Algorithms: The basic methods

Most of these slides (used with permission) are based on the book:

Data Mining: Practical Machine Learning Tools and Techniques by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

1

Algorithms: The basic methods

- Inferring rudimentary rules
- Simple probabilistic modeling
- Constructing decision trees
- Constructing rules
- · Association rule learning
- Linear models
- Clustering

2

Simplicity first

- Simple algorithms often work very well!
- There are many kinds of simple structure, e.g.:
 - One attribute does all the work
 - All attributes contribute equally & independently
 - Logical structure with a few attributes suitable for tree
 - A set of simple logical rules
 - Relationships between groups of attributes
 - A weighted linear combination of the attributes
 - Strong neighborhood relationships based on distance
 - Clusters of data in unlabeled data
 - Bags of instances that can be aggregated
- · Success of method depends on the domain

3

Inferring rudimentary rules

- 1R rule learner: learns a 1-level decision tree
 - A set of rules that all test one particular attribute that has been identified as the one that yields the lowest classification error
- Basic version for finding the rule set from a given training set (assumes nominal attributes):
 - · For each attribute
 - · Make one branch for each value of the attribute
 - To each branch, assign the most frequent class value of the instances pertaining to that branch
 - Error rate: proportion of instances that do not belong to the majority class of their corresponding branch
 - Choose attribute with lowest error rate

4

Pseudo-code for 1R

For each attribute,
For each value of the attribute, make a rule as follows:
count how often each class appears
find the most frequent class
make the rule assign that class to this attribute-value
Calculate the error rate of the rules
Choose the rules with the smallest error rate

• 1R's handling of missing values: a missing value is treated as a separate attribute value

5

Evaluating the weather attributes

Outlook	Temp	Humidity	Windy	Play				
Sunny	Hot	High	False	No	Attribute	Rules	Errors	Total errors
Sunny	Hot	High	True	No	Outlook	Sunny → No	2/5	4/14
Overcast	Hot	High	False	Yes	Outlook			4/14
Rainy	Mild	High	False	Yes		Overcast → Yes	0/4	
Rainy	Cool	Normal	False	Yes		Rainy \rightarrow Yes	2/5	
Rainy	Cool	Normal	True	No	Temp	$Hot \rightarrow No^*$	2/4	5/14
Overcast	Cool	Normal	True	Yes		$Mild \rightarrow Yes$	2/6	
						Cool → Yes	1/4	
Sunny	Mild	High	False	No	Humidity	High → No	3/7	4/14
Sunny	Cool	Normal	False	Yes	, , , , , ,	Normal → Yes	1/7	,,
Rainy	Mild	Normal	False	Yes	Windy	False → Yes	2/8	5/14
Sunny	Mild	Normal	True	Yes	willuy			3/14
Overcast	Mild	High	True	Yes		True → No*	3/6	
Overcast	Hot	Normal	False	Yes				
Rainy	Mild	High	True	No		* indicates a tie		

Dealing with numeric attributes

- Idea: discretize numeric attributes into sub ranges (intervals)
- How to divide each attribute's overall range into intervals?
 - Sort instances according to attribute's values
 - Place breakpoints where (majority) class changes
 - This minimizes the total classification error
- Example: temperature from weather data

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	75	80	False	Yes
•				

7

The problem of overfitting

- · Discretization procedure is very sensitive to noise
 - A single instance with an incorrect class label will probably produce a separate interval
- Also, something like a *time stamp* attribute will have zero errors
- Simple solution:
- enforce minimum number of instances in majority class per interval
- Example: temperature attribute with required minimum number of instances in majority class set to three:

8

Results with overfitting avoidance

• Resulting rule sets for the four attributes in the weather data, with only two rules for the temperature attribute:

Attribute	Rules	Errors	Total errors
Outlook	Sunny → No	2/5	4/14
	$Overcast \to Yes$	0/4	
	Rainy \rightarrow Yes	2/5	
Temperature	≤ 77.5 → Yes	3/10	5/14
	> 77.5 → No*	2/4	
Humidity	≤ 82.5 → Yes	1/7	3/14
	> 82.5 and \leq 95.5 \rightarrow No	2/6	
	> 95.5 → Yes	0/1	
Windy	$False \to Yes$	2/8	5/14
	True → No*	3/6	

