Confidential Transactions Theory Justification

Iftach Haitner*

August 5, 2025

Abstract

[Iftach's Note: TODO]

Contents

1	Intr	roduction	2
2	Preliminaries		
	2.1	Notation	2
	2.2	Homomorphic Encryption	2
3	The	Confidential Transaction Protocols	2
	3.1	The Ideal Functionality	2
	3.2	The Protocol	3
		3.2.1 Security of Protocol 3.2	6
4	The ElGammal-Based Additive Homomorphic Encryption		
	4.1	ElGammal In-the-Exponent Scheme	6
	4.2	The Scheme	7
	4.3	Proofs	7
		Adjusting Section 2.2	

^{*}Stellar Development Foundation. E-mail: iftach.haitner@stellar.org..

1 Introduction

[Iftach's Note: TODO]

2 Preliminaries

2.1 Notation

We use calligraphic letters to denote sets, uppercase for random variables, and lowercase for integers and functions. Let \mathbb{N} denote the set of natural numbers. For $n \in \mathbb{N}$, let $[n] := \{1, \ldots, n\}$ and $(n) := \{0, \ldots, n\}$. For a relation \mathcal{R} , let $\mathcal{L}(\mathcal{R})$ denote its underlying language, i.e., $\mathcal{L}(\mathcal{R}) := \{x : \exists w : (x, w) \in \mathcal{R}\}$.

2.2 Homomorphic Encryption

An homomorphic encryption is a triplet (KeyGen, Enc, Dec) of efficient algorithms, with the standard correctness and semantic security properties. In addition, there is addition operation denote + over any two (valid) ciphertexts such that for any validly generated public key pk and valid ciphertexts x_0, x_1 , it holds that $\operatorname{Enc}_{sk}(x_0) + \operatorname{Enc}_{pk}(x_1) \in \operatorname{Supp}(\operatorname{Enc}_{sk}(x_0 + x_1 \bmod q), \text{ where } q \in \mathbb{N} \text{ is efficiently determined by } pk$.

[Iftach's Note: Do we really need the homomorphic properties or only for the proofs?]

3 The Confidential Transaction Protocols

3.1 The Ideal Functionality

```
Functionality 3.1 (\mathcal{F}_{ConfTrans}: Confidential transactions).
```

Parties: Issuer I, chain holder C and users U_1, \ldots, U_n .

Parameters: $p_{\mathsf{num}}, p_{\mathsf{size}} \in \mathbb{N}$.

Init. Upon receiving init from all parties:

- 1. For each $i \in [n]$: avlBlance_i, pndBalance_i $\leftarrow 0$, transnum_i $\leftarrow 0$, and $\log_i \leftarrow \emptyset$.
- 2. $\log \leftarrow \emptyset$.

Issue. Upon receiving (sid, issue, x, d) from C and I:

- 1. Assert $(x \in (p_{\mathsf{num}}), \mathsf{transnum} \leq p_{\mathsf{size}} \text{ and } d \in [n]).$
- $2. transnum^{++}$.
- 3. $pndBalance_d += x$.
- 4. Set $\log \cup = (\text{sid}, \text{issue}, x, d)$.

Transfer. Upon receiving (sid, transfer, d) from C and U_s , with U_s using private input x.

```
1. Assert(x \in (p_{\mathsf{num}}), \mathsf{transnum} \leq p_{\mathsf{size}}, \mathsf{avlBlance}_s \geq x \; \mathsf{and} \; d \in [n]).
```

- $2. transnum^{++}$.
- 3. $avlBlance_s = x$.
- 4. $\mathsf{pndBalance}_d \cup = x$.
- 5. Set $\log_d \cup = (\text{sid}, \text{transfer}, s, x)$
- 6. Set $\log \cup = (\text{sid}, \text{transfer}, s, d)$

Rollover. Upon receiving (sid, rollover) from party U_i and C, party C

- 1. transnum $\leftarrow 0$.
- 2. Set $avlBlance_i += pndBalance_i$.
- 3. Set pndBalance_i \leftarrow 0.
- 4. Set $\log \cup = (\text{sid}, \text{rollover}, i)$

Withraw. Upon receiving (sid, withraw, x) from party U_i and C, party C

- 1. Assert $(x \in \mathbb{N}, \text{ avlBlance}_i \ge x \text{ and } i \in [n])$.
- 2. $avlBlance_i -= x$.
- 3. Set $\log \cup = (\text{sid}, \text{withraw}, i, x)$

History. Upon receiving (sid, history) from party P_i and C:

Send (\log, \log_i) to P_i .

