Conceptos básicos de MATLAB

- MATLAB (MATrix LABoratory) es un programa para hacer cálculos numéricos con vectores y matrices (valor real y complejo), cadenas de caracteres y otras estrucuturas.
- Permite construir herramientas reutilizables (funciones y *M-files*) las cuales también pueden ser agrupadas en librerías.
- Además de permitir hacer cáculo matricial y algebra lineal, también permite manejar polinomios, funciones, ecuaciones diferenciales ordinarias, gráficos ...

Entorno

Variable	Definición	Valor
ans	almacena el último resultado	
pi	razón de circunferencia diámetro	3.1416
eps	$\epsilon \to \text{valor pequeño a sumar (división}$	2.2204e-016
	por cero)	
inf	infinito	Inf
nan	no numérico	Nan
i y j	$\sqrt{-1}$	0 + 1.0000i
realmin	real más pequeño utilizable	2.2251e-308
realmax	real más grande utilizable	1.7977e + 308

Ayuda

Para consultar el funcionamiento de un determinado comando se puede usar:

- digitar en la ventana de comandos>> help <comando a consultar>
- O simplemente **help**
- Ventana de ayuda usando F1

Función	operación	x = 5.92
ceil(x)	redondea al infinito	6
fix(x)	redondea hacia cero	5
floor(x)	redondea hacia menos infinito	5
$\mathbf{round}(x)$	hacia el entero más próximo	6

E ''	0 ''
Función	Operación
(x)	función trigonométrica con el ángulo expresado en
	radianes
$\sin(x)$	funciones trigonométricas para
$\cos(x)$	seno, coseno, tangente
tan(x)	x (valor en radianes)
$\csc(x)$	
sec(x)	
$\cot(x)$	
d(x)	ángulo expresado en grados. e.g., sind(x)
h(x)	función hiperbólica (radianes). e.g., sinh(x)
a(x)	inversa de la función trigonométrica (resultado en
	radianes). e.g., $asin(x)$
ad(x)	inversa de función (resultado en grados). e.g., asind(x)
ah(x)	inversa de función hiperbólica (resultado en radianes).
	e.g., asinh(x)

Función	Operación
abs(x)	valor absoluto o magnitud de un número complejo
sign (x)	signo del argumento si x es un valor real (-1 si es
	negativo, 0 si es cero, 1 si es positivo)
exp(x)	exponencial
gcd(m,n)	máximo común divisor
lcm(m,n)	mínimo común múltiplo
log(x)	logaritmo neperiano
log2(x)	logaritmo base 2
log10(x)	logaritmo base 10
mod(x,y)	operación módulo
rem(x,y)	resto de la división entera
sqrt(x)	raíz cuadrada
nthroot(x,n)	raíz n-ésima de x

Función	Operación
abs(x)	magnitud del número complejo x
angle(x)	ángulo (en radianes) del complejo x
complex(y,z)	genera el complejo y + i*z
conj(x)	conjugado del número complejo x
imag(x)	parte imaginaria del número complejo x
real(x)	parte real del número complejo x
sign(x)	divide el complejo x por su magnitud, devuelve
	un número complejo con el mismo ángulo de fase
	pero con magnitud 1
isreal(x)	devuelve 1 si es real, y 0 si es complejo

Vectores y matrices

construcción de vectores y matrices

- x = [57 24 6]
- y = [2,1,3,7]
- \bullet z = $[0 \ 1 \ 2,3 \ 4,5]$
- \bullet A = [1 2 3; 4 5 6]

Se puede acceder al n-ésimo elemento del vector usando $\mathbf{x}(\mathbf{n}).$

Los índices inician en 1!!

En el caso de matrices $A(m,n) \to elemento en la fila m, columna n$

Los vectores y matrices se pueden concatenar (teniendo cuidado con las dimensiones que éstos tengan); p.e., $\mathbf{m} = [\mathbf{x} \ , \mathbf{y}]$ (concatenación por filas, en este caso funciona), pero $\mathbf{m} = [\mathbf{x} \ ; \mathbf{y}]$ (concatenación por columnas, en este caso falla)

construcción "abreviada" de vectores y matrices

- (a:b) crea un vector que comienza en el valor a y acaba en el valor b aumentando de 1 en 1.
- (a:c:b) crea un vector que comienza en el valor a y acaba en el valor b aumentando una cantidad c en cada paso.
- linspace (a,b,c) genera un vector linealmente espaciado entre los valores a y b con c elementos.
- linspace (a,b) genera un vector linealmente espaciado entre los valores a y b con 100 elementos.
- logspace (a,b,c) genera un vector logarítmicamente espaciado entre los valores 10^a y 10^b con c elementos. elementos.

