On odd near-perfect and deficient-perfect numbers with *k* distinct prime divisors

Carlo Francisco E. Adajar and Richell O. Celeste

February 19, 2018

Table of Contents

- Introduction
 - The Search for Odd Perfect Numbers
 - Near-Perfect and Deficient-Perfect Numbers
- 2 A Theoretical Result
- A Computational Result
- 4 References

Definition

Definition

• Let $\sigma(n)$ denote the sum of the divisors of n. A **perfect number** is a positive integer n for which $\sigma(n) = 2n$.

Definition

- Let $\sigma(n)$ denote the sum of the divisors of n. A **perfect number** is a positive integer n for which $\sigma(n) = 2n$.
- ② A perfect number is the sum of its proper divisors, i.e., its divisors other than itself.

1 The even perfect numbers have been completely characterized.

1 The even perfect numbers have been completely characterized.

Theorem (Euclid)

If p and $2^p - 1$ are both prime, then $2^{p-1}(2^p - 1)$ is a perfect number.

1 The even perfect numbers have been completely characterized.

Theorem (Euclid)

If p and $2^p - 1$ are both prime, then $2^{p-1}(2^p - 1)$ is a perfect number.

Theorem (Euler)

Every even perfect number is of the form $2^{p-1}(2^p-1)$, where p and 2^p-1 are both prime.

1 The even perfect numbers have been completely characterized.

Theorem (Euclid)

If p and $2^p - 1$ are both prime, then $2^{p-1}(2^p - 1)$ is a perfect number.

Theorem (Euler)

Every even perfect number is of the form $2^{p-1}(2^p-1)$, where p and 2^p-1 are both prime.

Odd perfect numbers, however, have proven to be more elusive.

Theorem (Ochem and Rao, 2012)

There are no odd perfect numbers less than 10^{1500} .

Theorem (Ochem and Rao, 2012)

There are no odd perfect numbers less than 10^{1500} .

Theorem (Nielsen, 2015)

Any odd perfect number must have at least ten distinct prime factors.

Theorem (Ochem and Rao, 2012)

There are no odd perfect numbers less than 10^{1500} .

Theorem (Nielsen, 2015)

Any odd perfect number must have at least ten distinct prime factors.

Theorem (Ochem and Rao, 2012)

Any odd perfect number must have at least 101 prime factors in total (counting multiplicities).

Theorem (Dickson, 1913)

For any positive integer k, there are finitely many odd perfect numbers with k distinct prime factors.

Theorem (Dickson, 1913)

For any positive integer k, there are finitely many odd perfect numbers with k distinct prime factors.

Theorem (Nielsen, 2003)

Suppose n is an odd number with k distinct prime factors and m is the denominator of $\frac{\sigma(n)}{n}$ (in lowest terms). Then

$$n<(m+1)^{4^k}$$

Theorem (Dickson, 1913)

For any positive integer k, there are finitely many odd perfect numbers with k distinct prime factors.

Theorem (Nielsen, 2003)

Suppose n is an odd number with k distinct prime factors and m is the denominator of $\frac{\sigma(n)}{n}$ (in lowest terms). Then

$$n<(m+1)^{4^k}$$

Remark

This implies, in particular, that an odd near-perfect number with k distinct prime factors is less than 2^{4^k} .

Theorem (Pollack, 2011)

There are at most 4^{k^2} odd perfect numbers with k distinct prime factors.

Definition (Pollack and Shevelev, 2012)

Definition (Pollack and Shevelev, 2012)

• A **near-perfect number** is a positive integer *n* that is the sum of all but one of its proper divisors.

Definition (Pollack and Shevelev, 2012)

- A **near-perfect number** is a positive integer *n* that is the sum of all but one of its proper divisors.
- Equivalently, a near-perfect number is a positive integer n for which $\sigma(n) = 2n + d$, where d divides n.

Definition (Pollack and Shevelev, 2012)

- A **near-perfect number** is a positive integer *n* that is the sum of all but one of its proper divisors.
- Equivalently, a near-perfect number is a positive integer n for which $\sigma(n) = 2n + d$, where d divides n.
- d is known as the **redundant divisor** of n.

Example

Example

• 12 is a near-perfect number because 12 = 1 + 2 + 3 + 6, and 1, 2, 3, 4, 6 are the proper divisors of 12. In this case, 4 is the redundant divisor.

