Mathematics for Machine Learning Part II (Analytic Geometry)

K.Bouanane

7 mars 2023

Norms

Norms I

Definition

Let V be a vector space. A norm is a function

$$\|.\|: \mathbf{V} \to \mathbb{R}$$
$$x \mapsto \|x\|$$

which associates to each element $x \in V$, its $\operatorname{length} ||x|| \in \mathbb{R}$, such that for all $\lambda \in \mathbb{R}$ and $x, y \in V$ we have

- $||x + y|| \le ||x|| + ||y||$
- $||x|| \ge 0$ and $||x|| = 0 \Leftrightarrow x = 0$

Example : In \mathbb{R}^n ,

the Manhattan norm, defined by

$$||x||_1 = \sum_{i=1}^n |x_i|$$

where |.| is the absolute vector. This norm is also called I_1 norm

The Euclidean norm :

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{x^T x}$$

also called l2 norm

Scalar product

Standard Dot Product

Standard Dot Product I

Defined by

$$x^T \cdot y = \sum_{i=1}^n x_i y_i$$

which is a particular case of scalar product

Definition

Let V, W and X be three vector spaces, a bilinear map Ω is a map of $\textbf{V}\times \textbf{W}\to \textbf{X}$ such that

$$\Omega(\lambda x + \psi y, z) = \lambda \Omega(x, z) + \psi \Omega(y, z)$$

$$\Omega(x, \lambda \dot{y} + \psi \dot{z}) = \lambda \Omega(x, \dot{y}) + \psi \Omega(x, \dot{z})$$

Standard Dot Product II

Definition

Let V be a vector space and $\Omega: \textbf{V} \times \textbf{V} \to \mathbb{R}$ a bilinear map, then

- **①** Ω is said to be symmetric if $\Omega(x, y) = \Omega(y, x)$
- \bigcirc Ω is said to be positive definite if

$$\forall x \in \mathbf{V} \setminus \{0\} : \Omega(x,x) > 0, \Omega(0,0) = 0$$

Definition

Let **V** be a vector space and $\Omega : \mathbf{V} \times \mathbf{V} \to \mathbb{R}$. Then if Ω is positive definite symmetric it is called the scalar product of **V**. We then write $\langle x, y \rangle$ instead of $\Omega(x, y)$

Standard Dot Product III

Example : $\mathbf{V} = \mathbb{R}^2$ we define

$$< x, y > = x_1 y_1 - (x_1 y_2 + x_2 y_1) + 2x_2 y_2$$

Show that $\langle x, y \rangle$ is a scalar product

Positive definite matrices

Positive definite matrices I

We consider a vector space \mathbf{V} and a scalar product $\langle \cdot, \cdot \rangle \colon \mathbf{V} \times \mathbf{V} \to \mathbb{R}$. Let \mathbf{B} be a Base of \mathbf{V} and $x, y \in \mathbf{V}$. We then have $x = \sum_{i=1}^n \psi_i b_i$ and $y = \sum_{j=1}^n \lambda_j b_j$ where $\mathbf{B} = (b_1, b_2, \dots, b_n)$ and $\psi_i, \lambda_j \in \mathbb{R}, i, j = 1, n$ We can then write

$$\langle x, y \rangle = \left\langle \sum_{i=1}^n \psi_i b_i, \sum_{j=1}^n \lambda_j b_j \right\rangle = \sum_{i=1}^n \sum_{j=1}^n \psi_i \langle b_i, b_j \rangle = \hat{x}^T \mathbf{A} \hat{y}$$

where $\mathbf{A}_{ij} = \langle b_i, b_j \rangle$ and \hat{x}, \hat{y} are the coordinates of x and y with respect to the base \mathbf{B} . This implies that the scalar product

Positive definite matrices II

is uniquely determined through 1. We can notice that ${\bf A}$ is a symmetric matrix and that ${\bf A}$ satisfies :

$$\forall x \in \textbf{V} \backslash \{0\} : x^T \textbf{A} x > 0$$

We then say that the matrix **A** is symmetric positive definite. If $x^T \mathbf{A} x \geqslant 0, \forall x \in \mathbf{V}$ then **A** is said to be positive semi-definite symmetric.

