

AMENDMENTS TO THE SPECIFICATION

1. Please amend paragraph [0176] on pages 39-40 as follows:

[0176] I) *Compounds of the formula (and pharmaceutically acceptable derivatives thereof):*

wherein R₃-R₆, n and Q are as defined in classes and subclasses herein; and Y₂ and R^{Y1} are independently hydrogen or lower alkyl. In certain embodiments, R₃ is hydrogen, lower alkyl or an oxygen protecting group. In certain exemplary embodiments, R₃ is methyl. In certain other embodiments, R₅ and R₆ are independently lower alkyl. In certain exemplary embodiments, R₅ and R₆ are each methyl. In certain embodiments, n is 3. In certain embodiments, R₄ is halogen, hydroxyl, lower alkoxy, acyloxy or NR^{4A}R^{4B}, wherein R^{4A} and R^{4B} are independently hydrogen, lower alkyl, aryl, acyl or a nitrogen protecting group, or R^{4A} and R^{4B}, taken together with the nitrogen atom to which they are attached, form a substituted or unsubstituted heterocyclic or heteroaryl moiety; or R₄, taken together with the carbon atom to which it is attached forms a

moiety having the structure: . In certain embodiments, R₄ is a halogen selected from fluorine, chlorine, bromine and iodine. In certain exemplary embodiments, R₄ is fluorine. In certain other embodiments, R₄ is F, OH, OAc, NH₂ or R₄, taken together with the carbon atom to

which it is attached forms a moiety having the structure: . In certain exemplary embodiments, Q is hydrogen or a carbonyl-containing moiety. In certain exemplary embodiments, Q is hydrogen. In certain exemplary embodiments, Y₂ is hydrogen or lower alkyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y₂ is hydrogen or methyl substituted with one or more halogen atoms selected

from F, Cl, Br and I. In certain exemplary embodiments, Y_2 is hydrogen or CF_3 . In certain exemplary embodiments, R^{Y_4} is hydroxyl or lower alkoxy. In certain exemplary embodiments, R^{Y_4} is hydroxyl or methoxy. In certain exemplary embodiments, Y_2 is CF_3 and R^{Y_4} is methoxy. In certain exemplary embodiments, R^{Y_1} is hydrogen or lower alkyl. In certain exemplary embodiments, R^{Y_1} is hydrogen or methyl. In certain exemplary embodiments, Y_2 is CF_3 and R^{Y_1} is methyl.

2. Please amend paragraph [0177] on pages 40-41 as follows:

[0177] II) *Compounds of the formula (and pharmaceutically acceptable derivatives thereof):*

wherein R_3 - R_6 and Q are as defined in classes and subclasses herein; and Y_2 and R^{Y_1} are independently hydrogen or lower alkyl. In certain embodiments, R_3 is hydrogen, lower alkyl or an oxygen protecting group. In certain exemplary embodiments, R_3 is methyl. In certain other embodiments, R_5 and R_6 are independently lower alkyl. In certain exemplary embodiments, R_5 and R_6 are each methyl. In certain embodiments, R_4 is halogen, hydroxyl, lower alkoxy, acyloxy or $NR^{4A}R^{4B}$, wherein R^{4A} and R^{4B} are independently hydrogen, lower alkyl, aryl, acyl or a nitrogen protecting group, or R^{4A} and R^{4B} , taken together with the nitrogen atom to which they are attached, form a substituted or unsubstituted heterocyclic or heteroaryl moiety; or R_4 , taken together with the carbon atom to which it is attached forms a moiety having the structure:

