MATH180C: Introduction to Stochastic Processes II

www.math.ucsd.edu/~ynemish/teaching/180c

Today: General continuous time MC.
Q-matrices. Matrix exponentials
> Q&A: October 14

Next: PK 6.6, Durrett 4.1

Week 2:

- No homework!
- Quiz 1 on Wednesday, October 14

Birth and death processes. Results

- infinitesimal transition probability description - sojourn time description (jump and hold)
 - sojourn times are independent exponential r.v.s $P(i \rightarrow i+1) = \frac{\lambda i}{\lambda i + \mu_i} \quad P(i \rightarrow i-1) = \frac{\mu_i}{\lambda i + \mu_i}$
- system of differential equations for pure birth/death e.g. $P_i'(t) = -\lambda_i P_i(t) + \lambda_{i-1} P_{i-1}(t)$
- distributions of Xt for linear birth (geometric) and linear death (binomial) processes
- first step analysis giving absorption probabilities and mean time to absorption
- explosion, Strong Markov property etc.

General continuous time MC

Assume for simplicity that the state space is finite

birth and death process

general MC

How to define? How to analyze?

Matrix exponentials

Let Q = (qij)ij=, be a matrix. Then the series converges componentwise, and we denote

its sum
$$\sum_{k=0}^{\infty} \frac{Q^k}{k!} = :$$
 the matrix exponential of Q .

In particular, we can define for t20.

(i) for all s,t (ii) (P(t)) is the unique solution to the equations , and $\begin{cases} \frac{d}{dt} P(t) = \end{cases}$ $\left(\frac{d}{dt}P(t)=\right)$ P(0) =P(0) = .

Matrix exponentials

Properties are easy to remember -> scalar exponential (i) $e^{(t+s)Q} = e^{tQ} = e^{tQ} = e^{tA}$

(ii)
$$\frac{d}{dt}e^{tQ} = Qe^{tQ} = e^{tQ} \left(\frac{d}{dt}e^{t\alpha} = \alpha e^{t\alpha}\right)$$

$$\begin{pmatrix} (i) & d & e & = Qe & = e & Q & \begin{pmatrix} d & e & = & e & \\ dt & e & = & & e & \end{pmatrix}$$

$$e = I \qquad (e^{\circ} = I)$$

$$e = I \qquad (e = 1)$$
Example

$$e = I \qquad (e = 1)$$
Example

$$\frac{\mathsf{Example}}{\mathsf{Q}} = \mathbf{I} \quad (\mathsf{e} = \mathsf{I})$$

Example
$$(a) Q = (0)$$

$$(a) Q = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

$$(a) Q = (0)$$

$$(a) Q = (0)$$

$$(b) Q_2 = \begin{pmatrix} \lambda_1 & \lambda_2 \\ 0 & \lambda_2 \end{pmatrix}$$

Matrix exponentials Results on the previous slide hold for any matrix Q. Thm. Matrix Q is a Q-matrix iff $P(t) = e^{tQ}$ is a stochastic matrix Yt

