Approach. 1) Recursion 2 Memorization
3 Pabulation

to get betrer under 8 tanding and grasp of problem

Partition in to subset.

n= no of element

k= no-of subset

Print - no of ways in which elements can be partitioned in 12 non empty subset

N=4 elements (1,2,3,4)

1-2-39 1 2 3 1-24-3 3 3 - 3-14-2 8-2W-1

4-3

3 - U

Rotal permatation

123 = 6 per mutation. with each 2 can put l'eft element in ksets. s'o 6×3 = 18 permutation.

12-3-4

we need combinations \_ 24-3 1234 N = 1c 74 1-23-4 WKK - onox 1 5 3 3 cm bry

nek = 7 4 +3 6 × 5 73

1 23 (2345

How to come up with solution

12345

J Space. only 3 elements you can give space.

remaining (5-3) = 2 clement necd to 8 hare 8 pace.

Let say if I put [,2,3 occupies space

1 2 3

other 2 element necd to be shared with 1,2,3 Points to notice: Othere 4 has shared space with 1,2,3 fred share space with 1 & 2 & 3 necd to 3 whready shared space with 4 3-2-4 2-43 XC permutation 12-4-3 Here 2 has not Sleept with 2 recd to share space with 1

ways total 6 when ハンム K 23 Roy to divide problem in 8mp bes ppen. Analogy -> 4 log he & ghar he 3 Sub problem



(23) (23) (12) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (123) (12

 $\frac{2}{3}$   $\frac{2}{3}$ 

on left side, 2 will (renate) Li with each subset.

3.0 1-2-3u, 1-2u-3, 14-2-3

From rightside, 2 get 2 ka subset., 80 I will append

4 or each ons
13-2-4, 1-23-4, 12-3-4

f(n,k) = Kx f(n-1,k) + f(n-1,k-1)

nok solve nok refins nok refins

n=4 N=3 - k space  $\bigcirc$ 0 0 0 2 12241 3 3×2+1 103+3 h

dp[n][k] = dp[n-1][k] \*k

+ dp[n-1][k-1]

(og

