

BUNDESREPUBLIK DEUTSCHLAND

PATENT- UND
MARKENAMT

® Offenlegungsschrift

_® DE 199 39 865 A 1

(a) Aktenzeichen: 199 39 865.8
 (b) Anmeldetag: 23. 8. 1999

4 Offenlegungstag: 1. 3. 2001

⑤ Int. CI.⁷:

C 08 L 21/00 B 60 C 1/00 B 65 G 15/32

① Anmelder:

Bayer AG, 51373 Leverkusen, DE

② Erfinder:

Obrecht, Werner, Dr., 47447 Moers, DE; Jeske, Wilfried, 51399 Burscheid, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Agglomerierte Kautschukgele enthaltende Kautschukmischungen und Vulkanisate
- ⑤ Die mit den erfindungsgemäßen Kautschukmischungen hergestellten Vulkanisate, die agglomerierte Kautschukgele enthalten, zeichnen sich durch verbesserte mechanische Eigenschaften bei zumindest gleichem Dämpfungsverhalten aus.

Beschreibung

Die Erfindung betrifft agglomerierte Kautschukgele, hieraus hergestellte Kautschukmischungen und deren Verwendung. Die Vulkanisate, die agglomerierte Kautschukgele enthalten, zeichnen sich im Vergleich mit Compounds, die die entsprechenden nichtagglomerierten Gele enthalten, durch verbesserte mechanische Eigenschaften bei zumindest gleichem Dämpfungsverhalten aus. Insbesondere Kautschukmischungen mit "strukturierten" Kautschukgelen sowie Compounds auf der Basis kieselsäurehaltiger agglomerierter Kautschukgele, die mit schweselhaltigen Siliciumverbindungen aktiviert sind, weisen besonders vorteilhafte mechanische Eigenschaften auf.

Der Verwendung von Mikrogelen in Kautschukcompounds wird in folgenden Patentanmeldungen bzw. Patenten beschrieben: EP-A 405216, DE-A 42 20 563, GB-PS 1078400 und LeA 32 158. EP 432 405 und EP 432 417. In den Patent(anmeldungen) EP-A 405 216, DE-A 42 20 563 sowie in GB-PS 1078400 werden die Verwendung von CR-, BR-und NR-Mikrogelen für Mischungen mit doppelbindungshaltigen Kautschuken und für die Herstellung der entsprechenden Vulkanisate beansprucht. Die Vulkanisate sind insbesondere für die Herstellung von Reifenlaufflächen geeignet, da sie bei 70°C hohe Rückprallelastizitäten und damit einen niedrigen Rollwiderstand und bei 23°C niedrige Rückprallelastizitäten und damit eine hohe Naßrutschfestigkeit aufweisen. Insbesondere die große Differenz der Rückprallelastizitäten zwischen 70°C und 23°C ist charakteristisch für die mikrogelhaltigen Vulkanisate. Für den technischen Einsatz in Reifenlaufflächen sind die mechanischen Eigenschaften der mikrogelhaltigen Vulkanisate allerdings nicht ausreichend. Defizite bestehen insbesondere im Niveau der mechanischen Vulkanisateigenschaften. Hier besteht der Bedarf, das Produkt aus Spannungswerts bei 300% Dehnung und Reißdehnung sowie den Abriebwiderstand zu verbessern.

Eine besondere Rolle für die Aktivierung kieselsäurehaltiger Kautschukmischungen spielen schwefelhaltige Organosiliciumverbindungen. Beispielhaft sind hier folgende Patentschriften genannt: US 3.873.489 vom 25. 05. 1975 (Degussa), US 4.709.065 vom 24. 11. 1987 (Shin-Etsu) und US 5.227.425 vom 13. 07. 1993 (Michelin), LeA 30206 vom 02. 03. 1994, LeA 31169 vom 27. 06. 1995, LeA 32283 vom 10. 03. 1997.

Nicht gelehrt wird in diesen Patenten die Verbesserung der mechanischen Eigenschaften von Vulkanisaten auf der Basis von Kautschukgelen durch Verwendung agglomerierter bzw. mit anorganischen Füllstoffen wie Kieselsäure coagglomerierter Kautschukgele.

Es bestand daher die technische Aufgabe, das mechanische Werteniveau (Spannungswert (300% × Reißdehnung) sowie den Abriebwiderstand mikrogelhaltiger Kautschukvulkanisate zu verbessern, ohne die Differenz der Rückprallelastizitäten bei 70°C und 23°C zu verschlechtern.

Es wurde jetzt gefunden, daß es gelingt, die verstärkende Wirkung von Kautschukgelen in Vulkanisaten zu verbessern, wenn die Kautschukgele in agglomerierter Form eingesetzt werden. Die verstärkende Wirkung der agglomerierten Kautschukgele ist dann besonders gut ausgeprägt, wenn die Teilchen nach der Agglomeration nicht die thermodynamische günstigste Kugelform annehmen können, d. h. wenn die agglomerierten Teilchen eine gewisse Struktur besitzen. Insbesondere die Verwendung von Kautschukgelen, die mit anorganischen Füllstoffen wie Kieselsäure coagglomeriert werden, ist besonders günstig. Die verstärkende Wirkung der kieselsäurehaltigen Kautschukgele wird dadurch weiter verbessert, daß bei der Compoundierung zusätzlich eine schwefelhaltige Organosiliciumverbindung verwendet wird.

Gegenstand der Erfindung sind daher Kautschukmischungen enthaltend mindestens ein agglomeriertes Kautschukgel (A), mindestens einen doppelbindungshaltigen Kautschuk (B) und mindestens eine schwefelhaltige Organosiliciumverbindungen (C), wobei der Anteil an doppelbindungshaltigem Kautschuk (B) 100 Gew.-Teile, der Anteil an Kautschukgel (A) 1 bis 150 Gew.-Teile, bevorzugt 10 bis 100 Gew.-Teile, und der Anteil an siliciumorganischer Schwefelverbindung (C) 0,2 bis 20, bevorzugt 1 bis 10, Gew.-Teile beträgt, sowie weiteren Kautschukhilfsmitteln und gegebenenfalls weiteren Füllstoffen.

Unter agglomerierten Kautschukgelen (A) versteht man Kautschukgele mit Teilchendurchmessern von 5 bis 5.000 nm. Sie besitzen eine breite Teilchengrößenverteilung, charakterisiert durch die Differenz der d₈₀-d₁₀-Werte, die größer als 25 nm ist. Die charakteristischen Durchmesser d₁₀ und d₈₀ sind die Durchmesser unter denen jeweils 10 oder 80 Gew.-% der Teilchen liegen. Die Teilchengrößenverteilungen werden mittels Ultrazentrifagation nach H. Lange, "Schnelle Dichtegradientenzentrifugation dispergierter Teilchen", Colloid & Polymer Sci. 258, 1077-1085 (1980) bzw. H. G. Müller, "Automated determination of particle-size distributions of dispersions by analytical ultracentrifugation", Colloid & Polymer Science 267: 113-116 (1989) bestimmt.

In den Fällen, in denen die agglomerierten Teilchen nach der Agglomeration nicht in Kugelform vorliegen und "Struktur" besitzen, kann dies mit geeigneten Methoden z. B. mit der Elektronenmikroskopie nachgewiesen werden.

Die Kautschukgele sind aufgrund ihrer Vernetzung unlöslich und in geeigneten Quellmitteln, wie Toluol, quellbar. Die Quellungsindizes der Mikrogele (Q_i) in Toluol betragen 1-15, vorzugsweise 1-10. Der Quellungsindex wird aus dem Gewicht des lösungsmittelhaltigen Gels (nach Zentrifugation mit 20.000 Upm) und dem Gewicht des trockenen Gels berechnet:

Qi = Naßgewicht des Gels/Trockengewicht des Gels.

Zur Ermittlung des Quellungsindex läßt man z. B. 250 mg Gel in 25 ml Toluol 24 h unter Schütteln quellen. Das Gel wird abzentrifugiert und gewogen und anschließend bei 70°C bis zur Gewichtskonstanz getrocknet und nochmals gewogen.

Die agglomerierten Kautschukgele können auch anorganische Füllstoffe insbesondere Kieselsäure, in Mengen von ca. 3 bis 80 Gew.-%, bevorzugt 5 bis 50 Gew.-%, enthalten, wobei die füllstoffhaltigen Kautschukgele aufgrund ihres Füllstoffgehaltes niedrigere Quellungsindices besitzen. Bezieht man in diesen Fällen die Quellungsindices auf die reine Kautschukkomponente des füllstoffhaltigen Gels, so liegt sie in dem oben angegebenen Bereich.

Für die Herstellung der Kautschukgele verwendet man insbesondere folgende Kautschuke:

BR: Polybutadien.

ABR: Butadien/Acrylsäure C1-C4-Alkylestercopolymere.

IR: Polyisopren, SBR: Styrol-Butadien-Copolymerisate mit Styrolgehalten von 1-60, vorzugsweise 2-50 Gewichtsprozent, X-SBR: carboxylierte Styrol-Butadien-Copolymerisate FKM: Fluorkautschuk, ACM: Acrylatkautschuk, NBR: Polybutadien-Acrylnitril-Copolymerisate mit Acrylnitrilgehalten von 5-60, vorzugsweise 10-50 Gewichtsprozent.	S
X-NBR: carboxylierte Nitrilkautschuke,	
CR: Polychloropren,	
IIR: Isobutylen/Isopren-Copolymerisate mit Isoprengehalten von 0,5-10 Gewichtsprozent,	10
BIIR: bromierte Isobutylen/Isopren-Copolymerisate mit Bromgehalten von 0,1–10 Gewichtsprozent.	
CIR: chlorierte Isobutylen/Isopren-Copolymerisate mit Bromgehalten von 0.1–10 Gewichtsprozent.	
HNBR: teil- und vollhydrierte Nitrilkautschuke,	
EPDM: Ethylen-Propylen-Dien-Copolymerisate,	
EAM: Ethylen/Acrylatcopolymere,	15
EVM: Ethylen/Vinylacetatcopolymere,	
ECO: Epichlorhydrinkautschuk,	
Q: Silikonkautschuke,	
AU: Polyesterurethanpolymerisate,	
EU: Polyetherurethanpolymerisate,	20
ENR: Epoxydierter Naturkautschuk	
oder Mischungen davon.	
Die Herstellung der unvernetzten Kautschuk-Ausgangsprodukte erfolgt durch folgende Methoden:	
1. Emulsionspolymerisation,	25
Lösungspolymerisation von Kautschuken, die über Variante 1 nicht zugänglich sind.	
 Außerdem können natürlich vorkommende Latices wie z. B. Naturkautschuklatex eingesetzt werden. 	

Bei der Herstellung von Mikrogelen durch Emulsionspolymerisation werden folgende radikalisch polymerisierbare Monomere eingesetzt: Butadien, Styrol, Acrylnitril, Isopren, Ester der Acryl- und Methacrylsäure, Tetrafluorethylen, Vinylidenfluord, Hexafluorpropen, 2-Chlorbutadien, 2,3-Dichlorbutadien sowie doppelbindungshaltige Carbonsäuren wie z. B. Acrylsäure, Methacrylsäure, Maleinsäure, Itakonsäure etc., doppelbindungshaltige Hydroxyverbindungen wie z. B. Hydroxyethylmethacrylat, Hydroxyethylacrylat, Hydroxybutylmeth-acrylat etc. oder doppelbindungshaltige Epoxide wie beispielsweise Glycidylmethacrylat oder Glycidylacrylat. Die Vernetzung des Kautschukgels kann direkt während der Emulsionspolymerisation durch Copolymerisation mit vernetzend wirkenden multifunktionellen Verbindungen erreicht werden. Bevorzugte multifunktionelle Comonomere sind Verbindungen mit mindestens zwei, vorzugsweise 2 bis 4 copolymerisierbaren C=C-Doppelbindungen, wie Diisopropenylbenzol, Divinylbenzol, Divinylether, Divinylsulfon, Diallylphthalat, Triallylcyanurat, Triallylisocyanurat, 1,2-Polybutadien, N,N-m-Phenylenmaleimid, 2,4-Toluylenbis-(maleimid) und/oder Triallyltrimellitat. Darüber hinaus kommen in Betracht die Acrylate und Methacrylate von mehrwertigen, vorzugsweise 2- bis 4-wertigen C₂- bis C₁₀-Alkoholen, wie Ethylenglykol, Propandiol-1,2,butandiol, Hexandiol, Polyethylenglykol mit 2 bis 20, vorzugsweise 2 bis 8 Oxyethyleneinheiten, Neopentylglykol, Bisphenol-A, Glycerin, Trimethlolpropan, Pentaerythrit, Sorbit mit ungesättigten Polyestern aus aliphatischen Di- und Polyolen sowie Maleinsäure, Fumarsäure, und/oder Itaconsäure.

