UK Patent Application (19) GB (11) 2 125 409 A

- (21) Application No 8320975
- (22) Date of filing 3 Aug 1983
- (30) Priority data
- (31) 8222486 8312490
- (32) 4 Aug 1982 6 May 1983
- (33) United Kingdom (GB)
- (43) Application published 7 Mar 1984
- (51) INT CL³
 C12N 15/00 C07G 7/00
 C12N 1/00 5/00
- (52) Domestic classification C3H B7 C6Y 125 404 501 503 U1S 1296 1332 1337 2415 C3H
- (56) Documents cited Nature 1982, 299, 178-180
- (58) Field of search C3H
- (71) Applicant
 National Research
 Development Corporation
 (United Kingdom),
 101 Newington
 Causeway, London
 SE1 6BU
- (72) Inventors George Gow Brownlee, Kong Hong Choo
- (74) Agent and/or Address for Service
 R. K. Percy,
 Patent Department,
 National Research
 Development
 Corporation, 101
 Newington Causeway,
 London SE1 6BU

(54) Genetic engineering

(57) It has been a problem to find an alternative, less time-consuming, and more reliable source of factor IX, a polypeptide which is essential to the human blood-clotting process and necessary for the treatment of patients with Christmas disease. In order to aid in the solution of the problem, there is provided recombinant DNA containing a DNA sequence occurring in the human factor IX genome, and includes recombinant DNA comprising substantially the whole sequence of human factor IX genome, which is

inserted in a cloning vehicle and transformed into a host, such as Escherichia coli. Other fragments of the sequence have also been cloned and the invention includes DNA molecules comprising part or all of the human factor IX DNA. There is also described cDNA derived from human factor IX RNA. Uses include the provision of an intermediate of value in the genetic engineering of a factor IX polypeptide precursor and thence manufacture of the factor IX polypeptide, and in making probes for use in diagnosing the presence of normal or abnormal factor IX DNA in patients with Christmas disease.

1st amino acid sequence: Glu-Cys-Trp-Cys-Gln-Ala

mRNA

5' GA_G^A UG_C^U UGG UG_C^U CA_G^A GCN 3'

Deoxyoligonucleotides 3 $CT_C^T AC_G^A ACC AC_G^A$ GTT CG (oligo N2A) synthesized :

3' CT_C^T AC_G^A ACC AC_G^A GTC CG (oligo N2B)

2nd amino acid sequence: His-Met-Phe-Cys-Ala

mRNA

 $\texttt{5'} \quad \texttt{CA}_{C}^{U} \; \texttt{AUG} \; \texttt{UU}_{C}^{U} \; \texttt{UG}_{C}^{U} \quad \texttt{GCN}$

Deoxyoligonucleotides

synthesized:

 GT_G^A tac AA_G^A AC_G^A CG

(oligo N1)

ESNPCLNGGMCKDDINSY 5' TGAATCCAATCCATGTTTAAATGGCGGCATGTGCAAGGATGACATTAATTCCTAT 20 30 ECWCQAGFEGTNCELDATCSIK <u>GAATGTTGGTGTCAAGC</u>TGGATTTGAAGGAACGAACTGTGAATTAGATGCAACATGCAGCATTAA NGRCKQFCKRDTDNKVVC GAATGGCAGATGCAAGCAGTTTTGTAAAAGGGACACAGATAACAAGGTGGTTTGT S C T D G Y R L A E D Q K S C E P A V P F P ${\tt TCCTGTACTGACGGATACCGACTTGCAGAAGACCAAAAGTCCTGCGAACCAGCAGTGCCATTTCC}$ CGRVSVSH[VRPRFHGLCSC*E] CTGTGGACGAGTCTCTGTCTCACATGTGAGGCCCCGCTTTCACGGTCTGTGTTCGTGCTGAGAA 3 260 270 280

Fig. 5

TCATTGGTTAGAGGTTCGACTTATGGGGAATTAACTC-CTCACATTTCCTAGTTGGATATGCTTGGGTACAGGGGT-ATAGTAGCACTTACTGCCTCA-GCATGAACAGGGAAGCTTTCA 970 980 1060 1000 1000 1010 1010 1080
TICTAACAGCAACTGATTGCTTAACTTCCTAGGACTGTCTCCAATAAGTCAAATTG~CCTCAGGTTAGCCACCTGAGGAAGGAAGGGGGGGAAAGAAGAATTTGTCTGTC
AAA AAAGTCAC AAGC TTATTTAAC ATGTGCAATCCCA-GGSSCAAGAGGAACTGAA GAGTGAGGCAGAAAGGAAAGAAAGAAAG-CAATAAGAGGATGAGTTATCAAACTACTCGT 730 810 820 830 840
TTATTACATTTG-TCATSTCAGCTATATGTAAAATAGAGTTTAAAAGTTTAGATTCACTCAAAAATTCATATTCTCCAAAACCATACAGTCACTCTGTTAGCCTGTTTCCCCCAGA 610 620 630 640 650 650 720 720
TCATSCCCTTASTGAATTATTGGTAGCAAAGGTTAAAGCTCAAGCTGSTTCCTTTGTCCCCTG "CAACAGTTGATTT-CCTCCCTTTATCTCCCTGAAGTACCGTAAG-ACTAAGAGCCAA 490 503 510 520 530 540 600
TAGCAACAAAATGATAGCT AGTAACAGAAAAAATTCAGGAATTATTACCACTGTTAGTGAGGAGAAAGGCCTTTTAATTAA
CATTSTGCCTGACAAACCAAGCTGCACCTTTCGTAACTTATCACAATCTCATATTGACGGAACACTTTCTACAGGTAATGTTTAGTTTGGCTGAACACTTTAGCAATTGCTTCTG 250 260 340 350 360
CAGCAGCAACATACTGAGCCCTAAAG-GGTGACAAATATSGAGAATGATACAGAGGTCTGGTTACTTCTTAGCCAATGACACAGAAATGAGAAAACACAGAGTTTATTCATTC
GAATICCTISTECCATIATITTATITTESAATCTICASCCTTTEAGCTGAAGGTTGCTGAGGAAGGAATATTTCCCACCTCCTGGGGAAAGAAGAGGCAAAGATCAAGAG 10 20 30 100 110 110 120 120 120 120 120 120 12

AGE CAMAMGACACAT AGIOCACCTATGAGCCAAGCCAATCAAGCGATACCCCATGGGGGGGG					6/3	5			
AGG CAAAAGAA CALTAGAGC CAACAATTCAAGGATACACCCATAGAGGGGGTGGTTGCACCCCAGGCCTAATCACCCCAGGCTGAGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	4 4 G C 1 2 0 0	1320	TCCT 1440	TATT 1560	1680	1800	1920	TGAA 2040	CCCT 2160
AGG CAAAAGA CACTA AGG CAGG CAAT CAGG CAGG	AGGTG	гтбтс	ACAAG	ACAAT	GCCA	SATTT	ATTC	ACATG	TCCCA
AGG CAAAAGAL CATAGIG CAGCTATGAGC CAAGGCATACAC CATAGGAGG GGTG GGT	3ACAC	7ACTG	16CTA	SAAAC	1666A	790	910	666T/	CTCA1
10.00	AAAA	GTTT	TCTAL	TCAGG	ACACI	AAGAC	ACCCT	TTTAG	TCT60
10.00	.CTGGA	764AA	GC AGG 420	AAATA 540	AAATT 660	TTCAA 780	ACAG6 900	T T A G G 0 2 0	6CTCC 140
1130	CCATG	TCTAT	ATTCA	GCC AA	AAATA 1	ATCAT	ACCTT	TTATT 2	TTTCT
1130	CACCA 170	66ATT 290	TCTTA 410	44TAA 530	ACCTA 650	66 A A A 770	CAGTT 890	ATGTT 010	GATCT 130
1130	CTAAT	ACTGA	67777	GCAGG	GTGAT 1	CAAGA 1	67077	TTTAA 2	ATAGT 2
46.6.CaaaaagaCaCaTaGaGCCaAGGCCAAGGCCAAGGCCATAGGGAGGCTGGTGACCCCTCCCT	CAGAG 160	TGACC 280	466CT	AGAT6 520	CGAAA 640	46ATT 760	CTTTG 880	1111	ACCAA 120
46.6 CAAAAGACCATAGTGGAGCTATGAGCCAAGCCAATTCAAGGACCCCATAGGAGGCTGGTTGACT 1150 1270	CCACC	TGCAC	GGCAG 1	AAACA 1	GTTAA 1	AAAAT 1	TT66T	TTTCT 2	TCAST
466 CAAAAGACCATATGAGCCAAGGCAATTCAAGGATACACCCATAGGAGCTGGTT 1090 1110 1109 1120 1210 1220 1220 1230 1220 1230 1220 1230 1220 1230 1220 1230 1250 1250 1250 1250 1330 1340 1330 1380 1450 1380 1450 1380 1450 1500 1450 1500 1450 1500 1450 1500 1450 1500 1450 1500 1450 1500 1450 1500 1450 1500 1450 1500 1450 1500 1450 1500 1450 1500 1450 1500 1450 1500 1450 1500 1450 1500	6ACAT 150	ATGAT 270	CTCAA 390	ATACA 510	ATACT 630	CAGAC 750	ACATA 370	TATAA 990	TCAGC
AGG CAAAAGA CACATAGGC CAAGG CAATTCAAGGATACAC CCATAGGAGGC 1140 1090 1100 1100 1120 1100 1120 120 1130 1220 1250 1220 1250 1220 1250 1220 1250 1220 1250 1220 1250 1250 1260 1250 1260 1250 1260 1250 1260 1260 1260 1360 1370 1480 1480 1480 1480 1480 1480 1480 1480 1500 1480 1500 1480 1500 1480 1500 1480 1500 1500 1500 1500 1510 1510 1520 1520 1520 1520 1520 1520 1520 1520 1520 1520 1520 <	T 66 T T	A TGTT	A TAGG	A GA A A 1	A TTGT	A ATA T	T AATG	A GC A C	SATAT
AGG CAAAAGAC CAAAGG CAAATTCAAGGATACACCCATAG 1120 1130 1130 1130 1130 1130 1130 1130 1250	6 A 6 G C 1 4 O	TTTCC 200	C A G A A 3 8 0	TAATT	A T T T A. 6 2 0	ATCTT. 740	4 G C A C	TTCCT	ACGCA(
AGG CAAAAGAC ACAT AGG CCAAGG CAATT CAAGGATACAC C 1130 1090 1100 1120 1120 1210 1220 1220 1230 1220 1230 1230 1340 1340 1350 1450 1460 1450 1470 1450 1480 1460 1490 1460 1490 1460 1480 1460 1480 1460 1480 1460 1480 1480 1480 1480 1480 1480 1480 1480 1480 1480 1480 1480 1720 1480 1720 1480 1720 1480 1720 1480 1720 1480 1720 1480 1720 1480 1840 1480 1840 1480 1840 1480 1840 1810 1840	CATAG 1	CAAAC 1	464A4	CACAG	TAAAA 1	A A G C A	TSCTT	TGGAC	ACATG,
AG G CAAAAGAC ACAT AGIG CAGCTATGAGC CAAGT CAAGGAT 1030 1110 1120 1110 1210 1220 1220 1230 1220 1230 1230 1340 1330 1340 1450 1460 1450 1480 1450 1480 1450 1480 1450 1480 1480 1600 1480 1600 1480 1600 1480 1600 1480 1600 1480 1600 1480 1600 1480 1600 1480 1600 1690 1700 1890 1720 1890 1720 1890 1720 1890 1720 1890 1840 1890 1840 1890 1840 1890 1840 1890 1840 1890 1860 1890 1860	ACACC 130	ATTTT 250	6CTCT 370	6444G 490	56AGT	TAGCA. 730	ТGGAA. 850	CCTAA.	TTATT. 39 u
AG G CAAAAGAC ACAT AGT G CAGCTAT G AGC CAAG G CAATT CA 1030 1100 1140 1040 120 1240 1210 1220 1230 1220 1230 1240 1230 1340 1350 1450 1460 1470 1450 1460 1470 1570 1460 1600 1690 1600 1700 1710 1710 1720 1720 1720 1720 1600 1690 1600 1700 1700 1700 1700 1700 1700 1700 1700 1700 1700 1810 1320 1810 1320 1930 1940 1930 1940 2050 2060 2070 2070	A GG A T	CACTC	3 TGCT	4 4 A G G	GCTT(SAAC 1	יננאנ. 1	1. 1.	CATA
AGGCAAAAGACACATAGTGCAGCTATGAGCCAAGGCAA 1030 1100 1110 11 16AGAAGAATGAAGGTGCTGCTAGGAGGTATCTAATA 1230 1230 1230 1340 1350 1350 1350 1350 1350 1350 1350 1450 1470 1350 1470	TTCA.	1C AG T	17CCT(34AAC.	TTTC/	14444(6766(140	CTTT1	TTGT/
AG G CAAAAGAC ACAT AGT G CAGCT AT GAGCCAA 1030 1110 1110 1110 1210 1220 1210 1230 1220 1230 1230 1340 1330 1460 1450 1470 1450 1480 1570 1580 1590 1710 1690 1700 1710 1710 1810 1320 1810 1320 1810 1320 1810 1320 1810 1320 1810 1320 1820 1830 1830 1850	166 C A/	TAAT!	TATGI	. A G G AC	AC A AC	TAACA	18 A A A T	AG T TG	61116
AG G CAAAAGAC ACAT AGTG CAGCT ATGA 1030 1103 1103 11 1210 1223 1210 1223 1210 1320 1330 1340 1330 1340 1460 14 616AATGGGATTAAACTAATCTATTAA 14 616AATGGGATTAAACTAATCTATTAA 15 616AATGGGATTAAACTAATCTATTAA 15 617AATAAAGGGGAATTGCATAGGGGAGG 17 1690 17 1810 1320 1810 1320 1930 1940 1930 1940	10 110	30 30	177671 550	TGCA1	TAATG	444C	TAAA6	CT TCA	CAGGG
AGGCAAAAGACACATAGTGCAGG 1000 1100 1210 1220 1220 1210 1220 122	TAT6/	466AC	TTACA	.66TAT	ATTAB	A66TA	6464G	GCCAG	161CA
AGGCAAAGACATAGI 1000 16AGAAGATGAAGGIGG 1210 1210 1210 1230 1330 1330 1330 1330	GCAGC 00	T GC A T	6 TG TC	11411 60	AATCT 80	CTATO	CATAG 20	CCTCA 40	ACATG 60
AGGCAAAGACAC 1030 TGAGAAGAATGAA 1210 ACGTACACAAGGGG ACGTAGGATGTGAA 1570 GAAGGATGTGAA 1570 TATTAATAAGGGGG TATTAATAAGGGGGGGGTTTGATATGT ATGTTACATAGGGGGGGTTTTGATATGT	11 11 11 11 11 11 11 11 11 11 11 11 11	12 12	13 A A A G	TCCT6	AAACT 15	A A G A A	AATT6	4ACC 4 19	āA TAA 20
AG G C A A A A C G T A C A C G T A C A C A T G A C A T G A C A T G A C A T G A C A T G A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T C T T T G A A T G T T T G A T T T T	190 190	10	AA G G G	50 50	166 A T T	GTGAA 90	46666 10	TATGT 30	AC A T a 50
AGG ACG GAA GAA ATG GGT'	CAAAA	GAAGA 12	TACAC 13	ACATG 14	AATTG 15	666A T	TAATA 18	111GA 19	11G11 20
	AG G	T6 A	AC G	GAA	616	GAA	TAT	ATG	. GG T

TAMAAAGGCTT SATTTATGATAGAGGTGCCAGTGC AGTAGAAGGAAATTATTGGTGTTTTC AATAAAAGTGATAGGTCAATTAGATATTCATATGGCATGAAGTATGAAACAATAAC 3350 3350 3350 3350 3360
CCAGATGTCAAGACTTATTATCGAGTTACATTATTAAGACAGTGTGGTACTGACAAGGATAGACAAATAGATCAGTGAACAACACCTGGAGGAGGAGGAGGAGCACCTGTACATA 3130 3140 3220 3230 3230 3240
TITGGTGGTGGGGGGGGGGGTTCATAAAGCTAATTATAAAATGCATATGGAAATGCAAAGGCCAAGGATAGCCAAGACAGTTTTGAGGAAGAATAAACTTGTACTACTTACACTA 3010 3020 3030 3030 3040 3050 3060 3070 3080 3090 3110 3120
TTAAGGAAAACCTAAATAAATGAATAGGCAATGTTTATCAATTAAAGGATACAATATAGTAAATATTCAATGGATTCAATGCAATACCAAAGGTCCCAGCAGGCTTTT 2990 2990 2990 2900 2910 2920 2930 2940 2950 2950 2960 2970 2980 2990 3000
2770 2780 2860 2810 2820 2830 2840 2850 2860 2870 288 0
ACCASCAACGA TTCAAAAATGATTTTTATAATAGC ATTHAAAATTAGACGC TTAGTAATAGTGAGAAGATGTGCAAGAACTCTACATAAAAAATTATGAGACGTTATTGAGAAAA
TITCAGAAAAA IGATTSTACATATAGAAAACCCAAAGCATCTAAACAATTAAAATAAGTATAGAAAGATTACTGGATACAGAGTCAACATACAAATATCAATTGTATGTCTATAT 2650 2000 2000 2670 2680 2090 2700 2710 2720 2730 2740
ATTICTAGAATAAGCAATAGAAATTACACTICAATGCAGAAAGGCAGTATCTACATGAGATTATGAAATTGCGGTTGCTTTTIGTGTTCACTGAAAAAAAAAA
TCATTGATGGG CATTTAGGTT GATTCTAGCTATTCTAACACT TTCTAGAACT TCCAGATTCTACTTTTATAGGTAACCTGTTAAACAGTCTAGCTCTGGAAGCCAAGCA 2410 2420 2430 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520
TCCIAAGGATGAIAGCCICCAGCATTCATATTCCCACAAAAGACATAATCTCCTTCTTTTCTAIGGCTGCATAATATTCCATGGTATATGAACCACATTTTCTTTATCCAGTCTG 2230 2370 2380 2380 2390 2390 2390 2360 2360 2360 2370 2380 2400
CCTCCCTCAGTAGACTCCAGTATCTGTTTCCTTCTTTGTGTTTTATAAGTTCTTAACACTTAGCTCCCGCTTACAAGTGAGAACCTGCAGTATTTGATTTTTGTTCCTACGCTAGTT 2170 2170 2180 2190 2270 2210 2220 2230 2280

