

ESMARC 335x 工控主板数据手册

1. 概述

感谢您购买英创信息技术有限公司的产品: ESMARC 335x 系列工控主板。

ESMARC 是由英创公司发展的一套嵌入式主板与应用底板的连接规范,意为英创智能模块架构(Emtronix Smart Module Architecture,以下简称 ESMARC),ESMARC 335x 系列工控主板是结构上符合 ESMARC 规范的三款主板产品的统称,该系列包括 ESM3352、ESM3354和 ESM3356 三款主板,它们的管脚完全相同,只是处理能力和功能接口有所差异。为在本手册中叙述方便,除非特别说明,名称 ESM335x(或 ESMARC 335x)同时指 ESM3352、ESM3354和 ESM3356 主板。

本手册详细介绍了 ESM335x 的硬件配置、管脚定义及相关的技术指标。此外,英创公司针对 ESM335x 的评估及应用,还编写有《ESMARC 335x 开发评估底板手册》和《ESMARC 335x 工控主板技术参考手册》,可相互参考。三个手册均包含在英创为用户提供的产品开发光盘里面,用户也可以登录英创公司的网站下载相关资料的最新版本。

1.1 硬件

ESM335x 系列主板是面向工业领域的高性价比嵌入式主板,以 TI 的 AM335x 系列 SoC 为其硬件核心,ESM335x 通过预装完整的操作系统及接口驱动,为用户构造了可直接使用的通用嵌入式核心平台。

ESM335x 嵌入式工控主板主要是面向在工业智能设备中的应用,包括智能仪器仪表、通讯管理、数据采集与控制、专用 POS 机等等。

ESM335x 硬件主要特点如下:

- **高性能 CPU 系统:** 主板 CPU 为 Cortex-A8 处理器,ESM3356 的主频为 800MHz,ESM3354 的主频为 1GHz,ESM3352 的主频为 600MHz。系统配备 400MHz 总线速度的 DDR3 存储器(容量 256MB),为 ESM335x 构造一个高速运行环境。加上 Cortex-A8 对浮点计算的硬件支持,使 ESM335x 的数据处理能力,比其上一代的产品有本质性的提高。
- **高分辨率图形显示:** ESM335x 的 LCD 接口可支持高达 1024×768 的分辨率,主板 ESM3354 还带有内置 2-D/3-D 硬件图形加速器,可保证画面更加流畅的显示。
- 双以太网口配置:为了适应工业智能设备网络化的发展趋势,ESM335x 配备了 2 路 10M/100M 以太网口,Linux 版本还可支持 IEEE1588 网络精确对时协议。

- **完备的标准接口资源**:除了 2 路以太网接口外,ESM335x 还配置了以下标准接口,以满足不同应用需求。这些接口包括: (1) 6 路异步串口; (2) 4 路 USB2.0 高速主控接口及 USB2.0 OTG 接口; (3) 1 路 SPI 接口; (4) 1 路 I2C 接口总线; (5) 4 路 PWM 输出; (6) 2 路 CAN 总线接口; (7) 32 位 GPIO。
- 精简 ISA 总线: 为了支持大容量数据采集扩展应用,ESM335x 配备了精简 ISA 扩展 总线,最高 5MB/s 的数据传输速度,可满足大多数数据采集的应用需求。
- **紧凑的外形尺寸:** ESM335x 的外形尺寸继续保持了经典的 74mm×54mm 规格,该规格是业界尺寸最小的工控主板之一,模块采用坚固的 IDC 插座,可非常方便的插入用户的产品底板上,快速搭建各种工控产品。

1.2 软件

目前 ESM335x 可选择预装 Linux-4.1.6、WEC7 或 WEC2013 三种系统平台,用户应用程序 开发方面,对 WEC7 平台可直接使用 Microsoft 提供的著名软件开发工具 Visual Studio 2008 进行应用开发; WEC2013 使用 Visual Studio 2013 进行应用开发; 对 Linux 平台可采用英创公司提供的 Eclipse 集成开发环境(Windows 版本),其编译生成的程序可直接运行与 ESM335x。 英创公司针对 ESM335x 提供了完整的接口低层驱动以及丰富的应用程序范例,用户可在此基础上方便、快速地开发出各种工控产品。

作为工控主板产品,ESM335x 将预装操作系统(WEC7、WEC2013 或 Linux-4.1.6 可选)以及标准的驱动程序接口(API),使客户无需了解主板内部的技术细节,就可充分利用其功能为自身产品服务。无论是微软的 Visual Studio 2008(或后续版本),还是开源的 Eclipse IDE,都是业界主流的开发工具,且很容易掌握其基本的使用方法。用户只要掌握 C/C++的基本编程手段(包括多线程设计),熟悉自身产品的功能需求,就可顺利完成应用程序的开发。使用 ESM335x,并不一定需要客户具备完整的 CE 或 Linux 操作系统知识,因此说 ESM335x的应用开发门槛是很低的,可满足各种应用需求,各种的开发团队使用。

Linux-4.1.6 平台基本软件环境

- UBIFS 根文件系统,启动时间大约 8 秒。
- 基于 Windows 平台的 eclipse 集成开发环境直接开发应用程序。
- 基于 Windows 平台的 NFS,让程序调试极为方便。

- 支持 Telnet、FTP 等常规系统调试管理手段。
- 支持用户自行修改开机启动画面。
- 精心安排的应用开发入门演示程序源码。
- 多种面向应用的典型应用框架程序源码。

WEC7 平台基本软件环境

- 提供相应 SDK 开发包,包括各种接口驱动程序 API
- 支持 VS2008 应用程序集成开发环境
- 采用 BinFS 文件系统,启动时间缩短至 16 秒水平。
- 支持以太网口(TCP/IP)、USB 口(ActiveSync)应用程序源码调试
- 支持 telnet、FTP、Web 等常规网络应用
- 支持 ActiveSync 方式的文件管理及微软的远程调试工具集。
- 支持用户自行修改开机启动画面
- 提供典型应用参考程序源码

