4

微分的應用

Copyright © Cengage Learning. All rights reserved.

微分與圖形變化的關係

導數f'對f的影響?

導數f'對函數f圖形的影響

我們可以觀察一個函數大致上的走向:

可以發現,在A到B以及C到D的區段,我們在函數圖形上做切線,其斜率均為正,也就是f'(x) > 0。

導數f'對函數f圖形的影響

而在 B 到 C 之間的區段,其切線斜率均為負,因而有 f'(x) < 0。

事實上我們有以下這樣的定理:

[定理] 遞增/遞減測試

- (a) 若在 (a,b) 上 f'(x) > 0 ,則 f 在 (a,b) 上為遞增
- (b) 若在 (a,b) 上 f'(x) < 0 , 則 f 在 (a,b) 上為遞減

這件事情可以從均值定理證明:

f(p) - f(q) = f'(r)(p - q), r 在 (p,q) 上某一點此時 f(p) - f(q) 的符號跟 f'(r) 相同。

範例一

判斷函數 $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ 分別在哪些地方遞增與遞減。

解:

先微分
$$f'(x) = 12x^3 - 12x^2 - 24x = 12x(x-2)(x+1)$$
。

因式分解後, f'(x) 的正負號由這三項 12x, x - 2, x + 1 來決定, 於是我們考慮以下不同區間:

區間	12 <i>x</i>	x-2	x + 1	f'(x)	f
x < -1	_	_	_	_	在 (-∞,-1) 上遞減
-1 < x < 0	_	_	+	+	在 (-1,0) 上遞增
0 < x < 2	+	_	+	s	在 (0,2) 上遞減
x > 2	+	+	+	+	在 (2,∞) 上遞增

範例一/解

cont'd

區間	12 <i>x</i>	x-2	x + 1	f'(x)	f
x < -1	_	_		_	在 (-∞,-1) 上遞減
-1 < x < 0	_	_	+	+	在 (-1,0) 上遞增
0 < x < 2	+	_	+	-	在 (0,2) 上遞減
x > 2	+	+	+	+	在 (2,∞) 上遞增

可與實際圖形比較:

導數f'對函數f圖形的影響

從圖二中可以觀察出 f(0) = 5 是一個局部極大值,同時 f 的值在 (-1,0) 為遞增,在 (0,2) 為遞減。

換句話說,其實我們會發現:當f'(x)從正號變為負號的同時,也就是最大值發生的地方。於是我們有下面的推論:

[一次導數檢驗法]

假設c為f的臨界點。

- (a) 若 f' 在 c 附近左側為正,右側為負,則 f 在 c 有局部極大值。
- (b) 若 f' 在 c 附近左側為負,右側為正,則 f 在 c 有局部極小值。
- (c) 若 f' 在 c 附近並未變號,則 f 在 c 並非極大或極小值。

導數f"對函數f圖形的影響

一次導數檢驗極值是函數「遞增/遞減測試」的一個結果。

我們可以用下面的圖來幫助記憶一次導數檢驗:

導數f'對函數f圖形的影響

以下是沒有極值發生的情況:

範例三

求以下函數在範圍內的極大與極小值

$$g(x) = x + 2 \sin x \qquad 0 \le x \le 2\pi$$

解:

先尋找g的臨界點,微分可得

$$g'(x) = 1 + 2\cos x$$

計算 g'(x) = 0 的點,即 $\cos(x) = -1/2$ 之時,在區間上滿足的點為 $2\pi/3$ 以及 $4\pi/3$ 。

範例三/解

討論 g'的正負,於是可以得到在下列區間遞增遞減的情況:

正間	$g'(x) = 1 + 2\cos x$	g
$0 < x < 2\pi/3$	+	在 (0,2π/3) 上遞增
$2\pi/3 < x < 4\pi/3$	_	在 (2π/3, 4π/3) 上遞減)
$4\pi/3 < x < 2\pi$	+	在 (4π/3,2 π) 上遞增

