Electronic Devices

Final Term Lecture - 02

Reference book:

Electronic Devices and Circuit Theory (Chapter-5)

Robert L. Boylestad and L. Nashelsky, (11th Edition)

COMMON-EMITTER VOLTAGE-DIVIDER BIAS

FIG. 5.26
Voltage-divider bias configuration.

COMMON-EMITTER VOLTAGE-DIVIDER BIAS

INPUT IMPEDANCE, Zi

$$R' = R_1 || R_2$$

$$Z_i = R' \parallel \beta r_e$$

OUTPUT IMPEDANCE, Z_o

$$Z_o = R_C || r_o$$

$$Z_o \cong \left. R_C \right|_{r_o \geq 10_{R_C}}$$

VOLTAGE GAIN, A_v

$$V_o = -\beta I_b(R_C || r_o) = -\beta (\frac{V_i}{\beta r_e}) (R_C || r_o); I_b = \frac{V_i}{\beta r_e}$$

$$A_v = rac{V_o}{V_i} = -rac{(R_C \parallel r_o)}{r_e}, \ A_v = -rac{R_C}{r_e} \mid_{r_o \geq 10_{R_C}}$$

EXAMPLE

- **EXAMPLE 5.2:** For the network of Fig. 5.28 :
- Determine r_e , Z_i , Z_o (with $r_o = \infty$), A_v (with $r_o = \infty$) and Repeat with $r_o = 50 \ k\Omega$.
- a. DC: Testing $\beta R_E > 10R_2$,

$$(90)(1.5 \text{ k}\Omega) > 10(8.2 \text{ k}\Omega)$$
$$135 \text{ k}\Omega > 82 \text{ k}\Omega \text{ (satisfied)}$$

Using the approximate approach, we obtain

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC} = \frac{(8.2 \text{ k}\Omega)(22 \text{ V})}{56 \text{ k}\Omega + 8.2 \text{ k}\Omega} = 2.81 \text{ V}$$

$$V_E = V_B - V_{BE} = 2.81 \text{ V} - 0.7 \text{ V} = 2.11 \text{ V}$$

$$I_E = \frac{V_E}{R_E} = \frac{2.11 \text{ V}}{1.5 \text{ k}\Omega} = 1.41 \text{ mA}$$

$$r_e = \frac{26 \text{ mV}}{I_E} = \frac{26 \text{ mV}}{1.41 \text{ mA}} = 18.44 \Omega$$

FIG. 5.28 Example 5.2.

EXAMPLE Contd.

b.
$$R' = R_1 \| R_2 = (56 \text{ k}\Omega) \| (8.2 \text{ k}\Omega) = 7.15 \text{ k}\Omega$$

 $Z_i = R' \| \beta r_e = 7.15 \text{ k}\Omega \| (90)(18.44 \Omega) = 7.15 \text{ k}\Omega \| 1.66 \text{ k}\Omega$
 $= 1.35 \text{ k}\Omega$

c.
$$Z_o = R_C = 6.8 \text{ k}\Omega$$

d.
$$A_v = -\frac{R_C}{r_e} = -\frac{6.8 \text{ k}\Omega}{18.44 \Omega} = -368.76$$

e.
$$Z_i = 1.35 \,\mathrm{k}\Omega$$

$$Z_o = R_C \| r_o = 6.8 \text{ k}\Omega \| 50 \text{ k}\Omega = 5.98 \text{ k}\Omega \text{ vs. } 6.8 \text{ k}\Omega$$

$$A_{\nu} = -\frac{R_C \| r_o}{r_e} = -\frac{5.98 \text{ k}\Omega}{18.44 \Omega} = -324.3 \text{ vs.} -368.76$$

There was a measurable difference in the results for Z_o and A_v , because the condition $r_o \ge 10R_C$ was not satisfied.

COMMON-EMITTER EMITTER-BIAS CONFIGURATION: UNBYPASSED \mathbf{R}_{E}

FIG. 5.29
CE emitter-bias configuration.

Substituting the r_e equivalent circuit into the ac equivalent network of Fig. 5.29.

