11. Hash Tables

11.1 Directed-address tables

- Direct addressing is a simple technique that works well when the universe U of keys is reasonably small. Suppose that an application needs a dynamic set in which each element has a key drawn from the universe $U = \{0,1,..., m-1\}$ where m is not too large. We shall assume that no two elements have the same key.
- □ To represent the dynamic set, we use an array, or directed-address table, T[0, ..., m-1], in which each position, or slot, corresponds to a key in the universe U.

Implementation of direct-address table

$$\square$$
 U = {0, 1, ..., 9}, *K* = {2, 3, 5, 8}

Functions of direct addressing

DIRECTED-ADDRESS-SEARCH(T, k) return T[k]

DIRECTED-ADDRESS-INSERT(T, x) $T[key[x]] \leftarrow x$

DIRECTED-ADDRESS-DELETE(T, x) $T[key[x]] \leftarrow NIL$

11.2 Hash tables

□ The difficulty with direct address is obvious: if the universe U is large (sometime unbounded), storing a table T of size |U| may be impractical, or even impossible. Furthermore, the set *K* of keys *actually stored* may be so small relative to U. Specifically, the storage requirements can be reduced to $\Theta(|K|)$, while searching for an element in the hash table still requires only O(1) time.

Implementation of hash table

□ Using a hash function h to map keys to hash-table slots. Keys k_2 and k_5 map to the same slot, so they collide.

Some terminology and principles

- \square Universe set: U, the set of all possible key values.
- \square Hash function: $h: U \rightarrow \{0, 1, ..., m-1\}$
- \square Hash table: T[0, ..., m-1]
- We say an element with key k hashes to slot h(k); we also say that h(k) is the hash value of key k.
- □ *Collision*: two keys hashed to the same slot in the hash table.
- □ *Trade-off*: smaller hash table may introduce more collisions.

Collision resolution techniques:

- Chaining
 - Putting all the elements that hash to the same slot in a linked list.

- Open addressing
 - One element in one position!

Implementation of chained hash

Functions of chained hash

- □ CHAINED-HASH-INSERT(T, x) insert x at the head of the list T[h(key[x])]
- □ CHAINED-HASH-SEARCH(T, k) search for the element with key k in the list T[h[k]]
- □ CHAINED-HASH-DELETE(T, x) delete x from the list T[h(key[x])]

Complexity of chained-hash functions

- □ INSERT: O(1) (the worst case), assume the element x being inserted is not already present in the table.
- □ SEARCH: in the worst case ⇒ proportional to the length of the list.
- DELETE: O(1), if the list are doubly linked and a pointer to the element is given; similar to the case of searching if the list is *singly* linked.

Analysis of hashing with chaining

- \square Given a hash table T with m slots that stores n elements.
- □ load factor: $\alpha = \frac{n}{m}$ (the average number of elements stored in a chain.)

Assumption: simple uniform hashing

- □ Simple uniform hashing: any given element is equally likely to hash into any of the *m* slots, independently of where any other element has hashed to.
- We assume the case of simple uniform hashing; also, computing hashing function takes O(1) time.

for j = 0, 1, ..., m-1, let us denote the length of the list T[j] by n_j , so that

$$n = n_0 + n_1 + \ldots + n_{m-1},$$

and the *average* value of n_j is $E[n_j] = \alpha = n/m$.

Theorem 11.1

□ If a hash table in which collisions are resolved by chaining, an unsuccessful search takes expected time $\Theta(1+\alpha)$, under the assumption of simple uniform hashing.

Proof:

- The average length of the list is $\alpha = \frac{n}{n}$.
- The expected number of elements examined in an unsuccessful search is α .
- The total time required (including the time for computing h(k) is $O(1+\alpha)$.

Theorem 11.2

- □ If a hash table in which collision are resolved by chaining, a successful search takes time $\Theta(1+\alpha)$, on the average, under the assumption of simple uniform hashing.
 - Assume that CHAINED-HASH-INSERT procedure inserts a new element at the front of the list instead of the end.

$$E\left[\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}X_{ij}\right)\right] = \frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}E[X_{ij}]\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}\frac{1}{m}\right)$$

$$= 1+\frac{1}{nm}\sum_{i=1}^{n}\left(n-i\right)$$

$$= 1+\frac{1}{nm}\left(\sum_{i=1}^{n}n-\sum_{i=1}^{n}i\right)$$

$$= 1+\frac{1}{nm}\left(n^{2}-\frac{n(n+1)}{2}\right)$$

$$= 1+\frac{\alpha}{2}-\frac{\alpha}{2n}.$$

 X_{ij} : the random variable indicates that the *i*-th and *j*-th element are hashed into the same slot.

