回顾第12次课

4位的地址: 无符号数

1000

1001

1010

1011

1100

1101

1110

1111

- ◆ 高级语言程序里的运算
- → ISA (例如: RISCV指令)
- ◆ → 硬件功能部件
- ◆ 串行进位
- ◆ 先行进位
- ◆ 带标志的加法器

溢出标志OF:

 $OF=C_n \oplus C_{n-1}$

符号标志SF:

 $SF=F_{n-1}$

零标志ZF=1当且仅

当F=0;

进位/借位标志CF:

CF=Cout⊕Cin

CPU: 中央处理器; PC: 程序计数器; MAR: 存储器地址寄存器

ALU: 算术逻辑部件; IR: 指令寄存器; MDR: 存储器数据寄存器

GPRs: 通用寄存器组(由若干通用寄存器组成)

算术逻辑部件(ALU)

- · 有一个操作控制端(ALUop), 用来决定ALU所执行的处理功能。 ALUop的位数k决定了操作的种类 例如,当位数k为3时,ALU最多 只有2³=8种操作。
- 进行基本算术运算与逻辑运算
 - 无符号整数加、减
 - 带符号整数加、减
 - 与、或、非、异或等逻辑运算
- 核心电路是整数加/减运算部件
- 输出除和/差等,还有标志信息

				ALUop			
000	A加B	010	A与B	100	A取反	110	Α
0 0 1	A减B	011	A或B	101	A⊕B	111	未用

1-bit ALU和4-bit ALU(简化示意)

实际的ALU中还包括减法、算术移位、逻辑移位等其他运算功能

例: 某ALU

第二讲:定点数运算

主 要 内 容

- ◆ 定点数加减运算
 - 补码加减运算
 - 原码加减运算
 - 移码加减运算
- ◆ 定点数乘法运算
 - ・原码乘法运算
 - ・补码乘法运算
 - 快速乘法器
- ◆ 定点数除法运算
 - 原码除法运算
 - 补码除法运算

n位整数加/减运算器

先看一个C程序段:

```
int x=9, y=-6, z1, z2;
z1=x+y;
z2=x-y;
```

补码的定义 假定补码有n位,则: [X]_{*}=2ⁿ +X (-2ⁿ≤X < 2ⁿ, mod 2ⁿ)

问题:上述程序段中, x和y的机器数是什么? z1和z2的机器数是 什么?

回答: x的机器数为[x]*, y的机器数为[y]*;

z1的机器数为[x+y]_补;

z2的机器数为[x-y]_补。

因此, 计算机中需要有一个电路, 能够实现以下功能:

已知 [x]_补 和 [y]_补 ,计算[x+y]_补 和 [x-y]_补 。

根据补码定义,有如下公式:

$$[x+y]_{\frac{1}{2}h} = 2^n + x + y = 2^n + x + 2^n + y = [x]_{\frac{1}{2}h} + [y]_{\frac{1}{2}h} \pmod{2^n}$$

$$[x-y]_{\frac{1}{2}h} = 2^n + x - y = 2^n + x + 2^n - y = [x]_{\frac{1}{2}h} + [-y]_{\frac{1}{2}h} \pmod{2^n}$$

n位整数加/减运算器

• 补码加减运算公式

整数加/减运算部件

注意:在整数加/减运算部件基础上,加上寄存器、移位器以及控制逻辑,就可实现ALU、乘/除运算以及浮点运算电路

强调: 带符号数、无符号数的加减法运算

· 利用带标志加法器,可构造n位整数加/减运算部件,进行以下运算:

无符号整数加、无符号整数减 带符号整数加、带符号整数减

无符号数减法也用补码减法实现,只是结果解释(标志位使用)不同

整数减法举例

注意: Cin=sub=1

OF=C_n⊕C_{n-1} CF=Cout⊕Cin

Signed
$$-7-6 = -7 + (-6) = +3 \times 0$$

unsigned $9-6=9+(-6)=3 \times 0$

$$-3 - 5 = -3 + (-5) = -8$$
 $13 - 5 = 13 + (-5) = 8$

带符号溢出判断:

