PRACOVNÍ LIST - HYDRODYNAMIKA

D. o tlaku v potrubí nelze rozhodnout

Voda protéká vodorovným potrubím o obsahu průřezu 0,2 m 2 rychlostí 8 m · s $^{-1}$. Vodu považujte za ideální kapalinu o hustotě 1 000 kg · m $^{-3}$.

Iský objem vody proteče potrubím za 2 sekundy? A. 0,4 m³ B. 0,8 m³ D. 3,2 m³ \bullet D. 3,2 m³

III lakou kinetickou energii má proudící voda o objemu l $\,\mathrm{m}^3$?

C. tlak p2 je stejný jako tlak p1

II laká je rychlost proudící vody v rozšířené části potrubí, jehož průřez má obsah 0,4 m 2 ? A. 32 m \cdot s $^{-1}$ B. 16 m \cdot s $^{-1}$ C. 4 m \cdot s $^{-1}$

IN laký je tlak p_2 v rozšířené části potrubí ve srovnání s tlákem p_1 v jeho užší části? A. tlak p_2 je větší než tlak p_1

Jaký je objemový průtok vody v trubici o průměru 20 cm při rychlosti proudu 0,2 m \cdot s⁻¹ (viz obr. 111)?

Malá vodní elektrárna využívá energie vody, která proudí do turbíny z výšjestliže její účinnost je 75 %? Hustota vody je $10^3~{\rm kg \cdot m^{-3}}$, tlhové zrychlení 10 m · s $^{-2}$.

V širší části vodorovné trubice teče voda pod tlakem 1,5 · 10^5 Pa
 Pach 1,4 · 10^5 Pa? Hustota vody je 10^3 kg · m $^{-3}$.

V užší části trubice o obsahu příčného řezu 2 cm² proudí voda rychlostí 4 m·s $^{-1}$ při tlaku 1,75·10 5 Pa. Jaký je tlak v širší části této trubice, která má obsah příčného řezu 200 cm²? Hustota vody je $10^3~{\rm kg\cdot m}^{-3}$.

Do nádoby přitéká voda se stálým objemovým průtokem 150 cm 3 · s $^{-1}$. V jaké výšce se ustálí voda v nádobě? Tíhové zrychlení je 9,81 m · s $^{-2}$.

We stěně válcové nádoby naplněné vodou je otvor, který je 49 cm pod povrchem vody a ve výšce 9 cm nad povrchem stolu (obr. 112). Do jaké vzdálenosti x od nádoby dopadne vodní