Государственное образовательное учереждение высшего профессионального образования Уфимский государственный авиационный университет

кафедра математики

Теория Вероятности,Математическая Статистика,Теория Случайных Процессов

Конспект лекций Насырова Фарита Сагитовича Уфа, УГАТУ ОНФ, 11 июля 2019 г.

Содержание

1	Дискретная вероятностная модель	4	
	1.1 Закон статистической устойчивости	6	
	1.2 Закон распределения дискретной случайной величины	6	
	1.3 Классическая модель. Классическое определение вероятности	6	
	1.4 Элементы комбинаторики	7	
2	Аксиоматика Колмогорова: алгебры и меры	8	
3	Алгебра, σ -алгебра, монотонные классы	12	
4	Примеры некоторых вероятностных пространств	14	
	4.1 Дискретное вероятностное пространство	14	
	4.2 Пространство $(R, \beta(R), P)$	14	
5	Классификация вероятностных мер	16	
6 Пространства $(R,\beta(R)),$ функции распределения, плотности ј			
	пределения, разложение Лебега	17	
7	Пространства $(R^n, \beta(R^n))$	19	
8	Пространство $(R^{\infty}, \beta(R^{\infty}), P)$	21	
9	Пространство $(R^T, \beta(R^T), P)$	26	
	9.1 Построение вероятностной меры в R^T	27	
10	Случайные величины, простые случайные величины, σ -алгебры	ι,	
	порождённые случайными величинами. Независимость событий	Ĺ.	
	Формулы полной вероятности и Байеса	30	
11	Независимость случайных величин, условия, равносильные неза	. —	
	висимости	31	
12	2 Интеграл Лебега, схема построения, основные теоремы, матема	,–	
	тическое ожидание произведения независимых случайных вели	:-	
	чин	32	

13	Теорема Радона-Никодима, основные неравенства, теорема о за- мене переменных в интеграле Лебега, примеры. Теорема Фубини	33
14	Теоремы о предельном переходе под знаком интеграла, равно- мерно интегрируемые семейства	34
15	Математическое ожидание и дисперсия	35
16	Бернуллевский индикатор случайных событий	36
17	Биномиальное распределение	37
18	Геометричесоке распределение	38
19	Распределение Пуассона и простейший поток событий	39
20	Показательное (экспоненциальное) распределение	40
21	Равномерное распределение на отрезке $\left[a,b\right]$	41
22	Нормальное (Гауссовское) распределение 22.1 Центрирование и нормирование случайной величины	42 42
23	Моменты, корреляция, коэффициент корреляции	44
24	Условное математическое ожидание 24.1 Существование УМО	45 45
25	Условное математическое ожидание, условные распределения, за- дача о наилучшей оценке	
26	Разные виды сходимости случайных величин, характеризация сходимости с вероятностью 1	49
27	Теорема о разных видах сходимости случайных величин, лемма Бореля-Кантелли	51
28	Неравенство Чебышева закон больших чисел	52

29 Характеристические функции и их свойства	55
30 Центральная предельная теорема и теорема Пуассона	56
31 Многомерное нормальное распределение	57

1 Дискретная вероятностная модель

Определение 1 (Случайная величина). Случайный эксперимент, все возможеные значения которого можно отождествить с R называется случайной величиной.

Определение 2 (Случайный вектор). *Случайный эксперимент, все возможные* значения которого можно отождествить с векторами называют **случайным** вектором.

Определение 3 (Случайный процесс). Случайный эксперимент, все возможные значения которого можно считать функциями называется случайным процессом.

Определение 4 (Дискретная случайная величина). Если всех возможных значений $(\xi, \eta, ...)$ случайной величины не более чем счётное множество, такая случайная величина называется **дискретной**.

Пусть дана дискретная случайная величина ξ и все её возможные значения $x_1, ... x_n,$

Определение 5. Элементарные события x_n , происходящие в результате экспериментов ξ , называются исходами.

$$\Omega = \{\omega_1, ..., \omega_n, ...\}$$
 – множество всех элементарных событий.

 $A < \Omega$ — случайное событие, \emptyset — невозможное событие.

Если происходит $A = \{\omega_1, ..., \omega_k\} \Leftrightarrow$ происходит хотя бы одно из элементарных событий, из которых оно состоит.

Определение 6. Событие, которое происходит всегда, называется **достоверным** событием.

Так как любые события являются множествами, над ними можно совершать те же действия, что и над множествами.

$$A+B=A\cup B$$
 – происходит или A или B

$$A \cdot B = AB = A \cap B$$
 – происходят и A и B

$$\bar{A}=\Omega\backslash A$$
 – противоположенное событие (происходит, когда не происходит A).

$$F = \left\{A, \bigcup_n A_n, \bigcap_n A_n\right\}$$
 — множество всех событий, где F — σ -алгебра, то есть, $\xi \to F$.

Вероятность события Чтобы определить вероятность, достаточно знать вероятность элементарных событий $\omega_1, ..., \omega_n, ...$ Им можно сопоставить числа $p_1, ..., p_n, ...$, большие нуля, сумма которых равна единице.

Если $A \in F$ – любое событие, то его вероятность можно посчитать следующим образом:

$$P(A) = \sum_{k:\omega_k \in A} p_k, P(\emptyset) = 0$$

Следовательно, $0 \leqslant P(A) \leqslant 1, P(\Omega) = 1.$

Утверждение 1.1.
$$\forall A, B \Rightarrow P(A+B) = P(A) + P(B) - P(AB)$$

Доказательство.

$$A + B = A \setminus B + B \setminus A + AB \Rightarrow P(A + B) =$$

$$= \underbrace{P(A \setminus B) + P(AB)}_{=P(A)} + \underbrace{P(B \setminus A) + P(AB)}_{=P(B)} - P(AB) =$$

$$= P(A) + P(B) - P(AB)$$

 $P(A+B) \leqslant P(A) + P(B) \Rightarrow P\left(\bigcup_{n} A_{n}\right) \leqslant \sum_{n} P(A_{n})$

Определение 7 (Несовместные события). События, которые не могут произойти одновременно. (А и В несовместны $\Leftrightarrow AB = 0$)

Для несовместных событий вероятность суммы равна сумме вероятностей

$$P(A + B) = \sum_{k:\omega_k \in A + B} p_k = \sum_{k:\omega_k \in A} p_k + \sum_{k:\omega_k \in B} p_k = P(A) + P(B)$$

Если $A_1,...,A_n,...$ – последовательность несовместных событий, то, в силу теоремы о свойствах положительных рядов, $P\left(\bigcup_n A_n\right) = \sum_n P(A_n)$. Также верно что $P(\bar{A}) = 1 - P(A)$, так как $P(A) + P(\bar{A}) = P(A + \bar{A}) = P(\Omega) = 1$

Таким образом по случайному эксперименту ξ строится **дискретное вероятностное пространство** $\xi \to (\Omega, F, P)$, где P(A) – **вероятностная мера** на $F, P(\Omega) = 1$.

1.1 Закон статистической устойчивости

Если есть случайный эксперимент ξ и с ним связано событие A, то можно многократно повторить ξ в одних и тех же условиях и посчитать относительную частоту случайного события $\frac{n_a}{n} \to P(A)$, где n_a – число экспериментов, в которых произошло событие A, а n – общее число экспериментов.

Теория вероятности изучает только те случайные события, для которых справедлив принцип статистической устойчивости.

1.2 Закон распределения дискретной случайной величины

Построим таблицу зависимости p от ξ по правилу $p_n = P(\xi = x_n) = P(\omega_n)$ $\frac{\xi}{p} \begin{vmatrix} x_1 & x_2 & x_3 & \dots & x_n \\ p_1 & p_2 & p_3 & \dots & p_n \end{vmatrix}$ Эта таблица – закон распределения дискретной случайной величины – содержит ту же информацию, что и описание дискретного вероятностного пространства на вероятностной мере.

Каждое дискретное пространство предоставляет всю информацию для дискретной случайной величины.

1.3 Классическая модель. Классическое определение вероятности

Под классической моделью понимается дискретное вероятностное пространство (Ω, F, P) и соответствующий циклический эксперимент, удовлетворяющий следующим свойствам:

- 1. Число элементарных событий конечно
- 2. Все исходы $\{\omega_n\}$ равновероятны, то есть $p_1 = p_2 = ... = p_n = \frac{1}{n}$

$$P(A) = \sum_{k:\omega_k \in A} p_k = \sum_{k:\omega_k \in A} \frac{1}{n} = \frac{1}{n} \underbrace{\sum_{k:\omega_k \in A} 1}_{=n(A)} = \frac{n(A)}{n}$$

n(A) — число выпадений события A, тогда $P(A) = \frac{n(a)}{n}$, где n — общее число экспериментов.

1.4 Элементы комбинаторики

Если сложное действие состоит из k более простых, каждое из которых можно выполнить $n_1, ..., n_k$ способами, то общее число возможных способов выполнить сложное действие равно $N = n_1 \cdot ... \cdot n_k$.

Определение 8. Перестановкой из n элементов (например, чисел от 1 до n) называется всякий упорядоченный набор из этих элементов. Обозначается факториалом. Перестановка также является размещением из n элементов n0 n1.

Определение 9. Сочетанием из n по k элементов называется набор k элементов, выбранных из данных n элементов. Обозначение C_n^k . Наборы, не отличающиеся составом элементов, считаются одинаковыми. Этим сочетания отличаются от размещений.

Определение 10. *Размещением* из n по k элементов называется упорядоченный набор из k различных элементов некоторого n-элементного множества. Обозначается $A_n^k = C_n^k k!$.

2 Аксиоматика Колмогорова: алгебры и меры

 $\{\Omega,F,P\}$ — Вероятностное пространство, где

 Ω – множество произвольной природы,

 $F-\sigma$ -алгебра событий,

P – Вероятность.

Определение 11 (σ -алгебра). $F - \sigma$ -алгебра, если:

- 1. F алгебра
 - $\Omega \in F$
 - $\forall A, B \in F \Rightarrow A + B \in F, AB \in F$
 - $\forall A \in F \Rightarrow \exists ! \bar{A} \in F$

2.
$$A_n \in F \Rightarrow \bigcup_{n=1}^{+\infty} A_n, \bigcap_{n=1}^{+\infty} A_n \in F$$

Определение 12 (Конечно-аддитивная вероятностная мера). P – конечно-аддитивная вероятностная мера, если $\forall A, B \in F$ выполнено:

1.
$$P(\Omega) = 1, P(A) \ge 0$$

2. $A\dot{B} \neq \emptyset$

3.
$$P(A + B) = P(A) + P(B)$$

Определение 13 (Вероятностная мера). Р – вероятностная мера, если

1. Р – конечно-аддитивная вероятность

2.
$$\forall A_1, ..., A_n \in F \Rightarrow A_i A_j = \emptyset, i \neq j$$

Определение 14 (σ -аддитивность). $P(\sum_{i} A_{i}) = \sum_{i} P(A_{i})$

Определение 15 (Несовместные события). События A и B несовместны, если $AB = \emptyset$, т.е. события A и B одновременно произойти не могут, и P(A+B) = P(A) + P(B).

Следствие 2.1.
$$A, B \in F \Rightarrow P(A + B) \in P(A) + P(B) - P(AB)$$

Доказательство. Так как A + B = A|B + AB + B|A,

$$P(A+B) = P(A|B) + P(AB) + P(B|A)$$
, добавим и вычтем $P(AB)$

$$P(A + B) = P(A|B) + P(AB) + P(B|A) + P(AB) - P(AB)$$

Так как $(A|B) \cup AB = A$ и $(B|A) \cup BA = B$, имеем

$$P(A|B + AB) + P(B|A + BA) - P(AB) = P(A) + P(B) - P(AB)$$

Следствие 2.2. $P(\bar{A}) = 1 - P(A)$

Доказательство.

$$\left. \begin{array}{l}
A\bar{A} = \emptyset \\
A + \bar{A} = \Omega
\end{array} \right\} \Rightarrow P(\Omega) = 1 = P(A) + P(\bar{A}) \Rightarrow P(\bar{A}) = 1 - P(A)$$

Следствие 2.3. $A, B \in F \Rightarrow P(A + B) \leq P(A) + P(B)$

Доказательство.

$$P(A + B) = P(A) + P(B) - P(AB) \le P(A) + P(B)$$

Следствие 2.4. $P\left(\bigcup_{n} A_{n}\right) = \sum_{n} P\left(A_{n}\right)$

Пусть a - алгебра, $F-\sigma$ -алгебра, и P - конечно-аддитивная вероятность.

