

#:	$+ik \sigma_{1+}^{*2} = 0$ $-2ik \sigma_{2+}^{*1} \alpha \beta = 0$ 5		$+2ik \sigma_{1}^{\#2\alpha} == 0$	0	0	irreps	e constraints		
16	σ ω	Ιω	ω	Н	1	#			
$\sigma_{2^{-}}^{*1} + ^{\alpha \beta \chi}$	$\tau_{2+}^{*1} \uparrow^{\alpha\beta}$	$\sigma_{2^{+}}^{*1} \dagger^{lphaeta}$		ſ	$\omega_{0^{-}}^{*1}+$ ($f_{0+}^{#2} + 0$	$f_{0+}^{#1} + 0$	$\omega_{0+}^{*1} + 6 k$	$\omega_{0^+}^{\#1}$
0	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{2}{(1+2k^2)^2t_1}$	$\sigma_{2}^{\#1}{}_{lphaeta}$		0 0	0 0 0	0 0 0	$6k^2r_3 0 0$	$f_{0}^{*1} f_{0}^{*1} f_{0}^{*2}$
0	$\frac{4k^2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$ au_{2}^{\#1}{}_{lphaeta}$	l	$k^2 r_2 - t_1$	0	0	0	ω_{0}^{*2} ω_{0}^{*1}
$\frac{2}{t_1}$	0	0	$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$						

 $\tau_{1}^{\#2\alpha}$.

 $t_{1^{-}}^{#1\alpha}$

τ₀^{#1} ==

τ₀^{#2} ==

 $\tau_{1+}^{\#1}\alpha\beta$

 $t_2^{#1}\alpha\beta$

Source SO(3)

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{lphaeta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_1^{\#1}{}_{lpha}$	$\omega_{1}^{\#2}{}_{\alpha}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$k^2 (2r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{#1}$ † $^{\alpha}$	0	0	0	$k^2 (2r_3 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	<u>i kt</u> 3
$\omega_{1}^{#2} + \alpha_{1}^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	0	$\frac{1}{3}i\sqrt{2}kt_1$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	$-rac{1}{3}ar{l}kt_1$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$

ι ₀₊ Τ	O	0	U		U					
$\tau_{0}^{\#2}$ †	0	0	0		0					
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2}$	r_2-t_1					
	$\omega_2^{\#}$	[±] 1 + αβ	$f_{2+0}^{#1}$	αβ	$\omega_2^{\#1}$	αβχ				
$\omega_{2}^{\#1}$	Γαβ	<u>†1</u> 2	$-\frac{ikt_1}{\sqrt{2}}$		0					

0

 $au_{0}^{\#2}$

0

0

Unitarity conditions $r_2 < 0 \&\& r_5 < -2 r_3 \&\& t_1 < 0$