Formális nyelvek és a fordítóprogramok alapjai

2023/2024/2. félév, B szakirány

NAGY SÁRA gyakorlatai alapján

Utolsó módosítás: 2024. március 28.

Előszó

Ez a gyakorlati jegyzet a 2023/2024/2. félévben készült NAGY SÁRA tanárnő gyakorlatain, a B szakirányos Formális nyelvek és a fordítóprogramok alapjai c. tantárgy keretein belül.

Bizonyos esetekben a feladatokat részletesebben vezettem le, adott esetben saját jelölésrendszert alkalmazva (amik nem szerepeltek a gyakorlatokon), hogy szemléletesebben be tudjam mutatni az egyes feladattípusokhoz tartozó algoritmusokat. Ha nem vagy benne biztos, hogy milyen részletességgel kér(het)ik számon ezeket a zárthelyiken, fordulj a gyakorlatvezetődhöz.

Igyekeztem a legjobb tudásom szerint összeállítani a jegyzetet, ennek ellenére előfordulhatnak benne elgépelések, hibák, stb. Ha találsz ilyet, kérlek értesíts e-mailben a(z) ap3558@inf.elte.hu címen.

Sikeres felkészülést kívánok!

Kiss-Bartha Nimród

Tartalomjegyzék

1.	Formális nyelvek	2
	1.1. Nyelv lezártjának meghatározása (nem hivatalos módszer)	2
	1.2. Nyelvtan típusának meghatározása	3
	1.3. Szó levezetése	4
	1.4. Epszilon-mentesítés (ε -mentesítés)	5
	1.5. 3-as normálformára hozás algoritmusa és automata előállítása	7
	1.5.1. 3-as normálformára hozás algoritmusa	7
	1.5.2. Automata előállítása normálformából	7
	1.6. Véges nemdeterminisztikus automata determinisztikussá alakítása (VNDA \rightarrow VDA) .	8
	1.7. Véges determinisztikus automata (VDA) minimalizálása	10
_		
2.	Fordítóprogramok	12
	2.1. title	12

1. Formális nyelvek

1.1. Nyelv lezártjának meghatározása (nem hivatalos módszer)

Feladat: Határozzuk meg egy nyelv lezártját.

Előfeltétel: (*L* véges nyelv legyen)

Gyakorlatokon előforduló feladat, hogy határozzuk meg egy adott nyelv iteráltját. Általában nem egy olyan feladatról van szó, amit ránézésre könnyen megállapíthatunk, mindemellett koncentrációt igényel, emiatt könnyű elveszni a hasonló sztringek halmazában. Mindemellett a felsorolás is számít, ugyanis lexikografikusan várják el a zárthelyin. A programozó meg lusta, nem szeret sok időt tölteni ilyen feladatokkal. Erre javaslom a következő megoldást!

A szemléltetés kedvéért vegyük az alábbi nyelvet: $L := \{a, ab, cba\}$.

- 1. lépés: $L^0 = L_{\varepsilon} = \{\varepsilon\}$ és $L^1 = L$. Idáig elég egyszerű.
- 2. lépés: határozzuk meg L^2 -t. Ilyen kis nyelvnél még akár fejben is ki lehet találni, nagyobbaknál azonban gondban leszünk. Így ezen a kicsin mutatom be a módszert.

Írjuk fel az L szavait egy $(n+1) \times (n+1)$ -es mátrixba (n=|L|), ahol a sorokba és oszlopokba helyezzük el a szavakat lexikografikusan! Ezután a szavakat soronként és oszloponként konkatenálva töltsük ki a táblázatot!

LL	a	ab	cba
a	aa	aab	acba
ab	aba	abab	abcba
cba	cbaa	cbaab	cbacba

Innen kiolvashatjuk, hogy

$$L^2 = \{ \mathtt{aa}, \mathtt{aab}, \mathtt{aba}, \mathtt{abab}, \mathtt{acba}, \mathtt{cbaa}, \mathtt{abcba}, \mathtt{cbaab}, \mathtt{cbacba} \}.$$

3. lépés: elvégezzük a hatványraemelést a hatványozás definíciója szerint (azaz ha n>1, akkor $L^n=L^{n-1}L$). Azt megállapítottuk, hogy nem számít, hogy balrekurzívan vagy jobbrekurzívan határozzuk meg a műveletet, mindkét módon helyes eredményeket kapunk. Ezt kihasználva úgy döntöttem, az L^2 elemeit a 1. sorban, az L elemeit meg a 1. oszlopban sorakoztatom fel – ami jobbrekurzív hatványozást jelent.

