Math 13 - Practice Test 4, Spring 2016

Name:	Class Number:

Write down all your steps and include drawings of normal curves.

1) For which of the following sets of data points can you reasonably determine a regression line? Explain your answer.

- a. Yes | No. Why?
- b. Yes | No. Why?
- c. Yes | No. Why?
- d. Yes | No. Why?
- e. Yes | No. Why?
- f. Yes | No. Why?

2) Use the following terms to fill the blanks in the list of sentences shown below:

predictor variable least-squares coefficient of determination regression line average point

a. The _____ criterion is that the line that best fits a set of points is the one having the smallest possible sum of squared errors.

	criterion.				of data points according to the least-squares
					variable is called
	. The is	always	on the le	east-squa	res line.
e.			$\underline{}$ is the j	proportio	on of variation in the values of the response
	variable explained by the regression	1.			
duty		shopl w:			tionship between the number of workers on he assigned a different number of clerks for
		1	9.00	420.00	-
		2	11.00	350.00	
		3	12.00	360.00	
		4	12.00 13.00	300.00	
		5	15.00 15.00	225.00	
		6	18.00	200.00	
		7	16.00	230.00	
		8	14.00	280.00	
		9	12.00	315.00	
		10	10.00	410.00	
b. с.	and which should be the predictor. Plot the data in a scatter diagram. Does a linear regression analysis ap	(indep	endent) v	rariable?	ould be the response (dependent) variable
4) F	ill in the blanks.				
b. с. d. е.	a weak one. A value of r close to indicate predictions. If y tends to increase linearly as x in	that the theta the that the theta the the that the the that the theta the	there is a there is a at the the s, the vari	either no regressionables are	linear relationship between the linear relationship between the variables or on equation is extremely useful for making linearly correlated.
1.	If y tends to decrease linearly as x in	crease	s, the vari	ables are	linearly correlated.
y = 1	a marketing analyst is studying the reincrease in sales. The data are report. Compute the sums: $\sum x$, $\sum y$, $\sum x$	ted in	thousand	ls of dolla	amount spent on television advertising and ars.

X	У	x^2	y^2	xy
15	340			
28	260			
19	152			
47	413			
10	130			
92	855			

- b. Determine the value of the sample correlation coefficient $\,r\,$
- c. Find the values for \bar{x} , \bar{y} , a and b.
- d. Find the values for the intercept a and the slope b of the regression line.
- e. Write the equation of the least-squares line.
- f. Find the value of the coefficient of determination r^2 .
- g. Draw a scatter diagram displaying the data; and graph the least squares line on your scatter diagram. Include the point (x, y) as one of the points on the line.
- h. Suppose that the amount spent on advertising is \$37 (in thousands). What does the least-squares line predict for the increase in sales?
- **6)** Let x be the weight of a vehicle in hundreds of pounds, and let y be the miles per gallon.
 - a. Compute the sums: $\sum x$, $\sum y$, $\sum x^2$, $\sum y^2$, and $\sum xy$

x	У	x^2	y^2	xy
26	22			
35	16.1			
29	18.8			
39	15.7			
20	23.4			

3

b. What is the equation for the least-squares line?

1.
$$y = -32.55 x + 0.448$$

2.
$$y = -32.55 x - 0.448$$

3.
$$y = 32.55 x - 0.448$$

4.
$$y = -0.448 x + 32.55$$

5.
$$y = 0.448 x - 32.55$$

c. Select the appropriate coefficient of determination:

```
1. r^2 = -0.941
```

$$2. r^2 = 0.941$$

3.
$$r^2 = -0.970$$

4.
$$r^2 = 0.970$$

5.
$$r^2 = 0.965$$

d. If a vehicle weighs 22 (hundreds of pounds), what does the least-squares line predict for the miles per gallon?

