Varianta 1 online

1. Variabila **n** reprezintă un număr natural cu exact două cifre. Precizați câte dintre expresiile următoare au valoarea **1/true** dacă și numai dacă, cifrele lui **n** au aceeași paritate.

Limbajul C++/ Limbajul C Limbaiul Pascal (n/10-n%10)%2==0(n div 10 - n mod 10) mod 2 = 02. n/10%2==n%2 2. n div 10 mod 2 = n mod 23. n/10==n%10 3. n div 10 = n mod 104. (n div $10 + n \mod 10 *10$) mod $2 = n \mod 2$ 4. (n/10+n%10*10)%2==n%25. n/2==n%25. $n \operatorname{div} 2 = n \operatorname{mod} 2$ a) 0 b) 1 c) 2 d) 3 f) 5 e) **4**

 Pentru implementarea ecuației unei drepte de forma ax+by+c=0 (unde a,b,c∈R), se defineste structura:

```
Limbajul C++/ Limbajul C

typedef struct
{float a, b, c;}dreapta;

Limbajul Pascal
type dreapta=record
a, b, c : real;
end:
```

Dacă **d1** și **d2** sunt două variabile de tipul dreapta, precizați care dintre următoarele expresii verifică dacă **d1** și **d2** sunt paralele.

Limbajul C++/ Limbajul C Limbajul Pascal d1 || d2 a) d1 = d2a) b) d1.a==d2.a && d1.b==d2.b (d1.a=d2.a) and (d1.b = d2.b)c) a.d1/a.d2==b.d1/b.d2a.d1/a.d2 = b.d1/b.d2d) d1.a/d2.a==d1.b/d2.bd) d1.a/d2.a=d1.b/d2.bd1.a==0 && d2.a==0 e) (d1.a=0) and (d2.a=0)d1.a*d2.b-d1.b*d2.a==0f) d1.a*d2.b-d1.b*d2.a=0

3. Funcția **f** primește ca parametri două valori reale și returnează cea mai mare dintre cele două valori. Antetul funcției este:

```
(Limbajul C++/C) float f(float x, float y);
(Limbajul Pascal) function f( x, y: real):real;
```

Precizați care dintre următoarele expresii reprezintă suma celor mai mici două valori dintre numerele reale **a**, **b** și **c**.

```
a) a+b+c-f(a,b) b) a+b+c-f(a,b)-f(b,c) c) a+2*b+c-f(a,b)-f(b,c) d) a+b+c-f(a,b,c) e) a+b+c-f(a,f(c,b)) f) a+b+c-f(f(a,b),f(b,a))
```

4. Precizați care sunt valorile afișate în urma execuției următorului program.

```
Limbaiul C++
                           Limbaiul C
                                                      Limbajul Pascal
#include<iostream>
                           #include<stdio.h>
                                                      var a,b:integer;
                           int a,b;
                                                      procedure f(a:integer;
using namespace std;
int a,b;
                           void f(int a, int *b)
                                                      var b:integer);
void f(int a, int &b)
                                                      begin
                            if(a>0)
                                                        if a>0 then
   if(a>0)
                                                          begin
                              {
                                a++; (*b)--;
                                                            a:=a+1; b:=b-1;
      a++; b--; f(b,a);
                                f(*b,&a);
                                                            f(b,a)
                                                          end;
```

```
cout<<a<<" "<<b<<" ";
                          printf("%d %d ",a,*b);
                                                     write(a,' ',b,' ')
}
                          }
                                                   end;
int main()
                          void main ( )
                                                   begin
    a=0; b=1;
                                                      a:=0; b:=1;
    f(b,a);
                             a=0; b=1;
                                                      f(b,a);
    cout<<a<<" "<<b;
                             f(b,&a);
                                                      write(a,' ',b,' ')
}
                             printf("%d %d",a,b);
                                                   end.
                          }
a) -1 2 2 -1 -1 1
                          b) 0 1 0 1
                                              c) Ciclare infinită
d) -1 2 2 -1 0 1
                          e) 0 2 0 -1 0 1
                                              f) -1 0 1 -1 1 1
```

5. În secvența următoare variabilele **n** și **m** au ca valori numere naturale.

```
Limbajul C++/ Limbajul C
                                   Limbajul Pascal
n=42015; m=0;
                                   n:=42015; m:=0;
while(n>0)
                                   while n>0 do
                                     begin
 {
    m=m*100+n/10%10*10+n%10;
                                      m:=m*100+n div 10 mod 10*10+n mod 10;
    n/=100;
                                      n:=n div 100;
  }
```

După rularea secvenței, valoarea variabilei m este:

- a) **15024**
- b) **15204**
- c) **24051**
- d) **51024**
- e) **152004** f) **152400**

6. Se consideră următorul program:

```
Limbajul C++
                         Limbajul C
                                                    Limbajul Pascal
#include<iostream>
                         #include<stdio.h>
                                                    var n,cn,x,p : longint;
using namespace std;
                         void main ( )
                                                    begin
int main()
                         {
                                                      readln(n);
                          int n, cn, x=0, p=1;
                                                    cn:=n;
                          scanf("%d", &n);
                                                    x := 0;
 int n, cn, x=0,p=1;
 cin>>n;
                          cn=n;
                                                    p := 1;
 cn=n;
                          while(n)
                                                    while n>0 do
 while(n)
                                                    begin
                            if (n%10>x)x=n%10;
                                                     if n \mod 10>x then
  if (n%10>x)x=n%10;
                            n/=10;
                                                        x:=n \mod 10;
  n/=10;
                                                     n:=n div 10
                          x++;
                                                    end;
 }
                          while (cn)
                                                    x := x+1;
 x++;
 while (cn)
                                                    while cn>0 do
                            n=n+cn%10*p;
                                                     begin
   n=n+cn%10*p;
                            p*=x;
                                                       n:=n+cn \mod 10*p;
                            cn/=10;
   p*=x;
                                                       p := p * x;
   cn/=10;
                           }
                                                       cn:=cn div 10
                         printf("%d", n);
  }
                                                     end;
                         }
                                                    write(n)
 cout<<n;
                                                   end.
```

Precizati care este cel mai mic număr natural format din 5 cifre distincte care poate fi citit ca dată de intrare astfel încât valoarea afișată să fie aceeași.

- a) 10000 b) 10192
- c) 10234
- d) **10239**
- e) 10923
- f) **12345**

7. Tabloul bidimensional **b** (cu liniile și coloanele numerotate de la **1** la **n**) se obține din tabloul bidimensional **a** prin rotire cu **90**° spre dreapta.

De exemplu, dacă **a** este: $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ se obține tabloul bidimensional **b**: $\begin{pmatrix} 7 & 4 & 1 \\ 8 & 5 & 2 \\ 9 & 6 & 3 \end{pmatrix}$

Pentru obținerea unei transformări corecte, secvența:

```
Limbajul C++/ Limbajul C
                                          Limbajul Pascal
      for(i=1; i<=n; i++)
                                                 for i:=1 to n do
                                                     for j:=1 to n do ....;
          for(j=1; j<=n; j++) .....;
trebuie completată cu atribuirea:
Limbajul C++/ Limbajul C
                                         Limbajul Pascal
a)
     b[i][j]=a[j][i]
                                               b[i][j]:=a[j][i]
                                          a)
     b[i][j]=a[j][n-i+1]
b)
                                         b)
                                               b[i,j] := a[j,n-i+1]
     b[i][j]=a[n-j+1][n-i+1]
                                               b[i,j] := a[n-j+1,n-i+1]
c)
                                          c)
                                         d)
                                               b[i,j] := a[n-i+1,n-j+1]
d)
     b[i][j]=a[n-i+1][n-j+1]
e)
     b[i][j]=a[n-j+1][i]
                                          e)
                                               b[i,j] := a[n-j+1,i]
     b[i][j]=a[n-i+1][j]
                                         f)
                                               b[i][j]:=a[n-i+1][j]
```

8. Variabila **x** este de tip întreg și reprezintă o cifră nenulă. Precizați care dintre expresiile următoare este echivalentă cu expresia:

```
(Limbajul C++/C)
                                  x == 7 \mid \mid x == 5
      (Limbajul Pascal)
                                   (x=7) or (x=5)
Limbajul C++/ Limbajul C
                               Limbajul Pascal
a) 35\%x==0
                                     35 \mod x = 0
                               a)
    x!=7&&x!=5
                                    (x<>7) and (x<>5)
                               b)
c) x>4&&!(x%2==0||x%3==0)
                                    (x>4) and not((x \mod 2=0) or (x \mod 3=0))
                               c)
d) x%2!=0&&x%3!=0
                               d)
                                    (x \mod 2 <> 0) and (x \mod 3 <> 0)
   !(x!=7||x!=5)
                               e)
                                    not((x<>7) or(x<>5))
e)
                                    (x>4) and not((x \mod 2=0) and (x \mod 3=0)
    x>4&&!(x%2==0&&x%3==0)
                              f)
```

9. Tabloul unidimensional **a** conține **n** numere naturale, ordonate crescător. Se cere afișarea mesajului **DA** dacă în **a** există două elemente a căror diferență este egală cu **s** (număr natural) sau a mesajului **NU**, în caz contrar. Precizați condiția ce trebuie utilizată în locul punctelor de suspensie astfel încât secventa următoare să rezolve corect problema dată.

```
Limbajul C++/C
                                                Limbajul Pascal
i = 1; j = 2;
                                                i:=1; j:=2;
while ( .....)
                                                while ..... do
         if (a[j]-a[i]<s) j++;
                                                     if a[j]-a[i] < s then inc(j)</pre>
         else i++;
                                                     else inc(i);
                                                 end;
if (j <= n) cout<<"DA"; | printf("DA");</pre>
                                                if j <=n then write('DA')</pre>
else cout<<"NU"; | printf("DA");</pre>
                                                else write('NU');
a)
                                                a)
      j \le n\&\&a[j]-a[i]!=s
                                                b)
                                                      (j \le n) and (a[j]-a[i] \le s)
b)
c)
      j \le n \& a[j] - a[i] == s
                                                c)
                                                      (j \le n) and (a[j]-a[i]=s)
     a[j]-a[i]!=s
                                                d)
d)
                                                      a[j]-a[i] <> s
e)
                                                e)
f)
      i \le n\&\&a[j]-a[i] == s
                                                f)
                                                      (i \le n) and (a[j]-a[i]=s)
```

10. Precizați care este rolul următorului subprogram.

```
Limbajul C++/ Limbajul C
                                   Limbajul Pascal
void f(char s[],char t[],int k)
                                   procedure f(var s:string;t:string;
                                   k:byte);
{
   char aux[255];
                                   var aux:string;
   strcpy(aux,s+k);
                                   begin
   s[k]=0;
                                       aux:=copy(s,k,255);
   strcat(s,t);
                                       delete(s,k,255);
   strcat(s,aux);
                                       s:=concat(s,t);
}
                                       s:=concat (s,aux);
                                   end;
```

- a) Șterge ultimele k caractere ale lui s și concatenează rezultatul cu șirul t
- b) Concatenează șirul s cu rezultatul concatenării șirurilor s și t
- c) Inserează șirul s în șirul t, începând cu poziția k
- d) Concatenează șirurile s și t, obținând un șir de lungime k
- e) Înlocuiește primele **k** caractere din **s** cu primele **k** caractere din **t**
- f) Inserează șirul t în șirul s, începând cu poziția k
- 11. Se consideră un graf orientat cu 6 noduri, numerotate 1,2,..,6. Arcele grafului sunt de forma (x,2*x) pentru orice x∈{1,2,3} și de forma (x,x-1) pentru orice x∈{2,3,4,5,6}. Care este numărul minim de arce ce trebuie adăugate astfel încât graful să fie tare conex?
 - a) 0
- b) 1
- c) 2
- d) 3
- e) **4**
- f) 5
- 12. Precizați care dintre tablourile următoare poate reprezenta vectorul gradelor unui graf neorientat conex.
 - a) (3,2,1,5,1,1)
- b) (5,1,6,4,5,3)
- c) (1,1,1,1,2,2)

- d) (1,1,1,1,1,6)
- e) (2,1,3,1,0,1)
- f) (1,3,5,2,1,2)
- 13. Dacă un graf neorientat conex are **n** vârfuri și **3n+2** muchii, precizați care este valoarea minimă pentru **n**.
 - a) 16
- b) 8
- c) **4**
- d) 2
- e) 1
- f) 0
- 14. Pentru un număr natural nenul **n**, se construiește un arbore cu rădăcină astfel: rădăcina este numerotată **n** și orice nod care este numerotat cu o valoare **x>1** are ca fii nodurile numerotate cu divizorii săi, mai puțin numărul însuși. Toate frunzele arborelui sunt numerotate cu **1**. Precizați câte dintre numerele naturale din intervalul [10,20] pot fi alese ca rădăcină, astfel încât arborele asociat să aibă un număr maxim de frunze.
 - a) 1
- b) 2
- c) 3
- d) 4
- e) **5**
- f) 6
- 15. Un pulover norvegian este frumos dacă pentru a-l tricota se folosesc cel puțin 2 și cel mult 4 culori de lână. Precizați câte modalități de combinare a culorilor există pentru a tricota un pulover norvegian frumos, având la dispoziție 5 ghemuri de lână de culori diferite.
 - a) **5**
- b) **12**
- c) 24
- d) 25
- e) **48**
- f) **125**

Varianta 2 online

1. Precizați care dintre următoarele expresii are valoarea **1/true** dacă și numai dacă numărul natural nenul memorat în variabila **x nu** este divizibil cu 6.

