DOI: 10.3969/j.issn.1009-6868.2018.01.005 网络出版地址; http://kns.cnki.net/kcms/detail/34.1228.TN.20180110.1459.008.html

面向5G的MEC系统关键技术

Key Technologies of 5G Oriented Mobile Edge Computing System

宋晓诗/SONG Xiaoshi 自岩/YAN Yan¹ 王梦源/WANG Mengyuan²

(1. 东北大学,辽宁 沈阳 110001; 2. 航天恒星科技有限公司,北京 100080) (1. Northeastern University, Shenyang 110001, China; 2. Space Star Technology Co., Ltd., Beijing 100080, China)

移动边缘计算(MEC)技术的概念 最早提出于2009年卡内基梅隆 大学所研发的 cloudlet 计算平台口。 2014年,欧洲电信标准协会(ETSI)正 式定义了MEC的基本概念并成立了 MEC 规范工作组,开始启动相关标准 化工作[2]。2016年, ETSI将此概念扩 展为多接入边缘计算,并将移动蜂窝 网络中的边缘计算应用推广至其他 无线接入网络(如Wi-Fi)。在ETSI 的推动下,包括第3代合作伙伴 (3GPP)及中国通信标准化协会 (CCSA)在内的其他国际及中国标准 化组织也相继启动了相关工作。目 前,MEC已经发展演进为5G移动通 信系统的重要技术之一。

随着 MEC 的不断发展成熟,全球 各大电信运营商及设备商均加快了 MEC 系统的研发和部署进程^[3]。其 中,在国际上,沃达丰、AT&T、Verizon 等运营商及诺基亚、高通等设备商已 经开始部署商用MEC系统和解决方

收稿日期:2017-12-10 网络出版日期:2018-01-10

基金项目:国家自然科学基金 (61701102、61671141);中央高校基本 科研业务费专项资金(N150403001)

中图分类号:TN929.5 文献标志码:A 文章编号:1009-6868 (2018) 01-0021-005

摘要: 移动边缘计算(MEC)是未来5G移动通信系统提升服务应用能力的重要技 术手段之一。通过在无线接入网络的边缘节点处部署具备计算、存储和通信能力的 服务应用平台, MEC 能够有效处理终端用户的高时效性业务需求, 大幅度缩短端到 端时延,并解决核心网络的数据流量瓶颈等相关问题。

关键词: 5G; MEC; 无线缓存; 基于软件定义网络(SDN)的本地分流技术

Abstract: Mobile edge computing (MEC) is envisioned as one of the most important techniques for 5G mobile communication systems in the future. By deploying a generic computing platform with computing, storage, and communication capabilities across the wireless edges, MEC can effectively meet the high timeliness service requirements of end users, greatly shorten the end-to-end delay, and solve the related problems of data traffic bottleneck in core network.

Keywords: 5G; MEC; wireless content caching; software defined network(SDN)based traffic offloading

案,面向物联网、车联网等行业应用, 提供低时延、高速率、大容量的网络 服务;在中国,中国移动、中国电信和 中国联通等运营商也在积极联合中 兴通讯等公司开展 MEC 试验网络的 验证测试。

综上所述,通过在无线网络侧增 加具备计算、存储、网络资源管理等 功能的边缘节点,MEC能够将无线网 络、数据缓存和云计算技术有机地融 合在一起,并因此可以有效推动5G 移动通信系统在车联网、物联网、无 人机网络和智慧城市等领域的应用 和发展。

1 MEC 概述

MEC 的基本思想是把云计算平 台从移动核心网络内部迁移到移动 接入网边缘,通过部署具备计算、存 储、通信等功能的边缘节点,使传统 无线接入网具备业务本地化条件,进 一步为终端用户提供更高带宽、更低 时延的数据服务,并大幅度减少核心 网的网络负荷,同时降低数据业务对 网络回传的带宽要求。

1.1 MEC的整体架构

ETSI 在文献[4]中定义的 MEC 系 统的整体架构如图1所示,其中MEC 服务器是整个系统的核心,覆盖移动 终端的 MEC 系统由一个或多个 MEC 服务器组成。通过将MEC服务器部 署于无线接入网与核心网之间,MEC 系统将能够在无线网络侧(网络的近 端)为终端用户提供更高效率、更低 时延的计算、存储和通信服务,并因 此能够提升终端用户的服务质量 (QoS)体验。

