# problem statement

A real estate agent want help to predict the house price for region in USA. He gave us the dataset to work on to us Linear Regression model. Create a model that help him to estiamte of what the house would sell for.

## **Data Collection**

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

Out[2]:

|      | Avg. Area<br>Income | Avg.<br>Area<br>House<br>Age | Avg.<br>Area<br>Number<br>of<br>Rooms | Avg. Area<br>Number<br>of<br>Bedrooms | Area<br>Population | Price        | Adı                                       |
|------|---------------------|------------------------------|---------------------------------------|---------------------------------------|--------------------|--------------|-------------------------------------------|
| 0    | 79545.458574        | 5.682861                     | 7.009188                              | 4.09                                  | 23086.800503       | 1.059034e+06 | 208 Michael Ferr<br>674\nLaurabur<br>3    |
| 1    | 79248.642455        | 6.002900                     | 6.730821                              | 3.09                                  | 40173.072174       | 1.505891e+06 | 188 Johnson \<br>Suite 079\r<br>Kathleen, |
| 2    | 61287.067179        | 5.865890                     | 8.512727                              | 5.13                                  | 36882.159400       | 1.058988e+06 | 9127 Eliz<br>Stravenue\nDaniel<br>WI 06   |
| 3    | 63345.240046        | 7.188236                     | 5.586729                              | 3.26                                  | 34310.242831       | 1.260617e+06 | USS Barnett\nFP                           |
| 4    | 59982.197226        | 5.040555                     | 7.839388                              | 4.23                                  | 26354.109472       | 6.309435e+05 | USNS Raymond\r<br>AE (                    |
|      |                     |                              |                                       |                                       |                    |              |                                           |
| 4995 | 60567.944140        | 7.830362                     | 6.137356                              | 3.46                                  | 22837.361035       | 1.060194e+06 | USNS Williams\r<br>AP 30153               |
| 4996 | 78491.275435        | 6.999135                     | 6.576763                              | 4.02                                  | 25616.115489       | 1.482618e+06 | PSC 9258<br>8489\nAPO AA 4;               |
| 4997 | 63390.686886        | 7.250591                     | 4.805081                              | 2.13                                  | 33266.145490       | 1.030730e+06 | 4215 Tracy G<br>Suite 076\nJoshu<br>V/    |
| 4998 | 68001.331235        | 5.534388                     | 7.130144                              | 5.44                                  | 42625.620156       | 1.198657e+06 | USS Wallace\nFP<br>7                      |
| 4999 | 65510.581804        | 5.992305                     | 6.792336                              | 4.07                                  | 46501.283803       | 1.298950e+06 | 37778 George R<br>Apt. 509\nEast<br>N     |

5000 rows × 7 columns

RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

| # | Column                       | Non-Null Count | Dtype   |
|---|------------------------------|----------------|---------|
|   |                              |                |         |
| 0 | Avg. Area Income             | 5000 non-null  | float64 |
| 1 | Avg. Area House Age          | 5000 non-null  | float64 |
| 2 | Avg. Area Number of Rooms    | 5000 non-null  | float64 |
| 3 | Avg. Area Number of Bedrooms | 5000 non-null  | float64 |
| 4 | Area Population              | 5000 non-null  | float64 |
| 5 | Price                        | 5000 non-null  | float64 |
| 6 | Address                      | 5000 non-null  | object  |
|   |                              |                |         |

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [4]: # t display summerize the data
 df.describe()

### Out[4]:

|       | Avg. Area<br>Income | Avg. Area<br>House Age | Avg. Area<br>Number of<br>Rooms | Avg. Area<br>Number of<br>Bedrooms | Area<br>Population | Price        |
|-------|---------------------|------------------------|---------------------------------|------------------------------------|--------------------|--------------|
| count | 5000.000000         | 5000.000000            | 5000.000000                     | 5000.000000                        | 5000.000000        | 5.000000e+03 |
| mean  | 68583.108984        | 5.977222               | 6.987792                        | 3.981330                           | 36163.516039       | 1.232073e+06 |
| std   | 10657.991214        | 0.991456               | 1.005833                        | 1.234137                           | 9925.650114        | 3.531176e+05 |
| min   | 17796.631190        | 2.644304               | 3.236194                        | 2.000000                           | 172.610686         | 1.593866e+04 |
| 25%   | 61480.562388        | 5.322283               | 6.299250                        | 3.140000                           | 29403.928702       | 9.975771e+05 |
| 50%   | 68804.286404        | 5.970429               | 7.002902                        | 4.050000                           | 36199.406689       | 1.232669e+06 |
| 75%   | 75783.338666        | 6.650808               | 7.665871                        | 4.490000                           | 42861.290769       | 1.471210e+06 |
| max   | 107701.748378       | 9.519088               | 10.759588                       | 6.500000                           | 69621,713378       | 2.469066e+06 |
|       |                     |                        |                                 |                                    |                    |              |

```
In [5]: # to display columes
df.columns
```

## **EDA** and visualization

In [6]: sns.pairplot(df)

Out[6]: <seaborn.axisgrid.PairGrid at 0x2b7169de9a0>



# In [7]: # to display distribution graph for price column sns.distplot(df['Price'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[7]: <AxesSubplot:xlabel='Price', ylabel='Density'>



```
In [9]: # correlation map to find relationship
sns.heatmap(df1.corr())
```

## Out[9]: <AxesSubplot:>



# To Trait the model - model building

we are going to train linear regression model; we are going to split data into two variable x and y where x is independent variable(input) and y is dependent on x (output) we could ignore address column as it in not required for our model

coeff = pd.DataFrame(lr.coef\_,x.columns,columns=['Co-efficient'])

Out[14]:

coeff

# Avg. Area Income 21.556938 Avg. Area House Age 165030.583398 Avg. Area Number of Rooms 119820.614710 Avg. Area Number of Bedrooms 148.133484 Area Population 15.275916

```
In [15]: #predict the graph in linear regression graph

prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

### Out[15]: <matplotlib.collections.PathCollection at 0x2b71b30cbe0>



```
In [16]: #Accuracy of linear regression
         print(lr.score(x_test,y_test))
         0.9169489109126523
In [17]: |lr.score(x_train,y_train)
Out[17]: 0.9183894543649431
In [18]: from sklearn.linear_model import Ridge,Lasso
In [20]:
         rr = Ridge(alpha=10)
         rr.fit(x_train,y_train)
         rr.score(x_test,y_test)
Out[20]: 0.918386485414195
In [21]: rr.score(x_train,y_train)
Out[21]: 0.918386485414195
In [24]: | 1r = Lasso(alpha=10)
         lr.fit(x train,y train)
         lr.score(x_test,y_test)
Out[24]: 0.916947302511081
In [25]: lr.score(x_train,y_train)
Out[25]: 0.9183894526053276
 In [ ]:
```