Limbajul C++/ Limbajul C

a) x/6=0

b) x==6

c) x%6 = 0

d) x/6>0

e) x%2+x%3>0

f) x>6

Limbajul Pascal

a) x div 6 = 0

b) x=6

c) x mod 6 = 0

d) x/6>0

e) x mod 2+x mod 3>0

f) x>6

2. Precizați care dintre următoarele instrucțiuni este corectă dacă variabilele **x**, **y** și **z** au declarările de mai jos:

```
Limbajul C++/ Limbajul C
                                             Limbajul Pascal
float x;
                                             x : real;
int y,z;
                                             y,z:integer;
a) x = x*y%z;
                                             a) x := x * y \mod z;
b) x = z y x;
                                             b) x := z \mod y * x;
c) x = x y z;
                                             c) x := x \mod y * z;
d) x = x*z%x;
                                             d) x := x * z \mod x;
e) x = x%z;
                                             e) x := x \mod z;
f) y = z%x;
                                             f) y:=z \mod x;
```

3. Precizați ce valoare se va afișa pe ecran în urma executării secvenței de program următoare, știind că **s** este o variabilă care memorează un șir de caractere, iar **i** este o variabilă de tip întreg.

```
Limbajul C++/ Limbajul C
                                         Limbaiul Pascal
strcpy(s,"admitere");
                                         s:='admitere';
for(i=0;i<strlen(s);i++)</pre>
                                         for i:=1 to length(s) do
                                        if pos(s[i],'politehnica')>0 then
  if(strchr("politehnica",s[i]))
         strcpy(s+i,s+i+1);
                                                delete(s,i,1);
cout<<s; | printf("%s",s);</pre>
                                         write(s);
                        c) dmtr
a) dmt
            b) dm
                                      d) dmr
                                                   e) mt
                                                               f) mrt
```

4. Precizați care dintre următoarele afirmații este adevărată pentru **orice** graf neorientat **G** format din **100** de noduri și **100** de muchii.

a) Graful G nu este conex

b) Graful G este conex

c) Graful G este complet

d) Graful G contine cel putin un ciclu

e) Graful G nu are noduri izloate

f) Graful G contine un lant elementar de lungime 100

5. Pentru reprezentarea unui graf orientat **G** se utilizează matricea de adiacență. Precizați care este suma elementelor din această matrice dacă graful are **20** de noduri și **30** de arce.

a) **60**

b) 50

c) 40

d) 30

e) 20

f) **10**

6. Precizați care este lungimea maximă a unui lanț simplu (lanț format din muchii distincte)

într-un arbore cu 10 noduri în care fiecare nod are gradul un număr impar.

- a) 9
- b) 8
- c) 7
- d) 6
- e) **5**
- f) **4**
- 7. Tabloul unidimensional **v** conține **n** numere întregi numerotate de la **1** la **n**. Precizați care dintre următoarele secvențe determină înlocuirea primului element din tabloul unidimensional **v** cu cea mai mică valoare care apare în acesta.

```
Limbajul C++/ Limbajul C
                                     Limbajul Pascal
a) for (i=1; i<n; i++)
                                     a) for i:=1 to n-1 do
        if(v[i]>v[i+1])
                                         if v[i]>v[i+1] then
                                           begin
             a=v[i];
                                              a:=v[i];
             v[i]=v[i+1];
                                             v[i]:=v[i+1];
             v[i+1]=a;
                                             v[i+1]:=a;
b) for (i=n-1; i>=1; i--)
                                     b) for i:=n-1 downto 1 do
        if(v[i]>v[i+1])
                                         if v[i]>v[i+1] then
                                           begin
             a=v[i];
                                              a:=v[i];
             v[i]=v[i+1];
                                             v[i]:=v[i+1];
             v[i+1]=a;
                                             v[i+1]:=a;
                                           end;
c) for (i=n-1; i>=1; i--)
                                     c) for i:=n-1 downto 1 do
        if(v[i]<v[i+1])
                                         if v[i] < v[i+1] then
                                           begin
             a=v[i];
                                              a:=v[i];
             v[i]=v[i+1];
                                             v[i]:=v[i+1];
             v[i+1]=a;
                                             v[i+1]:=a;
        }
                                         end;
d) for (i=1; i<=n-1; i++)
                                     d) for i:=1 to n-1 do
        if(v[i]<v[i+1])
                                         if v[i]<v[i+1] then
                                           begin
        {
             a=v[i];
                                             a:=v[i];
             v[i]=v[i+1];
                                             v[i]:=v[i+1];
            v[i+1]=a;
                                             v[i+1]:=a;
        }
                                           end;
e) for (i=n-1; i>=1; i--)
                                     e) for i:=n-1 downto 1 do
        if(v[i]<v[i+1])
                                         if v[i]<v[i+1] then
                                           begin
        {
             a=v[i+1];
                                             a:=v[i+1];
            v[i]=v[i+1];
                                             v[i]:=v[i+1];
            v[i+1]=a;
                                             v[i+1]:=a;
f) for (i=1; i<=n-1; i++)
                                     f) for i:=1 to n-1 do
        if(v[i]<v[i+1])
                                         if v[i] < v[i+1] then
                                           begin
        {
             a=v[i+1];
                                             a:=v[i+1];
            v[i]=v[i+1];
                                             v[i]:=v[i+1];
             v[i+1]=a;
                                             v[i+1]:=a;
        }
                                           end;
```

8. Precizați pentru care dintre următoarele tablouri unidimensionale se poate aplica algoritmul căutării binare cu scopul de a găsi în mod eficient, dacă există, numere care au cifra

unităților egală cu o valoare x, dată.

```
a) (1, 21, 13, 23, 33, 17, 27) b) (1, 13, 17, 21, 23, 27, 33) c) (1, 13, 33, 17, 21, 23, 27) d) (33, 27, 23, 21, 17, 13, 1) e) (1, 13, 33, 21, 23, 27, 17) f) (33, 27, 23, 21, 13, 1, 17)
```

9. În secvența de mai jos, variabila **a** memorează un tablou bidimensional cu **4** linii și **4** coloane, numerotate de la **1** la **4**, cu elementele întregi. Variabila **s** este întreagă, iar **i** este de tip întreg. Precizați care dintre instrucțiunile de mai jos poate înlocui punctele de suspensie, astfel încât secvența să determine memorarea în variabila **s**, a valorii sumei elementelor aflate pe prima si ultima coloană ale matricei.

```
Limbajul C++/ Limbajul C
                                         Limbajul Pascal
s=0;
                                         s:=0;
for(i=1;i<=4;i++)....
                                         for i:=1 to 4 do .....
a) s=s+a[4][i]+a[i][4];
                                         a) s:=s+a[4,i]+a[i,4];
b) s=s+a[4-i][4]+a[i][1];
                                         b) s:=s+a[4-i,4]+a[i,1];
                                         c) s:=s+a[i,1]+a[i,4];
c) s=s+a[i][1]+a[i][4];
d) s=s+a[i][i]+a[1][i];
                                         d) s:=s+a[i,i]+a[1,i];
                                         e) s:=s+a[1,i]+a[4,i];
e) s=s+a[1][i]+a[4][i];
f) s=s+a[i][i]+a[5-i][i];
                                         f) s:=s+a[i,i]+a[5-i,i];
```

10. Utilizând metoda backtracking se generează toate anagramele cuvântului *avion*. Precizați câte anagrame încep și se termină cu câte o consoană.

```
a) 6
```

- b) **12**
- c) 20
- d) **36**
- e) 38
- f) 40

11. Subprogramul **f** are definiția următoare. Dacă variabilele **a** și **b** sunt de tip întreg și memorează valorile **3** respectiv **5**, precizați care vor fi valorile pe care le memorează variabilele **a** și **b** după apelul:

```
(Limbajul Pascal/C++)
   f(a,b);
                (Limbajul C).
   f(a,&b);
Limbajul C++
                                      Limbajul C
 void f(int x,int &y)
                                      void f(int x,int *y)
   {int aux;
                                          {int aux;
    aux=x; x=y;
                                           aux=x; x=*y;
    y=aux;
                                           *v=aux;
Limbajul Pascal
   procedure f(x:integer;var y:integer);
     var aux:integer;
   begin
      aux:=x; x:=y; y:=aux;
   end;
a) 3 și 3
           b) 4 si 3
                        c) 5 și 5
                                      d) 3 și 5
                                                    e) 3 și 4
                                                                   f) 5 si 3
```

12. Considerăm declararea următoare, folosită pentru a memora numărătorul și numitorul unei fracții. Precizați care dintre instrucțiunile de mai jos este corectă.

Limbajul C++/ Limbajul C

Limbajul Pascal

```
typedef struct
                                             type fractie=record
  { int a, b; }fractie;
                                                   a,b:integer;
fractie m,n;
                                            var m,n:fractie;
a) m=n;
                                            a) m := n;
                                            b) if (m>n) then m:=m+1;
b) if (m>n) m++;
c) if (m==n) m--;
                                            c) if (m=n) then m:=m-1;
d) if (m \le n) m = n;
                                            d) if (m \le n) then m := n;
e) if (m!=n) m--;
                                            e) if (m <> n) then m := m-1;
f) if(m>n) m=n;
                                            f) if (m>n) then m:=n;
```

13. Precizați care este numărul de grafuri orientate distincte formate din **3** noduri și **4** arce. Două grafuri sunt distincte dacă au matricea de adiacență diferită.

- a) **32**
- b) 30
- c) 20
- d) 16
- e) **15**
- f) 9
- 14. Precizați care este instrucțiunea prin care variabilei **y** i se atribuie numărul obținut prin inversarea ordinii cifrelor numărului natural format din exact **2** cifre, memorat în variabila întreagă **x**.

Limbajul C++/ Limbajul C

a) y=x/10*10+x%100;

b) y=x%10+x/10;

c) y=x/10*10+x%10;

d) y:=x mod 10 +x div 10;

e) y=x*10%100+x/10;

f) y=x%10/10;

Limbajul Pascal

a) y:=x div 10*10+x mod 100;

b) y:=x mod 10 +x div 10;

c) y:=x div 10*10+x mod 10;

d) y:=x mod 100 div 10;

e) y:=x*10 mod 100+x div 10;

f) y:=x mod 10 div 10;

- 15. Fie **G** un graf neorientat complet cu **100** de noduri. Precizați care dintre următoarele afirmatii este adevarată:
 - a) În graful **G** există un lanț elementar de lungime **100**
 - b) Graful **g** este un graf hamiltonian
 - c) Graful **G** este un graf eulerian
 - d) Graful g nu este conex
 - e) Graful **g** are **900** de muchii
 - f) Graful **G** are două componente conexe

Varianta 3 online

1. Indicați câte dintre expresiile următoarele au valoarea 1 (Limbajul C/C++), respectiv true (Limbajul Pascal) dacă și numai dacă valorile variabilelor a și b sunt numere întregi pare consecutive.