. In certain embodiments, R_4 is a halogen selected from fluorine, chlorine, bromine and iodine. In certain exemplary embodiments, R_4 is fluorine. In certain other embodiments, R_4 is F, OH, OAc, NH₂ or R_4 , taken together with the carbon atom to which it is attached forms a moiety

having the structure: . In certain exemplary embodiments, Q is hydrogen or a carbonyl-containing moiety. In certain exemplary embodiments, Q is hydrogen. In certain exemplary embodiments, Y₂ is hydrogen or lower alkyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y₂ is hydrogen or methyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y₂ is hydrogen or CF₃. ~~In certain exemplary embodiments, R^{Y1} is hydroxyl or lower alkoxy. In certain exemplary embodiments, R^{Y1} is hydroxyl or methoxy. In certain exemplary embodiments, Y₂ is CF₃ and R^{Y1} is methoxy. In certain exemplary embodiments, R^{Y1} is hydrogen or lower alkyl. In certain exemplary embodiments, R^{Y1} is hydrogen or methyl. In certain exemplary embodiments, Y₂ is CF₃ and R^{Y1} is methyl.~~

3. Please amend paragraph [0180] on pages 43-45 as follows:

[0180] ***III) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):***

wherein R₃-R₆ and n are as defined in classes and subclasses herein; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, -NR^{Z1}-, -CHOR^{Z1}, -CHNR^{Z1}R^{Z2}, C=S, C=N(R^{Y1}) or -CH(Hal); or a substituted or unsubstituted C₀₋₆alkylidene or C₀₋₆alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein Hal is a halogen selected from F, Cl, Br and I; and each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; or R^{Z1} and R^{Z2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety; and pharmaceutically acceptable derivatives thereof. In certain embodiments, R₃ is hydrogen, lower alkyl or an oxygen protecting group. In

certain exemplary embodiments, R_3 is methyl. In certain other embodiments, R_5 and R_6 are independently lower alkyl. In certain exemplary embodiments, R_5 and R_6 are each methyl. In certain embodiments, n is 3. In certain embodiments, R_4 is halogen, hydroxyl, lower alkoxy, acyloxy or $NR^{4A}R^{4B}$, wherein R^{4A} and R^{4B} are independently hydrogen, lower alkyl, aryl, acyl or a nitrogen protecting group, or R^{4A} and R^{4B} , taken together with the nitrogen atom to which they are attached, form a substituted or unsubstituted heterocyclic or heteroaryl moiety; or R_4 , taken together with the carbon atom to which it is attached forms a moiety having the structure:

. In certain embodiments, R_4 is a halogen selected from fluorine, chlorine, bromine and iodine. In certain exemplary embodiments, R_4 is fluorine. In certain other embodiments, R_4 is F, OH, OAc, NH₂ or R_4 , taken together with the carbon atom to which it is attached forms a moiety

having the structure: . In certain other embodiments, R_7 is methyl. In certain other embodiments, X and Z are each CH₂ and Y is -CHOH, -CHNH₂ or -CHF. In certain other embodiments, R^{8B} is hydrogen, methyl or ethyl. In certain exemplary embodiments, Y_2 is hydrogen or lower alkyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y_2 is hydrogen or methyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y_2 is hydrogen or CF₃. ~~In certain exemplary embodiments, R^{Y1} is hydroxyl or lower alkoxy. In certain exemplary embodiments, R^{Y1} is hydroxyl or methoxy. In certain exemplary embodiments, Y_2 is CF₃ and R^{Y1} is methoxy. In certain exemplary embodiments, R^{Y1} is hydrogen or lower alkyl. In certain exemplary embodiments, Y_2 is CF₃ and R^{Y1} is methyl.~~

4. Please amend paragraph [0181] on pages 45-47 as follows:

[0181] *IV) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):*

wherein R₃-R₆ are as defined in classes and subclasses herein; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, -NR^{Z1}-, -CHOR^{Z1}, -CHNR^{Z1}R^{Z2}, C=S, C=N(R^{Y1}) or -CH(Hal); or a substituted or unsubstituted C₀₋₆alkylidene or C₀₋₆alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein Hal is a halogen selected from F, Cl, Br and I; and each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; or R^{Z1} and R^{Z2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety; and pharmaceutically acceptable derivatives thereof.. In certain embodiments, R₃ is hydrogen, lower alkyl or an oxygen protecting group. In

