IN THE U.S. PATENT AND TRADEMARK OFFICE

In re application of: Tatsuya SUZUKI et al.

Conf .:

NEW NON-PROVISIONAL Group: Appl. No.:

October 16, 2003

METHOD FOR MANUFACTURING SEMICONDUCTOR Filed:

DEVICE AND SEMICONDUCTOR DEVICE Title:

CLAIM TO PRIORITY

Assistant Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

October 16, 2003

Applicant(s) herewith claim(s) the benefit of the priority filing date of the following application(s) for the above-entitled U.S. application under the provisions of 35 U.S.C. § 119 and 37 C.F.R. § 1.55:

Application No. 2002-303631 Country JAPAN

October 17, 2002

Certified copy(ies) of the above-noted application(s) is(are) attached hereto.

Respectfully submitted,

YOUNG & THOMPSON

Thomas W. Perkins, Reg. No. 33,027

745 South 23rd Street Arlington, VA 22202 Telephone (703) 521-2297

TWP/maf

Attachment(s): 1 Certified Copy(ies)

JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2002年10月17日

出 願 番 号 Application Number: 特願2002-303631

[ST. 10/C]:

[JP2002-303631]

出 Applicant(s): NECエレクトロニクス株式会社

2003年 8月22日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

74112769

【提出日】

平成14年10月17日

【あて先】

特許庁長官殿

【国際特許分類】

H01L 21/304

【発明者】

【住所又は居所】

東京都港区芝五丁目7番1号 日本電気株式会社内

【氏名】

鈴木 達也

【発明者】

【住所又は居所】

東京都港区芝五丁目7番1号 日本電気株式会社内

【氏名】

青木 秀充

【特許出願人】

【識別番号】

000004237

【氏名又は名称】 日本電気株式会社

【代理人】

【識別番号】

100110928

【弁理士】

【氏名又は名称】 速水 進治

【電話番号】

03-3461-3687

【手数料の表示】

【予納台帳番号】 138392

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0110433

【プルーフの要否】

要

半導体装置の製造方法および半導体装置 【発明の名称】

【請求項1】 半導体基板上に、所定の形状にパターニングされた膜を形 【特許請求の範囲】 成する工程と、該膜の形成後、半導体材料の露出面を有する半導体基板の表面に 対し、有機溶媒を主成分とする薬液によりウェット処理を施すことを特徴とする 半導体装置の製造方法。

半導体基板上に膜を形成し、前記膜の少なくとも一部を有 機溶媒を主成分とする薬液を用いて除去し、前記半導体基板の表面の一部を露出 させることを特徴とする半導体装置の製造方法。

【請求項3】 半導体基板上に絶縁膜を形成する工程と、

前記絶縁膜上に導電膜を形成する工程と、

前記導電膜上に所定形状にパターニングされた保護膜を形成する工程と、

前記保護膜をマスクとして前記導電膜を選択的に除去する工程と、

前記絶縁膜を選択的に除去して前記半導体基板表面の一部を露出させる工程と

有機溶媒を主成分とする薬液により前記半導体基板に対してウェット処理を施 す工程と、

を含むことを特徴とする半導体装置の製造方法。

【請求項4】 請求項3に記載の半導体装置の製造方法において、 前記絶縁膜を除去する工程は、

前記半導体基板表面の一部を露出させる前に、前記保護膜を除去する工程を含 むことを特徴とする半導体装置の製造方法。

【請求項5】 請求項3または4に記載の半導体装置の製造方法において

前記絶縁膜を形成する工程は、

シリコン酸化膜よりも比誘電率の高い材料により構成された高誘電率絶縁膜を 形成する工程を含み、

前記絶縁膜を除去する工程は、

前記保護膜をマスクとしてドライエッチングにより前記高誘電率絶縁膜の一部 を選択的に除去する工程と、

前記保護膜を除去する工程と、

O,

前記導電膜をマスクとして、ウェットエッチングにより前記高誘電率絶縁膜の 残りを選択的に除去する工程と、を含み、

前記ウェットエッチングは、フッ化化合物を含み有機溶媒を主成分とする除去 液、熱リン酸を含む除去液、または硫酸を含む除去液を用いて行われることを特 徴とする半導体装置の製造方法。

半導体基板上にシリコン酸化膜よりも比誘電率の高い高誘 【請求項6】 電率絶縁膜を少なくとも含む絶縁膜を形成する工程と、

前記絶縁膜を、フッ化化合物を含み、有機溶媒を主成分とする薬液を用いたウ ェットエッチングにより選択的に除去して前記半導体基板表面の一部を露出させ る工程と、

を含むことを特徴とする半導体装置の製造方法。

半導体基板上の第一の領域および第二の領域に第一の絶縁 【請求項7】 膜および第二の絶縁膜をそれぞれ形成する工程と、

前記第二の絶縁膜を覆う保護膜を形成する工程と、

前記第一の絶縁膜を除去して前記第一の領域において、前記半導体基板表面を 露出させる工程と、

有機溶媒を主成分とする薬液により前記保護膜を除去する工程と、

前記第一の領域に前記第二の絶縁膜と膜厚または膜材料の異なる第三の絶縁膜 を形成する工程と、

を含むことを特徴とする半導体装置の製造方法。

請求項7に記載の半導体装置の製造方法において、

前記第一の絶縁膜、第二の絶縁膜、および第三の絶縁膜は、それぞれ対応する 領域において、前記半導体基板を酸化することにより形成されることを特徴とす る半導体装置の製造方法。

