INTEGRATED CIRCUITS

DATA SHEET

74ALS373/74ALS374 Latch/flip—flop

Product specification IC05 Data Handbook

Latch/flip-flop

74ALS373/74ALS374

74ALS373 Octal transparent latch (3-State) 74ALS374 Octal D flip-flop (3-State)

FEATURES

- 8-bit transparent latch 74ALS373
- 8-bit positive edge triggered register 74ALS374
- 3-State output buffers
- Common 3-State output register
- Independent register and 3-State buffer operation

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74ALS373	6.0ns	14mA

TYPE	TYPICAL f _{MAX}	TYPICAL SUPPLY CURRENT (TOTAL)
74ALS374	50MHz	17mA

ORDERING INFORMATION

	ORDER CODE	DRAWING NUMBER	
DESCRIPTION	COMMERCIAL RANGE V_{CC} = 5V $\pm 10\%$, T_{amb} = 0°C to +70°C		
20-pin plastic DIP	74ALS373N, 74ALS374N	SOT146-1	
20-pin plastic SOL	74ALS373D, 74ALS374D	SOT163-1	
20-pin plastic SSOP Type II	74ALS373DB, 74ALS374DB	SOT339-1	

DESCRIPTION

The 74ALS373 is an octal transparent latch coupled to eight 3-State output devices. The two sections of the device are controlled independently by enable (E) and output enable (OE) control gates.

The data on the D inputs is transferred to the latch outputs when the enable (E) input is High. The latch remains transparent to the data input while E is High, and stores the data that is present one setup time before the High-to-Low enable transition.

The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors.

The active-Low output enable (OE) controls all eight 3-State buffers independent of the latch operation. When OE is Low, latched or transparent data appears at the output.

When OE is High, the outputs are in High impedance "off" state, which means they will neither drive nor load the bus.

The 74ALS374 is an 8-bit edge triggered register coupled to eight 3-State output buffers. The two sections of the device are controlled independently by clock (CP) and output enable (OE) control gates.

The register is fully edge triggered. The state of the D input, one setup time before the Low-to-High clock transition is transferred to the corresponding flip-flop's Q output.

The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors.

The active-Low output enable (OE) controls all eight 3-State buffers independent of the register operation. When OE is Low, the data in the register appears at the outputs. When OE is High, the outputs are in High impedance "off" state, which means they will neither drive nor load the bus.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74ALS (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
D0 – D7	Data inputs	1.0/1.0	20μA/0.1mA
E (74ALS373)	Enable input (active-High)	1.0/1.0	20μA/0.1mA
ŌĒ	Output enable inputs (active-Low)	1.0/1.0	20μA/0.1mA
CP (74ALS374)	74ALS374) Clock pulse input (active rising edge)		20μA/0.1mA
Q0 – Q7	3-State outputs	130/240	2.6mA/24mA

NOTE: One (1.0) ALS unit load is defined as: 20μA in the High state and 0.1mA in the Low state.

Latch/flip-flop

74ALS373/74ALS374

PIN CONFIGURATION - 74ALS373

PIN CONFIGURATION - 74ALS374

LOGIC SYMBOL - 74ALS373

LOGIC SYMBOL - 74ALS374

IEC/IEEE SYMBOL - 74ALS373

IEC/IEEE SYMBOL - 74ALS374

Latch/flip-flop

74ALS373/74ALS374

LOGIC DIAGRAM - 74ALS373

FUNCTION TABLE - 74ALS373

	INPUTS		INTERNAL REGISTER OUTPUTS		OPERATING MODE
ŌĒ	E	Dn	INTERNAL REGISTER	Q0 – Q7	OPERATING MODE
L	Н	L	L	L	Enable and read register
L	Н	Н	Н	Н	Enable and read register
L	\downarrow	I	L	L	Lateb and read register
L	\	h	Н	Н	Latch and read register
L	L	Х	NC	NC	Hold
Н	L	Х	NC	Z	Disable cutnute
Н	Н	Dn	Dn	Z	Disable outputs

H = High-voltage level

High state must be present one setup time before the High-to-Low enable transition

Low-voltage level

Low state must be present one setup time before the High-to-Low enable transition

