Sequence labeling: POS Tagger (+ NLTK Practice)

Knowledge & Language Engineering Lab.

Contents

- Sequence Labeling
 - Introduction
 - Method

- Practice
 - Simple POS tagger using HMM Algorithm
 - Natural Language ToolKit (Open source Platform)

[Relation Extraction]

SEQUENCE LABELING

Introduction

- Sequence labeling
 - A pattern recognition task that classifies a categorical label to each member of a sequence elements.
 - In NLP, which deals with sequential data, sequence labeling is one of the major task.
- Tasks or subtasks

Named entity recognition

Automatically find names of people, places, products, and organizations in text across many languages.

Part of speech tagging

Spacing problem

아버지가방에들어가신다.

아버지가 방에 들어가신다.

Introduction

- Sequential Data
 - Data stored in chronological order.
 - Generally, each element is related to each other.
 - E.g.)
 - Video: a sequence of frames
 - Text: a sequence of words
 - Voice: a sequence of signals

Methods

- Sequence labeling methods
 - Vector space model
 - Neural network model
 - Structured SVM
 - Probabilistic model
 - Hidden Markov Model (HMM)
 - Conditional Random Field (CRF)

Methods

- Sequence labeling methods
 - Vector space model
 - Neural network model
 - Structured SVM
 - Probabilistic model
 - Hidden Markov Model (HMM)
 - Conditional Random Field (CRF)

■ $y_{1:N}^* = argmax_{y_{1:N}} P(y_{1:N}|x_{1:N})$ (Bayes rule) $= argmax_{y_{1:N}} P(x_{1:N}|y_{1:N}) P(y_{1:N})$ $= argmax_{y_{1:N}} \prod_{k=1}^{N} P(x_k|x_{1:k-1}, y_{1:K}) \prod_{k=1}^{N} P(y_k|y_{1:k-1})$ $(Markov \ assumption)$ $\approx argmax_{y_{1:N}} \prod_{k=1}^{N} P(x_k|y_k) \prod_{k=1}^{N} P(y_k|y_{k-1})$

• $y_{1:N}^* = argmax_{y_{1:N}} P(y_{1:N} | x_{1:N})$ (Bayes rule) $= argmax_{y_{1:N}} P(x_{1:N}|y_{1:N}) P(y_{1:N})$ $= argmax_{y_{1:N}} \prod_{k=1}^{N} P(x_k | x_{1:k-1}, y_{1:N}) \prod_{k=1}^{N} P(y_k | y_{1:k-1})$ (Markov assumption) $\approx argmax_{y_{1:N}} \prod_{k=1}^{N} P(x_k|y_k) \prod_{k=1}^{N} P(y_k|y_{k-1})_{\bullet}$ 품사 태그 NNVBD DT NN 단어 seq. John the saw saw

- $argmax_{y_{1:N}} \prod_{k=1}^{N} P(x_k|y_k) \prod_{k=1}^{N} P(y_k|y_{k-1})$
 - $P(x_k|y_k)$: emission probability
 - 각 state(y) 에서 관측 가능한 값(x)의 확률
 - E.g.) 명사(NN) 인 'saw' 가 등장할 확률
 - $P(x_k|y_k) = \frac{P(x_k,y_k)}{P(y_k)}$
 - $P(y_k|y_{k-1})$: transition probability
 - State(y) 간의 변화 확률
 - E.g.) 동사(VB) 이후에 명사(NN)가 등장할 확률
 - $P(y_k|y_{k-1}) = \frac{P(y_k, y_{k-1})}{P(y_{k-1})}$

• log(P(NN VBD DT NN|John saw the saw)

```
= \log P(Jone|NN) + \log P(NN| < BOS >)
+ \log P(saw|VBD) + \log P(VBD|NN)
+ \log P(the|DT) + \log P(DT|VBD)
+ \log P(saw|NN) + \log P(NN|DT)
+ \log P(< EOS > |NN)
```

PRACTICE

KLE tagset

■ 부가자료: KLE_Tagset.pdf 파일 참고

preprocessing

- Preprocess each line with a list of tuples.
 - $[[(word_1, tag_1), (word_2, tag_2), ..., (word_n, tag_n), [(word_1, tag_1), (word_2, tag_2), ..., (word_n, tag_n)]$ \vdots $[(word_1, tag_1), (word_2, tag_2), ..., (word_n, tag_n)]]$

