The group G is isomorphic to the group labelled by [36, 4] in the Small Groups library. Ordinary character table of $G \cong D36$:

	1a	2a	2b	9a	3a	2c	18 <i>a</i>	6a	9b	18b	9c	18c
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	1	-1	-1	1	-1	1	-1
χ_3	1	-1	1	1	1	-1	1	1	1	1	1	1
χ_4	1	1	-1	1	1	-1	-1	-1	1	-1	1	-1
χ_5	2	0	2	-1	2	0	-1	2	-1	-1	-1	-1
χ_6	2	0	-2	-1	2	0	1	-2	-1	1	-1	1
χ_7	2	0	2	$E(9)^2 + E(9)^7$	-1	0	$E(9)^2 + E(9)^7$	-1	$E(9)^4 + E(9)^5$	$E(9)^4 + E(9)^5$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$
χ_8	2	0	2	$E(9)^4 + E(9)^5$	-1	0	$E(9)^4 + E(9)^5$	-1	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	$E(9)^2 + E(9)^7$	$E(9)^2 + E(9)^7$
χ_9	2	0	2	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	-1	0	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	-1	$E(9)^2 + E(9)^7$	$E(9)^2 + E(9)^7$	$E(9)^4 + E(9)^5$	$E(9)^4 + E(9)^5$
χ_{10}	2	0	-2	$E(9)^2 + E(9)^7$	-1	0	$-E(9)^2 - E(9)^7$	1	$E(9)^4 + E(9)^5$	$-E(9)^4 - E(9)^5$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$
χ_{11}	2	0	-2	$E(9)^4 + E(9)^5$	-1	0	$-E(9)^4 - E(9)^5$	1	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	$E(9)^{2} + E(9)^{4} + E(9)^{5} + E(9)^{7}$	$E(9)^2 + E(9)^7$	$-E(9)^2 - E(9)^7$
χ_{12}	2	0	-2	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	-1	0	$E(9)^{2} + E(9)^{4} + E(9)^{5} + E(9)^{7}$	1	$E(9)^2 + E(9)^7$	$-E(9)^2 - E(9)^7$	$E(9)^4 + E(9)^5$	$-E(9)^4 - E(9)^5$

Trivial source character table of $G \cong D36$ at $p = 2$:											
Normalisers N_i		N_1						N_2		N_3 N_4 N_5	
p-subgroups of G up to conjugacy in G				P_1					P_2		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Representatives $n_j \in N_i$	1 <i>a</i>	9a	3a	9b	9c	1 <i>a</i>	9c	3a	9a	9b	1a 1a 1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	χ_{12} 4	4	4	4	4	0	0	0	0	0	0 0 0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$\chi_{12} \mid 4$	-2	4	-2	-2	0	0	0	0	0	0 0 0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0$	$\chi_{12} \mid 4$	$2*E(9)^2 + 2*E(9)^7$	-2	$2*E(9)^4 + 2*E(9)^5$	$-2 * E(9)^2 - 2 * E(9)^4 - 2 * E(9)^5 - 2 * E(9)^7$	0	0	0	0	0	0 0 0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_3 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0$	$\chi_{12} \mid 4$	$2*E(9)^4 + 2*E(9)^5$	-2 -2	$2 * E(9)^2 - 2 * E(9)^4 - 2 * E(9)^5 - 2 * E(9)^7$	$2*E(9)^2 + 2*E(9)^7$	0	0	0	0	0	0 0 0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot$	$\chi_{12} \mid 4$	$-2 * E(9)^2 - 2 * E(9)^4 - 2 * E(9)^5 - 2 * E(9)^7$	-2	$2*E(9)^2 + 2*E(9)^7$	$2*E(9)^4 + 2*E(9)^5$	0	0	0	0	0	0 0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	χ_{12} 2	2	2	2	2	2	2	2	2	2	0 0 0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot $	$\chi_{12} \mid 2$	-1	2	-1	-1	2	-1	2	-1	-1	$\left \begin{array}{c c}0&0&0\\0&0&0\end{array}\right $
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$\chi_{12} \mid 2$	$E(9)^2 + E(9)^7$	-1	$E(9)^4 + E(9)^5$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	2	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	-1	$E(9)^2 + E(9)^7$	$E(9)^4 + E(9)^5$	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$\chi_{12} \mid 2$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	-1	$E(9)^2 + E(9)^7$	$E(9)^4 + E(9)^5$	2	$E(9)^4 + E(9)^5$		$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	$E(9)^2 + E(9)^7$	
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0$	χ_{12} 2	$E(9)^4 + E(9)^5$	-1	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	$E(9)^2 + E(9)^7$	2	$E(9)^2 + E(9)^7$	-1	$E(9)^4 + E(9)^5$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	χ_{12} 2	2	2	2	2	0	0	0	0	0	2 0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot $	χ_{12} 2	2	2	2	2	0	0	0	0	0	0 2 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	χ_{12} 1	1	1	1	1	1	1	1	1	1	1 1 1

 $P_2 = Group([(1,3)(2,6)(4,9)(5,10)(7,14)(8,15)(11,19)(12,20)(13,21)(16,24)(17,25)(18,26)(22,29)(23,30)(27,32)(28,33)(31,35)(34,36)]) \cong \mathbb{C}_2$

 $P_3 = Group([(1,2)(3,6)(4,27)(5,18)(7,22)(8,13)(9,32)(10,26)(11,17)(12,16)(14,29)(15,21)(19,25)(20,24)(23,34)(28,31)(30,36)(33,35)]) \cong \mathbb{C}_2$

 $P_4 = Group([(1,6)(2,3)(4,32)(5,26)(7,29)(8,21)(9,27)(10,18)(11,25)(12,24)(13,15)(14,22)(16,20)(17,19)(23,36)(28,35)(30,34)(31,33)]) \cong \mathbb{C}_2$

 $N_1 = Group([(1,2)(3,6)(4,27)(5,18)(7,22)(8,13)(9,32)(10,26)(11,17)(12,16)(14,29)(15,21)(19,25)(20,24)(23,34)(28,31)(30,36)(33,35), \\ (1,3)(2,6)(4,27)(5,18)(2,29)(23,30)(27,32)(28,33)(31,35)(34,36), \\ (1,4)(1,2,23)(6,15,26)(7,17,28)(9,20,30)(11,22,31)(14,25,33)(16,27,34)(19,29,35)(24,32,36)]) \cong D36$ $N_2 = Group([(1,2)(3,6)(4,27)(5,18)(7,22)(8,13)(9,32)(10,26)(11,17)(12,16)(14,29)(15,21)(19,25)(20,24)(23,34)(28,31)(30,36)(33,35), \\ (1,3)(2,6)(4,27)(5,18)(2,29)(23,30)(27,32)(28,33)(31,35)(34,36), \\ (1,4)(1,23)(6,15,26)(7,17,28)(9,20,30)(11,22,31)(14,25,33)(16,27,34)(19,29,35)(24,32,36)]) \cong D36$