Week 2 • Problem Set 2 • Koszul resolution

Quick Problem:

Let $R = k[x,y]/(x^2 + y^2)$. Write out the first 3 steps of the Priddy resolution

$$\cdots P_3 \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow k \rightarrow 0.$$

Problems:

1. Let R be a graded ring and M a graded R-module. Define the Poincaré and Hilbert series of M as

$$P_M^R(t) = \sum_{i \ge 0} \beta_i(M)t^i \qquad H_M^R(t) = \sum_{i \ge 0} \dim_k M_i t^i$$

where the *i*th Betti number β_i is the rank of F_i in an R-free resolution of M. (These definitions apply equal well to $R^!$.)

Prove the following equalities of power series.

- (a) $P_k^R(t) = H_{R!}(t)$ (here, R! is considered to be positively graded)
- (b) $H_R(t)P_k^R(-t) = 1$ Hint: Think about Priddy's resolution and Euler characteristics (i.e., vector space dimensions along exact sequences).
- **2.** The following are all Koszul algebras. Compute the first few steps of the Priddy/Koszul resolution of k.
 - (a) $R = k[x, y, z]/(x^2, xy)$ (and, if you are combinatorially-minded, find the Poincaré series in closed form sometime)
 - (b) $R = S = k[x_1, \dots, x_n]$ the symmetric algebra
 - (c) $R = \wedge (k\{e_1, \dots, e_n)\}$ the exterior algebra
 - (d) R =the trivial algebra over k on x_1, \ldots, x_n (that is, all products of positive degree elements are zero).
- **3.** Consider the noncommutative ring $R = k\langle x, y \rangle/(x^2 + y^2, xy + yx)$.
 - (a) Show that R is Koszul. (Hint: Consider its dual.)
 - (b) Show that $\operatorname{projdim}_{R} k < \infty$.
- **4.** Let R be a graded quadratic algebra. Prove that R is Koszul if and only if $R^!$ is Koszul. (You may assume Priddy's theorem.)

Hint: Apply $\operatorname{Hom}_k(-,k)$ and regrade!)

5. Let R be a quadratic (commutative) hypersurface R = Q/(f). Show explicitly how the Priddy resolution is isomorphic to Tate's dg algebra resolution from Week 1.

(Note that $Q \to R \to k$ is an embedded complete intersection.)

6. Let $\langle -, - \rangle \colon V \otimes V \to k$ be a perfect pairing, where V is the k-vector space with basis $\{x, y\}$. Consider the "short Gorenstein algebra" $R = k \oplus V \oplus k$ in degrees 0,1, and 2, with product given by the perfect pairing (and k-scalar products).

Show that $R! = T(V^*)/(q)$ (a noncommutative hypersurface!) where q is the quadratic form of the pairing.

1