EDA

1. Imports and Load Cleaned Data

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        # --- Setup ---
        # Set a consistent style for all our plots
        sns.set_style("whitegrid")
        plt.rcParams['figure.figsize'] = (12, 7) # Set default figure size
        # --- Load Data ---
        # Load the cleaned data from the 'processed' folder
        file_path = '../data/processed/cleaned_loan_data.csv'
            df = pd.read_csv(file_path)
            print("Cleaned data loaded successfully.")
        except FileNotFoundError:
            print(f"ERROR: The file {file_path} was not found. Please run the first note
        df.head()
```

Cleaned data loaded successfully.

Out[1]:		uniqueid	disbursed_amount	asset_cost	ltv	branch_id	supplier_id	manufacturer_
	0	420825	50578	58400	89.55	67	22807	,
	1	417566	53278	61360	89.63	67	22807	
	2	539055	52378	60300	88.39	67	22807	
	3	529269	46349	61500	76.42	67	22807	
	4	563215	43594	78256	57.50	67	22744	i

5 rows × 42 columns

2. Statistical Description

```
In [2]: # --- Statistical Summary ---
print("Statistical Description of Numerical Variables:")
# .T transposes the output to make it easier to read
df.describe().T
```

Statistical Description of Numerical Variables:

Out[2]:

	count	mean	std	min
uniqueid	233154.0	535917.573376	6.831569e+04	417428.00
disbursed_amount	233154.0	54356.993528	1.297131e+04	13320.00
asset_cost	233154.0	75865.068144	1.894478e+04	37000.00
ltv	233154.0	74.746530	1.145664e+01	10.03
branch_id	233154.0	72.936094	6.983499e+01	1.00
supplier_id	233154.0	19638.635035	3.491950e+03	10524.00
manufacturer_id	233154.0	69.028054	2.214130e+01	45.00
current_pincode_id	233154.0	3396.880247	2.238148e+03	1.00
state_id	233154.0	7.262243	4.482230e+00	1.00
employee_code_id	233154.0	1549.477148	9.752613e+02	1.00
mobileno_avl_flag	233154.0	1.000000	0.000000e+00	1.00
aadhar_flag	233154.0	0.840320	3.663097e-01	0.00
pan_flag	233154.0	0.075577	2.643201e-01	0.00
voterid_flag	233154.0	0.144943	3.520439e-01	0.00
driving_flag	233154.0	0.023242	1.506720e-01	0.00
passport_flag	233154.0	0.002127	4.607421e-02	0.00
perform_cns_score	233154.0	289.462994	3.383748e+02	0.00
pri_no_of_accts	233154.0	2.440636	5.217233e+00	0.00
pri_active_accts	233154.0	1.039896	1.941496e+00	0.00
pri_overdue_accts	233154.0	0.156549	5.487867e-01	0.00
pri_current_balance	233154.0	165900.076936	9.422736e+05	-6678296.00
pri_sanctioned_amount	233154.0	218503.855323	2.374794e+06	0.00
pri_disbursed_amount	233154.0	218065.898655	2.377744e+06	0.00
sec_no_of_accts	233154.0	0.059081	6.267946e-01	0.00
sec_active_accts	233154.0	0.027703	3.160566e-01	0.00
sec_overdue_accts	233154.0	0.007244	1.110789e-01	0.00
sec_current_balance	233154.0	5427.792819	1.702370e+05	-574647.00
sec_sanctioned_amount	233154.0	7295.923347	1.831560e+05	0.00
sec_disbursed_amount	233154.0	7179.997873	1.825925e+05	0.00
primary_instal_amt	233154.0	13105.481720	1.513679e+05	0.00
sec_instal_amt	233154.0	323.268449	1.555369e+04	0.00
new_accts_in_last_six_months	233154.0	0.381833	9.551067e-01	0.00
delinquent_accts_in_last_six_months	233154.0	0.097481	3.844390e-01	0.00

min	std	mean	count	
0.00	7.064977e-01	0.206615	233154.0	no_of_inquiries
0.00	4.122523e-01	0.217071	233154.0	loan_default
25.00	9.805992e+00	41.100946	233154.0	age

3. Target Variable Distribution

