Problems in Calculating Aircraft (Cont.)

SOV/2606

Stability equations are obtained for a cylindrical sandwich shell consisting of two thin outer layers and a corrugated middle layer. The problems of stability of a curved sandwich panel simply supported along its four edges and of a cylinder under compression are solved.

5. Kurshin, L.M. Stability Under Compression of a Curved Cylindrical Sandwich Panel the Transverse Edges of Which Are Fastened While the Longitudinal Edges Are Simply Supported

This paper analyzes the stability of a cylindrical sandwich panel with a light isotropic core under uniform longitudinal compression for a case where the transverse edges are fastened and the longitudinal edges are simply supported.

6. Kurshin, L.M. On the Calculation of Bending Stiffness of the Outer Layer of a Curved Sandwich Panel Under Longitudinal Compression

80

69

Card 4/7

Problems in Calculating Aircraft (Cont.)

SOV/2606

A formula is obtained for calculating curved sandwich panels under longitudinal compression with consideration of the natural bending stiffness of the outer layers. The domain is established in which the assemption of this stiffness being equal to zero is applicable.

- 7. Galkin, S.I. Torsion of an Open Cylindrical Shell Reinforced by Bulkheads

 Torsion of an open cylindrical shell reinforced by bulkheads is considered in this paper. The solution is obtained without introduction of additional hypotheses aside from the general assumptions associated with representing the operation of an open shell as momentless. On the basis of the solution the limits of applicability are shown of the hypothesis of warping which has been widely used in problems of calculating open shells under torsion.
- 8. Galkin, S.I. Torsion and Bending of a Circular Cylindrical Shell Reinforced by Elastic Bulkheads 102

Card 5/7

स्वाधितम् द्वारित विक्रमण्यात् वर्षात्वात् वरित्रकारित वर्षात्वात् । वर्षात्वात् वर्षात्वात् वर्षात्वात् । वर्षात्वात् वर्षात्वात् ।

Problems in Calculating Aircraft (Cont.)

SOV/2606

This paper investigated the state of stress of a circular cylindrical shell which is reinforced by elastic bulk-heads and loaded along the edges by an arbitrary system of axial and tangential forces. Calculation formulas are obtained which permit calculating all elastic-deformation components for various boundary conditions at the edges of the shell. The effect of self-balancing forces on the state of stress of the shell as a function of the stiffness of the bulkheads was investigated. It is shown that the self-balancing stresses do not decay very rapidly; the zone of their propagation into the depth of the shell is practically equal to the length of the contour of the transverse cross section of the shell. A calculation example is given for a shell under torsion allowing for elasticity of the bulkheads.

9. Nazarov, N.I., M.S. Povarnitsyn, and Ye. V. Yurlova.
Calculation of Unsteady Temperatures in an I-beam Element 142
This paper presents two methods of calculating the
temperature fields in an I-beam element (representing,
in this particular case, a typical part of a multilongeron

Card 6/7

Problems in Calculating Aircraft (Cont.)

SOV/2606

TOTALIST BEFORE BEFORE STREET WITH HELD STATE OF THE PROPERTY OF THE PROPERTY

wing): 1) the method of direct integration of the heat-conduction equations, and 2) the method of elementary equilibrium. Cases of symmetrical and in unsymmetrical heating of such elements through the outer flange surfaces are considered as well as the case of different thicknesses of flanges. Solution of the problem is given under the assumption that physical characteristics of the material and the heat-transfer coefficients do not depend on temperature variation.

AVAILABLE: Library of Congress

Card 7/7

IS/mg 11-24-59

AND THE PROPERTY OF THE PROPER

AUTHORS: Galkin, S.I., Kabanov, V.V. and Lyashenko, S.S. (Novosibirsk)

TITLE:

Experimental Investigation of Bending of a Cantilever (Circular) Cylindrical Shell with a Large Rectangular Cut-Out when Loaded by a Concentrated Force at the

Free End (Eksperimental'noye issledovaniye

karkasirovannoy krugovoy tsilindricheskoy obolochki s

bol'shim pryamougol'nym vyrezom pri izgibe

sosredotochennoy siloy)

PERIODICAL: Izvestiya vysshikh uchebnykh zavedeniy, Aviatsionnaya tekhnika, 1959, Nr 2, pp 49-61 (USSR)

ABSTRACT:

The experiments were carried out on a shell of 600 mm diameter, 3800 mm long, plated with D16AT of 0.8 mm thickness. The shell was stirrened on the outside by longitudinal stringers (pressed dural

angles, Pr 100-3, of a cross-sectional area of $0.434~\rm{cm}^2$) and on the inside by ribs spaced at $130~\rm{mm}$. The total

length of the cut-out was 1000 mm. The general lay-out of the shell is shown in Fig 1, while Fig 2 shows the cross-section of the rib. Along their whole length the longitudinal edges of the cut-out were

Card 1/5 reinforced by either channels with flat fillets or

Experimental Investigation of Bending of a Cantilever (Circular) Cylindrical Shell with a Large Rectangular Cut-Out when Loaded by a Concentrated Force at the Free End

> simply by flats, as shown in Fig 3. In the plane of symmetry of the shell (i.e. with respect to cut-out) two longitudinal joints were made. One end of the shell was firmly fixed (by means of a fitting attached to a steel plate) and the shell was loaded at the other (free) end, the force being applied with the aid of cables to a short steel cylinder which was fitted into the shell (see Fig 1). The force was measured by a spring dynamometer. Two different directions of loading were used, as shown in Fig 4. In the first case the force vector was in the plane of symmetry of the structure and in the second case, in the axial plane perpendicular to the plane of symmetry. shows the complete rig ready for experiments. Fig 5 results of experiments are presented in Figures 7 to The graphs also include the theoretical curves obtained from relations developed in Ref 1. All experimental data and the computational values refer to the same loading, viz 1000 kg. Figures 7 to 10

Card 2/5

Experimental Investigation of Bending of a Cantilever (Circular) Cylindrical Shell with a Large Rectangular Cut-Out when Loaded by a Concentrated Force at the Free End

refer to the symmetric loading (case 1) and Figures 11 to 14 refer to the asymmetric loading (case 2) as follows: Fig 7 shows the tangential stresses in the open portion of the shell (at sections 1 and 4, see Fig 1). It is seen that they do not remain constant and are greatest between the 8th and 9th stringers. It also appears that the strength of the longitudinal reinforcement on the edges of the cut-out has essentially only a local effect on the magnitude of stresses in the panel at the boundary of the cut-out. There is good agreement between the calculated and the experimental results. From Fig 8, which refers to sections 5 and 7, it is seen that in the closed portion of the shell the distribution of tangential stresses is extremely non-uniform, showing even local concentration of stresses. The peaks in the stress curves become less sharp further away from the cut-out.

