

ECE 414 RF Circuit Design PROJECT

ENGLISH	ARABIC NAME	ID
NAME		
Abdallah karim	عبدالله كريم مطاوع	2000993
motwea		
Muhannad	مهند احمد محمد	2001715
Ahmad		
Muhammad		

DESIGN PROBLEM:

This project focuses on designing and simulating a complete RF receiver frontend, which includes a Low Noise Amplifier (LNA) followed by a doublebalanced active mixer. The system is designed to operate at the 2.4 GHz ISM band, a common frequency range for wireless communication standards such as Wi-Fi and Bluetooth.

The LNA is responsible for amplifying weak RF signals with minimal added noise. It is designed to achieve a voltage gain greater than 15 dB, a noise figure below 2 dB, and input matching with S11 better than -10 dB.

The mixer performs frequency down conversion, translating the RF signal to an intermediate frequency (IF). It targets a conversion gain above 12 dB, a noise figure below 5 dB, and high linearity, measured by IIP3 and IP1dB, to handle strong interfering signals without distortion.

The entire system is implemented using **tsmc60nm** RF CMOS technology within the Cadence Virtuoso design environment. All active and passive components are selected from the tsmc PDK to ensure compatibility with real-world fabrication constraints.

The final goal is to integrate the LNA and mixer into a complete receiver chain and verify the combined performance. This includes total gain, overall noise figure, and system linearity to ensure the design meets all specified requirements.

PART 1 (LNA DESIGN): "inductive-degenerated LNA"

SCHEMATIC:

Transistors sizing	144u / 60 n
Current mirror sizing	600n / 60n
ID	1.5 mA
VDD	1.2 V

DC OPERATING PIONT:

NOISE FIGURE:

S11:

GAIN (S21):

IP1dB:

IM3 and IIP3:

PART 2 (MIXER DESIGN):

"down-conversion double balanced active mixer"

SCHEMATIC:

DC OPERATING PIONT AND SIZING:

W/L of input pair	192u/60n
W/L of LO devices	192u/60n
gm of input pair	144m
RL	40 ohm
Full steering current	15mA
IF operating point (output voltage)	600mV

Conversion gain versus the LO amplitude at the RF center frequency:

Selecting LO amplitude:

By sweeping output power vs LO amplitude we can choose the value with best gain which is Plo = 5 dBm

This the minimum value as less than that will cause the gain to drop below 12dB

Conversion gain versus RF frequency:

Noise Figure vs RF frequency:

Conversion gain versus the RF amplitude & 1dB compression point:

1dB at (-5.1dBm, -16.1dBm)

IM3 and IIP3:

PART 3 (RF SYSTEM INTEGRATION):

SCHEMATIC:

S11:

CONVERSION GAIN:

NOISE FIGURE:

IP1dB:

IIP3:

