

Institut Mines-Telecom

Débruitage d'images à l'aide d'ondelettes

Marco Cagnazzo, cagnazzo@telecom-paristech.fr

SI343 - MATIM

Plan

Introduction

Transformée en ondelettes Principes de débruitage

Débruitage

Oracles

Minimax et Seuil universel

SURE

Bayes

2/69

Introduction

Transformée en ondelettes Principes de débruitage

Débruitage

3/69

Bancs de filtres 1D

Caractéristiques de la transformée en ondelettes

- Concentration de l'énergie
- Représentation des contours
- Analyse à résolutions multiples
 - Version à baisse résolution
 - "Détails"

Bancs de filtres 1D

Décomposition

Banc de filtres d'analyse

 \downarrow 2 : opérateur de décimation : $a[k] = \check{a}[2k]$

Reconstruction

Banc de filtres de synthèse

 \uparrow 2 : opérateur d'interpolation, multiplie le nombre d'échantillons par 2

$$\hat{a}[k] = \begin{cases} a[k/2] & \text{si } k \text{ est pair} \\ 0 & \text{si } k \text{ est impair} \end{cases}$$

Propriétés des filtres

- Reconstruction parfaite
 - Possibilité de reconstruire le signal à partir des coefficients
- Réponse Impulsionnelle Finie
 - Implémentation par un banc de filtres dont la longueur est finie
- Orthogonalité
 - L'énergie des coefficients est égale à l'énergie du signal
- Moments nuls
 - Capacité de reproduire des signaux polynomiaux avec détails nuls
- Symétrie
 - Implémentation par symétrisation et périodisation

Analyse multirésolution 1D

Structure de décomposition en ondelettes sur 3 niveaux de résolution

Débruitage

Principes de débruitage

Synthèse multirésolution 1D

Reconstruction à partir des coefficients d'ondelettes

Débruitage

Bancs de filtres 2D séparables

Pour 1 niveau de décomposition

Introduction

Transformée en ondelettes

Débruitage

Principes de débruitage

Interprétation fréquentielle

Les zones (A), (H), (V) et (D) correspondent effectivement aux coefficients d'approximation, de détails horizontaux, verticaux et diagonaux.

AMR 2D

Mise en oeuvre d'une AMR 2D séparable sur 3 niveaux de résolution.

AMR 2D - interprétation fréquentielle

Introduction

Transformée en ondelettes

Débruitage

Principes de débruitage

Débruitage

Principes de débruitage

Débruitage

Principes

Modèle : Observation : r(t) ; somme d'un signal utile inconnu s(t) et d'un bruit aléatoire b(t).

Après décomposition sur un base d'ondelettes :

$$c_j^r[k] = c_j^s[k] + c_j^b[k]$$

Hypothèses:

- ▶ Base orthonormale, décomposition périodique
- ▶ Signal original (résolution i = 0) de taille multiple de $2^{j_{max}}$
- lacktriangle RSB élevé en bande d'approximation : $a_{j_{
 m max}}^{
 m S}pprox a_{j_{
 m max}}^{
 m r}$

Estimateur: ŝ

Critère: minimisation de l'EQM : $\mathcal{E}^2(s) = \mathbb{E}\{\|s - \hat{s}\|^2\}$

Débruitage

Principes

- Signal utile régulier
 - Énergie concentré dans les basses fréquences
 - Signal creux dans les hautes fréquences
 - Beaucoup de coefficients très petits
 - Quelques coefficients de grande amplitude (information !)
- Le bruit est souvent blanc et stationnaire
 - Modèle : blanc, stationnaire, centré et de puissance σ^2
 - Puissance équi-repartie entre les sous-bandes
- Qu'est-ce qu'on retrouve dans les différentes sous-bandes ?

SNR: 22.4 dB;

 $\sigma = 10$

Sousbande d'approximation

SNR: 46.4 dB

Sousbande de détail

SNR: 15.2 dB

Estimation de la variance du bruit

Hypothèses:

Dans la sousbande de résolution la plus fine, le coefficients observés sont dus uniquement au bruit :

$$\{c_1^s[k]\}_{0 \leq k < K/2} \approx 0$$

Bruit gaussien centré i.i.d.

Estimation de la variance du bruit

On considere la distribution de |Z|, lorsque Z est normale.

On sait que la valeur médiane de |Z| est égale à 0.6745 σ .