FIG. 7d
V T C M I K N 5 R C E Q F C K N S A D N K V V C S C T E G Y R L A E N Q K S C date transplaced and control of the control of t
TATISGGGGCAACATGAATGCCCCCAATGTATTITGACCCATACATGTGAGTTCCATGTACTTTTTAGAAATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTA 7 4330 4340 4350 4360 4350 4370 4380 4390 4400 4410 4420 4430 4440
CATITAGITITAGAC CAAT CAAT TITATGCATTATTGASAAGITT ATTITACCITICITICCACTCTTATTCAAGGCTCCAAAATTTCTCCCCAACGTA 4250 4250 4250 4300 4310 4320 4320 4300 4310 4320
TCATITACTITSIGAAAACTTACACTAAAATTGIGIGITITITTGAATATATGITTATACATTAAATAGGGITTTTAAACTGTAGTTCATAATTTAGTGAAAGTAGAATATCCAAA 4300 4100 4110 4120 4130 4140 4150 4160 4160 4160 4160
GTTASAAGTCC AGUT AATGGTAACCTATAAAAAGG AAAAAGGGTGGAATGATTGGGGGGGGGG
ACTGCTGTACA AAC AACATGGTTTAATCTCACAGACAAAATGTTAAATGAAAGACACAGACGAGTACATATTGCGAACTTCTGTTTATAATTCAAGAACTGGCAAGAACTGTTTACTGT 3850 3850 3860 3870 3850 3890 3900 3910 3920 3920 3950
CACTATTATACATAASAGCCAAAAACTSGAAACAAATATCCATTAACAGTAGAATGAATAAAAGCTGTAATAGTAATACAGGGAATACTACACAGCAATGTAAATGAACT 3730 3740 3810 3820 3830 3840
AAATTGCTTGG CAGT AATCTAGTACTTGAACAT GTGATCCAGTAATTACACTCATAATTAT AAGCCAGTAAAAAGGCATGTTTATGTCACAAAAGATATATACAAGAATGTTCATTA 3610 3620 3630 3710 3720
). ACACTACTICGACTGAAAAGACAAGTCACAGAGAGAGAGATATCTGCAATACAGATACCTAATAACTGAACCCCATACAGTGATSGTGGGAATTTAAGTTCGTACAATCATTTTAGA 3490 3500 3580 3590 3590 3590 3590 3590
AATTTATATTCATAACTTGCAGAAGGCAAAAATTTCTTAAAATACAAAAKSTGATCACCATAAAGGAAAAGATTGATAAACTGGACTATATAAAACTAAGGACTCCTGTTCAGCAAAAG 3370 · 3356 3460 3470 3480 3470 3480

TCCTTTTGAAATCA 4670 4680	.ATTTGTCCAATTTT 4790 4800	ACACAAATAATTGA 4910 4920	TTTACACÁCTIGGT 5030 5040	SACCATTTTAACAGC 5150 S160	CAATTATATTTGAT 5270 5280	11GTTTCAGTACCTG 5390 5390	ICACACAGAAATATA S510 S520	IGAAAGTATTCCTTA 5630 5640	TEECCCCTEGGT
TCCTACTTGAATCTGCT 10 4660 •••••••••••••••••••••••••••••••••••	AATTCITTCTGAGTCCA	ACTATATCATAAAATA1 00 4900	TTGGGTCTTAAGCTGA(0 5020	IGTCATACCAACCATGCC 50 S140	1TTTAGGCTCTGCAGGG1 50 5260	SCACCATTTCTCTGTAAC 70 5380	16AGGAATTAAAGACAC/ 10 5500	CCAGTCATAAGATTTAC1 10 5620	TGG GABATAAA GGGA TG AG TCGGCTAGTTATCTGC AGCA GGAA CATG TCCTTAAGGCACAAAT CACTTAT GCAATTGTCTGTGTTTAAGAACACCCTTTAAGCAGTTTTCCGCCCTGGGT
4640 465 4640 465	TAATCATCTĄCAACCTG 4760 477	CAAATCAATGTAGTAAT 4880 489	AAAGTTATTTTTATTG SOOO	CAAAACAATGTTTCCCA 5120 513	FTTTATTTTTGAAAAA 5240 525	TGGTACATTAAATTGTG 5360	CTAATCCTGCGGCACT	ATTTATTGACAGCAAGG 5600 561	AATTGTCTGTGGTTTA4
STICAGCATTTTAACAA 4620 4630	TTTAAATATAAACTATG 4740 4750	17167AAT TCATCAAGT 4860 4870	36CTAGTTTACTCTGAG 4980 4990	ATCTATAT GGCTGTGAA 5100	ATGAAAGCAGTAGACAC 5220 5230	CCTGATATCTTATTAAT 5340 5350	6CTTGGTC AGGGAGACC 5460 5470	CAGAGATT TACCCACAT 5580 5580	GC A C A A A T CACTTATGC
TAAAGAAAATCTGTATCTGAACTTCAGCATTTTAACAAACCTACATATTTTAATTCCTACTTGAATCTGCTTCCTTTTGAAATCA 4600 √ 4610 4620 4620 4630 4640 4650 660 4660 4680 4680	rctagattgcatcatat' 20 4730	TTGTGTGATTTCTGCATATGTATTTGTAATTCATCAAGTCAATGCTAGTAATACTATATCATAAAATATACACAAATAATTGA 4840 4850 4850 4860 4870 4880 4890 4900 4900	GA AGCATGATTCTATCTGGGCTGGCTAGTTTACTCTGAGAAGTTATTTTTTATTGTTGGGTCTTAAGCTGAGTTTACACÁCTTGGT 4960 4970 4980 5030 5040	TTCTGCTAGGCTGATCAGCAGTATTGGCTGTGAACAAAGAATGTTTCCCAGTCATACCAACCA	TTCGTATGGCTGTTATCTAAAGATGAAAGCAGTAGACACTTTTATTTTTGAAAAATTTAGGCTCTGCAGGGTCAATTATATTTGAT 5200 5210 5220 5220 5230 5280	AATTICTTTTGCATTICTAAAGCCTGATATCTTATTAATTGGTACATTAAATTGTGCACCATTTCTCTGTAACTGTTTCAGTACCTG 5320 5330 5340 5350 5360 5400	AACCAGTGCCGAGATCA 40 5450	CTTCAGAGCTGAGAGCCCCGAACAGATTTACCCACATATTTATT	A GGAA CA TG TCCT TAAG
41 4 4 5 9 0 4 5 9 0 4 6 0 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TTAGACCAATTAATTT1 4710		ACGGTAAGTTTGAAGC/ 4950 496	ACTGTTTTATGTTCTGC 5070 508	TCCACTCCATGTTCGT/ 5197 528	AAACTAGATATAATTT(5310 531	A5AAATTAAAGAAAAGI 5430 s44	GGTCTCACAGCCTTCA(5550 550	GCTAGTTATCTGCAGC
GAACCAGGTGGTCATAATCTGAATAAGATTTTT 4570	TAGAAAATATCAGTAGCTTGAATTAGACCAATTAATTTTGTAGATTGCATCATATTTTAAATATAAACTATGTAATCATCTACAACTGAATTCTTTGTGAGTCCAATTTGTCCAATTTT 4690 4700 4770 4780 4770 4780 4780 4800	TTTCTCTAACATTTATATCACAAAGCAATTAA1 4810 4820 4830	GTG ATAGGCTTCTAG TATAAGG AC GGTAAGTTT 4930 4940 4950	GTCAGAATGATTCCG GCAATGAACTGTTTTATG 5050 5060 5070	TGATTAGTGTATTCAGAACATCTCCACTCCATG	AAA TGAGGGC TTTTTT GAAGCAAAC TAGATAT 5290 5310	TCT CAGCACTATACCAGUC AGAAGAAATTAAAGAAAGAAAGAACCAGTGCCGAGCTTGGTC AGGGAGGCCCTAATCCTGCGGGAATTAAAGACACACACAC	GAGTATGAAGTGGGAAATCAGGGGTCTCACAGC 5530 5530 5540 5550	AATAAA GGGA TGAG TCG(
GAACC	TAGAA	TTTCT	GTGAT	GTCAG	TG A T.1	AAA TC	1C T C.4	GA 5 T !	70.0.0

FT. TH
4GO AGC AGA AGCA AGA TO AGA AGA AGA AGA AGA AGA AGA AGA AGA AG
TIGGCTAATATTIGAAGCCCAAATAATTGAATCACAATGATCTCCCCAGAAAATATATAAAATGCACCTTGGAATCTAGAAGGCCTTTTAGTCTGCAAAGAAAG
CATTCTGSTAGTCCCCASTSTATCATTATTTTTTTTTTTAGAAAATAAACCAAGGAAAAATGGTGGGCAGGTCCTGGTGAATATGGCTGTGATAATTATTTAGCAATCTCT 6490 6500 6500 6500 6590 6590 6590 6500 6550 655
6370 6380 6390 6400 6410 6420 5430 6440 6450 6460 6470 6480
TCT TC4T5ATACITT STC6 C0 SCT 5GTT GCT AT A GTGT GGGAATGT GGCTT GAGGAA GTGATAAATGAAAATGAAATG
TTA AAATA AGC TTTT CTGC CTTTT CTAAAGGTC CCTTTT CTGTAGC CATTGTTG AT ACTAAAGTATTTTGAACTAATTTC CTGTTTT CTGAACCACTTGCTG 0250 0260 6370 6370 6280 6280 6380 .
AGCTABACCCTTACAAGTICTICTATGCTATABAAGAGAACCAGGAACCACCTCCAACTATTAAGTGTTATATTTGAATATAGCCTTAGCAGAATAAGTAGGCCAAAC 0130 0145 6150 6150 6160 6170 6180 6190 6200 6210 6220 6230
CTICACATACACTUTCAAABGCTASTCTACCTTGAGAGGAGCATGAATATGTGTGTGTGTGTGTG
GTITATGGCCA GATTTGGAGGCCGATACCAACAA GCTAGGAATATATACTGCA AATAAATGAAGAATCTCTAAGGCTTGGGCCTGCCCACTTGTTCTTCTGCCTGGTT 5890 5890 5900 5900 5940 5950 6000
GGGCCAGGTGTTCCTTGCCCTCATTCTGGTAAACCCACAAGCTTCCAGTGTGGATATCAAGGCCATCACGAGCATATCACGAGGTTTTGTTTATGGCCAGTTTTGGGGCCA 5770 5780 5780 5800 5800 5810 5820 5830 5830

Militaria de la Caracteria de Caracteria de

V F P O V O V V N S T E A E T I L D N I T Q S T Q S F N D F T R V V G G E D A K TGITITICCTGATGISGACTATGTACATACTGAAGCTGAAACCATTTIGGATAACATCACTCAAAGCACCCAATCATTAATGACTTCACTGGGGTTGTTGGTGGAGAAGCCAA 7210 7210 722C 723O 724O 7250 7240 7250 7260 7260 7280 7280

11/35						
TT 666A 7440	166CAT 7560	AAAACT 7680	TGAGAG 7800	ATTACT 7920	CT GAGG 8040	
AGACAGACCTA 7430	Caagaagaatt 7550	CAGCCCTTGCA 7670	AGAACAGGGCA 7790	GGAACTGAACGGAGATTACT 7900 7910 7920	TATTCAGGAGG 8030	FIG. 7g
GCTATTTTACT 7420	ACCATACAGGT 7540	TACTTCAGCTT 7660	ACTAGGTT-CA 7780	7900	GTGCTCCCAGC 8020	
GGAGACTGAG(7410	AAAACCAGCT.	TTCAGGGCAC 7650	TAAGGCAAGA. 7770	1890	ACTCCCACCT 8010	
AGGCCAGGTG(7400	AGAGAGGCTC. 7520	GGTACTCAGG 7640	GAGGAAGGAT 7750	7880	AGGTGTGATG 8000	
G GC A A G A C A C 7 3 9 0	A GTTGGTGAA 7510	A AAGGTCGCA 7630	G GGACTCAAG 7750	7870	AAATTAGCT 7990	
GAGCTCAGCT 7380	AGAGATGAGC 7500	GGTCTGGAAG 7620	.GGT A A G G A A A	7860	AAAAAATAC 7980	
GTCAAAACT G 7370	GAAGGCCTCC 7490	ACAACATGAA 7610	TTT A A A A S G G 7730	7850	CCTCTAATTA 7970	
CTG A TG G T G T I	ACCAATGTGA 7430	CA66TCA 7600	AATTGGATTA 7720	0782	-CGAACCCCA 7960	
GTACTTTATA 7350	TTCAGCACTA 7470	TCCAGACAGG 7590	GGCTAAGAAA 7719	6TTCTC6T	66-CAACAC6 7950	
р м ц сссттбьсая 7340	TTA SGCAAGT 746 G	ATAGCAGGAT 7580	AAAGTCTTTA 7700	.TAC CACTATA 7820	.Ga-AAC-CCT 7940	
P G G R P W Q accaggicaattecettsbeasgiaetttataetgatgstgigteteaaaetggagetegeaacacaggecaggigggagaetgaggetattttaetagaeagaeetattggga 7330 7330 7340 7350 7350 7350 7370 7380 7390 7400 7410 7420 7430	TGTGAGAAGTATTTASGCAAGTTTCAGCACTAACCAATGTGAGAAGGCCTCCAGAGATGAGCAGTTGGTGAAAGAGAGGGCTCAAAAACTACAGGTCAAGAASAATTTGGCAT 7450 7466 7470 7480 7490 7500 7500 7500 7500 7500 7550	TAAGGAAACAGCATA6CAGJATTCCAGACAGGCAGGTCAACATGAGGTCTGGAAGAAGGTCGCAGGTACTCAGGCACTACTTCAGCTTCAGCCCTTGCAAAACT 7573 7580 7590 7690 7610 7620 7680 7680	GGTGAGAGTTGGAAAGTCTTTAGGCTAAGAAAATTGGATTATTTAAAAGGGGGGTAAAGAAGGGACTCAAGGAGGATTAAGGCCAAGAACTAGGTT-CAAGAACAGGGCATGAGA 7890 7700 7710 7780 7790 7790 7790 7780 7750 7750 7750	464 GTCTTGATCTAC CACTATAGTTCTCGT7240 7810 7820 7830	TAACCGA-ATTTGA-AAC-CCTGG-CAACCCCACCTCTAATTAAAAAAATACAAATTAGCTAGGTGTGATGACTCCCACCTGTGCTCCCAGCTATTCAGGAGGCTGAGG 7930 8000 8010 8020 8030 8040	

