# 南京邮电大学 2016 / 2017 学年第一学期

## 《 数据结构 B 》期末试卷( ) 答案

|     | 专业                  | 班级                              | <b>学</b> 号                                    |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|---------------------|---------------------------------|-----------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | 7                   | 分, 共10 题)                       |                                               |                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.  |                     |                                 | F-48s - 905, 200 dd                           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.  |                     |                                 | 持,数据的存储结构以                                    |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.  | 个元素。                | 及为 100,石下标》                     | 人 0 开始计,则删除元                                  |                                   | 动_84.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.  |                     | <b>芒肚</b> 牡玉的人粉虫                | <b>≯ ♪♡</b><br>፲2011,则度为 2 的结                 | 1-11 -89.                         | 2º Lo/no= 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | not 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4.  |                     | 全量是其 <b>有有同</b> 的               |                                               | <b>总个数为</b>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · Z., ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5.  |                     | • •                             | · 条件:线性表关键字                                   | NATE TO LE                        | *********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ş*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 必须采用顺序和             |                                 | 新竹: 线性农大罐子                                    | 少决走 <u>/<b>八万%</b>。</u>           | 存储结构                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ġ.  | 二叉搜索树的              | 10h                             | 一个按关键字递增排                                     | Early of the the tot              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7   | _                   | 介关键字为11g 14                     | 1,69,20,27,55,79                              | 25时1行行列。                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20\$11=9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | kev%11、散列i          | 函数值为3的有                         | . A 1961                                      | 7,取如函数为<br>   <b>-8. 149</b> 1  : | n(key) == 1961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11 = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8.  |                     |                                 | ——<br>  间复杂度为 O( <b>nloa.)</b>                | •                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15611=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9.  |                     | 上解决冲突可能产生                       |                                               | 79411=                            | <b>)</b> . P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10. |                     | 字储结构有邻接矩阵                       |                                               |                                   | - Contraction of the Contraction |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                     | , m, 28 (3) (1) (1) (2) (2) (2) | - 18 Lank                                     | 2                                 | . Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 、选择题(20             | 分, 共10题)                        | Andrew Control                                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LALIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.  |                     | 次,,<br>在执行有限步之后结                | t市 汶岛镇注65 <b>♠</b> ・                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 - Shink= P-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | A. 有穷性              | B. 正确性                          | C. 确定性                                        | °<br>D. 可行性                       | P. 30.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | p-slink.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.  | 在指针p所指示             | <b>下的结点之后插入</b> 新               |                                               | , ° ° ° °                         | 7) / »[                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | A. s->link=p;p-:    | >link=s;                        | B. s->link=p->l                               | ink;p->link=s;                    | a 10 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3   | C. s->link=p->li    |                                 | D. p->link=s;s-                               | >link=p;                          | HIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.  | 栈和队列的共同<br>A. 都是先进后 |                                 | P #0 E + 7+ 4                                 |                                   | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                     | 点处插入和删除元:                       | <ul><li>B. 都是先进先</li><li>素 D. 没有共同点</li></ul> |                                   | p> lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | k=S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.  |                     | 32*3+3/+的值                      |                                               |                                   | 57 lim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | : D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | A.18                | B. 7                            | C. 9                                          | D. 8 02:                          | Tal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |                     | e in man                        |                                               |                                   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                     | (数据结构 B 》 期                     | 末试卷(A) 第 1 页 身                                | <b>共 4 页</b>                      | VL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THE PROPERTY OF THE PARTY OF TH |
|     |                     | 5 32 .                          |                                               | A .                               | 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |                     | 5 8.43                          |                                               | •                                 | Alink= Pa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                     | 5913                            |                                               |                                   | plink = p.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                     | 3-45=8.                         |                                               | p .                               | odlink=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | link=9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                     | _                               | \$                                            | <b>P</b>                          | - Itimbe-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| 1 | 5.      | 高度为 5 的二叉棒    | 有至多有 () 个结                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u></u> ≒.           |                    |                    |
|---|---------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|--------------------|
|   |         | A. 5          | B. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C. 31                | D. 32              |                    |
|   | 6.      | 采用对半查找方法      | k查找长度为 n 的线性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 表时, 时间复杂度            | 为 <b>B</b> D       |                    |
|   |         | A. $O(n^2)^n$ | B. O(nlog <sub>2</sub> n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C. O(n)              | D. $O(\log_2 n)$   |                    |
|   | 7.      | n 个顶点的无向图     | 采用邻接矩阵表示,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 则该矩阵的大小是             | \$ C. 0            |                    |
|   | •       | A. n          | B. $(n-1)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (7C. n <sup>2</sup>  | D. n - 1           |                    |
|   | 8.      | 一个无向连通图的      | 的生成树是一个 😿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 迎通子图。                | 2.1.               |                    |
|   |         | A. 极大         | B. 极小                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C. 有时极大              | D. 有时候极小           |                    |
|   | (9)     | 下列排序方法中,      | 排序过程中的比较次                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | 的是                 |                    |
|   |         | A. 简单选择排序     | ·<br>法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B. 直接插入排序            |                    |                    |
|   |         | C. 快速排序法      | N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D. 冒泡排序法             |                    |                    |
|   | 10.     | 散列表的长度为1      | 1. 下标范围是[0, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ),散列函数为 h(ke         | ev)=kev%11. 平      | 田结                 |
|   |         | 性探查法解决冲突      | 6. 依次将关键字 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38, 5, 16 插入空        | 的散列表中,则关           | ·加 <u>这</u><br>·键字 |
|   |         | 16 在散列表中存在    | 故的下标是 <b>门</b> .。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 431003340 1 6 2320 | 7%11=7.            |
|   |         | A. 5          | B. 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C. 7                 | D. 8               | 784·11=5.          |
|   |         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                    |                    |
|   |         | 简答题(30分       | , 共5题)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                    | 5 \$ 11 = 5.       |
|   | 1.      | 有二叉树如图 1 的    | r示,写出该二叉树的                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>生度油度等积</b>        |                    | U-11411=6.         |
|   |         | 4             | (A)() 当田 (S)二大(A)(D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75/15/2011年列和中       |                    | 16 411 = 5.        |
|   |         | (B)           | BARCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>             | 2 3 4,             | ,8 goll = 7.       |
|   |         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 21 0               | 0 0 0              | 19 411 = 8.        |
|   |         | (A) (3        | D) 4: ABCDZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 0 0 1              | •                  | , ,                |
|   |         | <u></u>       | A CONTRACTOR OF THE PROPERTY O | 3 0 1                | 0 3 8              | •                  |
|   |         | 9             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                    |                    |
|   |         | <u> </u>      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | 图 2                |                    |
|   | (2)     | 写出图2中稀硫質      | 陈的行士 44 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Shirth Saler in Land | *                  |                    |
|   | $\odot$ |               | 阵的行三元组表示及                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                    | [值。                |
|   | 3.      | 及有四图的邻接表      | 表示如图 3 所示,请                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 给出每个顶点的入几            | 变,                 |                    |
|   |         | 0 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                    |                    |
|   |         |               | → 0 · ∧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                    |                    |                    |
|   |         | 1 3           | ઋU;/∖}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                    |                    |

图 3

4. 空二叉搜索树中依次插入 33, 44, 99, 22, 11, 55, 画出最终所构建二叉搜索树。 ( 数据结构 B 》期末试卷 (A) 第 2 页 共 4 页





9+16+21+11×4 = 46+46=90.

- 5. 设 W={5,6,7,8,9},要求左子树根节点的权值小于等于右子树根节点权值。
- (1) 画出由权值集合W构造的哈夫曼树。
- (2) 计算加权路径长度。

四、判断题(10分,共5题,对的记"√",错的记"×")

- 1. 线性结构只能用顺序结构来存放,非线性结构只能用非顺序结构来存放。\*
- 2. 简单选择排序是稳定的排序算法。X.
- 3. 散列函数越复杂越好,因为这样随机性好,冲突概率小。**×**·
- 4. 完全二叉树一定存在度为 l 的结点。**人**\*
- 5. 在一非空二叉树的中序遍历中,根结点的右边是其右子树上的所有结点。✔

#### 五、程序填空题(10分,共1题)

1. 以下程序是对半搜索的迭代实现,请填写完整。 BOOL BSearch2(List !st, KeyType k, T\*x)

\*x=lst.Elements[mid]; return TRUE;



《数据结构 B 》期末试卷 (A) 第 3 页 共 4 页

```
· 六、编程题(10分,共1题)
```

1. 用二叉链表方式存储二叉树。试编写函数Count1,求一棵二叉树的结点总数。并编写Count接口函数,让其调用Count1函数。

typedef int K;

typedef struct btnode {

K Element;

struct btnode\* LChild, \*RChild;

}BTNode;

typedef struct biree {

struct btnode\* Root;

}BTree;

## 南京邮电大学 2016 / 2017 学年第一学期

## 《 数据结构 B 》期末试卷( ) 答案

#### 填空题 (20分,共10题)

| , |    |    |      |      |     |   |     |                     |    |      |
|---|----|----|------|------|-----|---|-----|---------------------|----|------|
| İ | 1  | 2  | - 3  | 4 .  | 5 . | 6 | 7 - | 8                   | .9 | 10 . |
|   | 逻辑 | 89 | 2010 | 有向回路 | 有序  | ф | 2   | ьlog <sub>2</sub> n | 二次 | 邻接表  |

#### 二、选择题(20分,共10题)

|           |   |     |   |   |     |   |   | , |   |    |   |
|-----------|---|-----|---|---|-----|---|---|---|---|----|---|
| - Company | 1 | 2 : | 3 | 4 | 5   | 6 | 7 | 8 | 9 | 10 |   |
|           | Α | B:  | С | D | С . | D | C | В | A | D  | Į |

#### 三、简答题(30分,共5题)

前序遍历序列: BADCE (3分) 中序遍历序列: ABCDE (3分)

2 11

1

col

|    | - / - |
|----|-------|
| 顶点 | 入度    |
| 0  | 3     |
| 1  | 2     |
| 2  | 1     |
| 3  | 1     |
| 4  | 2     |
| 5  | 1     |
| 3  | 1     |



5.



WPL = (5+6) \* 3 + (7+8+9)\*2 = 33 + 48 = 81 (2 %)

### 匹、判断题(10分,每题2分)

| I | 2 | 3 | 4 | 5        |
|---|---|---|---|----------|
| × | × | × | × | <b>√</b> |

五、程序填空题(10分,每空2分)

- (1) 0
- (2)  $low \le high$
- (3) mid-1
- (4) k>lst.Elements[mid].Key
- (5) return FALSE;

六、编程题(10分,共1题)

1.

int Count(BTree Bt){
 return Count 1(Bt.Root);

}

```
int Count 1(BTNode* p){
    if(!p) return 0;
    else return Count1(p->LChild)+ Count1(p->RChild) + 1;
}
```

## 南京邮电大学 2015 / 2016 学年第一学期

# 《数据结构B》期末试卷()

| 本试卷    | 共4         | 页                    | ; 答.              | 題纸天.                   | 4 ·          | _贝; 芍                                 | 17 <sup>(11)</sup> [11] | 110                |                      | · •                                         |                  | •                                     | -          |
|--------|------------|----------------------|-------------------|------------------------|--------------|---------------------------------------|-------------------------|--------------------|----------------------|---------------------------------------------|------------------|---------------------------------------|------------|
| -ţ     |            |                      |                   | 班组                     | 及            |                                       | 学号_                     |                    |                      | 姓名                                          |                  |                                       |            |
| 题号     |            |                      | Ē                 | 四                      | .fr.         | 六                                     | 七                       | 八                  | 九                    | +                                           | 总分               |                                       |            |
| 得分     |            |                      | -                 | •                      | ·            | •                                     |                         | 1                  |                      |                                             |                  |                                       |            |
| 注意:    | 1. 答       | 案一                   | 填写                | 在答題                    | 纸上,          | 直接                                    | 真写在                     | 试卷上                | :成绩?                 | 已效。                                         |                  |                                       |            |
|        | 2. Ť       | (卷和?                 | 等題纸               | 上均填                    | 写完图          | 图 专注                                  | 业、班                     | 级、学                | 与、如                  | 生名。<br>************************************ | ×.17.            |                                       |            |
|        |            |                      |                   |                        |              |                                       | 域交!                     | 监考老                | <b>炯</b>             | 路力ス                                         | 写功。              |                                       |            |
| 得分 .   | 一、填        | 空題(                  | (每小               | 至2分                    | <b>,</b> 天 2 | サ分チ                                   | <b>梅人</b> 姓             | th 42.1            | 4 6± 65              | 171 II/ 4                                   | do <b>t</b> er . |                                       |            |
|        | 1. 通常      | 将数据:                 | 结构中               | 的逻辑?                   | 岩物分プ         | 4 (1)                                 | 来百垣<br>十米               | <u>构</u> 、线<br>其中集 | 生细钙、<br>春桂树          | が形を                                         | e构(0)            |                                       | •          |
|        |            |                      |                   |                        |              | (73° /A) M                            | 入火,                     | ナーバ                | ದ ಜನ್ನುತ್ತ           | . 11/0:                                     | (F)              | 6x1                                   | )          |
| 18     | 图给柯/<br>《古 | 関す <u>_U</u><br>A.でよ | <u>) まな</u><br>タカ | 性结构                    | •<br>= (V    | 宋) 的名                                 | X 挂 年 6                 | <u>፱</u> ኤ ተ       | -n×n é               | 内矩阵。                                        | A. 50            | a 4X2                                 | <b>≥</b> . |
| 16 -   | 1 11 11 1  | boot tal             | 2) B              | v tojitaj:<br>ringen o | =<. Dil      | ATAMO                                 | 的值为                     | (3)                | 5                    |                                             | 所有               |                                       | Sx3.       |
|        |            |                      |                   | (4)                    |              | • • • • • • • • • • • • • • • • • • • |                         |                    |                      |                                             | e e              | ) (≥q                                 | 7.2        |
| 3 1    | (5)        | 中序                   | 遍历一               | <br>-操二叉               | 搜索树          | ,将得                                   | 到一个                     | 以关键                | 字值递                  | 曾排列的                                        | 的有序。这            | +6                                    |            |
| 序列     |            | <u> </u>             |                   |                        |              |                                       |                         |                    | ",=                  | -                                           |                  | ****                                  |            |
| 4. 给   | 。<br>定权值   | 集合 W                 | ={2, 3            | , 4, 6                 | ,构建          | 的哈夫                                   | 曼树的                     | 加权路径               | を长度是                 | (6) 2                                       | 9                | بندن                                  |            |
| 5. 快   | 速排序        | 算法平                  | 均情况               | 下的时间                   | 可复杂的         | 连为 <u>(7</u>                          | ) nlbn-                 | •                  | No:                  | · N2+1.=                                    | \$ No.24         | 9. no                                 | )= Jo.     |
| 6. 某   | 二叉树        | 结点个                  | 数为 10             | 0个。                    | 叶子结,         | 5的个8                                  | 为 50                    | 个, 那               | 么度为                  | 1 的结;                                       | 点个数              | γ γ                                   | n,=1-      |
| · 47 ( | ə) i -     | <b>A</b> .           |                   | , A                    |              |                                       | 1/1                     | 10 = 74.           | CO.                  |                                             | (20)             | z. ·                                  |            |
| ⑦· t   | 2.知二约      | t数组 A                | ·[20][30          | )],OLoc                | (0][0]A)     | )的地址                                  | L为 100                  | ,设每                | 个元素                  | 占1个                                         | 单元,代             | 1,<br>/D K ?                          | 30+12+100  |
|        |            |                      |                   |                        |              |                                       |                         |                    |                      |                                             |                  | , , , , , , , , , , , , , , , , , , , | 412.       |
| 愈:     | -棵有口       | 个结点                  | 的二叉               | 树采用                    | 二叉链          | 表方式在                                  | 字储,有                    | <u>(10)</u>        | <u>n-1</u>           | 1非空排                                        | 舒堪。              | <u> </u>                              | •          |
| 得分     | _, ì       | 先择题                  | (每小               | 题 2 分                  | },共          | 20分)                                  |                         |                    | 4 D                  | 0                                           |                  |                                       |            |
|        |            |                      |                   | 9-4                    |              | 3-                                    | A 1                     | . 69, 7            | ι <b>χ</b><br>6, 88, | 96]唐省                                       | 连找 20,           |                                       |            |
|        |            |                      |                   | 捜索成7                   |              |                                       |                         |                    | $\mathbb{O} \cdot $  | [ off)                                      | <u>-4.</u> ·     |                                       |            |
|        |            | . 1                  | • -               |                        |              | 3                                     | E                       | ). 4               | (2).                 | [014]                                       | = 1              |                                       |            |
|        | A          | . 1                  | . D.              | / "                    | 0.           | 5                                     | ~                       | • •                |                      | 2.                                          | , R              |                                       |            |
| •      | <u> </u>   |                      |                   |                        |              |                                       | ne state s              | . 2,74,2 000       | te dan iro n         | er and els                                  | C 唐              |                                       |            |
| 200    | w          |                      | J是 a、t            | e c q                  |              |                                       |                         | ,下列                | 五枝列扩                 | <u> </u>                                    | <u>C</u> 序       |                                       |            |
| 列入     | 可能得        | 到。                   |                   |                        | W.           | NA TO                                 | eti ·                   |                    |                      |                                             |                  |                                       |            |
|        |            |                      |                   |                        |              |                                       |                         |                    | •                    | -                                           |                  |                                       |            |



