Segurança em dispositivos Android

Priscila P. Apocalypse Inatel - Eng. da Computação 2011

Dev e Sec - SIDI – Instituto Samsung (desde 2013)

Visão Geral

- Porque devemos entender o modelo de segurança?
- Como funcionam os aplicativos Android
- Ciclo de vida dos aplicativos
- Camada de aplicação Niveis de proteção
- Como podemos "hackear" um app
- Drozer: Demonstração
- Como se proteger

- Os celulares são bem atrativos para ataques:
 - Pessoas armazenam muitas informações pessoais nos celulares: email, contatos, fotos, etc...
 - Informações organizacionais também estão sendo armazenadas
 - Fácil de perder ou ser roubado
 - Aplicações que realizam compras/transações bancárias

 1 a cada 10 apps no Android é classificado como malicioso (Total de 24,4 milhões de amostras)

Aumento de 600% nos últimos anos

Brecha de teclado SwiftKey da Samsung deixa 600 milhões vulneráveis

A brecha estava no pacote de atualização de idiomas do SwiftKey (teclado préinstalado em smartphones Samsung)

SEGURANÇA

- Plataforma Open Source
- Você controla as permissões do seu dispositivo!!
- Facebook app ao lado ->

Arquitetura do SO Android

Como funcionam os aplicativos Android?

- Activity: Define as telas, interface visual
- Service: Processo em background
- Broadcast Receiver: Recebe "msgs" de outras aplicações
- Content Provider: Banco de dados relacional (ou arquivo) para compartilhamento de dados entre os apps
- Comunicação entre processos (IPC):

Intent: Um objeto de mensagem que pode ser usado para solicitar uma ação para outro componente do aplicativo e outros aplicativos

Como funcionam os aplicativos Android?

Fetch email

Ciclo de vida dos aplicativos

 Desenvolvidos para economizar bateria

Ciclo de vida dos aplicativos

Desenvolvidos para economizar bateria

Activities são chamadas,
 Tomando prioridades na "pilha"

Ciclo de vida dos aplicativos

- Desenvolvidos para economizar bateria
- Activities são chamadas,
 Tomando prioridades na "pilha"
- Activities em background podem ser encerradas a qualquer momento
- Aqui começam os problemas de DoS
- DoS = Denial Of Service

Camada de aplicação - Niveis de proteção

- As permissões são definidas em AndroidManifest.xml
- PackageManager e ActivityManager aplicam as permissões
- O usuário aceita estas permissões no ato da instalação e normalmente ninguém lê! ⊗ ⊗ ⊗
- Agora no Android M e N aparece uma notificação para o usuário, solicitando que aceite ou não

Niveis de proteção

NORMAL

```
android.permission.VIBRATE
com.android.alarm.permission.SET_ALARM
```

DANGEROUS

```
android.permission.SEND_SMS
android.permission.CALL_PHONE
```

SIGNATURE

```
android.permission.FORCE_STOP_PACKAGES
android.permission.INJECT_EVENTS
```

SIGNATURE OR SYSTEM

```
android.permission.ACCESS_USB
android.permission.SET_TIME
```

Como podemos "hackear" um app

- Existe um conjunto de ferramentas nos ajudam a validar e encontrar estas falhas de segurança
- Introdução ao Drozer
 https://labs.mwrinfosecurity.com/tools/drozer/
- Cliente/Servidor
- Permissão de acesso total a rede

Demonstração

Como se proteger?

Como se proteger?

- Atualizar sempre o Android
- Evitar fazer root (A não ser que saiba o que está fazendo) ⊗⊗⊗
- Utilizar criptografia
- Preferência para aplicativos que criptografam seus arquivos armazenados na memória interna
- Verificar as permissões antes de instalar um app
- Para o desenvolvedor: Utilizar todas as ferramentas disponíveis para validar e fazer testes de segurança durante o desenvolvimento

Obrigada!

Apresentação, instalação, links e apks em:

https://github.com/priscila225/SemanaDaComputacao