certain exemplary embodiments, R_3 is methyl. In certain other embodiments, R_5 and R_6 are independently lower alkyl. In certain exemplary embodiments, R_5 and R_6 are each methyl. In certain embodiments, R_4 is halogen, hydroxyl, lower alkoxy, acyloxy or $NR^{4A}R^{4B}$, wherein R^{4A} and R^{4B} are independently hydrogen, lower alkyl, aryl, acyl or a nitrogen protecting group, or R^{4A} and R^{4B} , taken together with the nitrogen atom to which they are attached, form a substituted or unsubstituted heterocyclic or heteroaryl moiety; or R_4 , taken together with the carbon atom to

which it is attached forms a moiety having the structure: . In certain embodiments, R_4 is a halogen selected from fluorine, chlorine, bromine and iodine. In certain exemplary embodiments, R_4 is fluorine. In certain other embodiments, R_4 is F, OH, OAc, NH₂ or R_4 , taken together with the carbon atom to which it is attached forms a moiety having the structure:

. In certain other embodiments, R_7 is methyl. In certain other embodiments, X and Z are each CH₂ and Y is -CHOH, -CHNH₂ or -CHF. In certain other embodiments, R^{8B} is hydrogen, methyl or ethyl. In certain exemplary embodiments, Y_2 is hydrogen or lower alkyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y_2 is hydrogen or methyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y_2 is hydrogen or CF₃. ~~In certain exemplary embodiments, R^{Y1} is hydroxyl or lower alkoxy. In certain exemplary embodiments, R^{Y1} is hydroxyl or methoxy. In certain exemplary embodiments, Y_2 is CF₃ and R^{Y1} is methoxy. In certain exemplary embodiments, R^{Y1} is hydrogen or lower alkyl. In certain exemplary embodiments, R^{Y1} is hydrogen or methyl. In certain exemplary embodiments, Y_2 is CF₃ and R^{Y1} is methyl.~~

5. Please amend paragraph [0183] on pages 48-50 as follows:

[0183] V) *Compounds of the formula (and pharmaceutically acceptable derivatives thereof):*

wherein R₃-R₆ and n are as defined in classes and subclasses herein; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and Y is -CHOR^{Y1}, -CHNR^{Y1}R^{Y2}, C=O, C=S, C=N(R^{Y1}) or -CH(Hal); wherein Hal is a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety. In certain embodiments, R₃ is hydrogen, lower alkyl or an

oxygen protecting group. In certain exemplary embodiments, R_3 is methyl. In certain other embodiments, R_5 and R_6 are independently lower alkyl. In certain exemplary embodiments, R_5 and R_6 are each methyl. In certain embodiments, n is 3. In certain embodiments, R_4 is halogen, hydroxyl, lower alkoxy, acyloxy or $NR^{4A}R^{4B}$, wherein R^{4A} and R^{4B} are independently hydrogen, lower alkyl, aryl, acyl or a nitrogen protecting group, or R^{4A} and R^{4B} , taken together with the nitrogen atom to which they are attached, form a substituted or unsubstituted heterocyclic or heteroaryl moiety; or R_4 , taken together with the carbon atom to which it is attached forms a

moiety having the structure: . In certain embodiments, R_4 is a halogen selected from fluorine, chlorine, bromine and iodine. In certain exemplary embodiments, R_4 is fluorine. In certain other embodiments, R_4 is F, OH, OAc, NH₂ or R_4 , taken together with the carbon atom to

which it is attached forms a moiety having the structure: . In certain other embodiments, R_7 is methyl. In certain other embodiments, Y is -CHOH, -CHNH₂ or -CHF. In certain other embodiments, R^{8B} is hydrogen, methyl or ethyl. In certain exemplary embodiments, Y_2 is hydrogen or lower alkyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y_2 is hydrogen or methyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y_2 is hydrogen or CF₃. ~~In certain exemplary embodiments, R^{Y1} is hydroxyl or lower alkoxy. In certain exemplary embodiments, R^{Y1} is hydroxyl or methoxy. In certain exemplary embodiments, Y_2 is CF₃ and R^{Y1} is methoxy. In certain exemplary embodiments, R^{Y1} is hydrogen or lower alkyl. In certain exemplary embodiments, R^{Y1} is hydrogen or methyl. In certain exemplary embodiments, Y_2 is CF₃ and R^{Y1} is methyl.~~

