ViT_cond_NF

算法流程图

I. training, $x_p = ViT$ (positive samples)

$$z_p = flow(x_p), \qquad z_p \sim N(0, I)$$

- II. inference, x_p = ViT (positive samples) x_n = ViT (negative samples)
 - segmentation(i, j) represents patch positions

$$x_p^{(i,j)} \xrightarrow{flow} z_p^{(i,j)}, \quad ||z_p^{(i,j)}||_2 \approx 0$$

$$x_n^{(i,j)} \xrightarrow{flow} z_n^{(i,j)}, \quad ||z_n^{(i,j)}||_2 >> 0$$

classifications represents the image level anomaly score

$$s = max(Z),$$

Z is the set $(||z^{(1,1)}||_2, ..., ||z^{(i,j)}||_2, ...)$ of an image

Glow design

(a) One step of our flow.

(b) Multi-scale architecture (Dinh et al., 2016).

Our

(a) One step of our flow

(b) Multi-scale architecture