#### Improved Multilingual Language Model Pretraining for Social Media Text via Translation Pair Prediction

Shubhanshu Mishra, Aria Haghighi | Twitter, Inc.

2021 The 7th Workshop on Noisy User-generated Text (W-NUT)

Code: github.com/twitter-research/multilingual-alignment-tpp

#### Is mBERT aligned? No. Can we align it to improve zero-shot transfer on social media text? Yes.



Translations from

translations (TT)



Japanese

acc.  $\Delta\%$  acc.  $\Delta\%$  acc.  $\Delta\%$ 

0.0 | 52.7 | 0.0 | 64.0 | 0.0

A 0%

Arabic

F. A %



- Misalignment of Language Models → lower zero-shot transfer capabilities.
- Significant accuracy drop for orthographically diff. languages.
- Availability of translation pairs of varying quality can align Language Models.

#### **Translation Datasets (Size)** -wikidata descriptions and labels (WD) [NEW]

| Lang pair | Tatoeba | Wikimatrix - | Wikidata |                                               |
|-----------|---------|--------------|----------|-----------------------------------------------|
| en-ar     | 28K     | 773K         | 1.6M     | Translations mined from Wikipedia using Cross |
| en-ja     | 220K    | 480K         | 509K     | Lingual Model (WM)                            |
| en-hi     | 11K     | 134K         | 77K      |                                               |
|           |         |              |          | I I company consistency                       |

**Translation Pair Prediction (TPP) Setup** 

- mBERT: Baseline
- +TPP (ONE): Single pair training.
- +TPP (BP): Consecutive pair training on best two dataset.
- +TPP (ALL): All language pair training.

#### **Downstream Zero Shot Evaluation Setup**

- Fine-tune on only English dataset for the task
- Hypothesis: Alignment helps zero-shot transfer. • This assumption may fail when translation of task does not exist:
- o E.g. abuse in one language not translatable in other language.
- NER and Sentiment dataset are based on Tweets, UD POS is included to check performance in standard domain.

# **Downstream performance**

NED

UD POS

mBERT

Hindi

| NEK        | <b>r</b> 1     | $\Delta$ % | F1             | $\Delta \%$ | <b>F</b> 1 | $\Delta \%$ |
|------------|----------------|------------|----------------|-------------|------------|-------------|
| mBERT      | 21.1           | 0.0        | 16.5           | 0.0         | 32.1       | 0.0         |
| +TPP (ONE) | 24.3           | 15.2       | 29.9           | 81.4        | 39.4       | 22.8        |
| +TPP (ALL) | 23.2           | 10.3       | 27.4           | 66.4        | 38.5       | 19.9        |
|            |                |            |                |             |            |             |
| Sentiment  | $\mathbf{F}_1$ | $\Delta\%$ | $  F_1$        | $\Delta\%$  | $ F_1 $    | $\Delta\%$  |
|            | F <sub>1</sub> |            | F <sub>1</sub> |             | _          |             |
|            | 31.7           | 0.0        | 55.0           | 0.0         | 51.5       | 0.0         |

| +TPP (ONE) | 71.5 | 6.0  | 57.6 | 9.2 | 67.1 | 4.8 |
|------------|------|------|------|-----|------|-----|
| +TPP (ALL) | 66.4 | -1.5 | 52.7 | 0.1 | 65.0 | 1.5 |
|            |      |      |      |     |      |     |

• NER: 37% relative improvement in F1.

• Sentiment: 12% relative improvement in F1. • **UD POS**: 6.7% relative improvement in accuracy.

(see paper for details) • Tatoeba is likely to be the most accurate as it is manually

Impact of Translation Quality

- curated. · Wikidata is likely to be higher
- quality for HI (low resource) . Wikimatrix is auto generated hence likely to perform worse on low-resource languages compared to AR and JA (high resource).

#### Conclusion

• TPP is simple way to align any encoder.

