Jian Zhang, Ph.D.

(513) 713-2204/jian.zhang.psu@gmail.com

WORK EXPERIENCE

ML Team tech lead, Senior Algorithm Engineer, Magna International, Palo Alto, CA

2/2020 – present

- Lead ML team of 6 software/algorithm engineers in Palo Alto and Canada in development and deployment of the next generation autonomous system on volume production vehicles. Lead cross team collaboration with 5 teams and ~30 members in Michigan, Canada, Germany and India
- Lead the in-house Deep Learning Framework that has following features
 - ❖ PyTorch based modeling/training + Spark based dataset curation
 - Multi-task learning support: modularized design, supports easy model assembly and hyper-parameter tune-up with pool of available backbone and feature heads, and easy plugin-style module addon
 - ❖ Multi-data format support: jpeg+json, lmdb, proto and parquet
 - ❖ Multi-language dev-test-deploy environment support with bazel
 - Containerized and unified dev-test-deploy environment that helps easy deployment and debugging
 - ❖ Production grade tests+lint+doc
 - ❖ Distributed model training/evaluation pipeline with Kubernetes support
 - Model serving pipeline with gRPC and supports TensorRT/PyTorch/ONNXRuntime backends
- Lead Two Multi-tasking model production lines that deploys on embedded systems on volume production vehicles:
 - * MagNet: main production line, target chip: TI TDA4, surrounding view 4 camera solution, 5 feature heads share single backbone:
 - Dynamic object detection
 - Traffic light detection + color/shape classification
 - Trailer detection (bbox+class+angle)
 - Occlusion detection (type+percentage)
 - Semantic segmentation
 - * TinyMagNet: Tiny device (confidential), rear camera standalone solution, 2 feature heads share single light weighed backbone
 - Pedestrian detection
 - Occlusion detection (type+percentage)
- Lead the autonomous system framework based on ROS2 as PubSub middleware. Supports multi-container packaging, increased the development speed and system reliability of autonomous vehicle software stack. Organize design and implementation with cross teams collaboration (perception, localization and planning)

AI Algorithm Engineer, Lyft Level5 - Magna International, Palo Alto, CA

10/2018 - 1/2020

- One of the main developers and maintainer of the in-house **Machine Learning Framework** with **Tensorflow**. The framework supports 4 teams in development of their ML products.
- Developed the pipeline dockerize the Machine learning models and deploy training on AWS EC2 p3.8xlarge (4 V100) and p3.16xlarge (8 V100) with Kubernetes.
- Neural Architecture Search (NAS) via training 300+ of Object Detection models with Faster RCNN, Single-Shot Detector (SSD) and RetinaNet with various backbones (Resnet 18/34/50/101, ResNeXt, MobileNet and their variations), learning schedules, matchers, etc. Found the optimized the structures and improved the mAP for ~10%, Pedestrian and cyclist Recall for ~20% and Precision for ~15%.
- Created and maintained the dataset curation pipeline with Google BigQuery and AWS S3. Curated and maintained milestone datasets for object detection model training and deployment onto the self-driving fleet.
- Refactored evaluation pipeline from pytorch to C++ and reduced the evaluation time from ~8hr to 40min
- Created the Panorama Object Detection pipeline by stitching 6 cameras inputs into 360 degree view image and trained-deployed the
 RetinaNet (variation). Achieved 3X speed up for total detection latency and dramatically reduced the duplicated detection and false negatives
 on large objects. (Hackathon project)

AI Algorithm Engineer, Magna International, Auburn Hills, MI

10/2017 - 9/2018

0-1001- 001001-

- Developed model compression algorithms on YOLOv3-Tiny (variation) and achieved 1/10 in model size and 3X speed up.
- Quantized to int8 with <3% mAP drop 4X speed up and deployed onto Xilinx FPGA (Zynq ZCU102)
- Established the deployment pipeline and deployed the quantized (float16) object detection model (Caffe/Tensorflow) to Nvidia DrivePX2/AGX Xaivier with TensorRT and 8 cameras (max) for 15 FPS in realtime.

Graduate Lecturer, The Pennsylvania State University, State College, PA	05/2017 - 08/2017
Research Assistant, The Pennsylvania State University, State College, PA	08/2014 - 05/2017
Research Assistant, Miami University, Oxford, OH	08/2011 - 08/2013
EDUCATION	
The Pennsylvania State University State College PA	08/2013 - 08/2017

The Pennsylvania State University, State College, PA	08/2013 - 08/2017
Ph.D. Major: Petroleum & Natural Gas Engineering	
Ph.D. Minor: Computational Science	
Miami University, Oxford, OH	08/2011 - 08/2013
MS in Chemical Engineering	
Beijing Jiaotong University, Beijing, China	09/2010 - 07/2012
MS in Optical Engineering	
Beijing Jiaotong University, Beijing, China	09/2006 - 07/2010

• BS in Optical Information Science and Technology

RESEARCH PROJECTS

Dissertation: Automated Neuro-Simulation Protocol for Rate and Pressure Transient Analysis

- Aimed to replace human experts in well time series data analysis by combining Numerical Computation with AI.
- Combines **Deep Learning (Kernel I)** with **Scientific Computing (Kernel II)** with **C++** to obtain high computational efficiency. Applied modern **C++** (14) and coupled with **Python interface.** Built on **NVIDIA Jetson TK1 embedded** development board w/ **CUDA** acceleration.

Kernel I: PSNet: Neural Network Development Framework

- Implemented multiple learning algorithms: Resilient Back-propagation, Scaled Conjugate Gradient and Levenberg-Marquardt
- Built Implemented in abstracted matrix operation. Shipped with a unified matrix package interface and can support self-defined/Eigen/Armadillo matrix library. Dramatically reduced the coding/debugging/ computational load.

Kernel II: GNRS: Generalized Numerical Reservoir Simulator

- Designed and implemented a comprehensive and sophisticated numerical simulator for Computational Fluid Dynamics (CFD) in porous media
- Support 3D geometry with complex gridding and coordinating system with multiple phase & component fluid flow
- Applied automatic differentiation, dramatically reduced the computational complexity

BOOK CHAPTERS

• Turgay Ertekin, Qian Sun, Jian Zhang, *Reservoir Simulation: Problems and Solutions*, Chapter 1-4, 9. Society of Petroleum Engineers, 2019. ISBN: 978-1-61399-693-5

RECENT INVITED TALKS

• Neuro-Simulation – An Integration of AI & Numerical Optimization in Reservoir Simulation, Smart Field Consortium, School of Earth, Energy & Environmental Sciences, Stanford University, May 2019.

CERTIFICATES

- Machine Learning (Stanford) Coursera
- Self-Driving Car (Nanodegree) Udacity