

F3

Faculty of Electrical Engineering Department of Computer Science

Unassisted project report

Lukáš Forst

Supervisor: Ondřej Vaněk, Ph.D.

January 2019

Contents

1 Introduction	1
2 Problem definition	3
2.1 Formal definition	3
$2.1.1\ {\rm Load}\ {\rm Balancer}\ {\rm Requirements}$.	4
2.2 Motivation to solve it	4
3 Technical Background	5
3.1 Optimization Algorithms	5
3.1.1 Linear Optimization	5
3.1.2 Heuristic algorithms	6
3.1.3 Selected algorithms	7
3.2 Load Balancing	8
3.2.1 Static Load Balancing	8
3.2.2 Dynamic Load Balancing	10
4 State of the art	13
Bibliography	15

Chapter 1

Introduction

Optimization algorithms and solutions build on them are widely used in current manufacturing industry to reduce production costs. With more and more production automatization, optimization algorithms can manage and schedule whole factories with maximum available efficiency.

Complexity of optimization problems could be huge and therefore performance requirements are sometimes not easily satisfiable. Using one powerful instance of optimization algorithm in cloud seems like a solution for problems with smaller complexity, but what if we have multiple huge problems where each is performance demanding? Of course, we can create multiple instances, but that would be expensive and not well manageable and scalable since adding another instances manually requires some time and it is not much flexible. Another disadvantage of this approach is the fact, that optimization algorithm is not running 100% of time and thus resources allocated by this algorithm are unused while other algorithm instances could be potentially overwhelmed. Also paying for unused hardware is wasting money and optimization algorithms are supposed to save money.

Now imagine having two completely different problems that each requires its own application which visualises data and optimization algorithm to compute some kind of plan, this algorithm can be generic enough to operate on both domains with same code base, but it requires a lot of performance resources. If we use monolithic architecture of both applications, we would have same code in two applications, but what is even worse, we would need two powerful machines to run our applications. As previously mentioned, these two machines would not be using their power whole time and would be mainly idle. What if one application runs only few minutes a day, but needs that power to complete tasks in time? A lot of resources would be wasted if it has its own server, but using not powerful server would lead to increasing duration of ongoing tasks which is something we do not want.

In this paper I would like to introduce **load balancer** specifically developed for optimization algorithms which could potentially minimize resources wasting and increase performance using correct utilization distribution across multiple instances of optimization algorithms.

Whole text does not seems to be right, maybe I will need to rewrite it.

Chapter 2

Problem definition

The problem with implementation of optimization algorithms in applications is that their performance requirements are quite high and are fully utilized only while working. Optimization algorithm is not running all the time and for that reason hardware resources are mainly unused. These unused resources could be potentially used by another instance of algorithm or can be shutdown completely to reduce hosting costs.

Also adding more time to job execution does not always bring better solution but it certainly costs more. Therefore proposed load balancer must be able to stop execution when solution value is not getting better compared with scheduling costs.

2.1 Formal definition

- \blacksquare T_{\max} maximal optimization job execution time provided by user and specified before execution started
- T actual optimization job execution time, when no execution time optimization is being used $T = T_{\text{max}}$
- \blacksquare RC Resource Costs all hardware costs used for executing optimization job by some algorithm

$$RC = \sum_{i=0}^{T} RC_i \tag{2.1}$$

don't know how

to say that - costs that you

■ RC_t - $Resource\ Costs$ in time t - accumulated costs from beginning of execution to time t

$$RC_t = \sum_{i=0}^{t-1} RC_i \tag{2.2}$$

 \blacksquare RC_{\max} - maximal resource costs specified by user in advance

$$RC_{\text{max}} \ge RC$$
 (2.3)

■ V - Solution Value - value of the found solution, since this paper focus on cost optimization, Solution Value is cost of found solution

$$V = min\{V_t\}, \quad t = 0 \dots T \tag{2.4}$$

2. Problem definition

 $lackbox{ }V_t$ - Solution Value in time t - best solution provided by algorithm since the beginning of the job execution until time t

Then load balancer optimizes following function

$$min\{\alpha RC + \beta V \mid \alpha, \beta \in \mathbb{R}\}$$
 (2.5)

Where α and β are coefficients that are balancing RC and V.

