```
In [1]:
          # Importing all the required libraries and packages:
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
         import seaborn as sns
          from sklearn.preprocessing import StandardScaler
         from sklearn.cluster import KMeans
          from sklearn.metrics import silhouette_score
          from datetime import timedelta
          from pandas import ExcelWriter
In [2]:
          Data = pd.read excel(r'C:\Users\gkoppadx\OneDrive - Intel Corporation\Desktop\simple\A CAPSTONE PROJECT\Project 3/Online Retail.xl
          Data.head()
            InvoiceNo StockCode
                                                         Description Quantity
                                                                                    InvoiceDate UnitPrice CustomerID
Out[2]:
                                                                                                                           Country
         0
               536365
                         85123A WHITE HANGING HEART T-LIGHT HOLDER
                                                                           6 2010-12-01 08:26:00
                                                                                                             17850.0 United Kingdom
                                                                                                    2.55
                                                                                                             17850.0 United Kingdom
         1
               536365
                          71053
                                                WHITE METAL LANTERN
                                                                           6 2010-12-01 08:26:00
                                                                                                    3.39
         2
               536365
                         84406B
                                     CREAM CUPID HEARTS COAT HANGER
                                                                           8 2010-12-01 08:26:00
                                                                                                    2.75
                                                                                                             17850.0 United Kingdom
                                                                                                             17850.0 United Kingdom
         3
               536365
                         84029G KNITTED UNION FLAG HOT WATER BOTTLE
                                                                           6 2010-12-01 08:26:00
                                                                                                    3.39
         4
               536365
                          84029E
                                       RED WOOLLY HOTTIE WHITE HEART.
                                                                           6 2010-12-01 08:26:00
                                                                                                    3.39
                                                                                                             17850.0 United Kingdom
In [3]:
          # Checking shape of data
          Data.shape
         (541909, 8)
Out[3]:
In [4]:
          # Check feature details of data
          Data.info()
         <class 'pandas.core.frame.DataFrame'>
```

```
RangeIndex: 541909 entries, 0 to 541908
        Data columns (total 8 columns):
             Column
                          Non-Null Count
                                          Dtype
                          _____
                                          ----
                          541909 non-null object
             InvoiceNo
            StockCode
                         541909 non-null object
         1
             Description 540455 non-null object
             Ouantity
                          541909 non-null int64
            InvoiceDate 541909 non-null datetime64[ns]
            UnitPrice
                          541909 non-null float64
         6
             CustomerID 406829 non-null float64
             Country
                          541909 non-null object
        dtypes: datetime64[ns](1), float64(2), int64(1), object(4)
        memory usage: 33.1+ MB
In [5]:
         # Checking the missing values in data
         Data.isnull().sum()
        InvoiceNo
                            0
Out[5]:
        StockCode
                            0
        Description
                         1454
        Ouantity
                            0
        InvoiceDate
        UnitPrice
                            0
        CustomerID
                       135080
        Country
        dtype: int64
In [6]:
         # Calculating the Missing Values % contribution in DF
         Data null = round(Data.isnull().sum()/len(Data)*100,2)
         Data null
        InvoiceNo
                        0.00
Out[6]:
        StockCode
                        0.00
        Description
                        0.27
        Quantity
                        0.00
        InvoiceDate
                        0.00
        UnitPrice
                        0.00
        CustomerID
                       24.93
```

```
Country 0.00 dtype: float64
```

```
In [7]:
# CustomerID is important feature of our analysis since our analysis is centered around Customers only,
# so we can not impute null values CustomerID with mean/ median/ mode in this case.

# We will check possibility to fill null values in CustomerID column,
# By looking up for InvoiceNo of row having null CustomerID in other rows where CustomerID is present.

# If there are still any null values in CustomerID after this process then we will drop complete row having missing CustomerID.
# So we will drop all rows having null values in CustomerID.

invoice_null_custid = set(Data[Data['CustomerID'].isnull()]['InvoiceNo'])
Data[Data['InvoiceNo'].isin(invoice_null_custid) & (Data['CustomerID'].isnull())]
```