(1) 最高位和次高位的进位不同 或者 (2) 和的符号位和加数的符号位不同

做减法以比较大小,规则:

Signed: OF=SF时, 大于

验证: -7<6, 故OF≠SF

-3<5, 故OF≠SF

无符号数减法例

注意: Cin=sub=1

OF=C_n⊕C_{n-1} CF=Cout⊕Cin

$$9 - 6 = 3 \sqrt{ }$$

$$4 - 7 = -3 X$$

无符号溢出判断: CF=1 (减法时代表差为负数,即产生了借位) (加法时Cin=0,所以CF=1代表产生了进位,也就是加法溢出了)

做减法以比较大小,规则:

Unsigned: CF=0时, 大于

验证: 9>6, 故CF=0;

13>5, 故CF=0 (见上页ppt)

验证: 4< 7, 故CF=1;

带(无)符号整数减法举例续

假定 int为8位

unsigned int x=134; unsigned int y=246;

int m=x;

int n=y;

unsigned int z1=x-y; unsigned int z2=x+y;

int k1=m-n; int **k2=m+n**;

无符号减: result=
$$\begin{cases} x-y & (x-y>0) \\ x-y+2^n & (x-y<0) \end{cases}$$

带符号减:

result=
$$\begin{cases} x-y-2^n & (2^{n-1} \le x-y) & 正溢出 \\ \hline x-y & (-2^{n-1} \le x-y < 2^{n-1}) & 正常 \\ \hline x-y+2^n & (x-y < -2^{n-1}) & 负溢出 \end{cases}$$

x和m的机器数一样: 1000 0110 (-122) (-10)y和n的机器数一样: 1111 0110

1000 0110 0000 1001

Cin=sub=1 Cout=0

z1和k1的机器数一样: 1001 0000, 标志位也一样CF=1, OF=0, SF=1 无符号z1的真值为144(=134-246+256, x-y<0, CF=1, 溢出) 带符号k1的真值为-112 (=-122 - (-10) = -112, OF=0, 正常)

带(无)符号整数加法举例续

假定 int为8位

unsigned int x=134; unsigned int y=246; int m=x; int n=y; unsigned int z1=x-y; unsigned int z2=x+y; int k1=m-n; int k2=m+n; 无符号加公式: $x+y (x+y<2^n)$ result= $x+y-2^n (2^n \le x+y<2^{n+1})$

带符号加公式:

x和m的机器数一样:1000 0110 (-122)1000 0110y和n的机器数一样:1111 0110 (-10)+ 1111 01101 0111 1100

Cin=sub=0
Cout=1

z2和k2的机器数一样: 0111 1100, 标志位也一样 CF=1, OF=1, SF=0 z2的值为124 (=134+246-256, x+y>256, CF=1, 溢出) k2的值为124 (=-122+(-10)+256, m+n<-128, OF=1, 负溢出)

例:实现部分MIPS指令的ALU

无符号数的乘法运算

```
假定: [X]_{\mathbb{R}} = x_0.x_1...x_n, [Y]_{\mathbb{R}} = y_0.y_1...y_n, 求[x \times Y] 原数值部分 z_1...z_{2n} = (x_1...x_n) \times (y_1...y_n) (小数点位置约定,不区分小数还是整数)
```

◆ 手算乘法示例:

两种操作: 加法 + 移位

因而,可用ALU和移位器来实现乘法运算

无符号乘法运算的算法推导

◆上述思想可写成如下数学推导过程:

n个2⁻¹

 $X \times Y = X \times (0.y_1 y_2 \dots y_n)$

想可写成如下数学推导过程:
$$X \times Y = \sum_{i=1}^{4} (X \times y_i \times 2^{-i})$$
 = $X \times (0.y_1 y_2 ... y_n)$ = $2^{-1} (2^{-1} (2^{-1} ... 2^{-1} (2^{-1} (0 + X \times y_n) + X \times y_{n-1}) + ... + X \times y_2) + X \times y_1)$

