Analyse factorielle

Statistiques descriptives

	Moyenne	Ecart type	Analyse N
ciné	17,0667	14,94498	15
TV	15,6667	12,69233	15
Concert	3,5333	1,95911	15

Matrice de corrélation

		ciné	TV	Concert
Corrélation	ciné	1,000	-,431	,665
	TV	-,431	1,000	-,604
	Concert	,665	-,604	1,000

Indice KMO et test de Bartlett

Indice de Kaiser-Meyer-Ol qualité d'échantillonnage.	,648	
Test de sphéricité de Bartlett	Khi-deux approx.	12,651
	ddl	3
	Signification	,005

Qualités de représentation

	Initiales	Extraction
ciné	1,000	,922
TV	1,000	,965
Concert	1,000	,824

Méthode d'extraction : Analyse en composantes principales.

Variance totale expliquée

	Valeurs propres initiales			Sommes extra	ites du carré des
Composante	Total	% de la variance	% cumulé	Total	% de la variance
1	2,139	71,299	71,299	2,139	71,299
2	,572	19,073	90,372	,572	19,073
3	,289	9,628	100,000		

Variance totale expliquée

Sommes		Sommes de rotation du carré des chargements		
Composante	% cumulé	Total	% de la variance	% cumulé
1	71,299	1,480	49,340	49,340
2	90,372	1,231	41,031	90,372
3				

Méthode d'extraction : Analyse en composantes principales.

Matrice des composantes^a

Composante

	1	2
ciné	,829	,484
TV	-,794	,578
Concert	,905	,063

Méthode d'extraction : Analyse en composantes principales.

a. 2 composantes extraites.

Rotation de la matrice des composantes^a

Composante

	1	2
ciné	,945	-,169
TV	-,230	,955
Concert	,730	-,539

Méthode d'extraction : Analyse en composantes principales. Méthode de rotation : Varimax avec normalisation Kaiser.

a. Convergence de la rotation dans 3 itérations.

Matrice de transformation des composantes

Composante	1	2
1	,761	-,648
2	,648	,761

Méthode d'extraction : Analyse en

composantes principales.

Méthode de rotation : Varimax avec

normalisation Kaiser.

Matrice des coefficients des composantes

Composante

	1	2
ciné	,844	,393
TV	,372	1,009
Concert	,394	-,191

Méthode d'extraction : Analyse en composantes principales. Méthode de rotation : Varimax avec normalisation Kaiser. Scores des composantes.