Package 'Manifoldgstat'

June 29, 2019

Description Predictive analysis for manifold-valued data. This package provides

Type Package

Version 1.0.0

Title Kriging prediction for manifold-valued data.

a C++ implementation of functions to create a model for spatial dependent manifold-valued data, in order to perform kriging. In each location, specified by a vector of coordinates ([lat,long], [x,y] or
[x,y,z]), the datum is supposed to be a symmetric positive definite matrix. The user is provided with three main functions: model_kriging, full_RDD,
mixed_RDD, each designed to deliver kriging predictions following the
corresponding algorithm (GlobalModel, FullRDD and MixedRDD), as
presented in the reference dissertation. They exploit, to different extents, tangent space approximations, Random Domain Decomposition and
advanced differential geometry concepts like parallel transport.
Reference Ilaria Sartori Luca Torriani (2019): Mixed Random Domain
Decomposition: an innovative approach for kriging prediction of manifold valued data, Master Degree Thesis
Depends R (>= 3.2.0), Rcpp (>= 0.12.16), RcppEigen (>= 0.3.3.4.0), plyr(>= 1.8.4)
LinkingTo Rcpp, RcppEigen
NeedsCompilation yes
SystemRequirements C++11
License What license is it under?
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
R topics documented:
assign2center
bootstrapVar
create.rdd
distance_manifold
full_RDD
Geodist
intrinsic_mean
1

2	assign2cente

	kerfn	9
	kriging	10
	mixed_RDD	12
	model_GLS	14
	model_kriging	16
	model_kriging_mixed	20
	plot_ker_rect	22
	plot_variogram	22
	RDD_OOK_aggr_man	23
	RDD_OOK_boot_man	23
	RDD_OOK_boot_man_mixed	25
	return_ith_list_element	26
	return_ith_row	27
Index		28

assign2center

Assign a point to the cell with the closest center

Description

...

Usage

assign2center(distance.vector)

Arguments

distance.vector

vector of length K containing the distances between the point and the centers

Details

..

Value

it returns the index(es) of the cell(s) with the closest center(s). Returns 0 it the minimum does not exists

bootstrapVar 3

bootstrapVar	Compute the bootstrap variance	

Description

Compute the bootstrap variance

Usage

```
bootstrapVar(res.boot, res.aggr, K, metric_manifold)
```

Arguments

res.boot A list of length B. Each field contains a list with the M predictions generated by

the corresponding iteration

res.aggr A list of lenght M. Each field a single prediction, computed aggregating the

corresponding data in res.boot

K number of cells the domain is subdivided in

metric_manifold

metric used on the manifold. It must be chosen among "Frobenius", "LogEu-

clidean", "SquareRoot"

Value

It returns a vector of length M (i.e. the number of locations where we predict), containing the the prediction variance in the corresponding location

create.rdd	Divide the domain in K subregions	
------------	-----------------------------------	--

Description

•••

Usage

```
create.rdd(K, method.rdd = "Voronoi", data_coords, graph.distance,
  nk_min, grid, data.grid.distance, suppressMes = T)
```

Arguments

K	number of regions the domain is divided in

method.rdd method used to define the subregions. So far only "Voronoi" has been imple-

mented

data_coords N*2 or N*3 matrix of [lat,long], [x,y] or [x,y,z] coordinates of the locations where

data has been measured

 $\label{eq:continuous_problem} \textit{graph.distance} \quad \textit{N*N distance matrix (the [i,j] element is the length of the shortest path between the length of the length of the shortest path between the length of length of the length of the length of the leng$

points i and j)

4 distance_manifold

nk_min minimum number of observations within a cell grid prediction grid, i.e. M*2 or M*3 matrix of coordinates where to predict data.grid.distance

N*M distance matrix between locations where the datum has been observed and locations where the datum has to be predicted

suppressMes {TRUE, FALSE} controls the level of interaction and warnings given

Details

•••

Value

it returns a list with the following fields

- assign vector of length N that indicates, for every known location, the cell it has been assigned to
- centers K*3 matrix reporting the coordinates and the index of the locations drawn as centers
 of the K cells
- assigng vector of length M that indicates, for every new location, the cell it has been assigned to
- gridk list of K elements. The i-th element contains the coordinates of the grid points assigned to the i-th cell
- graph.distance.grid.centers K*M matrix containing the distances between each grid points and the K centers

Description

Compute the manifold distance between symmetric positive definite matrices

Usage

```
distance_manifold(data1, data2, metric_manifold = "Frobenius")
```

Arguments

data1 Either a list/array [p,p,B1] of B1 symmetric positive definite matrices of dimen-

sion p*p, or a single p*p matrix

data2 Either a list/array [p,p,B2] of B2 symmetric positive definite matrices of dimen-

sion p*p, or a single p*p matrix.

metric_manifold

metric used on the manifold. It must be chosen among "Frobenius", "LogEu-

clidean", "SquareRoot", "Correlation"

Eucldist 5

Details

If B2=B1 then the result is a vector of length B1=B2 containing in position i the manifold distance beetween data1[,,i] and data2[,,i]. Instead if B2=1 and B1!=1 the result is a vector of length B1 containing in position i the manifold distance between data1[,,i] and data2[,,1]

Value

A vector of distances, or a double if data1 and data2 are single matrices.

Examples

```
data_manifold_model <- Manifoldgstat::rCov
distances <-distance_manifold(data_manifold_model, diag(2), metric_manifold = "Frobenius")
print(distances)</pre>
```

Eucldist

Compute the Euclidean distance between two points

Description

...

Usage

```
Eucldist(c1, c2)
```

Arguments

- c1 coordinates of the first point.
- c2 coordinates of the second point.

