Statistical Model Checking for Traffic Models

Thamilselvam B

Subrahmanyam Kalyanasundaram Shubham Parmar M. V. Panduranga Rao

Department of Computer Science and Engineering

December 9, 2021 - SBMF 2021 - 24th Brazilian Symposium on Formal Methods

Outline

Background and Motivation

Tools

Integration of MultiVeStA and SUMO

Results

Future Directions

Outline

Background and Motivation

Tools

Integration of MultiVeStA and SUMO

Results

Future Directions

Background and Motivation What is the probability that emergency vehicle reached near hospital within 10 min under given traffic condition? What is the traffic volume at Intersection-1 which causes the deadlock at Intersection-2?

(Statistical) Model Checking [1]

combines simulation and statistical methods for the analysis of stochastic systems

(Statistical) Model Checking [1]

combines simulation and statistical methods for the analysis of stochastic systems

(Statistical) Model Checking [1]

combines simulation and statistical methods for the analysis of stochastic systems

1 - Legay A., Delahaye B., Bensalem S. (2010) Statistical Model Checking: An Overview. In: Barringer H. et al. (eds) Runtime Verification. RV 2010. Lecture Notes in Computer Science, vol 6418. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16612-9_11

(Statistical) Model Checking [1]

combines simulation and statistical methods for the analysis of stochastic systems

1 - Legay A., Delahaye B., Bensalem S. (2010) Statistical Model Checking: An Overview. In: Barringer H. et al. (eds) Runtime Verification. RV 2010. Lecture Notes in Computer Science, old 6418. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16612-9_11

Car-following models

Car-following models

A method used to determine how vehicles follow one another on a roadway

- higher the speed of the vehicle, higher will be the spacing between the vehicles
- safe distance

Car-following models

A method used to determine how vehicles follow one another on a roadway

- higher the speed of the vehicle, higher will be the spacing between the vehicles
- safe distance
 - > Krauss [1]
 - ➤ Wiedemann [2]
 - ➤ Intelligent Driver Model [3]

^{1:} Krauß, S., Wagner, P., Gawron, C.: Metastable states in a microscopic model of traffic flow. Physical Review E 55(5), 5597 (1997)

^{2:} Wiedemann, R.: Simulation des strassenverkehrsflusses. Institut fur Verkehrswesen der Universitat Karlsruhe (1994)

^{3:} Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Physical review E 62(2), 1805 (2000)

Lane-changing models

The subject vehicle in the current lane tries to change direction either to its left or to its right

- If the gap in the selected lane is acceptable the lane change occurs or else it will
remain in the current lane

- > LC2013 [1]
- > SL2015 [2]

^{1:} Mintsis, E., Koutras, D., Porfyri, K., Mitsakis, E., L'ücken, L., Erdmann, J., Fl'ötter öd, Y.P., Alms, R., Rondinone, M., Maerivoet, S., Carlier, K., Zhang, X., Blokpoel, R., Harmenzon, M., Boerma, S.: Transaid deliverable 3.1 – modelling, simulation and assessment of vehicle automations and automated vehicles' driver behaviour in mixed traffic (09 2019)

^{2:} Erdmann, J.: Sumo's lane-changing model. In: Modeling Mobility with Open Data, pp. 105-123. Springer (2015)

Outline

Background and Motivation

Tools

Integration of MultiVeStA and SUMO

Results

Future Directions

MultiVeStA [1]

1 - Sebastio, Stefano, and Andrea Vandin. "MultiVeStA: Statistical model checking for discrete event simulators." (2013): 1-10.

MultiVeStA [1]

SUMO - Simulation of Urban Mobility [2]

- 1 Sebastio, Stefano, and Andrea Vandin. "MultiVeStA: Statistical model checking for discrete event simulators." (2013): 1-10.
- 2 Krajzewicz, Daniel, Jakob Erdmann, Michael Behrisch, and Laura Bieker. "Recent development and applications of SUMO-Simulation of Urban MObility." International journal on advances in systems and measurements 5, no. 3&4 (2012).

MultiVeStA [1]

Statistical Model Checking tool - from VeStA [3] family

Support direct integration with discrete time simulator

QUAntitative Temporal EXpressions language (QuaTEx) - express systems properties ,supports PCTL,CSL.

SUMO - Simulation of Urban Mobility [2]

- 1 Sebastio, Stefano, and Andrea Vandin. "MultiVeStA: Statistical model checking for discrete event simulators." (2013): 1-10.
- 2 Krajzewicz, Daniel, Jakob Erdmann, Michael Behrisch, and Laura Bieker. "Recent development and applications of SUMO-Simulation of Urban Mobility." International journal on advances in systems and measurements 5, no. 3&4 (2012).
- 3: Sen, Koushik & Viswanathan, Mahesh & Agha, Gul. (2005). VESTA: A statistical model-checker and analyzer for probabilistic systems. QEST 2005 Proceedings Second International Conference on the Quantitative Evaluation of SysTems. 2005. 251 252. 10.1109/QEST.2005.42.