WEC2013 平台基本软件环境

- 提供相应 SDK 开发包,包括各种接口驱动程序 API
- 支持 VS2013 应用程序集成开发环境
- 支持以太网口(TCP/IP)应用程序源码调试
- 支持 telnet、FTP、Web 等常规网络应用
- 支持微软的远程调试工具集。
- 支持用户自行修改开机启动画面
- 提供典型应用参考程序源码

1.3 主要技术指标

核心单元

- Cortex-A8 处理器
- CPU 主频: 1GHz(ESM3354)/800MHz(ESM3356)/600MHz(ESM3352)
- 256MB DDR3 系统内存,用户可用空间大于 180MB

- 256MB FLASH 存储器,其中用户文件空间 180MB
- 硬件浮点协处理器,硬件 2D/3D 加速器
- USB 接口支持 U 盘即插即用
- Micro SD 卡座,支持大容量数据存储
- 实时时钟 RTC, 具有掉电保护功能
- 硬件看门狗 (WDT), 防止系统死锁
- 专用调试串口(115200, 8-N-1)

显示单元

- TFT 彩色 LCD 接口, 18-bit 平行 RGB 或 LVDS 接口可选
- 分辨率从 320×240 至 1024×768 均可支持
- 硬件 2D/3D 图形加速(仅 ESM3354)
- 支持 4 线制电阻触摸屏
- 支持电容触摸屏多点触摸

通讯接口配置

- 2 路以太网接口, 10M/100M 自适应
- 2路 CAN 总线接口,与 GPIO 复用管脚
- 5路标准 UART 串口,波特率可达 3Mbps
- 1路 I2C接口,主控模式,最高波特率 400kbps,与 GPIO 复用管脚
- 1路 SPI 接口,主控全双工模式,最高波特率 12Mbps,与 GPIO 复用管脚
- 4路 USB 高速主控接口(HOST)
- 1路 USB OTG 接口,支持微软的 ActiveSync 通讯协议(仅限 WEC7)

通用数字IO

- 32 位通用 GPIO0 GPIO31, 各位方向独立可控。
- 部分 GPIO 与系统的其他功能复用管脚。
- GPIO24、GPIO25 支持外部中断触发功能,上升沿有效。
- 3.3V LVCMOS 电平
- 上电/复位后,GPIO 缺省模式为数字输入。

其他功能接口

- 精简 ISA 扩展总线, 8 位地址数据总线(时分复用), 最高数据传输率 5MB/s
- 主板电源电压及主板温度测量

电源及模块机械参数

- 供电电压: +5V±10%, 工作电流详见 4.3 节
- 工作温度: -10°C至 60°C; 工业级(-40°C至 80°C)可选
- ESMARC 架构, 主板外形尺寸: 74mm×54mm
- 2 个 66 芯坚固 IDC 三排排母(2mm 间距)对称分布于模块的两侧

1.4 各主板型号配置比较

ESM3356、ESM3354 和 ESM3352 是管脚完全相同,处理能力和功能接口有所差异的三款工控主板产品,从下表可以直观的了解到这三款主板的差异。

配置	ESM3354	ESM3356	ESM3352
CPU (Cortex-A8)	1GHz	800MHz	600MHz
256M DDR3 / 256M Flash	٧	٧	٧
基本接口功能 1	٧	٧	٧
精简 ISA 总线接口	٧	٧	٧
硬件图形加速器	٧	-	-
PRU(实时控制单元) ²	-	٧	-

- 1、基本接口功能包括 2 路 10M/100M 以太网接口、5 路高速串口、32 位 GPIO, SD 卡接口, USB_OTG 接口等。
- 2、ESM3356的缺省配置, PRU 将实现第 6 路高速串口。

1.5 ESMARC 335x 功能框图

2. 英创智能模块架构(ESMARC)

英创智能模块架构(Emtronix Smart Module Architecture,以下简称 ESMARC),是由英创公司发展的一套嵌入式主板与应用底板的连接规范。ESM335x 工控主板符合 ESMARC 连接规范。

2.1 外形尺寸

ESMARC 规范的主板外形尺寸为 74×54(mm), 小于银行卡, 在板的四角各有一个 Φ2 的固定孔位,如下图所示。对工作于强振动环境的设备,可利用该孔位进一步固定主板与应用底板的连接。

ESMARC 主板外形尺寸示意图(单位: mm)

ESM335x 工控主板完全符合 ESMARC 架构的机械尺寸,其主板上的元器件布局大致如上图所示。在 ESMARC 规范中,工控主板(这里为 ESM335x)是以模块形式,通过板上的两个排母,同时实现主板的机械固定以及与应用底板的信号连接两个功能。主板的两个连接

器分别位于主板的左右两侧,为 2mm 间距的三排排母,每排包括 22 个管脚,命名为 CN1 和 CN2。也就是说,ESM335x 正是通过 CN1 和 CN2 与应用底板连接在一起的。

ESM335x 与应用底板结构示意图

在主板上的连接器为 IDC(insulation-displacement contact)类型的插座,而在应用底板上的为 IDC 插针,采用这样配置,可实现防插反功能。

2.2 ESMARC 连接器的管脚编号

ESMARC 的连接器为 3 列格式 IDC 连接器,列按字母 A、B、C、D、E、F 编号,而每列的管脚再按 1-22 编号。下图表现了各个管脚的编号:

ESM335x的 CN1、CN2 所在位置示意图

从上图可见,A、B、C 三列属于连接器 CN1,而 D、E、F 三列则包含在连接器 CN2;A 列和 F 列位于主板的两个外侧,而 C 列和 D 列位于主板的内侧。主板上的所有器件都布局在 C、D 两列之间。

2.3 防插反机制

CN1 插座的 B1 管脚被堵塞,而底板 CN1 的对应管脚插针被去掉。这样可保证 ESMARC 主板按正确的方向连接到底板上。

3. I/O 信号管脚

ESM335x 的 CN1 和 CN2 共有 132 个管脚。根据所实现的功能所有不同,并不是每一款 主板型号都会使用全部的管脚资源。对主板没有定义的管脚,应用底板应视为系统保留,在 具体的电路设计中,需保持这些管脚处于悬空状态,禁止把这些管脚接地或接电源,否则会 导致主板的电路损坏。

注意: ESM335x 的数字信号管脚均为 3.3V LVCMOS 电平,与 5V TTL/COMS 电平不兼容。除非特殊说明,输入管脚必须避免接入 5V 电平信号,外部 5V TTL/COMS 信号需进行电平转换方可接入 ESM335x 的信号管脚。

下面对 ESM335x 所有管脚信号列表逐一说明。

3.1 ESMARC 335x 的 CN1 信号定义

LCD 接口为 18-bit RGB 时, CE 环境中 CN1 各管脚的信号名称及简要说明

A	列(外侧)		B列		C列(内侧)
A1	TPTX1+	B1	防插反堵孔	C1	TPTX2+
A2	TPTX1-	B2	LINK1	C2	TPTX2-
А3	VDD_CMT1	В3	SPEED1	C3	VDD_CMT2
A4	TPRX1+	В4	LINK2	C4	TPRX2+
A5	TPRX1-	B5	SPEED2	C 5	TPRX2-
A6	GND电源地	В6	GND电源地	C6	GND电源地
Α7	COM2_RXD	В7	COM4_RXD	C7	USB3_HD+
A8	COM2_TXD	В8	COM4_TXD	C8	USB3_HD-
A9	COM3_RXD	В9	COM5_RXD	C 9	USB4_HD+
A10	COM3_TXD	B10	COM5_TXD	C10	USB4_HD-
A11	GND电源地	B11	GND电源地	C11	GND电源地
A12	DBG_RX	B12	Y- / TSC_I2C_SCL	C12	X- / TSC_IRQn
A13	DBG_TX	B13	Y+ / TSC_I2C_SDA	C13	X+ / TSC_RSTn
A14	GND电源地	B14	GND电源地	C14	GND电源地
A15	LCD_HSYNC	B15	-	C15	LCD_DCLK
A16	LCD_VSYNC	B16	LCD_BLn	C16	LCD_DE
A17	LCD_B2	B17	LCD_G2	C17	LCD_R2
A18	LCD_B3	B18	LCD_G3	C18	LCD_R3

A19	LCD_B4	B19	LCD_G4	C19	LCD_R4
A20	LCD_B5	B20	LCD_G5	C20	LCD_R5
A21	LCD_B6	B21	LCD_G6	C21	LCD_R6
A22	LCD_B7	B22	LCD_G7	C22	LCD_R7

LCD 接口为 LVDS 时,CE 环境中 CN1 各管脚信号名称及简要说明

	A列(外侧)		B列		C列(内侧)
A1	TPTX1+	B1	防插反堵孔	C1	TPTX2+
A2	TPTX1-	B2	LINK1	C2	TPTX2-
А3	VDD_CMT1	В3	SPEED1	C3	VDD_CMT2
A4	TPRX1+	B4	LINK2	C4	TPRX2+
A5	TPRX1-	B5	SPEED2	C 5	TPRX2-
A6	GND电源地	В6	GND电源地	C6	GND电源地
A7	COM2_RXD	В7	COM4_RXD	C 7	USB3_HD+
A8	COM2_TXD	В8	COM4_TXD	C8	USB3_HD-
A9	COM3_RXD	В9	COM5_RXD	C9	USB4_HD+
A10	COM3_TXD	B10	COM5_TXD	C10	USB4_HD-
A11	GND电源地	B11	GND电源地	C11	GND电源地
A12	DBG_RX	B12	Y- / TSC_I2C_SCL	C12	X- / TSC_IRQn
A13	DBG_TX	B13	Y+ / TSC_I2C_SDA	C13	X+ / TSC_RSTn
A14	GND电源地	B14	GND电源地	C14	GND电源地
A15	-	B15	-	C15	-
A16	-	B16	LCD_BLn	C16	-
A17	-	B17	-	C17	-
A18	LVDS_DATA0_N	B18	LVDS_DATA0_P	C18	-
A19	LVDS_DATA1_N	B19	LVDS_DATA1_P	C19	-
A20	LVDS_DATA2_N	B20	LVDS_DATA2_P	C20	-
A21	LVDS_CLK_N	B21	LVDS_CLK_P	C21	-
A22	LVDS_DATA3_N	B22	LVDS_DATA3_P	C22	-