Details

•••

Value

the Euclidean distance between c1 and c2

full_RDD

full_RDD

Perform full_RDD

Description

Perform kriging prediction using FullRDD procedure

Usage

```
full_RDD(data_coords, data_val, K, grid, nk_min = 1, B = 100,
    suppressMes = F, tol = 1e-12, max_it = 100, n_h = 15,
    tolerance_intrinsic = 10^(-6), X = NULL, X_new = NULL,
    ker.width.intrinsic = 0, ker.width.vario = 1.5,
    graph.distance.complete, data.grid.distance, aggregation_mean,
    aggregation_kriging, method.analysis = "Local mean", metric_manifold,
    metric_ts, model_ts, vario_model, distance = NULL)
```

Arguments

data_coords	N*2 or N*3 matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are sup-
	posed to be provided in signed decimal degrees

data_val array [p,p,N] of N symmetric positive definite matrices of dimension p*p

K number of cells the domain is subdivided in

grid prediction grid, i.e. M*2 or M*3 matrix of coordinates where to predict

nk_min minimum number of observations within a cell

B number of *divide* iterations to perform

suppressMes {TRUE, FALSE} controls the level of interaction and warnings given

tol tolerance for the main loop of model_kriging

max_it maximum number of iterations for the main loop of model_kriging

n_h number of bins in the empirical variogram

tolerance_intrinsic

tolerance for the computation of the intrinsic mean

X matrix (N rows and unrestricted number of columns) of additional covariates for

the tangent space model, possibly NULL

X_new matrix (with the same number of rows of new_coords) of additional covariates

for the new locations, possibly NULL

ker.width.intrinsic

parameter controlling the width of the Gaussian kernel for the computation of the local mean (if 0, a "step kernel" is used, giving weight 1 to all the data within

the cell and 0 to those outside of it)

ker.width.vario

parameter controlling the width of the Gaussian kernel for the computation of the empirical variogram (if 0, a "step kernel" is used, giving weight 1 to all the data within the cell and 0 to those outside of it)

graph.distance.complete

N*N distance matrix (the [i,j] element is the length of the shortest path between points i and j)

full_RDD 7

data.grid.distance

N*M distance matrix between locations where the datum has been observed and locations where the datum has to be predicted

aggregation_mean

"Weighted" to aggregate the mean predictions using kernel-based weights, "Equal" to use equal weights

aggregation_kriging

"Weighted" to aggregate the Kriging predictions using kernel-based weights, "Equal" to use equal weights

method.analysis

"Local mean" to predict just with the mean, "Kriging" to predict via Kriging procedure

metric_manifold

metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean", "SquareRoot"

metric_ts metric used on the tangent space. It must be chosen among "Frobenius", "Frobe-

niusScaled", "Correlation"

model_ts type of model fitted on the tangent space. It must be chosen among "Intercept",

"Coord1", "Coord2", "Additive"

vario_model type of variogram fitted. It must be chosen among "Gaussian", "Spherical",

"Exponential"

distance type of distance between coordinates. It must be either "Eucldist" or "Geodist"

Details

It uses a repetition of local analyses, through a *divide* et *impera* strategy. In the *divide* step, the domain is randomly decomposed in subdomains where local tangent-space models are estimated in order to predict at new locations (in each subregion is performed exactly the analysis described in the model_kriging function). This is repeated B times with different partitions of the domain. Then, in the *impera* step, the results of these iterations are aggregated, by means of the intrinsic mean, to provide a final prediction.

Value

According to the analysis chosen:

- If method. analysis = "Local mean" it returns a list with the following fields
 - resBootstrap A list consisting of
 - * fmean list of length B. Each field contains the prediction (at iteration b) for each new location, obtained as the intrinsic mean of the data within the tile it belongs to
 - * kervalues_mean Weights used for aggregating fmean
 - resAggregated Predictions, for each new location, obtained aggregating fmean using kervalues_mean as weights
- If method.analysis = "Kriging" it returns a list with the following fields
 - resBootstrap A list consisting of
 - * fmean list of length B. Each field contains the prediction (at iteration b) for each new location, obtained as the intrinsic mean of the data within the tile it belongs to
 - * fpred list of length B. Each field contains the prediction (at iteration b) for each new location, obtained through kriging
 - * kervalues_mean Weights used for aggregating fmean

8 intrinsic_mean

- * kervalues_krig Weights used for aggregating fpred
- * variofit list of length B. Each field contains, for each datum, the parameters of the variogram fitted in the tile it belongs to
- resAggregated Predictions, for each new location, obtained aggregating fpred using kervalues_krig as weights
- resLocalMean Predictions, for each new location, obtained aggregating fmean using kervalues_mean as weights

Geodist

Compute the great-circle distance between two points

Description

•••

Usage

```
Geodist(c1, c2)
```

Arguments

c1 coordinates [lat, long] of the first point.

c2 coordinates [lat, long] of the second point.

Details

The distance is computed using the Haversine formula

Value

the great-circle distance between c1 and c2

 $\verb"intrinsic_mean"$

Intrinsic mean

Description

Evaluate the intrinsic mean of a given set of symmetric positive definite matrices

Usage

```
intrinsic_mean(data, metric_manifold = "Frobenius",
  metric_ts = "Frobenius", tolerance = 1e-06,
  weight_intrinsic = NULL, weight_extrinsic = weight_intrinsic,
  tolerance_map_cor = 1e-06)
```

kerfn 9

Arguments

data list or array [p,p,B] of B symmetric positive definite matrices of dimension p*p metric_manifold

> metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean", "SquareRoot", "Correlation"

metric_ts metric used on the tangent space. It must be chosen among "Frobenius", "Frobe-

niusScaled", "Correlation"

tolerance for the computation of the intrinsic mean tolerance

weight_intrinsic

vector of length B to weight the matrices in the computation of the intrinsic mean. If NULL a vector of ones is used

weight_extrinsic

vector of length B to weight the matrices in the computation of the extrinsic mean. If NULL weight_intrinsic is used

tolerance_map_cor

tolerance to use in the maps.

