《基础物理实验》实验报告

实验	名称				观测	磁滞回线			指导	*教师	朱中柱	
姓	名	孙维	主铭		_学	2020K800	09907033	分班分组	及座号	1- 03 -	10 号	
实验	日期	<u>2021</u> 年	10	月	18	日实验地点_	713	调课/补课	□是		定	

一、实验目的

- 1. 掌握利用示波器测量铁磁材料动态磁滞回线的方法;
- 2. 掌握利用霍尔传感器测量铁磁材料(准)静态磁滞回线的方法;
- 3. 了解铁磁性材料的磁化特性;
- 4. 了解磁滞、磁滞回线和磁化曲线的概念,加深对饱和磁化强度、剩余磁化强度、矫顽力等物理量的理解。

二、实验仪器

1. 磁特性综合测量实验仪(包括正弦波信号源,待测样品及绕组,积分电路所用的电阻和电容), 双踪示波器,直流电源,电感,数字多用表。

磁特性综合测量实验仪主要技术指标如下:

- 1) 样品 1: 锰锌铁氧体,圆形罗兰环,磁滞损耗较小。平均磁路长度 l=0.130m,铁芯实验样品截面积 S=1.24×10-4m²,线圈匝数: N_1 =150 匝, N_2 =150 匝。
- 2) 样品 2: EI 型硅钢片,磁滞损耗较大。平均磁路长度 l=0.075m,铁芯实验样品截面积 S=1.20×10⁻⁴m²,线圈匝数: N_1 =150 匝, N_2 =150 匝, N_3 =150 匝。
- 3) 信号源的频率在 20~200Hz 间可调; 可调标准电阻 R_1 、 R_2 均为无感交流电阻, R_1 的调节范围为 0.1~11Ω; R_2 的调节范围为 1~110kΩ。标准电容有 0.1 μ F~11 μ F 可选。
- 2. 磁性材料磁滞回线和磁化曲线测定仪(包括数字式特斯拉计、恒流源、磁性材料样品、磁化线圈、双刀双掷开关、霍耳探头移动架、双叉头连接线、箱式实验平台)。

其主要技术指标如下:

- 1) 数字式特斯拉计: 四位半 LED 显示,量程 2.000T;分辨率 0.1mT;带霍耳探头。
- 2) 恒流源: 四位半 LED 显示, 可调恒定电流 0-600.0mA。
- 3) 磁性材料样品:条状矩形结构,截面长 2.00cm; 宽 2.00cm; 隔隙 2.00mm; 平均磁路长度 $\bar{l}=0.240$ m (样品与固定螺丝为同种材料)。
 - 4) 磁化线圈总匝数 N=2000。

三、实验原理

1. 铁磁材料的磁化特性

物体在外磁场H中会被磁化,内部产生磁场。设其内部的磁化强度为M,磁感应强度为B,定义磁化率 χ_m 和相对磁导率 μ_r :

$$\chi_m = \frac{M}{H} = \begin{cases}
< 0, & \text{几乎不随温度变化, 抗磁性;} \\
10^{-2} \sim 10^{-4}, & \text{随温度线性增大, , 顺磁性;} \\
> 1, & \text{随温度增高而变小, 铁磁性.}
\end{cases}$$

$$\mu_r = \frac{B}{\mu_0 H}$$

其中, μ_0 是真空磁导率($\mu_0 = 4\pi \times 10^{-7} \text{N/A}^2$)。因为 $B = \mu_0 (M+H)$,所以有 $\mu_r = 1 + \chi_m$ 。铁磁材料磁化规律如图所示:

图 1 铁磁材料的起始磁化曲线和饱和磁滞回线示意图

图 2 铁磁材料的动态磁滞回线和动态磁化曲线示意图

将处于磁中性(H=0且B=0)的铁磁材料起始磁化曲线为 OC,可分为三个阶段: 曲线 OA 段表示可逆磁化阶段,曲线 AS 段表示不可逆磁化阶段,曲线 SC 段表示饱和磁化阶段。当铁磁材料达到饱和状态后再减小磁场H,则磁感应强度B会沿着 SPS'这条曲线减小,此时B随H变化的曲线是 SPQS'P'Q'S,称为饱和磁滞回线,且 S'P'Q'S 与 SPQS'关于原点对称。

动态磁滞回线形状与磁化场频率和幅度都有关。在同一频率下,交变磁场幅度不同时,动态磁滞回线也会不同。将磁场幅值从0增加到 H_s ,对应的不同动态磁滞回线的顶点 (H_m, B_m) 的连线称为动态磁化曲线。

定义振幅磁导率 μ_m 为动态磁化曲线上任意一点的 B_m 和对应的 H_m 的比值:

$$\mu_m = \frac{B_m}{\mu_0 H_m}$$

没有直流偏置磁场但有交流弱磁场情况下,定义起始磁导率μο为原点处的振幅磁导率:

$$\mu_{i} = \lim_{H \to 0} \frac{B}{\mu_{0} H}$$

有直流偏置又有交流弱磁场情况下,定义可逆磁导率 μ_R :

$$\mu_R = \lim_{\Delta H \to 0} \frac{\Delta B}{\mu_0 \Delta H}$$

2. 动态磁滞回线的测量

用示波器测量动态磁滞回线电路图如图所示

环形铁芯上绕有三组线圈:线圈 1 为交流励磁线圈,接交流正弦信号源,线圈匝数为 N_1 ,电阻 R_1 的电压为 u_{R_1} ;线圈 2 为感应线圈,接 RC 积分电路,电容为C,其上电压为 u_C ,电阻为 R_2 ,其上电压为 u_{R_2} ,线圈 匝数为 N_2 ,线圈 3 为直流励磁线圈,接直流电源,线圈匝数为 N_3 ,电路上的电阻为 R_3 ,电感为L。将 u_{R_1} 和 u_C 从示波器两通道输入,在示波器 X-Y 显示模式下,可以看到动态磁滞回线。l为磁环的等效磁路长度,S为单匝线圈环绕面积(相当于磁芯的横截面积)。

交流磁场强度H的测量原理:

图 3 示波器测量动态磁滞回线电路图

交流磁感应强度B的测量原理:

由法拉第电磁感应定律
$$\Rightarrow u_2 = -\frac{N_2 d\Phi}{dt} = -\frac{N_2 S dB}{dt}$$

如果 $R_2C\gg T$ (T是外磁场周期),则 $u_C\ll u_2$, $u_{R_2}\approx u_2$

3. (准) 静态磁化曲线和磁滞回线的测量

对铁磁材料施加直流激励,样品中会产生稳定的磁场,改变直流激励的大小,H和B也随之改变,形成了右图所示的磁化曲线和磁滞曲线(曲线ARA'R'A)。对于不同的磁化电流最大值 I_m ,得到不同的磁滞回线,将每个磁滞回线的顶点以及坐标原点O相连,得到基本磁化曲线。

用霍尔传感器测量(准)静态磁滞回线的原理电路如图所示,在材料缝隙中插入霍尔传感器,测量电磁感应强度*B*。

测量必须从原始状态H=0, B=0开始,测量钳必须对待测样品进行退磁。记样品平均磁路长度为 \overline{l} ,磁化线圈匝数为N,线圈通过的电流为I,磁化场的磁场强度H:

图 4(左)磁化曲线和磁滞回线;(右)基本磁化曲线

图 5 霍尔传感器测(准)静态磁滞回线的电路

$$H = \frac{N}{\bar{I}}I\tag{*}$$

实际测量中,由于缝隙存在,需要对上式中的H进行修正。设间隙长度为 ℓ_g ,其磁场强度为 H_g ,磁感应强度为 B_g ,磁路截面为 S_g ;铁芯平均磁路长度为 $\overline{\ell}$,其磁场强度为H,磁感应强度为B,磁路截面为S。

由安培环路定律
$$\Rightarrow H\bar{\ell} + H_g \ell_g = NI$$

$$B_{\rm g} = \mu_0 \mu_r H_{\rm g}, \ \mu_r = 1 \Longrightarrow H_{\rm g} = \frac{B_{\rm g}}{\mu_0}$$

在缝隙很窄,即铁芯截面长和宽》 $\ell_{\rm g}$,且 $\bar{\ell}$ 》 $\ell_{\rm g}$ 情况下: $S \approx S_{\rm g}$

实际科研测量中,应使待测样品满足 $H\overline{\ell}\gg\frac{1}{\mu_0}B\ell_{\rm g}$ 条件,这样 $H\overline{l}\approx NI$,如果 $\frac{1}{\mu_0}B\ell_{\rm g}$ 对 $H\overline{l}$ 不可忽略,则需利用修正后的公式(**)计算。

四、实验步骤

第一部分 用示波器观测动态磁滞回线

- 1. 观测样品 1 (铁氧体) 的饱和动态磁滞回线
- 1) 测量频率f = 100Hz时的饱和磁滞回线

2) 观测不同频率使得饱和磁滞回线(f = 95Hz, 150Hz)

3) 在频率f = 50Hz下,比较不同积分常量取值对李萨如图的影响($R_2C = 0.01$ s, 0.05s, 0.5s)

- 2. 测量样品 1 (铁氧体) 的动态磁滞回线。(测量前需要对样品进行退磁)
- 1) 在频率f = 100Hz时,调出不同幅度的动态磁滞回线,测量并画出动态磁化曲线

- 2) 根据测量数据计算并画出 $\mu_m H_m$ 曲线
- 3) 测定启示磁导率μ;
- 3. 观察不同频率下样品 2 (硅钢) 的动态磁滞回线

取 $R_1=2.0\Omega$, $R_2=50$ k Ω , $C=10.0\mu F$ 。在交变磁场幅度 $H_m=400$ A/m下,测量f=20Hz , 40Hz , 60Hz 对应的 B_m , B_r , H_C 。

4. 测量样品 1 (铁氧体) 在不同直流偏置磁场H下的可逆磁导率(测量前需要先对样品进行退磁)

第二部分 用霍尔传感器测量铁磁材料(准)静态磁滞回线

1. 测量模具钢样品的起始磁化曲线

对样品退磁后,每隔 50-60mA 测量一组I和B,直到B变化缓慢趋于饱和。

2. 测量模具钢样品的饱和磁滞回线

测量前需要对样品磁锻炼:保持测起始磁化曲线时的饱和电流不变,把双刀换向开关来回拨动 8-10 次。

磁化线圈的电流从饱和电流 I_m 开始逐步减小到 0,然后将电流反向,从 0 增加到 $-I_m$,重复上述过程,再回到 I_m 。每隔 50-60mA 测一组值。

上两个实验均要求:实验中仅记录I和B,课后在实验报告中补充H和修正后H的值,并利用B和修正后的H绘图,其中利用公式(*)计算H,利用公式(**)计算修正后的H

样品结构示意图如下,其中a=10.00cm, b=6.00cm, c=d=2.00cm, $\bar{\ell}$ 位样品平均长度(样品中央轴线长度),平行间隙 $\ell_{\rm g}=0.20$ cm

图 6 样品结构示意图

五、实验数据、处理

第一部分 用示波器观测动态磁滞回线

1. 观测样品 1 (铁氧体) 的饱和动态磁滞回线

1) 测量频率f = 100Hz时的饱和磁滞回线

表 1: 选取的测量点和直接测量的数据

直接侧重的 <i>n(u_y)</i> (单位: mV)	-20	
直接测量的 $B(u_x)$ (单位: mV) 直接测量的 $H(u_y)$	点 1	点 2

-27.2	-8.80	-14.4				
-12.0	0.00	-12.0				
0.00	5.20	-6.80				
14.8	10.8	0.00				
34.0	13.6	7.60				
60.0	16.4	14.0				
174	20	0.0				
$B_r(u_x)$ (单位: mV)	5.3	20				
$H_{\mathcal{C}}(u_y)$ (单位: mV)	14.8					
R_1	$= 2.0\Omega, R_2 = 50 \text{k}\Omega, C = 10.0 \mu F$					