Теорема 2.5. Пусть P – конечно-аддитивная вероятность на a, тогда следующие условия равносильны:

1. $P - \sigma$ -аддитивная

$$\forall i, j \Rightarrow i \neq j, A_i A_j = \emptyset \Leftrightarrow A_1, ..., A_n \in a, P\left(\sum_i A_i\right) = \sum_j P(A_j)$$

2. Р - непрерывна снизу

$$A_n \in a, A_n \subseteq A_{n+1} \Rightarrow \lim_{n \to \infty} P(A_n) = P\left(\bigcup_n A_n\right)$$

3. Р - непрерывна сверху

$$A_n \in a, A_n \supseteq A_{n+1} \Rightarrow \lim_{n \to \infty} P(A_n) = P\left(\bigcap_n A_n\right)$$

4. Р - непрерывна в нуле

$$A_n \in a, A_n \subseteq A_{n+1}, \bigcap_n A_n = \emptyset \Rightarrow \lim_{n \to \infty} P(A_n) = 0$$

Доказательство. Покажем, что $1 \Rightarrow 2 \Leftrightarrow 3 \Rightarrow 4 \Rightarrow 1$:

$$1 \Rightarrow 2$$
: $A_n, A_n \subseteq A_{n+1}$

$$P\left(\bigcup_{n} A_{n}\right) = A_{1} + (A_{2}|A_{1}) + \dots + (A_{n} + 1|A_{n}) + \dots = \lim_{N \to \infty} \left[P(A_{1}) + \sum_{k=1}^{N} P(A_{k+1}|A_{k})\right] = P\left(\bigcup_{n} A_{n}\right) = A_{1} + (A_{2}|A_{1}) + \dots + (A_{n} + 1|A_{n}) + \dots = \lim_{N \to \infty} \left[P(A_{1}) + \sum_{k=1}^{N} P(A_{k+1}|A_{k})\right] = P\left(\bigcup_{n} A_{n}\right) = P\left(\bigcup_{n} A_{n}\right) + \dots + P\left(\bigcup_{n} A_{n}\right) + \dots +$$

имеем сумму вероятностей несовместных событий

$$= \lim_{N \to \infty} \left[P(A_1) + \left(P(A_2) - P(A_1) \right) + \dots + \left(P(A_{N+1}) - P(A_N) \right) \right] = \lim_{N \to \infty} P(A_{N+1})$$

$$2\Rightarrow 3$$
: $P\left(\bigcap_{n}A_{n}\right)=1-P\left(\bigcap_{n}\bar{A_{n}}\right), \bar{A_{n}}\subseteq \bar{A_{n+1}}\Rightarrow A_{n}\supseteq A_{n+1}.$ В силу 2 имеем:

$$P\left(\bigcap_{n} A_{n}\right) = 1 - P\left(\bigcap_{n} \bar{A}_{n}\right) = 1 - \lim_{n} \left(P(\bar{A}_{n})\right) = \lim_{n} \left(1 - P(\bar{A}_{n})\right) = \lim_{n} \left(P(\bar{A}_{n})\right)$$

$$3 \Rightarrow 2: \quad P\left(\bigcup_{n} A_{n}\right) = 1 - P\left(\bigcup_{n} \bar{A}_{n}\right) = 1 - P\left(\bigcap_{n} A_{n}\right)$$
$$A_{n} \supseteq A_{n+1}, \bigcap_{n} \bar{A}_{n} \in a \Rightarrow A_{n} \subseteq A_{n+1}$$

В силу 3 имеем:
$$P\left(\bigcup_n A_n\right) = 1 - \lim_n P(\bar{A_n}) = \lim_n \left(1 - P(\bar{A_n})\right) = \lim_n P(A_n)$$

$$3 \Rightarrow 4$$
: $\bigcap_{n} A_n = \emptyset \Rightarrow \lim_{n} P(A_n) = P(\emptyset) = 0$

 $4 \Rightarrow 1$: В силу конечной аддитивности

$$P\left(\bigcup_{n} A_{n}\right) = P\left(A_{1} + \dots + A_{N} + \bigcup_{k \geqslant N} A_{k}\right) = P(A_{1}) + \dots + P(A_{N}) + P\left(\bigcup_{k \geqslant N} A_{k}\right)$$

$$B_N=\bigcup_{k\geqslant N}A_k, B_N\supseteq B_{N+1}$$
. Т.к. $A_1,...,A_n$ – несовместны, $\bigcap_N B_N=\bigcap_N\bigcup_{k\geqslant N}A_k=\emptyset$

Поэтому,
$$P\left(\bigcup_{n} A_{n}\right) = \lim_{N \to \infty} \left[P(A_{1}) + ... + P(A_{N}) + P(B_{N})\right] =$$

$$=\lim_{N o\infty}\sum_{k=1}^N P(A_k) + \underbrace{\lim_{N o\infty}P(B_N)}_{=0 \; ext{(в случае 4)}} = \sum_{k=1}^\infty P(A_k).$$

3 Алгебра, σ -алгебра, монотонные классы

Дано: $\{A\}$ – набор множеств, $A \in F$;

 $F^* - \sigma$ -алгебра;

 $\sigma(\{A\})\subseteq F^*$, где $\sigma(\{A\})\min \sigma$ -алгебра.

Пример 1. $\forall \{A\} : A \in \Omega \Rightarrow \exists \min \sigma(\{A\}).$

Утверждение 3.1. *Если* a'_1, a'_2 – алгебры, то $a'_1 \cap a'_2$ – алгебра.

 \mathcal{A} оказательство. Возьмём алгебры a_1', a_2' и покажем, что их пересечение также является алгеброй.

$$A, B \in a'_1 \cap a'_2 \Rightarrow \begin{cases} A \in a'_1, B \in a'_2 \\ A \in a'_2, B \in a'_1 \end{cases} \Rightarrow$$

- 1. $(A \cap B) \in a_1'$ и $(A \cap B) \in a_2'$, и, т.к., a_1', a_2' алгебры, $\Rightarrow A \cap B \in a_1' \cap a_2'$
- 2. $(A\Delta B) \in a_1'$ и $(A\Delta B) \in a_2' \Rightarrow (A\Delta B) \in a_1' \cap a_2'$

Получили, что $a_1' \cap a_2'$ – алгебра.

Утверждение 3.2. *Если* $a1, a2 - \sigma$ -алгебры, то $a_1 \cap a_2 - \sigma$ -алгебра.

Доказательство. Теперь покажем, что пересечение σ -алгебр также σ -алгебра.

- 1. Т.к., a_1, a_2 являются алгебрами, $\Rightarrow a_1 \cap a_2$ алгебра.
- 2. $\{C_k\}_{k=1}^{\infty}\subseteq (a_1\cap a_2)\Rightarrow \{C_k\}_{k=1}^{\infty}\subseteq a_1$ и $\{C_k\}_{k=1}^{\infty}\subseteq a_2$. Т.к. a_1 и a_2 алгебры, $\bigcup_{k=1}^{\infty}C_k\in a_1$ и $\bigcup_{k=1}^{\infty}C_k\in a_2, \Rightarrow \bigcup_{k=1}^{\infty}C_k\in (a_1\cap a_2)$.

Таким образом, получили, что $a_1 \cap a_2 - \sigma$ -алгебра.

Следствие 3.1. $A \in F, \{A\}$ – набор событий

$$\sigma(A) = \bigcap_{F^*: \{A\} \in F} F^*, \sigma(\{A\}) \subset F$$

 $\sigma(\{A\})$ – $no\Delta$ - σ -алгебра основной σ -алгебры F .

$$\sigma(\{A\}) = \bigcap_{F^*: \{A\} \in F^*} F^* = \bigcap_{\{A\} \in F^* \subset F} F^*$$

Определение 16. *Набор множееств* M *называется монотонным классом, если:*

1.
$$A_1 \subseteq A_2 \subseteq ... \subseteq A_n \subseteq ..., A_k \in M \Rightarrow \bigcup_k A_k \in M$$
.

2.
$$A_1 \supseteq A_2 \supseteq ... \supseteq A_n \supseteq ..., A_k \in M \Rightarrow \bigcap_k A_k \in M$$
.

Утверждение 3.3. Пусть M_1, M_2 – монотонные классы, тогда $M_1 \cap M_2$ также монотонный класс.

Доказательство. Покажем, что пересечение монотонных классов тоже монотонный класс.

- 1. $\forall C_1, ..., C_n, ... : C_n \subseteq C_{n+1} \Rightarrow C_n \in M_1 \cap M_2 \Rightarrow C_n \in M_1$ и $C_n \in M_2$, тогда $\bigcup_n C_n \in M_1$ и $\bigcup_n C_n \in M_2$, получим $\bigcup_n C_n \in C_1 \cap C_2$.
- 2. $\forall_1, ..., C_n, ... : C_n \supseteq C_{n+1} \Rightarrow C_n \in M_1 \cap M_2 \Rightarrow C_n \in M_1 \bowtie C_n \in M_2 \Rightarrow \bigcap_n C_n \in M_1$ $\bowtie \bigcap_n C_n \in M_2 \Rightarrow \bigcap_n C_n \in M_1 \cap M_2$

Следовательно, $M_1 \cap M_2$ – монотонный класс.

Пример 2. Пусть a – алгебра, $\mu(a)$ – минимальный монотонный класс, содержащий данную алгебру, тогда $\mu(a) = \sigma(a)$.

Теорема 3.2 (Каратиодори). (Ω, a) – измеримое множество, a – алгебра, P – σ -аддитивная вероятность на a, тогда вероятность P можно написать на $\sigma(a)$.

$$P^*$$
 – продолжение на $\sigma(a) \Leftrightarrow \forall A \in a \Rightarrow P^*(A) = P(A)$.

- 1. Если $\{A\}$ набор множеств, то можно построить $\sigma(\{A\})$ $\min \sigma$ -алгебру.
- 2. Если a алгебра, то $\sigma(a)$ $\min \sigma$ -алгебра, содержащая a.
- 3. P(A) конечно-аддитивная на a. Если теорема 1.5 выполняется, то P(A) вероятность на a.
- 4. Если $P-\sigma$ -аддитивная вероятность на a, то её по теореме Каратиодори можно продолжить на $\sigma(a)$.

Примеры некоторых вероятностных пространств 4

A – открытое, либо замкнутое множество,

 Ω – метрическое пространство с некоторой метрикой $\rho(x,y)$.

Определение 17. $\min \sigma$ -алгебра, содержащая все открытые и замкнутые множества, называется **Борелевской** σ -алгеброй $\beta(x)$.

Дискретное вероятностное пространство 4.1

 Ω – некоторое множество.

$$B_k \cap B_{k'} = \emptyset$$
, при $k \neq k'$.

$$F = \sigma(\{B_k\}).$$

$$A \in F \Leftrightarrow A = \bigcup_{k'} B_{k'}$$

$$\Omega = \bigcap B_{k'}, B_k B_{k'} = \emptyset$$
, при $k \neq k'$

$$\Omega = \bigcap_{k'} B_{k'}, B_k B_{k'}^{\kappa} = \emptyset$$
, при $k \neq k'$.
 $A = B_{k_1} + \ldots + B_{k_n} \Rightarrow P(A) = P(B_{k_1}) + \ldots + P(B_{k_n})$

$$P(B_k) = P_k, P_k \geqslant 0, \sum_k P_k = 1.$$

Пространство $(R, \beta(R), P)$ 4.2

 $\rho(x,y) = |x-y|$ – Евклидова метрика на R.

Однако, удобно использовать такую метрику: $\rho(x,y) = \frac{|x-y|}{1+|x-y|}$.

 $\beta(R) - \min \sigma$ -алгебра, содержащая все открытые и замкнутые множества R.

Примеры множеств в $\beta(R)$: (a, b), [a, b], [a, b), (a, b].

Мера на вещественной прямой задается через функцию распределения.

$$F(x) = P((-\infty, x])$$
 – функция распределения меры P .

