Sequential Data Modeling

Hidden Markov Models

Basic Approaches

How to efficiently model joint probability of high-dimensional data

(i.e., sequential data) **Markov process Latent variables** State space model Z_4 Z_2 Z_1

Review: Markov Process

 Assume that the conditional probability distribution of the present states depends only on a few past states

$$p(x_1,\cdots,x_N)=p(x_1)\prod_{n=2}^N p(x_n|x_1,\cdots,x_{n-1})$$

1st order Markov chain

$$p(x_1, \dots, x_N) = p(x_1) \prod_{n=2}^{N} p(x_n | x_{n-1})$$

Show probabilistic graphical model

- ➤ Nodes: random variables
- > Edges: causality relationship between variables

Easy to see conditional dependency between variables!

Hidden Markov Model (HMM)

- Use of discrete latent variables
- Parameter set including the transition matrix and state output probability distributions

output probability distributions

State transition graph p(|| s = 1) = 0.7 p(|| s = 1) = 0.2 p(|| s = 1) = 0.1 p(|| s = 3) = 0.1 p(|| s = 3) = 0.2 p(|| s = 3) = 0.2 p(|| s = 3) = 0.2 p(|| s = 3) = 0.7 p(|| s = 3) = 0.7 p(|| s = 3) = 0.7 p(|| s = 3) = 0.1 p(|| s = 3) = 0.1 p(|| s = 3) = 0.1

晴: fine 雨: rain

曇: cloud

Even if 晴 曇 雨 ... is observed, a state sequence is not observed (i.e., state sequence = latent variable).

Example of Application

Automatic speech recognition (i.e., conversion from speech into text)

Acoustic model $p(x | w, \lambda_A)$ e.g., HMM with GMM

Language model $p(w | \lambda_L)$ e.g., Markov model

Example: Acoustic Model

- HMM effectively models a time sequence of speech parameters
 - ✓ Handle fluctuation of speaking speed with self-loop transition
 - ✓ Handle fluctuation of articulation with output probability density function.

HMM as Mixture Model

Observation sequence of length N

$$\boldsymbol{x} = \left\{ \boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_N \right\}$$

Corresponding state sequence of length N

$$\mathbf{z} = \left\{ z_1, z_2, \cdots, z_N \right\}$$

Likelihood of HMM

$$p(\mathbf{x} \mid \lambda) = \sum_{\text{all } z} p(\mathbf{x}_1, \dots, \mathbf{x}_N, z_1, \dots, z_N \mid \lambda)$$

Markov chain of latent variables

 x_4 depends on x_1 , x_2 , and x_3 .

$$= \sum_{\text{all } z} \left\{ p(z_1 \mid \lambda) \left[\prod_{n=2}^{N} p(z_n \mid z_{n-1}, \lambda) \right] \prod_{n=1}^{N} p(\boldsymbol{x}_n \mid z_n, \lambda) \right\}$$

of mixture components : S^N

Prior probability of z : p(z)

Output probability of x given z : p(x | z)

$$= \sum_{\text{all } z} p(z \mid \lambda) p(x \mid z, \lambda)$$
 Mixture model with discrete latent variable

discrete latent variables z

Elements of HMM

- HMM parameter set $\lambda = \{\pi, A, B(\cdot)\}$
 - Set of *S* finite states: $s = \{1, 2, \dots, S\}$
 - Initial state distribution

$$\boldsymbol{\pi} = \left\{ \pi_1, \pi_2, \cdots, \pi_S \right\}$$

$$\pi_i = p(s = i \mid \lambda)$$

Transition probabilities

$$A = \{A_{1,1}, A_{1,2}, \cdots, A_{S,S}\}$$

$$A_{i,j} = p(s = j \mid s = i, \lambda)$$

• Output probabilities (or probability densities) of x_n

$$\boldsymbol{B}(\boldsymbol{x}_n) = \left\{ B_1(\boldsymbol{x}_n), B_2(\boldsymbol{x}_n), \dots, B_S(\boldsymbol{x}_n) \right\} \qquad B_i(\boldsymbol{x}_n) = p(\boldsymbol{x}_n \mid s = i, \lambda)$$

$$B_i(\mathbf{x}_n) = p(\mathbf{x}_n \mid s = i, \lambda)$$

Type of HMM: Ergodic HMM

Initial probabilities

$$\pi_s = \begin{bmatrix} \pi_1 & \pi_2 & \pi_3 \end{bmatrix}$$

• Transition probabilities $\begin{bmatrix} A_{1,1} & A_1 \end{bmatrix}$

es
$$A = \begin{bmatrix} A_{1,1} & A_{1,2} & A_{1,3} \\ A_{2,1} & A_{2,2} & A_{2,3} \\ A_{3,1} & A_{3,2} & A_{3,3} \end{bmatrix}$$

