Chương III: VECTƠ NGẪU NHIÊN

(ĐẠI LƯỢNG NGẪU NHIÊN NHIỀU CHIỀU)

III.1. Khái niệm.

Nếu các biến ngẫu nhiên $X_1, X_2, ..., X_n$ cùng xác định trên các kết quả của một phép thử thì ta nói $Z = (X_1, X_2, ..., X_n)$ là một vectơ ngẫu nhiên n chiều.

III.2. Vecto ngẫu nhiên rời rạc 2 chiều (X,Y).

- III.2.1 Bảng phân phối XS đồng thời. ÂP
- III.2.2 Phân phối XS theo các BNN thành phần X, Y (PP lề).
- III.2.3 PP XS có điều kiện.
- III.2.4 Điều kiện độc lập của X và Y.
- III.2.5 Hàm phân phối XS của (X,Y).

III.3. Vecto ngẫu nhiên liên tục 2 chiều (X,Y).

- III.3.1 Hàm mật độ đồng thời.
- III.3.2 Hàm mật độ của các BNN thành phần X, Y (Hàm mật độ lề).
- III.3.3 Điều kiện độc lập của X và Y.
- III.3.4 Hàm phân phối XS của (X,Y).
- III.3.5 Hàm mật độ có điều kiện.

III.4 Một số tham số đặc trưng của vectơ ngẫu nhiên.

- * Kỳ vọng toán TÀI LIỆU Kỳ vọng của hàm $\phi(X,Y)$.
- * Kỳ vọng có điều kiện Covarian (Hiệp phương sai)
- * Ma trận tương quan
 * Hệ số tương quan & ý nghĩa.
- * Sử dụng máy tính bỏ túi để tính một số tham số đặc trưng.

III.5. Hàm của vectơ ngẫu nhiên (X,Y).

III.2 PHÂN PHỐI XÁC SUẤT của VTNN RỜI RẠC 2 CHIỀU

III.2.1 Bảng phân phối XS đồng thời:

Cho
$$X = \{x_1, x_2, ..., x_m\}; Y = \{y_1, y_2, ..., y_n\}.$$

Đặt $\mathbf{p_{ij}} = \mathbf{P(X} = \mathbf{x_i}, \ \mathbf{Y} = \mathbf{y_j}); \ i = \overline{1,m}, \ j = \overline{1,n},.$ Dưới đây là **bảng phân phối xác suất đồng thời** của (X, Y):

X	CH V1	y ₂	03	Yn
X ₁ TÀI	PÊU	SP12	TÂP	p _{1n}
X ₂	вр нсм 21	PCNCP		P _{2n}
•••				
X _m	p _{m1}	p _{m2}		p _{mn}

Khi đó
$$0 \le p_{ij} \le 1$$
 và $\sum_{i} \sum_{j} p_{ij} = 1$.

III.2.2 Phân phối XS theo các BNN thành phần X, Y (PP lề).

Đặt:
$$p_i = \sum_{j=1}^{n} p_{ij} = P(X = x_i), i = \overline{1, m}$$

Ta được bảng phân phối xác suất của X:

X	X1 CHK	X ₂	. X _m
P ^X	p	p ₂	.3 p _m

$$\mathbf{Pat:} \qquad \mathbf{q_j} = \sum_{i=1}^{m} \mathbf{p_{ij}} = \mathbf{P(Y_i = y_j)}, \mathbf{j} = \mathbf{\overline{I_{\hat{A}} p}}$$

Ta được bảng phân phối xác suất của Y:

X	y ₁	y 2	•••	y n
P ^Y	q ₁	q_2		q_{n}

III.2.3 Phân phối xác suất có điều kiện:

Bảng PPXS của X với điều kiện $Y = y_j (j = \overline{1, n})$ là:

Bảng PPXS của Y đối với điều kiện $X=x_i(i=\overline{1,\,m})$ là:

Υ	У1	y ₂	 y n
P ^{Y/x} i	p _{i1}	p _{i2}	 p _{in}

III.2.4 Điều kiện độc lập của X và Y.

X và Y độc lập

$$\Leftrightarrow$$
 P(X=x_i,Y=y_j) = P(X=x_i).P(Y=y_j) $\forall i,j$ hay p_{ij} = p_iq_j $\forall i,j$.

$$\Leftrightarrow$$
 F(x,y) = F_X(x).F_Y(y);

(F_X , F_Y là các hàm PPXS của X,Y, hay gọi la các hàm phân phối lề..)