Audit. [Iftach's Note: Later]

3.2 The Protocol

Throughout, we fix a security parameter κ and omit is from the notation. We also fix an homomorphic encryption scheme (KeyGen, Enc, Dec) over \mathbb{Z}_q with randomness domain \mathcal{D} . We require that $\mathsf{Dec}_{sk}(\overline{A})$ outputs (a;r) such that $\overline{A} = \mathsf{Enc}(a;r)$.

```
Protocol 3.2 (\Pi_{ConfTrans}: Confidential transactions).
```

Parties: Issuer I, chain-holder C and users U_1, \ldots, U_n .

Subprotocols: See below.

Init. We use POK for the relation:

Key generation: $\mathcal{R}_{\mathsf{KeyGen}} = \{(pk, w)\}: \mathsf{KeyGen}(w) = (\cdot, pk)\}.$

Protocol 3.3 ($\Pi_{ConfTrans}$.Init).

Participating parties. All parties.

Proofs: $\Pi_{\mathcal{R}_{KeyGen}}^{ZK-POK}$

Algorithms: KeyGen.

Operation:

- 1. P_i , for all $i \in [n]$:
 - (a) Set $(pk_i, sk_i) \stackrel{\mathbb{R}}{\leftarrow} \mathsf{KeyGen}(r_i)$ for $r_i \stackrel{\mathbb{R}}{\leftarrow} \mathcal{D}$.
 - (b) Store sk_i .
 - (c) Let $\pi_i \stackrel{\mathbb{R}}{\leftarrow} \mathsf{P}^{\mathsf{ZK-POK}}_{\mathcal{R}_{\mathsf{KeyGen}}}(pk_i, r_i)$.
 - (d) Send (pk_i, π_i) to C.
- 2. C:
 - (a) Call $\{V_{\mathcal{R}_{\mathsf{KeyGen}}}^{\mathsf{ZK-POK}}(pk_i, \pi_i)\}_{i \in [n]}$. Abort and publish i, if the i^{th} proof is not verified.
 - (b) Store $\{pk_i\}_{i\in[n]}$.
- 3. C:
 - (a) Broadcast $\{\overline{P}_i \leftarrow 0, \overline{P}_i \stackrel{\mathbf{R}}{\leftarrow} \mathsf{Enc}_{pk_i}(0), \overline{B}_i \leftarrow \emptyset\}_{i \in [n]}$.
 - (b) Broadcast $\log \leftarrow \emptyset$.

Issue.

Protocol 3.4 ($\Pi_{ConfTrans}$.Issue).

Participating parties. I and C.

C's input. sid, $x \in \mathbb{N}$ and $i \in [n]$.

Operation:

- 1. I: Send (x, i) to C.
- 2. C:
 - (a) Assert $(x \in [p_{\mathsf{size}}] \text{ and } \overline{P}_i \leq p_{\mathsf{size}})$
 - (b) Set $\overline{P}_i += \mathsf{Enc}_{pk_i}(x)$).
 - (c) Publish $\log \cup = (\text{sid}, \text{issue}, x, i, \overline{P}_i).$

Transfer. We use proof and POK for the following relations:

In range. $\mathcal{R}_{\sf rp} = \{((pk,A),(a,r)) \colon {\sf Enc}_{pk}(a;r) = A \land a \in [p_{\sf size}]\}$, i.e., encryption of values in $[p_{\sf size}]$.

Equality. $\mathcal{R}_{eq} = \{((pk^0, pk^1, A^0, A^1), (a, r^0, r^1)) : \forall i \in \{0, 1\} \; \mathsf{Enc}_{pk^i}(a; r^i) = A^i\}$, i.e., encryptions of the same pair under different public keys.

Larger than. $\mathcal{R}_{\mathsf{lrger}} = \left\{ ((pk, A^0, A^1), (a^0, r^0, a^1, r^1)) \colon \forall i \in \{0, 1\} \; \mathsf{Enc}_{pk}(a^i; r^i) = A^i \land a^1 - a^0 \in [q] \right\},$ i.e., encryptions of the pair of values (a_0, a_1) , under the same public key, with $a_1 \geq a_0$.

Protocol 3.5 ($\Pi_{ConfTrans}$. Transfer).

Participating parties: P_s and C.

 $\mathrm{Proofs:}\ \Pi^{\mathsf{ZK}}_{\mathcal{R}_{\mathsf{rp}}},\!P^{\mathsf{ZK}}_{\mathcal{R}_{\mathsf{eq}}},\!P^{\mathsf{ZK}}_{\mathcal{R}_{\mathsf{lrger}}}$

Algorithms: Dec.

Common input: $d \in [n]$.

 P_s 's private input. $x \in \mathbb{N}$.

