线性方程组迭代解法部分上机实习报告

姓名:刘群 学号:2014211591 院系: 地学中心 Email: liu-q14@mails.tsinghua.edu.cn (本文档由译下X编写)

November 1, 2014

1 问题的描述

设 $H_n=[h_{ij}]\in\mathbb{R}^{n\times n}$ 是Hilbert矩阵,即 $h_{ij}=\frac{1}{i+j-1}\cdot$,取 $x=\begin{pmatrix}1\\\vdots\\1\end{pmatrix}\in\mathbb{R}^n$,并令 $b_n=H_nx$,用SOR迭代方法和共轭梯度法求解 $H_nx=b_n$,并与前面的直接方法做比较.

2 SOR方法介绍

2.1 原理介绍

迭代法是一种求解求解线性代数方程组常用的方法,它是从某些初始向量出发,然后用设计好的步骤逐次进行迭代求解,直至逼近真解.具体来说,我们要求解线性代数方程组Ax = b,我们可以将矩阵A分解成

$$A = M - N \tag{1}$$

其中M是非奇异的,则原方程可以转化为

$$x = M^{-1}Nx + M^{-1}b = Bx + f (2)$$

其中

$$B = M^{-1}N = I - M^{-1}Af = M^{-1}b (3)$$

B称为迭代矩阵. 我们可以通过选择不同的M和N来构造不同的迭代方法.

SOR方法是一种求解线性代数方程组的迭代方法,现简单介绍如下:

我们可以把A分解为

$$A = D - L - U \tag{4}$$

其中, $D = diag(a_{11}, a_{22}, \dots, a_{nn})$, -L和-U为A的严格下三角部分和严格上三角部分(不包括对角线),即

$$-L = \begin{pmatrix} 0 & & & & \\ a_{21} & 0 & & & \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n,n-1} & 0 \end{pmatrix}$$
$$-U = \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ & \ddots & \ddots & \vdots \\ & & 0 & a_{n-1,n} \end{pmatrix}$$

对于A = D - L - U 和任意实数 ω 来说, 我们有

$$\omega A = (D - \omega L) - ((1 - \omega)D + \omega U) \tag{5}$$

如果取

$$M = \frac{1}{\omega}(D - \omega L), N = \frac{1}{\omega}[(1 - \omega)D + \omega U]$$
 (6)

就得到了超松弛迭代法,也称为SOR迭代法.

$$(D - \omega L)x^{(k+1)} = [(1 - \omega)D + \omega U]x^{(k)} + \omega b \tag{7}$$

也可以写成

$$x^{(k+1)} = (D - \omega L)^{-1} [(1 - \omega)D + \omega U] x^{(k)} + \omega (D - \omega L)^{-1} b$$
(8)

即

$$B = (D - \omega L)^{-1}[(1 - \omega)D + \omega U]$$
$$f = \omega (D - \omega L)^{-1}b$$

按照公式(7), 我们可以写出分量形式为

$$x_i^{(k+1)} = (1 - \omega)x_i^{(k)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right), i = 1, 2, \dots, n$$

$$(9)$$

其中 ω 叫做松弛因子.

2.2 方案设计

在这里我主要编写了函数sor.m来对线性方程组用SOR方法进行求解,该函数有三个参数,分别是A,b和 ω ,其中A和b分别是方程组Ax=b的系数矩阵A和常数向量b, ω 是松弛因子.该函数的返回值是线性方程组的解x.在求解过程中,当前后两次x的结果小于 10^{-8} 时,我们就停止迭代过程,直接输出x.在函数solve_hilbert_equ.m中,我们在n=2-15的循环中对sor.m进行了调用,并将每次的结果写在了Excel表格中.在函数solve_hilbert_equ.m中,我设定了松弛因子 $\omega=1.05$.同时,我们还分析了结果的误差和残差向量的大小.

2.3 实验结果与分析

Table 1 是采用SOR方法时计算出的结果,从中可以看出,即使是当n很大时,计算出的结果仍然比较准确,这一点我们也可以通过Table 2 看出. Table 2 表示的是我们计算出的x与理论真解x值之间的差别,可以看出即使当n很大时,误差的结果仍然很小. 此时,通过Table 3 我们可以看出,残差也非常小,达到了 10^{-9} , 10^{-10} 左右的数量级,从一个侧面反映出了结果的准确性. 从Table 4 中可以看出,误差向量的二范数在n=15时达到了0.011820538,稍后我们将看到,这个误差向量的范数比采用直接法进行求解要小得多.

