

REGIONAL TRAINING ON CAPACITY DEVELOPMENT OF DATA ANALYTICS AND DISSEMINATION USING "R" SOFTWARE

AMMAN, JORDAN, 3 - 7 DECEMBER, 2023

Outline

- Wrap-up
- Data processing part II
 - Working with dates
 - Factors
- Exporting cleaned data
- Data summarization
- Q&A

Session 3 Agenda

- 9:00 9: 30 (30 min): **Wrap-up**
- 9:30 9:50 (20 min): Presentation "Data processing part II"
- 9:50 10:20 (30 min): **Demonstration**
- 10:20 10:40 (20 min): **Stretching / coffee break**
- 10:40 12:30 (1.8 hr): **Practice/Exercise**
- 12:30 13:00 (30 min): Quick debrief/ Q&A
- 13:00 14:00 (60 min): **Lunch**
- 14:00 14:20 (20 min): presentation "Data summarization"
- 14:20 14:50 (30 min): Demonstration
- 14:50 15:10 (20 min): Stretching / coffee break
- 15:10 16:30 (80 min): Practice/Exercise
- 16:30 17:00 (30 min): Quick debrief/ Q&A

Working with dates in R

- The end goal is class () of the column is "date"
- The standard format of date in R is

"YYYY - MM - DD"

- Transform character to date class
 - base R function: as.Date()
 - lubridate::ymd(), mdy(), dmy()
- Transform numeric to date class
 - as.Date()

```
> date <- "3-30-2023"
> date
[1] "3-30-2023"
> class(date)
[1] "character"
> date <- as.Date(date, format = "%m-%d-%Y")
> date
[1] "2023-03-30"
> class(date)
[1] "Date"
> date <- lubridate::mdy(date)
> date
[1] "2023-03-30"
> class(date)
[1] "Date"
> lubridate::mdy(date)
```



```
> date <- 43215
> class(date)
[1] "numeric"
> date <- as.Date(date, origin = "1899-12-30")
> date
[1] "2018-04-25"
> class(date)
[1] "Date"
```


Working with dates in R

- Extracting date components
 - We can extract any component of the date e.g year, month
 - lubridate::year(), month(), day()
- Creating epi week of specific date
 - aweek::date2week()
 - lubridate::epiweek()

epiweek	‡	epiweek2
	31	2023-W31
	27	2023-W27
	29	2023-W29
	30	2023-W30
	30	2023-W30
	29	2023-W29
	27	2023-W27
	24	2023-W24
	25	2023-W25
	22	2023-W22

Working with dates in R

strptime nomenclature for date display

The commonly used ones are:

Symbol	Meaning				
%d	Day number				
%a	Abbreviated weekday				
%m	Month number				
% b	Abbreviated month name				
% y	Year number (2 digits)				
%Y	Year number (YYYY)				
%U	Week number (start day: Sunday)				
%W	Week number (start day: Monday)				

Working with factors in R

- Class factor (ordinal) of a column:
 - Assign a specific order for the variable's values
 - very useful in plots and statistical tests
 - Base R function: factor()

```
> sex <- c(1,2,3,1,1,2,1,1,3)
> sex_f <- factor(sex, levels = c(1,2,3), labels = c("Female", "Male", "Unkown"))
> sex_f
[1] Female Male Unkown Female Female Male Female Female Unkown
Levels: Female Male Unkown
```


Exporting data

- 1. What is the name of the object?!!
 - 2. What is the file format?!!

base R function

- write.csv ()

Installed packages

- readr::write_csv()
- rio::export()
- data.table::fwrite()

3. Where do you want to put that file?!!

Absolute path

Relative path

Demonstration

Exercise: Managing dates in R

- Open your training R project
- Open the R script "cholera.R"
- Add a new section "data processing 2" and do the following data steps:
 - 1. Convert "adm_date" column into class date
 - 2. Convert "outcome_date" column into class date
 - 3. Create a new column "epiweek" for admission date "adm_date" in format YYYY-W#
 - 4. Create a new column "epiweek_date" for the start day of the "epiweek"
 - 5. Create a new column "los" denoting length of stay [HINT: dates are stored as numbers!]
 - 6. Export the cleaned dataset "cholera_cleaned.csv" to the data folder
 - + Bonus!!
 - 7. Create a new column "sym_to_adm" denoting symptom onset to admission
 - 8. Create a new column "sex_f" as factor

Creating tables to summarize data & Data Visualization

Session 3 Agenda

- 9:00 9: 30 (30 min): Wrap-up
- 9:30 9:50 (20 min): Presentation "Data processing part II"
- 9:50 10:20 (30 min): Demonstration
- 10:20 10:40 (20 min): Stretching / coffee break
- 10:40 12:30 (1.8 hr): Practice/Exercise
- 12:30 13:00 (30 min): Quick debrief/ Q&A
- 13:00 14:00 (60 min): Lunch
- 14:00 14:20 (20 min): presentation "Data summarization"
- 14:20 14:50 (30 min): **Demonstration**
- 14:50 15:10 (20 min): **Stretching / coffee break**
- 15:10 16:30 (80 min): **Practice/Exercise**
- 16:30 17:00 (30 min): Quick debrief/ Q&A

Elements of descriptive epidemiology

TIME

When?

