More DAGs; models with interactions

ISTA 410 / INFO 510: Bayesian Modeling and Inference

U. of Arizona School of Information March 31, 2021

Outline

Previously:

- Causal DAGs and various forms of confounding
- The backdoor criterion
- Intro to interactions

Today:

- Unobserved variables and their consequences
- Linear models with interactions

PSA: talk by Andrew Gelman tomorrow 3PM MST

Unobserved variables

Unobserved variables in DAGs

Last time we saw a DAG with an unobserved variable:

We can't control for unobserved variables

An unobserved fork

Example: stress and severity of COVID-19 disease

Imagine the following possible scenario:

- Want to estimate whether stress markers predict the severity of symptoms
- Suspected relationship: high stress increases probability of severe disease
- Grab a data set of early confirmed positive tests, regress severity on stress

An unobserved fork

Example: stress and severity of COVID-19 disease

Imagine the following possible scenario:

- Want to estimate whether stress markers predict the severity of symptoms
- Suspected relationship: high stress increases probability of severe disease
- Grab a data set of early confirmed positive tests, regress severity on stress
- Surprising result: negative association

Why this result?

- Possibly, high stress decreases severity but this would go against all we know about stress and immune response
- Possibly, we have confounding:

Why this result?

- Possibly, high stress decreases severity but this would go against all we know about stress and immune response
- Possibly, we have confounding:

Why this result?

- Possibly, high stress decreases severity but this would go against all we know about stress and immune response
- Possibly, we have confounding:

Example from Statistical Rethinking: does the education level of grandparents influence the educational achievement of their grandchildren?

- Goal: infer direct effects of parents (P) and grandparents (G) on children (C)
- Reasonable to assume that parents influence children, grandparents influence parents; do grandparents also directly influence children?

Example from Statistical Rethinking: does the education level of grandparents influence the educational achievement of their grandchildren?

- Goal: infer direct effects of parents (P) and grandparents (G) on children (C)
- What if there is an unobserved variable (U) e.g., neighborhood – that influences parents and children?

- To isolate the direct effect $G \rightarrow C$, we must control for P
- ullet Controlling for P opens the collider path through U

- To isolate the direct effect $G \rightarrow C$, we must control for P
- ullet Controlling for P opens the collider path through U
- We're stuck!

DAG summary

In summary:

- DAGs give a heuristic model for causal links between variables
 - Not a mechanistic model doesn't tell you the functional effect
- Can provide a strategy for deconfounding models or tell you such a strategy doesn't exist / requires different data

Modeling interactions

Interactions

Interaction effects:

- Interaction of one predictor is conditional on another
 - Effect of water on plant growth is conditional on sunlight
 - Effect of gene on survival is conditional on environment
 - Effect of total traffic on bike traffic is conditional on bike lane
- Interactions appear frequently in real systems

Interactions in DAGs

Here is what an interaction looks like in a DAG:

Interactions in DAGs

Here is what an interaction looks like in a DAG:

Any time two variables influence a third leaves the possibility for interaction!

(Example from Statistical Rethinking Ch7.) What is the relationship between the geographic terrain in a nation and its economy?

Data: observations on many countries

• Outcome: log GDP (as of 2000, when data was collected)

• Predictor: terrain "ruggedness" index

(Example from Statistical Rethinking Ch7.) What is the relationship between the geographic terrain in a nation and its economy?

Data: observations on many countries

- Outcome: log GDP (as of 2000, when data was collected)
- Predictor: terrain "ruggedness" index

Closer examination of the data reveals an interesting phenomenon: the relationship is different for countries in Africa.

Conditionality:

- The effect of ruggedness on modern economy is conditional on continent
- African nations respond differently to ruggedness than non-African nations

Want to incorporate this effect into a model; ideally, a *single* model

- Pooling data gives better estimates of continent-independent parameters
- •
- Model comparison techniques assume the same data

A simple approach that won't work

A simple approach that's not quite good enough: add an indicator variable for African countries, and do a bivariate regression:

$$\log GDP \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta_R R_i + \beta_A A_i$$

$$\beta_R \sim \text{Normal}(0, 1)$$

$$\beta_A \sim \text{Normal}(0, 1)$$

$$\alpha_j \sim \text{Normal}(9, 3)$$

$$\sigma \sim \text{HalfCauchy}(5)$$

A simple approach that won't work

Problem:

Allows for a shift, but not a change in slopes.

Can see this also with the fox problem from last week.

Allowing interactions

To add interactions:

$$\log GDP \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta_R R_i + \beta_A A_i + \beta_{AR} A_i R_i$$

$$\beta_R \sim \text{Normal}(0, 1)$$

$$\beta_A \sim \text{Normal}(0, 1)$$

$$\beta_{AR} \sim \text{Normal}(0, 1)$$

$$\alpha_j \sim \text{Normal}(9, 3)$$

$$\sigma \sim \text{HalfCauchy}(5)$$

So we have a third slope, for the product of R and A.

(note: could also use indexed slopes!)

Why is this the approach?

Where this comes from: just model the slope β_R as being itself a linear function of A.

$$\log GDP \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \alpha + \gamma_i R_i + \beta_A A_i$$

$$\gamma_i = \beta_R + \beta_{AR} A_i$$

$$\beta_R \sim \text{Normal}(0, 1)$$

$$\beta_A \sim \text{Normal}(0, 1)$$

$$\beta_{AR} \sim \text{Normal}(0, 1)$$

$$\alpha_j \sim \text{Normal}(9, 3)$$

$$\sigma \sim \text{HalfCauchy}(5)$$

Why is this the approach?

