

1/31

FIG. 1-1

Constitutively Active Receptors

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS A GROUP I					
MSHR_mouse	melanocyte-stimulating hormone	TMII	92 VSIV L TTIIL SEQ ID NO: 2 K	adenylyl cyclase activity/ HEK293, stably <i>transfected</i>	(Robbins, Nadeau et al. 1993)
MSH					
CLASS A GROUP II					
SH1B_human	5-hydroxytryptamine _{1B}	C-terminus of IC3	313 RERKA T KTLGI SEQ ID NO: 3 K, R, Q	binding of [³ S]GTP[S] / CHO-KJ	(Pauwels, Goubble et al. 1999)
SH2A_Human	5-hydroxytryptamine _{2A}	C-terminus of IC3	322 NEQKACKV L GI SEQ ID NO: 4 K	IP production / COS-7	(Egan, Herrick-Davis et al. 1998)
2H2C_rat	5-hydroxytryptamine _{2C}	C-terminus of IC3	312 NEDDASKV L GI SEQ ID NO: 5 L	PI hydrolysis / COS-7	(Herrick-Davis, Egan et al. 1997)

FIG. 1-2

2/31

10039645 . 05010R

CLASS A GROUP II						
AlAD_human	$\alpha_{1\beta}$ -adrenergic alpha 1B-AR	TMDI junction between TMDIII and IC2	63 FAIVGNILVIL SEQ ID NO: 6 A	IP / COS-7	(Schaeer, Fanelli et al. 1997)	
AlAB_human	$\alpha_{1\beta}$ -adrenergic alpha 1B-AR	junction between TMDIII and IC2	142 CAISIDRYIGV SEQ ID NO: 7 A	IP / COS-7	(Schaeer, Costa et al. 2000)	
AlAB_human	$\alpha_{1\beta}$ -adrenergic alpha 1B-AR	TMII	143 CAISIDRYIGV SEQ ID NO: 8 K	IP / COS-7	(Perez, Hwa et al. 1996)	
		carboxyl end of IC3	128 AVDVLQCTAS1 SEQ ID NO: 9 F	IP / COS-1	(Hwa, Gaivin et al. 1997)	
		TMV	293 REKKAAAKTLAGI SEQ ID NO: 10 E	IP arachidonic acid release		
			204 EEPFYALFSSSLG SEQ ID NO: 11 V	IP / COS-1		
AlABHuman	$\alpha_{1\beta}$ -adrenergic	C-terminal IC3	293 SREKKAAKT SEQ ID NO: 12 X=19 different substitutions	PI / COS-7	(Kjetsberg, Cotecchia et al. 1992)	
AlABHuman	$\alpha_{1\beta}$ -adrenergic	C-terminal IC3	288 KFSREKKAAKTGI SEQ ID NO: 13 K H L	PI hydrolysis / rat fibroblast	(Allen, Lefkowitz et al. 1991)	
A2AAHuman	α_2 C10-adrenergic alpha-2AAR	C-terminal IC3 loop	373 (348?) EKRFETFLAV SEQ ID NO: 14 X=F, A, C, E, K	adenylyl cyclase inhibition / HEK293	(Ren, Kurose et al. 1993)	
ACM1Human	muscarinic Hm1 muscarinic acetylcholine M1	C-terminal IC3 loop junction	360 SLVKKEKQAARTLS SEQ ID NO: 15 A	PI / HEK(U293)	(Högger, Shockley et al. 1995)	
ACM2Human	muscarinic acetylcholine M2	junction of IC3 and TMVI	390 KTVTRTIL,A 1-4 A inserted	IP production, inhibition of cAMP production / COS-7	(Liu; Blin et al. 1996)	

3/31

FIG. 1-3

CLASS A GROUP II					
ACM3_rat	m3 muscarinic (rat)	TMVI	507 S TWTPYNI <u>MVLLNT</u> SEQ ID NO: 17	IP / COS-7	(Blüml, Mutschler et al. 1994)
ACM5_human	muscarinic acetylcholine M3	N-terminus to TMII	chimera composed of m2 1-69 m1 77-445 m2 391-466	β -gal / NIH 3T3	(Burstein, Spalding et al. 1996)
ACM5_human	muscarinic acetylcholine M5	TMVI			
ACM5_human	muscarinic acetylcholine M5	TMVI	451 459 M L H C V S F T	β -gal; radioligand binding / NIH-3T3	(Spalding, Burstein et al. 1998)
ACM5_human	muscarinic acetylcholine M5	junction of TMVI and EC3	465 YNTIMV <u>LVSTFCDKCV</u> SEQ ID NO: 19 X=v,f,r,k,+more	β -gal; radioligand binding / NIH-3T3	(Spalding, Burstein et al. 1997)
B1AR_human	β_1 -adrenergic	C-terminus	389 RKAFO <u>QLLCCA</u> SEQ ID NO: 20 R	adenylyl cyclase; agonist binding / CHW	(Mason, Moore et al. 1999)
B2AR_human	β_2 -adrenergic	C-terminal IC3 loop	266 272 FCLKE <u>HKA<u>LKLG</u>I</u> SEQ ID NO: 21 SR K A	adenylyl cyclase activation; agonist binding affinity / COS-7 or CHO	(Samama, Cotecchia et al. 1993); (LeRowitz, Cotecchia et al. 1993)
DADR_human	dopamine D1A	carboxyl terminal IC3	264 SFKMS <u>EKKERKVLK</u> T SEQ ID NO: 22 I K 288 from D1B receptor APDT <u>SIKKETRVLK</u> T SEQ ID NO: 23	adenylyl cyclase; cAMP accumulation / HEK293	(Charpenier, Jarvie et al. 1996)
DADR_human	dopamine D1	TMVI	286 FVCC <u>WPPFTL</u> SEQ ID NO: 24 A	cAMP accumulation / COS-7	(Cho, Taylor et al. 1996)
HF2R_rat	histamine H2	IC2	115 FMIS <u>LDRYCAV</u> SEQ ID NO: 25 N,A	cAMP production / HEK-293	(Alewijne, Timmerman et al. 2000)