Trends over time

PLACE

Where is affected?

Geographical variations **PERSON**

Who is affected?

Age, gender and other characteristics

Image source: Epidemiology and public health intelligence

Creating tables

- useful format for comparative data analysis (explore the data)
- It can be many ways

BY ALL a call for

crosstable(adm_out, c(adm14)) | and action

lah al	i-bl-			Severity - 4 ca	at		T-4-1
label variable	variable	Mild	Moderate	Severe	Critical	Undefined	— Total
	0	34791 (c% 84.95% r% 24.31%)	7609 (c% 88.54% r% 5.32%)	2817 (c% 75.87% r% 1.97%)	41049 (c% 81.40% r% 28.68%)	56856 (c% 84.18% r% 39.73%)	143122 (83.58%)
death	1	6166 (c% 15.05% r% 21.93%)	985 (c% 11.46% r% 3.50%)	896 (c% 24.13% r% 3.19%)	9381 (c% 18.60% r% 33.37%)	10686 (c% 15.82% r% 38.01%)	28114 (16.42%)
·	Total	40957 (23.92%)	8594 (5.02%)	3713 (2.17%)	50430 (29.45%)	67542 (39.44%)	171236 (100.00%)

Which one, % by row or by col?

> crosstable(adm out, c(death), by=c(severity_4cat_f), total="both", percent pattern="{n}\n (c% {p_col} \n r% {p_row})") %>% flextable::as flextable(keep id=FALSE)

label variable value	Length c
N.S. / N.S. 2020 01 02 2022 01 20	Length c
Min / Max 2020-01-02 - 2023-01-30	hospital
Med [IQR] 2020-12-19 [2020-05-29;2021-07-19]	stay?
Discharge date Mean (std) 2021-01-09 (7.4 months)	
N (NA) 186729 (7475)	Healt

of

Creating tables

fio2	spo2	pao2	resp_rate	count
character	character	character	character	integer
No	No	No	No	640,311
No	No	No	Yes	105,655
No	No	Yes	No	102
No	No	Yes	Yes	9
No	Yes	No	No	2,636
No	Yes	No	Yes	57,850
No	Yes	Yes	No	21
No	Yes	Yes	Yes	57
Yes	No	No	No	23,413
Yes	No	No	Yes	52,652

```
> tab <- adm_out %>%
group_by(fio2, spo2, pao2, resp_rate) %>%
summarise(count = n(), .groups = "drop")
```

> write.csv2(tab, "oxyge.csv")

Export table as output for a report or as data for analysis in another software

Which graph? Why?

		Severity	- 4 cat		T-4-1	44
variable	Mild	Moderate	Severe	Critical	- 10tai	test
Discharged	34791 (c% 84.95% r% 40.33%)	7609 (c% 88.54% r% 8.82%)	2817 (c% 75.87% r% 3.27%)	41049 (c% 81.40% r% 47.58%)	86266 (83.19%)	
Deceased	6166 (c% 15.05% r% 35.38%)	985 (c% 11.46% r% 5.65%)	896 (c% 24.13% r% 5.14%)	9381 (c% 18.60% r% 53.83%)	17428 (16.81%)	p value: <0.0001 (Pearson's Chi- squared test)
Total	40957 (39.50%)	8594 (8.29%)	3713 (3.58%)	50430 (48.63%)	103694 (100.00%)	
	Deceased	Mild 34791 (c% 84.95% r% 40.33%) Deceased (c% 15.05% r% 35.38%) Total 40957	Mild Moderate Discharged 34791 7609 (c% 88.54% r% 40.33%) r% 8.82%) Deceased 6166 985 (c% 15.05% (c% 11.46% r% 35.38%) r% 5.65%) Total 40957 8594 (8.29%)	Mild Moderate Severe Jarren Discharged 34791 (c% 84.95% (c% 88.54% (c% 75.87% r% 40.33%)) (c% 88.82%)) (c% 75.87% r% 3.27%) Deceased 6166 (c% 15.05% (c% 11.46% (c% 24.13% r% 35.38%)) (c% 11.46% r% 5.65%)) (c% 5.14%)	Mild Moderate Severe Critical Discharged 34791 (c% 84.95% (c% 88.54% (c% 75.87% (c% 81.40% r% 40.33%)) r% 8.82%) r% 3.27%) r% 47.58%) (c% 84.95% (c% 88.54% (c% 75.87% (c% 81.40% r% 47.58%))) Deceased 6166 (c% 15.05% (c% 11.46% (c% 24.13% (c% 18.60% r% 35.38%))) 985 (c% 11.46% (c% 24.13% (c% 18.60% r% 55.14%))	Mild Moderate Severe Critical Discharged 34791 7609 2817 41049 (c% 84.95% (c% 88.54% (c% 75.87% (c% 81.40% r% 40.33%)) r% 8.82%) r% 3.27%) r% 47.58%) 86266 (83.19%) Deceased 6166 985 896 9381 (c% 15.05% (c% 11.46% (c% 24.13% (c% 18.60% r% 53.83%)) r% 5.65%) r% 5.14%) r% 53.83%) 17428 (16.81%) r% 53.83%)

Which graph? Why?

	Bar Plot o	f Severity	vs. Dea	th				
		Discha	arged			Dece	ased	
40000								
30000								
20000								
10000								
0	Mild	Moderate	Severe	Critical Severity	Mild Category	Moderate	Severe	Critical

<pre>> ggplot(adm_out, aes(x = severity_4cat_f)) +</pre>
<pre>geom_bar() +</pre>
<pre>facet_grid(. ~ death_f) +</pre>
<pre>labs(title = "Severity vs. Death", x =</pre>
"Severity", y = "Count") +
<pre>theme_minimal()</pre>

and action

label variable		Severity - 4 cat					
	variable	Mild	Moderate	Severe	Critical	— Total	test
	Discharged	34791 (c% 84.95% r% 40.33%)	7609 (c% 88.54% r% 8.82%)	2817 (c% 75.87% r% 3.27%)	41049 (c% 81.40% r% 47.58%)	86266 (83.19%)	
Mortality	Deceased	6166 (c% 15.05% r% 35.38%)	985 (c% 11.46% r% 5.65%)	896 (c% 24.13% r% 5.14%)	9381 (c% 18.60% r% 53.83%)	17428 (16.81%)	p value: <0.0001 (Pearson's Chi- squared test)
	Total	40957 (39.50%)	8594 (8.29%)	3713 (3.58%)	50430 (48.63%)	103694 (100.00%)	


```
> ggplot(adm_out, aes(x = severity_4cat_f, fill
= death_f)) +
geom_bar() +
labs(title = "Severity vs. Death", x =
"Severity", y = "Count") +
theme_minimal()
```



```
> ggplot(adm_out, aes(x = severity_4cat_f, fill
= severity_4cat_f)) +
geom_bar() +
labs(title = "Severity vs. Death", x =
"Severity", y = "Count") +
theme_minimal()
```

label	variable	sex_f=	-Female	sex_f	f=Male	Total
label	variable	severity_f=Mild/Moderate	severity_f=Severe/Critical	severity_f=Mild/Moderate	severity_f=Severe/Critical	Total
	Discharged	31052 (c% 89.19% r% 36.04%)	9864 (c% 76.35% r% 11.45%)	32279 (c% 85.21% r% 37.46%)	12974 (c% 72.27% r% 15.06%)	86169 (83.20%)
Mortality	Deceased	3765 (c% 10.81% r% 21.64%)	3056 (c% 23.65% r% 17.56%)	5604 (c% 14.79% r% 32.20%)	4977 (c% 27.73% r% 28.60%)	17402 (16.80%)
	Total	34817 (33.62%)	12920 (12.47%)	37883 (36.58%)	17951 (17.33%)	103571 (100.00%)

Which one? Why?

lab al	iahla	severity_f=1	Mild/Moderate	severity_f=5	Severe/Critical	Total
label	variable	sex_f=Female	sex_f=Male	sex_f=Female	sex_f=Male	Total
	Discharged	31052 (c% 89.19% r% 36.04%)	32279 (c% 85.21% r% 37.46%)	9864 (c% 76.35% r% 11.45%)	12974 (c% 72.27% r% 15.06%)	86169 (83.20%)
Mortality	Deceased	3765 (c% 10.81% r% 21.64%)	5604 (c% 14.79% r% 32.20%)	3056 (c% 23.65% r% 17.56%)	4977 (c% 27.73% r% 28.60%)	17402 (16.80%)
	Total	34817 (33.62%)	37883 (36.58%)	12920 (12.47%)	17951 (17.33%)	103571 (100.00%)