NC= No change

X = Don't care Z = High imped ↓ = High-to-Lov

High impedance "off" state

High-to-Low enable transition

Latch/flip-flop

74ALS373/74ALS374

LOGIC DIAGRAM - 74ALS374

FUNCTION TABLE - 74ALS374

	INPUTS		INTERNAL REGISTER	OUTPUTS	OPERATING MODE
ŌĒ	СР	Dn	INTERNAL REGISTER	Q0 – Q7	OPERATING MODE
L	1	I	L	L	Load and road register
L	1	h	Н	Н	Load and read register
L	1	Х	NC	NC	Hold
Н	1	Х	NC	Z	Disable autnute
Н	↑	Dn	Dn	Z	Disable outputs

High-voltage level

High state must be present one setup time before the Low-to-High clock transition h

Low-voltage level

Low state must be present one setup time before the Low-to-High clock transition

NC= No change X = Don't care

Z ↑ = High impedance "off" state

Low-to-High clock transition

Not Low-to-High clock transition

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	-0.5 to +7.0	V
V _{IN}	Input voltage	-0.5 to +7.0	V
I _{IN}	Input current	-30 to +5	mA
V _{OUT}	Voltage applied to output in High output state	−0.5 to V _{CC}	V
I _{OUT}	Current applied to output in Low output state	48	mA
T _{amb}	Operating free-air temperature range	0 to +70	°C
T _{stg}	Storage temperature range	-65 to +150	°C

Latch/flip-flop

74ALS373/74ALS374

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			
STWIBOL			NOM	MAX	UNIT	
V _{CC}	Supply voltage	4.5	5.0	5.5	V	
V _{IH}	High-level input voltage	2.0			V	
V _{IL}	Low-level input voltage			0.8	V	
I _{IK}	Input clamp current			-18	mA	
I _{OH}	High-level output current			-2.6	mA	
I _{OL}	Low-level output current			24	mA	
T _{amb}	Operating free-air temperature range	0		+70	°C	

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

CVMDOL	PARAMETER		TEST CONDITIONS ¹		LIMITS			LIAUT	
SYMBOL					MIN	TYP ²	MAX	UNIT	
V			$V_{CC} = \pm 10\%, V_{IL} = MAX,$	$I_{OH} = -0.4$ mA	V _{CC} – 2			V	
V _{OH}	High-level output voltag	ge		V _{IH} = MIN	I _{OH} = MAX	2.4	3.2		V
V	Low-level output voltage	10		V _{CC} = MIN, V _{IL} = MAX,	I _{OL} = 12mA		0.25	0.40	V
V _{OL}	Low-level output voltag	j e		$V_{IH} = MIN$	I _{OL} = 24mA		0.35	0.50	V
V _{IK}	Input clamp voltage			$V_{CC} = MIN, I_I = I_{IK}$			-0.73	-1.2	V
I _I	Input current at maxim	um input volta	ige	$V_{CC} = MAX, V_I = 7.0V$				0.1	mA
I _{IH}	High-level input curren	t		$V_{CC} = MAX, V_I = 2.7V$				20	μΑ
	Low-level input	74ALS3	373	$V_{CC} = MAX, V_1 = 0.4V$				-0.1	mA
I _{IL}	current	74ALS374		VCC - IVIAA, V = 0.4V				-0.2	mA
I _{OZH}	Off-state output current, High-level voltage applied			$V_{CC} = MAX, V_I = 2.7V$				20	μΑ
I _{OZL}		Off-state output current, Low-level voltage applied						-20	μΑ
ΙO	Output current ³			$V_{CC} = MAX, V_O = 2.25V$		-30		-112	mA
			I _{CCH}				7	16	mA
		74ALS373	I _{CCL}	$V_{CC} = MAX$			14	25	mA
	Supply current (total)		I _{CCZ}				17	27	mA
Icc	Supply current (total)	ı ⊢	Іссн		<u> </u>		11	19	mA
			I _{CCL}	V _{CC} = MAX			19	29	mA
	I _{CCZ}		I _{CCZ}				20	31	mA

- For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
 All typical values are at V_{CC} = 5V, T_{amb} = 25°C.
 The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}.