Operation:

- 1. P_s:
 - (a) $X_d \stackrel{\mathbb{R}}{\leftarrow} \mathsf{Enc}_{nk,l}(x;r)$ for $r^d \stackrel{\mathbb{R}}{\leftarrow} \mathcal{D}$.
 - (b) $\pi^{\mathsf{rp}} \overset{\mathbb{R}}{\leftarrow} \mathsf{P}^{\mathsf{ZK}}_{\mathcal{R}_{\mathsf{rn}}}((pk_d, X_s, p_{\mathsf{size}}), (x, r)).$
 - (c) $X_s \stackrel{\mathbb{R}}{\leftarrow} \mathsf{Enc}_{pk_s}(x;r)$ for $r^s \stackrel{\mathbb{R}}{\leftarrow} \mathcal{D}$.
 - (d) $\pi^{eq} \stackrel{\mathbb{R}}{\leftarrow} \mathsf{P}^{\mathsf{ZK}}_{\mathcal{R}_{eq}}((pk_s, pk_d, X_s, X_s), (x, r_s, r_d)).$
 - (e) $(b, r^b) \leftarrow \mathsf{Dec}_{sk_s}(\overline{B}_s)$.
 - (f) $\pi^{\mathsf{Irger}} \overset{\mathtt{R}}{\leftarrow} \mathsf{P}^{\mathsf{ZK}}_{\mathcal{R}_{\mathsf{Irger}}}((pk_s, X_s, \overline{B}_s), (x, r_s, r_b)).$
 - (g) Send $(X_s, X_d, \pi^{\mathsf{rp}}, \pi^{\mathsf{eq}}, \pi^{\mathsf{lrger}})$ to C.
- 2. C:
 - $$\begin{split} \text{(a)} \ \ & \text{Call V}^{\mathsf{ZK-POK}}_{\mathcal{R}_{\mathsf{rp}}}((pk_d, X_s, p_{\mathsf{size}}), \pi^{\mathsf{rp}}), \\ & \text{V}^{\mathsf{ZK-POK}}_{\mathsf{eq}}((pk_s, pk_d, X_s, X_s), \pi^{\mathsf{rp}}) \ \text{and} \ \text{V}^{\mathsf{ZK-POK}}_{\mathcal{R}_{\mathsf{lrger}}}((pk_s, X_s, \overline{B}_s), \pi^{\mathsf{rp}}). \end{split}$$
 - (b) Set $U_s = X_s$.
 - (c) Set $\overline{P}_d += X_d$.
 - (d) Publish $\log \cup = (\text{sid}, \text{transfer}, s, d, U_s, \overline{P}_d).$

Rollover.

Protocol 3.6 ($\Pi_{ConfTrans}$.Rollover).

Participating parties. P_i and C.

Operation:

C:

1.
$$\overline{B}_i += oP_i$$
.

- 2. $\overline{P}_i -= \overline{P}_i$.
- 3. $\log += (\text{sid}, \text{rollover}, i, \overline{B}_i, \overline{P}_i)$

History.

Protocol 3.7 ($\Pi_{ConfTrans}$. History).

Participating parties. P_i and C.

Operation: C: send log to P_i .

Audit. [Iftach's Note: TODO]

3.2.1 Security of Protocol 3.2

Theorem 3.8 (Security of Protocol 3.2). [Iftach's Note: TODO]

4 The ElGammal-Based Additive Homomorphic Encryption

In this section we define the (efficient) additive homomorphic encryption scheme based on ElGammal multiplicative homomorphic encryption scheme. [Iftach's Note: give citations]

The idea is to bootstrap the so-called *ElGammal in-the exponent* additive homomorphic encryption scheme, ¹ which in turn is based on the ElGammal multiplicative homomorphic encryption scheme, that lacks efficient decryption algorithm, by splitting the plain text into small "chunks". That is, we present message $m \in Z_t$ as

 $\sum_{i \in (t/c)} 2^{ic} \cdot m_i$, where c, the chunk size, is some integer that divides [t], and encrypt using additive homomorphic EG each of the m_i . To decry $\overline{M} = (M_0, \dots, M_{t/c})$, one

- 1. Decrypt each M_i to get $m_i \cdot G$.
- 2. Use brute force to find $m.^2$
- 3. Reconstruct m.

4.1 ElGammal In-the-Exponent Scheme

Throughout we fix a cyclic additive q-size group \mathcal{G} with generator G. The ElGammal in-the-exponent scheme (EgGen, EgEnc, EgDec) is define as follows:

Key generation: EgGen() samples $e \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_q$, and outputs $(e, e \cdot G)$.