Example

- 12 is a near-perfect number because 12 = 1 + 2 + 3 + 6, and 1, 2, 3, 4, 6 are the proper divisors of 12. In this case, 4 is the redundant divisor.
- $\sigma(12) 2 \cdot 12 = 28 24 = 4$.

Example

- 12 is a near-perfect number because 12 = 1 + 2 + 3 + 6, and 1, 2, 3, 4, 6 are the proper divisors of 12. In this case, 4 is the redundant divisor.
- $\sigma(12) 2 \cdot 12 = 28 24 = 4$.

Remark

12 is the smallest near-perfect number.

Example

- 12 is a near-perfect number because 12 = 1 + 2 + 3 + 6, and 1, 2, 3, 4, 6 are the proper divisors of 12. In this case, 4 is the redundant divisor.
- $\sigma(12) 2 \cdot 12 = 28 24 = 4$.

Remark

12 is the smallest near-perfect number.

Remark

See sequence A181595 of the OEIS for more discussion.

Definition (Tang et. al., 2013)

Definition (Tang et. al., 2013)

• A **deficient-perfect** number is a positive integer n for which $\sigma(n) = 2n - d$, where d divides n.

Definition (Tang et. al., 2013)

- A **deficient-perfect** number is a positive integer n for which $\sigma(n) = 2n d$, where d divides n.
- In this case, d is known as the **deficiency divisor** of n.

Definition (Tang et. al., 2013)

- A **deficient-perfect** number is a positive integer n for which $\sigma(n) = 2n d$, where d divides n.
- In this case, d is known as the **deficiency divisor** of n.

Example

Definition (Tang et. al., 2013)

- A **deficient-perfect** number is a positive integer n for which $\sigma(n) = 2n d$, where d divides n.
- In this case, *d* is known as the **deficiency divisor** of *n*.

Example

• Every power of 2 is a deficient-perfect number with d = 1.

Definition (Tang et. al., 2013)

- A **deficient-perfect** number is a positive integer n for which $\sigma(n) = 2n d$, where d divides n.
- In this case, *d* is known as the **deficiency divisor** of *n*.

Example

- Every power of 2 is a deficient-perfect number with d = 1.
- 10 is a deficient-perfect number with d = 2.

Definition (Tang et. al., 2013)

- A **deficient-perfect** number is a positive integer n for which $\sigma(n) = 2n d$, where d divides n.
- In this case, *d* is known as the **deficiency divisor** of *n*.

Example

- Every power of 2 is a deficient-perfect number with d = 1.
- 10 is a deficient-perfect number with d = 2.

Remark

See sequence A271816 of the OEIS for more discussion.

 Like with perfect numbers, even near-perfect and deficient-perfect numbers have some known constructions.

- Like with perfect numbers, even near-perfect and deficient-perfect numbers have some known constructions.
- Like with perfect numbers, odd near-perfect and deficient-perfect numbers are much rarer.

- Like with perfect numbers, even near-perfect and deficient-perfect numbers have some known constructions.
- Like with perfect numbers, odd near-perfect and deficient-perfect numbers are much rarer.
- Tang, Ren, Li showed that any odd near-perfect number must have at least four odd distinct prime factors.

- Like with perfect numbers, even near-perfect and deficient-perfect numbers have some known constructions.
- Like with perfect numbers, odd near-perfect and deficient-perfect numbers are much rarer.
- Tang, Ren, Li showed that any odd near-perfect number must have at least four odd distinct prime factors.
- Tang and Feng showed the same for any odd deficient-perfect number.

Odd Near-Perfect and Deficient-Perfect Numbers

• In 2012, Donovan Johnson found the smallest odd near-perfect number: $173369889 = 3^4 \cdot 7^2 \cdot 11^2 \cdot 19^2$.

Odd Near-Perfect and Deficient-Perfect Numbers

- In 2012, Donovan Johnson found the smallest odd near-perfect number: $173369889 = 3^4 \cdot 7^2 \cdot 11^2 \cdot 19^2$.
- In February 2016, the authors found the smallest deficient-perfect number: $9018009 = 3^2 \cdot 7^2 \cdot 11^2 \cdot 13^2$.

Table of Contents

- Introduction
- 2 A Theoretical Result
- 3 A Computational Result
- 4 References

Lemma

Suppose p_1, p_2, \ldots, p_k are k distinct primes, and $M \in \mathbb{R}$.