請求項7または8に記載の半導体装置の製造方法において 【請求項9】

前記第三の絶縁膜および前記第二の絶縁膜上に、シリコン酸化膜よりも比誘電 率の高い材料により構成された第一の高誘電率絶縁膜および第二の高誘電率絶縁 膜をそれぞれ形成する工程をさらに含むことを特徴とする半導体装置の製造方法

請求項1乃至9いずれかに記載の半導体装置の製造方法 において、前記有機溶媒は、極性基を有する有機溶媒であることを特徴とする半 導体装置の製造方法。

請求項1乃至10いずれかに記載の半導体装置の製造方 法において、前記有機溶媒は、イソプロピルアルコール、エチレングリコール、 2-ヘプタノン、シクロペンタノン、メチルエチルケトン、グリコールエーテル 、プロピレングリコールモノメチルエーテル、またはプロピレングリコールモノ メチルアセテートであることを特徴とする半導体装置の製造方法。

【請求項12】 請求項1乃至11いずれかに記載の半導体装置の製造方 法において、前記有機溶媒は、イソプロピルアルコールであることを特徴とする

【請求項13】 請求項1乃至12いずれかに記載の半導体装置の製造方 半導体装置の製造方法。 法において、前記有機溶媒はイソプロピルアルコールであって、前記薬液は、イ ソプロピルアルコールを90体積%以上含むことを特徴とする半導体装置の製造 方法。

【請求項14】 半導体基板と、

前記半導体基板上の異なる領域に形成された第一および第二のゲート絶縁膜と

前記第一のゲート絶縁膜は、第一の絶縁膜およびその上に形成された第一の高 誘電率膜により構成され、

前記第二のゲート絶縁膜は、前記第一の絶縁膜とは膜厚または膜材料が異なる 第二の絶縁膜およびその上に形成された第二の高誘電率膜により構成され、

前記第一の高誘電率膜および前記第二の高誘電率膜は、ジルコニウム、ハフニ ウム、ランタノイド、アルミニウム、インジウム、ガリウムまたはその酸化物を 含む材料により構成され、シリコン酸化膜よりも比誘電率が高いことを特徴とす る半導体装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、半導体装置の製造方法および半導体装置に関する。本発明はとくに 、半導体基板上に膜を形成する半導体装置の製造方法に関し、製造工程において 、半導体基板表面の少なくとも一部を露出させる処理を含む半導体装置の製造方 法に関する。

[0002]

近年、半導体装置の集積化にともない、ゲート絶縁膜の膜厚が異なる素子を一 つのチップ内に集積した半導体装置 (マルチオキサイド) が開発されている。以 下に図8および図9を参照して従来のマルチオキサイドを有する半導体装置の製 造方法を説明する。

図8 (a) に示すように、シリコン基板100上に素子分離領域112を形成 した後、熱酸化法により酸化膜114および酸化膜116を形成する。つづいて 、図8(b)に示すように、酸化膜116上にレジスト層118を形成する。

この状態で、図8(c)に示すように、たとえばバッファドフッ酸(BHF) を用いてウェットエッチングを行う。その結果、図8 (d) に示すように、酸化 膜114が除去される。つづいて、図9(a)に示すように、除去液を作用させ る。これにより、図9(b)に示すように、レジスト層118が除去される。次 に、図9 (c) に示すように、アンモニアー過酸化水素混合液 (APM) でシリ コン基板100表面の粒子状汚染成分(パーティクル)を洗浄除去し、次いで希フ ッ酸(DHF)でメタル等を洗い流す。

つづいて、図9 (d) に示すように、熱酸化法により酸化膜122を形成する

。これにより、図9 (e) に示すように、膜厚の異なる二つのゲート絶縁膜12 6 およびゲート絶縁膜128が形成される。

[0006]

【特許文献1】

特開2000-3965号公報(第3頁、第57図~第62図)

大見忠弘著、「ウルトラクリーンULSI技術」、(株) 培風館、1 【非特許文献1】 995年、p156~157

[0007]

【発明が解決しようとする課題】 ここで、一般的には、レジスト層118等の有機物を除去する除去液としては 、たとえば硫酸成分を主体とした硫酸過酸化水素水(SPM)を100℃以上に 加熱したものが用いられる(たとえば非特許文献1)。しかし、レジスト層11 8を除去する際に硫酸成分および過酸化水素を含むSPMを用いた場合、図9(b) に示したようにシリコン基板100表面に化学酸化膜120が形成されてし まい、ゲート絶縁膜の膜厚を薄く制御するのが困難となる。また、シリコン基板 100表面に水分が残存していると、ウォーターマーク等のしみが形成され、膜 の均一性を制御するのも困難である。

ところで、近年の半導体装置の微細化にともない、トランジスタのゲート長を 短くすることによりスイッチング速度を向上することが求められている。トラン ジスタのゲート長を短くするにつれ、ゲート絶縁膜の膜厚も薄くする必要がある 。そのため、ゲート絶縁膜の膜厚を薄く制御できる技術が求められている。

