924 LOGIC

5.94 covers_sboxes

DESCRIPTION	LINKS	LOGIC

Origin Geometry, derived from [338]

Constraint covers_sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym covers.

INTEGERS : collection(v-int)
POSITIVES : collection(v-int)

Arguments K : int

DIMS : sint

 $\begin{array}{lll} \text{OBJECTS} & : & \text{collection}(\text{oid-int}, \text{sid-dvar}, \text{x} - \text{VARIABLES}) \\ \text{SBOXES} & : & \text{collection}(\text{sid-int}, \text{t} - \text{INTEGERS}, \text{1} - \text{POSITIVES}) \\ \end{array}$

Restrictions

```
|VARIABLES| \ge 1
|\mathtt{INTEGERS}| \geq 1
|\mathtt{POSITIVES}| \geq 1
required(VARIABLES, v)
|VARIABLES| = K
required(INTEGERS, v)
|INTEGERS| = K
required(POSITIVES, v)
|POSITIVES| = K
{\tt POSITIVES.v}>0
K > 0
\mathtt{DIMS} \geq 0
{\tt DIMS} < {\tt K}
increasing_seq(OBJECTS,[oid])
required(OBJECTS, [oid, sid, x])
{\tt OBJECTS.oid} \geq 1
OBJECTS.oid \leq |OBJECTS|
{\tt OBJECTS.sid} \geq 1
\texttt{OBJECTS.sid} \leq |\texttt{SBOXES}|
|\mathtt{SBOXES}| \geq 1
required(SBOXES, [sid, t, 1])
{\tt SBOXES.sid} \geq 1
\mathtt{SBOXES.sid} \leq |\mathtt{SBOXES}|
do_not_overlap(SBOXES)
```

20070622

Holds if, for each pair of objects (O_i,O_j) , i< j, O_i covers O_j with respect to a set of dimensions depicted by DIMS. O_i and O_j are objects that take a shape among a set of shapes. Each *shape* is defined as a finite set of shifted boxes, where each shifted box is described by a box in a K-dimensional space at a given offset (from the origin of the shape) with given sizes. More precisely, a *shifted box* is an entity defined by its shape id sid, shift offset t, and sizes 1. Then, a shape is defined as the union of shifted boxes sharing the same shape id. An *object* is an entity defined by its unique object identifier oid, shape id sid and origin x.

925

An object O_i covers an object O_j with respect to a set of dimensions depicted by DIMS if and only if, for all shifted box s_j of O_j , there exists a shifted box s_i of O_i such that:

- For all dimensions $d \in DIMS$, (1) the start of s_i in dimension d is less than or equal to the start of s_j in dimension d, and (2) the end of s_j in dimension d is less than or equal to the end of s_i in dimension d.
- There exists a dimension d where, (1) the start of s_i in dimension d coincide with the start of s_j in dimension d, or (2) the end of s_i in dimension d coincide with the end of s_j in dimension d.

```
2, \{0, 1\},
                                                          x - \langle 2, 2 \rangle
      \mathtt{oid}-3
                                 sid-4 x-\langle 2,3\rangle
                                 t - \langle 0, 0 \rangle 1 - \langle 3, 3 \rangle,
       \operatorname{sid} - 1 \quad \operatorname{t} - \langle 3, 0 \rangle
                                                               1-\langle 2,2\rangle,
       \operatorname{sid} - 2 \quad \operatorname{t} - \langle 0, 0 \rangle
                                                               1-\langle 2,2\rangle,
       \operatorname{sid} - 2 \quad \operatorname{t} - \langle 2, 0 \rangle
                                                               1-\langle 1,1\rangle,
       \operatorname{sid} - 3 \quad \operatorname{t} - \langle 0, 0 \rangle
       \operatorname{sid} - 3 t -\langle 2, 1 \rangle
                                                               1-\langle 1,1\rangle,
        \operatorname{sid} - 4 \quad \operatorname{t} - \langle 0, 0 \rangle
                                                              1-\langle 1,1\rangle
```

Figure 5.227 shows the objects of the example. Since O_1 covers both O_2 and O_3 , and since O_2 covers O_3 , the covers_sboxes constraint holds.

Typical

 $|\mathtt{OBJECTS}| > 1$

Symmetries

- Items of SBOXES are permutable.
- Items of OBJECTS.x, SBOXES.t and SBOXES.1 are permutation used).

Arg. properties

Suffix-contractible wrt. OBJECTS.

Remark

One of the eight relations of the *Region Connection Calculus* [338]. The constraint covers_sboxes is a relaxation of the original relation since it requires that each shifted box of an object is covered by one shifted box of the other object.

See also

Purpose

Example

926 LOGIC

Figure 5.227: (D) the three objects O_1 , O_2 , O_3 of the **Example** slot respectively assigned shapes S_1 , S_2 , S_4 ; (A), (B), (C) shapes S_1 , S_2 , S_3 and S_4 are respectively made up from 2, 2, 2 and 1 single shifted box.

Keywords

constraint type: logic.

geometry: geometrical constraint, rcc8.

miscellaneous: obscure.

Logic

```
ullet origin(01,S1,D) \stackrel{\mathrm{def}}{=} 01.x(D) + S1.t(D)
\bullet \ \mathtt{end}(\mathtt{O1},\mathtt{S1},\mathtt{D}) \stackrel{\mathrm{def}}{=} \mathtt{O1}.\mathtt{x}(\mathtt{D}) + \mathtt{S1}.\mathtt{t}(\mathtt{D}) + \mathtt{S1}.\mathtt{l}(\mathtt{D})
 \bullet \  \  \, \mathtt{covers\_sboxes}(\mathtt{Dims}, \mathtt{O1}, \mathtt{S1}, \mathtt{O2}, \mathtt{S2}) \stackrel{\mathrm{def}}{=} \\
                      \forall \mathtt{D} \in \mathtt{Dims}
                                     \mathtt{origin}(\mathtt{O1},\mathtt{S1},\mathtt{D}) \leq
                                      \operatorname{origin}(O2,S2,D)
                                      \mathtt{end}(\mathtt{02},\mathtt{S2},\mathtt{D}) \leq
                                      end(01, S1, D)
       \land
                      \exists \mathtt{D} \stackrel{\cdot}{\in} \mathtt{Dims}
                                      origin(O1, S1, D) =
                                      \mathtt{origin}(\mathtt{O2},\mathtt{S2},\mathtt{D})
                                      end(O1,S1,D) =
                                      \mathtt{end}(\mathtt{O2},\mathtt{S2},\mathtt{D})
 \bullet \  \  \mathsf{covers\_objects}(\mathtt{Dims}, \mathtt{O1}, \mathtt{O2}) \stackrel{\mathrm{def}}{=} \\
         \forall \mathtt{S2} \in \mathtt{sboxes}([\mathtt{02.sid}])
             \exists \mathtt{S1} \in \mathtt{sboxes} ( [ \mathtt{O1.sid} ] )
                                                       Dims,
                                                       01,
             covers_sboxes
                                                       S1,
                                                       02,
                                                      S2
• all_covers(Dims,OIDS) \stackrel{\mathrm{def}}{=}
          \forall \texttt{O1} \in \texttt{objects}(\texttt{OIDS})
            \forall 02 \in \mathtt{objects}(\mathtt{OIDS})
                  01.oid < \Rightarrow
                  02.oid
                                                            Dims,
                covers_objects
• all_covers(DIMENSIONS, OIDS)
```