Algunas matrices predefinidas

- \bullet zeros(n) crea una matriz cuadrada n x n de ceros.
- zeros(m,n) crea una matriz m x n de ceros.
- ones(n) crea una matriz cuadrada n x n de unos.
- \bullet ones(m,n) crea una matriz m x n de unos.
- rand(n) crea una matriz cuadrada n x n de números aleatorios con distribución uniforme (0,1).
- rand(m,n) crea una matriz m x n de números aleatorios con distribución uniforme (0,1).
- randn(n) crea una matriz cuadrada n x n de números aleatorios con distribución normal (0,1).
- \bullet eye(n) crea una matriz cuadrada n x n de unos en la diagonal y ceros el resto.
- magic(n) crea una matriz cuadrada n x n de enteros de modo que suman lo mismo las filas y las columnas.

Operaciones con matrices

Símbolo	Expresión	Operación
+	A + B	Suma de matrices
-	A - B	Resta de matrices
*	A * B	Multiplicación de matrices
.*	A .* B	Multiplicación elemento a elemento de matrices $a_{ij} * b_{ij}$
/	A/B	División de matrices por la derecha A*inv(B)
./	A ./ B	División elemento a elemento de matrices por la derecha $a_{ij} * \frac{1}{b_{ij}}$
\	$A \setminus B$	División de matrices por la izquierda $inv(A)*B$
٠\	A .\ B	División elemento a elemento de matrices por la izquierda
٨	A ^ n	Potenciación (n debe ser un número, no una matriz)
.^	A .^ B	Potenciación elemento a elemento de matrices
'	Α'	Trasposición compleja conjugada
.'	A .'	Trasposición de matrices

Análisis de matrices

Función	On anación	
Function	Operación	
$\det(A)$	determinante	
diag(v)	crea una matriz diagonal con el vector v sobre la	
	diagonal	
diag(A)	extrae la diagonal de la matriz A como un vector	
	columna	
eig(A)	valores propios	
inv(A)	matriz inversa	
norm(A)	norma de A	
orth(A)	ortogonalización	
pinv(A)	pseudoinversa	
rref(A)	reducción mediante la eliminación de Gauss de una	
	matriz	
size(A)	dimensiones	
tril(A)	A como triangular inferior	
triu(A)	A como triangular superior	

Otras operaciones importantes

Función	Operación
find(A)	índices de las entradas de A que son mayores que 0
[VE,VA] = eig(A)	VE son los vectores propios y VA son los valores
	propios
[L,U] = lu(A)	factorización LU
[Q,R] = qr(A)	factorización QR
[U, S, V] = svd(A)	descomposición de valor singular A = U*S*V'

Estructuras

Estructuras

Permite agrupar datos de diferente naturaleza. Se puede usar el comando **struct** o llenar los campos de forma individual.

```
>> alumno(1) = struct
('nombre','Pablo','apellido1','fernández','apellido2','García','edad',15);
>> alumno(2) = struct
('nombre','Fermín','apellido1','Martínez','apellido2','Gil','edad',16);
```

Función	Operación
fieldnames(E)	devuelve el nombre de los campos de la estructura E
isfield(E, 'c')	devuelve 1 si 'c' es un campo de la estructura E y 0 si no lo es
isstruct(E)	devuelve 1 si E es una estructura y 0 si no lo es
rmfield(E, 'c')	elimina el campo 'c' de la estructura E

Vectores y matrices de celdas

Esta estructura de datos permite elementos de diferentes tipos (vectores, matrices, cadenas de caracteres, estructuras, ...)

```
>> celda(1) = \{[0 1 2]\};
>> celda(2) = {'cadena de caracteres'};
>> celda(3) = {eye(2)};
>> celda(4) = \{-7\};
>> celda
celda =
[1x3 double] [1x20 char] [2x2 double] [-7]
>> cel{1} = [0 1 2];
>> cel{2} = 'cadena de caracteres';
>> cel{3} = eve (2);
>> cel{4} = -7;
>> cel
cel =
[1x3 double] [1x20 char] [2x2 double] [-7]
```

Algunas operaciones

Para ${\bf m}$ y ${\bf n}$ números naturales, ${\bf c}$ celdas y ${\bf x}$ vector o matriz

Función	Operación
$_{\mathrm{cell}(\mathrm{m,n})}$	crea una matriz de celdas con ${\bf m}$ filas y ${\bf n}$
	columnas
celldisp(c)	muestra el contenido de todas las celdas de ${f c}$
cellplot(c)	muestra la representación gráfica de las celdas de
	c
iscell(c)	devuelve 1 si es una matriz de celdas y 0 si no lo
	es
num2cell(x)	convierte el vector o matriz numérica en celdas