• Trellis graph

Type of HMM: Left-to-Right HMM

- Initial probabilities $\pi_s = \begin{cases} 1 & s = 1 \\ 0 & s \neq 1 \end{cases}$
- Transition probabilities $A = \begin{bmatrix} A_{1,1} & A_{1,2} & A_{1,3} \\ 0 & A_{2,2} & A_{2,3} \\ 0 & 0 & A_{3,3} \end{bmatrix}$

Suitable for speech model

Trellis graph

Strong constraints on temporal structure can be used!

Evaluation/Alignment/Training

Forward Algorithm

- Recursively calculate forward probabilities
 - Forward probability that HMM generates $\{x_1, x_2, \cdots, x_n\}$ and ends in state S

$$\alpha_n(s) = p(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n, z_n = s \mid \lambda)$$
Marginalizing out

all possible previous states!

 \triangleright Initialization $(n=1; 1 \le s \le S)$

$$\alpha_1(s) = \pi_s B_s(\mathbf{x}_1)$$

ightharpoonup Recursion ($2 \le n \le N$; $1 \le s \le S$)

$$\alpha_n(s) = \left[\sum_{s'=1}^{S} \alpha_{n-1}(s') A_{s',s}\right] B_s(\mathbf{x}_n)$$

> Termination $p(\mathbf{x}_1, \dots, \mathbf{x}_N \mid \lambda) = \sum_{i=1}^{S} \alpha_i(s)$

$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n)$$

$$= p(\mathbf{x}_1, \dots, \mathbf{x}_n | \mathbf{z}_n) p(\mathbf{z}_n)$$

$$= p(\mathbf{x}_n|\mathbf{z}_n)p(\mathbf{x}_1,\ldots,\mathbf{x}_{n-1}|\mathbf{z}_n)p(\mathbf{z}_n)$$

$$= p(\mathbf{x}_n|\mathbf{z}_n)p(\mathbf{x}_1,\ldots,\mathbf{x}_{n-1},\mathbf{z}_n)$$

$$= p(\mathbf{x}_n|\mathbf{z}_n) \sum p(\mathbf{x}_1, \dots, \mathbf{x}_{n-1}, \mathbf{z}_{n-1}, \mathbf{z}_n)$$

$$= p(\mathbf{x}_n|\mathbf{z}_n) \sum p(\mathbf{x}_1, \dots, \mathbf{x}_{n-1}, \mathbf{z}_n|\mathbf{z}_{n-1}) p(\mathbf{z}_{n-1})$$

$$= p(\mathbf{x}_n|\mathbf{z}_n) \sum p(\mathbf{x}_1, \dots, \mathbf{x}_{n-1}|\mathbf{z}_{n-1}) p(\mathbf{z}_n|\mathbf{z}_{n-1}) p(\mathbf{z}_{n-1})$$

$$= p(\mathbf{x}_n|\mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_{n-1}, \mathbf{z}_{n-1}) p(\mathbf{z}_n|\mathbf{z}_{n-1})$$

ig use of the definition (13.34) for $\alpha(\mathbf{z}_n)$, we then obtain

$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1}).$$

Backward Algorithm

Recursively calculate backward probabilities

Backward probability that HMM generates $\{x_{n+1}, \dots, x_N\}$ when starting in

state
$$s$$
 at time n

$$\beta_n(s) = p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N \mid z_n = s, \lambda)$$

Marginalizing out all possible succeeding states!

Recursive calculation

$$\triangleright$$
 Initialization ($n = N; 1 \le s \le S$)

$$\beta_N(s) = 1$$
 $p(\mathbf{z}_N | \mathbf{X}) = \frac{p(\mathbf{X}, \mathbf{z}_N)\beta(\mathbf{z}_N)}{p(\mathbf{X})}$

ightharpoonup Recursion ($1 \le n \le N-1$; $1 \le s \le S$)

$$\beta_n(s) = \sum_{s'=1}^{s} A_{s,s'} B_{s'}(\mathbf{x}_{n+1}) \beta_{n+1}(s')$$

