You know how it is when someone asks you to ride in a terrific sports car, and then you wish you hadn't?

John Adams

1.1 Syzygy theorem

Let $R = \mathbb{C}[x_1, \dots, x_k]$. Following Hilbert, we consider a finitely generated R-module M

By Hilbert's basis theorem, M is Noetherian, hence has finitely many generators a_1, \ldots, a_k .

Denote by R^k the free R-module with k generators e_1, \ldots, e_k , and consider

$$\phi \colon R^k \twoheadrightarrow M; \qquad e_i \mapsto a_i.$$

This map is surjective, but it may have a kernel, called the *module of first Syzygies*, denoted $Syz^1(M)$. This kernel consists of those x such that

$$x = \sum_{i=1}^{k} \lambda_i e_i \stackrel{\phi}{\mapsto} \sum_{i=1}^{k} \lambda_i a_i = 0.$$

This kernel is again a module, the module of relations.

By Hilbert's basis theorem (since polynomial rings over a field are Noetherian), $\operatorname{Syz}^1(M)$ is again a finitely generated R-module. Hence, pick finite set of generators b_i , $1 \le i \le \ell$, and look at

$$R^{\ell} \twoheadrightarrow \operatorname{Syz}^{1}(M); \qquad e_{i} \mapsto b_{i}.$$

In general, there is non-trivial kernel, denoted $Syz^2(M)$. This consists of relation between relations.

 $[\]overline{}^{1}$ i.e. expressible as an R-linear combination of finitely many generators.

We can keep going. This gives us a sequence $\operatorname{Syz}^{\bullet}(M)$ corresponding to relations between relations between relations.

From this we build a chain complex (C_{\bullet}, d) , where C_n corresponds to the nth copy of R^k , known as the *free resolution* of M.

Hilbert's Syzygy theorem tells us that every finitely generated $\mathbb{C}[x_1,\ldots,x_n]$ -module admits a free resolution of length at most n.

Definition 1 (Koszul complex). Let R be a commutative ring, and let $x \in R$ be an element of R such that left multiplication by x is injective on first homology. The Koszul complex of x is the complex

$$K(x) = \cdots \longrightarrow 0 \longrightarrow R \xrightarrow{\cdot x} R \longrightarrow 0 \longrightarrow \cdots$$

concentrated in degrees 0 and 1. For elements $x_1, ..., x_n$, we define the Koszul complex of $x_1, ..., x_n$ to be

$$K(x_1,\ldots,x_n)=K(x_1)\otimes_R\cdots\otimes_R K(x_n).$$

Lemma 2. The Koszul complex K(x) provides a free resolution of R/(x).

Proof. There is an easy spectral sequence argument.

1.2 Quiver representations

In the remainder of this chapter, we will apply homological algebra to the study of various classes of objects. Our main goal will be to implement the following cockamamie scheme in two contexts: quiver representations and groups.

Cockamamie Scheme 3. Given a category of algebraic objects:

- 1. Find a way of turning the objects in question into rings.
- 2. Study modules over those rings using homological algebra.
- 3. ???
- 4. Profit.

The first problem to which we will apply Cockamamie Scheme 3 is the study of *quiver* representations. Unfortunately, due to time constraints, we will only get as far as step 2.

Definition 4 (quiver). A quiver *Q* consists of the following data.

- A finite² set Q_0 of vertices
- A finite set Q_1 of arrows
- A pair of maps

$$s, t: Q_1 \rightarrow Q_0$$

called the *source* and *target* maps respectively.

Definition 5 (quiver representation). Let Q be a quiver, and let k be a field. A $\underline{k$ -linear representation V of Q consists of the following data.

- For every vertex $x \in Q_0$, a vector space V_x .
- For every arrow $\rho \in Q_1$, a k-linear map $V_{s(\rho)} \to V_{t(\rho)}$.

A morphism f between k-linear representations V and W consists of, for each vertex $x \in Q_0$ a linear map $f_x \colon V_x \to W_x$, such that for edge $s \in Q_1$, the square

$$V_{s(\rho)} \longrightarrow V_{t(\rho)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$W_{s(\rho)} \longrightarrow W_{t(\rho)}$$

commutes.

This allows us to define a category $Rep_k(Q)$ of k-linear representations of Q.

Following our grand plan, we first find a way of turning a quiver representation into a ring.

First, we form the free category over the quiver Q, which we denote by $\mathcal{F}(Q)$; that is, the objects of the category $\mathcal{F}(Q)$ are the vertices of Q, and the morphisms $x \to y$ consist of finite chains of arrows starting at y and ending at x.

$$y \xrightarrow{\rho_0} z_1 \xrightarrow{\rho_1} z_2 \xrightarrow{\rho_2} \xrightarrow{\rho_3} z_4 \xrightarrow{\rho_4} z_5 \xrightarrow{\rho_5} x$$

We will denote this morphism by

$$\rho_5\rho_4\rho_3\rho_2\rho_1\rho_0.$$

²There is no fundamental reason for this finiteness condition, except that it will make the following analysis more convenient.

We call such a finite non-empty chain a *non-trivial path*. Note that in addition to the non-trivial paths, we must formally adjoin identity arrows e_x with $s(e_x) = t(e_x) = x$; these are the *trivial paths*. Note that the notation introduced above is a good one, since in the category $\mathcal{F}(Q)$ composition is given by

$$(\rho_n \cdots \rho_1) \circ (\rho'_m \cdots \rho'_1) = \rho_n \cdots \rho_1 \rho'_m \cdots \rho'_1.$$

Definition 6 (path algebra). Let k be a field and Q a quiver. The <u>path algebra</u> of Q over k is, as a vector space, the free vector space over the set $Mor(\mathcal{F}(Q))$. The multiplication is given by composition

$$\rho \cdot \sigma = \begin{cases} \rho \sigma, & s(\rho) = t(\sigma) \\ 0, & s(\rho) \neq t(\sigma). \end{cases}$$

We will denote the path algebra of Q over k by kQ.

Another way of expressing the above composition rule is as follows: the multiplication of two paths ρ , σ in kQ is given by the composition $\rho \circ \sigma$ in the category $\mathcal{F}(Q)$ if the morphisms ρ and σ are composable (in the sense that ρ begins where σ ends) and zero otherwise.

From now on, we fix (arbitrarily) a bijection of Q with $\{1, 2, \dots, n\}$. It is clear that

$$id_{kO} = e_1 + \cdots + e_n$$
.

Example 7. Consider the following quiver.

$$\bullet_1 \longrightarrow \rho$$

Then paths are in correspondence with natural numbers, with the empty path being e_1 . The path algebra is therefore

$$kQ \cong ke_1 \oplus k\rho \oplus k\rho\rho \oplus k\rho\rho\rho \oplus \cdots \cong k[\rho].$$

Example 8. Let Q be any quiver, and denote by A = kQ its path algebra. For any vertex i and any path ρ , the multiplication law for the path algebra tells us that

$$\rho e_i = \begin{cases} e_i, & s(\rho) = i \\ 0 & \text{otherwise.} \end{cases}$$

Therefore, the left ideal Ae_i consists of those paths which start at i. Similarly, the right ideal e_iA consists of those paths which terminate at i.

