NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for materialteknologi

Faglig kontakt under eksamen: Dagfinn Bratland, tlf. 93976

EKSAMEN I EMNE TMT4110 KJEMI

Lørdag 20. mai 2006 kl. 0900-1300

Hjelpemidler: C

Trykte hjelpemidler: Aylward & Findlay: "SI Chemical Data" Formelark (siste ark i oppgaveteksten).

Sensuren faller uke 24 2006.

Skriv kort! Angi fremgangsmåte og vesentlig mellomregning ved løsning av regneoppgaver. Nødvendige data hentes fra "SI Chemical Data" dersom annet ikke er angitt.

Oppgave 1 (Tilsvarer deleksamen 1)

- a) Skriv reaksjonsligningen når hvert av metallene Al(s) og Zn(s) reagerer med HCl (aq).
 - En metallpulverblanding består av Al(s) og Zn(s). 4,36 g av blandingen tilsettes saltsyre. Når alt metall har reagert, er det utviklet 2,81 L hydrogengass. Gassen samles opp over løsningen ved 20°C og 756 Torr. (Damptrykket av saltsyreløsningen antas tilnærmet lik damptrykket over rent vann.) Hvor mange mol H₂(g) inneholder gassen?
 - Beregn molbrøken av henholdsvis Al(s) og Zn(s) i den opprinnelige metallpulverblandingen.
- b) Konsentrasjonen av løsninger angis oftest i molaritet, molalitet, molbrøk (molprosent) eller vektprosent.
 - Definer hver av disse begrepene.
 - Når er det aktuelt å bruke molalitet fremfor molaritet?

Oppgave 2 (Tilsvarer deleksamen 2)

- a) Beregn pH i 0,75 M CH₃CH₂COOH (propionic acid)
 - Hva er en bufferløsning?
- b) Du skal lage 1 L bufferløsning med pH=5,5 ved å blande 0,75 M CH₃CH₂COOH og 1,0 M NaOH. Hvor mange mL må du bruke av hver av de opprinnelige løsninger?

Oppgave 3 (Tilsvarer deleksamen 3)

- a) Rent karbon forbrenner med støkiometriske mengder ren O_2 (g) til CO_2 (g). Hvor mye varme utvikles når 1 mol C forbrenner?
 - Hvilken temperatur får produktet hvis all reaksjonsvarmen blir igjen i reaksjonsproduktet?

b) - Beregn ΔH° ved 25 °C for reaksjonen

$$HCl(g) = HCl(aq)$$

- Hva blir temperaturen i vannet når 1 mol HCl (g) løses i 1 L vann og utgangstemperaturen er 0 °C? Gå ut fra at varmekapasiteten i saltsyreløsningen er den samme som for rent vann.

Oppgave 4 (Tilsvarer deleksamen 4)

a) - Komplettér og balansér følgende reaksjonsligninger:

I sur løsning

$$ClO_3 + Sb(s) \rightarrow HClO_2(aq) + SbO^+$$

I basisk løsning

$$MnO_4$$
 $\rightarrow O_2(g) + MnO_4^{2-}$

b) - En konsentrasjonscelle består av to halvceller med en sinkelektrode i hver. Hver av elektrolyttene er i likevekt med fast Zn(OH)₂. pH i elektrolyttene er henholdsvis 5,83 og 8,76. Beregn cellepotensialet.

Oppgave 5

- a) Kvikksølvhydroksid, $Hg(OH)_2$, er et tungtløselig stoff. Skriv opp løselighetsproduktet, $K_{sp}(Hg(OH)_2)$, og den reaksjonsligning løselighetsproduktet gjelder for.
 - Hg(OH)₂ vil løse seg til en viss grad i en kloridløsning idet følgende reaksjon skjer:

$$Hg(OH)_2(s) + 4CI^- = HgCl_4^{2-} + 2OH^-$$
 (1)

Finn likevektskonstanten for reaksjon (1) ut fra data du finner i "SI Chemical Data".

- Hva er ΔG° for reaksjon (1)?
- b) Hvor mange gram NaCl (s) må man tilsette 1,0 L vann for at 0,20 g Hg(OH)₂ skal løse seg ved likevekt ved 25 °C? (Løsningens volum antas å forbli konstant.)
 - Dersom man i stedet ville løse $Hg(OH)_2$ i en vandig HCl-løsning med samme kloridkonsentrasjon som i NaCl-løsningen, ville mye mer $Hg(OH)_2$ være løst ved likevekt. Forklar årsaken til dette. (1 setning.)

Oppgave 6

- a) Kvikksølv(II)sulfid forekommer i to modifikasjoner, α -HgS(s) og β -HgS(s). Av disse er α -HgS(s) termodynamisk mest stabil ved 25 °C? Hvorledes kan du se det ut fra foreliggende tabelldata?
 - Kvikksølv kan fremstilles fra sulfidet etter reaksjonen

$$\alpha$$
-HgS(s) + O₂ (g) = Hg(g) + SO₂ (g) (1)

Beregn ΔH° og ΔS° for reaksjonen ved 25 °C. (Pass på benevning!)

