

Tracking Particles Ejected from Active Asteroid Bennu with Event-Based Vision

Loïc J. Azzalini (*), Dario Izzo

(*) **Speaker**Loïc J. Azzalini
Young graduate trainee
Advanced Concepts Team
jazzalin@outlook.com

AIDAA XXVII International Congress 05/09/2023

Outline

- Background:
 - Event-Based Vision
 - Towards Event-Based Cameras for Space Applications
 - Application: Tracking Particles around Active Asteroids
- Data Pipeline:
 - Rendering Particle Ejection Episodes
 - Synthetic Event-Stream Processing
 - Multi-Object Tracking
- Conclusion
- Outlook

Event-Based Vision

- Event-based cameras, or dynamic vision sensor (DVS), are inspired by the retina
- Unlike standard cameras, event-based cameras only capture changes in scene brightness

Frames vs event-streams [1] (DVS = dynamic vision sensor)

PROPHESEE EVK4 event-based camera [2]

Sand hourglass captured by an event-based camera [3]

Event-Based Vision

The pixels of a dynamic vision sensor output events independently and asynchronously

Property	Value	Unit
Motion dependent		
High dynamic range	> 120	dB
High readout rates	2 - 120	MHz
Low temporal resolution	20 - 150	$\mu \mathrm{s}$
Low power consumption	32 - 84	mW

Towards Event-Based Cameras for Space Applications

- Other fields (e.g., robotics):
 - High-speed dynamics
 - Challenging lighting conditions
 - Optical flow-based navigation

Driving scene with high dynamic range: (a) image frame, (b) event-frame, (c) optical flow [5]

Space applications:

Event-based recordings of **resident space objects** (from the ground) [6]

Simulating event-based **ventral landings** for divergence estimation [7]

Simulating event-based **nonventral landings** for motion estimation [8]

Particle Ejection Episodes at Bennu

- OSIRIS-REx reported particle ejection episodes around asteroid Bennu
- NavCam images were used to track the centimeter-size particles
- Notable episodes:
 - January 6th, 2019 (Orbital A)
 - January 19th, 2019 (Orbital A)
 - September 13th, 2019 (Orbital C)
- Current solutions:
 - Offline image processing
 - Offline automated tracking (frame-by-frame)

Original NavCam 1 images of the particle ejection episode from January 19th 2019 (long and short exposure)[9]

Tracking Ejecta with an Event-Based Science Camera

Objective:

 Demonstrate the use case of an event-based science camera for tracking ejecta in the vicinity of active bodies

Simulation assumptions:

- Pinhole camera model
- Simplified viewpoint
- Known number of particles

Bennu-fixed particle ejection visualization based on the interpolation of SPICE kernels from 2019-09-13T21:00:00 to 2019-09-14T00:00:00 [10]

Simulation Pipeline

1. Reconstructing Particle Ejections

1. Reconstructing Particle Ejections

- Bennu model (75 cm resolution)
- Particles with diameters $\sim 10 \ cm$ [9]
- Pinhole camera model
- Rubble-pile texture

Blender scene setup: Bennu and particle models (left), pinhole camera (right)

Particle ejection simulation at 30 fps

Overview

→ THE EUROPEAN SPACE AGENCY

3. Synthetic Event Processing

3. Simulating a Particle Ejection Episode

Blender

Synthetic events (noisy)

3. Synthetic Event Processing

3. Synthetic Event Processing

Overview

4. Tracking Particle Ejection Events

- MOT problem description:
 - Unknown and time-varying number of objects
 - Unknown object detections
 - Unknown data association (object vs clutter)
 - Unknown number of detections caused by a single object
 - Object birth/death as they enter the FOV

4. Tracking Particle Ejection Events

- MOT problem description:
 - Unknown and time-varying number of objects
 - Unknown object detections
 - Unknown data association (object vs clutter)
 - Unknown number of detections caused by a single object
 - Object birth/death as they enter the FOV
- n-MOT subproblem:
 - 6 particles
 - Motion model: constant velocity model
 - Global nearest neighbour based on Kalman filtering

4. Tracking Particle Ejection Events

tracking

Moving Forward

- MOT:
 - Object birth/death
 - Unknown number of particles
 - Object extent, i.e., multiple measurements coming from single object
- Event-based tracking:
 - Account for the polarity of events (e.g., as part of the object spatial extent)
 - Account for the high temporal resolution
- Extensions:
 - Estimating the origin of the ejecta
 - Orbit determination

Thank you for your attention

Loïc Azzalini jazzalin@outlook.com

Any questions?

github.com/jazzalin/escape-bennu

ESA Advanced Concepts Team https://www.esa.int/gsp/ACT/

Event-based vision in space

Dynamic Vision for Active Asteroids: Multiple Particle Tracking

Event-based Vision for Navigation and Landing

Resources

- [1] Mueggler, E. et al. (2014). Event-based, 6-DOF pose tracking for high-speed maneuvers, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
- [2] Prophesee EVK-4, https://www.prophesee.ai/event-camera-evk4/
- [3] X-Ray Imaging Goes Neuromorphic, https://www.esa.int/gsp/ACT/news/2023-04-12-event-tomography-experiments-1/
- [4] Gallego, G. et al. (2022). Event-based vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence
- [5] Gehrig, M. et al. (2021). E-RAFT: Dense Optical Flow from Event Cameras," 2021 International Conference on 3D Vision (3DV)
- [6] Afshar, S. et al. (2020). Event-Based Object Detection and Tracking for Space Situational Awareness, IEEE Sensors Journal
- [7] McLeod, S. et al. (2023). Globally Optimal Event-Based Divergence Estimation for Ventral Landing, Computer Vision ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science.
- [8] Azzalini, L. et al. (2023). On the Generation of Synthetic Event-Based Vision Datasets for Navigation and Landing. In *Proceedings of the 12th International Conference on Guidance, Navigation & Control Systems (GNC)*
- [9] Lauretta, D. S. et al. (2019). Episodes of particle ejection from the surface of the active asteroid (101955) Bennu. Science, 366 (6470), eaay3544.
- [10] Hergenrother, C. W. et al. (2020). Photometry of particles ejected from active asteroid (101955) Bennu. Journal of Geophysical Research: Planets, 125, e2020JE006381.
- [11] Hu, Y. et al. (2021). v2e: From Video Frames to Realistic DVS Events. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, 2021