# Disjoint Sets

Dr Dayal Kumar Behera

### What is Disjoint Sets

A disjoint Set is a data structure Maintains a collection

$$S = \{S_1, S_2, ..., S_k\}$$
 of disjoint dynamic Sets  
where  $S_i \cap S_j = \emptyset \quad \forall i \neq j$ 

- Here each element in the set is an object.
- Each set is identified by a representative, which can be any member of the set.

### Disjoint Sets Operations

### The operation it supports

- MAKE\_SET(x): Creates a new set containing x as the only member Hence, x is also representative.
- UNION(x, y): Replaces the Sets  $S_x$  and  $S_y$  with  $S_x \cup S_y$ One of the element of  $S_x \cup S_y$  becomes the representative. (Since sets are disjoint, it is required that after union of  $S_x$  and  $S_y$ ,  $S_x$  and  $S_y$  must be deleted from the collection)
- FIND\_SET(x): Returns the representative of the Set containing x

### Disjoint Sets : Analysis

- We assume that MAKE\_SET are the first n operations.
- Each UNION operation decreases the no of sets by one hence at max n-1 number of UNION operations are possible.

### Application of Disjoint Set

- There are many applications of Disjoint Sets.
- One such application is determining the connected components of an undirected graph



Graph G is represented as

G.V as set of vertices: G.V = {a, b, c, d, e, f, g, h, i, j} and G.E as set of Edges: G.E = {(a,b), (a,c),(b,c), (b,d), (e,f), (e,g), (h,i)}

### Connected Components

 $G.V = \{a, b, c, d, e, f, g, h, i, j\}$ 

G.E =  $\{(a, b), (a, c), (b, c), (b, d), (e, f), (e, g), (h, i)\}$ 

| Edge Processed   | Collection of Disjoint Sets |     |     |     |           |     |     |        |     |     |
|------------------|-----------------------------|-----|-----|-----|-----------|-----|-----|--------|-----|-----|
| Initial Sets     | {a}                         | {b} | {c} | {d} | {e}       | {f} | {g} | {h}    | {i} | {j} |
| (a,b)            | {a,b}                       |     | {c} | {d} | {e}       | {f} | {g} | {h}    | {i} | {j} |
| (a,c)            | {a,b,c                      | }   |     | {d} | {e}       | {f} | {g} | {h}    | {i} | {j} |
| (b,c): no change | {a,b,c                      | }   |     | {d} | {e}       | {f} | {g} | {h}    | {i} | {j} |
| (b,d)            | {a,b,c,d}                   |     |     |     | {e}       | {f} | {g} | {h}    | {i} | {j} |
| (e,f)            | {a,b,c,d}                   |     |     |     | {e, f}    |     | {g} | {h}    | {i} | {j} |
| (e,g)            | {a,b,c,d}                   |     |     |     | {e, f, g} |     | {h} | {i}    | {j} |     |
| (h,i)            | {a,b,c,d}                   |     |     |     | {e, f, g} |     |     | {h, i} |     | {j} |

A graph with four connected components

### Algorithm for Connected Components

#### Algo CONNECTED\_COMPONENT(G)

- 1. for each vertex  $v \in G.V$
- 2.  $MAKE\_SET(v)$
- 3. For each Edge  $(u, v) \in G.E$
- 4. if  $(FIND\_SET(u) \neq FIND\_SET(v))$
- 5. UNION(u, v)

### Ago SAME\_COMPONENT(u, v)

- 1. If (FIND\_SET(u) == FIND\_SET(v))
- 2. return TRUE
- else return FALSE

## Representation of Disjoint-set

#### **Linked-list Representation:**

Each node can be represented as follows

Pointer to representative

info

Pointer to next

### Representation of Disjoint-set

#### **Linked-list Representation:**

- Each set is represented by the same linked list
- Object of each set has attributes as head, Pointing to the First Object in the set and a tail pointing to the last object in the list.
- Each object in the list contains a set member, a pointer to the next member in the list.



