UNIVERSITY OF OSLO

Spacetime Ripples from Domain-Wall Wiggles On the analytical prediction of the gravitational-wave signature from perturbed topological defects in expanding spacetime Nanna Bryne

Institute of Theoretical Astrophysics

Master's presentation

24th November 2024

Contents

- 1 Introduction
 - Background
 - Overview
- 2 Project
- 3 Analysis

CLASSICAL FIELD THEORY perturbation theory, action principles, topological defects

CLASSICAL FIELD THEORY perturbation theory, action principles, topological defects

DIFFERENTIAL GEOMETRY pseudo-Riemannian manifolds, conformal transformations, hypersurfaces

CLASSICAL FIELD THEORY perturbation theory, action principles, topological defects

DIFFERENTIAL GEOMETRY pseudo-Riemannian manifolds, conformal transformations, hypersurfaces

MODERN COSMOLOGY concordance model, gravitational waves

CLASSICAL FIELD THEORY perturbation theory, action principles, topological defects

DIFFERENTIAL GEOMETRY pseudo-Riemannian manifolds, conformal transformations, hypersurfaces

MODERN COSMOLOGY concordance model, gravitational waves

Background

■ What is GR?

Background

- What is GR?
- What are GWs?
- Symmetron?

Background

- What is GR?
- What are GWs?
- Symmetron?
- Hubble tension + PTAs

New physics

About GWs as probe for new physics

Project

Contents

- 1 Introduction
- 2 Project
 - DW ↔ hypersurface
 - DW ↔ scalar field
- 3 Analysis

General setup:

- Symmetron
- hypersurface

1

$$S_{NG} = -\sigma \int_{\Sigma} d^3 \xi \sqrt{-\gamma} = -\sigma \int_{\Sigma} d^3 \xi \sqrt{-\hat{\gamma}} \, a^3 \tag{1}$$

$$\ddot{\epsilon} + \mathcal{D}(\tau)\dot{\epsilon} - \left[\partial_x^2 + \partial_y^2\right]\epsilon = 0 \tag{2}$$

where $\mathcal{D}(\tau) = 3\dot{a}/a$.

$$S_{NG} = -\sigma \int_{\Sigma} d^{3}\xi \sqrt{-\gamma} = -\int_{\Sigma} d^{3}\xi \sqrt{-\hat{\gamma}} \, \alpha^{3} \sigma \tag{1}$$

$$\ddot{\epsilon} + \mathcal{D}(\tau)\dot{\epsilon} - \left[\partial_x^2 + \partial_y^2\right]\epsilon = 0 \tag{2}$$

where $\mathcal{D}(\tau) = 3\dot{a}/a + \dot{\sigma}/\sigma$.

Separabel eq etc.

Separabel eq etc.

Symmetron domain walls have $\sigma = \sigma_{\infty} \sqrt{1 - v}$ where $v \equiv (a_*/a)^3$, and this gives

$$\varepsilon'' + \left(\frac{3\alpha}{s} + 2d(s)\right)\varepsilon' + \omega^2 \varepsilon = 0; \quad d(s) \triangleq \frac{9\alpha}{4s(s^{3\alpha} - 1)}.$$
 (3)

Separabel eq etc.

Symmetron domain walls have $\sigma = \sigma_{\infty} \sqrt{1 - v}$ where $v \equiv (a_*/a)^3$, and this gives

$$\varepsilon'' + \left(\frac{3\alpha}{s} + 2d(s)\right)\varepsilon' + \omega^2 \varepsilon = 0; \quad d(s) \triangleq \frac{9\alpha}{4s(s^{3\alpha} - 1)}.$$
 (3)

Set $\alpha = 2$.

Stress-energy tensor

$$T_{ij}^{\mathsf{TT}}|_{\mathsf{NG}} = \tag{4}$$

Gravitational waves

$$\tilde{h}_{ij}(\tau, \mathbf{k}) \sim \int_{\tau_*}^{\tau} \mathrm{d}\hat{\tau} \, \sqrt{k\hat{\tau}} J_{\nu}(k\hat{\tau}) \tilde{T}_{ij}^{\mathsf{TT}}(\hat{\tau}, \mathbf{k}) \tag{5}$$

Project

DW ↔ scalar field

Analysis

Contents

- 1 Introduction
- 2 Project
- 3 Analysis
 - The code
 - Findings

The code

AsGRD, based on gevolution, computes the full metric perturbations with the asymmetron blahblah

The code

AsGRD, based on <code>gevolution</code>, computes the full metric perturbations with the asymmetron blahblah

Periodic BCs \Rightarrow at least 2 walls. In two dim.:

Experiments

Cubic simulation box of side lengths $L_{\#}$ (fundamental frequency $k_{\#} = 2\pi/L_{\#}$) with $N_{\#}^3$ lattice points, with initial(**explain**) perturbation $\varepsilon(\tau_*, x, y) = \varepsilon_* \sin py$. Fiducial symmetron parameters are $a_* = 0.33$, $\xi_* = 3.33 \times 10^{-4}$ and $\beta_* = 1$. Simulation onset is at scale factor $a_i \ge a_*$, and we finish at $a_f = 0.50$.

