Part B

Question 1

 $SRTT = (\alpha - SRTT) + (1 - \alpha) * R$

SRTT = 125 ms RT = 80 ms α = 0.875

Iteration #	SRTT	(α -SRTT) + (1-alpha)*R
0	125	
1	119.375	119.375
2	114.453	114.453
3	110.146	110.146
4	106.378	106.378
5	103.081	103.081
6	100.196	100.196
7	97.672	97.672

It would take 9 iterations to bring the value of SRTT below 100.

Question 2

RTTVAR = β * RTTVAR + (1- β) * |SRTT-R|

RTO = SRTT + 4 * RTTVAR

Timeout if RTT > RTO

α	0.875
β	0.75
Initial SRTT	100 ms
Initial RTTVAR	100 ms
RTO _{min}	400 ms
R_Regular	150 ms
R_for every N'th	500 ms

Question 3

- (a) Rounds 1-7 and 22-26 are the transmission rounds when TCP is in slow mode.
- **(b)** After the 13th transmission round, the segment loss is detected by a triple duplicate ack as the cwnd was cut in half.
- (c) After the 21st transmission round, the segment loss is detected by a timeout because the cwnd has fallen to 1 in round 22.
- **(d)** The value must be 64 because this is the cwnd value after which additive increase begins at round 8.
- (e) A segment loss is detected at round 13 with cwnd = 70, therefore ssthresh is now equal to cwnd/2 = 35.
- (f) A segment loss is detected at round 21 with cwnd = 42, therefore ssthresh is now equal to cwnd/2 = 21.
- (g) A segment loss is detected after 26^{th} round with cwnd = 16, so ssthresh will be set to 8 and cwnd will be set to 8.