

we have

$$\mathbf{A}(\mathbf{u} - \mathbf{u}_0) = \sum_{i=1}^k \lambda_i \mathbf{A} \mathbf{x}_i = \mathbf{0} \Rightarrow \mathbf{A} \mathbf{u} = \mathbf{A} \mathbf{u}_0 \triangleq \mathbf{b} \in \mathbb{R}^{m \times 1}, \quad \forall \mathbf{u} \in U.$$

Thus, we have proved that

$$U \subset \{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}\}.$$

On the other hand, suppose that $\mathbf{x}_0 \in \{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}\}$. This implies

$$\mathbf{x}_0 - \mathbf{u}_0 \in \mathcal{N}(\mathbf{A}) = \mathcal{C}(\mathbf{X}).$$

Since V is a subspace, $C(\mathbf{X}) = V$, which implies that $\mathbf{x}_0 \in \mathbf{U}$. Therefore, we conclude that

$$\{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}\} = U.$$

Exercise 2. Convex Sets

Solution. 1.(a) For all $\mathbf{x} \in \bar{C}$, since $\bar{C} = C \cap C'$, we consider two cases:

- (i) If $\mathbf{x} \in C$, let $\mathbf{x}_n = \mathbf{x}$ for $n = 1, 2, \dots$ Then $\mathbf{x}_n \to \mathbf{x}$ as $n \to \infty$.
- (ii) If $\mathbf{x} \in C'$, since \mathbf{x} is a limit point of C, we can find a sequence $\{\mathbf{x}_n\} \subset C$ such that $\mathbf{x}_n \to \mathbf{x}$ as $n \to \infty$.

In both cases, we conclude that for all $\mathbf{x} \in \bar{C}$, there exists a sequence $\{\mathbf{x}_n\} \subset C$ such that $\mathbf{x}_n \to \mathbf{x}$ as $n \to \infty$.

Now, for all $\mathbf{x}, \mathbf{y} \in \bar{C}$ and $\theta \in \mathbb{R}$, let $\mathbf{x}_n \to \mathbf{x}$ and $\mathbf{y}_n \to \mathbf{y}$. Since C is convex, we have

$$\theta \mathbf{x}_n + (1 - \theta) \mathbf{y}_n \in C \subset \bar{C}, \forall n.$$

Since \bar{C} is closed, we have

$$\theta \mathbf{x} + (1 - \theta) \mathbf{y} = \lim_{n \to \infty} (\theta \mathbf{x}_n + (1 - \theta) \mathbf{y}_n) \in \bar{C}.$$

Therefore, we conclude that \bar{C} is also convex.

For all $\mathbf{x} \in C^{\circ}$, there exists $r \geq 0$ such that $B_r(\mathbf{x}) \subset C$. Therefore, for all $\mathbf{x}, \mathbf{y} \in C^{\circ}$ and $\theta \in \mathbb{R}$, there exist $r \geq 0$ such that $B_r(\mathbf{x}) \subset C$ and $B_r(\mathbf{y}) \subset C$. Now, for all $\mathbf{z} \in B_r(\theta \mathbf{x} + (1 - \theta)\mathbf{y})$, we have

$$B_r(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) = \theta \mathbf{x} + (1 - \theta)\mathbf{y} + B_r(\mathbf{0}).$$

For any $\mathbf{r} \in B_r(\mathbf{0})$, we can express

$$\theta \mathbf{x} + (1 - \theta)\mathbf{y} = \theta(\mathbf{x} + \mathbf{r}) + (1 - \theta)(\mathbf{y} + \mathbf{r}).$$

Since $\mathbf{x} + \mathbf{r} \in B_r(\mathbf{x}) \subset C$ and $\mathbf{y} + \mathbf{r} \in B_r(\mathbf{y}) \subset C$, and since C is convex, we have

$$\theta(\mathbf{x} + \mathbf{r}) + (1 - \theta)(\mathbf{y} + \mathbf{r}) \in C$$

for all $\mathbf{r} \in B_r(\mathbf{0})$. Therefore, we conclude that

$$\theta \mathbf{x} + (1 - \theta) \mathbf{y} + B_r(\mathbf{0}) \subset C$$
,

which implies that

$$\theta \mathbf{x} + (1 - \theta) \mathbf{y} \in C^{\circ}$$
.