Programación en MATLAB

Sentencia FOR

```
for x = 1:5
   disp('valor de x es:')
   disp(x)
end
```

Sentencia WHILE

```
while a < 5
    disp('valor de a es: ')
    disp(a)
    a = a + 1;</pre>
```

end

Sentencia Condicionales

```
if b == 0
  disp('b vale 0')
elseif b == 1
  disp('b vale 1')
elseif b == 2
  disp('b vale 2')
elseif b == 3
  disp('b vale 3')
else
  disp('b no vale ni 0 ni 1 ni 2 ni 3')
end
```

En el caso de usar **OCTAVE** las sentencias terminan con **endfor**, **endwhile** y **endif**, respectivamente

M-files y funciones

M-files

Un M-file es un fichero de comandos que se ejecutan sucesivamente cuando se teclea el nombre del fichero en la línea de comandos de Matlab o se incluye dicho nombre en otro fichero *.m.

```
p.e., se escribe en el editor y se guarda como 'operaciones.m':
x = 4
y = 3
suma = x + y
resta = x - y
producto = x*y
```

Al ejecutar en la ventana de comandos la instruccion 'operaciones' la salida es como se muestra:

```
>> operaciones
x = 4
y = 3
suma = 7
resta = 1
producto = 12
```

Functiones

Se pueden construir funciones propias y almacenarlas en M-files individuales (aunque pueden estar también en el script que se quiere ejecutar).

En el caso de guardar la función en un M-file independiente se recomienda usar el mismo nombre para la función y para el archivo.

Para definir una función se usa:

$function~[a,b,c] = nombre_funci\'on(x,y,z)$

donde \mathbf{a} , \mathbf{b} , \mathbf{c} son los argumentos de salida de la función y \mathbf{x} , \mathbf{y} , \mathbf{z} son los de entrada.

En el caso de usar un M-file independiente para la función, la anterior debe ser la primera línea de código (luego de los comentarios y la descripción de la función en caso de incluirla).

En el caso de usar OCTAVE terminar la función usando endfunction

Functiones

Existe flexibilidad en el número de argumentos de entrada y salida usando **varargin** y/o **varargout**.

La información sobre el número de entradas y salidas están en **nargin** y **nargout**.

```
function varargout=atan3(varargin)
 % atan3 puede recibir 1 o 2 argumentos: llama atan y atan2 respectivamente
 % valores de retorno: el ángulo en radianes o ángulo en radianes y en grados.
  if nargin==1
   rad = atan(varargin{1});
  elseif nargin==2
   rad = atan2(varargin{1}, varargin{2});
 else
   disp('Error: más de dos argumentos')
   return
  end
 varargout{1}=rad;
  if nargout>1
   varargout{2}=rad*180/pi;
  end
```

Exploración de datos

Análisis estadístico

MATLAB permite hacer análisis estadístico sobre conjuntos de datos (matrices con orientación por columnas).

D	0
Función	Operación
corrcoef(X)	coeficientes de correlación
cov(X)	matriz de covarianzas
cumprod(X)	producto acumulativo de columnas
cumsum(X)	suma acumulativa de columnas
diff(X)	diferencias entre elementos adyacentes de X
hist(X)	histograma o diagrama de barras
iqr(X)	rango intercuartílico de la muestra
$\max(X)$	máximo de cada columna
mean(X)	promedio por columnas
median(X)	mediana por columnas
$\min(X)$	mínimo de cada columna
range(X)	rango $(V_{\{max\}} - V_{\{min\}})$ por columna
sort(X)	orden ascendente por columna
std(X)	desviación estándar por columna
sum(X)	suma de elementos de cada columna
var(X)	varianza de los elementos por columna

Polinomios

Raices y otras operaciones entre polinomios

Los polinomios se representan a través de sus coeficientes en un vector fila. Por ejemplo, para indicar el polinomio $5x^4 + 3x^2 - x + 5$ se escribe [5,0,3,-1,5].

Función	Operación
roots(p)	raices del polinomio
conv(p,q)	multiplica los dos polinomios p y q
deconv(c,q)	divide el polinomio c entre q
polyder(p)	calcula la derivada del polinomio p
polyder(p,q)	calcula la derivada del producto de los polinomios
	ру q
polyval(p,x)	evalúa el polinomio p en cada valor de x.
	$p(x) = p_1 x^n + p_2 x^{n-1} + \dots + p_{n-1}$

