Geometric Algebra HW 1 (Wedge Product) MultiV 2021-22 / Dr. Kessner

1. For each of the following pairs of vectors \mathbf{u} and \mathbf{v} , find the wedge product $\mathbf{u} \wedge \mathbf{v}$. Draw the vectors and make sure your answer makes sense geometrically.

a.
$$\mathbf{u} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

b.
$$\mathbf{u} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

c.
$$\mathbf{u} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

d.
$$\mathbf{u} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

- 2. Find the area of the triangle determined by the two vectors $\mathbf{u} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$. Find a general formula for the area of a triangle determined by two vectors \mathbf{u} and \mathbf{v} .
- 3. Find the distance from the point (2,2) to the line 2x + 2y = 2.
- 4. Find the distance from the point (7,7) to the line 6x + 8y = 48.

Answers:

1a.
$$2e_1 \wedge e_2$$

1b.
$$-2\mathbf{e_1} \wedge \mathbf{e_2}$$

1c.
$$9e_1 \wedge e_2$$

1d.
$$8\mathbf{e_1} \wedge \mathbf{e_2}$$

2.
$$A = \frac{1}{2} |\mathbf{u} \wedge \mathbf{v}| = \frac{1}{2} (8) = 4$$

3.
$$\sqrt{2}$$