Lemma

Suppose p_1, p_2, \ldots, p_k are k distinct primes, and $M \in \mathbb{R}$.

The set

$$\{\sigma_{-1}(p_1^{r_1}p_2^{r_2}\ldots p_k^{r_k})\geq M: r_1,r_2,\ldots,r_k\in 2\mathbb{N}\},\$$

if nonempty, contains its minimum.

Lemma

Suppose p_1, p_2, \ldots, p_k are k distinct primes, and $M \in \mathbb{R}$.

The set

$$\{\sigma_{-1}(p_1^{r_1}p_2^{r_2}\dots p_k^{r_k})\geq M: r_1,r_2,\dots,r_k\in 2\mathbb{N}\},$$

if nonempty, contains its minimum.

The set

$$\{\sigma_{-1}(p_1^{r_1}p_2^{r_2}\dots p_k^{r_k})\leq M: r_1,r_2,\dots,r_k\in 2\mathbb{N}\cup\{\infty\}\},\$$

if nonempty, contains its maximum.

1 The proof is by induction on k.

- **1** The proof is by induction on k.
- ② In the near-perfect case, this inductive proof can be adapted into a recursive algorithm.

- **1** The proof is by induction on k.
- In the near-perfect case, this inductive proof can be adapted into a recursive algorithm.
- **③** In particular, given a set of odd primes p_1, p_2, \ldots, p_k , by using i. and setting M = 2, we can find a minimal lower bound $M_k > 2$ for $\sigma_{-1}(n)$ over all odd abundant squares n with prime factors p_1, p_2, \ldots, p_k . Since no odd perfect squares can be perfect, we must have $M_k > 2$.

Algorithm:

• Calculate m_{∞} .

Algorithm:

- **1** Calculate m_{∞} .
- ② For each eligible r_1 , calculate m_{r_1} . Stop as soon as $m_{r_1} = m_{\infty}$.

Algorithm:

- **1** Calculate m_{∞} .
- ② For each eligible r_1 , calculate m_{r_1} . Stop as soon as $m_{r_1} = m_{\infty}$.
- **3** Find the minimum of all computed values of $\sigma_{-1}(p_1^{r_1})m_{r_1}$. This is the desired minimal element.

1 Recall: if n is near-perfect, we have $\sigma_{-1}(n) = \frac{2\frac{n}{d}+1}{\frac{n}{d}}$. By noting that $\frac{n}{d}$ must have all its prime factors in $\{p_1, p_2, \ldots, p_k\}$, we can limit the number of cases we need to check.

- Recall: if n is near-perfect, we have $\sigma_{-1}(n) = \frac{2\frac{n}{d}+1}{\frac{n}{d}}$. By noting that $\frac{n}{d}$ must have all its prime factors in $\{p_1, p_2, \ldots, p_k\}$, we can limit the number of cases we need to check.
- ② Thus, if $\sigma_{-1}(n) \geq M_k$, we have $\frac{n}{d} \leq \frac{1}{M_k 2}$.

- Recall: if n is near-perfect, we have $\sigma_{-1}(n) = \frac{2\frac{n}{d}+1}{\frac{n}{d}}$. By noting that $\frac{n}{d}$ must have all its prime factors in $\{p_1, p_2, \ldots, p_k\}$, we can limit the number of cases we need to check.
- ② Thus, if $\sigma_{-1}(n) \geq M_k$, we have $\frac{n}{d} \leq \frac{1}{M_k 2}$.
- Moreover, we have, from Nielsen's earlier result,

$$n<\left(1+\frac{n}{d}\right)^{4^k}.$$

- Recall: if n is near-perfect, we have $\sigma_{-1}(n) = \frac{2\frac{n}{d}+1}{\frac{n}{d}}$. By noting that $\frac{n}{d}$ must have all its prime factors in $\{p_1, p_2, \ldots, p_k\}$, we can limit the number of cases we need to check.
- ② Thus, if $\sigma_{-1}(n) \ge M_k$, we have $\frac{n}{d} \le \frac{1}{M_k 2}$.
- Moreover, we have, from Nielsen's earlier result,

$$n<\left(1+\frac{n}{d}\right)^{4^k}.$$

These and usual number theoretic arguments allow us to check for near-perfect numbers with a given set of prime factors.