III.2.5 Hàm phân phối đồng thời của (X,Y).

$$F(x,y) = P(X < x, Y < y) \text{All} \text{ } p_{ij} \text{P}$$

$$L \text{ } \text{L} \text{U} \text{U} \text{ } \text{Y}:$$

• F(x,y) chính là xác suất để điểm ngẫu nhiên M(X,Y) rơi vào hình chữ nhật vô hạn có đỉnh phía trên, bên phải là (x,y).

III.3 PHÂN PHỐI XÁC SUẤT của VTNN LIÊN TỤC (X,Y)

III.3.1 Hàm mật độ XS đồng thời: của VTNN (X,Y) là hàm xác

định trên toàn mặt phẳng, thỏa: $f(x, y) \ge 0$; $\forall (x, y) \in \mathbb{R}^2$ • Tính chất: $P((X,Y) \in D) = \iint_D f(x,y) dxdy$ III.3.2 Hàm mật độ lề:

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x,y) dy, \quad x \in \mathbb{R} \text{ là hàm mật độ theo } X;$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) dx, \quad y \in \mathbb{R} \text{ là hàm mật độ theo } Y.$$

III.3.3 Điều kiện độc lập của X, Y:

$$x$$
 và y độc lập $\Leftrightarrow F(x,y) = F_X(x).F_Y(y) \Leftrightarrow f(x,y) = f_X(x).f_Y(y)$

III.3.4 Hàm phân phối XS của (X,Y):

$$F(x,y) = P(X < x, Y < y) = \int_{-\infty}^{x} du \int_{-\infty}^{y} f(u,v) dv$$

Từ đó suy ra:

$$\Rightarrow f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$

Trong trường hợp riêng, khi miền D là hình chữ nhật:

$$P(a \le X < b; c \le X < d] = F(b, d) + F(a, d) - F(b, c) + F(a, c).$$

III.3.5 Hàm mật độ có điều kiện VTNN liên tục (X,Y).

Hàm mật độ của X với điều kiện Y = y là: $f_{X/y} = \frac{f(x,y)}{f_{Y}(y)}$

Hàm mật độ của Y với điều kiện
$$X = x$$
 là:
$$f_{Y/x}(y) = \frac{f(x,y)}{f_x(x)}$$

III.4 MÔT SỐ ĐẶC TRƯNG của BNN hai chiều:

- * Kỳ vọng toán: E(X,Y) = (E(X),E(Y))
- * Hiệp phương sai (Covarian, mômen tương quan):

$$cov(X,Y) = E[(X-E(X)).(Y-E(Y))] = E(XY) - E(X).E(Y)$$

cov(X,Y)= E[(X-E(X)).(Y-E(Y))] = E(XY) - E(X).E(Y)
 * Ma trận tương quan (ma trận hiệp phương sai) của (X,Y):

$$D(X,Y) = \begin{bmatrix} cov(X,X) & cov(X,Y) \\ cov(Y,X) & cov(Y,Y) \end{bmatrix} = \begin{bmatrix} D(X) & cov(X,Y) \\ TAP \\ cov(Y,X) & D(Y) \end{bmatrix}$$

* Hệ số tương quan của X và Y:

$$R_{XY} = \frac{\text{cov}(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{\text{E}(XY)\text{-E}(X)\text{.E}(Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$

Hệ số tương quan và covarian dùng để đặc trưng cho mức độ chặt chẽ của mối liên hệ phụ thuộc giữa các BNN X và Y.

Nếu $R_{XY} = 0$ thì ta nói X, Y không tương quan, ngược lại khi $R_{XY} \neq 0$ ta nói X, Y có tương quan.

Nếu X, Y độc lập thì $cov(X,Y) = R_{XY} = 0$.

Điều ngược lại không đúng, tức là nếu cov(X,Y)= 0 thì hoặc X, Y độc lập, hoặc X, Y phụ thuộc ở một dạng thức nào đó. Khi (X,Y) có phân phối chuẩn thì X,Y độc lập \Leftrightarrow R_{xy} = 0.

Hệ số tương quan không có đơn vị đo và $|R_{XY}| \le 1$.

Nếu $R_{xy} = \pm 1$ thì X, Y có tương quan tuyến tính (thuận /nghịch).

Khi $R_{XY} \approx \pm 1$ thì X, Y có tương quan "gần" tuyến tính.