Since any path either starts at *i* or doesn't, we have

$$A \cong Ae_i \oplus A(1-e_i).$$

This means (by REF that each Ae_i is a projective module. The same argument tells us that e_iA is projective for all i.

Proposition 9. Let Q be a quiver and k its path algebra. There is an equivalence of categories

$$\operatorname{Rep}_k(Q) \xrightarrow{\simeq} kQ$$
-Mod.

Proof. First, we construct out of any k-linear representation V of Q a kQ-module. Our underlying space will be the vector space $\bigoplus_{i \in O_0} V_i$, which we will also denote by V.

Now let $\rho: i \to j \in Q_0$, corresponding under the representation V to the map $f: V_i \to V_j$. We send this to the map $V \to V$ given by the matrix with f in the (i, j)th position and zeroes elsewhere. In particular, we send e_i to the matrix with a 1 in the ith place along the diagonal, and zeroes elsewhere.

It is easy to see that this assignment respects addition and composition, hence defines our functor on objects. On objects, we send $\alpha_i \colon V_i \to W_i$ to

diag
$$(0, ..., 0, \alpha_x^i, 0, ..., 0)$$
.

It is painfully clear that this is the right thing to do.

We now construct a functor in the opposite direction.

Proposition 10. Let *M* be a left *A*-module. We have an exact sequence of left *A*-modules

$$0 \longrightarrow \bigoplus_{\rho \in Q_1} Ae_{t(\rho)} \otimes_k e_{s(\rho)} M \longrightarrow \bigoplus_{i \in Q_0} Ae_i \otimes_k e_i M \longrightarrow M \longrightarrow 0 ,$$

exhibiting a resolution of *M* by projective *A*-modules.

Corollary 11. Let *M*, *N* be left *A*-modules. Then

$$\operatorname{Ext}^{i}(M,N)=0, \qquad i\geq 2.$$

1.3 Group (co)homology

Next, we will apply Cockamamie Scheme 3 to the study of groups. In order to do this, we need some theory.

1.3.1 The Dold-Kan correspondence

The Dold-Kan correspondence, and its stronger, better-looking cousin the Dold-Puppe correspondence, tell us roughly that studying bounded-below chain complexes is the same as studying simplicial objects.

Let $A: \Delta^{op} \to \mathbf{Ab}$ be a simplicial abelian group, and define

$$NA_n = \bigcap_{i=0}^{n-1} \ker(d_i) \subset A_n.$$

This becomes a chain complex when given the differential $(-1)^n d_n$. This is easy to see; we have

$$d_{n-1} \circ d_n = d_{n-1} \circ d_{n-1},$$

and the domain of this map is contained in $\ker d_{n-1}$.

Definition 12 (normalized chain complex). Let $A: \Delta^{op} \to \mathbf{Ab}$ be a simplicial abelian group. The normalized chain complex of A is the following chain complex.

$$\cdots \xrightarrow{(-1)^{n+2}d_{n+2}} NA_{n+1} \xrightarrow{(-1)^{n+1}d_{n+1}} NA_n \xrightarrow{(-1)^n d_n} NA_{n-1} \xrightarrow{(-1)^{n-1}d_{n-1}} \cdots$$

Definition 13 (Moore complex). Let $A: \Delta^{op} \to \mathbf{Ab}$ be a simplicial abelian group. The Moore complex of A is the chain complex with n-chains A_n and differential

$$\partial = \sum_{i=0}^{n} (-1)^{i} d_{i}.$$

This is a bona fide chain complex due to the following calculation.

$$\begin{split} \partial^2 &= \left(\sum_{j=0}^{n-1} (-1)^j d_j \right) \circ \left(\sum_{i=0}^n (-1)^i d_i \right) \\ &= \sum_{0 \le j < i \le n} (-1)^{i+j} d_j \circ d_i \\ &= \sum_{0 \le j < i \le n} (-1)^{i+j} d_j \circ d_i + \sum_{0 \le i \le j \le n-1} (-1)^{i+j} d_j \circ d_i \\ &= \sum_{0 \le j < i \le n} (-1)^{i+j} d_{i-1} \circ d_j + \sum_{0 \le i \le j \le n-1} (-1)^{i+j} d_j \circ d_i \\ &= 0. \end{split}$$

Following Goerss-Jardine, we denote the Moore complex of A simply by A, unless this is confusing. In this case, we will denote it by MA.

Definition 14 (alternating face maps chain modulo degeneracies). Denote by DA_n the subgroup of A_n generated by degenerate simplices. Since $\partial: A_n \to A_{n-1}$ takes degerate simplices to linear combinations of degenerate simplices, it descends to a chain map.

$$\cdots \xrightarrow{[\partial]} A_{n+1}/DA_{n+1} \xrightarrow{[\partial]} A_n/DA_n \xrightarrow{[\partial]} A_{n-1}/DA_{n-1} \xrightarrow{[\partial]} \cdots$$

We denote this chain complex by A/D(A), and call it the alternating face maps chain

modulo degeneracies.3

Lemma 15. We have the following map of chain complexes, where i is inclusion and p is projection.

$$NA \stackrel{i}{\hookrightarrow} A \stackrel{p}{\longrightarrow} A/D(A)$$

Proof. We need only show that the following diagram commutes.

$$\begin{array}{cccc}
NA_n & \longrightarrow & A_n & \longrightarrow & A_n/DA_n \\
(-1)^n d_n \downarrow & & \downarrow \partial & & \downarrow [\partial] \\
NA_{n-1} & \longrightarrow & A_{n-1} & \longrightarrow & A_{n-1}/DA_{n-1}
\end{array}$$

The left-hand square commutes because all differentials except d_n vanish on everything in NA_n , and the right-hand square commutes trivially.

Theorem 16. The composite

$$p \circ i \colon NA \to A/D(A)$$

is an isomorphism of chain complexes.

Let $f:[m] \to [n]$ be a morphism in the simplex category Δ . By functoriality, f induces a map

$$N\Lambda^n \to N\Lambda^m$$
.

In fact, this map is rather simple. Take, for example, $f = d_0 \colon [n] \to [n-1]$. By definition, this map gives

We define a simplicial object

$$\mathbb{Z}[-] \colon \Delta \to Ch_+(Ab)$$

on objects by

$$[n] \mapsto N\mathcal{F}(\Delta^n),$$

and on morphisms by

$$f: [m] \rightarrow [n] \mapsto$$

which takes each object [n] to the corresponding normalized complex on the free abelian group on the corresponding simplicial set.

We then get a nerve and realization

$$N: \mathbf{Ab}_{\wedge} \longleftrightarrow \mathbf{Ch}_{+}(\mathbf{Ab}): \Gamma.$$
 (1.1)

³The nLab is responsible for this terminology.

