CLMSPAMD

ISIP025PCT

4

5 6

7 8

9

10

3

2

3

3

2

3

2

3

4

5

Printed: 23/09/2005

	• •	
We	clain	1

- 1 1. An apparatus integrating forward and panoramic fields, comprising:
- a primary reflector, comprising a convex surface in relation to the forward field, reflective on at least part
 of said convex surface:
 - a secondary reflector, forward of said primary reflector relative to said forward field, reflective on at least part a surface thereof facing rearward toward said primary reflector, comprising a substantially flat geometry facing rearward toward said primary reflector,
 - a primary reflector hole in said primary reflector, substantially centered about an optical axis of said apparatus; and
 - a secondary reflector hole in said secondary reflector, substantially centered about said optical axis, said secondary reflector hole comprising a diameter smaller than a diameter of said primary reflector hole.
- 1 2. The apparatus of claim 1, further comprising:
 2 at least one field collecting element, forward
 - at least one field collecting element, forward of said secondary reflector relative to said forward field, substantially centered about said optical exis.
- 1 3. The apparatus of claim 2:
 - said at least one field collecting element comprising at least two field collecting elements, with at least one of said field collecting elements movable along said optical axis.
- 1 4. The apparatus of claim 1, further comprising:
 2 at least one field focusing element, recovered
 - at least one field focusing element, rearward of said primary reflector relative to said forward field, substantially centered about said optical axis.
- The apparatus of claim 1, further comprising:
 - at least one afocal element, rearward of said primary reflector relative to said forward field, substantially centered about said optical axis.
- 1 6. The apparatus of claim 1, further comprising:
 - at least one field collecting element, forward of said secondary reflector relative to said forward field, substantially centered about said optical axis; and
 - at least one field focusing element, rearward of said primary reflector relative to said forward field, substantially centered about said optical axis.
- 1 7. The apparatus of claim 6, wherein:
- said primary reflector, said secondary reflector, at least one field collecting element and said at least one
 field focusing element are configured, in combination, to project a substantially seamless boundary between said
 forward and panoramic fields onto a detection plane.
- 8. The apparatus of claim 6, further comprising:
- 2 a detector substantially in a focal plane of said at least one field focusing element.
- 1 9. The apparatus of claim 8, said detector comprising an optical detector.
- 1 10. The apparatus of claim 8, said detector comprising an infrared detector.
- 1 11. The apparatus of claim 8, said detector comprising an detector for communications waves.
- 1 12. The apparatus of claim 1:
- 2 said convex surface of said primary reflector comprising a substantially spherical geometry.
- 1 13. The apparatus of claim 1:
- 2 said convex surface of said primary reflector comprising a substantially hyperbolic geometry.
- 1 14. The apparatus of claim 1:

11

ISIP025PCT

2	said convex surface of said primary reflector comprising a substantially parabolic geometry
---	---

- 1 15. The apparatus of claim 1, said secondary reflector comprising a concave geometry facing rearward toward
- 2 said primary reflector.
- The apparatus of claim 1, said secondary reflector comprising a convex geometry facing rearward toward
 said primary reflector.
- 1 17. The apparatus of claim 1, wherein said primary reflector can be tilted relative to said optical axis.
- 1 18. The apparatus of claim 1, wherein said forward and panoramic fields comprise optical fields in the visible
- 2 light spectrum.
- 1 19. The apparatus of claim 1, wherein said forward and panoramic fields comprise optical fields in the infrared
- 2 light spectrum.

1

2

3

4

5

6

7

8

9

10

2

3

1

2

3

2

3

2.

3

1

- 1 20. The apparatus of claim 1, wherein said forward and panoramic fields comprise electromagnetic waves.
- The apparatus of claim 1, wherein said forward and panoramic fields comprise electromagnetic waves
 traveling in free space for communication.
 - 22. A method for receiving signals with integrated forward and panoramic fields, comprising: providing a primary reflector, comprising a convex surface in relation to the forward field, reflective on at least part of said convex surface:

facing a substantially flat geometry of a secondary reflector, forward of said primary reflector relative to said forward field, reflective on at least part a surface thereof, rearward toward said primary reflector;

substantially centering a primary reflector hole in said primary reflector, about an optical axis of said primary reflector and said secondary reflector; and

substantially centering a secondary reflector hole in said secondary reflector, about said optical axis; wherein:

a diameter of said secondary reflector hole is smaller than a diameter of said primary reflector hole.

