Feuille d'exercices 1

Exercice 1. Soit $E = \{a, b\}$ un ensemble à deux éléments.

- a) On considère sur E la loi de composition interne * définie par a*a=a, a*b=a, b*a=b, b*b=b. Cette loi est-elle commutative? associative?
- b) Mêmes questions pour la loi * définie par a * a = b, a * b = a, b * a = a, b * b = a.
- c) Construire sur E une loi de composition interne * telle que (E, *) soit un groupe.

Exercice 2. On munit l'ensemble \mathbb{R} d'une loi de composition * définie par a*b=a+b-ab pour tous les $a,b\in\mathbb{R}$.

- a) Vérifier que la loi * est associative, et admet un élément neutre que l'on identifiera.
- b) Déterminer tous les éléments $a \in \mathbb{R}$ admettant un symétrique a' pour la loi *.
- c) Vérifier que $\mathbb{R}\setminus\{1\}$, muni de la loi *, est un groupe abélien.

Exercice 3. On définit sur $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ une loi de composition * de la façon suivante :

$$\forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2 : (x_1, y_1) * (x_2, y_2) = (x_1 + x_2, y_1 e^{x_2} + y_2 e^{-x_1}).$$

- a) Vérifier que la loi * est associative, et admet un élément neutre que l'on identifiera.
- b) Calculer le symétrique pour la loi * de tout élément $(x, y) \in \mathbb{R}^2$.
- c) Vérifier que \mathbb{R}^2 muni de la loi * est un groupe. Ce groupe est-il abélien?

Exercice 4. Montrer que les structures suivantes sont des groupes:

- **a)** $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +).$
- **b)** $(\{-1,1\},\cdot), (\mathbb{Q}^*,\cdot), (\mathbb{R}^*,\cdot), (\mathbb{C}^*,\cdot).$
- c) $(S(E), \circ)$, où E est un ensemble fini et S(E) l'ensemble des bijections de E dans E. Remarque: si $E = \{1, ..., n\}$, on note S_n le groupe S(E).

Exercice 5. Les ensembles suivants muni des lois considérées sont-ils des groupes?

- a) $G = \{f_1, f_2, f_3, f_4\}$ muni de la composition \circ , où f_1, f_2, f_3, f_4 sont les applications de \mathbb{R}^* définies par $f_1(x) = x$, $f_2(x) = -x$, $f_3(x) = 1/x$, $f_4(x) = -1/x$.
- **b)** $H = \{f_{a,b}; (a,b) \in \mathbb{R}^* \times \mathbb{R}\}$ muni de la composition \circ , où $f_{a,b}$ est l'application de \mathbb{R} dans \mathbb{R} définie par $f_{a,b}(x) = ax + b$.
- c) L'ensemble E des fonctions croissantes de \mathbb{R} dans \mathbb{R} , muni de l'addition.

Exercice 6.

- a) Dresser la table de multiplication d'un groupe à trois éléments. Ce groupe est-il abélien?
- **b)** Montrer qu'il existe deux groupes non isomorphes possédant chacun quatre éléments. Ces groupes sont-ils abéliens?

Exercice 7. Soit \mathbb{U}_4 l'ensemble des racines quatrièmes de l'unité dans \mathbb{C} .

- a) Écrire la table du groupe (\mathbb{U}_4,\cdot) . À quoi voit-on que ce groupe est abélien?
- **b)** Trouver un sous-groupe du groupe (\mathbb{U}_4,\cdot) autre que $\{1\}$ et \mathbb{U}_4 .

Exercice 8. Soit (G, *) un groupe fini, ce qui signifie que l'ensemble G possède un nombre fini d'éléments. Étant donné $a \in G$, on note $a^2 = a * a$, $a^3 = a * a * a$, et ainsi de suite.

- a) Observer que les éléments de la forme a^n , où $n \in \mathbb{N}^*$, ne sont pas tous distincts.
- b) En déduire qu'il existe $m \in \mathbb{N}^*$ tel que $a^m = e$, où e est l'élément neutre du groupe.
- c) Si $m \in \mathbb{N}^*$ est le plus petit entier tel que $a^m = e$, vérifier que $H := \{e, a, a^2, \dots, a^{m-1}\}$ est un sous-groupe de G.

Exercice 9. On considère le groupe \mathbb{Z} des entiers relatifs muni de l'addition.

- a) Si $m \in \mathbb{N}$, on note $m\mathbb{Z} = \{mn : n \in \mathbb{Z}\}$. Vérifier que $m\mathbb{Z}$ est un sous-groupe de \mathbb{Z} .
- b) Soit G un sous-groupe de \mathbb{Z} . Montrer qu'il existe $m \in \mathbb{N}$ tel que $G = m\mathbb{Z}$.

Indication: Si $G \neq \{0\}$, on pourra définir $m \in \mathbb{N}^*$ comme le plus petit entier naturel non nul contenu dans G. Pour tout élément n de G, on considérera alors le reste de la division euclidienne de n par m.

