CLAIMS

What is claimed is:

1. A semiconductor device having a composite dielectric layer, comprising: a semiconductor substrate;

alternating sub-layers comprising a first dielectric material and a second dielectric material on the semiconductor substrate, the sub-layers forming a composite dielectric layer having at least two sub-layers of at least one of the first dielectric material and the second dielectric material,

wherein one of the first dielectric material and the second dielectric material is a high-K dielectric material and an other of the first dielectric material and the second dielectric material is a standard-K dielectric material comprising aluminum oxide; and

the composite dielectric layer comprises a reaction product of the high-K dielectric material and the standard-K dielectric material.

- 2. The semiconductor device of claim 1, wherein the standard-K dielectric material further comprises at least one of silicon dioxide, silicon oxynitride, silicon nitride, and silicon-rich silicon nitride.
- 3. The semiconductor device of claim 1, wherein the high-K dielectric material comprises at least one of hafnium oxide (HfO₂), zirconium oxide (ZrO₂), tantalum oxide (Ta₂O₅), barium titanate (BaTiO₃), titanium dioxide (TiO₂), cerium oxide (CeO₂), lanthanum oxide (La₂O₃), lanthanum aluminum oxide (LaAlO₃), lead titanate (PbTiO₃), strontium titanate (SrTiO₃), lead zirconate (PbZrO₃), tungsten oxide (WO₃), yttrium oxide (Y₂O₃), bismuth silicon oxide (Bi₄Si₂O₁₂), barium strontium titanate (BST) (Ba_{1-x}Sr_xTiO₃), PMN (PbMg_xNb_{1-x}O₃), PZT (PbZr_xTi_{1-x}O₃), PZN (PbZn_xNb_{1-x}O₃), and PST (PbSc_xTa_{1-x}O₃).
- 4. The semiconductor device of claim 1, wherein the reaction product comprises a high-K derived metal atom, an aluminum atom and an oxygen atom.

Docket No. G0533A

- 5. The semiconductor device of claim 1, wherein the first dielectric material is the high-K dielectric material.
- 6. The semiconductor device of claim 1, wherein the second dielectric material is the high-K dielectric material.
- 7. The semiconductor device of claim 1, wherein the composite dielectric layer comprises at least a portion of the sub-layers of the first dielectric material and the second dielectric material, separated by a sub-layer of a reaction product of the first dielectric material and the second dielectric material.
- 8. The semiconductor device of claim 1, wherein the composite dielectric layer comprises a substantially uniform layer of the reaction product of the first dielectric material and the second dielectric material.
- 9. The semiconductor device of claim 1, wherein the composite dielectric layer comprises from 3 to about 10 sub-layers of the first dielectric material and the second dielectric material.
- 10. The semiconductor device of claim 9, wherein each pair of sub-layers of the first dielectric material and the second dielectric material are separated by a reaction product sub-layer.
- 11. The semiconductor device of claim 1, wherein the composite dielectric layer is a gate dielectric layer in the semiconductor device.
- 12. The semiconductor device of claim 1, wherein the composite dielectric layer is a gate dielectric layer formed on the semiconductor substrate.

13. A semiconductor device having a composite dielectric layer, comprising: a semiconductor substrate;

a composite gate dielectric layer on the semiconductor substrate, the composite gate dielectric layer comprising a reaction product of a first dielectric material and a second dielectric material,

wherein one of the first dielectric material and the second dielectric material is a high-K dielectric material and an other of the first dielectric material and the second dielectric material is a standard-K dielectric material comprising aluminum oxide; and

the reaction product comprises a metal aluminate wherein the metal is a high-K derived metal.

- 14. The semiconductor device of claim 13, wherein the standard-K dielectric material further comprises at least one of silicon dioxide, silicon oxynitride, silicon nitride, and silicon-rich silicon nitride.
- 15. The semiconductor device of claim 13, wherein the high-K dielectric material comprises at least one of hafnium oxide (HfO_2), zirconium oxide (ZrO_2), tantalum oxide (Ta_2O_5), barium titanate ($BaTiO_3$), titanium dioxide (TiO_2), cerium oxide (CeO_2), lanthanum oxide (La_2O_3), lanthanum aluminum oxide ($LaAlO_3$), lead titanate ($PbTiO_3$), strontium titanate ($SrTiO_3$), lead zirconate ($PbZrO_3$), tungsten oxide (WO_3), yttrium oxide (Y_2O_3), bismuth silicon oxide ($Bi_4Si_2O_{12}$), barium strontium titanate (BST) ($Ba_{1-x}Sr_xTiO_3$), PMN ($PbMg_xNb_{1-x}O_3$), PZT ($PbZr_xTi_{1-x}O_3$), PZN ($PbZn_xNb_{1-x}O_3$), and PST ($PbSc_xTa_{1-x}O_3$).
- 16. A semiconductor device having a composite dielectric layer, comprising: a semiconductor substrate;

alternating sub-layers comprising a first dielectric material and a second dielectric material on the semiconductor substrate, the sub-layers forming a composite dielectric layer having from 3 to about 10 sub-layers of the first dielectric material and the second dielectric material, each pair of sub-layers separated by a sub-layer of a

Docket No. G0533A

reaction product of the high-K dielectric material and the standard-K dielectric material,

wherein one of the first dielectric material and the second dielectric material is a high-K dielectric material and an other of the first dielectric material and the second dielectric material is a standard-K dielectric material comprising aluminum oxide.

- 17. The semiconductor device of claim 16, wherein the standard-K dielectric material further comprises at least one of silicon dioxide, silicon oxynitride, silicon nitride, and silicon-rich silicon nitride.
- 18. The semiconductor device of claim 16, wherein the high-K dielectric material comprises at least one of hafnium oxide (HfO_2), zirconium oxide (ZrO_2), tantalum oxide (Ta_2O_5), barium titanate ($BaTiO_3$), titanium dioxide (TiO_2), cerium oxide (CeO_2), lanthanum oxide (La_2O_3), lanthanum aluminum oxide ($LaAlO_3$), lead titanate ($PbTiO_3$), strontium titanate ($SrTiO_3$), lead zirconate ($PbZrO_3$), tungsten oxide ($PbZrO_3$), yttrium oxide ($PbZrO_3$), bismuth silicon oxide ($PbZrO_3$), barium strontium titanate ($PbZrO_3$), $PZRO_3$), $PZRO_3$), $PZRO_3$), $PZRO_3$ 0, $PZRO_3$ 0, $PZRO_3$ 0, $PZRO_3$ 1, and $PSTO_3$ 1, and $PSTO_3$ 2.
- 19. The semiconductor device of claim 16, wherein the composite dielectric layer is a gate dielectric layer in the semiconductor device.
- 20. The semiconductor device of claim 16, wherein the composite dielectric layer is a gate dielectric layer formed on the semiconductor substrate.