Discussion of 1R

• 1R was described in a paper by Holte (1993):

Very Simple Classification Rules Perform Well on Most Commonly Used Datasets

Robert C. Holte, Computer Science Department, University of Ottawa

- Contains an experimental evaluation on 16 datasets (using crossvalidation to estimate classification accuracy on fresh data)
- Required minimum number of instances in majority class was set to 6 after some experimentation
- 1R's simple rules performed not much worse than much more complex decision trees
- Lesson: simplicity first can pay off on practical datasets
- Note that 1R does not perform as well on more recent, more sophisticated benchmark datasets

10

11

Simple probabilistic modeling

- "Opposite" of 1R: use all the attributes
- Two assumptions: Attributes are
 - equally important
 - statistically independent (given the class value)
 - This means knowing the value of one attribute tells us nothing about the value of another takes on (if the class is known)
- Independence assumption is almost never correct!
- But ... this scheme often works surprisingly well in practice
- The scheme is easy to implement in a program and very fast
- It is known as naïve Bayes

		Pr	oba	bili	ties	for w	/eat	he	r dat	a			
Ou	tlook		Tempe	rature		Hu	midity		W	indy		PI	ау
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9	1/5			Outloo				L	
								Sunny	k Temp	Hia	nidity h	Windy	Play
								Sunny		Hig		True	No
								Overca	st Hot	Hig	h	False	Yes
								Rainy	Mild	Hig		False	Yes
								Rainy	Cool	Nor		False True	Yes
								Overca			mai mal	True	Yes
								Sunny	Mild	Hig	h	False	No
								Sunny	Cool	Nor	mal	False	Yes
								Rainy	Mild		mal	False	Yes
								Sunny		Nor		True	Yes
								Overca		Hig		True	Yes
								Overca	st Hot Mild	Nor Hig		False True	Yes No

		Pr	obal	oilit	ies f	or we	athe	er c	lata				
Ou	itlook		Tempe	rature		Hu	midity			Windy		Р	lay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9	1/5								
	• A	new	day:		Outlook	Temp.	Humi	,	Windy True	Play			
					For For Conversion P(")	d of the two "yes" = 2/9 "no" = 3/5 on into a pro yes") = 0.00 no") = 0.02	0 × 3/9 × × 1/5 × obability 053 / (0.	3/9 × 4/5 × by nor 0053 -	3/5 × 5/ malizati ⊦ 0.0206	14 = 0.02 on: 5) = 0.205	906		
												14	

14

Can combine probabilities using Bayes's rule

- Famous rule from probability theory due to
 - Thomas Bayes

Born: 1702 in London, England
Died: 1761 in Tunbridge Wells, Kent, England

• Probability of an event H given observed evidence E:

 $P(H \mid E) = P(E \mid H)P(H)/P(E)$

- A priori probability of H: P(H)
 - Probability of event *before* evidence is seen
- A posteriori probability of H: P(H|E)
 - Probability of event *after* evidence is seen

15

Naïve Bayes for classification

- Classification learning: what is the probability of the class given an instance?
 - Evidence E = instance's non-class attribute values
 - Event H = class value of instance
- Naïve assumption: evidence splits into parts (i.e., attributes) that are conditionally *independent*
- This means, given n attributes, we can write Bayes' rule using a product of per-attribute probabilities:

 $P(H | E) = P(E_1 | H)P(E_3 | H) \square P(E_n | H)P(H) / P(E)$

16

17

Missing values

- Training: instance is not included in frequency count for attribute value-class combination
- Classification: attribute will be omitted from calculation
- Example:

Likelihood of "yes" = $3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238$ Likelihood of "no" = $1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343$ P("yes") = 0.0238 / (0.0238 + 0.0343) = 41%P("no") = 0.0343 / (0.0238 + 0.0343) = 59%

