

Strojno učenje

Pregled

- Strojno učenje
 - Drseče okno
 - Slikovne značilnice
- Razpoznavanje obrazov
 - Detekcija obrazov
 - Razločevanje obrazov
- Vreče značilnic

Strojno učenje v računalniškem vidu

Strojno učenje

- Sposobnost računalnikov, da se učijo brez eksplicitnega programiranja
 - Razvoj eksplicitnih algoritmov nesmiseln
 - Analiza podatkov
 - Statistično modeliranje
- Terminologija
 - Primer
 - Značilnica
 - Oznaka
 - Učna/testna množica
 - Model

Diskriminativno vs. generativno

Generativni modeli

- Kako so primeri generirani?
- Skupna verjetnost p(x,y) Pogojna verjetnost p(y|x)
- Lahko generiramo primere
 Boljši v diskriminaciji

Diskriminativni modeli

- Kateremu razredu pripada primer?

Bayes

- Mešanice porazdelitev (npr. GMM)
- Skriti Markov Model (HMM)
- Naivni Bayes

- Odločitvena drevesa
- Linearna regresija
- Metoda podpornih vektorjev (SVM)
- Boosting

Razpoznavanje in strojno učenje

- Osnovna ideja učenja
 - Iz učnih slik izluščimo značilnice
 - Vsaka slika je učni vektor (enaka velikost) + razred
 - Strojno učenje za določitev diskriminativnih značilnic
- Razpoznavanje
 - Iz slike izluščimo značilnice
 - Uporabimo naučeni model za napoved razreda za novo sliko

Detekcija vs. kategorizacija

Detekcija

- Kje je objekt na sliki?
- Binarna klasifikacija
- Veliko negativnih primerov

Avtomobil

Kategorizacija

- Kateri kategoriji pripada objekt?
- Več razredov
- Raznolikost

Pa je razpoznavanje res težko?

Primer detekcije stola: sivinska predloga, iskanje maksimuma na podlagi NCC

Pomembna je izbira značilnic

Izbira značilnic za strojno učenje

- Surova slika
- Intenziteta, tekstura
 - Haarovi valčki
 - Lokalni binarni vzorci (LBP)
 - Histogram orientiranih gradientov (HoG)
- Barva
 - Histogrami
 - Imena bary
- Učenje značilnic
 - Vreča besed
 - Podprostori
 - CNN

Različne naloge lahko zahtevajo uporabo različnih značilnic

Terminologija

- Detekcija
 - Število
 - Položaj
- Razločevanje
 - Identiteta
- Klasifikacija
 - spol
 - starost
 - razpoloženje

Detekcija obrazov

- Lep primer delovanja drsečega okna
 - Lepa 2D struktura, ni ozadja
 - Konsistentni položaji pomembnih značilnosti
- Možnost hitre implementacije
 - Integralna slika
 - Kaskada

Učenje z ojačevanjem (boosting)

- Gradimo močan klasifikator s kombiranjem velikega števila šibkih klasifikatorjev
 - Vsak mora biti vsaj malo boljši od naklučja
 - Implementacija šibkih klasifikatorjev je poljubna
- AdaBoost (Freund & Schapire)
- Viola-Jones detektor
 - Haarovi valčki
 - Integralna slika
 - Kaskada

Viola-Jones algoritem 1

- Haarovi valjčki
 - Razlika povprečne vrednosti regij
 - Učinkovito z integralno sliko
- Kaskada
 - Samo 0.01% primerov so obrazi

input image

integral image

Viola-Jones algoritem 2

- 5.000 pozitivnih 350M negativnih primerov
- Kaskada z 38 stopnjami
- Prva stopnja uporablja samo 2 značilnici
- Zadnja stopnja uporablja 6061 značilnic

Razločevanje obrazov

- Določanje identitete
 - Več-razredno odločanje
 - Inkrementalno učenje
 - Veliko odvisne informacije
- Podprostori
 - Slike obrazov kot vektorji
 - Iščemo pod-prostor obrazov
 - PCA: maksimiziramo varianco, nenadzorovano
 - LDA: maksimiziramo razdaljo med razredi
- Tekstura:
 - Lokalni binarni vzorci (LBP)

Podprostori

- Iščemo podobne obraze v podprostoru
- Eigenfaces (PCA)
 - Ohrani vse pomembne lastnosti obrazov
 - Dovolj že 50 lastnih vektorjev
- Fisherfaces (LDA)
 - Ohrani tiste lastnosti, ki ločujejo med razredi

Lokalni binarni vzorci

- Opis teksture
 - Lokalna okolica elementa
 - Binarni opis zakodiran kot byte (0 do 255)
- Prostorska informacija
 - Razrez slike na dele
 - Opis delov s histogrami
 - Konkatenacija

Osnovna ideja

- Izvira iz poizvedovanja po besedilu
- Splošne kategorije objektov
 - Pogosto ni jasne prostorske konsistence
 - Imamo neke ključne regije besede
- Odstranimo relacije med deli
 - Slovar seznam poznanih delov
 - Opisnik histogram pojavitev delov

Kako sestaviti slovar?

