Package 'double.truncation'

October 13, 2022

Type Package
Title Analysis of Doubly-Truncated Data
Version 1.7
Date 2020-9-8
Author Takeshi Emura, Ya-Hsuan Hu, Chung-Yan Huang
Maintainer Takeshi Emura <takeshi emura@gmail.com=""></takeshi>
Description Likelihood-based inference methods with doubly- truncated data are developed under various models. Nonparametric models are based on Efron and Pet- rosian (1999) <doi:10.1080 01621459.1999.10474187=""> and Emura, Konno, and Michimae (2015) <doi:10.1007 s10985-014-9297-5="">. Parametric models from the special exponential family (SEF) are based on Hu and Emura (2015) <doi:10.1007 s00180-015-0564-z=""> and Emura, Hu and Konno (2017) <doi:10.1007 s00362-015-0730-y="">. The parametric location-scale models are based on Dorre et al. (2020) <doi:10.1007 s00180-020-01027-6="">.</doi:10.1007></doi:10.1007></doi:10.1007></doi:10.1007></doi:10.1080>
License GPL-2
Encoding UTF-8
LazyData true
NeedsCompilation no
Repository CRAN
Date/Publication 2020-09-08 08:40:03 UTC
R topics documented:
double.truncation-package 2 NPMLE 3 PMLE.loglogistic 4 PMLE.lognormal 5 PMLE.SEF1.free 6 PMLE.SEF1.negative 8 PMLE.SEF1.positive 9

	PMLE.SEF2.negative	٠																							11
	PMLE.SEF3.free .																								12
	PMLE.SEF3.negative	٠																	 				 		14
	PMLE.SEF3.positive																		 				 		15
	PMLE.Weibull																		 				 		16
	simu.Weibull																								18
Index																									19
doub]	le.truncation-packa	ge Ana	J			e T)		1	т.			at	a d	<i>D</i>	at								 	
		ana	iys	us	<i>Oj</i>	L	,01	u	ıy-	11	ur	ic	ш	еи	υ	ш	и								

Description

Likelihood-based inference methods with doubly-truncated data are developed under various models. Nonparametric models are based on Efron and Petrosian (1999) <doi:10.1080/01621459.1999.10474187> and Emura, Konno, and Michimae (2015) <doi:10.1007/s10985-014-9297-5>. Parametric models from the special exponential family (SEF) are based on Hu and Emura (2015) <doi:10.1007/s00180-015-0564-z> and Emura, Hu and Konno (2017) <doi:10.1007/s00362-015-0730-y>. The parametric location-scale models are based on Dorre et al. (2020) <doi:10.1007/s00180-020-01027-6>.

Details

Details are seen from the references.

Author(s)

Takeshi Emura, Ya-Hsuan Hu, Chung-Yan Huang Maintainer: Takeshi Emura <takeshi emura@gmail.com>

References

Dorre A, Emura T (2019) Analysis of Doubly Truncated Data, An Introduction, JSS Research Series in Statistics, Springer

Dorre A, Huang CY, Tseng YK, Emura T (2020) Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model, Computation Stat, DOI:10.1007/s00180-020-01027-6

Efron B, Petrosian V (1999). Nonparametric methods for doubly truncated data. J Am Stat Assoc 94: 824-834

Emura T, Konno Y, Michimae H (2015). Statistical inference based on the nonparametric maximum likelihood estimator under double-truncation. Lifetime Data Analysis 21: 397-418

Emura T, Hu YH, Konno Y (2017) Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation, Stat Pap 58 (3): 877-909

Hu YH, Emura T (2015) Maximum likelihood estimation for a special exponential family under random double-truncation, Computation Stat 30 (4): 1199-229

NPMLE 3

NPMLE	Nonparametric inference based on the self-consistency method

Description

Nonparametric maximum likelihood estimates are computed based on the self-consistency method (Efron and Petrosian 1999). The SE is computed from the asymptotic variance derived in Emura et al. (2015).

