Product Demand Prediction with Machine Learning

Data Preprocessing

Steps:

Data Import:

The code imports the Pandas library and reads a CSV dataset called "ProductDemand.csv" located on the user's desktop.

Data Exploration:

The initial dataset is displayed using data.head(), and the code checks for missing values in the dataset using data.isnull().sum().

Handling Missing Values:

Missing values in the "Total Price" column are filled with the mean value of that column to ensure data completeness.

Profit Percentage Calculation:

The code calculates the profit percentage for each product based on the "Base Price" and "Total Price" and adds this as a new column.

Demand Score Calculation:

A demand score is calculated by combining "Units Sold" and "Profit Percentage" with defined weights.

High Demand Classification:

Products are classified as "High Demand" or not based on whether their demand score exceeds a specified threshold (in this case, a threshold of 50).

Data Summary:

The code prints summary statistics of the dataset using data.describe().

Data Export:

Finally, the preprocessed dataset is saved to an Excel file called "ProductDemandupdate.xlsx" on the user's desktop, excluding the index column.

Program:

import pandas as pd

#importing Dataset

data = pd.read_csv("C:/Users/91735/Desktop/archive/PoductDemand.csv")
print("ProductDemand Dataset\n",data.head())

Check for missing values

print("Missing values in the Dataset\n",data.isnull().sum())

Fill missing values in the 'Total Price' column with the mean value

```
mean_total_price = data['Total Price'].mean()
data['Total Price'].fillna(mean total price, inplace=True)
```

Check for missing values

print("After filling missing values\n",data.isnull().sum())

#Calculate Profit Percentage

```
data['Profit Percentage'] = ((data['Total Price'] - data['Base Price']) / data['Base Price']) * 100 print("After Profit Percentage Manipulation\n",data.head())
```

Define the weights for Units Sold and Profit Percentage

```
weight_units_sold = 0.6
weight_profit_percentage = 0.4
```

Calculate the demand score

```
data['Demand Score'] = (weight_units_sold * data['Units Sold']) + (weight_profit_percentage * data['Profit Percentage'])
```

print("After Demand score Manipulation\n",data.head())

#Calculate the High Demand

```
threshold = 50 # Can adjust this threshold value as needed data['High Demand'] = (data['Demand Score'] >= threshold).astype(int) print("After High Demand Manipulation\n",data.head()) print(data.describe())
```

Preprocessed dataset

```
data.to_excel("C:/Users/91735/Desktop/archive/PoductDemandupdate.xlsx", index=False) print("Your preprocessed dataset is in Desktop/archive/PoductDemandpreprocessed.xlsx")
```

Output:

ProductDemand Dataset

ID Store ID Total Price Base Price Units Sold

0	1	8091	99.0375	111.8625	20	
1	2	8091	99.0375	99.0375	28	
2	3	8091	133.9500	133.9500	19	
3	4	8091	133.9500	133.9500	44	
4	5	8091	141.0750	141.0750	52	

Missing values in the Dataset

ID 0

Store ID 0

Total Price 1

Base Price 0

Units Sold 0

dtype: int64

After filling missing values

ID 0

Store ID 0

Total Price 0

Base Price 0

Units Sold 0

dtype: int64

After Profit Percentage Manipulation

ID Store ID Total Price Base Price Units Sold Profit Percentage

0	l	8091	99.0375	111.8625	20	-11.464968
1	2	8091	99.0375	99.0375	28	0.000000
2	3	8091	133.9500	133.9500	19	0.000000
3	4	8091	133.9500	133.9500	44	0.000000
4	5	8091	141.0750	141.0750	52	0.000000

After Demand score Manipulation

ID Store ID Total Price ... Units Sold Profit Percentage Demand Score

0	1	8091	99.0375	20	-11.464968	7.414013	
1	2	8091	99.0375	28	0.000000	16.800000	
2	3	8091	133.9500	19	0.000000	11.400000	
3	4	8091	133.9500	44	0.000000	26.400000	
4	5	8091	141.0750	52	0.000000	31.200000	

[5 rows x 7 columns]

After High Demand Manipulation

ID Store ID Total Price ... Profit Percentage Demand Score High Demand

0	1	8091	99.0375	-11.464968	7.414013	0
1	2	8091	99.0375	0.000000	16.800000	0
2	3	8091	133.9500	0.000000	11.400000	0
3	4	8091	133.9500	0.000000	26.400000	0
4	5	8091	141.0750	0.000000	31.200000	0

[5 rows x 8 columns]

ID Store ID ... Demand Score High Demand

count 150150.000000 150150.000000 ... 150150.000000 150150.000000

mean 106271.555504 9199.422511 ... 29.047939 0.142537

std 61386.037861 615.591445 ... 34.832555 0.349602

min 1.000000 8023.000000 ... -27.532523 0.000000

25% 53111.250000 8562.000000 ... 10.800000 0.000000

 $50\% \quad 106226.500000 \quad 9371.000000 \ \dots \quad 19.800000 \quad 0.000000$

75% 159452.750000 9731.000000 ... 35.400000 0.000000

 $\max \ \ 212644.000000 \ \ 9984.000000 \ \dots \ \ 1706.164263 \ \ \ 1.0000000$

[8 rows x 8 columns]

Your preprocessed dataset is in Desktop/archive/PoductDemandpreprocessed.xlsx