Theorem 17 (Dold-Kan). The adjunction in Equation 1.1 is an equivalence of categories

Proof. later, if I have time.

Also later if time, Dold-Puppe correspondence: this works not only for **Ab**, but for any abelian category.

1.3.2 The bar construction

This section assumes a basic knowledge of simplicial sets. We will denote by Δ_+ the extended simplex category, i.e. the simplex category which includes $[-1] = \emptyset$.

Let \mathcal{C} and \mathcal{D} be categories, and

$$L: \mathcal{C} \leftrightarrow \mathcal{D}: R$$

an adjunction with unit η : id_{\mathbb{C}} $\to RL$ and counit ε : $LR \to id_{\mathbb{D}}$.

Recall that this data gives a comonad in \mathcal{D} , i.e. a comonoid internal to the category $\operatorname{End}(\mathcal{D})$, or equivalently, a monoid LR internal to the category $\operatorname{End}(\mathcal{D})^{\operatorname{op}}$.

$$LRLR \stackrel{L\eta R}{\longleftarrow} LR \stackrel{\varepsilon}{\Longrightarrow} id_{\mathcal{D}}$$

The category Δ_+ is the free monoidal category on a monoid; that is, whenever we are given a monoidal category \mathcal{C} and a monoid $M \in \mathcal{C}$, it extends to a monoidal functor $\tilde{M} \colon \Delta \to \mathcal{C}$.

$$\{*\} \xrightarrow{[0]} \Delta_{+}$$

$$\downarrow^{\exists ! \tilde{M}}$$

$$C$$

In particular, with $\mathcal{C} = \operatorname{End}(\mathcal{D})^{\operatorname{op}}$, the monoid LR extends to a monoidal functor $\Delta_+ \to \operatorname{End}(\mathcal{D})^{\operatorname{op}}$.

$$\{*\} \xrightarrow{[0]} \Delta_{+}$$

$$\downarrow^{\exists!}$$

$$\operatorname{End}(\mathfrak{D})^{\operatorname{op}}$$

Equivalently, this gives a functor

$$B \colon \Delta^{\mathrm{op}}_+ \to \mathrm{End}(\mathfrak{D}).$$

For each $d \in \mathcal{D}$, there is an evaluation map

$$\operatorname{ev}_d \colon \operatorname{End}(\mathcal{D}) \to \mathcal{D}.$$

Composing this with the above functor gives, for each object $d \in \mathcal{D}$, a simplicial object in \mathcal{D} .

$$S_d = \Delta_+^{\text{op}} \xrightarrow{B} \text{End}(\mathcal{D}) \xrightarrow{\text{ev}_d} \mathcal{D}$$

Definition 18 (bar construction). The composition $ev_d \circ B$ is called the bar construction.

Example 19. I believe this example comes from John Baez, although I can't find the exact source at the moment.

Consider the free-forgetful adjunction

$$F: \mathbf{Set} \longleftrightarrow \mathbf{Ab}: G.$$

The unit $\eta: id_{Set} \to U \circ F$ has components

$$\eta_S \colon S \to \mathbb{Z}[S]$$

which assigns any set S to the set underlying the free abelian group on it by mapping elements to their corresponding generators. The counit $\varepsilon \colon F \circ U \to \mathrm{id}_{Ab} \to U \circ F$ has components

$$\epsilon_A \colon \mathbb{Z}[A] \to A$$

which takes formal linear combinations of group elements to actual linear combinations of group elements.

Denoting $F \circ U$ by Z, we find the following comonad in **Ab**, where $\nabla = F \eta U$.

$$Z \circ Z$$

$$\uparrow \nabla$$

$$Z$$

$$\downarrow \varepsilon$$

$$id_{Ab}$$

This gives us a simplicial object in End(**Ab**).

Post-composing with the evaluation functor $ev_{\mathbb{Z}}$ gives the following simplicial object in Ab.

$$\begin{array}{ccc}
& & \xrightarrow{(ZZ\varepsilon)_{\mathbb{Z}}} \\
& \xrightarrow{\longleftarrow} \\
& \xrightarrow{(\varepsilon ZZ)_{\mathbb{Z}}}
\end{array}
\mathbb{Z}[\mathbb{Z}[\mathbb{Z}]] \xrightarrow{(Z\varepsilon)_{\mathbb{Z}}} \mathbb{Z}[\mathbb{Z}] \xrightarrow{\varepsilon_{\mathbb{Z}}} \mathbb{Z}$$

Let's examine some of these objects in detail.

• The first object is the friendly and reassuring \mathbb{Z} , whose elements are integers. An example of an element of \mathbb{Z} is

• The next object, $\mathbb{Z}[\mathbb{Z}]$, consists of formal linear combinations of elements of \mathbb{Z} , i.e. formal sums of the form

$$3 \times (5) + 2 \times (-1).$$

The funny notation of enclosing the elements of (the set underlying) \mathbb{Z} in parentheses will come in handy shortly.

• The next object, $\mathbb{Z}[\mathbb{Z}[\mathbb{Z}]]$, consists of formal linear combinations of elements of $\mathbb{Z}[\mathbb{Z}]$, i.e. formal linear combinations of formal linear combinations of integers. An element of $\mathbb{Z}[\mathbb{Z}[\mathbb{Z}]]$ looks like this.

$$3 \times (2 \times (1) + 3 \times (5)) - 4 \times (1 \times (3)).$$

• I wonder if you can figure out for yourself what the elements of $\mathbb{Z}[\mathbb{Z}[\mathbb{Z}[\mathbb{Z}]]]$ are.

Next, we should understand the face maps in some low degrees.

Consider some element of $\mathbb{Z}[\mathbb{Z}]$, say

$$3 \times (5) + 2 \times (-1)$$

The map $\varepsilon_{\mathbb{Z}} = d_0$ collapses the formal multiplication into actual multiplication:

$$\varepsilon_{\mathbb{Z}} : 3 \times (5) + 2 \times (-1) \mapsto 15 - 2 = 13.$$

Consider now some element of $\mathbb{Z}[\mathbb{Z}[\mathbb{Z}]]$, say

$$3 \times (2 \times (1) + 3 \times (5)) - 4 \times (1 \times (3)).$$

The map $\mathbb{Z}\varepsilon_{\mathbb{Z}}=d_0$ sends this to

$$3 \times (17) - 4 \times (3);$$

that is, it strips off the inner-most parentheses. The map $(\varepsilon Z)_{\mathbb{Z}}=d_1$ sends it to

$$6 \times (1) + 9 \times (5) - 4 \times (3)$$
:

that is, it strips off the outer-most parentheses.

Note that, as the simplicial identities promised us, $\epsilon_{\mathbb{Z}}$ sends both of these to

$$3 \times 17 - 4 \times 3 = 6 \times 1 + 9 \times 5 - 4 \times 3 = 39.$$

In the case that the category \mathcal{D} is abelian, we can form from a simplicial object the chain complex of alternating face maps modulo degeneracies.

