Cis and trans effects on variant penetrance

Scientific objective

Rare variants with large effect sizes (high penetrance)

Common (ancestral) variants typically have low effects and may affect disease risk through a different mechanism

Objective: Detecting the interactions between highly penetrant effects and ancestral variants

Finding the missing heritability of complex diseases

Why look for interactions

- Personalized predictionions
 - moderate-risk genes (e.g. CHEK2, ATM, PALB2) and a low PRS brings risk down to non-non-carriers
- Disease mechanism discovery

Modification of Lifetime Breast Cancer Risk for Pathogenic Variant Carriers and Noncarriers by an 86–Single-Nucleotide Variant Score.

Struct-LMM background

A linear mixed-model approach to study multivariate gene-environment interactions

Rachel Moore ^{1,2,3,9}, Francesco Paolo Casale^{4,9}, Marc Jan Bonder², Danilo Horta ², BIOS Consortium⁵, Lude Franke ⁶, Inês Barroso ¹ and Oliver Stegle ^{2,7,8}*

The environment is handled through the covariance and can be multivariate

Our "environment" is local genetic ancestry

The Struct-LMM model scales linearly with number of individuals

Struct-LMM Maths & Input Formats

$$y = M\alpha + g \odot \beta + e + \epsilon$$
,

	Pheno type
Individ ual 1	1
Individ ual 2	0
Individ ual 3	0
Individ ual 4	1

	Dumm y	PC1	PC2
Individ ual 1	1	0.1	0.9
Individ ual 2	1	0.9	-0.7
Individ ual 3	1	-0.3	0.1
Individ ual 4	1	0.1	0.2

	SNV
Individ ual 1	1
Individ ual 2	0
Individ ual 3	2
Individ ual 4	0

	PC1	PC2
Individ ual 1	0.1	0.9
Individ ual 2	0.9	-0.7
Individ ual 3	-0.3	0.1
Individ ual 4	0.1	0.2

y

M

E

(the outcome)

(the covariates)

(genetic variant) (haplotype configuration)

Usage and Results

```
python gxg-structlmm-script.py \
                                        Tit
                                              = total number of iterations
--pcs output/PCoutput local ancestry pcs.csv \
                                              = total number of function evaluations
                                        Tnf
                                        Tnint = total number of segments explored during Cauchy searches
--snv output/SNVoutput.txt \
                                        Skip = number of BFGS updates skipped
                                        Nact = number of active bounds at final generalized Cauchy point
--phenotype testPlink/synthetic small v1.pheno1 \
                                        Projg = norm of the final projected gradient
--phenotype-column "Phenotype(binary)" \
                                              = final function value
--output results.csv
                                           Ν
                                                 Tit
                                                              Tnint Skip Nact
                                                          Tnf
                                                                                       Proia
                                                           13
                                                                                                  8.503D+02
                                                                                     3.247D-04
                                          F =
                                                 850.26302680069568
                                        CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH
                                        Results:
                                        P-value: 8.64303433e-01
                                        Saving results to results.csv
```

Next steps

- Run on actual data with real phenotypes
- Write wrappers to test all recombination blocks
- Find some significant interactions