INE5429-07208 Segurança em Computação Criptografia Básica

Prof. Jean Everson Martina

Cifragem – Técnicas Clássicas

- Modelo de Cifragem Simétrica
- Técnicas de Substituição
- Técnicas de Transposição
- Maquinas de Rotores
- Esteganografia

Modelo de Cifragem Simétrica

- Texto Claro
- Algoritmo de Cifração
- Chave Secreta
- Texto Cifrado
- Algoritmo de Decifração

Criptografia x Criptoanálise

- Criptografia
 - Operações no texto claro para texto cifrado
 - Numero de Chaves
 - A forma como o texto claro é processado
- Criptoanálise
 - Ataque na natureza do algoritmo
 - Características do texto (claro e cifrado)
 - Força Bruta

Incondicionalmente x Computacionalmente Seguro

Found this super secure lock keeping \$5000 of laptops safe at work

Incondicional

- Texto cifrado não contém informação suficiente para determinar o texto claro
- Computacional
 - Custo de quebrar excede o valor do ativo
 - O tempo requerido é maior que a vida útil do ativo

Técnicas de Substituição

- Cifrador de Cesar
- Cifradores Mono-alfabéticos
- Playfair
- Cifradores Poli-alfabéticos
- Cifrador de Veginère
- Cifrador de Vernam
- One-time pad

Cifrador de Cesar

- Claro: Me encontre depois da aula
- Cifrado: PHHQF RQWUH GHSRL VGDDX OD
- $C = E(p + 3) \mod 26$
- Criptoanálise:
 - Força Bruta
 - o 25 chaves para tentar

Cifradores Mono-alfabéticos

- Mapeia de um alfabeto para outro alfabeto
- Troca de uma letra por outra letra qualquer
- Espaço de Chaves:
 - o 26! = 4 x 10 ^ 26
 - Maior que DES
- Criptoanálise:
 - Análise de freqüência
 - Analise de duplas, triplas

Freqüência Relativa das Letras

Playfair

- Cifra pares de letras
- Pares na mesma linha → Direita
- Pares na mesma coluna → Abaixo
- Esconde digramas
- Análises de freqüência muito mais difícil

S	Е	G	U	R
0 F	Α	В	С	D
	Н	I/J	K	L
М	N	Р	Q	T
V	W	Χ	Y	Z

Cifradores Poli-Alfabéticos

- Usam um conjunto de substituições mono-alfabéticas
- Uma chave determina como a transformação é dada
- Ofusca as informações de freqüência
- Nem toda a estrutura é perdida

Ancient	A	В	Γ	Δ	\in	F	Z	H	\odot
Byzantine	$\bar{\alpha}$	$\bar{\beta}$	$\bar{\gamma}$	δ	Ē	Ē	ζ	η	$\bar{\theta}$
Modern	A'	B'	Γ'	Δ'	E'	F'	Z'	H'	Θ'
	1	2	3	4	5	6	7	8	9
Ancient	1	K	٨	M	Ν	Ξ	0	П	Q
Byzantine	ī	ĸ	$\bar{\lambda}$	$\bar{\mu}$	$\bar{\nu}$	ξ	ō	$\bar{\pi}$	Ō
Modern	ľ	K′	Λ'	M'	N'	Ξ'	0'	Π'	Q′
	10	20	30	40	50	60	70	80	90
Ancient	P	Σ	T	γ	Φ	X	Ψ	Ω	A
Byzantine	$\bar{\rho}$	$\bar{\sigma}$	$\bar{\tau}$	ū	$\bar{\phi}$	$\bar{\chi}$	$\bar{\Psi}$	$\bar{\omega}$	Ā
Modern	P'	Σ'	T'	Υ'	Φ'	X'	Ψ'	Ω'	3 ′
	100	200	300	400	500	600	700	800	900

Cifrador de Veginère

- Chave: segurosegurosegu
- Claro: aulanosabadoebom
- Cifrado: SYRUECJEHUUWFUG
- Ataque:
- Determinar o tamanho da chave
- Distância da repetição no texto cifrado

Cifrador de Vernam

- Transformação do texto em bits
- Transformação da chave em bits
- Ou-Exclusivo bit a bit
- Ci = Pi ⊕Ki
- Ataque:
 - Tamanho da chave exige repetição
 - Texto claro conhecido

One-Time Pad

- Chave de igual tamanho ao texto claro
- Incondicionalmente seguro
- Cifrador Veginère
- Cifrador de Vernam

Decrypt by hacker 1:

Ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
Key: pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih
Plaintext: mr mustard with the candlestick in the hall

Decrypt by hacker 2:

Ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
Key: pftgpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt

Plaintext: miss scarlet with the knife in the library

Técnicas de Transposição

- Permutação no texto claro
- Citgaieai
- Rporfafcl
- Matriz escrita em linha e recuperada em colunas
 - Chave pode ser a ordem das colunas
- Varias permutações confundem a Criptoanálise

Maquinas de Rotores

- Enigma
 - Criptoanálise: Trabalho de Turing
- Sistema eletro-mecânico
- Conjunto de cilindros independentes
- Cada cilindro um cifrador mono-alfabético
- Chave:
 - Ordem dos Rotores, posição inicial, posição do alfabeto, ligação do teclado, retroalimentação

Esteganografia

- Mensagem escondida em mídia portadora
- Objetivo: Repúdio do Envio
- Técnicas clássicas:
 - Marcação de caracteres
 - Tinta invisível
- Técnicas Modernas
 - Imagens
 - Audio
 - Cabeçalhos de Rede

Cifradores Simétricos

- Mesma chave para cifra e decifrar
- 2 categorias:
 - Bloco
 - Stream
- Criptoanálise:
 - Diferencial
 - Linear

Confusão x Difusão

Confusão:

- Complexidade da relação texto cifrado x chave
- o Protege a chave

• Difusão:

- Dissipação da estrutura estatística
- 1 dígito de entrada afeta n dígitos de saída
- Dissimula freqüência do texto claro

DES – Data Encryption Standard

Data Encryption Standard

- FIPS Pub 46
- IBM Lucifer [1971]
- Baseado em rede de Feistel
- Chave de 56 bits (64 com paridade)
- Permutações
- Caixas S
- Ótima implementação em Hardware

DES - Força Criptográfica

- 256 = 7.2 x 1016
- 1977 → US\$ 20 Milhões = 10 horas
- 1998 → US\$ 250mil = 70 horas
- Hoje → US\$ 1mil = segundos
- Não foram descobertas até hoje falhas nas caixas S
- Suscetível a ataques de tempo

AES – Advanced Encryption Standard

- Cifrador de bloco para substituir o DES
- Competição em 2001, Chamada em 1997
- 21 algoritmos, 15 candidatos, 5 finalistas,
 Rijndael vencedor
- Suporte a 128, 192 e 256 bits
- Não usa Feistel
- Rounds:
 - Substituição de byte, permutação, operação sobre corpo finito, e XOR com a chave

AES - Cifrador

- Tamanho de bloco sempre 128 bits
- Tamanho de Chave Variável (128,192,256)
- Rijndael
 - Resistência a ataques conhecidos
 - Velocidade e tamanho em variadas plataformas
 - Simplicidade

Key size (words/bytes/bits)	4/16/128	6/24/192	8/32/256
Number of rounds	10	12	14
Expanded key size (words/byte)	44/176	52/208	60/240

I handle petabytes* of data every day. From encrypting juicy Top Secret intelligence to boring packets bound for your Wifi router, I do it all!

* I petabyte ≈ a lot

AES – Cifragem e Decifragem

- Chave é expandida por matriz
- Quatro estágios por rodada:
 - Byte Sub: Caixa S GF (28)
 - ShiftRows: Permutação
 - MixColumns: Substituição GF (28)
 - AddRoundKey:XOR com chave de rodada
- XOR da chave + 9 rodadas cheias + 3 passos da ultima rodada

AES - Estrutura

- Chave só entra em AddRoundKey
- AddRoundKey é um cifrador de Vernam
- Cada estágio é facilmente reversível
 - Chave + confusão, difusão e não linearidade
- Reversibilidade por XOR
- Decifragem usa chave na ordem invertida
- Estágio final adiciona a chave para proteger as operações anteriores

Figure 5.4 AES Encryption Round

AES - ByteSub

- Busca em Tabela
- Similar a uma Caixa S
- Resistente a todos os ataques cripto-analíticos conhecidos
- Criada com Base em aritmética num GF (28), com o polinômio irredutível x8 + x4 + x3 +x +1
- Funcionamento byte a byte

AES - ShiftRows

- Deslocamento horizontais de n-bytes por linha
 - 0 na primeira, 1 na segunda, 2 na terceira e 3 na quarta
- Direita gira para esquerda
- Inversa gira para a Direita
- Garante que 4 bytes de uma colunas são dispersos para outras colunas

AES – MixColumns

- Multiplicação de uma coluna do estado por uma matriz pré-determinada
- Matrix 4 x 4 é baseada numa inversão
 GF(28)
- Cada elemento na matriz produto é a soma dos elementos de uma linha e uma coluna, tudo em GF(28)
- Implementação prática baseada em XORs

AES - AddRoundKey

- XOR do estado com uma chave de 128 bits da rodada
- Cifrador de Vernam (que tem problemas)
- Simples, mas eficaz por causa dos outros passos e da expansão de chaves

AES – Expansão de Chaves

j 1 2 3 4 5 6 7 8 9 10 RC[j] 01 02 04 08 10 20 40 80 1B 36

- Entram 16 bytes e saem 176 bytes
- Produz 4 bytes para cada sub chave
- A chave são os 4 primeiros bytes da chave expandida
- Cada byte posterior depende do byte anterior com XOR exceto o ultimo
- G é uma função complexa(rotação, substituição usando caixa S e XOR com uma constante de rodada

AES – Cifrador Inverso

- Troca-se:
 - ShiftRows → InvShift Rows
 - SubBytes → InvSubBytes
 - MixColumns → InvMixColums
 - AddRoundKey usa as chaves em ordem invertida
- Em termos de implementação é o mesmo algoritmo, com matrizes de valores diferentes

Modos de Operação

- Electronic Codebook -ECB
- Cipher Block Chaining CBC
- Cipher Feedback CFB
- Output Feedback OFB
- Counter Mode CTR

ECB

- Cada bloco é codificado de forma independente
- Segurança para transmissão de dados únicos

Electronic Codebook (ECB) mode encryption

CBC

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption

- A entrada é XOR do próximo bloco de texto claro e o bloco anterior cifrado
- Uso para transmissão de dados e autenticação

CFB

- O texto cifrado é XOR com o texto claro e retroalimentado no cifrador
- Uso para transmissão de dados e autenticação

Cipher Feedback (CFB) mode encryption

Cipher Feedback (CFB) mode decryption

OFB

Output Feedback (OFB) mode encryption

Output Feedback (OFB) mode decryption

- Similar a CFB. A saída do cifrador é retroalimentada para gerar um stream de bits
- Usado em canais ruidosos

CTR

- Cada bloco é XORed com um contador cifrado
- Uso geral em transmissão de dados e em links de alta velocidade

Counter (CTR) mode decryption

Próximas Aulas

- Prática:
 - Trabalho Individual I
 - Continuação
- Teórica:
 - Cripto Assimétrica e PRNGs

Perguntas?

jean.martina@ufsc.br