D. b. c. d. a 3. 设有如下遗产继承规则, 丈夫和妻子可以相互继承遗产, 子女可以继承父亲或母 亲遗产,子女间不能互相维承遗产,则表示该遗产继承关系的最合适的数据结构是 В ... A. 树 C. 数组 4. 下面叙述中错误的是 C A. 线性表采用顺序存储,必须占用一片连续的存储单元。 B. 当线性表的元素总数基本稳定,并且很少进行插入和删除操作,但要求以最快的 速度存取线性表中的元素时,应该采用顺序存储结构:、/ C. 线性表采用链接存储,所占用的存储单元一定是非连续的; Front = (keoner) 4 nos. D. 线性表采用顺序存储, 称为顺序表。 5. 下列说法错误的是 A. 堆栈和队列从逻辑上来说都是线性结构 B. 若进队列的序列是 w, x, y, z, 则出队列的序列是 w, x, y, v; C. 在循环队列中队尾指针进一操作为 Rear=(Rear+1)% MaxQueue; Front= (Kreati) Ah D. 在循环队列中当 Rear%MaxOueue 子树要区分左、右子树; ②二叉树是树的一种特例; ③之叉树可以为空二叉树; ④ 项所包含的说法均是正确的。 C. 035; D. 034 A. ①234; B. ①24; 7.) 下面程序段的渐进时间复杂度为 i=1; x=100;do{ \while (i<n) A. O(n) B.  $O(\log_2 n)$ C. O(nlog<sub>2</sub>n) D. O(n<sup>2</sup>) 8. 长度为n的线性表采用顺序存储结构存储,设插入表中每一个元素的概率是相等, 素需移动元素的个数为 C

9. 对线性表(35, 29, 72, 49, 28, 39, 65, 82) 进行一趟一般冒泡排序后得到的 通达 (数据结构 B) 期末试卷 (A) 第2页共7页

序列为 A

(29, 35, 49, 28, 39, 65, 72, 82)

(29, 35, 72, 49, 28, 39, 65, 82)

& (28, 29, 72, 49, 35, 39, 65, 82)

(28, 29, 35, 39, 45, 65, 72, 82)

162 具有 n 个顶点的无向图至少应有\_\_\_A

C. n+1

D. 2n

三、简答题 (每小題 6 分, 共 30 分)

1. 己知某 5\*6 稀疏矩阵的三元组表如表 1 所示,请写出执行快速转置时用到的

表 1

| 1 |     | 行号 | 列号  | 值   |
|---|-----|----|-----|-----|
| ţ | 0   | 0  | 1   | 1 . |
| į | 1   | 0  | 5   | 2   |
|   | 2   | 1  | 0   | 3   |
|   | . 3 | 2  | 3   | 4.  |
|   | 4   | 3  | 4 . | 5   |
|   | 5   | 4  | 0   | 6   |
|   |     |    |     |     |



|         | U        | ì    | 43 | *    | 1                                        |     | į |
|---------|----------|------|----|------|------------------------------------------|-----|---|
| k[]     | 0        | 2    | 2  | 16 T | <b>Ø</b>                                 | . 5 | - |
| jelym?- | Injust 1 | port | 人的 | 神.   | 0 <x<,< td=""><td>·</td><td></td></x<,<> | ·   |   |

2. 建立 33, 44, 88, 22, 11, 77, 55, 66 为输入的二叉搜索材, 树上删除结点 33. 则二叉搜索树形分别为怎样。







4. (1) 设 F 是一个森林, B 是由 F 转换得到的二叉树, F 中有 m 个结点, B 的根结点为 p, p 的右子树结点的个数为 n, 则森林 F 中第一棵树的结点个数为 m-n 。 (2). 将图 1 中的二叉树转换为森林。





5. 设有散列表ht[7], 散列函数为h(key)=key % 7, 采用线性探测法处理冲突, 试对 关键字序列70, 74, 53, 35, 42, 50建立散列表, 请将下表数据补充完整。

| <br>0 | 1  | 2  | 3  | 4  | 5  | 6 |  |
|-------|----|----|----|----|----|---|--|
| 70    | 35 | 42 | 50 | 74 | 53 |   |  |

70 35 42 50 74 53 70 35 42 50 74. 53

通达 (数据结构 B) 期末试卷 (A) 第 4 页 共 7 页

得分



2. 根据有向图的深度优先搜索遍历算法,从顶点0出发,得到的顶点序列。(本题



3. 使用普里姆 (Prim) 算法以 B 为源点,构造图 2 的最小代价生成树,按生成次







· 通达《数据结构 B》期末试卷 (A) 第 5 页 其 7 页

#### 五、程序填空题(每小空2分,共8分)

请将下面程序补充完整,利用对半搜索算法在一个有序表中插入一个元素 x, 并保持表的有序性。

```
typedef int KeyType;
typedef struct entry {
    KeyType Key,
    DataType Data;
 }Entry,
typedef Entry T;
typedef struct list{
    int Size, MaxList;
    T Elements[MaxSize];
 } List;
BseaInsert(List lst, KeyType x)
     int mid, low=0, high=lst.Size-1;
     int i, inplace, find=0;
     while (low = high)
                       mid=(low+high)/2;
                       if (x<lst.Elements[mid].Key) high=mid-1;
                       else if (x>lst.Elements[mid].Key) low=mid+1:
                       else {
                             .find≈1;
     if (find) inplace-mid;
        else inplace=low;
     for(i=lst.Size-1; i>=inplace; i-)
         lst.Elements[i+1].Key=lst.Elements[i].Key;
     lst.Elements[inplace].Key=x;
```

得分

六、请按照要求编写程序交换二叉树中每个结点的左右子树。(本是8分) typedef char K;

typedef char K; typedef int T;

```
| 觉 遵 守
则,诚信考
             typedef struct btnode
              {
                  K Element;
                  struct btnode* LChild, *RChild;
              }BTNode;
              typedef struct btree {
                  struct binode* Root,
              }BTree;
              void Exch (BTNode *t):
                                            //提供给用户使用的函数
              void ExchOfLeaf(BTree Bt);
              void Exch(BTNode* p)
                   if (p) {.
                       BTNode *q=p->LChild;
                       p->LChild-p->RChild;
                       p->RChild=q;
```

void ExchOfLeaf (BTree Bt)

Exch(p->RChild);

Exch(Bt.Root);

## 南京邮电大学 2014 / 2015 学年第一学期

# 《 数据结构 B 》期末试卷 (B)

| 本试卷共_6_页;                | 考试时间_110_               | _分钟:              |                                        |                       | ·                                     |          |
|--------------------------|-------------------------|-------------------|----------------------------------------|-----------------------|---------------------------------------|----------|
| 幸业                       | 班级                      | 学                 | 5                                      |                       |                                       |          |
| 题号 —                     | = ,                     |                   | 四                                      | 五                     | 总分                                    |          |
| 得分                       |                         | ,                 |                                        | ,                     |                                       |          |
| 注意: 1. 答案一律              |                         |                   |                                        |                       |                                       |          |
| 2. 试卷上均                  | J填写完整的专业                | <b>L、班级、</b>      | 学号、姓名                                  | 3.                    |                                       |          |
| 3. 有风元放                  | 方格试卷、草和<br>树长野 / 每 4 野  | 高纸交监考             | 老师后方可                                  | 「离开考场。                |                                       | . '      |
| 初分 阅卷人 记"                | 判断题(每小题<br>F")          | 1分, 共             | 10分, 正                                 | 随的记"T'                | ',错误的                                 | .,       |
| Top                      | 1. 倒性表的逻辑               | MY NA             | 所 <b>为人一的</b> 体                        | / <b>%/13/13</b> /1-人 | W· 章章                                 | 值如       |
| \(\frac{1}{2}\)          | 2. 队列的插入操               | :作在队尾是            | 1行、删除操                                 | 作在队头进行                | X MANA                                | <b>.</b> |
|                          | 上其数据元素可以;<br>t的形本makasa | を示为线性             | 表的线性表。                                 |                       |                                       |          |
| 序无关。                     | 甘的形态取决于集合               | TT 化亲天            | 世子间的大小                                 | 关系,而与元                |                                       |          |
| ( <b>「</b> ) 5. 二叉树可じ    | <b>人为空二叉树。</b>          |                   |                                        | 1/2/0-                | 见的作啊.                                 |          |
| F( T) 6. 数据结构引           | 1四种基本家籍短时               | 每是线性结             | 每. 集合編輯                                | kil kil kileki wiki l | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |
| ^ 1 / / - ^ 2 1 7 次 がた ア | 、心川于海丹农,各               | 装售和分形的            | 900年表的有方                               | 人。大台山                 |                                       | ħ.       |
| - 「「フロ、斑疹医療は             | :队列日期/小链表):             | 上的实现。             |                                        |                       | · ANA                                 |          |
| (1) 9. 操有n个              | 结点的二叉树采用                | 二叉链表几             | 或存储, 空                                 | 指针域为n+1。              | の意料。2                                 | LAK.     |
| 下( J.) 10. 简单选择          | 排序是稳定的排序                | 算法。 入             | 晚上的                                    | 不知识                   | 河外外                                   | YELLA    |
|                          |                         | 才                 | 总变.相邻为                                 | 快.                    | 16.4                                  |          |
| 初分 阅查人 二、                | 选择题(每小题                 | 2分,共              | 20分)                                   |                       | •                                     |          |
| 1.                       | 线性装岩采用链边址 2.            | 存储结构              | 时,要求内石                                 | 7中可用存储                | 单元的地                                  |          |
| A. 必须是连续的                |                         | ZA labelet er zo  | : Franka                               |                       |                                       |          |
| C. 一定是不连续                |                         | 分地址必须<br>续或不连约    |                                        |                       |                                       |          |
|                          | 结点有两个域:ele              | 歌歌作及は<br>mont 聞目: | (即可以<br>1)。 为他は                        | . GENELL WAR          | 11.50 500 400                         |          |
| 入新结点河的操                  | 作是 <u>C</u> .           | mont da []        | **** ********************************* | )以16不的给<br>·          | 思乙尼插                                  |          |
| A. q->link=p;p-          | ->link=q;               |                   | B. q->link                             | =p->link;p=           | in :                                  |          |
| C. q->link=p->           | ·link;p->link=q;        | -                 |                                        | =q;q->link=           | -                                     |          |
| <u> </u>                 | (数据结构 B)                | 试卷 第二             |                                        |                       | ?»link= p->                           | link.    |

Ħ

## KIELEN ERNIN

| - 3. |       | 输入户              | ·列是:       | a.b.c.   | <b>d</b> .(进      | 栈后可以       | 7.即出栈)        | · 下列            | 出栈序列          | 11_C                                  | <u>Z_17</u> ; |
|------|-------|------------------|------------|----------|-------------------|------------|---------------|-----------------|---------------|---------------------------------------|---------------|
|      | _     | 可能得到             |            |          | •                 |            |               |                 |               | •                                     |               |
|      |       | c.b.             |            | /        |                   |            | b.d.a         |                 |               |                                       |               |
| P    |       | d.b.             |            |          |                   |            | c.d.a         | \               | )             |                                       |               |
| 7/0  | 散列    | 函数有·             | 一个共        |          |                   | 函数值应       | 2当以           | $C_{\cdot}^{V}$ | 取其值均          | 或的每个值                                 | Í.            |
|      |       | 最大概率             |            |          | 小概率               |            | C. 随机         |                 | D. K          |                                       |               |
| 5.   | 设有:   | 如下遗              | が維承        | 规则.      | 丈夫和               | 要子可以       | 人相互维力         | 形遗产             | ,子女可          | 以继承父:                                 | 亲或母           |
|      | 亲遗    | *, 子:            | 女间不        | 能互相      | 继承遗               | 产。则是       | 《示该遗》         | *继承             | 关系的最          | 合适的数·                                 | 据结构           |
|      | 是     | <u> </u>         |            |          |                   |            |               |                 |               |                                       | e' : '        |
|      | A. 🕏  | 处结构              | ij         | B. ≝     | 结构                | C.         | 树形结构          | )               | D. 集合结        |                                       | •             |
| 6.   | 又     | 搜索树              | 卢, 最       | 小元素      | 位于                | Bi /       | ١             |                 |               |                                       |               |
|      | A.    | 很结点              | 的最多        | 正片结点     | 处                 |            | В. К          | [结点]            | 的最右下约         | 書点处                                   |               |
|      | C. 相  | Q结点的             | 9右结.       | 点的最高     | 左下结点              | <b>集处</b>  |               |                 | 的左结点的         |                                       | 古孙            |
| 7.   | 己知    | 元素序              | 列为 (       | 20, 40,  | 3 <b>0,</b> 60, 9 | 50, 70, 9  | )). 利用{       | 快速排             | 序的方法          | ,以第···                                |               |
|      |       |                  |            |          | 结果为               |            |               |                 | *             | . 2.3,,                               | 1702          |
|      | A. 4  | 0, (20           | , 30, 6    | 0, 50, 7 | 0,90)             |            | 7 .           | ); (-10         | ), 20, 60, 50 | 0, 70, 90)                            |               |
|      | C. 2  | 20, (40          | , 30, 6    | 0, 50, 7 | 0,90)             |            |               |                 | , 10, (60     |                                       | 90)           |
| 8.   | 采用    | 邻接表              | 存储的        | 图的优      | 度优先:              | 遍历算为       | <b>·类似于</b> " | 又树              | iki D.        |                                       | * .           |
|      |       | 「戸遍り             |            | `        | 143 -             | _          |               | 中遊              | · / /         | -                                     |               |
|      | C. A  | 計遍の              | j. ·       |          | 7                 | 入.         | D I           | 短次.             | 遍历            | •                                     |               |
| . 9. | 深度    | 为5(1             | R为第        | · 浸)     | 的二叉               | 对至多有       | $\Box$        | '个/             | fa.           |                                       |               |
|      | A, 1  | 6                |            | å        | 54                |            | 8. 3          | 2               |               |                                       |               |
|      | Ç. 3  |                  |            |          | •                 |            | 0. 3          | -               |               |                                       |               |
| SA.  | 人长度   | 为 <sub>n</sub> 的 | 线性表        | 采用廠      | 疗存储               | 结构存储       | 齿, 设刚的        | 表中的             | 每一个元素         | 三的概率是                                 | <b>利等。</b>    |
|      | 则半    | 均情况              | 下从表        | 到哪份      |                   | 素需移动       | 万元素的个         | 数为              | _ <u>C/</u>   | •                                     |               |
|      | A. n  | ••               | B.         | n/2      | C.                | (n-1)      | 2             | D.              | 不能确定。         |                                       |               |
|      |       |                  | _          |          |                   |            |               |                 |               |                                       | ·             |
|      | 邻分    | 阅卷人              |            |          |                   |            |               |                 |               |                                       | •             |
| -    |       |                  | 1          |          | ·题(5              |            |               |                 |               |                                       |               |
| L    |       |                  | ] 1.       | (1) 给    | 计以下               | 稀疏矩阵       | 的行三方          | c组表             | 示。(5分         | )                                     |               |
|      | 0     | 1 >              | カ          | 4.       |                   | 10         | 0 1           |                 |               |                                       |               |
| 0    | 21    | 0 0              | 25         | 0        |                   | ,          | 3 25          |                 |               |                                       |               |
| 2    | 0     | 12 0             | 0          | 0        |                   | Į i        | 12            |                 |               |                                       |               |
| 2    | 0     | -1 0             | 0          | 8        |                   | 12         | -             |                 |               |                                       |               |
| 7.0  | - 0   | 0 0              | 0          | ر 0      |                   | ـ د ع      |               |                 |               |                                       |               |
|      |       | -                |            |          |                   | <b>第</b> 人 |               |                 |               |                                       |               |
|      | (2)给  | 出该稀              | <b>底矩阵</b> | 快速转      | 置算法               | P的K[c      | ol]数组归        | 国各元             | 索的值。(         | 5分)                                   |               |
| C    |       | . 1              | 0          |          | 1                 |            | 2/            |                 | 3             | 4                                     | ]             |
| K    | [col] |                  | Ø.         |          |                   |            | ħ             |                 | 3             |                                       | 4             |
|      |       |                  |            |          | Material          | Z          | An:           |                 | 4             | · · · · · · · · · · · · · · · · · · · | ٠             |
|      |       |                  |            | (        | 从证证               | 的战役        | 第 2 页         | <b>兵6</b> ]     | 與             |                                       |               |

2. 设散列表的长度为 11. 散列函数 h(key)=key % 11. 采用线性探测法处理冲突, 试用关键字序列 21, 15, 44, 65, 22, 40, 58, 67 建立该散列表。(6 分)(说明: 在下表的合适位置直接填入关键字)



3. 写出下图中的二叉树所对应的先序遍历。(6分)



4. 画出下列树对应的二叉树。(6分)



带格式的: 边框:底部 框线)

5. 设有字符集 S={W, X, Y, Z}, 其出现的频率分别是 W={9, 4, 3, 1}(其 10 分)

(1)、画出哈夫曼树(构建新二叉树时、新二叉树根的左子树根的权值小于等于右子树根的权值)(4分)

(2)、计算带权路径长度 WPL,(3分)

(3)、给出各字符的编码 (3分)

M.W.



