

ELEKTROTEHNIČKI FAKULTET BEOGRAD

Računarski VLSI sistemi

student: Milan Branković

119/07

profesor: dr Veljko Milutinović asistent: Saša Stojanović

broj osvojenih poena:

Beograd 10.01.2011

DVOADRESNI PROCESOR SA SINHRONOM MAGISTRALOM

Milan Branković

email: milan.brankovic@rocketmail.com

1. DEFINISANJE PROJEKTA

1.1 Uvod

Projekat je urađen kao domaći zadatak iz predmeta *Računarski VLSI sistemi* na 4. godini studija IR odseka, Elektrotehničkog fakulteta Univerziteta u Beogradu i namenjen je samo u edukativne svrhe.

Ovaj rad predstavlja implementaciju projekta iz predmeta Arhitektura i organizacija računara 2, profesora Jovana Đorđevića.

Projekat predstavlja dvoadresni 16-to bitni procesor. Realizovan je u alatu Quartus 9.1, kompanije Altera i testirano je sintentizovanje modela na Cyclon II familiji čipova.

Svrha i važnost ovog projekta je realizacija potpuno funkcionalne hardverske jedinice u VHDL-u.

1.2 Ciljevi projekta

Cilj projekta je upoznavanje sa VHDL-om, jezikom za opis hardvera, kao i sticanje praktičnih iskustava u radu sa alatima za prevođenje, simulaciju i sintezu sistema opisanih hardverskim jezikom.

Smatram da su implementacija ovoga u VHDL-u, a i kasnija implementacija u hardveru veoma interesantne i korisne za dalje projekte. Istina da je ovaj procesor skromnih mogućnosti i da sam za sebe predstavlja samo jezgro nekog većeg sistema, ali smatram i da je lako nadograditi ga, poboljšati mu performanse i ugraditi ga u bilo koju složeniju aplikaciju.

2. SPECIFIKACIJA

2.1 Uvod

Sistem se sastoji od procesora i memorije koji su povezani adresnom magistralom, magistralom podataka, i kontrolnom signalima za operaciju iniciranja čitanja odnosno upisa u memoriju.

2.2 Spoljašnji interfejsi

Procesor ima 35 pinova koji se koriste za adrese, podatke i kontrolne signale. Pinovi se vezuju na 1 adresnu magistralu magistralu, 1 magistralu podataka i kontrolne signale. Procesor podržava mehanizam prekida.

Magistrala ima 28 pinova koji se koriste za adrese, podatke i kontrolne signale. Pinovi se vezuju na 1 adresnu magistralu magistralu, 1 magistralu podataka i kontrolne signale.

Procesor i magistrala su objedinjeni u jedinstvenu komponentu.

Komunikacija između procesora i memorije se obavlja na sledeći način:

- Slučaj čitanja podatka iz memorije: procesor na adresnu magistralu postavlja adresu memorijske lokcaije sa koje želi da pročita podatak, i neaktivnom vrednošću kontrolnog signala RDBUS signalizira memoriji da želi da pročita podatak. Memorija odgovara tako što postavi podatak na linije podataka, koji procesor očita.
- Slučaj upisa podatka u memoriju: procesor na adresnu magistralu postavlja adresu memorijske lokacije na koju želi da upiše podatak koji postavlja na magistralu podataka, i neaktivnom vrednošću kontrolnog signala WRBUS signalizira memoriji da želi da upiše podatak.

2.3 Specifikacija hardvera

Od hardverskih komponenti korišćene su sledeće:

- D flip-flop, SR flip-flop
- koder
- dekoder
- multiplekser
- 16-bitni registar
- 16-bitni registar sa mogućnošću inkrementiranja i dekrementiranja
- 8-bitni registar sa mogućnošću inkrementiranja i dekrementiranja

2.4 Specifikacija softvera

Za izradu projekta korišćene su sledeće biblioteke:

IEEE.STD_LOGIC_1164.ALL

IEEE.STD_LOGIC_SIGNED.ALL

3. UNUTRAŠNJI BLOKOVI

Procesor je podeljen na pet blokova: blok registri, blok operacije, blok prekidi, blok interfejs koji zajedno predstavljaju operacionu jedinicu, i upravljačka jedinica.

