MCMT Homework 8

Shun Zhang

Exercise 8.1

For any non-negative constant c, define $\{\tau \leq t\} = 1_{|(X_0,\cdots,X_t)|=c}$. Then $\tau = c$ is a stopping time.

Suppose there are two stopping times τ_1 and τ_2 . We can make $\{X_0, \dots, X_s\}$ satisfy $\{\tau_1 \leq s\}$ and $\{X_s, \dots, X_t\}$ satisfy $\{\tau_2 \leq t - s\}$. That is, $\{\tau_1 + \tau_2 \leq t\} = t$ $\{\tau_1 \leq s\} \land \{\tau_2 \leq t - s, X_0 = y\}$, where y is the state when $\{\tau_1 \leq s\}$ is true. So $\tau_1 + \tau_2$ is a stopping time.

Exercise 8.2

Consider a Markov chain of three states. x_1 represents one complete graph except the shared vertex. x_2 represents the other complete graph except the shared vertex. x_3 is the shared vertex. Then $P(x_1, x_3) = \frac{1}{2n-1}$.

Start with δ_1 (which means starting with arbitrary distribution that only

covers the first complete graph except the shared vertex in the original graph).
$$\mathbb{P}(X_t = x_1) \geq (1 - \frac{1}{2n-1})^t \geq 1 - \frac{t}{2n-1}. \text{ As } \pi(x_1) < \frac{1}{2}, \text{ we want } \mathbb{P}(X_t = x_1) < \frac{1}{2} + \frac{1}{4} \text{ for } t = t_{mix}.$$
 So $1 - \frac{t}{2n-1} < \frac{1}{2} + \frac{1}{4} = \frac{3}{4}, \frac{t}{2n-1} > \frac{1}{4}, t > \frac{n}{2}.$ That is, $t_{mix} > \frac{2}{n}$.