

www.4u4you



⑯ BUNDESREPUBLIK  
DEUTSCHLAND



DEUTSCHES  
PATENT- UND  
MARKENAMT

⑫ Übersetzung der  
europäischen Patentschrift

⑮ Int. Cl. 7:  
H 01 G 7/00

⑯ EP 0 608 376 B 1

⑩ DE 692 32 740 T 2

DE 692 32 740 T 2

B-1

- ⑯ Deutsches Aktenzeichen: 692 32 740.1  
⑯ PCT-Aktenzeichen: PCT/US92/08781  
⑯ Europäisches Aktenzeichen: 92 923 202.3  
⑯ PCT-Veröffentlichungs-Nr.: WO 30/08578  
⑯ PCT-Anmeldetag: 15. 10. 1992  
⑯ Veröffentlichungstag der PCT-Anmeldung: 29. 4. 1993  
⑯ Erstveröffentlichung durch das EPA: 3. 8. 1994  
⑯ Veröffentlichungstag der Patenterteilung beim EPA: 21. 8. 2002  
⑯ Veröffentlichungstag im Patentblatt: 5. 12. 2002

⑳ Unionspriorität:  
776111 15. 10. 1991 US

㉑ Patentinhaber:  
Motorola, Inc., Schaumburg, Ill., US

㉒ Vertreter:  
SCHUMACHER & WILLSAU, Patentanwaltssozietät,  
80335 München

㉓ Benannte Vertragstaaten:  
DE, ES, FR, GB, IT, NL, SE

㉔ Erfinder:  
CORNELL, D., Kenneth, Albuquerque, US;  
RAMAKRISHNAN, S., E., Albuquerque, US;  
SHAPIRO, H., Gary, Albuquerque, US; CALDWELL,  
M., Raymond, Albuquerque, US; HOWNG,  
Wei-Yean, Albuquerque, US

㉕ SPANNUNGSVARIABLE KONDENSATOR

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.

BEST AVAILABLE COPY

25.07.02

SCHUMACHER & WILLSAU  
PATENTANWALTSZOZIETÄT

PATENTANWÄLTE  
EUROPEAN PATENT ATTORNEYS  
EUROPEAN TRADEMARK ATTORNEYS

NYMPHENBURGER STRASSE 42  
D-80335 MÜNCHEN

TEL 089/1211 476-0  
FAX 089/1211 476-10

MAIL@SCHUMACHER-WILLSAU.DE  
WWW.SCHUMACHER-WILLSAU.DE

92 923 202.3

Motorola, Inc.

Gebiet der Erfindung

5

Diese Erfindung bezieht sich allgemein auf Kondensatoren und insbesondere auf spannungsvariable Kondensatoren, auch bekannt als Varaktoren.

10

Hintergrund der Erfindung

- Präzise gesteuerte Kondensatoren von hoher Qualität sind ein integraler Bestandteil vieler Halbleiterelemente. 15 Kondensatoren werden unter Verwendung des Metall-Oxid-Silizium- (MOS-) Systems als Teil eines Halbleiterschaltkreises hergestellt. Eine spezielle Anwendung von Halbleiterkondensatoren liegt in einem integrierten Schaltkreis, dessen Funktion in der Umwandlung analoger Signale in eine 20 digitale Repräsentation besteht. Die Analog-Digital-Wandlung erfolgt durch sequentiellen Vergleich eines Signals mit Bruchteilen einer Referenzspannung. Die Referenz-

spannung wird geteilt, indem die Vergleichsspannung über ein Feld von Kondensatoren angelegt wird, deren Kapazitäten sukzessive um jeweils einen Faktor zwei erniedrigt werden. Damit ein Schaltkreis zur Analog-Digital-Wandlung

5 richtig funktioniert, müssen die Kondensatoren in dem Schaltkreis über den gesamten Kapazitätsbereich des Schaltkreises präzise angesteuert werden. Dies wird erreicht, indem ein Oxid, wie etwa Siliziumoxid, auf einem Halbleiter platziert und dann zur Ausbildung eines Kondensators eine Elektrode auf dem Oxid erzeugt wird.

