Curs recapitulativ Mate-Info

Cuprins

- Logica propoziţională (recap.)
 - Deducţia naturală
 - Clauze propoziționale definite
- 2 Logica de ordinul I (recap.)
- 3 Algoritmul de unificare
- 4 Forme prenex și Skolem. Modele Herbrand
- Formă clauzală. Rezoluție
 - Rezoluţia în logica propoziţională (recap.)
 - Rezoluția în logica de ordinul I
- 6 Logica Horn

Logica propozițională (recap.)

Semantica logicii propoziționale

■ Mulțimea valorilor de adevăr este {0,1} pe care considerăm următoarele operații:

$$\begin{array}{c|c} x & \neg x \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

$$x \lor y := \max\{x,y\}$$

$$x \wedge y := min\{x, y\}$$

Semantica logicii propoziționale

- $lue{}$ o funcție $e: \mathit{Var}
 ightarrow \{0,1\}$ se numește evaluare (interpretare)
- \square pentru orice evaluare $e: Var \rightarrow \{0,1\}$ există o unică funcție $e^+: Form \rightarrow \{0,1\}$ care verifică următoarele proprietăți:

oricare ar fi $v \in Var$ și φ , $\psi \in Form$.

Semantica logicii propoziționale

Cum verificăm că o formulă este tautologie: $\vDash \varphi$?

- \square Fie v_1, \ldots, v_n variabilele care apar în φ .
- \square Cele 2^n evaluări posibile e_1, \ldots, e_{2^n} pot fi scrise într-un tabel:

v_1	<i>v</i> ₂		Vn	φ
$e_1(v_1)$	$e_1(v_2)$		$e_1(v_n)$	$e_1^+(arphi)$
$e_2(v_1)$	$e_2(v_2)$		$e_2(v_n)$	$e_2^+(arphi)$
:	:	:	:	:
$e_{2^n}(v_1)$	$e_{2^n}(v_2)$		$e_{2^n}(v_n)$	$e_{2^n}^+(arphi)$

Fiecare evaluare corespunde unei linii din tabel!

 $\square \models \varphi$ dacă și numai dacă $e_1^+(\varphi) = \cdots = e_{2n}^+(\varphi) = 1$

Sistemul Hilbert

- \square Oricare ar fi φ , ψ , $\chi \in Form$ următoarele formule sunt axiome:
 - (A1) $\varphi \to (\psi \to \varphi)$
 - (A2) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
 - (A3) $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$.
- \square Regula de deducție este modus ponens: $\frac{arphi, \ arphi o \psi}{\psi}$ MP
- O demonstrație din ipotezele Γ (sau Γ-demonstrație) pentru φ este o secvență de formule $\gamma_1, \ldots, \gamma_n$ astfel încât $\gamma_n = \varphi$ și, pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:
 - \square γ_i este axiomă,
 - \square $\gamma_i \in \Gamma$
 - $\ \ \ \ \gamma_i$ se obține din formulele anterioare prin MP: există $j,\ k < i$ astfel încât $\gamma_j = \gamma_k \to \gamma_i$
- \square O formulă φ este Γ -teoremă dacă are o Γ -demonstrație. Notăm prin $\Gamma \vdash \varphi$ faptul că φ este o Γ -teoremă

Sistemul Hilbert

Teorema deducției TD (Herbrand, 1930)

Fie $\Gamma \cup \{\varphi\} \subseteq Form$. Atunci

$$\Gamma \vdash \varphi \rightarrow \psi$$
 dacă și numai dacă $\Gamma \cup \{\varphi\} \vdash \psi$

Sistemul Hilbert

Exercițiu

Fie φ și ψ formule în logica propozițională. Să se arate sintactic că $\vdash \varphi \to (\neg \varphi \to \psi).$

Soluție

Avem următoarea demonstrație:

(1)	$\{\varphi, \neg \varphi\}$	$\vdash \neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi)$	(A1)
(2)	$\{\varphi, \neg \varphi\}$	$\vdash \neg \varphi$	(ipoteză)
(3)	$\{\varphi, \neg \varphi\}$	$\vdash \neg \psi \rightarrow \neg \varphi$	(1), (2), MP
(4)	$\{\varphi, \neg \varphi\}$	$\vdash (\neg \psi \to \neg \varphi) \to (\varphi \to \psi)$	(A3)
(5)	$\{\varphi, \neg \varphi\}$	$\vdash \varphi \rightarrow \psi$	(3), (4), MP
(6)	$\{\varphi, \neg \varphi\}$	$\vdash \varphi$	(ipoteză)
(7)	$\{\varphi, \neg \varphi\}$	$\vdash \psi$	(5), (6), MP
(8)	$\{\varphi\}$	$\vdash \neg \varphi \rightarrow \psi$	(7) Teorema Deducției
(9)		$\vdash \varphi \rightarrow (\neg \varphi \rightarrow \psi)$	(8) Teorema Deducției

□ Numim secvent o expresie de forma

$$\varphi_1,\ldots,\varphi_n\vdash\psi$$

- \square Formulele $\varphi_1, \ldots, \varphi_n$ se numesc premise, iar ψ se numeşte concluzie.
- Un secvent este valid dacă există o demonstrație folosind regulile de deducție.
- \square O teoremă este o formulă ψ astfel încât $\vdash \psi$ (adică ψ poate fi demonstrată din mulțimea vidă de ipoteze).
- Pentru fiecare conector logic vom avea reguli de introducere şi reguli de eliminare.

Regulile deducției naturale

Exercițiu

Demonstrați că următorul secvent este valid:

$$p \land q \rightarrow r \vdash p \rightarrow (q \rightarrow r)$$

Soluție

Exercițiu

Demonstrați că următorul secvent este valid:

$$p \rightarrow q, p \rightarrow \neg q \vdash \neg p$$

Soluție

1	p o q	premiza
2	p o eg q	premiza
3	p	ipoteza
4	q	$(\rightarrow e),1,3$
5	$\neg q$	$(\rightarrow e),2,3$
6	1	$(\neg e),4,5$
7	$\neg p$	$(\neg i), 3-6$

Exercițiu

Echivalența logică este definită prin $\varphi \leftrightarrow \psi = (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$. Găsiți reguli de introducere și eliminare pentru \leftrightarrow .

Soluție

Observăm că \leftrightarrow este o combinație între \rightarrow și \land . Regulile pentru \leftrightarrow se obțin combinând regulile pentru \rightarrow și \land .

Introducerea (\leftrightarrow i): pentru a introduce $\varphi \leftrightarrow \psi$ trebuie să introducem $\varphi \rightarrow \psi$ și $\psi \rightarrow \varphi$, apoi să introducem \wedge .

Soluție (cont.)

Eliminarea $(\leftrightarrow i)$: pentru a elimina $\varphi \leftrightarrow \psi$ trebuie să eliminăm \wedge apoi să eliminăm o \rightarrow ; vom avea două variante:

$$\frac{\varphi \leftrightarrow \psi \quad \psi}{\varphi} \quad (\leftrightarrow e_1) \qquad \frac{\varphi \leftrightarrow \psi \quad \varphi}{\psi} \quad (\leftrightarrow e_2)$$

Clauze propoziționale definit

Clauze propoziționale definite

O clauză definită este o formulă care poate avea una din formele:

- g (clauză unitate)
- $p_1 \wedge \ldots \wedge p_k \rightarrow q$

unde q, p_1, \ldots, p_n sunt variabile propoziționale.