Total time required for a successful search

$$\Theta\left(2+\frac{\alpha}{2}-\frac{\alpha}{2n}\right)=\Theta\left(1+\alpha\right).$$

11.3 Hash functions

□ What makes a good hash function?

$$\sum_{k:h(k)=j} \Pr(k) = \frac{1}{m} \quad \text{for } j = 1, 2, ..., m$$

- □ Example:
 - Assume $0 \le k < 1$
 - Set $h(k) = \lfloor km \rfloor$

Interpreting keys as natural number

□ In many cases, we can assume the universe of keys is the set $N = \{0, 1, 2, ...\}$.

□ Example: ASCII coding

$$(p, t) = (112, 116) = 112 \times 128 + 116 = 14452$$

11.3.1 The division method

$$h(k) = k \mod m$$

- □ **Suggestion:** Choose m to be prime and not too close to exactly power of 2:
 - $= m = 2^p \Longrightarrow h(k)$ is just the p lowest-order bits of k
 - $m = 2^p 1 => h(k_1) = h(k_2)$ if k_1 is a permutation of k_2 (exercise 11.3-3)

11.3.2 The multiplication method

$$h(k) = \lfloor m(kA \mod 1) \rfloor$$
,
where $kA \mod 1 = kA - \lfloor kA \rfloor$

Suggestion:

choose
$$m = 2^p$$
, $A = \frac{\sqrt{5} - 1}{2}$ (Knuth)

Example:

$$k = 123456$$
, $p = 14$, $m = 2^{14} = 16384$
 $A = \frac{\sqrt{5} - 1}{2} \cong 0.61803$...
 $h(k) = \lfloor 16384 \times (123456 \times A \mod 1) \rfloor$
 $= \lfloor 16384 \times 0.004115107 \rfloor$
 $= \lfloor 67.4219 \rfloor = 67$

11.4 Open addressing

- □ All elements are stored in the hash tables itself (no chains).
- □ $h: U \times \{0,1,..., m-1\} \rightarrow \{0,1,..., m-1\}.$ With open addressing, we require that for every key k, the **probe sequence** $\langle h(k,0), h(k,1),..., h(k, m-1) \rangle$ be a *permutation* of $\{0,1,..., m-1\}$, or at least $h(k,i) \in \{0,1,..., m-1\} \ \forall k,i$

HASH-INSERT(T, k)

```
1 i \leftarrow 0
2 repeat j \leftarrow h(k, i)
       if T[j] = NIL
             then T[j] \leftarrow k
                    return j
             else i \leftarrow i + 1
7 until i=m
8 error "hash table overflow"
```

HASH-SEARCH(T, k)

```
1 i \leftarrow 0
2 repeat j \leftarrow h(k, i)
       if T[j] = k
             then return j
      i \leftarrow i + 1
6 until T[j] = NIL or i = m
7 return NIL
```

Linear probing:

$$h(k,i) = (h(k)+i) \mod m$$

□ It suffers the *primary* clustering problem.

Quadratic probing:

$$h(k, i) = (h(k) + c_1 i + c_2 i^2) \mod m$$

 $c_1, c_2 \neq 0$

□ It suffers the *secondary* clustering problem.

Linear probing vs. Quadratic probing

Double hashing:

$$h(k, i) = (h_1(k) + ih_2(k)) \mod m$$

0		
1	79	
2		'
3		
4	69	
5	98	\forall
6		'
7	72	
8		
9	14	1
10		
11	50	
12		
		-

$$h_1(k) = k \bmod 13$$

$$h_2(k) = 1 + (k \mod 11)$$

INSERT 14

Example:

$$h_1(k) = k \mod m$$

$$h_2(k) = 1 + (k \mod m')$$

Double hashing vs linear or quadratic probing

⇒ Double hashing represents an improvement over linear and quadratic probing in that $\Theta(m^2)$ probe sequence are used, rather than $\Theta(m)$. Its performance is very close to uniform hashing.