6. Please amend paragraph [0184] on pages 50-53 as follows:

[0184] **VI) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):**

wherein R₃-R₆ are as defined in classes and subclasses herein; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and Y is -CHOR^{Y1}, -CHNR^{Y1}R^{Y2}, C=O, C=S, C=N(R^{Y1}) or -CH(Hal); wherein Hal is a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety. In certain embodiments, R₃ is hydrogen, lower alkyl or an oxygen protecting group. In certain exemplary embodiments, R₃ is methyl. In certain other embodiments, R₅ and R₆ are independently lower alkyl. In certain exemplary embodiments, R₅ and R₆ are each methyl. In certain embodiments, R₄ is halogen, hydroxyl, lower alkoxy, acyloxy or NR^{4A}R^{4B}, wherein R^{4A} and R^{4B} are independently hydrogen, lower alkyl, aryl, acyl or a nitrogen protecting group, or

R^{4A} and R^{4B} , taken together with the nitrogen atom to which they are attached, form a substituted or unsubstituted heterocyclic or heteroaryl moiety; or R_4 , taken together with the carbon atom to

which it is attached forms a moiety having the structure: . In certain embodiments, R_4 is a halogen selected from fluorine, chlorine, bromine and iodine. In certain exemplary embodiments, R_4 is fluorine. In certain other embodiments, R_4 is F, OH, OAc, NH₂ or R_4 , taken together with the carbon atom to which it is attached forms a moiety having the structure:

. In certain other embodiments, R_7 is methyl. In certain other embodiments, Y is -CHOH, -CHNH₂ or -CHF. In certain other embodiments, R^{8B} is hydrogen, methyl or ethyl. In certain exemplary embodiments, Y_2 is hydrogen or lower alkyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y_2 is hydrogen or methyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y_2 is hydrogen or CF₃. ~~In certain exemplary embodiments, R^{Y1} is hydroxyl or lower alkoxy. In certain exemplary embodiments, R^{Y1} is hydroxyl or methoxy. In certain exemplary embodiments, Y_2 is CF₃ and R^{Y1} is methoxy. In certain exemplary embodiments, R^{Y1} is hydrogen or lower alkyl. In certain exemplary embodiments, R^{Y1} is hydrogen or methyl. In certain exemplary embodiments, Y_2 is CF₃ and R^{Y1} is methyl.~~

7. Please amend paragraph [0185] on pages 53-55 as follows:

[0185] **VII) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):**

wherein n, R₃ and R₄ are as defined in classes and subclasses herein; Y₂ and R^{Y₁} are independently hydrogen or lower alkyl; R^{8B} is hydrogen or lower alkyl; and R^Y is hydrogen, halogen, -OR^{Y₁} or -NR^{Y₁}NR^{Y₂}; wherein R^{Y₁} and R^{Y₂} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y₁} and R^{Y₂}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety. In certain embodiments, R₃ is hydrogen, lower alkyl or an oxygen protecting group. In certain exemplary embodiments, R₃ is methyl. In certain embodiments, n is 3. In certain embodiments, R₄ is halogen, hydroxyl, lower alkoxy, acyloxy or NR^{4A}R^{4B}, wherein R^{4A} and R^{4B} are independently hydrogen, lower alkyl, aryl, acyl or a nitrogen protecting group, or R^{4A} and R^{4B}, taken together with the nitrogen atom to which they are attached, form a substituted or unsubstituted heterocyclic or heteroaryl moiety; or R₄, taken together with the carbon atom to which it is attached forms a moiety having the