Thus, C° is also convex.

(b) For all $\mathbf{x} \in \mathbf{relint}\ C$, there exists $r \geq 0$ such that $B_r(\mathbf{x}) \cap \mathbf{aff}\ C \subset C$. Therefore, for all $\mathbf{x}, \mathbf{y} \in \mathbf{relint}\ C$ and $\theta \in \mathbb{R}$, there exist $r \geq 0$ such that $B_r(\mathbf{x}) \cap \mathbf{aff}\ C \subset C$ and $B_r(\mathbf{y}) \cap \mathbf{aff}\ C \subset C$.

Without loss of generality, assume that $\theta \neq 0$ and $\theta \neq 1$. Let $\mathbf{z} = \theta \mathbf{x} + (1-\theta)\mathbf{y}$. Consider

$$B_r(\mathbf{z}) \cap \mathbf{aff} \ C = \mathbf{z} + \{\mathbf{r} : \mathbf{z} + \mathbf{r} \in \mathbf{aff} \ C, \ \mathbf{r} \in B_r(\mathbf{0})\} = \mathbf{z} + R.$$

For all $\mathbf{r} \in R$, since $\mathbf{z} + \mathbf{r}, \mathbf{x}, \mathbf{y} \in \mathbf{aff} C$, we have

$$\mathbf{y} + \frac{\mathbf{r}}{1-\theta} = \frac{-\theta}{1-\theta}\mathbf{x} + \frac{1}{1-\theta}(\theta\mathbf{x} + (1-\theta)\mathbf{y} + \mathbf{r}) = \frac{-\theta}{1-\theta}\mathbf{x} + \frac{1}{1-\theta}(\mathbf{z} + \mathbf{r}) \in \mathbf{aff}\ C.$$

Therefore,

$$\mathbf{y} + \mathbf{r} = (1 - \theta) \left(\mathbf{y} + \frac{\mathbf{r}}{1 - \theta} \right) + \theta \mathbf{y} \in \mathbf{aff} \ C.$$

Moreover, since $\mathbf{y} + \mathbf{r} \in B_r(\mathbf{y})$, we have $\mathbf{y} + \mathbf{r} \in B_r(\mathbf{y}) \cap \mathbf{aff} \ C \subset C$. Similarly, $\mathbf{x} + \mathbf{r} \in C$. Therefore, for all $\mathbf{r} \in R$, since $\mathbf{x} + \mathbf{r}, \mathbf{y} + \mathbf{r} \in C$ and C is convex, we have

$$\mathbf{z} + \mathbf{r} = \theta(\mathbf{x} + \mathbf{r}) + (1 - \theta)(\mathbf{y} + \mathbf{r}) \in C.$$

Thus, $B_r(\mathbf{z}) \cap \mathbf{aff} \ C \subset C$, which implies that $\mathbf{z} \in \mathbf{relint} \ C$. Therefore, $\mathbf{relint} \ C$ is also convex.

(c) For all $\mathbf{x}, \mathbf{y} \in \bigcap_{i \in I} C_i$ and $\theta \in \mathbb{R}$, since each C_i is convex, we have

$$\theta \mathbf{x} + (1 - \theta) \mathbf{y} \in C_i, \forall i \in I \quad \Rightarrow \quad \theta \mathbf{x} + (1 - \theta) \mathbf{y} \in \bigcap_{i \in I} C_i,$$

which implies that $\bigcap_{i \in I} C_i$ is convex.

(d) Denote the set by P. $\forall \mathbf{y}_1 = \mathbf{A}\mathbf{x}_1 + \mathbf{a}$, $\mathbf{y}_2 = \mathbf{A}\mathbf{x}_2 + \mathbf{a} \in \mathbf{P}$ and $\theta \in \mathbb{R}$, we have

$$\theta \mathbf{y}_1 + (1 - \theta)\mathbf{y}_2 = \theta(\mathbf{A}\mathbf{x}_1 + \mathbf{a}) + (1 - \theta)(\mathbf{A}\mathbf{x}_2 + \mathbf{a}) = \mathbf{A}(\theta\mathbf{x}_1 + (1 - \theta)\mathbf{x}_2) + \mathbf{a}.$$

Since C is convex, we have $\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2 \in C$, which implies that $\theta \mathbf{y}_1 + (1 - \theta)\mathbf{y}_2 \in P$. Therefore, P is convex.

