Math 461 Midterm, Wednesday 10/16/19, 7:00PM-9:00PM, LGRC A301. *Instructions*:

- Exam time is 2 hours.
- There are 6 questions for a total of 60 points.
- You are allowed one sheet of notes (letter size, both sides).
- Calculators, phones, other electronic devices, additional notes, and textbooks are *not* allowed.
- Justify all your answers carefully. Complete proofs are expected as in MATH 300. Results proved in class, the textbook, or the homework may be stated without proof.

- Q1 (10 points). Let ABCD be a convex quadrilateral with vertices labelled in counterclockwise order. Suppose that |AB| = |BC| and |CD| = |DA|. Let E be the intersection point of the diagonals AC and BD. Prove that |AE| = |EC| and $\angle AEB = \pi/2$. (That is, the diagonal BD bisects the diagonal AC and the diagonals meet at right angles.)
- **Q2** (10 points). Let ABCD be a quadrilateral with vertices labelled in counterclockwise order such that AB is parallel to DC. Let E be the intersection point of the diagonals AC and BD. Prove that $|AE| \cdot |DE| = |BE| \cdot |CE|$.
- **Q3** (10 points). Let $\triangle ABC$ be a triangle and \mathcal{C} the unique circle passing through A, B, and C. Let L be the bisector of the angle $\angle ACB$ and D the other intersection point of L and \mathcal{C} (besides C). Prove that |AD| = |BD|.
- **Q4** (10 points). Suppose given a line segment AB. Describe a ruler and compass construction of a triangle $\triangle ABC$ with vertices A, B and a third point C such that $\angle ABC = \pi/4$, $\angle BCA = \pi/2$, and $\angle CAB = \pi/4$. Prove that your construction is correct.

[You may use ruler and compass constructions from class or the textbook as components of your constructions.]

Q5 (10 points). Suppose given a triangle $\triangle ABC$. Describe a ruler and compass construction of a triangle $\triangle ABD$ such that $\text{Area}(\triangle ABD) = \text{Area}(\triangle ABC)$ and $\angle ABD = \angle BAD$. Prove that your construction is correct.

[You may use ruler and compass constructions from class or the textbook as components of your constructions.]

- $\mathbf{Q6}$ (10 points). Let ABCDE be a regular pentagon with vertices labelled in counterclockwise order.
 - (a) (3 points). What are the interior angles of the pentagon ABCDE?
 - (b) (7 points). Let F be the intersection point of AC and BE. Prove that $\triangle ACD$ is similar to $\triangle EAF$.