Chapter 9 - High Order Portfolios

Exercises

Exercise 9.1 Show why $\Sigma x = b/x$ can be equivalently solved as Cx = b/x, where C is the correlation matrix defined as $C = D^{-1/2}\Sigma D^{-1/2}$ with D a diagonal matrix containing $\operatorname{diag}(\Sigma)$ along the main diagonal. Would it be possible to use instead $C = M^{-1/2}\Sigma M^{-1/2}$, where M is not necessaryly a diagonal matrix?

Exercise 9.2 If the covariance matrix is diagonal $\Sigma = D$, then the system of nonlinear equations $\Sigma x = b/x$ has the closed-form solution $x = \sqrt{b/\text{diag}(D)}$. Explore whether a closed-form solution can be obtained for the rank-one plus diagonal case $\Sigma = uu^{\mathsf{T}} + D$.

Exercise 9.3 The solution to the formulation

$$\begin{array}{ll} \underset{x \geq 0}{\text{maximize}} & \boldsymbol{b}^\mathsf{T} \log(\boldsymbol{x}) \\ \text{subjectto} & \sqrt{\boldsymbol{x}^\mathsf{T} \boldsymbol{\Sigma} \boldsymbol{x}} \leq \sigma_0 \end{array}$$

is

$$\lambda \Sigma x = b/x \times \sqrt{x^{\mathsf{T}} \Sigma x}.$$

Can you solve for λ and rewrite the solution in a more compact way without λ ?

Exercise 9.4 Newton's method requires computing the direction $\mathbf{d} = \mathsf{H}^{-1}\nabla f$ or, equivalently, solving the system of linear equations $\mathsf{H}\mathbf{d} = \nabla f$ for \mathbf{d} . Explore whether a more efficient solution is possible exploiting the structure of the gradient and Hessian:

$$abla f = oldsymbol{\Sigma} oldsymbol{x} - oldsymbol{b}/oldsymbol{x} \ \mathsf{H} = oldsymbol{\Sigma} + \mathsf{Diag}(oldsymbol{b}/oldsymbol{x}^2).$$

Exercise 9.5 The MM algorithm requires the computation of the largest eigenvalue λ_{max} of matrix Σ , which can be obtained from the eigenvalue decomposition of the matrix. A more efficient alternative is the power iteration method. Program both methods and compare the computational complexity.

Exercise 9.6 Consider the vanilla convex formulation

$$\label{eq:loss_equation} \begin{aligned} & \underset{x \geq \mathbf{0}}{\text{minimize}} & & \frac{1}{2} \boldsymbol{x}^\mathsf{T} \boldsymbol{\Sigma} \boldsymbol{x} - \boldsymbol{b}^\mathsf{T} \log(\boldsymbol{x}). \end{aligned}$$

Implement the cyclical coordinate descent method and the parallel SCA method in a high-level programming language (e.g., R, Python, Julia, or Matlab) and compare the converge vs CPU time for these two methods. Then, re-implement these two methods in a low-level programming language (e.g., C, C++, C#, or Rust) and compare the convergence again. Comment on the difference observed.