7h	FIG. 7		•								
9240	9230	9200 9210 9220 9230 9240	9210	9200	9190	9180	9170	9160	9150	9140	9130
CATAAATG	TCTTATAACT	GCTG-ACCGA	ACAATATTT	AAAAG	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	 	9 8 9 1				
9120	9110	9100	0606	0906	9070	0906	9020	0706	9030	9020	0100
0006	0668	8980	8970	0968	8950	8940	8930	8920	8910	6048	07 8 R
88 88	8870	8860	8850	0788	88 3 Q	8820	8810	8800 57	0.628	8780	8770
8760	8750	8740	8730	8720	TGCCACAAGTC 8710	CT-CCTAGT 8700	3590 3590	AATAGTTTAGTGTAACTTAAAACT-CCTAGTTGCCACAAGTCATGATTTAGTAGTATTTCATGGA- "3680 3590 8710 8710 8720 8730 874	521ACCACTTATA 8670	CTÁŢŢŢĢ6A1 8 6 6 C	ТАС ТБСАБАААЙТТ 5950
8640	GAGATAGAAC 8630	AGTGCAAGCG 8620	16TATTGGAG 8610	AGTAACTAC) 8600	CACATGTGGT 8590	CATAACAAC 8580	ATTTTAAGCA 8570	TTGCACCTGCCAAATTTTAAGCACATAAGCAAC CACATGTGG-TAGTAACTACTGTATTGGAGAGTGCAAGCGGAGATAGAACACTCTAT 8560 8570 8530 8590 8600 8640	77C-7CAATT	8540	ATTANGAGAAATTAAAAATTCAATTC-TCAA 8530 8550
AACTACA 8520	AATTTAAATT 8510	-CAATAGGTAACCACTAGCCACATATGTTTAAATTTAAATTAACTACA 8480 8490 8500 8510 8520	1CTAGCCACA 8490	TAGGTAACC/ 8480	676CTGT-CAA 8470	TATAAAGTT 8460	115GTCCTTA 8450	16 F 44 G C C A G G A	CTCCCCAGGC/ 8430	8420	AATAACCCACCTCTTIGGCCCCCCCCCCGGCAGGCCAGGATGGTCCTTATAAAGTTGTGCTGT 3410 8420 8430 8430 8470
GAGAAGA B400	TTCCGTCTGT 8390	GCCTAAGAGA 8380	.ACAGCTGAA 8370	AACTTAGCC1 8360	ACATTIGTAGCAAA ATCTGGGTTGTAACTTAGCCTACAGCTGAAGCATTCCGTCTGTGAGAAGA U 8340 8350 8360 8370 8380 8390	TGT AGCAAA 8340	-6 CT 8 3 3	TTAACAACCAAG. 8320	CATTTTCATTT. 8310	S300	AC A TATS TASA A TTA CCTATGCACATTTTTC. 8300 8310
ACAACCT 8280	TAGTCTGCAA 8270	TCTCCAAGCG 8260	GC A G & C A T T 8 2 5 0	CGGGTGCTC1 8240	AATGCACTTGTAC CTAGTCCTTCCGGGTGCTCTGCAGACATTTCTCCAAGCGTAGTCTGCAAACAACCT , 8220 8240 8250 8260 8270 8280	CACTTGTAC 9220	.CAAATAATG(8210	GGGGTTCAAAACACCAAAT. 8200	CAGAAGCCGGG 8190	. ACTTGTT A 8180	SCCCAAAGGAAATSAACTTGTTACAGAAGCCI 8170 8180 8190
								grade _{mar}			
							٠	.4	• •		
AACACTG 8160	G A A A A G A A A 8 1 5 0	TCAAAAACA 8140	GACCCTATC 8130	GACAGAGTAA 8120	CAGCCTGAGT 3110	SACTGCACT	TGATCACAC(GCAGTGAATTG 8080	AAGTCGAGGCT 8070	AGCCTGSA 8000	TUGGAGAATCACÇTIGAAGATCGAGGCTGCAGTGAATTGTGATCACACCGCCTGCACTTCAGCCTGAGTGAG

CTTCACA 9360	1111GTC 9480	AGAACAG 9600	AACCCCG 9720	6T6A6CC 9840	AGTTT	10080	10200	CTGTCAT 10320	
TTTACTCTT 9350	FTCTCTAA 9470	rgtgggacat 9590	NACATAGTGA 9710	GAGCTGGCA 9830	-1GT-TTGTG 9950	10070	10190	STGAAAGACC 10310	FIG. 7i
CATCCATATO 9340	ATGTATCTA1	CCTTGGGTT1 9580	2ATCCT GGCT/ 9700).CGGGGAGGC(188866TGT- 9940	10060	10180	AGAATAGTT(10300	
TTCCTTCACT	1TTTAATATC(9450	CAATTATCT1	164TCAAAAC(9690	1TGGCGTGAA(9810	144444444 9930	10050	10170	10290	
CCATAACCCC 9320	CTTCAATGT# 9440	TACTTTATGA 9560	.464TTCAGGA 9680	.66CA66A6AA	AAGTTTAAAA 9920	10040	10160	AAGAAGCTGA 10280	
CCCTTACCTA 9310	GTTATTATGC 9430	CAAAAGATCC 9550	TAAAAGTCCA 9670	3666466CTGA 9790	MAAAAAGTCC 9910	10030	10150	TTCCAAAGGC 10270	
CTACTTAATTGCACCCTATGAGGACTGCTTCCCTTACCTACC	116CAAGCAC1	GTCCAACTTCCATGGATAACATGGTTACA ACAAAAGATCCTACTTTATGACAATTATCTTCCTTGGGTTTGTGGGACATAGAACAG 9520 9530 9540 9550 9560 9560 9600	TATATTAGCTAAGAAGATAACTTCCGTTTTTAAAAGTCCAAGATTCAGGAGATCAAAACCCTGGCTAACATAGTGAAACCCCG 9640 9650 9660 9670 9680 9690	GSTGGCAGGCGCCTATAGTCCCAGCTACACGGGAGGCTGAGGCAGGAGAATGGCGTGAACCGGGGGGGG	GAGCGAGACTCCAAAAAAAAAAAAAAAAAAGTCCAAGTTTAAAAAAAAAA	10020	10140	SCACTTTATC' 10260	
TGCACCCTATO 9290	TCCCTCTTAAG	CCATGGATAAC 9530	TAAGAAGATAA 9050	CGCCTAŤAGTC 9770	756AAAAA	10010	10130	CAGATTCAAA(10250	
IC TACTTAAT. 9280	CTGGAACAAT	GTCCAACTT(9520	17 A TA T T A G C 1 9640	16 5 T 5 6 C A 6 G (16 4 6C 6 4 G 4 C °	1 0000	10120	10240	
01001018TT	4-6AACCTTTC 9390	1TTCATTATG1 9510	1CCC463A5A1 9630	746CCC5GCG1	00166666467 9870	0666	10110	TGAACAGATT/ 10230	
CCTTTTTACC 9260	54 CC TTCTTT6 938G	11 GT AT TTTC 4 9506	GATCCAAGAA 9020	ACAAAAATT 974 U	. G C A C T C C A G C 9 4 6 0	0866	10100	ITCAACCACAT 10220	:
G-ACACTGTATGTTCCTTTTTACCTCCTCTGTTT 9250 9260 9270	ACT CTGT ANTA TTGA CCTTCTTTA – GAACCTTTC TGGAACAATC CTCTAAGCAGCACTGTTATTATGCCTTCAATGTAITTAATATCATGTATCTATTCTCTTAATTTTGTC 9370 9380 9460 9460 9460 9470 9480	ATTITGIGITC TCATGIATITTCATTCATTATGT 9470 9500 9510	TGC TCAGAGT A GGG A T CCAAGAACC CAGGAGAA 9 5 1 <u>9 5 1 0</u>	TCTCTTCCAAAAATACAAAAATTAGCCCGGCGT 9730 9740 9759 .	Ġasatcccgccactgcactccagcctgggcgaca 9850 9350	0266	10090	CCCTATTCAACCACATGAACAGATTACTGATGCAGTTCAAAGCACTTTATCTTTCCAAAGGCAAGAAGGCTGAGCTACTTTCCAGAATAGTTGTGAAAGACCCTGTCAT 10210 10220 10230 10240 10250 10250 10260 10270 10280 10290 10390 10310 10320	
(5-A)	ACT	ATT	TGC1	TC T (ĠAG.	1 1	İ		

11510 11520	11500	11490	.70 1148	114	11450 1,	11440	11430	11420	11410
A G G TTAGA A G G TT C C G G A C G G A A C G G C G A T G G A A T G G A A G G A G TT C C C T C C A G G C C G G G G T G G G C T C A G A	TTCCCTCCAGGC	GGTACTTCAGT	CAATGGAAGGA	1 CGG CG T GAGGC	TCCGGACAGGA	AG GTT AGA AGGT	166 C666-C-66-CCT TCT A 4 A G T C G C 6 C A	36-CCT1C	166 C666-C-
-CCCATCCTGTTTGCTACCTCCTAAAGCCAAAGGC 11370 11380 11390 11400	CTGTTTGCTACC 11380	11370CCCATC	.CCGGAACGGCG	CCCCTATGGTT 1340 113	TCGCGATGGTAGCTTCCCAGGAGCCCCCTATGGTTCCGGAACGGCGCTG 11320 11330 11340 11350 11360	TC GCGATGGT AG 11320	GGC TSSAGCCA A GGG CAACGCAGCCGC-CTTGT 11230 11310	A A GGG CA ACGC	66CT5SAGCC/ 11240
TACAGAGCCATGITCICCTAGCACGIATCCCGICTGCGGTCACTTTCTTACCTTATICCAGGGCTTTCACCTCAGCTIGCCA 11200 11210 11220 11230 11240 11250 11260 11270 11280	TTATTCCAGGGC 11260	CATTTCTTACC .0 11250	.GCGGTCACGGŤ 130 1124	.GTATCCCGTC1	TTCTCCTAGCAC	TACAGAGCCATG 11200	66-aCT-CTGGATCC·TGTCCAGCTTTGAGACCC 11170 11180 11190	3 A TCC-TG TCCA(66-ACT-CTG(11170
GC TGTTCTGTCACTSGGGACAGGGGCTAGATAGCCCCATTCAGGGAG-GGGCATTTGTTCACCTGGCCAGAGATCAGAGCAGGCTAA 11080 11090 11100 11110 11120 11130 11140 11150 11160	TTCACCTGGCCA	.G-GGGCATTTG	CCATTCAGGGA 10 1112	36CTAGA TAGCC 1100 1111	1090 11090 1	.GC *GTTCTGTC	TTGACTTAAAGA 11070	T G T C G G A A T T G	. AACAAATGTITGTCGGAATTGTTGACTTAAAGA 11050 11060 11070
CT GACCTCCATTAAGAAA 3CCCTTTCCAACCAACAACACTGGGTTGGTTACACAGGTTGGGCAGCATTGGGAGCAAATGTTGATTG 10960 13970 10980 10990 11000 11010 11020 11030 11040	TTGGGCAGCATT 11020	GGTTACACAGG	1100 190 1100	TTCCAACCAACA 1980 109	13970 10970	CT GACCTCCAT1 10960	TAA 636TS AAA 6TTG CAAGCCAAGACGAT1 10930 10946 10950	A GTTGCAAGCA	TAA 636T SAA! 10939
aGaaatggttagtctgttaaggaaaggtgtaggtgagctgtttgCaagagcCacaagggGaaaggGgGaagaCaacttCtttgtgGact 10840 10850 10860 10870 10880 10890 10900 10910 10920	GGAAAGGGGAAG 10900	14GAGCCACAAG 10890	46CTGTTTGC4	105 105 105	rctgttaagaa. 10850	.GA A A T G G T T A G 1 10340	TCA TCTGGAGT AATGAACAGATTGAACAAGT# 19819 10826 10830	TAATGAACAGA 1052G	1CA TCTGGAG1
CTTTTATCTTTCAAATTTAGCCAGSGTGGGAAATAAAGTGATCACTTGGTGAAGAAATCTCACAAAGAAGAACATAGAGAGTTCACTT 10720 10730 10740 10750 10760 10760 10770 10780 10790 10800	CTCACAAAGAAG 10780	rggtgaagaaat 30 10770	AGTGATCACTI	3676664 AA TAA 3740	10730 44 10730 10	TTTTATCTTTC. 10720	TGC TGATGCAACCTTTCTCTTCASAGTTGTTTC 10690 10700 10710	A CCTT TCTCTT	TGC TGATS CA. 10690
'GG GGCTTCAGTGGTGAAAACATTATATATGTTTGAAATACTGTTTAGCAGTGTCACCTAGAAAAGAGTGTTTCAAAA 10600 10610 10620 10630 10630 10640 10650 10660 1066	cagtgtcaccta 10660	AATACTGTTTAG 10650	TTGAATATGAA	1020 1020	SGTGAAACATT, 10610	.GG.GGCTTCAGTC 10600	SACTAAGGCATCAAGAGAAAGCAAGGAACAGGI 10570 10580 10590	T CAAGAGAAAG	GACTAAGGCA'
GGA TGGGCCAGCTCCACCA TGTCATGGTTAA TCTGCAGGGAGGAAATACTAGATTTGATTGCAGATCAGACTGCAGCAAACCTGCTGT 10480 10490 10500 10510 10520 10520 10530 10540 10550 10560	TTGCAGATCAGA 10540	ractagatttGA 20 10530	24GGG4GGAAAT 310 1052	166TTAA 1CT60 3500 103	rccacca TGTCA 10490	64 TGGGCCAGC1		ACCAGAATCTC 10460	AAT GAAAGAA. 10450
TCCAGTICCTTATSAATSGTTACTGGTTTTCAAAAATATGAGATAAAATTGAGTGTATAAAAGTCATTTTTAGACAAAATGAAACAGGA 10369 10370 10380 10390 10400 10400 10410 10420 10430 10440	AAAGTCATTTTT 10420	1TTGAGTGTATA 30 10410	ATATGAGATAAA S90 1040	36TTTTCAAAA 3380 103	TGAATGGTTACT	CCAGTTCCTTA) 10360	ACTICISCATIGITY CICCACACCACCICCA1	TGTTT-CCTCCA 10345	- ACTTCTGCAT

AGAGTTA 11640	11760		
11630	SCAACGCCTG 11750	TGCCAGCTG	11870
ACAGAAATG/ 11620	AGGGAACT0 11740	CCCATGACCC	11860
CTACACAGGA 11610	GTCTTGAATTGCATACCGCCACGTAGGGAAGAATGAAAACCTTTGAATATTAGTGAAAAAAGGGAAACTSCAACGCCTGTATTACT 11680 11690 11700 11710 11720 11780 11770 11760	GGATCCCATG	11850
SGTTAAATGCAG 11600	CTTTGAATA1 11720	AATTTGGTT1	11340
64 G C T A G A G (GAAATGAAAA(11710	TCTAAAGCTT?	11830
37 AG A A A G A G 11580	ACGTAGGGAAGAAATGAAA 11700	1TTTGGCTT	11820
TACTTCAGSA(11570	6CATACCGCC/ 11690	3CAACACCGC/	11810
11560 11560	TCTTGAATT (I T T T A A G A A G	11803
146CAGGGTC1 11550	ACT ABABCAAC 11679	1 A A C C G A C A G A	11790
11540	GTGTAGTAAL 11060	A AC A G CT C A A	11786
GCTCCTTSAGAACTCGGGAAGGAAGGAATGATGTTCAGSAGTGGAAAGGGGAGCTAGAGGGGGTTAAATGCACTACACAGGAACAGAATGAGTTTTTCTTAGAGTTA 11530 11540 11550 11560 11650 11670 11580 11590 11600 11600 11610 11620 11630 11640	GTATATGTCTA SAGGTGTAGTAAACTAAAACAA 11650 11000 11670	AGA TAGCITIC A TCA AC AG CTC A A A A CC AGA T TTA A AG A A SC A A CC C GC A T T T G G CTT T CA A A G C T T T G G T T T G G A T C C C A T G C C C T G C C T G C C T G C C T G C C T G C C T G C C T G C C T G C C T G C C A T G C C T G C C A T G C C T G C C A T G C C C A T G C C C C A T G C C C C A T G C C C C A T G C C C C C A T G C C C C C C A T G C C C C C C A T G C C C C C C C C C C C C C C C C C C	11770
Ō	ون	ă	

GTATA

22129

FIG. 8(a)

→ 1	0.000	ECOR1	GAATTC
30	0.002	HINF1	GAATC
3 3	0.003	мво11	TCTTC
46	0.004	ALU1	AG C T
48	0.004	DDE1	CTGAG
50	0.004	MNL1	GAGG
8 9	0.007	MNL1	CCTC
94	8.00.0	MST1	TGCGCA
95	0.008	HHA1	GCGC
112	0.009	MBO1	GATC
120	0.010	9BV1	GCAGC
120	0.010	FNU4H1	GCAGC
123	0.010	8871	GC A G C
123	0.010	FNU4H1	GCAGC
134	0.011	DDE1	CTGAG
148	0.012	HPH1	GGTGA
173	0.014	MNL1	GAGG
188	0.016	DDE1	CTTAG
204	0.017	HINF1	GAATC
247	0.021	SPH1	GCATGC
265	0.022	ALU1	AGCT
266	0.022	BBV1	GCTGC
266	0.022	FNU4H1	GCTGC
305	0.026	XMN1	GAACACTTTC
376	0.032	ALU1	AGCT
417	0.035	MNL1	GAGG
425	0.036	STU1	AGGCCT
426	0.036	HAE111	GGCC
. 465	0.039	RSA1	GTAC
488	0.041	D D E 1	CTTAG
517	0.043	ALU1	AGCT
523	0.044	ALU1	AGCT
. 559	.0.047	MNL1	CCTC
578	0.049	RSA1	GTAC
590	0.050	DDE1	CTAAG
621	0.052	ALU1	AGCT
652	0.055	HINF1	GATTC
→ 732	0.062	HIND111	AAGCTT
733	0.062	ALU1	AGCT
781	0.066	MB011	GAAGA
788	0.066	MNL1	GAGG
816	0.069	MNL1	GAGG
5.0	3 0 0 0 7	• • • •	

				FIG. 8(b)
	818	0.069	FOK1	GGATG
	898	0.076	MNL1	CCTC
	898	0.076	MST11	CCTCAGG
	899	0.076	DDE1	CTCAG
	913	0.077	DDE1	CTGAG
	929	0.078	HPH1	GGTGA
	976	0.082	TAQ1	TCGA
	1027	0.086	RSA1	GT A C
	1032	0.087	MNL1	GAGG
	1054	0.089	MNL1	CCTC
-	1072	0.090	HIND111	AAGCTT
	1073	0.090	ALU1	AGCT
	1099	0.092	BBV1	GCAGC
	1099	0.092	FNU4H1	GCAGC
	1101	0.093	ALU1	AGCT
	1138	0.096	MNL1	GAGG
	1145	0.096	HINC11	GTTGAC
	1150	0.097	FOK1	CATCC
	1161	0.098	ALU1	AGCT
	1167	0.098	HPH1	TCACC
	1193	0.100	HPH1	GGTGA
	1198	0.101	ALU1	AGCT
	1200	0.101	DDE1	CTGAG
	1204	0.101	MB011	GAAGA
	1226	0.103	MNL1	GAGG
	1284	0.108	DDE1	CTGAG
	1286	0.108	MNL1	GAGG
	1323	0.111	RS41	GTAC
	1365	0.115	BBV1	GCTGC
	1365	0.115	FNU4H1	GCTGC
	1370	0.115	XBA1	TCTAGA
	1424	0.120	DDE1	CTAAG
	1427	0.120	ALU1	AGCT
	1449	0.122	RSA1	GTAC
	1603	0.135	ALU1	AGCT
	1626	0.137	ACC1	GTATAC
	1633	0.137	HINC11	GTTAAC
	1633	0.137	HPA1	GTTAAC
	1670	0.141	MNL1	GAGG
	1672	0.141	HAE111	GGCC
	1685	0.142	FOK1	GGATG
	1759	0.148	HINF1	GATTC
	1766	0.149	MNL1	GAGG
	1841	0.155	SAU961	GGGCC
	1842	0.155	HAE111	GGCC