0.999999978 1.000000459 0.999996027 1.0000335610.9997165480.9999059921.0000368681.0002197121.0002766641.000148606 1.0000510150.9999573580.9998554090.9997382661.0000093010.9998571951.001888919 1.00042827 0.9994380890.9981628040.998199520.9992405141.0000059741.000711692 1.001444919 1.002247953 0.999994062 1.000213616 0.995140899 0.999654016 1.002360583 1.005263689 1.003829156 1.000823955 0.998772502 0.99536663 0.993697275 0.999896245 1.005318055 0.998822217 0.996567037 0.995518287 0.998701526 1.001343632 1.002735659 1.003585371 1.004102615 1.004368357 0.997918589 1.002236699 1.000270388 0.997435534 0.9970438 0.998513673 0.999879959 1.00121289 1.002532365 1.003828668 0.998944875 1.003064003 1.00273845 0.999585205 0.998162775 0.997825882 0.998032997 0.998611761 0.999469359 0.998258342 1.003713782 0.996944651 1.00010113 0.998526843 0.997490398 0.996890078 0.996672519 1.002007286 1.001724576 0.997934196 1.0006609 0.997852997 1.000191091 1.002301974 1.002905659 1.00118708 0.996745871 0.996726944 0.998767723 1.00133333 1.003101475 1.003127874 1.000856185 1.00220416 1.00155475 0.997779854 1.001448066 1.002573108 1.001412978 0.997341735

Table 1: n=2-15时SOR方法计算所得的结果

Table 2: n=2-15时SOR方法计算所得的x的误差 Δ :

	n=2	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10	n=11	n=12	n=13	n=14	n=15
Δx_1	1.48392E-08	-9.046E-08	3.70947E-07	-1.83188E-06	1.01525E-05	4.24925E-06	2.44577E-07	-5.57275E-06	-9.61072E-06	-6.00452E-06	-3.20166E-06	-4.49838E-07	2.6366E-06	6.30111E-06
Δx_2	-2.18608E-08	4.58795E-07	-3.97264E-06	3.35615E-05	-0.000283452	-9.40081E-05	3.68676E-05	0.000219712	0.000276664	0.000148606	5.10152E-05	-4.26418E-05	-0.000144591	-0.000261734
Δx_3		-4.22292E-07	9.30101E-06	-0.000142805	0.001888919	0.00042827	-0.000561911	-0.001837196	-0.00180048	-0.000759486	5.97418E-06	0.000711692	0.001444919	0.002247953
Δx_4			-5.93833E-06	0.000213616	-0.004859101	-0.000345984	0.002360583	0.005263689	0.003829156	0.000823955	-0.001227498	-0.002971923	-0.00463337	-0.006302725
Δx_5				-0.000103755	0.005318055	-0.001177783	-0.003432963	-0.004481713	-0.001298474	0.001343632	0.002735659	0.003585371	0.004102615	0.004368357
Δx_6					-0.002081411	0.002236699	0.000270388	-0.002564466	-0.0029562	-0.001486327	-0.000120041	0.00121289	0.002532365	0.003828668
Δx_7						-0.001055125	0.003064003	0.00273845	-0.000414795	-0.001837225	-0.002174118	-0.001967003	-0.001388239	-0.000530641
Δx_8							-0.001741658	0.003713782	0.002498776	0.00010113	-0.001473157	-0.002509602	-0.003109922	-0.003327481
Δx_9								-0.003055349	0.002399345	0.002007286	0.000660962	-0.000800937	-0.002147003	-0.003273056
Δx_{10}									-0.002531399	0.001724576	0.00220416	0.001448066	0.000191091	-0.001232277
Δx_{11}										-0.002065804	0.00155475	0.002573108	0.002301974	0.00133333
Δx_{12}											-0.002220146	0.001412978	0.002905659	0.003101475
Δx_{13}												-0.002658265	0.00118708	0.003127874
Δx_{14}													-0.003254129	0.000856185
Δx_{15}														-0.003954619