12). WPL= 9x1+4x2+4x3=25+4=29.

(3). - | W X 7 7 | 010.

6. 请按照以下序列构造 颗二叉搜索树 (58 35 41 52 68 82), 并阿出此二叉搜索树, 然后回出删除节点 58 后对应的二叉搜索树。(6分)



7. 用普里姆算法从下图中的顶点 6 开始逐步构造最小代价生成树,并计算该生成树的代价。(6 分)

(要求: 画出构造的每一步)



为成初代析:

1+2+3+3+4=13

```
得分
                   四、算法填空(10分)
          色む人
                   int bSch(List Ist, KeyType k, int low, int high)
                       int mid:
                        if
                          if (k<1st. Elements [mid]. Key) (return 1. Soh (100, k, low, m) 11-1).
                          else {
                                if (k>lst.Elements[mid].Key)
                                              return bSohlitzak, mide, high).
                                else return
             }
                return-1;
}
```

```
BOOL BSearch(Eist lst, Key,Type k, T*x)
    int i;
    i=bSch(lst, k, 0, lst.Size);
    if (i=-1) return FALSE;
    else {
                *x=lst.Elements[i];
                return TRUE;
```

得分 園卷人

{

}

五、算法设计(10分)

设二叉树以二叉链表存储。在二叉树的根指针为Bt、试编写

求二叉树中度数为一的节点个数的递归算法(函数定义的首部已 给出,其中 BTNode 是二叉树的结点类型,BTree 为二叉树类型)。

int Degreel (BTNode \* p)

VAT 1=0.1

int BtDegreel (BTree Bt)

return Pagneel (Bt. root).7

### 南京邮电大学 2014 / 2015 学年第一学期

### 《 数据结构 B》参考答案(B)

- 一、判断题(每小题 1 分, 共 10 分, 正确的记"T", 错误的记"F")
  - ( ) 1. 线性表的逻辑顺序与存储顺序总差一致的。F
  - ( ) 2. 队列的插入操作在队尾进行、删除操作在队头进行。T
  - ( ) 3、二维数组是其数据元素可以表示为线性表的线性表。T
- ( ) 4. 二义搜索树的形态取决于集合中元素关键字值的大小关系,而与元素输入次 序无关。P
  - ( ) 5. 二叉树可以为空二叉树。T
  - ( ) 6. 数据结构中四种基本逻辑结构是线性结构、集合结构、树形结构和顺序结构。 F
  - ( ) 7. 对半搜索只适用于有序表,包括有序的顺序表和有序的链表。F
  - ( ) 8. 循环队列是队列在循环链表上的实现。F
  - ( ) 9. 一棵有n个结点的二义树采用二义链表方式存储, 空指针域为n+1。T
  - ( ) 10. 简单选择排序基稳定的排序算法。F
  - 二、选择题(每小题 2 分, 共 20 分)
  - 1. D 2. C 3. C 4. D 5.B 6. A 7.C 8. D 9.C 10.C
  - 三、解答题(50分)
  - 1. (1) [评分]共 5 分, 每个元素 1 分

$$\begin{pmatrix}
0 & 0 & 21 \\
0 & 3 & 25 \\
1 & 1 & 12 \\
2 & 1 & -1 \\
2 & 4 & 8
\end{pmatrix}$$

(2) | 评分1 共 5 分,每个元素 1 分

| col    | 0 | 1          | 2 | 3 | 4   |
|--------|---|------------|---|---|-----|
| K[col] | 0 | - <b>J</b> | 3 | 3 | · 4 |

#### 2. [评分] 共 6 分, 每个元素 1 分

散列函数 h(key)=key % 11. 线性探测法处理冲突,序列 21, 15, 44, 65, 22, 40, 58, 67

| 0  | i  | 2  | 3  | 4  | 5  | 6 | 7  | 8 | 9 | 10 |
|----|----|----|----|----|----|---|----|---|---|----|
| 44 | 65 | 22 | 58 | 15 | 67 |   | 40 |   |   | 21 |
|    |    |    |    |    |    |   |    |   |   |    |

- 3.[评分] 共6分、每个元素1分
- 二义树所对应的先序遍历:

ABDECE

4. [评分] 共6分, 每个元素1分 所求树对应的二义树为:



5. [评分] 共 10 分, 其中: (1) 画出哈夫曼树 4 分: (2) 计算带权路径长度 3 分: (3) 给出各字符的编码 3 分。

#### (1) 画出哈夫曼树 (4分)



(2) 计算带权路径长度 (3分)

WPL= 
$$\sum_{i=1}^{4} WiLi = 9 \times 1 + 4 \times 2 + 3 \times 3 + 1 \times 3 = 29$$

- (3) 给出各字符的编码 (3分)
- W:1 X:00 Y:011 Z:010
- 6. [评分] 共 6 分, 每个元素 1 分 (58 35 41 52 68 82),构造一颗二义搜索树



7. [**评分**] 共 **6** 分,**5** 个步骤每步骤 **1** 分,生成树的代价 **1** 分 用普里姆算法,最小代价生成树



该生成树的代价为: 1+2+3+3+4=13

四、算法填空(每空2分,共10分) 以下C程序实现对半搜索的递归算法,试将其补充完整。

int bSch(List lst, KeyType k, int low, int high)
{ int mid;

```
if (<u>low<=high</u>
                     mid= (low+high)/2 :
                    if (k < lst. Elements[mid]. Key) {return bSch(lst, k, low, mid=1); }
           else{
                               if (k>lst.Elements[mid].Key)
                                             return bSch(lst, k, mid+1, high);
                              else return mid;
                 }
               return - 1;
BOOL BSearch(List 1st, KeyType k, T *x)
    int i;
    i=bSch(lst, k, 0, lst.Size);.
    if (i==-1) return FALSE;
    else {
               *x=lst.Elements[i];
               return TRUE;
五、算法设计(共 10 分,BtDegreel 函数 2分; Dogreel 函数 8分)
    int Degreel (BTNode * p)
      int i=0; //t 分
     if(!p) return 0; //1分
     else if((!p->LChild && p->RChild) || (p->LChild && !p->RChild)) i=1://2\%
     return Degreel (p->LChild)+ Degreel (p->RChild)+i; 系4分
   int BtDegree1 (BTree Bt)
     return Degreel (Bt.Root): //2 3}
```

#### 8.3 8.4

|       | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8 | 9        | 10 |
|-------|----|----|----|----|----|----|----|----|---|----------|----|
| 线性探査法 | 55 | 45 | 35 | 25 | 70 | 80 | 60 | 50 |   |          |    |
| 二次探查法 | 45 | 35 | 80 | 25 | 70 | 60 | 50 |    |   | <u> </u> | 55 |
| 双散列法  | 55 | 80 | 35 | 25 | 70 | 60 | 45 | 50 |   | 1        |    |



7. [评分] 共 6 分, 5 个步骤每步骤 1 分, 生成树的代价 1 分 用普里姆算法,最小代价生成树



该生成树的代价为: 1+2+3+3+4=13

四、算法填空(每空2分,共10分) 以下C程序实现对半搜索的递归算法,试将其补充完整。

int bSch(List lst, KeyType k, int low, int high)
{ int mid;

```
if (
           low<=high )
                    mid = (low + high)/2;
                    if (k < lst. Elements[mid]. Key) {return bSch(lst, k, low, mid-1); }
          else{
                               if (k>lst, Elements[mid]. Key)
                                            return bSch(lst, k, mid+1, high);
                              else return mid;
               return - 1;
BOOL BSearch(List lst, KeyType k, T *x)
    int i:
    i=bSch(lst, k, 0, lst.Size);
    if (i==-1) return FALSE;
    else {
               *x=lst.Elements[i];
               return TRUE;
五、算法设计 (共 10 分, BtDegreel 函数 2 分; Degreel 函数 8 分)
    int Degreel (BTNode * p)
      int i=0; //1分
      if(!p) return 0; //1分
     else if((!p->LChild && p->RChild) || (p->LChild && !p->RChild)) i=1://2 $\frac{1}{2}$
     return Degreel (p->LChild)+ Degreel (p->RChild)+i; //4分
   int BtDegree1 (BTree Bt)
     return Degree1 (Bt. Root); //2分
  8.3 8.4
                      0
                                                   4
                                                          5
                                                                  6
                                                                         7
                                                                                8
                                                                                      9
                                                                                           10
  线性探查法
                     55
                             45
                                    35
                                           25
                                                  70
                                                          80
                                                                        50
                                                                 60
  二次探查法
                     45
                             35
                                    80
                                           25
                                                  70
                                                          60
                                                                 50
                                                                                           55
```

双散列法

55

80

35

25

70

60

45

50

2013 /2014

| 40                               | $\leftarrow$     | //                                    | 21             | ¥ <i>k</i> -±□                        | 7.4.17      |             |                                       | •              |                 | 17/4    | Zy ·       |  |  |
|----------------------------------|------------------|---------------------------------------|----------------|---------------------------------------|-------------|-------------|---------------------------------------|----------------|-----------------|---------|------------|--|--|
| 郑                                | 末                |                                       | 3              | <b>议</b> 据                            | 结构          | 1 B         | »                                     | 期末             | 试卷              | (B)     |            |  |  |
| r.hr.Z                           | 77.              |                                       |                |                                       |             |             |                                       |                |                 |         |            |  |  |
| 班组                               | <u>Z</u>         |                                       | 学号_            |                                       |             | 姓名_         |                                       | 得分             |                 |         |            |  |  |
| 题号                               |                  |                                       | =              | 四                                     | 五           |             |                                       |                |                 |         |            |  |  |
|                                  |                  |                                       |                |                                       | _11_        | - 六         | 七                                     | 八              | 九               | 十       |            |  |  |
| 得分                               |                  |                                       |                |                                       |             |             |                                       |                |                 |         |            |  |  |
|                                  |                  |                                       |                |                                       |             |             |                                       |                |                 |         | •          |  |  |
| 一、填                              | 空题 (             | 6小题,                                  | 每小题            | 2分,共                                  | 12分)        |             |                                       |                |                 |         |            |  |  |
| 1. 顺序                            | 表中各方             | 素之间的                                  | 的地址是           | 虚疾                                    | w./         |             | · ».                                  |                |                 |         | <b>.</b>   |  |  |
|                                  |                  |                                       |                |                                       | 1 /         | r Mer dia d | V                                     |                | ا داد           |         |            |  |  |
| C* 6+45                          | . 1 100/17       | F + 7T 25.%                           | 5年的 67         | 区的长度                                  | 和表的是        | 数都会         | 动态变化                                  | ,则应采           | 用發寸             | :       |            |  |  |
| 储结构。                             |                  |                                       |                | ns all                                |             | 1.7         | 1 1576                                | -1 (d          |                 |         |            |  |  |
| 少栈的                              | TOP运算            | 的功能是                                  | 7 7            | Bus -                                 | _,但此:       | 运算不删        | 人<br>格<br>顶<br>原<br>長<br>顶<br>元       | ルズル   4<br>元素。 | •               |         | •          |  |  |
| 4. 对树:                           | 进行后序             | 遍历时,                                  | 最后出现           | 见的结点                                  | ,在先育        | · 谝 乐 由 :   | 13 Ye 1                               |                |                 |         | *          |  |  |
| (5) AOV P                        | 网络中活:            | 动之间的                                  | 领生主要           | D_46                                  | -tw Z       |             |                                       |                |                 |         |            |  |  |
|                                  |                  |                                       |                |                                       |             |             | ,它具有                                  | 传递性和           | 0反自反            | i.      |            |  |  |
| 0. 40141                         | (F/大)子夕()        | ZJ 0 81                               | 15 8 9 1       | <u>5</u> 71, §                        | 圣过某种        | 排序后,        | 得到的原                                  | 手列为 0          | 8 9 <u>15</u> 1 | 15 71 8 | 1,         |  |  |
| 则此排序                             | 算法的程             | 定性如何                                  | 可?答案           | 是                                     | <u> </u>    | •           |                                       |                |                 |         |            |  |  |
|                                  |                  |                                       |                | `                                     |             |             |                                       |                | ~*              |         |            |  |  |
|                                  | 页选择题             |                                       |                |                                       |             |             |                                       |                | h               | •       |            |  |  |
| 火 将 9 月                          | Dr 所指:           | 结点的先                                  | 后位置交           | 换且不                                   | 出现断链        | 现象,以        | 1下借课                                  | 的程序段           | 是人              |         |            |  |  |
|                                  |                  | V.                                    | link           | 2                                     | ,<br>link   | data        | link                                  |                |                 | °       |            |  |  |
|                                  | •••              | <b>→</b> [_                           |                |                                       | Ţ <u></u> . | - Cata      | <u>,,,,,</u>                          | →P.            | / \             | 9       |            |  |  |
| (                                | <b>)</b>         | y.<br>D                               | 1              |                                       | N.          |             |                                       | П              | 7 (             | TT      | 1          |  |  |
| (A) q→                           | link=r→          | link; ¡                               | p→link=        | r: r                                  | →link=      | 1:          | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | ø              | J' (A)          | 0 1     | <b>)</b>   |  |  |
| (X)(I-+)                         | ink=q)           | q→linl                                | k=r→lin        | k; p-                                 | -link=r     | i N         | 网络.                                   |                | +               | FJ°     | •          |  |  |
| (CX p-+)                         | ink=r            | n-link                                | (=rlin         |                                       | ·link=q     |             | 1                                     | ,              | γ.              | rolim   | k=0        |  |  |
| (D) $q \rightarrow 1$<br>2. WINT | JOMOPP<br>MIK=I- | link; ː<br>佐玄佐山                       | ∵→link=<br>ठङक | q; p                                  | →link=r     |             | /                                     |                |                 | P. Din  | <i>u</i> . |  |  |
| 2. WINI<br>(A)数组                 |                  | IF 水坑口                                | 火風调度<br>(B)類   | [时, <u>先</u> ]                        |             | /           |                                       | 的典型应           |                 | 1 30 00 | vi- 1.     |  |  |
| 3. 中缀表                           |                  | 3-C/D) *E                             | 的后缀形           | ····································· | Sh. '       | C》队列        |                                       | (D)            | 二叉树             |         | ,          |  |  |
| (A) AB(                          | CD/*E+-          |                                       |                |                                       |             | B) AB       | CD/-E*+                               |                |                 |         |            |  |  |
| (C) ABC                          |                  |                                       | <b>.</b>       |                                       |             |             | CD+E-/*                               |                |                 |         |            |  |  |
| 1. 在对非                           |                  | · · · · · · · · · · · · · · · · · · · | 遍历的            |                                       | 根结点         |             |                                       |                |                 |         |            |  |  |
| (A) 只有<br>(C) 只有                 |                  |                                       |                | (                                     | B) 只有       | 根的左子        | <sup>2</sup> 树上的 <sub>3</sub>         | 全部结点           | 或无结点            |         |            |  |  |

(D) 只有根的右子树上的全部结点或无结点

(C) 只有右子树上的部分结点

5. 有t个非零元素的稀疏矩阵 $A_{m \times n}$ ,采用三元组表示,则快速转置的时间复杂度是  $(A) O(m \times n)$ (B) O(m+n)... (C) O(n+t)(D) O(n×t) 6. 二叉搜索树中, 最小元素结点的左 ,它的右子树 70% (A) 一定为空, 不-(B) 不一定为空, 一定不为空 (C) 一定丕为空, 不一定为空 (D) 不一定为空,不一定为空 7. 对非连通图进行 (B) 森林 (C) 生成树 DD7 生成森林 三、简答题(8小题,每小题6分,共48分) 1. 输入序列为 (21 60 L2 50 45 80), 请先建立 又搜索树·, 再从此树上将60删除。 设散列表的长度为 11, 采用双散列油解决冲突,试以散列函数 h;(key)=key%11, h;(key)=key%9+1, 从空表开始)依次插入下列关键字值序列: 81 25° 80 35 60 45 建立散列表。请画出该散列表 有向图见下图。给出强连通分量的定义并面出强连通分量。 4. 使用普里姆(Prim)算法以A为源点,构造下图的最小代价生成树, O. A. 5. 画出下图中的二叉树所对应的森林, 若 X 结点是其双亲 Y 的右孩子,则在对应的树或森 林中 X 是 Y 的什么结点?

6. 当以边<0,1>,<1,3>,<1,2>,<2,5>,<5,0>,<4,2>,<4,3>,<2,0>的次序从只有6个项点没有边的图开始,通过插入这些边,建立邻接表。

- (1) 画出该邻接表;
- (2) 在所建立的邻接表上,进行以0为起始顶点的深度优先遍历,写出遍历结果。

- 7. 设字符集合S={A, B, C, D, E}, 各字符的使用频率为\={5, 7, 19, 6, 3}
- (1) 画出哈夫曼树;(生成新结点时,新结点的左子树根的权值小于等于右子树根的权值)
- 後,沒有四阶B-树,如下图所示(未画出失败结点)。画出插入关键字(6)5的B-树;



## 六、程序设计题(12分)

已知带表头的单链表(SingleList)的结点(Node)有两个私有的数据成员: data 和 link, 其中 data 是结点关键字, link 是指向 Node 的指针。SingleList 中私有的数据成员有两个; first 和 length, 其中 first 是指向第一个结点的指针, length 是当前单链表中结点的个 数。请完成:

- (1) 写出结点 Node 和单链表 SingleList 的 C++类模板; (Node 只要求写出私有的数据成员, SingleList 不用从 LinearList 继承, 其成员函数只要列出(2)中的 Insert 函数即可)
- (2) 假设单链表中的结点是有序递增的,设计成员函数 Insert (const T& x), 在单链表中插 入元素 x 且保证链表的有序性。(单链表中任意两个结点的关键字都不相等)

- 一、填空题(6小题,每小题2分,共12分)
- 1. 连续的
- 2. 链式
- 3. 取得栈顶元素的值
- 4. 最先
- 5. 拟序
- 6. 不稳定
- 二、单项选择题(7小题,每小题2分,共14分)

BCBDCAD

三、简答题(8小题,1每题6分,共48分)

1.



