United States Department of Agriculture

Forest Service

Forest Management Service Center

Fort Collins, CO

2008

Revised:

June 2021

South Central Oregon and Northeast California (SO) Variant Overview

Forest Vegetation Simulator

Ponderosa pine stand in Northern California (Amy Jo Krommes, FS-R6)

South Central Oregon and Northeast California (SO) Variant Overview

Forest Vegetation Simulator

Authors and Contributors:

The FVS staff has maintained model documentation for this variant in the form of a variant overview since its release in 1984. The original author was Gary Dixon. In 2008, the previous document was replaced with this updated variant overview. Gary Dixon, Christopher Dixon, Robert Havis, Chad Keyser, Stephanie Rebain, Erin Smith-Mateja, and Don Vandendriesche were involved with this update. Stephanie Rebain cross-checked information contained in this variant overview with the FVS source code.

FVS Staff. 2008 (revised June 28, 2021). South Central Oregon and Northeast California (SO) Variant Overview – Forest Vegetation Simulator. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center. 100p.

Table of Contents

1.0 Introduction	1
2.0 Geographic Range	2
3.0 Control Variables	3
3.1 Location Codes	3
3.2 Species Codes	3
3.3 Habitat Type, Plant Association, and Ecological Unit Codes	5
3.4 Site Index	5
3.4.1 Region 5 Site Class	7
3.5 Maximum Density	9
4.0 Growth Relationships	12
4.1 Height-Diameter Relationships	12
4.2 Bark Ratio Relationships	19
4.3 Crown Ratio Relationships	20
4.3.1 Crown Ratio Dubbing	20
4.3.2 Crown Ratio Change	24
4.3.3 Crown Ratio for Newly Established Trees	24
4.4 Crown Width Relationships	24
4.4.1 Region 5 Crown Width	24
4.4.2 Region 6 and Warm Springs Reservation Crown Width	26
4.5 Crown Competition Factor	29
4.6 Small Tree Growth Relationships	31
4.6.1 Small Tree Height Growth	31
4.6.2 Small Tree Diameter Growth	37
4.7 Large Tree Growth Relationships	38
4.7.1 Large Tree Diameter Growth	38
4.7.2 Large Tree Height Growth	
5.0 Mortality Model	57
6.0 Regeneration	60
7.0 Volume	63
8.0 Fire and Fuels Extension (FFE-FVS)	67
9.0 Insect and Disease Extensions	68
10.0 Literature Cited	

	11.0 Appendices
73	11.1 Appendix A. Distribution of Data Samples
74	11.2 Appendix B: Plant Association Codes

Quick Guide to Default Settings

Parameter or Attribute	Default Setting		
Number of Projection Cycles	1 (10 if using FVS GUI)		
Projection Cycle Length	10 years		
Location Code (National Forest)	601 – Deschutes		
Plant Association Code (Region 6 & Warm			
Springs Reservation)	49 (CPS111 PIPO/PUT	R-ARTR/FEID)	
Slope	5 percent		
Aspect	0 (no meaningful aspe	ect)	
Elevation	45 (4500 feet)		
Latitude / Longitude	Latitude	Longitude	
All location codes	42	121	
Site Species (Region 5 / Region 6 & Warm			
Springs Reservation)	WF / Plant Association	n Code Specific	
Site Index (Region 5 / Region 6 and Warm			
Springs Reservation)	50 feet / Plant Association Code Specific		
Maximum Stand Density Index	Species or Plant Association Code specific		
Maximum Basal Area	Based on maximum stand density index		
Volume Equations	National Volume Estimator Library		
Merchantable Cubic Foot Volume Specification	ns:		
Minimum DBH / Top Diameter	Hardwoods	Softwoods	
Region 5	9.0 / 6.0 inches	9.0 / 6.0 inches	
Region 6 and Warm Springs Reservation	9.0 / 4.5 inches	9.0 / 4.5 inches	
Stump Height	1.0 foot	1.0 foot	
Merchantable Board Foot Volume Specification	ns:		
Minimum DBH / Top Diameter	Hardwoods	Softwoods	
Region 5	9.0 / 6.0 inches	9.0 / 6.0 inches	
Region 6 and Warm Springs Reservation	9.0 / 4.5 inches	9.0 / 4.5 inches	
Stump Height	1.0 foot 1.0 foot		
Sampling Design:			
Large Trees (variable radius plot)	40 BAF		
Small Trees (fixed radius plot)	1/300 th Acre		
Breakpoint DBH	5.0 inches		

1.0 Introduction

The Forest Vegetation Simulator (FVS) is an individual tree, distance independent growth and yield model with linkable modules called extensions, which simulate various insect and pathogen impacts, fire effects, fuel loading, snag dynamics, and development of understory tree vegetation. FVS can simulate a wide variety of forest types, stand structures, and pure or mixed species stands.

New "variants" of the FVS model are created by imbedding new tree growth, mortality, and volume equations for a particular geographic area into the FVS framework. Geographic variants of FVS have been developed for most of the forested lands in the United States.

The Southern Oregon / Northeastern California (SO) variant was developed in 1984. This variant includes all or part of the Deschutes, Fremont, Winema, Klamath, Lassen, Modoc, Plumas, Shasta, and Trinity National Forests, corresponding BLM and Industry lands, and lands managed by the Confederated Tribes of Warm Springs. Data used in building the original SO variant came from forest inventories, silviculture stand examinations, research plots, and tree plantation studies.

The SO variant was expanded from its original 11 species to 33 species in 2004. Growth relationships for the additional 22 species were drawn from other FVS variants including West Cascades (WC – noble fir, western hemlock, Pacific yew, white alder, red alder, bigleaf maple, black cottonwood, bitter cherry, willow species, giant chinquapin, curl-leaf mountain mahogany, birchleaf mountain mahogany, and other hardwoods), East Cascades (EC – Pacific silver fir, western larch, western redcedar), Inland California/Southern Cascades (CA – Shasta red fir and Oregon white oak), Utah (UT – western juniper and quaking aspen) and Tetons (TT – whitebark pine).

The SO variant is one of three variants used by the Confederated Tribes of Warm Springs. In 2015, after completion of an analysis by the FMSC regarding which variant performed the best for which species on the Reservation, the tribes decided to use the SO variant as the designated variant for their lands, requested their own unique location code be added, and when that location code is specified, large tree diameter growth would be predicted with a designated equation from one of the three variants they previously used (SO, EC, or WC).

To fully understand how to use this variant, users should also consult the following publication:

• Essential FVS: A User's Guide to the Forest Vegetation Simulator (Dixon 2002)

This publication may be downloaded from the Forest Management Service Center (FMSC), Forest Service website. Other FVS publications may be needed if one is using an extension that simulates the effects of fire, insects, or diseases.

2.0 Geographic Range

The SO variant was fit to data representing forest types in southern Oregon and northeastern California. Data used in building the original SO variant came from forest inventories, silviculture stand examinations, research plots, and tree plantation studies from national forest, BLM, and industry lands. Distribution of data samples for species fit from this data are shown in Appendix A.

The SO variant covers forest areas in south-central Oregon and northeastern California. The suggested geographic range of use for the SO variant is shown in figure 2.0.1.

Figure 2.0.1 Suggested geographic range of use for the SO variant.

Within USFS Region 5, the following forests and districts should use the SO variant: Goosenest district of the Klamath NF, Eagle Lake district of the Lassen NF, all districts on the Modoc NF, and the McCloud district of the Shasta-Trinity NF (Warbington 2004, based on Spreadsheet provided by Ralph Warbington, R5 Ecosystem Planning Staff, Remote Sensing Lab, http://www.fs.fed.us/r5/rsl/).

3.0 Control Variables

FVS users need to specify certain variables used by the SO variant to control a simulation. These are entered in parameter fields on various FVS keywords available in the FVS interface or they are read from an FVS input database using the Database Extension.

3.1 Location Codes

The location code is a 3- or 4-digit code where, in general, the first digit of the code represents the Forest Service Region Number, and the last two digits represent the Forest Number within that region. In some cases, a location code beginning with a "7" or "8" is used to indicate an administrative boundary that doesn't use a Forest Service Region number (for example, other federal agencies, state agencies, or other lands).

If the location code is missing or incorrect in the SO variant, a default forest code of 601 (Deschutes National Forest) will be used. Location codes recognized in the SO variant are shown in tables 3.1.1 and 3.1.2.

Table 3.1.1 Location codes used in the SO variant.

Location Code	Location	
505	Klamath National Forest	
506	Lassen National Forest	
509	Modoc National Forest	
511	Plumas National Forest	
601	Deschutes National Forest	
602	Fremont National Forest	
620	Winema National Forest	
701, 702	Industry Lands (702 mapped to 701)	
799	Confederated Tribes of Warm Springs	
514	Shasta-Trinity (mapped to 505)	

Table 3.1.2 Bureau of Indian Affairs reservation codes used in the SO variant.

Location Code	Location
7711	Fort Mcdermitt Reservation (mapped to 602)
7836	Fort Bidwell Reservation (mapped to 509)
7838	Susanville Indian Rancheria (mapped to 506)
7844	Cedarville Rancheria (mapped to 509)

3.2 Species Codes

The SO variant recognizes 33 species. You may use FVS species codes, Forest Inventory and Analysis (FIA) species codes, or USDA Natural Resources Conservation Service PLANTS symbols to represent these species in FVS input data. Any valid western species codes identifying species not recognized by the variant will be mapped to the most similar species in the variant. The species mapping crosswalk is

available on the variant documentation webpage of the FVS website. Any non-valid species code will default to the "other hardwoods" category.

Either the FVS sequence number or species code must be used to specify a species in FVS keywords and Event Monitor functions. FIA codes or PLANTS symbols are only recognized during data input, and may not be used in FVS keywords. Table 3.2.1 shows the complete list of species codes recognized by the SO variant.

Table 3.2.1 Species codes used in the SO variant.

Species	Species		FIA	PLANTS	
Number	Code	Common Name	Code	Symbol	Scientific Name
1	WP	western white pine	119	PIMO3	Pinus monticola
2	SP	sugar pine	117	PILA	Pinus lambertiana
3	DF	Douglas-fir	202	PSME	Pseudotsuga menziesii
4	WF	white fir	015	ABCO	Abies concolor
5	MH	mountain hemlock	264	TSME	Tsuga mertensiana
6	IC	incense-cedar	081	CADE27	Libocedrus decurrens
7	LP	lodgepole pine	108	PICO	Pinus contorta
8	ES	Engelmann spruce	093	PIEN	Picea engelmannii
9	SH	Shasta red fir	021	ABSH	Abies magnifica (shastensis)
		ponderosa pine/Jeffrey			
10	PP	pine	122	PIPO	Pinus ponderosa/Pinus jeffreyi
11	WJ	western juniper	064	JUOC	Juniperus occidentalis
12	GF	grand fir	017	ABGR	Abies grandis
13	AF	subalpine fir	019	ABLA	Abies lasiocarpa
14	SF	Pacific silver fir	011	ABAM	Abies amabilis
15	NF	noble fir	022	ABPR	Abies procera
16	WB	whitebark pine	101	PIAL	Pinus albicaulis
17	WL	western larch	073	LAOC	Larix occidentalis
18	RC	western redcedar	242	THPL	Thuja plicata
19	WH	western hemlock	263	TSHE	Tsuga heterophylla
20	PY	Pacific yew	231	TABR2	Taxus brevifolia
21	WA	white alder	352	ALRH2	Alnus rhombifolia
22	RA	red alder	351	ALRU2	Alnus rubra
23	BM	bigleaf maple	312	ACMA3	Acer macrophyllum
24	AS	quaking aspen	746	POTR5	Populus tremuloides
25	CW	black cottonwood	747	POBAT	Populus trichocarpa
26	СН	bitter cherry	768	PREM	Prunus emarginata
27	WO	Oregon white oak	815	QUGA4	Quercus garryana
28	WI	willow species	920	SALIX	Salix spp.
29	GC	giant chinquapin	431	CHCHC4	Chrysolepis chrysophylla
30	MC	curl-leaf mtn. mahogany	475	CELE3	Cercocarpus ledifolius
31	MB	birchleaf mtn. mahogany	478	CEMOM4	Cercocarpus betuloides

Species Number	Species Code	Common Name	FIA Code	PLANTS Symbol	Scientific Name
32	OS	other softwoods	298	2TE	
33	ОН	other hardwoods	998	2TD	

3.3 Habitat Type, Plant Association, and Ecological Unit Codes

Plant association codes recognized in the SO variant are shown in Appendix B. If an incorrect plant association code is entered or no code is entered FVS will use the default plant association code, which is 49 (CPS111 PIPO/PUTR-ARTR/FEID) for Region 6 forests and the Warm Springs Reservation, and 0 (unknown) in Region 5 forests. For Region 6 forests and the Warm Springs Reservation, plant association codes are used to set default site information such as site species, site indices, and maximum stand density indices as well as in predicting snag dynamics in FFE-FVS. The site species, site index and maximum stand density indices can be reset via FVS keywords. In Region 5, plant association is only used to estimate surface fuels when no live trees are present in the first cycle. Users may enter the plant association code or the plant association FVS sequence number on the STDINFO keyword, when entering stand information from a database, or when using the SETSITE keyword without the PARMS option. If using the PARMS option with the SETSITE keyword, users must use the FVS sequence number for the plant association.

3.4 Site Index

Site index is used in some of the growth equations in the SO variant. Users should always use the same site curves that FVS uses as shown in table 3.4.1. If site index is available, a single site index for the whole stand can be entered, a site index for each individual species in the stand can be entered, or a combination of these can be entered. A site index value must be greater than or equal to 8, otherwise the value is considered a R5 site class code, see section 3.4.1.

Table 3.4.1 Site index reference curves used for species in the SO variant.

		BHA or	Base
Species Code	Reference	TTA ¹	Age
WP	Brickell, J.E. (1970), USDA-FS Res. Pap. INT-75	TTA	50
SP, PP	Barrett, J.W. (1978), USDA-FS Res. Pap. PNW-232	вна	100
DF, OS	Cochran, P.H. (1979), USDA-FS Res. Pap. PNW-251	вна	50
WF, IC, GF, SF	Cochran, P.H. (1979), USDA-FS Res. Pap. PNW-252	вна	50
MH	Means, et. al. (1986) ² , unpublished FIR Report. Vol. 10, No. 1, OSU	вна	100
LP	Dahms, W.G. (1964), USDA-FS Res. Pap. PNW-8	TTA	50
ES	Alexander, R.R. (1967), USDA-FS Res. Pap. RM-32	вна	100
SH, WO (R5)	Dunning (1942); Dunning & Reineke (1933)	вна	50
SH (R6)	Dolph (1991), Res. Pap. PSW206	вна	50
WO (R6)	Powers (1972), Res. Note PSW-262	вна	50
WJ, WB	Alexander, Tackle, and Dahms. (1967), Res. Pap. RM-29	TTA	100
AF	Demars, Herman, and Bell (1970), PNW-119	вна	100
NF	Herman, F.R., et. al. (1978), USDA-FS Res. Pap. PNW-243, P.4	вна	100

		BHA or	Base
Species Code	Reference	TTA ¹	Age
WL	Cochran, P.H. (1985), USDA-FS Res. Note PNW-424, p.23	вна	50
	Hegyi, R.P.F., et. al. (1979), Province of B.C., Forest Inv. Rep. No. 1.		
RC	p. 6.	TTA	100
WH	Wiley, K.N. (1978), Weyerhaeuser Forestry Paper, No. 17, p.4.	вна	50
PY, WA, BM,			
CW, CH, WI,			
GC, MC, MB,			
ОН	Curtis, R.O., et. al. (1974), Forest Science, vol. 20, no. 4, p.310	ВНА	100
	Harrington C.A. & Curtis, R.O. (1986m), USDA-FS Res. Pap. PNW-		
RA	358, p.5	TTA	20
AS	Edminster, Mowrer, and Shepperd (1985), Res. Note RM-453	вна	80

¹ Equation is based on total tree age (TTA) or breast height age (BHA)

In Region 5 forests, site index values can either be entered directly or based on the Region 5 Site Class Code. See section 3.4.1 for Region 5 Site Class information. If site index is missing or incorrect, the site species is set to white fir with a default site index set to 50. For Region 6 forests and the Warm Springs Reservation, if site index is missing or incorrect, the default site species and site index are determined by plant association codes found in Appendix B. If the plant association code is missing or incorrect, the site species is set to ponderosa pine/Jeffrey pine with a default site index set to 70.

Site indices for species not assigned a site index are determined based on the site index of the site species. If the site species is western juniper, whitebark pine, or quaking aspen, the relative site indices of the other species are computed using equations {3.4.1} and {3.4.2} with the low and high site values in table 3.4.2. If the site species is any other species, site index is assigned based on the site species site index (height at base age) with an adjustment for reference age and base age differences between the site species and the target species.

$$\{3.4.1\}$$
 RELSI = $(SI_{site} - SITELO_{site}) / (SITEHI_{site} - SITELO_{site})$

 ${3.4.2} SI_i = SITELO_i + RELSI*(SITEHI_i - SITELO_i)$

where:

RELSI is the relative site index of the site species

SI is species site index

SITELO is the lower bound of the SI range for a species SITEHI is the upper bound of the SI range for a species

site is the site species

i is the species for which site index is to be calculated

Table 3.4.2 SITELO and SITEHI values for equation {3.4.1} in the SO variant.

Species		
Code	SITELO	SITEHI
WP	13	137

² The source equation is in metric units; site index values for MH are assumed to be in meters.

Species		
Code	SITELO	SITEHI
SP	27	178
DF	21	148
WF	5	195
MH	5	133
IC	5	169
LP	5	140
ES	12	227
SH	10	134
PP	7	176
WJ	5	40
GF	9	173
AF	6	127
SF	4	221
NF	7	210
WB	20	65
WL	60	147
RC	29	152
WH	6	203
PY	5	75
WA	5	100
RA	56	192
BM	108	142
AS	30	66
CW	10	191
CH	10	104
WO	21	85
WI	20	93
GC	5	100
MC	5	75
MB	5	75
OS	5	175
OH	5	125

3.4.1 Region 5 Site Class

In Region 5 forests, the site index values can either be entered directly or based on the Region 5 site class (0-7) as shown in table 3.4.1.1. Site class codes of 0-5 were adapted for Region 5 by Jack Levitan from Duncan Dunning's site index curves (Dunning 1942, Dunning & Reineke 1933).

If a Region 5 site class is entered, it is converted to a site index for each species within the model using a two-step process. First, the Region 5 site class is converted to a 50-year or 100-year site index based

on the reference age of the species. For quaking aspen, site index is interpolated between the 50 and 100 year site classes to get an estimated 80 year base age site index. Site index conversions are shown in table 3.4.1.1 (personal communication with Ralph Warbington in March 2008).

Table 3.4.1.1 Region 5 site class values converted into site index in the SO variant.

REGION 5 SITE CLASS	(BREAST HT AGE) 50-YEAR SITE INDEX	(BREAST HT AGE) 100-YEAR SITE INDEX
0	106	140
1	90	121
2	75	102
3	56	81
4	49	67
5	39	54
6	31	44
7	23	36

Second, site index for an individual species is determined by multiplying the site index by a species-specific adjustment factor which is shown in table 3.4.1.2

Table 3.4.1.2 Region 5 adjustment factors for site index values in the SO variant.

Species	
Code	R5 Adjustment Factor
WP	0.9
SP	0.9
DF	1
WF	1
MH	0.9
IC	0.76
LP	0.82
ES	1
SH	1
PP	1
WJ	0.57
GF	1
AF	1
SF	1
NF	1
WB	0.9
WL	1
RC	1
WH	0.9
PY	0.76
WA	1
RA	0.57

Species Code	R5 Adjustment Factor
BM	0.57
AS	0.57
CW	0.57
СН	1
WO	0.76
WI	0.57
GC	1
MC	1
MB	1
OS	1
ОН	0.57

3.5 Maximum Density

Maximum stand density index (SDI) and maximum basal area (BA) are important variables in determining density related mortality and crown ratio change. Maximum basal area is a stand level metric that can be set using the BAMAX or SETSITE keywords. If not set by the user, a default value is calculated from maximum stand SDI each projection cycle. Maximum stand density index can be set for each species using the SDIMAX or SETSITE keywords. If not set by the user, a default value is assigned as discussed below. Maximum stand density index at the stand level is a weighted average, by basal area, of the individual species SDI maximums.

In Region 5, the default maximum SDI is set by species or a user specified basal area maximum. If a user specified basal area maximum is present, the maximum SDI for all species is computed using equation {3.5.1}; otherwise, species maximums are assigned from the SDI maximums shown in table 3.5.1.

For Region 5 forests, SDI is calculated using the Zeide calculation method (Dixon 2002).

 $\{3.5.1\}$ SDIMAX_i = BAMAX / (0.5454154 * SDIU)

where:

*SDIMAX*_i is species-specific SDI maximum

BAMAX is the user-specified stand basal area maximum

SDIU is the proportion of theoretical maximum density at which the stand reaches actual

maximum density (default 0.85, changed with the SDIMAX keyword)

For Region 6 forests and the Warm Springs Reservation, the default maximum SDI is set based on a user-specified, or default, plant association code or a user specified basal area maximum. If a user specified basal area maximum is present, the maximum SDI for all species is computed using equation {3.5.1}; otherwise, the SDI maximum for the site species is assigned from the SDI maximum associated with the site species for the plant association code shown in Appendix B. SDI maximums were set based on growth basal area (GBA) analysis developed by Hall (1983) or an analysis of Current Vegetation Survey (CVS) plots in USFS Region 6 by Crookston (2008). Once maximum SDI is

determined for the site species, maximum SDI for all other species not assigned a value is estimated using a relative adjustment as seen in equation {3.5.2}. Some SDI maximums associated with plant associations are unreasonably large, so SDI maximums are capped at 850.

 $\{3.5.2\}$ SDIMAX_i = SDIMAX(SSEC) * (SDIMAX(S) / SDIMAX(SS))

where:

SDIMAXi is species-specific SDI maximum

SDIMAX(SSEC) is maximum SDI for the plant association from Appendix B SDIMAX(SS) is R6 maximum SDI for the site species shown in table 3.5.1 SDIMAX(S) is R6 maximum SDI for the target species shown in table 3.5.1

Table 3.5.1 Stand density index maximums by species in the SO variant.

Species Code	R5 SDI Maximum	R5 Source*	R5 Mapped to	R6 & Warm Springs SDI Maximum
WP	272	Shaw	• • • • • • • • • • • • • • • • • • • •	447
SP	561	Shaw		447
DF	570	Shaw		767
WF	800	PSW		659
МН	687	Shaw		758
IC	576	Shaw		447
LP	679	Shaw		541
ES	620	Shaw		659
SH	1000	PSW		750
PP	365	PSW		429
WJ	272	Shaw		500
GF	800	PSW		659
AF	602	Shaw		659
SF	790	Shaw		659
NF	1000	PSW		659
WB	621	Shaw		250
WL	423	Shaw		250
RC	762	Shaw		650
WH	682	Shaw		650
PY	576	Shaw	incense-cedar	650
WA	441	Shaw	red alder	200
RA	441	Shaw		300
ВМ	629	Shaw		300
AS	562	Shaw		250
CW	452	Shaw		250
СН	441	Shaw	red alder	200
WO	440	Shaw		200
WI	447	Shaw	black willow	150

				R6 &
Species	R5 SDI	R5		Warm Springs
Code	Maximum	Source*	R5 Mapped to	SDI Maximum
GC	785	Shaw	tanoak	250
MC	501	Shaw		100
MB	501	Shaw	curlleaf mountain-mahogany	100
OS	365	PSW	ponderosa pine	447
ОН	441	Shaw	red alder	250

^{*}Sources include an unpublished analysis of FIA data by John Shaw (Shaw) and a review of current data/literature by Pacific Southwest Research Station (PSW).

4.0 Growth Relationships

This chapter describes the functional relationships used to fill in missing tree data and calculate incremental growth. In FVS, trees are grown in either the small tree sub-model or the large tree sub-model depending on the diameter.

4.1 Height-Diameter Relationships

Height-diameter relationships in FVS are primarily used to estimate tree heights missing in the input data, and occasionally to estimate diameter growth on trees smaller than a given threshold diameter. In the SO variant, FVS will dub in missing heights by one of two methods. By default, the SO variant will use the Curtis-Arney functional form as shown in equation $\{4.1.1\}$ or equation $\{4.1.2\}$ (Curtis 1967, Arney 1985). If the input data contains at least three measured heights for a species, then FVS can switch to a logistic height-diameter equation $\{4.1.3\}$ (Wykoff, et.al 1982) that may be calibrated to the input data. In the SO variant, this doesn't happen by default, but can be turned on with the NOHTDREG keyword by entering "1" in field 2.

Coefficients for equation $\{4.1.1\}$ are shown in table 4.1.1 by location code. Coefficients (B_1 - B_2) for equation $\{4.1.2\}$ are shown in table 4.1.2 by crown class ratio. For the species western juniper, whitebark pine, and quaking aspen, equation $\{4.1.2\}$ is always used when dubbing heights because these species don't have Curtis-Arney coefficients.

When height-diameter calibration occurs, noble fir, western hemlock, Pacific yew, white alder, red alder, bigleaf maple, black cottonwood, bitter cherry, willow species, giant chinquapin, curl-leaf mountain mahogany, birchleaf mountain mahogany and other hardwoods use equation {4.1.4} instead of equation {4.1.2} when dubbing missing heights for trees with DBH < 5.0". Likewise, western hemlock and Pacific yew use equation {4.1.4} instead of {4.1.2} for trees with DBH < 5.0". Coefficients for equations {4.1.3} and {4.1.4}, and the WC species using these equations are given in table 4.1.3. Small ponderosa pine (10) uses equation {4.1.5} to dub in missing heights when DBH < 3.0".

{4.1.1} Curtis-Arney functional form

```
DBH \geq 3.0": HT = 4.5 + P_2 * \exp[-P_3 * DBH ^ P_4] \\ DBH < 3.0": HT = [(4.5 + P_2 * \exp[-P_3 * 3.0 ^ P_4] - 4.51) * (DBH - 0.3) / 2.7] + 4.51 \\ \{4.1.2\} \ Wykoff functional form \\ \ HT = 4.5 + \exp(B_1 + B_2 / (DBH + 1.0)) \\ \{4.1.3\} \ DBH < 5.0": HT = H_1 + (H_2 * DBH) + (H_3 * CR) + (H_4 * DBH^2) + H_5 \\ \{4.1.4\} \ DBH < 5.0": HT = \exp[H_1 + (H_2 * DBH) + (H_3 * CR) + (H_4 * DBH ^ 2) + H_5] \\ \{4.1.5\} \ HT = 8.31485 + (3.03659 * DBH) - (0.592 * JCR) \\ \text{where:}
```

HT is tree height

DBH is tree diameter at breast height

 $B_1 - B_2$ are species-specific coefficients shown in table 4.1.2

P₂ - P₄ are species and location specific coefficients shown in table 4.1.1

 $H_1 - H_5$ are species-specific coefficients shown in table 4.1.3

CR is tree crown ratio expressed as a percent JCR is tree crown class (bounded to $1 \le JCR \le 9$)

Table 4.1.1 Coefficients for Curtis-Arney equation {4.1.1} in the SO variant.

Species	La catha a Carla		_	
Code	Location Code	P ₂	P ₃	P ₄
	601 – Deschutes	502.0047	F 4642	0.2425
WP	799 – Warm Springs	582.9947	5.4612	-0.3435
VVI	602 – Freemont	391.7346	5.1102	-0.3602
	620 – Winema	133.7789	6.9968	-0.9072
	601 – Deschutes			
SP	799 – Warm Springs	128.8697	6.8868	-0.8701
	602 – Freemont	948.8488	6.1388	-0.2877
	620 – Winema	222.7080	6.1735	-0.6122
	601 – Deschutes			
DF	602 – Freemont			
5.	799 – Warm Springs	253.2541	4.7331	-0.4843
	620 – Winema	231.7163	6.7143	-0.6647
	601 – Deschutes			
WF	799 – Warm Springs	235.3340	5.7931	-0.5972
VVI	602 – Freemont	705.1903	6.0971	-0.3273
	620 – Winema	471.6016	5.7106	-0.4035
	601 – Deschutes			
MH	799 – Warm Springs	197.4948	6.7218	-0.6528
IVIII	602 – Freemont	103.7798	10.6932	-1.0711
	620 – Winema	130.7104	7.7823	-0.8830
	601 – Deschutes			
10	799 – Warm Springs	4902.9732	7.5484	-0.1783
IC	602 – Freemont	76621.919	10.2682	-0.1178
	620 – Winema	4518.2601	8.0469	-0.2090
	601 – Deschutes			
LD	799 – Warm Springs	777.9043	5.2036	-0.2843
LP	602 – Freemont	113.7962	4.7726	-0.7601
	620 – Winema	128.7972	4.9833	-0.7463
	601 – Deschutes			
	799 – Warm Springs	290.2790	6.5834	-0.5753
ES	602 – Freemont	290.2790	6.5834	-0.5753
	620 – Winema	168.9700	13.6848	-1.0635
6	601 – Deschutes			
SH	602 – Freemont	606.3002	6.2936	-0.3860

Species				
Code	Location Code	P ₂	P ₃	P ₄
	620 – Winema			-
	799 – Warm Springs			
	601 – Deschutes			
	799 – Warm Springs	2700.1370	7.1184	-0.2312
PP	602 – Freemont	1154.2447	6.6836	-0.2876
	620 – Winema	812.2630	6.4422	-0.3348
	601 – Deschutes			
	602 – Freemont			
WJ	620 – Winema			
	799 – Warm Springs	0	0	0
	601 – Deschutes			
65	799 – Warm Springs	235.3340	5.7931	-0.5972
GF	602 – Freemont	705.1903	6.0971	-0.3273
	620 – Winema	471.6016	5.7106	-0.4035
	601 – Deschutes			
A.F.	799 – Warm Springs	291.4070	5.7543	-0.5013
AF	602 – Freemont	1056.5434	6.6974	-0.2950
	620 – Winema	299.3002	6.3401	-0.5275
	601 – Deschutes			
CE	602 – Freemont			
SF	620 – Winema			
	799 – Warm Springs	171.2219	9.9497	-0.9727
	601 – Deschutes			
NF	602 – Freemont			
INF	620 – Winema			
	799 – Warm Springs	247.7348	6.1830	-0.6335
	601 – Deschutes			
WB	602 – Freemont			
WB	620 – Winema			
	799 – Warm Springs	0	0	0
	601 – Deschutes			
WL	602 – Freemont			
	620 – Winema			
	799 – Warm Springs	255.4638	5.5577	-0.6054
	601 – Deschutes			
RC	602 – Freemont			
-	620 – Winema	646 2522	F 7000	0.0000
	799 – Warm Springs	616.3503	5.7620	-0.3633
	601 – Deschutes			
WH	602 – Freemont	247.0257	C 0207	0.6034
	620 – Winema	317.8257	6.8287	-0.6034

Species				
Code	Location Code	P ₂	P_3	P ₄
	799 – Warm Springs			
	601 – Deschutes			
PY	602 – Freemont			
	620 – Winema			
	799 – Warm Springs	77.2207	3.5181	-0.5894
	601 – Deschutes			
WA	602 – Freemont			
VVA	620 – Winema			
	799 – Warm Springs	133.7965	6.4050	-0.8329
	601 – Deschutes			
RA	602 – Freemont			
NA	620 – Winema			
	799 – Warm Springs	484.4591	4.5713	-0.3643
	601 – Deschutes			
BM	602 – Freemont			
DIVI	620 – Winema			
	799 – Warm Springs	76.5170	2.2107	-0.6365
	601 – Deschutes			
AS	602 – Freemont			
AS	620 – Winema			
	799 – Warm Springs	0	0	0
	601 – Deschutes			
CW	602 – Freemont			
CVV	620 – Winema			
	799 – Warm Springs	178.6441	4.5852	-0.6746
	601 – Deschutes			
СН	602 – Freemont			
CIT	620 – Winema			
	799 – Warm Springs	73.3348	2.6548	-1.2460
	601 – Deschutes			
WO	602 – Freemont			
****	620 – Winema			
	799 – Warm Springs	40.3812	3.7653	-1.1224
	601 – Deschutes			
WI	602 – Freemont			
•••	620 – Winema			
	799 – Warm Springs	149.5861	2.4231	-0.1800
	601 – Deschutes			
GC	602 – Freemont			
	620 – Winema			
	799 – Warm Springs	10707.390	8.4670	-0.1863

Species				
Code	Location Code	P ₂	P_3	P ₄
	601 – Deschutes			
МС	602 – Freemont			
IVIC	620 – Winema			
	799 – Warm Springs	1709.7229	5.8887	-0.2286
	601 – Deschutes			
MB	602 – Freemont			
IVID	620 – Winema			
	799 – Warm Springs	1709.7229	5.8887	-0.2286
	601 – Deschutes			
OS	602 – Freemont			
US	799 – Warm Springs	253.2541	4.7331	-0.4843
	620 – Winema	231.7163	6.7143	-0.6647
	601 – Deschutes			
ОН	602 – Freemont			
UH	620 – Winema			
	799 – Warm Springs	1709.7229	5.8887	-0.2286

Table 4.1.2 Coefficients by Crown Ratio Class for the logistic Wykoff equation $\{4.1.2\}$ in the SO variant. The default B_1 coefficient is listed.

