

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

Unlock Code: GPSIR ~ PhD, CSIR NET (Maths) | Youtuber(800K+165K
 Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

Get 10% Off

Referral Code: GP SIR

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months
Save 67%

Total ₹ 21,780

You get 6 months extra for free

Offer expires 15 Jun 2022

12 months	₹ 1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹ 2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Limit inferior and limit superior of sequence:

Let <an> be a sequence of real number then limit superior and limit

inferior are denoted by
$$\overline{\lim}_{n\to\infty} a_n$$
 and $\lim_{n\to\infty} a_n$.

Case – 1: If sequence is convergent Then
$$\overline{\lim}_{n\to\infty} a_n = \overline{\lim}_{n\to\infty} a_n = l = \overline{\lim}_{n\to\infty} a_n$$

 $\frac{(an)}{(an)} = \frac{(1)^n}{(1)^n} = \frac{(1)^n}{(1$

くたいりつ

Case - 2: If sequence is divergent. There arise two cases.

Then
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} a_n = \infty$$

(b) If sequence is

$$\overline{\lim}_{n\to\infty} a_n = \lim_{n\to\infty} a_n = -\infty.$$

unbounded

Case - 3. If sequence is oscillatory. There arise again two cases.

(a) If sequence is finitely oscillate

Let <an> be a finitely oscillate sequence and P be the set of all limit points.

Then
$$\overline{\lim}_{n\to\infty} a_n = \sup P$$
 and $\overline{\lim}_{n\to\infty} a_n = \inf P$.

- (b) If sequence is infinitely oscillate:
- (i) Let $<a_n>$ be a infinitely oscillate sequence. which is unbounded above and unbounded below then $\overline{\lim}_{n\to\infty} a_n = \infty$ and $\overline{\lim}_{n\to\infty} a_n = -\infty$.
- (ii) Let <a_n> is infinitely oscillate sequence which is unbounded above but bounded below.

$$\lim_{n \to \infty} a_n = \infty \& \lim_{n \to \infty} a_n = \text{smallest limit point}$$

066466...) 06004.676...) Dr. Ro

Dr.Gajendra Purohit (PhD,NET)
Referral Code GPSIR

(iii) Let <a_n> is infinitely oscillate sequence which is unbounded below but bounded above.

$$\lim_{n\to\infty} a_n = \text{biggest limit point \& } \lim_{n\to\infty} a_n = -\infty$$

Q1. Let $x_n = n^{\frac{1}{n}}$ and $y_n = e^{1-x_n}$, $n \in \mathbb{N}$. then which of the following is true

- (a) $\limsup y_n = \liminf y_n = 0$
- (b) $\limsup y_n \neq \liminf y_n$
- (c) $\limsup y_n = \liminf y_n = 1$
- (d) $\limsup x_n = \liminf y_n$

Q.2. Consider the sequence $< a_n >$,

where
$$a_n = 3 + 5\left(-\frac{1}{2}\right)^n + (-1)^n \left(\frac{1}{4} + (-1)^n \frac{2}{n}\right)$$

then the interval $\left(\liminf_{n \to \infty} a_n, \limsup_{n \to \infty} a_n \right)$

$$(a)(-2,8)$$

$$\frac{11}{4},\frac{13}{4}$$
 $=$

(d)
$$\left(\frac{1}{4}, \frac{7}{4}\right)$$
 $\left(\frac{13}{4}\right)$ $\left(\frac{13}{4}\right)$ $\left(\frac{13}{4}\right)$ $\left(\frac{13}{4}\right)$ $\left(\frac{13}{4}\right)$ $\left(\frac{13}{4}\right)$ $\left(\frac{13}{4}\right)$ $\left(\frac{13}{4}\right)$ $\left(\frac{13}{4}\right)$ $\left(\frac{13}{4}\right)$

9 $2x_{n} = 1 + 41^{n} + 1/3^{n}$ $4x_{n} = 1$ $4x_{n}$

(b) 1 (c) (d) -1 12/1+H/My never 0+My noda

Lamo = Cいりんりいんらりないいっつ (a) Long has infinin numbered liming point. (b) Lim Saf an= 1 Co Lim Int ans 0 Sypty. 2) Zon > hos intima conseque (a) 9, b 20121314... (d) a.b.c.l

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Q3. Consider the sequence $a_n = 1 + (-1)^n \frac{1}{n}^n$, then

- (a) $\lim \sup a_n = \lim \inf a_n = 1$
- (b) $\lim \sup a_n = \lim \inf a_n = e$
- (c) $\lim \sup a_n = e$, $\lim \inf a_n = 1/e$
 - (d) $\limsup a_n = \liminf a_n = 1/e$

(1) ((1+1/2)) N-evin

Q4. Let
$$a_n = 2 + \frac{(+1)^2}{n}$$
 if *n* is odd then which of the $1 + \frac{1}{2^n}$; if *n* is even $1 + \frac{1}{2^n}$.

(a)
$$\sup \{a_n \mid n \in N\} = 3 \& \inf \{a_n \mid n \in N\} = 1$$

(b)
$$\lim \inf a_n = \lim \sup a_n = 3/2$$

following are true?

(e) sup
$$\{a_n \mid n \in N\} = 2$$
 and inf $\{a_n \mid n \in N\} = 1$

(d)
$$\lim \inf a_n = 1 \& \lim \sup a_n = 3$$

Q5. Let $\langle a_n \rangle = 1 + \frac{(-1)^n}{n}$ $n \in \mathbb{N}$, then which of the following is/are true.

(c)
$$\overline{\lim}_{n\to\infty} a_n \neq \lim_{n\to\infty} a_n$$

Q7. The limit inferior of the sequence <an>, where

$$< a_n > = 1 + (-1)^n + \frac{1}{3^n}.$$

(a) 1

(b) 2

(c)3

(d) 0

Q8. If
$$< a_n >= 1 + (-1)^n + \sin \frac{1}{n}$$
 then

- (b) lim sup a_n ≠ lim inf a_n
- (c) $\lim \sup a_n = \lim \inf a_n$
 - (d) $\limsup a_n = 2$

Some important theorem on Limit:

- (1) If $\lim_{n\to\infty} a_n = l$ then $\lim_{n\to\infty} |a_n| = l$ But converse may not true
- **Example**: Let $< a_n > = < (-1)^n >$ then $< |a_n| > = < 1 >$ Here $\lim |a_n| = 1$ but limit a_n does not exist
- (2) Cauchy's First Theorem: Let $< a_n >$ be a sequence of real numbers and $I_{im} a_1 I_{im} a_1 + a_2 + \dots + a_{n-1}$

and
$$\lim_{n\to\infty} a_n = l$$
 then $\lim_{n\to\infty} \frac{a_1 + a_2 + \dots + a_n}{n} = l$

Find the Limit of
$$\frac{1+\sqrt{2}+\sqrt[3]{3}.....+\sqrt[n]{n}}{2}$$

n

CSIR NET 2022

(a) 1

(b) 2

(c) 3

(d)4

(2) Cauchy's Second theorem: Let <an> be a sequence of real number

and
$$\lim_{n\to\infty} a_n = l$$
 Then $\lim_{n\to\infty} (a_1.a_2.....a_n)^{\frac{1}{n}} = l$

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 - 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo	
Save 67%	₹ 21,700 ₹ 19,602	
You get 6 months extra for free	Offer expires 15 Jun 2022	

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹-6,807-₹6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR