

AL: An Adaptive Learning Support System for Argumentation Skills

Christina Niklaus Matthias Cetto Siegfried Handschuh

Thiemo Wambsganss Matthias Söllner Jan Marco Leimeister

Motivation

- Nowadays, information is readily available.
 - -> People need to develop skills other than the replication of information.
- More important: higher-order thinking skills, e.g. the skill of arguing in a structured, reflective and well-formed way

- To develop such skills, it is of great importance for the individual student to receive continuous feedback throughout their learning journey ("formative feedback").
- challenge: How to provide formative feedback in large-scale lectures effectively?
 - -> leverage Argument Mining techniques to design and built **AL**, an adaptive learning tool that provides students with feedback on the argumentation structure during the writing process

Workflow

Goal: Improve the users' argumentation skills by providing immediate, individual feedback using a ML-based analysis of their argumentation structure in written texts.

Development Approach

- top-down:
 - o literature analysis in the fields of educational technology and pedagogical theories
 - 30 interviews with students to derive user requirements for a first design of AL:
 - experience with technology-based learning systems
 - perception of existing learning systems in use
 - importance of skills in university education
 - requirements for a system that supports learning meta cognition skills
 - requirements for a system that supports learning how to argue
- bottom-up:
 - o **low-fidelity prototypes to test design hypotheses** with 49 users
 - 3 paper prototypes
 - 2 digital mockups
- result: **7 design principles** on how to build an adaptive argumentation feedback tool

Paper Protoype

Design Principles

	Design Principle
1)	Provide the learning tool with a learning progress indicator in order
	for users to actively monitor their past and current learning devel-
	opment to convey a goal and purpose of learning for a long-term
	learning.
2)	Provide the learning tool as a web-based application with a respon-
	sive, lean and intuitive UX in order for users to intuitively and
	enjoyably use the tool.
3)	Provide the learning tool with a learning dashboard using gamifica-
	tion elements and a choice of different granularity levels in order for
	users to receive the right amount of needed feedback information.
4)	Provide the learning tool with a function that displays the theory of
	argumentation before arguing and incorporate it into the feedback
	in order to have an orientation in learning.
5)	Provide the learning tool with visual argumentation and discourse
	feedback on written or spoken information in order for users to
	apply argumentation and receive instant and individual feedback at
	any time and any place.
6)	Provide the learning tool with argumentation feedback along best
	practices, examples based on theory and/or <i>how-to-argue</i> guidelines
	and do not compare argumentation.
7)	Provide the learning tool with adaptive and individual feedback in
	order for users to receive useful and specific feedback on their given
	argumentation.

User Interaction of AL

- <u>F1:</u> Text editor for writing argumentative texts
- <u>F2:</u> Instant feedback on the given input, using highlighted text spans for identified claims and premises
- <u>F3:</u> Word Count

20.01.2020

- <u>F4:</u> Three summarizing scores wrt. Readability, Coherence & Persuasiveness
- <u>F5:</u> Visual graph-based representation of the argumentation structure of the input text
- <u>F6:</u> Detailed view of the discourse of individual arguments
- <u>F7:</u> Learning progress bar that tracks the past and current learning development of the user

Your argumentation improved by 24 % compared to the last exercise

Feedback Algorithm of AL

- build a corpus of persuasive essays in German
- train a model for
 - identifying argument components
 - identifying argument relations

Corpus of Persuasive Essays

- 1,000 student-generated peer reviews written in German
- collected in business innovation lecture, where students develop and present a new business model for which they receive feedback reviews
- a student from the same course elaborates on the strengths and weaknesses of a business model and gives persuasive recommendations on what could be improved
- annotated by 3 native German speakers
 - o components: claims and premises
 - relations: support and attack

Das Geschäftsmodell von Nutreno erscheint mir sehr gut durchdacht. Mir gefällt, dass der Autor sich auf bereits bestehende Technologien beruft, also z.B. dass in der DiabetesForschung bereits ähnliche verwendet werden. ... Dies trifft meiner Meinung nach genau das Ziel einer WellBeingLösung. ... Auch macht das RevenueModell in diesem Geschäftsmodell Sinn, durch das Freemium Modell werden die Kunden zunächst neugierig gemacht und danach bei Gefallen dazu verleitet, auf das Premium Modell Kritisch stehe ich noch den umzusteigen. Sensorengegenüber. Kann man die so herstellen, dass sie bezahlbar sind und nicht die Kosten sprengen? Das PremiumModell sollte ja trotzdem bezahlbar sein. Weiter würde ich in der zweiten Version gross darauf hinweisen, dass die Daten sensibel behandelt werden und an niemanden weitergegeben werden. ...

