${\bf Package~'MultiDiscreteRNG'}$

June 20, 2025

Type Package

Version 1.0.0

Title Generation of Multivariate Correlated Discrete Data

Author Chak Kwong (Tommy) Cheng [aut, cre], Hakan Demirtas [aut]
Maintainer Chak Kwong (Tommy) Cheng <ccheng46@uic.edu></ccheng46@uic.edu>
Description Generation of multivariate correlated discrete data with generalized Poisson, negative ninomial and binomial marginal distributions.
License GPL (>= 2)
Encoding UTF-8
LazyData true
Imports GenOrd, Matrix, MultiOrd, matrixcalc, mvtnorm
<pre>URL https://github.com/ckchengtommy/MultiDiscreteRNG</pre>
BugReports https://github.com/ckchengtommy/MultiDiscreteRNG/issues RoxygenNote 7.3.2 Suggests testthat (>= 3.0.0) Config/testthat/edition 3 Contents
BinToB BinToGPD BinToNB calc.bin.prob.B calc.bin.prob.GPD calc.bin.prob.NB discrete_cont genB generate.binaryVar genGPD genNB GetGpoisPMF QuantileGpois simBinaryCorr.B

2 BinToGPD

Description

This function implements step 5 of the algorithm in the paper. It converts the multivariate binary data back to the original binomial scale

Usage

```
BinToB(prop.vec.bin, BProp, Mlocation, bin.data)
```

Arguments

prop.vec.bin vector of binary probabilities

BProp Binary proportion

Mlocation locations of median in the vector bin.data generated multivariate binary data

Value

multivariate Binomial data and its correlation matrix

BinToGPD	This function implements Step 5 of the algorithm. It converts the mul-
	tivariate binary data back to the original GPD scale

Description

This function implements Step 5 of the algorithm. It converts the multivariate binary data back to the original GPD scale

Usage

```
BinToGPD(prop.vec.bin, GPDprop, Mlocation, bin.data)
```

Arguments

prop.vec.bin vector of binary probabilities

GPDprop GPD proportion

Mlocation locations of median in the vector bin.data generated multivariate binary data

BinToNB 3

Value

multivariate GPD data and its correlation matrix

BinToNB This function implements Step 5 of the algorithm. It converts the multivariate binary data back to the original GPD scale

Description

This function implements Step 5 of the algorithm. It converts the multivariate binary data back to the original GPD scale

Usage

```
BinToNB(prop.vec.bin, NBprop, Mlocation, bin.data)
```

Arguments

prop.vec.bin vector of binary probabilities

NBprop NB proportion

Mlocation locations of median in the vector bin.data generated multivariate binary data

Value

multivariate NB data and its correlation matrix

calc.bin.prob.B This function implements Step 1 of the algorithm. It collapses the discrete outcome to binary ones for each variable.

Description

This function implements Step 1 of the algorithm. It collapses the discrete outcome to binary ones for each variable.

Usage

```
calc.bin.prob.B(n.vec, p.vec)
```

Arguments

n.vec vector of number of trialsp.vec vector of probabilities

Value

vector of binary probability, dichotomous threshold

4 calc.bin.prob.NB

calc.bin.prob.GPD	This function implements Step 1 of the algorithm. It collapses the discrete outcome to binary ones for each variable.
	crete outcome to other y ones for each variable.

Description

This function implements Step 1 of the algorithm. It collapses the discrete outcome to binary ones for each variable.

Usage

```
calc.bin.prob.GPD(theta.vec, lambda.vec)
```

Arguments

theta.vec vector of theta values
lambda.vec vector of lambda values

Value

vector of binary probability, dichotomous threshold

calc.bin.prob.NB	This function implements Step 1 of the algorithm. It collapses the dis-
	crete outcome to binary ones for each variable.

Description

This function implements Step 1 of the algorithm. It collapses the discrete outcome to binary ones for each variable.

Usage

```
calc.bin.prob.NB(r.vec, prob.vec)
```

Arguments

r.vec vector of number of trials
prob.vec vector of probabilities

Value

vector of binary probability, dichotomous threshold

discrete_cont 5

discrete_cont

Check positive definiteness of the intermediate matrix

Description

Check positive definiteness of the intermediate matrix

Usage

```
discrete_cont(
  marginal,
  Sigma,
  support = list(),
  Spearman = FALSE,
  epsilon = 1e-06,
  maxit = 100
)
```

Arguments

marginal	a list of k elements, where k is the number of variables. The i -th element of marginal is the vector of the cumulative probabilities defining the marginal distribution of the i -th component of the multivariate variable. If the i -th component can take k_i values, the i -th element of marginal will contain k_i-1 probabilities (the k_i -th is obviously 1 and shall not be included).
Sigma	the target correlation matrix of the discrete variables
support	a list of k elements, where k is the number of variables. The i -th element of support is the vector containing the ordered values of the support of the i -th variable. By default, the support of the i -th variable is $1, 2,, k_i$
Spearman	A logical flag indicating whether Spearman correlation should be used
epsilon	tolerance of the algorithm convergence
maxit	maximum iterations of the algorithm to correct PD matrix

Value

No return values; called it to check parameter inputs

genB

This function generates multivariate Binomial data

Description

This function generates multivariate Binomial data

Usage

```
genB(no.rows, binObj)
```

6 genGPD

Arguments

no.rows number of data

binObj intermediate correlation matrix object

Value

generated Binomial data with user's specifications

generate.binaryVar Generate multivariate Binary data using the Emrich and Piedmonte

