Отчёт по лабораторной работе №1

Маслова Анна Павловна

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Выполнение домашнего задания	15
4	Ответы на контрольные вопросы	18
5	Выводы	20
Сп	исок литературы	21

Список иллюстраций

2. 1	переход на суперпользователя	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
2.2	Автоматическое обновление																7
2.3	Запуск таймера																7
2.4	Midnight Commander																8
2.5	/etc/selinux/config																8
2.6	Установка DKMS																9
2.7	Диск																9
2.8	Переход к файлу																10
2.9	Редактирование файла																10
	Установка имени пользователя																11
2.11	Настройка имени хоста																11
2.12	Добавление в vboxf																12
2.13	Подключение разделяемой папки																12
2.14	Установка pandoc																13
2.15	pandoc-crossref																13
2.16	Установка TeXlive		•	•		•		•	•	•	•		•	•	•	•	14
3.1	Команда dmesg																15
3.2	Версия Linux																16
3.3	Частота процессора																16
3.4	Модель процессора																16
3.5	Объём доступной оперативной памяти																16
3.6	Тип обнаруженного гипервизора																17
3.7	Файловая система																17

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Выполнение лабораторной работы

Установив и настроив всё необходимое ПО, выполнение лабораторной работы начнём с обновления пакетов. Открыли терминал с помощью сочетания клавиш Win+Enter. Перейдём в режим суперпользователя командой sudo (рис. 2.1).

```
foot

[артаslova@apmaslova ~]$ sudo -i

Мы полагаем, что ваш системный администратор изложил вам основы безопасности. Как правило, всё сводится к трём следующим правилам:

№1) Уважайте частную жизнь других.

№2) Думайте, прежде чем что-то вводить.

№3) С большой властью приходит большая ответственность.

По соображениям безопасности пароль, который вы введёте, не будет виден.

[sudo] пароль для apmaslova:
[root@apmaslova ~]#
```

Рис. 2.1: Переход на суперпользователя

Установим необходимое программное обеспечение для автоматического обновления (рис. 2.2).

```
10.0.2.15/24 ₹ 0% (a) 10% (b) us 40% (c) 17:51
                40% 4 100%
Результат транзакции
Установка 1 Пакет
Объем загрузки: 45 k
Объем изменений: 76 k
Продолжить? [д/Н]: у
dnf-automatic-4.18.2-1.fc39.noarch.rpm
                                                                                      00:00
                                                               68 kB/s | 45 kB
                                                                                      00:00
Общий размер
Проверка транзакции
Проверка транзакции успешно завершена.
Идет проверка транзакции
Гест транзакции проведен успешно.
  ыполнение транзакции
  Запуск скриптлета: dnf-automatic-4.18.2-1.fc39.noarch
Проверка : dnf-automatic-4.18.2-1.fc39.noarch
                                                                                             1/1
1/1
 dnf-automatic-4.18.2-1.fc39.noarch
[root@apmaslova ~]#
```

Рис. 2.2: Автоматическое обновление

Запустим таймер (рис. 2.3).

Рис. 2.3: Запуск таймера

Далее нам нужно отключить SELinux. Для этого зайдём в файл /etc/selinux/config через *Midnight Commander* (рис. 2.4).

Рис. 2.4: Midnight Commander

Изменим значение SELINUX=enforcing на SELINUX=permissive (рис. 2.5).

Рис. 2.5: /etc/selinux/config

После этого перезагрузим виртуальную машину. Далее установим драйвера. Запустили терминальный мультиплексор с помощью команды tmux и переклю-

чились на роль супер-пользователя. Установили средства разработки. Установим пакет DKMS (рис. 2.6).

Рис. 2.6: Установка DKMS

Подключив образ диска дополнений гостевой ОС, подмонтируем диск с помощью команды mount (рис. 2.7).

Рис. 2.7: Диск

Установим драйвера и перезагрузим машину с помощью команды reboot. Теперь настроим раскладку клавиатуры и отредактируем конфигурационный файл /etc/X11/xorg.conf.d/00-keyboard.conf (рис. 2.8).

Рис. 2.8: Переход к файлу

Изменим его содержимое следующим образом: (рис. 2.9).

Рис. 2.9: Редактирование файла

И снова перезагрузим машину. После перезагрузки видим, что у нас появи-

лась возможность изменять язык.

Теперь установим имя пользователя (рис. 2.10).

Рис. 2.10: Установка имени пользователя

Как мы видим, такой пользователь уже появился при установке машины. Установим имя хоста (рис. 2.11).

Рис. 2.11: Настройка имени хоста

После проверки убедились, что имя хоста - apmaslova.

Далее подключим общую папку. Добавим пользователя *apmaslova* в группу vboxf(рис. 2.12).

Рис. 2.12: Добавление в vboxf

В хостовой системе подключим разделяемую папку (рис. 2.13).

Рис. 2.13: Подключение разделяемой папки

После перезагрузки машины установим ПО для создания документации. Для работы с языком разметки *Markdown* нам понадобится pandoc. Установим его: (рис. 2.14).

