*	Rules for Calculating Oxidation Number.
	IN ONE RECOVERY DOSE ON ANABLE CONTINUES PROPERTY OF DESCRIPTION
, Old	Basis of writing oxn. No. is electron negativity of elements
	Cros H So (conc) etc.
	Fx. H ₂ S04
	2 11/2
712	Fx. H ₂ S04 O 7+6 HO - S - OH +1 OH - S - OH +1
4	Ch. All motor. Side, K. P. Co. V. V. Hande som
	Hos Ent of Not So, 1 etc.
	ONO 0 = +6
Çī	ONO of H= +1 } very Common. {most Common}
1	ON α of $0 = -2$] [Ox n States of 0 x H]
1:	and chappens is probent in higher axidation state
	I Sum of oxn states of all atoms in a molecule is zero &
o that	Sum of oxn States of inclusions in asion is equals to charge
lucino	on that ion is him so and will the grown
	agent.
	finding pxn State with the help of Aufbau's rule (x-method)
	$5x. H_2 So_4 \implies (+1)^2 + x + (-2)^4 = 0$
5.79	almost on 1000 project project on transper
	Andecole.
	2] Common Ox n nos.
	(all - + (a + 90)
	for S-block clements Ly 184 Group Li, Na, K, Rb, Cs> 18+1
	Ly 1st Group Li, Na, K, Rb, Cs> 1+1

	Page No.				-
	Date				-
' '	,				2
s -> +!					1
		7			-
Ba ->	12 4				Joo
		01-		.,	2 9
ee Stat	C GY	ele	meny	CV _	-
Superior	7				4
201-0					n
22=0	X:	-0			10
MIN -	· · · ×				-
· · ·		1			0
alloy is	Zen	<u>.</u>			-765
070	• X	7			
9	116	30			-7-5
care to	o Mily				
		7	12 4		
Electron 1	Vegativ	e }	1	7	
1 , But	Show	+ P	KU S.	tatel	
with ?					
nents	7	9			
V	15				
HIO3	5	BrF	5		J
11 45		45			
) Oct 2					
					1
best C	7	1	7 -	(00)	3
host Corr	Mon	state	<u>x-2</u>		थ
oral formal	13		,		1
ion Stat	e = -	-2	(ak	a. oxia	le)

1St Group -> Li, Na, K, Rb, C 2nd Group -> Be, Mg Ca, Sr 3) If any element is present in its state, its oxn no. is o. Ex. Cucs) Naco F2 4 0x1 State of two metals in any 5) For P-Block elements · For Halogenes Flourine ->-1 · Other halogens -> Cl, Br, I -> Q. Find oxn states of UL eler 1) IF3 ,2) I2 85 , 8) I2 C/6 , 4 +3 +5 +3 6) HCIO4, 7) NOV3, 85 NI3, · Oxygen family: (-2,+6) for oxygen: - most Common State = -2 (aka.oxi but in few cases. Oxygen Can Show diff. State

Date	13 (1)
Date	8

Ex. In peroxide (0^{2-}) ; State = -1.

Ex. In Superoxide (02); State = - 42 Ex. CSO2 , 1602 1/2, 1/2 etc.

Ex. In Ozonide (0); state=-1/3
Ex. 11Kg-1/3, with flux/exastale=+1 or+>

Note · For P- block, No-so Max. possible Oxn stale =

- · Carbon Lamily :- (-4,+4)
- · Boron family :- (-3, +3)

Note - Aleminium Shows +3 oxidation only

- · Bxn State of inext gas in uncombined state =0.
- · Hydrogen Atom :- OMOST Common Oxn State = +1
 - @ But with S- Block elements, it shows Loxa State.

Fx. CHq, NH3, PH3, NaH, CaH2

- · For D-Block elements
 - OD-block element shows multiple 0x1 States
 - @ These clement/metals can show a aswell as negative oxn State.

* for 3-d ferries

		X III	0.000				200	-	1	
Sc	Ti	V	Cr	Mn			Ni	Cu	Zn	
+3	+2	+2	+2	+2	+2	12	+2	+1	+2	
	+4	+4	+3	+4	+3	+3		+2		1
		+5	+6	+6	412	node		20	DEA.	1
CXYGA	to	priv	ie form	+7						
	Sc +3				10 0 10	10 0 10 +2	+3 +2 +2 +2 +2 +2 +2	10 0 10 +2 +2 10	+3 +2 +2 +2 +2 +2 +2 +1	+3 +2 +2 +2 +2 +2 +2 +1 +2

Fe Soy -> Fe Et + Sa? Ky [te (CN) 6] -XK + [te(n)] 1

Fe Coy -> Fe Et + Gove +4 +206=0

· Fe, ((2(04) 3 ferrioxalep