Podjela sigurnosnih mehanizama:

- ZAŠTITA OD VANJSKIH UTJECAJA
- ZAŠTITA OSTVARENA SUČELJEM PREMA KORISNIKU
 - o identifikacija (predstavljanje), autentifikacija (provjera identifikacije)
- UNUTARNJI ZAŠTITNI MEHANIZMI
 - o autorizacija (dopuštanje pristupa)
 - SUBJEKT = pojedini korisnik (ili njegov proces ili dretva)
 - OBJEKT = sredstvo koje se zaštićuje
 - ZAŠTITNA PRAVILA za svaki par subjekt-objekt određuju pravo pristupa
- KOMUNIKACIJSKI ZAŠTITNI MEHANIZMI
 - o kriptiranje

Vrste napada na sigurnost:

- PRISLUŠKIVANJE (presretanje)
 - o pasivni napad
 - o djeluje na povjerljivost, odnosno tajnost
- PREKIDANJE
 - o narušava raspoloživost
- PROMJENA SADRŽAJA PORUKA
 - o narušava besprijekornost ili integritet
- IZMIŠLJANJE PORUKA
 - o narušava besprijekornost ili integritet
- LAŽNO PREDSTAVLJANJE
- PORICANJE

.....

Sigurnosni zahtjevi (prva 3 su osnovna):

- POVJERLJIVOST (TAJNOST)
 - o informacije u sustavu smiju biti pristupačne samo ovlaštenim korisnicima
- RASPOLOŽIVOST
 - o informacije moraju uvijek biti na raspolaganju ovlaštenim korisnicima
- BESPRIJEKORNOST
 - o informacije u sustavu mogu mijenjati samo za to ovlašteni korisnici
- AUTENTIČNOST
 - o ovlašteni se korisnici moraju jednoznačno moći prepoznati
- AUTORIZACIJA
 - ovlaštenim se korisnicima postupkom autorizacije dopušta pristup samo do nekih sadržaja
- NEPORECIVOST
 - o zaštita od opovrgavanja, neporicanje

Utjecaj pojedinih komponenti računalnih sustava na sigurnost:

• SKLOPOVLJE RAČUNALA

- o utječe na raspoloživost informacija
- o podložno vanjskim utjecajima
- o korištenje zalihosti za povećanje raspoloživosti

PROGRAMI

- o utječu na tajnost, besprijekornost i raspoloživost
- VIRUS = programski odsječak koji se komunikacijom ili razmjenom spremničkih medija unosi u računalni sustav
- o preventivno djelovanje protiv virusa
- CRV = cjeloviti program koji sam sebe kroz komunikacijsku mrežu prenosi s jednog računala na drugi, pri čemu djeluje destruktivno
- TROJANSKI KONJ = program koji obavlja neki koristan posao, ali mu je pridodana neka funkcija koja štetno djeluje

PODACI

- o podložni narušavanju raspoloživosti, tajnosti i besprijekornosti
- o povećanje sigurnosti kontrolom pristupa

KOMUNIKACIJE

- o podložne narušavanju raspoloživosti, tajnosti i besprijekornosti
- o najosjetljiviji dio računalnih sustava

Svi sigurnosti zahtjevi osim raspoloživosti mogu se zadovoljiti KRIPTIRANJEM SADRŽAJA.

RAZGOVJETNI (JASNI) TEKST = izvorni oblik podataka

KRIPTIRANJE = postupak prevođenja jasnog teksta u KRIPTIRANI TEKST

DEKRIPTIRANJE = postupak prevođenja kriptiranog teksta u jasni tekst

Današnji kriptografski sustavi su parametarske matematičke funkcije, odnosno algoritmi, kojima se nizovi bitova jasnog teksta preračunavaju u nizove bitova kriptiranog teksta i obrnuto.

