MODÈLE GÉOMÉTRIQUE DIRECT

DES BRAS MANIPULATEURS

Viviane CADENAT. Enseignant-chercheur à l'UPS. <u>LAAS-CNRS</u>, équipe Robotique, action, perception.

Principe de la méthode ORGANE TERMINAL Configuration \rightarrow Situation → Coordonnées **BÂTI DU BRAS** Coordonnées généralisées opérationnelles

MANIPULATEUR

- Paramètres de Denavit Hartenberg modifiés
 - Mise en place des repères liés aux corps n° 1 à n-1
 - Numéroter les corps de 0 → n et les liaisons de 1 → n
 - □ Mettre en place les axes des liaisons Δ_{i→} DIRECTION DU MOUVEMENT
 - Mettre en place les perpendiculaires Δ_{i-1} communes à Δ_{i-1} et Δ_{i →} GÉOMÉTRIE
 - □ O_{i-1} est le point d'intersection entre Δ_{i-1} et ⊥ _{i-1,i}

1 à n-1

- □ $\overline{\mathbf{X}}_{i-1}^{\bullet}$ porté par $\mathbf{L}_{i-1,i}$ et orienté de Δ_{i-1} vers Δ_{i} . Si Δ_{i-1} vers Δ_{i} sont concourantes, convention (AVANT, DROITE, HAUT).

- Paramètres de Denavit Hartenberg modifiés
 - Mise en place des repères liés au bâti et à l'organe terminal
 - Repère $\mathcal{R}_0 \to \mathbf{REPÈRE}$ DE BASE CHOISI LIBREMENT
 - □ z vertical ascendant (généralement)
 - $\ \ \overrightarrow{x_0}$ perpendiculaire et concourant à l'axe de la 1e liaison
 - Repère Repère Lié à L'OT
 - \Box O_n est sur Δ _n
 - \Box z_n porté par Δ_n , orienté selon la
 - convention (AVANT, DROITE, HAUT).
 - \square $\overrightarrow{x_n}$ tel que O_{n+1} est dans le plan $(O_n, \overrightarrow{x_n}, \overrightarrow{z_n}) \rightarrow Pas$ de composante selon $\overrightarrow{y_n}$

- Paramètres de Denavit Hartenberg modifiés
 - □ Représentation de la situation de C_i par rapport à C_{i-1}

- Paramètres de Denavit Hartenberg modifiés
 - Représentation de la situation de C_i par rapport à C_{i-1}

Paramètres de forme, constants

$$a_{i-1} \stackrel{\triangle}{=} \overrightarrow{O_{i-1}O_i}.\overrightarrow{X}_{i-1}$$

$$\alpha_{i-1} \stackrel{\triangle}{=} \widehat{Z_{i-1},Z_i}/\overrightarrow{X}_{i-1}$$

Paramètres de *liaison*, l'un est constant, l'autre variable

$$r_i \stackrel{\triangle}{=} \overrightarrow{O_{i-1}O_i}.\overrightarrow{Z_i}$$

$$\theta_i \stackrel{\triangle}{=} \widehat{X_{i-1}}, X_i/\overrightarrow{Z_i}$$

Paramètres de Denavit – Hartenberg modifiés

Matrice de passage homogène T_{i-1};

- Paramètres de Denavit Hartenberg modifiés
 - □ Matrice de passage homogène T_{i-1 i}

Translation de a_{i.4}selon $\overrightarrow{x}_{i.4}$

$$\mathsf{T}_{\mathsf{t, ai-1}} = \begin{pmatrix} 1 & 0 & 0 & a_{i-1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotation de α_{i-1} autour de x_{i-1}

$$\mathsf{T}_{\mathsf{r},\;\alpha\mathsf{i}\!-\!1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\alpha_{i-1} & -\sin\alpha_{i-1} & 0 \\ 0 & \sin\alpha_{i-1} & \cos\alpha_{i-1} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Translation de r, selon z,

$$\mathsf{T}_{\mathsf{t},\mathsf{ri}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & r_i \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotation de θ_i autour de z

$$\mathsf{T}_{\mathsf{r},\,\mathsf{ei}} = \begin{pmatrix} \cos\theta_i & -\sin\theta_i & 0 & 0\\ \sin\theta_i & \cos\theta_i & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Paramètres de Denavit Hartenberg modifiés
 - Matrice de passage homogène T_{i-1};

$$T_{i-1, i} = \begin{pmatrix} \cos \theta_i & -\sin \theta_i & 0 & a_{i-1} \\ \cos \alpha_{i-1} \sin \theta_i & \cos \alpha_{i-1} \cos \theta_i \\ \sin \alpha_{i-1} \sin \theta_i & \sin \alpha_{i-1} \cos \theta_i \\ 0 & \mathbf{y}_{\mathsf{j}(i-1)} & \mathbf{z}_{\mathsf{j}(i-1)} \end{pmatrix} \xrightarrow{\mathbf{z}_{\mathsf{j}(i-1)}} \mathbf{z}_{\mathsf{j}(i-1)}$$

PORTANT

T_{iati} Donne La Situation du Corps i par Rapport au Corps i – 1

AVEC $\mathbf{q}_i = \mathbf{\theta}_i$ si \mathbf{L}_i est rotoïde et $\mathbf{q}_i = \mathbf{r}_i$ si \mathbf{L}_i prismatique

Calcul de T_{on}

- Librairie mathématique généralement
- Si le calcul à la main est nécessaire
 - Effectuer le produit de la droite vers la gauche sans évaluer la 2° colonne
 - →Limiter le nombre de calculs
 - Introduire une variable intermédiaire chaque fois qu'un élément fait intervenir au moins une opération arithmétique
 - → Manipuler des expressions simples