Analysis of open-address hashing

Theorem 11.6

Given an open-address hash-table with load factor $\alpha = n / m < 1$, the expected number of probes in an unsuccessful search is at most $1/(1 - \alpha)$, assuming uniform hashing.

Proof.

- Define p_i = Pr(exactly *i* probes access occupied slots)
 - for $0 \le i \le n$. And $p_i = 0$ if i > n
- □ The expected number of probes

is
$$1 + \sum_{i=0}^{\infty} ip_i$$
.

Define $q_i = \Pr\{\text{at least } i \text{ probes access occupied slots}\}.$

Why?
$$\sum_{i=0}^{\infty} i p_i = \sum_{i=1}^{\infty} q_i$$

$$E[X] = \sum_{i=0}^{\infty} i \Pr\{X = i\}$$

$$= \sum_{i=0}^{\infty} i(\Pr\{X \ge i\} - \sum_{i=0}^{\infty} \Pr\{X \ge i+1\})$$

$$=\sum_{i=1}^{\infty} \Pr\{X \geq i\}$$

$$q_1 = \frac{n}{m} \qquad q_2 = (\frac{n}{m})(\frac{n-1}{m-1})$$

$$q_{i} = \left(\frac{n}{m}\right)\left(\frac{n-1}{m-1}\right) \cdots \left(\frac{n-i+1}{m-i+1}\right) \le \left(\frac{n}{m}\right)^{i} = \alpha^{i}$$
if $1 \le i \le n$

$$q_i = 0$$
 for $i > n$.

$$1 + \sum_{i=0}^{\infty} i p_i = 1 + \sum_{i=1}^{\infty} q_i \le 1 + \alpha + \alpha^2 + \dots = \frac{1}{1 - \alpha}$$

Example:

$$\alpha = 0.1$$

$$= 5 \text{ times}$$

$$\alpha = 0.5$$

$$\alpha = 0.5$$

$$\frac{1}{1 - \alpha} = 2$$

$$1 - \alpha$$

$$= 5 \text{ times}$$

$$\alpha = 0.9$$

$$\frac{1}{1 - \alpha} = 10$$

$$= 5 \text{ times}$$

Corollary 11.7

□ Inserting an element into an openaddress hash table with load factor α requires at most $1/(1 - \alpha)$ probes on average, assuming uniform hashing.

Proof.

□ An element is inserted only if there is room in the table, and thus $\alpha < 1$. Inserting a key requires an unsuccessful search followed by placement of the key in the first empty slot found. Thus, the expected number of probes is at most $1/(1-\alpha)$.

Theorem 11.8

□ Given an open-address hash table with load factor α < 1, the expected number of probes in a successful search is at most

$$\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$$

assuming uniform hashing and assuming that each key in the table is equally likely to be searched for.

Proof.

- A search for a key k follows the same probe sequence as was followed when the element with key k was inserted.
- If k was the (i+1)st key inserted into the hash table, the expected number of probes made in a search for k is at most $\frac{1}{1-\frac{i}{m-i}} = \frac{m}{m-i}$

$$\frac{1}{1 - \frac{i}{m}} = \frac{m}{m - i}$$

Averaging over all n keys in the hash table gives us the average number of probes in a successful search:

 α m-n α $1-\alpha$

$$\frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m-i} = \frac{m}{n} \sum_{i=0}^{n-1} \frac{1}{m-i} = \frac{1}{\alpha} (H_m - H_{m-n})$$

$$\leq \frac{1}{\alpha} \int_{m-n}^{m} (1/x) dx$$

$$H_i = \sum_{j=1}^{i} 1/j$$
(harmonic numbers)

Example:

$$\alpha = 0.1 \qquad \frac{1}{\alpha} \ln \frac{1}{1 - \alpha} \approx 1.054$$

$$\alpha = 0.5 \qquad \frac{1}{\alpha} \ln \frac{1}{1 - \alpha} \approx 1.386$$

$$\alpha = 0.9 \qquad \frac{1}{\alpha} \ln \frac{1}{1 - \alpha} \approx 2.558$$