Objectives & Scheme

January 2022: "standard" structure for courses and an example scRNA-seq course

- Template for course structure
- Tools and packages organization
- Data collection
- Alignment and analysis of dataset
- Workflows/pipelines
- Course material and test
- Work on a version with Cerebro (?)
- Set on the sandbox

Objectives & Scheme

January 2022: "standard" structure for courses and an example scRNA-seq course

Getting data and preprocessing

16-22.September 2021

- Dataset
 - 15K cells
 - Available from Di Persio et al
 - No sensitive data
- Tools
 - Python (on notebooks)
 - Just began preprocessing the dataset
 - Everything organized in the "cookiecutter" standard structure
 - Includes course documentation in a webpage format
- Next step
 - Do a first coding of the necessary parts of the module
 - Keep an eye on reproducibility/package versions

Getting data and preprocessing

29.September 2021

- Work on the data and course repository
 - 15K cellsData clean and preprocessed, starting to structure some analysis
 - I am collecting a few alignment methods for the long version of the course and for illustration in the short one
 - In parallel I am organizing the skeleton of the webpage/course documentation and the cookiecutter structure

Tools

- Python (on notebooks) with integration of some necessary R code (rpy2 package)
- Mkdocs for the webpage/documentation hosted on github and easy to write

Next step

- Get alignment done and generate also RNA velocity files
- Resolve the package conflicts
- Try to finalize the webpage skeleton

Organize course structure and packages

6.October 2021

- Packages organized in conda package manager
- Course structure and documentation with cookiecutter and mkdocs

Organize course structure and packages

6.October 2021

- Packages organized in conda package manager
- Course structure and documentation with cookiecutter and mkdocs
- two pipelines choices for raw data -> gene counts and dynamics.
- Both snakemake and gwf to write pipelines
- Code, notes and assignments in jupyter notebooks also integrated in webpage

Course repository and material soon available as a repository on GitHub.

scRNAseq-Genomic

Organization/plan

- scRNA-seq module in Python and R → Python version ready, R in development → feedback
 - extension into 1 week summer course (AU/KU)
 - recycling material for semester 2 weeks session (AU)

- scRNA-seq module in Python and R → Python version ready, R in development → feedback
 - extension into 1 week summer course (AU/KU)
 - recycling material for semester 2 weeks session (AU)
- Research single cell data and analysis, 2 datasets
 - integrated data from lean vs obese patients tutorial \rightarrow data and code ready, waiting for publication (AU)
 - \bullet Spatial data w/Alex \rightarrow waiting news from phd student (AU/KU)

- scRNA-seq module in Python and R → Python version ready, R in development → feedback
 - extension into 1 week summer course (AU/KU)
 - recycling material for semester 2 weeks session (AU)
- Research single cell data and analysis, 2 datasets
 - integrated data from lean vs obese patients tutorial → data and code ready, waiting for publication (AU)
 - \bullet Spatial data w/Alex \rightarrow waiting news from phd student (AU/KU)
- Environmental DNA → Detection of leptospirosi and possible vectors in Okinawa → data ready (AU)

- scRNA-seq module in Python and R → Python version ready, R in development → feedback
 - extension into 1 week summer course (AU/KU)
 - recycling material for semester 2 weeks session (AU)
- Research single cell data and analysis, 2 datasets
 - integrated data from lean vs obese patients tutorial \rightarrow data and code ready, waiting for publication (AU)
 - \bullet Spatial data w/Alex \rightarrow waiting news from phd student (AU/KU)
- Environmental DNA → Detection of leptospirosi and possible vectors in Okinawa → data ready (AU)
- \bullet GWAS study and/or course \to only in the planning phase (AU/KU)

Testing material is ready.

- conda environment auto-loading
- python kernel auto-loading and shown in jupyterlab
- documentation webpage builds correctly
- material on github (not the data) as per cookiecutter template
- running cost <5 DKK (8-32 vCPUs). No GPUs.

Testing material is ready.

- conda environment auto-loading
- python kernel auto-loading and shown in jupyterlab
- documentation webpage builds correctly
- material on github (not the data) as per cookiecutter template
- running cost <5 DKK (8-32 vCPUs). No GPUs.

But!!!

Testing material is ready.

- conda environment auto-loading
- python kernel auto-loading and shown in jupyterlab
- documentation webpage builds correctly
- material on github (not the data) as per cookiecutter template
- running cost <5 DKK (8-32 vCPUs). No GPUs.

But!!!

- multiple users would overwrite each other cache and savefile/logs
- each user must have its own notebooks to work with

Implementing final changes

- only environment and data are at a fixed location (ideally read-only by sharing settings)
- auto-loading includes cloning github repo in a personal folder → few MBs taken
- eventually a last command removes excess savefiles

Implementing final changes

- only environment and data are at a fixed location (ideally read-only by sharing settings)
- auto-loading includes cloning github repo in a personal folder → few MBs taken
- eventually a last command removes excess savefiles

I will soon send around the information for testing and feedback.