類神經網路作業一 - 設計感知機類神經網路

一、程式執行說明 (GUI 功能說明)

- 1. 上面三張圖 Original、Train、Test 會畫出原本的分類、訓練資料的分類結果、測試資料的分類結果
- 2. Dataset Button 可以選擇 txt 檔案輸入,路徑會顯示在旁邊
- 3. Epoch、Learning rate 旁邊的 spinbox 可以輸入想要的 epoch 以及 學習率
- 4. Train accuracy 及 Test accuracy 旁邊的文字框會顯示訓練準確率與 測試準確率
- 5. Weight 和 Bias 旁的文字框會顯示權重(=鍵結值)與偏置(=閥值/閾值)
- 6. 選完檔案後,按 Training 開始訓練,沒有選檔案程式會關閉
- 7. Exit 或是右上角 X 關閉程式
- 8. 圖形上面的功能欄可以對各個子圖作操作,分別是初始化、上一步、下一步、移動畫面、放大、更改圖的邊界與間距、編輯子圖、儲存畫出的圖形

二、程式碼簡介

- 1. UI.py 為用 Qt designer 設計出來的介面轉成的程式碼
- 2. Mplwidget.py 則是將 matplotlib 嵌入介面所需的程式碼
- 3. Perceptron_controller.py 則是主程式,包含拆分資料、找出感知機的分類線、畫圖、計算準確率等等
 - A. init 用於初始化及設定 UI

```
class MatplotlibWidget(QtWidgets.QMainWindow):
    def __init__(self):
        QtWidgets.QMainWindow.__init__(self)
        self.ui = Ui_MainWindow()
        self.ui.setupUi(self)
        self.setup_control()

    self.filename = ""
        self.points = np.empty([0, 2], float)
        self.pclass = np.array([], int)
        self.allclass = np.array([], int)
        self.pred = np.array([], int)
        self.epoch = 0
        self.learning_rate = 0
        self.train_accuracy = 0
        self.test_accuracy = 0
```

B. reset 是每次重新畫圖時重置 attribute,像是重置訓練準確率、測試準確率等等

```
def reset(self):
    self.points = np.empty([0, 2], float)
    self.pclass = np.array([], int)
    self.allclass = np.array([], int)
    self.pred = np.array([], int)
    self.epoch = 0
    self.learning_rate = 0
    self.train_accuracy = 0
    self.test_accuracy = 0
```

C. setup_control 則是將 button 與功能連結在一起,當按下某個 button 則會做某項函式

```
def setup_control(self): # botton 連接加在這裡
    self.ui.dataset_button.clicked.connect(self.open_file)
    self.ui.exit_button.clicked.connect(self.exit)
    self.ui.training_button.clicked.connect(self.train_control)
```

D. open_file 是開啟檔案的功能·當按下 botton 後就會開啟選擇檔案的介面·選完會設定檔案路徑·並顯示路徑在文字框裡

E. start train 負責將輸入資料轉為 nparray

```
def start_train(self):

with open(self.filename) as f:
    lines = f.readlines()
    for line in lines:
        x, y, d = line.split(" ")
        self.pclass = np.append(self.pclass, int(d[0]))
        self.points = np.append(self.points, np.array([[x, y]], dtype="float64"), axis=0)
        if int(d[0]) not in self.allclass:
            self.allclass = np.append(self.allclass, int(d[0]))
        np.sort(self.allclass)
```

```
def split_data(self):
    shuffled_indices = np.random.permutation(len(self.points))
    train_data_size = int(len(self.points) * (2 / 3))

self.train_indices = shuffled_indices[:train_data_size]
    self.test_indices = shuffled_indices[train_data_size:]
```

G. train_predict 負責訓練感知機,每一次的 epoch 都會將所有訓練資料跑過一輪,並修正感知機權重(鍵結值)與偏置(閥值)預測分類:計算 $\mathbf{w}^{\mathrm{T}}x + b$ 是否> $\mathbf{0}$,也就是計算輸入的點代入感知機的線會位於哪方

