

Positive temperature versions of two theorems on first-passage percolation

Sasha Sodin*

January 30, 2013

Abstract

The estimates on the fluctuations of first-passage percolation due to Talagrand and Benjamini–Kalai–Schramm are transcribed into the positive-temperature setting of random Schrödinger operators.

1 Introduction

Let $H = -\frac{1}{2d}\Delta + V$ be a random Schrödinger operator on \mathbb{Z}^d with non-negative potential $V \geq 0$:

$$(H\psi)(x) = (1 + V(x))\psi(x) - \frac{1}{2d} \sum_{y \sim x} \psi(y) , \quad \psi \in \ell^2(\mathbb{Z}^d) .$$

Assume that the entries of V are independent, identically distributed, and satisfy

$$\mathbb{P}\{V(x) > 0\} > 0 . \tag{1}$$

The inverse $G = H^{-1}$ of H defines a random metric

$$\rho(x, y) = \log \frac{\sqrt{G(x, x)G(y, y)}}{G(x, y)} \tag{2}$$

*Department of Mathematics, Princeton University, Princeton, NJ 08544, USA. E-mail:
asodin@princeton.edu

on \mathbb{Z}^d (see Lemma 2.4 below for the verification of the triangle inequality). We are interested in the behaviour of $\rho(x, y)$ for large $\|x - y\|$ (here and forth $\|\cdot\|$ stands for the ℓ_1 norm); to simplify the notation, set $\rho(x) = \rho(0, x)$.

Zerner proved [16, Theorem A], using Kingman's subadditive ergodic theorem [10], that if V satisfies (1) and

$$\mathbb{E} \log^d(1 + V(x)) < \infty . \quad (3)$$

then

$$\rho(x) = \|x\|_V(1 + o(1)) , \quad \|x\| \rightarrow \infty , \quad (4)$$

where $\|\cdot\|_V$ is a deterministic norm on \mathbb{R}^d determined by the distribution of V . As to the fluctuations of $\rho(x)$, Zerner showed [16, Theorem C] that (1), (3), and

$$\text{if } d = 2, \text{ then } \mathbb{P}\{V(x) = 0\} = 0$$

imply the bound

$$\text{Var } \rho(x) \leq C_V \|x\| . \quad (5)$$

In dimension $d = 1$, the bound (5) is sharp; moreover, ρ obeys a central limit theorem

$$\frac{\rho(x) - \mathbb{E}\rho(x)}{\sigma_V |x|^{1/2}} \xrightarrow[|x| \rightarrow \infty]{D} N(0, 1) ,$$

which follows from the results of Furstenberg and Kesten [8]. In higher dimension, the fluctuations of ρ are expected to be smaller: the exponent

$$\chi_d = \limsup_{\|x\| \rightarrow \infty} \frac{\frac{1}{2} \log \text{Var } \rho(x)}{\log \|x\|}$$

is expected to be equal to $1/3$ in dimension $d = 2$, and to be even smaller in higher dimension.

These conjectures are closely related to the corresponding conjectures for first-passage percolation. In fact, ρ is a positive-temperature counterpart of the (site) first-passage percolation metric corresponding to $\omega = \log(1 + V)$; we refer to Zerner [16, Section 3] for a more elaborate discussion of this connection.

The rigorous understanding of fluctuations in dimension $d \geq 2$ is for now confined to a handful of integrable models (see Corwin [7] for a review); extending it beyond this class remains a major open problem. We refer to the works of Chatterjee [6] and Auffinger–Damron [1, 2] for some recent results.

Here we carry out a much more modest task: verifying that the bounds on the fluctuations in (bond) first-passage percolation due to Talagrand [15] and Benjamini–Kalai–Schramm [4] are also valid for the random matrix (2). Zerner’s bound (5) is a positive-temperature counterpart of Kesten’s estimate [9]. Kesten showed that the (bond) first-passage percolation ρ_{FPP} satisfies

$$\text{Var } \rho_{\text{FPP}}(x) \leq C\|x\| ;$$

furthermore, if the underlying random variables have exponential tails, then so does $(\rho_{\text{FPP}}(x) - \mathbb{E}\rho_{\text{FPP}}(x))/\sqrt{\|x\|}$. Talagrand improved the tail bound to

$$\mathbb{P} \{ |\rho_{\text{FPP}}(x) - \mathbb{E}\rho_{\text{FPP}}(x)| \geq t \} \leq C \exp \left\{ -\frac{t^2}{C\|x\|} \right\} , \quad 0 \leq t \leq \|x\| .$$