LCD 接口为 18-bit RGB 时, Linux 环境中 CN1 各管脚的信号名称及简要说明

A	列(外侧)		B列	c 列(内侧)	
A1	TPTX1+	B1	防插反堵孔	C1	TPTX2+
A2	TPTX1-	B2	LINK1	C2	TPTX2-
А3	VDD_CMT1	В3	SPEED1	C3	VDD_CMT2
A4	TPRX1+	В4	LINK2	C4	TPRX2+
A5	TPRX1-	B5	SPEED2	C5	TPRX2-
A6	GND电源地	В6	GND电源地	C6	GND电源地
A7	ttyS1_RXD	В7	ttyS3_RXD	C7	USB3_HD+
A8	ttyS1_TXD	В8	ttyS3_TXD	C8	USB3_HD-
A9	ttyS2_RXD	В9	ttyS4_RXD	C9	USB4_HD+
A10	ttyS2_TXD	B10	ttyS4_TXD	C10	USB4_HD-
A11	GND电源地	B11	GND电源地	C11	GND电源地
A12	DBG_RX	B12	Y- / TSC_I2C_SCL	C12	X- / TSC_IRQn
A13	DBG_TX	B13	Y+ / TSC_I2C_SDA	C13	X+ / TSC_RSTn
A14	GND电源地	B14	GND电源地	C14	GND电源地
A15	LCD_HSYNC	B15	-	C15	LCD_DCLK
A16	LCD_VSYNC	B16	LCD_BLn	C16	LCD_DE
A17	LCD_B2	B17	LCD_G2	C17	LCD_R2
A18	LCD_B3	B18	LCD_G3	C18	LCD_R3
A19	LCD_B4	B19	LCD_G4	C19	LCD_R4
A20	LCD_B5	B20	LCD_G5	C20	LCD_R5
A21	LCD_B6	B21	LCD_G6	C21	LCD_R6
A22	LCD_B7	B22	LCD_G7	C22	LCD_R7

Linux 环境中 CN1 各管脚的信号名称及简要说明(LCD 接口为 LVDS)

	A列(外侧)		B列		C列(内侧)	
A1	TPTX1+	B1	防插反堵孔	C1	TPTX2+	
A2	TPTX1-	B2	LINK1	C2	TPTX2-	
А3	VDD_CMT1	В3	SPEED1	C3	VDD_CMT2	
A4	TPRX1+	B4	LINK2	C4	TPRX2+	
A5	TPRX1-	B5	SPEED2	C5	TPRX2-	
A6	GND电源地	В6	GND电源地	C6	GND电源地	
A7	ttyS1_RXD	В7	ttyS3_RXD	C7	USB3_HD+	

A8	ttyS1_TXD	В8	ttyS3_TXD	C8	USB3_HD-
A9	ttyS2_RXD	В9	ttyS4_RXD	C 9	USB4_HD+
A10	ttyS2_TXD	B10	ttyS4_TXD	C10	USB4_HD-
A11	GND电源地	B11	GND电源地	C11	GND电源地
A12	DBG_RX	B12	Y- / TSC_I2C_SCL	C12	X- / TSC_IRQn
A13	DBG_TX	B13	Y+ / TSC_I2C_SDA	C13	X+ / TSC_RSTn
A14	GND电源地	B14	GND电源地	C14	GND电源地
A15	-	B15	-	C15	-
A16	-	B16	LCD_BLn	C16	-
A17	-	B17	-	C17	-
A18	LVDS_DATA0_N	B18	LVDS_DATA0_P	C18	-
A19	LVDS_DATA1_N	B19	LVDS_DATA1_P	C19	-
A20	LVDS_DATA2_N	B20	LVDS_DATA2_P	C20	-
A21	LVDS_CLK_N	B21	LVDS_CLK_P	C21	-
A22	LVDS_DATA3_N	B22	LVDS_DATA3_P	C22	-

3.2 CN1 中所包含的接口描述

ESM335x 的 CN1 主要包括以太网接口、异步串口、USB Host 接口和显示 LCD 示接口,由于在 Linux 环境和 Windows CE 环境,对串口的称呼有所不同,所以分别列出两种平台中 CN1 各个管脚对应的信号名称。另外,ESM335x 可支持并行的 TTL RGB 信号(18-bit)或串行的 LVDS LCD 显示接口(兼容 18-bit 和 24-bit),下面也将分别说明。

以太网接口(Ethernet)

ESM335x 的 2 路 10M/100M 以太网接口,具有线序自适应(Auto-MDIX)功能,其信号 定义如下:

网络信号	功能简要说明				
TPTX1+	网口1差分模拟输入输出通道1,缺省为发送端。				
TPTX1-	网口1差分模拟输入输出通道1,缺省为发送端。				
TPRX1+	网口1差分模拟输入输出通道2,缺省为接收端。				

TPRX1-	网口1差分模拟输入输出通道2,缺省为接收端。
VDD_CMT1	网口1偏置电压(3.3V),接网络变压器内侧公共端。
LINK1	网络 1 连接指示 LED,高电平有效。
SPEED1	网口 1 速度指示 LED,亮表示 100Mbps,高电平有效。
TPTX2+	网口 2 差分模拟输入输出通道 1,缺省为发送端。
TPTX2-	网口 2 差分模拟输入输出通道 1,缺省为发送端。
TPRX2+	网口 2 差分模拟输入输出通道 2,缺省为接收端。
TPRX2-	网口 2 差分模拟输入输出通道 2,缺省为接收端。
VDD_CMT2	网口 2 偏置电压(3.3V),接网络变压器内侧公共端。
LINK2	网络 2 连接指示 LED, 高电平有效。
SPEED2	网口 2 速度指示 LED,亮表示 100Mbps,高电平有效。

为了提高管脚的利用率,以太网口的状态指示 LED 只提供单路高电平有效输出,外部可通过限流电阻,直接驱动网口指示灯。为了提高整机的电磁兼容性能,网络变压器应布局在客户应用底板上,且尽可能靠近网络的 RJ45 插座。

异步串行接口(UART)

ESM335x 的 5 路串口其最高波特率可达 3Mbps,串口的命名在不同操作系统平台中有所不同。在 CE 系统中的串口的编号从 COM2 开始(COM1 被 ActiveSync 占用),这样 ESM335x 的 5 路串口分别为 COM2 — COM6。缺省的出厂配置,COM3 为 RS232 电平(±9V),其他串口为 3.3V LVCMOS 电平。COM2 支持 CTSn / RTSn 硬件流控,其他各路串口均支持 GPIO 作为硬件方向控制 RTSn(通过软件选择设置 GPIO6 — GPIO31)。在 Linux 系统中,串口的编号则从 ttyS1 开始。各路串口的基本配置如下表所示:

CE 名称	Linux 名称	功能简要说明
COM2	ttyS1	支持 RTS/CTS 硬件流控。
сомз	ttyS2	3 线制,RS232 电平接口。
СОМ4	ttyS3	3 线制,3.3V LVCMOS 电平。
COM5	ttyS4	3 线制,3.3V LVCOMS 电平。
сом6	ttyS5	3 线制,3.3V LVCOMS 电平。

串口信号的命名则针对不同操作系统有 COM#_RXD (接收)、COM#_TXD (发送),或 ttyS#_RXD (接收)、ttyS#_TXD (发送)。

ESM335x 除了上述 5 路应用串口外,还有 1 路独立的调试串口(DBG_RX, DBG_TX)。在 CE 平台主要是用于输出系统的相关信息,而在 Linux 平台则作为系统的控制台 console。调试串口的电平为标准的 RS232 电平(±9V),波特率为 115200bps,数据帧格式为 8-N-1。调试串口主要用于应用程序的开发调试,在客户设备中一般不需要引出。

LCD 显示接口

ESM335x 支持两种模式的显示接口: 一种是面向低成本显示屏的 RGB 模式(缺省配置); 一种是 LVDS 接口,支持高分辨率显示,且可驱动较长的显示带线。用户需要在购买时说明支持哪种接口。

RGB 模式的显示输出信号包括:

信号名称	简单描述
LCD_R2 – LCD_R7	红色分量输出信号,R7 为 MSB,R2 为 LSB。
LCD_G2 – LCD_G7	绿色分量输出信号,G7 为 MSB,G2 为 LSB。
LCD_B2 - LCD_B7	蓝色分量输出信号,B7 为 MSB,B2 为 LSB。
LCD_DCLK	像素时钟信号,下降沿更新 RGB 数据,上升沿锁存数据
LCD_HSYNC	行同步脉冲,低电平有效。
LCD_VSYNC	帧同步脉冲,低电平有效。
LCD_DE	显示使能信号,高电平有效。
LCD_BLn	LCD 背光控制信号,低电平有效,支持 PWM 脉冲输出。

LVDS 与 RGB 对应关系如下:

管脚	信号定义	简单描述
A18	LVDS_DATA0_N	LVDS 信号通道 0
B18	LVDS_DATA0_P	LVDS 差分信号输出(R2,R3,R4,R5,R6,R7,G2)
A19	LVDS_DATA1_N	LVDS 信号通道 1
B19	LVDS_DATA1_P	LVDS 差分信号输出(G3,G4,G5,G6,G7,B2,B3)
A20	LVDS_DATA2_N	LVDS 信号通道 2
B20	LVDS_DATA2_P	LVDS 差分信号输出(B4,B5,B6,B7,HS,VS,DE)
A21	LVDS_CLK_N	LVDS 时钟输出

B21	LVDS_CLK_P	
A22	LVDS_DATA3_N	LVDS 信号通道 3
B22	LVDS_DATA3_P	LVDS 差分信号输出(R0,R1,G0,G1,B0,B1,RSV)

LVDS接口兼容 18-bit 和 24bit 模式。连接 18-bit 的 LCD 时,使用 LVDS_DATAO、LVDS_DATA1、LVDS_DATA2 和 LVDS_CLK。 当连接 24-bit LCD 时,再加上 LVDS_DATA3。

ESM335x 支持的典型 LCD 显示格式包括:

分辨率	LCD 尺寸	简单描述
480×272	4.3"	高性价比
640×480	5.6" - 6.4"	
800×480	7" – 8"	ESM335x 缺省设置
800×600	8.4" - 10.4"	一般采用 LVDS 接口
1024×768	10.4" - 12.1"	一般采用 LVDS 接口

触摸屏接口

ESM335x 缺省配置为电阻触摸屏,可直接连接常用的 4 线电阻触摸屏,触摸屏的电阻要求在 200Ω 至 600Ω 这一范围。ESM335x 还可配置为支持电容触摸屏(用户在购买 ESM335x 时需要明确说明),所支持的电容触摸屏采用 FT5x16 驱动芯片驱动控制。

电阻触摸屏和电容触摸屏复用 CN1 的 B12\B13\C12\C13 管脚,复用关系如下:

CN1	电阻	电容	CN1	电阻	电容
Pin#	触摸屏接口	触摸屏接口	Pin#	触摸屏接口	触摸屏接口
B12	Υ-	TSC_I2C_SCL	C12	X-	TSC_IRQn
B13	Y+	TSC_I2C_SDA	C13	X+	TSC_RSTn

USB 主控接口

CN1 包含 2 路 USB 主控接口{USB3_HD+, USB3_HD-}和{USB4_HD+, USB4_HD-}, 应用底板 需为 USB 主控接口提供+5V 电源输出。

3.3 ESMARC 335x 的 CN2 信号定义

CN2 各管脚的定义如下:

D列(内侧)		E列		F列(外侧)		
D1	GPIO0 / COM2_CTSn	E1	GND电源地	F1	GPIO16	
D2	GPIO1 / COM2_RTSn	E2	ISA_D0	F2	GPIO17	
D3	GPIO2 / COM6_RXD	E3	ISA_D1	F3	GPIO18	
D4	GPIO3 / COM6_TXD	E4	ISA_D2	F4	GPIO19	
D5	GPIO4	E5	ISA_D3	F5	GPIO20	
D6	GPIO5	E6	ISA_D4	F6	GPIO21	
D7	GPIO6 / PWM1	E7	ISA_D5	F7	GPIO22	
D8	GPIO7 / PWM2	E8	ISA_D6	F8	GPIO23	
D9	GPIO8 / PWM3	E9	ISA_D7	F9	GPIO24 / IRQ1	
D10	GPIO9 / PWM4	E10	ISA_CSn	F10	GPIO25 / IRQ2	
D11	GPIO10 / CAN1_RXD	E11	ISA_ADVn	F11	GPIO26 / I2C_SDA	
D12	GPIO11 / CAN1_TXD	E12	ISA_RDn	F12	GPIO27 / I2C_SCL	
D13	GPIO12	E13	ISA_WEn	F13	GPIO28 / SPI_MISO	
D14	GPIO13	E14	GND电源地	F14	GPIO29 / SPI_MOSI	
D15	GPIO14	E15	DBGSLn	F15	GPIO30 / SPI_SCLK	
D16	GPIO15	E16	RSTINn	F16	GPIO31 / SPI_CSON	
D17	GND电源地	E17	GND电源地	F17	GND电源地	
D18	USB1_HD+	E18	+5V电源输入	F18	USB_OTG_VBUS	
D19	USB1_HD-	E19	+5V电源输入	F19	USB_OTG_ID	
D20	USB2_HD+	E20	+5V电源输入	F20	USB_OTG_D+	
D21	USB2_HD-	E21	+5V电源输入	F21	USB_OTG_D-	
D22	BATT3V	E22	+5V电源输入	F22	+5V电源输入	

3.4 CN2 中所包含的接口描述

ESM335x 的 CN2 管脚,以通过数字 IO 作为其基本的功能,应用程序即可通过调用

ESM335x SDK 提供的 API 函数实现 DIO 操作。

GPIO

ESM335x 共有 32 路通用数字 IO,即 GPIO。每路 GPIO 的方向可独立设置,在上电缺省状态下,所有 GPIO 管脚均为数字输入。大部分 GPIO 还与某种接口复用管脚资源,当应用程序打开相应的设备驱动程序时,对应的管脚会自动切换到复用的功能管脚。

CN2 中的具有复用功能的 GPIO 如下表所示:

GPIO 信号	管脚复用功能	CE 设备	Linux 设备
GPIO0 – GPIO1	COM2/ttyS1 的 CTSn 和 RTSn	L"COM2:"	/dev/ttyS1
GPIO0 – GPIO1	CAN2 的 RXD 和 TXD	L"CAN2:"	can1
GPIO2 – GPIO3	COM6/ttyS5 的 RXD 和 TXD	L"COM6:"	/dev/ttyS5
GPIO4 – GPIO5 ¹	COM7/ttyS6 的 RXD 和 TXD	L"COM7:"	/dev/ttyS6
GPIO6	PWM1 脉冲输出。	L"PWM1:"	/dev/pwm1
GPIO7	PWM2 脉冲输出。	L"PWM2:"	/dev/pwm2
GPIO8	PWM3 脉冲输出。	L"PWM3:"	/dev/pwm3
GPIO9	PWM4 脉冲输出。	L"PWM4:"	/dev/pwm4
GPIO10 – GPIO11	CAN1 的 RXD 和 TXD	L"CAN1:"	can0
GPIO24	IRQ1 中断请求输入	L"IRQ1:"	/dev/irq1
GPIO25	IRQ2 中断请求输入	L"IRQ2:"	/dev/irq2
GPIO26 – GPIO27	I2C 总线信号 SDA 和 SCL	L"I2C1:"	/dev/i2c-0
GPIO28 – GPIO31	SPI 接口,4 线制	L"SPI1:"	/dev/spidev1.0

注: 1、仅 ESM3356 支持 COM7/ttys6。

USB OTG 接口

ESM335x包含一个标准 USB OTG 接口, 共 5 条引线:

USB OTG 接口定义	简要说明
USB_OTG_D+	USB OTG 双向差分数据线
USB_OTG_D-	USB OTG 双向差分数据线
USB_OTG_VBUS	双向电源
GND	公共地
USB_OTG_ID	连接类型标志

上述 5 条引线可直接接到底板的微型 AB 插座(mini-AB)。在通常情况下,若连接带线使 USB_OTG_ID 变低(即微型 A 插头),则 ESM335x 将作为主控端;若连接带线使 USB_OTG_ID 悬空(即微型 B 插头),则 ESM335x 将作为设备端。在实际使用中,USB OTG 将通过主机通信协议(HNP)根据实际连接的设备类型,动态切换主机和设备角色。因此即使 USB_OTG_ID 的电平与设备类型不符,同样可以实现正常连接。

当 ESM335x 作为主控端时,将通过 USB_OTG_VBUS 向连接的 USB 设备提供+5V 电源,电流不超过 500mA。当 ESM335x 作为设备端时,外部 USB 主控将通过 USB_OTG_VBUS 输入 5V 电源,但 ESM335x 并不使用这个电源。

USB 主控接口

CN2 包含 2 路 USB 主控接口(USB1_HD+, USB1_HD-) 和(USB2_HD+, USB2_HD-), 应用底板需为 USB 主控接口提供+5V 电源输出。

精简 ISA 总线

精简 ISA 总线主要是提供一种便捷的外设扩展总线,典型的扩展外设包括多路串口、多路 CAN 接口、多路网络接口、客户定制的 FPGA 等等,可选用 GPIO 作为外设模块的硬件中断请求输入。这样精简 ISA 总线基本信号如下表所示:

ISA 信号	简要描述
ISA_D0 - ISA_D7	8-bit 地址/数据总线,时分复用
ISA_CSn	总线周期片选控制信号,低电平有效。
ISA_ADVn	地址总线有效信号, 低电平有效。
ISA_RDn	总线周期读脉冲,低电平有效。
ISA_WEn	总线周期写脉冲,低电平有效。
ISA_IRQ	中断输入触发信号,上升沿有效,常用 GPIO24/GPIO25 充当。