We state the theorem : for a finite vector space \mathbf{V} and a basis \mathbf{B} of \mathbf{V} . The bilinear map $<\cdot,\cdot>:\mathbf{V}\times\mathbf{V}\to\mathbb{R}$ is a scalar product if there exists a symmetric matrix, positive definite $\mathbf{A}\in\mathbb{R}^{n\times n}$ with $< x,y>=\hat{x}^T\mathbf{A}\hat{y}$ where \hat{x},\hat{y} are the coordinates of x,y with

Positive definite matrices III

respect to **B** We have the following properties for $\mathbf{A} \in \mathbb{R}^{n \times n}$ symmetric and positive definite (SDF) :

- The elements of the diagonal of \mathbf{A} : a_{ii} are positive, since $a_{ii} = e_i^T \mathbf{A} e_i > 0$, where e_i is the *ith* vector of the standard basis.
- The kernel of the linear map defined by **A** $Ker(\Phi_A) = \{0\}$, because $x^T \mathbf{A} x > 0, \forall x \neq 0$ and therefore $\mathbf{A} x \neq 0$ if $x \neq 0$

Lengths and distance

Lengths and distance

Lengths and distance I

We can notice that we can define a norm or a length from a scalar product : $||x|| = \sqrt{\langle x, y \rangle}$

The converse, however, is not true. We then have the following equation, called the **Cauchy-Schwarz inequation**:

$$|< x, y > | \leqslant ||x|| \cdot ||y||$$

Lengths and distance II

Definition

We consider a vector space endowed with a scalar product, we then define

$$d(x, y) = ||x - y|| = \sqrt{\langle x - y, x - y \rangle}$$

called distance between x and y for $x, y \in V$. If the dot product is the standard dot product, then the distance is called the Euclidean distance

Application:

$$d: \mathbf{V} \times \mathbf{V} \to \mathbb{R}$$

 $(x, y) \mapsto d(x, y)$

is called metric

Lengths and distance III

A metric satisfies the following criteria:

- *d* is positive definite,ie : $d(x, y) \ge 0, \forall x, y \in \mathbf{V}$ and $d(x, y) = 0 \Leftrightarrow x = y$
- d is symmetric, ie : $d(x, y) = d(y, x) \forall x, y \in \mathbf{V}$
- Triangle inequality :

$$d(x,z) \leqslant d(x,y) + d(y,z)$$

for all $x, y, z \in \mathbf{V}$

Angles and Orthogonality

Angles and Orthogonality

Angles and Orthogonality I

According to the Cauchy-Schwarz inequality, we have :

$$|< x, y > | \leqslant ||x|| ||y||$$

$$\Rightarrow -1 \leqslant \frac{\langle x, y \rangle}{\|x\| \cdot \|y\|} \leqslant 1$$

So , there exists a unique $\omega \in [0,\pi]$, for which we have :

$$cos\omega = \frac{\langle x, y \rangle}{\|x\| \cdot \|y\|}$$

 ω represents the angle between the vectors x and y

Angles and Orthogonality II

Definition

Two vectors x, y are said to be orthogonal if and only if

$$\langle x, y \rangle = 0$$
. We write $x \perp y$

x and y are orthonormal

Remark

The orthogonality depends on the scalar product. So two vectors can be orthogonal with respect to a dot product and not orthogonal with respect to another

Definition

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be orthogonal if and only if its columns are orthonormal In other words $\mathbf{A}\mathbf{A}^T = \mathbf{I} = \mathbf{A}^T\mathbf{A}$ Which implies that $\mathbf{A}^{-1} = \mathbf{A}^T$

Angles and Orthogonality III

Remark

Orthogonal matrix transformations do not change the length of a vector. for example, for the standard scalar product We have :

$$\|\mathbf{A}x\|^2 = (\mathbf{A}x)^T (\mathbf{A}x) = x^T \mathbf{A}^T \mathbf{A}x = x^T x = \|x\|$$