Alors on choisit:

$$\hat{\sigma} = \frac{1}{0.6745} \text{Med} |c_1^r|$$

Estimation de la variance du bruit

Oracles
Introduction Minima

Débruitage

Minimax et Seuil universel SURE Bayes

Introduction

Débruitage

Oracles

Minimax et Seuil universel

SURE

Bayes

Il est défini par :

$$c_j^{\hat{\mathbf{s}}}[k] = \theta_j[k]c_j^r[k]$$

EQM:

$$\mathcal{E}_{\mathsf{a}}^{2}(s) = \sum_{j=1}^{j_{\max}} \sum_{k=0}^{K2^{-j}-1} \mathrm{E}[\left(c_{j}^{s}[k] - \theta_{j}[k]c_{j}^{r}[k]\right)^{2}] \ (c^{s} - \theta c^{r})^{2} = (c^{s}(1 - \theta) - \theta c^{b})^{2} \ \mathcal{E}_{\mathsf{a}}^{2}(s) = \sum_{j=1}^{j_{\max}} \sum_{k=0}^{K2^{-j}-1} (c^{s})^{2}(1 - \theta)^{2} + \sigma^{2}\theta^{2}$$

Le terme de la somme précédente est :

$$J = (c^{s})^{2}(1 - 2\theta + \theta^{2}) + \sigma^{2}\theta^{2}$$

En minimisant par rapport à θ :

$$\frac{\partial J}{\partial \theta} = -2(c^s)^2 + 2\theta((c^s)^2 + \sigma^2)$$

Donc:

$$\theta^* = \frac{(c^s)^2}{(c^s)^2 + \sigma^2}$$

Oracle

$$\theta^* = \frac{(c^s)^2}{(c^s)^2 + \sigma^2}$$

Oracle: l'estimateur dépend du signal. C'est utile pour évaluer les bornes théoriques.

$$J = (c^{s})^{2} (1 - \theta)^{2} + \sigma^{2} \theta^{2} = \frac{\sigma^{2} (c^{s})^{2}}{\sigma^{2} + (c^{s})^{2}}$$
$$\mathcal{E}_{a}^{2}(s) = \sum_{j=1}^{j_{\text{max}}} \sum_{k=0}^{K2^{-j}-1} \frac{\sigma^{2} (c_{j}^{s}[k])^{2}}{\sigma^{2} + (c_{j}^{s}[k])^{2}}$$

Oracle binaire

- ▶ Si on contraint θ à être binaire : $\theta_i[k] \in \{0,1\}$, alors
 - $J = (c^s)^2$ si $\theta = 0$; sinon $J = \sigma^2$
 - donc on choisi $\theta = 0$ si $(c^s)^2 < \sigma^2$
- Dans ce cas l'EQM est :

$$\mathcal{E}_{o}^{2}(s) = \sum_{i=1}^{j_{\text{max}}} \sum_{k=0}^{K2^{-j}-1} \min \left[\sigma^{2}, (c_{j}^{s}[k])^{2} \right]$$

Oracle binaire

$$\begin{split} \mathcal{E}_{o}^{2}(s) &= \sum_{j=1}^{j_{\text{max}}} \sum_{k=0}^{K2^{-j}-1} \min \left[\sigma^{2}, (c_{j}^{s}[k])^{2} \right] \\ \mathcal{E}_{a}^{2}(s) &= \sum_{j=1}^{j_{\text{max}}} \sum_{k=0}^{K2^{-j}-1} \frac{\sigma^{2}(c_{j}^{s}[k])^{2}}{\sigma^{2} + (c_{j}^{s}[k])^{2}} \\ 0 &< x \leq y \Rightarrow \frac{xy}{x+y} \geq \frac{xy}{2y} = \frac{1}{2}x = \frac{1}{2}\min(x,y) \\ \frac{1}{2}\mathcal{E}_{o}^{2}(s) \leq \mathcal{E}_{a}^{2}(s) \\ \mathcal{E}_{a}^{2}(s) \leq \mathcal{E}_{o}^{2}(s) \leq 2\mathcal{E}_{a}^{2}(s) \end{split}$$

