Specification For LTCC Chip Antenna

Model Name: RCA2450P90

Title: Name: APPROVED By Date: Signature: RN2 Technologies co. Ltd.	Name: APPROVED By Date:	
APPROVED By Date: Signature:	APPROVED By Date: Signature:	Title:
By Date :Signature :	By Date :Signature :	Name:
Signature :	Signature :	APPROVED
		By Date :
RN2 Technologies co. I td	RN2 Technologies co., Ltd.	Signature :
Kive Technologies co., Lia.		RN2 Technologies co., Ltd.

KI TAE KIM

195-2, Soonam-ri, Sindoon-myeon,

Icheon-si, Kyeongi-do, KOREA

Phone: (+81) 31-638-0300 FAX: (+81) 31-638-3443

1. Description and Application

MODEL: RCA2450P90

Description

Surface mount, LTCC Chip Antenna

Features

- Multilayer LTCC(Low Temperature Cofired Ceramics) Technology
- SMD (Surface Mounted Device)
- Miniature Size
- High Stability in Temperature/Humidity Change
- Free Impedance Matching
- Suitable for 2450MHz Working Frequency Operation

Applications

- Bluetooth device (mobile Phone, headset, carkit, serial port, dongle, MP3)
- WLAN (Access Point, Notebook, PDA)
- DMB(receiver)
- HPi(High speed Portable internet)

2. Temperature Range

Operating temperature range : $-40 \text{ to} + 85 \text{ }^{\circ}\text{C}$

3. Properties

3.1 Electrical Specification:

ITEM	Specification	Meas. Conditions
Model	P90	
Center frequency	2.45 GHz	Test board
Bandwidth	100 MHz min.	Test board / Matching
Gain	2.18 dBi	Test board / Matching
VSWR	2 Max	Test board / Matching
Polarization	Linear	
Azimuth Beamwidth	Omni	
Impedance	50 Ω	

3.2 Mechanical Specification

Mechanical Outline & Feeding

3.3 Land Layout

4. Electrical characteristics

4.1 Measurement Data (S11 & Smith chart)

4.2 Radiation pattern

R.F. Anechoic Antenna Chamber (10.0m×6.0m×4.0m)

Unita(dDi)	Frequency	Gain		
Units(dBi)	(MHz)	Average	Min	Max
	2400	-1.53	-5.32	0.80
Azimuth	2450	0.04	-2.86	2.07
	2500	-1.63	-3.93	0.34
	2400	-2.86	-32.94	1.12
Elevation	2450	-1.33	-18.50	2.18
	2500	-2.88	-23.90	0.55

5. Test board and matching circuit for measurements

Test board

5.2 Matching Circuits for measurements

In such case of internal SMD antenna, the resonant frequency is dependent on the GND size or other nearby active/passive components, and therefore can be different from what is measured on our test board.

6. Soldering Conditions

6.1 Recommended Solder

- A lead free alloy solder, Sn/Ag/Cu ratio of 96.5/3.0/0.5 is recommended
- Do not allow the iron-tip to directly touch the ceramic element

6.2 Solder reflow Profile

	Ramp Up	Pre-Heating	Peak	Soaking
Temp.[℃]	T1:160±5℃	T2:180±5℃	T4:250±5℃	T3:230±5℃
Time [sec]	t1:60±5sec	t2:100±15sec	t3:30±5sec	t4:60±10sec

7. Packaging

7.1 Dimension of the tape

(Unit: mm)

7.2 Dimension of the reel

(Unit: mm)

Quantity per reel: 5000 pcs

7.3 Leader and Tail tape

8. Environmental Specification.

ITEM	PROCEDURE	REQUIREMENTS/RESULT
Temperature Cycle	Test Sample on the testing Jig 1. One Cycle: Step1: 85 ± 5 °C for 30min Step2: -40 ± 5 °C for 30min 2. Number of Cycles: 100 3. Normal Condition in 1 hour	Meet the electrial Specification after test
Thermal Shock	Test Sample on the testing Jig 1. One Cycle: Step1: 85 ± 5 °C for 30min Step2: -40 ± 5 °C for 30min 2. Number of Cycles: 100 3. Normal Condition in 1 hour	Meet the electrial Specification after test
Solderability	Test Sample on the testing Jig 1. Solder: 250 ± 5°C for 5± 1 sec.	1. More than 85% of the electrode pad shall be covered with solder.
Heat Resistance	Test Sample on the testing Jig 1. Temperature: 85 ± 2 °C 2. Duration: $1000 + 48$ hours	Meet the electrial Specification after test
Low Temp. Resistance	Test Sample on the testing Jig 1. Temperature: -40 ± 5 °C 2. Duration: 1000 + 48 hours	Meet the electrial Specification after test
Vibration Resistance	Test Sample on the testing Jig 1. Frequency: 10~ 55MHz 2. Acceleration: 10g 3. Sweep Time: 1.5 mm, 2hours/axis 4. Axis: X, Y and Z direction	No appearance damage Meet the electrial Specification after test
Humidity Resistance	Test Sample on the testing Jig 1. One Cycle: Step1:Temperature 85°C for 500 hours with humidity 85% Step2: Decrease Temperature 85°C to 25°C 2. Maintain for 1~2 hour after decreasing temperature 25°C	Meet the electrial Specification after test

Drop Shock	Test Sample on the testing Jig 1. Dropped onto hard wood from height of 150 cm for 5 times; each -x, x, -y, y and -z, z direction except I/O direction.	No appearance damage Meet the electrial Specification after test
Shock /Deflection	Test Sample on the testing Jig Shown Fig 1 Acceleration: 980m/s ² Period: 6ms Cycle: 10 Times	No appearance damage and 2mm Deflection
Soldering Strength	Pushing Force at 0.5mm/s until electrode pads are pealed off or ceramics are broken Test Sample on the testing Jig Shown Fig 2	7kgf Minimum (electrode pads are pealed off or ceramics are broken)
Tensile Strength	Test Sample on the testing Jig Shown Fig 3	 No mechanical damage by forces applied on the right Strength (F) > 4kgf
Dipping test	Step1: 120~150 °C for 1min preheating Step2: 270 ± 5°C for 20± 0.5sec	 No appearance damage More than 85% of the electrode pad shall be covered with solder.
Reflow test	Preheat Temp.: 160± 10 °C Preheat Period: 60sec Peak Temp.: 255± 5 °C Peak Period: 30sec	 No appearance damage More than 85% of the electrode pad shall be covered with solder.

9. RoHS Test Result

RN2 Technologies warrants and represents as follows.

Test Report No. F690501/LF-CTSGP06-02938 Date: February 15, 2006 Page 2 of 3

Sample No. : GP06-02938.001
Sample Description : Chip Antenna

Style/Item No. : N/A

Comments : Material is Ceramics+Ag

Heavy Metals

Test Items	Unit	Test Method	MDL	Results
Cadmium(Cd)	mg/kg	US EPA 3050B(1996), US EPA 6010B(1996)	0.5	N.D.
Lead (Pb)	mg/kg	US EPA 3050B(1996), US EPA 6010B(1996)	5	N.D.
Mercury (Hg)	mg/kg	US EPA 3052(1996), US EPA 6010B(1996)	2	N.D.
Hexavalent Chromium (Cr VI)	mg/kg	US EPA 3060A(1996), US EPA 7196A(1992)	1	N.D.