Out[7]:	InvoiceNo StockCode		Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	
	622	536414	22139	NaN	56	2010-12-01 11:52:00	0.00	NaN	United Kingdom
	1443	536544	21773	DECORATIVE ROSE BATHROOM BOTTLE	1	2010-12-01 14:32:00	2.51	NaN	United Kingdom
	1444	536544	21774	DECORATIVE CATS BATHROOM BOTTLE	2	2010-12-01 14:32:00	2.51	NaN	United Kingdom
	1445	536544	21786	POLKADOT RAIN HAT	4	2010-12-01 14:32:00	0.85	NaN	United Kingdom
	1446	536544	21787	RAIN PONCHO RETROSPOT	2	2010-12-01 14:32:00	1.66	NaN	United Kingdom
	•••								
	541536	581498	85099B	JUMBO BAG RED RETROSPOT	5	2011-12-09 10:26:00	4.13	NaN	United Kingdom
	541537	581498	85099C	JUMBO BAG BAROQUE BLACK WHITE	4	2011-12-09 10:26:00	4.13	NaN	United Kingdom
	541538	581498	85150	LADIES & GENTLEMEN METAL SIGN	1	2011-12-09 10:26:00	4.96	NaN	United Kingdom
	541539	581498	85174	S/4 CACTI CANDLES	1	2011-12-09 10:26:00	10.79	NaN	United Kingdom
	541540	581498	DOT	DOTCOM POSTAGE	1	2011-12-09 10:26:00	1714.17	NaN	United Kingdom

 $135080 \text{ rows} \times 8 \text{ columns}$

```
In [8]: Data[Data['InvoiceNo'].isin(invoice_null_custid) & (~Data['CustomerID'].isnull())]
```

```
Out[8]:
           InvoiceNo StockCode Description Quantity InvoiceDate UnitPrice CustomerID Country
 In [9]:
          # We can drop Description feature from our data since it is not not going to contribute in our model.
          Data = Data.drop('Description', axis=1)
          Data = Data.dropna()
          Data.shape
         (406829, 7)
 Out[9]:
In [10]:
          Data.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 406829 entries, 0 to 541908
         Data columns (total 7 columns):
              Column
                           Non-Null Count
                                           Dtype
                           _____
            InvoiceNo 406829 non-null object
          1 StockCode
                          406829 non-null object
                           406829 non-null int64
          2 Quantity
          3 InvoiceDate 406829 non-null datetime64[ns]
          4 UnitPrice
                          406829 non-null float64
          5 CustomerID 406829 non-null float64
          6 Country
                           406829 non-null object
         dtypes: datetime64[ns](1), float64(2), int64(1), object(3)
         memory usage: 24.8+ MB
In [11]:
          # Remove duplicate data records
          Data = Data.drop duplicates()
          Data.shape
         (401602, 7)
Out[11]:
In [12]:
          # Perform descriptive anaylysis on the given data
          # CustomerID is 'float64', changing the datatype of CustomerId to string,
          # as Customer ID as numerical data does not make sense
```

In [13]:

```
Data['CustomerID'] = Data['CustomerID'].astype(str)
Data.describe(datetime is numeric=True)
```

Out[13]: Quantity InvoiceDate **UnitPrice** count 401602.000000 401602 401602.000000 12.182579 2011-07-10 12:08:08.129839872 3.474064 mean min -80995.000000 0.000000 2010-12-01 08:26:00 25% 2.000000 2011-04-06 15:02:00 1.250000 **50%** 5.000000 2011-07-29 15:40:00 1.950000 **75%** 12.000000 2011-10-20 11:58:00 3.750000 80995.000000 2011-12-09 12:50:00 38970.000000 max

```
# From above data:
# Quantity: Average quantity of each product in transaction is 12.18.
# Also note that minimum value in Quantity column is negative.
# This implies that some customers had returned the product during our period of analysis.

# InvoiceDate: Our data has transaction between 01-12-2010 to 09-12-2011
# UnitPrice: Average price of each product in transactions is 3.47
```

In [15]: Data.describe(include=['0']) # include=['0'], it pulls out the objects dtypes attributes and shows their count/frequency/max/quartiles.

69.764209

NaN

Out[15]: InvoiceNo StockCode CustomerID Country 401602 401602 401602 401602 count 22190 3684 4372 37 unique 576339 85123A 17841.0 United Kingdom top

250.283248

std

	InvoiceNo	StockCode	CustomerID	Country
freq	542	2065	7812	356726

```
In [16]:
          # From above data:
          # InvoiceNo: Total entries in preprocessed data are 4,01,602 but transactions are 22,190.
          # Most number of entries (count of unique products) are in Invoice No. '576339' and is 542 nos.
          # StockCode: There are total 3684 unique products in our data,
          # And product with stock code '85123A' appears most frequently (2065 times) in our data.
          # CustomerID: There are 4372 unique customers in our final preprocessed data.
          # Customer with ID '17841' appears most frequently in data (7812 times)
          # Country: Company has customers across 37 countries. Most entries are from United Kingdom in our dataset (356726)
In [17]:
          # Data Transformation:Perform Cohort Analysis
          # Cohort analysis is a tool to measure user engagement over time.
          # It helps to know whether user engagement is actually getting better over time or is only appearing to improve because of growth.
          # Create month cohort of customers and analyze active customers in each cohort
In [18]:
          # Convert InvoiceDate to Year-Month format
          Data['month year'] = Data['InvoiceDate'].dt.to period('M')
          Data['month year'].nunique()
         13
Out[18]:
In [19]:
          month cohort = Data.groupby('month year')['CustomerID'].nunique()
          month cohort
         month year
Out[19]:
         2010-12
                      948
         2011-01
                     783
         2011-02
                     798
         2011-03
                    1020
         2011-04
                      899
```

2011-05

1079

```
2011-06
                    1051
         2011-07
                     993
         2011-08
                     980
         2011-09
                    1302
         2011-10
                    1425
         2011-11
                    1711
         2011-12
                      686
         Freq: M, Name: CustomerID, dtype: int64
In [20]:
          plt.figure(figsize=(10,5))
          sns.barplot(y = month cohort.index, x = month cohort.values);
          plt.xlabel("Count of customers")
          plt.title("No. of active customers in each month")
```

Out[20]: Text(0.5, 1.0, 'No. of active customers in each month')


```
In [21]: # Analyze the retention rate of customers:

In [22]: month cohort - month cohort.shift(1)
```

```
month year
Out[22]:
          2010-12
                        NaN
          2011-01
                     -165.0
          2011-02
                      15.0
          2011-03
                      222.0
          2011-04
                     -121.0
          2011-05
                      180.0
          2011-06
                      -28.0
          2011-07
                      -58.0
          2011-08
                      -13.0
          2011-09
                      322.0
          2011-10
                      123.0
          2011-11
                      286.0
          2011-12
                    -1025.0
         Freq: M, Name: CustomerID, dtype: float64
In [23]:
          retention rate = round(month cohort.pct change(periods=1)*100,2)
          retention rate
         month year
Out[23]:
         2010-12
                      NaN
          2011-01
                    -17.41
          2011-02
                     1.92
          2011-03
                     27.82
          2011-04
                    -11.86
          2011-05
                     20.02
                    -2.59
          2011-06
                    -5.52
          2011-07
          2011-08
                     -1.31
          2011-09
                     32.86
          2011-10
                     9.45
          2011-11
                     20.07
          2011-12
                    -59.91
         Freq: M, Name: CustomerID, dtype: float64
In [24]:
          plt.figure(figsize=(10,5))
          sns.barplot(y = retention_rate.index, x = retention_rate.values);
          plt.xlabel("Retention (in %)")
          plt.title("Month-wise customer retention rate");
```



```
In [25]: # Monetary analysis:
```

[26]:		InvoiceNo	StockCode	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	month_year	amount
,	0	536365	85123A	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom	2010-12	15.30
	1	536365	71053	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom	2010-12	20.34
	2	536365	84406B	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom	2010-12	22.00
	3	536365	84029G	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom	2010-12	20.34
	4	536365	84029E	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom	2010-12	20.34

Out[

Out[27]:		CustomerID	amount
	0	12346.0	0.00
	1	12347.0	4310.00
	2	12348.0	1797.24
	3	12349.0	1757.55
	4	12350.0	334.40
	•••		
	4367	18280.0	180.60
	4368	18281.0	80.82
	4369	18282.0	176.60
	4370	18283.0	2045.53
	4371	18287.0	1837.28

4372 rows × 2 columns

```
In [28]: # Frequency Analysis:
In [29]: Data_frequency = Data.groupby('CustomerID').nunique()['InvoiceNo'].reset_index()
Data_frequency
Out[29]: CustomerID InvoiceNo
```

[29]:		CustomerID	InvoiceNo
	0	12346.0	2
	1	12347.0	7
	2	12348.0	4
	3	12349.0	1
	4	12350.0	1

