

Doc. Number:

- □ Tentative Specification
- Preliminary Specification
- □ Approval Specification

MODEL NO.: N080JCE SUFFIX: G41

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note : Only for reference	
Please return 1 copy for your corsignature and comments.	nfirmation with your

Approved By	Checked By	Prepared By
HENRY.CHIEN	LYNN.LIAO	CHINGKUO.CHIANG

Version 2.0 15 January 2015 1 / 30

Version 2.0

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 GENERAL SPECIFICATIONS	5
2. MECHANICAL SPECIFICATIONS	5
2.1 CONNECTOR TYPE	5
3. ABSOLUTE MAXIMUM RATINGS	6
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	6
3.2 ELECTRICAL ABSOLUTE RATINGS	
3.2.1 TFT LCD MODULE	6
4. ELECTRICAL SPECIFICATIONS	7
4.1 FUNCTION BLOCK DIAGRAM	
4.2. INTERFACE CONNECTIONS	7
4.3 ELECTRICAL CHARACTERISTICS	
4.3.1 LCD ELETRONICS SPECIFICATION	
4.3.2 LED CONVERTER SPECIFICATION	
4.3.3 BACKLIGHT UNIT	
4.3.4.Signal Timing Specifications	
4.4 MIPI Interface DC/AC Characteristic	
4.4.1 MIPI Interface DC characteristic	11
4.4.2 MIPI AC Characteristic	12
4.4.2.1 LP Transmission	
4.4.3 High Speed Transmission	
4.4.3.1 Data-Clock Timing Specifications	12
4.4.3.2 High-Speed Data Transmission in Bursts	13
4.4.3.2.1 High-Speed Data Transmission Operation Timing Parameters	13
4.4.3.3 High-Speed Clock Transmission	
4.4.3.3.1 Switching the Clock Lane Operation Timing Parameters	14
4.4.3.4 LP11 timing request between data transformation	
4.5 MIPI interface (Mobile Industry Processing Interface)	
4.5.1 MIPI Lane Configuration	
4.6 POWER ON/OFF SEQUENCE	
4.7 POWER ON/OFF SEQUENCE	
5. OPTICAL CHARACTERISTICS	
5.1 TEST CONDITIONS	
5.2 OPTICAL SPECIFICATIONS	
6. RELIABILITY TEST ITEM	25

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

15 January 2015

2/30

カナルリノし 年3 7. Package	26
7.1 Packing Description	
7.2. Description of Pallet	
7.3. Un-Packing Description	28
Appendix. OUTLINE DRAWING (Label position will be updated as requirement)	29
Appendix, NT51021 Register setting	30

REVISION HISTORY

Version	Date	Page	Description
0.0	Jan, 14, 2014	All	Spec Ver.0.0 was first issued.
1.0	Jun, 30, 2014	All	Spec Ver.1.0 was first issued.
2.0	Jan,12,2015	P30	Add NT51021 Register setting appendix.

Version 2.0 15 January 2015 4 / 30

1.1 OVERVIEW

N080JCE-G41 is a 8" (8" diagonal) TFT Liquid Crystal Display module with LED Backlight unit and 39 pins MIPI interface. This module supports 1200 x 1920 WUXGA mode.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	8" diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1200 x R.G.B. x 1920	pixel	-
Pixel Pitch	0.0299 (H) x 0.0897 (V)	mm	<u>-</u>
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16,777,216 (8bit color depth)	color	-
Transmissive Mode	Normally black		-
Surface Treatment	Hard coating (3H), Glare	-	-
Luminance, White(center)	400	Cd/m2	
Power Consumption	Total 1.82 W (Max.) (panel 0.4 W (Max.), BL 1.42W	/ (Max.))	(1)

Note (1) The specified power consumption (with converter efficiency) is under the conditions at **VDD= 3.3V**, fv = 60 Hz, Brightness(center)= 400nits, I_{F_LED} = 21mA and Ta = 25 ± 2 °C, whereas white pattern is displayed.

