SECTION 1. Math 2 Eng. Ahmad Alaa Aziz EELU's Alexandria center

Distance between two points:

Applying Pythagorean theorem, the distance d between two points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ is

$$d = \overline{P_1 P_2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
.

Physics 1

Alexa

AL R Phy Ahma

AL R Phy

Eng.Ahmad Alaa Aziz

Eng.Al

The Circle

Definition: Circle is the locus of a point P(x,y) moving such that its distance from a fixed point A(h,k) is a constant r. This fixed point is called *center* of the circle and the constant distance is known as *radius of the circle*.

$$(x-h)^2 + (y-k)^2 = r^2$$

Physics 1

AL R Phy hma

Alexa

AL R Phv

Find the equation of the circle which passes through the point (4, 5) and has its center at (2, 2)

Solution

As the circle is passing through the point (4,5) and its center is (2,2) so its radius is

$$r = \sqrt{(4-2)^2 + (5-2)^2} = \sqrt{13}$$

Therefore

$$(x-2)^2 + (y-2)^2 = 13$$

Perfect Square Quadratic Expression (with leading coefficient of 1)

$$x^2 + Bx = \left(x + \frac{B}{2}\right)^2 - \left(\frac{B}{2}\right)^2$$

Find the center and radius of the the circle: $x^2 + y^2 + 6x - 8y - 11 = 0$

Solution

$$\Rightarrow (x^{2} + 6x) + (y^{2} - 8y) - 11 = 0$$

$$\Rightarrow [(x+3)^{2} - (3)^{2}] + [(y-4)^{2} - (4)^{2}] - 11 = 0$$

$$\Rightarrow (x+3)^{2} - (3)^{2} + [(y-4)^{2} - (4)^{2}] - 11 = 0$$

$$\Rightarrow (x+3)^2 - 9 + (y-4)^2 - 16 - 11 = 0$$

$$\Rightarrow (x+3)^2 + (y-4)^2 - 36 = 0$$

$$\Rightarrow (x+3)^{2} + (y-4)^{2} = 36 \qquad (x-h)^{2} + (y-k)^{2} = r^{2}$$

$$\therefore$$
 The center is $(-3,4)$ and the radius: $r = \sqrt{36} = 6$

$$x^{2} + Bx = (x + \frac{B}{2})^{2} - (\frac{B}{2})^{2}$$

$$(x-h)^2 + (y-k)^2 = r^2$$

Find the elements of the circle $(2x+7)^2 + 4(y-3)^2 = 100$

Solution

$$\Rightarrow 4\left(x+\frac{7}{2}\right)^2+4\left(y-3\right)^2=100$$

Dividing both sides by 4:

$$\Rightarrow \left(x + \frac{7}{2}\right)^2 + (y - 3)^2 = 25 \qquad \left(x - h\right)^2 + \left(y - k\right)^2 = r^2$$

$$\therefore$$
 The center is $\left(-\frac{7}{2},3\right)$ and the radius: $r=\sqrt{25}=5$

Physics 1

Eng. Ahmad Alaa Aziz Example: _____

Find the equation of the circle that has a diameter with endpoints (11,8) and (5,10)

Solution

The center of the circle is in the middle of the diameter:

$$\left(\frac{11+5}{2}, \frac{8+10}{2}\right) = (8,9)$$

The diameter:
$$d = \sqrt{(11-5)^2 + (10-2)^2} = \sqrt{40} = 2\sqrt{10}$$

$$\therefore r = \sqrt{10}$$

The circle equation is

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$
$$(x-8)^{2} + (y-9)^{2} = 10$$

Eng.Ahmad Alaa Aziz – EELU's Alexandria center Parabola

parabola circle ellipse

Case 1

Horizontal axis of symmetry

$$(x-h)^2 = +4a(y-k)$$

Vertex	(h	. k
Citca	1	,

Focus (h, k+a)

Directrix
$$y = k-a$$

Case 2

Horizontal axis of symmetry

$$(x-h)^2 = -4a(y-k)$$

Vertex	(h,	k)

Focus 4 4 (h, k<mark>-</mark>a)

Directrix
$$y = k + a$$

Case 3

Horizontal axis of symmetry $(y - k)^2 = 4a(x-h)$

Vertex	(h, k	١
		,

Focus (h+a, k)

Directrix	x = h-a
	A CONTRACTOR OF THE PARTY OF TH

a Aziz Eng. Ahmad Case 4 E E I I 'c Alavar

Horizontal axis of symmetry

$$(y - k)^2 = -4a(x-h)$$

Vertex	(h,	k)
		•

Directrix
$$x = h+a$$

Find the elements of the parabola $(y-3)^2 = 8(x-5)$ and sketch the curve.

Solution Case 3

The vertex is (5,3). Since 4a = 8 then a = 2. The symmetry axis is parallel to xaxis and its equation is y = 3. This parabola opens to the right.

The focus is (5 + 2,3) = (7,3), the directrix is x = 3 and the latus rectum length = 4a = 8.

SION

aa AzexampleEng.Ahmad Alaa Aziz

Eng.Ahma

Find the elements of the parabola $(x + 3)^2 = -20(y - 1)$ and sketch the curve. Solution

Case 2

$$(x - (-3))^2 = -20(y - 1)$$

$$h = -3, k = 1$$

$$4a = 20 \quad \therefore a = 5$$
Axis of symmetry equation $----x = -3$

The focus is
$$(-3,1-5) = (-3,-4)$$
, the directrix is $y = 6$ and the latus rectum length = $4a = 20$.

INAL R

Ahma

Alex

IAL R

Aziz Eng.Ahmad Alaa Aziz Example: ELU's Alexandria center

State the vertex, the focus, and the directrix of the parabola having the equation $x^2 - 4x + 4y - 4 = 0$.

Solution

We shall rewrite the given equation in the standard form by completing square of the L.H.S,

$$(x^2 - 4x) = (x^2 + (-4)x) = \left(x + \frac{-4}{2}\right)^2 - \left(\frac{-4}{2}\right)^2 = (x - 2)^2 - 4$$

$$(x^2 - 4x) + 4y - 4 = 0$$

$$\therefore [(x-2)^2-4]+4y-4=0$$

$$(x-2)^2 = -4y + 8$$

$$(x-2)^2 = -4(y-2)$$
 Case 2

The vertex is (2,2). Since 4a = 4 then a = 1. The symmetry axis is parallel to y-axis and its equation is x = 2. This parabola opens to the down.

Physics 1

Eng.Ahmad Alaa Aziz – EELU's Alexandria center The focus is (2,2-1)=(2,1), The directrix is y = 3, The latus rectum length = 4a = 4.

ng.Ahma

Alex

AL F Phy Ahm

Alexa

IAL R

Pny

Conic sections

Definition: The path of a point which moves in the plane so that its distance from a fixed point to its distance from a fixed line is in constant ratio is called *a conic section*. The fixed point is *the focus of the conic*, the fixed line is *the directrix*, and the constant ratio is *the eccentricity* " *e* "

$$\frac{\overline{PF}}{\overline{PL_0}} = \text{constant} = e$$

- If e = 1, then the conic is a parabola.
- If e < 1, then the conic is an ellipse.
- If e > 1, then the conic is a hyperbola.

Ellipse

Definition: An ellipse is the set of all points (x, y) in the plane, such that the *sum* of their distances from two distinct fixed points, called the *foci* (plural of focus) of the ellipse, is a constant=2a.

The distance between the two foci equals 2c.

