ComS 363 Homework 2

Sean Gordon

February 20, 2020

1)
(a) A, C, and D should not be used as key, as each has duplicate values in their respective columns.

B should be used as key as it is the only column without duplicate values.

- (b) All unique values in C are accompanied by their own corresponding unique values in D, so the dependency is satisfied. $[3 \rightarrow 4], [8 \rightarrow 5]$
- (c) All unique values in C are **not** accompanied by their own corresponding unique values in B, so the dependency is **not** satisfied. $[8 \rightarrow 3], [8 \rightarrow 7]$

2) (a) AG \rightarrow B \Rightarrow BBB \rightarrow BBCD \Rightarrow BBCDD \sim BDCBD \rightarrow BDCE \rightarrow BDF

(b) $B^+ = \{B, CD, CE, F\}$

(c) $AG \to B \Rightarrow BB \to CBD \to CE \to F$ Starting from AG, all of ABCDEFG can be accessed. Thus, AG is a key. 3)

(a)
$$\{A \rightarrow B, A \rightarrow C\}$$

- (b) $\{ABCD \rightarrow E, ABCD \rightarrow F\}$
- (c) $\{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$
- (d) $\{A \rightarrow B, A \rightarrow C, A \rightarrow D\}$
- (e) $\{A \rightarrow B, ACD \rightarrow E, EF \rightarrow G, EF \rightarrow H\}$

4)

(a) Disproof:
$$\begin{array}{c|cccc} X & Y & Z \\ \hline X1 & Y1 & Z1 \\ X1 & Y2 & Z3 \\ \end{array}$$

(b)

1.
$$X \to YZ$$
 (given)

2. $X \to Y$ (decomposition) \checkmark

5)

(a) Computing attribute closure:

As all combinations that result in ABCD rely on B, we can conclude that B is the only non-redundant key.

(b)
$$BC \to ABCD$$

(c)
$$A \rightarrow A$$

6)

Calculating attribute closure:

- $A \rightarrow A$
- $\mathrm{B}\to\mathrm{B}$
- $C \to ACD$
- $\mathrm{D} \to \mathrm{AD}$

 $AB \rightarrow ABCD$

 $AC \to ACD$

 $AD \rightarrow AD$

- $BC \to ABCD$
- $BD \to ABD$
- $\mathrm{CD} \to \mathrm{ACD}$

 $ABC \rightarrow ABCD$

 $ABD \rightarrow ABCD$

 $ACD \rightarrow ACD$

 $BCD \rightarrow ABCD$

- (a) No, because of $C \to D$ and $D \to A$
- (b) Start: (ABCD)
- 1. (CAD)(BC) because of $C \to D$ violation, making C a superkey.
- 2. (DA)(CD)(BC) because of D \rightarrow A violation, making D superkey.
- (c) No, the decomposition does not preserve the $AB \rightarrow C$ dependency.
- (d) Start: (ABCD)
- 1. (ABC)(CD) because of $C \to D$ violation, making C a superkey.
- (e) No, the decomposition does not preserve the D \rightarrow A dependency.