Definition 20 (bar complex). Let

$$F: \mathcal{A} \longleftrightarrow \mathcal{B}: G$$

be an adjunction between abelian categories, let $b \in \mathcal{B}$, and denote by $S_b : \Delta^{\text{op}} \to \mathbf{Set}$ the bar construction of b.

The <u>bar complex</u> Bar_b of b is the chain complex of face maps modulo degeneracies (Definition 14) of S_b .

We will see an example of the bar complex in the next chapter.

1.3.3 Invariants and coinvariants

Now we are ready to apply Cockamamie Scheme 3 to the study of groups. Here a somewhat popular method exists for turning a group G into a ring, namely by constructing the group ring $\mathbb{Z}G$. As is tradition, we will study modules over this ring.

In Section 1.2, we had a nice interpretation of modules over our rings, as corresponding to k-linear representations of a quiver. We will work backwards, finding another perspective on modules over the group ring $\mathbb{Z}G$ of a group G as G-modules.

Given a group G, a G-module is a functor $BG \to Ab$. More generally, the category of such G-modules is the category Fun(BG, Ab). We will denote this category by G-Mod.

More explicitly, a G-module consists of an abelian group M, and a left G-action on M. However, since we are in Ab, we have more structure immediately available to us: we can define for $n \in \mathbb{Z}$, $g \in G$ and $a \in M$,

$$(nq)a = n(qa),$$

and, extending by linearity, a $\mathbb{Z}G$ -module structure on M.

Because of the obvious equivalence G-Mod $\simeq \mathbb{Z}G$ -Mod, we know that G-Mod has enough projectives.

Note that there is a canonical functor triv: $Ab \rightarrow Fun(BG, Ab)$ which takes an abelian group to the associated constant functor.

Proposition 21. The functor triv has left adjoint

$$(-)_G: M \mapsto M_G = M/\langle g \cdot m - m \mid g \in G, m \in M \rangle$$

and right adjoint

$$(-)^G\colon M\mapsto M^G=\{m\in M\mid g\cdot m=m\}.$$

That is, there is an adjoint triple

$$(-)_G \longleftrightarrow \operatorname{triv} \longleftrightarrow (-)^G$$

Proof. In each case, we exhibit a hom-set adjunction. In the first case, we need a natural isomorphism

$$\operatorname{Hom}_{\operatorname{Ab}}(M_G, A) \equiv \operatorname{Hom}_{G\operatorname{-Mod}}(M, \operatorname{triv} A).$$

Starting on the left with a homomorphism $\alpha \colon M_G \to A$, the universal property for quotients allows us to replace it by a homomorphism $\hat{\alpha} \colon M \to A$ such that $\hat{\alpha}(g \cdot m - g) = 0$ for all $m \in M$ and $g \in G$; that is to say, a homomorphism $\hat{\alpha} \colon M \to A$ such that

$$\hat{\alpha}(q \cdot m) = \hat{\alpha}(m). \tag{1.2}$$

However, in this form it is clear that we may view $\hat{\alpha}$ as a G-linear map $M \to \operatorname{triv} A$. In fact, G-linear maps $M \to \operatorname{triv} A$ are precisely those satisfying Equation 1.2, showing that this is really an isomorphism.

The other case is similar.

Definition 22 (invariants, coinvariants). For a G-module M, we call M^G the <u>invariants</u> of M and M_G the coinvariants.

Clearly, the functors taking invariants and coinvariants are interesting things that deserve to be studied in their own right, and in keeping with Cockamamie Scheme 3 we could procede by deriving them. However, now something of a miracle occurs: these functors are really special cases of the hom and tensor product!

Lemma 23. We have the formulae

$$(-)^G \simeq \operatorname{Hom}_{\mathbb{Z}G\operatorname{-Mod}}(\mathbb{Z}, -)$$

and

$$(-)_G \simeq \mathbb{Z} \otimes_{\mathbb{Z}G} -$$

where in the first formula \mathbb{Z} is taken to be a trivial left $\mathbb{Z}G$ -module, and in the second a trivial right $\mathbb{Z}G$ -module.

Proof. A $\mathbb{Z}G$ -linear map $\mathbb{Z} \to M$ picks out an element of M on which G acts trivially. Consider the element

$$1 \otimes (m - q \cdot m) \in \mathbb{Z} \otimes_{\mathbb{Z}G} M$$
.

By $\mathbb{Z}G$ -linearity, this is equal to $1 \otimes m - 1 \otimes m = 0$.

Lemma 23 means that we already have a good handle on the derived functors of $(-)_G$ and

 $(-)^G$: they are given by the Ext and Tor functors we have already seen. More specifically,

$$L_i(-)_G = \operatorname{Tor}_i^{\mathbb{Z}G}(\mathbb{Z}, A), \qquad R^i(-)^G = \operatorname{Ext}_{\mathbb{Z}G}^i(\mathbb{Z}, A).$$

This is a stroke of luck. Had we proceded naïvely by forming the right and left derived functors of invariants and coinvariants using Definition 22, we would have have been stuck picking resolutions for each $\mathbb{Z}G$ -module whose value under the derived functors we wanted to compute, which would have been messy. By the balancedness of Tor and Ext, we can simply pick a resolution of \mathbb{Z} as a $\mathbb{Z}G$ -module and get on with our lives.⁴

The story so far is as follows.

- 1. We fixed a group G and considered the category G-Mod of functors $BG \to Ab$.
- 2. We noticed that picking out the constant functor gave us a canonical functor $Ab \rightarrow G\text{-}Mod$, and that taking left- and right adjoints to this gave us interesting things.
 - The right adjoint $(-)^G$ applied to a G-module A gave us the subgroup of A stabilized by G.
 - The left adjoint $(-)_G$ applied to a G-module A gave us the A modulo the stabilized subgroup.
- 3. Due to adjointness, these functors have interesting exactness properties, leading us to derive them.
 - Since $(-)_G$ is left adjoint, it is right exact, and we can take the left derived functors $L_i(-)_G$.
 - Since $(-)^G$ is right adjoint, it is left exact, and we can take the right derived functors $R^i(-)^G$.
- 4. We denote

$$L_i(-)_G = H_i(G, -), \qquad R^i(-)^G = H^i(G, -),$$

and call them group homology and group cohomology respectively.

5. We notice that, taking \mathbb{Z} as a trivial $\mathbb{Z}G$ -module, we have

$$A_G \equiv \mathbb{Z} \otimes_{\mathbb{Z}G} A, \qquad A^G \equiv \operatorname{Hom}_{\mathbb{Z}G}(\mathbb{Z}, A),$$

and thus that

$$H_i(G, A) = \operatorname{Tor}_i^{\mathbb{Z}G}(\mathbb{Z}, A), \qquad H^i(G, A) = \operatorname{Ext}_{\mathbb{Z}G}^i(\mathbb{Z}, A).$$

⁴In the case of invariants (which correspond to Ext), we need to pick a resolution of \mathbb{Z} as a *left* $\mathbb{Z}G$ -module, and in the case of coinvariants (corresponding to Tor), we need to pick a resolution of \mathbb{Z} as a *right* $\mathbb{Z}G$ -module.