Card 3/5

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R000614120005-2"

- Company assessment telegraph of the first of the first

Experimental Investigation of Bending of a Cantilever (Circular) Cylindrical Shell with a Large Rectangular Cut-Out when Loaded by a Concentrated Force at the Free End

The strength of the reinforcement on the edges of the cut-out has an insignificant influence on the distribution of the tangential stresses. Fig 9 shows the normal stresses at sections 1, 4 and 5, while in Fig 10 the normal stress along the stringers Nr 1 and Nr 9 are shown, the last one being the reinforcement of the cut-out edge. Again there is good agreement between the experiment and the theory of Ref 1. For the case of the asymmetric loading the conclusions may be summarised as follows: The distribution of tangential stresses in the open part of the shell (Fig 11 refers to sections 1 and 4) again is not constant. The strength of the reinforcement on the cut-out edge again has only a local effect, influencing the stresses in the panel between the 8th and 9th stringers. Agreement between the experiment and the theory of Ref 1 is much poorer than in the previous case. In the closed part of the shell the distribution of tangential stresses is also non-uniform (Fig 12, sections 5 and 7).

Card 4/5

SOV/147-59-2-7/20

Experimental Investigation of Bending of a Cantilever (Circular) Cylindrical Shell with a Large Rectangular Cut-Out when Loaded by a Concentrated Force at the Free End

The non-uniformity becomes less intense further away from the cut-out into the closed part of the shell. The strength of the reinforcement has fundamentally a local effect influencing only the maximum stress arising in the panel between the 9th and 10th stringers. Agreement between the calculated normal stresses and the experimental values (Fig 13) is good at Section 1 (at the middle of the cut-out) but poor at the boundary of the cut-out (section 4). Fig 14 represents the distribution of normal stresses in the stringers Nr 9 and Nr 5. There are 14 figures and 1 Soviet reference.

SUBMITTED: October 21, 1958

Card 5/5

"APPROVED FOR RELEASE: 07/16/2001

CIA-RDP86-00513R000614120005-2

24.4200

5/124/62/000/010/013/015 D234/D308

AUTHOR:

Galkin, S. I.

TITLE:

Torsion of an open cylindrical shell reinforced by

frames

PERIODICAL: Referativnyy zhurnal, Mekhanika, no. 10, 1962, 9, abstract 10V59 (In collection: Vopr. rascheta elementov aviats. konstruktsiy, no. 1, M., Oborongiz, 1959,

85-101)

TEXT: The author considers the solution of the problem of stressed and deformed state of an open momentless cylindrical shell subject to torques applied along the ends. The longitudinal edges are reinforced by beams, the shell consists of several sections reinforced by frames at their joints. The author uses difference-differential equations obtained by L. I. Balabukh and integral boundary conditions. A complete solution is given for a shell consisting of two sections. The solution is illustrated by graphs of distribution of two sections. tion of forces along the length of the shell with respect to va-

4.7

Card 1/2

S/124/62/000/010/013/015
D234/D508

rious parameters. On the basis of numerical examples the author determines the limits of applicability of the theory of thin rods with open profile. The position of the center of torsion is determined. / Abstracter's note: Complete translation. /

"APPROVED FOR RELEASE: 07/16/2001 CIA

CIA-RDP86-00513R000614120005-2

10.6100

5/124/62/000/011/015/017 D234/D308

AUTHOR:

Galkin S. I.

TITLE:

Torsion and bending of a circular cylindrical shell

reinforced by elastic frames

PERIODICAL:

Referativnyy zhurnal, Mekhanika, no. 11, 1962, 9, abstract 11070 (In collection: Vopr. rascheta elementov aviats. konstruktsiy. no. 1; M., Oborongiz, 1959,

102-141)

TEXT: The author considers a circular cylindrical momentless shell reinforced by elastic rings and loaded at the end sections by axial and tangential forces. The problem of determining the forces in the shell and the bending moments in the rings is solved in ordinary trigonometrical series. For the series coefficients difference equations are obtained in which the number of the ring is the independent variable. For a regular system of rings solutions of the difference equations are obtained in closed form with various external loads. Stressed state of a shell with elastic rings is in-

Card 1/2

Torsion and bending ...

S/124/62/000/011/015/017 D234/D308

vestigated in the case of a self-balanced force system applied to end sections. Tables and graphs illustrate the damping of self-balanced stress system with increasing distance from the loaded edge. It is shown that the intensity of damping depends considerably on flexural rigidity of the rings. / Abstracter's note: Complete translation.

JB

Card 2/2

Konferentsiya po teorii plastin i obolochek, Kazan', 1960.

Trudy Konferentsii po teorii plastin i obolochek, 24-29 oktyabrya 1960. (Transactions of the Conference on the Theory of Plates and Sale Held in Kazan', 24 to 29 October 1960). Kazan', Lizd-vo Kazanskogo gosudarstvennogo universitetai 1961. 426 p. 1000 copies printed.

Sponsoring Agency: Akademiya nauk SSSR. Kazanskiy filial. Kazanskiy gosudarstvennyy universiteti in. V. I. Ul'yanova-Lenina.

Editorial Board: Kh. M. Mushtari, Editor; F. S. Isanbayeva, Secretary; N. A. Alumyae, V. V. Bolotin, A. S. Vol'mir, N. S. Ganiyev, A. L. Gol'denveyze; N. A. Kil'chevskiy, N. S. Kornishin, A. I. Lur'ye, O. N. Sayin, A. V. Sadenkov, I. V. Syriskiy, R. G. Surkin, and A. P. Filippov. Ed.: V. I. Aleksagin; Tech. Edi' Tu. P. Semenov.

PURPOSS: The collection of articles is intended for scientists and engineers who are interested in the analysis of strength and stability of shells.

Card 1/14

Transactions of the	Conference (Cont.)		SOV/6206	2			
Vinokurov, S. G. La Panel in a Temper	rge Deflections of a dature Field		66	5			
Shells	vestigation of the Sp s of Elastic Circular		7:	2			
equilibrium of a of Constant Curva	A. M. Kuzemko. On th Rigidly Clamped Shall ture With Arbitrary C	ontour	7	7			
Galimov, K. Z. On thin Shells	the Theory of Finite I	eformations of	. 8	3		₽*	,
	ion of a Circular Stif aforced Rectangular Op Elasticity of the Fi		eal 9	2	· ; .		
	rge Deflections of a l rmal Pressure and Nom	Restangular Plat	E 10)1	**.	1	
Card 5/14					Total Control of the	, .	
		 क्षा चार प्रदेश के राज्य कुमा का के पास के पास प्रति र प	a de sus asvens asobril de librit de de librit	martinana e e 🕫 🖽			

L 37122-66 ENP(k)/ENT(d)/ENT(m)/ENP(v)/ENP(v) LJP(c) Ww/EM/GD

ACC NR: AT6011759 SOURCE CODE: UR/0000/65/000/000/0226/0246

AUTHOR: Galkin, S. I.

