Exercice 1.

Construire un exemple dans lequel il y a plus d'un couplage stable. (Pour ce faire, il suffit de deux garçons et de deux filles).

Exercice 2.

Combien d'étapes faut-il pour que l'algorithme converge dans le cas où :

Question 1. les n garçons aient tous des filles préférées différentes?

Question 2. les n garçons aient tous des filles préférées identiques?

Exercice 3.

Supposons que les préférences soient données par les tableaux suivants :

GARÇON	1	2	3	4	5
Adam	Beth	Amy	Diane	Ellen	Cara
Bill	Diane	Beth	Amy	Cara	Ellen
Carl	Beth	Ellen	Cara	Diane	Amy
Dan	Amy	Diane	Cara	Beth	Ellen
Eric	Beth	Diane	Amy	Ellen	Cara

Table 1 – Les préférences des garçons

FILLE	1	2	3	4	5
Amy	Eric	Adam	Bill	Dan	Carl
Beth	Carl	Bill	Dan	Adam	Eric
Cara	Bill	Carl	Dan	Eric	Adam
Diane	Adam	Eric	Dan	Carl	Bill
Ellen	Dan	Bill	Eric	Carl	Adam

Table 2 – Les préférences des filles

Trouver un couplage stable en utilisant l'algorithme de Gale-Shapley avec :

Question 1. les garçons qui font des propositions.

Question 2. les filles qui font des propositions.

Exercice 4.

Cet exercice montre que les couplage stables n'existent pas nécessairement s'il n'y a pas « deux côtés ». Considérons le problème de « colocation » suivant. Il y a quatre personnes, Pat, Chris, Dana et Leslie. Elles doivent se mettre par deux (chaque paire partagera un appartement à deux lits). Chacun a des préférences quant à celui des autres qu'il préférerait avoir comme colocataire. Ces préférences sont les suivantes :

Leslie: Pat ≻ Chris ≻ Dana Chris: Leslie ≻ Pat ≻ Dana Pat: Chris ≻ Leslie ≻ Dana Dana: Chris ≻ Leslie ≻ Pat Montrez qu'il n'existe pas de couplage stable. (C'est-à-dire que, quelles que soient les personnes que vous mettez ensemble, il y aura toujours deux colocataires potentiels qui ne sont pas appariés, mais qui préfèrent l'un à l'autre à leurs colocataires actuels).

Exercice 5. Partage de loyer

Implémenter l'algorithme de partage de loyer pour deux personnes (Alice et Bob) dans le langage de votre choix. C'est-à-dire, écrire une fonction qui prend en paramètre le prix du loyer et la précision ε souhaitée. L'algorithme devrait poser la question suivante à Alice ou à Bob, avec différentes valeurs de x_1 et x_2 :

Si le loyer de la chambre 1 était de x_1 euros et celui de la chambre 2 de x_2 euros, quelle chambre choisiriez-vous?

jusqu'à trouver des valeurs x_1, x_2 telles que, si les loyers sont (x_1, x_2) , alors Alice préfère la chambre 1, et si les loyers sont $(x_1 + \varepsilon, x_2 - \varepsilon)$, alors Bob préfère la chambre 2 (ou vice versa).

Question 1. Si vous avez du temps (et de l'énergie!), essayez d'implémenter l'algorithme pour trois colocataires.

L'extension de l'algorithme à quatre colocataires (ou plus) est plus dur, et dépend du concept de la subdivision barycentrique.