1. (Example 2.6)

Given x(t) = u(t-1) - u(t-3) and h(t) = u(t) - u(t-2) as depicted in Fig. 2-10.

Evaluate the convolution integral y(t) = x(t) * h(t)

Figure 2.10. Input signal and LTI system impulse response for Example 2.6.

2. (Example 2.7)

For the RC circuit in Fig. 2.12, the impulse response of this circuit is $h(t) = e^{-t} u(t)$.

Use convolution to determine the capacitor voltage, y(t), resulting from an input voltage x(t) = u(t) - u(t-2).

Figure 2.12. RC circuit system with the voltage source x(t) as input and the voltage measured across the capacitor y(t), as output.

3. (Example 2.8)

Suppose that the input x(t) and impulse response h(t) of an LTI system are, respectively, given by x(t) = (t-1)[u(t-1) - u(t-3)] and h(t) = u(t+1) - 2u(t-2). Find the output of the system.