Programación lineal: análisis de sensibilidad Rodrigo Maranzana

Análisis de sensibilidad: concepto

Objetivo:

- Entender los efectos de cambios paramétricos en un problema de programación lineal.
- Detectar límites de mejora en parámetros.

Tipos:

- ullet Modificación de parámetros b_i (términos del lado derecho)
- ullet Modificación de coeficientes c_j (coeficientes del funcional)

Dado el ejemplo:

max
$$z = 21x_1 + 33x_2$$

s.t.

$$100x_1 + 63x_2 \le 734$$

$$47x_1 + 84x_2 \le 523 \longrightarrow 47x_1 + 84x_2 \le 524$$

$$x_1, x_2 \ge 0$$

¿Cuál sería el efecto de aumentar b_2 en 1 unidad?

*Escala exagerada para visualización.

Concepto de precio sombra (shadow price):

Incremento marginal del funcional Z por cada unidad de recurso modificada.

$$\lambda_i = \frac{\Delta Z}{\Delta b_i} = \frac{Z'_{opt} - Z_{opt}}{b'_i - b_i}$$

Siendo:

 Z_{opt} , Z'_{opt} : objetivo original y objetivo con modificación paramétrica.

 b_i', b_i : término del lado derecho original y con modificación.

El precio sombra está relacionado al problema dual.

Cada λ_i es una variable del dual, $\lambda_i = y_i$ relacionada con cada restricción "i".

En el ejemplo:

$$\max z = 21x_1 + 33x_2$$
s.t.
$$100x_1 + 63x_2 \le 734$$

$$47x_1 + 84x_2 \le 523 \longrightarrow 47x_1 + 84x_2 \le 524$$

$$x_1, x_2 \ge 0$$

*Escala exagerada para visualización.

$$\lambda_2 = \frac{\Delta Z}{\Delta b_2} = \frac{Z'_{opt} - Z_{opt}}{b'_2 - b_2} = \frac{219.21 - 218.84}{524 - 523} = 0.3636 \frac{\$}{u \ recurso \ 2}$$

En el ejemplo:

$$\max z = 21x_1 + 33x_2$$
s.t.
$$100x_1 + 63x_2 \le 734 \longrightarrow 100x_1 + 63x_2 \le 735$$

$$47x_1 + 84x_2 \le 523$$

$$x_1, x_2 \ge 0$$

*Escala exagerada para visualización.

$$\lambda_1 = \frac{\Delta Z}{\Delta b_1} = \frac{Z'_{opt} - Z_{opt}}{b'_1 - b_1} = \frac{218.89 - 218.84}{735 - 734} = 0.0392 \frac{\$}{u \ recurso \ 2}$$

Precios sombra y variables duales

Dados los precios sombra calculados mediante $\frac{\Delta Z}{\Delta b_i}$:

$$\lambda_1 = 0.0392 \frac{\$}{u \ recurso \ 1}$$

$$\lambda_2 = 0.3636 \frac{\$}{u \ recurso \ 2}$$

Vamos a comprobar que ambos son las variables duales $\lambda_j = y_j$.

$$max z = 21x_1 + 33x_2$$
 s.t.
$$100x_1 + 63x_2 \le 734$$

$$47x_1 + 84x_2 \le 523$$

$$x_1, x_2 \ge 0$$
 PRIMAL

$$\min z = 734y_1 + 523y_2$$
 s.t.
$$100y_1 + 47y_2 \ge 21$$

$$63y_1 + 84y_2 \ge 33$$

$$y_1, y_2 \ge 0$$
 DUAL

Precios sombra y variables duales

```
min z = 734y_1 + 523y_2

s.t.

100y_1 + 47y_2 \ge 21
63y_1 + 84y_2 \ge 33
y_1, y_2 \ge 0
```

