

Tarea 1 25 de febrero de 2019

Fecha límite de entrega: 19 de marzo a las 11:00 am. Equipos de hasta 3 personas.

- 1. a) Supón que en un criptosistema se tiene $\#\mathcal{M} = \#\mathcal{C}$. Demuestra que para cualquier llave $k \in \mathcal{K}$ y cualquier criptotexto $c \in \mathcal{C}$, existe un único mensaje claro $m \in \mathcal{M}$ tal que $\mathsf{Enc}_k(m) = c$.
 - b) Sea $S_{m,c} = \{k \in \mathcal{K} : \mathsf{Enc}_k(m) = c\}$, es decir, el conjunto de llaves que encriptan m en c. Demuestra que para distintos c, c' se tiene $S_{m,c} \cap S_{m,c'} = \emptyset$.
- 2. Alicia y Bartolo escogen un espacio de claves \mathcal{K} que contiene 2^{56} claves. Supón que Eva tiene una computadora que puede revisar 10^{10} claves por segundo.
 - a) ¿Cuántos días le tomaría a Eva revisar todas las claves de \mathcal{K} ?
 - b) Si Alicia y Bartolo cambian su esquema por uno con un conjunto más grande, con 2^B claves, ¿qué tan grande debe ser B para que la computadora de Eva tarde 100 años revisando todas las claves? (Puedes suponer que un año tiene 365.25 días.)
- 3. Combina las siguientes parejas de números usando la operación de XOR (\oplus) a nivel de bits.
 - a) Cadenas de bits: 1100110010, 0100010001.
 - b) Números decimales: 8191, 16383.
 - c) Cadenas de bytes: 0x23ab873f, 0x1a003dfb. (Los símbolos 0x solo son para indicar que es hexadecimal.)
- 4. ¿Los siguientes esquemas de cifrado son perfectamente seguros? Explica.
 - a) Los mensajes claros son $\mathcal{M} = \{0, 1, \dots, 9\}$. El algoritmo Gen devuelve una clave al azar del conjunto $\mathcal{K} = \{0, 1, \dots, 13\}$. La función $\mathsf{Enc}_k(m)$ calcula (k+m) mód 10, y $\mathsf{Dec}_k(c)$ devuelve (c-k) mód 10.
 - b) $\mathcal{M} = \{m \in \{0,1\}^{\ell} \mid \text{el último bit de } m \text{ es } 0\}$. Gen escoge una clave aleatoria de $\{0,1\}^{\ell-1}$. $\operatorname{Enc}_k(m)$ devuelve $m \oplus (k||0)$, y para descifrar $\operatorname{Dec}_k(c)$ devuelve $c \oplus (k||0)$. (El símbolo || denota concatenación.)
 - c) El algoritmo de desplazamiento para mensajes de tamaño uno sobre el alfabeto ABC...Z de 26 letras.
- 5. Sea Π el esquema de Vigenère, donde $\mathcal{M} = \{a, b, ..., z\}^3$, la clave se genera escogiendo aleatoriamente un número $t \in \{1, 2, 3\}$ y luego se escoge una clave aleatoria de tamaño t.
 - Un adversario \mathcal{A} entrega $m_0 = \mathsf{aab} \ \mathsf{y} \ m_1 = \mathsf{abb}$. Cuando se le da un texto cifrado $c = c_1 c_2 c_3$, devuelve 0 si $c_1 = c_2 \ \mathsf{y} \ 1$ en caso contrario. Calcula $\Pr[\mathsf{PrivK}_{\mathcal{A},\Pi} = 1]$.
- 6. Considera el criptosistema de sustitución monoalfabética con los siguientes cambios: $\mathcal{M} = \mathcal{C} = \mathrm{ALF}^{\ell}$, es decir, los mensajes son cadenas de tamaño ℓ sobre el alfabeto ALF, y $\mathcal{K} = P^{\ell}$, donde

