- * HW4 posted soon, due Wed. Sept 29, Wabration & OH questions allowed.
- * Midtern will be posted Mon. Sept 27 after my office hours; due Fri Oct 1.

 No collaboration, no sources except lecture notes + Artin + Axler

It's meant as a simple check that you know what's going on - it's not meant to be super challenging (no * problems). It may still take time to complete.

Material: everything up to Lecture 10 (Fri 9/24) × Artin through 4.4 / Axler through ch.5.

Do not discuss the midtern or ask about its contents until after end of week, including in office hows, even if you've turned it in.

E-mail me for claisication reguets about the midtern after it gets posted.

Last time: $\varphi \colon V \to W$ linear map, if we choose bases $\{v_1...v_n\}$ for V, $\{v_1...v_m\}$ for W, then we can represe to by a matrix $A = M(\varphi, \{v_i\}, \{w_i\})$ (if column of $A = \text{companets of } \{v_i\}$) in basis $\{w_i\}$) so that if $v \in V$ is rept by column vector $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ (i.e. $v = \sum x_j v_j$) then $\{v_i\} \in W$ is rept by $Y = AX = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, $y_i = \sum_j a_{ij} x_j$ (i.e. $\{v_i\} \in W_i\}$). Think of this as: $\{v_i\}_{i=1}^n v_i \in W_i$, $\{v_i\}_{i=1}^n v_i \in W_i\}$.

* Change of basis: What if we choose different basis for V and/or W?

If we change basis from $(v_1...v_n)$ to $(v'_1...v'_n)$, write $v'_j = \sum_{i=1}^n P_{ij} V_i$ and get an new matrix P whose j^h obtain gives the components of v'_j in the basis $(v_1...v_n)$. Symbolically $(v'_1...v'_n) = (v_1...v_n) P$.

So: $(v'_1...v'_n) X' = (v_1...v_n) P X'$ i.e. the element of V described by a column vector X' in new basis is described by X - P X' in old basis. More conceptually: $P = \mathcal{M}(id_{V_j}, (v'_j, (v))!$

Do the same for W, in reverse: let $Q = \mathcal{M}(id_{W_1}(w), (w'))$ i.e. $(w_1...w_m) = (w'_1...w'_m)Q$. Here: $Q((v'_1...v'_n)X') = Q((v_1...v_n)PX') = (w'_1...w'_n)APX' = (w'_1...w'_n)QAPX'$ i.e. $\mathcal{M}(Q, (v'), (w')) = QAP$.

* In particular, if V=W and change basis, for $\varphi \in Km(V,V)$, $A=M(\varphi,(v),(v))$ and $A'=M(\varphi,(v'),(v'))$ are related by A'=P'AP.

-> But... the whole point of linear algebra is to avoid all this and work with linear maps in a coordinate-free language as much as possible.

```
* Quotient spaces: Let V be a vector space over a Rell k, UCV a subspace.
```

Def: The quotient space $V/U = \{v+U\}$ is the space of costs of U in V, with addition (v+U)+(w+U)=(v+w)+U scalar multiplication a(v+U)=av+U.

The linear map $V \xrightarrow{9} V/U$ is surjective, with kernel = U. Hence, we $V \mapsto V + U$

get an exact sequence $0 \rightarrow U \rightarrow V \rightarrow V/U \rightarrow 0$.

By the dimension formula (dim ker q + dm Im q = dim V), we have: dim(V/U) = dim V - dim U.

Remark: 1) given a linear map $V \xrightarrow{\varphi} W$, if $U \subset \ker \varphi$ (i.e. $\varphi_{|U} = 0$)

then φ factors through V/U, i.e. $V \xrightarrow{\varphi} W = \overline{\varphi} \circ \varphi$.

(define $\overline{\varphi}(v+U) = \varphi(v)$, this is indept of choice of V in coset).

Conversely, given $\overline{\varphi} \in \operatorname{Hom}(V/U, W)$, $\varphi = \overline{\varphi} \circ \varphi : V \to W$ has $U \subset \ker \varphi$.

Hence: $\{\varphi \in \operatorname{Hom}(V,W) \mid U \subset \ker \varphi\} \cong \operatorname{Hom}(V/U,W)$.

2) there is a bijection {subspaces of V containing U} \iff {subspaces of V/U} $W \subset V_{\nu}(W \supset U) \iff W/U = \{W \neq U, W \in W\}$ Conversely. $q^{-1}(\overline{W}) \subset V \iff \overline{W} \subset V/U$

Conversely, $q^{-1}(\overline{W}) \subset V \longleftrightarrow \overline{W} \subset V/U$ $(U=q^{-1}(0)=q^{-1}(\overline{W}) sinu \in \overline{W})$.