This means that (by balancedness of Tor and Ext) we can compute group homology and cohomology by taking a resolution of \mathbb{Z} as a free $\mathbb{Z}G$ -module, rather than having to take resolutions of A for all A. The bar complex gave us such a resolution.

Example 24. Let $G = \mathbb{Z}$, and denote the generator by t. Suppose we want to compute $H_*(G; A)$ and $H^*(G; A)$ for some $\mathbb{Z}G$ -module A.

Thanks to Lemma 23, instead of computing a projective resolution of some specific A, we may compute a projective resolution of \mathbb{Z} as a $\mathbb{Z}G$ -module.

$$0 \longrightarrow \mathbb{Z}G \stackrel{t-1}{\longleftrightarrow} \mathbb{Z}G \longrightarrow \mathbb{Z} \longrightarrow 0$$

This gives us a free resolution $F_{\bullet} \stackrel{\cong}{\to} \mathbb{Z}$.

By definition,

$$H_i(G;A) = H_i(F_{\bullet} \otimes_{\mathbb{Z}G} A) = H_i \left(\begin{array}{ccc} 0 & \longrightarrow & \mathbb{Z}G \otimes_{\mathbb{Z}G} A & \stackrel{f}{\longrightarrow} & \mathbb{Z}G \otimes_{\mathbb{Z}G} A & \longrightarrow & 0 \end{array} \right).$$

The map f takes $t \otimes a \mapsto a - t \otimes a$; the homology $H_0(G; A)$ is thus

$$\operatorname{coker} f = A/\langle t \cdot a - a \mid a \in A \rangle = A_G.$$

Similarly, we have

$$H_1(G;A) = \ker f = A^G.$$

For n > 1, we have $H_n(G; A) = 0$.

Now turning our attention to group cohomology, we find by definition

$$H^n(G;A) = H^n \left(0 \longrightarrow \operatorname{Hom}(\mathbb{Z}G,A) \stackrel{g}{\longrightarrow} \operatorname{Hom}(\mathbb{Z}G,A) \longrightarrow 0 \right),$$

where the map q sends

$$q: (f: t \mapsto f(t)) \mapsto (qf: t \mapsto f(t-1)).$$

Note that under the correspondence $f \mapsto f(1)$, we have

$$\text{Hom}(\mathbb{Z}G; A) \cong A$$
.

Having made this identification, g simply sends $f \mapsto tf - f$. Thus, similarly to before, we have

$$H^{0}(G; A) = \ker(g) = A^{G}, \qquad H^{1}(G; A) = \operatorname{coker}(g) = A_{G},$$

and $H^{n}(G; A) = 0$ for n > 1.

1.3.4 The bar construction for group rings

In the last section, we saw that we could compute group homology and cohomology of a group G by finding a projective resolution of \mathbb{Z} as a trivial $\mathbb{Z}G$ -module. This is nice, but computing projective resolutions is in general rather difficult.

It turns out that the bar construction (explored in Subsection 1.3.2) computes a free resolution of \mathbb{Z} as a $\mathbb{Z}G$ -module for any group G.

Consider the functor

$$U: \mathbb{Z}G\text{-}\mathbf{Mod} \to \mathbf{Ab}$$

which forgets multiplication. This has left adjoint

$$\mathbb{Z}G \otimes_{\mathbb{Z}} -: \mathbf{Ab} \to \mathbb{Z}G\text{-}\mathbf{Mod},$$

which assigns to an abelian group *A* the left $\mathbb{Z}G$ -module $\mathbb{Z}G \otimes_{\mathbb{Z}} A$.

The unit η : $\mathrm{id}_{\mathsf{Ab}} \Rightarrow U(\mathbb{Z}G \otimes_{\mathbb{Z}} -)$ and counit ε : $\mathbb{Z}G \otimes_{\mathbb{Z}} U(-) \Rightarrow \mathrm{id}_{\mathbb{Z}G-\mathsf{Mod}}$ of this adjunction have components

$$\eta_A \colon A \to U(\mathbb{Z}G \otimes_{\mathbb{Z}} A); \qquad a \mapsto 1 \otimes a$$

and

$$\varepsilon_M \colon \mathbb{Z}G \otimes_{\mathbb{Z}} U(M) \to M; \qquad q \otimes m \mapsto qm.$$

Denoting $\mathbb{Z}G \otimes_{\mathbb{Z}} (-) \circ U$ by Z, we find the following comonad in $\mathbb{Z}G$ -**Mod**, where $\nabla = \mathbb{Z}G \otimes_{\mathbb{Z}} (-)\eta U$.

This gives us a simplicial object in $End(\mathbb{Z}G-Mod)$.

$$Z \circ Z \circ Z \stackrel{ZZ\varepsilon}{\Longleftrightarrow} Z \circ Z \stackrel{Z\varepsilon}{\Longleftrightarrow} Z \circ Z \stackrel{Z\varepsilon}{\Longleftrightarrow} Z \Longrightarrow \mathrm{id}_{\mathbb{Z}G\text{-Mod}}$$

Evaluating on a specific $\mathbb{Z}G$ -module M then gives a simplicial object in $\mathbb{Z}G$ -**Mod**. We

continue in the special case $M = \mathbb{Z}$ taken as a trivial $\mathbb{Z}G$ -module.

$$\mathbb{Z}G \otimes_{\mathbb{Z}} \mathbb{Z}G \otimes_{\mathbb{Z}} \mathbb{Z}G \otimes_{\mathbb{Z}} \mathbb{Z}G \otimes_{\mathbb{Z}} \mathbb{Z} \xrightarrow{d_0} \mathbb{Z}G \otimes_{\mathbb{Z}} \mathbb{Z}$$

We are justified in notationally suppressing the last copy of \mathbb{Z} .

The face map d_i removes the ith copy of Z; on a generator, we have the action of d_i given by

$$d_i \colon x \otimes x_1 \otimes \cdots \otimes x_n \mapsto \begin{cases} xx_1 \otimes \cdots \otimes x_n, & i = 0 \\ x \otimes x_1 \otimes \cdots \otimes x_i x_{i+1} \otimes \cdots \otimes x_n, & 0 < i < n+1 \\ x \otimes \cdots \otimes x_{n-1}, & i = n+1. \end{cases}$$

and the degeneracy maps s_i send

$$x \otimes x_1 \otimes \cdots \otimes x_{n-1} \mapsto x \otimes x_1 \otimes \cdots \otimes x_{i-1} \otimes 1 \otimes x_i \otimes \cdots \otimes x_{n-1}$$
.