实际上,示波器坐标轴 X 测量的 u_x 是电阻 R_1 的电压 u_{R_1} ,坐标轴 Y 测量的是 u_y 是电容C的电压 u_C ,实验原理部分知:

$$H = \frac{N_1}{lR_1} u_{R_1}, \qquad B = \frac{R_2 C}{N_2 S} u_C$$

其中, $N_1=N_2=150$, l=0.130 m, $R_1=2.0\Omega$, $R_2=50$ kΩ, $C=10.0\mu F$, $S=1.24\times 10^{-4}$ m²,由此算出选取点的H和B的值(数据保留三位有效数字)如下:

表 2: 选取的测量点和处理后的数据

衣 2:	选取的测量点和处理后的数据	店					
换算后的 <i>B</i> (单位: T) 换算后的 <i>H</i> (单位: A/m)	点 1	点 2					
-104	-0.538						
-15.7	-0.237	-0.387					
-6.92	0.00	-0.323					
0.00	0.140	-0.183					
8.54	0.290	0.00					
19.6	0.366	0.204					
34.6	0.441	0.376					
100	0.5	538					
<i>B_r</i> (单位: T)	0.1	40					
<i>H_C</i> (单位: A/m)	8.:	54					
R_1 =	$= 2.0\Omega, R_2 = 50 \text{k}\Omega, C = 10.0 \mu F$	7					

图 7 饱和磁滞回线B-H图

【实验数据分析】

从表中数据和绘制的曲线来看,实验结果大致符合理论的动态磁滞回线模型,但是实验得到的磁滞回线并非严格关于原点对称,注意到,图像中H=0对应的上下两个B的值并非是相反数, $B_1=0.140$ T, $B_2=-0.183$ T,同时磁滞回线与H轴交点也不关于原点对称。这一方面是因为示波器显示屏中的李萨如图并不是直线,而是一个个点组成(采样率不足够高),这给度数带来了困难,因此H和B的随机误差大,另一方面可能是系统误差造成的,即实验中的磁滞回线因为某些因素而无法完全关于原点中心对称,但我尚未知晓其中的原理。

2) 观测不同频率使得饱和磁滞回线(f = 95Hz, 150Hz)

表 3: 选取的测量点和直接测量的数据

由前面讨论已知, $u_x = u_{R_1}$,坐标轴 Y 测量的是 $u_y = u_C$,由实验原理部分可知:

$$H = \frac{N_1}{lR_1} u_{R_1}, \qquad B = \frac{R_2 C}{N_2 S} u_C$$

其中, $N_1=N_2=150$, l=0.130 m, $R_1=2.0$ Ω, $R_2=50$ kΩ, C=10.0 μ F, $S=1.24\times10^{-4}$ m²,由此算出选取点的H和B的值(数据保留三位有效数字)如下:

	77 10 VO 10 10 10 10 10 10 10 10 10 10 10 10 10									
	95Hz	150Hz								
<i>B_r</i> (单位: T)	0.183	0.097								
<i>H_C</i> (单位: A/m)	7.73	3.65								
$R_1 = 2.0\Omega, R_2 = 50 \text{k}\Omega, C = 10.0 \mu F$										

表 4: 选取的测量点和处理后的数据

【实验数据分析】

饱和磁滞回线随频率的变化规律:随着频率的增高,饱和动态磁滞回线的 H_c 和 B_r 均减小,形状也越畸变,变得更尖,两端更加拉长。

原因:磁滞回线反映的是铁磁体的磁感应强度随外加交变磁场变化的滞后现象。任意一个铁磁材料对于外加交变磁场的"反应能力"是有限的,当增加外加磁场的频率时,周期变短,材料磁化时间变少,磁化程度降低,该材料对于外加磁场的反应相对于外加磁场的变化会显得较为"迟缓",磁滞回线就会畸变,变得更尖,两端更加拉长,剩磁和矫顽力也会减小。反之,如果频率降低,磁滞回线就会更加圆滑,更加趋向于一个椭圆(u_x,u_y 的频率 1:1下的李萨如图形),因为材料有更多时间磁化,磁化程度更高。

3) 在频率f=50Hz下,比较不同积分常量取值对李萨如图的影响

固定励磁电流幅度 $I_m=0.1$ A, $R_1=2.0\Omega$,调节 $R_2C=0.01$ s, 0.05s, 0.5s,观察并粗略画出不同积分常量下 $u_{R_1}-u_C$ 李萨如图形的示意图。

思考: 1) 积分常量影响 $u_{R_1} - u_C$ 李萨如图形的形状的原因

2) 积分常量是否会影响真实的B-H磁滞回线的形状

 $u_{R_1} - u_C$ 李萨如图形示意图如下:

 $R_2C = 0.01s$

【思考】

1) 由实验原理-2可知只有在 $R_2C\gg T$ 时,有 $u_C\ll u_2$, $u_{R_2}\approx u_2$

$$\Rightarrow u_C = \frac{Q}{C} = \frac{1}{C} \int i_2 dt = \frac{1}{CR_2} \int u_{R_2} dt \approx \frac{1}{CR_2} \int u_2 dt$$

$$\not \subset u_2 = -\frac{N_2 S dB}{dt} \qquad \therefore B = \frac{R_2 C}{N_2 S} u_C$$

当 R_2C 不满足远大于T时, $B \propto u_C$ 不再成立,不能忽略电容C的充放电过程,因此 $u_{R_1} - u_C$ 李萨如图形不能完全反映B - H的关系,因此图形会发生畸变。当积分常量 R_2C 逐渐增大时,电路逐渐满足 $u_C \ll u_2$,磁滞回线逐渐回到正常形状。

2)由上述分析可知,积分常量仅仅影响B与 u_c 的关系,进而仅仅影响 u_{R_1} – u_c 李萨如图形的形状,而这些均不能直接反映出B – H的关系。实际上, u_c 只是测量磁感应强度的一个中间量(还是在 $R_2C\gg T$ 条件下近似得到),不能直接测量或反映出B的值,并且 R_2 ,C都是测量端 N_2 线圈电路上的参数,而真实的H与B的值与测量端 N_2 线圈无关。

2. 测量样品 1 (铁氧体)的动态磁滞回线。(测量前需要对样品进行退磁)

