Московский физико-технический университет Физтех-школа радиотехники и компьютерных технологий

Лабораторная работа № 3.2.2

Резонанс напряжений в электрическом контуре

Работу выполнил: Орловский Антон Б01-909

г. Долгопрудный 2020 год

Цель работы: изучение последовательной цепи перемнного тока, наблюдение резонанса напряжений.

Оборудование: регулировочный автотрансформатор, катушка иднуктивности с выдвижным сердечником, магазин емкостей, реостат, резистор, амперметр, три вольтметра, ваттметр, осциллограм, универсальный мост.

1 Теоретическое введение

В теории переменных токов напряжения и токи принято выражать комплексными величинами. Модуль комплексной величины равен при этом амплитудному значению напряжения, а фаза - сдвигу фаз, измеренному по отношению к какому-либо одному напряжению или току, принятому в качестве опорного. Параметры основных элементов цепи задаются их импедансами, т.е тоже некоторыми комплексными числами.

Комплексную величину Z будет называть импедансом, комплексным сопротивлением последовательного контура:

$$Z = R + i(\omega L - \frac{1}{\omega C}) \tag{1}$$

Рис. 1: Схема установки для изучени закона Ома в цепи переменного тока

Электрическая цепь Рис.1 состоит из резистора R и катушки индуктивности L с импедансом $Z_L = r_L + i\Omega L$, последовательно подключенных к внешнему источнику, ЭДС которого меняется по синусоидальному закону с частотой Ω .

Обозначим через U_R напряжение на резисторе, чрез U_L напряжение на катушке, через U_{R+L} напряжение на катушке и резисторе. Для этих напряжений справедливы комплексные соотношения.

Минуя их описание, а так же переход к модулям и фазам токов и напряжений, отметим, что измеряя с помощью трех вольметров значения U_R , U_L и U_{R+L} и зная сопротивление резистора, нетрудно вычислить силу точка в цепи, активное сопротивление катушки r_L , ее индуктивность L, мощность P_L , выделяемую на катушке и сдвиг фаз между током и напряжением на катушке.

$$U_R = IR \tag{2}$$

$$U_L = I\sqrt{r_L^2 + (\Omega L)^2} \tag{3}$$

$$U_{L+R} = I\sqrt{(r_L + R)^2 + (\Omega L)^2}$$
(4)

Далее приведён итог расчета мощности переменного тока, выделяемой в катушке, через мнговенное значение мощности и интегрированием по всему периоду.

$$P_L = U_L \cdot I \cdot \cos(\psi) = I^2 \cdot r_L \tag{5}$$

Средняя мощность, выделяющаяся в катушке самоиндукции, определяется действительной частью ее импеданса.

Активное сопротивление катушки r_L , можно определить, если включить её в последовательный колебательный контур с известными параметрами — сопротивлением R и ёмкостью C (рис. 2). В контуре, настроенном в резонанс на частоту Ω внешнего источника (собственная частота контура и внешняя совпадают $\omega_0 = \Omega$), реактивные сопротивления индуктивности и емкости одинаковы:

$$\omega_0 \cdot L = \frac{1}{\omega_0 \cdot C} \tag{6}$$

Определив каким-либо экспериментальным способом добротность Q этого контура, можно рассчитать полное сопротивление контура R_{sum} в резонансе, поскольку:

$$Q = \frac{\omega_0 L}{R_{sum}} = \frac{1}{\omega_0 C R_{sum}} \tag{7}$$

Резонансное сопротивление контура R_{sum} включает в себя известное сопротивление резистора R и активное сопротивление катушки r_L

$$R_{sum} = R + r_L \tag{8}$$

Рис. 2: Схема установки для наблюдения резонанса напряжений

2 Экспериментальная установка

Схема установки для исследования закона Ома в цепи переменного тока представлена на рис. 1. Цепь, состоящая из резистора $R\approx 100$ и катушки L с выдвижным сердечником, подключена к автотрансформатору, выходное напряжение которого можно менять от 0 до 127 В. Напряжения на каждом из элементов и суммарное напряжение цепи измеряются тремя вольтметрами: V_R , V_L и V_{L+R} . Амперметр измеряет ток в цепи, а ваттметр — мощность, выделяющуюся на катушке

Схема установки для изучения резонанса напряжений изображена на рис. 2. Последовательно соединены резистор $R\approx 5$, катушка L и магазин емкостей . Амперметр измеряет ток в цепи, вольтметр V_C — напряжение на ёмкости, вольтметр V_{\sum} — суммарное напряжение на контуре. Резонанс можно зафиксировать с помощью осциллографа, если подать на вход X напряжение с контура, а на вход Y — напряжение с резистора R_2 , пропорциональное току в цепи. В общем случае на экране виден эллипс. При резонансе эллипс вырождается в прямую линию.

Резонансные напряжения на контуре $U_{\sum,res}$ и на ёмкости U_C , равны соответственно.

$$U_{\sum,res} = I_{res} \cdot R_{\sum} \tag{9}$$

$$U_{C,res} = \frac{I_{res}}{\Omega \cdot C} \tag{10}$$

Сравнивая формулы (6), (7) и (8), получаем, что:

$$Q = \frac{U_{C,res}}{U_{\sum,res}} \tag{11}$$

Формула (8) показывает, что добротность контура может быть найдена по измеренным значениям напряжений на контуре и на конденсаторе при резонансе. Зная добротность контура и ёмкость C, можно рассчитать R_{\sum} по формуле (6), а затем определить r_L

3 Ход работы

3.1 Закон Ома в цепи переменного тока.

