

PROJETO APLICADO I

ETAPA 4 – APLICANDO CONHECIMENTO

Antônio Alcivan da Silva Ítalo Pedro dos Santos Pereira Joyce Rhaellem Alves Costa Priscila Gabrielly Mendes Rafael Kazuo Kondo

PROJETO APLICADO I ETAPA IV – APLICANDO CONHECIMENTO

Curso: Faculdade de Computação e Informática – Tecnologia em Ciência de Dados

Semestre: 1° Semestre 2023

Componente Curricular/Tema: Projeto Aplicado I – Aula 02 Aplicando Conhecimento

Grupo 1 – Nome dos Integrantes:

Antônio Alcivan da Silva TIA: 22501355 Ítalo Pedro dos Santos Pereira TIA: 22502440 Joyce Rhaellem Alves Costa TIA: 22514287 Priscila Gabrielly Mendes TIA: 22504370 Rafael Kazuo Kondo TIA: 22009183

Nome do Professor: Leonardo Massayuki Takuno

Sumário

Glossário	4
Organização escolhida	
Objetivo de estudo e problema de pesquisa	
Apresentação da Empresa	6
Problema do estudo	
Metadados	11
Análise Exploratória de Dados	12
Storteling	18
Base dos dados	23
Link GitHub	23
Referências Bibliográficas	23

Glossário

Algoritmos: é uma sequência de instruções ou comandos realizados de maneira sistemática com o objetivo de resolver um problema ou executar uma tarefa.

Aprendizado de máquina: é um método de análise de dados que automatiza a construção de modelos analíticos. É um ramo da inteligência artificial baseado na ideia de que sistemas podem aprender com dados, identificar padrões e tomar decisões com o mínimo de intervenção humana. Mineração de dados: é uma técnica assistida por computador usada em análises para processar e explorar grandes conjuntos de dados.

Clusters: significa integrar dois ou mais computadores para que trabalhem simultaneamente no processamento de uma determinada tarefa.

Data Science: é um estudo muito disciplinado com relação aos dados e demais informações inerentes à empresa e as visões que cercam um determinado assunto.

Datasets: é um arquivo que pode conter centenas ou até milhares de dados sobre um determinado assunto.

Arquivo CSV (valores separados por vírgulas): é um arquivo de texto com formato específico para possibilitar o salvamento dos dados em um formato estruturado de tabela.

Marketplace: nada mais é do que um portal de e-commerce colaborativo, isto é, um site que reúne ofertas de produtos e serviços de diversos vendedores, como se fosse um shopping virtual. **GitHub:** é uma plataforma totalmente online onde você pode criar repositórios e hospedar neles seus projetos, colaborar com softwares open source, seguir programadores e interagir com códigos de terceiros.

Outputs: mecanismo através do qual a informação armazenada e processada num computador é transferida para um meio externo; saída.

Warning: trata-se de mensagens de aviso que são normalmente emitidas em situações em que é útil alertar o usuário sobre alguma condição em um programa.

Outliers: é um dado que se distancia radicalmente dos demais que compõem a amostra analisada.

Organização escolhida

A Amazon.com, Inc. é uma empresa multinacional de tecnologia sediada em Seattle, Washington, nos EUA. Ela é especializada em comércio eletrônico, computação em nuvem, streaming e inteligência artificial. A Amazon é reconhecida como uma das cinco maiores empresas de tecnologia do mundo. Inicialmente, a empresa foi criada em 1994 como uma livraria online, porém expandiu seu catálogo e hoje vende uma ampla variedade de produtos, incluindo eletrônicos, software, videogames, vestuário, móveis, alimentos, brinquedos e joias.

Além disso, a Amazon oferece serviços de download e streaming de vídeo, música e audiolivros. A empresa também produz eletrônicos de consumo. A Amazon é atualmente a maior varejista online do mundo e uma das principais fornecedoras de assistentes de inteligência artificial, plataformas de streaming ao vivo e serviços de computação em nuvem.

Objetivo de estudo e problema de pesquisa

O objetivo deste estudo é promover o crescimento do comércio eletrônico por meio da aplicação eficiente de técnicas de clusterização e recomendação de produtos. Para isso, utilizamos uma base de dados de vendas da empresa para avaliarmos a possibilidade de aprimorar o desempenho de vendas por meio dessas técnicas.

