EUROPEAN PATENT OFFICE

7

Patent Abstracts of Japan

PUBLICATION NUMBER

05125438

PUBLICATION DATE

21-05-93

APPLICATION DATE

06-11-91

APPLICATION NUMBER

03290188

APPLICANT: NIPPON STEEL CORP;

INVENTOR: IMAI HARUO;

INT.CL.

: C21D 8/00 // C22C 38/00 C22C 38/06 C22C 38/54

TITLE

MANUFACTURE OF LOW YIELD RATIO HIGH TENSILE STRENGTH STEEL

ABSTRACT: PURPOSE: To provide the method for manufacturing low yield ratio high tensile strength

steel as rolled.

CONSTITUTION: A slab contg., by weight, 0.01 to 0.20% C, ≤0.6% Si, 0.5 to 2.2S Mn, 0.001 to 0.1% Al and ≤0.006% N, furthermore contg., at need, one or two kinds among Ni, Mo, Cu, Cr, V, Wb, Ti, B and Ca and the balance Fe with inevitable impurities is heated to the temp. range of 1000 to 1250°C, is rolled in such a manner that its cumulative draft at ≤900°C is regulated to ≥30% and its finishing temp. to ≥830°C, is successively cooled from the Ar₃ point or above to the temp. range of 550 to 700°C at ≥5°C/sec cooling rate and is thereafter subjected to air cooling.

COPYRIGHT: (C)1993,JPO&Japio

1 . 14 SUP ____ 405125438A A / >

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-125438

(43)公開日 平成5年(1993)5月21日

審査請求 未請求 請求項の数2(全 9 頁)

(21)出願番号	特願平3-290188	(71)出願人 000006655 新日本製鐵株式会社								
(22)出願日	平成3年(1991)11月6日	東京都千代田区大手町2丁目6番3号 (72)発明者 児島 明彦								
		君津市君津1番地 新日本製鐵株式会社君 津製鐵所内								
		(72)発明者 寺田 好男 君津市君津 1 番地 新日本製鐵株式会社君 津製鐵所内								
		(72)発明者 為広 博 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内								
		(74)代理人 弁理士 茶野木 立夫 (外1名) 最終頁に続く								

(54) 【発明の名称】 低降伏比高張力鋼の製造方法

(57) 【要約】

【目的】 本発明は低降伏比高張力鋼を圧延ままで製造する方法を提供する。

【構成】 重量%で、C:0.01~0.20%、Si:0.6%以下、Mn:0.5~2.2%、A1:0.001~0.1%、N:0.006%以下、必要に応じてNi,Mo,Cu,Cr,V,Nb,Ti,B,Caの一種または二種を含有させ残部Feおよび不可逆的不純物からなる網片を1000~1250℃の温度範囲に加熱し、900℃以下の累積圧下量が30%以上かつ仕上温度が830℃以上となるように圧延を行ない、引続きAr。以上の温度から550~700℃の温度範囲まで5℃/秒以上の冷却速度で冷却し、その後空冷を行なう。

【特許請求の範囲】

【請求項1】 重量%で

 $0.01 \sim 0.20\%$

Si 0.6%以下。

Mn 0. 5~2. 2%,

A1 0.001~0.1%,

0.006%以下。

残部Feおよび不可逆的不純物からなる網片を1000 ~1250℃の温度範囲に加熱し、900℃以下の累積 圧下量が30%以上かつ仕上温度が830℃以上となる 10 後Ac1 以下の温度で焼戻し処理を行なう低降伏比高張 ように圧延を行ない、引続きAr, 以上の温度から55 0~700℃の温度範囲まで5℃/秒以上の冷却速度で 冷却し、その後空冷することを特徴とする低降伏比高張 力鋼の製造方法。

【請求項2】 重量%で

Ni 1.0%以下、

Mo 1.0%以下、

Cu 1.0%以下、

Cr 1.0%以下、

v 0.1%以下、

Nb 0.1%以下、

Ti 0.1%以下、

0.003%以下、

Ca 0.003%以下、

の一種または二種以上を含有することを特徴とする請求 項1記載の低降伏比高張力鋼の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、主に梁や柱に使用され る建築構造物用鋼材としての低降伏比高張力鋼の製造方 30 法に関するものである。

[0002]