Species		Crown Ratio Class								
Code	Coefficient	1	2	3	4	5	6	7	8	9
	B ₁	4.8898	4.8898	4.8898	4.8898	4.8898	4.8898	4.7886	4.7886	4.7886
WP	B ₂	-9.1437	-9.1437	-9.1437	-9.1437	-9.1437	-9.1437	-10.2263	-10.2263	-10.2263
	B ₁	5.0176	5.0176	5.0176	5.0176	5.0176	5.0176	5.0176	5.0176	5.0176
SP	B ₂	-13.3096	-13.3096	-13.3096	-13.3096	-13.3096	-13.3096	-13.3096	-13.3096	-13.3096
	B ₁	5.0796	5.0796	5.0796	5.1560	5.1560	5.1560	5.0594	5.0594	5.0594
DF	B ₂	-9.9304	-9.9304	-9.9304	-12.7011	-12.7011	-12.7011	-12.0763	-12.0763	-12.0763
	B ₁	4.7835	4.7835	4.7835	4.9516	4.9516	4.9516	4.9516	4.7776	4.7776
WF	B ₂	-9.6402	-9.6402	-9.6402	-11.4936	-11.4936	-11.4936	-11.4936	-10.8669	-10.8669
	B ₁	4.8901	4.8901	4.8901	4.8901	4.8901	4.8901	4.8901	4.8901	4.8901
МН	B ₂	-11.7015	-11.7015	-11.7015	-11.7015	-11.7015	-11.7015	-11.7015	-11.7015	-11.7015
	B ₁	4.5214	4.5214	4.5214	4.7459	4.7459	4.7459	4.7459	4.7459	4.7459
IC	B ₂	-10.4749	-10.4749	-10.4749	-13.1891	-13.1891	-13.1891	-13.1891	-13.1891	-13.1891
LP	B ₁	4.6409	4.6409	4.6900	4.6900	4.6900	4.6900	4.6312	4.6312	4.6312

Species		Crown Ratio Class								
Code	Coefficient	1	2	3	4	5	6	7	8	9
	B ₂	-6.9563	-6.9563	-7.6241	-7.6241	-7.6241	-7.6241	-8.7243	-8.7243	-8.7243
	B ₁	5.2149	5.2149	5.2149	5.2149	5.2149	5.2149	5.2149	5.2149	5.2149
ES	B ₂	-14.2828	-14.2828	-14.2828	-14.2828	-14.2828	-14.2828	-14.2828	-14.2828	-14.2828
	B ₁	5.2973	5.2973	5.2973	5.2973	5.2973	5.2973	5.2973	5.2973	5.2973
SH	B ₂	-17.204	-17.204	-17.204	-17.204	-17.204	-17.204	-17.204	-17.204	-17.204
	B ₁	4.6267	4.6267	4.7790	4.7790	4.7790	4.7790	4.5112	4.5112	4.5112
PP	B ₂	-8.4404	-8.4404	-9.9191	-9.9191	-9.9191	-9.9191	-9.9229	-9.9229	-9.9229
	B ₁	3.2000	3.2000	3.2000	3.2000	3.2000	3.2000	3.2000	3.2000	3.2000
WJ	B ₂	-5.000	-5.000	-5.000	-5.000	-5.000	-5.000	-5.000	-5.000	-5.000
	B ₁	4.7835	4.7835	4.7835	4.9516	4.9516	4.9516	4.9516	4.7776	4.7776
GF	B ₂	-9.6402	-9.6402	-9.6402	-11.4936	-11.4936	-11.4936	-11.4936	-10.8669	-10.8669
	B ₁	5.1088	5.1088	5.1088	5.0964	5.0964	5.0964	5.0146	5.0146	5.0146
AF	B ₂	-12.1890	-12.1890	-12.1890	-13.2189	-13.2189	-13.2189	-13.6008	-13.6008	-13.6008
	B ₁	5.0320	5.0320	5.0320	5.0320	5.0320	5.0320	5.0320	5.0320	5.0320
SF	B ₂	-10.482	-10.482	-10.482	-10.482	-10.482	-10.482	-10.482	-10.482	-10.482
	B ₁	5.3270	5.3270	5.3270	5.3270	5.3270	5.3270	5.3270	5.3270	5.3270
NF	B ₂	-15.450	-15.450	-15.450	-15.450	-15.450	-15.450	-15.450	-15.450	-15.450
	B ₁	4.1920	4.1920	4.1920	4.1920	4.1920	4.1920	4.1920	4.1920	4.1920
WB	B ₂	-5.165	-5.165	-5.165	-5.165	-5.165	-5.165	-5.165	-5.165	-5.165
	B ₁	4.9610	4.9610	4.9610	4.9610	4.9610	4.9610	4.9610	4.9610	4.9610
WL	B ₂	-8.247	-8.247	-8.247	-8.247	-8.247	-8.247	-8.247	-8.247	-8.247
	B ₁	4.8960	4.8960	4.8960	4.8960	4.8960	4.8960	4.8960	4.8960	4.8960
RC	B ₂	-8.391	-8.391	-8.391	-8.391	-8.391	-8.391	-8.391	-8.391	-8.391
	B ₁	5.2980	5.2980	5.2980	5.2980	5.2980	5.2980	5.2980	5.2980	5.2980
WH	B ₂	-13.240	-13.240	-13.240	-13.240	-13.240	-13.240	-13.240	-13.240	-13.240
	B ₁	5.1880	5.1880	5.1880	5.1880	5.1880	5.1880	5.1880	5.1880	5.1880
PY	B ₂	-13.801	-13.801	-13.801	-13.801	-13.801	-13.801	-13.801	-13.801	-13.801
	B ₁	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520
WA	B ₂	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576
RA	B ₁	4.8860	4.8860	4.8860	4.8860	4.8860	4.8860	4.8860	4.8860	4.8860

Species		Crown Ratio Class								
Code	Coefficient	1	2	3	4	5	6	7	8	9
	B ₂	-8.792	-8.792	-8.792	-8.792	-8.792	-8.792	-8.792	-8.792	-8.792
	B ₁	4.7000	4.7000	4.7000	4.7000	4.7000	4.7000	4.7000	4.7000	4.7000
BM	B ₂	-6.326	-6.326	-6.326	-6.326	-6.326	-6.326	-6.326	-6.326	-6.326
	B ₁	4.4421	4.4421	4.4421	4.4421	4.4421	4.4421	4.4421	4.4421	4.4421
AS	B ₂	-6.540	-6.540	-6.540	-6.540	-6.540	-6.540	-6.540	-6.540	-6.540
	B ₁	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520
CW	B ₂	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576
	B ₁	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520
СН	B ₂	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576
	B ₁	3.8314	3.8314	3.8314	3.8314	3.8314	3.8314	3.8314	3.8314	3.8314
WO	B ₂	-4.822	-4.822	-4.822	-4.822	-4.822	-4.822	-4.822	-4.822	-4.822
	B ₁	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520
WI	B ₂	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576
	B ₁	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520
GC	B ₂	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576
	B ₁	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520
MC	B ₂	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576
	B ₁	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520
MB	B ₂	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576
	B ₁	5.0796	5.0796	5.0796	5.1560	5.1560	5.1560	5.0594	5.0594	5.0594
OS	B ₂	-9.9304	-9.9304	-9.9304	-12.7011	-12.7011	-12.7011	-12.0763	-12.0763	-12.0763
	B ₁	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520	5.1520
ОН	B ₂	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576	-13.576

Table 4.1.3 Coefficients for height-diameter equations $\{4.1.3\}$ and $\{4.1.4\}$ in the SO variant.

Species					
Code	H ₁	H ₂	H ₃	H ₄	H ₅
NF	1.7100	0.2943	0	0	0.1054
WH	1.3608	0.6151	0	0.0442	0.0829
PY	1.5907	0.3040	0	0	0
WA	0.0994	4.9767	0	0	0
RA	0.0994	4.9767	0	0	0

Species					
Code	H ₁	H ₂	H ₃	H ₄	H ₅
BM	0.0994	4.9767	0	0	0
CW	0.0994	4.9767	0	0	0
CH	0.0994	4.9767	0	0	0
WI	0.0994	4.9767	0	0	0
GC	0.0994	4.9767	0	0	0
MC	0.0994	4.9767	0	0	0
MB	0.0994	4.9767	0	0	0
ОН	0.0994	4.9767	0	0	0

4.2 Bark Ratio Relationships

Bark ratio estimates are used to convert between diameter outside bark and diameter inside bark in various parts of the model. In the SO variant, bark ratio values are determined using estimates from DIB equations or by setting a constant value. Equations used in the SO variant are shown in equations $\{4.2.1\} - \{4.2.4\}$. Coefficients (b_1 and b_2) and equation reference for these equations by species are shown in table 4.2.1.

 $\{4.2.1\}$ DIB = $b_1 * DBH^b2$; BRATIO = DIB / DBH

 $\{4.2.2\}$ DIB = $b_1 + (b_2 * DBH)$; BRATIO = DIB / DBH

 $\{4.2.3\}$ BRATIO = b_1

 $\{4.2.4\}$ BRATIO = $b_1 - b_2 * (1/DBH)$

where:

BRATIO is species-specific bark ratio (bounded to $0.80 \le BRATIO \le 0.99$)

DBH is tree diameter at breast height

DIB is tree diameter inside bark at breast height

b₁, b₂ are species-specific coefficients shown in table 4.2.1

Table 4.2.1 Coefficients and equation reference for bark ratio equations $\{4.2.1\}$ – $\{4.2.4\}$ in the SO variant.

Species			
Code	b ₁	b ₂	Equation Used
WP	0.964	0	{4.2.3}
SP	0.851	0	{4.2.3}
DF	0.867	0	{4.2.3}
WF	0.915	0	{4.2.3}
MH	0.934	0	{4.2.3}
IC	0.950	0	{4.2.3}
LP	0.969	0	{4.2.3}
ES	0.956	0	{4.2.3}
SH	-0.1593	0.8911	{4.2.2}

Species			
Code	b ₁	b ₂	Equation Used
PP	0.890	0	{4.2.3}
WJ	0.9002	0.3089	{4.2.4}
GF	0.915	0	{4.2.3}
AF	0.937	0	{4.2.3}
SF	0.903	0	{4.2.3}
NF	0.904973	1.0	{4.2.1}
WB	0.969	0	{4.2.3}
WL	0.851	0	{4.2.3}
RC	0.950	0	{4.2.3}
WH	0.933710	1.0	{4.2.1}
PY	0.933290	1.0	{4.2.1}
WA	0.075256	0.949670	{4.2.2}
RA	0.075256	0.949670	{4.2.2}
BM	0.083600	0.949670	{4.2.2}
AS	0.950	0	{4.2.3}
CW	0.075256	0.949670	{4.2.2}
CH	0.075256	0.949670	{4.2.2}
WO	-0.30722	0.95956	{4.2.2}
WI	0.075256	0.949670	{4.2.2}
GC	0.075256	0.949670	{4.2.2}
MC	0.90	1.0	{4.2.1}
MB	0.90	1.0	{4.2.1}
OS	0.867	0	{4.2.3}
ОН	0.90	1.0	{4.2.1}

^{*} DBH is bounded between 1.0 and 19.0

4.3 Crown Ratio Relationships

Crown ratio equations are used for three purposes in FVS: (1) to estimate tree crown ratios missing from the input data for both live and dead trees; (2) to estimate change in crown ratio from cycle to cycle for live trees; and (3) to estimate initial crown ratios for regenerating trees established during a simulation.

4.3.1 Crown Ratio Dubbing

In the SO variant, crown ratios missing in the input data are predicted using different equations depending on tree species and size. All live trees less than 1.0" in diameter and dead trees of all sizes use equation {4.3.1.1} and one of the equations listed below, {4.3.1.2} or {4.3.1.3}, to compute crown ratio. Equation number used by species is found in table 4.3.1.1. Equation coefficients are found in table 4.3.1.2.

$${4.3.1.1} X = R_1 + R_2 * DBH + R_3 * HT + R_4 * BA + R_5 * PCCF + R_6 * HT_{Avg} / HT + R_7 * HT_{Avg} + R_8 * BA * PCCF + R_9 * MAI$$

 $\{4.3.1.2\}$ $CR = 1 / (1 + \exp(X + N(0,SD)))$ where absolute value of (X + N(0,SD)) < 86 $\{4.3.1.3\}$ CR = ((X - 1) * 10.0 + 1.0) / 100

where:

CR is crown ratio expressed as a proportion (bounded to 0.05 < *CR* < 0.95)

DBH is tree diameter at breast height

HT is tree height

BA is total stand basal area

PCCF is crown competition factor on the inventory point where the tree is established

HT_{Ava} is average height of the 40 largest diameter trees in the stand

MAI is stand mean annual increment

N(0,SD) is a random increment from a normal distribution with a mean of 0 and a standard

deviation of SD

 $R_1 - R_9$ are species-specific coefficients shown in tables 4.3.1.1 and 4.3.1.2

Table 4.3.1.1 CR equation used in the SO variant.

Species Code	Equation Number	Species Code		uation umber		Species Code	Equation Number
WP	{4.3.1.2}	GF	{4	.3.1.2}		ВМ	{4.3.1.3}
SP	{4.3.1.2}	AF	{4	.3.1.2}		AS	{4.3.1.2}
DF	{4.3.1.2}	SF	{4	.3.1.2}		CW	{4.3.1.3}
WF	{4.3.1.2}	NF	{4	.3.1.3}		СН	{4.3.1.3}
MH	{4.3.1.2}	WB	{4	.3.1.2}		WO	{4.3.1.3}
IC	{4.3.1.2}	WL	{4	.3.1.2}		WI	{4.3.1.3}
LP	{4.3.1.2}	RC	{4	.3.1.2}		GC	{4.3.1.3}
ES	{4.3.1.2}	WH	{4	.3.1.3}		MC	{4.3.1.3}
SH	{4.3.1.3}	PY	{4	.3.1.3}		MB	{4.3.1.3}
PP	{4.3.1.2}	WA	{4	.3.1.3}		OS	{4.3.1.2}
WJ	{4.3.1.2}	RA	{4	.3.1.3}		ОН	{4.3.1.3}

Table 4.3.1.2 Coefficients for the crown ratio equation {4.3.1.1} in the SO variant.

Species					Model Coe	efficients				
Code	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	R ₉	SD
WP	-1.66949	-0.209765	0	0.003359	0.011032	0	0.017727	-0.000053	0.014098	0.5
SP	-1.66949	-0.209765	0	0.003359	0.011032	0	0.017727	-0.000053	0.014098	0.5
DF	-0.426688	-0.093105	0.022409	0.002633	0	-0.045532	0	0.000022	-0.013115	0.6957
WF	-0.426688	-0.093105	0.022409	0.002633	0	-0.045532	0	0.000022	-0.013115	0.6957
MH	-0.426688	-0.093105	0.022409	0.002633	0	-0.045532	0	0.000022	-0.013115	0.6957
IC	-0.426688	-0.093105	0.022409	0.002633	0	-0.045532	0	0.000022	-0.013115	0.931
LP	-1.66949	-0.209765	0	0.003359	0.011032	0	0.017727	-0.000053	0.014098	0.6124
ES	-0.426688	-0.093105	0.022409	0.002633	0	-0.045532	0	0.000022	-0.013115	0.6957
SH	8.042774	0	0.007198	-0.016163	0	0	0	0	0	1.3167
PP	-1.66949	-0.209765	0	0.003359	0.011032	0	0.017727	-0.000053	0.014098	0.4942

Species					Model Coe	efficients				
Code	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R_7	R ₈	R ₉	SD
WJ	-2.19723	0	0	0	0	0	0	0	0	0.2
GF	-0.426688	-0.093105	0.022409	0.002633	0	-0.045532	0	0.000022	-0.013115	0.6957
AF	-0.426688	-0.093105	0.022409	0.002633	0	-0.045532	0	0.000022	-0.013115	0.6957
SF	-0.426688	-0.093105	0.022409	0.002633	0	-0.045532	0	0.000022	-0.013115	0.6957
NF	8.042774	0	0.007198	-0.016163	0	0	0	0	0	1.3167
WB	-1.66949	-0.209765	0	0.003359	0.011032	0	0.017727	-0.000053	0.014098	0.5
WL	-1.66949	-0.209765	0	0.003359	0.011032	0	0.017727	-0.000053	0.014098	0.5
RC	-0.426688	-0.093105	0.022409	0.002633	0	-0.045532	0	0.000022	-0.013115	0.6957
WH	7.558538	0	-0.015637	-0.009064	0	0	0	0	0	1.9658
PY	6.489813	0	-0.029815	-0.009276	0	0	0	0	0	2.0426
WA	5.0	0	0	0	0	0	0	0	0	0.5
RA	5.0	0	0	0	0	0	0	0	0	0.5
BM	5.0	0	0	0	0	0	0	0	0	0.5
AS	-0.426688	-0.093105	0.022409	0.002633	0	-0.045532	0	0.000022	-0.013115	0.931
CW	5.0	0	0	0	0	0	0	0	0	0.5
CH	5.0	0	0	0	0	0	0	0	0	0.5
WO	6.489813	0	-0.029815	-0.009276	0	0	0	0	0	2.0426
WI	5.0	0	0	0	0	0	0	0	0	0.5
GC	5.0	0	0	0	0	0	0	0	0	0.5
MC	5.0	0	0	0	0	0	0	0	0	0.5
MB	5.0	0	0	0	0	0	0	0	0	0.5
OS	-0.426688	-0.093105	0.022409	0.002633	0	-0.045532	0	0.000022	-0.013115	0.6957
ОН	5	0	0	0	0	0	0	0	0	0.5

A Weibull-based crown model developed by Dixon (1985) as described in Dixon (2002) is used to predict crown ratio for all live trees 1.0 inch in diameter or larger. To estimate crown ratio using this methodology, the average stand crown ratio is estimated from stand density index using equation {4.3.1.4}. Weibull parameters are then estimated from the average stand crown ratio using equations in equation set {4.3.1.5}. Individual tree crown ratio is then set from the Weibull distribution, equation {4.3.1.6} based on a tree's relative position in the diameter distribution and multiplied by a scale factor, shown in equation {4.3.1.7}, which accounts for stand density. Crowns estimated from the Weibull distribution are bounded to be between the 5 and 95 percentile points of the specified Weibull distribution. Equation coefficients for each species are shown in table 4.3.1.3.

{4.3.1.4}
$$ACR = d_0 + d_1 * RELSDI * 100.0$$

where: RELSDI = SDI_{stand} / SDI_{max}
{4.3.1.5} Weibull parameters A, B, and C are estimated from average crown ratio $A = a_0$
 $B = b_0 + b_1 * ACR \quad (B \ge 1)$
 $C = c_0 + c_1 * ACR \quad (C \ge 2)$
{4.3.1.6} $Y = 1 - \exp(-((X-A)/B)^C)$
{4.3.1.7} $SCALE = 1 - (0.00167 * (CCF - 100))$

where:

ACR is predicted average stand crown ratio for the species

 SDI_{stand} is stand density index of the stand SDI_{max} is maximum stand density index

A, B, C are parameters of the Weibull crown ratio distribution
X is a tree's crown ratio expressed as a percent / 10

Y is a trees rank in the diameter distribution (1 = smallest; ITRN = largest)

divided by the total number of trees (ITRN) multiplied by SCALE

SCALE is a density dependent scaling factor (bounded to $0.3 \le SCALE \le 1.0$)

CCF is stand crown competition factor

 a_0 , $b_{0\text{-}1}$, $c_{0\text{-}1}$, and $d_{0\text{-}1}$ are species-specific coefficients shown in table 4.3.1.3

Table 4.3.1.3 Coefficients for the Weibull parameter equations {4.3.1.4} and {4.3.1.5} in the SO variant.

Species			M	odel Coefficie	nts		
Code	a_{0}	b ₀	b_1	C ₀	C ₁	d_0	d ₁
WP	2	-2.12713	1.10526	2.77	0	7.16846	-0.02375
SP	2	-2.27296	1.12434	3.34	0	6.597	-0.01954
DF	1	-1.19297	1.12928	3.42	0	5.52653	0
WF	0	0.06593	1.09624	3.71	0	6.61291	-0.02182
MH	1	-0.94138	1.08256	3.47	0	7.45097	-0.02406
IC	1	-1.38636	1.16801	3.02	0	6.17373	-0.01795
LP	0	0.07609	1.10184	3.01	0	5.50719	-0.01833
ES	1	-0.91567	1.06469	3.5	0	6.774	0
SH	0	0.16601	1.0815	0.9142	0.45768	6.14578	-0.02781
PP	0	0.24916	1.04831	4.36	0	6.41166	-0.02041
WJ	0	0.07609	1.10184	3.01	0	7.238	0
GF	0	0.06593	1.09624	3.71	0	6.61291	-0.02182
AF	1	-0.91567	1.06469	3.5	0	6.12779	-0.01269
SF	0	-0.09734	1.14675	2.716	0	4.79981	-0.00653
NF	0	-0.13581	1.14771	3.02	0	5.56886	-0.02129
WB	1	-0.82631	1.06217	3.31429	0	6.19911	-0.02216
WL	0	0.00603	1.12276	2.734	0	4.98675	-0.02466
RC	0	-0.01129	1.11665	3.355	0	5.74915	-0.0109
WH	0	0.49085	1.01414	3.16	0	5.48853	-0.00717
PY	0	0.19605	1.07391	0.35	0.62015	5.41743	-0.01161
WA	0	-0.2383	1.18016	3.04	0	4.62512	-0.01604
RA	1	-1.11274	1.12314	2.53	0	4.12048	-0.00636
BM	0	-0.2383	1.18016	3.04	0	4.62512	-0.01604
AS	0	-0.08414	1.14765	2.775	0	4.01678	-0.01516
CW	0	-0.2383	1.18016	3.04	0	4.62512	-0.01604
СН	0	-0.2383	1.18016	3.04	0	4.62512	-0.01604
WO	0	0.06607	1.10705	2.04714	0.1507	6.82187	-0.02247
WI	0	-0.2383	1.18016	3.04	0	4.62512	-0.01604
GC	0	-0.2383	1.18016	3.04	0	4.62512	-0.01604
MC	0	-0.2383	1.18016	3.04	0	4.62512	-0.01604

Species		Model Coefficients									
Code	a_0	b _o	b ₁	C ₀	c ₁	d _o	d_1				
MB	0	-0.2383	1.18016	3.04	0	4.62512	-0.01604				
OS	1	-1.19297	1.12928	3.42	0	5.52653	0				
ОН	0	-0.2383	1.18016	3.04	0	4.62512	-0.01604				

4.3.2 Crown Ratio Change

Crown ratio change is estimated after growth, mortality and regeneration are estimated during a projection cycle. Crown ratio change is the difference between the crown ratio at the beginning of the cycle and the predicted crown ratio at the end of the cycle. Crown ratio predicted at the end of the projection cycle is estimated for live tree records using the Weibull distribution, equations $\{4.3.1.4\}$ - $\{4.3.1.7\}$, for all species. Crown change is checked to make sure it doesn't exceed the change possible if all height growth produces new crown. Crown change is further bounded to 1% per year for the length of the cycle to avoid drastic changes in crown ratio. Equations $\{4.3.1.1\}$ – $\{4.3.1.3\}$ are not used when estimating crown ratio change.

4.3.3 Crown Ratio for Newly Established Trees

Crown ratios for newly established trees during regeneration are estimated using equation {4.3.3.1}. A random component is added in equation {4.3.3.1} to ensure that not all newly established trees are assigned exactly the same crown ratio.

 $\{4.3.3.1\}$ CR = 0.89722 - 0.0000461 * PCCF + RAN

where:

CR is crown ratio expressed as a proportion (bounded to 0.2 < CR < 0.9)

PCCF is crown competition factor on the inventory point where the tree is established

RAN is a small random component

4.4 Crown Width Relationships

The SO variant calculates the maximum crown width for each individual tree, based on individual tree and stand attributes. Crown width for each tree is reported in the tree list output table and used for percent canopy cover (*PCC*) and crown competition factor (*CCF*) calculations in the model.

4.4.1 Region 5 Crown Width

Crown width in region 5 forests is calculated by using equations $\{4.4.1.1\} - \{4.4.1.5\}$. If a tree has a *DBH* greater than or equal to its threshold diameter (given as *DBH_T*), then it uses equation $\{4.4.1.1\}$, $\{4.4.1.2\}$, or $\{4.4.1.3\}$ depending on the species. If a tree has a *DBH* less than its threshold diameter, then it uses equation $\{4.4.1.4\}$ or $\{4.4.1.5\}$ depending on the height of the tree. Coefficients, equation reference, and threshold diameter values for these equations are shown in table 4.4.1.1 by species.

{4.4.1.2} DBH_> DBHT: CW = a1 * DBH^a2

 $\{4.4.1.3\}$ DBH \geq DBHT: CW = a1 + a2 * DBH + a3 * DBH^2

{4.4.1.4} HT < 4.5' and DBH < DBHT: CW = HT * s1

 $\{4.4.1.5\}$ HT > 4.5' and DBH < DBHT: CW = d1 + d2 * DBH

where:

<u>CW</u> is maximum tree crown width <u>DBH</u> is tree diameter at breast height

<u>DBHT</u> is threshold diameter shown in table 4.4.1.1

HT is tree height

 s_1 , d_{1-2} , and a_{1-3} are species-specific coefficients shown in table 4.4.1.1

Table 4.4.1.1 Coefficients and equation reference for equations $\{4.4.1.1\} - \{4.4.1.5\}$ in the SO variant.

Species	Equation							
Code	Used*	DBH_T	d ₁	d_2	a ₁	a ₂	a ₃	S ₁
WP	{4.4.1.1}	7.6	3.5	0.329	-0.997	0.92	0	0.7778
SP	{4.4.1.1}	7.4	3.5	0.338	-1.476	1.01	0	0.7778
DF	{4.4.1.1}	5	3.62	1.37	6.81	0.732	0	0.7778
WF	{4.4.1.1}	5	3.26	1.103	5.82	0.591	0	0.7778
MH	{4.4.1.1}	5	3.5	0.852	4.72	0.608	0	0.7778
IC	{4.4.1.1}	5	3.5	1.192	7.11	0.47	0	0.7778
LP	{4.4.1.2}	5	3.5	0.6492	1.91	0.784	0	0.7778
ES	{4.4.1.1}	5	3.5	2.4	6.5	1.8	0	0.7778
SH	{4.4.1.1}	5	3.5	1.063	6.71	0.421	0	0.7778
PP	{4.4.1.2}	5	3.77	0.7756	2.24	0.763	0	0.7778
WJ	{4.4.1.1}	5	3.5	1.1	6	0.6	0	0.7778
GF	{4.4.1.1}	5	3.5	1.548	6.19	1.01	0	0.7778
AF	{4.4.1.1}	5	3.5	1.063	6.71	0.421	0	0.7778
SF	{4.4.1.1}	5	3.26	1.103	5.82	0.591	0	0.7778
NF	{4.4.1.1}	5	3.26	1.103	5.82	0.591	0	0.7778
WB	{4.4.1.2}	5	3.5	0.8496	2.37	0.736	0	0.7778
WL	{4.4.1.1}	5	3.5	0.852	4.72	0.608	0	0.7778
RC	{4.4.1.1}	5	3.5	1.7	4	1.6	0	0.7778
WH	{4.4.1.1}	5	3.5	1.624	4.57	1.41	0	0.7778
PY	{4.4.1.1}	5	3.5	1.56	4.2	1.42	0	0.7778
WA	{4.4.1.1}	5	2.5	2.63	8	1.53	0	0.5556
RA	{4.4.1.1}	5	2.5	2.63	8	1.53	0	0.5556
BM	{4.4.1.1}	5	2.5	1.4	2	1.5	0	0.5556
AS	{4.4.1.1}	5	2.5	1.22	0.5	1.62	0	0.5556
CW	{4.4.1.1}	5	2.5	1.22	0.5	1.62	0	0.5556
CH	{4.4.1.1}	5	2.5	1.4	2	1.5	0	0.5556
WO	{4.4.1.1}	5	2.5	2.036	3.08	1.92	0	0.5556
WI	{4.4.1.1}	5	2.5	1.4	2	1.5	0	0.5556
GC	{4.4.1.3}	5	2.15	1.646	2.98	1.55	-0.014	0.5556
MC	{4.4.1.1}	5	2.5	1.4	2	1.5	0	0.5556
MB	{4.4.1.1}	5	2.5	1.4	2	1.5	0	0.5556
OS	{4.4.1.1}	5	3.5	1.1	6	0.6	0	0.7778

Species Code	Equation Used*	DBH _T	d ₁	d ₂	a ₁	a ₂	a ₃	S ₁
ОН	{4.4.1.1}	5	2.5	1.4	2	1.5	0	0.5556

^{*}Equation refers to the species-specific equation used when $DBH \ge DBH_T$

4.4.2 Region 6 and Warm Springs Reservation Crown Width

Crown width for Region 6 forests and the Warm Springs Reservation is calculated using equations {4.4.2.1} – {4.4.2.6}, and coefficients for these equations are shown in table 4.4.2.1. The minimum diameter and bounds for certain data values are given in table 4.4.2.2. Equation numbers in table 4.4.2.1 are given with the first three digits representing the FIA species code, and the last two digits representing the equation source.

```
DBH \ge MinD: CW = a_1 + (a_2 * DBH) + (a_3 * DBH^2) + (a_4 * CR\%) + (a_5 * BA) + (a_6 * HI)
                        DBH < MinD: CW = [a_1 + (a_2 * MinD) + (a_3 * MinD^2) + (a_4 * CR\%) + (a_5 * BA) + (a_6 * HI)] * (DBH / (DBH / CR\%) + (a_5 * BA) + (a_6 * HI)] * (DBH / (DBH / CR\%) + (a_5 * BA) + (a_6 * HI)] * (DBH / (DBH / CR\%) + (a_5 * BA) + (a_6 * HI)] * (DBH / (DBH / CR\%) + (a_5 * BA) + (a_6 * HI)] * (DBH / (DBH / CR\%) + (a_6 * HI)) * (DBH / (DBH / CR\%) + (a_6 * HI)) * (DBH / (DBH / CR\%) + (a_6 * HI)) * (DBH / (DBH / CR\%) + (a_6 * HI)) * (DBH / (DBH / CR\%) + (a_6 * HI)) * (DBH / (DBH / CR\%) + (a_6 * HI)) * (DBH / CR\%) * (DB
{4.4.2.2} Crookston (2003); Equation 03 (used only for Mountain Hemlock)
                        HT < 5.0: CW = [0.8 * HT * MAX(0.5, CR * 0.01)] * [1 - (HT - 5) * 0.1] * a<sub>1</sub> * <math>DBH^a_2 * HT^a_3 * CL^a_4 
                                                                                                                                  (HT-5)*0.1
                        5.0 \le HT < 15.0: CW = 0.8 * HT * MAX(0.5, CR * 0.01)
                        HT > 15.0: CW = a_1 * (DBH^a_2) * (HT^a_3) * (CL^a_4)
{4.4.2.3} Crookston (2003); Equation 03
                        DBH > MinD: CW = a_1 * exp(a_2 + (a_3 * ln(CL)) + (a_4 * ln(DBH)) + (a_5 * ln(HT)) + (a_6 * ln(BA)))
                        DBH < MinD: CW = (a_1 * exp (a_2 + (a_3 * ln(CL)) + (a_4 * ln(MinD)) + (a_5 * ln(HT)) + (a_6 * ln(BA))))* (DBH)
                                                                                                                                                          / MinD)
{4.4.2.4} Crookston (2005); Equation 04
                        DBH > MinD: CW = a_1 * DBH^a_2
                        DBH < MinD: CW = [a_1 * MinD^a_2] * (DBH / MinD)
{4.4.2.5} Crookston (2005); Equation 05
                        DBH > MinD: CW = (a_1 * BF) * DBH^a_2 * HT^a_3 * CL^a_4 * (BA + 1.0)^a_5 * exp(EL)^a_6
                        DBH < MinD: CW = [CW = (a_1 * BF) * MinD^a_2 * HT^a_3 * CL^a_4 * (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / CW = (BA + 1.0)^a_5 * exp(EL)^a_6]
```

{4.4.2.6} Donnelly (1996); Equation 06

{4.4.2.1} Bechtold (2004); Equation 02

 $DBH \ge MinD \ CW = a_1 * DBH^a_2$ $DBH < MinD \ CW = [a_1 * MinD^a_2] * (DBH / MinD)$

MinD)

where:

BF is a species-specific coefficient based on forest code shown in table 4.4.2.3 *CW* is tree maximum crown width CL is tree crown length

CR% is crown ratio expressed as a percent DBH is tree diameter at breast height

HT is tree height

BA is total stand basal area

EL is stand elevation in hundreds of feet

MinD is the minimum diameter HI is the Hopkins Index

HI = (ELEVATION - 5449) / 100) * 1.0 + (LATITUDE - 42.16) * 4.0 + (-116.39 - LONGITUDE)

* 1.25

 $a_1 - a_6$ are species-specific coefficients shown in table 4.4.2.1

Table 4.4.2.1 Coefficients for crown width equations {4.4.2.1}-{4.4.2.6} in the SO variant.

Species	Equation						
Code	Number*	a ₁	a_2	a ₃	a ₄	a ₅	a ₆
WP	11905	5.3822	0.57896	-0.19579	0.14875	0	-0.00685
SP	11705	3.593	0.63503	-0.22766	0.17827	0.04267	-0.0029
DF	20205	6.0227	0.54361	-0.20669	0.20395	-0.00644	-0.00378
WF	01505	5.0312	0.5368	-0.18957	0.16199	0.04385	-0.00651
MH	26403	6.90396	0.55645	-0.28509	0.2043	0	0
IC	08105	5.0446	0.47419	-0.13917	0.1423	0.04838	-0.00616
LP	10805	6.6941	0.8198	-0.36992	0.17722	-0.01202	-0.00882
ES	09305	6.7575	0.55048	-0.25204	0.19002	0	-0.00313
SH	02105	2.317	0.4788	-0.06093	0.15482	0.05182	0
PP	12205	4.7762	0.74126	-0.28734	0.17137	-0.00602	-0.00209
WJ	06405	5.1486	0.73636	-0.46927	0.39114	-0.05429	0
GF	01703	1.0303	1.14079	0.20904	0.38787	0	0
AF	01905	5.8827	0.51479	-0.21501	0.17916	0.03277	-0.00828
SF	01105	4.4799	0.45976	-0.10425	0.11866	0.06762	-0.00715
NF	02206	3.0614	0.6276	0	0	0	0
WB	10105	2.2354	0.6668	-0.11658	0.16927	0	0
WL	07303	1.02478	0.99889	0.19422	0.59423	-0.09078	-0.02341
RC	24205	6.2382	0.29517	-0.10673	0.23219	0.05341	-0.00787
WH	26305	6.0384	0.51581	-0.21349	0.17468	0.06143	-0.00571
PY	23104	6.1297	0.45424	0	0	0	0
WA	31206	7.5183	0.4461	0	0	0	0
RA	35106	7.0806	0.4771	0	0	0	0
BM	31206	7.5183	0.4461	0	0	0	0
AS	74605	4.7961	0.64167	-0.18695	0.18581	0	0
CW	74705	4.4327	0.41505	-0.23264	0.41477	0	0
СН	35106	7.0806	0.4771	0	0	0	0
WO	81505	2.4857	0.70862	0	0.10168	0	0
WI	31206	7.5183	0.4461	0	0	0	0

Species Code	Equation Number*	a ₁	a ₂	a ₃	a ₄	a ₅	a ₆
GC	63102	3.115	0.7966	0	0.0745	-0.0053	0.0523
MC	47502	4.0105	0.8611	0	0	0	-0.0431
MB	47502	4.0105	0.8611	0	0	0	-0.0431
OS	12205	4.7762	0.74126	-0.28734	0.17137	-0.00602	-0.00209
ОН	31206	7.5183	0.4461	0	0	0	0

^{*}Equation number is a combination of the species FIA code (###) and equation source (##).

Table 4.4.2.2 $\it MinD$ values and data bounds for equations $\{4.4.2.1\}$ – $\{4.4.2.6\}$ in the SO variant.

Species	Equation						
Code	Number*	MinD	EL min	EL max	<i>HI</i> min	HI max	CW max
WP	11905	1.0	10	75	n/a	n/a	35
SP	11705	1.0	5	75	n/a	n/a	56
DF	20205	1.0	1	75	n/a	n/a	80
WF	01505	1.0	2	75	n/a	n/a	35
МН	26403	n/a	n/a	n/a	n/a	n/a	45
IC	08105	1.0	5	62	n/a	n/a	78
LP	10805	1.0	1	79	n/a	n/a	40
ES	09305	1.0	1	85	n/a	n/a	40
SH	02105	1.0	n/a	n/a	n/a	n/a	65
PP	12205	1.0	13	75	n/a	n/a	50
WJ	06405	1.0	n/a	n/a	n/a	n/a	36
GF	01703	1.0	n/a	n/a	n/a	n/a	40
AF	01905	1.0	10	85	n/a	n/a	30
SF	01105	1.0	4	72	n/a	n/a	33
NF	02206	1.0	n/a	n/a	n/a	n/a	40
WB	10105	1.0	n/a	n/a	n/a	n/a	40
WL	07303	1.0	n/a	n/a	n/a	n/a	40
RC	24205	1.0	1	72	n/a	n/a	45
WH	26305	1.0	1	72	n/a	n/a	54
PY	23104	1.0	n/a	n/a	n/a	n/a	30
WA	31206	1.0	n/a	n/a	n/a	n/a	30
RA	35106	1.0	n/a	n/a	n/a	n/a	35
BM	31206	1.0	n/a	n/a	n/a	n/a	30
AS	74605	1.0	n/a	n/a	n/a	n/a	45
CW	74705	1.0	n/a	n/a	n/a	n/a	56
СН	35106	1.0	n/a	n/a	n/a	n/a	35
WO	81505	1.0	n/a	n/a	n/a	n/a	39
WI	31206	1.0	n/a	n/a	n/a	n/a	30
GC	63102	5.0	n/a	n/a	-55	15	41
MC	47502	5.0	n/a	n/a	-37	27	29
MB	47502	5.0	n/a	n/a	-37	27	29

Species Code	Equation Number*	MinD	EL min	<i>EL</i> max	<i>HI</i> min	<i>HI</i> max	CW max
OS	12205	1.0	13	75	n/a	n/a	50
ОН	31206	1.0	n/a	n/a	n/a	n/a	30

Table 4.4.2.3 BF values for equation {4.4.2.5} in the SO variant.