Svaki od ovih podblokova je podeljen na manje podblokove radi lakšeg snalaženja korisnika.

Blok interfejs sadrži 16-tobitni registar MAR koji služi za čuvanje adrese koja će se koristiti pri ciklusu upisa ili čitanja. Pored njega ovde se nalazi (-bitni registar MBR u kome se čuva podatak koji je očitan ili koji treba upisati u memoriju. Takođe u ovom bloku se nalazi mreža za arbitraciju i sinhronizaciju na magistrali.

Blok registri sadrži registarski fajl (registe AX, BX, CX, DX, SI, DI, SP, BP), programski brojač PC, pomoćne registre A i B, četvoro bajtni instrukcijski registar IR, kao i mrežu za dekododovanje operacija i načina adresiranja, statusni registar PSW, i mrežu za selekciju registara.

Blok operacije se sastoji od dva pomoćna registra X i Y, i aritmetičko logičke jedinice ALU.

Blok prekidi se sastoji od flip-flopova koji služe za pamćenje vrste prekida, mreže za prioritiranje prekida, registra ukazivača na početak tabele prekidnih rutina IVTP, pomoćnog registra BR i trobitnog registra maske IMR.

Upravljačka jedinica se sastoji od dva podbloka. U prvom se nalazi mreža za generisanje i upis nove vrednosti u brojač koraka i brojač koraka, dok se drugi podblok sastoji od dve komponente od kojih je jedna odgovorna za generisanje upravljačkih signala operacione jedinice, a druga je odgovorna za generisanje upravljačkih signala upravljačke jedinice.

4. OPIS DIZAJNA

4.1 Zabeleške uz dizajn

Za sinhronizaciju između procesora i memorije usvojena je sledeća predpostavka: inicijalna vrednost brojača za sinhronizaciju unutar memorije je za jedan manja od inicijalne vrednosti brojača za sinhronizaciju procesora.

U nastavku su date tabele načina kodovanja operacija i načina adresiranja.

Code	Operation
0000 0001	RTS
0000 0010	RTI
0000 0100	INTE
0000 1000	INTD
0001 0000	TRPE
0010 0000	TRPD
0100 0000	JMP
0101 1111	JSR
0110 0000	BNZ
0111 1111	INT
1000 0001	MOVS

1000 0010	MOVD
1000 0100	ADD
1000 1000	AND
1000 0000 xx00 0xxx	ASR
1111 1111 xx00 0xxx	PUSH
1111 1111 xx00 1xxx	POP
1111 1111 xx01 0xxx	INC
1111 1111 xx01 1xxx	DEC
1111 1111 xx10 0xxx	JMPIND

Tabela 1. Spisak kodova operacija i njihovo značenje

Code	Way of addressing
00xx xZZZ	Registarsko direktno [AX, BX, CX, DX, SI, DI, SP, BP]
01xx xZZZ	Registarsko indirektno [BX, SI, DI, BP, BX+SI, BX+DI, BP+SI, BP+DI]
10xx xZZZ	Registarsko indirektno sa pomerajem [BX, SI, DI, BP, BX+SI, BX+DI, BP+SI, BP+DI]
11xx xx00	Memorijsko direktno
11xx xx01	Memorijsko indirektno
11xx xx10	Relativno
11xx xx11	neposredno

Tabela 2. Spisak kodova načina adresiranja i njihovo značenje

Legenda:

Kodovi operacija dati su prvim i drugim bajtom instrukcije, dok su kodovi za načine adresiranja dati drugim bajtom instrukcije, pri čemu su usvojena sledeća značenja za simbole:

x – nebitno

 $\mbox{\sc ZZZ}-0$.. 7 odnosi se na registre u zagradama navedenim uz način adresiranja.

4.2 Vremenski dijagrami

Slika 1. Dijagram vremenskih signala test primera

Slika 2. Dijagram vremenskih signala

Slika 3. Dijagram vremenskih signala pri sinhronizaciji

4.3 Konačni automati

Slika 4. Dijagram stanja procesora

Procesor prolazi kroz sledeće stanja: IF, ID, EX i HALT.

IF (Instruction fetch) faza odnosno stanje je stanje u kome se procesor nalazi na početku izvršavanja svake instrukcije. U ovoj fazi se određuje dužina instrukcije, i iz memorije se učitava onoliko bajtova kolika je dužina instrukcije, a to je određeno prvim bajtom instrukcije.