- \bigcirc The chord through the foci is called *major axis* and its length =2a.
- The major axis intersects the ellipse at two points called vertices.
- The center is the midpoint between the vertices (or the midpoint between the foci).
- The chord perpendicular to the major axis at the center is the minor axis and its length =2b.
- The endpoints of the minor axis are called co-vertices.
- For the ellipse, we always have $a > b, a > c, c^2 = a^2 b^2$ and the eccentricity $e = \frac{c}{a}$.

ia center

c = ae

ELU S Alex

Case 1 – Eclipse having the major axes parallel to the y-axis

	ard Equation form $A = X = \frac{(x-h)^2}{b^2} + \frac{(x-h)^2}{b^2} = 1$
Center	(h, k) \
Focus points	(h, k+ae) , (h, k-ae)
Vertices	(h, k+a) , (h, k-a)
Directrix equations	$y = \frac{a}{e} + k$, $y = -\frac{a}{e} + k$
Equation of the major axis	$FF ^{\mathbf{x}=\mathbf{h}} \leq A _{exa}$
The length of the major axis	Length = 2a
Equation of the minor axis	$y = k \setminus \triangle \setminus R$
The length of the minor axis	Length = 2b

Case 2 – Eclipse having the major axes parallel to the x-axis

	rd Equation form $\frac{(y-k)^2}{b^2} + \frac{(y-k)^2}{b^2} + = 1$
Center	(h, k)
Focus points	(h+ae , k) , (h-ae , k)
Vertices	(h+a, k) , (h-a, k)
Directrix equations	$x = \frac{a}{e} + h$, $x = -\frac{a}{e} + h$
Equation of the major axis	y = k
The length of the major axis	Length = 2a
Equation of the minor axis	x = h
The length of the minor axis	Length = 2b

Examples

Example 3

Find the elements and sketch the ellipse $3x^2 + 4y^2 + 12x - 8y + 4 = 0$ Solution

$$(3x^{2} + 12x) + (4y^{2} - 8y) + 4 = 0,$$

$$3(x^{2} + 4x) + 4(y^{2} - 2y) + 4 = 0,$$

By completing square of the L.H.S, we get

Perfect Square Quadratic Expression (with leading coefficient of 1)

$$x^2 + Bx = \left(x + \frac{B}{2}\right)^2 - \left(\frac{B}{2}\right)^2$$

$$a^2 = 4, b^2 = 3 \Rightarrow c^2 = a^2 - b^2 = 4 - 3 = 1$$

$$a = 2, b = \sqrt{3}, c = 1$$

Eccentricity:
$$e = \frac{c}{a} = \frac{1}{2}$$

Center: (-2,1)

Major axis: parallel to x-axis, its equation is y = 1 and its length is 2a = 4

Minor axis: parallel to y-axis, its equation is x = -2 and its length is $2b = 2\sqrt{3}$

Vertices: $V_1(0,1), V_2(-4,1)$

Foci: $F_1(-1,1), F_2(-3,1)$

Directrices: $x = -2 \pm \frac{a}{e} = -2 \pm 4$

$$x = 2, x = -6$$

Case 2 – Eclipse having the major axes parallel to the x-axis

	ndard Equation form $\frac{(y-k)^2}{a^2} + \frac{(y-k)^2}{b^2} + = 1$
	$a^2 + \frac{b^2}{b^2} + 1$
Center	(h, k)
Focus points	(h+ae , k) , (h-ae , k)
Vertices	(h+a, k) , (h-a, k)
Directrix equations	$x = \frac{a}{e} + h$, $x = -\frac{a}{e} + h$
Equation of the major axis	y = k
The length of the major axis	Length = 2a
Equation of the minor axis	x = h
The length of the minor axis	Length = 2b

Find the elements of the ellipse $9x^2 + 16y^2 - 54x + 32y - 47 = 0$ Solution

$$(9x^{2} - 54x) + (16y^{2} + 32y) - 47 = 0,$$

$$9(x^{2} - 6x) + 16(y^{2} + 2y) - 47 = 0,$$

By completing square of the L.H.S, we get

$$9[(x-3)^{2}-9]+16[(y+1)^{2}-1]-47=0,$$

$$(x-3)^{2}-81+16(y+1)^{2}-16-47=0,$$

$$9(x-3)^{2}+16(y+1)^{2}=81+16+47=144,$$

$$\frac{(x-3)^{2}}{16}+\frac{(y+1)^{2}}{9}=1$$

 $\div 144$

-16 $b^2 = 9 \implies c^2 = a^2 - b^2 = 16 - 9 = 7$ Case 2 – Eclipse having the major axes parallel to the x-axis

$$a^2 = 16, b^2 = 9 \Rightarrow c^2 = a^2 - b^2 = 16 - 9 = 7$$

 $\therefore a = 4, b = 3, c = \sqrt{7}$

Eccentricity:
$$e = \frac{c}{a} = \frac{\sqrt{7}}{4}$$

Center: (3,-1)