ے.

ORG: None

TITLE: The twisting of framed cylindrical shell with long right-angle notch

SOURCE: Raschety elementov aviatsionnykh konstruktsiy, vyp. 3: Trekhsloynyye paneli i obolochki (Calculation of aircraft construction elements, no. 3: Sandwich panels and shells). Moscow, Izd-vo Mashinostroyeniye, 1965, 226-246

TOPIC TAGS: cylindric shell, shell dynamics, shell deformation, reinforced shell structure

ABSTRACT: In this paper the problem of the twisting of a circular frame-stretched cylindrical shell with a reinforced rectangular notch, previously discussed in two earlier works by the same author, is generalized to apply to the case of a notch whose length extends to 2N segments. The solution to the problem takes into account the elasticity of the transverse trusses and their discrete positioning. The skin in this case works as a thin non-moment shell, receiving axial and tangential linear forces; the Poisson factor is assumed to be zero. The transverse trusses, continuously attached along the contour

Card 1/2 UDC 629. 13. 011. 1:62-43:539. 4

L 37122-66

ACC NR: AT6011759

with the skin, have finite flexural rigidity in their plane and zero flexural rigidity outside their plane. The radius of the central axis of the transverse truss is assumed equal to the radius of the skin midsurface. The problem is reduced to the solution of a system of differential-difference equations, with the method of solution resolving itself to the following. At first a solution is sought to the equations for the closed part, separated from the shell by a section passing between the trusses 1.0 of the open part; this system is then solved for the open part separated from the shell by sections passing between trusses 0.1 of the closed part. The solutions obtained separately for the closed and open parts are then joined so as to satisfy the coupling conditions for the 0-th and 01-th trusses located at the interfaces of the closed and open parts of the skin. Orig. art. has: 1 figure and 63 formulas.

SUB CODE: 13 / SUBM DATE: 25Oct65 / ORIG REF: 003

Card 2/2 af

SOURCE CODE: UR/0424/66/000/006/0136/0138 ACC NRI AP7002700 AUTHOR: Galkin, S. I. (Novosibirsk); Levitskaya, T. Ye. (Novosibirsk) ORG: none TITLE: Investigating the effect of frame elasticity on the state of stress in a circular cylindrical shell with a rectangular cutout under torsion SOURCE: Inzhenernyy zhurnal. Mekhanika tverdogo tela, no. 6, 1966, 136-138 STRUCTURE. TOPIC TAGS: cylindric shell, stiffened shell, weakened shell, stiffened sh ABSTRACT: The results of calculating the stress distribution in a circular cylindrical shell stiffened by transverse frames and weakened by a rectangular cutout (see Fig. 1) subjected to torsion, are presented. The design formulas for Fig. 1. UDC: none **Card** 1/2

SE LEGISCOCION CONTROL CONTROL

ACC NR: AP7002700 such a problem were derived previously by S. I. Galkin (Izv. Sib. Otd. AN SSSR, no. 4, 1960; and Trudy konferentsii po teorii plastin i obolocnek, 1961, Kazan'). The distributions of shear, normal, and tangential stresses in the middle portion of the shell (in the neighborhood of the cutout) and in frame-stiffened portions were calculated from these formulas on the M-20 electronic digital computer for 38 versions of the shell structure with geometry and stiffness parameters varying in a wide range, except and l/R = 0.5. The calculation results are plotted in several diagrams, and the depdendence of stresses on these parameters is discussed. The effect of rigidity of frames, especially of frames 0, on the state of stress in the shell, mainly on the distribution of shear and tangential stresses along the longitudinal (reinforced) edges of the cutout and around its corners is discussed in detail. The different behavior of these stresses within the open and frame-stiffened portions of the shell caused by the variation in the length of the cutout combined with the variations in the rigidities of frames, as well as the locations of maximum stresses in shells with short and large $(l_0/R < 1)$ and $l_0/R > 1$, respectively) cutouts is pointed out. A simultaneous progressive increase of stresses (in both weakened and stiffened portions of the shell) with increasing width of the cutout, irrespective of the frame stiffness is noticed. The effect of stiffeners along the longitudinal edges of the cutout on the stress distribution, and their maximum rational cross-section areas are also examined. The dying-out of stresses (which are caused by the presence of a cutout) in the stiffened portion of the shell, and their practical disappearance at a distance of 2 to 2.5R from the frame 0 is mentioned. Orig. art. has: 7 figures. Card 2/2 SUB CODE: 20/ SUBM DATE: 20May66/ ORIG REF: 003/ATD PRESS:

GALKIN, S.R.

Galkin, S.R.

"Investigation of the Operation of Locomotive Syphons." Leningrad Order of Lenin Inst of Railroad Transport Engineers imeni Academician V. N. Obraztsov. Leningrad, 1955. (Disseration for the Degree of Candidate in Technical Science.)

Knizhnaya Letopis: No. 27, 2 July 1955

GAIKIN, T.

Adaptation for cutting out gaskets. Khol. tekh. 29, No 2, 1952.

- 1. GALKIN, T.
- 2. US3R (600)
- 4. Compressors
- 7. Device for testing safety valves on horizontal compressors. Khoi, tekh. 29 no. 4, 1952

9. Monthly List of Russian Accessions, Library of Congress, March 1953, Unclassified.

拉拉手的 2015年12日,1915年11日

GALKIN, T.

Valves

Modernizing the Ludlow gate valve. Khol. tekh. 30, No. 1, 1953.

Monthly List of Russian Accessions, Library of Congress, June 1953. UNCLASSIFFED.

GALKIN, T., glavnyy mekhanik.

An improved coupling. Khol.tekh. 30 no.2:66 Ap-Je '53. (MLEA 6:7)

1. Monkovskiy kholodil'nik no.9. (Couplings)

Oil filters of a 2-AG ammonia compressor. Khol.tekh.31 no.1:64 Ja-Mr 154. (MLRA 7:4)
1. Moskovskiy kholodil'nik Mo.9. (Compressors)

Correcting the settlement of a wall in the machine room of a state district electric power station. Elek.sta. 27 no.5:51-52 ky '56.

(Foundations)

GALKIN, Vladimir Aleksandrovich; SIPILIN, P.M., nauchnyy red.; STOLYARSKIY, L.L., red.; KAMOLOVA, V.M., tekhn.red.

