Sammanfattning av EL1000 Reglerteknik, allmän kurs

Yashar Honarmandi yasharh@kth.se

7 oktober 2019

Sammanfattning

Detta är en sammanfattning av EL1000 Reglerteknik, allmän kurs.

Innehåll

1	Grundläggande koncept	1
2	Prestanda och prestandamått	1
3	Negativ återkoppling	2
4	Frekvensanalys	6
5	Kompensering	9
6	Tillståndsrepresentationer	10
7	Alternativa regulatorstrukturer	14

1 Grundläggande koncept

Syftet med reglerteknik Reglerteknik handlar om att kontrollera olika storheter, ofta betecknad y, i ett system mot något värde, ofta betecknad r. I tillägg till systemets egna beteende påverkas storheten vi vill reglera typiskt av en yttre störning v. Vi kan reglera systemet genom att tillföra en påverkan, ofta betecknad u.

Strategi För att förstå systemet, tar vi först fram en modell som beskriver det. Ur denna modellen fås typiskt en differentialekvation. Denna löser vi med Laplacetransform över tid.

Överförningsfungktionen För linjära system fås en lösning i Laplacerummet på formen Y(s) = G(s)U(s), där U är Laplacetransformen av u. Funktionen G är överförningsfunktionen. Notera att denna lösningsformen typiskt beror på att alla initialvärden är 0.

Poler Ett systems poler är rötterna till nämnarpolynomet (som typiskt finns) i överförningsfunktionen.

Stabilitet Ett system är stabilt om det tenderar mot ett visst läge efter lång tid. Systemets stabilitet är typiskt kopplad med dets poler. Detta kan man se i enkla fall, till exempel vanliga linjära ordinära differentialekvationer. Här är systemet stabilt om det inte finns några poler i högre halvplan, och avståndet längs med reella axeln anger hur snabbt lösningen tenderar mot det stabila läget.

Nollställen Ett systems nollställen är rötterna till täljarpolynomet (som typiskt finns) hos överförningsfunktioner. Eftersom vi är intresserade av att styra y, är det viktigt hur vi ska välja u för att få det. Därmed är $\frac{1}{G}$ en viktig storhet, och nollställen kan därmed orsaka reglerproblem som är svårlösta.

Impulssvar Om lösningen för Y är på formen Y = GU, är lösningen för y på formen

$$y(t) = \int_{0}^{t} d\tau g(\tau)u(t - \tau).$$

g kallas för impulssvaret.

Blockschema Ett blockschema är ett systematisk sätt att rita reglerade system på. För att förstå hur man läser dem, betrakta figur 1.

Figur 1: Illustration av ett enkelt blockschema.

Med denna figuren menas att Y(s) = F(s)U(s).

Rotort En rotort är en plott av ett systems poler som funktion av någon parameter. Den är typiskt uppdelad i grenar, som är kurvor i planet som är parametriserade av parametervärdet. Polerna som motsvarar parametervärdet 0 är rotortens startpunkter, och polarna motsvarande parametervärdet ∞ är rotortens ändpunkter. Om rotorten närmar sig kurvor, är dessa rotortens asymptoter.

2 Prestanda och prestandamått

Stigtid Stigtiden definieras som T_r , = $t_2 - t_1$, där vi typiskt har kriteriet $y(t_2) = 0.9$ och $y(t_1) = 0.1$, med y mätt i relativa enheter.

Insvängningstid Insvängningstiden definieras som |y(t) - 1| < p när $t > T_s$, med y mätt i relativa enheter. p är typiskt lika med 0.05.

Överslänget definieras som $y_{\text{max}} - 1$, med y mätt i relativa enheter.

Parametrar i svängningslika system Om du har ett system med ett andra ordningens polynom i överförningsfunktionens nämnare, skriv polynomet som $s^2 + 2\zeta\omega_0 s + \omega_0^2$. ω_0 är systemets resonansfrekvens och ζ dets dämpning. Det gäller för ett rent andra ordningens system att

$$T_{\rm r} \propto \frac{1}{\omega_0}, \ T_{\rm s} \approx \frac{3}{\zeta \omega_0}, \ M = e^{\frac{\pi \zeta}{\sqrt{1-\zeta^2}}}.$$

Stationärt fel Det stationära felet är felet e = r - y som kvarstår efter lång tid.

Felkoefficienter Det stationära felet beror både på systemets egenskaper och reglersignalen. Om reglersignalen är på formen $r_n = t^n \theta(t)$, där θ är Heavisidefunktionen, definieras felkoefficienterna som

$$e_n = \lim_{t \to \infty} r_n - y.$$

3 Negativ återkoppling

Vad är negativ återkoppling? I denna kursen kommer vi huvudsakligen att studera hur man kontrollerar ett system vid att låta avvikelsen mot det önskade värdet kontrollera regleringen av storheten, alltså låta U = FE, där e = r - y.

Illustration i blockdiagram Ett enkelt negativt återkopplad system illustrearas i figur 2.

Figur 2: Schematisk illustration av ett enkelt negativt återkopplad system.

