## SEQUENCE LISTING

<110> Allen, Keith D. <120> TRANSGENIC MICE CONTAINING INWARDLY RECTIFYING POTASSIUM CHANNEL (Kir5.1) GENE DISRUPTIONS <130> R-902 <150> US 60/254,888 <151> 2000-12-11 <160> 4 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 1257 <212> DNA <213> Mus musculus atgagctatt acggaagtag ctaccggatt gtcaatgtgg actccaaata tccaggctat 60 cctccagagc atgccatcgc tgagaagaga agagcaagaa ggcgcttgct ccacaaagat 120 ggcagctgta atgtgtactt taaacacatt tttggagaat gggggagcta catggttgat 180 atttttacca ctcttgtgga taccaagtgg cgccatatgt tcataatatt ttctctgtct 240 tacattetet cetggttgat atttggttee atattttgge teatageett teateaegga 300 gacctattaa gegateeaga tateaceeet tgtgttgaca aegtgeatte atttaegget 360 gcatttttat tctccctgga gacccagacc accattggat acggttaccg ctgtgtcacc 420 gaagagtgct ctgtggctgt actgacagtg atccttcagt ccatcctcag ctgcatcata 480 aacaccttca tcattggagc agccttggca aagatggcaa ctgcccggaa gagagcccag 540 accatacgct tcagctattt tgccctcatt ggtatgagag acgggaagcc ttgcctcatg 600 tggcgcatag gtgacttccg accaaaccat gtggtagagg gcacggtgag agcccaactt 660 ctgcgctatt cagaagacag tgaagggagg atgacgatgg cgtttaaaga cctcaaactc 720 gtcaatgacc agataatcct ggtaactcca gtgactattg tccatgaaat tgaccatgag 780 agccctctgt atgcccttga ccgcaaggca gtggccaaag ataatttcga gattctggtg 840 acatttattt atactggtga ttccactggg acatcccacc agtccagaag ttcctacatc 900 cccagagaaa ttctctgggg ccacaggttt catgatgtat tggaagtgaa gagaaagtac 960 tacaaggtga actgcttgca gtttgaagga agcgtggaag tctacgcccc cttttgcagt 1020 gccaaacaac tggactggaa ggaccaacaa ctcaacaact tggagaaaac gtcccctgcc 1080 cgaggatect geaattetga caccaacacc aggaggeggt cetteagege agttgeegtg 1140 gtgagcaget gtgagaacce agaggagace gteetgteee cacaagatga atgtaaggag 1200 atgccctatc agaaagccct cctgacttta aataggatct ccatggaatc ccagatg <210> 2 <211> 419 <212> PRT <213> Mus musculus <400>2Met Ser Tyr Tyr Gly Ser Ser Tyr Arg Ile Val Asn Val Asp Ser Lys 1 1.0 5 Tyr Pro Gly Tyr Pro Pro Glu His Ala Ile Ala Glu Lys Arg Arg Ala 20 25 30 Arg Arg Leu Leu His Lys Asp Gly Ser Cys Asn Val Tyr Phe Lys

45

40

His Ile Phe Gly Glu Trp Gly Ser Tyr Met Val Asp Ile Phe Thr Thr

Leu Val Asp Thr Lys Trp Arg His Met Phe Ile Ile Phe Ser Leu Ser

```
70
65
                                      75
Tyr Ile Leu Ser Trp Leu Ile Phe Gly Ser Ile Phe Trp Leu Ile Ala
           85
                                 90
Phe His His Gly Asp Leu Leu Ser Asp Pro Asp Ile Thr Pro Cys Val
           100
                              105
Asp Asn Val His Ser Phe Thr Ala Ala Phe Leu Phe Ser Leu Glu Thr
                           120
Gln Thr Thr Ile Gly Tyr Gly Tyr Arg Cys Val Thr Glu Glu Cys Ser
                      135
                                          140
Val Ala Val Leu Thr Val Ile Leu Gln Ser Ile Leu Ser Cys Ile Ile
                  150
                                      155
Asn Thr Phe Ile Ile Gly Ala Ala Leu Ala Lys Met Ala Thr Ala Arg
              165
                               170
Lys Arg Ala Gln Thr Ile Arg Phe Ser Tyr Phe Ala Leu Ile Gly Met
          180
                               185
Arg Asp Gly Lys Pro Cys Leu Met Trp Arg Ile Gly Asp Phe Arg Pro
       195
                          200
                                              205
Asn His Val Val Glu Gly Thr Val Arg Ala Gln Leu Leu Arg Tyr Ser
                       215
                                          220
Glu Asp Ser Glu Gly Arg Met Thr Met Ala Phe Lys Asp Leu Lys Leu
                   230
                                      235
Val Asn Asp Gln Ile Ile Leu Val Thr Pro Val Thr Ile Val His Glu
              245
                                  250
Ile Asp His Glu Ser Pro Leu Tyr Ala Leu Asp Arg Lys Ala Val Ala
          260
                              265
Lys Asp Asn Phe Glu Ile Leu Val Thr Phe Ile Tyr Thr Gly Asp Ser
                          280
                                              285
Thr Gly Thr Ser His Gln Ser Arg Ser Ser Tyr Ile Pro Arg Glu Ile
                      295
                                          300
Leu Trp Gly His Arg Phe His Asp Val Leu Glu Val Lys Arg Lys Tyr
                  310
                                      315
Tyr Lys Val Asn Cys Leu Gln Phe Glu Gly Ser Val Glu Val Tyr Ala
                                  330
              325
Pro Phe Cys Ser Ala Lys Gln Leu Asp Trp Lys Asp Gln Gln Leu Asn
                              345
Asn Leu Glu Lys Thr Ser Pro Ala Arg Gly Ser Cys Asn Ser Asp Thr
                          360
Asn Thr Arg Arg Arg Ser Phe Ser Ala Val Ala Val Val Ser Ser Cys
                      375
                                          380
Glu Asn Pro Glu Glu Thr Val Leu Ser Pro Gln Asp Glu Cys Lys Glu
               390
                                     395
Met Pro Tyr Gln Lys Ala Leu Leu Thr Leu Asn Arg Ile Ser Met Glu
               405
                                  410
Ser Gln Met
```

```
<210> 3
<211> 200
<212> DNA
<213> Artificial Sequence
```

<400> 3
agctacagga tcgtcaatgt ggactccaaa tatccaggct atcctccaga gcatgccatc 60
gctgagaaga gaagagcaag aaggcgcttg ctccacaaag atggcagctg taatgtgtac 120
tttaaacaca tttttggaga atgggggagc tacatggttg atatttttac cactcttgtg 180
gataccaagt ggcgccatat 200

<sup>&</sup>lt;220> <223> Targeting vector

| 210> 4                                                               |
|----------------------------------------------------------------------|
| 211> 200                                                             |
| 212> DNA                                                             |
| 213> Artificial Sequence                                             |
|                                                                      |
| 220>                                                                 |
| 223> Targeting vector                                                |
|                                                                      |
| 400> 4                                                               |
| gaagagtgc tetgtggetg tactgacagt gateetteag tecateetea getgeateat 60  |
| aacaccttc atcattggag cagcettgge aaagatggea aetgeeegga agagageeea 120 |
| accatacgc ttcagctatt ttgccctcat tggtatgaga gacgggaagc tttgcctcat 180 |
| tggcgcata ggtgacttcc 200                                             |