FUNKCIJA KRIPTIRANJA : $C = E(P, K_E)$

P = jasni tekst

C = kriptirani tekst

E = funkcija kriptiranja

K_E = parametar ili ključ kriptiranja

FUNKCIJA DEKRIPTIRANJA: $P = D(C, K_D)$

D = funkcija dekriptiranja

K_D = parametar ili ključ dekriptiranja

Funkcija dekriptiranja mora biti inverzna funkciji kriptiranja: $P = D(E(P, K_E), K_D)$

KRIPTOSUSTAV = funkcije kriptiranja E i dekriptiranja D

NESIGURNI KOMUNIKACIJSKI KANAL = komunikacijski kanal koji nije zaštićen, preko njega se prenosi kriptirana poruka

POVJERLJIVI KOMUNIKACIJSKI KANAL = kanal koji nastaje postupcima kriptiranja i dekriptiranja između izvorišta koje je kriptiralo podatke koje šalje i odredišta koje je primljene podatke dekriptiralo

Današnji kriptosustavi zasnivaju se na postupcima koji se efikasno mogu izvoditi na računalima, a ti postupci zasnivaju se na algoritmima koji su u pravilu opće poznati, ali s ključevima koji imaju vrlo velik broj mogućih vrijednosti.

Dobrota kriptosustava određena je težinom otkrivanja ključa dekriptiranja.

Danas su u uporabi dva osnovna oblika kriptosustava:

- SIMETRIČNI KRIPTOSUSTAVI
 - o ključ kriptiranja jednak je ključu dekriptiranja (ključ K)
 - C = E (P, K)
 - P = D (C, K)
 - \circ P = D (E (P, K), K)
- ASIMETRIČNI KRIPTOSUSTAVI
 - o ključ kriptiranja (K_E) i dekriptiranja (K_D) su različiti
 - \circ C = E (P, K_E)
 - \circ P = D (C, K_D)
 - \circ P = D (E (P, K_E), K_D)

DATA ENCRYPTION SYSTEM (DES):

- zasniva se na permutaciji bitova i operaciji XOR
- kriptiraju se blokovi duljine 64 bita
- ključ kriptiranja ima 56 bitova i iz njega se određuje 16 parametara (podključeva)
- opis postupka:
 - o permutiranje jednog bloka jasnog teksta, a rezultat se dijeli na dvije polovine (L₀R₀)
 - o u 16 koraka obavlja se manipulacija bitovima (i = 1, 2, ..., 16)
 - $\bullet \quad L_i = R_{i-1}$
 - $R_i = L_{i-1} \text{ XOR } f(R_{i-1}, K_i)$
 - funkcija f obavlja preslagivanje bitova, ovisno o ključu
 - o na kraju se obavlja inverzna permutacija
 - $C = IP^{-1} (L_{16}R_{16})$

UTROSTRUČENI DES (3DES)

- umjesto jednog ključa upotrebljavaju se 3 ključa
- 3DES $(P, K_1, K_2, K_3) = DES (DES^{-1} (DES (P, K_1), K_2), K_3)$
- 3DES⁻¹ (C, K_1 , K_2 , K_3) = DES⁻¹ (DES (DES⁻¹ (C, K_3), K_2), K_1)

IZBIJELJENI DES (DESX)

- u osnovni 56-bitnu ključ (K₁) koriste se još dva 64-bitna ključa za "izbjeljivanje" teksta (K₂ i K₃)
- DESX (P, K₁, K₂, K₃) = DES (P xor K₂, K₁) xor K₃
- DESX⁻¹ (C, K_1 , K_2 , K_3) = DES⁻¹ (C xor K_3 , K_1) xor K_2

.....

KRIPTOSUSTAV IDEA

- kriptiraju se blokovi 64 bita
- pri kriptiranju se blokovi dijele u 4 podbloka od 16 bitova
- ključ ima 128 bita, a iz njega je potrebno odrediti 52 podključa duljine 16 bita
- algoritam se provodi u 9 koraka
 - o u prvih 8 koraka s 4 podbloka i 6 podključeva obavljaju se sljedeće operacije
 - XOR
 - zbrajanje po modulu 2¹⁶
 - množenje po modulu 2¹⁶ + 1
 - o u devetom koraku upotrebljavaju se 4 podključa i ne koristi se xor
- dvostruko brže od DES-a

ADVANCED ENCRYPTION SYSTEM (AES)

