Introduction to Data Science (IDS) course

Responsible Data Science

Lecture 20 and 21 Instruction

IDS-L20-L21

Consider the following potentially discriminatory and the base rules, with the mentioned confidence values. What range for α causes these rules to be discriminatory?

Base Rule $B \Rightarrow C$ Confidence: 0.25

PD Rule $A, B \Rightarrow C$ Confidence: 0.55

Consider the following potentially discriminatory and the base rules, with the mentioned confidence values. What range for α causes these rules to be discriminatory?

Base Rule $B \Rightarrow C$ Confidence: 0.25

PD Rule $A, B \Rightarrow C$ Confidence: 0.55

 $elift = \frac{confidence(A, B \Rightarrow C)}{confidence(B \Rightarrow C)}$ $elift = \frac{0.55}{0.25} = 2.2$

If $\alpha \leq 2.2$, then the rule is discriminatory.

Discrimination (Your Turn)

Consider the following potentially discriminatory and the base rules, with the mentioned support values. What range for α causes these rules to be discriminatory?

Base Rule $B \Rightarrow C$ Support($\{B,C\}$): 30 Support($\{B\}$): 100

PD Rule $A, B \Rightarrow C$ Support($\{A, B, C\}$): 20 Support($\{A, B\}$): 40

Discrimination (Solution)

Consider the following potentially discriminatory and the base rules, with the mentioned support values. What range for α causes these rules to be discriminatory?

Base Rule $B \Rightarrow C$ Support($\{B,C\}$): 30 Support($\{B\}$): 100

PD Rule $A, B \Rightarrow C$ $Support(\{A, B, C\}): 20$ $Support(\{A, B\}): 40$

$$elift = \frac{confidence(A, B \Rightarrow C)}{confidence(B \Rightarrow C)} \qquad elift = \frac{\frac{support(\{A, B, C\})}{support(\{A, B, C\})}}{\frac{support(\{B, C\})}{confidence(\{B\})}} = \frac{\frac{20}{40}}{\frac{30}{100}} = 1.6$$

If $\alpha \leq 1.6$, then the rule is discriminatory.

- 1. Classify the regions based on their majority label.
- 2. Compute the accuracy and also the discrimination of the classifier w.r.t. discriminatory attribute (B).
- 3. If we want to relabel l_1 , what would be the new label? and how this relabeling would affect the accuracy and discrimination?

Note that encircled examples are discriminatory (have B=1).

1. Classify the regions based on their majority label.

2. Compute the accuracy and also the discrimination of the classifier w.r.t. discriminatory attribute (B).

Class	-	+	
Pred.	-/+	-/+	
B=1	U_1/U_2	V_{1}/V_{2}	b
B=0	W_1/W_2	X_1/X_2	\bar{b}
	N_1/N_2	P_{1}/P_{2}	1

Class	-	+	
Pred.	-/+	-/+	
B = 1	$\frac{5}{20} / \frac{1}{20}$	$\frac{1}{20} / \frac{3}{20}$	$\frac{10}{20}$
B = 0	$\frac{3}{20}/\frac{1}{20}$	$\frac{1}{20} / \frac{5}{20}$	$\frac{10}{20}$
	$\frac{8}{20} / \frac{2}{20}$	$\frac{2}{20} / \frac{8}{20}$	1

$$acc_T = N_1 + P_2 = \frac{8}{20} + \frac{8}{20} = 0.8$$

$$disc_{T} = \frac{W_{2} + X_{2}}{\overline{b}} - \frac{U_{2} + V_{2}}{b} = \frac{\frac{1}{20} + \frac{5}{20}}{\frac{1}{2}} - \frac{\frac{1}{20} + \frac{3}{20}}{\frac{1}{2}} = 0.2$$

3. If we want to relabel l_1 , what would be the new label? and how this relabeling would affect the accuracy and discrimination?

