Statistical Inference: power

Errors in testing

What can happen:

	Decision	
Truth	Do not reject	Reject null
Null true	Correct	Type I error
Null false	Type II error	Correct

Tension between truth and decision about truth (imperfect).

- Prob. of type I error denoted α . Usually fix α , eg. $\alpha = 0.05$.
- Prob. of type II error denoted β . Determined by the planned experiment. Low β good.
- Prob. of not making type II error called **power** (= 1β). *High* power good.

Power

- Suppose $H_0: \theta = 10$, $Ha: \theta \neq 10$ for some parameter θ .
- Suppose H_0 wrong. What does that say about θ ?
- Not much. Could have $\theta=11$ or $\theta=8$ or $\theta=496.$ In each case, H_0 wrong.
- How likely a type II error is depends on what θ is:
 - If $\theta=496$, should be able to reject $H_0:\theta=10$ even for small sample, so β should be small (power large).
 - If $\theta=11$, might have hard time rejecting H_0 even with large sample, so β would be larger (power smaller).
- Power depends on true parameter value, and on sample size.
- So we play "what if": "if θ were 11 (or 8 or 496), what would power be?".

Figuring out power

- Time to figure out power is before you collect any data, as part of planning process.
- Need to have idea of what kind of departure from null hypothesis of interest to you, eg. average improvement of 5 points on reading test scores. (Subject-matter decision, not statistical one.)
- Then, either:
 - "I have this big a sample and this big a departure I want to detect.
 What is my power for detecting it?"
 - "I want to detect this big a departure with this much power. How big a sample size do I need?"

How to understand/estimate power?

- Suppose we test $H_0: \mu=10$ against $H_a: \mu \neq 10,$ where μ is population mean.
- Suppose in actual fact, $\mu=8$, so H_0 is wrong. We want to reject it. How likely is that to happen?
- Need population SD (take $\sigma=4$) and sample size (take n=15). In practice, get σ from pilot/previous study, and take the n we plan to use.
- Idea: draw a random sample from the true distribution, test whether its mean is 10 or not.
- Repeat previous step "many" times.
- "Simulation".

Making it go

Random sample of 15 normal observations with mean 8 and SD 4:

```
x = rnorm(15, 8, 4)
X
##
    [1] 14.487469 5.014611 6.924277 5.201860
##
    [5] 8.852952 10.835874 3.686684 11.165242
```

[9] 8.016188 12.383518 1.378099 3.172503

[13] 13.074996 11.353573 5.015575 ##

Test whether x from population with mean 10 or not (over):

...continued

```
t.test(x, mu = 10)
##
##
    One Sample t-test
##
## data: x
## t = -1.8767, df = 14, p-value = 0.08157
## alternative hypothesis: true mean is not equal to 10
## 95 percent confidence interval:
## 5.794735 10.280387
## sample estimates:
## mean of x
## 8.037561
```

Fail to reject the mean being 10 (a Type II error).

or get just P-value

```
t.test(x, mu = 10)$p.value
```

```
## [1] 0.0815652
```

Run this lots of times

- Two steps:
 - Generate a bunch of random samples
 - extract the P-value for the t-test from each
- without a loop!
- Use rerun to generate the random samples
- Use map to run the test on each random sample
- Use map_dbl to pull out the P-value for each test
- Count up how many of the P-values are 0.05 or less.

In code

```
rerun(10000, rnorm(15, 8, 4)) %>%
  map( ~ t.test(., mu = 10)) %>%
  map_dbl("p.value") ->
  pvals
tibble(pvals) %>% count(pvals <= 0.05)</pre>
```

pvals <= 0.05	n
FALSE	5547
TRUE	4453

We correctly rejected 422 times out of 1000, so the estimated power is 0.422.

Calculating power

##

- Simulation approach very flexible: will work for any test. But answer different each time because of randomness.
- In some cases, for example 1-sample and 2-sample t-tests, power can be calculated.
- power.t.test. delta difference between null and true mean:

power.t.test(n = 15, delta = 10-8, sd = 4, type = "one.sample")

alternative = two.sided

Comparison of results

Method	Power
Simulation	0.422
power.t.test	0.4378

- Simulation power is similar to calculated power; to get more accurate value, repeat more times (eg. 10,000 instead of 1,000), which takes longer.
- CI for power based on simulation approx. 0.42 ± 0.03 .
- \bullet With this small a sample size, the power is not great. With a bigger sample, the sample mean should be closer to 8 most of the time, so would reject $H_0: \mu=10$ more often.

Calculating required sample size

- Often, when planning a study, we do not have a particular sample size in mind. Rather, we want to know how big a sample to take. This can be done by asking how big a sample is needed to achieve a certain power.
- The simulation approach does not work naturally with this, since you have to supply a sample size.
- For the power-calculation method, you supply a value for the power, but leave the sample size missing.
- Re-use the same problem: $H_0: \mu=10$ against 2-sided alternative, true $\mu=8,~\sigma=4,$ but now aim for power 0.80.

Using power.t.test

##

##

##

##

o No n=, replaced by a power=:
power.t.test(power=0.80, delta=10-8, sd=4, type="one.sample")
##
One-sample t test power calculation
##
n = 33.3672
delta = 2

sd = 4

power = 0.8
alternative = two.sided

sig.level = 0.05

• Sample size must be a whole number, so round up to 34 (to get at least as much power as you want).