LL^2	aa	aab	aba	abab	acba	cbaa	abcba	cbaab	cbacba
a	a^3	aaab	aaba	aabab	aacba	acbaa	aabcba	acbaab	acbacba
ab	abaa	abaab	ababa	$\mathtt{a}\mathtt{b}^3$	abacba	abcbaa	ababcba	abcbaab	abcbacba
cba	cbaaa	cbaaab	cbaaba	cbaabab	cbaacba	cbacbaa	cbaabcba	cbacbaab	${ t cba}^3$

A legnagyobb problémát ezúttal csak a lexikografikus felsorolás jelentheti, ugyanis eltérő hosszú szavak vannak az egyes L^i halmazokban, mégha a legrövidebb hossz az halmazról halmazra nő. De még így is megfigyelhető egy olyan tendencia, hogy a táblázat bal felső sarkából elindulva egy olyan útvonalon járhatjuk be a cellákat, hogy azokból megkapjuk a szükséges sorrendet.

1.2. Nyelvtan típusának meghatározása

Legyen G := (N, T, P, S), ahol $T := \{a, b\}$ és P szabályai:

$$S \longrightarrow \varepsilon,$$

$$S \longrightarrow \mathbf{a}S\mathbf{b},$$

$$S \longrightarrow SS$$
.

Első lépésként azonosítsuk be az egyes szabályokról, hogy alakilak milyen típusú nyelvtanok szabályaihoz tartozhatnak! Ezeket felsorolhatjuk a szabályok mellé.

Vegyük figyelembe, hogy egy szabály több nyelvtani típusnak is része lehet. Gondoljunk csak bele, a 0-ás típusú nyelvtant úgy definiáltuk, hogy nem vonatkozik rá semmilyen megkötés, így minden produkciós szabály automatikusan 0-ás típusú nyelvtannak része.

$S \longrightarrow \varepsilon$	0, 1, 2 , 3
$S \longrightarrow \mathtt{a} S \mathtt{b}$	0, 2
$S \longrightarrow SS$	0 2

Az első szabály mindegyik típusú nyelvtanban szerepelhet.

A második az 1-esben már nem szerepelhet, ugyanis megkötöttük, hogy az üres szót előállító szabályunk nem szerepelhet más szabály jobb oldalán. Márpedig az S előállítha ε -t és jobb oldalon szerepel. 3-as típusú azért nem lehet, mert az aSb jobb oldal nem illeszkedik bele egyik alakba sem:

- az S nemterminális után rögtön következik egy terminális szimbólum (ezt az $A \longrightarrow uB$ $(A, B \in N, u \in T^*)$ forma nem engedi),
- valamint a terminálisok közé közbeékelt S nemterminális sem megengedett az $A \longrightarrow u \ (u \in T^*)$ alaki megszorítás szerint.

Hasonló megfontolásokból következnek a 3. szabályra vonatkozó megállapítások.

Jelöljük ki azt a legmagasabb számot, amely az összes szabálynál szerepel. Ez fogja meghatározni, hogy milyen típusba esik bele a grammatikánk. Ebből megállapíthatjuk, hogy a G egy 2-es típusú vagy környezetfüggetlen nyelvtan, azaz

$$G \in \mathcal{G}_2$$
. \checkmark

Korábbról tudjuk, hogy

$$\mathcal{G}_3 \subset \mathcal{G}_2$$
.

Kérdés, hogy **tudunk-e 3-as típusú grammatikát adni ehhez a nyelvhez**. Ez azért egy fontos felvetés, ugyanis a célunk az, hogy *a lehető legbelsőbb részhalmazba tudjunk "átlépni"* (ez esetben a 3-as típusú grammatikák halmazába), ami a fordítóprogramok szempontjából egy óriási előnyt jelent.

Sajnos, meg kell előlegeznünk, hogy ehhez a nyelvhez $nem\ tudunk\ \mathcal{G}_3$ -beli $grammatikát\ adni$. Ezt csak később fogjuk tudni belátni.