Die Vernetzung zu Kautschukgelen während der Emulsionspolymerisation kann auch durch Fortführung der Polymerisation bis zu hohen Umsätzen oder im Monomerzulaufverfahren durch Polymerisation mit hohen internen Umsätzen erfolgen. Eine andere Möglichkeit besteht auch in der Durchführung der Emulsionspolymerisation in Abwesenheit von Reglern.

Für die Herstellung stark- und/oder auch schwach vernetzter Polymerer im Anschluß an die Emulsionspolymerisation setzt man am besten die Latices ein, die bei der Emulsionspolymerisation erhalten werden. Auch Naturkautschuklatices können auf diese Weise vernetzt werden. Die Methode kann auch auf wässrige Polymerdispersionen angewandt werden, die durch Umlösung der Kautschuke aus organischen Lösungen zugänglich sind. Prinzipiell kann diese Methode auch bei nichtwässrigen Polymerdispersionen angewandt werden.

Geeignet vernetzend wirkende Chemikalien sind beispielsweise organische Peroxide, wie Dicumylperoxid, t-Butylcumylperoxid, Bis-(t-butyl-peroxy-isopropyl)benzol, Di-t-butylperoxid, 2,5-Ditmethylhexan-2,5-dihydroperoxid, 2,5-Dimethylhexin-3,2,5-dihydroperoxid, Dibenzoylperoxid, Bis-(2,4-dichlorobenzoyl)peroxid, t-Butylperbenzoat sowie organische Azoverbindungen, wie Azo-bis-isobutyronitril und Azo-bis-cyclohexannitril sowie Di- und Polymer-captoverbindungen, wie Dimercaptoethan, 1,6-Dimercaptohexan, 1,3,5-Trimercaptotriazin und mercaptoterminierte Polysulfid-kautschuke wie mercaptoterminierte Umsetzungsprodukte von bis-Chlorethylformal mit Natriumpolysulfid. Die optimale Temperatur zur Durchführung der Nachvernetzung ist naturgemäß von der Reaktivität des Vernetzers abhängig und kann bei Temperaturen von Raumtemperatur bis ca. 180°C gegebenenfalls unter erhöhtem Druck durchgeführt werden (siehe hierzu Houben-Weyl, Methoden der organischen Chemie, 4. Auflage, Band 14/2, Seite 848). Besonders bevorzugte Vernetzungsmittel sind Peroxide.

Die Vernetzung C=C-Doppelbindungen enthaltender Kautschuke zu Mikrogelen kann auch in Dispersion bzw. Emulsion bei gleichzeitiger, partieller, ggf. vollständiger, Hydrierung der C=C-Doppelbindung durch Hydrazin wie in US 5,302.696 oder US 5,442,009 beschrieben oder ggf. andere Hydrierungsmitteln, beispielsweise Organometallhydridkomplexe erfolgen.

Auch Kautschuke, die durch Lösungspolymerisation hergestellt werden, können als Ausgangsprodukte für die Herstellung der Mikrogele dienen. In diesen Fällen geht man von den Lösungen dieser Kautschuke in geeigneten organi-

schen Lösungen aus. Man stellt die gewünschten Größen der Mikrogele dadurch her, daß man die Kautschuklösung in einem flüssigen Medium, vorzugsweise in Wasser gegebenenfalls unter Zugabe geeigneter oberflächenaktiver Hilfsmitteln wie z. B. Tensiden mittels geeigneter Aggregate mischt, so daß eine Dispersion des Kautschuks im geeigneten Teilchengrößenbereich erhalten wird. Für die Vernetzung der dispergierten Lösungskautschuke geht man wie zuvor für die nachträgliche Vernetzung von Emulsionspolymerisaten beschriebenen, vor. Als Vernetzer eignen sich die zuvor genannten Verbindungen, wobei man das für die Herstellung der Dispersion eingesetzte Lösungsmittel gegebenenfalls vor der Vernetzung z. B. destillativ entfernen kann.

Die Agglomeration der Kautschuklatices bzw. der Kautschukgele kann auf unterschiedliche Weise durchgeführt werden. Prinzipiell geeignet sind chemische und physikalische Agglomerationsmethoden (W. Obrecht in Ullmann's Encyclopedia Of Industrial Chemistry, VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1993, Vol A23, Rubber, 3. Syn-

Führt man die Agglomeration von nicht oder schwachvernetzten Kautschuklatiees durch, so nehmen diese nach der thetic, S. 263). Agglomeration die thermodynamisch günstigste Kugelform an. Setzt man stärker vernetzte Kautschukgele (Vorvernetzung) bei der Agglomeration ein, die im agglomerierten Zustand aufgrund ihrer Vorvernetzung keine Kugelform annehmen können, so erhält man agglomerierte Kautschukgele mit Struktur. Für die Herstellung agglomerierter Gele mit Struktur hat es sich bewährt, daß man von vorvernetzten Gelen ausgeht, eine Agglomeration durchführt und nach der Agglomeration eine weitere Vernetzung (Nachvernetzung) durchführt. Für die Vor- und Nachvernetzung der Kautschukgele eignen sich die zuvor beschriebenen Methoden.

Für die Herstellung füllstoffhaltiger Kautschukgele geht man zweckmäßigerweise von un- bzw. vorvernetzten Kautschuklatices aus, die man mit einer wässrigen Disperison des anorganischen Füllstoffs mischt, und den Kautschuk in Gegenwart des anorganischen Füllstoffs agglomeriert. Nach der Coagglomeration führt man zweckmäßigerweise eine weitere Vernetzung der Kautschukkomponente (Nachvernetzung) durch. Durch die Coagglomeration/Nachvernetzung werden der anorganische Füllstoff und das Kautschukgel physikalisch/chemisch fixiert, so daß bei der anschließenden Isolation des Coagglomerats aus der wässrigen Phase nahezu keine Verluste insbesondere bei feinteiligen anorganischen Komponenten mit spezifischen Oberflächen größer 100 m²/g auftreten. Dies lässt sich gut mit Hilfe der Aschegehalte der

Für die Herstellung der füllstoffhaltigen Kautschukgele kommen z. B. folgende anorganischen Füllstoffe infrage: Ruß, Kautschukgele überprüfen. Kieselsäure, Calciumcarbonat, Magnesiumcarbonat, Dolomit, Bariumsulfat, Aluminiumsilikate, Aluminiumoxid und/ oder Zinkoxid, bevorzugt Kieselsäure.

Die Dispersionen der anorganischen Füllstoffe in Wasser stellt man entweder durch feine Verteilung (Mahlen) in Gegenwart geeigneter Tenside oder durch Ausfällen in Gegenwart geeigneter Hilfsmittel, wie anionische oder kationische Tenside, her.

Kommerziell erhältlich sind z. B. folgende wässrige Dispersionen anorganischer Füllstoffe: Wässrige Pigmentrußdispersionen der Degussa "Derussolo" (Geschäftsbereich Anorganische Industrieprodukte, D-60287 Frankfurt) und wässrige Kieselsäuredispersionen "Levasil®" der Bayer AG. D-5090 Leverkusen.

Die coagglomerierten Kautschukgele enthalten anorganische Füllstoffe in Mengen von 3-80 Gew.-%.

Unter doppelbindungshaltigem Kautschuk (B) versteht man die Kautschuke, die nach DIN/ISO 1629 als als R-Kautschuke bezeichnet werden. Diese Kautschuke haben in der Hauptkette eine Doppelbindungen. Hierzu gehören z. B.:

NR: Naturkautschuk SBR: Styrol/Butadienkautschuk

BR: Polybutadienkautschuk

NBR: Nitrilkautschuk IIR: Butylkautschuk

HNBR: Hydrierter Nitrilkautschuk

SNBR: Styrol/Butadien/Acrylnitril-Kautschuk

CR: Polychloropren

XSBR: carboxylierter Styrol/Butadien-Kautschuk XNBR: Carboxylierter Butadien/Acrylnitril-Kautschuk

ENR: Epoxydierter Naturkautschuk

ESBR: Epoxydierter Styrol/Butadien-Kautschuk

Unter doppelbindungshaltigen Kautschuken sollen aber auch Kautschuke verstanden werden, die nach DIN/ ISO 1629 M-Kautschuke sind und neben der gesättigten Hauptkette Doppelbindungen in Seitenketten aufweisen. Hierzu

Die schwefelhaltigen Organosiliciumverbindungen (C) haben folgende Grundstrukturen:

5

10

15

20

25

$$R^{1}$$
 R^{2}
 Si
 Q
 Sx
 Q
 Sx
 R^{3}

 R^1 , R^2 und R^3 für Alkoxygruppen mit 1 bis 20 C-Atomen stehen, wobei

Q eine Spacergruppe mit Strukturelementen auf der Basis von aliphatischen, heteroaliphatischen, aromatischen und heteroaromatischen Kohlenstoffketten, mit 1 bis 20 C-Atomen und 1 bis 3 Heteroatomen, wie N, S, O ist und R⁴ eine Gruppe, die sich insbesondere in sogenannten Vulkanisationsbeschleunigern findet, darstellt, beispielsweise:

30 35

40

45

50

wobei R⁵, R⁶ und R⁸ für C₁-C₁₀-Alkyl, C₆-C₁₀-Aryl sowie C₇-C₁₂-Aralkyl stehen und Q die obige Bedeutung hat. 55 Die bevorzugte schwefelhaltige Organosiliciumverbindung ist das nachstehend formelmäßig dargestellte Bis(tri-ethoxy-silyl-propyl-disulfan). Ein derartiges Produkt ist als Si 69 der Fa. Degussa kommerziell verfügbar:

Die erfindungsgemäßen Kautschukmischungen aus agglomeriertem Kautschukgel (A), doppelbindungshaltigem Kautschuk (B) und schwefelhaltiger Organosilicium verbindung (C) können zusätzliche weitere Komponenten wie Füllstoffe

Besonders geeignete Füllstoffe zur Herstellung der erfindungsgemäßen Kautschukmischungen und -vulkanisate sind

- Ruße. Die hierbei zu verwendenden Ruße sind nach dem Flammruß-, Furnace- oder Gasrußverfahren hergestellt und besitzen BET-Oberflächen von 20-200 m²/g wie z. B. SAF-, ISAF-, IISAF-, HAF-, FEF- oder GPF-Ruße.
- hochdisperse Kieselsäure, hergestellt z. B. durch Fällungen von Lösungen von Silikaten oder Flammhydrolyse von Siliciumhalogeniden mit spezifischen Oberflächen von 5-1000, vorzugsweise 20-400 m²/g (BET-Oberfläche) und Primärteilehengrößen von 5-400 nm. Die Kieselsäuren können ggf. auch als Mischoxide mit anderen Metalloxiden, wie Al-, Mg-, Ca-, Ba-, Zn- und Ti-Oxiden vortiegen.

- synthetische Silikate, wie Aluminiumsilikat, Erdalkalisilikat, wie Magnesiumsilikat oder Calciumsilikat mit BET-Oberflächen von 20–400 m 2 /g und Primärteilchendurchmessern von 5–400 nm.