また、ゲート絶縁膜の膜厚を薄くする技術が求められている一方、ゲート絶縁 膜の膜厚を薄くすると、ゲートリーク電流が無視できないほど大きくなるという 問題がある。このためゲート絶縁膜として従来から用いられているシリコン酸化 膜(SiO2)より比誘電率の高い絶縁膜(high-k膜)を用いることにより、誘 電特性を保ちつつ、物理的膜厚を厚くすることが考えられている。

しかし、high-k膜には一般的に耐熱性が低いという問題があり、high-k膜をシ リコン基板上に直接形成すると、熱処理時等にhigh-k膜とシリコン基板が反応し て素子特性が劣化することもある。そのため、high-k膜とシリコン基板との間に シリコン酸化膜を介在させて、このような素子特性の劣化を低減することが提言 されている(たとえば特開2001-274378号公報)。この場合、ゲート の駆動能力を維持するために、シリコン酸化膜の膜厚ができるだけ薄くなるよう に制御することが好ましい。

本発明は上記事情を踏まえてなされたものであり、本発明の目的は、半導体基 板上に形成される膜の膜厚を薄く制御する技術を提供することにある。本発明の 別の目的は、半導体基板表面に被膜やウォーターマーク等のしみが形成されるの を防ぐことにある。本発明の別の目的は、半導体基板上に形成される膜の均一性 を制御する技術を提供することにある。

[0012]

本発明によれば、半導体基板上に、所定の形状にパターニングされた膜を形成 する工程と、該膜の形成後、半導体材料の露出面を有する半導体基板の表面に対 し、有機溶媒を主成分とする薬液によりウェット処理を施すことを特徴とする半 導体装置の製造方法が提供される。

ここで、半導体基板は、Si、Ge等の元素半導体、GaAs、GaN、In P、CdS、SiC等の化合物半導体、InGaAs、HgCdTe等の混晶半 導体により構成することができる。半導体基板の表面とは、半導体基板の主面表 面のことである。「主成分」とは、薬液中の体積含有率が最も大きい成分をいう 。ここで、薬液は、非水系溶媒を主として含むことができる。薬液は、水を含む ことができるが、フッ酸系成分、硫酸系成分、または過酸化水素を含まないよう にするのが好ましい。ウェット処理は常温で行うことができる。ウェット処理と は、たとえば半導体基板のリンスや洗浄、またはウェットエッチング等である。

このようにすれば、半導体基板表面が露出したときに、その表面に水が付着しないようにすることができるので、半導体基板表面に化学酸化膜等の被膜やウォーターマークが形成されるのを防ぐことができる。

本発明によれば、半導体基板上に膜を形成し、膜の少なくとも一部を有機溶媒を主成分とする薬液を用いて除去し、半導体基板の表面の一部を露出させることを主成分とする半導体装置の製造方法が提供される。

このようにすれば、膜を除去することにより半導体基板表面が露出する場合であっても、半導体基板表面に化学酸化膜等の被膜が形成されるのを防ぐことがであっても、半導体基板表面に化学酸化膜等の被膜が形成されるのを防ぐことができる。

本発明によれば、半導体基板上に膜を形成し、膜の一部を除去して半導体基板の表面の一部を露出させ、半導体基板を有機溶媒を主成分とする薬液によりウェット処理を施すことを特徴とする半導体装置の製造方法が提供される。ここで、ット処理を施すことを特徴とする半導体装置の製造方法が提供される。ここで、半導体基板の表面の一部を露出させた後、純水を用いた半導体基板の洗浄を行うとする薬液を用いてウェット処理を施ことなく、半導体基板を有機溶媒を主成分とする薬液を用いてウェット処理を施すことができる。

本発明によれば、半導体基板上に第一の膜および第二の膜を形成し、第一の膜の少なくとも一部を除去して半導体基板の表面の一部を露出させた後、第二の膜を有機溶媒を主成分とする薬液を用いて除去することを特徴とする半導体装置のを有機溶媒を主成分とする薬液を用いて除去することを特徴とする半導体装置の製造方法が提供される。ここで、第二の膜はたとえばレジスト層とすることができる。また、第一の膜はたとえばゲート絶縁膜とすることができる。

本発明の半導体装置の製造方法において、半導体基板は第一の領域および第二 の領域を含むことができ、第一の膜および第二の膜はそれぞれ第一の領域および 第二の領域に形成することができる。また、第一の領域に素子を形成中に第二の 領域を第二の膜で保護し、第一の領域の素子の形成後に第二の膜を除去して第二 の領域に別の素子を形成することができる。この場合、第二の膜は有機溶媒で除 去されるので、第二の膜の除去時に第一の領域の半導体基板表面が露出していて も、半導体基板表面に化学酸化膜等の被膜が形成されるのを防ぐことができる。

本発明の半導体装置の製造方法において、第二の膜を第一の膜上に所定形状に 形成することができ、第一の膜が所定形状となるように、第一の膜を選択的に除 去して半導体基板の表面の少なくとも一部を露出させることができる。このよう に、第二の膜は有機溶媒で除去されるので、第二の膜の除去時に半導体基板表面 が露出していても、半導体基板表面に化学酸化膜等の被膜が形成されるのを防ぐ ことができる。