A G által generált nyelv 2-es típusú nyelv lesz, ezért

$$L(G) \in \mathcal{L}_2$$

teljesül. Ha netán mégis létezne hozzá \mathcal{G}_3 -beli nyelvtan, akkor a **generált nyelv szigorú típusa** $L(G) \in \mathcal{L}_3$ lenne. De mivel nem tudunk ilyet adni, így a szigorú típusa \mathcal{L}_2 .

1.3. Szó levezetése

Legyen a levezetendő szó u := aabaabbb. Idézzük fel a G nyelvtan produkciós szabályait:

$$\begin{split} S &\longrightarrow \varepsilon, \\ S &\longrightarrow \mathtt{a} S\mathtt{b}, \\ S &\longrightarrow SS. \end{split}$$

Ha ezt a szót le tudjuk vezetni a P-beli szabályok véges szokszori alkalmazásával, akkor ez a szó eleme lesz a G által generált nyelvnek.

Ismerjük a nyelvtani szabályokat, ismerjük a startszimbólumot, valamint ismerjük a legyártandó szót is. Tehát valamilyen lépéssorozatból az alábbi összefüggést, levezetést kell megkapjuk:

$$S \stackrel{*}{\Longrightarrow}$$
 aabaabbb.

Egy kis ismétlés: a \Longrightarrow alatt a G azt jelenti, hogy a G nyelvtan generálja a szót, ami egyértelmű kontextus esetén elhagyható. A * meg azt, hogy véges sok lépésből vezethetjük le a szót.

Induljunk ki az S-ből! Vizsgáljuk meg, melyik szabályokat tudjuk alkalmazni – szakszóval ezt úgy mondjuk, hogy **mely szabályok** *tüzelőképesek*. A mi esetünkben mindhárom tüzelőképes, így sok választási lehetőségünk van. Kezdetnek alkalmazzuk a 2. szabályt!

$$S \xrightarrow{\text{2. szabály}} aSb.$$

Ezután alkalmazzuk a 3. szabályt!

$$S \xrightarrow{\text{2. szabály}} aSb \xrightarrow{\text{3. szabály}} aSSb.$$

Itt már két nemterminálisunk van, úgyhogy bármelyikkel folytathatjuk, nincs megszabva semmilyen sorrend. A lényeg, hogy létezzen egy véges lépéssorozata a szabályoknak, mellyel az S-ből a kívánt szóba el tudunk jutni – és ez a szabálysorozat lehet tetszőlegesen egyszerű vagy feleslegesen hosszú, kacifántos és bonyolult. Ha van ilyen, akkor más létezik a szó a nyelvben.

Itt az első S-re fogom alkalmazni a 2., majd az 1. szabályt.

$$S \xrightarrow{\frac{2.}{G}} \mathbf{a}S\mathbf{b} \xrightarrow{\frac{3.}{G}} \mathbf{a}SS\mathbf{b}. \xrightarrow{\frac{2. \text{ (els\~{o}} S\text{-re)}}{G}} \mathbf{a}\mathbf{a}S\mathbf{b}S\mathbf{b} \xrightarrow{\frac{1. \text{ (els\~{o}} S\text{-re)}}{G}} \mathbf{a}\mathbf{a}\varepsilon\mathbf{b}S\mathbf{b} = \mathbf{a}\mathbf{a}\mathbf{b}S\mathbf{b}.$$

Ismét egyetlen S nemterminálisunk maradt. Ezekre a 2. szabályt fogom alkalmazni kétszer, majd végül az elsőt, hogy lezárjam a szót.

$$\mathtt{aab}S\mathtt{b} \xrightarrow{\underline{2.}} \mathtt{aaba}S\mathtt{bb} \xrightarrow{\underline{2.}} \mathtt{aabaa}S\mathtt{bbb} \xrightarrow{\underline{1. \ (\ddot{\mathsf{ures}} \ \mathsf{szavas} \ \mathsf{szabály})}} \mathtt{aabaabbb}. \quad \checkmark$$

Nem kell megijedni, ha más megoldást is találunk. Egy adott szót többféleképpen is levezethetünk. A P-beli produkciós szabályok valójában relációk, nem függvények, ezért nondeterminisztikusak.

1.4. Epszilon-mentesítés (ε -mentesítés)

Feladat: Transzformáljuk át a $G \in \mathcal{G}_2$ (vagy $G \in \mathcal{G}_3$) nyelvtant úgy, hogy

- ha az S-ből közvetetten levezethető az ε , akkor azt a G egyetlen módon legyen képes előállítani,
- ha nem levezehthető az S-ből közvetetten az ε , akkor szabaduljunk meg az ε -szabályoktól.