4/31

FIG. 1-4

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference	
CLASS A GROUP III						
OPSD_human	opsin rhodopsin	TMII	90 D 113 Q	transducin; rhodopsin kinase / COS	(Rim and Oprian 1995)	
		TMIII	FMVLLGGFTSTLV SEQ ID NO: 26 292 296			
		TMVII	MTIPAFFAKSAIY SEQ ID NO: 28 E G, E, M 29) Ala neutral a.a converted to carboxylate and competes with ¹¹³ Glu for salt bridge with ¹³⁴ Lys			
OPSD_human	opsin rhodopsin	TMIII	134 WLAIERYVVV SEQ ID NO: 29 I, Q, S	transducin; radioligand binding / COS	(Acharaya and Karnik 1996)	
		TMVI	257 RMVITIMVIAFL SEQ ID NO: 30 Y, N	transducin, GTPγS uptake / COS	(Han, Smith et al. 1998)	
OPSD_human	opsin rhodopsin	TM6	plus TM3 TMVII	plus G113Q PAFFAKSAIY SEQ ID NO: 31 G X=E, M natural mutants + 10 different a.a. substitutions	transducin; radioligand binding / COS	(Govardhan and Oprian 1994); (Cohen, Yang et al. 1993)
				disrupts critical salt bridge between ²⁹ Lys(TMVII) and ¹¹³ Glu(TMIII)		
		IC2	134 WLAIERYVVV SEQ ID NO: 32 Q		(Cohen, Yang et al. 1993)	

5/31

FIG. 1-5

TRFR_mouse	thyrotropin-releasing hormone TRH-R	carboxyl tail	335 FRKLCNCCKQK STOP	SEQ ID NO: 33 "Ca ²⁺ efflux, [Ca ²⁺] / Xenopus oocytes; IP formation / Art20, <i>stably transfected</i>	(Matus-Leibovitch, Nussenzeig et al. 1995)
------------	--	---------------	----------------------------	--	---

6/31

FIG. 1-6

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS A GROUP IV BRB2_human	bradykinin B ₂ B2 bradykinin BK-2	TMIII TMVI	A I I S M N L Y S I L L F I I C W L P F Q I	113 A 256 SEQ ID NO: 34 SEQ ID NO: 35	IP production / COS-7 (Marie, Koch et al. 1999)

7/31

FIG. 1-7

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS_A GROUP_V					
AG2R_rat	AT _{1A}	TMIII	111 ASW F NLYASV SEQ ID NO: 36 A disrupts ¹¹¹ Asn(TMIII)- ¹²² Tyr(TMVI) interaction	IP production / COS-7	(Groblewski, Maignet et al. 1997)
AG2R_rat	AT _{1A}	C-terminus of TM7	305 L F Y G FLGKKFK SEQ ID NO: 37 Q	IP production / HEK-293; intracellular Ca ²⁺ mobilization / CHO	(Parnot, Bardin et al. 2000)
FMLR_human	Type-1A angiotensin II formylmethionylleucylphenylalanine (fMLPR)	IC1 other multiple mutations	51. LVIVWAGFRMTIHTVTTISYLNKAVA SEQ ID NO: 38 LVWVTAPEAKRTINAIWFNLAVA SEQ ID NO: 39 (K above conflicts with SWISS-PROT database)	P ⁱ production; phospholipase C stimulation / COS-7	(Amatruada, Dragas-Graonic et al. 1995)
IL8B_Human	interleukin-8 receptor B CXCR-2 chemokine	IC2	138 ACIS V DRYLAIVH SEQ ID NO: 40 V	IP production; Ca ²⁺ mobilization and actin polymerization / NIH 3T3	(Burger, Burger et al. 1999)
LSHR_human	luteinizing hormone (LH)	IC3	564 MATN K DTKIAKK SEQ ID NO: 41 G	cAMP production / HEK293	(Kudo, Osuga et al. 1996)
LSHR_human	luteinizing hormone (LH)	TMVI	578 ILLIFTDFTCMA SEQ ID NO: 42 G	cAMP production / COS-7	(Shenker, Laue et al. 1993)
LSHR_human	luteinizing hormone (LH)	TM6	SEQ ID NO: 43 KIAKKRM A ILLIFTDFTCMA	cAMP production / COS-7	(Kosugi, Van Dop et al. 1995)
LSHR_rat	luteinizing hormone / human chorionic gonadotropin (LH/hCG)	TMVI	571 577 KIAKKRM A ILLIFTDFTCMA I I	cAMP production / HEK 293T	(Bradbury, Kawate et al. 1997; Bradbury and Menon 1999)
OPRD_mouse	delta opioid receptor	TM3	556 ILIIFTDFTCMA SEQ ID NO: 44 G, Y	cAMP production / HEK 293T	(Cavalli, Babey et al. 1999)
OXYR_human	oxytocin	IC2	128 KVLLSIDYYWMF SEQ ID NO: 45 A, K, H	adenylyl cyclase inhibition / COS-7	(Fanelli, Barbier et al. 1999)
			137 LMSDLDRCLAIIC SEQ ID NO: 46 A	IP production / COS-7	(Fanelli, Barbier et al. 1999)

