INDIAN INSTITUTE OF SPACE SCIENCE AND TECHNOLOGY THIRUVANANTHAPURAM 695 547

Summer Supplementary Examination - June 2016

B. Tech - II Semester

MA121 - Vector Calculus and Differential Equations

Date: 29/06/2016 Time: 9.30 am - 12.30 pm Max. Marks: 100

SECTION A (Answer all 10 questions - 10x5 = 50 marks.)

- 1. Solve $y(y^2 2x^2)dx + x(2y^2 x^2)dy = 0$.
- 2. Solve $2xyy' = y^2 2x^3$, y(1) = 2.
- 3. A body is heated to $110^{\circ}C$ and placed in air at $10^{\circ}C$. After 1 hour its temperature is $60^{\circ}C$. How much additional time is required for it to cool to $30^{\circ}C$?
- 4. Solve $\frac{d^2y}{dx^2} y = 2x^4 3x + 1$.
- 5. Check the uniform convergence of $\frac{x^k}{1+x^k}$ for |x|>1.
- 6. Show that $\sum_{1}^{\infty} \frac{x}{(n+x^2)^2}$ converges uniformly for $x \in \mathbb{R}$.
- 7. Define directional derivative of a function $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ at a point P_0 along a vector \vec{v} . Check whether the directional derivative of $f(x, y, z) = e^{xy} + z$ at the point $P_0 = (1, 1, 1)$ along the vector $\vec{v} = (0, 4, 3)$ exists, and if exists find the value of the directional derivative. [2+1+2]
- 8. State Green's theorem over simply-connected regions. Let D be a circular region on xyplane given by $D = \left\{ (x,y) \middle| x^2 + y^2 \le 4 \right\}$. With explanation find the area of the region
- 9. Define arc length function of a continuously differentiable curve $\gamma:[a,b]\longrightarrow \mathbb{R}^3$. Find arc length function of the curve $C: y = 4x^2, z = 5, x \ge 0$ with initial point (0,0,5).

[2+3]

10. Let $\vec{\gamma}:[a,b] \longrightarrow \mathbb{R}^3$ be a non-constant smooth curve. Show that $\vec{\gamma}'(t) = \vec{0}$ for all $t \in [a,b]$ is not possible. Express $-\vec{\gamma}$ in terms of $\vec{\gamma}$. Is $-\vec{\gamma}$ a smooth curve? Justify your answer.

[2+2+1]

SECTION B (Answer any 5 questions - 5x10 = 50 marks.)

11. Find the general solution of

$$8x^2y'' + 10xy' - (1+x)y = 0.$$

- 12. (a) Show that $J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$.
 - (b) Show that $J_1''(x) = -J_1(x) + \frac{1}{r}J_2(x)$.

- 13. (a) Show that $\int_0^{\pi/2} (\sum_{k=1}^\infty \frac{\cos(kx)}{k^2}) dx = \sum_{k=0}^\infty \frac{(-1)^k}{(2k+1)^3}.$
 - (b) Check whether $f_n(x) = 1 \frac{x^n}{n}$ converges on [0, 1] and check the continuity of the limit function.
- 14. Let $f_n(x) = x \frac{x^n}{n}$; $x \in [0,1]$. Shows that sequence $\{f_n\}$ converges uniformly but the sequence $\{f'_n\}$ of its derivatives is not uniformly convergent.
- 15. (a) State Stoke's theorem. Verify Stoke's theorem for $\vec{F}(x,y,z)=(x,y,0)$ over the surface $S: x^2+y^2+z^2=1, z\geq 0$ [5]
 - (b) Let $\vec{F}(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$. Find the domain of \vec{F} . Calculate $Curl(\vec{F})$. Let $C: x^2 + y^2 = 1$. Find $\int_C \vec{F}$. Is the field \vec{F} conservative? Justify your answer.

[0.5+1+2+1.5]

- 16. (a) Let $\vec{F}(x,y) = (e^y + ye^x, e^x + xe^y)$ for all $(x,y) \in \mathbb{R}^2$. Suppose $C = C_1 * C_2$ be a curve in \mathbb{R}^2 given by $C_1 : \frac{x^2}{4} + \frac{y^2}{9} = 1$, $y \ge 0$ oriented positively and C_2 is the straight line segment from (-2,0) to (-4,2). Find $\int_C \vec{F}$. Is the vector field \vec{F} conservative? Justify your answer.
 - (b) Let a surface S is given by $\vec{r}(u,v) = (2\cos u, 2\sin u, v)$ where $u \in [0,2\pi]$ and $v \in [-1,1]$. Represent the surface S pictorially. Find unit normal vector at any point P on the surface S. Using surface integral find the surface area of S. [1+1+3]

END