本発明によれば、半導体基板上に絶縁膜を形成する工程と、絶縁膜上に導電膜 を形成する工程と、導電膜上に所定形状にパターニングされた保護膜を形成する 工程と、保護膜をマスクとして導電膜を選択的に除去する工程と、絶縁膜が所定 形状となるように、絶縁膜を選択的に除去して半導体基板表面の一部を露出させ る工程と、有機溶媒を主成分とする薬液により半導体基板に対してウェット処理 を施す工程と、を含むことを特徴とする半導体装置の製造方法が提供される。

保護膜はレジスト層により構成することができる。ここで、第一の絶縁膜は酸 化膜または窒化膜により構成することができる。半導体基板がシリコン基板やS i C基板である場合、第一の絶縁膜はシリコン酸化膜またはシリコン窒化膜によ り構成することができる。

本発明の半導体装置の製造方法において、絶縁膜を除去する工程は、半導体基 板表面の一部を露出させる前に、保護膜を除去する工程を含むことができる。

本発明の半導体装置の製造方法において、絶縁膜を除去する工程は、保護膜を マスクとしてドライエッチングにより絶縁膜の一部を選択的に除去する工程と、

保護膜を除去する工程と、導電膜をマスクとしてウェットエッチングにより絶縁 膜の残りを選択的に除去して半導体基板表面の一部を露出させる工程と、を含む ことができる。

本発明の半導体装置の製造方法において、絶縁膜を形成する工程は、第一の絶縁膜を形成する工程と、第一の絶縁膜上にシリコン酸化膜よりも比誘電率の高い 材料により構成された第二の絶縁膜を形成する工程と、を含むことができる。

本発明の半導体装置の製造方法は、絶縁膜を形成する工程の前に、半導体基板に素子分離領域を形成する工程をさらに含むことができ、絶縁膜を除去する工程において、素子分離領域において半導体基板表面を露出させることができる。

本発明の半導体装置の製造方法において、絶縁膜を形成する工程は、シリコン酸化膜よりも比誘電率の高い材料により構成された高誘電率絶縁膜を形成する工程を含むことができ、絶縁膜を除去する工程は、保護膜をマスクとしてドライエ程を含むことができ、絶縁膜の一部を選択的に除去する工程と、保護膜を除去ッチングにより高誘電率絶縁膜の一部を選択的に除去する工程と、保護膜を除去する工程と、導電膜をマスクとして、ウェットエッチングにより高誘電率絶縁膜する工程と、導電膜をマスクとして、ウェットエッチングは、の残りを選択的に除去する工程と、を含むことができ、ウェットエッチングは、の残りを選択的に除去する工程と、を含むことができ、ウェットエッチングは、たけにできるのようにすれば、たとえばたは硫酸を含む除去液を用いて行うことができる。このようにすれば、たとえばたは硫酸を含む除去液を用いて行うことができる。このようにすれば、たとえばたは硫酸を含む除去液を用いて行うことができる。素子分離領域がエッチングされ半導体基板に素子分離領域が形成されていても、素子分離領域がエッチングされ

ることなく、高誘電率絶縁膜を選択的に除去することができる。

本発明によれば、半導体基板上にシリコン酸化膜よりも比誘電率の高い高誘電率絶縁膜を少なくとも含む絶縁膜を形成する工程と、絶縁膜を、フッ化化合物を含み、有機溶媒を主成分とする薬液を用いたウェットエッチングにより選択的に含み、有機溶媒を主成分とする薬液を用いたウェットエッチングにより選択的に含み、有機溶媒を主成分とする薬液を用いたウェットエッチングにより選択的に含み、有機溶媒を主成分とする薬液を用いたウェットエッチングにより選択的に含み、有機溶媒を主成分とする薬液を用いたウェットを含むことを特徴とする半、除去して半導体基板表面の一部を露出させる工程と、を含むことを特徴とする半、導体装置の製造方法が提供される。

本発明の半導体装置の製造方法は、絶縁膜を形成する工程の前に、半導体基板上に素子分離領域を形成する工程をさらに含むことができ、絶縁膜を除去する板上に素子分離領域において半導体基板表面が露出されてもよい。この工程において、素子分離領域において半導体基板表面が露出されてもよい。このようにすれば、素子分離領域がエッチングされることなく、高誘電率絶縁膜を選択的に除去することができる。

本発明によれば、半導体基板上の第一の領域および第二の領域に第一の絶縁膜を形および第二の絶縁膜をそれぞれ形成する工程と、第二の絶縁膜を覆う保護膜を形成する工程と、第一の絶縁膜を除去して第一の領域において半導体基板表面を露成する工程と、第一の絶縁膜を除去して第一の領域において半導体基板表面を露出させる工程と、有機溶媒を主成分とする薬液により保護膜を除去する工程と、出させる工程と、有機溶媒を主成分とする薬液により保護膜を除去する工程と、出させる工程と、有機溶媒を主成分とする薬液により保護膜を除去する工程と、工程と、を含むことを特徴とする半導体装置の製造方法が提供される。工程と、を含むことを特徴とする半導体装置の製造方法が提供される。

本発明の半導体装置の製造方法において、第一の絶縁膜、第二の絶縁膜、および第三の絶縁膜は、それぞれ対応する領域において、半導体基板を酸化すること により形成することができる。

[0034]

本発明の半導体装置の製造方法において、第三の絶縁膜および第二の絶縁膜上に、シリコン酸化膜よりも比誘電率の高い材料により構成された第一の高誘電率に、シリコン酸化膜よりも比誘電率の高い材料により構成された第一の高誘電率絶縁膜をそれぞれ形成する工程をさらに含むことができる。