- ◆ 递归!
- ◆ 无符号数乘法可归结为:设P₀ = 0,每步的乘积为:

$$P_1 = 2^{-1} (P_0 + X \times y_n)$$

 $P_2 = 2^{-1} (P_1 + X \times y_{n-1})$
.....
 $P_n = 2^{-1} (P_{n-1} + X \times y_1)$

◆ 最终乘积P_n = X×Y (两个n位数相乘,得到2n位数)

迭代过程从乘数最低位 y_n 和 P_0 =0开始, 经n次"判断-加法-右移"循环,直到求出Pn为止。

Example: 无符号整数乘法运算

举例说明:

需要哪些存储空间?

应用递推公式: P_i=2⁻¹(Xy_i+ P_{i-1})

可用一个双倍字长的乘积寄存器; 也可用两个单倍字长的寄存器。

部分积初始为0。

保留进位位。

右移时进位、部分积和剩余乘数一 起进行逻辑右移。

验证: X=14, Y=13, XY=182

当乘积取低4位时,结果发生 溢出,因为高4位不为全0!

回顾第13次课

- ◆ 算术逻辑部件 (ALU) ——核心是加法器,用ALUop指定运算类型
- ◆ 有(无)符号数的加减运算(溢出判断,大小比较)
- ◆ 无符号数乘法: "判断"、"加"+"右移"(每次逻辑右移1位)

32位无符号乘法运算的硬件实现

- ◆ 被乘数寄存器X: 存放被乘数
- ◆ 乘积寄存器P: 开始置初始部分积P0 = 0; 结束时, 存放的是64位乘积的高32位
- ◆ 乘数寄存器Y: 开始时置乘数; 结束时, 存放的是64位乘积的低32位
- ◆ 进位触发器C:保存加法器的进位信号
- ◆ 循环次数计数器Cn:存放循环次数。初值32, 每循环一次, Cn减1, Cn=0时结束
- ◆ ALU: 乘法核心部件。在控制逻辑控制下,对P和X的内容"加",在"写使能" 控制下运算结果被送回P,进位位在C中

原码乘法算法

- ◆ 用于浮点数尾数乘运算
- ◆ 符号与数值分开处理: 积符异或得到,数值用无符号乘法运算

例:设 $[x]_{\bar{p}}=0.1110$, $[y]_{\bar{p}}=1.1101$,计算 $[x\times y]_{\bar{p}}$

解:数值部分用无符号数乘法算法计算:1110×1101=1011 0110

符号位: 0 ⊕ 1=1, 所以: [x×y]_原=1.10110110

一位乘法:每次只取乘数的一位判断,需n次循环,速度慢。

两位乘法:每次取乘数两位判断,只需n/2次循环,快一倍。

◆两位乘法递推公式:

00: $P_{i+1} = 2^{-2}P_i$

01: $P_{i+1}=2^{-2}(P_i+X)$

10: $P_{i+1}=2^{-2}(P_i+2X)$

11: $P_{i+1} = 2^{-2}(P_i + 3X) = 2^{-2}(P_i + 4X - X)$

 $=2^{-2}(Pi-X)+X$

y _{i-1}	y _i	T	操作(最后都要右移两位)	迭代公式
0	0	0	$0 \rightarrow T$	2 ⁻² (P _i)
0	0	1	$+X 0 \rightarrow T$	2 ⁻² (P _i + X)
0	1	0	+X 0 → T	2 ⁻² (P _i + X)
0	1	1	+2X 0 → T	$2^{-2}(P_i + 2X)$
1	0	0	+2X 0 → T	2 ⁻² (P _i + 2X)
1	0	1	–X 1 → T	$2^{-2}(P_i - X)$
1	1	0	–X 1 → T	$2^{-2}(P_i - X)$
1	1	1	1 → T	2 ⁻² (P _i)

3X时,本次-X,下次+X! T触友器用来记录下次是合要?