Numeric attributes

- Usual assumption: attributes have a *normal* or *Gaussian* probability distribution (given the class)
- The *probability density function* for the normal distribution is defined by two parameters:
 - Sample mean

• Standard deviation

• Then the density function f(x) is $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

19

		St	atistic	s for	weath	er da	ita				
Ou	tlook		Tempera	iture	Humio	lity		Windy		Pla	ау
	Yes	No	Yes	No	Yes	No		Yes	No	Yes	No
Sunny	2	3	64, 68,	65,71,	65, 70,	70, 85,	False	6	2	9	5
Overcast	4	0	69, 70,	72,80,	70, 75,	90, 91,	True	3	3		
Rainy	3	2	72,	85,	80,	95,					
Sunny	2/9	3/5	μ =73	μ =75	μ=79	μ =86	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	σ=6.2	σ =7.9	$\sigma = 10.2$	σ =9.7	True	3/9	3/5	14	14
Rainy	3/9	2/5									

• Example density value:

$$f(temperature = 66|yes) = \frac{1}{\sqrt{2\pi} \cdot 6.2} e^{-\frac{(66-73)^2}{2 \cdot 6.2^2}} = 0.0340$$

20

Classifying a new day

• A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

Likelihood of "yes" = $2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036$ Likelihood of "no" = $3/5 \times 0.0221 \times 0.0381 \times 3/5 \times 5/14 = 0.000108$ P("yes") = 0.000036 / (0.000036 + 0.000108) = 25%P("no") = 0.000108 / (0.000036 + 0.000108) = 75%

• Missing values during training are not included in calculation of mean and standard deviation

Naïve Bayes: discussion

- Naïve Bayes works surprisingly well even if independence assumption is clearly violated
- Why? Because classification does not require accurate probability estimates as long as maximum probability is assigned to the correct class
- However: adding too many redundant attributes will cause problems (e.g., identical attributes)

2

23

Constructing decision trees

- Strategy: top down learning using recursive *divide-and-conquer* process
 - First: select attribute for root node
 Create branch for each possible attribute value
 - Then: split instances into subsets
 One for each branch extending from the node
 - Finally: repeat recursively for each branch, using only instances that reach the branch
- Stop if all instances have the same class

26

Criterion for attribute selection

- Which is the best attribute?
 - Want to get the smallest tree
 - Heuristic: choose the attribute that produces the "purest" nodes
- Popular selection criterion: information gain
 - Information gain increases with the average purity of the subsets
- Strategy: amongst attributes available for splitting, choose attribute that gives greatest information gain
- Information gain requires measure of impurity
- Impurity measure that it uses is the *entropy* of the class distribution, which is a measure from information theory

Computing information

- We have a probability distribution: the class distribution in a subset of instances
- The expected information required to determine an outcome (i.e., class value), is the distribution's entropy
- Formula for computing the entropy: Entropy(p_1,p_2,\ldots,p_n) = $-p_1\log p_1-p_2\log p_2\ldots-p_n\log p_n$
- Using base-2 logarithms, entropy gives the information required in expected *bits*
- Entropy is maximal when all classes are equally likely and minimal when one of the classes has probability 1

28

Example: attribute *Outlook*

• Outlook = Sunny:

Info([2, 3]) = 0.971 bits

• Outlook = Overcast :

Info([4, 0]) = 0.0 bits

• Outlook = Rainy :

Info([3, 2]) = 0.971 bits

• Expected information for attribute:

Info([2, 3], [4, 0], [3, 2]) = $(5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971$ = 0.693 bits

29

29

Computing information gain

• Information gain: information before splitting – information after splitting

 $\begin{aligned} \text{Gain}(Outlook~) &&= \text{Info}([9,5]) - \text{info}([2,3],[4,0],[3,2]) \\ &&= 0.940 - 0.693 \\ &&= 0.247 \text{ bits} \end{aligned}$

• Information gain for attributes from weather data:

Gain(Outlook) = 0.247 bits
Gain(Temperature) = 0.029 bits
Gain(Humidity) = 0.152 bits
Gain(Windy) = 0.048 bits