- natürliche Silikate, wie Kaolin und andere natürlich vorkommende Kieselsäuren.
- Metalloxide, wie Zinkoxid, Calciumoxid, Magnesiumoxid, Aluminiumoxid.
- Metallcarbonate, wie Calciumcarbonat, Magnesiumcarbonat, Zinkcarbonat.
- Metallsulfate, wie Calciumsulfat, Bariumsulfat.

5

10

15

60

- Metallhydroxide, wie Aluminiumhydroxid und Magnesiumhydroxid.
- Glasfasern und Glasfaserprodukte (Latten, Stränge oder Mikroglaskugeln).
- Thermoplastfasern (Polyamid, Polyester, Aramid).

Die genannten Füllstoffe können allein oder im Gemisch eingesetzt werden. In einer besonders bevorzugten Ausführung des Verfahrens werden 10-100 Gewichtsteile Kautschukgel (A), ggf. zusammen mit 0,1-100 Gewichtsteilen Ruß und/oder 0,1-100 Gewichtsteilen hellen Füllstoffen, jeweils bezogen auf 100 Gewichtsteile unvernetzten Kautschuks

Die erfindungsgemäßen Kautschukmischungen können weitere Kautschukhilfsmittel enthalten, wie z. B. Vernetzer, Reaktionsbeschleuniger, Alterungsschutzmittel, Wärmestabilisatoren, Lichtschutzmittel, Ozonschutzmittel, Verarbeitungshilfsmittel, Weichmacher, Tackifier, Treibmittel, Farbstoffe, Pigmente, Wachs, Streckmittel, organische Säuren, Verzögerer, Metalloxide, sowie Füllstoffaktivatoren, wie beispielsweise Triethanolamin, Polyethylenglykol, Hexantriol, Bis-(triethoxisilylpropyl)-Tetrasulfid oder anderen, die der Gummiindustrie bekannt sind.

Die Kautschukhilfsmittel werden in üblichen Mengen, die sich u. a. nach dem Verwendungszweck richten, eingesetzt. Übliche Mengen sind z. B. Mengen von 0,1-50 Gewichtsprozent, bezogen auf eingesetzte Mengen an Kautschuk (B). Als übliche Vernetzer können Schwefel, Schwefelspender, Peroxide oder Vernetzungsmittel, wie beispielsweise Diisopropenylbenzol, Divinylbenzol, Divinylether, Divinylsulfon, Diallylphthalat, Triallylcyanurat, Triallylisocyanurat, 1,2-Polybutadien, N,N-m-Phenylenmaleimid und/oder Triallyltrimellitat verwendet werden. Darüber hinaus kommen in Betracht die Acrylate und Metacrylate von mehrwertigen, vorzugsweise 2 bis 4-wertigen C2- bis C10-Alkoholen, wie Ethylenglykol, Propandiol-1,2-butandiol, Hexandiol, Polyethylenglykol mit 2 bis 20, vorzugsweise 2 bis 8 Oxyethyleneinheiten, Neopentylglykol, Bisphenol-A, Glycerin, Trimethlypropan, Pentaerythrit, Sorbit mit ungesättigten Polyestern aus aliphatischen Di- und Polyolen sowie Maleinsäure, Fumarsäure, und/oder Itaconsäure.

Die erfindungsgemäßen Kautschukmischungen können darüber hinaus Vulkanisationsbeschleuniger enthalten. Beispiele für geeignete Vulkanisationsbeschleuniger sind z. B. Mercaptobenzthiazole, -sulfenamide, Guanidine, Thiurame, Dithiocarbamate, Thioharnstoffe und Thiocarbonate sowie Dithiophosphate. Die Vulkanisationsbeschleuniger, Schwefel und Schwefelspender oder Peroxide oder weitere Vernetzungsmittel wie beispielsweise dimeres 2,4-Toluyliden-di-isocyanat (= Desmodur TT) oder 1,4-bis-1-ethoxyhydrochinon (= Vernetzer 30/10) werden in Mengen von 0,1-40 Gewichtsprozent, bevorzugt 0,1-10 Gewichtsprozent, bezogen auf die gesamte Menge an Kautschuk (B) eingesetzt. Die Vulkanisation der erfindungsgemäßen Kautschukmischungen kann bei Temperaturen von 100 bis 250°C, bevorzugt 130 bis 180°C, ggf. unter Druck von 10 bis 200 bar erfolgen.

Die erfindungsgemäßen Mischungen aus agglomeriertem Kautschukgel (A), doppelbindungshaltigem Kautschuk (B) und schwefelhaltiger Organosiliciumverbindung (C) können auf verschiedene Arten hergestellt werden.

Zum einen ist es selbstverständlich möglich, die festen Einzelkomponenten zu mischen. Dafür geeignete Aggregate sind beispielsweise Walze, Innenmischer oder auch Mischextruder. Aber auch das Mischen durch Vereinigen der Latices der unvernetzten oder auch der vernetzen Kautschuke ist möglich. Isolierung der so hergestellten erfindungsgemäßen Mischung kann wie üblich, durch Eindampfen, Ausfällen oder Gefrierkoagulation (vgl. US-PS-2.187.146) erfolgen. Durch Einmischen von Füllstoffen in die Latexmischung und anschließende Aufarbeitung können die erfindungsgemäßen Mischungen direkt als Kautschuk-/Füllstoff-Formulierung erhalten werden. Der Zusatz weiterer Mischungsbestandteile zur Kautschukmischung aus agglomeriertem Kautschukgel (A), unvernetztem Kautschuk (B) und schwefelhaltiger Organosiliciumverbindung (C) wie zusätzlichen Füllstoffen sowie ggf. Kautschukhilfsmitteln erfolgt in üblichen Mischaggregaten, Walzen, Innenmischer oder auch Mischextrudern. Bevorzugte Mischtemperaturen liegen bei 50 bis 180°C.

Die erfindungsgemäßen Kautschukvulkanisate eignen sich zur Herstellung von Formkörpern, z.B. für die Herstellung von Kabelmänteln, Schläuchen, Treibriemen, Förderbändern, Walzenbelägen, Reifen, insbesondere Reifenlaufflächen,

Schuhsohlen, Dichtungsringen und Dämpfungselementen sowie Membranen.

Beispiele

Herstellung der Kautschukgel enthaltenden NR-Masterbatches

Die NR-Masterbatches der Kautschukgele werden ausgehend von Baystal 1357 der Polymer Latex GmbH (früher: Bayer France, Port Jérôme) in folgenden Reaktionsschritten hergestellt:

Vorvernetzung mit Dicumylperoxid Homo-Agglomeration bzw. Coagglomeration mit Kieselsolen Nach- bzw. Vernetzung mit Dicumylperoxid Aufarbeitung als Naturkautschuk-Masterbatch

Für die Vorvernetzung mit Dicumylperoxid (DCP) wird eine Baystal 1357-Latexpartie mit einem Styrolgehalt von 25 Gew.-% auf eine Feststoffkonzentration von 30 Gew.-% verdünnt und in einen Autoklaven gefüllt. DCP wird in fester Form bei Raumtemperatur zugegeben (0,1 phr bezogen auf Festprodukt). Durch Aufheizen des Latex auf 60°C wird das DCP aufgeschmolzen und unter Rühren gut im Latex verteilt. Zur Entfernung von Sauerstoff wird der Reaktorinhalt bei 60°C unter Rühren evakuiert und Stickstoff aufgepresst. Der Evakuierungs/N2-Begasungszyklus wird 3 mal wiederholt. Danach wird der Reaktor auf 150°C aufgeheizt. Um Latexanbackungen beim Aufheizen zu vermeiden, wird darauf geachtet, daß die Differenz zwischen Mantel- und Innentemperatur 10°C nicht übersteigt. Nach dem Aufheizen wird die Innentemperatur 45 Min. bei mindestens 150°C gehalten. Danach wird der Latex abgekühlt und über ein Monodurtuch filtriert. Durch die Vorvernetzung mit DCP wird die Teilchengröße des Latex praktisch nicht beeinflußt (d₁₀ = 53 nm, d₅₀ = 58 nm und d₈₀ = 63 nm). Der Gelgehalt steigt von 75 auf 94 Gew.-% und die Dichte von 0,928 auf 0,935 g/cm³; der Quellungsindex nimmt von 61 auf 17 ab und die Glastemperatur steigt geringfügig von –57 auf –56°C.

Die Homo-Agglomeration der Latices wird in einem Gaulin-Hochdruckhomogenisator, Typ: LAB 100 (A. P. V. Schröder GmbH Lübeck, Mecklenburger Strasse 223) durchgeführt. Für die Agglomeration werden die Latices auf die in den Tabellen aufgeführten Feststoffgehalte verdünnt. Die Agglomeration wird bei Raumtemperatur durchgeführt. Variiert wird der Agglomerationsdruck und die Zahl der Durchgänge durch den Homogenisator, wobei die Latices sowohl im Anlieferungszustand, d. h. ohne DCP-Vorvernetzung als auch nach Vorvernetzung mit 0,1 phr DCP agglomeriert werden

Die Co-Agglomeration der vorvernetzten Latices mit Kieselsolen wird durchgeführt, indem im ersten Schritt die wässrigen Latices mit den wässrigen Kieselsolen in den später angeführten Mengenverhältnissen gemischt und im zweiten 20 Schritt im Hochdruckhomogenisator gemeinsam agglomeriert werden.

Es werden die Kieselsole Levasil 200 und Levasil Versuchsprodukt AC 4055 eingesetzt. Diese Produkte der Bayer AG Leverkusen weisen folgende charakteristische Daten auf:

	Feststoff-	PH-	Dichte	Viskosität	Na ₂ O-	Spez.
	gehalt	Wert	(20°C)	(20°C)	Gehalt	Oberfläche
	[Gew.%]	(20°C)	[g/cm³]	[mPa.s]	[Gew.%]	[m²/g]
Levasil 200	30,1	9,0	1,205	4,61	0,148	203
Levasil	15,5	9,2	1,099	2,53	0,107	432
Versuchs-						
produkt AC 4055						

Die Nachvernetzung mit Dicumylperoxid (DCP) wird wie bei der Vorvernetzung mit DCP beschrieben mit den in den 40 folgenden Tabellen aufgeführten Mengen durchgeführt.

Die Aufarbeitung der als Latex vorliegenden Kautschukgele erfolgt als Masterbatch mit Naturkautschuk. Hierzu werden die wässrigen Disperisonen der Kautschukgele mit Naturkautschuklatex im Verhältnis 50/50 (bezogen auf Feststoff) gemischt und als Festprodukt aus der wässrigen Phase isoliert.

Hierzu werden jeweils 5 kg des so behandelten SBR-Kautschuk-Latex mit einem Feststoffgehalt von 30 Gew.-% in eine Mischung aus 5 kg Naturkautschuklatex mit einem Feststoffgehalt von 30 Gew.-%, 300 g einer 5%igen wäßrigen Harzseifenlösung (Dresinate 731, Hersteller: Hercules) und 150 g einer 10%igen wäßrigen Dispersion des Alterungsschutzmittels Vulkanox 4020 (Hersteller: Bayer AG) eingerührt. Die erhaltene Latexmischung enthält vernetzten Kautschuk und Naturkautschuk im Gewichtsverhältnis 1:1.

Zur Fällung von 3 kg Kautschukmischung werden 10,45 kg der Latexmischung bei 65°C in eine Lösung von 225 g NaCl, 40,8 g Al₂(SO₄)₃ × 18 H₂O, 4,5 g Gelatine in 30 l Wasser eingerührt, wobei der pH-Wert durch Zugabe von 10%iger H₂SO₄ bei 4 gehalten wird. Das Produkt wird gründlich mit Wasser gewaschen und 2 Tage bei 70°C im Vakuum getrocknet.

Man erhält einen Masterbatch bestehend aus 50 Gew.-% SBR-Kautschukgel, das gegebenenfalls auch Kieselsäure enthält, mit 50 Gew.-% Naturkautschuk.

