1 SYSTEMS OF LINEAR EQUATIONS

1.1 Solving systems of linear equations

Vectors – stutt skilgreining, transpose, addition, multiplication, linear combinations

Matrices – stutt skilgreining

Single linear equation -?

Systems of linear equations

Gaussian elimination

Replacement operations

Scale operations

Swap operations

Row equivalent?

1.2 Vectors and Matrices

Vector – matrix multiplication, matrix-matrix multiplication

Span

linear equations in matrix form (augmented matrix)

free parameter

consistend and inconsistent systems

1.3 Kernels, Rank, Homogeneous Equations

Kernel and null space

Rank of matrix – uses etc

Linear independence of vectors

2 VECTOR SPACES

2.1 Euclidian Vector Spaces

Define spaces

2.2 Lines, Planes and Hyperplanes

2.3 Linear Transformations

Functions/mappings/transformations

Domain, co-domain, range

Injective, surjective

linear transformations

2.4 General Vector Spaces

3 MATRIX OPERATIONS

3.1 Matrices

Dot product

Identity matrix

Diagonal matrix

Transpose

Symmetric

Elementary

3.2 Matrix Inverses

Solve systems with inverse Left and right inverse Invertible (invertible matrix theorem?) LU factorization Computing inverse

4 DETERMINANTS

- 4.1 Determinants: Introduction
 Compute determinants
 Applications
- 4.2 Determinants: Properties

 Minors and cofactors

5 VECTOR SUBSPACES

- 5.1 Column, Row and Null Spaces
 Row and column space
- 5.2 Bases and Dimension
 Basis for space
 Coordinate vector
- 5.3 Coordinate Systems

6 EIGENSYSTEMS

7 INNER-PRODUCT VECTOR SPACES

- 7.1 Inner-Product Spaces
- 7.2 Orthogonality
 Gram schmidt
 Least squares

8 ADDITIONAL TOPICS

8.1 Hermitian Matrices and the Spectral Theorem