厦门大学《概率统计 I》试卷

主考教师: 试卷类型: (A卷)

解题过程可能用到如下数据: $\Phi(1.36) = 0.9131$, $\Phi(1.65) = 0.9500$, $\Phi(1.96) = 0.9750$,

 $\Phi(2.326) = 0.99 , \quad \chi_{0.05}^2(1) = 3.843 , \quad \chi_{0.025}^2(1) = 5.025 , \quad \chi_{0.05}^2(2) = 5.992 , \quad \chi_{0.025}^2(2) = 7.378 , \quad \chi_{0.05}^2(3) = 7.815 , \quad \chi_{0.025}^2(2) = 7.378 , \quad \chi_{0.025}^2(3) = 7.815 , \quad \chi_$

 $\chi^2_{0.025}(3) = 9.348$, $\chi^2_{0.025}(10) = 20.483$, $\chi^2_{0.975}(10) = 3.247$, $\chi^2_{0.025}(9) = 19.022$, $\chi^2_{0.975}(9) = 2.7$,

 $\chi^2_{0.05}(10) = 18.307$, $\chi^2_{0.05}(9) = 16.919$, $t_{0.025}(10) = 2.2281$, $t_{0.05}(10) = 1.8125$, $t_{0.025}(9) = 2.2622$,

 $t_{0.05}(9) = 1.8331, \quad t_{0.025}(8) = 2.3060, \quad t_{0.05}(8) = 1.8595, \quad F_{0.05}(9,3) = 8.81, \quad F_{0.025}(9,3) = 14.5, \quad F_{0.025}(9,3) = 14.5,$

 $F_{0.05}(3,9) = 3.86$, $F_{0.025}(3,9) = 5.08$

分数	阅卷人

一 1、(12分)设某电子元件的寿命服从均值为100小时的指数分布,寿命超过200小时的电子元件属于一等品。从大批该电子元件中任取1000件,问其中一等品超过150件的概率是多少? (利用中心极限定理计算)

碗:电子无好为一等品四概率为: €-2 ≈ 0.1353

设1000件中该电子元件四一年品数为X,则

X~ (1000, 0.1353)

$$|>\{ \times > 150 \}$$

$$|> \{ \frac{\times -1000 \times 0.1353}{\sqrt{1000 \times 0.1353 \times 0.864}} > 1.36 \}$$

$$|> = 1 - \boxed{1.36}$$

$$|> 0.0869$$

分数	阅卷人

2、 (15分)设随机变量 $X \sim U(-3,3)$,随机变量 Y 的概率密度为

$$f_{Y}(y) = \begin{cases} 3y^{-4}, & y > 1 \\ 0, & 其它 \end{cases}$$
,

而且 X 与 Y 相互独立。记 $Z_1 = X/Y$, $Z_2 = XY$,试求 Z_1 与 Z_2 的相关系数 ρ .

$$\begin{array}{lll}
\widehat{P}_{2} & E z_{1} = E(X) \cdot E(z_{1}) = 0 \\
E(z_{1} \cdot z_{2}) = E(x_{2}) = D(X) + (Ex)^{2} = 3 + 0^{2} = 3 \\
& ((z_{1} \cdot z_{2}) = E(x_{2}) = D(X) + (Ex)^{2} = 3 + 0^{2} = 3 \\
& ((z_{1} \cdot z_{2}) = E(z_{2}) - Ez_{1} \cdot Ez_{2} = 3 \\
& ((z_{1} \cdot z_{2}) = E(z_{2}) - E(z_{2}) - Ez_{1} \cdot Ez_{2} = 3 \\
& ((z_{1} \cdot z_{2}) = E(x_{2}) \cdot E(z_{2}) = 3 \times \frac{3}{4} = \frac{9}{5} \\
& ((z_{1} \cdot z_{2}) = E(x_{2}) \cdot E(z_{2}) = 3 \times 3 = 9 \\
& ((z_{1} \cdot z_{2}) - (Ez_{2})^{2} = \frac{9}{5} - 0^{2} = \frac{1}{5} \\
& ((z_{1} \cdot z_{2}) - (Ez_{2})^{2} = 9 \\
& ((z_{1} \cdot z_{2}) - (Ez_{2})^{2} = 9 \\
& ((z_{1} \cdot z_{2}) - (Ez_{2})^{2} = \frac{3}{3} \\
& ((z_{1} \cdot z_{2}) - (Ez_{2})^{2} = \frac{3}{3}
\end{array}$$

分数	阅卷人	3,	(12分) 已知总体 X 的概率密度	度函数为
			$f(x) = \begin{cases} 2x\theta^{-1} \exp(-x) \\ 0 \end{cases}$	$\{-x^2\theta^{-1}$

其中 $\theta(\theta>0)$ 为未知参数。设 $X_1,X_2,...,X_n$ 是来自总体X的简单随机样本。

$$\frac{1}{12} \cdot \frac{1}{12} \cdot \frac{1}{12}$$

$$\overrightarrow{EO} = \underbrace{\sum_{i=1}^{n} E(x_i^i)}_{n} = E(x^2) = O.$$

即自是中心无偏估计量。

分数	阅卷人

4、(12分)某种内服药有使病人血压增高的副作用,已知血压的增 高服从正态分布。现测得 10 名服用此药的病人的血压,记录血压

18, 27, 23, 15, 18, 15, 18, 20, 17, 19 试分别求药物导致血压增高的均值和标准差的置信水平 95%的置信

区间。

解:
$$\hat{x} = 19$$
, $S^2 = \frac{40}{3} \approx (3.333)$
 $S = 3.65$, $n = 10$, $d = 20.05$.