### **Basic Operations**



MAKE\_SET(x) will work in O(1)

FIND\_SET(x) should start from Head and traverse till Last Node,

If x is found it can use the address of it's object to reach the set object its belongs to and get the reference of the object that head points to.

# **UNION** Operation





### STEPS for Union Operations

- UNION(g, h) will append h's list (S<sub>2</sub>) onto the end of g's list (S<sub>1</sub>)
- The Representative of g's list (i.e. f) will be the representative of the union
- We will destroy the Set Object S<sub>2</sub>

#### Sequence of steps

- 1. Identified the Last element of  $S_1$  (using  $S_1$ .tail) and next of that object should update with  $S_2$ .head
- 2.  $S_1$ .tail =  $S_2$ .tail
- 3. Head of each object in S<sub>2</sub> should point to S<sub>1</sub> Set Object
- 4. Destroy S<sub>2</sub>

# Analysis of Operation

| Operations              | No of Object Updated |                             |
|-------------------------|----------------------|-----------------------------|
| $MAKE-SET(x_1)$         | 1                    |                             |
| $MAKE-SET(x_2)$         | 1                    | Suppose there are n objects |
| •                       | •<br>•               | n operations for MAKE-SET   |
| $MAKE-SET(x_n)$         | 1                    | But for Union:              |
| UNION $(x_2, x_1)$      | 1                    | No of operations            |
| UNION $(x_3, x_2)$      | 2                    | = 1+2+3++ n-1               |
| UNION( $x_4, x_3$ )     | 3                    | = n(n-1)/2                  |
| •<br>•<br>•             | •<br>•               | Which is $\theta(n^2)$      |
| UNION( $x_n, x_{n-1}$ ) | n-1                  |                             |

### A Weighted Union Heuristic

Weighted Union: Suppose each list also includes the length of the list, and we will always append the shorter list onto a longer list

### Disjoint Set Forest

- For Faster implementation we represent sets by Rooted Trees.
- With each node containing one member and each tree represents one set
- In Disjoint Set Forest each member points only to its parent
- Root of each tree contains it representative.
- Root points to Itself, i.e. root is it's own parent.

### Tree Representation



- MAKE\_SET operation will create a Tree with One Node, i.e Root Node
- 2. FIND\_SET operation will follow the parent pointer until it finds the root of the tree.
- 3. Nodes visited on this simple path during FIND\_SET operation towards Route constitutes the **Find Path**

## Tree Representation: Union Operation



For union operation root of one tree will point to the root of other

### Analysis of all Operations

MAKE\_SET is to create a set from 1 element : O(1)

FIND\_SET depends of the depth of the tree

UNION is one operation of updating a root pointer

But n-1 union can simply create a tree that is a linear chain of n elements. Which will create a tree with depth n-1, and FIND\_SET operation is going to suffer.

We will use to Heuristic Algorithms to improve the running time.

1<sup>st</sup> Heuristic: Union By Rank

**2**<sup>nd</sup> **Heuristic:** Path Compression

### Union by Rank

- This is similar to Weighed-Union Heuristic.
- Here we keep a rank attribute of each head, which indicates how many nodes are under this root node or set.
- During Union root of the set with small rank will point to the root with larger rank.







### Path Compression

• During FIND\_SET Operation: Each node on the **find path** is updated to directly point to the root node.





**After Compression** 

This is not going to affect the Rank

### Pseudo Code

#### Algo MAKE\_SET(x)

- 1. x.p=x;
- 2. x.rank=0;

#### Algo UNION(x, y)

1. LINK(FIND\_SET(x), FIND\_SET(y))

#### Algo FIND\_SET(x)

- 1. if(x != x.p)
- 2.  $x.p = FIND\_SET(x.p)$
- 3. Return x.p

#### Algo LINK(x, y)

- 1. x.rank > y.rank
- 2. y.p = x
- 3. update rank of x
- 4. else x.p = y
- 5. update rank of y

# Thank You