C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Graph Algorithms - Lecture 11

Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru -

Table of contents

- C. Croitoru Graph Algorithms * C. Croitoru Graph Algorithms *
- 1 Polynomial-time reductions for graph problems h Algorithms * C. Croitoru
 - Hamiltonian problemsoitoru Graph Algorithms * C. Croitoru Graph Algorithms *
 - Traveling salesman problem Graph Algorithms * C. Croitoru Gr
 - Algorithms * C. Croitoru Graph Algorithms * C. Croitoru Graph Algorithms * C. Croitoru
- 2 Approaching NP-hard graph problems Croitoru Graph Algorithms * C. Croitoru Graph Algorithms * C.
 - rMetric TSPgorithms * C. Croitoru Graph Algorithms * C. Croitoru Graph Algorithms *
 - Vertex coloring: Greedy-color algorithm * C. Croitoru Graph Algorithms * C. Croitoru Graph
- Graph Algorithms * C. Croitoru -
- Croitoru Graph Algorithms * C. Croitoru Graph Algorithms * C. Croitoru Graph Algorithms *
- Annex: Christofides Algorithm (proof of correctness) Graph Algorithms * C. Croitoru Graph Algor
 - Graph Algorithms * C. Croitoru Graph Algorithms * C. Croitoru Graph Algorithms

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Theorem 1

(Karp, 1972) SM \leq_P CH.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Proof. Let G = (V, E) and $j \in \mathbb{N}$ an instance for the problem SM. We will build in polynomial time (w.r.t. n = |V|) a graph H such that there is a stable set S in G with $|S| \ge j$ if and only if H is Hamiltonian. Let k = n - j. Suppose that k > 0 (to avoid trivial cases).

- (i) Let $A = \{a_1, a_2, \ldots, a_k\}$ be a set of k distinct vertices.
- (ii) For each edge $e = uv \in E(G)$, consider the graph $G'_e = (V'_e, E'_e)$ with $V'_e = \{(w, e, i) : w \in \{u, v\}, i = \overline{1, 6}\}$ and $E'_e = \{(w, e, i)(w, e, i + 1) : w \in \{u, v\}, i = \overline{1, 5}\} \cup \{(u, e, 1)(v, e, 3), (u, e, 3)(v, e, 1), (u, e, 4)(v, e, 6), (u, e, 6)(v, e, 4)\}.$

- Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Proof cont'd.

The graph has the property that, if it is an induced subgraph of a Hamiltonian graph H, and no one of the vertices (w, e, i) with $w \in \{u, v\}$ and $i = \overline{2,5}$ has another neighbor in H, then the only possibilities of traversing G'_e by a Hamiltonian cycle are:

Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - G. Cro

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Proof cont'd. Hence, if the Hamiltonian cycle "enters" in G'_e by a vertex corresponding to u ((u, e, 1) or (u, e, 6)) then it "leaves" the graph G'_e also by a vertex corresponding to u.

- (iii) For each vertex $u \in V$, consider (in an arbitrary order) the edges incident in G with u: $e_1^u = uv_1, e_2^u = uv_2, \ldots, e_p^u = uv_p$ ($p = d_G(u)$). Let $E_u'' = \{(u, e_i^u, 6)(u, e_{i+1}^u, 1) : i = \overline{1, p-1}\}$ and $E_u''' = \{a_i(u, e_i^u, 1), a_i(u, e_p^u, 6) : i = \overline{1, k}\}$
 - Graph Algorithms * C. Croitoru Graph Algorithms * C. Croitoru Graph Algorithms *

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Proof cont'd. The graph
$$H$$
 has $V(H) = A \cup \left(\bigcup_{e \in E} V'_e\right)$ and $E(H) = \left(\bigcup_{e \in E} E'_e\right) \cup \left(\bigcup_{u \in V} (E''_u \cup E'''_u)\right)$. Clearly, it can be constructed from G in polynomial (in n) time complexity.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph

Proof cont'd. Now we show that there exists a stable set in G with at least j vertices if and only if H is Hamiltonian.

