Vector-valued concentration on the symmetric group

Mira Gordin

joint with Ramon van Handel

Princeton University

April 22, 2024

Two perspectives on vector-valued concentration inequalities

Vector-valued analogs of classical concentration inequalities that help us understand high-dimensional random structures

Poincaré inequality

$$Var(f(X)) \leq C_P \mathbb{E} |\nabla f(X)|^2$$

log-Sobolev inequality

$$\operatorname{Ent}(f^2(X)) \leq C \mathbb{E} |\nabla f(X)|^2$$

Vector-valued functional inequalities that describe phenomena in functional analysis and metric geometry

Example: consequences for metric embeddings of graphs in Banach spaces

algorithmic applications for embeddings

Pisier's inequalities

Let $(X, \|\cdot\|)$ be a Banach space.

Theorem (Pisier, 1985)

For $f: \mathbb{R}^n \to X$ locally Lipschitz, $G, G' \sim N(0, I_n)$ independent, and $1 \le p < \infty$,

$$\mathbb{E} \|f(G) - \mathbb{E} f(G)\|^p \leq \left(\frac{\pi}{2}\right)^p \mathbb{E} \left\| \sum_{j=1}^n G_j' \frac{\partial f}{\partial x_j}(G) \right\|^p.$$

Pisier's inequalities

Let $(X, \|\cdot\|)$ be a Banach space.

Theorem (Pisier, 1985)

For $f: \mathbb{R}^n \to X$ locally Lipschitz, $G, G' \sim N(0, I_n)$ independent, and $1 \le p < \infty$,

$$\mathbb{E} \|f(G) - \mathbb{E} f(G)\|^p \leq \left(\frac{\pi}{2}\right)^p \mathbb{E} \left\| \sum_{j=1}^n G_j' \frac{\partial f}{\partial x_j}(G) \right\|^p.$$

Theorem (Pisier, 1985)

For $f: \{-1,1\}^n \to X$, $\varepsilon, \varepsilon' \sim \mathsf{Unif}(\{-1,1\}^n)$ independent,

$$\mathbb{E}\|f(\varepsilon) - \mathbb{E}f(\varepsilon))\|^{p} \leq C(n)^{p} \mathbb{E}\left\|\sum_{j=1}^{n} \varepsilon_{j}' D_{j} f(\varepsilon)\right\|^{p} \tag{1}$$

Pisier's inequalities

Let $(X, \|\cdot\|)$ be a Banach space.

Theorem (Pisier, 1985)

For $f: \{-1,1\}^n \to X$, $\varepsilon, \varepsilon' \sim \mathsf{Unif}(\{-1,1\}^n)$ independent,

$$\mathbb{E}\|f(\varepsilon) - \mathbb{E}f(\varepsilon))\|^{p} \leq C(n)^{p} \mathbb{E}\left\|\sum_{j=1}^{n} \varepsilon_{j}^{\prime} D_{j} f(\varepsilon)\right\|^{p} \tag{1}$$

Theorem (Pisier, 1985)

For $f: \{-1,1\}^n \to X$, $\varepsilon, \varepsilon' \sim \mathsf{Unif}(\{-1,1\}^n)$ independent,

$$\mathbb{E}\|f(\varepsilon) - \mathbb{E}f(\varepsilon))\|^{p} \leq C(n)^{p} \mathbb{E}\left\|\sum_{j=1}^{n} \varepsilon_{j}^{\prime} D_{j} f(\varepsilon)\right\|^{p} \tag{1}$$

- Pisier showed $C \sim \log n$
- Talagrand (1993) proved sharpness
- Naor and Schechtman (2002) dimension-free constant for UMD Banach spaces

Theorem (Pisier, 1985)

For $f: \{-1,1\}^n \to X$, $\varepsilon, \varepsilon' \sim \mathsf{Unif}(\{-1,1\}^n)$ independent,

$$\mathbb{E}\|f(\varepsilon) - \mathbb{E}f(\varepsilon))\|^{p} \leq C(n)^{p} \mathbb{E}\left\|\sum_{j=1}^{n} \varepsilon_{j}^{\prime} D_{j} f(\varepsilon)\right\|^{p} \tag{1}$$

- Pisier showed $C \sim \log n$
- Talagrand (1993) proved sharpness
- Naor and Schechtman (2002) dimension-free constant for UMD Banach spaces

Is there another way to think about vector-valued concentration to get the "right" dimensional dependence?

