

Exercise Sheet 1

Revision

Problem 1:

Conversions:

- a. Convert the following hexadecimal numbers to their representation in binary:
 - i. FACD
 - ii. A39B
 - iii. 821F
 - iv. 7065
 - v. F1C4
- b. Convert the following binary numbers to their representation in hexadecimal:
 - i. 1010000000111011
 - ii. 0101101110100101
 - iii. 1011010011110100
 - iv. 1111010100100111
 - v. 0011010110011010

Solution:

- a. From hexadecimal to binary:
 - i. FACD

1111101011001101

- ii. A39B
 - 1010001110011011
- iii. 821F

1000001000011111

- iv. 7065
 - 0111000001100101
- v. F1C4

1111000111000100

- b. From binary to hexadecimal:
 - i. 1010000000111011

A03B

ii. 0101101110100101

5BA5

iii. 1011010011110100

B4F4

iv. 1111010100100111

F527

v. 0011010110011010

359A

Exercise Sheet 1

Revision

Problem 2:

Given an architecture with a register size of 16 bits. State each of the numbers from exercise 1 as positive or negative if stored in registers of this size.

Solution:

a.

i.	FACD	(negative)
ii.	A39B	(negative)
iii.	821F	(negative)
iv.	7065	(positive)
v.	F1C4	(negative)

b.

i.	1010000000111011	(negative)
ii.	0101101110100101	(positive)
iii.	1011010011110100	(negative)
iv.	11110101001001111	(negative)
v.	0011010110011010	(positive)

Problem 3:

Convert the following negative numbers to their representation in binary in an 8-bit register using 2's complement:

```
i. -5
ii. -6
iii. -2
iv. -1 (Remember this representation!)
v. -8 (Could 4-bit register +8?)
```

Solution:

```
i. -5
00000101 (+5)
11111010 (1's complement)
11111011 (-5 in 2's complement)

ii. -6
00000110 (+6)
11111001 (1's complement)
11111010 (-6 in 2's complement)
```


iii. -2 00000010 (+2) 11111101 (1's complement) 11111110 (-2 in 2's complement)

iv. -1 (Remember this representation!)

00000001 (+1) 11111110 (1's complement) 11111111 (2's complement)

v. -8 (Could 4-bit register +8?) 00001000 (+8) 11110111 (1's complement) 11111000 (2's complement)

+8 can not be represented in a 4-bit register, however, -8 could be represented.

Problem 4:

Given an architecture with a register size of 4 bits. Perform the following mathematical operations in binary. State when an overflow occurs.

i. 2+5 ii. 5+3 iii. 3+(-2) iv. 5+(-3) v. 4+(-1) vi. -3+(-2)

-5+(-3)

Solution:

vii.

i. 2+5

0010
+ 0101
----0111 (no overflow)

ii. 5+3

 $\begin{array}{c} 0101 \\ + 0011 \end{array}$

1000 (overflow occurred)

iii. 3+(-2)

0011 + 1110

0001 (no overflow)

iv. 5+(-3)

0101 + 1101

0010 (no overflow)

v. 4+(-1)

0100 + 1111

0011 (no overflow)

vi. -3+(-2)

 $\begin{array}{r} 1101 \\ + 1110 \end{array}$

1011 -5 in 2's complement (no overflow)

Problem 5:

a. Given the below simple digital circuit, fill the below table with the value of output y given the inputs x1, and x2 as stated in the table.

x1	x2	\mathbf{y}
0	0	
0	1	
1	0	
1	1	

b. Given the below simple digital circuit, fill the below table with the values of the outputs S and Cout given the inputs A, B, and Cin as stated in the table.

A	В	Cin	S	Cout
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Solution:

a.

x1	x2	y
0	0	0
0	1	1
1	0	1
1	1	0

b.

U	•			
A	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	0
1	0	0	1	0
1	0	1	0	0
1	1	0	0	1
1	1	1	1	1

Problem 6:

For each of the following multiplexers, state the number of selection lines:

i. 16×1 multiplexer.

ii. 32×1 multiplexer.

iii. 128× 1 multiplexer.

iv. 256×1 multiplexer.

Solution:

i. 4 selection lines.

ii. 5 selection lines.

iii. 7 selection lines.

iv. 8 selection lines.

Problem 7:

Given the below design, fill the below table with the values of the output y given the inputs x1, x2, and the selection lines as stated in the table.

x1	x2	S1	SO	y
0	0	0	0	
0	1	0	1	
1	0	1	0	
1	1	1	1	

Solution:

x1	x2	S1	S ₀	\mathbf{y}
0	0	0	0	0
0	1	0	1	0
1	0	1	0	1
1	1	1	1	1