Limbajul C/C++ 1. (a%2) && (b%2) && (a-b==2) 2. (a%2) && (a-b==2||b-a==2) 3. ! (a%2) && abs (a-b) ==2 4. ! (a%2) &&! (b%2) && abs (a-b) ==2 5. !! (a%2) && (a-b==2) 6. (a%2==0) &&! (abs (a-b)==2) b) ==2)

b) **1**

a) 0

```
Limbajul Pascal
```

- 1. (a mod 2<>0) and (b mod 2<>0) and (a-b=2)
- 2. (a mod 2<>0) and ((a-b=2)
 or (b-a=2))
- 3. not(a mod 2<>0) and
 (abs(a-b)=2)
- 4. not(a mod 2<>0) and
 not (b mod 2<>0) and
 (abs(a-b)=2)
- 5. not(not(a mod 2<>0)) and
 (a-b=2)
- 6. (a mod 2=0) and not(abs(ab)=2)

e) **4**

d) 3

- f) **5**
- 2. Precizați ce se va afișa în urma rulării secvenței următoare, în care se consideră că variabilele **a** și **b** memorează numere reale.

c) 2

```
Limbaiul C++
                               Limbajul Pascal
a=5.2;
                               a := 5.2;
b=-3.25:
                               b := -3.25;
a-=b;
                               a := a-b;
b*=2;
                               b := b*2;
cout<<ceil(a+b)<<" "<<
                               write(round(a+b),' ',trunc(a-
floor(a-b);
                               b));
Limbajul C
a=5.2;
b=-3.25;
a-=b;
b*=2;
printf("%g %g",ceil(a+b),floor(a-b));
a) -5 8
                      c) 1 14
                                 d) 1 15
                                                       f) 2 15
           b) -4 8
                                              e) 2 14
```

3. Precizați ce se afișează la sfârșitul executării secvenței următoare.

```
{ a*=10;
                                  b:=b*a;
  b+=a;
                                  b := b-10;
  a=b;
                               end;
  return a;}
                               function
int main()
{ int a=2,b=7;
                               g(a,b:integer):integer;
  p(a,b);
                               begin
  cout << g(b, a);}
                                 a := a * 10;
                                 b := b+a;
                                 a := b;
Limbajul C
void p(int a, int *b)
                                 g:=a;
{ a++;
                               end;
  *b=*b*a;
                               begin
  *b-=10;}
int g(int a, int b)
                                 a := 2;
                                 b := 7;
{ a*=10;
  b+=a;
                                 p(a,b);
  a=b;
                                 write(g(b,a));
  return a;}
                               end.
int main()
{ int a=2,b=7;
  p(a, &b);
  printf("%d",g(b,a)); }
                                 d) 73
          b) 41
                      c) 72
                                              e) 112
                                                       f) 113
```

4. Se consideră subprogramul **f** definit mai jos. Precizați ce se afișează în urma apelului **f (8)**.

```
Limbajul C++
                              Limbajul Pascal
void f(int i)
                              procedure f(i:integer);
{ if (i>1)
                              begin
                                 if i>1 then
   if (i%2)
                                   if i mod 2<>0 then
       {f(i-1);
        cout<<i-1<<" ";}
                                       begin
   else {i--;
                                         f(i-1);
                                         write(i-1,' ');
         f(i);}
}
                                       end
                                   else
                                       begin
Limbajul C
void f(int i)
                                         dec(i);
                                         f(i);
{ if (i>1)
   if (i%2)
                                       end;
       {f(i-1);}
                              end;
        printf("%d ",i-1);}
   else {i--;
         f(i);}
}
a) 2 3 5 b) 2 4 6 c) 3 5 7
                              d) 5 3 2
                                       e) 6 4 2
```

5. Precizați ce se va afișa în urma rulării secvenței date, în care se consideră că variabilele **x** și **y** sunt de tip întreg.

```
Limbajul C++
                                Limbajul Pascal
x=5;
                                x := 5;
y=2;
                                y := 2;
cout<<++x/y+++1;
                                inc(x);
cout<<endl<<x<<" "<<y;
                                writeln(x div y+1);
                                inc(y);
                                writeln(x,' ',y);
Limbajul C
x=5;
y=2;
printf("%d",++x/y+++1);
printf("\n%d %d",x,y);
a) 4
           b) 4
                     c) 4
                                 d) 3
                                             e) 3
                                                       f) 3
  6 3
             6 2
                        5 2
                                   6 3
                                                6 2
                                                         5 2
```

6. Știind că variabila **s** este de tip șir de caractere, precizați ce se va afișa după executarea următoarei secvențe de instrucțiuni.

```
Limbajul C/C++
                               Limbaiul Pascal
strcpy(s, "ExamenUPB");
                               s:='ExamenUPB';
for (i=0; i < strlen(s)/2; i++)
                               for i:=1 to length(s)
                                                        div 2
     s[i]=s[strlen(s)-i-2];
                               s[i] := s[length(s)-i];
strcpy(s,s+2);
strcpy(s+strlen(s)-2,
                               delete(s,1,2);
                               delete(s,length(s)-1,1);
s+strlen(s)-1);
printf("%s",s); | cout<<s;</pre>
                               write(s);
a) UnenUB b) UnenUP c) neenUB
                               d) neenUP e) nennUB f) nennUP
```

- 7. Indicați care este numărul de comparații executate pentru ordonarea descrescătoare a unui tablou unidimensional cu **50** elemente, prin metoda interschimbării.
 - a) 25
- b) 49
- c) **50**
- d) 1225
- e) **1226**
- f) **2450**

8. Utilizând metoda backtracking se generează toate codurile formate din cinci caractere distincte ale mulțimii {a,b,c,d,e,f}. Primele cinci soluții generate sunt: abcde,abcdf,abced,abcef,abcfd. Indicați care sunt codurile generate imediat în fața soluției dcbae, dar și imediat după aceasta.

```
a) dcaef; b) dcafe; c) dcbaf; d) dcbfe; e) dcbef; f) dcbfa; dcafe dcbaf dcbea dceab dcbfe dcbaf
```

9. La o cantină se prepară zilnic 5 sortimente pentru felul întâi, 10 pentru felul doi și 6 tipuri de desert. Precizați câte posibilități de a alege un meniu există, știind că un meniu este alcătuit din felul întâi, felul doi și facultativ desert.

- a) **50**
- b) 80
- c) 90
- d) 250
- e) 300
- f) 350

Precizați de câte ori se execută operația de înmulțire în cadrul secvenței date pentru ridicarea la puterea **p** a matricei pătratice **a** de ordin **n**.

a)
$$(n^3)^p$$
 b) $(p+1) \cdot n^3$ c) $p \cdot n^3$

c)
$$\mathbf{p} \cdot \mathbf{n}^3$$

d)
$$(p-1) \cdot n^3$$
 e) $p \cdot n^2$

$$e) \mathbf{p} \cdot \mathbf{n}^2$$

$$f) n^3$$

Varianta 4 online

1. Indicați care expresie dintre următoarele are valoarea 1 (Limbajul C/C++), respectiv true (Limbajul Pascal) dacă și numai dacă valorile variabilelor a și b sunt numere întregi impare consecutive.

Limbajul C/C++

- 1. (a%2==1) &&! (b%2) && abs (a-b) ==2
- 2. ! (a%2) &&! (b%2) && abs (a-b) ==2
- 3. ! (! (a%2) &&! (b%2)) && abs (a-b) ==2
- 4. (a%2==1&&b%2!=1)&&(a-b==2|| b-a==2)
- 5. ! (a%2) &&! (b%2) &&! (abs (a-b) ==2)
- 6. (a%2) && (b%2) && abs (a-b)!=2
- a) **1**
- b) 2
- c) 3

Limbajul Pascal

- 1. (a mod 2=1) and (not(b mod 2<>0)) and (abs(a-b)=2)
- not(a mod 2<>0) and not(b mod 2<>0) and (abs(a-b)=2)
- 3. not(not(a mod 2<>0) and
 (not(b mod 2<>0))) and
 (abs(a-b)=2)
- 4. ((a mod 2=1) and (b mod 2<>1)) and ((a-b=2) or (b-a=2))
- 5. not(a mod 2<>0) and not(b mod 2<>0) and not(abs(a-b)=2)
- 6. (a mod 2 <> 0) and (b mod 2 <> 0) and (abs(a-b) <> 2)
- d) 4
- e) 5
- f) 6

2. Precizați ce se va afișa în urma rulării secvenței următoare, dacă variabila întreagă **x** are valoarea inițială **1234**.

```
Limbajul C++
x=x%100/10*10/10%10 +
x/10%10;
cout<<ceil(sqrt(x)+0.5)<<"
"<< floor(sqrt(x)-0.5);</pre>
```

Limbajul C x=x%100/10*10/10%10 + x/10%10; printf("%g %g",

ceil(sqrt(x)+0.5), floor(sqr

a) 2 0

t(x)-0.5));

- b) 2 1
- c) 2 2

Limbajul Pascal

```
x:= x mod 100 div 10*10 div
10 mod 10 +x div 10 mod 10;
write(round(sqrt(x)+0.5),'
',trunc(sqrt(x)-0.5));
```

d) 3 1

e) 3 2

f) 5 3

3. Precizați ce se afișează la sfârșitul executării secvenței următoare.

```
Limbajul C++
void p(int a, int &b)
    { a+=a+b;
    b+=a;
    a=b-a; }
```

```
Limbajul Pascal
var a,b:integer;
procedure p(a:integer; var
b:integer);
begin
```

```
int main()
                                    a := a+a+b;
   { int a=5,b=10;
                                   b := b+a;
     p(a,b);
                                    a := b-a;
     cout<<a<<" "<<b;
                                end;
     p(a,b);
     cout<<endl<<a<<" "<<b;
                                begin
  }
                                  a := 5;
                                  b := 10;
Limbajul C
                                  p(a,b);
void p(int a, int *b)
                                  writeln(a,' ',b);
 {a+=a+(*b);}
                                  p(a,b);
   *b+=a;
                                  writeln(a,' ',b);
   a=*b-a; }
                                end.
int main()
{ int a=5,b=10;
  p(a, &b);
  printf("%d %d",a,b);
  p(a, &b);
  printf("\n%d %d",a,b);}
a) 5 30
          b) 5 30
                      c) 5 30
                                 d) 10 30
                                            e) 10 30
                                                       f) 10 30
  5 70
             5 80
                        10 80
                                   10 30
                                              30 70
                                                         30 80
```

4. Precizați care este valoarea returnată de funcție la apelul **f (1502)**.

```
Limbajul C/C++
                                   Limbajul Pascal
int f(int i)
                                   function
{ if(i==0) return 10;
                                   f(i:integer):integer;
                                   begin
   if(i%10==0 || i%10==5)
                                      if i=0 then f:=10
      return f(i/10) *10+i;
                                    else
   else
                                   if (i \mod 10=0) or (i \mod 10=0)
   return i%10 * f(i/10);
                                   5=0)
                                     then f:=f(i \text{ div } 10)*10 + i
}
                                   else
                                     f:=(i \mod 10)*f(i \operatorname{div} 10);
                                   end;
a) 3175
           b) 2600
                       c) 2330
                                   d) 2050
                                               e) 530
                                                           f) 350
```

5. Precizați ce se va afișa în urma rulării secvenței următoare, în care se consideră că variabilele **x** și **y** sunt de tip întreg.

```
Limbajul C++

x=2; y=5;

while (x<y)
{ cout<<++x+y++<<" ";
 x++; }

Limbajul Pascal

x:=2; y:=5;

while x<y do
begin
inc(x);
write(x+y,' ');
Limbajul C

x=2; y=5;

inc(y);
inc(x);
```

6. Știind că variabila **s** este de tip șir de caractere, precizați ce se va afișa după executarea următoarei secvente de instrucțiuni.

```
Limbajul C/C++
                                Limbajul Pascal
strcpy(s, "Examen-UPB");
                                s:='Examen-UPB';
for (i=strlen(s)/2;i>0;i--)
                                for i:=length(s) div 2 downto 2
    s[i]=s[strlen(s)-i];
                                do s[i]:=s[length(s)-i+2];
strcpy(s+strlen(s)/2-1,
                                delete(s,length(s) div 2,2);
s+strlen(s)/2+1);
                                write(s);
printf("%s",s); | cout<<s;
a) -UPB
                      b) - n - UPB
                                            c) n-UPB
d) EBPUUPB
                      e) EBPU-UPB
                                            f) EBPU--UPB
```

- 7. Indicați care este numărul necesar de comparații pentru ordonarea prin interschimbare a unui tablou unidimensional cu **100** elemente.
 - a) 99
- b) **2475**
- c) **4851**
- d) **4950**
- e) 5050
- f) 10000
- 8. Indicați câte numere divizibile cu 10, cu 10 cifre, pot fi construite folosind numai cifrele 0, 1 și 2.
 - a) **6561**
- b) 13122
- c) 13212
- d) **15322**
- e) 19683
- f) 59049
- 9. Fie mulțimile A={1,2,3,4}, B={1,2,3}, C={1,2}, D={1,2,3,4}. Precizați care este al 10-lea element al produsului cartezian A×B×C×D, cât și antepenultimul element.
 - a) **1212**; **4322**
- b) 1212; 4323
- c) 1213; 4322

- d) 1221; 4322
- e) 1312; 4322
- f) 1312; 4323
- 10. Fie un graf neorientat cu **25** noduri și **40** muchii. Precizați care este numărul maxim de noduri izolate pe care le poate avea graful.
 - a) 16
- b) 15
- c) **14**
- d) **13**
- e) **10**
- f) **5**
- 11. Fie un graf neorientat cu **100** noduri. Precizați care este numărul minim de muchii necesar pentru ca graful să nu aibă noduri izolate.
 - a) 48
- b) 49
- c) **50**
- d) 98
- e) 99
- f) 100
- 12. Precizați care este numărul maxim de frunze al unui arbore binar cu **100** noduri care are înălțimea minimă. Un arbore binar este un arbore în care fiecare nod are cel mult doi descendenti directi (fii).
 - a) 99
- b) **69**
- c) **51**
- d) 50
- e) 37
- f) 34