It is traditional to use the notation

$$x \otimes x_1 \otimes \cdots \otimes x_n = x[x_1|\cdots|x_n].$$

This notation is the origin of the name *bar construction*.

We now form the bar complex; the objects B_n are given by

$$B_n = \mathbb{Z}G^{\otimes n}/\{\text{degenerate simplices}\};$$

that is, whenever we see something of the form

$$x[x_1|\cdots|1|\cdots|x_n],$$

we set it to zero.

The elements of B_n are simply formal \mathbb{Z} -linear combinations of the $x[x_1|\cdots|x_n]$. Therefore, we can also write

$$B_n = \bigoplus_{(g_i) \in (G \setminus \{e\})^n} \mathbb{Z}G[g_1| \cdots |g_n], \qquad n \ge 0.$$

That is, we can write the bar complex as follows.

$$\cdots \longrightarrow \bigoplus_{(g_1,g_2)\in (G\setminus \{1\})^2} \mathbb{Z}G[g_1|g_2] \longrightarrow \bigoplus_{g\in G\setminus \{1\}} \mathbb{Z}G[g] \longrightarrow \mathbb{Z}G[\cdot] \longrightarrow \mathbb{Z}$$

To summarize, we have the following definition.

Definition 25 (bar complex). Let G be a group. The <u>bar complex</u> of G is the chain complex defined level-wise to be the free $\mathbb{Z}G$ -module

$$B_n = \bigoplus_{(g_i) \in (G \setminus \{e\})^n} \mathbb{Z}G[g_1| \cdots |g_n],$$

where $[g_1|\cdots|g_n]$ is simply a symbol denoting to the basis element corresponding to (g_1,\ldots,g_n) . The differential is defined by

$$d([g_1|\cdots|g_n])=g_1[g_2|\cdots|g_n]+\sum_{i=1}^{n-1}(-1)^i[g_1|\cdots|g_ig_{i+1}|\cdots|g_n]+(-1)^n[g_1|\cdots|g_{n-1}].$$

Proposition 26. For any group G, the bar construction gives a free resolution of \mathbb{Z} as a (left) $\mathbb{Z}G$ -module.

Proof. We need to show that the sequence

$$\cdots \longrightarrow B_2 \longrightarrow B_1 \longrightarrow B_0 \stackrel{\epsilon}{\longrightarrow} \mathbb{Z} \longrightarrow 0$$

is exact, where ϵ is the augmentation map.

We do this by considering the above as a sequence of \mathbb{Z} -modules, and providing a \mathbb{Z} -linear homotopy between the identity and the zero map.

$$B_{2} \longrightarrow B_{1} \longrightarrow B_{0} \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0$$

$$\downarrow_{id} \downarrow h_{1} \downarrow_{id} \downarrow h_{0} \downarrow_{id} \downarrow h_{-1} \downarrow_{id}$$

$$B_{2} \longrightarrow B_{1} \longrightarrow B_{0} \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0$$

We define

$$h_{-1}: \mathbb{Z} \to B_0; \qquad n \mapsto n[\cdot].$$

and, for $n \geq 0$,

$$h_n: B_n \mapsto B_{n+1}; \qquad q[q_1|\cdots|q_n] \mapsto [q|q_1|\cdots|q_n].$$

We then have

$$\epsilon \circ h_{-1} \colon n \mapsto n[\cdot] \mapsto n,$$

and doing the butterfly

$$B_{n} \xrightarrow{d_{n}} B_{n-1} + B_{n}$$

$$B_{n} \xrightarrow{h_{n-1}} B_{n}$$

$$B_{n+1} \xrightarrow{d_{n+1}} B_{n}$$

gives us in one direction

$$g[g_{1}|\cdots|g_{n}] \longmapsto + \sum_{i=1}^{n-1} (-1)^{i} g[g_{1}|\cdots|g_{i}g_{i+1}|\cdots|g_{n}] + (-1)^{n} g[g_{1}|\cdots|g_{n}]$$

$$= [gg_{1}|\cdots|g_{n}]$$

$$+ \sum_{i=1}^{n-1} (-1)^{i} [gg_{1}|\cdots|g_{i}g_{i+1}|\cdots|g_{n}] + (-1)^{n} [gg_{1}|\cdots|g_{n}]$$

and in the other

The sum of these is simply $g[g_1|\cdots|g_n]$, i.e. we have

$$h \circ d + d \circ h = id$$
.

This proves exactness as desired.

Note that we immediately get a free resolution of $\mathbb{Z}G$ as a *right* $\mathbb{Z}G$ by mirroring the construction above.

Thus, we have the following general formulae:

$$H^{i}(G,A) = H^{i}\left(\begin{array}{ccc} 0 & \longrightarrow & \operatorname{Hom}_{\mathbb{Z}G}(B_{0},A) & \xrightarrow{(d_{1})^{*}} & \operatorname{Hom}_{\mathbb{Z}G}(B_{1},A) & \xrightarrow{(d_{2})^{*}} & \cdots \end{array}\right)$$

and

$$H_i(G,A) = H_i \left(\cdots \longrightarrow B_1 \otimes_{\mathbb{Z}G} A \longrightarrow B_0 \otimes_{\mathbb{Z}G} A \longrightarrow 0 \right)$$

1.3.5 Computations in low degrees

First homology and abelianizations

Let G be a group, and consider \mathbb{Z} as a free $\mathbb{Z}G$ -module. Let us compute $H_1(G, \mathbb{Z})$. To compute $H_1(G, \mathbb{Z})$, consider the first few terms in the bar complex for G.

$$\cdots \longrightarrow \bigoplus_{(g_1,g_2)\in (G\smallsetminus\{1\})^2} \mathbb{Z}G[g_1|g_2] \longrightarrow \bigoplus_{g\in G\smallsetminus\{1\}} \mathbb{Z}G[g] \longrightarrow \mathbb{Z}G[\cdot] \longrightarrow 0$$

Tensoring over $\mathbb{Z}G$ with \mathbb{Z} is the same as trivializing the action, giving us the following complex.

$$\cdots \longrightarrow \bigoplus_{(g_1,g_2)\in (G\smallsetminus\{1\})^2} \mathbb{Z}[g_1|g_2] \longrightarrow \bigoplus_{g\in G\smallsetminus\{1\}} \mathbb{Z}[g] \longrightarrow \mathbb{Z}[\cdot] \longrightarrow 0$$

The differential $d_1 \otimes id_{\mathbb{Z}}$ acts on a generator [q] by sending it to

$$[\cdot]q - [\cdot] = [\cdot] - [\cdot] = 0,$$

implying that everything is a 1-cycle. The differential d_2 sends a generator [g|h] to

$$[q]h - [qh] + [h] = [q] + [h] - [qh].$$

Thus, taking cycles modulo boundaries is the same as

$$\{[g] \in G\}/\langle [gh] - [g] - [h]\rangle \cong G_{ab}.$$

Thus, $H_1(G, \mathbb{Z})$ is simply the abelianization of G.

