Gemixque

Sistem de recomandări de jocuri video

Radu Damian

Dr. Cristian Frăsinaru

Facultatea de Informatică

2022

Cuprins

- Neo4j
- 2 Sistemul de recomandare
- 3 Demonstrația aplicației
- 4 Concluzii

- Neo4j
- 2 Sistemul de recomandare

3 Demonstrația aplicației

4 Concluzii

Introducere în Neo4j

- Bază de date NoSQL de tip graf
- Datele sunt reținute prin intermediul nodurilor și muchiilor
- Utilizează limbajul de interogare Cypher

Exemplu

Studiu de caz:

- modelarea situației din cadrul unei facultăți(studenți, cursuri, profesori)
- exemplu interogare în SQL
- exemplu interogare în Cypher

```
SELECT p.nume, p.prenume FROM NOTE n

JOIN CURSURI c ON n.id_curs = c.id

JOIN DIDACTIC d ON d.id_curs = c.id

JOIN PROFESORI p ON p.id = d.id_profesor

WHERE VALOARE = 10 AND ID_STUDENT = 36;
```



```
MATCH (s:STUDENT)-[:ARE]->(n:NOTA {valoare: 10}),
(n)-[:LA]->(:CURS)<-[:PREDA]-(p:PROFESOR)
WHERE id(s) = 0
RETURN p.nume, p.prenume</pre>
```

Exemplu

Schema bazei de date

- Neo4j
- 2 Sistemul de recomandare

3 Demonstrația aplicației

4 Concluzii

Introducere

- Ipoteză: cantitate masivă de informații
- Problemă: filtrarea acestora
- Soluție: sistem de recomandare ce oferă conținut personalizat utilizatorilor

Sistem de recomandări bazat pe filtrare colaborativă

- Resurse ce nu pot fi descrise prin metadate cu ușurință
- Matrice de scoruri utilizator-resursă
- Calcularea unei predicții pentru elementele lipsă din matrice

Exemplu

	DOOM Eternal	Battlefield	Call of Duty	The Witcher 3: Wild Hunt	Dark Souls III
lon	9	8	10	3	6
Gigel	8	9	?	4	5
Alex	5	7	4	10	9

Formule și notații

$$dev(u,g) = r_{ug} - \overline{r_u}$$

 $\overline{r_u}$ - media scorurilor utilizatorului u

 Ω_g - multimea utilizatorilor care au atribuit un scor jocului g

 r_{ug} - scorul oferit de utilizatorul u jocului g

 $w_{uu'}$ - gradul de similaritate între doi utilizatori

Formule

$$w_dev(u,g) = rac{\sum\limits_{u'\in\Omega_g} w_{uu'} \cdot dev(u',g)}{\sum\limits_{u'\in\Omega_g} |w_{uu'}|} \quad (1)$$
 $\hat{s}(u,g) = \overline{r_u} + w_dev(u,g)$

Coeficientul lui Pearson

$$w_{uu'} = \frac{\sum\limits_{g \in \Psi_{uu'}} dev(u,g) \cdot dev(u',g)}{\sqrt{\sum\limits_{g \in \Psi_{uu'}} dev(u,g)^2} \cdot \sqrt{\sum\limits_{g \in \Psi_{uu'}} dev(u',g)^2}}$$

 $\Psi_{uu'}$ - mulțimea jocurilor în comun recenzate de utilizatorii u și u' Ψ_u - mulțimea jocurilor recenzate de utilizatorul u $\Psi_{uu'}=\Psi_u\cap\Psi_{u'}$

- Neo4j
- 2 Sistemul de recomandare

- 3 Demonstrația aplicației
- 4 Concluzii

- 1 Neo4
- 2 Sistemul de recomandare

- 3 Demonstrația aplicației
- 4 Concluzii

Concluzii

- Cu ajutorul Neo4j se pot rezolva probleme în care relațiile dintre entități au o importanță semnificativă
- Sistemul de recomandare bazat pe filtrare colaborativă reprezintă una din soluțiile ce atacă problema filtrării informatiilor