8/31

FIG. 1-8

PAFR_human	platelet-activating factor (PAF)	C-terminus of IC3	231 EVKRRALWMVCTVLAV SEQ ID NO: 47 R	IP production / COS-7	(Parent, Le Gouill et al. 1996)
PAFR_human	platelet-activating factor (PAF)	TMIII	100 CLIFFINTYCSV SEQ ID NO: 48 A	arachidonate release, IP production, adenylyl cyclase inhibition / CHO	(Ishii, Izumi et al. 1997)
PE23_human	prostaglandin E ₃ , EP3III EP3IV	C-terminal tail	360 FCQEEFWGN SEQ ID NO: 49 FCQMRKRLREQQEEFWGN SEQ ID NO: 50 ↑truncated	inhibition of adenylyl cyclase / CHO-K1	(Jin, Mao et al. 1997)
PT23_mouse	prostaglandin E ₃ EP3	carboxyl-terminal tail	336 KILLRKFC <u>QIRDHT</u> (3α) MMNH <u>L</u> (3β) ↑truncated	inhibition of adenylyl cyclase / CHO, stably expressed	(Hasegawa, Negishi et al. 1996)
THR_human	thrombin	EC2 loop	SEQ ID NO: 51 CHDV <u>NETLLEGYYAYV</u> DUKD KDF I	"Ca ²⁺ " efflux, PI hydrolysis, reporter gene induction / COS-7	(Nanevicius, Wang et al. 1996)
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	EC1	486 YRNHAIDWQTG SEQ ID NO: 53 F, M	inositol phosphate-- diacylglycerol cascade / COS-7	(Parma, Van Sande et al. 1995)
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	EC2	568 YAKVSICLPMDF SEQ ID NO: 54 T		
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	TMIII	509 ASELS <u>SYTILTV</u> SEQ ID NO: 55 A	adenylyl cyclase activation / COS-7	(Duprez, Parma et al. 1994)
TSHR_human	thyrotropin (TSHR)	TMV	672 YPLNS <u>CAMPFFL</u> SEQ ID NO: 56 Y		
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	TMVII	597 VARV <u>YCCHV</u> SEQ ID NO: 57 L	cAMP formation / COS-7 cells	(Esappa, Duprez et al. 1999)
TSHR_human	thyrotropin (TSHR)	TMVII	677 CAMP <u>FLIAIFT</u> SEQ ID NO: 58 V	cAMP formation / CHO cells	(Russo, Wong et al. 1999)
TSHR_human	thyrotropin (TSHR)	IC3	613 VRNPQXNP <u>GDKTKIAK</u> deletion SEQ ID NO: 59	cAMP formation / COS-7	(Wontorow, Schoneberg et al. 1998)

9/31

FIG. 1-9

TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	IC3 / TMVI	SEQ ID NO: 60	623 V	632 I	cAMP activation / COS-7	(Paschke, Tonacchera et al. 1994)
V2R_human	vasopressin V2	IC2	SEQ ID NO: 61	136 A	LAMTLDRHRAI	cAMP formation / COS-7	(Morin, Côté et al. 1998)

10/31

FIG. 1-10

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS II GROUP I					
CALR_human	human calcitonin hCTR-1 hCTR-2	wild type (native) protein		adenylyl cyclase cAMP production / COS-1	(Cohen, Thaw et al. 1997)
CLASS II GROUP II					
PTRR_human	parathyroid hormone PTH / PTH-related peptide	junction of IC1 and TMII	223 TRNYIHMHLFL SEQ ID NO: 62 R, K	cAMP accumulation / COS-7	(Schipani, Jensen et al. 1997)
		junction of IC3 and TMVI	410 KLUKSTLVLMMP SEQ ID NO: 63 C, others		
CLASS B GROUP III					
GIPR_human	glucose-dependent insulinotropic peptide (GIP-R)	TMVI	340 VFAPVTEEQAR SEQ ID NO: 64 P	cAMP production / L293	(Tseng and Lin 1997)
GLR_rat	glucagon	junction of IC loop 1 and TMII	178 TRNYIHMGNLFA SEQ ID NO: 65 R	cAMP accumulation / COS-7	(Hjorth, Orskov et al. 1998)
		IC end of TMVI	352 RLARSTLTLIP SEQ ID NO: 66 A		
VIPR_human	vasoactive intestinal peptide 1 (VIP)	junction of IC loop 1 and TMII	178 RNYIHMHLFI SEQ ID NO: 67 R requires functional integrity of the N-terminal EC domain	cAMP production / COS-7 or CHO	(Gaudin, Maoret et al. 1998) (Gaudin, Rouyer-Fessard et al. 1998)
		junction of IC loop 3 and TMVI	343 LARSTLLLIP SEQ ID NO: 68 X= K, P		

11/31

FIG. 1-11

File Name CLASS C	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CASR_human	calcium-sensing	N-terminal EC	TLSFVVAQNKIDSLNLDEFNCSEH	IP / tsA various substitutions, in multiple combinations	(Jensen, Spalding et al. 2000)
				SEQ ID NO: 69	

FIG. 1-12

12/31

10039645 . 050102

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS_D					
O74283 RCB2 <i>C. cinereus</i>	pheromone	TM6	229 PLSAYQIYLGR SEQ ID NO: 70 P	heterologous yeast assay	(Olesnickiy, Brown et al. 1999)
STE2_yeast	pheromone α -factor	TM6	258 QSILLVPSIIIFI SEQ ID NO: 71 IL.	<i>lacZ</i> reporter gene	(Konopka, Marganit et al. 1996)
STE2_yeast	pheromone α -factor	double mutations TM5 and TM6	223 MSPFVLLYVK W ILAIR SEQ ID NO: 72 C C 247 251 DSFHILL I SCQSLL SEQ ID NO: 73 CC CC double mutations shaded double mutations	<i>lacZ</i> reporter gene / yeast	(Dube, DeCostanzo et al. 2000)
STE3_yeast	pheromone α -factor	IC3	194 DVRDILHCTNS SEQ ID NO: 74 Q	β -galactosidase	(Boone, Davis et al. 1993)
STE2_yeast	pheromone α -factor	TM6	253 258 LIMSCQSLLVPSIIIFI SEQ ID NO: 75 L LP	β -galactosidase	(Sommers, Martin et al. 2000)