10

Eine weitere Verwendung von Halbleiter-Kondensatoren besteht in Anwendungen, die spannungsvariable Kondensatoren (Voltage Variable Capacitor: VVC), auch bekannt als Varaktoren, erfordern. Seit kurzem werden Varaktoren als

15 spannungsvariable Kondensatoren zur Abstimmung der Mittelfrequenz elektrischer Netzwerke, bestehend aus Widerständen, induktiven Elementen und Kondensatoren, eingesetzt. Varaktoren mit hoher Kapazität pro Flächeneinheit, großen Kapazitätsänderungen und niedrigen DC-Verlustströmen sind

20 notwendig, um bei Verwendung niedrigen Steuerspannungen den Dynamikbereich und die Effizienz der abgestimmten Resonatoren zu vergrößern. Um diesen Erfordernissen gerecht zu werden, müssen Hochleistungs-VVCs als diskrete Komponenten in einer Hybrid-Baugruppe verwendet werden, da die

25 derzeit erhältlichen Hochleistungs-VVCs nicht mit dem MOS-Herstellungsprozess kompatibel sind. Die Leistung des Varaktors wird begrenzt durch die elektrischen Eigenschaften des in herkömmlichen VVCs benutzten Isolators, Silizium-Oxid. Um die notwendige Leistungssteigerung zu erreichen,

30 muss ein vergrößerter Kapazitätsbereich realisiert werden. Es wäre höchst wünschenswert, wenn das Dielektrikum-Material mit MOS- und auch Bipolar-Verarbeitungsschemata kompatibel wäre.

25.07.02

SCHUMACHER & WILLSAU  
PATENTANWALTSSOZIETÄT

- 3 -

US-Patent Nr. 3,512,052 beschreibt einen variablen Kondensator, der geeignet ist zur Verwendung in einer Amplitudenmodulations-Abstimmungsvorrichtung und der eine Halbleiterschicht aufweist mit einer darauf ausgebildeten Schicht hohen elektrischen Widerstandes. Über der Schicht hohen elektrischen Widerstandes ist eine Isolationsschicht aus einem Material hoher Dielektrizitätskonstante ausgebildet, deren Dicke von dem spezifischen Widerstand des Materials abhängt, derart, dass ein moderater Verluststrom durch sie hindurch ermöglicht wird, um den Aufbau einer Inversionsschicht in der Schicht hohen elektrischen Widerstandes zu verhindern. Oberhalb und unterhalb dieser Schichten sind elektrisch leitende Elektroden ausgebildet.

15

#### Zusammenfassung der Erfindung

Kurz gesagt wird erfindungsgemäß ein spannungsvariabler Kondensator zur Verfügung gestellt, umfassend: einen Halbleiter mit einer Schicht eines halbleitenden Materials höheren spezifischen Widerstandes als der Halbleiter, eine Verarmungsschicht, die in der Schicht hohen spezifischen Widerstandes ausgebildet ist, eine Isolationsschicht, die auf der Schicht hohen spezifischen Widerstandes ausgebildet ist, wobei besagte Isolationsschicht eine Dielektrizitätskonstante aufweist, die größer ist als die Dielektrizitätskonstante des Halbleiters, wobei das als Isolationsschicht eingesetzte Material Zirconiumtitanat ist, und eine elektrisch leitende Elektrode, die auf der Dielektrizumsschicht ausgebildet ist. Weiter werden erfindungsgemäß auch ein integrierter Schaltkreis mit den Merkmalen des Anspruchs 6 und einen Empfänger mit den Merkmalen des beigefügten Anspruchs 8 zur Verfügung gestellt.

## Kurze Beschreibung der Zeichnungen

5 Figur 1 ist eine Querschnitts-Ansicht eines erfindungsgemäßen spannungsvariablen Kondensators.

Figur 2 ist eine Kapazitätskurve erfindungsgemäßer Vorrichtungen, aufgetragen gegen die Spannung bei 20 kHz (Figur 2a) und bei 1 MHz (Figur 2b).

10 Figur 3 ist eine isometrische Darstellung eines spannungsvariablen Kondensators in einem erfindungsgemäßen, integrierten Schaltkreis.