ここで、第一の高誘電率絶縁膜および第二の高誘電率絶縁膜は、3 A族元素、3 B 3 B族元素または4 A族元素を含む膜をとすることができる。3 A族元素、3 B 3 B族元素または4 A族元素を含む膜として、いわゆるhigh-k膜を選択することができる。このような膜材料として、ジルコニウム、ハフニウム、ランタノイド、ア 1 B

本発明の半導体装置の製造方法において、有機溶媒は、極性基を有する溶媒とすることが好ましい。ここで、極性基とは、水酸基、エーテル結合基、カルボニル基、カルボキシル基等、炭素とは異なる電気陰性度を持つ原子を含む基のことである。極性基を有する溶媒としては、イソプロピルアルコール、イソブチルアである。極性基を有する溶媒としては、イソプロピルアルコール、イソブチルアである。本性基を有する溶媒としては、イソプロピルアルコール、イソブチルアである。本性基を有する溶媒としては、イソプロピルアルコール、イソブチルアルコール類、ルコール、エチレングリコール、ナーブチルアルコール等のアルコール類、プロピレングリコールモノメチルエーテル等のエーテル類グリコールエーテル、プロピレングリコールモノメチルエーテル等のエーテル類

シクロペンタノン、シクロヘキサノン、メチルエチルケトン、2-ヘプタノン等 のケトン類; プロピレングリコールモノメチルアセテート等のエステル; を用いることができる。

このうち、イソプロピルアルコール、エチレングリコール、2ーヘプタノン、シクロペンタノン、メチルエチルケトン、グリコールエーテル、プロピレングリコールモノメチルアセテートコールモノメチルエーテル、またはプロピレングリコールモノメチルアセテートからなる群から選択される一種以上を含む溶媒とすることが好ましく、特にイソからなる群から選択される一種以上を含む溶媒を用いることにより、半導体基プロピルアルコールが好ましい。このような溶媒を用いることにより、半導体基では、アロピルアルコールが好ましい。このような溶媒を用いることにより、半導体基で表面への化学酸化膜等の被膜の付着やウォーターマーク等のしみの形成を防ぐ板表面への化学酸化膜等の被膜の付着やウォーターマーク等のしみの形成を防ぐ

本発明の半導体装置の製造方法において、有機溶媒はイソプロピルアルコール 本発明の半導体装置の製造方法において、有機溶媒はイソプロピルアルコールを 9 0 体積%以上含むことがで であってよく、薬液は、イソプロピルアルコールを 9 0 体積%以上含むことがで きる。

本発明の半導体装置の製造方法において、保護膜は、i線レジスト膜を用いることができる。

本発明の半導体装置の製造方法において、保護膜は、バッファドフッ酸により 溶解しない材料により構成することができる。

本発明によれば、半導体基板の素子形成領域の少なくとも一部を露出させたと きに、有機溶媒を主成分とする薬液を用いて半導体基板をにウェット処理を施す ことを特徴とするウェット処理方法が提供される。

本発明によれば、有機溶媒を主成分とする薬液を用いて半導体基板にウェット 処理を施し、半導体基板表面を露出させることを特徴とするウェット処理方法が 提供される。

本発明によれば、半導体基板と、半導体基板上の異なる領域に形成された第一

本発明の半導体装置において、第一の絶縁膜の膜厚は1 nmより薄くすることができる。

[0044]

以下、本発明の半導体装置の製造方法について、図面を参照して実施の形態を 詳細に説明する。ここで、各図面は、本発明の理解を容易にするために半導体装 置の構成要素を模式的に示す。

[0045]

図1および図2は、本発明の第一の実施の形態における、半導体装置の製造方 法を示す工程図である。本実施の形態において、本発明は、膜厚の異なるゲート 絶縁膜の製造に適用される。

 ーン形成用マスク(不図示)を用いてたとえばキセノンー水銀ランプ光源(図示せず)から i 線を照射して、 i 線レジスト膜を露光して現像することにより形成せず)から i 線を照射して、 i 線レジスト膜を露光して現像することにより形成される。この状態で、図1 (c) に示すように、バッファドフッ酸(BHF)をされる。この状態で、図1 (d) に示すように、第一の用いてウェットエッチングを行う。その結果、図1 (d) に示すように、第一の酸化膜1 4 が除去される。

つづいて、図2 (a) に示すように、イソプロピルアルコール (IPA) を常温で作用させ、ウェットエッチングによりレジスト層18を除去する。ここで、温で作用させ、ウェットエッチングは、浸漬方式でも枚葉方式でも行うことができる。これによウェットエッチングは、浸漬方式でも枚葉方式でも行うことができる。これにより、レジスト層18はIPAに溶解し、図2 (b) に示すように、レジスト層1り、レジスト層1のでシリコン基のでは、アンモニアー過酸化水素混合液(APM)でシリコン基を20表面の粒子状汚染成分(パーティクル)を洗浄除去し、次いで希フッ酸(D板10表面の粒子状汚染成分(パーティクル)を洗浄除去し、次いで希フッ酸(D板10表面の粒子状汚染成分(パーティクル)を洗浄除去し、次いで希フッ酸(D板10表面には薄い化学酸化HF)でメタルを洗い流す。このとき、シリコン基板10表面には薄い化学酸化膜20 (たとえば膜厚0.9 nm)が形成される(図2 (c))。