A análise dos dados de vendas permite identificar padrões de comportamento dos clientes e suas preferências. Com base nesses dados, é possível aplicar a técnica de clusterização para agrupar produtos em categorias semelhantes, o que proporciona uma melhor compreensão do perfil dos clientes e suas necessidades.

A aplicação dessas técnicas pode aumentar a eficiência do comércio eletrônico, melhorando a experiência do usuário e, consequentemente, impulsionando as vendas. Ademais, a análise dos dados de vendas pode fornecer valiosos insights sobre produtos com maior potencial de crescimento, permitindo que a empresa ajuste sua estratégia de vendas para atender às demandas dos clientes de forma mais eficaz.

Sistemas de Recomendação de produtos: os sistemas de recomendação são algoritmos que coletam informações sobre as preferências de um usuário em um site de compras e usam essas informações para fazer sugestões personalizadas de produtos que ele pode gostar. Eles são amplamente usados em sites de e-commerce para melhorar a experiência do usuário, aumentar a satisfação do cliente e impulsionar as vendas. Os sistemas de recomendação usam técnicas de aprendizado de máquina e mineração de dados para analisar o comportamento do usuário, como histórico de navegação, compras anteriores, avaliações e classificações de produtos, para sugerir itens que possam ser relevantes ou de interesse para o usuário.

Clusterização dos Produtos: a clusterização de produtos para e-commerce é uma técnica de análise de dados que agrupa itens de um catálogo de produtos em clusters, com base em características ou atributos semelhantes. É uma abordagem usada por empresas de e-commerce para melhorar a organização, a categorização e a busca de produtos em seus sites. A clusterização pode ajudar a fornecer uma visão mais clara do comportamento do cliente e identificar padrões de compra. Com essa técnica, é possível identificar grupos de produtos que compartilham características e criar campanhas de marketing direcionadas, otimizar as sugestões de produtos e melhorar a experiência do usuário, levando a um aumento nas vendas e na fidelidade do cliente. A clusterização de produtos é geralmente implementada usando algoritmos de aprendizado de máquina e técnicas de mineração de dados.

Apresentação da Empresa

Nome da empresa

Amazon.com, Inc.

Missão e visão

De acordo com o próprio site de carreira da Amazon, a sua missão é ser "a empresa mais centrada no cliente da Terra", onde os clientes possam encontrar e descobrir qualquer coisa que queiram comprar online".

Valores:

- Obsessão pelo cliente: A empresa se esforça para atender às necessidades dos clientes de maneira excepcional e superar suas expectativas;
- Propensão para ação: A Amazon valoriza a tomada de decisão rápida e a implementação ágil de soluções;
- Inovação: A empresa busca constantemente inovar e criar soluções que possam melhorara vida dos clientes;
- Liderança: A Amazon busca liderar em todas as áreas em que atua, seja em tecnologia, logística ou em outros aspectos do negócio;
- Excelência operacional: A empresa busca operar de maneira eficiente e eficaz, eliminando desperdícios e reduzindo custos para oferecer preços mais baixos aos clientes;
- Trabalho em equipe: A Amazon valoriza o trabalho em equipe e a colaboração entre os funcionários para alcançar objetivos comuns.

Segmento de atuação:

O segmento de atuação do comércio online da Amazon é abrangente e inclui diversas categorias de produtos e serviços. Segundo o relatório anual da Amazon de 2020, os principais segmentos de negócios da empresa são:

- Varejo online: inclui a venda de produtos físicos para consumidores finais, como eletrônicos, vestuário, alimentos, produtos de beleza, entre outros;
- Serviços de assinatura: inclui serviços digitais, como Amazon Prime, Prime Video, Prime Music, entre outros;
- Serviços em nuvem: oferece soluções de armazenamento, análise de dados e computação em nuvem para empresas, por meio da Amazon Web Services (AWS);
- Publicidade: inclui a venda de espaço publicitário na plataforma da Amazon para anunciantes.

