ES710 – Controle de Sistemas Mecânicos

01 – Introdução

Eric Fujiwara

Unicamp – FEM – DSI

Índice

- Índice:
 - 1) Introdução;
 - 2) Controle;
 - Questionário
 - Referências

1.1. Exemplo 1 – Manipulador robótico:

- Um robô deve coletar uma peça na posição x₀ e movê-la até a posição x₁ em um tempo Δt;
- O usuário programa o robô e os motores movem a estrutura mecânica para atingir o objetivo: x(0) = x₀ e x(Δt) = x₁;
- O robô consegue cumprir o objetivo?
- O que acontece se ele errar a posição final?

1.2. Exemplo 2 – Carro autônomo:

- Um veículo autônomo deve seguir uma trajetória especificada pela missão;
- Ademais, ele deve desviar de obstáculos e redefinir o seu plano de ação mediante as condições de tráfego;
- Qual é o erro aceitável em velocidade e distância?

 Como garantir que a velocidade atingida seja igual à especificada? (Como um ser humano faria?)

- 1.3. Exemplo 3 Cirurgia robotizada:
 - Um robô cirurgião pode realizar operações remotas de acordo com os comandos do usuário;
 - Você confiaria em um robô cirurgião?
 - Quais são os requisitos quantitativos que fariam você confiar em um robô cirurgião?

1.4. Sistema mecatrônico:

Diagrama de blocos de um sistema mecatrônico.

1.4. Sistema mecatrônico:

- Seja um sistema (planta ou processo) sujeito a uma perturbação ou ruído;
- Dado um objetivo (entrada), queremos que o sistema responda com a saída igual à entrada desejada;
- A saída é medida por um sensor;
- O controlador calcula a diferença entre a saída e a entrada (erro) e gera um sinal para compensar esta diferença;
- O atuador opera sobre o sistema baseado no comando do controlador e retifica o processo.

2.1. Controle:

- O objetivo do controle é retificar/compensar a saída do sistema dada uma entrada desejada;
- O controle pode ser manual (quando envolve ação humana) ou automático (via hardware/software).

Controle manual	Controle automático
Temperatura de um chuveiro elétrico	Temperatura de um processador
Velocidade de um carro	Velocidade de um veículo autônomo
Velocidade de um motor de indução	Posição de um servo-motor DC

2.1. Controle:

Exemplo: controle de temperatura.

Temperature Controller

A Temperature Controller converts the output from a temperature sensor to the process value and outputs the control output to the controller so the process value will approach the set point.

Controller

A controller is a magnetic switch that turns the current to a heater ON and OFF, a valve that supplies fuel, or some other type of device that is used to heat or cool a furnace, tank, or other controlled object. If the output of the Temperature Controller is a relay output, a relay may also function as the controller.

www.ia.omron.com

2.2. Realimentação:

- Nos exemplos anteriores, a saída atual do sistema é utilizada para compensar a diferença com a entrada, caracterizando um sistema de controle com realimentação (feedback);
- O sistema com realimentação de saída é também denominado controle em malha fechada (closed loop).

2.2. Realimentação:

- Por outro lado, se a informação da saída não é utilizada para regular o sistema, então o controle é em malha aberta (open loop);
- Diversos equipamentos são controlados em malha aberta: máquina de lavar, torradeira, moinho, etc.

2.2. Realimentação:

Comparação entre controle em malha fechada e malha aberta:

Malha fechada	Malha aberta
Melhor precisão, exatidão e estabilidade	Sem garantia de exatidão e estabilidade
Maior custo de implementação, requer sensores	Baixo custo de implementação, não requer sensores
Maior complexidade no projeto, requer dimensionamento do controlador	Menor complexidade no projeto.

2.2. Realimentação:

- Suponha agora que você consiga prever o comportamento do sistema (utilizando modelos analíticos ou probabilísticos) antes que ele seja afetado por uma perturbação;
- Neste caso, o controle será preditivo e antecipará a resposta do sistema, caracterizando um controle feed forward.

2.3. Técnicas de controle:

- Os sistemas estudados neste curso serão lineares, com coeficientes invariantes no tempo, e com única entrada e saída (single-input single-output – SISO). Serão projetados controladores contínuos e discretos;
- Técnicas avançadas de controle permitem regular sistemas com múltiplas entradas e saídas (multiple-input multiple-output – MIMO);
- Outros tópicos avançados envolvem o controle ótimo e robusto, controle preditivo, e controle não-linear
 →Abordados em disciplinas subsequentes no curso.

Questionário

• Questionário:

- 1) O que é controle? Qual é a sua função em um sistema mecatrônico?
- 2) Qual é a diferença entre controle em malha aberta e malha fechada?
- 3) Qual é a diferença entre sistemas SISO e MIMO?
- 4) Identifique exemplos de sistemas de controle em malha aberta e malha fechada no seu dia-a-dia.

Referências

Referências:

- G. F. Franklin et al., Feedback Control of Dynamic Systems, Prentice Hall, 2002.
- S. Nof (Ed.), Springer Handbook of Automation, Springer, 2009.
- K. Ogata, Modern Control Engineering, Prentice Hall, 2002.