مجموعه دستورات پردازنده toy:

TOY/2 has a simple 16-bit data path based on the ALU described in.

The programmer sees the following registers:

- A accumulator
- PC program counter
- T temporary register for indirect store

and the following flags:

- C carry
- Z zero

The Instruction Set

All instructions are 16-bit: 4 bits for the opcode, and 12 bits for the direct address.

Opcode	Mnemonic	Description	Function
0	JMP vec	Indirect jump	PC:=vec
1	ADC src	Addition	A:=A+[src]
2	XOR src	Exclusive or	A:=A xor [src]
3	SBC src	Subtract	A:=A - [src] - C
4	ROR	Rotate right through carry	A,C:=A,C ror 1
5	TAT	Transfer to T	T:=A
6	OR src	Logical or	A:=A or [src]
7	???	illegal	undefined
8	AND src	Logical and	A:=A and [src]
9	LDC src	Load A, clear carry	A:=[src]; C:=0
A	BCC vec	Indirect jump if carry clear	IF C=1 THEN PC:=[vec]
В	BNE vec	Indirect jump if not zero	IF Z=0 THEN PC:=[vec]
С	LDI	0 1	
D	STT	Load A indirect	A:=[A]
E	LDA src	Store T indirect	[A]:=T
F	STA dest	Load A, don't clear carry	A:=[src]
	2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Store A	[dest]:=A

۱- یک طبقه از ALU مناسب برای این پردازنده را طراحی کنید.

Tata path مناسب برای این پردازنده به صورت single cycle را طراحی کنید.

۳- واحد کنترل این پردازنده را طراحی کنید.