FIG. 8(c)

1855 1884 1901 1901 1939 1940	0.156 0.159 0.160 0.160 0.163 0.163	DDE1 MBO11 AVA11 SAU961 MNL1 DDE1	CTTAG TCTTC GGACC GGACC CCTC CTCAG
7550 19650 20897 2011 20897 2111 21147 211651 2117 2117 2117 2117 2117 2117 2117 21	01171 01175 0.177 0.178 0.178 0.178 0.179 0.180 0.181 0.181 0.182 0.182 0.182 0.183 0.183 0.183 0.187 0.187 0.192 0.192 0.192 0.193 0.194 0.198 0.198 0.198 0.198	ALU1 HAE111 SRSA1 HAU961 RRSA1 HAU10 RRSA1 MNL1 MNL1 MNL1 MNL1 MNL1 MNL1 MNL1 MNL	AGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
2534	0.213	DDE1	CTAAG

			FIG. 8(d)
2678 26728 27728 2777 28115 2984 2984 2988 2988 2988 3099 3146 3193 3216 3216 3216 3216 3216 3216 3216 321	0.224 0.225 0.230 0.233 0.236 0.237 0.251 0.251 0.255 0.255 0.255 0.260 0.262 0.262 0.264 0.267 0.269 0.271 0.271 0.271 0.272 0.275 0.287	RSA1 SFNA1 HINF1 HINF1 HINF1 HIGA1 DDINF1 AVAU1 SAU1 MINF1 AVDE1 MBA1 TASA1 TASA1 MBGIA1 RSA1 MBGIA1 RSA1 MBGIA1 DDE1 MBSA1 MBGIA1 DDE1 MBSA1 MBCL1 MBCL1	GTAC GCATC GAGTC GAGTC GATTC GACGC GATTC GACTCC GATTC
3413 3415 3457 3462 3489 3522 3585 → 3624 3625 3638 3689 3792	0.287 0.288 0.291 0.292 0.294 0.297 0.302 0.305 0.305 0.305	MBO1 HPH1 DDE1 HINF1 TAQ1 ECOR5 RSA1 BGL11 MBO1 MBO1 HPH1 ALU1	GATC TCACC CTAAG GACTC TCGA GATATC GTAC AGATCT GATC GATC

			FIG. 8(e)
3847	0.324	RSA1	GTAC
3905	0.329	RSA1	GTAC
3970	0.334	BSTN1	CCAGG
3970	0.334	SCRF1	CCAGG
3979	0.335	BSTE11	GGTAACC
4016	0.338	MNL1	GAGG
4022	0.339	SFNA1	GCATC
4025	0.339	MB011	TCTTC
4368	0.368	HINF1	GAGTC
4384	0.369	RSA1	GTAC
4410	0.371	SFNA1	GATGC
4469	0.376	SFNA1	GATGC
4520	0.381	RSA1	GTAC
4523	0.381	DDE1	CTGAG
4525	0.381	MNL1	GAGG
45 2 9	0.381	ECOR5	GATATC
4533	0.382	TAG1	TCGA
4658	0.392	HINF1	GAATC
4695	0.395	ALU1	AGCT
4719	0.397	XBA1	TCTAGA
4727	0.398	SFNA1	GCATC
→ 4769	0.402	ECOR1	GAATTC
4769	0.402	XMN1	GAATTCTTTC
4778	0.402	DDE1	CTGAG
4780	0.403	HINF1	GAGTC
4848	0.408	NDE1	CATATG
4961	0.418	HINF1	GATTC
4988	0.420	DDE1	CTGAG
5020	0.423	ALU1	AGCT
5022	0.423	DDE1	CTGAG
5049	0.425	HINF1	GATTC
5053	0.426	HPA11	CEGG
5085	0.428	BCL1	TGATCA
.5086	0.428	MB01	GATC
→ 5157	0.434	PVU11	CAGCTG
5158	0.434	ALU1	AGCT
5225	0.440	ACC1	GTAGAC
5258	0.443	PST1	CTGCAG
5285	0.445	MNL1	GAGG
5339	0.450	ECOR5	GATATC
5355	0.451	RSA1	GTAC
5367	0.452	HGIA1	GTGCAC
5394	0.454	RSA1	GTAC
5402	0.455	DDE1	CTCAG
5414	0.456	BSTN1	CCAGG
			•

FIG.	8(f)
------	------

5414	0.456	SCRF1	CCAGG
5421	0.456	MB011	GAAGA
5451	0.459	MB01	GATC
5455	0.459	ALU1	AGCT
10002737244444931444534566577766649311444534566789902225511	0.462 0.462 0.468 0.468 0.477 0.477 0.477 0.477 0.477 0.485 0.485 0.485 0.485 0.485 0.490 0.492 0.492 0.494 0.497 0.497 0.497 0.497 0.497 0.497 0.497 0.503	FNNU11 ALUEN1 FNNU11 ALUEN1 FNNU11 FNNU11 FNNU11 FNNU11 FNSCAUEN1	GCGGC GAGG AGCT CTAAGT GAAAGT GAAAGT GGAGC GCAGG GCAGG CCTGG CCTGGC GCAGG CCTGC GCTGC GCC GGCC GGC

			FIG. 8(g)
5972 5987 5994 6000 6021 6026 6037 6121 6139 6177 62114 62348 6249 6275 6361 6379 6381 6558	0.503 0.504 0.505 0.505 0.505 0.507 0.507 0.508 0.515 0.517 0.520 0.523 0.523 0.523 0.523 0.525 0.528 0.528 0.528 0.528 0.537 0.537 0.537 0.537	HAE111 MB011 BSTN1 SCRF1 MB011 ALU1 ACC1 MNL1 ALU1 MB011 MNL1 DDE1 ALU1 HAE111 HAE111 HAU1 AVA11 SAU961 RSA1 MB011 BBV1 FNU4H1 PVU11 ALU1 AVA11	GGCC TCTTC CCTGG CCTGG TCTTC AGCT GTCTAC GAGG AGCT TCTTC CCTC CTTAG AGCT GGTCC GTAC GGTCC GCAGC GCAGC CAGCT GCAGC CAGCT GCAGC CAGCT GCAGC CAGCT GCAGC CAGCT CAGCT GCAGC CAGCT CCTC
6558 6561 6561 6564 6629 6674 6677 6683 6684 6722 6722 6767 6793 6848	0.552 0.553 0.553 0.553 0.558 0.559 0.562 0.563 0.563 0.566 0.566	SAU961 BSTN1 SCRF1 HPH1 HINF1 MBO1 HINF1 XBA1 STU1 HAE111 BBV1 FNU4H1 SFNA1 FOK1 HINF1	GGTCC CCTGG CCTGG GGTGA GAATC GAATC TCTAGA AGGCCT GGCAGC GCAGC GCAGC GCATC GGATG

FIG. 8(h)

6874	0.579	HINF1	GATTC
6911	0.582	ECOR1	GAATTC
6916	0.582	HPA11	
6984	0.588	ALU1	AGCT
	0.589	HINF1	GACTC
6991		SAU961	GGGCC
7028	0.592		GGCC
7029	0.592	HAE111	CTCAG
7038	0.593	DOE1	
7052	0.594	FOK1	GGATG
7056	0.594	SAU961	GGGCC
7057	0.594	HAE111	GGCC
7059	0.594	MNL1	CCTC
71 2 4	0.600	MB011	TCTTC
7155	0.603	MB011	GAAGA
7155	0.603	XMN1	GAAGAGTTTC
7179	0.605	DDE1	CTAAG
7182	0.605	ALU1	AGCT
7185	0.605	нрн1	TCACC
7194	0.606	DDE1	CTGAG
7196	0.606	MNL1	GAGG
7237	0.609	ALU1	AGCT
7293	0.614	AVA1	CTCGGG
7310	0.616	MB011	GAAGA
7313	0.616	SFNA1	GATGC
		BSTN1	CCAGG
7322	0.617	SCRF1	CCAGG
7322	0.617		GTAC
7343	0.618	RSA1	GAGCTC
7373	0.621	HGIA1	
7373	0.621	SAC1	GAGCTC
. 7374	0.621	ALU1	AGCT
7376	0.021	DDE1	CTCAG
7378	0.621	PVU11	CAGCTG
7379	0.621	ALU1	AGCT
7394	0.623	HAE111	GGCC
7396	0.623	BSTN1	CCAGG
7396	0.623	SCRF1	CCAGG
7408	0.624	DDE1	CTGAG
7410	0.624	MNL1	GAGG
7438	0.626	FOK1	GGATG
7485	0.630	STU1	AGGCCT
7486	0.630	HAE111	GGCC
7488	0.631	MNL1	CCTC
7507	0.632	нрн1	GGTGA
7516	0.633	MNL1	GAGG
7529	0.634	ALU1	AGCT
7547	0.636	MR011	GAAGA
- 3 4 1	0.000	THE P	OUU AU

. FIG. 8(i)

7580	0.638	HINF1	GATTC
75 9 9	0.640	HINC11	GTCAAC
7619	0.642	MB011	GAAGA
7634	0.643	RSA1	GTAC
7637	0.643	DDE1	CTCAG
7659	0.645	ALU1	AGCT
7681	0.647	HPH1	GGTGA
7705	0.649	DDE1	CTAAG
7745	0.652	HINF1	GACTC
7753	0.653	MNL1	GAGG
7802	0.657	HINF1	GAGTC
7809	0.658	MB01	GATC
79 4 G	0.669	BSTN1	CCTGG
7940	0.669	SCRF1	CCTGG
7963	0.671	MNL1	CCTC
7989	0.673	ALU1	AGCT
8002	0.674	HINF1	GACTC
8013	0.675	HGIA1	GTGCTC
8021	0.675	ALU1	4G C T
8031	0.676	MNL1	GA G G
8035	0.677	ODE1	CTGAG
8037	0.677	MNL1	GAGG
8046	0.678	HINF1	GAATC
8049	0.678	HPH1	TCACC
8053	0.678	90 £1	CTGAG
8058	0.679	BSTN1	CCTGG
8058	0.679	SCRF.1	CCTGG
8067	0.679	TAQ1	TCGA
8069	0.680	MNL1	GAGG
.8072	0.680	BBV1	GCTGC
8072	0.680	FNU4H1	GCTGC
3073	0.680	PST1	CTGCAG
8086	0.681	BCL1	TGATCA
8087	0.681	MB01	GATC
8109	0.683	DDE1	CTGAG
8160	0.687	HAE111	GGCC
81 6 C	0.687	SAU961	GGCCC
8190	0.690	HPA11	· ccee

			FIG. 8(j)
8190 8190 8233 8233 8233 8233 8233 8233 8233 823	0.690 0.690 0.692 0.693 0.693 0.693 0.693 0.693 0.694 0.694 0.697 0.705 0.705 0.705 0.705 0.705 0.707 0.706 0.707	NCI1 SCRF1 RSA1 AVA1 NCI1 SCRA1 HPA11 NCI1 SCRF1 HGIA1 PST1 NDE1 PVU11 ALU1 DDE1 HINF1 MB011 MNL1 HAE111 SAL1	CCGGG CCGGG CCCGGG CCCGGG CCCGGG CCGGGG CCGGG CCGGG CCGGG CCGGG CCGGG CCGGG CCGGG CCGGG CCGGG CCGGC CCGGC CCGCC CCGCC CCGCC CCGGC CCGGC CCGGC CCGGC CCGGC CCGGC CCGGC CCGGC CCGGC CCGC CCGGC CCGGC CCGGC CCGGC CCGC CCCC
8428 8428 8440 84440 84447 84477 8492 9266 9266 9275 9350	0.710 0.710 0.711 0.711 0.711 0.711 0.714 0.715 0.728 0.777 0.780 0.780 0.783 0.786 0.787	BSTN1 SCRF1 BSTN1 SCRF1 FOK1 AVA11 SAU961 BSTE11 NDE1 PST1 MBO1 MNL1 MNL1 MNL1 FOK1 MBO11	CCAGG CCAGG CCAGG CCAGG GGATG GGTCC GGTCC GGTAACC CATATG CTGCAG GATC CCTC GAGG CATCC TCTTC

FIG. 8(k)

9353	0.788	MB011	TCTTC
9394	0.791	BSTN1	CCTGG
93.9.4	0.791	SCRF1	CCTGG
9400	0.792	MNL1	CCTC
95 5 C	0.804	MB01	GATC
9571	0.806	MB011	' TCTTC
9600	0.808	HGIA1	GTGCTC
9603	0.309	DDE1	CTCAG
-> 9614	0.810	SAMH1	GGATCC
9615	0.810	MB01	GATC
9626	0.811	BSTN1	CCAGG
9626	0.811	SCRF1	CCAGG
9641	0.812	ALU1	AGCT
9643	0.812	DDE1	CTAAG
9647	0.812	MB011	GAAGA
9676	0.815	HINF1	GATTC
9685	0.816	MB01	GATC
. 9694	0.816	FOK1	CATCC
9697	0.817	BSTN1	CCTGG
9697	0.317	SCRF1	CCTGG
9723	0.819	MB011	TCTTC
9747	0.821	NCI1	cccee
9747	0.821	SCRF1	CCCGG
9748	0.821	HPA11	CCGG
9762	0.822	HAE11	GGCGCC
9762	0.822	NAR1	GGCGCC
9763	0.822	HHA1	GCGC
9777	0.823	ALU1	AGCT
C- 9787	0.824	MNL1	GAGG
9791	0.825	DDE1	CTGAG
9793	0.825	MNL1	GAGG
9814	0.826	HPA11	ccee
9814	0.826	NCI1	ccess
9814	0.826	SCRF1	cccee
9819	0.827	MNL1	GAGG
9826	0.828	ALU1	AGCT
.9843	0.829	MBO1	GATC
9864	0.831	BSTN1	CCTGG
9864	0.831	SCRF1	CCTGG
9881	0.832	HINF1	GACTC
10246	0.863	HINF1	GATTC
10279	0.866	ALU1	AGCT
10281	0.866	ODE1	CTGAG
10284	0.866	ALU1	AGCT
10310	0 868	77H1111 '	· GACCCTGTC

FIG. 8(L)

10336 10347 10351 10463 10477 10478 10478 10512 10536 10545 10545 10568 10568 10568 10656 10656 10656 10656 10673 10775 10776 10776 10777	0.870 0.871 0.872 0.883 0.881 0.882 0.883 0.885 0.885 0.885 0.885 0.885 0.885 0.890 0.890 0.890 0.897 0.897 0.901 0.905 0.906 0.908	MNL1 FOK1 HINL1 FOK1 MNL1 FOK1 FOK1 FOK1 FOK1 FOK1 FOK1 FOK1 FOK	CCTC CCTC CCATCC GAATC GGATC GGGCT GGGCT GAGG GATCAGG GCAAGC GCAAGC GCAGCT GCACT GC
10751	0.905	BCL1	TGATCA
10752	0.905	MB0 1	GATC
10869	0.915	ALU1	AGCT
10899	0.918	MB011	GAAGA
10925	0.920	HPH1	GGTGA
10950	0.922	HINF1	GATTC
10958	0.923	MNL1	CCTC
11015	0.928	BBV1	GCAGC

FIG.	8(1	n)
------	-----	----

11015 11061 11073 11095 11135 11135 11135 11137 11138 11145 11170 11171 11181 11256 11268 11268 11278 11278 11300	0.928 0.932 0.933 0.934 0.938 0.938 0.938 0.938 0.938 0.939 0.940 0.941 0.941 0.942 0.948 0.948 0.949 0.949 0.949 0.949 0.949 0.952	FNU4H1 HINC11 ALU1 FNU4H1 HPH1 BSTN1 SCRF1 BAL1 HAE111 MB01 DDE1 BAMH1 MB01 ALU1 BSTN1 SCRF1 HPH1 MNL1 DDE1 ALU1 BSTN1 SCRF1 BBV1	GCAGC GTTGAC AGCT GCGGC CCTGG CCTGG TGGCC GATC GAT
11300 -1303 11314 11315 11324 11330 11330 11357 11367 11367 11367 11428 11429 11447	0.952 0.952 0.953 0.953 0.954 0.954 0.956 0.956 0.956 0.956 0.957 0.958 0.962 0.963	FNU4H1 FNU4H1 NRU1 FNUD11 ALU1 BSTN1 SCRF1 HPA11 HAE11 HAA1 FOK1 MNL1 FNUD11 HHA1 HAA1 HAA1 HAA1 HAA1 HAA1	GCAGC GCCGC TCGCGA CGCG AGCT CCAGG CCAGG GGCGCT GCGC CATCC CCTC CGCG GCGC

FIG. 8(n)

11466	0.966	HAE111	J J J J J
11478	0.967	MNL1	GAGG
11481	0.967	RSA1	GTAC
11494	0.968	MNL1	CCTC
11497	0.768	BSTN1	CCAGG
11497	0.968	SCRF1	CCAGG
1150C	0.768	HAE111	GGCC
11500	0.968	SAU961	GGCCC
11504	0.969	FNUD11	CGCG
11505	0.969	HHA1	GCGC
11506	0.969	FNUD11	CGCG
11515	0.970	DDE1	CTCAG
11519	0.970	HGIA1	GAGCTC
11519	0.970	SAC1	GAGCTC
11520	0.970	ALU1	AGCT
11533	0.971	AVA1	CTCGGG
11557	0.973	MB011	GAAGA
11560	0.974	XMN1	GAAATACTTC
11581	0.975	MNL1	GAGG
11586	0.976	ALU1	AGCT
11591	0.976	MNL1	GAGG
11631	0.980	90E1	CTTAG
11648	0.981	XBA1	TCTAGA
11652	0.981	MNL1	GAGG
11701	0.985	MB0 11	GAAGA
11765	0.991	ALU1	AGCT
11778	0.992	ALU1	AGCT
	0.996	HIND111	AAGCTT
11829	0.996	ALU1	AGCT
11845	0.998	BAMH1	GGATCC
11846	0.998	MB01	GATC
11868	0.999	PVU11	CAGCTG
11869	1.000	ALU1	AGCT
	. 9= =		

CTIFECAGCTTGTTTGAATGCTAATCGTGGAGGCTCTAATGAAAAATGGATTGTAACTGCTGCCCAACTGTTTGAAACTGGTGTTAAAATTACAGTTGTCG

TO COUNTY A A COUNTY A COUNTY A COUNTY A COUNTY A COUNTY A A A COUNTY A H D I A, L L CATGACATTGCCTTC 950 960 w TSAACATGATCATGGCAGAATCACCATCTGCCTTTTAGGATATCTACTCAGTGCTGAATGTACAGTTTTTCTTGATCATGAAAACGCCAACA

2 C 30 40 50 60 110 110 110 F F 7776 260
PHNYNAAINKYN
FCCTCACCACAACTACAACCACATGCAGCTATTAATAAGTACAACC CAGLICAACATATIGAGGAGACAGAACATACAAAAGGAAATGTGAATTATTI L) 7 850 850 870 830 890 900 L Y V N S TGEACTATGTAAATTEN E10 H × 4 3 U TTTGCTAGCAGAITG 1 2 P

FIG. 9(a)

31/35
ဖစ္

(q)6

FIG.