Рис. 2.14: Установка pandoc

Помимо этого скачаем пакет pandoc-crossref с сайта, данного в ТУИС. Распакуем архив и переместим файлы в /usr/local/bin (рис. 2.15).

```
[apmaslova@apmaslova Загрузки]$ tar -xvf pandoc-crossref-Linux.tar.xz
pandoc-crossref.1
[apmaslova@apmaslova Загрузки]$ ls
pandoc-crossref pandoc-crossref.1 pandoc-crossref-Linux.tar.xz
[apmaslova@apmaslova Загрузки]$ sudo mv pandoc-crossref /usr/local/bin
[apmaslova@apmaslova Загрузки]$ ■
```

Рис. 2.15: pandoc-crossref

Далее установим *TeXlive* (рис. 2.16).

Рис. 2.16: Установка TeXlive

Установлено.

3 Выполнение домашнего задания

Выполним команду dmesg | less (рис. 3.1).

```
40% ◆ 100%
                                  10.0.2.15/24 §
                                                              12% ≡
                                                    0% 🗯
[ 0.000000] Linux version 6.7.4-200.fc39.x86_64 (mockbuild@de0c58eb5f524c20963d3b293340
43cc) (gcc (GCC) 13.2.1 20231205 (Red Hat 13.2.1-6), GNU ld version 2.40-14.fc39) #1 SMP P
REEMPT_DYNAMIC Mon Feb 5 22:21:14 UTC 2024
[ 0.000000] Command line: BOOT_IMAGE=(hd0,gpt2)/vmlinuz-6.7.4-200.fc39.x86_64 root=UUID
 -64d5198b-575f-4e25-a782-0c64016e0238 ro rootflags=subvol=root rhgb quiet
     0.000000] [Firmware Bug]: TSC doesn't count with P0 frequency
      0.000000] BIOS-provided physical RAM map
      0.000000] BIOS-e820: [mem 0x00000000000000-0x00000000009fbff] usable
      0.000000] BIOS-e820: [mem 0x00000000009fc00-0x000000000009ffff] reserved
     0.000000] BIOS-e820: [mem 0x00000000fec00000-0x00000000fec00fff] reserved
      0.000000] BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved
      0.000000] BIOS-e820: [mem 0x00000000fffc0000-0x00000000fffffffff] reserved
      0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000021ffffffff] usable
      0.000000] NX (Execute Disable) protection: active
     0.000000] APIC: Static calls initialized
0.000000] SMBIOS 2.5 present.
      0.000000] DMI: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
      0.000000] Hypervisor detected: KVM
      0.000000] kvm-clock: Using msrs 4b564d01 and 4b564d00
      0.000003] kvm-clock: using sched offset of 9221179811 cycles
      0.000007] clocksource: kvm-clock: mask: 0xfffffffffffffff max_cycles: 0x1cd42e4dffb,
```

Рис. 3.1: Команда dmesg

Команда вывела нам всю информацию о системе. Теперь с помощью опции grep получим конкретную информацию по интересующим моментам. Сначала узнаем версию ядра Linux, написав после grep *Linux version* (рис. 3.2).

```
foot

[армаslova@apmaslova ~]$ dmesg | drep -i "Linux version"
bash: drep: команда не найдена
dmesg: read kernel buffer failed: Операция не позволена
[армаslova@apmaslova ~]$ sudo dmesg | grep -i "Linux version"
[sudo] пароль для apmaslova:
[ 0.000000] Linux version 6.7.4-200.fc39.x86_64 (mockbuild@de0c58eb5f524c20963d3b293340
43cc) (gcc (GCC) 13.2.1 20231205 (Red Hat 13.2.1-6), GNU ld version 2.40-14.fc39) #1 SMP P
REEMPT_DYNAMIC Mon Feb 5 22:21:14 UTC 2024
[apmaslova@apmaslova ~]$
```

Рис. 3.2: Версия Linux

Далее узнаем частоту процессора (рис. 3.3).

```
[apmaslova@apmaslova ~]$ sudo dmesg | grep -i "Mhz processor"
[ 0.000012] tsc: Detected 2994.376 <mark>MHz processor</mark>
[apmaslova@apmaslova ~]$ <mark>|</mark>
```

Рис. 3.3: Частота процессора

Модель процессора: (рис. 3.4)

```
[apmaslova@apmaslova ~]$ sudo dmesg | grep -i "CPU0"
[ 0.203676] smpboot: CPU0: AMD Ryzen 5 4600H with Radeon Graphics (family: 0x17, model:
0x60, stepping: 0x1)
```