Sistem de deducție pentru clauze definite propoziționale

Pentru o mulțime S de clauze definite propoziționale, avem

- \square Axiome (premise): orice clauză din S
- □ Reguli de deducție:

$$rac{P - P
ightarrow Q}{Q} \; (MP) \qquad \qquad rac{P - Q}{P \wedge Q} \; (andl)$$

Mulțimi parțial ordonate

- □ O mulțime parțial ordonată (mpo) este o pereche (M, \leq) unde $\leq \subseteq M \times M$ este o relație de ordine.
 - relație de ordine: reflexivă, antisimetrică, tranzitivă
- □ O mpo (L, \leq) se numește lanț dacă este total ordonată, adică $x \leq y$ sau $y \leq x$ pentru orice $x, y \in L$. Vom considera lanțuri numărabile, i.e. $x_1 < x_2 < x_3 < \dots$
- \square O mpo (C, <) este completă (CPO) dacă:
 - \square C are prim element \bot ($\bot \le x$ oricare $x \in C$),
 - $\bigvee_n x_n$ există pentru orice lanț $x_1 \le x_2 \le x_3 \le \dots$

Funcții monotone și continue

- \square Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate.
 - O funcție $f:A\to B$ este monotonă (crescătoare) dacă $a_1\leq_A a_2$ implică $f(a_1)\leq_B f(a_2)$ oricare $a_1,\ a_2\in A$.
- \square Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate complete.
 - O funcție $f:A\to B$ este continuă dacă $f(\bigvee_n a_n)=\bigvee_n f(a_n)$ pentru orice lanț $\{a_n\}_n$ din A.
- ☐ Observăm că orice funcție continuă este crescătoare.

Teorema de punct fix

Un element $a \in C$ este punct fix al unei funcții $f: C \to C$ dacă f(a) = a.

Teorema Knaster-Tarski pentru CPO

Fie (C, \leq) o mulțime parțial ordonată completă și $\mathbf{F}: C \to C$ o funcție continuă. Atunci

$$a = \bigvee_{n} \mathbf{F}^{n}(\perp)$$

este cel mai mic punct fix al funcției F.

Puncte fixe

Exercițiu

Care sunt punctele fixe ale următoarei funcții? Dar cel mai punct fix?

$$f_1: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\}), \quad f_1(Y) = Y \cup \{1\}$$

Soluție

Se observă că punctele fixe ale lui f_1 sunt submulțimile Y ale lui $\{1,2,3\}$ care îl conțin pe 1 (dacă $1 \notin Y$, atunci $f_1(Y) = Y \cup \{1\}$ și evident $Y \neq Y \cup \{1\}$).

Deci punctele fixe ale lui f_1 sunt $\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}$.

Evident, cel mai mic punct fix este $\{1\}$.

Puncte fixe

Exercițiu

Care sunt punctele fixe ale următoarei funcții? Dar cel mai punct fix?

$$f_2: \mathcal{P}(\{1,2,3\}) o \mathcal{P}(\{1,2,3\}), \quad f_2(Y) = egin{cases} \{1\} & \mathsf{dac}\ 1 \in Y \\ \emptyset & \mathsf{altfel} \end{cases}$$

Soluție

Se observă că singurele puncte fixe ale lui f_2 sunt \emptyset și $\{1\}$. Evident \emptyset este cel mai mic punct fix.

Clauze definite și funcții monotone

Fie A mulțimea atomilor p_1, p_2, \ldots care apar în S.

Fie $Baza = \{p_i \mid p_i \in S\}$ mulțimea atomilor care apar în clauzele unitate din S.

Definim funcția $f_S: \mathcal{P}(A) \to \mathcal{P}(A)$ prin

$$f_{\mathcal{S}}(Y) = Y \cup \textit{Baza}$$
 $\cup \{ a \in A \mid (s_1 \wedge \ldots \wedge s_n \to a) \text{ este în } \mathcal{S}, \ s_1 \in Y, \ldots, s_n \in Y \}$

Clauze definite și funcții monotone

Exercițiu

Arătați că funcția f_S este monotonă.

Soluție

Fie $Y_1,Y_2\subseteq A$ astfel încât $Y_1\subseteq Y_2$. Trebuie să arătăm că $f_S(Y_1)\subseteq f_S(Y_2)$. Fie următoarele mulțimi:

$$Z_1 = \{ a \in A \mid (s_1 \wedge \ldots \wedge s_n \to a) \text{ este în } S, s_1 \in Y_1, \ldots, s_n \in Y_1 \},$$

$$Z_2 = \{ a \in A \mid (s_1 \wedge \ldots \wedge s_n \to a) \text{ este în } S, s_1 \in Y_2, \ldots, s_n \in Y_2 \}.$$

Deci
$$f_S(Y_1) = Y_1 \cup Baza \cup Z_1$$
 și $f_S(Y_2) = Y_2 \cup Baza \cup Z_2$.
Cum $Y_1 \subseteq Y_2$, rămâne să arătăm doar că $Z_1 \subseteq Z_2$.
Fie $a \in Z_1$. Atunci există $s_1 \wedge \ldots \wedge s_n \to a \in S$ și $s_1, \ldots, s_n \in Y_1$.
Deci $s_1, \ldots, s_n \in Y_2$, de unde rezultă că $a \in Z_2$.

Clauze definite și funcții monotone

Pentru funcția continuă $f_S: \mathcal{P}(A) \to \mathcal{P}(A)$

$$f_{\mathcal{S}}(Y) = Y \cup \textit{Baza}$$
 $\cup \{a \in A \mid (s_1 \wedge \ldots \wedge s_n \rightarrow a) \text{ este în } \mathcal{S}, \ s_1 \in Y, \ldots, s_n \in Y\}$

aplicând Teorema Knaster-Tarski pentru CPO, obținem că

$$\bigcup_n f_S^n(\emptyset)$$

este cel mai mic punct fix al lui f_S .

Cel mai mic punct fix

Exercițiu

Calculați cel mai mic punct fix pentru functia f_{S_1} unde

$$S_1 = \{x_1 \land x_2 \rightarrow x_3, x_4 \land x_2 \rightarrow x_5, x_2, x_6, x_6 \rightarrow x_1\}$$

Soluție

Observăm că $A = \{x_1, x_2, ..., x_6\}$ și $Baza = \{x_2, x_6\}$.

Cum f_S este continuă, aplicăm Teorema Knaster-Tarski pentru a calcula cel mai mic punct fix:

$$f_{S_1}(\emptyset) = Baza = \{x_2, x_6\}$$

$$f_{S_1}(\{x_2, x_6\}) = \{x_2, x_6, x_1\}$$

$$f_{S_1}(\{x_2, x_6, x_1\}) = \{x_2, x_6, x_1, x_3\}$$

$$f_{S_1}(\{x_2, x_6, x_1, x_3\}) = \{x_2, x_6, x_1, x_3\}$$

În concluzie, cel mai mic punct fix căutam este $\{x_2, x_6, x_1, x_3\}$.

Programe logice și cel mai mic punct fix

Teoremă

Fie X este cel mai mic punct fix al funcției f_S . Atunci $q \in X$ ddacă $S \models q$.

Intuiție: Cel mai mic punct fix al funcției f_S este mulțimea tuturor atomilor care sunt consecințe logice ale programului.