- **2.1.1** Load Balancer Requirements
- 2.2 Motivation to solve it

Maybe bachelor degree? Or at least unassisted project would be fine...

Lost in the context...

Here comes some motivation to solve it

Chapter 3

Technical Background

3.1 Optimization Algorithms

This work does not contain any own algorithm implementation for generic optimization problems, instead I would like to use pre-prepared and already implemented optimization solver. We have many options how to solve optimization problems, I would like to present two of them - linear optimization and heuristics algorithms.

This is really shity introduction

3.1.1 Linear Optimization

Linear optimization (or linear programming) is a method to achieve the best outcome in a mathematical model whose requirements are represented by linear relationships. [Wik19] The algorithms are widely utilized in company management, such as planning, production, transportation, technology and other issues.

I must add more about it since it is important topic

The main benefit of linear optimization is that it provides the best possible solution, because optimization algorithms are guaranteed to provide optimal solution. Although almost everything can be represented as linear problem, linear programming solvers could be unable to provide solution since, in the most cases, computation time grows exponentially. Even though there are solvers that are able to provide ϵ (partial) solution, this solution can be (and in most cases is) unusable, because is not optimal at all.

There are plenty of linear programming solvers available. I would like to highlight following two optimization kits.

GLPK

GNU - *GNU* Linear Programming Kit is a software package intended for solving large-scale linear programming (LP), mixed integer programming (MIP), and other related problems. It is a set of routines written in ANSI C and organized in the form of a callable library [Mak]. Although originally is GLPK written in C programming language, there is an independent project, which provides Java-based interface for execution of GLPK via Java Native

Interface. ¹

Google OR-Tools

Google OR-Tools - OR-Tools is an open source software suite for optimization, tuned for tackling the world's toughest problems in vehicle routing, flows, integer and linear programming, and constraint programming [Goo]. Tools contain Glop which is Google's custom linear solver. One of the greatest advantages of Google OR-Tools is great API supporting multiple programming languages - C++, Python, C# and Java.

3.1.2 Heuristic algorithms

Same as above, I must add more information about them

Heuristics algorithms (or HA) are designed to solve optimization problems faster and more efficient fashion than Linear Optimization methods by using different kinds of heuristics and metaheuristics. In exchange for that, algorithms sacrifice optimality, accuracy, precision, and completeness. Thus solution provided by HA is not guaranteed to be optimal. HA are often used to solve various types of NP-complete problems such as Vehicle Routing, Task Assignment, Job Scheduling or Traveling Salesmen Problem. Heuristic algorithms are most often employed when approximate solutions are sufficient and exact solutions are necessarily computationally expensive [Pap18].

The main advantage of heuristic algorithms is that they provide quick feasible solution. Because the implementation of HA is easier than LP and they provide at least feasible solution for optimization problems, they are solving, they are widely used in organizations that face such optimization problems. The main downside of HA is the fact, that they can't guarantee that the found solution is the optimal one.

I would like to mention two implementations of heuristics algorithms - Opta-Planner and TASP.

OptaPlanner

OptaPlanner is an open source generic heuristics based constraint solver. It is designed to solve optimization problems such as Vehicle Routing, Agenda Scheduling etc. While solving optimization task, it combines and uses various optimization heuristics and metaheuristics such as Tabu Search or Simulated Annealing.

OptaPlanner is written in pure Java and runs on JVM, therefore it can be used as Java library.

TASP

Task and Asset Scheduling Platform is a lightweight framework developed by Blindspot Solutions designed to solve a large variety of optimization

 $^{^{1}\}mathrm{Java}$ Native Interface - Interface provided by Java platform to run and integrate non-Java language libraries

and scheduling problems from the area of logistics, workforce management, manufacturing, planning and others. It contains a modular, efficient planning engine utilizing latest optimization algorithms. TASP is delivered as a software library to be used through its API in applications which require powerful scheduling capabilities.