- simetrični blok algoritam s javnim izvornim tekstom programa
- blok podataka koji se kriptira minimalne je veličine 128 bita
- veličina ključa od 128, 192 i 256 bita
- koristi konačno polje GF(2⁸), nad kojim su definirane operacije zbrajanja i množenja
 - o zbrajanje = xor
 - o množenje polinoma stupnja 8 je zapravo binarno množenje polinoma modulo fiksni ireducibilni polinom $g(x) = x^8 + x^4 + x^3 + x + 1$
 - o u slučaju množenja polinoma stupnja manjeg od 4, množenje dvaju polinoma definirano je kao binarno množenje polinoma modulo polinom $x^4 + 1$
- pobjednik natječaja za AES bio je RIJNDAEL
 - o promjenjive duljine bloka teksta i ključa (128, 192 ili 256)
 - o blok koji se kriptira smješten je u pravokutni niz bajtova u 4 retka, a broj stupaca ovisi o duljini bloka pa može biti 4, 6 ili 8 (oznaka N_b), a na isti način se tretira i ključ pri čemu se broj stupaca označava s N_k
 - o kriptiranje i dekriptiranje obavljaju se u koracima, a broj koraka N_r ovisi o N_b i N_k
 - $N_b = N_k = 4 \Rightarrow N_r = 10$
 - $N_b = 6$ ili $N_k = 6 \Rightarrow N_r = 12$, a inače 14
 - o u svakom koraku obavljaju se 4 transformacije:

- Zamijeni znakove
 - mijenja znak po znak koristeći supstitucijsku tablicu
- Posmakni redove
 - rotira znakove udesno, i to u drugom,trećem i četvrtom retku bloka za unaprijed poznati broj mjesta koji ovisi o N_b
- Pomiješaj stupce (ne obavlja se jedino u zadnjem koraku)
 - množi se stupac po stupac bloka (svaki stupac se promatra kao četveročlani polinom) s fiksnim polinomom
 a(x) = 03_Hx³ + 01_hx² + 01_hx + 02_h modulo x⁴ + 1
- Dodaj podključ
- o podključevi su po veličini jednaki veličini bloka koji se kriptira i dobivaju se iz izvornog ključa, a zajedno čine prošireni ključ
 - prošireni ključ dobiva kopiranjem izvornog na početak proširenog, a ostatak se gradi korištenjem xor, rotacije bitova, zamjene bajtova uz pomoć supstitucijskih tablica te dodavanjem konstanti
 - prošireni ključ ima (N_r + 1) * N_b bitova

Načini kriptiranja:

- ELECTRONIC CODEBOOK (ECB)
 - o najjednostavniji, uobičajeni
 - o svaki blok se kriptira (i dekriptira) zasebno
 - o svojstva:
 - identični slijedni nekriptirani blokovi rezultiraju identičnim kriptiranim blokovima
 - blokovi su kriptirani nezavisno o ostalim blokovima
 - pogreška unutar jednog bloka utječe na dešifriranje samo tog bloka
- CIPHER BLOCK CHAINING (CBC)
 - o najpopularniji način rada za kriptiranje blokova jasnog teksta
 - jasni tekst se zbraja (xor) s kriptiranim blokom i tada se primjenjuje algoritam na rezultirajući blok (u prvom koraku se zbraja inicijalizacijski vektor s jasnim tekstom)
 - o svojstva:
 - blok kriptiranog teksta ovisi o svim prethodnim blokovima
 - povećanje razine sigurnosti postiže se izbjegavanjem korištenja istog inicijalizacijskog vektora s istim ključem
 - zbog ulančavanja kriptirani blok c_j ovisi o x_j i svim nekriptiranim blokovima koji su prethodili
 - jedan bit pogreške u kriptiranom bloku c_j utječe na dekriptiranje blokova c_j i c_j + 1,
 - SAMOSINKRONIZIRAJUĆI način rada kada se pojavi greška u nekom bloku $c_{j,}$ ali ne i u c_{j} + 1, blok c_{j} + 2 je ispravno dekriptiran u x_{j} + 2, a isto vrijedi u slučaju gubitka jednog ili više blokova