structure: . In certain embodiments, R_4 is a halogen selected from fluorine, chlorine, bromine and iodine. In certain exemplary embodiments, R_4 is fluorine. In certain other embodiments, R_4 is F, OH, OAc, NH₂ or R₄, taken together with the carbon atom to which it is

attached forms a moiety having the structure: . In certain other embodiments, R^Y is OH, NH₂ or halogen (e.g., F). In certain other embodiments, R^{8B} is hydrogen, methyl or ethyl. In certain exemplary embodiments, Y₂ is hydrogen or lower alkyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y₂ is hydrogen or methyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y₂ is hydrogen or CF₃. ~~In certain exemplary embodiments, R^{Y1} is hydroxyl or lower alkoxy. In certain exemplary embodiments, R^{Y1} is hydroxyl or methoxy. In certain exemplary embodiments, Y₂ is CF₃ and R^{Y1} is methoxy. In certain exemplary embodiments, R^{Y1} is hydrogen or lower alkyl. In certain exemplary embodiments, R^{Y1} is hydrogen or methyl. In certain exemplary embodiments, Y₂ is CF₃ and R^{Y1} is methyl.~~

8. Please amend paragraph [0186] on pages 55-57 as follows:

[0186] **VIII) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):**

wherein R_3 and R_4 are as defined in classes and subclasses herein; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R^{8B} is hydrogen or lower alkyl; and R^Y is hydrogen, halogen, $-OR^{Y1}$ or $-NR^{Y1}NR^{Y2}$; wherein R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety. In certain embodiments, R_3 is hydrogen, lower alkyl or an oxygen protecting group. In certain exemplary embodiments, R_3 is methyl. In certain embodiments, R_4 is halogen, hydroxyl, lower alkoxy, acyloxy or $NR^{4A}R^{4B}$, wherein R^{4A} and R^{4B} are independently hydrogen, lower alkyl, aryl, acyl or a nitrogen protecting group, or R^{4A} and R^{4B} , taken together with the nitrogen atom to which they are attached, form a substituted or unsubstituted heterocyclic or heteroaryl moiety; or R_4 , taken together with the

carbon atom to which it is attached forms a moiety having the structure: In certain embodiments, R_4 is a halogen selected from fluorine, chlorine, bromine and iodine. In certain

exemplary embodiments, R_4 is fluorine. In certain other embodiments, R_4 is F, OH, OAc, NH₂ or R₄, taken together with the carbon atom to which it is attached forms a moiety having the

structure: $\text{---C}(=\text{O})\text{---}$. In certain other embodiments, R^Y is OH, NH₂ or halogen (e.g., F). In certain other embodiments, R^{8B} is hydrogen, methyl or ethyl. In certain exemplary embodiments, Y₂ is hydrogen or lower alkyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y₂ is hydrogen or methyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y₂ is hydrogen or CF₃. ~~In certain exemplary embodiments, R^{Y1} is hydroxyl or lower alkoxy. In certain exemplary embodiments, R^{Y1} is hydroxyl or methoxy. In certain exemplary embodiments, Y₂ is CF₃ and R^{Y1} is methoxy. In certain exemplary embodiments, R^{Y1} is hydrogen or lower alkyl. In certain exemplary embodiments, R^{Y1} is hydrogen or methyl. In certain exemplary embodiments, Y₂ is CF₃ and R^{Y1} is methyl.~~

9. Please amend paragraph [0187] on pages 57-59 as follows:

[0187] *IX) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):*

wherein R_3 - R_6 and n are as defined in classes and subclasses herein; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; and R^{8B} is hydrogen or lower alkyl. In certain embodiments, R_3 is hydrogen, lower alkyl or an oxygen protecting group. In certain exemplary embodiments, R_3 is methyl. In certain other embodiments, R_5 and R_6 are independently lower alkyl. In certain exemplary embodiments, R_5 and R_6 are each methyl. In certain embodiments, n is 3. In certain embodiments, R_4 is halogen, hydroxyl, lower alkoxy, acyloxy or $NR^{4A}R^{4B}$, wherein R^{4A} and R^{4B} are independently hydrogen, lower alkyl, aryl, acyl or a nitrogen protecting group, or R^{4A} and R^{4B} , taken together with the nitrogen atom to which they are attached, form a substituted or unsubstituted heterocyclic or heteroaryl moiety; or R_4 , taken together with the