Required only if metric_manifold== "Correlation"

Value

A matrix representing the intrinsic mean of the data

References

X. Pennec, P. Fillard, and N. Ayache. A riemannian framework for tensor computing. International Journal of computer vision, 66(1):41-66, 2006.

Examples

```
data_manifold_tot <- Manifoldgstat::fieldCov</pre>
Sigma <-intrinsic_mean(data_manifold_tot, metric_manifold = "Frobenius",</pre>
              metric_ts = "Frobenius")
print(Sigma)
```

kerfn

Evaluate a gaussian kernel

Description

Usage

```
kerfn(newdata, center, ker.type = "Gau", param)
```

Arguments

newdata coordinates of the locations where we want to compute the kernel values center coordinates of the reference center for the kernel type of kernel. So far only "Gau" (i.e gaussian kernel) has been implemented ker.type param

parameters that define the kernel. For the gaussian kernel it is the sigma param-

eter

10 kriging

Details

•••

Value

the values of the kernel function corresponding to the vector of Euclidean distances between newdata and the center

kriging

Kriging prediction given the model

Description

Given the GLS model, kriging prediction on new location(s) is performed.

Usage

```
kriging(GLS_model, coords, new_coords, model_ts = "Additive",
  vario_model = "Gaussian", metric_manifold = "Frobenius",
  X_new = NULL, distance = "Geodist", tolerance_map_cor = 1e-06)
```

Arguments

GLS_model	the object returned by model_GLS, or a list containing the fields: Sigma (tangent point), beta (vector of the beta matrices of the fitted model), gamma_matrix (N*N covariogram matrix), residuals (vector of the N residual matrices), fitted_par_vario (estimates of <i>nugget</i> , <i>sill-nugget</i> and <i>practical range</i>)
coords	N*2 or N*3 matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees
new_coords	matrix of coordinates for the M new locations where to perform kriging
model_ts	type of model fitted on the tangent space. It must be chosen among "Intercept", "Coord1", "Coord2", "Additive"
vario_model	type of variogram fitted. It must be chosen among "Gaussian", "Spherical", "Exponential"
metric_manifol	d
	metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean", "SquareRoot", "Correlation"
X_new	matrix (with the same number of rows of new_coords) of additional covariates for the new locations, possibly NULL
distance	type of distance between coordinates. It must be either "Eucldist" or "Geodist"
tolerance_map_	cor
	tolerance to use in the maps. Required only if metric_manifold=="Correlation"
data_grid_dist	_mat
	Matrix of dimension N*M of distances between data points and grid points. If not

provided it is computed using distance

kriging 11

Details

The model provided is used to perform simple kriging on the tangent space in correspondence of the new locations. The estimates are then mapped to the manifold to produce the actual prediction.

Value

A list with a single field:

prediction

vector of matrices predicted at the new locations

References

D. Pigoli, A. Menafoglio & P. Secchi (2016): Kriging prediction for manifold-valued random fields. Journal of Multivariate Analysis, 145, 117-131.

Examples

```
data_manifold_tot <- Manifoldgstat::fieldCov</pre>
data_manifold_model <- Manifoldgstat::rCov</pre>
coords_model <- Manifoldgstat::rGrid</pre>
coords_tot <- Manifoldgstat::gridCov</pre>
Sigma <- matrix(c(2,1,1,1), 2,2)
model = model_GLS(data_manifold = data_manifold_model, coords = coords_model, Sigma = Sigma,
              metric_manifold = "Frobenius", metric_ts = "Frobenius", model_ts = "Coord1",
                 vario_model = "Spherical", n_h = 15, distance = "Eucldist", max_it = 100,
                    tolerance = 1e-7, plot = TRUE)
result = kriging (GLS_model = model, coords = coords_model, new_coords = coords_model,
              model_ts="Coord1", vario_model= "Spherical", metric_manifold = "Frobenius",
                  distance="Eucldist")
result_tot = kriging (GLS_model = model, coords = coords_model, new_coords = coords_tot,
               model_ts="Coord1", vario_model= "Spherical", metric_manifold = "Frobenius",
                      distance="Eucldist")
x.min=min(coords_tot[,1])
x.max=max(coords_tot[,1])
y.min=min(coords_tot[,2])
y.max=max(coords_tot[,2])
dimgrid=dim(coords_tot)[1]
radius = 0.02
par(cex=1.25)
plot(0,0, asp=1, col=fields::tim.colors(100), ylim=c(y.min,y.max), xlim=c(x.min, x.max),
     pch='', xlab='', ylab='', main = "Real Values")
for(i in 1:dimgrid){
  if(i %% 3 == 0)
     car::ellipse(c(coords_tot[i,1],coords_tot[i,2]), data_manifold_tot[,,i],
                    radius=radius, center.cex=.5, col='navyblue')
rect(x.min, y.min, x.max, y.max)
for(i in 1:250)
{ car::ellipse(c(coords_model[i,1],coords_model[i,2]), data_manifold_model[,,i],
               radius=radius, center.cex=.5, col='green')}
rect(x.min, y.min, x.max, y.max)
```

12 mixed_RDD

mixed_RDD

Perform mixed_RDD

Description

Perform kriging prediction using MixedRDD procedure

Usage

```
mixed_RDD(data_coords, data_val, K, grid, nk_min = 1, B = 100,
    suppressMes = F, ker.width.intrinsic = 0, graph.distance.complete,
    data.grid.distance, N_samples, aggregation_mean, metric_ts,
    tol = 1e-12, max_it = 100, n_h = 15,
    tolerance_intrinsic = 10^(-6), max_sill = NULL, max_a = NULL,
    X = NULL, X_new = NULL, create_pdf_vario = FALSE,
    pdf_parameters = NULL, metric_manifold, model_ts, vario_model,
    distance)
```