由图1可以看出:MEC服务器包 括路由子系统、能力开放子系统、平 台管理子系统以及边缘云基础设施 等4个基本组件。通过上述基本组

2018年2月 第24卷第1期 Feb. 2018 Vol.24 No.1 / 21 中兴通讯技术

▲图1 MEC系统整体架构示意图

件,MEC系统能够与无线接入网、移 动核心网、企业网及软/硬件基础环 境进行业务融合和动态交互。

1.2 MEC的基本功能组件

在 MEC 服务器所包含的4个基 本功能组件中,路由子系统、能力开 放子系统和平台管理子系统均部署 在 MEC 服务器内部,而边缘云基础 设施则由部署在网络边缘的小型或 微型数据中心构成。MEC服务器的 4个基本功能组件在 MEC 系统中的 作用与相互关系如图2所示。

(1)路由子系统

路由子系统为MEC系统、无线接 入系统和核心网络系统之间提供数 据转发的功能。当移送设备请求数 据时,若MEC系统存储设备中有目 标数据,则通过路由子系统将数据下 发给用户;若MEC系统中没有目标 数据,则通过路由子系统将用户的请 求数据包经移动核心网发送至第三 方服务器或云数据中心。此外,路由 子系统还可以在 MEC 服务器之间发 送数据以支持设备的移动性。典型 的路由转发案例如图3所示。

(2)能力开放子系统

能力开放子系统的主要功能是 通过向路由子系统提供网络及用户 的实时动态信息,以及向平台管理子 系统上报能力开放注册信息以及能 力调用统计信息,实现路由转发策略 的制定和业务数据的管控。同时,能 力开放子系统可以通过分析用户的 业务数据实现网络业务处理、网络资 源分配、监测终端能力等特定功能的 部署。

(3)平台管理子系统

平台管理子系统的主要作用是 对移动网络数据平面进行控制,对来 自能力开放子系统的能力调用请求 进行管控,对边缘云内的IT基础设施 进行虚拟化资源管理,以及对相关计 费信息进行统计上报。

(4)边缘云基础设施

边缘云基础设施的主要作用是 通过为终端用户提供由小型化硬件 平台构建的计算、存储及网络通信等 资源的物理资源池,实现 MEC 系统 的本地化数据业务处理,提升网络的 QoS体验。

2 MEC系统的关键技术

MEC系统的关键技术主要包括 计算卸载技术、无线数据缓存技术和 基于软件定义网络(SDN)的本地分 流技术等。上述关键技术是MEC系 统实现计算处理实时化、数据处理本 地化以及信息交互高效化的前提和 基础。

2.1 计算卸载技术

计算卸载技术[5]是 MEC 系统实现 终端业务实时化处理的重要手段。 计算卸载是指将部分计算功能由移 动设备迁移到 MEC 服务器执行,其 主要过程包括卸载决策、卸载执行、 结果回传等3部分。其中,卸载决策 是指某项计算任务应该如何进行高 效卸载,是计算卸载的理论基础;卸 载执行是如何将计算能力在 MEC 服 务器和终端进行划分,是计算卸载的 核心;结果回传是将计算任务处理结 果下发给终端用户,是计算卸载最终

▲图2 MEC系统功能结构示意图

中兴通讯技术 **22** 2018年2月 第24卷第1期 Feb. 2018 Vol.24 No. 1

▲图3路由子系统转发数据案例

实现并完成的关键。利用计算卸载 技术,通过将业务计算及时卸载到移 动边缘计算服务器进行计算处理,能 够有效扩展移动设备的即时计算能 力,降低计算延迟,并提高移动终端 的电池寿命。因此,高效的计算卸载 策略在边缘计算技术中扮演着不可 缺少的角色。

