Feuille d'exercices 1

Exercice 1 (Queue gaussienne)

Montrer que pour tout x > 0,

$$\max\left(0, \left(\frac{1}{x} - \frac{1}{x^3}\right)\right) e^{-x^2/2} \le \int_x^{+\infty} e^{-t^2/2} dt \le \frac{1}{x} e^{-x^2/2}$$

Exercice 2 (Inégalité de Hoeffding)

Soient X_1, \ldots, X_n des variables aléatoires réelles indépendantes telles que, pour tout $i \in [1, n]$, $a_i \le X_i \le b_i$ avec $a_i < b_i$. Le but de cet exercice est de montrer que, si $Z = \sum_{i=1}^n X_i$, alors pour tout $t \ge 0$,

$$\mathbb{P}\left(Z - \mathbb{E}Z \ge t\right) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right).$$

1. Soit Y une variable aléatoire à valeurs dans [0,1] d'espérance $\mathbb{E}Y = p$. Montrer que pour tout $\lambda \in \mathbb{R}$,

$$\log \mathbb{E}\left[e^{\lambda(Y-\mathbb{E}Y)}\right] \le \varphi(\lambda) \le \frac{\lambda^2}{8},$$

où $\varphi(\lambda) = \log(pe^{\lambda} + 1 - p) - \lambda p$.

2. En déduire que si X est une variable aléatoire à valeurs dans [a,b] avec a < b, alors pour tout $\lambda \in \mathbb{R}$,

$$\log \mathbb{E}\left[e^{\lambda(X - \mathbb{E}X)}\right] \le \frac{\lambda^2 (b - a)^2}{8} \,,$$

puis que pour tout $\lambda \in \mathbb{R}$,

$$\log \mathbb{E}\left[e^{\lambda(Z-\mathbb{E}Z)}\right] \le \frac{\lambda^2}{8} \sum_{i=1}^n (b_i - a_i)^2.$$

3. Conclure.

Exercice 3 (Tirages sans remise) Soit $n \in \mathbb{N}^*$ et a_1, \ldots, a_n des réels. On considère $\eta = (\eta_1, \ldots, \eta_n)$ un vecteur i.i.d. de loi uniforme sur $\{1, \ldots, n\}$, et $\sigma = (\sigma_1, \ldots, \sigma_n)$ une permutation de $\{1, \ldots, n\}$ uniformément distribuée. Pour $k \in [1, n]$, on note

$$X_k = \sum_{i=1}^k a_{\sigma_i}$$
 et $Y_k = \sum_{i=1}^k a_{\eta_i}$.

- 1. Montrer que l'on peut trouver un couplage (X_k, Y_k) tel que $\mathbb{E}[Y_k \mid X_k] = X_k$.
- 2. En déduire que pour toute fonction convexe $f: \mathbb{R} \to \mathbb{R}$, on a $\mathbb{E}[f(X_k)] \leq \mathbb{E}[f(Y_k)]$.
- 3. Montrer que pour tout $\lambda \in \mathbb{R}$, on a $\log \mathbb{E}\left[e^{\lambda(X_k \mathbb{E}X_k)}\right] \leq \log \mathbb{E}\left[e^{\lambda(Y_k \mathbb{E}Y_k)}\right]$.

Exercice 4 (Lemme de Slutsky) Soient $(X_n)_{n\in\mathbb{N}}$ et $(Y_n)_{n\in\mathbb{N}}$ deux suites de variables aléatoires réelles définies sur le même espace de probabilité. On suppose que $(X_n)_{n\in\mathbb{N}}$ converge en loi vers une variable X et $(Y_n)_{n\in\mathbb{N}}$ converge en loi vers un réel a. Montrer que la suite de couples de variables aléatoires $(X_n, Y_n)_{n\in\mathbb{N}}$ converge en loi vers (X, a).

Exercice 5 (Delta-méthode)

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles. On suppose qu'il existe un réel a, une suite de réels positifs $(v_n)_{n\in\mathbb{N}}$ avec $v_n \xrightarrow[n\to\infty]{} +\infty$ et une variable aléatoire X tels que

$$v_n(X_n-a) \xrightarrow[n\to\infty]{\mathcal{L}} X$$
.

Soit $g:\mathbb{R}\to\mathbb{R}$ une fonction dérivable en a.

- 1. Montrer que $v_n(g(X_n) g(a)) \xrightarrow[n \to \infty]{\mathcal{L}} g'(a)X$.
- 2. (Stabilisation de la variance.) Soit \overline{X}_n la moyenne empirique associée à un n-échantillon de loi de Poisson de paramètre $\lambda > 0$. Proposer une fonction g telle que $\sqrt{n} \left(g(\overline{X}_n) g(\lambda) \right)$ converge en loi vers une limite non dégénérée qui ne dépend pas de λ .