Arguments

data_coords	N*2 or $N*3$ matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees
data_val	array [p,p,N] of N symmetric positive definite matrices of dimension p*p
K	number of cells the domain is subdivided in
grid	prediction grid, i.e. M*2 or M*3 matrix of coordinates where to predict
nk_min	minimum number of observations within a cell
В	number of divide iterations to perform
suppressMes	{TRUE, FALSE} controls the level of interaction and warnings given
ker.width.intri	nsic
	parameter controlling the width of the Gaussian kernel for the computation of the local mean (if 0 , a "step kernel" is used, giving weight 1 to all the data within the cell and 0 to those outside of it)
graph.distance.	complete

N*N distance matrix (the [i,j] element is the length of the shortest path between points i and j)

mixed_RDD 13

data.grid.distance

N*M distance matrix between locations where the datum has been observed and

locations where the datum has to be predicted

N_samples number of data N

aggregation_mean

"Weighted" to aggregate the mean predictions using kernel-based weights, "Equal"

to use equal weights

metric_ts metric used on the tangent space. It must be chosen among "Frobenius", "Frobe-

niusScaled", "Correlation"

tol tolerance for the main loop of model_kriging

max_it maximum number of iterations for the main loop of model_kriging

n_h number of bins in the empirical variogram

tolerance_intrinsic

tolerance for the computation of the intrinsic mean

max_sill max value allowed for sill in the fitted variogram. If NULL it is defined as

1.15*max(emp_vario_values)

max_a maximum value for a in the fitted variogram. If NULL it is defined as 1.15*h_max

X matrix (N rows and unrestricted number of columns) of additional covariates for

the tangent space model, possibly NULL

X_new matrix (with the same number of rows of new_coords) of additional covariates

for the new locations, possibly NULL

create_pdf_vario

boolean. If TRUE the empirical and fitted variograms are plotted in a pdf file

pdf_parameters list with the fields test_nr and sample_draw. Additional parameters to name

the pdf

metric_manifold

metric used on the manifold. It must be chosen among "Frobenius", "LogEu-

clidean", "SquareRoot"

model_ts type of model fitted on the tangent space. It must be chosen among "Intercept",

"Coord1", "Coord2", "Additive"

vario_model type of variogram fitted. It must be chosen among "Gaussian", "Spherical",

"Exponential"

distance type of distance between coordinates. It must be either "Eucldist" or "Geodist"

Details

It employs a *divide* et *impera* strategy to provide an estimate of a "fictional" field of tangent points, used to encode the information regarding the drift of the field. To this end in the *divide* step, the domain is randomly decomposed and in each subdomain a tangent point (assigned to each location in that subregion) is estimated as the intrinsic mean of the data belonging to it. This is repeated B times with different partitions of the domain and the results are then aggregated in the *impera* stage by means of the intrinsic mean. Eventually, exploiting this "fictional" field of tangent points and the concept of parallel transport, a kriging analysis over the whole domain is performed to predict the field values at new locations.

14 model_GLS

Value

it returns a list with the following fields

• resBootstrap list of length B. Each field contains a tangent point estimate (at iteration b) for each new location, obtained as the intrinsic mean of the data within the tile it belongs to

- resAggregated field of tangent points computed, for each location (both those where data are measured and where they must be predicted), aggregating the corresponding resBootstrap
- model_pred list with the details of the global model fitted on the common Hibert space and the resulting kriging predictions. Namely it contains the following fields: beta vector of the beta matrices of the fitted model gamma_matrix N*N covariogram matrix residuals vector of the N residual matrices emp_vario_values vector of empircal variogram values in correspondence of h_vec h_vec vector of positions at which the empirical variogram is computed fitted_par_vario estimates of nugget, sill-nugget and practical range iterations number of iterations of the main loop prediction vector of matrices predicted at the new locations

model_GLS

Create a GLS model

Description

Given the coordinates and corresponding manifold values, this function creates a GLS model on the tangent space.

Usage

```
model_GLS(data_manifold, coords, X = NULL, Sigma = NULL,
  metric_manifold = "Frobenius", metric_ts = "Frobenius",
  model_ts = "Additive", vario_model = "Gaussian", n_h = 15,
  distance = "Geodist", max_it = 100, tolerance = 1e-06,
  weight_intrinsic = NULL, tolerance_intrinsic = 1e-06,
  max_sill = NULL, max_a = NULL, param_weighted_vario = NULL,
  plot = FALSE, suppressMes = FALSE, weight_extrinsic = NULL,
  tolerance_map_cor = 1e-06)
```

Arguments

data_manifold	list or array [p,p,N] of N symmetric positive definite matrices of dimension p*p
coords	N*2 or $N*3$ matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees
X	matrix (N rows and unrestricted number of columns) of additional covariates for the tangent space model, possibly NULL
Sigma	$p*p$ matrix representing the tangent point. If NULL the tangent point is computed as the intrinsic mean of data_manifold
metric_manifold	
	metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean", "SquareRoot", "Correlation"
metric_ts	metric used on the tangent space. It must be chosen among "Frobenius", "FrobeniusScaled", "Correlation"

model_GLS 15

model_ts type of model fitted on the tangent space. It must be chosen among "Intercept",

"Coord1", "Coord2", "Additive"

vario_model type of variogram fitted. It must be chosen among "Gaussian", "Spherical",