2分



| 2. |      |                                       |     |    |    |   |          |     |    |
|----|------|---------------------------------------|-----|----|----|---|----------|-----|----|
|    |      | · · · · · · · · · · · · · · · · · · · |     |    |    |   | (每个1     | 4)  |    |
| U  | 2    | 3                                     | 4.  | 5  | 6  | 7 | <u> </u> | / / |    |
|    |      | 25                                    |     |    |    |   | 8        | 9   | 10 |
|    | <br> | 4.5                                   | 1.0 | 60 | 45 |   |          |     |    |

3. (1) 有向图的一个极大强连通子图称为该图的一个强连通分量。(2分) (2) (4分)





(2)兄弟 6.

(1)

 $\begin{array}{c|ccccc}
0 & & & & & & & & \\
1 & & & & & & & & \\
2 & & & & & & & \\
3 & & & & & & \\
4 & & & & & & \\
5 & & & & & & \\
\end{array}$ 

(2) 012534

(2分)

(2分)

(4分)

7. (1)

(4分)



(2) WPL=(3+5+6+7)\*3+19\*1=82

8. (1). 插入 96

(2分)

(第一次分裂 4分, 第二次分裂 2分)



四、程序填空题(8分)

- (I) A[i]<A[left]
- (2) A[j]>A[left]
- (3) A[left], A[j]
- (4) j+1, right

五、程序阅读题 (6分)

- (1) 计算叶子结点数
- (2) 4

(3分)

(每空2分)

六、程序设计题(12分)

(3分)

(1)

template <class T> class SingleList;

template <class T>

class Node

(2分)

nte:

3

```
class SingleList
  { public:
                                                                         (2分)
      SingleList();
      ~SingleList();
      bool Insert(const T& x);
   private:
     Node<T>* first;
     int length;
};
 (2) template<class T>
BOOL SingleList<T>::Insert(const T&x)
  Node<T>* p,q,r;
 p=first->link;
 q=first;
 while(!p&&p->data<x)
 { q=p;
                                                                     (3分)
   p=p->link;
 }
if(p->data=x) return false;
r=new Node<T>;
r->data=x;
                                                                      (2分)
r->link=q->link;
q->link=r;
                                                                     (2分)
length++;
return true;
                                                                     (1分)
```

# 南京邮电大学 2011 /2012 学年第 二 学期 有 冷案

## 数据结构B 期末试卷

|                       |                      |          | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                              |                      |
|-----------------------|----------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------|----------------------|
| 班级                    | 学号                   |          | 姓名                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 得分                           |                      |
|                       |                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                              |                      |
| 题号                    |                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>p</u>                                | ii                           | (表表)                 |
| 分数                    |                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                              |                      |
| 一、解答题: (J<br>1、下列程序段或 |                      |          | (400/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                              |                      |
| (1) for (int          |                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | int fac(úns                             | formed int th                |                      |
| for (                 |                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | n==1) ref                    |                      |
|                       | k][]=k*j;            |          | The state of the s |                                         | n n*fac(n-1                  |                      |
|                       |                      |          | Otman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 2. 3                         |                      |
|                       | H** ()               | -Q(mxn). |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14M                                     | j=0(n)                       |                      |
|                       |                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                              |                      |
| (3) int Prin          | ne(mt'n)             | .TA      | . (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) k=1; x=                               | g                            |                      |
|                       | 2 , <b>x=(in</b> t)s |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .do {                                   |                              |                      |
|                       | (k<=x). {            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | +, k*=2;                     |                      |
| if (n                 | % k==0               | break:   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ; {                                   | *, *                         |                      |
|                       | }                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | while (k<                               | <n);< td=""><td></td></n);<> |                      |
| ∵ :                   | x) return 1;         | In= 0    | (Jin).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · ·   | 011                          | m 1- b               |
| else r                | eturn 0; }           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | ni= Ollo                     | ሃ , <sup>ዮ )</sup> . |
|                       | n Gringer<br>Vansk   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                              | A                    |

2、有名。B. C、D 四个元素依次入栈,即入栈序列唯一,问共能得到多少种出栈序列? 能否得到以下四种出栈序列。ABCD、BDAG、CBDA、DBAC。对能得到的序列。请写 出 Push、Pop 序列。对示能得到的序列,请说明理由。(6%)

ABCO. push pop. push pop push pop.

1474.

BDAC. TAB. DAGARDAC.

TRATE CBDA. push push push pop pop.

TRANSIL DBAC. ABW.

ANDER LANGE LANG

3、矩阵 A<sub>m</sub>·, 以行优先方式从 1000H 处开始存放, 未素类型未知, 己知: A[2][3]存放在 1011H 处, A[1][1]存放在 1005H 处, 求元素 A[2][0]的存放位置。(6%)

4、根据下图所示的树回答问题。《共13%

(1) 画出该构等效的二叉树。 (3%)



I LKTE B J THOCHA

(3) 用带右链的先序表示法来存储此树,填写下表。(6%)

| · 下标。    | 0 | 1 -               | 2 | 3 | 4 |      | 6 | 7 | 8 | 9 | 10  | , ji. |  |
|----------|---|-------------------|---|---|---|------|---|---|---|---|-----|-------|--|
| sibling. |   | : :- <sup>1</sup> |   |   |   |      |   |   |   |   |     |       |  |
| èlement  |   | 47.               |   | • |   | 1000 |   |   |   |   |     |       |  |
| ltag     |   |                   |   |   | • |      |   |   | : |   | . ; |       |  |

5、假设用于通讯的电文仅由 {ABCDEFGH} 8个字母组成,字母在电文中出现的频率分别为0.07, 0.19, 0.02, 0.06, 0.32, 0.03, 0.21, 0.10。请画出哈夫曼树并在树中标明编码情况,给出这8个字母的哈夫曼编码,最后求出WPL。(9%)





12345678 图得到的顶点序列。

(4) 求出它的一棵最小代价生成树(方法任选)、其代价是多少? 你所求出的最小(

外

一项工程·Pi由 Pf. P2, P3, P4, P5, P6 六个子工程组成。这些工程之间有下列关系。 Pi>P2, PI>P3, P1>P4, P2>P3, P2>P5, P3>P6, P4>P6, P5>P6. 其中符号">"表示先于关系 例如P1>P2表示只有在工程P1完成之后才能进行P2的工作。请: (7%)



**松** 按如下关键字序列(60, 88, 107, 15, 8, 23, 100)从空树开始建立 画出建树的步骤以及调整平衡的过程(6%)



16、元素序列: {55, 71, 12, 98, 4, 70, 51}; 请写出用冒泡排序法和 2.路合并排)

2路合并排序法

D. 155.71. (12,98). 14,70). (51).

0. (12, 55, 71, 98) (451, 70).

0. (4, 12, 51, 55, 70, 71, 981

进行排序的各超排序结果。(6%)

0. [15 12 7, 4 70 51 ] 98.

O. [ 12 55 4 70 II]71 98.

Ø. [ 12 4 15 €] 7071 98.

Ø. [ 4 12 51] Its 70 71 98

DI 4 12] 51 55 70 71 98

D H1 12 51 JT 70 71 98.

二、算法填空之(8%)(7)...

以下算法实现工义搜索树的删除,根据给定的关键字文,找到待删除元素后将元素值通过参数 e 返回,若成功删除则返回 true; 找不到待删除元素则返回 false. template <class E,elass K>

BSTree<E,K>::Delete (const K&k, E&e)

BTNode<E> \*p=root,\*q=0; while ( p && p->efement!=k )

q≕p;

```
if (k<p->element) p=p->lchild;
      else
     cerr<<"No element with key kln"
         return talze.
  e=p->element;
 while (p>lchild && p>rchild)
    BTNode<E> *s=p->rchild, *r
   while (s->lchild)
    .. s=s->lchild:
   1 2 prolement: 5 - element.
 BTNode<E> *c;
 if (p->lchild) c=p->lchild;
 else C= parchild:
 if ( ______) root=c;
 else if (p=-q->lchild) q->lchild=c,
  else q->rchild=c;
  deleve :
 retum true;
 三、算法设计(10%)
编程实现将两个技元素递增排序的单向循环链表合并成一个单向循环链表,合并后元素仍
递增有序。注意:不允许再增加新的结点,相同元素具保留一份。该算法为 Single List 类
的成员函数 Merge,该函数的作用是将形参 r 代表的单向循环链表合并到当前单向循环链
表中,合并后的结果存于当前单循环链表。
template <class T> class SingleList;
template <class T>
class Node{
private:
 T data;
 Node<T> *link; .
 friend class SingleList<T>:
```

class SingleList:public LinearList<T>
{public:
void Merge(const SingleList<T>&r);

private:
Node<T> \*firs!



template <class T> void SingleList<T> &r)



## 南京邮电大学 2011 /2012 学年第 二 学期

# 数据结构图 期末试卷

一、解答题: (共82分)

1、下列程序段或函数的时间复杂度。(10%)

(1) T(n)=O(n\*n) (2) T(n)=O(n) (3) T(n)=O(√n) (4) T(n)=O(log<sub>2</sub>n)
-2、(6%) 答: 共14种出程序列

ABCD 出栈序列可以得到,操作序列: Push Pop DBAC 出栈序列不能得到,操作序列: Push Push Push Pop Pop Push Pop Pop DBAC 出栈序列不能得到,因为: D 出栈后, C 处于栈项, 故 D 后不能得到 B

- 4、(共13%)
- (1) 等效的二叉树
- (2) 先序遍历的结点序列:ABEFKLCGDHIT 后序遍历的结点序列:EKLFBGCHIJDA
- (3) 下标

. 0 1 2 3 4 5 6 7 8 9 10 11

|            | <u></u> |   | -, |     |    | . ~    | O  | 1  | ٠ŏ. | 9  | 10 | 11  |
|------------|---------|---|----|-----|----|--------|----|----|-----|----|----|-----|
| sibling    |         | 6 | 3  | -1  | 5. | -1     | 8  | -1 | -I  | 10 | 11 | -1. |
| elepinént- | ·A      | B | E. | F   | K  | L      | C  | G  | D   | Ĥ  | 1  | T   |
| Itag       | 0       | 0 | 1  | .0. | 1  | 1.     | .0 | 1  | 0   |    | 7  | -   |
|            |         |   |    |     |    | لــِـا |    |    |     |    |    | 1   |



5、(9%) 答。编码: A: 1010 B: 00 C: 10000 D: 1001 E: 11 F: 10001 G: 01 H: 1011

WFL= $\sum_{i=1}^{8} WiLi = [(2+3)*5+(6+7+10)*4+(32+19+21)*2]/100=2.61$ 

哈夫曼树如右图:





- (3) 答:从顶点 1 出发的深度优先搜索顶点序列:12543786 从顶点1出发的广度优先搜索顶点序列: 12345673
- (4) 答: 最小代价生成树如右图: 最小代价生成树的代价为: 29 该树是唯一的



~7、(7%)

- (l) 答:该工程的 AOV 网为:
- (3) 工程 P 的 四种 可能的 施工顺序为.
- (4) P1, P2, P3, P4, P5, P6
- P1, P2, P5, P3, P4, P6.
- PI. P4. P2. P3. P5. P6
- . P1, P4, P2, P5, P3, P6









## 南京邮电大学2010/2011学年第二学期

## 《数据结构 B》期末试卷 ( B 卷)

|            |                     | 院(系、                     | 专业)                |              |                  | _班级_         |                   | 学号_              |                 | _姓名                       |           | <u></u>      |         |         |   |
|------------|---------------------|--------------------------|--------------------|--------------|------------------|--------------|-------------------|------------------|-----------------|---------------------------|-----------|--------------|---------|---------|---|
| <b>7</b> 9 | 分                   | 一、均                      | 真空题                | (20分         | ,请注              | 意:答          | 案写を               | E下面的             | 的表格             | 空白中                       | ·, 否则     | ——<br>  无效!  | )       |         |   |
|            |                     | 题号                       | l                  | 2 .          | 3                | 4            | 5                 | 6                | 7               | 8                         | 9         | 10           |         |         |   |
|            |                     | 答案                       |                    |              | 戏州               | i<br>L       |                   |                  | -               |                           |           |              | ,1      |         |   |
|            | 4. 3                | L<br>数据结构                | 】<br>]从逻辑          | 上分郑          | XX 植构            | <br> 和非线     | <br>性结构           |                  |                 |                           |           | l            |         | •       |   |
|            | 2. 3                | 若长度为                     |                    |              |                  |              |                   |                  | 新元素             | 的算法的                      | 的时间:      | 夏杂度为         | I       |         |   |
|            | O( <sub>4</sub>     |                          | 0h                 | C040 -> 6    | to the police of | 7            | ~, esc=           | 5-rer va en      | 8 Nr.           |                           |           |              |         |         |   |
|            |                     | 晩 <del>世年月</del><br>も进先出 |                    |              |                  |              |                   | 安安宣              | 一个数             | .据缓冲                      | 区。该       | 缓冲区遵         | Ē       |         |   |
|            | Α.                  | \ <u></u> \$X            | /                  |              |                  |              | ν                 | 15.              |                 | -u                        |           |              |         | 10      |   |
|            |                     | 已知一想                     |                    |              |                  |              |                   |                  |                 |                           |           |              |         | ` \     |   |
|            |                     | 对有序表<br>关键字之             |                    |              | 31/3             | 5/40.        | 45; 50<br>-       | 6, 70)           | 进行对             | 半搜索                       | ,第一       | 次比较时         | f       | Lo      |   |
| (1)        |                     | へ姓 テノ<br>建立 10,          |                    |              | 40 为输            | i入时的         | 二叉搜               | 索树,              | 其高度             | 为人                        |           |              | ) ,     | )0 9º   | ? |
| , (\       | 8.                  | 具有相同                     | 可散列函               | 数值的;         | 关键字位             | 直,对i         |                   |                  |                 | ava                       |           | 20 X         |         | 100     |   |
| 40         |                     | 0个顶点                     |                    |              |                  | /            | . 10              |                  | ;               | 司之后                       | 7         | Y            | ١,7     | 7~      |   |
|            |                     | 两路合<br>] 二、              |                    |              |                  |              |                   |                  |                 | • /                       | 1         | 则无效!         | . )     |         |   |
| 18         | 身分<br>———           | 题号                       | Ti                 | 2            | 3                | 4            | 5                 | 6                | 7               | 8                         | 9         | 10           |         |         |   |
|            |                     | 答案                       |                    |              |                  |              |                   |                  |                 | -                         |           |              |         |         |   |
|            | ı                   | ļ                        | 上節注水               | 上<br>h : 全元  | 泰姓纪              | 67- 1160 E   | SF 50% 6/1 II     | r 里面t            | <br> Y>-10      | 0.1                       | 1200 - 1  |              | d t     |         |   |
|            |                     | 算法的和                     |                    |              |                  |              | እ፤ መ ነን ካ         | TPDE             | ( <i>n)</i> -10 | uniog₂n-                  | +ZUON+    | Z(A)O)       | ij      |         |   |
|            |                     | O(1)                     |                    | B. $O(n)$    | •                |              | O(200n            | 1                | , .             | nlog2n)                   | 4         | _            |         |         |   |
|            |                     | 单链表。<br>p->nex           |                    |              |                  |              |                   |                  |                 | . 2                       | · (A)     | <b>(</b> -   |         |         |   |
|            |                     | s->next                  |                    |              |                  |              |                   |                  |                 |                           |           |              |         | G       |   |
|            | 3,                  | 在初始为                     | 力空的堆               | 栈中族          |                  |              |                   |                  |                 | -                         |           | 次删除掉         | Ŗ.      | 6       | - |
|            |                     | , 此时相<br>- ·             | 该顶元素               |              | 2.               | <i>~</i> .   |                   | ` ' '            |                 | }                         | )<br>-    |              |         | ď       |   |
|            | A.<br>- <b>.</b> 4€ |                          | 10 阶对              | B.d<br>称矩阵 / | A.采用             | C. t<br>1压缩存 |                   | <b>√</b><br>`(以行 | D, e<br>序为す     | 了<br>摩左链                  | El AF     | 0][0]=0)     | ۸       | 1×(1+1) |   |
| 2) P       | 则                   | A[8][5]f                 | 的地址是               |              | 1                | 12×1.        | 7.7               | 0                | rento)          | 01,                       | 14.6<br>1 | , 189<br>148 |         | , Tit   | , |
|            | A.                  | 39                       |                    | B. 40        | (                | C. 2         | #1                | 10 -             | D. 42           | 011                       | - 3130    | (8 x,        | [10 03] | × + 0   |   |
| •          | 15.                 | 将一棵7<br>怎能是              | 有 100 个<br>## ## # | 、结点的<br>的编品  | 完全二              | 叉树从;         | 根这一/<br>- 50 \$2/ | 层开始,<br>结上数据     | 毎一层             | 上从左                       | 到右依       | 次对结点         | # C. XV | 1: 15   |   |
|            |                     | 行编号,<br>不存在              | TREAT              | T BRETH      | かり、英<br>100      | 19編 写人       | C. 101            | 3D 74/ D3 4      | 31次 】 #         | 丽号为 <sub>。</sub><br>. 102 | F. \<     | 7            | 427     | 3 -     |   |
|            |                     | 采用二次                     |                    |              |                  | 找的条          |                   |                  |                 | 2.°                       |           |              |         |         |   |
|            |                     | 使用链                      |                    |              |                  |              | 存储结               |                  |                 | •                         |           |              |         |         |   |
|            |                     | * .<br>* .               | -                  |              | •                | 第            | 1 页 共             | 4 页              |                 |                           |           |              |         | 47      |   |
|            |                     |                          |                    | . * 🖟        |                  |              |                   |                  |                 |                           |           | ,            |         |         |   |

2(5)+>



第2页共4页



得分

### 四、程序阅读题(10分)

~1. 请阅读下面的代码. 回答有关问题:

template < class T>

int LinkedGraph<T>::fun(int v){

if ((v<0)||(v>n-1)) return -1;

int out = 0; ENode  $\langle 1 \rangle *p = a[v];$ 

while (p){

= p->nextare

return out,

#### 问题:

- (1) 请问以上程序代码的功能是什么?
- (2) 已知有向图如下图所示,针对该图运行 fun(1),函数返回值是多少?

