EXAMENUL DE BACALAUREAT - 2009 Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele şi specializările, mai puțin specializarea matematică-informatică`

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul efectiv de lucru este de 3 ore.

B. ELEMENTE DE TERMODINAMICA

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \mathrm{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}$. Între parametri

de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$. Exponentul adiabatic este definit prin relația: $\gamma = \frac{C_P}{C_{CV}}$

SUBIECTUL I -

Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect. 1. Știind că simbolurile mărimilor fizice sunt cele utilizate în manualele de fizică, relația de definiție a căldurii

- molare este: $\mathbf{a.} C_{\mu} = \frac{Q}{\Lambda T}$
- $\mathbf{b.} \, C_{\mu} = \frac{\mathsf{Q}}{\upsilon \cdot \Delta T} \qquad \qquad \mathbf{c.} \, \, C_{\mu} = \frac{\mathsf{Q}}{\mu \cdot \Delta T} \qquad \qquad \mathbf{d.} \, \, C_{\mu} = \frac{\mathsf{Q}}{m \cdot \Delta T}$
 - (2p)

2. Știind că simbolurile mărimilor fizice și ale unităților de măsură sunt cele utilizate în manualele de fizică, unitatea de măsură a raportului $\frac{\mu \cdot p \cdot V}{R \cdot T}$ este:

- **b.** kmol
- **c.** ka⁻¹
- **d.** kmol⁻¹ (5p)

3. Dacă un gaz ideal suferă o transformare în care p = aV, a = ct, a > 0, atunci volumul gazului variază după legea:

- **a.** $V = ct \cdot T^{-1}$
- **b.** $V = ct \cdot T^2$
- $\mathbf{c.} V = ct \cdot T$
- **d.** $V = ct \cdot \sqrt{T}$

4. Știind că simbolurile mărimilor fizice sunt cele utilizate în manualele de fizică, în transformarea izotermă a unui gaz ideal este valabilă relația:

- **b.** $L = vR\Delta T$
- **c.** $\Delta U = 0$
- **d.** Q = 0(2p)

5. În diagrama alăturată sunt reprezentate, în coordonate p-T, trei transformări efectuate, la același volum, de mase egale din trei gaze diferite. Relația dintre masele molare ale acestora este:

- **a.** $\mu_1 = \mu_2 = \mu_3$
- **b.** $\frac{1}{\mu_1} < \frac{1}{\mu_2} < \frac{1}{\mu_3}$
- **c.** $\mu_1 < \mu_2 < \mu_3$
- **d.** $\mu_1 = \mu_2 < \mu_3$.