Benjamini, Kalai, and Schramm [4] proved, in dimension $d \geq 2$, the sublinear bound

$$\text{Var } \rho_{\text{FPP}}(x) \leq C\|x\| / \log(\|x\| + 2) ,$$

for the special case of Bernoulli-distributed potential. Benaïm and Rossignol [3] extended this bound to a wider class of distributions (“nearly gamma” in the terminology of [3]), and complemented it with an exponential tail estimate. Extensions of the Benjamini–Kalai–Schramm bound to other models have been found by van der Berg and Kiss [5], and by Matic and Nolen [12].

Theorem 1 below is a positive temperature analogue of Talagrand’s bound (with a slightly stronger conclusion under a slightly stronger assumption – mainly, to use a more elementary concentration inequality from [13, 15] instead of a more involved one from [15]), and Theorem 2 – of the Benjamini–Kalai–Schramm bound. The strategy of the proof is very close to the original arguments; the modification mainly enters in a couple of deterministic estimates. Set $\mu(x) = \mathbb{E}\rho(x)$.

Theorem 1. *Suppose the entries of V are independent, identically distributed, and bounded from below by $\epsilon > 0$. Also assume that the entries of V are bounded from above by $0 < M < \infty$. Then*

$$\mathbb{P} \{ \rho(x) \leq \mu(x) - t \} \leq C \exp \left\{ -\frac{t^2}{C(\epsilon, M)(\mu(x) + 1)} \right\} , \quad (6)$$

and

$$\mathbb{P} \{ \rho(x) \geq \mu(x) + t \} \leq C \exp \left\{ -\frac{t^2}{C(\epsilon, M)(\mu(x) + t + 1)} \right\} , \quad (7)$$

for every $t \geq 0$.

Remark 1.1. *The assumption $\epsilon \leq V \leq M$ yields the deterministic estimate*

$$C_\epsilon^{-1}\|x\| \leq \rho(x) \leq C_M\|x\| ,$$

which, in conjunction with (6) and (7), implies the inequality

$$\mathbb{P}\{|\rho(x) - \mu(x)| \geq t\} \leq C \exp\left\{-\frac{t^2}{C(\epsilon, M)\|x\|}\right\} .$$

Theorem 2. *Assume that the distribution of the potential is given by*

$$\mathbb{P}\{V(x) = a\} = \mathbb{P}\{V(x) = b\} = 1/2$$

for some $0 < a < b$, and that $d \geq 2$. Then

$$\text{Var } \rho(x) \leq C_{a,b} \frac{\|x\|}{\log(\|x\| + 2)} . \quad (8)$$

2 Proof of Theorem 1

The proof of Theorem 1 is based on Talagrand's concentration inequality [13, 15]. We state this inequality as

Lemma 2.1 (Talagrand). *Assume that $\{V(x) \mid x \in \mathcal{X}\}$ are independent random variables, the distribution of every one of which is supported in $[0, M]$. Then, for every convex (or concave) L -Lipschitz function $f : \mathbb{R}^\mathcal{X} \rightarrow \mathbb{R}$.*

$$\mathbb{P}\{f \geq \mathbb{E}f + t\} \leq C \exp\left\{-\frac{t^2}{CM^2L^2}\right\} ,$$

where $C > 0$ is a constant.

Denote $g(x) = G(0, x)$. To apply Lemma 2.1, we first compute the gradient of $\log g$, and then estimate its norm.

Lemma 2.2. *For any $x, y \in \mathbb{Z}^d$,*

$$\frac{\partial}{\partial V(y)} \log g(x) = -\frac{G(0, y)G(y, x)}{G(0, x)} .$$

Proof. Let $P_y = \delta_y \delta_y^*$ be the projector on the y -th coordinate. Set $H_h = H + hP_y$, $G_h = H_h^{-1}$. By the resolvent identity

$$G_h = G - hGP_yG_h ,$$

hence

$$\frac{d}{dh} \Big|_{h=0} G_h = -GP_yG$$

and

$$\frac{d}{dh} \Big|_{h=0} G_h(0, x) = -G(0, y)G(y, x) .$$

□

Our next goal is to prove

Proposition 2.3. *Suppose $V \geq \epsilon > 0$. Then*

$$\sum_y \left[\frac{G(0, y)G(y, x)}{G(0, x)} \right]^2 \leq A_\epsilon(\rho(x) + 1) , \quad (9)$$

where A_ϵ depends only on ϵ .

