Math 4720: Statistical Methods

8^{th} Week Summary (3/6/25)

Case 1: One Variable

	Numerical Variable, σ known	Numerical Variable, σ unknown	
Parameter of Interest: Mean, μ		Mean, μ	
Confidence Interval Formula: $\overline{x} \pm z_{\underline{\alpha}} \frac{\sigma}{\sqrt{n}}$		$\overline{x} \pm t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$ with df = $n - 1$	
Name of Hypothesis Test, H ₀	One Sample Z Test, $H_0: \mu = \mu_0$	One Sample T Test, $H_{\scriptscriptstyle 0}: \mu = \mu_{\scriptscriptstyle 0}$	
Test Statistic Formula:	$z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$	$t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}} \text{with df} = n - 1$	
p-value:	$\begin{aligned} &H_a: \mu \neq \mu_0 \text{, } p\text{-value} = 2P(Z \geq z) \\ &H_a: \mu > \mu_0 \text{, } p\text{-value} = P(Z \geq z) \\ &H_a: \mu < \mu_0 \text{, } p\text{-value} = P(Z \leq z) \end{aligned}$	$\begin{aligned} &H_a: \mu \neq \mu_0 \text{ , } p\text{-value} = 2P(T \geq t) \\ &H_a: \mu > \mu_0 \text{ , } p\text{-value} = P(T \geq t) \\ &H_a: \mu < \mu_0 \text{ , } p\text{-value} = P(T \leq t) \end{aligned}$	

Case 2: Two Numerical Variables - Population Standard Deviations unknown

	Independent Samples		
	$\sigma_1 = \sigma_2$	$\sigma_1 \neq \sigma_2$	Paired Samples
Parameters of Interest:	Mean Difference, $\mu_1 - \mu_2$	Mean Difference, $\mu_1 - \mu_2$	Mean Difference, $\mu_1 - \mu_2$
Confidence Interval Formula:	$\begin{split} \overline{x}_1 - \overline{x}_2 &\pm t_{\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \\ df &= n_1 + n_2 - 2 \\ \text{, where} \\ s_p &= \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \end{split}$	$\begin{split} \overline{x}_1 - \overline{x}_2 \pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \\ df &= \frac{(n_1 - 1)(n_2 - 1)}{(1 - c)^2(n_1 - 1) + c^2(n_2 - 1)} \\ \text{, where} \qquad c &= \frac{\frac{s_1^2}{n_1}}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \end{split}$	$\overline{d} \pm t_{\alpha/2} \frac{s_d}{\sqrt{n}}$ with df = $n-1$ where the subscript " d " denotes the calculation is performed on the differences "Sample1" – "Sample2"
Name of Hypothesis Test, H_0	Two-sample T Test, H_0 : $\mu_1 = \mu_2$ or H_0 : $\mu_1 - \mu_2 = 0$	Two-sample T Test, H_0 : μ_1 = μ_2 or H_0 : μ_1 - μ_2 =0	Paired T Test, $H_{\rm 0}: \mu_{\rm l}=\mu_{\rm 2} \ \ {\rm or} \ \ H_{\rm 0}: \mu_{\rm l}-\mu_{\rm 2}=0$
Test Statistic Formula:	$t = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$m{t}' = rac{\overline{x}_1 - \overline{x}_2}{\sqrt{rac{s_1^2 + rac{s_2^2}{n_1} + rac{s_2^2}{n_2}}}$	$t = \frac{\overline{d}}{s_d/\sqrt{n}}$ with df = $n-1$
P-value:	$\begin{aligned} H_a: \mu_1 \neq \mu_2 , p\text{-value} &= 2P(T \geq \left t \right) \\ H_a: \mu_1 > \mu_2 , p\text{-value} &= P(T \geq t) \\ H_a: \mu_1 < \mu_2 , p\text{-value} &= P(T \leq t) \end{aligned}$		$\begin{aligned} &H_a: \mu_1 \neq \mu_2 \text{, } p\text{-value} = 2P(T \geq t) \\ &H_a: \mu_1 > \mu_2 \text{, } p\text{-value} = P(T \geq t) \\ &H_a: \mu_1 < \mu_2 \text{, } p\text{-value} = P(T \leq t) \end{aligned}$

• Power analysis (Sample size determination):

Independent Samples:

For one sided alternative test
$$(H_a: \mu_1 > \mu_2 \text{ or } H_a: \mu_1 < \mu_2): n = \frac{2\sigma^2(z_\alpha + z_\beta)^2}{\Delta^2}$$

For two sided alternative test $(H_a: \mu_1 \neq \mu_2): n = \frac{2\sigma^2(z_{\alpha/2} + z_\beta)^2}{\Delta^2}$

Paired Data:

For one sided alternative test
$$(H_a: \mu_d > 0 \text{ or } H_a: \mu_d < 0): n = \frac{\sigma_d^2 (z_\alpha + z_\beta)^2}{\Delta^2}$$

For two sided alternative test $(H_a: \mu_d \neq 0): n = \frac{\sigma_d^2 (z_{\alpha/2} + z_\beta)^2}{\Delta^2}$

• NON-PARAMETRIC TESTS

• Test for the population median M:

SIGN TEST:

Test Statistics: B = # of data values > m_0

Minitab: Stat \rightarrow Nonparametrics \rightarrow 1-Sample Sign

R: library("BSDA"); SIGN.test(dataset)

• Non-parametric TWO Independent Samples Test:

WILCOXON RANK-SUM TEST(MANN-WHITNEY U TEST)

Combine both the samples. Rank all values of the combined sample from lowest to the highest.

T= sum of the ranks in sample 1

Minitab: Stat \rightarrow Nonparametrics \rightarrow Mann-Whitney

R: wilcox.test(group1, group2)

• Non-parametric TWO Dependent Samples Test:

WILCOXON SIGNED-RANK TEST

Test Statistics: Rank the absolute values of the differences.

T = sum of the ranks of negative(positive) differences

Minitab: For differences, Minitab: Stat \rightarrow Nonparametrics \rightarrow 1-Sample Wilcoxon

R: wilcox.test(before, after, paired = T)