Avem o metodă de decizie (decision procedure) pentru a verifica $S \vdash q$. Metoda constă în:

- \square calcularea celui mai mic punct fix X al funcției f_S
- \square dacă $q \in X$ atunci returnăm **true**, altfel returnăm **false**

Această metodă se termină.

Logica de ordinul I (recap.)

Logica de ordinul I - sintaxa

Limbaj de ordinul I \mathcal{L} unic determinat de $\tau = (\mathbf{R}, \mathbf{F}, \mathbf{C}, ari)$
Termenii lui \mathcal{L} , notați $Trm_{\mathcal{L}}$, sunt definiți inductiv astfel: orice variabilă este un termen; orice simbol de constantă este un termen;
\square dacă $f \in \mathbf{F}$, $ar(f) = n$ și t_1, \ldots, t_n sunt termeni, atunci $f(t_1, \ldots, t_n)$ este termen
Formulele atomice ale lui \mathcal{L} sunt definite astfel: \square dacă $R \in \mathbf{R}$, $ar(R) = n$ și t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.
Formulele lui $\mathcal L$ sunt definite astfel:
orice formulă atomică este o formulă
\square dacă $arphi$ este o formulă, atunci $\lnot arphi$ este o formulă
\square dacă φ și ψ sunt formule, atunci $\varphi \lor \psi$, $\varphi \land \psi$, $\varphi \to \psi$ sunt formule
\square dacă α este o formulă și x este o variabilă atunci $\forall x \alpha \exists x \alpha$ sunt formule

Logica de ordinul I - semantică

- O structură este de forma $A = (A, \mathbf{F}^{A}, \mathbf{R}^{A}, \mathbf{C}^{A})$, unde
 - ☐ A este o mulţime nevidă
 - □ $\mathbf{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathbf{F} \}$ este o mulțime de operații pe A; dacă f are aritatea n, atunci $f^{\mathcal{A}} : A^n \to A$.
 - □ $\mathbf{R}^{A} = \{R^{A} \mid R \in \mathbf{R}\}$ este o mulțime de relații pe A; dacă R are aritatea n, atunci $R^{A} \subseteq A^{n}$.
 - $\square \mathbf{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathbf{C} \}.$
- O interpretare a variabilelor lui $\mathcal L$ în $\mathcal A$ ($\mathcal A$ -interpretare) este o funcție $\mathit I:V \to A$.

Inductiv, definim interpretarea termenului t în A sub I notat t_I^A .

Inductiv, definim când o formulă este adevărată în \mathcal{A} în interpretarea I notat $\mathcal{A}, I \vDash \varphi$. În acest caz spunem că (\mathcal{A}, I) este model pentru φ .

- O formulă φ este adevărată într-o structură \mathcal{A} , notat $\mathcal{A} \vDash \varphi$, dacă este adevărată în \mathcal{A} sub orice interpretare. Spunem că \mathcal{A} este model al lui φ .
- O formulă φ este adevărată în logica de ordinul I, notat $\vDash \varphi$, dacă este adevărată în orice structură. O formulă φ este validă dacă $\vDash \varphi$.
- O formulă φ este satisfiabilă dacă există o structură $\mathcal A$ și o $\mathcal A$ -interpretare $\mathcal I$ astfel încât $\mathcal A, \mathcal I \vDash \varphi.$

Validitate și satisfiabilitate

Propoziție

Dacă φ este o formulă atunci

 φ este validă dacă și numai dacă $\neg \varphi$ nu este satisfiabilă.

Algoritmul de unificare

Unificare

 \square O subtituție σ este o funcție (parțială) de la variabile la termeni,

$$\sigma: V \to \mathit{Trm}_{\mathcal{L}}$$

 \square Doi termeni t_1 și t_2 se unifică dacă există o substituție θ astfel încât

$$\theta(t_1)=\theta(t_2).$$

- \square În acest caz, θ se numesțe unificatorul termenilor t_1 și t_2 .
- Un unificator ν pentru t_1 și t_2 este un cel mai general unificator (cgu,mgu) dacă pentru orice alt unificator ν' pentru t_1 și t_2 , există o substituție μ astfel încât

$$\nu' = \nu; \mu.$$

Algoritmul de unificare

 \square Pentru o mulțime finită de termeni $\{t_1,\ldots,t_n\},\ n\geq 2$, algoritmul de unificare stabileste dacă există un cgu. □ Algoritmul lucrează cu două liste: ■ Lista soluție: *S* Lista de rezolvat: R □ Iniţial: \square Lista soluție: $S = \emptyset$ ■ Lista de rezolvat: $R = \{t_1 \stackrel{.}{=} t_2, \dots, t_{n-1} \stackrel{.}{=} t_n\}$ = este un simbol nou care ne ajută sa formăm perechi de termeni (ecuații).

Algoritmul de unificare

Algoritmul constă în aplicarea regulilor de mai jos:

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.
- □ DESCOMPUNE
 - orice ecuație de forma $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n)$ din R este înlocuită cu ecuațiile $t_1 = t'_1, \ldots, t_n = t'_n$.
- □ REZOLVĂ
 - orice ecuație de forma x = t sau t = x din R, unde variabila x nu apare în termenul t, este mutată sub forma x = t în S. În toate celelalte ecuații (din R și S), x este înlocuit cu t.

Algoritmul de unificare

Algoritmul se termină normal dacă $R = \emptyset$. În acest caz, S dă cgu.

Algoritmul este oprit cu concluzia inexistenței unui cgu dacă:

În R există o ecuație de forma

$$f(t_1,\ldots,t_n)\stackrel{\cdot}{=} g(t_1',\ldots,t_k')$$
 cu $f\neq g$.

2 În R există o ecuație de forma x = t sau t = x și variabila x apare în termenul t.

Algoritmul de unificare - schemă

	Lista soluție	Lista de rezolvat	
	S	R	
Inițial	Ø	$t_1 \stackrel{\cdot}{=} t'_1, \ldots, t_n \stackrel{\cdot}{=} t'_n$	
SCOATE	S	R', $t = t$	
	S	R'	
DESCOMPUNE	S	R' , $f(t_1,\ldots,t_n) \stackrel{\cdot}{=} f(t'_1,\ldots,t'_n)$	
	5	R' , $t_1 = t'_1, \ldots t_n = t'_n$	
REZOLVĂ	S	R', $x = t$ sau $t = x$, x nu apare în t	
	x = t, $S[x/t]$	R'[x/t]	
Final	S	Ø	

S[x/t]: în toate ecuațiile din S, x este înlocuit cu t

Exemplu

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{.}{=} x, \ f(x, h(x), y) \stackrel{.}{=} f(g(z), w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(g(y)), y) \stackrel{\cdot}{=} f(g(z), w, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{.}{=} g(z), h(g(y)) \stackrel{.}{=} w, y \stackrel{.}{=} z$	REZOLVĂ
w = h(g(y)),	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	$g(z) \stackrel{\cdot}{=} g(z)$	SCOATE
$w \stackrel{.}{=} h(g(z))$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	Ø	
$w \stackrel{\cdot}{=} h(g(z))$		

 \square $\nu = \{y/z, x/g(z), w/h(g(z))\}$ este cgu.

Exemplu

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{\cdot}{=} x, \ f(x, h(y), y) \stackrel{\cdot}{=} f(g(z), b, z)\}$ au gcu?