Figur 4 ist ein weiteres Ausführungsbeispiel der vorliegenden Erfindung.

15 Figur 5 ist ein Blockschaltbild einer Kommunikationsvorrichtung, die einen erfindungsgemäßen, spannungsvariablen Kondensator beinhaltet.

20 Beschreibung einer bevorzugten Ausführungsform.

Ein spannungsvariabler Kondensator oder Varaktor ist ein Halbleiterelement, das durch eine spannungssensitive Kapazität gekennzeichnet ist, die in der Raumladungsregion 25 an der Oberfläche eines von einer Isolationsschicht begrenzten Halbleiters liegt. Varaktoren sind auch als Varaktordioden, variable Kapazitätsdiode, Varicaps und als spannungsvariable Kondensatoren (Voltage Variable Capacitors: VVCs) bekannt. Damit ein VVC funktioniert, muss sich eine Verarmungsschicht ausbilden. Eine Verarmungsschicht ist eine Region mit einer Netto-Raumladung in einem Halbleiter, in der die Dichte der beweglichen Ladungsträger wesentlich geringer ist als die Dichte der ionisierten

25.07.02

SCHUMACHER & WILLSAU  
PATENTANWALTSSOZIETÄT

- 5 -

Fremdatome. Die Dichte der beweglichen Ladungsträger reicht nicht aus, um die feststehende Ladungsdichte der Donatoren und Akzeptoren zu neutralisieren. Die Verarmungsschicht ist auch bekannt als Sperrsicht oder Raumladungsschicht.

5 Um einen verbesserten, spannungsvariablen Kondensator mit höherer Kapazität und niedrigerem Verluststrom herzustellen, ist eine neuartige Anordnung von Materialien erforderlich. Ein Metall-Isolator-Halbleiter- (Metall-  
10 Insulator-Semiconductor: MIS-) Kondensator wird aufgebaut, in dem die relative Dielektrizitätskonstante des Nichtleiters wesentlich höher ist als die relative Dielektrizitätskonstante der Halbleiter-Verarmungsschicht. Der Halbleiter selbst ist typischerweise ein Silizium-Einkristall, kann aber auch aus anderen, im Stand der Technik üblichen  
15 Materialien bestehen. Der Halbleiter kann stark dotiert sein mit Ausnahme einer Oberflächenschicht hohen spezifischen Widerstandes, die weniger stark dotiert ist. Die Oberflächenschicht hat einen höheren spezifischen Widerstand als das Halbleitersubstrat und kann aus einer einkristallinen, epitaktisch auf dem Halbleiter aufgewachsenen Schicht bestehen. Sie kann auch eine Polysiliziumschicht oder im Vergleich zu dem Halbleiter gegendotiert  
20 sein.

25 Es wird nun Bezug genommen auf Figur 1. Ein spannungsvariabler Kondensator 10 ist auf einem Halbleiter 12 ausgebildet. Die Oberflächenschicht 14, die weniger stark dotiert ist, hat einen höheren spezifischen Widerstand als der Halbleiter und dient als Bereich zur Ausformung  
30 der Verarmungsschicht. Eine Isolationsschicht 16 ist oberhalb der Oberflächenschicht 14 angeordnet. Das Material der Isolationsschicht 16 ist Zirconiumtitanat ( $ZrTiO_4$ ), aufgebracht in einer Dicke von 300 - 1000 Å. Es haben sich

jedoch Schichtdicken von 100 Å bis 2 µm als geeignet erwiesen. Das als Dielektrikums- oder Isolationsschicht verwendete Material sollte eine Dielektrizitätskonstante aufweisen, die wesentlich höher ist als diejenige des Halbleiters.

