Lecture-23

Sushrut Tadwalkar; 55554711

November 2, 2023

Quotes of the day

After someone sneezed "I used to teach engineers; when someone sneezed, the whole class would say 'bless you'." - Dr. Loewen, 11/1/2023

"As is the norm in mathematics, I know the name [Hausdorff] and nothing else." - Dr. Loewen, 11/1/2023

Definition: Metric Space

A *metric space* is a pair (\mathcal{X}, d) combining a nonempty set \mathcal{X} and a function $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ obeying the conditions mentioned in the definition of a metric.

Using d for "distance" extends ideas/notations beyond Euclidean case. For example:

$$\mathbb{B}[x; r) = \{ x' \in \mathcal{X} : d(x', x) < r \}$$

defines a "ball" with centre x and radius r > 0. We declare a set $\mathcal{U} \subseteq \mathcal{X}$ to be *open* exactly when for all $x \in \mathcal{U}$, there exists $\varepsilon > 0$ such that $\mathbb{B}[x;r) \subseteq \mathcal{U}$. Let \mathscr{T} denote the set of all open sets in \mathcal{X} that the (metric) topology. As before,

Figure 1: Visualization of an open set.

 $\mathbb{B}[x;r)$ is an open set for any $x \in \mathcal{X}$, $\varepsilon > 0$ m and the sett \mathscr{T} has properties (HTS 1) - (HTS 4).

Reflection. As before, why do we care about this? Primarily we can think about this as a way to capture convergence of sequence ideas.

Definition: Convergence

Given a sequence x_1, x_2, \ldots in \mathcal{X} and a point $\hat{x} \in \mathcal{X}$ to say

$$\lim_{n\to\infty} x_n = \hat{x} \text{ or } x_n \to \hat{x} \text{ as } n \to \infty.$$

Therefore, we say that for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all n > N, $d(x_n, \hat{x}) < \varepsilon$.

Proposition

In a metric space (\mathcal{X},d) , a set \mathcal{U} is open iff every point $x\in\mathcal{U}$ obeys the following: whenever any x_n has $x=\lim_{n\to\infty}x_n$ then $x_n\in\mathcal{U}$ for all n sufficiently large.

Proof. (\Rightarrow) Given $\mathcal{U} \in \mathscr{T}$ and a point $x \in \mathcal{U}$, definition of open gives some $\varepsilon > 0$ such that $\mathbb{B}[x;\varepsilon) \subseteq \mathcal{U}$. So, if (x_n) is any sequence with $x_n \to x$, definition of convergence gives $N \in \mathbb{N}$ such that for all n > N, $d(x_n, n) < \varepsilon$, where $x_n \in \mathbb{B}[x;\varepsilon) \subseteq \mathcal{U}$.

 (\Leftarrow) We prove this by contrapositive; assume set $\mathcal U$ is *not* open. Then some $x\in\mathcal U$ breaks the defining property: there exists $\varepsilon>0$, $\mathbb B[x;\varepsilon)\subseteq\mathcal U$. So, for each $n\in\mathbb N$, $\varepsilon=\frac1n$ here makes $\mathbb B\left[x;\frac1n\right)\not\subseteq\mathcal U$. That is, some point $x_n\in\mathbb B\left[x;\frac1n\right)$ obeys $x_n\notin\mathcal U$. Now $d(x_n,x)<\frac1n$ (an "analogue" of the Squeeze theorem in $\mathbb R$), so sequence x_n obeys $x_n\to x$ and $x\notin\mathcal U$.

Note. This is one of the pros of doing the course not in the same order as Rudin; we get many concrete examples for dealing with convergence, so metric spaces make a lot more sense.

0.1 Ball shapes in \mathbb{R}^2

Note that $\mathbb{R}^2 = \{x = (x_1, x_2) : x_1, x_2 \in \mathbb{R}\}$ can be given several metrics, some of which are:

• $d_2(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$; we recover the most popular ball $\mathbb{B}[0;1)$:

Figure 2: The $\mathbb{B}[0;1)$ ball; it is actually a ball in this case.

• $d_1(x,y) = |x_1 - y_1| + |x_2 - y_2|$; our ball is now shaped like a diamond:

Figure 3: The $\mathbb{B}[0;1)$ ball; it is a diamond in this case.

• $d_{\infty}(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$; our ball is now a square:

Figure 4: The $\mathbb{B}[0;1)$ ball; it is a square in this case.

• Can interpolate: $d_p(x,y) = (|x_1 - y_1|^p + |x_2 - y_2|^p)^{1/p}$, which is a valid metric for any $p \ge 1$, including $p = +\infty$.

In principle, each different metric gives a different family of open sets, and different story with convergence. However, it is quite bizarre that they all define a compatible idea of convergence: the set of open set are the same regardless of the metric.

0.2 Hausdorff topological space

Definition

A HTS is an ordered pair $(\mathcal{X}, \mathscr{T})$ where \mathcal{X} is a nonempty set, and $\mathscr{T} \subseteq \mathscr{P}(\mathcal{X})$ with these 4 properties:

(HTS 1) $\emptyset \in \mathscr{T}, \ \mathcal{X} \in \mathscr{T}$.

(HTS 2) For any collection $\mathcal{J}\subseteq\mathscr{T}$ one has $\bigcup\mathcal{J}\in\mathscr{T}$ (any union of open sets is open.)

(HTS 3) If $\mathcal{U}_1, \dots, \mathcal{U}_N$ (and $N \in \mathbb{N}$) then $\bigcap_{k=1}^N \mathcal{U}_k \in \mathcal{T}$ (any finite intersection of open sets in open.)

(HTS 4) Whenever $x \neq y$ in \mathcal{X} , there exists $\mathcal{U}, \mathcal{V} \in \mathcal{T}$ obeying $x \in \mathcal{U}, y \in \mathcal{V}$, we have $\mathcal{U} \cap \mathcal{V} = \emptyset$ (enough open sets to separate points.)

Example 1. Note:

- Any metric topology.
- Discrete topology: $\mathcal{T}=\mathcal{P}(\mathcal{X})$ ("every set if open".)