# Natural Language Processing

Prof. Dr. Jannik Strötgen jannik.stroetgen@h-ka.de

Summer 2024

**Hochschule Karlsruhe** 

University of Applied Sciences



Fakultät für Informatik und Wirtschaftsinformatik

# H K A

# [2] Pre-processing

### Outline

H K A

- [2] Pre-processing
  - Text segmentation
    - Sentence splitting
    - Tokenization
  - Token normalization
    - Stemming
    - Lemmatization

### From the Introduction

# H K A

#### 1. Pre-processing

Ahdistinctlyirememberitwasinthebleakdecemberandeachseparatedyingember wroughtitsghostupontheflooreagerlyiwishedthemorrowvainlylhadsoughttobor rowfrommyhookssurceaseofsorrowsorrowforthelostlenorefortherareandradia ntm adj: distinct adv: distinctly heangelsnamelenorenamelesshereforevermore

Ah, distinctly I remember it was in the bleak December;

And each separate dying ember wrought its ghost upon the floor.

Eagerly I wished the morrow;—vainly I had sought to borrow

From my books surcease of sorrow—sorrow for the lost Lenore—

For the rare and radiant maiden whom the a to seek 1. person sg. past perfect past perfect



March 19, 2024

Natural Language Processing @ HKA - Prof. Dr. Jannik Strötgen

10

# Sentence Splitting (from last week)



Using whitespaces and punctuation, sentences should not be too difficult to detect... right?

- ! and ? are relatively unambiguous
- A period "." is quite ambiguous, but only has a few cases such as
  - Sentence boundaries
  - Abbreviations
  - Numbers
  - etc.

...at least as long as we have punctuation.

- Classical Greek and Latin texts use no punctuation
- Classical Chinese considers punctuation as optional
- Thai is using whitespaces instead of punctuation

# Tokenization (from last week)



#### Token:

The occurrence of a word in a text

#### Tokenization:

Segmentation of an input stream into an ordered sequence of tokens

#### **Tokenizer:**

A system that splits texts into word tokens

#### **Example:**

- Input text: John likes Mary and Mary likes John.
- Tokens: {"John", "likes", "Mary", "and", "Mary", "likes", "John", "."}
- Types: {"John", "likes", "Mary", "and", "."}

# [2] Pre-processing: Token Normalization



# H K A

#### Recall:

- Tokenization (ideally) returns word occurrences in a text
- Word occurrence frequencies are Zipf-distributed
- Due to morphological variants, many word occurrences will be unique, e.g., computerization, computer, computing, computation

### Stemming and Lemmatization

H K A

To make these words comparable, we want to **normalize** them by grouping them into equivalence classes. This can be done by reducing them to a root morpheme by

- stemming, which reduces a word to its stem (comput) or
- lemmatization, which reduces a word to its lemma (compute)

Since {computerization, computer, computing, computation} are all derived from the same root, we can then combine their occurrences in our corpus statistics – which for some tasks might be what we want.

### Porter Stemmer

# H K A

#### A simple approach:

- We effectively chop off the end of the word!
- Only suffixes are considered for removal
- Frequently used algorithm (e.g., in Information Retrieval)
- Results are quite ugly (from a linguistic perspective)

Manually designed rules for suffix stripping are applied, e.g.:

-sses 
$$\rightarrow$$
 ss caresses  $\rightarrow$  caress

-ies  $\rightarrow$  i libraries  $\rightarrow$  librari

s  $\rightarrow$   $\emptyset$  dogs  $\rightarrow$  dog



### Porter Stemmer



#### Core idea

- Consecutively remove / replace suffixes
- The number of iterations depends on the syllables of the word
- In each step, one rule from a fixed set of rules is applied
- No rule may be applied twice
- Once no rule can be applied, the algorithm stops

### Porter Stemmer: Measure of a Word

H K A

Number of syllables is approximated heuristically by the number of vowel-consonant sequences between (optional) leading consonants and (optional) trailing vowels. Formally, let

- V denote a sequence of vowels and
- C denote a sequence of consonants.

Then each word can be modeled as:  $[C](VC)^m[V]$  and m is called the **measure** of the word. We use m to approximate the number of syllables.

