Computer Organization

0413220 楊承皓 / 0413234 陳亮融 / 0413249 劉宗岳

Basic Problem:

1. ICACHE

Cache size Block size	4K	16K	64K	256K
16	2.1700%	2.1700%	2.1700%	2.1700%
32	1.0855%	1.0855%	1.0855%	1.0855%
64	0.5427%	0.5427%	0.5427%	0.5427%
128	0.2714%	0.2714%	0.2714%	0.2714%
256	0.1357%	0.1357%	0.1357%	0.1357%

下降的原因為 block size 變大的時候,可容納的資料越多,因此 hit 的機會增大,故 miss rate 下降。

2. DCACHE

Cache size Block size	4K	16K	64K	256K
16	5.5556%	5.5556%	5.5556%	5.5556%
32	3.1746%	3.1746%	3.1746%	3.1746%
64	1.5873%	1.5873%	1.5873%	1.5873%
128	0.7937%	0.7937%	0.7937%	0.7937%
256	0.7937%	0.7937%	0.7937%	0.7937%

下降的原因為 block size 變大的時候,可容納的資料越多,因此 hit 的機會 增大,故 miss rate 下降;上升的原因為當 block size 變大的時候,一個固定 size 的 cache 總 block 數變少,使得 competition 變多,造成 capacity miss。但在我們 的觀察中,看不到上升的現象,可能是因為 cache size 太大,已經接近 miss rate 的極限,故數值都相同。

Advanced Problem:

1. LU (Block Size = 64 bytes)

Associativity Cache size	1-way	2-way	4-way	8-way
1K	11.0681%	8.3553%	7.7817%	7.8282%
2K	8.2778%	5.1775%	4.1854%	3.9839%
4K	5.4720%	3.6273%	3.0693%	2.8058%
8K	4.0304%	2.9763%	2.6663%	2.4923%
16K	3.1623%	2.3717%	2.3407%	2.2942%
32K	2.5422%	2.3252%	2.2787%	2.2787%

更多 way 時,miss rate 下降的原因為在相同的 cache size 情況下,當 associativity 增加,一個 set 的資料含量增加,可減少 conflict miss。

而在相同的 associativity 下,增加 cache size 可以減少 capacity miss,使得 miss rate 減少。

2. RADIX (Block Size = 64 bytes)

Associativity Cache size	1-way	2-way	4-way	8-way
1K	25.0864%	11.3738%	3.3453%	3.3281%
2K	21.2169%	6.8721%	2.7333%	2.7016%
4K	19.2569%	4.3664%	2.3963%	2.3747%
8K	8.4317%	2.7117%	1.8563%	1.9254%
16K	7.3560%	1.1247%	1.1679%	1.2370%
32K	1.2313%	0.8093%	0.7762%	0.7618%

更多 way 時,miss rate 下降的原因為在相同的 cache size 情况下,當 associativity 增加,一個 set 的資料含量增加,可減少 conflict miss。

在相同的 associativity 下,增加 cache size 可以減少 capacity miss,使得 miss rate 減少。

而 miss rate 上升 (highlight 處)的原因為當 associativity 變多的時候,一個 固定 size 的 cache 總 set 數變少,使得 competition 變多,造成 capacity miss。

3. Total bits (Block Size = 64 bytes)

Associativity Cache size	1-way	2-way	4-way	8-way
1K bytes	8560	8576	8592	8608
2K	17088	17120	71752	17184
4K	34112	34176	34240	34304
8K	68096	68224	68352	68480
16K	135936	136192	136448	136704
32K	271360	271872	272384	272896

(bits)

● 以 1-way、cache size 為 1K bytes 為例

一個 cache 1024 bytes,一個 block (set) 64 bytes,可得一個 cache 共有 1024/64=16 個 block (set),因此 32-bit address 中會有 4 bit 為 block index,而由 block size = 64 bytes 可得 offset bit 為 6 位,故 tag bit = 32-4-6=22。

一個 block 為 valid bit + tag + data,即為 1+22+64*8=535 (bits),一個 cache 共有 16 個 block (set),故 total bits 為 535*16=8560 (bits)。