Teorie Efficaci Olografiche: Un caso di studio

Riccardo Antonelli

4 dicembre 2016

QFT fortemente accoppiate

Problema fondamentale:

Data teoria di campo quantistica fortemente accoppiata, \longrightarrow teoria efficace di bassa energia

Teoria delle stringhe: equivalenze teorie di gauge $4d \leftrightarrow background$ di stringa 10d (olografia)

Sfruttabili per teoria efficace?

 \downarrow

Teorie Efficaci Olografiche

Superstringhe IIB

Teoria di gravità quantistica in 10d.

- Stringhe: oggetti perturbativi 1-dimensionali
- ▶ Dp-brane: oggetti non perturbativi p-dimensionali; p dispari (D1,D3,D5,...)

A basse energie, le stringhe IIB \sim supergravità IIB (SUGRA). Teoria di campo, include:

- gravitone $g_{\mu\nu}$, assio-dilatone au (complesso)
- ► k-forme: B_2 , C_2 , C_4 $\left(B_2 = \frac{1}{2} B_{\mu\nu} dx^{\mu} \wedge dx^{\nu}, \text{ etc}\right)$
- ▶ + fermioni ...

Olografia

Equivalenza fra:

- ► Teoria di gauge in 4 dimensioni
- ▶ Teoria delle stringhe IIB (include gravità) su $AdS_5 \times Y^5$

AdS (Anti-de Sitter): spaziotempo iperbolico

 Y_5 : varietà compatta 5d

Costruire dualità

Si dispongono N D3-brane coincidenti in un background

$$\mathbb{R}^{1,3} \times X_6$$

 X_6 : cono con base Y_5 : $ds_X^2 = dr^2 + r^2 ds_Y^2$

Costruire dualità (2)

Due visuali equivalenti di questo sistema:

Stringhe aperte attaccate alle D3: Teoria di gauge 4d $G = SU(N) \times SU(N) \times \dots$

$$S = -\frac{1}{4} \int d^4x \operatorname{Tr} F^2 + \dots$$

Massa D3 curva spaziotempo:

$$\mathbb{R}^{1,3} \times X_6 \longrightarrow \mathrm{AdS}_5 \times Y_5$$
,

$$S = -\int d^{10}x\sqrt{-g}R + \dots$$

Large N, strong-coupling

Si dimostra:

Quando in 4d
$$N \to \infty$$
, $\lambda \to \infty$,

allora in 10d

Stringhe IIB
$$o$$
 supergravità IIB classica $(\hbar \to 0)$

$$(\lambda := N^2 q)$$

La teoria $Y^{2,0}$

Cono $X^{2,0}$ sulla base $Y^{2,0}\sim \mathbb{S}^2 imes \mathbb{S}^3/\mathbb{Z}_2$

 $X^{2,0}$ è Calabi-Yau \Longrightarrow teoria superconforme (SCFT) con $\mathcal{N}=1$

Supersimmetria **minimale** (senza la singolarità conica, $\mathcal{N}=4$): teorie meno rigide e più realistiche, dinamica pochissimo studiata

La teoria $Y^{2,0}$

Gruppo di gauge:

$$SU(N)_1 \times SU(N)_2 \times SU(N)_3 \times SU(N)_4$$

Campi di materia: $A_1, A_2, B_1, B_2, C_1, C_2, D_1, D_2$.

$$A_i \in (\mathbf{N}, \overline{\mathbf{N}}, \mathbf{1}, \mathbf{1}), B_i \in (\mathbf{1}, \mathbf{N}, \overline{\mathbf{N}}, \mathbf{1}), \dots$$

Teoria di quiver:

+ superpotenziale (interazione fra i campi di materia):

$$W = \lambda \varepsilon^{ij} \varepsilon^{kl} \operatorname{Tr}(A_i B_k C_j D_l)$$

Deve esistere una descrizione efficace a bassa energia, in termini di pochi campi dinamici. Come identificarla?

Varietà di vuoti (minimi del potenziale): spazio dei moduli \mathcal{M} . Le direzioni lungo \mathcal{M} sono parametrizzate da **moduli**.

Moduli = campi della teoria efficace

$AdS_5 \times Y^{2,0}$

$$\begin{array}{ccc} \mathsf{Vuoto}\;\mathsf{Superconforme} & \overset{olografia}{\longleftrightarrow} & \mathrm{AdS}_5 \times Y^{2,0} \\ \\ \mathcal{M}_{QFT} & \overset{olografia}{\longleftrightarrow} & \mathcal{M}_{\mathrm{AdS}_5 \times Y^{2,0}} \end{array}$$

Moduli della CFT $Y^{2,0}$ \updownarrow Moduli di SUGRA su $\mathrm{AdS}_5 \times Y^{2,0}$ \updownarrow campi dinamici della teoria efficace

⇒ è possibile estrarre la Lagrangiana efficace.

