Unit 1

Introduction

Computing Basics

Table of contents

- 1.1 Overview of computer science
- 1.2 Structure and operation of a computer
- 1.3 Representation of information in a computer
 - 1.3.1 Number representation systems: decimal, binary, hexadecimal

Integer number representation

Real number representation

Character representation

Boolean representation

1.4 Propositional logic

1.1 Overview of computer science

- Informática: Información + automática (French origin)
 - According to the RAE: A set of scientific knowledge and techniques that enables the automatic processing of information by using computers.
 - Science that deals with the acquisition, storage, representation, processing and transmission of information using machines known as computers.

Information in companies is managed using different software

tools, including

Different operating systems

- Networking
- Databases
- User applications
- Applications for the control and management of the production.

1.2 Structure and operation of a computer

What is a computer?

It is a machine that collects data, processes them, and produces an output.

It processes information much quicker than the human brain. It is programmable.

- How are these actions carried out?
 - Architecture and block diagram
 - Unique address space
 - o Program
 - Algorithm

Given a second order polynomial $p(x)=a \cdot x^2+b \cdot x+c$, evaluate p(x) for all numbers x other than zero provided by the user.

```
Algorithm:
```

Ask for the coefficients
Ask for x
While x!=0
Calculate p(x)
Show p(x)
Ask for x

```
print("Evaluating polynomials")
print("p(x)=a*x*x+b*x+c")
a = float(input("Type a: "))
b = float(input("Type b: "))
c = float(input("Type c: "))
x = float(input("Type x: "))
while x!=0:
    p = a*x*x+b*x+c
    print("p(",x,")=",p)
    x = float(input("Type x: "))
print("End of the program")
```


1.2 Structure and operation of a computer

- Information on a computer
 - Electrical signals are exchanged through the buses
 - Electrical signals are discrete (ALL / NOTHING)!

One example: the old Motorola 68000

1.3 Representation of information in a computer

- In order to process information in a computer, it must be represented or encoded
 - Computers only work with 1/0
 - → Binary information!
- Binary system
 - o Base 2
 - Digits {0, 1}
 - Bit → binary digit (the basic information unit)
 - Groupings
 - 8 bits → 1 **Byte**
 - 10³ bytes → k**B**
 - 2^{10} bits \rightarrow kb

- Decimal system
 - o Base 10
 - Digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 - Decomposing a number into digits (and weights): 2x10-2

$$\begin{array}{c}
3x10^{-1} \\
8x10^{0} \\
2 1 0 -1 -2
\end{array}$$

$$\begin{array}{c}
3x10^{-1} \\
8x10^{0} \\
3x10^{1} \\
1x10^{2}
\end{array}$$

Broadly speaking, given a number **abcd.ef** represented in **base B**, its conversion to the decimal system is done by successive multiplications by powers of the base B, as follows:

abc.d
$$\rightarrow$$
 a*B² + b*B¹ + c*B⁰ + d*B⁻¹

138.32

1.3 Representation of information in a computer

- Hexadecimal system
 - Base 16
 - Digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
 - Possible values: integers in the range [0, 15]
 - Direct match between hexadecimal and binary:
 - 16=2⁴ → all the hex digits can be represented with 4 bits
 - Conversion between hexadecimal and decimal
 - The same as in the binary case

10	0x	2	10	0x	2
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	10	Α	1010
3	3	0011	11	В	1011
4	4	0100	12	С	1100
5	5	0101	13	D	1101
6	6	0110	14	Е	1110
7	7	0111	15	F	1111

Use this table to easily convert from binary to hexadecimal.

Positive integer number representation

FROM BASE B TO BASE 10	FROM BASE 10 to BASE B				
Broadly speaking, given a number abcd.ef represented in base B , its conversion to the decimal system is done by successive	Broadly speaking, given a number abcd.ef represented in base 10 , its conversion to base B is done by successive divisions by the base B, as				
multiplications by powers of the base B, as follows:	follows: 25/2=12, remainder 1				
abc.d \rightarrow a*B ² +b*B ¹ +c*B ⁰ +d*B ⁻¹ 210 -1	12/2=6, remainder 0 6/2=3, remainder 0 3/2=1, remainder 1 1/2=0, remainder 1				

We are going to use three different systems:

	Decimal	Binary	Hexadecimal		
	Used by humans	Used by the CPU	Intermediate representation		
Base	B=10	B=2	B=16		
Digits	0123456789	0 1	0123456789ABCDEF		