【従来の技術】近年、建築構造物の大型化に伴ない、経 済性、安全性の面から高張力鋼の需要は着実な増加を示 している。建築構造物に使用される鋼材は主に梁や柱で ある。このため高強度化が要求され、また柱に使用され るものは高強度化とともに厚肉化が要求されている。さ らには耐震設計を行なうために塑性変形能力の優れた低 降伏比鋼(例えば降伏比75%以下)が要求されてい

【0003】従来、低降伏比高張力鋼を得るためには、 フェライトのような軟質相とパーライトやペイナイトの ような硬質相の混合組織にすることが知られている。こ の理由は軟質相によって降伏強度を支配させ、硬質相に よって引張強度を確保することにより低降伏比を達成す るためである。

【0004】従来の技術では、低降伏比高張力鋼は制御 圧延、制御冷却、焼戻し処理を組み合わせて製造されて おり、圧延後、Ar』以下の特定温度域まで空冷待ちす

の後の制御冷却において、残りのオーステナイトをパー ライトあるいはベイナイトに変態させて混合組織を得て いる。

【0005】さらに、制御冷却後の板内温度偏差に起因 する残留応力を緩和するために焼戻し処理を行なってい る。この理由は残留応力による条切り後の形状不良を改 善するためである。例えば、特開昭62-122194 号公報によれば、水冷開始温度をArs -20℃~Ar 』 -100℃、水冷停止温度を300℃以下とし、その 力鋼の製造方法が開示されている。

[0006]

【発明が解決しようとする課題】しかしながら、従来の 方法によって網を製造する場合、圧延後、Ara以下の 冷却開始温度までの空冷待ち工程が必要であり、生産性 を低下させる。また、空冷待ち工程中に起こるスラブ四 周の過冷却により板内材質変動および残留応力が発生す る。さらに、空冷待ち工程中に形成される表面スケール により、制御冷却後の板内温度偏差が助長され、板内材 20 質変動および残留応力が発生する。これらの板内材質変 動は組織を不均一なものとして材質を低下させ、一方、 残留応力は条切り後の形状不良をまねく。焼戻し処理 は、生産性の低下と同時に製造コストの上昇をまねく。 【0007】本発明は上記のような問題点を解決するた めになされたもので、高強度(引張強度 5 0 kg f / m 🗗)でかつ降伏比が低く(75%以下)、建築構造物 に適した低降伏比高張力鋼を圧延ままで得ることを目的 とする。

[0008]

【課題を解決するための手段】本発明は、圧延後特定の 温度まで空冷待ちすることなく、オーステナイト単相域 から制御冷却を開始し、冷却速度と冷却停止温度を制御 することで制御冷却中のフェライトの生成を極力抑制 し、その後の空冷過程での変態によってフェライト、バ ーライト、ペイナイト混合組織とし、圧延ままで低降伏 比高張力鋼を製造する方法である。

【0009】すなわち、本発明は、C0.01~0.2 0%、SiO. 6%以下、MnO. 5~2. 2%、Al 0.001~0.1%、NO.006%以下、残部Fe 40 および不可逆的不純物からなる鋼片を1000~125 0℃の温度範囲に加熱し、900℃以下の累積圧下量が 30%以上かつ仕上温度が830℃以上となるように圧 延を行ない、引続きAr。以上の温度から550~70 0℃の温度範囲まで5℃/秒以上の冷却速度で冷却し、 その後空冷を行なうこと、および、C0.01~0.2 0%、SiO. 6%以下、MnO. 5~2. 2%、Al 0. 001~0. 1%、NO. 006%以下に加えて、 Nil. 0%以下、Mol. 0%以下、Cul. 0%以 下、Cr1. 0%以下、V0. 1%以下、Mb0. 1% ることにより、適正量の初析フェライトを析出させ、そ 50 以下、Ti0.1%以下、B0.003%以下、Ca

3

0.003%以下、の一種または二種以上を含有させ残部Feおよび不可逆的不純物からなる鋼片を、1000~1250℃の温度範囲に加熱し、900℃以下の累積圧下量が30%以上かつ仕上温度が830℃以上となるように圧延を行ない、引続きAr。以上の温度から550~700℃の温度範囲まで5℃/秒以上の冷却速度で冷却し、その後空冷を行なうこととする。

[0010]

【作用】以下、成分範囲の限定理由について説明する。 C は母材の強度を確保するために必要な元素であるが、 多量に含有させると靭性あるいは溶接性を損なうために 適量の添加が必要である。このような観点からCは0. 01~0.2%とした。

