

CS 412 Intro. to Data Mining

Chapter 2. Getting to Know Your Data

Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

DATA

1 มิติ - กว้าง ยาว

2 มิติ - กว้าง **x**ยาว

3 มิติ - 2 มิติซ้อนกัน

Chapter 2. Getting to Know Your Data

Data Objects and Attribute Types

- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

Types of Data Sets: (1) Record Data

- Relational records
 - ☐ Relational tables, highly structured
- □ Data matrix, e.g., numerical matrix, crosstabs

	China	England	France	Japan	USA	Total
Active Outdoors Crochet Glove		12.00	4.00	1.00	240.00	257.00
Active Outdoors Lycra Glove		10.00	6.00		323.00	339.00
InFlux Crochet Glove	3.00	6.00	8.00		132.00	149.00
InFlux Lycra Glove		2.00			143.00	145.00
Triumph Pro Helmet	3.00	1.00	7.00		333.00	344.00
Triumph Vertigo Helmet		3.00	22.00		474.00	499.00
Xtreme Adult Helmet	8.00	8.00	7.00	2.00	251.00	276.00
Xtreme Youth Helmet		1.00			76.00	77.00
Total	14.00	43.00	54.00	3.00	1,972.00	2,086.00

Pers_ID	Surname	First_Name	City		
0	Miller	Paul	London		
1	Ortega	Alvaro	Valencia	— no relation	
2	Huber	Urs	Zurich		
3	Blanc	Gaston	Paris	-	
4	Bertolini	Fabrizio	Rom		— , l , l
Car: Car_ID	Model	Year	Value	Pers_ID	อาช เชิ้มตร โฉกัง]
101		4000			
101	Bentley	1973	100000	0	
102	Rolls Royce	1973 1965	100000 330000	0	
102	Rolls Royce	1965	330000	0	
102 103	Rolls Royce Peugeot	1965 1993	330000 500	0	
102 103 104	Rolls Royce Peugeot Ferrari	1965 1993 2005	330000 500 150000	0 3 4	

■ Transaction data

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

	team	coach	pla y	ball	score	game	n wi	lost	timeout	season	
Document 1	3	0	5	0	2	6	0	2	0	2	
Document 2	0	7	0	2	1	0	0	3	0	0	
Document 3	0	1	0	0	1	2	2	0	3	0	

Document data: Term-frequency vector (matrix) of text documents

Types of Data Sets: (2) Graphs and Networks

Types of Data Sets: (3) Ordered Data

- Video data: sequence of images
- ☐ Temporal data: time-series

- Sequential Data: transaction sequences
- Genetic sequence data

Types of Data Sets: (4) Spatial, image and multimedia Data

☐ Spatial data: maps

□ Image data:

☐ Video data: 6patro - temporal

Important Characteristics of Structured Data

- ☐ Dimension Dimensionality
 - Curse of dimensionality
- ☐ Sparsity
 - Only presence counts
- □ Resolution
 - Patterns depend on the scale
- ☐ Distribution
 - Centrality and dispersion

Data Objects

- Data sets are made up of data objects
- □ A data object represents an entity
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called samples, examples, instances, data points, objects, tuples
- Data objects are described by attributes
- Database rows → data objects; columns → attributes

Attributes

		Attribute	(or dimensions	, features	, variables
--	--	------------------	-----------------------	------------	-------------

- A data field, representing a characteristic or feature of a data object.
- E.g., customer_ID, name, address
- Types:
 - Nominal (e.g., red, blue)
 - Binary (e.g., {true, false})
 - Ordinal (e.g., {freshman, sophomore, junior, senior})
 - Numeric: quantitative
 - ☐ Interval-scaled: 100°C is interval scales
 - Ratio-scaled: 100°K is ratio scaled since it is twice as high as 50°K
- Q1: Is student ID a nominal, ordinal, or interval-scaled data?
- Q2: What about eye color? Or color in the color spectrum of physics? Nummic

Attribute Types

			ty (integer or real-valued)
1		rva	1 ไม่มี 0 แก้ เช่น เกรดุ อุณผลูสิ, ภามษาว , เงิน
1:4:4 R14U	างวัดจ ะสื พงเพ่ากัน		Measured on a scale of equal-sized units
			Values have order
			□ E.g., temperature in C°or F°, calendar dates
			No true zero-point
	□ Rat	io ηι	าอย่างที่วัดเป็นค้าเลงได้ เช่น ท้านนัก ชะมะทง ศาผสุง อาชุ ยอดขาย
			Inherent zero-point
			We can speak of values as being an order of magnitude larger than the unit of measurement (10 K $^{\circ}$ is twice as high as 5 K $^{\circ}$).
12			e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes

- Discrete Attribute ใส่คากเกิด คำนานสิ่งของ , คำนานคน
 - Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
 - Sometimes, represented as integer variables
 - Note: Binary attributes are a special case of discrete attributes
- □ Continuous Attribute สีสาใส้ทุกล่า ใหม่จะที่กายนล
 - ☐ Has real numbers as attribute values
 - ☐ E.g., temperature, height, or weight
 - Practically, real values can only be measured and represented using a finite number of digits
 - Continuous attributes are typically represented as floating-point variables

Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- □ Basic Statistical Descriptions of Data

- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

Basic Statistical Descriptions of Data

- Motivation
 - ☐ To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - Median, max, min, quantiles, outliers, variance, ...
- Numerical dimensions correspond to sorted intervals **
 - Data dispersion:
 - ☐ Analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
 - Folding measures into numerical dimensions
 - Boxplot or quantile analysis on the transformed cube

