Combinational ATPG

- Introduction
- Deterministic Test Pattern Generation
 - Boolean difference *
 - Path sensitization **
 - D-Algorithm [Roth 1966]**
 - PODEM [Goel 1981]**
 - FAN [Fujuwara 1985]**
 - SAT-based [Larrabee 92] *
- Acceleration techniques
- Concluding Remarks

*Boolean-based methods
**path-based methods

SAT-based ATPG

- Idea: convert test generation problem into satisfiability problem
 - Solve for a set of inputs such that
 - (good output) XOR (faulty output) = 1

this is called a miter

Tseitin Transformation [Tseitin 66]

- Converts circuit into Conjunctive Normal Form (CNF)
 - linear time, linear number of clauses and literals

CNF for basic gates

Example (cont'd)

F good f faulty

$$(x + \overline{f}) \cdot (x + \overline{E}) \cdot (\overline{x} + f + E) \cdot (f)$$

good

$$\cdot (C + \overline{E}) \cdot (\overline{C} + \overline{E})$$

$$\cdot (X + \overline{F})$$

$$\cdot (\underline{X} + \overline{F}) \cdot (\underline{X} + \overline{E}) \cdot (\overline{X} + \underline{F} + \underline{E})$$

$$\cdot (\overline{F} +$$

$$\cdot (\overline{F} + A) \cdot (\overline{F} + B) \cdot (F + \overline{A} + \overline{B})$$

XOR

$$\cdot (\overline{X} + x + T) \cdot (X + \overline{x} + T)$$

$$\cdot (\overline{X} + \overline{x} + \overline{T}) \cdot (X + x + \overline{T}) \cdot T$$

Quiz

Q: Please write CNF to generate a test for K stuck-at one fault

Pros and Cons

- SAT-based ATPG
 - SAT engine is making big progress recently
 - + proves untestable faults if CNF is unsatisfiable
 - does not allow don't cares in input
 - needs to redo CNF every time a target fault is injected
 - does not preserve circuit structure information
 - difficult for multi-valued logic (such as high impedance)

SAT-based ATPG Not Used in Commercial Tool