算法比较实验

1. 实验数据说明

针对各个算法的效率和效果,设计了三个不同的实验,对每个实验我们准备了五组 各具特点的测试图片,图片样式如图 1 所示,各组图像特点的描述如表 1 所示。

图 1 实验数据图片

数据 编号	对应图像	尺寸	图像大小	说明
0	左上,手持图	320x240	9KB/6KB	仅有手持物的微量变化
1	上中, 书籍图	421x613	31KB/26KB	图像发生旋转
2	右图,山	1000x1000	812KB/836KB	图像左右平移,且图像较大
3	左下, 大象图	340x240	25KB/27KB	图像左右平移
4	下中, 行人图	486x710	30KB/34KB	图像上下平移

表 1 测试图像说明

图像组	方法	无ANMS		使用ANMS		
国隊組		特征点数	用时(s)	特征点数	用时(s)	
	SIFT	530	0.0977409	400	0.0644546	
0	SURF	631	0.103982	400	0.102302	
	ORB	906	0.0199646	400	0.0661078	
	SIFT	1932	0.219821	400	0.259124	
1	SURF	2085	0.231244	400	0.392419	
	ORB	1000	0.0347727	400	0.248297	
	SIFT	33182	1.34178	400	14.4233	
2	SURF	13515	1.20051	400	14.4299	
	ORB	1000	0.129611	400	14.2221	
	SIFT	460	0.0778462	400	0.0639642	
3	SURF	999	0.0715532	400	0.0690893	
	ORB	777	0.0187297	400	0.0639811	
	SIFT	1061	0.260949	400	0.252896	
4	SURF	2872	0.287416	400	0.307523	
	ORB	1000	0.0355567	400	0.263798	

表 2 实验一结果表

由表 1 可知,测试图像包含了图像旋转平移、物体平移旋转、图像本身特征点多少等各种情况,用这些图进行测试,具有好的可比较性。

2. 实验一:特征提取方法比较 (SITF、SURF、

ORB) 以及 ANMS 抑制

实验一中,我们针对五张图进行了SIFT、SURF、ORB 三种不同的特征提取方法,并加入了ANMS 去除野点(没有进行匹配),他们分别的用时、效果如表 2 所示。

可以发现,在特征点的提取数量上,SIFT、SURF 提取的特征点数量一般要多于ORB;但在用时上,则是ORB 要明显快于SIFT 和 SURF。而因为本文实现的ANMS方法可以设置最终控制的特征点数,所以经过ANMS 后可以明显地减少特征点数(通

过其在测试图 2 上的效果,如图 2 所示,可以清晰地

看到其去除野点的效果)。

图像	方法	匹配数	用时(s)	方法	匹配数	用时(s)
0	BF	249	0.120689	FLANN	249	0.0870872
U	BFL1	249	0.108993	RANSAC	249	0.0984806
4	BF	1031	0.339932	FLANN	1031	0.320619
1	BFL1	1031	0.332139	RANSAC	1031	0.342901
2	BF	17142	17142 8.45516 FLANN	FLANN	17142	3.15939
2	BFL1	17142	13.4289	RANSAC	17142	8.70495
2	BF	219	0.0941651	FLANN	219	0.102561
3	BFL1	219	0.0867732	RANSAC	219	0.10352
Ä	BF	496	0.386987	FLANN	496	0.321772
4	BFL1	496	0.324493	RANSAC 17142 FLANN 219 RANSAC 219	496	0.367925

表 3 实验二结果表

图 2 ANMS 在测试图 2 上的效果

3. 实验二:特征匹配方法比较 (BF、BFL1、FLANN、RANSAC)

在实验二中,我们对四种不同特征匹配方式进行了比较(都使用 SIFT 特征点,没有使用错误匹配去除),在我们测试的五幅图中,匹配效果差异不大,都较为良好,主要区别在其用时上。

其中 FLANN 用时显得较短, 而 BF 也如所估计的那样用时最长, 另外由于 RANSAC 方法还要进行模型参数的计算, 所以用时相对 FLANN 要长一些。

图像	方法	匹配数	用时(s)
	NN	134	0.120973
0	NNDR	141	0.0907963
	Homography	134 141 249 479 466 1031 5933 5924 17142 150 154 219 222 236	0.0876323
	NN	134 141 249 479 466 1031 5933 5924 17142 150 154 219	0.358617
1	NNDR	466	0.324698
	Homography	1031	0.336019
	NN	5933	8.75284
2	NNDR	5924	9.14682
	Homography	134 141 249 479 466 1031 5933 5924 17142 150 154 219 222 236	9.14835
	NN	150	0.107877
3	NNDR	154	0.0913632
	Homography	219	0.0933146
	NN	222	0.329991
4	NNDR	236	0.448234
	Homography	496	0.331858

表 4 实验三结果表

图 3 实验三在图 3 上效果

(从上到下依次为 NN、NNDR 和 Homography)

4. 实验三: 错误匹配去除方法比较 (NN、NNDR、Homography)

实验三中, 我们采用了三种方法来去除错误匹配(都使用 SIFT 特征和 BF 匹配方法), 效果记录在表 4 中。分析可知, 在减少匹配数上来说, NN 和 NNDR 减少的较多(这也与设置的阈值等参数有关, 进一步的比较在此次实验中没有进行); 而在时间上, 三者的差异也不是很大, 但分析在测试图 2 上的结果, 或许对于较大图像, NN 的速度最快。

三种错误匹配去除的一个例子如图 3 所示,可知在这种移动类型的变化图像上,计算单应性模型去除的效果未必一定好。