Beskrivning av systemet Vi börjar beskrivningen av systemet med att inte betrakta störningar. I ena ändpunkten har vi

$$Y = GU = GFE$$
.

Summationskomponenten till vänster ger oss

$$E = R - Y$$

och därmed

$$Y = GFR - GFY.$$

Därmed kan vi skriva

$$Y = \frac{GF}{1 + GF}R.$$

Återkopplad överföringsfunktion För ett återkopplad system som kan skrivas som $Y = G_{\rm C}R$ definieras $G_{\rm C}$ som den återkopplade överföringsfunktionen. För systemet ovan har vi alltså

$$G_{\rm C} = \frac{GF}{1 + GF}R.$$

Samband mellan reglerfel och referens Alternativt kan vi lösa systemet ovan för att få

$$R - E = GFE, \ E = \frac{1}{1 + GF}R.$$

Samband mellan referens och styrsignal Systemet ovan kan även lösas för att ge

$$U = FR - FY = FR - GFU, \ U = \frac{F}{1 + GF}R.$$

Slutna systems poler Vi ser att slutna system har poler där 1 + GF = 0. Därmed bestäms systemets stabilitet av systemet och regulatorn.

P-reglering Principet i P-reglering är att välja en styrsignal som är proportionell mot storleken av felet, alltså

$$u = K(r - y) = Ke$$
.

Det är här klart att för att få negativ återkoppling väljer viK > 0.

Denna regleringsmetoden

- minskar inverkan av störning och modellfel för ett bra val av K.
- ökar snabbheten vid insvängning.
- stabiliserar instabila system.

Däremot kan regleringen gå fel om t.ex.

- systemet inte uppför sig som man tror.
- man har begränsningar i styrförmåga.
- man får instabilitet på grund av återkopplingen.

Det är även ett problem att om felet är stationärt, är även styrsignalen det, så även om du har ett nollskild fel klarar inte systemet nödvändigtvis anpassa sig.

PID-reglering PID står för proportionell integrerande deriverande. Denna sortens reglering löser många reglerproblem. Med PID-reglering väljer vi styrsignlaen

$$u = K_{\mathrm{P}}e + K_{\mathrm{I}} \int_{t_0}^t \mathrm{d}\tau \, e + K_{\mathrm{D}} \frac{\mathrm{d}e}{\mathrm{d}t}.$$

Alternativt kan vi skriva det som

$$u = K \left(e + \frac{1}{T_{\rm I}} \int_{t_0}^t d\tau \, e + T_{\rm D} \frac{\mathrm{d}e}{\mathrm{d}t} \right).$$

De tre ingående termerna i styrsignalen är

- proportionell återkoppling, som betraktar det nuvarande felet.
- integrerande återkoppling, som betraktar hur felet har uppfört sig.
- deriverande återkoppling, som betraktar hur felet kommer att uppföra sig.

PI-reglering PI-reglering använder ej den deriverande återkopplingstermen. Vi ser härifrån att vid ett stationärt tillstånd är antingen e = 0, annars ökar eller minskar u på grund av integraltermen.

Vi vill nu betrakta systemets insvängning. Om det stationära \bar{u} krävs för att e=0, har vi

$$\bar{u} = K \left(e + \frac{1}{T_{\rm I}} \int_{t_0}^t \mathrm{d}\tau \, e \right).$$

Vid att derivera detta fås

$$K\left(\frac{\mathrm{d}e}{\mathrm{d}t} + \frac{1}{T_{\mathrm{I}}}e\right) = 0,$$

med lösning proportionell mot $e^{-\frac{t}{T_{\rm I}}}$.

Notera att om man har stort fel kan PI-reglering ge problem. Därför använder man det typiskt när felen är små.

PI-reglering i Laplacevärlden Vid att Laplacetransformera uttrycket för styrsignalen i en PI-regulator, nämligen

$$u = K \left(e + \frac{1}{T_{\rm I}} \int_{t_0}^t \mathrm{d}\tau \, e \right),\,$$

fås

$$U = K \left(E + \frac{1}{T_{I}s} E \right),\,$$

och därmed

$$F(s) = K\left(1 + \frac{1}{T_{\mathsf{T}}s}\right).$$

Rotorter med negativt återkopplade system Betrakta ett system med överförningsfunktion $G_{\rm O}$ för det öppna systemet. Det slutna systemet kommer ha överförningsfunktion

$$G_{\rm C} = \frac{G_{\rm O}}{1 + G_{\rm O}}.$$

 $G_{\rm O}$ är ofta på formen

$$G_{\rm O} = K \frac{Q}{P},$$

där K är en parameter. Då får vi

$$G_{\rm C} = \frac{KQ}{P + KQ}.$$

Systemet har alltså poler som ges av

$$P + KQ = 0, \ \frac{P}{Q} = -K.$$

Detta kriteriet anger systemets rotort.

Hur man ritar rotorter Vi antar nu att P och Q är polynom av grad n respektiva m, där $n \ge m$. Då vet vi att kriteriet har n rötter, och rotorten har därför n grenar (annars skulle den inte kunna starta i n punkter).

