The Singular Values of an *m* by *n* Matrix (1 of 3)

- **Theorem 9** Suppose $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A^TA , arranged so that the corresponding eigenvalues of A^TA satisfy $\lambda_1 \geq \cdots \geq \lambda_n$, and suppose A has r nonzero singular values. Then $\{A\mathbf{v}_1,\ldots,A\mathbf{v}_r\}$ is an orthogonal basis for Col A, and rank A=r.
- **Proof** Because \mathbf{v}_i and $\lambda_j \mathbf{v}_j$ are orthogonal for $i \neq j$,

$$(A\mathbf{v}_i)^T (A\mathbf{v}_j) = v_i^T A^T A\mathbf{v}_j = v_i^T (\lambda_j \mathbf{v}_j) = 0$$

• Thus $\{A\mathbf{v}_1, \ldots, A\mathbf{v}_n\}$ is an orthogonal set.

The Singular Values of an *m* by *n* Matrix (2 of 3)

- Since the lengths of the vectors $\{A\mathbf{v}_1, \ldots, A\mathbf{v}_n\}$ are the singular values of A, and since there are r nonzero singular values, $A\mathbf{v}_i \neq \mathbf{0}$ if and only if $1 \leq i \leq r$.
- So $\{A\mathbf{v}_1,\ldots,A\mathbf{v}_r\}$ are linearly independent vectors, and they are in Col A.
- Finally, for any \mathbf{y} in Col A—say, $\mathbf{y} = A\mathbf{x}$ —we can write $\mathbf{x} = c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n$, and

$$\mathbf{y} = A\mathbf{x} = c_1 A\mathbf{v}_1 + \dots + c_r A\mathbf{v}_r + c_{r+1} A\mathbf{v}_{r+1} + \dots + c_n A\mathbf{v}_n$$

The Singular Values of an *m* by *n* Matrix (3 of 3)

$$= c_1 A \mathbf{v}_1 + \dots + c_r A \mathbf{v}_r + 0 + \dots + 0$$

- Thus \mathbf{y} is in Span $\{A\mathbf{v}_1,\ldots,A\mathbf{v}_r\}$, which shows that $\{A\mathbf{v}_1,\ldots,A\mathbf{v}_r\}$ is an (orthogonal) basis for Col A.
- Hence rank $A = \dim \operatorname{Col} A = r$.

