```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

reading the data

getting the shape

data = pd.read_csv('/content/abalone.csv')

getting the shape

data.shape

(4177, 9)

looking at the head of the data

data.head()

Sex weight	Length \	Diameter	Height	Whole weight	Shucked weight	Viscera
0 M	o.455	0.365	0.095	0.5140	0.2245	
0.1010 1 M	0.350	0.265	0.090	0.2255	0.0995	
0.0485 2 F	0.530	0.420	0.135	0.6770	0.2565	
0.1415 3 M	0.440	0.365	0.125	0.5160	0.2155	
0.1140						
4 I 0.0395	0.330	0.255	0.080	0.2050	0.0895	
She	ll weigh	t Rinas				

	Shell weigh	t Kings
0	0.150	9 15
1	0.070	9 7
2	0.21	9
3	0.15	5 10
4	0.05	5 7

describe the data

data.describe()

	Length	Diameter	Height	Whole weight	Shucked
weight \	.				
count 41	.77.000000	4177.000000	4177.000000	4177.000000	
4177.0000	000				
mean	0.523992	0.407881	0.139516	0.828742	
0.359367					
std	0.120093	0.099240	0.041827	0.490389	

0.22196 min	0.075000	0.055000	0.000000	0.002000
0.00100 25%	0.450000	0.350000	0.115000	0.441500
0.18600 50%	0.545000	0.425000	0.140000	0.799500
0.33600 75%	0.615000	0.480000	0.165000	1.153000
0.50200 max 1.48800	0.815000	0.650000	1.130000	2.825500
	Viscera weight	Shell weight	Rinas	

	Viscera weight	Shell weight	Rings
count	4177.000000	4177.000000	4177.000000
mean	0.180594	0.238831	9.933684
std	0.109614	0.139203	3.224169
min	0.000500	0.001500	1.000000
25%	0.093500	0.130000	8.000000
50%	0.171000	0.234000	9.000000
75%	0.253000	0.329000	11.000000
max	0.760000	1.005000	29.000000

information of the data

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64
dtype	es: float64(7),	int64(1), object((1)

memory usage: 293.8+ KB

checking if there is any NULL data

data.isnull().sum()

Sex	0
Length	0
Diameter	0
Height	0

Whole weight 0
Shucked weight 0
Viscera weight 0
Shell weight 0
Rings 0

dtype: int64

pairplot

sns.pairplot(data)

<seaborn.axisgrid.PairGrid at 0x7fc9851302d0>

checking the columns of the data

data.columns

heatmap

<matplotlib.axes._subplots.AxesSubplot at 0x7fc980b6b590>

checkig the values of sex

```
data['Sex'].value_counts()

M     1528
I     1342
F     1307
Name: Sex, dtype: int64
```

plotting a hue plot

```
plt.rcParams['figure.figsize'] = (18, 8)
sns.boxplot(data['Rings'], data['Length'], hue = data['Sex'], palette
```

```
= 'pastel')
plt.title('Rings vs length and sex', fontsize = 20)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Text(0.5, 1.0, 'Rings vs length and sex')

rings vs diameter and sex

```
plt.rcParams['figure.figsize'] = (20, 8)
sns.violinplot(data['Rings'], data['Diameter'], hue = data['Sex'],
palette = 'Set1')
plt.title('Rings vs diameter and sex', fontsize = 20)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Text(0.5, 1.0, 'Rings vs diameter and sex')

rings vs height and sex

```
plt.rcParams['figure.figsize'] = (18, 8)
sns.boxenplot(data['Rings'], data['Height'], hue = data['Sex'],
palette = 'Set2')
plt.title('Rings vs height and sex', fontsize = 20)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Text(0.5, 1.0, 'Rings vs height and sex')

ring vs weight

```
plt.rcParams['figure.figsize'] = (18, 10)
sns.swarmplot(data['Rings'], data['Whole weight'])
plt.title('Rings vs weight')
```

plt.rcParams['figure.figsize'] = (18, 10) sns.swarmplot(data['Rings'], data['Shucked weight'], palette = 'dark') plt.title('Rings vs shucked weight')

```
plt.rcParams['figure.figsize'] = (18, 10)
sns.stripplot(data['Rings'], data['Viscera weight'])
plt.title('Rings vs Viscera Weight')
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Text(0.5, 1.0, 'Rings vs Viscera Weight')

plt.rcParams['figure.figsize'] = (18, 10)
sns.regplot(data['Rings'], data['Shell weight'])
plt.title('Rings vs Shell weight')

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Text(0.5, 1.0, 'Rings vs Shell weight')

from math import pi

