Versuch 355

Gekoppelte Schwingkreise

Sebastian Pape Jonah Nitschke sepa@gmx.de lejonah@web.de

> Durchführung: 10.01.2017 Abgabe: 17.01.2017

1 Theorie

2 Zielsetzung

In dem Versuch V355 werden gekoppelte schwingfähige Systeme in Form von elektrischen Schaltungen betrachtet. Vom besonderem Interesse sind hierbei der stattfindende Energieaustausch zwischen den Systemen, sowie die Schwingungsfrequenzen. Es werden elektrische Schaltungen betrachtet, da die Amplituden und Frequenzen der Schwingungen besonders präzise gemessen und beobachtet werden.

2.1 Gekoppelte Schwingungen

Als eine Schwingungen wird ein Forgang bezeichnet, bei dem ein System periodisch zwischen zwei Zuständen wechselt. Werden zwei schwingende Systeme gekoppelt, wechselwirken diese miteinander. Die Wechselwirkung wird in Form von einem Energiaustausch zwischen den Systeme vollzogen. In dem Versuch wurden zwei identische Schwingkreise über einen Kopplungskondensator C_K gekopplet. Eine schematische Darstellung eines gekoppelten elektrischen Schwingkreises ist in der Abb. 1 dargestellt.

Abbildung 1: Gekoppelter elektrischer Schwingkreis.[anleitung01]

Über die Kirchhoffschen Regelen und Differentiation lassen sie die folgenden Schwingungsgleichugen aufstellen.

$$L\ddot{I}_1 + \frac{1}{C}I_1 + \frac{1}{C_K}(I_1 - I_2) = 0 \tag{1}$$

$$L\ddot{I_{2}}+\frac{1}{C}I_{2}-\frac{1}{C_{K}}\left(I_{1}-I_{2}\right)=0 \tag{2}$$

Über Addition und Subtraktion werden (1) und (2) zu:

$$L(\ddot{I}_1 + \ddot{I}_2) + \frac{1}{C}(I_1 + I_2) = 0$$
(3)

$$L\left(\ddot{I_1}-\ddot{I_2}\right)+\left(\frac{1}{C}+\frac{2}{C_K}\right)\left(I_1-I_2\right)=0. \tag{4}$$

Die Lösung von (3) ist eine Schwingungsgleichung mit der Frequenz

$$\nu^{+} = \frac{1}{2\pi\sqrt{LC}}.\tag{5}$$

Die DGL (4) ist ebenfalls lösbar durch eine Schwingungsgleichung. Die Lösung hat eine Frequenz von

$$\nu^{-} = \frac{1}{\left[2\pi\sqrt{L\left(\frac{1}{C} + \frac{2}{C_K}\right)^{(-1)}}\right]}.$$
 (6)

Die Lösungen haben die Form:

$$(I_1 + I_2)(t) = (I_{1,0} + I_{2,0})\cos(2\pi\nu^+ t)$$
(7)

$$(I_1 - I_2)(t) = (I_{1,0} - I_{2,0})\cos(2\pi\nu^- t).$$
 (8)

Die ermittelten Frequenzen ν^+ und ν^- heißen Fundamentalfrequenzen, da sie die Frequenzen der Fundamentalschwingungen sind. Als Fundamentalschwingungen werden die Spezialfälle der Schwingungen eines gekoppelten Systems bezeichnet. Der erste Spezialfall ist, wenn die beiden Oszillatoren mit der selben Amplitude und Frequenz schwingen. In diesem Fall ist die Kopplung minimal, da die Systeme nicht miteinander interargieren und es liegt die Frequenz ν^+ vor. Der andere Spezialfall beschreibt die gegenphasige Schwingung bei gleicher Amplitude der Systeme. In diesem Fall ist die Kopplung maximal und es liegt die Frequenz ν^- vor.

2.1.1 Schwebungen

Bei den Fundamentalschwingungen waren beide Oszillatoren bei Betrachtungsanfang gleich- bzw. gegenphasig. Es treten von den Fundamentalschwingungen verschiedene Schwingverhalten auf, wenn einer der Oszillatoren bei Beobachtungsbeginn z.B. in Ruhe ist. Das dann auftretende Schwingverhalten wird als Schwebung bezeichnet. Dieses Schwingverhalten lässt sich durch die folgenden Gleichungen beschreiben.

$$I_{1}(t)=I_{1,0}cos\left(\frac{1}{2}\left(\omega^{+}+\omega^{-}\right)t\right)cos\left(\frac{1}{2}\left(\omega^{+}-\omega^{-}\right)t\right) \tag{9}$$

$$I_{2}(t)=I_{1,0}sin\left(\frac{1}{2}\left(\omega^{+}+\omega^{-}\right)t\right)sin\left(\frac{1}{2}\left(\omega^{+}-\omega^{-}\right)t\right) \tag{10}$$

Dabei ist $\omega^+ = 2\pi\nu^+$ und $\omega^- = 2\pi\nu^-$. Unter der Annahme, dass die Fundamentalschwingungen ν^+ und ν^- ungefähr gleich sind gilt: $\frac{1}{2}\omega^+ + \omega^- \approx \omega^+$, sowie $\omega^- + \omega^+ \ll \omega^+$. In den Gleichungen (??) und (??) wird ersichtlich, dass unter der getroffenen Annahme der erste Faktor in den Gleichungen ungefähr mit der Einzelschwingung eines entkoppelten Oszillators übereinstimmt. Der Zweite Faktor beschreibt ebenfalls eine Schwingung mit einer Frequenz $\ll \omega^+$. Dies ist der Schwebungsanteil der Schwingung. Die Differenz der Fundamentalschwingungen wird als Schwebungsfrequenz bezeichnet. Die Abbildung 2 zeigt ein exemplarische Darstellung einer Schwebung.

Abbildung 2: Beispiel einer Schwebung.[anleitung01]