Nachfolgend wird die Herstellung der bei den verschiedenen Mischungsserien eingesetzten Kautschukgele beschrieben. Außerdem sind auch die analytischen Daten dieser Gele in den Tabellen zusammengefasst.

60

55

25

30

35

Gele der Mischungsserie 1)

	Gel-Nr.	Gel (1)	Gel (2)	Gel (3)	Gel (4)
5	Styrol-Gehalt [Gew.%]	22,5	22,5	22,5	22,5
	Vorvernetzung mit DCP [phr]	•	-	•	-
10	Feststoffgehalt [Gew.%]	30	. 20	27,5	30
	Agglomerationsdruck [bar]	-	200	0	200
	Zahl der Durchgänge [n]	-	1	0	1
15	Nachvernetzung mit DCP [phr]	1,0	1,0	1,5	1,5
	D ₁₀ [nm]	53	62	54	64
20	D ₅₀ [nm]	59	405	59	395
	D ₈₀ [nm]	63	798	63	743
25	Dichte der Latexteilchen [g/cm³]	0,962	0,958	0,971	0,973
	Gelgehalt [Gew.%]	96	98	97	98
	Quellungsindex	7,7	6,0	6,4	4,4
30	Glastemperatur [°C]	-38	-39,5	-30,5	-27,5

Gele der Mischungsserie 2)

35					
33	Gel-Nr.	Gel (5)	Gel (6)	Gel (7)	Gel (8)
	Styrol-Gehalt [Gew.%]	24,8	24,8	24,8	24,8
40	Vorvernetzung mit DCP [phr]	-	0,1	0,1	0,1
	Feststoffgehalt [Gew.%]	•	29,7	29,7	29,7
45	PH-Wert	-	9,7	9,7	9,7
•	Agglomerationsdruck [bar]	-	100	100	· 300
	Zahl der Durchgänge [n]	-	1	5	5
50	Nachvernetzung mit DCP [phr]	1,5	1,4	1,4	1,4
	D ₁₀ [nm]	48	57	59	314
55	D ₅₀ [nm]	54	68	68	951

60

5

10

15

20

25

30

40

45

60

65

Gel-Nr.	Gel (5)	Gel (6)	Gel (7)	Gel (8)
D ₈₀ [nm]	58	82	95	1496
Dichte der Latexteilchen [g/cm³]	0,981	0,987	0,980	0,981
Gelgehalt [Gew.%]	99	96	98	98
Quellungsindex	5,5	5,3	5,3	4,5
Glastemperatur [°C]	-23,5	26,5	-25,5	-25

Gele der Mischungsserien 3) und 4)

Gel-Nr.	Gel (9)	Gel (10)	Gel (11)	Gel (12)	Gel (13)	Gel (14)	Gel (15)
Styrol-Gehalt [Gew.%]	22,5	22,5	22,5	22,5	22,5	22,5	22,5
Vorvernetzung mit DCP [phr]	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Kieselsol AC 4055	95/5	90/10	80/20	70/30			
Levasil 200			 		90/10	80/20	70/30
Feststoffkonzentration [Gew.%]	27,5	27,5	25,4	23,5	30,3	30,8	31,6
Agglomerationsdruck [bar]	300	300	300	300	300	300	300
Zahl der Durchgänge [n]	5	5	5	5	5	5	5
Nachvernetzung mit DCP [phr]	1,4	1,4	1,4	1,4	1,4	1,4	1,4
D ₁₀ [nm]		90	 	 		1	
D50 [nm]		791					1
D ₈₀ [nm]		1606	 		 		
Aschegehalt des kieselsäurehaltigen	5,0	9,6	19,5	28,6	10,1	19,6	28,9
Gels [Gew.%]							
Aschegehalt des 50%igen	2,6	5,4	10	15,2	5,2	10,1	14,9
NR-Masterbatch [Gew.%]							ļ

Compoundherstellung, Vulkanisation und Eigenschaften der Vulkanisate

In der 1. Mischungsserie werden die Eigenschaften gelhaltiger Vulkanisate verglichen. Für den Vergleich werden nichtagglomerierte und agglomerierte SBR-Gele eingesetzt. Die Gele sind jeweils mit 1,0 und mit 1,5 phr DCP vernetzt und haben keine Struktur.

In der 2. Mischungsserie wird der Einfluß der unter verschiedenen Agglomerationsbedingungen erhaltenen agglomerierten Gelen mit Struktur auf die Vulkanisateigenschaften demonstriert.

In der 3. Mischungsserie wird der Einfluß von mit Kieselsäuren coagglomerierten SBR-Kautschukgelen auf die Vulkanisateigenschaften demonstriert, wobei bei der Compoundherstellung kein Kieselsäureaktivator eingesetzt wird.

In der 4. Mischungsserie wird der Einfluß von mit Kieselsäuren coagglomerierten SBR-Kautschukgelen auf die Vulkanisateigenschaften demonstriert, wobei bei der Compoundherstellung als Kieselsäureaktivator Si69 eingesetzt wird. Für die Mischungsherstellung der Mischungsserien 1)-3) werden die in den nachfolgenden Tabellen aufgeführten Mischungsbestandteile in der angegebenen Reihenfolge in einem Laborinnenmischer gemischt, wobei das Gel als 50%iger

NR-Masterbatch zusammen mit einem Teil des Naturkautschuks eingearbeitet wird:
Nach dem Mischen werden die Compoundviskositäten bei 100°C (ML 1+4/100°C) und in der 3. Mischungsserie zu-

sätzlich die Mooneyrelaxation bestimmt:
Die Vulkansiationsgeschwindigkeiten der Mischungen werden in einem Rheometerexperiment bei 160°C untersucht.
Auf diese Weise werden charakteristische Heizzeiten wie z. B. t₉₅ bestimmt. Für die Herstellung der Vulkanisate wird als Vulkansiationszeit t₉₅₊₅ gewählt. Die Vulkanisation wird bei 160°C durchgeführt.

Auf der Basis der nachfolgen aufgeführten Mischungen werden die nachfolgend zusammengestellten Prüfergebnisse erhalten.

1. Mischungsserie

	•				
	Mischungs-Nr.:	1	2	3	4
5	TSR 5, Defo 700	25	25	25	25
	Gel (1)/ NR-Masterbatch (50/50)	150			
10	Gel (2)/NR-Masterbatch (50/50)		150		
	Gel (3)/NR-Masterbatch (50/50)			150	
	Gel (4)/NR-Masterbatch (50/50)				150
15	Renopal 450	3	3	3	3
	Antilux 654	1,5	1,5	1,5	1,5
20	Stearinsäure	3	3	3	3
	Zinkoxid	3	3	3	3
25	Vulkanox 4010 NA	1	1	1	1
	Vulkanox HS	1	1	1	1
	Schwefel	1,6	1,6	1,6	1,6
30	Vulkacit NZ	1	1	1	1
			I		_
35	Mischungs-Nr.:	1	2	3	4
	ML 1+4/100°C [ME]	46	39	45	41
40		<u> </u>	L.,	<u> </u>	
40	Mischungs-Nr.:	1	2 .	3	4
	Vulkanisationszeit [min]	16,4	20	15,6	17,7
45		1		l <u></u> .	
50	Mischungs-Nr.:	1	2	3	4
	Zugfestigkeit [MPa]	20,5	17,1	21,4	20,1
	Bruchdehnung [%]	521	550	520	529
55	Spannungswert bei 100 % Dehnung [MPa]	1,3	1,1	1,5	1,8
	Spannungswert bei 300 % Dehnung [MPa]	5,3	6,9	6,9	9,2
60		•		<u></u>	

Mischungs-Nr.:	l	2	3	4
Härte Shore A, 23 °C	49	47	52	55
Härte Shore A, 70 °C	46	46	48	51
Rückprallelastizität, 23 °C (E ₂₃) [%]	55	60	50	54
Rückprallelastizität, 70 °C (E ₇₀) [%]	69	73	66	70
Abrieb/40 DIN 53516 [mm3]	861	437	392	333
E ₇₀ -E ₂₃ [%]	14	13	16	16
S ₃₀₀ x F	2.761	3.795	3.588	4.867
2. Mischun	gsserie			
Mischungs-Nr.:	5	6	7	8
TSR 5, Defo 700	25	25	25	25
Gel (5)/ NR-Masterbatch (50/50)	150			
Gel (6)/NR-Masterbatch (50/50)		150		
Gel (7)/NR-Masterbatch (50/50)			150	
Gel (8)/NR-Masterbatch (50/50)				150
Antilux 654	1,5	1,5	1,5	1,5
Stearinsäure	3	3	3	3
Zinkoxid	3	3	3	3
Vulkanox 4010 NA	1	1	1	1
Vulkanox HS	1	1	1	1
Schwefel	1	1	1	1
Vulkacit NZ	2	2	2	2
Vulkacit D	0,5	0,5	0,5	0,5
Mischungs-Nr.:	5	6	7	8

ML 1+4/100°C [ME]

Mischungs-Nr.:	5	6	7	8
Vulkanisationszeit [min]	20	20	20	20

Mischungs-Nr.: 5 6 7	8
10 Zugfastigkeit [MPa] 22.8 22.4 22.3	191
Tugfestigkeit [MPa] 22,8 22,4 22,3	12,1
Bruchdehnung [%] 560 540 535	585
Spannungswert bei 100 % Dehnung [MPa] 1,6 1,6 1,6	2,2
Spannungswert bei 300 % Dehnung [MPa] 7,0 7,7 8,0	10,3
Härte Shore A, 23 °C 55 56 54	59
Härte Shore A, 70 °C 50 50 50	55
Rückprallelastizität, 23 °C [%] 36 37 37	39
Rückprallelastizität, 70 °C [%] 63 63 67	68
Abrieb/40 DIN 53516 [mm3] 253 223 198	226
$E_{70}-E_{23}$ [%] 27 26 30	29
S ₃₀₀ x D 3.920 4.158 4.280	6.026

3. Mischungsserie

Mischungs-Nr.:	9	10	11	12	13	14	15
TSR 5, Defo 700	25	25	25	25	25	25	25
Gel (9)/ NR-Masterbatch (50/50)	150						
Gel (10)/NR-Masterbatch (50/50)		150					1
Gel (11)/NR-Masterbatch (50/50)			150				1
Gel (12)/NR-Masterbatch (50/50)				150	Ī.	T	
Gel (13)/NR-Masterbatch (50/50)	 		1		150		
Gel (14)/NR-Masterbatch (50/50)		1		1		150	
Gel (15)/NR-Masterbatch (50/50)			<u> </u>				150
Antilux 654	1,5	1,5	1,5	1,5	1,5	1,5	1,5
Stearinsäure	3	3	3	3	3	3	3
Zinkoxid	3	3	3	3	3	3	3

Mischungs-Nr.:	9	10	11	12	13	14	15
Vulkanox 4010 NA	1	1	1	1	ī	1	ī
Vulkanox HS	1	1	1	1	1	l	1
Schwefel	1,6	1,6	1,6	1,6	1,6	1,6	1,6
Vulkacit NZ	1	1	1	1	-1	1	1
Vulkacit D	0,5	0,5	0,5	0,5	0,5	0,5	0,5 .