Ví dụ 1

Một hộp đựng 5 sản phẩm, trong đó có 3 phế phẩm mà không kiểm tra thì không biết. Các sản phẩm được lấy ra kiểm tra cho đến khi phát hiện thấy 2 phế phẩm thì dừng lại.

Kí hiệu X là BNN chỉ số lần kiểm tra cho tới khi phế phẩm đầu tiên được phát hiện. Y là BNN chỉ số lần kiểm tra thêm cho tới khi phế phẩm thứ hai được phát hiện.

Hãy:

- a) Lập bảng phân phối xác suất đồng thời của (X, Y).
- b) Tính cov(X,Y) và hệ số tương quan của X, Y.
- c) X,Y có độc lập hay không?
- d) Tìm phân phối XS và kỳ vọng có điều kiện của X khi Y=2.

X	1	2	3
1	3/10	2/10	1/10
2	2/10	1/10	0
3	1/10	0	0

$$p_{11} = P(X=1;Y=1) = P(\overline{A_1}.\overline{A_2}) = \frac{3}{5}.\frac{2}{4} = \frac{3}{10}$$

$$p_{12} = P(X=1;Y=2) = P(\overline{A_1}.A_2.\overline{A_3}) = \frac{3}{5}.\frac{2}{4}.\frac{1}{3} = \frac{1}{5}$$

$$p_{13} = P(X=1;Y=3) = P(\overline{A_1}.A_2.\overline{A_3}.\overline{A_4}) = \frac{3}{5}.\frac{2}{4}.\frac{1}{3}.1 = \frac{1}{10}P$$

$$p_{21} = P(X=2;Y=1) = P(A_1.\overline{A_2}.\overline{A_3}) = \frac{2}{5}.\frac{3}{4}.\frac{2}{3} = \frac{1}{5}$$

$$p_{22} = P(X=2;Y=2) = P(\overline{A_1}.\overline{A_2}.\overline{A_3}.\overline{A_4}) = \frac{2}{5}.\frac{3}{4}.\frac{1}{3}.1 = \frac{1}{10}$$

$$p_{31} = P(X=3;Y=1) = P(\overline{A_1}.A_2.\overline{A_3}.\overline{A_4}) = \frac{2}{5}.\frac{1}{4}.1.1 = \frac{1}{10}$$

$$p_{23} = P(X=2;Y=3) = 0$$
 $p_{32} = P(X=3;Y=2) = 0$
 $p_{33} = P(X=3;Y=3) = 0$

b) Tính Cov(X,Y) và R_{xy}:

X	1	2	3	Pχ
1	3/10	2/10	1/10	6/10
2	2/10	1/10	0	3/10
3	1/10	0	0	1/10
PY	10 NC		1/10	

Viết lại các bảng PPXS thành phần của X và Y (phân phối lề):

X	1	2	3
PX	6/10	3/10	1/10

$$E(X) = E(Y) = 1.5$$

$$D(X) = D(Y) = 0.45$$

$$E(XY) = \sum_{i,j} x_i y_j p_{ij} = 1.1. \frac{3}{10} + 1.2. \frac{2}{10} + 1.3. \frac{1}{10} + 2.1. \frac{2}{10} + 2.2. \frac{1}{10} + 3.1. \frac{1}{10} = 2,1$$

$$cov(X,Y) = E(XY) - E(X).E(Y) = -0.15.$$
 $R_{xy} = \frac{E(XY)-E(X).E(Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{-1}{3}$

HD Sử dụng MTBT tìm 1 số đặc trưng của VTNN rời rạc:

Các bước thực hiện	Máy CASIO fx 570 ES (PLUS)	Máy CASIO fx 500 MS
Mở cột tần số (nếu máy chưa mở)	SHIFT MODE (SETUP) ▼ 4 (STAT) 1 (ON)	
Vào chế độ thống kê hai biến.	MODE 3 (STAT) 2 (A+BX)	MODE MODE 2 (REG) 1 (Lin)
Nhập dữ liệu	X Y FREQ 1 x1 y1 p11 2 x1 y2 p12 xn ym pnm AC	Nhập lần lượt theo từng dòng, thứ tự nhập như sau: (X) (Y) ; (pi) M+
Đọc kết quả E(X); E(Y)	SHIFT – 1 (STAT)- 4 (VAR) – 2 (\overline{x}) \mp Al LIÊU SUU T Muốn có kq E(Y) thì chọn \overline{y} CNCP	SHIFT – 2 (SVAR) -1 (\overline{x})= SHIFT – 2(SVAR) - \blacktriangleright -1 (\overline{y})=
Đọc kết quả $\sqrt{\mathrm{D}(\mathrm{X})}$ $\sqrt{\mathrm{D}(\mathrm{Y})}$	SHIFT – 1 (STAT)- 4 (VAR) – 3 (σ^{X}) = Muốn có kq $\sqrt{D(Y)}$ thì chọn σ^{Y}	SHIFT - 2 (SVAR) - 2 (XOn) = SHIFT - 2(SVAR) - ▶ -1 (YOn) =
Đọc kết quả $R_{\chi\gamma}$	SHIFT - 1 (STAT)-6(REG)-3 (r)=	SHIFT – 2 (SVAR) - ▶ - ▶ 3(r)-=
Tham khảo các KQ trung gian	SHIFT - 1 (STAT)- 3 (SUM) BACHKHOACNCP.COM	SHIFT – 1 (SSUM)

- c) Theo đn, X,Y độc lập \Leftrightarrow P(X=x_i; Y=y_j) = P(X=x_i).P(Y=y_j); \forall i,j. Trong bảng PPXS đồng thời, P(X=1;Y=1) = 3/10; nhưng P(X=1).P(Y=1) = (6/10).(6/10) =1/100 \neq P(X=1;Y=1) nên ta kết luận X,Y không độc lập.
- d) Từ bảng PPXS đồng thời, suy ra bảng phân phối xác suất của X với điều kiện Y=2:

X Y=2	TÀI L ¹ ỆU SƯU TẬP ²			
	2/10 HC 2UT-CNCP 1/10 _ 1			
P ^X Y=2	$\frac{3}{10} - \frac{3}{3} = \frac{3}{10} - \frac{3}{3}$			

và E(X|Y=2) = 4/3.

Ví dụ 2

Cho hai đại lượng ngẫu nhiên X, Y độc lập có các bảng phân phối xác suất:

Y	O	HOACNCO	X	-1	1	2
P	1	V 1	OP	1	2	1
1	2	2	3	4	4	4

- a) Lập bảng phân phối xác suất của $Z=3X^2+2Y$; Tính E(Z),D(Z).SUU TẬP
- b) Tính E(U),D(U) với U = 5X 3Y + 10.

Hướng dẫn: Do X,Y độc lập nên $P(X=x_i,Y=y_j)=P(X=x_i).P(Y=y_j), \forall i,j.$ Lập bảng PPXS đồng thời của X, Y rồi tính giá trị hàm $Z=3X^2+2Y$.

Y		
X	0	1
-1	1/8	1/8
	Z = 3	Z = 5
1	2/8	2/8
	Z = 3	Z = 5
2	1/8	1/8
	Z=12	Z = 14

Suy ra bảng phân phối xác suất của Z:

$$\frac{Z \mid 3 \quad 5 \overrightarrow{A} \mid 2 \overrightarrow{L} \mid \cancel{A} \mid 3 \quad 1 \xrightarrow{B \mid 0 \mid HCMUT-CNC} P}{P \mid \frac{3}{8} \quad \frac{3}{8} \quad \frac{1}{8} \quad \frac{1}{8}}$$

Vậy
$$E(Z) = 6,25 \text{ và } D(Z) = 16,1875.$$

b) HD:
$$E(5X - 3Y + 10) = 5E(X) - 3E(Y) + 10.$$

 $D(5X - 3Y + 10) = 25D(X) + 9D(Y).$

Ví dụ 3

Dưới đây là bảng PPXS đồng thời của 2 biến ngẫu nhiên X,Y. Tìm hàm phân phối XS của (X,Y).

Y	1040AC	20
X	CH CH	CO 3
2	0.1	0.3
5 TÀ	0.2ÊU S	0.4TÂP

Hướng dẫn:

$$F(x,y) = P(X < x; Y < y) = \sum_{i,j} p_{ij}$$
; $X_i < X \& y_j < y$.

