PREETHAM GANESH

+1 (682) 812-9865 | <u>preetham.ganesh2015@gmail.com</u> | 705 West Mitchell Circle Apt 538, Arlington, TX, 76013 <u>https://preetham7897.github.io/website/</u> | <u>www.linkedin.com/in/preethamganesh</u>

EDUCATION

University of Texas at Arlington

Arlington, TX

Master of Science in Computer Science

Aug 2019 - May 2021

Coursework: Computer Vision, Special Topics in Intelligent Systems, Machine Learning, Neural Networks, Data Mining.

Amrita Vishwa Vidyapeetham

Coimbatore, India

Bachelor of Technology in Computer Science and Engineering

Jul 2015 - Apr 2019

SKILLS

Machine Learning Decision Tree, KNN, SVM, K-Means, Random Forest, XGBoost, Bagging, LSTM, GRU, CNN

Programming Python, C, C++, R, Java

Libraries TensorFlow, Keras, Scikit-Learn, NumPy, SciPy, OpenCV, Pandas, Pickle, Matplotlib, Flask, Tableau

DatabaseOracle SQL, SQLite, MySQLOperating SystemsMac OS, Ubuntu, Windows

PROJECTS

Translation of Continuous American Sign Language to English Language Speech (Master's Thesis)

Jun 2020 – Present

- Developing an American Sign Language Translation application (using Python) for converting sentence-based signs performed by signers to English language speech under the guidance of Prof. Vassilis Athitsos.
- Consists of 3 modules: Continuous Sign Language Recognition, ASL Translation, and English Speech Synthesis, where each module uses **Seq2Seq with attention mechanism** for training, and Top-K Accuracy, BLEU, and Mean Opinion Score for evaluating the models.
- The current Continuous Sign Language Recognition model (Pose-based) produced a Top-5 accuracy of 55.45% on the WLASL dataset.

Image Captioning using Luong Attention and SentencePiece Tokenizer

Nov 2020 - Dec 2020

- Developed an Image Captioning application (using Python) for predicting captions for an image given by the user.
- Used SentencePiece tokenizer to tokenize the target captions and used InceptionV3 network to extract features in the image.
 Implemented Luong Attention-based Stacked Unidirectional Long-Short-Term-Memory (LSTM) for predicting the captions. Also built a UI for interacting with the application (using Flask).
- The model produced a Sparse Categorical CrossEntropy Loss of 0.628 on the MS-COCO dataset.

POS-Tagging based Neural Machine Translation for European Languages using Attention Mechanism

Jun 2020 - Dec 2020

- Developed a Neural Machine Translation application (using Python) for European Languages such as Spanish, French, and German.
- Used Luong-Attention based Bidirectional Stacked Long-Short-Term-Memory (LSTM) Seq2Seq model, along with Transformer based translation model for training models in each language. Also built a UI for interacting with the application (using Flask).
- The English-Spanish Transformer model produced a BLEU score of 30.27 and METEOR score of 56.425 on the newstest2013 dataset.

COVID-19 Social Distancing Violation Detection using Neural Networks

Sep 2020

- Developed an application (using Python) for detecting the social distancing violation in a given area or a user-given video.
- Yolov3 Object Detection model was used for detecting people in a video, & the distance between detected bounding boxes was calculated using the SciPy Spatial Distance function. If the distance between 2 bounding boxes is less than 6 ft, then an alert is generated.

COVID-19 Face Mask Detection using Neural Networks

Aug 2020

- Implemented a face-detection module using the ImageNet weights for detecting faces in a video.
- The detected faces were converted into 128-byte Encoding for identifying unique set of faces. Also, implemented a face mask classifier that produced using a **Convolutional Neural Network** for classifying whether the people in the detected set of unique faces wore a face mask. If no mask is detected, then an alert is generated. The model produced an accuracy of 86%.

Forecast of Rainfall Quantity and its Variation using Environmental Features (Undergraduate Thesis)

Jun 2018 - Apr 2019

- Developed an application for predicting rainfall in Tamil Nadu districts, India using regression and ensemble algorithms to find the best model among the District-Specific, Cluster-based, & Generic-Regression models under the guidance of Asst. Prof. Dayanand Vinod.
- The regression algorithms used are Multi-Linear, Support Vector, Decision Tree, Polynomial, Random Forest, Bagging, & XGBoost, which was combined using ensemble techniques such as Simple Averaging, Stacking & Blending.
- The final model produced a Mean Squared Error value of 0.000274 and Explained Variance Score of 0.9113.

PUBLICATIONS, ACHIEVEMENTS & LEADERSHIP

Personalized system for human gym activity recognition using an RGB camera: PETRA (first author, DOI, PDF, GitHu	<u>ıb</u>) Mar 2020
Estimation of Rainfall Quantity using Hybrid Ensemble Regression: ICACC (first author, DOI, PDF, GitHub)	Aug 2019
Forecast of Rainfall Quantity and its Variation using Environmental Features: IPACT (first author, DOI, PDF, GitHub)	Feb 2019
Juxtaposition on Classifiers in Modeling Hepatitis Diagnosis Data: ICCVBIC (first author, DOI, PDF, GitHub)	Nov 2018
Recipient of the Outstanding Student Award by Department of CSE, Amrita Vishwa Vidyapeetham.	Apr 2019
Chairman of ASCII Technical Club, Department of CSE, Amrita Vishwa Vidyapeetham. Jun	2018 – Apr 2019