第3页共4页



得分

## 五、编程题(10分)

template <class T>

1. 设二叉树以二叉链表存储,编写完成删除一棵二叉树,并释放所有的结点空间的算法。

```
bool BinaryTree<T>::Clear()
{

}
template <class T>
bool BinaryTree<T>::Clear(BTNode<T>* t)
```

## 南京邮电大学 2009/2010 学年第 一 学期

# 《数据结构 B》期末试卷 ( B 卷)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 院(系、专业) 班级 学号 姓名                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 从K度もの的米用地多有限                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 一、填空题(20分,共 10.题)<br>结构可数据一般分为数值数据和                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 上北京春 自                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000 1000 1000 1000 1000 1000 1000 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 在张度为印的特殊                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 中间常订准之间相入主解                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The Table 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 节同样后移幼 小牡果食                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7. 若有內图的拉扑挂库不能输出所有的顶点,则该有向图存在 <b>200</b> 0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 诚. 不<br>信                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| · 在 他 一                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 二、选择题 (20分,共10题)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 提找:后进始条度<br>队外: 链钻集                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ① 若用单链表来表示(Q),则选用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| THE PARTY OF THE P | C. 只带头指针的非循环链表 D. 只带头指针的循环结束                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10 Augustus<br>Vanden Vanden Vanden van de State br>Vanden van de State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2. 设有一个二维数组 A[m][n]按行优先顺序存储,假设 A[0][0]的地址是 644, A[2][2] 的地址是 676, 每个元素占 1 个单元,则 A[4][5]的地址是 644+2n+2=67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3. 在对非空二叉树进行中序遍历的序列中,根结点右边                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 连围图:天有图                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A. 只有左子树上的部分结点无子是大 B. 只有左子树上的全部结点 C. 只有右子树上的部分结点 D. 只有右子树上的全部结点                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 强连通图:有图 生成树 是一个极小撞强                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4. 具有10个顶点的连通图的深度化生物变压成为一样为处数日本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 图控部预点,对                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5. 上外说法错误的是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A. C知先序和中序遍历序列能唯一确定一棵二叉树<br>B. C知后序和中序遍历序列能唯一确定一棵二叉树                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | About |

(数据结构 B) 期末试卷 (B 卷) 第 1 页 共 4 页

若以中海的排水、则至建村曾胡到 D. 已知先序遍历序列能唯一确定一棵(又搜索树) 下列排序算法中,一趟排序后一定能确定某个元素最终位置的算法是 A. 直接插入排序 B. 快速排序 C. 两路全 D. 以上的不对 B. 探查失败 · C. 假溢出 D. 基本聚集 - 冷北 下图中给出由7个项点组成的无向图,从项点上出发,对它进行广度优先遍历得 到的顶点序列是( 是次偏石 -B\_1726453 ;· A\_ 15342d7 C. I354276 D. 1247653 一个 n 个顶点的有向完全图, 其边的个数为 D. n(n-1)/2 研究分局有 N(m)/条件 B. n(n-1) 10. 适用于折半查找的表的存储方式及元素排列要求为 有完全图有 n(m)条边 A. 链接方式存储,元素无序 一6. 顺序方式存储,元素无序 J. 順序方式存储. 元素有序 "段益出现来) 对村搜索: 近明对餐 三、简答题 (40分, 共5题) 1. 设有向图如下图所示,诸画出该图所有的强连通分量。 有问图 石分一个成大强连通 子包 使用音里姆(Prim)算法以 A 为源点,构造下图的最小代价生成树,要求画出构 造过程中各步的结果. A) 《数据结构B》期末试卷 (B卷) 第2页共4页

个 3 阶 B-树, 请画出插入 37 之后的 B-树, 再画出在此基础上插入 38

后的B树。



(1) 画出哈夫曼树: (构建新树时,新树根的左子树根的权值小于等于右子树根的权值) (2) 求该哈夫曼树的世权路径长度。

5. 表长为 11 的散列表采用双散列法解决冲突,散列函数 h1(key)=key % 11, h2(key)=key % 9+1. 已知散列表目前如下表所示,请问在该散列表中再依次插入关键字 70、80、19、41 后,散列表的情况如何?

|   | •           |       |         |      |     |     |     |     |   |      |
|---|-------------|-------|---------|------|-----|-----|-----|-----|---|------|
|   |             | -1    |         | T    | - 1 | - C | 7 1 | R I | 9 | - 10 |
| Į | では り        | 1 1 2 | [ 3 - ] | 4    | 2   | 0   |     |     |   |      |
| ١ | 1.40        |       |         | - 1  |     | ,   |     |     |   |      |
| 1 | <b>全</b> 梯全 | 12    | 25      | 10 1 | 1   |     |     |     |   | L    |
| 1 | 大阪子         |       |         |      |     | 4   |     |     |   |      |

四、程序填空题(10分,共1题)

以下程序是对半搜索的迭代算法,请填写完整。 template <class T>

| KIN       | 70 | -7o     | 19 | 41 |
|-----------|----|---------|----|----|
| h. Flow   | 4  | 3,      | 3  | 8  |
| Litory >  | 3  | 9       | 2  | 6  |
| I HEART V |    | <b></b> | l  |    |

```
ResultCode ListSet<T>::Search(T &x)const

{

    int m, low=0, high= ___(1) __;

    while (__(2)__)

    {
        ___(3) __ if (x<[m]) high=m-1;
        else
        {
            if (x>[m]) ___(4) __;
            else
            {
                 x=l[m]; ___(5) __;
            }
        }
        return NotPresent;
```

(数据结构 B) 期末试卷 (B 卷) 第 3 页 共 4 页

```
五、编程题 (10分,共1题)
```

1. 在单链表类 SingleList 中增加一个成员函数 Reverse(), 其功能是将头指针 first 指 向的单链表逆置。若原链表为空,则返回 false, 否则返回 true。模板结点类 Node 的定义如下:

template ≪class T> class Node T data; Node<T> \*link;

friend class SingleList<T>

函数原型为: template <class T> bool SingleList<1>:: Reverse()

## /南京邮电大学 2008/2009 学年第二学期

## 《 数据结构 B 》期末 试卷 (B)

| 題号                                                                                                                                                                                                                                                                                                                                                                                | 院(系)       | 班级_            | -1.       | 学号                                       |                | 姓名           |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|-----------|------------------------------------------|----------------|--------------|------------|
| 请考生注意: 1. 答案请写在答题纸上,写在试卷上一律无效! 2. 考试完毕,请将答题纸和试卷交给监考老师,不得带出考场! 4. 集空题(每小题 2 分,共 20 分) 1. 根据数据结构中数据元素之间关系的不同特征,可划分为四种基本逻辑结构。集合结构、线性结构、人工工作和图结构。 2. 线性表的存储结构有顺序存储和链接存储两种,其中可以随机存取的是一位存存储。3. 38 个结点的二叉树高度至少为 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                    |            | 题号 —           |           | <u>=</u>   v                             | 9 总分           |              |            |
| 1. 答案请写在答题纸上,写在试卷上一律无效! 2. 考试完毕,请将答题纸和试卷交给监考老师,不得带出考场!  每分 一、填空题(每小题 2 分,共 20 分) 1、根据数据结构中数据元素之间关系的不同特征,可划分为四种基本逻辑结构:集合结构、线性结构、不可以的和图结构。 2. 线性表的存储结构有顺序存储和链接存储两种,其中可以随机存取的是一个 存储。 3. 38个结点的二叉树高度至少为                                                                                                                                                                               |            | 得分             |           |                                          |                |              |            |
| 2. 考试完毕,请将答题纸和试卷交给监考老师,不得带出考场!  得分  1、根据数据结构中数据元素之间关系的不同特征,可划分为四种基本逻辑结构。集合结构、线性结构、不可以作和图结构。  2. 线性表的存储结构有顺序存储和链接存储两种,其中可以随机存取的是 中 存 存储。  3. 38 个结点的二叉树高度至少为                                                                                                                                                                                                                       | 请考生注意:     |                | لنحصحنا   |                                          |                |              |            |
| 2. 考试完毕,请将答题纸和试卷交给监考老师,不得带出考场!  得分  1、根据数据结构中数据元素之间关系的不同特征,可划分为四种基本逻辑结构。集合结构、线性结构、不可以作和图结构。  2. 线性表的存储结构有顺序存储和链接存储两种,其中可以随机存取的是 中 存 存储。  3. 38 个结点的二叉树高度至少为                                                                                                                                                                                                                       | 1. 答案请写在答题 | <b>延</b> 上,写在i | 式卷上一      | 律无效!                                     |                |              |            |
| 每分 一、填空题(每小题 2 分,共 20 分) 1、根据数据结构中数据元素之间关系的不同特征,可划分为四种基本逻辑结构。集合结构、集合结构、集性结构、人工人工和国结构。 2、线性表的存储结构有顺序存储和链接存储两种,其中可以随机存取的是一个存储。 3、38个结点的二叉树高度至少为                                                                                                                                                                                                                                     | 2. 考试完毕,请将 | <b>F答题纸和试</b>  | 生交给监      | 考老师,                                     | 不得带出:          | 老场!          |            |
| 1、根据数据结构中数据元素之间关系的不同特征,可划分为四种基本逻辑结构:集合结构、线性结构、ANTAL 和图结构。 2、线性表的存储结构有顺序存储和链接存储两种,其中可以随机存取的是 10 存储。 3、38个结点的二叉树高度至少为 6 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                       |            |                | •         |                                          |                | 3.03.0       |            |
| 构、集合结构、线性结构、加强 新图结构。  2、线性表的存储结构有顺序存储和链接存储两种,其中可以随机存取的是 一 存储。 3、38个结点的二叉树高度至少为                                                                                                                                                                                                                                                                                                    | -          |                |           | -                                        |                | ,            | <u>.</u> . |
| 2、线性表的存储结构有顺序存储和链接存储两种,其中可以随机存取的是 小 存储。 3、38个结点的二叉树高度至少为                                                                                                                                                                                                                                                                                                                          | 1、根据3      | 数据结构中数据        | 元素之间      | 关系的不同                                    | 引特征, 可划        | 分为四种基本       | 本逻辑结       |
| 3、38个结点的二叉树高度至少为 6 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                          | 构:集台       | 3 结构、线性结       | 机构        | 八百十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二 | 构.             |              | • .        |
| 3、38个结点的二叉树高度至少为 6 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                          | 2、线性表的存储结构 | <b>均有顺序存储和</b> | ·<br>链接存储 | 两种, 其中                                   | 可以随机存          | 取的是小的方       | 5<br>左接    |
| 4、在一棵 15 阶的 B-树上,每个结点所包含的关键字数目最多为 14 个。 5、AOV 网络中的领先关系是一种拟序关系,它具有16 20 性和反自反性。 6、一个特散列存储的元素序列(25,63,50,42,32,90)中,若选用 h(key)=key % 9 作为散列函数,则元素 18 的同义词共有 2 个。 7、10 个顶点的有向图中,最多有 0 条边。14 9 8 2 进行插入操作,队列只在 12 进行插入操作。 9、二叉搜索树的 1 遍历序列是一个按关键字递增排列的有序序列。 10、后缀表达式 5 3 2 * 3 + 3 / +的值为 8 2 4 3 / + 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |            |                |           |                                          |                | VCH3/C_1/A_1 | 4-11 ma .  |
| 5、AOV 网络中的领先关系是一种拟序关系,它具有人心产性和反自反性。 6、一个待散列存储的元素序列(25、63、50、42、32、90)中,若选用 h(key)=key %9 作为散列函数,则元素 18 的同义词共有 2 个。 7、10个顶点的有向图中,最多有 6 条边。                                                                                                                                                                                                                                         | :          |                | _         | WAR HIST                                 | Charles Advis  | iin .        |            |
| 6、一个待散列存储的元素序列(25, 63, 50, 42, 32, 90)中,若选用 h(key)=key % 9 作为散列函数,则元素 18 的同义词共有 2 个。 7、10个顶点的有向图中,最多有 6 条边。                                                                                                                                                                                                                                                                       |            |                |           |                                          |                |              |            |
| 作为散列函数,则元素 18 的同义词共有 2 个。 7、10 个项点的有向图中,最多有 5。条边。                                                                                                                                                                                                                                                                                                                                 |            |                |           |                                          |                |              | •          |
| 作为散列函数,则元素 18 的同义词共有 2 个。 7、10 个项点的有向图中,最多有 5。条边。                                                                                                                                                                                                                                                                                                                                 | 6、一个待散列存储的 | 的元素序列(25       | 63, 50    | 42, 32,                                  | 90) 中, 若       | 选用 h(key)=   | key % 9    |
| 8、堆栈和队列都是特殊的线性结构,堆栈只在栈顶进行插入操作,队列只在 12 进行插入操作。 9、二叉搜索树的 1 遍历序列是一个按关键字递增排列的有序序列。 10、后缀表达式 5 3 2 * 3 + 3 / +的值为 8 .                                                                                                                                                                                                                                                                  |            |                |           |                                          |                |              |            |
| 插入操作。 9、二叉搜索树的                                                                                                                                                                                                                                                                                                                                                                    | 7、10个顶点的有向 | 图中,最多有_        | So 条i     | 2.14.9                                   |                |              |            |
| 插入操作。 9、二叉搜索树的                                                                                                                                                                                                                                                                                                                                                                    | 8、堆栈和队列都是特 | <b>诗殊的线性结构</b> | ,堆栈只      | /<br>在栈项进行                               | <b>「插入操作</b> 、 | 以列口在別        | <b></b> 进行 |
| _10、后缀表达式 5 · 3 · 2 * 3 · 4 · 3 · 4的值为 <u>\$</u>                                                                                                                                                                                                                                                                                                                                  |            |                |           |                                          |                |              | <u></u>    |
| _10、后缀表达式 5 · 3 · 2 * 3 · 4 · 3 · 4的值为 <u>\$</u>                                                                                                                                                                                                                                                                                                                                  | 9、二叉搜索树的口  | 1 遍历序列是        | 一个按关      | 键字递增                                     | 非列的有序          | 字列。          |            |
|                                                                                                                                                                                                                                                                                                                                                                                   |            |                |           |                                          |                |              |            |
| S (数据结构 B) 试卷 (B) 第 1 页 共 4 页                                                                                                                                                                                                                                                                                                                                                     |            |                |           |                                          |                |              |            |
|                                                                                                                                                                                                                                                                                                                                                                                   | [5]        | (数据结构)         | 3) 试卷 (   | 8) 第1                                    | 页 共 4 页        |              | , 'Y       |

```
二、 阜项选择题(每小题 2 分, 共 20 分)
       1、分析下面一段程序
       for (i=1; i<n; i++)
          for (j=0; j<=(2*n); j++)
                          (21+2) n.
该段程序的时间复杂度为(2)
A \cdot O(log_2n)
           ^{\circ} B. O(n^2)
                                        D. O(nlog<sub>2</sub>n)
2、设线性表 L=(a_0, a_1, \cdots, a_{n-1}),下列说法正确的是( \sqrt{\phantom{a_0}}
A. 每个元素都有一个直接前驱和直接后继以
B. 线性表中至少要有一个元素 人
                        可在空表
C. 表中元素的排列顺序必须是由小到大或由大到小 🗸
D. 除第一个元素和最后一个元素外,其余每个元素都有一个且仅有一个直接前驱和直
接后继。
3、堆栈中,栈底至栈顶依次存放元素 A、B、C、D, 在第 5 个元素 E 入栈前, 栈中
元素可以出栈,则出栈序列可能的是(
A. ABCDE X
              B. DBCEA
                           C. DCBEA
4、已知顺序表中每个元素占2个存储单元,第一个元素 ao 在内存中的存储地址是 i00,
则表中元素 as 在内存中的存储地址为(
A. 112
                           C. 120
                                         D. 140
5、设森林中有 3 棵树,其中第 1、第 2 和第 3 棵树的结点个数分别为 n_1、n_2、n_3,则与
森林对应的二叉树中根结点的右子树上的结点个数是( 1)。
A. n_1
              B. n_1+n_2
                           C. n<sub>3</sub>
6、在一非空二叉树的中序遍历序列中,根结点的右边( A)。
A. 只有右子树上的所有结点.
                         B. 只有右子树上的部分结点
C. 只有左子树上的部分结点
                          D. 只有左子树上的所有结点
7、二叉搜索树中,最小元素的左子树(
                          ),它的右子树(  )。 👌
A. 一定为空,不一定为空
                          B. 不一定为空, 一定不为空
C. 一定不为空, 不一定为空
                          D. 不一定为空, 不一定为空
```