(e) Denote the set by Q. $\forall \mathbf{y}_1, \ \mathbf{y}_2 \in \mathbf{P}$ and $\theta \in \mathbb{R}$, let $\mathbf{x}_1 = \mathbf{B}\mathbf{y}_1 + \mathbf{b}$, $\mathbf{x}_2 = \mathbf{B}\mathbf{y}_2 + \mathbf{b}$, we have

$$\mathbf{B}(\theta \mathbf{y}_1 + (1 - \theta)\mathbf{y}_2) + \mathbf{b} = \theta(\mathbf{B}\mathbf{y}_1 + \mathbf{b}) + (1 - \theta)(\mathbf{B}\mathbf{y}_2 + \mathbf{b}) = \theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2.$$

Since C is convex, we have $\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2 \in C$, which implies that $\theta \mathbf{y}_1 + (1 - \theta)\mathbf{y}_2 \in Q$. Therefore, Q is convex.

- 2. Denote the set by P.
- (a) $P^{\circ} = \emptyset$, relint P = P.
- (b) $P^{\circ} = \emptyset$, relint P = P.
- (c) $P^{\circ} = \mathbf{relint} \ P = P$.

EXERCISE 3. Relative Interior and Interior

SOLUTION. 1. From exercise 2.1(b), we know that

$$\mathbf{x}_0 \in \mathbf{relint} \ C \quad \Leftrightarrow \quad \exists r_0 > 0, \ \mathrm{s.t.} \ (\mathbf{x}_0 + B_{r_0}(\mathbf{0})) \cap \mathbf{aff} \ C \subset C$$

$$\Leftrightarrow \quad \exists r_0 > 0, \ \mathrm{s.t.} \ \mathbf{x}_0 + (B_{r_0}(\mathbf{0})) \cap (\mathbf{aff} \ C - \mathbf{x}_0)) \subset C.$$

Noticing that

$$B_{r_0}(\mathbf{0}) \cap (\mathbf{aff} \ C - \mathbf{x}_0) = \{ \mathbf{r} : \mathbf{r} \in \mathbf{aff} \ C - \mathbf{x}_0, \|\mathbf{r}\|_2 \le r_0 \}.$$

Since **aff** C is an affine set in \mathbb{R}^n and $\mathbf{x}_0 \in \mathbf{aff}$ C, from exercise 1.1(a) we have that **aff** $C - \mathbf{x}_0$ is a subspace. Let $r = r_0$. Therefore, for all $\mathbf{v} \in \mathbf{aff}$ $C - \mathbf{x}_0$ and $\|\mathbf{v}\|_2 \leq 1$, we have

$$r\mathbf{v} \in \mathbf{aff} \ C - \mathbf{x}_0, \ \|r\mathbf{v}\|_2 \le r = r_0 \Rightarrow r\mathbf{v} \in \{\mathbf{r} : \mathbf{r} \in \mathbf{aff} \ C - \mathbf{x}_0, \|\mathbf{r}\|_2 \le r_0\}.$$

Thus,

$$\mathbf{x}_0 + r\mathbf{v} \in \mathbf{x}_0 + B_{r_0}(\mathbf{0}) \cap (\mathbf{aff}\ C - \mathbf{x}_0) \subset C$$

which implies that

$$\exists r_0 > 0$$
, s.t. $B_{r_0}(\mathbf{0}) \cap (\mathbf{aff} \ C - \mathbf{x}_0) \subset C$

$$\Leftrightarrow \exists r_0 > 0, \text{ s.t. } \mathbf{x}_0 + r\mathbf{v} \in C \text{ for any } \mathbf{v} \in \mathbf{aff} \ C - \mathbf{x}_0 \text{ and } \|\mathbf{v}\|_2 \leq 1.$$

2.(a) If there $\exists \gamma > 0$ and $\mathbf{y}_0 \in C$, s.t.

$$\mathbf{x} + \gamma(\mathbf{x} - \mathbf{y}) \in C$$
,

since $\frac{\gamma}{1+\gamma}$, $\frac{1}{1+\gamma} \in (0,1)$ and C is convex, we have

$$\mathbf{x} = \frac{\gamma}{1+\gamma}\mathbf{y} + \frac{1}{1+\gamma}(\mathbf{x} + \gamma(\mathbf{x} - \mathbf{y})) \in C.$$

Thus without loss of generality, we assume that $\mathbf{x} \in C$.