```
In [4]: # --- Target Variable Analysis ---
        plt.figure(figsize=(8, 6))
        plt.title('Distribution of Loan Default Status', fontsize=16)
        # Create the count plot
        ax = sns.countplot(x='loan_default', data=df, palette=['#43a047', '#e53935'])
        # Add Labels and annotations
        plt.xlabel('Loan Default Status (0 = No Default, 1 = Default)', fontsize=12)
        plt.ylabel('Number of Applicants', fontsize=12)
        # Calculate and display the percentage on the bars
        total = len(df)
        for p in ax.patches:
            percentage = f'{100 * p.get_height() / total:.1f}%'
            x = p.get_x() + p.get_width() / 2
            y = p.get_height()
            ax.annotate(percentage, (x, y), ha='center', va='bottom', fontsize=12, color
        # --- SAVE THE FIGURE ---
        # This line saves the plot to the specified file before displaying it.
        plt.savefig('../reports/figures/target_variable_distribution.png', bbox_inches='
        plt.show()
        # Print the exact default rate
        default_rate = df['loan_default'].value_counts(normalize=True).loc[1] * 100
        print(f"Overall Default Rate: {default rate:.2f}%")
       C:\Users\ThapeloMasebe\AppData\Local\Temp\ipykernel_16100\3021288222.py:6: Future
       Warning:
       Passing `palette` without assigning `hue` is deprecated and will be removed in v
       0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effe
       ct.
         ax = sns.countplot(x='loan_default', data=df, palette=['#43a047', '#e53935'])
```

Distribution of Loan Default Status

Overall Default Rate: 21.71%

4. Default Rate Across Categories

```
In [5]: # Calculate the default rate for each state
    state_default_rate = df.groupby('state_id')['loan_default'].mean().sort_values(a

# Plot the top 10 states with the highest default rates
    plt.figure(figsize=(14, 8))
    state_default_rate.head(10).plot(kind='bar', color=sns.color_palette("viridis",
        plt.title('Top 10 States with Highest Loan Default Rates', fontsize=16)
    plt.xlabel('State ID', fontsize=12)
    plt.ylabel('Default Rate (%)', fontsize=12)
    plt.ticks(rotation=45)
    plt.tight_layout() # Adjusts plot to ensure everything fits without overlapping

# --- SAVE THE FIGURE ---
    plt.savefig('../reports/figures/top10_states_by_default_rate.png', bbox_inches='
    plt.show()
```


5. Employment Type and Defaulting

```
In [6]: # --- Employment Type vs. Default Status ---
        fig, axes = plt.subplots(1, 2, figsize=(16, 8))
        plt.suptitle('Employment Type Distribution by Loan Status', fontsize=20)
        # Pie chart for Non-Defaulters (loan_default = 0)
        df[df['loan_default'] == 0]['employment_type'].value_counts().plot.pie(
        autopct='%1.1f%%', ax=axes[0], startangle=90,
        colors=['#66bb6a', '#ffa726'], textprops={'fontsize': 14}
        axes[0].set_title('Non-Defaulters', fontsize=16)
        axes[0].set_ylabel('') # Hide the y-label
        # Pie chart for Defaulters (loan default = 1)
        df[df['loan_default'] == 1]['employment_type'].value_counts().plot.pie(
        autopct='%1.1f%%', ax=axes[1], startangle=90,
        colors=['#66bb6a', '#ffa726'], textprops={'fontsize': 14}
        axes[1].set_title('Defaulters', fontsize=16)
        axes[1].set_ylabel('') # Hide the y-label
        # --- SAVE THE FIGURE ---
        plt.savefig('../reports/figures/employment_type_pie_charts.png', bbox_inches='ti
        plt.show()
```

Employment Type Distribution by Loan Status

6. Age and Defaulting

```
In [7]: # --- Age Distribution by Default Status ---
plt.figure(figsize=(14, 8))
  # Use a histogram with a Kernel Density Estimate (KDE) for a smooth line
  sns.histplot(data=df, x='age', hue='loan_default', multiple='layer', kde=True, p
  plt.title('Age Distribution for Defaulters vs. Non-Defaulters', fontsize=16)
  plt.xlabel('Age of Applicant', fontsize=12)
  plt.ylabel('Count', fontsize=12)
  plt.legend(title='Loan Status', labels=['Default', 'No Default'])

# --- SAVE THE FIGURE ---
plt.savefig('../reports/figures/age_distribution_by_default.png', bbox_inches='t
  plt.show()
```


7. ID Proof Analysis

```
In [8]: # --- ID Proof Analysis ---
# The ID columns are flags (1 = submitted, 0 = not submitted)
id_flags = ['aadhar_flag', 'pan_flag', 'voterid_flag', 'driving_flag', 'passport
id_counts = df[id_flags].sum().sort_values(ascending=False)

# Create a bar plot
plt.figure(figsize=(10, 6))
sns.barplot(x=id_counts.index, y=id_counts.values, palette='plasma')
plt.title('Number of Applicants by ID Proof Submitted', fontsize=16)
plt.xlabel('Type of ID Proof', fontsize=12)
plt.ylabel('Total Number of Applicants', fontsize=12)
plt.xticks(ticks=range(len(id_flags)), labels=[flag.replace('_flag', '').title()
plt.tight_layout()

# --- SAVE THE FIGURE ---
plt.savefig('../reports/figures/id_proof_counts.png', bbox_inches='tight')
plt.show()
```

 $\label{local-temp-ipykernel_16100} C:\Users\ThapeloMasebe\AppData\Local\Temp\ipykernel_16100\353651389.py:8: Future Warning:$

Passing `palette` without assigning `hue` is deprecated and will be removed in v 0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x=id_counts.index, y=id_counts.values, palette='plasma')

