Scribed by: Kyle Dituro

Definition 1. A function $f: \mathbb{R}^n \to \mathbb{R}^n$ is called **continuous** (in an analysis sense) if $\forall \varepsilon > 0, \ \exists \delta \text{ s.t } \forall y \in \mathbb{R}^n, |\mathbf{x} - \mathbf{y}| < \delta \Rightarrow |f(\mathbf{x}) - f(\mathbf{y})| < \varepsilon.$

Example 1. Let $f: \mathbb{R} \to \mathbb{R}$ be $f(x) = x^2$. We will now demonstrate that this is continuous by showing that given $x \in \mathbb{R}$, and we want to find some $\delta > 0$ such that $|x - y| < \delta$ implies $|x^2 - y^2| < \varepsilon$.

Proof. Say h = x - y. Then

$$x^{2} - y^{2} = (x + y)(x - y)$$

$$= h(2x - h)$$

$$|x^{2} - y^{2}| = |h(2x - h)|$$

$$= |h||2x - h|$$

$$\leq |h|(|2x| + |-h|)$$

$$= |h|(2|x| + |h|)$$

$$\leq |h|(2|x| + 1) \quad (\text{if } |h| < 1)$$

So to make this less than ε , let's use $\delta = \min\left(\frac{\varepsilon}{2|x|+1}, 1\right)$. Then

$$|x^{2} - y^{2}| = |x + y||x - y|$$

= ...
 $< |h|(2|x| + |h|)$

Then if $\frac{\varepsilon}{2|x|+1} < 1$, then

$$|h|(2|x|+1) \le |h|(2|x|+1)$$

$$\le \frac{\varepsilon}{2|x|+1}(2|x|+1)$$

$$= \varepsilon$$

And if $\frac{\varepsilon}{2|x|+1} \geq 1$, |h|(2|x|+1) < 2|x|+1 and since $\varepsilon \geq 2|x|+1$, we have what we need. \square **Proposition 1.** If $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^p$ are continuous functions, then $g \circ f: \mathbb{R}^n \to \mathbb{R}^p$ is as well.

Proof. let $\mathbf{x} \in \mathbb{R}^n$, $\varepsilon > 0$. Since g is continuous, there exists $\gamma > 0$ such that $\forall \mathbf{y} \in \mathbb{R}^m$,

$$f(\mathbf{x} - \mathbf{y}) < \gamma \Rightarrow |g(f(\mathbf{x})) - g(\mathbf{y})| < \varepsilon.$$

Furthermore, since f is continuous, there exists $\delta > 0$ such that for all $\mathbf{x}_2 \in \mathbb{R}^n$,

$$|\mathbf{x} - \mathbf{x}_2| < \delta \Rightarrow |f(\mathbf{x}) - f(\mathbf{x}_2)| < \delta.$$

And together $|\mathbf{x} - \mathbf{x}_2| < \delta \Rightarrow |f(\mathbf{x}) - f(\mathbf{x}_2)| < \gamma$ implies that our composition is bounded by epsilon.

Proposition 2. The following functions are continuous:

1.
$$+: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto x + y$

$$2. \cdot: \mathbb{R}^2 \to \mathbb{R}$$
$$(x, y) \mapsto x \cdot y.$$

3. Constant functions.

Proof. Let's just work with multiplication. We want to say that for each pair $(x_0, y_0) \in \mathbb{R}^2$, $\varepsilon > 0$ there exists some $\delta > 0$ such that for all $(x_1, y_1) \in \mathbb{R}^2$ with $|(x_0, y_0) - (x_1, y_1)| < \delta$ we get that $|x_0y_0 - x_1y_1| < \varepsilon$. Let $\delta = \frac{\varepsilon}{|x_0| + |y_1| + 1}$. This proof went slightly awry in class, but

Fig. 1. Graph of a hyperbola and some tolerance ε .

was corrected in an email/canvas message later.

Definition 2. Let $\mathbf{x} \in \mathbb{R}^n$ $r \in \mathbb{R}_{>0}$, the open ball of radius r centered at \mathbf{x} is the set

$$B(\mathbf{x}, r) = \{ \mathbf{y} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{y}| < r \}.$$

A subset $U \subseteq \mathbb{R}^n$ is called **open** if for each $\mathbf{x} \in U$, there exists some $\varepsilon > 0$ such that $B(\mathbf{x}, \varepsilon) \subseteq U$.

Let $Z \subseteq \mathbb{R}^n$. A point $\mathbf{x} \in \mathbb{R}^n$ is said to be a **limit point** of Z if $B(\mathbf{x}, \varepsilon) \cap Z \neq \emptyset$ for all $\varepsilon > 0$.

A subset $Z \subseteq \mathbb{R}^n$ is said to be closed if Z contains all of its limit points.

Example 2. 1. An open interval $(a, b) \subseteq \mathbb{R}$ is open and not closed

- 2. A closed interval $[a,b]\subseteq\mathbb{R}$ is closed and not open
- 3. The half open interval $[a,b) \subseteq \mathbb{R}$ is neither open nor closed
- 4. $\mathbb{R} \subseteq \mathbb{R}$ is neither.

Theorem 1. A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous iff for all open subsets $U \subseteq \mathbb{R}^m$, $f^{-1}(u) \subseteq \mathbb{R}^n$ is an open subset of \mathbb{R}^n .