Graph Theory winter term 2013

Problem sheet 4

Due date: November 20, 12:00 am. Discussion of solutions: November 22.

Problem 13. 5 points

Prove that if a graph has an ear-decomposition, then it is 2-connected.

Problem 14. 5 points

For all natural numbers ℓ, m, d with $0 < \ell \le m \le d$ construct a graph with minimum degree d that is ℓ -connected (and not $(\ell+1)$ -connected) and m-edge-connected (and not (m+1)-edge-connected).

Justify your answer.

Problem 15. 5 points

Prove that the block-cut-vertex graph of any connected graph is a tree.

Problem 16. 5 points

Prove each of the following statements for any graph G.

- (a) If G is 3-regular, then $\kappa'(G) = \kappa(G)$.
- (b) If G is 4-regular, then $\kappa'(G) \leq \kappa(G) + 2$.
- (c) if G is the d-dimensional hypercube, then $\kappa'(G) = \kappa(G) = d$.

Open Problem.

Let G be an (a + b + 2)-edge-connected graph. Does there exist a partition $\{A, B\}$ of E(G) so that (V, A) is a-edge-connected and (V, B) is b-edge-connected?