Strengthening IP formulations; The Branch and Cut Algorithm

Milind G. Sohoni¹

January 3, 2015

Strengthening Formulations

- Consider two formulations A and B of the same ILP
- Let P_A and P_B denote the LP relaxations of these formulations respectively
- Formulation A is said to be at least as strong as B if $P_A \subseteq P_B$
- If the inclusion is "strict" then A is stronger than B

Strengthening Formulations

- Often, a given formulation can be strengthened with additional inequalities satisfied by all feasible integer solutions
- Consider the following example: The Perfect Matching Problem
 - We are given a set of n people that need to be paired in teams of two
 - Let c_{ij} represent the cost of pairing person i with person j
 - Our goal is to minimize the overall cost across all pairings
 - We can represent this problem on a graph G=(N,E) where the nodes N represent people and the edges E represent all possible pairings

The Perfect Matching Formulation

We have $x_{ij} = 1$ if the endpoints i and j are "matched", and $x_{ij} = 0$ otherwise.

$$\begin{aligned} &\min & & \sum_{\{i,j\} \in E} c_{ij} x_{ij} \\ &\text{s.t.} & & \sum_{\{j \mid \{i,j\} \in E\}} x_{ij} = 1 & \forall \ i \in N \\ & & x_{ij} \in \{0,1\} & \forall \ \{i,j\} \in E. \end{aligned}$$

Valid Inequalities and Cutting Planes

- Suppose we formulate it as an integer program by specifying a rational polyhedron $P = \{x \in \mathbb{R}_+^n | Ax \le b\}$ such that $S = Z^n \cap P$
- Hence $S = \{x \in \mathbb{Z}_+^n | Ax \le b\}$ and conv(S) is the convex hull of S i.e., the set of points that are convex combinations of points in S
 - $conv(S) \subseteq S$; "ideal" if conv(S) = S
- An inequality π^Tx ≤ π₀ is called a valid inequality if it is satisfied by all points in S
- Cutting planes: Given a formulation for S identify additional "valid inequalities (constraints)" that remove regions of S that contain no feasible solutions – thus obtaining a "better" formulation for S

Figure: Convex hull of an integer program.

Example of Valid Inequalities

- Suppose $S = \left\{ x \in \{0,1\}^5 \mid 3x_1 4x_2 + 2x_3 3x_4 + x_5 \le -2 \right\}$
- Observe that $x_2=x_4=0$, then $3x_1+2x_3+x_5\leq -2$ is impossible! So, $x_2+x_4\geq 1$ must be a valid inequality
- Similarly, if $x_1=1$ and $x_2=0$, then $0\leq 3+2x_3-3x_4+x_5\leq -2$ is again impossible! So, $x_1\leq x_2$ is also a valid inequality

Back to the Pefect Matching Problem

Figure: Valid Inequalities for the Perfect Matching Problem.

- Consider the graph on the left
- ullet The optimal perfect matching has a value L+2
- The optimal solution to the LP relaxation has a value 3
- The formulation can be extremely "weak"
- Add the valid inequality $x_{24}+x_{35}\geq 1$; Every perfect matching satisfies this inequality

The Odd Set Inequalities

- We can generalize the inequality from the previous slide
- Consider a "cut" S corresponding to any odd set of nodes (a cut separates the nodes into two sets)
- The "cutset" corresponding to S is

$$\delta(S) = \{\{i, j\} \in E \mid i \in S, j \notin S\}$$

- An "odd cutset" is any $\delta(S)$ for which |S| is odd
- Note that every perfect matching contains at least one edge from every odd cutset
- Hence each odd cutset induces a possible valid inequality

$$\sum_{\{i,j\}\in\delta(S)} x_{ij} \geq 1, \ S\subset N, \ \mathsf{and} \ |S| \, \mathsf{odd}$$

Generating Constraints

- If we add all of the odd set inequalities, the new formulation would be "ideal"
- However, the number of inequalities (for a general problem) could be exponential in size
- Only a few of these inequalities will eventually be "active" in the optimal solution
- Essentially, we generate these constraints on the fly
 - Solve the initial LP relaxation
 - If solution is feasible, STOP; Else look for a violated odd set inequality
 - Add the inequality and reoptimize; Go to the earlier step

Branch and Cut Algorithms

- If we combine constraint generation with the Branch and Bound algorithm, we get the *Branch and Cut* algorithm
- The relaxation at each node is "strengthened" using valid inequalities
- This increases the lower bound and improves efficiency
- Most state of art IP solvers use Branch and Cut