

Intuitively:

The loss surface for just the mean squared error component is in blug.

- ullet Sometimes, $ec{w}_{
 m OLS}^*$ is unique, and sometimes there are infinitely many possible $ec{w}_{
 m OLS}^*$. There are infinitely many possible \vec{w}_{OLS}^* when the design matrix, X, is not full rank! All of these infinitely many solutions minimize mean squared error.
- ullet Which vector $ec{w}_{
 m ridge}^*$ minimizes the ridge regression objective function?

$$R_{\text{ridge}}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2 + \lambda \sum_{j=1}^{d} w_j^2$$

ullet It turns out there is **always** a unique solution for $ec{w}_{
m ridge}^*$, even if X is not full rank. It is:

$$\vec{w}_{\text{ridge}}^* = (X^T X + n\lambda I)^{-1} X^T \vec{y}$$

multicollinearity!

Taking a step back

- $\vec{w}_{
 m ridge}^*$ doesn't minimize mean squared error it minimizes a slightly different objective function.
- So, why would we use ever use ridge regression?

We hope the resulting model will perform better on unseen tost data

than if we don't regulaize!

• It seems that the regularized polynomial, in which we used cross-validation to choose both the regularization penalty λ and degree, generalizes best to unseen data!

8

- ► Ayaıı.
 - The loss surface for just the mean squared error component is in blue.

■ The constraint, $\sum_{j=1}^{d} |w_j| \leq Q$, is in green.

The larger Q is, the larger the side length of the diamond is.

example |x|+|y| =5

- Notice that the **constraint set** has clearly defined "corners," which lie on the axes. The axes are where the parameter values, w_1 and w_2 here, are 0.
- Due to the shape of the constraint set, it's likely that the minimum value of mean squared error, among all options in the green diamond, will occur at a corner, where some of the parameter values are 0.

• How did the average validation MSE change with λ ?

Here, large values of λ mean less complex models, not more complex.

@ localhost

	ols	ridge	lasso
feature			
intercept	460.31	214.15	2.54e+02
polynomialfeaturesdeparture_hour	-94.79	-0.71	-2.10e+01
polynomialfeaturesdeparture_hour^2	6.80	-4.63	-1.70e+00
polynomialfeaturesdeparture_hour^3	-0.14	0.31	1.81e-01
onehotencoderday_Mon	-0.61	-5.74	-2.70e+00
onehotencoderday_Thu	13.30	6.04	9.00e+00
onehotencoderday_Tue	11.19	5.52	8.68e+00
onehotencoderday_Wed	5.73	-0.46	0.00e+00
onehotencodermonth_December	8.90	2.82	4.06e+00
onehotencodermonth_February	-5.33	-7.14	-5.81e+00
onehotencodermonth_January	1.93	0.39	0.00e+00
onehotencodermonth_July	2.46	0.44	0.00e+00
onehotencodermonth_June	6.28	4.45	5.14e+00
onehotencodermonth_March	-0.76	-1.70	-8.17e-01
onehotencodermonth_May	9.36	4.95	5.57e+00
onehotencodermonth_November	1.40	-1.81	-0.00e+00
onehotencodermonth_October	2.06	0.22	0.00e+00
onehotencodermonth_September	-3.20	0.05	-0.00e+00
pipelineday_of_month_Week 2	0.91	1.39	3.23e-01
pipelineday_of_month_Week 3	6.30	4.70	4.57e+00
pipelineday_of_month_Week 4	0.28	-0.20	-0.00e+00
pipelineday_of_month_Week 5	2.09	0.76	4.78e-03

?

38.1