Table 3: n=2-15时SOR方法计算所得的x的残差r = b - Ax

	n=2	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10	n=11	n=12	n=13	n=14	n=15
r_1	-3.9088E-09	1.82634E-09	-3.79215E-10	8.16662E-11	-1.81815E-11	-3.59917E-11	-6.22569E-11	-1.21566E-10	2.01088E-11	2.66671E-11	3.50369E-11	4.68301E-11	6.53038E-11	9.63802E-11
r_2	-1.32666E-10	-2.12878E-09	1.15464E-09	-4.5585E-10	1.5966E-10	2.74189E-10	4.18583E-10	7.16711E-10	-1.87681E-10	-2.30796E-10	-2.82693E-10	-3.52599E-10	-4.5817E-10	-6.29833E-10
r_3		-8.7105E-11	-9.68329E-10	9.09094E-10	-5.49664E-10	-7.7201E-10	-9.78097E-10	-1.33255E-09	6.61095E-10	7.36618E-10	8.20393E-10	9.26417E-10	1.07853E-09	1.31427E-09
r_4			-4.34088E-11	-5.39092E-10	7.52969E-10	6.69282E-10	4.80739E-10	7.30567E-11	-7.71252E-10	-7.02705E-10	-6.26435E-10	-5.29674E-10	-3.9057E-10	-1.74539E-10
r_5				-2.56981E-11	-3.38475E-10	1.98145E-10	5.32321E-10	9.29068E-10	-1.03178E-10	-2.65752E-10	-4.06147E-10	-5.52298E-10	-7.29506E-10	-9.61497E-10
r_6					-1.69431E-11	-3.38612E-10	-5.19926E-11	4.9876E-10	3.74031E-10	2.61896E-10	1.31003E-10	-2.99232E-11	-2.51174E-10	-5.78382E-10
r_7						-1.5972E-11	-3.59798E-10	-2.62173E-10	2.71524E-10	3.42925E-10	3.53897E-10	3.25833E-10	2.52054E-10	1.01861E-10
r_8							-1.66241E-11	-5.54515E-10	-4.89065E-11	1.29985E-10	2.61146E-10	3.66031E-10	4.58946E-10	5.3672E-10
r_9								-2.54676E-11	-2.13524E-10	-1.11098E-10	3.64302E-11	1.95591E-10	3.79505E-10	6.05669E-10
r_{10}									-9.97724E-12	-1.8919E-10	-1.47675E-10	-3.01683E-11	1.46562E-10	4.04078E-10
r_{11}										-8.74523E-12	-1.80203E-10	-1.85297E-10	-9.7775E-11	8.90015E-11
r_{12}											-8.2786E-12	-1.90781E-10	-2.44759E-10	-1.95709E-10
r_{13}												-8.73546E-12	-2.26581E-10	-3.44971E-10
r_{14}													-1.03545E-11	-2.9443E-10
r_{15}														-1.34334E-11

Table 4: n=2-15时SOR方法误差向量的范数

	n=2	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10	n=11	n=12	n=13	n=14	n=15
$\ \Delta x\ _2$	2.64216E-08	6.30085E-07	1.17342E-05	0.000279142	0.007737784	0.002795579	0.005492658	0.009403121	0.006854686	0.004466417	0.005342856	0.007228831	0.009423723	0.011820538

3 共轭梯度法(CG)

3.1 CG法基本原理

我们要求线性方程组Ax = b的解,等价于求函数

$$\varphi(x) = \frac{1}{2}(Ax, x) - (b, x) \tag{10}$$

的最小值.

共轭梯度法(Conjugate Gradient)是一种也是采用一维极小搜索的概念,但是不再沿有正交性的 $r^{(0)}$, $r^{(1)}$, ... 方向进行搜索, 而是要找另一组方向 $p^{(0)}$, $p^{(1)}$, ... ,这些方向向量是A-共轭的向量组(或者说A-正交向量组), 也就是说它们满足

$$(Ap^{(i)}, p^{(j)}) = 0, i \neq j \tag{11}$$

我们从一个初始点 $x^{(0)}$ 出发, 选取搜索方向 $p^{(0)}$ 和合适的步长 α_0 就可以得到⁽¹⁾.也就是说,对于 $x^{(k+1)}$ 满足

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)} \tag{12}$$

我们希望 α 和 $p^{(k)}$ 向量组的选取,不仅希望使

$$\varphi(x^{(k+1)}) = \min_{\alpha} \varphi(x^{(k)} + \alpha_k p^{(k)})$$
(13)

而且还希望 $p^{(k)}$ 的选取使得

$$\varphi(x^{(k+1)}) = \min_{x \in \text{span}\{p^{(0)}, p^{(1)}, \dots, p^{(k)}\}} \varphi(x)$$
(14)