- Nenadzorovano učenje
 - Veliko lokalnih opisnikov (SIFT)
 - Končno mnogo besed
 - Gručenje

Strojno učenje

- Uporabimo poljuben diskriminativni model
 - Odločitvena drevesa
 - K-najbližjih sosedov (KNN)
 - Metoda podpornih vektorjev (SVM)

Razpoznavanje objektov

- Drseče okno
 - Za vsako okno določimo značilne dele
 - Klasifikacija delov v besede
 - Klasifikacija histograma besed
- Predlogi regij

Nekaj nasvetov

- Detekcija obrazov
 - Omejitev skale
 - Kaskada (dodatno preverjanje)
 - Obravnavanje več časovnih korakov
- Gradnja detektorja
 - Reprezentativno ozadje
 - Časovno potratno
- Objektivno ocenjevanje razpoznave
 - Učna množica
 - Testna množica
- Omejitve razpoznavanje
 - Splošno razpoznavanje še ni rešeno
 - Sposobnost pada s številom razredov
 - Omejimo problem

Vaje 5: detekcija in razpoznavanje

- Detekcija obrazov
- Razločevanje obrazov
- Učenje detektorja
- Razpoznavanje na podlagi "vreče besed"

Detekcija obrazov (face.cpp)

```
CascadeClassifier cascade;
cascade.load(...);
cascade.detectMultiScale(image, faces, scale, neighbours, flags, min, max);
• image - vhodna slika (sivinska)
• faces - detektirani obrazi (vector<Rect>)
• scale - korak pri spremembi skale (npr. 1.1)
• neighbours - število potrebnih sosednih detekcij
• flags - dodatne nastavitve
• min - velikost najmanjšega zaznanega obraza
• max - velikost največjega zaznanega obraza
```

Razločevanje obrazov (faces.cpp)

```
#include "opencv2/face.hpp"

using namespace cv::face;

Ptr<FaceRecognizer> recognizer = createEigenFaceRecognizer();
Ptr<FaceRecognizer> recognizer = createFisherFaceRecognizer();
Ptr<FaceRecognizer> recognizer = createLBPHFaceRecognizer();
recognizer->train(images, labels)
recognizer->predict(image)

recognizer->update(images, labels)
```

Uporabite lahko slikovno zbirko "faces" http://box.vicos.si/lukacu/apcv/

Učenje detektorja (detector.cpp)

```
Generiranje datoteke s pozitivnimi primeri:

opencv_createsamples -info positive.txt -bg negative.txt -vec
test.vec -w 50 -h 20

Pregledovanje datoteke s pozitivnimi primeri:

opencv_createsamples -vec test.vec -w 50 -h 20

Učenje detektorja:

opencv_traincascade -data model -vec test.vec -bg negative.txt
-w 50 -h 20 -numNeg 2000 -numPos 150
```

Uporabite lahko slikovno zbirko "cars" http://box.vicos.si/lukacu/apcv/

Vreče besed (bow.cpp)

BOWKMeansTrainer trainer(size, terminations, attempts, flags)

- size število besed
- termination ustavitveni kriterij
- attempts število poizkusov
- flags zastavice za K-means algoritem

```
vocabulary = trainer.cluster(features)
```

• features - matrika lokalnih značilnic

BOWImgDescriptorExtractor extractor(descriptor, matcher)

- descriptor opisnik lokalnih značilnic
- matcher računanje razdalj med značilnicami

extractor.compute(image, keypoints, descriptor)

- image slika
- keypoints zaznane značilne točke
- descriptor histogram besed

Strojno učenje

```
Ptr<TrainData> data = TrainData::create(samples, order, labels)
• samples - matrika primerov

    order - urejenost primerov

 • ROW_SAMPLE - vsak učni primer je svoja vrstica
 • COL SAMPLE - vsak učni primer je svoj stolpec
• labels - vektor oznak razredov
Ptr<SVM> classifier = SVM::create(...)
classifier->train(data)
classifier->trainAuto(data)
label = classifier->predict(descriptor)
```

Uporabite lahko slikovno zbirko "caltech10" http://box.vicos.si/lukacu/apcv/

Naloga

- Možnost 1
 - Detekcija obrazov v videu
 - Prepoznavanje vašega lastnega obraza napram drugim obrazom
 - Če ste pred kamero vi, se izpiše pozdravno sporočilo
- Možnost 2
 - Učenje detektorja za poljubno kategorijo objektov
 - Zaznavanje objektov v videu

Reference

- Snov se obravnava pri predmetih
 - Umetno zaznavanje
 - Razvoj inteligentnih sistemov
- http://docs.opencv.org/3.1.0/dd/ded/group_ml.html
- http://docs.opencv.org/3.1.0/d5/d54/group_objdetect.html
- http://docs.opencv.org/3.1.0/db/d7c/group_face.html
- http://docs.opencv.org/3.1.0/de/d24/group_features2d_category.html