	CustomerID	InvoiceNo
•••		
4367	18280.0	1
4368	18281.0	1
4369	18282.0	3
4370	18283.0	16
4371	18287.0	3

4372 rows × 2 columns

Out[32]:		InvoiceNo	StockCode	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	month_year	amount	days_to_last_order
	0	536365	85123A	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom	2010-12	15.30	374
	1	536365	71053	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom	2010-12	20.34	374
	2	536365	84406B	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom	2010-12	22.00	374
	3	536365	84029G	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom	2010-12	20.34	374
	4	536365	84029E	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom	2010-12	20.34	374

```
In [33]: Data_recency = Data.groupby('CustomerID')['days_to_last_order'].min().reset_index()
    Data_recency
```

Out[33]:		CustomerID	days_to_last_order
	0	12346.0	326
	1	12347.0	2
	2	12348.0	75
	3	12349.0	19
	4	12350.0	310
	•••		
	4367	18280.0	278
	4368	18281.0	181
	4369	18282.0	8
	4370	18283.0	4
	4371	18287.0	43

4372 rows × 2 columns

```
In [34]: # Calculate RFM metrics:
```

```
In [35]:
    Data_rf = pd.merge(Data_recency, Data_frequency, on='CustomerID', how='inner')
    Data_rfm = pd.merge(Data_rf, Data_monetary, on='CustomerID', how='inner')
    Data_rfm.columns = ['CustomerID', 'Recency', 'Frequency', 'Monetary']
    Data_rfm.head()
```

Out[35]:		CustomerID	Recency	Frequency	Monetary
	0	12346.0	326	2	0.00
	1	12347.0	2	7	4310.00
	2	12348.0	75	4	1797.24

	CustomerID	Recency	Frequency	Monetary
3	12349.0	19	1	1757.55
4	12350.0	310	1	334.40

```
In [36]:
          # Build RFM Segments:
          Data_rfm['recency_labels'] = pd.cut(Data_rfm['Recency'], bins=5,
                                                labels=['newest', 'newer', 'medium', 'older', 'oldest'])
          Data rfm['recency labels'].value counts().plot(kind='barh');
          Data rfm['recency labels'].value counts()
                    2734
         newest
Out[36]:
                     588
          newer
          medium
                     416
         older
                     353
          oldest
                     281
         Name: recency labels, dtype: int64
           oldest
            older
          medium
           newer
           newest
                0
                        500
                                1000
                                        1500
                                                 2000
                                                         2500
In [37]:
          Data_rfm['frequency_labels'] = pd.cut(Data_rfm['Frequency'], bins=5,
                                                 labels=['lowest', 'lower', 'medium', 'higher', 'highest'])
          Data_rfm['frequency_labels'].value_counts().plot(kind='barh');
          Data_rfm['frequency_labels'].value_counts()
          lowest
                     4348
```

```
Out[37]: lower
                        18
          medium
                         3
          highest
          higher
          Name: frequency_labels, dtype: int64
            higher
           highest
          medium
             lower
            lowest
                 0
                           1000
                                      2000
                                                  3000
                                                             4000
```


In [39]: Data_rfm.head()

Out[39]:	CustomerID	Recency	Frequency	Monetary	recency_labels	frequency_labels	monetary_labels

0	12346.0	326	2	0.00	oldest	lowest	smallest
1	12347.0	2	7	4310.00	newest	lowest	smallest
2	12348.0	75	4	1797.24	newest	lowest	smallest
3	12349.0	19	1	1757.55	newest	lowest	smallest
4	12350.0	310	1	334.40	oldest	lowest	smallest

In [40]:

Data_rfm['rfm_segment'] = Data_rfm[['recency_labels','frequency_labels','monetary_labels']].agg('_'.join, axis=1)
Data_rfm.head()

Out[40]:

•		CustomerID	Recency	Frequency	Monetary	recency_labels	frequency_labels	monetary_labels	rfm_segment
	0	12346.0	326	2	0.00	oldest	lowest	smallest	oldest_lowest_smallest
	1	12347.0	2	7	4310.00	newest	lowest	smallest	newest_lowest_smallest
	2	12348.0	75	4	1797.24	newest	lowest	smallest	newest_lowest_smallest
	3	12349.0	19	1	1757.55	newest	lowest	smallest	newest_lowest_smallest

```
CustomerID Recency Frequency Monetary recency labels frequency labels monetary labels
                                                                                                        rfm segment
                12350.0
                            310
                                                           oldest
                                                                                        smallest oldest lowest smallest
                                              334.40
                                                                           lowest
In [41]:
          # RFM Score:
          recency dict = {'newest': 5, 'newer':4, 'medium': 3, 'older':2, 'oldest':1}
          frequency dict = {'lowest':1, 'lower':2, 'medium': 3, 'higher':4, 'highest':5}
          monetary dict = {'smallest':1, 'smaller':2, 'medium': 3, 'larger':4, 'largest':5}
          Data rfm['rfm score'] = (Data rfm['recency labels'].map(recency dict).astype(int)+ Data rfm['frequency labels']
                                    .map(frequency dict).astype(int) + Data rfm['monetary labels'].map(monetary dict).astype(int))
          Data rfm.head(10)
```

ut[41]:		CustomerID	Recency	Frequency	Monetary	recency_labels	frequency_labels	monetary_labels	rfm_segment	rfm_score
	0	12346.0	326	2	0.00	oldest	lowest	smallest	oldest_lowest_smallest	3
	1	12347.0	2	7	4310.00	newest	lowest	smallest	newest_lowest_smallest	7
	2	12348.0	75	4	1797.24	newest	lowest	smallest	newest_lowest_smallest	7
	3	12349.0	19	1	1757.55	newest	lowest	smallest	newest_lowest_smallest	7
	4	12350.0	310	1	334.40	oldest	lowest	smallest	oldest_lowest_smallest	3
	5	12352.0	36	11	1545.41	newest	lowest	smallest	newest_lowest_smallest	7
	6	12353.0	204	1	89.00	medium	lowest	smallest	medium_lowest_smallest	5
	7	12354.0	232	1	1079.40	older	lowest	smallest	older_lowest_smallest	4
	8	12355.0	214	1	459.40	medium	lowest	smallest	medium_lowest_smallest	5
	9	12356.0	23	3	2811.43	newest	lowest	smallest	newest_lowest_smallest	7

```
In [42]: # Analyze RFM Segment and Score:
    Data_rfm['rfm_segment'].value_counts().plot(kind='barh', figsize=(10, 5));
```


Data Modeling:

```
In [44]:
           # Create clusters using k-means clustering algorithm.
           # Prepare the data for the algorithm.
           # If the data is asymmetrically distributed, manage the skewness with appropriate transformation. Standardize the data.
In [45]:
           print(Data rfm.shape)
           Data rfm.head()
          (4372, 9)
Out[45]:
             CustomerID Recency Frequency Monetary recency_labels frequency_labels monetary_labels
                                                                                                             rfm segment rfm score
                 12346.0
                              326
                                                  0.00
                                                               oldest
                                                                                                      oldest lowest smallest
          0
                                                                               lowest
                                                                                             smallest
                                                                                                                                  3
                                                                                             smallest newest_lowest_smallest
                 12347.0
                                               4310.00
                                                                                                                                  7
          1
                                                                               lowest
                                                              newest
          2
                 12348.0
                              75
                                               1797.24
                                                                               lowest
                                                                                             smallest newest_lowest_smallest
                                                                                                                                  7
                                                              newest
          3
                 12349.0
                              19
                                               1757.55
                                                                                             smallest newest_lowest_smallest
                                                                               lowest
                                                              newest
          4
                 12350.0
                             310
                                                                                             smallest oldest_lowest_smallest
                                                                                                                                  3
                                          1
                                                334.40
                                                               oldest
                                                                               lowest
In [46]:
           plt.figure(figsize=(12,6))
           for i, feature in enumerate(['Recency', 'Frequency', 'Monetary']):
               plt.subplot(2,3,i+1)
               Data rfm[feature].plot(kind='box')
               plt.subplot(2,3,i+1+3)
               Data rfm[feature].plot(kind='hist')
```



```
In [47]: # From above data:
    # Frequency and Monetary features in above data seem to have Lot of outliers. Lets drop them.

In [48]: Data_rfm = Data_rfm[(Data_rfm['Frequency']<60) & (Data_rfm['Monetary']<40000)]
Data_rfm.shape

Out[48]: (4346, 9)

In [49]: plt.figure(figsize=(12,6))
    for i, feature in enumerate(['Recency', 'Frequency', 'Monetary']):
        plt.subplot(2,3,i+1)
        Data_rfm[feature].plot(kind='box')
        plt.subplot(2,3,i+1+3)
        Data_rfm[feature].plot(kind='hist')</pre>
```



```
In [50]: # Now since all three features have right skewed data, we will use log transformation of these features in our model.
```

```
In [51]:
    Data_rfm_log_trans = pd.DataFrame()
    Data_rfm_log_trans['Recency'] = np.log(Data_rfm['Recency'])
    Data_rfm_log_trans['Frequency'] = np.log(Data_rfm['Frequency'])
    Data_rfm_log_trans['Monetary'] = np.log(Data_rfm['Monetary']-Data_rfm['Monetary'].min()+1)
```

