Inteligencia Artificial Modelado de Restricciones Especiales

Nicolás Rojas-Morales nicolas.rojasm@usm.cl

Departamento de Informática Universidad Técnica Federico Santa María

Disyunción

Restricción:

De dos restricciones al menos una debe darse. Debe cumplirse una de las restricciones, no necesariamente las dos.

$$\{f(x) \le 0\} \text{ ó } \{g(x) \le 0\}$$

Variables:

$$\delta = \left\{ \begin{array}{ll} 1 & \text{obliga a } g(x) \leq 0 \text{ y relaja la otra restricción} \\ 0 & \text{obliga a } f(x) \leq 0 \text{ y relaja la otra restricción} \end{array} \right.$$

Restricciones:

$$f(x) \leq M_1 \cdot \delta$$

 $g(x) \leq M_2 \cdot (1 - \delta)$

Cumplir k de N ecuaciones

Restricción:

De N ecuaciones se deben cumplir al menos k, siendo k < N

$$\{f_1(x) \leq 0\}, ..., \{f_N(x) \leq 0\}$$

Variables:

$$y_i = \begin{cases} 1 & \text{si la restricción } i \text{ se cumple} \\ 0 & \text{si no} \end{cases}$$

Restricciones:

$$f_i(x) \leq M_i \cdot (1 - y_i)$$

 $\sum_{i=1}^N y_i \geq k$

Seleccionar el valor de una función entre N valores posibles

Restricción: Seleccionar entre N valores: Una ecuación con múltiples valores posibles.

$$f(x) = \begin{cases} v_1 \\ \dots \\ v_N \end{cases}$$

Variables:

$$y_i = \begin{cases} 1 & \text{si la ecuación toma el valor } i\text{-ésimo} \\ 0 & \text{si no} \end{cases}$$

Restricciones:

$$f(x) = \sum_{i=1}^{N} v_i \cdot y_i$$
$$\sum_{i=1}^{N} y_i = 1$$

Modelado de costos fijos (1/2)

• Costo con un término fijo si la variable toma un valor estrictamente positivo

$$f_i(x_i) = \begin{cases} 0 & x_i = 0 \\ k_i + c_i * x_i & x_i > 0 \end{cases}$$

Modelado de costos fijos (2/2)

• Variable auxiliar binaria:

$$y_i = \begin{cases} 1 & x_i > 0 \\ 0 & x_i = 0 \end{cases}$$

$$Min k_i * y_i + c_i * x_i$$

$$x_i \le M * y_i (M valor grande)$$

Modelado de funciones minimax (1/2)

• Modelado de la minimización del máximo costo:

Mín
$$f(x)$$
, $A * x = b$, $x \ge 0$ donde

$$f(x) = \text{Máx } \{ \{c_1 * x + d_1\}, \{c_2 * x + d_2\}, \dots, \{c_p * x + d_p\} \}$$

 $x, c_i \in \mathbb{R}^n, d_i \in \mathbb{R}$

• Gráficamente: En una dimensión

Modelado de funciones minimax (1/2)

• Modelado de la minimización del máximo costo:

Mín
$$f(x)$$
, $A * x = b$, $x \ge 0$ donde

$$f(x) = \text{Máx } \{ \{c_1 * x + d_1\}, \{c_2 * x + d_2\}, \dots, \{c_p * x + d_p\} \}$$

 $x, c_i \in \mathbb{R}^n, d_i \in \mathbb{R}$

• Gráficamente: En una dimensión

Modelado de funciones minimax (2/2)