S	R	
Ø	$g(y) = x, \ f(x, h(y), y) = f(g(z), b, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(y), y) \stackrel{\cdot}{=} f(g(z), b, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{\cdot}{=} g(z), h(y) \stackrel{\cdot}{=} b, y \stackrel{\cdot}{=} z$	- EŞEC -

- ☐ *h* și *b* sunt simboluri de operații diferite!
- Nu există unificator pentru ecuațiile din U.

Exemplu

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{\cdot}{=} x, \ f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \doteq f(y,w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = y, $h(g(y)) = w$, $y = z$	- EŞEC -

- \square În ecuația $g(y) \stackrel{\cdot}{=} y$, variabila y apare în termenul g(y).
- □ Nu există unificator pentru ecuațiile din U.

Forme prenex și Skolem. Modele Herbrand

Variabile libere. Variabile legate. Enunțuri

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

- \Box Variabilele libere ale unei formule φ sunt variabilele care nu sunt cuantificate.
- □ Mulţimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită prin inducţie după formule:

```
\begin{array}{lll} FV(\varphi) & = & Var(\varphi), & \operatorname{dac\check{a}} \varphi \text{ este formul\check{a} atomic\check{a}} \\ FV(\neg\varphi) & = & FV(\varphi) \\ FV(\varphi \circ \psi) & = & FV(\varphi) \cup FV(\psi), & \operatorname{dac\check{a}} \circ \in \{\to, \lor, \land\} \\ FV(\forall x \, \varphi) & = & FV(\varphi) - \{x\} \\ FV(\exists x \, \varphi) & = & FV(\varphi) - \{x\} \end{array}
```

- \square O variabilă $v \in Var(\varphi)$ care nu este liberă se numește legată în φ .
- ☐ Un enunț este o formulă fără variabile libere.
- □ Pentru orice structură \mathcal{A} și orice enunț φ , o \mathcal{A} -interpretare I nu joacă niciun rol în a determina dacă \mathcal{A} , $I \vDash \varphi$.

Enunțuri

Fie φ o formulă și $FV(\varphi) = \{x_1, \dots, x_n\}.$

Propozitie

Pentru orice structură A avem

$$\mathcal{A} \vDash \varphi$$
 dacă și numai dacă $\mathcal{A} \vDash \forall x_1 \cdots \forall x_n \varphi$.

A verifica validitatea unei formule revine la a verifica validitatea enunțului asociat.

Substituții și formule echivalente

- ☐ Substituțiile înlocuiesc variabilele libere cu termeni.
- □ O substituție aplicată unui termen întoarce un alt termen.
- □ Fie φ o formulă și t_1, \ldots, t_n termeni care nu conțin variabile din φ . Notăm $\varphi[x_1/t_1, \ldots, x_n/t_n]$ formula obținută din φ substituind toate aparițiile libere ale lui x_1, \ldots, x_n cu t_1, \ldots, t_n .

$$\varphi[x_1/t_1,\ldots,x_n/t_n] = \{x_1 \leftarrow t_1,\ldots,x_n \leftarrow t_n\}\varphi$$

 \square Notăm prin $\varphi \vDash \psi$ faptul că $\vDash \varphi \leftrightarrow \psi$, adică φ și ψ au aceleași modele.

Forma rectificată

- \square O formulă φ este în formă rectificată dacă:
 - II nici o variabilă nu apare și liberă și legată
 - 2 cuantificatori distincți leagă variabile distincte
- □ Pentru orice formulă φ există o formulă φ^r în formă rectificată astfel încât $\varphi \vDash \varphi^r$.
- □ Intuitiv, forma rectificată a unei formule se obține prin redenumirea variabilelor astfel încât să nu apară conflicte.

În continuare vom presupune că toate formulele sunt în formă rectificată.

Forma prenex

O formulă prenex este o formulă de forma

$$Q_1x_1 Q_2x_2 \dots Q_nx_n \varphi$$

unde $Q_i \in \{\forall, \exists\}$ pentru orice $i \in \{1, ..., n\}$, $x_1, ..., x_n$ sunt variabile distincte și φ nu conține cuantificatori.

Cum calculăm forma prenex?

☐ Se aplică următoarele echivalențe:

$$\neg\exists x \neg \varphi \quad \exists \ \forall x \varphi \qquad \forall x \varphi \wedge \forall x \psi \quad \exists \ \forall x (\varphi \wedge \psi)$$

$$\neg \forall x \neg \varphi \quad \exists \ \exists x \varphi \qquad \exists x \varphi \vee \exists x \psi \quad \exists \ \exists x (\varphi \vee \psi)$$

$$\neg\exists x \varphi \quad \exists \ \forall x \neg \varphi \qquad \forall x \forall y \varphi \quad \exists \quad \forall y \forall x \varphi$$

$$\neg \forall x \varphi \quad \exists \ \exists x \neg \varphi \qquad \exists x \exists y \varphi \quad \exists \quad \exists y \exists x \varphi$$

$$\forall x \varphi \vee \psi \quad \exists \quad \forall x (\varphi \vee \psi) \text{ dacă } x \notin FV(\psi)$$

$$\forall x \varphi \wedge \psi \quad \exists \quad \forall x (\varphi \wedge \psi) \text{ dacă } x \notin FV(\psi)$$

$$\exists x \varphi \vee \psi \quad \exists \quad \exists x (\varphi \vee \psi) \text{ dacă } x \notin FV(\psi)$$

$$\exists x \varphi \wedge \psi \quad \exists \quad \exists x (\varphi \wedge \psi) \text{ dacă } x \notin FV(\psi)$$

Forma prenex

Exercițiu

Considerăm un limbaj de ordinul I cu $\mathbf{R} = \{P, R, Q\}$ cu ari(P) = 1 și ari(R) = ari(Q) = 2.

Găsiți forma echivalentă prenex pentru următoarea formulă:

$$\forall x \exists y (R(x,y) \to R(y,x)) \to \exists x R(x,x)$$

Soluție

Forma Skolem

Fie φ enunț în formă prenex. Definim φ^{sk} și $\mathcal{L}^{\mathit{sk}}(\varphi)$ astfel:

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- \square dacă φ este universală, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- □ dacă $\varphi = \exists x \, \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c], \, \mathcal{L}^1 = \mathcal{L} \cup \{c\}.$
- □ dacă $\varphi = \forall x_1 ... \forall x_k \exists x \psi$ atunci introducem un nou simbol de funcție f de aritate k și considerăm $\mathcal{L}^1 = \mathcal{L} \cup \{f\}$,

$$\varphi^1 = \forall x_1 \dots \forall x_k \, \psi[x/f(x_1 \dots x_k)]$$

În ambele cazuri, φ^1 are cu un cuantificator existențial mai puțin decât φ . Dacă φ^1 este liberă de cuantificatori sau universală, atunci $\varphi^{sk}=\varphi^1$. Dacă φ^1 nu este universală, atunci formăm $\varphi^2, \varphi^3, \ldots$, până ajungem la o formulă universală și aceasta este φ^{sk} .

Definiție

 φ^{sk} este o formă Skolem a lui φ .

Forma Skolem

Exercițiu

Considerăm un limbaj de ordinul I cu $\mathbf{C} = \{b\}$ și $\mathbf{R} = \{P, R, Q\}$ cu ari(P) = 1 și ari(R) = ari(Q) = 2.