FIG. 1-13

Bibliography

- Acharya, S. and S. S. Karnik (1996). "Modulation of GDP release from transducin by the conserved Glu134-Arg135 sequence in rhodopsin." *J Biol Chem* 271(41): 25406-11.
- Alewijne, A. E., H. Timmerman, et al. (2000). "The Effect of Mutations in the DRY Motif on the Constitutive Activity and Structural Instability of the Histamine H(2) Receptor." *Mol Pharmacol* 57(5): 890-898.
- Allen, L. F., R. J. Lefkowitz, et al. (1991). "G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances mitogenesis and tumorigenicity." *Proc Natl Acad Sci U S A* 88(24): 11354-8.
- Amalinda, T. T., 3rd, S. Dragas-Graonic, et al. (1995). "Signal transduction by the formyl peptide receptor. Studies using chimeric receptors and site-directed mutagenesis define a novel domain for interaction with G-proteins." *J Biol Chem* 270(47): 28010-3.
- Bluml, K., E. Mutschler, et al. (1994). "Functional role in ligand binding and receptor activation of an asparagine residue present in the sixth transmembrane domain of all muscarinic acetylcholine receptors." *J Biol Chem* 269(29): 18870-6.
- Boone, C., N. G. Davis, et al. (1993). "Mutations that alter the third cytoplasmic loop of the a-factor receptor lead to a constitutive and hypersensitive phenotype." *Proc Natl Acad Sci U S A* 90(21): 9921-5.
- Bradbury, F. A., N. Kawate, et al. (1997). "Post-translational processing in the Golgi plays a critical role in the trafficking of the luteinizing hormone/human chorionic gonadotropin receptor to the cell surface." *J Biol Chem* 272(9): 5921-6.
- Bradbury, F. A. and K. M. Menon (1999). "Evidence that constitutively active luteinizing hormone/human chorionic gonadotropin receptors are rapidly internalized." *Biochemistry* 38(27): 8703-12.
- Burger, M., J. A. Burger, et al. (1999). "Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Kaposi's sarcoma herpesvirus-G protein-coupled receptor." *J Immunol* 163(4): 2017-22.
- Burstein, E. S., T. A. Spalding, et al. (1996). "Constitutive activation of chimeric m2/m5 muscarinic receptors and delineation of G-protein coupling selectivity domains." *Biochem Pharmacol* 51(4): 533-44.
- Cavalli, A., A. M. Babey, et al. (1999). "Altered adenylyl cyclase responsiveness subsequent to point mutations of Asp 128 in the third transmembrane domain of the delta-opioid receptor." *Neuroscience* 93(3): 1025-31.
- Charpentier, S., K. R. Jarvie, et al. (1996). "Silencing of the constitutive activity of the dopamine D1B receptor. Reciprocal mutations between D1 receptor subtypes delineate residues underlying activation properties." *J Biol Chem* 271(45): 28071-6.
- Cho, W., L. P. Taylor, et al. (1996). "Mutagenesis of residues adjacent to transmembrane prolines alters D1 dopamine receptor binding and signal transduction." *Mol Pharmacol* 50(5): 1338-45.
- Cohen, D. P., C. N. Thaw, et al. (1997). "Human calcitonin receptors exhibit agonist-independent (constitutive) signaling activity." *Endocrinology* 138(4): 1400-5.
- Cohen, G. B., T. Yang, et al. (1993). "Constitutive activation of opsin: influence of charge at position 134 and size at position 296." *Biochemistry* 32(23): 6111-5.
- Dube, P., A. DeCostanzo, et al. (2000). "Interaction between transmembrane domains five and six of the alpha 1-factor receptor." *J Biol Chem* 275(34): 26492-9.
- Duprez, L., J. Parma, et al. (1994). "Germline mutations in the thyrotropin receptor gene cause non-autoreactive autosomal dominant hyperthyroidism." *Nat Genet* 7(3): 396-401.
- Egan, C. T., K. Herrick-Davis, et al. (1998). "Creation of a constitutively activated state of the 5-hydroxytryptamine2A receptor by site-directed mutagenesis: inverse agonist activity of anti-psychotic drugs." *J Pharmacol Exp Ther* 286(1): 85-90.
- Esapa, C. T., L. Duprez, et al. (1999). "A novel thyrotropin receptor mutation in an infant with severe thyrotoxicosis." *Thyroid* 9(10): 1005-10.
- Fanelli, F., P. Barbier, et al. (1999). "Activation mechanism of human oxytocin receptor: a combined study of experimental and computer-simulated mutagenesis." *Mol Pharmacol* 56(1): 214-25.
- Gaudin, P., J. J. Maoret, et al. (1998). "Constitutive activation of the human vasoactive intestinal peptide 1 receptor, a member of the new class II family of G protein-coupled receptors." *J Biol Chem* 273(9): 4990-6.
- Gaudin, P., C. Rouyer-Fessard, et al. (1998). "Constitutive activation of the human VIP1 receptor." *Ann NY Acad Sci* 865: 382-5.