In fact, using this lemma and Nielsen's result, we obtain:

Theorem

Suppose k is a nonnegative integer. Then:

In fact, using this lemma and Nielsen's result, we obtain:

Theorem

Suppose k is a nonnegative integer. Then:

• There are finitely many odd near-perfect integers with exactly k prime divisors.

In fact, using this lemma and Nielsen's result, we obtain:

Theorem

Suppose k is a nonnegative integer. Then:

- There are finitely many odd near-perfect integers with exactly k prime divisors.
- There are finitely many odd deficient-perfect integers with exactly k prime divisors.

In fact, using this lemma and Nielsen's result, we obtain:

Theorem

Suppose k is a nonnegative integer. Then:

- There are finitely many odd near-perfect integers with exactly k prime divisors.
- There are finitely many odd deficient-perfect integers with exactly k prime divisors.

Remark

In a way, this is analogous to Dickson's result for odd perfect numbers.

Table of Contents

- Introduction
- 2 A Theoretical Result
- 3 A Computational Result
- 4 References

Finding All Odd Near-Perfect Numbers With Four Distinct Prime Divisors

• The case k = 4 is tractable with computer assistance.

Finding All Odd Near-Perfect Numbers With Four Distinct Prime Divisors

- The case k = 4 is tractable with computer assistance.
- Note that $3 \mid n$; otherwise, n is deficient.

Finding All Odd Near-Perfect Numbers With Four Distinct Prime Divisors

- The case k = 4 is tractable with computer assistance.
- Note that $3 \mid n$; otherwise, n is deficient.
- Similarly, at least one of 5 and 7 divides n.

• If $n = 3^w 7^x p^y q^z$ is abundant, then we need $\frac{3}{2} \cdot \frac{7}{6} \cdot \frac{p}{p-1} \cdot \frac{q}{q-1} > 2$. This rearranges to (p-8)(q-8) < 56.

- If $n = 3^w 7^x p^y q^z$ is abundant, then we need $\frac{3}{2} \cdot \frac{7}{6} \cdot \frac{p}{p-1} \cdot \frac{q}{q-1} > 2$. This rearranges to (p-8)(q-8) < 56.
- Therefore, $(p, q) \in \{(11, 13), (11, 17), (11, 19), (11, 23), (13, 17), (13, 19)\}.$

- If $n = 3^w 7^x p^y q^z$ is abundant, then we need $\frac{3}{2} \cdot \frac{7}{6} \cdot \frac{p}{p-1} \cdot \frac{q}{q-1} > 2$. This rearranges to (p-8)(q-8) < 56.
- Therefore, $(p, q) \in \{(11, 13), (11, 17), (11, 19), (11, 23), (13, 17), (13, 19)\}.$
- Individually checking each case with computer assistance yields one solution: $n = 3^4 \cdot 7^2 \cdot 11^2 \cdot 19^2$, as found by Donovan Johnson in 2012.

• If $n=3^w5^xp^yq^z$ is abundant, then we need $\frac{3}{2}\cdot\frac{5}{4}\cdot\frac{p}{p-1}\cdot\frac{q}{q-1}>2$. This rearranges to (p-16)(q-16)<240.

- If $n=3^w5^xp^yq^z$ is abundant, then we need $\frac{3}{2}\cdot\frac{5}{4}\cdot\frac{p}{p-1}\cdot\frac{q}{q-1}>2$. This rearranges to (p-16)(q-16)<240.
- Therefore, $p \le 31$.

- If $n=3^w5^xp^yq^z$ is abundant, then we need $\frac{3}{2}\cdot\frac{5}{4}\cdot\frac{p}{p-1}\cdot\frac{q}{q-1}>2$. This rearranges to (p-16)(q-16)<240.
- Therefore, $p \le 31$.
 - If p = 17, then $q \le 251$.

- If $n=3^w5^xp^yq^z$ is abundant, then we need $\frac{3}{2}\cdot\frac{5}{4}\cdot\frac{p}{p-1}\cdot\frac{q}{q-1}>2$. This rearranges to (p-16)(q-16)<240.
- Therefore, $p \le 31$.
 - If p = 17, then $q \le 251$.
 - If p = 19, then $q \le 89$.