Рис. 3.4: Модель процессора

Объём доступной оперативной памяти: (рис. 3.5)

```
[apmaslova@apmaslova ~]$ sudo dmesg | grep -i "available"
[ 0.003412] On node 0, zone DMA: 1 pages in unavailable ranges
[ 0.003434] On node 0, zone DMA: 97 pages in unavailable ranges
[ 0.021082] On node 0, zone Normal: 16 pages in unavailable ranges
[ 0.021739] [mem 0xe0000000-0xfebffffff] available for PCI devices
[ 0.064976] Memory: 8084196K,8388152K available (20480K kernel code, 3276K rwdata, 1474
8K rodata, 4588K init, 4892K bss, 303696K reserved, 0K cma-reserved)
[ 0.204180] Performance Events: PMU not available due to virtualization, using software events only.
[ 4.445437] vmwgfx 0000:00:02.0: [drm] Available shader model: SM_5.
[apmaslova@apmaslova ~]$
```

Рис. 3.5: Объём доступной оперативной памяти

Тип обнаруженного гипервизора: (рис. 3.6)

```
[apmaslova@apmaslova ~]$ sudo dmesg | grep -i "Hypervisor detected"
[ 0.000000] <mark>Hypervisor detected:</mark> KVM
[apmaslova@apmaslova ~]$
```

Рис. 3.6: Тип обнаруженного гипервизора

Тип файловой системы корневого раздела и последвательность монтироания файловых систем с помощью опции filesystem (рис. 3.7).

```
[apmaslova@apmaslova ~]$ sudo dmesg | grep -i "filesystem"
[ 4.657587] BTRFS info (device sda3): first mount of filesystem 64d5198b-575f-4e25-a782
-0c64016e0238
[ 8.887739] EXT4-fs (sda2): mounted filesystem 4fc9eb69-64a3-47dc-bc72-5f7ff15d6928 r/w with ordered data mode. Quota mode: none.
[apmaslova@apmaslova ~]$
```

Рис. 3.7: Файловая система

4 Ответы на контрольные вопросы

- 1. Учётная запись пользователя хранит такую информацию как User ID, пароль, уникальный идентификатов пользователя, идентификатор группы пользователя, домашний каталог, а также дополнительную информацию о пользователе.
- 2. Команды терминала: Для получения справки по команде можно использовать команду man. Например:

man cp

Для перемещения по файловой системе используется команда сd. Например:

cd ~/work/study

Для просмотра содержимого каталога используем команду ls:

ls ~/work/study

Для определения объёма каталога можно ввести команду du:

du work

Для создания каталогов используется команда mkdir:

mkdir ~/work/study/2023-2024

А для создания файла используется команда touch:

touch name.txt

Для удаления директорий и файлов используются команды rmdir и rm:

```
rmdir ~/work/study/2023-2024
rm -r name.txt
```

Для задания определённых прав на каталог можно пользоваться командой chmod. Например, для установки прав на чтение, запись и выполнение для владельца можно написать следующее:

chmod u+rwx name

Для просмотра истории команд пользуемся командой history. Для удобства можно указать интервал, в котором интересует история команд.

- 3. Файловая система это порядок, который определяет способ организации, хранения и именования данных на носителях информации в компьютерах и другом электронном оборудовании. Существуют различные виды файловых систем, например:
- для носителей с произвольным доступом (например, жёсткий диск);
- для носителей с последовательным доступом (например, магнитные ленты);
- для оптических носителей (CD и DVD);
- виртуальные файловые системы;
- сетевые файловые системы;
- для флэш-памяти.
- 4. Для просмотра устройств и точек их монтирования в Linux можно использовать команду findmnt --real.
- 5. Зависший процесс в Linux можно удалить с помощью "крстика" в углу, с помощью системного монитора или с помощью команды xkill в терминале.

5 Выводы

Приобретели практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Список литературы

- Dash, P. Getting Started with Oracle VM VirtualBox / P. Dash. Packt Publishing Ltd, 2013. – 86 cc.
- 2. Colvin, H. VirtualBox: An Ultimate Guide Book on Virtualization with VirtualBox. VirtualBox / H. Colvin. CreateSpace Independent Publishing Platform, 2015. 70 cc.
- 3. Vugt, S. van. Red Hat RHCSA/RHCE 7 cert guide : Red Hat Enterprise Linux 7 (EX200 and EX300) : Certification Guide. Red Hat RHCSA/RHCE 7 cert guide / S. van Vugt. Pearson IT Certification, 2016. 1008 cc.
- 4. Робачевский, А. Операционная система UNIX / А. Робачевский, С. Немню-гин, О. Стесик. 2-е изд. Санкт-Петербург : БХВ-Петербург, 2010. 656 сс.
- 5. Немет, Э. Unix и Linux: руководство системного администратора. Unix и Linux / Э. Немет, Г. Снайдер, Т.Р. Хейн, Б. Уэйли. − 4-е изд. − Вильямс, 2014. − 1312 сс.
- 6. Колисниченко, Д.Н. Самоучитель системного администратора Linux : Системный администратор / Д.Н. Колисниченко. Санкт-Петербург : БХВ-Петербург, 2011. 544 сс.
- 7. Robbins, A. Bash Pocket Reference / A. Robbins. O'Reilly Media, 2016. 156 cc.