Előfeltétel: A nyelvtan 2-es vagy 3-as típusú legyen.

A feladathoz kapcsolódik egy tétel, így a megoldás maga ezen tétel bizonyításának az algoritmusa. Szemléltessük az alábbi nyelvtanon!

$$G: \quad S \longrightarrow BA \mid {\tt aa}$$

$$A \longrightarrow BB \mid {\tt a}A{\tt b}$$

$$B \longrightarrow \varepsilon \mid S{\tt b}A$$

Legyen H_1 halmaz, ami azon nemterminálisokat tartalmazza, melyekből közvetlenül levezethető az ε szó (más szóval, $A \longrightarrow \varepsilon$ alakúakat tartalmaz).

$$H_1 := \{B\}, \quad \text{ugyanis } B \longrightarrow \varepsilon.$$

Ezt bővítjük iteratívan.

$$H_2 := H_1 \cup \{A\} = \{A, B\},$$
 ugyanis A-ból B-be eljuthatunk.
 $H_3 := H_2 \cup \{S\} = \{A, B, S\},$ ugyanis S-ből A-ba (ahonnal B-be) eljuthatunk.

Mivel $S \in H_3$, ez azt jelenti, hogy $S \stackrel{*}{\Longrightarrow} \varepsilon$ (a startszimbólumból levezethető az üres szó).

Alakítsuk át a G nyelvtant (ezt jelöljük G'-vel) úgy, hogy NE lehessen előállítani az üres szót. 1

Az átalakítás **alapelve**, hogy fogjuk azokat a szabályokat, amelynek *jobb oldalán szerepelnek nemter-minális jelek*. Ezeket a jobb oldalakat úgy szabdaljuk fel, hogy 0 vagy 1 darab szerepeljen belőlük. Végül az így kapott kombinációkat "összeolvasztjuk", így megkapjuk az új szabályt G'-ben.

I.
$$S \longrightarrow BA \mid$$
 aa . A kritikus szabály(ok): I/I.

I/I. felbontása:

$$\left. \begin{array}{l} S \longrightarrow B \\ S \longrightarrow A \\ S \longrightarrow \underline{BA} \end{array} \right\} \Longrightarrow \boxed{S \longrightarrow A \mid B \mid BA \mid \mathtt{aa}}$$

Ne feledjük hozzácsatolni azokat a jobb oldalakat, amelyeken nem módosítottunk.

II.
$$A \longrightarrow BB \mid aAb \mid$$
. A kritikus szabály(ok): II/I. és II/II.

II/I. felbontása:

$$\left. \begin{array}{c} A \longrightarrow B \\ A \longrightarrow \underline{BB} \end{array} \right\} \Longrightarrow \boxed{A \longrightarrow B \mid BB}$$

II/II. felbontása:

$$\left. \begin{array}{l} A \longrightarrow \mathtt{ab} \\ A \longrightarrow \underline{\mathtt{a}A\mathtt{b}} \end{array} \right\} \Longrightarrow \boxed{A \longrightarrow \mathtt{ab} \mid \mathtt{a}A\mathtt{b}}$$

Új szabály
$$G'$$
-ben: $A \longrightarrow B \mid BB \mid ab \mid aAb$.

¹Ez elsőre furának tűnhet, hiszen az imént pont azt állapítottuk meg, hogy levezethető a nyelvtanból. Ezt a "speciális esetet" később lekezeljük.

III. $\boxed{B \longrightarrow \varepsilon \mid S \mathbf{b} A}$. A kritikus szabály
(ok): III/II.

Figyelem: Az ε -szabálytól megszabadulunk! Később lekezeljük a hiányát.

III/II. felbontása:

$$B \longrightarrow Sb B \longrightarrow bA B \longrightarrow b B \longrightarrow \underline{SbA}$$
 \Longrightarrow $B \longrightarrow b \mid bA \mid Sb \mid SbA \mid$

Végső lépés: hogy ne veszítük e az ε -szó legenerálhatóságát, bevezetünk egy **új** startszimbólumot:

$$S' \longrightarrow \varepsilon \mid S$$
.

Ezzel epszilon-mentesítettük a G grammatikát!

