

# FIRST: ALGEBRA

## Choose the correct answer:

| ( | (1) | If the mode of | the values | 7,5,x+4,5,7         | is 5, | then $x =$ |      |
|---|-----|----------------|------------|---------------------|-------|------------|------|
| ۸ | ι   |                |            | • , • , • • , • , • | ,     |            | •••• |

- **a** 1
- **b** 4
- **G** 5
- **d** 7

- **a** 25
- **b** 5
- **G** 6
- **d** 8

(3) The algebraic term 
$$6x^3y^2$$
 is of ..... degree

- a third
- **6** fourth
- **G** fifth
- d sixth

(4) The rational number that lies between 
$$\frac{1}{3}$$
 and  $\frac{5}{9}$  is .....

- $\frac{2}{3}$
- $\frac{3}{4}$
- $\bigcirc \frac{4}{9}$
- $\frac{5}{27}$

(5) The multiplicative inverse of the number 
$$\left(\frac{1}{2}\right)^2$$
 is .....

- a 4
- **b** -4
- **G** 2
- **d** -2

(6) If 
$$\frac{5}{x+2}$$
 is a rational number, then  $x \neq \dots$ 

- **a** -2
- **(b)** 0
- **G** 2
- **d** 5

- a 4
- **6** 5
- **G** 7
- **d** 16

(8) If 
$$\frac{4}{7}x = \frac{4}{7}$$
, then  $x = .....$ 

- **a** 1
- **(b) (**0)
- **G** 4
- **d** 7

- **a** 3
- **b** 2
- **G** 4
- **6** 8

(10) The additive inverse of -3 is .....

- **a** -3
- **b** 3
- $\mathbf{G} \quad \frac{1}{3}$
- $\frac{-1}{3}$

(11) The reminder of subtracting 7x from 9x is .......

- 2x
- (b) 16x
- G -2x
- **(1)** 0

(12) The mode of the values 3,3,4,4,5,3 is .....

- **a** 4
- **(b)** 22
- **G** 5
- **d** 3

(13) If  $\frac{3}{x-7}$  is not a rational number, then  $x = \dots$ 

- **a** 0
- **6** 7
- **G** -7
- **d** -3

(14) 7x exceeds -5x by .......

- (a) 12x
- **b** 2x
- G -2x
- $-2x^2$

(15) The additive inverse of the number  $\frac{3}{7}$  is .......

- $\frac{-7}{3}$
- $\frac{-3}{7}$
- **d** 7

(16)  $\frac{-2}{5} \times 1 = \frac{-2}{5}$  (..... property)

a commutative

- **©** associative
- **b** multiplicative identity
- d additive identity

(17) The additive inverse of the number  $\left(\frac{-1}{5}\right)^0$  is .....

- **a** 1
- **b** -1
- **G** 5
- **d** -5

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

(18) a + a = ....



**b** 2a



(19) The degree of the algebraic expression  $5x^3 + 7x + 4$  is .....

a first

**b** second

**G** third

d fourth

(20) The number  $\frac{5}{12} = .....$ 

0.42

**(b)** 0.416

0.416

0.45

(21) If  $\left(\frac{-4}{3}\right) + a = 0$ , then  $a = \dots$ 

 $\boxed{\mathbf{3}}$ 

 $\frac{4}{3}$ 

**G** 1

0

(22) The H.C.F. of  $12 x^3 + 6 x^2$  is .......

**a** 6

**G** x<sup>2</sup>



| (1) | $2\frac{1}{5} \times = 1$ | " 5 "<br>11 |
|-----|---------------------------|-------------|
| (2) | 0.18 - 30% =              | "-0.12"     |

(3) 
$$7 x^3 y^2 \times \dots = 21 x^3 y^5$$
 "3  $y^3$ "
(4)  $(2x-3)(x+5) = 2x^2 + \dots = 15$  "7x"

(5) 
$$24 x^4 y^6 = 6 x^2 y^3 \times \dots$$
 "4  $x^2 y^3$ "

| (9) $5x^2 + 15 \times y = 5 \times ( +)$ |
|------------------------------------------|
|------------------------------------------|

The median of the values 3, 5, 4 is .....