计算卸载的基本设计原理为:当 终端发起计算卸载请求时,终端上的 资源监测器检测MEC系统的资源信 息,整理出可用的MEC服务器网络 的资源情况(包括服务器运算能力、 负载情况、通信花销等);根据上述接 收到的服务器网络信息,终端内部的 计算卸载决策引擎决定哪些任务为 本地执行,哪些为边缘计算节点执 行;最后,根据计算卸载决策引擎的 决策指示,分割模块将任务分割成可 以在不同设备独立执行的子任务。 其中,本地执行部分由终端在本地进 行,边缘计算节点执行部分经转化后 卸载到MEC服务器进行运算处理。

计算卸载根据业务计算强度可 划分为二元卸载和部分卸载响。其 中,二元卸载主要针对高密度且小规 模的计算任务。通过二元卸载,终端 的计算任务被整体迁移到 MEC 服务 器进行计算处理。部分卸载主要针 对大规模的计算任务。通过部分卸 载,终端的计算任务由分割模块分为 多个子任务,分别卸载到多个MEC 服务器执行计算。最简单的部分卸 载任务模型是数据分区模型。在数 据分区模型中,终端用户的计算任务 可以被划分成多个相互独立的子任 务,并根据计算卸载决策指示在移动 设备及一个或多个MEC服务器中并 行执行。需要指出的是:在部分卸载 过程中,不同子任务之间可能存在一 定的依赖关系,例如:子任务A的输 出为子任务B的执行前提。因此,被 划分后的多个子任务存在无法同时 执行的情况。针对上述问题,可将任 务的执行过程划分为 n 个时隙¹⁸,根 据子任务之间的依赖关系,将能够并 行执行的子任务在同一时隙卸载到 多个 MEC 服务器进行并行运算,而 将不能并行执行的子任务按照其优 先级顺序分配至不同时隙依次执行。

通过上述讨论可以看出:计算卸 载技术的应用,能够有效地降低计算 任务的时延,扩展移动设备的计算能 力,并减少移动设备的能量消耗,延 长移动设备电池的寿命。因此,探寻 高效的计算卸载策略是MEC系统等 相关研究的重点。在已有的工作中, 文献[9]提出了用李雅谱诺夫函数解 决此类最优性问题。文献[10]提出将 寻找最优MEC系统的问题看成解决 多臂赌博机问题,其中采用了上置信 算法和 ε -greedy 算法解决寻找最优 卸载策略。

2.2 无线数据缓存技术

无线数据缓存技术^[11]是实现 MEC 数据业务本地化的主要涂径。无线 数据缓存技术的基本原理是将相关 热点数据提前缓存在MEC服务器的 边缘存储节点上,使得终端用户在单 跳距离范围内即可以获得所需要的 数据。MEC系统的无线数据缓存示 意如图4所示。

内容缓存策略和内容传输策略 是无线数据缓存技术需要解决的两 个重要问题。其中,内容缓存策略是 指网络边缘节点对于热点数据的选 取和缓存机制,内容传输策略是指网

▲图4 基于微小基站的MEC无线数据缓存模型

2018年2月 第24卷第1期 Feb. 2018 Vol.24 No.1 23 中兴通讯技术

络边缘节点将其缓存的热点数据分 发给申请用户的传输机制。两个问 题相互影响,相互耦合。在已有的相 关研究中,文献[12-13]对微小基站端 的内容缓存策略和内容传输策略进 行了研究,并指出无线数据缓存技术 能够有效减少海量数据在核心网内 的冗余重复传输,降低传输时延。需 要指出的是:虽然微小基站端的无线 数据缓存技术能够将网络的业务负 载从核心网内卸载至网络的边缘节 点处,并以此减轻承载网的链路阻 塞;但在内容传输阶段,数据业务的 发送仍然需要大量占用接入网的基 带资源和射频资源,无线网络的整体 性能因此无法获得进一步突破。

为了解决上述问题,文献[14-15] 考虑了位于用户终端处的无线数据 缓存技术,以解决微小基站端无线数 据缓存技术的技术瓶颈,并通过探索 设备到设备(D2D)通信机制下的内 容缓存策略和内容传输策略,实现基 站端基带资源与射频资源的释放,进 一步提升移动通信网络的传输性 能。其中,文献[14]研究了基于速率 门限的D2D内容传输策略,通过选取 具有高传输速率的 D2D 数据链路进 行数据传输,最大化D2D网络的数据 承载概率,并在该策略下对最优内容 缓存策略进行了求解。文献[15]考虑 了基于载波侦听接入机制的 D2D 内 容传输策略,通过为可能冲突的终端 用户设定随机退避时间,减少D2D传 输链路间的相互干扰,并在此基础上 对最优的内容缓存策略进行了求解。

