

Cryptography

The Basic Idea:

Two approaches:

1) Make algorithm secret and dan't use a key.

Bad Idea

2) Make algorithm public but keep the key secret.

Good Idea

Before Computers Substitution ciphers ruled:

Caesar (Shift by N): 26 possibilities, easy to decode

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Key Phrase: Lots of possibilities, a bit harder to decode

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z B U S H A N D G O R E F I J K L M P Q T V W X Y Z C

Random Mapping: 4 x 10²⁶ possibilities, harder to decode

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z N D T V G K L M R E P O F I J Q U S W X B H A Y Z C

Before Computers

Cryptanalysis:

First known publication:

"A Manuscript on Deciphering Cryptographic Messages"

By the ninth century Arab scholar:

Abu Yusuf Ya'qub ibn Is-haq ibn as-Sabbah ibn 'omran ibn Ismail al-Kindi

Statistical "Frequency Analysis" of letters & words can easily break any mono-alphabetic substitution cipher.

In English: most common letters: E, T, A, O, I, N, S, ...

most common 2 letters words: ON, AS, TO, AT, IT...

most common 3 letters words: THE, AND, FOR, WAS,...

Vigenere square (1586)

```
abcdefghijklmnopqrstuvwxyz
1 B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
2 C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
3 DEFGHIJKLMNOPQRSTUVWXYZABC
4 E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
5 F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
6 G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
7 HIJKLMNOPQRSTUVWXYZABCDEFG
8 I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
9 J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
10 KLMNOPQRSTUVWXYZABCDEFGHIJ
11 LMNOPQRSTUVWXYZABCDEFGHIJK
12 MNOPQRSTUVWXYZABCDEFGHIJKL
13 NOPQRSTUVWXYZABCDEFGHIJKLM
14 O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
15 PORSTUVWXYZABCDEFGHIJKLMNO
16 Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
17 R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
18 S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
19 TUVWXYZABCDEFGHIJKLMNOPQRS
20 U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
21 V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
22 W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
23 X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
24 Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
25 Z A B C D E F G H I J K L M N O P Q R S T U V W X Y
26 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
```

Vigenere square

```
abcdefghijklmnopqrstuvwxyz
 1 B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
 2 C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
 3 D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
 4 E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
 5 F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
 6 G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
 7 HIJKLMNOPQRSTUVWXYZABCDEFG
 8 I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
 9 J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
10 K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
11 L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
12 M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
13 NOPQRSTUVWXYZABCDEFGHIJKLM
14 O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
15 P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
16 Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
17 R S T U V W X Y Z A B C D E F G H I J K L M N O P O
18 STUVWXYZABCDEFGHIJKLMNOPQR
19 TUVWXYZABCDEFGHIJKLMNOPQRS
20 U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
21 V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
22 W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
23 X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
24 Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
25 Z A B C D E F G H I J K L M N O P Q R S T U V W X Y
26 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
```


Immune to frequency analysis!

However:

IF

If the key is as long as the message

AND

The key is completely random

THEN

The encryption is perfect (can't be broken) !!!

This is an example of Symmetric Key Encryption

Real Simple: Same key to encode and decode

DES Advantages:

Very Fast:

Ideally suited for implementation in hardware (bit shifts, look-ups etc).

Dedicated hardware (in 1996) could run DES at 200 Mbyte/s.

Well suited for voice, video etc.

DES Security:

Not too good:

Trying all 256 possible keys is not that hard these days.

If you spend ~\$25k you can build a DES password cracker that can will succeed in a few hours.

Back in 1975 this would have cost a few billion \$\$. It is widely believed that the NSA did this.

Similar algorithms with longer keys are available today (IDEA).

Hash Tool

H	HashCalc 🗆 🗴				
Data Format:	Data: C:\Program Files (x86)\HashCalc\HashCalc.chm				
☐ HMAC	Key Format: Key:				
₩D5	2ae58ce465094805e474d7(29a/cc5a2				
☐ MD4					
▼ SHA1	2207aa578b207b5d80574ad8b3a5d59a3d885be2				
▼ SHA256	a00bc7f604c8810068ece4fa743fd6ab747246da7f2e7fc1				
☐ SHA384					
☐ SHA512					
▼ RIPEMD160	cc36f3c53ec530f6cde4acfed56f9fdd4288aadb				
☐ PANAMA					
TIGER					
₩D2	313434f91573c907bedfec6cfeffd68d				
☐ ADLER32					
▼ CRC32	9d988947				
⊏ eDonkey/ eMule					
SlavaSoft	Calculate Close Help				

RSA (Rivest, Shamnir, Adleman: 1977)

IDEA: Alice has a "public" encryption key that everyone knows, and a "private" decryption key that only she knows. Bob looks up her public key, encrypts his message, and sends it to her. She decrypts it with her private key.

