Group theory notes

Álvaro Romero

December 10, 2023

Contents

L	Basics of groups 1.1 Basic group examples	1 2
2	Cyclic groups 2.1 Euclidean Algorithm	2 2
3	Normal subgroups 3.1 Three isomorphism theorems	3
1	Group Actions 4.1 Orbits	4 4
5	Sylow theorems 5.1 Classification of small groups	5
3	Alternating groups	6
7	Finitely generated Abelian groups	7
1	Basics of groups	
	Definition 1.1. A Group (G, \cdot) is a group if	
	$1. \ (a \cdot b) \cdot c = a \cdot (b \cdot c)$	
	2. $\exists e \in G \text{ s.t. } a \cdot e = a = e \cdot a$	
	3. $\forall a \in G \exists b \in G \text{ s.t. } ab = e = ba.$	
	Definition 1.2. The order of	
	• G is denoted by $ G $.	
	• $x \in G$: $\min\{n x^n = e, n > 0\} = \langle x \rangle $	

1.1 Basic group examples

- $\mathbb{Z}/n\mathbb{Z} = \text{integers mod } n$.
- $S_x = \{\tau : X \to X | \tau \text{ bijection}\}, \quad S_n = S_{\{1,\dots,n\}}$
- $D_{2n} = \langle r, s | r^n, s^2, srsr \rangle = \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

Definition 1.3. $\phi: G \to H$ is called a group *homomorphism* if $\phi(ab) = \phi(a) \cdot \phi(b)$. If ϕ is furthermore a bijection, we call it a group *isomorphism*, and write $G \cong H$

Definition 1.4. $H \leq G$ is a subgroup if $x, y \in H \implies xy^{-1} \in H$.

Definition 1.5. $N \triangleleft G$ is a normal subgroup if $N \leqslant G$ and if $x \in G$, $n \in N \implies xnx^{-1} \in N$

2 Cyclic groups

Definition 2.1. G is cyclic if $\exists x \in G \text{ s.t. } G = \langle x \rangle = \{x^n | n \in \mathbb{Z}\}$

Theorem 2.1. G is cyclic

$$\Longrightarrow \frac{G \cong \mathbb{Z} \quad \text{or} \quad G \cong \mathbb{Z}/n\mathbb{Z}}{x^k \longleftrightarrow k} \quad x^k \longleftrightarrow \bar{k}$$

Theorem 2.2. Subgroups of \mathbb{Z} are

- $n\mathbb{Z} = \{nk | k \in \mathbb{Z}\}, n \geqslant 0$
- 7

Theorem 2.3. Subgroups of $\mathbb{Z}/n\mathbb{Z} = \langle x \rangle$ are $\langle x^d \rangle$ for d a positive divisor of n. Moreover

- 1. $\langle x^l \rangle = \langle x^{(l,n)} \rangle$ where $(l,n) = \gcd(l,n)$
- 2. $|\langle x^l \rangle| = \frac{n}{(l,n)}$

Recall,

- Subgroups of $\mathbb{Z}/n\mathbb{Z} \leftrightarrow \text{subgroups}$ of \mathbb{Z} containing $n\mathbb{Z} \to n\mathbb{Z} \subseteq k\mathbb{Z} \Leftrightarrow k|n$
- $\pi: \mathbb{Z} \to n\mathbb{Z}$ $k\mathbb{Z} \subseteq \mathbb{Z} \implies \pi(k\mathbb{Z}) \leqslant \mathbb{Z}/n\mathbb{Z}$. Applying the inverse image $\pi^{-1}\pi(k\mathbb{Z}) = k\mathbb{Z} + n\mathbb{Z} = (k, n)\mathbb{Z}$ by the Euclidean algorithm.

2.1 Euclidean Algorithm

Theorem 2.4. Let $m, n \in \mathbb{Z}$. Then $\exists a, b \in \mathbb{Z}$ s.t.

am + bn = (m, n) := greatest common divisor of m and n

 $\Leftrightarrow \exists 2$ by 2 matrix A with integer coefficient s.t. A^{-1} has integer coeff

$$A \cdot \binom{m}{n} = \binom{(m,n)}{0}.$$

Definition 2.2. $(\mathbb{Z}/n\mathbb{Z})^{\times} := \{\bar{k} \in \mathbb{Z}/n\mathbb{Z} \mid (k,n)=1\}$ and group multiplication is $\bar{k}_1\bar{k}_2 = \overline{k_1k_2}$

Theorem 2.5. Aut($\mathbb{Z}/n\mathbb{Z}$) \cong ($\mathbb{Z}/n\mathbb{Z}$) $^{\times}$. Where Aut(G) is the automorphism of G. This is defined, with composition as group multiplication, as

$$\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) = \{ \phi : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \mid \phi \text{ group isomorphism} \}.$$

An example of how the above theorem works,

$$\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$$
$$(\bar{a} \mapsto \bar{k} \cdot \bar{a}) \longleftarrow \bar{k}$$

for $\bar{k} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.

3 Normal subgroups

Definition 3.1. Let $H \leq G$ and $g \in G$,

- $gH := \{gh \mid h \in H\}$ left coset

- $Hg:=\{hg\,|\,h\in H\}$ right coset $G/H:=\{gH\subseteq G\,|\,g\in G\}$ left quotient $H/G:=\{Hg\subseteq G\,|\,g\in G\}$ right quotient

Notation: [g] = gH

Lemma 3.1. $g_1H \cap g_2H = \emptyset \implies g_1H = g_2H \Leftrightarrow g_2^{-1}g_1 \in H$.

Theorem 3.2. $N \triangleleft G$ normal. Then G/N = N/G and G/N is a group s.t.

$$\pi: G \to G/N$$
$$g \mapsto [g]$$

is a group homomorphism. Moreover, $\ker(\pi) = N$, where $\ker(\pi) = \{x \in G \mid \pi(x) = e\}$.

Theorem 3.3. To give a group homomorphism $G/N \to H$ is the same as giving group hom $\varphi: G \longrightarrow H \text{ s.t. } \varphi(N) = e \Leftrightarrow N \leqslant \ker(\varphi)$

Theorem 3.4. $H \leq G/N \mapsto \pi^{-1}(H)$ have a 1 to 1 correspondence between normal subgroups of G/N and normal subgroups containing N.

3.1 Three isomorphism theorems

Theorem 3.5 (First). $\phi: G \to H$ group hom. $\Longrightarrow \operatorname{im}(\phi) \cong G/\ker(\phi)$ Also $\operatorname{im}(\phi) \leq H$ and $\ker(\phi) \triangleleft G$.

Theorem 3.6 (Second). $A, B \leq G$. Assume $A \leq N_G(B) := \{g \in G \mid gBg^{-1} = B\}$, then $\frac{AB}{B} \cong \frac{A}{A \cap B},$

where $AB = \{a \cdot b \mid a \in A, b \in B\}$. In particular,

- $AB \leq G$
- $B \triangleleft AB$
- $A \cap B \triangleleft A$

Theorem 3.7 (Third). $H, K \triangleleft G$. Then,

$$(G/H)/(K/H) \cong G/K$$
,

in particular, $K/H \triangleleft G/H$.

4 Group Actions

Definition 4.1. A group action $G \subset X$ is a group homorphism $G \to S_X$ that is equivalent to a map

$$\rho: G \times X \to X$$
,

written as $\rho(g, x) = g \cdot x$ satisfying

- $g_1 \cdot (g_2 \cdot x) = (g_1 \cdot g_2) \cdot x$, $\forall g_1, g_2 \in G$ and $x \in X$,
- $e \cdot x = x, \ \forall \ x \in X$

Group acting on itself

A group can act on itself $(G \subset G)$ in three different ways.

