

# INR - Introduction aux Réseaux INT1GIR

Année 2014-2015 PMA

Septembre 2014



# 8. Concept de réseau

- Conceptualisation
- Réseaux à commutation
- Notion d'adressage
- Notion de nommage
- > Acheminement
- Adaptation de la MTU
- Congestion



# Brain storming – Questionnement

- C'est quoi un réseau?
- Pour faire quoi?
  - → Services ?
- Comment représenter un réseau?
  - → Composants et architectures
- Exemples de réseaux
  - → classifications?



#### **Définitions**

- Réseau
  - (Servin) Ensemble intégré de composants matériels
    (HW) et logiciels (SW) visant à offrir un ensemble de services à base de transfert d'information à ses utilisateurs
- Ensemble intégré : grâce à 1 double architecture
  - Architecture matérielle ou topologique : configurations et règles d'interconnexion des nœuds physiques du réseau
  - Architecture logicielle ou protocolaire : règles
    d'interconnexion des entités (processus) communicantes



#### Architectures des réseaux

- Exemple WAN
  - Nœuds terminaux et nœuds de transfert interconnectés par des liaisons





- Exemple : Réseau d'entreprise privé
  - Concepts de réseau informatique et de sous-réseau de transport
  - Un réseau WAN est constitué du réseau des noeuds terminaux (LANs d'ordinateurs) et d'un sous-réseau d'interconnexion et de transport (réseau d'opérateur).





## Problématique réseau $\rightarrow$ services essentiels?

- Connectivité
  - a) physique : connexion physique des nœuds (= topologie)
  - b) logique : technique de mise en relation des utilisateurs
- Partage efficace de la BP globale
- Techniques d'acheminement des flux d'information entre les utilisateurs
- Contrôle, gestion et administration



- (a) Réseau d'opérateur téléphonique
  - commutation de circuits
- (b) Réseau d'opérateur informatique
- commutation de paquets





## Classification des réseaux

Différents critères et donc différentes contraintes

- Etendue géographique
  - Classique : LAN, MAN, WAN
  - Nouveau : PAN, planétaire (Internet)
- Organisation de l'exploitation
  - Classique : Public, Privé, Privé virtuel (VPN)
  - Nouveau : Hotspot, domestique



### Classification des réseaux

- Modes de diffusion ou modes de mise en relation
  - Réseaux à diffusion : ex. radio et télé-distribution
  - Réseaux collecteurs : ex. télémétrie, réseaux industriels
  - Réseaux à commutation : ex. réseaux informatiques et réseaux téléphoniques





## Topologies des réseaux

- Les topologies de base sont toutes des variantes d'une liaison
  - point à point



ou multipoint





# Topologies des réseaux

- Topologies de base
  - Bus: 1 liaison multipoint ou réseau à diffusion
  - Etoile : n liaisons point à point vers le nœud concentrateur
  - Anneau : n liaisons point à point





# Topologies des réseaux

- Topologies construites
- arborescentes



#### • maillées





### Introduction à la commutation

- Problème
  - mise en relation des utilisateurs en interconnexion. ouverte ou totale : '1' à '1' parmi 'n' très grand
- Exemple du système téléphonique



Nombre de liens 
$$=\frac{N(N-1)}{2}$$



## Solution générale

- Terminaison unique chez l'abonné : liaison d'abonné
- Réseau à commutation : le commutateur effectue la commutation des flux entre abonnés



Figure 8.9 Principe d'un réseau à commutation.



#### Commutation de circuits

- Circuit ou lien physique : juxtaposition de différents supports physiques bout à bout
- Réservation et monopolisation des ressources durant toute la mise en relation
- Gaspillage si circuit sous-utilisé





## Commutation de messages

- Pas de réservation préalable de ressources
- Le message est transféré intégralement d'un nœud vers le suivant jusqu'à destination
- Transfert simplex et asynchrone
- Dimensionnement du réseau inférieur
- Pas de temps-réel



Figure 8.13 Principe de la commutation de messages.



## Commutation de paquets

- Amélioration de la commutation de message
- Message découpé en fragments (paquets)
- Acheminement indépendant de chaque paquet
- · Réassemblage du paquet au nœud destinataire
- Meilleure exploitation des ressources réseau
- Traffic des flux plus fluide



Figure 8.14 Principe de la commutation de paquets.