Rötterna dyker antingen upp som reellvärda eller i par av komplexkonjugerade rötter, och därmed är rotorten symmetrisk med avseende på reella axeln. Vi vet även att rotorten har n-m asymptoter, då det bara finns m ändpunkter.

Det gäller även att alla delar av reella axeln som har ett udda antal reella start- och ändpunkter till höger om sig tillhör rotorten. För att förstå detta, faktorisera polynomen på vänstersidan och para ihop de komplexkonjugerade paren så att alla koefficienter är reella. Om man startar långt till höger på reella axeln är kvoten positivt, och tillhör ej rotorten. Varje gång den passerar en start- eller ändpunkt byter kvoten tecken, och den kan då tillhöra rotorten. En bra matteövning kan vara att övertyga sig om att det även är sant för de komplexa nollställen.

Vi vill nu studera asymptoterna, och antar därför här att n > m. Vi skriver då

$$\frac{P}{Q} = \frac{s^n + a_1 s^{n-1} + \dots}{s^m + b_1 s^{m-1} + \dots} = s^{n-m} + (a_1 - b_1) s^{n-m-1} + \frac{P_1}{Q}.$$

Vi använder binominalsatsen för att skriva

$$\frac{P}{Q} = \left(s + \frac{a_1 - b_1}{n - m}\right)^{n - m} + \frac{P_2}{Q},$$

där utvecklingen av parentesen kommer återskapa de två potenstermerna ovan. P_2 har grad n-2, så för s med stora belopp kommer parentesen dominera. Rotortkriteriet ger

$$\arg\left(s + \frac{a_1 - b_1}{n - m}\right) = \frac{\pi}{n - m} + \frac{2\pi}{n - m}k, \ k = 0, \dots, m - n.$$

Detta är strålar från punkten $-\frac{a_1-b_1}{n-m}$ som pekar i riktningerna $\frac{\pi}{n-m} + \frac{2\pi}{n-m}k$ för stora s. Eftersom asymptoterna strålar ut från denna punkten, ser vi att den är rotortens centroid. Binominalsatsen ger även att a_1 är summan av systemets poler och b_1 är summan av systemets nollställen.

Det finns en entydighetssats för rotortkriteriet, vilket innebär att om det finns en del av reella axeln mellan två poler som är med i rotorten, kommer rotorten behöva bryta ut från reella axeln någonstans imellan dessa två polerna. På samma sättet kommer rotorten bryta in i reella axeln i områden mellan två nollställen som är med i rotorten.

Om man vill, kan man räkna ut vinkeln i punkterna där rotorten bryter in och ut. Detta vet jag dock inte hur man gör. Man kan även räkna ut för vilka s rotorten bryter in och ut. För att göra detta, ställ upp karakteristiska ekvationen P+KQ=0, derivera med avseende på s. Punkterna som uppfyller $\frac{\mathrm{d}K}{\mathrm{d}s}=0$ som ger K>0 är punkterna där rotorten bryter in och ut.

För att rita rotorten kan du följa dessa steg:

- Beräkna överförningsfunktionen för det slutna systemet. Skriv nämnaren som P + KQ = 0.
- Hitta startpunkterna, alltså rötterna till P.
- Hitta ändpunkterna, alltså rötterna till Q.

- Bestäm antal asymptoter, alltså gradtalet till P minus gradtalet till Q.
- Bestäm vilka delar av reella axeln som tillhör rotorten. Det är de delar som har ett udda antar start- och slutpunkter till höger om sig.
- Beräkna punkterna där rotorten korsar reella axeln. Såna ligger mellan två startpunkter. För att hitta dem kan man ansätta att karakteristiska ekvationen har en dubbelrot, och identifiera vilka kombinationer av s och K som ger detta, eller hitta stationära punkter för K som funktioner av s.
- Bestäm centroiden $-\frac{\sum p_i \sum q_i}{n-m}$, där p_i är systemets poler och q_i dets nollställen.
- Bestäm asymptoternas riktningar relativt centroiden genom att betrakta argumentet till $\frac{P}{Q} = -K$ för stora s. Spoilers: De är $\frac{\pi}{n-m} + \frac{2\pi}{n-m}k$, $k = 0, \dots, m-n$.
- Bestäm korsningar med imaginära axeln genom att sätta $s=i\omega.$ Kom ihåg att $K\geq 0.$
- Rita.

Nyquistkurvan Givet överförningsfunktionen

$$G_{\rm C} = \frac{G_{\rm O}}{1 + G_{\rm O}}.$$

för ett slutet system, finns det några poler så att systemet är instabilt? En ide för att undersöka detta är att undersöka alla s i högre halvplan och se vilka värden på $G_{\rm O}$ man får. Detta gör vi genom att rita två halvcirklar med radier r respektivar R i högre halvplan, förbinda dem med raka linjer i änderna och låta r gå mot 0 och R mot ∞ . $G_{\rm O}$ kommer då anta värden på en kurva som kallas för Nyquistkurvan.

