Discrete Probability Distributions

Name	Parameters	Probability Mass Function	cdf	E(X)	V(X)	Equation Nos	Note
Bernoulli	p $(q=1-p)$	$p(x) = \begin{cases} p, & x = 1\\ q, & x = 0\\ 0, & \text{otherwise} \end{cases}$		p	1-p	11	
Binomial	n, p $(q = 1 - p)$	$p(x) = \begin{cases} \binom{n}{x} p^x q^{n-x}, & x = 0, 1, 2,, n \\ 0, & \text{otherwise} \end{cases}$		пр	npq	12, 13, 14	1, 2
Geometric	p $(q = 1 - p)$	$p(x) = \begin{cases} q^{x-1}p, & x = 1,2, \\ 0, & \text{otherwise} \end{cases}$		$\frac{1}{p}$	$\frac{q}{p^2}$	15, 16, 17	
Negative Binomial	k, p $(q = 1 - p)$	$p(y) = \begin{cases} \binom{y-1}{k-1} q^{y-k} p^k, & y = k, k+1, k+2, \dots \\ 0, & \text{otherwise} \end{cases}$		$\frac{k}{p}$	$\frac{kq}{p^2}$	18	
Poisson	α	$p(x) = \begin{cases} \frac{e^{-\alpha} \alpha^x}{x!}, & x = 0, 1, \dots \\ 0, & \text{otherwise} \end{cases}$	Table A.4	α	α	19, 20	3

Notes

- 1. Poisson distribution can be used to approximate binomial distribution. https://online.stat.psu.edu/stat414/lesson/12/12.4
- 2. Normal distribution can be used to approximate binomial distribution. https://online.stat.psu.edu/stat414/lesson/28/28.1
- 3. Normal distribution can be used to approximate Poisson distribution. https://online.stat.psu.edu/stat414/lesson/28/28.2

Continuous Probability Distributions

Name	Parameters	Probability Density Function / Cumulative Distribution Function	E(X)	V(X)	Equation Nos	Note
Uniform		$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$ $F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x \ge b \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	22 23 24 25	
Exponential	λ	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & \text{elsewhere} \end{cases}$ $F(x) = \begin{cases} 0, & x < 0\\ 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	26 27 28	1
Gamma		$f(x) = \begin{cases} \frac{\beta\theta}{\Gamma(\beta)} (\beta\theta x)^{\beta-1} e^{-\beta\theta x}, & x > 0 \\ 0, & \text{otherwise} \end{cases}$ $F(x)$ $= \begin{cases} 1 - \int_{x}^{\infty} \frac{\beta\theta}{\Gamma(\beta)} (\beta\theta t)^{\beta-1} e^{-\beta\theta t} dt, & x > 0 \\ 0, & x \le 0 \end{cases}$	$\frac{1}{\theta}$	$\frac{1}{\beta\theta^2}$	34 35 36 37	2

Name	Parameters	Probability Density Function / Cumulative Distribution Function	E(X)	V(X)	Equation Nos	Note
Erlang	k, θ $k integer$ k : Shape θ : Scale	$f(x) = \begin{cases} \frac{k\theta}{\Gamma(k)} (k\theta x)^{k-1} e^{-k\theta x}, x > 0\\ 0, & \text{otherwise} \end{cases}$ $F(x) = \begin{cases} 1 - \sum_{i=0}^{k-1} \frac{e^{-k\theta x} (k\theta x)^i}{i!}, & x > 0\\ 0, & x \le 0 \end{cases}$	$\frac{1}{\theta}$	$\frac{1}{k\theta^2}$	39	3 4
Normal	μ, σ	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right), -\infty < x < \infty$ $F(x) = \int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^2\right) dt$ Use Table A.3	μ	σ^2	41 42	5
Weibull	v, α, β v : Location α : Scale β : Shape	$f(x) = \begin{cases} \frac{\beta}{\alpha} \left(\frac{x - \nu}{\alpha}\right)^{\beta - 1} exp\left[-\left(\frac{x - \nu}{\alpha}\right)^{\beta}\right], & x \ge \nu \\ 0, & \text{otherwise} \end{cases}$ $F(x) = \begin{cases} 0, & x < \nu \\ 1 - exp\left[-\left(\frac{x - \nu}{\alpha}\right)^{\beta}\right], & x \ge \nu \end{cases}$	See Text	See Text	46 50	

Name	Parameters	Probability Density Function / Cumulative Distribution Function	E(X)	V(X)	Equation Nos	Note
Triangular	a, b, c	$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)}, & a \le x \le b \\ \frac{2(c-x)}{(c-b)(c-a)}, & b \le x \le c \\ 0, & \text{elsewhere} \end{cases}$ $F(x) = \begin{cases} 0, & x \le a \\ \frac{(x-a)^2}{(b-a)(c-a)}, & a < x \le b \\ 1 - \frac{(c-x)^2}{(c-b)(c-a)}, & b < x \le c \\ 1, & x < c \end{cases}$	$\frac{a+b+c}{3}$	See note 2	51 52 54	7 8

Notes

- 1. Exponential distribution exhibits memoryless property: P(X > s + t | X > s) = P(X > t)
- 2. If in a gamma distribution β is an <u>integer</u>, the gamma random variable is sum of β exponential random variables each with parameter $\beta\theta$. When $\beta=1$, the gamma distribution is an exponential distribution with parameter θ .
- 3. Erlang distribution is a gamma distribution where $\beta = k$ where k is an integer.
- 4. The $\sum_{i=0}^{k-1} \frac{e^{-k\theta x}(k\theta x)^i}{i!}$ term in Erlang cdf is sum of Poisson terms with mean $\alpha = k\theta x$. Tables of cumulative Poisson distribution may be used to calculate cdf of Erlang distribution.
- 5. If $X \sim N(\mu, \sigma)$, a transformation $Z = \frac{x \mu}{\sigma}$ is required before Table A.3 can be used.
- 6. Table A.3 does not list the values of z < 0. Use symmetry of normal distribution to obtain the value of cdf for z < 0.
- 7. For triangular distribution Mode = b = 3E(X) (a + c). Also $\frac{2a+c}{3} \le E(X) \le \frac{a+2c}{3}$
- 8. Variance of triangular distribution $V(X) = \left[\frac{(a+b+c)^2}{18}\right] \left[\frac{(ab+ac+bc)}{6}\right]$