```
# Set data
df = pd.DataFrame({
'group': [i for i in range(0, 4177)],
'Sex': data['Sex'],
'Length': data['Length'],
'Diameter': data['Diameter'],
'Whole weight': data['Whole weight'],
'Viscera weight': data['Viscera weight'],
'Shell weight': data['Shell weight']
})
# number of variable
categories=list(df)[1:]
N = len(categories)
# We are going to plot the first line of the data frame.
# But we need to repeat the first value to close the circular graph:
values = df.loc[0].drop('group').values.flatten().tolist()
values += values[:1]
values
# What will be the angle of each axis in the plot? (we divide the plot
/ number of variable)
angles = [n / float(N) * 2 * pi for n in range(N)]
angles += angles[:1]
# Initialise the spider plot
ax = plt.subplot(111, polar=True)
```

```
# Draw one axe per variable + add labels labels yet
plt.xticks(angles[:-1], categories, color='grey', size=8)

# Draw ylabels
ax.set_rlabel_position(0)
plt.yticks([10,20,30], ["10","20","30"], color="grey", size=7)
plt.ylim(0,40)

# Plot data
ax.plot(angles, values, linewidth=1, linestyle='solid')
plt.title('Radar Chart for determing Importances of Features', fontsize = 20)
# Fill area
ax.fill(angles, values, 'red', alpha=0.1)
[<matplotlib.patches.Polygon at 0x7fc97dadd890>]
```

Radar Chart for determing Importances of Features

data = pd.get_dummies(data)

```
data.head()
  Sex Length Diameter Height Whole weight Shucked weight Viscera
weight
        0.455
   М
                  0.365
                          0.095
                                       0.5140
                                                        0.2245
0.1010
        0.350
                  0.265
                          0.090
                                       0.2255
                                                        0.0995
1
    М
0.0485
                  0.420
                                       0.6770
  F
       0.530
                          0.135
                                                       0.2565
0.1415
        0.440
                  0.365
3
  М
                          0.125
                                       0.5160
                                                       0.2155
0.1140
        0.330
                  0.255
                          0.080
                                       0.2050
                                                        0.0895
   Ι
0.0395
   Shell weight
                 Rings
0
          0.150
                    15
                     7
1
          0.070
2
          0.210
                     9
3
          0.155
                    10
4
                     7
          0.055
y = data['Rings']
data = data.drop(['Rings'], axis = 1)
x = data
# getting the shapes
print("Shape of x:", x.shape)
print("Shape of y:", y.shape)
Shape of x: (4177, 8)
Shape of y: (4177,)
from sklearn.model selection import train test split
x train, x test, y train, y test = train test split(x, y, test size =
0.2, random state = 0)
# getting the shapes
print("Shape of x_train :", x_train.shape)
print("Shape of x test :", x test.shape)
print("Shape of y_train :", y_train.shape)
print("Shape of y_test :", y_test.shape)
Shape of x train: (3341, 8)
Shape of x test: (836, 8)
Shape of y_train : (3341,)
Shape of y_test : (836,)
```

train test split

```
from sklearn.model selection import train test split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size =
0.2, random state = 0)
# getting the shapes
print("Shape of x_train :", x_train.shape)
print("Shape of x_test :", x_test.shape)
print("Shape of y_train :", y_train.shape)
print("Shape of y_test :", y_test.shape)
Shape of x train: (3341, 8)
Shape of x test : (836, 8)
Shape of y train : (3341,)
Shape of y test: (836,)
!pip install eli5
Looking in indexes: https://pypi.org/simple, https://us-
python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: eli5 in /usr/local/lib/python3.7/dist-
packages (0.13.0)
Requirement already satisfied: attrs>17.1.0 in
/usr/local/lib/python3.7/dist-packages (from eli5) (22.1.0)
Requirement already satisfied: numpy>=1.9.0 in
/usr/local/lib/python3.7/dist-packages (from eli5) (1.21.6)
Requirement already satisfied: six in /usr/local/lib/python3.7/dist-
packages (from eli5) (1.15.0)
Requirement already satisfied: scikit-learn>=0.20 in
/usr/local/lib/python3.7/dist-packages (from eli5) (1.0.2)
Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-
packages (from eli5) (1.7.3)
Requirement already satisfied: jinja2>=3.0.0 in
/usr/local/lib/python3.7/dist-packages (from eli5) (3.1.2)
Requirement already satisfied: graphviz in
/usr/local/lib/python3.7/dist-packages (from eli5) (0.10.1)
Requirement already satisfied: tabulate>=0.7.7 in
/usr/local/lib/python3.7/dist-packages (from eli5) (0.8.10)
Requirement already satisfied: MarkupSafe>=2.0 in
/usr/local/lib/python3.7/dist-packages (from jinja2>=3.0.0->eli5)
Requirement already satisfied: joblib>=0.11 in
/usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.20->eli5)
(1.2.0)
Requirement already satisfied: threadpoolctl>=2.0.0 in
/usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.20->eli5)
(3.1.0)
import eli5
from eli5.sklearn import PermutationImportance
```

```
perm = PermutationImportance(model, random_state = 0).fit(x_test,
y_test)
eli5.show_weights(perm, feature_names = x_test.columns.tolist())
```