Conception et Planification de Réseaux

Optimisation des Métriques de Routage IP

Olivier BRUN et Jean-Marie GARCIA

Plan

- Introduction
- Modélisation du problème
- Algorithme de résolution
- Résultats
- Conclusion

Introduction

Contexte des réseaux

- Evolution de l'Internet vers une architecture de communication globale
 - Implique la gestion de services multimédia beaucoup plus sophistiqués que le traditionnel service au mieux (best effort) du monde IP
 - Les futurs réseaux IP à intégration de services devront être capables de supporter un spectre très large d'exigences de QoS
 - bornes sur le délai de bout-en-bout des communications, sur leur bande-passante, sur leur gigue, et/ou sur leur taux de pertes
 - Contrat de QoS entre un fournisseur d'accès Internet (ISP) et ses clients : SLA (Service LevelAgreement)

Contexte des réseaux

- Les opérateurs doivent adapter en permanence leurs infrastructures de communication
 - Nouvelles exigences de QoS, augmentation continue du traffic Internet, impératifs de plus en plus fort de sécurisation.
 - ▶ Le contexte concurrentiel qui induit des marges bénéficiaires réduites, ne permet plus d'améliorer les performances d'un réseau par un surdimensionnement excessif des équipements.
 - Les opérateurs et les ISPs s'intéressent de plus en plus aux techniques d'ingénierie de trafic, moins coûteuse et généralement basées sur des technologies déjà existantes,
 - Eviter les phénomènes de congestion du trafic et les dégradations du service qui en résultent.

Ingéniérie de trafic

Concept clé : optimisation du routage

- Utilisation plus efficace des ressources réseaux existantes en adaptant le routage aux trafics transportés.
- Utilisation plus efficace des ressources réseaux existantes en adaptant le routage aux trafics transportés.
 - en particulier pour les réseaux ayant une distribution de trafic non uniforme.
- Les spécificités de routage IP rendent très difficile l'ingénierie de trafic dans les réseaux de l'Internet.

Le Routage IP

Calcul des routes dans un réseau IP

- Effectué de manière décentralisée par des protocoles de routage.
 - OSPF (Open Shortest Path First) et ISIS (Intermediate System to Intermediate System) sont actuellement les deux protocoles de routage intra-domaine les plus utilisés dans l'Internet.
- Un flot est routé suivant un plus court chemin vers la destination
 - partage de charge équitable en un noeud si plusieurs liens sortants sont sur des plus courts chemins vers la destination.
- Le poids des liens, et par conséquent les plus courts chemins utilisés par le routage, peuvent être changés par l'administrateur du réseau.
 - Minimisation du nombre de hops (poids à 1) ou du délais de propagation (poids proportionnel à la distance physique).
 - Heuristique standard recommandée par Cisco : prendre des poids inversement proportionnel à la capacité des liens de transmission.
 - Mauvaise utilisation des ressources, variations de trafic, pannes.

Optimisation des Métriques IP

Historique

- On a longtemps considéré que des protocoles comme OSPF ou ISIS n'étaient pas assez flexibles pour une ingénierie de trafic efficace.
 - Une des raisons de l'introduction des technologies de commutation d'étiquettes MPLS (Multi-Protocol Label Switching) qui permettent de fixer le chemin de chaque flot dans le réseau.
- Récemment, la communauté scientifique, sous l'impulsion de Fortz et Thorup en particulier, s'est intéressée de plus en plus au problème d'optimisation des métriques de routage IP
 - Problème NP-difficile.
 - Une affectation suffisamment intelligente des métriques de routage permet souvent d'obtenir un routage aussi performant que le routage MPLS sans coût financier supplémentaire.
 - Performances proches de celles d'un routage optimal par partage de charge dans certains cas.

Optimisation des Métriques IP

Objectifs

- Améliorer les performances globales d'un réseau IP
 - en réduisant la congestion des liens,
 - en minimisant les délais et les taux de pertes de bout-en-bout des flots.
- Dégager plus de bande-passante résiduelle sur les chemins empruntés par les flots pour :
 - augmenter la capacité du réseau à tolérer sans dégradation forte du service des variations brusques du trafic sur une courte période de temps,
 - réduire la fréquence des modifications du plan de routage du à des augmentations prévisibles de trafic.
- Augmenter la robustesse du réseau en prenant en compte la défaillance des équipements dans le processus d'optimisation.