- 1. 22.7
- 2. 66.0
- 3. 42.4
- 4. 22.0
- 5. cannot determine

7) The average number of miles on vehicles traded in at Smith Brothers Motors is 64,000. Smith Brothers Motors has started a new deal offering lower financing charges. They are interested in whether the average mileage on trade-in vehicles has decreased. The result (in thousands) from a random sample are listed below. Perform a hypothesis test using a confidence level of 0.01. 39, 47, 62, 110, 58, 90, 50, 99, 41, 28

- a. Find the sample average X.
- b. Find the sample standard deviation S.
- c. Select the null and alternative hypotheses.

1.
$$H_0: \bar{x} = 62,400; \quad H_1: \bar{x} \neq 62,400$$

2.
$$H_0: \bar{x} = 64,000; \quad H_1: \bar{x} > 64,000$$

3.
$$H_0: \mu = 64,000; \quad H_1: \mu < 64,000$$

4.
$$H_0: \mu < 64,000; \quad H_1: \mu > 64,000$$

5.
$$H_0: \mu = 64,000; \quad H_1: \mu \neq 64,000$$

d. Select the appropriate z or t value of the sample test statistic:

1.
$$t = -0.52$$

2.
$$z = -0.18$$

3.
$$t = -0.08$$

4.
$$z = -0.02$$

5.
$$t = -0.58$$

e. Find the value of the corresponding score associated to the significance level

1.
$$t_0 = 2.821$$

2.
$$z_0 = -2.33$$

3.
$$t_0 = -2.821$$

4.
$$t_0 = -3.250$$

5.
$$t_0 = -2.764$$

f. Based on your answers, what is your conclusion?

1. Do not reject H_0

- 2. Reject H_0
- 3. Cannot determine
- 8) Suppose two variables are positively correlated. Does the response variable increase or decrease as the explanatory variable increases?
- 9) Suppose two variables are negatively correlated. Does the response variable increase or decrease as the explanatory variable increases?
- 10) Look at the following diagrams. Indicate the type of linear correlation: positive or negative, and whether it is perfect, moderate or low linear correlation.

- a.
- b.
- c.
- d.
- e.
- f.
- 11) The following results are generated by statistical software. The data comes from analyzing the relationship between elevation (in thousands of feet) and average number of frost-free days per year in Colorado.

Predictor Coef Intercept 318.16 Elevation -30.87

R-square = 96.3%

- a. Use the previous printout to write the least-squares equation
- b. For each 1000-foot increase in elevation, how many fewer frost-free days are predicted?
- c. The printout gives the value of the coefficient of determination R2 (i.e. R-square). What is the value of the correlation r?
- 12) A random sample of size 20 from a normal distribution has $\sigma = 4$ and $\bar{x} = 8$.
 - a. Compute that sample test statistic z under the null hypothesis $H0: \mu = 7$.
 - b. For $H_1: \mu \neq 7$, estimate the P-value of the test statistic.
 - c. For a level of significance of 0.05 and the hypotheses of parts (a) and (b) do you reject or fail to reject the null hypothesis?
- 13) The body weight of a healthy 3-month-old colt should be about $\mu = 60$ kg.
 - a. If you want to set up a statistical test to challenge the claim that $\mu = 60$ kg, what would you use for the null hypothesis H_0 ?
 - b. Suppose you want to test the claim that the average weight of a wild colt is less than 60 kg. What would you use for the alternative hypothesis H_1 ? Suppose you want to test the claim that the average weight of a wild colt is different from 60 kg. What would you use for the alternative hypothesis H_1 ?
- 14) Over the past 8 weeks, a veterinarian took the following glucose readings from a horse (in mg/100ml):

93 88 82 105 99 110 84 89

The sample mean is $\bar{x} = 93.8$. We may assume that the glucose level has a normal distribution, and we know from past experience that $\sigma = 12.5$. The mean glucose level for horses should be $\mu = 85$ mg/100ml. Do these data indicate that the analyzed horse has an overall average glucose level higher than 85? Conduct a hypothesis test, using a significance level $\alpha = 0.05$.