Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III (NEW) EXAMINATION - SUMMER 2022

Subject Code:3130702	Date:28-07-2022
Subject Name:Data Structures	
Time:02:30 PM TO 05:00 PM	Total Marks:70
To at your att and a	

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1	(a) (b)	Compare static memory allocation and dynamic memory allocation. Differentiate:	03 04
		(i) primitive and non-primitive data structures	
	(.)	(ii) linear and non-linear data structures	07
	(c)	What is time and space complexity? Explain asymptotic notations in detail.	07
Q.2	(a)	Convert following infix to prefix and postfix expression:	03
~·-	(4)	(a + (b * c) / (d - e))	00
	(b)	Write a 'C' program to reverse the string using stack.	04
	(c)	Enlist applications of stack. Write an algorithm to push and pop elements with respect to stack.	07
		OR	
	(c)	Enlist applications of queue. Write an algorithm to insert and delete elements with respect to simple queue.	07
Q.3	(a)	What is priority queue? Explain with example.	03
V. 0	(b)	Write an algorithm to delete a node from doubly linked list.	04
	(c)	Write a 'C' program to implement a circular queue using array with all necessary overflow and underflow checks.	07
		OR	
Q.3	(a)	Briefly discuss malloc() memory allocation function.	03
	(b)	Write an algorithm to insert a node into doubly linked list.	04
	(c)	Write a 'C' program to implement singly linked list with (1) insert (2) delete and (3) total_node_count functions.	07
Q.4	(a)	Define complete binary tree and almost complete binary tree.	03
ζ	(b)	What is a graph? Explain various representations of graphs.	04
	` '	What is a binary search tree? Create a binary search tree for inserting the	07
		following data.	
		50, 35, 100, 25, 41, 120, 105, 46, 90, 95	
		Explain delete operation for above tree.	
0.4	(5)	OR	02
Q.4	(a)	Discuss the properties of a B-Tree. Construct a binary tree from the traversals given below:	03 04
	(b)	Inorder: 5, 8, 11, 12, 13, 16, 15, 19, 18, 21	V 4
		Postorder: 5, 11, 12, 8, 16, 18, 21, 19, 15, 13	

	(c)	What is a minimum spanning tree? Explain Kruskal's algorithm for finding a minimum spanning tree.	07
Q.5	(a)	Define topological sort?	03
	(b)	Explain indexed sequential file structure.	04
	(c)	Describe various collision resolution techniques in hashing.	07
		OR	
Q.5	(a)	Differentiate: BFS and DFS.	03
	(b)	Compare sequential searching with binary searching in detail.	04
	(c)	What is hashing? What are the qualities of a good hash function? Explain any two hash functions in detail.	07