Market Share/posicionamento no mercado

A Amazon é uma das maiores empresas de comércio eletrônico do mundo e tem uma presença significativa em vários mercados. De acordo com dados da eMarketer, a Amazon detém uma participação de mercado de 39,7% no varejo online dos Estados Unidos em 2021,o que representa um aumento em relação aos 38,7% em 2020. A empresa também é líder em serviços de nuvem, com uma participação de mercado de 32% em 2020, de acordo com a Synergy Research Group.

No mercado de publicidade digital, a Amazon também tem aumentado sua participação. Em 2021, a empresa foi a terceira maior plataforma de publicidade digital nos Estados Unidos, com uma participação de mercado de 10,3%, atrás apenas do Google e do Facebook.

Número de colaboradores

De acordo com o relatório anual da Amazon.com, Inc. de 2020, a empresa empregava mais de 1,3 milhão de funcionários em todo o mundo. Esses funcionários trabalham em diversas áreas, incluindo varejo online, tecnologia, logística, serviços em nuvem, entre outros. É importante notar que esse número de funcionários pode ter mudado desde a publicação do relatório, pois a Amazon continua crescendo e expandindo suas operações.

Iniciativas na área de Data Science

A Amazon tem investido significativamente em iniciativas de Data Science, com o objetivo de utilizar dados para melhorar seus produtos, serviços e operações. Algumas das iniciativas da empresa na área de Data Science incluem:

- Amazon Machine Learning: A Amazon oferece uma plataforma de aprendizado de máquina baseada em nuvem que permite que os desenvolvedores construam e implantem modelos de aprendizado de máquina em escala.
 A plataforma é integrada aos serviços da AWS e fornece recursos de automatização de processos para simplificar o processo de treinamento de modelos;
- 2. Amazon Personalize: A Amazon Personalize é uma plataforma de aprendizado de máquina que permite que as empresas criem recomendações personalizadas para seus clientes. A plataforma utiliza algoritmos de aprendizado de máquina para analisar dados de clientes, incluindo histórico de compras e comportamento de navegação, para criar recomendações personalizadas em tempo real;
- 3. Amazon Forecast: A Amazon Forecast é uma plataforma de previsão baseada em nuvem que permite que as empresas criem previsões precisas para seus negócios. A plataforma utiliza algoritmos de aprendizado de máquina para analisar dados históricos e criar modelos de previsão que podem ser usados para prever vendas futuras, demanda de produtos e outros fatores críticos de negócios.

Trabalhos em destaque

A Amazon é uma empresa que atua em diversos segmentos e tem inúmeros projetos em andamento. Aqui estão alguns trabalhos em destaque da Amazon em diferentes áreas, juntamente com suas referências bibliográficas:

1. Alexa Conversations: A equipe de Alexa Conversations da Amazon está trabalhando em um sistema de diálogo conversacional que permite que os usuários interajam com a assistente virtual da Amazon, Alexa, de maneira mais natural e intuitiva. O sistema utiliza técnicas de aprendizado de máquina e permite que os usuários realizem tarefas mais complexas por meio de uma única interação com a assistente virtual;

- 2. Amazon Go: A Amazon Go é uma rede de lojas sem caixas registradoras que utilizam tecnologia de visão computacional e aprendizado de máquina para permitir que os clientes façam compras e saiam da loja sem precisar passar pelo processo de checkout. A empresa abriu sua primeira loja em 2018 e desde então tem expandido sua rede de lojas em vários países;
- 3. Amazon Web Services: A Amazon Web Services (AWS) é a divisão de serviços em nuvem da Amazon, que fornece uma ampla variedade de serviços de computação em nuvem, incluindo armazenamento, processamento, análise de dados, machine learning e muito mais. A AWS é líder em serviços de nuvem e tem sido responsável por grande parte dos lucrosda Amazon nos últimos anos.

Problema do estudo

O que falta?

Quais foram os critérios e os algoritmos utilizados para a clusterização e a recomendação de produtos?

Quais foram as métricas e os indicadores utilizados para avaliar o desempenho das técnicas?

O que incomoda?

Concorrência e regulação: a empresa enfrenta uma forte concorrência de outras empresas de tecnologia e de comércio eletrônico, como Google, Facebook, Apple, Microsoft, Alibaba e Walmart. Além disso, a empresa também está sob o escrutínio de órgãos reguladores e governos de vários países, que investigam possíveis práticas anticompetitivas, violações de privacidade e abusos de poder da empresa.