- Pick two large prime numbers p and q. These are secret.
- Calculate n = pq
- Pick another number e such that e and (p-1)(q-1) are relatively prime.
- The numbers **n** and **e** make up your public key. Publish them!
- Calculate d such that $ed = 1 \mod (p-1)(q-1)$ {i.e. $d = e^{-1} \mod (p-1)(q-1)$ }
- 6) The number **d** is your private key.

Encrypt message m via $c = m^e \mod n$

Decrypt the ciphertext c via $m = c^d \mod n$

This is what happens when you buy a book from Amazon.com

Example:

- This is an extremely simple example and would not be secure using primes so small, normally the primes p and q would be much larger.
- Select the prime integers q=11, q=3.
- n = pq = 33; φ(n) = (p-1)(q-1) = 20
- □ Choose e=3
 - □ Check gcd(3,20)=1
- □ Compute d=7
 - $(3)d \equiv 1 \pmod{20}$
- Therefore the public key is (n, e) = (33, 3) and the private key is (n, d) = (33, 7).
- Now say we wanted to encrypt the message M=7
- □ C = Me mod n
- $C = 7^3 \mod 33$
- C = 343 mod 33
- C = 13

Example:

So now the cyphertext C has been found. The decryption of C is performed as follows.

 $M' = C^d \mod n$

 $M' = 13^7 \mod 33$

 $M' = 62,748,517 \mod 33$

M' = 7

As you can see after the message has been encrypted and decrypted the final message M' is the same as the original message M. A more practical way to use the algorithm is to convert the message to hexadecimal and perform the encryption and decryption steps on each octet individually.

- TLS is a protocol to establish a secure connection between a client and a server and ensure privacy and integrity of information during transmission
- It uses the RSA algorithm with 1024 and 2048 bit strengths

Digital Signature Algorithm

FIPS 186-2 specifies the Digital Signature Algorithm (DSA) that may be used in the generation and verification of digital signatures for sensitive, unclassified applications

RSA(SSL)

It uses RSA asymmetric (public key) encryption to encrypt data transferred over SSL connections

Attacks

Trickery and Deceit

It involves the use of social engineering techniques to extract cryptography keys

Brute-Force

Cryptography keys are discovered by trying every possible combination

One-Time Pad

A one-time pad contains many nonrepeating groups of letters or number keys, which are chosen randomly

Frequency Analysis

It is the study of the frequency of letters or groups of letters in a ciphertext

It works on the fact that, in any given stretch of written language, certain letters and combinations of letters occur

Brute-Force

Attack Scheme

Defeating a cryptographic scheme by trying a large number of possible keys until the correct encryption key is discovered

Brute-Force Attack

Brute-force attack is a high resource and time intensive process, however, more certain to achieve results

Success Factors

Success of brute force attack depends on length of the key, time constraint, and system security mechanisms

Power/Cost	40 bits (5 char)	56 bit (7 char)	64 bit (8 char)	128 bit (16 char)
\$ 2K (1 PC. Can be achieved by an individual)	1.4 min	73 days	50 years	10^20 years
\$ 100K (this can be achieved by a company)	2 sec	35 hours	1 year	10^19 years
\$ 1M (Achieved by a huge organization or a state)	0.2 sec	3.5 hours	37 days	10^18 years

RSA Security:

RSA is secure because its very hard to factor n to find p and q if n is sufficiently big. (Discrete logarithms).

"Sufficiently Big" means ~2048 bits

"Hard" means that all the computers on earth could not do it in the age of the universe.

TrueCrypt

TrueCrypt is disk encryption software that creates a virtual encrypted disk within a file and mounts it as a real disk

It encrypts an entire partition or storage device such as USB flash drive or hard drive

http://www.comodo.com

http://www.thawte.co