The proof consists of two ingredients. The first one, equivalent to the triangle inequality for ρ , yields an upper bound on every term in (9).

Lemma 2.4. *For any $x, y \in \mathbb{Z}^d$,*

$$\frac{G(0, y)G(y, x)}{G(0, x)} \leq G(y, y) \leq C_\epsilon .$$

Proof. Let H_y be the operator obtained by erasing the edges that connect y to its neighbours, and let $G_y = H_y^{-1}$. By the resolvent identity,

$$G(0, x) = G_y(0, x) + \frac{1}{2d} \sum_{y' \sim y} G_y(0, y')G(y, x) .$$

In particular,

$$G(0, y) = \frac{1}{2d} \sum_{y' \sim y} G_y(0, y')G(y, y) .$$

Therefore

$$G(0, x) = G_y(0, x) + \frac{G(0, y)G(y, x)}{G(y, y)} .$$

□

The second ingredient is

Lemma 2.5. *For any $x \in \mathbb{Z}^d$,*

$$\sum_y \frac{G(0, y)G(y, x)}{G(0, x)} \leq C_\epsilon(\rho(x) + 1) .$$

The proof of Lemma 2.5 requires two more lemmata. Denote

$$g_2(x) = G^2(0, x) = \sum_y G(0, y)G(y, x) , \quad u(x) = \frac{g_2(x)}{g(x)} .$$

Lemma 2.6. *For any $x \in \mathbb{Z}^d$,*

$$\sum_{y \sim x} \frac{g(y)}{2d(1 + V(x))g(x)} = 1 - \frac{\delta(x)}{(1 + V(0))g(0)} \quad (10)$$

and

$$u(x) = \sum_{y \sim x} u(y) \frac{g(y)}{2d(1 + V(x))g(x)} + \frac{1}{1 + V(x)} . \quad (11)$$

Proof. The first formula follows from the relation $Hg = \delta$, and the second one – from the relation $Hg_2 = g$. \square

Set $\tilde{\rho}(x) = \log \frac{G(0, 0)}{G(0, x)}$.

Lemma 2.7. *For any $x \in \mathbb{Z}^d$,*

$$\begin{aligned} \tilde{\rho}(x) &\geq \sum_{y \sim x} \tilde{\rho}(y) \frac{g(y)}{2d(1 + V(x))g(x)} \\ &\quad + \log(1 + V(x)) + \log \left(1 - \frac{1}{(1 + V(0))g(0)} \right) \delta(x) . \end{aligned}$$

Proof. For $x \neq 0$, (10) and the concavity of logarithm yield

$$\sum_{y \sim x} \frac{g(y)}{2d(1 + V(x))g(x)} \log \frac{2d(1 + V(x))g(x)}{g(y)} \leq \log(2d) .$$

Using (10) once again, we obtain

$$-\tilde{\rho}(x) + \sum_{y \sim x} \tilde{\rho}(y) \frac{g(y)}{2d(1 + V(x))g(x)} + \log(1 + V(x)) \leq 0 .$$

The argument is similar for $x = 0$. \square

Proof of Lemma 2.5. Let $A \geq \log^{-1}(1 + \epsilon)$. Then from Lemmata 2.6 and 2.7 the function $u_A = u - A\tilde{\rho}$ satisfies

$$u_A(x) \leq \sum_{y \sim x} u_A(y) \frac{g(y)}{2d(1 + V(x))g(x)} - A \log \left(1 - \frac{1}{(1 + V(0))g(0)} \right) \delta(x) .$$

