Egzamin zerowy z Inteligencji Obliczeniowej

29.01.2022

Zadanie 1 (6pkt)

Dany jest problem optymalizacyjny:

Maksymalny podgraf pełny

Wejście: graf nieskierowany G

Wyjście: największy podgraf grafu G, który jest pełny (tzn. ma wszystkie wierzchołki parami połączone)

Przykład wejścia z 10 wierzchołkami:

Dla tego grafu można znaleźć podgraf pełny wielkości 5. Gdy weźmiemy wierzchołki 3, 4, 6, 7, 9, to widzimy, że tworzą podgraf pełny. Większego nie znajdziemy.

Jak rozwiązywać problemy tego typu za pomocą algorytmu genetycznego? Zaproponuj rozwiązanie algorytmem genetycznym dla zadanego powyżej przykładu.

- a) Zaprojektuj kodowanie rozwiązanie w chromosomie: jaką ma długość, jaką zawartość, co oznaczają jego geny. Podaj przykład chromosomu.
- b) Zaprojektuj sensowną funkcję fitness i podaj jej opis słowny (może być też prosty pseudokod). Z jakiego zakresu zwracane są oceny tej funkcji i która jest najlepsza?
- c) Podaj obliczenie funkcji fitness dla przykładowych dwóch chromosomów.

Zadanie 2 (3pkt)

Poniżej znajduje się wycinek bazy danych o wykrywaniu raka piersi wśród kobiet.

Znajdź regułę asocjacyjną o następujących parametrach:

- minimalnym support = 0.5,
- minimalnym confidence = 0.8
- minimalnej długości = 3 (liczba elementów łącząc lewą i prawa stronę reguły)

Podaj te regułe, jej suport i jej confidence.

age	menopause	tumor-size	inv-nodes	node-caps	deg-malig	breast	breast-quad	irradiat	Class
40-49	premeno	35-39	0-2	yes	3	right	left_up	yes	no-recurrence-events
50-59	premeno	50-54	0-2	yes	2	right	left_up	yes	no-recurrence-events
50-59	ge40	40-44	0-2	no	3	right	left_up	no	no-recurrence-events
70-79	ge40	15-19	9-11		1	left	left_low	yes	recurrence-events
50-59	It40	30-34	0-2	no	3	right	left_up	no	no-recurrence-events
40-49	premeno	0-4	0-2	no	3	left	central	no	no-recurrence-events
70-79	ge40	40-44	0-2	no	1	right	right_up	no	no-recurrence-events
40-49	premeno	25-29	0-2		2	left	right_low	yes	no-recurrence-events
50-59	ge40	25-29	15-17	yes	3	right	left_up	no	no-recurrence-events
50-59	premeno	20-24	0-2	no	1	left	left_low	no	no-recurrence-events
50-59	ge40	35-39	15-17	no	3	left	left_low	no	no-recurrence-events
50-59	ge40	50-54	0-2	no	1	right	right_up	no	no-recurrence-events
30-39	premeno	0-4	0-2	no	2	right	central	no	recurrence-events
50-59	ge40	40-44	6-8	yes	3	left	left_low	yes	recurrence-events
40-49	premeno	30-34	0-2	no	2	right	right_up	yes	no-recurrence-events
40-49	ge40	20-24	0-2	no	3	left	left_up	no	no-recurrence-events
40-49	premeno	30-34	15-17	yes	3	left	left_low	no	recurrence-events
40-49	ge40	20-24	0-2	no	2	right	left_up	no	recurrence-events
50-59	ge40	15-19	0-2	no	1	right	central	no	no-recurrence-events
30-39	premeno	25-29	0-2	no	2	right	left_low	no	no-recurrence-events

Zadanie 3 (3pkt)

Zaprojektuj zmienną lingwistyczną "Dzienna liczba godzin przy komputerze spędzonych na graniu w gry", która wskaże jak bardzo dana osoba jest uzależniona od gier komputerowych. Dodaj trzy lub cztery wartości lingwistyczne z sensownie zaprojektowanymi zbiorami rozmytymi.

Zadanie 4 (6pkt)

Zasymuluj działanie jądra splotowego (kernela, filtra) na danym obrazku. Następnie przepuść wynik przez funkcję ReLU i podaj wynik końcowy.

Obrazek:

2	1	0	0
7	2	1	0
9	4	3	1
10	5	1	0

Kernel:

2	1	0	
1	0	-1	
0	-1	-2	

Rozwiąż to zadanie w dwóch wariantach:

- a) Opcje nakładania filtra: stride=1, padding=0.
- b) Opcje nakładania filtra: stride=3, padding=1.