1.
$$0 \le F(x) \le 1$$

2. F(x) возрастает, т.е., $\forall x_1, x_2 : x_1 \leq x_2 \Rightarrow F(x_1) \leqslant F(x_2)$.

Представим множество $(-\infty, x_2]$ как сумму несовместных множеств:

$$(-\infty,x_2]=(-\infty,x_1]+(x_1,x_2],$$
 тогда $P((-\infty,x_2])=P((-\infty,x_1])+P((x_1,x_2])$

$$F(x_2) = F(x_1) + P((x_1, x_2])$$

$$F(x_2) \geqslant F(x_1)$$

3.
$$P((x_1, x_2]) = F(x_2) - F(x_1)$$

4. Непрерывность справа

$$x_n \downarrow x \Rightarrow F(x_n) \downarrow F(x)$$

 $B_n = (-\infty, x_n]$
 $F(x_n) = P((-\infty, x_n]) = P(B_n)$

Если $x_n \downarrow x$, то

$$\bigcup_{n} B_n = B, B_n \supseteq B_{n+1} \tag{*}$$

В силу непрерывности вероятностной меры

$$\lim_{n \to \infty} P(B_n) = P(\bigcap_n B_n) \stackrel{(\star)}{=} P((-\infty, x])$$

5.
$$F(-\infty) = 0, F(+\infty) = 1$$

 $F(x_n) = P(B_n); B_n = (-\infty, x_n]$
 $F(\infty) = \lim_{n \to \infty} F(x_n).$

Рассмотрим два случая:

(a)
$$x_n \downarrow -\infty$$
;

$$\bigcap_n B_n = \emptyset, \lim_{n \to \infty} F(x_n) = \lim_{n \to \infty} P(B_n) = P(\emptyset) = 0$$

(b)
$$x_n \downarrow +\infty$$
;

$$\bigcup_n B_n = R, \lim_{n \to \infty} F(x_n) = \lim_{n \to \infty} P(B_n) = P(R) = 1$$

5 Классификация вероятностных мер

Определение 18. F(x) – абсолютно непрерывна, если её можно восстановить по производной P(x)

Пример 3.
$$F(x) - F(a) = \int_a^x P(y)dy$$

$$F(x)$$
 — функция распределения, $P(x) = \frac{d}{dx}F(x)$

Определение 19 (Производная Радона-Никодима (Плотность)). Функция распределения F(x) и соответствующая ей вероятностная мера P(x) называются абсолютно-непрерывными, если

$$P(B) = \int_{B} P(y)dy$$

В абсолютно непрерывном случае для задания вероятностной меры и соответсвующей ей функции распределения, достаточно задать плотность P(y):

1.
$$P(Y) \leq 0$$

$$2. \int_{-\infty}^{+\infty} P(y)dy = F(+\infty) = 1$$

Определение 20. Непрерывная неубывающая функция распределенния F(x) называется сингулярной, если F'(x) = 0, при почти всех x.

Теорема 5.1 (Лебега о разложении произвольной функции распределенния).

$$F(x) = p_1 F_d(x) + p_2 F_a(x) + p_3 F_s(x); p_1, p_2, p_3 \ge 0; p_1 + p_2 + p_3 = 1$$

 $F_d(x)$ – дискретная функция распределения

 $F_a(x)$ – абсолютно-непрерывная функция распределения

 $F_s(x)$ – сингулярная функция распределения

6 Пространства $(R, \beta(R))$, функции распределения, плотности распределения, разложение Лебега

$$(R,\beta(R),P)$$

 $\rho(x,y) = |x-y|$ - метрика Евклида. $\rho'(x,y) = \frac{|x-y|}{1+|x-y|}$ - ограниченная метрика.

 $\beta(R)$ - минимальная σ -алгебра, содержащая все ограниченные и замкнутые множества на R (Борелевская σ -алгебра, $\beta(R) = \sigma([a,b])$).

Функция y = F(x) называется **Функцией Распределения**, если:

1.
$$0 \le F(x) \le 1, F(-\infty) = 0, F(+\infty) = 1$$

- 2. F(x) непрерывна справа
- 3. F(x) не убывает

Существует взаимо однозначное соответствие между вероятностными мерами на $\beta(R)$ и Функцией Распределения: p на $\beta(R), A = (-\infty, x] \Rightarrow F(x) = p(A) = p((-\infty, x])$

$$1. \ 0 \leqslant p(A) \leqslant 1 \Rightarrow 0 \leqslant F(x) \leqslant 1$$

$$F(-\infty) = \lim_{x \to -\infty} F(x) = \lim_{n \to -\infty} F(n) = \lim_{n \to -\infty} p((-\infty, n]) = p(\emptyset) = 0, \text{ где}$$
 $\bigcap_{n} B_n = \emptyset$

2. $x_n \downarrow x \Rightarrow$ верно ли что $F(x_n) \downarrow F(x)$? $A_n = (-\infty, x_n]; A = (-\infty, x]; A_n \downarrow, \bigcap_n A_n = A$ Поскольку p непрерывна снизу, то $p(A) = \lim_n p(A_n) \Rightarrow \lim_{x_n \to x+} F(x_n) = F(x)$

3. Сравнение
$$F(x_1)$$
 и $F(x_2)$, при $x_1 \le x_2$
$$F(x_2) = p((-\infty, x_2]) = p((-\infty, x_1]) + \underbrace{p((x_1, x_2])}_{\ge 0} \geqslant F(x_1)$$

Определение 21. p((a,b]) = F(b) - F(a) - мера Лебега-Стилтьеса.

Теорема 6.1 (Радона-Никодима, частный случай). Если p - вероятностная мера на $\beta(R)$, то следующие утверждения равносильны:

1. p - абсолютно непрерывна относительно меры Лебега $\mu:(p<<\mu)$.

2. $\exists p(y)$ - неотрицательная, измеримая функция относительно $\beta(R)$, то есть, $p^{-1}(B) = \{y : p(y) \in B\} \in \beta(R) \ npu \ B \in \beta(R)$.

Виды Функций Распределения

1. **Абсолютно непрерывная** - Можно восстановить функцию по производной $F'(x)=p(x); F(x)=\int\limits_{-\infty}^{x}p(y)dy,$ где p(y) - плотность распределения. $\forall B\in\beta(R)\Rightarrow p(B)=\int\limits_{R}^{-\infty}p(y)dy$

7 Пространства $(R^n, \beta(R^n))$

$$||x-y||^2 = \sum_{k=1}^n |x_k - y_k|^2$$
 - метрика Евклида.

$$||x-y|| = \sum_{k=1}^{n} \frac{1}{2^k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}$$
 - ограниченная метрика.

 $\beta(R^n)$ - минимальная σ -алгебра, содержащая открытые и замкнутые множества $\beta(R^n) = \sigma\left(\prod_{k=1}^n (a_k, b_k]\right) = ... = ... = ...$

Определение 22. Функция $F(x_1, ..., x_n)$ называется многомерной функцией распределения, если:

1.
$$0 < F(\bar{x}) < 1$$

$$F(+\infty) = \lim_{\bar{x} \to +\infty} F(\bar{x}) = 1$$

$$F(-\infty) = \lim_{x \to -\infty} F(\bar{x}) = 0$$

- 2. $F(\bar{x})$ неубывает по каждой из переменных при фиксированных остальных
- $3. \ F(\bar{x})$ непрерывна справа
- 4. $F(\bar{x})=0$, если хотя бы одно из из $x_k=\infty$

Если задана
$$p: F(\bar{x}) = p((-\infty, x_1] \times ... \times (-\infty, x_n])$$

Проверим свойства: (* с предыдущего листа)

 $p((\bar{a},\bar{b}])$ может оказаться меньше нуля. Поэтому нужно еще одно свойство:

5.
$$p((\bar{a}, \bar{b}]) \ge 0$$

$$\Delta_{a_k b_k} = F(x_1, ..., x_n) = F(x_1, ..., x_{k-1}, b_k, x_{k+1}, ..., x_n) - F(x_1, ..., x_{k-1}, a_k, x_{k+1}, ..., x_n)$$
$$p((\bar{a}, \bar{b})) = \Delta a_1 b_1 \Delta a_2 b_2 F(x_1, ..., x_n) \quad \textbf{(1)}$$

Доказательство. Докажем по индукции:

Пусть при n (1) - верно. Рассмотрим n + 1.

$$\Delta a_1b_1...\Delta a_nb_n\Delta a_{n+1}b_{n+1}F(x_1...x_{n+1}) = \Delta a_1b_1...\Delta a_nb_nF(x_1,...,x_n,b_{n+1}) - \Delta a_1b_1...\Delta a_nb_nF(x_1,...,x_n,a_{n+1}) = \Delta a_1b_1...a_nb_np((-\infty,x_1]\times...\times(-\infty,x_n]\times(-\infty,b_{k+1}]) - \Delta a_1b_1...a_nb_np((-\infty,x_1]\times...\times(-\infty,x_n]\times(-\infty,b_{n+1}]) = \mathbf{B}$$
 след. предположении
$$= p((a_1,b_1]\times...(a_n,b_n]\times(-\infty b_{n+1}]) - p((a_1,b_1]\times...\times(a_n,b_n]\times(-\infty,a_{n+1}]) = \mathbf{B}$$

$$p((a_1, b_1] \times ... \times (a_n, b_n] \times (a_{n+1}, b_{n+1}])$$

$$\Delta a_1 b_1 ... \Delta a_n b_n F(x_1, ..., x_n) \ge 0. \ (a_k, b_k), k = \overline{1, n}, \ a_k \le b_k$$

 \Rightarrow между вероятностной мерой p в R^n и функцией распределения $F(x_1,...,x_n)$ существует взаимно-однозначное соответствие.

Если существует функция распределения $F(x_1,...,x_n) \Rightarrow$ мера строится так:

$$B = (a_1, b_1] \times ... \times (a_n, b_n]; p(B) = \Delta a_1 b_1 ... \Delta a_n b_n F(x_1, ..., x_n)$$

8 Пространство $(R^{\infty}, \beta(R^{\infty}), P)$

 $R^{\infty} = \{x_1, ..., x_n, ...\}$ – пространство упорядоченных числовых последовательностей.

Если $\bar{x} = \{x_1, ..., x_n, ...\}, \bar{y} = \{y_1, ..., y_n, ...\},$ можно ввести метрику:

$$||\bar{x} - \bar{y}|| = \sum_{k} 2^{-k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}$$

Так как R^{∞} – метрическое пространство, то существует топология – открытые и замкнутые множества, а значит, можно рассматривать $\min \sigma$ -алгебру $\beta(R^{\infty})$.

Определение 23 (Цилиндрические множества). Множества А, такие что:

$$A = J_n(B), B \in \beta(R^n)$$

будем называть цилиндрическими множествами с основанием В, если

$$A = {\bar{x} = (x_1, ..., x_n, ...) : (x_1, ..., x_n) \in B}$$

Для цилиндрических множеств справедливо условие согласованности:

$$J_n(B) = J_{n+k}(B \times R^k), B \in \beta(R)$$
(1)

$$\{\bar{x}:(x_1,...,x_n,x_{n+1},...,x_{n+k})\}\in B_n\times R^k=\{\bar{x}:(x_1,...,x_n)\}\in B_n=J_n(B)$$

Замечание 8.1. Условие согласованности позволяет переходить от цилиндрических множеств меньшей размерности переходить к цилиндрическим множествам с основанием большей размерности и наоборот.

Утверждение 8.1. Множество всех цилиндрических множеств $a(R^{\infty})$ является алгеброй.

Доказательство. Покажем, что $a(R^{\infty})$ – алгебра.

- 1. $R^{\infty} = J_1(R) \in a(R^{\infty})$
- 2. $A_1 = J_{n_1}(B_1), A_2 = J_{n_2}(B_2)$ цилиндрические множества. В силу согласованности цилиндрических множеств $\Rightarrow n_1 = n_2$ $A_1 \cup A_2 = \{\bar{x} \in R^\infty : (x_1, ..., x_n) \in B_1 \cup B_2\} = J_n(B_1 \cup B_2), A = J_n(B)$

3.
$$\bar{A} = R^{\infty} / \underbrace{J_n(B)}_{=A} = \{ \bar{x} \in R^{\infty} : (x_1, ..., x_n) \notin B \}$$

 $\bar{A} = R^{\infty} / A = \{ \bar{x} \in R : (x_1, ..., x_n) \in \bar{B} \} \stackrel{def}{=} J_n(\bar{B})$

Таким образом, множество всех цилинрических множеств является алгеброй.

Утверждение 8.2. Можно взять $\min \sigma$ -алгебру $\sigma(a(R^{\infty})) = \beta(R^{\infty})$, содержащую все цилиндрические множества.

Доказательство. Предположим, что есть некоторая вероятностная мера P на $\beta(R^{\infty})$. Тогда есть $P(J_n(B)) = P_n(B)$, где $B \in \beta(R^{\infty})$, причём P обладает свойством σ -аддитивности.

Тогда можно построить меры в R^{∞} .

