

Universidade Federal do Espírito Santo Centro de Ciências Agrárias e Engenharias Departamento de Ciências Florestais e da Madeira

CAPÍTULO VII Amostragem Sistemática

Professor Gilson Fernandes da Silva

1 - Introdução

Por este processo, diferentemente do processo de amostragem aleatória simples, apenas a primeira parcela é aleatorizada, sendo as demais parcelas função desta. Assim, as unidades amostrais utilizadas nesse delineamento, exceto a primeira, são selecionadas com base em um esquema rígido e pré-estabelecido de sistematização, com o propósito de cobrir toda a população (LOETSCH e HALLER, 1973).

Qualquer método de seleção sistemática das unidades de amostra não se baseia na teoria de amostragem probabilística pelas seguintes razões:

- a) Escolhe-se somente uma unidade de amostra ao acaso. As demais não são independentes (estatisticamente, cada unidade não corresponde a um grau de liberdade). Assim, a variância e a variância da média não podem ser calculadas;
- b) Escolhida a amostra sistematicamente, todas as outras unidades de amostra que não integram a amostra têm probabilidade igual a zero de serem eleitas, enquanto as que integram a amostra têm probabilidade um de seleção, ou seja, muitas unidades de amostra são rejeitadas na seleção. Isto se contrapõe ao princípio básico de seleção.

Exemplo de única u.a. escolhida de forma aleatória

Esquema de Amostragem Sistemática.

2 - Vantagens da amostragem sistemática

De acordo com HUSCH *et al* (1993) e NETTO e BRENA (1996), este modelo de amostragem apresenta as seguintes vantagens:

- a) A sistematização proporciona boa estimativa da média e do total devido à distribuição uniforme da amostra em toda população;
- b) Uma amostra sistemática é, geralmente, executada com maior rapidez e menor custo que uma aleatória;
- c) O deslocamento entre as unidades amostrais é mais fácil;
- d) Em geral, a amostragem sistemática apresenta-se mais precisa que a aleatória simples porque estratifica a população em (n) estratos de (k) unidades.

3 - O problema estatístico

"Em uma amostragem aleatória, o número de possíveis médias amostrais é grande o suficiente para que se espere uma distribuição normal de médias, com média μ e erro padrão da média igual a $\sigma_{\overline{v}}$. Na amostragem sistemática, o número de médias é muito menor e pode ser mais difícil assumir uma distribuição normal."

Para ilustrar a afirmação anterior, observe a seguir a representação esquemática de duas populações de tamanho N = 15 (MEUNIER *et al*, 2002).

População A, onde foram sorteadas independentemente as u.a. nºs 4; 7 e 13

A chance de uma amostra qualquer ser sorteada aleatoriamente e sem reposição é dada por:

$$\frac{1}{C_{(N,n)}} = \frac{N!}{n!(N-n)!} = \frac{1}{455}$$

População B, em que foi sorteada de 1 a N a primeira unidade de amostra (a de número 4, por exemplo) e toda amostra foi definida a partir dela, com K = 5.

Observe que a amostra (4; 9; 14) seria a selecionada caso as unidades de números 4, 9 ou 14 fossem sorteadas. Logo, ela tem a chance de 3/15 (n/N) de ser a selecionada. Na realidade, só há 5 possíveis amostras a serem selecionadas e n/N = 1/K.

Outro problema da A.S. ocorre quando N não é múltiplo de K e o sorteio da primeira unidade é feito de I a K. Nesse caso, as possíveis amostras são sorteadas com 1/K chances de seleção, mas 1/K é diferente de n/N.

População C, em que foi sorteada de 1 a K a primeira unidade de amostra (a de número 4, por exemplo) e toda a amostra foi definida a partir dela, com K = 5.

Há K amostras possíveis de serem sorteadas:

(1; 6; 11), (2; 7; 12), (3; 8; 13), (4, 9, 14) e (5 e 10)

Assim, em populações em que N é múltiplo de K (como a população B), as duas formas de seleção da primeira unidade se equivalem, ou seja, tanto faz o sorteio de I a N quanto o sorteio de I a K, as probabilidades de seleção são iguais.