Flame Retardants-PBBs/PBDEs

Test Items	Unit	Test Method	MDL	Results
Monobromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Dibromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Tribromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Tetrabromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Heptabromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Hexabromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Pentabromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Octabromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Nonabromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Decabromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Monobromodiphenyl ether	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Dibromodiphenyl ether	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Tribromodiphenyl ether	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Tetrabromodiphenyl ether	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Heptabromodiphenyl ether	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Hexabromodiphenyl ether	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Pentabromodiphenyl ether	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Octabromodiphenyl ether	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Nonabromodiphenyl ether	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Decabromodiphenyl ether	mg/kg	US EPA 3540C, GC/MS	5	N.D.

NOTE: (1) N.D. = Not detected.(<MDL)

(2) ppm = mg/kg

(3) MDL = Method Detection Limit

(4) - = No regulation

(5) ** = Qualitative analysis (No Unit)

(6) Negative = Undetectable / Positive = Detectable

- It is tested by SGS Testing Korea(www.sgslab.co.kr)

(주)YUKYUNG Technologies 귀중

품	명	Wi- MAX Cable Antenna
규	격	Wi- MAX
모달	텔 명	S7
코드번호		KFM- 245- WM- 0907
승인	번호	
조	건	
업체	담당	김 종 훈 대리

승	구분	담당	검토	승인
인 업	전자			
체	기구			
				신 규
승				재승인
인				기 타
	승인일지	· .		

2009년 07월 10일

	□ 개 발 실	공 급 업 체 정 보
ш	□ 생산기술부	상호 : (주)맥스웨이브
배	□ 품질관리부	주소 : 서울시 금천구 가산동
포		월드 메르디앙벤처 센터 1202호
처	□ 구 매 부	TEL: 02-785-2777
	□ 업 체 용	FAX: 02-785-2744

목 차

- 1. 개 요
 - 1.1 안테나 사용조건
 - 1.2 적용범위
- 2. Antenna 구성
- 3. 특 성
 - **■**Electrical Specifications
 - **■**Mechanical Specifications
- 4. 전기적 특성시험
 - 4.1 네트워크 측정
 - 4.2 무반사실측정
 - **4.3** 시험결과
 - 4.4 방사패턴
 - 4.5 2D Passive Chamber Data
- 5. 신뢰성 검사
- 6. 안테나 승인도
- 7. 관리공정도
- 8. 유해물질 성적서
 - 8.1 FR4
 - 8.2 Halogen test

1. 개 요

본 제품은 Wi-MAX 송-수신용 FR4 CABLE 안테나이다.

1.1 안테나 사용 조건

■휴대 ■고정 ■이동 ■실외 ■실내 □기타

1.2 적용 범위

본 사양승인원은 귀사에서 개발 혹은 생산되는, 시스템에 장착되어 사용하는 Wi-MAX 송-수신용 FR4 CABLE 안테나에 대하여 규정한다.

2. 안테나 구성

NO.	부 품 명	MODEL	Q'ty	비고
1	Wi-MAX FR4 chip 안테나	VEM 945 WM 0007	1	
2	Coaxial cable	KFM- 245- WM- 0907	1	240mm

3. 특 성

3.1 Mechanical Specifications

Antenna	Туре		PIFA Type
재	질	FR4	
		$W = 5 \pm 0.3$	+
	Тор	$L = 39.6 \pm 0.3$	1
크 기		$T = 0.8 \pm 0.1$	w
[mm]	Bottom	$A = 2 \pm 0.3$	A A A

3.2 Electrical Specifications

ITEM			SPEC
Frequ	uency Range [Mh	z]	2400 ~ 2500
	SWR [Max]		1.26 : 1
В	Bandwidth [Mhz]		100
Input Impedance [Ω]			50
	Polarization		Linear
	Azimuth Plane	Peak	- 1.19
	Azimum Plane	Average	- 4.81
Gain [dBi]	Elevation1 Plan	Peak	4.625
Galli [dbi]	Elevation 1 ian	Average	- 2.25
	Elevation2 Plan	Peak	4.838
	Elevation Plan	Average	- 2.01

4. 전기적 특성시험

- 4.1 네트워크 측정
 - 4.1.1 시험조건
 - (1)V.S.W.R.측정을 위한 Network Analyzer 준비.
 - (2)Rod Cable 준비.
 - (3)Test용 Zig 준비.
 - (4)Calibration Kit 준비.
 - 4.1.2 시험절차
 - 4.1.2.1 주파수 범위 설정.

Network Analyzer (E5071B)의 주파수 범위를 2350[MHz] ~ 2550[MHz]로 한다.

- 4.1.2.2 Calibration 방법 및 측정
- **OPEN Cal Kit으로 Calibration.**
- **SHORT Cal Kit**으로 Calibration.
- $50(\Omega)$ TERMINATION으로 Calibration.

4.1.2.3 Test시료의 V.S.W.R 측정.

Test 시료와 **Network Analyzer**를 연결한 상태에서 거리를 약 **30[cm]**두고,**V.S.W.R** 을 측정한다.

(그림1) Network Analyzer E5071C

(그림2) S7 테스트 시료

(그림3) Calibration Kit 85033D

(그림4) 네트워크 측정 시 연장 Cable

4.2 무반사실 측정

4.2.1 시험조건

■ CHAMBER SIZE

10m(D) * 5m(W) * 5m(H)

- 송수신 안테나 거리 : 3m
- 송수신 안테나 높이 : 3m
- 송신안테나를 수직으로 놓는다.
- Vertical Gain 측정: 단말시료를 Test Zig 이용하여 수직으로 세운 후, LCD 정면이 송신안테나를 바라봤을 때를 ① 로 기준하여 시계방향으로 360 회전시켜 Gain 측정.

■ Horizontal Gain 측정:

(1)Test 단말 LCD가 위를 향하도록 수평으로 놓는다.

(2)Test 단말 안테나가 송신안테나 방향으로 바라보도록 놓는다. (3)위의 (1),(2)를 만족할 때를 10 로 기준하여 시계방향으로 360 회전시켜 Gain 측정한다.

4.2.2 시험절차

- 송신안테나를 높이 3m에 수직으로 배치한 다음, Signal Generator에 연결한다.
- Test 시료로 송신안테나와 일직선상에 배치한 다음 높이를 3m에 고정시킨다.
- Turn Table을 시계방향으로 10 간격으로 돌리며 Gain 측정한다.

