Spatial R Cheat Sheet

Remote Sensing and GIS functions

book.ecosens.org

last updated: 25th April, 2015

Packages

Packages which are used in the book are listed here, more relevant packages are however available within R

various RS functions RStoolbox for raster data manipulation raster rgdal data import and export, projections for vector data manipulation sp geometry commands rgeos provides Landsat WRS-2 information wrspathrow access to Forest Cover Change product gfcanalysis download and analyse MODIS data modis bfast analyse time-series data

More spatial R packages are listed here: cran.r-project.org/web/views/Spatial.html

Relevant commands are listed below, actual syntax needs to be checked within the manual pages of each command.

species distribution modelling

access and analyse movement data

Raster

dismo

move

Raster data manipulation is similar to a spreadsheet or matrix manipulation but with coordinates and projections, hence various also not explictly spatial commands can be applied. Here we mainly list commands designed for spatial data handling.

Import and export

raster() import (or generate) one raster layer
brick() import raster with multiple layers writeRaster() export raster data to file writeFormats() list of supported raster file types getData() retrieves DEM and climate data directly from the web

Information

print() prints raster metadata click() interactively query raster plot hist() histogram of raster values per layer summary statistics of single layers cellStats() summary() summary statistics extent() extent of raster data set ncell() number of cells (of one layer) nlavers() number of bands names() prints layer names print the data structure str() NAvalue() get or set background values

Visualisation

ggR(), ggRGB()

ggplot2 plotting commands implemented in RStoolbox

plot(), plotRGB()

raster plot and RGB plot. Usefull arguments: y=bandnumber, add=TRUE (overlay multiple plots)

image(), spplot()

alternative plotting commands

RasterVis package

levelplot()
fancy way to plot raster data information
densityplot()
bwplot()
wiolin plot of raster data values
hovmoller()
spatio-temporal plotting options

Projections

projection() query or set projection (does NOT reproject)
projectRaster() reprojects raster to new coordinate system

Data manipulation

Most raster commands will output a file to a chosen location, if filename= is specified. Otherwise it will use temp files.

stack()	stack different raster layers to- gether
addLayer(); dropLayer()	add/drop a raster layer
	crop raster set to smaller extent
crop()	
drawExtent()	draw extent on a plot for e.g. in-
1 D1 0	clusion in crop(raster,extent)
drawPolyon()	draw polygon on a plot - alterna-
	tive to drawExtent()
mask()	masking of background values
merge(); mosaic()	combine raster tiles to a raster with
	larger extent
extract()	extract values from Raster objects,
·	using points or polygons
Basic Operations	
raster*2/raster2	any basic operation, more efficient:
calc()	apply a function to raster data and
overlay()	apply a function which uses multi-
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	ple bands, e.g. to calculate NDVI
focal()	moving window operations
distance()	calculate distance to closest fea-
distance()	ture, e.g. distance to water
+ aai ()	
terrain()	calculate terrain attributes from
1()	DEM, e.g. slope
zonal()	zonal statistics, for classified raster
reclassify()	reclassify raster values
subs()	substitutes values
resample()	resampling of raster to raster
aggregate()	aggregation of cells
disaggregate()	disaggregation of cells
rasterToPoints()	converts a raster to vector points
rasterToPolygons()	converts a raster to polygons
rasterToContour()	converts raster values to contour
[[]]	address specific raster layer, e.g.
11	myRaster[[1]] for first layer of
	myRaster
$x \leftarrow raster > 50$	boolean operation, output is bi-
1 (145001 > 00	nary
raster[raster <= 50] <- 0	replace all values smaller then 50
raster[raster <= 50] <- 0	with 0
1[1 [0] - 0[1 [0]	
r1[r1==50] < r2[r1==50]	values in r1 whose values are equal
	50 are replaced by the correspond-
	ing values of r2
sampleRandom()	random sample from cell values
sampleRegular()	regular sample from cell values
sampleStratified()	stratified sample from cell values
bampioon annea()	stratified sample from cen values

stack different raster layers to-

Vector

stack()

Vector data often come in shp format including a variety of auxiliary files. All of them are relevant and are needed for further analysis. Note that readShapePoly() etc. from package maptools do NOT automatically read projection information from shapefiles. It is recommended to use readOGR() instead.

Import and Export

readOGR() import vector file writeOGR() export vector file ogrDrivers() list supported file formats

Information

plot()

vector plot. add=TRUE overlays
multiple plots, e.g. combine with
raster data

summary()

extent()

extent/bounding box of vector
data

coordinates()

sets spatial coordinates to create
spatial data, or retrieves spatial coordinates

Projections

projection() query or set projection (does NOT reproject)
spTransform() reproject vector data to new coordinate system

Data Manipulation

Check out the functions in the rgeos package, which provides most of the classical vector GIS operations such as buffers etc.

subset()	subset spatial data, based on a condition, e.g. keep only certain points
merge()	Merge a Spatial object having a data.frame (i.e. merging of non-spatial attributes)
over()	spatial overlay for points, grids and polygons
rasterize()	Rasterize points, lines, or polygons
distanceFromPoints()	computes the distance to points, output is a raster
extract()	extracts raster values behind points, lines or polygons
gIntersection()	intersection of vector data sets
gBuffer()	Buffer Geometry
gUnion()	

Spatial Modeling

kfold()

partitioning of data set for training/validation purpose
evaluate()

cross-validation of models with
presence/absence data
randomForest()

maxent()

gam()

fits a randomForest model
executes Maxent from R
fits a GAM

predict()

predicts statistical model into

space (raster)

Movement Analysis

For most of the following commands the data sets need to be converted to a specific format. The commands are mainly provided in the "move" package but same names might exist in other packages. Use move::spTransform() to address the move command. Please consider checking the AniMove R cheat sheet (www.animove.org).

show()	summary of the move object
as()	coerce movement between object
	types
angle()	extracts turning angles from a move
3 ()	object
speed()	extracts speed from a move object
distance()	extracts distance between locations
· ·	from a move object
time.lag()	extracts time lag between locations
30	from a move object
spTransform()	changes the projection of a move ob-
• '	ject to a default of Azimuthal Equi-
	distance
mcp()	calculates minimum convex polygons
- 17	for SpPdf
kernelUD()	calculates a kernel density surface for
·	SpPdf
brownian.bridge()	claculates constant variance Brown-
0 0	ian bridges
brownian.bridge.dyn()	calculates dynamic Brownian bridges
move()	import of movement data sets from
V	movebank.org
moveStack()	stacks multiple animal tracks
split()	splits stack into single move objects
movebankLogin()	stores movebank.org credentials
searchMovebankStudies()	reports the studies in movebank.org
· ·	

Miscellaneous

getMovebankData()

Some useful commands which are related to spatial data analysis.

bank.org

matching search criteria

import tracks directly from move-

$\operatorname{gmap}()$ $\operatorname{geocode}()$	get google maps for your plot geocoding in R
$complete.cases() \\ gridSample()$	returns only cases with no missing values sample point from a grid e.g. just one point per pixel
$ \begin{array}{ll} function()\{\} \\ return() \\ if () \{\} else\{\} \\ for () \{\} \\ while () \{\} \\ \end{array} $	generates a defined functions returns the output of a function if else statement for loop while statement

Further Packages

rNOMADS	data retrievel from NOAA, global and regional weather models
	access and analyse movement data
bcpa	analyse movement tracks

compiled by:

Martin Wegmann (martin.wegmann@ecosens.org) and Benjamin Leutner (benjamin.leutner@ecosens.org) 2015

Compiled for the book "Remote and GIS for Ecologists - Using Open Source Software" book.ecosens.org