ι5

Mischungs-Nr.:	9	10	11	12	13	14	15
ML 1+4/100°C [ME]	54	41,2	56,2	56,1	45,5	51,7	51,0
MR 30 [%]	2,2	3,6	5,0	5,9	2,6	3,9	3,8

__

Mischungs-Nr.:	9	10	11	12	13	14	15
Vulkanisationszeit t 95+5 [min]	18	15,7	16,7	15,9	16,8	14,3	14,9

Mischungs-Nr.:	9	10	11	12	13	14	15
Zugfestigkeit [MPa]	21,6	19,6	22,1	25,1	19,6	21,3	22,8
Bruchdehnung [%]	500	620	570	645	535	525	555
Spannungswert bei 100 % Dehnung [MPa]	2,1	1,6	1,9	1,6	1,4	1,8	1,9
Spannungswert bei 300 % Dehnung [MPa]	11,2	7,6	8,7	7,2	8,5	9,3	9,2
Härte Shore A, 23 °C	59	58 ·	63	64	54	57	62
Härte Shore A, 70 °C	54	54	55	54	52	54	55
Rückprallelastizität, 23 °C [%]	46	45	38	34	48	47	43
Rückprallelastizität, 70 °C [%]	64	68	57	51	70	68	62
Abrieb/40 DIN 53516 [mm3]	201	258	205	230	254	248	214
Abrieb/60 DIN 53516 [mm3]	131	202	172	203	239	236	194
E ₇₀ -E ₂₁ [%]	18	23	19	17	22	21	19
S ₃₀₀ x D [Mpa x %]	5.600	4.712	4.959	4.644	4.548	4.883	5.106

4. Mischungsserie

Hierzu werden in einem Laborinnenmischer gemäß nachfolgender Rezepturen die Mischungskomponenten in der angegebenen Reihenfolge 4 Min. bei 140°C gemischt:

	Mischungs-Nr.:	16	17	18	19	20
5	TSR 5, Defo 700	25	25	25	25	25
	Gel (11)/NR-Masterbatch (50/50)	150				
	Gel (12)/NR-Masterbatch (50/50)		150			
10	Gel (13)/NR-Masterbatch (50/50)		1	150		
	Gel (14)/NR-Masterbatch (50/50)				150	
15	Gel (15)/NR-Masterbatch (50/50)				1	150
	Antilux 654	1,5	1,5	1,5	1,5	1,5
20	Stearinsäure	3	3	3	3	3
20	Zinkoxid	3	3	3	3	3
	Vulkanox 4010 NA	1	1	1	1	1
25	Vulkanox HS	1	1	ī	1	1
	Si 69	6	6	6	6	6

Nach dem Ausstoßen aus dem Innenmischer werden Schwefel und Beschleuniger auf einer auf 40°C vorgeheizten Walze zugemischt, wobei die Mischguttemperatur am Ende der Mischzeit ca. 70°C beträgt.

35	Mischungs-Nr.	16	17	18	19	20
33	Schwefel	1	1	1	1	1
	Vulkacit NZ	2	2	2	2	2
40	Vulkacit D	0,5	0,5	0,5	0,5	0,5

Nach dem Mischen werden die Compoundviskositäten bei 100°C ML 1+4 und die Mooneyrelaxation bestimmt:

45	Mischungs-Nr.:	16	17	18	19	20
	ML 1+4/100°C [ME]	39,2	43,2	39,5	40,5	41,1
50	MR 30 [%]	4,3	4,4	3,8	3,8	5,1

Die Vulkansiationsgeschwindigkeiten der Mischungen werden in einem Rheometerexperiment bei 160°C untersucht. Auf diese Weise werden charakteristische Heizzeiten wie z. B. t95 bestimmt. Für die Herstellung der Vulkanisate wird als Vulkanisationszeit 195+5 gewählt:

55	Mischungs-Nr.:	16	17	18	19	20
	Vulkanisationszeit t 95+5 [min]	20,5	22,3	18,5	17,7	18,5

Auf der Basis o. g. Compounds werden folgende Prüfergebnisse erhalten:

60

Mischungs-Nr.:	16	17	18	19	20	
Zugfestigkeit [MPa]	21,2	23,2	16,6	19,6	20,8	S
Bruchdehnung [%]	420	438	395	455	428	
Spannungswert bei 100 % Dehnung [MPa]	3,2	3,3	2,2	2,7	3,1	
Spannungswert bei 300 % Dehnung [MPa]	14,5	14,5	12,2	12,7	14,1	10
Härte Shore A, 23 °C	71	72	59	64	70	
Härte Shore A, 70 °C	65	66	58	60	64	15
Rückprallelastizität, 23 °C [%]	42	38	51	49	46	
Rückprallelastizität, 70 °C [%]	61	58	73	70	64	
Abrieb/40 DIN 53516 [mm3]	244	207	322	253	201	20
Abrieb/60 DIN 53516 [mm3]	133	119	186	146	131	
	I	<u></u> _	<u> </u>	<u> </u>	<u> </u>	25
Mischungs-Nr.:	16	17	18	19	20	
E ₇₀ -E ₂₃ [%]	19	20	22	21	18	
S ₃₀₀ x D [Mpa x %]	6.090	6.351	4.819	5.779	6.035	30

Patentansprüche

35

1. Kautschukmischungen enthaltend mindestens ein gegebenenfalls anorganische Füllstoffe enthaltendes agglomeriertes Kautschukgel (A), mindestens einen doppelbindungshaltigen Kautschuk (B) und mindestens eine schwefelhaltige Organosiliciumverbindungen (C), wobei der Anteil an doppelbindungshaltigem Kautschuk (B) 100 Gew.-Teile, der Anteil an Kautschukgel (A) 1 bis 150 Gew.-Teile und der Anteil an siliciumorganischer Schwefelverbindung (C) 0,2 bis 20 beträgt, sowie weiteren Kautschukhilfsmitteln und gegebenenfalls weiteren Füllstoffen.

2. Mischungen nach Anspruch 1, dadurch gekennzeichnet, daß das agglomerierte Kautschukgel aus BR-, NR-, NBR-, CR- oder SBR-Mikrogelen besteht.

3. Agglomerierte Kautschukgele mit Teilchendurchmessern von 5 bis 5000 nm, die gegebenenfalls anorganische Füllstoffe enthalten.

4. Agglomerierte Kautschukgele nach Anspruch 3 mit einer Teilchengrößenverteilung, dadurch gekennzeichnet, daß die Differenz von d_{80} - d_{10} Werte größer 25 nm ist.

5. Agglomerierte Kautschukgele nach Ansprüchen 3 und 4, dadurch gekennzeichnet, daß sie aufgrund ihrer Vernetzung unlöslich und in Toluol quellbar sind, wobei die Quellungsindizes der Mikrogele (Q_i) in Toluol im Bereich von 1 bis 15 liegen.

6. Verwendung der Kautschukmischungen nach Anspruch 1 zur Herstellung von Gummiartikeln, insbesondere von dynamisch belasteten Artikeln, wie Reifenbauteile, Dämpfungselemente, Riemen und Transportbänder.

55

45

60

- Leerseite -

Janie 199,39,865 Le A 33 810

5

10

15

20

25

- 1 -

Rubber mixtures and vulcanates containing agglomerated rubber gels

The invention relates to agglomerated rubber gels, to rubber mixtures produced therefrom and to the use thereof. The vulcanates containing agglomerated rubber gels are distinguished, in comparison with compounds that contain the corresponding non-agglomerated gels, by improved mechanical properties with an at least equivalent damping behaviour. In particular, rubber mixtures containing "structured" rubber gels, as well as compounds based on silica-containing agglomerated rubber gels which have been activated by sulfur-containing silicon compounds, exhibit especially advantageous mechanical properties.

The use of microgels in rubber compounds is described in the following patent applications and patents: EP-A 405216, DE-A 4220563, GB-B 1078400 and LeA 32 158, EP 432 405 and EP 432 417. Patents/patent applications EP-A 405 216, DE-A 4220 563 and GB-B 1078400 claim the use of CR, BR and NR microgels for mixtures with double-bond-containing rubbers and for the production of the corresponding vulcanates. The vulcanates are suitable especially for the production of tyre treads, since they exhibit a high rebound resilience at 70°C and hence low rolling resistance, and a low rebound resilience at 23°C and hence a high wet-skid resistance. In particular, the large difference between the rebound resilience at 70°C and that at 23°C is characteristic of vulcanates containing microgels. For industrial use in tyre treads, however, the mechanical properties of microgel-containing vulcanates are inadequate. Deficiencies exist especially in the level of mechanical vulcanate properties. There is a need to improve the product from ... of tensile stress at 300% elongation and elongation at tear as well as the abrasion resistance.

Sulfur-containing organosilicon compounds play a particular part in the activation of silica-containing rubber mixtures. The following patent specifications are mentioned by way of examples: US 3.873.489 of 25.05.1975 (Degussa), US 4.709.065 of

5

10

15

20

25

24.11.1987 (Shin-Etsu) and US 5.227.425 of 13.07.1993 (Michelin), LeA 30206 of 02.03.1994, LeA 31169 of 27.06.1995, LeA 32283 of 10.03.1997.

Those patents do not teach the improvement of the mechanical properties of vulcanates based on rubber gels by the use of agglomerated rubber gels or rubber gels co-agglomerated with inorganic fillers, such as silica.

The technical object was, therefore, to improve the level of mechanical values (tensile stress (300% x elongation at tear) as well as the abrasion resistance of microgel-containing rubber vulcanates, without impairing the difference between the rebound resilience at 70°C and at 23°C.

It has now been found that it is possible to improve the reinforcing effect of rubber gels in vulcanates if the rubber gels are used in agglomerated form. The reinforcing effect of the agglomerated rubber gels is especially pronounced if the particles are unable to assume the thermodynamically most advantageous spherical form after the agglomeration, that is to say if the agglomerated particles have a certain structure. In particular, the use of rubber gels co-agglomerated with inorganic fillers, such as silica, is especially advantageous. The reinforcing effect of the silica-containing rubber gels is improved further because a sulfur-containing organosilicon compound is additionally used in the compounding.

Accordingly, the invention provides rubber mixtures containing at least one agglomerated rubber gel (A), at least one double-bond-containing rubber (B), and at least one sulfur-containing organosilicon compound (C), the amount of double-bond-containing rubber (B) being 100 parts by weight, the amount of rubber gel (A) being from 1 to 150 parts by weight, preferably from 10 to 100 parts by weight, and the amount of organosilicon sulfur compound (C) being from 0.2 to 20 parts by weight, preferably from 1 to 10 parts by weight, as well as further rubber auxiliary substances and, optionally, further fillers.

Agglomerated rubber gels (A) are to be understood as being rubber gels having particle diameters of from 5 to 5000 nm. They have a broad particle size distribution, characterised by the difference between the d_{80} and d_{10} values, which is greater than 25 nm. The characteristic diameters d_{10} and d_{80} are the diameters below which 10 wt.% and 80 wt.%, respectively, of the particles lie. The particle size distributions are determined by means of ultracentrifugation according to H. Lange, "Schnelle Dichtegradientenzentrifugation dispergierter Teilchen", Colloid & Polymer Sci. 258, 1077-1085 (1980) or H.G. Müller, "Automated determination of particle-size distributions of dispersions by analytical ultracentrifugation", Colloid & Polymer Science 267: 113-116 (1989).

In cases where the agglomerated particles are not in spherical form after the agglomeration and have "structure", that can be identified by suitable methods, for example by electron microscopy.

15

20

25

10

5

Owing to their crosslinking, the rubber gels are insoluble and are swellable in suitable swelling agents, such as toluene. The swelling indices of the microgels (Q_i) in toluene are from 1 to 15, preferably from 1 to 10. The swelling index is calculated from the weight of the gel containing solvent (after centrifugation at 20,000 rpm) and the weight of the dry gel:

Q_i = wet weight of the gel/dry weight of the gel.

In order to determine the swelling index, 250 mg of gel, for example, are allowed to swell in 25 ml of toluene for 24 hours, with shaking. The gel is removed by centrifugation and weighed and is then dried at 70°C until a constant weight is reached and then weighed again.

The agglomerated rubber gels may also contain inorganic fillers, especially silica, in amounts of approximately from 3 to 80 wt.%, preferably from 5 to 50 wt.%, rubber

gels containing fillers having lower swelling indices owing to their filler content. If, in those cases, the swelling indices are related to the pure rubber component of the gel containing filler, then they are within the range indicated above.

