Documentation pour zqadic.h

Guillemot Alexandre, Soumier Julien

16 février 2023

Table des matières

1	Introduction	1
2	Structure de données	1
3	Contexte	1
4	Gestion de la mémoire	3
5	Assignement	4
6	Randomisation	4
7	Comparaison	4
8	Opérations arithmétiques	5
9	Fonctions spéciales	5
10	Misc	6

1 Introduction

Soit p un nombre premier et $q=p^d\in\mathbb{Z}$. Ce module permet de faire des calculs sur \mathbb{Z}_q , en représentant l'extension comme un quotient de $\mathbb{Z}_p[X]$ par un polynôme $M\in\mathbb{F}_p[X]$ irréductible.

2 Structure de données

Un élément de \mathbb{Z}_q est la classe d'équivalence d'un élément de $\mathbb{Z}_p[X]$ modulo M. On le représente donc par un élément de $\mathbb{Z}_p[X]$, que l'on réduira modulo M tout au long des

calculs. On dira qu'il est sous forme réduite s'il est réduit modulo MType représentant un élément de \mathbb{Z}_q .

```
typedef padic_poly_t zqadic_t;
```

Fonction renvoyant la précision à laquelle x est représenté.

```
slong zqadic_prec(zqadic_t x);
```

Fonction renvoyant la valuation de x.

```
slong zqadic_val(zqadic_t x);
```

3 Contexte

Un contexte d'entiers q-adiques contient les informations nécessaires aux calculs dans \mathbb{Z}_q , ainsi que différents éléments précalculés permettant d'accélérer certains calculs.

Différents types de polynômes pouvant représenter l'extension \mathbb{Q}_q de \mathbb{Q}_p .

```
enum rep_type {TEICHMULLER, SPARSE};
```

Type représentant un contexte d'entiers q-adiques.

```
typedef struct _zqadic_ctx_t

{

slong prec; // Précision maximale des calculs dans l'extension, dans le

cas où le représentant est calculé à une précision donnée (e.g.

module de Teichmuller)

slong deg; // Degré de l'extension

enum rep_type type; // Type de représentant

fmpz_t p; // Nombre premier tel que $p^{deg} = q$

zqadic_t* C;// Pointeur vers un tableau contenant les éléments $C_j \in

Z_q$. Reste null si le type n'est pas TEICHNULLER

padic_ctx_t pctx; // Contexte $p$-adique associé au sous-corps de

l'extension

padic_poly_t M; // Polynôme représentant de l'extension

zqadic_ctx_t[1];
```

Procédure permettant d'initialiser un contexte $zqadic_ctx$ à partir d'un polynôme $M \in \mathbb{Z}_p$ (supposé irréductible), dans un contexte $padic_ctx$. La précision maximale de l'extension sera donnée par la précision de M si type == TEICHMULLER.

Procédure calculant le module de Teichmuller de $m \in \mathbb{F}_p[X]$, vu comme un polynôme de $\mathbb{Z}_p[X]$, à précision N. Le résultat est mis dans M. /! Ne marche qu'avec p=2 (dans le contexte) /!

Procédure permettant d'initialiser un contexte $zqadic_ctx$, avec comme représentant le module de Teichmuller de $m \in \mathbb{F}_p[X]$ vu comme un polynôme de $\mathbb{Z}[X]$. Les informations min, max et mode permettent d'initialiser le contexte p-adique dans lequel seront représentés les coefficients des polynômes représentant les éléments de \mathbb{Z}_q (voir padic.h). /! Ne fonctionne qu'avec p = 2 /!

Procédure permettant d'initiaiser un contexte $\mathtt{zqadic_ctx}$, avec comme un représentant le module de Teichmuller d'un polynôme alétoire pris dans $\mathbb{F}_p[X]$. Les informations \mathtt{min} , \mathtt{max} et \mathtt{mode} permettent d'initialiser le contexte p-adique dans lequel seront représentés les coefficients des polynômes représentant les éléments de \mathbb{Z}_q (voir padic.h). /! Ne fonctionne qu'avec p=2 /!

```
void zqadic_ctx_init_teichmuller(zqadic_ctx_t zqadic_ctx, slong deg, slong
prec, slong min, slong max, enum padic_print_mode mode);
```

Procédure permettant d'initlaiser un contexte $zqadic_ctx$, avec comme représentant le relèvememnt creux de $m \in \mathbb{F}_p[X]$ vu comme un polynôme de $\mathbb{Z}[X]$. Les informations min, max et mode permettent d'initialiser le contexte p-adique dans lequel seront représentés les coefficients des polynômes représentant les éléments de \mathbb{Z}_q (voir padic.h).

```
void _zqadic_ctx_init(zqadic_ctx_t zqadic_ctx, fmpz_poly_t m, fmpz_t p,

→ slong prec, slong min, slong max, enum padic_print_mode mode);
```

Procédure permettant d'initlaiser un contexte $\mathtt{zqadic_ctx}$, avec comme un représentant le relèvement creux d'un polynôme alétoire pris dans $\mathbb{F}_p[X]$. Les informations \mathtt{min} , \mathtt{max} et \mathtt{mode} permettent d'initialiser le contexte p-adique dans lequel seront représentés les coefficients des polynômes représentant les éléments de \mathbb{Z}_q (voir padic.h).

```
void zqadic_ctx_init(zqadic_ctx_t zqadic_ctx, fmpz_t p, slong deg, slong
prec, slong min, slong max, enum padic_print_mode mode);
```