2. MECHANICAL SPECIFICATIONS

	Item	Min.	Typ.	Max.	Unit	Note
	Horizontal (H)	114.1	114.6	115.1	mm	
Module Size	Vertical (V)	183.6	184.1	184.6	mm	Module
INIOGUIC OIZC	Thickness (T)			2.3 (w/o PCBA) 3.95(w/ PCBA)	mm	Size
CF Polarizer	Horizontal	110.24	110.44	110.64	mm	CF Polarizer
	Vertical	175.424	175.624	175.824	mm	
Active Area	Horizontal	107.59	107.64	107.69	mm	Active Area
	Vertical	172.174	172.224	172.274	mm	
V	Veight	-	-	80	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2.1 CONNECTOR TYPE

Please refer Appendix Outline Drawing for detail design.

Connector Part No.: Hirose FH26-39S-0.3SHW

Version 2.0 15 January 2015 5 / 30

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic		
Storage Temperature	T _{ST}	-20	+70	°C	(1)	
Operating Ambient Temperature	T _{OP}	-10	+60	°C	(1), (2)	

Note (1) (a) 90 %RH Max. ($Ta \le 40 \, ^{\circ}C$).

- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Note (2) The temperature of panel surface should be -10 $^{\circ}$ C min. and 70 $^{\circ}$ C max.

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

Item	Symbol	Val	lue	Unit	Note	
non	Cymbol	Min.	Max.	Onic		
Power Supply Voltage	VDD	+2.7	+3.6	V	(1)	

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

Version 2.0 15 January 2015 6 / 30

4. ELECTRICAL SPECIFICATIONS 4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

тичА	SSIGNMENT			1
Pin	Symbol I/O Descr		Description	Remark
1	VDD	Р	3.3V input	3.0V~3.6V
2	VDD	Р	3.3V input	3.0V~3.6V
3	VDD	Р	3.3V input	3.0V~3.6V
4	VDD	Р	3.3V input	3.0V~3.6V
5	NC(BIST)		Normal Operation/BIST pattern select.	1.4V~1.6V
6	NC(MTP)		No connection, please keep it floating	7.4V~7.6V
7	LED_PWM_IN		ALS sensor PWM signal input.	3.0V~3.6V
8	LED_PWM_OU T	0	PWM control signal for LED driver (CABC)	3.0V~3.6V
9	NC(SCL)	0	No connection	
10	NC(SDA)	0	No connection	
11	GND	Р	Ground	
12	D0+	I	MIPI differential data0 input (Positive)	
13	D0-	I	MIPI differential data0 input (Negative)	
14	GND	Р	Ground	
15	D1+	I	MIPI differential data1 input (Positive)	
16	D1-	I	MIPI differential data1 input (Negative)	
17	GND	Р	Ground	
18	CLK+	I	MIPI differential clock input (Positive)	
19	CLK-	I	MIPI differential clock input (Negative)	
20	GND	Р	Ground	
21	D2+	I	MIPI differential data2 input (Positive)	
22	D2-	I	MIPI differential data2 input (Negative)	
23	GND	Р	Ground	
24	D3+	I	MIPI differential data3 input (Positive)	

Version 2.0 15 January 2015 7 / 30

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

群創	光雷			
25	D3-	I	MIPI differential data3 input (Negative)	
26	GND	Р	Ground	
27	GND	Р	Ground	
28	ID		3.3V	
29	STBYB	I	3.3V	3.0V~3.6V
30	LED1	Р	Cathode for light bar	
31	LED2	Р	Cathode for light bar	
32	LED3	Р	Cathode for light bar	
33	NC		NC	
34	NC		NC	
35	NC		NC	
36	NC(WPN)		No connection, please keep it floating	
37	NC			
38	VLED	Р	Anode for light bar	22.4V
39	VLED	Р	Anode for light bar	22.4V

Note (1) The first pixel is odd as shown in the following figure.

Note (2) Normal operation/BIST pattern selection. (Control by MIPI LP Command)

15 January 2015 Version 2.0 8/30

群創光電 4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

Item		Symbol		Values	Unit	Remark	
		Symbol	Min.	Тур.	Max.	Offic	Kelliaik
Power supply volt	age	VDD	3.0	3.3	3.6	V	
VDD High level input voltage		V _{IH1}	0.7 VDD	-	VDD	V	Applicable Pin: STBYB
VDD Low level input voltage		V _{IL1}	0	-	0.3 VDD	V	LED_PWM_IN
Power Supply Current	White	lvdd		116	120	mA	Note (2)

Note (1) The ambient temperature is Ta = 25 ± 2 °C.