Latch/flip-flop

74ALS373/74ALS374

AC ELECTRICAL CHARACTERISTICS

				LIM	ITS	
SYMBOL	PARAMETER		TEST CONDITION	T _{amb} = 0°C V _{CC} = +5. C _L = 50pF,	$0V \pm 10\%$	UNIT
				MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay Dn to Qn		Waveform 3	2.0 2.0	12.0 14.0	ns
t _{PLH} t _{PHL}	Propagation delay E to Qn	74ALS373	Waveform 2	3.0 3.0	14.0 14.0	ns
t _{PZH} t _{PZL}	Output enable time to High or Low level		Waveform 6 Waveform 7	2.0 3.0	14.0 14.0	ns
t _{PHZ} t _{PLZ}	Output disable time from High or Low level		Waveform 6 Waveform 7	2.0 2.0	10.0 12.0	ns
f _{MAX}	Maximum clock frequency		Waveform 1	50		MHz
t _{PLH} t _{PHL}	Propagation delay CP to Qn	74ALS374	Waveform 1	3.0 4.0	12.0 14.0	ns
t _{PZH} t _{PZL}	Output enable time to High or Low level		Waveform 6 Waveform 7	3.0 3.0	9.0 11.0	ns
t _{PHZ} t _{PLZ}	Output disable time from High or Low level		Waveform 6 Waveform 7	2.0 3.0	10.0 12.0	ns

AC SETUP REQUIREMENTS

				LIM	ITS	
SYMBOL	PARAMETER		TEST CONDITION	T _{amb} = 0°(V _{CC} = +5. C _L = 50pF,	C to +70°C 0V ± 10% R _L = 500Ω	UNIT
				MIN	MAX	1
t _{su} (H) t _{su} (L)	Setup time, High or Low Dn to E	74ALS373	Waveform 4	6.0 6.0		ns
t _h (H) t _h (L)	Hold time, High or Low Dn to E		Waveform 4	6.0 6.0		ns
t _w (H)	E Pulse width, High		Waveform 2	10.0		ns
t _{su} (H) t _{su} (L)	Setup time, High or Low Dn to CP	74ALS374	Waveform 5	6.0 6.0		ns
t _h (H) t _h (L)	Hold time, High or Low Dn to CP		Waveform 5	1.0 1.0		ns
t _w (H) t _w (L)	CP Pulse width, High or Low		Waveform 1	10.0 10.0		ns

Latch/flip-flop

74ALS373/74ALS374

AC WAVEFORMS

For all waveforms, $V_M = 1.3V$.

The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 1. Propagation Delay for Clock Input to Output, Clock Pulse Widths, and Maximum Clock Frequency

Waveform 2. Propagation Delay for Enable to Output and Enable Pulse Width

Waveform 3. Propagation Delay for Data to Output

Waveform 4. Data Setup Time and Hold Times

Waveform 5. Data Setup Time and Hold Times

Waveform 6. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 7. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

Latch/flip-flop

74ALS373/74ALS374

TEST CIRCUIT AND WAVEFORMS

Test Circuit for 3-State Outputs

SWITCH POSITION

TEST	SWITCH	
t_{PLZ}, t_{PZL}	closed	
All other	open	

DEFINITIONS:

R_L = Load resistor;

see AC electrical characteristics for value.
Load capacitance includes jig and probe capacitance;
see AC electrical characteristics for value.

Termination resistance should be equal to $Z_{\mbox{\scriptsize OUT}}$ of pulse generators.

Input Pulse Definition

Family	INPUT PULSE REQUIREMENTS								
ганну	Amplitude	V _M Rep.Rate		t _w	t _{TLH}	t _{THL}			
74ALS	3.5V	1.3V	1MHz	500ns	2.0ns	2.0ns			

SC00072

Latch/flip-flop

74ALS373/74ALS374

DIP20: plastic dual in-line package; 20 leads (300 mil)

SOT146-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	0.36 0.23	26.92 26.54	6.40 6.22	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.0
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.014 0.009	1.060 1.045	0.25 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT146-1			SC603			92-11-17 95-05-24

Latch/flip-flop

74ALS373/74ALS374

SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	O	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2.65	0.30 0.10	2.45 2.25	0.25	0.49 0.36	0.32 0.23	13.0 12.6	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.10	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.51 0.49	0.30 0.29	0.050	0.42 0.39	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	o°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

оит	LINE		EUROPEAN	ISSUE DATE				
VER	SION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT	163-1	075E04	MS-013AC				-92-11-17 95-01-24	

Latch/flip-flop

74ALS373/74ALS374

SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm

SOT339-1

DIMENSIONS (mm are the original dimensions)

mile to otto (initial of the original difference)																		
UNIT	A max.	Α1	A ₂	Α3	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2.0	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	7.4 7.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	0.9 0.5	8° 0°

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE		EUROPEAN	ISSUE DATE			
VERSION		JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT339-1		MO-150AE				93-09-08 95-02-04

Latch/flip-flop

74ALS373/74ALS374

	DEFINITIONS								
Data Sheet Identification Product Status		Definition							
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.							
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.							
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.							

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1997 All rights reserved. Printed in U.S.A.

Let's make things better.