(그림 5) 무반사실 측정 Test SetUp

4.3 시험결과 [NETWORK DATA]

4.3.1 In Put Return Loss (반사손실)

4.3.2 SMITH CHART

4.3.3 VSWR(정재파비)

4.4 방사패턴

4.5 2D Passive Chamber Data

4.5.1 Wi- MAX

- Azimuth Plane

- Elevation1 Plane

- Elevation2 Plane

5. 신뢰성 검사 결과

신뢰성 검사 결과 보고서

모델명 : KFM-245-WM-0907

검사항목: 고온고습 시험 - 항온항습기

열 충 격 시험 - 열충격기 (대전 고주파 지원센터 의뢰)

염수분무 시험 - 5% 농도 염수

REFLOW 시험 - REFLOW OVEN (협력업체 의뢰)

No.	시 험 명	시 험 조 건	결	과
1	고온 고습 시험	온도 85 ℃± 2 ℃ 습도 85 %± 2 % 120Hr	합	격
2	열 충 격 시험	-40℃(2Hr), 85℃(2Hr) 1Cycle로 하여 15회 연속	합	격
3	염수 분무 시험	Sample 5% 농도염수 침수후 35℃±2℃에서 72Hr	합	격
4	REFLOW 시험	Per Heating $220^{\circ}\pm5^{\circ}$ 50sec Peak Heating $245^{\circ}\pm5^{\circ}$ 30sec	합	격

[개선사항]

[특기사항]

[측 정 결 과]

상기 결과와 같이 KFM-245-WM-0907 신뢰성 시험 결과를 합격으로 판정함.

고 온 고 습 시 험

제 품 명	Wi- MAX Cable Antenna	작 성 일	측 정 결 과
모 델 명	KFM- 245- WM- 0907	00 06 92	
시 험 명	고온고습시험	09. 06. 23	합 격
측 정 횟 수	1 회		

1. 시험목적

KFM-245-WM-0907 신뢰성 검증 및 품질 확인을 위함.

2. 시험 조건 및 결과

NO.	시 험 명	시 험 조 건	시 료 수	측정결과
1	고온고습시험	온도 85 ℃± 2 ℃ 습도 85 %± 2 % 120Hr	5Set	합 격

3. 특이사항

- 1) 효율성(전기적 특성) 이상유무 : 무
- 2) 외관변형 유무 : 무
- 3) 측정조건 변경 유무 : 무

4. 측정결과

상기 결과와 같이 본 시험을 합격으로 판정함.

상기 결과와 같이 **KFM-245-WM-0907** 신뢰성 시험결과를 **합격**으로 판정함.

열 충 격 시 험

제 품 명	Wi- MAX Cable Antenna	작 성 일	측 정 결 과
모 델 명	KFM- 245- WM- 0907	00 06 92	
시 험 명	열충격시험	09. 06. 23	합 격
측 정 횟 수	1 회		

1. 시험목적

KFM-245-WM-0907 신뢰성 검증 및 품질 확인을 위함.

2. 시험 조건 및 결과

NO.	시 험 명	시 험 조 건	시 료 수	측정결.	과
1	열충격시험	-40℃(2Hr), 85℃(2Hr) 1Cycle로 하여	5Set	합	겨
1		15 회 연속	JSEL		7

3. 특이사항

1) 효율성(전기적 특성) 이상유무 : 무

2) 외관변형 유무 : 무

3) 측정조건 변경 유무 : 무

4. 측정결과

상기 결과와 같이 본 시험을 합격으로 판정함.

5. 온도 Cycle 시험

상기 결과와 같이 **KFM-245-WM-0907** 신뢰성 시험결과를 **합격**으로 판정함.

역 수 분 무 시 험제품명Wi-MAX Cable Antenna작성일측정결과모델명KFM-245-WM-0907
연수분무시험09.06.23학교적

1. 시험목적

KFM-234-WB-0904 신뢰성 검증 및 품질 확인을 위함.

2. 시험 조건 및 결과

NO.	시 험 명	시 험 조 건	시 료 수	측정결과
1	염수분무시험	Sample 5% 농도염수 침수후 35℃±2℃에서 72Hr	5Set	합 격

3. 특이사항

1) 효율성(전기적 특성) 이상유무 : 무

2) 외관변형 유무 : 무

3) 측정조건 변경 유무 : 무

4. 측정결과

상기 결과와 같이 본 시험을 합격으로 판정함.

상기 결과와 같이 **KFM-245-WM-0907** 신뢰성 시험결과를 **합격**으로 판정함.

REFLOW 시 험

제 품 명	Wi- MAX Cable Antenna	작 성 일	측 정 결 과
모 델 명	KFM- 245- WM- 0907	00 06 92	
시 험 명	REFLOW시험	09. 06. 23	합 격
측 정 횟 수	1 회		

1. 시험목적

KFM-234-WB-0904 신뢰성 검증 및 품질 확인을 위함.

2. 시험 조건 및 결과

NO.	시 험 명	시 험 조 건	시 료 수	측정	결과
1	REFLOW시험	Per Heating 220°C±5°C 50sec	5Set	합	격
		Peak Heating $245 \degree \pm 5 \degree $ $30 sec$			

3. 특이사항

- 1) 효율성(전기적 특성) 이상유무 : 무
- 2) 외관변형 유무 : 무
- 3) 측정조건 변경 유무 : 무

4. 측정결과

상기 결과와 같이 본 시험을 합격으로 판정함.

상기 결과와 같이 **KFM-245-WM-0907** 신뢰성 시험결과를 **합격**으로 판정함.

6. 안테나 승인도

7. 관리공정도

		MAX	NAVE&MENTX	구분	일 자		제.개정	내용	걸	작성	경 토	송 입
품질보증공	정도ㅣㅏ	제품명	모델명	1	2008. 11.13.	신규)	현성					
	_	MEET WETAL	조활성 전공정	\vdash					덌			
				-	6 BI							_
공 정			공 정	. E		н		기록			기탕	
호름도 내용	풍 잘 목	성	황	8 -	방법	수광	당당	/ 7			71 4	
	녹,흠,포장상	FU	- 6 '	_	0.8	78	9 8					
의관화특성	재질, 치수, 쿠		검사규격 (조성	육 압 자료검증	전체	구매자			MILL SH	EET	
자자확인	녹, 홍 재질, 두페		검사규격,9 사양서참?	조	육안 V-Calipers 마이크로메타	전체	부서장	자재입고대장				
급행Setting 금행확인및 Setting	모일명, 했질.	두게	블랙두게 (다이하이 슬라이드		목안 V-Calipers	전체	부서장	급충의목표				
PRESS	수평상태,흠	집,기스	도면 참조		목안 V-Calipers	전체	작업자	공정 CHECK SH	EET			
Feeder	Pitch 확인				육안	전체	부서장	공정 CHECK SH	EET			
PIEROING	BURR 상태, {	집상승	학업기도서 참조		V-Calipers	3PL	작업자	공정 CHECK SH	EET			
NOTOHING	BURR 상태, (집상승	학업지도서 참조		육안 V-Calipers	8PL	작업자	공정 CHECK SH	EET			
BENDING	착도		작업지도서 참조	,도면	V-Calipers	3PL	작업자	공정 CHECK SH	EET			
OUTTING	BURR 상태		작업기도서 참조		육안 V=Oslipers	3PL	작업자	공정 CHECK SH	EET			
중간검사 검사	쿠조, 회수		도연참조		육압,투영기	3PL	작업자	공정 CHECK SH	EET			
검사,포장 단중확인	영립,행상		포장상태		육안	전체	작업자					
출하검사 출하검사	치수 ,표면외	관	검사규격. 한도견본	도연	육안	3PL	공정の	출하검사 성적	М			
출 하 출하	포장상태		주문서		육안	전체	영합단당	입출고전표				