	Location Code						
Species	601						
Code	799	602	620				
WP	1.000	1.090	1.090				
SP	1.048	1.000	1.048				
DF	1.055	1.000	1.184				
WF	1.044	1.044	1.095				
IC	0.837	1.000	1.000				
LP	1.000	1.114	1.050				
PP	0.918	0.946	0.951				
AF	0.936	1.000	1.000				
SF	1.000	1.000	1.000				
RC	1.000	1.000	1.000				
WH	1.097	1.000	1.000				
OS	1.000	1.000	1.000				

^{*}Any BF values not listed in Table 4.4.2.3 are assumed to be BF = 1.0

4.5 Crown Competition Factor

The SO variant uses crown competition factor (CCF) as a predictor variable in some growth relationships. Crown competition factor (Krajicek and others 1961) is a relative measurement of stand density that is based on tree diameters. Individual tree CCF_t values estimate the percentage of an acre that would be covered by the tree's crown if the tree were open-grown. Stand CCF is the summation of individual tree (CCF_t) values. A stand CCF value of 100 theoretically indicates that tree crowns will just touch in an unthinned, evenly spaced stand.

Crown competition factor is calculated using equations $\{4.5.1\} - \{4.5.5\}$. All species coefficients are shown in table 4.5.1. Crown competition factor for Shasta red fir (9) and Oregon white oak (27) is calculated using equation $\{4.5.5\}$ where crown width used in Region 5 forests is the stated equation in Section 4.4.1 and crown width used in Region 6 forests and the Warm Springs Reservation is found in equations $\{4.5.6\}$ and $\{4.5.7\}$.

Equation $\{4.5.4\}$ is used to calculate CCF_t for trees with DBH < 1.0 inch for species taken from the West Cascades (WC) variant. These species include noble fir, western hemlock, Pacific yew, white alder, red alder, bigleaf maple, black cottonwood, bitter cherry, willow species, giant chinquapin, curl-leaf mtn. mahogany, birchleaf mtn. mahogany, other hardwoods. Any other species except Shasta red fir and Oregon white oak use equations $\{4.5.2\}$ and $\{4.5.3\}$.

All species except Shasta red fir and Oregon white oak use equation $\{4.5.1\}$ to calculate crown competition factor when DBH > 1.0 inches.

$$\{4.5.1\}$$
 DBH ≥ 1.0 ": CCF_t = R₁ + (R₂ * DBH) + (R₃ * DBH^2)

$$\{4.5.2\}\ 0.1" < DBH < 1.0"$$
: $CCF_t = R_4 * DBH^R_5$

$$\{4.5.3\}$$
 DBH ≤ 0.1 ": *CCF*_t = 0.001

$$\{4.5.4\}$$
 DBH < 1.0": CCF_t = $(R_1 + R_2 + R_3) * DBH$

$$\{4.5.5\}$$
 CCF_t = 0.001803 * CW²

$$\{4.5.6\}$$
 HT > 4.5: $CW_t = B_1 * DBH ^B_2$

$$\{4.5.7\}$$
 HT < 4.5 : $CW_t = S_1*HT$

where:

 CCF_t is crown competition factor for an individual tree

CW is maximum tree crown width

DBH is tree diameter at breast height

 $R_1 - R_5$ are species-specific coefficients shown in table 4.5.1 B_1, B_2, S_1 are species-specific coeffecients shown in table 4.5.2

Table 4.5.1 Coefficients for *CCF* equations {4.5.1} – {4.5.5} in the SO variant.

Species		Model Coefficients					
Code	Equations Used	R ₁	R ₂	R ₃	R ₄	R ₅	
WP	${4.5.1} - {4.5.3}$	0.0186	0.0146	0.00288	0.009884	1.6667	
SP	${4.5.1} - {4.5.3}$	0.0392	0.018	0.00207	0.007244	1.8182	
DF	${4.5.1} - {4.5.3}$	0.0388	0.0269	0.00466	0.017299	1.5571	
WF	${4.5.1} - {4.5.3}$	0.069	0.0225	0.00183	0.015248	1.7333	
MH	${4.5.1} - {4.5.3}$	0.03	0.018	0.00281	0.011109	1.725	
IC	${4.5.1} - {4.5.3}$	0.0194	0.0142	0.00261	0.008915	1.78	
LP	${4.5.1} - {4.5.3}$	0.01925	0.01676	0.00365	0.009187	1.76	
ES	${4.5.1} - {4.5.3}$	0.03	0.0173	0.00259	0.007875	1.736	
PP	${4.5.1} - {4.5.3}$	0.0219	0.0169	0.00325	0.007813	1.778	
WJ	${4.5.1} - {4.5.3}$	0.01925	0.01676	0.00365	0.009187	1.76	
GF	${4.5.1} - {4.5.3}$	0.069	0.0225	0.00183	0.015248	1.7333	
AF	${4.5.1} - {4.5.3}$	0.0172	0.00877	0.00112	0.011402	1.756	
SF	$\{4.5.1\} - \{4.5.3\}$	0.04	0.027	0.00405	0.015248	1.7333	
NF	{4.5.1} & {4.5.4}	0.02453	0.01147	0.00134	0	0	
WB	${4.5.1} - {4.5.3}$	0.01925	0.01676	0.00365	0.009187	1.76	
WL	${4.5.1} - {4.5.3}$	0.02	0.0148	0.00338	0.007244	1.8182	
RC	${4.5.1} - {4.5.3}$	0.03	0.0238	0.0049	0.008915	1.78	
WH	{4.5.1} & {4.5.4}	0.03758	0.02329	0.00361	0	0	
PY	{4.5.1} & {4.5.4}	0.0204	0.0246	0.0074	0	0	
WA	{4.5.1} & {4.5.4}	0.03561	0.0273	0.00524	0	0	

Species			M	lodel Coeffi	cients	
Code	Equations Used	R ₁	R_2	R ₃	R ₄	R ₅
RA	{4.5.1} & {4.5.4}	0.03561	0.0273	0.00524	0	0
BM	{4.5.1} & {4.5.4}	0.0204	0.0246	0.0074	0	0
AS	${4.5.1} - {4.5.3}$	0.03	0.0238	0.0049	0.008915	1.78
CW	{4.5.1} & {4.5.4}	0.0204	0.0246	0.0074	0	0
CH	{4.5.1} & {4.5.4}	0.0204	0.0246	0.0074	0	0
WI	{4.5.1} & {4.5.4}	0.0204	0.0246	0.0074	0	0
GC	{4.5.1} & {4.5.4}	0.0204	0.0246	0.0074	0	0
MC	{4.5.1} & {4.5.4}	0.0204	0.0246	0.0074	0	0
MB	{4.5.1} & {4.5.4}	0.0204	0.0246	0.0074	0	0
OS	${4.5.1} - {4.5.3}$	0.0388	0.0269	0.00466	0.017299	1.5571
ОН	{4.5.1} & {4.5.4}	0.0204	0.0246	0.0074	0	0

Table 4.5.2 Coefficients for CW equations used in calculating CCF in the SO variant.

Species	Model Coefficients							
Code	B ₁ B ₂ H ₁							
SH	3.1146	0.5780	0.345					
WO	2.4922	0.8544	0.140					

4.6 Small Tree Growth Relationships

Trees are considered "small trees" for FVS modeling purposes when they are smaller than some threshold diameter. The threshold diameter is set to 90.0" for western juniper and 3.0" for all other species in the SO variant. As a result, western juniper trees of all sizes use diameter and height growth equations given in this section.

The small tree model is height-growth driven, meaning height growth is estimated first and diameter growth is estimated from height growth. These relationships are discussed in the following sections.

4.6.1 Small Tree Height Growth

The small-tree height increment model predicts 5-year or 10-year height growth (*HTG*) for small trees, depending on species. Height growth is predicted directly for Shasta red fir, quaking aspen, and Oregon white oak, and is a product of potential height growth and one, or more, modifier functions for all other species.

For western white pine, sugar pine, Douglas-fir, white fir, mountain hemlock, incense cedar, lodgepole pine, Engelmann spruce, ponderosa pine, western juniper, grand fir, subalpine fir, Pacific silver fir, noble fir, whitebark pine, western larch, western redcedar, western hemlock, Pacific yew, white alder, red alder, bigleaf maple, black cottonwood, bitter cherry, willow species, giant chinquapin, curl-leaf mountain mahogany, birchleaf mountain mahogany, other softwoods, and other hardwoods, height growth is estimated using equation {4.6.1.1}. The *PCTRED* modifier, which is an adjustment for stand density, is estimated using equation {4.6.1.2}. The *VIGOR* modifier, which is an adjustment based on a trees' crown ratio, is estimated using equation {4.6.1.3} for all species except western juniper, and equation {4.6.1.4} for western juniper.

{4.6.1.1} HTG = POTHTG * PCTRED * VIGOR * CON

 $\{4.6.1.2\}$ PCTRED = $1.11436 - 0.011493*Z + 0.43012E - 04*Z^2 - 0.72221E - 07*Z^3 + 0.5607E - 10*Z^4 - 0.1641E - 13*Z^5$

 $Z = HT_{Avg} * (CCF / 100)$

 $\{4.6.1.3\}$ VIGOR = $(150 * CR^3 * exp(-6 * CR)) + 0.3$

 $\{4.6.1.4\}\ VIGOR = 1 - [(1 - (150 * CR^3 * exp(-6 * CR))) / 3]$ (for western juniper)

where:

HTG is estimated 10-year height growth

POTHTG is estimated 10-year potential height growth

PCTRED is reduction in height growth due to stand density (bounded to 0.01 < PCTRED < 1)

HT_{Avq} is average height of the 40 largest diameter trees in the stand

CCF is stand crown competition factor

VIGOR is reduction in height growth due to tree vigor (bounded to VIGOR \leq 1.0)

CR is a tree's live crown ratio (compacted) expressed as a proportion

CON is a scalar multiplier

It is expected, in a site index-based height growth model, that the dominant and co-dominant trees in an open-grown stand reach site height at the base age used to develop the equations. After all the parts of the SO variant growth model were assembled, height growth projections for each species were adjusted (if necessary) by applying adjustment factors (*CON*; shown in table 4.6.1.1) to the small-tree height growth increments. These adjustment factors force the dominant and co-dominant trees to reach site height at the base age for a range of site index values.

Potential height growth for western white pine and western redcedar is estimated using equation {4.6.1.5} and coefficients shown in table 4.6.1.1.

$$\{4.6.1.5\}$$
 POTHTG = $(SI / c_1) * (1.0 - c_2 * exp(c_3 * X_2))^c_4 - (SI / c_1) * (SI / c_1) * (1.0 - c_2 * exp(c_3 * X_1))^c_4$
 $X_1 = exp[(1.0 - (c_1 / SI * H) ^ (1 / c_4)) / c_2] / c_3$
 $X_2 = X_1 + 10$

where:

POTHTG is potential 10-year height growth

SI is species site index

 X_1 is estimated tree age at the beginning of the projection cycle

 X_2 is estimated tree age at the beginning of the projection cycle plus 10 years

 $c_1 - c_4$ are species-specific coefficients shown in table 4.6.1.1

Potential height growth for sugar pine, Douglas-fir, white fir, mountain hemlock, incense cedar, lodgepole pine, Engelmann spruce, ponderosa pine, grand fir, subalpine fir, Pacific silver fir, noble fir, whitebark pine, western larch, western hemlock, Pacific yew, white alder, red alder, bigleaf maple, black cottonwood, bitter cherry, willow species, giant chinquapin, curl-leaf mountain mahogany,

birchleaf mountain mahogany, other softwoods, and other hardwoods is estimated using equation {4.6.1.6}.

$$\{4.6.1.6\}$$
 POTHTG = $[(c_1 + c_2 * SI) / (c_3 - c_4 * SI)] * A$

where:

POTHTG is potential 10-year height growth

SI is species site index

A is the number of years in the growth estimation period (10 in this case)

 $c_1 - c_4$ are species-specific coefficients shown in table 4.6.1.1

Potential height growth for western juniper is estimated using equation {4.6.1.7}

$$\{4.6.1.7\}$$
 POTHTG = $(SI / 5.0) * (SI * 1.5 - HT) / (SI * 1.5)$ where $5.5 < SI < 75$

where:

POTHTG is potential 10-year height growth

SI is species site index

HT is tree height

Potential height growth for mountain hemlock is estimated using equation {4.6.1.8}.

$$\{4.6.1.8\}$$
 POTHTG = $[(c_1 + c_2 * SI) / (c_3 - c_4 * SI)] * A * 3.280833$

where:

POTHTG is potential 10-year height growth

is species site index bounded by SITELO and SITEHI (shown in table 4.6.1.2)
 is the number of years in the growth estimation period (10 in this case)

 $c_1 - c_4$ are species-specific coefficients shown in table 4.6.1.1

Table 4.6.1.1 Coefficients ($c_1 - c_4$) and equation reference for small-tree height increment equations $\{4.6.1.1\} - \{4.6.1.6\}$ in the SO variant.

				Model Coeffi	cients	
Species Code	POTHTG Equation	C ₁	C ₂	C ₃	C 4	Adjustment Fact. (CON)
WP	{4.6.1.5}	0.375045	0.92503	-0.020796	2.48811	1.0
SP	{4.6.1.6}	-1.0	0.32857	28.0	0.042857	1.0
DF	{4.6.1.6}	2.0	0.420	28.5	0.05	1.1
WF	{4.6.1.6}	4.2435	0.1510	19.0184	0.0570	1.2
MH	{4.6.1.8}	0.965758	0.082969	55.249612	1.288852	1.6
IC	{4.6.1.6}	4.2435	0.1510	19.0184	0.0570	1.3
LP	{4.6.1.6}	0	0.0200880	1.0	0	1.0
ES	{4.6.1.6}	0.09211	0.208517	43.358	0.168166	1.35
SH	{4.6.1.10}					
PP	{4.6.1.6}	-1.0	0.32857	28.0	0.042857	1.0
WJ	{4.6.1.7}	0	0	0	0	1.0

				Model Coeffi	cients	
Species	POTHTG					Adjustment Fact.
Code	Equation	C ₁	C ₂	C ₃	C 4	(CON)
GF	{4.6.1.6}	4.2435	0.1510	19.0184	0.0570	1.2
AF	{4.6.1.6}	6.0	0.14	33.882	0.06588	1.0
SF	{4.6.1.6}	-0.6667	0.4333	28.5	0.05	1.0
NF	{4.6.1.6}	11.26677	0.12027	27.93806	0.02873	1.0
WB	{4.6.1.6}	0	0.0200880	1.0	0	1.6
WL	{4.6.1.6}	-3.9725	0.50995	28.1168	0.05661	1.0
RC	{4.6.1.5}	0.752842	1.0	-0.0174	1.4711	1.0
WH	{4.6.1.6}	-5.74874	0.54576	26.15767	-0.03596	1.0
PY	{4.6.1.6}	1.47043	0.23317	31.56252	0.05586	1.0
WA	{4.6.1.6}	1.47043	0.23317	31.56252	0.05586	1.0
RA	{4.6.1.6}	-0.007205	0.056794	1.0	0	1.2
BM	{4.6.1.6}	1.47043	0.23317	31.56252	0.05586	1.0
AS	{4.6.1.9}					
CW	{4.6.1.6}	1.47043	0.23317	31.56252	0.05586	1.0
CH	{4.6.1.6}	1.47043	0.23317	31.56252	0.05586	1.0
WO	{4.6.1.11}					
WI	{4.6.1.6}	1.47043	0.23317	31.56252	0.05586	1.0
GC	{4.6.1.6}	1.47043	0.23317	31.56252	0.05586	1.0
MC	{4.6.1.6}	1.47043	0.23317	31.56252	0.05586	1.0
MB	{4.6.1.6}	1.47043	0.23317	31.56252	0.05586	1.0
OS	{4.6.1.6}	2.0	0.420	28.5	0.05	1.1
ОН	{4.6.1.6}	1.47043	0.23317	31.56252	0.05586	1.0

Height growth for quaking aspen is estimated using equation {4.6.1.9}.

$$\{4.6.1.9\}\ HTG = (1.8 * [26.9825 * ((AG + 10) ^ 1.1752)) - (26.9825 * (AG ^ 1.1752))] / (2.54 * 12))$$
* RSIMOD

and RSIMOD = 0.5 * (1.0 + (SI - SITELO) / (SITEHI - SITELO))

where:

HTG is potential 10-year height growth

AG is estimated tree age at the beginning of the projection cycle SI is species site index bounded so $(SITELO + 0.5) \le SI \le SITEHI$

SITELO is the lower limit in the range of site index for this species in this geographic area

(shown in table 3.4.2)

SITEHI is the upper limit in the range of site index for this species in this geographic area

(shown in table 3.4.2)

 $c_1 - c_4$ are species-specific coefficients shown in table 4.6.1.1

Height growth for Shasta red fir is estimated using equation {4.6.1.10}

 $\{4.6.1.10\}\ HTG = ((5*(2.2227+0.4314*SI))/(29-0.05*SI))*1.016605*[1-exp(-4.26558*I)]$

(CR / 100))] * [exp(2.54119 * (RELHT ^ 0.250537 - 1))]

where:

HTG is estimated 5-year height growth

SI is species site index

CR is a tree's live crown ratio (compacted) expressed as a percent

RELHT is tree height divided by average height of the 40 largest diameter trees in the stand

Height growth for Oregon white oak is estimated using equation {4.5.1.11}

 $\{4.6.1.11\}$ HTG = $\exp(3.817 - 0.7829 * \ln(BAL)) * (0.8 + 0.004 * (SI - 50))$

where:

HTG is 5-year height growth SI is species site index

BAL is total basal area in trees larger than the subject tree where 5 < BAL

 $c_1 - c_4$ are species-specific coefficients shown in table 4.6.1.1

For all species, a small random error is then added to the height growth estimate. The estimated height growth (*HTG*) is then adjusted to account for cycle length, user defined small-tree height growth adjustments, and adjustments due to small tree height model calibration from the input data.

Height growth estimates from the small-tree model are weighted with the height growth estimates from the large tree model over a range of diameters (X_{min} and X_{max}) in order to smooth the transition between the two models. For example, the closer a tree's DBH value is to the minimum diameter (X_{min}), the more the growth estimate will be weighted towards the small-tree growth model. The closer a tree's DBH value is to the maximum diameter (X_{max}), the more the growth estimate will be weighted towards the large-tree growth model. If a tree's DBH value falls outside of the range given by X_{min} and X_{max} , then the model will use only the small-tree or large-tree growth model in the growth estimate. The weight applied to the growth estimate is calculated using equation $\{4.6.1.12\}$, and applied as shown in equation $\{4.6.1.13\}$. The range of diameters for each species is shown in table 4.6.1.3.

{4.6.1.12}

 $DBH < X_{min}$: XWT = 0

 $X_{\min} < DBH < X_{\max} : XWT = (DBH - X_{\min}) / (X_{\max} - X_{\min})$

 $DBH > X_{max}$: XWT = 1

 $\{4.6.1.13\}$ Estimated growth = [(1 - XWT) * STGE] + [XWT * LTGE]

where:

XWT is the weight applied to the growth estimates

DBH is tree diameter at breast height

 X_{max} is the maximum *DBH* where weighting between small and large tree models occurs

X_{min} is the minimum DBH where weighting between small and large tree models occurs

STGE is the growth estimate obtained using the small-tree growth model LTGE is the growth estimate obtained using the large-tree growth model

Table 4.6.1.3 Diameter bounds by species in the SO variant.

Species		
Code	X _{min}	X _{max}
WP	2.0	3.0
SP	1.0	5.0
DF	2.0	4.0
WF	2.0	4.0
MH	1.0	2.0
IC	2.0	4.0
LP	2.0	4.0
ES	2.0	4.0
SH	2.0	4.0
PP	1.0	5.0
WJ	90.0*	99.0*
GF	2.0	4.0
AF	2.0	4.0
SF	2.0	4.0
NF	2.0	4.0
WB	1.5	3.0
WL	2.0	4.0
RC	2.0	10.0
WH	2.0	4.0
PY	2.0	4.0
WA	2.0	4.0
RA	2.0	4.0
BM	2.0	4.0
AS	2.0	4.0
CW	2.0	4.0
СН	2.0	4.0
WO	2.0	4.0
WI	2.0	4.0
GC	2.0	4.0
MC	2.0	4.0
MB	2.0	4.0
OS	2.0	4.0
ОН	2.0	4.0
¥TI		

^{*}There is only one growth relationship that applies to trees of all sizes for this species. These relationships are contained in the "small" tree portion of FVS.

4.6.2 Small Tree Diameter Growth

As stated previously, for trees being projected with the small tree equations, height growth is predicted first, and then diameter growth. So both height at the beginning of the cycle and height at the end of the cycle are known when predicting diameter growth. Small tree diameter growth for trees over 4.5 feet tall is calculated as the difference of predicted diameter at the start of the projection period and the predicted diameter at the end of the projection period, adjusted for bark ratio. In most cases, these two predicted diameters are estimated using the species-specific height-diameter relationships discussed in section 4.1 inverted to predict diameter as a function of height. By definition, diameter growth is zero for trees less than 4.5 feet tall.

In the SO variant, several curve forms are used to predict diameter as a function of height. The equation choice is based on species and whether calibration of the Wykoff form of the height-diameter curve was specified using the NOHTDREG keyword and did occur.

When calibration of the Wykoff form of the height-diameter curve was not specified (the default condition in the SO variant) or does not occur for a species, the Curtis-Arney height-diameter curve, shown in equations {4.6.2.1} and {4.6.2.2}, is used to predict diameter at the beginning and end of the projection cycle for all species except western juniper, whitebark pine, and quaking aspen.

$$\{4.6.2.1\}HT > HAT3$$
: DBH = exp(ln((ln(HT - 4.5) - ln(a))/-b) / c)

$$\{4.6.2.2\}$$
 HT $<$ HAT3: DBH = $(((HT - 4.51) * 2.7) / (4.5 + a * exp(-b * (3.0 ^ c)) - 4.51)) + 0.3$

where:

HAT3 = $4.5 + a * exp(-b * (3.0 ^ c))$ DBH is tree diameter at breast height

HT is tree height

a, b, c are species-specific coefficients shown in table 4.6.2.1

Western juniper uses equation {4.6.2.4}, whitebark pine uses equation {4.6.2.5}, and quaking aspen uses equation {4.6.2.6} with default coefficients.

$$\{4.6.2.3\}$$
 DBH = $(HT - 4.17085) / 3.03659$

$$\{4.6.2.4\}$$
 DBH = 10 * (HT - 4.5) / (SI - 4.5)

$$\{4.6.2.5\}$$
 DBH = CR * $(0.001711 + 0.000231 * (HT - 4.5)) - 0.00005 * (HT - 4.5) * TPCCF$

$$+0.17023*(HT-4.5)+0.3$$

$$\{4.6.2.6\}$$
 DBH = $(B_2 / (ln(HT - 4.5) - B_1)) - 1.0$

$$\{4.6.2.7\}$$
 DBH = $0.1 * HTG$

where:

DBH is tree diameter at breast height (JU uses diameter at root collar)

HT is tree height

HTG is estimated tree height growth

SI is species site index

CR is crown ratio expressed as a percent

TPCCF is crown competition factor based on sample point statistics (bounded to $25 \le TPCCF \le 100$

300)

B₁, B₂ are coefficients from height-diameter relationships (shown in table 4.1.1)

When calibration of the Wykoff form of the height-diameter curve is specified, and occurs for a species, then a different equation selection occurs. Western white pine, sugar pine, Douglas-fir, white fir, mountain hemlock, incense cedar, lodgepole pine, Engelmann spruce, Shasta red fir, grand fir, subalpine fir, Pacific silver fir, western larch, western redcedar, quaking aspen, Oregon white oak, and other softwoods use equation {4.6.2.6} with the calibrated coefficients. Ponderosa pine uses equation {4.6.2.3}, western juniper uses equation {4.6.2.4}, and whitebark pine uses equation {4.6.2.5}, none of which are calibrated. Nobel fir, western hemlock, Pacific yew, white alder, red alder, bigleaf maple, black cottonwood, bitter cherry, willow species, giant chinquapin, curl-leaf mountain mahogany, birchleaf mountain mahogany, and other hardwoods use equation {4.6.2.7} which is not calibrated.

4.7 Large Tree Growth Relationships

Trees are considered "large trees" for FVS modeling purposes when they are equal to, or larger than, some threshold diameter. This threshold diameter is set to 90.0" for western juniper and 3.0" for all other species in the SO variant. As a result, western juniper trees of all sizes use diameter and height growth equations given in section 4.6.

The large-tree model is driven by diameter growth meaning diameter growth is estimated first, and then height growth is estimated from diameter growth and other variables. These relationships are discussed in the following sections.

4.7.1 Large Tree Diameter Growth

The large tree diameter growth model used in most FVS variants is described in section 7.2.1 in Dixon (2002). For most variants, instead of predicting diameter increment directly, the natural log of the periodic change in squared inside-bark diameter (ln(*DDS*)) is predicted (Dixon 2002; Wykoff 1990; Stage 1973; and Cole and Stage 1972). For variants predicting diameter increment directly, diameter increment is converted to the *DDS* scale to keep the FVS system consistent across all variants.

For locations other than Warm Springs (799), the SO variant predicts diameter growth using equation $\{4.7.1.1\}$ for all species except western juniper, quaking aspen, and red alder. Coefficients for this equation are shown in tables 4.7.1.1 - 4.7.1.4. Diameter growth for quaking aspen and red alder are shown later in this section; western juniper uses equations given in section 4.6 for all sized trees.

For Warm Springs (799), the SO variant predicts diameter growth using equation $\{4.7.1.1\}$ and coefficients shown in tables 4.7.1.1-4.7.1.4 for all species except western white pine, sugar pine, incense cedar, lodgepole pine, western redcedar, other softwoods, western juniper, quaking aspen, and red alder. Diameter growth for western white pine, sugar pine, incense cedar, lodgepole pine, western redcedar, other softwoods, quaking aspen and red alder are shown later in this section; western juniper uses equations given in section 4.6 for all sized trees.

$$\{4.7.1.1\} \ln(DDS) = b_1 + (b_2 * EL) + (b_3 * EL^2) + (b_4 * MAI) + (b_5 * \ln(SI)) + (b_6 * SSI) + SASP + (b_{11} * \ln(DBH)) + (b_{12} * BAL) + (b_{13} * CR) + (b_{14} * CR^2) + (b_{15} * DBH^2) + (b_{16} * BAL / (\ln(DBH)) + (b_{11} * BAL)) + (b_{12} * BAL) + (b_{13} * CR) + (b_{14} * CR^2) + (b_{15} * DBH^2) + (b_{16} * BAL) + (b_{11} * CR) + (b_{11} * CR) + (b_{12} * CR) + (b_{13} * CR) + (b_{14} * CR) + (b_{15} * DBH^2) + (b_{16} * BAL) + (b_{11} * CR) + (b_{11} * CR) + (b_{12} * CR) + (b_{13} * CR) + (b_{14} * CR) + (b_{15} * CR) + (b_{16} * CR) + ($$

$$+ 1.0))) + (b_{17} * PCCF) + (b_{18} * In(CCF)) + (b_{19} * PCCF^2) + (b_{20} * RELHT) + (b_{21} * In(BA)) + (b_{22} * BA) + (b_{23} * (CCF / 100)) + ((b_{24} * MAI * CCF / 100) + DUMMY$$

$$SASP = (b_7 * sin(ASP) * SL) + (b_8 * cos(ASP) * SL) + (b_9 * SL) + (b_{10} * SL^2)$$

SASP = -0.174404 for Pacific silver fir, and -0.290174 for western larch when stand slope is equal to 0

where:

DDS is the square of the diameter growth increment

is stand elevation in hundreds of feet (bounded to be \leq 30 for white alder, black

cottonwood, bitter cherry, willow species, giant chinquapin, curl-leaf mountain

mahogany, birchleaf mountain mahogany, and other hardwoods)

MAI is stand mean annual incrementSSI is site index of the site species

SI is species site index

ASP is stand aspect in radians ((ASP – 0.7854) is used for whitebark pine

SL is stand slope

DBH is tree diameter at breast height

BAL is total basal area in trees larger than the subject tree ((BAL / 100) is used for whitebark

pine)

CR is crown ratio expressed as a proportion

PCCF is crown competition factor on the inventory point where the tree is established RELHT is tree height divided by average height of the 40 largest diameter trees in the stand

(bounded to $RELHT \leq 1.5$)

CCF is stand crown competition factor

BA is total stand basal area

DUMMY is a dummy coefficient where:

DUMMY = -0.799079 for Pacific silver fir DUMMY = 0 for all other species is a location-specific coefficient shown in table 4.7.1.2

 b_1 is a location-specific coefficient shown in table 4.7.1.2 b_2 - b_{24} are species-specific coefficients shown in table 4.7.1.1

Table 4.7.1.1 Coefficients ($b_2 - b_{24}$) for equations {4.7.1.1} & {4.7.1.2} in the SO variant.

		Species Code									
Coefficient	WP ⁺	SP ⁺	DF, OS ⁺	WF, GF	МН	IC⁺	LP ⁺	ES	SH	PP	
b ₂	0.00279	0.00466	0.01544	0.00362	-0.03036	-0.00637	0.01012	0	0.0248	-0.00331	
b ₃	-0.00001	0.00001	-0.0001	-0.00006	0.00037	0.00014	-0.0002	0	-0.00033429	0.00006	
b ₄	0	0.00375	0.00044	0.00114	0	0.00246	0.00778	0	0	0.0036	
b ₅	0	0	0	0	0	0	0	0.86756	0.492695	0	
b ₆	0	0	0	0	0	0	0	0	0	0	
b ₇	-0.19278	0.56358	-0.40153	-0.1713	0.33069	-0.43281	-0.25658	-0.17911	0.13918	-0.14076	
b ₈	0.12915	0.08831	-0.17389	-0.14234	-0.29385	-0.04156	-0.39893	0.38002	-0.444594	-0.05217	

					Speci	es Code				
Coefficient	WP ⁺	SP ⁺	DF, OS ⁺	WF, GF	МН	IC ⁺	LP ⁺	ES	SH	PP
b ₉	0.77922	-1.50252	-0.18923	0.02912	-0.59628	-0.90318	0.19253	-0.8178	0	-0.29407
b ₁₀	-0.93813	1.21439	-0.49057	-0.29671	1.07549	1.36603	0	0.84368	0	0.16735
b ₁₁	0.77889	1.05245	0.3316	0.89887	0.99324	0.72947	0.63249	1.3261	1.186676	0.53028
b ₁₂	0.00121	0.0002	0.00479	0.00106	-0.00087	0.00483	0.00169	0	0	0.00325
b ₁₃	3.36606	2.89738	4.43317	3.11044	1.73837	1.57139	2.35065	1.2973	2.763519	3.43377
b ₁₄	-1.80146	-0.9543	-2.82894	-1.13806	-0.12161	0	-0.63173	0	-0.871061	-1.843
b ₁₅ *										
b ₁₆	-0.00897	-0.00437	-0.01918	-0.00707	-0.00105	-0.01497	-0.00647	-0.00239	-0.003728	-0.01362
b ₁₇	0	-0.0006	-0.00041	-0.00027	0	-0.00053	0	-0.00044	0	0
b ₁₈	0	0	0	0	0	0	0	0	0	-0.20488
b ₁₉ **	0	0	0	0	0	0	0	0	0	0.000001
b ₂₀	0	0	0	0	0	0	0	0.49649	0	0
b ₂₁	0	0	0	0	0	0	0	0	-0.122905	0
b ₂₂	0	0	0	0	0	0	0	0	0	0
b ₂₃	-0.00016	0.00157	-0.00138	-0.00024	-0.00027	0	0.00109	0	0	0
b ₂₄	0.00001	-0.00001	0.00001	0.00001	0.00001	0	-0.00003	0	0	0

^{*}see table 4.7.1.4 for b_{15} values

Table 4.7.1.1 Coefficients (b2 - b24) for equations {4.7.1.1} & {4.7.1.2} in the SO variant.

					Species	Code			
Coefficient	AF	SF	NF	WB	WL	RC ⁺	WH	PY	WA, CW, CH, WI, GC, MC, MB, OH
b ₂	0.02956	-0.015087	-0.069045	0	0.004379	-0.00175	-0.040067	0	-0.075986
b ₃	-0.00033	0	0.000608	0	0	-0.000067	0.000395	0	0.001193
b ₄	0.00753	0	0	0	0	0	0	0	0
b ₅	0	0.323625	0.684939	0	0.351929	0	0.380416	0.252853	0.227307
b_6	0	0	0	0.001766	0	0	0	0	0
b ₇	-0.28887	-0.128126	-0.207659	-0.01752	0.258712	0.05534	0	0	-0.86398
b ₈	-0.65502	-0.059062	-0.374512	-0.609774	-0.156235	-0.06625	0	0	0.085958
b ₉	0.64936	0.240178	0.400223	-2.05706	-0.635704	0.11931	0.421486	0	0
b ₁₀	-0.37153	0.131356	0	2.11326	0	0	-0.69361	0	0
b ₁₁	0.91259	0.980383	0.904253	0.213947	0.609098	0.58705	0.722462	0.879338	0.889596
b ₁₂	0.0038	0	0	-0.358634	0	0	0	0	0
b ₁₃	2.44945	1.709846	4.1231012	1.523464	1.158355	1.2936	2.1603479	1.970052	1.732535
b ₁₄	-0.72173	0	-2.6893401	0	0	0	-0.834196	0	0
b ₁₅ *									
b ₁₆	-0.0162	-0.000261	-0.006368	0	-0.004253	-0.02284	-0.004065	-0.004215	-0.001265
b ₁₇	-0.00064	-0.000643	-0.000471	0	-0.000568	-0.00094	0	0	0

^{**}set to zero for ponderosa pine when *PCCF* > 400

[†]for the Warm Springs Reservation, see equations below for these species

		Species Code										
Coefficient	AF	SF	NF	WB	WL	RC⁺	WH	PY	WA, CW, CH, WI, GC, MC, MB, OH			
b ₁₈	0	0	0	0	0	0	0	0	0			
b ₁₉	0	0	0	0	0	0	0	0	0			
b ₂₀	0	0	0	0	0	0	-0.000358	0	0			
b ₂₁	0	0	0	0	0	0	0	0	0			
b ₂₂	0	0	0	0	0	0	0	-0.000173	-0.000981			
b ₂₃	0.00201	0	0	-0.199592	0	0	0	0	0			
b ₂₄	-0.00002	0	0	0	0	0	0	0	0			

^{*}see table 4.7.1.4 for b_{15} values

Table 4.7.1.1 Coefficients ($b_2 - b_{24}$) for equations {4.7.1.1} & {4.7.1.2} in the SO variant.

	•	es Code		
Coefficient	BM	wo		
b ₂	-0.012111	0.0049		
b ₃	0	-8.781E-05		
b ₄	0	0		
b ₅	1.965888	0.213526		
b ₆	0	0		
b ₇	0	0		
b ₈	0	0		
b ₉	0	0		
b ₁₀	0	0		
b ₁₁	1.024186	1.310111		
b ₁₂	0	0		
b ₁₃	0.459387	0.271183		
b ₁₄	0	0		
b ₁₅ *				
b ₁₆	-0.010222	0		
b ₁₇	-0.000757	-0.000473		
b ₁₈	0	0		
b ₁₉	0	0		
b ₂₀	0	0		
b ₂₁	0	0		
b ₂₂	0	0		
b ₂₃	0	0		
b ₂₄	0	0		

^{*}see table 4.7.1.4 for b_{15} values

[†]for the Warm Springs Reservation, see equations below for these species

Table 4.7.1.2 b_1 values by location class for equations $\{4.7.1.1\}$ and $\{4.7.1.2\}$ in the SO variant.

