

计算机组成原理

第三章: 计算机中的运算

中山大学计算机学院 陈刚

2022年秋季

本讲内容

- □基本运算
 - □加法和减法
 - □位操作
- □乘法运算
- □除法运算
- □浮点运算

从十进制乘法谈起

□十进制乘法,例:

由十进制乘法到二进制乘法

□二进制乘法,例:

\m+=					1	1	0	1
逻辑与			X		1	0	1	1
$M_0 = A \& B_4$					1	1	0	1
$M_1 = A \& B_3$				1	1	0	1	
$M_2 = A \& B_2$			0	0	0	0		
$M_3 = A \& B_1$		1	1	0	1			
AXB	1	0	0	0	1	1	1	1

位积 AXB_i AXB = 10001111

二进制乘法

计算机中怎么实现?

						_		
					1	1	0	1 -
			X		1	0	1	1
M ₀ =A&B ₄	0	0	0	0	1	1	0	1
$M_1=A\&B_3$	0	0	0	1	1	0	1	0
$M_2=A\&B_2$	0	0	0	0	0	0	0	0
$M_3 = A \& B_1$	0	1	1	0	1	0	0	0
AXB	1	0	0	0	1	1	1	1

手工运算过程

位积 A X B_i AXB = 10001111

问题:

- 1.加法器只有两个输入端,无法支持多路输入!
- 2.需要2n+1位加法器,不能<mark>有效</mark>利用全加器操作!

二进制乘法

加法器只需要两个输入端分别输入部分积Pi以及位积Mi,避免了需要加法器拥有多个输入端的问题

改进方案1:

二进制乘法

改进方案2:

第一种无符号移位-加法乘法器。

乘法器 = 数据通路 + 控制

32位乘数寄存器

- □Requires 32 iterations (Addition Shift Comparison)
- □Almost 100 cycles
- □Very big, Too slow!

Multiply example using algorithm in Figure 3.5.

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	001①	0000 0010	0000 0000
1	1a: 1 ⇒ Prod = Prod + Mcand	0011	0000 0010	0000 0010
	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	000①	0000 0100	0000 0010
2	1a: 1 ⇒ Prod = Prod + Mcand	0001	0000 0100	0000 0110
	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	0000	0000 1000	0000 0110
3	1: 0 ⇒ No operation	0000	0000 1000	0000 0110
	2: Shift left Multiplicand	0000	0001 0000	0000 0110
	3: Shift right Multiplier	0000	0001 0000	0000 0110
4	1: 0 ⇒ No operation	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

第一种乘法的启示

- □每个周期 1个时钟 => 每次乘法大约100(32 3)个时钟
 - •乘法与加法的出现频率比 5:1 ~ 100:1

- □64位被乘数中 1/2的位数 总是为 0 => 使用64位加法器, 太浪费 !!!
- □用乘积右移 替代 被乘数左移?

Multiplier V2-- Logic Diagram

- Diagram of the V2 multiplier
- Only left half of product register is changed

Example for second version

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial	1011	0010	0000 0000
1	Test true shift right	1011 0101	0010	0010 0000 0001 0000
2	Test true shift right	0101 0010	0010	0011 0000 0001 1000
3	Test false shift right	0010 0001	0010	0001 1000 0000 1100
4	Test true shift right	0001 0000	0010	0010 1100 0001 0110

Multiplier V 3

乘积寄存器浪费的空间 正好与 乘数中无用的空间 相同

- => 联合使用 乘数寄存器 和 乘积寄存器
- Further optimization
- □At the initial state the product register contains only '0'
- □The lower 32 bits are simply shifted out
- □Idea:

use these lower 32 bits for the multiplier

0	0	0	1	0	0	0	0					
0	0	0	1	1	0	0	0	0				multiplie
0	0	0	1	1	1	0	0	0	0	0	O	
0	0	0	0	1	1	1	0	0	0	0		
0	0	0	0	0	1	1	1	0	0	0	0	S N N N N N N N N N N N N N N N N N N N

改<mark>进的乘法实</mark>现硬件 第三种乘法硬件

测试乘数最右边的位, 当乘数为1时, 将乘数和被乘数移位, 同时将被乘数与积相加

_

Example with V3

• Multiplicand x multiplier: 0001 x 0111

BA 14: 1:	2024	Sh	
Multiplicand:	0001	ift	
Multiplier:x	0111	Shift out	
_	00000111	#	#Initial value for the product
1	00010111		#After adding 0001, Multiplier=1
	00001011	1	#After shifting right the product one bit
_	0001		
2	00011011		#After adding 0001, Multiplier=1
	00001101	1	#After shifting right the product one bit
	0001		#After adding 0001, Multiplier=1
3	00011101		
	00001110	_ 1	#After shifting right the product one bit
	0000		
4	00001110		#After adding 0001, Multiplier=0
	00000111	0	#After shifting right the product one bit

Signed Multiplication

有符号数乘法如何?

