SITUATION

Un point $M\left(x;y
ight)$ appartient à C_f , la courbe représentative d'une fonction f, si et seulement si $x\in D_f$ et $f\left(x
ight)=y$.

ÉNONCÉ

On considère une fonction f, définie par :

$$orall x \in \mathbb{R}$$
 , $f\left(x
ight) = \cos\left(x
ight)\sin\left(x
ight)$

Démontrer que le point $A\left(rac{\pi}{4};rac{1}{2}
ight)$ appartient à C_f , la courbe représentative de f.

Etape 1

Réciter le cours

On rappelle qu'un point $M\left(x;y
ight)$ appartient à C_{f} si et seulement si $x\in D_{f}$ et $f\left(x
ight)=y$.

APPLICATION

Le point A appartient à C_f si et seulement si $\dfrac{\pi}{4} \in D_f$ et $f\left(\dfrac{\pi}{4}\right) = \dfrac{1}{2}$.

Etape 2

Vérifier que $x \in D_f$ et calculer $f\left(x ight)$

On vérifie que $x\in D_f$ et on calcule $f\left(x
ight)$.

APPLICATION

$$D_f=\mathbb{R}$$
 , donc $rac{\pi}{4}\in D_f$.

On calcule $f\left(rac{\pi}{4}
ight)$:

$$f\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{4}\right)$$

$$f\left(rac{\pi}{4}
ight) = rac{\sqrt{2}}{2} imes rac{\sqrt{2}}{2}$$

$$f\left(\frac{\pi}{4}\right) = \frac{\left(\sqrt{2}\right)^2}{4}$$

$$f\left(\frac{\pi}{4}\right) = \frac{1}{2}$$

Etape 3

Conclure

- ullet Si $x\in D_f$ et $f\left(x
 ight) =y$, on en déduit que le point $M\left(x;y
 ight)$ appartient à C_f .
- ullet Si $x\in D_f$ et $f\left(x
 ight)
 eq y$, on en déduit que le point $M\left(x;y
 ight)$ n'appartient pas à C_f .
- ullet Si $x
 otin D_f$, on en déduit que le point $M\left(x;y
 ight)$ n'appartient pas à C_f .

APPLICATION

On a bien
$$rac{\pi}{4}\in D_f$$
 et $f\left(rac{\pi}{4}
ight)=rac{1}{2}$.

On en déduit que le point $A\left(rac{\pi}{4};rac{1}{2}
ight)$ appartient à C_f .