

Unit 3. Generative Grammars

Basic concepts of languages theory

- Parsing or syntactic analysis is the process of analyzing a string of symbols, either in natural languages or in computer languages, conforming to the rules of a formal grammar.
- The formal language theory considers a language as a mathematical object.
- A language is just a set of strings (sentences). To formally define a language we need to formally define what are the strings admitted by the language.

Alphabet

Symbol

A physical entity that we shall not formally define; we shall rely on intuition.

<u>Alphabet</u>

A finite, non-empty set of symbols

- We often use the symbol \sum (sigma) to denote an alphabet
- Examples of alphabet
 - Binary: $\Sigma = \{0,1\}$
 - All lower case letters: $\sum = \{a,b,c,..z\}$
 - Alphanumeric: $\Sigma = \{a-z, A-Z, 0-9\}$
 - DNA molecule letters: $\sum = \{a,c,g,t\}$ (guanine, adenine, thymine, and cytosine)
 - C character set
 - KPL token set.

C character set

Types	Character Set
Lowercase Letters	a –z
Uppercase Letters	A - Z
Digits	0-9
Special Characters	~!#\$% ^& *()_+ \'-= {}[]:";<>?,./
White Spaces	Tab Or New line Or Space

Token set of KPL

- Identifiers, numbers, character constants
- Keywords

PROGRAM, CONST, TYPE, VAR, PROCEDURE, FUNCTION, BEGIN, END, ARRAY, OF, INTEGER, CHAR, CALL, IF, ELSE, WHILE, DO, FOR, TO

Operators

```
:= (assign), + (addition), - (subtraction), * (multiplication), / (division), = (comparison of equality), != (comparison of difference), > (comparison of greaterness), < (comparison of lessness), >= (comparison of greaterness or equality), <= (comparison of lessness or equality)
```

Separators:

```
:,;,(,),,,(.,.),.
```


String (sentence)

- A string is finite sequence of symbols chosen from some alphabet
- Empty string is ε
- Examples of string:
 - **1**000010101111
 - ■A C program is a string of tokens
 - ■A human DNA pattern

Languages

A language over alphabet Σ is a set of strings over Σ

Examples of languages:

- The set of all words over {a, b},
- The set $\{a^n \mid n \text{ is a prime number }\}$,
- Programming language C: the set of syntactically correct programs in C

Chomsky's Hierarchy

- Type-0 languages (recursive enumerable) instances of a problem.
- Type-1 languages (context-sensitive) natural languages, DNA languages
- Type-2 languages (context-free) programming language, natural languages
- Type-3 languages (regular)
 tokens of programming languages

A grammar to generate real numbers

```
<real number> ::= <sign><natural number> |
             <sign><natural number>'.'<digit sequence> |
<sign>'.'<digit><digit sequence> |
<sign><real number>'e'<natural number>
         ::= ' ' | '+' | '-'
<sign>
<natural number> ::= '0' | <nonzero digit><digit sequence>
<nonzero digit> ::= '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
<digit sequence> ::= '' | <digit><digit sequence>
<digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
```


How a string of a context free language can be generate?

A context free grammar can be used to generate strings in the corresponding language as follows:

let X = the start symbol swhile there is some nonterminal Y in X do apply any one production rule using Y, e.g. Y -> w

Context Free Grammars (CFG)

A context free grammar G has:

- A set of terminal symbols, Σ
- A set of nonterminal symbols, Δ
- A start symbol, S, which is a member of Δ
- A set P of production rules of the form $A \rightarrow w$, where A is a nonterminal and w is a string of terminal and nonterminal symbols or ε .

Parse Tree

 $S \rightarrow NP VP$

 $NP \rightarrow D N$

 $VP \rightarrow V NP$

 $D \rightarrow the$

 $N \rightarrow chef$

 $N \rightarrow soup$

 $V \rightarrow soup$

Context Free Grammar Examples

Grammar of nested parentheses

$$G = (\Sigma, \Delta, P, S)$$
 where
 $\Delta = \{S\}$
 $\Sigma = \{ (,) \}$
 $P = \{ S \rightarrow (S), S \rightarrow SS, S \rightarrow \epsilon \}$

Context Free Grammar Examples

The grammar of decimal numbers

Derivations

- When X consists only of terminal symbols, it is a string of the language denoted by the grammar.
- Each iteration of the loop is a derivation step.
- If an iteration has several nonterminals to choose from at some point, the rules of derviation would allow any of these to be applied.
- Example : $S \Rightarrow -A \Rightarrow -B.B \Rightarrow -B.C \Rightarrow -C.C \Rightarrow -1.C \Rightarrow -1.5$

Leftmost and Rightmost Derivations

- In practice, parsing algorithms tend to always choose the leftmost nonterminal, or the rightmost nonterminal, resulting in strings that are leftmost derivations or rightmost derivations
- Example:

Leftmost derivation:

$$S \Rightarrow -A \Rightarrow -B.B \Rightarrow -C.B \Rightarrow -1.B \Rightarrow -1.C \Rightarrow -1.5$$

Rightmost derivation:

$$S \Rightarrow -A \Rightarrow -B.B \Rightarrow -B.C \Rightarrow -B.5 \Rightarrow -C.5 \Rightarrow -1.5$$

Derivation Tree (parse tree)

Derivation tree is constructed with

- 1) Each tree vertex is a variable (nonterminal) or terminal or epsilon
- 2) The root vertex is S
- 3) Interior vertices are from Δ , leaf vertices are from Σ or epsilon
- 4) An interior vertex A has children, in order, left to right,

 X_1, X_2, \dots, X_k when there is a production in P of the

form
$$A -> X_1 X_2 ... X_k$$

5) A leaf can be epsilon only when there is a production $A \rightarrow \varepsilon$ and the leaf's parent can have only this child.

Ambiguity

Grammar

$$E -> E + E$$

$$E -> E * E$$

$$E \to (E)$$

E -> ident

allows two different derivations for strings such as ident + ident * ident (e.g. x + y * z)

The grammar is ambiguous

Disambiguation

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F -> (E)$$

(by adding some nonterminals and production rules to force operator precedence)

Recursion

• A production is recursive if $X \Rightarrow^* \omega 1X \omega 2$ Can be used to represent repetitions and nested structures

Direct recursion $X \Rightarrow \omega_1 X \omega_2$

Left recursion X -> b | Xa. X \Rightarrow X a \Rightarrow X a a \Rightarrow X a a a \Rightarrow b a a a a a ... **Right recursion** X -> b | a X. X \Rightarrow a X \Rightarrow a a X \Rightarrow a a a X \Rightarrow ... a a a a a b **Central recursion** X ->b | (X). X \Rightarrow (X) \Rightarrow ((X)) \Rightarrow (((X))) \Rightarrow (((... (b)...)))

Indirect recursion $X \Rightarrow^* \omega_1 X \omega_2$ Example

Removing Left Recursion

Let the left-recursive productions in which A occurs as lhs be

$$A \rightarrow A\alpha_1$$

.

$$A \rightarrow A\alpha_r$$

and the remaining productions in which A occurs as lhs be

$$A \rightarrow \beta_1$$

.....

$$A \rightarrow \beta_s$$

Removing Left Recursion

Let K_A denote a symbol which does not already occur in the grammar.

Replace the above productions by:

$$A \rightarrow \beta_1 K_A \mid \dots \mid \beta_s K_A$$

$$K_A \rightarrow \epsilon \mid \alpha_1 K_A \mid \dots \mid \alpha_r K_A$$

Clearly the grammar G' produced is equivalent to G.