Eftersom Nyquistkurvan i stort sett antingen skickas mot o
ändligheten eller mot origo, är den viktigaste delen av Nyquistkurvan som är avbildad från imagin
ära axeln. Man kan även observera att $G_{\rm O}(\infty)=0$ och $G_{\rm O}(0)\approx \frac{K}{s^p}$, där p är antal poler i origo.

Nyquistkriteriet Betrakta ett öppet systems Nyquistkurva. Argumentvariationsprincipen från komplex analys ger oss att antalet poler i höger halvplan till ett återkopplad system är lika med antalet poler i höger halvplan hos $G_{\rm O}$ plus antalet varv som Nyquistkurvan omsluter punkten -1. Detta kallas Nyquistkriteriet.

Speciellt, om $G_{\rm O}$ inte har poler i höger halvplan, är systemet stabilt om Nyquistkurvan inte omsluter -1. Detta är varianten av Nyquistkriteriet som ofta används i denna kursen.

4 Frekvensanalys

Fundamental ide Eftersom periodiska funktioner kan skrivas som en summa av trigonometriska funktioner och funktioner som avtar tillräcklig snabbt kan skrivas som en integral över trigonometriska funktioner, vet vi att när vi studerar linjära system räcker det att studera systemets respons på en enda term, alltså en enda trigonometrisk funktion, och se hur den beror av frekvensen. Om vi tillför en signal $u = \sin \omega t$ till ett system med överförningsfunktion G får vi

$$y = \int_{0}^{\infty} d\tau \, g(\tau) u(t - \tau)$$

$$= \operatorname{Im} \left(\int_{0}^{\infty} d\tau \, g(\tau) e^{i\omega(t - \tau)} \right)$$

$$= \operatorname{Im} \left(e^{i\omega t} \int_{0}^{\infty} d\tau \, g(\tau) e^{-i\omega \tau} \right)$$

$$= \operatorname{Im}(e^{i\omega t} G(i\omega))$$

$$= |G(i\omega)| \sin(\omega t + \arg G(i\omega)).$$

Det kan även finnas transienta termer här, men om systemet är stabilt kommer dessa försvinna över tid. Vi ser alltså att systemets svar beror av $G(i\omega)$.

Nyquistdiagram Ett Nyquistdiagram är en uppritning av $G(i\omega)$ för $0 < \omega < \infty$. Vi kan se att detta i stort sett är den intressanta delen av Nyquistkurvan.

Bodediagram Ett Bodediagram är en diagram av $|G(i\omega)|$ och arg $G(i\omega)$ som funktioner av ω .

Skärfrekvense Skärfrekvensen ω_c är frekvensen för vilken Nyquistkurvan skär enhetscirkeln. Det är en tummregel att denna är proportionell mot systemets bandbredd, som vi kommer diskutera sedan.

Fasmarginal Fasmarginalen $\phi_{\rm m}$ är vinkeln mellan negativa x-axeln och punkten där Nyquistkurvan skär enhetscirkeln. Mer specifikt kan vi skriva $\phi_{\rm m} = \pi + \arg G(i\omega_{\rm c})$.

Fasskärfrekvens Fasskärfrekvensen $\omega_{\rm p}$ är frekvensen så att arg $G_{\rm O}(i\omega_{\rm p})=-\pi$.

Amplitudmarginal Amplitudmarginalen ges av $A_{\rm m} = \frac{1}{|G_{\rm O}(i\omega_{\rm p})|}$.

Alternativt förenklad Nyquist-kriterium Det förenklade Nyquistkriteriet kan nu formuleras som $\phi_{\rm m} > 0, \ A_{\rm m} > 1.$

Bandbredd Bandbredden är bredden på det frekvensintervallet där $|G(i\omega)| \ge \frac{1}{\sqrt{2}}$ i relativa enheter, vilket motsvarar förstärkning större än 3 dB, och benämnas $\omega_{\rm B}$. Bandbredden kan ge information om systemets tillväxt, då hög bandbredd typiskt betyder snabb tillväxt.

Resonansfrekvens Resonansfrekvensen $\omega_{\rm r}$ är den frekvens som ger starkast respons i systemet.

Resonanstopp Resonanstoppen är $M_p = |G(i\omega_r)|$ i relativa enheter (?), och ger typiskt en indikation på hur mycket översläng man får. Man önskar typiskt att denna ska vara liten.

Stationärt fel Det stationära felet ges av $e_0 = 1 - G_{\rm C}(0)$.

Brytningspunkter Om överförningsfunktionen kan skrivas som

$$G(i\omega) = \frac{\prod (i\omega - z_i)}{\prod (i\omega - p_i)},$$

är alla z_i och p_i brytningspunkter för systemet. Här kommer de största lutningsändringarna i Bodediagrammet.

Bodes relation Låt G vara minimumsfas, dvs. ha alla sina nollställen och poler i vänstre halvplan, och G(0) > 0. Då gäller att om $|G(i\omega)|$ i ett visst frekvensområde avtar med 20 dB per dekad (en dekad är en ökning i frekvens med en faktor 10), är $\arg G(i\omega) \approx -90^{\circ}$, och om $|G(i\omega)|$ avtar med 40 dB per dekad, är $\arg G(i\omega) \approx -180^{\circ}$.