[0011] Siは脱酸上、鋼に必然的に含まれる元素であるが、HAZ靭性および溶接性上好ましくないため、上限を0.6%とした。

【0012】Mnは強度、靭性を同時に向上させる極めて重要な元素であり、0.5%以上は必要であるが、多量に添加すると溶接性、母材およびHA2の靭性上好ましくないため、上限を2.2%とした。

[0013] A I は脱酸上、鋼に必然的に含まれる元素であるが、0.001%未満では脱酸が不十分で母材靭性が劣化するため、下限を0.001%とした。一方、0.1%を超えると鋼の洗浄度およびHA2靭性上好ましくないため、上限を0.1%とした。

【0014】Nは溶鋼中に不可逆的に混入する元素であり、鋼の靭性上好ましくないため、上限を0.006%とした。

【0015】次に第2の発明においては、第1の発明の 網の成分および製造プロセスにさらにNil.0%以 30 下、Mol.0%以下、Cul.0%以下、Crl.0 %以下、V0.1%以下、Nb0.1%以下、Ti0. 1%以下、B0.003%以下、Ca0.003%以下 の一種または二種以上を含有させたものである。

[0016] これらの元素を含有させる主たる目的は、本発明鋼の特徴を損なうことなく、強度、靭性の向上および製造板厚の拡大を可能にするところにあり、その添加量は溶接性およびHAZ靭性の面から自ずと制限されるべき性質のものである。

【0017】NiはHAZの硬化性および靭性に悪影響 40を与えることなく母材の強度、靭性を向上させる元素であるが、1.0%を超えるとHAZの硬化性および靭性上好ましくないため、上限を1.0%とした。

[0018] Moは母材の強度、靭性を同時に向上させる元素であるが、1.0%を超えると溶接部靭性および溶接性上好ましくないため、上限を1.0%とした。

【0019】 CuはNiとほぼ同様の効果を持つとともに、耐食性、耐水素誘起割れ特性にも有効な元素であるが、1.0%を超えると圧延中にCu-クラックが発生し製造が困難になるため、上限を1.0%とした。

【0020】 Crは母材の強度を高め、耐水素誘起割れ特性等に有効な元素であるが、1.0%を超えるとHA2の硬化性、靭性および溶接性上好ましくないため、上限を1.0%とした。

[0021] Vは析出硬化に有効な元素であるが、0. 1%を超えると溶接性上好ましくないため、上限を0. 1%とした。

【0022】Nbは析出硬化に有効な元素であるが、 0.1%を超えると溶接性上好ましくないため、上限を 100.1%とした。

【0023】 Tiはオーステナイト粒の細粒化に有効な元素であるが、0.1%を超えると溶接性上好ましくないため、上限を0.1%とした。

[0024] Bは高強度化に有効な元素であるが、0.03%を超えるとHAZ 靭性を著しく劣化させるため、上限を0.003%とした。

[0025] CaはMnSを球状化させることで、シャルピー吸収エネルギー衝撃値を向上させる他、延伸化したMnSと拡散性水素とによる内部欠陥の発生を防止する。Caの含有量が0.003%を超えるとCa-SまたはCa-O-Sが多量に大型介在物として生成し、鋼の靭性のみならず消浄度をも害し、さらに溶接性にも悪影響を及ぼす。このため上限を0.003%とした。

【0026】本発明網は不純物としてSおよびPを含有するが、通常Sは0.01%以下、Pは0.01%以下であり、共に含有量が低いほど母材および溶接部制性は向上する(Sは0.01%以下、Pは0.01%以下が望ましい)。

【0027】次に、本発明における加熱圧延冷却条件の 限定理由について詳細に説明する。加熱温度を1000 ~1250℃に限定した理由は、加熱時のオーステナイト粒を小さく保ち圧延組織の微細化を図るためである。 1250℃は加熱時のオーステナイト粒が極端に粗大化 しない上限温度であり、加熱温度がこれを超えるとオーステナイト粒が粗大混粒化し、変態後の組織も粗大化するため鯛の靭性が著しく劣化する。

[0028] 一方、加熱温度が低すぎると、圧延終了温度が下がりすぎるため十分な材質向上効果が期待できない。またNb, Vなどの析出硬化元素添加時には、これらが十分に固溶せず強度、靭性バランスが劣化する。このために下限を1000とする必要がある。

[0029]上述のような条件で加熱したスラブを、900℃以下の末再結晶域での累積圧下量を30%以上とし、仕上温度が830℃以上となるように圧延を行なう。これは未再結晶域での圧延を行なうことによって、オーステナイト粒の細粒化を図るためである。仕上温度の下限を830℃としたのは、これ以下の温度では圧延集合組織が形成され、超音波探傷に有害な音響異方性が生じるためである。

