1. 対応表の作成

十進法	二進法				十六進法
0	0	0	0	0	0
			1		

1) 19(10)

2. 十進法で表した数を二進法で表す

$13_{(10)}$
13

2で割っていき余りを求める

2で割り切れなくなるまで割り、下から数を並べる

 $\underline{A. \quad 1101}_{(2)}$

2) 31(10)

^	一、火火 、	た数を十進法で表す
3.	モンナイン・モー	た数を土地分が表す
	<u> </u>	

例) 1101(2)

1) 1011₍₂₎

2) 1110101₍₂₎

下k桁目の数と 2k-1 を掛けて、 それらの数を足す。

- 1 1 0 1 \times \times \times \times 2^{3} 2^{2} 2^{1} 2^{0} 8 + 4 + 0 + 1 = 13
 - A. $13_{(10)}$
- 4. 二進法で表した数を十六進法で表す
- 例) 111010(2)

下の桁から 4bit ずつ区切る

対応表を見て置き換える

 $1) 1101100_{(2)}$

 $2) 11010110_{(2)}$

A. $3A_{(16)}$

5. 十六進法で表した数を二進法で表す

例) 3A₍₁₆₎

1) B7₍₁₆₎

各桁をバラバラにする

対応表を見て置き換える

A. $111010_{(2)}$

2) 4DF₍₁₆₎

6. 十進法で表した数を十六進法で表す

例) 319(10)

1) $180_{(10)}$

2) 3245(10)

16 で割っていき余りを求める

16で割り切れるまで割り、 下から数を並べる。このとき、 余りの数が二桁の場合は対応 表を見て十六進法にするのを 忘れないこと。

A.
$$13F_{(16)}$$

7. 十六進法で表した数を十進法で表す

例) 13F₍₁₆₎

1) $2A4_{(16)}$

2) A2B₍₁₆₎

下 k 桁目の数と 16^{k-1} を掛けて、それらの数を足す。

A. 319₍₁₀₎

8. 二進法で表した数の加算例) 1 1 0 1 0 1 0 + 1 1 0 1 1 0 0 1 1 0 1 1 1 0	1) 1111 + 101	1 0 1 1 1 1 + 1 0 0 0 1 1 1
9. 十進法で表した数を 8bit 名例)13 ₍₁₀₎	符号付きの二進法で表す 1)19 ₍₁₀₎	2) 31(10)
13 ₍₁₀₎ を二進法で表すと 1101 ₍₂₎ という数になる。 この数に、8bit になるように 頭に0を付加する。		
A. 00001101 ₍₂₎		
1 0. 十進法で表した数を 8b例) -13 ₍₁₀₎	it 符号付きの二進法で表す その 1) -19 ₍₁₀₎	2) -31(10)
13 ₍₁₀₎ を 8bit の符号付き二進 法で表すと 00001101 ₍₂₎ とい う数になる。		
この数の各桁の 0 と 1 を入れ替える(1の補数)。 11110010 _②		
1の補数で求めた数に 1 を加える (2の補数)。 11110011 ₍₂₎		

A. 11110011₍₂₎

11. 各問題の指示通りに論理シフトを行え 例) 00110101 を 2bit 分左へ論理シフトせよ

 2bit 分の論理左シフトということで各 bit を左

へ 2 つ移動する。空白の bit には 0 を入れる。

0

1

1

0

1

1) 00110101 を 1bit 分左へ論理シフトせよ

2) 00110101 を 3bit 分左へ論理シフトせよ

•		,	,	

3) 11010110 を 3bit 分左へ論理シフトせよ

例) 10110101 を 2bit 分右へ論理シフトせよ

1	0	1	1	0	1	0	1
	\	//		//		//	V
0	0	1	0	1	1	0	1

2bit 分の論理右シフトということで各 bit を右 ~2つ移動する空白の bit には 0 を入れる。

4) 00110101 を 1bit 分右へ論理シフトせよ

5) 00110101 を 3bit 分右へ論理シフトせよ

6) 11010110 を 3bit 分右へ論理シフトせよ

1	1				
1	1	;	;	1	}
1					
İ	i				
1	1	1	1		1
!					
İ	i				
1	1				

12. 各問題の指示通りに算術シフトを行え 例) 00110101 を 2bit 分左へ算術シフトせよ

算術シフトの場合、先頭 bit は符号ビットとして扱うので先頭 bit はシフトせず、それ以外の桁をシフトする。シフトを行い空白になったbit は 0 を入れる。

:	:			
!	!			
i	i			
;	:			
:	:			
!	:			
!	!			
i	i			
:	:			
:	:			

	İ		

2) 00110101 を 3bit 分左へ算術シフトせよ

Г				
П				
П				
П				
П				
П				

3) 11010110 を 3bit 分左へ算術シフトせよ

例) 10110101 を 2bit 分右へ算術シフトせよ

算術シフトの場合、先頭 bit は符号ビットとして扱うので先頭 bit はシフトせず、それ以外の桁をシフトする。また右算術シフトの場合のみ、空白になった bit には符号ビットと同じ数を代入する。

4)	00110101	を	1bit 分右へ算術シフトせる
----	----------	---	-----------------

6) 11010110 を 3bit 分右へ算術シフトせよ

'	<i>J</i>	11010	110	ر ع	()] /[I	* JT* //	1 / /	1 6	_
		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>		

13. 次の事象をハフマン符号化し平均符号長を求めよ

	年間確率	符号	bit 数
快晴	20%		
晴れ	40%		
曇り	10%		
雨	25%		
雷	2%		
雪	3%		