Major axis: parallel to x-axis, its equation is y = -1 and its length is 2a = 8

Minor axis: parallel to y-axis, its equation is x = 3 and its length is 2b = 6

Vertices:
$$V_1(7,-1), V_2(-1,-1)$$

Foci:
$$F_1(3+\sqrt{7},-1), F_2(3-\sqrt{7},-1)$$

Directrices:
$$x = 3 \pm \frac{a}{e} = 3 \pm \frac{16}{\sqrt{7}}$$

 $x = 3 + \frac{16}{\sqrt{7}}, x = 3 - \frac{16}{\sqrt{7}}$

	ndard Equation form $\frac{(y-k)^2}{a^2} + \frac{(y-k)^2}{b^2} + = 1$
	$a^2 + \frac{b^2}{b^2} + 1$
Center	(h, k)
Focus points	(h+ae , k) , (h-ae , k)
Vertices	(h+a, k) , (h-a, k)
Directrix equations	$x = \frac{a}{e} + h$, $x = -\frac{a}{e} + h$
quation of the major axis	y = k
The length of the major axis	Length = 2a
quation of the minor axis	x = h
The length of the minor axis	Length = 2b

Find the elements of the ellipse $2x^2 + y^2 - 4x + 4y - 10 = 0$. Solution

$$(2x^{2}-4x)+(y^{2}+4y)-10=0,$$

$$2(x^{2}-2x)+(y^{2}+4y)-10=0,$$

By completing square of the L.H.S,

$$2[(x-1)^{2}-1]+[(y+2)^{2}-4]-10=0,$$

$$2(x-1)^{2}-2+(y+2)^{2}-4-10=0,$$

$$2(x-1)^{2}+(y+2)^{2}=2+4+16=16,$$

$$\frac{(x-1)^{2}}{8}+\frac{(y+2)^{2}}{16}=1$$

$$\frac{(x-1)^{2}}{8}+\frac{(y+2)^{2}}{16}=1$$

$$a^2 = 16$$
, $b^2 = 8$ $\Rightarrow c^2 = a^2 - b^2 = 16 - 8 = 8$

$$a = 4$$
, $b = 2\sqrt{2}$, $c = 2\sqrt{2}$

Eccentricity:
$$e = \frac{c}{a} = \frac{2\sqrt{2}}{4} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$$

Center: (1,-2)

Major axis: parallel to y-axis, its equation is x = 1 and its length is 2a = 8

Minor axis: parallel to x-axis, its equation is y = -2 and its length is $2b = 4\sqrt{2}$

Vertices:
$$V_1(1,-2+4), V_2(1,-2-4)$$

Foci:
$$F_1(1,-2+2\sqrt{2}), F_2(1,-2-2\sqrt{2})$$

Directrices:
$$y = -2 \pm \frac{a}{e} = -2 \pm 4\sqrt{2}$$

 $y = -2 + 4\sqrt{2}, x = -2 - 4\sqrt{2}$

Case 1 – Eclipse having the major axes parallel to the y-axis

	ndard Equation form $\frac{-\mathbf{k}^2}{a^2} + \frac{(\mathbf{x} - \mathbf{h})^2}{b^2} = 1$
Center	(h, k)
Focus points	(h, k+ae) , (h, k-ae)
Vertices	(h, k+a) , (h, k-a)
Directrix equations	$y = \frac{a}{e} + k$, $y = -\frac{a}{e} + k$
Equation of the major axis	x = h
The length of the major axis	Length = 2a
Equation of the minor axis	y = k
The length of the minor axis	Length = 2b

Hyperbola

Definition: A hyperbola is the set of all points (x, y) in the plane, such that the difference of their distances from two distinct fixed points, called the foci (plural of focus) of the hyperbola, is a constant=2a.

