Analyse et conception

Objectifs

- 1. Pourquoi modéliser ?
- 2. Qu'est-ce qu'un modèle?
- 3. Vision générale d'UML
- 4. UML : la syntaxe des diagrammes principaux

Ceci n'est pas une pipe

- « Un modèle représente une réalité pour un objectif donné. Le modèle est une <u>abstraction</u> de la réalité, il ne représente pas tous les aspects de la réalité. Cela nous permet une gestion simplifiée, en évitant la complexité, le danger et l'irréversibilité de la réalité. » *Rothenberg, 1989*
- La différence entre la théorie et la pratique, c'est qu'en théorie, il n'y a pas de différence entre la théorie et la pratique, mais qu'en pratique, il y en a une.
- « Avant donc d'écrire, apprenez à penser. Ce que l'on conçoit bien s'énonce clairement, et les mots pour le dire viennent aisément. » Art Poétique - Nicolas Boileau, 1815
- A est un bon modèle de B si A permet de répondre de façon satisfaisante à des questions prédéfinies sur B
- Un dessin vaut mieux que de longues lignes de code

- Communiquer avec toutes les personnes dans le périmètre du projet
- Documenter pour les intervenants futurs
- Tracer les modifications
- Produire plus rapidement (*Time to market*)
- Anticiper la complexité

De la même façon qu'il vaut mieux dessiner une maison avant de la construire, il vaut mieux modéliser un système avant de le réaliser.

Les modèles : une vue simplifiée

- Souligner
- Omettre
- Mais aussi une vue complète et précise

Les modèles : niveaux d'abstractions

- Vue d'ensemble
- Vue détaillée

Les modèles : notion de boîte noire

Vue externe

Vue interne

UML: Unified Modeling Language

- Langage de modélisation de systèmes
- Langage commun
- Langage visuel
- Notation ≠ Méthode
- En version 2.5 depuis 2015

UML: diagrammes

15 diagrammes

- Diagrammes de structure
- Diagramme de comportement

UML **Diagrammes UML**

Des éléments communs à tous les diagrammes

La note (description textuelle)

Lien d'héritage (est une sorte de)

Lien de dépendance (utilise ou dépend de)

Package (organise des éléments)

MonPackage	

UML **L'imbrication des packages**

Le diagramme d'activité

- Les concepts manipulés :
 - Les activités
 - Initiale
 - Finale
 - Les enchaînements d'activité
 - Simple
 - Nœud de décision (losange)
 - Fourche
 - Synchronisation
 - Nœud de fusion (losange)
 - Les conditions de garde

UML **Le diagramme d'activité**

Une activité	Nom activité
Activité initiale	•
Activité finale	
Enchaînement simple	$\longrightarrow\hspace{-0.8cm}\rightarrow$
Nœud de décision	
Fourche	
Synchronisation	
Nœud de fusion	
Activite temporelle	\boxtimes

Diagramme de cas d'utilisation système

Diagramme de cas d'utilisation système

Les acteurs

 Un acteur représente un rôle joué par une entité externe (utilisateur humain, dispositif matériel ou autre système) qui interagit directement avec le système étudié

<<Actor>>
Acteur non humain

- Des liens relient le système à chacun des acteurs
- Ne pas lier les acteurs entre eux (sauf lien d'héritage)

Le diagramme de cas d'utilisation

Un exemple de diagramme de cas d'utilisation

- Un cas d'utilisation représente un ensemble de séquences d'actions qui sont réalisées par le système et qui produisent un résultat observable intéressant pour un acteur particulier
- Un cas d'utilisation modélise un service rendu par le système
- Il exprime les interactions acteurs / système

Un cas d'utilisation est un ensemble d'actions : sûrement pas une seule action. Les différents enchaînements possibles d'un cas d'utilisation sont appelés *scénarios*.

Diagramme d'états - Transitions

Diagramme d'état d'une lampe de chevet

Diagramme d'états - Éléments

Le diagramme de séquence : les bases

Diagramme de séquence Identifiant du diagramme

UML

Le diagramme de séquence : exemple

Le diagramme de séquence – Cadres d'interactions

Le diagramme de séquence – Cadres d'interactions

alt	Opérateur alternatives – équivalent au switch en java
Opt	Option
Loop	Boucle
Par	Exécution parallèle
Ref	Référence à un autre diagramme d'interaction

Le diagramme de classe d'analyse : les bases

- Classes
 - Attribut
- Association
 - Nom
 - Rôle
 - Multiplicité
- Héritage
 - Sous-classe
 - Super classe

Le diagramme de classe d'analyse : Notion d'association

Le diagramme de classe d'analyse : Multiplicité

• Syntaxe : min .. max

• La multiplicité minimale peut être :

• 0 : optionnelle

• 1 : obligatoire

 La multiplicité maximale peut être 1 ou *

01	Au plus un
11 ou 1	Un seul
0* ou *	Un nombre indéterminé
1*	Au moins un

Le diagramme de classe d'analyse : Classe d'association

Objectif : faire porter des attributs sur l'association

Notion équivalente sans classe d'association

Le diagramme de classe d'analyse : Agrégation et composition

Diagramme de classe de conception

MaClasse

- -privée
- +publique
- #protégé
- ~paquetage <u>membreStatique</u>
- +operationConcrete()
- +operationAbstraite()

Diagramme de classe de conception : La navigabilité

Diagramme de classe de conception : L'héritage

Le nom d'une classe abstraite est noté en italique.

Diagramme de classe de conception : Le lien de réalisation

Diagramme de classe de conception : Qualificatif