Corpus Analysis

Statistics:

- 1000 documents (feedback from students on business models)
- 20K sentences
- o 20 sentences per document on average
- o 270 tokens per document on average

	%	Multi-π	Krippendorff's α	Krippendorff's $\alpha_{\rm U}$
Claim	0.7053	0.3423	0.3424	0.4379
Premise	0.7048	0.3738	0.3739	0.3812

Argument Component Identification

- sentence-level multi-class classification task (claim, premise, non-argumentative)
- stratified split of the data set into 80% training set and 20% test set
- several classifiers (SVM, Logistic Regression, Random Forest, Multinomial NB, Gaussian NB, Nearest Neighbor)

- best results: **SVM** (accuracy of 65.4%)
- visualization: highlighting components with different colors

Group	Feature	Description		
Lexical	Unigrams	Binary and lemmatized unigrams of the component and its preceding tokens		
	Dependency tuples	Lemmatized dependency tuples (2k most frequent)		
Structural	Token statistics Component position	Number of tokens of component, covering para- graph and covering sentence; number of tokens pre- ceding and following the component in its sentence ratio of component and sentence tokens Component is first or last in paragraph; componen present in introduction or conclusion*; Relative posi- tion in paragraph; number of preceding and follow- ing components in paragraph		
Indicators	Type indicators	Forward, backward, thesis or rebuttal indicators present in the component or its preceding tokens		
	First-person indicators	"I", "me", "my", "mine", or "myself" present in component or its preceding tokens		
Contextual	Type indicators in context	Forward, backward, thesis, or rebuttal indicators preceding or following the component in its paragraph		
	Shared phrases*	Shared noun phrases or verb phrases with the intro- duction or conclusion (number and binary)		
Syntactic	Subclauses Depth of parse tree Tense of main verb Modal verbs POS distribution	Number of subclauses in the covering sentence Depth of the parse tree of the covering sentence Tense of the main verb of the component Modal verbs present in the component POS distribution of the component		
Probability	Type probability	Conditional probability of the component being major claim, claim or premise, given its precedi tokens		
Discourse	Discourse Triples	PDTB-discourse relations overlapping with the crent component		
Embedding	Combined word embed- dings	Sum of the word vectors of each word of the component and its preceding tokens		

Argument Relation Identification

 binary classification task of argument component pairs (support, non-support)

- best results: **SVM** (accuracy of 72.1%)
- visualization:
 - directed graph where a claim is connected with its supporting premises
 - unsupported claims are highlighted

Group	Feature	Description	
Lexical	Unigrams	Binary lemmatized unigrams of the source and target components including preceding tokens (500 most fre- quent)	
Syntactic	Part-of-speech Production rules	Binary POS features of source and target components Production rules extracted from the constituent parse tree (500 most frequent)	
Structural	Token statistics Component statistics Position features	Number of tokens of source and target Number of components between source and target; num ber of components in covering paragraph Source and target present in same sentence; target preser before source; source and target are first or last componer in paragraph; pair present in introduction or conclusion	
Indicator	Indicator source/target Indicators between Indicators context	Indicator type present in source or target Indicator type present between source or target Indicator type follows or precedes source or target in the covering paragraph of the pair	
Discourse	Discourse Triples	Binary discourse triples of source and target	
РМІ	Pointwise mutual information	Ratio of tokens positively or negatively associated wit incoming or outgoing relations; Presence of words nega- tively or positively associated with incoming or outgoin relations	
ShNo	Shared nouns	Shared nouns between source and target components (number and binary)	

Summary Scores

- Readability: How readable is the text based on the Flesch Reading Ease score?
- **Coherence**: How large is the proportion of sentences that are connected via discourse markers?
- **Persuasiveness**: How large is the proportion of claims that are supported by premises as compared to unsupported claims?

Evaluation

- RQ1: Do students perceive AL to be useful and easy to use, and would they continue to use it in the future?
 - perceived usefulness
 - intention to use
 - o ease of use

- RQ2: How effective is AL with helping users to write more persuasive texts compared to the traditional discussion scripting approach?
 - o comparison of *formal quality of argumentation* and *perceived quality of argumentation* between AL (treatment group) and a discussion scripting approach (control group)

Discussion Scripting Approach

supports the writing process of users with **input masks**

Experimental Setup

• hypothesis: individual feedback on student's argumentation will help them to write more convincing texts

• study design: laboratory experiment in which participants were asked to write peer feedback based on a given essay ("Does TV make students aggressive?")