No entanto, em populações onde N não é múltiplo de K (como na população C) o sorteio de l a K estabelece probabilidade de seleção da amostra dada por l/K, distinta da probabilidade real de cada amostra n/N.

Por esta razão, ao se adotar o sorteio da primeira unidade de amostra de l a K, a média amostral é considerada um estimador tendencioso da verdadeira média já que $E(\overline{X}) \neq \mu$.

Em inventários florestais, no entanto, as populações são suficientemente grandes podendo-se desprezar os efeitos do processo de seleção na distribuição amostral das médias (populações infinitas possibilitam um grande número de amostras, mesmo sistemáticas) fazendo com que a diferença entre n/N e 1/K não chegue a representar uma tendência significativa na seleção de uma determinada amostra e na estimativa da média.

Quando a população amostrada é muito heterogênea, a variância da média da amostragem sistemática tende a ser menor do que aquela estimada pela amostragem aleatória irrestrita. Nestes casos, a amostragem sistemática é mais precisa porque o seu sistema de seleção, cobrindo toda população, tende a abranger desde os menores até os maiores valores da variável.

Por outro lado, quando as amostras sistemáticas são muito homogêneas, ou seja, os valores obtidos nas unidades de amostras mostram-se correlacionados, a variância da média obtida com amostras sistemáticas é maior do que a obtida com amostras aleatórias. Estas relações podem ser mais bem percebidas pela expressão da variância da média de uma amostragem sistemática:

$$\sigma_{\overline{X}sist}^2 = \frac{\sigma_X^2}{n} \frac{(N-n)}{N} [1 + (n-1)\rho]$$

 $\sigma_{\overline{X}sist}^2$ = variância da média em uma amostragem sistemática;

$$\sigma_X^2$$
 = variância;

 ρ = coeficiente de correlação intra-amostra.

A periodicidade ou ciclicidade da variável é outro problema frequentemente associado à Amostragem Sistemática. Um fenômeno é periódico quando se repete, identicamente, em intervalos iguais.

No caso da coincidência entre o período da variação e o intervalo *K* entre u.a., a amostragem sistemática com *n* unidades de amostra corresponde teoricamente à precisão de uma amostragem inteiramente aleatória, com uma única unidade de amostra.

Sendo assim, não há possibilidade de se estimar a variabilidade entre os dados e nem há uma precisão associada. Neste caso, o coeficiente de correlação intraclasse é 1,0 (extrema homogeneidade entre as unidades de uma amostra).

4 - Tipos de amostragem sistemática

Basicamente, pode-se trabalhar com dois tipos de amostragem sistemática, os quais serão descritos a seguir:

I – Amostragem sistemática por faixas

- Utilizando-se faixas como unidades de amostra, a distribuição sistemática é acompanhada primeiro pela divisão da área em *N* faixas de igual largura.
- O intervalo entre as unidades de amostra, independentemente do tipo de unidade de amostra de área fixa, é dado pela seguinte expressão:

 $K = \frac{N}{n}$

em que

N = número total de faixas e n = números de faixas para satisfazer uma determinada precisão requerida.

- É um sistema pouco adequado a inventários florestais por se trabalhar com unidades de amostras demasiadamente extensas, de difícil locação e medição.
- Exige que na estimativa se leve em consideração o peso de cada faixa. Pode ser útil na estimativa de área de estratos em mapas ou fotos aéreas.

II – Amostragem sistemática por parcelas ou pontos

Diferentemente da amostragem sistemática em faixas, a amostragem sistemática por parcelas ou pontos é muito empregada em trabalhos práticos, principalmente pela facilidade de localização das unidades de amostra no campo, especialmente em florestas naturais.

5 - Definição da unidade amostral inicial

I – Definição da unidade inicial por coordenadas

Sorteia-se uma coluna entre (1) e (N) e uma linha entre (1) e (M).

