TD 1: RAPPEL D'ANALYSE RÉELLE ET DÉNOMBREMENT

Intégration L3– 2020 P.-O. Goffard & C. Jahel

1. Etudier la convergence des séries de terme générale u_n suivante

(a)
$$u_n = \frac{(n^2+1)2^n}{(2n+1)!}$$

Solution: Nous avons

$$\frac{u_{n+1}}{u_n} = \frac{2(n^2 + 2n + 2)}{(2n+2)(2n+3)(n^2+1)} \to 0,$$

donc la série converge d'après le critère de d'Alembert

(b)
$$u_n = \left(\frac{n^2 - 5n + 1}{n^2 - 4n + 2}\right)^{n^2}$$

Solution: Nous avons

$$u_n = \exp\left\{n^2 \left[\ln\left(n^2 - 5n + 1\right) - \ln\left(n^2 - 4n + 2\right)\right]\right\} \underset{n \to \infty}{\approx} \exp\left[-n + O(1)\right].$$

Nous pouvons alors comparer la série de terme générale (u_n) à l'intégrale convergente $\int_1^{\infty} f(t) dt$ de la fonction $f: t \mapsto e^{-t}$ continue, positive et décroissante. Il est aussi possible d'observer que $u_n^{1/n} < e^{-1}$ et de conclure à la convergence de la série via le critère de Cauchy.

(c)
$$u_n = \left(1 + \frac{1}{n}\right)^{n^2} e^{-n}$$

Solution: Nous avons

$$u_n = \exp\left[n^2 \ln\left(1 + \frac{1}{n}\right) - n\right] \underset{n \to \infty}{\approx} \exp\left[n - 2 + o(1) - n\right] \to e^{-2} > 0,$$

la série diverge grossièrement.

(d)
$$u_n = \left(1 + \frac{1}{n}\right)^{-n^2}$$

Solution: Nous avons

$$u_n = \exp\left\{-n^2 \ln\left(1 + \frac{1}{n}\right)\right\} \underset{n \to \infty}{\approx} \exp\left\{-n^2 \left(\frac{1}{n} + o\left(\frac{1}{n}\right)\right)\right\} \approx \exp\left\{-n + o\left(n\right)\right\},$$

puis $u_n^{1/n} \to e^{-1} < 1$, la série converge en vertu du critère de Cauchy.

(e)
$$u_n = \frac{2n+1}{n^2(n+1)^2}$$

Solution: Nous avons $u_n = O\left(\frac{2}{n^2}\right)$, la série converge par comparaison avec la série convergente de terme générale $2/n^2$.

2. Soit (a_n) une suite numérique dont la suite des sommes partielles est supposées bornée. Soit (f_n) une suite décroissante de réels positifs de limite nulle. Montrer que la série de termes générale $a_n f_n$ converge. <u>Indication</u>: Penser au critère de Cauchy pour les suites.

Solution: Soit $A_n = \sum_{k=0}^n a_k$, on utiliser le critère de Cauchy. On note que

$$\sum_{k=n}^{p} a_k f_k = \sum_{k=n}^{p} (A_k - A_{k-1}) f_k = A_p f_p - A_{n-1} f_n + \sum_{k=n+1}^{p} (f_{k-1} - f_k) A_{k-1}.$$

On pose $M = \sup\{A_k, k \geq 0\}$ et $\epsilon_n = \sup\{f_{k-1}, k \geq n\}$ puis il vient

$$\left| \sum_{k=n}^{p} a_k f_k \right| \leq M\epsilon_n + M\epsilon_n + \sum_{k=n+1}^{p} |f_{k-1} - f_k| A_{k-1}$$
$$= 2M\epsilon_n + \sum_{k=n+1}^{p} |f_{k-1} - f_k| A_{k-1} \leq 3M\epsilon_n$$

3. Calculer les limites $\overline{\lim}_{n \to +\infty} (-1)^n \left(1 + \frac{1}{n}\right)$ et $\underline{\lim}_{n \to +\infty} (-1)^n \left(1 + \frac{1}{n}\right)$

Solution: Soit $u_n = (-1)^n \left(1 + \frac{1}{n}\right)$, on a $\sup_{k \ge n} u_n = \sup_{k \ge n} u_{2n}$ et $\lim_{n \to +\infty} u_{2n} = 1$. Le sup d'une suite est toujours supérieure au sup d'une suite extraite!

4. Soit Ω un ensemble non vide et $(\Omega)_i \in I$ une partition de Ω avec I un ensemble fini d'indice. Montrer que $(A \cap \Omega_i)_{i \in I}$ est une partition de $A \subset \Omega$ non vide.

Solution: Soit $A_i = A \cap \Omega_i$ pour $i \in I$. On a $A_i \cap A_j \subset \Omega_i \cap \Omega_j = \emptyset$ et

$$A = A \cap \Omega = \bigcup_{i \in I} A \cap \Omega_i = \bigcup_{i \in I} A_i.$$

5. Combien d'injection $f:A\mapsto B$ peut on définir en admettant que $\operatorname{Card}(A)=p\leq n=\operatorname{Card}(B)$?

Solution: $\frac{n!}{(n-p)!}$

- 6. On dispose de n euros que l'on souhaite distribuer à k < n personnes
 - (a) En admettant que chaque personne doit recevoir au moins 1 euro, combine de répartition sont possibles?

