

BUSINESS OPTIMIZATION AND SIMULATION

Module 4 Nonlinear optimization

STRUCTURE OF THE MODULE

- Sessions:
 - The unconstrained case: formulation, examples
 - Optimality conditions y methods
 - Constrained nonlinear optimization problems
 - Solving constrained problems

UNCONSTRAINED PROBLEMS

 Consider the case of optimization problems with no constraints on the variables and a nonlinear objective function

$$\min_{x} f(x)$$

- Local solutions: cannot be improved by values close to the solution
- Global solutions: the best of all local solutions

OPTIMIZING UNCONSTRAINED PROBLEMS

- · Ideal outcome: compute a global solution
 - · In general, it is not possible to find one in a reasonable amount of time
- Two alternatives:
 - Accept a quick local solution
 - Attempt to compute a heuristic approximation to a global solution
 - Or one based on deterministic algorithms if the dimension of the problem is not large
 - · In general, basic versions of optimization solvers are only able to find local solutions
 - · Global solutions only found when some conditions are satisfied:
 - Convexity: local optimizers = global optimizers

OPTIMIZING UNCONSTRAINED PROBLEMS

- Advanced solvers use heuristics to compute approximations to the global optimizers under general conditions
 - Without imposing requirements on differentiability, convexity, etc.
- In practice:
 - If we maximize and the function is concave, we may obtain the maximizer in a reasonable amount of time
 - If we minimize and the function is convex, we may compute the minimizer in a reasonable amount of time

• Description:

- A company wishes to sell a smartphone to compete with other high-end products
 - It has invested one million euros to develop this product
 - The success of the product will depend on the investment on the marketing campaign and the final price of the phone
- Two important decisions:
 - a: amount to invest in the marketing campaign
 - p : price of the smartphone

• Description:

• Formula used by the marketing department to estimate the sales of the new product during the coming year:

$$S = 20000 + 5\sqrt{a} - 60p$$

- The production cost of the phone is 100 euros/unit
- How could the company maximize its profits for the coming year?

Model:

Profits from sales:

$$(20000 + 5\sqrt{a} - 60p)p$$

Total production costs:

$$(20000 + 5\sqrt{a} - 60p)100$$

Development costs:

Marketing costs:

Total profit:

$$(20000 + 5\sqrt{a} - 60p)(p - 100) - 10000000 - a$$

- Optimal strategy?
 - Maximize profit
- Constraints?
 - Nonnegative values for the variables
 - Do you need to include them?
- Initial iterate:
 - What happens if the initial values are negative?
 - What if they are large and positive?
 - Small and positive?
- Is the problem convex?
 - Does the problem have more than one local solution?
 - Can you compute the global solution?

EXAMPLE 2: DATA FITTING

- Regression problems
 - · How to fit a model to some available data
 - Different approaches: criteria to define what is best
 - Least squares:

minimize_{$$\beta$$} $\frac{1}{2} \sum_{i} (y_i - x_i^T \beta)^2$

Nonlinear least squares:

minimize_{\beta}
$$\frac{1}{2} \sum_{i} (y_i - F_i(\beta; x_i))^2$$

Minimum absolute deviation:

$$\min_{i} |y_i - x_i^T \beta|$$

EXAMPLE 2: DATA FITTING

- · An specific example: exponential or logit regression
 - For example, it may be of interest to study the relationship between the growth rate of a person and his/her age
 - This relationship is nonlinear
 - · The rate is high in the first years of life and then it stabilizes
 - · A model could be

$$rate = \beta_0 + \beta_1 \exp(\beta_2 \text{ age}) + error$$

UNCONSTRAINED OPTIMALITY CONDITIONS

- When solving practical problems:
 - · We may fail to obtain a solution
 - We need good estimates for the initial values of the variables
 - Even if we find a solution, in many cases we have no information about other possible solutions
 - Try with different starting points
- How can we obtain better information about the solutions?
 - Theoretical properties
 - Study the conditions satisfied at a solution
 - Check if they are satisfied
 - Or use them to find other candidate solutions

UNCONSTRAINED OPTIMALITY CONDITIONS

• Unconstrained optimization problem: $minimize_x$

$$minimize_x$$
 $f(x)$

· If we wish to maximize the objective function, we could also solve

$$minimize_x - f(x)$$

- A point (or a decision) x* is a local solution if there is no better alternative close to it $\exists \epsilon > 0, \ f(x^*) \le f(x) \quad \forall x : ||x - x^*|| < \epsilon$
- A point (or a decision) x* is a global solution if there is no better point (in all the space) $f(x^*) \le f(x) \quad \forall x$

- Necessary conditions:
 - Univariate case:

- Extension to the multivariate case
 - First-order conditions:
 - If x^* is a local minimizer, then

$$\nabla f(x^*) = 0$$

- Second-order conditions:
 - If x^* is a local minimizer, then

$$\nabla^2 f(x^*) \succeq 0$$

- Sufficient conditions:
 - Univariate case:

$$f'(x) = 0, \qquad f''(x) > 0$$

- Extension to the multivariate case
 - If the following conditions hold at x^* , it is a local minimizer:

$$\nabla f(x^*) = 0$$
$$\nabla^2 f(x^*) \succ 0$$

• Example:

Consider the unconstrained problem:

$$\min_{x} f(x), \qquad f(x_1, x_2) \equiv \frac{1}{3}x_1^3 + \frac{1}{2}x_1^2 + 2x_1x_2 + \frac{1}{2}x_2^2 - x_2 + 9$$

Necessary conditions:

$$\nabla f(x) = \begin{pmatrix} x_1^2 + x_1 + 2x_2 \\ 2x_1 + x_2 - 1 \end{pmatrix} = 0$$

There exist two stationary points (minimizer candidates):

$$x_a = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 and $x_b = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$

- Example:
 - Sufficient condition

$$\nabla^2 f(x) = \begin{pmatrix} 2x_1 + 1 & 2 \\ 2 & 1 \end{pmatrix} \Rightarrow$$

$$\nabla^2 f(x_a) = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix} \quad \text{and} \quad \nabla^2 f(x_b) = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$$

- Thus,
 - $\nabla^2 f(x_b)$ is positive definite $\Rightarrow x_b$ local minimizer
 - $\nabla^2 f(x_a)$ is indefinite, and x_a is neither a local minimizer nor a local maximizer

- A company wishes to sell a smartphone to compete with other high-end products
 - Optimization model:

$$(20000 + 5\sqrt{a} - 60p)(p - 100) - 10000000 - a$$

• First-order conditions:

$$\nabla f = \begin{pmatrix} 5(p-100)\frac{1}{2\sqrt{a}} - 1\\ 20000 + 5\sqrt{a} - 120p + 6000 \end{pmatrix} = 0$$

- One solution: a = 106003.245, p = 230.233
- Second-order condition: Hessian matrix

$$\nabla^2 f = \begin{pmatrix} -\frac{5}{4}(p-100)a^{-3/2} & \frac{5}{2}a^{-1/2} \\ \frac{5}{2}a^{-1/2} & -120 \end{pmatrix}$$

· What happens if a minimizer does not satisfy the sufficient conditions?

$$f_1(x) = x^3$$
, $f_2(x) = x^4$, $f_3(x) = -x^4$

- For all these functions it holds that $\nabla f(0) = \nabla^2 f(0) = 0$
- Thus, x = 0 is a candidate for a local minimizer in all cases
 - But while f_2 has a local minimum at x = 0
 - fi has a saddle point at that point
 - f3 has a local maximum at the point
- · The points satisfying these conditions are known as singular points

• Summary:

- A point is stationary if $\nabla f(x^*) = 0$
- For these points:
 - $\nabla^2 f(x^*) > 0 \Rightarrow \text{minimizer}$
 - $\nabla^2 f(x^*) < 0 \Rightarrow \text{maximizer}$
 - $\nabla^2 f(x^*)$ indefinite \Rightarrow saddle point
 - $\nabla^2 f(x^*)$ singular \Rightarrow any of the above

NEWTON'S METHOD

- Computing a (local) solution:
 - Most algorithms are iterative and descending
 - · They compute points with decreasing values of the objective function

$$x_0, x_1, x_2, \dots$$
 such that $f(x_{k+1}) < f(x_k), k = 0, 1, 2, \dots$

- The main step is to compute a search direction, p_k , to take us from x_k to x_{k+1}
- Newton's method. The iterations take the form:

$$x_{k+1} = x_k + p_k, p_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

CONSTRAINED PROBLEMS

· If we allow constraints on the variables, the problem is now

$$\min_{x} \quad f(x)$$
s.t. $c(x) \ge 0$

- We consider the case when either the objective function or the constraints are nonlinear functions
 - The optimizers may have significantly different properties than those corresponding to unconstrained problems
 - Local solution: belongs to the feasible region and it cannot be improved in a feasible neighborhood of the solution
 - · Global solution: belongs to the feasible region, and is the best of all local solutions

CONSTRAINED PROBLEMS

- Solution properties:
 - Differences with unconstrained problems
 - Identifying the active constraints at the solution can be as important as finding points with good gradient values
 - Differences with linear problems
 - Solutions do not need to be at vertices
 - Finding a local solution. Either
 - Transform the problem to one without inequality constraints, or
 - Find the correct active constraints at a solution
 - Efficient trial and error procedures

CONSTRAINED PROBLEMS

- Practical difficulties:
 - Local solutions
 - If the problem is not convex, the solution found by the Solver may only be a local solution (not a global one)
 - Very difficult to check formally
 - Heuristic: You can try to solve the problem from different starting points
 - III-defined functions
 - In some cases, the objective or constraint functions may not be defined in all points (square roots, power functions, logarithms)
 - Even if you add constraints to avoid these points, the algorithm may generate infeasible points in that region
 - Heuristic: start close enough to a solution

