

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1 **1-83 (canceled)**

1 **84 (new):** A material having a fluorogenic moiety linked to a solid support, said
2 material having the structure:

3 wherein:

4 R¹, R³, R⁴ and R⁶ are each H;

5 R² is -NHR¹⁵; and

6 R⁵ is -R¹⁴-SS,

7 wherein:

8 R¹⁴ is -CH₂C(O)NH-;

9 R¹⁵ is a member selected from the group consisting of amine protecting
10 groups, -C(O)-AA and -C(O)-P:

11 wherein:

12 P is a peptide sequence;

13 AA is an amino acid residue; and

14 SS is a solid support.

1 **85** (new): The material in accordance with claim **84**, wherein R^{15} is an amine
2 protecting group.

1 **86** (new): The material in accordance with claim **85**, wherein said amine
2 protecting group is 9-fluorenylmethoxycarbonyl (Fmoc).

1 **87** (new): The material in accordance with claim **84**, wherein R^{15} is $-C(O)-AA$,
2 wherein AA is an amino acid residue.

1 **88** (new): The material in accordance with claim **84**, wherein R^{15} is $-C(O)-P$,
2 wherein P is a peptide sequence.

1 89 (new): The material in accordance with claim 84, wherein the solid support is
2 a Rink resin.

1 **90** (new): A material having a fluorogenic moiety linked to a solid support, said
2 material having the structure:

wherein:

4 **SS is a solid support, wherein said the support is a Rink resin.**

1 91 (new): A library of fluorogenic peptides comprising sub-libraries P1, P2, P3
2 and P4, wherein each of the sub-libraries P1, P2, P3 and P4 comprises tetrapeptides having the
3 structure:

1 **92** (new): The library in accordance with claim 91, wherein the 20 amino acids
2 are the 20 naturally occurring amino acids excluding cysteine and including norleucine.

1 93 (new): The library in accordance with claim 91, wherein the solid support is a
2 Rink resin.

1 **94** (new): A library of fluorogenic peptides comprising sub-libraries P1, P2, P3
2 and P4, wherein each of the sub-libraries P1, P2, P3 and P4 comprises tetrapeptides having the
3 structure:

1 **97** (new): The method according to claim **96**, further comprising (d) quantifying
2 said fluorescent moiety, thereby quantifying said protease.

1 **98** (new): The method according to claim **97**, wherein said protease is a member
2 selected from the group consisting of aspartic protease, cysteine protease, metalloprotease and
3 serine protease.

1 **99** (new): A library of fluorogenic peptides comprising sub-libraries P1, P2, P3
2 and P4, wherein each of the sub-libraries P1, P2, P3 and P4 comprises hexapeptides having the
3 structure:

4
5 wherein:

6 SS is a solid support, and

7 wherein:

8 for each sub-library P1, P2, P3 and P4, AA¹, AA², AA³ and AA⁴ in each of the
9 hexapeptides are the same amino acid residues;

10 for sub-library P1, each of AA⁵ is a different amino acid of the 20 amino acids,
11 and each of AA⁶, AA⁷ and AA⁸ is an isokinetic mixture of 20 amino acids;

12 for sub-library P2, each of AA⁶ is a different amino acid of the 20 amino acids,
13 and each of AA⁵, AA⁷ and AA⁸ is an isokinetic mixture of 20 amino acids;

14 for sub-library P3, each of AA⁷ is a different amino acid of the 20 amino acids,
15 and each of AA⁵, AA⁶ and AA⁸ is an isokinetic mixture of 20 amino acids; and

for sub-library P4, each of AA⁸ is a different amino acid of the 20 amino acids, and each of AA⁵, AA⁶ and AA⁷ is an isokinetic mixture of 20 amino acids.

100 (new): The library in accordance with claim 99, wherein the 20 amino acids
are the 20 naturally occurring amino acids excluding cysteine and including norleucine.

1 **101** (new): The library in accordance with claim **99**, wherein the solid support is
2 a Rink resin.

1 .102 (new): A library of fluorogenic peptides comprising sub-libraries P1, P2, P3
2 and P4, wherein each of the sub-libraries P1, P2, P3 and P4 comprises hexapeptides having the
3 structure:

5 wherein:

6 for each sub-library P1, P2, P3 and P4, AA¹, AA², AA³ and AA⁴ in each of the
7 hexapeptides are the same amino acid residues:

for sub-library P1, each of AA⁵ is a different amino acid of the 20 amino acids, and each of AA⁶, AA⁷ and AA⁸ is an isokinetic mixture of 20 amino acids;

for sub-library P2, each of AA⁶ is a different amino acid of the 20 amino acids, and each of AA⁵, AA⁷ and AA⁸ is an isokinetic mixture of 20 amino acids;

12 for sub-library P3, each of AA⁷ is a different amino acid of the 20 amino acids,
13 and each of AA⁵, AA⁶ and AA⁸ is an isokinetic mixture of 20 amino acids; and

14 for sub-library P4, each of AA⁸ is a different amino acid of the 20 amino acids,
15 and each of AA⁵, AA⁶ and AA⁷ is an isokinetic mixture of 20 amino acids.

1 **103** (new): The library in accordance with claim **102**, wherein the 20 amino
2 acids are the 20 naturally occurring amino acids excluding cysteine and including norleucine.

1 **104** (new): A method of determining a peptide sequence specificity profile of an
2 enzymatically active protease, said method comprising:

- 3 (a) contacting said protease with a library of peptides according to claim **99** or
4 claim **102** in such a manner whereby the fluorogenic moiety is released
5 from the peptide sequence, thereby forming a fluorescent moiety;
- 6 (b) detecting said fluorescent moiety;
- 7 (c) determining the sequence of said peptide sequence, thereby determining said
8 peptide sequence specificity profile of said protease.

1 **105** (new): The method according to claim **104**, further comprising (d)
2 quantifying said fluorescent moiety, thereby quantifying said protease.

1 **106** (new): The method according to claim **105**, wherein said protease is a
2 member selected from the group consisting of aspartic protease, cysteine protease,
3 metalloprotease and serine protease.

1 **107** (new): A library of twenty fluorogenic amino acid amides having the
2 structure:

3
4 wherein:

5 SS is a solid support, and
6 each AA¹ for the twenty fluorogenic amino acid amides is a different amino acid
7 residue.

1 **108** (new): The library in accordance with claim **107**, wherein the amino acid
2 residues are the 20 naturally occurring amino acids excluding cysteine and including norleucine.

1 **109** (new): The library in accordance with claim **108**, wherein the solid support
2 is a Rink resin.

1 **110** (new): A library of twenty fluorogenic amino acids having the structure:

2 wherein:

4 each AA¹ for the twenty fluorogenic amino acids is a different amino acid residue

1 **111** (new): The library in accordance with claim **110**, wherein the amino acid
2 residues are the 20 naturally occurring amino acids excluding cysteine and including norleucine..

1 **112** (new): A method of determining an amino acid specificity profile of an
2 enzymatically active protease, said method comprising:

3 (a) contacting said protease with a library of amino acids according to claim **108**
4 or claim **110** in such a manner whereby the fluorogenic moiety is released
5 from the amino acid, thereby forming a fluorescent moiety;
6 (b) detecting said fluorescent moiety;

7 (c) determining the identity of the amino acid, thereby determining said amino
8 acid specificity profile of said protease.

1 **113** (new): The method according to claim **112**, further comprising (d)
2 quantifying said fluorescent moiety, thereby quantifying said protease.

1 114 (new): The method according to claim 113, wherein said protease is a
2 member selected from the group consisting of aspartic protease, cysteine protease,
3 metalloprotease and serine protease.