通过一系列运算, 我们可以得到

$$\alpha_k = \frac{(r^{(k)}, p^{(k)})}{(Ap^{(k)}, p^{(k)})} \tag{15}$$

对于 $p^{(k)}$ 的选取, 我们要让它与 $p^{(0)},p^{(1)},\cdots,p^{(k-1)}$ 都共轭, 这种向量的取法不是唯一的, 在这里, 我们取得是 $r^{(k)}$ 与 $p^{(k-1)}$ 的线性组合, 即

$$p^{(k)} = r^{(k)} + \beta_{k-1} p^{(k-1)} \tag{16}$$

通过令 $(Ap^{(k)}, p^{(k)}) = 0$, 我们可以得出

$$\beta_{k-1} = -\frac{(r^{(k)}, Ap^{(k-1)})}{(Ap^{(k-1)}, p^{(k-1)})}$$

从而 β_k 满足

$$\beta_k = -\frac{(r^{(k+1)}, Ap^{(k)})}{(Ap^{(k)}, p^{(k)})} \tag{17}$$

上面的 $p^{(k)}$ 的选取方法可以证明 $p^{(k)}$ 构成了一个A-共轭向量组. 综上所述, CG算法的步骤如下:

(1) 任取 $x^{(0)} \in \mathbb{R}^n$:

(2)
$$r^{(0)} = b - Ax^{(0)}, p^{(0)} = r^{(0)};$$

(3) 对于
$$k = 0, 1, \dots$$
,

$$\alpha_k = \frac{(r^{(k)}, p^{(k)})}{(Ap^{(k)}, p^{(k)})}$$

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$$

$$r^{(k+1)} = r^{(k)} - \alpha_k A p^{(k)}$$

$$\beta_k = -\frac{(r^{(k+1)}, Ap^{(k)})}{(Ap^{(k)}, p^{(k)})}$$

$$p^{(k+1)} = r^{(k+1)} + \beta_k p^{(k)}$$

对于上述(3), 我们可以进行适当的简化, 变成

$$\alpha_k = \frac{(r^{(k)}, r^{(k)})}{(Ap^{(k)}, p^{(k)})}$$

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$$

$$r^{(k+1)} = r^{(k)} - \alpha_k A p^{(k)}$$

$$\beta_k = -\frac{(r^{(k+1)}, r^{(k+1)})}{(r^{(k)}, r^{(k)})}$$

$$p^{(k+1)} = r^{(k+1)} + \beta_k p^{(k)}$$

3.2 实验设计

我们编写了函数CG.m采用上述CG算法对线性方程组进行求解, 其中该函数有两个参数, 分别是A和b, 即线性方程组Ax = b的系数矩阵和常数向量, 返回值是线性方程组的解. 在求解过程中, 当前后两次x的结果小于 10^{-8} 时, 我们就停止迭代过程, 直接输出x. 在函数solve_hilbert_equ.m中, 我们在n = 2 - 15的循环中对CG.m进行了调用, 得到了方程组的解, 并将每次的结果写在了Excel表格中. 同时, 我们还分析了结果的误差和残差向量的大小.

3.3 实验结果及分析

Table 5 是采用CG方法时计算出的结果, 从中可以看出, 即使是当n很大时, 计算出的结果仍然比较准确, 这一点我们也可以通过Table 6 看出. Table 6 表示的是我们计算出的x与理论真解x值之间的误差, 可以看出即使当n很大时, 误差的结果仍然很小. 此时, 通过Table 7 我们可以看出, 残差也非常小, 达到了 10^{-9} , 10^{-10} 左右的数量级, 从另一个侧面反映出了结果的准确性. 从Table 8 中可以看出, 误差向量的二范数在n=15时达到了0.004318824.

n=11 0.999997335 n=12 0.9999955 n=13 0.999992987 n=14 0.999989716 n=15 0.999985621 1.000001161 1.000004967 x₂ x₃ x₄ 0.999999997 0.999966893 0.999876321 0.999715578 0.999480264 1.000042231 1.000074161 1.000117519 1.000173019 1.000241048 1.00032174 n aggaggggs 1.000223778 1.000690539 1.001360589 1.002183407 0.9979081040.999719051 1.000599223 0.999549659 1.0008209940.999341633 0.999098319 0.99882348 1.000641352 1.000229423 0.999354479 0.998333188 0.999825585 0.999974797 1.00019086 1.000458276 1.000762499 1.001090819 x_5 x_6 x_7 x_8 x_9 x_{10} x_{11} 1.001369856 0.999574327 0.9986822630.999747475 1.001211514 1.000788987 0.999494975 0.999348737 0.999285468 0.999306502 0.999405871 1.00229747 0.999890578 0.999564828 0.9992531070.998992146 0.998799709 0.99922407 1.001461138 0.9984832241.001371353 1.000432121 1.0002158960.9998707120.999479015 0.999091890.998740105 1.000466468 0.999529785 0.999460503 0.997585006 1.000686786 1.00058524 1.000292935 0.999898231 1.00074327 1.00088924 0.9992839561.000428184 1.0010241161.001231463 1.001167247 1.000315992 0.998683522 0.998999504 1.001088282 1.001458829 1.000150588 x_{13} 0.9983422460.9999395610.997980981

