A New Era of Silicon Prototyping in Computer Architecture Research

Christopher Torng

Computer Systems Laboratory School of Electrical and Computer Engineering Cornell University

Why Prototype?

Research Ideas

- Smart Sharing Architectures
- Interconnection Networks for Manycores
- Python-Based Hardware Modeling
 - High-Level Synthesis
- Synthesizable Analog IP
- Scalable Baseband Synchronization
- Integrated Voltage Regulation

Why Prototype?

Chip-Based Startups

- Graphcore
- Nervana
- Cerebras
- Wave Computing
- Horizon Robotics
 - Cambricon
 - DeePhi
 - Esperanto
- SambaNova
- Eyeriss
- Tenstorrent
 - Mythic
- ThinkForce
- Groq
- Lightmatter

BRGTC2 — Batten Research Group Test Chip 2

Chip Overview

- TSMC 28 nm
- 1 mm × 1.25 mm
- 6.7M-transistor
- Quad-core in-order RISC-V RV32IMAF
- Shared L1 caches (32kB) Shared LLFUs
- Designed and tested in PyMTL (Python-based hardware modeling)
- Fully synthesizable PLL
- Smart sharing mechanisms
- Hardware bloom filter xcel
 - Runs work-stealing runtime

Key Changes Driving A New Era

___ Ecosystems for Open Builders ____

___ Productive Tools for Small Teams ____

Problem: Closed tools & IP makes dev tough **Changes**: Open-source ecosystem with RISC-V **Problem**: Small teams with a limited workforce **Changes**: Productive & open tool development

Significantly Cheaper Costs _____

Problem: Building chips is expensive

Changes: MPW tiny chips in advanced nodes

Ecosystems for Open Builders

Problem: A closed-source chip-building ecosystem (tools & IP) makes chip development tough

Problems with Closed-Source Infrastructure

- Difficult to replicate results (including your own)
- Anything closed-source propagates up and down the stack
 - > E.g., modified MIPS ISA
 - Spill-over to other stages of the design flow
- Heavy impact on things I care about
 - Sharing results and artifacts
 - Portability
 - Maintenance
- Reinventing the wheel

How important is a full ecosystem?

Ecosystems for Open Builders

Key Change: The open-source ecosystem revolving around RISC-V is growing

The RISC-V Ecosystem

- Software toolchain and ISA
 - Linux, compiler toolchain, modular ISA
- Cycle-level modeling
 - gem5 system-level simulator supports RISC-V multicore
 - ▶ We can now model complex RISC-V systems
- RTL modeling
 - Open implementations and supporting infrastructure (e.g., Rocket, Boom, PULP, Diplomacy, FIRRTL, FireSim)
- ASIC flows
 - Reference flows available from community for inspiration

Ecosystems for Open Builders

How has the RISC-V ecosystem helped in the design of BRGTC2?

BRGTC2 in the RISC-V Ecosystem

- Software toolchain and ISA
 - Not booting Linux...
 - Upstream GCC support
 - Incremental design w/ RV32 modularity
- Cycle-level modeling
 - Multicore gem5 simulations of our system
 - Decisions: L0 buffers, how many resources to share, impact of resource latencies, programs fitting in the cache
- RTL modeling
 - This was our own...
- ASIC flows
 - Reference methodologies available from other projects (e.g., Celerity)

Key Changes Driving A New Era

___ Ecosystems for Open Builders ____

___ Productive Tools for Small Teams ____

Problem: Closed tools & IP makes dev tough **Changes**: Open-source ecosystem with RISC-V **Problem**: Small teams with a limited workforce **Changes**: Productive & open tool development

___ Significantly Cheaper Costs ____

Problem: Building chips is expensive

Changes: MPW tiny chips in advanced nodes

Productive Tools for Small Teams

Problem: Small teams have a limited workforce and yet must handle challenging projects

An Enormous Challenge for Small Teams

- Small teams exist in both academia as well as in industry
- Time to first tapeout can be anywhere up to a few years
- What do big companies do?
 - Throw money and engineers at the problem
- Generally stuck with tools that "work"
 - If you have enough engineers
 - ▶ E.g., System Verilog

Productive Tools for Small Teams

Key Change: Productive open-source tools progressing and maturing quickly

PyMTL: A Unified Framework for Vertically Integrated Computer Architecture Research

Derek Lockhart, Gary Zibrat, Christopher Batten 47th ACM/IEEE Int'l Symp. on Microarchitecture (MICRO) Cambridge, UK, Dec. 2014

Mamba: Closing the Performance Gap in Productive Hardware Development Frameworks

Shunning Jiang, Berkin Ilbeyi, Christopher Batten 55th ACM/IEEE Design Automation Conf. (DAC) San Francisco, CA, June 2018

Open Modular VLSI Build System – At A High Level

https://github.com/cornell-brg/alloy-asic

Problem: Rigid, static ASIC flows

Typical ASIC Flows

- Flows are automated for exact sequences of steps
 - ▶ Want to add/remove a step? Modify the build system. Copies..
 - ▷ Once the flow is set up, you don't want to touch it anymore
- Adding new steps between existing steps is troublesome
 - Steps downstream magically reach upstream hardcoding
 - In general, the overhead to add new steps is high
- Difficult to support different configurations of the flow
 - E.g., chip flow vs. block flow
 - How to add new steps before or after
 - Each new chip ends up with a dedicated non-reusable flow

Open Modular VLSI Build System – At A High Level

https://github.com/cornell-brg/alloy-asic

Better ASIC Flows – Modularize the ASIC flow!