8. 유해물질 성적서

8.1 FR4

SGS

Test Report

KINGBOARD LAMINATES (MACAO COMMERCIAL OFFSHORE) LIMITED AVIDA PRAIA GRANDENO SIRI, EDIFICIO COMMERCIAL RODRIQUES, SID ANGAR S, MACAO

Zest Resultini. PART NAME NO.1

Test fam (s):	Linet	Method	MOL	Result No.1
Cadmum (Cd)	mgkg	With reference to US EPA Method 3052 for Cadmium Content. Analysis was performed by ICP-AES.	2	1.6.
Lead (Pb)	mg/kg	With reference to UE EPA Method 3052 for Lead Content. Analysis was performed by 1CP-AES.	*	1.4.
Meroury (Hg)	mg/kg	With reference to US EPA Method 3052 for Meroury Content. Analysis was performed by ICP-AEE.	2	8.6
Heavillet Oronium OtVI)	нача	With reference to US EPA Method 3000A 8. 1186h for transpriser Chromium for non-metalic samples. Analysis was performed by UVIVIa Spectrometry.	2	A.E.
PVC .	*	Analysis was performed by FTIR and Pyrotyper-OC/MS.		Negative
Tetrabronobaphenol A (TBBP-A) (CAS No.: 000079-94-7)	mg/kg	With reference to DIN 53313. Analysis was performed by GC/MS.	15	1.5
Polychiarhaded Biphenyls (PCBs) mg/kg With reference to UE EPA 82750 method. Analysis was performed by (CAS No.: 201336-36-3)			0.5	1.6
Polychiodrated Naghthalene (PCNs)	maya	With reference to US EPA 82760 method. Analysis was performed by GCMS.	5	**
Polychionisted Terphenyls (PCTs)	maha	With reference to US EPA 82700 method. Analysis was performed by IGC/MS.	0.5	**
Chlorinated Parellin (C10-C13) (CAS No.: 010671-26-2)		SWith reference to US EPA 82700 method. Analysis was performed by IGCNES.	0.01	A.E.
Mrss (CAS No. 002385-85-5)	mg/kg	SWith reference to US EPA 82700 (method. Analysis was performed by IGCMS.	•	8.6
Furmaldehyde content	mg/kg	As per 65 EN ISO 14184-1.	. 5.	8.8.
Organic sin come sunds	1900	-	100	
Triphery; Tin (TphT) (CAS No.: 000869-34-8)	mghq	With reference to DIN 38407-13. Analysis was performed by GCFPD.	0.03	8.4
Tribuly! Tin (TBT) (CAS No. 000888-73-1)	make	With reference to DIN 38407-13. Analysis was performed by GCFPD	0.03	1.4

SGS

Test Report No.: CE00011854388 Date: 2001111/18 Page: 3 of 11

Test Bem (ii):	Unit	Method	MCL	Result No.1	
Ashestos	-			766.3	
Amount (CAS No.: 012173-73-6)		As per NIOSn 9000 method Analysis was performed by XRO.	1	Negative	
Chrysotile (CAS No.: 012001-29-5)		As per NIOSH 9005 method. Analysis was performed by XRD.	1	Negative	
Crosidolite (CAS No.: 012001-28-4)		As per NIOSH 9000 method. Analysis was performed by XRD.		Negative	
Anthophyline (CAS No.: 017069-78-9)		As per NICGH 9000 method. Analysis was performed by XRD.		Negative	
Trempite (CAS No.: 014567-73-8)		As per NIOSH 9000 method. Analysis was performed by XRD.	100	Tiegative	
Actinolite (CAS No.: 013768-00-8)		As per NIOSH 9000 method. Analysis was performed by XRD.		Regative	
AZO .	- 100	per .	- 300	-	
1) & AMINOCIPHENYL (CAS No.: 000002-47-1)	mg/kg	With reference to LMBG 82 02-2. Analysis was performed by GCME.	,	9.6	
2) BENZIONE (CAS No.: 000002- 87-6)	mg/kg	With reference to LMBO 92 52-2. Analysis was performed by GC/MS.		0.0.	
5) 4-CHLORO-O-TOLUIONE (CAS No. 200095-99-2)	maha	With reference to LMSG 92 53-2. Analysis was performed by GC/MS.	3	4.6	
4); 2-XAPHTHYLAMINE (CAS No.: 000001-59-8)	maka	With reference to LMSG 82 22-2. Analysis was performed by GC/MS.	- 3	11.0	
5) GAMNGAZOTOLUENE (CAS No.: 000097-56-3)	make	With reference to LMBG 82 62-2. Analysis was performed by GG/MS.	. 1	0.0	
6); 2-AMNO-4-NITROTOLUENE (CAS No.: 000099-55-6)	mg/kg	With reference to LMBG 62 02-2 Analysis was performed by GCMS.	3	0.6	
7): P-CHLOROANILINE (CAS No.: 000108-47-8)	mg/kg	With reference to LMBG R2 82-2. Analysis was performed by GOMS.	3	0.6	
8) 2.4-5/AMN CANISCLE (CAS No.: 000615-05-4)	mg/kg	With reference to LMBG 60 03-0. Analysis was performed by GC/MS.	3	6.2	
95 4.4"- DIAMINODIPHENYLMETHANE	mg/kg	With reference to LMEG 82 02-2. Analysis was performed by QCME.	2	6.8.	
10) 3.3-DICHLOROBENZIONE (CAS No. 000001-04-1)	mg/kg	With reference to LMBG 62 02-2. Analysis was performed by GCMS.	3	6.8	
11) 2.3-DMETHOXYBENZIONE (CAS No.: 000119-90-4)	mg/kg	With reference to LMBG 62 (3-2 Analysis was performed by GC/MS.	3	0.4	
12: 3.3-DIMETHYLBENZIONE (CAS No.: 000119-93-7)	mg/sp	With reference to LMBG 82 02-2. Analysis was performed by GC/MS.	3	6.6	

SGS

Test Report KINGBOARD LAMINATES (MACAO COMMERCIAL OFFSHORE) LIMITED AV DA PRAIA GRANDE NO. 598. EDIFICIO COMMERCIAL RODRIGUES. SRD ANDAR S. MACAO