Class	-	+	
B=1	и	v	b
B = 0	w	х	$ar{b}$
	n	p	а

Class	-	+	
B=1	3/20	0	3/20
B = 0	1/20	1/20	2/20
	4/20	1/20	5/20

$$n>p$$

New label would be +

$$\Delta acc_l = p - n = -3/20$$

$$\Delta disc_{l} = -\frac{u+v}{b} + \frac{w+x}{\bar{b}} = -\frac{\frac{3}{20}}{\frac{1}{2}} + \frac{\frac{2}{20}}{\frac{1}{2}} = -0.$$

If we want to relabel l_6 , what would be the new label? and how this relabeling would affect the accuracy and discrimination?

If we want to relabel l_6 , what would be the new label? and how this relabeling would affect the accuracy and discrimination?

Class	-	+	
B=1	и	v	b
B = 0	w	х	$ar{b}$
	n	р	а

Class	-	+	
B=1	1/20	1/20	2/20
B=0	0	1/20	1/20
	1/20	2/20	3/20

$$n < p$$

New label would be -

$$\Delta acc_l = n - p = -1/20$$

$$\Delta disc_{l} = \frac{u+v}{b} - \frac{w+x}{\bar{b}} = \frac{\frac{2}{20}}{\frac{1}{2}} - \frac{\frac{1}{20}}{\frac{1}{2}} = 0.1$$

Discrimination (Your Turn)

If we want to relabel l_4 , what would be the new label? and how this relabeling would affect the accuracy and discrimination?

Discrimination (Solution)

If we want to relabel l_4 , what would be the new label? and how this relabeling would affect the accuracy and discrimination?

Class	-	+	
B=1	и	v	b
B = 0	w	х	\bar{b}
	n	р	а

Class	-	+	
B=1	0	0	0
B = 0	0	2/20	2/20
	0	2/20	2/20

$$n < p$$

New label would be -

$$\Delta acc_l = n - p = -0.1$$

$$\Delta disc_{l} = \frac{u+v}{b} - \frac{w+x}{\bar{b}} = \frac{0}{\frac{1}{2}} - \frac{\frac{2}{20}}{\frac{1}{2}} = -0.2$$

Discrimination (Your Turn)

In the following DT classifier, relabeling which leaf leads to the maximum reduction on the discrimination?

Discrimination (Solution)

In the following DT classifier, relabeling which leaf leads to the maximum reduction on the discrimination?

Class	-	+	
B=1	0	0 0	
B = 0	0	$\frac{4}{20}$	$\frac{2}{20}$
	5 20	$\frac{1}{20}$	$\frac{6}{20}$

$$\frac{5}{20} \qquad \frac{1}{20} \qquad \frac{6}{20}$$

$$\Box PADS \text{ (use only with permission \& acknowledgements)} \qquad If \ p > n$$

$$\Delta disc_l = \frac{u+v}{h} - \frac{w+v}{h}$$

$$\Delta disc_{l} = \frac{0}{\frac{1}{2}} - \frac{\frac{4}{20}}{\frac{1}{2}} = -0.4$$
 If $p < n$

1. The first step is to find the leaf with the maximum effect (positive or negative)

 $m{l}_2$ has the maximum effect on discrimination. Because it leads to maximum difference between examples with discriminatory and non-discriminatory attribute.

Discrimination (Solution)

In the following DT classifier, relabeling which leaf leads to the maximum reduction on the discrimination?

Probability of getting a positive label for an instance with B = 0

$$disc_{T} = \frac{W_{2} + X_{2}}{\overline{b}} - \frac{U_{2} + V_{2}}{b}$$
Proof

Relabeling l_2 leads to maximum reduction (0.5) of the first part and

2. The aim is to either decrease the first part or increase the second part

Relabeling l_2 leads to maximum reduction (0.5) of the first part and consequently causes maximum reduction of discrimination.

in the discrimination formula.

Probability of getting a positive label for an instance with B = 0

Discrimination (Your Turn)

In the following DT classifier, relabeling which leaf has the maximum effect on the accuracy?

Discrimination (Solution)

In the following DT classifier, relabeling which leaf has the maximum effect on the accuracy?

Of course l_1 contains the examples which lead to maximum difference between labels $(\frac{1}{20} - \frac{5}{20} = -\frac{4}{20})$. Therefore, relabeling this leaf has the maximum effect on the accuracy.