- If $n=3^w5^xp^yq^z$ is abundant, then we need $\frac{3}{2}\cdot\frac{5}{4}\cdot\frac{p}{p-1}\cdot\frac{q}{q-1}>2$. This rearranges to (p-16)(q-16)<240.
- Therefore, $p \le 31$.
 - If p = 17, then $q \le 251$.
 - If p = 19, then $q \le 89$.
 - If p = 23, then $q \le 47$.

- If $n=3^w5^xp^yq^z$ is abundant, then we need $\frac{3}{2}\cdot\frac{5}{4}\cdot\frac{p}{p-1}\cdot\frac{q}{q-1}>2$. This rearranges to (p-16)(q-16)<240.
- Therefore, $p \le 31$.
 - If p = 17, then $q \le 251$.
 - If p = 19, then $q \le 89$.
 - If p = 23, then $q \le 47$.
 - If p = 29, then q = 31.

- If $n=3^w5^xp^yq^z$ is abundant, then we need $\frac{3}{2}\cdot\frac{5}{4}\cdot\frac{p}{p-1}\cdot\frac{q}{q-1}>2$. This rearranges to (p-16)(q-16)<240.
- Therefore, $p \le 31$.
 - If p = 17, then $q \le 251$.
 - If p = 19, then $q \le 89$.
 - If p = 23, then $q \le 47$.
 - If p = 29, then q = 31.
- If p = 7, 11, 13, there are no restrictions on q. We need more.

• If $n = 3^w 5^x 7^y q^z$ is near-perfect, then unconditionally on q, we get that $\sigma_{-1}(n) > \sigma_{-1}(3^2 5^2 7^2) > 2 + \frac{1}{12}$ and so $\frac{n}{d} < 12$.

- If $n = 3^w 5^x 7^y q^z$ is near-perfect, then unconditionally on q, we get that $\sigma_{-1}(n) > \sigma_{-1}(3^2 5^2 7^2) > 2 + \frac{1}{12}$ and so $\frac{n}{d} < 12$.
- We note that $7 \mid \sigma(n)$ and so $q \neq 13$ (since ord₇(13) = 2).

- If $n=3^w5^x7^yq^z$ is near-perfect, then unconditionally on q, we get that $\sigma_{-1}(n)>\sigma_{-1}(3^25^27^2)>2+\frac{1}{12}$ and so $\frac{n}{d}<12$.
- We note that $7 \mid \sigma(n)$ and so $q \neq 13$ (since ord₇(13) = 2).
- We now consider two cases: w = 2 and w > 4.

- If $n=3^w5^x7^yq^z$ is near-perfect, then unconditionally on q, we get that $\sigma_{-1}(n)>\sigma_{-1}(3^25^27^2)>2+\frac{1}{12}$ and so $\frac{n}{d}<12$.
- We note that $7 \mid \sigma(n)$ and so $q \neq 13$ (since ord₇(13) = 2).
- We now consider two cases: w = 2 and $w \ge 4$.
- w = 2 is impossible, since we need $13 \mid 2\frac{n}{d} + 1$ but $\frac{n}{d} < 12$ and is odd.

• If $w \ge 4$, then we have $\frac{n}{d} \in \{3, 5\}$.

- If $w \ge 4$, then we have $\frac{n}{d} \in \{3, 5\}$.
- This means that $v_3(\sigma(n)) \ge 3$. However, we cannot have $v_3(\sigma(7^y)) \ge 2$; or else we must have $37 \cdot 1063 \mid \sigma(n)$ which is not possible. Hence, $q \equiv 1 \pmod{3}$ and $q \ne 11$.

- If $w \ge 4$, then we have $\frac{n}{d} \in \{3, 5\}$.
- This means that $v_3(\sigma(n)) \ge 3$. However, we cannot have $v_3(\sigma(7^y)) \ge 2$; or else we must have $37 \cdot 1063 \mid \sigma(n)$ which is not possible. Hence, $q \equiv 1 \pmod{3}$ and $q \ne 11$.
- We also need 5 $\mid \sigma(q^z)$ and 7 $\mid \sigma(q^z)$; this implies that $q \geq 151$.