In [52]: Data_rfm_log_trans.head()

Out[52]:		Recency	Frequency	Monetary	
	0	5.786897	0.693147	8.363723	
	1	0.693147	1.945910	9.059358	
	2	4.317488	1.386294	8.713725	

```
Recency Frequency Monetary
          3 2.944439
                       0.000000
                                 8.707182
          4 5.736572
                       0.000000
                                 8.438806
In [53]:
          # Standard Scalar Transformation: It is extremely important to rescale the features so that they have a comparable scale.
In [54]:
          scaler = StandardScaler()
          Data rfm scaled = scaler.fit transform(Data rfm log trans[['Recency', 'Frequency', 'Monetary']])
          Data rfm scaled
          Data rfm scaled = pd.DataFrame(Data_rfm_scaled)
          Data rfm scaled.columns = ['Recency', 'Frequency', 'Monetary']
          Data rfm scaled.head()
Out[54]:
              Recency Frequency Monetary
            1.402988
                       -0.388507
                                 -0.770922
          1 -2.100874
                       0.967301
                                 1.485132
          2 0.392218
                       0.361655
                                 0.364190
          3 -0.552268
                      -1.138669
                                 0.342970
          4 1.368370 -1.138669 -0.527416
In [55]:
          # Build K-Means Clustering Model and Decide the optimum number of clusters to be formed.
In [56]:
          # k-means with some arbitrary k
          kmeans = KMeans(n_clusters=3, max_iter=50)
          kmeans.fit(Data_rfm_scaled)
          KMeans(max_iter=50, n_clusters=3)
Out[56]:
In [57]:
```

```
kmeans.labels_
Out[57]: array([1, 0, 2, ..., 2, 0, 2])

In [58]: # Finding the Optimal Number of Clusters with the help of Elbow Curve/ SSD

ssd = []
range_n_clusters = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
for num_clusters in range_n_clusters:
    kmeans = KMeans(n_clusters=num_clusters, max_iter=100)
    kmeans.fit(Data_rfm_scaled)
    ssd.append(kmeans.inertia_)

# plot the SSDs for each n_clusters
plt.plot(range_n_clusters,ssd);
```



```
In [59]:
# Creating dataframe for exporting to create visualization in tableau later
Data_inertia = pd.DataFrame(list(zip(range_n_clusters, ssd)), columns=['clusters', 'intertia'])
Data_inertia
```

Out[59]: clusters intertia

	clusters	intertia
0	2	7113.097396
1	3	5343.136928
2	4	4481.022293
3	5	3730.805717
4	6	3045.029702
5	7	2598.464837
6	8	2301.370633
7	9	2044.740060
8	10	1852.941597
9	11	1700.376798
10	12	1575.512062

```
In [60]:
```

```
# Finding the Optimal Number of Clusters with the help of Silhouette Analysis

range_n_clusters = [2, 3, 4, 5, 6, 7, 8, 9, 10]

for num_clusters in range_n_clusters:
    kmeans = KMeans(n_clusters=num_clusters, max_iter=50)
    kmeans.fit(Data_rfm_scaled)

cluster_labels = kmeans.labels_

silhouette_avg = silhouette_score(Data_rfm_scaled, cluster_labels)
    print("For n_clusters={0}, the silhouette score is {1}".format(num_clusters, silhouette_avg))

For n_clusters 2, the silhouette score is 0.441337553775566
```

```
For n_clusters=2, the silhouette score is 0.44132753537785846
For n_clusters=3, the silhouette score is 0.37962225322302756
For n_clusters=4, the silhouette score is 0.3623606426972478
For n_clusters=5, the silhouette score is 0.36686786887528716
For n_clusters=6, the silhouette score is 0.3441911617174347
For n_clusters=7, the silhouette score is 0.3428617732216645
For n_clusters=8, the silhouette score is 0.3352730467143602
```