(11) 
$$(x-3)$$
 (..... + .....) =  $x^2 - 9$ 

(14) If 
$$\frac{x-7}{5} = 0$$
, then  $x = \dots$ 

(15) 
$$3 x^2 + 15 y = \dots (x^2 + 5 y)$$

$$(16) (3x+5) + (4x-5) = \dots$$

$$(17)$$
  $\frac{1}{2} = .....$  %

(13)

(18) If 
$$\frac{a}{b} = \frac{1}{2}$$
, then  $\frac{2a}{b} = \dots$ 

(19) The rational number 
$$\frac{x-4}{x+5} = 0$$
, then  $x = .....$ 

(20) The multiplicative inverse of the number 
$$3\frac{1}{3}$$
 is .....

(21) If  $a \times \frac{b}{5} = \frac{a}{5}$ , then  $b = \dots$ 

(22) 
$$\frac{3x}{5} - \frac{x}{5} = \dots$$

"1"

(25) 
$$7a^3 - \dots = 3a^3$$

(20)

(26) The coefficient of the algebraic term 
$$\frac{1}{3}x^4yz$$
 is .....

www.Cryp2Day.com

| (27) | The multiplicative inverse of $\left -\frac{1}{9}\right $ is | <b>"9</b> " |  |
|------|--------------------------------------------------------------|-------------|--|
| (28) | $x^2 + 3yx - x^2 + 2xy = \dots$                              | "5ху"       |  |
| (29) | The H.C.F. of: $15 x^3 + 5x^5$ is                            | "5x³"       |  |



## Essay problems:

(1) Subtract 
$$5x^2 + y^2 - 3xy + 1$$
 from  $6x^2 - 2xy + 3y^2$ 

(2) Use the distribution property: 
$$\frac{27}{16} \times \frac{11}{7} + \frac{27}{16} \times \frac{11}{7} - \frac{27}{16} \times \frac{6}{7}$$

(3) Simplify: 
$$(2x-3)(2x+3)+7$$
, then calculate the numerical value of the result when  $x = -1$ 

(4) Divide: 
$$(2x^3 + 3x^2 - 4x - 6)$$
 by  $(2x + 3)$  where  $\left(x \neq \frac{-3}{2}\right)$ 

(5) What is the increase of: 
$$7x + 5y + z$$
 than  $2x + 6y + z$ ?

(6) Divide: 
$$(14x^2y - 35xy^2 + 7xy)$$
 by  $(7xy)$  where  $x \neq 0$  and  $y \neq 0$ 

(7) If 
$$a = 3$$
,  $b = \frac{2}{3}$  and  $c = \left| -\frac{4}{3} \right|$ , find:  $c^2 - a b$ 

(8) Write four rational numbers between: 
$$\frac{3}{2}$$
 and  $\frac{3}{4}$ .

(10) Use the distribution property: 
$$6 \times \frac{5}{7} + 2 \times \frac{5}{7} - \frac{5}{7}$$
.

(11) Find the rational number which lies at the fourth way between 
$$\frac{1}{7}$$
 and  $\frac{3}{7}$  from the side of the smaller number.

(12) Subtract: 
$$(x - 5xy + y)$$
 from  $(2x - xy + 4y)$ 



- (13) Simplify: (x-3)(x+3) + 9, then find the numerical value of the result when x = 5
- (14) Factorize by identifying H.C.F.:  $4x^2y^3 2xy^2 + 6x^3y$
- (15) If the arithmetic mean of the numbers: 8, 7, 5, 9, 4, 3, k+4 is 6, then find the value of k.
- (16) The following table shows Ahmed's marks in Mathematics exam in 6 months:

| Mont | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. |
|------|------|------|------|------|------|------|
| Mark | 30   | 35   | 42   | 37   | 44   | 50   |

Find the arithmetic mean of the marks.

(17) The following frequency distribution shows the marks of 40 pupils in an exam:

| Mark  | 15 | 16 | 17 | 18 | 19 | 20 |
|-------|----|----|----|----|----|----|
| Freq. | 4  | 5  | 8  | 12 | 7  | 4  |

Find the mode mark.