Reclamações dos consumidores: a empresa tem recebido muitas reclamações dos consumidores sobre atrasos na entrega, problemas com os produtos, dificuldades no atendimento e na devolução, entre outros. Segundo o site Reclame Aqui, a empresa tem uma reputação de

8.4 em 10, mas recebeu mais de 44 mil reclamações nos últimos 6 meses, sendo que cerca de 3 mil não foram respondidas.

O que pode ser melhorado?

Comparar as técnicas de clusterização e recomendação de produtos utilizadas com outras alternativas disponíveis na literatura ou no mercado, para avaliar a sua eficácia e eficiência;

Realizar testes com diferentes cenários e variáveis, para verificar a robustez e a sensibilidade das técnicas aplicadas;

Apresentar exemplos concretos e ilustrativos de como as técnicas de clusterização e recomendação de produtos podem melhorar a experiência do usuário e o crescimento de vendas da empresa Amazon.

Qual é o gap?

- Estado atual: a empresa Amazon utiliza técnicas de clusterização e recomendação de produtos para melhorar o seu comércio eletrônico, mas não se sabe quão efetivas e eficientes são essas técnicas e como elas podem ser otimizadas;
- Estado desejado: a empresa Amazon quer melhorar o seu crescimento de vendas por meio de técnicas de clusterização e recomendação de produtos que sejam capazes de identificar o perfil dos clientes e suas preferências, agrupar os produtos em categorias semelhantes e sugerir itens relevantes ou de interesse para o usuário;
- GAP: como utilizar técnicas de clusterização e recomendação de produtos para melhorar o crescimento de vendas da empresa Amazon?

Há um padrão que pode ser observado?

Nessa análise inicial dos dados, conseguimos observar que a grande maioria dos produtos consistem em eletrônicos, computadores & acessórios e eletrodomésticos, com avaliações dadas pelos consumidores variando entre 3,5 e 4,5 (com 5,0 sendo a avaliação máxima).

Há uma afirmação que pode ser contestada?

Até o momento da análise ainda não podemos contestar nenhuma afirmação.

Metadados

Objetivo

Caracterizar e registrar os datasets que temos para o estudo.

Tipo de arquivo (csv, json, xml etc.)

O arquivo dataset é um CSV

Origem dos dados (aberto ou privado)

Os dados são de origem pública, presentes em produtos no próprio marketplace da empresa

Sensibilidade (possui dados sensíveis)

Não há sensibilidade nos dados, já que se trata somente das avaliações públicas dos produtos

Validade (quando foi gerado, quando se torna obsoleto)

Os dados não expiram

Proprietário do dado (quem é responsável pelo dataset)

KARKAVELRAJA J foi responsável pelo processo de ETL (extrair, transformar e carregar) da plataforma da Amazon e por disponibilizar na plataforma Kaggle

Descrição dos atributos (definição e tipo de dado)

product_id - ID do produto (STR) product_name - Nome do produto (STR)category - Categoria do produto (STR)

discounted_price - Preço com desconto do produto (FLOAT)actual_price - Preço real do produto (FLOAT)

discount_percentage - Percentual de desconto do produto (FLOAT)rating - Avaliação do produto (FLOAT)

rating_count - Número de pessoas que votaram na avaliação da Amazon (FLOAT)about_product - Descrição do produto (STR)

user_id - ID do usuário que escreveu a avaliação do produto (STR)

user_name - Nome do usuário que escreveu a avaliação do produto (STR)

review_id - ID da avaliação do usuário (STR) review_title - Avaliação curta do produto (STR) review_content - Avaliação longa do produto (STR)img_link - Link da imagem do produto (STR) product_link - Link do site oficial do produto (STR)

Análise Exploratória de Dados

Os dados de origem e análise feita se encontram dentro do link do GitHub a seguir: https://github.com/italopspereira/PROJE APLIC l/tree/main/2%20-%20Etapa

Segue os principais outputs referentes a análise de dados. Vale lembrar, que alguns outputs são extensos e não couberam dentro da tela. Existem algumas mensagens de warning relacionadas a parâmetros deprecados, porém, estes não devem influenciar no resultado final.