First cohomology and semidirect products

To compute $H^1(G, A)$, consider the sequence

$$0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}G}(\mathbb{Z}G[\cdot], A) \xrightarrow{(d_1)^*} \operatorname{Hom}_{\mathbb{Z}G}(\bigoplus_{g \in G \setminus \{1\}} \mathbb{Z}G[g], A) \xrightarrow{(d_2)^*} \cdots.$$

Notice immediately that since the hom functor preserves direct sums in the first slot, we have

$$\operatorname{Hom}_{\mathbb{Z}G}\left(\bigoplus_{(g_i)\in (G\smallsetminus\{1\})^n}\mathbb{Z}G[g_1|\cdots|g_n],A\right)\cong\bigoplus_{(g_i)\in (G\smallsetminus\{1\})^n}\operatorname{Hom}_{\mathbb{Z}G}\left(\mathbb{Z}G[g_1|\cdots|g_n],A\right)$$

An element of $\text{Hom}_{\mathbb{Z}G}(\mathbb{Z}G[g_1|\cdots|g_n])$ is determined completely by where it sends the generator of $\mathbb{Z}G$. We can therefore re-package the RHS as consisting of functions

$$\phi \colon (G \setminus \{1\})^n \to A$$

or equivalently as functions

$$\phi \colon G^n \to A, \qquad \phi(\ldots, 1, \ldots) = 0.$$

The differential $d^n = (d_n)_*$ sends $\phi \mapsto d^n \phi = \phi \circ d_n$, where

$$\phi \circ d_n \colon (g_1, \dots, g_{n+1}) \mapsto g_1 \phi(g_2, \dots, g_{n+1})$$

$$+ \sum_{i=1}^n (-1)^i \phi(g_1, \dots, g_i g_{i+1}, \dots, g_{n+1})$$

$$+ (-1)^{n+1} \phi(g_1, \dots, g_n).$$

We will denote the *n*th term in Equation 1.3.5 by C^n ; that is, we have

$$C^n \cong \{\phi \colon G^n \to A \mid \phi(q_1, \dots, 1, \dots, q_n) = 0\}.$$

Let us explicitly compute $H^1(G; A)$.

The set of 1-coboundaries corresponds to functions $\psi \colon G \to A$ with

$$d\psi: G^2 \to A;$$
 $d\psi(g, h) = g\psi(h) - \psi(gh) + \psi(g) = 0,$

i.e. functions

$$\phi: G \to A;$$
 $\psi(q, h) = \psi(q) + q\psi(h).$

We will call these crossed homomorphisms.

The set of 1-cocycles corresponds to the image $d^0(C^0)$, i.e. those functions

$$d\phi: G \to A$$
, $d\phi([q]) = q\phi([\cdot]) - \phi([\cdot])$.

We will call these *principal crossed homomorphisms*.

Thus, in this case we have

$$H^1(G; A) = \frac{\{\text{crossed homomorphisms from } G \text{ to } A\}}{\{\text{principal crossed homomorphisms from } G \text{ to } A\}}.$$

Now suppose that A is a trivial G-module. In that case, crossed homomorphisms are simply homomorphisms $G \to A$, and principal crossed homomorphisms are zero. Thus, $H^1(G; A)$ consists of homomorphisms $G \to A$, i.e.

$$H^1(G; A) = \operatorname{Hom}_{Ab}(G_{ab}, A).$$

Definition 27 (semidirect product). Let G be a group, and A a G-module. The <u>semidirect product</u> of A and G is the group whose underlying set is $A \times G$, and whose group operation is given by

$$(a, q) \cdot (a', q') = (a + qa', qq').$$

We denote the semidirect product of *A* and *G* by $A \times B$.

Note that we have a short exact sequence of groups⁵

$$0 \longrightarrow A \hookrightarrow A \rtimes G \longrightarrow G \longrightarrow 1.$$

Let $\sigma: A \rtimes G \to A \rtimes G$ be a group homomorphism. We say that σ *stabilizes* A and G if the following diagram commutes.

Given any crossed homomorphism ϕ , we get a group homomorphism σ_{ϕ} by the formula

$$\sigma_{\phi} \colon (a, q) \mapsto (a + \phi(q), q).$$

This is an easy check; we have

$$\sigma_{\phi}((a,g)(a',g')) = \sigma_{\phi}(a+ga',gg')$$

$$= (a+ga'+\phi(gg'),gg')$$

$$= (a+\phi(g)+g(a'+\phi(g')),gg')$$

$$= (a+\phi(g),g)(a'+\phi(g'),g')$$

$$= \sigma_{\phi}(a,g)\sigma_{\phi}(a',g').$$

⁵We are cheating a bit. Since **Grp** is not an abelian category, we have no notion of an exact sequence of groups. We trust that the reader will not be confused.

In fact, σ_{ϕ} trivially stabilizes A and G. This gives us a way of turning a cocycle in $Z^1(G, A)$ into an an automorphism of $A \rtimes G$ which stabilizes A and G.

Proposition 28. The map

$$\psi: Z^1(G; A) \to \operatorname{Aut}(A \rtimes G); \qquad \phi \mapsto \sigma_{\phi}$$

is an isomorphism onto the subgroup of $Aut(A \rtimes G)$

Proof. The fact that ψ is a homomorphism is trivial. We show that we have an inverse given by

This is miserable.

Second cohomology and extensions

Definition 29 (extension of a group). Let G be a group and A an abelian group. An extension of G by A is a short exact sequence of groups

$$0 \longrightarrow A \stackrel{i}{\longleftrightarrow} E \stackrel{\pi}{\longrightarrow} G \longrightarrow 0 .$$

Two such extensions are said to be <u>equivalent</u> if there is a morphism of short exact sequences

$$0 \longrightarrow A \stackrel{i}{\longrightarrow} E \stackrel{\pi}{\longrightarrow} G \longrightarrow 0$$

$$\parallel \qquad \qquad \downarrow_{\sigma} \qquad \parallel \qquad \qquad .$$

$$0 \longrightarrow A \stackrel{i'}{\longrightarrow} E \stackrel{\pi'}{\longrightarrow} G \longrightarrow 0$$

We are no longer justified in using the snake lemma to show that σ is an isomorphism, but the logic in Example *?? does* carry over to our current situation.

Definition 30 (split extension). An extension

$$0 \longrightarrow A \stackrel{i}{\longleftrightarrow} E \xrightarrow{\pi} G \longrightarrow 0$$

is said to be *split* if there exists a group homomorphism $s: G \to E$ such that $\pi \circ s = id_G$.

Proposition 31. An extension of *E* of *G* by *A* is equivalent to the semidirect product $A \rtimes G$ if and only if it is split.