II – Ponto inicial a partir de um vértice da área

Tomando-se o canto inferior esquerdo da Figura 7 e para um K=4 em ambas as direções, marca-se um quadrado 4 x 4 contendo as 16 unidades amostrais que determinam as K amostras independentes possíveis.

- ✓O tamanho da amostra será variável, quando o número de linhas e colunas não for múltiplo exato do intervalo de amostragem. Além disso, depende do ponto inicial eleito e da forma da área, que em inventários florestais normalmente é irregular.
- ✓Por razões práticas, a distribuição equidistante das unidades amostrais é frequentemente alterada, de modo que o intervalo entre linhas (K_1) seja maior que do que o intervalo entre unidades na linha (K_2) .
- ✓ Quando isso ocorre, alguns autores denominam esta situação de Amostragem Sistemática em dois estágios, sendo a Amostragem Sistemática em um estágio aquela em que $K_1 = K_2$.

Na amostragem sistemática em dois estágios, para se obter os valores de K_1 e de K_2 , pode-se utilizar a seguinte Expressão:

$$f = \frac{a}{K_1 K_2}$$
 e se $K_1 = K_2$, então:

$$f = \frac{a}{K^2}$$
 (Amostragem em um estágio)

Em que

f = fração amostral (n/N ou área amostrada/área total da floresta);

a =área da unidade amostral;

 K_1 = intervalo entre linhas;

 K_2 = intervalo entre parcelas, nas linhas.

6 - Estimadores dos parâmetros da AS

- a) Média
- a₁) Média do estágio único

$$\overline{x} = \frac{\sum_{i=1}^{N} X_i}{n}$$

a₂) <u>Média para dois estágios</u>

$$\bar{x} = \frac{\sum_{j=1}^{m} \sum_{i=1}^{n_j} x_{ij}}{mn_j}$$

em que

m = número de linhas ou faixas;

 n_i = número de subunidades dentro da linha ou faixa (j).

b) Variância da média

Neste caso, existem duas possibilidades: Usar o estimador da amostragem casual simples ou o estimador definido pelo método das diferenças sucessivas, como apresentado a seguir:

b₁) Variância da média para estágio único

$$s_{\bar{x}}^{2} \cong \frac{\sum_{i=1}^{n} (x_{i} - x_{i+1})^{2}}{2n(n-1)} (1-f)$$

b₂) <u>Variância da média para dois estágios</u>

$$s_{\bar{x}}^{2} \cong \frac{\sum_{j=1}^{m} \sum_{i=1}^{n_{j}} (x_{ij} - x_{(i+1)j})^{2}}{2n \sum_{j=1}^{m} (n_{j} - 1)} (1 - f)$$

c) Erro Padrão da Média

$$s_{\bar{x}} = \pm \frac{s_x}{\sqrt{n}} \sqrt{(1-f)}$$

d) Erro de Amostragem

- Erro Absoluto

$$E_a = \pm ts_{\bar{x}}$$

- Erro Relativo

$$E_r = \pm \frac{ts_{\bar{x}}}{\bar{x}} 100$$

Obs.: $t(\alpha; n-1 g.l.)$

e) Intervalo de Confiança para a Média

$$IC[\overline{x} - ts_{\overline{x}} \le \mu \le \overline{x} + ts_{\overline{x}}] = P$$

f) Intervalo de Confiança por Hectare

$$IC[(\overline{x} - ts_{\overline{x}})f_c \le \mu \le (\overline{x} + ts_{\overline{x}})f_c] = P \quad \text{em que} \quad f_c = \frac{A_h}{a_p}$$

g) Total da População

$$\hat{X} = N \bar{x}$$

h) Intervalo de Confiança para o Total

$$IC = [\hat{X} - Nts_{\bar{x}} \le X \le \hat{X} + Nts_{\bar{x}}] = P$$

i) Estimativa Mínima de Confiança

$$EMC[\overline{x} - ts_{\overline{x}} \leq \mu] = P$$

7 - Intensidade de amostragem

O cálculo do número de unidades na amostragem sistemática é realizado segundo os mesmos procedimentos usados na amostragem casual simples.

