

How to Train Long-Context Language Models

Pristina Wang, Mahler Revsine

Evaluation

- Needle-in-a-hay-stack and RULER
- HELMET benchmark

Why not current benchmark

Results are saturated

Why not current benchmark

HELMET has consistent ranking

HELMET

- 7 diverse application-centric categories
- Recall
- RAG
- Re-ranking
- ICL
- QA
- Summarization

		Type of tasks						Bene	chmark fea	tures
	Cite	RAG	Re- rank	Long- QA	Summ	ICL	Synthetic Recall	Robust Eval.	<i>L</i> ≥ 128k	Controll- able L
ZeroSCROLLS	Х	Х	Х	1	1	Х	Х	Х	χ [†]	Х
LongBench	X	1	X	1	1	1	1	X	X [†]	X
L-Eval	X	1	X	/	1	X	×	/ ‡	X [†]	X
RULER	X	X	X	X	X	X	/	/	/	✓
∞Bench	X	X	X	1	1	X	✓	X	✓	1
HELMET (Ours)	1	1	1	1	1	1	1	✓	1	1

Why not perplexity?

- Empirical results
- While using more long data continues to improve PPL, using 100% long data hurts downstream long-context performance

Effects of Supervised Finetuning

- SFT shows that the models continue to improve with more training tokens on RAG, re-ranking while unclear when evaluated before
- SFT enables evaluation on QA and summarization

Short context performance

- Previous techniques lower short-context performance
- Position extrapolation(PE) and fine-tuning on long-context mixture SlimPajama

	HSwag	MMLU	ARC-c	WG	GSM8K
Llama-3-8B	82.1	66.5	59.4	77.1	44.7
+ PE	81.5	64.7	58.1	75.5	40.1
+ SlimPajama	81.0	63.1	57.8	75.1	40.6

Long-context data curation

- Mixture of long and short
- 60% long and 40% short

Long context source

Book/code 1:1 is the best

Long Data (60%)		Long-Context							
	Recall	RAG	Re-rank	ICL	QA	Summ.	Avg.	Avg.	
CommonCrawl	84.1	53.3	28.1	67.5	35.2	37.0	50.9	66.5	
Books	94.9	53.9	30.7	72.2	33.2	37.7	53.8	65.5	
Code Repos	99.2	53.8	29.0	61.2	34.7	36.2	52.3	65.9	
Books/Repos 1:1	96.0	54.9	29.4	73.9	35.7	37.9	54.6	65.5	

Short context source

- More knowledge-intensive downstreamrelated data is the best
- Retained Ilama-3-8b math ability the most

Short Data (40%)	Long-Context	Short-Context							
Short Data (40 %)	Avg.	HellaS.	MMLU	ARC-c	WG	GSM8K	Avg.		
Original model (Llama-3-8B)	-	82.1	66.5	59.4	<i>7</i> 7.1	44.7	66.0		
SlimPajama	52.9	81.2	63.0	58.5	76.2	41.9	64.2		
FineWeb-Edu	53.0	81.0	62.6	57.7	74.4	39.4	63.0		
DCLM-Baseline	52.0	82.0	65.6	59.6	77.4	39.4	64.8		
ProLong ShortMix	54.6	81.6	65.3	58.0	76.2	46.6	65.5		

Components	%
FineWeb	25
FineWeb-Edu	25
Wikipedia	10
Tulu-v2	10
StackExchange	10
ArXiv	10
OpenWebMath	10

Train for more steps

- Train 20B tokens of length 64K, then 20B tokens of length 512K
- Improves performance on all long-context tasks

Figure 4: Performance (avg. of 32K and 64K) of our ProLong model throughout training.

Train with a longer context than you evaluate on

Table 7: Impact of training models on different sequence lengths. All the results are evaluated at a sequence length of 64K. We see that training at a maximum length beyond the evaluation context window consistently improves the long-context performance.

Max Seq. Length	Recall	RAG	Re-rank	ICL
ProLong 64K training (20B)	96.5	52.7	22.8	70.6
+4B 64K training	95.0	56.4	28.0	78.8
+4B 512K training	98.5	56.9	32.9	79.2

- Training on longer texts improves performance on shorter ones
- Better results on all 64K inference tasks when trained on 512K

Should we fine-tune with synthetic data?

- Previous work suggests synthetic data improves SFT
- Instruction datasets have short prompts (1-4K tokens)
- Could supplement them with synthetic long instruction data
- 40% QA (Question Answer)
 - Llama-3-8B-Instruct generates QA pairs from chunks of long documents
- 30% RAG (Retrieval-Augmented Generation)
 - Reuse QA pairs, add random chunks from the document as faux retrievals
- 30% Synthetic summarization
 - Generate summaries of books via recursive summarization

Synthetic data harms model performance

Table 8: Effect of different ratios of synthetic SFT data (mixed with UltraChat). We report the 32K-and-64K-averaged performance except tasks marked with [†], which are evaluated at 512K for stress testing. The number of percentage is based on #tokens, not #samples.