13. Fie arborele cu rădăcină cu nodurile numerotate de la 1 la 15, reprezentat prin vectorul de tați: (10,8,4,10,1,4,5,10,8,0,3,5,3,12,3). Precizați câte lanțuri elementare distincte de lungime 3, care pleacă din radăcină, există.

a) 2

b) 3

c) 4

d) **5**

e) 6

f) **7**

14. Precizați câte grafuri orientate distincte cu **25** noduri, dintre care cel puțin un nod este izolat, se pot construi.

a) 5²·2⁶⁰⁰

b) 3·2⁶⁰³

c) 2^{600}

d) $5^2 \cdot 2^{552}$

e) **3·2**⁵⁵⁵

f) **2**⁵⁵²

15. Precizați care este complexitatea timp pentru următoarea secvență de program, unde n reprezintă numărul de elemente al unui tablou unidimensional v, numerotat de la 1 la n, cu elemente numere întregi, iar x un număr întreg.

```
Limbajul Pascal
Limbajul C/C++
j=0;
                                     j := 0;
for(i=1; i<=n; i++)
                                     for i:=1 to n do
                                         if v[i] <> x then
  if(v[i]!=x)
    { j++; v[j]=v[i]; }
                                       begin
                                         inc(j);v[j]:=v[i];
n=j;
                                     end;
                                       n := j;
a) O (n)
                         b) O (logn)
                                                  c) O (n \cdot logn)
d) O(n^2)
                         e) O(n^3)
                                                  f) O (2<sup>n</sup>)
```

Varianta 5 online

1. Fie subprogramul:

```
Limbajul C++/C
                                 Limbajul Pascal
int f (int n, int s) {
                                 function f(n,s:integer):
 if (n < s)
                                 integer;
    return 0;
                                 begin
 else
                                  if (n < s) then f:=0
    if(n%s == 0)
                                  else
      return 1+ f(n/s, s+1);
                                    if (n \mod s = 0) then
                                      f := 1 + f(n \text{ div } s, s+1)
   else
      return f(n/s,s);
 }
                                      f := f(n div s,s);
                                  end;
```

Subprogramul **f** se execută pentru următoarele seturi de valori **n=720**, **s=2**; **n=120**, **s=3**; **n=120**, **s=1**; **n=720**, **s=1**. Pentru câte dintre apeluri subprogramul **f** va returna valoarea **5**?

- a) un apel b) 2 apeluri c) 3 apeluri d) nici un apel e) 4 apeluri f) 5 apeluri
- 2. Fie subprogramul de mai jos unde **n** și **c** sunt variabile de tip întreg.

```
Limbaiul C++
int f(int &n, int c)
 int a=n%10;
 if(n==0)
                              begin
   return 0;
 else
   if(a==c)
      {n=n/10};
                               else
       return 1+f(n,c);}
   else
      {n=n/10%10};
       return f(n,c);
      }
}
Limbajul C
int f (int *n, int c)
{
int a=*n %10;
                              end;
if(*n==0) return 0;
else
  if(a==c)
     {*n=*n/10};
      return 1+f(n,c);}
  else
```

```
Limbaiul Pascal
function f(var n:integer;
c:integer):integer;
var a:integer;
 a:=n mod 10;
 if(n=0) then
     f:=0
   if(a=c) then
     begin
      n:=n div 10;
      f:=1+f(n,c);
     end
    else
     begin
      n:=n div 10 mod 10;
      f:=f(n,c);
     end;
```



```
c) {chimie,biologie,info}d) {chimie,mate,biologie}e) {fizica,mate,biologie}f) {chimie,fizica,biologie}
```

9. Se consideră un arbore cu rădăcină în care fiecare nod intern (nod care nu este pe ultimul nivel) are doi descendenți direcți. Dacă arborele are **k** niveluri (rădăcina se află pe nivelul **0**) câte noduri sunt pe nivelul **k**?

```
a) 2k+1
```

- b) 2^{k-1}+1
- c) 2k
- d) 2^{k-1}
- e) 2^{k-2}+1
- $f) 2^{k+1}+1$

10. Se consideră șirul primelor **nxm** numere naturale unde **n≥1** și **m≥1**. Dacă se afișează câte **m** numere pe o linie, numărul **123** se află pe linia **4** și coloana **3**, atunci pe ce linie și coloană se află numărul **167**?

```
a) linia 5, coloana 7
```

- b) linia 4, coloana 7
- c) linia 6, coloana 4

- d) linia 6, coloana 2
- e) linia 5, coloana 2
- f) linia 5, coloana 3

11. În secvența de cod următoare se consideră că variabilele a,i,n sunt de tip întreg.

```
Limbajul C++
                               Limbajul Pascal
cin>>n;
                               read(n);
a=1;
                               a:=1:
i=2;
                               i:=2;
while (i<n && a>0)
                               while (i<n) and (a>0) do
                                 begin
                                   if (n \mod i=0) then
 if(n\%i==0)
     a=0;
                                      a := 0
 else
                                   else
  i++;
                                      inc(i);
 cout<<i;
                                   write(i);
 }
                                  end;
Limbajul C
scanf("%d",&n);
a=1;
i=2;
while (i < n \&\& a > 0)
  if(n%i==0)
    a=0;
  else
    i++;
  printf("%d",i);
```

Definim, în acest context, **operație** drept o instrucțiune de *atribuire* sau o expresie de *incrementare*. Care este numărul **maxim** de **operații ce** se pot executa în secvența de mai sus, în funcție de valoarea citită pentru variabila **n**?

```
a) 2n+2
```

- b) **2n**
- c) n-1
- d) 2n+3
- e) n
- f) **n+1**

12. Fie secvența de program unde variabila i este de tip întreg:

```
Limbajul C++
                               Limbajul Pascal
i=4;
                               i := 4;
while (i \le 25)
                               while i<=25 do
                                begin
 {
  cout<<i/10+i%10<<" ";
                                write(i div 10+i mod 10,' ');
                                i:=i+2;
  i+=2;
 }
                                end;
Limbajul C
i=4;
while (i \le 25)
 printf("%d ",i/10+i%10);
 i+=2;
Ultimele trei numere afișate sunt:
a) 2 4 7
           b) 2 4 9
                    c) 6 2 4 d) 9 2 4 e) 2 4 6 f) 9 2 1
```

13. Fie secvența de cod de mai jos:

```
Limbajul C++/C
                             Limbajul Pascal
float s,p;
                             var s,p:real;
float s1(int n)
                             function s1(n : integer) :
                             real;
 {
  if(n==0)
                             begin
                             if (n = 0) then s1:=2
    return 2;
  else
                             else
    if(n==1)
                             if (n = 1) then s1:=s
                             else s1:=s*s1(n-1)-p*s1(n-2);
      return s:
                             end;
     return s*s1(n-1)-
        p*s1(n-2);
```

Dacă la apelul subprogramului **s1** se returnează valoarea **82** atunci valorile inițiale ale variabilelor **n**, **s** și **p**, în această ordine, au fost:

```
a) 4 3 4 b) 4 4 3 c) 4 2 3 d) 3 3 2 e) 3 1 2 f) 3 4 2
```

14. Fie secvența de cod unde toate variabilele sunt întregi:

```
Limbajul C++
s=0;
cin>>n>>k;
for(i=1;i<=n;i++)
  for(j=1;j<=n;j++)
  {
    if (i>j)
        t=i-j;
```

```
else
        t=j-i;
   if(i==j || t<=k || j==n-i+1 || (i+j>=n-k+1 && i+j<=n+k+1))
        a[i][j]=1;
   else a[i][j]=2;
   if(a[i][j]==2)
     s++;
}
Limbajul C
s=0;
scanf("%d%d",&n,&k);
for(i=1;i<=n;i++)
 for(j=1;j<=n;j++)
  if (i>j)
    t=i-j;
  else
    t=j-i;
  if(i==j || t<=k || j==n-i+1 || (i+j>=n-k+1 && i+j<=n+k+1))
    a[i][j]=1;
  else
    a[i][j]=2;
  if(a[i][j]==2)
    s++;
 }
Limbajul Pascal
s:=0;
read(n,k);
for i:=1 to n do
 for j:=1 to n do
  begin
   if(i>j) then
     t:=i-j
   else
     t:=j-i;
   if((i=j) \text{ or } (t \le k) \text{ or } (j=n-i+1) \text{ or } ((i+j)=n-k+1) \text{ and } (i+j \le k+1)
n+k+1))) then
     a[i,j]:=1
   else
     a[i,j]:=2;
   if(a[i,j] = 2) then
     inc(s);
    end;
După execuție, variabila s va avea valoarea 8 dacă n și k au inițial valorile:
           b) n=6; k=1 c) n=5;k=2 d) n=7; k=1 e) n=4; k=2 f) n=6; k=3
```

15. Se consideră un tablou bidimensional **a**, cu **3** linii și **3** coloane numerotate de la **1** la **3**, în care **a**[i][j]=j+3*(i-1), ($1 \le i, j \le 3$). Fie secvența de cod de mai jos:

```
Limbajul C++
                                     Limbajul Pascal
k=0;
                                     k := 0;
for(i=1;i<=3;i++)
                                      for i:=1 to 3 do
 \{for(j=1;j<=3-k;j++)\}
                                       begin
     cout << a[\alpha][\beta] << "";
                                          for j:=1 to 3-k do
     k++;
                                            write (a[\alpha,\beta],'');
   }
                                          inc(k);
                                       end;
Limbajul C
k=0;
for(i=1;i<=3;i++)
 {for(j=1;j<=3-k;j++)
    printf("%d ",a[α][β]);
    k++;
După execuția secvenței se afișează șirul \bf 3 \  \, 5 \  \, 7 \  \, 2 \  \, 4 \  \, 1, dacă \alpha și \beta au valorile:
                           b) \alpha=j; \beta=3-j-k c) \alpha=j; \beta=4-j-k
a) \alpha=3-j-k; \beta=j
d) \alpha=4-j-k; \beta=j
                           e) \alpha=4+j-k; \beta=j-1 f) \alpha=4+j+k; \beta=j+1
```

Varianta 6 online

1. Trei variabile de tip întreg au valorile **a=13**, **b=5**, **c=3**. Dintre expresiile următoare, cea care are valoarea **1** (C++/C) respectiv **true** (Pascal) este:

```
Limbajul C++/C
```

```
a) a/c*2<5+c*4%5
```

- b) c%b==a%c
- c) b+a/10!=b%c*a/c
- d) (b>c) && ! (b*c%7==2*a-b*b)
- e) c%b*10<a*2
- f) c/b*b/c==1

Limbajul Pascal

- a) a div c $*2 < (5+c*4 \mod 5)$
- $b) c \mod b = a \mod c$
- c) b+a div 10 <>b mod c *a div c
- d) (b>c) and not((b*c mod 7)=(2*a-b*b))
- e) c mod b*10 < a*2
- f) c div b * b div c = 1

2. Într-un graf neorientat cu **13** noduri, fiecare nod are gradul **d**. Valoarea lui **d nu** poate fi:

- a) 2
- b) 4
- c) 6
- d) 8
- e) **10**
- f) **11**

3. Variabila i este de tip întreg. Numărul total al atribuirilor care se execută în urma rulării secvenței următoare este:

```
Limbajul C++/C

i=1;

while(i*i<2020)

i=i*2;

a) 5 b) 6 c) 7 d) 9 e) 11 f) 12
```

4. Considerând că variabila **s** poate reține un șir cu cel mult **100** de caractere și variabila **i** este de tip întreg, în urma executării următoarei secvențe de instrucțiuni, lungimea efectivă a șirului **s** este:

```
Limbaiul C++/C
                                   Limbajul Pascal
strcpy(s,"2020+2020=4040");
                                   s:='2020+2020=4040';
for(i=0;i<strlen(s);i++)</pre>
                                   for i:=1 to length(s) do
if(strchr("0123456789",s[i]))
                                    if pos(s[i],'0123456789')<>0
  strcpy(s+i,s+i+1);
                                   then delete(s,i,1);
a) 0
           b) 2
                                   d) 6
                                               e) 8
                                                          f) 11
                       c) 5
```

5. Pentru a verifica dacă elementele unui tablou unidimensional cu **n** elemente numere întregi sunt distincte două câte două, numărul de comparații executate este:

a) 2n

b)
$$n (n-1) / 2$$

6. În urma executării următoarei secvențe de program, variabila **x**, de tip întreg, va avea valoarea:

```
Limbajul C++/C
                                  Limbajul Pascal
x=15;
                                  x := 15;
                                  x:=x*3 div 4*4 div 3;
x=x*3/4*4/3;
do {if(x%2==0) x=x/2;
                                  repeat
     else x=x-5;
                                  if x \mod 2=0 then x:=x \operatorname{div} 2
   \}while(x>0);
                                  else x:=x-5;
                                  until x<=0;
a) -6
            b) -5
                        c) - 4
                                    d) 0
                                                e) 2
                                                            f) 5
```

- 7. Utilizând un algoritm backtracking se generează în ordine crescătoare toate numerele naturale cu patru cifre care au suma cifrelor egală cu 4. Primele trei soluții sunt: 1003, 1012, 1021. În șirul generat, numărul 2020 ocupă poziția:
 - a) 10
- b) 11
- c) 12
- d) 13
- e) **14**

f) n!