Location		Species Code									
Class	WP ⁺	SP ⁺	DF, OS ⁺	WF, GF	МН	IC⁺	LP ⁺	ES	SH	PP	
1	-0.23185	-1.09124	0.83941	-0.16674	-0.25368	0.23477	-0.03997	-4.64535	-2.073942	1.48355	
2	0	-1.0463	0.97742	-0.04804	0	0	-0.17367	0	0	1.34282	
3	0	-0.048564	0.67207	0.02336	0	0	0.80024	0	0	1.46037	
4	0	-0.4713	1.17949	0.47563	0	0	0.40611	0	0	1.54377	
5	0	0	0.83941	0	0	0	0.17307	0	0	0	
6	0	0	0	0	0	0	0.35268	0	0	0	

^{*}for the Warm Springs Reservation, see equations below for these species

Table 4.7.1.2 (continued) b_1 values by location class for equations $\{4.7.1.1\}$ and $\{4.7.1.2\}$ in the SO variant.

		Species Code											
Location Class	AF	SF	NF	WB	WL	RC⁺	WH	PY	WA, CW, CH, WI, GC, MC, MB, OH				
1	-1.68772	-0.441408	-1.127977	1.911884	-0.605649	1.49419	- 0.147675	- 1.3100671	-0.107648				
2	-0.9624	0	0	0	0	0	0	0	0				
3	-1.38122	0	0	0	0	0	0	0	0				
4	-1.0344	0	0	0	0	0	0	0	0				
5	-0.76742	0	0	0	0	0	0	0	0				
6	0	0	0	0	0	0	0	0	0				

^{*}for the Warm Springs Reservation, see equations below for these species

Table 4.7.1.2 (continued) b_1 values by location class for equations $\{4.7.1.1\}$ and $\{4.7.1.2\}$ in the SO variant.

Location	Species Code						
Class	BM	wo					
1	-7.753469	-1.958189					
2	0	0					
3	0	0					
4	0	0					
5	0	0					
6	0	0					

Table 4.7.1.3 Location class by species and location code for equations {4.7.1.1} and {4.7.1.2} in the SO variant.

		Species Code								
Location Code	WP ⁺	SP ⁺	DF, OS ⁺	WF, GF	МН	IC⁺	LP+	ES	SH	PP
Location Code	VVI	31	03	5	14111	10	LI	LJ	311	
601 – Deschutes	1	1	1	1	1	1	1	1	1	1

	Species Code									
Location Code	WP ⁺	SP ⁺	DF, OS ⁺	WF, GF	МН	IC ⁺	LP+	ES	SH	PP
799 – Warm Springs Reservation										
602 – Fremont	1	2	1	1	1	1	2	1	1	2
620 – Winema	1	3	2	2	1	1	2	1	1	2
505 – Klamath & Shasta-Trinity	1	4	3	2	1	1	3	1	1	3
506 – Lassen	1	4	4	3	1	1	4	1	1	3
509 – Modoc	1	4	5	3	1	1	5	1	1	4
511 – Plumas	1	4	4	3	1	1	4	1	1	3
701 – Industry Lands	1	1	5	4	1	1	6	1	1	2

^{*}for the Warm Springs Reservation, see equations below for these species

Table 4.7.1.3 (continued) Location class by species and location code for equations {4.7.1.1} and {4.7.1.2} in the SO variant.

					S	pecies	Code		
Location Code	AF	SF	NF	WB	WL	RC⁺	WH	PY	WA, CW, CH, WI, GC, MC, MB, OH
601 – Deschutes									
799 – Warm Springs Reservation	1	1	1	1	1	1	1	1	1
602 – Fremont	2	1	1	1	1	1	1	1	1
620 – Winema	2	1	1	1	1	1	1	1	1
505 – Klamath & Shasta-Trinity	3	1	1	1	1	1	1	1	1
506 – Lassen	4	1	1	1	1	1	1	1	1
509 – Modoc	5	1	1	1	1	1	1	1	1
511 – Plumas	4	1	1	1	1	1	1	1	1
701 – Industry Lands	5	1	1	1	1	1	1	1	1

^{*}for the Warm Springs Reservation, see equations below for these species

Table 4.7.1.3 (continued) Location class by species and location code for equations $\{4.7.1.1\}$ and $\{4.7.1.2\}$ in the SO variant.

	Species Code			
Location Code	вм	wo		
601 – Deschutes				
799 – Warm Springs Reservation	1	1		
602 – Fremont	1	1		
620 – Winema	1	1		
505 – Klamath	1	1		
506 – Lassen	1	1		
509 – Modoc	1	1		
511 – Plumas	1	1		

701 – Industry Lands	1	1
----------------------	---	---

Table 4.7.1.4 b_{15} values by location code for equation $\{4.7.1.1\}$ in the SO variant.

				Locatio	n Code			
Species	601			505				
Code	799	602	620	514	506	509	511	701
WP ⁺	-0.000091	-0.000091	-0.000091	-0.000091	-0.000091	-0.000091	-0.000091	-0.000091
SP ⁺	-0.000295	-0.000295	-0.000295	-0.000295	-0.000295	-0.000295	-0.000295	-0.000295
DF, OS ⁺	-0.000066	-0.000066	-0.000066	-0.000066	-0.000066	-0.000066	-0.000066	-0.000066
WF, GF	-0.000414	-0.000414	-0.000414	-0.000239	-0.000325	-0.000239	-0.000325	-0.000414
MH	-0.000252	-0.000252	-0.000252	-0.000252	-0.000252	-0.000252	-0.000252	-0.000252
IC ⁺	-0.000251	-0.000251	-0.000251	-0.000251	-0.000133	-0.000251	-0.000133	-0.000251
LP ⁺	-0.000099	-0.000099	-0.000099	-0.000099	-0.000099	-0.000099	-0.000099	-0.000099
ES	0	0	0	0	0	0	0	0
SH	-0.0004572	-0.0004572	-0.0004572	-0.0004572	-0.0004572	-0.0004572	-0.0004572	-0.0004572
PP	-0.000324	-0.000356	-0.00012	-0.00012	-0.00012	-0.00012	-0.00012	-0.000324
AF	-0.000468	-0.000468	-0.000468	-0.000468	-0.000468	-0.000468	-0.000468	-0.000468
SF	-0.0002189	-0.0002189	-0.0002189	-0.0002189	-0.0002189	-0.0002189	-0.0002189	-0.0002189
NF	-0.0003996	-0.0003996	-0.0003996	-0.0003996	-0.0003996	-0.0003996	-0.0003996	-0.0003996
WB	-0.0006538	-0.0006538	-0.0006538	-0.0006538	-0.0006538	-0.0006538	-0.0006538	-0.0006538
WL	-0.0001683	-0.0001683	-0.0001683	-0.0001683	-0.0001683	-0.0001683	-0.0001683	-0.0001683
RC ⁺	0	0	0	0	0	0	0	0
WH	-0.0001546	-0.0001546	-0.0001546	-0.0001546	-0.0001546	-0.0001546	-0.0001546	-0.0001546
PY	-0.0001323	-0.0001323	-0.0001323	-0.0001323	-0.0001323	-0.0001323	-0.0001323	-0.0001323
WA,								
CW, CH,								
WI, GC,								
MC,								
MB, OH	0	0	0	0	0	0	0	0
BM	-0.0001737	-0.0001737	-0.0001737	-0.0001737	-0.0001737	-0.0001737	-0.0001737	-0.0001737
WO	-0.0003048	-0.0003048	-0.0003048	-0.0003048	-0.0003048	-0.0003048	-0.0003048	-0.0003048

⁺for the Warm Springs Reservation, see equations below for these species

Large-tree diameter growth for quaking aspen is predicted using equation set {4.7.1.2}. Diameter growth is predicted from a potential diameter growth equation that is modified by stand density, average tree size and site. While not shown here, this diameter growth estimate is eventually converted to the *DDS* scale.

{4.7.1.2} Used for quaking aspen

```
POTGR = (0.4755 - 0.0000038336 * DBH^4.1488) + (0.0451 * CR * DBH^6.67266)

MOD = 1.0 - \exp(-FOFR * GOFAD * ((310-BA)/310)^{0.5})
```

 $FOFR = 1.07528 * (1.0 - \exp(-1.89022 * DBH / QMD))$

 $GOFAD = 0.21963 * (QMD + 1.0)^0.73355$

PREDGR = POTGR * MOD * (.48630 + 0.01258 * SI)

where:

POTGR is potential diameter growth
DBH is tree diameter at breast height

CR is crown ratio expressed as a percent divided by 10

MOD is a modifier based on tree diameter and stand density

FOFR is the relative density modifier GOFAD is the average diameter modifier

BA is total stand basal area

QMD is stand quadratic mean diameter PREDGR is predicted diameter growth

SI is species site index

Large-tree diameter growth for red alder is predicted using equation set {4.7.1.3}. Diameter growth is predicted based on tree diameter and stand basal area. While not shown here, this diameter growth estimate is eventually converted to the *DDS* scale.

{4.7.1.3} Used for red alder

```
DBH \le 18.0": DG = CON - (0.166496 * DBH) + (0.004618 * DBH^2)

DBH > 18.0": DG = CON - (CON / 10) * (DBH - 18)
```

where:

$$CON = (3.2505 - 0.00303 * BA)$$

where:

DG is potential diameter growth
DBH is tree diameter at breast height

BA is stand basal area

For the Warm Springs Reservation, large-tree diameter growth for western white pine, sugar pine, incense cedar, lodgepole pine, western redcedar, and other softwoods is predicted using equation sets {4.7.1.4} - {4.7.1.8}.

{4.7.1.4} Used for western white pine and sugar pine for the Warm Springs Reservation

```
In(DDS) = -0.58957 - (0.023376 * EL) + (0.40401 * In(XSITE)) + (0.84469 * In(DBH)) + (1.59725 * CR) - (0.0000596 * DBH^2) - (0.003726 * BAL / (In(DBH + 1.0))) - (0.000257 * PCCF) for western white pine, XSITE = 1.96 * SI for sugar pine, XSITE = SI
```

{4.7.1.5} Used for incense cedar for the Warm Springs Reservation

```
In(DDS) = -1.310067 + (0.252853 * In(XSITE)) + (0.879338 * In(DBH)) + (1.970052 * CR) - (0.0001323 * DBH^2) - (0.004215 * BAL / (In(DBH + 1.0))) - (0.000173 * BA)
XSITE = 25.0 + 1.2 * SI
```

{4.7.1.6} Used for lodgepole pine for the Warm Springs Reservation

```
In(DDS) = -1.084679 - (0.001124 * EL) + (0.458662 * In(XSITE)) - (0.142328 * sin(ASP) * SL) - (0.064328 * cos(ASP) * SL) - (0.097297 * SL) + (0.094464 * SL^2) + (0.554261 * In(DBH)) + (1.423849 * CR) - (0.004803 * BAL / (In(DBH + 1.0))) - (0.000627 * PCCF)

XSITE = 12.25 + 1.325 * SI
```

{4.7.1.7} Used for western redcedar for the Warm Springs Reservation

```
In(DDS) = 0.645645 - (0.050081 * EL) + (0.00066 * EL^2) + (0.139734 * In(XSITE)) + (0.843013 * In(DBH)) + (2.878032 * CR) - (1.631418 * CR^2) - (0.0000644 * DBH^2) - (0.003923 * BAL / (In(DBH + 1.0))) - (0.000552 * PCCF)

XSITE = SI
```

{4.7.1.8} Used for other softwoods species group, which represents yellow cedar, for the Warm Springs Reservation

```
In(DDS) = -1.277664 + (0.244694 * In(XSITE)) + (0.679903 * sin(ASP) * SL) - (0.023186 * cos(ASP) * SL) + (0.81688 * In(DBH)) + (2.471226 * CR) - (0.0002536 * DBH^2) - (0.00595 * BAL / (In(DBH + 1.0))) - (0.000147 * BA)

XSITE = 3.5 + 1.45 * SI
```

where:

DDS is the square of the diameter growth increment

EL is stand elevation in hundreds of feet

SI is species site index using the SO variant site index reference curves

XSITE is species site index transformed to the reference curve for which the equation was fit

ASP is stand aspect in radians

SL is stand slope

DBH is tree diameter at breast height

BAL is total basal area in trees larger than the subject tree

CR is crown ratio expressed as a proportion

PCCF is crown competition factor on the inventory point where the tree is established

BA is total stand basal area

4.7.2 Large Tree Height Growth

Large tree height growth equations in the SO variant are based on site index curves. Species differences in height growth are accounted for by entering the appropriate curve with the species specific site index value (see section 3.4). Height growth for western juniper trees of all sizes is calculated using the small tree height growth equations shown in section 4.6.1.

Using a species site index and tree height at the beginning of the projection cycle, an estimated tree age is computed using the site index curves. Also, maximum species heights and ages for the species site index curve are assigned using values shown in table 4.7.2.1.

Table 4.7.2.1 Maximum tree height and age for the species site index curve in the SO variant.

Species	Maximum	Maximum
Code	Height	Age
WP	165	

Species	Maximum	Maximum
Code	Height	Age
SP	160	400
DF	180	900
WF	180	450
MH	150	650
IC	150	650
LP	130	350
ES	165	400
SH	180	500
PP	175	900
WJ	n/a	n/a
GF	165	350
AF	120	350
SF	165	400
NF	165	400
WB	85	400
WL	175	400
RC	165	550
WH	165	550
PY	50	350
WA	50	350
RA	100	100
BM	100	100
AS	75	100
CW	125	100
CH	30	50
WO	75	250
WI	30	50
GC	30	75
MC	20	50
MB	25	50
OS	165	400
ОН	100	100

For western white pine, sugar pine, Douglas-fir, white fir, mountain hemlock, incense-cedar, lodgepole pine, Engelmann spruce, grand fir, subalpine fir, Pacific silver fir, noble fir, whitebark pine, western larch, western redcedar, western hemlock, Pacific yew, white alder, red alder, bigleaf maple, quaking aspen, black cottonwood, bitter cherry, willow species, giant chinquapin, curl-leaf mountain mahogany, birchleaf mountain mahogany, other softwoods, and other hardwoods, if tree height at the beginning of the projection cycle is greater than or equal to the maximum species height, then height growth is computed using equation {4.7.2.1} and adjusted for cycle length and user supplied growth multipliers.

 $\{4.7.2.1\}$ HTG = 0.1

where:

HTG is estimated 10-year tree height growth

For western white pine, sugar pine, Douglas-fir, white fir, mountain hemlock, incense-cedar, lodgepole pine, Engelmann spruce, grand fir, subalpine fir, Pacific silver fir, noble fir, whitebark pine, western larch, western redcedar, western hemlock, Pacific yew, white alder, red alder, bigleaf maple, quaking aspen, black cottonwood, bitter cherry, willow species, giant chinquapin, curl-leaf mountain mahogany, birchleaf mountain mahogany, other softwoods, and other hardwoods, when tree height at the beginning of the projection cycle is less than the maximum species height, and for Shasta red fir and Oregon white oak, if estimated tree age at the beginning of the projection cycle is greater than the species maximum age, height growth is calculated using equation {4.7.2.2} and adjusted for cycle length and user supplied growth multipliers.

 $\{4.7.2.2\}$ HTG = 0.1 * HTGMOD

where:

HTG is estimated 10-year tree height growth

HTGMOD is the weighted height growth multiplier shown in section 4.7.2.3

For ponderosa pine, if estimated tree age at the beginning of the projection cycle is greater than the species maximum age, height growth is calculated using equation {4.7.2.3} and adjusted for cycle length and user supplied growth multipliers.

{4.7.2.3} *HTG* = POTHTG * *HTGMOD*

where:

HTG is estimated 10-year tree height growth

POTHTG is estimated potential height growth calculated as

POTHTG = -1.31 + 0.05 * SINDX and bounded (POTHTG > 0.1)

SINDX is ponderosa pine site index

HTGMOD is the weighted height growth multiplier shown in section 4.7.2.3

For western white pine, sugar pine, Douglas-fir, white fir, mountain hemlock, incense-cedar, lodgepole pine, Engelmann spruce, Shasta red fir, grand fir, subalpine fir, Pacific silver fir, noble fir, western larch, western redcedar, western hemlock, Pacific yew, white alder, red alder, bigleaf maple, black cottonwood, bitter cherry, Oregon white oak, willow species, giant chinquapin, curl-leaf mountain mahogany, birchleaf mountain mahogany, other softwoods, and other hardwoods, when estimated tree age at the beginning of the projection cycle is less than or equal to the species maximum age and tree height at the beginning of the projection cycle is less than the species maximum height, then potential height growth is obtained by subtracting estimated current height from an estimated future height. For ponderosa pine, when estimated tree age at the beginning of the projection cycle is less than or equal to the species maximum age, then potential height growth is obtained by subtracting estimated current height from an estimated future height. For all these species, potential height growth is then adjusted according to the tree's crown ratio and height relative to other trees in the stand.

Estimated current height (ECH) and estimated future height (H10) are both obtained using the equations shown below with the following exception. Shasta red fir and Oregon white oak located in Region 5 forests use the Dunning/Levitan curves shown in section 4.7.2.1. Estimated current height is obtained using estimated tree age at the start of the projection cycle and site index. Estimated future height is obtained using estimated tree age at the start of the projection cycle plus 10-years and site index.

{4.7.2.4} western white pine

$$H = SI / (b_0 * (1.0 - b_1 * exp(b_2 * A))^b_3)$$

{4.7.2.5} Douglas-fir and other softwoods

$$H = 4.5 + \exp(b_1 + b_2 * \ln(A) + b_3 * (\ln(A)) ^ 4) + (b_4 + (SI - 4.5)) * (b_5 + b_6 * (1 - \exp(b_7 * A)) ^ b_8)$$

{4.7.2.6} white fir, incense-cedar, grand fir, and Pacific silver fir

$$H = \exp[b_0 + b_1 * \ln(A) + b_2 * (\ln(A))^4 + b_3 * (\ln(A))^9 + b_4 * (\ln(A))^11 + b_5 * (\ln(A))^18] + b_{12} * \exp[b_6 + b_7 * \ln(A) + b_8 * (\ln(A))^2 + b_9 * (\ln(A))^7 + b_{10} * (\ln(A))^16 + b_{11} * (\ln(A))^24] + (SI - 4.5) * \exp[b_6 + b_7 * \ln(A) + b_8 * (\ln(A))^2 + b_9 * (\ln(A))^7 + b_{10} * (\ln(A))^16 + b_{11} * (\ln(A))^24] + 4.5$$

{4.7.2.7} mountain hemlock

$$H = [(b_0 + b_1 * SI) * (1 - \exp(b_2 * SI ^0.5 * A))^{(b_4 + b_5/SI)} + 1.37] * 3.281$$

{4.7.2.8} lodgepole pine

$$H = SI * [b_0 + (b_1 * A) + (b_2 * A^2)]$$

{4.7.2.9} Engelmann spruce

$$H = 4.5 + [(b_0 * S/^b_1) * (1 - \exp(-b_2 * A)) ^ (b_3 * S/^b_4)]$$

{4.7.2.10} Shasta red fir

$$H = [(SI - 4.5) * (1 - \exp(-X * A^b_1))] / [1 - \exp(-Y * 50^b_1)] + 4.5$$

$$X = (SI * TERM) + (b_4 * TERM^2) + b_5$$

$$TERM = A * b_2 * \exp(A * b_3)$$

$$Y = (SI * TERM2) + (b_4 * TERM2^2) + b_5$$

$$TERM2 = 50 * b_2 * \exp(50 * b_3)$$

{4.7.2.11} ponderosa pine and sugar pine

$$H = [b_0 * (1 - \exp(b_1 * A))^b_2] - [(b_3 + b_4 * (1 - \exp(b_5 * A))^b_6) * b_7] + [(b_3 + b_4 * (1 - \exp(b_5 * A))^b_6) * (SI - 4.5)] + 4.5$$

{4.7.2.12} subalpine fir

$$H = SI * [b_0 + (b_1 * A) + (b_2 * A^2)]$$

{4.7.2.13} noble fir

$$H = 4.5 + [(SI - 4.5) / (X1 * (1 / A)^2 + X2 * (1 / A) + 1 - (X1 * 0.0001) - (X2 * 0.01))]$$

$$X1 = b_0 + (b_1 * (SI - 4.5)) - (b_2 * (SI - 4.5)^2)$$

$$X2 = b_3 + (b_4 / (SI - 4.5)) + (b_5 / (SI - 4.5)^2)$$

{4.7.2.14} western larch

$$H = 4.5 + (b_1 * A) + (b_2 * A^2) + (b_3 * A^3) + (b_4 * A^4) + (SI - 4.5) * [b_5 + (b_6 * A) + (b_7 * A^2) + (b_8 * A^3)] - b_9 * [b_{10} + (b_{11} * A) + (b_{12} * A^2) + (b_{13} * A^3)]$$

{4.7.2.15} red cedar

$$H = b_1 * SI * [(1 - \exp(b_2 * A))^b_3]$$

{4.7.2.16} western hemlock

$$H = [A^2 / (b_0 + (b_1 * Z) + ((b_2 + (b_3 * Z)) * A) + ((b_4 + (b_5 * Z)) * A^2))] + 4.5$$

$$Z = 2500 / (SI - 4.5)$$

{4.7.2.17} Pacific yew, white alder, bigleaf maple, black cottonwood, bitter cherry, willow, giant chinquapin, curl-leaf mtn. mahogany, birch-leaf mtn. mahogany, and other hardwoods

$$H = [(SI - 4.5) / [b_0 + (b_1 / (SI - 4.5))] + [A^{-1.4} * (b_2 + (b_3 / (SI - 4.5)))]] + 4.5$$

{4.7.2.18} red alder

$$H = SI + [(b_0 + b_1 * SI) * (1 - \exp((b_2 + b_3 * SI) * A))^b_4] - [(b_0 + b_1 * SI) * (1 - \exp((b_2 + b_3 * SI) * 20))^b_4]$$

{4.7.2.19} Oregon white oak

$$H = SI * [1 + b_1 * (A^0.5 - 7.07107)] - [b_0 * (A^0.5 - 7.07107)]$$

where:

H is estimated height of the tree

SI is species site index

A is estimated age of the tree

 $b_0 - b_{13}$ are species-specific coefficients shown in Table 4.7.2.2

Table 4.7.2.2 Coefficients ($b_0 - b_{13}$) for height-growth equations in the SO variant.

		Species Index											
Coefficient	WP	DF, OS	WF, IC, GF, SF	МН	LP	ES	SH	SP, PP	AF				
b ₀	0.375045	0	-0.30935	22.8741	-0.0968	2.7578	0	128.8952	-0.07831				
b ₁	0.92503	-0.37496	1.2383	0.950234	0.02679	0.83312	1.51744	-0.01696	0.0149				
b ₂	-0.0208	1.36164	0.001762	-0.00206	-9.3E-05	0.015701	1.42E-06	1.23114	-4.08E-05				
b ₃	-2.48811	-0.00243	-5.40E-06	0	0	22.71944	-0.04409	-0.7864	0				
b ₄	0	-79.97	2.05E-07	1.365566	0	-0.63557	-3.05E06	2.49717	0				
b ₅	0	-0.2828	-4.04E-13	2.045963	0	0	5.72E-04	-0.0045	0				
b ₆	0	1.87947	-6.2056	0	0	0	0	0.33022	0				
b ₇	0	-0.0224	2.097	0	0	0	0	100.43	0				
b ₈	0	0.966998	-0.09411	0	0	0	0	0	0				
b ₉	0	0	-4.4E-05	0	0	0	0	0	0				
b ₁₀	0	0	2.01E-11	0	0	0	0	0	0				

b ₁₁	0	0	-2.05E-17	0	0	0	0	0	0
b ₁₂	0	0	-84.93	0	0	0	0	0	0
b ₁₃	0	0	0	0	0	0	0	0	0

Table 4.7.2.2 (continued) Coefficients ($b_0 - b_{13}$) for height-growth equations in the SO variant.

				Speci	es Index		
Coefficient	NF	WL	RC	WH	PY, WA, BM, CW, CH, WI, GC, MC, MB, OH	RA	wo
b ₀	-564.38	0	0	-1.7307	0.6192	59.5864	6.413
b ₁	22.25	1.46897	1.3283	0.1394	-5.3394	0.7953	0.322
b ₂	0.04995	0.009247	-0.0174	-0.0616	240.29	0.00194	0
b ₃	6.8	-0.00024	1.4711	0.0137	3368.9	-0.00074	0
b ₄	2843.21	1.11E-06	0	0.00192	0	0.9198	0
b ₅	34735.54	-0.12528	0	0.00007	0	0	0
b ₆	0	0.039636	0	0	0	0	0
b ₇	0	-0.00043	0	0	0	0	0
b ₈	0	1.70E-06	0	0	0	0	0
b ₉	0	73.57	0	0	0	0	0
b ₁₀	0	-0.12528	0	0	0	0	0
b ₁₁	0	0.039636	0	0	0	0	0
b ₁₂	0	-0.00043	0	0	0	0	0
b ₁₃	0	1.70E-06	0	0	0	0	0

Potential height growth is estimated using equation {4.7.2.20}. Height increment is computed using equation {4.7.2.21} and adjusted for cycle length and user supplied growth multipliers.

 $\{4.7.2.20\}$ *POTHTG* = H10 - ECH

{4.7.2.21} *HTG* = *POTHTG* * *HTGMOD*

where:

POTHTG is potential height growth

H10 is estimated height of the tree in ten years

ECH is estimated height of the tree at the beginning of the cycle is estimated 10-year tree height growth (bounded $0.1 \le HTG$) is the weighted height growth multiplier shown in section 4.7.2.3

4.7.2.1 Dunning/Levitan Site Curves

For Shasta red fir and Oregon white oak in Region 5 forests, estimated current height (ECH) and estimated future height (H10) are both obtained using the use the Dunning/Levitan site curve equations $\{4.7.2.1.1-4.7.2.2.2\}$. Estimated current height is obtained using estimated tree age at the start of the projection cycle and site index. Estimated future height is obtained using estimated tree age at the start of the projection cycle plus 10-years and site index. Potential height growth is

estimated using equation {4.7.2.20}. Height increment is computed using equation {4.7.2.21} and adjusted for cycle length and user supplied growth multipliers.

 $\{4.7.2.1.1\} H = d_1 + d_2 * ln(A)$ for A > 40

 $\{4.7.2.1.2\} H = d_3 * A$ for $A \le 40$:

where:

H is estimated height of the treeA is estimated age of the tree

 d_1 , d_2 , d_3 are coefficients based on Region 5 site class shown in table 4.7.2.2.1

Table 4.7.2.2.1 Coefficients for the Dunning/Levitan site curves, nominal site index by site class in the SO variant.

Region 5	Nominal				
Site Class	Site Index	Site Index Range	d_1	d ₂	d ₃
0	106	99+	-88.9	49.7067	2.375
1	90	83 - 98	-82.2	44.1147	2.025
2	75	66 - 82	-78.3	39.1441	1.65
3	56	53 - 65	-82.1	35.416	1.225
4	49	45 - 52	-56	26.7173	1.075
5-7	39	0 - 44	-33.8	18.64	0.875

4.7.2.2 Whitebark Pine and Quaking Aspen

Whitebark pine and quaking aspen use Johnson's SBB (1949) method (Schreuder and Hafley, 1977). Height increment, using this method, is obtained by subtracting current height from the estimated future height. If tree diameter is greater than ($C_1 + 0.1$), or tree height is greater than ($C_2 + 4.5$), where C_1 and C_2 are shown in table 4.7.2.2.1, parameters of the SBB distribution cannot be calculated and height growth is set to 0.1. Otherwise, the SBB distribution "Z" parameter is estimated using equation $\{4.7.2.2.1\}$.

{4.7.2.2.1} Species Index 18 (whitebark pine and quaking aspen)

 $Z = \{ [C_4 + C_6 * FBY2 - C_7 * (C_3 + C_5 * FBY1)] * (1 - C_7^2)^-0.5 \} + ZBIAS$ FBY1 = In[Y1/(1 - Y1)]

 $FBY2 = \ln[Y2/(1 - Y2)]$

FBYZ = In[YZ/(1 - YZ)]

 $Y1 = (DBH - 0.1) / C_1$

 $Y2 = (HT - 4.5) / C_2$

where:

HT is tree height

DBH is tree diameter at breast height

 $C_1 - C_9$ are coefficients based on species and crown ratio class shown in table 4.7.2.2.1

ZBIAS is known bias (see equation 4.7.2.2.2)

Known bias is calculated using equation {4.7.2.2.2}.

{4.7.2.2.2} Known bias:

For quaking aspen: ZBIAS = $(0.1 - 0.10273 * Z + 0.00273 * Z^2)$ bounded ZBIAS ≥ 0

For whitebark pine: ZBIAS = 0

If the Z value is 2.0 or less, it is adjusted for all younger aged trees using equation {4.7.2.2.3}. This adjustment is done for trees with an estimated age between 11 and 39 years and a diameter less than 9.0 inches. After this calculation, the value of Z is bounded to be 2.0 or less for trees meeting these criteria.

```
\{4.7.2.2.3\} Z = Z * (0.3564 * DG) * CLOSUR * K

if CCF \ge 100: CLOSUR = PCT / 100

if CCF < 100: CLOSUR = 1

if CR \ge 75\%: K = 1.1

if CR < 75\%: K = 1.0
```

where:

DG is diameter growth for the cycle

PCT is the subject tree's percentile in the basal area distribution of the stand

CCF is stand crown competition factor

Estimated height 10 years later is calculated using equation {4.7.2.2.4}, and finally, 10-year height growth is calculated by subtraction using equation {4.7.2.2.5} and adjusted for cycle length and user supplied growth multipliers.

where:

is estimated height of the tree in ten yearsis height of the tree at the beginning of the cycle

D10 is estimated diameter at breast height of the tree in ten years

POTHTG is potential height growth

 $C_1 - C_9$ are regression coefficients based on species and crown ratio class

Table 4.7.2.2.1 Coefficients in the large tree height growth model, by crown ratio, for species using the Johnson's SBB height distribution in the SO variant.

Coefficient*	WB	AS
C ₁ (<i>CR</i> ≤ 24)	37.0	30.0
C ₁ (25 <u><</u> CR <u><</u> 74)	45.0	30.0

Coefficient*	WB	AS
C ₁ (75 <u><</u> CR <u><</u> 100)	45.0	35.0
C ₂ (CR < 24)	85.0	85.0
C ₂ (25 <u><</u> CR <u><</u> 74)	100.0	85.0
C ₂ (75 <u><</u> CR <u><</u> 100)	90.0	85.0
C ₃ (<i>CR</i> < 24)	1.77836	2.00995
C ₃ (25 <u><</u> CR <u><</u> 74)	1.66674	2.00995
C ₃ (75 <u><</u> CR <u><</u> 100)	1.64770	1.80388
C ₄ (CR < 24)	-0.51147	0.03288
C ₄ (25 <u><</u> CR <u><</u> 74)	0.25626	0.03288
C ₄ (75 <u><</u> CR <u><</u> 100)	0.30546	-0.07682
C ₅ (<i>CR</i> < 24)	1.88795	1.81059
C ₅ (25 <u><</u> CR <u><</u> 74)	1.45477	1.81059
C ₅ (75 <u><</u> CR <u><</u> 100)	1.35015	1.70032
C ₆ (<i>CR</i> < 24)	1.20654	1.28612
C ₆ (25 <u><</u> CR <u><</u> 74)	1.11251	1.28612
C ₆ (75 <u><</u> CR <u><</u> 100)	0.94823	1.29148
C ₇ (<i>CR</i> < 24)	0.57697	0.72051
C ₇ (25 <u><</u> CR <u><</u> 74)	0.67375	0.72051
C ₇ (75 <u><</u> CR <u><</u> 100)	0.70453	0.72343
C ₈ (CR < 24)	3.57635	3.00551
C ₈ (25 <u><</u> CR <u><</u> 74)	2.17942	3.00551
C ₈ (75 <u><</u> CR <u><</u> 100)	2.46480	2.91519
C ₉ (CR < 24)	0.90283	1.01433
C ₉ (25 <u><</u> CR <u><</u> 74)	0.88103	1.01433
C ₉ (75 <u><</u> CR <u><</u> 100)	1.00316	0.95244

^{*}CR represents percent crown ratio

4.7.2.3 Large Tree Height Growth Modifiers

For western white pine, sugar pine, Douglas-fir, white fir, mountain hemlock, incense-cedar, lodgepole pine, Engelmann spruce, ponderosa pine, grand fir, subalpine fir, Pacific silver fir, noble fir, western larch, western redcedar, western hemlock, Pacific yew, white alder, red alder, bigleaf maple, black cottonwood, bitter cherry, willow species, giant chinquapin, curl-leaf mountain mahogany, birchleaf mountain mahogany, other softwoods, and other hardwoods, modifiers are applied to the height growth based upon a tree's crown ratio (using equation {4.7.2.3.1}), and relative height and shade tolerance (using equation {4.7.2.3.2}). Equation {4.7.2.3.3} uses the Generalized Chapman – Richard's function (Donnelly et. al, 1992) to calculate a height-growth modifier. Height growth is calculated using equations {4.7.2.2}, {4.7.2.3}, or {4.7.2.21} and adjusted for cycle length and user supplied growth multipliers.

```
 \{4.7.2.3.1\} \ HGMDCR = (100 * (CR / 100)^3) * exp(-5 * (CR / 100)) \ bounded \ HGMDCR \le 1.0   \{4.7.2.3.2\} \ HGMDRH = [1 + ((1 / b_1)^{(b_2 - 1)} - 1) * exp((-1 * (b_3 / (1 - b_4)) * RELHT^{(1 - b_4)})^{(-1 / (b_2 - 1))}   \{4.7.2.3.3\} \ HTGMOD = (0.25 * HGMDCR) + (0.75 * HGMDRH) \ bounded \ 0.0 \le HTGMOD \le 2.0
```

*if $HTGMOD \le 0.0$, then HTGMOD = 0.1

{4.7.2.3.4} *HTG* = *POTHTG* * *HTGMOD*

where:

POTHTG is potential height growth

HGMDCR is a height growth modifier based on crown ratio

HGMDRH is a height growth modifier based on relative height and shade tolerance

HTGMOD is a weighted height growth modifierCR is crown ratio expressed as a percent

RELHT is tree height divided by average height of the 40 largest diameter trees in the stand

 $b_1 - b_4$ are species-specific coefficients shown in table 4.7.2.3

Table 4.7.2.3.1 Coefficients for the modifiers for the height growth equations by species for the SO variant.

Species	Model Coefficients			
Code	b ₁	b ₂	b ₃	b ₄
WP	0.10	1.10	15	-1.45
SP	0.10	1.10	15	-1.45
DF	0.10	1.10	15	-1.45
WF	0.20	1.10	20	-1.10
MH	0.20	1.10	20	-1.10
IC	0.20	1.10	20	-1.10
LP	0.01	1.10	12	-1.60
ES	0.15	1.10	16	-1.20
SH	0.15	1.10	16	-1.20
PP	0.05	1.10	13	-1.60
WJ	n/a	n/a	n/a	n/a
GF	0.20	1.10	13	-1.10
AF	0.05	1.10	20	-1.20
SF	0.10	1.10	20	-1.10
NF	0.10	1.10	15	-1.45
WB	0.10	1.10	15	-1.60
WL	0.10	1.10	12	-1.60
RC	0.10	1.10	20	-1.10
WH	0.20	1.10	20	-1.10
PY	0.20	1.10	20	-1.10
WA	0.05	1.10	13	-1.60
RA	0.05	1.10	13	-1.60
BM	0.20	1.10	20	-1.10
AS	0.10	1.10	15	-1.45
CW	0.01	1.10	12	-1.60
CH	0.05	1.10	13	-1.60
WO	0.10	1.10	15	-1.45

Species	Model Coefficients			
Code	b ₁	b ₂	b ₃	b ₄
WI	0.01	1.10	12	-1.60
GC	0.10	1.10	15	-1.45
MC	0.10	1.10	15	-1.45
MB	0.10	1.10	15	-1.45
OS	0.10	1.10	15	-1.45
ОН	0.10	1.10	15	-1.45

For Shasta red fir and Oregon white oak, the height growth modifier is calculated as shown above when the estimated tree age at the start of the projection cycle is greater than the maximum age for the site index curve. When estimated tree age at the start of the projection cycle is less than the maximum age for the site index curve, the height growth modifier is calculated using equation {4.7.2.3.5}. Height growth is calculated using equations {4.7.2.2} or {4.7.2.21} and adjusted for cycle length and user supplied growth multipliers.

$$\{4.7.2.3.5\}$$
 HTGMOD = 1.016605 * $[1 - \exp(-4.26558 * CR)]$ * $[\exp(2.54119 * ((RELHT ^ 0.250537) - 1))]$

where:

HTGMOD is the height growth modifier

CR is crown ratio expressed as a proportion

RELHT is tree height divided by average height of the 40 largest diameter trees in the stand

(bounded RELHT < 1, and set equal to 1 when PCCF < 100)

PCCF is the crown competition factor for the inventory point on which the tree is located

These height growth modifiers are not applied to quaking aspen or whitebark pine, and are not applicable to western juniper.

