

深度学习-Vision Transformer (ViT)

黄海广 副教授

2023年06月

本章目录

- 01 背景知识
- 02 模型介绍
- 03 模型训练策略
- 04 模型的缺点与改进
- 05 模型的代码实现

01 背景知识

- 02 模型介绍
- 03 模型训练策略
- 04 模型的缺点与改进
- 05 模型的代码实现

图片分类的原理

2017年google的机器翻译团队在 NIPS上发表了Attention is all you need的文章, 开创性地提出了 在序列转录领域,完全抛弃 CNN和RNN, 只依赖Attention-注 意力结构的简单的网络架构, 名为Transformer; 论文实现的 任务是机器翻译。

为什么需要用transformer

Transformer原本是用来做 NLP的工作的, 所以ViT的 首要任务是将图转换成词 的结构,这里采取的方法 是如上图左下角所示,将 图片分割成小块,每个小 块就相当于句子里的一个 词。这里把每个小块称作 Patch, 而Patch Embedding 就是把每个Patch再经过一 个全连接网络压缩成一定 维度的向量。

Transformer Encoder

MLP

Norm

Multi-Head Attention

Norm

Embedded Patches

Lx

为什么需要用transformer

CNN (如ResNet) 是图像分类的最佳解决方案。

如果预训练的数据集足够大(至少一 亿张图像),则Vision Transformer (ViT) 将击败CNN (小幅度)

Vision Transformer (ViT) 实际上就是Transformer的encode网络。

- 01 背景知识
- 02 模型介绍
- 03 模型训练策略
- 04 模型的缺点与改进
- 05 模型的代码实现

模型思路

- 1.图片切分为patch
- 2.patch转化为embedding
- 3.位置embedding和tokensembedding相加
- 4.输入到Transformer模型
- 5.CLS输出做多分类任务

先将图片分成NxN的patch块(原始论文是16x16) patch块可以重叠(上图没有重叠,是9x9的patch块)

将patch打平,对每个 patch 进行线性映射,提取特征

提取特征

1.将位置编码信息加入提取的特征

位置编码信息对准确率的影响

结论:编码有用,但是怎么编码影响不大,干脆用简单的得了 2D(分别计算行和列的编码,然后求和)的效果还不如1D的每一层都加共享的 位置编码也没啥太大用

与 四 如 1 1 1

		最开始	每一层都加入 而且独立训练	但是参数共享
	Pos. Emb.	Default/Stem	Every Layer	Every Layer-Shared
没有位置编码	No Pos. Emb.	0.61382	N/A	N/A
一维位置编码	1-D Pos. Emb.	0.64206	0.63964	0.64292
二维位置编码	2-D Pos. Emb.	0.64001	0.64046	0.64022
相对位置编码	Rel. Pos. Emb.	0.64032	N/A	N/A

位置编码

将 3) 的 结 果 喂 入 标 准 Transformer 的 encoder 中作 者将类别作为一个可学习的 patch (z_0)输入模型,与图像 的patch+pos 信息作为multihead attention 的输入。 可以叠加多层encoder:

将encoder得到的结果 输入分类层 encoder 会输出多个上 下文向量,对于图像分 类,只需要 C_0 。

将encoder得到的结果 输入分类层 encoder 会输出多个上 下文向量,对于图像分 类,只需要 C_0 。

模型框架

最简洁的Vision Transformer模型 先将图片分成 16x16的patch块, 送入transformer encoder,第一个 cls token的输出送 入mlp head得到 预测结果。

来自输入空间的注意力表达

左图展示了模型学习到的图嵌入,中图展示了学习到的位置嵌入,右图展示了不同层注意力的平均距离。

RGB embedding filters (first 28 principal components)

加入位置信息的原因

如下图所示,将左图的patch打乱,则两个图是不同的,但对于Transformer的最后一层来说会得到相同的特征(认为是一个图),为了让其能够识别是两个图,加入位置信息(使两个图不一样)。

Patch 打平的具体做法

标准Transformer的输入是1D序列,对于图像 $\mathbf{x} \in R^{H*W*C}$,将其reshape成 $\mathbf{x}_p \in R^{N*(P^2 \cdot C)}$ 的序列。