> Termination

$$p(\mathbf{x}_1,\dots,\mathbf{x}_N \mid \lambda) = \sum_{s=1}^{S} \pi_s B_s(\mathbf{x}_1) \beta_1(s)$$

$$\beta(\mathbf{z}_n) = p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)$$

$$= \sum p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N, \mathbf{z}_{n+1} | \mathbf{z}_n)$$

$$= \sum p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n, \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n)$$

$$= \sum p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n)$$

$$= \sum_{n=1}^{\infty} p(\mathbf{x}_{n+2}, \dots, \mathbf{x}_N | \mathbf{z}_{n+1}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n).$$

$$\beta(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \beta(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n).$$

Product of Forward/Backward Probs

> Forward probability

$$\alpha_n(s) = p(\mathbf{x}_1, \dots, \mathbf{x}_n, z_n = s \mid \lambda)$$

➤ Backward probability

$$\beta_n(s) = p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N \mid z_n = s, \lambda)$$

> Their product

$$\alpha_n(s)\beta_n(s) = p(\mathbf{x}_1, \dots, \mathbf{x}_N, z_n = s \mid \lambda)$$

Considering all possible paths passing through state s at time n

Likelihood from Forward/Backward Probs

Likelihood Calculation

- \triangleright Forward probability: $\alpha_n(s) = p(x_1, \dots, x_n, z_n = s \mid \lambda)$
- \triangleright Backward probability : $\beta_n(s) = p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N \mid z_n = s, \lambda)$
- \triangleright Their product: $\alpha_n(s)\beta_n(s) = p(x_1, \dots, x_n, x_{n+1}, \dots, x_N, z_n = s \mid \lambda)$

Sum of their products at time n = Likelihood

$$\sum_{s=1}^{S} \alpha_n(s) \beta_n(s) = p(\mathbf{x}_1, \dots, \mathbf{x}_N \mid \lambda)$$

App.: Derivation of Forward Algorithm

$$p(\mathbf{x}_1,\dots,\mathbf{x}_N \mid \lambda) = \sum_{\text{all } z} \left\{ p(z_1 \mid \lambda) \left[\prod_{n=2}^N p(z_n \mid z_{n-1}, \lambda) \right] \prod_{n=1}^N p(\mathbf{x}_n \mid z_n, \lambda) \right\}$$

Factor out the common factor at
$$n=N$$
 in each state $s=s_N$

$$=\sum_{s_N=1}^S \left\{ B_{s_N}(\boldsymbol{x}_N) \sum_{\text{all } \boldsymbol{z} \setminus \boldsymbol{z}_N} \left\{ p(z_n = s_N \mid z_{N-1}, \boldsymbol{\lambda}) p(z_1 \mid \boldsymbol{\lambda}) \left[\prod_{n=2}^{N-1} p(z_n \mid z_{n-1}, \boldsymbol{\lambda}) \right] \prod_{n=1}^{N-1} p(\boldsymbol{x}_n \mid z_n, \boldsymbol{\lambda}) \right\} \right\}$$

All possible state sequences from n=1 to n=N-1

Iteratively factor out in the same manner from n=N-1 to n=2

 $\alpha_{N-1}(s_{N-1})$

$$=\sum_{s_{N}=1}^{S}\left(B_{s_{N}}(\boldsymbol{x}_{N})\sum_{s_{N-1}=1}^{S}A_{s_{N-1},s_{N}}\left(B_{s_{N-1}}(\boldsymbol{x}_{N-1})\sum_{s_{N-2}=1}^{S}A_{s_{N-2},s_{N-1}}\cdots\left(B_{s_{2}}(\boldsymbol{x}_{2})\sum_{s_{1}}^{S}A_{s_{1},s_{2}}\left(\pi_{s_{1}}B_{s_{1}}(\boldsymbol{x}_{1})\right)\right)\right)$$

$$=\sum_{N=0}^{\infty} \alpha_{N}(s)$$

App.: Derivation of Backward Algorithm

$$p(\mathbf{x}_1, \dots, \mathbf{x}_N \mid \lambda) = \sum_{\text{all } z} \left\{ p(z_1 \mid \lambda) \left[\prod_{n=2}^N p(z_n \mid z_{n-1}, \lambda) \right] \prod_{n=1}^N p(\mathbf{x}_n \mid z_n, \lambda) \right\}$$

Factor out the common factor at
$$n=1$$
 in each state $s=s_1$

$$= \sum_{s_1=1}^{S} \pi_{s_1} B_{s_1}(\mathbf{x}_1) \sum_{\text{all } \mathbf{z} \setminus \mathbf{z}_1} \left\{ p(z_2 \mid z_1 = s, \lambda) \left[\prod_{n=3}^{N} p(z_n \mid z_{n-1}, \lambda) \right] \prod_{n=2}^{N} p(\mathbf{x}_n \mid z_n, \lambda) \right\}$$