#### Examples:

```
m=0: to    [t][o]
m=1: brick    [br](ick)
m=2: eastern    (eas t)(ern)
```

# Porter Stemmer: Application of Rules



Each rule comes with a constraint that determines when it can be applied, which uses the measure. For example:

- Rule: If (m>0): ATION -> ATE
  - medication → medicate
  - nation → nation (without "ation" the word is a single consonant: m=0)

#### "Computing" Example:

- Input = computational
- Replace -ational with -ate → computate
- Replace -ate with nothing → comput

## Stemming: Evaluation



There are two types of error during stemming:

- Over-stemming
  - Two inflected words are stemmed to the same root when they should have been treated as separate
  - Example: universal, university, universe → univers

#### **Under-stemming**

- Two separate inflected words should be stemmed to the same root but are stemmed to different roots
  - Example: alumnus → alumnu alumni → alumni alumna → alumna

### Lemmatization



A set of more sophisticated approaches to finding the root of a word, that include some of the following techniques:

- Using an understanding of inflectional morphology (e.g., ≈ reverse inflection for a verb)
- Using a set of rules for the detachment of morphemes
- Using an exception list for irregular inflections
- Utilizes word collocation information
- Utilizes part-of-speech tagging (more on that later)
- Comparing the results to linguistic resources such as WordNet (more on that later)
- Keeping the original form if transformations do not match a dictionary
- Many more involved techniques...

### Lemmatization

H K A

Disadvantages of lemmatization: complexity and need for knowledge and understanding of the context.

• Example: saw

 $\rightarrow$  (to) see | (the) saw



https://www.meinmed.at/gesundheit/auge-anatomie/1470



https://www.krippenursel.de/saege-gr.html

# Stemming vs. Lemmatization



| Input      | WordNet<br>Lemmatizer | Porter<br>Stemmer |
|------------|-----------------------|-------------------|
| leaves     | leaf                  | leav              |
|            | leave                 |                   |
| acceptable | acceptable            | accept            |

### Stemming vs. Lemmatization



for example compressed and compression are both accepted as equivalent to compress.

#### **lemmatized**

for | example | compress | and | compression | be | both | accept | as | equivalent | to | compress

#### stemmed

for | exampl | compress | and | compress | ar | both | accept | as | equival | to | compress

# Stopword Removal



#### **Stopword Removal**

- Stopwords (e.g., a, the, of) are words, which carry only little information
- They occur in pretty much every document of a language
- In information retrieval (i.e., search), removing stopwords
  - Reduces the number of terms, which need to be indexed
  - Improves response times
  - Can improve value of search results (e.g., a song of fire and ice)
  - Can decrease value of search results (e.g., the who)
- In data analytics, stopwords are also not meaningful as they do not characterize any document





#### **Stopword Removal**

 Based on a manually defined list of stopwords (sometimes with domain-specific stopwords)

```
a, an, and, are, as, at, be, by, for, has, he, in, is, it, its, of, on, that, the, to, was, where, will, with
```

• List of stopwords can be automatically constructed and contains all terms which occur frequently in pretty much all documents of a document collection.

### Online Tools and Resources



http://text-processing.com/demo/

http://textanalysisonline.com/nltk-porter-stemmer

http://textanalysisonline.com/nltk-wordnet-word-lemmatizer

http://textanalysisonline.com/nltk-wordnet-lemmatizer





#### Word Tokenization

https://youtu.be/dzSQ0-SEqxQ?list=PLoROMvodv4rOFZnDyrlW3-nI7tMLtmiJZ

Word Normalization and Stemming

https://youtu.be/rHWCHeDmXFc?list=PLoROMvodv4rOFZnDyrlW3-nI7tMLtmiJZ

# Summary: Foundations and Preprocessing

# H K A

#### Difficulties of NLP:

- Language enables communication between humans, not computers
- Language presupposes world knowledge / prior knowledge
- Taming the complexity that emerges when words are combined to text

#### Evolution of three major types of NLP methods:

- Rule-based models
- Statistical models / corpus linguistics
- (Deep) neural network models





**Distributional semantics** can help us understand words purely based on their context.

### "You shall know a word by the company it keeps"

J. R. Firth, 1957

Methods from **corpus linguistics** enable us to derive context statistics that can then be used to construct algorithms that solve NLP tasks.

# Summary: Foundations and Preprocessing

# H K A

#### **Elements of language:**

- Morphology: Internal composition of words (morphemes)
- Syntax: Composition of sentences from words

| Language           |                                                                        |  |
|--------------------|------------------------------------------------------------------------|--|
| Sound 1. Phonetics |                                                                        |  |
| Grammar            | <ul><li>2. Phonology</li><li>3. Morphology</li><li>4. Syntax</li></ul> |  |
| Meaning            | 5. Semantics                                                           |  |

#### **Text pre-processing:**

- Tokenization
- Sentence splitting
- Stemming and Lemmatization
- Stopword Removal

# Thank you for your attention!



# Questions?