Routing su Linux

Scenario

Consideriamo la rete in figura

LAN1 - 192.168.1.0 netmask 255.255.255.0

Ovvero 192.168.1.0/24

LAN2 - 192.168.2.0 netmask 255.255.255.0

Ovvero 192.168.2.0/24

Scenario (2)

- Tre nodi
 - H1:
 - eth0 = 192.168.1.1 netmask 255.255.255.0 (/24)
 - Router:
 - eth0 = 192.168.1.254 netmask 255.255.255.0 (/24)
 - eth1 = 192.168.2.254 netmask 255.255.255.0 (/24)
 - H2:
 - eth0 = 192.168.2.1 netmask 255.255.255.0 (/24)
- Obiettivo: far comunicare tutti i nodi

Scenario (3)

- Usando una configurazione bridge, potremmo fare comunicare facilmente tutti i nodi, MA non rispetteremmo la configurazione richiesta
- Studio delle due sottoreti:
 - 192.168.1.0/24
 - HostMin: 192.168.1.1; HostMax: 192.168.1.254
 - 192.168.2.0/24
 - HostMin: 192.168.2.1; HostMax: 192.168.2.254
- Ogni nodo di una sottorete può comunicare a livello 2 solo con nodi appartenenti alla stessa sottorete. Per ogni altro nodo, è necessario ricorrere al routing dei pacchetti a livello IP.

Scenario (4)

A livello 2 possiamo collegare H1 con Router e Router con H2, **ma non H1 e H2**

LAN1 - 192.168.1.0 netmask 255.255.255.0 LAN2 - 192.168.2.0 netmask 255.255.255.0

IP Forwarding e Routing

- Allo scopo di fare comunicare delle sottoreti, si individuano degli host che svolgono il ruolo di router, che inoltrano pacchetti da una sottorete a un'altra
 - l'inoltro dei pacchetti viene determinato in base all'indirizzo IP destinazione (livello 3 dello stack TCP/IP)
 - il router riceve un pacchetto con un indirizzo IP destinazione non suo e, invece di scartarlo (azione comune di un host), lo inoltra secondo regole di routing
 - ogni host deve conoscere quali sono i router a cui può inviare i pacchetti nel caso in cui i destinatari non facciano parte della sua sottorete, e li identifica con il termine di gateway

IP Forwarding e Routing (2)

- Problami da risolvere in configurazioni che comprendono multiple sottoreti:
 - ogni router deve sapere come raggiungere ogni rete, sia quelle alle quali è connesso, sia le altre
 - ogni host deve sapere a quali router (gateway) della propria sottorete deve inviare i pacchetti in base alla destinazione
- Ai nostri scopi, la configurazione (statica) degli host e dei gateway deve comprendere:
 - la definizione di **tabelle di routing** su tutti gli host
 - l'abilitazione dell'ip forwarding sugli host identificati come gateway

IP Forwarding su Linux

 La funzionalità di accettare pacchetti IP con destinazioni differenti e inoltrarli verso un destinatario viene chiamata ip forwarding, accessibile tramite il comando:

```
sysctl net.ipv4.ip_forward
```

• Se il parametro è **0** (default), l'ip forwarding è disabilitato. Per abilitare la funzionalità temporaneamente:

```
sysctl -w net.ipv4.ip_forward=1
```

 Altrimenti, per abilitarla permanentemente, impostare a 1 il campo net.ipv4.ip_forward nel file /etc/sysctl.conf. In questo caso, riavviare networking o usare:

```
sysctl -p /etc/sysctl.conf
```

per rendere effettiva la modifica

Consultazione tabella di routing su Linux

Ogni host deve avere una tabella che raccoglie le regole di routing. Nei sistemi Linux, questa tabella è consultabile (e modificabile) tramite il comando **route** o **ip route show**:

route -n # se non siamo root /sbin/route

Consultazione tabella di routing su Linux (2)