14/31

FIG. 1-14

- Govardhan, C. P. and D. D. Oprian (1994). "Active site-directed inactivation of constitutively active mutants of rhodopsin." *J Biol Chem* 269(9): 6524-7.
- Groblewski, T., B. Maignret, et al. (1997). "Mutation of Asn111 in the third transmembrane domain of the AT1A angiotensin II receptor induces its constitutive activation." *J Biol Chem* 272(3): 1822-6.
- Han, M., S. O. Smith, et al. (1998). "Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6." *Biochemistry* 37(22): 8253-61.
- Hasegawa, H., M. Negishi, et al. (1996). "Two isoforms of the prostaglandin E receptor EP3 subtype different in agonist-independent constitutive activity." *J Biol Chem* 271(4): 1857-60.
- Herrick-Davis, K., C. Egan, et al. (1997). "Activating mutations of the serotonin 5-HT2C receptor." *J Neurochem* 69(3): 1138-44.
- Hjorth, S. A., C. Orskov, et al. (1998). "Constitutive activity of glucagon receptor mutants." *Mol Endocrinol* 12(1): 78-86.
- Högger, P., M. S. Shockley, et al. (1995). "Activating and inactivating mutations in N- and C-terminal 13 loop junctions of muscarinic acetylcholine M₁ receptors." *J Biol Chem* 270(13): 7405-10.
- Hwa, J., R. Gaivin, et al. (1997). "Synergism of constitutive activity in alpha 1-adrenergic receptor activation." *Biochemistry* 36(3): 633-9.
- Ishii, I., T. Izumi, et al. (1997). "Alanine exchanges of polar amino acids in the transmembrane domains of a platelet-activating factor receptor generate both constitutively active and inactive mutants." *J Biol Chem* 272(12): 7846-54.
- Jensen, A. A., T. A. Spalding, et al. (2000). "Functional importance of the Ala116-Pro136 region in the calcium-sensing receptor. CONSTITUTIVE ACTIVITY AND INVERSE AGONISM IN A FAMILY C-G-PROTEIN-COUPLED RECEPTOR [In Process Citation]." *J Biol Chem* 275(38): 29547-55.
- Jin, J., G. F. Mao, et al. (1997). "Constitutive activity of human prostaglandin E receptor EP3 isoforms." *British J Pharmacol* 121: 317-23.
- Kjelsberg, M. A., S. Cotecchia, et al. (1992). "Constitutive activation of the alpha 1B-adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region which constrains receptor activation." *J Biol Chem* 267(3): 1430-3.
- Konopka, J. B., S. M. Marganit, et al. (1996). "Mutation of Pro-258 in transmembrane domain 6 constitutively activates the G protein-coupled alpha-factor receptor." *Proc Natl Acad Sci U S A* 93(13): 6764-9.
- Kosugi, S., C. Van Dop, et al. (1995). "Characterization of heterogeneous mutations causing constitutive activation of the luteinizing hormone receptor in familial male precocious puberty." *Eurm Mol Genet* 4(2): 183-8.
- Kudo, M., Y. Osuga, et al. (1996). "Transmembrane regions V and VI of the human luteinizing hormone receptor are required for constitutive activation by a mutation in the third intracellular loop." *J Biol Chem* 271(37): 22470-8.
- Leikowitz, R. J., S. Cotecchia, et al. (1993). "Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins." *Trends Pharmacol Sci* 14(8): 303-7.
- Liu, J., N. Blin, et al. (1996). "Molecular mechanisms involved in muscarinic acetylcholine receptor-mediated G protein activation studied by insertion mutagenesis." *J Biol Chem* 271(1): 6172-8.
- Marie, J., C. Koch, et al. (1999). "Constitutive activation of the human bradykinin B2 receptor induced by mutations in transmembrane helices III and VI." *Mol Pharmacol* 55(1): 92-101.
- Mason, D. A., J. D. Moore, et al. (1999). "A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor." *J Biol Chem* 274(18): 12670-4.
- Matrus-Leibovich, N., D. R. Nussenzveig, et al. (1995). "Truncation of the thyrotropin-releasing hormone receptor carboxyl tail causes constitutive activity and leads to impaired responsiveness in Xenopus oocytes and AtT20 cells." *J Biol Chem* 270(3): 1041-7.
- Morin, D., N. Corte, et al. (1998). "The D136A mutation of the V2 vasopressin receptor induces a constitutive activity which permits discrimination between antagonists with partial agonist and inverse agonist activities." *FEBS Lett* 441(3): 470-5.
- Nainievicz, T., L. Wang, et al. (1996). "Thrombin receptor activating mutations. Alteration of an extracellular agonist recognition domain causes constitutive signaling." *J Biol Chem* 271(2): 702-6.
- Olesnicky, N. S., A. J. Brown, et al. (1999). "A constitutively active G-protein-coupled receptor causes mating self-compatibility in the mushroom Coprinus." *Ethobi J* 18(10): 2756-63.
- PARENT, J. L., C. LE COUILL, et al. (1996). "Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor." *J Biol Chem* 271(14): 7949-55.

FIG. 1-15

15/31

- Parma, J., J. Van Sande, et al. (1995). "Somatic mutations causing constitutive activity of the thyrotropin receptor are the major cause of hyperfunctioning thyroid adenomas: identification of additional mutations activating both the cyclic adenosine 3',5'-monophosphate and inositol phosphate-Ca²⁺ cascades." Mol Endocrinol 9(6): 725-33.
- Pannet, C., S. Bardini, et al. (2000). "Systematic identification of mutations that constitutively activate the angiotensin II type 1A receptor by screening a randomly mutated cDNA library with an original pharmacological bioassay." Proc Natl Acad Sci U S A 97(13): 7615-20.
- Paschke, R., M. Tonacchera, et al. (1994). "Identification and functional characterization of two new somatic mutations causing constitutive activation of the thyrotropin receptor in hyperfunctioning autonomous adenomas of the thyroid." J Clin Endocrinol Metab 79(6): 1785-9.
- Pauwels, P. J., A. Gouble, et al. (1999). "Activation of constitutive 5-hydroxytryptamine 1B receptor by a series of mutations in the BXXXXB motif: positioning of the third intracellular loop distal junction and its goalalpha protein interactions [In Proccss Citation]." Biochem J 343 Pt 2: 435-42.
- Perez, D. M., J. Hwa, et al. (1996). "Constitutive activation of a single effector pathway: evidence for multiple activation states of a G protein-coupled receptor." Mol Pharmacol 49(1): 112-22.
- Ren, Q., H. Kurose, et al. (1993). "Constitutively active mutants of the alpha 2-adrenergic receptor [published erratum appears in J Biol Chem 1994 Jan 14;269(2):1566]." J Biol Chem 268(22): 16483-7.
- Rim, J. and D. D. Oprian (1995). "Constitutive activation of opsin: interaction of mutants with rhodopsin kinase and arrestin." Biochemistry 34(37): 11938-45.
- Robbins, L. S., J. H. Nadeau, et al. (1993). "Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function." Cell 72(6): 827-34.
- Russo, D., M. G. Wong, et al. (1999). "A Val 677 activating mutation of the thyrotropin receptor in a Hurthle cell thyroid carcinoma associated with thyrotoxicosis." Thyroid 9(1): 13-7.
- Samama, P., S. Cotecchia, et al. (1993). "A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model." Journal of Biological Chemistry 268(7): 4625-36.
- Scheer, A., T. Costa, et al. (2000). "Mutational analysis of the highly conserved arginine within the Glu/Asp-Ary-Tyr motif of the alpha(1b)-adrenergic receptor: effects on receptor isomerization and activation." Mol Pharmacol 57(2): 219-31.
- Scheer, A., F. Fanelli, et al. (1997). "The activation process of the alpha 1B-adrenergic receptor: potential role of protonation and hydrophobicity of a highly conserved aspartate." Proc Natl Acad Sci U S A 94(3): 808-13.
- Schipani, E., G. S. Jensen, et al. (1997). "Constitutive activation of the cyclic adenosine 3',5'-monophosphate signaling pathway by parathyroid hormone (PTH)/PTH-related peptide receptors mutated at the two loci for Jantzen's metaphyseal chondrodysplasia." Mol Endocrinol 11(7): 851-8.
- Shenker, A., L. Laue, et al. (1993). "A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty [see comments]." Nature 365(6447): 652-4.
- Sommers, C. M., N. P. Marin, et al. (2000). "A limited spectrum of mutations causes constitutive activation of the yeast alpha-factor receptor." Biochemistry 39(23): 6898-909.
- Spalding, T. A., E. S. Burstein, et al. (1998). "Identification of a ligand-dependent switch within a muscarinic receptor." J Biol Chem 273(34): 21563-8.
- Spalding, T. A., E. S. Burstein, et al. (1997). "Constitutive activation of the m5 muscarinic receptor by a series of mutations at the extracellular end of transmembrane 6." Biochemistry 36(33): 10109-16.
- Tseng, C. C. and L. Lin (1997). "A point mutation in the glucose-dependent insulinotropic peptide receptor confers constitutive activity." Biochem Biophys Res Commun 233(1): 96-100.
- Wonerow, P., T. Schoneberg, et al. (1998). "Deletions in the third intracellular loop of the thyrotropin receptor. A new mechanism for constitutive activation." J Biol Chem 273(14): 7900-5.

