MS WRITTEN EXAMINATION IN BIOSTATISTICS, PART I

Wednesday, August 8, 2018, 9:00 AM - 3:00 PM Room: BCBS Auditorium (MHRC 0001)

INSTRUCTIONS:

- This is a **CLOSED BOOK** examination.
- Answer all questions.
- Put the answers to different questions on **separate sets of paper**. Write on **one side** of the sheet only, **inside the marked box**.
- Put your code letter, **not your name**, on each page, in the upper right corner.
- Return the examination with a **signed honor pledge form**, separate from your answers.
- You are required to answer **only what is asked** in the questions and not to tell all you know about the topics.
- Aim for clarity in your writing. Define any new notation you use; even common notation such as \bar{x} should be defined.

- 1. Suppose that the conditional distribution of Y given X is normal with mean X and variance X and that the marginal distribution of X is Uniform(0,1). In what follows, show all your work and derivations, not just the final answer.
 - (a) Find E[Y], Var(Y) and Cov(Y, X).
 - (b) Find Cov(Y X, X). Are Y X and X independent? Justify your answer.
 - (c) Find the numerical value of P(X > Y).
 - (d) Suppose that Z_1, Z_2, \cdots is a sequence of iid random variables each distributed as standard normal (mean 0, variance 1). For $n = 1, 2, \cdots$, derive a general expression for

$$P\left(Z_{n+1} < Z_n | Z_n = \max(Z_1, \cdots, Z_n)\right).$$

(e) Find the numerical value of $E[|Z_1 - Z_2|]$.

Points: 5 for each part.

- 2. Suppose that the random variables Y_1 and Y_2 are independent and identically distributed as exponential with mean $\mu > 0$. Define the order statistics as follows: $X_1 = \min(Y_1, Y_2)$, $X_2 = \max(Y_1, Y_2)$. Also define the range, $R = X_2 X_1 = |Y_1 Y_2|$, and the sample mean $\bar{Y} = (Y_1 + Y_2)/2$. In what follows, find explicit expressions and simplify them as much as possible. Show all your work and derivations, not just the final answer.
 - (a) Prove that \bar{Y} is the unique uniformly minimum-variance unbiased estimator of μ .
 - (b) Prove rigorously and without using the formula for the pdf of order statistics, that X_1 is distributed as exponential with mean $\mu/2$.
 - (c) Show that $E[R] = \mu$ and find Var(R).
 - (d) Find $E[X_2]$, $Var(X_2)$ and $Corr(X_1, X_2)$.
 - (e) Find $E[R|\bar{Y}]$.

Points: 5 for each part.

3. Human-to-mosquito transmission of P. falciparum malaria is mediated by sexual stage parasites called gametocytes. Mosquito feeding assay is a method to assess whether the gametocytes in a patient are transmissible to mosquitos. Through the detection of oocysts in the mosquito midgut by microscopy, researchers can confirm such transmissibility. A random sample of n subjects were assayed, and the outcomes are denoted Y_1, \ldots, Y_n , where $Y_i = 1$ if oocysts were detected in the i-th subject and $Y_i = 0$ otherwise.

In what follows, show all your work and derivations, not just the final answer.

- (a) As a simple initial model, suppose that the probability of transmission is $p = E[Y_i], 1 \le i \le n$. Derive the maximum likelihood estimator (MLE) of p and its large sample distribution.
- (b) For a given $\alpha \in (0,1)$, find either an exact or an approximate $(1-\alpha)$ confidence interval for p.
- (c) Researchers hypothesize that transmissibility depends on gametocyte density in the patient's blood. Let x_i denote the gametocyte density in the *i*-th subject, $1 \le i \le n$. Researchers propose the following model for transmissibility,

$$E[Y_i] = p_i = \frac{1}{1 + \exp(\beta_0 - \beta_1 x_i)},$$

where p_i is the subject-specific transmission probability. Assuming β_0 is known, show that the maximum likelihood estimator (MLE) of β_1 satisfies the equation

$$\sum_{i=1}^{n} x_i (y_i - p_i) = 0,$$

where y_i is the observed value of Y_i .

- (d) To test the association between transmissibility and gametocyte density, the researchers propose the null hypothesis $H_0: \beta_1 = 0$ versus the alternative hypothesis $H_1: \beta_1 \neq 0$. Find an asymptotic test with type-I error probability α .
- (e) The study aims to estimate the gametocyte density threshold θ , defined to be the density with transmission probability equal to 0.95. One biostatistician suggested that, using the MLE in (c), a feasible estimator of θ is $\hat{\theta} = k/\hat{\beta}_1$. Find the constant k such that $\hat{\theta}$ is the MLE of θ . Further, find either an exact or an approximate 95% confidence interval for θ .

Points: 5 for each part.