UC Berkeley · FSDL | Full Stack Deep Learning (2021)

FSDL (2021)·课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

筆记 官方笔记翻译

代码 作业项目解析

视频・B 站 [扫码或点击链接]

https://www.bilibili.com/video/BV1iL411t7jE

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/berkeley-fsdl

深度学习 神经网络

计算机视觉 循环神经网络

可解释性

数据管理

持续集成

迁移学习

Transformer

部署模型

深度神经网络调试

卷积神经网络

监控模型

测试

Awesome Al Courses Notes Cheatsheets 是 ShowMeAI 资料库的分支系列,覆盖 最具知名度的 TOP50+ 门 AI 课程,旨在为读者和学习者提供一整套高品质中文学习笔 记和速查表。

点击课程名称,跳转至课程**资料包**页面,**一键下载**课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏

称为 **AI 内容创作者?** 回复[添砖加瓦]

Lecture 2.A Convolutional Networks

Agenda

- 1. Review of the convolution operation
- 2. Other important operations for ConvNets
- 3. Classic ConvNet architectures

Review of convolutions

- What's a convolutional filter?
- Filter stacks and ConvNets
- Strides & padding
- Filter math
- Implementation notes

5 x 5 patch

...sliding continues...

Flatten Dot product Output

32 x 32 25 x 1 28x28x1

What can a conv filter do?

Let's walk through applying the following 3x3 blur kernel to the image of a face from above.

Below, for each 3x3 block of pixels in the image on the left, we multiply each pixel by the corresponding entry of the kernel and then take the sum. That sum becomes a new pixel in the image on the right. Hover over a pixel on either image to see how its value is computed.

https://setosa.io/ev/image-kernels/

Flatten Dot product Output

32 x 32 x 3 75 75 x 1 28x28x1

Review of convolutions

- What's a convolutional filter?
- Filter stacks and ConvNets
- Strides & padding
- Filter math
- Implementation notes

Input can have multiple channels

Input can have multiple channels

32 x 32 x 3 75 75 x 1 28x28x1

Output can have multiple channels

32 x 32 x 3 75 75 x 10 28x28x10

Convolutional filter stacks

Implication —> we can "stack" conv layers

32 x 32 x 3 28x28x10 24x24x10

Implication —> we can "stack" conv layers

32 x 32 x 3 28x28x10 24x24x10

Questions?

Review of convolutions

- What's a convolutional filter?
- Filter stacks and ConvNets
- Strides & padding
- Filter math
- Implementation notes

 Convolutions can subsample the image by jumping across some locations — this is called 'stride'

Conv2D

Filter = (3, 3)

Stride = (1, 1)

Conv2D

Filter = (3, 3)

Stride = (2, 2)

Conv2D

Filter = (3, 3)

Stride = (3, 3)

Padding

- Padding solves the problem of filters running out of image
- Done by adding extra rows/cols to the input (usually set to 0)
- 'SAME' padding is illustrated here for filter=(3,3) with stride=(2,2)
- Not padding is called 'VALID' padding

Review of convolutions

- What's a convolutional filter?
- Filter stacks and ConvNets
- Strides & padding
- Filter math
- Implementation notes

Conv2D Math

- Input: WxHxD volume
- Parameters:
 - K filters, each with size (F, F)
 - ...moving at stride (S, S)
 - ...with padding P
- Output: W'xH'xK volume
 - W' = (W F + 2P) / S + 1
 - H' = (H F + 2P) / S + 1
- Each filter has (F * F * D) parameters
- K * (F * F * D) total in the layer

Conv2D Math

- Input: WxHxD volume
- Parameters:
 - K filters, each with size (F, F)
 - ...moving at stride (S, S)
 - ...with padding P
- Output: W'xH'xK volume

•
$$W' = (W - F + 2P) / S + 1$$

•
$$H' = (H - F + 2P) / S + 1$$

- Each filter has (F * F * D) parameters
- K * (F * F * D) total in the layer

Commonly set to powers of 2 (e.g. 32, 64, 128)

Conv2D Math

- Input: WxHxD volume
- Parameters:
 - K filters, each with size (F, F)
 - ...moving at stride (S, S)
 - ...with padding P
- Output: W'xH'xK volume
 - W' = (W F + 2P) / S + 1
 - H' = (H F + 2P) / S + 1
- Each filter has (F * F * D) parameters
- K * (F * F * D) total in the layer

• Commonly (5, 5), (3, 3), (2, 2), (1, 1)