By a finite-volume approximation argument,

$$\max u_A(x) = u_A(0) \leq -\frac{A}{1 - \frac{1}{(1 + V(0))g(0)}} \log \left(1 - \frac{1}{(1 + V(0))g(0)} \right) \leq A'_\epsilon ,$$

whence

$$u(x) \leq A'_\epsilon + A\tilde{\rho}(x) \leq C_\epsilon(1 + \rho(x)) .$$

□

Proof of Proposition 2.3. By Lemma 2.4 ,

$$\begin{aligned} L &= \sum_y \left[\frac{G(0, y)G(y, x)}{G(0, x)} \right]^2 \\ &\leq \max_y G(y, y) \sum_y \frac{G(0, y)G(y, x)}{G(0, x)} = \max_y G(y, y) u(x) . \end{aligned}$$

The inequality $V \geq \epsilon$ implies $G(y, y) \leq A''_\epsilon$, and Lemma 2.5 implies

$$u(x) \leq C_\epsilon(\rho(x) + 1) .$$

□

Next, we need

Lemma 2.8. *For any $x \in \mathbb{Z}^d$, $\log g(x)$, $\log \frac{G(0, x)}{G(0, 0)}$, and $\log \frac{G(0, x)}{G(x, x)}$ are convex functions of the potential. Consequently,*

$$\rho(x) = -\frac{1}{2} \left[\log \frac{G(0, x)}{G(0, 0)} + \log \frac{G(0, x)}{G(x, x)} \right]$$

is a concave function of the potential.

Proof. The first statement follows from the random walk expansion:

$$g(x) = \sum \frac{1}{1+V(x_0)} \frac{1}{2d} \frac{1}{1+V(x_1)} \frac{1}{2d} \cdots \frac{1}{2d} \frac{1}{1+V(x_k)} ,$$

where the sum is over all paths $w : x_0 = 0, x_1, \dots, x_{k-1}, x_k = x$. Indeed, for every w

$$T_w = \log \frac{1}{1+V(x_0)} \frac{1}{2d} \frac{1}{1+V(x_1)} \frac{1}{2d} \cdots \frac{1}{2d} \frac{1}{1+V(x_k)}$$

is a convex function of V , hence also $\log g(x) = \log \sum_w e^{T_w}$ is convex.

To prove the second statement, observe that

$$G(0, x) = \frac{1}{2d} G(0, 0) \sum_{y \sim 0} G_0(y, x) ,$$

where G_0 is obtained by deleting the edges adjacent to 0. Therefore

$$\log \frac{G(0, x)}{G(0, 0)} = -\log(2d) + \log \sum_{y \sim 0} G_0(y, x) ;$$

for every y , $\log G_0(y, x)$ is a convex function of V , hence so is $\log \frac{G(0, x)}{G(0, 0)}$. \square

Proof of Theorem 1. Denote $\rho_0(x) = \min(\rho(x), \mu(x))$. Then by Lemma 2.2 and Proposition 2.3

$$\|\nabla_V \rho_0(x)\|_2^2 \leq A_\epsilon(\mu(x) + 1) ,$$

A_ϵ depends only on ϵ . By Lemma 2.8, ρ_0 is concave, therefore by Lemma 2.1

$$\mathbb{P}\{\rho(x) \leq \mu(x) - t\} \leq \exp\left\{-\frac{t^2}{CM^2 A_\epsilon(\mu(x) + 1)}\right\} .$$

Similarly, set $\rho_t(x) = \min(\rho(x), \mu(x) + t)$. Then

$$\|\nabla_V \rho_t(x)\|_2^2 \leq A_\epsilon(\mu(x) + t + 1) ,$$

therefore

$$\begin{aligned} \mathbb{P}\{\rho(x) \geq \mu(x) + t\} &= \mathbb{P}\{\rho_t(x) \geq \mu(x) + t\} \\ &\leq \exp\left\{-\frac{t^2}{CM^2 A_\epsilon(\mu(x) + t + 1)}\right\} . \end{aligned}$$

\square

3 Proof of Theorem 2

The proof follows the strategy of Benjamini, Kalai, and Schramm [4]. Without loss of generality we may assume that $\|x\| \geq 2$; set $m = \lfloor \|x\|^{1/4} \rfloor + 1$.