Test Sem (s):	Unit	Method	MOL	Result No.1	
13; 3.3-DIMETHYL-4.4- DIAMINODIPHENYLMETHANE (CAS No. 000838-88-0)	mg/kg	With reference to LMBG 82.03-2. Analysis was performed by GC/MS.	,	n.d.	
14) P-CRESIONE (2-METHOXY-5- METHYLANILINE) (CAS No.: 000129-71-8)	mg/sg	With reference to LMBG 82 83-3. Analysis was performed by GCMS.	,	n.d.	
15) 4 4 METHYLENE 615 (2- CHLORICANILINE) (CAS NL. 000101-14-4)	~0^0	Analysis was performed by GCMS.	,	n.d.	
16) 4,4"-OXYDIANLINE (DAS No.: (00101-80-4)	mghq	With reference to LMEG 82 82-2. Analysis was performed by GCMS.	,	nd	
17): 4,4-THIODIANILINE (CAS No.: 000138-46-1)	make	With reference to LWBO 82.03-2. Analysis was performed by GC/MS.		nd	
HEL O-TOLUIONE (CAS No.: 000006-63-4)	whys	With reference to UMSG 82.03-2. Analysis was performed by GC/MS.	,	n.e.	
TRI 2.4-TOLUVLENEDIAMINE ICAS No.: 900095-90-7)	mphg	With reference to LWEG 82.03-2. Analysis was performed by GCMS.	,	14.	
20): 2.4,5-TRIMETHYLANILINE ICAS No.: 000137-17-7)	udys	With reference to UNBG 82 03-2. Analysis was performed by GC/MS.	3	8.8.	
21) GANISIONE (CAS No.: 000090-04-0)	mghq	With reference to LWBG 82,03-2. Analysis was performed by GCMS.	3	A.E.	
22) P.AMINGAZ OBERZENE (CAS No.: 000000-09-3)	mgkg	With reference to UNBO 82/03-2. Analysis was performed by GCMII.	1	0.6	
23) 2.4-XYUDNE (CAS No.: 000095-68-1)	make	With reference to LMSG 82.03-2. Analysis was performed by GC/MS.	,	n.e.	
24): 2.6-XYLIDINE (CAS No.: 000087-43-7)	mphq	With reference to LMSG 82.02-2. Analysis was performed by GC/MS.	,	1.6.	
Philippides	100			ine.	
587 (Seury phreside) (CAS No.: 000084-74-2)	*	With reference to Chromatographia Vis.47, No.784, 1998, Analysis were performed by GCIMS, (prohibited by 2005/84/EC)	0.003	A.E.	
DNP (Si-tunonyl prohatate) (CAS No.: 038593-13-0)		With reference to Chromatographia Visi 47, No. 784, 1998. Analysis were performed by GCMS, grohibled by 2005/94/EC;	0.003	1.5	
D(HP (Dr. (2-ethylhesyl) pithalate) ICAS No.: 000117-81-7)	•	With reference to Chromatographia Vis.47, No.784, 1988. Analysis was performed by GCMS, granibled by 2005/84/EC1.	0.003	**	

SGS

Test Report

KINGBOARD LAMINATES (MACAO COMMERCIAL OFFSHORE) LIMITED AV DA PRAIA GRANCE NO. 596, EDIFICIO COMMERCIAL ROCRIGUES, 3RD ANDAR B, MACAO

Test Rem (s):	Unit Method		MDL	Result No.1	
7400 0411 041			1000		
DDP (D-redecyl phthalate) (CAS No : 026761-40-0)	`	With reference to Otromatographia Vol.47, No.784, 1998. Analysis was performed by GC/MS. (prohibited by 2005/84/EC).	0.003	9.4	
DNOF (D-4-octyl phthulate) (CAS No.: 000117-84-0)	*	With reference to Chromatographia Vsi.47, No.784, 1998. Analysis was performed by GC/MS. (prohibited by 2005/84/EC).	0.505	nd	
BBP (Seruyi butyi pitchalate) (CAS No.: 000085-69-7)	•	With reference to Chromatographia Vis.47, No.784, 1998, Analysis was performed by GC/MS. (prohibited by (2006/64/EC)	0.503	n.c.	
OHF (Di-hexyl phthalate) (CAS No.: 000084-75-3)		With reference to Chromatographia Vol.47, No.764, 1998. Analysis was performed by GCIMS.	0.005	n.e.	
Hydrofluorsation, fluorinated hydrocarbon, fluoreflydrocarbon (HPC)	-	-	-	-	
HFC-23 (CHF3)	mg/kg	With reference to US EPA 5021 method. Analysis was performed by GOMS.	1	0.6.	
HFC-32 (CHF3):	mg/kg	With reference to US EPA 5021 method. Analysis was performed by GC/MS.			
HFC-41 (DH3F)	mg/kg	With reference to US EPA 5021 method. Analysis was performed by GCARS.			
HFC-43-10mee (C6H3F10)	mg/kg	With reference to US EPA 5021 method. Analysis was performed by OC/MS.	- 1	n.d.	
HFC-125 (C2HFS)	mg/kg	With reference to US EPA 5021 method. Analysis was performed by GCMS.	,	1.6.	
HPC-134 (C2H2F4)	mg/kg	With reference to US EPA 5021 method. Analysis was performed by GC/MS.			
HFC-134a (DHSFCF3)	mgkg	With reference to US EPA 5021 method. Analysis was performed by GC/MS.	1	n.d.	
HFC-143 (OKSFS)	пgkg	With reference to US EPA 5021 method. Analysis was performed by occurs.	-3	0.4.	

SGS

Test Report

No.: CE/2007/A54388 Date: 2007/11/16 Page: 6 of 11

KINGBOARD LAMINATES (MACAD COMMERCIAL OFFSHORE) LIMITED AV DA PRAIA GRANDE NO. 509, EDIFICIO COMMERCIAL RODRIGUES, 3RD ANDAR B, MACAO

Test item (s):	Unit	Method	MOL	Result No.1
HFC-143a (CH3F3)	PC-143a (CH3F3) mg/kg With reference to US EFA 5021 method. Analysis was performed by IOCAN.		1	1.0
HFC-152a (C2H4F2)	mg/kg	With reference to US EFA 5021 method. Analysis was performed by GCMS.	-1	4.6.
HFC-227ea (C3HF7)	nglig	With reference to US EPA 5021 method. Analysis was performed by GOMS.		n.d.
HFC-25Hs (C9/2FR)	mghg	With reference to UE EFA 5021 method. Analysis was performed by IGOMS.	- 1	0.4
HFC-236es (CSH2F6)	C-336es (C34376) mg/kg With inflations to US EPA 5021 method. Analysis was performed by GGMS. C-345es (C54375) mg/kg With inflammes to US EPA 5031			n.e.
metho		With reference to US EPA 5001 method. Analysis was performed by GCMS.	1	n.d.
HFC-345% (CSHSFS)	(CSH3F5) mg/kg With reference to US EPA 5021 method. Analysis was performed by GCMS.		1	11.6
HFC-385mfs (C4H6F5)	OOMS. Implie With reference to US EPA 5001 method. Analysis was performed by OCMS. Implie With reference to US EPA 5001 method. Analysis was performed by OCMS.			1.6.
Sum of PBBs				0.6
Monobromobiphenyl			- 1	0.6
Disramolophenyl			- 5	1.6.
Tribromobiphenyl .		CONTRACTOR CONTRACTOR	- 5	8.6
Tempromobpheryl	- 1	With reference to US EPA 3540C for	- 5	11.6.
Pentabromobiphenyl mg/kg		PBBuFBDEs Content. Analysis was	- 5	9.5
riexabromobiphenyl		performed by QCMS.	- 5	1.0
Heptatiram-obiphenyl Octatiromobiphenyl		1	- 5	9.6
Octabromobiphenyl		1	- 5	9.6
Nonabromologihenyl		1	_ 1	0.4
Decabrismobiphenyt			- 5	8.0