It is written in Kotlin which runs on JVM, therefore it can be easily used as library to any JVM based project.

3.1.3 Selected algorithms

I decided to use one linear solver and one heuristic algorithm to test load balancing server. This will provide us heterogeneous environment for distinguish optimization tasks as well as different demands on performance. While choosing suitable solvers I was looking mainly at possibility running on JVM and their API as well as at their suitability for my paper. For final testing I selected **GLPK** as linear solver, mainly because it is widely used linear optimization kit and because of it's convenient Java interface.

As a representative of heuristics algorithms I selected **TASP** because of it's great scalability, Kotlin interface and because I have already worked with it and I'm familiar with multiple TASP implementations.

do I have to mention that I'm working for Blindspot?

3.2 Load Balancing

There will be some info about how should server balance itself.

- prioritisation mainly done by priority queues
- handover
- instance sizing
- algorithms following are methods used in network balancing -> probably can't be used because we need to manage scheduling which is heavy on computer resources like CPU/RAM/IO

some stuff about load balancing in general

In general, load balancing can be classified as either static or dynamic.

3.2.1 Static Load Balancing

Static load balancing is an approach where system information are provided a priori and load balancer does not use performance information about execution node ², to make distribution decisions. The performance possibilities and the load of the execution point (or node) are not taken in account when decision where to execute current task - is being made, because load-balancing decisions are made at compile time. When a decision is made, no other interaction with executing node, regarding the current task, is being made. In other words, once the load is allocated to the execution node, it cannot be transferred to another node. Static load balancing method is to reduce the overall execution time of a concurrent program while minimizing the communication delays [RP15]. The main advantage of static load balancing methods is mainly the fact, that there is minimal communication delay between system nodes and therefore execution overhead is minimized to almost zero. For that reason is static load balancing mainly used in the fields, where server response is crucial such as serving a webpage. Also the implementation of some static load balancing algorithm is straightforwards, since the used methods are very simple.

Find better example

The main disadvantage of static load balancing is that it does not take in account current state of the system, when making decision. This could potentially lead to performance issues in the whole system because some nodes can be overloaded although others are not working at all.

Another drawback of this approach is that hardware resources are allocated only once in the execution time. Since optimization jobs are very heterogeneous, they sometimes have different power requirements during the execution. For example TASP uses only one thread when creating feasible plan in the first algorithm iteration - this task relays only on single core performance. However, when first iteration is completed, all following can be done by multiple threads, therefore it could be useful to execute first iteration

²Execution node - Server executing task which is being scheduled by load balancer. In our case, this task is solving optimization problem by solver.

on a machine with better single core performance and then transfer algorithm into machine focused on multiple threads execution. This is something that can not be done while using static load balancing.

Following static load balancing algorithms are commonly used.

First Alive

First alive or also called *Central Manager* algorithm uses the concept of a primary server and backup servers[IBM]. All tasks are scheduled to be executed on primary server unless the primary server is down. Then the load will be forwarded to first backup server. This algorithm has almost zero level of inner process communication, which leads to better performance when there are lots of smaller tasks.

Round Robin

Round Robin algorithm which distributes work load evenly to all nodes. It is being done in round robin order, where load is distributed to each node in circular order without any priority. Round Robin is esy to implement and as well as *First alive* algorithm has almost none inner communication overhead. This algorithm performs best when tasks have equal, or at least similar, processing time.

Weighted Round Robin

Weighted round robin algorithm maintains a weighted list of servers and forwards new connections in proportion to the weight, or preference, of each server. This algorithm uses more computation times than the round robin algorithm. However, the additional computation results in distributing the traffic more efficiently to the server that is most capable of handling the request [IBM].