Encryiption: EgEnc_E(m) samples $e \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_q$, and outputs $\widetilde{M} \leftarrow (r \cdot G, r \cdot E + m \cdot G)$

¹It is called ElGamal "in-the-exponent" due to typical multiplicative group notation. Here use additive group notation, but keep the name for historical reason.

²One can use standard processing to speed-up this part from c group operations to \sqrt{c} operations, or even [Iftach's Note: cite] to $\sqrt[3]{c}$.

 $\textbf{Decription:} \ \mathsf{EgDec}_e(\widetilde{M}),$

- 1. Let $M \leftarrow \widetilde{M}_2 e \cdot \widetilde{M}_2$.
- 2. Find (using brute force) m so that $m \cdot G = M$.
- 3. Output m.

4.2 The Scheme

In the following we fix $t,c\in\mathbb{N}$ with $t\leq q$ and $\ell\leftarrow t/c\in\mathbb{N}$. The encryption scheme (KeyGen, Enc, Dec) is defined as follows:

Key generation: KeyGen(): act as EgGen().

Encryiption: $Enc_{pk}(m)$

- 1. Compute $m_0, \ldots, m_{\ell-1}$ do that $m = \sum_{i \in (\ell)} 2^{ic} \cdot m_i$.
- 2. For each $i \in (\ell)$: let $\widetilde{M}_i \stackrel{\mathrm{R}}{\leftarrow} \mathsf{EgEnc}_{\mathsf{pk}}(m_i)$.
- 3. Output $\overline{M} \leftarrow (\widetilde{M}_0, \dots, \widetilde{M}_{\ell-1})$.

 $\textbf{Decription:} \ \mathsf{EgDec}_{\mathsf{sk}}(\overline{M})$

- 1. For each $i \in (\ell)$: let $m_i \stackrel{\mathbb{R}}{\leftarrow} \mathsf{EgDec}_{\mathsf{sk}}(\overline{M}_i)$.
- 2. Let $m \leftarrow \sum_{i \in (\ell)} 2^{ic} \cdot m_i$.
- 3. Output m.

4.3 Proofs

Knowledge of secret key.

Task: ZKPOK for $\mathcal{R}_{\mathsf{KeyGen}} = \{(pk, w)\}: \mathsf{KeyGen}(w) = (\cdot, pk)\}.$

Proof: Apply the (standard) ElGammal POK for the secret key relation.

Knowledge of plain text.

Task: ZKPOK for $\mathcal{R}_{enc} = \{((pk, A), (a, r)) : Enc_{(pk)}(a; r) = A\}.$

Proof: On plaintext \overline{A} , for each \overline{A}_i apply the standard EG POK for the ciphertexts relation.

Decryptability.

 $\textbf{Task:} \ \text{ZKP for} \ \mathcal{R}_{\mathsf{dec}} = \big\{ ((\mathsf{pk}, \overline{A}), (\overline{a}, \overline{w})) \colon \forall i \in (\ell) \mathsf{EgEnc}_{\mathsf{pk}}(\overline{a}_i; \overline{r}_i) = \overline{A}_i \ \land \ \overline{w}_i \in (2^c) \big\}.$

Proof: On plaintext \overline{A} , for each \overline{A}_i : apply EG range proof to show that th encrypted plaintext is in (2^c) .

7

Equality.

$$\textbf{Task:} \ \ \text{ZKP for} \ \ \mathcal{R}_{\mathsf{eq}} = \big\{ ((pk^0, pk^1, A^0, A^1), (a, r^0, r^1)) \colon \forall i \in \{0, 1\} \ \ \mathsf{Enc}_{pk^i}(a; r^i) = A^i \big\}.$$

Proof: On input $(\mathsf{pk}^0,\mathsf{pk}^1,\overline{A}^0,\overline{A}^1,a,\overline{r}_0,\overline{r}_1)$

1. For both $j \in \{0, 1\}$:

(a) Let
$$a \leftarrow \sum_{i} 2^{c} \cdot a_{i}$$

Task: ZK for
$$\mathcal{R}_{\mathsf{rp}} = \{((pk, A), (a, r)) \colon \mathsf{Enc}_{pk}(a; r) = A \land a \in [p_{\mathsf{size}}]\}.$$

Proof: On public key sk, for each $i \in [\ell]$ apply the (standard) ElGammal ZKP for the secret key relation.

Larger than.

$$\textbf{Task:} \ \ \text{POK for} \ \mathcal{R}_{\mathsf{Irger}} = \big\{ ((pk, A^0, A^1), (a^0, r^0, a^1, r^1)) \colon \forall i \in \{0, 1\} \ \mathsf{Enc}_{pk}(a^i; r^i) = A^i \ \land \ a^1 - a^0 \in [q] \big\}.$$

Proof:

4.4 Adjusting Section 3.2