Positive integer number representation

- From decimal to binary
 - $18 \rightarrow 18/2=9 \text{ r=0}$; 9/2=4 r=1; 4/2=2 r=0; 2/2=1 r=0; $1/2=0 \text{ r=1} \rightarrow 10010$
 - \circ 29 \rightarrow 29/2=14 r=1; 14/2=7 r=0; 7/2=3 r=1; 3/2=1 r=1; 1/2=0 r=1 \rightarrow 11101
- From binary to decimal
 - \circ 11010 \rightarrow 1*2⁴+1*2³+0*2²+1*2¹+0*2⁰=26 \rightarrow 26
 - $0110111 \rightarrow 0^{26}+1^{25}+1^{24}+0^{23}+1^{22}+1^{21}+1^{20}=55$
- From binary to hexadecimal (8 bits)
 - $0.0011010 \rightarrow 0.0011010 \rightarrow 0.001A$
 - \circ 0110111 \rightarrow 0011 0111 \rightarrow 0x37
- From hexadecimal to decimal
 - \circ 1A2F \rightarrow 1*16³+10*16²+2*16¹+15*16⁰=6703 \rightarrow 6703
- From hexadecimal to binary
 - \circ 1A2F \rightarrow 0001 1010 0010 1111

Signed integer and real numbers

Signed integer numbers

- As in the unsigned case, but using the most significant bit for the sign +(0) o -(1).
- In two's complement

Example to represent -50:

- 1.- We represent 50 in binary: $50 \rightarrow 00110010$
- 2.- We get the two's complement of 50 (we invert the number and add 1) $00110010 \rightarrow 11001110$

Real numbers (floating point representation)

- Standard IEEE 754
- Use of scientific notation plus some simplification rules
- Using 32 or 64 bits

Sign 1 bit

Exponent 8 or 11 bits

Mantissa 23 or 52 bits

Characters and boolean data representation

Characters

- Alphanumeric, punctuation marks, etc.
- Encoding table
 - ASCII & extended ASCII

Dec	H	Oct	Chai	r	Dec	Нх	Oct	Html	Chr
0	0	000	NUL	(null)	32	20	040	a#32;	Space
1	1	001	SOH	(start of heading)	33	21	041	!	!
2	2	002	STX	(start of text)	34	22	042	 4 ;	"
3	3	003	ETX	(end of text)	35	23	043	#	#
4	4	004	EOT	(end of transmission)	36	24	044	\$	ş
5	5	005	ENQ	(enquiry)				%#37;	
6	6	006	ACK	(acknowledge)	38	26	046	&	6
7	7	007	BEL	(bell)	39	27	047	%#39;	1
8	8	010	BS	(backspace)	40	28	050	a#40;	(
9	9	011	TAB	(horizontal tab)	41	29	051))
10	A	012	LF	(NL line feed, new line)	42	2A	052	@# 4 2;	*
11	В	013	VT	(vertical tab)	43	2B	053	a#43;	+
12	С	014	FF	(NP form feed, new page)	44	20	054	a#44;	,
13	D	015	CR	(carriage return)	45	2D	055	a#45;	E 7.1
14	E	016	SO	(shift out)	46	2E	056	&# 4 6;	X = X

Boolean data

- Possible values True or False (1 or 0)
- Named in honor of George Boole (1815-1864), father of the propositional logic.
- Examples that produce a boolean value:
 - \circ 3 > 5 \rightarrow False
 - \circ 14 >= 2 \rightarrow True
 - 3 is an integer → True
- A boolean value determines the minimum possible amount of information: 1 bit

12

System of units in computer science

According to the International System of Units (SI):

Kilobit (kb)	10 ³ bits
Megabit (Mb)	$10^6 \text{ bits} = 1000 \text{ kb}$
Gigabit (Gb)	$10^9 \text{ bits} = 1000 \text{ Mb}$
Terabit (Tb)	$10^{12} \text{ bits} = 1000 \text{ Gb}$
Petabit (Pb)	10^{15} bits = 1000 Tb

Multiples of a bit

Kilobyte (kB)	10 ³ bytes
Megabyte (MB)	$10^6 \text{ bytes} = 1000 \text{ kB}$
Gigabyte (GB)	$10^9 \text{ bytes} = 1000 \text{ MB}$
Terabyte (TB)	10^{12} bytes = 1000 GB
Petabyte (PB)	10^{15} bytes = 1000 TB

Multiples of a byte

1.4 Propositional logic

- Logic is what will allow us to take decisions in a computer program
- It models human reasoning in a way suitable to be understood by a machine
- It is vital to handle the main ideas behind logic to be able to write programs correctly
- Real life example: Airplane landing
 - When a plane lands it needs to reduce speed before wheel brakes can be applied
 - Depending on the runway length and other parameters, it is required to use the reverse thrust
 - Reverse thrust can only be used when the plane "knows" that all the whole landing gear has touched ground