"Exponential"

n_h number of bins in the emprical variogram

distance type of distance between coordinates. It must be either "Eucldist" or "Geodist"

max_it max number of iterations for the main loop

tolerance tolerance for the main loop

weight_intrinsic

vector of length N to weight the locations in the computation of the intrinsic mean. If NULL a vector of ones is used. Not needed if Sigma is provided

tolerance_intrinsic

tolerance for the computation of the intrinsic mean. Not needed if Sigma is

provided

max_sill max value allowed for sill in the fitted variogram. If NULL it is defined as

1.15*max(emp_vario_values)

max_a maximum value for *a* in the fitted variogram. If NULL it is defined as 1.15*h_max param_weighted_vario

List of 7 elements to be provided to consider Kernel weights for the variogram (significant only within an RDD procedure). Indeed in this case the N_tot data regarding the whole domain must be provided to the algorithm, not only the N in the cell under consideration. Therefore the list must contain the following fields: weight_vario (vector of length N_tot to weight the locations in the computation of the empirical variogram), distance_matrix_tot (N_tot*N_tot matrix of distances between the locations), data_manifold_tot (list or array

[p,p,N_tot] of N_tot symmetric positive definite matrices of dimension p*p), coords_tot (N_tot*2 or N_tot*3 matrix of [lat,long], [x,y] or [x,y,z] coordinates), X_tot (matrix with N_tot rows and unrestricted number of columns of additional covariates for the tangent space model, possibly NULL), h_max (maximum value of distance for which the variogram is computed), indexes_model (indexes of the N_tot data corresponding to the N data in the cell).

plot boolean. If TRUE the empirical and fitted variograms are plotted

suppressMes boolean. If TRUE warning messagges are not printed

weight_extrinsic

vector of length N to weight the locations in the computation of the extrinsic mean. If NULL weight_intrinsic are used. Needed only if Sigma is not provided and metric_manifold== "Correlation"

tolerance_map_cor

tolerance to use in the maps.

Required only if metric_manifold== "Correlation"

data_dist_mat Matrix of dimension N*N of distances between data points. If not provided it is computed using distance

Details

The manifold values are mapped on the tangent space and then a GLS model is fitted to them. A first estimate of the beta coefficients is obtained assuming spatially uncorrelated errors. Then, in the main the loop, new estimates of the beta are obtained as a result of a weighted least square problem where the weight matrix is the inverse of gamma_matrix. The residuals

(residuals = data_ts - fitted) are updated accordingly. The parameters of the variogram fitted to the residuals (and used in the evaluation of the gamma_matrix) are computed using Gauss-Newton with backtrack method to solve the associated non-linear least square problem. The stopping criteria is based on the absolute value of the variogram residuals' norm if ker.width.vario=0, while it is based on its increment otherwise.

Value

A list with the following fields:

beta vector of the beta matrices of the fitted model

gamma_matrix N*N covariogram matrix

residuals vector of the N residual matrices

emp_vario_values

vector of empircal variogram values in correspondence of h_vec

h_vec vector of positions at which the empirical variogram is computed

fitted_par_vario

estimates of nugget, sill-nugget and practical range

iterations number of iterations of the main loop

Sigma tangent point

References

D. Pigoli, A. Menafoglio & P. Secchi (2016): Kriging prediction for manifold-valued random fields. Journal of Multivariate Analysis, 145, 117-131.

Examples

model_kriging

Create a GLS model and directly perform kriging

Description

Given the coordinates and corresponding manifold values, this function firstly creates a GLS model on the tangent space, and then performs kriging on the new locations.

Usage

```
model_kriging(data_manifold, coords, X = NULL, Sigma = NULL,
 metric_manifold = "Frobenius", metric_ts = "Frobenius",
 model_ts = "Additive", vario_model = "Gaussian", n_h = 15,
 distance = NULL, data_dist_mat = NULL, data_grid_dist_mat = NULL,
 max_it = 100, tolerance = 1e-06, weight_intrinsic = NULL,
  tolerance_intrinsic = 1e-06, max_sill = NULL, max_a = NULL,
 param_weighted_vario = NULL, new_coords, X_new = NULL,
 create_pdf_vario = TRUE, pdf_parameters = NULL,
  suppressMes = FALSE, weight_extrinsic = NULL,
  tolerance_map_cor = 1e-06)
```

Arguments

list or array [p,p,N] of N symmetric positive definite matrices of dimension p*p data_manifold coords N*2 or N*3 matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees Χ matrix (N rows and unrestricted number of columns) of additional covariates for the tangent space model, possibly NULL Sigma p*p matrix representing the tangent point. If NULL the tangent point is computed as the intrinsic mean of data_manifold metric_manifold metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean", "SquareRoot", "Correlation" metric_ts metric used on the tangent space. It must be chosen among "Frobenius", "FrobeniusScaled", "Correlation" model_ts type of model fitted on the tangent space. It must be chosen among "Intercept", "Coord1", "Coord2", "Additive" type of variogram fitted. It must be chosen among "Gaussian", "Spherical", vario_model "Exponential" n_h number of bins in the emprical variogram distance type of distance between coordinates. It must be either "Eucldist" or "Geodist" data_dist_mat Matrix of dimension N*N of distances between data points. If not provided it is computed using distance data_grid_dist_mat Matrix of dimension N*M of distances between data points and grid points. If not provided it is computed using distance

 max_it max number of iterations for the main loop

tolerance tolerance for the main loop

weight_intrinsic

vector of length N to weight the locations in the computation of the intrinsic mean. If NULL a vector of ones is used. Not needed if Sigma is provided

tolerance_intrinsic

tolerance for the computation of the intrinsic mean. Not needed if Sigma is provided

max_sill max value allowed for sill in the fitted variogram. If NULL it is defined as 1.15*max(emp_vario_values)

max_a maximum value for a in the fitted variogram. If NULL it is defined as 1.15*h_max param_weighted_vario

