Lecture 5: The Race Between Education and Technology

Natalie Bau and Hammad Shaikh

What We Know So Far

1) Income ratio: Top S%, 1 (2) Gihi Geff.

- Periods of high inequality were also periods of high education wage premiums
- Inequality and wage premiums fell during periods when the supply of high school educated individuals greatly expanded
- Hypothesis: the rise and fall of inequality are driven by a race between demand for educated workers and growth in the supply of educated workers

Model for Output and Relative Skilled Labour

Q = Output, A = TFP, S = Skilled Isbour,

U = unskilled labour,
$$\lambda = \frac{1}{2}$$

Goldin and Katz define a CES aggregate production function:

$$Q_t = A_t (\lambda_t S_t^{\rho} + (1 - \lambda_t) U_t^{\rho})^{\frac{1}{\rho}} \quad \boxed{\bigcirc}$$

and

$$U_t = \left(heta_t H_t^{\eta} + (1 - heta_t) O_t^{\eta}
ight)^{rac{1}{\eta}}$$

Define all variables and parameters above

St
$$Q_t(S_t | V_t) = \overline{Q} \Rightarrow \int_{Q_t} W_{s_t} S_t + W_{v_t} V_t - \lambda (Q_t - \overline{Q})$$

 $\Rightarrow \int_{Q_t} W_{s_t} = 0 \Rightarrow 0$. Sinjler for 2 .

Goldin and Katz use equilibrium conditions to derive

$$log(\frac{W_{S_t}}{W_{U_t}}) = log(\frac{\lambda_t}{1 - \lambda_t}) - \frac{1}{\sigma_{SU}}log(\frac{S_t}{U_t}) \quad \boxed{\big(}$$

and

$$log(\frac{W_{H_t}}{W_{O_t}}) = log(\frac{\theta_t}{1 - \theta_t}) - \frac{1}{\sigma_{HO}}log(\frac{H_t}{O_t}), \quad \boxed{2}$$

where $\sigma_{SU} = \frac{1}{1-\rho}$ and $\sigma_{HO} = \frac{1}{1-\rho}$. How to derive?

College Wage Premium and Relative Skilled Labour

Arelative supply of college greas by	
lut is	
Sisiling Chark Sisiling	

	(1)	(2)	(3)	(4)	(5)
(College/high school)	-0.544	-0.595	-0.610	-0.579	-0.618
supply	(0.079)	(0.093)	(0.065)	(0.099)	(0.079)
(College/high school)					0.0078
supply×post-1949					(0.0420)
Time	0.00378	0.00970	0.00991	0.00973	0.0103
	(0.00200)	(0.00243)	(0.00171)	(0.00545)	(0.0028)
Time×post-1949	0.0188				
•	(0.0013)				
Time×post-1959		0.0156	0.0154		0.0150
		(0.0012)	(0.0009)		(0.0022)
Time×post-1992	-0.00465	-0.00807	-0.00739		-0.00742
	(0.00227)	(0.00279)	(0.00196)		(0.00199)
1949 Dummy			-0.137		-0.143
			(0.021)		(0.036)
Time ² ×10				-0.00342	
				(0.00203)	
Time ³ ×1000				0.105	
				(0.034)	
Time ⁴ ×10,000				0.00664	
				(0.00186)	
Constant	-0.493	-0.645	-0.656	-0.587	-0.674
	(0.168)	(0.197)	(0.138)	(0.210)	(0.079)
R^2	0.934	0.917	0.960	0.928	0.960
Number of	47	47	47	47	47
observations					

Predicted Wage Premium and Actual Premium

Model does a good job predicting the college wage premium

Discussion of Model Fit

• WWII policies and union power may explain the greater than predicted decline in the college wage premium in the 1940s

 The greater-than-predicted premium may be explained by the erosion of union power in the 1970s

High School Wage Premium and Relative HS Graduates

O					/	V .
Table 8.4. Determinants	s of the High S	chool Wage Pr	emium: 1915 t	so 2005 Y	= In (WHE
	(1)	(2)	(3)	(4)	(5)	
(High school/ dropout) supply	-0.180 (0.059)	-0.193 (0.039)	-0.193 (0.039)	-0.512 (0.071)	-0.352 (0.137)	
(High school/dropout) supply×post-1949				0.322 (0.054)		
(High school/dropout) supply×time					0.00496 (0.00218)	
Time	-0.00084 (0.00278)	0.00239 (0.00179)	0.00235 (0.00176)	0.0171 (0.0037)	0.0308 (0.0100)	6 HV
Time×post-1949	0.0132 (0.0011)			-0.0032 (0.0029)		
Time×post-1959		0.0117 (0.0006)	0.0116 (0.0006)			
Time×post-1992	-0.00753 (0.00386)	-0.0109 (0.0026)	-0.0107 (0.0026)	-0.0106 (0.0029)		
1949 Dummy			-0.0278 (0.0192)			
Time ² ×10					-0.0084 (0.0012)	
Time ³ ×1000					0.113 (0.025)	
Time ⁴ ×10,000					-0.0055 (0.0015)	
Constant	0.088 (0.118)	0.049 (0.078)	0.053 (0.077)	-0.579 (0.142)	-0.282 (0.271)	
R^2	0.897	0.953	0.956	0.944	0.971	
Number of observations	47	47	47	47	47	

Determinants of Inequality

 Model suggests that relative supply of skilled labor explains a portion of the wage premiums and therefore, inequality

 But is the supply of skilled workers driven only by the high school and college movements?

- Alternative explanations:
 - Immigration of low-skilled immigrants decreasing the relative supply of skilled labor
 - Growth in cohort size naturally leads to larger cohorts and since each cohort is more educated

Immigration and Cohort Sizely Ls Irigination

- Goldin and Katz can estimate how much immigration changed the relative supply of skilled workers in each period
- Their regression estimates tell them how much this would have changed the college and high school wage premium
- Immigration had little effect in the early period (1915-1940). From 1980-2005, explains 5 percent of the growth in the college premium and 43 percent of the high school premium
- Similar argument for cohort-size. Education rates are increasing during periods where the wage premiums are changing rapidly faster than cohort-size is changing