Lecture 7: Divide & Conquer 2

Integer Multiplication

& Matrix Multiplication

CS 341: Algorithms

Tuesday, Jan 29th 2019

Outline For Today

- 1. Integer Multiplication
- 2. Matrix Multiplication

Outline For Today

- 1. Integer Multiplication
- 2. Matrix Multiplication

Integer Multiplication

- ◆ Input: 2 n-digit integers, X, Y
- ◆ Output Z = XY
- ◆ E.g: X = 2345 and Y = 6789 then Z = 15920205
- ◆ Will work in base 10 b/c it is easier to think about base 10
- ◆ Same argument & analysis as in base 2 (done in handout)
- ◆ Warning: There is no intuition to the DC algorithm we'll see


```
2345

6789

x
21105

18760 ← shift by 1 digit
```

```
23.45

6789

x

21105

18760 ← shift by 1 digit

16415 ← shift by 2 digits
```

```
Observe that even the total

work for shifting is

(1+2+3+...+n-1) = O(n^2)!

(1+2+3+...+n-1) = O(n^2)!
```

- ◆ Multiplying two digits => 1 operation
- ◆ Addition of two digits => 1 operation
- ◆ Shift by 1 digit => 1 operation (shift by x digits, x ops)

TOTAL WORK: O(n²)

Question: Can we do better?

Upshot: A set of mysterious looking multiplications, additions and subtractions giving the correct answer!

- \bullet Ex: a=23, b=45, so 2345 = 23*10^{n/2} + 45
- $Arr XY = ac10^n + ad10^{n/2} + bc10^{n/2} + bd$
- $Arr XY = ac10^n + (ad + bc)10^{n/2} + bd$

Call this expression (★)

DC-Multiplication-1

```
procedure DC-Mult1(X, Y both n digit numbers):
   Base Case: if (X or Y is single digit): ...
   set a, b, c, d defined as before \longrightarrow O(n)
   ac = DC-Mult(a, c)
                                        shifts: O(n)
   ad = DC-Mult(a, d)
                            3 additions of n digit numbers: O(n)
   bc = DC-Mult(b, c)
   bd = DC-Mult(b, d)
   return ac10^{n} + (ad + bc)10^{n/2} + bd
          Total Work Outside of Recursive Calls: O(n)
                  Recurrence: 4T(n/2) + O(n)
                     Total Runtime: O(n<sup>2</sup>)
            Not better than Grade School Algorithm
```

Observation

```
Observation: We care about only 3 quantities in (★):

ac10<sup>n</sup> + (ad + bc)10<sup>n/2</sup> + bd

(1) ac => with 10<sup>n</sup> padding

(2) (ad + bc) => with 10<sup>n/2</sup> padding

(3) bd => with 10 padding
```

Question: If we care about 3 quantities, can we get these quantities with only 3 recursive calls?

Karatsuba-Ofman Algorithm (1962)

```
ad10^{n} + (ad + bc)10^{n/2} + bd
(1) ac as before
(2) bd as before
(3) (a + b) (c + d) = (ac + ad + bc + bd)
Observation: (3) - (2) - (1) = (ac+ad+bc+bd)-ac-bd = ad + bc
procedure KO(X, Y both n digit numbers):
   Base Case: if (X or Y is single digit): ...
   set a, b, c, d defined as before
   ac = KO(a, c)
   bd = KO(b, d)
   X = KO(a+b, c+d)
   return (ac)10^{n} + (X-ac-bd)10^{n/2} + bd
```

Karatsuba-Ofman Algorithm (1962)

```
procedure KO(X, Y both n digit numbers):
   Base Case: if (X or Y is single digit): ...
   set a, b, c, d defined as before \( \to \) O(n)
   ac = KO(a, c)
   bd = KO(\( \bar{p} \), d) \( \to \) O(n)
   X = KO(a+b, c+d)
   return (ac)10^n + (X - ac - bd)10^{n/2} + bd \( \to \) O(n)
```

Total Work Outside of Recursive Calls: O(n)

Recurrence: 3T(n/2) + O(n)

Total Runtime: $O(n^{log_2(3)}=n^{1.59})$

Facts About Multiplication

Fact 1: (By Toom & Stephen Cook): Can generalize KO to divide X and Y into k pieces instead of 2 (Math gets very messy) and get

$$O(n^{\log_{-k}(2k-1)}) \Rightarrow O(n^{1+\epsilon})$$
 for any $\epsilon > 1$

Stephen Cook is a Canadian Computer Scientist currently @ UToronto.