1) 在频率f = 100Hz时,调出不同幅度的动态磁滞回线,测量并画出动态磁化曲线

表 5: 动态磁化曲线的测量点和直接测量的数据

	(C) 为品牌10回为11加至加加至11次加												
	1	2	3	4	5	6	7	8	9	10			
$H_m(u_x$ 单位:mV)	4.44	6.48	8.16	9.04	10.95	12.1	13.8	14.5	15.4	16.8			
B _m (u _y 单 位: mV)	1.00	1.88	2.6	2.96	3.84	4.36	5.08	5.48	5.76	6.5			
	11	12	13	14	15	16	17	18	19	20			
$H_m(u_x$ 单位:mV)	18.7	20.1	22.2	24.6	28.8	35.6	45.0	58.0	82.5	132			
B _m (u _y 单位: mV)	7.3	7.8	8.6	9.5	10.9	12.6	14.6	16.0	17.6	19.2			
	21	22	23	24									
H _m (u _x 单位:mV)	151	188	302	632									
B _m (u _y 单位: mV)	19.5	20	20.5	21.2									
	•	•	R ₁	$= 2.0\Omega$. R	$_{2}=50\mathrm{k}\Omega$	$C = 10.0\mu$	F	•					

由前面讨论已知, $u_x = u_{R_1}$,坐标轴 Y 测量的是 $u_y = u_C$,由实验原理部分可知:

$$H = \frac{N_1}{lR_1} u_{R_1}, \qquad B = \frac{R_2 C}{N_2 S} u_C$$

其中, $N_1=N_2=150$, l=0.130 m, $R_1=2.0\Omega$, $R_2=50$ kΩ, $C=10.0\mu F$, $S=1.24\times 10^{-4}$ m²,由此算出选取点的H和B的值(数据保留三位有效数字)如下:

表 6: 动态磁化曲线的测量点和处理后的数据

	1	2	3	4	5	6	7	8	9	10
<i>H_m</i> (单位: A/m)	2.56	3.74	4.71	5.22	6.32	6.98	7.96	8.37	8.88	9.69
<i>B_m</i> (単位: T)	0.0269	0.0505	0.0699	0.0796	0.103	0.117	0.137	0.147	0.155	0.175
	11	12	13	14	15	16	17	18	19	20
<i>H_m</i> (单位: A/m)	10.79	11.6	12.8	14.2	16.6	20.5	26.0	33.5	47.6	76.2
<i>B_m</i> (单位:T)	0.196	0.210	0.231	0.255	0.293	0.339	0.392	0.430	0.473	0.516
	21	22	23	24						
<i>H_m</i> (单位: A/m)	87.1	108	174	365						
<i>B_m</i> (单位:T)	0.524	0.538	0.551	0.570						
			$R_1 =$	2.0Ω , $R_2 =$	$50k\Omega$, C =	$= 10.\overline{0\mu F}$				

根据表6数据,绘制动态磁化曲线图如下:

动态磁化曲线

图 8 动态磁化曲线

【实验数据分析】

根据图表可以看出, H_m 从 0 开始增加时,初始阶段 B_m 与 H_m 近似为线性关系,随着 H_m 的增大, $\frac{\Delta B}{\Delta H}(\Delta H \to 0)$ 逐渐减小并趋于 0,当 H_m 足够大时, B_m 的值稳定不变,此时铁样体样品被完全磁化,符合理论预期。

2) 根据测量数据计算并画出 $\mu_m - H_m$ 曲线

根据 μ_m 的定义式 $\mu_m = \frac{B_m}{\mu_0 H_m}$ 和表 6 中的数据可得到 $\mu_m - H_m$ 的关系(数据保留三位有效数字)如下表

	农 , 文 垤 D 垤											
	1	2	3	4	5	6	7	8	9	10		
<i>H_m</i> (单位: A/m)	2.56	3.74	4.71	5.22	6.32	6.98	7.96	8.37	8.88	9.69		
μ _m 无量纲 ×10²	83.5	108	118	121	130	134	136	140	139	143		
	11	12	13	14	15	16	17	18	19	20		
<i>H_m</i> (单位: A/m)	10.8	11.6	12.8	14.2	16.6	20.5	26.0	33.5	47.6	76.2		
μ _m 无量纲 ×10²	145	144	144	143	140	131	120	102	79.1	53.9		
	21	22	23	24								
<i>H_m</i> (单位: A/m)	87.1	108	174	365								
μ _m 无量纲 ×10²	47.9	39.4	25.2	12.4								
			$\overline{R_1} =$	2.0Ω , $R_2 =$	$50k\Omega$, $C =$	$=1\overline{0.0\mu F}$						

表 7: 处理后的 $\mu_m - H_m$ 数据

根据表 7 中的数据,绘制 $\mu_m - H_m$ 曲线如下:

【实验数据分析】

由图表可以发现, $\mu_m - H_m$ 曲线呈现出先单调递增,后单调递减并趋于 0 的趋势,并且 μ_m 在 $H_m = 10.8 A/m$ 附近取得最大值,因此曲线总体符合理论预期。

3) 测定起始磁导率μ;

根据µi的定义式

$$\mu_{i} = \lim_{H \to 0} \frac{B}{\mu_{0}H}$$

根据 $\mu_m - H_m$ 曲线,读取 $H \to 0$ 处的 μ_m 值,发现数据点过于分散,很难精确读取, μ_i 大致为4230左右。在MATLAB中使用interp1函数进行插值模拟,并选用"pchip"模式,得到的 $\mu_i \approx 855$,直观感觉这个值偏低,说明插值模拟不是很好的方法。

【实验数据分析】

得到的 μ_i 大致为4230左右,但是测量铁氧体动态磁化曲线时,我在 $H \to 0$ 处选取的点较少,这导致了 $\mu_m - H_m$ 曲线在 $H \to 0$ 处的数据点过于分散,难以准确估计 μ_i ,因此这里得到的 μ_i 的值的准确性不高。如果在 $H \to 0$ 处测量足够多的点,则 μ_i 的值更加准确。