Representación gráfica

La instrucción **plot** genera representaciones gráficas 2D de vectores de vectores con **igual número de elementos**

```
>> x = [-2 -1 \ 0 \ 1 \ 2 \ 3]; y = [4 \ 1 \ 0 \ 1 \ 4 \ 9]; z = [6 \ 5 \ 3 \ 7 \ 5 \ 2];
>> plot (x,y, '-ob', 'linewidth', 3, x,z, '-sr', 'linewidth', 2)
```


algunos parámetros para modificar gráficas 2D

xlabel('texto')
ylabel('texto')
title('texto')
text(x,y, 'texto')
gtext('texto')

grid
axis([xmin xmax ymin ymax])
axis equal
axis square
axis normal

etiqueta sobre el eje X de la gráfica actual etiqueta sobre el eje Y de la gráfica actual título en la cabecera de la gráfica actual texto en el lugar especificado por las coordenadas texto que se ubica en la coordenada que indiquemos con el ratón dibujar una rejilla fija valores máximo y mínimo de los ejes fija que la escala en los ejes sea igual fija que la gráfica sea un cuadrado

desactiva axis equal v axis square

Otras gráficas

Orden	¿Qué hace?	Imagen
area	colorea el area bajo la gráfica	
bar	diagrama de barras (verticales)	
barh	diagrama de barras (horizontales)	
hist	histograma	
pie	sectores	
rose	histograma polar	
stairs	gráfico de escalera	1,1
stem	secuencia de datos discretos	
loglog	como plot pero con escala logarítmica en ambos ejes	
semilogx	como plot pero escala logarítmica en el eje x	\sim
semilogy	como plot pero escala logarítmica en el eje y	

En este caso se usa la instrucción **plot3**. Los vectores deben tener el mismo número de elementos.

$$>> x = -720:720; y = sind (x); z = cosd (x);$$

superficies de malla

x = -10:0.5:10; y = -10:0.5:10;

La orden [X,Y]=meshgrid(x,y) crea una matriz X cuyas filas son copias del vector x y una matriz Y cuyas columnas son copias del vector y.

Para generar la gráfica de malla se usa la orden $\operatorname{mesh}(X,Y,Z)$. También puede tomar una matriz simple como argumento: $\operatorname{mesh}(Z)$.

```
[X,Y] = meshgrid (x,y);
Z = sin (sqrt (X .^2 + Y .^2)) ./ sqrt (X .^2 + Y .^2 + 0.1);
mesh (X,Y,Z); figure, mesh(Z)
```

superficies con color

La instrucción $\operatorname{surf}(\mathbf{X},\mathbf{Y},\mathbf{Z})$ permite generar una superficie de forma similar a la instrucción $\operatorname{mesh}(\mathbf{X},\mathbf{Y},\mathbf{Z})$ pero adicionalmente "colorea" los espacios entre líneas del mallado de superficie.

Para las matrices X, Y, Z definidas antes.

>> surf (X,Y,Z)

Se puede cambiar el mapa de colores usando la instrucción **colormap** < mapa a usar>. Para ver los mapas disponibles usar help colormap

```
cellColor={'jet','hot','viridis','hsv','rainbow','cool',...
'spring','summer','autumn','copper','pink','bone','gray','ocean'};
Generar una matriz de 64×3 (64 colores diferentes)
col = colormap('hot');
```


cambiar "punto de vista"

Se puede cambiar usando la instrucción view(azimuth, elevation) o view([x,y,z])

Ficheros de entrada y salida

Lectura

```
fid = fopen('testFile.txt','r'):
                                               uno dos tres
 2
                                                cuatro cinco seis
    data = textscan(fid, '%s');
 3
                                                1 2 3
    fclose(fid);
                                                4 5 6
    stringData = data{:};
                                               7 8 9
 6
                                                10 11 12
    nCol = 3
                                               13 14 15
    linesToSkip=2
    nFil = numel(stringData )/nCol;
10
                                                            >> matHeader
11
    matHeader = {}:
                                                            matHeader =
12
    matData = zeros(nFil-linesToSkip,nCol);
13
                                                              [1.1] = uno
14 - for ii=1:linesToSkip
                                                              [2.1] = cuatro
15
     for jj=1:nCol
                                                              [1.2] = dos
16
      idx= (ii-1)*nCol+jj;
                                                              [2.2] = cinco
17
        matHeader{ii.ii} = stringData{idx}:
                                                              [1,3] = tres
18
      endfor
                                                              [2,3] = seis
    endfor
19
20
21
                                                                      >> matData
22 Ffor ii=linesToSkip+1:nFil
                                                                       matData =
23
     for jj=1:nCol
24
        idx= (ii-1)*nCol+jj;
                                                                                     3
25
        matData(ii-linesToSkip.ji) = str2double(stringData{idx});
                                                                                    6
26
      endfor
                                                                                    9
27
    endfor
                                                                         10
                                                                              11
                                                                                    12
28
                                                                               14
                                                                                    15
                                                                         13
```

Escritura