Control Systems

G V V Sharma*

CONTENTS

1 Polar Plot

1.1 Introduction

1	Polar Plot		1	1.2 Example
	1.1	Introduction	1	1.3 Example
	1.2	Example	1	1.4 Example
	1.3	Example	1	1.5 Example
	1.4	Example	1	1.6 Example
	1.5	Example	1	1.7 Example
		_		2 Bode Plot
	1.6	Example	1	2.1 Gain and Phase Margin
	1.7	Example	1	2.2 Example
				2.3 Example
2	Bode Plot		1	3 PID Controller
	2.1	Gain and Phase Margin	1	3.1 Introduction
	2.2	Example	1	4 Nyquist Plot
	2.3	Example	1	4.1. Using Nyquist criterion find the range of <i>K</i> for which closed loop system is stable.
3	PID Controller		1	$G(s) = \frac{K}{s(s+6)}. (4.1.1)$
	3.1	Introduction	1	$s(s) - \frac{1}{s(s+6)}$. (4.1.1)
				And,

1

Abstract—The objective of this manual is to introduce control system design at an elementary level.

Download python codes using

Nyquist Plot

4

svn co https://github.com/gadepall/school/trunk/ control/ketan/codes

Solution: The system flow can be described

$$G_1(s) = \frac{1}{s(s+6)}.$$
 (4.1.3)

 $H(s) = \frac{1}{s+9}$ (4.1.2)

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

codes/ee18btech11028 1.py

Nyquist Stability Criterion:

$$N = Z - P \tag{4.1.4}$$

where Z is # unstable poles of closed loop transfer function, P is # unstable poles of open loop transfer function and N is # clockwise encirclement of (-1/K, 0).

For stable system,

$$Z = 0 \tag{4.1.5}$$

From 4.1.2 and 4.1.3,

$$P = 0 \tag{4.1.6}$$

$$\implies N = 0 \tag{4.1.7}$$

Fig. 4.1: Nyquist plot for $G_1(s)H(s)$

Since, there is a zero at origin, an infinite radius half circle will enclose the right hand side of end points of the Nyquist plot.

$$\implies \frac{-1}{K} < \frac{-1}{810} \tag{4.1.8}$$

$$\implies K < 810 \tag{4.1.9}$$

And also,

$$K > 0$$
 (4.1.10)

$$\implies 0 < K < 810$$
 (4.1.11)

The following python code generates Fig. 4.1