Mín z

$$z \ge c_1 * x + d_1$$

 $z \ge c_2 * x + d_2$
...
 $z \ge c_p * x + d_p$
 $A * x = b$
 $x \ge 0$

Modelado de implicaciones lógicas

Caso 1.a: De variables binarias a restricciones \leq

Restricción

IF $\delta = 1$ THEN $\sum_i a_i \cdot x_i \leq b$

Formulación

$$\sum_{i} a_{i} \cdot x_{i} \leq b + (1 - \delta) \cdot M$$

Consecuencia

Como $A \rightarrow B$ equivale a $\neg B \rightarrow \neg A$

IF
$$\sum_i a_i \cdot x_i > b$$
 THEN $\delta = 0$

Caso 1.b: De variables binarias a restricciones \geq

Restricción

IF $\delta = 1$ THEN $\sum_i a_i \cdot x_i \geq b$

Formulación

$$\sum_{i} a_i \cdot x_i \geq b + (1 - \delta) \cdot m$$

Consecuencia

Como $A \rightarrow B$ equivale a $\neg B \rightarrow \neg A$ IF $\sum_i a_i \cdot x_i < b$ THEN $\delta = 0$

Caso 2.a: De restricciones \geq a variables binarias

Restricción

IF $\sum_i a_i \cdot x_i \geq b$ THEN $\delta = 1$

Equivalencia

IF $\sum_i a_i \cdot x_i \ge b$ THEN $\delta = 1$ equivale a IF $\delta = 0$ THEN $\sum_i a_i \cdot x_i < b$ IF $\delta = 0$ THEN $\sum_i a_i \cdot x_i \le b - \epsilon$

Formulación

$$\sum_{i} a_i \cdot x_i \leq b - \epsilon + \delta \cdot M'$$

Consecuencia

Como $A \rightarrow B$ equivale a $\neg B \rightarrow \neg A$ IF $\delta = 0$ THEN $\sum_i a_i \cdot x_i < b$

Caso 2.b: De restricciones \leq a variables binarias

Restricción

IF $\sum_i a_i \cdot x_i \leq b$ THEN $\delta = 1$

Equivalencia

IF $\sum_i a_i \cdot x_i \leq b$ THEN $\delta = 1$ equivale a IF $\delta = 0$ THEN $\sum_i a_i \cdot x_i > b$ IF $\delta = 0$ THEN $\sum_i a_i \cdot x_i \geq b + \epsilon$

Formulación

$$\sum_{i} a_i \cdot x_i \geq b + \epsilon + \delta \cdot m'$$

Consecuencia

Como $A \rightarrow B$ equivale a $\neg B \rightarrow \neg A$ IF $\delta = 0$ THEN $\sum_i a_i \cdot x_i > b$

Caso 3: De variables binarias a restricciones =

Restricción

IF $\delta = 1$ THEN $\sum_i a_i \cdot x_i = b$

Equivalencia

IF $\delta = 1$ THEN $\sum_i a_i \cdot x_i = b$ equivale a:

IF $\delta = 1$ THEN $\sum_{i=1}^{n} a_i \cdot x_i \leq b$ AND $\sum_{i=1}^{n} a_i \cdot x_i \geq b$

Formulación

$$\sum_{i} a_{i} \cdot x_{i} \geq b + (1 - \delta) \cdot m$$
$$\sum_{i} a_{i} \cdot x_{i} \leq b + (1 - \delta) \cdot M$$

Caso 4: De restricciones = a variables binarias

Restricción

IF $\sum_i a_i \cdot x_i = b$ THEN $\delta = 1$

Equivalencia

SI $\sum_i a_i \cdot x_i = b$ THEN $\delta = 1$ equivale a:

SI $(\sum_i a_i \cdot x_i \leq b \text{ AND } \sum_i a_i \cdot x_i \geq b)$ THEN $\delta = 1$

SI $\delta = 0$ THEN $(\sum_i a_i \cdot x_i < b \text{ OR } \sum_i a_i \cdot x_i > b)$

Formulación

$$\sum_{i} a_{i} \cdot x_{i} \geq b + \epsilon + \delta_{2} \cdot m'$$

$$\sum_i a_i \cdot x_i \leq b - \epsilon + \delta_1 \cdot M'$$

$$\delta_1 + \delta_2 - 1 \leq \delta$$

Caso 5: De restricciones a restricciones (1)