- f) **15**
- 8. Dacă s, i, j, n sunt variabile de tip întreg și a este un tablou bidimensional cu n linii și n coloane numerotate de la 1 la n, următorul algoritm calculează:

```
Limbajul C++/C

s=0;

for (i=1;i<=n;i++)

for (j=1;j<i;j++)

s=s+a[i][j];

Limbajul Pascal

s:=0;

for i:=1 to n do

for j:=1 to i-1 do

s:=s+a[i,j];
```

- a) suma elementelor de sub diagonala principală exclusiv elementele diagonalei principale
- b) suma elementelor de sub diagonala secundară exclusiv elementele diagonalei secundare
- c) numărul elementelor de deasupra diagonalei principale inclusiv elementele diagonalei principale
- d) suma elementelor de pe diagonala principală
- e) suma elementelor de sub diagonala principală inclusiv elementele diagonalei principale
- f) suma elementelor de deasupra diagonalei secundare inclusiv elementele diagonalei secundare
- 9. Se consideră următoarele declarații de tipuri și variabile:

```
Limbajul C++
                                 Limbajul Pascal
struct a
                                 type a=record
 { int b;
                                    b:integer;
   char c[10];
                                    c:string[10]
 };
                                 end:
struct d
                                  d=record
 { char e[10];
                                    e: string[10];
   float f;
                                    f: real;
```

```
g:a
   a g;
 } h;
                                    end;
                                    var h:d;
Limbajul C
typedef struct
 { int b;
   char c[10];
 }a;
typedef struct
 { char e[10];
   float f;
   a g;
 }d;
dh;
Dintre următoarele expresii, de tip caracter este:
                        b) h.a.c
                                                c) h.a.c[0]
a) q.e[2]
d) h.c[2]
                        e)h.g.c[2]
                                                f) d.e[2]
```

10. Se consideră un arbore cu 8 noduri și muchiile [1,2], [2,3], [3,6], [4,3], [5,7], [7,2], [8,2]. Pentru ca arborele să conțină un număr maxim de lanțuri elementare de lungime 3 care nu conțin rădăcina, se poate alege ca rădăcină oricare dintre nodurile:

```
a) 1, 2, 4, 5
```

c) 1, 3, 6, 7

11. În urma executării următoarei secvențe de program tabloul unidimensional **a**, cu **6** elemente numerotate de la **1** la **6**, va contine valorile:

```
Limbajul C++/C
                          Limbajul Pascal
for (i=1;i<=6;i++)
                          for i:=1 to 6 do
 if (i\%2!=0) a[i]=i/2;
                          if i mod 2<>0 then a[i]:=i div 2
 else a[i]=7-i;
                          else a[i]:=7-i;
                          for i:=6 downto 3 do
for (i=6;i>=3;i--)
  a[a[i]]=2*i%7;
                          a[a[i]]:=2*i mod 7;
a) 0 5 6 1 3 5
                     b) 5 3 1 3 2 1
                                           c) 636223
d) 615263
                     e) 631221
                                           f) 631321
```

12. Pentru apelul **s (2020, 2)** al subprogramului de mai jos, enuntul adevărat este:

```
Limbajul C++/C
                               Limbajul Pascal
                                function s(n,d:integer): integer;
int s(int n, int d)
{
                               begin
    if(n==1) return 0;
                               if n=1 then
    if (n%d==0)
                                  s := 0
       return 1+s(n/d,d);
                               else if n mod d=0 then
    else
                                    s:=1+s(n div d,d)
                                 else s:=s(n,d+1)
       return s(n,d+1);
}
                               end;
```

- a) s (2020, 2) = 3 și reprezintă numărul divizorilor primi ai numărului 2020
- b) s (2020, 2) = 4 și reprezintă numărul divizorilor primi ai numărului 2020
- c) s (2020,2)=4 și reprezintă suma exponenților divizorilor primi din descompunerea în factori primi a numărului 2020
- d) s (2020,2)=6 și reprezintă suma exponenților divizorilor primi din descompunerea în factori primi a numărului 2020
- e) s (2020, 2) = 10 și reprezintă numărul divizorilor proprii ai numărului 2020
- f) s (2020, 2) = 12 și reprezintă numărul divizorilor numărului 2020
- 13. Numărul de grafuri neorientate cu șase noduri, în care nodul 1 are gradul 1 și nodul 2 are gradul 2 este:
 - a) **92**
- b) 1280
- c) 1536
- d) 1792
- e) **1920**
- f) **2560**

14. În urma rulării programului următor vor fi afișate valorile:

```
Limbaiul C++
                                  Limbaiul C
#include <iostream>
                                  #include <stdio.h>
using namespace std;
                                  #include <stdlib.h>
void f (int &a, int b)
                                  void f (int *a, int b)
{ int x=3;
                                  { int x=3;
  a--;
                                     (*a) --;
                                     b++;
  b++;
  x--;
                                      x--;
 cout<<a<<' '<<b<<' '<<x<<' ';
                                      printf("%d %d %d ",*a,b,x);
                                  }
int main()
                                  int main()
{ int i, x=4, y=6;
                                  { int i, x=4, y=6;
                                     for(i=1; i<=3; i++)
  for (i=1;i<=3;i++)
                                         f(&x,x+y);
     f(x,x+y);
                                    printf("%d %d",x,y);
  cout<<x<' '<<y;
   return 0;
                                     return 0;
}
                                  }
Limbajul Pascal
program main;
var x, y, i: integer;
procedure f (var a: integer; b:integer);
var x:integer;
begin
  x := 3;
  dec(a); inc(b); dec(x);
  write(a,'',b,'',x,'');
end;
begin
  x := 4;
  y := 6;
  for i:=1 to 3 do
      f(x,x+y);
  write(x,'',y)
end.
```

- a) 3 11 2 3 6 b) 3 11 2 4 6
- e) 3 11 2 3 11 2 3 11 2 4 6 f) 3 11 2 2 10 2 1 9 2 1 6
- 15. Se sortează crescător tabloul v= (3, 4, 2, 5, 1, 7, 6). O propoziție falsă este:
 - a) Sortând prin metoda Bubble Sort se fac 7 interschimbări.
 - b) Aplicând metoda de sortare prin interclasare numerele 1 și 4 nu se compară.
 - c) Aplicând metoda de sortare prin selecție se execută cel mult 6 interschimbări.
 - d) Sortând prin selecția minimului, numerele 2 și 3 se compară de două ori.
 - e) Aplicând metoda de sortare Bubble Sort se poate obține ca etapă intermediară tabloul v=(3, 2, 4, 1, 5, 6, 7).
 - f) Aplicând metoda de sortare prin inserție se poate obține ca etapă intermediară tabloul v=(1, 3, 4, 2, 5, 7, 6).

Varianta 7 online

1. Expresia de mai jos are valoarea **1** (C++/C) respectiv **true** (Pascal) dacă și numai dacă **n** este:

- a) număr întreg impar mai mic decât 10
- b) număr întreg impar, din intervalul (-10,10)
- c) număr natural mai mic decât 100
- d) număr natural impar de o singură cifră
- e) număr întreg par mai mic decât 10
- f) număr natural impar cu cel mult două cifre
- 2. Dacă a este un tablou bidimensional cu n linii și n coloane, numerotate de la 1 la n, elementul de pe linia i și coloana j se află pe diagonala secundară dacă între indici există relatia:
 - a) i<j

b) **i>j**

c) **i=j**

- d) i+j=n-1
- e) i+j=n

- f) i+j=n+1
- 3. Graful neorientat complet **G** are **10** noduri. Un enunț adevărat este:
 - a) **G** este arbore
 - b) G are 50 de muchii
 - c) G nu este graf hamiltonian și nici eulerian
 - d) **G** este graf hamiltonian dar nu eulerian
 - e) G nu este graf hamiltonian dar este graf eulerian
 - f) G este graf hamiltonian și eulerian
- 4. Se consideră că d, i, k, n sunt variabile de tip întreg și a este un tablou unidimensional cu n numere întregi numerotate de la 1 la n. La finalul execuției secvenței următoare, variabila k are valoarea 1 dacă și numai dacă elementele tabloului a formează o progresie aritmetică. Expresia corectă care completează punctele de suspensie este:

Limbajul C++/C

- a) a[i+1]-a[i]!=d
- b) a[i]-a[i+1]!=d
- c) a[i]-a[i-1]!=d

- d) a[i+1]-a[i]==d
- e) a[i]+a[i+1]!=d
- f) a[i]-a[i-1]==d

Limbajul Pascal

- a) a[i+1]-a[i]<>d
- b) a[i]-a[i+1] <>d
- c) a[i]-a[i-1]<>d

- d) a[i+1]-a[i]=d
- e) a[i]+a[i+1]<>d
- f) a[i]-a[i-1]=d

5.	Se consideră un arbore cu 8 noduri și muchiile [1,2], [2,3], [3,6], [4,3], [5,7] [7,2], [8,2]. Înălțimea arborelui este egală cu lungimea celui mai lung lanț elementa care unește rădăcina de o frunză. Arborele dat are înălțime minimă dacă se va aleg ca rădăcină nodul:				
	a) 1 b) 2	c) 3	d) 5	e) 7	f) 8
6.	. În urma execuției secvenței următoare, în care toate variabilele sunt de t valoarea variabilei n este:				
	Limbajul C++/C n=0; a=11357; b=1426; p=1; while (a!=b)		Limbajul Pascal n:=0; a:=11357; b:=1426; p:=1; while a<>b do begin		
	{ x=a%10;y=b%10; if(x <y) n="n+p*x;<br">else n=n+p*y;</y)>		<pre>x:=a mod 10; y:=b mod 10; if x<y else="" n:="n+p*y;</pre" then=""></y></pre>		
	p=p*10;a=a/10;b=b/10;		p:=p*10; a:=a div 10; b:=b		
	}	-,,	div 10 end;		
	a) 1326	b) 1356		c) 6241	
	d) 11326	e) 11457		f) 62411	
7.	Fie enunțul: "pentru a sorta numere reale, utilizând met ale valorii maxime". Enunțu a) 0 b) 10	oda selecției, n	u sunt necesar	e mai mult de	
8.	Matricea alăturată este matr	ıță a unui graf:	1 0 1 0	1 0 1 0 0 0 0 0	
	a) orientat cu 6 noduri și 3 arce c) orientat cu 4 noduri și 6 arce		b) neorientat cu 4 noduri și 3 muchii d) neorientat cu 6 noduri și 6 muchii		
	e) orientat cu 4 noduri și 3	arce	f) neorientat cu 4 noduri și 6 muchii		
9.	Utilizând un algoritm backtracking se generează în ordine lexicografică toate anagramele cuvântului roman. Soluția generată imediat înainte de cuvântul norma și soluția generată imediat după cuvântul norma sunt: a) nramo și noram b) nramo și nramo c) nomra și noram d) nomra și nramo e) noram și nramo f) nomar și nramo				
	a)	·)		1) 220211212	
10.	Variabilele i, j, k sunt de tip întreg iar s reține un șir de caractere format din litere mici și spații (cuvintele sunt despărțite printr-un singur spațiu). În urma executării următoarei secvențe de program, variabila k are valoarea 0 dacă șirul s este inițial: Limbajul C++/C for (i=0;i <strlen(s);i++) ')="" (s[i]="='" delete(s,i,1);<="" do="" for="" i:="1" if="" length(s)="" limbajul="" pascal="" s[i]=" " strcpy(s+i,s+i+1);="" td="" then="" to=""></strlen(s);i++)>				

```
i:=1;
i=0;
j=strlen(s)-1;
                                       j:=length(s);
k=1;
                                       k := 1;
while(i<j)
                                       while i<j do
                                         begin
   {
      if (s[i]!=s[j])
                                            if s[i] <> s[j] then
         k=0;
                                              k := 0;
      i++;
                                            inc(i);
                                            dec(j)
      j--;
                                       end;
                                                    c) o rama alba
a) atasata
                          b) o rama maro
d) elisa vasile
                                                    f) vasile elisav
                          e) nora aron
```