本実施の形態において、レジスト層18をIPAにより除去するので、レジスト層18の除去時にシリコン基板10表面に化学酸化膜が付着することがなく、ト層18の除去時にシリコン基板10表面に化学酸化膜20が形成されるだけであるAPMおよびDHFによる洗浄時に薄い化学酸化膜20が形成されるだけである。そのため、その後にRTOにより第三の酸化膜22を形成する際に、膜厚を薄く制御することができる。また、シリコン基板10表面にウォーターマーク等のく制御することができる。しみが形成されないので、第三の酸化膜22の均一性を制御することができるこれにより、膜厚が薄く均一な第一のゲート絶縁膜26を形成することができるこれにより、膜厚が薄く均一な第一のゲート絶縁膜26を形成することができる。また、IPAを常温で作用させることによりレジスト層18を除去することが。また、IPAを常温で作用させることによりレジスト層18を除去することが

できるので、膜厚の異なるゲート絶縁膜を簡略なプロセスを安定的に製造するこ とができる。

[0050]

図3および図4は、本発明の第二の実施の形態における、半導体装置の製造方 (第二の実施の形態) 法を示す工程図である。本実施の形態において、本発明は、図2に示した膜厚の 異なる第一のゲート絶縁膜26および第二のゲート絶縁膜28上に、高誘電率絶 縁膜を形成する例に適用される。

第一の実施の形態において、図1および図2を参照して説明したのと同様にし て素子分離領域12が形成されたシリコン基板10上に第一のゲート絶縁膜26 および第二のゲート絶縁膜28を形成する(図3(a))。つづいて、図3(b))に示すように、シリコン基板10全面に、原子層化学気相成長法(ALCVD:ato mic-layer chemical vapor deposition)または有機金属化学気相成長法(MOCVD :metal-organic chemical vapor deposition) 等のCVD法、あるいはスパッ タ法により高誘電率絶縁膜30(たとえば膜厚3 nm)を形成する。高誘電率絶 縁膜30は、たとえば、酸化ハフニウム(HfO_2)、酸化ジルコニウム(Zr O_2) 、H f A l O_x 膜等、シリコン酸化膜の比誘電率(3.9 \sim 4.5)より 比誘電率が大きい材料により構成することができる。さらに、高誘電率絶縁膜3 0の上面に多結晶シリコン31 (たとえば膜厚200nm) を形成する。

つづいて、図3 (c) に示すように、多結晶シリコン31上にレジスト層32 を形成する。その後、図3 (d) に示すように、レジスト層32をマスクとして 、多結晶シリコン31および高誘電率絶縁膜30をドライエッチングにより段階 的に選択的に除去する。高誘電率絶縁膜30の途中までエッチングを行った後、 SPMを作用させる。

これにより、図4 (a) に示すように、レジスト層32が除去される。つづい て、図4 (b) および図4 (c) に示すように、多結晶シリコン3 1をマスクと してウェットエッチングにより、高誘電率絶縁膜30、第一のゲート絶縁膜26、第二のゲート絶縁膜28を選択的に除去する。このとき、エッチング液として、IPA等の有機溶はBHFを用いることができる。また、エッチング液として、IPA等の有機溶媒にフッ化化合物を添加した薬液、リン酸系水溶液、硫酸水溶液等を用いることができる。ここで、リン酸系水溶液としては、熱リン酸を用いることができる。もできる。ここで、リン酸系水溶液としては、熱リン酸系水溶液、硫酸水溶IPA等の有機溶媒にフッ化化合物を添加した薬液、リン酸系水溶液、硫酸水溶液等をエッチング液として用いることにより、素子分離領域12がエッチングさ液等をエッチング液として用いることにより、素子分離領域12がエッチングされるのを防ぐことができる。この後、IPAでシリコン基板10表面をリンスすれるのを防ぐことができる。これにより、シリコン基板10表面に残存する水分を除去することができ、シリコン基板10表面にウォーターマークが形成されるのを防ぐことができる。シリコン基板10表面にウォーターマークが形成されるのを防ぐことができる。

以上の処理により、第一のゲート絶縁膜26およびその上面に形成された高誘電率絶縁膜30により構成される第三のゲート絶縁膜38、ならびに第二のゲート絶縁膜28およびその上に形成された高誘電率絶縁膜30により構成される第0のゲート絶縁膜40を製造することができる。

本実施の形態においては、第三のゲート絶縁膜38および第四のゲート絶縁膜40の製造直後のシリコン基板10が露出したときに、シリコン基板10表面を1PAで洗浄するので、シリコン基板10表面に残存する水分を除去することができる。これにより、シリコン基板10表面にウォーターマークが形成されるのできる。これにより、シリコン基板10表面にウォーターマークが形成されるのを防ぐことができる。

[0056]

本実施の形態は、素子形成領域に形成されるトランジスタの製造方法に関する ものである。以下、図5および図6を参照して説明する。

図5 (a) に示すように、シリコン基板50上に熱酸化法により酸化絶縁膜52 (たとえば膜厚0.8 nm) を形成し、その上にCVD法またはスパッタ法に 2 (たとえば膜厚2.0 nm) を形成し、次いでその上に より高誘電率絶縁膜54 (たとえば膜厚2.0 nm)