32

Discussion

- Top-down induction of decision trees: ID3, algorithm developed by Ross Quinlan
 - C4.5 tree learner deals with numeric attributes, missing values, noisy data
- Similar approach: CART tree learner
 - Uses Gini index rather than entropy to measure impurity
- There are many other attribute selection criteria! (But little difference in accuracy of result)

$$Gini = 1 - \sum_{i=1}^{n} p^2(c_i)$$

 $Entropy = \sum_{i=1}^{n} -p(c_i)log_2(p(c_i))$

where $p(c_i)$ is the probability/percentage of class c_i in a node.

Covering algorithms

- Can convert decision tree into a rule set
 - Straightforward, but rule set overly complex
 - More effective conversions are not trivial and may incur a lot of computation
- · Instead, we can generate rule set directly
 - One approach: for each class in turn, find rule set that covers all instances in it
 (excluding instances not in the class)
- Called a sourcing approach.
- Called a *covering* approach:

 At each stage of the algorithm, a rule is identified that "covers" some of the instances

35

Rules vs. trees

 Corresponding decision tree: (produces exactly the same predictions)

- But: rule sets *can* be more perspicuous (understandable) when decision trees suffer from replicated subtrees
- Also: in multiclass situations, covering algorithm concentrates on one class at a time whereas decision tree learner takes all classes into account

37

Simple covering algorithm

- Basic idea: generate a rule by adding tests that maximize the rule's accuracy
- Similar to situation in decision trees: problem of selecting an attribute to split on
 - But: decision tree inducer maximizes overall purity
- Each new test reduces rule's coverage:

38

Selecting a test

- · Goal: maximize accuracy
 - t total number of instances covered by rule
 - ullet p positive examples of the class covered by rule
 - t-p number of errors made by rule
 - Select test that maximizes the ratio $\ensuremath{p/t}$
- We are finished when p/t = 1 or the set of instances cannot be split any further

Age	Spectacle prescription	Astigmatism	Tear production rate	Recommended lenses
Young	Myope	No	Reduced	None
Young	Myope	No	Normal	Soft
Young	Myope	Yes	Reduced	None
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	No	Reduced	None
Young	Hypermetrope	No	Normal	Soft
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	No	Reduced	None
Pre-presbyopic	Myope	No	Normal	Soft
Pre-presbyopic	Myope	Yes	Reduced	None
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	No	Reduced	None
Pre-presbyopic	Hypermetrope	No	Normal	Soft
Pre-presbyopic	Hypermetrope	Yes	Reduced	None
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	No	Reduced	None
Presbyopic	Myope	No	Normal	None
Presbyopic	Myope	Yes	Reduced	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	No	Reduced	None
Presbyopic	Hypermetrope	No	Normal	Soft
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None

Exampl	e: contact lens data	
Rule we seek:Possible tests:	<pre>If ? then recommendation = har</pre>	rd
Age = Your	ng	2/8
Age = Pre-	- -presbyopic	1/8
Age = Pres	sbyopic	1/8
Spectacle	prescription = Myope	3/12
Spectacle	prescription = Hypermetrope	1/12
Astigmatis	sm = no	0/12
Astigmatis	sm = yes	4/12
Tear produ	uction rate = Reduced	0/12
Tear produ	uction rate = Normal	4/12
		41

Modified rule and resulting data • Rule with best test added: If astigmatism = yes then recommendation = hard • Instances covered by modified rule: Age Spectacle prescription Astigmatism Tear production Recommended rate lenses Young Myope Yes Reduced None Young Hypermetrope Yes Normal Hard Young Hypermetrope Yes Normal hard Pre-presbyopic Myope Yes Normal hard Pre-presbyopic Myope Yes Normal Hard Pre-prespopoic Myope Yes Reduced None Pre-prespopoic Myope Yes Normal Hard Pre-prespopoic Hypermetrope Yes Reduced None Presbyopic Hypermetrope Yes Normal Hard Presbyopic Myope Yes Reduced None Presbyopic Hypermetrope Yes Normal None