Note (2) The specified power supply current is under the conditions at VDD = 3.3 V, Ta = 25 ± 2 °C, DC Current and $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

Active Area	

b. White Pattern

Version 2.0 15 January 2015 9 / 30

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

N/A

4.3.3 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Parameter	Symbol		Value	Unit	Note	
	Symbol	Min. Typ. Max.		Offic	Note	
LED Light Bar Power Supply Voltage	VL			22.4	V	(1)(2)(Duty(1000())
LED Light Bar Power Supply Current	lL	-	63	-	mA	-(1)(2)(Duty100%)
Power Consumption	PL	-		1.42	W	(3)
LED Life Time	L _{BL}	15,000	-	-	Hrs	(4)

Note (1) LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.

Note (3) $P_L = I_L \times V_L$ (Without LED converter transfer efficiency)

Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ±2 $^{\circ}$ C and I_L = 21 mA(Per EA) until the brightness becomes \leq 50% of its original value.

4.3.4 SIGNAL TIMING SPECIFICATIONS

7.5.7	SIGNAL TIMING SPECIFICAT	10140				
Signal	Item	Symbol	Min.	Тур.	Max.	Unit
DCLK	Frequency	1/Tc	-	159.4	-	MHz
	Vertical Total Time	TV	1981	1981	1982	TH
	Vertical Active Display Period	TVD	-	1920	-	TH
	Vertical Front Porch Period	TVFP	35	35	36	TH
	Vsync pulse width	TVPW	1	1	1	TH
DE	Vertical Back Porch Period	TVBP		25		TH
	Horizontal Total Time	TH	1275	1341	1342	Tc
	Horizontal Active Display Period	THD	-	1200	-	Tc
	Horizontal Front Porch Period	THFP	42	80	81	Tc
	Horizontal pulse width	THPW	1	1	1	Tc
	Horizontal Back Porch Period	THBP	32	60	60	Tc
	MIPI Data frequency	FDATA	955	999	1000	MHz

Note: DCLK = TV x TH x frame rate, and frame rate = 60Hz.

Version 2.0 15 January 2015 10/30

群創光電 4.4 MIPI Interface DC/AC Characteristic

4.4.1 MIPI Interface DC characteristic

Parameter	Symbol	Symbol Conditions		Specification		
Parameter	Symbol	Conditions	MIN	TYP	MAX	UNIT
MIPI digital operation current	Ivccif	VCC=VCC_IF=1.6V, Data Rate=500Mbps,	-		24	mA
MIPI digital stand-by current	Ivccifst	VCC_IF input current. All input signal are stopped.	-	200	-	uA
	MIP	I Characteristics for High Speed R	eceiver			
Single-endedl input low voltage	VILHS		-40	-	(-)	mV
Single-endedl input high voltage	VIHHS		-	-	460	mV
Common-mode voltage	VCMRXDC		155	-	330	mV
Differential input impedance	Zıd		80	100	125	ohm
Differential input high threshold	VIDTH			-	70	mV
Differential input low threshold	VIDTL		70	-	-	mV
	M	IPI Characteristics for Low Power	Mode			
Pad signal voltage range	Vı		-50	-	1350	mV
Ground shift	VGNDSH		-50	-	50	mV
Output low level	Vol		-150		150	mV
Output high level	Vон		1.1	1.2	1.3	V

Note 1) VDD= 2.7V to 3.6V, AVDD= 7V to 10V, GND=AGND= 0V, TA= -20 to +85°C

Figure :MIPI DC Diagram

Version 2.0 15 January 2015 11 / 30

4.4.2.1 LP Transmission

(VDD= 2.7V to 3.6V, AVDD= 7V to 10V, GND=AGND= 0V, TA= -20 to +85°C)

Parameter	Symbol	Sp	UNIT		
raiailletei	Syllibol	MIN	TYP	MAX	UNIT
15%-85% rise time and fall time	TRLP / TFLP	-	-	25	ns
Pulse width of the LP exclusive-OR clock	TLP-PULSE-TX	-50	-	-	ns
Period of the LP exclusive-OR clock	TLP-PER-TX	100			ns