- participants: **54 students** from our university
 - 24 participants in treatment group (AL)
 - o 30 participants in control group (discussion scripting approach)

Study Design and Procedure

• pre-test phase:

- personal innovativeness
- feedback seeking
- passive argumentation competency

writing phase:

 write a review about the argumentation of both parties (pro and con) concerning the weaknesses and strengths of their argumentation

post-test phase:

- perceived usefulness
- intention to use
- o ease of use

Argumentation Quality

- formal quality of argumentation
 - annotator distinguished between
 - unsupported claims
 - supported claims
 - limited claims
 - supported and limited claims
 - -> number of arguments

- perceived quality of argumentation:
 - o subjectively judge how persuasive the argumentation is on a Likert scale from 1 to 5 points (2 annotators)

Results: Technology Acceptance

Group	Intention to	Perceived	Perceived
	use	usefulness	ease of use
Mean AL	2.33	2.52	2.17
Mean reference tool	3.5	3.28	2.84
SD AL	0.59	0.58	0.65
SD reference tool	1.14	1.12	1.08
p-value	< 0.001	0.006	0.012

Results: Argumentation Quality

Results on formal quality of argumentation

Results on perceived quality of argumentation

Qualitative User Feedback

- fast and direct feedback
- + graph-like visualization
- + summary scores
- accuracy

Group	Feature
On user interaction	"Easy handling. Especially marked texts with
	colour and percentage values. Fast reaction of
	the tool. Motivated to write."
On writing support	"I was convinced by the mind map argumentation
	graphics. If you write longer texts, you can get
	lost quickly. With this tool you can see how the
	sentences and argumentation stand together."
On visualization	"It was positive that the tool presented which
	premises support which of my claims and which
	arguments hung, so to speak, freely in the air."
On graphics and	"I liked that the tool used colors to highlight the
colour	various elements and graphics to represent my text.
	Furthermore, the percentages of how my text was
	written were helpful and it is exciting to see how
	the tool judges my text."
On speed of the tool	"Very fast and instant feedback."
Improvements on	"I'm not sure how well this algorithm really under-
feedback accuracy	stands what I'm writing."
Improvements on	"Better introduction would be good, you had to try
user on-boarding	something before you knew how to do it. Maybe a
	short YouTube tutorial at the beginning, then you
	know more about what is important."
Improvements on	"There are only three evaluation points (readability,
the summarizing	coherence and persuasiveness) and it is unclear
scores	how relevant the individual factors are."

Discussion and Future Work

- improve accuracy of feedback algorithm
- make summary scores more transparent and understandable for the users
- **longitudinal study**: field experiment to evaluate the long-term impact of individual and adaptive feedback

Conclusion

- Participants who used AL wrote formally more argumentative texts.
- Perceived persuasiveness significantly higher.
- High perceived usefulness and intention to use.

 -> AL helps students to write more structured texts and motivates them to write more persuasive texts in peer learning settings.

AL: An Adaptive Learning Support System for Argumentation Skills

Thiemo Wambsganss

University of St.Gallen St.Gallen, Switzerland thiemo.wambsganss@unisg.ch

Matthias Söllner

University of Kassel Kassel, Germany University of St.Gallen St.Gallen, Switzerland soellner@uni-kassel.de

Christina Niklaus

University of St.Gallen St.Gallen, Switzerland christina.niklaus@unisg.ch

Siegfried Handschuh

University of St.Gallen St.Gallen, Switzerland University of Passau Passau, Germany siegfried.handschuh@unisg.ch

Matthias Cetto

University of St.Gallen St.Gallen, Switzerland matthias.cetto@unisg.ch

Jan Marco Leimeister

University of St.Gallen St.Gallen, Switzerland University of Kassel Kassel, Germany janmarco.leimeister@unisg.ch

ABSTRACT

Recent advances in Natural Language Processing (NLP) bear the opportunity to analyze the argumentation quality of texts. This can be leveraged to provide students with individual and adaptive feedback in their personal learning journey. To test if individual feedback on students' argumentation will help them to write more convincing texts, we developed AL, an adaptive IT tool that provides students with feedback on the argumentation structure of a given text. We compared AL with 54 students to a proven argumentation support tool. We found students using AL wrote more convincing texts with better formal quality of argumentation compared to the ones using the traditional approach. The measured technology acceptance provided promising results to use this tool as a feedback application in different learning settings. The results suggest that learning applications based on NLP may have a beneficial use for developing better writing and reasoning for students in traditional learning settings.