 $P_n(B) = P(J_n(B))$, где P_n – вероятностная мера на $\beta(R^{\infty})$:

1.
$$P_n(R^{\infty}) = P(J(R^{\infty})) = P(R^{\infty}) = 1$$

2.
$$C_1, C_2 \in \beta(R^{\infty}), C_1C_2 = \emptyset$$

 $P_n(C_1 \cup C_2) = P_n(J(D_1) \cup J(D_2)) = P(C_1) \cup P(C_2), J(D_1) \cup J(D_2) = J(D_1 \cup D_2)$
 $J(D_1 \cup D_2) = \{\bar{x} \in R^{\infty} : (x_1, ..., x_n) \in D_1 \cup D_2\} =$
 $= \{\bar{x} \in R^{\infty} : (x_1, ..., x_n) \in D_1\} \cup \{\bar{x} \in R^{\infty} : (x_1, ..., x_n) \in D_2\} = J(D_1) \cup J(D_2)$

3.
$$D_1, ..., D_n, ... \in \beta(R^{\infty}), \forall i \neq j \Rightarrow D_i D_j = \emptyset$$

$$P_n(\bigcup_{k=1}^{\infty} D_k) = P(J_n(\bigcup_k D_k)) = P(\bigcup_n J_k(D_k)) = \sum_k P(J_n(D_k)) = \sum_k P_n(D_k)$$

$$\text{Так как } \{\bar{x} \in R^{\infty} : (x_1, ..., x_n) \in \bigcup_k D_k\} = \bigcup_k \{\bar{x} \in R^{\infty} : (x_1, ..., x_n) \in D_k\}, \text{ To } J(\bigcup_k D_n) = \bigcup_k J(D_n)$$

Утверждение 8.3. $P_n(B)$ – конечномерное распределение вероятностной меры.

Доказательство. Из условия согласованности (1) следует

$$P(J_{n+k}(B \times R^k)) = P_{n+k}(B \times R^k) = P(J_n(B)) = P_n(B)$$

Т.е., получаем условие согласованности для конечномерных распределений:

$$P_{n+k}(B \times R^k) = P_n(B) \tag{2}$$

Теорема 8.2 (Колмогорова о построении меры в $\beta(R^{\infty})$). $P_1, ..., P_n, ... - nоследовательность вероятностных мер, определённых соответственно на пространствах <math>(R^n, \beta(R^n)), n = 1, ...,$ удовлетворяющих условию согласованности (2). Тогда $\exists !$ вероятностная мера P, определённая на $\beta(R^{\infty}) : P(J_n(B)) = P_n(B) \neq n, B \in \beta(R^n)$.

Доказательство. Пусть $a(R^{\infty})$ – алгебра цилиндрических множеств. Тогда можно построить меру на алгебре и, а затем, по **теореме Каратиодори** и с помощью проверки σ -аддитивности перенести эту меру на пространство $\beta(R^{\infty})$.

Пусть $A = J_n(B) \in a(\mathbb{R}^{\infty})$, положим по определению $P(J_n(B)) \stackrel{def}{=} P_n(B)$.

Проверим, что данное определение корректно, то есть, не зависит от вида цилиндрических множеств.

$$J_n(B) = J_m(C)$$

Предположим, $n \le m$, т.к., если $n = m \Rightarrow B = C$.

$$J_m(C) = J_m(B \times R^{m-n})$$
, r.e. $B \times R^{m-n} = C$

$$P(J_n(B)) = P(J_m(B \times R^{m-n})) \Rightarrow P_n(B) = P_m(B \times R^{m-n}) \Rightarrow P_n(B) = P_m(C).$$

Таким образом, $P(J_n(B)) = P(J_m(C)) \Rightarrow$ определение корректно.

Проверим кончную аддитивность меры P:

$$P(R^{\infty}) = P(J_1(R)) = P_1(R) = 1$$

$$A_1, A_2 \in a(\mathbb{R}^{\infty}) : A_1 A_2 = \emptyset, A_1 = J_n(B), A_2 = J_m(C)$$

В силу условия согласованности (1) цилиндрических множеств, имеем n=m.

Пусть $N \leq m$, тогда $A_1 = J_m(\beta(R^{m-n}))$

$$P(A_1 + A_2) = P(J_m(B \times R^{m-n}) + J_m(C))$$

Заметим, что $A_1A_2=\emptyset, (B\times R^{m-n})C=\emptyset,$ тогда

$$P(A_1 + A_2) = P(J_m((B \times R^{m-n}) + C))$$

Перейдём к конечномерным распределениям

$$P(A_1 + A_2) = P_m((B \times R^{m-n}) + C) = P_m(B \times R^{m-n}) + P_m(C)$$

Откуда в итоге получаем

$$P(A_1 + A_2) = P(J_m(B \times R^{m-n})) + P_m(J_m(C)) = P(A_1) + P(A_2)$$

Таким образом, P – конечно-аддитивная вероятность на $a(R^{\infty})$.

Остаётся проверить, что $P-\sigma$ -аддитивная вероятностная мера на $a(R^{\infty})$, для

этого достаточно проверить непрерывность в нуле.

Пусть
$$\{A_n\} \subset a(R^{\infty}): A_n \supseteq A_{n+1}, \bigcap_n A_n = \emptyset$$
. Верно ли, что $\lim_{n \to \infty} P(A_n) = 0$? \bigotimes Пусть $\exists \delta \ge 0: \lim_{n \to \infty} P(A_n) = \delta, A_n = J_n(B_n), B_n \in \beta(R^n)$

Всегда можно считать, что A_n – цилиндрическое множество размерности n, где n неограниченно растёт. Если же размерности ограничены, то всё происходит в конечномерном пространстве, где существует σ -аддитивность, следующая из существования σ -аддитивности в мерах P_n .

Воспользуемся свойством регулярности вероятностных мер на \mathbb{R}^n :

Так как
$$B \subset \beta(\mathbb{R}^n)$$
, то $\forall \varepsilon \geq 0 \exists K_{\varepsilon} \subseteq B : P_n(B|K_{\varepsilon}) \leq \varepsilon$.

 B_n – основание множества A, тогда можно взять компакт K_n такой что:

$$K_n \subseteq B_n : P_n(B_n|K_n) < \frac{\delta}{2^{n+1}}$$

Рассмотрим $C_n = J_n(K_n)$, получим:

$$A_n = J_n(B_n) \supseteq J_n(K_n) = C_n$$
, T.e, $C_n \subseteq A_n$

Предположим, что $D_n = \bigcap_{k=1}^n C_k$, тогда $D_n \supseteq D_{n+1}, D_n \subseteq A_n \Rightarrow D_n \in a(R^\infty)$, т.е., D_n является цилиндрическим множеством.

$$P(A_n|D_n) = P\left(A_n|\bigcap_{k=1}^n C_k\right) \leqslant P\left(\bigcup_{k=1}^n (A_n|C_k)\right) \leqslant \sum_{k=1}^n P(A_k|C_k)$$

Это верно, потому что $A_k\supseteq A_n$ и $k\leqslant n$. Продолжим,

$$\sum_{k=1}^{n} P(A_k | C_k) = \sum_{k=1}^{n} (P(A_k) - P(C_k)) = \sum_{k=1}^{n} (P_k(B_k) - P_k(K_k))$$

Это верно, потому что $A_k = J_k(B_k)$ и $C_k = J_k(K_k)$. В итоге имеем,

$$P(A_n|D_n) = \sum_{k=1}^n (P_k(B_k) - P_k(K_k)) = \sum_{k=1}^n P_k(B_k/K_k) \leqslant \sum_{k=1}^n \frac{\delta}{2^{k+1}} < \frac{\delta}{2}$$

Получили $P(A_n/D_n) < \frac{\delta}{2} \Rightarrow P(A_n) - P(D_n) < \frac{\delta}{2},$ и

$$\delta = P(A_m) < \frac{\delta}{2} + P(D_n), P(D_n) > \frac{\delta}{2}, \bigcap_n D_n = \emptyset$$

Покажем, что $\bigcap_n D_n \neq \emptyset$ и получим противоречие.

 D_n – цилиндрическое множество, $\forall n \Rightarrow \bar{x}^{(n)} \in D_n$, а именно

$$\bar{x}^{(1)} = (x_1^{(1)}, x_2^{(1)}, ..., x_n^{(1)}, ...)$$

$$\bar{x}^{(2)} = (x_1^{(2)}, x_2^{(2)}, ..., x_n^{(2)}, ...)$$
...
$$\bar{x}^{(m)} = (x_1^{(m)}, x_2^{(m)}, ..., x_n^{(m)}, ...)$$

Согласно построению множества $D_n = J(K_1) = C_1$, получим $\{x_1^{(m)} \subset K_1 \subset R\}$ – компакт, значит, эта последовательность имеет предел, т.е., $\exists \{m_l^{(1)}\}$:

При
$$l \to \infty \Rightarrow x_1^{m_l^{(1)}} \to y_1 \in K_1$$
.

Рассмотрим
$$\{\bar{x}^{(m_l)}\}$$
, имеем $\{x_1^{(m_l^{(2)})}, x_2^{(m_l^{(2)})}\} \to \{y_1, y_2\}$

Продолжим этот процесс, в результате получаем $\bar{y} = (y_1, y_2, ..., y_m, ...), \bar{y} \in D_k, \forall k.$

То есть, $\bar{y} \in \bigcap_k D_k \neq \emptyset$, т.е. $\lim_{n \to \infty} P(A_n) = \delta$ – неверное предположение.

Следовательно, $\lim_{n\to\infty} P(A_n) = 0 \Rightarrow P - \sigma$ -аддитивна на $a(R^\infty)$.

В силу **Теоремы Каратиодори**,
$$P$$
 продолжаем на $\sigma(a(R^{\infty})) = \beta(R^{\infty})$.

Замечание 8.3. При доказательстве теоремы используется тот факт, что к любому множеству $B \in \beta(R^n)$ изнутри можно подобраться с помощью компактов $K_{\varepsilon}: P(B|K_{\varepsilon}) < \varepsilon$. Это верно для любого X – полного сепарабельного метрического пространства.

Таким образом, теорема верна для $(X^{\infty}, \beta(X^{\infty}))$.

9 Пространство $(R^T, \beta(R^T), P)$

Пусть $T = [0,1] \cup [0,+\infty) \cup R \cup [a,b]$ – несчётное множество.

Под R^T подразумевается множество функций: $R^T = \{f(t), t \in T\}$.

Пусть
$$B \in \beta(\mathbb{R}^n), B = B_1 \times ... \times B_n, B_k \in \beta(\mathbb{R}).$$

Возьмём произвольные точки $t_1, t_2, ..., t_n \in T$.

Рассмотрим множества $J_{t_1,...,t_n}(B_n) = \{(f(t_1),...,f(t_n)) \in B_n\}$

Пусть $J_{t_1,...,t_n}(B_n)$ – цилиндрические множества, где $B_n \in B(\mathbb{R}^n)$.

Тогда справедливы условия согласованности:

1.
$$J_{t_1...t_n,s_1...s_m}(B \times R^m) = J_{t_1...t_n}(B), B \in R^n$$

2. Дана $t_1...t_n, t_{n_1}...t_{n_n}$ - произвольная перестановка этих чисел, тогда:

$$J_{t_1...t_n}(B_1 \times B_2 \times ... \times B_n) = J_{t_{n_1}...t_{n_n}}(B_{n_1} \times B_{n_2} \times ... \times B_{n_n})$$

Обозначим через $a(R^T)$ - множество всех цилиндрических множеств. Покажем, что они образуют алгебру:

1.
$$R^T = J_{t_1}(R^1) \in a(R^T)$$

2.
$$J_{t_1...t_n}(B_n) \in a(R^T) \Rightarrow J_{t_1...t_n}(\bar{B}_n) \in a(R^T)$$

3.
$$J_{t_1...t_n}(B_n) \in a(R^T), J_{T_1...T_{n+k}}(C_{n+k}) \in a(R^T)$$

Рассмотрим $\bar{t}^* = \bar{t} \cup \bar{T}$. Имеем:

• В силу условий согласованности

$$\begin{cases} J_{t_1...t_n}(B_n) = J_{t_1^*...t_{n+k}^*}(B_n \times R^{n+k}) \\ J_{T_1...T_{n+k}}(C_{n+k}) = J_{t_1^*...t_{2n+k}^*}(B_n \times R^n) \end{cases}$$

• $J_{t_1^*...t_{2n+k}^*}(B_n \times R^{n+k}) \cup J_{t_1^*...t_{2n+k}^*}(C_{n+k} \times R^n) = \{f(t^*) : (f(t_1^*), ..., f(t_{2n+k}^*)) \in B_n \times R^{n+k}\} \cup \{f(t^*) : (f(t_1^*), ..., f(t_{2n+k}^*)) \in C_{n+k} \times R^n\} = \{f(t^*) : (f(t_1^*), ..., f(t_{2n+k}^*)) \in B_n \times R^{n+k} \cup (C_{n+k} \times R^n)\} = J_{t_1^*...t_{2n+k}^*}((B_n \times R^{n+k}) \cup (C_{k+n} \times R^n)) \in a(R^T)$

Обозначим $B(R^T) = \sigma(a(R^T))$ – минимальная σ -алгебра, содержащая все цилиндрические множества.

Пусть $\bar{t} = \{t_1, ..., t_n, ...\}, t_n \in T$, то есть имеем пространство $R^{\bar{t}}$ и σ -алгебру $\beta(R^{\bar{t}})$

Теорема 9.1 (О структуре σ -алгебры $\beta(R^T)$). Справедливо равенство:

$$\beta(R^T) = \bigcup_{\bar{t} = \{t_1 \dots t_n\}, t_n \in T} \beta(R^{\bar{t}})$$

 $\ensuremath{\mathcal{A}\!\mathit{okaзameльcm60}}$. Покажем, что \bar{B} является σ -алгеброй:

- 1. Пусть $\bigcup_{\bar{t}=\{t_1...t_n\}} B(R^{\bar{t}}) = \bar{B}.$
 - ullet $R^T\in \overline{B}$, так как $R^T=J_{t_1}(R)=\{f(\overline{t}):f(t_1)\in R\}$
 - Пусть $A, B \in \bar{B} \Rightarrow \exists \bar{t}_1, \bar{t}_2 : A = J_{t_1...t_n}(C), B = J_{s_1...s_m}(D)$, где $t_1...t_n \in \overline{t_1}, s_1...s_m \in \overline{t_2}$.
 Возьмем $\bar{t}_3 = \overline{t_1} \cup \overline{t_2} \Rightarrow t_1...t_n, s_1...s_m \in \overline{t_3} \Rightarrow A, B \in B^{\overline{t_3}} \Rightarrow A \cup B, A \cap B \in B^{\overline{t_3}} \subset \bar{B}$
 - Пусть $A_1,...,A_n,... \in \bar{B} \Rightarrow \exists \{\bar{t}_k\} : A_k = J_{t_1^{(k)}...t_n^{(k)}}(B) \in B(R^{\bar{t}_k})$ $\bar{t} = \bigcup_n t_n$ не более чем счетно. Тогда $\exists \sigma$ -алгебра $\beta(R^{\bar{t}})$ и $A_1,...,A_n \in B(R^{\bar{t}}) \Rightarrow \bigcup_n A_n, \bigcap_n A_n \in B(R^{\bar{t}}) \subset \bar{\beta}$

Таким образом, $\bar{\beta}$ - σ -алгебра, содержащая все цилиндрические множества.

$$\beta(R^T) \subset \bar{\beta} \tag{*}$$

2. Проверим обратное включение:

$$\beta(R^T) = \bigcup_{\bar{t}} \beta(R^{\bar{t}}) \Rightarrow \beta(R^{\bar{t}}) \subset B(R^T) \Rightarrow \bigcup_{\bar{t}} \beta(R^{\bar{t}}) \subset \beta(R^T) \tag{**}$$

Из (\star) и $(\star\star) \Rightarrow B(R^T) = \bar{B}$.

Замечание 9.2. $\beta(R^T)$ - является "бедной" σ -алгеброй. Принадлежность какоголибо множества функций к этой σ -алгебре определяется поведением функций, на не более чем счетном наборе точек \bar{t} .

9.1 Построение вероятностной меры в R^T

Пусть есть мера P на пространстве $(R^T, \beta(R^T))$. $P_{t_1...t_n}(B) = P(J_{t_1...t_n}(B))$ - вероятностная мера в $\beta(R^n)$.

Таким образом, задание меры P в пространстве $\beta(R^T)$ порождает семейство мер в $\beta(R^n)$ - семейство конечномерных распределений $\{P_{t_1...t_n}(\cdot)\}$.

Меры $\{P_{t_1...t_n}(\cdot)\}$ удовлетворяют условиям согласованности:

1.
$$P_{t_1...t_n,s_1...s_n}(B \times R^n) = P_{t_1...t_n}(B)$$

2.
$$P_{t_1...t_n}(B_1 \times ... \times B_n) = P_{t_{n_1}...t_{n_n}}(B_{n_1} \times ... \times B_{n_n})$$

Теорема 9.3 (Колмогорова о построении вероятностной меры в $\beta(R^T)$). Пусть $\{P_{t_1...t_n}(\cdot)\}$ – семейство конечномерных распределений, удовлетворяющих условиям согласованности. Тогда $\exists !$ вероятностная мера P в пространстве $(R^T, \beta(R^T))$: $P(J_{t_1...t_n}(B)) = P_{t_1...t_n}(B), B \in \beta(R^n)$

Доказательство. Пусть $D \in \beta(R^T)$, тогда в силу теоремы о структуре σ -алгебры $\Rightarrow \exists \bar{t} = \{t_1...t_n...\}: D \in \beta(R^{\bar{t}}).$

Рассмотрим конечномерное распределение $\{P_{t_1...t_n}(\cdot)\}: t_1...t_n \in \bar{t}$. Это согласованное семейство существует в силу теоремы Колмогорова о построении меры в $\beta(R^{\infty})$. Таким образом, можно построить $P_{\bar{t}}$, где \bar{t} – любое не более чем счетное множество.

Положим по определению $P(D) \stackrel{def}{=} P_{\bar{t}}(D)$. $D \in \beta(R^{\bar{t}})$ и покажем его корректность.

Предположим $D \in B^{\bar{t}_1}, D \in B^{\bar{t}_2}$, тогда покажем $P_{\bar{t}_1}(D) = P_{\bar{t}_2}(D)$, для $D \in \beta(R^{\bar{t}_3})$, где $\bar{t}_3 = \bar{t}_1 \cup \bar{t}_2$. Меры совпадают, если они совпадают на элементарных множествах, то есть на цилиндрических множествах.

D - цилиндрическое множество, в силу условия согласованности $\Rightarrow P_{\bar{t}_1}(D) = P_{\bar{t}_2}(D)$, то есть, определение корректно.

Проверим, что Р - вероятность:

1.
$$P(R^T) = P_{\bar{t}}(R^{\bar{t}}) = 1$$

2. Пусть
$$D_1, ..., D_n, ... \in \beta(R^T)$$
, и $\forall i \neq j \Rightarrow D_i D_j = \emptyset$.
Тогда $\exists \bar{t}_1, ..., \bar{t}_k, ... \in T : D_k \in \beta(R^{\bar{t}_k}), \bar{t} = \bigcup_n \bar{t}_n$ – не более чем счетно $\Rightarrow \exists \beta(R^{\bar{t}}) : D_1, ..., D_n, ... \in \beta(R^{\bar{t}})$
 $P\left(\bigcup_n D_n\right) = P_{\bar{t}}\left(\bigcup_n D_n\right) = \sum_n P_{\bar{t}}(D_n) = \sum_n P(D_n)$
 $D = J_{t_1...t_n}(B), B \in \beta(R^n)$

$$\exists \bar{t} = \{t_1, ..., t_n, ...\}, D \in \beta(R^{\bar{t}})$$

$$P(J_{t_1...t_n}(B)) = P_{\bar{t}}(J_{t_1...t_n}(B)) = P_{t_1...t_n}(B)$$

Замечание 9.4. Так как доказательство теоремы было проведено с помощью теоремы Колмогорова о построении меры в $\beta(R^{\infty})$, а она допускает обобщения: вместо R берется X – полное сепарабельное метрическое пространство, и теорема Колмогорова справедлива для X^T , $\beta(X^T)$, где $X^T = \{f(t), t \in T\}$

10 Случайные величины, простые случайные величины, σ-алгебры, порождённые случайными величинами. Независимость событий. Формулы полной вероятности и Байеса

11 Независимость случайных величин, условия, равносильные независимости 12 Интеграл Лебега, схема построения, основные теоремы, математическое ожидание произведения независимых случайных величин

Теорема Радона-Никодима, основные неравенства, теорема о замене переменных в интеграле Лебега, примеры. Теорема Фубини

14 Теоремы о предельном переходе под знаком интеграла, равномерно интегрируемые семейства

15 Математическое ожидание и дисперсия

 $Числовые \ xарактеристики \ случайной величины <math>\xi$:

 $E\xi$ – математическое ожидание (центр симметрии)

$$D(\xi) = E(\xi - E\xi)^2$$
 – дисперсия (мера рассеивания)

$$\sigma(\xi) = \sqrt{D(\xi)}$$
 – среднеквадратическое отклонение.

Для абсолютно-непрерывных случайных величин верно следующее:

$$P_{\xi}(B) = P(\xi \in B) = \int_{B} P_{\xi}(x)dx \Rightarrow E\xi = \int_{B} xdF_{\xi}(x) = \int_{B} xP_{\xi}(x)dx$$

А для дискретных случайных величин $E\xi = \sum_k x_k p_k$.

Свойства дисперсии

- 1. Удобная формула для вычисления дисперсии $D(\xi) = E\xi^2 (E\xi)^2$. $D(\xi) = E(\xi E\xi)^2 = E(\xi^2 + (E\xi)^2 2\xi E\xi) = E\xi^2 + (E\xi)^2 2\xi E\xi = E\xi^2 (E\xi)^2$
- 2. $D(\xi)\geq 0, D(\xi)=0 \Leftrightarrow \xi=const.$ $D(\xi)=\int\limits_{\Omega}(\xi-E\xi)^2dP=0 \Rightarrow \xi=E\xi$ почти наверно, т.к. $\xi-E\xi\geq 0$ $\xi=const=c\Rightarrow E\xi=Ec=c\Rightarrow D(\xi)=0$
- 3. $\forall A = const \Rightarrow D(\xi + A) = D(\xi)$. $D(\xi + A) = E(\xi + A)^2 - (E(\xi + A))^2 = E(\xi^2 + 2\xi A + A^2) - ((E\xi)^2 + (EA)^2 + 2E\xi \cdot EA) = E\xi^2 + 2E\xi \cdot A + EA^2 - (E\xi)^2 - (EA)^2 - 2E\xi \cdot A = E\xi^2 - (E\xi)^2 = 0$
- 4. $D(A\xi) = A^2 D(\xi)$. $D(A\xi) = E(A\xi)^2 - (E(A\xi))^2 = A^2 E\xi^2 - A^2 (E\xi)^2 = A^2 D(\xi)$
- 5. Для любых независимых случайных величин $\xi, \eta \Rightarrow D(\xi \pm \eta) = D(\xi) + D(\eta)$. $D(\xi \eta) = E(\xi \eta)^2 (E(\xi \eta))^2 = E(\xi^2 + \eta^2 2\xi\eta) ((E\xi)^2 + (E\eta)^2 2E\xi E\eta) = E\xi^2 + E\eta^2 2E\xi E\eta (E\xi)^2 (E\eta)^2 + 2E\xi E\eta = D(\xi) + D(\eta);$ $D(\xi + \eta) = E(\xi + \eta)^2 (E(\xi + \eta))^2 = E(\xi^2 + \eta^2 + 2\xi\eta) ((E\xi)^2 + (E\eta)^2 + 2E\xi E\eta) = E\xi^2 + E\eta^2 + 2E\xi E\eta (E\xi)^2 (E\eta)^2 2E\xi E\eta = D(\xi) + D(\eta).$

16 Бернуллевский индикатор случайных событий

$$\mathbf{1}_{A}(x) = \begin{cases} 1, & x \in A, \\ 0, & x \notin A. \end{cases}$$

$$P(A) = p, q = P(\bar{A}) = 1 - p.$$

$$E\mathbf{1}_A = 0 \cdot q + 1 \cdot p = p$$

$$\mathbf{1}_A^2=\mathbf{1}_A$$

$$D(\mathbf{1}_A) = E(\mathbf{1}_A^2) - (E\mathbf{1}_A)^2 = E\mathbf{1}_A - p^2 = p(1-p) = pq$$

17 Биномиальное распределение

Дано n независимых одинаковых экспериментов, в x из которых произошло событие A.