Similarly, the angle between two vectors x, y remains unchanged, by a transformation of a matrix A orthogonal :

$$cos\omega = \frac{(\mathbf{A}x)^T(\mathbf{A}y)}{\|\mathbf{A}x\|\|\mathbf{A}y\|} = \frac{x^T\mathbf{A}^T\mathbf{A}x}{\sqrt{x^T\mathbf{A}^T\mathbf{A}xy\mathbf{A}^T\mathbf{A}y}} = \frac{x^Ty}{\|x\|\|y\|}$$

Orthonormal Basis

Orthonormal Basis I

Definition

We consider an n-dimensional vector space and a basis

$$\mathbf{B} = \{b_1, b_2, \dots, b_n\}$$
 of \mathbf{V} . \mathbf{B} is said to be orthonormal (ONB) if :

$$< b_i, b_j > = 0$$
 for $i \neq j$

$$< b_i, b_i > = 1$$

for all i, j = 1, ..., n.

Example:

In
$$\mathbb{R}^2$$
, the vectors $b_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $b_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ form an orthonormal basis.

Orthonormal Basis II

Remark

If ${f B}$ satisfies only condition (1) then it is called orthogonal basis.

Orthogonal Projections

Orthogonal Projections

Orthogonal Projections I

Definition

Let **V** be a vector space and **U** \subseteq **V** a vector subspace of **V**. A linear map $\pi : \mathbf{V} \to \mathbf{U}$ is called a projection if $\pi^2 = \pi \circ \pi = \pi$.

Projection onto One-Dimensional Subspaces (Lines)

Projection onto One-Dimensional Subspaces (Lines)

Let $\mathbf{U} \subset \mathbb{R}^n$ be a 1-dimensional subspace and b a basis of \mathbf{U} . We are looking to project an element $x \in \mathbb{R}^n$ onto **U**. So we are looking to find a vector $\pi_u(x) \in \mathbf{U}$, the closest to x. $\pi_u(x)$ is called the projection of x onto **U**. If we want $\pi_{ij}(x)$ to be closest to x, then the distance $\|\pi_u(x) - x\|$ must be minimal. So the segment $\pi_X(x) - x$ must be orthogonal to **U**. In particular to b So we have $\langle \pi_{ij}(x) - x, b \rangle = 0$. On the other hand; $\pi_u(x) \in \mathbf{U}$ including $\pi_u(x) = \lambda b$ for $\lambda \in \mathbb{R}$. Therefore:

$$<\pi_u(x)-x,b>=0\Leftrightarrow < x-\lambda b,b>=0$$

Projection onto One-Dimensional Subspaces (Lines)

then

$$\langle x, b \rangle - \lambda \langle b, b \rangle = 0 \Leftrightarrow \lambda = \frac{\langle x, b \rangle}{\|b\|^2}$$

for the standard dot product, we get $\lambda = \frac{b^T x}{\|b\|^2}$ if $\|b\| = 1$ then $\lambda = b^T x$.

The length of $\pi_x(x)$ is equal to :

$$\|\pi_{u}(x)\| = \|\lambda b\| = |\lambda| \cdot \|b\| = \frac{|b^{T}x|}{\|b\|^{2}} \|b\|$$
$$= |\cos t\omega| \|x\| \|b\| \cdot \frac{\|b\|}{\|b\|^{2}} = |\cos'\omega| \|x\|$$

Projection onto One-Dimensional Subspaces (Lines)

The projection matrix \mathbf{P}_{π} is such that

$$\pi_u(x) = \mathbf{P}_{\pi} \cdot x = \lambda b = b\lambda = b \cdot \frac{b^T x}{\|b\|^2} = \frac{bb^T}{\|b\|^2} \cdot x$$

by identification, we have :

$$\mathbf{P}_{\pi} = \frac{bb^{T}}{\|b\|^{2}}$$

Example:

Projection onto One-Dimensional Subspaces (Lines) IV

Let
$$\mathbf{U} = span[\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}]$$
 We calculate $\mathbf{P}_{\pi} = \frac{bb^{T}}{b^{T}b} = \frac{1}{9} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 2 & 4 & 4 \end{bmatrix}$ let $x = [1, 1, 1]^{T}$
$$\pi_{u}(x) = \mathbf{P}_{\pi} \cdot x = \frac{1}{9} \begin{bmatrix} 8 \\ 10 \\ 10 \end{bmatrix}$$

Projection on a vector subspace

Projection on a vector subspace I

Let **U** be a vector subspace of \mathbb{R}^n with $dim(\mathbf{U}) = m \geqslant 1$ Let $\mathbf{B} = (b_1, b_2, \dots, b_m)$ be a basis of **U**. We want to determine the orthogonal projection of $x \in \mathbb{R}$ on **U**, that is $\pi_u(x)$. We know that $\pi_u(x) \in \mathbf{U}$ therefore $\pi_u(x) = \sum_{i=1}^m \lambda_i b_i$ with $\lambda_i \in \mathbb{R}, i = 1, \dots, m$ To find the orthogonal projection of x onto **U**, we follow these steps :

• Find the $\lambda_1, \ldots, \lambda_m$ coordinates of $\pi_u(x)$ with respect to the base **B**:

$$\pi_{u}(x) = \sum_{i=1}^{m} \lambda_{i} b_{i} = \mathbf{B} \lambda_{i}$$

Projection on a vector subspace II

with $\mathbf{B} = [b_1, b_2, \dots, b_m] \in \mathbb{R}^{n \times m}$, $\lambda = [\lambda_1, \lambda_2, \dots, \lambda_m]^T$ such that $\pi_u(x)$ is closer to $x, \pi_u(x) - x \perp \mathbf{U}$, so x must be orthogonal to b_1, b_2, \dots, b_m We then have :

$$< b_{1}, x - \pi_{u}(x) >= 0 \Leftrightarrow b_{1}^{T}(x_{1} - \pi_{u}(x)) = 0$$
 $< b_{2}, x - \pi_{u}(x) >= 0 \Leftrightarrow b_{2}^{T}(x_{2} - \pi_{u}(x)) = 0$
 \vdots
 $< b_{m}, x - \pi_{u}(x) >= 0 \Leftrightarrow b_{m}^{T}(x_{m} - \pi_{u}(x)) = 0$

Projection on a vector subspace III

So we can write:

$$b_1^T(x - \mathbf{B}\lambda) = 0$$

$$b_2^T(x - \mathbf{B}\lambda) = 0$$

$$\vdots$$

$$b_1^T(x-\mathbf{B}\lambda)=0$$

Projection on a vector subspace IV

$$\Leftrightarrow \begin{vmatrix} b_1^T \\ b_2^T \\ \vdots \\ b_m^T \end{vmatrix} (x - \mathbf{B}\lambda) = 0$$

$$\Leftrightarrow \mathbf{B}^{T}(x - \mathbf{B}\lambda) = 0 \Leftrightarrow \mathbf{B}^{T}x = \mathbf{B}^{T}\mathbf{B}\lambda \Leftrightarrow \lambda = (\mathbf{B}^{T}\mathbf{B})^{-1}\mathbf{B}^{T}x$$

 $(\mathbf{B}^T\mathbf{B})^{-1}\mathbf{B}^T$ is called the pseudo inverse matrix of **B**

• Find the projection $\pi_u(x) \in \mathbf{U}$

$$\pi_u(\mathbf{x}) = \mathbf{B}\lambda = \mathbf{B}(\mathbf{B}^T\mathbf{B})^{-1}\mathbf{B}^T\mathbf{x}$$

• Find the projection matrix \mathbf{P}_{π} It can easily be deduced that $\mathbf{P}_{\pi} = \mathbf{B}(\mathbf{B}^T\mathbf{B})^{-1}\mathbf{B}^T$