" \Leftarrow " If H is Hamiltonian, then there exists a Hamiltonian cycle, C, in

Let $D_{a_{i_j}\,a_{i_{j+1}}}$ be such a path $(j+1=1+(j\ (mod\ k)))$. By the construction of H, it follows that the first vertex after a_{i_j} on this path will be $(v_{i_j},\,e_1^{v_{i_j}},\,1)$ or $(v_{i_j},\,e_p^{v_{i_j}},\,6)$, where $p=d_G(v_{i_j}),\,v_{i_j}\in V$.

After that, $D_{a_{i_j}} a_{i_{j+1}}$ will enter the component G'_{e_1} or G'_{e_p} that will be leaved also by a vertex corresponding to v_{i_j} . If the next vertex is not $a_{i_{j+1}}$, it will enter into the component corresponding to the next edge incident with v_{i_j} , that will be leaved also by a vertex corresponding to v_{i_i} .

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Proof cont'd. It follows that each path $D_{a_{i_j}a_{i_{j+1}}}$ corresponds to an unique vertex $v_{i_j} \in V$, such that the first and the last edge of $D_{a_{i_j}a_{i_{j+1}}}$ are $a_{i_j}(v_{i_j}, e_t^{v_{i_j}}, x)$, $a_{i_{j+1}}(v_{i_j}, e_{t'}^{v_{i_j}}, x')$, with t=1 and $t'=d_G(v_{i_j})$, x=1, x'=6 or $t=d_G(v_{i_j})$, t'=1, x=6, x'=1.

It follows that the vertices v_{i_i} are distinct.

Let $V^* = \{v_{i_1}, v_{i_2}, \ldots, v_{i_k}\}$. Since C is a Hamiltonian cycle in H, it follows that, $\forall e \in E$, there is a path $D_{a_{i_j} a_{i_{j+1}}}$ traversing G'_e , hence there exists a vertex $v \in V^*$ adjacent with e.

Therefore $S = V \setminus V^*$ is a stable set in G and |S| = j.

We proved that if H is Hamiltonian, then in G there is a stable set with j vertices, i. e., the answer to SM for the instance (G, j) is yes.

Graph Algorithms * C. Croitoru - Graph Algorithms *

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph

Proof cont'd.

Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru

- Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Proof cont'd. " \Rightarrow " Suppose that the answer to the SM's question for the instance (G,j) is affirmative, hence there exists S_0 a stable set in G with $|S_0| \geqslant j$. There exists $S \subseteq S_0$ with |S| = j. Let $V^* = V \setminus S = \{v_1, v_2, \ldots, v_k\}$.

Consider in H for each $e = uv \in E$:

- the two paths from case (c) in G'_e (depicted on one of the above slides) if $u, v \in V^*$.
- ullet the path from case (b) in G_e' (depicted above) if $u\in V^*$ and $v\notin V^*$.
- the path from case (a) in G'_e (depicted above) if $u \notin V^*$ and $v \in V^*$.

To the union of all these paths we add the edges $a_i(v_i, e_1^{v_i}, 1)$, $(v_i, e_1^{v_i}, 6)(v_i, e_2^{v_i}, 1), \ldots, (v_i, e_{p-1}^{v_i}, 6)(v_i, e_p^{v_i}, 1), (v_i, e_p^{v_i}, 6)a_{i+1}$, (with $p = d_G(v_i)$), for $i = \overline{1, k}$.

It's easy to check that we obtain, in this way, a Hamiltonian cycle in H.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph

TSP Given G = (V, E) a graph and $d : E \to \mathbb{R}_+$ a non-negative weight function on its edges, find a Hamiltonian cycle, H_o , s.t. the sum of the weights of the edges of H_o is minimum (over all Hamiltonian cycles of G).

Let the graph G be a network consisting of a set, V, of cities together with a set, E, of direct routes between cities and the weight function d giving, for each edge $uv \in E$, d(uv) =the distance on the direct route between cities u and v. Fixing a starting city v_0 , the Hamiltonian cycle H_o represents the shortest way of visiting all the cities exactly once (except v_0) by a traveling salesman starting from v_0 and returning to v_0 .

This is probably, the most studied NP-hard optimization problem!

Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

We consider the following equivalent formulation of this problem.

