CEN429 GÃ¹/₄venli Programlama Hafta-9

Sertifikalar ve Şifreleme Yöntemleri

Yazar: Dr. Ã-ÄŸr. Üyesi UÄŸur CORUH

İçindekiler

1	CEN429 GA ¹ / ₄ venli Programlama				
	1.1	Hafta-	.9		
		1.1.1	Outline		
		1.1.2	Hafta-9: Sertifikalar ve Şifreleme Yöntemleri		

Şekil Listesi

Tablo Listesi

1 CEN429 GÃ¹/₄venli Programlama

1.1 Hafta-9

1.1.0.1 Sertifikalar ve Şifreleme Yöntemleri İndir

- PDF^1
- DOC2
- SLIDE³
- PPTX⁴

1.1.1 Outline

- Sertifikalar ve Åžifreleme Yöntemleri
- Simetrik ve Asimetrik Åžifreleme
- Dijital İmzalar ve Sertifika Yönetimi

1.1.2 Hafta-9: Sertifikalar ve Şifreleme Yöntemleri

Bu hafta, yaz $\ddot{A}\pm l\ddot{A}\pm m$ g \ddot{A}^{1} /venli $\ddot{A}\ddot{Y}i$ ve ileti $\ddot{A}\ddot{Y}i$ mde kullan $\ddot{A}\pm l$ an $\ddot{A}\ddot{Y}i$ freleme y \ddot{A} ¶ntemleri ile sertifikalar $\ddot{A}\pm n$ temel ilkelerini inceleyece $\ddot{A}\ddot{Y}i$ z. Hem asimetrik hem de simetrik $\ddot{A}\ddot{Y}i$ freleme algoritmalar $\ddot{A}\pm n\ddot{A}\pm n$ dijital sertifikalar $\ddot{A}\pm n$ nas $\ddot{A}\pm l$ $\ddot{A}\ddot{Y}al\ddot{A}\pm a\ddot{Y}\ddot{A}\pm a\ddot{Y}\ddot{A}\pm n\ddot{A}\pm v$ e uygulama g \ddot{A}^{1} /venli $\ddot{A}\ddot{Y}i$ ne nas $\ddot{A}\pm l$ katk $\ddot{A}\pm sa\ddot{Y}l$ ke $\ddot{A}\ddot{Y}l$ fedece $\ddot{A}\ddot{Y}l$ iz.

- 1.1.2.1 1. Şifreleme Yöntemlerinin Temelleri Teorik Aç \ddot{A} ±klama: Åžifreleme, verilerin gizlili ÄŸini korumak ve yetkisiz eri ÅŸimlere kar \ddot{A} ŸÄ± koruma saÄŸlamak amacıyla kullanılan bir tekniktir. Åžifreleme yöntemleri iki ana kategoriye ayrılır: simetrik ve asimetrik.
 - Simetrik Åžifreleme: Aynı anahtar hem ÅŸifreleme hem de ÅŸifre çözme iÅŸlemlerinde kullanılır. Örnek algoritmalar: AES, DES.

¹pandoc cen429-week-9.pdf

²pandoc_cen429-week-9.docx

³cen429-week-9.pdf

⁴cen429-week-9.pptx

- Asimetrik Åžifreleme: İki farklı anahtar kullanılır. Bir anahtar ÅŸifreleme için, diÄŸeri ise ÅŸifre ç¶zme için kullanılır. Örnek algoritmalar: RSA, ECC.
- 1.1.2.2 2. Simetrik Şifreleme Yöntemleri Teorik Aç \ddot{A} ±klama: Simetrik Å \ddot{Y} ifreleme, h \ddot{A} ±z ve verimlilik a \ddot{A} § \ddot{A} ±s \ddot{A} ±ndan asimetrik Å \ddot{Y} ifrelemeden daha avantajl \ddot{A} ±d \ddot{A} ±r, ancak anahtar payla \ddot{A} \ddot{Y} \ddot{A} ±m \ddot{A} ± sorunu vard \ddot{A} ±r.
 - AES (Advanced Encryption Standard): Yaygın kullanılan ve oldukça güvenli bir blok ÅŸifreleme algoritmasıdır. 128, 192 veya 256 bit anahtar uzunluklarıyla çalışır.
 - **DES** (**Data Encryption Standard**): Daha eski bir algoritma olup, gù¼nù¼mù½zde gù¼venlik açıkları nedeniyle artık önerilmemektedir.
 - Blok Åžifreleme ve Modlar: Blok ÅŸifreleme, veriyi sabit uzunluklardaki bloklar halinde ÅŸifreler. Ã-rneÄŸin, ECB (Electronic Codebook), CBC (Cipher Block Chaining) gibi ÅŸifreleme modları vardır.