Oracle binaire

- L'EQM de l' oracle binaire est (au plus) le double de l'oracle par atténuation
- En conclusion : il faut retenir les coefficients d'ondelettes ou le signal est censé avoir une valeur élevée, et mettre à zéro les autres.
- Modèle simplifié : il y a Q coefficients c^s non zéro et supérieurs à σ ; les autres sont zéros
- L'oracle binaire a dans ce cas une erreur Qσ²

Institut Mines-Telecom

▶ Sans débruitage l'EQM est $K_m \sigma^2$, ou $K_m = K(1 - 2^{-j_{max}})$ est le nombre de coefficients d'ondelettes disponibles

Estimateur par atténuation

Oracle binaire

 En conclusion, l'oracle binaire permet de réduir l'erreur d'un facteur :

- Donc une bonne base d'ondelettes est une base qui rend Q petit
- La base d'ondelettes doit générer peu de grands coefficients et beaucoup de petits
- En autres mots, la base doit concentrer l'énergie en peu de coefficients

Notion de seuillage

Hard Thresholding

$$c^{\hat{\mathbf{s}}} = \begin{cases} c^r & \text{si } |c^r| > \chi \\ 0 & \text{si } |c^r| \le \chi \end{cases}$$

Soft Thresholding

$$c^{\hat{\mathbf{s}}} = \begin{cases} c^r - \chi & \text{si } c^r > \chi \\ 0 & \text{si } |c^r| \le \chi \\ c^r + \chi & \text{si } c^r < \chi \end{cases}$$

Notion de seuillage

- Le seuillage dur a un comportement discontinu au voisinage du seuil $\pm \chi$
- Le seuillage doux introduit un biais ∓χ sur l'estimation des coefficients de grande amplitude
- Problème principale : choix du seuil χ
 - ► Approche *minimax*
 - Approche visushrink (seuil universel)
 - Approche SURE
 - Approche hybride

Définitions:

- ► $K_m = K(1 2^{-j_{max}})$ est le nombre de coefficients d'ondelettes disponibles
- ullet \mathcal{E}_χ est l'EQM associé au seuillage doux avec seuil égal à χ
- $\tilde{\mu}$ est une densité de probabilité symétrique et $\bar{\mu}$ sa version normalisé (variance ramenée à 1)

Hypothèse : Les coefficients d'ondelettes du bruit $c_j^b[k]$ sont de même loi marginale $\tilde{\mu}$ symétrique (de variance σ^2)

Alors

- ➤ On a un'équation donnant \(\chi_m\), le seuil qui minimise le maximum de l'EQM sur l'ensemble des signaux s pour le seuillage doux.
- On peut relier cette EQM au cas idéal d'oracle binaire

Approche minimax

En formules:

$$\inf_{\chi \geq 0} \sup_{\mathbf{s}} \frac{\mathcal{E}_{\chi}^{2}(\mathbf{s})}{\sigma^{2} + \mathcal{E}_{o}^{2}(\mathbf{s})} = \sup_{\mathbf{s}} \frac{\mathcal{E}_{\chi_{m}}^{2}(\mathbf{s})}{\sigma^{2} + \mathcal{E}_{o}^{2}(\mathbf{s})}$$
$$= \Lambda_{\chi_{m}} = \frac{K_{m}(\chi_{m}^{2} + \sigma^{2})}{(K_{m} + 1)\sigma^{2}},$$

où χ_m est l'unique solution dans \mathbb{R}_+ de l'équation

$$2(K_m+1)\int_{\gamma}^{\infty}(z-\chi)^2\tilde{\mu}(z)dz = \chi^2 + \sigma^2$$
 (1)

Approche minimax

Solution de l'équation (1) :

1. On normalise la densité de probabilité du bruit :

$$\bar{\mu}(\mathbf{z}) = \sigma \tilde{\mu}(\sigma \mathbf{z})$$

2. On résout l'équation pour le seuil normalisé $\bar{\chi}_m$

$$2(K_m+1)\int_{\bar{\chi}_m}^{\infty}(z-\bar{\chi}_m)^2\bar{\mu}(z)dz=\bar{\chi}_m^2+1$$
 (2)

3. On trouve le seuil comme : $\chi_m = \sigma \bar{\chi}_m$

Approche minimax

Dans le cas gaussien, l'équation (2) se réduit à :

$$\frac{1}{2}\operatorname{erf}\left(\frac{\bar{\chi}_m}{\sqrt{2}}\right) + \frac{\bar{\chi}_m}{\bar{\chi}_m + 1} \frac{1}{\sqrt{2\pi}} e^{-\frac{\bar{\chi}_m^2}{2}} = \frac{K_m}{2(1 + K_m)}.$$

Tableaux de solutions numériques Est-il raisonnable de supposer les coefficients de bruit gaussiens ?