Beispiele geeigneter Materialien, die für diesen Zweck benutzt werden können, sind in unten stehender Tabelle 1 zu finden:

TABELLE 1

10

|    |                               |                       |
|----|-------------------------------|-----------------------|
|    | Tantalpentoxid                | $Ta_2O_5$             |
|    | Niobiumpentoxid               | $Nb_2O_5$             |
|    | Zirconiumoxid                 | $ZrO_2$               |
|    | Titandioxid                   | $TiO_2$               |
| 15 | Zirconiumtitanat              | $ZrTiO_4$             |
|    | Strontiumtitanat              | $SrTiO_3$             |
|    | Bariumtitanat                 | $BaTiO_3$             |
|    | Bleititanat                   | $PbTiO_3$             |
|    | Bariumtetratitanat            | $Ba_2Ti_2O_{20}$      |
| 20 | Barium-Neodymtitanat          | $BaNd_2Ti_5O_{14}$    |
|    | Blei-Zirconiumtitanat         | $Pb(Zr, Ti)O_3$       |
|    | Blei-Lanthan-Zirconiumtitanat | $(Pb, La)(Zr, Ti)O_3$ |
|    | Lithiumniobat                 | $LiNbO_3$             |
|    | Strontium-Bariumniobat        | $(Sr, Ba)Nb_2O_6$     |
| 25 |                               |                       |

Von diesen Materialien wird Zirconiumtitanat, das optional Bleioxid oder Blei-Lanthan-Oxid umfassen kann, bei dem erfindungsgemäßen Kondensator benutzt. Die übrigen Materialien werden als für das Verständnis der Erfindung nützlich erwähnt.

Oxide weiterer Elemente wie Molybdän, Wolfram und Vanadium dürfen, entweder allein oder in Kombination mit anderen Elementen, ebenfalls als nützlich erwartet werden.

25.07.02

SCHUMACHER & WILLSAU  
PATENTANWALTSSOZIETÄT

- 7 -

Wenn eine angemessene Sperrvorspannung 13 an eine Metallelektrode 18 angelegt wird, werden die mobilen Minoritätsladungsträger zu der Halbleiter-Nichtleiter-Grenzschicht 19 gezogen, wo sie eine Raumladungs- oder 5 Verarmungsschicht ausbilden, die sich eine gewisse Strecke in den Leiter 14 hinein erstreckt. Diese Verarmungsschicht verhält sich wie ein Kondensator mit veränderlichem Plattenabstand, der elektrisch mit dem durch die Isolations- schicht gebildeten Kondensator in Reihe geschaltet ist. 10 Diese zwei in Reihe geschalteten Kondensatoren dienen zur Erzeugung eines Netto-Kapazitätseffektes, der durch Veränderungen jedes individuellen Kondensators beeinflusst wird. Die Elektrodenvorspannung steuert die Breite der Verarmungsschicht von Null beim Akkumulations- 15 Schwellenwert bis hin zur maximalen Breite beim Inversions-Schwellenwert und variiert dabei die Gesamtkapazität der Vorrichtung. Die Isolationsschicht 16 dient dazu, die obere Elektrode 18 und die Verarmungsschicht 20 voneinander zu beabstandet zu halten. Die Verarmungsschicht ist eine nicht dauerhafte Schicht, die ausgebildet wird, wenn über 20 die Anschlüsse 13 und 15 eine Vorspannung an den Kondensator angelegt wird. Die Schicht 20 kann in ihrer Größe reduziert werden oder verschwinden, wenn das angelegte Spannungsfeld variiert oder entfernt wird. Obwohl sie in der Zeichnung als gegenständliches Merkmal dargestellt ist, 25 sollte die Verarmungsschicht 20 nicht als dauerhaftes, mechanisches Merkmal der Vorrichtung 10 angesehen werden. Die hier beschriebene Theorie der Funktionsweise ist ähnlich derjenigen der Funktionsweise eines Metall-Oxid-Halbleiter-Kondensators.

Bei der Inversions-Schwellenspannung sind genug Ladungsträger an die Halbleiter-Grenzschicht angezogen worden, dass sich eine Inversionsschicht ausbildet. Eine Er-

25.07.02

SCHUMACHER & WILLSAU  
PATENTANWALTSSOZIETÄT

- 8 -

höhung der Vorspannung vergrößert die Breite der Inversionsschicht bis die Schicht eine maximale Breite erreicht, oberhalb derer die Verarmungsschicht durch Erhöhung der Elektrodenvorspannung nicht mehr wesentlich vergrößert  
5 werden kann. Die maximale Breite der Verarmungsschicht wird bestimmt durch die Konzentration der Fremdatome in der Nähe der Halbleiteroberfläche, auf der die Isolations-  
schicht 16 aufgebracht ist. Der Fachmann wird Dotanden wie Phosphor, Antimon, Bor und Arsen als nützlich im Zusammenhang mit Siliziumsubstraten erkennen. Andere Halbleiter-  
substrate wie Galliumarsenid können ebenfalls zur Ausbildung eines erfindungsgemäßen VVCs verwendet werden.

Je geringer die Dotierung desto größer ist die maximale Dicke der Verarmungsschicht und daher desto kleiner  
15 die minimale Kapazität, die erreicht werden kann. Die Dicke einer weniger stark dotierten Oberflächenschicht kann, um bei Maximierung der Kapazitätsänderungen den Reihenwiderstand der Vorrichtung zu minimieren, gleich groß wie oder ein wenig größer als diese maximale Verarmungsbreite  
20 gewählt werden.

Der Aufbau eines verbesserten spannungsvariablen Kondensators ist hochgradig abhängig von der Auswahl des Materials der Isolationsschicht 16. Durch Auswahl eines Materials mit einer sehr viel größeren relativen Dielektrizitätskonstante als der der Halbleiter-Verarmungsschicht 20 wird ein größeres Verhältnis der maximalen zur minimalen Kapazität erreicht. Je größer die Dielektrizitätskonstante des Isolators, desto größer wird, bei gegebener Nichtleiter-Dicke, das Kapazitätsverhältnis  
25 in Kapazität pro Flächeneinheit sein. Das Verhältnis maximaler zu minimaler Kapazität für einen MIS-Kondensator ist  
30 gegeben durch:

26.07.03

SCHÜMACHER & WILLSAU  
PATENTANWALTSSOZIETÄT

- 9 -

$$\frac{C_{\max}}{C_{\min}} = 1 + \left( \frac{K_{\text{ins}}}{K_d} \frac{W_d}{W_{\text{ins}}} \right)$$

- Dabei ist  $C_{\max}$  die maximale Kapazität,  $C_{\min}$  die minimale Kapazität,  $K_{\text{ins}}$  die relative Dielektrizitätskonstante des Isolators,  $W_d$  die Breite der Verarmungsschicht,  $K_d$  die relative Dielektrizitätskonstante der Verarmungsschicht und  $W_{\text{ins}}$  die Dicke der Isolationsschicht.

Viele Materialien mit sehr hohen Dielektrizitätskonstanten weisen ferroelektrische Eigenschaften auf, die für Hochfrequenzbauteile nicht wünschenswert sind. Die Polarisation eines ferroelektrischen Materials zeigt eine Hystereseschleife oder "memory", wobei nach Entfernung der angelegten Vorspannung eine Restpolarisation verbleibt. Daher würde auch eine Rest-Verarmungsschicht verbleiben und damit das erreichbare Kapazitätsverhältnis begrenzen. Diese Materialien würden am besten bei Niederfrequenz-Anwendungen benutzt.

Für Hochfrequenzanwendungen, insbesondere bei der Verwendung im Bereich Funkübermittlung und -empfang und speziell für abstimmbare Filter hoher Güte, ist eine verlustarme, nicht ferroelektrische Isolationsschicht erforderlich. Zirconiumtitanat ( $\text{ZrTiO}_4$ ) ist ein geeignetes, nicht ferroelektrisches Material mit einer hohen relativen Dielektrizitätskonstante ( $K_r$  beträgt ungefähr 40) und geringen dielektrischen Verlusten. Zum Vergleich: die relative Dielektrizitätskonstante von Siliziumdioxid (verwendet in herkömmlichen MOS-Kondensatoren) beträgt 3,9. Die Dielektrizitätskonstante der Verarmungsschicht in Silizium beträgt 11,7 und die Dielektrizitätskonstante der Verarmungsschicht in Germanium beträgt 15,7. Man sieht leicht, dass die Dielektrizitätskonstante des Zirconiumtitanats