Găsiți forma Skolem pentru următoarea formulă în formă prenex

$$\varphi = \forall x \exists y \forall z \exists w (R(x,y) \land (R(y,z) \rightarrow (R(z,w) \land R(w,w))))$$

Soluție

$$\varphi_{1} = \forall x \forall z \exists w (R(x, f(x)) \land (R(f(x), z) \rightarrow (R(z, w) \land R(w, w))))$$

$$(y \mapsto f(x))$$

$$\varphi_{2} = \forall x \forall z (R(x, f(x)) \land (R(f(x), z) \rightarrow (R(z, g(x, z)) \land R(g(x, z), g(x, z)))))$$

$$(w \mapsto g(x, z))$$

$$\varphi^{sk} = \varphi_{2}$$

Model Herbrand

- Fie \mathcal{L} un limbaj de ordinul I.
 - □ Presupunem că are cel puţin un simbol de constantă!
 - □ Dacă nu are, adăugăm un simbol de constantă.

Universul Herbrand este mulțimea $T_{\mathcal{L}}$ a tututor termenilor fără variabile.

- O structură Herbrand este o structură $\mathcal{H} = (T_{\mathcal{L}}, \mathbf{F}^{\mathcal{H}}, \mathbf{R}^{\mathcal{H}}, \mathbf{C}^{\mathcal{H}})$, unde
 - \square pentru orice simbol de constantă c, $c^{\mathcal{H}} = c$
 - \square pentru orice simbol de funcție f de aritate n,

 $f^{\mathcal{H}}(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$

Atenție! Într-o structură Herbrand nu fixăm o definiție pentru relații: pentru orice simbol de relație R de aritate n, $R^{\mathcal{H}}(t_1,\ldots,t_n)\subseteq (\mathcal{T}_{\mathcal{L}})^n$

O interpretare Herbrand este o interpretare $H:V o T_{\mathcal L}$

O structură Herbrand \mathcal{H} este model al unei formule φ dacă $\mathcal{H} \vDash \varphi$. În acest caz spunem că \mathcal{H} este model Herbrand al lui φ .

Teorema lui Herbrand

Teorema lui Herbrand

Fie $n \ge 0$ și $\varphi = \forall x_k \dots \forall x_1 \psi$ un enunț în forma Skolem. Atunci φ are un model dacă și numai dacă are un model Herbrand.

Teorema lui Herbrand reduce problema satisfiabilității la găsirea unui model Herbrand.

Universul Herbrand al unei formule

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

Definim $T(\varphi)$, universul Herbrand al formulei φ , astfel:

- \square dacă c este o constantă care apare în φ atunci $c \in T(\varphi)$,
- \square dacă φ nu conține nicio constantă atunci alegem o constantă arbitrară c și considerăm că $c \in T(\varphi)$,
- □ dacă f este un simbol de funcție care apare în φ cu ari(f) = n și $t_1, \ldots, t_n \in T(\varphi)$ atunci $f(t_1, \ldots, t_n) \in T(\varphi)$.

Intuitiv, $T(\varphi)$ este mulțimea termenilor care se pot construi folosind simbolurile de funcții care apar în φ .

Definim extensia Herbrand a lui φ astfel

$$\mathcal{H}(\varphi) = \{ \psi[x_1/t_1, \dots, x_n/t_n] \mid t_1, \dots, t_n \in \mathcal{T}(\varphi) \}$$

Extensia Herbrand a unei formule

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

Teoremă

Sunt echivalente:

- $\square \varphi$ este satisfiabilă,
- $\ \ \ \varphi$ are un model Herbrand \mathcal{H} cu proprietatea că $\mathbf{R}^{\mathcal{H}} \subseteq \mathcal{T}(\varphi)^n$ pentru orice relație $R \in \mathbf{R}$ cu ari(R) = n care apare în φ ,
- \square mulțimea de formule $\mathcal{H}(\varphi)$ este satisfiabilă.

Extensia Herbrand a unei formule

Exercițiu

Considerăm un limbaj de ordinul I cu $\mathbf{F} = \{f,g\}$ cu ari(f) = 2 și ari(g) = 1, $\mathbf{C} = \{b,c\}$ și $\mathbf{R} = \{P,Q\}$ cu ari(P) = 3, ari(Q) = 2. Descrieți termenii din universul Herbrand și formulele din expansiunea Herbrand a următoarei formule:

$$\varphi := \forall x \forall y \, P(c, f(x, b), g(y))$$

Solutie

Universul Herbrand

$$T(\varphi) = \{b, c, g(b), g(c), g(g(b)), g(g(c)), \dots, f(b, c), f(b, g(b)), f(b, g(c)), f(g(c), b), f(g(c), g(c)), \dots\}$$

Expansiunea Herbrand

$$\mathcal{H}(\varphi) = \{ P(c, f(b, b), g(b)), P(c, f(b, b), g(c)), P(c, f(c, b), g(b)), P(c, f(g(b), b), g(g(g(b)))), \ldots \}$$

Logica de ordinul I

- ☐ Cercetarea validității poate fi redusă la cercetarea satisfiabilității.
- □ Cercetarea satisfiabilității unei formule poate fi redusă la cercetarea satisfiabilității unui enunț în forma Skolem.
- □ Teorema lui Herbrand reduce verificarea satisfiabilitătii unui enunț în forma Skolem la verificarea satisfiabilității în universul Herbrand.
- \square În situații particulare Teorema lui Herbrand ne dă o procedură de decizie a satisfiabilității, dar acest fapt nu este adevărat în general: dacă limbajul $\mathcal L$ conține cel putin o constantă și cel puțin un simbol de funcție f cu $ari(f) \geq 1$ atunci universul Herbrand $T_{\mathcal L}$ este infinit.

Logica de ordinul I

Problema validității

- u nu este decidabilă.
- □ este semi-decidabilă.

Problema satisfiabilității

- nu este decidabilă.
- u nu este semi-decidabilă.

Formă clauzală. Rezoluție

Literali. FNC

☐ În logica propozițională un literal este o variabilă sau negația unei variabile.

$$literal := p \mid \neg p$$
 unde p este variabilă propozițională

☐ În logica de ordinul I un literal este o formulă atomică sau negația unei formule atomice.

$$literal := P(t_1, \ldots, t_n) \mid \neg P(t_1, \ldots, t_n)$$

unde $P \in \mathbf{R}$, ari(P) = n, și t_1, \ldots, t_n sunt termeni.

- \square Pentru un literal L vom nota cu L^c literalul complement.
 - O formulă este în formă normală conjunctivă (FNC) dacă este o conjuncție de disjuncții de literali.

