

Exercise 16C

Question 9:

The vertices of ABC are A(4, -6), B(3, -2), C(5, 2)

AD is the median.

D is the midpoint of BC.

 $\left(\frac{3+5}{2}, \frac{-2+2}{2}\right) = (4, 0)$

the coordinates of point D are

Vertices of ABD are A(4, -6), B(3, -2), D(4, 0)

$$= \frac{1}{2} \left[4 \times (-2 - 0) + 3 \times (0 + 6) + 4 \times (-6 + 2) \right]$$
$$= \frac{1}{2} \left[-8 + 18 - 16 \right] = -3$$

= 3 [omitting - ve sign]

Vertices of ΔADC are (4,-6), (4,0), (5,2)

:. Area of
$$\triangle ADC = \frac{1}{2} \times \left[4 \times (0-2) + 4(2+6) + 5(-6+0) \right]$$

= $\frac{1}{2} \left[-8 + 32 - 30 \right] = \frac{1}{2} \times -6 = -3$
= 3 [omitting - ve sign]

Hence, area of $\triangle ABD = area$ of $\triangle ADC$

Question 10:

Vertices of \triangle ABC are A(2, 1), B(x, y) and C(7, 5)

Area of
$$\triangle ABC = \frac{1}{2} \left[x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) \right]$$

$$= \frac{1}{2} \left[2 (y - 5) + x(5 - 1) + 7(1 - y) \right]$$

$$= \frac{1}{2} \left[2y - 10 + 4x + 7 - 7y \right]$$

$$= \frac{1}{2} \left[4x - 5y - 3 \right]$$

The points A, B and C are collinear area of Δ ABC = 0 Or 4x - 5y - 3 = 0

Question 11:

The vertices of Δ ABC are (a, 0), (0, b), C(1, 1)

Area of
$$\triangle ABC = \frac{1}{2} \Big[\times_1 (y_2 - y_1) + \times_2 (y_3 - y_1) + \times_3 (y_1 - y_2) \Big]$$

$$= \frac{1}{2} \Big[a \times (b - 1) + 0 \times (1 - 0) + 1 \times (0 - b) \Big]$$

$$= \frac{1}{2} \Big[ab - a + b \Big]$$

The points A, B, C are collinear

Area of \triangle ABC = 0

ab - a - b = 0 a + b = ab

Dividing by ab

$$\frac{a}{ab} + \frac{b}{ab} = 1 \text{ or } \frac{1}{b} + \frac{1}{a} = 1$$

Hence,
$$\frac{1}{a} + \frac{1}{b} = 1$$

********** END *******