CVD法により多結晶シリコン層 5 6 (たとえば膜厚 2 0 0 nm) を形成する。

つづいて、図5 (b) に示すように、多結晶シリコン層56上にレジスト膜を成膜し、ArFエキシマレーザによるリソグラフィ技術を用いてレジスト層58 を形成する。その後、図5 (c) および図5 (d) に示すように、レジスト層5 を形成する。その後、図5 (c) および図5 (d) に示すように、レジスト層5 をマスクとして、多結晶シリコン層56および高誘電率絶縁膜54をドライエ 8をマスクとして、多結晶シリコン層56および高誘電率絶縁膜54の途中までエッッチングにより段階的に選択的に除去する。高誘電率絶縁膜54の途中までエッッチングを行った後、SPMによりレジスト層58を除去する(図6 (a))。

つづいて、多結晶シリコン層 5 6 をマスクとして、高誘電率絶縁膜 5 4 の残りと酸化絶縁膜 5 2 をウェットエッチングにより選択的に除去する。(図 6 (b)と数化絶縁膜 5 2 をウェットエッチング液としては B H F または D H F を用および図 6 (c))。このとき、エッチング液として、I P A 等の有機溶媒にフッ化化いることができる。また、エッチング液として、I P A 等の有機溶媒にフッ化化いることができる。これにより、合物を添加した薬液、リン酸系水溶液、硫酸水溶液等を用いることもできる。これにより、こで、リン酸系水溶液としては、熱リン酸を用いることができる。これにより、こで、リン酸系水溶液としては、熱リン酸を用いることができる。とれにより、酸化絶縁膜 5 2 および高誘電率絶縁膜 5 4 により構成されるゲート絶縁膜 6 0 を数造することができる。

この後、IPAでシリコン基板50表面をリンスする。これにより、シリコン基板50表面に残存する水分を除去することができ、シリコン基板50表面にウォーターマークが形成されるのを防ぐことができる。

つづいて、サイドウォール64を形成した後、シリコン基板50表面にイオン 注入を行う。これにより、多結晶シリコン層56およびゲート絶縁膜60の下側 領域の両端に不純物領域62が形成される(図6(d))。つづいて、シリコン 基板50全面に金属層を形成し、多結晶シリコン層56および不純物領域62と 基板50全面に金属層を形成し、その他の部分の金属層を除去してゲート電 接する部分をシリサイド化させた後、その他の部分の金属層を除去してゲート電 板、ソース、ドレイン領域に金属シリサイド層を形成する(不図示)。なお、ゲ 極、ソース、ドレイン領域に金属シリサイド層を形成する(不図示)。なお、ゲ 本の他の記分の金属層を用いること ート電極としては多結晶シリコン層56にかえて、ポリSiGe層を用いること もできる。

このように、シリコン基板50表面にイオン注入を行う際に、シリコン基板5 0表面に水分が残存していると、ウォーターマークが形成され、イオン注入の条 件が不均一になってしまう。本実施の形態においては、イオン注入に先立ち、I PAを用いてシリコン基板50表面の水分を除去するので、均一な条件で不純物 領域62を形成することができる。

[0063]

以下に本発明を実施例によって具体的に説明するが、本発明はこれらに限定さ れない。

第一の実施の形態において図1および図2を参照して説明したのと同様にして 、第一のゲート絶縁膜26および第二のゲート絶縁膜28を製造した。 その際、第一のゲート絶縁膜26の形成領域における酸化膜の膜厚を、

- (1) 図2 (a) に示した I P A によるレジスト層 18の除去後、
- (2) 図2 (b) に示したAPMおよびDHFによるシリコン基板10表面の洗 净処理後、
- (3) 図2 (d) に示したRTO後、
- のそれぞれについて測定した。膜厚はエリプソメータにより測定した。

また、比較として、上記(1)のレジスト層18の除去をSPMを用いて行っ た場合の第一のゲート絶縁膜26の形成領域における酸化膜の膜厚も同様に測定 した。

図 7 は、これらの測定結果を示すグラフである。(1)のレジスト層 1 8 の除 去後、IPAを用いた場合にはシリコン基板10表面に酸化膜が形成されなかっ たが、SPMを用いた場合にはシリコン基板10表面に1.2 nmの化学酸化膜 が形成された。その後(2)のAPMおよびDHFによる洗浄を行うと、IPA によりレジスト層18の除去を行った場合でもシリコン基板10表面に約0.9 nmの酸化膜が形成された。つづいて(3)のRTOを行うと、このように形成された化学酸化膜はある程度収縮し、IPAによりレジスト層18の除去を行っされた化学酸化膜の膜厚が0.8 nmとなり、SPMによりレジスト層18の除去た場合、酸化膜の膜厚が1.0 nmとなった。このように、IPAを用いを行った場合、酸化膜の膜厚が1.0 nmとなった。このように、IPAを用いたサジスト層18の除去を行った場合、SPMを用いてレジスト層18を除去すてレジスト層18の除去を行った場合、SPMを用いてレジスト層18を除去すてレジスト層18の除去を行った場合、SPMを用いてレジスト層18を除去すてレジスト層18の除去を行った場合、SPMを用いてレジスト層18を除去することがある比較例に比べて第一のゲート絶縁膜26の膜厚を約0.2 nm薄くすることがきた。また、同様の測定を繰り返し行ったところ、再現性よく第一のゲート絶縁膜26の膜厚を制御することができた。