2.3 基于 SDN 的本地分流技术

基于SDN的本地分流技术是 MEC系统实现网络信息交互高效化 的有效措施^[16]。基于SDN的本地分 流技术的核心思想为:首先,SDN 控 制器从本地或者从策略服务器获取 预先设置的分流策略;其次,SDN控 制器根据数据流描述信息和分流策 略,生成分流规则流表;最后,分流网 关根据分流规则流表将相应的数据 流进行最终分流。相比于传统的本 地分流技术,基于SDN的本地分流技 术能够根据终端用户的实际需求和 MEC系统的资源部署情况有效实现 数据业务的本地化处理,缩短网络对 终端用户的响应时间,保证终端用户 数据业务需求的连续性,并大幅度降 低核心网的数据流量压力,提升终端 用户的服务体验。

基于 SDN 的本地分流技术的优 势之一是能够快速适应由终端用户 的移动性引起的网络拓扑的变化,有 效保证终端用户的业务连续性。具 体来说:在MEC系统中,当终端用户 的位置发生变化时,基于 SDN 的本 地分流技术能够根据感知到的网络 接入点的改变重新生成路由转发策 略,并将其以流表的形式下发至交换 机。由于基于流表的转发机制实时 性强且配置灵活,基于SDN的本地分 流技术能够有效处理由终端用户位 置变化引起的网络接入点的切换,从 而保障终端用户的服务体验。

综上所述:在MEC的场景下, MEC服务器通过感知计算、缓存和网 络的实时状况,利用SDN实现了网络 资源的有效分配,以及数据业务的高 效调度与分发。因此,基于SDN的本 地分流技术是MEC业务本地化未来 发展的重要趋势。

3 MEC系统面临的挑战

MEC 通过在无线接入网内提供 云化的计算、存储、通信服务能力,实 现了近距离、超低时延、高带宽以及 实时访问无线网络信息的服务环境, 并实现了网络从接入管道向信息化 服务使能平台的跨越,是5G的关键 技术之一。目前,移动边缘计算仍面 临着如下研究挑战:

- (1)安全性挑战。MEC的分布式 架构增加了攻击向量的维度,移动边 缘计算客户端越智能,越容易受到恶 意软件感染和安全漏洞攻击。
- (2)公平性挑战。MEC系统资源 共享的公平性是影响用户服务质量

和网络整体性能的关键因素之一。 如何在网络中存在大量MEC边缘计 算节点和终端用户接入节点的情况 下,实现基于公平性的资源优化管理 和网络负载均衡,是目前相关领域的 研究重点。

- (3)互操作性挑战。MEC设备之 间的互操作性是MEC系统大规模商 用的关键。不同设备商之间需要通 过制定相关的标准规范和通用的协 作协议,实现异构 MEC 设备和系统 之间的互操作。
- (4)移动性管理挑战。在大连 接、高速率、低时延的MEC典型应用 场景中,如何有效保证终端用户的业 务连续性和无缝切换是 MEC 系统需 要解决的重要问题。

4 结束语

MEC作为5G的关键技术之一, 通过将具有计算、存储、通信能力的 业务平台下沉到网络边缘,为终端用 户提供更近距离、更低延时、更高带 宽的泛在数据业务服务。结合现有 的相关研究,我们对 MEC 的体系架 构、关键技术,以及重要应用进行了 详细阐述,并同时对 MEC 所面临的 研究挑战进行了归纳和总结。可以 预见:移动边缘计算必将成为5G乃 至未来移动通信系统不可或缺的重 要组成部分。