TSP Given $n \in \mathbb{N}$ $(n \geqslant 3)$ and $d : E(K_n) \to \mathbb{R}_+$, find H_o , Hamiltonian cycle in K_n , with $d(H_o)$ minimum over all Hamiltonian cycles of K_n , where

$$d(H_o) = \sum_{e \in E(H_o)} d(e).$$

If the graph G, on which it is required to solve TSP, is not the complete graph K_n , then we can introduce the missing edges with a very large weight, $M \in \mathbb{R}_+$, where $M > |V| \cdot \max_{e \in E(G)} d(e)$.

Note that we are limited here only to the symmetric TSP, a similar (asymmetric) problem can be be considered for the case when G is a digraph.

In the study of the time complexity of this problem, we will take $d(e) \in \mathbb{N}$, for each edge e.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

The associated decision problem is

DTSP

Instance: $n \in \mathbb{N} \ (n \geqslant 3), \ d : E(K_n) \to \mathbb{N} \ \text{and} \ B \in \mathbb{N}.$

Question: Is there H_o , Hamiltonian cycle in K_n , s. t. $d(H_o) \leqslant B$?

Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru

Theorem 2

 $CH \leq_P DTSP.$

Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru

Proof. Let G=(V,E) (|V|=n) be an instance of the problem CH. We construct in polynomial time an instance of the problem DTSP, $d: E(K_n) \to \mathbb{N}$ and $B \in \mathbb{N}$, such that there exists a Hamiltonian cycle in K_n of total weight not greater than B if and only if G is a Hamiltonian graph.

Let

$$d(vw) = \left\{egin{array}{ll} 1, & ext{if } vw \in E(G) \ 2, & ext{if } vw \in E(\overline{G}) \end{array}
ight. ext{ and } B = n.$$

Then, there is in K_n a Hamiltonian cycle of weight $\leqslant n$ if and only if there is a Hamiltonian cycle C in K_n such that $\forall e \in E(C), d(e) = 1$, that is, if and only if G has a Hamiltonian cycle:

It follows that TSP is NP-hard problem.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

A possible approach is to consider approximation algorithms \mathcal{A} , which build, in polynomial time, for each instance of TSP, a Hamiltonian cycle $H_{\mathcal{A}}$ of K_n , approximating the optimal solution H_o .

The quality of the approximation can be expressed using the following ratios:

$$egin{aligned} R_{\mathcal{A}}(n) &= \sup_{d: E(K_n)
ightarrow \mathbb{R}_+, d(H_o)
eq 0} rac{d(H_{\mathcal{A}})}{d(H_o)} \ R_{\mathcal{A}} &= \sup_{n \geqslant 3} R_{\mathcal{A}}(n). \end{aligned}$$

Obviously, the approximation algorithm A is useful only if $R_{\mathcal{A}}$ is finite. Unfortunately, if the weight function d is arbitrary, finding an algorithm \mathcal{A} such that $R_{\mathcal{A}}$ is finite is as hard as solving exactly TSP. More precisely, we have the following result:

⁻ Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Theorem 3

If there is a polynomial time approximation algorithm A for TSP s.t. $R_{\mathcal{A}} < \infty$, then the problem CH can be solved in polynomial time.

* C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph

Proof. Let \mathcal{A} be a polynomial time approximation algorithm with $R_{\mathcal{A}} < \infty$. Hence there exists $k \in \mathbb{N}$ such that $R_{\mathcal{A}} \leqslant k$.

Let G=(V,E) be an arbitrary graph, instance of CH. If n=|V|, then we consider $d:E(K_n)\to \mathbb{N}$ defined by

$$d(uv) = \left\{egin{array}{ll} 1, & ext{if } uv \in E(G) \ kn, & ext{if } uv
otin E(G) \end{array}
ight..$$

Obviously, G is Hamiltonian if and only if H_o , the optimal solution of this instance of TSP, satisfies $d(H_o) = n$.

Apply A to solve approximately this instance of TSP.

- If $d(H_{\mathcal{A}}) \leqslant kn$, then $d(H_{\mathcal{A}}) = n$ and $H_{\mathcal{A}}$ is optimal.
- If $d(H_{\mathcal{A}})>kn$, then $d(H_{o})>n$. Indeed, assuming that $d(H_{o})=n$, we have $\dfrac{d(H_{\mathcal{A}})}{d(H_{o})}\leqslant k$, therefore $d(H_{\mathcal{A}})\leqslant kd(H_{o})=kn$, contradiction.