Dual spaces; Let V be a vector space over a Keld k.

Def: The dual vector space is the space of linear finitionals on V, ie. linear maps $V \rightarrow k$: $V^{\alpha} = Hom(V, k) = \{linear maps <math>l: V \rightarrow k\}$.

 $\underline{E_{x_i}}$ if $V=k^n=\{(x_1...x_n)\mid x_i\in k\}$, any hope $(a_1,...,a_n)$, a; $\in k$ determines a map $l_a:k^n\to k$, $l_a(x_1...x_n)=\sum a_ix_i$.

Conversely, let $e_i = \text{standard basis } f(k^n)$, given $l: k^n \rightarrow k$, let $a_i = l(e_i)$, then $l(x_{1,r},x_n) = l(\Sigma x_i e_i) = \Sigma a_i x_i$, i.e. $l = l_a$.

So: $(k^n)^n = \{(a_1 ... a_n) \mid a_i \in k\} \cong k^n$.

- * More generally, given a finite dim! V and a basis {e,...en}, then any linear map 3 $\ell: V \rightarrow k$ is determined by $\ell(e_i)$, so we get an isomorphism $V^{\alpha} \simeq k^n$ $\ell \mapsto (\ell(e_1), \dots, \ell(e_n))$ Equivalently, we get a basis of V* consisting of the linear functionals expression s.t. $e_i^*(e_i) = 1$ and $e_i^*(e_j) = 0$ for $j \neq i$. (Hen $l = \sum_{i=1}^n l(e_i)e_i^*$!) This is called the dual basis!
- * However, there is not a natural map V-s V*. Despite the above about bases. Each elever of the dual basis e; depends not just on e; but on all e;'s. There's no such thing as "the dual of a vector".
- * On the other hand, we do have a natural map $V = V \circ (V^*)^*$ ("evaluation")

A If V is finite-dimensional, then

by working in bases {e_1...en}, and basis {e_i...en},

k double duch basis {e_i,..., e_n}, we see that e_i^*(e_j^*) = e_j^*(e_i) \rightarrow and so ev(ei) = ei, here ev is an isom. Thus;

 $\Rightarrow \underline{Prp}: \| \text{ If } V \text{ is finit-dimensional then } V \cong V^* \\ v \mapsto (\ell \mapsto \ell(v)).$

* When V is infinite-dimensional, ev: V -> Vacar is injective, but not an isom! The reason is: Assume V has a basis {e; }iEI, so every element of V is uniquely $\sum_{i \in I} x_i e_i$, w/ only finitely many nonzer $x_i \in V = \bigoplus_{i \in F} k_i e_i$.

Then $\forall (a_i)_{i \in I} \in \Pi k$, $l_a : V \rightarrow k$ is a well defined element of V^* . $\sum_{x_i \in i} \mapsto \sum_{x_i \neq i} a_i$ charactered by $\ell(e_i) = a_i \forall i \in I$.

So: V" = IT k, which is larger, and the linear furtionals e; (q;=1, a;=0 Vj fi) do not span V^* . (Can complete to a basis via Zarris lenna.) A similar exlargement happens again when passing from V^* to V^* .

Def: The annihilator of a subspace UCV is Ann(U) = {l:V-sk/lju=0} CV. (This is a subspace of V")

 $V' \to U'' \text{ is snjective with kend} = Arm(U), so 0 \to Arm(U) \to V'' \to U' \to 0$ $V'' \to V'' \to V' \to V'' \to V' \to V'' \to V' \to V'$

- Also, we've seen above: $\{l \in Hom(V,k) / U \in ker l\} \sim Hom(V/U,k)$. 4Hence: $Ann(U) \sim (V/U)^4$
 - · Either way, this imples: dim Ann(U) = dim V-dim U.

Def: | Given a linear map $\varphi: V \to W$, the <u>transpose</u> of φ , $\varphi^*: W^* \to V^*$ defined as follows: given a linear functional $l: W \to k$, compaining with $\varphi: V \to W$ gives a linear map $l \circ \varphi: V \to k$. Thus, $\varphi^*: W^* \longrightarrow V^*$ (check: φ^* is linear)

Check: • given a basis (e;) of V, elevents of V are represented by column vectors X $V'' = hom(V,k) - v - v - m \quad \text{on vectors} \quad Y$ Applying a linear functional $l \in V''$ to a vector $v \in V \iff Y \times \in k$.