25.07.02

SCHUMACHER & WILLSAU  
PATENTANWALTSSOZIETÄT

- 10 -

- und der oben in Tabelle 1 genannten Materialien wesentlich höher ist als diejenige von Siliziumdioxid und dass daher ein verbesserter Kondensator mit einem größeren Kapazitätsverhältnis hergestellt werden kann. Dünne Filme aus
- 5 Zirconiumtitanat können mittels verschiedener Techniken erzeugt werden, einschließlich, jedoch nicht darauf beschränkt, Sputter-, Evaporations-, chemische Aufdampf- (CVD-), Ionenstrahl- oder plasmaunterstützte Verfahren, Sol-Gel- und andere nasschemische Verfahren.
- 10 Durch Auswahl eines Isolators, dessen relative Dielektrizitätskonstante wesentlich höher ist als diejenige der Halbleiter-Verarmungsschicht, kann ein größeres Verhältnis zwischen der maximalen Kapazität bei einer Dicke der Verarmungsschicht von Null und der minimalen Kapazität
- 15 am Inversions-Schwellenwert erreicht werden. Diese Strategie ist weitgehend übersehen worden, weil die Theorie der MIS-Kondensatoren anhand von Siliziumdioxid-Isolatoren auf Silizium entwickelt wurde. Da die maximale Breite der Verarmungsschicht in einem MIS-Kondensator durch die Ausbildung einer Inversionsschicht begrenzt ist, ist die Kapazitätsänderung, die mit einem Material niedriger Dielektrizitätskonstante, wie etwa Siliziumdioxid, erreicht werden kann, kleiner als oder vergleichbar mit dem, was durch Variation der Verarmungsbreite um einen pn-Übergang erzielt
- 20 wird.
- 25 Im Fall des pn-Übergangs hat die Verarmungsschicht überall dieselbe Dielektrizitätskonstante und eine Verarmungsbreite, die durch die Sperrspannung gesteuert wird. Die maximale Breite dieses Verarmungsschicht-
- 30 Kondensators ist letztlich begrenzt durch den Lawinen-durchbruch, der auch von der Dotanden-Konzentration abhängt. In der Praxis sind diese Durchbruchsspannungen allerdings recht hoch und die maximal erreichbare Verar-

25.07.02

SCHUMACHER & WILLSAU  
PATENTANWALTSSOZIETÄT

- 11 -

mungsbreite wird bestimmt durch die Größe der zur Verfü-  
gung stehenden Vorspannung, typischerweise zehn Volt oder  
darunter bei Anwendungen in tragbaren Radios. Der Dünn-  
schicht-Kondensator mit hoher Dielektrizitätskonstante er-  
fordert eine geringere Steuerspannung als die Varaktordio-  
de (0,5 bis 3,0 Volt für Zirconiumtitanat), abhängig von  
der Dicke des Isolationsfilms und der Halbleiter-  
Dotierung, und weist einen niedrigeren Verlust auf als die  
Varaktordiode. Die MIS-Kondensatoren mit hohem K-Wert so-  
wohl in Bipolar- als auch in MOS-Prozessen benutzt werden,  
wohingegen Hochleistungs-Varaktordioden nicht mit MOS-  
Prozessen kompatibel sind.

Es wird nun auf Figur 2 Bezug genommen. Man kann se-  
hen, dass über einen kleinen Spannungsbereich eine sehr  
große Kapazitätsänderung erfolgt, wenn ein spannungsvari-  
abler Kondensator unter Verwendung von Zirconiumtitanat  
als Isolationsschicht aufgebaut ist. Gegenüber dem Stand  
der Technik wir eine vierfache Verbesserung erzielt. Die  
Strom-Spannungs-Änderung ist linearer als dies bei her-  
kömmlichen Varaktoren beobachtet wird.