3. 观察不同频率下样品 2 (硅钢) 的动态磁滞回线

取 $R_1=2.0\Omega,R_2=50$ k $\Omega,C=10.0\mu F$ 。在交变磁场幅度 $H_m=400$ A/m下,测量f=20Hz , 40Hz , 60Hz对应的 B_m,B_r,H_C 。

	\mathcal{L}_{0} . \mathcal{L}_{m} , \mathcal{L}_{r} , \mathcal{L}_{c}	五汉州至川秋州			
	20Hz	40Hz	60Hz		
B _m (u _y 单位: mV)	33.8	33.6	33.6		
B _r (u _y 单位: mV)	22.4	22.4	22.8		
<i>H_C</i> (<i>u_x</i> 单位: mV)	110	122	142		

表 8: B_m, B_r, H_C 直接测量的数据

由前面讨论已知, $u_x = u_{R_1}$,坐标轴 Y 测量的是 $u_y = u_C$,由实验原理部分可知:

$$H = \frac{N_1}{lR_1} u_{R_1}, \qquad B = \frac{R_2 C}{N_2 S} u_C$$

其中, $N_1 = N_2 = 150$, l = 0.075m, $R_1 = 2.0\Omega$, $R_2 = 50$ k Ω , $C = 10.0 \mu F$, $S = 1.2 \times 10^{-4}$ m²,由此算出选取点的H和B的值(数据保留三位有效数字)如下:

(大) () 										
	20Hz	40Hz	60Hz							
<i>B_m</i> (单位: T)	0.939	0.933	0.933							
<i>B_r</i> (单位: Y)	0.622	0.622	0.633							
<i>H_C</i> (单位 A/m)	110	122	142							

表 9: B_m , B_r , H_C 处理后的数据

【实验数据分析】

由测量数据可以发现,当频率增大时, H_c 明显增大,但是 B_r 和 B_m 的变化不明显。我猜想可能有两种原因: 1)原理上,可能 B_r 和 B_m 本身就与频率无关; 2)实际测量上,示波器有精度限制,人读取数据也有误差,因此当 B_r 和 B_m 变化较小时,不能被灵敏地检测到。

我们还可以发现,实验 1.2 中,铁氧体的饱和磁滞回线随频率的变化规律与这里的硅钢的动态磁滞回线随频率变化情况有很大的差别,这可能是铁氧体和硅钢本身材料的差别,也可能是测试数据点太少,不能完全反应出这两种材料的饱和磁滞回线随频率的变化规律。

4. 测量样品 1(铁氧体)在不同直流偏置磁场H下的可逆磁导率(测量前需要先对样品进行 退磁)

表 10: 直流偏置磁场直接测量数据

	1	2	3	4	5	6	7	8	9	10
电流 (A)	0.01	0.02	0.04	0.05	0.07	0.10	0.13	0.17	0.25	0.30
端点坐标	11.2	9.6	22.4	38.4	43.2	37.6	33.6	34.4	37.6	37.4
$H1(u_x)$										
端点坐标	22.4	10.8	10.4	9.60	6.40	2.40	1.12	0.64	0.32	0.24
$B1(u_y)$										
三象限端点	-12.0	-8.80	-23.6	-27.2	-31.2	-32.8	-31.2	-31.2	-35.2	-36.8
$H3((u_x))$										
三象限端点	-16.0	-10.8	-10.6	-11.2	-6.80	-3.20	-1.76	-1.12	-0.80	-0.64
$B3(u_y)$										
-		f	= 100 H	$R_{4} = 2.0$	$0.0 R_0 = 2$	20k0 C =	$2.0\mu F$			

同时由前面讨论已知, $u_x = u_{R_1}$, $u_y = u_C$

已知 μ_R 的定义式:

$$\mu_R = \lim_{\Delta H \to 0} \frac{\Delta B}{\mu_0 \Delta H}$$

由实验原理部分可知交流磁场强度和交流磁感应强度为:

$$H = \frac{N_1}{lR_1} u_{R_1}, \qquad B = \frac{R_2 C}{N_2 S} u_C$$

同时,直流偏置磁场强度为

$$H = \frac{N_3}{l}i$$

其中, $R_1=2.0\Omega$, $R_2=20$ k Ω , $C=2.0\mu F$, $N_1=N_2=N_3=150$, l=0.130m, $S=1.24\times 10^{-4}$ m 2 ,计算出下表(数据保留三位有效数字):

表 11: 直流偏置磁场处理后的数据

	农 II. 且加												
	1	2	3	4	5	6	7	8	9	10			
直流偏置	11.5	23.1	46.2	57.7	80.8	115	150	196	288	346			
H(A/m)													
$\Delta H(A/m)$	13.4	10.6	26.5	37.8	42.9	40.6	37.4	37.8	42.0	42.8			
$\Delta B(T)$	0.0826	0.0465	0.0452	0.0447	0.0284	0.0120	0.00619	0.00378	0.00241	0.00189			
μ_R (无量纲)	491	348	135	94.1	52.6	23.6	13.2	7.96	4.56	3.52			
× 10													
			f = 1001	Hz . $R_1 = 2$	2.0Ω . $R_2 =$	20kΩ. C	$= 2.0 \mu F$						

根据表 11 数据,绘制如下曲线

 $\mu_R - H$ 曲线

图 10 μ_R - Η曲线

【实验数据分析】

从图表中可以看到,随着H的增加, μ_R 先迅速减小,后趋于平缓, $\mu_R - H$ 曲线大致反映了铁氧体在不同的直流偏置磁场下,可逆磁导率随磁场的变化关系,大致和理论相符。

第二部分 用霍尔传感器测量铁磁材料(准)静态磁滞回线

1. 测量模具钢样品的起始磁化曲线

对样品退磁后,每隔 50-60mA 测量一组I和B,直到B变化缓慢趋于饱和。由原理部分可知理想状态下样品中的磁场强度H和修正后的H。

$$H = \frac{N}{\overline{l}}I, \qquad H\overline{\ell} + \frac{1}{\mu_0}B\ell_g = NI$$

其中 $N=2000, \bar{l}=\bar{\ell}=0.240$ m, $\ell_{\rm g}=0.20$ cm $=2.0\times 10^{-3}$ m,由此算出磁场强度H和修正后的H的值(数据保留四位有效数字)