[Device for assembling and welding hull structures] Prisposobleniia dlia aborki i avarki korpusnykh konstrukteii. Leningrad, Gos. soiuznoe izd-vo sudostroit.promyshl., 1960, 133 p. (MIRA 13:4) (Shipbuilding-Equipment and supplies) (Hulls (Naval architecture)--Welding)

PHASE I BOOK EXPLOITATION SOV/4875

Galkin, Vladimir Aleksandrovich

Prisposobleniya dlya sborki i svarki korpusnykh konstruktsiy (Assembiy and Welding Devices for Hull Structures [of Ships]) Leningrad, Sudpromgiz, 1960. 133 p. 2,750 copies printed.

Scientific Ed.: P.M. Sipilin; Ed.: L.L. Stolyarskiy; Tech. Ed.: V.M. Kamolova.

PURPOSE: This book is intended for designers, process engineers, and foremen concerned with the design, manufacture and operation of assembly and welding accessories. It may also be used by students at schools of higher education and tekhnikums.

COVERAGE: The author describes devices used in the assembly and welding of ship hull sections and discusses the purpose, classification, and design of these devices. Methods for determining the requirements these devices must meet and the amount of metal consumed in their manufacture are considered. The effect of distortion welding of sections on the construction of cradles is explained and methods are given for calculating the required number of platens, cradles, and

Card 1/4

Assembling and Welding Devices (Cont.) SOV/4875		
assembly areas necessary for assemblying and welding the sections. alities are mentioned. There are 9 references, all Soviet.	No person-	
ABLE OF CONTENTS:		
rom the Author	3	ř
h. I. The Purnose of Assembly and the second		
h. I. The Purpose of Assembly and Welding Devices, Their Classificat and the Requirements They Must Meet	ion,	
1. Special features of assemblian and an area	5	4
 Special features of assembling and welding the hull structures The purpose of assembly and welding devices and the requirement they must meet 	5	
 Classification of devices used in assembling and welding hull . 	10	ê
	15	
1. II. Construction of Assembly and Welding Devices	_	
4. Fastening and holding devices used in assembling	18	
1014610	18	9.
Clamps	18	4.
Tightening and bracing devices	20	14
C WALLED	26	1
2/4		
		- P
		1.0
		i.

31901

S/137/62/000/005/131/150 A160/A101

12200

AUTHORS:

Mikhaylov, M. M., Fedorenko, L. I., Myshak, N. V., Galkin, V. A.

TITLE:

The welding of the stainless 1 X 18H 9T (1Kh18N9T) steel with a

tungsten electrode in a nitrogen atmosphere

PERIODICAL: Referativnyy zhurnal, Metallurgiya, no. 5, 1962, 16, abstract 5E72

("Tr. Sredneaz. politekhn. in-ta", 1961, no. 15, 102 - 106)

TEXT: A process of welding stainless steels in N2 atmosphere was worked out, securing not only high mechanical properties of joints, but also eliminating intercrystalline corrosion. All test pieces were butt-welded with the help of a HMAM AP+3 B (NIAM AR+3B) torch. The experiments yielded the following results: 1) the main difficulties during the arc-welding in N_2 with a W-electrode, such as the bubbling of the bath, seam porosity and the high consumption of electrodes, are not caused by the disintegration of unstable W-nitrides, but by the presence of 0_2 in the arc burning zone. 2) The arc-welding in N_2 with a W-electrode takes a normal course and secures a high-quality seam in case N2 does not contain more than 0.2% 02. 3) A waste of C is noted during the arc-welding in

Card 1/2

The welding of ...

S/137/62/000/005/131/150 A160/A101

 $\rm N_2$ with a W-electrode. This is a decisive factor for decreasing the tendency of the seam to intercrystalline corrosion. 4) The arc-welding in $\rm N_2$ increases the efficiency of the process by 30% and decreases labor costs 15 times - in comparison to argon arc-welding. The arc-welding in $\rm N_2$ does not deteriorate the qualities of the products.

V. Tarisova

[Abstracter's note: Complete translation]

Card 2/2

GALKIN, V.A.

Brigade method of operating ring spinning machinery in wool cloth manufacture. Tekst.prom. 22 no.4:5-7 Ap '62. (MIRA 15:6)

l. Nachalinik otdela truda i zarabotnov platy Upravleniya sherstyanov i shelkovov promyshlennosti Moskovskogo oblastnogo soveta narodnogo khozyaystva.

(Woolen and worsted spinning)

GALKIF, V.	4	<u>*</u>					N/5 644 .GI		
Mekhani	zmy patol	logichesk	ikh rea'	ktsiy 🖊	Mechaniz	ms of path	nological reactio	ons_7	4
Leningrad,	Medgiz.	1955. /	498 P.	Illus.,	Tables.	Includes	Bibliographies.		Shirt Wasserson
									The state of the s
									0
									ŗ
									the cases from the

Galkin, V. A.

"Blood-Letting in Hyrortonic Dicesse." First Moscow Order of Lenin Medical Inst. Moscow, 1955 (Dissertation for the degree of Candidate in Medical Science)

So: Knizhnaya letoris' No. 27, 2 July 1955

GALKIN, V.A., kandidat meditsinskikh nauk

Bloodletting by venesection and leeches in hypertension. Terap.
arkh. 28 no.4:16-23 '56. (MIRA 9:9)

1. Iz fakul'tetakuy terapevtichsakuy kliniki sanitarno-gigiyenichesakug fakul'teta (dir.-prof. A.G.Gukayan) I Moskovskogo ordena
Lenina meditsinskogo instituta imeni I.M.Sechenova.
(HYPENTRISION, ther..
blood letting & blood extraction with leeches)
(LEECHES.
ther. use in hypertension for blood letting)

Diuretic qualities of smell doses of nercusal in cardiac decompensation. Sov.med. 21 no.9:54-56 S '57. (MIRA 11:1)

1. Iz fakul'tetskoy terapevticheskoy kliniki sanitarno-gigiyenicheskogo fakul'teta (zav. kafedroy - prof. A.G.Gukasyan) I Moskovskogo
ordens Lenica meditainskogo instituta imeni I.M.Scchenova.

(DIURETICS, ther.use
mersalyl theophyllinate in congestive heart failure

(Rus))

IVANOVA-HEZNAMOVA, A. Tu, dots., GALKIN, V.A. (Moskva)

Use of securinine in internal diseases. Klin.med. 36 no.9:135-137
S'58

1. Is fakul'tetskoy terapevticheskoy kliniki (dir. - prof. A.G. Gukasyan) sanitarno-giglyenicheskogo fakul'teta I Moskovskogo ordena Lenina meditsinskogo instituta im. I.M. Sechenova.

(ALMALOIDS, ther. use socurinine in hypothension (Rus))

(HYPOTENSION, ther. securinine (Rus))

GALKIN, V.A.; CHECHULIN, A.S. (Moskva)

Experimental production of cholecystitis. Pat.fiziol. i eksp. terap. 3 no.1:78-79 Ja-F'59. (MIRA 12:2)

1. Is TSentral'now nauchno-issledovatel'skoy laboratorii im. S.I. Chechulina I Moskovskogo ordena Lenina meditsinskogo instituta I.M. Secherova. (CHOLECYSTITIS, experimental induction (Rus))

ARKHANGEL'SKAYA, L.N.; GALKIN, V.A.; GRIGORENKO, R.V.; LEVTOVA, K.Z.; CHECHULIN, A.S.; GARVEY, N.N., red.; RAYKO, N.M., tekhn.red.

[They serve the motherland; tenth anniversary of the graduation of physicians at the I.M.Sechenov First Moscov Medical Institute in 1949] Oni slushat Rodine; k 10-letiiu vypuska vrachei 1-go MOLMI imeni I.M.Sechenova 1949 g. Moskva, 1960. 81 p.

(MIRA 14:6)

(MOSCOW--MEDICAL COLLEGES)

GALKIN, Vsevolod Aleksandrovich; LAZAREV, M.S., otv. red.;
HINTUKOV, V.V., red. izd-va; MIKHLINA, L.T., tekhn. red.

[In Yemen; Soviet physician's notes] V Iemene; zapiski sovetskogo vracha. Moskva, Izd-vo vos'ochnoi lit-ry, 1963.
104 p.

(Yemen-Social conditions) (Yemen-Public health)

"APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R000614120005-2 SHEETS OF THE TANK THE STATE OF THE STATE OF

GALKIN, Vsevolod Aleksandrovich, dots.; GUKASYAN, A.G., prof., "zasl: deyatel' nauki, red.

[Cholecystitis in the clinic for internal diseases] O kholetsistitakh v klinike vnutrennikh boleznei. Pod red. A.G. Gukasiana. Moskva, 1-i Mosk. med. in-t, 1963. 108 p. (MIRA 17:2)

1. Zaveduyushchiy fakulitetskoy terapevticheskoy klinikoy sanitarno-gigiyenicheskogo fakul'teta Moskovskogo meditsinskogo instituta imeni I.M.Sechonova (for Gukasyan).

CIA-RDP86-00513R000614120005-2" APPROVED FOR RELEASE: 07/16/2001

CAIKIN, V.A. (Moskva)

History of the study of clinical aspects of chronic alcoholism.

Trudy Cos. nauch.-issl. inst. psikh. 38:442-448 *63
(MIRA 16:11)

GALKIN, V.A.

Some aspects of the nutrition of the population of Yemon.

Vop. pit. 22 no.3:82-83 My-Je *63. (MIRA 17:8)

l. Iz kafedry fakul'tetskoy terapii (nav. - pref. 4.6. Gakasyan) sanitarno-gigiyenicheskogo fakul'teta l Moskovskogo ordena lenina meditsinskogo institute imeni l.M. Serbenova.

GALKIN, V.A.

Appearance of pathological liver changes in experimental chologystitis. Pat. fiziol. i eksp. terap. 8 no.4:68 Jl-Ag '64. (MIRA 18:2)

1. TSentral'naya nauchno-issledovatel'skaya laboratoriya imeni Chechulina (zav. A.S. Chechulin) i kafedra fakul'tetakoy terapii sanitarno-gigivenicheskogo fakul'teta (sav.- prof. A.G. GukasYan) I Moskovakogo ordena Lenina instituta gematologli i perelivaniya krovi (dir.- dotsent A.Ye. Kiselev) Moskva.

SOBOLEV, V.R.; GAJKIN, V.A.; BRODINOVA, N.S.

Expedient methods for the administration of tetracycline in treating chronic cholecystitis. Antibiotiki 10 no.2:173-176 (MIRA 18:5)

l. Kafedra mikrobiologii (zav. - deystvitel'nyy chlen AMN SSSR prof. Z.V.Yermol'yeva) TSentral'nogo instituta usovershenstvovaniya vrachey i kafedra fakul'tetskoy terapii (zav. - prof. A.G. Gukasyan) I Moskovskogo ordena Lenina meditsinskogo instituta imeni Sechenova.

MASLIYEV, A.T.; GALKIN, V.A.

Results of using hypnosis in the treatment of dyskinesias of the biliary tract. Trudy 1-go MMI 34:464-470 (MIRA 18:11)

1. Kafedra psikhiatrii (zav. - zasluzhennyy deyatel' nauki prof. V.M. Banshchikov); kafedra fakul'tetskoy terapii sanitarnogo i vechernego fakul'teta (zav. - zasluzhennyy deyatel' nauki prof. A.G. Gukasyan) l-go Moskovskogo ordena Lenina meditsinskogo instituta imeni Secherova.

GALKIN, Viktor Dmitriyevich; OBIDAROV, Vasiliy Nikolayevich; MEZIVETSKIY, Ta.P., inzh., retsenzent; DUNAYEV, P.P., kand.tekhn.nauk, red.; MOROZOVA, M.N., red.imd-va; DOBRITSYNA, R.I., tekhn.red.; GOR-DEYEVA, L.P., tekhn.red.

[Effective dimensioning and indication of tolerances in mechanical drawings] Ratsional nais prostanowka rasmerov i dopuskov na cherteshakh. Moskva, Gos.nauchno-tekhn.isd-vo mashinostroit. lit-ry, 1960. 150 p. (MIRA 13:7) (Mechanical drawing)

LYAKH, V.M., inzh.; GALKIN, V.I., ireh.

Results of testing new beet cultivators. Mekh. i elek. sots. sel'khoz. 21 no.4:53-57 '63. (MIRA 16:9)

l. Ukrainskaya mashinoispytatel'naya stantsiya. (Cultivators)

GALKIN, V.G. (Petrozavodsk) Physical development of Petrozavodsk school children and methods for improvement in the light of new problems. Sov. zdrav. 19 no.6: 51-55 '60. (MIRA 13:9)

51-55 '60. (PETROZAVODSK-CHILDREN-GROWTH)

GALKIN, V.G., inzh.

Method for the control of the position of the neutral in NB-406 traction engines. Elek. i tepl.tiaga no.8:27-28 Ag '63.

(Electric railway motors)

GAIKIN, V.G., insh.

