2. $6(x, Y) = \frac{cov(x, Y)}{\sqrt{var(x) var(Y)}}$ cov(x, Y) = Ecxy - Ecx Ecy $Ecxy = Ecx (at6x + cx^2) = Ecax + bx^2 + cx^3$ $= aE(x) + bE(x^2) + cE(x^3) = b + c$ Ecx = E

3. (a) Let \times be the expected amount of time that professor devotes to the task $Y \sim u(0, 4)$ $E[Y] = \frac{4}{2} = 2$ E[X] = E[E[X|Y]] = E[5-Y] = 5-E[Y] = 5-2=3

(b) 9+2+3=14

The expected time at which the task is completed is 14pm

 $M(s) = E[s^{sx}] = \frac{1}{3}e^{0s} + \frac{1}{5}e^{1s} + \frac{1}{5}e^{3s} + \frac{1}{15}e^{5s}$

Mean: $E(x) = \frac{d}{ds} M(s)|_{s=0} = \frac{1}{3} \cdot 0e^{0s} + \frac{1}{5} \cdot 1e^{1s} + \frac{1}{5} \cdot 3e^{3s} + \frac{4}{15} \cdot 5e^{5s}$

 $= 0 + \frac{1}{5} + \frac{3}{5} + \frac{20}{15}$ $= \frac{3}{15} + \frac{2}{15} + \frac{20}{15} = \frac{32}{15}$ $= \frac{3}{15} + \frac{2}{15} + \frac{20}{15} = \frac{32}{15}$ $= 0 + \frac{1}{5} + \frac{2}{5} + \frac{100}{15} = \frac{3}{15} + \frac{27}{15} + \frac{100}{15} = \frac{130}{15}$

 $Var = E[x^{2}] - (E[x])^{2} = \frac{130}{(5)} - (\frac{3^{2}}{15})^{2} = \frac{1950}{225} - \frac{1024}{225} = \frac{926}{225} \approx 41$

ECXT = E[ECXIK]

if type of pizza is ordered by at least one customer

Xi = {

otherwise

Let x be number of different types of pizzas

X = X1 + X2 + - + Xn

ELECXIK]] = E[ECX, +x2+...+x1K]] = N. E[ECX, IK]

P(customer does not order type i) = $\frac{n-1}{n}$

" E [x, | k] = 1 - (1) K

ECX) = n · E[1-pk]

= n - n E[excogP]

= n-n-Mk(lugp)

= n-n. Mx (log n-1)