 (\Rightarrow) If $\mathbf{x} \in \mathbf{relint} \ C$, from exercise 3.1, we have

$$\exists r > 0$$
, s.t. $\mathbf{x} + \{\mathbf{r} : \mathbf{x} + \mathbf{r} \in \mathbf{aff} \ C, \|\mathbf{r}\|_2 \le r\} \subset C$.

Since **aff** C is affine, we have

$$\mathbf{x} + \gamma(\mathbf{x} - \mathbf{y}) \in \mathbf{aff} \ C, \forall \gamma \in \mathbb{R}.$$

Set $\gamma_0 = \frac{r}{2\|\mathbf{x} - \mathbf{y}\|_2}$, we have

$$\|\gamma_0(\mathbf{x} - \mathbf{y})\|_2 \le \frac{r}{2\|\mathbf{x} - \mathbf{y}\|_2} \|\mathbf{x} - \mathbf{y}\|_2 = \frac{r}{2} < r,$$

which implies that

$$\gamma_0(\mathbf{x} - \mathbf{y}) \in {\mathbf{r} : \mathbf{x} + \mathbf{r} \in \mathbf{aff} \ C, \|\mathbf{r}\|_2 < r}.$$

Therefore,

$$\mathbf{x} + \gamma_0(\mathbf{x} - \mathbf{y}) \in \mathbf{x} + \{\mathbf{r} : \mathbf{x} + \mathbf{r} \in \mathbf{aff} \ C, \|\mathbf{r}\|_2 < r\} \subset C.$$

 (\Leftarrow) We will use the conclusion from the next question.

Firstly we will prove that **relint** $C \neq \emptyset$ if C is a non-empty convex set. Since non-empty convex set C contains a non-empty simplex S, applying an affine transformation if necessary, we can assume that the vertices of S are the vectors (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1):

$$S = \{(\xi_1, \xi_2, \dots, \xi_n) : \xi_i \ge 0, \sum_{i=1}^n \xi_i \le 1\}.$$

But the simplex does have a non-empty interior:

$$S^{\circ} = \{(\xi_1, \xi_2, \dots, \xi_n) : \xi_i > 0, \sum_{i=1}^n \xi_i < 1\}.$$

Therefore S° is a subset of **relint** C. Thus **relint** $C \neq \emptyset$.

Since

$$\forall \mathbf{y} \in C, \exists \gamma > 0, \text{ s.t. } \mathbf{x} + \gamma(\mathbf{x} - \mathbf{y}) \in C,$$

Denote $\mathbf{x} + \gamma(\mathbf{x} + \mathbf{y})$ by \mathbf{z} . Since **relint** $C \neq \emptyset$, set $\mathbf{z} \in \mathbf{relint}$ C. Therefore,

$$\mathbf{x} = \frac{1}{1+\gamma}\mathbf{z} + \frac{\gamma}{1+\gamma}\mathbf{y}$$
, where $\frac{1}{1+\gamma}, \frac{\gamma}{1+\gamma} \in (0,1)$.

Since $\mathbf{z} \in \mathbf{relint} \ C$, $\mathbf{y} \in C \subset \overline{C}$, from exercise 3.2(b), we have $\mathbf{x} \in \mathbf{relint} \ C$.

(b) Denote $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$ by \mathbf{z}_{λ} . Since $\mathbf{x} \in \mathbf{relint} C$, from exercise 3.1, we have

$$\exists r > 0$$
, s.t. $\mathbf{x} + \{\mathbf{r} : \mathbf{r} \in \mathbf{aff} \ C - \mathbf{x}, \|\mathbf{r}\|_2 \le r\} \subset C$.

From exercise 1.1(b), **aff** $C - \mathbf{x}$ is unrelated to \mathbf{x} . Therefore, we can denote $\{\mathbf{r} : \mathbf{r} \in \mathbf{aff} \ C - \mathbf{x}, \|\mathbf{r}\|_2 \le t\}$ by R_t .