• if $M(\psi, (e), (f_j)) = A$, then $M(\psi^*, (f_j^*), (e_i^*)) = A^T$ transpose matrix

This is because; given $l \in W$ and $v \in V$, $l(\psi(v)) = (\psi^*(l))(v) = YAX$ So ψ^* , heread as operation on row vectors, is $y \mapsto yA$.

Nearwhile the dual bases give a destription of elements of V^*, U^* by the chan vectors, which are the transposes of the row vectors. The claim then follows since ψ^*l as column vector is $(YA)^T = A^T Y^T$.

Prop: (I be finite dim. case) (p is injective iff (p" is sujective (p is sujective iff (p" is injective

follows from: $\frac{\text{Prop:}}{(2)} \int | (1) | | | \text{ker}(\varphi^{\alpha}) = \text{Ann}(\text{Im } \varphi) |$ (2) $\text{Im}(\varphi^{\alpha}) = \text{Ann}(\text{ker } \varphi) \leftarrow \text{assumins finite lim.}$

Proof: (1) $l \in Ann(In.\psi) \iff l(\psi(v)) = 0 \ \forall v \in V \iff \psi'(l) = l \cdot \psi = 0 \iff l \in Ker.\psi''$.

(2) If $l' = \psi'(l) \in In.(\psi'')$ Hen $l' = l \cdot \varphi$ so $l'_{lker.\psi} = 0$. So $In.(\psi') \subset Ann. ker.\psi$.

Dim. formula and (1) imply $rank(\psi'') = rank(\psi)$, hence the inclusion is an equality. \Box

Linear operators: A linear operator on V (aka endomorphism of V) is a linear map $V:V\to V$.

Notation: End(V)=Hom(V,V).

* When using a basis to express $\varphi \in \text{Hom}(V,V)$ by a (square) matrix, we want to use the same basis on each side: $A = \mathcal{M}(\varphi_i(e_i),(e_i))$, transforms by P'AP.

* New thing: we can compose linear operators with each other $\varphi \psi = \varphi \circ \psi : V \rightarrow V$ or with therselves; $\psi^n = \varphi \circ ... \circ \psi$, or even apply jolynomials: $p = \sum a_n x^n \rightarrow p(\psi) = \sum a_n \psi^n, V \rightarrow V.$

Hom(V,V) is a (noncommutative) ring.

given vector spus V_1V_2 and l'nor operators $\psi_i: V_i \rightarrow V_i$, we can define $\psi = \psi_1 \oplus \psi_2: V_1 \oplus V_2 \rightarrow V_1 \oplus V_2$ operator on $V = V_1 \oplus V_2$.

The operator φ leaves the subspaces $V_1, V_2 \subset V$ invariant: $\varphi(V_i) \subset V_i$; and working in a basis of V st. $e_1 \dots e_m \in V_1$, $e_{m+1} \dots e_n \in V_2$, the makes of φ is block diagonal: $\left(\frac{\varphi_1}{O}\right) = 0$ Conversely, if $V = V_1 \oplus V_2$ and $\varphi(V_i) = V_i$ then φ is of this form.

Now generally, if we only assume $\varphi: V \rightarrow V$ and $V_i \subset V$ is invariant $(\varphi(V_i) \subset V_i)$ but not necess. V_2 , then the matrix of φ would be block briangular: $(\varphi_{i,V_i}) \times V$

block hiangular: (4/1/4 ×)

So; a hypical way to study 4: V-V is to look for invavant subspaces.

* If UCV is invariant and dim U=1 (so: U=k.v for some $v\in V$), then necessarily $\varphi(v)=\lambda v$ for some $\lambda\in k$.

In this case v is called an eigenvector of φ , and λ is called the eigenvalue corresponding to v.

4 If we can find a basis of V consisting of eigenvectors of φ , then we have diagonalized φ , i.e. find a basis where its matrix is diagonal $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{pmatrix}$

This is he best outcome, but not always possible!

 $EX: V=\mathbb{R}^2$, $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ has eigenvectors (1,0) (or any multiple) with eigenvalues $\frac{\lambda}{\mu}$.

However $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has only one eigenvector (1,0) with eigenvalue 1, (np to scaling!) NOT d'ayonal'zable.

Next time, we'll learn more about eigenvectors, invavant subspaces, etc.