T触发器用来记录下次是否要执行"+X" "–X"运算用"+[-X]_补"实现!

原码两位乘法举例

已知 $[X]_{\mathbb{R}}$ =0.111001, $[Y]_{\mathbb{R}}$ = 0.100111,用原码两位乘法计算 $[X \times Y]_{\mathbb{R}}$

解: 先用无符号数乘法计算111001×100111,原码两位乘法过程如下:

 $[|\nabla f|]_{\infty} = 000 \ 111001 \ [||\nabla f|]_{\infty} = 111 \ 000111$

采用补码算术 右移,与一位 乘法不同?

为什么用模8 补码形式(三 位符号位)?

有加有减,所 以要算术移位

若用模4补码, 中间涉及+2X 会导致P和Y同 时右移2位时, 得到的P3是负 数,就错了。

	000 111001,	$[- X]^{\sharp h} = 1$	11 000111	
	P	Y	Т	说明
000	000000	100111	0	开始,P₀=0, <u>T=0</u>
+111	000111			$y_5y_6T = 110, -X, T=1$
111	000111			P和Y同时右移2位
111	110001	11 100 <u>1</u>	1	得 P ₁
_+001	110010			y ₃ y ₄ T=011, +2X, T=0
001	100011	Ц		P和Y同时右移2位
000	011000	1111 <u>10</u>	0	得 P ₂
+001	110010			y ₁ y ₂ T=100, +2X, T=0
010	001010			P和Y同时右移2位
000	100010	101111	0	得 P ₃ 若最后T=1,
加上符号	位,得 [X×]	Z] φ =0.1000	010101111	则 <mark>要+X</mark> 速度快,但代价也大

补码乘法运算

用于对什么类型的数据计算?已知什么?求什么?

带符号整数!如C语句: int x=-5, y=-4, z=x*y;

问题:已知[x]_补和[y]_补,求[x*y]_补

因为[x*y]_补≠ [x]_补*[y]_补,故不能直接用无符号整数乘法计算。

例如,若x=-5,求x*x=?: [-5]_补=1011

[x*x]_补: [25]_补=0001 1001---正确

[x]_补*[x]_补; [-5]_补* [-5]_补=1111 1001---错误!

思路:根据[y]_补求y,且[A+B]_补= [A]_补+[B]_补,

只要将[x*y]科转换为对若干数的和求补即可

补码乘法运算Booth's Algorithm推导

假定: $[x]_{\stackrel{}{\scriptscriptstyle{A}}}=x_{n-1}x_{n-2}$ $\cdots x_1x_0$, $[y]_{\stackrel{}{\scriptscriptstyle{A}}}=y_{n-1}y_{n-2}$ $\cdots y_1y_0$, 求: $[x^*y]_{\stackrel{}{\scriptscriptstyle{A}}}=?$

基于补码求真值的公式:

$$y=-y_{n-1}\cdot 2^{n-1}+y_{n-2}\cdot 2^{n-2}+\cdots y_1\cdot 2^1+y_0\cdot 2^0$$

令: y₋₁ =0 (不失正确性), 则:

当n=4时, y=-y₃·2³+y₂·2²+y₁·2¹+y₀·2⁰+y₋₁·2⁰

$$= -y_3·23+(y_2·23-y_2·22)+(y_1·22-y_1·21)+(y_0·21-y_0·20)+y-1·20$$

$$= (y_2-y_3)·23+(y_1-y_2)·22+(y_0-y_1)·21+(y_-1-y_0)·20$$

不失正确性——

部分积公式: $[P_i]_{i} = [2^{-1}([P_{i-1}]_{i} + (y_{i-1} - y_i) \cdot x)]_{i}$

注意:这里的yi就是补码中的某一位!

