2301 COL 202 Tutorial 12.3

Abhinav Rajesh Shripad

TOTAL POINTS

2/2

QUESTION 1

- 1 Problem for Group 3 2/2
 - **√ 0 pts** Correct
 - 2 pts Incorrect

COL 202 Assignment 12

Abhinav Shripad(2022CS11596)

November 2023

1 Problem Statement

We are given a random vector of n distinct numbers. We then determine the maxi- mum of these numbers using the following procedure: Pick the first number. Call it the current maximum. Go through the rest of the vector (in order) and each time we come across a number (call it x) that exceeds our current maximum, we update the current maximum with x. What is the expected number of times we update the current maximum?

2 Solution

Let T_n denote the number of updates we need. We proceed by recursion on the sequence. Consider the sequence a_i i=1,2,...n. Thus the sub-sequence from a_1 to a_{n-1} also has n-1 distinct numbers. Thus it has T_{n-1} expected number of updates. Now the last number will be counted as an update if and only if it is the largest of the sequence till now. It has probability $\frac{1}{n}$. We can see it as if a random de-arrangement of n numbers, the probability that largest will come at last will be $\frac{(n-1)!}{n!} = \frac{1}{n}$. Thus we get the recurrence

$$T_n = T_{n-1} + \frac{1}{n}$$

. Now we can easily see that $T_2 = \frac{1}{2}$ because the second number will be maximum with chances 0.5 (we don't count initialization of max to the first element). Thus we can easily see that

$$T_n = \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

or $T_n = H_n - 1$ where H_n is the n^{th} harmonic number.

1 Problem for Group 3 2/2

- **√ 0 pts** Correct
 - 2 pts Incorrect