Problema 2 – ubuntzei

autor stud. Marius Stroe Universitatea "Babeș Bolyai", Facultatea de Informatică Cluj-Napoca

Soluție 100 puncte

Fie G = (V, E) graful neorientat ce modelează țara din enunțul problemei. Cerința constă în a găsi un drum de lungime minimă în graful G de la nodul de start la nodul destinație trecând cel puțin o dată prin cele K orașe date.

În acest sens, construim un nou graf G' = (V', E'), unde V' este o mulțime de perechi (u, s), astfel încât u este un nod din V, iar s este o submulțime a celor K orașe. Perechea (u, s) semnifică că suntem în nodul u și am vizitat nodurile din mulțimea s.

Astfel, vom aplica algoritmul lui Dijkstra pe acest graf căutând drumul de lungime minimă de la nodul (1, {}) la nodul (N, {C₁, C₂, ... C_K}). În implementare, mulțimile se pot reține cu ajutorul biților și se pot manipula cu ajutorul măștilor pe biți.

```
Complexitate finală: O(K * M \log_2(N) + 2^K K^2 \log_2(K)).
```

Se observă că graful G' este aciclic. Astfel, o soluție alternativă folosește metoda programării dinamice, calculând dp(i, s) ca fiind costul minim de a ajunge în orașul i și să fi trecut cel puțin o dată prin orașele din mulțimea s. Recurența este

```
dp(i, s) = min \{ dp(j, s - \{i\}) + dist_G(i, j) : j în s și j != i \}
```

unde dist_G(i, j) reprezintă distanța în graful G, graful inițial, de la nodul i la nodul j.

Soluție 70 de puncte

Această soluție se bazează pe ideea anterioară, doar că drumurile minime dintre oricare două noduri din cele κ se calculează cu algoritmul lui Floyd-Warshall în complexitate $o(N^3)$. Iar drumul minim în graful g' se calculează cu oricare din variantele prezentate la soluția anterioară, inclusiv algoritmul lui Bellman Ford cu coadă.

Soluție 50 puncte

Vom precalcula cu algoritmul lui *Floyd-Warshall* distanțele dintre oricare două noduri din graful G. Fie d matricea distanțelor obținută la terminarea algoritmului.

Ulterior, enumerăm toate permutările P ale celor K noduri, calculăm pentru fiecare distanța $d(1, P_1) + d(P_1, P_2) + \ldots + d(P_{K-1}, P_K) + d(P_K, N)$ și alegem cea mai mică valoare, ce va fi răspunsul.

```
Complexitate finală: O(N^3 + K!).
```

Soluție 20 de puncte

Se va calcula lungimea drumului minim de la nodul ${\tt l}$ la nodul ${\tt l}$, utilizând orice algoritm de drum minim cunoscut.