DESCrack

Programmazione di Sistemi Multicore – a. a. 2019-2020

Stefano Scannavini

DES: breve storia

- Sviluppato da IBM nel 1973
- Diventò standard nel 1976
- Pubblicato nel 1977 come FIPS 46
- Riconfermato nel 1983, 1988, 1993, 1999
- Attacco bruteforce nel 1998
- Sostituito da AES nel 2002
- Ritirato nel 2005

DES: caratteristiche principali

- Algoritmo a chiave simmetrica
 - stesso algoritmo per cifratura e decifratura
- Cifrario a blocchi
 - messaggio diviso in blocchi (di 64 bit)
 - diverse modalità: ECB, CBC, ...
- Pensato per realizzazione hardware

DES: flusso principale

DES: generazione sottochiavi

DES: funzione di cifratura

DES: chiave

- Lunghezza chiave limitata
 - 64 bit
- Bit di parità riducono lunghezza effettiva
 - da 64 bit a 56 bit
- Chiave ASCII-only è ancora più corta
 - da 56 bit a 48 bit

DESCrack

Ipotesi:

- modalità ECB, blocco singolo
- padding di zeri a destra con chiavi "corte"
- N = |alfabeto|

Generazione chiave:

chiave[i] = alfabeto[($v \mod N^{i+1}$) / N^{i}] $\forall i = 0...7$

DESCrack con MPI

- Ipotesi aggiuntiva:
 - n° processi < N
- Generazione chiave:
 - stessa funzione
 - ogni processo ha un proprio intervallo per v

DESCrack con CUDA

Generazione chiave:

```
chiave[0] = alfabeto[v] con v = 0..N
chiave[1] = alfabeto[threadId.x]
chiave[2..4] = alfabeto[blockId.* mod N]
chiave[5..7] = alfabeto[blockId.* / N]
```

Bonus: DESCrack con OpenMP

- Generazione chiave:
 - come MPI, ma...
 - ...la libreria si occupa di suddividere il task
- Non è possibile interrompere l'iterazione

Basta l'aggiunta di una direttiva!

Bonus: DESCrack con Pthreads

Generazione chiave:

- come OpenMP, ma...
- ...bisogna esplicitare tutti i passaggi

Confronto prestazioni

	8 bit	16 bit	24 bit	32 bit	48 bit
Base	0,001 s	0,013 s	1,154 s	151,931 s	19858,328 s
Threads	0,001 s (+0,00)	0,003 s (+4,33)	0,303 s (+3,81)	39,819 s (+3,82)	5254,081 s (+3,78)
OpenMP	0,001 s (+0,00)	0,004 s (+3,25)	0,303 s (+3,81)	40,004 s (+3,80)	5258,905 s (+3,78)
MPI	0,102 s (-102,00)	0,114 s (-8,77)	0,425 s (+2,72)	40,219 s (+3,78)	5274,099 s (+3,77)
CUDA	0,286 s (-286,00)	0,288 s (-22,15)	0,323 s (+3,57)	3,963 s (+38,34)	470,640 s (+42,19)

CPU: INTEL i5-3570k GPU: NVIDIA Geforce GTX 770

Possibili miglioramenti

- Cambiare implementazione DES
 - libdes, inclusa in OpenSSL
- Togliere limitazione su versione MPI
 - modifica al calcolo dell'intervallo di valori
- Codice DEVICE su file unico
 - leggero aumento di prestazioni
- Implementazione su FPGA!

Fonti

- https://it.wikipedia.org/wiki/Data_Encryption_Standard#Cronologia
- https://csrc.nist.gov/CSRC/media/Publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf
- http://page.math.tu-berlin.de/~kant/teaching/hess/krypto-ws2006/des.htm
- https://www.open-mpi.org/doc/current/
- https://docs.nvidia.com/cuda/archive/10.2/
- https://developer.nvidia.com/blog/separate-compilation-linking-cuda-device-code/
- https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
- https://crack.sh
- https://cmake.org/cmake/help/latest/
- https://developer.nvidia.com/blog/building-cuda-applications-cmake/
- https://colab.research.google.com