 $d_2 - d_1$ is a positive constant.

The distance between the two foci equals 2c.

- The chord through the foci is called *transverse axis* and its length = 2a.
- The transverse axis intersects the hyperbola at two points called vertices.
- The center is the midpoint between the vertices (or the midpoint between the foci).
- The line segment, of length 2b, perpendicular to the transverse axis at the center is the conjugate axis.
- The endpoints of the conjugate axis are called co-vertices.

- For the hyperbola, we always have $c > a, c > b, c^2 = a^2 + b^2$ and the eccentricity $e = \frac{c}{a}$.
- lacktriangle Each hyperbola has **two asymptotes** that intersect at the center of the hyperbola. The **asymptotes** pass through the corners of a rectangle of dimensions 2a by 2b, with its center at (h, k).

Case 1 – Hyper-parabola having the transverse axes parallel to the y-axis (vertical)

Standard Equation form : (y	$\frac{(x-h)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$			
Center	(h, k)			
Focus points	(h, k+ae) , (h, k-ae)			
Vertices	(h, k+a) , (h, k-a)			
Co-vertices	(h+b, k) , (h-b, k)			
Directrix equations	$y = \frac{a}{e} + k$ $y = -\frac{a}{e} + k$			
Asymptotes' equations	$y = +\frac{a}{b}(x-h) + k$ $y = -\frac{a}{b}(x-h) + k$			
Equation of the transverse axis	x = h			
The length of the transverse axis	Length = 2a			
Equation of the conjugate axis	y = k			
The length of the conjugate axis	Length = 2b			

Case 2 -	- Hyper-parabol	a having t	the transv	erse axes	para	allel to 1	the x-ax	kis (horizo	ontal)
Standard	- Hyper-parabol d Equation form: (x) Center Focus points Vertices Co-vertices	$\frac{(y)^2}{a^2} - \frac{(y)^2}{a^2}$	$\frac{-\mathbf{k})^2}{b^2} = 1$			= -b (x-	h)+k	11	
exa	Center	(h	, k)	\	X	a (11)	//	
S AI	Focus points	(h+ae, k)	, (h-ae, k)		1:	(h, k	(+b)	//	
	Vertices	(h+a, k)	, (h-a, k)		\	N.	1		
	Co-vertices	(h, k+b)	, (h, k-b)		\	1	1	/	
Dire	ectrix equations	$x = \frac{a}{e} + h$	$\mathbf{x} = -\frac{\mathbf{a}}{\mathbf{e}} + \mathbf{h}$	(h-c, k)		1	1	(h+c, k)	
Dire Asym Asym	ptotes' equations	a h	$(\mathbf{x} - \mathbf{h}) + \mathbf{k}$ $(\mathbf{x} - \mathbf{h}) + \mathbf{k}$	(h-a, k)		/	(h, k)	(h+a,	k) x
Equation	of the transverse axis	y = k			/	/			
	of the transverse axis	Length = 2a			11	(h, k	(-b)	1	
Equation The length	of the conjugate axis	x =	= h	/	y =	$=\frac{b}{a}(x-h)$	+k	11	
The lengtl	h of the conjugate axis	Lengt	:h = 2b \ \ S	/ .	1			, ,	

Find the elements and sketch the hyperbola $\frac{(x-12)^2}{2} - \frac{(y-15)^2}{2} = 1$ Solution

$$\frac{\left(x-12\right)^2}{64} - \frac{\left(y-15\right)^2}{169} = 1$$

$$a^2 = 64$$
, $b^2 = 169 \Rightarrow c^2 = a^2 + b^2 = 64 + 169 = 233$

$$\therefore a = 8, b = 13, c = \sqrt{233}$$

Eccentricity:
$$e = \frac{c}{a} = \frac{\sqrt{233}}{8}$$

Center: (12,15)