Forma clauzală în logica propozițională

- \square Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \bowtie \alpha^{fc}$.
- □ Pentru o formulă din logica propozițională determinăm FNC corespunzătoare prin următoarele transformări:
 - 1 înlocuirea implicațiilor și echivalențelor

$$\begin{array}{cccc} \varphi \rightarrow \psi & \exists & \neg \varphi \lor \psi \\ \varphi \leftrightarrow \psi & \exists & (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi) \end{array}$$

regulile De Morgan

$$\neg(\varphi \lor \psi) \quad \exists \quad \neg\varphi \land \neg\psi$$
$$\neg(\varphi \land \psi) \quad \exists \quad \neg\varphi \lor \neg\psi$$

3 principiului dublei negații

$$\neg\neg\psi$$
 \forall \forall

4 distributivitatea

$$\varphi \lor (\psi \land \chi) \quad \exists \quad (\varphi \lor \psi) \land (\varphi \lor \chi)$$
$$(\psi \land \chi) \lor \varphi \quad \exists \quad (\psi \lor \varphi) \land (\chi \lor \varphi)$$

Forma clauzală în logica de ordinul I

```
□ O formulă este formă normală conjunctivă prenex (FNCP) dacă
      \square este în formă prenex Q_1x_1 \dots Q_nx_n\psi (Q_i \in \{\forall, \exists\}) oricare i
      \square \psi este FNC
   O formulă este formă clauzală dacă este enunț universal și FNCP:
                            \forall x_1 \dots \forall x_n \psi unde \psi este FNC
   Pentru orice formulă \varphi din logica de ordinul I există o formă clauzală
   \varphi^{fc} astfel încât
           arphi este satisfiabilă dacă și numai dacă arphi^{\mathit{fc}} este satisfiabilă
\square Pentru o formulă \varphi, forma clauzală \varphi^{fc} se poate calcula astfel:
      se determină forma rectificată
         se cuantifică universal variabilele libere
         se determină forma prenex
         se determină forma Skolem
         în acest moment am obținut o formă Skolem \forall x_1 \dots \forall x_n \psi
      5 se determină o FNC \psi' astfel încât \psi \vDash \psi'
      6 \varphi^{fc} este \forall x_1 \dots \forall x_n \psi'
```

Clauze

- □ O clauză este o disjuncție de literali.
- \square Dacă L_1,\ldots,L_n sunt literali atunci clauza $L_1\vee\ldots\vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$

clauză = mulțime de literali

- □ Clauza $C = \{L_1, ..., L_n\}$ este satisfiabilă dacă $L_1 \lor ... \lor L_n$ este satisfiabilă.
- □ O clauză *C* este trivială dacă conține un literal și complementul lui.
- \square Când n = 0 obținem clauza vidă, care se notează \square
- □ Prin definiție, clauza □ nu este satisfiabilă.

Forma clauzală

- Observăm că o FNC este o conjuncție de clauze.
- □ Dacă C_1, \ldots, C_k sunt clauze atunci $C_1 \wedge \ldots \wedge C_k$ o vom scrie ca mulțimea $\{C_1, \ldots, C_k\}$

FNC = mulțime de clauze

- \square O mulțime de clauze $\mathcal{C} = \{C_1, \dots, C_k\}$ este satisfiabilă dacă $C_1 \wedge \dots \wedge C_k$ este satisfiabilă
- \square Când k = 0 obținem mulțimea de clauze vidă, pe care o notăm $\{\}$
- □ Prin definiție, mulțimea de clauze vidă {} este satisfiabilă.
 - $\{\}$ este satisfiabilă, dar $\{\Box\}$ nu este satisfiabilă

Forma clauzală

- Dacă φ este o formulă în calculul propozițional, atunci $\varphi^{fc} = \bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij}$ unde L_{ij} sunt literali
- Dacă φ o formulă în logica de ordinul I, atunci $\varphi^{fc} = \forall x_1 \dots \forall x_n \left(\bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij} \right) \text{ unde } L_{ij} \text{ sunt literali}$

arphi este satisfiabilă dacă și numai dacă $arphi^{\it fc} \ {\it este satisfiabilă dacă și numai dacă} \ \{\{L_{11},\ldots,L_{1n_1}\},\ldots,\{L_{k1},\ldots,L_{kn_k}\}\} \ {\it este satisfiabilă}$

Rezoluția în logica propozițională (recap.)

Regula rezoluției

Rez
$$\frac{C_1 \cup \{p\}, C_2 \cup \{\neg p\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze, iar p este variabila propozițională astfel încât $\{p, \neg p\} \cap C_1 = \emptyset$ și $\{p, \neg p\} \cap C_2 = \emptyset$.

Fie $\mathcal C$ o mulțime de clauze. O derivare prin rezoluție din $\mathcal C$ este o secvență finită de clauze astfel încât fiecare clauză este din $\mathcal C$ sau rezultă din clauzele anterioare prin rezoluție (este rezolvent).

Procedura Davis-Putnam DPP (informal)

$\textbf{Intrare:} \ \ o \ \ mul \\ time \ \mathcal{C} \ \ de \ clauze$
Se repetă următorii pași:
se elimină clauzele triviale
□ se alege o variabilă <i>p</i>
\square se adaugă la mulțimea de clauze toți rezolvenții obținuti prin aplicarea Rez pe variabila p
\square se șterg toate clauzele care conțin p sau $\neg p$
leșire: dacă la un pas s-a obținut \square , mulțimea $\mathcal C$ nu este satisfiabilă altfel $\mathcal C$ este satisfiabilă.

Procedura Davis-Putnam DPP

Exercițiu

Folosind algoritmul Davis-Putnam, cercetați dacă următoarea mulțime de clauze din calculul propozițional este satisfiabilă:

$$\mathcal{C} = \{\{v_0\}, \{\neg v_0, v_1\}, \{\neg v_1, v_2, v_3\}, \{\neg v_3, v_4\}, \{\neg v_4\}, \{\neg v_2\}\}$$

Soluție

Pasul 1.

Alegem variabila v_0 și selectăm $C_0^{v_0} := \{\{v_0\}\}, C_0^{-v_0} = \{\{\neg v_0, v_1\}\}.$ Mulțimea rezolvenților posibili este $\mathcal{R}_0 := \{\{v_1\}\}.$

Se elimină clauzele în care apare v_0 , adăugăm rezolvenții și obținem:

$$\mathcal{C}_1 := \{ \{ \neg v_1, v_2, v_3 \}, \{ \neg v_3, v_4 \}, \{ \neg v_4 \}, \{ \neg v_2 \}, \{ v_1 \} \}$$

Procedura Davis-Putnam DPP

Soluție (cont.)

Pasul 2.

Alegem variabila v_1 și selectăm $C_1^{v_1} := \{\{v_1\}\}\$ și $C_1^{\neg v_1} := \{\{\neg v_1, v_2, v_3\}\}\$. Mulțimea rezolvenților posibili este $\mathcal{R}_1 := \{\{v_2, v_3\}\}.$

Se elimină clauzele în care apare v_1 , adăugăm rezolvenții și obținem:

 $C_2 := \{\{\neg v_3, v_4\}, \{\neg v_4\}, \{\neg v_2\}, \{v_2, v_3\}\}.$

Pasul 3.

Alegem variabila v_2 și selectăm $C_2^{v_2} := \{\{v_2, v_3\}\}, C_2^{\neg v_2} := \{\{\neg v_2\}\}.$

Mulţimea rezolvenţilor posibili este $\mathcal{R}_2 := \{\{v_3\}\}.$

Se elimină clauzele în care apare v_2 , adăugăm rezolvenții și obținem:

$$\mathcal{C}_3 := \{ \{ \neg v_3, v_4 \}, \{ \neg v_4 \}, \{ v_3 \} \}.$$

Procedura Davis-Putnam DPP

Soluție (cont.)

Pasul 4.