Kernel IP routing table				
Destination	Gateway	Genmask	Flags	Iface
192.168.1.0	*	255.255.255.0	U	eth1
155.185.48.128	*	255.255.255.192	U	eth0
192.168.2.5	192.168.1.254	255.255.255.255	UGH	eth1
0.0.0.0	155.185.54.190	0.0.0.0	UG	eth0

NB:

- la destinazione può essere una subnet, o un host
- è impostabile un default gateway per tutte le destinazioni target che non soddisfano nessuna delle destinazioni presenti nella tabella di routing (NB: ricordare che le destinazioni nella tabella sono definite da NetID + Netmask, e non solo da "Destination")

Consultazione tabella di routing su Linux (3)

Output corrispondente con comando ip route show

```
default via 155.185.54.190 dev eth1 \
    proto static metric 1024

192.168.2.5 via 192.168.1.254 dev eth0 \
    proto static metric 1024

192.168.1.0/24 dev eth0 proto kernel \
    scope link src 192.168.1.35

155.185.48.128/26 dev eth1 proto kernel \
    scope link src 155.185.48.147
```

Aggiungere regole di routing su Linux

```
Routing verso un host:
  # route add -host <target> gw <gwaddr>
Routing verso una subnet:
  # route add -net <target> gw <gwaddr>
Impostazione del default gateway:
  # route add default gw <gwaddr>
Esempi:
  # route add -host 192.161.4.1 gw 192.161.1.254
  # route add -net 155.185.48.128 netmask \
     255.255.255.128 gw 192.161.1.254
  # route add default gw 192.168.2.254
```

Rendere permanenti le tabelle di routing su Debian

- Si agisce sui blocchi delle interfacce in /etc/network/interfaces
- Il default gateway può essere impostato tramite comando gateway.
- Altre regole di routing possono essere impostate tramite direttiva post-up, che esegue un comando in seguito all'attivazione dell'interfaccia.

Esempio:

```
iface eth0 inet static
    address 192.168.1.1
    netmask 255.255.255.0
    gateway 192.168.1.254
    post-up route add -net 192.168.2.0 \
        netmask 255.255.255.0 gw 192.168.1.253
```

Risoluzione dello scenario

Configurare correttamente la rete mostrate in precedenza

LAN1 - 192.168.1.0 netmask 255.255.255.0 LAN2 - 192.168.2.0 netmask 255.255.255.0

Risoluzione dello scenario (2)

- 2 subnet
 - LAN1: 192.168.1.0/24
 - LAN2: 192.168.2.0/24
- H2 fa parte di entrambe le subnet, non ha problemi a raggiungere gli altri due nodi
- H2 deve svolgere funzionalità di routing per permettere la comunicazione fra le due subnet
- Soluzione, considerando le interfacce di rete già configurate:
 - Abilitare l'IP forward su Router
 - Configurare la tabella di routing di H1 (H2) per raggiungere l'host H2 (H1) tramite Router. Possibile via:
 - routing verso l'host; routing verso la subnet, routing tramite default gateway

Risoluzione dello scenario (3)

IP Forward:

R # sysctl -w net.ipv4.ip_forward=1

Tabella di routing, alternative:

Routing basato su Host

- H1 # route add 192.168.2.1 gw 192.168.1.254
- H2 # route add 192.168.1.1 gw 192.168.2.254

Routing basato su Subnet

- H1 # route add -net 192.168.2.0 netmask \ 255.255.255.0 gw 192.168.1.254
- H2 # route add -net 192.168.1.0 netmask \ 255.255.255.0 gw 192.168.2.254

Default gateway

- H1 # route add default gw 192.168.1.254
- H2 # route add default gw 192.168.2.254

Estensione dello scenario

 Estendere la configurazione precedente per consentire la comunicazione fra i nodi della seguente rete

LAN1 - 192.168.1.0/24

LAN2 - 192.168.2.0/24

LAN3 - 192.168.3.0/24