Transverse axis: parallel to x-axis, its equation is y = 15

Conjugate axis: parallel to y-axis, its equation is x = 12

Case 2 - Hyper-parabola having the transverse axes parallel to the x-axis (horizontal)

daa Aziz

Center: (12,15)

EELU's Alexandria o

Vertices: $V_1(20,15), V_2(4,15)$

Foci:
$$F_1(12+\sqrt{233},15), F_2(12-\sqrt{233},15)$$

Directrices:
$$x = 12 \pm \frac{a}{e} = 12 \pm \frac{64}{\sqrt{233}}$$

$$x = 12 + \frac{64}{\sqrt{233}}, x = 12 - \frac{64}{\sqrt{233}}$$

Asymptotes:
$$y-15 = \pm \frac{13}{8}(x-12) \Rightarrow y = \pm \frac{13}{8}(x-12) + 15$$

Standard Equation form : (x	$\frac{(y)^2}{a^2}$	$\frac{(-\mathbf{k})^2}{b^2} = 1$
Center	(1	h, k)
Focus points	(h+ae, k) , (h-ae, k)	
Vertices	(h+a, k) , (h-a, k)	
Co-vertices	(h, k+b) , (h, k-b)	
Directrix equations	$x = \frac{a}{e} + h$ $x = -\frac{a}{e} + \frac{a}{e} + \frac$	
Assessment assessment	$y = +\frac{b}{a}(x-h) + k$	
Asymptotes' equations	$y = -\frac{b}{a}(x-h) + k$	
Equation of the transverse axis	y = k	
The length of the transverse axis	Length = 2a	
Equation of the conjugate axis	x = h	
The length of the conjugate axis	Length = 2b	

SION. FINAL REVES

Find the elements and sketch the hyperbola $2x^2 - 3y^2 + 8x + 6y + 17 = 0$ Solution

$$(2x^{2} + 8x) + (-3y^{2} + 6y) + 17 = 0,$$

$$2(x^{2} + 4x) - 3(y^{2} - 2y) + 17 = 0,$$

By completing square of the L.H.S, we find that

$$2[(x+2)^{2}-4]-3[(y-1)^{2}-1]+17=0,$$

$$2(x+2)^{2}-8-3(y-1)^{2}+3+17=0,$$

$$2(x+2)^{2}-3(y-1)^{2}=-12, \quad \div -12$$

$$\frac{(y-1)^{2}}{4}-\frac{(x+2)^{2}}{6}=1.$$

aa Aziz

Eng.Ahmad Alaa Aziz

$$a^2 = 4$$
, $b^2 = 6 \Rightarrow c^2 = a^2 + b^2 = 4 + 6 = 10$

$$\therefore a = 2, b = \sqrt{6}, c = \sqrt{10}$$

Eccentricity:
$$e = \frac{c}{a} = \frac{\sqrt{10}}{2} = \sqrt{\frac{5}{2}}$$

Center:
$$(-2,1)$$

Transverse axis: parallel to y-axis, its equation is x = -2

Conjugate axis: parallel to x-axis, its equation is y = 1

Vertices: $V_1(-2,3), V_2(-2,-1)$

Standard Equation form : $\frac{(y)}{(y)}$	$\frac{(x-h)^2}{x^2} - \frac{(x-h)^2}{h^2} = 1$	
Center	((h, k)
Focus points	(h, k+ae) , (h, k-ae)	
Vertices	(h, k+a) , (h, k-a)	
Co-vertices	(h+b, k) , (h-b, k)	
Directrix equations	$y = \frac{a}{e} + k$ $y = -\frac{a}{e} + \frac{a}{e}$	
Asymptotes' equations	$y = +\frac{a}{b}(x-h) + k$	
Asymptotes equations	$y = -\frac{a}{b}(x-h) + k$	
Equation of the transverse axis	x = h	
The length of the transverse axis	Length = 2a	
Equation of the conjugate axis	y = k	
The length of the conjugate axis	Length = 2b	

Case 1 - Hyper-parabola having the transverse axes parallel to the y-axis (vertical)

Eng.Ahmad Alaa Aziz

Foci:
$$F_1(-2,1+\sqrt{10}), F_2(-2,1-\sqrt{10})$$

Directrices:
$$y = 1 \pm \frac{a}{e} = 1 \pm \frac{4}{\sqrt{10}}$$

$$y = 1 + \frac{4}{\sqrt{10}}, y = 1 - \frac{4}{\sqrt{10}}$$

Asymptotes:

$$y = \pm \frac{2}{\sqrt{6}}(x+2)+1.$$

EELU S Alexandria cen

INAL REVESION.

