

JAN 09, 2024

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.yxmvm3bbbl3p/v1

Protocol Citation: Katherin e Brimblecombe, Stephanie J Cragg 2024. Stock solutions of cocaine, isradipine, nomifensine, lidocaine, DHβE, CP8, L-741,626, and watersoluble cholesterol.

protocols.io

https://dx.doi.org/10.17504/protocols.io.yxmvm3bbbl3p/v1

MANUSCRIPT CITATION:

Brimblecombe KR, Connor-Robson N, Bataille CJR, Roberts BM, Gracie C, O'Connor B, Te Water Naude R, Karthik G, Russell AJ, Wade-Martins R, Cragg SJ. Inhibition of striatal dopamine release by the Ltype calcium channel inhibitor isradipine co-varies with risk factors for Parkinson's. Eur J Neurosci. 2023 Nov 8. doi: 10.1111/ejn.16180. Epub ahead of print. PMID: 37941514.

Stock solutions of cocaine, isradipine, nomifensine, lidocaine, DHβE, CP8, L-741,626, and water-soluble cholesterol

In 1 collection

Katherine

Brimblecombe^{1,2,3},

Stephanie J Cragg^{1,2,3}

¹Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT, UK;

²Oxford Parkinson's Disease Centre, University of Oxford, Oxford, United Kingdom;

³Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815

Cláudia C. Mendes

ABSTRACT

This protocol details the making of the following stock solutions used in Brimblecombe, K.R. et al. (2023):cocaine (inhibits the activity of dopamine transporters (DATs)), isradipine (inhibits L-type voltage-gated Ca²⁺ channels (LTCC)), nomifensine (inhibits monoamine re-uptake), lidocaine (blocks voltage-gated Na⁺- channels), dihydro-β-erythroidine (DHβE) (nicotinic acetlycholine receptor (nAChR) antagonist), 1-(3-chlorophenethyl)-3-cyclopentylpyrimidine-2,4,6-(1H,3H,5H)-trione (CP8) (a potent and highly selective Ca_V1.3 L-type calcium channel antagonist; see Protocol: Synthesis of 1-(3-chlorophenethyl)-3-cyclopentylpyrimidine-2,4,6-(1H,3H,5H)-trione (CP8)), L-741,626 (inhibits D2 receptors), and water-soluble cholesterol (DAT function in *Snca*-null mice is augmented, see Threlfell et al., 2021).

GUIDELINES

Drug concentrations were chosen in accordance with previous studies (Acevedo-Rodriguez et al., 2014; Brimblecombe et al., 2015).

License: This is an open access protocol distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Dec 20, 2023

Last Modified: Jan 09, 2024

PROTOCOL integer ID: 92560

Keywords: cocaine,

isradipine, nomifensine, lidocaine, DHβE, CP8

Funders Acknowledgement:

Aligning Science Across Parkinson's

Grant ID: ASAP-020370

MATERIALS

Drugs:

- Dihydro-β-erythroidine (DHßE) (M_r 365.27, stock powder stored at room temperature)
- Isradipine (M_r 371.39, stock powder stored at 5°C)
- Cocaine (Torcis, M_r 339.82, stock powder stored at room temperature)
- Nomifensine (maleate salt) (M_r 354.4, stock powder stored at room temperature)
- Lidocaine (M_r 234.34, stock powder stored at room temperature)
- CP8 (M_r 334.8, stock powder stored at room temperature)
- L741-626 (M_r 340.85; stock powder stored at room temperature)

Controls:

- Water-soluble Cholesterol (Sigma Aldrich, #SKU C4951-30MG, stock powder stored at -20°C)
- Me-ß-cyclodextrin (M_r ~1320, stock powder stored at room temperature)

Solvents:

- Dimethylsulfoxide (DMSO)
- Ethanol
- 0.1M Hydrocloric Acid (HCl)
- dH20

Cocaine (5 µM)

- 1 Make 50 mL aliquots of 10 mM stock solution:
 - add 3.4 mg per 1 mL dH₂O
 - store at -20°C

Note

Controlled substance! Stored in locked cabinet. Keep log book up to date.

For each experiment, dilute 50 μ L of 10 mM stock solution (one aliquot) in 100 mL of bicarbonate-buffered artificial cerebrospinal fluid (aCSF) solution for a final working concentration of 5 μ M.

Isradipine (5 μM)

- 3 Make 50 μL aliquots of 10 mM stock solution:
 - add 2.69 mL DMSO to 10 mg powder
 - stored at -20°C
- For each experiment, dilute 50 μL of 10 mM stock solution (one aliquot) in 100 mL aCSF for final working concentration of 5 μM.

Nomifensine (10 μM)

- 5 Make 100 μL aliquots of 10 mM stock solution:
 - add 3.54 mg per 1 mL 0.1 HCl
 - stored at -20°C
- 6 For each experiment, dilute 100 μL of 10 mM stock solution (one aliquot) in 100 mL aCSF for final working concentration of 10 μM.

Lidocaine (100 μM)

- Make 100 μL aliquots of 100 mM stock solution:
 - add 2.34 mg per 1 mL ethanol
 - stored at -20°C
- 8 For each experiment, dilute 100 μ L 100 mM stock solution (one aliquot) in 100 mL aCSF for final working concentration of 100 μ M.

Dihydro- β -erythroidine (DH β E)(1 μ M)

- 9 Make 0.5 mL aliquots of 10 mM stock solution:
 - add 2.8 mL dH₂O to 10 mg powder
 - store at -20°C

- 10 Make 100 μL aliquots of 1 mM working stock solution:
 - add 4.5 mL dH2O to 0.5 mL 10 mM stock solution
 - store at -20°C
- 11 For each experiment, dilute 100 μ L of 1 mM working stock solution (one aliquot) in 100 mL of aCSF solution for a final working concentration of 1 μ M.

CP8 (10 μM)

- 12 Make 100 μL aliquots of 10 mM stock solution:
 - add 3.35 mg per 1 mL DMSO
 - store at -20°C
- For each experiment, dilute 100 μ L 10 mM stock solution (one aliquot) in 100 mL aCSF for final working concentration of 100 μ M.

L741-626 (1 μM)

- Make 100 μL aliquots of 10 mM stock solution:
 - add 2.93 mL DMSO to 10 mg powder
 - store at -20°C
- For each experiment, dilute 10 μ L 10 mM stock solution (one aliquot) in 100 mL aCSF for final working concentration of 1 μ M.

Water-soluble Cholesterol (50 µg/mL)

- Make 45 mg of cholesterol per gram:
 - add 11.1 mg water-soluble cholesterol to aCSF

Note

Contains 1 mM Me-ß-cyclodextrin to make it water soluble. Therefore, control experiments are conducted in 1 mM Me-ß-cyclodextrin as a vehicle control.

Me-β-cyclodextrin (1000 μM) - Control Solution

- 17 Make 20 μL aliquots of 0.5 M stock solution:
 - add 655 mg per 1 mL dH₂O [Yes it really is this soluble!]
 - store at 4°C
- 18 For each experiment dilute 20 μL 0.5M stock solution (one aliquot) in 10 mL aCSF for final working concentration of 1 mM.