 $\mathbf{1}_{A}^{(k)}$ — индикатор появления события A при k-том испытании.

$$x = \mathbf{1}_A^{(1)} + \dots + \mathbf{1}_A^{(n)}$$

$$P(A) = p; P(\bar{A}) = q$$

$$p(x=0) = q^n$$

$$p(x=n) = p^n$$

$$p(x=k)=p^k\cdot q^{n-k}\cdot C_n^k$$
 — Формула Бернулли $Ex=E\sum_{k=1}^n \mathbf{1}_A^{(k)}=n\cdot p$

$$Ex = E\sum_{k=1}^{n} \mathbf{1}_{A}^{(k)} = n \cdot p$$

$$D(x) = D\left(\sum_{k=1}^{n} \mathbf{1}_{A}^{(k)}\right) = \sum_{k=1}^{n} D\left(\mathbf{1}_{A}^{(k)}\right) = n \cdot pq$$

18 Геометричесоке распределение

Пусть есть x последовательных независимых экспериментов, с вероятностью p происхождения события A, вероятностью q происхождения события \bar{A} и причём серия прекращается при первом происхождении A.

$$\begin{split} Ex &= \sum_{k=1}^{\infty} kq^{k-1}p = p \sum_{k=1}^{\infty} kq^{k-1} = p \sum_{k=1}^{\infty} \left(q^k\right)' = p \left(\sum_{k=1}^{\infty} q^k\right)' = p \left(\frac{1}{1-q}\right)' = \frac{p}{(1-q)^2} = \frac{1}{p} \\ &E(x(x-1)) = Ex^2 - Ex \Rightarrow Ex^2 = E(x(x-1)) + Ex = E(x(x-1)) + \frac{1}{p} \\ &E(x(x-1)) = \sum_{k=1}^{\infty} k(k-1)q^{k-1}p = pq \sum_{k=1}^{\infty} k(k-1)q^{k-2} = pq \sum_{k=0}^{\infty} (q^k)' = pq \left(\sum_{k=0}^{\infty} q^k\right)' = pq \left(\frac{1}{1-q}\right)' = \frac{2pq}{(1-q)^2} = \frac{2q}{p^2} \\ &Ex^2 = \frac{2q}{p^2} + \frac{1}{p} = \frac{2q+p}{p^2} = \frac{1-q}{p^2} \\ &D(x) = \frac{1-q}{p^2} - \frac{1}{p^2} = \frac{q}{p^2} \end{split}$$

19 Распределение Пуассона и простейший поток событий

Определение 24 (Простейший поток событий). *Простейшим потоком событий* называется поток заявок, поступающий на какое-либо устройство, и удовлетворяющий следующим условиям:

- Стационарность Вероятность поступлния определённого числа заявок в промежуток времени t зависит только от его длинны ($\forall t \Rightarrow P_{t,t+n} = P_{0,n}$).
- Марковское свойство или отсутствие последействия Вероятность того, что в будущем в систему поступит определённое число заявок, не зависит от числа заявок, поступивших в настоящее время.
- Ординарность Вероятность того, что за малый промежуток времени Δt в систему поступит одна заявка, есть величина $\sigma(\Delta t)$.

x — число заявок за еденицу времени [0,1].

 $P(x)=P(x=k)=\frac{\lambda^k}{k!}e^{-\lambda}, k=0,1,2,...,\lambda>0$ – некоторое число, характеризующее данный поток заявок.

$$Ex = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} = \sum_{k=1}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = e^{-\lambda} \lambda e^{\lambda} = \lambda$$

 λ – среднее число заявок за еденицу времени (интенсивность простейшего потока)

$$E(x(x-1)) = \sum_{k=0}^{\infty} k(k-1) \frac{\lambda^k}{k!} e^{-\lambda} = \sum_{k=2}^{\infty} k(k-1) \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \lambda^2 \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} = e^{-\lambda} \lambda^2 e^{\lambda} = \lambda^2$$

$$Ex^{2} = \lambda^{2} + Ex = \lambda^{2} + \lambda$$
$$D(x) = Ex^{2} - (Ex)^{2} = \lambda^{2} + \lambda - \lambda^{2} = \lambda$$

20 Показательное (экспоненциальное) распределение

В простейшем потоке случайное время $T=T(\omega)$ между соседними заявками имеет показательное распределение $P(T(\omega)>t)=e^{-\lambda t}.$

Плотность
$$p(t) = \begin{cases} \lambda e^{-\lambda t}, & t > 0, \\ 0, & t \le 0. \end{cases}$$

$$ET = \int_{0}^{\infty} t\lambda e^{-\lambda t} dt = \begin{vmatrix} s = \lambda t \\ ds = \lambda dt \end{vmatrix} = \frac{1}{\lambda} \int_{0}^{\infty} se^{-s} ds = \frac{1}{\lambda} \lim_{N \to \infty} \int_{0}^{N} se^{-s} ds =$$

$$= \begin{vmatrix} u = s & dv = e^{-s} ds \\ du = ds & v = -e^{-s} \end{vmatrix} = \frac{1}{\lambda} \lim_{N \to \infty} \left(-se^{-s} \Big|_{0}^{N} + \int_{0}^{N} e^{-s} ds \right) =$$

$$= \frac{1}{\lambda} \lim_{N \to \infty} \left(-N \cdot e^{-N} - e^{-s} \Big|_{0}^{N} \right) = \frac{1}{\lambda} \lim_{N \to \infty} (-Ne^{-N} + e^{-N} + 1) = -\frac{1}{\lambda} \lim_{N \to \infty} \frac{N+1}{e^{N}} + \frac{1}{\lambda} =$$

$$= -\frac{1}{\lambda} \lim_{N \to \infty} \frac{1}{e^{N}} + \frac{1}{\lambda} = \frac{1}{\lambda}$$

$$ET^{2} = \int_{0}^{\infty} t^{2} \lambda e^{-\lambda t} dt = \begin{vmatrix} s = \lambda t \\ ds = \lambda dt \end{vmatrix} = \frac{1}{\lambda^{2}} \int_{0}^{\infty} s^{2} e^{-s} ds = \frac{1}{\lambda^{2}} \lim_{N \to \infty} \int_{0}^{N} s^{2} e^{-s} ds$$

Заметим, что:

$$\int_{0}^{N} s^{2}e^{-s}ds = \begin{vmatrix} u = s^{2} & dv = e^{-s}ds \\ du = 2sds & v = -e^{-s} \end{vmatrix} = -s^{2}e^{-s} \Big|_{0}^{N} + 2\int_{0}^{N} se^{-s}ds =$$

$$= N^{2}e^{-N} + 2Ne^{-N} - 2e^{-N} + 2$$

Тогда:

$$ET^{2} = \frac{1}{\lambda^{2}} \lim_{N \to \infty} \int_{0}^{N} s^{2} e^{-s} ds = -\frac{1}{\lambda^{2}} \lim_{N \to \infty} \frac{N^{2} + 2N + 2}{e^{N}} + \frac{2}{\lambda^{2}} =$$

$$-\frac{1}{\lambda^{2}} \lim_{N \to \infty} \frac{2N + 2}{e^{N}} + \frac{2}{\lambda^{2}} = -\frac{1}{\lambda^{2}} \lim_{N \to \infty} \frac{2}{e^{N}} + \frac{2}{\lambda^{2}} = \frac{2}{\lambda^{2}}$$

$$D(T) = \frac{2}{\lambda^{2}} - \frac{1}{\lambda^{2}} = \frac{1}{\lambda^{2}}$$

21 Равномерное распределение на отрезке [a, b]

Определение 25 (Равномерное распределение). Абсолютно непрерывное распределение с плотностью $p(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & x \notin [a,b] \end{cases}$ называется равномерным распределением на отрезке [a,b].

 ξ — случайная величина.

$$E\xi(x) = P(\xi \le x) = \int_{-\infty}^{x} P_{\xi}(u)du = \int_{R}^{x} xP(x)dx = \int_{a}^{b} \frac{x}{b-a}dx = \frac{a+b}{2}$$

$$E\xi^{2} = \int_{a}^{b} x^{2} \frac{1}{b-a}dx = \frac{1}{b-a} \frac{b^{3}-a^{3}}{3}$$

$$D(\xi) = \frac{b^{3}-a^{3}}{3(b-a)} - \frac{(a+b)^{2}}{4} = \frac{b^{2}+ab+a^{3}}{3} - \frac{a^{2}+2ab+b^{2}}{4} = \frac{b^{2}-2ab+b^{2}}{12} = \frac{(b-a)^{2}}{12}$$

22 Нормальное (Гауссовское) распределение

Определение 26 (Нормальное распределение или распределение Гаусса). Случайная величина ξ имеет нормальное распределение с параметрами $a, \sigma, \epsilon de$ $\sigma > 0$ если

$$P_{a,\sigma} = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-a}{\sigma}\right)^2}$$

Если $a=0, \sigma=1,$ то подразумевается стандартное нормальное распределение. Тогда $\phi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}.$

$$\Phi(x) = \int_{-\infty}^{\infty} \phi(y) dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{y^2}{2}} dy - \Phi$$
ункция Лапласа.

$$E\xi = \int_{-\infty}^{\infty} x P_{a,\sigma}(x) dx = \int_{-\infty}^{\infty} (x-a) \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-a}{\sigma}\right)^2} dx + a \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-a}{\sigma}\right)^2} dx = I_1 + I_2$$

$$I_2 = a, I_1 = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} ye^{-\frac{y^2}{2\sigma^2}} dy = 0 \Rightarrow E\xi = a$$

$$D(\xi) = \int_{R} (x - a)^{2} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x - a}{\sigma})^{2}} dx = \begin{vmatrix} y = \frac{x - a}{\sigma} \\ dy = \frac{1}{\sigma} dx \end{vmatrix} = \sigma^{2} \underbrace{\frac{1}{\sqrt{2\pi}} \int_{R} y^{2} e^{-\frac{y^{2}}{2}} dy}_{=1} = \sigma^{2}$$

$$P(A \leqslant \xi \leqslant B) = F(B) - F(A)$$

22.1 Центрирование и нормирование случайной величины

$$E\xi = a, D(\xi) = \sigma^2$$

Определение 27 (Центрированная случайная величина). Любая случайная величина с нулевым матматическим ожиданием назвается **центрированной**.

Центрирование случайной величины: $\bar{\xi} = \xi - a; E\bar{\xi} = E\xi - Ea = a - a = 0$

Центрирование и нормирование случайной величины: Пусть $\xi_0=\frac{\xi-a}{\sigma}$ $E\xi_0=E\left(\frac{\xi-a}{\sigma}\right)=\frac{1}{\sigma}E\xi-\frac{a}{\sigma}=\frac{a}{\sigma}-\frac{a}{\sigma}=0$

$$D(\xi_0) = E(\xi_0 - E\xi_0)^2 = E\left(\frac{\xi - a}{\sigma} - E\left(\frac{\xi - a}{\sigma}\right)\right)^2 = E\left(\frac{\xi - E\xi^2}{\sigma}\right)^2 = \frac{E(\xi - E\xi)^2}{\sigma^2} = 1$$
 Таким образом, $\xi_0 \sim N(0, 1)$.

Пример 4. Если $\xi \sim N(0, \sigma) \Rightarrow \alpha \xi + \beta \sim N(\bar{a}, \bar{\sigma})$.

$$P(\alpha\xi + \beta \leqslant x) = p(A) = E \mathbf{1}_A = E \mathbf{1}_{(\alpha\xi + \beta \leqslant x)} = \int_{-\infty}^{\frac{x-\beta}{\alpha}} p_{\alpha,\sigma}(y) dy = \begin{vmatrix} z = \frac{y-\beta}{\alpha} \\ dz = \frac{dy}{\alpha} \end{vmatrix} = \int_{-\infty}^{z} \alpha p_{a,\sigma}(\alpha z + \beta) dz$$

$$P(A < \xi < B) = P(A - a < \xi - a < B - a) =$$

$$= P\left(\frac{A - a}{\sigma} < \xi_0 < \frac{B - a}{\sigma}\right) = F\left(\frac{B - a}{\sigma}\right) - F\left(\frac{A - a}{\sigma}\right)$$

Утверждение 22.1. $\forall a, \sigma \Rightarrow P(|\xi - a| < 3\sigma) = 0.998$

Доказательство.
$$P(-3\sigma < \xi - a < 3\sigma) = P\left(-3 < \frac{\xi - a}{\sigma} < 3\right) = P(-3 < \xi_0 < 3) = \Phi(3) - \Phi(-3) = \frac{1}{\sqrt{2\pi}} \left(\int_{-\infty}^{3} e^{-\frac{y^2}{2}} dy - \int_{-\infty}^{-3} -e^{-\frac{y^2}{2}} dy\right) = \frac{1}{\sqrt{2\pi}} \left(\int_{-3}^{3} e^{-\frac{y^2}{2}} dy\right) \approx \frac{1}{2\pi} \cdot 2.49986 \approx 0.998$$

23 Моменты, корреляция, коэффициент корреляции

24 Условное математическое ожидание

$$(\Omega, F, P), \xi \in L^1(\Omega)$$

 $G \in F, G - \sigma$ -алгебра.