All possible state sequences from n=2 to n=N

Iteratively factor out in the same manner from n=2 to n=N-1

 $\beta_1^{\prime}(s_1)$

$$= \sum_{s_{1}=1}^{S} \pi_{s_{1}} B_{s_{1}}(\boldsymbol{x}_{1}) \left(\sum_{s_{2}=1}^{S} A_{s_{1},s_{2}} B_{s_{2}}(\boldsymbol{x}_{2}) \cdots \left(\sum_{s_{N-1}=1}^{S} A_{s_{N-2},s_{N-1}} B_{s_{N-1}}(\boldsymbol{x}_{N-1}) \left(\sum_{s_{N}=1}^{S} A_{s_{N-1},s_{N}} B_{s_{N}}(\boldsymbol{x}_{N}) \right) \right) \right)$$

$$\beta_{N-1}(s_{N-1})$$

$$\beta_N \xrightarrow{\sim} (S_{N-2})$$

$$=\sum_{s=1}^{S}\pi_{s}B_{s}(\boldsymbol{x}_{1})\beta_{1}(s)$$

* Note that $\beta_N(s_N)=1$

Sequential Data Modeling

"Discrete Latent Variable Models 1"

Evaluation/Alignment/Training

Training

Alignment

• Find the best state sequence for a given sequential data sample e.g., find phoneme boundaries over a speech signal

Speech waveform and its spectral sequence

Viterbi Algorithm

- Recursively calculate the best path probability
 - The most likely path probability that generates $\{x_1, \dots, x_n\}$ and ends in state s $\chi_n(s) = p(x_1, \dots, x_n, \hat{z}_1, \dots, \hat{z}_{n-1}, \hat{z}_n = s \mid \lambda)$
 - Recursive calculation
 - Initialization ($n = 1; 1 \le s \le S$) $\chi_1(s) = \pi_s B_s(\mathbf{x}_1) \qquad \phi_1(s) = /s/$
 - Recursion $(2 \le n \le N; 1 \le s \le S)$ $\chi_n(s) = B_s(\mathbf{x}_n) \max_{s'} \chi_{n-1}(s') A_{s',s} \chi_{n-1}(s') \chi_{n-1}(s'$
 - Termination $p(x, \hat{z} \mid \lambda) = \max_{s} \chi_{N}(s)$ $\hat{z}_{N} = \arg \max_{s} \chi_{N}(s)$
 - > Path backtracking ($2 \le n \le N$) $\hat{z}_{n-1} = \phi_n (\hat{z}_n)$

Evaluation/Alignment/Training

Training

• Optimize HMM parameters so that the HMM appropriately models given observation sequences (e.g., training the HMM from data)

Training data samples

Training with EM Algorithm

 Iteratively update lower bound of likelihood function through two steps: E-step and M-step

Review: Why Do We Use EM Algorithm?

- In a mixture model, we don't know which data can be used to update parameters of each mixture component due to latent variables.
- EM algorithm is capable of addressing this issue!
 - E-step: assign each data to individual mixture components (i.e., estimate latent variables) based on current model parameters

 M-step: update parameters of each mixture component using the assigned data

Lower Bound of HMM Likelihood

Log-scaled likelihood function for U samples of sequential data

$$\frac{\ln p(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(U)} \mid \lambda)}{\geq \sum_{u=1}^{U} \ln \sum_{\text{all } \mathbf{z}^{(u)}} p(\mathbf{x}^{(u)}, \mathbf{z}^{(u)} \mid \lambda)}$$

$$\geq \sum_{u=1}^{U} \sum_{\text{all } \mathbf{z}^{(u)}} q(\mathbf{z}^{(u)}) \ln \frac{p(\mathbf{x}^{(u)}, \mathbf{z}^{(u)} \mid \lambda)}{q(\mathbf{z}^{(u)})} = \underline{\mathcal{L}(q, \lambda)}$$
Lower bound

E-step: calculate posterior probabilities of latent variables (*i.e.*, state sequences)

$$\hat{q}(\boldsymbol{z}^{(u)}) = p(\boldsymbol{z}^{(u)} \mid \boldsymbol{x}^{(u)}, \boldsymbol{\lambda}_{\text{old}}) = \frac{p(\boldsymbol{x}^{(u)}, \boldsymbol{z}^{(u)} \mid \boldsymbol{\lambda}_{\text{old}})}{\sum_{\text{all } \boldsymbol{z}^{(u)}} p(\boldsymbol{x}^{(u)}, \boldsymbol{z}^{(u)} \mid \boldsymbol{\lambda}_{\text{old}})}$$