"**IF** all_wheels_are_on_the_ground **AND** pilot_engages_reverse **THEN** engage_reverse_thrust"

Boolean values and operators

- A truth, logical or boolean value can only be True
 (T) or False (F)
- A logical expression produces a truth value, just like an arithmetic expression returns a number
- Logical expressions are build up using two types of operators
 - Relational operators: ==, !=, <=, >, etc.
 - Boolean connectives: AND, OR, NOT

Semantic rules

 Being P1 and P2 two parts of a logical expression, known as propositions, the following semantic rules for the connectives apply:

TRUTH TABLES FOR THE THREE CONNECTIVES

Evaluation of logical expressions

• Evaluation of $(x>3) \land \neg (y<=0)$ with $\{x=4, y=5\}$

	(x>3)	٨	\neg	(y<=0)
10	(4>3)	٨	_	(5<=0)
2 °	Т			F
30	Т		Т	
40		Т		

Evaluation of
 ((x>3) ∧ ¬(y<=0)) ∨ A
 with {x= 4, y= 5, A=T}

	((x>3)	٨	7	(y<=0))	V	A
10	((4>3)	^	_	(5<=0))	V	A
20	Т			F		Т
30	Т		Т			Т
40		Т				Т
5 °					Т	

Logical laws

Logical laws are very important equivalences between propositions; i.e., propositions with an identical truth table. Being P, Q and R propositions:

Associative

$$(P \lor Q) \lor R = P \lor (Q \lor R)$$

 $(P \land Q) \land R = P \land (Q \land R)$

Conmutative

$$P \lor Q = Q \lor P$$

 $P \land Q = Q \land P$

Distributive

$$(P \lor Q) \land R = (P \land R) \lor (Q \land R)$$

 $(P \land Q) \lor R = (P \lor R) \land (Q \lor R)$

Idempotent

$$\neg \neg P = P$$

Complements

$$P \lor \neg P = T$$
,
 $P \land \neg P = F$

T and F

$$T \lor P = T$$
 $T \land P = P$
 $F \lor P = P$ $F \land P = F$

De Morgan

$$\neg(P \lor Q) = \neg P \land \neg Q$$
$$\neg(P \land Q) = \neg P \lor \neg Q$$

Syntactic simplifications

Propositions can be simplified using the logical laws. Two examples:

$$\neg ((\neg A \land B) \lor \neg (B \lor \neg A)) =
\neg (\neg A \land B) \land \neg \neg (B \lor \neg A) =
(\neg \neg A \lor \neg B) \land (B \lor \neg A) =
(A \lor \neg B) \land (B \lor \neg A)$$

$$\neg$$
 ((x<=3 \times x>=5) \times (y<3 \times y>=9)) =
 \neg (x<=3 \times x>=5) \times \neg (y<3 \times y>=9) =
(\neg (x<=3) \times \neg (x>=5)) \times (\neg (y<3) \times \neg (y>=9)) =
(x>3 \times x<5) \times (y>=3 \times y<9)

Using interval notation: $x \in (3,5)$ e $y \in [3, 9)$

Translations

- The human language can be translated into logical expressions.
 Two examples:
 - It is white and it is not white

Being A = to be white, the translation is: $A \land \neg A = F$

- Being x and y integer numbers, at least one of them is greater or equal to zero and the first one is not greater than the second one

$$((x>=0) \lor (y>=0)) \land \neg (x>y) = ((x>=0) \lor (y>=0)) \land (x<=y)$$

Exercises (taken from an exam)

• Consider the expression "either the number x is odd, or even and greater or equal to 10". Write a boolean expression in Python using a variable x with the same meaning as in the previous sentence.

(Note that the expression **a%b** in Python returns the remainder when a is divided by b)

$$(x\%2 == 1)$$
 or $((x\%2 == 0)$ and $(x>=10))$

• Negate the previous expression and then apply the De Morgan's laws, writing the result without any negations. What would be the result for x=6?

not
$$((x\%2 == 1) \text{ or } ((x\%2 == 0) \text{ and } (x>=10))) =$$

not $(x\%2 == 1) \text{ and not } ((x\%2 == 0) \text{ and } (x>=10)) =$
not $(x\%2 == 1) \text{ and } (\text{not}(x\%2 == 0) \text{ or not}(x>=10)) =$
 $(x\%2 != 1) \text{ and } ((x\%2 != 0) \text{ or } (x<10))$

The result for x=6 is True