Deve-se destacar, contudo, que ao se realizar um inventário piloto, sua estrutura amostral deve ser sistemática e preferencialmente com a mesma estrutura a ser utilizada no inventário definitivo.

8 - Exemplo de Aplicação da AS

Inventariar a população de *Pinus sp*. constituída de 450 parcelas de 0,1 ha, ou seja, 45 hectares, mostrada na Figura 1, por meio da Amostragem Sistemática, admitindo-se um erro de amostragem máximo de 10% da média estimada, com 90% de probabilidade de confiança.

Fonte: NETTO e BRENA (1996)

Solução:

I – Realização do inventário piloto

Na Amostragem Sistemática a realização de inventário piloto fica complicada, devendo-se procurar uma intensidade amostral que coincida com a definitiva.

II – Cálculo da intensidade amostral ótima

Como sugerido anteriormente, será aproveitado a recomendação feita para a Amostragem casual simples, que indicou um número ótimo de parcelas de 59 u.a.

III – Estrutura da sistematização

Para se estruturar a sistematização, pode-se empregar a seguinte metodologia:

$$K = \frac{N}{n} \qquad K = \frac{450}{59} = 7,63$$

Como (K) não é um múltiplo perfeito de (N), deve-se arredondar o intervalo de amostragem para (7) ou (8). considerando (K = 7) obtém-se 64 unidades; para (K = 8) obtém-se 56 unidades amostrais. Porém, é preferível arredondar para (K = 7) que, embora resultando uma amostra maior que a desejada, garante a precisão requerida para as estimativas.

O intervalo de amostragem (K = 7) indica que a cada grupo de 7 unidades da população, uma unidade será amostrada, a qual ocupa a mesma posição em cada grupo.

A estrutura sistemática em dois estágios, para amostrar uma unidade amostral em cada grupo de 7, necessita de dois intervalos de amostragem, isto é: um intervalo entre colunas $(K_1 = 7)$ e um intervalo entre linhas $(K_2 = 1)$. Neste caso, não há nenhuma outra combinação entre K_1 e K_2 que resulte em K = 7, para K_1 e K_2 inteiros.

Este fato gera um problema à medida que o intervalo entre colunas ficou muito maior que o intervalo entre linhas. Sendo assim, sugere-se K = 6, para uma combinação $K_1 = 3$ e $K_2 = 2$.

Assumindo que foram sorteadas a coluna (a) e a linha (1), na Tabela 1 é apresentado a sistematização resultante, com os respectivos volumes amostrados.

Tabela 1 - Amostra obtida a partir do sorteio da unidade amostral inicial

Linha	Coluna – n_j (Linhas de amostragem)											
Lillia	a	d	\boldsymbol{g}	ig j	m							
1	8,0	9,4	7,3	10,1	8,7							
3	8,6	12,7	9,8	11,6	8,8							
5	13,1	7,6	9,5	8,5	10,4							
7	16,6	19,0	18,6	10,8	22,9							
9	21,6	15,1	15,8	18,0	16,2							
11	23,6	23,7	23,3	23,0	24,0							
13	19,7	18,4	22,8	27,1	19,5							
15	30,6	29,4	27,8	28,7	30,5							
17	20,4	24,6	19,2	28,2	19,9							
19	28,0	38,6	28,3	34,9	22,9							
21	30,1	27,6	23,1	28,4	21,4							
23	22,6	24,7	26,7	31,7	28,7							
25	26,7	24,8	26,9	31,8	21,8							
27	31,8	28,7	33,9	28,3	30,7							
29	25,5	33,1	35,1	30,1	28,3							

