B1B02FY2 a B3B02FY2, varianta 266

Otázka 1 (2 body)

Slovně definujte příčné vlny. Uveď te alespoň jeden příklad těchto vln.

Otázka 2 (2 body)

Sinusová vlna je dána vztahem $y = 6\sin(\pi x - 2\pi t)$. Určete její periodu kmitu.

Otázka 3 (2 body)

Určete disperzní vztah pro Klein-Gordonovu rovnici $\frac{\partial^2 y}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} - \beta^2 y = 0$

Otázka 4 (2 body)

Napište vztah pro obecné řešení vlnové rovnice pro netlumené rovinné vlny šířící se ve směru osy x v homogenním izotropním nedisperzním prostředí. Vysvětlete všechny použité symboly.

Otázka 5 (2 body)

Napište vlnovou rovnici pro netlumenou kulovou vlnu šířící se z počátku v homogenním izotropním nedisperzním prostředí. Vysvětlete všechny použité symboly.

Otázka 6 (2 body)

Disperzní vztah je $\omega = ck - dk^3$. Určete fázovou rychlost v_f a grupovou rychlost v_g .

Otázka 7 (2 body)

Efektivní hodnota akustického tlaku je $p_{ef} = 0, 2$ Pa. Určete hladinu akustického tlaku L_p

Otázka 8 (2 body)

Napište obě dvě tvrzení Huygens-Fresnelova principu.

Příklad 1 (4 body)

Fázová rychlost kruhů na hladině kapaliny je $v_f = (2\pi\sigma/\lambda\rho)^{1/2}$, kde σ je povrchové napětí, ρ je hustota tekutiny a λ je délka vlny Vypočtěte grupovou rychlost pro $\sigma = 0,073~{\rm N\cdot m^{-1}}$, $\rho = 1000~{\rm kg\cdot m^{-3}}$, $\lambda = 1~{\rm cm}$.

celkem bodů: 20