- □简单地策略是假设两个源操作数都是正数,在运算结束时再对乘积进行修正(不算符号位,运算31步)
- □使用补码
- -需要对部分乘积进行符号扩展,在最后再进行 减法

Better Version:

- □Use the unsigned multiplication hardware
- □When shifting right, extend the sign of the product
- □ If multiplier is negative, the last step should be a subtract

Signed Multiplication (Pencil & Paper)

□ Case 1: Positive Multiplier $v = -2^{n-1}b_{n-1} + \mathring{\partial} 2^i b_i$ $1100_2 = -4$ Multiplicand i=0 \times 0101, = +5 Multiplier 111111100 Sign-extension $11101100_2 = -20$ If multiplier is negative, the Product last step should be a □ Case 2: Negative Multiplier subtract $1100_2 = -4$ Multiplicand (1100) 补码 Multiplier \times 1101, = -3 =0100 减1100等于加0100 (2's complement of 1100) Product $00001100_2 = +12$

Sequential Signed Multiplier

Signed Multiplication Example

- Consider: 1100_2 (-4) $\times 1101_2$ (-3), Product = 00001101_2
- Check for overflow: No overflow → Extend sign bit
- Last iteration: add 2's complement of Multiplicand

Itera	ation	Multiplicand	Sign	Product = HI, LO
0	Initialize (HI = 0 , LO = Multiplier)	1100		- 0000 110 <mark>1</mark>
1	$LO[0] = 1 \Rightarrow ADD$	 	→ 1	1100 1101
	Shift (Sign, HI, LO) right 1 bit	1100		1110 0110
	$LO[0] = 0 \Rightarrow Do Nothing$			
2	Shift (Sign, HI, LO) right 1 bit	1100		- 1111 001 <mark>1</mark>
2	$LO[0] = 1 \Longrightarrow ADD$	<u></u>	→ 1	1011 0011
3	Shift (Sign, HI, LO) right 1 bit	1100		- 1101 100 <mark>1</mark>
1	LO[0] = 1 => SUB (ADD 2's compl)	0100 +-	→ [0	0001 1001
4	Shift (Sign, HI, LO) right 1 bit			0000 1100

并行乘法器

早期的计算机中采用串行的1位乘法方案,即多次执行"加--移位"操作来实现。这种方法硬件简单,但速度太低,不能满足科学技术对高速乘法所提出的要求。自从大规模集成电路问世以来,高速的单元阵列乘法器应运而生,出现了各种形式的流水式阵列乘法器,它们属于并行乘法器。

设两个不带符号的二进制整数

$$A = a_{m-1} ... a_1 a_0$$

$$B=b_{n-1}...b_1b_0$$

则二进制乘积 $P=ab=(\sum a_i 2^i)(\sum b_j 2^j)=\sum \sum (a_i b_j) 2^{i+j}$

阵列乘法器

❖基本思路

若将所有的a_ib_j都一起算出来,剩下的就是带进位位的加法求和。这种乘法器要实现n位* n位时,需要n(n-1)个全加器和n 个"与"门。

> 以 4 位无符号数为例

其中 $C_{ii} = A_i B_i$

(4) 乘法器

ALU电路设计

0 第0級 FA FAFAFA1111×1011 =10100101 FA FA FA 第1級 FA0 $1 \mid 0$ 01|0|0 第2級 - 0 FA FA FAFA 0 0 FA FA FA FA 第3級 0

阵列乘法存在的问题 ALU电路设计

- 存在的问题:
 - 第0级的加法没有必要
 - 每一级加法采用串行进位,速度受到影响
- 改进措施: 采用CSA——保存进位加法器(Carry Save Adder)
 - CSA输出每一位相加的部分和,同时将每一位的进位保存下来,作为一个输出结果供下一级加法器来处理,而不是向同一级的下一位进位
 - 由于CSA不存在同级每个位之间的串行进位,所以能以更快的速度得到进位和部分和

乘法 ALU电路设计

- 从结构和逻辑上看,1位CSA就是一个1位全加器
- 采用CSA构造阵列乘法器,前面几级采用不考虑进位的CSA,最后一级采用常规的进位传播加法器CPA(Carry Propagate Adder)产生最后的乘积结果
- CPA可以采用串行进位加法器,也可以采用先行进位加法器

Combinational Multiplier (signed!)