It follows that G is Hamiltonian if and only if $d(H_A) \leq kn$, and, since A runs in polynomial time, it follows that CH can be solved in polynomial time. \square

weight 7k weight 1

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Remark

The Theorem 3 can be formulated equivalently:

- Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C.

Theorem

If P \neq NP, then there is no polynomial time approximation algorithm \mathcal{A} for TSP with $R_{\mathcal{A}} < \infty$.

- Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Theorem 4

If in TSP the weight function d satisfies

$$\forall u, v, w \in V(K_n) ext{ distinct, } d(uv) \leqslant d(uw) + d(wv),$$

then there is a polynomial time approximation algorithm A with $R_A = 2$.

* C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph

The idea is to compute a minimum cost spanning tree of K_n and then create a hamiltonian cycle based on this tree:

```
compute T^0 a MST of (K_n, d); // using Prim's algorithm. dfs(T^0, v_1) and let v_1, v_2, \ldots, v_n be the dfs order; // v_1 could be any vertex; return the cycle \{v_1, v_2, \ldots, v_n, v_1\};
```

- Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Proof.

- Let H_o be a minimum cost hamiltonian cycle in (K_n, d) ; by removing an edge e from H_o one gets a spanning tree $T = H_o e$, hence $d(T) = d(H_o e) \leq d(H_o)$.
- Consider the walk, P, of T^0 which traverse each edge exactly twice: $d(P) = 2d(T^0)$.
- By keeping only the first occurrence of each vertex, except v_1 for which we keep the last occurrence also, we get the hamiltonian cycle H.
- On the other hand,

$$d(H)\overset{(*)}{\leqslant}d(P)=2d(T^0)\leqslant 2d(T)\leqslant 2d(H_o).$$

• (*) comes from the triangle inequality.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

The walk P:

 $v_1, v_2, v_3, v_2, v_4, v_2, v_5, v_6, v_5, v_2, v_1, v_7, v_8, v_7, v_9, v_7, v_1, v_{10}, v_{11}, v_{12}, v_{11}, v_{13}, v_{11}, v_{10}, v_{14}, v_{10}, v_1$

- Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

The hamiltonian cycle H:

 $v_1, v_2, v_3, y_2, v_4, y_2, v_5, v_6, y_6, y_6, y_6, y_1, v_7, v_8, y_7, v_9, y_7, y_1, v_{10}, v_{11}, v_{12}, y_{11}, v_{13}, y_{21}, v_{20}, v_{14}, y_{20}, v_{11}, v_{12}, v_{21}, v_{22}, v_{23}, v_{24}, v_{25}, v_$

- Graph Algorithms * C. Crottoru - Graph Algorithms * C. Crottoru - Graph Algorithms *

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Theorem 5

(Christofides, 1976) If in TSP the weight function d satisfies

$$\forall u, v, w \in V(K_n) ext{ distinct, } d(uv) \leqslant d(uw) + d(wv),$$

then there is a polynomial time approximation algorithm \mathcal{A} with $R_{\mathcal{A}}=3/2$.

Graph Algorithms * C. Croitory Graph Algorithms * C. Croitory Graph Algorithms * C. Croitory

The proof is given in the Annex.

* C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

```
Let G = (V, E) be a graph, V = \{1, 2, ..., n\} and let \pi be a permutation of
V. We construct a vertex-coloring c: V \to \{1, \ldots, \chi(G, \pi)\}.
   c(\pi_1) \leftarrow 1; \ \chi(G,\pi) \leftarrow 1; \ S_1 \leftarrow \{\pi_1\};
   for (i = \overline{2,n}) do
      i \leftarrow 0;
      repeat
          j + +; v \leftarrow first vertex (in \pi), from S_i s. t. \pi_i v \in E(G);
          if (\exists v) then
              first(\pi_i, j) \leftarrow v;
          else
              first(\pi_i, j) \leftarrow 0; \ c(\pi_i) \leftarrow j; \ S_i \leftarrow S_i \cup \{\pi_i\};
          end if
       until (first(\pi_i, j) = 0 \text{ or } j = \chi(G, \pi))
       if (first(\pi_i, j) \neq 0) then
          c(\pi_i) \leftarrow j+1; S_{j+1} \leftarrow \{\pi_i\}; \chi(G,\pi) \leftarrow j+1;
       end if
   end for
```