5.0 Mortality Model

The SO variant uses an SDI-based mortality model as described in Section 7.3.2 of Essential FVS: A User's Guide to the Forest Vegetation Simulator (Dixon 2002, referred to as EFVS). This SDI-based mortality model is comprised of two steps: 1) determining the amount of stand mortality (section 7.3.2.1 of EFVS) and 2) dispersing stand mortality to individual tree records (section 7.3.2.2 of EFVS). In determining the amount of stand mortality, the summation of individual tree background mortality rates is used when stand density is below the minimum level for density dependent mortality (default is 55% of maximum SDI), while stand level density-related mortality rates are used when stands are above this minimum level.

The equation used to calculate individual tree background mortality rates for all species is shown in equation {5.0.1}, and this is then adjusted to the length of the cycle by using a compound interest formula as shown in equation {5.0.2}. Coefficients for these equations are shown in table 5.0.1. The overall amount of mortality calculated for the stand is the summation of the final mortality rate (*RIP*) across all live tree records.

$$\{5.0.1\}$$
 RI = $[1/(1 + \exp(p_0 + p_1 * DBH))] * 0.5$

$$\{5.0.2\}$$
 RIP = $1 - (1 - RI)^Y$

where:

RI is the proportion of the tree record attributed to mortality RIP is the final mortality rate adjusted to the length of the cycle

DBH is tree diameter at breast height

Y is length of the current projection cycle in years p_0 and p_1 are species-specific coefficients shown in table 5.0.1

Table 5.0.1 Coefficients used in the background mortality equation {5.0.1} in the SO variant.

Species		
Code	\mathbf{p}_0	p ₁
WP	6.5112	-0.0052485
SP	6.5112	-0.0052485
DF	7.2985	-0.0129121
WF	5.1677	-0.0077681
MH	9.6943	-0.0127328
IC	5.1677	-0.0077681
LP	5.9617	-0.03401328
ES	9.6943	-0.01273328
SH	5.1677	-0.0077681
PP	5.5877	-0.005348
WJ	5.1677	-0.0077681
GF	5.1677	-0.0077681
AF	5.1677	-0.0077681
SF	5.1677	-0.0077681

Species		
Code	\mathbf{p}_0	p_1
NF	5.1677	-0.0077681
WB	6.5112	-0.0052485
WL	5.9617	-0.0340128
RC	5.1677	-0.0077681
WH	7.2985	-0.0129121
PY	5.5877	-0.005348
WA	5.9617	-0.03401328
RA	5.9617	-0.03401328
BM	5.5877	-0.005348
AS	5.1677	-0.0077681
CW	5.5877	-0.005348
CH	5.9617	-0.03401328
WO	5.9617	-0.03401328
WI	5.9617	-0.03401328
GC	5.5877	-0.005348
MC	5.9617	-0.03401328
MB	5.9617	-0.03401328
OS	7.2985	-0.0129121
ОН	5.9617	-0.03401328

When stand density-related mortality is in effect, the total amount of stand mortality is determined based on the trajectory developed from the relationship between stand SDI and the maximum SDI for the stand. This is explained in section 7.3.2.1 of EFVS.

Once the amount of stand mortality is determined based on either the summation of background mortality rates or density-related mortality rates, mortality is dispersed to individual tree records in relation to a tree's percentile in the basal area distribution (*PCT*) using equation {5.0.3}. This value is then adjusted by a species-specific mortality modifier (representing the species' tolerance) to obtain a final mortality rate as shown in equation {5.0.4}.

The mortality model makes multiple passes through the tree records multiplying a record's trees-peracre value times the final mortality rate (*MORT*), accumulating the results, and reducing the trees-peracre representation until the desired mortality level has been reached. If the stand still exceeds the basal area maximum sustainable on the site the mortality rates are proportionally adjusted to reduce the stand to the specified basal area maximum.

 $\{5.0.3\}$ MR = $0.84525 - (0.01074 * PCT) + (0.0000002 * PCT^3)$

 $\{5.0.4\}$ MORT = MR * MWT * 0.1

where:

MR is the proportion of the tree record attributed to mortality (bounded: $0.01 \le MR \le 1$)

PCT is the subject tree's percentile in the basal area distribution of the stand

MORT is the final mortality rate of the tree record

MWT is a mortality weight value based on a species' tolerance shown in table 5.0.2

Table 5.0.2 MWT values for the mortality equation {5.0.4} in the SO variant.

Species Code	MWT
WP	0.7
SP	0.75
DF	1
WF	0.55
MH	0.5
IC	0.65
LP	0.9
ES	0.6
SH	0.6
PP	0.85
WJ	1.1
GF	0.55
AF	0.55
SF	0.5
NF	0.7
WB	0.8
WL	1

Species Code	MWT
Code	IVIVVI
RC	0.5
WH	0.5
PY	0.5
WA	1
RA	0.9
BM	0.7
AS	1.3
CW	0.85
СН	1.1
WO	1
WI	1.3
GC	8.0
MC	1.1
MB	1.1
OS	0.7
ОН	1

6.0 Regeneration

The SO variant contains a partial establishment model which may be used to input regeneration and ingrowth into simulations. A more detailed description of how the partial establishment model works can be found in section 5.4.5 of the Essential FVS Guide (Dixon 2002).

The regeneration model is used to simulate stand establishment from bare ground, or to bring seedlings and sprouts into a simulation with existing trees. Sprouts are automatically added to the simulation following harvest or burning of known sprouting species (see table 6.0.1 for sprouting species).

Table 6.0.1 Regeneration parameters by species in the SO variant.

Species	Sprouting	Minimum Bud	Minimum Tree	Maximum Tree
Code	Species	Width (in)	Height (ft)	Height (ft)
WP	No	0.4	1	23
SP	No	0.4	1	27
DF	No	0.3	1.5	21
WF	No	0.3	1.5	21
MH	No	0.2	0.5	22
IC	No	0.2	0.5	20
LP	No	0.4	1.5	20
ES	No	0.3	0.5	18
SH	No	0.2	0.8	20
PP	No	0.5	1.3	17
WJ	No	0.3	0.5	6
GF	No	0.3	1.5	21
AF	No	0.3	0.8	20
SF	No	0.3	0.5	21
NF	No	0.3	1	20
WB	No	0.4	1	23
WL	No	0.3	1	27
RC	No	0.2	0.5	22
WH	No	0.2	1	20
PY	Yes	0.2	1	20
WA	Yes	0.2	1	20
RA	Yes	0.3	1	50
BM	Yes	0.2	1	20
AS	Yes	0.2	6	16
CW	Yes	0.2	1	20
СН	Yes	0.2	1	20
WO	Yes	0.2	1.5	20
WI	Yes	0.2	1	20
GC	Yes	0.2	1	20

Species Code	Sprouting Species	Minimum Bud Width (in)	Minimum Tree Height (ft)	Maximum Tree Height (ft)
MC	No	0.2	1	20
MB	Yes	0.2	1	20
OS	No	0.3	1.5	21
ОН	No	0.2	1	20

The number of sprout records created for each sprouting species is found in table 6.0.2. For more prolific stump sprouting hardwood species, logic rule {6.0.1} is used to determine the number of sprout records, with logic rule {6.0.2} being used for root suckering species. The trees-per-acre represented by each sprout record is determined using the general sprouting probability equation {6.0.3}. See table 6.0.2 for species-specific sprouting probabilities, number of sprout records created, and reference information.

Users wanting to modify or turn off automatic sprouting can do so with the SPROUT or NOSPROUT keywords, respectively. Sprouts are not subject to maximum and minimum tree heights found in table 6.0.1 and do not need to be grown to the end of the cycle because estimated heights and diameters are end of cycle values.

{6.0.1} For stump sprouting hardwood species

 $DSTMP_i \le 5$: NUMSPRC = 1

 $5 < DSTMP_i \le 10$: NUMSPRC = NINT(0.2 * DSTMP_i)

 $DSTMP_i > 10: NUMSPRC = 2$

{6.0.2} For root suckering hardwood species

 $DSTMP_i \leq 5$: NUMSPRC = 1

 $5 < DSTMP_i \le 10$: $NUMSPRC = NINT(-1.0 + 0.4 * DSTMP_i)$

 $DSTMP_i > 10$: NUMSPRC = 3

 $\{6.0.3\}\ TPA_s = TPA_i * PS$

 $\{6.0.4\}$ PS = $(TPA_i/(ASTPAR * 2)) * ((ASBAR / 198) * (40100.45 - 3574.02 * RSHAG^3 - 3.5208 * RSHAG^5 + 0.011797 * RSHAG^7))$

 $\{6.0.5\}$ PS = $((99.9 - 3.8462 * DSTMP_i) / 100)$

where:

*DSTMP*_i is the diameter at breast height of the parent tree

NUMSPRC is the number of sprout tree recordsNINT rounds the value to the nearest integer

*TPA*_s is the trees per acre represented by each sprout record

TPA; is the trees per acre removed/killed represented by the parent tree

PS is a sprouting probability (see table 6.0.2)

ASBAR is the aspen basal area removed
ASTPAR is the aspen trees per acre removed

RSHAG is the age of the sprouts at the end of the cycle in which they were created

Table 6.0.2 Sprouting algorithm parameters for sprouting species in the SO variant.

Species Code	Sprouting Probability	Number of Sprout Records	Source
DV	0.4	1	Minore 1996
PY	0.4	1	Ag. Handbook 654
WA	{6.0.5}	1	See red alder (RA)
RA	{6.0.5}	1	Harrington 1984
KA	{6.0.5}	1	Uchytil 1989
			Roy 1955
BM	0.9	{6.0.2}	Tappenier et al. 1996
			Ag. Handbook 654
AS	{6.0.4}	2	Keyser 2001
CW	0.9	{6.0.2}	Gom and Rood 2000
CVV	0.9	{0.0.2}	Steinberg 2001
			Mueggler 1965
CH	0.9	{6.0.2}	Leedge and Hickey 1971
			Morgan and Neuenschwander 1988
wo	0.9	{6.0.1}	Roy 1955
VVO	0.9	ξυ.υ.τ ζ	Gucker 2007
WI	0.9	1	Ag. Handbook 654
GC	GC 0.9 {6.0.2}	{6.0.2}	Harrington et al. 1992
GC	0.5	το.υ.Ζβ	Meyer 2012
MB	0.7	1	Gucker 2006

Regeneration of seedlings must be specified by the user with the partial establishment model by using the PLANT or NATURAL keywords. Height of the seedlings is estimated in two steps. First, the height is estimated when a tree is 5 years old (or the end of the cycle – whichever comes first) by using the small-tree height growth equations found in section 4.6.1. Users may override this value by entering a height in field 6 of the PLANT or NATURAL keyword; however the height entered in field 6 is not subject to minimum height restrictions and seedlings as small as 0.05 feet may be established. The second step also uses the equations in section 4.6.1, which grow the trees in height from the point five years after establishment to the end of the cycle.

Seedlings and sprouts are passed to the main FVS model at the end of the growth cycle in which regeneration is established. Unless noted above, seedlings being passed are subject to minimum and maximum height constraints and a minimum budwidth constraint shown in table 6.0.1. After seedling height is estimated, diameter growth is estimated using equations described in section 4.6.2. Crown ratios on newly established trees are estimated as described in section 4.3.1.

Regenerated trees and sprouts can be identified in the treelist output file with tree identification numbers beginning with the letters "ES".

7.0 Volume

In the SO variant, volume is calculated for three merchantability standards: total stem cubic feet, merchantable stem cubic feet, and merchantable stem board feet (Scribner Decimal C (R5) and Scribner (R6)). Volume estimation is based on methods contained in the National Volume Estimator Library maintained by the Forest Products Measurements group in the Forest Management Service Center (Volume Estimator Library Equations 2009). The default volume merchantability standards and equation numbers for the SO variant are shown in tables 7.0.1-7.0.3.

Table 7.0.1 Volume merchantability standards for the SO variant.

Merchantable Cubic Foot Volume Specifications:		
Minimum DBH / Top Diameter	Hardwoods	Softwoods
Region 5	9.0 / 6.0 inches	9.0 / 6.0 inches
Region 6 and Warm Springs Reservation	9.0 / 4.5 inches	9.0 / 4.5 inches
Stump Height	1.0 foot	1.0 foot
Merchantable Board Foot Volume Specifications:		
Minimum DBH / Top Diameter	Hardwoods	Softwoods
Region 5	9.0 / 6.0 inches	9.0 / 6.0 inches
Region 6 and Warm Springs Reservation	9.0 / 4.5 inches	9.0 / 4.5 inches
Stump Height	1.0 foot	1.0 foot

Table 7.0.2 Volume equation defaults for each species, at specific location codes, with model name.

Common Name	Location Code	Equation Number	Reference
western white pine	505, 506, 509, 511, 701	500WO2W117	Wensel and Olsen Profile Model
western white pine	601, 602, 620, 799	616BEHW119	Behre's Hyperbola
sugar pine	505, 506, 509, 511, 701	500WO2W117	Wensel and Olsen Profile Model
sugar pine	601, 602, 620, 799	616BEHW117	Behre's Hyperbola
Douglas-fir	505, 506, 509, 511, 701	500WO2W202	Wensel and Olsen Profile Model
Douglas-fir	601, 799	I11FW2W202	Flewelling's INGY 2-Point Profile Model
Douglas-fir	602, 620	I00FW2W017	Flewelling's INGY 2-Point Profile Model
white fir	505, 506, 509, 511, 701	500WO2W015	Wensel and Olsen Profile Model
white fir	601, 799	I00FW2W017	Flewelling's INGY 2-Point Profile Model
white fir	602, 620	I11FW2W017	Flewelling's INGY 2-Point Profile Model

Common Name	Location Code	Equation Number	Reference
mountain hemlock	505, 506, 509, 511, 701	500WO2W015	Wensel and Olsen Profile Model
mountain hemlock	601, 602, 620, 799	616BEHW264	Behre's Hyperbola
incense-cedar	505, 506, 509, 511, 701	500WO2W081	Wensel and Olsen Profile Model
incense-cedar	601, 799	I11FW2W242	Flewelling's INGY 2-Point Profile Model
incense-cedar	602, 620	100FW2W202	Flewelling's INGY 2-Point Profile Model
lodgepole pine	505, 506, 509, 511, 701	500WO2W108	Wensel and Olsen Profile Model
lodgepole pine	601, 799	I11FW2W108	Flewelling's INGY 2-Point Profile Model
lodgepole pine	602, 620	I00FW2W108	Flewelling's INGY 2-Point Profile Model
Engelmann spruce	505, 506, 509, 511, 701	500WO2W015	Wensel and Olsen Profile Model
Engelmann spruce	601, 602, 620, 799	616BEHW093	Behre's Hyperbola
Shasta red fir	505, 506, 509, 511, 701	500WO2W020	Wensel and Olsen Profile Model
Shasta red fir	601, 799	I00FW2W017	Flewelling's INGY 2-Point Profile Model
Shasta red fir	602, 620	616BEHW021	Behre's Hyperbola
ponderosa pine/Jeffrey pine	505, 506, 509, 511, 701	500WO2W122	Wensel and Olsen Profile Model
ponderosa pine/Jeffrey pine	601, 799	I11FW2W122	Flewelling's INGY 2-Point Profile Model
ponderosa pine/Jeffrey pine	602, 620	I00FW2W122	Flewelling's INGY 2-Point Profile Model
western juniper	505, 506, 509, 511, 701	500DVEW060	Wensel and Olsen Profile Model
western juniper	601, 602, 620, 799	616BEHW064	Behre's Hyperbola
grand fir	505, 506, 509, 511, 701	500WO2W015	Wensel and Olsen Profile Model
grand fir	601, 799	I00FW2W017	Flewelling's INGY 2-Point Profile Model
grand fir	602, 620	I11FW2W017	Flewelling's INGY 2-Point Profile Model
subalpine fir	505, 506, 509, 511, 701	500WO2W020	Wensel and Olsen Profile Model
subalpine fir	601, 602, 620, 799	616BEHW019	Behre's Hyperbola

Common Name	Location Code	Equation Number	Reference
Pacific silver fir	505, 506, 509, 511, 701	500WO2W015	Wensel and Olsen Profile Model
Pacific silver fir	601, 799	I00FW2W017	Flewelling's INGY 2-Point Profile Model
Pacific silver fir	602, 620	616BEHW011	Flewelling's INGY 2-Point Profile Model
noble fir	505, 506, 509, 511, 701	500WO2W020	Wensel and Olsen Profile Model
noble fir	601, 602, 620, 799	616BEHW022	Behre's Hyperbola
whitebark pine	505, 506, 509, 511, 701	500WO2W108	Wensel and Olsen Profile Model
whitebark pine	601, 602, 620, 799	616BEHW101	Behre's Hyperbola
western larch	505, 506, 509, 511, 701	500WO2W202	Wensel and Olsen Profile Model
western larch	601, 799	I11FW2W073	Flewelling's INGY 2-Point Profile Model
western larch	602, 620	616BEHW073	Flewelling's INGY 2-Point Profile Model
western redcedar	505, 506, 509, 511, 701	500WO2W081	Wensel and Olsen Profile Model
western redcedar	601, 602, 620, 799	616BEHW242	Behre's Hyperbola
western hemlock	505, 506, 509, 511, 701	500WO2W015	Wensel and Olsen Profile Model
western hemlock	601, 602, 620, 799	616BEHW263	Behre's Hyperbola
Pacific yew	505, 506, 509, 511, 701	500WO2W108	Wensel and Olsen Profile Model
Pacific yew	601, 602, 620, 799	616BEHW231	Behre's Hyperbola
white alder	505, 506, 509, 511, 701	500DVEW351	Pillsbury and Kirkley Equations
white alder	601, 602, 620, 799	616BEHW352	Behre's Hyperbola
red alder	505, 506, 509, 511, 701	500DVEW351	Pillsbury and Kirkley Equations
red alder	601, 602, 620, 799	616BEHW351	Behre's Hyperbola
bigleaf maple	505, 506, 509, 511, 701	500DVEW312	Pillsbury and Kirkley Equations
bigleaf maple	601, 602, 620, 799	616BEHW312	Behre's Hyperbola
quaking aspen	505, 506, 509, 511, 701	500DVEW818	Pillsbury and Kirkley Equations
quaking aspen	601, 602, 620, 799	616BEHW746	Behre's Hyperbola

		Equation	_
Common Name	Location Code	Number	Reference
black cottonwood	505, 506, 509, 511, 701	500DVEW818	Pillsbury and Kirkley Equations
black cottonwood	601, 602, 620, 799	616BEHW747	Behre's Hyperbola
bitter cherry	505, 506, 509, 511, 701	500DVEW801	Pillsbury and Kirkley Equations
bitter cherry	601, 602, 620, 799	616BEHW768	Behre's Hyperbola
Oregon white oak	505, 506, 509, 511, 701	500DVEW815	Pillsbury and Kirkley Equations
Oregon white oak	601, 602, 620, 799	616BEHW815	Behre's Hyperbola
willow species	505, 506, 509, 511, 701	500DVEW807	Pillsbury and Kirkley Equations
willow species	601, 602, 620, 799	616BEHW920	Behre's Hyperbola
giant chiquapin	505, 506, 509, 511, 701	500DVEW431	Pillsbury and Kirkley Equations
giant chiquapin	601, 602, 620, 799	616BEHW431	Behre's Hyperbola
curl-leaf mtn. mahogany	505, 506, 509, 511, 701	500DVEW801	Pillsbury and Kirkley Equations
curl-leaf mtn. mahogany	601, 602, 620, 799	616BEHW475	Behre's Hyperbola
birchleaf mtn. mahogany	505, 506, 509, 511, 701	500DVEW801	Pillsbury and Kirkley Equations
birchleaf mtn. mahogany	601, 602, 620, 799	616BEHW478	Behre's Hyperbola
other softwoods	505, 506, 509, 511, 701	500WO2W108	Wensel and Olsen Profile Model
other softwoods	601, 602, 620, 799	616BEHW298	Behre's Hyperbola
other hardwoods	505, 506, 509, 511, 701	500DVEW981	Pillsbury and Kirkley Equations
other hardwoods	601, 602, 620, 799	616BEHW998	Behre's Hyperbola

Table 7.0.3 Citations by Volume Model

Model Name	Citation
Behre's	USFS-R6 Sale Preparation and Valuation Section of Diameter and Volume
Hyperbola	Procedures - R6 Timber Cruise System. 1978.
Flewelling's	Unpublished. Based on work presented by Flewelling and Raynes. 1993. Variable-
INGY 2-Point	shape stem-profile predictions for western hemlock. Canadian Journal of Forest
Profile Model	Research Vol 23. Part I and Part II.
Pillsbury and	Norman H Pillsbury and Michael L Kirkley 1984 Equations for Total, Wood, and
Kirkley	saw-Log Volume for Thirteen California Hardwoods. Pacific Northwest Forest and
Equations	Range Experiment Station Research Note PNW-414.

Wensel and	Wensel, L. C. and C. M. Olson. 1993. Tree Taper Models for Major Commercial
Olsen Profile	California Conifers. Research Note No. 33. Northern Calif. Forest Yield
Model	Cooperative. Dept. of Forstry and Mgmt., Univ. of Calif., Berkeley. 28 pp.

8.0 Fire and Fuels Extension (FFE-FVS)

The Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS) (Reinhardt and Crookston 2003) integrates FVS with models of fire behavior, fire effects, and fuel and snag dynamics. This allows users to simulate various management scenarios and compare their effect on potential fire hazard, surface fuel loading, snag levels, and stored carbon over time. Users can also simulate prescribed burns and wildfires and get estimates of the associated fire effects such as tree mortality, fuel consumption, and smoke production, as well as see their effect on future stand characteristics. FFE-FVS, like FVS, is run on individual stands, but it can be used to provide estimates of stand characteristics such as canopy base height and canopy bulk density when needed for landscape-level fire models.

For more information on FFE-FVS and how it is calibrated for the SO variant, refer to the updated FFE-FVS model documentation (Rebain, comp. 2010) available on the FVS website. The Warm Springs Reservation uses FFE-FVS model settings for the Deschutes National Forest.

9.0 Insect and Disease Extensions

FVS Insect and Pathogen models for dwarf mistletoe and western root disease have been developed for the SO variant through the participation and contribution of various organizations led by Forest Health Protection. These models are currently maintained by the Forest Management Service Center and regional Forest Health Protection specialists. Additional details regarding each model may be found in chapter 8 of the Essential FVS Users Guide (Dixon 2002).

10.0 Literature Cited

- Alexander, R.R., Tackle, D., and Dahms, W.G. 1967. Site Indices for Engelmann Spruce. Res. Pap. RM-32. Forest Service, Rocky Mountain Research Station.
- Alexander, R.R., Tackle, D., and Dahms, W.G. 1967. Site Indices for Lodgepole Pine with Corrections for Stand Density Methodology. Res. Pap. RM-29. Forest Service, Rocky Mountain Research Station. 18 p.
- Arney, J. D. 1985. A modeling strategy for the growth projection of managed stands. Canadian Journal of Forest Research. 15(3):511-518.
- Barrett, James W. 1978. Height growth and site index curves for managed, even-aged stands of ponderosa pine in the Pacific Northwest. Res. Pap. PNW-232. Portland, OR: Forest Service, Pacific Northwest Forest and Range Experiment Station. 14 p.
- Bechtold, William A. 2004. Largest-crown-diameter Prediction Models for 53 Species in the Western United States. WJAF. Forest Service. 19(4): pp 241-245.
- Brickell, James E. 1970. Equations and Computer subroutines for Estimating Site Quality of Eight Rocky Mounatin Species. Res. Pap. INT-75. Ogden, UT: Forest Service, Intermounatin Forest and Range Experimnet Station. 24 p.
- Burns, R. M., & Honkala, B. H. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods Agriculture Handbook 654. US Department of Agriculture, Forest Service, Washington, DC.
- Cochran, P.H. 1979. Site index and height growth curves for managed, even-aged stands of white or grand fir east of the Cascades in Oregon and Washington. Res. Pap. PNW-251. Portland, OR: Forest Service, Pacific Northwest Forest and Range Experiment Station. 16 p.
- Cochran, P.H. 1979. Site index and height growth curves for managed, even-aged stands of white or grand fir east of the Cascades in Oregon and Washington. Res. Pap. PNW-252. Portland, OR: Forest Service, Pacific Northwest Forest and Range Experiment Station. 13 p.
- Cochran, P. H. 1985. Site index, height growth, normal yields, and stocking levels for larch in Oregon and Washington. Res. Note PNW-424. Portland, OR: Forest Service, Pacific Northwest Forest and Range Experiment Station. 13 p.
- Cole, D. M.; Stage, A. R. 1972. Estimating future diameters of lodgepole pine. Res. Pap. INT-131. Ogden, UT: U. S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 20p.
- Crookston, Nicholas L. 2003. Internal document on file. Data provided from Region 1. Moscow, ID: Forest Service.
- Crookston, Nicholas L. 2005. Draft: Allometric Crown Width Equations for 34 Northwest United States
 Tree Species Estimated Using Generalized Linear Mixed Effects Models.
- Crookston, Nicholas L. 2008. Internal Report.

- Curtis, Robert O. 1967. Height-diameter and height-diameter-age equations for second-growth Douglas-fir. Forest Science 13(4):365-375.
- Curtis, Robert O.; Herman, Francis R.; DeMars, Donald J. 1974. Height growth and site index for Douglas-fir in high-elevation forests of the Oregon-Washington Cascades. Forest Science 20(4):307-316.
- Dahms, Walter. 1964. Gross and net yield tables for lodgepole pine. Res. Pap. PNW-8. Portland, OR: Pacific Northwest Forest and Range Experiment Station. 14 p.
- DeMars, Donald J., Francis R. Herman, and John F. Bell. 1970. Preliminary site index curves for noble fir From stem analysis data. Portland, OR: Forest Service, Pacific Northwest Forest and Range Experiment Station, Res. Note PNW-119. 9p.
- Dixon, G. E. 1985. Crown ratio modeling using stand density index and the Weibull distribution. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center. 13p.
- Dixon, Gary E. comp. 2002 (revised frequently). Essential FVS: A user's guide to the Forest Vegetation Simulator. Internal Rep. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Forest Management Service Center.
- Dolph, K. Leroy. 1991. Polymorphic site index curves for red fir in California and southern Oregon. Res. Paper PSW-206. Berkeley, CA: Forest Service, Pacific Southwest Forest and Range Experiment Station. 18p.
- Donnelly, Dennis M., Betters, David R., Turner, Matthew T., and Gaines, Robert E. 1992. Thinning evenaged forest stands: Behavior of singular path solutions in optimal control analyses. Res. Pap. RM-307. Fort Collins, CO: Forest Service. Rocky Mountain Forest and Range Experiment Station. 12 p.
- Donnelly, Dennis. 1996. Internal document on file. Data provided from Region 6. Fort Collins, CO: Forest Service.
- Dunning, Duncan, and L.H. Reineke. 1933. Preliminary yield tables for second-growth stands in the California pine region. Tech. Bull. 354. Forest Service. 24p.
- Dunning, Duncan. 1942. A site classification for the mixed-conifer selection forests of the Sierra Nevada. Res. Note No. 28. Berkeley, CA: Forest Service, California Forest and Range Experiment Station. 21p.
- Edminster, Carleton B., Mowrer, Todd H., and Shepperd, Wayne D. 1985. Site index curves for aspen in the central Rocky Mountains. Res. Note RM-453. Fort Collins, CO: Forest Service, Rocky Mountain Forest and Range Experiment Station. 4p.
- Unpublished. Based on work presented by Flewelling and Raynes. 1993. Variable-shape stem-profile predictions for western hemlock. Canadian Journal of Forest Research Vol 23. Part I and Part II.
- Gom, L. A., & Rood, S. B. (2000). Fire induces clonal sprouting of riparian cottonwoods. Canadian Journal of Botany, 77(11), 1604-1616.

- Gucker, Corey L. 2006. Cercocarpus montanus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Gucker, Corey L. 2007. Quercus garryana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Hall, Frederick C. 1983. Growth basal area: a field method for appraising forest site productivity for stockability. Can. J. For. Res. 13:70-77.
- Harrington, Constance A. 1984. Factors influencing initial sprouting of red alder. Canadian Journal of Forest Research. 14: 357-361.
- Harrington, Constance A.; Curtis, Robert O. 1986. Height growth and site index curves for red alder. Res. Pap. PNW-358. Portland, OR: Forest Service, Pacific Northwest Forest and Range Experiment Station. 14 p.
- Harrington, T. B., Tappeiner, I. I., John, C., & Warbington, R. 1992. Predicting crown sizes and diameter distributions of tanoak, Pacific madrone, and giant chinkapin sprout clumps. Western Journal of Applied Forestry, 7(4), 103-108.
- Hegyi, R.P.F., J.J. Jelinek, J. Viszlai and D.B. Carpenter. 1979. Site index equations and curves for the major species in British Columbia. For. Inv. Rep. No. 1. Ministry of Forests, Inventory Branch, 1450 Government Street, Victoria, B.C. V8W 3E7
- Herman, Francis R.; Curtis, Robert O.; DeMars, Donald J. 1978. Height growth and site index estimates for noble fir in high-elevation forests of the Oregon-Washington Cascades. Res. Pap. PNW-243. Portland, OR: Forest Service, Pacific Northwest Forest and Range Experiment Station. 15 p.
- Johnson, N.L. 1949. Bivariate distributions based on simple translation systems. Biometrika 36: 297–304.
- Keyser, C.E. 2001. Quaking Aspen Sprouting in Western FVS Variants: A New Approach. Unpublished Manuscript.
- Krajicek, J.; Brinkman, K.; Gingrich, S. 1961. Crown competition a measure of density. Forest Science. 7(1):35-42
- Leedge, T. A., & Hickey, W. O. 1971. Sprouting of northern Idaho shrubs after prescribed burning. The Journal of Wildlife Management, 508-515.
- Means, J.F., M.H. Campbell, and G.P. Johnson. 1986. Preliminary height growth and site index curves for mountain hemlock. FIR Report, Vol 10, No.1. Corvallis, OR: Oregon State University.
- Meyer, Rachelle. 2012. Chrysolepis chrysophylla. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Minore, D., & Weatherly, H. G. (1996). Stump sprouting of Pacific yew. General Technical Report. PNW-GTR-378. Portland, Or.: U.S. Dept. of Agriculture, Pacific Northwest Research Station.

- Morgan, P., & Neuenschwander, L. F. 1988. Shrub response to high and low severity burns following clearcutting in northern Idaho. Western Journal of Applied Forestry, 3(1), 5-9.
- Mueggler, W. F. 1965. Ecology of seral shrub communities in the cedar-hemlock zone of northern Idaho. Ecological Monographs, 165-185.
- Pillsbury, Norman K. and Kirkley, Michael L. 1984 Equations for Total, Wood, and saw-Log Volume for Thirteen California Hardwoods. Pacific Northwest Forest and Range Experiment Station Research Note PNW-414.
- Powers, Robert F. 1972. Site index curves for unmanaged stands of California black oak. Res. Note PSW-262. Berkeley, CA: Forest Service, Pacific Southwest Forest and Range Experiment Station. 5p.
- Rebain, Stephanie A. comp. 2010 (revised frequently). The Fire and Fuels Extension to the Forest Vegetation Simulator: Updated Model Documentation. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center. 379 p.
- Reinhardt, Elizabeth; Crookston, Nicholas L. (Technical Editors). 2003. The Fire and Fuels Extension to the Forest Vegetation Simulator. Gen. Tech. Rep. RMRS-GTR-116. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 209 p.
- Roy, D. F. 1955. Hardwood sprout measurements in northwestern California. Forest Research Notes. California Forest and Range Experiment Station, (95).
- Schreuder, H.T. and W.L. Hafley. 1977. A Useful Distribution for Describing Stand Structure of Tree Heights and Diameters. Biometrics 33, 471-478.
- Stage, A. R. 1973. Prognosis Model for stand development. Res. Paper INT-137. Ogden, UT: U. S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 32p.
- Steinberg, Peter D. 2001. Populus balsamifera subsp. trichocarpa. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Tappeiner, I. I., John, C., Zasada, J., Huffman, D., & Maxwell, B. D. 1996. Effects of cutting time, stump height, parent tree characteristics, and harvest variables on development of bigleaf maple sprout clumps. Western Journal of Applied Forestry, 11(4), 120-124.
- USFS-R6 Sale Preparation and Valuation Section of Diameter and Volume Procedures R6 Timber Cruise System. 1978.
- Uchytil, Ronald J. 1989. Alnus rubra. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory.
- Van Dyck, Michael G.; Smith-Mateja, Erin E., comps. 2000 (revised frequently). Keyword reference guide for the Forest Vegetation Simulator. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center.

- Wensel, L. C. and C. M. Olson. 1993. Tree Taper Models for Major Commercial California Conifers.
 Research Note No. 33. Northern Calif. Forest Yield Cooperative. Dept. of Forstry and Mgmt.,
 Univ. of Calif., Berkeley. 28 pp.
- Wiley, Kenneth N. 1978. Site index tables for western hemlock in the Pacific Northwest. For. Pap. No. 17. Centralia, WA: Weyerhaeuser Forestry Research Center. 28 p.
- Wykoff, W. R. 1990. A basal area increment model for individual conifers in the northern Rocky Mountains. For. Science 36(4): 1077-1104.
- Wykoff, William R., Crookston, Nicholas L., and Stage, Albert R. 1982. User's guide to the Stand Prognosis Model. Gen. Tech. Rep. INT-133. Ogden, UT: Forest Service, Intermountain Forest and Range Experiment Station. 112p.

11.0 Appendices

11.1 Appendix A. Distribution of Data Samples

Data used to develop equations for the original 11 species in the SO variant came from the following sources:

- Deschutes forest inventory
- Fremont forest inventory
- Winema forest inventory
- Klamath forest inventory
- Lassen forest inventory
- Modoc forest inventory
- Hat Creek Rim thinning (Lassen NF)
- Forest Inventory and Analysis samples from state and private lands
- True fir release study (Ken Seidel, Deschutes NF)
- PSW Goosenest RD. thinning (Klamath NF)
- Washington Mountain thinning (PSW, Modoc NF)
- Sugar Hill thinning (PSW, Modoc NF)
- Jelly Pass thinning (PSW)
- Weyerhauser Spaulding Butte thinning (Modoc NF)
- Diamond International Bend thinning (Bob Wheeler)
- Center Peak thinning (Fremont NF)
- Fremont-Winema evaluation plantations
- Deschutes benchmark plantations
- Island thinning (Lassen NF)
- Adin Pass thinning (PSW, Modoc NF)
- Lookout Mountain fir study (PNW, Ken Seidel)
- Sheridan Mountain thinning (PSW, Deschutes NF)
- D25/D56 ponderosa pine study (PNW, Barrett)
- D66 red fir spacing study (PNW)

- D72 mixed conifer spacing study (PNW, Deschutes NF)

Table 11.1.1 contains distribution information of data used to fit species relationships in this variant's geographic region (information from original variant overview).

