Randomized Nyström Algorithm for Rank-k Approximation

SEQUENTIAL NYSTRÖM ALGORITHM

- 1 Compute $C = A\Omega \in \mathbb{R}^{n \times l}$
- ² Compute $B = \Omega^T C \in \mathbb{R}^{l \times l}$ and its Cholesky factorization $B = LL^T$
- 3 Solve $Z = CL^{-T}$ with substitution
- 4 Compute the QR factorization Z = QR
- 5 Compute the truncated rank-k SVD $R = U_k \Sigma_k V_k^T$
- 6 Compute $\hat{U}_k = QU_k$
- 7 Output the factorization $\left[\left[A_{\mathrm{Nyst}}\right]\right]_k = \hat{U}_k \Sigma_k^2 \hat{U}_k^T$

 \longrightarrow C: Locally on every P + sum_reduce on rows

B: Locally for P on the 1st row + sum_reduce on columns Cholesky: on root P + broadcast to 1st row

- \longrightarrow Z and TSQR: Locally for P on 1st row
- \implies SVD of R: On root P + broadcast to 1st row
- \implies Û: Locally for P on 1st row

Choices for Ω :

- Gaussian
- SRHT

$$C = (\Omega A)^{T} = A\Omega^{T}$$
$$B = \Omega C = \Omega(\Omega A)^{T} = \Omega A\Omega^{T}$$

3 matrices:

- polynomial decay
- exponential decay
- RBF from MNIST dataset

Stability Analysis

$$E = \frac{||A - [[A_{Nyst}]]_k||_*}{||A||_*}$$

$$E = \frac{||A - [[A_{Nyst}]]_k||_*}{||A||_*} \qquad E_{opt} = \frac{||A - [[A]]_k||_*}{||A||_*} = \frac{\sum_{i=k+1}^n \sigma_i}{||A||_*}$$

Sequential and Parallel Runtimes