英创公司可提供常用的扩展模块与 ESM335x 的精简 ISA 总线直接相连,方便客户快速搭建高性能工业通讯管理系统,这些扩展模块包括:

ISA 扩展模块型号	简要描述
------------	------

ETA503	4路 UART 串口扩展模块,每路均为9线制串口。
ETA508	8路 UART 串口扩展模块,每路均为3线制串口。
ETA704	4 路 CAN 总线接口扩展模块,仅支持 Linux 系统。
ETA728	2 路 10M/100M 以太网接口扩展模块,仅支持 Linux 系统。

其他控制信号

RSTIN_OUTn 双向复位信号,系统上电复位时,ESM335x 会驱动 RSTIN_OUTn 输出低电平,可以用这个信号对外设进行复位。ESM335x 正常工作时,RSTIN_OUTn 作为系统复位输入,如果将 RSTIN_OUTn 拉低,将复位 ESM335x。RSTIN_OUTn 不用时,可悬空。

DBGSLn 信号用于选择系统启动的工作状态,在应用底板上将 DBGSLn 接地并启动系统时,ESM335x 将进入调试状态;DBGSLn 悬空并启动系统时,ESM335x 将进入运行状态,若此时文件 userinfo.txt 包含有效信息,客户的应用程序将被启动。

4. 基本电气特性

在客户的应用设计中,ESM335x 是作为整个系统的部件之一,与客户的应用底板、电源等其他部件协同工作的。因此在设计中,需详细了解 ESM335x 各个管脚的电气特性,以做到系统各个部件间的各项指标的合理配合。

4.1 额定参数

参数名称	简要说明	最小值	最大值	单位
VCC	主板供电,+5V 电源输入	-0.3	+6.0	٧
BATT3V	RTC 后备时钟供电	-0.3	+3.6	V
GPIO_VCC GPIO 引脚输入电压		-0.3	+3.6	V
GPIO_ICC	所有 GPIO 总的驱动能力	-	150	mA
ESD-HUB	所有 GPIO,人体放电模型	-	±2	kV

4.2 推荐的操作电压

参数名称	简要说明	最小值	典型值	最大值	单位
VCC	主板供电	4.5	5.0	5.5	٧
BATT3V	RTC 后备时钟供电	2.7	3.0	3.3	٧

4.3 功耗指标

ESM3354 功耗

ESM3354 功耗	测试条件	典型值	最大值	单位
主板电源消耗	CPU 负载<10% 主板未连接任何外设	350	-	mA
主板电源消耗	CPU 负载<10% 双网口工作并且连接一个 U 盘	450	ı	mA
主板电源消耗	主板最大负载的极限值	-	3	Α
后备电池电源消耗	主板断电	17	-	uA

ESM3352 功耗

ESM3352 功耗	测试条件	典型值	最大值	单位
主板电源消耗	CPU 负载<10% 主板未连接任何外设	300	-	mA
主板电源消耗	CPU 负载<10% 双网口工作并连接一个 U 盘	400	-	mA
主板电源消耗	主板最大负载的极限值	-	2.5	Α
后备电池电源消耗	主板断电	17	ı	uA

注: 当主板接通电源后,不消耗后备电池电量。

4.4 RS232 输入输出特性

ESM335x 的串口 COM3 和 COM_DBG 缺省配置为 RS232 电平,其输入输出(RX/TX)特性如下表所示:

参数	测试条件	最小值	最大值	单位
输入范围		-25	25	٧
输入负载		3	7	kΩ
输出电压	负载条件: 3kΩ - 7kΩ	±5	±9	V

4.5 以太网口的基本特性

参数	测试条件	典型值	单位
差分输出电压	100BASE-TX 模式	2.0	V
差分输出电流	100BASE-TX 模式	26	mA
差分输出电压	10BASE-T 模式	2.5	V
VDD_MCT	共模偏置电压, 100Ω 终端电阻	3.3	V

网口的 ESD 性能

参数	测试条件	最小值	典型值	最大值	单位
所有引脚	人休放电模型			±5	KV
系统	IED61000-4-2 Contact Discharge			±8	KV

系统 IED61000-4-2 Air-Gap Discharge		±15	KV
-----------------------------------	--	-----	----

4.6 LVCMOS 信号的基本参数

ESM335x 共引出 32 位通用数字 IO(也称为 GPIO),均为 3.3V LVCMOS 电平。此外,ESM335x 的 RSTIN_OUTn、COM2、COM4、COM5 和 COM6 的 RXD 和 TXD 也为 3.3V LVCMOS 电平信号, 其 DC 电气特性与 ESM335x 的 GPIO 是完全一致的。这些信号管脚的具体电气参数如下表所示:

参数	简要说明	最小值	典型值	最大值	单位
V _{IL}	输入低电平			0.8	٧
V _{IH}	输入高电平	2			٧
V _{HYS}	滞回电压	0.265		0.44	٧
V _{OL}	输出低电平			0.45	V
V _{OH}	输出高电平	2.85			V
Io	驱动电流		±6		mA

4.7 LVDS 接口直流电气特性

参数	测试条件	最小值	典型值	最大值	单位
差分输出电压	R _L = 100Ω	250	345	450	mV
输出短路电流	$V_{OUT} = 0V$, $R_L = 100\Omega$		-3.5	-5	mA
输出高阻时电流	Power Down = 0V, V _{OUT} = 0V or V _{CC}		±1	±10	uA