Snabbhet och svängighet Vi kan med tidigare resultat se att om $G_{\rm O}(i\omega)$ är nära 1 blir $G_{\rm C}(i\omega)$ stor, och om $G_{\rm O}(i\omega)$ är liten blir även $G_{\rm C}(i\omega)$ liten. Vi kan också se att ett ekvivalent kriterium för bandbredden är $|G_{\rm O}(i\omega)-1| \leq \sqrt{2}$ för $\omega \geq \omega_{\rm B}$.

Resonanstopp och fasmarginal Vi har

$$M_{\rm p} \ge |G(i\omega_{\rm c})| = \frac{1}{2\sin(\frac{1}{2}\phi_{\rm m})}.$$

Speciellt ger liten fasmarginal stort översläng.

Figur 3: Illustration av tänkt reglersystem.

Känslighet Betrakta ett system som i figur 3. Om $F_r = F_y = F$, skulle systemet vare ekvivalent med välkända negativt återkopplade system. Vi är nu intresserade av att studera systemets känslighet för störningen. Vi har allmänt

$$Y = V + U = V + G(RF_r - YF_y), \ Y = \frac{GF_r}{1 + GF_y}R + \frac{1}{1 + GF_y}V.$$

Vi definierar då känslighetsfunktionen

$$S = \frac{1}{1 + GF_y}.$$

Frekvensanalys av känslighetsfunktionen Vi har

$$|S(i\omega)| = \left| \frac{1}{1 + G(i\omega)F_y(i\omega)} \right| \le M_s,$$

vilket kan skrivas som

$$|G(i\omega)F_y(i\omega) - (-1)| \le \frac{1}{M_s}.$$

Alltså måste Nyquistkurvan för $G(F_y)$ vara utanför en cirkel med mittpukt i -1 och radie $\frac{1}{M_s}$.

Robusthet Medan en modell kan ha en överförningsfunktion G, kan ett reellt system ha en överförningsfunktion $G' = G(1 + \Delta G)$, där ΔG är det relativa felet i överförningsfunktionen. Om man återkopplar systemet får man då

$$Y' = \frac{G'F}{1 + G'F}R = \dots = (1 + S'\Delta G)Y, \ S' = \frac{1}{1 + G'F},$$

och $S*\Delta G$ blir det relativa felet i Y. Detta betyder att om systemets känslighetsfunktion är liten, får modellfel liten inverkan.

Robusthetskriteriet Antag att G ger ett system som är stabilt. Är då ett motsvarande verkligt system stabilt? För att svara på det, kan vi använda Nyquistkriteriet. Kravet är att F_yG' ej får omsluta -1, vilket vi anser som uppfylld om avståndet mellan F_yG' och F_yG är mindre än avståndet mellan F_yG och -1. Detta kan formuleras som

$$|F_y(i\omega)G'(i\omega) - F_y(i\omega)G(i\omega)| < |F_y(i\omega)G(i\omega) + 1|$$

och slutligen robusthetskriteriet

$$\left| \frac{F_y(i\omega)G'(i\omega)}{1 + F_y(i\omega)G(i\omega)} \right| < \frac{1}{|\Delta G(i\omega)|}.$$

Vi definierar nu den komplementära känslighetsfunktionen

$$T = \frac{GF_y}{1 + GF_y} = 1 - S.$$

Normalt är ΔG ej känd, men vi har en övre skattning g av denna. Det verkliga systemet är då stabilt om

$$|T(i\omega)| < \frac{1}{g(\omega)},$$

vilket är ett tillräckligt, men ofta inte nödvändigt, villkor.

Nackdelar med återkoppling Återkoppling kan ge följande problem:

- Hög kretsförstärkning ökar risken för instabilitet, speciellt vid modellfel.
- Om GF_y är stor, krävs stora styrsignaler. Det samma gäller i frekvensband där |G| är liten.
- Mätbrus suger, typ.

Bodes sats Om G' har relativt gradtal större än 2, gäller att

$$\int_{0}^{\infty} d\omega \log |S(i\omega)| = \pi \sum_{k=1}^{m} p_k,$$

där p_k är polerna till G' i högre halvplan.

5 Kompensering

Ideen Vi ser att det enklaste sättet att konstruera en bra regulator på är att ändra konstruktionen av det öppna systemet. Vi bestämmer alltså regulatorn F utifrån krav på

- snabbhet, alltså skärfrekvens.
- dämpning, alltså fasmarginal.
- stationärt fel, alltså krav på $|G_{\rm O}(0)|$.

Kompensation för snabbhet För snabbhet räcker det med en P-regulator. Denna flyttar amplitudkurvan, men ändrar ej faskurvan. Alltså hjälper den oss att bestämma skärfrekvensen.