DUAL

```
- □ ×

>> Optimal
>> y_1 = 0.03916
>> y_2 = 0.36349
```

Comprobamos que $\lambda_j = y_j$.

```
import pulp
lp01 = pulp.LpProblem("Precios sombra", pulp.LpMinimize)
y_1 = pulp.LpVariable('y_1', lowBound=0, cat='Continuous')
y_2 = pulp.LpVariable('y_2', lowBound=0, cat='Continuous')
lp01 += 734*y_1 + 523*y_2, "Z"
lp01 += 100*y 1 + 47*y 2 \ge 21
lp01 += 63*y 1 + 84*y 2 \ge 33
lp01.solve()
```

Cálculo de precios sombra con PuLP desde primal

```
\max z = 21x_1 + 33x_2 s.t. 100x_1 + 63x_2 \le 734 47x_1 + 84x_2 \le 523 x_1, x_2 \ge 0 PRIMAL
```

```
lp01 = pulp.LpProblem("Primal", pulp.LpMaximize)
x 1 = pulp.LpVariable('x 1', lowBound=0, cat='Continuous')
x 2 = pulp.LpVariable('x 2', lowBound=0, cat='Continuous')
lp01 += 21*x_1 + 33*x_2, "Z"
lp01 += 100*x_1 + 63*x_2 \leq 734
lp01 += 47*x 1 + 84*x 2 \leq 523
lp01.solve()
print("\nAnálisis de sensibilidad:")
for name, c in lp01.constraints.items():
    print(f"Restricción: {name}, Shadow Price: {c.pi}")
```


Comparación de precios sombra:

$$\lambda_1 = 0.0392 \frac{\$}{u \ recurso \ 1}$$

$$\lambda_2 = 0.3636 \frac{\$}{u \ recurso \ 2}$$

¿Cuál deberíamos aumentar?

Comparación de precios sombra:

$$\lambda_1 = 0.0392 \frac{\$}{u \ recurso \ 1}$$

$$\lambda_2 = 0.3636 \frac{\$}{u \ recurso \ 2}$$

El segundo recurso muestra una sensibilidad mayor en el precio sombra sobre Z*.

¿Qué pasaría si el costo de aumentar 1 unidad de cualquier recurso es de:

- **\$** 0.20
- **\$** 0.01
- **\$** 1.00 ?

Modificación de parámetros b_i : grid search

Grid search: Implica hacer un barrido paramétrico iterando y resolviendo.

W UTO.BA

[I4051 - Maranzana] Investigación Operativa, Ingeniería Industrial

Modificación de parámetros b_i : grid search

Comparación de funcionales con barrido paramétrico de b_1 y b_2 por separado.

$$\lambda_1 = 0.3636 \frac{\$}{u \ recurso \ 1}$$

$$\lambda_2 = 0.0392 \frac{\$}{u \ recurso \ 2}$$

Precios sombra en barrido paramétrico

Comparación de funcionales con barrido paramétrico de b_1 y b_2 por separado.

Dados
$$b_1 = 734 \text{ y } b_2 = 523$$

Los precios sombra resultaron:

$$\lambda_1 = 0.0392 \frac{\$}{\text{u recurso 1}}$$

$$\lambda_2 = 0.3636 \frac{\$}{\text{u recurso 2}}$$

En este análisis nos concentramos en los parámetros c_j del funcional.

Dada un problema lineal
$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, $B = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$, $C = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ y $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$:

La pendiente resulta:

$$Max \ z = C^T X$$

$$st. \ AX \le B$$

$$m_z = -\frac{c_1}{c_2}$$

Si modificamos solamente los coeficientes c_j del funcional, manteniendo los parámetros de la solución óptima constantes:

¿Entre qué valores podemos mover c_j sin modificar el resultado (x_1^*, x_2^*) ?

