How Computers Calculate

What is inside?

What does the user see? what the computer does?

User Types (Input)

Computer Outputs

CPU

Adding values stored in memory

Step 1 Load register 5 with the bit pattern found in the memory cell at address 6C.

Step 2 Load register 6 with the bit pattern found in the memory cell at address 6D.

Step 3

Add the contents of register 5 and 6 as though they were two's complement representation and leave the result in register 0.

Step 4 Store the contents of register 0 in the memory cell at address 6E.

Step 5 Halt.

The architecture of our machine

Main Memory

- 256 cells: 00 through FF (Hex)
 - 0000 0000 through 1111 1111
- Storage: 8 bits per cell

CPU

- 16 registers: 0 through F (Hex); 8 bits per cell
- Program counter: (Address of) Keeps track of the <u>next instruction</u>
- Instruction register: Contains the <u>current instruction</u> to be executed by the ALU.

Converting Decimal, Hex, and Binary

Dec.	Hex.	Binary	Dec.	Hex.	Binary
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	10	A	1010
3	3	0011	11	В	1011
4	4	0100	12	С	1100
5	5	0101	13	D	1101
6	6	0110	14	E	1110
7	7	0111	15	F	1111

1 Hex digit = 4 bits

Machine Language

1 Hex digit = 4 bits

- Each instruction involves two parts:
 - Op-code: Specifies which operation to execute
 - LOAD, ADD, STORE, etc.
 - Operand: Gives more detailed information about the operation
 - Interpretation of operand varies depending on op-code

Store the bits found in register 5 in main memory cell A7
Central processing unit

Main memory

Performing the fetch step of the machine cycle

a. At the beginning of the fetch step the instruction starting at address A0 is retrieved from memory and placed in the instruction register.

- Instruction at A0 (and A1) loaded into Instruction register
- Program Counter = A2

- CPU analyzes the instruction
- Loads Register 5 with the contents of memory cell address
 6C.

- Instruction at A2 (and A3) loaded into Instruction register
- Program Counter incremented: A4
- CPU analyzes the instruction
- Loads Register 6 with the contents of memory cell address 6D.

- Instruction at A4 (and A5) loaded into Instruction register
- Program Counter incremented: A6
- CPU analyzes the instruction
- Adds contents of register 5 and register 6, storing the result into register 0.

- Instruction at A6 (and A7) loaded into Instruction register
- Program Counter incremented: A8
- CPU analyzes the instruction
- Stores contents of register 0 in the memory cell at address 6E.

- Instruction at A8 (and A9) loaded into Instruction register
- Program Counter incremented: AA
- CPU analyzes the instruction
- Halts the program. (Program ends.)