即: [P_{i-1}]₄+[±x]₄后右移一位(算术右移)

符号与数值统一处理

Booth's 算法实质

end of run

or 1 1 1 0 beginning of run

◆ y当前位yi	y右边位yi-1	操作	Example
1	0	减被乘数x	000111 <u>10</u> 00
1	1	加0 (不操作)	00011 <u>11</u> 000
0	1	加被乘数x	00 <u>01</u> 111000
0	0	加0 (不操作)	0 <u>00</u> 1111000

- ◆在"1串"中,第一个1时做减法,最后一个1做加法,其余情况只要移位。
- ◆ 最初提出这种想法是因为在Booth的机器上移位操作比加法更快!

同前面算法一样,将乘积寄存器右移一位。(这里是算术右移)

右移只是把位置空出来,最终从n位变为2n位空间, 小数点位置依然默认是在最左边的,所以并非是把真值缩小

布斯算法举例

如果X是-8,那么 [-X]_补就溢出了?:除了移位实现(快),也可以P前面加补充符号位(慢)

已知[X]_补 = 1 101,[Y]_补 = 0 110,计算[X \times Y]_补 [-X]_补 = 0011

X=-3, Y=6, X×Y=-18, [X×Y]_补应等于11101110或结果溢出

P	Y	У-1	说明 √	
0 0 0 0	0110	0	议党 $\mathbf{y}_{\cdot 1} = 0$, $[\mathbf{P}_0]_{lpha b} = 0$ 。	
0 0 0 0	0011	→ 1 0	y ₀ y ₋₁ = 00,P、Y 直接右移一位↔ 得[P ₁]***	J
+ 0 0 1 1 0 0 1 1		→ 1	y ₁ y ₀ =10,+[-X]糾√ P、Y 同时右移一位√	
0 0 0 1	1001	<u>1</u> →1	得[P ₂]*+ ↓ y ₂ y ₁ =11,P、Y 直接右移一位↓	
+ 1 1 0 1	1100	1	$F_1[P_3]_{\mathbb{A}^{d-1}}$ 如何判断 $F_2[X]_{\mathbb{A}^{d-1}}$ 果是否溢的	
$\begin{array}{c} 1101 \\ 1110 \end{array}$	$\begin{array}{c} oxed{L} \\ 1\ 1\ 1\ 0 \end{array}$	$\longrightarrow 1$	P、Y 同时右移一位。 高4位是 都得[P₄]≱⊷ 为符号位 !	-

验证: 当X×Y取8位时, 结果 -0010010B=-18; 取低4位时, 结果溢出

补码两位乘法

◆ 补码两位乘可用布斯算法推导如下:

•
$$[P_{i+1}]_{?h} = 2^{-1} ([P_i]_{?h} + (y_{i-1} - y_i) [X]_{?h})$$

• $[P_{i+2}]_{?h} = 2^{-1} ([P_{i+1}]_{?h} + (y_i - y_{i+1}) [X]_{?h})$
= $2^{-1} (2^{-1} ([P_i]_{?h} + (y_{i-1} - y_i) [X]_{?h}) + (y_i - y_{i+1}) [X]_{?h})$
= $2^{-2} ([P_i]_{?h} + (y_{i-1} + y_i - 2y_{i+1}) [X]_{?h})$

- ◆ 开始置附加位y₋₁为0,乘积寄 存器最高位前面添加一位附加 符号位0。
- ◆ 最终的乘积高位部分在乘积寄存器P中,低位部分在乘数寄存器Y中。
- ◆ 因为字长总是8的倍数,所以 补码的位数n应该是偶数,因 此,总循环次数为n/2。

y _{i+1}	y _i	y _{i-1}	操作(都要 右移两位)	迭代公式
0	0	0	0	2 ⁻² [P _i] _补
0	0	1	+[X] _{ネト}	$2^{-2}\{[P_i]_{i}+[X]_{i}\}$
0	1	0	+[X] _{ネト}	$2^{-2}\{[P_i]_{i}+[X]_{i}\}$
0	1	1	+2[X] _{≱⊦}	$2^{-2}\{[P_i]_{i}+2[X]_{i}\}$
1	0	0	+2[-X] _补	2 ⁻² {[P _i] _* +2[-X] _*
1	0	1	+[-X] _{ネト}	}
1	1	0	+[-X] _{ネト}	$2^{-2}\{[P_i]_{i}+[-X]_{i}\}$
1	1	1	0	$2^{-2}\{[P_i]_{i}+[-X]_{i}\}$
				2 ⁻² [P _i] _补

