Laboratorul 6

- 1. Simulați de $n \in \{1000, 2000, 5000\}$ ori valoarea înălțimii unei persoane alese aleator folosind distribuția normală cu parametrii m = 165 (cm) și $\sigma = 10$ (cm).
- i) Afișați o histogramă cu 14 bare, pe intervalul [130, 200], pentru frecvențele relative ale datelor obținute, apoi desenați, în aceeași figură, graficul funcției de densitate.
- ii) Afișați valoarea medie, deviația standard și proporția de valori în intervalul [160, 170] pentru cele n simulări. Comparați rezultatele obținute cu rezultatele corespunzătoare exacte.

În rezolvarea cerințelor de mai sus, folosiți:

```
[]: from scipy.stats import norm from numpy import mean, std, linspace from matplotlib.pyplot import show, hist, grid, legend, xticks, plot
```

- 2. Un computer este conectat la două imprimante: I_1 şi I_2 . Calculatorul trimite printarea unui document lui I_1 cu probabilitatea 0,4, respectiv lui I_2 cu probabilitatea 0,6. I_1 printează un poster A2 în T_1 secunde, unde T_1 are distribuția $Exp(\frac{1}{5})$, iar I_2 printează un poster A2 în T_2 secunde, unde T_2 are distribuția uniformă Unif[4,6]. Un inginer solicită printarea unui poster A2 de pe computer.
- a) Estimați valoarea medie și deviația standard pentru timpul (în secunde) de printare a posterului.
- b) Estimați probabilitatea ca timpul de printare a posterului să fie mai mic decât 5 secunde.
- c) Afișați probabilitatea teoretică pentru b).

Folositi:

```
[]: from scipy.stats import expon, uniform from numpy import mean, std, multiply
```

3. Estimați $\int_{-1}^{3} e^{-x^2} dx$ folosind funcțiile următoare și metoda Monte Carlo descrisă mai jos.

```
[]: from scipy.stats import uniform from numpy import exp, mean from scipy.integrate import quad
```

Fie $g:[a,b]\to [0,\infty)$ o funcție continuă. Considerăm următoarele metode pentru aproximarea integralei $\int_a^b g(x) \, \mathrm{d}x$ folosind valori aleatoare.

- Considerăm $(U_n)_n$ şir de v.a. independente uniform distribuite pe [a,b] şi notăm $X_n = g(U_n)$.
- $(X_n)_n$ satisface LTNM, adică

$$\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow{a.s.} E(X_1) = \frac{1}{b-a} \int_a^b g(x) \, \mathrm{d}x.$$

• În simulări:

$$\int_a^b g(x) dx \approx (b-a) \frac{1}{n} (g(u_1) + \dots + g(u_n)), \text{ pentru } n \text{ suficient de mare},$$

unde u_1, \ldots, u_n sunt valori aleatoare generate independent conform distribuției uniforme pe intervalul [a, b].