Wykład 8,9

Teoria mnogości

Oznaczenia: X,Y,Z,A,B,C...-zbiory, x,y,z,a,b,c...-elementy zbiorów, $x \in X$ -element x należy do zbioru X

Aksjomaty Zermelo (aksjomaty istnienia zbiorów)

1. Jeżeli dwa zbiory mają takie same elementy, to są sobie równe.

$$\forall_{z}((z \in X \leftrightarrow z \in Y) \to X = Y)$$

2.Aksjomat zbioru pustego

Istnieje zbiór, który nie ma żadnych elementów.

$$\exists_X \forall_y (y \notin X)$$

Tw. Istnieje dokładnie jeden zbiór X, taki że $\forall_y (y \notin X)$.

Taki zbiór nazywamy zbiorem pustym i oznaczamy symbolem Ø.

1. Aksjomat pary

Dla wszelkich przedmiotów a,b istnieje zbiór, którego jedynymi elementami są a i b.

$$\forall_a \forall_b \exists_X \forall_y (y \in X \leftrightarrow y = a \lor y = b)$$

{a,b} (zbiór składający się z elementów a i b) nazywamy parą nieuporządkowaną elementów a i b.

Tw.
$$\{a,b\} = \{b,a\}$$
.

3.Aksjomat sumy

Dla wszelkich zbiorów A, B istnieje zbiór, którego elementami są wszystkie elementy zbioru A i wszystkie elementy zbioru B.

$$\forall_{A} \forall_{B} \exists_{X} \forall_{y} (y \in X \leftrightarrow y \in A \lor y \in B)$$

Def. (inkluzja)

Zbiór A zawiera się w zbiorze B (oznaczamy $A \subset B$) wtw gdy każdy element zbioru A jest elementem zbioru B.

$$A \subset B \leftrightarrow \forall (x \in A \to x \in B)$$

4. Aksjomat zbioru potęgowego

Dla każdego zbioru A istnieje zbiór wszystkich podzbiorów zbioru A.

$$\forall_A \exists_X \forall_Y \big(Y \in X \longleftrightarrow Y \subset A \big)$$

Zbiór potęgowy zbioru A oznaczamy przez P(A).

Przykład.

$$A=\{a,b,c\}$$

$$P(A)=\{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\}$$

5. Aksjomat wyróżniania

W(X)-dowolny warunek

Dla każdego zbioru A istnieje zbiór wszystkich elementów zbioru A, które spełniają warunek W(X).

$$\forall_A \exists_X \forall_y (y \in X \leftrightarrow y \in A \land W(X))$$

Tw. Nie istnieje zbiór wszystkich zbiorów.

Algebra zbiorów

Działania na zbiorach:

- 1. Sumą zbiorów A i B nazywamy zbiór $A \cup B = \{x : x \in A \lor x \in B\}$.
- 2. Iloczynem zbiorów A i B nazywamy zbiór $A \cap B = \{x : x \in A \land x \in B\}$.
- 3. Różnicą zbiorów A i B nazywamy zbiór $A \setminus B = \{x : x \in A \land x \notin B\}$.

Dowody przykładowych praw algebry zbiorów:

1.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Należy pokazać: $\forall (x \in A \cap (B \cup C) \leftrightarrow x \in (A \cap B) \cup (A \cap C))$ $x \in A \cap (B \cup C)$ wtw gdy $x \in A \land x \in B \cup C$ wtw gdy $x \in A \land (x \in B \lor x \in C)$ wtw gdy $(x \in A \land x \in B) \lor (x \in A \land x \in C)$ wtw gdy $x \in A \cap B \lor x \in A \cap C$ wtw gdy $x \in (A \cap B) \cup (A \cap C)$

2.
$$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$$

Należy pokazać: $\forall (x \in (A \cup B) \setminus C \leftrightarrow x \in (A \setminus C) \cup (B \setminus C))$ $x \in (A \cup B) \setminus C$ wtw gdy $x \in (A \cup B) \land x \notin C$ wtw gdy $(x \in A \lor x \in B) \land x \notin C$ wtw gdy $(x \in A \land x \notin C) \lor (x \in B \land x \notin C)$ wtw gdy $x \in A \setminus C \lor x \in B \setminus C$ wtw gdy $x \in (A \setminus C) \cup (B \setminus C)$

3.
$$(A \subset B) \land (C \subset D) \rightarrow (A \cap C \subset B \cap D)$$

Niech $(A \subset B) \land (C \subset D)$ tzn. $\forall (x \in A \rightarrow x \in B) \land \forall (x \in C \rightarrow x \in D)$ Udowodnimy $A \cap C \subset B \cap D$ tzn. $\forall (x \in A \cap C \rightarrow x \in B \cap D)$ Niech $x \in A \cap C$, a to zachodzi wtw gdy $x \in A \land x \in C$.

Z założenia wtedy $x \in B \land x \in D$. Zatem $x \in B \cap D$.