Conv2D Math

- Input: WxHxD volume
- Parameters:
 - K filters, each with size (F, F)
 - ...moving at stride (S, S)
 - ...with padding P
- Output: W'xH'xK volume
 - W' = (W F + 2P) / S + 1
 - H' = (H F + 2P) / S + 1
- Each filter has (F * F * D) parameters
- K * (F * F * D) total in the layer

 'SAME' sets it automatically

A guide to convolution arithmetic for deep learning

Vincent Dumoulin¹★ and Francesco Visin²★[†]

 Lots of cool visualizations and comforting equations

Figure 2.6: (Arbitrary padding and strides) Convolving a 3×3 kernel over a 5×5 input padded with a 1×1 border of zeros using 2×2 strides (i.e., i = 5, k = 3, s = 2 and p = 1).

Figure 2.7: (Arbitrary padding and strides) Convolving a 3×3 kernel over a 6×6 input padded with a 1×1 border of zeros using 2×2 strides (i.e., i = 6, k = 3, s = 2 and p = 1). In this case, the bottom row and right column of the zero padded input are not covered by the kernel.

Review of convolutions

- What's a convolutional filter?
- Filter stacks and ConvNets
- Strides & padding
- Filter math
- Implementation notes

Convolution implementation

Conv2D. Input = (5, 5, 3)Filters = 32 of size (3, 3), Stride = (1, 1)

Convolution implementation

Conv2D. Input = (5, 5, 3)Filters = 32 of size (3, 3), Stride = (1, 1)

...sliding continues...

Convolution implementation

3x3 filter, 3-channel input

W_row (32 x 27)

X_col (27 x 9)

Convolution implementation

Conv2D. Input = (5, 5, 3)Filters = 32 of size (3, 3), Stride = (1, 1)

Questions?

Agenda

- 1. Review of the convolution operation
- 2. Other important operations for ConvNets
- 3. Classic ConvNet architectures

Other important ConvNet operations

- Increasing the receptive field (dilated convolutions)
- Decreasing the size of the tensor
 - Pooling
 - 1x1-convolutions

Receptive field: 3x3

Conv2D
Filter =
$$(3, 3)$$

Stride = $(1, 1)$

Conv2D Filter = (3, 3)Stride = (1, 1) Conv2D Filter = (3, 3)Stride = (1, 1)

Original receptive field: 5x5

Conv2D Filter = (3, 3)Stride = (1, 1) Conv2D Filter = (3, 3)Stride = (1, 1)

- Stacking convolutions one after the other increases the original receptive field: two (3, 3) convs get to a (5, 5) receptive field
 - (and tend to perform better than a single (5, 5) conv)
 - (with fewer parameters!)

Dilated Convolution

- Dilated convolutions can "see" a greater portion of the image by skipping pixels
- The (3, 3) 1-dilated convolution illustrated here has a (5, 5) receptive field
- Stacking dilated convolutions up quickly gets to large receptive fields

Other important ConvNet operations

- Increasing the receptive field (dilated convolutions)
- Decreasing the size of the tensor
 - Pooling
 - 1x1-convolutions

Pooling

max pool with 2x2 filters
and stride 2

6	8
3	4

- Subsamples the image through average or max of region
- 2x2 max pooling is most common
- Recently fallen out of favor

1x1 Convolution

- A way to reduce the "depth" dimension of convolutional outputs
- Corresponds to applying an MLP to every pixel in the convolutional output
- Crucial to popular convnet architectures like Inception (GoogleNet)

Questions?

Agenda

- 1. Review of the convolution operation
- 2. Other important operations for ConvNets
- 3. Classic ConvNet architectures

Classic Convnet Architecture: LeNet

Questions?

UC Berkeley · FSDL | Full Stack Deep Learning (2021)

FSDL (2021)·课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

筆记 官方笔记翻译

代码 作业项目解析

视频・B 站 [扫码或点击链接]

https://www.bilibili.com/video/BV1iL411t7jE

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/berkeley-fsdl

深度学习 神经网络

计算机视觉 循环神经网络

可解释性

数据管理

持续集成

迁移学习

Transformer

部署模型

深度神经网络调试

卷积神经网络

监控模型

测试

Awesome Al Courses Notes Cheatsheets 是 ShowMeAI 资料库的分支系列,覆盖 最具知名度的 TOP50+ 门 AI 课程,旨在为读者和学习者提供一整套高品质中文学习笔 记和速查表。

点击课程名称,跳转至课程**资料包**页面,**一键下载**课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏

称为 **AI 内容创作者?** 回复[添砖加瓦]