			(人 12 1十月月17)		X,		
I	В	Н	修正 H	I	В	Н	修正 H
(mA)	(mT)	(A/m)	(A/m)	(mA)	(mT)	(A/m)	(A/m)
0.0	0.4	0	-2.653	500.2	291.8	4168	2233
50.7	12.5	422.5	339.6	550.0	320.2	4583	2460
100.3	30.4	835.8	634.2	600.5	344.4	5004	2720
150.3	59.4	1253	858.6	642.4	362.7	5353	2948
200.4	90.7	1670	1069				
250.6	122.3	2088	1277				
300.0	155.5	2500	1469				
350.7	192.3	2923	1647				
400.2	227.6	3335	1826				
450.1	261.3	3751	2018				

表 12 样品的起始磁化曲线

根据表 12 数据, 绘制如下曲线

模具钢样品的起始磁化曲线

图 11 模具钢样品的起始磁化曲线

2. 测量模具钢样品的饱和磁滞回线

测量前需要对样品磁锻炼:保持测起始磁化曲线时的饱和电流不变,把双刀换向开关来回拨动 8-10 次

磁化线圈的电流从饱和电流 I_m 开始逐步减小到 0,然后将电流反向,从 0 增加到 $-I_m$,重复上述过程,再回到 I_m 。每隔 50-60mA 测一组值。

由实验原理部分可知理想状态下样品中的磁场强度H和修正后的H。

$$H = \frac{N}{\overline{\ell}}I$$
, $H\overline{\ell} + \frac{1}{\mu_0}B\ell_g = NI$

其中 $N=2000, \bar{l}=\bar{\ell}=0.240$ m, $\ell_{\rm g}=0.20$ cm $=2.0\times 10^{-3}$ m,由此算出磁场强度H和修正后的H的值(数据保留四位有效数字)

表 13 模具钢的磁滞回线

I	В	Н	修正H	I I	В	Н	修正H
(mA)	(mT)	(A/m)	(A/m)	(mA)	(mT)	(A/m)	(A/m)
642.3	362.5	5353	2949	-642.4	-369.5	-5353	-2903
599.6	357.3	4997	2627	-600.4	-364.5	-5003	-2586
550.3	350.8	4586	2260	-550.8	-357.9	-4590	-2217
500.4	343.3	4170	1893	-499.6	-350.0	-4163	-1842
450.1	334.1	3751	1535	-449.6	-340.8	-3747	-1487
400.3	323.0	3336	1194	-400.1	-329.8	-3334	-1074
350.6	309.0	2922	872.5	-349.9	-315.3	-2916	-824.9
299.9	290.5	2499	572.7	-300.5	-296.9	-2504	-535.3
250.9	267.6	2091	316.3	-249.8	-272.5	-2082	-274.6
199.7	238.2	1664	84.55	-200.1	-243.2	-1668	-54.73
149.8	205.1	1248	-111.8	-149.5	-208.8	-1246	138.8
99.3	168.6	827.5	-290.6	-100.4	-171.7	-836.7	302.0
50.1	130.6	417.5	-448.6	-50.3	-131.8	-419.2	454.9
0	91.3	0.0	-605.5	0	-93.8	0.0	622.0
-50.5	50.8	-420.8	-757.7	50.8	-53.0	423.3	774.8
-101.5	8.6	-845.8	-902.9	100.1	-11.7	834.2	911.8
-150.8	-32.8	-1257	-1039	150.2	29.9	1252	1053
-200.6	-74.3	-1672	-1179	200.4	71.8	1670	1194
-250.0	-114.2	-2083	-1326	249.6	113.2	2080	1329
-300.3	-153.9	-2503	-1482	299.9	152.0	2499	1491
-350.1	-192.9	-2918	-1638	350.0	189.4	2917	1661
-400.3	-229.2	-3336	-1816	399.1	225.8	3326	1828
-450.6	-264.4	-3755	-2002	450.0	261.1	3750	2019
-500.9	-298.3	-4174	-2196	500.8	294.3	4173	2222
-550.8	-326.2	-4590	-2427	550.6	323.6	4588	2442
-600.3	-351.2	-5003	-2674	600.7	345.9	5006	2712
				642.4	363.5	5353	2943

根据表 13 数据绘制如下曲线

模具钢样品的磁滞回线

图 12 模具钢样品的磁滞回线

图 13 模具钢样品的起始磁化曲线和磁滞回线

【实验数据分析】

由表中数据可知,修正前后的H值相差较大,这说明 $H\overline{\ell}\gg \frac{1}{\mu_0}B\ell_{\rm g}$ 这一条件不成立,因此需要对H进行修正。

模具钢样品的磁滞回线曲线和理论预期符合程度很高,曲线关于原点的对称程度也很高,说明测量、数据处理都比较成功,曲线闭合也说明样品经过了一定的磁锻炼。

但起始磁化曲线和磁滞回线之间出现了两次相交,这与实验原理中的示意图不符合,原因可能有如下几个方面: 1)读数出现了重大错误,部分数据出现了偏差; 2)两条曲线在接近 H_m 处时应该趋近于重合,但因为测量精度、磁化历史、磁锻炼不充分、退磁不完全等因素,两条曲线有稍微的错位。个人认为第二条原因的可能性较大。

【思考】

- 1. 开关拉动时,应使触点从接触到断开的时间长些,这是为什么?
- 1) 磁锻炼过程中,电流较大(本次实验中约为640mA),如果开关拉动过快,可能会产生电火花,十分危险
 - 2) 使得样品有充足的时间磁化,增大磁化程度。
 - 2. 磁锻炼的作用是什么? 见六、实验总结与思考-思考题。

六、实验总结与思考

【思考题】

- 1. 铁磁材料的动态磁滞回线与(准)静态磁滞回线在概念上有什么区别?铁磁材料动态磁滞回线的 形状和面积受哪些因素影响?
- 答: 动态磁滞回线是在交变的磁场中,铁磁材料内部的磁感应强度B和外加的交变磁场H的变化关系,外磁场时刻周期变化;(准)静态磁滞回线是将不同的直流偏置磁场H和在这些磁场下铁磁材料内部的磁感应强度B组成的点连成的曲线,曲线上的每一点都是在铁磁材料完全磁化后记录的B和H的关系,外磁场变化较小。

铁磁材料的动态磁滞回线的形状和面积受很多因素的影响,包括:铁磁材料种类、形状、大小,交流电的频率、幅度等。其中,磁滞回线的面积对应循环磁化一周所发生的能量损耗(磁能积)

- 2. 什么叫基本磁化曲线? 它和起始磁化曲线间有何区别
- 答:基本磁化曲线指同一铁磁材料的一系列大小不同的稳定的磁滞回线的顶点连成的曲线。在本次实验的第二部分中,对不同的磁化电流,模具钢样品的磁滞回线也会不同,这样就得到了一簇磁滞回线,将每个磁滞回线的顶点以及坐标原点0连接起来,得到的曲线称为基本磁化曲线。

起始磁化曲线是指处于磁中性状态(H=0且B=0)的铁磁材料加上由小变大的磁场H进行磁化时,磁感应强度B随H的变化曲线。

区别在于基本磁化曲线是由一系列磁滞回线的顶点连接而成,起始磁化曲线则反映铁磁材料从磁中性至饱和磁化过程中,*B*随*H*的变化。

- 3. 铁氧体和硅钢材料的动态磁化特性各有什么特点?
- 答:通过比较这两种材料的 H_c , H_s , B_r , B_s , 我们可以发现,铁氧体的这些物理量都比较小,说明铁氧体更易被磁化,一个周期内的磁滞损耗小;而硅钢材料的这些物理量较大,说明硅钢材料相对于铁氧体较难磁化,磁化一周期的损耗也较大。
- 4. 动态磁滞回线测量实验中,电路参量应该怎样设置才能保证 $u_{R_1} u_C$ 所形成的李萨如图形正确反映材料动态磁滞回线的形状?
 - 答: 电路参量应该这样设置:
 - 1、积分电路的时间常数 $RC \gg T$ (交流电的时间周期)
 - 2、交流电的幅度要合适,应使材料能够饱和磁化
 - 5. 准静态磁滞回线测量实验中,为什么要对样品进行磁锻炼才能获得稳定的饱和磁滞回线?
- 答: 磁锻炼是指对样品正反向反复磁化的过程。样品从磁中性(H=0且B=0)开始被磁化,由于剩磁的存在,H达到最大值 H_0 对应的磁感应强度 B_0 ,与H达到最小值 $-H_0$ 对应的磁感应强度 B_0' 并非是相反数,即 $|B_0| \neq |B_0'|$,一般情况下 $|B_0| > |B_0'|$,同理当H再次回到最大值 H_0 对应的 $B_1 \neq B_0$,可见曲线并不

稳定闭合,只有反复磁化后,H达到最大值 H_0 对应的磁感应强度B,与H达到最小值 $-H_0$ 对应的磁感应强度B',才会是相反数,此时正负向剩磁大小相等,磁滞回线闭合。

【总结】

实验中的许多问题(例如实验原理的理解,测量一组物理量应该怎样选取步长,数据点怎么样选取 最能反映物理图像本质)在做实验的过程中没有完全暴露出来,但在整理实验数据、撰写实验报告时, 这些问题就给我带来了很大的影响。这也要求我在以后的实验前做好充分的预习工作,在做实验时多一些思考,也多记录一些数据。

本次实验的物理量、图像、概念都比较多,但是图像之间的联系却没有被研究,起始磁化曲线和动态磁化曲线是否相似?可逆磁导率和磁化曲线的斜率是否等价?饱和磁滞回线形状、面积、关键参量和频率之间到底是什么关系?这些问题对于我仍是一个未解之谜。

基础物理实验原始数据记录

实验名称 观:	涂					
学生姓名和维锐	学号 2020 K 800 990 7033 分组	0/ - 03				
实验日期 2021 年10	月_18日 成绩评定	_教师签字_其中女	1			

第一部分:用示波器观测动态磁滞回线

- 1. 观测样品 1 (铁氧体)的饱和动态磁滞回线 (存储数据,在实验报告上精确计算)
 - (1) 测量频率 f =100 Hz 时的饱和磁滞回线。取 R_1 =2.0 Ω , R_2 =50 k Ω , C =10.0 μ F。

饱和磁滞回线(竖直方向成对测量)

B (mV)	点1	点 2	
- 181 (注:-Hs)	-20.0	(注:-Bs)	
-27.2	-8.80	-14.4	
-12.0	0.00	-12.0	
0.00	5.20	-6.80	
14.8	10.8	0.00	
34.0	13.6	7,68	
174 (注:Hs)	20.1	14 01	
Br	5.70		
Нс	14.8	8	

饱和磁滞回线(水平方向成对测量)

H	点1	点 2
В	322 3353 345	
(注:-Bs)	(注:-Hs)
1901 IDI		
20		
		120 30
-		Carrier House

(注:Bs)	(34-11-)
Br	(注:Hs)
Не	mangage and the same

(2) 固定信号源幅度,观测并记录饱和磁滞回线随频率的变化规律。

变化规律: f ↑ Br, Hc V

为什么?(课后报告里回答)

保持 R_1 , R_2 C 不变, 测量并比较 f=95 Hz 和 150 Hz 时的 B_r 和 He

	95Hz	150Hz
Br (mV)	6.80	` , ,
Hc (m/)		3.60
He (mV)	13.4	6.32

(3)在频率 作 50 Hz 下,比较不同积分常量取值对李萨如图的影响。固定励磁电流幅度 I_m =0.1 A, R_1 =2.0 Ω , 改变积分常量 R_2 C。调节分别为 0.01 s 、 0.05 s 、 0.5 s ,课上观察并粗略画出不同积分常量下李萨如图形的示意图。 <u>思考为什么积分常量会影响李萨如图形的形状?积分常量是否会影响真实的磁滞回线的形状?(课后报告里回答)</u>

