Алгоритмы и структуры данных

Лекция 1. Введение. Асимптотический анализ. Бинарный поиск.

Артур Кулапин

вшпи мфти

6 сентября 2023 г.

- **Q** чем разговор?
- Организационная информация
 - Экзамен
 - Зачет
 - О плагиате
- 2 Сложность программы
 - Ресурсы
 - Асимптотический анализ
- Бинарный поиск
 - Классический бинарный поиск
 - Бинарный поиск по ответу
 - Вещественный бинарный поиск

Организационная информация

В рамках курса ставится две оценки.

Организационная информация

В рамках курса ставится две оценки.

- Зачет с оценкой по практикуму.
- Экзамен.

Экзамен

• Проходит в зимнюю сессию. Точные дата и место TBD.

Экзамен

- Проходит в зимнюю сессию. Точные дата и место TBD.
- Работа в семестре не влияет на оценку.

Экзамен

- Проходит в зимнюю сессию. Точные дата и место TBD.
- Работа в семестре не влияет на оценку.
- Формат проведения и правила ТВD.

- Формат оценивания дифференцированный зачет (с оценкой).
- Оценка складывается из работы в семестре.

Из чего складывается оценка?

- Формат оценивания дифференцированный зачет (с оценкой).
- Оценка складывается из работы в семестре.

Из чего складывается оценка?

• Контесты. За них можно набрать до 5 баллов. Балл за них вычисляется по формуле: $C = 5 \cdot \frac{\text{your points}}{\text{total points}}$.

- Формат оценивания дифференцированный зачет (с оценкой).
- Оценка складывается из работы в семестре.

Из чего складывается оценка?

- Контесты. За них можно набрать до 5 баллов. Балл за них вычисляется по формуле: $C = 5 \cdot \frac{\text{your points}}{\text{total points}}$.
- Лабораторные работы. За них можно набрать до 3 баллов. Балл за них вычисляется по формуле: $L=3\cdot rac{ ext{your points}}{ ext{total points}}.$

- Формат оценивания дифференцированный зачет (с оценкой).
- Оценка складывается из работы в семестре.

Из чего складывается оценка?

- Контесты. За них можно набрать до 5 баллов. Балл за них вычисляется по формуле: $C = 5 \cdot \frac{\text{your points}}{\text{total points}}$.
- Лабораторные работы. За них можно набрать до 3 баллов. Балл за них вычисляется по формуле: $L=3\cdot \frac{\text{your points}}{\text{total points}}$.
- Теоретические задания. За них можно набрать до 3 баллов. Балл за них вычисляется по формуле: $T=3\cdot rac{ ext{your points}}{ ext{total points}}.$

- Формат оценивания дифференцированный зачет (с оценкой).
- Оценка складывается из работы в семестре.

Из чего складывается оценка?

- Контесты. За них можно набрать до 5 баллов. Балл за них вычисляется по формуле: $C = 5 \cdot \frac{\text{your points}}{\text{total points}}$.
- Лабораторные работы. За них можно набрать до 3 баллов. Балл за них вычисляется по формуле: $L=3\cdot rac{ ext{your points}}{ ext{total points}}.$
- Теоретические задания. За них можно набрать до 3 баллов. Балл за них вычисляется по формуле: $T=3\cdot \frac{\text{your points}}{\text{total points}}.$

Итоговая оценка: min(10, [C+L+T-F])

О плагиате

 Проверка на антиплагиат выполняется автоматически, а далее вручную перепроверяется преподавательским составом.

Оплагиате

- Проверка на антиплагиат выполняется автоматически, а далее вручную перепроверяется преподавательским составом.
- Санкции накладываются одинаково на обоих участников кейса.

Оплагиате

- Проверка на антиплагиат выполняется автоматически, а далее вручную перепроверяется преподавательским составом.
- Санкции накладываются одинаково на обоих участников кейса.
- Буква F с прошлого слайда соответствует числу задач, в которых был обнаружен плагиат.

О плагиате

- Проверка на антиплагиат выполняется автоматически, а далее вручную перепроверяется преподавательским составом.
- Санкции накладываются одинаково на обоих участников кейса.
- Буква F с прошлого слайда соответствует числу задач, в которых был обнаружен плагиат.
- Бонус! Если F>2, то запускается протокол с дисциплинаркой, установленный в МФТИ.

Хорошая ли программа?

• Как понять, что одна программа лучше другой?

Хорошая ли программа?

- Как понять, что одна программа лучше другой?
- В чем нужно измерять «хорошесть» программы?

Хорошая ли программа?

- Как понять, что одна программа лучше другой?
- В чем нужно измерять «хорошесть» программы?
- Что делать с тем, что исполнители имеют разную производительность?

O pecypcax

Нас будут интересовать только два ресурса.

- Время исполнения или временная сложность.
- Потребляемая память или пространственная сложность.

O pecypcax

Нас будут интересовать только два ресурса.

- Время исполнения или временная сложность.
- Потребляемая память или пространственная сложность.