- ▶ Oui si le bruit d'origine est gaussien
- Sinon on peut utiliser des lois différentes pour chaque niveau

Valeur asymptotique du seuil optimal

Supposons que les coefficients d'ondelettes du bruit soient de densité marginale :

$$\forall z \in \mathbb{R}, \qquad \mu(z) = Ce^{-h(z)}$$

où $C \in \mathbb{R}_+^*$ et h est une fonction paire, continue, strictement croissante sur \mathbb{R}_+ telle que

$$\lim_{\mathsf{z} \to \infty} \mathsf{z}^{-\beta} \mathsf{h}(\mathsf{z}) = \gamma \in \mathbb{R}_+^* \;, \qquad \beta \geq 1$$

et

$$\forall (z_1, z_2) \in \mathbb{R}^2_+, \quad h(z_1 + z_2) \geq h(z_1) + h(z_2)$$
.

Quand $K_m \to \infty$, on a

$$\chi_m \sim \chi_{\mathrm{U}} = h^{-1} (\ln K_m)$$
 $\Lambda_{\chi_m} \sim \frac{\chi_{\mathrm{U}}^2}{\sigma^2} + 1$.

Seuil universel

- Les hypothèses précédentes sont vérifiées pour les lois gaussiennes et gaussiennes généralisées
- ▶ Dans le deux cas on a $\mu(z) = Ce^{-h(z)}$
- Loi gaussienne :

$$\mu(z) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{z^2}{2\sigma^2}} \qquad h(z) = \frac{z^2}{2\sigma^2}$$
$$h^{-1}(t) = \sqrt{2\sigma^2 t} \qquad \chi_U = \sigma\sqrt{2\ln K_m}$$

Loi gaussienne généralisée :

$$\mu(z) = C \mathrm{e}^{-\gamma |z|^{\beta}}$$
 $h(z) = \gamma |z|^{\beta}$ $\chi_U = \left(\frac{\ln K_m}{\gamma}\right)^{\frac{1}{\beta}}$

Seuil universel

- ► Facilité du calcul du seuil universel dans le cas gaussien
 - ▶ Plus facile d'utiliser χ_U plutôt que χ_m
- La différence entre χ_U et χ_m peut être important si K_m n'est pas grand
- ▶ Néanmoins, xu est appelé seuil universel
- Le seuillage avec le seuil universel est appelé visushrink

46/69

Oracles

Introduction Débruitage

Minimax et Seuil universel

SURE Bayes

Seuil universel

Minimax vs. seuil universel (cas gaussien)

K _m	χm	Λ_{χ_m}	χυ	Λ_U
8	0.877372	1.573139	2.039334	5.158883
16	1.076456	2.031772	2.354820	6.545177
32	1.276276	2.549217	2.632769	7.931472
64	1.474135	3.124256	2.884054	9.317766
128	1.668605	3.754906	3.115134	10.704061
256	1.859020	4.438616	3.330218	12.090355
512	2.044916	5.171582	3.532230	13.476649
1024	2.226161	5.949982	3.723297	14.862944
2048	2.402888	6.770567	3.905027	16.249238
4096	2.575057	7.629058	4.078668	17.635532
8192	2.742753	8.521655	4.245212	19.021827
16384	2.906252	9.445722	4.405465	20.408121
32768	3.065703	10.398216	4.560089	21.794415
65536	3.221205	11.375990	4.709640	23.180710
131072	3.373025	12.377200	4.854586	24.567004
262144	3.521304	13.399528	4.995328	25.953299

14.04.15

47/69

Optimalité du seuillage

Dans le cas gaussien, les estimateur par seuillage sont asymptotiquement *minimax*:

Si les coefficients du bruit sont i.i.d. $\mathcal{N}(0, \sigma^2)$ alors

$$\lim_{\mathcal{K}_m \to \infty} \inf_{\hat{s}} \sup_{s} \left(\frac{\mathcal{E}^2(s)}{\left(\sigma^2 + \mathcal{E}^2_o(s)\right) \Lambda_{\chi_m}} \right) = 1 \; .$$

où $\inf_{\hat{s}}$ désigne l'inf. sur l'ensemble de tous les estimateurs possibles du signal s(t).