Siendo las rectas de las restricciones, calculamos sus pendientes:

$$a_{11}x_1 + a_{12}x_2 = b_1 \rightarrow x_2 = \frac{b_1}{a_{12}} - \frac{a_{11}}{a_{12}}x_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2 \rightarrow x_2 = \frac{b_2}{a_{22}} - \frac{a_{21}}{a_{22}}x_1$$

Luego, evaluamos qué pendiente es el límite superior e inferior, de acuerdo a las magnitudes.

Los valores de la pendiente pueden variar de acuerdo a:

$$Pendiente\ inferior \leq -\frac{c_1}{c_2} \leq Pendiente\ superior$$

max
$$z = 21x_1 + 33x_2$$

s.t.
 $100x_1 + 63x_2 \le 734$
 $47x_1 + 84x_2 \le 523$
 $x_1, x_2 \ge 0$

Pendiente del funcional actual:
$$m_Z = -\frac{21}{33}$$

Límite superior e inferior de la pendiente con restricciones:

$$100x_1 + 63x_2 = 734 \rightarrow x_2 = \frac{734}{63} - \frac{100}{63}x_1$$

$$47x_1 + 84x_2 = 523 \rightarrow x_2 = \frac{523}{84} - \frac{47}{84}x_1$$

El rango resulta:

$$-\frac{100}{63} \le -\frac{c_1}{c_2} \le -\frac{47}{84}$$

Análisis de c_i con barrido paramétrico

Barrido paramétrico de c_1

Barrido paramétrico de c_2

Siendo el rango: $-1.59 \le -\frac{c_1}{c_2} \le -0.56$

¿qué pasaría si:

- 1) c_1 aumenta 3 unidades y c_2 5 unidades?
- 2) c_2 aumenta 15 unidades y c_2 se mantiene?
- 3) ¿Cuánto puedo modificar c_1 , si c_2 aumenta 3 unidades?

Siendo el rango:
$$-1.59 \le -\frac{c_1}{c_2} \le -0.56$$

¿qué pasaría si:

1) c_1 aumenta 3 unidades y c_2 5 unidades?

$$c'_1 = c_1 + 3 = 24$$

 $c'_2 = c_2 + 5 = 38$

$$m_z = -\frac{c_1}{c_2} = -\frac{24}{38} = -0.63$$

$$-1.59 \le -0.63 \le -0.56$$

El óptimo (x_1^*, x_2^*) se mantiene, no hace falta recalcular.

Siendo el rango: $-1.59 \le -\frac{c_1}{c_2} \le -0.56$

¿qué pasaría si:

2) c_2 aumenta 15 unidades y c_2 se mantiene?

$$c_2' = c_2 + 15 = 48$$

$$m_z = -\frac{c_1}{c_2} = -\frac{21}{48} = -0.43$$

$$-1.59 \le -0.56 \le -0.43$$

Fuera de rango, hace falta recalcular el óptimo (x_1^*, x_2^*) .

Siendo el rango:
$$-1.59 \le -\frac{c_1}{c_2} \le -0.56$$

3) ¿Cuánto puedo modificar c_1 , si c_2 aumenta 3 unidades?

$$c_2' = c_2 + 3 = 36$$

$$m_z = -\frac{c_1}{c_2} = -\frac{c_1'}{36}$$
$$-1.59 \le -\frac{c_1'}{36} \le -0.56$$

$$20.16 \le c_1' \le 57.24$$

Dado que $c_1 = 21$, puedo disminuirlo hasta 0.84 o aumentarlo hasta 36.24 sin modificar el óptimo (x_1^*, x_2^*) .

Barrido paramétrico de c_1

Análisis de costo reducido

En el caso que una variable sea no básica, el costo reducido es la cantidad que tiene que aumentar un coeficiente del funcional para que su variable ingrese a la base.

Se conoce también como costo de oportunidad.

Recordemos que esto en SIMPLEX lo <u>usábamos</u> para seleccionar variables para entrar a la base con $z_{\rm i}$ — $c_{\rm j}$.

En PuLP se puede calcular con el atributo ".dj" sobre las variables

Análisis de CR_i con barrido paramétrico