Модель памяти.

- Память вычислителя безгранична.
- Доступ к памяти на чтение/запись требует пренебрежимо малого времени.

\mathcal{O} -нотация

Def. Пусть имеются две функции f(n) и g(n), при этом $f,g:\mathbb{N}\to\mathbb{N}$, тогда считается, что $f(n)=\mathcal{O}(g(n))$, если $\exists C>0\ \exists N_0:\ \forall n>N_0\ f(n)\leq C\cdot g(n).$

\mathcal{O} -нотация

Def. Пусть имеются две функции f(n) и g(n), при этом $f,g:\mathbb{N}\to\mathbb{N}$, тогда считается, что $f(n)=\mathcal{O}(g(n))$, если $\exists C>0\ \exists N_0:\ \forall n>N_0\ f(n)\leq C\cdot g(n).$

Примеры

• Пусть f(n)=n, а $g(n)=n^2$, тогда очевидно, что $f(n)=\mathcal{O}(g(n))$. Например, пусть C=1, а $N_0=2$, тогда $n=f(n)< C\cdot g(n)=g(n)=n^2$, что верно для $n\geq 2$.

\mathcal{O} -нотация

Def. Пусть имеются две функции f(n) и g(n), при этом $f,g:\mathbb{N}\to\mathbb{N}$, тогда считается, что $f(n)=\mathcal{O}(g(n))$, если $\exists C>0\ \exists N_0:\ \forall n>N_0\ f(n)\leq C\cdot g(n).$

Примеры

- Пусть f(n)=n, а $g(n)=n^2$, тогда очевидно, что $f(n)=\mathcal{O}(g(n))$. Например, пусть C=1, а $N_0=2$, тогда $n=f(n)< C\cdot g(n)=g(n)=n^2$, что верно для $n\geq 2$.
- ullet Пусть $f(n)=P_k$, а $g(n)=P_{k+lpha}$, где P_r многочлен степени r, $k\in\mathbb{N},\ lpha\in\mathbb{N}.$ Тогда также нетрудно показать, что $f(n)=\mathcal{O}(g(n)).$

Больше букв

Def. Пусть имеются две функции f(n) и g(n), при этом $f,g:\mathbb{N}\to\mathbb{N}$, тогда считается, что $f(n)=\Omega(g(n))$, если $\exists C>0\ \exists N_0:\ \forall n>N_0\ f(n)\geq C\cdot g(n).$

Больше букв

Def. Пусть имеются две функции f(n) и g(n), при этом $f,g:\mathbb{N}\to\mathbb{N}$, тогда считается, что $f(n)=\Omega(g(n))$, если $\exists C>0\ \exists N_0:\ \forall n>N_0\ f(n)\geq C\cdot g(n).$

Def. Пусть имеются две функции f(n) и g(n), при этом $f,g:\mathbb{N}\to\mathbb{N}$, тогда считается, что $f(n)=\Theta(g(n))$, если $\exists \, C_1,\, C_2>0\,\, \exists \, N_0:\,\, \forall \, n>N_0\,\, C_1\cdot g(n)\leq f(n)\leq C_2\cdot g(n).$

Дан отсортированный массив A[1:n]. Надо проверить, есть ли в нем элемент X.

Дан отсортированный массив A[1:n]. Надо проверить, есть ли в нем элемент X.

Очевидное решение — пройтись в цикле по массиву и проверить, есть ли X. Но зачем целый слайд про это?

Дан отсортированный массив A[1:n]. Надо проверить, есть ли в нем элемент X.

Очевидное решение — пройтись в цикле по массиву и проверить, есть ли X. Но зачем целый слайд про это?

Обозначим за I=1 и r=n левую и правую границы рассматриваемого подмассива.

① Если диапазон валиден, то проверим, $A\left[\left\lceil \frac{l+r}{2} \right\rceil \right] \geq X$. Иначе вернем границу.

Дан отсортированный массив A[1:n]. Надо проверить, есть ли в нем элемент X.

Очевидное решение — пройтись в цикле по массиву и проверить, есть ли X. Но зачем целый слайд про это?

Обозначим за I=1 и r=n левую и правую границы рассматриваемого подмассива.

- **①** Если диапазон валиден, то проверим, $A\left[\left\lceil \frac{l+r}{2} \right\rceil \right] \geq X$. Иначе вернем границу.
- Если полученный результат истинен, то запускаем рекурсивно поиск в левой половине массива.
- Оначе в правой половине массива.

Что делает алгоритм?

- lacksquare Сравнивает средний элемент с X за $\mathcal{O}(1)$.
- $oldsymbol{@}$ Решает, продолжать в левой или правой половине за $\mathcal{O}(1)$.
- 3 Запускается рекурсивно, уменьшая область поиска в два раза.

Что делает алгоритм?

- f O Сравнивает средний элемент с X за $\mathcal O(1)$.
- $oldsymbol{@}$ Решает, продолжать в левой или правой половине за $\mathcal{O}(1)$.
- 3 Запускается рекурсивно, уменьшая область поиска в два раза.

