

Stereo Vision accelerator based on Census Transform

Juan-David Guerrero-Balaguera, Josie Esteban Rodriguez, Matteo Sonza Reorda

Stereo Matching concept

(a) Left Image

(b) Right Image

(c) Disparity Map

Census Transform Concept

Stereo vision accelerator architecture

Stereo vision accelerator architecture

Stream Processing concept

Row0			Row2									Row N				Row0								
0 1	M	0	1	2	•••	M	0	1	2		M	0	1	2	 M	0	1	2	M	0	1	2	M	

Similarity Module Architecture

Similarity Module Architecture (HD)

Similarity Module Architecture (SHD)

Census transform architecture (window generator)

Sparce Census transform bitstream

 $\log_2(\mathbf{n}\times W_h^2)$ $\log_2(\mathbf{n}\times W_h^2)$ C_o $\log_2(\mathbf{n}\times W_h^2)$ $\log_2(\mathbf{n}\times W_h^2)$ $\log_2(\mathbf{n}\times W_h^2)$ D_{o} $\log_2(d)$ $\log_2(d)$ $\log_2(d)$

Best Disparity Selector Component

 o_LRCC

R2L**Left-Right Consistency Check module** 0 *i_Tresh_LRCC*

L2R