5 For the production of the rubber gels there are used especially the following rubbers:

BR:

polybutadiene,

ABR:

butadiene/acrylic acid C₁-C₄-alkyl ester copolymers,

IR:

polyisoprene,

SBR:

styrene-butadiene copolymers having styrene contents of from 1 to 60

10

15

wt.%, preferably from 2 to 50 wt.%,

X-SBR:

carboxylated styrene-butadiene copolymers,

FKM:

fluorine rubber,

ACM:

acrylate rubber,

NBR:

polybutadiene-acrylonitrile copolymers having acrylonitrile contents

of from 5 to 60 wt.%, preferably from 10 to 50 wt.%,

X-NBR:

carboxylated nitrile rubbers,

CR:

polychloroprene,

IIR:

isobutylene/isoprene copolymers having isoprene contents of from 0.5

to 10 wt.%,

20 BIIR:

brominated isobutylene/isoprene copolymers having bromine contents

of from 0.1 to 10 wt.%,

CIIR:

chlorinated isobutylene/isoprene copolymers having chlorine contents

of from 0.1 to 10 wt.%,

HNBR:

partially and completely hydrogenated nitrile rubbers,

25 EPDM:

ethylene-propylene-diene copolymers,

EAM:

ethylene/acrylate copolymers,

EVM:

ethylene/vinyl acetate copolymers,

ECO:

epichlorohydrin rubber,

Q:

silicone rubbers,

30 AU:

polyester urethane polymers,

EU:

15

20

25

30

polyether urethane polymers,

ENR:

epoxidised natural rubber

or mixtures thereof.

Preparation of the uncrosslinked rubber starting materials is carried out by the following methods:

- 1. emulsion polymerisation,
- 2. solution polymerisation of rubbers which are not obtainable by variant 1,
- in addition, naturally occurring latexes, such as, for example, natural rubber latex, can be used.

In the preparation of microgels by emulsion polymerisation, the following radically polymerisable monomers are used: butadiene, styrene, acrylonitrile, isoprene, esters of acrylic and methacrylic acid, tetrafluoroethylene, vinylidene fluoride, hexafluoropropene, 2-chlorobutadiene, 2,3-dichlorobutadiene, as well as double-bondcontaining carboxylic acids, such as, for example, acrylic acid, methacrylic acid, maleic acid, itaconic acid, etc., double-bond-containing hydroxy compounds, such as, for example, hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxybutyl methacrylate, etc., or double-bond-containing epoxides, such as, for example, glycidyl methacrylate or glycidyl acrylate. Crosslinking of the rubber gel can be achieved directly during the emulsion polymerisation by copolymerisation with multifunctional compounds having a crosslinking action. Preferred multifunctional comonomers are compounds having at least two, preferably from 2 to 4, copolymerisable C=C double bonds, such as diisopropenylbenzene, divinylbenzene, divinyl ether, divinylsulfone, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, 1,2-polybutadiene, N,N'-m-phenylene maleimide, 2,4-toluylene bis-(maleimide) and/or triallyl trimellitate. The acrylates and methacrylates of polyhydric, preferably di- to tetra-hydric, C2 to C10 alcohols, such as ethylene glycol, propanediol-1,2-butanediol, hexanediol, polyethylene glycol having from 2 to 20,

preferably from 2 to 8, oxyethylene units, neopentyl glycol, bisphenol A, glycerol, trimethylolpropane, pentaerythritol, sorbitol with unsaturated polyesters of aliphatic diols and polyols, as well as maleic acid, fumaric acid and/or itaconic acid may also be considered.

5

Crosslinking to rubber gels during the emulsion polymerisation can also be carried out by continuing the polymerisation up to high conversions or in the monomer supply process by polymerisation with high internal conversions. Another possibility consists in carrying out the emulsion polymerisation in the absence of regulators.

10

For the preparation of highly and/or slightly crosslinked polymers following the emulsion polymerisation, it is best to use the latexes that are obtained in the emulsion polymerisation. Natural rubber latexes can also be crosslinked in this manner. The method can also be applied to aqueous polymer dispersions, which are obtainable by recrystallising the rubbers from organic solutions. In principle, that method can also be used in the case of non-aqueous polymer dispersions.

20

25

15

Chemicals having a suitable crosslinking action are, for example, organic peroxides, such as dicumyl peroxide, tert.-butylcumyl peroxide, bis-(tert.-butyl-peroxyisopropyl)benzene, di-tert.-butyl peroxide, 2,5-dimethylhexane 2,5-dihydroperoxide, 3,2,5-dihydroperoxide, dibenzoyl peroxide. bis-(2,4-2.5-dimethylhexyne dichlorobenzoyl) peroxide, tert.-butyl perbenzoate, as well as organic azo compounds, such as azo-bis-isobutyronitrile and azo-bis-cyclohexanenitrile, as well as di- and poly-mercapto compounds, such as dimercaptoethane, 1,6-dimercaptohexane, 1,3,5-trimercaptotriazine and mercapto-terminated polysulfide rubbers, such as mercapto-terminated reaction products of bis-chloroethylformal with sodium polysulfide. The optimum temperature for carrying out the aftercrosslinking is naturally dependent on the reactivity of the crosslinking agent and can be carried out at temperatures from room temperature to approximately 180°C, optionally under elevated pressure (see in this connection Houben-Weyl, Methoden 5

10

15

20

der organischen Chemie, 4th edition, Volume 14/2, page 848). Especially preferred crosslinking agents are peroxides.

The crosslinking of rubbers containing C=C double bonds to microgels can also be carried out in dispersion or emulsion with the simultaneous partial, optionally complete, hydrogenation of the C=C double bond by hydrazine, as described in US 5,302,696 or US 5,442,009, or optionally other hydrogenating agents, for example organometal hydride complexes.

Rubbers produced by solution polymerisation may also be used as starting materials for the production of the microgels. In those cases, the solutions of those rubbers in suitable organic solutions are used as starting materials. The desired sizes of the microgels are produced by mixing the rubber solution in a liquid medium, preferably in water, optionally with the addition of suitable surface-active auxiliary substances, such as, for example, surfactants, by means of suitable apparatuses, so that a dispersion of the rubber in the appropriate particle size range is obtained. For crosslinking the dispersed solution rubbers, the procedure is as described above for the subsequent crosslinking of emulsion polymers. The compounds mentioned above are suitable as crosslinking agents, it being possible for the solvent used for the preparation of the dispersion optionally to be removed, for example by distillation, before the crosslinking.

Agglomeration of the rubber latexes or of the rubber gels can be carried out in various ways. Chemical and physical methods of agglomeration are suitable in principle (W. Obrecht in Ullmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1993, Vol. A23, Rubber, 3. Synthetic, p. 263).

If the agglomeration of uncrosslinked or slightly crosslinked rubber latexes is carried out, they assume the thermodynamically most advantageous spherical form after the

agglomeration. If rubber gels that have been crosslinked to a greater extent (precrosslinking) are used in the agglomeration, which gels are unable to assume a spherical form in the agglomerated state owing to their pre-crosslinking, agglomerated rubber gels with structure are obtained. For the production of agglomerated gels with structure, it has proved advantageous to use pre-crosslinked gels as the starting material, to carry out an agglomeration and to carry out a further crosslinking (after-crosslinking) after the agglomeration. The methods described above are suitable for the pre- and after-crosslinking of the rubber gels.

For the preparation of rubber gels containing fillers there are advantageously used as starting materials uncrosslinked or pre-crosslinked rubber latexes, which are mixed with an aqueous dispersion of the inorganic filler, and the rubber is agglomerated in the presence of the inorganic filler. After the co-agglomeration, further crosslinking of the rubber component (after-crosslinking) is advantageously carried out. The inorganic filler and the rubber gel are fixed physically/chemically by means of the co-agglomeration/after-crosslinking, so that in the subsequent isolation of the co-agglomerate from the aqueous phase, virtually no losses occur especially in the case of finely divided inorganic components having specific surface areas greater than $100 \text{ m}^2/\text{g}$. That can be verified with the aid of the ash contents of the rubber gels.

20

5

10

15

The following inorganic fillers, for example, are suitable for the preparation of rubber gels containing fillers: carbon black, silica, calcium carbonate, magnesium carbonate, dolomite, barium sulfate, aluminium silicates, aluminium oxide and/or zinc oxide, preferably silica.

25

The dispersions of the inorganic fillers in water are prepared either by fine distribution (grinding) in the presence of suitable surfactants, or by precipitation in the presence of suitable auxiliary substances, such as anionic or cationic surfactants.

The following aqueous dispersions of inorganic fillers, for example, are available commercially: aqueous pigment carbon black dispersions from Degussa "Derussol®" (inorganic industrial products division, D-60287 Frankfurt) and aqueous silica dispersions "Levasil®" from Bayer AG, D-5090 Leverkusen.

5

The co-agglomerated rubber gels contain inorganic fillers in amounts of from 3 to 80 wt.%.

Double-bond-containing rubber (B) is to be understood as meaning rubbers which are designated R rubbers according to DIN/ISO 1629. Those rubbers have a double bond in the main chain. They include, for example:

NR:

natural rubber

SBR:

styrene/butadiene rubber

BR:

polybutadiene rubber

15 NBR:

nitrile rubber

IIR:

butyl rubber

HNBR:

hydrogenated nitrile rubber

SNBR:

styrene/butadiene/acrylonitrile rubber

CR:

polychloroprene

20 XSBR:

carboxylated styrene/butadiene rubber

XNBR:

carboxylated butadiene/acrylonitrile rubber

ENR:

epoxidised natural rubber

ESBR:

epoxidised styrene/butadiene rubber

Double-bond-containing rubbers are, however, also to be understood as being rubbers that are M rubbers according to DIN/ISO 1629 and contain double bonds in side chains in addition to the saturated main chain. They include, for example, EPDM.

The sulfur-containing organosilicon compounds (C) have the following basic structures:

5

10

$$R^{1}$$
 R^{2}
 Si
 Q
 Sx
 Q
 R^{2}
, wherein

R¹, R² and R³ represent alkoxy groups having from 1 to 20 carbon atoms,

represents integers from 2 to 8, X

15

- is a spacer group having structural elements based on aliphatic, Q heteroaliphatic, aromatic and heteroaromatic hydrocarbon chains, having from 1 to 20 carbon atoms and from 1 to 3 hetero atoms, such as N, S, O, and
- represents a group that is found especially in so-called vulcanisation R^4 20 accelerators, for example:

wherein R⁵, R⁶ and R⁸ represent C₁-C
as defined above.

212-aralkyl and Q is

The preferred sulfur-containing organosilicon compound is bis(tri-ethoxy-silyl-propyl-disulfane), which is shown in the formula below. Such a product is available commercially as Si 69 from Degussa:

The rubber mixtures according to the invention of agglomerated rubber gel (A), double-bond-containing rubber (B) and sulfur-containing organosilicon compound (C) may contain additional further components such as fillers.

Especially suitable fillers for the preparation of the rubber mixtures and vulcanates according to the invention are

25

- carbon blacks. The carbon blacks to be used in this connection are prepared by the flame carbon black, furnace or gas carbon black process and have BET surface areas of from 20 to 200 m²/g, such as, for example: SAF, ISAF, IISAF, HAF, FEF or GPF carbon blacks.

5

10

15

- highly dispersed silica, prepared, for example, by the precipitation of solutions of silicates or the flame hydrolysis of silicon halides having specific surface areas of from 5 to 1000 m²/g, preferably from 20 to 400 m²/g (BET surface area) and primary particle sizes of from 5 to 400 nm. The silicas may optionally also be present in the form of mixed oxides with other metal oxides, such as Al, Mg, Ca, Ba, Zn and Ti oxides.
- synthetic silicates, such as aluminium silicate, alkaline earth metal silicate, such as magnesium silicate or calcium silicate, having BET surface areas of from 20 to 400 m²/g and primary particle diameters of from 5 to 400 nm.
- natural silicates, such as kaolin and other naturally occurring silicas.
- metal oxides, such as zinc oxide, calcium oxide, magnesium oxide, aluminium oxide.
 - metal carbonates, such as calcium carbonate, magnesium carbonate, zinc carbonate.
 - metal sulfates, such as calcium sulfate, barium sulfate.