11. Dacă din programul principal se apelează **f(f(3))**, numărul de autoapeluri ale functiei **f**, definită mai jos, este:

```
Limbajul C++/C
                                    Limbajul Pascal
int f (int a)
                                    function f(a:integer):integer;
                                    begin
{
  if (a<2)
                                    if a<2 then
     return 1;
                                      f:=1
                                    else
  else
     return f(a-1)+2*f(a-3);
                                      f:=f(a-1)+2*f(a-3)
}
                                    end;
            b) 9
                                    d) 14
                                                            f) 16
a) 8
                        c) 10
                                                e) 15
```

12. Secvența de mai jos construiește tabloul bidimensional a cu n linii și n coloane, numerotate de la 1 la n. Pentru n=4, suma elementelor de pe diagonala principală este:

```
Limbajul C++/C
                                    Limbajul Pascal
x=1;
                                    x := 1;
y=1;
                                    y:=1;
for(i=1;i<=n;i++)
                                    for i:=1 to n do
                                      for j:=1 to n+1-i do
  for (j=1; j<=n+1-i; j++)
                                        begin
     {
        a[i][j]=x;
                                          a[i,j]:=x;
       x++;
                                          inc(x)
     }
                                        end;
                                    for j:=n downto 1 do
for(j=n;j>=1;j--)
                                       for i:=n downto n+1-j do
   for(i=n;i>=n+1-j;i--)
                                         begin
       a[i][j]=y;
                                            a[i,j]:=y;
       y++;
                                            inc(y)
                                         end;
a) 9
            b) 12
                       c) 14
                                    d) 16
                                                e) 28
                                                            f) 30
```

13. Pentru funcția dată mai jos, **f (95)** și **f (59)** au valorile:

```
Limbajul C++/C

int f (int x)

{
Limbajul Pascal
function f (x:integer) :
integer;
```

```
if (x>=100)
                                   begin
      return x+2;
                                     if x>=100 then
  else
                                        f:=x+2
      return f (f(x+2)+1);
                                     else
}
                                        f := f(f(x+2)+1)
                                   end;
                                               c) 110 și 163
a) 103 si 146
                       b) 109 și 162
d) 103 și 163
                       e) 112 și 157
                                               f) 112 și 166
```

- 14. Sortând crescător prin metoda selecției, cu număr minim de interschimbări (se interschimbă doar elemente distincte), tablourile unidimensionale v=(3, 8, 2, 7), x=(4, 5, 1, 7), y=(4, 7, 9, 6) și z=(6, 3, 2, 9) se calculează numărul operațiilor (comparări și atribuiri) efectuate. Afirmația adevărată este:
 - a) Pentru v și y s-a realizat un număr egal de operații
 - b) Pentru v și z s-a realizat un număr egal de operații
 - c) Cel mai mare număr de operații s-a efectuat pentru x
 - d) Cel mai mare număr de operații s-a efectuat pentru y
 - e) Cel mai mic număr de operații s-a efectuat pentru z
 - f) Cel mai mic număr de operații s-a efectuat pentru y
- 15. În urma executării secvenței de program de mai jos se afișează:

```
Limbaiul C++/C
                               Limbajul Pascal
int f (int a, int b, int e)
                               program p;
                               var x,y,e: integer;
{
      int x;
                                function f(a,b,e:integer) :integer;
      if(a<2)
                                var x:integer;
                               begin
            return e+1;
                                 if a<2 then
      if(a%b==0)
                                   f := e+1
      {
            if(e==0)
                                 else
            cout<<b<' ';
                                 begin
      |printf("%d ",b);
                                   if a mod b=0 then
                                    begin
            e++;
      return f(a/b,b,e);
                                     if e=0 then
  }
                                     write(b,' ');
else
                                     inc(e);
                                     f:=f(a div b,b,e)
 {
   x=e+1;
                                    end
   e=0;
                                   else
                                    begin
   b++;
   return x*f(a,b,e);
                                      x := e+1; e := 0; inc(b);
                                      f:=x*f(a,b,e)
 }
}
                                    end
int main()
                                  end
                               end;
{ int x,y,e;
  cin>>x; |scanf("%d",&x);
                               begin
  y=2;
                                  read(x);
  e=0;
                                  y := 2;
```

- a) divizorii proprii ai numărului x
- b) numărul de divizori proprii ai numărului x
- c) divizorii proprii și numărul divizorilor proprii ai numărului x
- d) divizorii primi ai lui x și numărul tuturor divizorilor lui x
- e) divizorii proprii ai numărului \mathbf{x} și produsul exponenților divizorilor primi din descompunerea în factori primi a numărului \mathbf{x}
- f) divizorii primi ai numărului \mathbf{x} și produsul exponenților divizorilor primi din descompunerea în factori primi a numărului \mathbf{x}

Varianta 8 online

1. Se dă o variabilă **a** care reține un număr natural nenul. Expresia care are valoarea **0/false** pentru orice număr natural nenul **a** este:

```
a) C++/C: (a/3+a/7)%9
Pascal: (a DIV 3+a DIV 7) MOD 9
b) C++/C: (a%10+a%100/10)/10
Pascal: ((a MOD 10)+(a MOD 100) DIV 10) DIV 10
c) C++/C: ((10-a%10)+(10-a%100/10))/10
Pascal: ((10-(a MOD 10))+(10-(a MOD 100) DIV 10)) DIV 10
d) C++/C: (a%5+a%7)/10
Pascal: (a MOD 4+a MOD 6) DIV 10
e) C++/C: (a%3+a%7)/9
Pascal: (a MOD 3+a MOD 7) DIV 9
f) C++/C: (a%10+a/10)/9
Pascal: (a MOD 10+a DIV 10) DIV 9
```

2. Se dă un tablou unidimensional **v=(3,5,8,4,2,6,9,1)** în care primul element se află pe poziția 0 și **i** o variabilă de tip întreg. În urma executării secvenței de instrucțiuni, elementele tabloului unidimensional **v** sunt:

```
Limbajul C++/C
                                   Limbajul Pascal
 i=0;
                                   i := 0;
                                   while i<=6 do
while (i \le 6)
 {
                                   begin
 j=i+1;
                                   j:=i+1;
                                   v[i]:=v[i]+v[j];
v[i]=v[i]+v[j];
v[j]=v[i]-v[j];
                                   v[j]:=v[i]-v[j];
v[i]=v[i]-v[j];
                                   v[i]:=v[i]-v[j];
 i=i+2;
                                   i:=i+2
                                   end;
                                        b) \mathbf{v} = (5, 3, 4, 8, 6, 2, 1, 9)
a) \mathbf{v} = (5, 8, 4, 2, 6, 9, 1, 3)
                                        d) v=(5,-7,4,0,6,10,1,6)
c) v=(11,3,20,8,10,2,19,9)
                                        f) v=(9,1,2,6,8,4,3,5)
e) \mathbf{v} = (3, 1, 9, 6, 2, 4, 8, 5)
```

3. Știind că variabila i este de tip întreg și variabila a de tip șir de caractere reține cuvântul **politehnica**, în urma executării instrucțiunilor se va afișa:

```
a) politehnica b) Politehnica c) Politehnica d) Politehnica e) politehnica f) politehnica
```

4. Fie un tablou bidimensional **A**, cu **4** linii și **4** coloane numerotate de la **0** la **3** care conține elemente de tip întreg și două variabile **i** și **j** de tip întreg. Valorile ce vor fi reținute în tabloul bidimensional **A** după executarea următoarelor instrucțiuni sunt:

```
Limbajul C++/C
                                                                     Limbajul Pascal
                                                                      i:=3;
   i=3;
  while (i \ge 0)
                                                                      while i>=0 do
     {
                                                                        begin
        j=3;
                                                                        j := 3;
       while (j>=0)
                                                                        while j>=0 do
                                                                             begin
            if((i+j)%2==0)
                                                                             if (i+j) MOD 2 =0 then
                 A[i][j]=i+j;
                                                                                  A[i,j]:=i+j
            else
                 if(i>j) A[i][j]=i;
                                                                                  if i>j then
                 else A[i][j]=j;
                                                                                      A[i,j]:=i
                                                                                  else
                                                                                       A[i,j]:=j;
                                                                             j:=j-1
                                                                             end;
                                                                        i:=i-1
                                                                        end;
a) A = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 2 & 1 & 4 \\ 2 & 1 & 4 & 2 \\ 0 & 4 & 2 & 6 \end{pmatrix}
                                                                            b) A = \begin{pmatrix} 0 & 1 & 0 & 3 \\ 1 & 1 & 3 & 1 \\ 0 & 3 & 2 & 5 \\ 3 & 1 & 5 & 3 \end{pmatrix}
                                                                           d) A = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 2 & 4 \\ 2 & 2 & 4 & 3 \\ 3 & 4 & 3 & 6 \end{pmatrix}
c) A = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 1 & 3 & 3 \\ 2 & 3 & 2 & 5 \\ 3 & 3 & 5 & 3 \end{pmatrix}
e) A = \begin{pmatrix} 0 & 2 & 1 & 3 \\ 2 & 1 & 3 & 3 \\ 1 & 3 & 2 & 5 \end{pmatrix}
                                                                            f) A = \begin{pmatrix} 0 & 2 & 1 & 3 \\ 2 & 1 & 3 & 5 \\ 1 & 3 & 5 & 3 \end{pmatrix}
```

5. Fie o stivă inițial vidă. Cu ajutorul subprogramelor Ad(x), respectiv E1() este adăugat elementul x, respectiv șters un element din stivă. Suma elementelor din stivă după executarea operațiilor următoare este:

Ad(3) Ad(7) Ad(5) El() El() Ad(8)

- a) 3
- b) 7
- c) 10
- d) 11
- e) 12
- f) 13

6. Se dă mulțimea A={1,4,5,8,9}. Un algoritm generează în ordine crescătoare, toate numerele naturale de n cifre, folosind cifre distincte din mulțimea A, care nu au alăturate cifre de aceeași paritate. Dacă pentru n=4, primele patru soluții generate sunt: 1458, 1498, 1854, 1894, numărul de soluții pe care le va genera algoritmul este:

a) **12**

b) **16**

c) 20

- d) 24
- e) 28
- f) **30**
- 7. Şirul care poate reprezenta valorile gradelor nodurilor unui graf neorientat cu 6 noduri este:

a) **250212**

- b) 221112
- c) 22721

d) 220042

- e) **231122**
- f) 222112
- Şirul de valori care poate fi vectorul de tați al unui arbore cu 8 noduri este:

```
a) T = (0 1832554)
```

b) T = (03724583)

c) T = (0 1 1 2 4 5 8 7)

d) T = (05731312)

e) T = (0 1 0 2 4 6 3 3)

- f) T = (85731312)
- 9. Știind că i, j, s și a sunt patru variabile de tip întreg, pentru orice valoare naturală nenulă a variabilei a, după executarea instrucțiunilor, valoarea afișată corespunde formulei matematice:

```
Limbajul C++/C
                                          Limbajul Pascal
s=0;
                                          s:=0;
 for(i=1;i<=a;i++)
                                          for i:=1 to a do
   {
                                          begin
    j=1;
                                             j := 1;
    while(j<=i)
                                             while j<=i do
       {
                                             begin
        s++;
                                               s:=s+1;
        j++;
                                               j:=j+1
                                             end;
    j=i+1;
                                             j:=i+1;
    do
                                             repeat
                                               s:=s+1;
        s++;
                                               j:=j+1;
        j++;
                                             until j>a;
       }while(j<=a);</pre>
                                          end;
                                          write(s);
cout<<s--; | printf("%d", s--);
                         b) a^2+1
                                                 c) a<sup>2</sup>
a) a (a+1)
d) a^2-1
                         e) a (a-1)
                                                 f) 2a^2-1
```

