Unit 1 – Our Dynamic Universe Section 1 – Motion – Equations of Motion

- 2013 1. A train accelerates uniformly from $5.0~\text{m s}^{-1}$ to 2014 2. A boat is moving at a speed of $6.0~\text{m s}^{-1}$. 12.0 m s⁻¹ while travelling a distance of 119 m along a straight track. The acceleration of the train is
 - A $0.50 \,\mathrm{m \, s^{-2}}$
 - В $0.70 \, \text{m s}^{-2}$
 - $1.2 \,\mathrm{m \, s^{-2}}$ \mathbf{C}
 - $7.0 \, \text{m s}^{-2}$ D
 - Е $14 \,\mathrm{m \, s^{-2}}$.

The boat now accelerates at 3.0 m s⁻² until it reaches a speed of 12 m s⁻¹.

> The distance travelled by the boat during this acceleration is

- 6.0 m A
- $18 \,\mathrm{m}$
- C $30 \, \mathrm{m}$
- D 36 m
- 54 m. E
- 2015 2. A car is travelling at $12\,\mathrm{m\,s^{-1}}$ along a straight road. The car now accelerates uniformly at $-1.5 \,\mathrm{m}\,\mathrm{s}^{-2}$ for $6.0 \,\mathrm{s}$.

The distance travelled during this time is

- 18 m
- В 45 m
- C 68 m
- D 72 m
- 99 m. Е
- 2016 1. A car accelerates uniformly from rest. The car travels a distance of 60 m in 6.0 s. The acceleration of the car is
 - $0.83 \,\mathrm{m \, s^{-2}}$
 - В $3.3 \, \text{m s}^{-2}$
 - $5.0 \, \text{m s}^{-2}$ C
 - $10 \, \text{m s}^{-2}$ D
 - $20 \,\mathrm{m}\,\mathrm{s}^{-2}$. F
- **2018** 1. A car is moving at a speed of $2.0 \,\mathrm{m \, s^{-1}}$.

The car now accelerates at $4.0 \,\mathrm{m\,s^{-2}}$ until it reaches a speed of $14 \,\mathrm{m\,s^{-1}}$.

The distance travelled by the car during this acceleration is

- A 1.5 m
- В 18 m
- C 24 m
- D 25 m
- E 48 m.