50 【0030】圧延後の冷却条件は、圧延後、Aェ。以上

5

の温度から5℃/秒以上の冷却速度で550~700℃ の温度範囲まで冷却し、その後空冷する。この理由は、 圧延後の空冷待ち工程を省略して、オーステナイト単相 域から比較的速い冷却速度で冷却することによって、制 御冷却中の初析フェライトの生成を極力抑制し、その後 の空冷過程での変態によって適当な量比のフェライト= パーライト=ペイナイトの最終組織を得るためである。

[0031] 制御冷却中の初析フェライトの生成を抑制するために、5℃/秒以上の冷却速度が必要である。制御冷却中に多量の初析フェライトが生成すると、その後 10の空冷過程で生成するフェライトと相まって最終組織がフェライト主体となり、引張強度が低下する。冷却停止温度を550~700℃の温度範囲としたのは、その後の空冷過程において適当な量比のフェライト=パーライト=ペイナイト組織を得ることに加えて、水冷を膜沸騰域で行なうことでより均一に網を冷却するためである。

【0032】700℃以上で冷却を停止すると、その後

の空冷過程で多量のフェライトが生成し、最終組織がフェライト主体となるために、引張強度が低下する。一方、550℃以下で冷却を停止すると、その後の空冷過程で多量のベイナイトが生成し、最終組織がベイナイト主体となるために、降伏比が高くなる。その上、300~550℃での水冷は核沸騰域であり、鋼が不均一に冷却されるために冷却後の残留応力が大きくなり、条切後の形状不良をまねく。本発明の効果は、600~700

℃の冷却停止温度において顕著である。 ○ 【0033】

【実施例】表1は供試鋼の化学成分を、表2,表3はそれぞれ本発明鋼、比較鋼の製造条件および材質特性を示す。表2および表3のAr。は明記した計算式により算出した値であり、Araの目安とする。

【0034】 【表1】

-242-

特開平5-125438

(5)

尔 松 030 鈋 ٠**ن** o.

[0035]

Μi

【表2】

(6)

特開平5-125438

9 10 0019 022, ıΚ Ca=0. Cu=0T i = 0. T i = 0. 0 Nb = 0. Nb=0. 6 0012, 0025, 043, 0 \$ C r = 0. Ca=0.珱 ∞ 排 ß 02 0 श्र ö ∞ 9 S 0 ö > ×

[0036]

【表3】

		11												•			12		
	A 1711/28	¥ 28	为		珷	Щ	팿	Щ	展	珉	良	氓	臤	렃	乓	民	렃	田	
	Ħ	þi Ø	異方性		푮	蕉	嶣	無	簱	熊	兼	巢	蕉	熊	無	鶀	嶽	熊	
		ല്ല്		(gf·m)	25. 3	24. 3	19. 9	17. 7	25. 7	21. 4	19.9	25. 3	22. 2	21. 3	27. 7	19. 2	18. 2	20. 5	
		YR		(%)	73. 5	69.0	<u></u>	7.3	∞ ⊶ •	74. 1	74. 1	74. 2	61. 7	70.3	74.0	67, 5	ල ප් දු	69. 5	
		ΥS		(kg 1/m ³	38. 4	38.0	36.9	45. 1	47. 5	37.6	37.8	46.9	45. 3	39. 7	38. 2	36. 0	36. 7	37. 4	
		TS		(kgi/nm3) (kgi/mn3) (96) (kg f·m)	53.0	55. 1	51.5	62. 7	64. 4	55.0	51.0	53.2	66.9	56. 5	51. 6	53.3	53. 7	53. 8	
		77	雪	(mm)	10	9	30	90	. 89	<u>-</u>	20	0)	83	30	20	\$	09	9	-81Mo
		冷却停	止温度	(Ç	650	800	550	009	929	650	650	009	556	550	909	100	100	600	- i Nig
		异少	速度	(g/2)	z.	10	91	02	=	10	20	10	10	91	02	10	10	10	15Cr-
	条件	张 年史	始温度	§	843	33	840	845	£28	841	830	52	827	838	834	836	848	837	- n 0 0
	型	##	温度	(၁	820	820	820	860	840	850	840	840	850	850	850	840	850	820	Mn –
	3	2006	以下压下	(多) 四	40	20	90	30	30	20	9	70	40	29	40	30	9	2	=910-310C-80Mn-20Cu-15Cr-55Ni-80Mo
		整	温度	(a)	1200	1200	1250	1150	1000	1200	1150	1200	1200	1250	1200	1000	1150	1200	-916-
			Arı	ව්	=		162	133	-	15.2	121	124	13.	801	193	757	141	175	છ
^ -		1	E		<	Ø	ပ	Ω	· 123	· [=	Ü	Ξ	-	<u> </u>	×		X	Z	A F
滋2		M	\$		1			4	Ħ	ß	*	5	<u>*</u>	8	薂				1

