Jan Laštovička jan.lastovicka@upol.cz www.inf.upol.cz/lide/jan-lastovicka 17. listopadu 12, 771 46 Olomouc

Databázové systémy

3. Projekce a spojení

1 Projekce

Připomeňme si, že *n*-tice je množina komponent. Vezmeme-li libovolnou její podmnožinu, dostaneme opět *n*-tici. Uvažujme například *n*-tici *t* vyjádřenou tabulkou:

name	age	street
Anna	3	Kosinova

Atribut street je typu varchar (10) a udává v jaké ulici dítě bydlí. Vidíme, že n-tice t je tříprvková množina. Můžeme vzít například její dvouprvkovou podmnožinu obsahující komponenty s atributy name a street a dostaneme n-tici:

name	street
Anna	Kosinova

Obecně uvažujme n-tici t nad A_1, \ldots, A_n a m různých atributů B_1, \ldots, B_m takových, že $\{B_1, \ldots, B_m\} \subseteq \{A_1, \ldots, A_n\}$. Projektcí n-tice t na B_1, \ldots, B_m rozumíme m-tici t, která obsahuje právě komponenty n-tice t s atributy B_1, \ldots, B_m . Tedy dvojice

name	street
Anna	Kosinova

je projekcí trojce

name	age	street
Anna	3	Kosinova

na name a street.

Pomocí projekce n-tice již můžeme snadno definovat projekci relace. Pokud r je relace nad A_1, \ldots, A_n a B_1, \ldots, B_m je m různých atributů takových, že $\{B_1, \ldots, B_m\} \subseteq \{A_1, \ldots, A_n\}$, pak $projekci \ r \ na \ B_1, \ldots, B_m$ rozumíme relaci r' nad B_1, \ldots, B_m , jejíž tělo je tvořeno projekcemi všech n-tic t v těle relace r na B_1, \ldots, B_m .

Například projekce relace

name	age	street
Anna	3	Kosinova
Bert	4	Mahlerova
Cyril	4	Kosinova

na name a street je relace

name	street
Anna	Kosinova
Bert	Mahlerova
Cyril	Kosinova

Pokud v je výraz, jehož hodnota je relace r nad A_1, \ldots, A_n , a B_1, \ldots, B_m je m různých atributů takových, že $m \geq 1$, $\{B_1, \ldots, B_m\} \subseteq \{A_1, \ldots, A_n\}$ a R je jméno relace, pak

```
( SELECT DISTINCT B_1, ..., B_m FROM v AS R )
```

je relační výraz, jehož hodnota je projekce r na B_1, \ldots, B_m . Jméno R pojmenovává hodnotu výrazu v a zatím nehraje žádnou roli.

Předpokládáme, že **child** je relační proměnná obsahující relaci z ukázky projekce:

Pak projekci relace child na name a street dostaneme následovně:

Počet n-tic v těle relace se nazývá kardinalita relace. Například relace child má kardinalitu tři. Kardinalita projekce relace r nemůže být větší než kardinalita r. Může však být menší. Například:

```
# SELECT DISTINCT age
  FROM ( TABLE child ) AS t;

age
----
3
4
(2 rows)
```

Co je hodnotou následujícího výrazu?

```
SELECT DISTINCT name
FROM ( SELECT DISTINCT name, street
FROM ( TABLE child) AS t ) AS t
```

Uvažujme následující dvě relace:

child1	name	age	street	child2	name	age
	Anna	3	Kosinova		Bert	4
	Bert	4	Mahlerova		Cyril	4
	Cyril	4	Kosinova		Daniela	5

Relace child1 a child2 nemůžeme přímo sjednotit, protože mají různé záhlaví. Můžeme ale sjednotit projekci relace child1 s relací child2:

2 Spojení

Uvažujme dvě následující relační proměnné parent a child.

parent	parent_name	child_name
	Pavel	Anna
	Monika	Bert
	Petr	Bert
	Marie	Daniela

ł	child_name	child_age
	Anna	3
	Bert	4
	Cyril	4

Relace parent vyjadřuje kdo je rodič jakého dítěte. Například Monika je rodič Berta. Máme-li k dispozici tyto dvě relace můžeme jistě zodpovědět otázku, který rodič má čtyřleté dítě. K zodpovězení otázky potřebuje informace z obou tabulek. Výhodné je uvažovat relaci r:

parent_name	child_name	child_age
Pavel	Anna	3
Monika	Bert	4
Petr	Bert	4

Záhlaví relace r je sjednocením záhlaví relací parent a child. Tělo relace r obsahuje všechny n-tice t nad parent_name, child_name a child_age takové, že projekce t na parent_name a child_name je v těle relace parent a projekce t na child_name a child_age je v těle relace child.

