第文次作业参考解答

2.2.13. 依题设, $\forall \, \epsilon > 0$, $\exists \, \delta > 0$, $\forall \, \chi . \chi' \in (\alpha, b)$ 且 $|\chi - \chi'| < \delta$, 则有 $|f(x) - f(x')| < \epsilon$. 故 $\forall \, y, y' \in (\alpha, \alpha + \delta)$, $\forall \, z, z' \in (b - \delta, b)$ (不妨设 $\delta < b - \alpha$) 均有 $|f(y) - f(y')| < \epsilon$. $|f(z) - f(z')| < \epsilon$ 结合 Cauchy 收敛原理知 $\lim_{x \to a} f(x)$, $\lim_{x \to b} f(x)$ 均存在.

综合起了. Ff, 化/im fix=A,分以下三种 Case

Case 1: 若fx=A, ∀x∈(a,+∞), 命起呈然成立.

Case Z: 若 $J x_0 \in [a, +\infty)$, $st f(x_0) > A$, $M J X_0 > x_0$, $st \forall x \in (X_0, +\infty)$ 有 $f(x) < f(x_0)$. 由 $f(x) \in C([a, X_0])$ 知 $J x_1 \in [a, X_0]$, $st f(x_1) = \max_{x \in [a, X_0]} f(x)$ 从 而 $f(x_1) > f(x_0) > f(x_1)$. $\forall x \in (X_0, +\infty)$,即 份 $f(x_1)$ 在 x 处 取 载 大 值 . Case 3: 若 $J x_0 \in [a, +\infty)$, $st f(x_0) < A$, 同理 $st f(x_0)$ 可在 $[a, +\infty)$ 上 取 $x \in [a, +\infty]$.

9.由0=1-1=Xn+g(xn)-g(xn),其+g(x)=Xn+···+X单调通增. 令f(xn=x"+···+x-1单调通增且f(o)=-1<0,f(1)=n-1>0 从而超设方程存在唯一正根x)可和[xn)单调通减且有下界 故可读 $\lim_{n\to\infty} \chi_n = A$, $\chi_0 < \chi_n < \chi_2 < 1 \Rightarrow \lim_{n\to\infty} \chi_n^n = 0$

在/= $\chi_n^n + \cdots + \chi_n = \frac{\chi_n(1-\chi_n^n)}{1-\chi_n}$ 的也令note 可能 $\lim_{n \to \infty} \chi_n = \frac{1}{2}$.

31.1 (3) 由/im f(x)=0 + 1 知 f(x)在 0处不连读,也不可导

(4) 由 /m, f(x) = 0 + 1 = /m f(x) 和 f(x) 在 o处不连续更不可导

(5) $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0^+} \frac{xe^x}{x} = |+-|= \lim_{x\to 0^-} \frac{-xe^x}{x} = \lim_{x\to 0^-} \frac{f(x)-f(0)}{x-0}$ 20 $\int (x) dx = \int (x)$

3.1.2. $b = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} f(x) = 0$, $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = 0$, $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = 1$ 放当 $\alpha = 0$], b = 0 时, f(x) 处处可要

3.1.3. Pf: $f(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{(x - a) g(x)}{x - a} = g(a)$

3.1.4 Pf: $\lim_{h\to 0} \frac{f(x_0+\alpha h)-f(x_0-\beta h)}{h} = \lim_{h\to 0} \frac{f(x_0+\alpha h)-f(x_0)}{\alpha h} \cdot \alpha + \lim_{h\to 0} \frac{f(x_0)-f(x_0-\beta h)}{\beta h} \cdot \beta$ $= (\alpha + \beta)f(x_0).$

3.1.6 (3) $y' = 2x \log_{1} x + x^{2} \frac{1}{x \ln 3}$ (4) $y' = \frac{(1-\cos x) - x \sin x}{(1-\cos x)^{2}}$

(8) $y' = 3x^2 \tan x \cdot \ln x + \frac{x^3 \cdot \ln x}{\cos x} + x^2 \cdot \tan x$

3.1.8. $f(x^2) = 3x^2 \Big|_{x=1} = 3x^4$, $(f(x^2))' = (x^6)' = 6x^5$.

3.1. (0. (3) $\frac{dy}{dx} = f'(e^x + x^e)(e^x + ex^{e-1})$ (6) $\frac{dy}{dx} = f'(e^x)e^{x+f(x)} + f(e^x)e^{f(x)} \cdot f'(x)$.