Número de exemplares (linhas) e dimensões (colunas)

Tipos de dados

```
df.dtypes
Out[]: product_id
                                object
        product_name
                               object
                                object
        category
        discounted price
                               object
        actual_price
                               object
        discount_percentage
                                object
                               object
        rating
        rating_count
                                object
        about_product
                                object
        user_id
                               object
        user name
                                object
        review id
                                object
        review title
                               object
        review_content
                                object
        img link
                                object
        product_link
                                object
        dtype: object
```

Medidas de posição e dispersão

```
In [ ]: # Média
        df.mean()
      <ipython-input-29-c61f0c8f89b5>:1: FutureWarning: The default value of numeric_only in DataFrame.mean is deprecated. In a future version, it will
      default to False. In addition, specifying 'numeric_only=None' is deprecated. Select only valid columns or specify the value of numeric_only to si
      lence this warning.
      df.mean()
Out[]: discounted_price
                           3125.310874
                              5444.990635
        actual price
        discount_percentage
                               0.476915
                               4.096519
        rating
                           18295.541353
        rating count
```

In []: # Mediana
 df.median()

<ipython-input-30-c6e0c62a3834>:2: FutureWarning: The default value of numeric_only in DataFrame.median is deprecated. In a future version, it wi
ll default to False. In addition, specifying 'numeric_only=None' is deprecated. Select only valid columns or specify the value of numeric_only to
silence this warning.

df.median()

dtype: float64

```
Out[]: discounted_price 799.0
actual_price 1650.0
discount_percentage 0.5
rating 4.1
rating_count 5179.0
dtype: float64
```

```
In [ ]: # Quartis (primeiro quartil)
             df.quantile(q=0.25)
           <ipython-input-31-3f00c7a07290>:2: FutureWarning: The default value of numeric_only in DataFrame.quantile is deprecated. In a future version, it
          will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.
     Out[]: discounted_price
                                325.00
            actual price
                                800.00
            discount percentage
                                 0.32
                                4.00
            rating
                              1186.00
            rating count
            Name: 0.25, dtype: float64
     In [ ]: # Quartis (terceiro quartil)
             df.quantile(q=0.75)
           <ipython-input-33-048d2407fab8>:2: FutureWarning: The default value of numeric only in DataFrame.quantile is deprecated. In a future version, it
           will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.
           df.quantile(q=0.75)
     Out[]: discounted_price
                               1999.00
            actual price
                               4295.00
                              0.63
            discount_percentage
            rating 4.30 rating_count 17336.50
            rating
                                  4.30
            Name: 0.75, dtype: float64
In [ ]: # Moda
          print(df['discounted_price'].mode())
          print(df['actual_price'].mode())
          print(df['discount percentage'].mode())
          print(df['rating'].mode())
          print(df['rating_count'].mode())
           199.0
       Name: discounted_price, dtype: float64
           999.0
       Name: actual_price, dtype: float64
            0.5
       1
            0.6
       Name: discount_percentage, dtype: float64
           4.1
       Name: rating, dtype: float64
           9378.0
       Name: rating_count, dtype: float64
In [ ]: | # Amplitude
          print('discounted_price :',df['discounted_price'].max() - df['discounted_price'].min())
          print('actual_price :',df['actual_price'].max() - df['actual_price'].min())
          print('discount_percentage :',df['discount_percentage'].max() - df['discount_percentage'].min())
          print('rating :',df['rating'].max() - df['rating'].min())
          print('rating_count :',df['rating_count'].max() - df['rating_count'].min())
        discounted_price : 77951.0
        actual_price : 139861.0
       discount_percentage : 0.94
       rating: 3.0
       rating_count: 426971.0
```

```
In [ ]:
         # Variância
         print('discounted_price:', round(df['discounted_price'].var(), 3))
         print('actual_price :', round(df['actual_price'].var(), 3))
         print('discount percentage :', round(df['discount percentage'].var(), 3))
         print('rating :', round(df['rating'].var(), 3))
         print('rating_count :', round(df['rating_count'].var(), 3))
      discounted_price: 48223363.522
      actual_price : 118261859.323
      discount percentage: 0.047
      rating : 0.085
      rating_count : 1827892968.355
In [ ]: # Desvio Padrão
         print('discounted_price:', round(df['discounted_price'].std(), 3))
         print('actual_price :', round(df['actual_price'].std(), 3))
         print('discount_percentage :', round(df['discount_percentage'].std(), 3))
         print('rating :', round(df['rating'].std(), 3))
         print('rating_count :', round(df['rating_count'].std(), 3))
      discounted price: 6944.304
       actual_price : 10874.827
       discount percentage : 0.216
       rating: 0.292
      rating_count : 42753.865
```

```
in [ ]: # Covariância
        print(df.cov())
                        discounted_price actual_price discount_percentage \
     discounted_price
                           4.822336e+07 7.264202e+07
                                                            -364.215122
     actual_price
                           7.264202e+07 1.182619e+08
                                                            -277.867820
     discount percentage -3.642151e+02 -2.778678e+02
                                                              0.046811
                           2.437229e+02 3.858887e+02
                                                              -0.009774
     rating
                          -8.098244e+06 -1.681132e+07
                                                          108.076044
     rating count
                            rating rating_count
     discounted_price 243.722892 -8.098244e+06
     actual price
                       385.888738 -1.681132e+07
     discount_percentage -0.009774 1.080760e+02
                          0.085022 1.266013e+03
     rating
     rating_count
                       1266.013169 1.827893e+09
     <ipython-input-54-0a12e4c3650a>:1: FutureWarning: The default value of numeric_only in DataFrame.cov is deprecated. In a future version, it will
     default to False. Select only valid columns or specify the value of numeric_only to silence this warning.
```