Fasavancering För att höja fasen kan man använda en deriverande länk, alltså en regulator med överföringsfunktion

$$F = K(\tau_{\rm D}s + 1).$$

Typiskt kan man inte låta deriveringen verka fullt ut, så överförningsfunktionen blir i stället på formen

$$F_{\text{lead}} = K \frac{\tau_{\text{D}} s + 1}{\beta \tau_{\text{D}} s + 1}.$$

Vi har

$$\arg F_{\text{lead}} = \dots = \arctan \frac{(1-\beta)\tau_{\text{D}}\omega}{1+\beta\tau_{\text{D}}^2\omega^2},$$

och får därmed att den maximala fasförskjutningen är

$$\phi_{\text{max}} = \arctan \frac{1-\beta}{2\sqrt{\beta}}$$

för frekvensen

$$\omega = \frac{1}{\sqrt{\beta}\tau_{\rm D}}.$$

Lågfrekvensförstärkning Lågfrekvensförstärkning kan ta bort stationärt fel. För att lågfrekvensförstarka kan man använda en integrerande länk, alltså en regulator med överförningsfunktion

$$F = \frac{\tau_1 s + 1}{\tau_{\rm D} s}.$$

Denna har dock oändligt hög förstärkning för låga frekvenser, kan man i stället använda en fasretarderande länk, alltså en regulator med överförningsfunktion

$$F_{\text{lag}} = \frac{\tau_1 s + 1}{\beta \tau_1 s + \gamma}.$$

Vi har

$$\arg F_{\text{lag}} = \dots = -\arctan \frac{(1-\gamma)\tau_1\omega_c}{\gamma + \tau_1^2\omega_c^2}.$$

Det kan däremot vara svårt att göra rätt val av parametrar.

Arbetsgång Arbetsgången i kompensering är att

- bestämma önskad bandbredd.
- bestämma önskad fasmarginal för att ge nödvändig fasökning vid skärfrekvensen.
- Gör lead- och laggrejer. Jag kanske borde fatta det.

6 Tillståndsrepresentationer

Ideen Den fundamentala ideen vi vill åt nu är att representera ett systems tillstånd på ett annat sätt än just dets tidsutveckling, till exempel som en vektor.

Representation av linjära system Tidsutvecklingen av ett system tillstånd kan i många linjära fall skrivas som

$$\dot{x} = Ax + Bu,$$

där u beskriver en styrsignal. Utsignalen är typiskt på formen

$$y = Cx + Du$$
.

Linjära system i Laplacedomänet Genom att laplacetransformera ekvationen som beskriver ett systems tillstånd fås

$$sX = AX + BU$$

givet att systemets starttillstånd är ${f 0}$. Detta kan skrivas som

$$X = (sI - A)^{-1}BU.$$

Insatt i uttrycket för Y fås

$$Y = CX + DU = (C(sI - A)^{-1}B + D)U,$$

och vi identifierar överförningsfunktionen som

$$G = C(sI - A)^{-1}B + D.$$

Av någon anledning är detta lika med

$$G = \frac{1}{sI - A}C(sI - A)^{\dagger}B + D$$

Poler i tillståndsrepresentation Det visar sig att systemets poler ges av

$$\det(sI - A) = s^2.$$

Detta ska tydligen motsvara A:s egenvärden.

Linjarisering Verkliga system är ofta olinjära, men vi ska försöka behandla dem som linjära ändå. Betrakta ett system

$$\dot{x} = f(x, u), \ \dot{y} = g(x, u).$$

Anta konstant styrsignal u_0 , och antag att systemet då tenderar mot ett stationärt tillstånd \mathbf{x}_0 . Denna punkten uppfyller då

$$f(x_0, u_0) = \mathbf{0}, \ h(x_0, u_0) = y_0.$$

När vi linjäriserar, betraktar vi små variationer $\Delta x, \Delta u, \Delta y$ kring denna punkten. Vi får

$$\frac{\mathrm{d}\Delta x}{\mathrm{d}t} = f(x_0 + \Delta x, u_0 + \Delta u) = \mathbf{f}(x_0, u_0) + \frac{\partial f}{\partial x} \Delta x + \partial_u f \Delta u = \frac{\partial f}{\partial x} \Delta x + \partial_u f \Delta u.$$

Observera att $\frac{\partial f}{\partial x}$ allmänt är en matris.

På samma sätt fås

$$\frac{\mathrm{d}\Delta y}{\mathrm{d}t} = h(x_0 + \Delta x, u_0 + \Delta u) - y_0 = h(x_0, u_0) - y_0 + \vec{\nabla}_x h \Delta x + \partial_u h \Delta u = \vec{\nabla}_x h \Delta x + \partial_u h \Delta u.$$

Det totala systemet

$$\frac{\mathrm{d}\Delta x}{\mathrm{d}t} = \frac{\partial f}{\partial x} \Delta x + \partial_u f \Delta u,$$
$$\frac{\mathrm{d}\Delta y}{\mathrm{d}t} = \vec{\nabla}_x h \Delta x + \partial_u h \Delta u$$

är alltså linjärt för små ändringar.