Table 11.1.1 The distribution of growth sample trees by species and type of study (landowner).

Species	Deschutes	Winema	Fremon	Klamath	Modoc	Lassen	Special	Private	Total Number of
Species	Forest	Forest	t Forest	Forest	Forest	Forest	Studies	Land	Observations
Western White Pine	20	27	15	0	28	9	0	0	260
Pine	20	21	15	U	28	9	U	U	200
Sugar Pine	1	42	16	0	1	37	2	0	326
Douglas-fir	29	55	0	1	0	12	1	1	717
White Fir	6	29	28	1	16	18	1	1	5797
Mountain Hemlock	86	11	1	0	3	0	0	0	783
Incense Cedar	4	13	35	0	12	34	0	1	511
Lodgepole Pine	46	23	24	0	4	3	0	0	3416
Engelmann Spruce	81	19	0	0	0	0	0	0	31
Shasta Red Fir	10	61	1	1	21	5	0	0	1216
Ponderosa Pine	15	14	22	1	11	10	26	1	10038
Other	0	2	48	0	35	0	0	15	48

11.2 Appendix B: Plant Association Codes

Table 11.2.1 Region 5 Plant association codes recognized in the SO variant.

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
1 = 2TE/BEOC2		501 – Manning &
Conifer/water birch	43014	Padgett
2 =2TE/ROWO		501 – Manning &
Conifer/wood's rose	43015	Padget
3 = 2TE/2FORB		501 – Manning &
Conifer/tall forb	43016	Padgett
4 = 2TE/2FORB		501 – Manning &
Conifer/mesic forb	43017	Padget
5 = PICO/CASC12		501 – Manning &
Lodgepole pine/mountain sedge	43031	Padgett
6 = POTR5/BEOC2		501 – Manning &
Quaking aspen/water birch	43061	Padget
7 = POTR5/COSE16		501 – Manning &
Quaking aspen/redosier dogwood	43062	Padgett
8 = POTR5/SALIX		501 – Manning &
Quaking aspen/willow	43063	Padget

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
9 = POTR5/ROWO		501 – Manning &
Quaking aspen/woods' rose	43064	Padgett
10 = POTR5/BRCA5		501 – Manning &
Quaking aspen/California brome	43065	Padget
11 = POTR5/POPR		501 – Manning &
Quaking aspen/Kentucky bluegrass	43066	Padgett
12 = POTR5/2FORB		501 – Manning &
Quaking aspen/mesic forb	43067	Padget
13 = POPUL/BEOC2		501 – Manning &
Cottonwood/water birch	43071	Padgett
14 = POPUL/COSE16		501 – Manning &
Cottonwood/redosier dogwood	43072	Padget
15 = POPUL/SALIX		501 – Manning &
Cottonwood/willow	43073	Padgett
16 = POPUL/ROWO		501 – Manning &
Cottonwood/woods' rose	43074	Padget
17 = POPUL/RHAR4		501 – Manning &
Cottonwood/fragrant sumac	43075	Padgett
18 = POPUL		501 – Manning &
Cottonwood (stream bar)	43076	Padget
19 = ALIN2		501 – Manning &
Gray alder (bench)	43106	Padgett
20 = BEOC2/2GRAM		501 – Manning &
Water birch/mesic graminoid	43153	Padget
21 = BEOC2/EQAR		501 – Manning &
Water birch/field horsetail	43154	Padgett
22 = BEOC2		501 – Manning &
Water birch (bench)	43156	Padget
23 = SAEX/ROWO		501 – Manning &
Narrowleaf willow/woods' rose	43246	Padgett
24 = SAEX		501 – Manning &
Narrowleaf willow (bench)	43267	Padget
25 = SALE/CASC12		501 – Manning &
Lemmons willow/mountain sedge	43261	Padgett
26 = SALE/2GRAM		501 – Manning &
Lemmons willow/mesic graminoid	43262	Padget
27 = SALE/2FORB		501 – Manning &
Lemmons willow/mesic forb	43263	Padgett
28 = SALE/2FORB		501 – Manning &
Lemons willow/tall forb	43264	Padget

Alpha Code	Reference
	501 – Manning &
43265	Padgett
	501 – Manning &
43266	Padget
	501 – Manning &
43272	Padgett
	501 – Manning &
43273	Padget
	501 – Manning &
43274	Padgett
	501 – Manning &
43275	Padget
	501 – Manning &
43276	Padgett
	501 – Manning &
43282	Padget
	501 – Manning &
43284	Padgett
	501 – Manning &
43285	Padget
	501 – Manning &
43287	Padgett
	501 – Manning &
43288	Padget
	501 – Manning &
43289	Padgett
	501 – Manning &
43290	Padget
	501 – Manning &
43291	Padgett
	501 – Manning &
43292	Padget
	501 – Manning &
43293	Padgett
	501 – Manning &
43294	Padget
	501 – Manning &
43304	Padgett
	501 – Manning &
43325	Padget
	43265 43266 43272 43273 43274 43275 43276 43282 43284 43285 43287 43288 43289 43290 43291 43292 43293 43294 43304

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
49 = SAEA/CASC12		501 – Manning &
Mountain willow/mountain sedge	43327	Padgett
50 = SAOR/2FORB		501 – Manning &
Sierra willow/tall forb	43328	Padget
51 = SALIX/2FORB		501 – Manning &
Willow/mesic forb	43329	Padgett
52 = COSE16		501 – Manning &
Redosier dogwood	43351	Padget
53 = COSE16/SALIX		501 – Manning &
Redosier dogwood-willow	43352	Padgett
54 = PRVI/ROWO		501 – Manning &
Chokecherry/woods' rose	43451	Padget
55 = ROWO		501 – Manning &
Woods' rose	43500	Padgett
56 = DAFL3/LIGR		501 – Manning &
Shrubby cinquefoil/gray's licorice-root	43554	Padget
57 = ARCA13/2GRAM		501 – Manning &
Silver sagebrush/graminoid (dry)	43605	Padgett
58 = ARCA13/2GRAM		501 – Manning &
Silver sagebrush/graminoid (mesic)	43606	Padget
59 = ARTRT/ROWO		501 – Manning &
Basin big sagebrush/woods' rose	43651	Padgett
60 = CADO2		501 – Manning &
Douglas' sedge	43803	Padget
61 = CASC12		501 – Manning &
Mountain sedge	43811	Padgett
62 = DECA18-CANE2		501 – Manning &
Tufted hairgrass-Nebraska sedge	43872	Padget
63 = POSE		501 – Manning &
Sandberg bluegrass	43883	Padgett
64 = DOJE		501 – Manning &
Sierra shootingstar	43905	Padget
65 = LUPO2-SETR		501 – Manning &
Bigleaf lupine-arrowleaf ragwort	43911	Padgett
66 = IRMI/2GRAM		501 – Manning &
Western iris/dry graminoid	43915	Padget
67 = IRMI/2GRAM		501 – Manning &
Western iris/ mesic graminoid	43916	Padgett
68 = AGST2		501 – Manning &
Creping bentgrass	43991	Padget

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
69 = HOBR2		501 – Manning &
Meadow barley	43995	Padgett
70 = CHLA		510 – Jimerson,
Port Orford cedar	CCOCCO00	1994
71 =		510 – Jimerson,
Port Orford cedar/salal (1)	CCOCCO11	1994
72 =		510 – Jimerson,
Port Orford cedar/pacific rhododendron-salal(1)	CCOCCO12	1994
73 =		510 – Jimerson,
Port Orford cedar/western azalea (1)	CCOCCO13	1994
74 =		510 – Jimerson,
Port Orford cedar-western white pine/huckleberry oak (1)	CCOCCO14	1994
75 = CHLA-ABCO		510 – Jimerson,
Port Orford cedar-white fir	CCOCFW00	1994
76 = CHLA-ABCO/QUVA		510 – Jimerson,
Port Orford cedar-white fir/huckleberry oak	CCOCFW11	1994
77 = CHLA-ABCO-PIMO3/QUVA		510 – Jimerson,
Port Orford cedar-white fir-western white pine/huckleberry oak	CCOCFW12	1994
78 = CHLA-ABCO/RHOB		510 – Jimerson,
Port Orford cedar-white fir/western azalea	CCOCFW13	1994
79 = CHLA-ABCO/2FORB		510 – Jimerson,
Port Orford cedar-white fir/forbs	CCOCFW14	1994
80 = CHLA-ABCO/QUSA2		510 – Jimerson,
Port Orford cedar-white fir/deer oak	CCOCFW15	1994
81 = CHLA-ABSH/QUSA2-VAME		510 – Jimerson,
Port Orford cedar-Shasta red fir/deer oak-thinleaf huckleberry	CCOCFW16	1994
82 = CHLA-PSME/QUVA		510 – Jimerson,
Port Orford cedar-Douglas-fir/huckleberry oak	CCOCFW17	1994
83 = CHLA-CADE27-ALRH2		510 – Jimerson,
Port Orford cedar-incense cedar-white alder	CCOCFW18	1994
84 = PSME		513 – Jimerson et
Douglas-fir	CD000000	al, 1996
85 = PSME-CADE27		513 – Jimerson et
Douglas-fir-incense cedar	CD0CCI00	al, 1996
86 = PSME-CADE27/FECA		513 – Jimerson et
Douglas-fir-incense cedar/California fescue	CD0CCI11	al, 1996
87 = PSME-PIJE		513 – Jimerson et
Douglas-fir-Jeffrey Pine	CD0CPJ00	al, 1996
88 = PSME-PIJE/FECA		513 – Jimerson et
Douglas-fir-Jeffrey pine/California fescue	CD0CPJ11	al, 1996

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
89 = PSME-ALRU2		513 – Jimerson et
Douglas-fir-red alder	CD0HAR00	al, 1996
90 = PSME-ALRU2/ACCI/CLSIS		513 – Jimerson et
Douglas-fir-red alder/vine maple/Siberian springbeauty	CD0HAR11	al, 1996
91 = PSME-UMCA		513 – Jimerson et
Douglas-fir-California laurel	CD0HBC00	al, 1996
92 = PSME-UMCA/TODI		513 – Jimerson et
Douglas-fir-California laurel/Pacific poison oak	CD0HBC11	al, 1996
93 = PSME-UMCA/HODI		513 – Jimerson et
Douglas-fir-California laurel/ocean spray	CD0HBC12	al, 1996
94 = PSME-CHCHC4		513 – Jimerson et
Douglas-fir-giant chinquapin	CD0HGC00	al, 1996
95 = PSME-CHCHC4-LIDE3		513 – Jimerson et
Douglas-fir-giant chinquapin-tanoak	CD0HGC11	al, 1996
96 = PSME-CHCHC4/XETE		513 – Jimerson et
Douglas-fir-giant chinquapin/common beargrass	CD0HGC12	al, 1996
97 = PSME-CHCHC4/RHMA3-GASH		513 – Jimerson et
Douglas-fir-giant chinquapin/Pacific rhododendron-salal	CD0HGC13	al, 1996
98 = PSME-CHCHC4/RHMA3-MANE2		
Douglas-fir-giant chinquapin/pacific rhododendron-Cascade		513 – Jimerson et
barberry	CD0HGC14	al, 1996
99 = PSME-CHCHC4/RHMA3-QUSA2/XETE		
Douglas-fir-giant chinquapin/pacific rhododendron-deer		513 – Jimerson et
oak/common beargrass	CD0HGC15	al, 1996
100 = PSME-CHCHC4-LIDE3/MANE2		513 – Jimerson et
Douglas-fir-giant chinquapin-tanoak/cascade barberry	CD0HGC16	al, 1996
101 = PSME-CHCHC4/RHA3-QUSA-GASH		513 – Jimerson et
Douglas-fir-giant chinquapin/pacific rhododendron-deer oak-salal	CD0HGC17	al, 1996
102 = PSME-ACER		513 – Jimerson et
Douglas-fir-maple	CD0HMA00	al, 1996
103 = PSME-ACMA3/POMU		513 – Jimerson et
Douglas-fir-bigleaf maple/western swordfern	CD0HMA11	al, 1996
104 = PSME-ACMA3/PHLE4		513 – Jimerson et
Douglas-fir-bigleaf maple/Lewis' mock orange	CD0HMA12	al, 1996
105 = PSME/ACCI-MARE11		513 – Jimerson et
Douglas-fir/vine maple-Cascade barberry	CD0HMA13	al, 1996
106 = PSME-QUKE		513 – Jimerson et
Douglas-fir-California black oak	CD0HOB00	al, 1996
107 = PSME-QUKE		513 – Jimerson et
Douglas-fir-California black oak (metamorphic)	CD0HOB11	al, 1996

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
108 = PSME-QUKE		513 – Jimerson et
Douglas-fir-California black oak (sandstone)	CD0HOB12	al, 1996
109 = PSME-QUKE-QUGA4/2GRAM		513 – Jimerson et
Douglas-fir-California black oak-Oregon white oak/grass	CD0HOB13	al, 1996
110 = PSME-QUCH2		513 – Jimerson et
Douglas-fir-canyon live oak	CD0HOL00	al, 1996
111 = PSME-QUCH2		513 – Jimerson et
Douglas-fir-canyon live oak (rockpile)	CD0HOL11	al, 1996
112 = PSME-QUCH2-ARME/TODI		513 – Jimerson et
Douglas-fir-canyon live oak-Pacific madrone/pacific poison oak	CD0HOL12	al, 1996
113 = PSME-QUCH2-LIDE3		513 – Jimerson et
Douglas-fir-canyon live oak-tanoak	CD0HOL13	al, 1996
114 = PSME-QUGA4		513 – Jimerson et
Douglas-fir-Oregon white oak	CD0HOO00	al, 1996
115 = PSME-QUGA4/2GRAM		513 – Jimerson et
Douglas-fir-Oregon white oak/grass	CD0H0011	al, 1996
116 = PSME-QUGA4/HODI		513 – Jimerson et
Douglas-fir-Oregon white oak/oceanspray	CD0HOO12	al, 1996
117 = PSME-LIDE3		513 – Jimerson et
Douglas-fir-tanoak	CD0HT000	al, 1996
118 = PSME-LIDE3/WHMO		513 – Jimerson et
Douglas-fir-tanoak/common whipplea	CD0HT011	al, 1996
119 = PSME-LIDE3/QUVA-HODI		513 – Jimerson et
Douglas-fir-tanoak/huckleberry oak-oceanspray	CD0HT012	al, 1996
120 = PSME/2SHRUB		513 – Jimerson et
Douglas-fir/shrub (moist)	CD0SM000	al, 1996
121 = PSME/COCOC		513 – Jimerson et
Douglas-fir/California hazelnut	CD0SM011	al, 1996
122 = PSME/QUVA		513 – Jimerson et
Douglas-fir/huckleberry oak	CD0SOH00	al, 1996
123 = PSME/QUVA/LIDEE		513 – Jimerson et
Douglas-fir/huckleberry oak-tanoak	CD0SOH12	al, 1996
124 = PSME/QUVA-RHMA3		513 – Jimerson et
Douglas-fir/huckleberry oak-Pacific rhododendron	CD0SOH13	al, 1996
125 = PIJE		512 – Jimerson et
Jeffrey pine	CPJ00000	al, 1995
126 = PIJE-CADE27		512 – Jimerson et
Jeffrey Pine – Incense cedar	CPJCCI00	al, 1995
127 = PIJE-CADE27-ABCO/QUVA		512 – Jimerson et
Jeffrey Pine-Incense cedar-white fir/huckleberry oak	CPJCCI11	al, 1995

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
128 = PIJE-CADE27/QUVA/XETE		512 – Jimerson et
Jeffrey Pine-Incense cedar/huckleberry oak/common beargrass	CPJCCI12	al, 1995
129 = PIJE-CADE27/CEPU		512 – Jimerson et
Jeffrey Pine-incense cedar/dwarf ceanothus	CPJCCI13	al, 1995
130 = PIJE-CADE27/CECU		512 – Jimerson et
Jeffrey Pine-incense cedar/buckbrush	CPJCCI14	al, 1995
131 = PIJE-ABCO/IRIS		512 – Jimerson et
Jeffrey Pine-white fir/iris	CPJCFW11	al, 1995
132 = PIJE-ABCO/QUSA2/XETE		512 – Jimerson et
Jeffrey pine-white fir/deer oak/common beargrass	CPJCFW12	al, 1995
133 = PIJE/FEID		512 – Jimerson et
Jeffrey pine/Idaho fescue	CPJGFI00	al, 1995
134 = PIJE/FEID		512 – Jimerson et
Jeffrey pine/Idaho fescue	CPJGFI11	al, 1995
135 = PIJE/QUVA-ARNE/FEID		512 – Jimerson et
Jeffrey pine/huckleberry oak-pinemat manzanita/Idaho fescue	CPJGFI12	al, 1995
136 = PIJE/QUSA2-ARNE/FEID		512 – Jimerson et
Jeffrey pine/deer oak-pinemat manzanita/Idaho fescue	CPJSOD11	al, 1995
137 = PICO		512 – Jimerson et
Lodgepole pine	CPL00000	al, 1995
138 = PICO/QUVA		512 – Jimerson et
Lodgepole pine/huckleberry oak	CPLSOH00	al, 1995
139 = PICO/QUVA-FRCAO4		512 – Jimerson et
Lodgepole pine/huckleberry oak-California buckthorn	CPLSOH11	al, 1995
140 = PICO/QUVA/LIDE3		512 – Jimerson et
Lodgepole pine/huckleberry oak-tanoak	CPLSOH12	al, 1995
141 = PICO/LIDE3		512 – Jimerson et
Lodgepole pine/shrub tanoak	CPLST000	al, 1995
142 = PICO/LIDE3-RHMA3		512 – Jimerson et
Lodgepole pine/tanoak-Pacific rhododendron	CPLST011	al, 1995
143 = PILA		512 – Jimerson et
Sugar pine	CPS00000	al, 1995
144 = PILA-PICO		512 – Jimerson et
Sugar pine-lodgepole pine	CPSCPL00	al, 1995
145 = PILA-PICO/QUVA-LIDEE		512 – Jimerson et
Sugar pine-lodgepole pine/huckleberry oak-tanoak	CPSCPL11	al, 1995
146 = PILA-PICO/LIDEE-RHMA3		512 – Jimerson et
Sugar pine-lodgepole pine/tanoak-Pacific rhododendron	CPSCPL12	al, 1995
147 = PILA-PIMO3		512 – Jimerson et
Sugar pine-western white pine	CPSCPW00	al, 1995

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
148 = PILA-PIMO3/QUVA-GABU2		512 – Jimerson et
Sugar pine-western white pine/huckleberry oak-dwarf silktassel	CPSCPW11	al, 1995
149 = PILA-CHCHC4		512 – Jimerson et
Sugar pine-giant chinquapin	CPSHGC00	al, 1995
150 = PILA-CHCHC4/Quva-QUSA2		512 – Jimerson et
Sugar pine-giant chinquapin/huckleberry oak-deer oak	CPSHGC11	al, 1995
151 = PIMO3		512 – Jimerson et
Western white pine	CPW00000	al, 1995
152 = PIMO3-PSME		512 – Jimerson et
Western white pine-Douglas-fir	CPWCD000	al, 1995
153 = PIMO3-PSME/QUVA-LIDEE		512 – Jimerson et
Western white pine-Douglas-fir/huckleberry oak-tanoak	CPWCD011	al, 1995
154 = PIMO3/PIMO3		512 – Jimerson et
Western white pine/white pine	CPWCFW00	al, 1995
155 = PIMO3-ABCO/QUVA/ANEMO		512 – Jimerson et
Western white pine-white fir/huckleberry oak/western anemone	CPWCFW11	al, 1995
156 = PIMO3-PICO		512 – Jimerson et
Western white pine-lodgepole pine	CPWCPL00	al, 1995
157 = PIMO3-PICO/LIDEE-RHMA3		
Western white pine-lodglepole pine/tanoak-Pacific		512 – Jimerson et
rhododendron	CPWCPL11	al, 1995
158 = PIMO3-PILA		512 – Jimerson et
Western white pine-sugar pine	CPWCPS00	al, 1995
159 = PIMO3-PILA/QUVA-LIDEE		512 – Jimerson et
Western white pine-sugar pine/huckleberry oak-tanoak	CPWCPS11	al, 1995
160 = LIDE3		513 – Jimerson et
Tanoak	HT000000	al, 1996
161 = LIDE3/CADE27		513 – Jimerson et
Tanoak-incense cedar	HT0CCI00	al, 1996
162 = LIDE3-CADE27/FECA		513 – Jimerson et
Tanoak-incense cedar/California fescue	HT0CCI11	al, 1996
163 = LIDE3-CHLA		513 – Jimerson et
Tanoak-Port Orford cedar	HT0CCO00	al, 1996
164 = LIDE3-CHLA-UMCA/VAOV2		513 – Jimerson et
Tanoak-Port Orford cedar-California laurel/California huckleberry	HT0CCO11	al, 1996
165 = LIDE3-CHLA/VAOV2-RHOC		513 – Jimerson et
Tanoak-Port Orford cedar/California huckleberry-western azalea	HT0CCO12	al, 1996
166 = LIDE3-CHLA/VAOV2		513 – Jimerson et
Tanoak-Port Orford cedar/California huckleberry	HT0CCO13	al, 1996
167 = LIDE3-CHLA/MANE2/LIBOL2		513 – Jimerson et
Tanoak-Port Orford cedar/Cascade barberry/longtube twinflower	HT0CCO14	al, 1996

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
168 = LIDE3-CHLA-ALRH2		513 – Jimerson et
Tanoak-Port Orford cedar-white alder (riparian)	HT0CCO15	al, 1996
169 = LIDE3-CHLA/ACCI		513 – Jimerson et
Tanoak-Port Orford cedar/vine maple	HT0CCO16	al, 1996
170 = LIDE3-CHLA/VAPA		513 – Jimerson et
Tanoak-Port Orford cedar/red huckleberry	HT0CCO17	al, 1996
171 = LIDE3-CHLA/GASH		513 – Jimerson et
Tanoak-Port Orford cedar/salal	HT0CCO18	al, 1996
172 = LIDE3-CHLA-TSHE/VAOV2		
Tanoak-Port Orford cedar-western hemlock/California		513 – Jimerson et
huckleberry	HT0CCO19	al, 1996
173 = LIDE3-UMCA		513 – Jimerson et
Tanoak-California laurel	нтонвсоо	al, 1996
174 = LIDE3-UMCA/TODI		513 – Jimerson et
Tanoak-California laurel/Pacific poison oak	HT0HBC11	al, 1996
175 = LIDE3-UMCA/VAOV2		513 – Jimerson et
Tanoak-California laurel/California huckleberry	HT0HBC12	al, 1996
176 = LIDE3-CHCHC4		513 – Jimerson et
Tanoak-giant chinquapin	HT0HGC00	al, 1996
177 = LIDE3-CHCHC4/GASH		513 – Jimerson et
Tanoak-giant chinquapin/salal	HT0HGC11	al, 1996
178 = LIDE3-CHCHC4/GASH-RHMA3		513 – Jimerson et
Tanoak-giant chinquapin/salal-Pacific rhododendron	HT0HGC12	al, 1996
179 = LIDE3-CHCHC4/RHMA3/XETE		
Tanoak-giant chinquapin/Pacific rhododendron/common		513 – Jimerson et
beargrass	HT0HGC13	al, 1996
180 = LIDE3-CHCHC4/PTAQL		513 – Jimerson et
Tanoak-giant chinquapin/western brackenfern	HT0HGC14	al, 1996
181 = LIDE3-CHCHC4/MANE2		513 – Jimerson et
Tanoak-giant chinquapin/Cascade barberry	HT0HGC15	al, 1996
182 = LIDE3CHCHC4/VAOV2-GASH		513 – Jimerson et
Tanoak-giant chinquapin/California huckleberry-salal	HT0HGC16	al, 1996
183 = LIDE3/ACER		513 – Jimerson et
Tanoak-maple	нтонмооо	al, 1996
184 = LIDE3-ACMA3/POMU		513 – Jimerson et
Tanoak-bigleaf maple/swordfern	HT0HM011	al, 1996
185 = LIDE3/ACCI-GASH		513 – Jimerson et
Tanoak/vine maple-salal	HT0HM012	al, 1996
186 = LIDE3/ACCI		513 – Jimerson et
Tanoak/vine maple	HT0HM013	al, 1996

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
187 = LIDE3/QUKE		513 – Jimerson et
Tanoak-California black oak	нтоновоо	al, 1996
188 = LIDE3/QUKE		513 – Jimerson et
Tanoak-California black oak	HT0HOB11	al, 1996
189 = LIDE3-QUCH2		513 – Jimerson et
Tanoak-canyon live oak	HT0HOL00	al, 1996
190 = LIDE3-QUCH2		513 – Jimerson et
Tanoak-canyon live oak (rockpile)	HT0HOL11	al, 1996
191 = LIDE3-QUCH2/VAOV2		513 – Jimerson et
Tanoak-canyon live oak/California huckleberry	HT0HOL12	al, 1996
192 = LIDE3-QUCH2/GASH-MANE2		513 – Jimerson et
Tanoak-canyon live oak/salal-Cascade barberry	HT0HOL13	al, 1996
193 = LIDE-QUCH2-QUKE/TODI		513 – Jimerson et
Tanoak-canyon live oak-California black oak/Pacific poison oak	HT0HOL14	al, 1996
194 = LIDE3-QUCH2/TODI		513 – Jimerson et
Tanoak-canyon live oak/Pacific poison oak	HT0HOL15	al, 1996
195 = LIDE3-QUCH2/MANE2		513 – Jimerson et
Tanoak-canyon live oak/Cascade barberry	HT0HOL16	al, 1996
196 = LIDE3/2SHRUB		513 – Jimerson et
Tanoak/shrub (dry)	HT0SD000	al, 1996
197 = LIDE3/TODI/LOHIV		513 – Jimerson et
Tanoak/Pacific poison oak/pink honeysuckle	HT0SD011	al, 1996
198 = LIDE3/MANE2		513 – Jimerson et
Tanoak/Cascade barberry	HT0SD012	al, 1996
199 = LIDE3/VAOV2-GASH		513 – Jimerson et
Tanoak/California huckleberry-salal	HT0SEH12	al, 1996
200 = LIDE3/VAOV2-RHMA3		513 – Jimerson et
Tanoak/California huckleberry-Pacific rhododendron	HT0SEH13	al, 1996
201 = LIDE3/2SHRUB		513 – Jimerson et
Tanoak/shrub (moist0	HT0SM000	al, 1996
202 = LIDE2/COCOC		513 – Jimerson et
Tanoak/California hazelnut	HT0SM011	al, 1996
203 = LIDE3/QUVA		513 – Jimerson et
Tanoak/huckleberry oak	HT0SOH00	al, 1996
204 = LIDE3/QUVA-RHMA3		513 – Jimerson et
Tanoak/huckleberry oak-Pacific rhododendron	HT0SOH11	al, 1996
205 = LIDE3/GASH-RHMA3		513 – Jimerson et
Tanoak/salal-Pacific rhododendron	HT0SSG12	al, 1996
206 = LIDE3/GASH-MANE2		513 – Jimerson et
Tanoak/salal-Cascade barberry	HT0SSG13	al, 1996

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
207 = LIDE3/VAOV2		513 – Jimerson et
Tanoak/California huckleberry	HT0SEH00	al, 1996
208 = LIDE3/VAOV2		513 – Jimerson et
Tanoak/California huckleberry	HT0SEH11	al, 1996
209 = LIDE3/GASH		513 – Jimerson et
Tanoak/salal	HT0SSG00	al, 1996
210 = LIDE3/GASH		513 – Jimerson et
Tanoak/salal	HT0SSG11	al, 1996
211 = CADE27-PIPO-PSME/CHFO		502 – Benson
Incense cedar-ponderosa pine-Douglas-fir/mountain misery	CC0311	(1988)
212 = PIJE-ABCO/POA		502 – Benson
Jeffrey pine-white fir/bluegrass (granite)	CPJGBW11	(1988)
213 = PIPO-PIJE-ABCO/ACOCO		502 – Benson
Ponderosa pine-Jeffrey pine-white fir/western needlegrass (ash)	CPJGNG11	(1988)
214 = PIPO-PIJE-QUKE/AMPA2		
Ponderosa pine-Jeffrey pine-California black oak/pale		502 – Benson
serviceberry	CPJSAM11	(1988)
215 = PIPO-PIJE-ABCO/AMPA2-MARE11		
Ponderosa pine-Jeffrey pine-white fir/pale serviceberry-creeping		502 – Benson
barberry	CPJSAM12	(1988)
216 = PIJE-QUKE/RHTRQ		502 – Benson
Jeffrey pine-California black oak/skunkbush sumac	CPJSBB11	(1988)
217 = PIJE/PUTR2-CELE3/ACOCO		
Jeffrey pine/antelope bitterbrush-curl-leaf mountain		502 – Benson
mahogany/western needlegrass	CPJSBB12	(1988)
218 = PIJE/PUTR2-SYORU/POA		502 – Benson
Jeffrey pine/antelope bitterbrush-Utah snowberry/bluegrass	CPJSBB13	(1988)
219 = PIJE/PUTR2/WYMO		502 – Benson
Jeffrey pine/antelope bitterbrush/woolly mule-ears	CPJSBB14	(1988)
220 = PIPO-PIJE-PSME/PUTR2/WYMO		
Ponderosa pine-Jeffrey pine-Douglas-fir/antelope		502 – Benson
bitterbrush/woolly mule-ears	CPJSBB15	(1988)
221 = PIPO-PIJE-QUKE/POA		
Ponderosa pine-Jeffrey pine-California black oak/bluegrass		502 – Benson
(granite)	CPJSBB16	(1988)
222 = PIPO-PIJE/ARTRV-PUTR2		
Ponderosa pine-Jeffrey pine/mountain big sagebrush-antelope		502 – Benson
bitterbrush	CPJSBB17	(1988)
223 = PIPO-PIJE/PUTR2/FEID		502 – Benson
Ponderosa pine-Jeffrey pine/antelope bitterbrush/Idaho fescue	CPJSBB18	(1988)

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
224 = PIPO-PIJE/PUTR2/FEID		
Ponderosa pine-Jeffrey pine/antelope bitterbrush/Idaho fescue		502 – Benson
(granite)	CPJSBB19	(1988)
225 = PIPO-PIJE/PUTR2/SEINM		
Ponderosa pine-Jeffrey pine/antelope bitterbrush/lambstongue		502 – Benson
ragwort (granite)	CPJSBB20	(1988)
226 = PIPO-PIJE/FRRUM/POSE		
Ponderosa pine-Jeffrey pine/Modoc buckthorn/Sandberg		502 – Benson
bluegrass	CPJSBB21	(1988)
227 = PIPO-PIJE-ABCO/QUW12		502 – Benson
Ponderosa pine-Jeffrey pine-white fir/interior live oak	CPJSBB23	(1988)
228 = PIJE/CELE3		502 – Benson
Jeffrey pine/curl-leaf mountain mahogany	CPJSMC11	(1988)
229 = PIPO-PIJE/CELE3/PSSPS		. ,
Ponderosa pine-Jeffrey pine/curl-leaf mountain mahogany/		502 – Benson
bluebunch balsamroot	CPJSMC12	(1988)
230 = PIPO-PIJE/CELE3/BASA3		
Ponderosa pine-Jeffrey pine/curl-leaf mountain mahogany/		502 – Benson
arrowleaf balsamroot	CPJSMC13	(1988)
231 = PIPO-PIJE-ABCO/QUVA/WYMO		
Ponderosa pine-Jeffrey pine-white fir/huckleberry oak/woolly		502 – Benson
mule-ears	CPJSOH11	(1988)
232 = PIJE/ARTRV/FEID		502 – Benson
Jeffrey pine/mountain big sagebrush/Idaho fescue	CPJSSB11	(1988)
233 = PIPO-PIJE-ABCO/SYAC/WYMO		
Ponderosa pine-Jeffrey pine-white fir/sharpleaf snowberry/		502 – Benson
woolly mule-ears	CPJSSS12	(1988)
234 = PIJE-ABCO/SYORU/PONE2		502 – Benson
Jeffrey pine-white fur/Utah snowberry/Wheeler bluegrass	CPJSSY11	(1988)
235 = PIWA/ARNE		502 – Benson
Washoe pine/pinemat manzanita	CPOSMP11	(1988)
236 = PIWA-ABCO/SYORU/PSJA2		502 – Benson
Washoe pine-white fir/Utah snowberry/tuber starwort	CPOSSY11	(1988)
237 = PIPO/AMPA2-MARE11/ARCO9		
Ponderosa pine/pale serviceberry-creeping barberry/ heartleaf		502 – Benson
arnica	CPPSAM11	(1988)
238 = PIPO/AMPA2-PRUNU		502 – Benson
Ponderosa pine/pale serviceberry-prunus	CPPSAM12	(1988)
239 = PIPO-ABCO-PICO/AMPA2		502 – Benson
Ponderosa pine-white fir-lodgepole pine/pale serviceberry	CPPSAM13	(1988)

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
240 = PIPO-ABCO-QUVA/AMPA2		502 – Benson
Ponderosa pine-white fir-black oak/pale serviceberry	CPPSAM14	(1988)
241 = PIPO-ABCO/AMPA2-MARE11		502 – Benson
Ponderosa pine-white fir/pale serviceberry-creeping barberry	CPPSAM15	(1988)
242 = PIPO-ABCO/AMPA2-CEVE/BROR2		(/
Ponderosa pine-white fir/pale serviceberry-snowbrush		502 – Benson
ceonothus/Orcutt's brome	CPPSAM16	(1988)
243 = PIPO-CADE27/PUTR2/BASA3		(/
Ponderosa pine-incense cedar/antelope bitterbrush/ arrowleaf		502 – Benson
balsamroot	CPPSBB11	(1988)
244 = PIPO-QUKE/PUTR2/ACOCO		(====)
Ponderosa pine-California black oak/antelope bitterbrush/		502 – Benson
western needlegrass	CPPSBB12	(1988)
245 = PIPO/CELE3-PUTR2/FEID	CITODDIZ	(1300)
Ponderosa pine/curl-leaf mountain mahogany-antelope		502 – Benson
bitterbrush/Idaho fescue	CPPSBB13	(1988)
246 = PIPO/PURT2-CEVE-ARPA6/BROR2	CITODDIS	(1300)
Ponderosa pine/antelope bitterbrush-snowbrush ceanothus-		502 – Benson
greenleaf manzanita/Orcutt's brome	CPPSBB14	(1988)
247 = PIPO/PURT2-PRUNU/BROR2	CITODDI	502 – Benson
Ponderosa pine/antelope bitterbrush-prunus/Orcutt's brome	CPPSBB15	(1988)
248 = PIPO/PUTR2-PRUNU/PSSPS	0.13223	(1300)
Ponderosa pine/antelope bitterbrush-prunus/bluebunch		502 – Benson
wheatgrass	CPPSBB16	(1988)
249 = PIPO/PUTR2-RICE/BROR2	CITODDIO	(1300)
Ponderosa pine/antelope bitterbrush-wax current/Orcutt's		502 – Benson
brome	CPPSBB17	(1988)
250 = PIPO/PUTR2/BASA3	CITODDIT	502 – Benson
Ponderosa pine/antelope bitterbrush/arrowleaf balsamroot	CPPSBB18	(1988)
251 = PIPO/PUTR2/FEID	0000	502 – Benson
Ponderosa pine/antelope bitterbrush/Idaho fescue	CPPSBB19	(1988)
252 = PIPO/PUTR2/ACOCO	C1132213	(1300)
Ponderosa pine/antelope bitterbrush/western needlegrass		502 – Benson
(pumice)	CPPSBB20	(1988)
253 = PIPO-ABCO/CEVE/ACOCO	5. 1 55520	(2000)
Ponderosa pine-white fir/snowbrush ceonothus/western		502 – Benson
needlegrass	CPPSBB21	(1988)
254 = PIPO-ABCO/PUTR2-ARPA6/ACOCO	3 35522	(====)
Ponderosa pine-white fir/antelope bitterbrush-greenleaf		502 – Benson
manzanita/western needlegrass	CPPSBB22	(1988)
,		(===0)