- Kommenter fortegnet og størrelsen av ΔS° .
- b) Anta at ΔH° og ΔS° er uavhengige av temperaturen, og beregn ΔG° for reaksjonen ved 900 K.
 - Hvorfor kan du ikke benytte tabellverdien for ΔG° i denne beregningen?
 - Beregn likevektskonstanten for reaksjon (1).

Oppgave 7

a) - Hva mener vi med begrepet "annen ordens reaksjon"?

- Forklar kort (1 setning) hva vi mener med begrepet "aktiveringsenergi".
- Hvordan kan aktiveringsenergien for en reaksjon reduseres?
- Gi et eksempel på en reaksjon der aktiveringsenergien er redusert.
- b) Det er påvist at reaksjonen

$$CH_4(g) + 2 S_2(g) = CS_2(g) + 2 H_2S(g)$$
 (1)

er en annen ordens reaksjon. Hastighetskonstanten ved to forskjellige temperaturer er gitt i tabellen:

Temp./°C	Hastighetskonstant $k / (\text{mol/L})^{-1} \text{ s}^{-1}$
550	1,1
625	6,4

Beregn aktiveringsenergien for reaksjonen.

Oppgave 8

- a) Den såkalte "oktettregelen" er et nyttig hjelpemiddel for å foreslå molekylstrukturer. Forklar kort hva regelen går ut på.
 - Vis lewisstrukturen til følgende molekyler: Cl₂, NF₃, SO₂, SeF₄. (En eller flere av disse har resonansstruktur.)
 - Hvilke av molekylene har dipolmoment?
- b) Gjør kort rede for elektronparfrastøtningsmodellen for molekylstrukturer. (VSEPR.) (2-3 setninger.)
 - Foreslå molekylgeometri og bindingsvinkler for NF₃ og SO₂ ved hjelp av denne modellen.

Oppgave 9

- a) Hva mener vi med begrepet "elektronegativitet"?
 - Hvorledes kan verdiene for grunnstoffenes elektronegativitet benyttes til å forutsi bindingenes natur i en forbindelse?
 - Hva mener vi med begrepet "van der Waalske bindinger"?
- b) Beskriv kort bindingsforholdene i følgende forbindelser: Na (s), LiF (s), CO₂ (g), HCl (l), SiO₂ (s).
 - Forklar kort hva vi mener med "hydrogenbinding"? (Maks. 2 setninger.)
 - Nevn typiske eksempler på forbindelser der vi finner hydrogenbinding.

Oppgave 10

a) - Gi navn til følgende 3 organiske stoffer:

b) - Tegn formelen og gi navn til tre isomere med bruttoformel $C_3H_6O_2$ der dobbeltbinding C=C ikke forekommer.

FORMEL	KOMMENTAR
PV = nRT	Ideell gass
$P_i = n_i RT/V (P_T = \sum_i P_i)$	Partialtrykk av i
$C = q / \Delta T$	Varmekapasitet
$\Delta E = q + w$	Endring i indre energi
H = E + PV	Entalpi
$\Delta H = q_p$	Konstant <i>P</i> . Bare volumarb.
$\Delta H^{\circ} = \sum \Delta H_{\rm f}^{\circ}$ (produkter) - $\sum \Delta H_{\rm f}^{\circ}$ (reaktanter)	Husk støkiometriske koeffisienter
$\Delta H_T^{\circ} = \Delta H_{298}^{\circ} + \Delta C_P^{\circ} \times \Delta T$	ΔC_p^o konstant
$ \ln\left(\frac{K_2}{K_1}\right) = \frac{\Delta H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) $	ΔH og ΔS konstant
$dS = \frac{\mathrm{d}q_{\mathrm{rev}}}{T}$	Entropiendring
$\Delta S_T^\circ = \Delta S_{298}^\circ + \Delta C_P^\circ \ln \left(\frac{T}{298,15} \right)$	ΔC_p^o konstant
G = H - TS	Gibbs energi. Fri energi.
$\Delta G = \Delta H - T \Delta S$	Endring i fri energi ved konstant <i>T</i>
$\Delta G_T^{\circ} = \Delta H_{298}^{\circ} - T \Delta S_{298}^{\circ}$	$\Delta C_p^o \approx 0$
$\Delta G = \Delta G^o + RT \ln Q$	Reaksjonskvotient, Q
$G = G^{\circ} + RT \ln a$	Aktivitet (relativ), a
$\Delta G^{\circ} = -RT \ln K$	Likevektskonstant, K
$\Delta G = -nFE$	Cellepotensial, E
$Q = It = n_{e}F$	Elektrisk ladning
$E = E^{o} - \frac{RT}{nF} \ln Q = E^{o} - \frac{0,0592}{n} \log Q, 25^{\circ} \text{ C}$	Nernsts ligning
$r = -\frac{1}{a} \frac{d[A]}{dt} = \frac{1}{c} \frac{d[C]}{dt} = k[A]^{l} [B]^{m} [C]^{n} [D]^{p}$ $Total orden = l + m + n + p$	Reaksjonshastighet for $aA + bB \rightarrow cC + dD$
$k = A e^{-\frac{E_a}{RT}}$	Hastighetskonstant, k Aktiveringsenergi, E_a