Savitribai Phule Pune University Second Year of Engineering (2019 Course)

210252: Data Structures and Algorithms

0			
Teaching Scheme		Credit Scheme	Examination Scheme and Marks
Lecture: 03 Hours/Week		03	Mid_Semester(TH): 30 Marks
			End_Semester(TH): 70 Marks
Prerequisite Courses:	110005:	Programming and Probl	em Solving
210242: Fundamentals of Data Structures			
Companion Course: 210257: Data Structures and Algorithms Laboratory			

Course Objectives:

The course is intended to provide the foundations of the practical implementation and usage of Data Structures and Algorithms to ensure that the learner evolves into a competent programmer capable of designing and analyzing implementations of data structures and algorithms for different kinds of problems.

- To develop a logic for graphical modeling of the real life problems.
- To suggest appropriate data structure and algorithm for graphical solutions of the problems.
- To understand advanced data structures to solve complex problems in various domains.
- To operate on the various structured data
- To build the logic to use appropriate data structure in logical and computational solutions.
- To understand various algorithmic strategies to approach the problem solution.

Course Outcomes:

On completion of the course, learner will be able to-

- CO1: **Identify and articulate** the complexity goals and benefits of a good hashing scheme for real-world applications.
- CO2: Apply non-linear data structures for solving problems of various domain.
- CO3: **Design and specify** the operations of a nonlinear-based abstract data type and implement them in a high-level programming language.
- CO4: Analyze the algorithmic solutions for resource requirements and optimization
- CO5: Use efficient indexing methods and multiway search techniques to store and maintain data.
- CO6:Use appropriate modern tools to understand and analyze the functionalities confined to the secondary storage.

Unit I	Hashing	(07 Hours)
Hash Table- Concepts-h	ash table, hash function, basic operations, bucket, collisio	n, probe, synonym

overflow, open hashing, closed hashing, perfect hash function, load density, full table, load factor, rehashing, issues in hashing, hash functions- properties of good hash function, division, multiplication, extraction, mid-square, folding and universal, Collision resolution strategies- open addressing and chaining, Hash table overflow- open addressing and chaining, extendible hashing, closed addressing and separate chaining.

Skip List- representation, searching and operations- insertion, removal

Unit II	Trees	(08 Hours)
Outcomes for Unit I		
*Mapping of Course	CO1, CO4	
<u>Studies</u>		
#Exemplar/Case	Book Call Number and Dictionary	

Tree- basic terminology, General tree and its representation, representation using sequential and linked organization, Binary tree- properties, converting tree to binary tree, binary tree traversals(recursive and non-recursive)- inorder, preorder, post order, depth first and breadth first, Operations on binary tree. Huffman Tree (Concept and Use), Binary Search Tree (BST), BST operations, Threaded binary search tree- concepts, threading, insertion and deletion of nodes in inorder threaded binary search tree, in order traversal of in-order threaded binary search tree.

Unit III	Graphs	(07 Hours)
Outcomes for Unit II		
*Mapping of Course	CO2, CO3,CO4	
<u>Studies</u>		
#Exemplar/Case	Use of binary tree in expression tree-evaluation and Huffman's coding	

Basic Concepts, Storage representation, Adjacency matrix, adjacency list, adjacency multi list, inverse adjacency list. **Traversals**-depth first and breadth first, Minimum spanning Tree, Greedy algorithms for computing minimum spanning tree- Prims and Kruskal Algorithms, Dikjtra's Single source shortest path, All pairs shortest paths- Flyod-Warshall Algorithm Topological ordering.

Unit IV	Search Trees	(08 Hours)
Outcomes for Unit III		
*Mapping of Course	CO2,CO3, CO4	
<u>Studies</u>		
#Exemplar/Case	Data structure used in Webgraph and Google map	

Symbol Table-Representation of Symbol Tables- Static tree table and Dynamic tree table, Weight balanced tree - Optimal Binary Search Tree (OBST), OBST as an example of Dynamic Programming, Height Balanced Tree- AVL tree. Red-Black Tree, AA tree, K-dimensional tree, Splay Tree

Unit V	Indexing and Multiway Trees	(07 Hours)
Outcomes for Unit IV		
*Mapping of Course	CO2, CO3, CO5	
<u>Studies</u>		
#Exemplar/Case	Keyword search in a document using OBST	

Indexing and Multiway Trees- Indexing, indexing techniques-primary, secondary, dense, sparse, Multiway search trees, B-Tree- insertion, deletion, B+Tree - insertion, deletion, use of B+ tree in

Indexing, Trie Tree.

Unit VI	File Organization	(07 Hours)
Outcomes for Unit V		
*Mapping of Course	CO2, CO3, CO5	
<u>Studies</u>		
#Exemplar/Case	Heap as a Priority Queue	

Files: concept, need, primitive operations. **Sequential file organization**- concept and primitive operations, **Direct Access File**- Concepts and Primitive operations, **Indexed sequential file organization**-concept, types of indices, structure of index sequential file, **Linked Organization**- multi list files, coral rings, inverted files and cellular partitions.

#Exemplar/Case	External Sort- Consequential processing and merging two lists, multiway
<u>Studies</u>	merging- a k way merge algorithm
*Mapping of Course	CO4, CO6
Outcomes for Unit VI	

Learning Resources

Text Books:

- 1. Horowitz, Sahani, Dinesh Mehata, "Fundamentals of Data Structures in C++"||, Galgotia Publisher, ISBN: 8175152788, 9788175152786.
- 2. M Folk, B Zoellick, G. Riccardi, "File Structures||, Pearson Education", ISBN:81-7758-37-5
- 3. Peter Brass, "Advanced Data Structures" ||, Cambridge University Press, ISBN: 978-1-107-43982-5