於是可得

$$g(2\pi/3) = \frac{2\pi}{3} + 2\sin\frac{2\pi}{3} \approx 3.83$$
 為局部極大值

$$g(4\pi/3) = \frac{4\pi}{3} + 2\sin\frac{4\pi}{3}$$
 ≈ 2.46 為局部極小值

範例三/解

下圖為 g(x) 的實際圖形,同時可以驗正剛剛的計算:

二次導數f"對函數f的影響

二次導數 f" 對函數 f 的影響

下圖五表示了定義在 (a,b) 上兩種不同的遞增函數,同樣連結 A, B 兩點。

二次導數f"對函數f的影響

下圖六劃出了前面兩個曲線上的幾條切線。可以觀察到: 左圖,向上彎曲,函數圖形的切線都在圖形的下方; 右圖,向下彎曲,函數圖形的切線都在圖形的上方。

二次導數 f" 對函數 f 的影響

我們做以下的定義:

[定義] 在區間 [a,b] 上,

- (1)若 f 的圖形均在切線上方,則稱 f 在 [a,b] 上凹口向上 (concave upward)。
- (2)若f的圖形在f的切線下方,稱f在[a,b]上凹口向下(concave down)。

下圖的 CD 表示凹口向下 concave down 的區段, CU 表示凹口向上 concave upward 的區段。

二次導數f"對函數f的影響

在凹口向上的圖形中,我們會發現切線的斜率也逐漸遞增。 在此例中,我們發現f'也是遞增。 若f'可微,則f"為正(非負)。

凹口向上的圖形

圖六(a)

二次導數 f" 對函數 f 的影響

同樣,在下圖這個例子中,切線斜率遞減。 因此f'為遞減。若f'可微,則f"為負(非正)。

二次導數 f" 對函數 f 的影響

我們有以下的凹向檢驗法 (concavity test):

[函數凹向檢驗法]

```
(1)若在區間 [a,b] 上, f''(x) > 0 ,則在 [a,b] 上 f 為凹口向上。 (2)若在區間 [a,b] 上, f''(x) < 0 ,則在 [a,b] 上 f 為凹口向下。
```

範例四

下圖八是一個地區內養蜂房中的蜜蜂數量族群數。

試觀察: (a) 族群變化率的增減,以及 (b) 何時有最高的變化率。試求 (c) 在哪些區間上族群數量的圖形凹口為向上及向下。

範例四/解

觀察當t增加時曲線斜率的變化,可以知道:一開始增加的 速率較為緩慢,爾後斜率漸漸增強。至第十二週時,達到最 大的速率。而在此後增加速率便逐漸遞減。

最後當族群數量大概到 75000 左右時,速率漸漸減少至 0。

在第十二週是一個臨界點,十二週前圖形為凹口向上,之後則為凹口向下。

二次導數 f" 對函數 f 的影響

我們可以針對前述範例中,第十二週這個轉變,定義凹口轉向的臨界點:

[定義] 函數圖形 y = f(x) 上一點 P 被稱為反曲點 (inflection point) ,表示 f 在 P 點附近為連續,且 f 的函數圖形在此點前後有凹口轉向的變化。

另外,回顧前面的極值判別法:如果可以保證凹口沒有變化,則處在凹口向上區段的臨界點,為極小值;凹口向下區段的臨界點,為極大值。

[二次導數判別法] 若 f" 在 c 附近連續,則

- (1)若 f'(c) = 0 且 f''(c) > 0 ,則 f 在 c 有局部極小值。
- (2)若 f'(c) = 0 且 f''(c) < 0 ,則 f 在 c 有局部極大值。

範例六

討論曲線 $y = x^4 - 4x^3$ 的趨勢,凹向,以及局部的極大、極小值,並利用此資訊刻劃出此函數圖形。

解:

考慮函數 $f(x) = x^4 - 4x^3$,計算微分:

$$f'(x) = 4x^3 - 12x^2 = 4x^2(x-3)$$

$$f''(x) = 12x^2 - 24x = 12x(x-2)$$

其導數為 0 的臨界點為 x = 0 以及 x = 3 ,當 x > 3 時函數為遞增,當 x < 3 時函數為遞減。

範例六/解

我們利用二次導數判別法,代入 x = 0 及 x = 3:

$$f''(0) = 0$$

$$f''(3) = 36 > 0$$

於是 f'(3) = 0 且 f''(3) > 0 ,可以推得 f(3) = -27 是一個局部極小值。

但另一方面 f''(0) = 0,二次導數判別沒有辦法使用。(可能是極大值、極小值或者都不是)。

範例六/解

但由一次導數檢定, f 只在 x = 3 前後斜率有變號,而在 x = 0 前後斜率均為負數,因此可知 f(x) 在 x = 0 並非極大值或極小值。

另一方面,可能的反曲點: f''(x) = 0 在 x = 0 或 x = 2 時,我們可以判斷在這些點之間的符號:

區間	f''(x) = 12x(x-2)	凹向
$(-\infty, 0)$	+	凹向上
(0, 2)	_	凹向下
(2, ∞)	+	凹向上

由上表可以知道,在 x = 0 與 x = 2 都有凹向的改變。 於是圖形上點 (0,0) 是反曲點,函數圖形在這點從凹向上轉 變為凹向下。

而 (2, -16) 也是反曲點,函數圖形在此點從凹向下轉變成凹向上。

在與 x = 3 處為局部極小值一起考慮,我們可以大概描繪出右圖的函數圖形。

二次導數f"對函數f的影響

備註:

- (1) 再次提醒二次導數判別法不能用在 f"(c) = 0 的地方,這裡可能出現極大或極小或者反曲點。
- (2) 有些一次導數的臨界點上,二次導數可能不存在,於是如果要判別極值,還是只能從切線斜率的變化來判斷。有些情況甚至計算二次導數比較困難,使用一次導數判別較為簡單。

範例七

描繪出函數 $f(x) = x^{2/3}(6-x)^{1/3}$ 的圖形。

解:

首先計算出此函數的一次導數與二次導數:

$$f'(x) = \frac{4 - x}{x^{1/3}(6 - x)^{2/3}} \qquad f''(x) = \frac{-8}{x^{4/3}(6 - x)^{5/3}}$$

判別一次導數的臨界點:f'(x) = 0 的點有 x = 4 ,而 f'(x) 不存在的點有 x = 0 以及 x = 6 。

區間	4-x	$x^{1/3}$	$(6-x)^{2/3}$	f'(x)	f
x < 0	+	_	+	_	在 (-∞,0) 為遞減
0 < x < 4	+	+	+	+	在 (0,4) 為遞增
4 < x < 6	_	+	+	_	在 (4,6) 為遞減
x > 6	_	+	+	_	在 (6,∞) 為遞減

範例七/解

從上圖表我們可以看出,一次導數在 x = 0, x = 4 有變號。

在 x = 0 時由負轉正,因此 f(0) = 0 是局部極小值。

在 x=4 時由正轉負,因此 $f(4)=2^{5/3}$ 是局部極大值。

但在 x = 6 附近的一次導數沒有符號的改變,因此 f(6) 並非極大或極小。

範例七/解

觀察二次導數的表示式,注意到 $x^{4/3} \ge 0$ 其實是恆正,因此決定正負號的項跟 (6-x) 有關,因此當 x < 0 時, f''(x) < 0;而當 x > 6 時, f''(x) > 0。

因此 f(x) 在區間 $(-\infty, 0)$ 及 (0, 6) 為凹口向下,而在區間 $(6, \infty)$,為凹口向下。

實際有改變凹向的反曲點在x = 6,為(6, 0)。

範例七/解

大致上的圖形繪製如下:

圖十二

注意到在點 (0,0) 與 (6,0) 時,一次導數並不存在,其切線實際上是鉛質切線。