16/31

FIG. 2
A Point Mutation Enhances MC-4 Receptor
Constitutive Activity

17/31

FIG. 3

Light Emission Induced by the WT CCK-BR
vs. a Constitutively Active Mutant

18/31

FIG. 4

A Point Mutation Confers Constitutive Activity
to the Rat μ Opioid Receptor

19/31

FIG. 5

Forskolin Stimulated HEK293 Cells Transfected
With pcDNA1 and a CRE-luc Construct

FIG. 6

The Rat μ Opioid Receptor Signals Through G α i

21/31

FIG. 7

A Point Mutation Confers Constitutive Activity
to the Rat μ Opioid Receptor

22/31

FIG. 8

Target Residues Within Class I GPCRs

23/31

FIG. 9
TMD III Asn (-14 from DRY) is a Target
for Mutation Induced Constitutive Activity

24/31

FIG. 10
The 'DRY' Motif is a Target for Mutation
Induced Constitutive Activity

25/31

FIG. 11

A Point Mutation Enhances MC-4 Receptor
Constitutive Activity

26/31

FIG. 12

The -13 Position is a Target for Mutation
Induced Constitutive Activity

27/31

FIG. 13

SEQ ID NO: 76 ork
 SEQ ID NO: 77 orkr
 SEQ ID NO: 78 orm
 SEQ ID NO: 79 orm
 SEQ ID NO: 80 ord
 SEQ ID NO: 81 AT1a
 SEQ ID NO: 82 BK-2

```

1 -----MESPIQIFRGEPEGPTCAPSACIIPPNSSAWFPGWAEPP..DSNGSAGSEDAQ
1 -----MESPIQIFRGEPEGPTCAPSACIIPPNSSSWFPNWAE..DSNGSVGSEDOQ
1 MDSAAAPTNASNCTDAIAYSSCSPAPSPGSWV..NLSHLDGNIISPCGPNRTDLGGRDSSL
1 MDSSTGPNTSDCSDPQAQASCSPA..PGSWL..NLSHVDGNOSDPCGLNRTGLGGNDSSL
1 -----MEPAPSAGAE..Q..PPLFANASDAYPSACPSAGANASG
1 -----MALNSSAEDGIKRIQ
1 -----MFSPWKISMFLSVREDSVPTTASFSADMNLNVTLQGPTLNG..TFAC
  
```

ork	49	LEPAHISPAI..PVHITAVYSUVFVVGLGNSLVMEVITYRTKMKTATNIYIFNLALADA
orkr	49	LEPAHISPAI..PVHITAVYSUVFVVGLGNSLVMEVITYRTKMKTATNIYIFNLALADA
orm	59	CPTGTS.PSMITAIIIMALYSIVCVVGLFGNELVMEVIVRYTKMKTATNIYIFNLALADA
ormr	57	CPTGTS.PSMVTAIIIMALYSIVCVVGLFGNELVMEVIVRYTKMKTATNIYIFNLALADA
ord	37	PPGARSASSLALAIATITALYSAVCAGLVGNVLVMEGIVRYTKMKTATNIYIFNLALADA
AT1a	16	DDCPKAGRHSYIFVMIPTLYSIVFVVGIFGNSLVIVIYFYMKEIKTVASVFLINLALADL
BK-2	45	SKCPQVEWLGLNNTIOPPFLWLFVLAIEENIFVLSVFCILHKSSCIVAEIYLGNLAAIDL

ork	107	LVTHTMPFQSSTVYLMN..SWPFGDVLCKIVISIDYYNMFTSIFTLTMMMSVDRYIAVCHPVK
orkr	107	LVTHTMPFQSSTVYLMN..SWPFGDVLCKIVISIDYYNMFTSIFTLTMMMSVDRYIAVCHPVK
orm	118	LATSTLPFQSSTVYLMG..WPFGTIELCKIVISIDYYNMFTSIFTLTMMMSVDRYIAVCHPVK
ormr	116	LATSTLPFQSSTVYLMG..WPFGTIELCKIVISIDYYNMFTSIFTLTMMMSVDRYIAVCHPVK
ord	97	LATSTLPFQSSTVYLMG..WPFGTIELCKIVISIDYYNMFTSIFTLTMMMSVDRYIAVCHPVK
AT1a	76	CFLLTLPFWAVYTAMEYRWPFGNHLCKIASASVTEENLYASVFLTCISIDRYLAVHPMK
BK-2	105	ILACGLPFWAITISNNFDWLGEGETLCRVVMNIIISMNLYSSICFLMVSIDRYLALVKTM