1.5. 3-as normálformára hozás algoritmusa és automata előállítása

1.5.1. 3-as normálformára hozás algoritmusa

- I. Hosszredukció
- II. Befejező szabályok átalakítása
- III. <u>Láncmentesítés</u>

1.5.2. Automata előállítása normálformából

A 3-as normálforma az alábbi kétféle alakú szabályt engedi meg:

1. $A \longrightarrow aB$, ahol $A, B \in N$ és $a \in T$ (egyetlen szimbólum).

Erre gondolhatunk úgy, mintha a nemterminálisok a **gráf csúcsai** lennének és a terminális szimbólum a szabály jobb oldalán (ne feledjük, hogy kizárólag egyetlen szerepelhet belőle) meg az **él címkéje** lenne. Vizualizálva:

2. $A \longrightarrow \varepsilon$, ahol $A \in N$.

Az ε azt jelenti, hogy nem tud sehova sem tovább lépni. Ilyenkor **elfogadóállapot**ba érkezünk (vagy végállapotba). Vizualizálva:

1.6. Véges nemdeterminisztikus automata determinisztikussá alakítása (VNDA ightarrow VDA)

Feladat: Véges nemdeterminisztikus automatát (VNDA vagy NDA) alakítsuk át úgy, hogy determinisztikus legyen (VDA).

Előfeltétel: Véges automata (\mathcal{G}_3 -beli nyelvtanhoz).

Adott az alábbi VNDA:

$$\begin{array}{c|ccccc} \delta & a & b \\ \hline \rightarrow & S & A, C \\ \leftarrow & A & A & B, S \\ & B & A & C, S \\ \leftarrow & C & S & \\ \end{array}$$

 $A \to nyíl jelöli a kezdőállapotot, a \leftarrow pedig az elfogadóállapotokat (más néven a végállapotokat).$ Nemdeterminisztikus automatával van dolgunk, ugyanis S-ből A-ba és B-be is eljuthatunk, melyek ugyanazt a terminálist eredményezik.

Írjuk fel halmazosan az **első sor**t. Az egyes halmazok fogják jelölni az állapotok "címkéit" (minta q_1 vagy 1-ről lenne szó). Az új címkéket aláhúzással jelölöm. Minden egyes új címkét feldolgozunk.

Dolgozzuk fel az új címkéket. Az eljárás hasonlít a BFS-re (szélességi gráfbejárásra).

Az $\{A,C\}$ halmaz elemei a táblázat szerint elfogadóállapotok, így a halmaz is megjelölhető ezzel a tulajdonsággal.

	δ	a	ъ
\rightarrow	$\{S\}$	$\{A,C\}$	Ø.
\leftarrow	$\{A,C\}$	$\underbrace{\{A\} \cup \{S\}}_{} = \{A, S\}$	$\underbrace{\{B,S\}} \cup \emptyset = \{B,S\}$
		Å Č	Å
	Ø	Ø ✓	∅ ✓

Az $\{A,C\}$ halmaz két új halmazt, címkét eredményezett, így ezeket fel kell dolgoznunk.

Az üreshalmazból nyilvánvalóan egyik állapotba sem tudunk eljutni. Új halmaz sem jön létre, ezért feldolgozottnak jelöljük (kipipáljuk). Ha a hibát is jelezni akarjuk, akkor a(z) \emptyset -t kicserélhetjük egy H hibahalmazra.

	δ	a	Ъ
\rightarrow	$\{S\}$	$\{A,C\}$	Ø.
\leftarrow	$\{A,C\}$	$\{A,S\}$	$\{B,S\}$
	Ø	Ø √	Ø <
\leftarrow	$\{A,S\}$	$A\} \cup \{C\} = \{A, C\} \checkmark$	$\emptyset \cup \{B,S\} = \{B,S\}$

Az $\{A,S\}$ -ben van elfogadóállapot, így az egész megjelölhető annak. A halmaz nem hozott létre újabb halmazokat. Mivel az $\{A,C\}$ -t korábban feldolgoztuk, ezért kipipálással megjelölöm. A $\{B,S\}$ meg amúgy is fel lett volna dolgozva a soron következő lépésben.

Hasonló lépésekkel végighaladunk az összes címkén. Ha elfogynak a halmazaink, az eljárás megáll.