carbon atom to which it is attached forms a moiety having the structure: . In certain

embodiments, R_4 is a halogen selected from fluorine, chlorine, bromine and iodine. In certain exemplary embodiments, R_4 is fluorine. In certain other embodiments, R_4 is F, OH, OAc, NH₂ or R₄, taken together with the carbon atom to which it is attached forms a moiety having the

structure: $\text{---C}(=\text{O})\text{---}$. In certain other embodiments, R₇ is methyl. In certain other embodiments, R^{8B} is hydrogen, methyl or ethyl. In certain exemplary embodiments, Y₂ is hydrogen or lower alkyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y₂ is hydrogen or methyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y₂ is hydrogen or CF₃. ~~In certain exemplary embodiments, R^{Y1} is hydroxyl or lower alkoxy. In certain exemplary embodiments, R^{Y1} is hydroxyl or methoxy. In certain exemplary embodiments, Y₂ is CF₃ and R^{Y1} is methoxy. In certain exemplary embodiments, R^{Y1} is hydrogen or lower alkyl. In certain exemplary embodiments, R^{Y1} is hydrogen or methyl. In certain exemplary embodiments, Y₂ is CF₃ and R^{Y1} is methyl.~~

10. Please amend paragraph [0188] on pages 59-61 as follows:

[0188] X) *Compounds of the formula (and pharmaceutically acceptable derivatives thereof):*

wherein R₃-R₆ are as defined in classes and subclasses herein; Y₂ and R^{Y₁} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; and R^{8B} is hydrogen or lower alkyl. In certain embodiments, R₃ is hydrogen, lower alkyl or an oxygen protecting group. In certain exemplary embodiments, R₃ is methyl. In certain other embodiments, R₅ and R₆ are independently lower alkyl. In certain exemplary embodiments, R₅ and R₆ are each methyl. In certain embodiments, R₄ is halogen, hydroxyl, lower alkoxy, acyloxy or NR^{4A}R^{4B}, wherein R^{4A} and R^{4B} are independently hydrogen, lower alkyl, aryl, acyl or a nitrogen protecting group, or R^{4A} and R^{4B}, taken together with the nitrogen atom to which they are attached, form a substituted or unsubstituted heterocyclic or heteroaryl moiety; or R₄, taken together with the carbon atom to which it is attached forms a moiety having

the structure: . In certain embodiments, R₄ is a halogen selected from fluorine, chlorine, bromine and iodine. In certain exemplary embodiments, R₄ is fluorine. In certain other

embodiments, R_4 is F, OH, OAc, NH₂ or R_4 , taken together with the carbon atom to which it is

attached forms a moiety having the structure: . In certain other embodiments, R_7 is methyl. In certain other embodiments, R^{8B} is hydrogen, methyl or ethyl. In certain exemplary embodiments, Y_2 is hydrogen or lower alkyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y_2 is hydrogen or methyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y_2 is hydrogen or CF₃. ~~In certain exemplary embodiments, R^{Y1} is hydroxyl or lower alkoxy. In certain exemplary embodiments, R^{Y1} is hydroxyl or methoxy. In certain exemplary embodiments, Y_2 is CF₃ and R^{Y1} is methoxy. In certain exemplary embodiments, R^{Y1} is hydrogen or lower alkyl. In certain exemplary embodiments, R^{Y1} is hydrogen or methyl. In certain exemplary embodiments, Y_2 is CF₃ and R^{Y1} is methyl.~~