修正公式:

$$w_i \leftarrow w_i + \eta(t - y)x_i$$

 $b \leftarrow b + \eta(t - y)$

其中 w 為權重 $\cdot \eta$ 為學習率 $\cdot t$ 為實際的分類 $\cdot y$ 為預測的分類 \cdot

x 為輸入,b 為偏置

H. train_predict 用找到的感知機分類線再次使用訓練資料判斷屬於

哪一類,並且也使用測試資料判斷屬於哪一類

```
def test_predict(self, w, bias): # 预测函数
    """Return class label after unit step"""
    unit_step = lambda x: self.allclass[0] if x < 0 else self.allclass[1] # 活化函数

for i in self.train_indices:
    input_i = self.points[i]
    result = input_i * w + bias
    result = float(sum(result))
    y_pred = float(unit_step(result))
    self.pred = np.append(self.pred, y_pred)

for i in self.test_indices:
    input_i = self.points[i]
    result = input_i * w + bias
    result = float(sum(result))
    y_pred = float(unit_step(result))
    self.pred = np.append(self.pred, y_pred)

return</pre>
```

I. train_plot 畫出將訓練資料用感知機分類出的結果,並計算訓練準確率

J. test_plot 畫出將測試資料用感知機分類出的結果,並計算測試準確率

```
def test_plot(self, w, bias):
    self.ui.widget.canvas.test.cla()
    for i in range(len(self.test_indices)):
        j = self.test_indices[i]
        if self.pred[len(self.train_indices) + i] == 1:
            self.ui.widget.canvas.test.scatter(self.points[j, 0], self.points[j, 1], s=5, color='r')
        else:
            self.ui.widget.canvas.test.scatter(self.points[j, 0], self.points[j, 1], s=5, color='b')

        if self.pred[len(self.train_indices) + i] == self.pclass[j]:
            self.test_accuracy += 1

        self.test_accuracy = self.test_accuracy / len(self.test_indices)

        x1 = -bias / w[0]

        self.ui.widget.canvas.test.axline([x1, 0], slope=-w[0] / w[1], lw=3, color='k')
        self.ui.widget.canvas.test.axis(win=min(self.points[:, 0]) - 1, xmax=max(self.points[:, 0]) + 1) # 設定來經濟元範圍        self.ui.widget.canvas.test.axis(win=min(self.points[:, 1]) - 1, ymax=max(self.points[:, 1]) + 1) # 設定來經濟不範圍        self.ui.widget.canvas.test.set_xlabel("X")
        self.ui.widget.canvas.test.set_xlabel("Y")
        self.ui.widget.canvas.test.set_ylabel("Y")
        self.ui.widget.canvas.test.set_ylabel("Y")
```

K. original plot 畫出原本資料的分群,並顯示感知機的分類線

```
def original_plot(self, w, bias):
    self.ui.widget.canvas.original.cla()

for i in range(len(self.points)):
    if self.pclass[i] == 1:
        self.ui.widget.canvas.original.scatter(self.points[i, 0], self.points[i, 1], s=5, color='r')
    else:
        self.ui.widget.canvas.original.scatter(self.points[i, 0], self.points[i, 1], s=5, color='b')

x1 = -bias / w[0]

self.ui.widget.canvas.original.axline([x1, 0], slope=-w[0] / w[1], lw=3, color='k')
self.ui.widget.canvas.original.axis(xmin=min(self.points[:, 0]) - 1, xmax=max(self.points[:, 0]) + 1) #.設定X競技元範屬
self.ui.widget.canvas.original.axis(ymin=min(self.points[:, 1]) - 1, ymax=max(self.points[:, 1]) + 1) #.設定X競技元範屬
self.ui.widget.canvas.original.set_xlabel("X")
self.ui.widget.canvas.original.set_ylabel("Y")
self.ui.widget.canvas.original.set_title("Original")
self.ui.widget.canvas.figure.subplots_adjust(wspace=0.75)
```

L. train_control 則是按下 train 後會做的動作,是最主要的地方,他會依序作 attribute 重置、取得輸入的 epoch 及學習率、將輸入資料轉為 nparray、分割資料、訓練並修正感知機權重與偏置、用感知機預測訓練資料及測試資料分類、畫圖並計算準確率、顯示準確率和權重及偏置

```
def train_control(self):
    self.epoch = self.ui.epoch_spinbox.value()
    self.learning_rate = self.ui.learning_rate_spinbox.value()
    self.split_data()
   w, bias = p.train_predict()
   self.test_predict(w, bias)
   self.train_plot(w, bias)
   self.test_plot(w, bias)
   self.original_plot(w, bias)
   self.ui.widget.canvas.draw()
    self.ui.show_train_accuracy.setText(str(p.train_accuracy))
    font = QtGui.QFont()
    font.setPointSize(12)
    font.setBold(True)
    font.setWeight(75)
    self.ui.show_train_accuracy.setFont(font)
    self.ui.show_test_accuracy.setText(str(p.test_accuracy))
    font = QtGui.QFont()
    font.setFamily("Adobe 繁黑體 Std B")
    font.setPointSize(12)
    font.setBold(True)
    self.ui.show_test_accuracy.setFont(font)
    self.ui.show_weight.setText(str(w))
    font = QtGui.QFont()
    font.setFamily("Adobe 繁黑體 Std B")
    font.setPointSize(12)
    font.setBold(True)
    font.setWeight(75)
    self.ui.show_weight.setFont(font)
    self.ui.show_bias.setText(str(bias))
    font = QtGui.QFont()
    font.setFamily("Adobe 繁黑體 Std B")
    font.setPointSize(12)
   font.setBold(True)
    font.setWeight(75)
    self.ui.show_bias.setFont(font)
```

M. exit 負責按下 Exit 按鈕後會關閉程式的功能

def exit(self):
 app.quit()

N. 啟動 exe 時,會執行 perceptron_controller 的 main 的部分, 開啟應用程式,建立視窗並顯示等等

```
if __name__ == '__main__':
    app = QtWidgets.QApplication(sys.argv)
    p = MatplotlibWidget()
    p.show()
    sys.exit(app.exec())
```

- 三、實驗結果截圖、說明及分析
 - 1. perceptron1

■ MainWindow						- X
☆ ← → ⊕ (Q ≢ <mark>८</mark> 🖺				pan/zo	om
2.0 1.5 - 1.0 - > 0.5 - 0.0 -	Original	2.0 T 1.5 - 1.0 - > 0.5 - 0.0 -	Train	0.0 -		
-0.5 - -1.0 -1		-0.51.0 + 21.	NN_HW1_DataSet/基本題/perce	-0.5 - -1.0 -1 0	1 2	
Epoch:	100	Train accuracy:	1.0	Weight:	[0.43390146 0.809202241	<u>^</u>
Learning rate:	0.01	Test accuracy:	0.0	Bias:	-0.460000000000 00013	* *
Training					Exit	аf

由於點的樣本數少又拆分成訓練、測試資料的關係,測試準確率常常會很低,不論 epoch 和學習率是多少,因為訓練資料只有兩個點可以分類

2. perceptron2

■ MainWindow							
☆ ← → ⊕	Q ≢ 🗷 🖺						pan/zoom
2.0 1.5 - 1.0 - > 0.5 - 0.0 - -0.5 - -1.0 -	Original	2.0 — 1.5 — 1.0 — > 0.5 — 0.0 — -0.5 — 2	Train	≻ -	Z.0 Tes	· · · · · · · · · · · · · · · · · · ·	
Dataset	D:/中央/資工選修/	類神經網路/作業一/	NN_HW1_DataSet/基系	本題/percept	ron2.txt		
Epoch:	100	Train accuracy:	1.0		Weight:	[0.82676746 0.86998046]	A
Learning rate:	0.01	Test accuracy:	0.0		Bias:	0.0	
Training						Exit	.#

