Лабораторная работа 1.4.8

Измерение модуля Юнга стержней методом акустического резонанса.

Матвей Галицын Б01-411

November 28, 2024

1 Введение

Цель работы: исследовать явление акустического резонанса в тонком стержне; измерить скорость распространения продольных звуковых колебаний в тонких стержнях из различных материалов и различных размеров; измерить модули Юнга различных материалов. В работе используются: генератор звуковых частот, частотомер, осциллограф, электромагнитные излучатель и приёмник колебаний, набор стержней из различных материалов.

2 Теоретическая сведения

2.1 Акустические волны в стержне

Основной характеристикой упругих свойств твёрдого тела является его модуль Юнга E. Согласно закону Гука, если к элементу среды приложено некоторое механическое напряжение σ , действующее вдоль некоторой оси x (напряжения по другим осям при этом отсутствуют), то в этом элементе возникнет относительная деформацию вдоль этой же оси $\varepsilon = \Delta x/x_0$, определяемая соотношением

$$\sigma = \varepsilon \cdot E \tag{1}$$

Если с помощью кратковременного воздействия в некотором элементе твёрдого тела создать малую деформацию, она будет далее распростра- няться в среде в форме волны, которую называют акустической или звуковой. Распространение акустических волн обеспечивается за счёт упругости и инерции среды. Волны сжатия/растяжения, распространяющиеся вдоль оси, по которой происходит деформация, называются продольными. Как будет строго показано далее, скорость и распространения продольной аку- стической волны в простейшем случае длинного тонкого стержня опреде- ляется соотношением

$$u = \sqrt{\frac{E}{\rho}} \tag{2}$$

где ρ — плотность среды. Заметим, что размерность модуля Юнга E равна [H/м²] и совпадает с размерностью механического напряжения (или давления). Характерные значения модуля Юнга металлов лежат в диапазоне $E\sim 1010\div 1012$ Па, так что при плотности $\rho\sim 104$ кг/м3 характерные значения скорости звука в твёрдых телах составляют $u\sim 103$ - 104 м/с. В общем случае звуковые волны в твёрдых телах могут быть не только

продольными, но и поперечными — при этом возникает деформация сдвига перпендикулярно распространению волны. Кроме того, описание распространения волн в неограниченных средах осложняется тем обстоятельством, что при отличном от нуля коэффициенте Пуассона напряжение вдоль одной из осей вызывает деформацию не только в продольном, но и в поперечном направлении к этой оси. Таким образом, общее описание звуковых волн в твёрдых телах — относительно непростая задача. В данной работе мы ограничимся исследованием наиболее простого случая упругих волн, распространяющихся в длинных тонких стержнях. Рассмотрим стержень постоянного круглого сечения, радиус R которого много меньше его длины L. С точки зрения распространения волн стержень можно считать тонким, если длина λ звуковых волн в нём велика по сравнению с его радиусом: λR . Такая волна может свободно распространяться только вдоль стержня, поэтому можно считать, что стержень испытывает деформации растяжения и сжатия только вдоль своей оси (заметим, что в обратном пределе коротких волн λR стержень следует рассматривать как безграничную сплошную среду). Если боковые стенки тонкого стержня свободны (т.е. стержень не сжат с боков), то его деформации описывается законом Гука в форме (1), и, следовательно, его упругие свойства определяются исключительно модулем Юнга среды. Акустическая волна, распространяющаяся в стержне конечной длины L, испытает отражение от торцов стержня. Если при этом на длине стержня укладывается целое число полуволн, то отражённые волны будут складываться в фазе с падающими, что приведёт к резкому усилению амплитуды их колебаний и возникновению акустического резонанса в стержне. Измеряя соответствующие резонансные частоты, можно определить скорость звуковой волны в стержне и, таким образом, измерить модуль Юнга материала стержня. Акустический метод является одним из наиболее точных методов определения упругих характеристик твёрдых тел.

2.2 Установка. Резонансная частота

Схема экспериментальной установки приведена на рис. 1. Исследуемый стержень 5 размещается на стойке 10. Возбуждение и приём колебаний в стержне осуществляются электромагнитными преобразователями 4 и 6, расположенными рядом с торцами стержня. Крепления 9, 11 электро-магнитов дают возможность регулировать их расположение по высоте, а также перемещать вправо-влево по столу 12.

Рис. 1: схема установки.