Since $\mathbf{y} \in \bar{C}$, $\forall \epsilon > 0$, we have

$$\mathbf{v} \in C + B_{\epsilon}(\mathbf{0}).$$

Therefore,

$$B_{\delta}(\mathbf{z}_{\lambda}) \cap \mathbf{aff} \ C = \lambda \mathbf{x} + (1 - \lambda)\mathbf{y} + R_{\delta}$$

$$\subset \lambda \mathbf{x} + (1 - \lambda)C + (2 - \lambda)R_{\delta}$$

$$= \lambda(\mathbf{x} + R_{\frac{2-\lambda}{\delta}}) + (1 - \lambda)C.$$

Set $\delta = \frac{\lambda}{2-\lambda}r$, we have

$$\mathbf{x} + R_{\delta} \subset \mathbf{x} + R_r \subset C$$
,

therefore,

$$B_{\delta}(\mathbf{z}_{\lambda}) \cap \mathbf{aff} \ C \subset \lambda C + (1 - \lambda)C \subset C$$

since C is convex. Thus, we conclude that

$$\mathbf{z}_{\lambda} = \lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in \mathbf{relint} \ C, \ \forall \ \lambda \in (0, 1].$$

EXERCISE 4. Supporting Hyperplane

SOLUTION. 1.(a) Since the tangent line of y = 1/x on point (x_0, y_0) is

$$y = -\frac{x}{x_0^2} + \frac{2}{x_0},$$

we have

$$\{\mathbf{x} \in \mathbf{R}_{+}^{2} | x_{1}x_{2} \ge 1\} = \bigcap_{x_{0} \in \mathbb{R}_{+}} \{(x, y) : y \ge -\frac{x}{x_{0}^{2}} + \frac{2}{x_{0}}\}.$$

(b) Since the boundary of C is

$$\bigcup_{1 \le i \le n} \{ (x_1, x_2, \dots, x_n) : ||x_i|| = 1 \text{ and } ||x_j|| < 1, \forall j \ne i \}.$$

If the *i*th element of \hat{x} is 1, the supporting hyperplanes of C at \hat{x} is

$$\{(x_1, x_2, \dots, x_n) : x_i = 1\}.$$

If the *i*th element of \hat{x} is -1, the supporting hyperplanes of C at \hat{x} is

$$\{(x_1, x_2, \dots, x_n) : x_i = -1\}.$$

2. Denote the set by P.

 $\forall (\mathbf{a}, b) \in P, \lambda > 0$, we have

$$\lambda \mathbf{a}^T \mathbf{x} \le \lambda b \quad \Leftrightarrow \quad \mathbf{a}^T \mathbf{x} \le b, \ \forall \ \mathbf{x} \in C.$$

$$\lambda \mathbf{a}^T \mathbf{x} \ge \lambda b \quad \Leftrightarrow \quad \mathbf{a}^T \mathbf{x} \ge b, \, \forall \, \mathbf{x} \in D.$$

Which implies that P is a cone.

 $\forall (\mathbf{a}_1, b_1), (\mathbf{a}_2, b_2) \in P, \lambda \in (0, 1), \text{ we have}$

$$(\lambda \mathbf{a}_1 + (1 - \lambda)\mathbf{a}_2)^T \mathbf{x} = \lambda \mathbf{a}_1^T \mathbf{x} + (1 - \lambda)\mathbf{a}_2^T \mathbf{x}$$

$$< \lambda b_1 + (1 - \lambda)b_2, \ \forall \ \mathbf{x} \in C.$$

$$(\lambda \mathbf{a}_1 + (1 - \lambda)\mathbf{a}_2)^T \mathbf{x} = \lambda \mathbf{a}_1^T \mathbf{x} + (1 - \lambda)\mathbf{a}_2^T \mathbf{x}$$

$$\geq \lambda b_1 + (1 - \lambda)b_2, \ \forall \ \mathbf{x} \in D.$$

Therefore,

$$(\lambda \mathbf{a}_1 + (1 - \lambda)\mathbf{a}_2, \lambda b_1 + (1 - \lambda)b_2) = \lambda(\mathbf{a}_1, b_1) + (1 - \lambda)(\mathbf{a}_2, b_2) \in P.$$

Thus, P is convex. Therefore, we can conclude that P is a convex cone.