Moduli SUGRA

- ► Spostare le D3-brane sul cono
- ▶ Deformare la metrica (struttura Kähler) del cono
- lacktriangle Accendere altri campi di SUGRA (au, B_2, C_2, C_4)

3N moduli immediati:

$$z_I^i$$
 $i=1,2,3,$
 $I=1,\ldots,N$

posizioni delle N D3-brane sul cono 6d o 3N campi complessi.

Legati a valori di aspettazione (VEV) di operatori del tipo:

$$\operatorname{Tr}\left(A_iB_iC_kD_l\right)$$
, \leftarrow mesoni

- ▶ 2 moduli struttura Kähler (metrica): la singolarità conica si può "risolvere" in due sfere $\mathbb{S}^2_L \times \mathbb{S}^2_R$
- ightharpoonup 1 modulo per 2-forme B_2 , C_2

 \Longrightarrow 3 altri campi chirali $\widehat{
ho},\ \widetilde{
ho},\ eta$ nella teoria efficace. VEV di

$$\varepsilon_{abc\dots}\varepsilon^{pqr\dots}\underbrace{A^a_{\ p}A^b_{\ q}A^c_{\ r}\dots}_{N} \ \leftarrow {\sf barioni}$$

Teoria efficace

Ci sono 3N+3 campi chirali $(z_I^i,\widehat{\rho},\widetilde{\rho},\beta)$. Calcoliamo la \mathcal{L}_{eff} efficace:

$$\mathcal{L}_{\text{eff}} = -\pi \mathcal{G}^{ab} \nabla_{\mu} \rho_{a} \nabla^{\mu} \bar{\rho}_{b} - 2\pi \sum_{I} g_{i\bar{j}} \partial_{\mu} z^{i} \partial^{\mu} \bar{z}^{\bar{j}} - \frac{\pi \mathcal{M}}{\operatorname{Im} \tau} \partial_{\mu} \beta \partial^{\mu} \bar{\beta}$$

- Necessaria $g_{i\bar{\jmath}}$ in coordinate complesse.
- \mathcal{G}^{ab} , ∇_{μ} , $g_{i\bar{j}}$, \mathcal{M} funzioni complicate di $(\widehat{\rho}, \widetilde{\rho}, \beta) \Longrightarrow$ forte non-linearità
- $g_{iar{\jmath}}$: metrica (hermitiana) del cono risolto: σ -model delle D3-brane
- $ightharpoonup \mathcal{L}_{ ext{eff}}$ è in realtà la parte bosonica di una Lagrangiana supersimmetrica $\mathcal{N}=1$: scalari $\widehat{
 ho}, \widetilde{
 ho}, eta$ accoppiati con superpartner spin-1/2.

Simmetrie

Check nontriviale: simmetrie della teoria di campo devono ricomparire nella teoria efficace.

- Gruppo superconforme: spontaneamente rotto in generale, verifichiamo l'invarianza di L_{eff} sotto un'implementazione nonlineare.
- ▶ La SCFT ha una simmetria di flavour $SU(2) \times SU(2)$. Nella HEFT: è il gruppo di isometria di $\mathbb{S}^2 \times \mathbb{S}^2$.
- ▶ Tre simmetrie U(1), di cui due anomale. Presenti nella HEFT, le anomale rotte non perturbativamente.

U(1)

- ▶ $U(1)_{\text{trace}} = U(1)_1 + U(1)_2 + U(1)_3 + U(1)_4$ è disaccoppiato da tutto.
- ▶ $U(1)_B = U(1)_1 + U(1)_3$ non anomalo. Numero barionico. Nella HEFT:

$$\operatorname{Im} \widetilde{\rho} \to \operatorname{Im} \widetilde{\rho} + \alpha$$

Ne rimangono due. Sono:

$$U(1)_1 - U(1)_3 \qquad \leftrightarrow \qquad \operatorname{Im} \widehat{\rho} \to \operatorname{Im} \widehat{\rho} + \alpha$$

 $U(1)_4 - U(1)_2 \qquad \leftrightarrow \qquad \operatorname{Im} \beta \to \operatorname{Im} \beta + \alpha$

Simmetrie classiche della CFT e della \mathcal{L}_{eff} , ma anomale. Interpretazione olografica: rotte da effetti nonperturbativi $\sim \exp(-N) \sim \exp(-1/g_s)$ dovuti a istantoni di teoria delle stringhe accoppiati ad $\operatorname{Im} \widehat{\rho}$, $\operatorname{Im} \beta$.

Grazie per l'attenzione.