IV – Análise estatística da amostragem

a) Média

$$\bar{x} = \frac{\sum_{j=1}^{m} \sum_{i=1}^{n_j} x_{ij}}{mn_j} \qquad \bar{x} = 22,11 \text{ m}^3/0,1\text{ha}$$

b) Variância da média

$$s_{\bar{x}}^{2} \cong \frac{\sum_{j=1}^{M} \sum_{i=1}^{N} (X_{ij} - X_{(i+1)j})^{2}}{2n \sum_{j=1}^{M} (n_{j} - 1)} (1 - f)$$

$$s_{\bar{x}}^{2} \cong \frac{\left[(8-8,6)^{2} + \dots (31-25,5)^{2} \right] + \dots + \left[(8,7-8,8)^{2} + \dots (30,7-28,3)^{2} \right]}{2.75.(14+14+14+14+14)} \left(1 - \frac{75}{450} \right)$$

$$s_{\bar{x}}^2 \cong \frac{2657,16}{10500} (1-0,167)$$
 $s_{\bar{x}}^2 \cong 0,2109 \text{ (m}^3/0,1\text{ha})^2$

c) Erro Padrão da Média

$$s_{\bar{x}} = \pm \sqrt{s_{\bar{x}}^2}$$
 $s_{\bar{x}} = \pm \sqrt{0.2109}$
 $s_{\bar{x}} = \pm 0.4592 \text{ m}^3/0.1\text{ha}$

- d) Erro de Amostragem
 - d₁) Erro de Amostragem Absoluto

$$E_a = \pm ts_{\bar{x}}$$
 $t_{(0,10;74)} = 1,67 \longrightarrow E_a = \pm 1,67.0,4592 = \pm 0,7669 \text{ m}^3/0,1 \text{ ha}$

d₂) Erro de Amostragem Relativo

$$E_r = \pm \frac{ts_{\bar{x}}}{\bar{x}}100$$
 \Longrightarrow $E_r = \pm \frac{1,67.0,4592}{22,11}100 = 3,47\%$

f) Intervalo de Confiança para a Média

$$IC\left[\overline{x} - ts_{\overline{x}} \le \mu \le \overline{x} + ts_{\overline{x}}\right] = P$$

$$IC[22,11 - 1,67(0,4592) \le \mu \le 22,11 + 1,67(0,4592)] = 90\%$$

$$IC[21,34 \text{ } m^3/0,1 \text{ } ha \le \mu \le 22,88 \text{ } m^3/0,1 \text{ } ha] = 90\%$$

g) Intervalo de Confiança por Hectare

$$IC\left[\left(\overline{x} - ts_{\overline{x}}\right)f_c \le \mu \le \left(\overline{x} + ts_{\overline{x}}\right)f_c\right] = P$$

$$IC[(22,11-1,67.0,4592)(10000/1000) \leq \mu \leq (22,11+1,67.0,4592)(10000/1000)] = 90\%$$

$$IC[213,43 \text{ } m^3/ha \le \mu \le 228,77 \text{ } m^3/ha] = 90\%$$

i) Total da População

$$\hat{X} = N \bar{x}$$

 $\hat{X} = 450.22,11 = 9949,50 \text{ m}^3$

j) <u>Intervalo de Confiança para o Total</u>

$$\begin{split} IC &= [\hat{X} - Nts_{\bar{x}} \leq X \leq \hat{X} + Nts_{\bar{x}}] = P \\ IC[9949,50 - 450 \ (1,67) \ 0,4592 \leq X \ \leq 9949,50 + 450 \ (1,67) \ 0,4592] = 90\% \\ IC[9604,41 \ m^3 \leq X \ \leq 10294,59 \ m^3] &= 90\% \end{split}$$

k) Estimativa Mínima de Confiança para a Média

$$EMC[\bar{x} - ts_{\bar{x}} \le \mu] = P$$

 $EMC[22,11 - 1,30 (0,4592) \le \mu] = 90\%$
 $EMC[21,51 \ m^3/0,1 \ ha \le \mu] = 90\%$

