

BD - Banco de Dados

Aula01 - Conceitos

© Profa. Célia Taniwaki

Importância dos Bancos de Dados

- Competitividade das empresas ⇒ depende de dados precisos e atualizados
- Crescimento da empresa ⇒ aumenta a dependência por dados abundantes e complexos
- Surge a necessidade de ferramentas de gerenciamento, extração rápida e precisa de informações
- Solução: Sistema Gerenciador de Banco de Dados (SGBD).

- Primeiros programas de computador ⇒ objetivo de armazenar e manipular dados
- Programas gravavam seus dados em disco, seguindo estruturas próprias.

Programa A gravava seus dados usando uma estrutura X.

Programa B gravava seus dados usando uma estrutura Y.

 Vamos supor que o programa B queira acessar o arquivo do programa A.

 Para que o programa B consiga acessar o arquivo do programa A, ele precisa conhecer a estrutura X usada pelo programa A para gravar o seu arquivo.

- Programas que não conheciam a estrutura dos arquivos dos outros programas não podiam utilizar os dados.
- Se vários programas precisassem acessar os dados de um mesmo arquivo, todos os programas teriam que conhecer e manipular as mesmas estruturas.

- Vamos supor que os programas da figura anterior foram alterados para conhecer as estruturas dos dados dos demais programas.
- Dessa forma, os arquivos puderam ser compartilhados entre os programas.
- Mas, e se o programa A tivesse que realizar uma mudança na estrutura dos arquivos do programa A ???
 - Todos os programas que acessam esse mesmo arquivo deveriam ser alterados
- Grande problema:
 - Garantir a unicidade das estruturas de dados entre os diversos programas

- Para evitar esse problema, providenciaram um sistema intermediário, que:
 - Conhece a estrutura de dados do arquivo.
 - Fornece apenas os dados que cada programa precisa.
 - Armazena adequadamente os dados de cada programa.

- Assim, utilizando esse sistema intermediário:
 - Programas podem obter apenas os dados que lhes interessam
 - Programas não precisam conhecer os detalhes de como os dados estão gravados fisicamente
 - Programas não precisam ser modificados se a estrutura de dados que utilizam não for modificada
 - Alterações ficam concentradas nesse sistema intermediário

- Com o tempo, esse sistema intermediário passou a gerenciar vários arquivos
- Coleção de arquivos: Banco de Dados
- Sistema intermediário: Sistema Gerenciador de Banco de

- O primeiro SGBD comercial surgiu em 1960
- Com o tempo, surgiram padrões para descrever as estruturas de dados: os modelos de dados.
- E surgiu o conceito de metadados: a descrição do banco de dados, segundo um modelo de dados.

- Então, o que é um banco de dados?
 - Coleção de dados coerente e logicamente relacionados com algum significado associado
 - Projetado, construído e populado com dados que atendem a um propósito e audiência específicos
 - Representa algum aspecto do mundo real, chamado de minimundo.

Arquivos versus SGBD's

Processamento tradicional em arquivos	SGBD	Vantagens do SGBD
Definição dos dados associado ao código dos programas da aplicação	Metadados	Eliminação de redundâncias
Dependência entre aplicação e dados	Independência entre aplicações e dados	Eliminação de redundâncias e Facilidade de manutenção
Representação de dados em nível físico	Representação conceitual através de dados e programas	Facilidade de manutenção
Cada visão é implementada por módulos específicos	Permite múltiplas visões	Facilidade de consultas

Quando usar SGBD

- Quando for essencial:
 - Controle de redundância
 - Controle de consistência e integridade
 - Acesso multiusuário
 - Compartilhamento de dados
 - Controle de acesso e segurança
 - Controle de recuperação e restauração
 - Consultas eficientes

Arquivos criados durante a aula:

Informações dos alunos:

Nome	E-mail	Telefone	Empresa de interesse	Representante da empresa
Vanessa Ferreira	van@gmail.com	99123-1234	Digisystem	Miriam
Jacqueline Prates	jac@hotmail.com	3456-1234		
Giuliana Miniguiti	gmin@gmail.com	9234-2678	Easynvest	Vitor
Guilherme Raulino	guir@hotmail.com	99567-3489	Easynvest	Vitor
Matheus Bolognini	mat@gmail.com	99345-6789	Easynvest	Vitor
Vinicius Volpe	vinv@hotmail.com	99453-2378	Totvs	Rafael

• Informações dos componentes de um grupo:

Nome	E-mail	Telefone	Empresa de interesse	Representante da empresa
Giuliana Miniguiti	gmin@gmail.com	9234-2678	Easynvest	Vitor
Matheus Bolognini	mat@gmail.com	99345-6789	Easynvest	Vitor

Arquivos criados durante a aula:

- No slide anterior, temos a figura de 2 arquivos criados durante a aula:
 - Um com informações dos alunos
 - Outro com as informações dos componentes de um grupo
- A ideia desses arquivos é mostrar o problema que surge quando se armazena as informações sem muito planejamento
- Antes da existência dos bancos de dados, era muito comum o uso de arquivos para armazenar os dados, e na maioria das vezes, sem um planejamento prévio adequado
- No exemplo desses 2 arquivos criados em aula, vemos o problema da redundância dos dados:
 - Se o telefone da Giuliana for alterado, temos que alterar em 2 planilhas.
 - Se o representante da Easynvest for alterado, temos que alterar em várias linhas das 2 planilhas.

Modelo de dados relacional

- Esse é o modelo de dados mais utilizado
- Nesse modelo, os dados são armazenados em tabelas (ou relações)
- Por exemplo: tabela ALUNO:

Banco de dados Relacional x NoSQL

- SQL (Structured Query Language Linguagem Estruturada para Consulta)
 - Linguagem padrão utilizada para manipular bancos de dados relacionais
 - Os diversos SGBDs utilizam SQL como linguagem padrão para criação dos bancos, inserção, consulta e manutenção dos dados
- NoSQL (Not Only SQL Não Apenas SQL)
 - Classe de banco de dados não relacionais, muito utilizados atualmente, principalmente para dados "Big Data"
- Veja classificação de sistemas de bancos de dados mais utilizados em:
 - https://db-engines.com/en/ranking

Modelo de dados relacional

- Com relação aos arquivos criados em aula, como tirar a redundância?
- O correto seria criarmos uma nova tabela, apenas com os dados da Empresa (nome, representante).
- E a tabela Aluno teria uma "referência" ao código da empresa que está nessa nova tabela.
- Veja no próximo slide...

Modelo de dados relacional

Informações da tabela Aluno:

Nome	E-mail	Telefone	Empresa de interesse
Vanessa Ferreira	van@gmail.com	99123-1234	1
Jacqueline Prates	jac@hotmail.com	3456-1234	
Giuliana Miniguiti	gmin@gmail.com	9234-2678	2
Guilherme Raulino	guir@hotmail.com	99567-3489	2
Matheus Bolognini	mat@gmail.com	99345-6789	2
Vinicius Volpe	vinv@hotmail.com	99453-2378	3

• Informações da tabela Empresa:

Código da empresa	Nome da empresa	Representante
1	Digisystem	Miriam
2	Easynvest	Vitor
3	Totvs	Rafael

- Dessa forma, elimina-se a redundância dos dados
- Se o representante da Easynvest for alterado, preciso alterar apenas em um lugar (na tabela Empresa)

Exercício

- Criar uma tabela (planilha) com os dados dos alunos: nome, RA, telefone, e-mail, instituição de origem ("link" para a planilha 3), empresa de interesse ("link" para a planilha 2), hobby.
- Criar uma tabela (planilha) com os dados das empresas de interesse dos alunos: nome, representante.
- Criar uma tabela (planilha) com os dados da instituição de origem: nome, bairro.