1 - генератор звуковой частоты; 2 - частотомер; 3 - осциллограф; 4 - электромагнит-возбудитель; 5 - образец; 6 - электромагнит-приемник; 7 - усилитель звуковой частоты; 8 - блок питания усилителя; 9, 11 - стойки крепления электромагнитов; 10 - стойка крепления об разца; 12 - направляющая;

Электромагнит 4 служит для возбуждения упругих механических продольных колебаний в стержне. На него с генератора звуковой частоты 1 подаётся сигнал синусоидальной формы: протекающий в катушке электро- магнита ток создаёт пропорциональное ему магнитное поле, вызывающее периодическое воздействие заданной частоты на торец стержня (к торцам стержней из немагнитных материалов прикреплены тонкие стальные шайбы). Рядом с другим торцом стержня находится аналогичный электро-магнитный датчик 6, который служит для преобразования механических колебаний в электрические. Принцип работы электромагнитных датчиков описан подробнее ниже. Сигнал с выхода генератора поступает на частотомер 2 и на вход канала X осциллографа 3. ЭДС, возбуждаемая в регистрирующем электро-магните 6, пропорциональная амплитуде колебаний торца стержня, усиливается усилителем 7 и подаётся на вход канала У осциллографа. Изменяя частоту генератора и наблюдая за амплитудой сигнала с регистрирующего датчика, можно определить частоту акустического резонанса в стержне. Наблюдения в режиме Х-У позволяют сравнить сигналы генератора и датчика, а также облегчает поиск резонанса при слабом сигнале.

Как следует из формулы (2), модуль Юнга материала E может быть найден по скорости распространения акустических волн в стержне u и его плотности ρ . Для определения скорости u в данной работе используется метод акустического резонанса. Это явление состоит в том, что при частотах гармонического возбуждения, совпадающих с собственными частотами колебаний стержня $f \approx f_{\text{Pe3}}/Q$, резко увеличивается амплитуда колебаний, при этом в стержне образуется стоячая волна. Возбуждение продольных колебаний в стержне происходит посредством воздействия на торец стержня периодической силой, направленной вдоль его оси. Зная номер гармоники n и соответствующую резонансную частоту f_n , на которой наблюдается усиление амплитуды колебаний, можно вычислить скорость распространения

продольных волн в стержне:

$$u = 2L\frac{fn}{n} \tag{3}$$

Таким образом, для измерения скорости и необходимо измерить длину стержня L и получить зависимость резонансной частоты от номера резонанса n. Если все теоретические предположения справедливы, эта зависимость будет прямой пропорциональностью. Следует отметить, что в реальном металлическом стержне могут возбуждаться не только продольные, но и поперечные (в частности, изгибные) колебания стержня. При этом каждому типу колебаний соответствует не одна, а целый спектр частот. Таким образом, стержень «резонирует» не только на частотах, определяемых формулой (15), но и на множестве других частот. Для того чтобы отличить нужные нам резонансные частоты от «паразитных», следует провести предварительные расчёты и не принимать во внимание резонансы, не описываемые зависимостью (15). Скажем также несколько слов о точности измерения резонансной частоты. В первую очередь отметим, что в идеальном случае резонанс дости гался бы при строгом совпадении частот $f = f_n$ (а амплитуда в резонансе стремилась бы к бесконечности). Однако в реальности возбуждение стоячей волны возможно при относительно малом отклонении частоты от резонансной — амплитуда колебаний как функция частоты A(f) имеет резкий максимум при $f = f_n$.

Именно конечная ширина резонанса Δf определяет в основном погрешность измерения частоты в нашем опыте. Используемые в работе металлические стержни являются весьма высокодобротными системами. Поэтому ширина резонанса оказывается довольно малой, что приводит к необходимости тонкой настройки частоты генератора (при $f\sim 5$ к Γ ц ширина резонанса Δf оказывается порядка нескольких герц) Кроме того, время установления резонансных колебаний, которое можно оценить как

$$\tau_{\rm YCT} \sim \frac{1}{\Delta f} \sim \frac{Q}{f},$$
(4)

оказывается весьма велико, из-за чего поиск резонанса нужно проводить, меняя частоту генератора очень медленно.

3 Оборудование

Генератор звуковых частот, частотомер, осциллограф, электромагнитные излучатель и приёмник колебаний, набор стержней из различных материалов.

4 Результаты измерений и обработка данных

- 1. Измерим плотность всех предоставленных нам материалов:
 - 2. Включим генератор.
 - 3. Длина всех исследуемых стержней дана: $L = (600 \pm 0.5) \; \mathrm{mm}.$
- 4. Исследуем по порядку медный, дюралюминиевый и стальной стержни на резонанс.