- The problem:
 - You have *n* assets in which you can invest a certain amount of money
 - To simplify the formulation, we will assume this amount to be I
 - The random variable R_i represents the return rate associated to each asset
 - Your goal is to find the proportions x_i to invest in each of the assets
 - To maximize your return (after one period)
 - And to minimize your investment risk

- The model:
 - We wish to solve:

$$\begin{array}{ll}
\text{maximize}_x & \sum_i R_i x_i \\
\text{subject to} & \sum_i x_i = 1
\end{array}$$

- Is this problem well-defined?
- A well-defined version:

maximize_x
$$\sum_{i} r_{i}x_{i}, \quad r_{i} \equiv \mathbb{E}[R_{i}]$$
 subject to $\sum_{i} x_{i} = 1, \quad x_{i} \geq 0$

But, is this reasonable?

A reasonable version (Markowitz model):

$$\begin{array}{ll}
\text{maximize}_x & r^T x - \frac{1}{2} \ \gamma \ x^T S x \\
\text{subject to} & \sum_i x_i = 1
\end{array}$$

where S = Var(R) and γ is a risk-aversion coefficient

- This model allows the construction of an efficient frontier (policies that, for a given return, have minimum variance)
 - It is a quadratic problem

Another reasonable alternative:

minimize_x VaR_{\beta}
$$\left(-(R_1x_1 + \dots + R_nx_n)\right)$$
 subject to $\sum x_i = 1$

where VaR_{β} is the Value-at-Risk (percentile) corresponding to a given $0 \le \beta \le 1$

- · This is a nonlinear, nonconvex problem
 - How can you compute a solution?
 - Advanced techniques of nonlinear optimization

SOLVING CONSTRAINED PROBLEMS

• Studying local solutions for a constrained problem:

minimize
$$f(x)$$

subject to $c_{\mathcal{E}}(x) = 0$
 $c_{\mathcal{I}}(x) \ge 0$

- Use the optimality conditions to obtain additional information
 - Form of the optimality conditions in the constrained case

$$\begin{aligned} \nabla_x f(x^*) - \nabla_x c(x^*) \lambda^* &= 0 & \text{stationarity} \\ c_{\mathcal{I}}(x^*) &\geq 0 \text{ and } c_{\mathcal{E}}(x^*) &= 0 & \text{feasibility} \\ c_{\mathcal{I}}(x^*)^T \lambda_{\mathcal{I}}^* &= 0 & \text{complementarity} \\ \lambda_{\mathcal{I}}^* &\geq 0 & \text{multiplier sign} \end{aligned}$$

• We say that x^* is a stationary point if they hold for some λ^*

SOLVING CONSTRAINED PROBLEMS

- · The preceding conditions are necessary but not sufficient
 - First-order optimality conditions (no second derivatives)
 - The vector λ is known as the vector of Lagrange multipliers
 - Part of the Karush-Kuhn-Tucker (KKT) conditions
 - Second-order condition:

$$L(x,\lambda) \equiv f(x) - \sum_{j} \lambda_{j} c_{j}(x)$$

$$Z \quad \text{matrix with columns forming a basis for} \quad \{d : \nabla \hat{c}(x)d = 0\}$$

$$\text{where } \hat{c} \text{ denotes the active constraints, } \hat{c}(x) = 0$$

$$Z^{T} \nabla_{xx}^{2} L(x,\lambda)Z \succeq 0$$

• Example:

minimize_x
$$f(x) = (x_1 - 3/2)^2 + (x_2 - 5/4)^2$$

subject to $c(x) = \begin{pmatrix} 1 - x_1 - x_2 \\ 1 - x_1 + x_2 \\ 1 + x_1 - x_2 \\ 1 + x_1 + x_2 \end{pmatrix} \ge 0$

 Check that the point (1,0) satisfies the necessary conditions

• The multiplier vector $\lambda^* = (3/4, 1/4, 0, 0)$ satisfies

$$\begin{pmatrix} -1 \\ -0.5 \end{pmatrix} - \begin{pmatrix} -1 & -1 & 1 & 1 \\ -1 & 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} \lambda_1^* \\ \lambda_2^* \\ \lambda_3^* \\ \lambda_4^* \end{pmatrix} = 0$$

$$\begin{pmatrix} 1 - 1 - 0 \\ 1 - 1 + 0 \\ 1 + 1 - 0 \\ 1 + 1 + 0 \end{pmatrix} \ge 0$$

$$\begin{pmatrix} 0 \\ 0 \\ 2 \\ 2 \end{pmatrix} \circ \begin{pmatrix} \lambda_1^* \\ \lambda_2^* \\ \lambda_3^* \\ \lambda_4^* \end{pmatrix} = 0$$

$$\lambda^* \ge 0$$