43

Modified rule and resulting data

• Rule with best test added:

If astigmatism = yes and tear production rate = normal then recommendation = hard

• Instances covered by modified rule:

Age	Spectacle prescription	Astigmatism	Tear production	Recommended
			rate	lenses
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Normal	None

44

Further refinement

- Current state: If astigmatism = yes and tear production rate = normal and ? then recommendation = hard
- · Possible tests:

Age = Young	2/2
Age = Pre-presbyopic	1/2
Age = Presbyopic	1/2
Spectacle prescription = Myope	3/3
Spectacle prescription = Hypermetrope	1/3

- Tie between the first and the fourth test
 - We choose the one with greater coverage

The final rule If astigmatism = yes and tear production rate = normal and spectacle prescription = myope then recommendation = hard • Second rule for recommending "hard lenses": (built from instances not covered by first rule) If age = young and astigmatism = yes and tear production rate = normal then recommendation = hard • These two rules cover all "hard lenses": • Process is repeated with other two classes

Separate and conquer rule learning

- Rule learning methods like the one PRISM employs (for each class) are called *separate-and-conquer* algorithms:
 - First, identify a useful rule
 - Then, separate out all the instances it covers
 - Finally, "conquer" the remaining instances
- Difference to divide-and-conquer methods:
 - Subset covered by a rule does not need to be explored any further

50

Mining association rules

- Naïve method for finding association rules:
 - Use separate-and-conquer method
 - Treat every possible combination of attribute values as a separate class
- Two problems:
 - Computational complexity
 - Resulting number of rules (which would have to be pruned on the basis of support and confidence)
- It turns out that we can look for association rules with high support and accuracy directly

Item sets: the basis for finding rules

- Support: number of instances correctly covered by association rule
 - The same as the number of instances covered by all tests in the rule (LHS and RHS!)
- Item: one test/attribute-value pair
- Item set: all items occurring in a rule
- Goal: find only rules that exceed pre-defined support
 - Do it by finding all item sets with the given minimum support and generating rules from them!

52

52

Weather data

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

53

Item sets for weather data

One-item sets	Two-item sets	Three-item sets	Four-item sets
Outlook = Sunny (5)	Outlook = Sunny Temperature = Hot (2)	Outlook = Sunny Temperature = Hot Humidity = High (2)	Outlook = Sunny Temperature = Hot Humidity = High Play = No (2)
Temperature = Cool (4)	Outlook = Sunny Humidity = High (3)	Outlook = Sunny Humidity = High Windy = False (2)	Outlook = Rainy Temperature = Mild Windy = False Play = Yes (2)

 Total number of item sets with a minimum support of at least two instances: 12 one-item sets, 47 two-item sets, 39 three-item sets, 6 four-item sets and 0 five-item sets

Generating rules from an item set

- Once all item sets with the required minimum support have been generated, we can turn them into rules
- Example 4-item set with a support of 4 instances:

Humidity = Normal, Windy = False, Play = Yes (4)

• Seven (2^N-1) potential rules:

If Humidity = Normal and Windy = False then Play = Yes 4/4
If Humidity = Normal and Play = Yes then Windy = False 4/6
If Windy = False and Play = Yes then Humidity = Normal 4/6
If Humidity = Normal then Windy = False and Play = Yes 4/7
If Windy = False then Humidity = Normal and Play = Yes 4/8
If Play = Yes then Humidity = Normal and Windy = False 4/9
If True then Humidity = Normal and Windy = False and Play = Yes 4/12

55

55

Rules for weather data

• All rules with support > 1 and confidence = 100%:

	Association rule		Sup.	Conf.
1	Humidity=Normal Windy=False	⇒ Play=Yes	4	100%
2	Temperature=Cool	⇒ Humidity=Normal	4	100%
3	Outlook=Overcast	⇒ Play=Yes	4	100%
4	Temperature=Cold Play=Yes	⇒ Humidity=Normal	3	100%
58	Outlook=Sunny Temperature=Hot	⇒ Humidity=High	2	100%

• In total:

3 rules with support four

5 with support three

50 with support two

56

Example rules from the same item set

• Item set:

Temperature = Cool, Humidity = Normal, Windy = False, Play = Yes (2)

• Resulting rules (all with 100% confidence):

Temperature = Cool, Windy = False ⇒ Humidity = Normal, Play = Yes
Temperature = Cool, Windy = False, Humidity = Normal ⇒ Play = Yes
Temperature = Cool, Windy = False, Play = Yes ⇒ Humidity = Normal

 We can establish their confidence due to the following "frequent" item sets:

Temperature = Cool, Windy = False (2)
Temperature = Cool, Humidity = Normal, Windy = False (2)
Temperature = Cool, Windy = False, Play = Yes (2)

Generating item sets efficiently

- How can we efficiently find all frequent item sets?
- Finding one-item sets easy
- Idea: use one-item sets to generate two-item sets, two-item sets to generate three-item sets, ...
 - If (A B) is a frequent item set, then (A) and (B) have to be frequent item sets
 - In general: if X is a frequent k-item set, then all (k-1)-item subsets of X are also frequent
 - Compute k-item sets by merging (k-1)-item sets

58

Example

• Given: five frequent three-item sets

(A B C), (A B D), (A C D), (A C E), (B C D)

- Lexicographically ordered!
- Candidate four-item sets:

(A B C D) OK because of (A C D) (B C D) (A C D E) Not OK because of (C D E)

- To establish that these item sets are really frequent, we need to perform a final check by counting instances
- For fast look-up, the (k-1)-item sets are stored in a

59

Algorithm for finding item sets

Find all k-item sets with sufficient coverage and store them in hash table #1

While some k-item sets with sufficient coverage have been found Increment k

Find all pairs of (k-1)-item sets in hash table #(k-1) that differ only in their last item

Create a k-item set for each pair by combining the two (k-1)-item sets that are paired Remove all k-item sets containing any (k-1)-item sets that are not in the #(k-1)-hash table

Scan the data and remove all remaining k-item sets that do not have sufficient coverage

Store the remaining k-item sets and their coverage in hash table #k, sorting items in lexical order

Generating rules efficiently

- We are looking for all high-confidence rules
 - Support of antecedent can be obtained from item set hash table
 - But: brute-force method is (2^{N} -1) for an N-item set
- Better way: building (c + 1)-consequent rules from cconsequent ones
 - Observation: (c + 1)-consequent rule can only hold if all corresponding c-consequent rules also hold
- Resulting algorithm similar to procedure for large item sets

61

Example

• 1-consequent rules:

If Outlook = Sunny and Windy = False and Play = No then Humidity = High (2/2)

If Humidity = High and Windy = False and Play = No
 then Outlook = Sunny (2/2)

· Corresponding 2-consequent rule:

If Windy = False and Play = No then Outlook = Sunny and Humidity = High (2/2)

Final check of antecedent against item set hash table is required to check that rule is actually sufficiently accurate

62

Algorithm for finding association rules

Find all sufficiently accurate n-consequent rules for the k-item set and store them in hash table \$1, computing accuracy using the hash tables found for item sets

While some sufficiently accurate n-consequent rules have been found Increment n

Find all pairs of (n-1)-consequent rules in hash table #(n-1) whose consequents differ only in their last item

Create an n-consequent rule for each pair by combining the two (n-1)-consequent rules that are paired

Remove all n-consequent rules that are insufficiently accurate, computing accuracy using the hash tables found for item sets Store the remaining n-consequent rules and their accuracy in hash table #k, sorting items for each consequent in lexical order

Association rules: discussion

- Above method makes one pass through the data for each different item set size
 - Another possibility: generate (k+2)-item sets just after (k+1)-item sets have been generated
 - Result: more candidate (k+2)-item sets than necessary will be generated but this requires less passes through the data
 - · Makes sense if data too large for main memory
- Practical issue: support level for generating a certain minimum number of rules for a particular dataset
 - This can be done by running the whole algorithm multiple times with different minimum support levels
 - Support level is decreased until a sufficient number of rules has been found

