# CS303T Theory of Computation

#### R. Kabaleeshwaran



August 9, 2022

#### Outline

- Recap
  - Deterministic Finite Automata (DFA)
  - More Examples for DFA
  - Language to Transition Diagram
  - Transition Diagram to Language
- Today
  - More Examples for DFA
  - Non-deterministic Finite Automata (NFA)





• A DFA for the language of strings whose digits add to a multiple of 3





• A DFA for the language of strings whose digits add to a multiple of 4

### Questions

Give DFA's for the following languages, where  $\Sigma = \{0, 1\}$ .

- The language of strings that contain at least one 1
- $oldsymbol{@}$  The language of strings that contain exactly one 1
- The language of strings that contain at least two 1's
- The language of strings that contain less than two 1's
- The language of strings of length at least two whose first two symbols are the same
- The language of strings of length at least two whose last two symbols are the same
- The language of strings of length at least two that have a 1 in the second-to-last position

### Questions

- The language of strings of length at least two that begin with 0 and end in 1
- The language of strings of length at least two that have a 1 as their second symbol
- The language of strings that contain the string 001 as a substring
- $lue{lue}$  The language of strings that contain the string 001 as a subsequence
- The language of strings that do not contain the string 001 as a subsequence
- The language of strings that have even length and begin with the string 01

# Non-deterministic Finite Automata (NFA)

NFA is a five tuple  $(Q, \Sigma, \delta, q_0, F)$ ,

- A finite set of states, Q
- A finite set of input symbols,  $\Sigma$
- A transition function (denoted  $\delta$ ) that takes as arguments a state and an input symbol along with an empty string  $\epsilon$  and returns a collection of states. i.e.,  $\delta: Q \times \Sigma \cup \{\epsilon\} \to \mathcal{P}(Q)$ , where  $\mathcal{P}(\cdot)$  denotes the power set.
- A start state  $q_0 \in Q$
- A set of final or accepting states  $F \subseteq Q$

# NFA Examples



### NFA Examples



 $\bullet$  An NFA for the language of strings that contain the substring 001

# NFA Examples



• An NFA for the language of strings that contain the substring 001

| δ     | 0             | 1         | $\boldsymbol{arepsilon}$ |
|-------|---------------|-----------|--------------------------|
| $q_0$ | $\{q_0,q_1\}$ | $\{q_0\}$ | Ø                        |
| $q_1$ | $\{q_2\}$     | Ø         | Ø                        |
| $q_2$ | Ø             | $\{q_3\}$ | Ø                        |
| $q_3$ | $\{q_3\}$     | $\{q_3\}$ | Ø                        |





• An NFA for the language of strings that contain either an even number of 0's or an even number of 1's



- An NFA for the language of strings that contain either an even number of 0's or an even number of 1's
- Transition Table?