Procédure permettant de récupérer le représentant d'un contexte d'entiers q-adiques $zqadic_ctx_t$. Met le résultat dans P.

```
void zqadic_ctx_rep(padic_poly_t P, zqadic_ctx_t ctx);
```

4 Gestion de la mémoire

void zqadic_zero(zqadic_t rop);

Permet d'initialiser la mémoire nécessaire pour un $x \in \mathbb{Z}_q$. La précision par défaut est donnée par la précision du contexte zqadic_ctx.

```
void zqadic_init(zqadic_t x, zqadic_ctx_t zqadic_ctx);
      Permet d'initialiser la mémoire nécessaire opur un x \in \mathbb{Z}_q, à précision prec.
   void zqadic_init2(zqadic_t x, slong prec, zqadic_ctx_t zqadic_ctx);
      Permet de libérer la mémoire allouée pour x.
   void zqadic_clear(zqadic_t x);
      Permet de libérer la mémoire allouée pour ctx un contexte d'entiers q-adiques.
   void zqadic_ctx_clear(zqadic_ctx_t ctx);
   5
        Assignement
      Met la valeur de op dans rop.
void zqadic_set(zqadic_t rop, zqadic_t op, zqadic_ctx_t zqadic_ctx);
      Met la valeur de op \in \mathbb{Z}_p, vu comme un polynôme constant dans \mathbb{Z}_p[X], dans rop.
 void zqadic_set_padic(zqadic_t rop, padic_t op, zqadic_ctx_t ctx);
      Met dans rop le représentant réduit modulo le polynôme représentant \mathbb{Z}_q de op.
void zqadic_set_padic_poly(zqadic_t rop, padic_poly_t op, zqadic_ctx_t

    zqadic_ctx);

      Met dans rop le représentant réduit modulo le polynôme représentant \mathbb{Z}_q de l'inclusion
   canonique de op \in \mathbb{Z}[X] dans \mathbb{Z}_p[X].
void zqadic_set_fmpz_poly(zqadic_t rop, fmpz_poly_t op, zqadic_ctx_t
   Met dans rop le relèvement canonique de op \in \mathbb{Z}_q, vu comme un élément de \mathbb{Z}_p[X] à
   précision donnée, donc un élément de (\mathbb{Z}/p^{prec}\mathbb{Z})[X].
void zqadic_get_fmpz_poly(fmpz_poly_t rop, zqadic_t op, zqadic_ctx_t

    zqadic_ctx);

      Met 1 dans rop.
void zqadic_one(zqadic_t rop);
      Met 0 dans rop.
```

6 Randomisation

```
Génère un élément de \mathbb{Z}_q aléatoire. Met le résultat dans x.
  void zqadic_randtest(zqadic_t x, flint_rand_t state, zqadic_ctx_t ctx);
   7
       Comparaison
      Renvoie 1 si et seulement si x = y.
  int zqadic_equal(zqadic_t x, zqadic_t y);
      Renvoie 1 si et seulement si x = 1.
 int zqadic_is_one(zqadic_t x);
       Opérations arithmétiques
   8
      PAS CLAIR
  void _padic_poly_div_eucl(padic_poly_t A, padic_poly_t B, padic_poly_t R,
   → padic_poly_t Q, padic_ctx_t C);
      Met sous forme réduite x \in \mathbb{Z}_q.
  void zqadic_reduce(zqadic_t x, zqadic_ctx_t C);
      Additionne op1 et op2. Met le résultat dans rop.
void zqadic_add(zqadic_t rop, zqadic_t op1, zqadic_t op2, zqadic_ctx_t ctx);
      Réalise la soustration de op1 avec op2. Met le résultat dans rop.
  void zqadic_sub(zqadic_t rop, zqadic_t op1, zqadic_t op2, zqadic_ctx_t ctx);
      Réalise la multiplication de op1 avec op2. Met le résultat dans rop.
void zqadic_mul(zqadic_t rop, zqadic_t op1, zqadic_t op2, zqadic_ctx_t ctx);
      Inverse op, en supposant qu'il est inversible. Met le résultat dans rop.
void zqadic_inv(zqadic_t rop, zqadic_t op, zqadic_ctx_t zqadic_ctx);
      Met op à la puissance e dans rop.
void zqadic_pow(zqadic_t rop, zqadic_t op, fmpz_t e, zqadic_ctx_t ctx);
      Calcule la composition (en tant que polynômes) de op1 avec op2. Met le résultat dans
   rop. Utilise l'astuce de Paterson-Stockmeyer.
void zqadic_composition(zqadic_t rop, zqadic_t op1, zqadic_t op2,
```

9 Fonctions spéciales

Réalise la substitution du frobenius en op, dans l'extension spécifiée par ctx. Met le résultat dans rop.

```
void zqadic_frobenius_substitution(zqadic_t rop, zqadic_t op, zqadic_ctx_t
ctx);
```

Réalise la substitution du frobenius inverse en op, dans l'extension spécifiée par ctx. Met le résulta dans rop.

Résout l'équation d'Artin-Schreier avec paramètres alpha, beta et gamma. Met le résultat dans x.

10 Misc

Affiche un x de \mathbb{Z}_q , représenté comme un élément de $\mathbb{Z}_p[X]$. Les coefficients de ce polynôme (dans \mathbb{Z}_p) seront affichés selon le mode spécifié dans le contexte p-adique associé à $\mathsf{ctx}\ (\mathsf{ctx}\ ->\ \mathsf{ctxp})$.

```
void zqadic_print(zqadic_t x, zqadic_ctx_t ctx);
```