Standard Equation form : $\frac{(y)}{(y)}$	$(x-h)^2 - \frac{(x-h)^2}{h^2} = 1$	
Standard Equation form : —		
Center	(1	h, k)
Focus points	(h, k+ae) , (h, k-ae)	
Vertices	(h, k+a) , (h, k-a)	
Co-vertices	(h+b, k) , (h-b, k)	
Directrix equations	$y = \frac{a}{e} + k$ $y = -\frac{a}{e}$	
Asymptotes' equations	$y = +\frac{a}{b}(x-h) + k$	
Asymptotes' equations	$y = -\frac{a}{b}(x-h) + k$	
Equation of the transverse axis	x = h	
The length of the transverse axis	Length = 2a	
Equation of the conjugate axis	y = k	
The length of the conjugate axis	Length = 2b	

Write the equation of a hyperbola with vertices (0, -6) and (0,6) and asymptote y = 3/4x

Write the equation of a hyperbola with vertices

(0,-6) and (0,6)

and asymptote having an equation : y=(3/4)x

Maa Aziz ria centei

EELU's A

FINAL

Case 1 – Hyper-parabola having the transverse axes parallel to the y-axis (vertical)

Standard Equation form : (y	$\frac{(x-h)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$	
Center	(1	n, k)
Focus points	(h, k+ae) , (h, k-ae)	
Vertices	(h, k+a) , (h, k-a)	
Co-vertices	(h+b, k) , (h-b, k)	
Directrix equations	$y = \frac{a}{e} + k$ $y = -\frac{a}{e} +$	
Assemblated equations	$y = +\frac{a}{b}(x-h) + k$	
Asymptotes' equations	$y = -\frac{a}{b}(x-h) + k$	
Equation of the transverse axis	x = h	
The length of the transverse axis	Length = 2a	
Equation of the conjugate axis	y = k	
The length of the conjugate axis	Length = 2b	

Case 2 – Hyper-parabola having the transverse axes parallel to the x-axis (horizontal)

Standard Equation form : (x	$(x-h)^2 - \frac{(y-k)^2}{2} = 1$	
Standard Equation form : —		
Center	(1	n, k)
Focus points	(h+ae, k) , (h-ae, k)	
Vertices	(h+a, k) , (h-a, k)	
Co-vertices	(h, k+b) , (h, k-b)	
Directrix equations	$x = \frac{a}{e} + h$ $x = -\frac{a}{e} + \frac{a}{e}$	
	$y = +\frac{b}{a}(x-b) + k$	
Asymptotes' equations	$y = -\frac{b}{a}(x-h) + k$	
Equation of the transverse axis	y = k	
The length of the transverse axis	Length = 2a	
Equation of the conjugate axis	x = h	
The length of the conjugate axis	Length = 2b	

Exercises

1- Determine the elements of the following conic sections

(a)
$$2x^2 - 3y^2 + 8x + 6y + 17 = 0$$
.

(b)
$$x^2 + 5y^2 + 6x - 40y + 84 = 0$$
.

(c)
$$y^2 + 8x + 6y + 1 = 0$$
.

(d)
$$25x^2 + 16y^2 + 150x - 128y - 1119 = 0$$
.

- 2- Find the equation of the ellipse that passes through origin and has its foci at the points (1,0) and (3,0)?
- 3- Find the standard form of the equation of the hyperbola with vertices (-2, -4), (-2, 6) and foci (-2, -5), (-2, 7)?

Special thanks to Eng, Waleed Khaled Sohag center for his efforts

