Section 4.2—Logarithmic Functions

No horizontal line can be drawn that intersects the graph of an exponential function at more than one point. This means that the exponential function is one-to-one and has an inverse.

The inverse function of the exponential function with base b is called the logarithmic function with base b.

Logarithmic Function

For $x > 0 & b > 0, b \neq 1$

 $y = \log_b x$ is equivalent to $b^y = x$.

The function $f(x) = \log_b x$ is the logarithmic function with base b.

 $y = \log_b x$ and $b^y = x$ are two was of expressing the same thing.

- $y = \log_b x$ is the **logarithmic form**
- $b^y = x$ is the **exponential form**

Example Write each equation in its equivalent exponential form. a. $3 = \log_7 x$ b. $2 = \log_b 25$ c.

a.
$$3 = \log_7 x$$

b.
$$2 = \log_b 25$$

$$b^2 = 25$$

c.
$$\log_4 26 = y$$

Example—Write each equation in its equivalent logarithmic form.

a.
$$2^5 = x$$

b.
$$b^3 = 27$$

c.
$$e^{y} = 33$$

Remember logarithms another way to write exponents. So if we want to evaluate $\log_b x$ we have to ask "what exponent must we raise b to in order to get x."

Example -Evaluate.

a.
$$\log_{10} 100 = 2$$

b.
$$\log_5 \frac{1}{125} = 3$$

c.
$$\log_{36} 6 = \frac{1}{2}$$

Basic Logarithmic Properties Involving One

- $\log_b b = 1$; 1 is the exponent to which b must be raised to obtain b $(b^1 = b)$
- $\log_b 1 = 0$; 0 is the exponent to which be must be raised to obtain 1 ($b^0 = 1$)

a.
$$\log_{9} 9 = 1$$

b.
$$\log_8 1 = 0$$

Inverse Properties of Logarithms

For
$$b > 0 \& b \neq 1$$

$$\log_b \frac{b^x}{b^x} = x$$

The logarithm with base b of b raised to a power that

equals that power.

$$b^{\log_b x} = x$$

b raised to the logarithm with base b of a number equals that number.

Example—Evaluate

a.
$$\log_{7} 7^{8} = 8$$

b.
$$3^{\log_3 17} = 17$$

Graphing a Logarithmic Function—Remember that log functions are inverses of exponential functions; meaning that the log function reverses the coordinates of the exponential function. It also means the graph of the log is a reflection of the graph of the exponential function about the line y = x.

Example—Graph $f(x)=3^x$ and $g(x)=\log_3 x$ on the same

rectangular coordinate system.

	guiai Coordinaic	yystem.	$\alpha(V)$
X	3 ×	(4,4)	g(x)
	$3^{-2} = \frac{1}{3^2} = .11$	(-2,.11)	(.11,-2)
- 1	$3^{-1} = \frac{1}{3^{-1}} = .33$	(-1, .33)	(,33,-1)
0	3°=1		(1,0)
		(1,3)	(3,1)
2	32=9	(2,9)	(9,2)

The domain of a logarithmic function in the form of $f(x) = \log_b x$ is the set of all positive real numbers.

The domain of $f(x) = \log_b g(x)$ consists of all x for which g(x) > 0.

Example—Find the domain of $f(x) = \log_4(x-5)$.

$$(5,\infty)$$
 $\frac{+5}{\times}$

Common Logarithmic Function—logarithmic function with base 10 The function $f(x) = \log_{10} x$ is usually expressed as $f(x) = \log_{x} x$.

Many real-life phenomena start with rapid growth and then the growth begins to level off.

Example—The percentage of adult height attained by a boy who is x years old can be modeled by $f(x)=29+48.8\log(x+1)$ where x represents the boys' age and f(x) represents the percentage of his adult height. Approximately what percentage of his adult height has a boy attained at age 10.

$$f(10) = 29 + 48.8 \log (10 + 1)$$

 $f(16) = 29 + 48.8 \log (11)$
 $f(16) = 79.82$

Properties of Common Logarithms			
General Properties	Common Log Properties		
$\log_b 1 = 0$	$\log 1 = 0$		
$\log_b b = 1$	$\log 10 = 1$		
$\log_b b^x = x$	$\log 10^x = x$		
$b^{\log_b x} = x$	$10^{\log x} = x$		

The property $log 10^x = x$ can be used to evaluate common logarithms involving powers of 10. For example:

$$\log 100 = \log 10^2 = 2$$

$$\log 1000 = \log_{10}^{10^3} = 3$$

$$\log 10^{7.1} = 7.1$$

Natural Logarithmic Function—the logarithmic function with base e. The function $f(x) = \log_e x$ is usually expressed as $f(x) = \ln x$.

Like the domain of all logarithmic functions, the domain of the natural logarithmic function $f(x) = \ln x$ is the set of all positive real numbers. Thus, the domain consists of all x for which g(x) > 0

Example—Find the domain of each function.

a)
$$f(x) = \ln(4-x)$$
 $4-x > 0$
 $(-\infty, 4)$ -4 -4
 $\times < 4$

b)
$$h(x) = \ln x^2$$
 $\left(-\infty, 0\right) V \left(0, \infty\right)$

Properties of Common Logarithms			
General Properties	Natural Log Properties		
$\log_b 1 = 0$	ln 1 = 0		
$\log_b b = 1$	$\ln e = 1$		
$\log_b b^x = x$	$\ln e^x = x$		
$b^{\log_b x} = x$	$e^{\ln x} = x$		

Example—When the outside air temperature is anywhere from 72° to 96° Fahrenheit, the temperature in an enclosed vehicle climbs by 43° in the first hour. The function $f(x)=13.4 \ln x-11.6$ models the temperature increase, f(x), in degrees Fahrenheit, after x minutes. Use the function to find the temperature increase, to the nearest degree, after 30 minutes.

$$f(x)=13.4 \ln x-11.6$$

 $f(30)=13.4 \ln (30)-11.6$
 $f(30)=33.976$
 34°