% Synthetic Data	JsonKV [†]	RAG	Re-rank	ICL	QA [†]	Summ.†	Avg.
0%	65.7	58.1	38.5	80.3	49.7	42.1	55.7
1%	61.5	57.0	38.3	80.8	45.3	41.5	54.1
3%	62.0	56.4	37.9	80.6	44.8	39.5	53.5
10%	70.3	55.5	36.1	80.6	41.7	39.4	53.9
50%	45.8	48.8	18.8	70.5	42.3	33.3	43.3

- Best performance with 0% synthetic data
- Opposite trend found in previous work

Discrepancy with prior work

- This study found that synthetic fine-tuning data was detrimental to task performance
- Previous studies showed benefits to fine-tuning with synthetic data
- The authors suggest two reasons for this difference:
 - 1. Prior models had **insufficient** long-context training
 - Synthetic fine-tuning samples acted as additional training data
 - 2. Prior approaches used **much larger** fine-tuning datasets
 - Synthetic samples helped prevent model degeneration

The final recipe for ProLong

- Start with Llama-3-8B-Instruct model
- 20B 64K-length tokens,
 then 20B 64 / 512K tokens
 - Increase RoPE base from 10⁶ to 10⁸ for longer tokens
 - Include 3% textbooks
- SFT via UltraChat dataset
- Disable cross-document attention

Table 9: The training recipe for ProLong.

	Continued Long-context Training							
Data	30% code repos,	30% books, 3% textbooks, 37% ShortMix						
	ShortMix:	27% FineWeb-Edu, 27% FineWeb, 11% Tulu-v2, 11% StackExchange, 8% Wikipedia, 8% OpenWebMath, 8% ArXiv						
Length	Stage 1 (64K):	Code repos, books, and textbooks at length 64K						
Curriculum	Stage 2 (512K):	Code repos: 50% at length 512K, 50% at length 64K Books: 17% at length 512K, 83% at length 64K Textbooks at length 512K						
Steps	Stage 1: 20B toke	ens (2.2K H100 hours), Stage 2: 20B tokens (12.2K H100 hours)						
Model	Initialization: RoPE: Attention:	Llama-3-8B-Instruct (original RoPE base freq. 5×10^5) Stage 1: 8×10^6 , Stage 2: 1.28×10^8 Full attention with cross-document attention masking						
Optim.	AdamW (weigh LR: Batch size:	t decay = 0.1, β_1 = 0.9, β_2 = 0.95) 1e-5 with 10% warmup and cosine decay to $1e-6$, each stage 4M tokens for stage 1, 8 M tokens for stage 2						
		Supervised Fine-tuning (SFT)						
Data	UltraChat							
Steps	1B tokens							
Optim.	AdamW (weigh LR = $2e - 5$ (cos Batch size = $4M$	t decay = 0.1, $\beta_1 = 0.9$, $\beta_2 = 0.95$) ine decay to $2e - 6$), warmup = 5% tokens						

ProLong is the best model of its size

Table 10: Our main evaluation results on HELMET (Yen et al., 2024b; details in §A.1). All results are averaged over sequence lengths of 32K, 64K, and 128K. For all models, we use the corresponding instruction version. ProLong is one of the best performing 10B-scale LMs. The complete set of results can be found in §C.

Model	Max Len.	Recall	RAG	ICL	Re-rank	QA	Summ.	Avg.
ProLong (8B)	512K	99.4	66.0	81.1	33.2	40.8	40.5	60.2
MegaBeam-Mistral (7B)	512K	99.4	58.1	82.1	22.1	33.7	43.6	56.5
Meta-Llama-3.1 (8B)	128K	98.7	62.8	79.7	26.6	40.4	46.1	59.0
Qwen2 (7B)	128K	34.4	43.4	54.8	4.6	23.3	38.5	33.2
Phi-3-small (7B)	128K	74.8	60.6	82.0	18.5	34.1	42.4	52.1
Mistral-Nemo (12B)	128K	24.9	48.1	82.0	4.7	37.7	37.0	39.1
Jamba-1.5-Mini (12B/52B)	256K	87.7	61.3	88.4	25.9	42.0	38.6	57.3
Meta-Llama-3.1 (70B)	128K	98.5	65.9	80.0	39.4	47.2	51.1	63.7
Claude-3.5-Sonnet	200K	99.4	44.0	79.3	19.9	38.1	49.2	55.0
Gemini-1.5-Pro	2M	94.2	71.4	78.9	65.3	44.4	56.2	68.4
GPT-40	128K	99.9	71.5	86.7	59.6	47.0	55.7	70.1

Outperforms Llama-3.1 with 5% as many training examples

ProLong gets better at longer contexts

Table 11: ProLong at 512K.								
	32K	64K	128K	512K				
QA Summ	31.7 40.4	43.7 39.8	46.7 41.5	49.7 42.1				

- ProLong performs best at 512K
- By contrast, many other models cannot run inference on more than 128K tokens

ProLong excels on the NoCha benchmark

Table 12: Results on the NoCha benchmark (Karpinska et al., 2024). ProLong is the only model that achieves above-random performance in the <75K category and it consistently beats Llama-3.1. Different from the original NoCha leaderboard, we report the average accuracy over all test instances without filtering the test examples based on the model's context window lengths.

Model	Max Len.	<75K	75K-127K	127K-180K	>180K
ProLong (8B)	512K	28.4	17.0	13.1	20.3
MegaBeam-Mistral (7B)	512K	19.8	18.3	17.5	15.6
Meta-Llama-3.1 (8B)	128K	17.3	16.4	0.0	0.0
Mistral-Nemo (12B)	128K	13.6	0.4	0.0	0.0
Jamba-1.5-Mini (12B/52B)	256K	27.2	28.0	24.4	6.2
Meta-Llama-3.1 (70B)	128K	42.0	25.0	0.0	0.0
Gemini-1.5-Pro	2M	24.7	38.8	35.3	46.9
GPT-40	128K	55.6	58.4	0.0	0.0

- Claim verification dataset
- Human-curated, global reasoning tasks

Main takeaways

- Much of the existing literature on long-context training is wrong
- Sufficient to change the data composition, training regimen, and hyperparameters
- Improvement in this domain is possible!