List of 7 elements to be provided to consider Kernel weights for the variogram (significant only within an RDD procedure). Indeed in this case the N_tot data regarding the whole domain must be provided to the algorithm, not only the N in the cell under consideration. Therefore the list must contain the following fields: weight_vario (vector of length N_tot to weight the locations in the computation of the empirical variogram), distance_matrix_tot (N_tot*N_tot matrix of distances between the locations), data_manifold_tot (list or array

[p,p,N_tot] of N_tot symmetric positive definite matrices of dimension p*p), coords_tot (N_tot*2 or N_tot*3 matrix of [lat,long], [x,y] or [x,y,z] coordinates), X_tot (matrix with N_tot rows and unrestricted number of columns of additional covariates for the tangent space model, possibly NULL), h_max (maximum value of distance for which the variogram is computed), indexes_model (indexes of the N_tot data corresponding to the N_data in the cell).

(indexes of the N_tot data corresponding to the N data in the cell).

X_new matrix (with the same number of rows of new_coords) of additional covariates for the new locations, possibly NULL

create_pdf_vario

new coords

boolean. If TRUE the empirical and fitted variograms are plotted in a pdf file

matrix of coordinates for the M new locations where to perform kriging

pdf_parameters list with the fields test_nr and sample_draw. Additional parameters to name

the pdf

suppressMes boolean. If TRUE warning messagges are not printed

weight_extrinsic

vector of length N to weight the locations in the computation of the extrinsic mean. If NULL weight_intrinsic are used. Needed only if Sigma is not provided and metric_manifold== "Correlation"

tolerance_map_cor

tolerance to use in the maps.

Required only if metric_manifold== "Correlation"

Details

The manifold values are mapped on the tangent space and then a GLS model is fitted to them. A first estimate of the beta coefficients is obtained assuming spatially uncorrelated errors. Then, in the main the loop, new estimates of the beta are obtained as a result of a weighted least square problem where the weight matrix is the inverse of gamma_matrix. The residuals

(residuals = data_ts - fitted) are updated accordingly. The parameters of the variogram fitted to the residuals (and used in the evaluation of the gamma_matrix) are computed using Gauss-Newton with backtrack method to solve the associated non-linear least square problem. The stopping criteria is based on the absolute value of the variogram residuals' norm if ker.width.vario=0, while it is based on its increment otherwise. Once the model is computed, simple kriging on the tangent space is performed in correspondence of the new locations and eventually the estimates are mapped to the manifold.

Value

list with the following fields:

beta vector of the beta matrices of the fitted model

gamma_matrix N*N covariogram matrix

```
residuals vector of the N residual matrices
emp_vario_values
vector of empircal variogram values in correspondence of h_vec
h_vec vector of positions at which the empirical variogram is computed
fitted_par_vario
estimates of nugget, sill-nugget and practical range
iterations number of iterations of the main loop
Sigma tangent point
prediction vector of matrices predicted at the new locations
```

References

D. Pigoli, A. Menafoglio & P. Secchi (2016): Kriging prediction for manifold-valued random fields. Journal of Multivariate Analysis, 145, 117-131.

Examples

```
data_manifold_tot <- Manifoldgstat::fieldCov</pre>
data_manifold_model <- Manifoldgstat::rCov</pre>
coords_model <- Manifoldgstat::rGrid</pre>
coords_tot <- Manifoldgstat::gridCov</pre>
Sigma <- matrix(c(2,1,1,1), 2,2)
result = model_kriging (data_manifold = data_manifold_model, coords = coords_model,
                        Sigma = Sigma, metric_manifold = "Frobenius"
                        metric_ts = "Frobenius", model_ts = "Coord1",
                        vario_model = "Spherical", n_h = 15, distance = "Eucldist",
                        max_it = 100, tolerance = 10e-7, new_coords = coords_model)
result_tot = model_kriging (data_manifold = data_manifold_model, coords = coords_model,
                            metric_ts = "Frobenius", Sigma = Sigma,
                            metric_manifold = "Frobenius", model_ts = "Coord1",
                            vario_model = "Spherical", n_h = 15, distance = "Eucldist",
                            max_it = 100, tolerance = 10e-7, new_coords = coords_tot,
                            create_pdf_vario = FALSE)
x.min=min(coords_tot[,1])
x.max=max(coords_tot[,1])
y.min=min(coords_tot[,2])
y.max=max(coords_tot[,2])
dimgrid=dim(coords_tot)[1]
radius = 0.02
par(cex=1.25)
plot(0,0, asp=1, col=fields::tim.colors(100), ylim=c(y.min,y.max), xlim=c(x.min, x.max),
      pch='', xlab='', ylab='', main = "Real Values")
for(i in 1:dimgrid){
 if(i %% 3 == 0)
    car::ellipse(c(coords_tot[i,1],coords_tot[i,2]) , data_manifold_tot[,,i],
                                  radius=radius, center.cex=.5, col='navyblue')
rect(x.min, y.min, x.max, y.max)
for(i in 1:250)
{ car::ellipse(c(coords_model[i,1],coords_model[i,2]) , data_manifold_model[,,i],
               radius=radius, center.cex=.5, col='green')}
rect(x.min, y.min, x.max, y.max)
```

20 model_kriging_mixed

model_kriging_mixed

Perform main routine for mixed_RDD

Description

•••

Usage

```
model_kriging_mixed(data_manifold, coords, X = NULL, Sigma_data,
  metric_manifold = "Frobenius", model_ts = "Additive",
  vario_model = "Gaussian", n_h = 15, distance = NULL,
  data_dist_mat = NULL, data_grid_dist_mat = NULL, max_it = 100,
  tolerance = 1e-06, max_sill = NULL, max_a = NULL, new_coords,
  Sigma_new, X_new = NULL, create_pdf_vario = TRUE,
  pdf_parameters = NULL, suppressMes = FALSE)
```