11. Please amend paragraph [0189] on pages 61-62 as follows:

[0189] **XI) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):**

wherein R_3 - R_6 and n are as defined in classes and subclasses herein; and Y_2 and R^{Y1} are independently hydrogen or lower alkyl. In certain embodiments, R_3 is hydrogen, lower alkyl or an oxygen protecting group. In certain exemplary embodiments, R_3 is methyl. In certain other embodiments, R_5 and R_6 are independently lower alkyl. In certain exemplary embodiments, R_5 and R_6 are each methyl. In certain embodiments, n is 3. In certain embodiments, R_4 is halogen, hydroxyl, lower alkoxy, acyloxy or NR^{4A}R^{4B}, wherein R^{4A} and R^{4B} are independently hydrogen, lower alkyl, aryl, acyl or a nitrogen protecting group, or R^{4A} and R^{4B}, taken together with the

nitrogen atom to which they are attached, form a substituted or unsubstituted heterocyclic or heteroaryl moiety; or R₄, taken together with the carbon atom to which it is attached forms a

moiety having the structure: . In certain embodiments, R₄ is a halogen selected from fluorine, chlorine, bromine and iodine. In certain exemplary embodiments, R₄ is fluorine. In certain other embodiments, R₄ is F, OH, OAc, NH₂ or R₄, taken together with the carbon atom to

which it is attached forms a moiety having the structure: . In certain exemplary embodiments, Y₂ is hydrogen or lower alkyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y₂ is hydrogen or methyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y₂ is hydrogen or CF₃. ~~In certain exemplary embodiments, R^{Y1} is hydroxyl or lower alkoxy. In certain exemplary embodiments, R^{Y1} is hydroxyl or methoxy. In certain exemplary embodiments, Y₂ is CF₃ and R^{Y1} is methoxy. In certain exemplary embodiments, R^{Y1} is hydrogen or lower alkyl. In certain exemplary embodiments, R^{Y1} is hydrogen or methyl. In certain exemplary embodiments, Y₂ is CF₃ and R^{Y1} is methyl.~~

12. Please amend paragraph [0190] on pages 62-64 as follows:

[0190] *XII) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):*

wherein R₃-R₆ are as defined in classes and subclasses herein; and Y₂ and R^{Y1} are independently hydrogen or lower alkyl. In certain embodiments, R₃ is hydrogen, lower alkyl or an oxygen protecting group. In certain exemplary embodiments, R₃ is methyl. In certain other

embodiments, R_5 and R_6 are independently lower alkyl. In certain exemplary embodiments, R_5 and R_6 are each methyl. In certain embodiments, R_4 is halogen, hydroxyl, lower alkoxy, acyloxy or $NR^{4A}R^{4B}$, wherein R^{4A} and R^{4B} are independently hydrogen, lower alkyl, aryl, acyl or a nitrogen protecting group, or R^{4A} and R^{4B} , taken together with the nitrogen atom to which they are attached, form a substituted or unsubstituted heterocyclic or heteroaryl moiety; or R_4 , taken together with the carbon atom to which it is attached forms a moiety having the structure:

. In certain embodiments, R_4 is a halogen selected from fluorine, chlorine, bromine and iodine. In certain exemplary embodiments, R_4 is fluorine. In certain other embodiments, R_4 is F, OH, OAc, NH₂ or R_4 , taken together with the carbon atom to which it is attached forms a moiety

having the structure: . In certain exemplary embodiments, Y_2 is hydrogen or lower alkyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y_2 is hydrogen or methyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y_2 is hydrogen or CF₃. ~~In certain exemplary embodiments, R^{Y1} is hydroxyl or lower alkoxy. In certain exemplary embodiments, R^{Y1} is hydroxyl or methoxy. In certain exemplary embodiments, Y_2 is CF₃ and R^{Y1} is methoxy. In certain exemplary embodiments, R^{Y1} is hydrogen or lower alkyl. In certain exemplary embodiments, R^{Y1} is hydrogen or methyl. In certain exemplary embodiments, Y_2 is CF₃ and R^{Y1} is methyl.~~