Power curves

- Rather than calculating power for one sample size, or sample size for one power, might want a picture of relationship between sample size and power.
- Or, likewise, picture of relationship between difference between true and null-hypothesis means and power.
- Called power curve.
- Build and plot it yourself.

Building it

- If you feed power.t.test a collection ("vector") of values, it will do calculation for each one.
- Do power for variety of sample sizes, from 10 to 100 in steps of 10:

```
ns=seq(10,100,10)
ns
```

```
## [1] 10 20 30 40 50 60 70 80 90 100
```

Calculate powers:

```
ans=power.t.test(n=ns, delta=10-8, sd=4, type="one.sample")
ans$power
```

```
## [1] 0.2928286 0.5644829 0.7539627 0.8693979
## [5] 0.9338976 0.9677886 0.9847848 0.9929987
## [9] 0.9968496 0.9986097
```

Building a plot

• Make a data frame out of the values to plot:

```
d=tibble(n=ns, power=ans$power)
d
```

n	power
10	0.2928286
20	0.5644829
30	0.7539627
40	0.8693979
50	0.9338976
60	0.9677886
70	0.9847848
80	0.9929987
90	0.9968496
100	0.9986097

The power curve

g

Another way to do it:

```
tibble(n=ns) %>%
  mutate(power_output=map(n, ~power.t.test(n=., delta=10-8, so
  mutate(power=map_dbl(power_output, "power")) %>%
```

Statistical Inference: power

Power curves for means

means=seq(6,10,0.5)

[1] 15 30

- Can also investigate power as it depends on what the true mean is (the farther from null mean 10, the higher the power will be).
- Investigate for two different sample sizes, 15 and 30.
- First make all combos of mean and sample size:

```
means
## [1] 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

ns=c(15,30)
ns
```

```
combos=crossing(mean=means, n=ns)
```

The combos

combos

mean	n
6.0	15
6.0	30
6.5	15
6.5	30
7.0	15
7.0	30
7.5	15
7.5	30
8.0	15
8.0	30
8.5	15
8.5	30
9.0	15

Calculate and plot

names(ans)

Calculate the powers, carefully:

```
ans=with(combos, power.t.test(n=n, delta=mean-10, sd=4,
                               type="one.sample"))
ans
##
##
        One-sample t test power calculation
##
##
                 n = 15, 30, 15, 30, 15, 30, 15, 30, 15, 30, 15
             delta = 4.0, 4.0, 3.5, 3.5, 3.0, 3.0, 2.5, 2.5, 2
##
                sd = 4
##
##
         sig.level = 0.05
##
             power = 0.94908647, 0.99956360, 0.88277128, 0.996
##
       alternative = two.sided
```

The power curves

Comments

- When mean=10, that is, the true mean equals the null mean, H_0 is actually true, and the probability of rejecting it then is $\alpha=0.05$.
- As the null gets more wrong (mean decreases), it becomes easier to correctly reject it.
- ullet The blue power curve is above the red one for any mean < 10, meaning that no matter how wrong H_0 is, you always have a greater chance of correctly rejecting it with a larger sample size.
- Previously, we had $H_0: \mu=10$ and a true $\mu=8$, so a mean of 8 produces power 0.42 and 0.80 as shown on the graph.
- With n=30, a true mean that is less than about 7 is almost certain to be correctly rejected. (With n=15, the true mean needs to be less than 6.)

Power by sample size for means 7 and 8

Similar procedure to before:

```
means=c(7, 8)
ns=seq(10, 40, 5)
combos=crossing(mean=means, n=ns)
ans=with(combos, power.t.test(n=n, delta=10-mean, sd=4,
                              type="one.sample"))
d=tibble(mean=factor(combos$mean), n=combos$n,
         power=ans$power)
g=ggplot(d, aes(x=n, y=power, colour=mean)) +
  geom point() + geom line() +
  geom_hline(yintercept=1,linetype="dashed")
```

The power curves

Two-sample power

- For kids learning to read, had sample sizes of 22 (approx) in each group
- and these group SDs:

kids

group	score
t	24
t	61
t	59
t	46
t	43
t	44
t	52
t	43
t	58
t	67
† Statistical Infe	67 erence: power

Setting up

- suppose a 5-point improvement in reading score was considered important (on this scale)
- in a 2-sample test, null (difference of) mean is zero, so delta is true difference in means
- what is power for these sample sizes, and what sample size would be needed to get power up to 0.80?
- SD in both groups has to be same in power.t.test, so take as 14.

Calculating power for sample size 22 (per group)

```
power.t.test(n=22, delta=5, sd=14, type="two.sample",
             alternative="one.sided")
##
##
        Two-sample t test power calculation
##
##
                 n = 22
             delta = 5
##
##
                sd = 14
##
         sig.level = 0.05
##
             power = 0.3158199
##
       alternative = one.sided
##
## NOTE: n is number in *each* group
```

sample size for power 0.8

```
power.t.test(power=0.80, delta=5, sd=14, type="two.sample",
             alternative="one.sided")
##
##
        Two-sample t test power calculation
##
##
                 n = 97.62598
             delta = 5
##
##
                sd = 14
##
         sig.level = 0.05
##
             power = 0.8
       alternative = one.sided
##
##
## NOTE: n is number in *each* group
```

Comments

- The power for the sample sizes we have is very small (to detect a 5-point increase).
- To get power 0.80, we need 98 kids in each group!