Usage

```
NPMLE(u.trunc, y.trunc, v.trunc,epsilon=1e-08)
```

Arguments

u.trunc lower truncation limit
 y.trunc variable of interest
 v.trunc upper truncation limit
 epsilon error tolerance for the self-consistency algorithm

Details

Details are seen from the references.

Value

f density

F cumulative distribution

SE standard error

convergence Log-likelihood, and the number of iterations

Author(s)

Takeshi Emura

References

Efron B, Petrosian V (1999). Nonparametric methods for doubly truncated data. J Am Stat Assoc 94: 824-834

Emura T, Konno Y, Michimae H (2015). Statistical inference based on the nonparametric maximum likelihood estimator under double-truncation. Lifetime Data Analysis 21: 397-418

Dorre A, Emura T (2019) Analysis of Doubly Truncated Data, An Introduction, JSS Research Series in Statistics, Springer

PMLE.loglogistic

Examples

```
## A data example from Efron and Petrosian (1999) ##
y.trunc=c(0.75, 1.25, 1.50, 1.05, 2.40, 2.50, 2.25)
u.trunc=c(0.4, 0.8, 0.0, 0.3, 1.1, 2.3, 1.3)
v.trunc=c(2.0, 1.8, 2.3, 1.4, 3.0, 3.4, 2.6)
NPMLE(u.trunc,y.trunc,v.trunc)
```

PMLE.loglogistic

Parametric Inference for the log-logistic model

Description

Maximum likelihood estimates and their standard errors (SEs) are computed. Also computed are the likelihood value, AIC, and other quantities.

Usage

```
PMLE.loglogistic(u.trunc, y.trunc, v.trunc,epsilon = 1e-5,D1=2,D2=2,d1=2,d2=2)
```

Arguments

u.trunc	lower truncation limit
y.trunc	variable of interest
v.trunc	upper truncation limit
epsilon	error tolerance for Newton-Raphson
D1	Randomize the intial value if mu_h-mu_h+1 >D1
D2	Randomize the intial value if sigma_h-sigma_h+1 >D2
d1	U(-d1,d1) is added to the intial value of mu
d2	U(-d2,d2) is added to the intial value of sigma

Details

Details are seen from the references.

Value

eta estimates SE standard errors

convergence Log-likelihood, degree of freedom, AIC, the number of iterations

Score score vector at the converged value

Hessian Hessian matrix at the converged value

Author(s)

Takeshi Emura

PMLE.lognormal 5

References

Dorre A, Huang CY, Tseng YK, Emura T (2020-) Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model, Computation Stat, DOI:10.1007/s00180-020-01027-6

Examples

```
## A data example from Efron and Petrosian (1999) ##
y.trunc=c(0.75, 1.25, 1.50, 1.05, 2.40, 2.50, 2.25)
u.trunc=c(0.4, 0.8, 0.0, 0.3, 1.1, 2.3, 1.3)
v.trunc=c(2.0, 1.8, 2.3, 1.4, 3.0, 3.4, 2.6)
PMLE.loglogistic(u.trunc,y.trunc,v.trunc)
```

PMLE.lognormal

Parametric Inference for the lognormal model

Description

Maximum likelihood estimates and their standard errors (SEs) are computed. Also computed are the likelihood value, AIC, and other quantities.

Usage

```
PMLE.lognormal(u.trunc, y.trunc, v.trunc,epsilon = 1e-5,D1=2,D2=2,d1=2,d2=2)
```

Arguments

u.trunc	lower truncation limit
y.trunc	variable of interest
v.trunc	upper truncation limit
epsilon	error tolerance for Newton-Raphson
D1	Randomize the intial value if mu_h-mu_h+1 >D1
D2	Randomize the intial value if sigma_h-sigma_h+1 >D2
d1	U(-d1,d1) is added to the intial value of mu
d2	U(-d2,d2) is added to the intial value of sigma

Details

Details are seen from the references.