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Note that the number of colors used by the greedy algorithm is not greater than $1+\Delta(G)$. It follows that $\chi(G)\leqslant 1+\Delta(G)$. $\chi(G,\pi)$ the number of colors returned by the Greedy-color algorithm, can be arbitrarily larger than $\chi(G)$. For example, let G be the graph obtained from the complete bipartite graph $K_{n,n}$, with vertex set $\{1,2,\ldots,n\}\cup\{1',2',\ldots,n'\}$, by removing the edges $11',22',\ldots,nn'$.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph

If $\pi=(1,1',2,2',\ldots,n,n')$, then the Greedy-color algorithm returns $c(1)=c(1'),\ c(2)=c(2')=2,\ c(n)=c(n')=n.$ Therefore, $\chi(G,\pi)=n$, while $\chi(G)=2$.

On the other hand, for any graph G, there is a permutation π of its vertices such that $\chi(G, \pi) = \chi(G)$.

Indeed, let $S_1, S_2, \ldots, S_{\chi(G)}$ be the coloring classes of an optimal coloring, such that each S_i is a maximal (w. r. t. inclusion) stable

set in $G - \bigcup_{j=1}^{i-1} S_j$. Let π be a permutation which induces an ordering

s.t. vertices occurs in the non-decreasing order of their colors. Then, $\chi(G,\pi)=\chi(G)$.

A sufficient condition for the correctness of the Greedy-color algorithm:

⁻ Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Theorem

If, $\forall vw \in E$ and $\forall j < \min\{c(v), c(w)\}$ such that first(v, j) < first(w, j) in the ordering given by π , we have $first(w, j)v \in E$, then $\chi(G, \pi) = \chi(G)$.

Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru

Proof. Omitted (and left as an exercise).

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

The above condition can be tested in $\mathcal{O}(m)$ as a last step in the algorithm. If it is fulfilled, then we have a certificate for the optimality of the number of color found.

The above theorem follows by proving that if the condition stated holds, then $\chi(G,\pi)=\omega(G)\leqslant \chi(G)$. On the other hand, it is well known that there are graphs G for which $\chi(G)-\omega(G)$ is arbitrarily large; for such a graph G no permutation π satisfies the condition in the theorem.

```
Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C.
```

Exercises for the 12th seminar

C. Croitoru - Graph Algorithms * C. Croitoru - Graph

Exercise 1. The regions (including the infinite region) formed by n circles in the plane can be colored with two colors such that any two regions that share a common boundary arc should be colored differently. Exercise 2. Let G = (V, E) be a graph having no disjoint odd cycles. Prove that G is 5-colorable.

Exercise 3. For a given graph H we define the average degree as $ad(H) = \frac{2|E(H)|}{|V(H)|}$. For a graph G, the maximum average degree is

$$mad(G) = \max\{ad(H) : H \text{ induced subgraph of } G\}$$

Let $k \geqslant 3$ an integer. Prove that, if a graph G has its cromatic number strictly greater than k and its maximum average degree at most k, then G contains an induced k-regular subgraph.

Exercises for the 12th seminar

Exercise 4.

- (a) Prove that any graph can be vertex-colored with $\Delta(G)+1$ colors.
- (b) Consider the following recursive algorithm for coloring the vertices of a given 3-colorable graph with n vertices:

```
color(G) {
if (\Delta(G) \leqslant \sqrt{n}) then
   color all the vertices of G with \Delta(G) + 1 new colors;
else
  let x_0 \in V(G) s. t. d_G(x_0) = \Delta(G);
   color x_0 with a new color;
   color the vertices of [N_G(x_0)]_G with two new colors;
   G \leftarrow G - (\{x_0\} \cup N_G(x_0));
   color(G);
end if }
```

Prove that the above algorithm uses $\mathcal{O}(\sqrt{n})$ colors.

Exercise 5. Consider the following problem:

Set Cover

Instance: A non empty set X, a family of subsets of X: $\mathcal{F}=\{X_1,\ldots,X_p\}$ and $k\in\mathbb{N}^*.$

Question: X can be covered with at most k subsets of \mathcal{F} ?