Dimension-free constant on the discrete hypercube

Theorem (Ivanisvili, van Handel, Volberg 2020)

For $f:\{-1,1\}^n \to X$, $\varepsilon \sim \mathrm{Unif}\big(\{-1,1\}^n\big)$, and $1 \leq p < \infty$

$$\mathbb{E}\|f(\varepsilon) - \mathbb{E}f(\varepsilon)\|^p \leq \left(\frac{\pi}{2}\right)^p \int \mathbb{E}\left\|\sum_{j=1}^n \delta_j(t) D_j f(\varepsilon)\right\|^p \mu(dt)$$

where $\mu(dt) := \frac{2}{\pi} \frac{1}{\sqrt{e^{2t}-1}} dt$ and $\delta_j(t)$ are appropriately renormalized biased Rademacher random variables.

$$D_{j}f(\varepsilon):=\frac{f(\varepsilon_{1},\ldots,\varepsilon_{j},\ldots,\varepsilon_{n})-f(\varepsilon_{1},\ldots,-\varepsilon_{j},\ldots,\varepsilon_{n})}{2}.$$

Setting for a Pisier-like inequality on a group

Let (G, S) be a finite group with a symmetric set of generators S.

Setting for a Pisier-like inequality on a group

Let (G, S) be a finite group with a symmetric set of generators S. Denote

$$D_s f(x) = f(x) - f(sx).$$

The Laplacian on G is given by

$$\Delta f = -\sum_{s \in S} D_s f$$

Setting for a Pisier-like inequality on a group

Let (G, S) be a finite group with a symmetric set of generators S. Denote

$$D_s f(x) = f(x) - f(sx).$$

The Laplacian on G is given by

$$\Delta f = -\sum_{s \in S} D_s f$$

We denote by $P_t := e^{t\Delta}$ the standard heat semigroup on G.

Heat semigroup on (G, S)

Let $\{X_t\}$ be a continuous-time random walk on G with stationary measure $\mu = \text{Unif}(G)$.

heat kernel of the random walk $p_t(x,y) := \mathbb{P}_x(X_t = y)$

Heat semigroup on (G, S)

Let $\{X_t\}$ be a continuous-time random walk on G with stationary measure $\mu = \mathsf{Unif}(G)$.

heat kernel of the random walk $p_t(x,y) := \mathbb{P}_x(X_t = y)$

For every $s \in S$,

$$\delta_s(t) = \frac{p_t(x, X_t) - p_t(sx, X_t)}{p_t(x, X_t)} = \frac{D_s p_t(x, X_t)}{p_t(x, X_t)}.$$

Heat semigroup on (G, S)

Let $\{X_t\}$ be a continuous-time random walk on G with stationary measure $\mu = \mathsf{Unif}(G)$.

heat kernel of the random walk $p_t(x,y) := \mathbb{P}_x(X_t = y)$

For every $s \in S$,

$$\delta_s(t) = \frac{p_t(x, X_t) - p_t(sx, X_t)}{p_t(x, X_t)} = \frac{D_s p_t(x, X_t)}{p_t(x, X_t)}.$$

$$D_s P_t f(x) = \mathbb{E}_x [f(X_t) \delta_s(t)]$$

Pisier-like inequality on a finite group

Proposition (G., van Handel 2024+)

For any function $f: G \to X$, and $1 \le p < \infty$, we have

$$\left(\mathbb{E}_{\mu}\|f-\mathbb{E}_{\mu}f\|^{p}\right)^{\frac{1}{p}}\leq\frac{1}{2}\int_{0}^{\infty}\left(\mathbb{E}_{\mu}\left\|\sum_{s\in S}\delta_{s}(t)D_{s}f(X_{0})\right\|^{p}\right)^{\frac{1}{p}}dt.$$

Pisier-like inequality on a finite group

Proposition (G., van Handel 2024+)

For any function $f: G \to X$, and $1 \le p < \infty$, we have

$$\left(\mathbb{E}_{\mu}\|f-\mathbb{E}_{\mu}f\|^{p}\right)^{\frac{1}{p}}\leq\frac{1}{2}\int_{0}^{\infty}\left(\mathbb{E}_{\mu}\left\|\sum_{s\in S}\delta_{s}(t)D_{s}f(X_{0})\right\|^{p}\right)^{\frac{1}{p}}dt.$$

We say that Banach space $(X, \|\cdot\|)$ has Rademacher type $q \in [1, 2]$ if there exists a $C \in (0, \infty)$ so that for all $n \geq 1$,

$$\mathbb{E}\left\|\sum_{j=1}^n \varepsilon_j x_j\right\|^q \leq C^q \sum_{j=1}^n \|x_j\|^q,$$

where $x_1, \ldots, x_n \in X$ and $\varepsilon_1, \ldots, \varepsilon_n$ i.i.d. Rademacher random variables.