Value

eta	estimates
SE	standard errors

convergence Log-likelihood, degree of freedom, AIC, the number of iterations

Score score vector at the converged value
Hessian Hessian matrix at the converged value

6 PMLE.SEF1.free

Author(s)

Takeshi Emura

References

Dorre A, Huang CY, Tseng YK, Emura T (2020-) Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model, Computation Stat, DOI:10.1007/s00180-020-01027-6

Examples

```
## A data example from Efron and Petrosian (1999) ##
y.trunc=c(0.75, 1.25, 1.50, 1.05, 2.40, 2.50, 2.25)
u.trunc=c(0.4, 0.8, 0.0, 0.3, 1.1, 2.3, 1.3)
v.trunc=c(2.0, 1.8, 2.3, 1.4, 3.0, 3.4, 2.6)
PMLE.lognormal(u.trunc,y.trunc,v.trunc)
```

PMLE.SEF1.free

Parametric inference for the one-parameter SEF model (free parameter space)

Description

Maximum likelihood estimates and their standard errors (SEs) are computed. Also computed are the likelihood value, AIC, and other quantities.

Usage

```
PMLE.SEF1.free(u.trunc, y.trunc, v.trunc,
tau1 = min(y.trunc), tau2 = max(y.trunc), epsilon = 1e-04)
```

Arguments

u.trunc lower truncation limity.trunc variable of interestv.trunc upper truncation limittau1 lower supporttau2 upper support

epsilon error tolerance for Newton-Raphson

Details

Details are seen from the references.

PMLE.SEF1.free 7

Value

eta estimates SE standard errors

convergence Log-likelihood, degree of freedom, AIC, the number of iterations

Score score at the converged value
Hessian Hessian at the converged value

Author(s)

Takeshi Emura

References

Hu YH, Emura T (2015) Maximum likelihood estimation for a special exponential family under random double-truncation, Computation Stat 30 (4): 1199-229

Emura T, Hu YH, Konno Y (2017) Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation, Stat Pap 58 (3): 877-909

Dorre A, Emura T (2019) Analysis of Doubly Truncated Data, An Introduction, JSS Research Series in Statistics, Springer

```
### Data generation: see Appendix of Hu and Emura (2015) ###
eta_true=-3
eta_u=-9
eta_v=-1
tau=10
n=300
a=u=v=y=c()
j=1
repeat{
  u1=runif(1,0,1)
  u[j]=tau+(1/eta_u)*log(1-u1)
  u2=runif(1,0,1)
  v[j]=tau+(1/eta_v)*log(1-u2)
  u3=runif(1,0,1)
  y[j]=tau+(1/eta_true)*log(1-u3)
  if(u[j]<=y[j]&&y[j]<=v[j]) a[j]=1 else a[j]=0
  if(sum(a)==n) break
  j=j+1
}
mean(a) ## inclusion probability around 0.5
v.trunc=v[a==1]
u.trunc=u[a==1]
y.trunc=y[a==1]
PMLE.SEF1.free(u.trunc,y.trunc,v.trunc)
```

PMLE.SEF1.negative

PMLE.SEF1.negative Parametric inference for the one-parameter SEF model (negative parameter space)

Description

Maximum likelihood estimates and their standard errors (SEs) are computed. Also computed are the likelihood value, AIC, and other quantities.

Usage

```
PMLE.SEF1.negative(u.trunc, y.trunc, v.trunc, tau1 = min(y.trunc), epsilon = 1e-04)
```

Arguments

u.trunc lower truncation limity.trunc variable of interestv.trunc upper truncation limit

tau1 lower support

epsilon error tolerance for Newton-Raphson

Details

Details are seen from the references.

