Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Отчёт

"Методы машинного обучения"

Лабораторная работа № 1

"Разведочный анализ данных. Исследование и визуализация данных"

ИСПОЛНИТЕЛЬ:
Студент группы ИУ5-21М
Гузилов А.В.
ПРЕПОДАВАТЕЛЬ:
Гапанюк Ю.Е.

Москва – 2019

Цель работы

Изучить различные методы визуализации данных.

Задание

Требуется выполнить следующие действия:

- Выбрать набор данных (датасет);
- Создать ноутбук, который содержит следующие разделы:
 - 1. Текстовое описание выбранного набора данных;
 - 2. Основные характеристики датасета;
 - 3. Визуальное исследование датасета;
 - 4. Информация о корреляции признаков.
- Сформировать отчет и разместить его в своем репозитории на GitHub.

Ход выполнения работы

Текстовое описание набора данных

В качестве набора данных используется датасет с информацией об автомобилях от 1985-го года. Набор данных доступен по ссылке: kaggle.com/fazilbtopal/auto85.

Набор данных состоит из одного файла auto.csv, содержащего все данные датасета. Данный файл содержит следующие колонки:

- Марка авто
- Тип топлива
- Тип двигателя
- Количество дверей
- Тип кузова
- Тип привода
- Расположение двигателя
- Расположение колесной базы
- Длина кузова
- Ширина кузова
- Высота кузова
- Топливная система
- Размер двигателя
- Количество цилиндров
- Компрессия
- Цена
- Скорость
- Количество лошадиных сил

Основные характеристики набора данных

Подключим все необходимые библиотеки:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

Загрузим данные:

```
data = pd.read_csv('auto.csv', sep=",")
```

Первые 5 строк датасета:

In [5]: data.head()
Out[5]:

	symboling	normalized- losses	make	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	length		compression- ratio	horsepower	peak- rpm	city- mpg	highway- mpg
0	3	122	alfa- romero	std	two	convertible	rwd	front	88.6	0.811148		9.0	111.0	5000.0	21	27
1	3	122	alfa- romero	std	two	convertible	rwd	front	88.6	0.811148	575	9.0	111.0	5000.0	21	27
2	1	122	alfa- romero	std	two	hatchback	rwd	front	94.5	0.822681		9.0	154.0	5000.0	19	26
3	2	164	audi	std	four	sedan	fwd	front	99.8	0.848630		10.0	102.0	5500.0	24	30
4	2	164	audi	std	four	sedan	4wd	front	99.4	0.848630		8.0	115.0	5500.0	18	22

5 rows × 29 columns

Размер датасета (строк, столбцов):

```
In [6]: data.shape
Out[6]: (201, 29)
```

Список колонок с типами данных:

```
In [9]: data.dtypes
Out[9]: symboling
                               int64
        normalized-losses
                               int64
        make
                              object
        aspiration
                              object
        num-of-doors
                              object
        body-style
                              object
        drive-wheels
                              object
        engine-location
                              object
        wheel-base
                              float64
        length
                              float64
                              float64
        width
        height
                              float64
        curb-weight
                               int64
        engine-type
                              object
        num-of-cylinders
                              object
        engine-size
                               int64
        fuel-system
                              object
                              float64
        bore
        stroke
                              float64
        compression-ratio
                              float64
        horsepower
                              float64
        peak-rpm
                              float64
         city-mpg
                               int64
        highway-mpg
                               int64
                              float64
        price
         city-L/100km
                              float64
        horsepower-binned
                              object
        diesel
                               int64
                               int64
        gas
        dtype: object
```

Основные статистические характеристики набора данных:

In [10]: data.describe()

Out[10]:

	symboling	normalized- losses	wheel- base	length	width	height	curb-weight	engine- size	bore	stroke	compression- ratio	horsepower
count	201.000000	201.00000	201.000000	201.000000	201.000000	201.000000	201.000000	201.000000	201.000000	197.000000	201.000000	201.000000
mean	0.840796	122.00000	98.797015	0.837102	0.915126	53.766667	2555.666667	126.875622	3.330692	3.256904	10.164279	103.405534
std	1.254802	31.99625	6.066366	0.059213	0.029187	2.447822	517.296727	41.546834	0.268072	0.319256	4.004965	37.365700
min	-2.000000	65.00000	86.600000	0.678039	0.837500	47.800000	1488.000000	61.000000	2.540000	2.070000	7.000000	48.000000
25%	0.000000	101.00000	94.500000	0.801538	0.890278	52.000000	2169.000000	98.000000	3.150000	3.110000	8.600000	70.000000
50%	1.000000	122.00000	97.000000	0.832292	0.909722	54.100000	2414.000000	120.000000	3.310000	3.290000	9.000000	95.000000
75%	2.000000	137.00000	102.400000	0.881788	0.925000	55.500000	2926.000000	141.000000	3.580000	3.410000	9.400000	116.000000
max	3.000000	256.00000	120.900000	1.000000	1.000000	59.800000	4066.000000	326.000000	3.940000	4.170000	23.000000	262.000000