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
255 = PIPO/ARTRV/FEID		502 – Benson
Ponderosa pine/mountain big sagebrush/Idaho fescue	CPPSSB11	(1988)
256 = PSME-PIPO/TODI		502 – Benson
Douglas-fir-ponderosa pine/Pacific poison oak	DC0811	(1988)
257 = PSME-PIPO/CHFO/POCOC		502 – Benson
Douglas-fir-ponderosa pine/mountain misery/Sierra milk wort	DC0812	(1988)
258 = PSME-PINUS-QUCH2/CEIN3		502 – Benson
Douglas-fir-pine-canyon live oak/deerbrush	DC0813	(1988)
259 = PSME-ABCO-LIDE3/PTAQL		502 – Benson
Douglas-fir-white fir-tanoak/western brackenfern	DC0911	(1988)
260 = PSME-CONU2-LIDE3/COCOC/GAAP2		
Douglas-fir-mountain dogwood-tanoak/California hazelnut/		502 – Benson
stickywilly	DH0711	(1988)
261 = PIPO-ABCO/CEVE3-CEPR		502 – Benson
Ponderosa pine-white fir/tobaccobrush-squawcarpet	PC0611	(1988)
262 = PILE-PIMO3/QUVA-ARNE2		
Sugar pine-western white pine/huckleberry oak-pinemat		502 – Benson
manzanita	QS0111	(1988)
263 = ABCO-PSME-LIDE3/COCOC		502 – Benson
White fir-Douglas-fir-tanoak/California hazelnut	WC0911	(1988)
264 = ABCO-PSME/????/????		502 – Benson
White fir-Douglas-fir-mountain dogwood/bush chinquapin	WC0912	(1988)
265 = ABCO-PSME/SYACC-????/????		502 – Benson
White fir-Douglas-fir/sharpleaf snowberry/thimbleberry	WC0913	(1988)
266 = ABCO-PILA/SYAC/CARO5		502 – Benson
White-fir-sugar pine/sharpleaf snowberry/Ross' sedge	WC0914	(1988)
267 = ABCO-PSME/CHME2		502 – Benson
White fir-Douglas-fir/prince's pine	WC0915	(1988)
268 = ABCO-PSME-CADE27/AMPA2		502 – Benson
White fir-Douglas-fir-incense cedar/pallid serviceberry	WC0916	(1988)
269 = ABCO-PSME-PIJE/????		502 – Benson
White fir-Douglas-fir-Jeffrey pine/rosy everlasting	WC0917	(1988)
270 = PSME-PINUS-CADE27/ASDE6		
Douglas-fir-pine-incense cedar/Indian dream	CC0411	
271 = PSME-PILA/LIDEE/PTAQL		
Douglas-fir-sugar pine/tanoak/western brackenfern	DC1011	
272 = PSME-PILA/LIDEE/TRIEN		
Douglas-fir-sugar pine/tanoak/broadleaf starflower	DC1012	
273 = PSME-PIPO/FRCAO4/PTAQL		
Douglas-fir-ponderosa pine/California buckthorn/western		
brackenfern	DC1013	

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
274 = PSME-PIPO/CEIN3/COHE2		
Douglas-fir-ponderosa pine/deerbrush/variableleaf collomia	DC1014	
275 = PSME-PIPO/FECA		
Douglas-fir-ponderosa pine/California fescue	DC1015	
276 = PSME-PIPO/QUVA/POMU		
Douglas-fir-ponderosa pine/huckleberry oak/western swordfern	DC1016	
277 = PSME-PINUS-CADE27/TRBR3		
Douglas-fir-pine-incense cedar/forest clover	DC1017	
278 = PSME-PINUS-CADE27/CECU/TRBR3-FECA		
Douglas-fir-pine-incense cedar/buckbrush/forest clover-California		
fescue	DC1018	
279 = PSME-PINUS-CADE27/XETE		
Douglas-fir-pine-incense cedar/common beargrass	DC1019	
280 = PSME/COCOC/POMU		
Douglas-fir/California hazelnut/western swordfern	DS0911	
281 = PIJE-CADE27/CECU/HECAS2		
Jeffrey pine-incense cedar/buckbrush/Shasta heliathella	PG0611	
282 = PIJE-CADE27/MAAQ2/FEID		
Jeffrey pine-incense cedar/hollyleaved barberry/Idaho fescue	PG0612	
283 = PIJE/CELE3/PSSPS		
Jeffrey pine/curl-leaf mountain mahogany/bluebench wheatgrass	PG0613	
284 = PIJE/ERPAA2/PHDI3		
Jeffrey pine/Parry's rabbitbrush/spreading phlox	PG0614	
285 = PIJE-CADE27/QUVA/ASDE6		
Jeffrey pine-incense cedar/huckleberry oak/Indian's dream	PS0911	
286 = ABCO-PSME-PILA/CONU4		
White fir-Douglas-fir-sugar pine/Pacific dogwood	WC1011	
287 = PSME-ABCO/RHOC		
Douglas-fir-white fir/western azalea	WC1012	
288 = PSME-ABCO-PIPO/ARNE/CHUMO2		
Douglas-fir-white fir-ponderosa pine/pinemat manzanita/		
pipsisseqa	WC1013	
289 = 2TE		
Mixed conifer series	CX000000	
290 =		
Mixed conifer dry group	CX0D0000	
291 =		
Ponderosa pine-mixed conifer/Bolander's bedstraw-milkwort	CX0FBB11	
292 =		
White fir-mixed conifer/false Solomon's seal-Hooker's fairybells	CX0FFS11	

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
293 =		
Ponderosa pine-mixed conifer/rosy everlasting-naked stemmed	CX0FRE11	
294 =		
White fir-mixed conifer/troul plant	CX0FTP11	
295 =		
Douglas-fir-mixed conifer/starflower	CX0FWS11	
296 =		
White fir-mixed conifer/Ross' sedge	CX0GCR11	
297 =		
Douglas-fir-mixed conifer-white alder/Indian rhubarb	CX0HAW11	
298 =		
Mountain dogwood group	CX0HDP00	
299 =		
Douglas-fir-mixed conifer-mountain dogwood/California hazel		
buckwheat	CX0HDP13	
300 =		
Douglas-fir-mixed conifer-mountain dogwood/trail plant	CX0HDP14	
301 =		
Douglas-fir-mixed conifer-bigleaf maple/trail plant	CX0HMB12	
302 = QUCH2		
Canyon live oak	CX0H0L00	
303 =		
Ponderosa pine-mixed conifer-canyon live oak/bearclover	CX0H0L15	
304 =		
Ponderosa pine-mixed conifer/Bolander's bedstraw	CX0H0L16	
305 =		
Douglas-fir-mixed conifer-canyon live oak/sword fern	CX0H0L17	
306 = LIDE3		
Tanoak	CX0HT000	
307 = PSME-2TE-LIDE3/CONU4		
Douglas-fir-mixed conifer-tanoak/Pacific dogwood	CX0HT012	
308 = PSME-2TE-LIDE3/CHFO		
Douglas-fir-mixed conifer-tanoak/mountain misery	CX0HT013	
309 = PSME-2TE-LIDE3/COCOC		
Douglas-fir-mixed conifer-tanoak/California hazelnut	CX0HT011	
310 = PSME-2TE-LIDE3/IRIS		
Douglas-fir-mixed conifer-tanoak/iris	CX0HT014	
311 =		
Mixed conifer moderate group	CX0M0000	
312 =		
Mixed conifer riparian group	CX0R0000	

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
313 =		
Douglas-fir-mixed conifer/serviceberry	CX0SAM12	
314 =		
Evergreen shrub group	CX0SE000	
315 =		
White fir-mixed conifer/vine maple-bush chinquapin	CX0SE011	
316 =		
White fir-mixed conifer/bush chinquapin	CX0SE012	
317 =		
Ponderosa pine-mixed conifer/shrub canyon live oak, huckleberry		
oak	CX0SE013	
318 =		
Ponderosa pine-mixed conifer/huckleberry oak (serpentine)	CX0SE014	
319 =		
Douglas-fir-mixed conifer/California hazelnut	CX0SHN12	
320 =		
Douglas-fir-mixed conifer/Sierra laurel	CX0SLS11	
321 =		
White fir-mixed conifer/mountain alder/sedge	CX0SMA11	
322 =		
White fir-mixed conifer/mountain alder/monkshood	CX0SMA12	
323 =		
Bearclover group	CX0SMM00	
324 =		
Ponderosa pine-mixed conifer/manzanita bearclover	CX0SMM11	
325 =		
Ponderosa pine-mixed conifer/bearclover/Bolander's bedstraw	CX0SMM12	
326 =		
White fir-mixed conifer/creeping snowberry/kelloggia	CX0SSS13	
327 =	0,40,440,00	
Mixed conifer moist group	CX0W0000	
328 =	CVCCD444	
Douglas-fir-mixed conifer/American dogwood	CX0SDA11	
329 = ABMAS/RHMA	DC0544	
Red fir/Pacific rhododendron	RS0511	
330 = ABCO-PILA-ABMAS/PTAQL	VA/CO 44.3	
White fir-sugar pine-red fir/bracken	WC0413	
331 = JUOC/WYMO	100444	
Western juniper/woolly mule-ears	JC0111	
332 = JUOC	100443	
Western juniper	JC0112	

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
333 = TSME		
Mountain hemlock (steep)	MC0211	
334 = PIJE/QUVA		
Jeffrey pine/huckleberry oak	PS0811	
335 = PIJE/ARPA6-CEVE		
Jeffrey pine/greenleaf manzanita-snowbrush ceonothus	PS0812	
336 = PIJE/CECO-ARTR2		
Jeffrey pine/whitethorn ceanothus-big sagebrush	PS0813	
337 = POTR5		
Quaking aspen (flats)	QC0211	
338 = POTR5		
Quaking aspen (uplands)	QC0212	
339 = ABMA		
California red fir	RC0011	
340 = ABMA/ABCO		
California red fir/white fir	RC0331	
341 = ABMA-TSME		
California red fir-mountain hemlock	RC0421	
342 = PIMO3/ARNE		
Western white pine/pinemat manzanita	RC0511	
343 = PIMO3-PICO		
Western white pine-lodgepole pine	RC0512	
344 = PIMO3		
Western white pine	RC0513	
345 = PICO/HIAL2		
Lodgepole pine/white hawkweed	RC0611	
346 = PICO/LIGR		
Lodgepole pine/Gray's licorice-root	RC0612	
347 = PICO		
Lodgepole pine	RC0613	
348 = ABMA/ASBO2		
California red fir/Bolander's locoweed	RF0411	
349 = ABMA/WYMO		
California red fir/wooly mule-ears	RF0412	
350 = ABMA/ARNE		
California red fir/pinemat manzanita	RS0114	
351 = ABCO-PIJE		
White fir-Jeffrey pine	WC0711	
352 = ABCO-ABMA		
White fir-California red fir (mixed conifer)	WC0712	

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
	/ II price code	507-513 -
353 = PSME/QUVA		Jimerson et al,
Douglas-fir/huckleberry oak	CD0SOH11	1996
Douglas III/IIdollics city can	020001122	507-514 -
354 = SESE3		Borchert, Segotta,
Redwood	CN00000	& Purser
The arrows	0.10000	507-514 –
355 = SESE3		Borchert, Segotta,
Redwood (Gamboa-Sur)	CN00011	& Purser
	5.13332	507-514 –
356 = SESE3/PTAQ-WOFI		Borchert, Segotta,
Redwood/western brackenfern-giant chainfern (steamsides)	CNF0111	& Purser
g.a.v. a.u.v. (c.ca.v.a.v.a.v.	J. 11 G. 11 G. 12	507-514 –
357 = SESE3/POMU-TROV2		Borchert, Segotta,
Redwood/western swordfern-Pacific trillium (Gamboa-Sur)	CNF0211	& Purser
		507-514 –
358 = SESE3/MAFA3-VISAN2		Borchert, Segotta,
Redwood/California manroot-garden vetch (Gamboa-Sur)	CNF0311	& Purser
		507-514 –
359 = SESE3-ACMA3/POCA12		Borchert, Segotta,
Redwood-bigleaf maple/California polypody (Gamboa)	CNHB011	& Purser
360 = SESE3-LIDE3/CAGL7-IRDO		
Redwood-tanoak/roundfruit sedge-Douglas iris (Gamboa)	CNHT011	507-504 – Smith
361 = PIPO-ABCO/SYAC		
Ponderosa pine-white fir/sharpleaf snowberry	CPPSSS11	507-515 – Borchert, Cunha, Krosse, & Lawrence
362 = QUDO		,
Blue oak	HOD00000	507-515 – Borchert, Cunha, Krosse, & Lawrence
363 = QUDO/2GRAM		
Blue oak/annual grass	HODGA000	507-515 – Borchert, Cunha, Krosse, & Lawrence
364 = QUDO/HOMUL-VIPE3		
Blue oak/leporinum barley-Johnny-jump-up	HODGA011	507-515 – Borchert, Cunha, Krosse, & Lawrence
365 = QUDO/LOWR2-NAPU4		
Blue oak/Chilean bird's foot trefoil-purple tussockgrass	HODGA012	507-515 – Borchert, Cunha, Krosse, & Lawrence
366 = QUDO/EUSP-PETR7		
Blue oak/warty spurge-goldback fern	HODGA013	507-515 – Borchert, Cunha, Krosse, & Lawrence
367 = QUDO/GAAN-LUCO		
Blue oak/phloxleaf bedstraw-scarlet lupine	HODGA014	507-515 – Borchert, Cunha, Krosse, & Lawrence
368 = QUDO/ERMO7-HOMUL		
Blue oak/musky stork's bill-leporinum barley	HODGA015	507-515 – Borchert, Cunha, Krosse, & Lawrence
369 = QUDO/DEPA2-PHIM		
Blue oak/San Bernardino larkspur-imbricate phacelia	HODGA016	507-515 – Borchert, Cunha, Krosse, & Lawrence

Species Type 370 = QUDO/LUCO-MEAL12 Blue oak/scarlet lupine-foothill clover 371 = QUDO/AMME12-PLNO Blue oak/common fiddleneck-rusty popcornflower 372 = QUDO/EREL6/LOWR2-PLER3 Blue oak/longstem buckwheat/Chilean bird's-foot trefoil-dotseed plantain 373 = QUDO/CSP-RILE2 Blue oak/spinster's blue eyed Mary-wireweed 374 = QUDO/EMOG/BOIN3-LIAF Blue oak/spinster's blue eyed Mary-wireweed 375 = QUDO/CEMOG/BOIN3-LIAF Blue oak/spinster's blue eyed mary-wireweed 376 = QUDO/RICA/BRD3 Blue oak/hillside gooseberry/ripgut brome 376 = QUDO-QUWI2/ICRAM 377 = QUDO-QUWI2/ICRAM 378 = ADDO-QUWI2/ICRAM 379 = ADFA/SANE3 Blue oak-interior live oak/grass 378 = ADFA Chamise/Bastern Mojave buckwheat-white sage 378 = ADFA/CEGRP Chamise-boaryleam ceanothus 382 = ADFA-CEGR Chamise-hoaryleam ceanothus 383 = ADFA-CECR Chamise-boaryleam ceanothus 384 = ADFA-CECCU Chamise-boaryleam ceanothus 385 = ADFA-CECOL SHAPCACCU Chamise-buckbrush SAOSCOO SAOSCOO White, 1994 384 = ADFA-CECR Chamise-buckbrush SAOSCOO SAOSCOO White, 1994 385 = ADFA-CECOR Chamise-buckbrush SAOSCOO SAOSCOO White, 1994 386 = ADFA-ARGI4 Chamise-bastwood's manzanita SAOSCOO White, 1994 387 = CEMO-ARGI3 Chamise-bastwood's manzanita SAOSCOO White, 1994 387 = ADFA-CEGOR SAOSCOO SAOSCOO SAOSCOO SAOSCOO White, 1994 387 = ADFA-CEGOR SAOSCOO	FVS Sequence Number = Plant Association		
Blue oak/scarlet lupine-foothill clover 371 = QUDO/AMME12-PLNO 372 = QUDO/EREL6/LOWR2-PLER3 Blue oak/longstem buckwheat/Chilean bird's-foot trefoil-dotseed plantain 373 = QUDO/CSP-RILE2 Blue oak/spinster's blue eyed Mary-wireweed 374 = QUDO/CSP-RILE2 Blue oak/spinster's blue eyed Mary-wireweed 375 = QUDO/CSP-RILE2 Blue oak/spinster's blue eyed Mary-wireweed 376 = QUDO/CSP-RILE3 Blue oak/birchleaf mountain mahogany/hoary bowlesia-San Francisco woodland-star 375 = QUDO/RICA/BRDI3 Blue oak/hillside gooseberry/ripgut brome 376 = QUDO-QUWI2/LICY3 Blue oak-interior live oak/grass HODHOI01 307-515 - Borchert, Cunha, Krosse, & Lawrence 377 = QUDO-QUWI2/LICY3 Blue oak-interior live oak/grass HODHOI01 307-515 - Borchert, Cunha, Krosse, & Lawrence 377 = QUDO-QUWI2/LICY3 Blue oak-interior live oak/grass HODHOI01 307-515 - Borchert, Cunha, Krosse, & Lawrence 377 = QUDO-QUWI2/LICY3 Blue oak-interior live oak/grass HODHOI01 307-515 - Borchert, Cunha, Krosse, & Lawrence 378 = ADFA 379 = ADFA/ERFA2-SAAP2 379 = ADFA/ERFA2-SAAP2 379 = ADFA/ERFA2-SAAP2 380 = ADFA/SAME3 380 = ADFA/SAME3 380 = ADFA/SAME3 381 = ADFA-CEGRP Chamise-desert ceanothus 382 = ADFA-CEGRP Chamise-desert ceanothus 383 = ADFA-CECRP Chamise-desert ceanothus 383 = ADFA-CECRP Chamise-desert ceanothus 384 = ADFA-CECRP Chamise-desert ceanothus 385 = ADFA-CECRP Chamise-desert ceanothus 386 = ADFA-CECRO Chamise-mootlyleaf ceanothus-mission manzanita 3A0SCCO0 3B11 = Gordon & White, 1994 387 = ERFA-SARP2 388 = ADFA-ARGI3 Chamise-bigberry manzanita 3A0SMB00 3B11 = Gordon & White, 1994 3B1 = Gordon & White, 1994 3B1 = GAFA-ARGI3 Chamise-Eastwood's manzanita 3A0SMB00 White, 1994 3B1 = GERMOG 3B11 = Gordon & White, 1994 3B1 = GERMOG 3B11 = Gordon & White, 1994 3B1 = GERMOG 3B11 = Gordon & White, 1994 3B1 = GERMOG 3B11 = Gordon & White, 1994 3B11 = Gordon	Species Type	Alpha Code	Reference
Blue oak/scarlet lupine-roothill clover 371 = QUDO/AMME12-PLNO Blue oak/common fiddleneck-rusty popcornflower 372 = QUDO/EREL6/LOWR2-PLER3 Blue oak/longstem buckwheat/Chilean bird's-foot trefoil-dotseed plantain 373 = QUDO/COSP-RILE2 Blue oak/spinster's blue eyed Mary-wireweed 374 = QUDO/CEMOG/BOIN3-LIAF Blue oak/birchleaf mountain mahogany/hoary bowlesia-San Francisco woodland-star 375 = QUDO/CEMOG/BOIN3-LIAF Blue oak/birchleaf mountain mahogany/hoary bowlesia-San Francisco woodland-star 376 = QUDO-QUWIZ/CRAM Blue oak-interior live oak/grass 376 = QUDO-QUWIZ/LICY3 Blue oak-interior live oak/grass 377 = QUDO-QUWIZ/LICY3 Blue oak-interior live oak/mission woodland-star 378 = ADFA Chamise 380 = ADFA/SAME3 Chamise/Eastern Mojave buckwheat-white sage 381 = ADFA-CEGRP Chamise-desert ceanothus 382 = ADFA-CECRP Chamise-desert ceanothus 383 = ADFA-CECRP Chamise-desert ceanothus 384 = ADFA-CECRP Chamise-box/blam ceanothus-mission manzanita 385 = ADFA-CECRU Chamise-woolyleaf ceanothus-mission manzanita 386 = ADFA-CECRU Chamise-box/brush 387 = ADFA-CECRU Chamise-box/brush 388 = ADFA-CECRU Shamise-box/brush 388 = ADFA-CECRU Shamise-box/brush 388 = ADFA-CECRU Shamise-box/brush 389 = ADFA-CECRU Shamise-box/brush 380 = ADFA-CECRU Shamise-box/brush 381 = ADFA-CECRU Shamise-box/brush 383 = ADFA-CECRU Shamise-box/brush 384 = ADFA-CECRU Shamise-box/brush 385 = ADFA-ARGI3 Shamise-Box/brush 386 = ADFA-ARGI3 Shamise-Eastwood's manzanita ShossWoo White, 1994 387 = ERFA2-SAAP2 ShossWoo White, 1994 388 = CEMOG ShossWoo White, 1994 388 = CEMOG	370 = QUDO/LUCO-MEAL12		
Blue oak/common fiddleneck-rusty popcornflower 372 = QUDO/EREL6/LOWR2-PLER3 Blue oak/longstem buckwheat/Chilean bird's-foot trefoil-dotseed plantain 373 = QUDO/COSP-RILE2 Blue oak/sipinster's blue eyed Mary-wireweed 374 = QUDO/CEMOG/BOIN3-LIAF Blue oak/birchleaf mountain mahogany/hoary bowlesia-San Francisco woodland-star 375 = QUDO/RICA/BRDI3 Blue oak/hillside gooseberry/ripgut brome 376 = QUDO-QUWIZ/CARAM Blue oak-interior live oak/grass 377 = QUDO-QUWIZ/LICY3 Blue oak-interior live oak/mission woodland-star 378 = ADFA Chamise 379 = ADFA/SAME3 Chamise/Eastern Mojave buckwheat-white sage 380 = ADFA/SAME3 Chamise-desert ceanothus 381 = ADFA-CECRP Chamise-desert ceanothus 382 = ADFA-CECRC Chamise-hoaryleam ceanothus 383 = ADFA-CECRC Chamise-bigberry manzanita 384 = ADFA-CECCU Chamise-bigberry manzanita 385 = ADFA-CECCU Chamise-bigberry manzanita 386 = ADFA-ARGL3 Chamise-Eastern Mojave buckwheat-white sage 387 = ADFA-CECRO Chamise-bigberry manzanita 386 = ADFA-CECCU Shamise-bigberry manzanita 387 = ADFA-CECRO Chamise-bigberry manzanita 388 = ADFA-CECCU Shamise-bigberry manzanita 380 = ADFA-CECRO Chamise-bigberry manzanita 380 = ADFA-CECRO Shamise-bigberry manzanita 380 = ADFA-CECRO Chamise-bigberry manzanita 380 = ADFA-CECRO Shamise-bigberry manzanita 381 = ADFA-CECRO Shamise-bigberr	Blue oak/scarlet lupine-foothill clover	HODGA017	
## ADDGA018 ## ADDGA020 ##	371 = QUDO/AMME12-PLNO		
Blue oak/longstem buckwheat/Chilean bird's-foot trefoil-dotseed plantain 373 = QUDO/COSP-RILE2 Blue oak/spinster's blue eyed Mary-wireweed 374 = QUDO/CEMOG/BOIN3-LIAF Blue oak/spinster's blue eyed Mary-wireweed 375 = QUDO/RICA/BRDI3 Blue oak/hillside gooseberry/ripgut brome 376 = QUDO-QUWI2/2GRAM Blue oak-interior live oak/grass 377 = QUDO-QUWI2/LICY3 Blue oak-interior live oak/mission woodland-star 378 = ADFA Chamise ADFA/SAME3 Chamise/Eastern Mojave buckwheat-white sage Shappeam ceanothus Shappeam ceano	Blue oak/common fiddleneck-rusty popcornflower	HODGA018	
plantain 373 = QUDO/CCSP-RILE2 Blue oak/spinster's blue eyed Mary-wireweed 374 = QUDO/CEMOG/BOIN3-LIAF Blue oak/birchleaf mountain mahogany/hoary bowlesia-San Francisco woodland-star 375 = QUDO/RICA/BRDI3 Blue oak/hillside gooseberry/ripgut brome 376 = QUDO-QUWI2/ZGRAM Blue oak-interior live oak/grass 377 = QUDO-QUWI2/LICY3 Blue oak-interior live oak/mission woodland-star 378 = ADFA Chamise-BAPFA Chamise-Bapta-CEGRP Chamise-desert ceanothus 380 = ADFA-CECR Chamise-hoaryleam ceanothus 381 = ADFA-CECC Chamise-boxebrush 382 = ADFA-CECC Chamise-boxebrush 383 = ADFA-CETO-CYBI Chamise-boxebrush 385 = ADFA-CECO Chamise-boxebrush 386 = ADFA-CEGA Chamise-boxebrush 387 = ADFA-CEGA Chamise-boxebrush 386 = ADFA-CEGA Chamise-boxebrush 387 = ADFA-CEGO Chamise-boxebrush 387 = ADFA-CEGO Chamise-boxebrush 387 = ADFA-CECO Chamise-boxebrush 387 = ADFA-CEGO Chamise-boxebrush 387 = ADFA-CEGO Chamise-boxebrush 387 = ADFA-CEGO Chamise-boxebrush 388 = ADFA-CEGO Chamise-boxebrush 380 = ADFA-CEGO Chamise-boxebrush 381 = ADFA-CEGO Chamise-boxebrush 382 = ADFA-CEGO Chamise-boxebrush 383 = ADFA-CEGO Chamise-boxebrush 384 = ADFA-CEGO Chamise-boxebrush 385 = ADFA-ARGL3 Chamise-boxebrush 386 = ADFA-ARGL3 Chamise-Eastwood's manzanita 387 = ERFA2-SAAP2 SEDSSW00 White, 1994 388 = CEMOG 511 - Gordon & White, 1994 388 = CEMOG 511 - Gordon & White, 1994 388 = CEMOG 511 - Gordon & White, 1994 388 = CEMOG	372 = QUDO/EREL6/LOWR2-PLER3		
plantain 373 = QUDO/COSP-RILE2 Blue oak/spinster's blue eyed Mary-wireweed 374 = QUDO/CEMOG/BOIN3-LIAF Blue oak/spinster's blue eyed Mary-wireweed 374 = QUDO/CEMOG/BOIN3-LIAF Blue oak/birchleaf mountain mahogany/hoary bowlesia-San Francisco woodland-star 375 = QUDO/RICA/BRDI3 Blue oak/hillside gooseberry/ripgut brome 376 = QUDO-QUWI2/2GRAM Blue oak-interior live oak/grass 377 = QUDO-QUWI2/LICY3 Blue oak-interior live oak/mission woodland-star 378 = ADFA Chamise 379 = ADFA/ERFA2-SAAP2 Chamise/Bastern Mojave buckwheat-white sage 380 = ADFA/SAME3 Chamise/black sage SAOSBO00 Shite, 1994 381 = ADFA-CECR Chamise-hoaryleam ceanothus SAOSCC00 Shite, 1994 383 = ADFA-CECR Chamise-hoaryleam ceanothus SAOSCC00 Shite, 1994 384 = ADFA-CECC Chamise-boaryleam ceanothus SAOSCC00 Shite, 1994 385 = ADFA-CECCU Chamise-boaryleam ceanothus SAOSCC00 Shite, 1994 386 = ADFA-CECU Shamise-boaryleam ceanothus SAOSCC00 Shite, 1994 387 = ADFA-CECR SAOSCC00 Shite, 1994 388 = ADFA-CECR SAOSCC00 Shite, 1994 386 = ADFA-CECCU Shamise-boaryleam ceanothus SAOSCC00 Shite, 1994 387 = ADFA-CECR SAOSCC00 Shite, 1994 388 = ADFA-CECR SAOSCC00 Shite, 1994 388 = ADFA-CECCU Shamise-boaryleam ceanothus SAOSCC00 Shite, 1994 386 = ADFA-RGL3 SAOSCC00 Shite, 1994 387 = ADFA-RGL3 SAOSCC00 Shite, 1994 388 = CEMOG SAOSCC00 Shite, 1994 SAOSCC00	Blue oak/longstem buckwheat/Chilean bird's-foot trefoil-dotseed		
Blue oak/spinster's blue eyed Mary-wireweed 374 = QUDO/CEMOG/BOIN3-LIAF Blue oak/birchleaf mountain mahogany/hoary bowlesia-San Francisco woodland-star 375 = QUDO/RICA/BRDI3 Blue oak/hillside gooseberry/ripgut brome 376 = QUDO-QUWIZ/2GRAM Blue oak-interior live oak/grass 377 = QUDO-QUWIZ/LICY3 Blue oak-interior live oak/mission woodland-star 378 = ADFA Chamise 379 = ADFA/ERFA2-SAAP2 Chamise/Bastern Mojave buckwheat-white sage 380 = ADFA-CEGRP Chamise-desert ceanothus 382 = ADFA-CEGR Chamise-hoaryleam ceanothus 383 = ADFA-CECU Chamise-buckbrush Chamise-buckbrush Chamise-buckbrush SAOSCOO SON-SIS-Borchert, Cunha, Krosse, & Lawrence SO7-515-Borchert, Cunha, Krosse, &	plantain	HODGA019	
Blue oak/spinster's blue eyed Mary-wireweed Blue oak/spinster's blue eyed Mary-wireweed Blue oak/birchleaf mountain mahogany/hoary bowlesia-San Francisco woodland-star Blue oak/hillside gooseberry/ripgut brome Blue oak/hillside gooseberry/ripgut brome Blue oak/interior live oak/grass Blue oak-interior live oak/grass Blue oak-interior live oak/mission woodland-star Blue oak-interior live oak/grass Blue oak-interior live oak-grass Blue oak-interior	373 = QUDO/COSP-RILE2		,
374 = QUDO/CEMOG/BOIN3-LIAF Blue oak/birchleaf mountain mahogany/hoary bowlesia-San Francisco woodland-star 375 = QUDO/RICA/BRDI3 Blue oak/hillside gooseberry/ripgut brome 376 = QUDO-QUWI2/2GRAM Blue oak-interior live oak/grass 377 = QUDO-QUWI2/LICY3 Blue oak-interior live oak/mission woodland-star 378 = ADFA Chamise ADFA Chamise/Baser ADFA/SAME3 Chamise/back sage SA0SBS00 SA0SBS00 SA0SBS00 SA0SCC00 White, 1994 382 = ADFA-CECR Chamise-desert ceanothus SA0SCC00 Chamise-buckbrush SA0SCC00 SA0SCC00	Blue oak/spinster's blue eyed Mary-wireweed	HODGA020	
Francisco woodland-star 375 = QUDO/RICA/BRDI3 Blue oak/hillside gooseberry/ripgut brome 376 = QUDO-QUWI2/2GRAM Blue oak-interior live oak/grass 377 = QUDO-QUWI2/LICY3 Blue oak-interior live oak/mission woodland-star 378 = ADFA Chamise 379 = ADFA/ERFA2-SAAP2 Chamise-desert ceanothus 381 = ADFA-CECCU Chamise-woolyleaf ceanothus-mission manzanita 382 = ADFA-CECCU Chamise-wood's manzanita 383 = ADFA-CECCU Chamise-buckbrush 384 = ADFA-CECCU Chamise-buckbrush 385 = ADFA-ARGL4 Chamise-buckbrush 386 = ADFA-ARGL3 Chamise-buckwheat-white sage 386 = ADFA-CEGRP Chamise-buckwheat- Chamise-buckbrush 387 = ERFA2-SAAP2 SAOSMOO Chamise-buckwheat- SAOSMOO Chamise-buckbrush SAOSCOO Chamise-b	374 = QUDO/CEMOG/BOIN3-LIAF		,
Francisco woodland-star 375 = QUDO/RICA/BRDI3 Blue oak/hillside gooseberry/ripgut brome 376 = QUDO-QUWI2/2GRAM Blue oak-interior live oak/grass 377 = QUDO-QUWI2/LICY3 Blue oak-interior live oak/mission woodland-star 378 = ADFA Chamise 379 = ADFA/ERFA2-SAAP2 Chamise-desert ceanothus 381 = ADFA-CECCU Chamise-woolyleaf ceanothus-mission manzanita 382 = ADFA-CECCU Chamise-wood's manzanita 383 = ADFA-CECCU Chamise-buckbrush 384 = ADFA-CECCU Chamise-buckbrush 385 = ADFA-ARGL4 Chamise-buckbrush 386 = ADFA-ARGL3 Chamise-buckwheat-white sage 386 = ADFA-CEGRP Chamise-buckwheat- Chamise-buckbrush 387 = ERFA2-SAAP2 SAOSMOO Chamise-buckwheat- SAOSMOO Chamise-buckbrush SAOSCOO Chamise-b	Blue oak/birchleaf mountain mahogany/hoary bowlesia-San		
375 = QUDO/RICA/BRDI3 Blue oak/hillside gooseberry/ripgut brome 376 = QUDO-QUWI2/2GRAM Blue oak-interior live oak/grass 377 = QUDO-QUWI2/LICY3 Blue oak-interior live oak/mission woodland-star 378 = ADFA Chamise 379 = ADFA/ERFA2-SAAP2 Chamise-hoaryleam ceanothus 381 = ADFA-CECU Chamise-buckbrush Chamise-buckbrush Chamise-buckbrush Chamise-buckbrush Chamise-buckbrush Chamise-buckbrush SAOSMBOO Chamise-bastwood's manzanita SAOSMBOO Chamise-bastwood'	Francisco woodland-star	HODGA021	, ,
Blue oak/hillside gooseberry/ripgut brome 376 = QUDO-QUWI2/2GRAM Blue oak-interior live oak/grass 377 = QUDO-QUWI2/LICY3 Blue oak-interior live oak/mission woodland-star 378 = ADFA Chamise 379 = ADFA/ERFA2-SAAP2 Chamise-hoaryleam ceanothus 381 = ADFA-CECR Chamise-hoaryleam ceanothus 382 = ADFA-CECCU Chamise-woolyleaf ceanothus-mission manzanita 383 = ADFA-CECU Chamise-buckbrush Chamise-buckbrush SAOSCW00 White, 1994 384 = ADFA-CECU Chamise-buckbrush SAOSCW00 Chamise-Eastwood's manzanita SAOSMB00 White, 1994 385 = ERFA2-SAAP2 SAOSMB00 White, 1994 SAOSCW00 White, 1994	375 = QUDO/RICA/BRDI3		,
376 = QUDO-QUWI2/2GRAM Blue oak-interior live oak/grass 377 = QUDO-QUWI2/LICY3 Blue oak-interior live oak/mission woodland-star 378 = ADFA Chamise 379 = ADFA/ERFA2-SAAP2 Chamise/black sage 380 = ADFA/SAME3 Chamise/black sage 381 = ADFA-CEGRP Chamise-desert ceanothus 382 = ADFA-CECCR Chamise-hoaryleam ceanothus 383 = ADFA-CECU Chamise-woolyleaf ceanothus-mission manzanita 384 = ADFA-CECU Chamise-buckbrush 385 = ADFA-ARGL4 Chamise-bigberry manzanita 366 = ADFA-ARGL3 Chamise-Eastwood's manzanita 376 = QUDO-QUWI2/LICY3 Blue oak-interior live oak/grass 4		HODGA022	
Blue oak-interior live oak/grass 377 = QUDO-QUWI2/LICY3 Blue oak-interior live oak/mission woodland-star 378 = ADFA Chamise 379 = ADFA/ERFA2-SAAP2 Chamise/Eastern Mojave buckwheat-white sage 380 = ADFA/SAME3 Chamise/black sage 381 = ADFA-CEGRP Chamise-desert ceanothus 382 = ADFA-CECR Chamise-hoaryleam ceanothus 383 = ADFA-CECU Chamise-buckbrush SAOSCWO0 White, 1994 384 = ADFA-CECU Chamise-buckbrush SAOSCWO0 SAOSCWO0 White, 1994 385 = ADFA-ARGL4 Chamise-Eastwood's manzanita SAOSME00 White, 1994 386 = ADFA-ARGL3 Chamise-Eastwood's manzanita SAOSME00 White, 1994 387 = ERFA2-SAAP2 SOOSME00 SOOSME00 SOOSME00 SOOSME00 SOOSME00 SOOSME00 White, 1994 387 = ERFA2-SAAP2 Eastern Majove buckwheat-white sage SBOSSW00 White, 1994 388 = CEMOG	7 7 7 7 7		in osse, a zam enec
377 = QUDO-QUWI2/LICY3 Blue oak-interior live oak/mission woodland-star 378 = ADFA Chamise 379 = ADFA/ERFA2-SAAP2 Chamise/Eastern Mojave buckwheat-white sage 380 = ADFA/SAME3 Chamise-desert ceanothus 381 = ADFA-CECR Chamise-woolyleaf ceanothus-mission manzanita 383 = ADFA-CECU Chamise-buckbrush 384 = ADFA-CECU Chamise-buckbrush 385 = ADFA-ARGL4 Chamise-bigberry manzanita 386 = ADFA-ARGL3 Chamise-Eastwood's manzanita 387 = ERFA2-SAAP2 Eastern Majove buckwheat-white sage 388 = CEMOG 511 - Gordon & SA0SB000 White, 1994 511 - Gordon & SA0SCC00 White, 1994 511 - Gordon & SA0SCC00 White, 1994 511 - Gordon & SA0SCH00 White, 1994 511 - Gordon & SA0SCM00 White, 1994		HODHOI00	, ,
Blue oak-interior live oak/mission woodland-star 378 = ADFA Chamise 5A000000 Chamise 5A000000 Chamise SA000000 Chamise SA000000 Chamise SA000000 Chamise SA000000 Chamise SA000000 Chamise/Eastern Mojave buckwheat-white sage SA0SB000 Chamise/Bastern Mojave buckwheat-white sage SA0SB000 Chamise/black sage SA0SB000 Chamise/black sage SA0SB000 Chamise-desert ceanothus SA0SCC00 Chamise-hoaryleam ceanothus SA0SCC00 Chamise-hoaryleam ceanothus SA0SCH00 Chamise-woolyleaf ceanothus-mission manzanita SA0SCT00 Chamise-buckbrush SA0SCW00 SA0SCW00 SA0SCW00 Chamise-buckbrush SA0SCW00 SA0SCW00 SA0SCW00 Chamise-bigberry manzanita SA0SCW00 Chamise-bigberry manzanita SA0SCW00 Chamise-Eastwood's manzanita SA0SMB00 Chamise-Eastwood's manzanita			
378 = ADFA Chamise SA000000 White, 1994 379 = ADFA/ERFA2-SAAP2 Chamise/Eastern Mojave buckwheat-white sage SA0SB000 White, 1994 380 = ADFA/SAME3 Chamise/black sage SA0SB000 White, 1994 381 = ADFA-CEGRP Chamise-desert ceanothus SA0SCC00 Chamise-hoaryleam ceanothus SA0SCC00 White, 1994 382 = ADFA-CECR Chamise-woolyleaf ceanothus-mission manzanita SA0SCT00 Chamise-buckbrush SA0SCC00 White, 1994 384 = ADFA-CECU Chamise-buckbrush SA0SCW00 Chamise-bigberry manzanita SA0SCW00 White, 1994 385 = ADFA-ARGL4 Chamise-bigberry manzanita SA0SCW00 White, 1994 386 = ADFA-ARGL3 Chamise-Eastwood's manzanita SA0SMB00 White, 1994 387 = ERFA2-SAAP2 Eastern Majove buckwheat-white sage SB0SSW00 White, 1994 388 = CEMOG	· ·	HODHOI11	
379 = ADFA/ERFA2-SAAP2511 - Gordon &Chamise/Eastern Mojave buckwheat-white sageSAOSB000White, 1994380 = ADFA/SAME3511 - Gordon &Chamise/black sageSAOSBS00White, 1994381 = ADFA-CEGRP511 - Gordon &Chamise-desert ceanothusSAOSCC00White, 1994382 = ADFA-CECR511 - Gordon &Chamise-hoaryleam ceanothusSAOSCH00White, 1994383 = ADFA-CETO-CYBI511 - Gordon &Chamise-woolyleaf ceanothus-mission manzanitaSAOSCT00White, 1994384 = ADFA-CECU511 - Gordon &Chamise-buckbrushSAOSCW00White, 1994385 = ADFA-ARGL4511 - Gordon &Chamise-bigberry manzanitaSAOSMB00White, 1994386 = ADFA-ARGL3511 - Gordon &Chamise-Eastwood's manzanitaSAOSME00White, 1994387 = ERFA2-SAAP2511 - Gordon &Eastern Majove buckwheat-white sageSBOSSW00White, 1994388 = CEMOG511 - Gordon &	-		
Chamise/Eastern Mojave buckwheat-white sage 380 = ADFA/SAME3 Chamise/black sage SAOSBSO0 White, 1994 381 = ADFA-CEGRP Chamise-desert ceanothus SAOSCCO0 SAOSCCO0 White, 1994 382 = ADFA-CECR Chamise-hoaryleam ceanothus SAOSCHO0 White, 1994 383 = ADFA-CETO-CYBI Chamise-woolyleaf ceanothus-mission manzanita SAOSCTO0 White, 1994 384 = ADFA-CECU SAOSCWO0 White, 1994 385 = ADFA-ARGL4 Chamise-buckbrush SAOSCWO0 White, 1994 386 = ADFA-ARGL3 Chamise-Eastwood's manzanita SAOSMBO0 White, 1994 387 = ERFA2-SAAP2 Eastern Majove buckwheat-white sage SBOSSWO0 White, 1994 388 = CEMOG SAOSSWO0 White, 1994 511 - Gordon & SAOSMBO0 White, 1994 511 - Gordon & SAOSMBOO White, 1994	Chamise	SA000000	White, 1994
380 = ADFA/SAME3511 - Gordon &Chamise/black sageSAOSBSOOWhite, 1994381 = ADFA-CEGRP511 - Gordon &Chamise-desert ceanothusSAOSCCOOWhite, 1994382 = ADFA-CECR511 - Gordon &Chamise-hoaryleam ceanothusSAOSCHOOWhite, 1994383 = ADFA-CETO-CYBI511 - Gordon &Chamise-woolyleaf ceanothus-mission manzanitaSAOSCTOOWhite, 1994384 = ADFA-CECU511 - Gordon &Chamise-buckbrushSAOSCWOOWhite, 1994385 = ADFA-ARGL4511 - Gordon &Chamise-bigberry manzanitaSAOSMBOOWhite, 1994386 = ADFA-ARGL3511 - Gordon &Chamise-Eastwood's manzanitaSAOSMEOOWhite, 1994387 = ERFA2-SAAP2511 - Gordon &Eastern Majove buckwheat-white sageSBOSSWOOWhite, 1994388 = CEMOG511 - Gordon &	379 = ADFA/ERFA2-SAAP2		511 – Gordon &
Chamise/black sage SAOSBSOO White, 1994 381 = ADFA-CEGRP Chamise-desert ceanothus SAOSCCOO White, 1994 382 = ADFA-CECR Chamise-hoaryleam ceanothus SAOSCHOO White, 1994 383 = ADFA-CETO-CYBI S11 - Gordon & Chamise-woolyleaf ceanothus-mission manzanita SAOSCTOO White, 1994 384 = ADFA-CECU S11 - Gordon & Chamise-buckbrush SAOSCWOO White, 1994 385 = ADFA-ARGL4 S11 - Gordon & Chamise-bigberry manzanita SAOSCWOO White, 1994 386 = ADFA-ARGL3 SAOSMBOO White, 1994 387 = ERFA2-SAAP2 SAOSMBOO White, 1994 388 = CEMOG SBOSSWOO White, 1994 388 = CEMOG	Chamise/Eastern Mojave buckwheat-white sage	SA0SB000	White, 1994
381 = ADFA-CEGRP511 - Gordon &Chamise-desert ceanothusSAOSCCOOWhite, 1994382 = ADFA-CECR511 - Gordon &Chamise-hoaryleam ceanothusSAOSCHOOWhite, 1994383 = ADFA-CETO-CYBI511 - Gordon &Chamise-woolyleaf ceanothus-mission manzanitaSAOSCTOOWhite, 1994384 = ADFA-CECU511 - Gordon &Chamise-buckbrushSAOSCWOOWhite, 1994385 = ADFA-ARGL4511 - Gordon &Chamise-bigberry manzanitaSAOSMBOOWhite, 1994386 = ADFA-ARGL3511 - Gordon &Chamise-Eastwood's manzanitaSAOSMEOOWhite, 1994387 = ERFA2-SAAP2511 - Gordon &Eastern Majove buckwheat-white sageSBOSSWOOWhite, 1994388 = CEMOG511 - Gordon &	380 = ADFA/SAME3		511 – Gordon &
Chamise-desert ceanothus 382 = ADFA-CECR Chamise-hoaryleam ceanothus 383 = ADFA-CETO-CYBI Chamise-woolyleaf ceanothus-mission manzanita 384 = ADFA-CECU Chamise-buckbrush 385 = ADFA-ARGL4 Chamise-bigberry manzanita 386 = ADFA-ARGL3 Chamise-Eastwood's manzanita 387 = ERFA2-SAAP2 Eastern Majove buckwheat-white sage SAOSCCOO White, 1994 511 - Gordon & SAOSCWOO White, 1994 511 - Gordon & SAOSMBOO White, 1994 511 - Gordon & SAOSMEOO White, 1994 511 - Gordon & SAOSMEOO White, 1994 511 - Gordon & SAOSMEOO White, 1994	Chamise/black sage	SA0SBS00	White, 1994
382 = ADFA-CECR Chamise-hoaryleam ceanothus 383 = ADFA-CETO-CYBI Chamise-woolyleaf ceanothus-mission manzanita 384 = ADFA-CECU Chamise-buckbrush 385 = ADFA-ARGL4 Chamise-bigberry manzanita 386 = ADFA-ARGL3 Chamise-Eastwood's manzanita 387 = ERFA2-SAAP2 Eastern Majove buckwheat-white sage 511 - Gordon & SAOSCHOO White, 1994 511 - Gordon & SAOSMBOO SBOSSWOO White, 1994 511 - Gordon & SAOSMBOO SBOSSWOO SBOSSWOO SBOSSWOO SBOSSWOO SBOSSWOO STI - Gordon & SBOSSWOO SBOSSWOO SBOSSWOO STI - Gordon & SBOSSWOO SBOSSWO	381 = ADFA-CEGRP		511 – Gordon &
Chamise-hoaryleam ceanothusSAOSCHOOWhite, 1994383 = ADFA-CETO-CYBI511 - Gordon &Chamise-woolyleaf ceanothus-mission manzanitaSAOSCTOOWhite, 1994384 = ADFA-CECU511 - Gordon &Chamise-buckbrushSAOSCWOOWhite, 1994385 = ADFA-ARGL4511 - Gordon &Chamise-bigberry manzanitaSAOSMBOOWhite, 1994386 = ADFA-ARGL3511 - Gordon &Chamise-Eastwood's manzanitaSAOSMEOOWhite, 1994387 = ERFA2-SAAP2511 - Gordon &Eastern Majove buckwheat-white sageSBOSSWOOWhite, 1994388 = CEMOG511 - Gordon &	Chamise-desert ceanothus	SA0SCC00	White, 1994
383 = ADFA-CETO-CYBI Chamise-woolyleaf ceanothus-mission manzanita 384 = ADFA-CECU S11 - Gordon & Chamise-buckbrush SAOSCW00 White, 1994 385 = ADFA-ARGL4 Chamise-bigberry manzanita SAOSMB00 White, 1994 386 = ADFA-ARGL3 Chamise-Eastwood's manzanita SAOSME00 White, 1994 387 = ERFA2-SAAP2 Eastern Majove buckwheat-white sage SBOSSW00 S11 - Gordon & White, 1994 SAOSME00 White, 1994 SBOSSW00 White, 1994 SBOSSW00 SBOSSW00 S11 - Gordon & SBOSSW00 White, 1994 SBOSSW00 SBOSSW00 STI - Gordon & SBOSSW00 SBOSSW00 STI - Gordon & SBOSSW00 SBOSSW00 STI - Gordon & SBOSSW00 SBOSSW00 SBOSSW00	382 = ADFA-CECR		511 – Gordon &
Chamise-woolyleaf ceanothus-mission manzanitaSAOSCT00White, 1994384 = ADFA-CECU511 – Gordon &Chamise-buckbrushSAOSCW00White, 1994385 = ADFA-ARGL4511 – Gordon &Chamise-bigberry manzanitaSAOSMB00White, 1994386 = ADFA-ARGL3511 – Gordon &Chamise-Eastwood's manzanitaSAOSME00White, 1994387 = ERFA2-SAAP2511 – Gordon &Eastern Majove buckwheat-white sageSBOSSW00White, 1994388 = CEMOG511 – Gordon &	Chamise-hoaryleam ceanothus	SA0SCH00	White, 1994
384 = ADFA-CECU Chamise-buckbrush SAOSCW00 White, 1994 385 = ADFA-ARGL4 Chamise-bigberry manzanita SAOSMB00 White, 1994 386 = ADFA-ARGL3 Chamise-Eastwood's manzanita SAOSME00 White, 1994 387 = ERFA2-SAAP2 Eastern Majove buckwheat-white sage SBOSSW00 White, 1994 511 - Gordon & SHOSSW00 White, 1994 511 - Gordon & SHOSSW00	383 = ADFA-CETO-CYBI		511 – Gordon &
Chamise-buckbrushSAOSCW00White, 1994385 = ADFA-ARGL4511 – Gordon &Chamise-bigberry manzanitaSAOSMB00White, 1994386 = ADFA-ARGL3511 – Gordon &Chamise-Eastwood's manzanitaSAOSME00White, 1994387 = ERFA2-SAAP2511 – Gordon &Eastern Majove buckwheat-white sageSBOSSW00White, 1994388 = CEMOG511 – Gordon &	Chamise-woolyleaf ceanothus-mission manzanita	SA0SCT00	White, 1994
385 = ADFA-ARGL4 Chamise-bigberry manzanita 386 = ADFA-ARGL3 Chamise-Eastwood's manzanita 387 = ERFA2-SAAP2 Eastern Majove buckwheat-white sage 388 = CEMOG 511 - Gordon & SAOSME00 White, 1994 511 - Gordon & SBOSSW00 White, 1994 511 - Gordon &	384 = ADFA-CECU		511 – Gordon &
Chamise-bigberry manzanitaSAOSMB00White, 1994386 = ADFA-ARGL3511 – Gordon &Chamise-Eastwood's manzanitaSAOSME00White, 1994387 = ERFA2-SAAP2511 – Gordon &Eastern Majove buckwheat-white sageSBOSSW00White, 1994388 = CEMOG511 – Gordon &	Chamise-buckbrush	SA0SCW00	White, 1994
386 = ADFA-ARGL3 Chamise-Eastwood's manzanita SAOSME00 White, 1994 S11 - Gordon & SAOSME00 White, 1994 S11 - Gordon & SBOSSW00 White, 1994 S11 - Gordon & SBOSSW00 S11 - Gordon &	385 = ADFA-ARGL4		
386 = ADFA-ARGL3 Chamise-Eastwood's manzanita SAOSME00 White, 1994 387 = ERFA2-SAAP2 Eastern Majove buckwheat-white sage SBOSSW00 White, 1994 511 - Gordon & 511 - Gordon &	Chamise-bigberry manzanita	SA0SMB00	White, 1994
Chamise-Eastwood's manzanitaSAOSME00White, 1994387 = ERFA2-SAAP2511 – Gordon &Eastern Majove buckwheat-white sageSBOSSW00White, 1994388 = CEMOG511 – Gordon &	· · · · · · · · · · · · · · · · · · ·		
387 = ERFA2-SAAP2 Eastern Majove buckwheat-white sage 388 = CEMOG 511 - Gordon & SBOSSW00 White, 1994 511 - Gordon &		SA0SME00	
Eastern Majove buckwheat-white sage SB0SSW00 White, 1994 388 = CEMOG 511 – Gordon &			,
388 = CEMOG 511 – Gordon &		SB0SSW00	
			·
	Birchleaf mountain mahogany	SBM00000	White, 1994