Arguments

data_manifold	array [p,p,N] of N symmetric positive definite matrices of dimension p*p
coords	N*2 or N*3 matrix of [lat,long], [x,y] or [x,y,z] coordinates.
X	matrix (N rows and unrestricted number of columns) of additional covariates for the tangent space model, possibly NULL
Sigma_data	List of the N fictional tangent points in correspondence with the data used to build the model
metric_manifold	
	metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean", "SquareRoot"
model_ts	type of model fitted on the tangent space. It must be chosen among "Intercept", "Coord1", "Coord2", "Additive"
vario_model	type of variogram fitted. It must be chosen among "Gaussian", "Spherical", "Exponential" $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
n_h	number of bins in the empirical variogram

distance type of distance between coordinates. It must be either "Eucldist" or "Geodist"

data_dist_mat N*N distance matrix (the [i,j] element is the length of the shortest path between

points i and j)

data_grid_dist_mat

N*M distance matrix between locations where the datum has been observed and

locations where the datum has to be predicted

max_it maximum number of iterations for the main loop of model_kriging

tolerance tolerance for the main loop of model_kriging

max_sill max value allowed for sill in the fitted variogram. If NULL it is defined as

1.15*max(emp_vario_values)

max_a maximum value for a in the fitted variogram. If NULL it is defined as 1.15*h_max

new_coords prediction grid, i.e. M*2 or M*3 matrix of coordinates where to predict

Sigma_new List of the M fictional tangent points in correspondence with the locations where

we want to predict

X_new matrix (with the same number of rows of new_coords) of additional covariates

for the new locations, possibly NULL

create_pdf_vario

boolean. If TRUE the empirical and fitted variograms are plotted in a pdf file

pdf_parameters list with the fields test_nr and sample_draw. Additional parameters to name

the pdf

suppressMes {TRUE, FALSE} controls the level of interaction and warnings given

Details

•••

Value

it returns a list with the following fields

beta vector of the beta matrices of the fitted model

gamma_matrix N*N covariogram matrix

residuals vector of the N residual matrices

emp_vario_values

vector of empircal variogram values in correspondence of h_vec

h_vec vector of positions at which the empirical variogram is computed

fitted_par_vario

estimates of nugget, sill-nugget and practical range

iterations number of iterations of the main loop

prediction vector of matrices predicted at the new locations

22 plot_variogram

|--|

Description

Plot kernel

Usage

```
plot_ker_rect(data_coords, id, xmax, ymax, m, n, ker.width)
```

Arguments

data_coords	coordinates of the data
id	the index of the row of data_coords that will be used as center
xmax	the maximum value for the x-coordinate (the minimum is 0)
ymax	the maximum value for the y-coordinate (the minimum is 0)
m	number of points on the grid in horizontal direction
n	number of points on the grid in vertical direction
ker.width	kernel width
plot_variogram	Plot empirical and fitted variogram

Description

Plot empirical and fitted variogram

Usage

```
plot_variogram(empirical_variogram, fitted_variogram, model, distance)
```

Arguments

mode1

empirical_variogram

A list containing the two following fields: - h_vec: vector of positions at which the empirical variogram is computed - emp_vario_values: vector of empircal variogram values in correspondence of h_vec

fitted_variogram

A list containing the two following fields: - hh: dense vector of positions at which fit_vario_values is computed - fit_vario_values: Vector of fitted variogram values in correspondence of hh

Type of variogram used for fitting (it will be reported on the y-axis). It can be

"Gaussian", "Spherical" or "Exponential"

distance Type of distance used to compute h_vec (it will be reported on the x-axis). It

must be either "Eucldist" or "Geodist"

RDD_OOK_aggr_man

Aggregate the results of the bootrap iterations

Description

•••

Usage

```
RDD_OOK_aggr_man(fOKBV, weights_intrinsic, ker.width.intrinsic)
```

Arguments

fOKBV

list of length B, containing the results obtained, for each location, at the B bootstrap iterations (Usually it is the fmean or fpred returned by RDD_OOK_boot_man or RDD_OOK_boot_man_mixed)

weights_intrinsic

weights to use to aggregate the results

ker.width.intrinsic

width of the kernel used to compute weights_intrinsic. 0 if we use equal weights

Details

If ker.width.intrinsic!=0 the data are aggregated using the normalized weights_intrinsic. Otherwise equal weights are used

Value

the aggregated result, obtained as the intrinsic_mean of fOKBV

RDD_OOK_boot_man

Main routine for full_RDD

Description

...

Usage

```
RDD_OOK_boot_man(data_coords, data_val, K, grid, nk_min, B, suppressMes, tol, max_it, n_h, tolerance_intrinsic, X, X_new, ker.width.intrinsic, ker.width.vario, graph.distance.complete, data.grid.distance, method.analysis, metric_manifold, metric_ts, model_ts, vario_model, distance)
```

Arguments

data_coords N*2 or N*3 matrix of [lat,long], [x,y] or [x,y,z] coordinates.

