Zur Erinnerung: Verifikation von C₀

- Nur Instanzen des Zuweisungsaxioms und korrekte Implikationen sind Blätter. Ein Programm ist dann korrekt, wenn alle Zweige in Blättern enden.
- ► Arithmetische und logische Umformungen erfolgen ausschließlich in den Implikationen. Im Zuweisungsaxiom erfolgen keine weiteren Manipulationen der Vor- und Nachbedingungen.
- SV und SN dienen zum "Hinmassieren" der Vor- und Nachbedingungen. Nur hier spielt die Semantik der Formeln in den Bedingungen eine Rolle. In den anderen Fällen erfolgen nur syntaktische Manipulationen.
- ▶ Bei Schleifen wird immer die Schleifeninvariante benötigt. Die Schleifeninvariante ist vor, während und nach der Ausführung der Schleife gültig.
 - $ightharpoonup SI = A \wedge B$
 - ▶ A: Zusammenhang von Zählvariable und Akkumulatorvariable
 - \blacktriangleright B: Zusammenhang mit der Schleifenbedingung π

Übung 2 (a)

```
READ 1;
                                   WRITE 1;
      READ 2;
                                   JMP 0;
      LOAD 2;
                         test.3: LOAD 1;
      LIT 3;
                                  LIT 1;
      LOAD 1;
                                   SUB;
      STORE 3;
                                  LOAD 3;
                                  LOAD 2;
      STORE 2;
      STORE 1;
                                  LOAD 3;
                                   MUL;
      JMP test;
test: LOAD 1;
                                  LOAD 3;
                                   ADD;
      LIT 0;
      EQ;
                                   STORE 3;
      JMC test.3;
                                   STORE 2;
                                   STORE 1;
      LOAD 3;
      STORE 1;
                                   JMP test;
```

Zusatzaufgabe 1

$$SI = (x \bmod 3 = a \bmod 3) \land (x \ge 0)$$

$$A = SI$$

$$B = SI \land \neg (x > 2)$$

$$C = SI \land (x > 2)$$

$$D = SI$$

$$E = ((x - 3) \bmod 3 = a \bmod 3) \land (x - 3 > 0)$$

Wieso ist $x \ge 0$ die Randbedingung?

Ist die Schleife beendet, so soll die Teilformel $B \wedge \neg \pi$ von $SI \wedge \neg \pi$ zum gewünschten Endergebnis führen. In diesem Beispiel ist $B=(x\geq 0)$, dann impliziert $B \wedge \neg (x>2)$ also $0\leq x\leq 2$ und daraus folgt $x=a \bmod 3$.

Zusatzaufgabe 2 (a)

```
tab_{f+|Decl} = [x/(var, global, 1), h/(proc, 1), g/(proc, 2),
           f/(proc, 3), c/(var, lokal, 1), a/(var, lokal, -3),
           b/(var-ref, -2)]
                          3.1.1: LOAD(lokal, -3);
LOAD(global, 1);
LIT 1:
                                    PUSH:
GT:
                                    LOADA (global, 1);
JMC 3.1.1;
                                    PUSH:
LOAD(lokal, -2);
                                    CALL 1;
                          3.1.2: LOADI(-2);
PUSH:
CALL 2;
                                    LIT 1;
JMP 3.1.2;
                                    ADD;
                                    STORE(lokal, 1);
```

Zusatzaufgabe 2 (b)

ΒZ	DK	LK	REF	Inp	Out
(12,	$\varepsilon,$	0:3:0:7,	3,	5,	$\varepsilon)$
(13,	$\varepsilon,$	5:3:0:7,	3,	$\varepsilon,$	$\varepsilon)$
(14,	7,	5:3:0:7,	3,	$\varepsilon,$	$\varepsilon)$
(15,	$\varepsilon,$	5:3:0:7:7,	3,	$\varepsilon,$	$\varepsilon)$
(16,	1,	5:3:0:7:7,	3,	$\varepsilon,$	$\varepsilon)$
(17,	$\varepsilon,$	5:3:0:7:7:1,	3,	$\varepsilon,$	$\varepsilon)$
(4,	$\varepsilon,$	5:3:0:7:7:1:18:3,	8,	$\varepsilon,$	$\varepsilon)$
(5,	$\varepsilon,$	5:3:0:7:7:1:18:3:0,	8,	$\varepsilon,$	$\varepsilon)$
(6,	7,	5:3:0:7:7:1:18:3:0,	8,	$\varepsilon,$	$\varepsilon)$
(7,	5:7,	5:3:0:7:7:1:18:3:0,	8,	$\varepsilon,$	$\varepsilon)$
(8,	12,	5:3:0:7:7:1:18:3:0,	8,	$\varepsilon,$	$\varepsilon)$
(9,	$\varepsilon,$	12:3:0:7:7:1:18:3:0,	8,	$\varepsilon,$	$\varepsilon)$

Zusatzaufgabe 2 (b)

ΒZ	DK	LK	REF	Inp	Out
(18,	$\varepsilon,$	12:3:0:7,	3,	$\varepsilon,$	$\varepsilon)$
(19,	$\varepsilon,$	12:3:0:7,	3,	$\varepsilon,$	12)
(3,	$\varepsilon,$	12,	0,	$\varepsilon,$	12)
(0,	$\varepsilon,$	12,	0,	$\varepsilon,$	12)