2. 测量样品 1 (铁氧体)的动态磁滞回线

(1) 在 f=100 Hz 时,取 R_1 =2.0 Ω , R_2 =50 k Ω , C=10.0 μ F。测量 20 个顶点。课后绘制动态磁化曲线。计算振幅磁导率 μ m,并绘制其随 Hm 的变化曲线,进而确定起始磁导率。(注: 要绘制两条曲线: 动态磁化曲线和 μ m—Hm 曲线,有同学会忘记绘制磁化曲线)

mV	1	2	3	4	5	6	7	8	9	10
H _m	4.44	6.48	8.16	9.04	10.95	12.	13.8	14.5	15.4	16.8
B _m	1.00	1.88	2.6	2.96	3.84	4.36	5.08	5.48	5.76	6.5
(mV) H _m	11	12	13	14	15	16	17	18	19	20
	, 18.7	20.	22.2	24.6	28.8	35.6	45	82	82.5	132
B _m	7.3	7.8	8.6	9.5	10.9	12.6	14.6	16.0	17.6	197

注: 关于 20 个点的分配,前面点可以适当分配多一些,密集些测量,后面可以少一些。2 23 24 3. 观察不同频率下样品 2 (硅钢)的动态磁滞回线 19.5 20 20.5 21.2

参数调至 R_1 =2.0 Ω , R_2 =50 $k\Omega$, C=10.0 μF 。在给定交变磁场幅度 H_m =400 A/m F,测量三种频率 F的 B_m , B_r , H_c

20Hz	40Hz	60Hz
------	------	------

B _m (MV)	33.8	33.6	33.6
Br (mV)	交22.4	22.4	22.8
He (mV)	110	122	142

4. 测量样品 1 (铁氧体) 在不同直流偏置磁场下的可逆磁导率

取 f=100 Hz。电路参数设置为: R_1 =2.0 Ω , R_2 =20 $k\Omega$, C=2.0 μ F。直流偏置磁场从 0 到 H。单调增加(一定缓慢增加)。测量 10 组回线小线段的斜率。课后把电流换算成磁场强度,并绘制可逆磁导率随外场强度的变化曲线 μ i-H。

	1	2	3	4	5	6	7	8	9	10
电流	0.01	0.02	0.04	0.05	0.07	0.10	0.13	0.17	0.25	0.30
端点坐标 H1	11.2	9.6	22.4	38.4	43,2	37.6	33.6	34.4	37.6	37.4
端点坐标 B1	22.4	10.8	(0.4	9.60	640	2.40	1.12	0.64	0.32	0.24
三象限端点 H3(备用)	-12.0	-8.80	-23.6	-27.2	-31.2	-32.8	-31.2	-31.2	-35,2	-368
三象限端点 B3(备用)	-16.0	-10.8	-10.6	-11.2	-6.80	-3.20	-1.76	-1.12	-0.80	-0.64

第二部分:用霍尔传感器测量铁磁材料(准)静态磁滞回线

1)将霍尔传感器置于磁场均匀区的中央。取 20 个采样点,测量样品的起始磁化曲线。**实验中记录 I** 和 B,课后通过计算,在实验报告中补充 H和修正 H的数值,并利用 B和修正后的 H绘图。其中利用 讲义公式(3)来计算 H,利用公式(7)来对 H进行修正。

I (mA)	B (mT)	H (A/m)	修正 H (A/m)	I (mA)	B (mT)	H (A/m)	修正 H (A/m)
0.0	0.4	C.0= 1	Tonatte	550.2	320.2	482	7-107-1
50.7	12.5	260	SALLE	600.5	244.4	1.53	SQ H
100.3	30.4	111	1035	642.4	362.7	E 477	900
100.3 150.3 200.4	30.4 59.4 90.7	S. St.	4.500			E UII-	CHAZIS
250.6	122.4	0.53174	Predi			P. STORY	5.01E 3
300.0	155.5	THE REPORT	DRE			FLATT.	1-28-
350.7	192.3	3353	1995			I P25	-323-3
400.2	227.6	1365	1 4500			4444	1064
450.1	261.3	老师	11-272			PARTY.) and
500.2	291.8	144	A MIZ				102

1. 测量模具钢的磁滞回线

对样品进行磁训练后,磁化线圈的电流从饱和电流 I_m 开始逐步减小到 0,然后将电流反向,电流 又从 0增加到 I_m ,重复上述过程,再回到 I_m 。每隔 50mA 测一组 (I_i, B_i) 值。实验中记录 I 和 B ,课后通过计算,在实验报告中补充 H 和修正 H 的数值,并利用 B 和修正后的 H 绘图。H 和修正 H 的计算 方法同上。

I (mA)	B (mT)	H (A/m)	修正H	I	B	H	修正日
		(A/m)	(A/m)	(mA)	(mT)	(A/m)	(A/m)
6423				-624.4			TA SECOND
				-600.4			
550.3	3,50.8	WW 100		- 5.50.8			
			Page 1	-499.6			
450.1	334.1	200 30		-449.6	-340.8		
40.3		7.77.08	0.00	-400.	-329.8	-15-	
350.6		S. S. J. S. S.	SIESI	-349.9	-315.3	\$0- 10 m	
299.69	290.5	in the	208421	-300.5	-296.9	1921-11	
250.9	267.6			-249.8	-272.5	PRATE LA	
199-7	238.2				-243.2		
1498	205.			-149.5	The state of the s	The late of the	1
99.3	188.6			-100.4		F 17 15 100	To the second
50.	130.6			The second secon	-131.8		
0	91.3				-93.8		
-50.5				1 1 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-53.0	Tyen	CATALOG !
-101.5	8.6	The state of		100.	THE RESIDENCE OF THE PARTY OF T	40	
-150.8	-32.8	THE PERSON		150.2	- 0		10mm
-200.6	-74.3	Francisco D	TENA I	200.4		THE PARTY	200
-250.0	-114.2			249.6	113.2	1213	10 1924
-300.3	and the same of th			299.9		Treat !	3 00 2
-350.				The second second second	189.4	7 77	
-400.3				399.1		1980	
-450.b				450.0		APE- 1	P. H. S.
-500.9	-298.3			8.002	294.3	A The state of	Ima
-550.8	-326.2			550.6	3226	E real	
-600.3	-351.2			600.7	3226		
					363.5		