1) Снимем показания с вольтеметров, амперметра и ваттметра, импользуя формулы (2) и (3) рассчитываем значения для r_L и L.

$$r_L = \frac{P_L}{I^2} \tag{12}$$

$$L = \frac{1}{\Omega} \cdot \sqrt{\left(\frac{U_L}{I}\right)^2 - r_L^2} \tag{13}$$

Тогда погрешности будут:

$$\sigma_{r_L} = r_L \cdot \sqrt{\left(\frac{\sigma_{P_L}}{P_L}\right)^2 + 4 \cdot \left(\frac{\sigma_I}{I}\right)^2} \tag{14}$$

$$\sigma_L = L \cdot \sqrt{\left(\frac{\sigma_{P_L}}{P_L}\right)^2 + 4 \cdot \left(\frac{\sigma_I}{I}\right)^2} \tag{15}$$

Занесем полученные значения в таблицу 1.

Произведем расчет для среднего положения сердечника:

$$r_L = 9.2 \, Om, \, L = 1.09 \, H$$

Тогда погрешности:

$$\sigma r_L = 0,27 \ Om, \ \sigma_L = 0.03 \ H.$$

Таблица 1: Результаты измерений

x_{disp} cm	I, A	U_R , B	U_L , B	U_{L+R} , B	P_L , B	L, H
0,5	0,825	73	77	115	11,25	2,40
0,7	0,875	78,5	68	113	10	2,10
0,9	0,925	82,5	63	112	9,5	1,87
1,1	0,95	85,5	58	111	9	1,69
1,3	0,975	88	54	110,5	8,75	1,58
1,5	1,0125	90	51	110	8,25	1,46
1,7	1,02	91	48,5	110	8	1,38
1,9	1,025	92	46	109	7,75	1,31
2,1	1,028	92,5	44	109	7,5	1,24

Таблица 2: Рассчет r_L и L по формулам (3) и (5)

L, H	r_L , Om
1,84	16,53
1,53	13,06
1,34	11,1
1,2	9,97
1,09	9,2
0,99	8,05
0,94	7,69
	,
0,89	7,38

По результатам измерений составим таблицу и построим графики L(x) и $r_L(x)$

3.2 Векторная диаграма напряжений

Для среднего положения сердечника построим векторную диаграму напряжений:

По теореме косинусов найдем угол ψ :

$$cos\psi = 0.88$$

Таким образом рассчитаем:

Рис. 3: Графики зависимостей

$$U_{L,act} = U_{L+R} \cdot \cos\psi - U_R = 9,24V$$

$$U_{L,react} = U_{L+R} \cdot sin(\psi) = 52,47V$$

Зная активное и реактивное сопротивление:

$$L = \frac{U_{L,react}}{I\Omega} = 1,02H$$

$$r_L = \frac{U_{L,act}}{I} = 9,48Om$$

Погрешности при данных измерениях составят:

$$\sigma_{r_L} = r_L \cdot \sqrt{\left(\frac{\sigma_{U_{L,act}}}{U_{L,act}}\right)^2 + \left(\frac{\sigma_I}{I}\right)^2}$$
 (16)

За погрешность вольметра берем половину цены деления.

$$\sigma_L = \sigma_{U_{L+R}} + \sigma_{U_R} \tag{17}$$

По формулам (16), (17) получаем, что:

Рис. 4: Векторная диаграмма

3.3 Метод трех вольтметров

Вычислим значение P_L для резонансного положения сердечника C помощью векторной диаграммы выразим P_L следующим образом:

$$P_L = I \cdot U_L \cdot cos(\theta)$$

,причем

$$I = \frac{U_R}{R_1} \approx 0.89 \, A$$

$$U_L \cdot cos(\theta) = U_{L,act}$$

Таким образом, получаем результат:

$$P_L = 0.89 A \cdot 9.24 V \approx 8.22 Watt$$

Рассчитанное значение мощности с помощью векторной диаграммы $P_{L,Vect} \approx 8.22 \text{ Watt.}$

Показания ваттметра для среднего положения $P_L=8.75~{
m Watt.}$ Нетрудно заметить, что полученные значения хорошо совпадают в пределах 5-ти процентов.

3.4 Резонансное напряжение

Рассчитаем активное сопротивление катушки r_L через значения резонансного тока и напряжения

$$r_L = \frac{U_{\sum,res}}{I_{res}} - R_2 = 12.67 \, Om$$

Таблица 3: Рассчет r_L через ток и напряжение

I, A	U_{\sum} , B	r_L , Om
3,35	62	12,67

3.5 Расчеты через добротность

Рассчитаем значения L и r_L через Q (Q находим из формулы (8))

$$L = \frac{1}{\omega_0^2 \cdot C} \approx 12.8 \ H$$

$$r_L = \frac{\omega_0 L}{Q} - R = 12,8\,Om$$

3.6 Сведение результатов

Сведем результаты измрения L и r_L для резонансного положения сердечника в таблицу

Таблица 4: Результаты измрения L и r_L

	Мультим.(при 0 Нz)	LCR	Вект.Диаг.	$f(I, U_{\sum})$	f(Q)
r_L , Om	2.09	9.2	9.48	12.67	12.8
L , H	-	1.6	1.02	-	1.8

4 Вывод

Таким образом, мы экспериментально изучили резонанс напряжения в последовательной цепи переменного тока. Рассчитали сопротивление катушки и ее индуктивность тремя разными способами, соответственно посчитали погрешность.

Среднее значение полученных данных $L=(1,47\pm0,04)H$ и $r_L=(11,04\pm0,27)$ От для среднего положения сердечника (в том числе и при резонансе).

Можем видеть, что погрешность составила примерно 3 процента. Основное расхождение в результатах при разных мпособах подсчета обуславливается потерями в проводах и погрешностями измерительных приборов.