BASIC OF SECURITY

목차

1. 해시

- 1) 성질
- 2) 이용 예
- 3) 충돌

2. 전자서명

- 1) 정의
- 2) 보통 서명과 전자서명의 대응
- 3) 주로 사용되는 전자서명 방식
- 4) 구조

- HASH
- Digital Signature
- Code Signing
- Reference
- Thank you

목차

목차

- 1. 해시
 - 1) 성질
 - 2) 이용 예
 - 3) 충돌
- 2. 전자서명
 - 1) 정의
 - 2) 보통 서명과 전자서명의 대응

 - 4) 구조

3) 주로 사용되는 전자서명 방식 해시(HASH)

- CONTENTS
- HASH
- Digital Signature
- Code Signing
- Reference
- Thank you

목차

• 해시 : 어떤 데이터에 대응하는 값을 구하기 위한 방법

• 성질: 동일한 데이터로부터 항상 동일한 해시 값 생성

- CONTENTS

- HASH

- Digital Signature

- Code Signing

- Reference

- Thank you

목차

1. 데이터가 변조되지 않았다는 것을 확인

2. 데이터 변조를 검출

해시 알고리즘 X

해시 값 b

목차 배글 해시 조자서명 코드서명

- CONTENTS

- HASH

- Digital Signature

- Code Signing

- Reference

- Thank you

발표일 2018 - 12 - 21

충돌

서로 다른 파일로부터 동일한 해시 값이 생성되어 버리는 경우

2. 해시 값으로부터 그 해시 값을 생성하는 파일을 만들 수 있는 경우

- CONTENTS
- HASH
- Digital Signature
- Code Signing
- Reference
- Thank you

목차

충돌

서로 다른 파일로부터 동일한 해시 값이 생성되어 버리는 경우

2. 해시 값으로부터 그 해시 값을 생성하는 파일을 만들 수 있는 경우

- CONTENTS
- HASH
- Digital Signature
- Code Signing
- Reference
- Thank you

전자서명

• 전자서명: 전자 데이터의 작성자를 원래의 데이터에 부여하여 원래의 데이터가 변조되지 않았다는 것을 보증하기 위한

기술

→ 현실 사회에서 '서류에 하는 사인', '날인' 등을 전자적으로 구

현

목차

- CONTENTS
- HASH
- Digital Signature
- Code Signing
- Reference
- Thank you

• 전자서명을 구현하는 세 가지 알고리즘

- CONTENTS
- HASH
- Digital Signature
- Code Signing
- Reference
- Thank you

목차

• 주로 사용되는 전자서명 방식

전자서명 방 식	개요
RSA	3명의 개발자의 머릿글자를 따서 명명1977년에 발명된 공개키 암호방식전자서명을 위해서도 사용
ElGamal	개발자의 이름에 의해 명명1984년에 발표풀기가 힘든 숫자 문제 중 하나를 암호에 응용
DSA	 Digital Signature Algorithm의 약자 1993년에 표준화 ElGamal을 바탕으로 풀기가 힘든 다른 문제를 조합하여 암호에 응용

- CONTENTS
- HASH
- Digital Signature
- Code Signing
- Reference
- Thank you

• 주로 사용되는 전자서명 방식

구축명	개요
PGP	 상용화는 Symantec, 오픈 소스 구축은 GnuPG로 알려짐 키의 생성은 이용자가 수행 공개키 서버 인프라는 있으나 사용하지 않아도 무방 소규모 도입
S/MIME	 메일에 대한 암호화 전자서명을 위해 사용 주요 메일 소프트웨어는 S/MIME 지원 이용을 위해서는 인증국이 발행하는 전자인증서 필요 조직적인 도입
PDF 서명	- PDF에 대한 전자서명 - Adobe Acrobat에 구축 - 이용을 위해서는 인증국이 발행하는 전자인증서 필요

- CONTENTS
- HASH
- Digital Signature
- Code Signing
- Reference
- Thank you

- CONTENTS
- HASH
- Digital Signature
- Code Signing
- Reference
- Thank you

Miyamoto Kunio / Okubo Takao, ≪보안의 기본≫, 위즈플래닛, 2018, 38-39, 52-53, 144-145.

> 02 보안 사고 대응의 4단계 · · · · 32 상대를 올바르게 인식하고 상대에 따라 올바른 권한을 부여하는 장치 생체가 갖고 있는 특징을 인증에 응용한다 08 바이오메트릭스 인증44 한 번의 인종으로 여러 시스템의 이용 권한을 설정 전자 데이터가 변조되지 않았다는 것을 보충하는 기술 12 전자서명과 그 응용 예 52 자신이 맞는 존재라는 것을 나타내기 위한 장치 인증서와 인증국 · · · · · 54 다른 사람으로부터 데이터를 보호하는 방법 5

- CONTENTS
- HASH
- Digital Signature
- Code Signing
- Reference
- Thank you

목차

THANK YOU

LEE JEONG HYEON

