Теория чисел (теория)

Владимир Латыпов donrumata03@gmail.com

Vladimir Latypov donrumata03@gmail.com

Содержание

1 Базовые определения	3
2 Идеалы	3
3 Евклидовы кольца	4

1 Базовые определения

Определение 1.1 (группа): ...

Определение 1.2 (кольцо): ...

3амечание: Будем работать с коммутативными кольцами, преимущественно — с областями целостности

Пример (многочлены):

Определение 1.3 (поле): ...

Определение 1.4 (область целостности): ...

2 Идеалы

Определение 2.1 (идеал): ...

Замечание: Пошло из обобщения понятия делимости, «идеальные делители».

Простой идеал — обобщение простого числа.

Определение 2.2 (Простой идеал): $p \unlhd R$ — простой $\stackrel{\mathrm{def}}{\Longleftrightarrow} ab \in p \Rightarrow a \in p \lor b \in p$.

Эквивалентно: $ab \equiv 0 \Rightarrow a \equiv 0 \lor b \equiv 0$

Определение 2.3 (факторкольцо по идеалу): ...

Определение 2.4 (ОГИ): ...

Определение 2.5 (нётерово кольцо): ...

Теорема 1 (Гаусса о нётеровости кольца многочленов над Гауссовым полем):...

3 Евклидовы кольца

Определение 3.1 (Евклидово кольцо): $d:R\setminus\{0\} o\mathbb{N}_0$, тч

- 1. $d(ab) \ge d(a)$
- **2.** $\forall a, b, b \neq 0 \exists q, r : a = bq + r, r = 0 \lor d(r) < d(b)$

Пример: \mathbb{Z} , F[x]

Теорема 1: Евклидово → ОГИ

Доказательство: Находим a — минимальный по d, если нашёлся не кратный, делим с остатком на a, получаем менльший, противоречие

Определение 3.2 (Факториальное кольцо (UFD — Unique factorization domain)): Область целостности

- Существует разложение на неприводимые множители
- Единственно с точностью до R^* : если $x=u\cdot a_1\cdot\ldots\cdot a_n=u\cdot b_1\cdot\ldots\cdot b_m\Rightarrow m=n\wedge a_i=b_{\sigma_i}\cdot w_i, w_i\in R^*$

Определение 3.3 (Неприводимый элемент): $a \neq 0, a \notin R^*$ $a = bc \Rightarrow b \in R^* \lor c \in R^*$

Свойство 3.3.1: Неприводимость сохраняется при домножении на обратимые $(r \in R^*)$

Определение 3.4 (Простой элемент): $a \mid bc \Rightarrow a \mid b \lor a \mid c \Leftrightarrow aR -$ простой идеал)

Теорема 2: Простой ⇒ неприводимый

Доказательство:

! TODO!

Теорема 3: В факториальном кольце: Неприводимый ⇒ простой

Доказательство:

! TODO!

Следствие 3.1: В факториальном кольце простые идеалы высоты 1 (то есть $0 \le q \le p \Rightarrow q = 0 \lor q = p$) являются главными

Доказательство: Элемент идеала раскладывается на множители, а по простоте какой-то — \in p, тогда $0 \le \underbrace{(a_i)}_{\text{прост.}} \le p \to (a_i) = p$

! TODO!

Помечать разделение не лекции красивыми заголовками (как ornament header в latex)

Теорема 4: Евклидово \Rightarrow ОГИ \Rightarrow Факториальное

! TODO! Перейти на lemmify

Доказательство (Евклидово \rightarrow ОГИ): ...

Определение 3.5: R^* — мультипликативная группа кольца (все, для которых есть обратный, с умножением)

Доказательство (ОГИ $\rightarrow \phi$ акториальное): Схема: следует из двух свойств, докажем оба для ОГИ.

Лемма 3.5: В ОГИ: неприводимый \rightarrow простой

Обобщение ОТА на произвольную ОГА с целых чисел.

Переформулируем: ...

Пусть есть такие элементы, возьмём цепочку максимальной длины, последний — приводим, представим как необратимые, тогда они сами представляются как ..., тогда и он тоже.

! TODO!

Определение 3.6: нснм — начиная с некоторого места

Замечание: Нётеровость: не можем бесконечно делить, так как при переходе к множителям идеалы расширяются, но в какой-то момент стабилизируются.

Теорема 6: R факториально $\Rightarrow R[x]$ — тоже

Пример: F - поле.

 $f \in F[x]$ — неприводим.

 $\frac{F[x]}{(f)}$ — область целостности, но докажем, что поле.

 $\cdot \overline{g} \quad \deg g < \deg f$

 $\cdot\,\,(f,g)=$ 1, то есть $1=fp_1+gp_2$, $\overline{1}=\overline{f}\overline{p_1}+\overline{gp_2}$

 $\dim_F K = \deg f$

Можем построить все конечные поля.

$$\mathbb{F}_{p[x]} \ni f, \deg f = m$$

$$\mathbb{F}_{p^m}[x] \ll = \times \ \frac{\mathbb{F}_{p[m]}}{(f)}$$

Над конечным полем существуют неприводимые многочлены любой степени.