L9 Basis and dimensions 1MA901/1MA406 Linear algebra

Jonas Nordqvist

Engelsk-svensk ordlista

English	Swedish
Vector space	Vektorrum
Subspace	Underrum
Nullspace (of a matrix)	Nollrum (till en matris)
Span	Spänner
Spanning set	Linjärt hölje/spannet
Linear independence	Linjärt oberoende
Basis	Bas
Change of basis	Basbyte
Row space (of a matrix)	Radrummet (till en matris)
Column space (of a matrix)	Kolonnrummet (till en matris)
Rank	Rang
Rand-nullity theorem	Dimensionssatsen

Span and independence \iff basis

Definition

The vectors $v_1, v_2, \dots v_n$ form a basis for the vector space V if and only if

- 1. v_1, v_2, \dots, v_n are linearly independent
- 2. v_1, v_2, \ldots, v_n span V

Example

The set

$$\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\0\\1 \end{pmatrix} \right\}$$

is a basis for \mathbb{R}^3 .

Solution.

The set is linearly independent, why?, and it spans \mathbb{R}^3 , why?.

Theorem

If $v_1, v_2, \ldots v_n$ is a spanning set for a vector space V, and U is any collection of m vectors m such that m > n, then the set of vectors U is linearly dependent.

Examples of basis vectors for different vector spaces

Example

The set e_1, \ldots, e_n is a basis for \mathbb{R}^n .

Example

The set $\{1, x, x^2, \dots, x^n\}$ is a basis for the vectors space of all polynomials of degree less than or equal to n.

Example

The set of of matrices

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

and

$$E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$$

spans $\mathbb{R}^{2 \times 2}$.

All these are examples of so-called standard bases for the respective vector spaces.

Some results

Theorem

If $\{v_1, v_2, \dots v_n\}$ is a spanning set for V. Then any set of m > n vectors in V is linearly dependent.

Sketch of proof.

Assume that the m vectors are denoted by $\mathbf{u}_1, \mathbf{u}_2, \dots \mathbf{u}_m$. Since the set $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n$ spans V we must have that every vector \mathbf{u}_i can be written as a linear combination of vectors in $\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\}$, and since m > n the vectors \mathbf{u}_i must be linearly dependent.

Theorem

If $\{v_1,v_2,\ldots v_n\}$ and $\{u_1,u_2,\ldots u_m\}$ are bases for V then n=m.

Dimension of a vector space

Definition

The dimension of a vector space is equal to the the number of basis vectors.

Example

The dimension of \mathbb{R}^n is n.

Example

The space spanned by the vectors

$$\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\3\\3 \end{pmatrix} \right\}$$

is 2-dimensional since

$$\begin{pmatrix} 2 \\ 3 \\ 3 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix},$$

and thus the vectors are not linearly independent.

Example

The vector space C[a, b] is infinite dimensional.

Some results

Theorem

If V is a vector space of dimension $n \geq 1$, then

- 1. any set of n linearly independent vectors spans V
- 2. any n vectors that span V are linearly independent.

Theorem

If V is a vector space of dimension $n \ge 1$, then

- 1. no set of fewer than n vectors can span V
- 2. any subset of fewer than n linearly independent vectors can be extended to form a basis for V
- 3. any spanning set of more than n vectors can be pared down to form a basis for V.

Change of basis

In \mathbb{R}^2 every vector can be written as a linear combination of the standard bases $\{e_1,e_2\},\ \emph{i.e.}$

$$\mathsf{x} = \mathsf{x}_1\mathsf{e}_1 + \mathsf{x}_2\mathsf{e}_2.$$

It is thus natural to write x as $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, where x_1 and x_2 are called the coordinates of x.

Assume further that $\{a_1, a_2\}$ is another basis for \mathbb{R}^2 , then since this is a basis x can be represented as a linear combination by those vectors, *i.e.*

$$x = x_1' a_1 + x_2' a_2.$$

Note that the coordinates are not necessarily the same as for the previous basis.