-14 from DRY *

ork	166	ALDFRTPLKAKIINICIWLLSSSGVISAIVLGGTKVR..EDVDVIECSLOFDDDDYSWW
orkr	166	ALDFRTPLKAKIINICIWLLSSSGVISAIVLGGTKVR..EDVDVIECSLOFDDDDYSWW
orm	177	ALDFRTPRNAKIINVONWILSSAIGLPPVEMATTKYR..Q..GSIDCILTFSHPTW.YWE
ormr	175	ALDFRTPRNAKIINVONWILSSAIGLPPVEMATTKYR..Q..GSIDCILTFSHPTW.YWE
ord	156	ALDFRTPAKAKLINICIWVJASGVGVPIVMAVTRPR..D..GAUVCMLQFSPPSW.YWD
AT1a	136	SRLRRTMLVAKVTCIIWILMAGLASTAVIHRNV..YFIENTNITVCAFHYESRN.STLP
BK-2	165	MGRMRGVRWAKLYSTVIWGCLLSSPMELVFRTMKEYSDEGHNVATACVISYPES...LIWE

ork	224	LFMKICVFIFAFVTPVLIIVCYTLMILRLKSVRIILSGSREKDRNLRRITRLVLVVVAVF
orkr	224	LFMKICVFIFAFVTPVLIIVCYTLMILRLKSVRIILSGSREKDRNLRRITKLVLVVVAVF
orm	232	NLKICVFIFAFVTPVLIIVCYGLMLRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVF
ormr	230	NLKICVFIFAFVTPVLIIVCYGLMLRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVF
ord	211	TVTKICVFIFAFVTPVLIIVCYGLMLRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVF
AT1a	193	IIGLGLTKNILGFLPFELIITSYTLIWKALKKAYEIQKNKPRNDD..IFRIIMAIVLFE
BK-2	222	VFTNMLLNVVGFLLP..LSVITFCITMQVQLRNNEQKFKEIOTE..RRATVVLVVLFF

ork	284	IVCWTPIHIFIILVEALGS.T....SHTAAALSSYYFCIALGYTNSSLNPVLYAFLDENF
orkr	284	IVCWTPIHIFIILVEALGS.T....SHTAAALSSYYFCIALGYTNSSLNPVLYAFLDENF
orm	292	IVCWTPIHIFIYVIIKALVTP.....ETIFQTVSWHFICIALGYTNCLNPVLYAFLDENF
ormr	290	IVCWTPIHIFIYVIIKALVTP.....ETIFQTVSWHFICIALGYTNCLNPVLYAFLDENF
ord	271	IVCWTPIHIFIYVIIKALVTP.....RRDPLVVAALHLICIALGYANSSLNPVLYAFLDENF
AT1a	250	FFSWVPVPHOIFTEFLDVLIQGVIVHDCKISDIVDTAMPITICIAFYNNCLNPIFYGFLGKF
BK-2	280	IICWLDPQIISTFLDTIHRIGILSSCQDERIHDVITQIASPMAYNSCLNPLMVIVGKF

ork	338	KRCFRDIFCFPIKMRMERQSTSRRP..NTVQD..PAYLRDIDGMNKPV-----
orkr	338	KRCFRDIFCFPIKMRMERQSTSRRP..NTVQD..PASMRDVGGMNKPV-----
orm	346	KRCFRFCIPTSSNTECONSTRFRONT..RDHPSTANTVDRTNHQLLENLEAETAPLP
ormr	344	KRCFRFCIPTSSNTECONSTRFRONT..RHHPSTANTVDRTNHQLLENLEAETAPLP
ord	326	KRCFRDIFCFPIKMRMERQSTSRRP..NTVQD..PAYLRDIDGMNKPV-----
AT1a	310	KKMLOLLKYIIPPIAKSHS..SLSTKM..STLSYRPSDNMSSSAKKPASCFEVE-
BK-2	340	RKKSWEVYOGCOKGGCRSEPIQMEMSM..GTL..RTSISVEROIHKLQDWAGSRQ

FIG. 14

28/31

SEQ ID NO: 83 mORmouse
 SEQ ID NO: 79 mORrat
 SEQ ID NO: 84 mORbovin
 SEQ ID NO: 85 mORhuman
 SEQ ID NO: 86 mORpig
 SEQ ID NO: 87 mORws
 SEQ ID NO: 81 AT1a
 SEQ ID NO: 82 BK-2

1 MDSSAGPGNISDCSDPLA.PASCSPA...PGSWINLSHVDGNQSDPCGPNRTGLGGSHSLC
 1 MDSSAGPGNISDCSDPLA.QASCSPA...PGSWINLSHVDGNQSDPCGQNRTGLGGNDSLC
 1 MDSSAGPGNISDCSDPLA.QASCSPA...PGSWINLSHVDGNQSDPCGQNRTGLGGNDSLC
 1 MDSSAGPGNISDCSDPLA.QASCSPA...PGSWINLSHVDGNQSDPCGPNRTGLGGNDSLC
 1 MDSSAGPGNISDCSDPLA.QASCSPA...PGSWINLSHVDGNQSDPCGPNRTGLGGNDSLC
 1 MDSSAGPGNISDCSDPLA.QASCSPA...PGSWINLSHVDGNQSDPCGPNRTGLGGNDSLC
 1 MDSSAGPGNISDCSDPLA.QASCSPA...PGSWINLSHVDGNQSDPCGPNRTGLGGNDSLC
 1 METS...CNISDFLYPLS....NPVMS....NSSVICRNRNSTSTFLNMNGSSRDSTD
 1 -----MALNSSAEDGIKRIQDDC
 1 -----MFSPWKISMFLSVREDSVPTTASFSADMNLNVTLQGETLNG.TFAOSKC

mORmouse 58 PQTGSPSMVTAITIMALYSIVCVVGLFGNFLVMYVIIVRYTKMKTATNIYIFNLALADALA
 mORrat 58 PQTGSPSMVTAITIMALYSIVCVVGLFGNFLVMYVIIVRYTKMKTATNIYIFNLALADALA
 mORbovin 61 PSAGSPSMVTAITIMALYSIVCVVGLFGNFLVMYVIIVRYTKMKTATNIYIFNLALADALA
 mORhuman 60 PPTGSPSMVTAITIMALYSIVCVVGLFGNFLVMYVIIVRYTKMKTATNIYIFNLALADALA
 mORpig 61 PPTGSPSMVTAITIMALYSIVCVVGLFGNFLVMYVIIVRYTKMKTATNIYIFNLALADALA
 mORws 48 ECDKIEVITIAITIMALYSIVCVVGLFGNFLVMYVIIVRYTKMKTATNIYIFNLALADALA
 AT1a 19 PIKAHRHSYIIFVFM.IPTLYSIIIFVVGIFGNLSLVVIIVYFYMKUKTAVASVELLNLAADLCF
 BK-2 48 POVEWLGWINTI.QPPFLWVLFVLATLENIFVLSVFCFLHKSSCTVAELYLCLNLAADLIL

