

Remove

Item 3: Pants

Details

Jorge Haces Fuertes

Item 4: Shirt, blouse

Style: streetwear

Get Outfit

Sergio Madrid Pérez Carlos Turró Alcalá

Item 6: Shoe

Get O

Detail

Item 5: Si

Item 8: SI

Introducción

Armario Virtual Inteligente:

- Identificación y segmentación de todas las prendas en una imágen.
- Clasificación de cada prenda por tipo, color y estilo.
- Recomendación de combinaciones de atuendos.
- Organización visual y estructurada del armario personal.

Trabajos similares

Whering:

- Elimina el fondo de fotos de prendas únicas.
- Etiqueta categoría y color automáticamente.
- Almacena en armario virtual.
- No clasifica el estilo.
- No proporciona recomendaciones.

Descripción de la tarea iMaterialist

iMaterialist (Fashion) 2021 at FGVC8

- **50K** imágenes
- **46** Clases
 - 29 piezas principales
 - 16 complementos
- 294 atributos (no hacemos uso)

Fine-grained segmentation task for fashion and apparel

¿Cual es el input del sistema y su output?

Imagen de entrada

- Clases
- Máscaras de bits

- Pieza de ropa
- Estilo
- Colores

Arquitectura del sistema

Segmentación: YOLOv11 nano

Post-procesamiento:

- Fusionar mangas y cuello con parte superior.
- Unificación de pares: zapatos, calcetines...
- Centrado y escalado de cada prenda.

Colores predominantes:

- Extraer píxeles visibles.
- Aplicar K-Means para agrupar colores.
- Se obtienen los colores predominantes (centroides).

Arquitectura del sistema

Estilos:

- Conjunto de etiquetas predefinidas.
- Modelo CLIP: zero-shot classification.
- Se obtiene una probabilidad para cada estilo: (ej. casual, vintage, sporty)

Recomendación de outifts:

- Se identifica la categoría de la prenda.
- Se determinan los grupos complementarios.
- Se filtran las prendas por grupo.
- Se calcula la similitud estilo-color.
- Se recomiendan las prendas con mayor similitud.

2. Create dataset classifier from label text

$$ext{sim}(t,i) = lpha \cdot \cos(ec{s}_t,ec{s}_i) + eta \cdot \cos(ec{c}_t,ec{c}_i)$$

Diseño experimental

- Fine-tuning YOLO11n: preentrenado con COCO
- 95% Train, 5% Validación
- Conjunto de test no disponible.
- Optimizador SGD(LR = 0.01, momentum = 0.9)
- 100 epochs ≈ 9 horas

Resultados

Epoch	mAP@50	mAP@50-95	Precission	Recall
100	0.3132	0.2000	0.5194	0.3314

Análisis de los resultados.

Resultados correctos Correcta pose

Limitaciones

Demo

Conclusión

- Trabajo sobre tarea iMaterialist, de segmentación de ropa.
- Empleo de modelo Yolo 11 Nano y CLIP.
- Resultados buenos dependiendo de foto y pose.
- Creación de un armario inteligente basado en esta tarea.

Trabajo futuro

- Proporcionar recomendaciones de piezas fuera del armario (catálogo).
- Detección mejorada para **poses** no estándar.
- Mejorar la **precisión** del modelo: mayor tamaño.
- Emplear embeddings visuales para la recomendación de outfits.
- Entrenar un modelo para clasificar estilos.
- Visualizar la ropa sobre una imagen del usuario.

