Worksheet #25; date: 04/19/2018 MATH 53 Multivariable Calculus

- 1. True / False? Fix two points A and B in a simply connected domain D. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is the same for all paths C from A to B, then \mathbf{F} must be conservative on D.
- 2. True / False? Suppose P and Q has continuous partial derivatives everywhere. Green's Theorem cannot help us in computing line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is given below.

- 3. True / False? Fix two points A and B in a domain D. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is the same for all paths C from A to B, then \mathbf{F} must be conservative on D.
- 4. True / False? Here is another proof of Green's Theorem with holes in it: Suppose the region with hole is D', the hole itself is D_2 and the region D' with the hole filled is D_1 . The outer and inner boundaries are C_1 and C_2 . We can then apply Green's Theorem to D_1 and D_2 , and subtract one integral from the other.
- 5. (Concept check) What are the symbols for grad, div, curl respectively? What sort of objects does the operator ∇ , ∇ ·, ∇ × and ∇ ² take as input? What sort of objects are the output? Write ∇ ² in terms of the other operators.
- 6. (Stewart 16.5.7) Compute the curl and the divergence of the vector field

$$\mathbf{F}(x, y, z) = \langle e^x \sin y, e^y \sin z, e^z \sin x \rangle$$

7. (Stewart 16.5.17) Determine whether or not the vector field is conservative. If it is conservative, find a function f such that $\mathbf{F} = \nabla f$.

$$\mathbf{F}(x, y, z) = e^{yz}\mathbf{i} + xze^{yz}\mathbf{j} + xye^{yz}\mathbf{k}$$

8. (Stewart 16.5.19) Is there a vector field **G** on \mathbb{R}^3 such that $\operatorname{curl} \mathbf{G} = \langle x \sin y, \cos y, z - xy \rangle$? Explain.

- 9. (Concept check) What is "conservative", "irrotational" and "incompressible"?
- 10. $(Stewart\ 16.5.27)$ Prove the identity

$$\operatorname{div}(\mathbf{F}\times\mathbf{G})=\mathbf{G}\cdot\operatorname{curl}\,\mathbf{F}-\mathbf{F}\cdot\operatorname{curl}\,\mathbf{G}$$

11. (Stewart 16.5.29) Prove the identity

$$\operatorname{curl}(\operatorname{curl} \mathbf{F}) = \operatorname{grad}(\operatorname{div} \mathbf{F}) - \nabla^2 \mathbf{F}$$