# SECOND: GEOMETRY

## Choose the correct answer:

- (1) If  $\angle x = \angle y$ ,  $\angle x$  and  $\angle y$  are supplementary angles, then  $m(\angle x) = \dots$ 
  - **a** 45
- **b** 90
- **G** 135
- **d** 180

(2) In the opposite figure:

AF // DE // BC and AE = EC,

then AD : AB = ......



- a 2:1
- **b** 3:2
- G 1:3
- **(1)** 1:2
- (3) The two straight lines that are perpendicular to a third are .....
  - a perpendicular

**6** intersecting

**b** coincident

- d parallel
- - **a** 180
- **b** 45
- **G** 360
- **d** 90
- (5) If two straight lines intersect, then each two ...... angles have the same measure.
  - a vertically opposite
- G adjacent

**b** alternate

- d corresponding
- (6) If  $\angle x$  complements  $\angle y$  and  $\angle x = \angle y$ , then  $m(\angle x) = \dots ^{\circ}$ 
  - **a** 45
- **b** 90
- **G** 180
- **d** 360
- (7) If  $\triangle ABC = \triangle XYZ$  and  $m(\angle A) = m(\angle B) = 100^{\circ}$ , then  $m(\angle X) = \dots^{\circ}$ 
  - **a** 50
- **(b)** 80
- **G** 90
- 100

- **a** 630
- 180 **(**
- 90
- 100

The supplement of the angle of measure 30° is an angle of (9) measure ......°

- **a** 60
- 180 **6**
- 150
- 90

The angle whose measure is more than 90° and less than 180° (10)is ..... angle

- an obtuse
- **b** an acute **c** a right
- **a** straight

(11) If  $\triangle ABC = \triangle XYZ$ , then  $AB = \dots$ 

- a xy
- $\bigcirc$  XZ
- G YZ
- BC **a**

(12) The sum of the measures of the accumulative angles at a point equals ..... right angles

**a** 6

- $\mathbf{6}$
- $\mathbf{G}$  3

(13) If  $\triangle ABC = \triangle XYZ$ ,  $m(\angle A) = 40^{\circ}$  and  $m(\angle Z) = 80^{\circ}$ , then  $m(\angle B) = \dots^{\circ}$ 

- **a** 40
- 80
- 70
- 60

(14)  $\angle XYZ = \overrightarrow{YZ} \dots \overrightarrow{YX}$ 

- **6**  $\cap$

(15) The complement of the zero angle ........... angle.

- an obtuse **b** an acute **c** a right

- d zero

(16) If  $m(\angle A) + m(\angle B) = 180^{\circ}$ , then  $\angle A$  and  $\angle B$  are ......

- a equal in measure
- complementary angles
- **b** supplementary angles
- d adjacent angles

If the vertically opposite angles are complementary, then the measure of each one equal .............°

- **a** 45
- 50
- G 90
- 180

(18) If a line segment is extended from one of its terminals without limit, it will be .....

a line segment

a ray

**(b)** a straight line

an angle

(19) If  $m(\angle A) = 170^{\circ}$ , then  $m(reflex \angle A) = \dots^{\circ}$ 

- **a** 190
- 180
- **G** 170
- **6** 360

(20) The angle whose measure is  $90\frac{1}{2}^{\circ}$  is ......

- an obtuse
- (b) an acute (c) a right
- d a straight

(21) If two straight lines are perpendicular to a third, then the two straight lines are .....

perpendicular

parallel

**b** congruent

intersecting



## Complete:

The perpendicular bisector of a line segment is called ...... (1)

(2) In the opposite figure:

If 
$$\triangle ABC \equiv \triangle XYZ$$
,

$$m(\angle A) + m(\angle B) = 140^{\circ},$$

Then  $m(\angle Z) = \dots^{\circ}$ 



(3) In the opposite figure:

> If  $\overrightarrow{MB} \cap \overrightarrow{AC} = \{M\}$ ,  $m(\angle AMB) =$ 60°

then the value of x equals .......°





- (5) If a straight intersects two parallel straight lines, then each two corresponding angles are ......
- (6) The two adjacent angles formed by the intersection of a straight line and a ray are ......
- (7) The angle whose measure is 50° complements an angle of measure ...........°
- (8) The two straight lines parallel to a third are .....
- (9) If  $\triangle ABC = \triangle XYZ$ , then  $m(\angle Z) = m(\angle ....)$
- (10) In the opposite: If  $B \in \overline{AE}$ , then  $m(\angle ABD) = \dots$