1) Estimativa Mínima de Confiança por Hectare

$$EMC[(\bar{x} - ts_{\bar{x}})f_C \le \mu] = P$$

$$EMC[(22,11 - 1,30.\ 0,4592)(10000/1000) \le \mu] = 90\%$$

$$EMC[215,13\ m^3/ha \le \mu] = 90\%$$

m) Estimativa Mínima de Confiança para o Total

$$EMC = [\hat{X} - Nts_{\bar{x}} \le X] = P$$

$$EMC[9949,50 - 450 (1,30) 0,4592 \le X] = 90\%$$

$$EMC[9680,87 \ m^3 \le X] = 90\%$$

V – Análise comparativa dos resultados

v 7 manse comparae.	iva dos resartados	
	Parâmetro	Estimativa
Volume médio por parcela	$\mu = 22,55 \text{ m}^3/0,1\text{ha}$	$\bar{x} = 22,11 \text{ m}^3/0,1\text{ha}$
Volume total	$V = 10.148 \text{ m}^3$	$\hat{X} = 9.949,50 \text{ m}^3$
Volume por hectare	$V/ha = 225,50 \text{ m}^3/ha$	$X/ha = 221,10 \text{ m}^3/ha$
Variância dos volumes	$\sigma^2 = 65,48 \text{ (m}^3/0,1\text{ha})^2$	$s_x^2 = 65,50 (\text{m}^3/0,1\text{ha})^2$
Desvio padrão dos volumes	$\sigma = 8,09 \text{ m}^3/0,1\text{ha}$	$S_x = \pm 8,09 \text{ m}^3/0,1 \text{ ha}$
Coeficiente de variação	σ% = 35,89%	cv = 36,60%

FIM

Referências

- HUSCH, B.; MILLER, C.I.; BEERS, T.W. Forest mensuration. 3 ed. Malabar: Krieger Publishing Company, 1993. 402 p.
- LOETSCH, F.; HALLER, K.E.; ZOHRER, F. Forest inventory. 2. ed. Munich: BLV Verlagsgesellschaft, 1973. v. 2, 469 p.
- MEUNIER, I.M.J.; SILVA, J.A.A.; FERREIRA, R.L.C. **Inventário Florestal: Programas de Estudo**. Recife: Imprensa Universitária da UFRPE, 2002. 189p.
- PELLICO NETO, S.; BRENA, D.A. **Inventário florestal**. Curitiba: Edição dos autores. 1997. 316p.

	a	b	C	d	е	f	g	h	i	j	k	1	m	n	0	
1	80	92	96	94	90	85	73	63	83	101	115	156	87	109	111	
2	99	69	102	103	91	123	83	128	68	98	86	88	95	97	74	
3	86	69	85	127	98	102	98	179	71	116	98	101	88	125	110	Α
4	81	89	122	110	80	99	184	81	85	114	191	132	122	110	156	
5	131	115	92	76	136	157	95	80	89	85	126	106	104	144	116	
6	162	100	118	90	116	83	163	95	107	125	145	162	87	225	255	
7	166	164	191	190	165	155	186	188	156	108	116	177	229	149	127	
8	185	227	171	239	185	114	138	186	232	213	147	125	159	170	197	В
9	216	101	148	151	149	159	158	184	142	180	159	126	162	199	156	
10	189	197	132	137	160	190	165	240	125	258	205	214	204	157	284	
11	236	269	172	237	243	213	233	205	244	230	229	238	240	310	284	
12	273	176	217	194	314	221	201	193	239	184	162	173	216	211	254	
13	197	279	225	184	237	169	228	204	253	271	210	232	195	322	209	С
14	246	256	249	180	231	229	188	199	200	242	221	274	307	272	191	
15	306	281	248	294	187	196	278	241	272	287	263	229	305	241	244	
16	267	223	284	213	239	235	203	246	307	264	236	199	227	219	176	
17	204	256	273	246	279	259	192	221	294	282	291	232	199	259	256	
18	253	228	259	263	292	239	223	335	359	259	319	244	307	351	295	D
19	280	256	292	386	289	327	283	219	232	349	326	262	229	253	331	
20	324	273	365	268	232	266	249	317	298	292	246	358	226	305	338	
21	301	268	323	276	289	347	231	278	205	284	213	243	214	339	296	
22	402	241	360	399	278	346	247	279	253	366	248	335	283	249	229	
23	226	255	229	247	269	242	267	207	233	317	336	225	287	207	229	E
24	305	255	257	210	265	270	337	307	318	228	314	321	224	297	238	
25	267	239	298	248	309	279	269	253	261	318	271	322	218	234	280	
26	318	306	327	320	255	258	242	228	266	292	309	263	262	379	322	
27	318	329	248	287	267	273	339	345	272	283	348	221	307	262	280	
28	292	415	287	259	255	266	384	336	363	311	267	313	330	232	235	F
29	255	314	335	331	273	339	351	325	257	301	286	285	283	278	342	
30	320	377	337	400	370	379	269	224	345	269	368	312	367	358	348	
			Ī					ll				,	Ш		,	