Obecně uvažujme relaci r_1 nad A_1, \ldots, A_n a relaci r_2 nad B_1, \ldots, B_m a předpokládejme, že $\{A_{(n-k)+1}, \ldots, A_n\} = \{B_1, \ldots, B_k\} = \{A_1, \ldots, A_n\} \cap \{B_1, \ldots, B_m\}$. Tedy předpokládáme, že společné atributy číslujeme jako poslední mezi atributy A_i a první mezi atributy B_j . Pak spojení relací r_1 a r_2 rozumíme relaci r nad $A_1, \ldots, A_n, B_{k+1}, \ldots, B_m$, kde tělo relace r tvoří množina n-tice t taková, že

- 1. projekce t na A_1, \ldots, A_n náleží do těla r_1 ,
- 2. projekce t na B_1, \ldots, B_m náleží do těla r_2 .

Relace nad parent_name, child_name a child_age z předchozího příkladu je spojení relací parent a child.

Pokud v_1 a v_2 jsou relační výrazy a R_1, R_2 dvě různá jména relací, pak

```
( SELECT *
FROM v_1 AS R_1
NATURAL JOIN v_2 AS R_2 )
```

je relační výraz, jehož hodnota je spojení hodnot výrazů v_1 a v_2 . Jak už jsme si zvykli, tak R_1 a R_2 pojmenovávají hodnoty výrazů v_1 a v_2 a zatím nehrají žádnou roli.

Například:

Tady je odpověď na otázku, kteří rodičové mají čtyřleté dítě:

Spojení relací přináší dva okrajové případy. První případ je, že záhlaví jedné relace je disjunktní se záhlavím druhé relace. Uvažujme dvě relace r_1, r_2 , kde záhlaví r_1 je disjunktní se záhlavím r_2 . V této situaci pro každý pár n-tici t_1 a t_2 z těl relací r_1 a r_2 existuje n-tice t z těla spojení r_1 a r_2 taková, že t_1 a t_2 jsou příslušnými projekcemi t. Spojení t_1 a t_2 se v této situaci příznačně nazývá t kartézským součinem.

Například uvažujme relační proměnné toy (hračka) a child (dítě):

```
# TABLE toy;

toy_name
-----
balon
lopatka
(2 rows)

# TABLE child;

child_name
------
Anna
Bert
Cyril
(3 rows)
```

Takto dostaneme všechny možné kombinace hraček a dětí:

```
# SELECT *
 FROM ( TABLE toy) AS t1
 NATURAL JOIN ( TABLE child ) AS t2;
toy_name | child_name
-----
balon | Anna
         | Bert
balon
       | Cyril
balon
lopatka | Anna
lopatka
        | Bert
lopatka
        | Cyril
(6 rows)
```

Druhým okrajovým případem je, když spojujeme relace stejného typu. Uvažujme dvě relace r_1 a r_2 nad A_1, \ldots, A_n . Pak spojením r_1 a r_2 bude relace r opět nad A_1, \ldots, A_n . Tělo relace r bude obsahovat n-tice t takové, že projekce t na A_1, \ldots, A_n bude v těle r_1 a současně projekce t na A_1, \ldots, A_n bude v těle r_2 . Projekce t na

 A_1, \ldots, A_n je ale přímo rovna t. Tedy tělo r bude obsahovat n-tice t nad A_1, \ldots, A_n , které jsou současně v těle r_1 i v těle r_2 . Neboli tělo r bude průnikem těl r_1 a r_2 . V této situaci je spojení relací rovno jejich průniku.

3 Přejmenování atributů

Vrátíme se k relačním proměnným parent a child z příkladu spojení relací. Uvažujme ale záhlaví relace child s původními názvy atributů:

parent_name	child_name
Pavel	Anna
Monika	Bert
Petr	Bert
Marie	Daniela

е	child	name	age
		Anna	3
		Bert	4
		Cyril	4

Spojení relací parent a child nyní nepřinese kýžený výsledek, protože záhlaví obou relací jsou disjunktní. Potřebujeme přejmenovat atribut name v záhlaví relace child na child_name.

Vezměme si záhlaví složené z atributů A_1, \ldots, A_n a atributy B_1, \ldots, B_m takové, že $m \leq n$ a atribut A_i je stejného typu jako atribut B_i pro každé $1 \leq i \leq m$ a atributy $B_1, \ldots, B_m, A_{m+1}, \ldots, A_n$ mají po dvou různá jména. Dále uvažujme n-tici t nad A_1, \ldots, A_n .

Přejmenováním atributů A_1, \ldots, A_m n-tice t na B_1, \ldots, B_m obdržíme n-tici t' nad $B_1, \ldots, B_m, A_{m+1}, \ldots, A_n$ takovou, že

- 1. atributu B_i přiřazuje stejnou hodnotu jako n-tice t atributu A_i pro každé $1 \le i \le m$,
- 2. atributu A_i přiřazuje stejnou hodnotu jako n-tice t atributu A_i pro každé $m < i \le n$.

Například přejmenováním atributu name na child_name v n-tici

name	age
Anna	3

nad name a age vznikne *n*-tice nad child name a age:

child_name	age
Anna	3

Nyní se můžeme pustit do přejmenování atributů v záhlaví relace. Uvažujme relaci r nad A_1, \ldots, A_n . *Přejmenováním atributů* A_1, \ldots, A_m v záhlaví relace r na B_1, \ldots, B_m obdržíme relaci r' nad $B_1, \ldots, B_m, A_{m+1}, \ldots, A_n$. Tělo relace r' obsahuje právě ty n-tice, které vzniknou přejmenováním atributů A_1, \ldots, A_n na B_1, \ldots, B_m nějaké n-tice v těle r.