Определение 28 (Условное Математическое Ожидание – УМО). Случайная величина ξ относительно σ -алгебры G называется случайной величиной $E(\xi|G)$, такой что:

1. $E(\xi|G) - G$ -измерима

2.
$$\forall A \in G \Rightarrow \int_A \xi dP = \int_A E(\xi|G)dP$$

Замечание 24.1. Для $\xi \notin L^1(\Omega)$ УМО не существует

24.1 Существование УМО

Очевидно, что $\xi\geqslant 0$. Построим меру $\lambda(A)=\int\limits_A\xi dP, A\in G$, где $\lambda(A)$ - некоторая конечная мара на G (т.к. $\xi\in L^1(\Omega)$)

В силу Теоремы Радона-Никодима имеем: мера $\lambda(A)$ абсолютно неприрывна относительно $p(A): \lambda \ll p$, а значит, существует $p(\omega)$, такая что:

1. $p(\omega) - G$ -измерима;

2.
$$\int_{A} \xi dP = \int_{A} p(\omega)dP \Rightarrow E(\xi|G) = p(\omega)$$
.

Замечание 24.2. Из способа построения УМО следует, что $E(\xi|G)$ определено с точностью до множеств нулевой вероятности (из-за точности $p(\omega)$)

24.2 Свойства УМО

1. $\xi = c = const \Rightarrow E(\xi|G) = c = const$ почти наверное

Доказательство. $\xi=c=const$, а значит, измерима относительно любой σ -алгебры. Следовательно, $E(\xi|G)=const-G$ -измерима. Тогда, при $A\in G$ имеем:

$$\int_{A} cdP = \int_{A} \underbrace{E(\xi|G)}_{} = cdP$$

2. $\xi \leqslant \eta \Rightarrow E(\xi|G) \leqslant E(\eta|G)$ почти наверное

Доказательство. $\int\limits_A \xi dP = \int\limits_A (\eta|G) dP, \int\limits_A \xi dP = \int\limits_A (\eta|G) dP$

Из $\xi\leqslant\eta\Rightarrow\int\limits_A(\xi|G)dP\leqslant\int\limits_A(\eta|G)dP$, при чём оба подинтегральных выражения G-измеримы. Тогда

$$\forall A \in G \Rightarrow E(\xi|G) \leqslant E(\eta|G)$$

3. $|E(\xi|G)| \leq E(|\xi||G)$ почти наверное

Доказательство.
$$-|\xi| \leqslant \xi \leqslant |\xi| \Rightarrow E(-|\xi||G) \leqslant E(\xi|G) \leqslant E(|\xi||G) \Rightarrow -E(|\xi||G) \leqslant E(\xi|G) \leqslant E(|\xi||G)$$

4. $E(A\xi + B\eta|G) = AE(\xi|G) + BE(\eta|G)$

Доказательство. Обе стороны G-измеримы, проверим определение $\int\limits_c (A\xi+B\eta)dP=\int\limits_c E(A\xi+B\eta|G)dP-G$ -измерима

$$\int\limits_c (A\xi+B\eta)dP \ = \ A\int\limits_c \xi dP + B\int\limits_c \eta dP \ = \ A\int\limits_c E(\xi|G)dP + B\int\limits_c E(\eta|G)dP \ = \int\limits_c (AE(\xi|G)+BE(\eta|G))dP - G$$
-измерима. \qed

5.
$$G = \{\emptyset, \Omega\} \Rightarrow E(\xi|G) = E\xi$$

Утверждение 24.1.

$$E\xi = \int_{\Omega} \xi dP$$

$$\forall A \subset G \Rightarrow \int\limits_A E(\xi|G)dP = \int\limits_A \xi dP$$

B частности, $\int\limits_G E(\xi|G)dP = \int\limits_G \xi dP$

$$\mathit{Ecnu}\ G = \emptyset \Rightarrow 0 = 0$$

$$Ecnu\ G = \Omega \Rightarrow \int\limits_{\Omega} E(\xi|G)dP = E\xi \Rightarrow E\xi = E\xi$$

6. $\xi - G$ -измерима, и $E(\xi|G) = \xi$ почти наверное.

7. $E(E(\xi|G) = E\xi$ почти наверное.

8. *E*

Относительно приведённой σ -алгебры измеримы только постоянные случайные величины, следовательно, $E(\xi|G)=c$.

Возьмем
$$A \in \Omega \Rightarrow \int\limits_{\Omega} \xi dP = \int\limits_{\Omega} c dP = c \cdot p(\omega) = c \Rightarrow E\xi = c$$

25 Условное математическое ожидание, условные распределения, задача о наилучшей оценке

26 Разные виды сходимости случайных величин, характеризация сходимости с вероятностью 1

 $\{\xi_n\}$ на (Ω, F, P) сходятся по вероятности к ξ , если $p(|\xi - \xi_n| > \sigma) \longrightarrow 0$ для любого фиксированного σ . Обозначается $(\xi_n \xrightarrow{p} \xi)$

$$\{\xi_n\}$$
 сходится в $L^p, p \geqslant 1$, если $E(\xi - \xi_n)^p \xrightarrow[n \to \infty]{} 0$

$$\{\xi_n\}$$
 сходится с $p=1$ (почти наверно), если $p(\omega:\lim_{n\to\infty}\xi_n=\xi)=1$

 $\{\xi_n\}:\xi_n$ могут быть заданы на разных вероятностных пространствах. $\{\xi_n\}$ сходится слабо (по распределению) к ξ , если для любой непрерывной ограниченной функции $\Phi(x): E\Phi(\xi_n) \to E\Phi(\xi)$. Слабая сходимость: $\xi_n \xrightarrow{d} \xi, \xi_n \xrightarrow{\omega} \xi$. Позже будет доказано, что данное определение эквивалентно следующему: $F_{\xi_n}(x) =$ $p(\xi_n \leqslant x) \to F_{\xi}(x) = p(\xi \leqslant x) \forall x$ – из непрерывности $F_{\xi}(x)$.

$$E\Phi(\xi_n) = \int_R \Phi(x) dF_{\xi_n}(x) \xrightarrow[n \to \infty]{} E\Phi(\xi) = \int_R \Phi(x) dF_{\xi}(x)$$

Фундаментальная сходимость:

$$\forall \epsilon > 0 \exists n_0 : \forall n \geqslant n_0, \forall p \in N. |x_{n+p} - x_n| < \epsilon$$

Теорема 26.1 (характеризация сходимости с p=1). $\{\xi_n\}, \xi$ - случайная величина $\mu a (\Omega, F, P)$

•
$$\xi_n \to \xi$$
 normu наверно $\Leftrightarrow \forall \epsilon > 0$ $p(\sup_{k \ge n} |\xi_k - \xi| \ge \epsilon) \xrightarrow[n \to \infty]{} 0$

ullet ξ_n — фундаментальной последовательности \Leftrightarrow справедливо хотя бы одно из

$$p(\sup_{k\geqslant 0}|\xi_{n+k}-\xi_k|\geqslant \epsilon)\xrightarrow[n\to\infty]{}0,\ p(\sup_{k\geqslant n,l\geqslant n}|\xi_k-\xi_l|\geqslant \epsilon)\xrightarrow[n\to\infty]{}0.\ \forall \epsilon>0$$

Доказательство. Возьмем $\epsilon > 0, A_n^{\epsilon} = \{\omega : |\xi_n - \xi| \geqslant \epsilon\}$

$$\forall \epsilon > 0 \exists N : \forall n \geqslant N \mid \xi_n - \xi \mid < \epsilon -$$
сходится

$$\exists \epsilon > 0 |\xi_n - \xi| \geqslant \epsilon$$
 - происходит бесконечно часто – расходится

$$\xi_n \nrightarrow \xi \Leftrightarrow \exists \epsilon > 0 : A_n^{\epsilon}$$
 - происходит бесконечно часто.

$$A^{\epsilon} = \overline{\lim_{n}} A_{n}^{\epsilon} = \bigcap_{n} \bigcup_{k > n} A_{k}^{\epsilon}$$

 $A^{\epsilon} = \overline{\lim}_{n} A_{n}^{\epsilon} = \bigcap_{n} \bigcup_{k \geqslant n} A_{k}^{\epsilon}$ $\xi_{n} oup \xi \Leftrightarrow \exists \epsilon > 0 : A^{\epsilon}$ имеет положительную вероятность.

$$\xi_n \to \xi \Leftrightarrow p\left(\bigcup_{\epsilon} A^{\epsilon}\right) = 0 = p\left(\bigcup_{m} A^{\frac{1}{m}}\right)$$

Чтобы доказать сходимость с вероятностью равной единице, необходимо и достаточно показать что, $p\left(\bigcup_{m}A^{\frac{1}{m}}\right)$ Покажем, что $0=p\left(\bigcup_{m}A^{\frac{1}{m}}\right)\Leftrightarrow p\left(A^{\frac{1}{m}}\right)=0.$

$$p(\bigcup_{m} A^{\frac{1}{m}}) \leqslant \sum_{m} p(A^{\frac{1}{m}})$$

Если
$$p(A^{\frac{1}{m}}) = 0 \forall m \Rightarrow p\left(\bigcup_{m} A^{\frac{1}{m}}\right) = 0$$
 и обратно.

$$p\left(\bigcup_{m} A^{\frac{1}{m}}\right) = 0, \ p\left(\bigcup_{m} A^{\frac{1}{m}}\right) \geqslant p\left(\bigcup_{m} A^{\frac{1}{m_0}}\right) \Rightarrow p\left(A^{\frac{1}{m}}\right) = 0 \Rightarrow \xi_n \to \xi \Leftrightarrow p\left(\bigcup_{m} A^{\frac{1}{m}}\right) = 0 \Leftrightarrow p\left(A^{\frac{1}{m}}\right) = 0 \forall m \Leftrightarrow p(A^{\epsilon}) = 0 \forall \epsilon$$

 $A^{\epsilon} \stackrel{\cdot}{=} \bigcap_{\substack{n \ k\geqslant n}} \bigcup_{k\geqslant n} A_k^{\epsilon} \Rightarrow$ таким образом, усл. равносильно σ -аддитивности, т.к. последовательность монотонная \Rightarrow

$$p(A^{\epsilon}) = \lim_{n} p\left(\bigcup_{k \geqslant n} A_{k}^{\epsilon}\right) = \lim_{n} p\left(\bigcup_{k \geqslant n} \{|\xi_{n} - \xi| \geqslant \epsilon\}\right) = \lim_{n} p(\sup_{k \geqslant n} |\xi_{n} - \xi| \geqslant \epsilon) \Rightarrow$$

$$\Rightarrow \xi_{n} - \xi \Leftrightarrow p\left(\sup_{k \geqslant n} |\xi_{n} - \xi| \geqslant \epsilon\right) \xrightarrow[n \to \infty]{} 0 \forall \epsilon > 0$$

Следствие 26.2.

$$p\left(\sup_{k\geqslant n}|\xi_n-\xi|\geqslant\epsilon\right)=\left(\bigcup_{k\geqslant n}A_k^\epsilon\right)\leqslant\sum_{k\leqslant n}p(A_k^\epsilon)=\sum_{k\geqslant n}p(|\xi_n-\xi|\geqslant\epsilon)$$

Если ряд $\sum_{k} p(|\xi_n - \xi| \geqslant \epsilon)$ сходится $\Rightarrow \xi_n - \xi$ почти наверно.

27 Теорема о разных видах сходимости случайных величин, лемма Бореля-Кантелли

Лемма 27.1 (Бореля-Кантелли). $A_1, ..., A_n, ...$

$$A = \overline{\lim}_n A_k = \bigcap_{n} \bigcup_{k \geqslant n} A_k = \{A_n - \text{бесконечно часто} \}.$$

1.
$$\sum_{k} p(A_k) \ cxodumcs \Rightarrow p(A) = 0$$

2.
$$A_1, ..., A_n, ...$$
 - незав., ряд расходится. $\Rightarrow p(A) = 1$

Доказательство. 1. $p(A) = p(\bigcap_n \bigcup_{k \ge n} A_k)$; $B_n = \bigcup_{k \ge n} A_k \Rightarrow$ по теореме об условиях равносильной σ -аддитивности \Rightarrow

$$p(A) = \lim_{n} p(B_n) \leqslant \lim_{n} \sum_{k \geqslant n} p(A_k) \to 0$$
 так как ряд сходится.