Let

$$F = -\frac{1}{\#B} \sum_{z \in B} \log G(z, x+z) ,$$

where

$$B = B(0, m) = \{z \in \mathbb{Z}^d \mid \|z\| \leq m\}$$

is the ball of radius m about the origin. According to Lemma 2.4,

$$G(0, x) \geq \frac{G(z, x+z)G(0, z)G(x, x+z)}{G(z, z)G(x+z, x+z)} ,$$

therefore $\rho(x) \leq F + C_{a,b}m$; similarly, $\rho(x) \geq F - C_{a,b}m$. It is therefore sufficient to show that

$$\text{Var } F \leq C_{a,b} \frac{\|x\|}{\log \|x\|} .$$

We use another inequality due to Talagrand [14] (see Ledoux [11] for a semigroup derivation). Let \mathcal{X} be a (finite or countable) set. Let $\sigma_x^+ : \{a, b\}^{\mathcal{X}} \rightarrow \{a, b\}^{\mathcal{X}}$ be the map setting the x -th coordinate to b , and $\sigma_x^- : \{a, b\}^{\mathcal{X}} \rightarrow \{a, b\}^{\mathcal{X}}$ –the map setting the x -th coordinate to a . Denote

$$\partial_x f = f \circ \sigma_x^+ - f \circ \sigma_x^- .$$

Lemma 3.1 (Talagrand). *For any function f on $\{a, b\}^{\mathcal{X}}$,*

$$\text{Var } f \leq C_{a,b} \sum_{x \in \mathcal{X}} \frac{\mathbb{E}|\partial_x f|^2}{1 + \log \frac{\mathbb{E}|\partial_x f|^2}{(\mathbb{E}|\partial_x f|)^2}} . \quad (12)$$

Let us estimate the right-hand side for $f = F$, $\mathcal{X} = \mathbb{Z}^d$. Denote

$$\sigma_x^t = t\sigma_x^+ + (1-t)\sigma_x^- ;$$

then

$$\partial_x F = \int_0^1 \frac{\partial F}{\partial V(x)} \circ \sigma_x^t dt .$$

According to Lemma 2.2,

$$\frac{\partial F}{\partial V(y)} = \frac{1}{\#B} \sum_{z \in B} \frac{G(z, y)G(y, x+z)}{G(z, x+z)} .$$

Therefore

$$\begin{aligned} \mathbb{E} \frac{\partial F}{\partial V(y)} \circ \sigma_y^t &= \mathbb{E} \frac{1}{\#B} \sum_{z \in B} \frac{G(z, y)G(y, x+z)}{G(z, x+z)} \circ \sigma_y^t \\ &= \mathbb{E} \frac{1}{\#B} \sum_{z \in B} \frac{G(0, y-z)G(y-z, x)}{G(0, x)} \circ \sigma_{y-z}^t \\ &= \mathbb{E} \frac{1}{\#B} \sum_{v \in y+B} \frac{G(0, v)G(v, x)}{G(0, x)} \circ \sigma_v^t . \end{aligned}$$

Lemma 3.2. *For any $Q \subset \mathbb{Z}^d$ and any $x', x \in \mathbb{Z}^d$,*

$$\sum_{v \in Q} \frac{G(x', v)G(v, x)}{G(x', x)} \leq C_a(\text{diam}_\rho Q + 1) \leq C_{a,b}(\text{diam } Q + 1) . \quad (13)$$

Let us first conclude the proof of Theorem 2 and then prove the lemma. Set $\delta = m^{-\frac{1}{2}}$, and let

$$A = \left\{ y \in \mathbb{Z}^d \mid \mathbb{E} (\partial_y F)^2 \leq \delta \mathbb{E} \partial_y F \right\} .$$

Then the contribution of coordinates in A to the right-hand side of (12) is at most $C\delta\|x\|$ by Lemma 2.5. For y in the complement of A , Lemma 3.2 yields

$$\mathbb{E} \partial_y F \leq \frac{Cm}{\#B} ,$$

hence

$$\mathbb{E} (\partial_y F)^2 \geq \delta \mathbb{E} \partial_y F \geq \frac{\delta \#B}{Cm} (\mathbb{E} \partial_y F)^2 ,$$

and

$$\log \frac{\mathbb{E} (\partial_y F)^2}{(\mathbb{E} \partial_y F)^2} \geq \log \frac{\delta}{Cm} \geq \log(\|x\|/C')$$

by the inequality $\#B \geq Cm^2$ (which holds with d -independent C). The contribution of the complement of A to (12) is therefore at most $C' \frac{\|x\|}{\log \|x\|}$. Thus finally

$$\text{Var} F \leq \frac{C'' \|x\|}{\log \|x\|} .$$

□

Proof of Lemma 3.2. For $Q \subset \mathbb{Z}^d$ and $x', x \in \mathbb{Z}^d$, set

$$u_Q(x', x) = \frac{(G\mathbb{1}_Q G)(x', x)}{G(x', x)} = \frac{\sum_{q \in Q} G(x', q)G(q, x)}{G(x', x)}.$$