 $(g,x) \longmapsto g \cdot x$, left-regular action

 $(g,x)\longmapsto x\cdot g^{-1}, \quad \text{ right-regular action}$

 $(g,x) \longmapsto gx \cdot g^{-1}$, adjoint action

4.1 Orbits

Definition 4.2. $G \cdot x = \{g \cdot x \mid g \in G\} \subseteq X$ is the orbit through $x \in X$. Furthermore, $X/G = \{G \cdot x \mid x \in X\}$ is the set of orbits or the quotient.

Theorem 4.1. $G \subset X$. Then X is the disjoint union of orbits,

$$X = \bigcup_{[x] \in X/G} G \cdot x$$

ie

$$Gx_1 \cap Gx_2 \neq \emptyset \iff Gx_1 = Gx_2 \iff \exists g \in G \text{ st } gx_1 = x_2.$$

Theorem 4.2 (Lagrange's). Let $H \leq G$, then |H| divides |G|. In particular

$$|G/H| = \frac{|G|}{|H|},$$

where |G/H| is called the **index**.

Corollary 4.3. |G| = p, p prime, $\implies G \cong \mathbb{Z}/p\mathbb{Z}$, the cyclic group.

Note.

Let $H \leq G$. Then $G \subset G/H$, where G/H might be a set if H is not normal; by $(g,V) \mapsto gV$, for $(g,V) \in G \times G/H$, $gV \in G/H$.

Theorem 4.4. Let $G \subset X$ and $\{x_1, x_2, \ldots\}$ representative of G orbits. Then

$$X \cong G/\operatorname{Stab}_G(x_1) \cup G/\operatorname{Stab}_G(x_2) \cup \dots$$

where $Stab_G(x_i) = \{g \in G \mid gx_i = x_i\}$, ie all the elements in G that fix a given x_i .

Corollary 4.5 (Orbit-Stabilizer formula). Let $G \subset X$ and $x \in X$. Then $G \cdot x \cong G/\operatorname{Stab}_G(x)$

$$\implies |G \cdot x| = \frac{|G|}{|\operatorname{Stab}_G(x)|}.$$

From this we can also conclude that $|G \cdot x|$ divides |G|.

Corollary 4.6 (Class equation). Let $G \subset X$,

$$|X| = |\operatorname{Fix}_{G}(x)| + \sum_{i=1}^{l} \frac{|G|}{|\operatorname{Stab}_{G}(x_{i})},$$

where $\operatorname{Fix}_G(x) = \{x \in X \mid gx = x \ \forall g \in G\} \iff |G \cdot x| = 1$, the points where the index is 1, and where $x_1, \dots x_l$ are the representatives of all the orbits not in $\operatorname{Fix}_G(x)$.

Corollary 4.7. $\sigma \in S_n$ has a cycle decomposition $\sigma = (a_{1k_1})(a_{k_1+1}\dots)\dots(a_{k_{l-1}+1}\dots a_{k_l})$

where
$$(a_1 \dots a_l)$$
:
$$\begin{cases} a_i \mapsto a_{i+1} \\ a_l \mapsto a_1 \\ x \mapsto x \end{cases}$$

5 Sylow theorems

Definition 5.1. We define

- The center of $G, Z(G) = \operatorname{Fix}^{\operatorname{ad}}_G(G) \lhd G$ for $G \subset G$ the adjoint action
- The centralizer $C_G(x) = \{g \in G \mid gxg^{-1} = x\} = \operatorname{Stab}_G^{\operatorname{ad}}(x)$.
- Two elements are called **conjugate** if they belong to the same orbit, ie for some $x, y \in G$, $G \cdot_{\text{adj}} x = G \cdot_{\text{adj}} y$
- The adjoint orbits $(G \cdot_{\text{adj}} x)$ are called **conjugacy classes**.

From this we get a modification of the class equation,

Theorem 5.1 (Class equation).

$$|G| = |Z(G)| + \sum_{i=1}^{l} \frac{|G|}{|C_G(g_i)|},$$

where g_1, \ldots, g_l are the set of representatives of conjugacy classes not contained in Z(G), the center. A special thing about this is that thanks to $Z(G) \triangleleft G$, |Z(G)| also divides |G|, which is not true for all actions.