Table 5: n=2-15时CG方法计算所得的结果

	n=2	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10	n=11	n=12	n=13	n=14	n=15
Δx_1	2.88658E-15	1.11022E-14	-5.476E-09	-1.91243E-11	1.16085E-06	4.96688E-06	1.27673E-05	2.56079E-05	-1.40923E-06	-2.6655E-06	-4.50039E-06	-7.01277E-06	-1.02842E-05	-1.43792E-05
Δx_2	1.55431E-15	9.99201E-15	-3.13044E-09	6.69838E-11	-3.31069E-05	-0.000123679	-0.000284422	-0.000519736	4.22309E-05	7.41606E-05	0.000117519	0.000173019	0.000241048	0.00032174
Δx_3		-6.88338E-15	-2.19943E-09	-1.2107E-12	0.000223778	0.000690539	0.001360589	0.002183407	-0.000280949	-0.000450341	-0.000658367	-0.000901681	-0.00117652	-0.001479051
Δx_4			-1.75614E-09	-1.01916E-11	-0.000581531	-0.001241057	-0.001769712	-0.002091896	0.000599223	0.000820994	0.001037884	0.001239441	0.001418425	0.001570103
Δx_5				-5.81637E-11	0.000641352	0.000229423	-0.000645521	-0.001666812	-0.000174415	-2.52035E-05	0.00019086	0.000458276	0.000762499	0.001090819
Δx_6					-0.000252525	0.001211514	0.001369856	0.000788987	-0.000505025	-0.000651263	-0.000714532	-0.000693498	-0.000594129	-0.000425673
Δx_7						-0.00077593	0.001461138	0.00229747	-0.000109422	-0.000435172	-0.000746893	-0.001007854	-0.001200291	-0.001317737
Δx_8							-0.001516776	0.001371353	0.000432121	0.000215896	-0.000129288	-0.000520985	-0.00090811	-0.001259895
Δx_9								-0.002414994	0.000466468	0.000686786	0.00058524	0.000292935	-0.000101769	-0.000539497
Δx_{10}									-0.000470215	0.000480007	0.00088924	0.000935185	0.00074327	0.000402385
Δx_{11}										-0.000716044	0.000428184	0.001024116	0.001231463	0.001167247
Δx_{12}											-0.001000496	0.000315992	0.001088282	0.001458829
Δx_{13}												-0.001316478	0.000150588	0.001084962
Δx_{14}													-0.001657754	-6.0439E-05
Δx_{15}														-0.002019019

	n=2	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10	n=11	n=12	n=13	n=14	n=15
r_1	-3.55271E-15	-1.37668E-14	8.21339E-09	2.16271E-13	-6.15827E-11	4.11347E-10	-5.04263E-11	-1.37405E-10	-1.24802E-10	4.14779E-13	-2.38716E-11	-2.24802E-11	4.94675E-11	6.18807E-11
r_2	-1.9984E-15	-7.10543E-15	4.68256E-09	-7.30971E-13	2.46692E-11	-4.67535E-11	3.7727E-10	1.5005E-09	2.4154E-10	-1.80789E-11	-5.66658E-12	-7.25051E-11	-3.0887E-10	-4.55455E-10
r_3		-4.88498E-15	3.34052E-09	-1.21458E-13	1.23026E-11	-5.58534E-10	-1.85518E-09	-6.23657E-09	1.92464E-10	1.15119E-10	3.25267E-10	6.79465E-10	1.22188E-09	2.28631E-09
r_4			2.61253E-09	3.12417E-13	1.02497E-10	3.98693E-10	2.55719E-09	6.67677E-09	-2.1174E-11	-2.18952E-10	-4.73774E-10	-9.3297E-10	-1.68944E-09	-2.68549E-09
r_5				5.70544E-13	-3.05532E-11	-4.07377E-10	5.6006E-10	3.88814E-09	2.02176E-11	3.32578E-11	-1.76505E-11	-1.93477E-10	-6.03065E-10	-1.32712E-09
r_6					6.44179E-11	-7.64671E-10	-1.83326E-09	-2.80397E-09	1.26565E-13	1.61806E-10	3.23486E-10	5.48714E-10	7.96409E-10	9.72499E-10
r_7						1.40887E-10	-1.55253E-09	-5.63901E-09	-8.98244E-11	8.03863E-11	2.56775E-10	6.07121E-10	1.17122E-09	1.89065E-09
r_8							1.79958E-09	-2.58523E-09	-1.70271E-10	-6.83963E-11	-2.09688E-11	2.02043E-10	6.97863E-10	1.44407E-09
r_9								5.7437E-09	-1.80055E-10	-1.48772E-10	-2.69393E-10	-2.90851E-10	-9.19697E-11	3.20513E-10
r_{10}									-9.24143E-11	-8.4861E-11	-3.31745E-10	-5.92696E-10	-7.53008E-10	-8.28254E-10
r_{11}										1.48029E-10	-1.37795E-10	-5.54208E-10	-1.01568E-09	-1.56779E-09
r_{12}											3.22969E-10	-1.25129E-10	-7.59572E-10	-1.6712E-09
r_{13}												6.83114E-10	3.52884E-11	-1.0617E-09
r_{14}													1.33019E-09	2.4331E-10
r_{15}														2.17424E-09