Fact 2: Best known alg: O(nlog(n)loglog(n)) (Schonhage & Strassen)

Outline For Today

- 1. Integer Multiplication
- 2. Matrix Multiplication

Matrix Multiplication

- ◆ Input: 2 n x n matrices A, B
- ◆ Output: C = AxB

 a_{11} a_{12} a_{1n} a_{21} a_{22} a_{2n} a_{2n} a_{n1} a_{n2} a_{nn}

j

$$c_{ij} = \sum_{i=1}^{n} a_{ik} b_{kj} = (a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj})$$

Q: By definition, how many multip. and additions needed to compute c_{ij} ?

A: n multiplications, n-1 additions

Then there are $O(n^3)$ basic operations (by definition) to compute C.

Warning: Again, no intuition to the DC algorithm we'll see!

a ₁₁	a ₁₂			a _{1n}
a ₂₁	a ₂₂			a _{2n}
		•••	•••	
			•••	
a _{n1}	a _{n2}			a _{nn}

a ₁₁	a ₁₂			a _{1n}
a ₂₁	a ₂₂			a _{2n}
	•••	•••	•••	•••
•••	•••		•••	
a _{n1}	a _{n2}	•••	•••	a _{nn}

a ₁₁	a ₁₂			a _{1n}
a ₂₁	a ₂₂			a _{2n}
•••	•••	•••	•••	•••
•••	•••		•••	
a _{n1}	a _{n2}	•••	•••	a _{nn}

a ₁₁	a ₁₂			a _{1n}
a ₂₁	a ₂₂	•••	•••	a _{2n}
•••	•••	•••	•••	•••
•••				
a _{n1}	a _{n2}	•••	•••	a _{nn}

a ₁₁	a ₁₂			a _{1n}
a ₂₁	a ₂₂			a _{2n}
•••	•••	•••	•••	•••
•••				
a _{n1}	a _{n2}	•••		a _{nn}

Question: Can we Divide & Conquer?

Question: Can we Divide & Conquer?

lacktriangle Where $A_{11}, ..., A_{22}, B_{11}, ..., B_{22}, & C_{11}, ..., C_{22}$ are n/2 x n/2 matrices.

Fact: When you split matrices into blocks & multiply, the blocks behave as they are atomic elements.

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} = (A_{i1} B_{1}) + A_{i2} B_{2j} + ... + A_{in} B_{nj})$$

where + is matrix addition operation (coordinate-wise addition)

Matrix Addition

a ₁₁	a ₁₂			a _{1n}
a ₂₁	a ₂₂			a _{2n}
•••	•••	•••	•••	•••
•••	•••	•••	•••	•••
a _{n1}	a _{n2}			a _{nn}

Matrix Addition

a ₁₁	a ₁₂	•••	•••	a _{1n}
a ₂₁	a ₂₂	•••	•••	a _{2n}
		•••		
	•••	•••	•••	
a _{n1}	a _{n2}	•••		a_{nn}