以上のように、第一のゲート絶縁膜26の膜厚は、レジスト層18の除去時に 形成される酸化膜の膜厚およびAPMおよびDHFによるシリコン基板10洗浄 形成される酸化膜の膜厚に依存する。従来のSPMを用いてレジスト層18 時に形成される酸化膜の膜厚に依存する。従来のSPMを用いてレジスト層18 を除去する手法では、SPMの影響により、レジスト層18の除去時にシリコンを除去する手法では、SPMの影響により、レジスト層18の除去時にシリコン基板10表面に 層18を除去する手法では、レジスト層18の除去時にシリコン基板10表面に 酸化膜が形成されない。そのため、IPAを用いてレジスト層18を除去するこ 酸化膜が形成されない。そのため、IPAを用いてレジスト層18を除去することが形成される第一のゲート絶縁膜26の膜厚をSPMを用いた とにより、最終的に形成される第一のゲート絶縁膜26の膜厚をSPMを用いた 場合に比べて薄くすることができる。

[0068]

本発明によれば、半導体基板上に形成される膜の膜厚を薄く制御することができる。また、本発明によれば、半導体基板表面に被膜やウォーターマーク等のしまる。また、本発明によれば、半導体基板上に形成さみが形成されるのを防ぐことができる。本発明によれば、半導体基板上に形成される膜の均一性を制御することができる。

【図面の簡単な説明】

実施の形態における半導体装置の製造方法を示す工程図である。

【図2】

実施の形態における半導体装置の製造方法を示す工程図である。

実施の形態における半導体装置の製造方法を示す工程図である。

実施の形態における半導体装置の製造方法を示す工程図である。

実施の形態における半導体装置の製造方法を示す工程図である。

実施の形態における半導体装置の製造方法を示す工程図である。

レジスト層の洗浄除去にIPAを用いた場合およびSPMを用いた場合の各工 程における酸化膜の膜厚の測定結果を示すグラフである。

【図8】

従来の半導体装置の製造方法を示す工程図である。

【図9】

従来の半導体装置の製造方法を示す工程図である。

【符号の説明】

- 10 シリコン基板
- 12 素子分離領域
- 13a 第一の領域
- 13b 第二の領域
- 14 第一の酸化膜
- 16 第二の酸化膜
- レジスト層 18
- 20 化学酸化膜
- 22 第三の酸化膜
- 26 第一のゲート絶縁膜
- 28 第二のゲート絶縁膜
- 30 高誘電率絶縁膜

- 31 ポリシリコン層
- 32 レジスト層
- 38 第三のゲート絶縁膜
- 40 第四のゲート絶縁膜
- 50 シリコン基板
- 52 酸化絶縁膜
- 54 高誘電率絶縁膜
- 56 多結晶シリコン層
- 58 レジスト層
- 60 ゲート絶縁膜
- 62 不純物領域
- 64 サイドウォール

[図2]

【図3】

【図4】

【図5】

[図6]

[図7]

- (1) レジスト層除去後(2) A P M / D H F 洗浄後(3) 熱酸化処理後

【図8】

[図9]

【書類名】

要約書

【要約】

【課題】 ゲート絶縁膜の膜厚を適切に制御する。

【解決手段】 シリコン基板10表面に熱酸化法により第一の領域13aおよび 第二の領域13bに第一の酸化膜(不図示)および第二の酸化膜16をそれぞれ 形成し、第二の酸化膜16をレジスト層18で覆った状態で第一の酸化膜を除去 し、レジスト層18をイソプロピルアルコール等の有機溶媒を主成分とする薬液 で除去する。その後、第一の領域13aに第二の酸化膜16と膜厚の異なる第三 の酸化膜22を形成する。

【選択図】 図2

ページ: 1/E

【書類名】

出願人名義変更届 (一般承継)

【整理番号】

74112769

【提出日】

平成15年 1月17日

【あて先】

特許庁長官殿

【事件の表示】

【出願番号】

特願2002-303631

【承継人】

【識別番号】

302062931

【氏名又は名称】

NECエレクトロニクス株式会社

【承継人代理人】

【識別番号】

100110928

【弁理士】

【氏名又は名称】

速水 進治

【電話番号】

03-3461-3687

【提出物件の目録】

【物件名】

承継人であることを証明する登記簿謄本 1

【援用の表示】

特願2002-318488の出願人名義変更届に添付

のものを援用する。

【物件名】

承継人であることを証明する承継証明書

【援用の表示】

特願2002-318488の出願人名義変更届に添付

のものを援用する。

【包括委任状番号】

0216935

【プルーフの要否】 要

特願2002-303631

出願人履歴情報

識別番号

[000004237]

1. 変更年月日 [変更理由] 住 所 氏 名 1990年 8月29日 新規登録 東京都港区芝五丁目7番1号 日本電気株式会社 特願2002-303631

出願人履歴情報

識別番号

[302062931]

1. 変更年月日 [変更理由] 住 所 氏 名 2002年11月 1日 新規登録 神奈川県川崎市中原区下沼部1753番地 NECエレクトロニクス株式会社