		.~.	~ -			
BTS-	V(R	/S)-	01	-23-	13	8

		[
Reg. No.					

B. Tech. Degree V Semester Regular/Supplementary Examination January 2023

CS 19-202-0504 COMPUTER GRAPHICS

(2019 Scheme)

Time: 3 Hours

Maximum Marks: 60

Course Outcomes

On successful completion of the course, the students will be able to:

- CO1: Explain the organization of an interactive computer graphics system.
- CO2: Generate 2D and 3D geometrical objects.
- CO3: Explain the important transformations on graphical objects.
- CO4: Fill a region given boundary and clip lines and polygons against a rectangular boundary.
- CO5: Describe the different types of curves and generate curves.
- CO6: Apply the operations like projections and rendering for 3D picture generation.
- CO7: Design graphical objects.
- CO8: Design interactive graphics systems and animation systems.

Bloom's Taxonomy Levels (BL): L1 - Remember, L2 - Understand, L3 - Apply, L4 - Analyze,

- L5 Evaluate, L6 Create
- PO Programme Outcome

PART A (Answer ALL questions)

	•				
I. (a)	$(8 \times 3 = 24)$ Compare raster scan and random scan systems.	Marks 3	BL L2	CO 1	PO 1,2,3
(b)	What is a boundary fill algorithm?	3	L2	2	1,2,3
(c)	Explain Bezier Curves.	3	L2	5	1,2,3
(d)	Explain x shear and y shear transformations.	3	L3	3	1,2,3
(e)	Discuss scan line visible surface detection algorithm.	3	L2	6	1,2,3
(f)	Explain back face detection algorithm.	3	L1	6	1,2,3
(g)	Explain ray tracing.	3	L2	6	1,2,3
(h)	Explain classification of fractals.	3	L2	7	1,2,3
	PART B $(4 \times 12 = 48)$				
				_	
II.	Describe midpoint circle drawing algorithm. Generate the intermediate points for the circle whose Centre is at (0,3) and radius 3. OR	12	L3	2	1,2,3
TTT	Explain Bresenhams line drawing algorithm. Generate the	12	L3	2	1,2,3
III.	intermediate points for the line whose end points are (20,10) and (30,18).				
IV.	Discuss Cohen Sutherland line clipping with suitable examples.	12	L3	4	1,2,3
	OR		T 0	_	100
GIAL	Explain two dimensional viewing pipe line.	12	L2	3	1,2,3
GINEER				(P.T.O.)

BTS-V(R/S)-01-23-1381

VI.	Explain painter's algorithm. Mention how we can eliminate cyclic overlapping in painters algorithm.	12	L2	3	1,2,3
VII.	OR Explain z buffer algorithm. Mention any two limitations of z buffer algorithm. Also explain how we can rectify it.	12	L2	6	1,2,3
VIII.	Explain RGB, CMY and HSV colour systems.	12	L2	6	1,2,3
IX.	OR Explain a shading model.	12	L2	8	1,2,3

Bloom's Taxonomy Levels L1 = 6.25%, L2 = 68.75%, L3 = 25%.
