AutoML: Gaussian Processes

Covariance Functions for GPs

<u>Bernd Bischl</u> Frank Hutter Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Covariance function of a GP I

The marginalization property of the Gaussian process implies that for any set of input values, the corresponding vector of function values is Gaussian:

$$oldsymbol{f} = \left[f\left(\mathbf{x}^{(1)}\right), \dots, f\left(\mathbf{x}^{(n)}\right) \right] \sim \mathcal{N}\left(oldsymbol{m}, oldsymbol{K}\right).$$

- ullet The covariance matrix $m{K}$ is constructed according to the chosen inputs $ig\{\mathbf{x}^{(1)},\dots,\mathbf{x}^{(n)}ig\}$.
- Each entry K_{ij} is computed by $k\left(\mathbf{x}^{(i)},\mathbf{x}^{(j)}\right)$.
- Technically, to be a valid covariance matrix, K needs to be positive semi-definite for **every** choice of inputs $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}\}$.
- A function $k(\cdot, \cdot)$ that satisfies this condition is called **positive definite**.

Covariance function of a GP II

 Recall that the purpose of the covariance function is to control to which degree the following condition is fulfilled:

If $\mathbf{x}^{(i)}$ and $\mathbf{x}^{(j)}$ are close in the \mathcal{X} -space, their function values $f(\mathbf{x}^{(i)})$ and $f(\mathbf{x}^{(j)})$ should be close in \mathcal{Y} -space.

- $\mathbf{\hat{y}}$ Closeness of $\mathbf{x}^{(i)}$ and $\mathbf{x}^{(j)}$ in the input space \mathcal{X} is measured by $d = \mathbf{x}^{(i)} \mathbf{x}^{(j)}$.
- $\mathbf{\hat{V}}$ \mathbf{K}_{ij} is the covariance of $f(\mathbf{x}^{(i)})$ and $f(\mathbf{x}^{(j)})$, and **stationary** covariance functions are those in which the following holds:

$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = k(\boldsymbol{d})$$

Covariance function of a GP: Example I

- Let $f(\mathbf{x})$ be a GP with $k(\mathbf{x}, \mathbf{x}') = \exp(-\frac{1}{2} \|\mathbf{d}\|^2)$ where $\mathbf{d} = \mathbf{x} \mathbf{x}'$.
- Consider two points $\mathbf{x}^{(1)} = 3$ and $\mathbf{x}^{(2)} = 2.5$. To investigate how correlated their function values are, compute their correlation!

Covariance function of a GP: Example II

• Assume that we observe a value of $y^{(1)}=-0.8$. Under the said assumption for the Gaussian process, the value of $y^{(2)}$ should be close to $y^{(1)}$.

Covariance function of a GP: Example III

- ullet Now, let us take a new point ${f x}^{(3)}$ which is not too close to ${f x}^{(1)}$.
- ullet Their function values should not be so correlated. That is, $y^{(1)}$ and $y^{(3)}$ are probably far away from each other.

Sampling from a GP: Covariance Function

Let us draw 10 functions from a Gaussian process prior with the squared exponential covariance function but with two different values of ℓ , also called the characteristic length-scale.

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2\ell^2} \|\mathbf{x} - \mathbf{x}'\|^2\right)$$

Covariance Functions

Three types of properties are commonly used in covariance functions:

- k is **stationary** if its returning values depend on $d = \mathbf{x} \mathbf{x}'$ and is denoted by k(d).
- k is **isotropic** if its returning values depend on $r = \|\mathbf{x} \mathbf{x}'\|$ and is denoted by k(r).
- k is a **dot product** if its returning values depend on $\mathbf{x}^T\mathbf{x}'$.

- Isotropy implies stationarity.
- Isotropic functions are rotationally invariant.
- Stationary functions are translationally invariant:

$$k(\mathbf{x}, \mathbf{x} + \boldsymbol{d}) = k(\boldsymbol{0}, \boldsymbol{d}) = k(\boldsymbol{d})$$

Commonly Used Covariance Functions I

Name	$k(\mathbf{x}, \mathbf{x}')$
constant	σ_0^2
linear	$\sigma_0^2 + \mathbf{x}^T \mathbf{x}'$
polynomial	$(\sigma_0^2 + \mathbf{x}^T \mathbf{x}')^p$
squared exponential	$\exp(-rac{\ \mathbf{x}-\mathbf{x}'\ ^2}{2\ell^2})$
Matérn	$ \frac{1}{2^{\nu}\Gamma(\nu)} \left(\frac{\sqrt{2\nu}}{\ell} \ \mathbf{x} - \mathbf{x}'\ \right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}}{\ell} \ \mathbf{x} - \mathbf{x}'\ \right) $
exponential	$\exp\left(-\frac{\ \mathbf{x}-\mathbf{x}'\ }{\ell}\right)$

 $K_{
u}(\cdot)$ is the modified Bessel function of the second kind.

Commonly Used Covariance Functions II

- Some random functions drawn from Gaussian processes with a Squared Exponential Kernel (left), Polynomial Kernel (middle), and a Matérn Kernel (right, $\ell=1$).
- The choice of the hyperparameter determines the "wiggliness" of the function.

