Függvények bonyolultsága

 $f, g, h: N_0 \to R_+$

- 1. Legyen $(f-g)_+(n) := f(n) g(n)$, ha $f(n) g(n) \ge 0$ és 0 különben. Mutassa meg, hogy $(f-g)_+ = O(f)!$
- 2. Legyen m egy tetszőleges természetes szám és legyen f(n) := g(n), ha n < m, és f(n) := h(n) különben. Mutassa meg, hogy f = O(h)!
- 3. Legyen f(n) értéke n, ha n páros, és n^2 , ha n páratlan. Mit lehet mondani f bonyolultságáról n, illetve n^2 -hez képest?

Nyelvek felismerése

- 1. Felismerhető-e kétszalagos determinisztikus Turing-géppel az $L = \{w \# w^{-1} | w \in \Sigma^*\}$ nyelv, ahol Σ tetszőleges #-ot nem tartalmazó abc, w^{-1} pedig a w szó inverze (azaz például $(abb)^{-1} = bba$)?
- 2. Adjon meg egy egyszalagos determinisztikus Turing-gépet, ami adott abc feletti szavakról eldönti, hogy a hosszuk osztható-e héttel.
- 3. ???

Függvények kiszámítása

Számítsa ki az alábbi függvényeket egyszalagos (determinisztikus) Turing-gépekkel!

- 1. Ha $x \in \{0,1\}^*$, akkor f(x) értéke 0, ha x értéke 0; illetve f(x) = x-1 különben.
- 2. $\Sigma = \{a, b\}$ és $\forall u \in \Sigma^* : f(u) := uu$.

Nemdeterminisztikus Turing-gépek

Adjon meg egy Turing-gépet az $L=\{wuvuz|u,v,w,z\in\Sigma^*\wedge l(u)\geq 1\}$ nyelv eldöntésére!