(数据结构 B) 试卷 (B) 第2页 共4页

Subject Support

- 8. 有向图 G 用邻接矩阵 a 存储,则顶点 i 的入度等于 a 中 ( )。
- A. 第 i 行非 0.的元素个数
- B. 第 i 列非 0 的元素个数
- C. 第 i 行和第 i 列非 0 元素个数之和
- D. 第 i 行和第 i 列非 0 元素个数之积
- 9、AOV 网中存在两个顶点 i 和 j,若 i 领先 j,选项( 🧲 ) 肯定是错误的。
- A. i, j之间存在一条有向边
- B. AOV 网的拓扑序列中i在j之前
- C. j到i存在一条有向路径
- D. i到j存在一条有向路径
- 10、快速排序在最坏情况下,新近时间复杂度为())。
- A. O(n)
- B. O(log₂n)
- C. O(nlog<sub>2</sub>n)
- $D \cdot O(n^2)$

得分

## 三、简答题(每小题8分,共40分)。

1、设一个散列表的长度 M=11, 其下标从 0 到 10, 散列函数是 h(key) = key % 11, 在空的散列表中依次插入关键字 14、25、36、47。分别采用线性探查 法和二次探查法解决冲突,请写出建立起来的散列表。

| r     |   |    |    | •  |     |     |    |               |   |   |    |  |
|-------|---|----|----|----|-----|-----|----|---------------|---|---|----|--|
| 下标    | 0 | -1 | 2. | 3  | 4   | - 5 | 6  | -7            | 8 | 9 | 10 |  |
| 线性探查法 |   |    |    | 14 | 70  | 36  | 47 |               |   |   |    |  |
| 二次探查法 |   |    |    |    | 4-0 |     |    | · · · · · · · |   | • |    |  |

- 2、图1是一棵完全二叉树的顺序存储结构表示,请完成:
- ...(CL) 面出对应的二叉树:
  - (2) 写出该二叉树的先序遍历序列和中序遍历遍历序列。

| · . |   |               |   |     |   |   |
|-----|---|---------------|---|-----|---|---|
| 结点  | A | В             | E | С   | D | F |
| 下标  | 0 | $\cdot 1_{j}$ | 2 | . 3 | 4 | 5 |



图 1.

- 3、图2是一棵3阶B-树, 请完成:
- (1) 分别画出向该树中依次插入关键字 10, 15 后相应的 B-树; 2000
- (2) 分别画出从原 B-树中(没有插入关键字 10, 15) 依次删除关键字 20, 35 后的 3-村。





- 4、设字符集 D={A, B, C, D, E, F}, 各字符使用频度 W={5, 6, 7, 10, 15, 16}, 请完成:
- (1) 画出以W为权值构建的哈夫曼树;《哈夫曼树中结点用权值表示。构建新二叉树时 新二叉树根的左子树根的权值小于等于右子树根的权值)
- (2) 求该哈夫曼树的加权路径长度。

(数据结构B) 试卷 (B) 第3页 共4页

(3+6)x3+ 15x4 16x2+(7+6)23= 146.

33

CBDAFE

3.9 20 20 Z

TI



## 南京邮电大学 2008/2009 学年第一学期

## 《 数据结构 B 》期末试卷 (B卷)

| 女女                                                 |                   |
|----------------------------------------------------|-------------------|
| 注意專項:                                              |                   |
| 1. 试卷和答题纸上都必须填写专业、班级、学号和姓名;                        | est in the second |
| 2. 全部试题解答都必须写在答题纸上,写在试卷上无效:                        | · (電音化            |
| 3. 答题必须使用铜笔、圆珠笔或答字笔,铅笔答题无效;                        |                   |
| 4. 考试完毕,请将试卷、答题在对草稿纸均交给监考教师,不得带                    | . Do and a topo   |
| 了。<br>1                                            | 出考场。              |
| 一、判断题(每小题2分,共10分)(请回答"》"或"义")                      | 1.                |
| 1. 设有元季入栈的次序为: a, b, c, 则不可能的出栈次序是 c, a, b.        | aL.               |
| 2. 切門域在表的第1个元素的时间同i的大小有关。6/)                       |                   |
| 3. 右一棵二叉树根的右子树为空树,则其对应的森林中只有一起绒                    | A Kinga           |
| 4. 在采用线性探查法解决冲突建立散列装时,会发生基本聚集现象                    | · <u> </u>        |
| 5. 在具有 1个顶点的有向图中,顶点的度量大可以是 1. 1                    | <u> </u>          |
|                                                    | 1 -               |
| 二、选择腰(每小腿2分,共10分)                                  | 医毛囊素属 方。          |
| 1. 设有限连表 1= (30,31,,3,-1). 并信定在任何一个元素之后以及          | <b>本等一人杂亲)</b> 社  |
| 理人的整乎相同,则进行一次插入操作平均移动元素的次数基(                       | R S. i i i        |
| A.B. R/n/2                                         | 2                 |
| 2. 设以S和X分别表示入栈和出栈操作,假定线的初去和终去约为                    | 空,则下面操作序          |
| ATTED WIN                                          | , 41"             |
| A. SXSXXXX B. SXXXXXXX C. SSXXXXX D <sub>1</sub> X | SSXXSXX           |
| 3. 设a、 x和 y是二叉树 B中的三个结点,x是a的左段子,y是上                | 的右孩子。T 是与 R       |
| 心性的例:在于中,y是a的代码。                                   |                   |
| A 孩子 B.兄弟 C.双亲 D. C.双亲 D. C.                       | 】<br>但非孩子         |
| 一 双行大连子值序列(12, 22, 32, 42, 52, 62, 72, 82),那采田     | 公水存品中分米存          |
| · 人程于16-02 的元意,则在查找过程中,x 将与序列中 ( ) 关键              | 字值进行比较。           |
| A. 52, 62 B. 42, 52, 62 C. 42, 62 D. 52            | 12 62             |
| 5. 将序列中第一个元素作为一个有序序列,然后将剩下的 2-1 个元                 | 。<br>野按学镇史传十 A    |
| ,                                                  | 这种排序管注称为          |
| <u> </u>                                           |                   |
| A. 简单选择排序 B. 两路合并排序 C. 直接插入排序                      | D. 快速排序           |
| Y                                                  | - NOWELLYI        |
|                                                    |                   |



(数据结构B) 试卷 第2页 共 4 页

- (2) 给出所有可能的拓扑序列,什么情况下拓扑排序算法不能输出图中全部顶点。
- 3. 在图 3 所示的 4 阶 B-树上,
- (1) 画出插入 70 后的 B-树;
- (2) 画出删除 22 后的 B-树 (删除运算仍在图 3 所示的原 B-树上执行)。



- 4. 使用两路合并排序算法对元素序列 (23, 43, 36, 30, 20, 54, 76, 28) 进行排序。
- ① (1) 写出每趟排序后的结果:
  - (2) 给出两路合并排序的最坏情况的海近时间复杂度:
  - (3) 给出除存储原元素序列的空间外,两路合并排序所需的附加空间复杂度

六、算法填空题(每空2分,共8分)

1. 补充完整下列在带炭头结点的单链表中插入新元素的函数 Insert (i, x)。 x 插入在 第 i 个元素之后。 若 i 一 l ,则将新元素 x 插在最前面。 若插入成功,则返回 t r ue . 否则返回 fal se .

t empliat e<class T>

bool HeaderList (Insert (int i, T x)

if (i<-1 || i>n-1) {

count<< "Out Of Bounds" << end : return false:

Nbde (1> \*p= \_0.\_;

for (int ]=0; ] (=i; ]++) p=p-X ink;

Node () \* (Fnew, Noie () > q >el enent=x;

p=kink=q: ②

n++: return true;

2. 补充完整下列二叉树后序遍历的递归函数

template <class T>

F. void BinaryTree⊲>: Post Order (void (\*Visit) (T& x), BTNode⊲>\* t)



(数据结构 B) 试卷 第 3 页 共 4 页

```
if (1) {
                                      Post O der 3
                                      Post Öder (1)
                                      Visit (t->el ement):
     七、算法阅读题(6分)
    设有二义材类上的递归函数 X 如下,
              d→ Child=X(t→X Child); d→ Child=X(t→X Child); complete (4) X=b Lid X(t→X Child); com
                                                                             11. 李锋 法特别证 11. 14.
   (1)说明以上程序的功能。(一步整理是基础上),是这是一个一个
     (2) 设二叉树如图 4 所示。在调用画数中,以语
  BTNode<T>* p=X(root);调用函数 X 的运行结
  八、算法设计题(8分)
武编写二义树类上定义的递归函数 7、该函数判断一棵二叉树中是否扩充型数树。
 扩充二叉树也称 2一树。若该二叉树是扩充二叉树,则函数返回 true,否则返回 fal se。
 设二叉树采用二叉链表存储,每个结点的类型为 BINdexTX 结点有三个量: al enent,
Tchild和 [Child. 参数 t 是指向一棵二叉树根的指针。 函数原型如
                      template  class T>
```

(数据结构 B) 试卷 第 4 可 井 4 页

## 数据结构试卷(六)

| -; | 选择题(30 分) |
|----|-----------|
| 1  | 沿组切估隹     |

|     | , 处汗痰             | (30.73)         |                          | •                |                    |                             |                              |                                |                  |               |
|-----|-------------------|-----------------|--------------------------|------------------|--------------------|-----------------------------|------------------------------|--------------------------------|------------------|---------------|
| 1.  |                   |                 |                          | 3, 4, 5,         | 6},                | 则由该权值                       | 直集合构造                        | 的哈夫曼树                          | 中带权              | 路径长           |
|     | 度之和               | 为( 🕵            |                          |                  |                    |                             |                              | _                              |                  |               |
| _   | (A) 20            | 10 L.L. n1 1.21 | (B) 30                   | data etc mali    | (C)                |                             | (D) 45                       | 5 (54)4                        | 4 ) X Z          | + 1×3.        |
| 2.  |                   |                 | 序能够得到                    |                  |                    | )° 14.                      | •                            | `                              |                  |               |
|     |                   |                 | 45, 27                   |                  |                    |                             |                              | •                              | کا+ ۵            |               |
|     | (B) [45,          | 34, 12          | 2, 41](53)[7             | 2, 63, 2         | !7]<br>:23         |                             |                              | 245                            | •                |               |
|     |                   |                 | 45, 27]                  |                  |                    |                             |                              |                                |                  |               |
| \$  | (19) [12,         | 27, 45          | 5, 41](55)[3             | 4, 63,           | /2]                | et i la No ete M            | Auto her sout -6             | 其判空条件是                         | Α.               |               |
| 13  | 设一条 引             | 一链表的            | J头指钉变量                   | 置为 head          | 且攻                 | 性表沒有头<br>(P) L              | 结点,则。                        | 4.判至条件5<br>4                   | ≜ ( <b>/</b> ¶). |               |
| (A) | ) head==0         |                 | ad (D) h                 | ood!=0           |                    | (B) he                      | ad->next                     | =U.                            |                  |               |
| (C) | neau-/ne<br>味筒質去  | 対応不忍            | 数据初始を                    | cad:—v<br>P太影响ii | 后植头                | i O(nlog-n)i                | 幼具 (A·)                      |                                |                  |               |
| 4.  |                   |                 | viikty fat Xg.<br>言 (gr) |                  |                    |                             |                              |                                |                  |               |
| 5   |                   |                 |                          |                  |                    |                             |                              | 树满足的条                          | <b>佐県</b> (      | 3)            |
| J.  |                   |                 | 个结点                      |                  |                    |                             |                              | AZ EU JA POPERE                | 日た(              | <b>/•</b> //• |
|     | (C) (II-          | ·<br>-结占无       | 左孩子                      |                  | (D)                | 任一结点                        | 无右孩子                         | _                              |                  |               |
| 6   | 一繊維度              | 经结束             | (五.)《 ]<br>[不一定能報        | 名洗出ー/            | を元素                | 放在其景色                       | & 位置上的                       | 是(0)0                          | <i>)</i> .       |               |
| ٥.  | (4) 惟排            | 主字              | (B) 冒                    | り<br>も<br>排序     | (C)                | 快速推序                        | (D)<br>€ (CI)                | 企、 <b>,</b><br>舒尔排序 _ <b>/</b> | 234              | ĺ             |
| 7   | 设基档               | <b>一</b> 数树中    | 有 40 个结                  | 占、删该             | $= \mathbb{V}_{k}$ | 对的最小 <i>高</i>               | 商为 (人)                       |                                | <i>,</i>         | 3             |
| , . | (A) 3             | J: 1            |                          | 71117            |                    | 5                           | (D) 6                        | 0                              |                  | 3<br>9<br>27  |
| 8.  |                   |                 |                          | <b>《中还是</b> 》    |                    |                             |                              | 度为 ( <b>A</b> )。               |                  | 27            |
|     | (A) O(n)          |                 | (B) O(n                  | <sup>2</sup> )   | (C)                | $O(n^{1/2})$                | (D) O                        | (log <sub>2</sub> n)           |                  |               |
| 9.  | 二路但其              | 自非序的            | 的时间复杂图                   | 夏为( <b>C</b> )   | 0                  |                             |                              |                                |                  |               |
|     | (A) O(n)          | <b>J</b> .      | (B) O(n                  | 2)               | (C)                | $O(n\log_2 n)$              | (D) O                        | $(\log_2 n)$                   |                  |               |
| 10  | 深度为               | k 的完全           | 全二义树中!                   | 製力有(             | B-) 1              | 〉结点。                        | 1.                           |                                |                  |               |
|     | (A) 2" '-:        | l               | (B) 2" '                 |                  | (C)                | 5+1                         |                              |                                |                  |               |
| i l |                   |                 |                          |                  |                    |                             |                              | 链式队列的                          | 队尾指领             | 计,指           |
|     |                   |                 | F要入队列的                   |                  |                    |                             |                              |                                |                  |               |
|     | (A) front         | ->next=         | s: front=s;<br>; rear=s; |                  | (B)                | s->next=re                  | ar; rear=s;                  |                                |                  | .a -          |
|     | (C) rear-         | >next=s         | ; rear=s;                | f= 11 (1)        | (D)                | s->next=fro                 | ont; front=                  | ≅S;                            | · <u>· ·</u>     | 1 T           |
| 12  | . 设某无同            | と中有             | n个顺点e                    | 条边,则             | 建立                 | 该图邻接表                       | :的时间复                        | 杂度为(🌓)                         | · 2/19           | 9             |
|     |                   |                 | (B) O(n                  |                  |                    | O(ne)                       |                              |                                |                  |               |
| 13  |                   |                 | 有 199 个纠(B) 100          |                  |                    | 受例中有(<br>101                |                              |                                |                  |               |
| 1.4 | (A) 33            | :458.4xd 1-     | 右、小丝占                    | hirl:Zc:         | (U)<br>(U)         | 101<br>虎舞上雲封                | (D) 10<br>经占约证               | 12<br>均时间复杂[                   | ர் அ. மி         | .)            |
| 14  | ドスース。<br>(a) O(a) | -/ 1 '4^Y _J    | (B) O(n                  | 2)               | - X.Ar<br>(C)      | (1141 L. 141X<br>(O(nlogon) | 1 (a) (a)                    | (100-n)<br>(100-n)             | Z/V \ V          | •/•           |
| 15  |                   |                 |                          |                  |                    |                             |                              | ai 的入度为                        | (B).             |               |
| 1.0 |                   |                 | 元素的个数                    |                  |                    |                             |                              |                                | . 0., .          |               |
|     |                   |                 | 素的个数之                    |                  |                    |                             |                              |                                |                  |               |
|     | (0) //11          | ., 0 ) 0        | STATE F SOUTH            | •                | (~)                | ,,, <b>4 4 7</b>            |                              | rome I'                        |                  |               |
| -   | 、判断题              | (20分)           |                          |                  |                    |                             |                              |                                |                  |               |
|     |                   |                 | 1.先遍历可以                  | 人访问到的            | 图中的                | 所有顶点。                       | $\langle \mathbf{V} \rangle$ |                                |                  |               |
|     |                   |                 |                          |                  |                    |                             |                              | 的长度有关                          | . ( )            |               |

- 3. 冒泡排序在初始关键字序列为逆序的情况下执行的交换次数最多。(✔)
- 4. 满二义树一定是完全二义树,完全二义树不一定是满二义树。(✔)
- 5. 设一棵二叉树的先序序列和后序序列,则能够唯一确定出该二叉树的形状。(X.)
- 6. 层次遍历初始堆可以得到一个有序的序列。(X·)
- o. 层次题加彻短难可以得到一个有序的序列。(X·)
  7. 设一棵树 T 可以转化成二叉树 BT,则二叉树 BT 中一定没有右子树。( ♠)
- 8. 线性表的顺序存储结构比链式存储结构更好。(X)

9. 中序遍历二叉排序树可以得到一个有序的序列。(**√**) 10.快速排序是排序算法中平均性能最好的一种排序。(**√**)

#### 三、填空题(30分)

2. 设指针变量 p 指向单链表中结点 A, 指针变量 s 指向被插入的新结点 X, 则进行插入操作的语句序列为 **&->next : P->next : P->next : X** 设结点的指针域为 next )。

设有向图 G 的二元组形式表示为 G = (D, R), D={1, 2, 3, 4, 5}, R={r}, r={<1,2>, <2,4>, <4,5>, <1,3>, <3,2>, <3,5>}, 则给出该图的一种拓扑排序序列 1 3 245

4. 设无向图 G 中有 n 个顶点,则该无向图中每个顶点的度数最多是 1 个

5. 设二叉树中度数为 0 的结点数为 50, 度数为 1 的结点数为 30, 则该二叉树中总共有 12 0 个结点数。

6. 设 F—和—R—分别表示顺序循环队列的头指针和尾指针,则判断该循环队列为空的条件为 1—R4

7. 设二叉树中结点的两个指针域分别为 lchild 和 rchild,则判断指针变量 p 所指向的结点为叶子结点的条件是 p > lchild = 0 p > ychild = 20.

O数列表中解决冲突的两种方法是 hisnorta 和 kinorta

### 四、算法设计题(20分)

- 1. 设计在顺序有序表中实现二分查找的算法。
- 2. 设计判断二叉树是否为二叉排序树的算法。
- 3. 在链式存储结构上设计直接插入排序算法

## 数据结构试卷(六)参考答案

#### 一、选择题

- 1. D 2. A 3. A 4. A 5. D 6. D 7. B 8. A 9. C 10. B
- 11. C 12. A 13. E 14. D 15. B

### 二、判断题

- 1. 错 2. 对 3. 对 4. 对 5. 错
- 6. 错 7. 对 8. 错 9. 对 10. 对

#### 三、填空题

- 1. 1. O(n)
- 2. 2.  $s \rightarrow next = p \rightarrow next$ ;  $p \rightarrow next = s$
- 3. 3. (1, 3, 2, 4, 5)
- 4. 4. n-1
- 5. 5. 129
- 6. 6. F==R
- 7. 7. p->lchild==0&&p->rchild==0
- 8. 8.  $O(n^2)$
- 9. 9.  $O(nlog_2n)$ , O(n)
- 10. 10. 开放定址法,链地址法

#### 四、算法设计题

 设计在顺序有序表中实现二分查找的算法。 struct record {int key; int others;}; int bisearch(struct record r[], int k)

2-74-75

```
int low=0,mid,high=n-1;
      while(low<=high)
        mid=(low+high)/2;
        if(r[mid].key==k) return(mid+1); else if(r[mid].key>k) high=mid-1; else low=mid+1;
      return(0);
    }
    2.
         设计判断二叉树是否为二叉排序树的算法。
int minnum=-32768,flag=1;
typedef struct node {int key; struct node *lchild, *rchild; }bitree;
void inorder(bitree *bt)
             (bt!≈0)
                            {inorder(bt->lchild);
                                                     if(minnum>bt->key)flag=0;
minnum=bt->key;inorder(bt->rchild);}
3.
        在链式存储结构上设计直接插入排序算法
    void straightinsertsort(lklist *&head)
      Iklist *s, *p, *q; int t;
      if (head==0 || head->next==0) return:
      else for(q=head,p=head->next;p!=0;p=q->next)
        for(s=head;s!=q->next;s=s->next) if (s->data>p->data) break:
        if(s==q>next)q=p;
        else {q->next=p->next;
                                       p->next=s->next;
                                                                  s->next=p;
t=p->data;p->data=s->data;s->data=t;}
                          数据结构试卷(土)
 一、选择题(30分)
1. 设某无向图有 n 个顶点,则该无向图的邻接表中有(()
   (A) 2n
                   (B) in
                                  (C) n/2
                                                 (D) n(n-1)
2. 设无向图 G 中有 n 个顶点,则该无向图的最小生成树上有 ( B) 条边。
                   (B) n-1
                                 (C).2n
                                                 (D) 2n-1
3. 设一组初始记录关键字序列为(60,80,55,40,42,85),则以第
                                                         -个关键字 45 为基准
   而得到的一趟快速排序结果是(())
   (A) 40, 42, 60, 55, 80, 85
                                  (B) 42, 45, 55, 60, 85, 80
   (C) 42, 40, 55, 60, 80, 85
                                 (D) 42, 40, 60, 85, 55, 80
4. ( ) 二义排序树可以得到一个从小到大的有序序列。 b
   (A) 先序遍历
                   (B) 中序遍历
                                  (C) 后序遍历
                                                 (D) 层次遍历
5、设按照从上到下、从左到右的顺序从1开始对完全二义树进行顺序编号,则编号为主结
   点的左孩子结点的编号为(入)。》
   (A) 2i+1
                   (B) 2i
                                  (C) i/2
                                                (D) 2i-1
6. 程序段 s=i=0; do {i=i+1; s=s+i; }while(i<=n); 的时间复杂度为().
   (A) O(n)
                   (B) O(nlog_2n)
                                 (C) O(n^2)
                                                (D) O(n^3/2)
◇ 设带有头结点的单向循环链表的头指针变量为 head,则其判空条件是(▲)↓
   (A) head=0
                                 (B) head->next==0
   (C) head->next==head
                                  (D) head!=0
8. 设某棵二义树的高度为10,则该二义树上叶子结点最多有( 🕻 )
   (A) 20
                   (B) 256
                                 (C) 512
```

9. 设一组初始记录关键字序列为(13, 18, 24, 35, 47, 50, 62, 83, 90, 115, 134),则利 用二分法查找关键字 90 需要比较的关键字个数为、( ) (A) 1 (B) 2 (C)3(D)410.设指针变量 top 指向当前链式栈的栈顶,则删除长顶元素的操作序列为( (A) top=top+1: (B) top=top-I; (C) top->next=top; (D) top=top->next; 二、判断题(20分) 1. 不论是入队列操作还是入栈操作,在顺序存储结构上都需要考虑"溢出"情况。( ) 2. 当向二叉排序树中插入一个结点,则该结点一定成为叶子结点。(**V**): 3. 设某堆中有 n 个结点,则在该堆中插入一个新结点的时间复杂度为  $O(log_2n)$ 。( 4. 完全二叉树中的叶子结点只可能在最后两层中出现。 5. 哈夫曼树中没有度数为1的结点。(✔) 6. 对连通图进行深度优先遍历可以访问到该图中的所有顶点。( 🗸 🗁 7. 先序遍历一棵二叉排序树得到的结点序列不一定是有序的序列。( ) 8. 由树转化成二叉树,该二叉树的右子树不一定为空。(以) 9. 线性表中的所有元素都有一个前驱元素和后继元素。(人) 人名英格兰 10.带权无向图的最小生成好目的 三、填空题(30分) 设指针变量 p 指向双闭链表中的结点 A, 指针变量 s 指向被插入的结点 X, 则在结 点 A 的后面插入结点 X 的操作序列为 S > left = p: s->right=p->right; D > xinht = s; p->right->left=s;(设结点中的两个指针域分别为 left 和 right \, 设完全有向图中有 n 个顶点,则该完全有向图中共有 (101-1). 条有向条:设完全图由右,个顶点。则该完全于向图由中右 无向图中有 n 个顶点,则该完全无向图中共有 设关键字序列为(K<sub>1</sub>, K<sub>2</sub>, ..., K<sub>n</sub>), 则用筛选法建初始堆必须从第 条无向边。 ·始进行筛选。 解决散列表冲突的两种方法是\_ 设一棵三叉树中有50个度数为0的结点, 21 个度数为2的结点,则该二义树中度 效为 3 的结点数有 No= 10. N2=31. · 高度为 h 的完全 又树中最少有 **ぞ**结点,最多有 设有一组初始关键字序列为(24, 35, 12, 27, 18, 26),则第一起直接插入排序结 束后的结果的是 12. 18.24.26 Jak @ (14.24. 35.27/8.41) 设有一组初始关键字序列为(24, 27, 12, 27, 18, 26),则第3.趋简单选择排序结 **未后的结果的是** 12, 18, 24, 35, 27 设一棵二叉树的前序序列为 ABC,则有 这种序列, 下面程序段的功能是实现一趟快速排序,请在下划线处填上正确的语句。 struct record {int key;datatype others;}; void quickpass(struct record r[], int s, int t, int &i) int j=t; struct record x=r[s]; i=s; while(i<j) while (i<j && r[j].kcy>k.key, j=j-1; if (i<j)  $\{r[i]=r[j]; i=i+1;\}$ while ( K) ((1) ten x. for i=i+1; if (i<j) {r[i]=r[i];j=j-1;} 法设计题(20分)

1.

设计在链式结构上实现简单选择排序算法。 设计在顺序存储结构上实现求子串算法。

#### 3. 3. 设计求结点在二叉排序树中层次的算法。

### 数据结构试卷(七)

```
一、选择题
1. B
             2. B
                           3. C
                                        4. B
                                                      5. B
6. A
             7. C
                           8. C
                                        9. B
                                                      10. D
二、判断题
1. 对
             2. 对
                           3. 对
                                        4. 对
                                                      5. 对
             7. 对
                           8. 错
                                        9. 错
                                                      10. 错
6. 对
三、填空题
1.
    1.
          s->left=p, p->right
2.
    2.
          n(n-1), n(n-1)/2
3.
    3.
         n/2
4.
    4.
          开放定址法,链地址法
5.
    5.
          14
         2^{h-1}, 2^h-1
6
    6.
7.
    7.
          (12, 24, 35, 27, 18, 26)
    8.
         (12, 18, 24, 27, 35, 26)
9.
    9.
          5
10, 10.
        i \le i \&\& r[i].key \le x.key, r[i] = x
四、算法设计题
          设计在链式结构上实现简单选择排序算法。
    void simpleselectsorlklist(lklist *&head)
       Iklist *p.*q,*s; int min,t;
      if(head==0 ||head->next==0) return;
       for(q=head; q!=0;q=q->next)
         min=q>data; s=q;
         for(p=q->next; p!=0;p=p->next) if(min>p->data) {min=p->data; s=p;}
         if(s!=q)\{t=s->data; s->data=q->data; q->data=t;\}
          设计在顺序存储结构上实现求子串算法。
    void substring(char s[], long start, long count, char t[])
       long i,j,length=strlen(s);
       if (start<1 || start>length) printf("The copy position is wrong");
       else if (start+count-1>length) printf("Too characters to be copied");
       else ( for(i=ctart+1 j=0; i < start+count-1; i++, j++) t[j]=s[i]; t[j]= \0'; 
    3.
          设计求结点在二义排序树中层次的算法。
    int lev=0;
    typedef struct node {int key; struct node *lchild, *rchild; } bitree;
    void level(bitree *bt,int x)
       if \{bt!=0\}
       {lev++; if (bt->key==x) return; else if (bt->key>x) level(bt->lchild,x); else
level(bt->rchild,x);}
```

## 数据结构试卷(八)

}

|                 | _   | 一、选择题(30分)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |     | . 1. 字符串的长度是指(( )。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 |     | (A) 串中不同字符的个数 (B) 串中不同字母的个数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 |     | (C) 串中所含字符的个数 (D) 串中不同数字的个数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | 2.  | 2. 建立一个长度为 n 的有序单链表的时间复杂度为 ( ) ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 |     | (A) O(n) (B) O(1) (C) O(n <sup>2</sup> ) (D) O(log <sub>2</sub> n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 | 3.  | (A) O(n)       (B) O(1)       (C) O(n²)       (D) O(log₂n)         3. 两个字符串相等的充要条件是(分)。       (A) 两个字符串的长度相等       (B) 两个字符串中对应位置上的字符相等                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 |     | (A) 两个字符串的长度相等 (B) 两个字符串内对点 (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 |     | (A) 两个字符串的长度相等 (B) 两个字符串中对应位置上的字符相等 (C) 同时具备(A)和(B)两个条件 (D) 以上答案都不对                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | 4.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 |     | (A) 99 (B) 97 (C) 91 (D) 93 (D) 93 (A) 99 (B) 97 (C) 91 (D) 93 ( |
|                 | 5,  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 |     | $(A) \cup (B) \cup (\log_2 n) = (C) \cap (\log_2 n) = (D) \cap (-2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | 6,  | 6. 设一个顺序有序表 A[1:14]中有 14 个元素,则采用二分法查找元素 A[4]的过程中                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ta 60           |     | (A) A[1], A[2], A[3], A[4] (B) A[1], A[14], A[7], A[4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| M= NOT-NITAL+NB |     | $(\cup) A[A] = A[A] = A[A] = A[A] = A[A] = A[A] = A[A]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <del>.</del>    | 7.  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ー ニハナンハンナシns    |     | AA = AA = AA = AB = AB = AB = AB = AB =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | 8.  | 8. 设一棵三叉树中有 2 个度数为 1 的结点 2 个度数为 2 的过去 2 个度数 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 |     | 一本,村塚二大姓秋千智(レアイ度数为 $U$ 附籍点。 $N, z$ ) $N, z$ ) $N, z$ $N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 |     | (A) $(B)$ $(C)$ $(C)$ $(C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | 9.  | $-9$ . 攻九问图 G 中的边的集合 $F=\{(a,b),(a,c),(a,c),(a,c),(b,c),(b,c)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 |     | · 27, 网络沙漠高面及姓行体及饥沉遍历可以得到的一种顶点序列为 ( ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | 1.0 | (A) aedito (B) actebo (C) aebofe (D) aediba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | Ю.  | - 10. M列是一种( )的线性表。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 |     | (A) 先进先出 (B) 先进后出 (C) 只能插入 (D) 只能删除                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | _   | 、判断题(20分)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                 | 1.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | 2.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | 3.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | ٠.  | 3. 分块查找的基本思想是首先在索引表中进行查找,以便确定给定的关键字可能存在的块号,然后再在相应的块内进行顺序查找。( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | 4.  | 4. 二维数组和多维数组均不是特殊的线性结构。( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | 5.  | 5. 向三义排序树中插入一个独占季亚比较的海粉可坐上了水。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | 6.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | 7.  | A CONTRACT OF A |
|                 | 8.  | 7. 非空的双向循环链表中任何结点的前驱指针均不为空。( )<br>8. 不论线性表采用顺序花线线和环丛梯式在线线线 1998年 ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | u,  | 8. 不论线性表采用顺序存储结构还是链式存储结构,删除值为 X 的结点的时间复杂<br>度均为 O(m。( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | 9.  | 18,21,21,1110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | /.  | 9. 图的深度优先遍历算法中需要设置一个标志数组,以便区分图中的每个顶点是否被访问过。( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | 10  | 数 切 門 过 。 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | IU. | 10. 稀疏矩阵的压缩存储可以用一个三元组表来表示稀疏矩阵中的非 0 元素。( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                 | Ξ、  | 填空题(30分)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 |     | 1. 设一组初始记录关键字序列为(49, 38, 65, 97, 76, 13, 27, 50), 则以 d=4 为增量的一转系化排序体积下的位置。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| 2. 2. 下面程序段的功能是实现在二叉排序树中插入一个新结点,请在下划线处填上正确的内容。                                                                                |  |
|-------------------------------------------------------------------------------------------------------------------------------|--|
| typedef struct node {int data; struct node *lchild; struct node *rchild; } bitree; void bstinsert(bitree *&t,int k)           |  |
| {     if (t==0) {;t->data=k;t->lchild=t->rchild=0;}     else if (t->data>k) bstinsert(t->lchild,k);else;                      |  |
| } 3. 3、 设指针变量 p 指向单链表中结点 A, 指针变量 s 指向被插入的结点 X, 则在结点 A                                                                         |  |
| 的后面插入结点 X 需要执行的语句序列: s->next=p->next;                                                                                         |  |
| <br>5. 5. 设某棵二叉树的中序遍历序列为 ABCD,后序遍历序列为 BADC,则其前序遍历序列为。                                                                         |  |
| 6. 6. 完全二叉树中第 5 层上最少有                                                                                                         |  |
| 8. 8. 设一组初始记录关键字序列为(49, 38, 65, 97, 76, 13, 27, 50), 则第 4 趙直接<br>选择排序结束后的结果为。                                                 |  |
| 9. 9. 设连通图 G 中有 n 个顶点 e 条边,则对应的最小生成树上有条边。<br>10. 10. 设有一组初始记录关键字序列为(50, 16, 23, 68, 94, 70, 73),则将它<br>们调整成初始堆只需把 16 与相互交换即可。 |  |
| 四、算法设计题(20分)<br>1. 1. 设计一个在链式存储结构上统计二叉树中结点个数的算法。<br>2. 设计一个算法将无向图的邻接矩阵转为对应邻接表的算法。                                             |  |
| 数据结构试卷(八)参考答案                                                                                                                 |  |
| 一、选择题<br>1. C 2. C 3. C 4. B 5. B<br>6. C 7. B 8. C 9. A 10. A                                                                |  |
| 二、判断题<br>1. 对 2. 错 3. 对 4. 错 5. 错<br>6. 对 7. 对 8. 对 9. 对 10. 对                                                                |  |
| 三、填空题 1. 1. (49, 13, 27, 50, 76, 38, 65, 97) 2. 2. t=(bitree *)malloc(sizeof(bitree)), bstinsert(t->rchild,k) 3. 3. ρ >next=s |  |
| 4. 4. head->rlink, p->llink 5. 5. CABD 6. 6. 1, 16                                                                            |  |
| 7. 7. 0<br>8. 8. (13, 27, 38, 50, 76, 49, 65, 97)<br>9. 9. n-1<br>10. 10. 50                                                  |  |