#### Commutation de paquets

- Optimisation des ressources : multiplexage des paquets sur des circuits non réservés
- Paquet: contient l'information d'acheminement, une adresse ou une étiquette identifiant son flux
- Ressources réseaux : non réservées à 1 communication





# Commutation de circuits ou commutation de paquets ?

- Mode datagramme : « best effort »; utilisation optimale des ressources du réseau
- Mode circuit : possibilités de reprise sur erreur et de contrôle de flux donc de garantie d'une QoS; mais surdimensionnement du réseau

|                             | Commutation de circuits          | Commutation de paquets   |
|-----------------------------|----------------------------------|--------------------------|
| Établissement d'un circuit  | Préalable à l'échange de données | Pas de circuit préétabli |
| Garantie du séquencement    | OUI                              | Non                      |
| Optimisation des ressources | Non, Circuit dédié               | OUI, Circuit partagé     |
| Indépendance des débits     | Non                              | OUI                      |

Figure 8.18 Comparaison entre la commutation de paquets et de circuits



#### Commutation de circuits ou commutation de paquets?

- Cumul des avantages
  - émuler un circuit (CV) sur une technologie de commutation de paquets
- 2 modes possibles de mise en relation





#### Mode de mise en relation 'non connecté'

- complexité placée dans les organes d'extrémité
- Le réseau est plus simple et meilleur marché





#### Mode 'orienté connexion'

- Complexité placée dans le réseau
- Établissement et gestion d'une liaison virtuelle
- Réservation de ressources : routage d'un paquet d'établissement





# Mécanismes mis en œuvre dans le réseau

Concepts nécessaires à l'échange entre 2 entités communicantes :

- Adressage et nommage : localisation et identification unique de chaque entité
- Routage : acheminement des blocs de données
- Segmentation des unités de données
- Contrôle de congestion



# Notion d'adressage

#### Techniques d'adressage

- Adresse : chaine de caractères identifiant une localisation
- Adressage physique
  - Identifie un point physique de raccordement à un réseau
- Adressage logique
  - Identifie un utilisateur, un processus ou une machine
  - Identique à un nom





# Notion d'adressage

## Adressage physique

- Permet l'acheminement dans le réseau
- Adressage à plat ou global
  - Numéro unique identifiant le point d'accès à un support
  - Ex. adresse MAC et LAN

| 48 bits. |     |                                            |                                                   |  |
|----------|-----|--------------------------------------------|---------------------------------------------------|--|
| I/G      | U/L | Identification par l'IEEE du constructeur. | Numéro séquentiel attribué par<br>le constructeur |  |
| -        |     | 22 bits.<br>2 <sup>22</sup> constructeurs  | 24 bits.<br>2 <sup>24</sup> hosts-2.              |  |

Figure 8.26 L'adressage MAC ou IEEE (réseaux locaux).



# Notion d'adressage

## Adressage physique et points adressés

- Adresse de destination d'un paquet
  - Unicast : 1 seul point adressé
  - Multicast : plusieurs points adressés
  - Broadcast : tous les points adressés





# Notion de nommage

#### Définition

- Un nom identifie une entité communicante
- Nommage à plat ou horizontal
  - ex. NetBIOS : 16 caractères alphanumériques
- Nommage hiérarchique ou arborescent (domaines)
  - Ex. DNS : répartition des responsabilités d'enregistrement des noms





# Notion de nommage

#### Notion d'annuaire

- Système (fichier ou base de données) permettant de trouver une information à partir d'une autre
- Utilisée pour connaître l'adresse d'un objet à partir de son nom





## Acheminement

#### Définitions

- L'acheminement se fait sur base d'une adresse (routage) ou d'une étiquette d'identification (commutation)
- Tables d'acheminement
  - <Adresse destination><Route à prendre><Coût>
  - Informations topologiques remplies de façon statique (configuration) ou dynamique (algorithmes de routages)





## Routage et commutation

- Comparaison
  - Routage = utilisation de l'adresse destination dans la décision d'acheminement
  - Commutation = utilisation de l'étiquette du CV alloué



Figure 8.40 Routage à travers le réseau.



## Adaptation de la MTU

## Notion de MTU (Maximal Transfer Unit)

- La commutation de paquet exige de définir une MTU optimale pour assurer la fluidité du traffic de paquets
- Découpe d'un paquet trop grand en fragments <= MTU
- Problème du réassemblage à l'arrivée





# Congestion

#### Définition de la congestion

- Perçue par le ralentissement du traffic écoulé
  - Les paquets soumis sont stockés de plus en plus longtemps dans le réseau
  - Saturation de la mémoire de stockage → perte de paquets
- Nécessité de prévenir et de contrôler





- Prévention : limitation du traffic
  - Contrôle de flux : asservir les débits
  - Contrôle d'admission : refus de connexion
  - Lissage de trafic (éviter la propagation des rafales)
- Contrôle de congestion et contrôle de flux