SGS

Test Report

No.: CE/2007/A54388 Date: 2007/11/16 Page: 7 of 11

KINGBOARD LAMINATES (MACAO CORMERCIAL OFFSHDRE) LIBITED AV DA PRAIA GRANDE HO. 599, EDIFICIO COMMERCIAL RODRIGUES, 3RD ANDAR B, MACAO

Test flow (s) Unit Method		MOL	Result	
	-		-	No.1
Sum of PSDEs (Mono to None) (Note 4)			. 33	A.C.
Wonobromobigheryl ether		1 1	- 5	0.6.
Dibromolophenyl ether		1 7	5	0.6
Inbromobigheryl ether			- 5	0.6.
Tetratoromotophenyl ether		With reference to US EFA 3540C for	- 5	8.6
Percabromobiphenyl ether	mg/kg	PBBs/PBDEs Content. Analysis was	. 1	0.6
Heiabromotipheryl ether		performed by QCMS.	5	0.6
Heptabromobipheryl ether			5.	9.6
Octabromobigheryl efter		1	- 5	n.e.
Nonstromobiphenyl ether		1	- 5	8.6
Decelorsmobiphenyl ether		1	. 6.	4.6
Sum of PBDEs (Mono to Decs)			-	1.6
Perfluorocarbon (PFS)	-		-72	-
F14 (CAS No.: 000076-73-0)	mg/kg	With reference to US EPA 5021 method. Analysis was performed by GC/MS.	1	2.5
Plyonication 116 (CAS No.: 000076-16-4)	rocarbon 116 (CAS No.: mg/kg: With reference to US EFA			**
Freon 218 (CAS No.: 000076-19-7)	mg/kg	With reference to UE EPA 5021 method. Analysis was performed by GC/MS.		1.6
Deceffuorobutane (CAS No.: 000265-25-9)	mg/kg	With reference to US EPA 5021 method. Analysis was performed by GCMS.	-1	0.2
Free: CS18 (CAS No.: 000115-25-3)	mg/kg	With reference to US EPA 5021 method. Analysis was performed by GCMS.	1	*4
Perfluor 1-butane (CAS No.: 000307- 26-6)	mg/kg	With reference to US EPA 5021 method. Analysis was performed by GCAMS.	1	8.6
perfuoriscitutarie (CAS No.: 000563- 21-8)	mg/kg	With reference to US EPA 5021 method. Analysis was performed by GCARS.	- 1	1.4
1.4-dihydrostaffuorotusane (CA3 No.: 000377-36-6)	mghg	With reference to US EPA 5021 method. Analysis was performed by GC/MS.	,	n.d.
nonafluer-3- (mfluopmethy/Joutane (CAS No.: 000684-91-2)	mg/kg	With reference to US EPA 5021 method. Analysis was performed by GDARS.		r.d.

SGS

Test Report

No.: CE/2007/454565 Date: 2007/11/16 Page: 8 of 11

KINGBOARD LAMINATES (MACAD COMMERCIAL OFFSHORE) LIMITED AV DA PRAIA GRANDE NO. 598, EDIFICIO COMMERCIAL RODRIGUES, 3RD ANDAR E, MACAD

Test Ben (x):	Unit	Method	MOL	Result No.1
perfluiro n-pentana (CAS No. 000679-29-2)	mg/kg	With reference to US EPA 5021 method. Analysis was performed by GCMS.	,	1.6.
2-perfusionathylperians (CAS No.: 000016-04-4)	mg/kg	With reference to US EPA 5021 method. Analysis was performed by GC/MS.	- '	A.E.
perfuorohexane (CAS No. 500365- 43-0)	make	With reference to US EPA 5021 method. Analysis was performed by GC/MS.	,	1.6.

8.2 Halogen Test

(주)유경테크놀로지스 귀중

승 인 원

		,				
품	명	GSM/DCS/PCS/WCDMA 송·수신용 Swivel Antenna				
모	델	S10				
코드빈	^{년호}	KRM-S5-G2DPW-0905				
승인변	^{년호}					
업체딩	計당	김 종 훈 대리				
	7.1	가.				
 조		나.				
_ 소	건	다.				
		라.				

상기 제품에 대해 승인합니다.

	구 분	담 당	검 토	승 인
공급업체	전 자	The Differ		*wC
	기 구	and	Lung.	to the
	구 분	담 당	검 토	승 인
승 인	전 자			
	기 구			
	승인일자	Ļ	크 월	일

제출일: 2009년05월 28일

공 급 업 체 정 보					
상 호	(주)맥스웨이브아이				
주 소	서울시 금천구 가산동 월드 메르디 앙벤처 센터 1202호				
TEL	02-785-2777				
FAX	02-785-2744				

목 차

4 7110	0
1. 개요	3
1.3 단위와 용어정의	
2. 안테나 구성	3
3. 특성 3.1 전기적 특성 3.2 기구적 특성	3
4. 전기적 특성 시험 4.1 네트워크 측정 4.2 무반사실 측정 4.3 시험 결과	4
5. 신뢰성 기준 5.1 기구 신뢰성 5.2 도금신뢰성	16
6. 신뢰성 검사	17
7. Antenna 승인도	21
8. 포장사양	22

1. 개 요

본 제품은 GSM/DCS/PCS/WCDMA 송·수신용 Swivel 안테나이다.

1.1 안테나 사용 조건

■휴대 □고정 ■이동 ■실외 ■실내 □기타

1.2 적용범위

본 사양승인원은 귀사에서 개발 혹은 생산되는, 시스템에 장착되어 사용하는 GSM/DCS/PCS/WCDMA 송·수신용 Swivel 안테나에 대하여 규정한다.

2. 안테나 구성

	No.	부품명	MODEL	Q'ty	비고
ſ	1	송·수신용 Antenna	KDM CE CODDW 000E	1	승인도 참조
ſ	2	Antenna Matching 단	KRM-S5-G2DPW-0905	1	0Ω

3. 특 성

3.1 전기적 특성									
	quency		824	894	960	1710	1850	1990	2170
	VSWI	3	2.53:1	3.69:1	3.66:1	3.62:1	2.11:1	1.87:1	1.32:1
	H Plane	Peak	-1.74	-1.87	-1.66	-3.01	-1.63	-2.87	-3.22
	H Plane	Average	-2.96	-3.41	-2.31	-5.33	-4.08	-4.95	-7.22
Gain	E1 Plane	Peak	-7.29	-5.04	-3.21	-6.8	-3.26	-1.14	-3.69
]		Average	-8.39	-7.29	-5.16	-10.2	-7.21	-5.77	-7.48
	E2 Plane	Peak	-11.3	-12.5	-11.0	-15.1	-9.61	-10.3	-11.1
	EZ PIANE	Average	-14.8	-16.5	-15.3	-19.8	-12.3	-13.6	-17.3
F	Polarization			Vertical					
lmp	oedanc	e [Ω]		50					
T	empera	ature			-30)°C ~ +8	5°C		

4. 전기적 특성시험

4.1 네트워크 측정

4.1.1 시험조건

- (1)V.S.W.R. 측정을 위한 Network Analyzer 준비.
- (2)Rod Cable 준비.
- (3)Test용 Zig 준비.
- (4) Calibration Kit 준비.