Value

eta estimates
SE standard errors

convergence Log-likelihood, degree of freedom, AIC, the number of iterations

Score score at the converged value
Hessian Hessian at the converged value

Author(s)

Takeshi Emura, Ya-Hsuan Hu

References

Hu YH, Emura T (2015) Maximum likelihood estimation for a special exponential family under random double-truncation, Computation Stat 30 (4): 1199-229

Emura T, Hu YH, Konno Y (2017) Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation, Stat Pap 58 (3): 877-909

Dorre A, Emura T (2019) Analysis of Doubly Truncated Data, An Introduction, JSS Research Series in Statistics, Springer

PMLE.SEF1.positive 9

Examples

```
### Data generation: see Appendix of Hu and Emura (2015) ###
eta_true=-3
eta_u=-9
eta_v=-1
tau=10
n=300
a=u=v=y=c()
j=1
repeat{
  u1=runif(1,0,1)
  u[j]=tau+(1/eta_u)*log(1-u1)
  u2=runif(1,0,1)
  v[j]=tau+(1/eta_v)*log(1-u2)
  u3=runif(1,0,1)
  y[j]=tau+(1/eta_true)*log(1-u3)
  if(u[j]<=y[j]&&y[j]<=v[j]) a[j]=1 else a[j]=0</pre>
  if(sum(a)==n) break
  j=j+1
}
mean(a) ## inclusion probability around 0.5
v.trunc=v[a==1]
u.trunc=u[a==1]
y.trunc=y[a==1]
PMLE.SEF1.negative(u.trunc,y.trunc,v.trunc)
```

PMLE.SEF1.positive

Parametric Inference for the one-parameter SEF model (positive parameter space)

Description

Maximum likelihood estimates and their standard errors (SEs) are computed. Also computed are the likelihood value, AIC, and other quantities.

Usage

```
PMLE.SEF1.positive(u.trunc, y.trunc, v.trunc, tau2 = max(y.trunc), epsilon = 1e-04)
```

Arguments

```
u.trunc lower truncation limit
y.trunc variable of interest
v.trunc upper truncation limit
tau2 upper support
epsilon error tolerance for Newton-Raphson
```

Details

Details are seen from the references.

Value

eta estimates SE standard errors

convergence Log-likelihood, degree of freedom, AIC, the number of iterations

Score score at the converged value
Hessian Hessian at the converged value

Author(s)

Takeshi Emura, Ya-Hsuan Hu

References

Hu YH, Emura T (2015) Maximum likelihood estimation for a special exponential family under random double-truncation, Computation Stat 30 (4): 1199-229

Emura T, Hu YH, Konno Y (2017) Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation, Stat Pap 58 (3): 877-909

Dorre A, Emura T (2019) Analysis of Doubly Truncated Data, An Introduction, JSS Research Series in Statistics, Springer

```
#### Data generation: Appendix of Hu and Emura (2015)
eta_true=3
eta_u=1
eta_v=9
tau=10
n=300
a=u=v=y=c()
j=1
repeat{
  u1=runif(1,0,1)
  u[j]=tau+(1/eta_u)*log(u1)
  u2=runif(1,0,1)
  v[j]=tau+(1/eta_v)*log(u2)
  u3=runif(1,0,1)
  y[j]=tau+(1/eta_true)*log(u3)
  if(u[j]<=y[j]&&y[j]<=v[j]) a[j]=1 else a[j]=0
  if(sum(a)==n) break
  j=j+1
}
mean(a) ## inclusion probability around 0.5
```

PMLE.SEF2.negative

```
v.trunc=v[a==1]
u.trunc=u[a==1]
y.trunc=y[a==1]

PMLE.SEF1.positive(u.trunc,y.trunc,v.trunc)
```

PMLE.SEF2.negative Parametric Inference for the two-parameter SEF model (negative pa-

rameter space for eta_2)

Description

Maximum likelihood estimates and their standard errors (SEs) are computed. Also computed are the likelihood value, AIC, and other quantities. Since this is the model, estimates for the mean and SD are also computed.

Usage

```
PMLE.SEF2.negative(u.trunc, y.trunc, v.trunc, epsilon = 1e-04)
```

Arguments

u.trunc lower truncation limity.trunc variable of interestv.trunc upper truncation limit

epsilon error tolerance for Newton-Raphson

Details

Details are seen from the references.