Таблица 1: плотность материалов

№	Назв. материала	т, г	$V, 10^{-6} M^3$	ρ , $\kappa \Gamma \cdot M^3$
1	Медь	40.98	4.52	9066.4
2	Алюминий	12.49	4.52	2763.3
3	Сталь	35.15	4.52	7776.5

Таблица 2: частота резонансов металлов

	f, кГц - частота резонанса материала			
n	Медь	Алюминий	Сталь	
1	3.13	4.01	4.13	
2	6.49	8.15	8.27	
3	9.74	12.05	12.39	
4	12.98	16.08	16.53	
5	16.25	20.11	20.65	

5. Приведем графики зависимости частоты от номера резонанса:

Рис. 2: График зависимости частоты акуст. колеб f(n) для меди

Рис. 3: График зависимости частоты акуст. колеб f(n) для аллюминия

Рис. 4: График зависимости частоты акуст. колеб f(n) для стали

6. По полученным угловым коэффициентам вычислим скорость распространения звуковой волны в стержнях, по которой найдем модуль Юнга. Случайную погрешность определения углового коэффициента вычисляем как

$$\delta_k^{rand} = \sqrt{\frac{1}{N-1} \left(\frac{\langle f^2 \rangle}{\langle n^2 \rangle} - \overline{k}^2 \right)}$$

Тогда относительная погрешность момента инерции:

$$\mathcal{E}_{u} = \sqrt{2\left(\frac{\delta_{f}}{f}\right)^{2} + 2\left(\frac{\delta_{L}}{L}\right)^{2}}$$

А относительная погрешность момента инерции:

$$\mathcal{E}_{u} = 2\mathcal{E}_{U} + \mathcal{E}_{f}$$

Таким образом, получаем итоговый результат:

Таблица 3: Рассчитанные угловые коэффициенты, скорости аккустической волны, модули Юнга

	, , ,		
	Медь	Алюминий	Сталь
k , к Γ ц	3.25	4.02	4.13
U, м/с	3900	4824	4956
$E, \Gamma\Pi a$	137.1	64.3	191.1
ϵ_k	0.0010	0.0008	0.0005
ϵ_U	0.0011	0.0009	0.0006
ϵ_E	0.02	0.02	0.02

$$E_{
m Meд} = (137.1 \pm 2.7) \ \Gamma \Pi {
m a},$$

$$E_{\rm a,II} = (64.3 \pm 1.3) \; \Gamma \Pi {\rm a},$$

$$E_{\rm CT} = (191.1 \pm 3.8) \ \Gamma \Pi a$$

5 Добротность колебательной системы

Проведем дополнительные измерения в окрестности 1-го резонанса для меди, чтобы получить добротность: Если по точкам прикинуть при-

Таблица 4: АЧХ						
№	Амплитуда, кл	f, КГц				
идеальный случай (A_{max})						
1	8	4.2527				
увеличение частоты						
2	6	4.2537				
4	4	4.2543				
5	2	4.2572				
уменьшение частоты						
6	6	4.2523				
7	4	4.2513				
8	2	4.2489				

мерно график и найти частоты на которых $A=\frac{A_{max}}{\sqrt{2}},$ то разница между частотами будет $\Delta f=\approx 2$ Гц В таком случае добротность можно вычислить следующим образом:

$$Q = \frac{f(A_{max})}{\Delta f} \approx 2000$$

Рис. 5: Амплитудно-частотная характеристика системы (зависимость клеток на экране осциллографа от подаваемой частоты)

6 Обсуждение результатов

В результате работы мы:

- Нашли добротность медного стержня как колебательной системы.
- Получили зависимость f(n). Как нетрудно убедиться по рис. 2-4, во всех случаях аппроксимация прямой действительно применима, причем с очень хорошей точностью.

- Так как наше теоретическое предположение выполнилось, на его основе вычислили скорость звуковой волны во всех данных материалах.
- Получили следующие модули Юнга для меди, алюминия и стали:

$$E_{
m MeJ} = (137.1 \pm 2.7) \ \Gamma \Pi {
m a},$$
 $E_{
m aJJ} = (64.3 \pm 1.3) \ \Gamma \Pi {
m a},$ $E_{
m CT} = (191.1 \pm 3.8) \ \Gamma \Pi {
m a}$