1. Compounding

Def 1.1 (Present and Future Values)

Define the following:

- Discrete time $t \in \{0, 1, 2, ...\}$,
- One period compounding the interest is compounded every year,
- PV present value,
- FV future value,
- r interest rate (e.g. 5%).

Then for t = 1:

$$FV = PV + rPV = PV(1+r),$$

for t=2:

$$FV = (1+r)(1+r)PV = PV(1+r)^2,$$

for t = n:

$$FV = PV(1+r)^n$$
.

Def 1.2 (Frequent compounding)

Let f be the number of times that interest rate is calculated within a unit time. For example, if we do it every third month, then f=4. We have

$$FV = PVigg(1+rac{r}{f}igg)^{nf}.$$

If we let $f o \infty$, so that nf - > t, we get the continuous compounding formula

$$FV = PVe^{rt}$$

Def 1.3 (Discounting)

Discounting works the other way around:

$$PV = FV igg(1 + rac{r}{f}igg)^{-nf},$$

and for the continuous case:

$$PV = FVe^{-rt}$$
.

Def 1.4 (Risk-Free Instrument)

A risk-free instrument is defined by

$$B_t = B_0 e^{rt},$$

where r is a risk-free interest rate. For discrete time we have

$$B_n = B_0 igg(1 + rac{r}{f}igg)^{nf}.$$

The goal

We want to find the fair price of some financial instrument/derivative, which is often defined with a function (called a payout function) of the asset price. For example, in the european call option

$$C_T = (S_T - K)^+ = f(S_T),$$

where T is called the maturity date, K is given and called the strike price, and $(x)^+ = \max\{x,0\}$

Def 1.5 (Hedging)

A replication/hedging strategy is given by the following

$$arphi_t = (lpha_t, eta_t),$$

where α_t is the amount of assets existing in the portfolio at time t, and β_t is the amount of risk-free instruments B_t in the portfolio at time t.

Note: α_t and β_t can be negative, which corresponds to borrowing.

Example

Let *X* be a derivative, for example

$$X=(S_1-K)^+=egin{cases} (S^u-K)^+, & \omega=\omega_1,\ (S^d-K)^+, & \omega=\omega_2. \end{cases}$$

Let $x=V_1(arphi)$ be the value of the portfolio. Let $B_0=1.$ We have

$$x=\alpha_1S_1+B_1(1+r).$$

Let $\alpha = \alpha_1$, and $\beta = \beta_1$. Looking for replication strategy $\varphi = (\alpha, \beta)$, we obtain the following equations:

$$lpha S^u + B(1+r) = x^u = (S^u - K)^+$$

 $lpha S^d + B(1+r) = x^d = (S^d - K)^+.$

Then, solving for α and β , we have

$$lpha=rac{x^u-x^d}{S^u-S^d},\quad eta=rac{x^dS^u-x^uS^d}{(1+r)(S^u-S^d)}.$$

Hence the price equals (bruh, how?)

$$\Pi(X)=\Pi_0(x)=lpha S_0+eta.$$