Lemme de Morse

Leçons: 158, 170, 171, 214, 215, 218

Théorème 1

Soit U ouvert de \mathbb{R}^n , $f \in \mathscr{C}^3(U,\mathbb{R})$ telle que f(0) = 0, Df(0) = 0 et $D^2f(0)$ est une forme bilinéaire non dégénérée de signature (p,n-p). Alors il existe V, W voisinages ouverts de 0 et un \mathscr{C}^1 -difféomorphisme $\varphi:V\to W$ tels que $\forall x\in V, f(x)=Q_0(\varphi(x))$ où $Q_0(y_1,\ldots,y_n)=y_1^2+\cdots+y_p^2-y_{p+1}^2-\cdots-y_n^2$.

Lemme 2

 $SiA_0 \in GL_n(\mathbb{R}) \cap \mathcal{S}_n(\mathbb{R})$, alors il existe un voisinage V de A_0 dans $\mathcal{S}_n(\mathbb{R})$ et $\rho \in \mathcal{C}^1(V, GL_n(\mathbb{R}))$ tel que $\forall A \in V, A = {}^t\rho(A)A_0\rho(A)$.

Démonstration. Soit $\psi: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{S}_n(\mathbb{R})$. Cette fonction est de classe \mathscr{C}^1 et sa $M \longmapsto {}^t MA_0M$

différentielle en l'identité est $D\psi(I_n): H \mapsto {}^t HA_0 + A_0 H$ (différentielle d'une application bilinéaire).

Donc $\ker D\psi(I_n) = A_0^{-1} \mathscr{A}_n(\mathbb{R})$. De plus, $\mathscr{M}_n(\mathbb{R})$ se décompose en $\mathscr{M}_n(\mathbb{R}) = A_0^{-1} S_n(R) + A_0^{-1} \mathscr{A}_n(\mathbb{R})$. Donc selon le théorème d'inversion local appliqué à $\tilde{\psi} = \psi_{|A_0^{-1} \mathscr{S}_n(\mathbb{R})}$, il existe U voisinage de $I_n = A_0 A_0^{-1}$ dans $A_0^{-1} \mathscr{S}_n(\mathbb{R})$, V voisinage de A_0 dans $\mathscr{S}_n(\mathbb{R})$ tels que $\tilde{\psi} : U \to V$ soit un \mathscr{C}^1 -difféomorphisme.

Or, $GL_n(\mathbb{R})$ est un ouvert de $\mathcal{M}_n(\mathbb{R})$ donc $\tilde{U} = U \cap GL_n(\mathbb{R})$ est un ouvert (non vide car contenant I_n). L'inverse de la restriction de $\tilde{\psi}$ à cet ouvert fournit une application ρ de classe \mathscr{C}^1 de \tilde{V} voisinage de A_0 dans $\tilde{U} \subset GL_n(\mathbb{R})$ vérifiant $\forall A \in \tilde{V}, A = \tilde{\psi}(\rho(A)) = {}^t\rho(A)A_0\rho(A)$.

Démonstration (du théorème). Notons, pour $x \in U$, H(x) la matrice hessienne de f en x. Selon la formule de Taylor avec reste intégral à l'ordre 1, applicable car f est de classe \mathscr{C}^2 , on a

 $\forall x \in U, f(x) = \int_0^1 (1-t)^t x H(tx) x dt = {}^t x \left(\int_0^1 (1-t) H(tx) \right) x = {}^t x Q(x) x$

où Q est une matrice réelle symétrique et $Q(0) = \frac{H(0)}{2}$ est une matrice symétrique inversible de signature (p, n-p).

Selon le lemme précédent, il existe un voisinage V de Q(0) dans $\mathcal{S}_n(\mathbb{R})$ et $\rho \in \mathcal{C}^1(V, GL_n(\mathbb{R}))$ tels que $\forall A \in V$, $^t\rho(A)Q(0)\rho(A)$.

Or, $x \mapsto Q(x)$ est continue sur U puisque f est de classe \mathscr{C}^3 donc il existe un voisinage V_0 de 0 dans U tel que $\forall x \in V_0, Q(x) \in V$.

Donc $\psi: x \in V_0 \mapsto \rho(Q(x))$ est telle que $\forall x \in V_0, Q(x) = {}^t\psi(x)Q(0)\psi(x)$, d'où

$$f(x) = {}^{t}\varphi(x)I_{p,n-p}\varphi(x)$$

où $I_{p,n-p} = \begin{pmatrix} I_p & 0 \\ 0 & -I_{n-p} \end{pmatrix}$, $Q(0) = {}^t P I_{p,n-p} P$ (théorème de Sylvester) et $\varphi : x \mapsto P \rho(Q(x)) x$.

Montrons finalement que $\varphi:V_0\to W_0=\varphi(V_0)$ est un $\mathscr C^1$ -difféomorphisme à l'aide du théorème d'inversion locale.

$$\forall h \in V_0, \varphi(h) - \varphi(0) = P(\psi(0) + D\psi(0) \cdot h + o(||h||))h = P\psi(0)h + o(||h||)$$

car $D\psi(0)$ est une application linéaire continue. Donc la matrice jacobienne de φ en 0 est $P\psi(0) \in GL_n(\mathbb{R})$, de sorte que φ est le \mathscr{C}^1 -difféomorphisme local attendu.

- **Remarque.** Le résultat est en fait vrai pour une fonction de classe \mathscr{C}^2 , mais la démonstration est plus subtile.
 - La preuve peut être faite de manière plus concise avec le théorème des submersions.

Référence : François ROUVIÈRE (2003). *Petit guide de calcul différentiel*. 2^e éd. Cassini, p. 344