Grame -Play (1)

Typical Cases

- · 2 person Game
- · Players alternate move
- · Zero Sum One playor's loss is the other's gain
- Perfect information

 Both players have occess
 to complete information
 about the State of the
 game. No information
 is hidden from either player.
 - · No chance involved.

Grame-Play (2) How to play a game? Challenge I Representing the board:

Sonsider all the legal moves you can make challenge 2 Generating all legal next boards

Compute the new position resulting from each move Evaluate each resulting position and determine which is best. Challenge 3

Wake that move position and repeat opponent to move

Giame - Play (3)

· Nodes

State of Position

Possible action or decision that a player can make at that Point • Branches

· Payoff value:

- -> Associated with the terminal nodes of the game true
- -> It quantifies the benefit or game reaches that node
 - -> Single value (Zero Sum / Two Player game)
 - -> Vector of values (when more than two Players / non Zen-sum)

Grame Play (4) Evaluation function [1(n)] goodness' of a game Position f(n) >>0 -> Position n is good for me and bad for you f(n) <<0 -> position n is bad for me and good for me f(n) near 0 -> Neutral position f(n) = +00 -> WIN for me f(n) = - 00 -> WIN for You

Grame - Play (5)

Zono Sum * One player's gain or loss is exactly balanced by the loss or gain of the other players.

The total sum of gain loss => Zero

I when one player wins, then the

Other one losses. (Two player > A

Player A wins > +1

Player A wins > +1

Non Zero Sum * The Sum of the outcomes for all players does not neccessarily equal Zero.

The gain of one player does not necessarily mean a loss of another player. — All can gain. All can lose. Gain/loss can be distributed equally.

Grame Play (6)

Míni Max Problem

- () create start node as MAX node with current board configuration
- (2) Expand nodes down to some depth of look ahead in the game
- (3) Apply the evaluation function at each of the leaf nodes
- (4) Back-up values for each of the non-leaf nodes until a value is computed to the root node.
 - H) MIN Wode: backed up Value is the MIN value of Children
 - Ly MAX Node: backed up value is the MAX value of Children

Grame Play (7) How to improve Minimax search?

Ly If you have an idea that is Surely bad, Don't take the time to see how truly awful it is!!

-

Grame Play (8) -> Traverse the search tree in DFS MIN node - At each MAX node n \((n) = max value found so for - At each MIN node n B(n) = min value found so for - X value start at - INF and only increases - B value stool at tINF and only decreases -> B cutoff Given a max node n, cut off Don't generate the search below n if $x \in \mathbb{R}(i)$ for some MIN more children of node ancestor i of n _ X cut off Stop searching below MIN node n if B(n) < x(i) for some MAX node ancestor i of n

Grame Play (9)

· Two Players (10,0) board game

· Connect four of one's own dise in a row/column diagonal.

- Grame Play . Playors alternate turns, dropping disc into any column.
 - · Disc falls to the lowest available Position in the chosen column.
 - · Game terminates -> when One player successfully connects four disc m a row, blumn, diagonally DR the board is completely filled.

Grame Play (10)

How to design Static evaluation function for MINI-FOUR

Input: (board state) only considers
Output: (Number) Current State

There can be different features that we can consider.

For example & number of unblocked runs of length 2,3 You have - number of unblocked runs of lugth 2,3 your opponent has.

Is the State a winning configuration?

* How many open space are adjacent to You vs opponent