Table 8: n=2-15时CG方法误差向量的范数

	n=2	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10	n=11	n=12	n=13	n=14	n=15
$\ \Delta x\ _2$	3.27845E-15	1.64463E-14	6.90708E-09	9.13286E-11	0.00092976	0.002038347	0.003434076	0.005079961	0.001167327	0.001660695	0.002227918	0.002863483	0.003562104	0.004318824

Table 9: n=2-15时Gauss消去法正则化后计算结果的误差 Δx

	n=2	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10	n=11	n=12	n=13	n=14	n=15
Δx_1	0.004298821	-0.009991912	-0.019417952	-0.019488126	-0.015355294	-0.010422874	-0.005647367	-0.001217068	0.002834614	0.006488677	0.009722412	0.012515934	0.014859627	0.016757701
Δx_2	-0.008210934	0.066041208	0.08115782	0.058334086	0.029012539	0.003561422	-0.017241849	-0.034167283	-0.047847811	-0.058672041	-0.06689584	-0.072732553	-0.076399644	-0.07813359
Δx_3		-0.068628197	0.004347947	0.03793107	0.047284045	0.04635532	0.041139992	0.033958205	0.025835772	0.01733812	0.008843097	0.00062883	-0.00709854	-0.014194716
Δx_4			-0.090295179	-0.02033764	0.018198443	0.038706139	0.049461902	0.054445166	0.055638232	0.054159257	0.050738743	0.045916888	0.040124269	0.033713715
Δx_5				-0.086575995	-0.029497785	0.006022157	0.029001798	0.04416527	0.053958481	0.059765514	0.062474449	0.062731848	0.061055444	0.057881672
Δx_6					-0.082252121	-0.036714928	-0.004960087	0.018003781	0.034815755	0.04696769	0.055400269	0.06078449	0.063652814	0.06445756
Δx_7						-0.082278974	-0.044375911	-0.015622288	0.006670544	0.024018468	0.037361094	0.047353433	0.054507111	0.059256218
Δx_8							-0.085155772	-0.052176377	-0.025691405	-0.004204446	0.013196704	0.027132485	0.038077667	0.046432213
Δx_9								-0.089229706	-0.059580679	-0.03484679	-0.014155129	0.003072943	0.017269504	0.028794211
Δx_{10}									-0.093488959	-0.066235936	-0.042908224	-0.022970389	-0.006033655	0.008220257
Δx_{11}										-0.097394675	-0.071974731	-0.049827927	-0.030606819	-0.014032963
Δx_{12}											-0.100695522	-0.076762076	-0.055651422	-0.03712218
Δx_{13}												-0.103310933	-0.0806477	-0.060480945
Δx_{14}													-0.105260158	-0.08372986
Δx_{15}														-0.106617096

4 与直接法结果的比较

这里我仅仅列上采用正则化之后的直接法(Gauss消去法和Cholesky分解法)的误差结果, 作为与本实验结果的比较, 如Table 9 和Table 10 所示.