- If $w \ge 4$, then we have $\frac{n}{d} \in \{3, 5\}$.
- This means that $v_3(\sigma(n)) \ge 3$. However, we cannot have $v_3(\sigma(7^y)) \ge 2$; or else we must have $37 \cdot 1063 \mid \sigma(n)$ which is not possible. Hence, $q \equiv 1 \pmod{3}$ and $q \ne 11$.
- We also need 5 $\mid \sigma(q^z)$ and 7 $\mid \sigma(q^z)$; this implies that $q \geq 151$.
- Moreover, we show that w=4 is impossible: we must have $121 \mid \sigma(n)$ and so $121 \mid 2\frac{n}{d} + 1$ (since $q \neq 11$). Hence $w \geq 6$.

- If $w \ge 4$, then we have $\frac{n}{d} \in \{3, 5\}$.
- This means that $v_3(\sigma(n)) \ge 3$. However, we cannot have $v_3(\sigma(7^y)) \ge 2$; or else we must have $37 \cdot 1063 \mid \sigma(n)$ which is not possible. Hence, $q \equiv 1 \pmod{3}$ and $q \ne 11$.
- We also need 5 $\mid \sigma(q^z)$ and 7 $\mid \sigma(q^z)$; this implies that $q \geq 151$.
- Moreover, we show that w=4 is impossible: we must have $121 \mid \sigma(n)$ and so $121 \mid 2\frac{n}{d} + 1$ (since $q \neq 11$). Hence $w \geq 6$.
- It follows that $z \equiv -1 \pmod{3^4}$ and $z \equiv -1 \pmod{5}$, so z > 404.

- If $w \ge 4$, then we have $\frac{n}{d} \in \{3, 5\}$.
- This means that $v_3(\sigma(n)) \ge 3$. However, we cannot have $v_3(\sigma(7^y)) \ge 2$; or else we must have $37 \cdot 1063 \mid \sigma(n)$ which is not possible. Hence, $q \equiv 1 \pmod{3}$ and $q \ne 11$.
- We also need 5 $\mid \sigma(q^z)$ and 7 $\mid \sigma(q^z)$; this implies that $q \geq 151$.
- Moreover, we show that w=4 is impossible: we must have $121 \mid \sigma(n)$ and so $121 \mid 2\frac{n}{d} + 1$ (since $q \neq 11$). Hence $w \geq 6$.
- It follows that $z \equiv -1 \pmod{3^4}$ and $z \equiv -1 \pmod{5}$, so $z \geq 404$.
- Hence, $n > q^z > 151^{404} > 6^{256}$. This is a contradiction.

The proof for p=11 requires a few additional preliminaries, namely two lemmas from Nielsen:

Lemma (Nielsen, 2006)

Let p be an odd prime and let q be 3 or 5. If $q^{p-1} \equiv 1 \pmod{p^2}$ then either (q, p) = (3, 11) or $q^{\operatorname{ord}_p(q)} - 1$ has a prime divisor greater than 10^{13} .

The proof for p=11 requires a few additional preliminaries, namely two lemmas from Nielsen:

Lemma (Nielsen, 2006)

Let p be an odd prime and let q be 3 or 5. If $q^{p-1} \equiv 1 \pmod{p^2}$ then either (q, p) = (3, 11) or $q^{\operatorname{ord}_p(q)} - 1$ has a prime divisor greater than 10^{13} .

Lemma (Nielsen, 2006)

Let p and q be primes with $p \in (10^2, 10^{11})$ and q = 7, 11 or 13. If $q^{p-1} \equiv 1 \pmod{p^2}$ then $\sigma(q^{\operatorname{ord}_p(q)-1})$ is divisible by two primes greater than 10^{11} .

• We can start, here, by considering two cases: w = 2 and $w \ge 4$.

- We can start, here, by considering two cases: w = 2 and $w \ge 4$.
- If w = 2, then $q \le 139$. With some computer-assisted casework as in the others, there are no near-perfect odd numbers of this form.

• In the case $w \ge 4$, unconditionally, we have $\frac{n}{d} \le 27$. A little work improves this bound to $\frac{n}{d} \le 15$.

- In the case $w \ge 4$, unconditionally, we have $\frac{n}{d} \le 27$. A little work improves this bound to $\frac{n}{d} \le 15$.
- We start by discounting all q < 100.

- In the case $w \ge 4$, unconditionally, we have $\frac{n}{d} \le 27$. A little work improves this bound to $\frac{n}{d} \le 15$.
- We start by discounting all q < 100.
- Nielsen's two lemmas imply that $q \notin (10^2, 10^{11})$.

• This leaves only the case $q > 10^{11}$.

