Linear Algebra Problems and Working Solutions	

Chapter 1

Vector Spaces

Topics:

- 1. Vector operations.
- 2. Vector spaces.
- 3. Basis and linear independence.

Problems:

(1.1 Treil) Let $\mathbf{x} = (1, 2, 3)^T$, $\mathbf{y} = (y_1, y_2, y_3)^T$, $\mathbf{z} = (4, 2, 1)^T$. Compute $2\mathbf{x}, 3\mathbf{y}, \mathbf{x} + 2\mathbf{y} - 3\mathbf{z}$.

Answer:

$$2\mathbf{x} = 2 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix},$$

$$2\mathbf{y} = 2 \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 3 \cdot y_1 \\ 3 \cdot y_2 \\ 3 \cdot y_3 \end{bmatrix},$$

$$\mathbf{x} + 2\mathbf{y} - 3\mathbf{z} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 2 \cdot y_1 \\ 2 \cdot y_2 \\ 2 \cdot y_3 \end{bmatrix} - \begin{bmatrix} 12 \\ 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 2y_1 - 11 \\ 2y_2 - 4 \\ 2y_3 \end{bmatrix}$$

(1.8 Treil) Prove that for any vector \mathbf{v} its additive inverse is $-\mathbf{v}$ is given by $(-1)\mathbf{v}$.

Answer:

The additive inverse axiom for vector spaces says that, given vector space $V, \forall \mathbf{v} \in V, \exists \mathbf{w} \in V$ such that $\mathbf{v} + \mathbf{w} = \mathbf{0}$. If \mathbf{v} is in field \mathbb{R}^n ,

$$\mathbf{v} = (v_1, v_2, ..., v_n).$$

 $(-1)\mathbf{v} = (-1)(v_1, v_2, ..., v_n) = (-v_1, -v_2, ..., -v_n) \mathbf{v} + (-1)\mathbf{v} = (0, 0, ...0) = \mathbf{0}$. Thus, $(-1)\mathbf{v}$ is the additive inverse of \mathbf{v} .

(2.2.18 Shields)

Suppose that \mathbf{u} is a linear combination of $\mathbf{v_1}$ and $\mathbf{v_2}$ and that $\mathbf{v_1}$ and $\mathbf{v_2}$ are each linear combinations of $\mathbf{w_1}$ and $\mathbf{w_2}$. Is \mathbf{u} a linear combination of $\mathbf{w_1}$ and $\mathbf{w_2}$? Why?

Answer:

Since **u** is a linear combination of $\mathbf{v_1}$ and $\mathbf{v_2}$, $\mathbf{u} = c_1\mathbf{v_1} + c_2\mathbf{v_2}$. By the same property, $\mathbf{v_1} = c_3\mathbf{w_1} + c_4\mathbf{w_2}$ and $\mathbf{v_2} = c_5\mathbf{w_1} + c_6\mathbf{w_2}$, where c_i are constants. So, $\mathbf{u} = c_1(c_3\mathbf{w_1} + c_4\mathbf{w_2}) + c_2(c_5\mathbf{w_1} + c_6\mathbf{w_2}) = a\mathbf{w_1} + b\mathbf{w_2}$, where a and b are constants. Thus, **u** is a linear combination of $\mathbf{w_1}$ and $\mathbf{w_2}$.