FIG. 9(c)

AAACTEGTETTCTEGTTCAAA 2770

			BamHI	PvuII	<u>Hind</u> III	
Oligo	NЗ	51	GATC	CCAGCTGA	3'	
Oligo	N4		3'	GTCGACTTC	GA	51

Fig. 10

Eco RI

10 20 1 30 1 40 50

5' GAA TTCTCATGTT TGACAGCTTA TCATCGATAA GCTTCAGCTG GATCCTCTAC

60

GCCGGACGCA 3'

Fig.11

SPECIFICATION Genetic engineering

BACKGROUND OF THE INVENTION

1. Field of the invention

This invention is in the field of genetic engineering relating to factor IX DNA.

2. Description of prior art

Factor IX (Christmas factor or antihaemophilic factor B) is the zymogen of a serine protease

10 which is required for blood coagulation via the intrinsic pathway of clotting (Jackson & Nemerson, Ann.Rev.Biochem. 49, 765—811, 1980). This factor is synthesised in the liver and requires vitamin K for its biosynthesis (Di Scipio & Davie, Biochem. 18, 899—904, 1979).

Human factor IX has been purified and characterised, but details of the amino acid sequence are fragmentary. It is a single-chain glycoprotein, with a molecular weight of

approximately 60,000 (Suomela, Eur. J. Biochem. 71, 145—154, 1976). Like other vitamin K-dependent plasma proteins, human factor IX contains in the amino-terminal region approximately 12 gamma-carboxyglutamic acid
 residues (Di Scipio & Davie, Biochem. 18, 899—904, 1979)

During the clotting process, and in the presence of Ca⁺⁺ ions, factor IX is acted upon by activated factor IX (IXa) by the cleavage of two internal peptide bonds, releasing an activation

glycopeptide of 10,000 daltons (Di Scipio et al., J.Clin. Invest. 61, 1528—1538, 1978). The activated factor IX (IXa) is composed of two chains held together by at least one disulphide

35 bond. Factor IXa then participates in the next step in the coagulation cascade by acting on factor X in 100 the presence of activated factor VIII, Ca⁺⁺ ions, and phospholipids (Lindquist *et al.*, J.Biol.Chem. 253, 1902—1909, 1978).

Individuals deficient in factor IX (Christmas disease or haemophilia B) show bleeding symptoms which persist throughout life. Bleeding may occur spontaneously or following injury. This may take place virtually anywhere. Bleeding into

45 the joints is common, and after repeated haemorrhages, may result in permanent and crippling deformities. The condition is a sex-linked disorder affecting males. Its frequency in the population is approximately 1 in 30,000 males.
 The current method of diagnosing Christmas

The current method of diagnosing Christmas disease involves measurement of the titre of factor IX in plasma by a combination of a clotting assay and in immunochemical assay. Treatment of haemorrhage in the disease consists of factor IX replacement by means of intravenous transfusion of human plasma protein concentrates enriched in factor IX. The enrichment of plasma in factor IX is a time-consuming process.

Summary of the invention

After considerable research and experiment, important progress has now been made towards producing artificial human factor IX by

recombinant DNA technology (genetic engineering). Thus, the cloning of DNA sequences which are substantially the same as extensive sequences occurring in the human factor IX genome has been achieved.

The invention arises from the finding that an extensive DNA sequence of the human factor IX 70 genome can be obtained by a clever and laborious combination of chemical synthesis and artificial biosynthesis, starting from elementary nucleotide or dinucleotide "building blocks", as will be described below.

A major feature of the invention comprises 75 recombinant DNA which comprises a cloning vehicle DNA sequence and a sequence foreign thereto (i.e. foreign to the vehicle) which is substantially the same as a sequence occurring in the human factor IX genome. A 11873 nucleotide long part of such a foreign sequence has been identified and a very large part of it has been sequenced by the Maxam-Gilbert sequencing method. A 129 nucleotide length of this sequence is more than sufficient to characterise it unambiguously as coding for a specific protein and a particular such length is regarded herein as useful to characterise the whole sequence inserted in the cloning vehicle as one occurring in 90 the human factor IX genome. Other cloned sequences can then be verified as belonging to the human factor IX genome by determining that part thereof is identical to a region of the firstmentioned sequence, i.e. the sequences have a 95 common identity in an overlapping region.

A further feature of the invention therefore comprises recombinant DNA which comprises a cloning vehicle or vector DNA sequence and a DNA sequence foreign thereto which consists of or includes substantially the following sequence of 129 nucleotides (which should be read in rows of 30 across the page):—

ATGTAACATG TAACATTAAG AATGGCAGAT
GCGAGCAGTT TTGTAAAAAT AGTGCTGATA

105 ACAAGGTGGT TTGCTCCTGT ACTGAGGGAT
ATCGACTTGC AGAAAACCAG AAGTCCTGTG
AACCAGCAG (1)

The invention includes particularly recombinant DNA which comprises a cloning vehicle DNA

110 sequence and a sequence foreign to the cloning vehicle, wherein the foreign sequence includes substantially the whole of an exon sequence of the human factor IX genome. The 129-nucleotide sequence described above corresponds

115 substantially to such an exon sequence. Another such exon sequence which independently characterises the human factor IX DNA is the 203-nucleotide sequence substantially as follows (again reading in rows of 30 across the page):—

TGCCATTTCC ATGTGGAAGA GTTTCTGTTT
CACAAACTTC TAAGCTCACC CGTGCTGAGG
CTGTTTTTCC TGATGTGGAC TATGTAAATT
CTACTGAAGC TGAAACCATT TTGGATAACA
5 TCACTCAAAG CACCCAATCA TTTAATGACT
TCACTCGGGT TGTTGGTGGA GAAGATGCCA
AACCAGGTCA ATTCCCTTGG CAG

The intron sequences of the human factor IX genome are excised during the transcription

10 process by which mRNA is made in human cells. Only exon sequences are translated into protein. DNA coding for factor IX has been prepared from human mRNA. This cDNA has been partly sequenced and found to contain the same 129-and 203-nucleotide sequences set out above.

The invention also includes recombinant DNA which comprises a cloning vehicle sequence and a DNA sequence foreign to the cloning vehicle, wherein the foreign sequence comprises a DNA sequence which is complementary to human factor IX mRNA. Such a recombinant cDNA can be isolated from a library of recombinant cDNA clones derived from human liver mRNA by using an exon of the genomic human factor IX DNA (or part thereof) as a probe to screen this library and thence isolating the resulting clones.

The invention also includes recombinant DNA in which the foreign sequence is any fragment of human factor IX DNA, particularly of length at least 50 and preferably at least 75 nucleotides or base-pairs. It includes such recombinant DNA whether or not part of the 129 or 203-base-pair sequence defined above. It includes especially part or all of the exon sequences of human factor IX genomic DNA. Various short lengths up to about 11 kilobases (11,000 nucleotides or base-pairs) long have been prepared by use of various restriction endonucleases. Methods of isolating recombinant DNA from clones are well known and some are described hereinafter. The DNA of the invention can be single or double stranded form.

The recombinant human factor IX DNA of this invention is useful as a tool of recombinant DNA technology. Thus it is useful as the first stage in the production of artificial human factor IX and in the preparation of probes for diagnostic purposes.

In the production of the artificial human factor IX it is contemplated that appropriate cDNA or genomic clones will be introduced into a suitable expression vector in either mammalian or bacterial systems. For mammalian studies, the gene might be too long to be conveniently retained in one clone. Therefore a suitable artificial "minigene" will be designed and constructed from suitable parts of the cDNA and genomic clones. The minigene will be under the control of its own promoter or instead will be replaced by an artificial one, perhaps the mouse metallothioneine I

promoter. The resultant 'minigene' will then be introduced into mammalian tissue culture cells e.g. a hepatoma cell line, and selection for clones of cells synthesising maximum amounts of biologically active factor IX will be carried out. Alternatively "genetic farming" could be employed as has been demonstrated for mouse growth hormone (Palmiter et al., Nature 300, 611—615.

as has been demonstrated for mouse growth hormone (Palmiter et al, Nature 300, 611—615, 1982). The minigene would be micro-injected into the pronucleus of fertilised eggs, followed by in vivo cloning and selection for progeny producing

70 the largest quantity of human factor IX in blood. Alternatively, it is contemplated that the cDNA clone or selected parts of it will be linked to a suitable strong bacterial promotor, e.g. a Lac or Trp promotor or the lamdba P_R or P_L, and a factor
 75 IX polypeptide obtained therefrom.

The natural factor IX polypeptide is synthesised as a precursor containing both a signal and propeptide region. They are both normally cleaved off in the production of the definitive length

80 protein. Even this product is merely a precursor. It is biologically inactive and must be gammacarboxylated at 12 specific N-terminal glutamic acid residues in the so called 'GLA' domain by the action of a specific vitamin K-dependent

85 carboxylase. In addition, two carbohydrate molecules are added to the connecting peptide region of the molecule, but is remains unknown whether they are required for activity. The substrate for the carboxylase is unknown and

90 could be the precursor factor IX polypeptide or alternatively the definitive length protein. Therefore various relevant polypeptides both with and without the precursor domains will be "constructed" using genetic engineering methods

95 in bacterial hosts. They will then be tested as substrates for the conversion of inactive to biologically active factor IV in vitro by the action of partially purified preparations of the carboxylase enzyme which can be isolated from liver
 100 microsomes or other suitable sources.

For diagnostic purposes, the recombinant human genomic factor IX DNA or recombinant human mRNA-derived factor IX DNA has a wide variety of uses. It can be cleaved by enzymes or combinations of two or more enzymes into shorter fragments of DNA which can be recombined into the cloning vehicle, producing "sub-clones". These sub-clones can themselves be cleaved by restriction enzymes to DNA molecules suitable for 110 preparing probes. A probe DNA (by definition) is

110 preparing probes. A probe DNA (by definition) is labelled in some way, conveniently radiolabelled, and can be used to examine in detail mutations in the human DNA which ordinarily would produce factor IX. Several different probes have been

115 produced for examining several different regions of the genome where mutation was suspected to have occurred in patients. Failure to obtain hybridisation from such a probe indicates that the sequence of the probe differs in the patient's DNA.

120 In particular it has been shown that Christmas disease can be detected or confirmed by such methodology. Useful probes can contain intron and/or exon regions of the genomic DNA or can contain cDNA derived from the mRNA.

The invention includes particularly probe DNA, i.e. which is labelled, and of a length suitable for the probing use envisaged. It can be singlestranded or double-stranded over at least the human factor IX DNA probing sequences thereof and such sequences will usually have a length of at least 15 nucleotides, preferably at least 19-30 nucleotides in order to have a reasonable 10 probability of being unique They will not usually be larger than 5 kb and rarely longer than 10 kb.

The invention accordingly includes a DNA molecule, comprising part of the human factor IX DNA sequence, whether or not labelled, whether 15 intron or exon or partly both. It also includes human cDNA corresponding to part of all of human factor IX mRNA. It includes particularly a solution of any DNA of the invention, which is a form in which it is conveniently obtainable by electroelution from a gel.

The invention includes, of course, a host transformed with any of the recombinant DNA of the invention. The host can be a bacterium, for example an appropriate strain of E.coli, chosen 25 according to the nature of the cloning vehicle employed. Useful hosts may include strains of Pseudomonas, Bacillus subtilis and Bacillus stearothermophilus, other Bacilli, yeasts and other fungi and mammalian (including human) cells.

One process practised in connection with this invention for preparing a host transformed with the recombinant DNA of the invention is based on

the following steps:-

30

(1) synthesising an oligodeoxynucleotide 35 having a nucleotide sequence comprising that occurring in bovine factor IX messenger RNA coding for amino acids 70-75 or 348-352 of bovine factor IX, and labelling the oligodeoxynucleotide to form a probe;

(2) preparing complementary DNA to a mixture 40

of bovine mRNAs;

(3) inserting the complementary DNA in a cloning vector to form a mixture of recombinant bovine cDNAs;

(4) transforming a host with said mixture of 45 recombinant bovine cDNAs to form a library of clones and multiplying said clones;

(5) probing the clones with the synthetic oligodeoxynucleotide probe obtained in step 1 and isolating the resultant recombinant bovine factor IX cDNA-containing clone;

(6) digesting the recombinant bovine factor IX cDNA from said clone with one or more enzymes to produce a bovine factor IX cDNA molecule comprising a shorter sequence of bovine factor IX DNA, but preferably at least 50 base-pairs long;

(7) probing a library of recombinant human genomic DNA in a transformed host with the shorter sequence bovine factor IX cDNA molecule, to hybridise the human genomic DNA to the said recombinant bovine factor IX DNA and isolating the resultant recombinant DNA-transformed host.

Brief description of the drawings

Figure 1 shows the structure of a published amino-acid sequence of bovine factor IX polypeptide, the deduced sequence of the mRNA from which it would be translated and the structures of oligonucleotides (oligo-N1 and N2) 70 synthesised in the course of this invention;

Figures 2 and 3 show the chemical formulae of "building blocks" used to synthesise the oligonucleotides referred to in Figures 1 and 11;

Figure 4 is an elevational view, partly sectioned, 75 showing an apparatus for synthesising oligonucleotides:

Figure 5 shows the sequence of part of the bovine factor IX cDNA obtained in this invention;

Figure 6 is a map showing the organisation of 80 an approximately 27 kb length of human factor IX genomic DNA and is divided into five portions, showing:-

(a) the exon regions;

(b) the 11,873- nucleotide length sequenced;

(c) cDNA molecules obtained by restriction with 85 various endonucleases, sub-cloned and subsequently used as probes;

(d) DNA molecules obtained by restriction with various endonucleases; and

(e) three regions of human factor IX genomic 90 DNA derived from three clones in lambda phage vector.

Figure 7 shows the sequence of the DNA of Figure 6(b) and in parts the encoded protein;

Figure 8 shows a restriction enzyme chart of the sequence shown in Figure 7;

Figure 9 shows part of the sequence of the human factor IX cDNA and its encoded protein;

Figure 10 shows the structure of a pair of 100 complementary oligonucleotides (oligo N3 and N4) synthesised in the course of this invention;

Figure 11 shows part of the DNA sequence of the vector pAT153/Pvull/8 of this invention, in the region where it differs from pAT153;

Figure 12 is a diagram of plasmid pHIX17 of 105 the invention showing the origin of the 1.4 kb fragment used for probing and initial sequencing; and

Figure 13 shows the position of the major 110 radioactive bands on probing a "Southern blot" of normal human DNA, cut by the restriction enzymes EcoRI(E), HindIII(H), Bg/II(B) and BcII(Bc), with a sub-clone of the recombinant human factor IX DNA of this invention.