For n_clusters=9, the silhouette score is 0.346301798458803 For n_clusters=10, the silhouette score is 0.3560807144631476

```
In [61]:
           # From above data
           # We can select optimum number of clusters as 3 in our final model
In [62]:
           # Final model with k=3
           kmeans = KMeans(n clusters=3, max iter=50)
           kmeans.fit(Data rfm scaled)
          KMeans(max iter=50, n clusters=3)
Out[62]:
In [63]:
            # Analyze these clusters and comment on the results.
In [64]:
           # assign the label
           Data rfm['Cluster Id'] = kmeans.labels
           Data rfm.head()
Out[64]:
             CustomerID Recency Frequency Monetary recency_labels frequency_labels monetary_labels
                                                                                                             rfm_segment rfm_score Cluster_Id
                                          2
          0
                 12346.0
                             326
                                                  0.00
                                                               oldest
                                                                                             smallest oldest_lowest_smallest
                                                                                                                                  3
                                                                                                                                            1
                                                                               lowest
          1
                 12347.0
                               2
                                               4310.00
                                                                                             smallest newest lowest smallest
                                                                                                                                  7
                                                                                                                                            2
                                                                               lowest
                                                              newest
          2
                 12348.0
                              75
                                               1797.24
                                                                               lowest
                                                                                             smallest newest_lowest_smallest
                                                                                                                                  7
                                                                                                                                            0
                                                              newest
          3
                 12349.0
                              19
                                               1757.55
                                                                                             smallest newest_lowest_smallest
                                                                                                                                 7
                                                                               lowest
                                                                                                                                            1
                                                              newest
          4
                 12350.0
                             310
                                          1
                                                334.40
                                                               oldest
                                                                                             smallest oldest_lowest_smallest
                                                                                                                                  3
                                                                                                                                            1
                                                                               lowest
In [65]:
           # Box plot to visualize Cluster Id vs Monetary
           sns.boxplot(x='Cluster Id', y='Monetary', data=Data rfm);
```


In [66]: # Box plot to visualize Cluster Id vs Frequency
sns.boxplot(x='Cluster_Id', y='Frequency', data=Data_rfm);


```
In [67]:
# Box plot to visualize Cluster Id vs Recency
sns.boxplot(x='Cluster_Id', y='Recency', data=Data_rfm);
```


Final Inference from the Analysis:

As we can observe from above boxplots that our model has nicely created 3 segements of customer with the interpretation as below:

Customers with Cluster Id 0 are less frequent buyers with low monetary expenditure and also they have not purchased anything in recent time and hence least important for business.

Customers with Cluster Id 1 are the customers having Recency, Frequency and Monetary score in the medium range.

11/21/22, 11:38 PM Retail Capstone Project

Customers with Cluster Id 2 are the most frequent buyers, spending high amount and recently placing orders so they are the most important customers from business point of view.

```
In [72]:
          # Writing dataframe to excel file for creating visualization in tableau
          writer = pd.ExcelWriter('C:\\Users\\gkoppadx\\OneDrive - Intel Corporation\\Desktop\\simple\\A CAPSTONE PROJECT\\output data.xlsx'
          Data.to excel(writer, sheet name='master data', index=False)
          Data rfm.to excel(writer, sheet name='rfm data', index=False)
          Data inertia.to excel(writer, sheet name='inertia', index=False)
          writer.save()
In [74]:
          product desc = pd.read excel(r'C:\Users\gkoppadx\OneDrive - Intel Corporation\Desktop\simple\A CAPSTONE PROJECT\Project 3/Online R
          product desc = product desc[['StockCode', 'Description']]
          product desc = product desc.drop duplicates()
          product desc.to csv('product desc.csv', index=False)
In [76]:
          product desc.head()
Out[76]:
            StockCode
                                               Description
          0
               85123A WHITE HANGING HEART T-LIGHT HOLDER
          1
                71053
                                     WHITE METAL LANTERN
          2
               84406B
                          CREAM CUPID HEARTS COAT HANGER
          3
               84029G KNITTED UNION FLAG HOT WATER BOTTLE
          4
                84029E
                            RED WOOLLY HOTTIE WHITE HEART.
 In [ ]:
```