EE 254

Electronic Instrumentation

Dr. Tharindu Weerakoon

Dept. of Electrical and Electronic Engineering

Faculty of Engineering, University of Peradeniya

Content (Brief)

1. Operational Amplifiers

- ** Ideal Op-Amps
 - Open-loop gain
 - Input resistance
 - Output resistance

- ** Characteristics of Real Op-Amps
 - Open-loop transfer function
 - Voltage gains
 - Bandwidth
 - Slew rate
 - Power bandwidth
 - Clipping
 - Offset voltages and currents
 - Rejection ratio

EE254: Electronic Instrumentation Dr. Tharindu Weerakoon

Ideal Op-Amps

Ideal vs Non-Ideal

Ideal vs Non-Ideal :: Characteristics

Ideal Op-Amps

- Signature of the second of
- Infinite input impedance
- Sero output impedance
- Mark Infinite bandwidth
- Infinite common-mode rejection ratio (CMRR)

Non-Ideal Op-Amps

- Sinite gain
- Son-zero input impedance
- Son-zero output impedance
- Signature
 Limited bandwidth
- Significant Finite CMRR

6.5 Electrical Characteristics, LM741⁽¹⁾

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
Input offset voltage		R _S ≤ 10 kΩ	T _A = 25°C		1	5	mV
			$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV
Input offset voltage adjustment range		T _A = 25°C, V _S = ±20 V			±15		mV
Input offset current		T _A = 25°C			20	200	nA
		$T_{AMIN} \le T_A \le T_{AMAX}$			85	500	
Input bias current		T _A = 25°C			80	500	nA
		$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μΑ
Input resistance		$T_A = 25^{\circ}C, V_S = \pm 20 V$		0.3	2		МΩ
Input voltage range		$T_{AMIN} \le T_A \le T_{AMAX}$		±12	±13		V
Large signal voltage gain		$V_S = \pm 15 \text{ V}, V_O = \pm 10 \text{ V}, R_L \ge 2$ $k\Omega$	T _A = 25°C	50	200		V/mV
			$T_{AMIN} \le T_A \le T_{AMAX}$	25			
Output voltage swing		V _S = ±15 V	R _L ≥ 10 kΩ	±12	±14		V
			$R_L \ge 2 k\Omega$	±10	±13		
Output short circuit current		T _A = 25°C			25		mA
Common-mode rejection ratio		$R_S \le 10 \Omega$, $V_{CM} = \pm 12 V$, $T_{AMIN} \le T_A \le T_{AMAX}$		80	95		dB
Supply voltage rejection ratio		$V_S = \pm 20 \text{ V to } V_S = \pm 5 \text{ V}, R_S \le 10 \Omega, T_{AMIN} \le T_A \le T_{AMAX}$		86	96		dB
Transient response	Rise time	T = 25°C unity sain			0.3		μs
	Overshoot	T _A = 25°C, unity gain			5%		
Slew rate		T _A = 25°C, unity gain			0.5		V/µs
Supply current		T _A = 25°C			1.7	2.8	mA
Power consumption		V _S = ±15 V	T _A = 25°C		50	85	mW
			$T_A = T_{AMIN}$		60	100	
			$T_A = T_{AMAX}$		45	75	

⁽¹⁾ Unless otherwise specified, these specifications apply for $V_S = \pm 15 \text{ V}, -55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to $0^{\circ}\text{C} \leq T_A \leq +70^{\circ}\text{C}$.

The Operational Amplifiers

- A very high gain differential amplifier with HIGH input impedance and LOW output impedance
- **Used in**: Voltage amplifiers, oscillators, filter circuits, in instrumentational circuits
- Sometimes a number of differential amplifier stages for a very high gain
- \$\square\$ 20 to 30 or more **transistors** are used to make up an op-amp circuit
- Sp-amp requires **dc power**, and the transistors are biased in the active region
- Most op-amps are biased with both a positive and a negative voltage supply

Functional Block Diagram of LM741

The Operational Amplifiers

We explicitly show two dc power supplies as batteries with a common ground.

It is interesting to note that the reference grounding point in op-amp circuits is just the common terminal of the two power supplies; that is, no of the op-amp terminal package is physically connected to ground.

Ideal Parameters

The ideal op-amp senses the difference between two input signals and amplifies this difference to produce an output signal. $i_1 \cong 0$ $v_1 \stackrel{\longleftarrow}{=}$ $i_2 \cong 0$

- The output terminal acts as the output of an **ideal dependent voltage** source (the small-signal **output resistance** R_o is **zero**). i.e. v_o is independent of the current that may be drawn by the load impedance.
- The parameter A_{od} : open-loop differential voltage gain, is about 10^5 at low frequencies.

Analysis Method

- Instead, feedback is added to close the loop between the output and the input

Open Loop

Closed Loop

Analysis Method

Summary

1. The internal differential gain A_{od} is considered to be **infinite**.

- 2. The **differential input voltage** $(v_2 v_1)$ is assumed to be **zero**. If A_{od} is **very large** and if the output voltage v_0 is finite, then the two input voltages must be nearly equal.
- 3. The effective input resistance to the op-amp is assumed to be **infinite**, so the two input currents, i_1 and i_2 , are **essentially zero**.
- 4. The output resistance R_o is **assumed to be zero** in the ideal case, so the output voltage is connected directly to the dependent voltage source, and the output voltage is independent of any load connected to the output.

Input Signal Modes: Differential Mode

Single-Ended Input

Input Signal Modes: Differential Mode

Double-Ended Input

Input Signal Modes: Common Mode

- ** Ideally 0V output
- ** What are the applications?