# [CSED233-01] Data Structure Graph Representation

Jaesik Park





- Graph G = (V, E)
  - V: a finite set of vertices/nodes,
    - n = |V|: # of vertices
  - E: a finite set of edges/arcs ( $\nu$ ,  $\nu$ ) where  $\nu$ ,  $\nu$   $\in$  V
    - e = |E|: # of edges
- Example: G = (V, E)
  - $V = \{ V, W, X, Y \}$
  - $E = \{ (v, w), (v, y), (w, y), (y, x), (x, v) \}$



- Two vertices are adjacent if they are connected by an edge
  - $\nu$  is adjacent to  $\omega$  ( $\omega$  is adjacent from  $\omega$ )
  - (ν, ν) is incident to ν (from ν)



- Types of graphs
  - Complete
    - There is an edge b/w every pair of vertices (denoted  $K_n$ )
    - e = n(n-1)/2
  - Sparse < Dense (# of edges)</li>
    - Sparse: e = O(n)
    - Dense:  $e = \Theta(n^2)$
  - Directed ↔ Undirected
    - Edge directionality
  - Weighted (weights on edges)
  - Labeled (labels on vertices)



- $G_s = (V_s, E_s)$ : a subgraph of G
  - V<sub>s</sub> ⊆ V
  - $E_s \subseteq E$  such that  $(v, w) \in E_s \rightarrow v, w \in V_s$
- $G_s = (V_s, E_s)$ : an induced subgraph of G•  $E_s = \{(v, w) \in E \mid v, w \in V_s\}$

#### Difference?

• An induced subgraph includes all the edges that have both endpoints in the inducing set  $V_s$ , whereas an ordinary subgraph may miss some.

- Path  $< V_1, V_2, ..., V_n >$ 
  - A sequence of edges which connect a sequence of vertices
  - Length of path = # of edges
  - Simple all vertices on the path are distinct: No cycle
- Cycle
  - A path (of length 3 or more) that starts & ends at the same vertex
  - How about a path < u, v, u> in undirected graph?
    - Not regarded as a cycle
- Self-loop is an edge < v, v> from a vertex to itself
  - Length = 0
  - Generally, loop-less graphs in this course

- Acyclic without cycles
  - Directed acyclic graph (DAG)





- Connected graph G
  - In an undirected graph
    - If there is a path b/w any two vertices
  - In a directed graph
    - G is called strongly connected
    - G is weakly connected
      - if the underlying graph (without directions on the arcs) is connected

Not strongly but weakly connected

- Connected component
  - In an undirected graph
    - A maximal subgraph that is connected
    - G is connected  $\leftrightarrow$  G has exactly 1 component
  - In a directed graph
    - it is called a strongly connected component (or just strong component)



#### Tree

- An undirected graph G, satisfying any of the following equivalent conditions:
  - G is connected & acyclic
  - G is connected & has n vertices with n-1 edges

- If any edge is added to a tree, we get a cycle
- If any edge is removed from a tree, the graph becomes disconnected

- Spanning tree T of a connected graph G
  - A tree T that includes all vertices of the original graph G



- Minimum-cost spanning tree (MST)
  - A spanning tree whose tree cost is minimum
  - Tree cost is a sum of edge weight/cost

• Example:





MST-1 with cost = 16

MST-2 with cost = 17

#### Graph Representations

- Two commonly used methods
  - Adjacency matrix
  - Adjacency lists
    - Linked adjacency lists
    - Array adjacency lists

#### Adjacency Matrix: Undirected Graph

- Binary n x n matrix (n: # of vertices)
  - A(i,j) = 1 iff (i,j) is an edge



- Diagonal entries = zero
- Symmetric: A(i, j) = A(j, i) for all i, j



#### Adjacency Matrix: Directed Graph

- Binary n x n matrix (n: # of vertices)
  - A(i,j) = 1 iff (i,j) is an edge



- Diagonal entries = zero
- Need not be symmetric



## Adjacency Lists

- An array of *n* adjacency lists
  - An adjacency list for vertex  $\nu = a$  linear list of vertices adjacent from  $\nu$



- Two implementations of lists
  - Linked vs. Array

#### Adjacency Lists: Linked

• Each adjacency list is a chain





## Adjacency Lists: Single Array

- If the graph were expected to remain fixed
  - Use a single array for all adjacency lists





## Adjacency Lists: Multiple Arrays

Each adjacency list is an array





#### References

- Further reading list and references
  - <a href="https://www.geeksforgeeks.org/difference-between-graph-and-tree/">https://www.geeksforgeeks.org/difference-between-graph-and-tree/</a>
  - <a href="https://www.geeksforgeeks.org/strongly-connected-components/">https://www.geeksforgeeks.org/strongly-connected-components/</a>

- Slide credit
  - Jaesik Park
  - Seung-Hwan Baek
  - Jong-Hyeok Lee