M-step: maximize auxiliary function with respect to model parameters

$$Q(\lambda_{\text{new}}, \lambda_{\text{old}}) = \sum_{u=1}^{U} \sum_{\text{all } z^{(u)}} \hat{q}(z^{(u)}) \ln p(x^{(u)}, z^{(u)} \mid \lambda_{\text{new}})$$

E-Step

Calculate posterior probabilities of latent variables

Expected # of samples observed in state s at time n in sample u

Expected # of samples from state s at time n-1 to state s at time n in sample u

$$\xi_{s,s'}^{(u)}(n-1) = \hat{q}\left(z_{n-1}^{(u)} = s, z_n^{(u)} = s'\right)$$

$$= p\left(z_{n-1}^{(u)} = s, z_n^{(u)} = s' | \mathbf{x}^{(u)}, \lambda_{\text{old}}\right)$$

$$= \frac{p(\mathbf{x}^{(u)}, z_{n-1}^{(u)} = s, z_n^{(u)} = s' | \lambda_{\text{old}}\right)}{p(\mathbf{x}^{(u)} | \lambda_{\text{old}})}$$

$$= \frac{p(\mathbf{x}^{(u)}, z_{n-1}^{(u)} = s, z_n^{(u)} = s' | \lambda_{\text{old}})}{p(\mathbf{x}^{(u)} | \lambda_{\text{old}})}$$

Sufficient Statistics

Auxiliary function
$$Q\left(\lambda,\lambda_{\mathrm{old}}\right) = \sum_{u=1}^{U} \sum_{\mathrm{all}\,z^{(u)}} \hat{q}\left(z^{(u)}\right) \ln p\left(x^{(u)},z^{(u)}\mid\lambda\right)$$

$$= \sum_{s=1}^{S} \sum_{u=1}^{U} \gamma_{s}^{(u)} (n=1) \ln \pi_{s} + \sum_{s=1}^{S} \sum_{s'=1}^{S} \sum_{u=1}^{V} \sum_{n=2}^{N^{(u)}} \xi_{s,s'}^{(u)} (n-1) \ln A_{s,s'}$$

$$+ \sum_{s=1}^{S} \sum_{u=1}^{U} \sum_{\mathrm{all}\,o} \sum_{n\in\{x_{n}^{(u)}="o"\}} \gamma_{s}^{(u)} (n) \ln B_{s} ("o") \quad \text{Sum of posterior probabilities over all sequences}$$

$$= \sum_{s=1}^{S} \underline{\gamma_{s}} (n=1) \ln \pi_{s} + \sum_{s=1}^{S} \sum_{s'=1}^{S} \underline{\xi_{s,s'}} \ln A_{s,s'} + \sum_{s=1}^{S} \sum_{\mathrm{all}\,"o"} \underline{\gamma_{s}} ("o") \ln B_{s} ("o")$$

Sufficient statistics

Expected # of samples in state s at time n=1

$$\gamma_s(n=1) = \sum_{u=1}^{S} \gamma_s^{(u)}(n=1)$$

Expected # of samples from state s to state s'

$$\xi_{s,s'} = \sum_{u=1}^{U} \sum_{n=2}^{N^{(u)}} \xi_{s,s'}^{(u)}(n-1)$$

Expected # of samples of observing "o" in state s

$$\gamma_{s}("o") = \sum_{u=1}^{c} \sum_{n \in \{x_{n}^{(u)} = "o"\}} \gamma_{s}^{(u)}(n)$$

M-Step

Auxiliary function

$$Q(\lambda, \lambda_{\text{old}}) = \sum_{s=1}^{S} \gamma_{s} (n = 1) \ln \pi_{s} + \sum_{s=1}^{S} \sum_{s'=1}^{S} \xi_{s,s'} \ln A_{s,s'} + \sum_{s=1}^{S} \sum_{\text{all "o"}} \gamma_{s} (\text{"o"}) \ln B_{s} (\text{"o"})$$