Визуальное исследование датасета

Оценим распределение целевого признака - стоимость:

In [13]: sns.distplot(data['price'])

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x19852ea9860>

Видно, что имеется большой перевес в сторону автомобилей стоимостью 5-10 тысяч долларов. Оценим, насколько цена зависит от количества лошадиных сил:

Видно, что цена и количество лошадей связаны. Чем больше лошадей, тем выше стоимость автомобиля.

Построим парные диаграммы по всем наборам данным:

Информация о корреляции признаков

Построим корреляционную матрицу по всему набору данных:

In [13]: data.corr()
Out[13]:

	symboling	normalized- losses	wheel- base	length	width	height	curb- weight	engine- size	bore	stroke	compression- ratio	horsepower	peak-r
symboling	1.000000	0.466264	-0.535987	-0.365404	-0.242423	-0.550160	-0.233118	-0.110581	-0.140019	-0.008245	-0.182196	0.075819	0.279
normalized- losses	0.466264	1.000000	-0.056661	0.019424	0.086802	-0.373737	0.099404	0.112360	-0.029862	0.055563	-0.114713	0.217299	0.239
wheel-base	-0.535987	-0.056661	1.000000	0.876024	0.814507	0.590742	0.782097	0.572027	0.493244	0.158502	0.250313	0.371147	-0.360:
length	-0.365404	0.019424	0.876024	1.000000	0.857170	0.492063	0.880665	0.685025	0.608971	0.124139	0.159733	0.579821	-0.285
width	-0.242423	0.086802	0.814507	0.857170	1.000000	0.306002	0.866201	0.729436	0.544885	0.188829	0.189867	0.615077	-0.245
height	-0.550160	-0.373737	0.590742	0.492063	0.306002	1.000000	0.307581	0.074694	0.180449	-0.062704	0.259737	-0.087027	-0.309
curb-weight	-0.233118	0.099404	0.782097	0.880665	0.866201	0.307581	1.000000	0.849072	0.644060	0.167562	0.156433	0.757976	-0.279
engine-size	-0.110581	0.112360	0.572027	0.685025	0.729436	0.074694	0.849072	1.000000	0.572609	0.209523	0.028889	0.822676	-0.256
bore	-0.140019	-0.029862	0.493244	0.608971	0.544885	0.180449	0.644060	0.572609	1.000000	-0.055390	0.001263	0.566936	-0.267
stroke	-0.008245	0.055563	0.158502	0.124139	0.188829	-0.062704	0.167562	0.209523	-0.055390	1.000000	0.187923	0.098462	-0.065
compression- ratio	-0.182196	-0.114713	0.250313	0.159733	0.189867	0.259737	0.156433	0.028889	0.001263	0.187923	1.000000	-0.214514	-0.435
horsepower	0.075819	0.217299	0.371147	0.579821	0.615077	-0.087027	0.757976	0.822676	0.566936	0.098462	-0.214514	1.000000	0.107
peak-rpm	0.279740	0.239543	-0.360305	-0.285970	-0.245800	-0.309974	-0.279361	-0.256733	-0.267392	-0.065713	-0.435780	0.107885	1.0000
city-mpg	-0.035527	-0.225016	-0.470606	-0.665192	-0.633531	-0.049800	-0.749543	-0.650546	-0.582027	-0.034696	0.331425	-0.822214	-0.115
highway-mpg	0.036233	-0.181877	-0.543304	-0.698142	-0.680635	-0.104812	-0.794889	-0.679571	-0.591309	-0.035201	0.268465	-0.804575	-0.058
price	-0.082391	0.133999	0.584642	0.690628	0.751265	0.135486	0.834415	0.872335	0.543155	0.082310	0.071107	0.809575	-0.1016
city-L/100km	0.066171	0.238567	0.476153	0.657373	0.673363	0.003811	0.785353	0.745059	0.554610	0.037300	-0.299372	0.889488	0.115
diesel	-0.196735	-0.101546	0.307237	0.211187	0.244356	0.281578	0.221046	0.070779	0.054458	0.241303	0.985231	-0.169053	-0.475

Визуализируем корреляционную матрицу матрицу с помощью тепловой карты:

In [16]: sns.heatmap(data.corr())

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x201c55d2160>