Tables

> table(adm_out\$death)

```
0 1
86266 17428
```

> crosstable(adm_out, c(severity_4cat))

```
# A tibble: 4 × 4
.id label variable value
<chr> <chr> <chr> <chr> 1 severity_4cat severity_4cat Min / Max 0 / 3.0
2 severity_4cat severity_4cat Med [IQR] 2.0 [0;3.0]
3 severity_4cat severity_4cat Mean (std) 1.6 (1.4)
4 severity_4cat severity_4cat N (NA) 103694 (0)
```

> crosstable(adm_out, c(severity_4cat)) %>%
flextable::as_flextable(keep_id=FALSE)

label	variable	value
	Min / Max	0 / 3.0
	Med [IQR]	2.0 [0;3.0]
severity_4cat	Mean (std)	1.6 (1.4)
	N (NA)	103694 (0)

Needs to be a factor, otherwise, it is considered a growtinuous variable unless it has only 2 categories solidarity and action


```
> adm_out %>%
dplyr::select(severity_4cat) %>%
tbl_summary(type = list(severity_4cat ~ "categorical"))
```


Which one? Why? Other options?

label	variable	severity_f=Mild/Moderate		severity_f=Severe/Critical		Total
		sex_f=Female	sex_f=Male	sex_f=Female	sex_f=Male	Total
Mortality	Discharged	31052 (c% 89.19% r% 36.04%)	32279 (c% 85.21% r% 37.46%)	9864 (c% 76.35% r% 11.45%)	12974 (c% 72.27% r% 15.06%)	86169 (83.20%)
	Deceased	3765 (c% 10.81% r% 21.64%)	5604 (c% 14.79% r% 32.20%)	3056 (c% 23.65% r% 17.56%)	4977 (c% 27.73% r% 28.60%)	17402 (16.80%)
	Total	34817 (33.62%)	37883 (36.58%)	12920 (12.47%)	17951 (17.33%)	103571 (100.00%)

Demonstration

Exercise

Your team deployed you to support the response to a Cholera outbreak in Egypt, Jordan, and Tunisia. Are Lebanon and Afghanistan affected?

Cholera is an extremely virulent disease that can cause severe acute watery diarrhoea. It takes between 12 hours and 5 days for a person to show symptoms after ingesting contaminated food or water. Cholera affects both children and adults and can kill within hours if untreated.

Most people infected with *V. cholerae* do not develop any symptoms, although the bacteria are present in their faeces for 1-10 days after infection and are shed back into the environment, potentially infecting other people.

Among people who develop symptoms, the majority have mild or moderate symptoms, while a minority develop acute watery diarrhoea with severe dehydration. This can lead to death if left untreated.[source https://www.who.int/news-room/fact-sheets/detail/cholera]

The Ministry of Health and specialized agencies such as WHO are working on surveillance and response strategies. You were asked to analyze the shared data and evaluate the current epidemiological situation.

How do you analyze this data?

1. Person

- 1.a. Demographics provide tables and graphs for the team to evaluate the affected population and strategize the response;
 - is it needed to strengthen paediatric units, or adult population is the most affected?
 - What about elderly people?
 - Is the Female population more affected?
- 1.b. Clinical Characteristics provide tables and graphs for the team to evaluate the symptoms, underlying conditions, and outcomes to evaluate the clinical characteristics of the Cholera disease.
 - What are the most common symptoms?
 - What are the 3 top underlying conditions?

2. Place

- 2.a. To find out what is the burden on the health system, it is necessary to map what are the affected zones and countries
 - What are the affected countries and zones?

How would you share the output of your analysis?

- i) Open the script you have been working on previous days – we need those data processing steps for this section
- ii) For the tables and crosstable, you have several options:

```
> table(cholera$var1)
> crosstable(cholera, c(vari1)) %>%
flextable::as flextable(keep id=FALSE)
> data %>%
dplyr::select(var1) %>%
tbl summary()
```

iii) For the graphs, according to your variable type (continuous or categorical) you may want to build on the following:

```
> ggplot(cholera, aes(x = var1, fill = var2)) +
geom_bar() + labs(title = "Severity vs. Death", x =
"Severity", y = "Count") + theme minimal()
> ggplot(cholera, aes(y = var1)) + geom_boxplot() +
geom jitter(aes(x = 0), width = 0.1, size = 1, color =
"black") + labs(title = "Boxplot of Age", y = "Age")
```

World Health

iv) Save your outputs:

```
> write.csv2(tab, "tab.csv")
> write.csv(tab, "tab 2.csv")
> ggsave("plot_age_sex.png",width = 12, height = 7)
```


