

Förderverein Chemie-Olympiade e.V.

Therias of the Chemistry Clympiad																	
H 1.008		~			D												He
3 Li	⁴Be]	Begeisterung wecken!										6	7 NI	*	9 E	Ne
6.941	9.012		B egabung wecken!									B	12.011	14.007	15.999	18.988	20.180
11	12	1	Begabung wecken: fördern!									¹³ AI	14	15	16	17	18
Na	Mg		,										Si	P	S	CI	Ar
22.990	24.305		To a	Ter	To a	To a	To :	To a	Ter	Total	To a	26.982	28.086	30.974	32.065	35.453	39.948
"K	°Ca	Sc	Ti	²³ V	²⁴ Cr	Mn	Fe	Co.	Ni Ni	°Cu	"Zn	Ga	"Ge	As	³Se	"Br	³⁶ Kr
39.098	40.078	44.956	47.867	50.942	51.996	54.938		58.933	58.693		65.38(2)		72.630	74.922	78.971	79.904	83.798
Rb	38 Sr	39 Y	¹⁰ Zr	⁴ИЬ	⁴² Mo	⁴³ Tc*	⁴Ru	⁴⁵Rh	⁴°Pd	⁴⁷ Ag	°Cd	⁴⁹ In	⁵⁵Sn	Sb	⁵² Te	53	Xe Xe
85.468	87.62(1)	88.906	91.224	92.906	95.96(1)			102.91	106.42	107.87		114.82	118.71	121.76	127.60	126.90	131.29
SS Cs	⁵6 Ba	La	"Hf	Ta	⁷⁴ W	Re	76 Os	"Ir	Pt Pt	"Au	Hg	81TI	Pb	Bi*	Po*	At*	Rn*
132.91 87		138.91		180.95	183.84				195.08	196.97	200.59	204.38	207.2(1)	208.98	(209)	(210)	(222)
Fr*	Ra*	89 Ac*	Rf*	Db*	Sg*	Bh*	Hs*	Mt*	Ds*	'Rg*	Ĉn*	Nh*	FI*	Mc*	Ľv*	Ts*	Ög*
(223)	226.03	(227)	(267)	(268)	(269)	(270)	(270)	(278)	(281)	(282)	(285)	(286)	(289)	(290)	(293)	(294)	(294)
Lanthanoide			^{S8} Ce	⁵⁹ Pr	⁶⁰ Nd	Pm*	Sm	Eu	Ğd	⁶⁵ Tb	⁶⁶ Dy	67 Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	Lu	

Actinoide

Ĉe	"Pr	ВИ	Pm*	Sm	[∞] Eu	Gd.	°тв	Ďу	μ̈́	[∞] Er	Tm	Ύь	Lu
140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th*	Pa*	l U*	No*	Pu*	Am*	Cm*	Bk*	Cf*	Es*	Fm*	Md*	No*	Lr*
			12.25										

 $M = \frac{m}{n}$ molare Masse

molares Volumen

molare Konzentration

Ideale Gasgleichung

Gleichgewichtskonstante

Gaskonstante

Freie Enthalpie

Avogadro-Konstante

$$V_m = \frac{V}{n} = \frac{M}{\rho}$$

$$c = \frac{n}{V}$$

$$p \cdot V = n \cdot R \cdot T$$

$$R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$K = \frac{k_{\text{hin}}}{k_{\text{mod}}} = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b}$$

$$\Delta_R G^0 = -R \cdot T \cdot \ln(K)$$
 $N_A = 6.022 \cdot 10^{23} \text{ mol}^{-1}$

Gibbs-Helmholtz

Henderson-Hasselbalch

Faradaysches Gesetz

Lambert-Beersches Gesetz

Arrhenius

Nernst

$$k = A \cdot \exp \left(-\frac{E_A}{R \cdot T}\right)$$

 $E = E^0 + \frac{R \cdot T}{R \cdot T} \cdot \ln \left(\frac{[A_{ox}]}{R \cdot T}\right)$

 $\Delta_n G = \Delta_n H - T \cdot \Delta_n S$

$$E = E^{0} + \frac{R \cdot T}{z \cdot F} \cdot \ln \left(\frac{[A_{ox}]}{[A_{red}]} \right)$$

$$pH = pK_a + log\left(\frac{[A^-]}{[HA]}\right)$$

$$E = \log(\frac{l_0}{l}) = \varepsilon \cdot c \cdot d$$

$$Q = I \cdot t = z \cdot n \cdot F$$

$$\Delta E = -\frac{\Delta_R G}{z \cdot F}$$