Hence, we say that $\begin{pmatrix} x_1' \\ x_2' \end{pmatrix}_a$ is the coordinates of x with respect to the new basis. Note further the subscript if we want to highlight the basis.

Example

The vector $\mathbf{x}=(1,9)^T$ can be represented as a vector using the basis vectors $\mathbf{u}_1=(5,1)$ and $\mathbf{u}_2=(1,-2)$ as

$$x = u_1 - 4u_2$$
.

Hence the coordinates in the new basis is $(1, -4)^T$.

Changing coordinates

Let $x = (x_1, x_2)^T$ be a vector with its coordinates given by the standard basis. How can we easily find its coordinates in the basis

$$v_1 = (1,2)^T, \quad v_2 = (3,-2)^T.$$

Also, suppose we have a vector represented as $\alpha_1v_1 + \alpha_2v_2$. What is its representation in the standard basis?

To solve the latter problem first we note that

Hence,

$$\alpha_1 v_1 + \alpha_2 v_2 = \alpha_1 (e_1 + 2e_2) + \alpha_2 (3e_1 - 2e_2) = (\alpha_1 + 3\alpha_2) e_1 + (2\alpha_1 - 2\alpha_2) e_2.$$

Or equivalently, with respect to $\{e_1, e_2\}$ we have

$$\alpha_1\mathsf{v}_1+\alpha_2\mathsf{v}_2=\begin{pmatrix}\alpha_1+3\alpha_2\\2\alpha_1-2\alpha_2\end{pmatrix}=\begin{pmatrix}1&3\\2&-2\end{pmatrix}\begin{pmatrix}\alpha_1\\\alpha_2\end{pmatrix}=(\mathsf{v}_1,\mathsf{v}_2)\begin{pmatrix}\alpha_1\\\alpha_2\end{pmatrix}.$$

Changing coordinates

If y is a vector with coordinates $(y_1, y_2)^T$ with respect to a basis $\{a_1, a_2\}$, then its representation in the basis $\{e_1, e_2\}$ is given by

$$y_e = (a_1, a_2) \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$
.

The matrix $A = (a_1, a_2)$, which has the basis as column vectors is called a *transition matrix* from the basis $a = \{a_1, a_2\}$ to $e = \{e_1, e_2\}$.

The transition from e to a is given by A^{-1} .

Example

Let $u_1 = (5,1)^T$ and $u_2 = (1,-2)^T$. Let $x = (1,9)^T$ in the standard basis, and let $y = (1,9)^T$ in the basis $\{u_1,u_2\}$. What are the coordinates of x and y is the other basis?

Solution.

The transition matrices are given by

$$U = \begin{pmatrix} 5 & 1 \\ 1 & -2 \end{pmatrix}, \quad U^{-1} = -\frac{1}{11} \begin{pmatrix} -2 & 1 \\ 1 & 5 \end{pmatrix}.$$

We get

$$\begin{pmatrix} 5 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 9 \end{pmatrix} = \begin{pmatrix} 14 \\ -17 \end{pmatrix}, \text{ and } \begin{pmatrix} 5 & 1 \\ 1 & -2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 9 \end{pmatrix} = \begin{pmatrix} 1 \\ -4 \end{pmatrix}.$$

Row space and column space

Definition

Given a matrix A of size $m \times n$ the subspace spanned by its row vectors is called the row space of A and is a subspace of R^n . The subspace spanned by its columns is called the *column space* of A and is a subspace of \mathbb{R}^m .

Example

Find the row and column space of the matrix

$$A = \begin{pmatrix} 2 & 1 & 0 \\ -1 & -1 & 4 \end{pmatrix}.$$

The row space consists of all vectors of the form

$$\alpha(2,1,0) + \beta(-1,-1,4) = (2\alpha - \beta, \alpha - \beta, 4\beta).$$

The column space is \mathbb{R}^2 since we have that every vector in the column space may be written of the form

$$\alpha(2,-1)^T + \beta(1,-1)^T + \gamma(0,4)^T.$$