Sequential Decision-Making Under Uncertainty:

Introduction to Reinforcement Learning

Siddharth Srivastava, Ph.D. Assistant Professor Arizona State University

Markov Decision Processes (MDPs)

S set of states

- E.g., At(1,1)

A set of actions

T transition model

$$-P(s'|s,a) = T(s,a,s')$$

 $R: S \to \mathbb{R}$ reward, or utility function

Agent can "drift", end up in unintended states

Solutions take the form of policies: $\pi: S \to A$

What if the Agent Encounters a New Environment?

S set of states

A set of actions

T transition model

$$-P(s'|s,a) = T(s,a,s')$$

$$R: S \to \mathbb{R}$$
Unknown

?? ?? ?? ?? ?? ?? ?? 2 ?? ?? ?? ?? В C D

Map not known to the agent (or partially known)

Adapting to new situations is an essential component of intelligence

How would we want an Al agent deal with it?

Ideas for Dealing with Change

Transfer + adapt known knowledge, policy

- Try the existing policy
- Recompute policy with any changes noticed

Transfer learned principles

- Walls are impassable

Learn new environment model, then plan

Learn while acting in the environment

Map not known to the agent (or partially known)

Integrating Planning and Learning

Reinforcement learning: learning to act based on online feedback from the environment

Fundamental trade-off:

- Explore: experiment, learn about the environment
- Exploit: settle on the learned knowledge, use current best policy to cut (possible) losses

Particularly useful when agent acts in the *real* environments (pure RL)

- Real as in not in a simulator (model free)
- Practically limited to controlled settings

Use models (e.g. simulators/analytical descriptions) when possible to reduce risk

Progression Towards RL

Next few slides:

- Ideas for planning in unknown environments, leading up to RL

Idea 1: Learn Model First, Then Plan

- First, learn T, R based on available data
- Next, compute an optimal policy

Example of Model Learning

Training data compiled using a given policy (transitions from *A*1):

$$-A1, \rightarrow, B1$$

$$-A1, \rightarrow A2$$

$$-A1, \rightarrow B2$$

$$-A1, \rightarrow, A2$$

$$-A1, \rightarrow, B1$$

$$-A1. \rightarrow B1$$

$$-A1, \rightarrow, A2$$

Learned model:

$$P(B1|A1, \to) = \frac{3}{7}, P(B2|A1, \to) = \frac{1}{7},$$

 $P(A2|A1, \to) = \frac{3}{7}$

Example of Model Learning

Training data compiled using a given policy (transitions from A1):

- $-A1, \rightarrow B1$
- $-A1. \rightarrow A2$
- $-A1, \rightarrow B2$
- $-A1. \rightarrow A2$

- $-A1, \rightarrow A2$

3 ?? ?? ?? ?? ?? ?? 2 ?? ?? ?? ?? Α В C D

$A1, \rightarrow, B1$ Assumptions?

Learned model:

$$P(B1|A1, \to) = \frac{3}{7}, P(B2|A1, \to) = \frac{1}{7},$$

 $P(A2|A1, \to) = \frac{3}{7}$

Example of Model Learning

Analysis of Learning Followed by Planning

Learn T, R based on available data

Advantages:

- Easy to transfer to new situations if some information about changes is available
- E.g., household robotics:
 - Robot learned to deliver coffee when doors were open
 - New environment: doors closed
 - Can focus learning to opening doors
- Video games
 - New reward function: need to keep last row alive for 10s!

Limitations of Model Learning

- Agent needs time to learn
- During learning, agent pauses its goal-achievement activity
- A bit like training for a new sport: no tournaments before reaching a level of competence

Idea 2: Monte Carlo Policy Evaluation ("Passive" RL)

- Can we learn a policy directly?
- Suppose the AI agent is a self-driving car
 - Being driven by a human driver
 - Essentially being given a policy
- Still doesn't know T, R
- Goal: Learn the value function V^{π} directly, without learning T or R

Why Can't we Use Policy Evaluation?

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s') + \gamma V_k^{\pi}(s')]$$

Monte Carlo Policy Evaluation

Break up training into episodes

Recall: reward collected before moving to next state

Episode 1:

- $A1, \rightarrow, B1, 0$
- B1, \leftarrow , B1, 0
- $B1, \leftarrow, A1, 0$
- *A*1, ↑, *A*2, −10
- *A*2, ↑, *A*3, 20
- $A3, \to, A4, -5$
- $A4, \rightarrow, A4, 0$
- $A1, \leftarrow A4, 0$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

- (a) Generate an episode using π
- (b) For each state s appearing in the episode:

 $R \leftarrow \text{return following the first occurrence of } s$ Append R to Returns(s) $V(s) \leftarrow \text{average}(Returns(s))$

Sutton & Barto, RL, 1st ed.

Monte Carlo Policy Evaluation

Break up training into episodes

Episode 1:

- $A1, \rightarrow, B1, 0$
- B1, \leftarrow , B1, 0
- $B1, \leftarrow, A1, 0$
- *A*1, ↑, *A*2, −10
- *A*2, ↑, *A*3, 20
- $A3, \to, A4, -5$
- $A4, \rightarrow, A4, 0$
- $A1, \leftarrow A4, 0$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

- (a) Generate an episode using π
- (b) For each state s appearing in the episode:
 R ← return following the first occurrence of s
 Append R to Returns(s)
 V(s) ← average(Returns(s))
 [Sutton & Barto, RL, 1st ed.]

$$V(A1) = 5$$
; $V(A2) = 15$; $V(A3) = -5$

Analysis of Monte Carlo Policy Evaluation

Advantage: can focus on a subset of states; learn while collecting data

Limitation: doesn't utilize statereachability

- Suppose in the next episode we get one sample:
- $-C1, \leftarrow, B1, 0$
- MC evaluation: V(C1) = 0

We already have training data from B1

 V(C1) could have used previous recorded returns from B1...