Modélisation du problème

Modélisation du problème

Plusieurs étapes :

- Modélisation du réseau,
 - Modélisation de la topologie,
 - Définition d'une solution au problème.
- Modélisation du trafic,
- Formulation du coût d'une solution,

Modélisation du réseau

Un réseau IP est modélisé sous la forme d'un graphe orienté

- les noeuds correspondent aux routeurs et les arcs aux interfaces de communication des routeurs.
- $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \begin{tabul$
- A chaque arc a du graphe est associé un poids w_a qui représente la métrique de l'interface correspondante et qui peut prendre toute valeur dans l'intervalle $\Omega=\left\lceil 1,2^{16}-1\right\rceil$.
- A chaque arc a du graphe est associé une capacité C_a en paquets/seconde.

Solution du problème

- Une solution admissible du problème d'optimisation des métriques de routage IP est un vecteur $w=(w_1,\ldots,w_M)\in\Omega^M$.
 - $oldsymbol{ ilde{L}}$ Le nombre de solutions du problèmes est donc environ $2^{16\,M}$.
 - m extstyle extstyle
 - Etant donné une solution admissible $w=(w_1,\ldots,w_M)$, on peut calculer par un algo. de plus courts chemins (PCC) :
 - $m{\mathcal{P}}_i^x(w)$ est la distance du noeud i à la destination x,
 - $\delta^x_{i,j}(w)=1$ si l'arc (i,j) est sur un PCC vers la destination x et 0 sinon,

Modélisation des Plus Courts Chemins

Exemple de Modélisation des PCC (vers x=3)

$$D_1^3 = 7, \ D_2^3 = 8, \ D_3^3 = 0, \ D_4^3 = 3$$

$$\delta_{1,4}^3 = 1, \ \delta_{2,1}^3 = 1, \ \delta_{2,4}^3 = 1, \ \delta_{3,2}^3 = 0, \ \delta_{4,2}^3 = 0, \ \delta_{4,3}^3 = 1$$

$$n_1^3 = 1, \ n_2^3 = 2, \ n_3^3 = 0, \ n_4^3 = 1$$

Modélisation du Trafic

- Le réseau écoule un ensemble de K flots de communication.
 - Chaque flot $k=1,\ldots,K$ est caractérisé par sa source s(k), sa destination t(k) et sa demande en bande-passante d^k .
 - Chaque flot est un couple origine-destination unique $(K \leq N, (N-1))$
 - Aggrégation des trafics ayant mêmes origine-destination : même routage,
 - **■** La prise en compte de DiffServ et du routage par ToS (Type Of Service) peuvent être vues comme des extensions de l'algorithme présenté

Modélisation du Trafic

Notations

• λ_i^x : le trafic direct émis de i vers la destination x

$$\lambda_i^x = \sum_{k, k, i \in S} d^k$$

$$s(k) = i, \ t(k) = x$$

• $\gamma_i^x(w)$: le trafic reçu au noeud i, direct et en transit, pour la destination x.

$$\gamma_i^x(w) = \lambda_i^x + \sum_{j \neq x} \frac{\delta_{j,i}^x(w)}{n_j^x(w)} \gamma_j^x(w)$$

ullet La charge du lien (i,j) s'écrit alors :

$$Y_{i,j}(w) = \sum_{x=1}^{N} \frac{\delta_{i,j}^{x}(w)}{n_i^{x}(w)} \gamma_i^{x}(w)$$

Modélisation du problème

- Pour un vecteur de métriques $w=(w_1,\ldots,w_M)$,
 - m Par un algorithme de PCC, on peut calculer les variables $\delta^x_{i,j}(w)$ et $n^x_i(w)$ représentant les PCC pour la destination x
 - On en déduit le trafic $\gamma_i^x(w)$ au noeud i pour chaque destination x

$$\gamma_i^x(w) = \lambda_i^x + \sum_{j \neq x} \frac{\delta_{j,i}^x(w)}{n_j^x(w)} \gamma_j^x(w)$$

ullet On obtient ainsi le trafic $Y_{i,j}(w)$ sur chaque lien (i,j)

$$Y_{i,j}(w) = \sum_{x=1}^{N} \frac{\delta_{i,j}^{x}(w)}{n_{i}^{x}(w)} \gamma_{i}^{x}(w)$$

Quel est le coût associé à cette charge des liens ?