- 1 23. The method of claim 22, further comprising:
 - substantially centering at least one field collecting element, forward of said secondary reflector relative to said forward field, about said optical axis.
 - 24. The method of claim 23, wherein said at least one field collecting element comprises at least two field collecting elements, further comprising:
 - moving at least one of said field collecting elements along said optical axis.
- 1 25. The method of claim 22, further comprising:
 - substantially centering at least one field focusing element, rearward of said primary reflector relative to said forward field, about said optical axis.
- 1 26. The method of claim 22, further comprising:
 - substantially centering at least one afocal element, rearward of said primary reflector relative to said forward field, about said optical axis.
- 27. The method of claim 22, further comprising:
- substantially centering at least one field collecting element, forward of said secondary reflector relative to
 said forward field, about said optical axis; and
- substantially centering at least one field focusing element, rearward of said primary reflector relative to said forward field, about said optical axis.

12

1 28. The apparatus of claim 27, further comprising:

737 To: PCT Demand Of: European Pate CLMSPAMD

4385

Printed: 23/09/2005

K	SIP025PC	
. 2	2	configuring said primary reflector, said secondary reflector, at least one field collecting element and said a
3		one field focusing element are, in combination, to project a substantially seamless boundary between said
4		and and panoramic fields onto a detection plane.
1		The method of claim 27, further comprising:
2		providing a detector substantially in a focal plane of said at least one field focusing element.
1		The method of claim 29, said detector comprising an optical detector.
1	. 31.	The method of claim 29, said detector comprising an infrared detector.
1	32.	The apparatus of claim 8, said detector comprising an detector for communications waves.
1	33.	The method of claim 22:
2		said convex surface of said primary reflector comprising a substantially spherical geometry.
1	34.	The method of claim 22:
2		said convex surface of said primary reflector comprising a substantially hyperbolic geometry.
1	35.	The method of claim 22:
2	•	said convex surface of said primary reflector comprising a substantially parabolic geometry.
1	36.	The method of claim 22, further comprising:
2		facing a concave geometry of said secondary reflector rearward toward said primary reflector.
1	37.	The method of claim 22, further comprising:
2		facing a convex geometry of said secondary reflector rearward toward said primary reflector.
1	38.	The method of claim 22, further comprising:
2		tilting said primary reflector relative to said optical axis.
1	39.	The apparatus of claim 22, said receiving further comprising:
2		receiving optical fields in the visible light spectrum.
1	40.	The apparatus of claim 22, said receiving further comprising:
2		receiving optical fields in the infrared light spectrum.
1	41.	The apparatus of claim 22, said receiving further comprising:
2		receiving electromagnetic waves.
1	42.	The apparatus of claim 22, said receiving further comprising:
2		communicating through free space by receiving electromagnetic waves.
1	43.	An apparatus integrating forward and panoramic fields, comprising:
2		a primary reflector, comprising a convex surface in relation to the forward field, reflective on at least part
3	of said convex surface,	
4		a secondary reflector, forward of said primary reflector relative to said forward field, reflective on at least
5	part a su	face thereof facing rearward toward said primary reflector, comprising a substantially flat geometry facing
5	rearward	toward said primary reflector,
7		a primary reflector hole in said primary reflector, substantially centered about an optical axis of said
3	apparatus	; and
)		said secondary reflector comprising a diameter smaller than a diameter of said primary reflector.
	44.	A method for receiving signals with integrated forward and panoramic fields, comprising:
•		providing a primary reflector, comprising a convex surface in relation to the forward field, reflective on at
	least nort	of said annual said an

9

1

3

least part of said convex surface; facing a substantially flat geometry of a secondary reflector, forward of said primary reflector relative to said forward field, reflective on at least part a surface thereof, rearward toward said primary reflector,

13

US 05712599

Printed: 23/09/2005

ISIP025PCT

6	substantially centering a primary reflector hole in said primary reflector, about an optical exis of said
7	primary reflector and said secondary reflector; and
8	substantially centering a secondary reflector hole in said secondary reflector, about said optical exis;
9	wherein:
0	a diameter of said secondary reflector is smallered.

<u> Empf ---:+:01/0</u>9/2005 12:21

14