data_val list of N symmetric positive definite matrices of dimension p*p

K Number of neighborhood (i.e., centers) to sample at each iteration

grid M*2 or M*3 matrix of [lat,long], [x,y] or [x,y,z] coordinates of the new locations

where to predict

nk_min Minimum number of observations within a neighborhood

B Number of bootstap iterations

suppressMes boolean. If TRUE warning messagges are not printed

tol tolerance for each main loop

max_it max number of iterations for each main loop n_h number of bins in the emprical variogram

tolerance_intrinsic

tolerance for the computation of the intrinsic mean

X Additional covariates for the locations used to create the modelX_new Additional covariates for the M locations where to perform kriging

ker.width.intrinsic

Parameter controlling the width of the Gaussian kernel for the computation of the local mean (if 0, no kernel is used)

ker.width.vario

Parameter controlling the width of the Gaussian kernel for the computation of the empirical variogram (if 0, no kernel is used)

graph.distance.complete

N*N distance matrix (the [i,j] element is the length of the shortest path between points i and j)

data.grid.distance

N*M distance matrix between locations where the datum has been observed and locations where the datum has to be predicted

method.analysis

"Local mean" to predict just with the mean, "Kriging" to predict via Kriging procedure

metric_manifold

Metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean", "SquareRoot" and "Correlation"

metric_ts Metric used on the tangent space. It must be chosen among "Frobenius", "Frobe-

niusScaled", "Correlation"

model_ts Type of model fitted on the tangent space. It must be chosen among "Intercept",

"Coord1", "Coord2", "Additive"

vario_model Type of variogram fitted. It must be chosen among "Gaussian", "Spherical",

"Exponential"

distance Type of distance between coordinates. It must be either "Eucldist" or "Geodist"

Details

...

Value

According to the analysis chosen:

- If method.analysis = "Local mean" it returns a list with the following fields
 - fmean list of length B. Each field contains the prediction (at iteration b) for each new location, obtained as the intrinsic mean of the data within the tile it belongs to
 - kervalues_mean Weights used for aggregating fmean
- If method.analysis = "Kriging" it returns a list with the following fields
 - fmean list of length B. Each field contains the prediction (at iteration b) for each new location, obtained as the intrinsic mean of the data within the tile it belongs to
 - fpred list of length B. Each field contains the prediction (at iteration b) for each new location, obtained through kriging
 - kervalues_mean Weights used for aggregating fmean
 - kervalues_krig Weights used for aggregating fpred
 - variofit list of length B. Each field contains, for each datum, the parameters of the variogram fitted in the tile it belongs to

RDD_OOK_boot_man_mixed

Main routine for mixed_RDD

Description

•••

Usage

```
RDD_OOK_boot_man_mixed(data_coords, data_val, K, grid, nk_min, B, suppressMes, ker.width.intrinsic, graph.distance.complete, data.grid.distance, metric_ts, vario_model, tol, max_it, n_h, tolerance_intrinsic, X, X_new, metric_manifold, model_ts, distance)
```

Arguments

data_coords	N*2 or $N*3$ matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees	
data_val	array [p,p,N] of N symmetric positive definite matrices of dimension $p*p$	
K	number of cells the domain is subdivided in	
grid	prediction grid, i.e. M*2 or M*3 matrix of coordinates where to predict	
nk_min	minimum number of observations within a cell	
В	number of divide iterations to perform	
suppressMes	{TRUE, FALSE} controls the level of interaction and warnings given	
ker.width.intrinsic		

parameter controlling the width of the Gaussian kernel for the computation of the local mean (if 0, a "step kernel" is used, giving weight 1 to all the data within the cell and 0 to those outside of it)

graph.distance.complete

N*N distance matrix (the [i,j] element is the length of the shortest path between points i and j)

data.grid.distance

N*M distance matrix between locations where the datum has been observed and locations where the datum has to be predicted

metric_ts metric used on the tangent space. It must be chosen among "Frobenius", "Frobe-

niusScaled", "Correlation"

vario_model type of variogram fitted. It must be chosen among "Gaussian", "Spherical",

"Exponential"

tol tolerance for the main loop of model_kriging

max_it maximum number of iterations for the main loop of model_kriging

n_h number of bins in the empirical variogram

tolerance_intrinsic

tolerance for the computation of the intrinsic mean

X matrix (N rows and unrestricted number of columns) of additional covariates for

the tangent space model, possibly NULL

X_new matrix (with the same number of rows of new_coords) of additional covariates

for the new locations, possibly NULL

metric_manifold

metric used on the manifold. It must be chosen among "Frobenius", "LogEu-

clidean", "SquareRoot"

model_ts type of model fitted on the tangent space. It must be chosen among "Intercept",

"Coord1", "Coord2", "Additive"

distance type of distance between coordinates. It must be either "Eucldist" or "Geodist"

Details

•••

Value

it returns a list with the following fields

- fmean list of length B. Each field contains the prediction (at iteration b) for each location, obtained as the intrinsic mean of the data within the tile it belongs to
- kervalues_mean Weights used for aggregating fmean

return_ith_list_element

Return a given element of a list

Description

Return a given element of a list

Usage

```
return_ith_list_element(lista, i)
```

return_ith_row 27

Arguments

lista A list

i The index of the element to extract

Value

It returns the i-th element of lista

return_ith_row

Return a given row of a matrix

Description

Return a given row of a matrix

Usage

```
return_ith_row(mat, i)
```

Arguments

mat A matrix

i The index of the row to extract

Value

It returns the i-th row of mat

Index

```
assign2center, 2
bootstrapVar, 3
\verb|create.rdd|, 3
distance_manifold, 4
Eucldist, 5
full_RDD, 6
Geodist, 8
intrinsic_mean, 8
kerfn, 9
kriging, 10
mixed_RDD, 12
model_GLS, 14
model_kriging, 16
{\tt model\_kriging\_mixed, 20}
plot_ker_rect, 22
plot_variogram, 22
\texttt{RDD\_OOK\_aggr\_man}, \textcolor{red}{23}
RDD_OOK_boot_man, 23
RDD_OOK_boot_man_mixed, 25
return_ith_list_element, 26
\texttt{return\_ith\_row}, \textcolor{red}{27}
```