Formulation du Coût d'une Solution

Coût additif

$$\Phi(w) = \sum_{l=1}^{M} \Phi_l(w)$$

- $oldsymbol{oldsymbol{eta}} \Phi_l(w)$ représente la contribution du lien l au coût global
- On peut prendre par exemple le délais moyen de séjour M/M/1 :

$$\Phi_{i,j}(Y_{i,j}) = \begin{cases} \frac{Y_{i,j}}{C_{i,j} - Y_{i,j}} & \text{si } Y_{i,j} \leq \overline{Y}_{i,j} \\ \frac{\overline{Y}_{i,j}}{C_{i,j} - \overline{Y}_{i,j}} + K_2 \frac{C_{i,j}}{\left[C_{i,j} - \overline{Y}_{i,j}\right]^2} \left[Y_{i,j} - \overline{Y}_{i,j}\right] & \text{si } Y_{i,j} > \overline{Y}_{i,j} \end{cases}$$

- $oldsymbol{9} \overline{Y}_{i,j} = K_1 \, C_{i,j}$ est un seuil de charge ($K_1 = 0.9$ par exemple)
- Le coefficient $K_2>1$ est utilisé pour associer un coût aux solutions non admissibles au sens des capacités ($Y_{i,j}\geq C_{i,j}$).
- La pénalité appliquée dans le cas $Y_{i,j}>\overline{Y}_{i,j}$ correspond à la dérivée du nombre moyen de paquets au seuil de charge $\overline{Y}_{i,j}$ multipliée par le coefficient K_2 .

Coût d'une solution

Allure du coût précédent

$$K_1 = 0.9$$
, $K_2 = 1$ et $C_{i,j} = 1$.

Formulation du problème

Le problème s'écrit :

$$\min_{w \in \Omega^M} \sum_{(i,j)} \Phi_{i,j} \left[Y_{i,j}(w) \right]$$

avec,

$$Y_{i,j}(w) = \sum_{x=1}^{N} \frac{\delta_{i,j}^{x}(w)}{n_i^{x}(w)} \gamma_i^{x}(w) \quad \forall i, j = 1 \dots N$$
 (1)

$$\gamma_i^x(w) = \lambda_i^x + \sum_{j \neq x} \frac{\delta_{j,i}^x(w)}{n_j^x(w)} \gamma_j^x(w) \quad \forall i, x = 1 \dots N$$
 (2)

Les paramètres $\delta^x_{i,j}(w)$ et $n^x_i(w)$ étant obtenus directement à partir du vecteur de métriques w par résolution d'un problème de PCC.

Algorithme d'Optimisation des métriques IP

Méthodes de Recherche Locale

Soit le problème d'optimisation suivant :

$$\begin{cases} \text{ Minimiser : } & F(x) \\ \text{ sous la contrainte : } & x \in X \subset \mathbb{R}^n \end{cases}$$

- On suppose que F est une fonction quelconque définie de \mathbb{R}^n vers \mathbb{R} et X est un sous-ensemble discret de \mathbb{R}^n .
- $oldsymbol{ iny}$ On définit $V(x)\subset X$, le voisinage d'une solution admissible x
- Partant d'une solution initiale x^0 , les techniques de recherche locale vont générer une suite de solutions x^1, x^2, \ldots telles que :

$$\forall i, \quad \begin{cases} x^{i+1} \in V(x^i) \\ F(x^{i+1}) < F(x^i) \end{cases}$$

Méthodes de Recherche Locale

Propriétés

- Sous des hypothèses de convexité et de connexité par rapport à la structure de voisinage choisie, la recherche converge avec une décroissance monotone du coût F(x) vers la solution optimale x^* .
- Si le problème n'est pas convexe, en fonction de la solution initiale x^0 , la méthode peut converger vers une solution $x^n \neq x^*$ telle que $F(x) \geq F(x^n)$, $\forall x \in V(x^n)$. On peut accepter une solution x^{n+1} telle que $F(x) \geq F(x^n)$ pour sortir de cet optimum local.
- Les différentes méthodes de recherche locale se distinguent par la technique de génération de x^{i+1} à partir de x^i , et par la technique employée pour sortir des optima locaux.
 - recuit simulé (simulated annealing), recherche tabou (tabu search), etc.

