Machine Learning 2016

HW1 Report

b02901065 電機四 李洺曦

一、模型與程式設計

由於 test_X.csv 中給我們九天的資料要我們算出第 10 天的 pm2.5 值,而第 10 天則是沒有任何資料,因此直覺上我將前九天每天的 18 個 features 都當作參數,也就是有 18*9 個 features,並將第 10 天的 pm2.5 當作 answer 去 train,取資料的方式則是連續的,即取 1/1,0 時~9 時為一組,1/1,1 時~10 時為一組···,可跨天,如 1/1,23 時~1/2,8 時為一組,但不可跨月,共有 12*(24*20-9)=5652 筆資料。

資料存於 class dataset 中的 var_set,資料型態為 numpy.array,shape 為(5652, 162),下圖為 設置 linear equation 的過程

假設 equation 中各項為[x1, x2,x2^2, x3, x4],order 則為[1, 2, 1, 1],經過下面過程後,model_order 為 model_order[:, :, 0] = [1, 1, 1, 1],model_order[:, :, 1] = [0, 1, 0, 0],為三維陣列(層數為最大 order)並當作 order 參數傳入 equation 中。

```
#automatically build a array recording order
max_order = np.amax(order)
model_order = np.array([1 if order[i] > 0 else 0 for i in range(var_shr_count * hr_count)])[np.newaxis, :, np.newaxis]
order -= 1
for j in range(1, max_order):
    model_order = np.dstack((model_order, np.array([1 if order[i] > 0 else 0 for i in range(var_shr_count * hr_count)])[
    np.newaxis, :, np.newaxis]))
order -= 1
```

係數與常數項先設為 0:

```
25 #set all coefficients and bias to zero
26 coe = np.zeros((1, var_shr_count * hr_count, max_order))
27 bias = 0
```

在 datatype.py 中定義了 linear_equ 的 class ,初始傳入上述 coe 與 order,將 self.coe 設為 coe 與 order 的 elementwise multiplication,即可讓沒有二次項的變數其二次項係數為 0,達到輕易修改 linear equation model 的目的:

```
self.coe = coe * order
self.bias = 0.0
```

在 linear_equ 中的 ans 則為帶入變數值求解:

var 的 shape 為(5652, 162),coe 的 shape 為(1, 162, max_order),算 answer 的方法即將 coe 各層轉置後與 var 的次方做矩陣乘法,再將各層沿第 3 為相加起來,answer.shape = (5652, 1),代表 5652 筆資料在當前 equation 的 y^{\wedge} 。

執行以下程式碼取得 gradient:

```
#calculate gradient of coefficients
err_coe = equ.err_pd_coe(data)

#regularization if needed
err_coe += 2 * smoother * coe

#calculate gradient Oof bias
err_bias = equ.err_pd_bias(data)
```

gradient 的算法類似 answer,將實際的 pm2.5 與 y^相減,shape = (5652, 1),做轉置後與 var 的次方做矩陣乘法,並將各層 stack 起來*-2 形成 coefficient 的 gradient,shape = (1, 162, max_order)。bias 則將實際的 pm2.5 與 y^相減*-2:

```
105
        def err pd coe(self, data):
106
            temp = data.get var()
107
            gra = np.dot(np.transpose((data.get train pm() - dat
    a.get f ans())[:, :]), temp)[:, :, np.newaxis]
108
            for i in range(1, self.max order):
109
                gra = np.dstack((gra, (np.dot(np.transpose((data
    .get train pm() - data.get f ans())[:, :]), temp ** (i + 1))
    [:, :, np.newaxis])))
110
            return -2 * gra
111
112
        def err pd bias(self, data):
113
            return -2 * np.sum(data.get train pm() - data.get f
    ans())
```

之後將 coe 與 bias 乘上 learning_rate 相減:

```
coe -= learning_rate_of_coe * err_coe
bias -= learning_rate_of_coe * err_bias
```

