Machine Learning for Networking ML4N

Luca Vassio
Gabriele Ciravegna
Zhihao Wang
Tailai Song

Recap – key concepts

- Random variables and their samples
- Correlations of variables
- Similarity and distance between samples
- Data preprocessing
 - Feature normalization
 - Feature learning/dimensionality reduction (PCA,..)

– ...

Learning goal

Become familiar with concepts of

- Data points
- Model or hypothesis space
- Loss function

The three components of ML

"For a lot of problems, we should shift our mindset toward **not just improving the code** but in a more systematic way of **improving the data**"

Andrew Ng

- Data = set/collection of data points
- Data points = objects, records, cases, samples, entities, or instances
- Data points carry information =
 features

• A person

An image

A signal

A server

An ssh attack

Data points carry information

- Features
 - Low-level properties
 - Often easy to measure/compute
- Labels
 - High-level quantity of interest
 - Often difficult to measure/determine

Distinction might be blurry sometimes

features (pixel RGB values)

?

Features

- We mainly use numeric features
- Stack features into feature vector
- x₁,...,x_n to characterize a datapoint

Features of an image

Figure 2.5: If the snapshot $\mathbf{z}^{(i)}$ is stored as a 512×512 RGB bitmap, we could use as features $\mathbf{x}^{(i)} \in \mathbb{R}^n$ the red-, green- and blue component of each pixel in the snapshot. The length of the feature vector would then be $n = 3 \times 512 \times 512 \approx 786000$.

Label

- Label is design choice
- YOU choose what to consider as label of a data point
- Also called output variable, target, response variable
- By choosing/defining label you define the ML problem or learning task

Label

- Label can be categorical or numerical
 - Categorical: classification task
 - If only 2 categories: binary classification
 - If more than 2 categories: multi-class classification
 - Numerical: regression task
 - If a data point have more than one label: multi-label problem
 - If a data point has more than one type of labels: multi-task learning

Multi-label Classification

- = 1 or 0 if car present or not
- = 1 or 0 if **person** present or not
- = 1 or 0 if **tree** present or not
- = 1 or 0 if a cat present or not

Raw data

Tabular data

4	A	R	С	U	E	F	G	н	1
L	Year	m	d	Time	precp	snow	airtmp	mintmp	maxtmp
2	2020	1	2	00:00	0,4	55	2,5	-2	4,5
3	2020	1	3	00:00	1,6	53	0,8	-0,8	4,6
1	2020	1	4	00:00	0,1	51	-5,8	-11,1	-0,7
5	2020	1	5	00:00	1,9	52	-13,5	-19,1	-4,6
5	2020	1	6	00:00	0,6	52	-2,4	-11,4	-1
7	2020	1	7	00:00	4,1	52	0,4	-2	1,3
3	2020	1	8	00:00	4,3	51	0,8	0,1	1,8
)	2020	1	9	00:00	-1	51	-0,6	-1,9	1,6
0	2020	1	10	00:00	-1	51	-6,2	-11	-1,4
1	2020	1	11	00:00	2,8	50	-4,8	-10,7	-2,1
2	2020	1	12	00:00	-1	53	-1,3	-3,5	0,9
3	2020	1	13	00:00	-1	53	-6,4	-12,9	-3,1
4	2020	1	14	00:00	9,7	52	-2,8	-9	-0,7
5	2020	1	15	00:00	-1	63	0,2	-0,7	0,6
6	2020	1	16	00:00	0,4	62	-3,9	-5,2	0,1
7	2020	1	17	00:00	2	62	-5,2	-8,4	-0,7

Points, features, label

features

data point

label

data points, features and labels are design choices!

Number of points and features

number of features n

number of data points, sample size m

A	В	C	U	Ł	E	G	Н	- 1
Year	m	d	Time	precp	snow	airtmp	mintmp	maxtmp
2020) 1	2	00:00	0,4	55	2,5	-2	4,5
2020) 1	3	00:00	1,6	53	0,8	-0,8	4,6
2020) 1	4	00:00	0,1	51	-5,8	-11,1	-0,7
2020) 1	. 5	00:00	1,9	52	-13,5	-19,1	-4,6
2020) 1	6	00:00	0,6	52	-2,4	-11,4	-1
2020) 1	7	00:00	4,1	52	0,4	-2	1,3
2020) 1	. 8	00:00	4,3	51	0,8	0,1	1,8
2020) 1	9	00:00	-1	51	-0,6	-1,9	1,6
2020) 1	10	00:00	-1	51	-6,2	-11	-1,4
2020) 1	11	00:00	2,8	50	-4,8	-10,7	-2,1
2020) 1	12	00:00	-1	53	-1,3	-3,5	0,9
2020) 1	13	00:00	-1	53	-6,4	-12,9	-3,1
2020) 1	14	00:00	9,7	52	-2,8	-9	-0,7
2020) 1	15	00:00	-1	63	0,2	-0,7	0,6
2020) 1	16	00:00	0,4	62	-3,9	-5,2	0,1
2020) 1	17	00:00	2	62	-5,2	-8,4	-0,7
2020) 1	18	00:00	19,6	65	-4,6	-7,3	-4,2
2020) 1	19	00:00	0,7	81	-4,4	-8,8	-2,7
2020) 1	20	00:00	2,8	79	-1,8	-10,5	1,2