同上 perceptron1·測試準確率常常會很低·而且因為此為非線性可分的圖·準確率不太可能達 100%

3. 2Ccircle1

由於此為非線性可分的圖·因此準確率不高·而且感知機的線沒有規律·像是用猜的一樣。

4. 2Circle1

■ MainWindow	
☆←→ ΦQ≠ビ□	pan/zoom
Original 4 3 - 1 0 -1 -2.5 0.0	Train Test -2.5 0.0 -2.5 0.0
D:/中央/資工選修/類神經網路/作業一/NN_F Epoch: 100 Train accuracy: 0.82	825 Weight: [-0.03674028 🚖
Learning rate: 0.01 💂 Test accuracy: 0.83	0.039595111 • 0.03999999999
i contactation	999994 ·
Training	Exit
■ MainWindow	_ D X
※←→ ΦQ≠ビ□	pan/zoom
Original 4 3	Train Test -2.5 0.0 -2.5 0.0
D:/中央/資工選修/類神經網路/作業一/NN_h	_HW1_DataSet/基本題/2Circle1.txt
Epoch: 100 Train accuracy: 0.8	Weight: [-0.02856976
Learning rate: 0.01 Test accuracy: 0.8	8 Rias: -0.03999999999 🚊
Training	999994 • Exit

相比 2Ccircle1·2Circle1 的訓練準確率和測試準確率較高。但由於兩群形成圓形的點有交集·所以還是無法完美的將他們分開來

5. 2CloseS

2CloseS 的點是線性可分的,所以基本上可以完美的分類,訓練準確率跟測試準確率基本都是 1,就算 epoch 設很小、學習率稍微設大一點也不太會影響,不過有時候還是會誤判幾個點

6. 2CloseS2

2CloseS2 也是線性可分割的,但由於兩群資料點靠得很近,所以有時會判斷錯誤,導致準確率不為 1。而也因為兩群資料很近的關係,epoch次數小,就會對準確率影響很大,無法像 2CloseS 一樣輕鬆解決問題

7. 2CloseS3

2CloseS3 幾乎可以完美分成兩群,但原始分類中,藍色點群中會混入一個紅色點,所以只能接近完美。除了那一點紅色點之外的點都離的不算近,所以 epoch 低、學習率高造成的影響沒有到很大

8. 2cring

■ MainWindow	
	zoom rect
Original Train 20 15 10 5 0 -5 -20 -10 0	Test 20 15 10 5 -5 -20 -10 0
D:/中央/資工選修/類神經網路/作業一/NN_HW1_DataSet/基本題/2cring	
Epoch: 100 Train accuracy: 1.0	Weight: [-0.03041305
Learning rate: 0.01 Test accuracy: 1.0	Bias: -0.480000000000 -
Training	Exit
■ MainWindow	
※←→ 中国≒ビ 🖺	zoom rect
Original Train 20 15 10 5 0 -5 -20 -10 0 Train 20 -5 -20 -10 0	Test 20 15 10 5 0 -5 -20 -10 0
Dataset D:/中央/資工選修/類神經網路/作業一/NN_HW1_DataSet/基本題/2cring	.txt
Epoch: 10 Train accuracy: 1.0	Weight: [-0.06884086
Learning rate: 0.01 Test accuracy: 1.0	Bias: -0.500000000000 -
Training	Exit

兩群點線性可分、形成的圓分的不近,且點的數量夠多,不太會有訓練資料缺少靠近另一群的部分導致分類錯誤的問題,所以 epoch 調低、學習率調高一些對準確率不會造成影響,通常準確率皆為 1