MultiVeStA [1]

Statistical Model Checking tool - from VeStA [3] family

Support direct integration with discrete time simulator

QUAntitative Temporal EXpressions language (QuaTEx) - express systems properties ,supports PCTL,CSL.

SUMO - Simulation of Urban Mobility [2]

Microscopic traffic simulator

Support online interaction through Traci

Support several car-following and lane-changing models

- 1 Sebastio, Stefano, and Andrea Vandin. "MultiVeStA: Statistical model checking for discrete event simulators." (2013): 1-10.
- 2 Krajzewicz, Daniel, Jakob Erdmann, Michael Behrisch, and Laura Bieker. "Recent development and applications of SUMO-Simulation of Urban Mobility." International journal on advances in systems and measurements 5, no. 3&4 (2012).
- 3: Sen, Koushik & Viswanathan, Mahesh & Agha, Gul. (2005). VESTA: A statistical model-checker and analyzer for probabilistic systems. QEST 2005 Proceedings Second International Conference on the Quantitative Evaluation of SysTems. 2005. 251 252. 10.1109/QEST.2005.42.

Outline

Background and Motivation

Tools

Integration of MultiVeStA and SUMO

Results

Future Directions

MultiVeStA + SUMO

MultiVeStA + SUMO

setSimulatorForNewSimulation(randomSeed)

MultiVeStA + SUMO

setSimulatorForNewSimulation(randomSeed)

performOneStepOfSimulation()

MultiVeStA + SUMO

setSimulatorForNewSimulation(randomSeed)

performOneStepOfSimulation()

rval(int)

MultiVeStA + SUMO

setSimulatorForNewSimulation(randomSeed)

performOneStepOfSimulation()

rval(int)

rval(0) - the current time

rval(3) - the number of cars waiting

rval(4) - the time loss of vehicle

rval(6) - number of vehicles that reach their destination

rval(7) - the CO2 emission

Outline

Background and Motivation

Tools

Integration of MultiVeStA and SUMO

Results

Future Directions

Results

Results

Road network with hospital and emergency vehicle

Results

Road network with hospital and emergency vehicle

- -m data / cross . sumocfg
- -l serversLists / oneLocalServer
- -f quatex / exper1 . quatex
- bs 30 -a 0.1 d1 x
- // x = 2 for queries for non probabilistic operator
- // x = 0.1 for these queries probabilistic operator
- vp TRUE
- osws ONESTEP sots 0 sd sumoState

Parameters of MultiVeStA Client

Simple Query:

Estimate expected CO2 emissions within simulation time.

Simple Query:

Estimate expected CO2 emissions within simulation time.

```
expCo2Emission(x) = if ( s. rval (0) >= x )
then (s.rval(7))
else # expCo2Emission ((x)) fi;

eval parametric(E[ expCo2Emission ((k)) ],
k,1.0,1.0,100.0);
```

Simple Query:

Estimate expected CO2 emissions within simulation time.

```
expCo2Emission(x) = if ( s. rval (0) >= x )
then (s.rval(7))
else # expCo2Emission ((x)) fi;
```

eval parametric(E[expCo2Emission ((k))],
k,1.0,1.0 ,100.0);

Expected CO₂ for various models

Complex Query:

The traffic volume at intersection I1 is less **until** the point the traffic volume is high at the intersection I2

Complex Query:

The traffic volume at intersection I1 is less **until** the point the traffic volume is high at the intersection I2

```
t1Ut2(k,x,y) = if( s.rval (0) <= k)
then if ( s.rval(11) > x )
then (1)
else if ( s.rval (10) <= y )
then #t1Ut2((k),(x),(y))
else (0) fi fi
else (0) fi ;
eval parametric(E[ t1Ut2((k),(20),(15)) ],
k, 1.0, 1.0, 200.0);
```


Probability that the "traffic volume" at I1 is less than 15 Until the traffic volume at I2 is greater than 20.

Outline

Background and Motivation

Tools

Integration of MultiVeStA and SUMO

Results

Future Directions

Future Directions

Use of this tool chain for studying microscopic traffic models other than lane-changing and car-following models.

More penetrating and insightful queries on large systems for impactful analyses.

https://github.com/ThamilselvamB/Multivesta-With-SUMO

Acknowledgement 19

Acknowledgement

M2Smart: Smart Cities for Emerging Countries based on Sensing, Network and Big Data Analysis of Multimodal Regional Transport System, JST/JICA SATREPS(Program ID JPMJSA1606), Japan

DST National Mission for Interdisciplinary Cyber-Physical Systems (NM-ICPS), Technology Innovation Hub on Autonomous Navigation and Data Acquisition Systems: **TiHAN** Foundations at Indian Institute of Technology (IIT) Hyderabad.

Thanks

Questions?