115 DESCRIPTION OF PREFERRED EMBODIMENTS 1. General description

A recombinant DNA of the invention can be extracted by means of probes from a library of cloned human genomic DNA. This is a known 120 recombinant library and the invention does not, of course, extend to human genomic factor IX DNA when present in such a library. The probes used were of bovine factor IX cDNA (DNA complementary to bovine mRNA), which were

prepared by an elaborate process involving firstly the preparation of recombinant bovine cDNA from a bovine mRNA starting material, secondly the chemical syntheses of oligonucleotides, thirdly their use to probe the recombinant bovine cDNA, in order to extract bovine factor IX cDNA and fourthly the preparation of suitable probes of shorter length from the recombinant bovine factor IX cDNA. The first probe tried appeared to contain an irrelevant sequence and the second probe tried not containing it, proved successful in enabling a single clone of the human genomic factor IX DNA to be isolated. This clone is designated lambda HIX-1. The steps involved are described in more detail in the sub-section "Examples" appearing hereinafter, and the second probe comprises the 247 base-pair DNA sequence of bovine factor IX cDNA indicated in Figure 5 of the drawings. The invention therefore provides specifically a recombinant DNA which comprises a cloning 20 vehicle sequence and a DNA sequence foreign to the cloning vehicle, which recombinant DNA hybridises to a 247 base-pair sequence of bovine factor IX cDNA indicated in Figure 5 (by the

arrows at each end thereof). 25 The cloning vehicle or vector employed in the invention can be any of those known in the genetic engineering art (but will be chosen to be compatible with the host). They include E.coli. plasmids, e.g. pBR322, pAT153 and modifications thereof, plasmids with wider host ranges, e.g. RP4 plasmids specific to other bacterial hosts, phages, especially lambda phage, and cosmids. A cosmid cloning vehicle containing a fragment of phage DNA including its cos (cohesive-end site) inserted in a plasmid. The resultant recombinant DNA is circular and has the capacity to accommodate very large fragments of additional foreign DNA.

Fragments of human factor IX genomic DNA 40 can be prepared by digesting the cloned DNA with various restriction enzymes. If desired, the fragments can be religated to a cloning vehicle to prepare further recombinant DNA and thereby obtain "sub-clones". In connection with this embodiment a new cloning vehicle has been prepared. This is a modified pAT153 plasmid prepared by ligating a BamHI and HindIII double digest of pAT153 to a pair of complementary double sticky-ended oligonucleotides having a DNA sequence providing a BamHI restriction residue at one end, a HindIII restriction residue at the other end and a Pvull restriction site in between.

While the invention is described herein with 55 reference to human genomic factor IX DNA in particular, the invention includes human factor IX cDNA (complementary to human factor IX mRNA) which contains substantially the same sequences. A library of human cDNA has been prepared and probed with human factor IX genomic DNA to isolate human factor IX cDNA from the library. For this purpose the probe DNA is conveniently of relatively short length and must include at least one exon sequence. The invention therefore includes a process of preparing a host transformed

60

with recombinant DNA, comprising cloning vector sequences and a sequence of nucleotides comprised in cDNA complementary to human factor IX mRNA, which process comprises probing a library of clones containing recombinant DNA complementary to human mRNA with a probe comprising a labelled DNA comprising a sequence complementary to part or all of an exon region of the human factor IX genome.

75 2. Examples

A. Bacteria used

E.coli K-12 strain MC 1061 (Casadaban & Cohen, J.Mol.Biol. 138, 179-207, 1980), E.coli K-12 strain HB 101 (Boyer & Roulland-Dussoix, J.Mol.Biol 41, 459—472, 1969) and E.coli K—12 strain K803 which is a known strain used by genetic engineers.

B. Source and purification of bovine factor IX, anti-85 bovine factor IX antibody, and bovine mRNA Highly purified bovine factor IX and rabbit antibovine factor IX antiserum were gifts from Dr. M. P. Esnouf. Analysis of the purified bovine factor IX on a denaturating polyacrylamide gel showed that it has a purity of greater than 99%. Specific antifactor IX immunoglobulins used for immunoprecipitation experiments were purified as described by Choo et al., Biochem.J. 199, 527-535, 1981, by passage of the crude antiserum through a Sepharose-4B column onto which pure bovine factor IX has been coupled.

Bovine mRNA was obtained from calf liver and isolated by the guanidine hydrochloride method (Chirgwin et al., Biochem. 18, 5294-5299, 100 1979). The mRNA preparation was passaged through an oligo dT-cellulose column (Caton and Robertson, Nucl. Acids Res. 7, 1445-1456, 1979) to isolate poly(A) + mRNA. Poly(A) + mRNA was translated in a rabbit 105

reticulocyte cell-free system in the presence of 35S-cysteine as described by Pelham and Jackson (Eur. J.Biochem. 67, 247-256, 1976). At the end of the translation reaction, factor IX polypeptide was precipitated by the addition of 110 specific anti-factor IX immunoglobulins. The immunoprecipitation procedure was as described by Choo *et al.*, Biochem.J. 181, 285—294, 1979.

throughly and resolved on a two-dimensional 115 SDS-polyacrylamide gel (Choo et al., Biochem.J. 181, 285--294, 1979), by isoelectric focussing in one dimension and electrophoresis in another. Some polypeptides of known molecular weight

The immunoprecipitated material was washed

were subjected to this procedure, to serve as 120 reference points. The immunoprecipitated material showed 4 pronounced spots, all in the 50,000 molecular weight region and with separated isoelectric points. These predominant spots of molecular weight about 50,000 represent a single

125 polypeptide chain plus a possible prepeptide signal sequence, a deduction compatible with published data (Katayama et al., Proc. Natl.Acad. Sci.USA 76, 4990—4994, 1979).

When the gel analysis was repeated for the

same material but immunoprecipitated in the presence of unlabelled pure bovine factor IX, the 4 spots appeared at reduced intensity, indicating that the translation product is specifically competed for by pure factor IX. Thirdly, immunoprecipitation was performed using a control rabbit antiserum, i.e. from a rabbit which had not been immunised with factor IX. None of the 4 spots appeared. These results therefore indicate that the translation product was a factor IX polypeptide.

The specific immunological/cell-free translation assay established above was used to monitor the enrichment of factor IX mRNA on sucrose gradient centrifugations. Total poly(A) + mRNA was resolved by two successive separations by sucrose gradient centrifugations. When individual fractions from the gradient were assayed by the above method, a fraction of size 20—22 Svedberg units (approx. 2.5 kilobases of RNA) region was found to be enriched (approx. ten-fold) for the bovine factor IX mRNA. This enriched fraction was used in the subsequent cloning experiments.

25 C. Synthesis of specific bovine factor IX deoxyoligonucleotide mixtures

Starting from a knowledge of the amino acid sequence of bovine factor IX (Katayama et al., Proc.Natl.Acad.Sci. USA 76, 4990—4994, 1979), the synthesis of two mixtures of oligonucleotide probes was designed. These probes consisted of DNA sequences coding for two different regions of the protein. The regions selected were those known to differ in sequence in the analogous serine proteases, prothrombin, Factor C and Factors VII and X and were those

corresponding to amino acids 70—75 and 348—352 respectively. The 70—75 region was particularly favourable in that the mixture of 40 oligonucleotides synthesised, i.e. oligo N2A and oligo N2B, contained all 16 possible sequences

oligo N2B, contained all 16 possible sequences that might occur in a 17 nucleotide long region of the mRNA corresponding to amino acids 70—75. The oligo N2A—N2B mixture is hereinafter called

45 "oligo N2" for brevity.

Figure 1 of the drawings shows the two selected regions of the known amino acid sequence of bovine factor IX, the corresponding mRNA and the oligonucleotides synthesised.

50 Since some of the amino acids are coded for by more than one nucleotide triplet, there are 4 ambiguities in the mRNA sequence shown for amino acids 70—75 and therefore 16 possible individual sequences.

55 The nucleotide mixtures oligo N1 and oligo N2 were synthesized using the solid phase phosphotriester method of Duckworth et al., Nucl.Acids Res. 9, 1691—1706, 1981, modified in two ways. Firstly, o-chlorophenyl rather than p-

60 chlorophenyl blocking groups were used for the phosphotriester grouping, and were incorporated in the mononucleotide and dinucleotide "building blocks". Figures 2 and 3 of the drawings show (a) dinucleotide and (b) mon

65 blocks". DMT = 4,4' - dimethoxytrityl and B = 6-

N-benzoyl-adenin-9-yl, 4-N-benzoylcytosin-1-yl, 2-N-isobutyrylguanin-9-yl or thymin-1-yl, depending on the nucleotide selected. Secondly, the "reaction cell" used for the successive addition of mono- or dinucleotide "building blocks" was ministuried as that the severiling statement.

blocks" was miniaturised so that the coupling step with the condensing agent 1-(mesitylene-2sulphonyl)-3-nitro-1,2,4-triazole (MSNT) was carried out in a volume of 0.5ml pyridine

5 containing 3.5 micromoles of polydimethylacrylamide resin, 17.5 micromoles of incoming dinucleotide (or 35 micromoles of mononucleotide) and 210 micromoles of MSNT.

Figure 4 of the drawings is an elevational view of the microreaction cell 1 and stopper 2 used for oligonucleotide synthesis, drawn 70% of actual size. The device comprises a glass-to-PTFE tubing joint 3 at the inlet end of the stopper 2. The stopper has an internal conduit 4 which at its lower end passes into a hollow tapered ground

glass male member 5 and thence into a sintered glass outlet 6 to the stopper. The cell 1 has a ground glass female member 7 complementary to the member 5 of the stopper, leading to reaction chamber 8, the lower end of which terminates in a sintered glass outlet 9. This communicates with glass tubing 10 and a 1 2 mm "Interflow" tap 11

glass tubing 10 and a 1.2mm. "Interflow" tap 11.
Further glass tubing 10, beyond the tap 11, leads to the outlet glass-to-PTFE tubing joint 12. Pairs of ears 13 on the stopper and cell enable them to be joined together by springs (not shown) in a

95 liquid-tight manner.

After completion of the synthesis and deprotection, fractionation was carried out by high pressure liquid chromatography (Duckworth *et al.*, see above) and the peak tubes corresponding to

the product of correct chain length were located by labelling of fractions at their 5'-hydroxyl ends using [gamma-32p]-ATP and T4 polynucleotide kinase, followed by 20% 7M urea polyacrylamide gel electrophoresis. The position on the gel of the

105 17- and 14- oligonucleotides was determined by separately labelling, by the method described above, 17- and 14- nucleotide long "marker" oligonucleotides and subjecting these to the same gel electrophoresis.

110

 D. Preparation of libraries of cDNA sequences for bovine mRNA

Two different approaches were used for the generation of cloned cDNA library:—

(i) Mbol library First strand cDNA was synthesised using the sucrose gradient-enriched poly(A)+bovine mRNA as template. The conditions used were as described by Huddleston & Brownlee, Nucl. Acids Res. 10, 1029—1030,

120 1981, except that 2 micrograms of oligo N—1, 20—30 micrograms of the mRNA, 10 microcuries [alpha-32P]-dATP (Amersham, 3000 Ci/mmole), and 50 U of reverse transcriptase were used in a 50 microlitre reaction. "dNTP" in Figure 1 denotes

125 the mixture of 4 deoxynucleoside triphosphates required for synthesis. Oligo N—1 hybridises to the corresponding region on the mRNA (refer to Figure 1) and thereby acts as a primer for the initiation of transcription. It was used in order to achieve a further enrichment for factor IX mRNA. At the end of the cDNA synthesis reaction, the cDNA was extracted with phenol and desalted on a Sephadex-G100 column, before it was treated with alkali (0.1 M NaOH, 1mM EDTA) for 30 min. at 60°C to remove the mRNA strand. Second strand DNA synthesis was then carried out exactly as published (Huddleston & Brownlee, Nucl. Acids Res. 10, 1029—1038, 1981).

The double-stranded DNA was next cleaved with the restriction enzyme *Mbol* and ligated to the plasmid vector pBR322 which had been cut with *Bam*HI and treated with calf intestinal alkaline phosphatase to minimise vector self-religation. Phosphatase treatment was carried out by incubating 5 micrograms of *Bam*HI-cut pBR 322 plasmid with 0.5 microgram calf intestinal phosphatase (Boehringer; in 10mM Tris — HCI buffer, pH 8.0) in a volume of 50 microlitres at 37°C for 10 minutes, see Huddleston & Brownlee *supra*.

The ligated DNA was used to transform E.coli strain MC 1061. For transformation E.coli MC 1061 was grown to early exponential phase as indicated by an absorbancy of 0.2 at 600 nm and made "competent" by treating the pelleted bacterial cells first with one half volume, followed by repelleting, and then with 1/50 volume of the 30 original growth medium of 100mM CaCl, 15% v/v glycerol and 10mM PIPES-NaOH, pH 6.6 at 0°C. Cells were immediately frozen in a dry ice/ethanol bath to -70°C. For transformation, 200 microlitre aliquots were mixed with 10 microlitres of the 35 recombinant DNA and incubated at 0°C for 10 minutes followed by 37°C for 5 minutes. 200 microlitres of L-broth (bactotryptone 10g., yeast extract 5g., sodium chloride 10g., made up to 1 litre with deionised water) were then added and 40 incubation continued for a further 30 minutes at 37°C. The solution was then plated on the appropriate antibiotic agar (see below). A library of about 7,000 ampicillin-resistant colonies was thus obtained. They were ampicillin-resistant because they contained the beta-lactamase gene of pBR 322. Of these, aprox. 85% were found to be

(ii) dC/dG tailed library In the preparation of this library, first strand cDNA was synthesised as 50 described for the above library except that oligo dT(12-18) was used as a primer to initiate cDNA synthesis. Following this, the cDNA was tailed with dCTP using terminal transferase and backcopied with the aid of oligo $dG_{\{12-18\}}$ primer and 55 reverse transcriptase to give double stranded DNA, exactly according to the method of Land et al., Nucl.Acids Res. 9, 2251-2266, 1981. After a further tailing with dCTP, this material was annealed by hybridisation to a dGTP-tailed pBR322 plasmid at the Pstl site. The hybrid DNA was used to transform E.coli strain MC 1061. A library of approximately 10,000 tetracyclineresistant colonies was obtained. Of these, approximately 80% were found to be sensitive to ampicillin, due to insertion of DNA into the

tetracycline-sensitive.

`ampicillin-resistant gene at the Pstl site.

E. Isolation of specific bovine factor IX clones (i) From Mbol library

The library of colonies, in an unordered fashion, 70 was transferred onto 13 Whatman 541 filter papers and amplified with chloramphenicol, to increase the number of copies of the plasmid in the colonies, as described by Gergen *et al.*, Nucl. Acids Res., 1, 2115—2136 (1979). The filters

75 were pre-hybridised at 65°C for 4h in 6 x NET (1 x NET = 0.15m NaCl, 1mM EDTA, 15mM Tris-HCl, pH 7.5), 5 x Denhardt's, 0.5% NP40 non-ionic surfactant, and 1 microgram/ml. yeast RNA as described by Wallace et al., Nucl. Acids Res. 9,

80 879—894 (1981). Hybridisation was carried out at 47°C for 20h in the same solution containing 3 × 10⁵cpm (0.7 nanogram/ml) of labelled oligo N—2 probe. Labelling was done by phosphorylation of the oligonucleotides at the 5'

hydroxyl end using [gamma-32P]-ATP and T4 phophokinase (Huddleston & Brownlee, Nucl.Acids Res. 10, 1029—1038, 1981). At the end of the hybridisation, filters were washed successively at 0—4°C (2h), 25°C (10 min),

90 37°C (10 min) and 47°C (10 min). After radioautography of the filters from this screening, one colony showed a positive signal above background. This colony was designated BIX—1 clone.

95 (ii) From dC/dG-tailed library

Screening of this library, in an ordered array fashion, using oligo N—2 probe as described above has resulted in the identification of a positive clone. This was designated BIX—2 clone

100 F. Sequence characterisation of bovine factor IX cDNA clones

Characterisation of BIX—1 clone by restriction endonuclease cleavage indicated that it contained a DNA insert of about 430 base-pairs (data

- 105 omitted, for brevity). Figure 5 shows part of the nucleotide sequence of the coding strand, determined by the Maxam-Gilbert method, extending over 304 nucleotides and provides direct evidence that it has the identity of a bovine
- 110 factor IX sequence. Thus, nearly all of this 304 nucleotide sequence (corresponding to the amino acid residues 52—139) agrees with the nucleotide sequence predicted from the known bovine factor IX amino acid sequence data
- 115 (Katayama et al., Proc.Natl.Acad.Sci. 76, 4990—4994, 1979). Over this region, there are no discrepancies between BIX—1 and these published data for factor IX, except at nucleotides 38—40 where the amino acid coded for is Asp
- 120 instead of Thr. This amino acid change was similarly observed in a second, independent cDNA clone (BIX—2; see below). The remainder of the 304-nucleotide sequence, i.e. that shown in brackets in Figure 5, does not agree with the

125 published bovine factor IX amino acid data of Katayama.

In Figure 5, the underlined portion denotes the sequence corresponding to the oligo N—2 probe

15

sequence, the asterisk denotes a nonsense codon, the brackets enclose a sequence which does not correspond to Katayama's amino acid data and the arrows indicate Hinfl restriction sites. The Katayama numbering system for amino acids is shown and this sequence is in the opposite orientation to the direction of transcription of the tetracycline-resistant gene of the plasmid.

By similar methods, BIX-2 clone was found to 10 have a DNA insert of 102 nucleotides and this spans the nucleotide positions 7-108 as shown in Figure 5. The nucleotide sequences for BIXand BIX-2 clones over this region (nucleotide 7—108) were identical.