25

- metal hydroxides, such as aluminium hydroxide and magnesium hydroxide.
- glass fibres and glass fibre products (laths, threads or glass microspheres).
- thermoplastic fibres (polyamide, polyester, aramid).

5

10

15

20

25

The mentioned fillers may be used alone or in the form of mixtures. In an especially preferred form of the process, from 10 to 100 parts by weight of rubber gel (A), optionally together with from 0.1 to 100 parts by weight of carbon black and/or from 0.1 to 100 parts by weight of light fillers, in each case based on 100 parts by weight of uncrosslinked rubber, are used.

The rubber mixtures according to the invention may contain further rubber auxiliary substances, such as, for example, crosslinking agents, reaction accelerators, antiageing agents, heat stabilisers, light stabilisers, anti-oxidants, processing auxiliaries, plasticisers, tackifiers, blowing agents, colourings, pigments, wax, extenders, organic acids, retarding agents, metal oxides, as well as filler activators, such as, for example, triethanolamine, polyethylene glycol, hexanetriol, bis-(triethoxysilylpropyl) tetrasulfide or others which are known in the rubber industry.

The rubber auxiliary substances are used in conventional amounts, which are dependent, *inter alia*, on the intended use. Conventional amounts are, for example, amounts of from 0.1 to 50 wt.%, based on the amounts of rubber (B) used.

There may be used as conventional crosslinking agents sulfur, sulfur donors, peroxides or crosslinking agents such as, for example, diisopropenylbenzene, divinylbenzene, divinyl ether, divinylsulfone, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, 1,2-polybutadiene, N,N'-m-phenylene maleimide and/or triallyl trimellitate. The acrylates and methacrylates of polyhydric, preferably di- to tetrahydric, C₂ to C₁₀ alcohols, such as ethylene glycol, propanediol-1,2-butanediol. hexanediol, polyethylene glycol having from 2 to 20, preferably from 2 to 8, oxyethylene units, neopentyl glycol, bisphenol A, glycerol, trimethylolpropane, pentaerythritol, sorbitol with unsaturated polyesters of aliphatic diols and polyols as well as maleic acid, fumaric acid and/or itaconic acid may also be considered.

5

10

15

20

The rubber mixtures according to the invention may also contain vulcanisation of suitable vulcanisation accelerators Examples accelerators. mercaptobenzothiazoles, -sulfenamides, guanidines, thiurams, dithiocarbamates, thioureas and thiocarbonates, as well as dithiophosphates. The vulcanisation accelerators, sulfur and sulfur donors or peroxides or other crosslinking agents, such as, for example, dimeric 2,4-toluylidene diisocyanate (= Desmodur TT) or 1,4-bis-1ethoxyhydroquinone (= crosslinking agent 30/10), are used in amounts of from 0.1 to 40 wt.%, preferably from 0.1 to 10 wt.%, based on the total amount of rubber (B). Vulcanisation of the rubber mixtures according to the invention may be carried out at temperatures of from 100 to 250°C, preferably from 130 to 180°C, optionally under a pressure of from 10 to 200 bar.

The mixtures according to the invention of agglomerated rubber gel (A), double-bond-containing rubber (B) and sulfur-containing organosilicon compound (C) can be prepared in various ways.

On the one hand, it is, of course, possible to mix the individual solid components. Apparatuses suitable therefor are, for example, rollers, kneaders or mixing extruders. Mixing by combining the latexes of the uncrosslinked or of the crosslinked rubbers is, however, also possible. The mixture according to the invention so prepared can be isolated in the conventional manner, by concentration by evaporation, precipitation or freeze-coagulation (see US-A-2.187.146). By mixing fillers into the latex mixture and subsequently working up, the mixtures according to the invention can be obtained directly as a rubber/filler formulation. The addition of further components to the rubber mixture of agglomerated rubber gel (A), uncrosslinked rubber (B) and sulfur-containing organosilicon compound (C), such as additional fillers and, optionally, rubber auxiliary substances, is carried out in conventional mixing apparatuses, rollers, kneaders or mixing extruders. Preferred mixing temperatures are from 50 to 180°C.

The rubber vulcanates according to the invention are suitable for the production of moulded bodies, for example for the production of cable coverings, hoses, drive belts, conveyor belts, roller coatings, tyres, especially tyre treads, shoe soles, gaskets and damping elements, as well as membranes.

Examples

Production of the NR masterbatches containing rubber gel

The NR masterbatches of the rubber gels are produced starting from Baystal 1357 from Polymer Latex GmbH (formerly: Bayer France, Port Jérôme) in the following reaction steps:

10

15

20

25

pre-crosslinking with dicumyl peroxide
homo-agglomeration or co-agglomeration with silica sols
after-crosslinking or crosslinking with dicumyl peroxide
working up as the natural rubber masterbatch

For the pre-crosslinking with dicumyl peroxide (DCP), a Baystal 1357 latex batch having a styrene content of 25 wt.% is diluted to a solids concentration of 30 wt.% and introduced into an autoclave. DCP is added in solid form at room temperature (0.1 phr, based on solid product). The DCP is melted by heating the latex to 60°C and is distributed thoroughly in the latex, with stirring. For the removal of oxygen, the contents of the reactor are evacuated at 60°C, with stirring, and nitrogen is introduced under pressure. The cycle of evacuation/gassing with N₂ is repeated three times. The reactor is then heated to 150°C. In order to avoid latex becoming caked on during the heating, it is ensured that the difference between the casing temperature and the internal temperature does not exceed 10°C. After heating, the internal temperature is maintained at at least 150°C for 45 minutes. The latex is then cooled and filtered over a Monodur cloth. The particle size of the latex is virtually unaffected by the pre-crosslinking with DCP ($d_{10} = 53$ nm, $d_{50} = 58$ nm and $d_{80} =$ 63 nm). The gel content rises from 75 to 94 wt.% and the density from 0.928 to 0.935 g/cm³; the swelling index falls from 61 to 17 and the glass temperature rises slightly from -57 to -56°C.

5

Homo-agglomeration of the latexes is carried out in a Gaulin high-pressure homogeniser, type: LAB 100 (A.P.V. Schröder GmbH, Lübeck, Mecklenburger Strasse 223). For the agglomeration, the latexes are diluted to the solids contents indicated in the tables. The agglomeration is carried out at room temperature. The agglomeration pressure and the number of passes through the homogeniser are varied, the latexes being agglomerated both in the condition in which they are supplied, that is to say without pre-crosslinking with DCP, and after pre-crosslinking with 0.1 phr DCP.

10 Co-agglomeration of the pre-crosslinked latexes with silica sols is carried out as follows: in a first step, the aqueous latexes are mixed with the aqueous silica sols in the ratios indicated below, and in the second step, they are agglomerated together in the high-pressure homogeniser.

The silica sols Levasil 200 and Levasil test product AC 4055 are used. Those products from Bayer AG Leverkusen exhibit the following characteristic data:

	Solids	pH value	Density	Viscosity	Na ₂ O	Specific
	content	(20°C)	(20°C)	(20°C)	content	surface area
	[wt.%]		[g/cm³]	[mPa.s]	[wt.%]	[m²/g]
Levasil 200	30.1	9.0	1.205	4.61	0.148	203
Levasil test product AC 4055	15.5	9.2	1.099	2.53	0.107	432

After-crosslinking with dicumyl peroxide (DCP) is carried out as described in the case of the pre-crosslinking with DCP using the amounts indicated in the following tables.

The rubber gels present in the form of latex are worked up as a masterbatch with natural rubber. To that end, the aqueous dispersions of the rubber gels are mixed with natural rubber latex in a ratio of 50/50 (based on solid) and isolated from the aqueous phase in the form of a solid product.

5

10

15

20

To that end, in each case 5 kg of the SBR rubber latex so treated having a solids content of 30 wt.% are stirred into a mixture of 5 kg of natural rubber latex having a solids content of 30 wt.%, 300 g of a 5 % aqueous resinate solution (Dresinate 731, manufacturer: Hercules) and 150 g of a 10 % aqueous dispersion of the anti-ageing agent Vulkanox 4020 (manufacturer: Bayer AG). The resulting latex mixture contains crosslinked rubber and natural rubber in a weight ratio of 1:1.

For the precipitation of 3 kg of rubber mixture, 10.45 kg of the latex mixture are stirred at 65°C into a solution of 225 g of NaCl, 40.8 g of $Al_2(SO_4)_3$ x 18 H₂O, 4.5 g of gelatin in 30 litres of water, the pH value being maintained at 4 by the addition of $10 \% H_2SO_4$. The product is washed thoroughly with water and dried for 2 days at 70°C in vacuo.

A masterbatch consisting of 50 wt.% SBR rubber gel, which optionally also contains silica, with 50 wt.% natural rubber is obtained.

The preparation of the rubber gels used in the various mixture series is described hereinbelow. In addition, the analytical data of those gels are collected in the tables.

Gels of mixture series 1):

Gel no.	Gel (1)	Gel (2)	Gel (3)	Gel (4)
Styrene content [wt.%]	22.5	22.5	22.5	22.5
Pre-crosslinking with DCP [phr]	-	-	-	-
Solids content [wt.%]	30	20	27.5	30
Agglomeration pressure [bar]	-	200	0	200
Number of passes [n]	-	1	0	1
After-crosslinking with DCP [phr]	1.0	1.0	1.5	1.5
D ₁₀ [nm]	53	62	54	64
D ₅₀ [nm]	59	405	59	395
D ₈₀ [nm]	63	798	63	743
Density of the latex particles [g/cm³]	0.962	0.958	0.971	0.973
Gel content [wt.%]	96	98	97	98
Swelling index	7.7	6.0	6.4	4.4
Glass temperature [°C]	-38	-39.5	-30.5	-27.5

Gels of mixture series 2):

<u></u>	0.145	0.170	(0.17)	C 1 (0)
Gel no.	Gel (5)	Gel (6)	Gel (7)	Gel (8)
Styrene content [wt.%]	24.8	24.8	24.8	24.8
Pre-crosslinking with DCP [phr]	-	0.1	0.1	0.1
Solids content [wt.%]	-	29.7	29.7	29.7
pH value	-	9.7	9.7	9.7
Agglomeration pressure [bar]	-	100	100	300
Number of passes [n]	-	1	5	5
After-crosslinking with DCP [phr]	1.5	1.4	1.4	1.4
D ₁₀ [nm]	48	57	59	314

Gel no.	Gel (5)	Gel (6)	Gel (7)	Gel (8)
10 ₅₀ [nm]	54	68	68	951
D ₈₀ [nm]	58	82	95	1496
Density of the latex particles [g/cm ³]	0.981	0.987	0.980	0.981
Gel content [wt.%]	99	96	98	98
Swelling index	5.5	5.3	5.3	4.5
Glass temperature [°C]	-23.5	-26.5	-25.5	-25

Gels of mixture series 3) and 4):

Gel no.	Gel (9)	Gel (10)	Gel (11)	Gel (12)	Gel (13)	Gel (14)	Gel (15)
Styrene content [wt.%]	22.5	22.5	22.5	22.5	22.5	22.5	22.5
Pre-crosslinking with DCP [phr]	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Silica sol AC 4055	95/5	90/10	80/20	70/30			
Levasil 200				1	90/10	80/20	70/30
Solids concentration [wt.%]	27.5	27.5	25.4	23.5	30.3	30.8	31.6
Agglomeration pressure [bar]	300	300	300	300	300	300	300
Number of passes [n]	5	5	5	5	5	5	5
After-crosslinking with DCP	1.4	1.4	1.4	1.4	1.4	1.4	1.4
D ₁₀ [nm]		90					
D ₅₀ [nm]		791				-	
D ₈₀ [nm]		1606					
Ash content of the silica- containing gel [wt.%]	5.0	9.6	19.5	28.6	10.1	19.6	28.9
Ash content of the 50% NR masterbatch [wt.%]	2.6	5.4	10	15.2	5.2	10.1	14.9

5 Compound preparation, vulcanisation and properties of the vulcanates

In the 1st mixture series, the properties of gel-containing vulcanates are compared. Non-agglomerated and agglomerated SBR gels are used for the comparison. The gels have been crosslinked with 1.0 and with 1.5 phr DCP and have no structure.