- (11) If two straight lines intersect, then each two vertically opposite angles are ......
- (12) The two angles are congruent if they are .....
- (13) The complement of the acute angle is ...... angle.
- (14) If two adjacent angles are supplementary, then their outer sides are ......
- (16) The two adjacent angles formed by a straight line and a ray with a starting point on this straight line are ......
- (17) ..... is the union of two rays with the same starting point.
- (18) If  $\overline{AB} \equiv \overline{CD}$ , then  $AB CD = \dots$

- (19) If Z is the midpoint of  $\overline{XY}$ , then  $\overline{XZ}$  .......  $\overline{YZ}$
- (20) If the two outer sides of two adjacent angles are on the same straight line, then these two angles are ......
- (21) The supplement of the obtuse angle is ...... angle.
- (22) In the opposite figure:

If 
$$ABCD \equiv XYZL$$
, complete

(1) 
$$LX = ..... cm$$

(2) 
$$m(\angle B) = \dots^{\circ}$$

(3) 
$$m(\angle Z) = .....^{\circ}$$



# Essay problems:

- (1) Mention two cases of congruency of two triangles.
- (2) In the opposite figure:

$$m (\angle BAD) = m (\angle BCD) = 90^{\circ}$$

$$AB = CB = 5 \text{ cm.}$$
  $AD = 3 \text{ cm.}$ 

Mention the conditions for  $\triangle$  ABD ,  $\triangle$  CBD to be congruent

, then find : The length of  $\overline{CD}$ 



(3) In the opposite figure :

$$\overrightarrow{AD} \cap \overrightarrow{BC} = \{M\}$$

$$,BM = MC$$

$$,AM = MD$$

Write the conditions for  $\triangle$  AMB ,  $\triangle$  DMC to be congruent.



$$AB = BC \cdot AD = DC$$

$$m (\angle C) = 80^{\circ}$$

$$, m (\angle BDC) = 40^{\circ}$$

**Prove that:** 
$$\triangle$$
 CBD  $\equiv$   $\triangle$  ABD

, then find : 
$$m (\angle ABD)$$



(5) In the opposite figure:

$$AB = AC$$
 and

$$BD = CD$$

Show that :  $\overrightarrow{AD}$  bisects  $\angle$  BAC



(6) In the opposite figure:

$$BA = BC$$
,  $DA = DC$ ,  $m (\angle A) = 110^{\circ}$ 

and m (
$$\angle$$
 ADB) = 40°



(2) Find: 
$$m (\angle ABC)$$



$$\overrightarrow{AF} / / \overrightarrow{DE} / / \overrightarrow{XY} / / \overrightarrow{BC}$$

$$AD = DX = XB AC = 9 cm$$
.





(8) In the opposite figure :

$$\overrightarrow{AB} / \overrightarrow{CD} / \overrightarrow{EF}$$

$$, m (\angle A) = 45^{\circ}$$

$$, m (\angle E) = 130^{\circ}$$

**Find**:  $m (\angle ACE)$ 



(9) In the opposite figure:

$$\overline{DE} // \overline{AC}$$
, m ( $\angle A$ ) = 110°

$$m (\angle D) = 70^{\circ}$$

Find:  $m (\angle C)$ 

Is  $\overrightarrow{AB} / \overrightarrow{CD}$ ? (Give the reason)



# (10) In the opposite figure :

BD bisects ∠ ABC

$$, m (\angle DBC) = 35^{\circ}$$

$$m (\angle BDC) = 120^{\circ}$$

**Find:**  $m (\angle A)$  in degrees.



#### (11) In the opposite figure :

$$m (\angle YXZ) = 90^{\circ}$$

• m (
$$\angle$$
 ZXL) = 50°

and m ( $\angle$  LXE) = 110°

Find with giving the reason :  $m (\angle YXE)$ 



## (12) In the opposite figure:

$$m (\angle AMB) = 110^{\circ}$$

$$m (\angle AMD) = 90^{\circ}$$

$$m (\angle DMC) = 40^{\circ}$$

Find with steps:  $m (\angle BMC)$ 



## (13) In the opposite figure :

 $m (\angle AMB) = 90^{\circ} and$ 

 $m (\angle BMC) = 120^{\circ}$ 

Find with proof:  $m (\angle AMC)$ 



## (14) In the opposite figure :

Find the measure of the angle CDB where

$$m (\angle ADE) = 125^{\circ}$$

$$, m (\angle BDE) = 115^{\circ}$$

and  $\overrightarrow{DA} \perp \overrightarrow{DC}$ 



#### (15) In the opposite figure:

Find the value of X in degrees.



