On Draft: The efficiency landscape in the NBA by draft round

William Tackett, Jacob Vidergar

Background

Over the past 2 decades, NBA teams' game strategies have evolved to be more efficient^[1]

Dataset: player performance metrics, demographic information, height, weight

Timeframe: 1996-97 through 2022-23

Goal: to investigate how the relationship between draft round (Round 1 vs Round 2*) and true

shooting percentage (TS%) changes over time across 20 NBA seasons

1st Round	2nd Round	Undrafted	Overall
(N=6416)	(N=2210)	(N=1335)	(N=9961)
True Shooting Pe	rcentage		
0.53 (0.05)	0.53(0.06)	0.52(0.06)	0.53(0.06)
Height (inches) 201.41 (9.00)	200.19 (8.57)	197.11 (9.50)	200.56 (9.09)
Weight (lbs) 101.25 (12.38)	100.37 (12.18)	96.38 (11.85)	100.40 (12.37)
Age			
27.04 (4.54)	27.12(3.95)	27.87(3.54)	27.17 (4.30)
Games Played (%)		
0.80 (0.18)	0.75(0.19)	0.71(0.20)	0.77(0.19)

 Table 1: Summary Statistics for NBA Dataset

$$TS\% = rac{PTS}{2(FGA + (0.44 imes FTA))}$$

Figure 1: TS% formula

Figure 2: modern shotchart

Preliminary Analysis

Figure 3: Spaghetti plot showing the interaction effect of time on the relationship between draft round and TS%

Figure 4: Representation of the relationship between height, weight, and true shooting percentage

Model

$$\begin{split} \text{TS\%} &\sim \beta_0 + \beta_1 (Season*Draft\ Round) + \\ \beta_2 Height + \beta_3 Weight + \beta_4 Age + \mathbf{u}_{\text{Name}} + \varepsilon \end{split}$$

Mixed Effects Model

- Outcome variable: true shooting percentage (TS%)
- Fixed effects: draft round, season, height, weight, age
- Random effects: player name to account for individual differences between players

Results

Coefficient	Estimate	Std. Error	df	t value	p value
Intercept	-3.622E+00	2.421E-01	2.343E+03	-14.96	< 2e-16 ***
Season	1.996E-03	1.202E-04	2.321E+03	16.601	< 2e-16 ***
Draft Round	-3.003E-01	3.837E-01	3.722E+03	-0.783	0.433844
Height	5.664E-04	1.640E-04	2.482E+03	3.454	0.000562 ***
Weight	3.629E-04	1.143E-04	3.287E+03	3.174	0.001517 **
Age Season:Draft	-2.649E-04	1.375E-04	4.472E+03	-1.927	0.054049
Round	1.479E-04	1.909E-04	3.723E+03	0.775	0.438446

Conclusion/Discussion

- TS% significantly influenced by season, height, and weight
 - Improvement over time
- Overall interaction between draft round and season is insignificant
 - o Improvements in TS% over time are consistent across all players, regardless of draft round
- Next steps: "big man" sub-analysis, pre- vs post-lockout

Shooting

Size

