A számításelmélet alapjai I. (Első gyakorlat)

Dr. Lázár Katalin Anna

Eötvös Loránd Tudományegyetem, Informatikai Kar 1117 Budapest, Pázmány Péter sétány 1/C. e-mail: lazarkati@elte.hu

2024. február 13.

Tematika

- Ábécé, szavak (sztringek), üres szó, alapvető műveletek szavakon (konkatenáció, a szó i-dik hatványa), szó hossza, szavak egyenlősége (azonossága), szavak (valódi) részszavai, szavak prefixuma (kezdőszelete), szuffixuma (utótagja), tükörképe (fordítottja).
- Nyelv, üres nyelv, véges, végtelen nyelv.
- Nyelvekre vonatkozó műveletek: unió, metszet, különbség, komplemens, konkatenáció, i-dik iteráció, iteratív lezárt (lezárt vagy Kleene-lezárt), tükörkép (megfordítás), prefixum (prefixnyelv), szuffixum (szuffixnyelv), homomorfizmus, izomorfizmus.

Műveletek szavakon

Példa 1

Legyen $V = \{a, b, c\}$ és legyen $u_1 = cab$, $u_2 = aabc$ egy-egy V feletti szó.

- Soroljuk fel u_1 és u_2 valódi részszavait!
- 2 Adjuk meg u_1 és u_2 hosszát!
- 3 Határozzuk meg u_1 és u_2 konkatenáltját! Igaz-e, hogy $u_1u_2=u_2u_1$?
- 4 Határozzuk meg u_1 és u_2 tükörképét (fordítottját), valamint $u_2^R u_1$ -et!
- \odot Igaz-e, hogy ab prefixuma (kezdőszelete) u_1 -nek, bc szuffixuma (utótagja) u_2 -nek?
- Határozzuk meg u_1 és u_2 j-dik hatványait (vagyis u_1^j -t és u_2^j -t), ahol j=0,1,2,3!

Véges és végtelen nyelvek

Példa 2

Legyen $V = \{c, d\}$. Végesek vagy végtelenek az alábbi nyelvek? Végtelen nyelvek esetén soroljuk fel a nyelv néhány szavát!

- **1** $L_1 = \emptyset$.
- $2 L_2 = \{\varepsilon\}.$

- **5** $L_5 = \{c^p d^q \mid p, q \text{ prím}, q = p + 2\} \ (L_5 = \{c^p d^q \mid p, q \text{ ikerprím}\}).$
- $L_6 = \{u \in V^* \mid |u|_c = |u|_d\}$, ahol $|u|_c$, $|u|_d$ c és d u-beli előfordulásainak számát jelöli.

Példa 3

Legyen $V = \{a,b\}$ ábécé és legyenek $L_1 = \{a,b\}$, $L_2 = \{a,bb\}$ nyelvek. Határozzuk meg az $L_1 \cup L_2$, $L_1 \cap L_2$, $L_1 - L_2$, $L_2 - L_1$, L_1L_2 , L_1^* , $L_1^*L_2^*$, $(L_1 \cup L_2)^*$, $\bar{L_1}$ és L_1^R nyelveket!

Példa 4

Legyen $V=\{a,b\}$ ábécé és legyenek $L_1=\{a^{3n}b^{3n}\mid n\geq 1\}$, $L_2=\{a^{3n}b^{2n}\mid n\geq 0\}$ nyelvek V felett! Adjuk meg az $\bar{L_1}$ és az L_2^R nyelveket!

Példa 5

Legyen $V = \{a, b\}$ ábécé és legyenek $L_1 = \{ab, bb\}$ és $L_2 = \{\varepsilon, a, baa\}$. Határozzuk meg L_1L_2 -t!

Példa 6

Legyen $V = \{a, b\}$ ábécé és legyen $L = \{a, bb\}$. Határozzuk meg L^i -t, ahol i = 0, 1, 2, 3!

Példa 7

Legyen $V = \{a, b\}$ ábécé és legyen $L = \{a^{3n+1}b \mid n \ge 0\}$. Határozzuk meg Pre(L)-t és Suf(L)-t!

Példa 7

Definíció 1

- Egy $L \subseteq V^*$ nyelv prefixnyelvén a $Pre(L) = \{u \mid u \in V^*, uv \in L \text{ valamely } v \in V^*\text{-ra}\}$ nyelvet értjük.
- Egy $L \subseteq V^*$ nyelv szuffixnyelvén a $Suf(L) = \{u \mid u \in V^*, vu \in L \text{ valamely } v \in V^*\text{-ra}\}$ nyelvet értjük.

Megjegyzés

 $L \subseteq Pre(L), L \subseteq Suf(L).$

Példa 8

Mely összefüggések igazak az alábbi nyelvekre? ($L_1\subseteq L_2$, $L_1\supseteq L_2$,

$$L_1 = L_2$$
, egyik sem)

- $L_1 = \{a^{3n} \mid n > 0\}$ és $L_2 = (aaa)^*$.
- $L_1 = \{a^n b^n c^n \mid n \ge 0\}$ és $L_2 = a^* b^* c^*$.