补码两位乘法举例

◆已知 [X]_补 = 1 101, [Y]_补 = 0 110, 用补码两位乘法计算[X×Y]_补。

◆解: [-X]_{*}= 0 011, 用补码二位乘法计算[X×Y]_{*}的过程如下。

P_n P	Y y ₋₁	说明
0 0 0 0 0	0 1 <u>1 0 0</u>	开始,设y ₋₁ = 0,[P ₀] _补 = 0
+00110		$y_1y_0y_{-1} = 100, +2[-X]_{\frac{1}{2}}$
0 0 1 1 0	$\longrightarrow 2$	P和Y同时右移二位
0 0 0 0 1	10 <u>01 1</u>	得[P ₂] _补
+11010		$y_3y_2y_1 = 011, +2[X]_{\dot{\uparrow}\dot{\uparrow}}$
1 1 0 1 1	→ 2	P和Y同时右移二位
1 1110	1110	得[P ₄] _补

因此 $[X \times Y]_{i}$ =1110 1110 ,与一位补码乘法(布斯乘法)所得结果相同,但循环次数减少了一半。

验证: -3×6=-18 (-10010B)

快速乘法器 (不要求)

- ◆前面介绍的乘法部件的特点
 - 通过一个ALU多次做"加/减+右移"来实现
 - 一位乘法:约n次"加+右移"
 - 两位乘法:约n/2次"加+右移"

所需时间随位数增多而加长, 由时钟和控制电路控制

- ◆设计快速乘法部件的必要性
 - 大约1/3是乘法运算
- ◆快速乘法器的实现(由特定功能的组合逻辑单元构成)
 - 流水线方式
 - 硬件叠加方式(如: 阵列乘法器)

流水线快速乘法器 (不要求)

- ◆ 为乘数的每位提供一个n位加法器
- ◆ 每个加法器的两个输入端分别是:
 - 本次乘数对应的位与被乘数相与的 结果(即:0或被乘数)
 - 上次部分积
- ◆ 每个加法器的输出分为两部分:
 - 和的最低有效位(LSB)作为本位乘积
 - 进位和高31位的和数组成一个32位数 作为本次部分积

像流水一样,完全是串行,浪费加法器资源——但是,组合逻辑电路!无需控制器控制

CRA阵列乘法器(不要求)

◆阵列乘法器: "细胞"模块的阵列

还可采用树形结构(如华莱士树)进行部分积求和, 以加快速度

归纳:整数的乘运算

可用无符号乘来实现带符号乘。

n位 x n位, 结果机器数可获得高n位和低n位。

高n位可用来判断溢出,也可直接作为乘积的高位(肯定不溢出)。

小写字母都是真值(下页ppt),大写字母都是机器数 u代表unsigned,s代表signed

整数的乘运算(溢出判断)

◆如果结果仅保留低n位, X*Y的高n位可以用来判断溢出,规则如下:

• 无符号: 若高n位全0,则不溢出,否则溢出

• 带符号: 若高n位全0或全1且等于低n位的最高位,则不溢出。

运算	х	X	y	Y	$\mathbf{x} \times \mathbf{y}$	X×Y	p	P	溢出否
无符号乘	6	0110	10	1010	60	0011 1100	12	1100	溢出
带符号乘	6	0110	-6	1010	-36	1101 1100	-4	1100	溢出
无符号乘	8	1000	2	0010	16	0001 0000	0	0000	溢出
带符号乘	-8	1000	2	0010	-16	1111 0000	0	0000	溢出
无符号乘	13	1101	14	1110	182	1011 0110	6	0110	溢出
带符号乘	-3	1101	-2	1110	6	0000 0110	6	0110	不溢出
无符号乘	2	0010	12	1100	24	0001 1000	8	1000	溢出
带符号乘	2	0010	-4	1100	-8	<u>1111 1</u> 000	-8	1000	不溢出