그/CT 도/fjb 강하/YBH ㄴ/fmotg 카리스마/CMC 를/fjco 필요/CMC 하/fph ㅂ니다/fmof ./g 애플/CMC 이/fjcs 80/CS %/g 로/fjcao 그/SG 뒤/CMC 를/fjco 쫓/YBD 았/fmb 습니다/fmof ./g 이제/SBO 참가자들/CMC 이/fjcs 기념촬영/CMC 을/fjco 하/YBD 고/fmoc 있/YA 다/fmof ./g

[[(그, CT), (도, fjb), (강하, YBH), ..., (ㅂ니다, fmof), (., g)], [(애플, CMC), (이, fjcs), (80, CS), ..., (습니다, fmof), (., g)], [(이제, SBO), (참가자들, CMC), (이, fjcs),..., (다, fmof), (., g)]]

- Count the number of (word, tag)
 - Nested dictionary type
 - pos2words_freq = defaultdict(lambda: defaultdict(int))
 - Pos2words[pos][word] _freq:
 - stores the number (frequency) of (word, tag)
- Count the number of bigram tags (tag_{i-1}, tag_i)
 - Dictionary type
 - Define trans_freq = defaultdict(int) for bigrams counts
 - Define bos_freq = defaultdict(int) for the bigrams counts containing "BOS"
 - Trans $[(tag_{i-1}, tag_i)]$ stores the number of bigrams
 - Bos $[tag_i]$ stores the number of BOS bigrams

Example

pos2words_freq

```
{CMC: {아버지: 10, 올림픽: 15, ..},
CMP: {구글: 20, 애플: 15, ..}
YBD: {마시: 10, 듣: 20, ...}}
```

trans_freq

```
{(CMC, fjb): 20, (CMP, fjb): 31, (fjco, fd): 55, ..}
```

bos_freq

```
{CMP: 100, CMC: 200, CT: 55, ...}
```

- Frequency -> probability
 - pos2words_prob

```
(CMC: {아버지: 0.1, 올림픽: 0.2, ..}, CMP: {구글: 0.05, 애플: 0.03, ..}
YBD: {마시: 0.1, 듣: 0.2, ...}}
```

trans_prob

```
{(CMC, fjb): 0.2, (CMP, fjb): 0.1, (fjco, fd): 0.48, ..}
```

bos_prob

```
{CMP: 0.3, CMC: 0.1, CT: 0.24, ...}
```

Frequency -> probability

pos2words_prob

```
{CMC: {아버지: 0.1, 올림픽: 0.2, ..},
CMP: {구글: 0.05, 애플: 0.03, ..}
YBD: {마시: 0.1, 듣: 0.2, ...}}
```

trans_prob

$$P(x_k = \text{애플} | y_k = \text{CMP}) = 0.03$$

sum = 1.0

```
{(CMC, fjb): 0.2, (CMP, fjb): 0.1, (fjco, fd): 0.48, ..}
```

bos_prob

```
{CMP: 0.3, CMC: 0.1, CT: 0.24, ...}
```

Frequency -> probability

pos2words_prob

```
CMC: {아버지: 0.1, 올림픽: 0.2, ..},
CMP: {구글: 0.05, <mark>애플: 0.03, ..</mark>}
YBD: {마시: 0.1, 듣: 0.2, ...}
```

trans_prob

$$P(x_k =$$
애플 $|y_k =$ CMP $) = 0.03$

sum = 1.0

```
{(CMC, fjb): 0.2, (CMP, fjb): 0.1, (fjco, fd): 0.48, ..}
```

$$P(y_k = fd | y_{k-1} = fjco) = 0.48$$

{CMP: 0.3, CMC: 0.1, CT: 0.24, ...}

Emission probability

$$P(x_k|y_k) = \frac{P(x_k, y_k)}{P(y_k)} = \frac{\# of (word_k, tag_k)}{\# of tag_k}$$

Transition probability

$$P(y_k|y_{k-1}) = \frac{P(y_k, y_{k-1})}{P(y_{k-1})} = \frac{\# of (tag_{k-1}, tag_k)}{\# of \ tag_{k-1}}$$