P es el conjunto de permutaciones de ALF, es decir, una llave $k=k_1,\ldots,k_\ell$ corresponde a ℓ permutaciones de ALF. La función de cifrado se define como

$$\mathsf{Enc}_k(m) = k_1(m_1), k_2(m_2), \dots, k_{\ell}(m_{\ell})$$
 donde $m = m_1, \dots, m_{\ell}, \ k = k_1, \dots, k_{\ell}$

- a) ¿Cómo se define $Dec_k(c)$?
- b) Demuestra que este criptosistema es perfectamente seguro.
- 7. Definimos Π como una versión modificada de one-time pad, donde $\mathcal{M} = \{0,1\}^{\ell}$, pero ahora \mathcal{K} son las cadenas de ℓ bits con un número par de unos; el cifrado y descifrado son iguales que en one-time pad. Construye un adversario \mathcal{A} tal que $\Pr[\mathsf{PrivK}_{\mathcal{A},\Pi} = 1] = 1$.
- 8. Sea Π un esquema de cifrado perfectamente seguro con un espacio de llaves $\mathcal{K} = \{0,1\}^{\ell}$. Supongamos que un banco desea partir una llave k en tres partes p_1 , p_2 , p_3 de forma que para poder descifrar es necesario usar dos de las tres partes. De esta forma, cada parte se le entrega a un ejecutivo distinto, y el descifrado solo es posible si se juntan al menos dos de los tres ejecutivos.

Inicialmente el banco genera aleatoriamente dos pares de llaves (k_1, k'_1) y (k_2, k'_2) que satisfacen la relación

$$k_1 \oplus k_1' = k_2 \oplus k_2' = k,$$

y al primer ejecutivo se le asigna la parte $p_1 = (k_1, k_2)$.

- a) Define las partes p_2 y p_3 para que cumplan la condición deseada, es decir, que con cualesquiera dos partes se puede recuperar k, pero con una sola no es posible.
- b) Haz los cambios necesarios en el esquema anterior, de forma que ahora se necesiten 3 de 5 partes para poder descifrar. (Y con dos partes no se obtiene información sobre k.)
- 9. Considera el siguiente escenario sobre una votación. Se tienen t votantes, y cada uno puede votar 0 o 1. Al final de la votación una persona anuncia el resultado S, que corresponde a la suma de todos los votos. Para llevar a cabo la votación de forma que ningún votante sepa nada más que el resultado S, se propone el siguiente protocolo.

Sea n > t un entero. Al inicio de la votación el encargado genera $c_0 \stackrel{\$}{\leftarrow} \{0, 1, \dots n-1\}$. El primer votante recibe c_0 y obtiene $c_1 = c_0 + v_1$ mód n, donde $v_1 \in \{0, 1\}$ es su voto. Luego le pasa c_1 al votante 2 y este hace lo análogo. Sucesivamente, el votante i recibe el valor c_{i-1} , calcula $c_i = c_{i-1} + v_i$ mód n y se lo entrega al votante i + 1. El votante i obtiene i y se lo entrega al encargado, este último calcula i0 en mód i1 y lo anuncia a todos los votantes.

- a) Muestra que el encargado al final efectivamente calcula la suma de todos los votos.
- b) Suponiendo que en el protocolo los votantes se comportan honestamente, al final de la votación cada votante i solo es capaz de conocer S y el valor c_{i-1} (además del propio voto v_i); definimos $Vista_i = (S, c_{i-1})$. Si fijamos los valores de i y S, el votante i puede tener distintas vistas $Vista_i$, dependiendo de cómo fueron los votos de los demás votantes.
 - ¿Los diferentes valores posibles de $Vista_i$ sirven para que el votante i pueda distinguir el voto de otro votante? ¿Por qué?
- c) Supón que dos votantes deshonestos quieren conocer el voto de un tercero. ¿Cómo pueden lograrlo? (Sin usar el método del garrote.)