Exam Math_104

Rappel de cours

Exercice 1

1.1

Forme Trigonometrique: $re^{j\theta} = r\cos(\theta) + j\sin(\theta)$, avec $r = \sqrt{x^2 + y^2}$ et $\theta = \tan^{-1}(\frac{y}{x})$. Pour $1 + j\sqrt{3}$, r = 2, $\theta = tan^{-1}(\sqrt{3}) = 60$, $2e^{j60} = 2\cos(\frac{\pi}{3}) + j2\sin(\frac{\pi}{3})$. Pour 1 + j, $r = \sqrt{2}$, $\theta = tan^{-1}(1) = 45$, $\sqrt{2}e^{j45} = \sqrt{2}\cos(\frac{\pi}{4}) + j\sqrt{2}\sin(\frac{\pi}{4})$.

1.2

$$Z = \frac{1+j\sqrt{3}}{1+j} = \frac{1+j\sqrt{3})(1-j)}{(1+j)(1-j)} = \frac{1+\sqrt{3}+j(\sqrt{3}-1)}{2}$$
$$r_Z = \sqrt{\frac{(1+\sqrt{3})^2}{4} + \frac{(\sqrt{3}-1)^2}{4}} = \sqrt{2}$$
$$\theta_Z = \tan^{-1}(\frac{\sqrt{3}-1}{1+\sqrt{3}}) = \frac{\pi}{12}$$

1.3

On a, $\frac{1+\sqrt{3}+j(\sqrt{3}-1)}{2} = \sqrt{2}\cos(\theta_Z) + j\sqrt{2}\sin(\theta_Z)$. Donc $\sqrt{2}\cos(\theta_Z) = \frac{1+\sqrt{3}}{2}$ et $\sqrt{2}\sin(\theta_Z) = \frac{\sqrt{3}-1}{2}$.

1.4

$$Z^{1000} = (r_Z e^{j\theta_Z})^{1000} = r_Z^{1000} e^{j1000\theta_Z}$$

$$Z = r_Z^{1000}\cos(1000\theta_Z) + jr_Z^{1000}\sin(1000\theta_Z) = \sqrt{2}^{1000}\cos(\frac{4\pi}{3}) + j\sqrt{2}^{1000}\sin(\frac{4\pi}{3}) = 2^{500}\cos(\frac{4\pi}{3}) + j2^{500}\sin(\frac{4\pi}{3})$$