Assignment No. 2 (SPRING - 2025)

CT – 528 – Advanced Database Techniques

Program: MS (CS)

Instructor: Dr. Syed Saood Zia

Name: Shujaatmallick Name: DS W-23

Question No. 1

a. Difference between Data Warehouse and Data Mart

A **data warehouse** is a centralized repository that aggregates data from multiple sources across an entire organization. It supports complex queries, analytics, and historical data analysis.

A **data mart**, on the other hand, is a subset of a data warehouse focused on a specific business line or department such as sales or inventory.

Benefits to StoreMart:

- A **data warehouse** will provide StoreMart with a centralized, consistent, and integrated view of enterprise-wide data.
- **Data marts** will allow departments like sales and inventory to access relevant, customized, and faster data for analysis and decision-making.

b. High-Level Architecture for StoreMart's Data Warehouse

1. Data Sources:

- POS systems (Sales)
- Inventory Management Systems
- CRM (Customer Data)
- SCM systems
- External market data (e.g., competitor prices)

2. ETL Process:

- **Extract**: Pull data from heterogeneous systems
- Transform: Cleanse, validate, and conform to business rules
- Load: Insert into the central data warehouse

3. Data Warehouse Structure:

- Staging Area: Temporary storage for raw extracted data
- o ODS (Operational Data Store): For real-time or near-time data
- o Data Warehouse: Centralized, historical, subject-oriented
- o Data Marts: Sales and Inventory marts derived from the warehouse
- o **BI Tools**: Dashboards, reporting, OLAP tools

c. Sales Data Mart Design

Fact Table: Fact_Sales

• Facts: Total Sales, Quantity Sold, Discount, Profit

Dimension Tables:

- Dim_Date: Date_ID, Day, Month, Quarter, Year
- Dim_Store: Store_ID, Location, Manager
- Dim_Product: Product_ID, Category, Brand
- Dim_Customer: Customer_ID, Name, Segment

Interaction with Data Warehouse:

 The sales data mart extracts its data from the central warehouse using periodic ETL jobs, enabling focused and efficient reporting for the sales team.

d. Challenges in Data Integration & Ensuring Quality

Challenges:

- Data inconsistency across sources
- Missing or duplicate data
- Incompatible data formats
- Real-time integration complexities

Solutions:

- Implement robust data quality checks during ETL
- Use **metadata management** to track data lineage
- Apply master data management (MDM) for consistency
- Use data profiling and cleansing tools
- Implement audit trails and logging

Question No. 2

a. Explanation of Star Schema

A **star schema** is a type of data warehouse schema that consists of a central **fact table** connected to multiple **dimension tables** in a star-like formation.

Advantages:

- Simplified structure for end users
- Faster query performance due to fewer joins
- Ideal for OLAP and BI tools

b. Star Schema Design for ConnectTel

Fact Table: Fact_Calls

- Primary Key: Call_ID
- Foreign Keys: Time_ID, Customer_ID, Location_ID
- Measures: Call Duration, Call Cost, Satisfaction Score

Dimension Tables:

- Dim_Time
 - Time_ID (PK)
 - o Date, Day, Week, Month, Year
- Dim_Customer
 - Customer ID (PK)
 - Name, Age, Gender, Income_Level, Subscription_Type
- Dim_Location
 - Location_ID (PK)
 - o City, State, Country

Relationships:

• Fact_Calls references Dim_Time, Dim_Customer, and Dim_Location via foreign keys.

c. Query Performance Optimization

Indexing Strategies:

- Use **bitmap indexes** on foreign keys for low-cardinality dimensions.
- Create **clustered indexes** on date columns for time-series queries.

- Apply materialized views for common aggregations.
- Partition fact table by time or location.

Other optimizations:

- Use **columnar storage** if supported
- Enable parallel processing in ETL and queries

d. Limitations of Star Schema

- Not ideal for complex many-to-many relationships
- Redundancy in denormalized dimension tables
- Lacks support for slowly changing dimensions (SCDs)

When to use other schemas:

- Use **snowflake schema** for normalized dimension tables and reduced data redundancy.
- Use **galaxy schema** (fact constellation) when multiple fact tables share dimension tables.