Projection on a vector subspace V

Example: Let
$$\mathbf{U} = span\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \subseteq \mathbb{R}^2 \text{ and } x = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^3$$

We are looking for the projection of x onto \mathbf{U}

Gram-Schmidt method

Gram-Schmidt method I

This method is used to transform a basis (b_1, \ldots, b_n) of a sub-vector space or vector space into an orthogonal or orthonormal basis (u_1, \ldots, u_n) . The process iteratively constructs the base (u_1, \ldots, u_n) as follows:

$$u_1 = b_1$$

 $u_k = b_k - \pi_{u^{k-1}}(b_k), k = 2, ..., n$

where $\mathbf{U}^{k-1} = span[u_1, u_2, \dots, u_{k-1}]$ Also constructed the vectors u_1, u_2, \dots, u_k are orthogonal If we want to build an orthonormal basis, we just have to divide each vector by its length

Projection on an affine subspace

Projection on an affine subspace I

Let $\mathbf{L} = x_0 + \mathbf{U}$ be an affine space.

To determine the orthogonal projection $\pi_L(x)$ of x on \mathbf{L} , we transform the pb into a projection problem on a vector subspace . To do this, simply subtract the point of the support x_0 from x and from \mathbf{L} . Thus, the problem is reduced to the projection of vector $x-x_0$ on the vector subspace $\mathbf{U}=\mathbf{L}-x_0$. We thus obtain the projection $\pi_u(x-x_0)$ which we can translate to obtain from x to \mathbf{L} , adding x_0 to $\pi_u(x-x_0)$:

$$\pi_L(x) = x_0 + \pi_U(x - x_0)$$

Rotations

Rotations I

A rotation is a linear map that performs a rotation of a plane by an angle θ , By convention, we rotate in a counterclockwise direction with $\theta>0$

Rotations Rotation in

Rotation in \mathbb{R}^2

Rotation in \mathbb{R}^2 I

We consider the canonical basis

$$\{e_1\begin{pmatrix}1\\0\end{pmatrix},e_2\begin{pmatrix}0\\1\end{pmatrix}\}$$
 of \mathbb{R}^2

We want to perform a rotation in \mathbb{R}^2 . we therefore want to find the coordinates of $x \in \mathbb{R}^2$ in a new basis, obtained by changing the basis.

We thus define the rotation matrix $\mathbf{R}(\theta)$ which represents the coordinates of the canonical vectors in the new base obtained by transformation

$$\Phi(e_1) = egin{pmatrix} cos heta \\ sin heta \end{pmatrix} \;,\; \Phi(e_2) = egin{pmatrix} -sin heta \\ cos heta \end{pmatrix} ,$$

Rotation in \mathbb{R}^2 II

The rotation matrix is then written:

$$\mathbf{R}_{ heta} = egin{pmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{pmatrix}$$

Rotations Rotation in 1

Rotation in \mathbb{R}^3

Rotation in \mathbb{R}^3 I

We can rotate a 2-dimensional plane around the third axis. A simple way to describe this transformation is to specify the images of the vectors of the canonical basis and check that these images are indeed orthonormal

Around e₁-axe :

$$\mathbf{R}_1(heta) = [\Phi(e_1), \Phi(e_2), \Phi(e_3)] = egin{bmatrix} 1 & 0 & 0 \ 0 & cos heta & -sin heta \ 0 & sin heta & cos heta \end{bmatrix}$$

Rotation in \mathbb{R}^3 II

Around e₂-axe :

$$\mathbf{R}_2(heta) = egin{bmatrix} cos heta & 0 & sin heta \ 0 & 1 & 0 \ sin heta & 0 & cos heta \end{bmatrix}$$

Around e₃-axe :

$$\mathbf{R}_3(heta) = egin{bmatrix} cost heta & -sin heta & 0 \ sin heta & cost heta & 0 \ 0 & 0 & 1 \ \end{bmatrix}$$