Restaurant

Martha is interviewing at Subway. One of the rounds of the interview requires her to cut a bread of size $l \times b$ into smaller identical pieces such that each piece is a square having maximum possible side length with no left over piece of bread.

Input format

The first line contains an integer T. T lines follow. Each line contains two space separated integers $\it l$ and $\it b$ which denote length and breadth of the bread.

Output format

 $m{T}$ lines, each containing an integer that denotes the number of squares of maximum size, when the bread is cut as per the given condition.

Constraints

```
1 <= T <= 1000
1 <= I, b <= 1000
```

Sample Input

```
2
2 2
6 9
```

Sample Output

```
1
6
```

Explanation

The 1st testcase has a bread whose original dimensions are 2×2 , the bread is uncut and is a square. Hence the answer is 1.

The 2nd testcase has a bread of size 6×9 . We can cut it into 54 squares of size 1×1 , 0 of size 2×2 , 6 of size 3×3 , 0 of size 4×4 , 0 of size 5×5 and 0 of size 6×6 . The number of squares of maximum size that can be cut is 6.