Erasmus School of Economics

Machine Learning

FEM31002

Regularization

Part 2

Ilker Birbil

birbil@ese.eur.nl

Outline

- Shrinkage: Ridge Regression and Lasso
- Elastic Net
- Least Angle Regression
- Integer Programming models

2 afus ERASMUS UNIVERSITEIT ROTTERDAM

Elastic Net

$$\hat{\beta}_{EN} = \arg\min_{\beta} \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} (\alpha \beta_j^2 + (1 - \alpha)|\beta_j|)$$

$$0 \le \alpha \le 1$$

geometry of the elastic net penalty

*

^{*} Regularization and variable selection via the elastic net, H. Zou and T. Hastie, 2005, pg 5. (available online, last access date 20 August 2019)

ERASMUS UNIVERSITEIT ROTTERDAM

1. Scale the **predictors**:
$$\sum_{i=1}^{n} y_i = 0, \quad \sum_{i=1}^{n} x_{ij} = 0, \quad \sum_{i=1}^{n} x_{ij}^2 = 1 \text{ for } j = 1, \dots, p$$
2. Set $\beta = \mathbf{0}, \mathbf{r} = \mathbf{y} - \mathbf{X}\beta = \mathbf{y}$

- 3. Select the predictor that is most correlated with residual: Say x_i
- Move β_i towards its least squares coefficient of the current residual until some predictor x_k has the same correlation with the residual as x_i
- Move β_i and β_k in the direction defined by their joint least squares coefficient of the residual until another predictor has the same correlation with the residual as x_i and x_k
- Continue like this until all predictors join. In $\min\{n-1,p\}$ steps, obtain the full 6. least squares solution

Lasso modification:

If a nonzero coefficient becomes zero, remove its corresponding predictor

- 1. Scale the **predictors**: $\sum_{i=1}^{n} y_i = 0$, $\sum_{i=1}^{n} x_{ij} = 0$, $\sum_{i=1}^{n} x_{ij}^2 = 1$ for $j = 1, \dots, p$ 2. Set $\beta = 0$, $\mathbf{r} = \mathbf{y} \mathbf{X}\boldsymbol{\beta} = \mathbf{y}$
- Select the predictor that is most correlated with residual: Say x_j
- 4. Move β_i towards its least squares coefficient of the current residual until some predictor x_k has the same correlation with the residual as x_j
- 5. Move β_i and β_k in the direction defined by their joint least squares coefficient of the residual until another predictor has the same correlation with the residual as x_i and x_k
- 6. Continue like this until all predictors join. In $\min\{n-1,p\}$ steps obtain the full least squares solution

- 1. Scale the **predictors**: $\sum_{i=1}^{n} y_i = 0$, $\sum_{i=1}^{n} x_{ij} = 0$, $\sum_{i=1}^{n} x_{ij}^2 = 1$ for $j = 1, \dots, p$ 2. Set $\beta = \mathbf{0}$, $\mathbf{r} = \mathbf{y} \mathbf{X}\boldsymbol{\beta} = \mathbf{y}$
- Select the predictor that is most correlated with residual: Say x_j
- 4. Move β_i towards its least squares coefficient of the current residual until some predictor x_k has the same correlation with the residual as x_j
- 5. Move β_i and β_k in the direction defined by their joint least squares coefficient of the residual until another predictor has the same correlation with the residual as x_i and x_k

- 1. Scale the **predictors**: $\sum_{i=1}^{n} y_i = 0$, $\sum_{i=1}^{n} x_{ij} = 0$, $\sum_{i=1}^{n} x_{ij}^2 = 1$ for $j = 1, \dots, p$ 2. Set $\beta = \mathbf{0}$, $\mathbf{r} = \mathbf{y} \mathbf{X}\boldsymbol{\beta} = \mathbf{y}$
- Select the predictor that is most correlated with residual: Say x_j
- 4. Move β_i towards its least squares coefficient of the current residual until some predictor x_k has the same correlation with the residual as x_j
- 5. Move β_i and β_k in the direction defined by their joint least squares coefficient of the residual until another predictor has the same correlation with the residual as x_i and x_k
- least squares solution

- Select the predictor that is most correlated with residual: Say x_j
- 4. Move β_i towards its least squares coefficient of the current residual until some predictor x_k has the same correlation with the residual as x_j
- 5. Move β_i and β_k in the direction defined by their joint least squares coefficient of the residual until another predictor has the same correlation with the residual as x_i and x_k
- least squares solution

- Select the predictor that is most correlated with residual: Say x_j
- 4. Move β_i towards its least squares coefficient of the current residual until some predictor x_k has the same correlation with the residual as x_j
- 5. Move β_i and β_k in the direction defined by their joint least squares coefficient of the residual until another predictor has the same correlation with the residual as x_i and x_k

Integer Programming Approach

Best subset selection problem:

minimize
$$\frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$
 subject to $\|\boldsymbol{\beta}\|_0 \le k$.

counts the number of nonzeros (a pseudo norm)

- Counting nonzeros makes the problem combinatorial
- NP-hard problem
- The same norm is also used in different domains, where sparsity of the resulting solution is important
- Here k is the hyperparameter

Integer Programming Approach

minimize $\frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$ subject to $\|\boldsymbol{\beta}\|_0 \le k$.

A simple reformulation as a mixed integer quadratic problem:

$$v_1 = \text{ minimize } \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$
 subject to
$$-Mz_j \leq \beta_j \leq Mz_j, \quad j = 1, \dots, p,$$

$$\sum_{j=1}^p z_j \leq k,$$
 convex hull of the feasible region
$$z_j \in \{0,1\} \qquad j = 1, \dots, p.$$

$$\{\boldsymbol{\beta} : \|\boldsymbol{\beta}\|_{\infty} \leq M, \|\boldsymbol{\beta}\|_1 \leq Mk\} \subseteq \{\boldsymbol{\beta} : \|\boldsymbol{\beta}\|_1 \leq Mk\}$$

$$v_2 = \text{minimize} \qquad \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

subject to $\|\boldsymbol{\beta}\|_1 \le Mk$.

 $v_2 \le v_1$

Lasso

ERASMUS UNIVERSITEIT ROTTERDAM

Outline

- Shrinkage: Ridge Regression and Lasso
- Elastic Net
- Least Angle Regression
- Integer Programming Models

2 afus erasmus universiteit rotterdam