Méthodes de Recherche Locale

Illustration du principe

Optimisation des Métriques IP – p.24/55

Algorithme d'Optimisation des Métriques IP

Principe

- Algorithme de recherche locale.
 - Le voisinage d'une solution contient M solutions.
 - La solution associée au lien i est obtenue en augmentant la métrique de ce lien de la quantité minimale permettant de dévier du trafic de ce lien.
 - Les métriques ne peuvent qu'augmenter.
- Calcul du coût de la solution associée au lien i
 - Déterminer l'augmentation de métrique permettant de dévier du trafic du lien i,
 - Effectuer la modification et re-calculer les PCC,
 - Re-propager les trafics et calculer le coût.
- Points clés de l'algorithme
 - Structure de voisinage,
 - Algorithme de PCC dynamique,
 - Propagation dynamique.

Structure de Voisinage

Définition de la structure de voisinage

$$V(w) = \{w^1, w^2, \dots, w^M\}$$

où:

$$w^i = (w_1, w_2, \dots, w_i + \Delta_i, \dots, w_M)$$

avec:

$$\Delta_i = argmin_{\Delta \ge 1} [Y_i(w_1, \dots, w_i + \Delta, \dots, w_M) < Y_i(w)]$$

- ullet Le voisinage d'une solution w contient exactement M solutions.
- La solution associée au lien i est obtenue en augmentant la métrique de ce lien de la quantité minimale permettant de réduire la charge de ce lien, c'est à dire de dévier du trafic de ce lien.
 - Incorpore les situations de partage de charge.

ullet Génération du voisin w^i

- $oldsymbol{ ilde{I}}$ Calcul de la variation minimale de métrique Δ_i du lien i
- Notons F_i l'ensemble des flots passant par le lien i. Si $F_i=\emptyset$, $\Delta_i=\infty$ (pas de déviation possible). Sinon :
 - (a) On supprime le lien $i: w' = (w_1, \ldots, w_{i-1}, \infty, w_{i+1}, \ldots, w_M)$.
 - (b) Mise à jour des tables de distances $D_u^v(w')$ par un algorithme de PCC.
 - (c) On calcule:

$$d_{min} = \min_{f \in F} \left[D_{s(f)}^{t(f)}(w') - D_{s(f)}^{t(f)}(w) \right]$$

, qui correspond à la variation minimale de distance entre la source s(f) et la destination t(f) de chaque flot f passant par le lien i.

(d) On définit Δ_i de la façon suivante :

$$\Delta_i = \left\{ egin{array}{ll} 1 & ext{si } d_{min} = 0 \\ \\ d_{min} & ext{si } 0 < d_{min} < \infty \\ \\ \infty & ext{si } d_{min} = \infty \end{array}
ight.$$

ullet Génération du voisin w^i

- ullet L'ensemble de flots F_i est obtenu lors de la propagation.
- Les distances $D_u^v(w')$ sont obtenues par un algorithme de PCC dynamique. On recopie les distances $D_u^v(w)$ pour pouvoir revenir rapidement à la solution courante avant de générer w^{i+1} .
- Dans la solution $w^i=(w_1,w_2,\ldots,w_i+\Delta_i,\ldots,w_M)$, il existera au moins un flot de F_i qui sera dévié tout ou partie du lien i:
 - Si $d_{min}=0$, cela signifie qu'il n'y avait pas unicité du plus court chemin pour au moins un des flots de F_i (partage de charge). En posant $\Delta_i=1$, ce flot sera intégralement dévié du lien i,
 - Si $0 < d_{min} < \infty$, la solution w^i introduit du partage de charge pour au moins un des flots de F_i ,
 - Si $d_{min} = \infty$, il n'existe pas d'autre chemin ne passant pas par le lien i pour les flots de F_i . On supprime donc ce lien de ceux dont la métrique peut être modifiée.

Exemple

Toutes les métriques sont à 1. Ce réseau doit écouler deux demandes : l'une de N_1 vers N_5 et l'autre de N_0 vers N_5 . Les PCC sont marquées en gras.

$$D_{N_1}^{N_5}(w) = 3$$
 et $D_{N_0}^{N_5}(w) = 4$

ullet On veut déterminer $\Delta_{N3 o N4}$.