ML estimates

$$\frac{\partial \left\{Q\left(\pmb{\lambda},\pmb{\lambda}_{\mathrm{old}}\right) + \varepsilon\left(1 - \sum_{s=1}^{S} \pi_{s}\right)\right\}}{\partial \pi_{s}} \bigg|_{\pmb{\lambda} = \hat{\pmb{\lambda}}} = 0$$

$$\frac{\partial \left\{Q\left(\pmb{\lambda},\pmb{\lambda}_{\mathrm{old}}\right) + \varepsilon\left(1 - \sum_{s'=1}^{S} A_{s,s'}\right)\right\}}{\partial A_{s,s'}} \bigg|_{\pmb{\lambda} = \hat{\pmb{\lambda}}} = 0$$

$$\frac{\partial \left\{Q\left(\pmb{\lambda},\pmb{\lambda}_{\mathrm{old}}\right) + \varepsilon\left(1 - \sum_{s'=1}^{S} A_{s,s'}\right)\right\}}{\partial A_{s,s'}} \bigg|_{\pmb{\lambda} = \hat{\pmb{\lambda}}} = 0$$

$$\frac{\partial \left\{Q\left(\pmb{\lambda},\pmb{\lambda}_{\mathrm{old}}\right) + \varepsilon\left(1 - \sum_{\mathrm{all}"o"}} B_{s}("o")\right)\right\}}{\partial B_{s}("o")} \bigg|_{\pmb{\lambda} = \hat{\pmb{\lambda}}} = 0$$

$$\frac{\partial \left\{Q\left(\pmb{\lambda},\pmb{\lambda}_{\mathrm{old}}\right) + \varepsilon\left(1 - \sum_{\mathrm{all}"o"}} B_{s}("o")\right)\right\}}{\partial B_{s}("o")} \bigg|_{\pmb{\lambda} = \hat{\pmb{\lambda}}} = 0$$

$$\frac{\partial \left\{Q\left(\pmb{\lambda},\pmb{\lambda}_{\mathrm{old}}\right) + \varepsilon\left(1 - \sum_{\mathrm{all}"o"}} B_{s}("o")\right)\right\}}{\partial B_{s}("o")} \bigg|_{\pmb{\lambda} = \hat{\pmb{\lambda}}} = 0$$
For each state,
$$\hat{\pi}_{s} = \frac{\gamma_{s}(n=1)}{\sum_{s'=1}^{S} \gamma_{s}(n=1)}$$
Transition probability
$$\hat{A}_{s,s'} = \frac{\xi_{s,s'}}{\sum_{s'=1}^{S} \xi_{s,s'}}$$
Output probability
$$\hat{B}_{s}("o") = \frac{\gamma_{s}("o")}{\sum_{\mathrm{all}"o"}} \gamma_{s}("o")$$

For each state, Transition $\hat{A}_{s,s'} = \frac{\xi_{s,s'}}{\sum_{s,s'}}$ probability

App.: Auxiliary Function

$$Q(\lambda, \lambda_{\text{old}}) = \sum_{u=1}^{U} \sum_{\text{all } z^{(u)}} \hat{q}(z^{(u)}) \ln p(x^{(u)}, z^{(u)} | \lambda)$$

$$= \sum_{u=1}^{U} \sum_{\text{all } z^{(u)}} \hat{q}(z^{(u)}) \ln \left\{ p(z_{1}^{(u)} | \lambda) \left[\prod_{n=2}^{N^{(u)}} p(z_{n}^{(u)} | z_{n-1}^{(u)}, \lambda) \right] \prod_{n=1}^{N^{(u)}} p(x_{n}^{(u)} | z_{n}^{(u)}, \lambda) \right\}$$

$$= \sum_{u=1}^{U} \left\{ \sum_{\text{all } z^{(u)}} \hat{q}(z^{(u)}) \ln p(z_{1}^{(u)} | \lambda) + \sum_{n=2}^{N^{(u)}} \sum_{\text{all } z^{(u)}} \hat{q}(z^{(u)}) \ln p(z_{n}^{(u)} | z_{n-1}^{(u)}, \lambda) \right\}$$

$$+ \sum_{n=1}^{N^{(u)}} \sum_{\text{all } z^{(u)}} \hat{q}(z^{(u)}) \ln p(x_{n}^{(u)} | z_{n}^{(u)}, \lambda)$$

$$+ \sum_{n=1}^{N^{(u)}} \sum_{\text{all } z^{(u)}} \hat{q}(z^{(u)}) \ln p(x_{n}^{(u)} | z_{n}^{(u)}, \lambda)$$

$$= \sum_{n=2}^{N^{(u)}} \sum_{s=1}^{S} \sum_{s'=1}^{S} \hat{q}(z_{n}^{(u)} = s, z_{n-1}^{(u)} = s', \lambda)$$