Exercice 6 (Delta-méthode - ordre 2)

Soient X_1, \ldots, X_n des variables aléatoires i.i.d., centrées, de variance 1, et $\overline{X}_n = \sum_{i=1}^n X_i/n$.

- 1. Étudier la convergence p.s. de \overline{X}_n et en loi de $\sqrt{n}\overline{X}_n$.
- 2. Montrer que $\sqrt{n}(\cos(\overline{X}_n)-1)$ converge en loi et identifier la loi limite. Pourquoi la limite est-elle dégénérée?
- 3. En reprenant la démonstration de la Delta méthode, déterminer une suite de réels positifs $(v_n)_{n\in\mathbb{N}}$ tendant vers l'infini et une v.a. réelle Z non constante telles que $v_n(\cos(\overline{X}_n) 1) \stackrel{\mathcal{L}}{\to} Z$.

Exercice 7 (Propriétés des moyenne et médiane empiriques)

Soit X_1, \ldots, X_n un échantillon de fonction de répartition F avec $\mathbb{E}(X_1^2) < \infty$.

- 1. (a) Montrer que $\mathbb{E}(X_1) = \operatorname{argmin}_{t \in \mathbb{R}} \mathbb{E}[(X_1 t)^2]$.
 - (b) Déterminer $\operatorname{argmin}_{t \in \mathbb{R}} \sum_{i=1}^{n} (X_i t)^2 / n$.
- 2. On note $x_{1/2} = F^{-1}(1/2)$ la médiane de la loi de X_1 .
 - (a) Montrer que si F est continue sur \mathbb{R} et strictement croissante sur un voisinage de $x_{1/2}$, alors $x_{1/2} = \operatorname{argmin}_{t \in \mathbb{R}} \mathbb{E}[|X_1 t|]$.
 - (b) Déterminer, selon la parité de n, $\operatorname{argmin}_{t \in \mathbb{R}} \sum_{i=1}^{n} |X_i t|/n$.

Exercice 8 (Lien médiane-espérance)

Soit X une variable aléatoire dont la médiane est notée m, l'espérance μ et l'écart-type σ . Montrer que

$$|m-\mu| \le \sigma.$$

Exercice 9 (Loi uniforme)

- 1. Soit (X_1, \ldots, X_n) un échantillon i.i.d. de loi uniforme sur [0,1]. On considère le ré-arrangement croissant de ces variables : $X_{(1)} \leq \cdots \leq X_{(n)}$.
 - (a) Donner une densité de la loi de la variable $R_n = X_{(n)} X_{(1)}$.
 - (b) Étudier les différents modes de convergence de R_n quand $n \to \infty$.
 - (c) Étudier le comportement en loi de $n(1-R_n)$ quand $n\to\infty$.
- 2. Soit X_1, \ldots, X_n un échantillon de loi $\mathcal{U}([0, \theta])$, on veut estimer $\theta > 0$.
 - (a) Déterminer un estimateur de θ par la méthode des moments. On le notera $\hat{\theta}_n$.
 - (b) À quelle vitesse cet estimateur converge-t-il vers θ ? Entre $\hat{\theta}_n$ et $X_{(n)} = \max_{1 \le i \le n} X_i$, lequel choisiriez-vous?
 - (c) Donner un intervalle de confiance non asymptotique de niveau 1α pour θ .

Exercice 10 Au cours de la seconde guerre mondiale, l'armée alliée notait les numéros de série X_1, \ldots, X_n de tous les tanks nazis capturés ou détruits, afin d'obtenir un estimateur du nombre total N de tanks produits. On propose un modèle de tirage uniforme sans remise dans $\{1, \ldots, N\}$. Dans ce cadre, les observations ne sont pas indépendantes, mais elles demeurent échangeables.

- 1. Étudier la loi de $X_{(n)} = \max X_i$ et calculer l'espérance de \overline{X}_n . En déduire deux estimateurs non biaisés de N.
- 2. Proposer deux intervalles de confiance de niveau α . On pourra utiliser le fait que l'inégalité de Hoeffding s'applique également aux tirages sans remise.

Note: Selon Ruggles et Broodie (1947, JASA), la méthode statistique a fourni comme estimation une production moyenne de 246 tanks/mois entre juin 1940 et septembre 1942. Des méthodes d'espionnage traditionnelles donnaient une estimation de 1400 tanks/mois. Les chiffres officiels du ministère nazi des Armements ont montré après la guerre que la production moyenne était de 245 tanks/mois.