Exemple

• On supprime le lien N3-N4 ($w'_{N3 \to N4} = \infty$) :

$$D_{N_1}^{N_5}(w') = 4$$
 et $D_{N_0}^{N_5}(w') = 5$

$$\Delta_{N3\to N4} = d_{min} = \min\{4-3, 5-4\} = 1$$

Algorithme d'optimisation des métriques

Initialisation

```
Lecture de la solution initiale w=(w_1,\ldots,w_M) Calcul des plus courts chemins : D_u^v(w),\ \delta_{u,v}^x(w),\ n_u^v(w) Propagation des flots sur les plus courts chemins : \gamma_u^v(w),\ Y_{u,v}(w) Calcul du coût \Phi(w) de la solution initiale. w^*=w \qquad \qquad \qquad \qquad \text{{Init. solution de coût minimum}}
```

Algorithme d'optimisation des métriques

Boucle Principale

```
while Convergence() = false do
  \Phi_{min} = \infty
  for i = 1 \dots M do
     Calcul de \Delta_i : w^i = (w_1, w_2, \dots, w_i + \Delta_i, \dots, w_M)
     Calcul des plus courts chemins : D_u^v(w^i), \ \delta_{u,v}^x(w^i), \ n_u^v(w^i)
     Propagation des flots : \gamma_u^v(w^i), Y_{u,v}(w^i)
     Calcul du coût \Phi(w^i)
     if \Phi(w^i) \leq \Phi_{min} then
        w_{next} = w^i et \Phi_{min} = \Phi(w^i)
     end if
  end for
  w = w_{next}
  if \Phi(w) < \Phi(w^*) then
     w^* = w
                                                 {Copie de la solution de coût minimum}
  end if
end while
```

Algorithme d'optimisation des métriques

Les étapes clés (pour chaque lien i)

- $oldsymbol{ ilde{\square}}$ Calcul de la variation de métrique Δ_i : calcul de PCC
- Calcul des PCC associés à la solution w^i
- Calcul du coût : propagation des trafics

Il faut donc optimiser

- Le calcul des PCC suite à une augmentation de métrique,
- La propagation des trafics suite à une augmentation de métrique,

Algorithme de PCC dynamique

Algorithme de Ramalingam & Reps

- La modification de la métrique d'un seul lien n'impacte souvent qu'un petit nombre de PCC.
- Des algorithmes, dits de plus courts chemins dynamiques, permettent de traiter ce type de problèmes plus efficacement ques les algorithmes de Dijkstra ou de Bellman-Ford.
- On présente une amélioration de l'algorithme de Ramalingam et Reps pour le cas d'une augmentation de métrique.

Algorithme de Ramalingam & Reps

Contexte

- On suppose que le calcul complet de toutes les tables de distance a été fait.
- On se place ici dans le cas où la métrique d'un lien (s,t) a augmentée d'une valeur Δ .
- On note w le vecteur de métriques initial et w' celui obtenu apres modification. Au début de l'algorithme, on a pour chaque noeud x et chaque lien (u,v):

$$D_u^v(w') = D_u^v(w), \ \delta_{u,v}^x(w') = \delta_{u,v}^x(w), \ n_u^v(w') = n_u^v(w)$$

Algorithme de Ramalingam & Reps

Exemple

- On suppose que le lien modifié est (s,t)=(D,G) et que sa métrique passe de 1 à 3 ($\Delta=2$).
- La destination pour laquelle on veut re-calculer les PCC est le noeud F. Sur la figure, on indique :
 - $m{ ilde{>}}$ Pour chaque lien (u,v), sa métrique w_{uv} et son utilisation vers F , $\delta^F_{u,v}(w)$,
 - m arPhi Pour chaque noeud u, sa distance à F : $D_u^F(w)$.

- 1ère étape : propagation amont du changement.
 - Elle permet de remonter le long des chemins utilisés pour joindre F et d'identifier les noeuds et les liens impactés par la modification $w_{s,t} \to w_{s,t} + \Delta$.
 - A1. On vérifie que ce changement fera évoluer des distances vers F. Pour cela, il faut que : $\delta^F_{s,t}(w)=1$ et $n^F_s(w)=1$. Sinon, on fait $\delta^F_{s,t}(w')=0$ et l'algorithme est terminé.
 - A2. On initialise une liste Q avec le nœud source de l'interface modifiée : $Q=\{s\}$.
 - A3. Pour chaque nœud $v\in Q$ et pour chaque lien (u,v) utilisé, i.e. $\delta^F_{u,v}(w)=1$, on fait $D^F_u(w')=D^F_u(w)+\Delta$. Si $n^F_u(w)=1$ alors, u est ajouté dans Q et on fixe $\delta^F_{u,v}(w')=0$ (lien non utilisé).