Value

eta estimates
SE standard errors

convergence Log-likelihood, degree of freedom, AIC, the number of iterations

Score score vector at the converged value

Hessian Hessian matrix at the converged value

Author(s)

Takeshi Emura, Ya-Hsuan Hu

PMLE.SEF3.free

References

Hu YH, Emura T (2015) Maximum likelihood estimation for a special exponential family under random double-truncation, Computation Stat 30 (4): 1199-229

Emura T, Hu YH, Konno Y (2017) Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation, Stat Pap 58 (3): 877-909

Dorre A, Emura T (2019) Analysis of Doubly Truncated Data, An Introduction, JSS Research Series in Statistics, Springer

Examples

```
### Data generation: see Appendix of Hu and Emura (2015)
n=300
eta1_true=30
eta2_true=-0.5
mu true=30
mu_u=29.09
mu_v=30.91
a=u=v=y=c()
###generate n samples of (ui,yi,vi) subject to ui<=yi<=vi###
j=1
repeat{
  u[j]=rnorm(1,mu_u,1)
  v[j]=rnorm(1,mu_v,1)
  y[j]=rnorm(1,mu_true,1)
  if(u[j]<=y[j]&&y[j]<=v[j]) a[j]=1 else a[j]=0
  if(sum(a)==n) break ###we need n data set###
  j=j+1
}
mean(a) ### inclusion probability around 0.5 ###
v.trunc=v[a==1]
y.trunc=y[a==1]
u.trunc=u[a==1]
PMLE.SEF2.negative(u.trunc,y.trunc,v.trunc)
```

PMLE.SEF3.free

Parametric Inference for the three-parameter SEF model (free parameter space for eta_3)

Description

Maximum likelihood estimates and their standard errors (SEs) are computed. Also computed are the likelihood value, AIC, and other quantities.

PMLE.SEF3.free

Usage

```
PMLE.SEF3.free(u.trunc, y.trunc, v.trunc,
tau1 = min(y.trunc), tau2 = max(y.trunc),
epsilon = 1e-04, D1=20, D2=10, D3=1, d1=6, d2=0.5)
```

Arguments

u.trunc	lower truncation limit
y.trunc	variable of interest
v.trunc	upper truncation limit
tau1	lower support
tau2	upper support
epsilon	error tolerance for Newton-Raphson
D1	Divergence condition for eta_1
D2	Divergence condition of eta_2
D3	Divergence condition of eta_3
d1	Range of randomization for eta_1
d2	Range of randomization for eta_2

Details

Details are seen from the references.

Value

eta	estimates
SE	standard errors

convergence Log-likelihood, degree of freedom, AIC, the number of iterations

Score score vector at the converged value

Hessian Hessian matrix at the converged value

Author(s)

Takeshi Emura, Ya-Hsuan Hu

References

Hu YH, Emura T (2015) Maximum likelihood estimation for a special exponential family under random double-truncation, Computation Stat 30 (4): 1199-229

Emura T, Hu YH, Konno Y (2017) Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation, Stat Pap 58 (3): 877-909

Dorre A, Emura T (2019) Analysis of Doubly Truncated Data, An Introduction, JSS Research Series in Statistics, Springer

Examples

```
## The first 10 samples of the childhood cancer data ##
y.trunc=c(6,7,15,43,85,92,96,104,108,123)
u.trunc=c(-1643,-24,-532,-1508,-691,-1235,-786,-261,-108,-120)
v.trunc=u.trunc+1825
PMLE.SEF3.free(u.trunc,y.trunc,v.trunc)
```

PMLE.SEF3.negative

Parametric Inference for the three-parameter SEF model (negative parameter space for eta_3)

Description

Maximum likelihood estimates and their standard errors (SEs) are computed. Also computed are the likelihood value, AIC, and other quantities.

Usage

```
PMLE.SEF3.negative(u.trunc, y.trunc, v.trunc, tau1 = min(y.trunc), epsilon = 1e-04, D1=20, D2=10, D3=1, d1=6, d2=0.5)
```

Arguments

u.trunc

y.trunc	variable of interest
v.trunc	upper truncation limit
tau1	lower support
epsilon	error tolerance for Newton-Raphson
D1	Divergence condition for eta_1
D2	Divergence condition of eta_2
D3	Divergence condition of eta_3
d1	Range of randomization for eta_1
d2	Range of randomization for eta_2

lower truncation limit

Details

Details are seen from the references.