G. Isolation of human factor IX gene (i) Initial clone — lambda HIX—1

A library of cloned human genomic DNA, namely a Haelll/Alul lambda phage Charon 4A library prepared by Lawn et al., Cell, 15, 1157—1174, 1978, was used. 106 phage recombinants from this library were screened using the in situ plaque hybridisation procedure as described by T. Maniatis et al., Cell, 15, 687,

1978. Pre-hybridisation and hybridisation were 25 carried out at 42°C in 50% formamide. After hybridisation, filters were washed at room temperature with 2 \times SSC (1 \times SSC = 0.15mM NaCl, 15mM sodium citrate, at pH 7.2) and 0.1% SDS, then at 65°C with 1 x SSC and 0.1% SDS. 30

Two DNA molecules, being restriction fragments from the factor IX cDNA cloned in BIX-1, were radiolabelled and used as probes in the hybridisation. The first fragment corresponds to nucleotide numbers -8 to 317 on the numbering system of Figure 5, and was isolated by Sau3Al digestion of BIX-1 plasmid DNA. The isolated DNA was labelled to high specific activity by incorporation of [alpha-32P] -dATP using a

nick translation (Rigby et al., J. Mol.Biol. 113, 237-251, 1977, modified, vide infra). Using this probe, 10 clones were isolated. These were plague-purified and re-hybridised with a 247nucleotide fragment from BIX—1 clone. This

fragment, derived from nucleotides 3-249 can be seen from Figure 5. It contains only sequences in agreement with the Katayama bovine factor IX amino acid sequence and was isolated by Hinfl digestion of BIX-1 plasmid DNA. Only a single

clone gave a positive hybridisation signal with this 247-nucleotide probe. This clone was further plaque-purified and the resulting clone was designated "lambda HIX-1".

(ii) Subsequent genomic clones

A sub-clone, pATIXcVII, of recombinant human 55 factor IX cDNA from human liver mRNA, and prepared as described in Section L below, was linearised by digestion with HindIII and BamHI. The resulting 2 kb cDNA molecule was purified by 1% agarose gel electrophoresis. After

electroelution, about 100 ng of this cDNA was nick-translated with [alpha 32p] dATP (see above) and used as a hybridisation probe to screen the Haelll/Alul lambda phage Charon 4A human genomic DNA library for further genomic clones,

using standard stringent hybridisation conditions. Two further human factor IX genomic clones, designated lambda HIX-2 and lambda HIX-3, were thus obtained.

70 H. Characterisation of human factor IX genomic clones

(i) Restriction map

The initial lambda HIX—1 clone was characterised by cleavage with various single and double digests with different restriction endonucleases and Southern blotting of fragments using the bovine factor IX cDNA probe (results omitted for brevity). The subsequently isolated lambda HIX-2 and 3 clones were characterised

in the same way except that the human cDNA probe, pATIXcVII (see Section L below) was used for the Southern blots. From these results it emerged that the sequences in the factor IX genome corresponding to lambda HIX-2 and 3

overlapped with lambda HIX-1 as shown in Figure 6(e). In Section (d) of this Figure 6 are summarised the results of the analysis using the restriction enzymes EcoRI (E), HindIII (H), Bg/II (B), BamHI (Ba) and Pvull (P), and this serves as a

restriction enzyme map.

(ii) Sequencing

Numerous sub-clones were isolated from a knowledge of the rectriction enzyme map as described in Section J(ii) below, the majority in a vector pAT153/Pvull/8. Examples of these subclones are shown in Figure 6(c) and a number were used and were of a convenient length for sequence analysis by the Maxam-Gilbert method (Maxam & Gilbert, Proc.Natl.Acad.Sci.USA 74, 100 56-564, 1980).

Initially sequencing was done on part of a 1.4 kb EcoRI restriction fragment from the sub-clone pHIX-17, see below and J(i). A 403-nucleotide (base-pair) length was sequenced, of which a 129-nucleotide length was identified as lying within an exon region. This is the 129-nucleotide sequence used above to define the factor IX DNA.

Subsequently, a region of 11873 bases was sequenced in the central portion of the gene [see Figure 6(b)]. Figure 7 shows the sequence of one strand of the DNA. The nucleotides are arbitrarily numbered from 1 to 11873 in the 5' to 3' direction. The original 403-nucleotide sequence runs from Figure 7 nucleotides Nos. 4372 to 4774 115 and is indicated by O-O'. The 129-nucleotide sequence lying within the 403 one, runs from Figure 7 nucleotides Nos. 4442 to 4570 and is indicated by J-J'. This corresponds exactly to the 'w'' exon.

120 In detail, the sequence of nucleotides Nos. 1-7830 contains two short exons (nucleotides 4442—4570 and 7140—7342 respectively) marked w and x in Figure 6(a), J-J' and J'-J" in Figures 7 and 9. These code for amino acids

125 85-127, and 128-195 respectively of the amino acid sequence predicted from the human factor IX cDNA clone (Figure 9). There are no differences in amino acid sequences predicted from the genomic and cDNA clones of the

invention in these two exon regions. The sequence of the gene between residues 7831—11873 is less complete, containing several gaps, but is still a useful characterisation of the gene as it contains two "Alul repeat" sequences, nucleotides 7960—8155 and 9671—9938. Alul sequences are found in many genes. The repetition is not exact but there is a typical degree of homology between them. This further characterisation provides a useful cross-check on the accuracy of the restriction enzyme map. This emerges more clearly from the restriction enzyme chart of Figure 8.

Figure 8 is a chart produced by a computer analysis of the sequence data of the 11873 nucleotide long sequence of Figure 7. Column 1 of Figure 8 gives the arbitrary nucleotide number allotted to the nucleotide of Figure 7. Column 2 apportions the nucleotide number as a fraction of 20 the whole sequence. Column 3 shows the restriction enzymes which will cut the DNA within various short sequences of nucleotides shown in Column 4. The short sequences of Column 4 begin with the nucleotide numbered in Column 1. With 25 the aid of this chart the positions of the restriction sites shown in Figure 6(d) and some of the sequences shown in Figure 6(c) can be determined very accurately. For example sequences II-IV are produced by restriction at 30 the following sites (denoted by the first nucleotide number at the 5' end of each site).

> II 3624 — 4769 III 6380 — 7378 IV 10589 — 11868

35 Particularly important sites are arrowed in Figure 8. Some of the relevant nucleotide numbers are shown in Figure 6(c), the number given being that of the nucleotide at the 5' end of each site.

Further sequence analysis of the sub-clones V, VI, VII and VIII shown in Figure 6(c) indicates that the factor IX gene is divided into at least 7 exon regions separated by at least 6 introns. The positions of the exons are shown in Figure 6(a) by the solid blocks labelled t, u, v, w, x, y and z. The "z" exon is much the longest and its 3'-end coincides with the 3'-end of the mRNA. The location of these exons relative to the cDNA sequence is discussed below (section L) and it is clear that the "t" exon shown in Figure 6(a) is not

clear that the "t" exon shown in Figure 6(a) is not
a marker for the 5'-end of the gene, as its
sequence fails to match that of the extreme 5'-end
of the cDNA clone (see below). This suggests that
the factor IX gene will be longer at its 5'-end than
the 27 kb region shown in Figure 6, and will
contain at least one further exon.

Additionally, pHIX—17 DNA was digested with *Eco*RI. The digested material was resolved on 0.8% agarose gel and a 1.4 kb fragment was isolated in solution by electroelution. It can be stored in the usual manner. This 1.4 kb long molecule was used for the initial sequencing. Only about 1.0 kb is inserted DNA, the remaining 0.4 kb being of pBR322. A 403 nucleotide length of the

inserted DNA was sequenced and is identified as 65 O-O' in Figure 7. The same 1.4 kb fragment was also labelled and used as a probe in Section M.

I. Construction of a vector pAT153/Pvull/8

A derivative of the plasmid pAT153 (Twig & Sherratt, Nature 283, 216—218, 1980) was
prepared for subcloning of Pvull fragments of factor IX genomic clones, and for ease of characterisation of the resultant subclones. Two partially complementary synthetic deoxyoligonucleotides, oligo N3, and, oligo N4, were synthesised by the solid phase

phosphotriester method described in Section C above. Each has "overhanging" BamH! and HindIII recognition sequences and an internal PvuII recognition sequence. Figure 10 shows the structures of oligo N3 and oligo N4. BamHI and HindIII cleave ds DNA to leave sticky or "overhanging" ends. For example HindIII cleaves

- --- AAGCTT --- TTCGAA
- between the adenine-carrying nucleotides of each strand leaving the sticky-ended complementary strands:—

— A — TTCGA

90 which are present in the oligo N3/N4 combination. pAT153 was digested with Hindill and BamHI and the 3393 nucleotide long linear fragment was separated from the 346 nucleotide shorter fragment by 0.7% agarose gel electrophoresis.

95 followed by electroelution of the appropriate bands visualised by ethidium bromide fluorescence under UV light. After treatment with calf intestinal phosphatase, as described in Section D(i), the BamHI-Hind III 3393-long

100 fragment was ligated to an equimolar mixture of oligo N3 and oligo N4 which themselves had been pretreated, as a mixture, with T4 polynucleotide kinase and ATP, to phosphorylate their respective 5'-terminal OH groups. After transforming

105 competent MC 1061 cells (see above) and plating on L-broth plates containing 20 micrograms/ml final concentration of ampicillin, 11 colonies were selected for further analysis. 1 ml plasmid preparation, see Holmes and Quigley, Analytical

110 Biochem. 114, 193—197 (1981), was isolated from the 11 colonies. The plasmid DNA was then analysed for its ability to be linearised by the restriction enzymes BamHI, HindIII and PvuII. Four clones were positive in this assay and one,

115 labelled pAT153/Pvull/8, was selected for sequence analysis by the Maxam-Gilbert method across the newly constructed section of the plasmid. This part of the sequence is shown in Figure 11 along the unique restriction sites. The

120 novel part of the plasmid sequence is underlined: the remainder is present in the parent plasmid pAT153. The vector allows blunt-end cloning (after treatment with phosphatase) into the

inserted Pvull site. The cloned DNA can be excised, assuming that it lacks appropriate internal restriction sites, with BamHI/HindIII, BamHI/Clal or BamHI/EcoRI double digests. The sites adjacent to the Pvull site are also convenient for end labelling with 32P for characterization of the ends of cloned DNA by the Maxam-Gilbert sequencing method.

J. Sub-cloning of human factor IX gene

The following subcloning experiments were 10 carried out as a first step towards sequencing of the factor IX gene, and to facilitate the isolation of a small DNA fragment to be used as a probe for the analysis of genomic DNA from haemophilia B patients (see sections M).

(i) Sub-cloning into pBR322 plasmid 15

An approximately 11 kilobase Bg/II fragment (see Figure 6) within the factor IX DNA insert in lambda HIX-1 clone was inserted into the BamHI site of pBR322. Transformation was carried out in

20 the E.coli strain, HB 101. The resulting "subclone" was designated pHIX—17 (Figure 12). (i) Sub-cloning into pAT153/Pvull/8 (a) Plasmid DNA from pHIX-17 was prepared and cleaved with Pvull. Five discrete fragments, all

25 derived from the DNA insert of pHIX-17, were isolated. The sizes of these fragments were approximately 2.3, 1.3, 1.2, 1.1 and 1.0 kilobases. These fragments were blunt-end ligated into the Pvull site of the pAT153/Pvull/8 vector and

30 transformed into E.coli HB 101. Five clones of recombinant DNA which carried the 2.3, 1.3, 1.2, 1.1 and 1.0 kb fragments were obtained and these were designated pATIXPvu-1, 2, 3, 4 and 5 respectively. Factor IX DNA from pATIXPvu-2 is 35 abbreviated as IV and pATIXPvu-5 as III in Figure

(b) Phage DNA from the lambda HIX-1 genomic clone was digested with EcoRI. Three different fragments (approximately 5, 2.3, 0.96, kb; see

40 Figure 6), all derived from the insert into the phage, were isolated and inserted in pAT153/Pvull/8 vector at the EcoRI site and cloned in E.coli HB 101 to form sub-clones. The three resulting clones for each of these fragments

45 were designated pATIXEco-1, 2 and 4 respectively which are shown in the restriction map of Figure 6(d). pATIXEco-1 was further digested with both EcoRI and Bg/II, and the "overhanging ends" of the restriction sites filled in with deoxynucleotide

50 triphosphates using the Klenow fragment of DNA polymerase I. After isolation of the resulting 1.1 kb fragment by agarose gel electrophoresis and electroelution, it was blunt-end ligated using T4 DNA ligase into the Pvull site of pAT153/Pvull and

55 allowed to transform E.coli MC 1061. The resultant sub-clone was designated pATIXBE and the factor IX DNA sequence thereof is abbreviated as II in Figure 6(c).

(c) Phage DNA from lambda HIX-2 was 60 digested with HindIII and EcoRI giving a 1.8 kb and a 2.6 kb fragment amongst others. These fragments were eluted separately, filled in as described in (b) above, cloned as above into the Pvull site of pAT153/Pvull/8 and allowed to

65 transform E.coli MC 1061. The resultant clones were designated pATIXHE-1, and the factor IX DNA sequence thereof is abbreviated as V in Figure 6(c), and pATIXEco-6 and the factor IX 70 DNA sequence thereof is abbreviated as VI in Figure 6(c).

(d) Phage DNA from lambda HIX-3 was digested with EcoRI and Hind III and the fragments of 2.3 kb and 2.7 kb were sub-cloned exactly as

75 described in (c) above. The resultant clones were designated pATIXEH-1, abbreviation VII in Figure 6(c), and pATIXHE-2, abbreviation VIII in Figure

K. Preparation of a library of cDNA clones from 80 human liver mRNA

Messenger RNA was extracted from a human liver and a 20-22 Svedberg unit enriched fraction of mRNA prepared exactly as described for bovine mRNA in Section B above, except that a

85 'translation assay' was not used. The first steps in the construction of the double-stranded DNA were carried out using the 'Stanford protocol' kindly supplied from Professor P Berg's department at Stanford University, USA. This itself is a

modification of Wickens, Buell & Schimke (J.Biol.Chem. 253, 2483-2495, 1978) and some further modifications, incorporated in the description given below were made in the present work.

95 For the first strand cDNA synthesis 6 micrograms of poly(A)+ 20-22S human mRNA was incubated with 5 microlitres of 10x buffer (0.5 M Tris-chloride, pH 8.5 at room temperature, 0.4 M KCl, 0.008M MgCl, and 4 mM

100 dithiothreitol), 20 microlitres of a 2.5 mM mixture of each of the four deoxynucleoside triphosphates, 0.5 microlitres of oligo dT₍₁₂₋₁₈₎, 1 microlitre (containing 0.5 microcurie) of [alpha-32P] -dATP, 2 microlitres of reverse transcriptase (14 units per

105 microlitre) and the volume made up to 50 microlitres with deionized water. After incubation for 1 hour at 42°C, the solution was boiled for 11/2 minutes and then rapidly cooled on ice. The second strand synthesis was carried out by adding

directly to the above solution 20 microlitres of 5x second strand buffer (250 mM Hepes/KOH pH 6.9. 250 mM KCl, 50mM MgCl₂), 4 microlitres of a 2.5 mM mixture of each of the four

deoxynucleoside triphosphates, 10 microlitres of 115 E.coli DNA polymerase I (6 units per microlitre) and making the volume of the solution up to 100 microlitres with deionized water. After incubation for 5 hours at 15°C, S₁ nuclease digestion was carried out by addition of 400 microlitres of S.

nuclease buffer (0.03 M sodium acetate pH 4.4, 0.25 M NaCl, 1 mM ZnSO₄) and 1 microlitre of S, nuclease (at 500 units per microlitre). After incubating for 30 minutes at 37°C, 10 microlitres of 0.5M EDTA (pH 8.0) was added. Double

125 stranded DNA was deproteinised by shaking with an equal volume of a phenol: chloroform (1:1) mixture, followed by ether extraction of the aqueous phase and precipitation of ds DNA by addition of 2 volumes of ethanol. After 16 hours at

à.

-20°C, ds DNA was recovered by centrifugation. DNA polymerase I "fill in" of S₁ ends was carried out by a further incubation of the sample dissolved in 25 microlitres of 50 mM tris-chloride, pH 7.5,
5 10 mM MgCl₂, 5 mM dithiothreitol and containing 0.02 mM dNTP and 6 units of DNA polymerase I. After incubating for 10 minutes at room temperature, 5 microlitres of EDTA (0.1 M at pH 7.4) and 3 microlitres of 5% sodium dodecyl

sulphate (SDS) were added.

The following part of the protocol differs from the 'Stanford protocol'. The sample was fractionated on a "mini"-Sephacryl S400 column run in a disposable 1 ml pipette in 0.2 M NaCl, 10 mM tris-chloride, pH 7.5 and 1 mM EDTA. The first 70% of the "break-through" peak of radioactivity was pooled (0.4 ml) and deproteinised by shaking with an equal volume of n-butanol:chloroform (1:4). To the aqueous phase was added 1 microgram of yeast RNA (BDH) as carrier followed by 2 volumes of ethanol. After 16 hours at --20°C double stranded DNA was recovered by centrifugation for blunt-end ligation

into calf intestinal phosphatase-treated Pvull-cut pAt153/Pvull/8, using T4 DNA ligase (see I and J(ii) above). After performing a trial experiment, it was found that when the bulk of the sample was incubated with 200 nanograms of vector DNA in a suitable buffer (1 mM ATP, 50 mM Tris-chloride, pH 7.4, 10 mM MgCl₂ and 12 mM dithiothreitol) and using 10 microlitres of T4 DNA ligase in a

and using 10 microlitres of T4 DNA ligase in a total volume of 0.2 ml, then on subsequent transformation of competent *E.coli* MC 1061 cells a total of 58,000 ampicillin-resistant colonies

35 were obtained. Up to 20% of these were estimated to derive from "background" populations.

estimated to derive from "background" nonrecombinants derived by religation of the vector
itself. This 20—22S cDNA library was amplified
by growing the *E.coli* for a further 6 hours at 37°C.