Solution: $\binom{n-1}{k-1}$, en effet si on numérote les participants x_1, \ldots, x_n , on considère f une injection de $\{2, \ldots, k\}$ dans $\{2, \ldots, n\}$ et on impose f(1) = 1 et f(n+1) = n. On attribue au participant i la valeur $g(i) = \min_{j \neq i} \{f(j) > f(i)\} - f(i)$. Pour une configuration de joueurs ordonnées, il y a donc $\frac{(n-1)!}{(n-k)!}$ possibilités. On divise par k! pour retrouver toutes les répartitions sans ordonnancement des participants.

(b) En relachant la contrainte précédente (possibilité que quelqu'un ne reçoive rien), combien de répartition sont possibles?

Solution: $\binom{n+k-1}{n}$, cela revient à distribuer n+k euros en en donnant au moins un à chaque participant.

7. Montrer que l'ensemble

$$\Omega = \{x \in \mathbb{R} : \exists P \in \mathbb{Z}[x] \setminus \{0\} \text{ t.q. } P(x) = 0\}$$

des réels algébriques est dénombrable. <u>Indication:</u> Commencer par étudier $\mathbb{Z}[x]$

Solution: Il est facile de voir que \mathbb{Z} est dénombrable. Il suit que \mathbb{Z}^n est aussi dénombrable pour tout $n \in \mathbb{N}$. Par union dénombrable, on voit que $\mathbb{Z}_{fin} = \bigcup_n \mathbb{Z}^n$ est dénombrable.

De plus, il existe une bijection naturelle entre $\mathbb{Z}_n[X]$ et \mathbb{Z}^n , donc $\mathbb{Z}[X]$ est dénombrable.

Enfin $\Omega = \bigcup_{P \in \mathbb{Z}[X]} \{x \text{ racine de P.}\}$ et comme le nombre de racine d'un polynome est fini, on a le résultat.

8. Soit $f: X \mapsto \mathcal{P}(X)$ arbitraire, montrer que f n'est pas surjective en considérant $A = \{x \in X : x \notin f(x)\}$. $\mathcal{P}(\mathbb{N})$ est-il dénombrable?

Solution: Supposons que f est surjective, en particulier, il existe $a \in X$ tel que f(a) = A. Si aA, cela signifie par définition que $a \notin A$ et réciproquement, $a \notin A$ signifie que $a \in A$, un tel a ne peut pas exister.

 $\mathcal{P}(\mathbb{N})$ n'est pas dénombrable, puisqu'il n'existe pas de surjection de \mathbb{N} dans $\mathcal{P}(\mathbb{N})$.

- 9. Soit $\theta: \mathcal{P}(X) \mapsto \mathcal{P}(X)$ croissant pour l'inclusion,
 - (a) Montrer que

$$\mathcal{F} = \{ A \in \mathcal{P}(X) : A \subset \theta(A) \},$$

est non vide et stable par union arbitraire.

Solution: $\emptyset \in \mathcal{F}$ donc \mathcal{F} n'est pas vide.

Soit $(A_i)_{i\in I}$ une famille telle que $A_i \subset \theta(A)$ pour tout $i \in I$. On a $A_i \subset \bigcup_{i\in I} A_i$ et donc par croissance $\theta(A_i) \subset \theta(\bigcup_{i\in I} A_i)$. En particulier comme $A_i \in \mathcal{F}$, $A_i \subset \theta(\bigcup_{i\in I} A_i)$ et en prenant la réunion, on a $\bigcup_{i\in I} A_i \subset \theta(\bigcup_{i\in I} A_i)$.

(b) Montrer que \mathcal{F} admet un plus grand élément E qui vérifie $\theta(E) = E$.

Solution: On rappelle le Lemme de Zorn :

Lemme 1 Tout ensemble non vide (partiellement) ordonné tel que toute partie d'éléments totalement ordonnée admet un majorant, admet un majorant.

La question (a) nous permet donc d'affirmer que \mathcal{F} respecte les hypothèses de ce Lemme, en particulier, il y a une partie maximale $E \in \mathcal{F}$. Si E est strictement inclus dans $\theta(E)$, $\theta(E)$ est une partie plus grande que E dans \mathcal{F} , ce qui contredit le caractère maximal de E, d'où l'égalité.

(c) Soit $f: X \mapsto Y$ et $g: Y \mapsto X$ injectives, construire $h: X \mapsto Y$ bijective. <u>Indication:</u> Utiliser a) et b) avec $\theta: \mathcal{P}(X) \mapsto \mathcal{P}(X)$ telle que $\theta(A) = [g(f(A)^c)]^c$.

Solution: On vérifie que θ est croissante pour l'inclusion. Soit $A \subset B \in \mathcal{P}(X)$, on a

$$f(A) \subset f(B)$$

$$\Rightarrow f(B)^c \subset f(A)^c$$

$$\Rightarrow g(f(B)^c) \subset g(f(A)^c)$$

$$\Rightarrow [g(f(A)^c)]^c \subset [g(f(B)^c)]^c.$$

D'après la question (b), il y a donc une partie $E \in \mathcal{P}(X)$ telle que $E = \theta(E)$. On définit une bijection h de X dans Y en penant h(x) = f(x) si $x \in E$ et $h(x) = g^{-1}(x)$. On vérifie que h est bien une bijection. On remarque que si $x \notin E$, alors $h(x) \notin f(E)$ par définition de E et injectivité de g. Ceci nous assure que h est injective. De plus h est bien surjective puisque tout élément de $Y \setminus f(E)$ a une image dans $X \setminus E$.