Figure :LP Transmitter Timing Definitions

4.4.3 High Speed Transmission

4.4.3.1 Data-Clock Timing Specifications

(VDD= 2.7V to 3.6V, AVDD= 7V to 10V, GND=AGND= 0V, TA= -20 to +85°C)

Parameter	Symbol	S	UNIT		
	Syllibol	MIN	TYP	MAX	ONT
UI instantaneous	Ulinst	1.0	-	12.5	ns
Data to Clock Setup Time	Тѕетир	0.25	-	-	Ulinst
Data to Clock Hold Time	THOLD	0.25	-	-	Ulinst

Figure : Data to Clock Timing Definitions

4.4.3.2 High-Speed Data Transmission in Bursts

4.4.3.2.1 High-Speed Data Transmission Operation Timing Parameters

(VDD= 2.7V to 3.6V, AVDD= 7V to 10V, GND=AGND= 0V, TA= -20 to +85℃)

Parameter	Symbol	Sp	UNI		
Faranietei	Syllibol	MIN	TYP	MAX	Т
Time to drive LP-00 to prepare for HS transmission	Ths-prepare	40+4UI	-	85+6UI	ns
Time from start of tHS-TRAIL or tCLK-TRAIL period to start of LP-11 state	Теот	-	-	105+12U I	ns
Time to enable Data Lane receiver line termination measured from when Dn cross VIL,MAX	Ths-term-en	-	-	35+4UI	ns
Time to drive flipped differential state after last payload data bit of a HS transmission burst	Ths-trail	60+4UI	-	-	ns
Time-out at RX to ignore transition period of EoT	Ths-skip	40		55+4UI	ns
Time to drive LP-11 after HS burst	THS-EXIT	100	-	-	ns
Length of any Low-Power state period	TLPX	50	-	-	ns
Sync sequence period	Ths-sync	-	8UI	-	ns
Minimum lead HS-0 drive period before the Sync sequence	Ths-zero	105+6UI	-	-	ns

Note:

- 1. The minimum value depends on the bit rate. Implementations should ensure proper operation for all the supported bit rates.
- 2. UI means Unit Interval, equal to one half HS clock period on the Clock Lane.
- 3. TLPX is an internal state machine timing reference. Externally measured values may differ slightly from the specified values due to asymmetrical rise and fall times.

Version 2.0 15 January 2015 13/30

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

Figure: High-Speed Data Transmission in Bursts

4.4.3.3 High-Speed Clock Transmission

4.4.3.3.1 Switching the Clock Lane Operation Timing Parameters

(VDD= 2.7V to 3.6V, AVDD= 7V to 10V, GND=AGND= 0V, TA= -20 to +85℃)

Parameter Symbo		Specification			UNIT
Parameter	Symbol	MIN	TYP	MAX	UNIT
Time that the transmitter shall continue sending HS clock after the last associated Data Lane has transitioned to LP mode	Tclk-post	60+52UI	-	1	ns
Detection time that the clock has stopped toggling	Tclk-miss	-	-	60	ns
Time to drive LP-00 to prepare for HS clock transmission	TCLK-PREPARE	38	1	95	ns
Minimum lead HS-0 drive period before starting Clock	Tclk-prepare +Tclk-zero	300	1	-	ns
Time to enable Clock Lane receiver line termination measured from when Dn cross VIL,MAX	Ths-term-en			38	ns
Minimum time that the HS clock must be set prior to any associated date lane beginning the transmission from LP to HS mode	Tclk-pre	8	-	-	UI
Time to drive HS differential state after last payload clock bit of a HS transmission burst	Tclk-trail	60	-	-	ns

Note:

The DSI host processor shall support continuous clock on the Clock Lane for NT chip that require it, so the host processor needs to keep the HS serial clock running.

PRODUCT SPECIFICATION INNOLUX

Figure : Switching the Clock Lane between Clock Transmission and Low-Power Mode

4.4.3.4 LP11 timing request between data transformation

When Clock lane of DSI TX chip always keeps High speed mode, then Clock lane never go back to Low power mode. If Date lane of TX chip needs to transmit the next new data transmission or sequence, after the end of Low power mode or High speed mode. Then TX chip needs to keep LP-11 stop state before the next new data transmission, no matter in Low power mode or High speed mode. The LP-11 minimum timing is required for RX chip in the following 9 conditions, include of LP - LP, LP - HS, HS - LP, and HS - HS. This rule is suitable for short or long packet between TX and RX data transmission.