Als Hilfe zum Verständnis des zuvor erwähnten Ausfüh-  
rungsbeispiels wir der Leser auf Figur 3 verwiesen, eine  
aufgeschnittene, isometrische Darstellung eines spannungs-  
variablen Kondensators. Die Elektrode 11 wird benutzt, um  
eine elektrische Verbindung mit dem Siliziumsubstrat 12  
herzustellen und letztendlich mit der Epitaxialschicht 14  
zum Aufbau der Verarmungsschicht 20. Ein alternatives Aus-  
führungsbeispiel der Erfahrung ist in Figur 4 gezeigt, wo-  
bei eine zusätzliche, sehr dünne Schicht 17 dotierten Ma-  
terials zusätzlich zu der konventionellen Epitaxialschicht  
benutzt wird. Diese sehr dünne Schicht kann auch aus Poly-  
silizium hergestellt sein. Ein elektrischer Kontakt zu der  
dünnen Schicht wird mittels der Elektrode 11 durch e-

25.07.02

SCHUMACHER & WILLSAU  
PATENTANWALTSSOZIETÄT

- 12 -

lektrische Verbindung mit den Ausgängen 13 der Vorrichtung hergestellt. Es ist offensichtlich, dass ein Kondensator, wie hier beschrieben, leicht in einen integrierten Schaltkreis inkorporiert werden kann.

- 5 Anwendungen, die spannungsvariable Kondensatoren erfordern, die bei hohen Frequenzen arbeiten, wie etwa Radiofrequenz-Kommunikationsgeräte, werden besonderen Nutzen aus der hier beschriebenen Vorrichtung ziehen können. Radios benutzen Resonator-Netzwerke oder -Schaltkreise, die 10 mit Hilfe eines spannungsvariablen Kondensators abgestimmt werden können, wobei diejenigen, die bei hohen Frequenzen arbeiten, signifikante Vorteile durch einen spannungsvariablen Kondensator bemerken werden, der geringe Verluste, hohe Güte und einen großen Kapazitätsbereich aufweist. Bezug nehmend auf Figur 5 ist ein Blockschaltbild der elektrischen Komponenten einer Radio- oder Kommunikationsvorrichtung 50 dargestellt. Das Radio 50 enthält einen Demodulator 56, der mit der Antenne 62 über Filter 60 verbunden ist. Der Betrieb des Radios 50 wird gesteuert von der 15 Steuereinheit 54, die einen Speicherblock 52 enthält. Die Steuereinheit 54 kommuniziert mit dem Demodulator 56 und steuert den Audio-Schaltkreis-Block 58. Das demodulierte Signal des Demodulators 56 wird mit dem Lautsprecher 64 über den Audio-Schaltkreis 58 verbunden. Die Kombination 20 des Speicherblocks 52, der Steuereinheit 54, des Demodulators 56 und des/der Filter(s) 60 stellt eine Empfangsvorrichtung innerhalb der Kommunikationsvorrichtung 50 dar. Die hier beschriebenen spannungsvariablen Kondensatoren finden vorzugsweise Anwendung in dem/den Filter(n) 60, 25 können aber auch in dem Demodulator 56 und/oder den Audio-Schaltkreisen verwendet werden.

Zusammenfassend kann man sehen, dass durch die Verwendung einer Isolationsschicht, die Zirconiumtitanat mit

25.07.02

SCHUMACHER & WILLSAU  
PATENTANWALTSZOZIETÄT

- 13 -

hoher Dielektrizitätskonstante umfasst, ein verbesserter,  
spannungsvariabler Kondensator erzielt wurde. Die vorange-  
henden Beispiele sind als Illustration des bevorzugten  
Ausführungsbeispiels der Erfindung gedacht. Entsprechend  
5 ist nicht beabsichtigt, dass die Erfindung irgendwie außer  
durch die anliegenden Ansprüche beschränkt werden soll.

25.07.012

SCHUMACHER & WILLSAU  
PATENTANWALTSSOZIETÄT

- 16 -

eine Elektrode, die auf dem Zirconiumtitanat in einem Bereich direkt oberhalb der Verarmungsschicht ausgebildet ist.

25.07.02

92 923 202.3  
Motorola, Inc.

1/5

**FIG.1**



25.07.02

2/5

*FIG.2a*



*FIG.2b*



25.07.02

3/5

*FIG.3*



25.07.02

4/5

*FIG.4*



25.07.02

5/5

*FIG.5*

50.



**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

**BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** \_\_\_\_\_

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**

THIS PAGE BLANK (USPTO)