	δ	a	Ъ
\rightarrow	$\{S\}$	$\{A,C\}$	Ø.
\leftarrow	$\{A,C\}$	$\{A,S\}$	$\{B,S\}$
	Ø	∅ ✓	Ø √
\leftarrow	$\{A,S\}$	$\{A\} \cup \{C\} = \{A,C\} \checkmark$	$\emptyset \cup \{B,S\} = \{B,S\}$
	$\{B,S\}$	$\{A\} \cup \{A,C\} = \{A,C\}$	$\{C,S\} \cup \emptyset = \{C,S\}$
\leftarrow	$\{C,S\}$	$\{S\} \cup \{A,C\} = \{A,C,S\}$	$\emptyset \cup \emptyset = \emptyset$
\leftarrow	$\{A,C,S\}$	$\{A\} \cup \{S\} \cup \{A,C\} = \{A,C,S\} \checkmark$	$\{B,S\} \cup \emptyset \cup \emptyset = \{B,S\}$

A kapott táblázatunk a bal oldalon található. Gyakran átnevezzük, átcímkézzük ezeket a halmazokat a könnyebb olvashatóság kedvéért számjegyekkel. Ez analóg a q_0, q_1, \ldots jelöléssel.

	δ	a	b
\rightarrow	$\{S\}$	$\{A,C\}$	Ø
←	$\{A,C\}$	$\{A,S\}$	$\{B,S\}$
	Ø	Ø	Ø
\leftarrow	$\{A,S\}$	$\{A,C\}$	$\{B,S\}$
	$\{B,S\}$	$\{A,C\}$	$\{C,S\}$
\leftarrow	$\{C,S\}$	$\{A,C,S\}$	Ø
\leftarrow	$\{A,C,S\}$	$\{A,C,S\}$	$\{B,S\}$

	δ	a	ъ
\rightarrow	1	2	3
\leftarrow	2	4	5
	3	3	3
\leftarrow	4	2	5
	5	2	6
\leftarrow	6	7	3
\leftarrow	7	7	5

1.7. Véges determinisztikus automata (VDA) minimalizálása

Más néven: minimális automata előállítása, VDA összefüggővé tétele.

Feladat: VDA-ban az ekvivalens állapotokat egybeolvasztjuk – azaz, azon állapotokat, melyek azonos szóra azonos eredményt adnak.

Előfeltétel: VDA (feltételezzük, hogy megszabadultunk a nemdeterminisztikus jellegétől).

Vegyük az alábbi VDA-t:²

	δ	a	b
\rightarrow	1	4	5
\leftarrow	2	3	4
\leftarrow	3	2	8
	4	9	$\begin{vmatrix} 2\\ 3 \end{vmatrix}$
	5	2	3
	6	8	7
	7	8	1
	8	9	3
\leftarrow	9	9	9

A δ -relációra tekinthetünk úgy, mint egy olyan irányított gráfra, melynek mindegyik csúcsának fokszáma 2 és az élei fel vannak címkézve.

Első lépésként meg kell határoznunk azon állapotokat (azaz a gráf azon csúcssait), amik elérhetők közvetett módon a kezdőállapotból (startcsúcsból). Ez a **BFS**-t vagy **szélességi gráfbejárás**t fogja jelenteni.³

			d(u	ı) cír	nkék					Q:Queue				$\pi(u)$) cín	nkék			
1	2	3	4	5	6	7	8	9	u:d(u)	Q.Queue	1	2	3	4	5	6	7	8	9
0	∞		(1)	0	0	0	0	0	0	0	0	0							
			1	1					1:0	$\langle 4, 5 \rangle$				1	1				
	2							2	4:1	$\langle 5, 2, 9 \rangle$		4							4
		3							5:1	$\langle 2, 9, 3 \rangle$			5						
									2:2	$\langle 9, 3 \rangle$									
									9:2	(3)									
							4		3:3	(8)								3	
									8:4	⟨⟩									
0	2	3	1	1	∞	∞	4	2	ere	dmény	0	4	5	1	1	0	0	3	4

Megállapíthatjuk belőle, hogy ahol $d(u) = \infty \wedge \pi(u) = \emptyset$, azon csúcsok nem elérhetők az 1-es startcsúcsból (kezdőállapotból). Tehát, a 6-os és 7-es állapotoktól könnyedén megszabadulhatunk.

Az 1-esből elérhető állapotokat felosztjuk két halmazra: **nem-elfogadóállapotok** (azaz $\{1,4,5,8\}$) és **elfogadóállapotok** (azaz $\{2,3,9\}$) halmazára. Az, hogy melyek elfogadóállapotok, azokat a táblázatból könnyedén leolvashatjuk (" \leftarrow " nyíllal vannak megjelölve).

Ezeket a halmazokat szeretnénk finomítani, más szóval partícionáljuk őket. Ez azt jelenti, hogy egyre több halmaz jön létre és az egyes halmazok elemszáma egyre csökken. A partícionálás a szavak hossza szerint történik. A partíciók jele: $\boxed{\sim^i}$ vagy $\boxed{\stackrel{i}{\sim}}$, ahol $i=\ell(u)$ $(u\in L(A))$.

²Vigyázat: Ez nem ugyanaz, mint amit az előző feladatban kaptunk.

 $^{^3}$ Fontos kiemelni, hogy a mi esetünkben nem egyszerű gráfról van szó, ugyanis hurokéleket tartalmaz. Emiatt szigorú értelemben arra számíthatunk, hogy az az algoritmus, amit Algoritmusok és adatszerkezetek II.-n tanultunk, elakadhat emiatt. Ennek ellenére mégis ezt a szemléltetést fogom alkalmazni. Az az érvem mellette, hogy ha olyan csúcsot fedezünk fel, melynek van hurokéle, a π -címkéjének átállítása után másodjára nem fog bekerülni a Q: Queue sorba, ezért mégsem fog komoly gondot jelenteni.

	Nem-elfogadóállapotok	Elfogadóállapotok
· :	$\{1,4,5,8\} =: A$	$\{2, 3, 9\} =: B$
:	Felbontandó partíciók: A . $ \begin{array}{c cccc} \delta & a & b \\ \hline 1 & 4 \in A & 5 \in A \\ 4 & 9 \in B & 2 \in B \\ 5 & 2 \in B & 3 \in B \\ 8 & 9 \in B & 3 \in B \end{array} $	Felbontandó partíciók: B . $ \begin{array}{c cccc} \delta & a & b \\ \hline 2 & 3 \in B & 4 \in A \\ 3 & 2 \in B & 8 \in A \\ 9 & 9 \in B & 9 \in B \end{array} $
	Avagy ugyanez tömörebben. $\begin{array}{c cccc} \delta & a & b \\ \hline 1 & A & A \\ 4 & B & B \\ 5 & B & B \\ 8 & B & B \\ \hline Új partíciók: \{1\}; \{4,5,8\}. \end{array}$	Avagy ugyanez tömörebben $\begin{array}{c cccc} \delta & a & b \\ \hline 2 & B & A \\ 3 & B & A \\ 9 & \mathbf{B} & \mathbf{B} \\ \\ \text{Új partíciók: } \{2,3\}; \{9\}. \end{array}$
	$\{1\}=:C;\;\{4,5,8\}=:D$ Felbontandó partíciók: D .	$\{2,3\}=:E;\ \{9\}=:F$ Felbontandó partíciók: $E.$
:	$egin{array}{c cccc} \delta & a & b \\ \hline 4 & F & E \\ \hline 5 & \mathbf{E} & \mathbf{E} \\ 8 & F & E \\ \hline & & & & & & & \\ & & & & & & \\ & & & &$	$egin{array}{c cccc} \delta & a & b \\ \hline 2 & E & D \\ \hline 3 & E & D \\ \hline \end{array}$ Itt nem történik finomodás marad minden a régiben.

Felbontandó partíciók: G.

$$\stackrel{3}{\sim}$$
 :

$$egin{array}{c|cccc} \delta & a & b \\ \hline 4 & G & E \\ 8 & G & E \\ \end{array}$$

Nem történt finomodás

Mivel $\stackrel{3}{\sim}$ -ban ($\ell(u)=3$ szavakban) nem történt finomodás a nem-elfogadóállapotok esetében az előző lépéshez képest (az elfogadóállapotok meg korábban véget értek), így leáll az algoritmus. Újracímkézzük azon állapotokat, partíciókat, melyek több elemből állnak. Így

$$\{2,3\} \to 23; \quad \{4,8\} \to 48.$$

A minimális automata / minimalizált VDA pedig:

	δ	a	b
\rightarrow	1	48	5
	48	9	23
\leftarrow	23	23	48
	5	23	23
\leftarrow	9	9	9

- 2. Fordítóprogramok
- 2.1. title