血压增高均值m 95% 蛋倍区间为
 $(\hat{x} - \frac{S}{5n} t_{5}(n-1))$, $\hat{x} + \frac{S}{5n} t_{5}(n-1))$
 $= (19 - \frac{3.6t}{\sqrt{10}} \times 2.2622, 19 + \frac{3.6t}{\sqrt{10}} \times 2.2622)$.
 $= (16.39, 21.61)$.
亚压增高超速 (6.95%) 蛋保区间为

$$\left(\frac{\sqrt{n-1} S}{\sqrt{x_{0}^{2}(n-1)}}, \frac{\sqrt{n-1} S}{\sqrt{x_{1-\frac{1}{2}}^{2}(n-1)}}\right) \\
= \left(\frac{\sqrt{9} x_{3} \cdot 65}{\sqrt{19.022}}, \frac{\sqrt{9} \times 3 \cdot 65}{\sqrt{2-7}}\right) \\
= \left(2.5\right), 6.66\right).$$

分数	阅卷人

5、(10 分)为比较两种农药残留时间(单位:天)的长短,现分别取 6 块地施甲种农药, 4 块地施乙种农药,经一段时间后,分别测得结果为:

$$\exists$$
: $\overline{x} = 12.35$, $s_1^2 = 3.52$; \angle : $\overline{y} = 10.75$, $s_2^2 = 2.88$

假设两药的残留时间均服从正态分布且方差相等,试问两种农药的残留时间有无显著差异? $(\alpha = 0.05)$?

解: 抱脸 Ho: M=M2, H: M=M2.

检验统计量:

$$t = \frac{\bar{x} - \bar{y}}{S_{w} \cdot \sqrt{\bar{n}_{1} + \bar{n}_{2}}}, \quad \forall S_{w} = \frac{(n_{1} - 1)S_{1}^{2} + (n_{2} + 1)S_{2}^{2}}{n_{1} + n_{2} - 2}$$

拒绝域:

$$\lambda = 0.05$$
, $n_1 = 6$, $n_2 = 4$,

$$S_{W}^{2} = 3.28$$
, $S_{W} = \sqrt{3.28} = 1.81$,

未落入拒绝域, 故.两种农药残留时间无里署差异.

分数	阅卷人

6、(12分) 从同类产品中,任取200批,经质检结果如下表,其中 x_i 表示各批产品中次品数, f_i 表示有 x_i 件次品的批数,试在显著性水平 α =0.05下,检验次品件数X是否服从泊松分布?

x_i	0	1	2	3	4	≥5
f_i	116	56	22	4	2	0

$$\frac{1}{100}$$
: Ho: $\frac{1}{100}$ $\frac{1}{100}$

$$\hat{\lambda} = \hat{\chi} = 0.6$$
, $n = 200$

χ_i	fi	Pi	n pi
0	116	0.5488	109.76
	56	0.3293	65-76
2	22	0.0988	19.76
3	4	0.0198	3.96 [
4	2 / 28	0.003	0.6 24.38
35	0)	0.0003	0.06/

合新后组数为 凡=3,

$$\chi^2 = \frac{2}{\sum_{i=0}^{2} \frac{f_i^2}{h \hat{p}_i}} - n = 2.3$$
 < 3.843 = $\chi^2_{0.05}(1)$

无法拒绝原假设, 故认为今次品件数服从泊松分布

分数 阅卷人

7、(15 分) 某建材实验室做混凝土试验时,考察一定体积混凝土的水泥用量 x (kg) 对混凝土抗压强度 y (kg/cm²) 的影响,测得下列数据:

水泥用量 x	15	16	17	18	19	20	21	22	23	24
抗压强度y	57	58	64	65	63	72	70	72	82	83

计算得 n=10,
$$\sum_{i=1}^{10} x_i = 195$$
, $\sum_{i=1}^{10} x_i^2 = 3885$, $\sum_{i=1}^{10} y_i = 686$, $\sum_{i=1}^{10} y_i^2 = 47784$, $\sum_{i=1}^{10} x_i y_i = 13610$

(1) 求 y 关于 x 的经验回归方程 $\hat{y} = \hat{a} + \hat{b}x$; (2) 检验一元线性回归的显著性 ($\alpha = 0.05$)。

$$\hat{p}\hat{q}: \quad (1), \hat{\chi} = 19.5, \hat{y} = 69.5, \quad n = 10.$$

$$Sxx = \sum_{i=1}^{n} \chi_{i}^{2} - n\bar{\chi}^{2} = 82.5$$

$$Sxy = \sum_{i=1}^{n} x_{i}y_{i} - n\bar{\chi}\bar{y} = 233$$

$$\hat{b} = \frac{Sxy}{Sxx} = 2.8242$$

$$\hat{q} = y - b\bar{\chi} \approx 13.53$$

$$\hat{y} = 13.53 + 2.8242 \chi$$

(2) Ho: b=0, Hi= b +0

落入拒绝域, 故侧好效果显著。

分数	阅卷人

8、(12 分) 粮食加工厂用 4 种不同的方法贮藏粮食,贮藏一段时间后,分别抽样化验,得到粮食含水率的数据如下:

贮藏方法		测量值数据							
I	7.3	8.3	7.7	8.4	8.3				
II	5.8	7.4	7.2						
III	8. 1	6. 5	7. 0						
IV	7. 9	9. 1							

试检验这 4 种不同的贮藏方法对粮食的含水率是否有显著的影响? ($\alpha = 0.05$)

方装潭	平流	自由食	均方	下此
因素	4.8139	3	1.6	3,2
浸克.	45	9	0.5	
总和	9.3139	12)

F=3.2 < 3.86 = Faut (3,9)

未落入拒绝域, 放认为无量者影响.