Differentiable Physics Simulations with Contacts: Do They Have Correct Gradients w.r.t. Position, Velocity and Control?

Yaofeng Desmond Zhong¹
Jiequn Han²
Georgia Olympia Brikis¹

¹Siemens Technology

²Flatiron Institute

- Differentiable physics simulations make it easy to use gradient-based method for learning and control tasks and have huge potential in solving control and design problems.
- An increasing number of differentiable simulators are developed and open sourced.
- However, their performance has not been compared and benchmarked.

Differentiable Contact Models

Contact Formulations		impulses	Implementation choices
Linear complementarity problems (LCPs) (w. TOI)			NimblePhysics
Convex Optimizations	w. TOI	velocity	DiffCoSim
	w/o TOI		
Direct Velocity Impulse	w. TOI		DiffTaichi
	w/o TOI		
Position-based dynamics (PBD)		position	Warp/Brax
Compliant models		force	Warp/Brax

• TOI: time of impact, proposed by DiffTaichi to improve gradient calculation.

Task 3: Learning Optimal Control

Some implementations fail to learn the optimal control sequence.

PBD (Warp)

PBD (Brax)

· Surprisingly, none of the calculated gradients match the analytical gradients.

Compliant (Warp)

- Compliant (Brax)