Matrix Addition

O(n²) operation

2	4	3	2	
3	5	4	2	_
6	5	9	3	
2	2	3	5	

$$2*3 + 4*2 + 3*5 + 2*3 = 35$$

2	4	3	2
3	5	4	2
6	5	9	3
2	2	3	5

$$2*2 + 4*4 + 3*2 + 2*4 = 34$$

2	4	3	2
3	5	4	2
6	5	9	3
2	2	3	5

$$3*3 + 5*2 + 4*5 + 2*3 = 45$$

2	4	3	2
3	5	4	2
6	5	9	3
2	2	3	5

$$3*2 + 5*4 + 4*2 + 2*4 = 42$$

$$A_{11}B_{11} = \begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix}$$

$$X \begin{vmatrix} 3 & 2 \\ 2 & 4 \end{vmatrix} = \begin{vmatrix} 14 & 20 \\ 19 & 26 \end{vmatrix}$$

$$A_{12}B_{21} = \begin{bmatrix} 3 & 2 \\ 4 & 2 \end{bmatrix} X \begin{bmatrix} 5 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 21 & 14 \\ 26 & 16 \end{bmatrix}$$

$$\begin{bmatrix} 14 & 20 \\ 19 & 26 \end{bmatrix} + \begin{bmatrix} 21 & 14 \\ 26 & 16 \end{bmatrix} = \begin{bmatrix} 35 & 34 \\ 45 & 42 \end{bmatrix}$$

Outside recursion: 4 additions of n/2xn/2 matrices=4n²/4=n² work

Runtime: $T(n) = 8T(n/2) + O(n^2) = O(n^3)$ (by Master Thm)

So not faster than standard method!

Strassen's (Mysterious) Algorithm (1969)

$$Z_{2} = (A_{11} + A_{12})B_{22}$$
 $Z_{3} = (A_{21} + A_{22})B_{11}$
 $Z_{4} = A_{22}(B_{21} + B_{11})$
 $Z_{5} = (A_{11} + A_{22})(B_{11} + B_{22})$
 $Z_{6} = (A_{12} - A_{22})(B_{21} + B_{22})$
 $Z_{7} = (A_{11} - A_{21})(B_{11} + B_{12})$
 $Z_{7} = (A_{11} - A_{21})(B_{11} + B_{12})$
 $Z_{7} = (A_{11} - A_{21})(B_{11} + B_{12})$

Ex:
$$C_{12} = Z_1 + Z_2 = A_{11}B_{12} - A_{11}B_{22} + A_{11}B_{22} + A_{12}B_{22} = A_{11}B_{12} + A_{12}B_{22}$$

Strassen's (Mysterious) Algorithm


```
procedure Strassen(A, B nxn matrices):
```

```
Z_1 = Strassen(A_{11}, (B_{12} - B_{22})); Z_2 = Strassen((A_{11} + A_{12}), B_{22})

Z_3 = Strassen((A_{21} + A_{22}), B_{11}); Z_4 = Strassen(A_{22}, (B_{21} + B_{11}))

Z_5 = Strassen((A_{11} + A_{22}), (B_{11} + B_{22}))

Z_6 = Strassen((A_{12} - A_{22}), (B_{21} + B_{22}))

Z_7 = Strassen((A_{11} - A_{21}), (B_{11} + B_{12}))

C_{11}=Z_5 + Z_4 - Z_2 + Z_6; C_{12}=Z_1 + Z_2; C_{21}=Z_3 + Z_4; C_{22}=Z_5 + Z_1 - Z_3 - Z_7

return C = C_{11}C_{21}C_{12}C_{22}
```

Runtime: $T(n) = 7T(n/2) + O(n^2) = O(n^{\log_2(7)} = n^{2.81})$ (by Master Thm)

(Asymptotically) much faster than standard algorithm!

History of Matrix Multiplication

Runtime	Year	Authors
O(n³)	until 1969	N/A
O(n ^{2.81})	1969	Strassen
O(n ^{2.796})	1978	Pan
O(n ^{2.780})	1979	Bini et. al.
O(n ^{2.522})	1981	Schoenhage
O(n ^{2.517})	1982	Romani
O(n ^{2.496})	1983	Coppersmith & Winograd
O(n ^{2.479})	1986	Strassen
O(n ^{2.376})	1989	Coppersmith and Winograd
O(n ^{2.374})	2011	Stothers
O(n ^{2.3728642})	2012	V. Williams
O(n ^{2.3728639})	2013	Le Gall