- Exemple : illustration de l'étape 1
 - ${\color{blue} \blacktriangleright}$ Evolution des distances vers F car $\delta^F_{D,G}(w)=1$ et $n^F_D(w)=1.$
 - ${\color{blue} \bullet}$ Au départ, $Q=\{D\}.$ En remontant les PCC utilisés : $Q=\{D,C,A\}$

- 2nd étape : mise à jour des distances
 - Si $\Delta=1$, vu que $n_s^F(w)=1$ (cf A1), on a $\delta_{s,t}^F(w')=1$ même après changement et les distances $D_u^F(w')$, $u\in Q$, calculées à l'étape 1 sont exactes.
 - $\hbox{\bf Sinon, il est possible que le lien } (s,t) \hbox{ ne soit plus utilisé, auquel cas ces distances peuvent avoir été sur-évaluées. Si $\Delta>1$, il faut les ajuster. }$
 - B1. On traite le routeur source s. On va regarder s'il existe un chemin au départ de s tel que sa distance soit plus petite que $D_s^F(w)+\Delta$. On calcule :

$$d = \min_{(s,v)} \left[w'_{s,v} + D_v^F(w) \right]$$

Si $d < D_s^F(w')$, on pose $\Delta_1 = d - D_s^F(w')$. Δ_1 représente l'erreur sur l'augmentation de distance qui a été propagée à tous les noeuds de Q. On met à jour la distance de s à $F:D_s^F(w')=d$.

ullet 2nd étape : mise à jour des distances ($\Delta>1$)

- B2. Pour tout noeud $u \in Q$, on corrige les distances en faisant :

$$D_u^F(w') = D_u^F(w') - \Delta_1$$
. On calcule alors :

$$d = \min_{(u,v)} \left[w'_{u,v} + D_v^F(w) \right]$$

Si $d < D_u^F(w')$, on corrige la distance de u à F en faisant $D_u^F(w') = d$, puis on insère u dans une map H à l'associant à la distance d.

- B3. Cette dernière étape permet de réajuster les distances faussées du fait de l'ordre dans lequel les routeurs ont été traités à l'étape B2. Si le traitement précédent etait fait dans l'ordre des distances à la destination, cette sous-partie serait inutile.

Tant que
$$H \neq \emptyset$$
, on retire u de H où $u = argminu \in H(D_u^F(w'))$.

Pour toutes les interfaces (v,u) entrantes dans u, on compare : $d_1=D_v^F(w')$ à $d_2=D_u^F(w')+w'{}_{v,u}$. Si v vérifie $d_1>d_2$ alors, on fixe $D_v^F(w')=d_2$ et on ajoute le couple $(v,D_v^F(w'))$ dans H.

- Exemple : illustration de l'étape 2
 - On obtient $\Delta_1=0$ à l'étape B1.
 - ullet On insère (C,4) puis (A,5) à l'étape B2.

- 3ème étape : calcul des PCC à l'aide des nouvelles distances.
 - Elle permet de corriger les flags d'utilisation des liens $\delta^F_{u,v}(w')$, ainsi que le nombre de PCC vers F pour chaque noeud u, $n^F_u(w')$.
 - Pour chaque noeud $u\in Q$, on va tester les distances sur les differents liens sortants. Pour chaque lien (u,v) on compare : $D^F_u(w')$ à $D^F_v(w')+w'{}_{u,v}$. Si l'egalité est verifiée, on fait:

$$\delta_{u,v}^F(w') = 1$$
 et $n_u^F(w') = n_u^F(w') + 1$

- Exemple : illustration de l'étape 3
 - On peut remarquer que nous n'avons modifié que quelques noeuds :
 D, C et A.
 - L'algorithme de Dijkstra demanderait un coût calculatoire bien plus élevé pour obtenir le même résultat.