Plug a linear equation into another linear equation:

$$\mu_i = \alpha + \gamma_i R_i + \beta_A A_i$$
$$\gamma_i = \beta_R + \beta_{AR} A_i$$

Why is this the approach?

Plug a linear equation into another linear equation:

$$\mu_i = \alpha + \gamma_i R_i + \beta_A A_i$$
$$\gamma_i = \beta_R + \beta_{AR} A_i$$

$$\mu_i = \alpha + (\beta_R + \beta_{AR}A_i)R_i + \beta_A A_i$$

The result

Result from the interaction model:

Here, we can see the different slope. Ruggedness has a positive association with GDP for African nations, negative for others.

The Africa interaction as a multilevel model

When we did multilevel/hierarchical regression:

- Observations grouped into subpopulations
- Each subpopulation gets its own model parameters, drawn from a common hyperprior

Ruggedness model: different slope depending on continent

 We could set up the model in a multilevel way by including two slopes explicitly, drawing from a hyperprior

The Africa interaction as a multilevel model

Setting it up as a multilevel model:

$$\log GDP \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \alpha_{C(i)} + \beta_{C(i)}R$$

$$\beta_j \sim \text{Normal}(0, \tau)$$

$$\alpha_j \sim \text{Normal}(9, 3)$$

$$\tau \sim \text{HalfCauchy}(5)$$

$$\sigma \sim \text{HalfCauchy}(5)$$

Plate diagram for the multilevel version

Plate diagram for the product version

The Africa interaction as a multilevel model

Result from the multilevel version:

Essentially the same result as the conventional interaction version. Let's inspect the parameters.

Comparing parameters

• Parameters from the product-interaction model:

	mean	sd	hdi_3%	hdi_97%
а	9.182	0.144	8.913	9.442
bR	-0.184	0.078	-0.332	-0.040
bA	-1.842	0.223	-2.275	-1.445
bAR	0.350	0.130	0.131	0.618

• Parameters from the product-interaction model:

	mean	sd	hdi_3%	hdi_97%
a[0]	9.191	0.140	8.931	9.458
a[1]	7.308	0.179	6.979	7.639
b[0]	-0.178	0.079	-0.333	-0.037
b[1]	0.160	0.107	-0.050	0.354

Model comparison

Comparing all models: pooled, non-interacting, product, multilevel

	rank	loo	p_loo	d_loo	weight	se	dse
product	0	-234.729809	5.115108	0.000000	0.901376	7.301258	0.000000
multilevel	1	-234.975806	5.189719	0.245997	0.000000	7.223924	0.493125
noninteracting	2	-238.015613	4.111312	3.285805	0.098624	7.362950	3.013388
pooled	3	-269.811536	2.661599	35.081727	0.000000	6.489850	7.327695

Multilevel models as interaction machines

Multilevel models:

- Group observations into clusters
- Parameters for each cluster drawn from a common hyperprior

Multilevel models as interaction machines

Multilevel models:

- Group observations into clusters
- Parameters for each cluster drawn from a common hyperprior
- This is just a way of expressing that the parameter values are conditional on group membership
- Multilevel models give a way to encode interactions and regularize automatically across groups

Not surprising: remember we constructed the interaction by putting a linear model inside a linear model

No interactions:

$$\mu_i = \alpha + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i}$$

No interactions:

$$\mu_i = \alpha + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i}$$

Pairwise interactions:

$$\mu_i = \alpha + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i}$$

+ $\beta_{12} x_{1,i} x_{2,i} + \beta_{13} x_{1,i} x_{3,i} + \beta_{23} x_{2,i} x_{3,i}$

No interactions:

$$\mu_i = \alpha + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i}$$

Pairwise interactions:

$$\mu_i = \alpha + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i}$$

+ $\beta_{12} x_{1,i} x_{2,i} + \beta_{13} x_{1,i} x_{3,i} + \beta_{23} x_{2,i} x_{3,i}$

Higher-order interactions:

$$\mu_{i} = \alpha + \beta_{1}x_{1,i} + \beta_{2}x_{2,i} + \beta_{3}x_{3,i}$$

$$+ \beta_{12}x_{1,i}x_{2,i} + \beta_{13}x_{1,i}x_{3,i} + \beta_{23}x_{2,i}x_{3,i}$$

$$+ \beta_{123}x_{1,i}x_{2,i}x_{3,i}$$

The "Judgement of Princeton"

The Judgement of Princeton

- 9 judges, 20 wines
- Wines split between red and white, NJ or France
- Judges split between American or French/Belgium

Predictors:

• Wine color: red or white

Wine origin: NJ or France

• Judge nationality: US or EU

Interactions

Potential for interactions between all predictors:

- Interaction between origin and judge: judge bias.
 Judge bias might depend upon color.
- Interaction between color and judge: taste preference.
 Taste preference might depend upon origin.
- Interaction between origin and color: relative advantage.
 Advantage might depend upon judge.

Summary

Today:

- DAG wrap up
- Interaction effects

Next week:

- GLMs
- covariance among parameters
- Multilevel linear models