(16) In the opposite figure:

$$\overrightarrow{AC} \cap \overrightarrow{BD} = \{B\}$$
  
 $\Rightarrow m (\angle ABD) = 50^{\circ}$   
 $\Rightarrow m (\angle DBC) = 2 X^{\circ}$ 



Find in degrees the value of X

(17) In the opposite figure :

 $B \in \overrightarrow{AC}$ , m ( $\angle$  FBC) = 30° and m ( $\angle$  ABD) = m ( $\angle$  DBE) = m ( $\angle$  EBF)



(18) In the opposite figure :

Find:  $m (\angle ABE)$ 

Are  $\overrightarrow{CA}$  and  $\overrightarrow{CB}$  on the same straight line? Why?



(19) Using the geometric instruments, draw  $\angle$  ABC where m ( $\angle$  B) = 80°, then draw  $\overrightarrow{BD}$  to bisect it. (Don't remove the arcs).

Using the geometric instruments, draw ∠ ABC of measure 110°, then draw BF to bisect the angle.





## Choose the correct answer:

| (1)            | Fifth    | ٥f | the  | number  | <b>5</b> <sup>10</sup> | ic |  |
|----------------|----------|----|------|---------|------------------------|----|--|
| ( <del> </del> | 1 11 171 | O1 | 1116 | nuniber | J                      | 13 |  |

- **a** 5<sup>2</sup>
- **1**10
- **G** 5<sup>9</sup>
- **d** 2.5<sup>10</sup>
- (2) If three times of a number is 15, then the fifth of this number is .......
  - **a** 3
- **6** 75
- **G** 1
- **6** 5
- (3)  $0.0565 \cong \dots$  (to the nearest hundredth)
  - 0.056
- 0.057
- **O**.06
- 0.1

- (4)  $2\frac{1}{5} \times \dots = 1$ 
  - a  $2\frac{1}{5}$
- $\frac{11}{5}$
- $\frac{5}{11}$

- (5) 12 % of 200 kg = ..... kg
  - **a** 12
- **(b)** 24
- **©** 2400
- 0.06

- (6)  $\frac{-5}{3}$  ..... zero
  - **a** >
- **(b)** =
- **G** <
- **(**] ≥
- (7) The image of the point (-3,5) by translation of 3 units in the negative direction of y-axis is ......
  - **a** (-3,2)
- **(-3,8)**
- **G** (-6,5)
- (0,8)
- (8) The image of the point (-3,5) by translation of 3 units in the positive direction of y-axis is ......
  - **a** (-3,2)
- **(-3,8)**
- **G** (-6,5)
- (0,5)

- **a** 28
- 11 **(b)**
- **G** 40
- **d** 18

The number of triangles in the opposite figure (10)is .....



- **a** 2
- **G** 6
- **6** 8

The number of rectangles in the opposite (11)figure is ......



- **a** 4
- **6** 5
- **G** 7
- **d** 9

A cube of edge length 5 cm, then its volume = ....... cm<sup>3</sup> (12)

- **a** 5
- **(b)** 25
- **G** 10
- **d** 125

(13)The two diagonals are perpendicular and equal in length in the

- a rectangle
- (b) rhombus
- **C** square
- d trapezium

If the area of a square is 25 cm<sup>2</sup>, then its perimeter = ... cm (14)

- **a** 5
- **(b)** 10
- 15
- **d** 20

(15)The square has ...... axes of symmetry.

- **a** 1
- **b** 2
- **G** 3
- **6** 4

(16)The cubic centimeter is the measuring unit for ......

- a perimeter b area
- **C** volume
- d length

(17)The number of edges of a cuboid is .......

- **a** 6
- **(** 8
- **G** 10
- **d** 12

**Best Wishes**