Discrimination (Homework)

In the following DT classifier, relabeling which leaf leads to the maximum reduction of the discrimination, and minimum reduction of the accuracy (the best leaf for relabeling)?

Discrimination (Homework)

What is the first node of the decision tree for the following table of data with respect to accuracy and fairness? (use IGC - IGS)

Sex	Exp	Degree	Job	Class
F	Exp >10	HS	Board	-
М	5< Exp <10	Uni	Board	+
М	Exp >10	HS	Board	-
М	5< Exp <10	HS	Hcare	+
М	Exp < 5	HS	Hcare	+
F	Exp < 5	HS	Board	-
М	Exp < 5	None	Edu	-
F	Exp >10	None	Hcare	-
М	Exp < 5	Uni	Edu	+
М	Exp >10	Uni	Board	+

$$IGC := H_{Class}(D) - \sum_{i=1}^{k} \frac{|D_i|}{|D|} H_{Class}(D_i)$$
 $IGS := H_B(D) - \sum_{i=1}^{k} \frac{|D_i|}{|D|} H_B(D_i)$

Suppose that we have such a following tables of information about people and what they bought from an online grocery shop.

Name	Age	Gender	State of domicile	Religion	Product
Ramsha	22	Female	Tamil Nadu	Hindu	Pea
Yadu	24	Female	Kerala	Hindu	Bean
Salima	25	Female	Tamil Nadu	Muslim	Peanut
Sunny	25	Male	Karnataka	Buddhist	Pea
Joan	24	Female	Kerala	Muslim	Bean
Bahuksana	23	Male	Karnataka	Buddhist	Lentil
Rambha	19	Male	Kerala	Christian	Peanut
Kishor	24	Male	Karnataka	Buddhist	Lentil
Johnson	17	Male	Kerala	Christian	Peanut
John	19	Male	Kerala	Christian	Pea

Specify type of each attribute:

- Explicit Identifier
- Quasi-identifier
- Sensitive

Convert this data to 2-anonymity table.

2-anonymity

- Data is k-anonymity if each equivalence class contains at least k records.
- Equivalence class is a set of records that have the same values for the quasi-identifiers.

Name	Age	Gender	State of domicile	Religion	Product
*	20 < Age ≤ 25	Female	Tamil Nadu	*	Pea
*	20 < Age ≤ 25	Female	Kerala	*	Bean
*	20 < Age ≤ 25	Female	Tamil Nadu	*	Peanut
*	20 < Age ≤ 25	Male	Karnataka	*	Pea
*	20 < Age ≤ 25	Female	Kerala	*	Bean
*	20 < Age ≤ 25	Male	Karnataka	*	Lentil
*	Age ≤ 20	Male	Kerala	*	Peanut
*	20 < Age ≤ 25	Male	Karnataka	*	Lentil
*	Age ≤ 20	Male	Kerala	*	Peanut
*	Age ≤ 20	Male	Kerala	*	Pea

2-anonymity, distinct 2-diversity

 Data is distinct I-diversity if there are at least I distinct values for the sensitive attribute in each equivalence class.

Name	Age	Gender	State of domicile	Religion	Product
*	20 < Age ≤ 25	Female	*	Hindu	Pea
*	20 < Age ≤ 25	Female	*	Hindu	Bean
*	20 < Age ≤ 25	Female	×	Muslim	Peanut
*	20 < Age ≤ 25	Male	*	Buddhist	Pea
*	20 < Age ≤ 25	Female	*	Muslim	Bean
*	20 < Age ≤ 25	Male	*	Buddhist	Lentil
*	Age ≤ 20	Male	*	Christian	Peanut
*	20 < Age ≤ 25	Male	*	Buddhist	Lentil
*	Age ≤ 20	Male	*	Christian	Peanut
*	Age ≤ 20	Male	*	Christian	Pea

- Entropy I-diversity.
 - The entropy of an equivalence class E is defined to be
 - $Entropy(E) = -\sum_{s \in S} p(E, s) log(p(E, s))$
 - In which S is the domain of the sensitive attribute, and p(E,s) is the fraction of records in E that have sensitive value s.
 - A table is said to have entropy I-diversity if for every equivalence class E, $Entropy(E) \ge log(l)$.

