Due: 2013/12/20

Homework 11

Problem 1. Find seven points in the plane such that when we connect pairs of points with distance 1, the resulting graph has chromatic number 4.

Solution. Pick any two points b and c where bc = 1. The two unit circles centered at b and c intersect at two points a and d. a, b, c, and d form a diamond where ab = bc = ca = bd = cd = 1. We make a copy of this diamond (ab'c'd'), and let it rotate clockwise around a, until the point d' is unit distance away from d. Now consider the unit distance graph on these 7 points. We prove by contradiction that it is not 3-colourable.

Suppose there is a proper colouring with YRB. WLOG, a is coloured Y, since abc is a triangle, b and c must be coloured by RB or RB. And since bcd is a triangle, d must be coloured Y. By the same reason, d' is also coloured Y. But then d and d' has the same colour, and they are adjacent in the unit distance graph.

Problem 2. Given 2n points in the plane, n red and n blue. Prove that one can always 1-1 pair the red and blue points such that these n segments do not intersect.

Note: The statement is not correct if there are collinear points. In the following we assume no three points are collinear.

Proof. There are n! possible parings. Assume σ is one with the minimum total segment length. We claim that all the segments in σ do not intersect. Otherwise, suppose r_i is paired with b_j , r_k paired with b_l and the segments r_ib_j and r_kb_l intersect at p. Let σ' be the pairing almost identical to σ , except that r_i is paired with b_l and r_k with b_j . In these two pairings, all the other segments are identical, and by triangle inequality,

$$r_i b_l + r_k b_j \le r_i p + p b_l + r_k p + p b_j = r_i b_j + r_k b_l,$$

contradicts the assumption that σ is one with the minimum total segment length.

Problem 3. Given a set V of n points in the plane, call a line magic if it contains exactly 3 points in V. Prove that the number of magic lines is at most $n^2/6$.

Proof. Let m_k be the number of lines with exactly k points from V on it. Count the pairs

$$(\{a,b\},l): a \in V \cap l, b \in V \cap l$$

One one hand, any two points has exactly one such line. On the other hand, each line with k points from V on it appears $\binom{k}{2}$ times. So

$$\binom{n}{2} = \binom{2}{2} m_2 + \binom{3}{2} m_3 + \dots + \binom{k}{2} m_k + \dots$$

So $3m_3 \leq \binom{n}{2}$. The number of magic lines is at most $\binom{n}{2}/3 \leq n^2/6$.

Problem 4. Given a point set V in the plane, call a line magic if it contains exactly 3 points in V. Let M_n be the maximum number of magic lines over all configuration of n points. Prove a lower bound on the order of M_n as better as you can.

This problem, known as the *Orchard problem*, is probably the oldest problem in discrete geometry. About 150 years ago, J. J. Sylvester showed that $n^2/6$ can be "almost" achieved. The result got improved several times. Last year Green and Tao claimed a complete solution to this problem.

For this homework assignment, I think a lower bound in the order of $n \log n$ is good enough.