Exercice 10. On considère encore le groupe \mathbb{Z} des entiers relatifs muni de l'addition. Étant donnés $a, b \in \mathbb{N}^*$, on définit $a\mathbb{Z}$ et $b\mathbb{Z}$ comme dans l'exercice précédent, et on note

$$a\mathbb{Z} + b\mathbb{Z} = \{ak + b\ell ; k, \ell \in \mathbb{Z}\}.$$

- a) Vérifier que $a\mathbb{Z} + b\mathbb{Z}$ est un sous-groupe de \mathbb{Z} .
- **b)** Montrer que $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$, où $m = \operatorname{ppcm}(a, b)$.
- c) Montrer que $a\mathbb{Z} + b\mathbb{Z} = n\mathbb{Z}$, où $n = \operatorname{pgcd}(a, b)$.

Exercice 11. On considère le groupe S_3 des permutations de l'ensemble $\{1, 2, 3\}$. Outre l'élément neutre e, ce groupe est constitué de trois transpositions τ_1, τ_2, τ_3 et de deux permutations cycliques c_1, c_2 .

- a) Dresser la table de multiplication du groupe S_3 . Ce groupe est-il abélien?
- b) Déterminer tous les sous-groupes de S_3 .

Exercice 12. On considère les éléments suivants du groupe S_5 :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 5 & 1 \end{pmatrix}, \qquad \varrho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{pmatrix}.$$

- a) Écrire sous la même forme l'élément $\sigma \circ \rho$.
- b) Calculer les puissances successives de l'élément σ , au sens de l'exercice 8, et déterminer le plus petit entier $m \in \mathbb{N}^*$ tel que σ^m soit la permutation triviale.
- c) Répéter l'opération avec les éléments ϱ et $\sigma \circ \varrho$.

Exercice 13. Soit E un ensemble ayant au moins deux éléments. Lorsque a et b sont deux éléments de E distincts, on définit l'application $\tau_{a,b}: E \to E$ par $\tau_{a,b}(a) = b$, $\tau_{a,b}(b) = a$, et $\tau_{a,b}(x) = x$ pour tout $x \in E \setminus \{a,b\}$. Une telle application s'appelle une transposition.

- a) Calculer $\tau_{a,b} \circ \tau_{a,b}$.
- **b)** Montrer que, pour tout $\sigma \in S(E)$, on a $\sigma \circ \tau_{a,b} \circ \sigma^{-1} = \tau_{\sigma(a),\sigma(b)}$.
- c) On prend $E = \{1, ..., 5\}$. Écrire la permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 5 & 2 & 3 \end{pmatrix}$$

comme une composée de transpositions.

Exercice 14. Les applications suivantes sont-elles des morphismes de groupe?

- a) $f: x \mapsto 2x \text{ de } (\mathbb{R}, +) \text{ dans } (\mathbb{R}, +), \text{ puis de } (\mathbb{R}^*, \cdot) \text{ dans } (\mathbb{R}^*, \cdot).$
- **b)** $f: x \mapsto x^2 \text{ de } (\mathbb{R}, +) \text{ dans } (\mathbb{R}, +), \text{ puis de } (\mathbb{R}^*, \cdot) \text{ dans } (\mathbb{R}^*, \cdot).$
- c) $f: x \mapsto \ln x \text{ de } (\mathbb{R}_+^*, \cdot) \text{ dans } (\mathbb{R}, +).$
- d) $f: x \mapsto \exp(x)$ de $(\mathbb{R}, +)$ dans $(\mathbb{R}, +)$.
- e) $f: x \mapsto \exp(x)$ de $(\mathbb{R}, +)$ dans (\mathbb{R}_+^*, \cdot) .
- f) $f: z \mapsto \bar{z} \text{ de } (\mathbb{C}^*, \cdot) \text{ dans } (\mathbb{C}^*, \cdot).$

Exercice 15. On considère l'ensemble $A = \{n + im \in \mathbb{C} ; n, m \in \mathbb{Z}\}$ muni de l'addition et de la multiplication définies comme sur \mathbb{C} .

- a) Vérifier que $(A, +, \cdot)$ est un anneau, et identifier les éléments neutres des deux lois.
- b) Déterminer tous les éléments de A qui sont inversibles pour la multiplication.
- c) On dit qu'un élément $a \in A$ est irréductible s'il n'existe aucune factorisation dans A de la forme a = bc avec a et b non inversibles. L'élément a = 2 est-il irréductible?

Exercice 16.

- a) Munir l'ensemble $F_2 = \{0, 1\}$ d'une addition et d'une multiplication de façon que F_2 soit un corps.
- **b)** Munir l'ensemble $F_3 = \{-1, 0, 1\}$ d'une addition et d'une multiplication de façon que F_3 soit un corps.
- c) Plus généralement, si $p \in \mathbb{N}^*$ est un entier premier, montrer qu'il existe un corps F_p possédant exactement p éléments.

Exercice 17. On note $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \in \mathbb{R} : a, b \in \mathbb{Q}\}$. Vérifier que $\mathbb{Q}(\sqrt{2})$, muni de l'addition et de la multiplication définies comme sur \mathbb{R} , est un corps.