Stochastyczna matematyka finansowa Projekt nr 1

Model

Przyjmijmy, że dziś jest **2018-03-28**. Niech S_t^1 i S_t^2 oznaczają odpowiednio wartość indeksu WIG20 oraz cenę akcji KGHM w chwili t. Załóżmy, że dynamika cen opisana jest następującymi równaniami:

$$\log\left(\frac{S_{t+1}^i}{S_t^i}\right) = \alpha_i N_t^i + \beta_i, \text{ dla } i = 1, 2,$$

gdzie $\alpha_i, \beta_i \in \mathbb{R}$, a N_t^i są zmiennymi losowymi ze standardowego rozkładu normalnego $\mathcal{N}(0,1)$ oraz:

- N_t^i, N_s^j są niezależne dla $t \neq s$ oraz dowolnych i, j,
- N_t^1, N_t^2 mają stałą korelację ρ .

Oprócz tego rozważamy instrument S_t^0 , który należy interpretować jako wolny od ryzyka.

Instrumenty do wyceny i analizy

Rozważ następujące opcje:

- A notowana na GPW opcja call z kursem wykonania 2200 zapadająca w grudniu 2018,
- B opcja A z dodatkową klauzulą up-and-out z barierą równą kursowi wykonania +200,
- C opcja A z dodatkową klauzulą up-and-in z barierą równą kursowi wykonania +200,
- D opcja A z dodatkowym tzw. warunkiem typu paryskiego wypłata nastąpi, jeśli kurs będzie powyżej bariery (kurs wykonania +200) przez 10 dni z rzędu,
- E opcja *call* na WIG20 typu *lookback*, tj. z kursem wykonania równym minimum trajektorii (z taką samą zapadalnością jak opcja A) z dodatkowym tzw. *warunkiem binarnym* wypłata nastąpi tylko jeżeli cena akcji KGHM w chwili wykonania przekroczy cenę tej akcji z dnia 2018-03-28.

Uwaga: opcja A ma być faktycznie notowaną w tym czasie na GPW, natomiast o opcjach B-E przyjmij, że są wyemitowane dokładnie 2018-03-28, tzn. wcześniejsza trajektoria aktywów nie ma znaczenia dla ich warunków dodatkowych.

Polecenia

Część I

- 1. Zapoznaj się ze standardami opcji na GPW oraz z dokumentem zawierającym kluczowe informacje dla nabywców i wystawców opcji na GPW (dokumenty te znajdziesz na stronie GPW). Jaki symbol ma rozważana przez nas opcja?
- 2. Uzupełnij kalibrację modelu uwzględniając WIG20, KGHM i instrument S_t^0 .
- 3. Wyceń opcję A używając wzoru Blacka-Scholesa. Znajdź cenę historyczną tej opcji z dnia 2018-03-28 i porównaj z Twoimi wyliczeniami. Jakie masz obserwacje? Z czego mogą wynikać różnice?
- **4.** Podobne porównanie zrób na datę **2018-10-01** (tj. wyceny własnej oraz historycznej). Jakie byłyby wypłaty wszystkich opcji A-E gdyby wygasały **2018-10-01**?

Część II

- 1. Znajdź cenę wolną od arbitrażu dla powyższych opcji A-E, wyznaczając odpowiednie wartości oczekiwane, przy użyciu metod Monte Carlo, dla skalibrowanego w punkcie 2. modelu. Zrób to na dwa sposoby, które powinny dać takie same wyniki:
 - używając miary martyngałowej,
 - używając miary rzeczywistej korzystając z odpowiedniej pochodnej Radona-Nikodyma.
- 2. Porównaj wycene opcji A metodą Monte Carlo z wyceną z punktu 3 w części I. Jakie masz obserwacje?
- 3. Przeanalizuj wrażliwość powyższych wyników na małe ruchy poszczególnych parametrów modelu. Wskaż parametry niematerialne dla wyceny i wyjaśnij, jaki jest zysk z posiadania takiej wiedzy. Czy potrafisz wyjaśnić analitycznie, skąd wynika ich niematerialność?
- 4. Przeanalizuj wrażliwość wyceny na liczbę scenariuszy użytych w metodzie Monte Carlo. Jakie techniki możesz zastosować, by poprawić zbieżność metody Monte Carlo?
- 5. Postaw się w pozycji instytucji, która chciałaby sprzedawać opcje A-E.
 - Czy kwota wyznaczona w punkcie 1. części II będzie wystarczająca do wyprodukowania danego instrumentu za pomocą strategii samofinansującej?
 - Jakie wady ma Twoja praca z punktu 1. dla zastosowań praktycznych?
 - Wymień i opisz wszystkie ryzyka, jakie widzisz w kontekście wyceny i analizy z tego projektu. W jaki sposób można byłoby się z nimi uporać?
- 6. Stwórz bibliotekę (wraz z dokumentacją) zawierającą wykorzystane w projekcie funkcjonalności. Opracuj testy sprawdzające poprawność zaimplementowanych funkcji. Biblioteka powinna spełniać standardy przyjęte w języku programowania, którego użyjesz.