ID (Instruction Decode) stanje je stanje u kome procesor određuje koji način adresiranja se koristi u instrukciji, i o kojoj instrukciji se radi. Određivanje načina adresiranja i određivanje instrukcije se vrši uz pomoć instrukcijskog registra.

EX (Execution) stanje je stanje u kome procesor izvršava instrukciju, i proverava da li je došlo do prekida, kao i smeštanje programskog brojača i programske statusne reči

na stek, i čitanje novih radi izvršavanje instrukcija prekidne rutine ukoliko je došlo do prekida.

HALT stanje je stanje u kome je procesor kada završi izvršavanje svih instrukcija tj. celokupnog programa .

4.4 Tabele

Flow Status	Successful - Sat Jan 15 11:45:07 2011
Quartus II Version	9.1 Build 350 03/24/2010 SP 2 SJ Web Edition
Revision Name	VLSI_project
Top-level Entity Name	CPU
Family	Cyclone II
Device	EP2C20F256C6
Timing Models	Final
Met timing requirements	No
Total logic elements	1,424 / 18,752 (8 %)
Total combinational functions	1,424 / 18,752 (8%)
Dedicated logic registers	320 / 18,752 (2 %)
Total registers	320
Total pins	35 / 152 (23 %)
Total virtual pins	0
Total memory bits	0 / 239,616 (0 %)
Embedded Multiplier 9-bit eleme	nts 0/52(0%)
Total PLLs	0/4(0%)

Slika 5. Tabela sintetizovanog modela

5. TESTIRANJE I VERIFIKACIJA

5.1 Simulacija i test benčevi

Quartus ne podržava standardne vhdl testbench-ove tako da je umesto toga korišćen ModelSim za testiranje i verifikaciju.

Za potrebe simulacije izvršene su simulacije pojedinačnih komponenti, kao i celokupnog sistema. Za testiranje i simulaciju celokupnog sistema napravljen je poseban entitet, koji kontroliše rad procesora, puni memoriju instrukcijama koje će procesor izvršavati, i generiše signal takta.

MOVS ax, #1 MOVD ax, [bx] INC ax INC bx INC bx DEC cx BNZ -12 MOVS cx, #5 MOVS bx, #100 MOVS ax, #0 MOVS dx, [bx] ADD ax, dx INC bx INC bx DEC cx BNZ -12 MOVD ax, [bx]

MOVS cx, #5 MOVS bx, #100

Slika 6. Test bench

6. IMPLEMENTACIJA

Implementacija je urađena za čip EP2C5AF256A7, familije Cyclone II. Dizajn je urađen u programskom alatu Quatrus II verzija 9.1, a za sumulaciju je korišćen alat ModelSim verzije 6.5b, oba firme Altera.

7. REVIZIJE I KOMENTARI

Prilikom izrade projekta konsultovao sam kolege sa kojima sam radio projekat iz predmeta Arhitektura i organizacija računara 2.

8. LITERATURA

Spisak literature korišćen u izradi domaćeg zadatka u IEEE formatu, npr:

- [1] Saša Stojanović, *Skripta iz predmeta VLSI*, ETF, Beograd, 2010.
- [2] http://www.altera.com/, USA
- [3] http://www.seas.upenn.edu/~ese171/vhdl/vhdl_primer.html

inc_dec_reg.vhd interface.vhd interupts.vhd ir.vhd ivtp br.vhd mar mbr.vhd memory.vhd mx2to1.vhd mx4to1.vhd pc.vhd prio.vhd psw.vhd reg.vhd reg file.vhd reg sel.vhd registers.vhd regPC A B.vhd sinch.vhd sp.vhd SR FF.vhd testSYS.vhd txt_util.vhd

9. PRILOZI

9.1 Sintetizovani prikaz procesora

Slika 7. Sintetizovan prikaz procesora

9.2 Spisak fajlova izvornog koda

Alu.vhd
Arbit.vhd
cd.vhd
cnt.vhd
cntrl_unit.vhd
cntrl_unit2.vhd
CPU.vhd
D_FF.vhd
dc.vhd
gen_ld_out.vhd