Cubic simulation box of side lengths $L_{\#}$ (fundamental frequency $k_{\#}=2\pi/L_{\#}$) with $N_{\#}^3$ lattice points, with initial(**explain**) perturbation $\varepsilon(\tau_*,x,y)=\varepsilon_*\sin py$. Fiducial symmetron parameters are $a_*=0.33$, $\xi_*=3.33\times 10^{-4}$ and $\beta_*=1$. Simulation onset is at scale factor $a_i\gtrsim a_*$, and we finish at $a_f=0.50$.

1 $\varepsilon_* = 0.08 L_\#$, $p = 2 k_\#$, $L_\# \approx 1$ Gpc/h, $N_\# = 768$, $a_i \simeq a_* + 0.003$

Cubic simulation box of side lengths $L_{\#}$ (fundamental frequency $k_{\#} = 2\pi/L_{\#}$) with $N_{\#}^3$ lattice points, with initial(**explain**) perturbation $\varepsilon(\tau_*, x, y) = \varepsilon_* \sin py$. Fiducial symmetron parameters are $a_* = 0.33$, $\xi_* = 3.33 \times 10^{-4}$ and $\beta_* = 1$. Simulation onset is at scale factor $g_i \ge g_*$, and we finish at $g_f = 0.50$.

```
1 \varepsilon_* = 0.08 L_\#, p = 2k_\#, L_\# \approx 1 Gpc/h, N_\# = 768, a_i \simeq a_* + 0.003
```

- $\epsilon_* \rightarrow 0.12 L_\#$
- $3 N_{\#} \rightarrow 900$
- 4 $L_{\#} \rightarrow 1.4 \,\mathrm{Gpc/h}$
- 5 $p' \rightarrow 3k_{\#}, \varepsilon_* \rightarrow 0.06L_{\#}, N_{\#} \rightarrow 900$
- $7 \quad (a_{\rm i} a_*) \rightarrow 0.001$

SCALE FACTOR
$$a=(1+\mathfrak{z})^{-1}=a_*s^\alpha$$
 COSMIC REDSHIFT $\mathfrak{z}=1/a-1$ CONFORMAL TIME $s=\tau/\tau_*$ SCALE-DEPENDENT TIME PARAMETER $t_\omega\equiv\omega(s-1)=p(\tau-\tau_*)$ PHASE-TRANSITION TIME-SCALE $\chi_+\equiv\sqrt{1-\upsilon}=\sqrt{1-(a_*/a)^3}=\sqrt{1-s^{-3\alpha}}$

Matter domination $\leftrightarrow \alpha = 2$

Scale factor
$$a=(1+\mathfrak{z})^{-1}=a_*s^\alpha$$
 cosmic redshift $\mathfrak{z}=1/a-1$ conformal time $s=\tau/\tau_*$ scale-dependent time parameter $t_\omega\equiv\omega(s-1)=p(\tau-\tau_*)$ phase-transition time-scale $\chi_+\equiv\sqrt{1-\upsilon}=\sqrt{1-(a_*/a)^3}=\sqrt{1-s^{-3\alpha}}$

SCALE FACTOR
$$a=(1+\mathfrak{z})^{-1}=a_*s^\alpha$$
 COSMIC REDSHIFT $\mathfrak{z}=1/a-1$ CONFORMAL TIME $s=\tau/\tau_*$ SCALE-DEPENDENT TIME PARAMETER $t_\omega\equiv\omega(s-1)=p(\tau-\tau_*)$ PHASE-TRANSITION TIME-SCALE $\chi_+\equiv\sqrt{1-\upsilon}=\sqrt{1-(a_*/a)^3}=\sqrt{1-s^{-3\alpha}}$

Matter domination $\leftrightarrow \alpha = 2$

Analytical vs. simulated wall position

Main results

$e^{\sf NG}$	e^{ϕ}
yes	no
$ ilde{h}_{+}^{ ext{NG}} \; (ilde{h}_{+}^{\phi})$	ñ ₊

	Calculation	Simulation
Wall position, $e = \varepsilon/\varepsilon_*$	$e^{\scriptscriptstyle ext{NG}}$	e^{ϕ}
\overline{e} independent of $arepsilon_*$	yes	no
$e \not\sim s^{-5/2} Z_{-5/2}(\omega s)$	yes	yes
Gravitational waves	$ ilde{h}_{+}^{ ext{NG}} \ (ilde{h}_{+}^{oldsymbol{\phi}})$	$ ilde{ ilde{h}_+}$

	Calculation	Simulation
Wall position, $e = \varepsilon/\varepsilon_*$	$e^{\sf NG}$	e^{ϕ}
\overline{e} independent of $arepsilon_*$	yes	no
$e \nsim s^{-5/2} Z_{-5/2}(\omega s)$	yes	yes
(e vs. t_{ω})-plot indep. of parameters	yes	yes*
Gravitational waves	$ ilde{h}_{+}^{ ext{NG}} \; (ilde{h}_{+}^{\phi})$	$\tilde{\mathrm{h}}_{+}$
?	yes	yes*

^{*} To some extent.

 $arepsilon^{ ext{NG}}$ vs $arepsilon^{ ext{NG}}$ vs $arepsilon^{ ext{NG}}$

Nanna Bryne Spacetime Ripples from Domain-Wall Wiggles

On the analytical prediction of the gravitational-wave signature from

perturbed topological defects in expanding spacetime