mORmouse 118 TSTLPFQSVMNYLMG.TWPFGNILCKIVISIDYYNMFTSIFTLCMSVDRYIAVCHPVKAL
 mORrat 118 TSTLPFQSVMNYLMG.TWPFGTILCKIVISIDYYNMFTSIFTLCMSVDRYIAVCHPVKAL
 mORbovin 121 TSTLPFQSVMNYLMG.TWPFGTILCKIVISIDYYNMFTSIFTLCMSVDRYIAVCHPVKAL
 mORhuman 120 TSTLPFQSVMNYLMG.TWPFGTILCKIVISIDYYNMFTSIFTLCMSVDRYIAVCHPVKAL
 mORpig 121 TSTLPFQSVMNYLMG.TWPFGTILCKIVISIDYYNMFTSIFTLCMSVDRYIAVCHPVKAL
 mORws 107 TSTLPFQSVMNYLMG.TWPFGDYYCKIVISIDYYNMFTSIFTLCMSVDRYIAVCHPVKAL
 AT1a 78 LLTLPWAVYTAMEYRWPFGNHLCKIASVTEVYASVELLNLAADLCF
 BK-2 107 ACGLPFWAKITISNNFDWLFEGETILCRVWNHISMNLYSSICFLMLVSIDRYLAIVKIMSMG

mORmouse 177 DFRTPRNAKIVNVCNWILSSAIGLPVVMFATTKYRG.....GSIDCTLTFSHPTWYWE
 mORrat 177 DFRTPRNAKIVNVCNWILSSAIGLPVVMFATTKYRG.....GSIDCTLTFSHPTWYWE
 mORbovin 180 DFRTPRNAKIVNVCNWILSSAIGLPVVMFATTKYRG.....GSIDCTLTFSHPTWYWE
 mORhuman 179 DFRTPRNAKIVNVCNWILSSAIGLPVVMFATTKYRG.....GSIDCTLTFSHPTWYWE
 mORpig 180 DFRTPRNAKIVNVCNWILSSAIGLPVVMFATTKYRG.....GSIDCTLTFSHPTWYWE
 mORws 166 DFRTPRNAKIVNVCNWILSSAIGLPVVMMASTTIEQNSPLOVSNFDCTLLSPHPPWYWE
 AT1a 138 LRRITMLVAKVTCIIIWLMAGLASLPAVIRHNV....YFIENTNITVCAFHYESRNSTLPE
 BK-2 167 RMRGVRWAKIYSLIVIWGCGILLSSPMILVFRM...EYSDEGHNVTAQVISTYPS..LINE

mORmouse 230 NLLKICVFIIFAFIMPVLIITVCYGLMILRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVE
 mORrat 230 NLLKICVFIIFAFIMPVLIITVCYGLMILRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVE
 mORbovin 233 NLLKICVFIIFAFIMPVLIITVCYGLMILRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVE
 mORhuman 232 NLLKICVFIIFAFIMPVLIITVCYGLMILRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVE
 mORpig 233 NLLKICVFIIFAFIMPVLIITVCYGLMILRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVE
 mORws 226 TLLKICVFIIFAFIMPVLIITVCYGLMILRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVE
 AT1a 193 IGLGLTKNIDLGFLPFPLIILTSYTLIWKALKKAYEQKNKPRNDD...IERTIIMAIYLF
 BK-2 222 VFTNMLNWNWGFLLP.LSITFCTYQIMQLRNNNEQKEKEIOTE.RRATVVLVVVAE

mORmouse 290 IVCWTPIHIYVIIKALITI.....PETTFQTVSWHFCIALGYTNCLNPVLYAFLDENF
 mORrat 290 IVCWTPIHIYVIIKALITI.....PETTFQTVSWHFCIALGYTNCLNPVLYAFLDENF
 mORbovin 293 IVCWTPIHIYVIIKALITI.....PETTFQTVSWHFCIALGYTNCLNPVLYAFLDENF
 mORhuman 292 IVCWTPIHIYVIIKALITI.....PETTFQTVSWHFCIALGYTNCLNPVLYAFLDENF
 mORpig 293 IVCWTPIHIYVIIKALITI.....PETTFQTVSWHFCIALGYTNCLNPVLYAFLDENF
 mORws 286 IVCWTPIHIYVIIKALITI.....PNSLFQTVSWHFCIALGYTNCLNPVLYAFLDENF
 AT1a 250 FFSWVPHQIETFDUDVLLIIGVIHDCKISDIVDTAMPITIAYENNCLNPFLYGFGLGKF
 BK-2 280 IICWLWFOISTFLDTIHLIGILSSCODERIIDVITQIASPMAYNSNCLNPVYVIVGKR

mORmouse 344 KRCFREFC..IPTSSTIEQQNSARIQNTRDHPSTANTVDRTNHQLENLEAETAPLP
 mORrat 344 KRCFREFC..IPTSSTIEQQNSTRIQRNTREDHPSTANTVDRTNHQLENLEAETAPLP
 mORbovin 347 KRCFREFC..IPTSSTIEQQNSTRIQRNTREDHPSTANTVDRTNHQLENLEAETAPLP
 mORhuman 346 KRCFREFC..IPTSSTIEQQNSTRIQRNTREDHPSTANTVDRTNHQLENLEAETAPLP
 mORpig 347 KRCFREFC..IPTSSTIEQQNSARIQNTRDHPSTANTVDRTNHQLENLEAETAPLP
 mORws 340 KRCFREFC..VPSPSVLIDONSTRNSNPQCEGOSSGHVDRNNAROV-----
 AT1a 310 KKYFLOLLKYIIPPKAKSHS...SLSTMSTLSYRPSDNSSSAKKPASCFEVE-----
 BK-2 340 RKKSWEVYOGVCQKGGCRSEPIQMENSMGL..RTSIISVEROIHKLQDWAGSRQ---

29/31

FIG. 15

30/31

FIG. 16 An Intracellular Point Mutation Results in Loss of Ligand-Induced Function

31/31

FIG. 17

