MATHEMATICS 271 WINTER 2015 Practice Problems 3

For each of the statements from 1 to 10, prove or disprove the statement.

- 1. $\forall A \subseteq \mathbb{Z}, \exists B \subseteq \mathbb{Z} \text{ so that } 1 \in B A.$
- 2. $\forall A \subseteq \mathbb{Z}, \exists B \subseteq \mathbb{Z} \text{ so that } 1 \notin B A.$
- 3. For all sets A, B and C, if $A \cup B = C$ then $C \in \mathcal{P}(A) \cup \mathcal{P}(B)$.
- 4. For all sets A, B and $C, (A \cup B) \cap C \subseteq A \cup (B \cap C)$.
- 5. For all sets A, B and $C, A \cup (B \cap C) \subseteq (A \cup B) \cap C$.
- 6. For all sets A, B and C, if $A \times B = A \times C$ then B = C.
- 7. For all sets A, B and C, if $A B \subseteq C$ then $A C \subseteq B$.
- 8. For all sets A, B and C, if $A \cap B \subseteq C$ and $B \cap C \subseteq A$ then $C \cap A \subseteq B$.
- 9. For all sets A, B and C, if $A (B \cap C) = \emptyset$ then $A C \subseteq B$.
- 10. For all sets A, B and C, if $A C \subseteq B$ then $A (B \cap C) = \emptyset$.
- 11. You are given that A and B are arbitrary subsets of the set \mathbb{Z} of all integers such that $A \cap B = \{1\}.$
- (a) Find an element of $A \times B$. Explain why it is an element of $A \times B$.
- (b) Find an element of the complement $(A \times B)^c$. (Here, assume the universal set is $\mathbb{Z} \times \mathbb{Z}$.) Explain.