P是patch的大小; (H,W)是图像的高和宽; C是图像通道数; $N = HW/P^2$, 即patch的个数。

3.模型训练策略

- 01 背景知识
- 02 模型介绍
- 03 模型训练策略
- 04 模型的缺点与改进
- 05 模型的代码实现

3.模型训练策略

训练策略

模型在Dataset A上预训练,在Dataset B上精调,在Dataset B上评估

3.模型训练策略

数据集介绍

	# of Images	# of Classes
ImageNet (Small)	1.3 Million	1 Thousand
ImageNet-21K (Medium)	14 Million	21 Thousand
JFT (Big)	300 Million	18 Thousand

在ImageNet(small)预训练,ViT的效果低于Resnet。 在ImageNet-21K(medium)预训练,ViT的效果接近Resnet。 在JFT(large)预训练,ViT的效果优于Resnet。

4.模型的缺点与改进

- 01 背景知识
- 02 模型介绍
- 03 模型训练策略
- 04 模型的缺点与改进
- 05 模型的代码实现

4.模型缺点与改进

ViT缺点

Vision Transformer比CNN具有更少的图像特异性归纳偏差。

在CNN中,局部性、二维邻域结构和平移等方差被融入到整个模型的每一层中。

在ViT中,只有MLP层是局部的、平移等变的,而自注意层是全局的。

二维邻域结构的使用非常少:在模型的开始通过将图像分割成小块,在微调时调整不同分辨率图像的位置嵌入。

除此之外,初始化时的位置嵌入不携带关于patch二维位置的信息,并且patch之间的所有空间关系都需要从头学习。

4.模型缺点与改进

改进

作为原始图像块的替代方法,输入序列可以由CNN的特征图形成。

在该混合模型中,将patch嵌入投影E应用于从CNN feature map中提取的patch。

作为一种特殊情况,patches的空间大小可以是1x1,这意味着输入序列是通过简单地打平 feature map的空间维度并投射到Transformer维度来获得的。如前所述,增加分类输入嵌入和位置嵌入。

5.模型的代码实现

- 01 背景知识
- 02 模型介绍
- 03 模型训练策略
- 04 模型的缺点与改进
- 05 模型的代码实现

5. 模型的代码实现

主要思路

- 一个图片224x224,分成了49个32x32的patch;
- 对这么多的patch做embedding,成49个128向量;
- 再拼接一个cls_tokens, 变成50个128向量;
- 再加上pos_embedding, 还是50个128向量;
- 这些向量输入到transformer中进行自注意力的特征提取;
- 输出的是50个128向量, 然后对这个50个求均值, 变成一个128向量;
- 然后线性层把128维变成2维从而完成二分类任务的transformer模型。

5. 模型的代码实现

```
import torch
from vit_pytorch import ViT
v = ViT(
    image_size = 256,
    patch size = 32,
   num classes = 1000,
   dim = 1024,
   depth = 6,
   heads = 16,
   mlp dim = 2048,
   dropout = 0.1,
    emb dropout = 0.1
img = torch.randn(1, 3, 256, 256)
preds = v(img)
print(preds.shape) # 1000, 与ViT定义的num classes—致
```

image_size: int 类型参数,图片大小。如果您有矩形图像,请确保图像尺寸为宽度和高度的最大值patch_size: int 类型参数,patches数目。image_size 必须能够被 patch_size整除。num_classes: int 类型参数,分类数目。dim: int 类型参数,线性变换nn.Linear(...,dim)后输出张量的尺寸。depth: int 类型参数,Transformer模块的个数。heads: int 类型参数,多头注意力中"头"的个数。

heads: int 类型参数,多头注意力中"头"的个数。mlp_dim: int 类型参数,多层感知机中隐藏层的神经元个数。

channels: int 类型参数,输入图像的通道数,默认为 3。

dropout: float类型参数, Dropout几率, 取值范围为[0, 1], 默认为 0.。

emb_dropout: float类型参数,进行Embedding操作时Dropout几率,取值范围为[0,1],默认为0。pool: string类型参数,取值为 cls或者 mean。

参考文献

- 1. https://jalammar.github.io/illustrated-transformer
- 2. https://www.bilibili.com/video/BV18Q4y1o7NY
- 3. Dosovitskiy. An image is worth 16×16 words: transformers for image recognition at scale. In ICLR.
- 4. 唐宇迪, https://www.bilibili.com/
- 5. https://www.bilibili.com/video/BV1Uu411o7oY

