MAT 281E - Homework 5

Due 10.12.2010

1. (a) Find a vector x that minimizes ||Ax - b|| where

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 5 \\ 0 & 2 & 2 \end{bmatrix}, \qquad b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

- (b) Is the vector x you found in part (a) unique or can you find $\tilde{x} \neq x$ such that $||A\tilde{x} b|| = ||Ax b||$? If x is not unique, provide such a \tilde{x} . If it is unique, explain why.
- 2. Consider two lines l_1 , l_2 , described by $l_1 = (x, 2x, x)$, $l_2 = (y, 3y, -1)$.
 - (a) Find two points p, q where $p \in l_1, q \in l_2$ such that ||p q|| is minimized.
 - (b) Are the points you found in part (a) unique that is, can you find $\tilde{p} \in l_1$, $\tilde{q} \in l_2$ such that $\tilde{p} \neq p$ or $\tilde{q} \neq q$ but $\|\tilde{p} \tilde{q}\| = \|p q\|$? Please explain your answer.
- 3. If Q_1 and Q_2 are orthogonal matrices, show that $Q_1 Q_2$ is also orthogonal.
- 4. We showed in class that if Q has orthonormal columns, then it preserves the lengths of vectors, i.e. ||Qx|| = ||x|| for every x. Show that the converse is also true. That is, show that if ||Qx|| = ||x|| for every x, then Q has orthonormal columns.

Hint: Suppose that $Q = \begin{bmatrix} q_1 & q_2 & \dots & q_k \end{bmatrix}$ does not have orthonormal columns and construct an x such that $\|Qx\| \neq \|x\|$. (Why is this equivalent to what you are trying to show?)

5. Find the QR decomposition of

$$A = \begin{bmatrix} 1 & -1 & 0 & -3 \\ 1 & 1 & 2 & 1 \\ 1 & -1 & -2 & 1 \\ 1 & 1 & 0 & -3 \end{bmatrix}.$$