IMPEDANCE CALCULATION

INPUT IMPEDANCE, Zi

$$V_i = I_b \beta r_e + I_e R_E$$
$$= I_b \beta r_e + (\beta + 1) I_b R_E$$

$$Z_b = \frac{V_i}{I_b} = \beta r_e + (\beta + 1)R_E$$

$$Z_b \cong \beta r_e + \beta R_E = \beta (r_e + R_E)$$

$$Z_b \cong \beta R_E \quad for R_E \gg r_e$$

$$Z_i = R_B || Z_b$$

OUTPUT IMPEDANCE, Z_o

$$Z_o = R_C$$

GAIN CALCULATIONS

VOLTAGE GAIN, A,

$$V_o = -I_o R_C = -\beta I_b R_C = -\beta (\frac{V_i}{Z_b}) R_C$$

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{\beta R_{C}}{Z_{b}}$$

Substituting $Z_b \cong \beta(r_e + R_E)$

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{R_{C}}{r_{e} + R_{E}}$$

For the approximation $Z_b \cong \beta R_E$

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{R_{C}}{R_{E}}$$

The negative sign in gain equations reveals 180° phase shift between input and output waveforms.

COMMON-EMITTER EMITTER-BIAS CONFIGURATION: BYPASSED R_E

Bypassed

If R_E is bypassed by an emitter capacitor C_E , the complete r_e equivalent model can be substituted, resulting in the same equivalent network as Fig. 5.22. Equations of slide no. 13 are therefore applicable.

FIG. 5.22

Substituting the r_e model into the network of Fig. 5.21.

EXAMPLE

• **EXAMPLE 5.3:** For the network of following Fig, without C_E (unbypassed), determine: r_e , Z_i , Z_o & A_v .

a. DC:

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E} = \frac{20 \text{ V} - 0.7 \text{ V}}{470 \text{ k}\Omega + (121)0.56 \text{ k}\Omega} = 35.89 \,\mu\text{A}$$

$$I_E = (\beta + 1)I_B = (121)(35.89 \,\mu\text{A}) = 4.34 \,\text{mA}$$

$$r_e = \frac{26 \,\text{mV}}{I_E} = \frac{26 \,\text{mV}}{4.34 \,\text{mA}} = 5.99 \,\Omega$$

FIG. 5.32 Example 5.3.

EXAMPLE Contd.

b. Testing the condition $r_o \ge 10(R_C + R_E)$, we obtain

$$40 \text{ k}\Omega \ge 10(2.2 \text{ k}\Omega + 0.56 \text{ k}\Omega)$$

$$40 \text{ k}\Omega \ge 10(2.76 \text{ k}\Omega) = 27.6 \text{ k}\Omega \text{ (satisfied)}$$

Therefore,

$$Z_b \cong \beta(r_e + R_E) = 120(5.99 \Omega + 560 \Omega)$$

= 67.92 k\Omega

and

$$Z_i = R_B \| Z_b = 470 \,\mathrm{k}\Omega \| 67.92 \,\mathrm{k}\Omega$$
$$= 59.34 \,\mathrm{k}\Omega$$

c.
$$Z_0 = R_C = 2.2 \text{ k}\Omega$$

d. $r_o \ge 10R_C$ is satisfied. Therefore,

$$A_{v} = \frac{V_{o}}{V_{i}} \cong -\frac{\beta R_{C}}{Z_{b}} = -\frac{(120)(2.2 \text{ k}\Omega)}{67.92 \text{ k}\Omega}$$

= -3.89

compared to -3.93 using Eq. (5.20): $A_v \cong -R_C/R_E$.

Example 5.3.

EMITTER-FOLLOWER CONFIGURATION

- This is also known as the common-collector configuration.
- The input is applied to the base and the output is taken from the emitter.
- There is no phase shift between input and output.