EXERCISE 5. Farkas' Lemma

SOLUTION. 1.(a) $\forall \mathbf{a} = \sum_{i=1}^{n} \alpha_i \mathbf{a}_i$, $\mathbf{b} = \sum_{i=1}^{n} \beta_i \mathbf{a}_i \in \mathbf{cone} \ A \text{ and } \lambda \in (0,1)$, we have

$$\lambda \mathbf{a} + (1 - \lambda) \mathbf{b} = \sum_{i=1}^{n} (\lambda \alpha_i + (1 - \lambda) \beta_i) \mathbf{a}_i.$$

Since $\alpha_i \geq 0$, $\beta_i \geq 0$, we have $\lambda \alpha_i + (1 - \lambda)\beta_i \geq 0$, which implies that

$$\lambda \mathbf{a} + (1 - \lambda) \mathbf{b} \in \mathbf{cone} \ A, \ \forall \, \mathbf{a}, \mathbf{b} \in \mathbf{cone} \ A \ \mathrm{and} \ \lambda \in (0, 1).$$

Therefore **cone** A is convex.

Suppose that $\mathbf{a}_n \to \mathbf{a}$ as $n \to \infty$. Since $\|\mathbf{a}_n - \mathbf{a}\|_2 \ge |a_{n_i} - a_i|$, we have $a_i = \lim_{n \to \infty} a_{n_i} \ge 0$. Therefore $\mathbf{a} \in \mathbf{cone} A$, which implies that **cone** A is closed.

- 2. Since $\mathbf{b} = \sum_{i=1}^{n} \beta_i \mathbf{a}_i$, set $\mathbf{x} = (\beta_1, \beta_2, \dots, \beta_n)$, we have $\mathbf{A}\mathbf{x} = \mathbf{b}$.
- 3. Since **cone** A is a nonempty closed convex set, from the separation theorem, we have

$$\exists \mathbf{y}_0 \neq \mathbf{0} \text{ and } \alpha < \beta, \text{ s.t. } \mathbf{A}^T \mathbf{y}_0 \geq \boldsymbol{\beta} = (\beta, \beta, \dots, \beta), \mathbf{b}^T \mathbf{y}_0 \leq \alpha.$$

Since $\mathbf{0} \in \mathbf{cone} \ A$, we have $\mathbf{b} \neq \mathbf{0}$. Without loss of generality, we can assume that $b_1 \neq 0$.

If $\alpha = 0$ or $\beta = 0$ then the proof is trivial. Suppose that α , $\beta \neq 0$, set $\mathbf{z} = (\frac{\beta}{b_1}, 0, 0, \dots, 0)$, we have

$$\mathbf{A}^T(\mathbf{y}_0 - \mathbf{z}) \ge \boldsymbol{\beta} - \boldsymbol{\beta} = \mathbf{0}, \ \mathbf{b}^T(\mathbf{y}_0 - \mathbf{z}) \le \alpha - \beta < 0.$$

Therefore, $\mathbf{y}_0 - \mathbf{z} \in \mathbb{R}^m$ satisfies the condition.

- 4. Consider two cases:
- (i) $\mathbf{b} \in \mathbf{cone} A$. From exercise 5.2, there exists $\mathbf{x} \in \mathbb{R}^n$, s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$.
- (ii) $\mathbf{b} \notin \mathbf{cone} \ A$. From exercise 5.3, there exists $\mathbf{y} \in \mathbb{R}^m$, s.t. $\mathbf{A}^T \mathbf{y} \geq \mathbf{0}$ and $\mathbf{b}^T \mathbf{y} < 0$.

Since we have either $\mathbf{b} \in \mathbf{cone} \ A$ or $\mathbf{b} \notin \mathbf{cone} \ A$, at least one of the two statements hold.

On the other hand, suppose that two statements hold together. Since $\mathbf{x} \geq \mathbf{0}$ and $\mathbf{A}^T \mathbf{y} \geq \mathbf{0}$, we have

$$\mathbf{b}^T \mathbf{y} = (\mathbf{A} \mathbf{x})^T \mathbf{y} = \mathbf{x}^T \mathbf{A}^T \mathbf{y} \ge 0,$$

contradicting to $\mathbf{b}^T \mathbf{y} < 0$. Therefore, one and only one of the two statements hold.