

Optimize your Machine Learning workloads

Julien Simon Global Evangelist, AI & Machine Learning @julsimon

Our mission at AWS

Put machine learning in the hands of every developer

Now let's make it as fast, efficient and unexpensive as possible

Optimizing Infrastructure and Frameworks

Amazon EC2 P3dn

https://aws.amazon.com/blogs/aws/new-ec2-p3dn-gpu-instances-with-100-gbps-networking-local-nvme-storage-for-faster-machine-learning-p3-price-reduction/

Reduce machine learning training time

Better GPU utilization

Support larger, more complex models

100Gbps of networking bandwidth

KEY FEATURES

8 NVIDIA Tesla V100 GPUs 32GB of memory per GPU (2x more P3) 96 Intel Skylake vCPUs (50% more than P3) with AVX-512

Amazon EC2 C5n

https://aws.amazon.com/blogs/aws/new-c5n-instances-with-100-gbps-networking/

Intel Xeon Platinum 8000

Up to 3.5GHz single core speed

Up to 100Gbit networking

Based on Nitro hypervisor for bare metal-like performance

Instance Name	vCPUs	RAM	EBS Bandwidth	Network Bandwidth
c5n.large	2	5.25 GiB	Up to 3.5 Gbps	Up to 25 Gbps
c5n.xlarge	4	10.5 GIB	Up to 3.5 Gbps	Up to 25 Gbps
c5n.2xlarge	8	21 GiB	Up to 3.5 Gbps	Up to 25 Gbps
c5n.4xlarge	16	42 GiB	3.5 Gbps	Up to 25 Gbps
c5n.9xlarge	36	96 GiB	7 Gbps	50 Gbps
c5n.18xlarge	72	192 GiB	14 Gbps	100 Gbps

Making TensorFlow faster

Training a ResNet-50 benchmark with the synthetic ImageNet dataset using our optimized build of TensorFlow 1.11 on a c5.18xlarge instance type is 11x faster than training on the stock binaries.

https://aws.amazon.com/about-aws/whats-new/2018/10/chainer4-4 theano 1-0-2 launch deep learning ami/October 2018

Available with Amazon SageMaker and the AWS Deep Learning AMIs

Scaling TensorFlow near-linearly to 256 GPUs

https://aws.amazon.com/about-aws/whats-new/2018/11/tensorflow-scalability-to-256-gpus/

Stock TensorFlow

65%

scaling efficiency with 256 GPUs

AWS-Optimized TensorFlow

90%

scaling efficiency with 256 GPUs

Available with Amazon SageMaker and the AWS Deep Learning AMIs

30m training time

14m

training time

Dynamic training with Apache MXNet

https://aws.amazon.com/blogs/machine-learning/introducing-dynamic-training-for-deep-learning-with-amazon-ec2/

Use a variable number of instances for distributed training

No loss of accuracy

ResNet-50 Validation Accuracy on ImageNet

Optimizing Models

- Automatic Model Tuning
- Model compilation
- Model compression

Examples of hyperparameters

Decision Trees

Tree depth

Max leaf

nodes

Gamma

Eta

Lambda

Alpha

Neural Networks

Number of layers

Hidden layer width

Learning rate

Embedding

dimensions

Dropout

. . .

. . .

Automatic Model Tuning

Finding the optimal set of hyper parameters

- 1. Manual Search ("I know what I'm doing")
- Grid Search ("X marks the spot")
 Typically training hundreds of models
 Slow and expensive
- 3. Random Search ("Spray and pray")
 Works better and faster than Grid Search
 But... but... it's random!
- HPO: use Machine Learning
 - Training fewer models
 - Gaussian Process Regression and Bayesian Optimization
 - You can now resume from a previous tuning job

Demo

Hardware optimization is extremely complex

Amazon Neo: compiling models

https://aws.amazon.com/blogs/aws/amazon-sagemaker-neo-train-your-machine-learning-models-once-run-them-anywhere/

- Train once, run anywhere
- Frameworks and algorithms
 - TensorFlow, Apache MXNet, PyTorch, ONNX, and XGBoost
- Hardware architectures
 - ARM, Intel, and NVIDIA starting today
 - Cadence, Qualcomm, and Xilinx hardware coming soon
- Amazon SageMaker Neo is open source, enabling hardware vendors to customize it for their processors and devices:
 - https://github.com/neo-ai

Demo: Compiling ResNet-50 for the Raspberry Pi

```
Configure the compilation job
  "RoleArn":$ROLE_ARN,
  "InputConfig": {
   "S3Uri": "s3://jsimon-neo/model.tar.gz",
   "DataInputConfig": "{\"data\": [1, 3, 224, 224]}",
   "Framework": "MXNET"
 "OutputConfig": {
  "S30utputLocation": "s3://jsimon-neo/",
 "TargetDevice": "rasp3b"
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 300
```

```
Compile the model

$ aws sagemaker create-compilation-job
--cli-input-json file://config.json
--compilation-job-name resnet50-mxnet-pi

$ aws s3 cp s3://jsimon-neo/model-
rasp3b.tar.gz .

$ gtar tfz model-rasp3b.tar.gz
compiled.params
compiled_model.json
compiled.so
```

```
Predict with the compiled model
from dlr import DLRModel
model = DLRModel('resnet50', input_shape,
output_shape, device)
out = model.run(input_data)
```


Demo

Compressing deep learning models

- Compression is the process of reducing the size of a trained network, either by removing certain layers or by shrinking layers, while maintaining accuracy.
- A smaller model will predict faster and require less memory.
- The number of possible combinations makes is difficult to perform this task manually, or even programmatically.
- Reinforcement learning to the rescue!

Defining the problem

- Objective: find the smallest possible network architecture from a pre-trained network architecture, while producing the best accuracy.
- Environment: a custom developed environment that accepts a Boolean array of layers to remove from the RL agent and produces an observation describing layers.
- State: the layers.
- Action: A boolean array one for each layer.
- Reward: a combination of compression ratio and accuracy.

Demo

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning/rl_network_compression_ray_custom

Optimizing Inference

Predictions drive complexity and cost in production

Are you making the most of your infrastructure?

Low utilization and high costs

One size does not fit

Amazon Elastic Inference

https://aws.amazon.com/blogs/aws/amazon-elastic-inference-gpu-powered-deep-learning-inference-acceleration/

Lower inference costs up to 75%

Integrated with
Amazon EC2,
Amazon SageMaker, and
Amazon DL AMIs

Match capacity to demand

Available between 1 to 32 TFLOPS

Single and mixed-precision operations

Demo

Faster training Faster inference Save time and money No plumbing

Getting started

https://ml.aws

https://aws.amazon.com/sagemaker

https://github.com/awslabs/amazon-sagemaker-examples

https://medium.com/@julsimon

Please complete the session survey.

Thank you!

Julien Simon Global Evangelist, AI & Machine Learning @julsimon