TÀI LIÊU SƯU TẬP

Ví dụ:

BổI HCMUT-CNCP

$$+ F(x,y) = P(X < x; Y < y).$$

+
$$F(3; 20)=P(X<3,Y<20)=0,1.$$

$$+ F(6; 14) = P(X < 6; Y < 14) = 0.3 + F(4; 25) = P(X < 4; Y < 25) = 0.4.$$

$$+F(4;25)=P(X<4; Y<25)=0,4.$$

Đáp số:

$$F(x,y) = \begin{cases} 0,1 & (x,y) \in (2,5] \times (10,20] \\ 0,1+0,3 & (x,y) \in (2,5] \times (20,+\infty) \\ 0,1+0,2 & (x,y) \in (5,+\infty) \times (10,20] \\ 1 & (x,y) \in (5,+\infty) \times (20,+\infty) \\ 0 & \text{BOTHEMUT-ENCP} & (x,y) \neq \end{cases}$$

Ví dụ 4

Cho vec tơ ngẫu nhiên (X,Y) có hàm mật độ đồng thời:

$$f(x,y) = \begin{cases} a(x+y^2), & khi \ 0 < y < \frac{x}{2} < 1 \\ 0, & which constraints \end{cases}$$

- a) Xác định hệ số a.
- b) Tim P(X<1; Y<1/4).
- c) Tìm các hàm mật độ xác suất của X, của Y (hàm mật độ lề).
- d) Tính covarian của vec tơ ngẫu nhiện (X,Y).
- e) Tìm hệ số tương quan của X,Y.
- f) Tìm hàm phân phối xác suất đồng thời của X,Y.
- g) Tìm các hàm mật độ có điều kiện của X,Y.

21

a) f(x,y) là hàm mật độ XS của một vectơ ngẫu nhiên nào đó

$$\Leftrightarrow \begin{cases}
f(x,y) \ge 0, \ \forall (x,y) \in \mathbb{R}^2 \\
\iint_{\mathbb{R}^2} f(x,y) dx dy = 1
\end{cases}
\Leftrightarrow \begin{cases}
a \ge 0 \\
\iint_{\mathbb{R}^2} a(x+y^2) dx dy = 1
\end{cases}$$
(2)
$$(2) \Leftrightarrow \int_{0}^{2} dx \int_{0}^{x/2} a(x+y^2) dy = 1 \Leftrightarrow \dots \Leftrightarrow a = \frac{2}{3}, \text{ thỏa (1)}.$$
b)
$$P\left(X < 1; Y < \frac{1}{4}\right) = \int_{-\infty}^{1} dx \int_{-\infty}^{1/4} f(x,y) dy = \int_{0}^{1/2} dx \int_{0}^{x/2} \frac{2}{3}(x+y^2) dy + \int_{1/2}^{1} dx \int_{0}^{1/4} \frac{2}{3}(x+y^2) dy$$
hay
$$P\left(X < 1; Y < \frac{1}{4}\right) = \int_{0}^{1/4} A \int_{0}^{1} \frac{1}{2} \left(x + y^2\right) dy = \frac{1}{3} \int_{0}^{1/4} (-2y^3 - y^2 + \frac{1}{2}) dy = \frac{181}{2304}$$

c) Trước tiên ta tìm hàm mật độ lề theo X:

Với mỗi
$$x \in R$$
, $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$

Ví dụ 2 trường hợp x=1 và x=3:

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

$$\bullet f_X(3) = \int_{-\infty}^{+\infty} f(3, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0$$

Như vậy:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_{0}^{x/2} \frac{2}{3} (x + y^2) dy & x \in (0; 2) \\ 0 & x \notin (0; 2) \end{cases} = \begin{cases} \frac{x^2(x+12)}{36} & x \in (0; 2) \\ 0 & x \notin (0; 2) \end{cases}$$

BỞI HCMUT-CNCP

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_{2y}^{2} \frac{2}{3} (x + y^{2}) dx & y \in (0;1) \\ 0 & y \notin (0;1) \end{cases} = \begin{cases} \frac{4}{3} - \frac{4y^{3}}{3} & y \in (0;1) \\ 0 & y \notin (0;1) \end{cases}$$

$$d) \quad E(X) = \int_{-\infty}^{ct1} x. f_{X}(x) dx = \int_{0}^{2} x. \frac{x^{2}(x + 12)}{AC(36)} dx = \frac{68}{45}$$

$$E(Y) = \int_{-\infty}^{ct1} y. f_{Y}(y) dy = \int_{0}^{1} y. \frac{4}{3} \frac{4y^{3}}{3} dy = \frac{2}{5}$$

$$E(XY) = \iint_{\mathbb{R}^{2}} xyf(x, y) dx dy = \int_{0}^{1} dx \int_{0}^{1} \frac{2}{3} xy(x + y^{2}) dy = \frac{29}{45}$$