(2) $= \sum_{x \to 0} \int_{x \to 0}^{1} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} x \sin \frac{1}{x} = 0$

 $f(x) = nx^{hd} sin \frac{1}{x} + x^{n} cs \frac{1}{x} \left(-\frac{1}{x^{2}}\right) = 2x sin \frac{1}{x} - as \frac{1}{x} \left(n = 2, \forall x \neq 0\right)$ $\lim_{x \to 0} f(x) \wedge \delta dx \cdot P \sin f(x) \wedge \delta dx \cdot \int_{x \neq 0}^{x} \left(-\frac{1}{x^{2}}\right) dx \cdot \int_{x \neq 0}^{x} dx \cdot \int_{x \neq 0}^{x} \left(-\frac{1}{x^{2}}\right) dx \cdot \int_{x \neq 0}^{x} dx \cdot \int_{x \neq 0}$

(3) 同(z) 知 f(n)=0, 而 f(x)=n xⁿ⁻¹sín - xⁿ⁻²os - cos - c

3.1.14 (1) $\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} = \frac{1}{2x+2e^{x}}$ (2) $x = \frac{1}{tony} \Rightarrow \frac{otx}{oty} = -\frac{1}{5in^{2}x}$

3.1. $\int_{0}^{1} (2) y' = \frac{1}{3} (|+|^{2}x|^{-\frac{2}{3}} (2/nx) \cdot \frac{1}{x}$ (5) $y' = 3(s(nx))^{2} \cos x^{3} (3x^{2})$

(10) $y' = \sqrt{1+x^2} \cdot \sin x + \frac{x^2}{\sqrt{1+x^2}} \cdot \sin x + x\sqrt{1+x^2} \cdot \cos x$

 $(11) \quad y' = e^{\sqrt{x+1}} \frac{x}{\sqrt{1+x^2}} \qquad (16) \quad y' = /n \cdot (0 \cdot /0) \times (5 \cdot x) \times (5 \cdot x) \times (\frac{0.5 \cdot x}{5 \cdot x} - 5 \cdot - x/-5 \cdot x)$

3.(18 (3) $y' = 2x \arctan x + | , y'' = 2 \arctan x + \frac{2x}{x^2+1}$

 $\frac{3.1.2|(2)}{3.1.2|(2)} = (x^2+1) \sin x + n(2x) \sin x + \frac{n(n-1)}{2} \cdot 2 \sin x$

= $\left(\chi^{2}+1\right)$ $\sin\left(\chi+\frac{h\chi}{2}\right)+\left(2\eta\chi\right)$ $\sin\left(\chi+\frac{(n+1)\chi}{2}\right)+N(n+1)$ $\sin\left(\chi+\frac{(n-1)\chi}{2}\right)$.

(3) $\sqrt[3]{z} = \left(\frac{1}{x-2} - \frac{1}{x-1}\right)^{\binom{n}{2}} = \frac{(-1)^n n!}{(x-2)^{n+1}} - \frac{(-1)^n n!}{(x-1)^{n+1}}$

3.1.22. $y'|_{x=\frac{\pi}{4}} = -\frac{1}{2}$, $y|_{x=\frac{\pi}{4}} = \frac{1}{2}$ ⇒ 切伐为税为 $y=-\frac{1}{2}(x-\frac{\pi}{4})+\frac{1}{2}$

3.1.27. (20,人)处的切成为 y=-1/20で(x-20)+元

令x=0, y= 2/x。,令y=0, x=2x。 => S= = $\frac{1}{2} \left| \frac{2}{x_0} \right| \cdot |2x_0| = 2. 为定值.$

3.2.2 (6) $y' = 2 \tan(1+2x^2) \frac{4x}{\cos^2(1+2x^2)}$ (7) $y' = -e^{-x}\cos(3-x) + e^{-x}\sin(3-x)$

3.2.3 (2) $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{sint}{|-ost|} \cdot \frac{d^2y}{dx} = \frac{d(\frac{dy}{dx})}{dx} = \frac{ast(|-ost)^2}{|-ost|} = \frac{ast-|}{(|-ost)^3}$

3.2.4 (1) $\frac{dy}{dx}\Big|_{4=\frac{x}{4}} = \frac{\cos t}{-s'_{1}-t}\Big|_{t=\frac{x}{4}} = -1$, $\frac{d}{dx}\Big|_{4=\frac{x}{4}} = \frac{x}{4}$ $\begin{cases} x = \frac{\sqrt{x}}{2} \\ y = \frac{\sqrt{x}}{2} \end{cases}$

→ 切成方包为)=-(x-空)+公