参考文献

- [1] SATYANARAYANAN M, BAHL P, CACERES R, et al. The Case for VM-Based Cloudlets in Mobile Computing [J]. IEEE Pervasive Computing, 2009, 8(4):14-23. DOI: 10.1109/ MPRV.2009.82
- [2] PATEL M, NAUGHTON B, CHAN C, et al. Mobile-Edge Computing Introductory Technical White Paper[R]. White Paper, Mobile-edge Computing (MEC) Industry Initiative, 2014
- [3] HU YC, PATEL M, SABELLA D, et al. Mobile Edge Computing-A Key Technology Towards 5G[R]. ETSI White Paper, 2015
- [4] SATHYA A. Mobile Edge Computing: A Gateway to 5G Era[R]. Huawei Technologies White Paper,2016
- [5] LIU J, MAO Y, ZHANG J, et al. Delay-Optimal Computation Task Scheduling for Mobile-Edge Computing Systems[C]//IEEE

面向5G的MEC系统关键技术

- International Symposium on Information Theory. IEEE, 2016:1451-1455. DOI: 10.1109/ISIT.2016.7541539
- [6] YU Y. Mobile Edge Computing Towards 5G: Vision, Recent Progress, and Open Challenges[J]. China Communications, 2016, 13(S2):89-99. DOI: 10.1109/ CC.2016.7833463
- [7] MAO Y, YOU C, ZHANG J, et al. A Survey on Mobile Edge Computing: The Communication Perspective [J]. IEEE Communications Surveys&Tutorials, 2017,13 (4):2322-2358. DOI: 10.1109/ COMST.2017.2745201
- [8] TEREFE M B, LEE H, HEO N, et al. Energy-Efficient Multisite Offloading Policy Using Markov Decision Process for Mobile Cloud Computing[J]. Pervasive & Mobile Computing, 2016, 27(C):75–89. DOI: 10.1016/j.pmcj.2015.10.008
- [9] LIU J, MAO Y, ZHANG J, et al. Delay-Optimal Computation Task Scheduling for Mobile-Edge Computing Systems[C]//IEEE International Symposium on Information Theory. USA:IEEE, 2016:1451-1455. DOI: 10.1109/ISIT.2016.7541539
- [10] SUN Y, ZHOU S, XU J. EMM: Energy-Aware Mobility Management for Mobile Edge Computing in Ultra Dense Networks [J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2637 -2646. DOI: 10.1109/JSAC.2017.2760160

[11] WANG X, CHEN M, TALEB T, et al. Cache

- [12] LI J, CHEN Y, LIN Z, et al. Distributed Caching for Data Dissemination in the
 - Downlink of Heterogeneous Networks[J]. IEEE Transactions on Communications, 2015, 63(10):3553-3568. DOI: 10.1109/ TCOMM.2015.2455500 [13] BHARATH B N, NAGANANDA K G, POOR H V. A Learning-Based Approach to

in the Air: Exploiting Content Caching and

Communications Magazine IEEE, 2014, 52

Delivery Techniques for 5G Systems[J].

(2):131-139. DOI: 10.1109/

MCOM.2014.6736753

- Caching in Heterogenous Small Cell Networks[J]. IEEE Transactions on Communications, 2015, 64(4):1674-1686. DOI: 10.1109/TCOMM.2016.2536728
- [14] CHEN B, YANG C, XIONG Z. Optimal Caching and Scheduling for Cache-enabled D2D Communications[J]. IEEE Communications Letters, 2017, 21(5):1155-1158. DOI: 10.1109/LCOMM.2017.2652440
- [15] SONG X, GENG Y, MENG X, et al. Cache-Enabled Device to Device Networks with Contention-Based Multimedia Delivery[J]. IEEE Access, 2017, 5(99):3228-3239. DOI: 10.1109/ACCESS.2017.2664807
- [16] HUO R, YU F R, HUANG T, et al. Software Defined Networking, Caching, and Computing for Green Wireless Networks[J]. IEEE Communications Magazine, 2016, 54 (11):185-193. DOI: 10.1109/ MCOM.2016.1600485CM

作者简介

宋晓诗,东北大学计算机 科学与工程学院讲师,主 要研究方向为5G移动通信 网络。

闫岩,东北大学在读硕士生,主要研究方向为5G移 动通信与移动边缘计算。

王梦源, 航天恒星科技有 限公司(503所)高级工程 师;主要研究方向为卫星 通信、天地一体化网络。