通过Table 9, Table 10与Table 2 和Table 6 对比可以看出,不论是采用SOR方法还是CG方法,采用 迭代法之后的效果比直接法的结果更加准确. 我们再来看一下误差向量的情况. 如Table 11 和Table 10所示,是采用正则化后的Gauss消去法和Cholesky分解法时所得的误差向量的二范数(**注意:它们实际上不相等,相差**10⁻⁸左右,但这里取的位数比较少,因此看起来相等,实际上不相等,特此说明.)可以看出,采用正则化后的Gauss消去法和Cholesky分解法时,当n = 15时,误差的向量范数都在0.0324左右. 从Table 4 和Table 8中可以看出,SOR方法和CG方法的误差向量的二范数在n = 15分别为0.011820538和0.004318824,明显小于采用正则化后直接法的结果. 因此可以说采用迭代法的效果较好.

Table 10: n=2-15时Cholesky分解法正则化后计算结果的误差向量 Δx

	n=2	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10	n=11	n=12	n=13	n=14	n=15
Δx_1	0.004298821	-0.009991912	-0.019417952	-0.019488126	-0.015355294	-0.010422874	-0.005647367	-0.001217068	0.002834614	0.006488677	0.009722412	0.012515934	0.014859627	0.016757701
Δx_2	-0.008210934	0.066041208	0.08115782	0.058334086	0.029012539	0.003561422	-0.017241849	-0.034167283	-0.047847811	-0.058672041	-0.06689584	-0.072732553	-0.076399644	-0.07813359
Δx_3		-0.068628197	0.004347947	0.03793107	0.047284045	0.04635532	0.041139992	0.033958205	0.025835772	0.01733812	0.008843097	0.00062883	-0.00709854	-0.014194716
Δx_4			-0.090295179	-0.02033764	0.018198443	0.038706139	0.049461902	0.054445166	0.055638232	0.054159257	0.050738743	0.045916888	0.040124269	0.033713715
Δx_5				-0.086575995	-0.029497785	0.006022157	0.029001798	0.04416527	0.053958481	0.059765514	0.062474449	0.062731848	0.061055444	0.057881672
Δx_6					-0.082252121	-0.036714928	-0.004960087	0.018003781	0.034815755	0.04696769	0.055400269	0.06078449	0.063652814	0.06445756
Δx_7						-0.082278974	-0.044375911	-0.015622288	0.006670544	0.024018468	0.037361094	0.047353433	0.054507111	0.059256218
Δx_8							-0.085155772	-0.052176377	-0.025691405	-0.004204446	0.013196704	0.027132485	0.038077667	0.046432213
Δx_9								-0.089229706	-0.059580679	-0.03484679	-0.014155129	0.003072943	0.017269504	0.028794211
Δx_{10}									-0.093488959	-0.066235936	-0.042908224	-0.022970389	-0.006033655	0.008220257
Δx_{11}										-0.097394675	-0.071974731	-0.049827927	-0.030606819	-0.014032963
Δx_{12}											-0.100695522	-0.076762076	-0.055651422	-0.03712218
Δx_{13}												-0.103310933	-0.0806477	-0.060480945
Δx_{14}													-0.105260158	-0.08372986
Δx_{1z}														-0.106617096

Table 11: n=2-15时Gauss方法正则化后计算结果误差向量的范数

	n=2	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10	n=11	n=12	n=13	n=14	n=15
$ \Delta x _2$	9.4824E-06	0.001401083	0.020726106	0.022569853	0.016451714	0.017159102	0.021882421	0.02717609	0.031531454	0.034181662	0.035008877	0.034494486	0.033405417	0.032438342

5 实验小结

同过这次实验可以看出,采用迭代法对线性代数方程组求解(特别是大型稀疏矩阵)时效果比直接法要好,精度更高.并且,通过SOR方法与CG方法的对比也可以看出,采用CG算法的精度要比SOR方法高.

6 Matlab源程序

(1) **sor.m**

```
function x=sor(A, b, w)
\% x = sort(A, b, w)
% 超松弛迭代法
\% x: return value, the solution to Ax=b
% w should between (0, 2)
% Author: LIU Qun
% Time: 2014-10-24
n = length(b);
x=zeros(n, 1);
 err = 1:
 while (err > 1e - 8)
                               x_i n i t = x;
                               for i=1:n
                                                         x(i) = (1-w) * x_i i i t(i) + w/A(i,i) * (b(i) - A(i,1:i-1) * x(1:i-1) - A(i,i+1:i-1) + x(i) + x(i
                                                                                 n) *x(i+1:n));
                             end
                               err = max(abs(x-x_init));
end
```

