算法与复杂性 作业四

516021910528 - SHEN Jiamin 2020 年 3 月 12 日

1. 证明

$$\sum_{k=1}^{n} \frac{1}{k} = \Theta(\log n)$$

证明 由 1/2 单调递减

$$\int_{1}^{n+1} \frac{1}{x} dx \le \sum_{k=1}^{n} \frac{1}{k} \le 1 + \int_{1}^{n} \frac{1}{x} dx$$
$$\ln(n+1) - \ln 1 \le \sum_{k=1}^{n} \frac{1}{k} \le 1 + \ln n - \ln 1$$
$$\ln(n) < \ln(n+1) \le \sum_{k=1}^{n} \frac{1}{k} \le 1 + \ln n$$

所以有

$$\Omega(\log n) = \sum_{k=1}^{n} \frac{1}{k} = O(\log n)$$

即

$$\sum_{k=1}^{n} \frac{1}{k} = \Theta(\log n)$$

2. 设有如下递推关系

$$T(n) = \begin{cases} T(\frac{n}{2}) + 1 &, n$$
为偶数
$$2T(\frac{n-1}{2}) &, n$$
为奇数

其中 T(1) = 1

(a) 证明当 $n=2^k$ 时, $T(n)=O(\log n)$

证明

$$T(n) = T(2^{k}) = T(\frac{n}{2}) + 1 = T(2^{k-1}) + 1$$
$$= T(2^{k-2}) + 2 = \dots$$
$$= T(1) + k - 1 = k = \log n$$

所以

$$T(n) = O(\log n)$$

(b) 证明存在无穷集合 X, 当 $n \in X$ 时, $T(n) = \Omega(n)$

令 $a_1=1,\ a_n=2a_{n-1}+1\Rightarrow a_n=2^n-1,\$ 则无穷集合 $X=\left\{2^k-1\mid k\in\mathbb{N}^*\right\}$ 。证明

$$T(n) = T(2^{k} - 1) = 2 \cdot T(\frac{n-1}{2}) + 1 = 2 \cdot T(2^{k-1} - 1)$$
$$= 4 \cdot T(2^{k-2} - 1) = \dots$$
$$= 2^{k-1} \cdot T(2-1) = 2^{k-1}$$

 $\exists c = \frac{1}{2}, N = 1$ 使得 $\forall n > N, n \in X$

$$T(n) = T(2^k - 1) = 2^{k-1} > 2^{k-1} - \frac{1}{2} = \frac{2^k - 1}{2} = \frac{n}{2}$$

所以

$$T(n) = \Omega(n)$$

(c) 以上两个结论说明了什么?

一个算法在输入具有不同特征时,可能具有不同的时间复杂度。 最佳状况和最差状况可能有不同的时间复杂度。