整数的乘运算(机器级语言层面)

- ◆ 机器指令:分无符号数乘指令、带符号整数乘指令
- ◆ 硬件可保留2n位乘积,故有些指令的乘积为2n位,可供软件使用
- ◆ 乘法指令的操作数长度为n, 而乘积长度为2n, 例如:
 - 累加器AL 断和标志生成 16位时)

• IA-32中, ——乘法指令的硬件实现时就进行溢出判

——编译后生成的指令序列:

• MIPS中, 指令1: mul r1, rs1, rs2 指令2: mulh r2, rs1, rs2

于两个32 指令3。。。:判断r1和r2的内容情况

一位是否 指令x: 如果溢出就跳转。。

个源操作数隐含在 结果存放在AX(立时)中。

到的64位乘积置 据Hi寄存器中的每 折。

• RISC-V中, 用 "mul rd, rs1, rs2" 获得低32位乘积并存入结果寄存 器rd中; mulh、mulhu指令分别将两个乘数同时按带符号整数、同 时按无符号整数相乘后,得到的高32位乘积存入rd中

乘法指令可生成溢出标志,编译器可使用2n位乘积来判断是否溢出! 高级语言程序也可以增加防止溢出的代码。(如果都不做,可能出严重错误)

整数的乘运算(高级语言程序层面)

在计算机内部,一定有x² ≥ 0吗?

若x是带符号整数,则不一定! 如x是浮点数,则一定!

例如, 当 n=4 时, 52=-7<0!

只取低4位,值为-111B=-7

注意:这里是针对【n位与n位相乘,结果保留n位】的情况。

思考(自学)

在字长为32位的计算机上,某C函数原型声明为:

int imul_overflow(int x, int y);

该函数用于对两个int型变量x和y的乘积(也是int类型)判断是否溢出,若溢出则返回非0,否则返回0。请完成下列任务或回答下列问题。

(1) 两个n位无符号数(带符号整数)相乘的溢出判断规则各是什么?

无符号整数相乘: 若乘积的高n位为非0,则溢出。

带符号整数相乘:若乘积高n位的每一位都相同,且都等于乘积低n

位的符号,则不溢出,否则溢出。

- (2) 已知入口参数x、y分别在寄存器a0、a1中,返回值在a0中,写出实现 imul_overflow函数功能的RISC-V汇编指令序列,并给出注解。(编 译器中判断溢出的代码,学完第7章再做)
- (3) 使用64位整型 (long long) 变量来编写imul_overflow函数的C代码或描述实现思想。

思考(自学)

(2) RISC-V汇编指令序列

实现该功能的汇编指令序列不唯一。

某实现方案下的汇编指令序列如下:

mul t0, a0, a1 # x*y的低32位在t0中

mulh a0, a0, a1 # x*y的高32位在a0中

srai t0, t0, 31 # 乘积的低32位算术右移31位

xor a0, a0, t0 # 按位异或, 若结果为0, 表示不溢出

思考(自学)

(3) 采用long long型变量实现的C程序

将x*y的结果保存在long long型变量中,得到64位乘积,然后把64位乘积强制转换为32位,再符号扩展成64位,和原来真正的64位乘积相比,若不相等则溢出。

```
int imul_overflow(int x, int y)
{
    long long prod_64= (long long) x*y;
    return prod_64 != (int) prod_64;
}
```

例如: x=-4,y=6, 位数n=4 则prod_8=1110 1000 截断后为1000 重新扩展为1111 1000