Theorem 5.2. $|G| = p^{\alpha} \implies Z(G) \neq \{e\}$, it can't be the trivial group.

Corollary 5.3. $|G| = p^2$ then G is Abelian $\implies G \cong \mathbb{Z}/p^2\mathbb{Z}$ or $G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ by finetely generated Abelian groups theorem.

Theorem 5.4 (Sylow). $|G| = p^{\alpha}m$ and $p \nmid m$,

- 1. G has a subgroup P of order p^{α} , Sylow p-subgroup
- 2. Let Q be a group of order p^k (a p-subgroup), then $\exists g \in G$ s.t. $Q \leq pPg^{-1}$
- 3. $n_p = \text{number of Sylow p-subgroups} = |G/N_G(P)| \equiv 1 \pmod{p}$ and also $n_p \mid m$

Theorem 5.5 (Cauchy). $p \mid |G| \implies G$ contains elements of order p.

5.1 Classification of small groups

We use the Sylow theorems to find (ideally) normal subgroups $(n_p = 1 \iff p \text{ is normal})$. A strategy would be that if n_{p1}, n_{p2} are large, then we could obtain too many elements. Eg if we have to groups P, Q normal and $PQ = G, P \cap Q = \{e\} \implies G \cong P \times Q$. And then study elements more carefully. You also have the case when only one is normal, take (Q), but $PQ = G, P \cap Q = \{e\}$ still. Then we would have the following action

$$\phi:\ Q\to Aut(P)$$

$$q\mapsto \mathrm{ad}_q=qxq^{-1},\ \mathrm{the\ adjoint\ action}$$

$$\Longrightarrow\ G\cong P\rtimes_\phi Q.$$

From here we need to know what is P, what is Q and what that homomorphism is. This helps us noting that a lot of them are isom. to the cyclic groups.

Definition 5.2. G is simple if $\{e\}$ and G are the only normal subgroups.

Theorem 5.6. $\mathbb{Z}/p\mathbb{Z}$ is simple.

6 Alternating groups

Definition 6.1 (Alternating groups). We define

• The group homomorphism $\epsilon: S_n \to \{\pm 1\}$, such that $\epsilon(\sigma) = (-1)^k$ if σ is a composition of k transpositions (2-cycles)

• The alternating group $A_n = \ker(\epsilon)$

Structure of A_n

- S_n is generated by 2-cycles
- A_n is generated by 3-cycles

Theorem 6.1. A_n , $n \ge 5$ is a simple group. If it's smaller we could understand it in terms of what we know.

7 Finitely generated Abelian groups

Definition 7.1. An abelian group A is finetely generated by a finite set s_1, \ldots, s_l if $\forall a \in A$, $\exists n_i \in \mathbb{Z} \text{ s.t. } a = \sum_{i=1}^l n_i s_i$, a linear combination of the spanning set.

Theorem 7.1. A fin. generated Abelian group. Then we can express it in **invariant factor decomposition**

$$A \cong \mathbb{Z}^r \times \mathbb{Z}/k_1\mathbb{Z} \times \ldots \times \mathbb{Z}/k_l\mathbb{Z},$$

or primary component decomposition

$$A \cong \mathbb{Z}^r \times A_{p_1} \times \ldots \times A_{p_r},$$

where the numbers (r, k_1, \ldots, k_l) are uniquely determined by A.

- 1. $r \ge 0$ is called the **rank** and k_1, \ldots, k_l the **invariant factors**
- 2. $k_i \ge 2 \ \forall i$, and $k_i \mid k_{i+1}$ for $1 \le i \le s-1$
- 3. $A_p := \{ a \in A \mid p^k a = 0 \text{ for some } k \ge 0 \}$

Theorem 7.2 (Chinese Reminder). $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/nm\mathbb{Z}$ if (m, n) = 1.

From this also follows that you can't have $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \not\cong \mathbb{Z}/p^2\mathbb{Z}$