- CIPHER FEEDBACK (CFB) i OUTPUT FEEDBACK (OFB)
 - o za kriptiranje toka podataka, duljina ključa jednaka duljini poruke koja se kriptira
 - ključ proizvoljne duljine postiže se uzastopnim kriptiranjem neke početne vrijednosti
 (OFB) ili ulančanim kriptiranjem već kriptiranih blokova (CFB)
 - kriptirani tekst dobiva se zbrajanjem (xor) jasnog teksta s ključem koji je jednake duljine
 - o inicijalizacijski vektor ne mora biti tajan
 - u CFB načinu pogreška se propagira do kraja dekriptiranja pa je tekst od mjesta pogreške izgubljen
 - o kod OFB načina sljedeći kriptirani blok ne zavisi od prethodnog
- CTR NAČIN KRIPTIRANJA
 - o sličan OFB i CFB
 - o ključ se dobiva uzastopnim kriptiranjem rastuće vrijednosti brojača
 - umjesto brojača može se koristiti i neka druga funkcija koja ne ponavlja vrijednosti kroz duži period

DJELJIVOST

- broj a djeljiv je s brojem d kada je a višekratnik od d
- trivijalni djelitelji od a su 1 i a, a netrivijalni su svi ostali koji se nazivaju faktori

PROSTI (PRIM) BROJEVI

• broj a > 1 koji nema faktora je prosti broj

TEOREM DIJELJENJA

- za svaki cijeli broj a i bilo koji pozitivni cijeli broj n postoje jedinstveni cijeli brojevi za koje vrijedi a = q*n + r
 - q je količnik (kvocijent)
 - o r je ostatak (reziduum), uz 0 <= r < n

EKVIVALENTNOST PO MODULU (KONGRUENTNOST)

- broj a jednak je broju b po modulu n ako je a mod n = b mod n
 - o kaže se da su a i b kongruentni po modulu n i piše se a ∃ b (mod n)

RELATIVNO PROSTI BROJEVI

brojevi a i b su relativno prosti brojevi ako im je najveći zajednički djelitelj 1

EULEROVA PHI FUNKCIJA

- Z_n ={ 0, 1, 2, ..., n-1 } je prsten u kojem su definirane operacije zbrajanja, oduzimanja i množenja po modulu n
- Z_n* je podskup Z_n koji se sastoji od elemenata koji su relativno prosti u odnosu na n
- broj elemenata skupa Z_n* jednak je Eulerovoj phi ili totient funkciji j(n)
- n = p (prosti broj) => j(p) = p 1
- n = pq (p i q su prosti brojevi) => j(n) = (p-1)(q-1)

EULEROV TEOREM

za svaki prirodni broj n > 1 vrijedi za sve brojeve a iz skupa Z_n*
a^{j(n)} = 1 (mod n)

MALI FERMATOV TEOREM

za proste brojeve p vrijedi za svaki broj a iz skupa Z_n*

$$a^{p-1} \equiv 1 \pmod{p}$$

• $a^p \equiv a \pmod{p}$

ASIMETRIČNI KRIPTOSUSTAV RSA

- postupak izgradnje RSA sustava:
 - o odabiru se dva velika prosta broja p i q (p >10¹⁰⁰, q > 10¹⁰⁰)
 - o izračuna se umnožak n = pq
 - o izračuna se umnožak $\phi(n) = (p-1)(q-1)$
 - o odabire se broj e $< \phi(n)$ i relativno prost u odnosu na $\phi(n)$
 - o izračunava se broj d $< \phi(n)$ tako da bude umnožak ed = 1 (mod $\phi(n)$)
 - o par K_E = (e, n) obznanjuje se i proglašava javnim ključem
 - o par K_D = (d, n) se taji postaje privatni ključ
- kriptiranje: RSA (P, K_E) = P^e mod n
- dekriptiranje: $RSA^{-1}(P, K_D) = C^d \mod n$
- tajnost se postiže odabirom prostih brojeva s velikim brojem dekadskih znamenki
- nekoliko redova veličina sporije u odnosu na simetrične kriptosustave