4.1.2 시험절차

4.1.2.1 주파수 범위 설정.

Network Analyzer (E5071B)의 주파수 범위를 824[MHz] ~ 2170[MHz]로 한다.

- 4.1.2.2 Calibration 방법 및 측정
 - OPEN Cal Kit으로 Calibration.
 - SHORT Cal Kit으로 Calibration.
 - 50(Ω) TERMINATION으로 Calibration.
- 4.1.2.3 Test시료의 V.S.W.R. 측정.

Test 시료와 Network Analyzer를 연결한 상태에서 거리를 약 30[cm]두고, V.S.W.R.을 측정한다.

(그림1) Network Analyzer E5071C

(그림3) Calibration Kit **85033D**

(그림2) **테스트 시료**

(그림4) 네트워크 측정 시 연장 Cable

4.2 무반사실 측정

4.2.1 시험조건

■ CHAMBER SIZE 10m(D) * 5m(W) * 5m(H)

■ 송수신 안테나 거리 : 6.5m

■ 송수신 안테나 높이 : 3m

■ 송신안테나를 수직으로 놓는다.

■ Vertical Gain 측정: 단말시료를 Test Zig 이용하여 수직으로 세운 후, LCD 정면이 송신안테나를 바라봤을 때를 0°로 기준하여 시계방향으로 360° 회전시켜 Gain을 측정한다.

■ Horizontal Gain 측정:

- (1)Test 단말 LCD가 위를 향하도록 수평으로 놓는다.
- (2)Test 단말 안테나가 송신안테나 방향으로 바라보도록 놓는다.
- (3)위의 (1),(2)를 만족할 때를 0°로 기준하여 시계방향으로 360° 회전시켜 Gain을 측정한다.

4.2.2 시험절차

- ■송신안테나를 높이 2m에 수직으로 배치한 다음, Network Analyzer에 연결한다.
- Test 시료로 송신안테나와 일직선상에 배치한 다음 높이를 3m에 고정시킨다.
- Turn Table을 시계방향으로 10° 간격으로 돌리며 Gain을 측정한다.

4.3 시험결과 [NETWORK DATA]

4.3.1 In Put Return Loss (반사손실)

4.3.2 SMITH CHART

4.3.2 VSWR(정재파비)

4.4 방사패턴

Azimuth Plane	Elevation1 Plane	Elevation2 Plane
270° 90° 90°	90° 180°	270° 90°

4.5 2D Passive Chamber Data

4.5.1 GSM850

- Azimuth Plane

- Elevation1 Plane

- Elevation2 Plane

4.5.2 GSM900

- Azimuth Plane

- Elevation1 Plane

- Elevation2 Plane

4.5.3 DCS1800

- Azimuth Plane

- Elevation1 Plane

- Elevation2 Plane

4.5.4 DCS1900

- Azimuth Plane

- Elevation1 Plane

- Elevation2 Plane

4.5.5 WCDMA

- Azimuth Plane

- Elevation1 Plan

- Elevation2 Plane

Gain & Radiation Pattern

Frequency	Max.	Min.	Avg.	Beam Peak
1920Mhz	-10.72	-19.15	-14.00	200`
1950Mhz	-10.72	-18.44	-13.80	204
1980Mhz	-11.11	-18.77	-13.90	200`
2110Mhz	-11.76	-32.94	-17.70	68,
2140Mhz	-10.51	-31.77	-17.00	68,
2170Mhz	-11.10	-39.83	-17.30	68,

5. 신뢰성 기준

작성 자	검 토 자	승 인 자
and	Leng.	43
김 진아	배 진섭	박 승교

5.1 기구 신뢰성

NO	신뢰성 항 목	검사 방법	판정 기준
1	외관 및 구조	육안으로 확인하여 Shape, 구조, 색상이 한도 견본 및 해당사양과 일치하는지 여 부확인	파손, 부식, 함몰 등의 결함이 없을 것
2	형 합성	Rear Case에 취부시 Antenna 형합부위 치수가 도면치수 허용차와 일치여부 및 유해한 결함 없을 것	개별사양 및 좌동에 준함
3	외관 치수	해당사양 사내 승인도면 또는 고객의 최 종 승인원을 만족할 것	개별사양 및 좌동에 준함
4	삽발거 수명시험 (인출/삽입력)	안테나를 상대물(치구)에 Antenna Rod 일단을 고정하여 지그로 5,000회(10회/ 분) 삽•발거력을 실시한 후 각 단의 중간 지점에서삽•발거력을 측정한다.	자력으로 삽발거 되지 않을 것
5	Hinge 수명시험	Hinge Post를 고정하고 적합 JIG로 5,000회(20회/분) 좌우 90도 반복절곡 후, Push Pull Gauge로 회전 지지력을 체크한다.	20gf.cm이상 관리
6	회전강도 시험	Holder고정하고 적합 JIG로 3,000회(10회/분)360도 Swing을 실시한 후 Torque Gauge로 회전 지지력을 체크한다.	20gf.cm이상 관리
7	Pulling(몸체)강도시험	강도시험기에 TOP 과 Holder 고정후 Push Pull Gauge로 5Kgf을 5초간 당긴 후 확인 한다	외관 및 기구적인 손상이 없어야 하며 ,전기적 성능을 만족해야 한 다.
5.2	2 도금 신뢰성		
NO	신뢰성 항 목	검사 방법	판정 기준
1	고온고습	① 온도: 60±2℃ ② 상대습도: 80% ③ 시험시간: 96±2시간	EMI: 저항 값 및 TAPE밀착 력 만 족할 것

MAXWAVE

TAPE밀착 력,저항치 만족할 것

염수분무 시험

2

10분내염수제거 >상온24시간방치

① 염수농도 : 35±2도,5% 48Hr 시험후 부식,외관 이상 없을 것 EMI경우

		성 성적서 ^신 뢰성 성적서	I					
	11 1	<u> </u>		 시 험 D	Λ Τ Λ			
				검사	사항목	T		
시료	외		치 수					
NO	관	A (117.29±1.0)	B (59.03±0.5)	C (M5x P0.5)	D (70.2±0.3)	삽, 발거력	형 합성	판정
1	OK	118.09	59.14	OK	70.28	OK	_	OK
2	OK	117.94	59.14	OK	70.36	ОК	_	OK
3	OK	117.29	59.14	OK	70.28	OK	_	OK
4	OK	117.33	59.04	OK	70.38	OK	_	OK
5	OK	118.05	59.02	OK	70.28	ОК	_	OK
6	OK	118.00	59.01	OK	70.26	OK	_	OK
7	OK	117.98	59.15	OK	70.40	OK	_	OK
8	OK	117.35	59.12	OK	70.22	ОК	_	OK
9	OK	117.44	59.11	OK	70.14	ОК	_	OK
10	ОК	118.10	59.14	OK	70.16	OK		OK
11	ОК				•	•		•
12	ОК							
13	OK							
14	OK	1			Α			- 1
15	OK							
16	ОК							
17	OK							
18	OK							
19	OK		R				<u> </u>	
20	OK				-			
21	OK	670-						
22	OK				<u> </u>			
23	OK	4771_						
24	OK			D	ju-	-		
25	OK				_			
26	OK					 <u>1_</u>		
27	OK							
28	OK							
29	OK							
30	OK							