Let us consider the following heuristic (a greedy type algorithm) for solving this problem

 $\mathcal{F}' \leftarrow \varnothing;$ while $(\exists x \in X \text{ uncovered by } \mathcal{F}')$ do let X_i a subset in \mathcal{F} with the largest number of uncovered elements; $\mathcal{F}' \leftarrow \mathcal{F}' \cup \{X_i\};$ end while return $\mathcal{F}';$

Prove that if m is the minimum cardinality of an optimal subfamily of \mathcal{F} , then the above algorithm has gives a subfamily of at most $m \ln n$ subsets (n = |X|).

Exercises for the 12th seminar

C. Croitoru - Graph Algorithms * C. Croitoru - Graph

- Exercise 6. Let G=(V,E) be a graph with n vertices and m edges. An ordering $\{x_1,x_2,\ldots,x_n\}$ of the vertices of G is called k-bounded if in the digraph \vec{G} , obtained from G by replacing the edge x_ix_j with an arc $x_{\min\{i,j\}}, x_{\max\{i,j\}}$, we have $d^+_{\vec{G}}(x) \leq k, \forall x \in V$.
- (a) Devise an algorithm to test in $\mathcal{O}(n+m)$ time complexity if G, has a k-bounded order, where $k \in \mathbb{N}$.
- (b) Use the above algorithm in order to determine in $\mathcal{O}((n+m)\log n)$ time the number

$$o(G) = \min\{k \in \mathbb{N} : G \text{ has a } k\text{-bounded order.}\}$$

(c) Prove that any graph G has a vertex coloring which uses o(G) + 1 colors.

- Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Exercises for the 12th seminar

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Exercise 7. A greedy algorithm for vertex coloring of a graph G = (V, E) is the following: first, choose an D-ordering of vertices $V = \{v_1, v_2, \ldots, v_n\}$, i. e., $d_G(v_1) \geqslant d_G(v_2) \geqslant \ldots \geqslant d_G(v_n)$, second v_i gets the smallest color unused by any of its already colored neighbors. Now consider the following decision problem

3GCOL

instance: G = (V, E) a graph.

question: Has G a D-ordering s. t. the above heuristic uses at most 3 colors?

Prove that 3COL \leq_P 3GCOL.

Algorithms * C. Croitoru - Graph Algorithms *

Exercise 8. Let G = (V, E) be a graph with $V = \{1, 2, ..., n\}$ and $\omega(G) = 2$. We define a new graph M(G) by considering the disjoint union of G and $K_{1,n}$ (whose bipartition is $(\{0\}, \{1', 2', ..., n'\})$) and adding all the edges $\{i'j, ij' : ij \in E(G)\}$.

- (a) Prove that $\omega(M(G)) = 2$ and $\chi(M(G)) = \chi(G) + 1$.
- (b) Show that, for every $p \in \mathbb{N}^*$, there exists a K_3 -free graph having cromatic number p.

Exercise 9. Let S be a society formed with n individuals. Each person, $i \in S$, knows a subset $c(i) \subseteq S \setminus \{i\}$ of other persons. Two different persons $i, i' \in S$ cannot be part of the same jury if one knows the other (we can have single member juries).

Prove that if each person knows at most k other persons ($|c(i)| \leq k$, $\forall i \in S$), then there exists a family of at most (2k+1) disjoint juries that cover together the entire society.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Theorem 6

(Christofides, 1976) If in TSP the weight function d satisfies

$$\forall u, v, w \in V(K_n) ext{ distinct, } d(uv) \leqslant d(uw) + d(wv),$$

then there is a polynomial time approximation algorithm \mathcal{A} with $R_{\mathcal{A}}=3/2.$

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Proof. Let A be the following algorithm:

- Find T^0 the edge set of MST in K_n (the cost of each edge e is d(e)) (this takes polynomial time using any MST algorithms).
- Find M^0 a minimum weight perfect matching in the subgraph induced in K_n by the set of vertices of odd degrees of T^0 (this takes polynomial time using any maximum matching algorithm).

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Proof cont'd.