Testing of a.c. machines. Elek.i tepl.tiaga 7 no.1:24-25 Ja 163.
(MIRA 16:2)

(Electric machinery—Testing)
(Electric locomotives— distance and repair)

GALKIN, V.I...(Chita)

Slow consolidation of a fracture of the shin in a patient whose spleen has been resected. Ortop.travm. i protez. 17 no.6:117
N-D '56.

(TIBIA-FRACTURE) (SPLEEN-SURGERY)

"APPROVED FOR RELEASE: U//10/2001 GALKIN, V.I. Ice thrusts onto the shores of Lake Baikal. Priroda 50 no.1:82-83 Ja 161. (MIRA 14:1) 1. Baykal'skaya limmologicheskaya stantsiya. (Baikal Lake—Ice on rivers, lakes, etc.)

Galkin, V. I.

Glaciation on the banks of Lake Baikal. Trudy VSGI SO AN SSSR

(MIRA 15:10)

(Baikal Lake—Moraines)

LEBEDIK, A.I.; GALKIN, V.I.; ROGINSKIY, G.I.; BUD'KO, V.A., red.; GURE-VICH, M.M., tekhn. red.; TRUKHINA, O.N., tekhn. red.

[Work like Vladimir Svetlichnyi does] Rabotat' kak Vladimir Svetlichnyi. Moskva, Izd-vo sel'khoz. lit-ry, zhurnalov i plakatov, 1961. 70 p. (MIRA 14:11)

LEBEDNIK, A.I.; GALKIN, V.I.; ROGINSKIY, C.I.

[Work as Vladimir Swetlichnyi does]Rabotat' kak Vladimir Swetlichnyi. Kishinev, Partiinoe izd-vo TsK KP Moldavii, 1962. 48 p.

(Sugar beets)

(Sugar beets)

BUDKO, A.I.; GALKIN, V.I.; YEGOROV, G.A.; INITRIYEV, I.N., red.;
PEVZNER, V.I., tekhn. red.; DEYEVA, V.M., tekhn. red.

[School of Vladimir Svetlichryi] Shkola Vladimira Svetlich-

[School of Vladimir Svetlichnyi] Shkola Vladimirs Svetlichnogo. Moskva, Sel'khozizdat, 1962. 95 p. (MIRA 15:7) (Sugar beets)

Calkin, V.I. [Halkin, V.I.]

One centner of sugar beets requires 13, 4 man-minutes. Mekh. sil'. hosp. 13 no.4:3-5 Ap '62. (MIRA 17:3)

1. Rukovoditel' laboratorii Kubanskogo nauchno-issledovatel'skogo instituta ispytaniya mashin.

GALKIN, V.I.; MARKOV, N.N.

Auger core drilling without lifting the auger string. Trudy TONE no.5:82-87 '62. (MIRA 18:7)

TEPLITERIY, Te.A., inzh. Callillo, V.N., Liveaner, Pr. L., architekter

New layout for buildings of a synthetic rubber plant. Prom. stroi. 42 no.1:18.19 '65. (MIRA 18:3)

28965

10 1210

S/179/61/000/003/003/016 E031/E435

AUTHOR:

Galkin, V.S. (Moscow)

TITLE:

The investigation of the hypersonic flow round a flat

plate in a viscous rarefied gas

PERIODICAL: Akademiya nauk SSSR. Izvestiye. Otdeleniye

tekhnicheskikh nauk. Mekhanika i mashinostroyeniye,

1961, No.5, pp.18-21

The calculation of the drag coefficient of a semi-infinite TEXT: flat plate which is thermally isolated in a hypersonic gas flow with slip is described. It is assumed that the domain of the flow between the artached strong shock and the plate consists of an inviscid zone and a laminar boundary layer. interaction between the shock and the boundary layer is postulated. A strong Then the affect of slip and the temperature discontinuity in the region where the boundary layer equations are applicable is only significant in the case of a strongly heated plate. temperature of the place falls the density of the gas at the plate increases rapidly and the mean free path diminishes. in the case of a strongly cooled plate, slip and a temperature discontinuity become important when the conception of a boundary Card 1/2

28965 \$/179/61/000/003/003/016 The investigation of the hypersonic...E031/E435

layer is not applicable. In calculating the boundary layer the integral form of the equation of impulses is used with a linear velocity profile and the velocity of slip is taken into account. Five terms of an approximate solution obtained by the method of small perturbations for the case that $\gamma \ln 2 = 1$ in the neighbourhood of $\delta < 0$ and three terms in the region of $x = \infty$ The first terms are the solutions in the absence of slip and the leter terms are corrections for slip. number is taken as unity. Acknowledgments are expressed to The Prandtl M.N.Koran and A.A.Nikol'skiy for commenting on the results and to D.Kh. Tuyushave for carrying out the calculations. are 5 references: 1 Soviet and 4 non-Soviet. to English Language publications read as follows: The four references Chapman S., Cowling T., The Mathematical theory of nonuniform gases, Cambridge, 1953; Lees L. Hypersonic flow, Fifth International Aeronaut. Conference, 1955, No.I., 241-276; Shen S.F. J. Math. and Phys. 1952, No.3; Harbut F.C., Talbet L., Aroesty J. J.ARS 1959, No.7. Schaaf S.A., SUBMITTED:

October 2, 1960

Card 2/2

34328

到是**那种缺乏的**的经验的特别。1000年11月14日,大学生的人生的现在分词。11月14日

S/124/62/000/002/002/014 D234/D302

10,1200

AUTHOR:

Galkin, V.S.

TITLE:

On taking into account the molecular composition of air in determining the coefficients of aerodynamic forces and the temperature of the body in a free-molecule stream at

higher supersonic speeds

PERIODICAL:

Referativnyy zhurnal, Mekhanika, no. 2, 1962, 21, abstract 2B121 (Inzhenernyy zh. - formerly Inzhenernyy sb. - 1961,

1, no. 1, 175-176)

In the case of a free-molecule stream of a gas mixture, TEXT: the calculation of mass, mementum and energy transport must, generally speaking, be carried out separately for each gas component and the results are then added. It is shown in the paper that in calculating the aerodynamic forces and the flow of kinetic energy of the particles moving towards the body in case of large velocities of the free-molecule stream, $(v_{\infty}/c \ge 10, v_{\infty})$ being the macroscopic velocity and c the most probable

Card 1/2

On taking into account the ...

S/124/62/000/002/002/014 D234/D302

velocity of thermal motion of the molecules) the air can be considered as a single-component gas with the same density, temperature and mean molecular weight. The investigation is carried out under the condition of diffuse reflection of the particles from the body and the coefficient of accommodation delated. Abstracter's note: Complete translation.

Card 2/2

5.4500

43145 s/124/62/000/008/005/030 1006/1242

AUTHOR:

Galkin, V.S.