Similarly to Lemma 2.6,

$$u_Q(x', x) = \sum_{y \sim x} u_Q(x', y) \frac{G(x', y)}{2d(1 + V(x))G(x', x)} + \frac{\mathbb{1}_Q(x)}{1 + V(x)}.$$

By a finite-volume approximation argument, it is sufficient to prove the estimate (13) in a finite box. Then $\max_x u_Q(x', x)$ is attained for some $x_{\max} \in Q$. By symmetry, $\max_{x', x} u_Q(x', x)$ is attained when both x' and x are in Q . On the other hand, for $x', x \in Q$

$$u_Q(x', x) \leq u_{\mathbb{Z}^d}(x', x) \leq C(1 + \log \frac{1}{G(x', x)}) \leq C'(1 + \text{diam}_\rho Q)$$

by Lemma 2.5. □

Remark 3.3. To extend Theorem 2 to the generality of the work of Benaim and Rossignol [3], one may use the modified Poincaré inequality of [3] instead of Talagrand's inequality (12).

Acknowledgment. I am grateful to Thomas Spencer for helpful conversations, and to Itai Benjamini, Michael Damron, Alexander Elgart, and Gil Kalai for their comments on a preliminary version of this note.

References

- [1] A. Auffinger, M. Damron, A simplified proof of the relation between scaling exponents in first-passage percolation, arXiv:1109.0523
- [2] A. Auffinger, M. Damron, The scaling relation $\chi = 2\xi - 1$ for directed polymers in a random environment, arXiv:1211.0992
- [3] M. Benaim, R. Rossignol, Exponential concentration for first passage percolation through modified Poincaré inequalities, Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008), no. 3, 544–573.

- [4] I. Benjamini, G. Kalai, O. Schramm, First passage percolation has sub-linear distance variance, *Ann. Probab.* 31 (2003), no. 4, 1970–1978.
- [5] J. van den Berg, D. Kiss, Sublinearity of the travel-time variance for dependent first-passage percolation, *Ann. Probab.* 40 (2012), no. 2, 743–764.
- [6] S. Chatterjee, The universal relation between scaling exponents in first-passage percolation, arXiv:1105.4566
- [7] I. Corwin, The Kardar–Parisi–Zhang equation and universality class, *Random Matrices Theory Appl.* 1 (2012), no. 1, 1130001, 76 pp.
- [8] H. Furstenberg, H. Kesten, Products of random matrices, *Ann. Math. Statist.* 31, 1960, 457–469.
- [9] H. Kesten, On the speed of convergence in first-passage percolation, *Ann. Appl. Probab.* 3 (1993), no. 2, 296–338.
- [10] J. F. C. Kingman, Subadditive ergodic theory. *Ann. Probability* 1 (1973), 883–909.
- [11] M. Ledoux, Deviation inequalities on largest eigenvalues, Geometric aspects of functional analysis, 167–219, Lecture Notes in Math., 1910, Springer, Berlin, 2007.
- [12] I. Matic, J. Nolen, A sublinear variance bound for solutions of a random Hamilton-Jacobi equation, *Journal of Statistical Physics* 149 (2012), no. 2, pp. 342–361
- [13] M. Talagrand, An isoperimetric theorem on the cube and the Kintchine–Kahane inequalities, *Proc. Amer. Math. Soc.* 104 (1988), no. 3, 905–909.
- [14] M. Talagrand, On Russo’s approximate zero-one law, *Ann. Probab.* 22 (1994), no. 3, 1576–1587.
- [15] M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, *Inst. Hautes Études Sci. Publ. Math.* No. 81 (1995), 73–205.
- [16] M. P. W. Zerner, Directional decay of the Green’s function for a random nonnegative potential on \mathbb{Z}^d , *Ann. Appl. Probab.* 8 (1998), no. 1, 246–280.