Multiplication in MIPS

```
# t1 * t2
mult $t1, $t2
□No destination register: product could be ~2<sup>64</sup>;
 need two special registers to hold it
□3-step process:
                0111111111111111111111111111111111
            X $t2
                mfhi $t3
               mflo $t4
```



```
//hi lo寄存器
  reg [31:0] hi;
  reg [31:0] lo;
  wire Write_hi, Write_lo;
  //always@(inst[31:26],inst[5:0])
  always@(negedge clkin)
  begin
     if(inst[31:26]==6'b000000&&inst[5:0]==6'b011000)
     begin //mult
       {hi,lo}=RsData*RtData;
     end
     else if(inst[31:26]==6'b000000&&inst[5:0]==6'b011010)
    begin //div
       lo=RsData/RtData:
       hi=RsData%RtData;
     end
     else if(inst[31:26]==6'b000000&&inst[5:0]==6'b010001)
     begin //mthi
       hi=RsData:
     end
     else if(inst[31:26]==6'b000000&&inst[5:0]==6'b010011)
    begin //mtlo
       lo=RsData;
     end
```


3.4 Division

n-bit operands yield *n*-bit quotient and remainder

※笔算除法分析:

- 1.二进制除法实质是"作被除数(余数)和除数的减法, 求新的余数"的过程;
- 每次上商都是由心算来比较 余数(被除数)和除数的大小, 确定商为1还是0;
- ◆ 每做一次减法,总是保持余数不动,低位补0,再减去 右移后的除数;

被除数 = 商 × 除数 + 余数

※第一种除法算法

- 32位二进制除法硬件电路
- 32位被除数放在64位余数寄存器的低32位中;
- 32位除数放在64位除数寄存器的高32位,低32位填0

□ 计算: $*7_{10} \div 2_{10} = 0111_2 \div 0010_2$

选代	步骤	商	除数	余数
÷0	⋄初始化	÷0000	÷0010 0000	÷0000 0111
*1	*余数=余数-除数	÷0000	÷0010 0000	÷1110 0111
	⋄余数=余数+除数 ⋄商左移,LSB置0	÷ 000 <mark>0</mark>	÷0010 0000	÷0000 0111
	⋄右移除数	÷0000	÷0001 0000	÷0000 0111
	*余数=余数-除数	÷000 <mark>0</mark>	÷0001 0000	*1110 0111
÷2	⋄余数=余数+除数 ⋄商左移,LSB置0	÷0000	÷0001 0000	÷0000 0111
	- 右移除数	÷00 <mark>00</mark>	÷0000 1000	0000

□ 计算: $*7_{10} \div 2_{10} = 0111_2 \div 0010_2 * (续2)$

选代	步骤	商	除数	余数
*3	*余数=余数-除数	÷00 <mark>00</mark>	0000 1000	*1110 0111
	⋄余数=余数+除数 ⋄商左移,LSB置0	÷0000	÷0000 1000	÷0000 0111
	右移除数	÷0000	0000 0100	÷0000 0111
*4	余数=余数-除数	÷0000	0000 0100	⋄ <mark>0</mark> 000 0011
	⋄商左移,LSB置1	÷0001	⋄0000 0100	÷0000 0011
	⋄右移除数	÷0001	0000 0010	0000 0011

□ 计算: $*7_{10} \div 2_{10} = 0111_2 \div 001_{02} * (续3)$

选代	步骤	商	除数	余数
* 5	⋄余数=余数-除数	÷0001	⊹0000 0010	÷ <mark>0</mark> 000 0001
	∜商左移,LSB置1	÷0011	⋄0000 0010	÷0000 0001
	⋄右移除数	÷0011	÷0000 0001	÷0000 0001

补码恢复余数除法。

除数中 1/2的位数 总是为 0 => 64位加法器的1/2浪费!!!

- 是否可以用 余数左移 替代 除数右移?
- *=> 变换次序 到 首先移位 然后 再减, 可以减少一次迭代

ALU电路设计 除法器

- 除数和ALU的宽度减少一半
- --> 变换次序 到 首先移位 然后 再减, 可以减少一次迭代
- 串行除法器算法2
 - 将除数寄存器向右移位改为余数寄存器向左移位, 除数寄存器保持不变
 - 除数寄存器为32位,ALU为32位

第二种除法算法 7/2

RemainderQuotientDivisor0000011100000010

```
Q: 0000
                                    D: 0010
                                              R: 0000 0111
1 1: Shl R 余数左移
                                Q: 0000
                                           D: 0010
                                                      R: 0000 1110
  2: R = R-D 余数减去除数
                                Q: 0000
                                           D: 0010
                                                      R: 1110 1110
  3b: +D, sl Q, 0余数=余数+除数, 商为0Q: 0000
                                           D: 0010
                                                      R: 0000 1110
  1: Shl R余数左移
                                Q: 0000
                                           D: 0010
                                                      R: 0001 1100
  2: R = R-D 余数=余数-除数
                                Q: 0000
                                            D: 0010
                                                      R: 1111 1100
                                                      R: 0001 1100
  3b: +D, sl Q, 0
                                Q: 0000
                                            D: 0010
3 1: Shl R
                                Q: 0000
                                            D: 0010
                                                      R: 0011 1000
  2: R = R-D
                                Q: 0000
                                            D: 0010
                                                      R: 0001 1000
  3a: sl Q, 1 商左移,商为1
                                                         R: 0001 1000
                                   Q: 0001
                                              D: 0010
  1: Shl R
                                Q: 0010
                                            D: 0010
                                                       R: 0011 0000
  2: R = R-D
                                Q: 0010
                                            D: 0010
                                                       R: 0001 0000
                                                       R: 0001 0000
  3a: sl Q, 1
                                Q: 0011
                                            D: 0010
```