(1991) approach Approach

Description

Generate multivariate Binary data using the Emrich and Piedmonte (1991) approach Approach

Usage

```
generate.binaryVar(nObs, prop.vec.bin, corr.mat)
```

Arguments

nObs number of observations

prop.vec.bin probability of binary variables in a vector

corr.mat Correlation matrix

Value

multivariate Binary Data

genGPD

This function generates multivariate GPD data

Description

This function generates multivariate GPD data

Usage

```
genGPD(no.rows, binObj)
```

Arguments

no.rows number of data

binObj intermediate correlation matrix object

Value

generated GPD data with user's specifications

genNB 7

genNB This function generates multivariate NB data
--

Description

This function generates multivariate NB data

Usage

```
genNB(no.rows, binObj)
```

Arguments

no.rows number of data

binObj intermediate correlation matrix object

Value

generated NB data with user's specifications

GetGpoisPMF Get probability mass function of Generalized Poisson distribution

Description

This function returns a table of the probability mass function of GPD

Usage

```
GetGpoisPMF(p, theta, lambda, details = FALSE)
```

Arguments

p probability of generalized Poisson distribution

theta GPD theta value
lambda GPD lambda value

details A logical flag indicating computation information should be returned

Value

a PMF table

8 simBinaryCorr.B

QuantileGpois	This function computes the quantile of Generalized Poisson
---------------	--

Description

This function computes the quantile of Generalized Poisson

Usage

```
QuantileGpois(p, theta, lambda, details = FALSE)
```

Arguments

p vector of probabilities

theta vector of theta lambda vector of lambda

details A logical flag to return the computational details

Value

the quantile of GPD

simBinaryCorr.B	This function implements Step 2 of the algorithm It calculates the in-
	termediate binary correlations.

Description

This function implements Step 2 of the algorithm It calculates the intermediate binary correlations.

Usage

```
simBinaryCorr.B(n.vec, p.vec, CorrMat, no.rows, steps = 0.025)
```

Arguments

n.vec	vector of number of trials
p.vec	vector of probabilities
CorrMat	specified Correlation matrix

no.rows number of observations for generating Multivariate Binary data

steps Fraction of difference between the current and target matrix to be added in each

iteration.

Value

intermediate multivariate binary Correlation matrix

simBinaryCorr.GPD 9

simBinaryCorr.GPD	This function implements Step 2 of the algorithm It calculates the intermediate binary correlations.
	•

Description

This function implements Step 2 of the algorithm It calculates the intermediate binary correlations.

Usage

```
simBinaryCorr.GPD(theta.vec, lambda.vec, CorrMat, no.rows, steps = 0.025)
```

Arguments

theta.vec vector of theta values
lambda.vec vector of lambda values
CorrMat specified Correlation matrix

no.rows number of observations for generating Multivariate Binary data

steps Fraction of difference between the current and target matrix to be added in each

iteration.

Value

intermediate multivariate binary Correlation matrix

simBinaryCorr.NB	This function implements Step 2 of the algorithm It calculates the in-
	termediate binary correlations.

Description

This function implements Step 2 of the algorithm It calculates the intermediate binary correlations.

Usage

```
simBinaryCorr.NB(r.vec, prob.vec, CorrMat, no.rows, steps = 0.025)
```

Arguments

r.vec vector of number of trials
prob.vec vector of probabilities
CorrMat specified Correlation matrix

no.rows number of observations for generating Multivariate Binary data

steps fraction of difference between the current and target matrix to be added in each

iteration.

Value

intermediate multivariate binary Correlation matrix

validation.Bparameters

Validate if the input Binomial parameters are within feasible range

Description

This function returns the sum of two numbers.

Usage

```
validation.Bparameters(n.vec, p.vec)
```

Arguments

n.vec Vector of number of trialsp.vec Vector of probability

Value

No return values; called it to check parameter inputs

Examples

```
validation.Bparameters(n.vec = c(10, 15), p.vec = c(0.4, 0.2))
```

validation.GPDparameters

Validate if the input GPD parameters are within feasible range

Description

This function returns the sum of two numbers.

Usage

```
validation.GPDparameters(theta.vec, lambda.vec)
```

Arguments

theta.vec Vector of theta values
lambda.vec Vector of lambda values

Value

No return values; called it to check parameter inputs

Examples

```
validation.GPDparameters(theta.vec = c(3, 2), lambda.vec = c(0.4, 0.2))
```

validation.NBparameters

Validate if the input NB parameters are within feasible range

Description

Validate if the input NB parameters are within feasible range

Usage

```
validation.NBparameters(r.vec, prob.vec)
```

Arguments

r.vec Vector of number of trials parameters

prob.vec Vector of probabilities

Value

No return values; called it to check parameter inputs

Examples

```
validation.NBparameters(r.vec = c(10, 15), prob.vec = c(0.7, 0.5))
```

Index

```
BinToB, 2
BinToGPD, 2
BinToNB, 3
calc.bin.prob.B, 3
calc.bin.prob.GPD, 4
calc.bin.prob.NB, 4
{\tt discrete\_cont}, {\tt 5}
genB, 5
generate.binaryVar, 6
genGPD, 6
genNB, 7
GetGpoisPMF, 7
{\tt QuantileGpois}, \textcolor{red}{8}
\verb|simBinaryCorr.B|, 8
\verb|simBinaryCorr.GPD|, 9
simBinaryCorr.NB, 9
{\tt validation.Bparameters}, 10\\
validation.GPDparameters, 10
validation. NB parameters, \\ 11
```