$$COV(X, Y) = E(XY) - E(X).E(Y) = \frac{1}{25}$$

$$C\hat{o}ng \ thức \ khác: E(X) = \iint_{0}^{ct2} x. f(x, y) dx dy; E(Y) = \iint_{0}^{ct2} y. f(x, y) dx dy;$$

e)
$$D(X) = \int_{-\infty}^{+\infty} x^2 \cdot f_X(x) dx - E(X)^2 =$$

$$= \int_{0}^{2} x^2 \cdot \frac{x^2 (x + 12)}{360 \text{ AC/N}} dx - \left(\frac{68}{45}\right)^2 = \frac{296}{2025}$$

$$D(Y) = \int_{0}^{1} y^2 \cdot \left(\frac{4}{3} - \frac{4y^3}{3}\right) dy - \left(\frac{2}{5}\right)^2 = \frac{14}{225}$$

$$R_{XY} = \frac{E(XY) - E(X) \cdot E(Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}} = \frac{27\sqrt{259}}{1036} \approx 0.4194$$

Công thức khác:

$$D(X) = \iint_{R^2} x^2 f(x,y) dx dy - E(X)^2; \quad D(Y) = \iint_{R^2} y^2 f(x,y) dx dy - E(Y)^2$$

f)
$$F(x,y) = P(X < x; Y < y) = \int_{-\infty}^{x} du \int_{-\infty}^{y} f(u,v)dv$$

$$= \begin{cases} 0 & (x,y) \in M1 \\ \int_{0}^{x} du \int_{0}^{x/2} \frac{2}{3} (u+v^{2}) dv = \frac{x^{3}(x+6)}{36} & (x,y) \in M2 \end{cases}$$

$$= \begin{cases} \int_{0}^{y} dv \int_{2y}^{2} \frac{2}{3} (u+v^{2}) du = \frac{-4y(y^{3} + 2y^{2} - 3)}{801 + 9^{MUT-CNCP}} & (x,y) \in M4 \end{cases}$$

$$= \begin{cases} \int_{0}^{y} dv \int_{2y}^{x} \frac{2}{3} (u+v^{2}) du = \frac{y^{3}(2x-4y)}{9} + \frac{y(x^{2}-4y^{2})}{3} & (x,y) \in M5 \end{cases}$$

Hình vẽ cho câu f)

- g) Hàm mật độ có điều kiện của X, Y.
 - * Khi $y \in [0,1]$:

$$\varphi(x \mid y) = \frac{f(x, y)}{f_Y(y)} = \begin{cases} \frac{2}{3} \cdot \frac{(x + y^2)}{4 \cdot 4y^3} & 2y \le x \le 2\\ \frac{3}{3} \cdot \frac{4y^3}{3} & 0 \end{cases}$$

* Khi $x \in [0, 2]$:

$$\varphi(y \mid x) = \frac{f(x, y)}{f_X(x)} = \begin{cases} \frac{2 |\hat{\mathbf{E}}(x + y^2) |\hat{\mathbf{AP}}|}{3^{o_1} x^2 (x + 12)} & 0 \le y \le x/2 \\ 0 & \ne \end{cases}$$

Ví dụ 6

Véctơ ngẫu nhiên (X, Y) có hàm mật độ đồng thời:

$$f(x,y) = \frac{1}{\pi_{0ACNO}} e^{-\frac{1}{2}(x^2 + 2xy + 5y^2)}$$

Tìm hàm mật độ lề của biến ngẫu nhiên Y.

Hướng dẫn:

$$f_{Y}(y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}(x^{2} + 2xy + 5y^{2})} dx = \frac{1}{\pi} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}(x + y)^{2} - 2y^{2}} dx$$

BỞI HCMUT-CNCP

$$=e^{-2y^2}.\frac{1}{\pi}\int_{-\infty}^{+\infty}e^{-\frac{1}{2}(x+y)^2}dx = \frac{e^{-2y^2}}{\pi}.\int_{-\infty}^{+\infty}e^{-\frac{1}{2}t^2}dt = \frac{e^{-2y^2}}{\pi}.\sqrt{2\pi}$$

Giải thích (*): Đặt t=x+y, coi y như hằng số, đưa về tích phân Euler-Poisson.

Ví dụ 7 Đoạn thẳng AB có độ dài a cm. Chia ngẫu nhiên AB thành 3 đoạn thẳng. Tìm thể tích trung bình của hình hộp chữ nhật có 3 cạnh tạo bởi 3 đoạn trên.