Inference

- For given input sentences
 - "감기/CMC 는/fjb 줄이/YBD 다/fmof ./g"
 - "감기/fmotg 는/fjb 줄/CMC 이다/fjj ./g"
- Calculate the log probability
 - $\log(\prod_{k=1}^{N} P(x_k|y_k) \prod_{k=1}^{N} P(y_k|y_{k-1}))$ $= \sum_{k=1}^{N} \log P(x_k|y_k) + \log P(y_k|y_{k-1})$
- Results

감기/CMC 는/fjb 줄이/YBD 다/fmof ./g: -5.489636 감기/fmotg 는/fjb 줄/CMC 이다/fjj ./g: -14.037157

NLTK (Open Source Platform)

Natural Language ToolKit (NLTK)

- NLTK
 - Python Platform for Natural Language Processing
 - Homepage
 - http://www.nltk.org/
 - 설치 방법
 - sudo pip install -U nltk

Natural Language ToolKit (NLTK)

- NLTK.tagger
 - Example

```
>>> import nltk
>>> sentence = """At eight o'clock on Thursday morning
... Arthur didn't feel very good."""
>>> tokens = nltk.word_tokenize(sentence)
>>> tokens
['At', 'eight', "o'clock", 'on', 'Thursday', 'morning',
'Arthur', 'did', "n't", 'feel', 'very', 'good', '.']
>>> tagged = nltk.pos_tag(tokens)
>>> tagged[0:6]
[('At', 'IN'), ('eight', 'CD'), ("o'clock", 'JJ'), ('on', 'IN'),
('Thursday', 'NNP'), ('morning', 'NN')]
```

NLTK download

- \$python
- import nltk
- nltk.download()

- Keyword Extractor
 - 주어진 문서(document)의 키워드 10개를 추출
- Keyword
 - def. 최대 빈도를 가지는 명사

- Preparation Material
 - 말뭉치 다운로드
 - 말뭉치: endoc1~8.txt

- Guideline
 - Step1. 텍스트 입력 및 형태소 분석
 - Step2. 명사 추출 및 해당 빈도수 저장
 - Step3. 빈도수로 내림차순 정렬
 - Step4. 최대 빈도수 단어 출력

- Step1. 텍스트 입력 및 형태소 분석
 - 텍스트파일을 입력 받음
 - 입력을 tokenizing
 - 각 token의 형태소 분석

os.listdir(path)

```
pirl@pirl-Precision-Tower-7910:~/NLP/3PosTagger/Practice$ ls Data/
endoc1.txt endoc3.txt endoc5.txt endoc7.txt
endoc2.txt endoc4.txt endoc6.txt endoc8.txt
pirl@pirl-Precision-Tower-7910:~/NLP/3PosTagger/Practice$ python3
Python 3.6.4 |Anaconda, Inc.| (default, Jan 16 2018, 18:10:19)
[GCC 7.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from os import listdir
>>> listdir("./Data")
['endoc1.txt', 'endoc5.txt', 'endoc7.txt', 'endoc3.txt', 'endoc8.txt',
'endoc6.txt', 'endoc2.txt', 'endoc4.txt']
>>> [
```

- Step2. 일반 명사 추출 및 해당 빈도수 저장
 - 형태소 분석 및 품사 태깅된 텍스트에서 명사를 추출
 - dictionary에 단어-빈도수 형태로 저장
 - Nouns = ['NN', 'NNS', 'NNP', 'NNPS']

Document Finder

Non-alphabet

```
endoc1.txt: China, US, South, Sea, Beijing, systems, mi
ssile, defense, missiles, region
endoc2.txt: tobacco, San, Francisco, products, voters,
American, Reynolds, Association, sales, %
endoc3.txt: death, method, execution, injection, victim
, people, seconds, - man, prison
endoc4.txt: Russia<mark>, N</mark>orth, Korea, Kim, Moscow, Lavrov,
Korean, US, talks, South
endoc5.txt: Iran, EU, sanctions, deal, US, business, co
mpanies, European, EIB, legislation
endoc6.txt: people, racist, racism, police, part, ideas
, Americans, Obama, Goff, America
endoc7.txt: Kennedy, Lewis, years, Robert, America, Cli
nton, way, hand, John, assassination
endoc8.txt: US, Afghan, Afghanistan, air, Taliban, Air,
Force, people, casualties, children
```