- ▷ Create modular steps that know how to run/clean themselves
- The build system can also check prerequisites and outputs before and after execution to make sure each step can run
- Assemble the ASIC flow as a graph
 - ▷ Can target architecture papers by assembling a minimal graph
 - Can target VLSI papers by assembling a medium graph w/ more steps (e.g., need dedicated floorplan)
 - ▷ Can target a *chip* by assembling a full-featured tapeout graph

Simple Front-End-Only ASIC Flow

```
seed
dc-synthesis
innovus-flowsetup
  innovus-init
   innovus-place
   innovus-cts
   innovus-postctshold
   innovus-route
   innovus-postroute
  innovus-signoff
calibre-gds-merge
* calibre-lvs
calibre-drc
```

BRGTC2 ASIC Flow

Key Changes Driving A New Era

___ Ecosystems for Open Builders ____

___ Productive Tools for Small Teams ____

Problem: Closed tools & IP makes dev tough **Changes**: Open-source ecosystem with RISC-V **Problem**: Small teams with a limited workforce **Changes**: Productive & open tool development

Significantly Cheaper Costs _____

Problem: Building chips is expensive

Changes: MPW tiny chips in advanced nodes

Significantly Cheaper Costs

Problem: Building chips is expensive

Key Change: Multi-project wafer services offer advanced node runs with small minimum sizes

Snapshot from Muse Semiconductor

It's not just an MPW.

August 2018 Shared Block Tapeout Opportunities

Tech (nm)	Flavor	Min Area (mm2)	Price (\$/mm2)	Trial	Final	Tapeout	Est. Ship
180	MS RF G	5	1000	8/22/18	8/29/18	9/5/18	10/17/18
180	MS RF G	5	1000	10/24/18	10/31/18	11/7/18	12/19/18
65	MS RF GP	1	4700	9/24/18	10/1/18	10/8/18	12/17/18
65	MS RF GP	1	4700	10/24/18	10/31/18	11/7/18	1/16/19
65	MS RF GP	1	4700	11/21/18	11/28/18	12/5/18	2/13/19
65	MS RF LP	1	4700	9/24/18	10/1/18	10/8/18	12/17/18
65	MS RF LP	1	4700	10/24/18	10/31/18	11/7/18	1/16/19
40	MS RF G	1	7250	10/17/18	10/24/18	10/31/18	1/20/19
28	HPC RF	1	14000	10/31/18	11/7/18	11/14/18	2/3/19

Send us an e-mail to reserve area or request information.

BRGTC2 Timeline and Costs

Time breakdown

- One month for one student to pass DRC/LVS for dummy logic with staggered IO pads and no SRAMs
- One-month period with seven graduate students using PyMTL for design, test, and composition

Seven graduate students working across:

- Applications development
- Porting an in-house work-stealing runtime to RISC-V target
- Cycle-level design-space exploration with gem5
- RTL development and testing of each component including SRAMs
 - Composition testing at RTL and gate level
- SPICE-level modeling of the synthesizable PLL
- IO floorplanning
- Physical design and post-PnR performance tuning

BRGTC2 Timeline and Costs

Cost breakdown

- 1×1.25 mm die size and one hundred parts for about \$18K under the MOSIS Tiny2 program
- Packaging costs (about \$2K for twenty parts)
- Board costs (less than \$1K for PCB and assembly)
- Graduate student salaries
- Physical IP costs
- EDA tool licenses

A New Era of Silicon Prototyping in Computer Architecture Research

Key Takeaways

- Building silicon prototypes is traditionally challenging and costly
 - Challenges have significantly reduced
 - ▶ Ecosystems for open builders (based on RISC-V)
 - Productive tools for small teams (e.g., PyMTL, ASIC flows)
- Costs have significantly reduced
 - MPW services support small minimum sizes in advanced nodes
- It is now feasible and attractive to consider RISC-V silicon prototypes for supporting future research

Acknowledgements

- NSF CRI Award #1512937
- NSF SHF Award #1527065
- DARPA POSH Award #FA8650-18-2-7852
- ▶ Donations from Intel, Xilinx, Synopsys, Cadence, and ARM
- Thanks: U.C. Berkeley, RISC-V Foundation, Shreesha Srinath

Backup Slides