[0037] [表1]

--245---

ı	13 発	<u> </u>	¥	1.	- ند							: 	14
	条白後		芴	1	E P	É {	IK 1	吨	哎 1	成 :	EK	職	
		音響異方性		1	Ħ Ħ	ŧ į	¥ į	Ħ Į	# #	Ħ ‡	庄 1	#	
	81 0		التعاو	Mar J Sun	e e	; -	9 -	-i -	ກ <u>ບ</u>	_	9 .	e de	
	<u>a</u>	, (%) X (%)				7 68						69. 7	
	<i>S</i> :	•	(kg1/mn²) (kg1/mm²) (94) (mn² = mn)	1 1	5.05	677 677 674	95	9 45 5 65	5	U P7	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	91.6	
	T S		(kg1/mm ³	61. 2	73. 1	 	52. 4		6.6	63.			
	#F	鲥	(E)	2	=	~	2	2	0	20	. 09		o E
	小型	止温度	છ	650	\$000	009	650	600	730	100	550	1 1 2	•
	录处	阅阅	(s/2)	5	20	*2	20	ro	20	9.	0	7 - 55	
粉布	冷却開	始温度	3	855	833	842	849	827	835	789	700*	u - 15 C	
瘦	#	随度	(ဍ)	860	850	850	860	840	850	*008	850	200	
24	明で以下	田石	%	20 *	20	20	30	30	90	09	50	(°C) = 910-310C - 80Mn - 20Cu - 15Cr - 55N 1 - 80M	t.
	加州	温度	(၁)	1200	1150	1100	1300*	950*	1200	1250	1200	910-31	*は本発明の節用外を示す。
		Ar	3	126	718	156	190	164	153	129	730	(2) (2)	発明の範
•	靏		l	0	ם,	œ	8	Ø	H	D	>	Ara	は本当
	M	#	1		丑		幫		靐			⋖	*

【0038】表2に示すように、本発明鋼はいずれも降 伏比75%以下を達成しており、かつ所定の強度および 低温靭性を満足し、音響異方性は無く、条切後形状も良 好である。

【0039】これに対して比較鋼は表3に示すように、 Oは900℃以下の累積圧下量が低いためにオーステナ イトが十分細粒化されず、最終組織が租大化し、低温靭

ナイト主体の組織となり、降伏比が高くなっている。ま た、核沸騰域での水冷によって残留応力が導入され、条 切後形状が悪化している。Qは冷却速度が低いために制 御冷却中に多量の初析フェライトが生成し、加えてその 後の冷却過程でもフェライトが生成するためにフェライ ト主体の組織となり、引張強度が低下している。Rは加 熱温度が高いためにオーステナイト粒が粗大化し、最終 性が劣化している。Pは冷却停止温度が低いためにベイ 50 組織も粗人となり、低温靭性が劣化している。Sは加熱

15

温度が低いために830℃以上の圧延では十分な圧下母が得られず、またNbが十分固溶しないために引張強度が低下し、低温靭性が劣化している。Tは冷却停止温度が高いためにフェライト主体の組織となり、引張強度が低下している。Uは仕上温度が低いために圧延集合組織が形成され、音響異方性が生じている。Vは冷却開始温度が低いために空冷待ちする必要があり、この間に形成

16 されたスケールやスラブ四周の過冷却に起因する残留応 カによって、条切後形状が悪化している。

[0040]

【発明の効果】本発明により、圧延ままで建築用低降伏 比高張力鋼の製造が可能となり、生産性の向上および製 造コストの低減が図れる。さらに、本発明によって製造 された鋼は鋼構造物の安全性を確保する。

フロントページの続き

(72)発明者 吉井 健一 君津市君津 1 番地 新日本製鐵株式会社君 津製鐵所内 (72)発明者 今井 晴雄 君津市君津1番地 新日本製鐵株式会社君 津製鐵所內

THIS PAGE BLANK (USPTO)