Uygulama Ã-rnekleri:

- 1. **AES** kullanarak bir metni şifreleyip çözme iÅŸlemi.
- 2. CBC modunu kullanarak bir dosyanın ÅŸifrelenmesi ve ÅŸifre çözme iÅŸlemi.
- 1.1.2.3 3. Asimetrik Şifreleme Yöntemleri Teorik AçÄ \pm klama: Asimetrik şifrelemede iki anahtar bulunur: bir kamuya açÄ \pm k anahtar (public key) ve bir özel anahtar (private key). Veri, kamuya açÄ \pm k anahtar ile şifrelenir ve sadece özel anahtar ile çözÃ 1 4lebilir.
 - RSA (Rivest-Shamir-Adleman): Yaygın kullanılan asimetrik ÅŸifreleme algoritmasıdır. Bù⁄4yù⁄4k asal sayılara dayalıdır ve hem ÅŸifreleme hem de dijital imza iÅŸlemlerinde kullanılÄ+r.
 - ECC (Elliptic Curve Cryptography): Daha küçük anahtar boyutları ile RSA'ya kıyasla daha güçlü güvenlik saÄŸlayan asimetrik bir ÅŸifreleme algoritmasıdır.

Uygulama Ã-rnekleri:

- 1. **RSA** kullanarak bir metni şifreleme ve çözme iÅŸlemi.
- 2. ECC kullanarak dijital imza oluÅŸturma ve doÄŸrulama.
- **1.1.2.4 4. Hibrit Şifreleme Teorik Açıklama:** Hibrit şifreleme, hem simetrik hem de asimetrik şifrelemeyi bir arada kullanır. Simetrik anahtarlar, asimetrik ÅŸifreleme ile güvenli bir ÅŸekilde paylaşılır, ardından veriler simetrik anahtarla ÅŸifrelenir.
 - Uygulama: E-posta ve HTTPS gibi birçok güvenli iletiÅŸim protokolünde kullanılır.

Uvgulama Ã-rnekleri:

- Simetrik anahtar\(\hat{A}\)±n asimetrik olarak \(\hat{A}\)\(\hat{Y}\)ifrelenmesi ve ard\(\hat{A}\)±ndan verilerin simetrik \(\hat{A}\)\(\hat{Y}\)ifre ile korunmas\(\hat{A}\)±.
- 2. Hibrit şifreleme kullanarak iki cihaz arasında güvenli veri alıÅŸveriÅŸi.
- 1.1.2.5 5. Dijital Sertifikalar ve Sertifika Yetkilileri (CAs) Teorik AçÄ \pm klama: Dijital sertifikalar, bir kiÅŸinin veya kuruluÅŸun kimliÄŸini doÄŸrulayan elektronik belgeler olarak tanÄ \pm mlanabilir. Bu sertifikalar genellikle bir sertifika yetkilisi (Certificate Authority CA) tarafÄ \pm ndan imzalanÄ \pm r ve kullanÄ \pm cÄ \pm lara gÃ \pm venli bir ÅŸekilde iletilir.
 - X.509 Sertifikası: En yaygın kullanılan sertifika türüdür.
 - Sertifika Yetkilisi (CA): Sertifikaları dijital olarak imzalayan güvenilir otoriteler.
 - Sertifika Zinciri: Sertifikaların doÄŸrulanabilir bir hiyerarÅŸi ile baÄŸlandığı yapı. Her sertifika, bir üst otorite tarafından imzalanır.

Uygulama Ã-rnekleri:

- 1. Bir web sunucusu için **SSL/TLS** sertifikası oluÅŸturma ve yükleme.
- 2. X.509 sertifikalarının doÄŸrulanması ve güvenlik zincirinin incelenmesi.

- 1.1.2.6 6. Dijital \ddot{A} °mzalar Teorik $A\tilde{A}$ § $\ddot{A}\pm k$ lama: Dijital imzalar, verilerin kimli \ddot{A} Ÿini do \ddot{A} Ÿrulamak ve de \ddot{A} Ÿi \ddot{A} Ÿikli \ddot{A} Ÿe u \ddot{A} Ÿray $\ddot{A}\pm p$ u \ddot{A} Ÿramad $\ddot{A}\pm \ddot{A}$ Ÿ $\ddot{A}\pm n\ddot{A}\pm k$ ontrol etmek i \ddot{A} §in kullan $\ddot{A}\pm l\ddot{A}\pm r$. \ddot{A} °mza, bir mesaj $\ddot{A}\pm n$ karmas $\ddot{A}\pm n\ddot{A}\pm (hash)$ hesaplayarak ve bu karmay $\ddot{A}\pm \tilde{A}$ ¶zel bir anahtarla \ddot{A} Ÿifreleyerek olu- \ddot{A} Ÿturulur.
 - İmzanın DoÄŸrulanması: İmza, kamuya açık anahtar kullanılarak doÄŸrulanabilir.
 - Uygulama Alanları: E-posta, yazılım dağıtımı, dijital sözleÅŸmeler.