Figura 1 - Volume, em m³ por unidade de amostra de 0,1 ha, obtidos pelo inventário 100% de um bosque *Pinus* sp (PELLICO NETTO e BRENA, 1993).

	a	b	C	d	е	f	g	h	i	j	k	1	m	n	0	
1	80	92	96	94	90	85	73	63	83	101	115	156	87	109	111	
2	99	69	102	103	91	123	83	128	68	98	86	88	95	97	74	
3	86	69	85	127	98	102	98	179	71	116	98	101	88	125	110	Α
4	81	89	122	110	80	99	184	81	85	114	191	132	122	110	156	
5	131	115	92	76	136	157	95	80	89	85	126	106	104	144	116	
6	162	100	118	90	116	83	163	95	107	125	145	162	87	225	255	
7	166	164	191	190	165	155	186	188	156	108	116	177	229	149	127	
8	185	227	171	239	185	114	138	186	232	213	147	125	159	170	197	В
9	216	101	148	151	149	159	158	184	142	180	159	126	162	199	156	
10	189	197	132	137	160	190	165	240	125	258	205	214	204	157	284	
11	236	269	172	237	243	213	233	205	244	230	229	238	240	310	284	
12	273	176	217	194	314	221	201	193	239	184	162	173	216	211	254	
13	197	279	225	184	237	169	228	204	253	271	210	232	195	322	209	С
14	246	256	249	180	231	229	188	199	200	242	221	274	307	272	191	
15	306	281	248	294	187	196	278	241	272	287	263	229	305	241	244	
16	267	223	284	213	239	235	203	246	307	264	236	199	227	219	176	
17	204	256	273	246	279	259	192	221	294	282	291	232	199	259	256	
18	253	228	259	263	292	239	223	335	359	259	319	244	307	351	295	D
19	280	256	292	386	289	327	283	219	232	349	326	262	229	253	331	
20	324	273	365	268	232	266	249	317	298	292	246	358	226	305	338	
21	301	268	323	276	289	347	231	278	205	284	213	243	214	339	296	
22	402	241	360	399	278	346	247	279	253	366	248	335	283	249	229	
23	226	255	229	247	269	242	267	207	233	317	336	225	287	207	229	E
24	305	255	257	210	265	270	337	307	318	228	314	321	224	297	238	
25	267	239	298	248	309	279	269	253	261	318	271	322	218	234	280	
26	318	306	327	320	255	258	242	228	266	292	309	263	262	379	322	
27	318	329	248	287	267	273	339	345	272	283	348	221	307	262	280	
28	292	415	287	259	255	266	384	336	363	311	267	313	330	232	235	F
29	255	314	335	331	273	339	351	325	257	301	286	285	283	278	342	
30	320	377	337	400	370	379	269	224	345	269	368	312	367	358	348	
	I							II			III					

Figura 2 - Volume, em m³ por unidade de amostra de 0,1 ha, obtidos pelo inventário 100% de um bosque *Pinus* sp (PELLICO NETTO e BRENA, 1993).