Asymptotiquement, on ne peut pas faire mieux qu'un estimateur par seuillage

Institut Mines-Telecom

Principes

- Approche minimax trop pessimiste
- Idée : essayer d'estimer l'EQM dans un cas moyen, et le minimiser
- Problème : estimation de l'EQM dépendante du signal
- Lemme de Stein : permet d'estimer l'EQM sans biais

Principes

- ▶ On observe la v.a. Y = x + Z
- x, déterministe, est la grandeur à mesurer
- \triangleright Z, dont l'écart type est σ , est le bruit
- On considère un estimateur T(Y) = Y + γ(Y)
- Le risque (l'EQM) est:

$$\epsilon^{2}(x) = E\{(x - T(Y))^{2}\}$$

$$= E\{(x - Y - \gamma(Y))^{2}\}$$

$$= \sigma^{2} - 2xE[\gamma(Y)] + 2E[Y\gamma(Y)] + E[\gamma(Y)^{2}]$$

Problème : le risque dépende de x!

Lemme de Stein

Si Z est $\mathcal{N}(0, \sigma^2)$ et γ est une fonction continue, dérivable par morceaux et telle que, pour tout $x \in \mathbb{R}$,

$$\begin{split} &\lim_{|z|\to\infty}\gamma(z)\exp\Bigl(-\frac{(z-x)^2}{2\sigma^2}\Bigr)=0\\ &\mathrm{E}\{\gamma(x+Z)^2\}<\infty,\quad \mathrm{E}\{|\gamma'(x+Z)|\}<\infty \end{split}$$

alors

$$xE\{\gamma(Y)\} = E\{Y\gamma(Y)\} - \sigma^2 E\{\gamma'(Y)\}$$
 (3)

Lemme de Stein

- Les conditions imposees a la fonction $\gamma(\cdot)$ sont assez peu restrictives
- ► Elles sont verifiees pour des fonctions non lineaires continues et derivables par morceaux, a croissance au plus polynomiale
- ▶ Ceci signifie qu'ils existent $m \in \mathbb{N}$ et $A \in \mathbb{R}_+$ tels que :

$$\forall z \in \mathbb{R}, |\gamma(z)| \leq A |t|^m.$$

Lemme de Stein

En appliquant le lemme de Stein, on peut écrire l'équation (3) :

$$\epsilon^{2}(\mathbf{x}) = \sigma^{2} + \mathbf{E}[\gamma(\mathbf{Y})^{2}] + 2\sigma^{2}\mathbf{E}[\gamma'(\mathbf{Y})]$$
$$= \mathbf{E}[J(\mathbf{Y})]$$

οu

$$J(Y) = \sigma^2 + 2\sigma^2 \gamma'(Y) + \gamma^2(Y)$$

Ce résultat est valable même si Y = X + Z avec X v.a. indépendante de Z

Application aux coefficients d'ondelettes

- ► Les coefficients d'ondelettes du signal sont des v.a. de variance finie, et pour un certain niveau j, i.i.d.
- Les coefficients du bruit, $c_j^b[k]$, sont i.i.d., $\mathcal{N}(0,\sigma_j^2)$ indépendants du signal
- On utilise le seuillage doux, qui vérifie les hypothèses du lemme de Stein, avec

$$\gamma(z) = \begin{cases} \chi & \text{si } z \le -\chi, \\ -z & \text{si } |z| \le \chi, \\ -\chi & \text{si } z \ge \chi \end{cases}$$

54/69

Application aux ondelettes

Estimation de l'EQM : $\epsilon_i^2(x) = E[J(c_i^r[k])]$ avec :

$$J(z) = \sigma_j^2 + 2\sigma_j^2 \gamma'(z) + \gamma^2(z)$$
$$= \begin{cases} z^2 - \sigma_j^2 & \text{si } |z| \le \chi \\ \chi^2 + \sigma_j^2 & \text{si } |z| > \chi \end{cases}$$

et enfin:

$$\hat{\epsilon}_{j}^{2}(x) = \frac{1}{2^{-j}K} \sum_{k=0}^{K2^{-j}-1} J(c_{j}^{r}[k])$$

Il nous reste à trouver le seuil χ qui minimise $\hat{\epsilon}_i^2$

Algorithme

On ordonne les coefficients d'ondelette :

$$A = |c_j^r[0]| \ge |c_j^r[1]| \ge \ldots \ge |c_j^r[K2^{-j} - 1]| = B$$

et on considère le trois cas : $\chi > A$, $A \ge \chi \ge B$, et $\chi < B$.