FVS Sequence Number = Plant Association		
Species Type	Alpha Code	Reference
389 = CECR		511 – Gordon &
Hoaryleaf ceanothus	SCH00000	White, 1994
390 = ARGL4		511 – Gordon &
Bigberry manzanita	SMB00000	White, 1994
391 = ARGL3		511 – Gordon &
Eastwood's manzanita	SME00000	White, 1994
392 = QUCH2		511 – Gordon &
Canyon live oak	SOC00000	White, 1994
393 = QUW12		511 – Gordon &
Interior live oak	SOI00000	White, 1994
394 = QUW12-CELE2		511 – Gordon &
Interior live oak-chaparral whitethorn	SOISCL00	White, 1994
395 = QUW12-QUCH2		511 – Gordon &
Interior live oak-canyon live oak	SOISOC00	White, 1994
396 = QUW12-QUBE5		511 – Gordon &
Interior live oak-scrub oak	SOISOS00	White, 1994
397 = QUBE5		511 – Gordon &
Scrub oak	SOS00000	White, 1994
398 = QUBE5-ADFA		511 – Gordon &
Scrub oak-chamise	SOSSA000	White, 1994
399 = QUBE5-CEMOG		511 – Gordon &
Scrub oak-birchleaf mountain mahogany	SOSSBM00	White, 1994
400 = QUBE5-CEOL-HEAR5		511 – Gordon &
Scrub oak-hairy ceanothus-toyon	SOSSCH00	White, 1994
401 = QUBE5-CELE2		511 – Gordon &
Scrub oak-chaparral whitethorn	SOSSCL00	White, 1994
402 = ADSP		511 – Gordon &
Redshank	SR000000	White, 1994
403 = ADSP-ADFA		511 – Gordon &
Redshank-chamise	SROSA000	White, 1994
404 = ARCA11		511 – Gordon &
Coastal sagebrush	SSC00000	White, 1994
405 = ARCA11-ERFA2		511 – Gordon &
Coastal sagebrush-Eastern Majave buchwheat	SSCSB000	White, 1994
406 = ARCA11-SAME3		511 – Gordon &
Coastal sagebrush-black sage	SSCSSB00	White, 1994

Table 11.2.2 Region 6 plant association codes recognized in the SO variant. Also used for the Warm Springs Reservation.

FVS Sequence Number = Plant						
Association	Alpha	Site	Site	Max.		
Species Type	Code	Species	Index*	SDI*	Source*	Reference
407 = PSME ABCO/SYAL/FORB	Couc	Species	macx	301	Jource	
Mixed conifer/snowberry/twinflower	CDS612	DF	85	755	С	p. 78 R6 E 104-85
408 = PSME-ABCO/SYAL/FORB	CD3012	DI	83	733		
Mixed conifer/snowberry/forb	CDS613	WF	90	810	С	p. 77 R6 E 104-85
409 = PSME-ABCO/SYAL/CARU	CD3013	•	30	010		p. 76
Mixed conifer/snowberry/pinegrass	CDS614	DF	78	615	С	R6 E 104-85
410 = PIEN/CAEU						p. 55
Mixed conifer/snowberry/pinegrass	CEM111	ES	80	635	Н	R6 E TP-279-87
411 = PIEN/EQAR-STRO						p. 57
Engelmann spruce/common horsetail-twistedstalk	CEM221	ES	90	712	Н	R6 E TP-279-87
412 = PIEN/CLUN						p. 49
Engelmann spruce/queencup beadlily	CEM222	ES	105	842	Н	R6 E TP-279-87
413 = PIEN/VAOC2-FORB						p. 51
Engelmann spruce/bog blueberry/forb	CEM331	ES	85	643	Н	R6 E TP-279-87
414 = PIEN/VAOC2/CAEU						p. 53
Engelmann spruce/bog blueberry/widefruit sedge	CEM312	ES	76	444	Н	R6 E TP-279-87
415 = PICO-PIAL/PELA						p. 19
Lodgepole pine-Whitebark pine/Gay penstemon	CLC111	LP	30	625	С	R6 E 79-004
416 = PICO-PIAL/ARCO2						
Lodgepole pine-Whitebark pine-W white					С	p. 20
pine/sandwort	CLC112	LP	25	690	C	R6 E 79-004
417 = PICO/FORB Lodgepole pine/forb	0.5444		40	265	С	p. 11
	CLF111	LP	43	365		R6 E 79-005
418 = PICO/STOC-BASIN Lodgepole pine/needlegrass basins	CI C244	1.0	20	400	С	p. 42
419 = PICO/STOC-LUCA-LINU	CLG311	LP	38	480		R6 E 104-85
Lodgepole pine/needlegrass-lupine-linanthastrum	CLG313	LP	45	395	С	p. 49
420 = PICO/STOC-LUCA	CLG515	LP	45	393		R6 E 104-85
Lodgepole pine/needlegrass-lupine	CLG314	LP	52	660	С	p. 48 R6 E 104-85
421 = PICO/FRVI-FEID	CLGS14		32	000		p. 21
Lodgepole pine/strawberry-fescue	CLG315	LP	44	510	С	ρ. 21 R6 E 79-004
422 = PICO/CAPE-LUCA	CLGS15			310		p. 46
Lodgepole pine/sedge-lupine	CLG411	LP	49	680	С	p. 40 R6 E 104-85
423 = PICO/CAPE-LUCA-PEEU	010 111			000		p. 47
Lodgepole pine/sedge-lupine-penstemon	CLG412	LP	50	635	С	R6 E 104-85
424 = PICO/CAPE-STOC-BASIN						p. 43
Lodgepole pine/sedge-needlegrass basins	CLG413	LP	37	590	С	R6 E 104-85
425 = PICO/SIHY-CAPE						p. 22
Lodgepole pine/squirreltail-long-stolon sedge	CLG415	LP	40	540	С	R6 E 79-004
426 = PICO/POTR/FRVI						p. 23
Lodgepole pine/quaking aspen/strawberry	CLH111	LP	48	345	С	R6 E 79-004
427 = PICO/CANE-ELGL-WET						p. 32
Lodgepole pine/sedge-grass wetland	CLM111	LP	51	540	С	R6 E 104-85
428 = PICO/POPR						p. 29
Lodgepole pine/Kentucky bluegrass	CLM112	LP	55	538	Н	R6 E TP-279-87
429 = PICO/CAEU						p. 41
Lodgepole pine/widefruit sedge	CLM113	LP	57	491	Н	R6 E TP-279-87
430 = PICO/CAAQ						p. 43
Lodgepole pine/aquatic sedge	CLM114	LP	45	549	Н	R6 E TP-279-87
431 = PICO/ARUV						p. 31
Lodgepole pine/bearberry	CLM211	LP	48	585	С	R6 E TP-279-87
432 = PICO/VAOC2/FORB						p.37R6 E TP-279-87
Lodgepole pine/blueberry/forb	CLM311	LP	47	570	С	p.33R6 E 104-85

FVS Sequence Number = Plant						
Association	Alpha	Site	Site	Max.		
Species Type	Code	Species	Index*	SDI*	Source*	Reference
433 = PICO/VAOC2/CAEU	Code	Species	illacx	301	Jource	
Lodgepole pine/bog blueberry/widefruit sedge	CLM312	LP	54	466	Н	p. 39 R6 E TP-279-87
434 = PICO/SPDO/FORB	CLIVIS12	LF	54	400		
Lodgepole pine/Douglas spiraea/forb	CLM313	LP	51	558	Н	p. 33 R6 E TP-279-87
435 = PICO/SPDO/CAEU	02.11010		01	333		p. 35
Lodgepole pine/Douglas spiraea/widefruit sedge	CLM314	LP	59	519	Н	R6 E TP-279-87
436 = PICO/XETE						p. 52
Lodgepole pine/beargrass	CLM411	LP	56	535	Н	R6 E 104-85
437 = PICO/PIEN/ELPA2						p. 45
Lodgepole pine-Engel spruce/few-flowered spikerush	CLM911	LP	35	495	С	R6 E TP-279-87
438 = PICO/ARTR-RHYO						p. 36
Lodgepole pine/sagebrush (rhyolite)	CLS112	LP	41	180	С	R6 E 104-85
439 = PICO/PUTR/STOC						p. 40
Lodgepole pine/bitterbrush/needlegrass	CLS211	LP	46	405	С	R6 E 104-85
440 = PICO/PUTR/CAPE						p. 44
Lodgepole pine/bitterbrush/sedge	CLS212	LP	52	405	С	R6 E 104-85
441 = PICO/PUTR/FORB					_	p. 35
Lodgepole pine/bitterbrush/forb	CLS213	LP	43	400	С	R6 E 104-85
442 = PICO/PUTR/FEID Lodgepole pine/bitterbrush/fescue					С	p. 39
	CLS214	LP	45	400	C	R6 E 104-85
443 = PICO/RICE-PUTR/STOC Lodgepole pine/current-bitterbrush/needlegrass	01.004.5			270	С	p. 41
444 = PICO/PUTR-RHYO	CLS215	LP	41	370	C	R6 E 104-85
Lodgepole pine/bitterbrush (rhyolite pumice)	61 624 6		26	245	С	p. 38
445 = PICO/ARNE	CLS216	LP	36	345		R6 E 104-85
Lodgepole pine/pinemat manzanita	CLS311	LP	31	575	С	p. 50 R6 E 104-85
446 = PICO/VASC	CL3311	LF	31	3/3		
Lodgepole pine/grouse huckleberry	CLS412	LP	45	865	С	p. 51 R6 E 104-85
447 = PICO/VASC-FORB	CL5412		43	003		p. 12
Lodgepole pine/grouse huckleberry/forb	CLS413	LP	55	444	Н	R6 E 79-005
448 = PICO/VASC/CAPE						
Lodgepole pine/grouse huckleberry/long-stolon						p. 13
sedge	CLS414	LP	43	290	Н	R6 E 79-005
449 = PICO/CEVE-ARPA					_	p. 45
Lodgepole pine/snowbrush-manzanita	CLS911	LP	44	575	С	R6 E 104-85
450 = TSME/VASC-DES Mountain hemlock/grouse huckleberry, Deschutes					С	p. 24 R6 E 79-005
	CMS111	MH	30	895	C	p. 80 R6 E 104-85
451 = PIPO-JUOC/CELE/FEID Ponderosa-juniper/mahogany-bitterb-big						p. 24
sage/fescue	CPC211	PP	82	345	С	R6 E 79-004
452 = PIPO/WYMO	0.0222					p. 27
Ponderosa pine/wooly wyethia	CPF111	PP	84	510	С	R6 E 79-004
453 = PIPO/CAPE-FEID-LALA2						p. 66
Ponderosa pine/sedge-fescue-peavine	CPG212	PP	97	575	С	R6 E 104-85
454 = PIPO-POTR/PONE						p. 28
Ponderosa pine/quaking aspen/bluegrass	CPH311	PP	84	485	С	R6 E 79-004
455 = PIPO/PUTR-ARTR/FEID						p. 56
Ponderosa pine/bitterbrush sagebrush/fescue	CPS111	PP	70	285	С	R6 E 104-85
456 = PIPO/PUTR-ARTR/SIHY						p. 55
Ponderosa pine/bitterbrush-sage/squirreltail (Rhyo)	CPS112	PP	75	335	С	R6 E 104-85
457 = PIPO/ARTR/PONE						p. 29
Ponderosa pine/mtn big sagebrush/bluegrass	CPS121	PP	82	450	С	R6 E 79-004
458 = PIPO/PUTR/FEID						p. 57
Ponderosa pine/bitterbrush/fescue	CPS211	PP	81	460	С	R6 E 104-85

FVS Sequence Number = Plant						
Association	Alpha	Site	Site	Max.		
Species Type	Code	Species	Index*	SDI*	Source*	Reference
459 = PIPO/PUTR/STOC	Code	Species	illacx	301	Jource	
Ponderosa pine/bitterbrush/needlegrass	CPS212	PP	85	440	С	p. 60b R6 E 104-85
460 = PIPO/PUTR-ARPA/STOC	CP3212	PF	65	440	C	p. 61
Ponderosa pine/bitterbrush-manzanita/needlegrass	CPS213	PP	81	345	С	p. 61 R6 E 104-85
461 = PIPO/PUTR-ARPA/CAPE	0.000					p. 64
Ponderosa pine/bitterbrush-manzanita/sedge	CPS214	PP	88	450	С	R6 E 104-85
462 = PIPO/PUTR/CAPE						p. 63
Ponderosa pine/bitterbrush/sedge	CPS215	PP	89	425	С	R6 E 104-85
463 = PIPO/PUTR/FEID-AGSP					_	p. 53
Ponderosa pine/bitterbrush/bunchgrass	CPS216	PP	77	225	С	R6 E 104-85
464 = PIPO/PUTR-ARPA/FEID						p. 58
Ponderosa pine/bitterbrush-manzanita/fescue	CPS217	PP	76	425	С	R6 E 104-85
465 = PIPO/PUTR/SIHY-RHYO					6	p. 54
Ponderosa pine/bitterbrush/squirreltail (rhyolite)	CPS218	PP	80	385	С	R6 E 104-85
466 = PIPO/PUTR-CEVE/STOC					6	p. 62
Ponderosa pine/bitterbrush-snowbrush/needlegrass	CPS311	PP	85	550	С	R6 E 104-85
467 = PIPO/PUTR-CEVE/CAPE					С	p. 65
Ponderosa pine/bitterbrush-snowbrush/sedge	CPS312	PP	89	345	C	R6 E 104-85
468 = PIPO/PUTR-CEVE/FEID Ponderosa pine/bitterbrush-snowbrush/fescue					С	p. 59
·	CPS314	PP	90	365	C	R6 E 104-85
469 = PIPO/SYAL-FLOOD Ponderosa pine/common snowberry-floodplain	686544	20	404	F4.6	Н	p. 27
470 = ABMAS/CAPE	CPS511	PP	101	516	11	R6 E TP-279-87
Shasta red fir/long-stolon sedge	CRG111	RF	120	745	С	p. 22 R6 E 79-005
471 = ABMAS/ARNE	CRGIII	KF	120	745	C	
Mixed conifer/manzanita	CRS111	RF	79	725	С	p. 72 R6 E 104-85
472 = ABMAS-TSME/ARNE/CAPE	CNSIII	- 10	,,,	723		10 2 10 1 03
Shasta red fir-Mtn hemlock/pinemat					_	p. 23
manzanita/sedge	CRS112	RF	99	910	С	R6 E 79-005
473 = ABMAS-ABCO/CACH-CHUM/CAPE						p. 21
Shasta red fir-white fir/chink-prince's pine/sedge	CRS311	RF	114	775	С	R6 E 79-005
474 = ABCO-PIPO-CADE/AMAL					_	p. 34
White fir-ponderosa pine-incense cedar/serviceberry	CWC111	WF	58	665	С	R6 E 79-004
475 = ABCO/CEVE-CACH/PTAQ					С	p. 75
Mixed conifer/snowbrush-chinkquapin/brackenfern	CWC211	PP	96	675	C	R6 E 104-85
476 = ABCO/CEVE-CACH/CARU Mixed conifer/snowbrush-chinkquapin/pinegrass	6146242	20	0.5	620	С	p. 74
477 = ABCO/CEVE/CAPE-PTAQ	CWC212	PP	95	630	C	R6 E 104-85
Mixed conifer/snowbrush/sedge-bracken	CWC213	DD	07	CAE	С	p. 69
478 = ABCO-PSME/CEVE-ARUV	CWC213	PP	87	645	C	R6 E 104-85
Mixed conifer/snowbrush-bearberry	CWC215	WF	78	671	Н	p. 17 R6 E 79-005
479 = ABCO-PICO/CAPE5-STOC	CWCZIS	VVI	76	0/1		
White fir-lodgepole pine/long-stolon sedge-needlegr	CWC311	WF	54	770	С	p. 30 R6 E 79-004
480 = ABCO-PIPO-PILA/RIVI	CWCSII	***	31	770		
White fir-ponderosa pine-white pine/sticky currant	CWC411	WF	56	910	С	p. 35 R6 E 79-004
481 = ABCO-PIPO-PILA/ARPA		1				p. 33
White fir-ponderosa pine-sugar pine/manzanita	CWC412	WF	68	510	С	R6 E 79-004
482 = PIEN-BOTTOMS						p. 79
Engelmann spruce bottomlands	CWC911	ES	86	682	Н	R6 E 104-85
483 = ABCO/CLUN						p. 47
White fir/queencup beadlily	CWF431	WF	81	872	Н	R6 E TP-279-87
484 = ABCO/CEVE-CACH						p. 73
Mixed conifer/snowbrush-chinquapin	CWH111	PP	91	675	С	R6 E 104-85

FVS Sequence Number = Plant						
Association	Alpha	Site	Site	Max.		
Species Type	Code	Species	Index*	SDI*	Source*	Reference
485 = ABCO/CACH-PAMY-CHUM White fir/chinquapin-boxwood-prince's pine	CWH112	WF	84	750	С	p. 20 R6 E 79-005
486 = ABCO-PIPO-POTR/CAPE White fir-ponderosa pine-aspen/long-stolon sedge	CWH211	PP	84	270	С	p. 36 R6 E 79-004
487 = ABCO/ALTE White fir-alder/shrub meadow	CWM111	WF	81	607	Н	p. 16 R6 E 79-005
488 = ABCO/CEVE-ARPA Mixed conifer/snowbrush-manzanita	CWS112	PP	85	660	С	p. 70 R6 E 104-85
489 = ABCO/CEVE-ARPA/CAPE-PEEU M conifer/manzanita-snowbrush/sedge-penstemon	CWS113	PP	88	660	С	p. 71 R6 E 104-85
490 = ABCO/CEVE Mixed conifer/snowbrush	CWS114	PP	86	725	С	p. 67 R6 E 104-85
491 = ABCO/CEVE/CAPE Mixed conifer/snowbrush/sedge	CWS115	PP	88	790	С	p. 68 R6 E 104-85
492 = ABCO/CEVE-CEPR/FRVI Mixed conifer/snowbrush-squawcarpet/strawberry	CWS116	WF	65	560	С	p. 18 R6 E 79-005
493 = ABCO-PIPO/ARPA-BERE White fir-ponderosa pine/manzanita-Oregon grape	CWS117	PP	86	570	С	p. 32 R6 E 79-004
494 = ABCO/SYAL/FRVI White fir/snowberry/strawberry	CWS312	WF	69	485	С	p. 19 R6 E 79-005
495 = ABCO-PIPO/SYAL/STJA White fir-ponderosa pine/snowberry/starwort	CWS313	WF	63	810	С	p. 31 R6 E 79-004
496 = POTR/ELGL Quaking aspen/blue wildrye	HQM121	LP	55	464	Н	p. 61 R6 E TP-279-87
497 = POTR-PICO/SPDO/CAEU Quak. aspen-lodgepole pine/Doug spiraea/widefruit sedge	HQM411	LP	59	640	Н	p. 63 R6 E TP-279-87
498 = POTR/SYAL/ELGL Quaking aspen/common snowberry/blue wildrye	HQS221	PP	101	596	Н	p. 59 R6 E TP-279-87

^{*}Site index estimates are from GBA analysis. SDI maximums are set by GBA analysis (Source=H) or CVS plot analysis (Source=C).

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an equal opportunity provider and employer.