10. Subprogramul **afis** primește ca parametru un tablou bidimensional **v** cu **n** linii și **n**

```
coloane, numerotate de la 1 la n, unde
Pentru valorile date, afis (v,n,k) va afișa:
Limbajul C++/C
void afis(int v[100][100],int n,int k)
{int i;
if(k>1)
 { for (i=n;i>=1;i--)
    if(k-i \le n \&\& k-i > 0)
       cout<<v[i][k-i]; | printf("%d", v[i][k-i]);</pre>
afis(v,n,k-2);
Limbajul Pascal
type matrice = array [1..100,1..100] of integer;
procedure afis(var v:matrice; n:integer; k:integer);
var i: integer;
begin
if k<>1 then
begin
    for i:=n downto 1 do
         if (k-i \le n) AND (k-i > 0) then
            write(v[i,k-i]);
  afis (v,n,k-2)
end
end;
                       b) 57032580
a) 08523075
                                             c) 02587035
d) 53078520
                       e) 35087250
                                              f) 70358520
Știind că subprogramul functie corespunde funcției matematice f(x)=3 \cdot x-1,
pentru orice x număr întreg, abc(t,c) va calcula:
Limbaiul C++/C
int functie(int x)
{return 3*x-1;}
int abc(int t, int c)
{ if(c==0) return t;
 else
  return abc(functie(t),c-1);}
Limbajul Pascal
function functie(var x:integer):integer;
```

```
begin
      functie:=3*x-1
    end;
    function abc(t,c:integer):integer;
    begin
     if c=0 then
          abc:=t
     else
        abc:=abc(functie(t),c-1)
    end;
    a) \underbrace{f(t) \circ ... \circ f(t)}_{c-1}
                                           b) \underbrace{f(t) + \cdots + f(t)}_{c-1}
    c) f(t)^c
                                           d) c * f(t)
                                           f) \underbrace{f(t) \circ ... \circ f(t)}_{c}
    e) (c-1) * f(t)
    După executarea următoarelor instrucțiuni se va afișa:
     Limbajul C++/C
                                         Limbajul Pascal
     char a[20][20];
                                         var a:array[1..20] of
                                         string;
     int i;
     strcpy(a[1], "bacalaureat");
                                              i:integer;
     strcpy(a[2],"liceu");
                                         begin
     strcpy(a[3],"examene");
                                         a[1]:='bacalaureat';
     strcpy(a[4], "politehnica");
                                         a[2]:='liceu';
     for (i=1;i<=4;i++)
                                         a[3]:='examene';
          cout<<a[i][2*i];
                                         a[4]:='politehnica';
     | printf("%d", a[i][2*i]);
                                         for i:=1 to 4 do
                                          write(a[i,2*i+1])
                                         end.
    a) aenn
                              b) teen
                                                       c) cunc
    d) cuei
                              e) bceh
                                                       f) ceen
    Următoarele instrucțiuni vor afișa:
13.
     Limbajul C++
                                     Limbajul C
     int f1(int x, int &y)
                                      int f1(int x, int *y)
     {
      x=x+2;
                                       x=x+2;
      y=y-1;
                                       *y=*y-1;
                                      return x+*y;
      return x+y;
      x=x+1;
                                       x=x+1;
     }
     int main()
                                      int main()
```

```
int n=3, m=6;
                               int n=3, m=6;
 cout<<f1(f1(m,n),m);
                               printf("%d ",
 cout<<" "<<m;
                               f1(f1(m,&n),&m));
 }
                               printf("%d", m);
                               }
Limbajul Pascal
function f1(x:integer; var y:integer):integer;
begin
 x := x+2;
 y := y-1;
 f1:=x+y;
 x := x+1
end;
var m,n: integer;
begin
m:=6;
n := 3;
write(f1(f1(m,n),m),' ',m)
end.
                        c) 10 5 d) 10 6 e) 11 6 f) 10 7
a) 17 5
            b) 17 6
Valorile care vor fi memorate în tabloul bidimensional b, cu liniile și coloanele
numerotate de la 1 la n, după apelul matrice (a,b,n,q), unde
a = \begin{pmatrix} 2 & 3 & 4 & 5 \\ 4 & 5 & 6 \end{pmatrix}, b = 0_3, n=3, q=2, sunt:
Limbajul C++/C
void matrice(int a[][100], int b[][100], int n, int q)
{int i,j,k;
 if(q>1)
  {
   for (i=1;i<=n;i++)
      for (j=1; j<=n; j++)
        for (k=1; k \le n; k++)
         b[i][j]=b[i][j]+a[i][k]*a[k][j];
   matrice(a,b,n,q-1);
}
Limbajul Pascal
type matrix = array [1..100,1..100] of integer;
procedure matrice(a:matrix; b:matrix; n:integer;
q:integer);
var i,j,k: integer;
begin
```

{

```
begin
  for i:=1 to n do
      for j:=1 to n do
         for k:=1 to n do
                   b[i,j] := b[i,j] + a[i,k] * a[k,j];
     matrice(a,b,n,q-1)
  end
end;
a) b = \begin{pmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{pmatrix}
                                                      b) \boldsymbol{b} = \begin{pmatrix} 47 & 38 & 29 \\ 62 & 50 & 38 \\ 77 & 62 & 47 \end{pmatrix}
                                                      d) b = \begin{pmatrix} 4 & 9 & 16 \\ 9 & 16 & 25 \\ 16 & 25 & 36 \end{pmatrix}
c) b = \begin{pmatrix} 4 & 6 & 8 \\ 6 & 8 & 10 \\ 8 & 10 & 12 \end{pmatrix}
                                                      f) \ \mathbf{b} = \begin{pmatrix} 77 & 62 & 47 \\ 62 & 50 & 38 \\ 47 & 39 & 39 \end{pmatrix}
e) \boldsymbol{b} = \begin{pmatrix} 29 & 38 & 47 \\ 38 & 50 & 62 \\ 47 & 62 & 77 \end{pmatrix}
În urma executării programului de mai jos se afișează:
 Limbajul C++
                                                    Limbajul C
  #include <iostream>
                                                    #include <stdio.h>
                                                    void functie(int *a,int *b)
 using namespace std;
  void functie(int &a,int &b)
                                                     { *b=3*(*b);
                                                           *a=2*(*a);}
  \{b=3*b;
     a=2*a;
                                                    int main()
                                                    { int n=4;
  int main()
                                                   functie(&n,&n);
printf("%d", n);
  { int n=4;
     functie(n,n);
     cout<<n;}
  Limbajul Pascal
 procedure functie (var a:integer; var b:integer);
 begin
   b := 3*b;
   a:=2*a
  end;
  var n:integer;
 begin
          n := 4;
          functie(n,n);
          write(n)
  end.
```

c) **6**

a) eroare b) 4

d) **12**

e) **14**

f) **24**

if q>1 then

Varianta 9 online

1. Rezultatul expresiei de mai jos este:

```
Limbajul C++/C

16 / (-5 % 3) * 3

a) 48 b) -24 c) -48 d) -2 e) 2 f) 6
```

2. Expresia corespunzătoare penultimei cifre a numărului natural având cel puţin două cifre reţinut de variabila întreagă **n** este:

```
Limbajul C++/C
a) n / 10 / 10
b) n / 10 % 10
c) n % 10 % 10
d) n % 10 / 10
e) n % 10 / 100
f) n / 100 % 10
Limbajul Pascal
a) n div 10 div 10
b) n div 10 mod 10
c) n mod 10 mod 10
d) n mod 10 div 10
e) n mod 10 div 100
f) n div 100 mod 10
```

3. Afirmația adevărată în privința secvenței de instrucțiuni de mai jos este:

```
Limbajul C++/C
                                   Limbajul Pascal
d = 1:
                                   d := 1;
while (d * d \le n)
                                   while d * d \le n do
                                     begin
  if (n % d == 0)
                                        if n \mod d = 0 then
                                          begin
  {
    d1 = d;
                                            d1 := d;
    d2 = n / d;
                                            d2 := n div d
  }
                                          end:
  d++;
                                        d := d + 1
}
```

- a) La final **d1** și **d2** vor fi egale **doar** dacă **n** reține un număr prim.
- b) La final **d1** și **d2** vor fi egale **doar** dacă **n** reține cubul unui număr prim.
- c) La final d1 și d2 vor fi egale doar dacă n reține un număr impar.
- d) La final d1 și d2 vor fi egale doar dacă n reține un număr par.
- e) La final **d1** si **d2** vor fi egale **doar** dacă **n** reține un număr impar.
- f) La final d1 și d2 vor fi egale doar dacă n reține un număr pătrat perfect.
- 4. Secvența de instrucțiuni de mai jos ordonează crescător cele **n** elemente ale tabloului unidimensional **v**, în care primul element este memorat pe poziția **0**, dacă punctele de suspensie sunt înlocuite cu:

```
Limbajul C++/C Limbajul Pascal for (i = 0; i < n - 1; i++) for i := 0 to n - 2 do begin ...  \{ begin \\ if (v[j] > v[j+1]) if v[j] > v[j+1] then
```

```
{
                                             begin
      aux = v[j];
                                               aux := v[j];
      v[j] = v[j+1];
                                               v[j] := v[j+1];
      v[j+1] = aux;
                                               v[j+1] := aux
    }
                                             end
  }
                                         end
                                    end
Limbajul C++/C
a) for (j = n-2; j >= i; j--)
                                  b) for (j = 0; j \le i; j++)
c) for (j = n-i; j >= i; j--)
                                  d) for (j = 1; j < i; j++)
e) for (j = n-1; j > i; j--)
                                  f) for (j = 1; j \le i+1; j++)
Limbajul Pascal
a) for j := n-2 downto i do
                                  b) for j := 0 to i do
c) for j := n-i downto i do
                                  d) for j := 1 to i-1 do
e) for j := n-1 downto i+1 do
                                  f) for j := 1 to i+1 do
```

5. Subprogramul **f** este definit mai jos. O condiție necesară și suficientă pentru ca numărul natural mai mare strict ca **1** reținut de variabila **n** să fie prim este:

```
Limbajul C++/C
                                   Limbajul Pascal
int f(int d, int n)
                                   function f(d, n: integer):
                                   integer;
  do
                                   begin
                                     repeat
  {
                                        d := d + 1;
    d++;
                                     until n \mod d = 0;
  while (n % d != 0);
                                     f := d
  return d;
                                   end;
Limbajul C/C++
a) f(2, n) == n
                                   b) f(2, n) == 2
c) f(1, n) == n
                                   d) f(1, n) == 1
e) f(1, n - 1) == n
                                   f) f(2, n - 1) == 2
Limbajul Pascal
a) f(2, n) = n
                                   b) f(2, n) = 2
                                   d) f(1, n) = 1
c) f(1, n) = n
e) f(1, n - 1) = n
                                   f) f(2, n - 1) = 2
```

6. Numărul de muchii care trebuie adăugate unui **arbore** cu **10** vârfuri astfel încât acesta să devină **graf complet** este:

```
a) 9
```

b) 10

c) **11**

d) 35

e) **36**

f) **37**

7. Suma elementelor aflate pe diagonala principală a matricei **a**, cu **5** linii și **5** coloane numerotate de la **0** la **4**, ale cărei elemente sunt actualizate în secvența de instrucțiuni de mai jos este:

```
\begin{array}{lll} Limbajul \ C++/C & Limbajul \ Pascal \\ n = 5; & n := 5; \\ for \ (i = 0; \ i < n; \ i++) & for \ i := 0 \ to \ n-1 \ do \end{array}
```

```
{
                                     begin
  for (j = 0; j < n; j++)
                                        for j := 0 to n - 1 do
    a[i][j] = (n - i) * n - j;
                                            a[i,j] := (n-i)*n - j
  }
}
                                     end
a) 15
           b) 20
                       c) 35
                                   d) 55
                                               e) 65
                                                            f) 70
```

8. O variantă care poate corespunde șirului gradelor interne ale vârfurilor grafului orientat alăturat este:

- a) (2,1,1,1,0) (2,1,0,2,0)
- e) (2,0,0,3,0)

- b) (1,1,1,1,0)
- d) (2,0,2,2,0)
- f) (2,0,1,1,0)
- 9. Un algoritm Backtracking generează ultimele două soluții pilo și poli, având ca date de intrare cuvântul poli. O variantă care poate reprezenta descrierea algoritmului este:
 - a) Algoritmul generează în ordine invers lexicografică anagramele cuvântului citit.
 - b) Algoritmul generează în ordine lexicografică anagramele cuvântului citit.
 - c) Algoritmul generează în ordine lexicografică anagramele cuvântului citit care nu au vocale pe poziții alăturate.
 - d) Algoritmul generează în ordine lexicografică anagramele cuvântului citit care nu au consoane pe poziții alăturate.
 - e) Algoritmul generează în ordine lexicografică anagramele cuvântului citit care nu au vocale pe ultima poziție.
 - f) Algoritmul generează în ordine invers lexicografică anagramele cuvântului citit care nu au consoane pe ultima poziție.
- 10. Programul de mai jos afișează pe ecran textul Poli 2020 dacă punctele de suspensie sunt înlocuite cu:

```
Limbajul C++/C
                                  Limbajul Pascal
#include <stdio.h>
                                  var s, t: string;
#include <string.h>
int main()
                                  begin
                                    s:='Politehnica 2020';
{
 char s[256], t[256];
 strcpy(s,"Politehnica 2020");
                                    s:=copy(s, 1, 4) + t;
                                    writeln(s)
 strcpy(s + 4, t);
                                  end.
 puts(s);
 return 0;
Limbajul C++/C
a) strcpy(t, strchr(s, ' '));
                                  b) strcpy(t, strcpy(s, ' '));
c) strcat(t, strchr(s, '2'));
                                 d) strcpy(t, strchr(s, " "));
```