La propagation des trafics

Introduction

- La propagation des trafics permet de calculer la charge des liens, qui est necessaire pour pouvoir calculer le coût.
- On considère ici la propagation vers un noeud x. Il faudra itérer sur toutes les destinations x pour calculer la charge $Y_{i,j}(w)$ des liens.
- La relation de base (conservation des flots) est :

$$Y_{i,j}^x(w) = \frac{\lambda_i^x + \sum_{k \neq x} Y_{k,i}^x(w)}{n_i^x}$$

- Propagation statique et propagation dynamique :
 - Le cas statique propage tous les trafics.
 - Le cas dynamique est utilisé suite à un changement de métrique. Il ne propage que des variations de trafic pour les noeuds impactés par la modification de métrique.

La propagation statique

Algorithme

- Parcours des noeuds des plus éloignés aux plus proches de x
- Pour chaque noeud i, on calcule le trafic $\gamma_i^x(w)$ reçu pour la destination x: somme du trafic direct et des trafics $Y_{k,i}^x(w)$ reçu sur chaque lien entrant (k,i).
- Ce trafic est réparti sur les liens sortants (partage de charge).

```
\begin{split} &Q = \{1,\dots,N\} \ - \ \{x\} \\ &\textbf{while} \ Q \neq \emptyset \ \textbf{do} \\ &i = argmax_{u \in Q} D_u^x(w) \\ &\gamma_i^x = \lambda_i^x \\ &\forall k \ \text{tel que} \ \delta_{k,i}^x(w) = 1 : \gamma_i^x(w) = \gamma_i^x(w) + Y_{k,i}^x(w) \\ &\forall j \ \text{tel que} \ \delta_{i,j}^x(w) = 1 : Y_{i,j}^x(w) = \gamma_i^x(w) / \ n_i^x \\ &Q = Q \ - \ \{i\} \\ &\textbf{end while} \end{split}
```

La propagation dynamique

Algorithme

- ullet Soit M la liste des noeuds affectés par le changement de métrique.
 - Un noeud est affecté s'il est source ou destination d'un lien dont l'utilisation a été modifiée suite au changement de métrique.

```
while M \neq \emptyset do
  i = argmax_{u \in M} D_u^x(w)
                                                {i est le noeud le plus éloigné de x}
  M = M - \{i\}
  Y = \lambda_i^x(w)
                                                   {Ajout du trafic direct en i vers x}
  \forall k \text{ tel que } \delta_{k,i}^x(w) = 1 : Y = Y + Y_{k,i}^x(w)
                                                        {Trafic des liens entrants}
  Y = Y/n_i^x
                                                                  {Partage de charge}
  for j tel que \delta^x_{i,j} = 1 do
     if Y_{i,j}^x \neq Y then
       Y_{i,j}^x = Y
                                                {Propagation sur les liens sortants}
        M = M \ \cup \ \{j\}
                                                           {Le trafic vers j a changé}
     end if
  end for
end while
```

Résultats

Topologie à 5 nœuds et avec une demande

Données :

16 Kbps : A/D, D/A, B/D,et D/B.

64 Kbps: C/D et D/C.

1920 Kbps: les autres.

- Une demande : 50 Kbps entre S et D.
- Métriques à 1.

Topologie à 5 nœuds et avec une demande

Routage initial

25 kbps sur les interfaces A/D et B/D de capacité 16 kbps.

Topologie à 5 nœuds et avec une demande

Après optimisation

- + 1 sur l'interface A/D
- + 1 sur l'interface B/D.
- + 1 sur l'interface A/D.
- + 1 sur l'interface B/D.
- La solution initiale est un minimum local.

Topologie à 7 nœuds et 2 demandes

Données :

16 Kbps : S/N6.

64 Kbps: les autres.

- 2 demandes : S vers D1 de 20 Kbps et S vers D2 de 10 Kbps.
- Métriques à 1.

Topologie à 7 nœuds et 2 demandes

Routage initial

Saturation de l'interface S/N6.

Topologie à 7 nœuds et 2 demandes

Après optimisation

Modifications:

- Changement 1 :
 - + 1 sur l'interface S/N6
- Changement 2 :
 - + 1 sur l'interface S/N6

Conclusion

Conclusion

Optimisation des métriques de routage IP

Problème :

- Augmentation du trafic et besoins de QoS
- Contexte concurrentiel interdisant un sur-dimensionnement excessif
- Jouer sur les métriques IP pour adapter les routes aux trafics transportés par le réseau.

Heuristique présentée :

- Technique de recherche locale
- Originalité : structure de voisinage.
- Utilisation d'un algo de PCC dynamique et propagation dynamique des trafics.