Uygulama Ã-rnekleri:

- 1. Bir dosya için **dijital imza** oluÅŸturma ve doÄŸrulama.
- 2. $\mathbf{PGP}/\mathbf{GPG}$ kullanarak bir mesaj $\ddot{\mathbf{A}}\pm\mathbf{n}$ imzalanmas $\ddot{\mathbf{A}}\pm\mathbf{v}$ e do $\ddot{\mathbf{A}}\ddot{\mathbf{Y}}$ rulanmas $\ddot{\mathbf{A}}\pm\mathbf{.}$
- 1.1.2.7 7. Sertifika Tabanlı Kimlik DoÄŸrulama Teorik Açıklama: Sertifikalar, özellikle sunucular arası gù⁄4venli iletiÅŸimde kimlik doÄŸrulama için kullanılır. İstemci ve sunucu birbirlerinin sertifikalarını doÄŸrulayarak gù⁄4venli bir iletiÅŸim kanalı oluÅŸturur.
 - SSL/TLS: Web tarayıcıları ve sunucular arasındaki güvenli iletiÅŸimde kullanılan bir protokoldür.
 - Mutual Authentication: Hem sunucu hem de istemci birbirlerini sertifikalar aracılığıyla doÄŸrular.

Uygulama Ã-rnekleri:

- 1. **SSL/TLS** kullanarak gývenli bir baÄŸlantı kurulması.
- 2. Sertifika tabanlı çift taraflı kimlik doÄŸrulama senaryosu uygulama.
- 1.1.2.8 8. PKI (Public Key Infrastructure $A\tilde{A}\S\ddot{A}\pm k$ Anahtar Altyap $\ddot{A}\pm s\ddot{A}\pm$) Teorik $A\tilde{A}\S\ddot{A}\pm k$ lama: PKI, dijital sertifikalar $\ddot{A}\pm n$ olu $\ddot{A}\ddot{Y}$ turulmas $\ddot{A}\pm$, da $\ddot{A}\ddot{Y}\ddot{A}\pm t\ddot{A}\pm l$ mas $\ddot{A}\pm$, y $\tilde{A}\P$ netilmesi ve do $\ddot{A}\ddot{Y}$ rulanmas $\ddot{A}\pm$ s \ddot{A}^{1} 4re \ddot{A} §lerini i \ddot{A} §eren bir yap $\ddot{A}\pm d\ddot{A}\pm r$. PKI, g \ddot{A}^{1} 4venli ileti $\ddot{A}\ddot{Y}$ im sa $\ddot{A}\ddot{Y}$ lamak i \ddot{A} §in gerekli anahtar \ddot{A} §iftlerinin ve sertifikalar $\ddot{A}\pm n$ y \ddot{A} ¶netimini sa $\ddot{A}\ddot{Y}$ lar.
 - BileÅŸenler: CA (Certificate Authority), RA (Registration Authority), CRL (Certificate Revocation List), OCSP (Online Certificate Status Protocol).
 - Uygulama Alanları: SSL/TLS, VPN, e-posta güvenliÄŸi, kod imzalama.

Uygulama Ã-rnekleri:

- 1. **PKI** kullanarak bir sertifika yönetim altyapısı kurma.
- 2. OCSP ve CRL ile sertifika iptallerinin kontrol edilmesi.
- 1.1.2.9 9. Beyaz Kutu Kriptografisi (Whitebox Cryptography) Teorik A \tilde{A} § \ddot{A} ±klama: Beyaz kutu kriptografisi, \tilde{A} ¶zellikle \tilde{A} Ÿifreleme algoritmalar \ddot{A} ±n \ddot{A} ±n a \tilde{A} § \ddot{A} ±k bir sistemde g \tilde{A} ¼venli bir \tilde{A} Ÿekilde uygulanmas \ddot{A} ±n \ddot{A} ± sa \ddot{A} Ÿlar. Bu teknikle, \tilde{A} Ÿifreleme i \tilde{A} Ÿlemleri s \ddot{A} ±ras \ddot{A} ±nda anahtarlar ve di \ddot{A} Ÿer hassas bilgiler koruma alt \ddot{A} ±nda tutulur.
 - Whitebox AES/DES: AES ve DES gibi simetrik ÅŸifreleme algoritmalarının beyaz kutu ortamlarında uygulanması.
 - Uygulama Alanı: Dijital hak yönetimi (DRM), mobil uygulama güvenliÄŸi.

Uygulama Ã-rnekleri:

- 1. Whitebox AES kullanarak bir dosya şifreleme işlemi gerçekleÅŸtirmek.
- 2. Whitebox kriptografi ile hassas verileri koruma altına almak.
- 1.1.2.10 10. Sertifika ve Anahtar Yönetimi Teorik AçÄ \pm klama: SertifikalarÄ \pm n ve kriptografik anahtarlarÄ \pm n etkin bir şekilde yönetilmesi, güvenli sistemlerin temel yapÄ \pm taÅŸlarÄ \pm ndan biridir. SertifikalarÄ \pm n zamanÄ \pm nda yenilenmesi, iptal edilmesi ve saklanmasÄ \pm , güvenli bir iletiÅŸim ortamÄ \pm için kritik öneme sahiptir.

Uygulama Ã-rnekleri:

- 1. Sertifikalar Ä $\pm n$ otomatik olarak yenilen
mesi ve eski sertifikalar Ä $\pm n$ iptal edilmesi (CRL veya OCSP kullan Ä
 $\pm m$ Ä $\pm).$
- 2. **Anahtar yà ¶netim sistemleri** (Key Management Systems) ile anahtarların gývenli bir ÅŸekilde yà ¶netilmesi.

9. Hafta-Sonu