MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 4º ANO EICO039 | MÉTODOS FORMAIS EM ENGENHARIA DE SOFTWARE | 2015-16 - 1º SEMESTRE

Prova com consulta. Duração: 120 minutos.

Nome do estudante:	N°
Assinale a resposta certa nas 10 questões seguintes. Cada resposta errada desconta 0.2.	certa vale 0.5, cada resposta
 Considere o comando 'run predicate for 3 but 2 Book'. Qual das O modelo resultante nunca terá mais do que 3 instâncias em O modelo resultante nunca terá mais que 2 instâncias para a Só serão pesquisados modelos com exactamente 2 instâncias Serão pesquisados modelos que tentem satisfazer o predicado 	qualquer assinatura. assinatura Book. para a assinatura Book.
 2. Considere a especificação 'sig X { r: lone X } fact { no x: X x ir relações satisfaz o modelo? X = {(X0, X2), (X1, X2)} X = {(X1, X2), (X2, X2)} X = {(X3, X2), (X2, X1), (X1, X3)} Todas as anteriores Nenhuma das anteriores 	n x.^r }'. Qual das seguintes
 3. Considere a seguinte relação: 'X = {(N0, D0), (N1, D1), (N1, D2) afirmações se aplica? A relação é funcional e injectiva A relação é funcional mas não injectiva A relação não é funcional mas é injectiva A relação não é nem injectiva nem funcional 	}'. Qual das seguintes
4. Considere a expressão '{(N0, A0)} · {(A0, D0)}'. O resultado é:	
 5. Considerando as seguintes relações A={(3),(1)} e B={(2,3),(3,2), expressões é verdadeira? A.B & B.A = none B :> A - A->A = {(3,3)} (A <: B) in ((B :> A) - iden) Nenhuma é correta. 	,(3,3)}, qual das seguintes

ANA PAIVA PÁG. 1 / 1

 6. Qual das seguintes relações poderá, nalgumas situações, satisfazer #(r.B) < #(A.r)? r: A some -> some B Todas as anteriores Nenhuma
 7. Dada a relação r:A->A, qual das seguintes expressões afirma que r é uma relação fortemente conexa (existe um caminho entre qualquer par de elementos de A)? iden in r ~r in r all a,b:A a in b.^r ^r = A -> A As duas anteriores
8. Assuma a seguinte definição em Alloy
sig Pessoa {filhos: set Pessoa} Qual é que das seguintes expressões dá todos as pessoas com filhos? Todas as respostas são válidas. filhos[Pessoa] {p: Pessoa p.filhos = p} filhos.Pessoa
9. Considere o seguinte modelo de um Bag com elementos do tipo Elem em Alloy, sig Elem{} sig Bag{ count: Elem -> one Int }
Qual das seguintes é a formalização mais correta da operação <i>delete</i> (do elemento <i>e</i> do Bag <i>b</i> , resultando noutro Bag <i>b'</i>)? pred delete [e: Elem, b, b': Bag] { b'.count[e] = b.count[e] - 1 } pred delete[e: Elem, b, b': Bag] { b'.count = b.count ++ e -> b.count[e].sub[1] } pred delete[e: Elem, b, b': Bag] { b.count = b'.count ++ e -> b.count[e] + 1} pred delete[e: Elem, b, b': Bag] { b'.count[e] = sub[b.count[e], 1] }

PÁG. 2 / 2 Ana Paiva

Nome	e do estudante:	N°
10. C	Considere o seguinte código em Alloy:	
	<pre>abstract sig Person{} sig Grad, Under extends Person{} sig GTeacher, GStudent extends Grad{} sig UTeacher, UStudent extends Under {} sig Course { taughtby: one (GTeacher + UTeacher), enrolled: some (GStudent + UStudent) }</pre>	
inscr	que a melhor forma de formalizar em Alloy a seguinte restrição: os UStudever (<i>enroll</i>) em disciplinas (<i>Course</i>) ensinados por UTeachers, e os GStudever em disciplinas ensinadas por GTeachers.	
	Adicionando o facto fact enrollment{ all c :Course c.taughtby + c.enrolled in Grad or c.taughtby + c.enr	olled in Under }
	Modificando a definição de 'Course': sig Course { taughtby: one (GTeacher + UTeacher), enrolled: some (GStudent + UStudent) } { taughtby + enrolled in Grad or taughtby + enrolled in Under }	
	Todas as respostas anteriores são formas válidas	
	Nenhuma resposta é válida	
11. C	Considere a seguinte formalização em Alloy de Pessoa e seus descendent	es:
	ig Name {} ig Pessoa { n: one Name, descendentes : set of Pessoa	

- 11.a) [1.5 valor] Escreva um facto que obrigue a que uma pessoa só tenha dois ascendentes.
- 11.b) [1.5 valor] Escreva uma operação que retorne, caso exista, a Pessoa origem, ou seja, a Pessoa de quem todas as outras pessoas descendem. Se não existir uma Pessoa nessas condições deverá retornar o conjunto vazio.

ANA PAIVA PÁG. 3 / 3

12. [1.5 valores] Através do cálculo da wp, indique a pré-condição mais fraca para o seguinte programa:

$$\{P\}$$
 y:=x; if (x>50) then y:=0; $\{y=0 \lor y=1\}$

13. [1.5 valores] Numa sequência de passos refina

$${ y<10 } S { y>0 }$$

até

$$\{ y<10 \} \text{ if } ((x>0) \lor (y<10)) \text{ then } y:=10 \text{ endif } \{ y>0 \}$$

Indique as regras que aplicou em cada passo.

14. [1.5 valores] Numa sequência de passos refina

$$\{i \ge 0\} S \{i = 0\}$$

até

$$\{i \ge 0\}$$
 while $i > 0$ do $i := i-1 \{i = 0\}$

Indique as regras que aplicou em cada passo.

15. Considere a seguinte figura onde se representa as Causas (Ci) de determinados Efeitos (Ej).

No caso da figura, (C3 OR C4) AND C2 é a expressão necessária para o Efeito E1 e (C1 AND C3) OR C4 é a expressão necessária para o Efeito E2.

ANA PAIVA PÁG. 4 / 4

Considere a seguinte representação em VDM++:

```
abstract class No {
  instance variables
  public str : seq of char;
} end No

class Retangulo is subclass of No {
} end Retangulo

class Circulo is subclass of No {
} end Circulo

class CauseEffectGraph {
  instance variables
    public graph: map No to set of No; -- relaciona cada No com os seus sucessores
  -- inv1: "Cada nó pode ter no máximo dois nós como antecessores".
} end CauseEffectGraph
```

- a) [2 valores] Escreva uma operação (*Antecessores*) em VDM++ que devolva os Nós antecessores de um determinado Nó do Grafo (*CauseEffectGraph*). Escreva a pré-condição desta operação. Considerando a figura exemplo, *Antecessores*(*AND2*) = {C2, OR1}.
- b) [1.5 valor] Escreva a especificação em VDM++ do invariante 1 (inv1) para a classe CauseEffectGraph.
- c) [2 valores] Escreva uma operação (*Causas*) que determine todos os Nós do grafo que representam causas e outra operação (*Efeitos*) que determine todos os nós do grafo que representam efeitos. No exemplo da figura, os Nós Causa são os C1, C2, C3 e C4 e os Nós Efeito são os E1 e E2.
- d) [2 valores] Escreva uma operação que verifique se uma Causa e um Efeito passados como argumentos estão ligados entre si. Escreva a pré-condição necessária. Assuma que não há ciclos no grafo.

Boa sorte!

ANA PAIVA PÁG. 5 / 5