Hướng dẫn

Gọi X, Y, a-X-Y là các BNN chỉ độ dài 3 đoạn thẳng. Khi đó (X,Y) có phân phối đều trên miền phẳng $D = \{(x,y)/0 < x < a; 0 < y < x < a\}$ Suy ra VTNN (X,Y) có hàm mật độ đồng thời:

$$f(x,y) = \begin{cases} C & (x,y) \in D \\ 0 & (x,y) \notin D \text{ Liệu sưu TÂ}S(D) \end{cases} = \frac{2}{a^2}$$

Thể tích hình hộp: $V = XY(a-X-Y) = aXY - X^2Y - XY^2$

$$\Rightarrow$$
 E(V) = E[aXY - X²Y - XY²]

$$= \iint_{\mathbb{R}^2} (axy - x^2y - xy^2) f(x, y) dx dy = \int_0^a dx \int_0^{a-x} \frac{2}{a^2} (axy - x^2y - xy^2) dy = \frac{a^3}{60}$$

Ví dụ 8

a) Đlnn X có hàm mật độ: $f(x) = c.e^{-x^2}$, $x \in \mathbb{R}$ Tìm hệ số c và tính E(X); D(X).

b) Véc tơ ngẫu nhiên (X, Y) có hàm mật độ đồng thời:

$$f(x, y) = k.e^{-(x^2+2xy+2y^2)}$$

 $f(x,y)=k.e^{-(x^2+2xy+2y^2)}$ Tìm hệ số k và các hàm mật độ xác suất thành phần.

Hướng dẫn: Ngoài cách tính như đã trình bày ở các ví dụ trên, ta có thể dựa vào dạng của hàm phân phối chuẩn 1 chiều và phân phối chuẩn 2 chiều. **B**ổI HCMUT-CNCP

a) X có dạng phân phối chuẩn 1 chiều với hàm mật độ tổng quát:

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}} \Rightarrow a = E(X) = 0; \sigma = \frac{1}{\sqrt{2}}; D(X) = \sigma^2 = \frac{1}{2}; c = \frac{1}{\sqrt{\pi}}$$

b) (X,Y) có dạng hàm phân phối chuẩn 2 chiều (tham khảo):

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-R^2}}e^{-\frac{1}{2(1-R^2)}\left[\left(\frac{x-a}{\sigma_X}\right)^2 + \left(\frac{y-b}{\sigma_Y}\right)^2 - 2R\frac{(x-a)(y-b)}{\sigma_X\sigma_Y}\right]}$$

ở đây R là hệ số tương quan của X,Y.

Biến đổi hàm mật độ đồng thời f(x,y) đã cho theo dạng trên, ta tìm được:

• a= 0;
$$\sigma_X$$
= 1; b=0; δ_Y if δ_Y

Hàm mật độ lề theo X và hàm mật độ lề theo Y:

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}; \qquad f_Y(y) = \frac{1}{\sqrt{\pi}} e^{-y^2}$$

Lưu ý thêm, ở đây R ≠ 0 nên X,Y không độc lập.

Ví dụ 9: $Vtnn (X,Y) có hàm mật độ XS: \ f(x,y) = \begin{cases} k & khi \frac{x^2}{9} + \frac{y^2}{4} \le 1 \\ 0 & khi \frac{x^2}{9} + \frac{y^2}{4} \le 1 \end{cases}$ a) Tìm hệ số k.

- b) Tìm các hàm mật độ lề.

$$khi\frac{x^2}{9} + \frac{y^2}{4} > 1$$

Hướng dẫn:

Hướng dẫn:
a)
$$k^*$$
 Diện tích elip = $1 \Rightarrow k = 1/(6\pi)$

b)

$$||c|| khi|x| > 3$$

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} 0 & \text{constant} \\ 2\sqrt{1-\frac{x^{2}}{2}} & \text{Sput Tâ2} \\ \frac{1}{2}\sqrt{1-\frac{x^{2}}{2}} & \text{on } dy = \frac{1}{9\pi} \end{cases} \sqrt{9-x^{2}} khi|x| \le 3$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} 0 & khi|y| > 2\\ \frac{1}{2\pi} \sqrt{4 - y^{2}} & khi|y| \le 2 \end{cases}$$

Ví dụ 10 :

Vtnn X có hàm mật độ XS:
$$f(x,y) = \begin{cases} k & khi|x| + |y| \le 1 \\ 0 & khi|x| + |y| > 1 \end{cases}$$

a) Tìm hệ số k.

$$khi |x| + |y| \le 1$$
$$khi |x| + |y| > 1$$

b) Tìm các hàm mật độ XS của X.

