Interpolação Bidimensional: Redimensionamento de Imagens

Fernando de Oliveira Cezarino

8 de maio de 2013

Dado que sabemos o valor de uma função desconhecida f em quatro pontos $P_{11} = (x_1, y_1)$, $P_{12} = (x_1, y_2)$, $P_{21} = (x_2, y_1)$ e $P_{22} = (x_2, y_2)$, queremos encontrar o valor da função em um ponto P = (x, y).

Os pontos vermelhos representam nós, e o verde é o ponto onde se deseja realizar a interpolação.

Primeiro interpolamos na direção x:

$$f(R_1) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{11}) + \frac{x - x_1}{x_2 - x_1} f(Q_{21}),$$

$$f(R_2) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22}),$$

onde

$$R_1 = (x, y_1)$$
 ; $R_2 = (x, y_2)$.

Seguimos então com a interpolação em y:

$$f(P) \approx \frac{y_2 - y}{y_2 - y_1} f(R_1) + \frac{y - y_1}{y_2 - y_1} f(R_2).$$

Obtemos ento:

$$f(x,y) \approx \frac{f(Q_{11})}{(x_2 - x_1)(y_2 - y_1)}(x_2 - x)(y_2 - y) + \frac{f(Q_{21})}{(x_2 - x_1)(y_2 - y_1)}(x - x_1)(y_2 - y) + \frac{f(Q_{12})}{(x_2 - x_1)(y_2 - y_1)}(x_2 - x)(y - y_1) + \frac{f(Q_{22})}{(x_2 - x_1)(y_2 - y_1)}(x - x_1)(y - y_1)$$

$$= \frac{1}{(x_2 - x_1)(y_2 - y_1)}(f(Q_{11})(x_2 - x)(y_2 - y) + \frac{f(Q_{21})(x - x_1)(y_2 - y) + f(Q_{12})(x_2 - x)(y - y_1) + f(Q_{22})(x - x_1)(y - y_1)}{f(Q_{22})(x - x_1)(y - y_1)}.$$

Note que chegaríamos no mesmo resultado de tivessemos feito a interpolação primeiro na direção y e depois na direção x!

Métodos não-adaptativos:

- Vizinho mais próximo;
- Interpolação bilinear;
- Interpolação bicúbica.

Interpolação de 16 pontos usando Vizinhos Mais Próximos.

Idem, usando Interpolação Bilinear.

Idem, usando Interpolação Bicúbica.

Pequeno, né? Vamos tentar melhorar!

Vizinho mais próximo.

Interpolação bilinear.

Interpolação bicúbica.

Bibliografia I

P. M. Prenter.

Splines and variational methods.

John Wiley & Sons, 1989.

Wikipedia.

Bilinear interpolation.

en.wikipedia.org/wiki/Bilinear_interpolation

[Online; accessed 27-April-2013]

Wikipedia

Bicubic interpolation.

http://en.wikipedia.org/wiki/Bicubic_interpolation [Online; accessed 27-April-2013]

Bibliografia II

Olympus America Inc.

Pan, Scroll, Rotate, Flip, Scale, Zoom.

http://www.olympusmicro.com/primer/java/digitalimaging/processing/panscrollzoom/index.html [Online; accessed 27-April-2013]

Cambridge in Colour DIGITAL IMAGE INTERPOLATION.

http://www.cambridgeincolour.com/tutorials/image-interpolation.htm [Online; accessed 27-April-2013]

Cambridge in Colour DIGITAL PHOTO ENLARGEMENT.

http://www.cambridgeincolour.com/tutorials/digital-photo-enlargement.htm [Online; accessed 27-April-2013]