Například přejmenováním atributu name na child_name v záhlaví relace child obdržíme relaci:

child_name	age
Anna	3
Bert	4
Cyril	4

Pokud v je relační výraz, jehož hodnota je relace nad A_1, \ldots, A_n , a R je jméno relace, pak

```
( SELECT A_1 AS B_1, ..., A_m AS B_m, A_{m+1}, ..., A_n FROM v AS R )
```

je relační výraz, jehož hodnota je relace vzniklá přejmenováním atributů A_1, \ldots, A_m na B_1, \ldots, B_m v záhlaví relace r. Jak jsme zvyklí, tak R dává jméno hodnotě výrazu v a nehraje zatím žádnou roli.

Například:

Nyní již můžeme spojit relaci parent s předchozí relací:

Ještě doplníme přejmenování atributu age, aby bylo jasné, že se jedná o věk dítěte a ne rodiče:

4 Konstantní relace

Je dána neprázdná relace r nad A_1, \ldots, A_n . Tělo r je množina n-tic $\{t_1, \ldots, t_m\}$. Označme pro každé $1 \le i \le n$ a $1 \le j \le m$ hodnotu v_{ij} , kterou přiřadí n-tice t_j atributu A_i . Zvolme jméno relace R. Pak

```
( SELECT * FROM ( VALUES ( v_{11}, ..., v_{1n} ), \vdots ( v_{m1}, \ldots, v_{mn} ) ) \text{ AS } R \ ( A_1, \ldots, A_n ) )
```

je relační výraz, jehož hodnota je relace r. Jméno relace R pojmenovává relaci r a nehraje zatím žádnou roli.

Například:

Takto můžeme vytvořit relaci, kde záhlaví bude mít jen jeden atribut a tělo jen jednu n-tici:

```
# SELECT *
FROM ( VALUES ( 1 ) ) AS t ( num );

num
-----
1
(1 row)
```

Uvažujme relační výraz v, kde hodnota r je relace nad A_1, \ldots, A_n . Zvolme atribut A_{n+1} , který není v záhlaví relace r, a hodnotu v stejného typu jako je typ atributu A_{n+1} . Pomocí konstantní relace a spojení můžeme vytvořit relaci r' nad A_1, \ldots, A_{n+1} . Tělo relace r' obsahuje právě ty n-tice t, kde platí, že projekce t na A_1, \ldots, A_n je v těle r a t přiřazuje hodnotu v atributu A_{n+1} . Relace r' bude hodnotou následujícího výrazu.

```
SELECT * FROM ( v ) AS t1 NATURAL JOIN ( SELECT * FROM ( VALUES ( v ) ) AS t ( A_{n+1} ) ) AS t2
```

Například přidání atributu cons do záhlaví relace child:

```
# TABLE child;
name | age
           3
 Anna |
           4
 Bert |
 Cyril |
           4
(3 rows)
# SELECT *
  FROM ( TABLE child ) AS t1
  NATURAL JOIN ( SELECT *
                 FROM ( VALUES ( 4 ) ) AS t ( cons ) ) AS t2;
 name | age | cons
 Anna |
           3 |
                   4
 Bert |
           4 |
                   4
 Cyril |
                   4
           4 |
(3 rows)
```

Můžeme získat čtyřleté děti restrikcí vzhledem k podmínce porovnání hodnot dvou atributů:

```
# SELECT *
  FROM (
         SELECT *
         FROM ( TABLE child ) AS t1
         NATURAL JOIN ( SELECT *
                        FROM ( VALUES ( 4 ) ) AS t ( cons ) ) AS t2
       ) AS t
  WHERE age = cons;
 name | age | cons
 Bert |
           4 |
                  4
 Cyril |
           4 |
                  4
(2 rows)
```

Pomocný atribut cons můžeme odstranit:

```
# SELECT DISTINCT name, age
 FROM (
         SELECT *
         FROM (
                SELECT *
                FROM ( TABLE child ) AS t1
                NATURAL JOIN (
                               SELECT *
                               FROM ( VALUES ( 4 ) ) AS t ( cons )
                             ) AS t2
              ) AS t
        WHERE age = cons
       ) AS t;
name | age
Bert |
           4
Cyril |
           4
(2 rows)
```

Touto technikou je možné provést restrikci vzhledem k podmínce rovnosti atributu a hodnoty (age = 4) pomocí konstantní relace, spojení, restrikce vzhledem k rovnosti dvou atributů a projekci.

Pojmenování atributu v konstantní relaci jako age učiní dotaz výrazně jednodušší:

```
# SELECT * FROM ( TABLE child ) AS t1
  NATURAL JOIN ( SELECT * FROM ( VALUES ( 4 ) ) AS t ( age ) ) AS t2;

age | name
----+
  4 | Bert
  4 | Cyril
(2 rows)
```