9. 2CS

2CS 線性可分,且兩群點離得很遠,所以準確率基本上都是 1,就算 epoch 調到只剩 1 次,學習率調高到 0.1 也不受影響

10. 2Hcircle1

MainWindow					
☆ ← → ⊕	Q = 🗷 🖺				zoom rect
4 - 3 - 2 - > 1 - 0 - 1 - 2 - 2 -	Original	4 - 3 - 2 - 1 - 0 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	Train >	Tes 4 3 2 1 0 -1 -2 -2.5	0.0
Dataset	D:/中央/資工選修/	類神經網路/作業一/	'NN_HW1_DataSet/基本題/2Hcirc	le1.txt	
Epoch:	1	Train accuracy:	1.0	Weight:	[-0.53603249 1.076976661
Learning rate:	0.50	Test accuracy:	0.95	Bias:	-2.0
Training					Exit

同 2CS·10. 2Hcircle1 線性可分·且兩群點離得不算近·準確率基本上都是 1·就算 epoch 調到只剩 1 次·學習率調高一些也不太會受影響·不過偶爾會因為訓練資料沒有靠近另一群的點·導致測試準確率不為 1

11. 2ring

MainWindow					
☆ ← → ⊕	Q = 🗷 🖺				zoom rect
_	Original		Train	Test	
8 - 6 - 2 - 0 - 2 - 2 2 2 2	-2.5 0.0 2.5	8 - 6 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	-2.5 0.0 2.5	8 6 4 2 0 -2.5 0.0 2.5	
Dataset	D:/中央/資工選修/	(類神經網路/作業一)	/NN_HW1_DataSet/基本題/2i	ring.txt	
Epoch:	100	Train accuracy:	1.0	Weight: [0.0352601	
Learning rate:	0.01	Test accuracy:	1.0	Bias: -0.34	
Training				Exit	
					.il
MainWindow					
☆ ← → +	Q = 🗷 🖺				zoom rect
8 - 6 - 4 - 2 - 0 2	Original	8 - 6 - 4 - 2 - 0 2	Train -2.5 0.0 2.5	Test 8 6 -2 -2.5 0.0 2.5	
Dataset	D:/中央/資工選修/	類神經網路/作業一/	/NN_HW1_DataSet/基本題/2r	ring.txt	
Dataset Epoch:	D:/中央/資工選修/	類神經網路/作業一/ Train accuracy:	/NN_HW1_DataSet/基本題/2r 1.0	Weight: [0.0295530 0.5584426	1
				Weight: [0.0295530	
Epoch:	10	Train accuracy:	1.0	Weight: [0.0295530 0.5584426	

2ring 線性可分、兩群點離的不近,所以訓練及測試準確率基本上都是

 $1\cdot$ 就算 epoch 調到只剩 10 次 · 學習率調高到 0.1 也不太影響

四、實作問題

- 1. 因為不熟悉 numpy 操作的關係,光宣告空的 nparray 就失敗了好幾次
- 2. 不熟悉 PyQt5 及物件導向的觀念,不論是找資料、修改程式、debug 都常常找不出問題,執行也常常只會出現 process finished with exit code 1073741845,在 debug 上花了不少時間,甚至有時候只是程式 碼裡的物件命名和 UI 拉的不一樣,卻花了 3 個小時以上在除錯,基本 上可以說實作遇到的問題和浪費的時間有七成都在這種地方上。
- 3. 感知機的預測線與分類出來的群沒有對到

不知為何,直接代算出來的 bias 下去算,畫出來的圖會非常詭異,不 過將 bias 乘以兩倍畫出來就會正常。但是看了好幾次上課 PPT 及公式 還是找不到問題所在。

4. Pyinstaller 產生的 exe 出現找不到指定的模組問題

原本打包 exe 的時候是參考網路上用 spec 檔案的教學,但產生出的檔案非常多,而且將 exe 移出原本的資料夾後就會發生找不到 dll 檔的問題。後來是用另一個方法才解決,雖然檔案比較大而且開啟時沒有更改的圖標了,但是比較實用一些,exe 檔傳到哪都可以直接執行。