Lösning av system i representation Betrakta ett system på formen

$$\dot{\mathbf{x}} = A\mathbf{x} + Bu, \ \mathbf{x}(0) = \mathbf{x}_0, \ y = C\mathbf{x}.$$

Vi använder att

$$\frac{\mathrm{d}}{\mathrm{d}t}e^{-At} = -Ae^{-At},$$

varför

$$e^{-At}\dot{\mathbf{x}} = e^{-At}A\mathbf{x} + e^{-At}Bu,$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(e^{-At}\mathbf{x}\right) = e^{-At}Bu,$$

$$\mathbf{x} = \mathbf{x}_0e^{At} + \int_{a}^{t}\mathrm{d}\tau \,e^{-A(t-\tau)}Bu.$$

Styrbarhet Ett tillstånd \mathbf{x} är styrbart om man kan styra det motsvarande systemet från $\mathbf{0}$ till \mathbf{x} med hjälp av en styrsignal u på ändlig tid.

Test av styrbarhet Vi noterar först att Cayley-Hamiltons sats ger

$$A^{n} + \sum_{i=1}^{n} a_{i} A^{n-i} = 0,$$

där a_i är koefficienterna i A:s karakteristiska polynom. Därmed kan alla potenser av A av högre ordning skrivas som en linjärkombination av potenser av A upp till och med n-1. Därmed gäller det att

$$e^{At} = \sum_{i=0}^{n-1} f_i(t)A^i$$

för några funktioner f_i .

Betrakta nu ett system och dets representation. Om systemets starttillstånd är 0, medför detta

$$\mathbf{x} = \left(\sum_{i=0}^{n-1} \gamma_i(t) A^i\right) \mathbf{b}$$

där

$$\gamma_i = \int_0^t d\tau \, f_i(\tau) u(\tau).$$

Med andra ord är de styrbara \mathbf{x} linjärkombinationer av de olika $A^i\mathbf{b}$, alltså att det ligger i bildrummet till styrbarhetsmatrisen

$$\mathcal{S} = [\mathbf{b}, A\mathbf{b}, \dots, A^{n-1}\mathbf{b}].$$

Systemet är styrbart om $det(S) \neq 0$.

Observerbarhet Ett tillstånd \mathbf{x} är icke observerbart om utsignalen y är identiskt noll då initialvärdet är \mathbf{x} och insignalen identisk noll.

Test av observerbarhet Vi vill nu testa om ett tillstånd \mathbf{x}_0 är observerbart. Om vi har styrsignal u=0, gäller det att

$$\mathbf{x} = e^{At}\mathbf{x}_0, y = \mathbf{c} \cdot e^{At}\mathbf{x}_0, \frac{\mathrm{d}^n y}{\mathrm{d}t^n} = \mathbf{c} \cdot A^n e^{At}\mathbf{x}_0.$$

Speciellt är y = 0 för alla t om

$$y(0) = \mathbf{c} \cdot \mathbf{x}_0 = 0, \frac{\mathrm{d}y}{\mathrm{d}t} = \mathbf{c} \cdot A\mathbf{x}_0 = 0, \dots, \frac{\mathrm{d}^{n-1}y}{\mathrm{d}t^{n-1}} = \mathbf{c} \cdot A^{n-1}\mathbf{x}_0 = 0.$$

Givet att detta stämmer, ger Cayley-Hamiltons sats att även högre ordningens derivator av y kommer vara 0. Därmed ligger de icke-observerbara tillstånden i nollrummet till observerbarhetsmatrisen

$$\mathcal{O} = \begin{bmatrix} \mathbf{c}^T \\ \mathbf{c}^T A \\ \vdots \\ \mathbf{c}^T A^{n-1} \end{bmatrix}.$$

Systemet är observerbart $det(\mathcal{O}) \neq 0$.

Minimalhet Ett system är minimalt om och endast om det är både styrbart och observerbart.

Proportionell återkoppling Antag att vi återkopplar systemet med $\mathbf{u} = l_0 \mathbf{r} - L \mathbf{x}$. Om utsignalen ej beror av \mathbf{u} kan det återkopplade systemet skrivas som

$$\dot{\mathbf{x}} = (A - BL)\mathbf{x} + Bl_0\mathbf{r}, \ y = C\mathbf{x}.$$

Systemets poler ges av egenvärdena till A - BL. Det finns n såna, och L har n parametrar. Om systemet är styrbart kan dets poler därmed placeras godtyckligt vid lämpligt val av L.

Valet av l_0 görs så att y = r när systemet är stationärt. Detta kräver dock att man känner G(0) och att inga störningar påverkar systemet. Därför inför vi I-reglering.