Wyniki

Opracuj raport (w formie PDF) zawierający wszystkie powyższe punkty, krótką prezentację z uzyskanymi wynikami oraz bibliotekę zawierającą niezbędne funkcje wraz z dokumentacją. Część II raportu powinna rozpoczynać ścisła i przejrzysta część teoretyczna, w której powyższy model i właściwy problem będą przedstawione w języku matematycznym, z powołaniem się na odpowiednie twierdzenia. Rozumowania powinny być czytelne i obejmować wszystko (i tylko) to, co jest wykorzystywane w Twoim projekcie. Druga część raportu zawierać ma przeprowadzone wyliczenia i analizy, z uwzględnieniem wszystkich opisanych powyżej poleceń. Biblioteka (i dokumentacja) ma stanowić załącznik do raportu. Wszystkie części raportu mają tworzyć spójną całość.

Uwagi

Preferowane (ale nie jedyne dopuszczalne) narzędzia komputerowe (może być jednocześnie kilka) to: R, Python, C++. Zmienne z rozkładu normalnego można generować przy użyciu dowolnych bibliotek. Oceniana będzie również jakość kodu.

Przygotowanie projektu składać się będzie z pięciu etapów:

- Przygotowanie części I projektu. Omówienie treści, wyników i analiz dotyczących poleceń oraz pytań postawionych w tej części. Wybór metod matematycznych oraz narzędzi informatycznych służących do implementacji, podział pracy na uczestników grup projektowych. Dodatkowo omówienie konstrukcji opcji A-E. [termin: 2021-10-28]
- Opracowanie "na papierze" podejścia do części II. Metodologia wyceny z powołaniem się na odpowiednie twierdzenia. Opis stosowanych metod Monte-Carlo w kontekście obu sposobów z punktu 1. Propozycja analizy wrażliwości, o której mowa w punktach 3. i 4. Wstępne omówienie zagadnienia stworzenia biblioteki (użyta technologia i określenie funkcjonalności, które zostaną zaimplementowane). [termin: 2021-11-04]

- Wstępne wyniki do punktów 1-4 części II. W szczególności omówienie symulacji komputerowych oraz wstępnych wyników wyceny i analizy wrażliwości. Skomentowanie zauważonych niezgodności i problemów. Prezentacja wersji alfa biblioteki wraz z testami i dokumentacją. [termin: 2021-11-18]
- Omówienie ostatecznych wyników dotyczących każdego punktu projektu. Zaprezentowanie stosownych wizualizacji. Przedstawienie wersji beta biblioteki. [termin: 2021-11-25]
- Prezentacja wyników pracy nad projektem na rzutniku, przed wszystkimi grupami, prowadzącymi oraz zaproszonymi gośćmi (z możliwością zadawania pytań przez słuchaczy). [termin: 2021-12-02]
- Wysłanie ostatecznego raportu oraz biblioteki z dokumentacją. [termin: 2021-12-05]

Do końcowej oceny projektu brany pod uwagę będzie ostateczny raport oraz prezentacja. Oprócz tej końcowej oceny projektu (takiej samej dla całej grupy projektowej), każda osoba za ten projekt może dostać o 0.5 stopnia podwyższoną ocenę za aktywność na spotkaniach projektowych z prowadzącym oraz, niezależnie, o 0.5 stopnia podwyższoną oceną za bardzo dobrą prezentację wyników.