Hint!: Usar que $A \Rightarrow B \Leftrightarrow BOR \neg A$

Caso 5.1

$$\sum_{i} a_{i} \cdot x_{i} > b \Rightarrow \sum_{i} c_{i} \cdot x_{i} \leq d$$

$$\{\sum_{i} c_{i} \cdot x_{i} \leq d\} OR\{\sum_{i} a_{i} \cdot x_{i} \leq b\}$$

Caso 5.2

$$\sum_{i} a_{i} \cdot x_{i} \geq b \Rightarrow \sum_{i} c_{i} \cdot x_{i} \leq d$$

$$\{\sum_{i} c_{i} \cdot x_{i} \leq d\} OR\{\sum_{i} a_{i} \cdot x_{i} \leq b - \epsilon\}$$

Caso 5.3

$$\sum_{i} a_{i} \cdot x_{i} = b \Rightarrow \sum_{i} c_{i} \cdot x_{i} \geq d$$

$$\{\sum_{i} c_{i} \cdot x_{i} \geq d\} OR\{\sum_{i} a_{i} \cdot x_{i} \leq b - \epsilon\} OR\{\sum_{i} a_{i} \cdot x_{i} \geq b + \epsilon\}$$

Caso 5: De restricciones a restricciones (2)

Caso 5.4

$$\sum_{i} a_{i} \cdot x_{i} \geq b \Rightarrow \sum_{i} c_{i} \cdot x_{i} = d$$

$$\left\{ \left\{ \sum_{i} c_{i} \cdot x_{i} \leq d \right\} AND \left\{ \sum_{i} c_{i} \cdot x_{i} \geq d \right\} \right\} OR \left\{ \sum_{i} a_{i} \cdot x_{i} \leq b - \epsilon \right\}$$

Formulación

$$\sum_{i} c_{i} \cdot x_{i} \leq d + \delta \cdot M
\sum_{i} c_{i} \cdot x_{i} \geq d + \delta \cdot m
\sum_{i} a_{i} \cdot x_{i} \leq b - \epsilon + (1 - \delta) \cdot M'$$

Modelado de dobles implicaciones

Variables binarias y restricciones ≤

$$\delta = 1 \Leftrightarrow \sum_{i} a_{i} \cdot x_{i} \leq b$$

IF
$$\delta = 1$$
 THEN $\sum_i a_i \cdot x_i \leq b$

IF
$$\sum_i a_i \cdot x_i \leq b$$
 THEN $\delta = 1$

$$\sum_{i} a_i \cdot x_i \leq b + (1 - \delta) \cdot M$$

$$\sum_{i} a_i \cdot x_i \ge b + \epsilon + \delta \cdot m'$$

Variables binarias y restricciones ≥

$$\delta = 1 \Leftrightarrow \sum_{i} a_{i} \cdot x_{i} \geq b$$

IF
$$\delta = 1$$
 THEN $\sum_i a_i \cdot x_i \geq b$

IF
$$\sum_i a_i \cdot x_i \geq b$$
 THEN $\delta = 1$

$$\sum_{i} a_i \cdot x_i \geq b + (1 - \delta) \cdot m$$

$$\sum_{i} a_i \cdot x_i \leq b - \epsilon + \delta \cdot M'$$

Restricciones & restricciones

$$\sum_i a_i \cdot x_i \ge b \Leftrightarrow \sum_i c_i \cdot x_i \le d$$

IF
$$\sum_i a_i \cdot x_i \geq b$$
 THEN $\sum_i c_i \cdot x_i \leq d$

IF
$$\sum_i c_i \cdot x_i \leq d$$
 THEN $\sum_i a_i \cdot x_i \geq b$

$$\sum_{i} c_{i} \cdot x_{i} \leq d + \delta \cdot K$$

$$\sum_{i} a_{i} \cdot x_{i} \leq b - \epsilon + (1 - \delta) \cdot M'$$

$$\sum_{i} a_{i} \cdot x_{i} \geq b + \delta \cdot m$$

$$\sum_{i} c_{i} \cdot x_{i} \geq d + \epsilon + (1 - \delta) \cdot k'$$