- ightharpoonup Dans le premier, l'EQM ne dépende pas de χ
- ▶ Dans le deuxième, $\exists k_0$ tel que $|c_i^r[k_0] \le \chi < |c_i^r[k_0 1]$, alors :

$$2^{-j}K\hat{\epsilon}_{j}^{2} = k_{0}\chi^{2} + (2k_{0} - K2^{-j})\sigma_{j}^{2} + \sum_{k=k_{0}}^{K2^{-j}-1} (c_{j}^{r}[k])^{2}$$

et le minimum est atteint pour $\chi = |c_j^r[k_0]|$

▶ Dans le troisième, $\hat{\epsilon}_i^2 = \chi^2 + \sigma^2$ et le minimum est pour $\chi = 0$

Algorithme

▶ En conclusion la valeur optimum de χ doit être cherchée dans :

$$\{|c_j^r[0]|, |c_j^r[1]|, \ldots, |c_j^r[K2^{-j}-1]|, 0\}$$

- On peut faire une recherche exhaustive.
- Calcul du risque par une equation récursive
- Complexité total : O(2^{-j}K) pour la recherche et O(2^{-j}K log(2^{-j}K)) pour l'ordonnancement
- Avantage : seuil adapté automatiquement aux données

57/69

La méthode SURE

Seuil Hybride

- Si la puissance du signal, à un niveau de résolution donnée est trop faible par rapport au bruit, l'estimateur SURE n'est pas fiable.
- Alors on utilise pour ce niveau le seuillage universel
- Estimateur de la puissance du signal :

$$\overline{(c_j^s)^2} = \frac{1}{K2^{-j}} \sum_{k=0}^{K2^{-j}-1} (c_j^r[k])^2 - \sigma_j^2$$

Niveau critique de puissance :

$$\lambda_{j,\mathcal{K}} = rac{\sigma_j^2}{\sqrt{(\mathcal{K}2^{-j})}} \left[\ln(\mathcal{K}2^{-j})
ight]^{3/2}$$

Seuil Hybride

En conclusion on utilise le seuil "hybride":

$$\chi_{j,\mathrm{H}} = egin{cases} \chi_{j,\mathrm{SURE}} & \mathrm{si} \ \overline{(\emph{\emph{c}}_{j}^{s})^{2}} > \lambda_{j,\mathcal{K}} \ \chi_{j,\mathrm{U}} & \mathrm{sinon} \end{cases}$$

où on rappele que le seuil universel vaut :

$$\chi_{j,\mathrm{U}} = \sigma_j \sqrt{2 \ln K 2^{-j}}$$

Exemple de débruitage

Signal original (a), bruité, RSB = 18.86 dB (b), après seuillage universel, RSB = 23.80 dB (c), débruité à l'aide de *sureshrink*, RSB = 27.45 dB (d).

- ightharpoonup On observe Y = X + Z, X v.a. avec densité de probabilité p_X et Z v.a. avec densité de probabilité μ , indépendante de X
- Disposant d'une observation y de la v.a. Y, on choisi la valeur de X la plus probable :

$$\hat{x} = \arg\max_{x} p_{X}(x|Y=y)$$

C'est l'estimateur **MAP** (Maximum *A Posteriori* probability)

Approche Bayésienne

Estimateur MAP

$$\hat{x} = \arg\max_{x} p_X(x|Y=y)$$

En utilisant la règle de Bayes, on a :

$$p_X(x|Y = y) = \frac{p_Y(y|X = x)p_X(x)}{p_Y(y)} = \frac{\mu(y - x)p_X(x)}{p_Y(y)}$$

L'estimateur MAP est alors équivalent à :

$$\hat{x} = \arg\min_{\mathbf{y}} [-\ln(\mu(\mathbf{y} - \mathbf{x})) - \ln(p_X(\mathbf{x}))]$$

La plupart des *a priori* raisonnables conduisent à des estimateurs de type seuillage