5. 基本时序及相关说明

5.1 ESMARC 335x 上电复位

ESM335x 的 RSTIN_OUTn 是双向复位引脚,主板上电复位过程中它被驱动输出低电平, ESM335x 上电复位过程在 140ms 至 460ms 之间,主板上电复位结束后,RSTIN_OUTn 被拉高。

ESM335x 主板上电时 RSTIN_OUTn 时序

(CH1: 5V 电源, CH2: RSTIN_OUTn 信号)

ESM335x 正常工作时,RSTIN_OUTn 作为系统复位输入,外部将 RSTIN_OUTn 拉低会复位 ESM335x。

RSTIN_OUTn 禁止连接任何上拉或下拉电阻,也不要连接容量超过 1uF 的电容。 RSTIN OUTn 不用时,可悬空。

5.2 GPIO 上电时序

ESM335x 所有 GPIO 在上电复位后都为输入上拉高电平状态,由于主 CPU AM335x 的特性,ESM335x GPIO 的状态在系统在上电后分为以下两种情况:

1、系统 5V 电源上电后, 大约 2.5ms, GPIO 被置为输入上拉状态, 电平 3.3V。

GPIO 上电时序类型 1

(CH1: 5V 电源, CH2: GPIO 信号)

2、系统 5V 电源上电后,大约 2.5ms 后,GPIO 被置为输入上拉状态,电平 2.5V。

GPI0 上电时序类型 2

(CH1: 5V 电源, CH2: GPIO 信号)

ESM335x的 32位 GPIO 上电时的情况如下:

GPIO 上电时序	ESM335x GPIO
类型 1	GPIO0、GPIO1、GPIO2、GPIO3、GPIO4、GPIO5、GPIO6、GPIO7、GPIO10、GPIO11、GPIO16、GPIO19、GPIO24、GPIO25、GPIO26、GPIO27
类型 2	GPIO8、GPIO9、GPIO12、GPIO13、GPIO14、GPIO15、GPIO17、GPIO18、GPIO20、GPIO21、GPIO22、GPIO23、GPIO28、GPIO29、GPIO30、GPIO31

如果用户需要 ESM335x 上电后,GPIO 为低电平,可将相应 GPIO 到地连接 1K 的下拉电阻。

5.3 ISA 总线读写时序

ESM335x 精简 ISA 总线采用地址/数据复用方式,总线周期 200ns,总线操作时先传地址,再传数据,ISA 总线使用 DMA 数据传输,传输速度可达到 5MB/s。

ESM335x 精简 ISA 总线读时序

ESM335x 精简 ISA 总线写时序

6. 设计注意事项

- ESM335x 主板功耗最大可能达到 3A,为了保证 ESM335x 稳定可靠的工作,至少需要 5V/3A 的电源为 ESM335x 供电。实际使用时,应该根据所接 LCD 和外设的不同,选择足够功率的电源为整个系统供电。以 ESM335x 评估套件加上 7 寸 LCD 为例,应该选择 5V/4A 的电源为整个评估系统供电。
- 2. ESM335x 上 CN1、CN2 的大部分 LVCMOS 信号均直接来自于系统的核心 CPU 芯片 AM335x,包括 GPIO 信号、LCD 的信号。它们抗人体静电的能力只有 2kV,这不是 一个很高的阈值,冬季人体静电达到 4-5kV 是很容易发生的。
- 3. ESM335x 的 GPIO 输入电压极限为 3.6V,接入超过 3.6V 的电压将导致 CPU 损坏。
- 4. 尽管单个 GPIO 的驱动能力能够达到±6mA,但仍需在设计中应避免 GPIO 总的输入输出电流和超过额定驱动能力的阈值。长时间超阈值可能会导致 GPIO 管脚的损坏。对有可能存在超驱动能力阈值的应用,强烈建议在应用底板上增加驱动芯片(如74HC245),通过把电流负载转移到驱动芯片上,来保护 ESM335x 的 GPIO 管脚。
- 5. ESM335x 的 USB 接口,在拔插过程中,会产生瞬间的浪涌电压,该电压有可能损坏 ESM335x 的 USB 数据收发单元,因此强烈推荐客户的应用底板参考 ESM335x 开发评估底板的相关电路,在 USB 接口处增加 ESD 保护芯片,并在电源回路中串入磁珠。
- 6. ESM335x 的 GPIO 在主 CPU 上电复位后为输入上拉高电平状态,但在主板上电时,主 CPU 复位过程中却有几毫秒时间为低电平。对 GPIO 上电时序要求严格的场合,可能需要增加额外的电路,以消除 CPU 上电复位过程中,GPIO 有几毫秒低电平的影响。

7. 订购信息

板卡型号	简要说明
ESM3354	1GHz AM3354 CPU,并行 RGB 显示接口
ESM3354-LVDS	1GHz AM3354 CPU,LVDS 显示接口
ESM3352	600MHz AM3352 CPU,并行 RGB 显示接口
ESM3352-LVDS	600MHz AM3352 CPU,LVDS 显示接口

8. 技术支持

成都英创信息技术有限公司是一家从事嵌入式工控主板产品研发、市场应用的专业公司。 用户可通过公司网站、技术论坛、电话、邮件等方式来获得有关产品的技术支持。公司联系 方式如下:

地址:成都市高新区高朋大道 5 号博士创业园 B 座 407# 邮编: 610041

联系电话: 028-86180660 传真: 028-85141028

网址: http://www.emtronix.com 电子邮件: support@emtronix.com

9. 版本历史

版本	适用主板	简要描述	日期
V1.0	ESM335x V2.1	创建 ESMARC 335x 工控主板数据手册。	2015-12
V2.0	ESM335x V2.1	调整文档结构,与英文手册一致。	2016-01

注意:本手册的相关技术内容将会不断的完善,请客户适时从公司网站下载最新版本的数据手册, 恕不另行通知。