Példa 9

Legyen $L_1 = \{a^nb^n \mid n \ge 0\}$, $L_2 = \{a^{2n+1}b \mid n \ge 0\}$. Igazak-e a következő állítások?

- $\bullet \ \{a^nb^na^nb\mid n\geq 0\}\subseteq L_1L_2.$
- $\{a^nb^na^{2n+1}b \mid n \geq 0\} \subseteq L_1L_2$.
- $\bullet \ \{(a^nb^n)^n \mid n \geq 0\} \subseteq L_1^*.$
- $\{(ab)^n \mid n \ge 0\} \subseteq L_2^+$.

Példa 10

Mely összefüggések igazak az alábbi nyelvekre? Húzzunk alá minden igaz választ!

1
$$L_1 = \{a^{4n} \mid n > 0\} \cup \{\varepsilon\} \text{ és } L_2 = (aaaa)^*.$$

$$L_1 \subseteq L_2$$
 $L_2 \subseteq L_1$ egyenlők egyik sem

②
$$L_1 = \{a^n b^n \mid n \ge 0\}$$
 és $L_2 = a^* b^*$.

$$L_1 \subseteq L_2$$
 $L_2 \subseteq L_1$ egyenlők egyik sem

3
$$L_1 = \{u \mid u \in \{a, b\}^+\} \text{ és } L_2 = aa^*bb^*.$$

$$L_1 \subseteq L_2$$
 $L_2 \subseteq L_1$ egyenlők egyik sem

Példa 11

Legyen $V = \{a\}$ ábécé és legyen $L_3 = \{a^{3^n} \mid n \ge 1\}$. Melyik nyelv üres az alábbi nyelvek közül: $\emptyset L_3^*$, $\emptyset L_3^+$, $L_3 L_3$, $L_3 = \{L_3 \in L_3 \in$

Példa 12

Mely állítások igazak az alábbi, nyelvekre vonatkozó állítások közül?

- $\bullet \ \emptyset^* = \{\varepsilon\}.$
- $\{\varepsilon\}^* = \varepsilon$.
- $\{\varepsilon\}^+ = \varepsilon$.
- $\emptyset^+ = \emptyset$.
- $(L^*)^+ = (L^+)^*.$

Példa 12

- $L \subseteq L^*, (L^*)^* \subseteq L^*$.
- ha $L_1 \subseteq L_2$, akkor $L_1^* \subseteq L_2^*$.
- $L \subseteq L^+, (L^+)^+ \subseteq L^+$.
- ha $L_1 \subseteq L_2$, akkor $L_1^+ \subseteq L_2^+$.
- \bullet $\emptyset L = L$.
- $\{\varepsilon\}L = \{\varepsilon\}.$
- $L_1 \cup L_2 = L_2 \cup L_1$.
- $L^* \{\varepsilon\} = L^+$.
- $(L^R)^R = L$.

Példa 13

Jelöljenek L, L_1 , és L_2 egy V ábécé feletti nyelveket.

- Mikor üres L^* , $L_1 \cup L_2$, L_1L_2 ?
- Mikor véges L^* , $L_1 \cup L_2$, L_1L_2 ?

Példa 14

Jelöljön L egy V ábécé feletti tetszőleges nyelvet. Mikor teljesülnek a következő egyenlőségek?

$$\bullet$$
 $L^+ = L^+ \cup L^0$,

$$\bullet \ \bar{L} \cap L = \{\varepsilon\}, \dots$$

Példa 15

lgazoljuk, hogy tetszőleges L nyelvre $L^* = L^*L^*!$

Példa 16

lgazoljuk, hogy tetszőleges L nyelvre $(L^*)^* = L^*!$

Példa 17

lgazoljuk, hogy tetszőleges L_1 és L_2 nyelvekre $(L_1 \cup L_2)^* = (L_1^*L_2^*)^*!$

Példa 18

lgazoljuk, hogy tetszőleges L_1 és L_2 nyelvekre $(L_1L_2)^R=L_2^RL_1^R!$

Példa 19

Legyenek L_1 , L_2 és L_3 azonos V ábécé feletti nyelvek. Igazak-e az alábbi egyenlőségek? Ha igen, igazoljuk, ha nem, adjunk ellenpéldát!

- $\bullet \ (L_1L_2)L_3=L_1(L_2L_3).$
- $(L_1 \cap L_2)L_3 = L_1L_3 \cap L_2L_3$.
- $(L_1 \cap L_2)^* = L_1^* \cap L_2^*$.

Példa 20

Legyenek $V_1 = \{a, b\}$, $V_2 = \{a, b, c\}$, $h: V_1^* \to V_2^*$ homomorfizmus, h(a) = ab, h(b) = bbc, $L = \{aa, aba\}$. Határozzuk meg h(aba)-t és h(L)-et!

Példa 21

Legyenek L, L_1 és L_2 azonos V ábécé feletti nyelvek, h homomorfizmus. Igazak-e az alábbi egyenlőségek? Ha igen, igazoljuk, ha nem, adjunk ellenpéldát!

- $h(L_1 \cap L_2) = h(L_1) \cap h(L_2)$.
- $h(L^R) = h(L)^R$.