$$\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)}) \}.$$

Data points characterized by features and label

- Features low-level properties

$$\mathbf{X} = \left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}\right)^{T} = \begin{pmatrix} x_{1}^{(1)} & x_{2}^{(1)} & \dots & x_{n}^{(1)} \\ x_{1}^{(2)} & x_{2}^{(2)} & \dots & x_{n}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1}^{(m)} & x_{2}^{(m)} & \dots & x_{n}^{(m)} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Labels high-level properties (quantity of interest)

$$\mathbf{y} = \left(y_1, y_2 \dots, y_m\right)^T \in \mathbb{R}^m$$

Number of features

- Use only most relevant features but not fewer
- Missing relevant features bad for accuracy
- Using irrelevant features wastes computation and might result in overfitting

Model

Model

Machine learning

- Learn to predict the label y of a data point from its features x
- Learn a **hypothesis** $h \in \mathcal{H}$ such that $h(\mathbf{x}) \approx y$ $h: \mathcal{X} \to \mathcal{Y}$

How to predict?

Model = several hypothesis

Linear model

Polynomials

Artificial neural network

Size of hypothesis space

•
$$h: \mathcal{X} \to \mathcal{Y}$$
 $h \in \mathcal{H}$

 The hypothesis space H is a (typically very small) subset of the (typically very large) set Y^x of all possible maps from feature space X into the label space Y.

Which model to choose?

Large to contain a good hypothesis

Sufficiently large

- Linear model might be too small for such data
- There is no straight line that fits well the
- Data points here need larger models that also contain non-linear maps

Which model to choose?

- Large to contain a good hypothesis
- Small to avoid overfitting
- Small/simple to fit computational resources

Sufficiently small

Statistically

source: https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

Sufficiently small

Statistically

 $source: https://scikit \hbox{\'-learn.org/stable/auto_examples/\'model_selection/plot_underfitting_overfitting.html}$

Overfitting: model fits well training data but does a very poor job oautside the training data

Sufficiently small

Computationally

- hypothesis map h(x) easy to learn=train
- hypothesis map h(x) easy to evaluate

Design choice: model

Loss

Loss

"Loss functions: because every machine needs a little heartbreak to learn."

ChatGPT

Which hypothesis is better

A loss function

Quantitative measure of prediction error obtained when using hypothesis h to predict label y' of datapoint with features \mathbf{x} '

49

Squared error loss

$$L := (\widehat{y} - y)^2$$

Absolute error loss

Loss Functions for Binary Classification

0/1 loss

$$h(x) = "dog"$$

$$Loss = 1$$

Loss Functions for Binary Classification

0/1 loss

$$h(x) = "cat"$$

Loss = 0

Which loss function?

- Statistical aspects -- should favour "reasonable" hypothesis
- Computational aspects -- must be able to minimize them
- Interpretation -- what does log-loss = -3 mean ?

...choosing a suitable loss function is often non-trivial!

Design choice: loss

Three components of ML

Landscape of ML Methods – data axis

Landscape of ML Methods – model axis

Landscape of ML Methods – loss axis

Three Views on Machine Learning

Data View

feature

Three Views on Machine Learning

Data View

Model View

Three Views on Machine Learning

ML process

Any questions?

- Make a new example of data points, with their features and labels.
- Consider the following data points $x^{(1)}=(1,7,2.6,-2)$ and $x^{(2)}=(3,4,-10,0)$.
 - Create a linear model by (randomly) choosing the weights \mathbf{w} . $h^{(\mathbf{w})}(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ Which weights did you choose and what is the output $h(\mathbf{x}^{(1)})$ and $h(\mathbf{x}^{(2)})$?
- What is the loss of the proposed model in $x^{(1)}$ e $x^{(2)}$ with respect to their true labels $y^{(1)}=1$ and $y^{(2)}=0$? Compute their squared error loss, their absolute error loss and 0/1 loss.

References: readings

• Chapter 2

Slide acknowledgments

Alexander Jung – Aalto University