TITLE:

The limits of applicability of the relaxation model

of Bolzmann's kinetic equation

BEDISK KESADISSKIR BOURDESIN SESSER STUKKEN BESTER BARKIN BERTEIN BERTEIN BERTEIN BERTEIN BESTER BERTEIN B

PERIODICAL:

Referativnyy zhurnal, Mekhanika, no.8, 1962, 22 (in zhenernyy zh., v.1, no.3,

abstract 8B134.

1961, 153-156)

In the solution of problems of aerodynamics of rarefied gases with the aid of Bolymann's kinetic equation, great difficulties are encountered due to the complicated form of this equation. Simplified models of Bolzmann's equation are therefore frequently used, the simplest being the relaxation model $\frac{df}{dt} = \frac{fo-f}{r}$

Card 1/3

S/124/62/000/008/005/030 1006/1242

The limits of applicability of ...

where f- the unknown distribution function, fo - the Maxwell distribution function, for relaxation time equal to ppecalty (possibility) coefficient, processure). In this work the limits of applicability of the relaxation model are illustrated by the example of a gas ty of the relaxation model are illustrated by the example of a gas slip flow. Here the gas slips along a plane in one direction and a constant gradient of the macroscopic velocity u, parallel to the plane, is maintained in the y-direction, perpendicular to the plane; plane, is maintained in the y-direction, perpendicular to the plane; du/dy = const. The system of equations of kinetic moments, derived from the relaxation equation, is solved for this purpose, and this solution is compared with the known solution of the exact system of equations of kinetic moments. Only moments of third order partition functions Qijk are considered. The equations of kinetic moments are obtained by multiplying the equation by the product of a

Card 2/3

21351

10.1000

S/040/61/025/006/019/021 D299/D304

AUTHORS:

Galkin, V.S., and Gladkov, A.A. (Moscow)

TITLE:

On the lifting force at hypersonic speeds

PERIODICAL:

Prikladnaya matematika i mekhanika, v. 25, no. 6,

1961, 1138 - 1139

TEXT: It is established that the lifting force of many types of bodies (wedges, cones, etc.) is negative at hypersonic speeds for any values of Knudsen's number and for any angle of attack α (0 < $\alpha \leqslant \pi/2$). A very simple case is considered: Free-molecule flow past a wedge with semiangle δ ; the flow velocity $V \gg c$, i.e. $S = V / c \gg 1$, where c is the most probable thermal velocity of the oncoming molecules. The lifting force of the wedge is

 $Y \approx \sin 2\alpha \cos 2\delta \text{ for } \delta > \alpha$, $Y \approx \sin 2(\delta + \alpha)$ for $\delta \leqslant \alpha$.

Then the case S l is considered. The conclusion is reached that for any S, one can find values of δ , larger than some $\delta=\varphi$, for Card 1/2

S/040/61/025/006/019/021 D299/D304

On the lifting force at ...

which the lifting force of an infinite wedge is negative. With S> -2, when the base pressure can be neglected, this conclusion is extended to an actual wedge of finite length. An exception to this rule are cylinder- and plate shaped bodies under angle of attack, for which $Y \ge 0$. In the case of hypersonic velocities, the above results are particularly noticeable at large values of the ratio of the temperature T of reflected molecules to the temperature T of the undisturbed flow. It can be readily shown that the conclusion arrived at, (i.e. negative lifting force for any α (0 < α < $\leq \pi/2$), is also valid for hypersonic flow of a continuous medium, when the pressure distribution over the body can be calculated by Newton's theory. In this connection, a simple example is considered: nonviscous hypersonic flow past a wedge One arrives at the formula

 $Y \approx \alpha \sin \delta(2 - 3 \sin^2 \delta)$ for $\delta > \alpha$

for the lifting force. Hence it can be shown that Y < 0 for 0 < $\alpha \le 37/2$, if $\sin \delta \ge \sqrt{2/3}$. The conclusion about the negative lifting force is valid for any type of reflection in free-molecule flow. There is 1 figure. SUBMITTED: July 11, 1961 Card 2/2

3º096

10 1230

S/040/62/026/003/020/020 D407/D501

AUTHOR:

Galkin, V.S. (Moscow)

TITLE:

On the lift force in free-molecule flow

PERIODICAL:

Prikladnaya matematika i mekhanika, v. 26, no. 3,

1962, 567

TEXT: In V.S. Galkin, and A.A. Gladkov (Ref. 1: 0 pod "yemnoy sile pri giperzvukovykh skorostyakh, PMM, 1961, v. 25, no. 6) it was shown that if the forces, acting at the base of wedges, cones, etc. are neglected, then the lift force of these bodies in free-molecule flow can be negative for any angle of attack (0 < $\alpha < \pi/2$), and criterion $\dot{v} = V/c$ (where V is the velocity of the body and c the most probable thermal velocity of the oncoming molecule-flow). Below, it is shown that this conclusion applies also to certain bodies of finite length, when the forces acting at their base are taken into account. As a very simple example, flow past a symmetrical wedge of finite length with wedge-angle δ , is considered. A negative lift force is equivalent to the following formulation: The value $\delta = \delta_0$

Card 1/2

On the lift force in free-molecule flow S/040/62/026/003/020/020

has to be determined from the condition $dC_y/d\alpha=0$ for $\alpha=0$, where C_y is the lift coefficient of the wedge. Formulas for the pressure p and the tangential stress τ , acting on the surface-element of the wedge, are derived. From these formulas, one obtains the lift coefficient of the surface element and the lift coefficient of the wedge. Hence the sought-for condition:

$$\left(\sqrt{T} - \frac{2\vartheta}{\sqrt{\pi}} \frac{1 - \sin^3 \delta}{\sin \delta}\right) \exp\left(-\vartheta^2 \sin^2 \delta\right) - \sqrt{T} \exp\left(-\vartheta^2\right) + \\
+ \left[1 + \operatorname{erf}\left(\vartheta \sin \delta\right)\right] \left(1 - \vartheta\sqrt{\pi T} \frac{1 - 2\sin^2 \delta}{\sin \delta}\right) - \left(1 - \operatorname{erf}\vartheta\right) \left(1 - \vartheta\sqrt{\pi T}\right) = 0$$

where T (the ratio of the temperature of reflected molecules to the static temperature of the oncoming flow) is assumed as constant. The solution of this equation is plotted on a figure. With large values of \hat{v} , one obtains the solution $\sin \hat{o}_0 \approx 1/\sqrt{2} - (4\hat{v} \sqrt{\pi T})^{-1}$, which is sufficiently accurate for 9>3, T>1. Thus, \hat{o}_0 decreases considerably with \hat{v} . There is 1 figure. SUBMITTED: December 6, 1961