Hướng dẫn:

a)
$$k^*$$
 Diện tích hình vuông = $1 \Rightarrow k = 1/2$

$$f_{X}(x) = \begin{cases} \frac{1}{2} \int_{-x-1}^{x+1} dy = 1 + x \, khi = -1 \le x \le 0 \\ \frac{1}{2} \int_{-x-1}^{1-x} dy = 1 - x \quad khi = 0 \le x \le 1 \\ 0 \qquad |x| > 1 \end{cases}$$

Ví dụ 11: Vtnn X có hàm phân phối XS:

$$F_{XY}(x, y) = \begin{cases} (1 - e^{-ax})(1 - e^{-by}) & x, y \ge 0; a, b > 0 \\ 0 & khi(x, y) \ne \dots \end{cases}$$

- a) Tìm các hàm mật độ XS của X ,Y.
- b) Tim P(0 < X < 2; 1 < Y < 5).

3

Hướng dẫn:

a) C1: Tìm hàm mật độ XS đồng thời $f_{XY}(x,y) = [F_{XY}(x,y)]'_{x,y}$

$$f_{XY}(x,y) = \begin{cases} abe^{-ax} e^{-by} & x, y \ge 0; a, b > 0 \\ 0 & \text{BOTHCMUT-CN} khi(x,y) \ne \dots \end{cases}$$

sau đó tìm hàm mật độ lề của X và của Y.

- C2: Tìm hàm phân phối lề $F_X(x) = F_{XY}(x,+\infty)$; $F_Y(y) = F_{XY}(+\infty,y)$; sau đó đạo hàm tương ứng theo x, y để có được $f_X(x)$; $f_Y(y)$.
- b) $XS \ c\ an \ t\ bm = F(2;5) F(2;1) F(0;5) + F(0;1)$

III.5 HÀM CỦA VTNN 2 CHIỀU:

• Đối với BNN rời rạc: xem VD2; VD3. Đối với BNN liên tục: VD 9.

Ví dụ 12 Giả sử các BNN X,Y độc lập và cùng có phân phối đều trên đoạn [0; 1]. Tìm hàm mật độ của biến ngẫu nhiên Z=X+Y.

Hướng dẫn: Các hàm mật độ của X và Y là:

$$f_{X}(x) = f_{Y}(x) = \begin{cases} 1 & khi \ x \in [0;1] \\ 0 & khi \ x \notin [0;1] \end{cases}$$

Do X, Y độc lập nên:

$$f_{XY}(x,y) = f_X(x).f_Y(y) = \int_{CMUT-CNCP} khi(x,y) \in D = [0;1] \times [0;1]$$

Trước hết ta tìm hàm phân phối XS của Z:

$$F_{Z}(z) = P(Z < z) = P(X + Y < z) = P((X,Y) \in G); \quad z \in \mathbb{R}$$

 $\partial d\hat{a}y : G = \{(x,y) : x + y < z\} = \{(x,y) : y < -x + z\}, z \in \mathbb{R}$

$$\Rightarrow F_{Z}(z) = \iint_{G} f_{XY}(x,y) dxdy = \iint_{D \cap G} 1 dxdy = S_{(D \cap G)}$$

$$= \begin{cases} 0 & z \le 0 \\ \frac{z^{2}}{2} & 0 < z \le 1 \end{cases}$$

$$1 - \frac{(2-z)^{2}}{2} & 1 < z \le 2$$

$$1 - \frac{z \le 2}{2} = \begin{cases} z - z \le 1 \end{cases}$$

$$1 - \frac{z \le 2}{2} = \begin{cases} z - z \le 1 \end{cases}$$

$$2 - z - z \le 2 = \begin{cases} z - z \le 2 \end{cases}$$

$$2 - z - z \le 2 = \begin{cases} z - z \le 2 \end{cases}$$

$$2 - z - z \le 2 = \begin{cases} z - z \le 2 \end{cases}$$

$$2 - z - z \le 2 = \begin{cases} z - z \le 2 \end{cases}$$

$$2 - z - z \le 2 = \begin{cases} z - z \le 2 \end{cases}$$