I-reglering När vi I-reglerar, inför vi extra tillstånd

$$x_{n+1} = \int_{0}^{t} d\tau \, e.$$

Detta ger

$$\dot{x}_{n+1} = r - y = r - Cx.$$

Då kan vi utvidga modellen till

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{x} \\ \dot{x}_{n+1} \end{bmatrix} = \begin{bmatrix} A & 0 \\ -C & 0 \end{bmatrix} \begin{bmatrix} x \\ x_{n+1} \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r = A\mathbf{x} + Bu + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r.$$

Strategin är nu att återkoppla det nya systemet med återkoppling på formen

$$u = -Lx - l_{n+1}x_{n+1} = -L\mathbf{x}.$$

Då kan L väljas så att A-BL får önskade egenvärden. Stationärt har vi

$$\dot{x} = 0, \ \dot{x}_{n+1} = 0.$$

Skattning av tillstånd Om man ej kan mäta systemets tillstånd exakt, kan man skatta det. Mer precist, antag att vi har en modell

$$\dot{x} = Ax + Bu, \ y = Cx$$

som simulerar

$$\dot{\hat{x}} = A\hat{x} + Bu, \ \hat{y} = C\hat{x}.$$

Felsignalen är

$$y - \hat{y} = y - C\hat{x}.$$

Vi försöker återkoppla systemet. Det beskrivs då av

$$\dot{\hat{x}} = A\hat{x} + Bu + K(y - C\hat{x}) = (A - KC)C\hat{x} + Bu + Ky.$$

Skattningsfelet \tilde{x} ges då av

$$\dot{\tilde{x}} = \dot{x} - \dot{\hat{x}} = Ax + Bu - A\hat{x} - Bu - K(Cx - C\hat{x}) = (A - KC)\tilde{x}.$$

Detta har lösning

$$\tilde{x} = e^{(A - KC)t} \tilde{x}(0).$$

Felet tenderar mot 0 egenvärdena till A - KC är negativa, och hur snabbt det tenderar mot 0 beror av egenvärdenas belopp.

Mätfelet ges av $y_{\rm m} = y + e$. Detta ger

$$\dot{\tilde{x}} = (A - KC)\tilde{x} + Ke.$$

Stora K ger som vi ser höga mätfel, men det ger även snabba system. Optimeringen där görs av ett Kalmanfilter. Vi väljer då systemet så att egenvärdena till A - BL har lägre belopp än egenvärdena till A - KC.

Vid återkoppling av såna system är överförningsfunktionen för det slutna systemet

$$G = C(sI - (A - BL))^{-1}Bl_0$$

alltså likadant som tidigare.

Figur 4: Blockschema av kaskadreglering.

Figur 5: Blockschema av framkoppling.

7 Alternativa regulatorstrukturer

Kaskadreglering Ideen bakom kaskadreglering är att försöka reglera ett system med hjälp av en mellanliggande signal. Detta beskrivs av blockschemat i figur 4. Kretsen i mitten reglerar mellansignalen u mot ett visst värde U_B . Detta är värdet som regulatorn F_B vill ha. Om detta skall fungera, måste den inre regleringen vara snabbare än den yttre.

Framkoppling Ideen bak framkoppling är att försöka reglera bort en mätbar störsignal. Detta visas i blockschemat i figur 5. Vi önskar nu välja F_f så att störsignalen ej har någon inverkan.

Vi har

$$Y = G_2(HV + G_1(R + F_fH)) = G_2((H + G_1F_f)V + G_1R).$$

Därmed kommer V-termen försvinna om vi väljer

$$F_f = -\frac{H}{G_1}.$$

En fördel med detta är att man kan reglera sitt system innan störningen får en inverkan. Det kan dock uppstå problem med att man får rena deriveringstermer, men dessa kan lösas genom att approximera F_f nära s=0.

Otto Smith-regulatorn Syftet med Otto Smith-regulatorn är att reglera system med tidsfördröjning. Fasfördröjningen från en sån ökar med ω , vilket gör det svårt att reglera.

För att reglera detta, bestäm först ett F så att ditt äntliga system (till exempel det slutna reglersystemet) får bra egenskaper om man ignorerar tidsfördröjningen. Om reglering av det icke-fördröjda öppna systemet G ger en regulator F, inför nu regulatorn

$$F' = \frac{F}{1 + (1 - e^{-sT})FG},$$

där T är systemets fördröjning. Detta kommer ge

$$G_{\rm c} = \frac{FG}{1 + FG} e^{-sT}.$$

Figur 6: Blockschema av IMC.

Internal Model Control Ideen bak IMC illustreras i figur 6. Vi har här introducerat \hat{G} som vår modell av systemet.

Flödesschemat ger

$$U = \frac{Q}{1 - Q\hat{G}}(R - Y).$$

Om vi jämför detta med standardvarianten U = F(R - Y), ser vi att

$$F = \frac{Q}{1 - Q\hat{G}}.$$

Detta betyder att alla problem vi har studerat kan omformuleras som ett IMC-problem.

Varför inför vi detta? Först av allt kan vi på något sätt hitta alla regulatorer som stabiliserar systemet genom att titta på stabila Q, vad nu det betyder. Vidare är det enkelt att studera det slutna systemet, ty om vi har en perfekt modell, försvinner återkopplingen, och Y = GQR. Detta är linjärt i Q, medan fall vi har studerat tidigare inte har varit linjära i F.

Betrakta specialfallet där vi vil ha Y = HR. Då väljer vi $Q = \frac{H}{G}$. Detta ger

$$F = \frac{1}{G} \frac{H}{1 - H},$$

som är resultatet vi känner från tidigare. På liknande sätt kan andra reglerproblem formuleras med IMC.