$$= \sum_{s,s'} \hat{q}(z_{n}^{(u)} = s, z_{n-1}^{(u)} = s', \lambda)$$

$$= \sum_{s,s'} \hat{q}(z_{n}^{(u)} = s, z_{n-1}^{(u)} = s', \lambda)$$

$$= \sum_{s'=1}^{S} \hat{q}(z_{n}^{(u)} = s, z_{n-1}^{(u)} = s', \lambda)$$

$$\sum_{n=1}^{N^{(u)}} \sum_{s=1}^{S} \hat{q}\left(z_n^{(u)} = s\right) \ln p\left(x_n^{(u)} \mid z_n^{(u)} = s, \lambda\right)$$

$$= \gamma_s^{(u)}(n)$$

$$= \sum_{\text{all "o"} n \in \{x_n^{(u)} = \text{"o"}\}} \ln B_s(\text{"o"})$$

Appendix

 $\sum p(\mathbf{z}) f(\mathbf{z}_1)$

Hidden Markov Model Summary

Expectation Maximization

Maximum likelihood for the HMM

Marginal likelihood

$$p(\mathbf{X}|\boldsymbol{\theta}) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

$$p(\mathbf{X}|\boldsymbol{\theta}) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

$$\gamma(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{X}, \boldsymbol{\theta}^{\text{old}})$$

$$\xi(\mathbf{z}_{n-1}, \mathbf{z}_n) = p(\mathbf{z}_{n-1}, \mathbf{z}_n | \mathbf{X}, \boldsymbol{\theta}^{\text{old}})$$

EM

• max
$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\mathrm{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\mathrm{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{k=1}^{K} \gamma(z_{1k}) \ln \pi_k + \sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(z_{n-1,j}, z_{nk}) \ln A_{jk}$$

the same as GMM

$$+\sum_{n=1}^{N}\sum_{k=1}^{K}\gamma(z_{nk})\ln p(\mathbf{x}_n|\boldsymbol{\phi}_k).$$

Calculation

E-step

$$\gamma(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{X}, \boldsymbol{\theta}^{\text{old}})
\xi(\mathbf{z}_{n-1}, \mathbf{z}_n) = p(\mathbf{z}_{n-1}, \mathbf{z}_n | \mathbf{X}, \boldsymbol{\theta}^{\text{old}})$$

M-step

$$\pi_{k} = \frac{\gamma(z_{1k})}{\sum_{j=1}^{K} \gamma(z_{1j})} \qquad A_{jk} = \frac{\sum_{n=2}^{N} \xi(z_{n-1,j}, z_{nk})}{\sum_{k=1}^{K} \sum_{n=2}^{N} \xi(z_{n-1,j}, z_{nk})}$$

$$\mu_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_{n}}{\sum_{n=1}^{N} \gamma(z_{nk})} \qquad \Sigma_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{\mathrm{T}}}{\sum_{n=1}^{N} \gamma(z_{nk})}$$

Key quantities
$$\begin{array}{cccc} \gamma(\mathbf{z}_n) &=& p(\mathbf{z}_n|\mathbf{X},\boldsymbol{\theta}^{\mathrm{old}}) \\ \xi(\mathbf{z}_{n-1},\mathbf{z}_n) &=& p(\mathbf{z}_{n-1},\mathbf{z}_n|\mathbf{X},\boldsymbol{\theta}^{\mathrm{old}}) \end{array}$$

$$\gamma(\mathbf{z}_n) = \frac{p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n) p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)}{p(\mathbf{X})} = \frac{\alpha(\mathbf{z}_n) \beta(\mathbf{z}_n)}{p(\mathbf{X})}$$
$$\xi(\mathbf{z}_{n-1}, \mathbf{z}_n) = \frac{\alpha(\mathbf{z}_{n-1}) p(\mathbf{x}_n | \mathbf{z}_n) p(\mathbf{z}_n | \mathbf{z}_{n-1}) \beta(\mathbf{z}_n)}{p(\mathbf{X})}$$

$$p(\mathbf{X}) = \sum_{\mathbf{z}_n} \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n) \quad p(\mathbf{X}) = \sum_{\mathbf{z}_N} \alpha(\mathbf{z}_N)$$

Inference

Marginal likelihood (Forward-Backward / sum-product):
 P(X)

Best state path (Viterbi / max-sum): max_Z p(X,Z)

Prediction: p(x_{N+1} | X)

