Nov. 30th: Review of Chapter 5.

Conceptual Review:

Inverse Function: g is an inverse of f if for any x in the domain of f, g(f(x)) = x f(g(x)) = x)

Important Results: 1. f continuous on $[a,b] \iff$ the inverse to f is continuous.

2. f differentiable at a s.t. $f'(a) \neq 0 \implies (f')'(f(a)) = \frac{1}{f'(a)}$

Natural Logarithmic Function: $\ln x = \int_{1}^{\pi} \frac{dt}{t}$, x > 0. $\log_{\alpha} x = \frac{\ln x}{\ln \alpha}$ for any and Inverse function e^{x} : Exponential function. $\alpha^{x} = e^{a \ln x}$

Properties: 1. $\ln(xy) = \ln x + \ln y$, $\ln(x^{\alpha}) = \alpha \ln x$, $\ln(\frac{x}{y}) = \ln x - \ln y$;

2.
$$\lim_{x\to\infty} \ln x = +\infty$$
, $\lim_{x\to\infty} \ln x = -\infty$;

3.
$$(\ln x)' = \frac{1}{x}$$
 (by definition)

4.
$$e^{x+y} = e^x e^y$$
, $e^{ax} = (e^x)^a$, $e^{x-y} = \frac{e^x}{e^y}$.

$$\frac{1}{5} \cdot (e^x)' = e^x \cdot \frac{1}{6} \cdot \lim_{x \to +\infty} e^x = 0$$

Review Problems:

Problem 5 [8 points]: Let F = F(x) be the function

$$G(\mathbf{x}^3). = F(x) = \int_{1}^{x^3} \sqrt{t^2 + 1} \, dt, \ -\infty < x < +\infty.$$
 where $G(\mathbf{x}) = \int_{1}^{x} \sqrt{t^2 + 1} \, dt$.

- (a) Explain why the function F is invertible.
- (b) Compute $(F^{-1})'(0)$.

Solution. (a) Write $F(x) = G(x^3)$, then $F'(x) = 3\chi^2 \cdot G'(x^3) = 3\chi^2 \cdot \sqrt{(\chi^3)^2 + (\chi^3)^2 + (\chi^3)^2$

DF is strictly increasing in (-01,0) U(0, +01), and so. in (-01,+01).

so F is one-to-one and it is invertible.

$$f(x) = \int_{\alpha}^{x} g(t)dt$$
 (then $f(a) = 0$).

(b) we need to find x so that
$$F(x) = 0$$
. $\sim 9 x = 1$, and $F'(1) = 3 \cdot 1^{3} \sqrt{1^{6} + 1} = 3\sqrt{2} > 0$

$$(F^{-1})'(0) = \frac{1}{F'(1)} = \frac{1}{3\sqrt{2}} \cdot 1$$

Problem 7 [24 points]: Consider the following graph:

if
$$-2 < x < 0$$
, then
$$\frac{f(x)+2}{x} = \frac{-2-1}{0+2}$$

- (a) Suppose that this is the graph of a function f = f(x). In particular, f(-1) = -1/2.
 - (i) Consider the function g(x) = f(3x 4). Compute g'(2), if possible. If this is not possible, then explain why.
 - (ii) Consider the function $h(x) = f(f(x)) + \ln(1 \tan(\pi f(x)/2))$. Compute h'(-1), if possible. If this is not possible, then explain why.

Solution. (a) (ii).
$$f(-1) = -\frac{1}{2}$$
 in $(-2,0)$. so we get
$$h(x) = f(f(x)) \cdot f(x) + \frac{-\sec^2(\frac{\pi f(x)}{2}) \cdot \frac{\pi f(x)}{2}}{|-\tan(\frac{\pi f(x)}{2})|}.$$
 when $x = -1$, $f(x) = -\frac{1}{2}$.
$$\sec^2(-\frac{\pi}{4}) = \frac{1}{\cos^2(-\frac{\pi}{4})} = \frac{1}{(\frac{1}{2})^2} = \frac{1}{\frac{1}{2}} = 2.$$

$$h'(1) = (-\frac{3}{2})(-\frac{3}{2}) + \frac{-\sec^2(\frac{\pi}{2}\cdot(-\frac{1}{2}))\cdot\frac{\pi}{2}(-\frac{3}{2})}{1-\tan(\frac{\pi}{2}\cdot(-\frac{1}{2}))} = \frac{q}{4} + \frac{+\sec^2(-\frac{\pi}{4})\cdot(+\frac{3\pi}{4})}{1-\tan(-\frac{\pi}{4})} = \frac{q}{4} + \frac{2\cdot\frac{3\pi}{4}}{1+1} = \frac{q}{4} + \frac{3\pi}{4}$$

$$+'(f(1))\cdot f(1)$$

$$g(x) = x^2, \quad g(1) = 1, \quad g'(x) = 2x, \quad g'(1) = 2.$$

Problem 9 [7 points]: Does the curve $e^y = x + y$ have any points at which the tangent line to the curve is horizontal? Explain your conclusion. (Implicit Differentiation)

Solution:
$$e^{y}-x-y=0$$
 take derivative w.r.t. x :
$$\frac{d}{dx}(e^{y}-x-y)=0$$

$$(e^{y}-\frac{dy}{dx}-1-\frac{dy}{dx}=0)$$

$$(e^{y}-\frac{dy}{dx}=[-\frac{dy}{dx}=\frac{1}{e^{y}-1}]$$

horizontal means $\frac{dy}{dx} = 0$, but $\frac{1}{e^{y}}$ is never 0. so therefore no pts at which the tangent line to the curve is horizontal. \square

Reminder.

. FINAL Quiz on Thursday

Practice Problems: the three problems above (or see Fall 2020 Final) and 62 of Section 5.2.

- OH this week: 1-2 pm T next week: 10-12 pm Mon (-3 pm Th 1-3 pm Tue
- Next Tuesday: Review section (10-12 or 10-11 & 11-12 on Tuesday, Room TBD)