CSC265 Fall 2020 Homework Assignment 9

due Tuesday, December 1, 2020

Suppose that $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ are two deterministic finite automata with disjoint state sets. Let $Q = Q_1 \cup Q_2$, let $F = F_1 \cup F_2$, and let $\delta : Q \times \Sigma \to Q$ denote the function

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & \text{if } q \in Q_1\\ \delta_2(q, a) & \text{if } q \in Q_2. \end{cases}$$

Two states $q, q' \in Q$ are equivalent if, for all $x \in \Sigma^*$,

$$\delta(q, x) \in F$$
 if and only if $\delta(q', x) \in F$.

Lemma q and q' are equivalent states if and only if

- for all $a \in \Sigma$, the states $\delta(q, a)$ and $\delta(q', a)$ are equivalent, and
- either $q, q' \in F$ or $q, q' \in Q F$.

You may use this lemma, without proof. It can be proved by induction, but that is not part of the assignment.

- 1. Explain how to use the DISJOINT SETS abstract data type to test whether two deterministic finite automata accept exactly the same set of strings. Justify the correctness of your algorithm.
- 2. What data structure should you use to implement the DISJOINT SETS abstract data type for this application? Justify your answer.