2.
$$p(A) = \lim_{n} p(B_n) = \lim_{n} p(\bigcup_{k \geqslant n} A_k) = \lim_{n} (1 - p(\bigcap_{k \geqslant n} \bar{A}_k)) = |A_1, ..., A_n$$
 - незав. \Rightarrow вер. произв = произв. вероятностей $|=\lim_{n} (1 - \prod_{k \geqslant n} p(\bar{A}_k)) = \lim_{n} (1 - \prod_{k \geqslant n} (1 - p(A_k))) = \lim_{n} (1 - p(A_k)) = \sum_{k \geqslant n} \ln(1 - p(A_k)) = \sum_{k \geqslant n} \ln(1 - p(A_k)) \le |\ln(1 - x)| \le -x$ при $0 \le x \le 1$ $|\le -\sum_{k \geqslant n} p(A_k) = -\infty| = \lim_{n} (1 - \exp(-\infty)) = 1$

Следствие 27.1. $\epsilon_n \downarrow 0, \sum_k p(|\xi_k - \xi| \geqslant \epsilon_k)$ сходится $\Rightarrow \xi_k \to \xi$ п.н.

Доказательство. $A_k=\{|\xi_k-\xi|\geqslant\epsilon_k\}\Rightarrow$ Лемма Бореля-Кантелли $\Rightarrow A=\bigcap_{n=1}^\infty\bigcup_{k\geqslant n}A_k\Rightarrow p(A)=0\Rightarrow$ при п.в.

$$\omega \exists N(\omega) : \forall n \geqslant N(\omega) |\xi_n(\omega) - \xi(\omega)| \leqslant \epsilon_n \Rightarrow \text{т.к. } \epsilon_n \downarrow 0 \Rightarrow \xi_n \to \xi$$
 при п.в. ω .

Пример 5. $\xi_n \xrightarrow{p} \xi$ (по вероятности). Используется чтобы показать, что из ξ_n можно выделить подпоследовательность $\xi_{nk} \to \xi$ n.н

Доказательство.
$$\xi_n \xrightarrow{p} \xi \Rightarrow p(|\xi_n - \xi| > \sigma) \to \forall \sigma$$

 $A_{n_m} = \{\omega : |\xi_n - \xi| > \frac{\sigma}{m}\} \Rightarrow p(A_{n_m}) \to 0, \frac{\sigma}{m} = \epsilon_m \downarrow 0$

Возьмем
$$A_{n_1}=A_n:p(A_n)<1$$
; $A_{n_2}=A_n:p(A_n)<\frac{1}{2},...,A_{n_k}=A_n:p(A_n)<2^{\frac{1}{k}}\Rightarrow$

$$\sum p(A_{n_k}) = \sum_{k=0}^{\infty} \frac{1}{2^k} = 2 \Rightarrow \text{Сл.} \Rightarrow \xi_{n_k} \to \xi \text{ п.н.}$$

51

28 Неравенство Чебышева, закон больших чисел

Определение 29 (Одинаково распределённые случайные величины). ξ_1 u ξ_2 – одинаково распределены, если $F_{\xi_1}(x) = F_{\xi_2}(x)$

У одинаково распределённых случайных величин любые числовые характеристики одни и те же, так что во многих случаях можно считать, что одинаково распределённые случайные величины это есть копии одного и того же случайного эксперимента.

$$\bar{x}_n = \frac{\xi_1 + \dots + \xi_n}{n}$$

Пусть $a=E\xi,\sigma^2=D(\xi)<\infty$ – конечные моменты I и II порядка.

$$\bar{\xi} = \frac{1}{\pi} \cdot \frac{1}{1+x^2} = P_{\xi}(x); E\xi = \frac{1}{\pi} \int_{R} \frac{x}{1+x^2} dx$$

Теорема 28.1 (Закон больших чисел для независимых одинаково распределённых случайных величин с конечной дисперсией). Пусть $\xi_1, ..., \xi_n ... - nоследова-$ тельность независимых одинаково распределённых случайных величин.

$$\left. \begin{array}{l}
 a = E\xi_1 \\
 \sigma^2 = D(\xi_1) < \infty \\
 \bar{x}_n = \frac{\xi_1 + \dots + \xi_n}{n}
 \end{array} \right\} \Rightarrow \lim_{n \to \infty} \bar{x}_n = E\xi_1 = a$$

Доказательство. Пусть $\sigma > 0$. Достаточно проверить что $P(|\bar{x}_n - a| > \sigma) \xrightarrow[n \to \infty]{} 0$. Вместо этого можно проверить сходимость $E(\bar{x}_n - a)) \xrightarrow[n \to \infty]{} 0$ (в силу неравенства Чебышева).

$$E(\bar{x}_n \to a)^2) \xrightarrow[n \to \infty]{} 0$$

Найдём $E\bar{x}_n = \frac{1}{n} \sum_{k=1}^n \xi_n = \frac{1}{n} an = a$
 $E(\bar{x}_n - a)^2 = E(\bar{x}_n - E\bar{x}_n)^2 = D(\bar{x}_n)$
 $D(\bar{x}_n) = D\left(\frac{1}{n} \sum_{k=1}^n \xi_k\right) = \frac{1}{n^2} D\left(\sum_{k=1}^n \xi_k\right) = \frac{1}{n^2} \sum_{k=1}^n \underbrace{D(\xi_k)}_{=\sigma^2} = \frac{1}{n^2} \sigma^2 n = \frac{\sigma^2}{n} \xrightarrow[n \to \infty]{} 0$
Итого, для $L^2(\Omega)$ имеем: $\bar{x}_n \xrightarrow[n \to \infty]{} a$ и $D(\bar{x}_n) = \frac{\sigma^2}{n}$

Следствие 28.2. 1. Поскольку существует сходимость в $L^p(\Omega) \Rightarrow$ существует сходимость по вероятности, отсюда $P = \lim_{n \to \infty} \bar{x}_n = a = E\xi_1$

- 2. Позже будет показано и доказано (при более слабых условиях) а точнее: Eсли $E|\xi_1| < \infty, \xi_1, ..., \xi_n$ — независимо одинаково распределённые случайные величины, то $x_n \to a = E\xi_1$ почти наверно.
- 3. В процессе доказательства получили: $E\bar{x}_n = a, D(\bar{x}_n) = \frac{\sigma^2}{n}$
- 4. О законе статистической устойчивости случайных величин:

Если берём эксперимент ξ и повторяем его многократно в одних и тех эксе условиях независимым образом, также возмём событие A, связанное c этим экспериментом. Тогде, если n – общее число повторений, то $\frac{n_A}{n} = p$ – являющаяся постоянной относительная частота появления события A.

$$5. P(A) = ?$$

$$E\mathbf{1}_A = P(A)$$

Повторяем А многократно в одних и тех же условиях.

 $m{1}_A^{(1)}, m{1}_A^{(2)}, ..., m{1}_A^{(n)}$ – независимо одинаково распределённые случайные величины $rac{1}{n}\sum_{k=1}^n m{1}_A^{(k)} o E m{1}_A = P(A)$

 $n_A = \sum_{k=1}^n \mathbf{1}_A^{(k)}$ – число появления события A в n независимых испытаниях $\frac{n_a}{n} = \frac{\mathbf{1}_A^{(1)} + \ldots + \mathbf{1}_A^{(n)}}{n} \approx E \mathbf{1}_A = P(A)$ согласно 3B Y.

6.
$$Ef(\xi) = ?$$

 $\{\xi_n\}-n$ копий случайной величины ξ

$$E\xi^2 = \frac{\xi_1^2 + \dots + \xi_n^2}{n}$$

 $Ef(\xi) = \frac{f(\xi_1) + \ldots + f(\xi_n)}{n}$, где f(*) – детерминирована и $E|f(\xi)| < \infty$

7. $F_{\xi}(x) = p(\xi \leq x) = E \mathbf{1}_{(\xi \leq x)} \approx \frac{\mathbf{1}_{(\xi_1 \leq x)} + \ldots + \mathbf{1}_{(\xi_n \leq x)}}{n} = \frac{1}{n} x_n$, где x_n - число появления $(\xi \leq x)$ в n испытаниях.

 $F_{\xi}(x) = F_n^*(x) = \frac{1}{n} \sum_{k=1}^n \mathbf{1}(\xi_k \le x)$ – эмпирическая функция распределения.

8. $\int_{a}^{b} f(x)dx = ?$ (Используем Метод Монте-Карло)

Пусть $\xi \sim [a,b]$ (равномерное распределение) $\Rightarrow P_{\xi}(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & x \notin [a,b] \end{cases}$ То-

гда,
$$Ef(\xi) = |$$
 замена переменных $| = \frac{1}{b-a} \int_{a}^{b} f(x) dx$

$$Ef(\xi) = \int_{\Omega} f(\xi) dP = \int_{a}^{b} \frac{1}{b-a} f(x) dx = \frac{1}{b-a} \int_{a}^{b} f(x) dx = \frac{f(\xi_1) + \dots + f(\xi_n)}{n} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

29 Характеристические функции и их свойства

30 Центральная предельная теорема и теорема Пуассона

Теорема 30.1 (ЦПТ). $\xi_1, ..., \xi_n$ - H.O.P.

31 Многомерное нормальное распределение

1. $\bar{\xi} = (\xi_1, ..., \xi_n), \xi_k \sim N(a_k, \sigma_k)$ и является независимыми случайными величинами.

$$B_{kl} = cov(\xi_k, \xi_l); B = \{B_{kl}\}, k, l = \overline{1...n}$$
 $B = \begin{pmatrix} \sigma_1^2 & 0 \\ & \ddots & \\ 0 & \sigma_n^2 \end{pmatrix}$, т.к. независимые случайные величины.

 $\bar{a} = (a_1, ..., a_n)$ – вектор математических ожиданий.

Плотность распределения:

$$\xi_1, ..., \xi_n : p_{\xi_1, ..., \xi_n}(x_1, ..., x_n) = \prod_{k=1}^n P_{\xi_k}(x_n) = \frac{1}{(2\pi)^{n/2} \prod_{k=1}^n \sigma_k} e^{-\frac{1}{2} \sum_{k=1}^n \left(\frac{x_k - a_k}{\sigma_k}\right)^2}$$

Следовательно, $\sqrt{det A} = \prod_{k=1}^n \frac{1}{\sigma_k}$, откуда при $A = \{a_{ij}\}_{i,j=1}^n$:

$$p_{\xi_1,\dots,\xi_n} - (2\pi)^{-n/2} \sqrt{\det A} \cdot e^{-\frac{1}{2} \sum_{i,j=1}^n a_{ij}(x_i - a_i)(x_j - a_j)}$$

$$\sum_{i,j=1}^n a_{i,j}(x_i - a_i)(x_j - a_j) = \begin{vmatrix} a_{ij} = 0, & i \neq j \\ a_{ij} = \frac{1}{\sigma^2}, & i = j \end{vmatrix}$$

$$\varphi_{\xi_{1},\dots,\xi_{k}}(t_{1},\dots t_{n}) = Ee^{it_{1}\xi_{1}+\dots+it_{n}\xi_{n}} = E\left(\prod_{k=1}^{n} e^{it_{k}\xi_{k}}\right) =$$

$$= \prod_{k=1}^{n} E(e^{i}t_{k}\xi_{k}) = \prod_{k=1}^{n} e^{it_{k}a_{k}-\frac{t_{k}^{2}\sigma_{k}^{2}}{2}} = \exp\left(\left(\sum_{k=1}^{n} it_{k}a_{k} - \sum_{k=1}^{n} \frac{t_{k}^{2}\sigma_{k}^{2}}{2}\right) =$$

$$= \exp\left(i\bar{t}\bar{a} - \frac{1}{2}\sum_{i,j=1}^{n} B_{ij}t_{i}t_{j}\right)$$

Таким образом, для задания многомерного нормального распределения достаточно значть только a и B.

2. $\xi_1,...,\xi_n$ – случайные величины. Если $detB \neq 0 \Rightarrow \exists A = B^{-1}$ и следует \star . Если $detB=0\Rightarrow$ многомерное нормальное распределение определяется только через характеристическую функцию

$$\phi_{\xi_1,...,\xi_n}(t_1,...,t_n) = exp\left(\sum_{k=1}^n it_k a_k - \frac{1}{2}\sum_{i,j=1}^n B_{i,j}t_i t_j\right)$$

Необходимо, чтобы $B \ge 0$, т.е. $\sum_{i,j=1}^n B_{i,j} x_i x_j \ge 0$

$$\sum_{i,j}^{n} B_{i,j} x_i x_j = E \sum_{i,j=1}^{n} (\xi_i - a_i) x_i - (\xi_j - a_j) x_j = E \left(\sum_{k=1}^{n} (\xi_k - a_k) x_k \right)^2 \ge 0$$