40 1 ml aliquots of this amplified library were stored at -20°C in L broth containing 15% glycerol, before screening for factor IX cDNA clones.

L. Isolation and sequence analysis of human factor IX cDNA clones

6000 colonies of the amplified 20—22S human cDNA library were plated on each of ten 15 cm agar plates and after growing overnight were blotted into Whatman 541 filter paper. After preparing filters for hybridisation as described in section E(i) above, the immobilised colonies were probed with a 1.1 kb molecule of [alpha-32P] -nick translated human factor IX genomic DNA isolated from the pATIXBE subclone (Section J, above). This linear 1.1 kb section of factor IX genomic cDNA was isolated from pATIXBE by cleavage with the rectricities are presented.

cDNA was isolated from pATIXBE by cleavage with the restriction enzymes BamHI and HindIII, followed by separation of the 1.1 kb section from the vector by 1.5% agarose gel electrophoresis. After electroelution, nick-translation was carried out as before and the material used in a hybridisation

reaction for 16 hours at 65°C in 3x SSC, 10x
Denhardts solution, 0.1% SDS and 50
micrograms/ml sonicated denatured *E.coli* DNA
and 100 micrograms/ml of sonicated denatured

65 herring sperm DNA. After hybridisation filters were washed at 65 °C successively in 3x SSC, 0.1% SDS (2 changes, half an hour each) and 2x SSC, 0.1% SDS (2 changes, half an hour each). After radioautography, 7 clones were selected as

70 positive, but on dilution followed by re-screening by hybridisation as above, only 5 proved to be positive. Plasmid DNA was isolated from each of these 5 clones and one, designated pATIXcVII, was selected for sequence analysis as it appeared

75 to be the longest of the 5 clones as judged by its electrophoretic mobility on 1% agarose gel electrophoresis. A second shorter clone, designated pATIXcVII was also selected for partial sequence analysis.

80 Sequencing was carried out by the Maxam-Gilbert method and a 2778 nucleotide long section of sequence is shown in Figure 9. Nucleotides 115—2002 were derived by sequencing clone pATIXcVII. (The actual extent of

this clone is greater as it extends in a 5' direction to nucleotide 17. The sequence between 17 and 111 is inverted with respect to the remainder of the sequence presumably due to a cloning artefact.) Nucleotides 1—130 were derived from

90 clone pATIXcVI which extends from nucleotides 1—1548 of Figure 9. The sequence from Nos. 2002—2778 was derived by isolating 4 additional clones designated pATIX108.1, pATIX108.2, pATIX108.3 and pATIXDB. The first

3 were derived from a mini-library (designated GGB108) of the cDNA clones constructed exactly as described in section K above except that sucrose density gradient centrifugation was used instead of chromatography on "Sephacry!"

100 S—400 to fractionate the double-stranded DNA according to size. A fraction of m.w. from 1 kb—5 kb was selected and an amplified library of 10,000 independent clones containing approximately 20% background non-recombinant clones was

obtained. Clone pATIXDB derived from another cDNA library (designated DB1) constructed as described in section K except that total poly A+ human liver mRNA was used as the starting material and sucrose density gradient

110 centrifugation was used to fractionate the DNA according to size as in the construction of the mini-library GGB108. The complexity of this library was 95,000 with an estimated background of non-recombinants of 50%. Clones pATIX108.1

115 and pATIX108.2 were selected from a group of 30 hybridization-positive clones isolated by Grunstein-Hogness screening of the mini library GGB108 using a ³²P-nick translated probe derived from a Sau3Al restriction enzyme fragment, itself

120 derived from nucleotides 1796—2002 of clone pATIXcVII. From pATIX108.1 the sequence of nucleotides 2009—2756 was determined (Figure 9). Following this the sequence of a part of pATIX108.2, specifically nucleotides

125 1950—2086, provided the overlap with pATIXcVII. The remaining 28 hybridization positive clones were screened by carrying out a triple enzymatic digestion with the restriction enzymes EcoRI, BamHI and HindIII and screening the product of the digest for an *EcoRI* restriction fragment extending in the 3' direction from the cut at position 2480. By this approach, clone pATIX108.3 was selected and sequenced from nucleotides 2642—2778. This clone was followed by three A nucleotides, which sequence was confirmed as a vestigial marker for the poly A tail, by the subsequent isolation of clone pATIXDB by a similar method. pATIXDB was sequenced from Nos. 2760—2778 and ended in 42 A nucleotides, thus marking the 3' end of the mRNA.

Figure 9 shows that the predicted amino acid sequence codes codes for a protein of 456 amino acids, but included in this are 41 residues of precursor amino acid sequence preceding the N-

terminal tyrosine residue (χ^*) of the definitive length factor IX protein. The precursor section of the protein shows a basic amino acid domain (amino acids -1 to -4) as well as the more usual hydrophobic signal peptide domain (amino acids -21 to -36).

The definitive factor IX protein consists of 415 amino acids with 12 potential gammacarboxyglutamic acid residues at amino acids 7, 8, 15, 17, 20, 21, 26, 27, 30, 33, 36 and 40. Two potential carbohydrate attachment sites occur at amino acid residues 157 and 167. The activation peptide encompasses residues 146—180, which are cut out in the activation of Factor IX (see

O Background of Invention) by the peptide cleavage of an R—A and R—V bond. This leaves a light chain spanning residues 1—145 and a heavy chain spanning residues 181—415.

The exact location of the boundaries between
exons (see Section H, above) and how they are
joined in the mRNA is marked in Figure 9. The
exons are marked t, u, v, w, x, y, z. It can be seen
that there is a rough agreement between the exon
domains and the protein regions. For example, the
exon for the signal peptide is distinct from that of
the GLA region. Also that of the activation peptide
is separated from the serine protease domain.

The 3' non-coding region of the mRNA is extensive, consisting of 1390 residues (including the UAAUGA double terminator 1389—1394 but excluding the poly A tail).

The factor IX cDNA is cleavable by the restriction enzyme *Hae*III to give a fragment from nucleotides 133—1440 i.e. a 1307 nucleotide

50 long region of DNA entirely encompassing the definitive factor IX protein sequence. The nucleotide sequence recognised by *Hae*III is GGCC. This fragment should be a suitable starting material for the expression of factor IX protein from suitable promoters in bacterial, yeast of mammalian cells. Another suitable fragment could be derived using the unique *Stul* site at residue 41 (corresponding to an early part of the hydrophobic signal peptide region) and linking it to a suitable promoter. The nucleotide sequence recognised by

Stul is AGGCCT

M. Southern Analysis of normal and patient Christmas disease DNA

(i) Normal

The standard (Southern) blotting procedure,
 Southern, J.Mol. Biol. 98, 503—517, 1975) was used. In a typical experiment, 10—20 micrograms of human genomic DNA (prepared from uncultured blood cells or cultured lymphocytic
 cells) were digested with one of a number of

70 cells) were digested with one of a number of restriction endonucleases and loaded onto a single gel slot. Following electrophoresis on 0.8% agarose gel and transfer onto nitrocellulose it was hybridised with a probe of ³²P- labelled probe II or

75 of 1.4 kb EcoRl fragment (see Section H). Labelling of the probe was carried out by nick translation using the method of Rigby et al., supra, modified as follows. About 100 nanograms of the probe was mixed with 40 microcuries of [alpha

80 ³²P] dATP (activity about 3,000 Curies/mMole, obtained from Amersham International PLC) in 0.05M Tris-HCl, pH 7.5, 0.01M MgCl₂, 0.001M dithiothreitol and dCTP, dGTP, dTTP each at a final concentration of 20 micromolar in a volume

85 of 29 microlitres. To this was added 1 microlitre of "solution X" made up of a mixture of 6 units of DNA polymerase I (E.coli), 0.6 nanograms of pancreatic DNase I (Worthington), 1 microgram of crystalline BSA in 10 microlitres of 50% v/v

90 glycerol containing 0.05M Tris-HCl, pH 7.5, 0.01M MgCl₂ and 0.001M dithiothreitol. The mixture was incubated for 2 hours at 15°C, after which high molecular weight DNA was purified by chromatography on G—100 "Sephadex". Figure

95 13 shows the major bands obtained with DNA from normal individuals probed with either probe II (Figure 6) or labelled 1.4 kb *Eco*RI fragment. With each of the 4 enzymes used, *Eco*RI, *Hind*III, *BgI*II and *BcI*I, a single major band of about 4.8, 5.2, 11 and 1.7 kb was obtained.

The fact that these restriction fragments had the same length as those observed in the restriction map of clone lambda HIX—1 confirmed that the conditions of Southern blotting were precise enough to detect the factor IX gene in total DNA preparations. This provides the basis for analysis of DNA from the blood of patients with Christmas disease.

(ii) Christmas patients with gene deletions

The value of the probes of the invention for the assay of alterations of genes of some patients suffering from Christmas disease has been demostrated as follows. Two patients with severe Christmas disease, who also developed antibodies to factor IX, were selected for study. The DNA from 50 mf of blood was digested separately with EcoRI, HindIII, Bg/II and Bc/I and Southern blots prepared for probing with 32P-nick translated probe II (Figure 6). No specific bands were observed with either patient under conditions where a control digest gave the pattern shown in Figure 13. Similarly no bands were observed in

the patients when probe I, III or IV (Figure 6) was substituted for probe II. In order to control for possible mischance of some experimental artefact giving the observed 'negative' signal, a factor IX gene probe (this time pATIXcVII - the cDNA probe) was mixed with an irrelevant autosomal gene probe which was specific for the human Al apolipoprotein (Shoulders and Baralle, Nucl. Acids Res. 10, 4873—4882, 1982). This experiment 10 showed that patient 1 had normal Al apolipoprotein gene, characterised by a 12 kb band in an EcoRI digest, and confirmed that he lacked the 5.5 kb band observed with pATIXcVII and characteristic of the normal factor IX gene. It 15 was concluded that both patients have a sequence of at least 18 kb deleted from their factor IX gene. Two other patients, designated patients 3 and 4, who had also developed antibodies to factor IX gave bands in the normal or abnormal positions on 20 Southern blots with some factor IX gene probes of the invention, but not with others. This suggested

that these patients had less extensive deletions of

the gene, possibly about 9 kb in length. These results suggest that diagnosis of 25 haemophiliacs and the heterozygous (carrier) females would be possible in families and this is now under examination. The altered pattern seen in the patient's DNA, whether absence of a band or the presence of a band in an abnormal position, 30 serves as a "disease marker", which can be used to assess for its presence or absence in a suspected carrier. This same test can be applied to antenatal diagnosis, if DNA from foetal cells are available from an amniocentesis. "Genetic 35 diagnosis" should considerably improve existing methods of antenatal diagnosis based on the assay of foetal factor IX protein levels, with the added advantage that the test can be carried out earlier in pregnancy. Genetic methods using 40 natural polymorphisms within the factor IX gene as allelic markers should also make 100% carrier deletion a reality, thereby improving the existing somewhat unsatisfactory methods where

45 CLAIMS

Recombinant DNA which comprises a cloning vehicle DNA sequence and a DNA sequence foreign to the cloning vehicle, the foreign sequence comprising substantially the following 129-nucleotide sequence (read in rows of 30 across the page):—

probability values are offered to patients.

ATGTAACATG TAACATTAAG AATGGCAGAT
GCGAGCAGTT TTGTAAAAAT AGTGCTGATA
ACAAGGTGGT TTGCTCCTGT ACTGAGGGAT
ACCAGCAG AGAAAACCAG AAGTCCTGTG
AACCAGCAG

2. Recombinant DNA which comprises a cloning vehicle DNA sequence and a DNA

sequence foreign to the cloning vehicle, the foreign sequence comprising substantially the following 203-nucleotide sequence (read in rows of 30 across the page):—

TGCCATTTCC ATGTGGAAGA GTTTCTGTTT
CACAAACTTC TAAGCTCACC CGTGCTGAGG
65 CTGTTTTTCC TGATGTGGAC TATGTAAATT
CTACTGAAGC TGAAACCATT TTGGATAACA
TCACTCAAAG CACCCAATCA TTTAATGACT
TCACTCGGGT TGTTGGTGGA GAAGATGCCA
AACCAGGTCA ATTCCCTTGG CAG

- 70 3: Recombinant DNA which comprises a cloning vehicle DNA sequence and a sequence foreign to the cloning vehicle, the foreign sequence being substantially the same as a sequence occurring in the human factor IX
 75 genome.
 - 4. Recombinant DNA according to Claim 3 wherein the human factor IX sequence has a length of at least 50 nucleotides.
- 5. Recombinant DNA according to Claim 3 wherein the length of the human factor IX sequence is from 75 to 27,000 nucleotides.
 - Recombinant DNA which comprises a cloning vehicle sequence and a DNA sequence foreign to the cloning vehicle, wherein the foreign sequence includes substantially the whole of an exon sequence of the human factor IX genome.
 - 7. Recombinant DNA which comprises a cloning vehicle sequence and a DNA sequence foreign to the cloning vehicle, wherein the foreign sequence comprises a DNA sequence which is complementary to the human factor IX mRNA.

90

- 8. Recombinant DNA according to Claim 3, 4 or 5, wherein the cloning vehicle is a modified pAT153 plasmid prepared by ligating a BamHI
 95 and HindIII double digest of pAT153 to a pair of complementary double sticky-ended oligonucleotides having a DNA sequence providing a BamHI restriction residue at one end, a HindIII restriction residue at the other end and a
 100 Pvull restriction site in between.
 - 9. Recombinant DNA according to Claim 8 wherein the pair of complementary oligonucleotides are of formula:—

5' GATCCAGCTGA 3'

3' GTCGACTTCGA 5

.

105 10. Recombinant DNA which comprises a cloning vehicle sequence and a DNA sequence

25

foreign thereto which hybridises to a 247 basepair sequence of bovine factor IX DNA complementary to messenger RNA and indicated in Figure 5 by the arrows at each end thereof.

11. A host transformed with at least one molecule per cell of recombinant DNA claimed in any preceding claim.

12. A host according to Claim 11 in the form of *E.coli*.

10 13. A host according to Claim 11 in the form of mammalian tissue cells.

14. A process of preparing a host transformed with recombinant DNA as claimed in any one of Claims 1 to 7, which process comprises:—

(1) synthesising an oligodeoxynucleotide probe having a nucleotide sequence comprising that occurring in bovine factor IX messenger RNA coding for amino acids 70—75 or 348—352 of bovine factor IX and labelling the

20 oligodeoxynucleotide to form a probe;
 (2) preparing complementary DNA to a mixture of bovine RNA;

(3) inserting the complementary DNA in a cloning vehicle to form a mixture of recombinant bovine cDNAs;

(4) transforming a host with said mixture of recombinant bovine cDNAs to form a library of clones and multiplying said clones;

(5) probing the clones with the synthetic
 oligodeoxynucleotide probe obtained in step 1 and isolating a resultant recombinant bovine factor IX cDNA-containing clone;

(6) digesting the recombinant bovine factor IX cDNA from said clone with one or more enzymes to produce a bovine factor IX cDNA molecular

to produce a bovine factor IX cDNA molecule containing a shorter sequence of bovine factor IX DNA; and

(7) probing a library of recombinant human genomic DNA in a transformed host with the

40 shorter sequence bovine factor IX cDNA molecule, to hybridise the human genomic DNA to the said recombinant bovine factor IX DNA and isolating the resultant recombinant DNA-transformed host.

15. A process of preparing a host transformed
with recombinant DNA as claimed in Claim 1, 2 or
7, which process comprises probing a library of clones containing recombinant DNA complementary to human mRNA with a probe comprising a labelled DNA comprising a sequence
complementary to part or all of an exon region of the human factor IX genome.

16. A DNA molecule comprising an at least 15 nucleotide long sequence of part or all of substantially the 129-nucleotide sequence set forth in Claim 1.

17. A DNA molecule comprising an at least 15 nucleotide long sequence of part or all of substantially the 203-nucleotide sequence set forth in Claim 2.

60 18 A DNA molecule comprising an at least 15 nucleotide long sequence of part only of the DNA sequence of the human factor IX genome.

19. A DNA molecule comprising a sequence of length at least 15 nucleotides substantially the same as a sequence complementary to part or all of that occurring in human factor IX mRNA.

20. A DNA molecule according to any one of Claims 16 to 19 of length at least 50 nucleotides.

21. An artificial DNA molecule comprising a sequence substantially the same as a sequence of length at least 15 nucleotides occurring in the human factor IX genome.

22. An artificial DNA molecule according to Claim 21 comprising substantially only exon sequences.

23. A labelled diagnostic probe comprising a DNA molecule having a single-stranded or double-stranded probe sequence of from 15 to 10,000 nucleotides long of DNA sequence defined in Claim 16, 17, 18 or 19 or its complementary sequence.

24. A probe according to Claim 23 having a probe sequence from 20 to 5,000 nucleotides long.

75

80

55