更新 coefficient 並重算 v^:

```
#change coefficient and bias

equ.change_coe(coe, bias, model_order)

#refresh y^

data.refresh_ans(equ)

def change_coe(self, new_coe, new_bias, order):

self.coe = new_coe * order

self.bias = new_bias
```

如果要使用 adagrad,則再每次 iteration 時將 gradient 的平方加起來,並在減去 gradient 時除上 開根號:

二、實驗與討論

1. Regularization

以下是實驗結果:

first order:

lambda	train_err	test_err
0.000001	5.94797	5.05681
0.00001	5.94797	5.05681
0.0001	5.94797	5.05681
0.001	5.94797	5.05681
0.01	5.94797	5.05681
0.1	5.94797	5.05681
0	5.94797	5.05681
1	5.94797	5.05682
10	5.94801	5.05691
100	5.94834	5.05787
1000	5.95175	5.06742
10000	5.99018	5.1624

在 testing error 上沒有下降的跡象,推測是一次 model 的 variance 較低,故使用二次實驗

lambda	train_err	test_err
0.000001	8.68719	9.13129
0.00001	8.68719	9.13129
0.0001	8.68719	9.13129
0.001	8.68719	9.13129
0.01	8.68719	9.13129
0.1	8.68719	9.13129
0	8.68719	9.13129
1	8.68719	9.13129
10	8.68719	9.13129
100	8.68719	9.13129
1000	9.34411	9.78302
10000	9.34411	9.78302

卻發生了 testing error 上升的現象,顯示應該是造成 overfitting 了,且 regularization 沒有顯著的效果,推測可能是 function bias 偏差太多,導致縮小 variance 造成了更嚴重的後果。

2. Learning Rate

以下為實驗結果(執行30000次, 取第1次與每50次):

在1次~1000次的區間:

在變化率上大致呈現在愈小的學習速率下,成長率愈低的趨勢,但在 12 次方與 13 次方處較為合推測,合理推測 30000 次的 iteration 有點太少,無法很準確的看出整體的成長趨勢,但還是可以看出在 25000 次之後的成長率開始符合推測,而 13 次方與 14 次方在前期的大量下降,其原因很可能由一開始的 initial coefficient 猜測錯誤因而造成的巨幅下降所導致(見 1000 次趨勢圖),由於速度過慢無法快速通過「陡坡區」,因此持續受到陡坡區的巨大斜率影響,而抵消了較低的成長率,造成整體成長較同次數的

其他 learning rate 設定快,但這也是因為仍然處於陡坡區所造成,整體看來,學習速率仍然不及其他較高的成長率設定。

3. N-fold Cross Validation

為了找出能比較符合 private set 的 linear model,我將資料以四季分為四筆來做 training 與 testing,以 first order linear equation 為基本,調整 learning rate 參數,以下為實驗結果:

iteration	test set	training_err	testing err	average_err
20w	test set1	5.86964	4.90632	
	test_set2	5.56934	5.9694	
	test_set3	5.82633	4.6122	
	test_set4	5.64502	5.43944	
40w	test_set1	5.8445	4.8483	5.25248
	test_set2	5.5418	6.10673	
	test_set3	5.80317	4.61336	
	test_set4	5.61401	5.44153	
60w	test_set1	5.8369	4.82891	5.28305
	test_set2	5.53432	6.21447	
	test_set3	5.79604	4.63011	
	test_set4	5.60641	5.45871	
80w	test_set1	5.83179	4.81862	5.304685
	test_set2	5.5294	6.28496	
	test_set3	5.79131	4.64316	
	test_set4	5.60202	5.472	

可以看到,隨著 iteration 次數愈來愈多,traing_set 的 error 會逐漸減少,是相當合乎常理,但是在 average testing error 的表現卻是相反,推測為 iteration 的增加會減少 model 的 variance,但是 model 本身就有 bias 的情形下,variance 的減少反而使其在 testing set 的表現上愈來愈差。