Результат будет получен, когда длина диапазона (далее n) станет равной 1.

Что делает алгоритм?

- $lacksymbol{0}$ Сравнивает средний элемент с X за $\mathcal{O}(1)$.
- $oldsymbol{@}$ Решает, продолжать в левой или правой половине за $\mathcal{O}(1)$.
- 3 Запускается рекурсивно, уменьшая область поиска в два раза.

Результат будет получен, когда длина диапазона (далее n) станет равной 1. А значит всего шагов: $\log_2 n$

Что делает алгоритм?

- $lacksymbol{0}$ Сравнивает средний элемент с X за $\mathcal{O}(1)$.
- $oldsymbol{@}$ Решает, продолжать в левой или правой половине за $\mathcal{O}(1)$.
- 3 Запускается рекурсивно, уменьшая область поиска в два раза.

Результат будет получен, когда длина диапазона (далее n) станет равной 1. А значит всего шагов: $\log_2 n$, а значит итоговое время:

$$\log_2 n \cdot \mathcal{O}(1) = \mathcal{O}(\log_2 n) = \mathcal{O}(\log n)$$

Бинарный поиск по ответу

Пусть имеется монотонный предикат P(n), то есть

$$\exists N_0: \begin{cases} P(n) = 0, & n < N_0 \\ P(n) = 1, & n \ge N_0 \end{cases}$$

И перед нами стоит задача отыскать это N_0 . Например, задача проверки наличия элемента X в отсортированном массиве. В данном случае предикат будет звучать как $P(i)=1 \iff a[i] \geq X$.

Пусть N_0 заведомо лежит в каком-то диапазоне [I,r]. Тогда алгоритм следующий.

① Если диапазон валиден, то вычислим $P\left(\lceil \frac{l+r}{2} \rceil\right)$. Иначе вернем границу.

Пусть N_0 заведомо лежит в каком-то диапазоне [I,r]. Тогда алгоритм следующий.

- **①** Если диапазон валиден, то вычислим $P\left(\lceil \frac{l+r}{2} \rceil\right)$. Иначе вернем границу.
- ② Если полученный результат истинен, то $N_0 \in [I, \lceil \frac{I+r}{2} \rceil]$. Запускаем рекурсивно поиск в левой половине массива.

Пусть N_0 заведомо лежит в каком-то диапазоне [I,r]. Тогда алгоритм следующий.

- **①** Если диапазон валиден, то вычислим $P\left(\lceil \frac{l+r}{2} \rceil\right)$. Иначе вернем границу.
- ② Если полученный результат истинен, то $N_0 \in [I, \lceil \frac{I+r}{2} \rceil]$. Запускаем рекурсивно поиск в левой половине массива.
- **③** Иначе $N_0 \in \left[\left\lceil \frac{l+r}{2} \right\rceil, r \right]$. Запускаем рекурсивно поиск в правой половине массива.

Сложность алгоритма:

Пусть N_0 заведомо лежит в каком-то диапазоне [I,r]. Тогда алгоритм следующий.

- **①** Если диапазон валиден, то вычислим $P\left(\lceil \frac{l+r}{2} \rceil\right)$. Иначе вернем границу.
- **②** Если полученный результат истинен, то $N_0 \in [I, \lceil \frac{I+r}{2} \rceil]$. Запускаем рекурсивно поиск в левой половине массива.
- **③** Иначе $N_0 \in \left[\left\lceil \frac{l+r}{2} \right\rceil, r \right]$. Запускаем рекурсивно поиск в правой половине массива.

Сложность алгоритма: $\mathcal{O}(\log n)$.

Допустим, нужно решить уравнение $x+\tan x=3$, $x\in \left(0,\frac{\pi}{2}\right)$.

Допустим, нужно решить уравнение $x+\tan x=3$, $x\in \left(0,\frac{\pi}{2}\right)$.

Рассмотрим функцию $f(x) = x + \tan x - 3$ и предикат $P(x) = I(f(x) \ge 0)$.

Допустим, нужно решить уравнение $x+\tan x=3$, $x\in \left(0,\frac{\pi}{2}\right)$.

Рассмотрим функцию $f(x)=x+\tan x-3$ и предикат $P(x)=I(f(x)\geq 0).$

Теперь применим бинарный поиск из алгоритма выше ($l=0,\ r=\frac{\pi}{2}$), только условие выхода: |r-l|<arepsilon.

Сложность алгоритма:

Допустим, нужно решить уравнение $x+\tan x=3$, $x\in \left(0,\frac{\pi}{2}\right)$.

Рассмотрим функцию $f(x)=x+\tan x-3$ и предикат $P(x)=I(f(x)\geq 0).$

Теперь применим бинарный поиск из алгоритма выше ($I=0,\ r=\frac{\pi}{2}$), только условие выхода: |r-I|<arepsilon.

Сложность алгоритма: $\mathcal{O}\left(\log \frac{r-l}{\varepsilon}\right)$.