11. Subprogramul **f** este definit mai jos. Valoarea returnată la apelul **f (24,34)** este:

```
Limbaiul C++/C
                                   Limbajul Pascal
int f(int a, int b)
                                   function f(a, b: integer):
                                   integer;
  int r;
                                   var r: integer;
  if (a >= b)
                                   begin
                                     if a >= b then
                                       begin
    r = a;
  }
                                         r := a;
  else if (a % 10 == b % 10)
                                       end
                                     else
    r = 2 + f(a + 1, b);
                                     if a mod 10 = b \mod 10 then
                                       begin
  else if (a % 3 == b % 3)
                                         r := 2 + f(a + 1, b)
                                       end
    r = 1 + f(a + 1, b - 1);
                                     else if a mod 3 = b \mod 3
                                   then
  else
                                       begin
                                         r := 1 + f(a + 1, b - 1)
    r = f(a, b - 2);
                                       end
                                     else
  return r;
                                       begin
                                         r := f(a, b - 2)
}
                                       end;
                                     f := r
                                   end;
a) 30
                                   d) 33
          b) 31
                      c) 32
                                              e) 34
                                                          f) 35
```

12. Numărul maxim de muchii care pot fi eliminate din graful neorientat alăturat astfel încât acesta să conțină cel puțin trei cicluri elementare distincte este:

b) 6

a) **1**

13. Se generează în ordine lexicografică vectorii de tați corespunzători tuturor arborilor cu rădăcină având exact 6 noduri. Prin înălțimea unui arbore cu rădăcină înțelegem numărul de muchii ale celui mai lung lanț elementar care unește rădăcina cu un alt nod. A doua soluție corespunzătoare unui arbore cu înălțimea 3 este:

c) 2

```
      a) 0 1 2 3 1 1
      b) 0 1 1 1 2 5

      c) 0 1 1 1 2 6
      d) 0 1 1 1 3 5

      e) 0 1 1 1 1 2
      f) 0 1 1 1 4 5
```

14. Subprogramul **rad** de mai jos calculează și returnează cel mai mic număr care ridicat la pătrat este mai mare sau egal cu numărul natural reținut de **x** (partea întreagă superioară a lui radical din **x**) dacă punctele de suspensie sunt înlocuite cu:

```
Limbajul C++/C
                                     Limbajul Pascal
int rad(int s, int d, int x)
                                     function rad(s,d,x: integer)
                                           :integer;
  int rez, m;
                                     var m, rez: integer;
  if (s == d)
                                     begin
                                       if s = d then
    rez = s;
                                          begin
  }
                                            rez := s
  else
                                          end
                                       else
    m = (s + d) / 2;
                                          begin
    if (...)
                                            m := (s + d) \operatorname{div} 2;
                                            if ... then
       rez = rad(s, m, x);
                                              begin
    }
                                                 rez := rad(s, m, x)
    else
                                              end
                                            else
       rez = rad(m + 1, d, x);
                                              begin
                                                 rez := rad(m+1,d, x)
                                              end
  return rez;
                                          end;
}
                                       rad := rez
                                     end;
Limbajul C/C++
a) m * m == x
                                     b) \mathbf{m} \times \mathbf{m} >= \mathbf{x}
c) m * m \le x
                                     d) m * m > x
e) m * m < x
                                     f) m * m != x
Limbajul Pascal
a) m * m = x
                                     b) m * m >= x
c) m * m \le x
                                     d) m * m > x
e) m * m < x
                                     f) m * m <> x
```

15. Fie un tablou unidimensional **v** care reține **n** numere naturale: **v**[0], **v**[1],..., **v**[**n**-1] și un număr întreg **t**. Secvența de instrucțiuni de mai jos are ca efect obținerea lungimii maxime lmax a unei subsecvențe **v**[k], **v**[k+1], ... **v**[k+lmax-1] având suma elementelor mai mică sau egală cu **t** dacă punctele de suspensie sunt înlocuite cu:

```
for (i = 0; i < n; i++) for i := 0 to n-1 do
                                     begin
  {
                                       s := s + v[i];
    s += v[i];
    while (j <= i && s > t)
                                       while(j \le i) and (s > t) do
                                         begin
      . . .
                                           . . .
      j++;
                                           j := j + 1
    }
                                         end;
    if (i - j + 1 > lmax)
                                      if i - j + 1 > lmax then
                                         begin
     lmax = i - j + 1;
                                           lmax := i - j + 1
                                         end;
  }
                                     end;
Limbajul C++/C
a) s += v[j];
                                 b) i--;
c) s -= v[i];
                                 d) s -= v[j];
e) s += v[i];
                                 f) i++;
Limbajul Pascal
a) s := s+v[j];
                                 b) i := i-1;
c)s := s-v[i];
                                 d) s := s-v[j];
e)s := s+v[i];
                                 f) i := i+1;
```

Varianta 10 online

1. Răsturnatul tabloului unidimensional (2 4 1 3 7 0 5) este (5 0 7 3 1 4 2).

	Numărul necesar de interschimbări pentru a răsturna un tablou unidimension (număr natural nenul, <i>impar</i>) elemente este:					
	a) 1	b) n/2+1	c) (n-1)/2			
	d) (n+1)/2	e) n/2-1	f) n			
2.	După permutarea circulară sp 15 102) devine:	pre stânga cu 2 poziții, tabloul	unidimensional (18 91 1			
		b) (1 15 102 18 91) e) (91 1 15 102 18)				
3.	3. În șirurile de mai jos, elementul de pe poziția k reprezintă rândul pe care este k -a damă (regină) pe o tablă de șah, damele fiind așezate pe coloane distincte pe coloana 1 , dama 2 pe coloana 2 , ș.a.m.d.). Pentru a așeza 4 dame (regine) pe o tablă de șah 4x4 , astfel încât acestea să nu între ele (două dame se atacă atunci când se află pe aceeași linie, pe aceeași col					
	pe aceeași diagonală), o solu a) 4 3 2 1	ție corectă este: b) 4 2 3 1	c) 3 1 4 2			
4.	,	oul unidimensional (10 24 9 schimbări necesare este:				
5.	Cu ajutorul metodei backtracking se generează, în ordine crescătoare, numere cu proprietățile: - au exact cinci cifre; - cifrele de pe poziții consecutive sunt în ordine strict crescătoare; - au cel mult două cifre alăturate de aceeași paritate; Exemplu de numere generate: 13469, 14589. O secvență care conține cinci numere generate consecutiv este: a) 45678 45679 45689 46789 56789 b) 34789 35678 35679 35689 45678					
	c) 34578 34569 34568 d) 13458 13459 13467 e) 13458 13459 13467 f) 26789 34567 34568	13478 13479 13468 13469				

```
6. Pentru funcția f definită mai jos, valoarea returnată de apelul f (2019, 2347); este:
   Limbaiul C++/C
   int f(int a, int b)
   {
       int cif;
       if (a+b>0)
            cif=a%10;
            if (cif<b%10)
                 cif=b%10;
            return f(a/10, b/10) *10+cif;
       return 0;
   }
   Limbajul Pascal
   function f(a,b: integer):integer;
   var cif:integer;
   begin
       if (a+b>0) then
       begin
            cif:=a mod 10;
            if (cif < b mod 10) then
                     cif:=b mod 10;
            f:=f(a div 10, b div 10)*10+cif
       end
       else
           f:=0
   end;
   a) 349
                          b) 2017
                                                 c) 2349
   d) 7102
                          e) 9432
                                                 f) 9743
```

7. Pentru tabloul unidimensional (4, 6, 14, 25, 61, 73, 82, 87, 95, 96, 98) numărul minim de elemente ale tabloului care trebuie verificate până este găsit elementul 82 este:

a) **7**

b) 6

c) 5

d) 3

e) 2

f) **1**

8. În urma executării programului de mai jos, variabila **k** are valoarea:

```
k=k+2;
                                    f := k
     return k;
                                 end;
}
                                 var k:integer;
int main()
                                 begin
                                    k := 1;
    k=f(k);
                                    k := f(k)
     return 0;
                                 end.
}
a) 0
                    b) 1
                                         c) 2
d) 3
                    e) nedefinită
                                         f) nicio valoare, programul are erori
```

9. Numărul elementelor care se găsesc strict deasupra diagonalei secundare a unui tablou bidimensional cu **20** de linii și **20** de coloane este:

a) 180

b) **190**

c) 200

d) 210

e) 380

f) **400**

10. Problema *Turnurile din Hanoi*:

Se dau 3 tije. Pe prima tijă se găsesc discuri de diametre diferite, așezate în ordinea descrescătoare a diametrelor privite de jos în sus. Se cere să se mute discurile de pe prima tijă pe cea de-a doua, utilizând ca tijă intermediară cea de-a treia, respectând următoarele reguli:

- la fiecare pas se mută un singur disc;
- nu este permis să se așeze un disc cu diametrul mai mare peste un disc cu diametrul mai mic.

Numărul minim de mutări necesare rezolvării problemei *Turnurile din Hanoi* pentru **10** discuri este:

a) 99

b) **100**

c) 1022

d) **1023**

e) 1024

f) 1025

11. Într-un graf orientat cu **56** de arce, în care oricare arc are extremități distincte și oricare două arce diferă prin cel puțin una dintre extremități, numărul minim de vârfuri este:

a) 6

b) 7

c) 8

d) 28

e) **56**

f) **112**

12. Fie problema:

Se dau **n-1** numere distincte de la **1** la **n** (**1<n<10**⁵). Se cere un algoritm care să determine numărul lipsă.

Fie algoritmii:

A₁: Se verifică prin câte o parcurgere prezența fiecărui număr de la 1 la n în șir.

 A_2 : Numărul lipsă este egal cu diferența dintre [$\mathbf{n} \cdot (\mathbf{n} + \mathbf{1})/2$] și suma numerelor din șir.

A₃: Se sortează numerele și se determină pentru ce valori consecutive în șirul sortat

diferența este diferită de 1.

A₄: Se sortează crescător numerele si se determină prima valoare din sirul sortat care este diferită de poziția în șir.

Este adevărat enunțul:

- a) Algoritmii A₁ și A₂ rezolvă problema pentru anumite date de intrare.
- b) Algoritmul A2 este cel mai puțin eficient din punctul de vedere al timpului de executare.
- c) Algoritmul A₄ este cel mai eficient din punctul de vedere al timpului de executare.
- d) Algoritmul A₄ rezolvă problema doar dacă numărul lipsă este cel mai mare din sir.
- e) Cel puțin unul dintre algoritmi nu rezolvă problema.
- f) Doi dintre algoritmi nu diferă ca eficiență din punctul de vedere al timpului de executare.

13. Fie enunturile:

E₁: orice graf neorientat conex G cu cel putin 2 noduri, contine cel putin un nod k care poate fi eliminat (și muchiile incidente cu el) obținându-se un subgraf G' conex;

E₂: un graf neorientat cu **n** (**n>2**) noduri și **n** muchii conține cel puțin un ciclu;

E₃: orice arbore cu **n** (**n>1**) noduri contine cel putin două noduri cu gradul 1.

Enunturile adevărate sunt:

a) doar E₁

b) doar E₂

c) doar E₁ și E₂

d) doar E₁ și E₃

e) doar E₂ și E₃

f) E₁, E₂ și E₃

- 14. În urma executării unui program pentru generarea permutărilor elementelor unui șir de caractere ce conține duplicate, numărul de cuvinte distincte, anagrame ale cuvântului "caracter", este:
 - a) 120

b) 2520

c) 5040

d) 10080

e) 20160

f) 40320

15. Fie următoarele formule:

1.
$$F(n) = \begin{cases} \left[2 \cdot F\left(\frac{n}{2} - 1\right) + F\left(\frac{n}{2}\right)\right] \cdot F\left(\frac{n}{2}\right), & n \text{ este par}, n > 3\\ \left[F\left(\frac{n+1}{2}\right)\right]^2 + \left[F\left(\frac{n-1}{2}\right)\right]^2, & n \text{ este impar}, n > 2 \end{cases}$$
2.
$$F(n) = \frac{1}{\sqrt{5}} \cdot \left(\frac{1+\sqrt{5}}{2}\right)^n + \frac{1}{\sqrt{5}} \cdot \left(\frac{1-\sqrt{5}}{2}\right)^n$$

2.
$$F(n) = \frac{1}{\sqrt{5}} \cdot \left(\frac{1+\sqrt{5}}{2}\right)^n + \frac{1}{\sqrt{5}} \cdot \left(\frac{1-\sqrt{5}}{2}\right)^n$$

3.
$$F(n) = \frac{1}{\sqrt{5}} \cdot \left(\frac{1+\sqrt{5}}{2}\right)^{n/2} + \frac{1}{\sqrt{5}} \cdot \left(\frac{1-\sqrt{5}}{2}\right)^{n/2}$$

Știind că F(1) = 1, F(2) = 1, pentru a determina al **n**-lea (**n>2**) termen din șirul lui Fibonacci (1, 1, 2, 3, 5, 8, ...) se poate folosi:

- a) niciuna dintre cele trei formule
- b) doar formula 1

c) doar formula 2

d) doar formula 1 și formula 2

e) doar formula 3

f) toate cele trei formule