We say that Banach space $(X, \|\cdot\|)$ has Rademacher type $q \in [1, 2]$ if there exists a $C \in (0, \infty)$ so that for all $n \geq 1$,

$$\mathbb{E}\left\|\sum_{j=1}^n \varepsilon_j x_j\right\|^q \leq C^q \sum_{j=1}^n \|x_j\|^q,$$

where $x_1, \ldots, x_n \in X$ and $\varepsilon_1, \ldots, \varepsilon_n$ i.i.d. Rademacher random variables.

Examples:

all Banach spaces have type 1 ("trivial type")

We say that Banach space $(X, \|\cdot\|)$ has Rademacher type $q \in [1, 2]$ if there exists a $C \in (0, \infty)$ so that for all $n \geq 1$,

$$\mathbb{E}\left\|\sum_{j=1}^n \varepsilon_j x_j\right\|^q \leq C^q \sum_{j=1}^n \|x_j\|^q,$$

where $x_1, \ldots, x_n \in X$ and $\varepsilon_1, \ldots, \varepsilon_n$ i.i.d. Rademacher random variables.

Examples:

- all Banach spaces have type 1 ("trivial type")
- Hilbert spaces have type 2

We say that Banach space $(X, \|\cdot\|)$ has Rademacher type $q \in [1, 2]$ if there exists a $C \in (0, \infty)$ so that for all $n \geq 1$,

$$\mathbb{E}\left\|\sum_{j=1}^n \varepsilon_j x_j\right\|^q \leq C^q \sum_{j=1}^n \|x_j\|^q,$$

where $x_1, \ldots, x_n \in X$ and $\varepsilon_1, \ldots, \varepsilon_n$ i.i.d. Rademacher random variables.

Examples:

- all Banach spaces have type 1 ("trivial type")
- Hilbert spaces have type 2
- L^p , ℓ^p spaces have type p for $p \in [1,2]$

Pisier-like inequality on the symmetric group

Theorem (G., van Handel 2024+)

Let S_n denote the symmetric group with generator set

$$S = \{(ij) : i \neq j, i, j \in [n]\}.$$

If $(X, \|\cdot\|)$ is a Banach space of type $p \in [1, 2]$ and $f: (S_n, S) \to (X, \|\cdot\|)$, then for $n \geq 2$,

$$\|\mathbb{E}_{\mu}\|f - \mathbb{E}_{\mu}f\| \lesssim \left(rac{\log n}{n}
ight)^{rac{1}{p}} \left(\sum_{\substack{i,j=1,\i< j}}^{n} \mathbb{E}\|D_{ij}f(X_{0})\|^{p}
ight)^{rac{1}{p}}.$$

Corollary: unbounded distortion in bilipschitz embedding of (S_n, S) into $(X, \|\cdot\|)$

We call $f:(M,d) \to (X,\|\cdot\|)$ a bilipschitz embedding with distortion $D \in \mathbb{R}$ if

$$d(x,y) \le ||f(x) - f(y)|| \le Dd(x,y)$$

for all $x, y \in M$.

Corollary: unbounded distortion in bilipschitz embedding of (S_n, S) into $(X, \|\cdot\|)$

We call $f:(M,d) \to (X,\|\cdot\|)$ a bilipschitz embedding with distortion $D \in \mathbb{R}$ if

$$d(x,y) \le ||f(x) - f(y)|| \le Dd(x,y)$$

for all $x, y \in M$.

Corollary (G., van Handel 2024+)

For any $f:(S_n,S)\to (X,\|\cdot\|)$, a bilipschitz embedding with distortion D with $(X,\|\cdot\|)$ of type $p\in [1,2]$,

$$D \gtrsim n^{1-\frac{1}{p}} \left(\frac{1}{\log n} \right)^{\frac{1}{p}}.$$

Remarks on the proof

Main techniques

How to "isolate" the $\delta_s(t)$ s:

decoupling and symmetrization arguments

Obtaining bounds on moments of the $\delta_s(t)$ s:

- Small t: Bakry-Émery curvature and Gamma calculus
- Large t: Markov chain mixing

References

- Ivanisvili, P., van Handel, R., & Volberg, A. (2020). Rademacher type and Enflo type coincide. *Annals of Mathematics*, 192(2), 665–678.
- Pisier, G. (2006). Probabilistic methods in the geometry of Banach spaces. In *Probability and Analysis: Lectures Notes in Mathematics, Como, Italy 1985* (pp. 167–241). Springer.
- Talagrand, M. (1993). Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and Margulis' graph connectivity theorem.

Geometric & Functional Analysis GAFA, 3(3), 295–314.