64

Linear models: linear regression

- Work most naturally with numeric attributes
- Standard technique for numeric prediction
 - Outcome is linear combination of attributes
 - $x = w_0 + w_1 a_1 + w_2 a_2 + \cdots + w_k a_k$
- Weights are calculated from the training data
- Predicted value for first training instance $\mathbf{a}^{(1)}$

$$w_0 a_0^{(1)} + w_1 a_1^{(1)} + w_2 a_2^{(1)} + \dots + w_k a_k^{(1)} = \sum_{j=0}^k w_j a_j^{(1)}$$

(assuming each instance is extended with a constant attribute with value 1)

65

Minimizing the squared error

- Choose k +1 coefficients to minimize the squared error on the training data
- Squared error:
- $\sum_{i=1}^{n} \left(x^{(i)} \sum_{i=0}^{k} w_{i} a_{j}^{(i)} \right)^{2}$
- Coefficients can be derived using standard matrix operations
- Can be done if there are more instances than attributes (roughly speaking)
- Minimizing the absolute error is more difficult

Classification

- Any regression technique can be used for classification
 - Training: perform a regression for each class, setting the output to 1 for training instances that belong to class, and 0 for those that don't
 - Prediction: predict class corresponding to model with largest output value (membership value)
- For linear regression this method is also known as *multi-response linear regression*
- Problem: membership values are not in the [0,1] range, so they cannot be considered proper probability estimates
 - In practice, they are often simply clipped into the [0,1] range and normalized to sum to 1

67

67

Linear models: logistic regression

- Can we do better than using linear regression for classification?
- Yes, we can, by applying logistic regression
- Logistic regression builds a linear model for a transformed target variable
- Assume we have two classes
- Logistic regression replaces the target

 $Pr[1|a_1, a_2, ..., a_k]$

by this target

$$log[Pr[1|a_1, a_2, ..., a_k]/(1 - Pr[1|a_1, a_2, ..., a_k])$$

• This logit transformation maps [0,1] to (- ∞ , + ∞), i.e., the new target values are no longer restricted to the [0,1] interval

68

• Resulting class probability model:

 $Pr[1|a_1, a_2, ..., a_k] = 1/(1 + \exp(-w_0 - w_1 a_1 - \cdots - w_k a_k))$

Example logistic regression model

• Model with $w_0 = -1.25$ and $w_1 = 0.5$:

• Parameters are found from training data using maximum likelihood

70

Maximum likelihood

- Aim: maximize probability of observed training data with respect to final parameters of the logistic regression model
- We can use logarithms of probabilities and maximize conditional *log-likelihood* instead of product of probabilities:

$$\sum_{i=1}^{n} (1 - x^{(i)}) \log(1 - \Pr[1|a_1^{(i)}, a_2^{(i)}, \dots, a_k^{(i)}]) + x^{(i)} \log(\Pr[1|a_1^{(i)}, a_2^{(i)}, \dots, a_k^{(i)}])$$

where the class values $x^{(i)}$ are either 0 or 1

- Weights w_i need to be chosen to maximize log-likelihood
- A relatively simple method to do this is *iteratively re-weighted least squares* but other optimization methods can be used

71

Linear models are hyperplanes

• Decision boundary for two-class logistic regression is where probability equals 0.5:

$$Pr[1|a_1, a_2, ..., a_k] = 1/(1 + \exp(-w_0 - w_1 a_1 - \dots - w_k a_k)) = 0.5$$

which occurs when $-w_0 - w_1 a_1 - \cdots - w_k a_k = 0$

• Thus logistic regression can only separate data that can be separated by a hyperplane

72

Linear models: the perceptron

- Observation: we do not actually need probability estimates if all we want to do is classification
- Different approach: learn separating hyperplane directly
- Let us assume the data is linearly separable
- In that case there is a simple algorithm for learning a separating hyperplane called the *perceptron learning rule*
- Hyperplane: $w_0a_0+w_1a_1+w_2a_2+\cdots+w_ka_k=0$ where we again assume that there is a constant attribute with value 1 (bias)
- If the weighted sum is greater than zero we predict the first class, otherwise the second class

73

73

The algorithm

Set all weights to zero
Until all instances in the training data are classified correctly
For each instance I in the training data
If I is classified incorrectly by the perceptron
If I belongs to the first class add it to the weight vector
else subtract it from the weight vector

• Why does this work?

Consider a situation where an instance \boldsymbol{a} pertaining to the first class has been added:

$$(w_0 + a_0)a_0 + (w_1 + a_1)a_1 + (w_2 + a_2)a_2 + \cdots + (w_k + a_k)a_k$$

This means the output for \boldsymbol{a} has increased by:

$$a_0 \times a_0 + a_1 \times a_1 + a_2 \times a_2 + \dots + a_k \times a_k$$

This number is always positive, thus the hyperplane has moved into the correct direction (and we can show that output decreases for instances of other class)

• It can be shown that this process converges to a linear separator if the data is linearly separable

74

74

Clustering

- Clustering techniques apply when there is no class to be predicted: they perform unsupervised learning
- Aim: divide instances into "natural" groups
- As we have seen, clusters can be:
 - · disjoint vs. overlapping
 - $\bullet \ deterministic \ vs. \ probabilistic$
 - flat vs. hierarchical
- \bullet We will look at a classic clustering algorithm called $\emph{k-means}$
- k-means clusters are disjoint, deterministic, and flat

77

The k-means algorithm

- Step 1: Choose k random cluster centers
- Step 2: Assign each instance to its closest cluster center based on Euclidean distance
- Step 3: Recompute cluster centers by computing the average (aka *centroid*) of the instances pertaining to each cluster
- Step 4: If cluster centers have moved, go back to Step 2
- This algorithm minimizes the squared Euclidean distance of the instances from their corresponding cluster centers
 - Determines a solution that achieves a <u>local</u> minimum of the squared Euclidean distance
- Equivalent termination criterion: stop when assignment of instances to cluster centers has not changed

Discussion

- Algorithm minimizes squared distance to cluster centers
- Result can vary significantly
 - based on initial choice of seeds
- Can get trapped in local minimum
 - Example:

- To increase chance of finding global optimum: restart with different random seeds
- Can we applied recursively with k = 2

80

Hierarchical clustering

- ullet Bisecting k-means performs hierarchical clustering in a top-down manner
- Standard hierarchical clustering performs clustering in a bottomup manner; it performs agglomerative clustering:
 • First, make each instance in the dataset into a trivial mini-cluster

 - Then, find the two closest clusters and merge them; repeat
 - Clustering stops when all clusters have been merged into a single cluster
- Outcome is determined by the distance function that is used:
 - Single-linkage clustering: distance of two clusters is measured by finding the two closest instances, one from each cluster, and taking their distance
 - Complete-linkage clustering: use the two most distant instances instead Average-linkage clustering: take average distance between all instances
 - Centroid-linkage clustering: take distance of cluster centroids
 - Group-average clustering: take average distance in merged clusters
 - Ward's method: optimize k-means criterion (i.e., squared distance)

Incremental clustering

- Heuristic approach (COBWEB/CLASSIT)
- Forms a hierarchy of clusters incrementally
- Start:
 - tree consists of empty root node
- •Then:
 - add instances one by one
 - update tree appropriately at each stage
 - to update, find the right leaf for an instance
 - may involve restructuring the tree using *merging* or *splitting* of nodes
- Update decisions are based on a goodness measure called *category utility*

83

83

Some final comments on the basic methods

- Bayes' rule stems from his "Essay towards solving a problem in the doctrine of chances" (1763)
 - Difficult bit in general: estimating prior probabilities (easy in the case of naïve Bayes)
- Extension of naïve Bayes: Bayesian networks (which we will discuss later)
- The algorithm for association rules we discussed is called APRIORI; many other algorithms exist
- Minsky and Papert (1969) showed that linear classifiers have limitations, e.g., can't learn a logical XOR of two attributes
 - But: combinations of them can (this yields multi-layer neural nets)

89