Document Finder

Free Non-alphabet words

```
endoc1.txt: China, US, South, Sea, Beijing, systems, mi
ssile, defense, missiles, region
endoc2.txt: tobacco, San, Francisco, products, voters,
American, Reynolds, Association, sales Proposition
endoc3.txt: death, method, execution, injection, victim
, people, seconds, man, prison, chair
endoc4.txt: Russia, North, Korea, Kim, Moscow, Lavrov,
Korean, US, talks, South
endoc5.txt: Iran, EU, sanctions, deal, US, business, co
mpanies, European, EIB, legislation
endoc6.txt: people, racist, racism, police, part, ideas
, Americans, Obama, Goff, America
endoc7.txt: Kennedy, Lewis, years, Robert, America, Cli
nton, way, hand, John, assassination
endoc8.txt: US, Afghan, Afghanistan, air, Taliban, Air,
Force, people, casualties, children
```

Document Finder

str.isalpha()

```
str = "this"; # No space & digit in this string
print str.isalpha()

str = "this is string example....wow!!!";
print str.isalpha()
```

```
True
False
```

```
for t in tags:
    if t[1] in Nouns:
    if t[1] in Nouns and t[0].isalpha():
```

형태소 분석 및 품사 태깅된 텍스트

- nltk.word_tokenize
- nltk.pos_tag

```
>>> text = word_tokenize("And now for something completely different")
>>> nltk.pos_tag(text)
[('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'),
  ('completely', 'RB'), ('different', 'JJ')]
```

■ 명사 추출

■ dictionary에 단어(명사)-빈도수 형태로 저장

- Step3. 빈도수로 내림차순 정렬
 - google "sort a Python dictionary by value"!
 - 여기서 value=빈도수, 대응하는 key값은 단어

- sorted()
- sort a dictionary by value

```
>>> from operator import itemgetter
>>> dict = {}
>>> dict['a'] = 2
>>> dict['b'] = 1
>>> dict['c'] = 5
>>> print(sorted(dict.items(), key=itemgetter(1), reverse=True))
[('c', 5), ('a', 2), ('b', 1)]
```

- Step4. 최대 빈도수 단어 출력
 - 정렬한 리스트로부터 top 10개의 단어를 출력

▪ 결과물

```
[('US', 42),
('people', 29),
('Russia', 26),
('China', 19),
('Iran', 18),
('North', 18),
('Kennedy', 17),
('years', 16),
('Korea', 16),
('Afghan', 16)]
```


각 뉴스 기사의 길이(# tokens) 반영

- 각 document의 길이를 반영
- Normalized count:

1.0 / document_length (# of words)

■ word count 대신 normalized count를 dictionary에 저장

■ 결과물

```
[('US', 0.041482327565602065),
('Iran', 0.028081123244929798),
('China', 0.026340824887495645),
('Russia', 0.02146452100122221),
('tobacco', 0.019736842105263157),
('people', 0.019091525518264874),
('EU', 0.0171606864274571),
('Kennedy', 0.014808362369337977),
('South', 0.014200721051400883),
('North', 0.013938257653585369)]
```

- Document Finder
 - 입력된 단어와 가장 관련된 문서를 출력
- 가장 관련된 문서
 - Def. Keyword가 해당 단어와 일치하는 문서 (Keyword Extractor

43

- Guideline
 - Step 1. 텍스트 입력 및 형태소 분석
 - Step 2. 명사 추출 및 빈도수로 내림차순 정렬
 - Step 3. 최대 빈도를 가지는 10 개의 명사들 따로 저장
 - Step 4. 각 문서에 대해 Step 1~3 반복

■ Step 5. <키워드:해당 문서들> 의 형태로 dictionary 에 저장

- Step 6. 사용자에게 키워드 입력 받음
- Step 7. 입력받은 키워드가 dictionary에 있으면 해당 문서 출력

 Step 5. {키워드:해당 문서들} 의 형태로 dictionary 에 저장

```
dic={}
for intxt in files:
keywords = keywords_per_doc[intxt]
```

- Step 6. 사용자에게 키워드 입력 받음
- input()

- 사용 예시:
- query = input().strip()

Output

```
type keyword (q:to exit)
US
endoc1.txt, endoc4.txt, endoc5.txt, endoc8.txt
type keyword (q:to exit)
Korea
endoc4.txt
type keyword (q:to exit)
people
endoc3.txt, endoc6.txt, endoc8.txt
type keyword (q:to exit)
Lebanon
no such document
type keyword (q:to exit)
pirl@pirl-Precision-Tower-7910:~/NLP/3PosTagger/
```

END