DIGITALNA OMOTNICA

- postupak stvaranja digitalne omotnice M:
 - o odabir proizvoljnog simetričnog ključa K
 - o kriptiranje teksta P simetričnom funkcijom, primjerice DES − C₁ = DES(P, K)
 - o kriptiranje tajnog ključa javnim ključem sugovornika C₂ = RSA(K, K_E)
 - o slanje poruke $M = (C_1, C_2)$
- postupak dekriptiranja:
 - o dekriptiranje C_2 privatnim ključem ne bi li se saznao simetrični ključ $K = RSA^{-1}(C_2, K_D)$
 - o dekriptiranje C_1 upravo saznatim ključem $P = DES^{-1}(C_1, K)$
- osigurava tajnost poruke, ali ne i ostale sigurnosne zahtjeve

.....

```
funkcija provjera složenosti (a, n, G) {
     G = 0;
     d = 1;
     c = n - 1;
     i = -1;
     dok je c > 0 {
           i++;
           b[i] = c \mod 2;
           c = c \operatorname{div} 2;
      }
     dok je ((i >= 0) \land (G == 0)) {
           d s = d;
           d = (d * d) \mod n;
           ako je ((d == 1) \land (d s != 1) \land (d s != n-1)) {
               G = 1;
           }
           ako je (b[i] == 1) {
           d = (d*a) \mod n;
           }
           i--;
      }
     ako je ((i == -1) \land (d != 1)) {
          G = 1;
      }
}
PROGRAM KOJI ODREĐUJE JE LI BROJ SLOŽEN (random vraća nasumični broj
veći od 1 i manji od n-1):
G = 0;
i = k;
dok je ((i >= 0) \land (G == 0)) {
     a = random (1, n-1);
     provjera složenosti(a, n, G);
     i--;
ako je (G == 1) {
    n je složeni broj // sigurno!
}
inače {
     n je prosti broj // skoro sigurno!
```

NAPADI NA KRIPTOSUSTAVE

- vrste napada prema onome što je napadaču dostupno
 - NAPAD S ODABRANIM ČISTIM TEKSTOM
 - neograničene količine parova (M, C)
 - NAPAD S ODABRANIM KRIPTIRANIM TEKSTOM
 - po volji odabrani C i pripadni M (neograničene količine)
 - NAPAD S POZNATIM ČISTIM TEKSTOM
 - neki parovi (M, C)
 - NAPAD S POZNATIM KRIPTIRANIM TEKSTOM
 - dostupan samo C, a traži se K i M

PRETRAŽIVANJE CIJELOG PROSTORA RJEŠENJA

- o isprobavaju se svi mogući ključevi
- o najjednostavnija i najsporija vrsta napada
- o nije moguće spriječiti
- napad koji ima veću složenost od složenosti pretraživanja cijelog prostora smatra se neuspješnim
- o napadač ili ima na raspolaganju čisti tekst ili pretpostavlja da čisti tekst ima neku strukturu koju je moguće prepoznati
- PRETRAŽIVANJE POLA PROSTORA RJEŠENJA
 - o kod mnogih kriptosustava za koje vrijedi simetrija:
 - C = DES (M, K), C' = DES (M',K'), gdje je X'oznaka za bitovni komplement
 - o ušteda je blizu 50%
 - o vrijedi i za DES
- pomoć u napadu na kriptosustave: uzeti u obzir frekvenciju slova
- NAPADI NA DES
 - DES bitno oslabljuje:
 - promjena redoslijeda S tablica
 - slučajno odabrane S tablice
 - umjesto xor neka složenija funkcija
 - o pristup: ANALIZA POJEDNOSTAVLJENOG KRIPTOSUSTAVA
 - s manje iteracija ili rundi

• DIFERENCIJALNA KRIPTOANALIZA

- tehnika kojom se analizira učinak razlike između dva čista teksta na razliku između dva rezultirajuća kriptirana teksta
- o napad s odabranim/poznatim čistim tekstom

• LINEARNA KRIPTOANALIZA

- o cilj je pronaći linearnu aproksimaciju danog algoritma
- aproksimacija nikada nema vjerojatnost ni blizu 100%, što se nadoknađuje uzimanjem veće količine parova čisti – kriptirani tekst
- o obično više linearnih aproksimacija za neki algoritam
- o učinkovitost algoritma raste s |p − 0,5| i s rastom broja poznatih tekstova
- o DES je moguće brže probiti od pretraživanja cijelog cijelog prostora