Alegem variabila v_3 și selectăm $\mathcal{C}_3^{v_3} := \{\{v_3\}\}, \, \mathcal{C}_3^{\neg v_3} := \{\{\neg v_3, v_4\}\}.$ Mulțimea rezolvenților posibili este $\mathcal{R}_3 := \{\{v_4\}\}.$

Se elimină clauzele în care apare v_3 , adăugăm rezolvenții și obținem:

$$\mathcal{C}_4 := \{ \{ \neg v_4 \}, \{ v_4 \} \}.$$

Pasul 5.

Alegem variabila v_4 și selectăm $\mathcal{C}_4^{v_4} := \{\{v_4\}\}, \, \mathcal{C}_4^{\neg v_4} := \{\{\neg v_4\}\}.$

Mulţimea rezolvenţilor posibili este $\mathcal{R}_4 := \{\Box\}.$

Se elimină clauzele în care apare v_4 , adăugăm rezolvenții și obținem:

 $\mathcal{C}_5 := \{\Box\}.$

Deoarece $\mathcal{C}_5 = \{\Box\}$, obținem că mulțimea de clauze \mathcal{C} nu este satisfiabilă.

Rezoluția în logica de ordinul

Clauze închise

- □ Fie C o clauză. Spunem că C' este o instață a lui C dacă există o substituție $\theta: V \to Trm_C$ astfel încât $C' = \theta(C)$.
 - Spunem că C' este o instanță închisă a lui C dacă există o substituție $\theta:V\to T_{\mathcal{L}}$ such that $C'=\theta(C)$ (C' se obține din C înlocuind variabilele cu termeni din universul Herbrand)
- \square Fie $\mathcal C$ o mulțime de clauze. Definim

$$\mathcal{H}(\mathcal{C}) := \{ \theta(C) \mid C \in \mathcal{C}, \theta : V \to T_{\mathcal{L}} \}$$

 $\mathcal{H}(\mathcal{C})$ este mulțimea instanțelor închise ale clauzelor din \mathcal{C} .

Rezoluția pe clauze închise

$$Rez \ \frac{C_1 \cup \{L\}, C_2 \cup \{\neg L\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze închise, iar L este o formulă atomică închisă astfel încât $\{L, \neg L\} \cap C_1 = \emptyset$ și $\{L, \neg L\} \cap C_2 = \emptyset$.

Teoremă

Fie φ o formulă arbitrară în logica de ordinul I. Atunci $\models \varphi$ dacă și numai dacă există o derivare pentru \square din $\mathcal{H}(\mathcal{C})$ folosind Rez , unde \mathcal{C} este mulțimea de clauze asociată lui $(\neg \varphi)^{\mathit{fc}}$.

Rezoluția pe clauze închise

Exercițiu

Considerăm următoarea mulțime de clauze în logica de ordinul I:

$$C = \{ \{ \neg P(f(a)), Q(y) \}, \{ P(y) \}, \{ \neg Q(b) \} \}$$

Arătați că \mathcal{C} nu este satisfiabilă prin următoarele metode:

- 1) Găsiți o submulțime finită nesatisfiabilă lui $\mathcal{H}(\mathcal{C})$.
- 2) Găsiți o derivare pentru \square folosind rezoluția pe clauze închise.

Rezoluția pe clauze închise

Soluție

```
1) \mathcal{H}(C) = \{ \{ \neg Q(b) \}, \{ \neg P(f(a)), Q(a) \}, \{ \neg P(f(a)), Q(b) \}, \{ P(a) \}, \{ P(b) \}, \{ P(f(a)) \}, \dots \}
O submulțime nesatisfiabilă este
```

Submultime nesatisfiabilia este $\{\{\neg P(f(a)), Q(b)\}, \{P(f(a))\}, \{\neg Q(b)\}\}$

- 2) Derivare pentru □:
 - 1. $\{\neg P(f(a)), Q(b)\}$
 - 2. $\{P(f(a))\}$
 - 3. $\{Q(b)\}$
 - 4. $\{\neg Q(b)\}$
 - 5. □

Rezoluția pe clauze arbitrare

Regula rezoluției pentru clauze arbitrare

$$\textit{Rez } \frac{\textit{C}_{1},\textit{C}_{2}}{\left(\sigma\textit{C}_{1}\setminus\sigma\textit{Lit}_{1}\right)\cup\left(\sigma\textit{C}_{2}\setminus\sigma\textit{Lit}_{2}\right)}$$

dacă următoarele condiții sunt satisfăcute:

- C_1 , C_2 clauze care nu au variabile comune,
- 2 $Lit_1 \subseteq C_1$ și $Lit_2 \subseteq C_2$ sunt mulțimi de literali,
- σ este un cgu pentru Lit₁ și Lit₂^c, adică σ unifică toți literalii din Lit₁ și Lit₂^c.

O clauză C se numește rezolvent pentru C_1 și C_2 dacă există o redenumire de variabile $\theta: V \to V$ astfel încât C_1 și θC_2 nu au variabile comune și C se obține din C_1 și θC_2 prin Rez.

Rezoluția în logica de ordinul I

Exercițiu

Găsiți o derivare prin rezoluție a \square pentru următoarea mulțime de clauze:

$$C_{1} = \{ \neg P(x), R(x, f(x)) \}$$

$$C_{2} = \{ \neg R(a, x), Q(x) \}$$

$$C_{3} = \{ P(a) \}$$

$$C_{4} = \{ \neg Q(f(x)) \}$$

unde P, Q, R sunt simboluri de relații, f e simbol de funție, a este o constantă, x, y sunt variabile.

Soluție

$$C_5 = \{R(a, f(a))\} \text{ din } Rez, C_1, C_3, \theta = \{x \leftarrow a\}$$

$$C_4' = \{\neg Q(f(z))\} \text{ redenumire}$$

$$C_6 = \{\neg R(a, f(z))\} \text{ din } Rez, C_4', C_2, \theta = \{y \leftarrow f(z)\}$$

$$\square \text{ din } Rez, C_6, C_5, \theta = \{z \leftarrow a\}$$

Logica Horn

Clauze definite. Programe logice. Clauze Horn

□ clauză:

$$\{\neg Q_1, \dots, \neg Q_n, P_1, \dots, P_k\}$$
 sau $Q_1 \wedge \dots \wedge Q_n \rightarrow P_1 \vee \dots \vee P_k$ unde $n, k \geq 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

- \square clauză program definită: k=1
 - \square cazul n > 0: $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$
 - \square cazul n=0: $\top \to P$ (clauză unitate, fapt)

Program logic definit = mulțime finită de clauze definite

- □ scop definit (țintă, întrebare): k=0
 - $\square Q_1 \wedge \ldots \wedge Q_n \to \bot$
- \square clauza vidă \square : n = k = 0

Clauza Horn = clauză program definită sau clauză scop ($k \le 1$)

Programare logica

☐ Logica clauzelor definite/Logica Horn: un fragment al logicii de ordinul I în care singurele formule admise sunt clauze Horn \square formule atomice: $P(t_1,\ldots,t_n)$ \square $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$ unde toate Q_i , P sunt formule atomice, \top sau \bot ☐ Problema programării logice: reprezentăm cunoștințele ca o mulțime de clauze definite T și suntem interesați să aflăm răspunsul la o întrebare de forma $Q_1 \wedge \ldots \wedge Q_n$, unde toate Q_i sunt formule atomice $T \models Q_1 \wedge \ldots \wedge Q_n$ □ Variabilele din T sunt cuantificate universal. □ Variabilele din $Q_1, ..., Q_n$ sunt cuantificate existențial.

