

LINEAR PROGRAMMING

Zhiyuan Wang 12032878 Supervisor: Ke Tang

CONTENT

- 1. Greedy Set Cover Algorithm has best result
- 2. Price Method Algorithm has best result
- 3. LP-based Algorithm has best result

LINEAR PROGRAMMING SOFTWARE

- The software which I use is Mathematica. It is a numerical calculation software published by the Wolfram company.
- In all of the example follow, I will use Mathematica to verify the result that I calculated by Python.

GREEDY SET COVER ALGORITHM HAS BEST RESULT

Result From Greedy Set Cover Cost is 19

Independent!

Best Result From Price Method
The min cost is 27

Result From LP-based
Cost is 47

LP RESULT FROM MATHEMATICA

In[36]:= **g**

PRICE METHOD ALGORITHM HAS BEST RESULT

The min cost is 152

Southern University of Science and Technology

Cost is 178

Cost is 249

LP RESULT FROM MATHEMATICA

In[84]:= **g**


```
ln[105] = SetProperty[%100, VertexLabels \rightarrow Table[i \rightarrow x[[i]], {i, nodeNum}]]
  Out[105]=
     In[102]:= edges = Table[{i[1], i[2]}, {i, EdgeList[g]}];
                                                                                                                                                                                                                                     边的列表
                                          A =
                                                       Sparse Array [\{Join[Table[\{i, edges[[i]\}[[1]]\}, \{i, Length[edges]\}\}, Table[\{i, edges[[i]\}[[2]]\}, \{i, Length[edges]\}\}], Table[\{i, edges[[i]\}[[2]\}], \{i, Length[edges]\}], Table[\{i, edges[[i]\}[[2]\}], \{i, Length[edges]\}, \{i, Length[edges]\}, \{i, Length[edges]\}, \{i, Length[edges]\}, \{i, Length[edges], \{i, Length[edges]\}, \{i, Length[edges], \{i, Length[edges]\}, \{i, Length[edges], \{i,
                                                       稀疏数组
                                                                                                                                   连接 表格
                                                              {edgeNum, nodeNum}];
     ln[104] = x = LinearProgramming[weights, A, Table[1, {i, edgeNum}], Table[{0, 1}, {i, nodeNum}], Method <math>\rightarrow "Simplex"]
                                                                线性规划
Out[104]= \left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\}
```

GREEDY SET COVER ALGORITHM HAS BEST RESULT

Result From Greedy Set Cover Cost is 174

Best Result From Price Method
The min cost is 174

Result From LP-based
Cost is 139

LP RESULT FROM MATHEMATICA

In[114]:= **g**


```
ln[122]:= SetProperty[%121, VertexLabels \rightarrow Table[i \rightarrow x[[i]], {i, nodeNum}]]
      设置属性
                         顶点的标签
                                       表格
Out[122]=
      edges = Table[{i[1], i[2]}, {i, EdgeList[g]}];
             表格
                                      边的列表
       A =
         SparseArray[{Join[Table[{i, edges[[i]][[1]]}, {i, Length[edges]}], Table[{i, edges[[i]][[2]]}, {i, Length
         稀疏数组
                      连接 表格
                                                                               表格
          {edgeNum, nodeNum}];
In[113]:= x = LinearProgramming[weights, A, Table[1, {i, edgeNum}], Table[{0, 1}, {i, nodeNum}], Method → "Simplex"]
                                         表格
          线性规划
                                                                  表格
Out[113]= \{0, 0, 1, 0, 1, 1\}
```


THANK YOU! Q&A