Value

eta	estimates
SE	standard error

convergence Log-likelihood, degree of freedom, AIC, the number of iterations

Score score vector at the converged value
Hessian Hessian matrix at the converged value

PMLE.SEF3.positive 15

Author(s)

Takeshi Emura, Ya-Hsuan Hu

References

Hu YH, Emura T (2015) Maximum likelihood estimation for a special exponential family under random double-truncation, Computation Stat 30 (4): 1199-229

Emura T, Hu YH, Konno Y (2017) Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation, Stat Pap 58 (3): 877-909

Dorre A, Emura T (2019) Analysis of Doubly Truncated Data, An Introduction, JSS Research Series in Statistics, Springer

Examples

```
## The first 10 samples of the childhood cancer data ##
y.trunc=c(6,7,15,43,85,92,96,104,108,123)
u.trunc=c(-1643,-24,-532,-1508,-691,-1235,-786,-261,-108,-120)
v.trunc=u.trunc+1825
PMLE.SEF3.negative(u.trunc,y.trunc,v.trunc)
```

PMLE.SEF3.positive

Parametric Inference for the three-parameter SEF model (positive parameter space for eta_3)

Description

Maximum likelihood estimates and their standard errors (SEs) are computed. Also computed are the likelihood value, AIC, and other quantities.

Usage

```
PMLE.SEF3.positive(u.trunc, y.trunc, v.trunc, tau2 = max(y.trunc), epsilon = 1e-04, D1=20, D2=10, D3=1, d1=6, d2=0.5)
```

Arguments

u.trunc

a. c. anc	10 Wei transaction mint
y.trunc	variable of interest
v.trunc	upper truncation limit
tau2	upper support
epsilon	error tolerance for Newton-Raphson
D1	Divergence condition for eta_1
D2	Divergence condition of eta_2
D3	Divergence condition of eta_3
d1	Range of randomization for eta_1
d2	Range of randomization for eta_2

lower truncation limit

16 PMLE.Weibull

Details

Details are seen from the references.

Value

eta estimates
SE standard errors

convergence Log-likelihood, degree of freedom, AIC, the number of iterations

Score score vector at the converged value

Hessian Hessian matrix at the converged value

Author(s)

Takeshi Emura, Ya-Hsuan Hu

References

Hu YH, Emura T (2015) Maximum likelihood estimation for a special exponential family under random double-truncation, Computation Stat 30 (4): 1199-229

Emura T, Hu YH, Konno Y (2017) Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation, Stat Pap 58 (3): 877-909

Dorre A, Emura T (2019) Analysis of Doubly Truncated Data, An Introduction, JSS Research Series in Statistics, Springer

Examples

```
## The first 10 samples of the childhood cancer data ##
y.trunc=c(6,7,15,43,85,92,96,104,108,123)
u.trunc=c(-1643,-24,-532,-1508,-691,-1235,-786,-261,-108,-120)
v.trunc=u.trunc+1825
PMLE.SEF3.positive(u.trunc,y.trunc,v.trunc)
```

PMLE.Weibull

Parametric Inference for the Weibull model

Description

Maximum likelihood estimates and their standard errors (SEs) are computed. Also computed are the likelihood value, AIC, and other quantities.

Usage

```
PMLE.Weibull(u.trunc, y.trunc, v.trunc,epsilon = 1e-5,D1=2,D2=2,d1=2,d2=2)
```

PMLE. Weibull 17

Arguments

u.trunc	lower truncation limit
y.trunc	variable of interest
v.trunc	upper truncation limit
epsilon	error tolerance for Newton-Raphson
D1	Randomize the intial value if lmu_h-mu_h+1 >D1
D2	Randomize the intial value if lsigma_h-sigma_h+1l>D2
d1	U(-d1,d1) is added to the intial value of mu
d2	U(-d2,d2) is added to the intial value of sigma

Details

Details are seen from the references.