IMPEDANCE CALCULATIONS

INPUT IMPEDANCE, Zi

$$Z_i = R_B || Z_b$$

$$Z_b = \beta r_e + (\beta + 1)R_E$$

$$Z_b \cong \beta(r_e + R_E)$$

$$Z_b \cong \beta R_E \qquad for R_E \gg r_e$$

IMPEDANCE CALCULATIONS

OUTPUT IMPEDANCE, Z_o

$$I_b = rac{V_i}{Z_b}$$
, $I_E = (eta+1)I_b = (eta+1)rac{V_i}{Z_b}$ $I_E = rac{(eta+1)V_i}{eta r_e + (eta+1)R_E}$

Since
$$(\beta + 1) \cong \beta$$

$$I_E = \frac{V_i}{r_e + R_E}$$

To determine Z_o , V_i is set to zero

$$Z_o = R_E \mid \mid r_e \qquad Z_o = r_e \mid_{R_E \gg r_e}$$

FIG. 5.38

Defining the output impedance for the emitter-follower configuration.

GAIN CALCULATIONS

VOLTAGE GAIN, A_v

$$V_o = I_e R_E = (\beta + 1)I_b R_E = \frac{V_i(\beta + 1)R_E}{Z_b}$$

when
$$r_o \geq 10R_E$$
 and $oldsymbol{eta} + 1 \cong oldsymbol{eta}$

But
$$Z_b \cong \beta(r_e + R_E)$$

$$A_v = \frac{V_o}{V_i} \cong \frac{\beta R_E}{\beta (r_e + R_E)} \cong \frac{R_E}{(r_e + R_E)}$$

☐ See Example 5.7

COMMON-BASE CONFIGURATION

FIG. 5.42Common-base configuration.

FIG. 5.43
Substituting the r_e equivalent circuit into the ac equivalent network of Fig. 5.44.

- The input is applied to the emitter.
- The output is taken from the collector.
- Low input impedance.
- High output impedance.
- Very high voltage gain.
- No phase shift between input and output.

CALCULATIONS

INPUT IMPEDANCE, Zi

$$Z_i = R_E || r_e$$

OUTPUT IMPEDANCE, Z_o

$$Z_o = R_C$$

VOLTAGE GAIN, A,

$$V_o = -I_o R_C = -(I_C) R_C = \alpha I_e R_C$$
; $I_e = \frac{V_i}{r_e}$

$$V_o = \alpha \left(\frac{V_i}{r_e}\right) R_C$$
; $A_v = \frac{V_o}{V_i} = \frac{\alpha R_C}{r_e} \cong \frac{R_C}{r_e}$

CURRENT GAIN, A_i

Assuming $R_E \gg r_e$

$$I_e = I_i$$

$$I_o = -\alpha I_e = -\alpha I_i$$

$$A_i = \frac{I_o}{I_i} = -\alpha \cong -1$$

COMMON-BASE CONFIGURATION

• Phase Relationship:

The fact that A_v is a positive number shows that V_o and V_i are in phase for the common-base configuration.

Effect of r_o:

For the common-base configuration, $r_o = 1/h_{ob}$ is typically in the megohm range and sufficiently larger than the parallel resistance R_c to permit the approximation $r_o \parallel R_c \cong R_c$.

EXAMPLE

• **EXAMPLE 5.8:** For the network of following figure, determine: r_e , Z_i , Z_o , A_v , A_i .

a.
$$I_E = \frac{V_{EE} - V_{BE}}{R_E} = \frac{2 \text{ V} - 0.7 \text{ V}}{1 \text{ k}\Omega} = \frac{1.3 \text{ V}}{1 \text{ k}\Omega} = 1.3 \text{ mA}$$

$$r_e = \frac{26 \text{ mV}}{I_E} = \frac{26 \text{ mV}}{1.3 \text{ mA}} = 20 \Omega$$

b.
$$Z_i = R_E || r_e = 1 \text{ k}\Omega || 20 \Omega$$

= **19.61** $\Omega \cong r_e$

c.
$$Z_o = R_C = 5 \,\mathrm{k}\Omega$$

d.
$$A_{\nu} \cong \frac{R_C}{r_e} = \frac{5 \text{ k}\Omega}{20 \Omega} = 250$$

e.
$$A_i = -0.98 \cong -1$$

FIG. 5.44 Example 5.8.

End of Lecture-2