(2) **CG.m**

```
function x = CG(A, b)
% x = CG(A, b)
% Calculate Ax=b using Conjugate Gradient method
% Author: LIU Qun
\% Email: liu-q14@mails.tsinghua.edu.cn
\% Time: 2014-10-25
n = length(b);
x=zeros(n, 1);
rk=b-A*x;
p=rk;
while (\max(abs(rk))>1e-8)
    alpha = (rk' * rk)/(p' * A*p);
    x = x + alpha * p;
    rk1 = rk - alpha*A*p;
    beta = (rk1 * rk1) / (rk * rk);
    p = rk1 + beta * p;
    rk = rk1;
end
```

```
(3) solve_hilbert_equ.m
        clear:
        clc;
       % 定义要写入位置
        range = { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O'};
       % 定义松弛因子w
       w = 1.05;
       % 定义写入文件的名称
        file_sor='sor_x.xlsx';
        file_sor_err='sor_delta_x.xlsx';
         file_sor_r='sor_r.xlsx';
        file_sor_norm_dx='sor_norm_dx.xlsx';
        file_CG='CG_x.xlsx';
        file_CG_err='CG_delta_x.xlsx';
        file_CG_r='CG_r.xlsx';
        file_CG_norm_dx='CG_norm_dx.xlsx';
        norm_delta_x_sor = zeros(1,N-1);
        norm_delta_x_CG = zeros(1,N-1);
        for n=2:N
                  A=hilb(n);
                   x=ones(n,1);
                   b\!\!=\!\!A\!*x\,;
                   %%_
                                                                              — SOR Method —
                   y_sor=sor(A, b, w);
                                                                                     %解的误差
                   delta_xsor=y_sor-x;
                   r = b - A * y = sor;
                                                                                     % 残差向量
                   % 计算误差的向量范数二范数()
                   norm_delta_x_sor(n-1) = norm(delta_x_sor);
                   xlswrite (file\_sor, y\_sor, [range\{n-1\}, '2:', range\{n-1\}, \ \textbf{num2str}(n+1)])
                   xlswrite(file\_sor, \{['n=' num2str(n)]\}, [range\{n-1\} '1:' range\{n-1\}]
                            1']);
                   % 写入的误差x
                   xlswrite(file\_sor\_err, delta\_x\_sor, [range{n-1}, '2: ', range{n-1}, '2: ']
                            \mathbf{num2str}(n+1)
                   xlswrite\left(\,file\_sor\_err\,\,,\left\{\left[\,\,'n='\right.\,\,\mathbf{num2str}(\,n\,)\,\right]\right\}\,,\ \left[\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\colon'\,\,range\left\{n-1\right\}\,\,\,'1\:'
                           -1\} '1']);
                   % 写入残差
                   xlswrite (file_sor_r, r_sor, [range\{n-1\}, '2:', range\{n-1\}, num2str\{n+1\})
                   xlswrite(file\_sor\_r, \{['n='num2str(n)]\}, [range\{n-1\}']: 'range\{n-1\}
                   xlswrite(file\_sor\_norm\_dx, \{['n='num2str(n)]\}, [range\{n-1\}, '1:',
                            range\{n-1\}, '1']
                                                                                   - CG Method -
                   y_CG=CG(A, b);
                   delta_x_CG=y_CG-x;
                                                                               %解的误差
                   r_CG=b-A*v_CG;
                                                                                % 残差向量
                   % 计算误差的向量范数二范数()
                   norm_delta_x_CG(n-1) = norm(delta_x_CG);
                   xlswrite(file\_CG, y\_CG, [range\{n-1\}, '2: ', range\{n-1\}, num2str(n+1)])
                   xlswrite(file\_CG, \{['n='] num2str(n)]\}, [range\{n-1\}']: 'range\{n-1\}']
                             ']);
```

```
% 写入的误差x
xlswrite(file_CG_err,delta_x_CG,[range{n-1},'2:', range{n-1},
num2str(n+1)])
xlswrite(file_CG_err,{['n=' num2str(n)]}, [range{n-1} '1:' range{n
-1} '1']);
% 写入残差
xlswrite(file_CG_r,r_CG,[range{n-1},'2:', range{n-1}, num2str(n+1)])
xlswrite(file_CG_r,{['n=' num2str(n)]}, [range{n-1} '1:' range{n-1}
'1']);
xlswrite(file_CG_norm_dx,{['n=' num2str(n)]},[range{n-1},'1:', range
{n-1}, '1'])
end
xlswrite(file_sor_norm_dx,norm_delta_x_sor,[range{1},'2:', range{N-1},'
2'])
xlswrite(file_CG_norm_dx,norm_delta_x_CG,[range{1},'2:', range{N-1}, '2'
])
```