n = 4 here

3b:补码恢复余数

第二种除法的启示

- □通过在左移中,与余数合并,取消商寄存器
 - •象前面一样,以左移余数开始.
- •其后,由于余数寄存器的移动即可移动左半部的余数,又可移动右半部的商,因而每次循环只包括两步.
- •将两个寄存器联合在一起 和 循环内新的操作次序的导致余数多左移一次
- •因而,最后一步必须将这个寄存器左半部中的余数 移回

ALU电路设计 除法器

32位除数寄存器、32位ALU、64位

余数寄存器(没有商寄存器)

■ 串行除法器算法3

Algorithm V 3

- ☐ Much the same than the last one
- Except change of
 register usage

其他一样,只是商寄存器的使用变化到 余数寄存器低位

Example 7/2 for Division V3

■Well known numbers: 0000 0111/0010

iteration	step	Divisor	Remainder
0	Initial Values	0010	0000 0111
	Shift Rem left 1	0010	0000 1110
1	1.Rem=Rem-Div	0010	1110 1110
	2b: Rem<0 →+Div,sll R,R ₀ =0	0010	0001 110 <i>0</i>
2	1.Rem=Rem-Div	0010	1111 0110
	2b: Rem<0 →+Div,sll R,R ₀ =0	0010	0011 10 <i>00</i>
3	1.Rem=Rem-Div	0010	0001 1000
	2a: Rem>0 →sll R,R ₀ =1	0010	0011 0 <i>001</i>
4	1.Rem=Rem-Div	0010	0001 0001
	2a: Rem>0 →sll R,R ₀ =1	0010	0010 0011
	Shift left half of Rem right 1 左半部中	的余数移	0001 0011

3.4.2 有符号除法

被除数=除数×商+余数

有符号除法: 最简单的方法是记住符号, 进行正数除法, 并根据需要对商和余数进行修正

•注:被除数和余数的符号必须相同

•注: 如果除数和被除数的符号不同, 商为负

商有可能很大: 如果一个64位整数除以 1, 那么商就为 64 位 (称为"饱和": saturation)

如果余数不与被除数符号一致,会产生被除数和除数的符号不同,商的绝对值得到不同的结果。

Signed division

- □Keep the signs in mind for Dividend and Remainder
 - \rightarrow (+ 7) \div (+ 2) = + 3 Remainder = +1 7 = 3 × 2 + (+1) = 6 + 1
 - \triangleright (-7) \div (+2) = -3 Remainder = -1

$$-7 = -3 \times 2 + (-1) = -6 - 1;$$

(如果余数不与被除数符号一致,结果的绝对值为4), 会产生商的绝对值会因为被除 数和除数的符号不同而得到不同结果,保持被除数和余数的符号必须相同可避免此

$$(+7) \div (-2) = -3$$
 Remainder = +1,
 $7 = -3 \times (-2) + (+1) = 6 + 1$

$$(-7) \div (-2) = +3$$
 Remainder = -1

$$>$$
 -7 = 3 \times (-2) + (-1) = -6 - 1

- 被除数 = 商 除数 + 余数
 - *如果操作数的符号不一致, 商为负,
 - * 且被除数和余数的符号必须相同

*MIPS中的除法

符号数除法指令

- div \$s2, \$s3
- * # Lo = \$s2 / %s3; 商
- # Hi = \$s2 % \$s3; 余数

无符号数除法指令

- >divu \$s2, \$s3
- *# Lo = \$s2 / %s3; 商
- *# Hi = \$s2 % \$s3; 余数

取除法运算结果指令

- *mflo \$s1 #\$s1 = Lo
- *mfhi \$s1 #\$s1 = Hi

No overflow or divide-by-0 checking Software must perform checks if required

联系方式

- □Acknowledgements:
- ■This slides contains materials from following lectures:
- Computer Architecture (ETH, NUDT, USTC)

□Research Area:

- 计算机视觉与机器人应用计算加速。
- 人工智能和深度学习芯片及智能计算机

□Contact:

- 中山大学计算机学院
- ➤ 管理学院D101 (图书馆右侧)
- ▶ 机器人与智能计算实验室
- cheng83@mail.sysu.edu.cn