시 험 항목

Hinge 수명시험

시험DATA

	검사항목														결과		
									VS'	WR							2시
시 료 NO		관 cm)	824MHz		894MHz		960MHz		1710MHz		1850MHz		z 1990MHz		2170MHz		VSWR 4
	Before	After	Before	After	Before	After	Before	After	Before	After	Before	After	Before	After	Before	After	이하
1	108	76	2.6	2.5	3.7	3.7	3.6	3.6	3.6	3.6	2.2	2.1	1.9	2.0	1.3	1.2	OK
2	100	71	2.5	2.5	3.6	3.6	3.6	3.5	3.5	3.5	2.2	2.0	1.8	1.9	1.3	1.3	OK
3	121	82	2.5	2.5	3.6	3.7	3.5	3.6	3.5	3.6	2.1	2.1	1.8	2.0	1.4	1.2	OK
4	98	65	2.5	2.5	3.7	3.7	3.7	3.6	3.6	3.5	2.1	2.1	1.7	1.9	1.3	1.3	OK
5	132	85	2.7	2.5	3.7	3.7	3.5	3.6	3.4	3.4	2.1	2.2	1.8	1.9	1.4	1.3	OK
6																	
7																	
8																	
9																	
10																	

시 험 항 목

회전강도 시험

시험DATA

	검사항목															결과	
	6.1	-1							VS'	WR							일되
시 료 NO		관 cm)	824MHz		894MHz		960MHz		1710	1710MHz		1850MHz)MHz	2170MHz		VSWR 4
	Before	After	Before	After	Before	After	Before	After	Before	After	Before	After	Before	After	Before	After	이하
1	86.4	54	2.6	2.5	3.6	3.7	3.5	3.6	3.5	3.5	2.1	2.2	1.9	1.9	1.4	1.3	OK
2	98	63	2.6	2.6	3.5	3.5	3.4	3.5	3.4	3.3	2.2	2.1	1.7	1.7	1.3	1.3	OK
3	80	51	2.6	2.6	3.8	3.7	3.8	3.7	3.7	3.8	2.0	2.1	2.0	1.9	1.1	1.1	OK
4	76	42	2.4	2.4	3.7	3.7	3.7	3.6	3.6	3.7	2.0	2.0	1.7	1.8	1.3	1.2	OK
5	82	50	2.5	2.5	3.5	3.5	3.5	4.5	3.4	3.5	2.2	2.1	2.0	1.9	1.4	1.4	OK
6																	
7																	
8																	
9																	
10																	

٨	허	하	모
		\simeq	\Rightarrow

Pulling(몸체)강도시험

시험DATA

	검사항목																 결과
									VS'	WR							실 사
시 료 NO	외	관	824	24MHz 894MHz 960I			MHz	lz 1710MHz 1850MHz)MHz	VSWR 4			
	Before	After	Before	After	Before	After	Before	After	Before	After	Before	After	Before	After	Before	After	이하
1	OK	OK	2.8	2.7	3.7	3.6	3.6	3.6	3.6	3.6	2.2	2.1	1.8	1.8	1.3	1.3	OK
2	OK	OK	2.3	2.3	3.9	3.9	3.7	3.6	3.8	3.7	2.4	2.3	2.0	1.9	1.5	1.4	OK
3	OK	OK	2.4	2.3	3.8	3.8	3.8	3.8	3.7	3.7	2.5	2.4	2.0	2.0	1.4	1.4	OK
4	OK	OK	2.5	2.4	3.7	3.7	3.7	3.7	3.6	3.5	2.3	2.2	2.0	2.0	1.5	1.5	OK
5	OK	OK	2.6	2.5	3.6	3.6	3.6	3.5	3.5	2.5	2.1	2.0	1.8	1.8	1.3	1.2	OK
6																	
7																	
8																	
9																	
10																	
11																	
12																	
13																	
14																	
15																	
16																	
17																	
18																	
19																	
20																	
21																	
22																	
23																	
24																	
25																	
26																	
27																	
28																	
29																	
30																	

															
시 험 항 목									고온.	고습					
시 힘 D A T A															
	검사항목														
	VSWR														결과
시료 NO	824	824MHz		MHz	960	MHz	1710)MHz	1850)MHz	1990)MHz	2170)MHz	VSWR
	Before	After	Before	After	Before	After	Before	After	Before	After	Before	After	Before	After	4 이하
1	2.7	2.8	3.7	3.6	3.7	3.7	3.6	3.6	2.3	2.2	1.8	1.8	1.4	1.3	OK
2	2.3	2.3	3.9	3.9	3.6	3.5	3.8	3.7	2.3	2.4	2.0	2.0	1.5	1.4	OK
3	2.3	2.4	3.8	3.9	3.8	3.8	3.7	3.7	2.5	2.4	2.0	1.9	1.4	1.4	OK
4	2.5	2.4	3.6	3.7	3.7	3.6	3.6	3.7	2.4	2.3	2.0	2.0	1.5	1.6	OK
5	2.6	2.6	3.6	3.6	3.6	3.6	3.6	3.5	2.1	2.1	1.9	1.8	1.3	1.3	OK
6															
7															
8															
9															
10															
시 험 항 목								C	멸수 	분무					
					시	험 D	АТА	Ą							
							검사	항목							결과
							VS'	WR							일 된 기
시료 NO	824	MHz	894	MHz	960	MHz	1710)MHz	1850)MHz	1990)MHz	2170)MHz	VSWR
	Before	After	Before	After	Before	After	Before	After	Before	After	Before	After	Before	After	4 이하
1	2.7	2.7	3.7	3.6	3.6	3.6	3.7	3.6	2.2	2.1	1.9	1.8	1.4	1.3	OK
2	2.4	2.3	3.9	3.9	3.6	3.6	3.7	3.7	2.4	2.3	1.9	1.9	1.4	1.4	OK
3	2.4	2.3	3.8	3.7	3.7	2.6	3.7	3.7	2.4	2.4	2.0	2.0	1.4	1.3	OK
4	2.5	2.4	3.7	3.7	3.8	3.8	3.6	3.6	2.4	2.4	2.0	2.0	1.5	1.5	OK
5	2.6	2.5	3.6	3.5	3.5	3.5	3.5	2.5	2.1	2.1	1.9	1.8	1.3	1.2	OK
6															
7															
8															
9															
10															