Approche Bayésienne

Hypothèses

- Bruit et signal mutuellement indépendants
- Leurs coefficients d'ondelettes sont des v.a. indépendantes
- Au niveau de résoluton j, bruit $\mathcal{N}(0, \sigma_j^2)$ et les coefficients du signal sont i.i.d. de loi p_j
- Si la base TO est bien adaptée au signal, on s'attend à avoir c_j^s[k] nul ou très petit avec forte probabilité, et grand avec faible probabilité

Approche Bayésienne

Loi Laplacienne

$$\rho_j(u) = \frac{1}{\sqrt{2}\eta_j} \exp\left(-\frac{\sqrt{2|u|}}{\eta_j}\right)$$

On montre que:

L'estimateur MAP correspondant à une distribution *a priori* Laplacienne centrée, d'écart-type $\eta_j > 0$ et à une loi de bruit $\mathcal{N}(0, \sigma_j^2)$ est le seuillage doux de seuil $\chi_{j,\mathrm{B}} = \sqrt{2}\sigma_j^2/\eta_j$.

Approche Bayésienne

Loi gaussienne généralisée

 $\mathcal{GG}(\alpha_j, \beta_j)$, $(\alpha_j, \beta_j) \in (\mathbb{R}_+^*)^2$, définie par :

$$p_j(u) = \frac{\beta_j}{2\alpha_j\Gamma(1/\beta_j)} \exp\left(-\frac{|u|^{\beta_j}}{\alpha_j^{\beta_j}}\right)$$

où Γ est la fonction gamma.

Si $\beta_j \leq 1$, l'estimateur MAP correspondant à un a priori $\mathcal{GG}(\alpha_j,\beta_j)$ et à une loi de bruit $\mathcal{N}(0,\sigma_j^2)$ est un estimateur de seuillage dans le sens où

$$c_j^{\hat{\mathbf{s}}}[k] = 0 \iff |c_j^r[k]| \leq \chi_{j,\mathbf{B}}$$

οù

$$\chi_{j,\mathrm{B}} = \frac{2-\beta_j}{2(1-\beta_j)} \Big(\frac{2\sigma_j^2(1-\beta_j)}{\alpha_j^{\beta_j}}\Big)^{1/(2-\beta_j)} \; .$$

Oracles Minimax et Seuil universel SURE Bayes

Approche Bayésienne

Loi gaussienne généralisée

Quand

$$|c_i^r[k]| \ge \chi_{j,\mathrm{B}}$$
 ou $\beta_j > 1$

la valeur estimée du coefficient de signal est un rétrécissiment (shrinkage) de la valeur observée, definiée par une equation implicite

Pour β_j < 1, l'estimateur obtenu s'apparente plutôt à un seuillage dur, car il présente des discontinuités en proximité du seuil

Approche Bayésienne

Loi Bernoulli-gaussienne

 $q_i[k]$: variables aléatoires "cachées" binaires, indépendantes et telles que chaque composante $c_i^s[k]$ de s(t) est :

- ▶ porteuse d'information, si $q_i[k] = 1$: $P(q_i[k] = 1) = \epsilon_i$
- ▶ nulle, si q_i[k] = 0

Quand $q_i[k] = 1$, on suppose que $c_i^s[k]$ est gaussien, centré, de variance σ_i^2

Approche Bayésienne

Loi Bernoulli-gaussienne

Estimation du signal

Estimateur du Maximum A Posteriori de $q_i[k]$:

$$\hat{q}_j[k] = \left\{ egin{array}{ll} 1 & ext{si } |c_j^r[k]| > \chi_{j, ext{B}}, \ 0 & ext{sinon} \end{array}
ight.$$

seuil $\chi_{i,B} \geq 0$:

- dépend de σ^2 , σ_i^2 et ϵ_i
- indépendant de la durée du signal

$$c_j^{\hat{\mathbf{s}}}[k] = \begin{cases} \frac{\sigma_j^2}{\sigma^2 + \sigma_j^2} c_j^r[k] & \text{si } \hat{q}_j[k] = 1 \\ 0 & \text{sinon} \end{cases}$$

Oracles Minimax et Seuil universel

SURE

Bayes

Approche Bayésienne

Détermination des paramètres du modèle a priori

Le problème principale est de trouver les paramètres (ϵ_i et σ_i^2)

- utilisation des méthodes itératives (maximum de vraisemblance généralisé, algorithme EM, méthodes MCMC,...)
- compromis performance/complexité