13. Please amend paragraph [0191] on pages 64-65 as follows:

[0191] ***XIII) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):***

wherein R₃-R₆ and n are as defined in classes and subclasses herein; and Y₂ and R^{Y1} are independently hydrogen or lower alkyl. In certain embodiments, R₃ is hydrogen, lower alkyl or an oxygen protecting group. In certain exemplary embodiments, R₃ is methyl. In certain other embodiments, R₅ and R₆ are independently lower alkyl. In certain exemplary embodiments, R₅ and R₆ are each methyl. In certain embodiments, n is 3. In certain embodiments, R₄ is halogen, hydroxyl, lower alkoxy, acyloxy or NR^{4A}R^{4B}, wherein R^{4A} and R^{4B} are independently hydrogen, lower alkyl, aryl, acyl or a nitrogen protecting group, or R^{4A} and R^{4B}, taken together with the nitrogen atom to which they are attached, form a substituted or unsubstituted heterocyclic or heteroaryl moiety; or R₄, taken together with the carbon atom to which it is attached forms a

moiety having the structure: In certain embodiments, R₄ is a halogen selected from fluorine, chlorine, bromine and iodine. In certain exemplary embodiments, R₄ is fluorine. In certain other embodiments, R₄ is F, OH, OAc, NH₂ or R₄, taken together with the carbon atom to

which it is attached forms a moiety having the structure: In certain exemplary embodiments, Y₂ is hydrogen or lower alkyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y₂ is hydrogen or methyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y₂ is hydrogen or CF₃. ~~In certain exemplary embodiments, R^{Y1} is hydroxyl or lower alkoxy. In certain exemplary embodiments, R^{Y1} is hydroxyl or methoxy. In certain exemplary embodiments, Y₂ is CF₃ and R^{Y1} is methoxy. In certain exemplary embodiments, R^{Y1} is hydrogen or lower alkyl. In certain exemplary embodiments, R^{Y1} is hydrogen or methyl. In certain exemplary embodiments, Y₂ is CF₃ and R^{Y1} is methyl.~~

14. Please amend paragraph [0192] on pages 65-66 as follows:

[0192] *XIV) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):*

wherein R₃-R₆ are as defined in classes and subclasses herein; and Y₂ and R^{Y1} are independently hydrogen or lower alkyl. In certain embodiments, R₃ is hydrogen, lower alkyl or an oxygen protecting group. In certain exemplary embodiments, R₃ is methyl. In certain other embodiments, R₅ and R₆ are independently lower alkyl. In certain exemplary embodiments, R₅ and R₆ are each methyl. In certain embodiments, R₄ is halogen, hydroxyl, lower alkoxy, acyloxy or NR^{4A}R^{4B}, wherein R^{4A} and R^{4B} are independently hydrogen, lower alkyl, aryl, acyl or a nitrogen protecting group, or R^{4A} and R^{4B}, taken together with the nitrogen atom to which they are attached, form a substituted or unsubstituted heterocyclic or heteroaryl moiety; or R₄, taken together with the carbon atom to which it is attached forms a moiety having the structure:

. In certain embodiments, R₄ is a halogen selected from fluorine, chlorine, bromine and iodine. In certain exemplary embodiments, R₄ is fluorine. In certain other embodiments, R₄ is F, OH, OAc, NH₂ or R₄, taken together with the carbon atom to which it is attached forms a moiety

having the structure: . In certain exemplary embodiments, Y₂ is hydrogen or lower alkyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y₂ is hydrogen or methyl substituted with one or more halogen atoms selected from F, Cl, Br and I. In certain exemplary embodiments, Y₂ is hydrogen or CF₃. ~~In certain exemplary embodiments, R^{Y1} is hydroxyl or lower alkoxy. In certain exemplary embodiments,~~

~~R^{Y1} is hydroxyl or methoxy. In certain exemplary embodiments, Y₂ is CF₃ and R^{Y1} is methoxy.~~
In certain exemplary embodiments, R^{Y1} is hydrogen or lower alkyl. In certain exemplary
embodiments, R^{Y1} is hydrogen or methyl. In certain exemplary embodiments, Y₂ is CF₃ and R^{Y1}
is methyl.