

INVESTIGAÇÃO OPERACIONAL

- A Investigação Operacional (IO) surgiu para resolver, de uma forma eficiente, os problemas que envolvem a gestão otimizada de recursos escassos
- Esta aplica uma análise quantitativa aos problemas reais complexos que envolvem a tomada de decisões, utilizando um conjunto de métodos baseados essencialmente em procedimentos matemáticos

- O objetivo consiste em encontrar a melhor solução para os problemas, isto é, a solução ótima, de forma a poder tomar-se a melhor decisão
- A origem da IO como ciência, data de 1947, quando George Dantzig, cientista que trabalhava no Pentágono como conselheiro matemático para a administração da Força Aérea Norte Americana (USAF), inventou um método prático
 - o **método Simplex** para resolver problemas de otimização de recursos que se verificavam durante e após a 2^a Guerra Mundial.

PROGRAMAÇÃO LINEAR

- A Programação Linear (PL) é um dos ramos mais desenvolvidos e mais utilizados da IO
- Otimiza problemas de decisão, representando-os em termos de um modelo matemático de PL
- Este modelo carateriza-se pelo facto de todas as expressões matemáticas que o compõem serem lineares

PROGRAMAÇÃO LINEAR

Formular um problema em termos de um **modelo de PL** consiste em especificar:

- Variáveis de decisão (o que se pretende determinar)
- Função objetivo (o que se pretende otimizar)
- Restrições (condições que têm de ser respeitadas)

EXEMPLO DE UM PROBLEMA DE PL

O dilema do Sr. Josué

O Sr. Josué dedica-se à criação e venda de cães de determinada raça, com bastante procura no mercado.

Como pretende que os seus animais cresçam saudáveis e bonitos, ele sabe que deve proporcionar-lhes uma alimentação equilibrada.

Na verdade, o Sr. Josué tem à sua disposição dois tipos de rações, **A** e **B**, com caraterísticas e preços diferentes.

Composição em termos de nutrientes das rações A e B:

	Rações			
Nutrientes	Α	В		
Nutrientes	(g/kg)	(g/kg)		
Sais minerais	20	50		
Vitaminas	50	10		
Cálcio	30	30		

Quantidades mínimas de nutrientes, por semana, para uma alimentação equilibrada (segundo os veterinários):

Nutrientes	Quantidade mínima requerida (em g)
Sais minerais	200
Vitaminas	150
Cálcio	210

O Sr. Josué reflete sobre aquilo que pretende:

Por um lado, quer respeitar as indicações dadas pelos veterinários no sentido de proporcionar aos cachorros uma dieta nutritiva adequada

0.5€/kg

Mas, por outro lado, quer minimizar gastos com a alimentação de cada animal

Assim, a questão a resolver é a seguinte:

Que quantidade de cada tipo de ração (**A** e **B**) deve o Sr. Josué dar semanalmente a cada cachorro de forma a:

- respeitar as quantidades mínimas de nutrientes aconselhadas e
- minimizar o custo da alimentação de cada animal

Para determinar a resposta a esta questão, torna-se necessário traduzir o problema num **modelo matemático de PL**

Modelo de programação linear

- Variáveis de decisão:
 - x₁ Quantidade (em Kg) de ração A a dar a cada animal por semana
 - x₂ Quantidade (em Kg) de ração B a dar a cada animal por semana
- Função objetivo:

minimizar custo (em €), ou seja,

min
$$z = 1 x_1 + 0.5 x_2$$

Restrições:

$$20 x_1 + 50 x_2 \ge 200$$
 Sais minerais
 $50 x_1 + 10 x_2 \ge 150$ Vitaminas
 $30 x_1 + 30 x_2 \ge 210$ Cálcio
 $x_1 \ge 0, x_2 \ge 0$

Obtenção da solução ótima

Método gráfico

Utilizado na resolução de problemas simples

Método algébrico

Um dos algoritmos de programação linear, como por exemplo, o **método Simplex**

Método gráfico / Método Simplex

хв	c'e xi	5 x ₁	2 x2	0 x3	0 X4	0 x5	ь	
x 3	0	1+	0	1	0	0	3	(3/1)
X4	0	-0	1	0	1	0	4	
X5	0	1	2	0	0	1	9	(9/1)
z _i	−¢j	-5	-2	0	0	0	0	

com z=0

хв	ci c'B ^x i	5 x ₁	2 x2	0 x3	0 X4	0 x5	ь	
x ₁	5	1	0	1	0	0	3	
X4	0	0	1	0	1	0	4	(4/1)
X5	0	0	2+	-1	0	1	6	(4/1) (6/2)
Zį.	. ci	0	-2	- 5	0	0	15	

com z=15

XE	ci c'e ^X i	5 x1	2 x2	0 x3	0 x4	0 x5	ь	
x ₁	5	1	0	1	0	0	3	×1 óptime
X4	0	0	0	1/2	1	-1/2	1	×4 óptimo
x2	2	0	1	-1/2	0	1/2	3	×2 óptimo
2j	_cj	0	0	4	0	1	21	2 áptimo

Quadro ótimo pois não há valores negativos na linha zj-cj.

Apresentação da solução

Resolvendo por qualquer dos dois métodos anteriormente referidos, obter-se-ia **x**₁=**2**, **x**₂=**5** e **z**=**4.5**, pelo que a solução a apresentar ao Sr. Josué seria a seguinte:

Deverá alimentar cada cachorro com 2 kg de ração A e 5 kg de ração B, por semana, de modo a conseguir fornecer ao animal os nutrientes indispensáveis a um crescimento saudável, gastando um mínimo de 4.5 € semanais.

EXEMPLOS APLICAÇÕES REAIS INVESTIGAÇÃO OPERACIONAL

Os exemplos foram retirados do livro "Casos de Aplicação da Investigação Operacional", C. H. Antunes e L. V. Tavares, McGraw-Hill Portugal, 2000

Exemplo 1

Determinação de circuitos eficientes para a circulação de veículos de recolha de resíduos sólidos urbanos

Objetivo: Minimização da distância total percorrida e, consequentemente, economia de custos de mão-de-obra, de combustível e de desgaste do material, bem como benefícios para o ambiente

Exemplo 2

Apoio ao planeamento de produção de uma empresa do sector têxtil - planeamento otimizado da largura dos rolos de tecido a produzir e respetivos comprimentos, bem como a determinação dos correspondentes planos de corte

Objetivo: Minimização do desperdício de tecido