Value

eta	estimates
SE	standard errors
convergence	Log-likelihood, degree of freedom, AIC, the number of iterations
Score	score vector at the converged value
Hessian	Hessian matrix at the converged value

Author(s)

Takeshi Emura

References

Dorre A, Huang CY, Tseng YK, Emura T (2020) Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model, Computation Stat, DOI:10.1007/s00180-020-01027-6

```
## A data example from Efron and Petrosian (1999) ##
y.trunc=c(0.75, 1.25, 1.50, 1.05, 2.40, 2.50, 2.25)
u.trunc=c(0.4, 0.8, 0.0, 0.3, 1.1, 2.3, 1.3)
v.trunc=c(2.0, 1.8, 2.3, 1.4, 3.0, 3.4, 2.6)
PMLE.Weibull(u.trunc,y.trunc,v.trunc)
```

18 simu. Weibull

simu.Weibull	Simulating doubly-truncated data from the Weibull model

Description

A data frame is generated by simulated data from the Weibull model.

Usage

```
simu.Weibull(n,mu,sigma,delta)
```

Arguments

n sample size
mu location parameter
sigma scale parameter

delta a positive parameter controlling the inclusion probability

Details

The data are generated from the random vector (U,Y,V) subject to the inclusion criterion $U \le Y \le V$. The random vector are defined as U = mu - delta + sigma *W, Y = mu + sigma *W, and U = mu + delta + sigma *W, where P(W > w) = exp(-exp(w)). See Section 5.1 of Dorre et al. (2020-) for details. The inclusion probability is $P(U \le Y \le V)$.

Value

u lower truncation limitsy log-transformed lifetimesv upper truncation limits

Author(s)

Takeshi Emura

References

Dorre A, Huang CY, Tseng YK, Emura T (2020-) Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model, Computation Stat, DOI:10.1007/s00180-020-01027-6

```
## A simulation from Dorre et al.(2020) ##
simu.Weibull(n=100,mu=5,sigma=2,delta=2.08)
Dat=simu.Weibull(n=100,mu=5,sigma=2,delta=2.08)
PMLE.Weibull(Dat$u,Dat$y,Dat$v)
```

Index

* Exponential distribution	PMLE.loglogistic, 4
PMLE.SEF1.free,6	PMLE.lognormal, 5
PMLE.SEF1.negative,8	PMLE.SEF1.free, 6
PMLE.SEF1.positive, 9	PMLE.SEF1.negative, 8
* Location-scale family	PMLE.SEF1.positive, 9
PMLE.loglogistic,4	PMLE.SEF2.negative, 11
PMLE.lognormal, 5	PMLE.SEF3.free, 12
PMLE.Weibull, 16	PMLE.SEF3.negative, 14
simu.Weibull, 18	PMLE.SEF3.positive, 15
* NPMLE	PMLE.Weibull, 16
NPMLE, 3	
* Normal distribution	simu.Weibull, 18
PMLE.SEF2.negative, 11	
* Self-consistency method	
NPMLE, 3	
* Skew normal distribution	
PMLE.SEF3.free, 12	
PMLE.SEF3.negative, 14	
PMLE.SEF3.positive, 15	
* Special exponential family	
PMLE.SEF1.free,6	
PMLE.SEF1.negative, 8	
PMLE.SEF1.positive, 9	
PMLE.SEF2.negative, 11	
PMLE.SEF3.free, 12	
PMLE.SEF3.negative, 14	
PMLE.SEF3.positive, 15	
* Weibull distribution	
PMLE.loglogistic, 4	
PMLE.lognormal, 5	
PMLE.Weibull, 16	
simu.Weibull, 18	
* package	
double.truncation-package,2	
double.truncation	
(double.truncation-package), 2	
double.truncation-package, 2	
addition of puckage, 2	
NPMLE, 3	