15

20

25

In the 2nd mixture series, the influence of the agglomerated gels with structure obtained under various agglomerating conditions on the vulcanate properties is demonstrated.

In the 3rd mixture series, the influence of SBR rubber gels co-agglomerated with silicas on the vulcanate properties is demonstrated, no silica activator being used in the preparation of the compound.

In the 4th mixture series, the influence of SBR rubber gels co-agglomerated with silicas on the vulcanate properties is demonstrated, Si69 being added as silica activator in the preparation of the compound.

For the preparation of the mixtures of mixture series 1) to 3), the components listed in the following tables are mixed in the indicated sequence in a laboratory kneader, the gel being incorporated in the form of a 50 % NR masterbatch together with a portion of the natural rubber.

After mixing, the compound viscosities at 100°C (ML 1+4/100°C), and in the 3rd mixture series additionally the Mooney relaxation, are determined:

The vulcanisation speeds of the mixtures are investigated in a rheometer experiment at 160° C. In that manner, characteristic heating times, such as, for example, t_{95} , are determined. For the production of the vulcanates, t_{95+5} is chosen as the vulcanisation time. The vulcanisation is carried out at 160° C.

The test results collected below are obtained on the basis of the mixtures indicated below.

1st Mixture series

Mixture no.:	1	2	3	4
TSR 5, Defo 700	25	25	25	25
Gel (1)/NR masterbatch (50/50)	150			
Gel (2)/NR masterbatch (50/50)		150		
Gel (3)/NR masterbatch (50/50)			150	
Gel (4)/NR masterbatch (50/50)				150
Renopal 450	3	3	3	3
Antilux 654	1.5	1.5	1.5	1.5
Stearic acid	3	3	3	3
Zinc oxide	3	3	3	3
Vulkanox 4010 NA	1	1	1	1
Vulkanox HS	1	1	1	1
Sulfur	1.6	1.6	1.6	1.6
Vulkacit NZ	1	1	1	1
	- 	<u> </u>		
Mixture no.:	1	2	3	4
ML 1+4/100°C [ME]	46	39	45	41
			l	l
Mixture no.:	1	2	3	4
Vulcanisation time [min]	16.4	20	15.6	17.7
	<u> </u>	L		<u></u>
Mixture no.:	1	2	3	4
Tensile strength [MPa]	20.5	17.1	21.4	20.1
Elongation at break [%]	521	550	520	529
Tensile stress at 100% elongation [MPa]	1.3	1.1	1.5	1.8
Tensile stress at 300% elongation [MPa]	5.3	6.9	6.9	9.2
	1	I	L	

Mixture no.:	1	2	3	4
Shore A hardness, 23°C	49	47	52	55
Shore A hardness, 70°C	46	46	48	51
Rebound resilience, 23°C (E ₂₃) [%]	55	60	50	54
Rebound resilience, 70°C (E ₇₀) [%]	69	73	66	70
Abrasion/40 DIN 53516 [mm3]	861	437	392	333
E ₇₀ -E ₂₃ [%]	14	13	16	16
S ₃₀₀ x F	2.761	3.795	3.588	4.867

2nd mixture series

Mixture no.:	5	6	7	8
TSR 5, Defo 700	25	25	25	25
Gel (5)/NR masterbatch (50/50)	150			
Gel (6)/NR masterbatch (50/50)		150		
Gel (7)/NR masterbatch (50/50)			150	
Gel (8)/NR masterbatch (50/50)				150
Antilux 654	1.5	1.5	1.5	1.5
Stearic acid	3	3	3	3
Zinc oxide	3	3	3	3
Vulkanox 4010 NA	1	1	1	1
Vulkanox HS	1	1	1	1
Sulfur	1	1	1	1
Vulkacit NZ	2	2	2	2
Vulkacit D	0.5	0.5	0.5	0.5

Mixture no.:	5	6	7	8
ML 1+4/100°C [ME]	40	39	33	45

Mixture no.:	5	6	7	84
Vulcanisation time [min]	20	20	20	20
Mixture no.:	5	6	7	8
Tensile strength [MPa]	22.8	22.4	22.3	19.1
Elongation at break [%]	560	540	535	585
Tensile stress at 100% elongation [MPa]	1.6	1.6	1.6	2.2
Tensile stress at 300% elongation [MPa]	7.0	7.7	8.0	10.3
Shore A hardness, 23°C	55	56	54	59
Shore A hardness, 70°C	50	50	50	55
Rebound resilience, 23°C [%]	36	37	37	39
Rebound resilience, 70°C [%]	63	63	67	68
Abrasion/40 DIN 53516 [mm3]	253	223	198	226
E ₇₀ -E ₂₃ [%]	27	26	30	29
S ₃₀₀ x D	3.920	4.158	4.280	6.026

3rd mixture series

Mixture no.:	9	10	11	12	13	14	15
TSR 5, Defo 700	25	25	25	25	25	25	25
Gel (9)/NR masterbatch (50/50)	150		g'. ·				
Gel (10)/NR masterbatch (50/50)		150					
Gel (11)/NR masterbatch (50/50)			150				
Gel (12)/NR masterbatch (50/50)			1	150			
Gel (13)/NR masterbatch (50/50)					150		
Gel (14)/NR masterbatch (50/50)						150	
Gel (15)/NR masterbatch (50/50)							150 ·
Antilux 654	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Stearic acid	3	3	3	3	3	3	3
Zinc oxide	3	3	3	3	3	3	3

Mixture no.:	9	10	11	12	13	14	15
Vulkanox 4010 NA	1	1	1	1	1	1	1
Vulkanox HS	1	1	1	1 .	1	1	1
Sulfur	1.6	1.6	1.6	1.6	1.6	1.6	1.6
Vulkacit NZ	1	1	1	1	1	1	1
Vulkacit D	0.5	0.5	0.5	0.5	0.5	0.5	0.5

Mixture no.:	9	10	11	12	13	14	15
ML 1+4/100°C [ME]	54	41.2	56.2	56.1	45.5	51.7	51.0
MR 30 [%]	2.2	3.6	5.0	5.9	2.6	3.9	3.8

Mixture no.:	9	10	11	12	13	14	15
Vulcanisation time t 95+5 [min]	18	15.7	16.7	15.9	16.8	14.3	14.9

Mixture no.:	9	10	11	12	13	14	15
Tensile strength [MPa]	21.6	19.6	22.1	25.1	19.6	21.3	22.8
Elongation at break [%]	500	620	570	645	535	525	555
Tensile stress at 100% elongation [MPa]	2.1	1.6	1.9	1.6	1.4	1.8	1.9
Tensile stress at 300% elongation [MPa]	11.2	7.6	8.7	7.2	8.5	9.3	9.2
Shore A hardness, 23°C	59	58	63	64	54	57	62
Shore A hardness, 70°C	54	54	55 .	54	52	54	55
Rebound resilience, 23°C [%]	46	45	38	34	48	47	43
Rebound resilience, 70°C [%]	64	68	57	51	70	68	62
Abrasion/40 DIN 53516 [mm3]	201	258	205	230	254	248	214
Abrasion/60 DIN 53516 [mm3]	131	202	172	203	239	236	194
E ₇₀ -E ₂₃ [%]	18	23	19	17	22	21	19
S ₃₀₀ x D [MPa x %]	5.600	4.712	4.959	4.644	4.548	4.883	5.106

4th mixture series

The components of the mixture are mixed according to the following recipes, in the indicated sequence, in a laboratory kneader, for 4 minutes at 140°C.

Mixture no.:	16	17	18	19	20
TSR 5, Defo 700	25	25	25	25	25
Gel (11)/NR masterbatch (50/50)	150				
Gel (12)/NR masterbatch (50/50)		150			
Gel (13)/NR masterbatch (50/50)		 	150	-	
Gel (14)/NR masterbatch (50/50)				150	
Gel (15)/NR masterbatch (50/50)			1		150
Antilux 654	1.5	1.5	1.5	1.5	1.5
Stearic acid	3	3	3	3	3
Zinc oxide	3	3	3	3	3
Vulkanox 4010 NA	1	1	1	1	1
Vulkanox HS	1	1	. 1	1	1
Si 69	6	6	6	6	6

5

When the mixture has been discharged from the kneader, sulfur and accelerator are mixed in on a roller which has been pre-heated to 40°C, the temperature of the mixed material at the end of the mixing time being approximately 70°C.

Mixture no.:	16	17	18	19	20
Sulfur	1	1	1	1	1
Vulkacit NZ	2	2	2	2	2
Vulkacit D	0.5	0.5	0.5	0.5	0.5

10

After mixing, the compound viscosities at 100°C ML 1+4 and the Mooney relaxation are determined:

5

Mixture no.:	16	17	18	19	20
ML 1+4/100°C [ME]	39.2	43.2	39.5	40.5	41.1
MR 30 [%]	4.3	4.4	3.8	3.8	5.1

The vulcanisation speeds of the mixtures are investigated in a rheometer experiment at 160° C. In this manner, characteristic heating times, such as, for example, t_{95} , are determined. For the production of the vulcanates, t_{95+5} is chosen as the vulcanisation time:

Mixture no.:	16	17	18	19	20
Vulcanisation time t 95+5 [min]	20.5	22.3	18.5	17.7	18.5

On the basis of the above-mentioned compounds, the following test results are obtained:

Mixture no.:	16	17	18	19	20
Tensile strength [MPa]	21.2	23.2	16.6	19.6	20.8
Elongation at break [%]	420	438	395	455	428
Tensile stress at 100% elongation [MPa]	3.2	3.3	2.2	2.7	3.1
Tensile stress at 300% elongation [MPa]	14.5	14.5	12.2	12.7	14.1
Shore A hardness, 23°C	71	72	59	64	70
Shore A hardness, 70°C	65	66	58	60	64
Rebound resilience, 23°C [%]	42	38	51	49	46
Rebound resilience, 70°C [%]	61	58	73	70	64
Abrasion/40 DIN 53516 [mm3]	244	207	322	253	201
Abrasion/60 DIN 53516 [mm3]	133	119	186	146	131
E ₇₀ -E ₂₃ [%]	19	20	22	21	18
S ₃₀₀ x D [MPa x %]	6.090	6.351	4.819	5.779	6.035

Patent claims

5

10

- 1. Rubber mixtures containing at least one agglomerated rubber gel (A) optionally containing inorganic fillers, at least one double-bond-containing rubber (B), and at least one sulfur-containing organosilicon compound (C), the amount of double-bond-containing rubber (B) being 100 parts by weight, the amount of rubber gel (A) being from 1 to 150 parts by weight, and the amount of organosilicon sulfur compound (C) being from 0.2 to 20 parts by weight, as well as further rubber auxiliary substances and, optionally, further fillers.
- 2. Mixtures according to claim 1, characterised in that the agglomerated rubber gel consists of BR, NR, NBR, CR or SBR microgels.
- Agglomerated rubber gels having particle diameters of from 5 to 5000 nm, which optionally contain inorganic fillers.
- 4. Agglomerated rubber gels according to claim 3 having a particle size distribution characterised in that the difference between the d₈₀ and d₁₀ values is greater than 25 nm.
 - Agglomerated rubber gels according to claims 3 and 4, characterised in that, owing to their crosslinking, they are insoluble and are swellable in toluene, the swelling indices of the microgels (Q_i) in toluene being in the range of from 1 to 15.
 - 6. Use of the rubber mixtures according to claim 1 in the production of rubber articles, especially of articles subjected to a dynamic load, such as tyre components, damping elements, belts and conveyor belts.

Rubber mixtures and vulcanates containing agglomerated rubber gels

Abstract

The vulcanates produced using the rubber mixtures according to the invention, which vulcanates contain agglomerated rubber gels, are distinguished by improved mechanical properties with an at least equivalent damping behaviour.