Card 2/2

10.13.00

40029 \$/258/62/002/002/003/018

I028/1228

AUTHOR:

Bogacheva, A. A. and Galkin, V. S. (Moscow)

TITLE:

Strong interaction on a plate with allowance for sliding and partition temperature jump

PERIODICAL: Inzhenernyy zhurnal, v. 2, no. 2, 1962, 231-238

TEXT: The problem of the motion of an ideal gas in the laminar boundary by a plane half-infinite plates under conditions of strong interaction between the boundary layer and the hypersonic non-viscous flow, is solved for a zero angle of attack with allowance for sliding and a gas temperature jump at the wall. The rarefaction and entropy effects accompanying this flow can be studied separately by varying suitably the boundary conditions for the boundry layer equations. It is assumed that the viscosity is a linear function of T, and that Pr=1. The pressure is calculated using the method of tangential wedges. The equations of the boundary layer and the boundary conditions are written in non-dimensional variables: systems of equations and corresponding boundary conditions, in the zero and first approximations are obtained from them. The zero and first approximations were solved simultaneously on a fast computer, and some rounded results are presented in tables and graphs. The following cases are cosidered: $T_w/T_0=1$ (insulated plate), 0.6, 0.2 (cooled plate): $\gamma=1.4$, 5/3 ($\gamma=$ specific-heat ratio, $T_w=$ wall temperature, $T_0=$ stagnation gas stream temperature). The results show that: a) for $T_w/T_0=1$ the sliding increases the gas velocity and decreases its temperature, b) the role of the temperature jump increases with the decrease of T_w/T_0 , c) for $T_w/T_0 \le 1$ the sliding and

Card 1/2

Strong interaction on a...

S/258/62/002/002/003/018 1028/1228

the temperature jump decreases the pressure, the dislodgment thickness, the local coefficient of frictional resistance and the coefficient of heat transfer from the gas to the plate. It is established that the representation of the velocity profile by a polynomial of the fourth power is sufficiently accurate, and that a linear profile can be used only for very rough calculations. There are 3 figures and 4 tables.

SUBMITTED: February 12, 1962

Card 2/2

CALKIN, V.S. (Moscow):

"One-dimensional unsteady solution of kinetic moment equations."

report presented at the 2nd All-Union Congress on Theoretical and Applied Mechanics, Moscow, 29 Jan - 5 Feb $6\mu_{\bullet}$

ACCESSION NR: APLO13395

5/0040/64/028/001/0186/0188

AUTHOR: Galkin, V. S. (Moscow)

TITLE: One dimensional nonstationary solution of equations of kinetic moments of monoatomic gas

SOURCE: Prikladnaya matematika i mekhanika, v. 28, no. 1, 1964, 186-188

TOPIC TAGS: one dimensional solution, nonstationary solution, kinetic moment, monoatomic gas, Maxwell gas, viscosity coefficient, shift solution, relaxational kinetic equation, Mach number, Reynolds number

ABSTRACT: The author (Ob odnom klasse resheniy uravneniy kineticheskikh momentov Greda. Phi, 1958, t. XXII, vy*p. 3) gave a class of precise solutions for the equations of the kinetic moments of monoatomic Maxwell gas with no exterior forces. The density, the coefficient of viscosity, the pressure, the stresses and all the remaining moments of the distribution function of highest order depend only on time, while the components of macroscopic velocity also depend linearly on the Cartesian coordinates. The fundamental solutions of this class are shift solutions.

Card 1/2

ACCESSION NR: AP4013395

with whose help one can study the accuracy of the Chepmen-Enskog method of the relaxational kinetic equation and the one-dimensional solution, decaying with time, considered in the present paper. The author is concerned basically with the applicability of the Chepmen-Enskog method. "The author is grateful to M. N. Kogan and A. A. Nikol'skiy for their interest in this work." Orig. art. has: 2 figures

ASSOCIATION: none

SUBMITTED: 19Sep63

DATE ACQ: 26Feb64

DCL: 00

SUB CODE: MM

NO REF SOV: 003

OTHER: 002

Card . 2/2

ACCESSION NR: AP4019966

S/0020/64/154/006/1297/1298

AUTHOR: Galkin, V. S.; Lady*zhenskiy, M. D.

TITLE: Computation of the boundary layer of a compressible fluid with slip boundary conditions

SOURCE: AN SSSR. Doklady*, v. 154, no. 6, 1964, 1297-1298

TOPIC TAGS: hydrodynamics, compressible fluid, slipping boundary condition, boundary layer, velocity discontinuity, slip, boundary condition, viscous flow

ABSTRACT: The authors investigated the effect of velocity discontinuities and temperature near the walls on the flow of a compressible fluid in the boundary layer on plane and axially-symmetrical bodies under conditions when the interference of the boundary layer with the nonviscous flow, the influence of the cross sectional curvature, and the like, can be considered independently from slipping. They have solved the problem by certain assumptions concerning the temperature at the boundary and by introducing the Dorodnitzy*n's variables. The

Card/2

ACCESSION NR: AP4019966

procedure is a generalization of the method used in the theory of noncompressible viscous flow in which the effect of velocity of slipping
is taken into consideration by a shift of the y-coordinate which is
proportional to the mean free path of gas molecules. Orig. art. has:
no figures, 3 equations.

ASSOCIATION: none

SUBMITTED: 03Jul63

DATE ACQ: 23Mar64

ENCL: 00

SUB CODE: PH

NO REF SOV: 002

OTHER: 001

ACCESSION NR:	AP5016271	/FCS(k)/EWA(1)	VR/0258/69	/005/003/0553/0	555
			533.6.011.	8	
AUTHOR: Galk	n. V. S. (Moscow)				3 n
TITLE: Cylin	rical Couette flow	of a rarefied go	8		9
SOURCE: Inzh	mernyy zhurnal, v.	5, no. 3, 1965.	553-555		
TOPIC TAGS: ; equation, velo	arefied gas, Mach no city distribution, l	umber, Knudsen r Navier Stokes eg	umber, Coueste fi uation	ow, Boltzmun	
rotating with	velocity distribut using Lees' kinetic the rate $\omega = V/r_0$, med to be small,	theory approach the outside wal M << 1. The velo	. The inside wal I is held station city distribution	l is assumed to	be
	$f = \frac{\rho}{m} \left(\frac{\eta}{2\pi} \right)$	(1 + V2x Mivne	16 φ) oxp (— η* — ξ!) .		
and the soluti technique. Th	on of the Boltzmann is yields for the ve	equation is obt	sined using the I	des momentum	
	(45)	$\frac{u_0}{a_0} = \frac{1}{4K} \frac{\beta}{\delta} \left(\frac{1}{r} - r \right)$	++(1-B)		