四、算法设计题

```
设计一个在链式存储结构上统计二叉树中结点个数的算法。
   1.
       void countnode(bitree *bt,int &count)
          if(bt!=0)
          {count++; countnode(bt->lchild,count); countnode(bt->rchild,count);}
           设计一个算法将无向图的邻接矩阵转为对应邻接表的算法。
   2.
       typedef struct {int vertex[m]; int edge[m][m];}gadjmatrix;
      typedef struct nodel {int info;int adjvertex; struct nodel *nextarc;}glinklistnode;
      typedef struct node2 {int vertexinfo; glinklistnode *firstarc; } glinkheadnode;
      void adjmatrixtoadjlist(gadjmatrix g1[],glinkheadnode g2[])
         int i,j; glinklistnode *p;
         for(i=0;i\leq n-1;i++) g2[i].firstarc=0;
         for(i=0;i \le n-1;i++) for(j=0;j \le n-1;j++)
         if(g1.edge[i][j]==1)
            p=(glinklistnode *)malloc(sizeof(glinklistnode));p->adjvertex=j;
            p->nextarc=g[i].firstarc; g[i].firstarc=p;
            p=(glinklistnode *)malloc(sizeof(glinklistnode));p->adjvertex=i;
            p->nextarc=g[j].firstarc; g[j].firstarc=p;
      }
                             数据结构试卷(九)
  一、选择题(30分)
  1. 下列程序段的时间复杂度为(
  \text{for}(i=0: \quad i \leq m; \quad i++) \text{ for}(j=0; \quad j \leq t; \quad j++) \text{ for}(k=0; \quad k \leq n; \quad k++) \text{ c}[i][j] = \text{c}[i][j] + \text{g}[i][k] + \text{b}[k][j]; 
    (A) O(m*n*t)
                     (B) O(m+n+t)
                                     (C) O(m+n*t)
                                                     (D) O(m*t+n)
 2. 设顺序线性表中有 n 个数据元素,则删除表中第 i 个元素需要移动(A)
    (A) n-i
                     (B) n+l-i
                                     (C) n-1-i
 3. 设 F 是由 T1、T2 和 T3 三棵树组成的森林,与 F 对应的二叉树为 B, T1、
                                                                   T2.和 T3 的结
    点数分别为 N1、N2 和 N3,则二义树 B 的根结点的左子科的结点数为
    (A) N1-1
                    (B) N2-1
                                     (C) N2+N3
                                                     (D) N1+N3
 4. 利用直接插入排序法的思想建立一个有序线性表的时间复杂度为 (色)。
    (A) O(n)
                    (B) O(n\log_2 n)
                                    (C) O(n^2)
                                                    (D) O(10g2n)
 5. 设指针变量 p 指向双向链表中结点 A,
                                     指针变量 s 指向被插入的结点 X,则在结点 A 的
    后面插入结点X的操作序列为()、、)、
   (A) p->right=s; s->left=p; p->right->left=s; s->right=p->right;
   (B) s >left=p; s->right=p->right; p->right=s; p->right->left=s;
   TEX-p->right=s; p->right->left=s; s->left=p; s->right=p->right;
   (D) s->left=p; s->right=p->right; p->right->left=s; p->right=s;
6. 下列各种排序算法中平均时间复杂度为 O(n²)是( )
   (A) 快速排序
                    (B) 堆排序
                                    (C) 归并排序
                                                    (D) 冒泡排序
7. 设输入序列 1、2、3、...、n 经过栈作用后一输出序列中的第一个元素是 n, 则输出序列
   中的第 i 个输出元素是( 〇.
  (A) n-i
                    (B) n-1-i
                                    (C) n+1-i
                                                    (D) 不能确定
3. 设散列表中有 m 个存储单元, 散列函数 H(key)= key % p, 则 p 最好选择 ( 12)。
   (A) 小于等于 m 的最大奇数
                                    (B) 小丁等于 m 的最大素数
   (C) 小于等于 m 的最大偶数
                                   (D) 小于等于 m 的最大合数
```



- 5. 5.
- 希尔排序算法的时间复杂度为  $O(n^2)$ 。(  $\chi$ ) 广 用邻接矩阵作为图的存储结构时,则其所占用的存储空间与图中顶点数无关而与 图中边数有关。(X.) 下
- 中序遍历一棵二叉排序树可以得到一个有序的序列。(火) 7, 7,
- 入栈操作和入队列操作在链式存储结构上实现时不需要考虑栈溢出的情况。(1/17
- 顺序表查找指的是在顺序存储结构上进行查找。(X) 厂
- 10. 10. 堆是完全二叉树,完全二叉树不一定是堆。( ) ]

### 五、算法设计题(20分)

- 设计计算二叉树中所有结点值之和的算法。 1.
- 设计将所有奇数移到所有偶数之前的算法。
- 设计判断单链表中元素是否是递增的算法。

## 数据结构试卷(九)参考答案

```
一、选择题
1. A
        2. A
                 3. A
                         4. C
                                  5. D
6. D
        7. C
                 8. B
                         9. C
                                  10. A
11. C
        12. C 13. D 14. A
                                  15. A
二、填空题
} .
   1.
         p->next, s->data
2.
         50
3.
    3.
        m-1
4.
        6, 8
    5.
        快速,堆
        19/7
   6.
7. 7.
         CBDA
    8.
9
    9.
         (24, 65, 33, 80, 70, 56, 48)
10. 10. 8
三、判断题
1. 错
        2. 对
                 3. 对
                         4. 对
6. 錯
        7、对
                8. XJ
                         9. 错
                                 10. 对
四、算法设计题
1. 1.
        设计计算二义树中所有结点值之和的算法。
    void sum(bitree *bt,int &s)
       if(bt!=0) {s=s+bt->data; sum(bt->lchild,s); sum(bt->rchild,s);}
    2. 设计将所有奇数移到所有偶数之前的算法。
    void quickpass(int r[], int s, int t)
     int i=s, j=t, x=r[s];
     while(i<i)
        while (i \le j \&\& r[j]\%2==0) j=j-1; if <math>(i \le j) \{r[i]=r[j]; i=i+1;\}
        while (i \le j \&\& r[i]\%2 == 1) i = i + 1; if <math>(i \le j) \{r[j] = r[i]; j = j - 1;\}
     r[i]=x,
```

设计判断单链表中元素是否是递增的算法。 int isriselk(lklist \*head) if(head==0||head->next==0) return(1);else for(q=head,p=head->next; p!=0; q=p,p=p->next)if(q->data>p->data) return(0); return(1); 、选择题(24分) 1.) 下列程序段的时间复杂度为( )。 =0, s=0; while  $(s<\eta)$   $\{s=s+i; i++; \}$ (B) O(n<sup>1/3</sup>) (A)  $O(n^{1/2})$ (D)  $O(n^2)$ (G) O(n)2. 设某链表中最常用的操作是在链表的尾部插入或删除元素,则选用下列 ( 最节省运算时间。 (B) 单向循环链表 (A) 单向链表 (D) 双向循环链表 (C) 双向链表 3. 设指针 q 指向单键表中结点 A, 指针 p 指向单链表中结点 A 的后继结点 B, 指针 s 指向 被插入的结点 X,则在结点 A 和结点 B 插入结点 X 的操作序列为 ( ♠)。 (A) s->next=p->next; p->next=s; (B) q->next=s; s->next=p; (D)  $p \ge next = s$ ; s > rext = q; (C)  $p \rightarrow next = s \rightarrow next$ ;  $s \rightarrow next = p$ ; 4. 设输入序列为 1、2、3、4、5、6,则通过栈的作用后可以得到的输出序列为(分)。 (A) 5, 3, 4, 6, 1, 2 (B) 3, 2, 5, 6, 4, 1 (C) 3, 1, 2, 5, 4, 6 (D) 1, 5, 4, 6, 2, 3 5. 设有一个 10 阶的下三角矩阵 A (包括对角线),按照从上到下、从左到右的顺序存储到 连续的 55 个存储单元中,每个数组元素占 1 个字节的存储空间,则 A[5][4]地址与 A[0][0] 的地址之差为()。 · (C) 28 (D) 55 (A) 10 (B) 19 6. 设一棵 m 义树中有  $N_1$  个度数为 1 的结点, $N_2$  个度数为 2 的结点, ......,  $N_m$  个度数为 m 的结点,则该树中共有( **)**) 个叶子结点。  $1 + \sum_{i=2}^{m} (i-1)N_i$  $\sum_{i=1}^{m} (i-1)N_i$   $\sum_{i=1}^{m} N_i$  (C)  $\sum_{i=2}^{m} N_i$  (I. 7. 二义排序树中左子树上所有结点的值均( 根结点的值。 (D) !=(C) =8. 设一组权值集合 W=(Ns, Ns, 14, Ns, Ns, 16, 17), 要求根据这些权值集合构造一棵哈 夫曼树,则这棵哈夫曼树的带权路径长度为( )。 (C) 189 (D) 229 (B) 219 9. 设有 n 个关键字具有相同的 Hash 函数值,则用线性探测法把这  $\acute{n}$  个关键字映射到 HASH ) 次线性探测。 表中需要做( (D) n(n-1)/2(B) n(n+1)(C) n(n+1)/210.设某棵二叉树中只有度数为0和度数为2的结点且度数为0的结点数为n,则这棵二叉中 共有(( ))个结点。 (B) n+l (A) 2n则最多经过(份) 趟插入排序可以得到有序序列。 11.设一组初始记录关键字的长度为 8, (A) 6(B) 7 12.设一组初始记录关键字序列为(Q, H, C, Y, P, A, M, S, R, D, F, X), 则按字母 升序的第一趟冒泡排序结束后的结果是()。 (A) F, H, C, D, P, A, M, Q, R, S, Y, X

(B) P, A, C, S, Q, D, F, X, R, H, M, Y (C) A, D, C, R, F, Q, M, S, Y, P, H, X

x)调整为堆。

| _        | 二、填空题(48分,其中最后两小题各6分)                                                                                  |
|----------|--------------------------------------------------------------------------------------------------------|
| 1.       |                                                                                                        |
|          | 多需要比较 <b>人</b> 、次                                                                                      |
| 2.       |                                                                                                        |
|          | 交ボ/文/y U/(Y) XMVいり                                                                                     |
| 3.       | 3. 设二叉排序树的高度为 h,则在该树中查找关键字 key 最多需要比较                                                                  |
| 4.       | 4. 又住下尺刀 20 的有序表中进行二分查找,则比较一次查找成功的经点数方                                                                 |
|          |                                                                                                        |
| 3        | . 5. 设一棵 m 叉树脂的结点数为 n, 用多重链表表示其存储结构。则该树内存                                                              |
|          | 1. 全指针域。                                                                                               |
| 6.       | 6. 设指针变量 p 指向单链表中结点 A,则删除结点 A 的语句序列为:                                                                  |
|          | q=p-next: $p-data=q-data$ : $p-next=$                                                                  |
| 7.       | 7. 数据结构从逻辑上划分为三种基本类型: 和2. 、和                                                                           |
| Α.       |                                                                                                        |
| ×        | · 8. 设无向图 G 中有 n 个顶点 e 条边,则用邻接矩阵作为图的存储结构进行深度优先                                                         |
|          | - 學/ 及10.70週7月刊的时间及家度为 UM: 用邻接表作为图的在键处均进行源度积                                                           |
| _        | - 光以// 皮乳光翅房的时间复杂度为                                                                                    |
| 9.       | 9. 设散列表的长度为 8, 散列函数 H(k)=k % 7, 用线性探测法解决冲突,则根据一                                                        |
| 10.      | - 组的超大键子片列(č, 15, 16, 22, 30, 32)超谱出的散观表的平均容耗长度具                                                       |
| 19,      | 10. 设一组初始关键字序列为(38, 65, 97, 76, 13, 27, 10), 则第 3 趟冒泡排序结束后的结果为                                         |
| 11       | 11 设一组加州公安原京京村公司。                                                                                      |
| 11.      | 11. 设一组初始关键字序列为(38, 65, 97, 76, 13, 27, 10), 则第 3 趟简单选择排序<br>后的结果为                                     |
| 12       | 12 没有向贸(中的打向协约任人下(中)                                                                                   |
|          | 12. 设有向图 G 中的有向边的集合 E={<1, 2>, <2, 3>, <1, 4>, <4, 5>, <5, 3>, <4, 6>, <6, 5>}, 则该图的一个拓扑序列为 12 4,5 \$. |
| 13.      | 13. 卜面程序段的功能是建立二义树的算法,请在下划线处填上正确的内容。                                                                   |
|          | typedef struct node {int data; struct node *!child; <b>STMCP well</b> ;}bitree;                        |
|          | VOICE CORRESPONDER TAINED.                                                                             |
|          | * tchild.                                                                                              |
|          | scanf("%c",&ch);                                                                                       |
|          | if(ch==#') ;else                                                                                       |
|          | { bt=(bitree*)malloc(sizeof(bitree)); bt->data=ch;;createbitree(bt->rchild);}                          |
| 14.      | 14. 下面程序段的功能是利用从尾部插入的方法建立单链表的算法,请在下划线处填                                                                |
|          | 上 正                                                                                                    |
|          | typedef struct node {int data; struct node *next;} lklist;                                             |
|          | void lklistcreate( lklist . *&head)                                                                    |
|          | for (i=1 incomit 1)                                                                                    |
|          | for (i=1;i<=n;i++) {                                                                                   |
|          | p=(lklist *)malloc(sizeof(lklist));scanf("%d",&(p->data));p->next=0;                                   |
|          | $if(i=1)head=q=p;else {q>next=p;}$                                                                     |
|          | ) D=D                                                                                                  |
|          | <i>17.</i>                                                                                             |
|          | 算法设计题(22分)                                                                                             |
| 二、<br>1. |                                                                                                        |
| 2.       | 1. 及并在链式存储结构上台升排序的算法。                                                                                  |
| 3.       | - 2016 医2016 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18                |
| ٠.       | 3. 设关键字序列 $(k_1, k_2,, k_{n-1})$ 是堆,设计算法将关键字序列 $(k_1, k_2,, k_{n-1}, k_n)$ 证数为 $(k_1, k_2,, k_n)$      |

## 数据结构试卷(十)参考答案

```
一、选择题
1. A
         2. D
                  3. B
                          4. B
                                   5. B
                                            6. D
         8. D
                  9. D
                          10. C
                                   II. B
                                            12. D
二、填空题
    1.
          4, 10
1.
2.
    2.
          O(n\log_2 n) = O(n^2)
3.
    3.
4
    4
          1, 2
5.
    5.
         n(m-1)+1
    6.
          g->next
7.
    7.
          线性结构, 树型结构, 图型结构
8.
    8.
          O(n^2), O(n+e)
10. 10. (38, 13, 27, 10, 65, 76, 97)
11. 11. (10, 13, 27, 76, 65, 97, 38)
12. 12.
        124653
13. 13. struct node *rehild, bt=0, createbitree(bt->lehild)
14. 14. lklist, q=p
三、算法设计题
          设计在链式存储结构上合并排序的算法。
    void mergelklist(lklist *ha,lklist *hb,lklist *&hc)
       lklist *s=hc=0;
       while(ha!=0 && hb!=0)
          if(ha->data<hb->data){if(s==0) hc=s=ha; else {s->next=ha; s=ha;};ha=ha->next;}
          else {if(s==0) hc=s=hb, else {s->next=hb; s=hb;};hb=hb->next;}
       if(ha==0) s->next=hb; else s->next=ha;
          设计在二义排序树上查找结点X的算法。
2.
    bitree *bstsearch1(bitree *t, int key)
      while(p!=0) if (p->key=key) return(p); else if (p->key>key)p=p->lchild; else p=p->rchild;
      return(0);
3.
    3.
          设关键字序列(k_1, k_2, ..., k_{n-1})是堆,设计算法将关键字序列(k_1, k_2, ..., k_{n-1},
    x)调整为堆。
    void adjustheap(int r[ ],int n)
      int j=n, i=j/2, temp=r[j-1];
      while (i\ge1) if (temp\ger[i-1])break: else \{r[j-1]=r[i-1]; j=i; i=i/2;\}
      r[i-1]=temp;
```