Evaluation Report

Evaluation 1: Comparing the effectiveness of different chunking strategies and embedding models based on retrieval time and accuracy.

Findings:

Embdedding Method	Chunking Method	Retrieval Time
all-MiniLM-L6-v2	RecursiveCharacterTextSplitter	1.80s
all-MiniLM-L6-v2	CharacterTextSplitter	1.66s
multi-qa-MiniLM-L6-cos-v1	RecursiveCharacterTextSplitter	0.36s
multi-qa-MiniLM-L6-cos-v1	CharacterTextSplitter	1.46s

Observation:

- **Best Embedding Model**: *multi-qa-MiniLM-L6-cos-v1* outperformed *all-MiniLM-L6-v2* in retrieval speed across both chunking methods.
- **Best Chunking Method:** *RecursiveCharacterTextSplitter* was fastest when paired with *multi-qa-MiniLM-L6-cos-v1* (**0.36s**).
- **Overall Best Setup:** *multi-qa-MiniLM-L6-cos-v1 + RecursiveCharacterTextSplitter* yielded the best retrieval time (**0.36s**).

Evaluation 2: Comparing the two different similarity search algorithms (i.e. cosine, euclidean) based on retrieval time.

Findings:

The Evaluation 1 is done under cosine similarity search. The following is done under Euclidean distance similarity search.

For the calculation of retrieval accuracy, I chose the MRR (Mean Reciprocal Rank) metric which is used to evaluate the systems that return a list of ranked results such as document retrievers.

Formula:

$$MRR = \frac{1}{Q} \sum_{i=1}^{Q} \frac{1}{rank_i}$$

Where,

Q = No. of queries

rank_i = Position of 1st related document in list for the query i

Calculation:

 1^{st} combination (embedding = multi-qa-MiniLM-L6-cos-v1, chunking = RecursiveCharacterTextSplitter)

Query	Rank
Q1	1
Q2	1
Q3	1
Q4	2
Q5	1

Applying the MRR formula:

$$MRR = \frac{1}{5} \sum_{i=1}^{5} \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{1}$$

We get, MRR = 0.9

Similarly, doing the same for other 3 combination, we get,

Embdedding Method	Chunking Method	Retrieval Accuracy
all-MiniLM-L6-v2	RecursiveCharacterTextSplitter	90%

all-MiniLM-L6-v2	CharacterTextSplitter	80%
multi-qa-MiniLM-L6-cos-v1	RecursiveCharacterTextSplitter	90%
multi-qa-MiniLM-L6-cos-v1	CharacterTextSplitter	90%

Observation:

I tested 5 queries on each combination of embedding method (all-MiniLM-L6-v2 and multi-qa-MiniLM-L6-cos-v1) and chunking method (RecursiveCharacterTextSplitter and CharacterTextSplitter) and Euclidean distance for similarity search.

The results show that:

- multi-qa-MiniLM-L6-cos-v1 consistently achieved high retrieval accuracy (90%) across both chunking methods. This suggests that the model is robust to the choice of chunking strategy when using Euclidean distance.
- all-MiniLM-L6-v2 showed more variability:
 - o It achieved only 80% accuracy when paired with RecursiveCharacterTextSplitter, indicating that the chunking method may influence performance more significantly for this embedding model under Euclidean distance.
 - However, with CharacterTextSplitter, it reached 90% accuracy, matching the performance of multi-qa-MiniLM-L6-cos-v1.