- This leaves only the case $q > 10^{11}$.
- We have $\log_{11} q > 10$, and so this chain of inequalities:

$$\begin{split} \frac{w + x + y + 3}{10} &\geq \log_q(\sigma(3^w 5^x 11^y)) \\ &\geq v_q(\sigma(3^w)) + v_q(\sigma(5^x)) + v_q(\sigma(11^y)) \\ &\geq z \\ &\geq 3^{w-2} 5^{x-1} - 1 \\ &\geq 15(w - 2)(x - 1) - 1. \end{split}$$

- This leaves only the case $q > 10^{11}$.
- We have $\log_{11} q > 10$, and so this chain of inequalities:

$$\frac{w + x + y + 3}{10} \ge \log_q(\sigma(3^w 5^x 11^y))$$

$$\ge v_q(\sigma(3^w)) + v_q(\sigma(5^x)) + v_q(\sigma(11^y))$$

$$\ge z$$

$$\ge 3^{w-2} 5^{x-1} - 1$$

$$> 15(w - 2)(x - 1) - 1.$$

• Given that $w \ge 4$ and $x \ge 2$, this means that $y \ge 282$.

• By similar arguments as to the case p = 7, we have $z \ge 44$.

- By similar arguments as to the case p = 7, we have $z \ge 44$.
- Hence, $n > 11^{282} \cdot 10^{484} > 15^{256}$.

- By similar arguments as to the case p = 7, we have $z \ge 44$.
- Hence, $n > 11^{282} \cdot 10^{484} > 15^{256}$.
- The proof for q = 13 is almost the same.

- By similar arguments as to the case p = 7, we have $z \ge 44$.
- Hence, $n > 11^{282} \cdot 10^{484} > 15^{256}$.
- The proof for q = 13 is almost the same.
- There are no odd near-perfect numbers of the form $3^w 5^x p^y q^z$.

Table of Contents

- Introduction
- 2 A Theoretical Result
- A Computational Result
- 4 References

 R. J. Cook, Bounds for odd perfect numbers, Number theory (Ottawa, ON, 1996), 67-71, CRM Proc. Lecture Notes 19 (1999).

- R. J. Cook, Bounds for odd perfect numbers, Number theory (Ottawa, ON, 1996), 67-71, CRM Proc. Lecture Notes 19 (1999).
- L. E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with *n* distinct prime factors, *Amer. J. Math.* **35** (1913), 413422.

- R. J. Cook, Bounds for odd perfect numbers, Number theory (Ottawa, ON, 1996), 67-71, CRM Proc. Lecture Notes 19 (1999).
- L. E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors, Amer. J. Math. 35 (1913), 413422.
- D. R. Heath-Brown, Odd perfect numbers, Math. Proc. Cambridge Philos. Soc. 115 (1994), 191196.

- R. J. Cook, Bounds for odd perfect numbers, Number theory (Ottawa, ON, 1996), 67-71, CRM Proc. Lecture Notes 19 (1999).
- L. E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors, Amer. J. Math. 35 (1913), 413422.
- D. R. Heath-Brown, Odd perfect numbers, Math. Proc. Cambridge Philos. Soc. 115 (1994), 191196.
- D. E. lannucci, The second largest prime divisor of an odd perfect number exceeds ten thousand, *Math. Comp.* 68 (1999), no. 228, 17491760.

- R. J. Cook, Bounds for odd perfect numbers, Number theory (Ottawa, ON, 1996), 67-71, CRM Proc. Lecture Notes 19 (1999).
- L. E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with *n* distinct prime factors, *Amer. J. Math.* **35** (1913), 413422.
- D. R. Heath-Brown, Odd perfect numbers, Math. Proc. Cambridge Philos. Soc. 115 (1994), 191196.
- D. E. lannucci, The second largest prime divisor of an odd perfect number exceeds ten thousand, *Math. Comp.* 68 (1999), no. 228, 17491760.
- Y. Li and Q. Liao, A class of new near-perfect numbers, J. Korean Math. Soc. **52** (2015), no. 4, 751-763.

• P. P. Nielsen, An upper bound for odd perfect numbers, *Integers* **3** (2003), #A14.

- P. P. Nielsen, An upper bound for odd perfect numbers, *Integers* **3** (2003), #A14.
- P. Nielsen, Odd perfect numbers, Diophantine equations, and upper bounds, *Math. Comp.* 84 (2015), 2549-2567 (2015), 1003-1008.