(1) Timing between LP - LP command

Parameter	Svmbol	Spe	UNIT		
Faranietei	Symbol	MIN	TYP	MAX	UNIT
LP-11 delay to a start of the new Escape Mode Entry	TDEE	150	-	-	ns

15/30 Version 2.0 15 January 2015

(2)Timing between LP - HS command

Parameter	Symbol	Specific	cation		UNIT
raidilletei	Syllibol	MIN	TYP	MAX	ONIT
LP-11 delay to a start of the Entering High Speed Mode	TDEH	Max(150,32UI)	-	-	ns

(3)Timing between HS - LP command

Parameter	Svmbol	Specific	UNIT		
Parameter Symbo		MIN	TYP	MAX	UNIT
LP-11 delay to a start of the Escape Mode Entry	TDHE	Max(150,32UI)	-	-	ns

Version 2.0 15 January 2015 16 / 30

(4)Timing between HS - HS command

Parameter Symbo		Specific	UNIT		
raidilletei	Syllibol	MIN	TYP	MAX	UNIT
LP-11 delay to a start of the Entering High Speed Mode	Тонн	Max(150,32UI)	-	-	ns

Version 2.0 15 January 2015 17 / 30

4.5 MIPI interface (Mobile Industry Processing Interface)

The Display Serial Interface standard defines protocols between a host processor and peripheral devices that adhere to MIPI Alliance standards for mobile device interfaces. The DSI standard builds on existing standards by adopting pixel formats and command set defined in MIPI Alliance standards. DSI-compliant peripherals support either of two basic modes of operation: Command Mode and Video Mode. Which mode is used depends on the architecture and capabilities of the peripheral. The mode definitions reflect the primary intended use of DSI for display interconnect, but are not intended to restrict DSI from operating in other applications.

Command Mode refers to operation in which transactions primarily take the form of sending commands and data to a peripheral, such as a display module, that incorporates a display controller. The display controller may include local registers. Systems using Command Mode write to, and read from the registers. The host processor indirectly controls activity at the peripheral by sending commands, parameters and data to the display controller. The host processor can also read display module status information. Command Mode operation requires a bidirectional interface.

Video Mode refers to operation in which transfers from the host processor to the peripheral take the form of a real-time pixel stream. In normal operation, the display module relies on the host processor to provide image data at sufficient bandwidth to avoid flicker or other visible artifacts in the displayed image. Video information should only be transmitted using High Speed Mode. To reduce complexity and cost, systems that only operate in Video Mode may use a unidirectional data path.

Note: The NT51021 IC only supports Video Mode operation.

4.5.1 MIPI Lane Configuration

	MCU (Master) Display Module (Slave)
Clock Lane+/-	Unidirectional Lane ■ Clock Only ■ Escape Mode(ULPS Only)
Data Lane0+/-	Unidirectional Lane Forward High-Speed Forward Escape Mode Forward LPDT
Data Lane1+/-	Unidirectional ■ Forward High speed
Data Lane2+/-	Unidirectional ■ Forward High speed
Data Lane3+/-	Unidirectional ■ Forward High speed

The connection between host device and display module is as reference.

Version 2.0 15 January 2015 18 / 30

a. VDD AC characteristic:

VDD= 3..3V, GND=AGND= 0V, TA= -20 to +85℃)

Parameter Symbol	Symbol	Min.	Тур.	Max.	Unit	Conditions	
VDD power source slew time	Tpor	-	-	20	ms	From 0V to 90% VDD	
VDD resettle time	Tres	1	-		S		

Version 2.0 15 January 2015 19/30

The power sequence specifications are shown as the following table and diagram.

a. Power on Timing Sequence:

VDD=3.0 to 3.6V

Symbol		Value	N	Unit	Remark
	Min.	Тур.	Max.		Min.
t1	-	(_	2	t1	-
t2	300		-	t2	
t3	10		-	t3	
t4	0		-	t4	
t5	100	-	-	t5	

Version 2.0 15 January 2015 20 / 30

VDD=3.0 to 3.6V

Backlight

PRODUCT SPECIFICATION

群創光電 b. Power off Timing Sequence:

VCC
STBYB

OV

MIPI
(System to TCON)

t9

Symbol		Value		Unit	Remark
	Min.	Тур.	Max.		Min.
t6	0	-	-	t6	
t7	100	-		t7	
t8	0	-		t8	
t9	20	•	-	t9	

Version 2.0 15 January 2015 21 / 30

NNOLUX 群創光電 5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Ta	25±2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	VDD	3.3	V			
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"					
LED Light Bar Input Current	Ι _L	63	mA			

The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

5.2 OPTICAL SPECIFICATIONS

Item	Item Symbol		Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio Response Time		CR			700	900	S - S	-	(2),(5),(7)
		$T_{R+}T$	F		-	25	30	ms ms	(3),(7)
CP Luminance	of White	L _{CP}			340	400	-	Cd/m ²	(4),(6),(7)
	White	Wx		$\theta_x=0^\circ$, $\theta_Y=0^\circ$		0.300			
	vvriite	Wy		CS-2000		0.320	Тур +		(4),(6),(7)
	Red	Rx		R=G=B=255		0.613		_	
	Reu	Ry		Gray scale	Тур –	0.350			
	Green	Gx			0.03	0.325	0.03	-	(4),(0),(1)
	Oreen	Gy			0.605				
	Blue	Bx	Вх			0.152			
	Bide	Ву				0.071			
Viewing Angle	Horizontal	X- +	X+	CR > 10	170	178	-	Dog	(1) (5) (7)
	Vertical	y- +	у+	CK > 10	170	178	-	Deg.	(1),(5),(7)
White Variation of 5 Points		δW ₅		θ _x =0°, θ _Y =0°	80			%	(5),(6),(7)
White Variation of 13 Points		δW ₁₃	р	ο _χ –ο , ογ –ο	67			70	(3),(3),(7)
Color Gamut		4			55	60		%	(5),(6),(7)

Version 2.0 15 January 2015 22 / 30

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (4) Definition of Center Point Luminance of White (L_{CP}):

Measure the luminance of gray level 63 at center point

$$L_{CP} = L(5)$$

L(x) is corresponding to the luminance of the point X at Figure in Note (6)

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 13 points

 $\delta W_{9p} = \{Minimum [L (1) \sim L (13)] / Maximum [L (1) \sim L (13)]\}*100\%$

Note (7) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

Test Item	Test Condition	Note
High Temperature Storage Test	70°C, 240 hours	
Low Temperature Storage Test	-20°C, 240 hours	
Thermal Shock Storage Test	-20°C, 0.5hour←→70°C, 0.5hour; 100cycles, 1hour/cycle	
High Temperature Operation Test	60°C, 240 hours	(1) (2)
Low Temperature Operation Test	-10°C, 240 hours	() ()
High Temperature & High Humidity Operation Test	60°C, RH 90%, 240hours	
ESD Test (Operation)	Condition 1 : Contact Discharge, ± 4KV (Module level) Condition 2 : Air Discharge, ± 8KV (Module level)	(1)
Shock (Non-Operating)	220G, 2ms, half sine wave,1 time for each direction of ±X,±Y,±Z	(1)(3)
Vibration (Non-Operating)	1.5G / 10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z	(1)(3)

- Note (1) criteria : Normal display image with no obvious non-uniformity and no line defect.
- Note (2) Evaluation should be tested after storage at room temperature for more than two hour
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

7. Package

Version 2.0 15 January 2015 25 / 30

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

- (1) Box Dimensions: 435(L)*350(W)*275(H)
- (2) 30 Modules/Carton

7.2. Description of Pallet

Version 2.0 15 January 2015 26 / 30

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

Sea & Land Transportation

Air Transportation

7.3. Un-Packing Description

Version 2.0 15 January 2015 27 / 30

Version 2.0 15 January 2015 28 / 30

群創光電 Appendix. OUTLINE DRAWING (Label position will be updated as requirement)

Version 2.0 15 January 2015 29 / 30

群創光電 Appendix. NT51021 Register setting (Used by MIPI LP-command)

REGW 0x83, 0xAA REGW 0x84, 0x11 REGW 0xA9, 0x4B

Note: Please provide the final set to Innolux for checking MIPI signal integrity. After confirming, the optimized MIPI code would be provided.

Version 2.0 15 January 2015 30 / 30