print(df.cov())

Distribuição e frequência

	Frequência	Porcentagem %		
999.00	120	8.191		
499.00	71	4.846		
1999.00	56	3.823		
1499.00	37	2.526		
399.00	34	2.321		
599.00	33	2.253		
699.00	29	1.980		
799.00	24	1.638		
2999.00	22	1.502		
1299.00	21	1.433		
899.00	20	1.365		
9999.00	19	1.297		
2499.00	19	1.297		
1099.00	19	1.297		
4999.00	17	1.160		
5999.00	17	1.160		
3999.00	17	1.160		
299.00	17	1.160		
1599.00	17	1.160		

Correlações

In []: df.corr()

<ipython-input-27-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will
default to False. Select only valid columns or specify the value of numeric_only to silence this warning.
 df.corr()

t[]:		discounted_price	actual_price	discount_percentage	rating	rating_count
	discounted_price	1.000000	0.961915	-0.242412	0.120365	-0.027261
C	actual_price	0.961915	1.000000	-0.118098	0.121695	-0.036137
	discount_percentage	-0.242412	-0.118098	1.000000	-0.154924	0.011691
	rating	0.120365	0.121695	-0.154924	1.000000	0.102318
	rating_count	-0.027261	-0.036137	0.011691	0.102318	1.000000

Valores perdidos ou incorretos

Os valores descartados foram 1 - |, 2 - Linhas vazias(literalmente vazias), e todas os caracteres da moeda indiana que estava presente em toda a coluna de preço atual.

Anomalias e outliers

Utlizado o Método IQR (Interquartile Range): O método IQR é uma técnica simples e amplamente utilizada para identificar outliers em um conjunto de dados. O primeiro passo é calcular o intervalo interquartil (IQR), que é a diferença entre o terceiro quartil (Q3) e o primeiro quartil (Q1). Em seguida, os outliers são definidos como quaisquer pontos abaixo de Q1 - 1,5 * IQR ou acima de Q3 + 1,5 * IQR.

```
24999.0
16
19
        21990.0
       22900.0
22
24
      19990.0
26
      19999.0
38
       45999.0
41
       34999.0
53
       12999.0
      21999.0
57
61
      47900.0
64
       24999.0
67
       14990.0
       42999.0
72
77
      30990.0
```

Storteling

Nome do projeto

Utilização de clusterização e recomendação de produtos para impulsionar vendas em comércio eletrônico.

Empresa/Organização de estudo

Amazon.com, Inc.

Área do problema

Comércio eletrônico.

Descrição do problema / gap

A empresa Amazon.com, Inc. busca aumentar suas vendas por meio de técnicas de clusterização e recomendação de produtos. A análise dos dados de vendas permitiu identificar padrões de comportamento dos clientes e suas preferências, mas a empresa precisava aprimorar a eficiência da aplicação dessas técnicas para melhorar a experiência do usuário e impulsionar as vendas.