Proof. The semidirect product $A \bowtie G$ admits the extension $g \mapsto (0,g)$. Given a split extension

$$0 \longrightarrow A \stackrel{i}{\longleftrightarrow} E \stackrel{\pi}{\longrightarrow} G \longrightarrow 0 ,$$

we can define a map

$$E \to A \rtimes G; \qquad e \mapsto (e(s\pi(e)^{-1}), \pi(e)).$$

As the last proposition shows, in general we cannot find a section of an extension. However, since π is surjective, given any extension,

$$0 \longrightarrow A \stackrel{i}{\longleftrightarrow} E \stackrel{\pi}{\longrightarrow} G \longrightarrow 0.$$

we can find at least a *set-theoretic extension* of G by A, i.e. a set-function $G \to E$ such that $\pi \circ s = e_G$.

Note that *E* can act on *A* via conjugation; if $a \in A$ and $e \in E$, then $eae^{-1} \in A$, because

$$\pi(eae^{-1}) = \pi(e)\pi(a)\pi(e^{-1})$$

= $\pi(e)\pi(e)^{-1}$
= e_G .

In fact, since *A* is abelian, it acts trivially on itself via conjugation, so it descends to an action of $G \cong E/A$ on *A*.

This gives a section of E relative to G. Given such a splitting, we can define for each pair $g, h \in G$ an element $f(g, h) \in A$ in the fiber over the identity $e_G \in G$ which corresponds to how far...

$$f(g,h) = s(g)s(h)s(gh)^{-1}.$$

The function $f: G \times G \to G$ is called the *factor set* of G. If s were a group homomorphism, the factor set would vanish; in general, the factor set measures how far apart s(g)s(h) and s(gh) are.

Lemma 32. Given an extension

$$0 \longrightarrow A \stackrel{i}{\longleftrightarrow} E \xrightarrow{\pi} G \longrightarrow 0 ,$$

we can completely recover the group law on E from the injection i and the factor set f.

Proof. As a set, E is in bijection with $A \times G$ via

$$e \mapsto (e(s\pi(e)^{-1}), \pi(e)).$$

It is easy to check that this has inverse

$$(a, g) \mapsto i(a)s(g)$$
.

Let $e, e' \in E$ corresponding to (a, g) and (a', g') respectively. Then

$$ee' = i(a)s(g)i(a')s(g')$$

$$= i(a)s(g)i(a')s(g)^{-1}s(g)s(h)$$

$$= i(a)i(g \cdot b)s(g)s(h)$$

$$= i(a + g \cdot b)i(f(g, h))s(gh)$$

$$= i(a + g \cdot b + f(g, h))s(gh)$$

so under the bijection $E \cong A \times G$, ee' corresponds to $(a + g \cdot b + f(g, h), gh)$.

Associativity now immediately implies that

$$((a,q)(b,h))(c,k) \stackrel{!}{=} (a,q)((b,h)(c,k));$$

expanding, we find that

$$(a+q\cdot b+f(q,h)+(qh)\cdot c+f(qh,k),qhk)$$

must be the same as

$$(a + g \cdot b + (gh) \cdot c + gf(h, k) + f(g, hk), ghk).$$

That means that

$$g \cdot f(h,k) - f(gh,k) + f(g,hk) - f(g,h) \stackrel{!}{=} 0.$$

Thus, the factor set f must be a 2-cocycle in $C^{\bullet}(G; A)$.

Our construction depends on the choice of section s. supposed we had picked a different section s'. Then the 'difference' $s'(g)s(g)^{-1}$ can be written $i(\phi(a))$ for some $a \in A$. We thus obtain a map $\phi: G \to A$.

To warm up, we do a computation.

$$s'(q)s'(h) = \cdots$$

In the end, we find

$$f_{s'}(g,h) - f_s(g,h) = g \cdot \phi(h) - \phi(gh) + \phi(g).$$

Theorem 33. Let *G* be a group, and *A* a *G*-module. Then there is a natural bijection

$$\left\{\begin{array}{l} \text{Extension classes of } G \text{ by } A \\ \text{such that the action of } G \text{ on } A \\ \text{agrees with the module structure} \right\} \stackrel{\cong}{\longleftrightarrow} H^2(G; A).$$

1.3.6 Periodicity in group homology

In this section, we will prove a combinatorial version of the following result.

Fact 34. Let G be a group. Suppose G acts freely on a sphere of dimension 2k - 1. Then G has 2k-periodic group homology.

Simplicial complexes

Definition 35 (simplicial complex). Let I be a finite set. A <u>simplicial complex</u> K on I is a collection of subsets $K \subset \mathcal{P}(I)$ such that for $\sigma \in K$ and $\tau \subset \sigma$, $\tau \in K$.

Let K be a simplicial complex on a set I, and let K' be a simplicial complex on a set I'. A morphism $K \to K'$ is a function $f: I \to I'$ such that for every $\sigma \in K$, $f(\sigma) \in K'$.

We define a cosimplicial object in the category of simplicial complexes by

$$[n] \mapsto \mathcal{P}(\{0,\ldots,n\}).$$

Taking nerves gives us, for every simplicial complex K, a simplicial set \tilde{K} .

Note that for each $\sigma \in K_n$, there are n! simplices in \tilde{K}_n , one for each permutation of the elements of σ . In **Set** there is not much we can do about this; however, applying the free abelian group functor \mathcal{F} brings us to **Ab**, where we can mod out by this ambiguity.

We thus define a simplicial complex $\widetilde{C}(K)$ to be the alternating face maps complex of the simplicial object $\mathcal{F} \circ \widetilde{K}$.

A more concrete description of what we have just done is as follows. We have

$$\widetilde{C}(K)_n = \bigoplus_{\{x_0,\ldots,x_n\} \in K_n} \mathbb{Z} e_{(x_0,\ldots,x_n)},$$

and the differential is

$$\sum_{i=0}^{n} (-1)^i d_i,$$

where the face maps d_i are the \mathbb{Z} -linear extensions of the maps

$$d_i \colon e_{(x_0,\ldots,x_n)} \mapsto e_{(x_0,\ldots,\widehat{x_i},\ldots,x_n)}.$$

Now that we are in Ab, we can get rid of the extraneous simplices by defining

$$C(K)_n = \widetilde{C}(K)_n / \langle e_{(x_1, \dots, x_n)} - \operatorname{sign}(\sigma) e_{(x_{\sigma(1)}, \dots, x_{\sigma(n)})} \mid \sigma \in S_n \rangle.$$

It is not hard to see that the differential on $\widetilde{C}(K)$ descends to C(K).

Example 36. Let
$$K = \mathcal{P}(\{0, 1\})$$
. Then $e_{(0,1)} = -e_{(1,0)}$ in $C(K)_1$.

Let $f\colon K\to K$ be an automorphism of simplicial complexes K. This descends to an automorphism of chain complexes $C_{\bullet}(K)\to C_{\bullet}(K)$ defined on generators by

$$e_{(x_0,\ldots,x_n)}\mapsto e_{(f(x_0),\ldots,f(x_n))}.$$

Now suppose G acts trivially on