Threshold Algorithm

Threshold algorithm - execution nodes keep private copy of the system's load, when the load state of a node exceeds a load level limit, node sends message to all remote nodes, that it is overloaded. If the local state is not overloaded then the load is allocated locally. Otherwise a remote node, that is not overloaded, is selected and if no such node exists it is also allocated locally. This algorithm has low inter process communication and large number of local process allocations. The later reduces the overhead of remote process allocation and the overhead of remote memory access, which leads to performance improvements [PB].

Least Connections

Least connections algorithm maintains a record of active server connections and forward a new connection to the server with the least number of active connections[IBM]. This can be generally useful while having many concurrent requests, that can be dispatched quickly.

Randomized Algorithm

Randomized algorithm uses random selection of the execution node without having any information about it.

3.2.2 Dynamic Load Balancing

Unlike static load balancing algorithms, dynamic algorithms use runtime state information to more more informative decisions while distributing the jobs. They monitor changes on the system work load and take it in account when decision, where to execute job, is being made. The process of monitoring the system is not stopped after execution job started and if circumstances change, job execution can be transferred to another system node which then proceeds with execution.

Dynamic algorithms usually uses three main strategies.

- **Information strategy** it is responsible for collecting the information about the nodes, their performance and load.
- Transfer strategy decides which tasks could be potentially transferred to another remote system node.
- Location strategy this strategy selects most suitable remote note which should execute transferred job.

Dynamic load balancing algorithms can be divided into three groups based on their control form, or in other words, how they control whole nodes system.[PB]

- Centralized a single node in the network is responsible for all load distribution
- Distributed all nodes ale equal
- Semi-distributed the network is segmented into clusters, where each cluster is centralized

The main advantage of dynamic load balancing is that it allows changing execution node in runtime. Because of that, it is possible to change hardware characteristics according to the job execution phase. For example execute initial phase of optimization algorithm on machine with powerful single core performance and then move job to the machine with multiple, less powerful cores to let it run in parallel. Also as a result of runtime scheduling, dynamic load balancing algorithms tends to provide a significant improvements in performance over static algorithms. However, this comes at the additional cost of collecting and maintaining load information[Mal00]. For that reason dynamic load balancing suites better for long running tasks, which can be managed and distributed better, than for fast queries.

There are two main dynamic load balancing algorithms.

This sentence sounds weird

Central Queue Algorithm

The first one.

Local Queue Algorithm

And the second one.

Chapter 4
State of the art

Bibliography

- [Goo] Google, About or-tools, https://developers.google.com/optimization/, [Online; accessed 16-January-2019].
- [IBM] IBM, Algorithms for making load-balancing decisions, https://www.ibm.com/support/knowledgecenter/SS9H2Y_7. 7.0/com.ibm.dp.doc/lbg_algorithms.html, [Online; accessed 29-January-2019].
- [Mak] Andrew Makhorin, Glpk (gnu linear programming kit), https://www.gnu.org/software/glpk/, [Online; accessed 16-January-2019].
- [Mal00] Malik, Shahzad, Dynamic load balancing in a network of workstations, 95.515 F Research Report (2000).
- [Pap18] Papanikolaou, A., A Holistic Approach to Ship Design: Volume 1: Optimisation of Ship Design and Operation for Life Cycle, Springer International Publishing, 2018, 296-301.
- [PB] Atul Garg Payal Beniwal, A comparative study of static and dynamic load balancing algorithms, International Journal of Advance Research in Computer Science and Management Studies, [Online; accessed 29-January-2019].
- [RP15] Dr. Samrat Khanna Ramesh Prajapati, Dushyantsinh Rathod, Comparison of static and dynamic load balancing in grid computing, International Journal For Technological Research In Engineering (2015).
- [Wik19] Wikipedia contributors, Linear programming Wikipedia, the free encyclopedia, https://en.wikipedia.org/w/index.php?title=Linear_programming&oldid=878407127, 2019, [Online; accessed 16-January-2019].