Confidentiality (Your Turn)

What is the maximum value for I based on the following table which has 2-anonimity and entropy I-diversity?

Name	Age	Gender	State of domicile	Religion	Product
*	20 < Age ≤ 25	Female	*	Hindu	Pea
*	20 < Age ≤ 25	Female	*	Hindu	Bean
*	20 < Age ≤ 25	Female	*	Muslim	Peanut
*	20 < Age ≤ 25	Male	*	Buddhist	Pea
*	20 < Age ≤ 25	Female	*	Muslim	Bean
*	20 < Age ≤ 25	Male	*	Buddhist	Lentil
*	Age ≤ 20	Male	*	Christian	Peanut
*	20 < Age ≤ 25	Male	*	Buddhist	Lentil
*	Age ≤ 20	Male	*	Christian	Peanut
*	Age ≤ 20	Male	*	Christian	Pea

Confidentiality (Solution)

What is the maximum value for I to have based on the following table which has entropy I-diversity?

	Product	Religion	State of domicile	Gender	Age	Name
	Pea	Hindu	*	Female	20 < Age ≤ 25	*
Entropy = 1	Bean	Hindu	*	Female	20 < Age ≤ 25	*
	Peanut	Muslim	*	Female	20 < Age ≤ 25	*
Entropy = 1	Pea	Buddhist	*	Male	20 < Age ≤ 25	*
	Bean	Muslim	*	Female	20 < Age ≤ 25	*
Entropy = 0.92	Lentil	Buddhist	*	Male	20 < Age ≤ 25	*
Entropy = 0.92	Peanut	Christian	*	Male	Age ≤ 20	*
	Lentil	Buddhist	*	Male	20 < Age ≤ 25	*
Entropy = 0.92	Peanut	Christian	*	Male	Age ≤ 20	*
	Pea	Christian	*	Male	Age ≤ 20	*

$$Entropy(E) \ge log(l)$$
 $log(l) = 0.92$ $l = 1.9$

- Recursive (c,l)-diversity.
 - Let m be the number of values in an equivalence class, and r_i , $1 \le i \le m$ be the number of times that the i th most frequent sensitive value appears in an equivalence class E (they are sorted in descending order).
 - Then E is said to have recursive (c,l)-diversity if $r_1 < c(r_l + r_{l+1} + \cdots + r_m)$. Where c is a constant.
 - We say that an equivalence class is (c,2)-diverse if $r_1 < c(r_2 + \cdots + r_m)$ for some user-specific constant c.
 - For I > 2, we say that an equivalence class satisfies recursive (c,I)-diversity if we can eliminate one sensitive value in the equivalence class and still have (c,I-1)-diversity.
 - A table is said to have recursive (c,l)-diversity if all of its equivalence classes have recursive (c,l)-diversity.

Confidentiality (Your Turn)

- Assume the following list as the list of frequency of sensitive values in an equivalence class.
 - Does the corresponding equivalence class have recursive (1,2)-diversity?
 - Does the corresponding equivalence class have recursive (2,3)-diversity?
- Frequency list = $(r_1 = 500, r_2 = 400, r_3 = 200, r_4 = 50, r_5 = 20)$

Confidentiality (Solution)

- Assume the following list as the list of frequency of sensitive values in an equivalence class.
 - Does the corresponding equivalence class have recursive (1,2)-diversity?
 - Does the corresponding equivalence class have recursive (2,3)-diversity?

• Frequency list =
$$(r_1 = 500, r_2 = 400, r_3 = 200, r_4 = 50, r_5 = 20)$$
 $r_1 < c(r_l + r_{l+1} + \dots + r_m)$

$$r_1<1(r_2+r_3+r_4+r_5)$$
 $l=2,c=1$
$$500<1(400+200+50+20)$$
 The corresponding equivalence class has recursive (1,2)-diversity

$$r_1 < 2(r_3+r_4+r_5)$$
 $l=3, c=2$
$$500 < 2(200+50+20)$$
 The corresponding equivalence class has recursive (2,3)-diversity