- P. P. Nielsen, An upper bound for odd perfect numbers, Integers 3 (2003), #A14.
- P. P. Nielsen, Odd perfect numbers, Diophantine equations, and upper bounds, *Math. Comp.* 84 (2015), 2549-2567 (2015), 1003-1008.
- P. P. Nielsen, Odd perfect numbers have at least nine prime factors, arXiv:math/0602485v1.

- P. P. Nielsen, An upper bound for odd perfect numbers, Integers 3 (2003), #A14.
- P. P. Nielsen, Odd perfect numbers, Diophantine equations, and upper bounds, *Math. Comp.* 84 (2015), 2549-2567 (2015), 1003-1008.
- P. P. Nielsen, Odd perfect numbers have at least nine prime factors, arXiv:math/0602485v1.
- P. Ochem and M. Rao, Odd perfect numbers are greater than 10¹⁵⁰⁰, Math. Comp. 81 (2012), 1869-1877.

- P. P. Nielsen, An upper bound for odd perfect numbers, Integers 3 (2003), #A14.
- P. P. Nielsen, Odd perfect numbers, Diophantine equations, and upper bounds, *Math. Comp.* 84 (2015), 2549-2567 (2015), 1003-1008.
- P. P. Nielsen, Odd perfect numbers have at least nine prime factors, arXiv:math/0602485v1.
- P. Ochem and M. Rao, Odd perfect numbers are greater than 10¹⁵⁰⁰, Math. Comp. 81 (2012), 1869-1877.
- P. Pollack, On Dickson's theorem concerning odd perfect numbers, American Math. Monthly 118 (2011), no. 2, 161-164.

 P. Pollack and V. Shevelev, On perfect and near-perfect numbers, J. Number Theory 132 (2012), 3037-3046.

- P. Pollack and V. Shevelev, On perfect and near-perfect numbers, J. Number Theory 132 (2012), 3037-3046.
- C. Pomerance, Multiply perfect numbers, Mersenne primes, and effective computability, Math Ann. 266 (1997), 195-206.

- P. Pollack and V. Shevelev, On perfect and near-perfect numbers, J. Number Theory 132 (2012), 3037-3046.
- C. Pomerance, Multiply perfect numbers, Mersenne primes, and effective computability, Math Ann. 266 (1997), 195-206.
- X. Z. Ren and Y. G. Chen, On near-perfect numbers with two distinct prime factors, *Bull. Aust. Math. Soc.* 88 (2013), 520-524.

- P. Pollack and V. Shevelev, On perfect and near-perfect numbers, J. Number Theory 132 (2012), 3037-3046.
- C. Pomerance, Multiply perfect numbers, Mersenne primes, and effective computability, Math Ann. 266 (1997), 195-206.
- X. Z. Ren and Y. G. Chen, On near-perfect numbers with two distinct prime factors, *Bull. Aust. Math. Soc.* 88 (2013), 520-524.
- N. J. A. Sloane, The online encyclopedia of integer sequences, available online at http://www.oeis.org

- P. Pollack and V. Shevelev, On perfect and near-perfect numbers, J. Number Theory 132 (2012), 3037-3046.
- C. Pomerance, Multiply perfect numbers, Mersenne primes, and effective computability, Math Ann. 266 (1997), 195-206.
- X. Z. Ren and Y. G. Chen, On near-perfect numbers with two distinct prime factors, *Bull. Aust. Math. Soc.* 88 (2013), 520-524.
- N. J. A. Sloane, The online encyclopedia of integer sequences, available online at http://www.oeis.org
- M. Tang and M. Feng, On deficient-perfect numbers, Bull. Aust. Math. Soc. 90 (2014), 186-194.

 M. Tang, X. Z. Ren, M. Li, On near-perfect and deficient-perfect numbers, *Collog. Math.* 133 (2013), 221-226.

- M. Tang, X. Z. Ren, M. Li, On near-perfect and deficient-perfect numbers, *Colloq. Math.* 133 (2013), 221-226.
- J. Voight, On the nonexistence of odd perfect numbers, MASS Selecta: Teaching and learning advanced undergraduate mathematics, eds. Svetlana Katok, Alexei Sossinsky, and Serge Tabachnikov, American Mathematical Society, Providence, RI (2003), 293-300.