Limbajul PROLOG are la bază logica clauzelor Horn.

Modele Herbrand

Definim o ordine între modelele Herbrand:

 $\mathcal{H}_1 \leq \mathcal{H}_2$ este definită astfel:

pentru orice
$$R \in \mathbf{R}$$
 cu ari $(R) = n$ și pentru orice termeni t_1, \ldots, t_n dacă $\mathcal{H}_1 \models R(t_1, \ldots, t_n)$, atunci $\mathcal{H}_2 \models R(t_1, \ldots, t_n)$

Semantica unui program logic definit T este dată de cel mai mic model Herbrand al lui T!

- \square Definim $\mathcal{LH}_{\mathcal{T}} := \bigcap \{\mathcal{H} \mid \mathcal{H} \text{ model Herbrand pentru } \mathcal{T}\}$
- $\square \mathcal{LH}_T \models T$.
- □ Vom caracteriza cel mai mic model Herbrand \mathcal{LH}_T printr-o construcție de punct fix.

Cel mai mic model Herbrand

- \square O instanță de bază a unei clauze $Q_1(x_1) \wedge \ldots \wedge Q_n(x_n) \rightarrow P(y)$ este rezultatul obținut prin înlocuirea variabilelor cu termeni fără variabile.
- \square Pentru o mulțime de clauze definite T, o formulă atomică P și o mulțime de formule atomice X,

$$oneStep_T(P, X)$$
 este adevărat

dacă există o instanță de bază a unei clauze $Q_1(x_1) \wedge \ldots \wedge Q_n(x_n) \rightarrow P(y)$ din T astfel încât P este instanța lui P(y) și instanța lui $Q_i(x_i)$ este în X, pentru orice $i=1,\ldots,n$.

- \square Baza Herbrand $B_{\mathcal{L}}$ este mulțimea formulelor atomice fără variabile.
- ☐ Pentru o mulțime de clauze definite *T*, definim

$$f_T : \mathcal{P}(B_{\mathcal{L}}) \to \mathcal{P}(B_{\mathcal{L}})$$
 $f_T(X) = \{ P \in B_{\mathcal{L}} \mid oneStep_T(P, X) \}$

Cel mai mic model Herbrand

Fie T un program logic definit.

- □ f_T este continuă
- \square Din teorema Knaster-Tarski, f_T are un cel mai mic punct fix FP_T .
- □ *FP_T* este reuniunea tuturor mulțimilor

$$f_T(\{\}), f_T(f_T(\{\})), f_T(f_T(f_T(\{\}))), \ldots$$

Propoziție (caracterizarea \mathcal{LH}_T)

Pentru orice $R \in \mathbf{R}$ cu ari(R) = n și pentru orice t_1, \ldots, t_n termeni, avem

$$(t_1,\ldots,t_n)\in R^{\mathcal{LH}_T}$$
 ddacă $R(t_1,\ldots,t_n)\in FP_T$

Sistem de deducție backchain

Sistem de deducție pentru clauze Horn

Pentru un program logic definit T avem

- □ Axiome: orice clauză din *T*
- ☐ Regula de deducție: regula backchain

$$\frac{\theta(Q_1) \quad \theta(Q_2) \quad \dots \quad \theta(Q_n) \quad (Q_1 \land Q_2 \land \dots \land Q_n \to P)}{\theta(Q)}$$

unde $Q_1 \wedge Q_2 \wedge \ldots \wedge Q_n \rightarrow P \in T$, iar θ este cgu pentru Q și P.

Rezoluția SLD

Fie *T* o mulțime de clauze definite.

$$\mathsf{SLD} \boxed{ \frac{\neg Q_1 \lor \cdots \lor \neg Q_i \lor \cdots \lor \neg Q_n}{\theta(\neg Q_1 \lor \cdots \lor \neg P_1 \lor \cdots \lor \neg P_m \lor \cdots \lor \neg Q_n)} }$$

unde

- \square $Q \vee \neg P_1 \vee \cdots \vee \neg P_m$ este o clauză definită din T (în care toate variabilele au fost redenumite) și
- \square variabilele din $Q \vee \neg P_1 \vee \cdots \vee \neg P_m$ și Q_i se redenumesc
- \square θ este c.g.u pentru Q_i și Q

Rezoluția SLD

Fie T o mulțime de clauze definite și $Q_1 \wedge \ldots \wedge Q_m$ o întrebare, unde Q_i sunt formule atomice.

□ O derivare din T prin rezoluție SLD este o secvență

$$G_0 := \neg Q_1 \lor \ldots \lor \neg Q_m, \quad G_1, \quad \ldots, \quad G_k, \ldots$$

în care G_{i+1} se obține din G_i prin regula SLD.

□ Dacă există un k cu $G_k = \square$ (clauza vidă), atunci derivarea se numește SLD-respingere.

Rezoluția SLD

Exercițiu

Găsiți o SLD-respingere pentru următorul program Prolog și ținta:

- 1. p(X) := q(X,f(Y)), r(a). ?- p(X), q(Y,Z).
- 2. p(X) := r(X).
- 3. q(X,Y) := p(Y).
- 4. r(X) := q(X,Y).
- 5. r(f(b)).

Soluție

$$\begin{array}{lll} G_0 = \neg p(X) \vee \neg q(Y,Z) & \\ G_1 = \neg r(X_1) \vee \neg q(Y,Z) & (2 \text{ cu } \theta(X) = X_1) \\ G_2 = \neg q(Y,Z) & (5 \text{ cu } \theta(X_1) = f(b)) \\ G_3 = \neg p(Z_1) & (3 \text{ cu } \theta(X) = Y_1 \text{ si } \theta(Y) = Z_1) \\ G_4 = \neg r(X) & (2 \text{ cu } \theta(Z_1) = X) \\ G_5 = \square & (5 \text{ cu } \theta(X) = f(b)) \end{array}$$

Rezoluția SLD - arbori de căutare

Arbori SLD

- \square Presupunem că avem o mulțime de clauze definite T și o țintă $G_0 = \neg Q_1 \lor \ldots \lor \neg Q_m$
- □ Construim un arbore de căutare (arbore SLD) astfel:
 - ☐ Fiecare nod al arborelui este o ţintă (posibil vidă)
 - \square Rădăcina este G_0
 - Dacă arborele are un nod G_i , iar G_{i+1} se obține din G_i folosind regula SLD folosind o clauză $C_i \in T$, atunci nodul G_i are copilul G_{i+1} . Muchia dintre G_i și G_{i+1} este etichetată cu C_i .
- □ Dacă un arbore SLD cu rădăcina G_0 are o frunză □ (clauza vidă), atunci există o SLD-respingere a lui G_0 din T.

Rezoluția SLD - arbori de căutare

Exercițiu

Desenați arborele SLD pentru programul Prolog de mai jos și ținta ?-p(X,X).

```
1. p(X,Y) := q(X,Z), r(Z,Y). 7. s(X) := t(X,a). 2. p(X,X) := s(X). 8. s(X) := t(X,b). 9. s(X) := t(X,X). 4. q(b,a). 10. t(a,b). 5. q(X,a) := r(a,X). 11. t(b,a). 6. r(b,a).
```

Rezoluția SLD - arbori de căutare

Soluție

Baftă la examen!