Evidence of growing spatial correlations at the glass transition from nonlinear response experiments

C. Crauste-Thibierge¹, C. Brun¹, F. Ladieu^{1*}, D. L'Hôte^{1*}, G. Biroli², and J-P. Bouchaud^{3*}

¹ SPEC (CNRS URA 2464), DSM/IRAMIS CEA Saclay,

Bat.772, F-91191 Gif-sur-Yvette France

² Institut de Physique Théorique, CEA,

(CNRS URA 2306), 91191 Gif-sur-Yvette, France and

³ Science & Finance, Capital Fund Management,

6, Bd. Haussmann, 75009 Paris, France

(Dated: November 26, 2018)

Abstract

The ac nonlinear dielectric response $\chi_3(\omega, T)$ of glycerol was measured close to its glass transition temperature T_g to investigate the prediction that supercooled liquids respond in an increasingly non-linear way as the dynamics slows down (as spin-glasses do). We find that $\chi_3(\omega, T)$ indeed displays several non trivial features. It is peaked as a function of the frequency ω and obeys scaling as a function of $\omega\tau(T)$, with $\tau(T)$ the relaxation time of the liquid. The height of the peak, proportional to the number of dynamically correlated molecules $N_{corr}(T)$, increases as the system becomes glassy, and χ_3 decays as a power-law of ω over several decades beyond the peak. These findings confirm the collective nature of the glassy dynamics and provide the first direct estimate of the T dependence of N_{corr} .

Accepted for publication in Physical Review Letters