• In the multi-graph obtained from $\langle T^0 \cup M^0 \rangle_{K_n}$, by duplicating the edges from $T^0 \cap M^0$ (it is connected and all vertices have even degree) find a closed Euler trail, $(v_{i_1}, v_{i_2}, \ldots, v_{i_n})$. Eliminate all the multiple occurrences of the internal vertices to obtain a Hamiltonian cycle H_A in K_n with the edge set $H_A = \{v_{j_1}v_{j_2}, v_{j_2}v_{j_3}, \ldots, v_{j_n}v_{j_1}\}$ (both constructions need $\mathcal{O}(n^2)$ time, the closed Euler trail can be found with Hierholzer's algorithm).

 $H_{\mathcal{A}}$ is an approximative solution of TSP given by Christofides. Let $m=\lfloor n/2 \rfloor$ and H_o be the optimal solution. We prove (after Cornuejols & Nemhauser) that

$$orall n\geqslant 3,$$
 $d(H_{\mathcal{A}})\leqslant rac{3m-1}{2m}d(H_o).$

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Proof cont'd. Let $H_o = \{v_1 v_2, v_2 v_3, \dots, v_n v_1\}$ (if necessary, we can rename the nodes).

Let $W = \{v_{i_1}, v_{i_2}, \ldots, v_{i_{2k}}\}$ the set of odd degree vertices in $\langle T^0 \rangle_{K_n}$, $i_1 < i_2 < \ldots < i_{2k}$. Let $H = \{v_{i_1}v_{i_2}, v_{i_2}v_{i_3}, \ldots, v_{i_{2k-1}}v_{i_{2k}}, v_{i_{2k}}v_{i_1}\}$ be the cycle generated by W in K_n . Applying repeatedly the triangle inequality, we obtain $d(H) \leq d(H_o)$, (the weight of each chord, $d(v_{i_j}v_{i_{j+1}})$ is upper bounded by the sum of the weights of the edges on H_o joining the extremities of the chord $v_{i_j}v_{i_{j+1}}$).

Since H is an even cycle, it is the union of two perfect matchings in $[W]_{K_n}$, $M^1 \cup M^2$. Suppose that $d(M^1) \leqslant d(M^2)$.

By the choosing of M^0 , we have $d(M^0) \leqslant d(M^1) \leqslant (1/2)[d(M^1) + d(M^2)] = (1/2)d(H) \leqslant (1/2)d(H_0)$. Let $\alpha \in \mathbb{R}_+$ s. t. $d(M^0) = \alpha d(H_0)$. Obviously, $0 < \alpha \leqslant 1/2$.

- Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Proof cont'd.

Decompose H_o into $H^1 \cup H^2$ by taking into H^i the edges of H_o connecting the extremities of each chord in M^i : $(v_{i_j}v_{i_{j+1}} \in M^i \Rightarrow v_{i_i}v_{i_{j+1}}, \dots v_{i_{j+1}-1}v_{i_{j+1}} \in H^i)$.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Proof cont'd. By the triangle inequality, $d(H^i) \geqslant d(M^i)$, i=1,2. At least one of H^1 or H^2 has at most $m=\lfloor n/2 \rfloor$ edges. Suppose that H^1 has this property. Since $d(H^1) \geqslant d(M^1) \geqslant d(M^0) = \alpha d(H_o)$, it follows that there exists $e \in H^1$ such that $d(e) \geqslant (\alpha/m)d(H_o)$. Let T be the spanning tree obtained from H_o by deleting an edge of maximum weight. We have $d(T) = d(H_o) - \max_{e \in E(H_o)} d(e) \leqslant d(H_o) - (\alpha/m)d(H_o)$.

Since T^0 is MST in K_n it follows that $d(T^0) \leq d(H_o)(1 - \alpha/m)$. Using the triangle inequality, we have

$$egin{aligned} d(H_{\mathcal{A}}) &\leqslant d(T^0) + d(M^0) \leqslant d(H_o) \left(1 - rac{lpha}{m}
ight) + lpha d(H_o) = \ &= \left(1 + rac{lpha(m-1)}{m}
ight) d(H_o) \stackrel{lpha \leqslant 1/2}{\leqslant} rac{3m-1}{2m} d(H_o), orall n \geqslant 3. \ \Box \end{aligned}$$