

MASTER 1 INFORMATIQUE

GESTION DE PROJET

CAHIER DES CHARGES - PROJET 10

Equipe

Amin JELLAD - jellad_amin@ hotmail.fr
Maher LAAROUSSI - maher.laaroussi@gmail.com
Hamid OUFKIR - hamidbourourou@outlook.fr
Lucky RAHERINIAINA - raheriluc@gmail.com
Arnaud COSTA - costaarnaud@hotmail.com

2018/2019

Responsable

Olivier BODINI - <u>olivier.bodini@ lipn.univ-paris13.fr</u> Lionel POURNIN - <u>lionel.pournin@ lipn.univ-paris13.fr</u> Antoine KASZCZYC - kaszczyc@ lipn.univ-paris13.fr

Sommaire

Table des matières

I. Contexte et définition du problème	3
II. Besoin du client	
III. Equipe en charge du projet	
IV. Ressources	
Matériels :	
Contraintes :	4
V. Fonctionnement	4
A. Comment le travail sera organisé	5
B. Diagramme de Gantt (répartition des tâches et dates)	5
VII. Environnement	6

I. Contexte et définition du problème

Programmation d'un robot Thymio pour de la cartographie et un rendu en temps réel visualisable par le client.

II. Besoin du client

Le client ne nous impose pas de contraintes particulières. Le Thymio doit pouvoir cartographier un lieu et le client doit pouvoir visualiser le résultat en temps réel. Le client souhaite également avoir la possibilité d'interagir avec le robot. L'équipe en charge du projet a l'aval du client pour rajouter des composants (carte Raspberry Pi Zero W, capteur ultrason...).

III. Equipe en charge du projet

Amin JELLAD (Chef du groupe)

Maher LAARROUSI (membre du groupe)

Hamid OUFKIR (membre du groupe)

Arnaud COSTA (membre du groupe)

Lucky RAHERINIAINA (sous-chef du groupe)

IV. Ressources

Matériels:

- Robot Thymio (en cours de livraison estimé à deux semaines)
- Carte Raspberry Pi Zero W
- Carte micro SD
- Capteur ultrason
- Batterie externe

Contraintes :

- Faible connaissance en robotique de certain membre de l'équipe
- Composants de base du Thymio inadaptés pour les besoins du client
- Concurrence avec une autre équipe

V. Fonctionnement

L'interaction avec le robot se fera via une interface web. Celui-ci pourra demander la mise en fonctionnent du robot pour que le Thymio puisse commencer la cartographie.

Durant la cartographie, le robot doit être capable de se repérer dans son environnement. Le robot doit être capable de détecter et marquer sur la carte les obstacles et objets environnants. Il doit être en mesure de s'arrêter quand il a terminé sa tâche.

La carte se dessinera en temps réel sur l'interface web.

VI. Organisation du travail

18/01/2019 : début du projet 29/03/2019 : fin du projet

A. Comment le travail sera organisé

La concrétisation du projet se déroulera en plusieurs phases.

Phase 1: premier contact

L'équipe va se familiariser avec le robot et le langage python pour comprendre leurs fonctionnements.

Phase 2: calibration des composants

Une phase de calibration des composants est nécessaire mais longue pour réussir le projet. Il faut équilibrer les capteurs et les roues pour avoir un meilleur résultat dans la création de la carte et du déplacement du robot.

Phase 3 : réflexion sur la conception des différents algorithmes

Les membres de l'équipe vont réfléchir à la façon d'implémenter efficacement les différents algorithmes. Après cela, l'équipe va faire une étude du web dans la mesure où ils vont chercher à optimiser les algorithmes qui seront implémentés.

Phase 4 : programmation

Une fois la phase 3 approuvée, l'équipe se divise en deux groupes pour la l'implémentation de chaque algorithme.

B. Diagramme de Gantt (répartition des tâches et dates)

<u>Légende :</u> Cyan : Equipe

Orange : groupe Arnaud et Amin VERT : Hamid et Lucky

> Rouge : Maher Violet : Lucky et Maher

Personne	Date début	Date fin	Numéro tâche	Tâche
EQUIPE	18/01/2019	24/01/2019	1	Rédaction du cahier des charges
AMIN	25/01/2019	25/01/2019	2	Rendu du cahier des charges
EQUIPE	25/01/2019	08/02/2019	3	Phase d'apprentissage
				- Premier contact ou révision du langage Python
				- Découverte de la bibliothèque Thymio (PwThymioDW)
				- Apprentissage de Git
				- Création de l'espace virtuel de travail avec GitLab
EQUIPE	08/01/2019	15/08/2019	4	Calibration des composants du robot (Roues, Capteurs)
ARNAUD	15/02/2019	01/03/2019	5	Création d'un algorithme permettant de se déplacer
AMIN				dans un espace.
LUCKY	15/02/2019	01/03/2019	6	Création d'un algorithme permettant la localisation dans
HAMID				l'espace.
EQUIPE	01/03/2019	08/03/2019	7	Création d'un algorithme liant les deux premiers algorithmes.
MAHER	15/02/2019	01/03/2019	8	Création d'un algorithme permettant de générer une carte en temps réel.
EQUIPE	08/03/2019	15/03/2019	9	Implémentation des algorithmes en python
MAHER	08/03/2019	15/03/2019	10	Création d'une interface en web service pour gérer
LUCKY				l'interaction Thymio utilisateur (HTML, CSS, PHP, JS)
EQUIPE	15/03/2019	22/03/2019	11	Rédaction du rapport final
EQUIPE	22/03/20	28/03/2019	12	Préparation de la soutenance

VII. Environnement

Lieu : Club Robotique de l'Institut Galilée (CRIG)

Outils:

- Langage utilisé pour la programmation : Python (bibliothèque PythimioDW)
- Outils pour l'interaction client-Thymio : web service implémenté dans la carte Raspberry Pi Zero W