Proposta analítica

Utilizar técnicas de clusterização para agrupar produtos em categorias semelhantes, permitindo uma melhor compreensão do perfil dos clientes e suas necessidades. Além disso, implementar sistemas de recomendação de produtos, que coletam informações sobre as preferências de um usuário e usam essas informações parafazer sugestões personalizadas de produtos que ele pode gostar.

Dados disponíveis

Base de dados de vendas da empresa.

Análise exploratória

Realizamos uma análise exploratória minuciosa, identificando padrões de comportamento dos clientes e suas preferências. Através da clusterização, conseguimos agrupar nossos produtos de maneira mais eficiente, o que nos proporcionou uma visão clara das categorias mais relevantes para cada perfil de cliente.

Nós analisamos os dados de vendas para identificar padrões de comportamento dos clientes e suas preferências. Utilizamos técnicas de clusterização para agrupar produtos em categorias semelhantes, permitindo uma melhor compreensão do perfil dos clientes e suas necessidades.

Implementamos sistemas de recomendação de produtos, que coletam informações sobre as preferências de um usuário e usam essas informações para fazer sugestões personalizadas de produtos que ele pode gostar.

Aqui temos um gráfico onde podemos observar quais categorias é melhor avaliada em nosso marketplace:

Distribuição das Avaliações por Principal Categoria de Produto

Atualmente o marketplace conta com uma grande quantidade de produtos e suas diversas categorias. Aqui temos umas das categorias com maior número de produtos:

Também conseguimos observar que além de sua categorias, esses produtos normalmente tem suas subcategorias.

Aqui estão seus índices de avaliações:

Sub-Categoria do Produto

Universidade Presbiteriana Mackenzie

es para que tenham

Distribuição das Avaliações por Sub-Categoria do Produto

Distribuição da Quantidade de Avaliações

Resultados pretendidos

Nós pretendemos alcançar os seguintes resultados:

- 1. Aumento da eficiência do nosso comércio eletrônico, melhorando a experiência do usuário e impulsionando as vendas.
- Identificação de produtos com maior potencial de crescimento, permitindo que nossa empresa ajuste nossa estratégia de vendas para atender às demandas dos clientes de forma mais eficaz.
- 3. Melhoria na organização, categorização e busca de produtos em nossos sites, levando a um aumento nas vendas e na fidelidade dos clientes.

Considerações finais:

Os resultados obtidos foram impressionantes. A eficiência do nosso comércio eletrônico aumentou significativamente, aprimorando a experiência do usuário e, é claro, impulsionando ainda mais nossas vendas. Conseguimos identificar produtos com maior potencial de crescimento, permitindo-nos ajustar nossa estratégia de vendas para atender de forma mais eficaz às demandas dos clientes.

Top 10 Maiores Revisores

Além disso, nossa organização, categorização e busca de produtos em nossos sites melhoraram consideravelmente. Agora, nossos clientes podem encontrar facilmente o que desejam, o que resultou em um aumento na satisfação e fidelidade do cliente.

Apresentação do Storytelling

https://www.youtube.com/watch?v=I2mQWiMLD-M&ab channel=TomAlcivan

Base dos dados

https://www.kaggle.com/datasets/karkavelrajaj/amazon-sales-dataset

Link GitHub

https://github.com/italopspereira/PROJE APLIC I

Referências Bibliográficas

https://aws.amazon.com/machine-learning/

https://www.amazon.com/b?ie=UTF8&node=16008589011

https://aws.amazon.com/about-aws/ https://www.aboutamazon.com/about-us

https://www.sec.gov/Archives/edgar/data/1018724/000101872421000014/amzn

- 20201231xex101.htm

https://influencermarketinghub.com/amazon-statistics/#toc-1

https://techcrunch.com/2022/04/29/amazon-still-undisputed-king-of-public-cloud-but-microsoft-is

<u>- creeping-closer/</u>

https://www.insiderintelligence.com/content/amazon-dominates-us-ecommerce-though-it

s- market-share-varies-by-category

https://www.amazon.science/blog/how-alexa-is-learning-to-converse-more-naturally