HMMA 307 : Advanced Linear Modeling

Chapter 1 : Linear regression

Emma Santinelli Mégane Diéval Yassine Sayd

https://github.com/MegDie/advanced_lm_introduction

Université de Montpellier

Table of Contents

Introduction and Ordinary Least Squares

Singular Value Decomposition

Table of Contents

Introduction and Ordinary Least Squares

Singular Value Decomposition

Model

Observations: n samples $(y_i, x_i)_{i=1,\dots,n}$ with p features. The model can be written in matrix notation as :

$$y = X\beta + \varepsilon$$

where

- ▶ $X = [\mathbf{x}_1, \dots, \mathbf{x}_p] = [x_1^\top, \dots, x_n^\top]^\top$ is an $n \times p$ matrix of covariates/features
- \blacktriangleright β is a $p \times 1$ vector of unknown parameters
- \triangleright ε is a vector of *i.i.d.* random normal errors with mean 0

(Ordinary) Least squares: $\hat{\beta}^{LS}$

The **LS** estimator is any coefficient vector $\hat{eta}^{\mathrm{LS}} \in \mathbb{R}^p$ such that :

$$\hat{\beta}^{LS} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \underbrace{\frac{1}{2n} \|y - X\beta\|^2}_{f(\beta)}$$

and

$$f(\beta) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \frac{1}{2n} (X\beta)_i)^2 = \beta^{\top} \frac{X^{\top} X}{2n} \beta + \frac{1}{2n} ||y||^2 - \langle y, X\beta \rangle$$

where
$$\langle y, X\beta \rangle = y^\top X\beta = \beta^\top X^\top y = \langle \beta, X^\top y \rangle$$

Rem: 1/2 is convenient for optimization (computing gradients), and 1/n for if $n \to \infty$ (p fixed) then the objective function convergences to something like $\mathbb{E}\left[\frac{1}{2n}(y_{\infty}-x_{\infty}^{\top}\beta\right]^{2}$.

Gram Matrix

Notation

The matrix $\hat{\Sigma} = \frac{X^{\top}X}{n}$ is called the **Gram** matrix.

$$X^{\top}X = \begin{pmatrix} \mathbf{x}_1^{\top} \\ \vdots \\ \mathbf{x}_p^{\top} \end{pmatrix} (\mathbf{x}_1, \dots, \mathbf{x}_p)$$

Elementwise Gram matrix : $[X^{\top}X]_{j,j'} = [\langle \mathbf{x}_j, \mathbf{x}_{j'} \rangle]_{(j,j') \in [\![1,p]\!]^2}$

Standarization: centering

Feature centering⁽¹⁾:

Compute the columns sample means:

$$\bar{\mathbf{x}}_{j} = \frac{1}{n} \sum_{i=1}^{n} x_{ij} \tag{*}$$

Use Equation (*) to get the centered matrix:

centering
$$(X) := \bar{X} = X - [\bar{\mathbf{x}}_1 \mathbb{1}_n, \dots, \bar{\mathbf{x}}_p \mathbb{1}_n]$$

where $\mathbb{1}_n = (1, ..., 1)^{\top}$

Rem: \bar{X} has columns with zero means

⁽¹⁾ the average is performed along samples!

Standardization: scaling

Feature scaling (reduction):

$$\hat{\sigma}_{j}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \bar{\mathbf{x}}_{j})^{2}$$

and then one can define:

$$S_X = \operatorname{diag}(\hat{\sigma}_1, \dots, \hat{\sigma}_p)$$

To get the standardized matrix:

$$\operatorname{stdzing}(X) = \operatorname{center}(X) \cdot S_X^{-1}$$

$$= \left[\frac{\mathbf{x}_a - \bar{\mathbf{x}}_a \mathbb{1}_n}{\hat{\sigma}_a}, \dots, \frac{\mathbf{x}_p - \bar{\mathbf{x}}_p \mathbb{1}_n}{\hat{\sigma}_p} \right]$$

Rem: sklearn⁽²⁾ convention is 1/n (could have been 1/(n-1))

⁽²⁾ https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

Optimization

First Order Optimality Conditions

Since f is differentiable over \mathbb{R}^p , the following holds:

$$\nabla f(\hat{\beta}^{\mathrm{LS}}) = 0$$

Rem: If f is even C^{∞} a function

Rem: f is a convex function so a local minimum is a global one

Conclusion: \hat{eta}^{LS} satisfies the following equations of orthogonality :

$$\begin{split} \nabla f(\hat{\beta}^{\mathrm{LS}}) &= 0 \iff \frac{X^{\top}X}{n}\hat{\beta}^{\mathrm{LS}} - \frac{X^{\top}y}{n} = 0 \\ &\iff X^{\top}(\frac{X\hat{\beta}^{\mathrm{LS}} - y}{n}) = 0 \\ &\iff X^{\top}(y - X\hat{\beta}^{\mathrm{LS}}) = 0 \\ &\iff \langle \mathbf{x}_{j}, y - X\beta \rangle = 0, \forall j \in \llbracket 1, p \rrbracket \end{split}$$

High dimension warning

Rem: this happens when $\hat{\Sigma}$ is singular

Normal equations

Interpretation

Each feature is orthogonal to the residuals $r = y - X\hat{\beta}^{LS}$:

$$\forall j \in [1, p], \langle r, \mathbf{x}_j \rangle = 0$$

The LS vector $\hat{\beta}^{LS}$ is a solution of a $p \times p$ linear system β :

$$\hat{\Sigma}\beta = \frac{X^{\top}y}{n}$$

Rem:

- $ightharpoonup \hat{\Sigma}$ is invertible \Rightarrow the solution of the linear system is unique
- $ightharpoonup \hat{\Sigma}$ is invertible $\Rightarrow \hat{\Sigma}$ is positive definite
- $ightharpoonup \hat{\Sigma}$ invertible $\Rightarrow \operatorname{rank}(\hat{\Sigma}) = p$
- lacktriangle we assume that we have a full rank column e.g. :

$$\operatorname{rank}(X) = \dim(\operatorname{vect}(X_1, \dots, X_p)) \le n$$

The full column rank case

Theorem

If $\operatorname{rank}(X) = p$, then $\hat{\Sigma}$ is invertible and one has

$$\hat{\beta}^{\mathrm{LS}} = (X^{\top} X)^{-1} X^{\top} y$$

Proof:

$$\hat{\beta}^{LS} = \hat{\Sigma}^{-1} \frac{X^{\top} y}{n} = \left(\frac{X^{\top} X}{n}\right)^{-1} \frac{X^{\top} y}{n}$$

Rem: In practice you hardly ever invert $\hat{\Sigma}$, but rather solve a linear system (inverting = solving p systems here, when one is enough)

Motivation

Using ordinary least squares models on two datasets:

- ► Bicycle accidents
- ► Count data of bicycles

We propose to estimate the severity of accidents by the feature "sexe". The problem is that the features are qualitative:

- ► Modalities of the feature to predict: "0 Indemne", "1 Blessé léger", "Blessé hospitalisé", and "3 Tué"
- ► Modalities of the feature "sexe": "M" and "F"

Source: see associated code

First: convert features into ordinal features.

Prediction principle

Calculate the coefficients β on a training sample and predict on a test sample the feature of interest. 0 is the value for male and 1 is the value for female.

<u>Conclusion</u>: The prediction is very bad on qualitative features. We notice that the \mathbb{R}^2 is closed to 0 and it's mostly the same with the others qualitative features. With this dataset, the OLS model is not efficient for qualitative features.

Prediction of a quantitative feature

Predict the number of accidents with the date (day, month and year) that is an ordinal feature with periodic component. Results are also very bad.

Out[99]:	OLS Regression Results						
	Dep. Variable		accidents	- 1	R-squar	ed:	0.059
	Model		OLS	Adj. I	R-squar	ed:	0.058
	Method	Leas	t Squares		F-statis	tie:	62.23
	Date	Sun, 04	Oct 2020	Prob (F	-statist	ic): 3.4	33e-63
	Time		13:39:42	Log-l	ikeliho	od: -	16186.
	No. Observations		5000		A	IC: 3.23	8e+04
	Df Residuals		4994		8	IC: 3.24	2e+04
	Df Model		5				
	Covariance Type		nonrobust				
		coef	std err	t	P> t	[0.025	0.975]
	Intercept	703.6676	44.309	15.881	0.000	616.803	790.533
	day	-0.0118	0.010	-1.180	0.238	-0.031	0.008
	month	0.1591	0.028	5.740	0.000	0.105	0.213
	year	-0.3438	0.022	-15.610	0.000	-0.387	-0.301
	periodic_day	-0.0580	0.123	-0.471	0.638	-0.300	0.183
	periodic_month	-0.2805	0.131	-2.140	0.032	-0.537	-0.024

Same thing on the second dataset

Prediction of the number of bicycles in a day with the date and the total number of bicycles. We introduce also periodic components.

Table of Contents

Introduction and Ordinary Least Squares

Singular Value Decomposition

SVD

<u>Reminder</u>: Let $\Sigma \in \mathbb{R}^{p \times p}$, if $\Sigma^{\top} = \Sigma$ then Σ is diagonalizable.

Theorem

For all matrix $M \in \mathbb{R}^{m_1 \times m_2}$ of $\operatorname{rank}(r)$, there exist two orthogonal matrix $U \in \mathbb{R}^{m_1 \times r}$ and $V \in \mathbb{R}^{m_2 \times r}$ such that :

$$M = U \operatorname{diag}(s_1, \dots, s_r) U^{\top}$$

where $s_1 \geq s_2 \geq \cdots \geq s_r \geq 0$ are the singular values of M.

Rem: $M = \sum_{j=1}^r s_j u_j v_j^{\top}$ with : $U = [u_1, \dots, u_r]$ et $V = [v_1 \dots v_r]$

Pseudo-inverse

Definition

For $M \in \mathbb{R}^{m_1 \times m_2}$, a pseudoinverse of M is defined as a matrix M^+ satisfying :

$$M^+ = V \operatorname{diag}\left(\frac{1}{s_1} \dots \frac{1}{s_r}\right) U^\top = \sum_{j=1}^r \frac{1}{s_j} v_j u_j^\top$$

 $\underline{\operatorname{Rem}} :$ If M is invertible, its pseudoinverse is its inverse. That is, $A^+ = A^{-1}$

Bibliography

- [1] Joseph Salmon, *Modéle linéaire avancé: introduction*, 2019, http://josephsalmon.eu/enseignement/Montpellier/HMMA307/Introduction.pdf.
- [2] Francois Portier and Anne Sabourin, *Lecture notes on ordinary least squares*, 2019, https:

//perso.telecom-paristech.fr/sabourin/mdi720/main.pdf

- [3] Ordinary least squares, 2020, https://en.wikipedia.org/wiki/Ordinary_least_squares.
- [4] Singular value decomposition, 2020, https://en.wikipedia.org/wiki/Singular_value_decomposition.