Prediction

$$p(\mathbf{x}_{N+1}|\mathbf{X}) = \sum_{\mathbf{z}_{N+1}} p(\mathbf{x}_{N+1}, \mathbf{z}_{N+1}|\mathbf{X})$$

$$= \sum_{\mathbf{z}_{N+1}} p(\mathbf{x}_{N+1}|\mathbf{z}_{N+1}) p(\mathbf{z}_{N+1}|\mathbf{X})$$

$$= \sum_{\mathbf{z}_{N+1}} p(\mathbf{x}_{N+1}|\mathbf{z}_{N+1}) \sum_{\mathbf{z}_{N}} p(\mathbf{z}_{N+1}, \mathbf{z}_{N}|\mathbf{X})$$

$$= \sum_{\mathbf{z}_{N+1}} p(\mathbf{x}_{N+1}|\mathbf{z}_{N+1}) \sum_{\mathbf{z}_{N}} p(\mathbf{z}_{N+1}|\mathbf{z}_{N}) p(\mathbf{z}_{N}|\mathbf{X})$$

$$= \sum_{\mathbf{z}_{N+1}} p(\mathbf{x}_{N+1}|\mathbf{z}_{N+1}) \sum_{\mathbf{z}_{N}} p(\mathbf{z}_{N+1}|\mathbf{z}_{N}) \frac{p(\mathbf{z}_{N}, \mathbf{X})}{p(\mathbf{X})}$$

$$= \frac{1}{p(\mathbf{X})} \sum_{\mathbf{z}_{N+1}} p(\mathbf{x}_{N+1}|\mathbf{z}_{N+1}) \sum_{\mathbf{z}_{N}} p(\mathbf{z}_{N+1}|\mathbf{z}_{N}) \alpha(\mathbf{z}_{N})$$

Thinking (§)

• Recover: $p(x_n | x_1,...,x_{n-1}, x_{n+1},...,x_N)$

Scaling factors for HMM

- $\alpha(z_n)$ is obtained from the previous value $\alpha(z_n-1)$ by multiplying by quantities $p(z_n/z_n-1)$ and $p(x_n/z_n)$.
- $p(z_n/z_n-1)<1$ =>the values of $\alpha(z_n)$ can go to zero exponentially quickly.
- Rescale $\alpha(z_n)$ as

$$\widehat{\alpha}(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_n) = \frac{\alpha(\mathbf{z}_n)}{p(\mathbf{x}_1, \dots, \mathbf{x}_n)} \qquad c_n = p(\mathbf{x}_n | \mathbf{x}_1, \dots, \mathbf{x}_{n-1})$$

Then

$$\alpha(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_n) p(\mathbf{x}_1, \dots, \mathbf{x}_n) = \left(\prod_{m=1}^n c_m\right) \widehat{\alpha}(\mathbf{z}_n)$$

Rewrite forward-backward recursion

• Forward (c_n the coefficient that normalizes the right side)

$$c_n\widehat{\alpha}(\mathbf{z}_n) = p(\mathbf{x}_n|\mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \widehat{\alpha}(\mathbf{z}_{n-1}) p(\mathbf{z}_n|\mathbf{z}_{n-1}) \qquad \alpha(\mathbf{z}_n) = p(\mathbf{x}_n|\mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n|\mathbf{z}_{n-1})$$

Backward

$$c_{n+1}\widehat{\beta}(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \widehat{\beta}(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1}|\mathbf{z}_{n+1}) p(\mathbf{z}_{n+1}|\mathbf{z}_n) \quad \beta(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \beta(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1}|\mathbf{z}_{n+1}) p(\mathbf{z}_{n+1}|\mathbf{z}_n)$$

Marginal

$$\gamma(\mathbf{z}_n) = \widehat{\alpha}(\mathbf{z}_n)\widehat{\beta}(\mathbf{z}_n)
\xi(\mathbf{z}_{n-1}, \mathbf{z}_n) = c_n \widehat{\alpha}(\mathbf{z}_{n-1}) p(\mathbf{x}_n | \mathbf{z}_n) p(\mathbf{z}_n | \mathbf{z}_{-1}) \widehat{\beta}(\mathbf{z}_n)$$

HMM Extensions

- 1. Generalize model of state duration:
 - vanilla HMM restricted in model of how long stay in state prob. that model will spend *D* steps in state *k* and then transition out:

$$P(D) = (A_{kk})^D (1 - A_{kk}) \propto \exp(-D \log A_{kk})$$

- instead associate distribution with time spent in state k: P(t|k) (see *semi-Markov* models for sequence segmentation applications)
- 2. Combine with auto-regressive Markov model:
 - include long-range relationships
 - directly model relations between observations

- 3. Supervised setting:
 - include additional observations
 - input-output HMM

$$\mathbf{z}_{n+1} \perp \!\!\!\perp \mathbf{z}_{n-1} \mid \mathbf{z}_n$$

- 4 factorial hidden Markov model (Ghahramani and Jordan, 1997)
 - reduce latent states
 - add Markov chains
 - no conditional independence