- Don't expect embeddings or models trained on all languages data to share
- information across orthographically different languages
- Task type impacts transfer: o Good: Syntactic tasks (NER, POS)
- o OK: Semantic tasks (Sentiment, Abuse).
- Our results are promising given the lack of social media bitext corpus.
- Our downstream setup can serve as a benchmark to evaluate multilingual performance on social media text.

# Improved Multilingual Language Model Pretraining for Social Media Text via Translation Pair Prediction

Shubhanshu Mishra, and Aria Haghighi Twitter, Inc.

2021 The 7th Workshop on Noisy User-generated Text (W-NUT) Code: <a href="mailto:github.com/twitter-research/multilingual-alignment-tpp">github.com/twitter-research/multilingual-alignment-tpp</a>





# Why multilingual models?

Top 10 most spoken languages, 2021



Ethnologue

Source: <a href="https://www.ethnologue.com/guides/ethnologue200">https://www.ethnologue.com/guides/ethnologue200</a>

|         | Languages                       | Regions               |                                                                              | Pa                                                  | rticipation |                                                   | V-10-10-10-10-10-10-10-10-10-10-10-10-10- | Ac                                | tive ed | itors     |              | Edits                                | Usage             | Content          |
|---------|---------------------------------|-----------------------|------------------------------------------------------------------------------|-----------------------------------------------------|-------------|---------------------------------------------------|-------------------------------------------|-----------------------------------|---------|-----------|--------------|--------------------------------------|-------------------|------------------|
|         | Language<br>⇒ Wikipedia article | 7                     | Speakers in millions (log scale) (?) Editors per million speakers (5+ edits) | Prim.+Sec.<br>Speakers<br>M=millions<br>k=thousands |             | Months<br>since<br>3 or more<br>active<br>editors | 5+ edits<br>p/month<br>(3m avg)           | 100+ edits<br>p/month<br>(3m avg) |         | Bots      | Bot<br>edits | Human<br>edits<br>by unreg.<br>users | Views<br>per hour | Article<br>count |
| <b></b> | <b>*</b>                        | <b>\$</b>             |                                                                              | <b></b>                                             | <b>+</b>    | <b>\$</b>                                         | <b></b>                                   | <b></b>                           | <b></b> | <b>\$</b> | <b>\$</b>    | <b></b>                              | <b></b>           | *                |
| Σ       | All languages                   | AF AS EU NA SA OC CLW |                                                                              |                                                     |             |                                                   |                                           |                                   |         |           |              |                                      |                   |                  |
| en      | English                         | AF AS EU NA OC        |                                                                              | 1121 M                                              | 27          |                                                   | 30684                                     | 3445                              | 1274    | 312       | 9%           | 31%                                  | 4,858,539         | 5,779,516        |
| ceb     | Cebuano                         | AS                    |                                                                              | 20 M                                                | 1           |                                                   | 26                                        | 2                                 | 4       | 60        | 99%          | 19%                                  | 1,311             | 5,379,752        |
| SV      | Swedish                         | EU                    |                                                                              | 10 M                                                | 64          |                                                   | 641                                       | 101                               | 66      | 40        | 57%          | 20%                                  | 53,206            | 3,761,531        |
| de      | German                          | EU                    |                                                                              | 132 M                                               | 41          |                                                   | 5395                                      | 900                               | 198     | 374       | 10%          | 20%                                  | 726,852           | 2,254,737        |
| fr      | French                          | AF AS EU NA OC SA     |                                                                              | 285 M                                               | 17          |                                                   | 4864                                      | 790                               | 161     | 107       | 19%          | 21%                                  | 461,591           | 2,069,464        |
| nl      | Dutch                           | EU SA                 |                                                                              | 28 M                                                | 42          |                                                   | 1185                                      | 214                               | 45      | 269       | 38%          | 19%                                  | 97,322            | 1,953,504        |
| ru      | Russian                         | AS EU                 |                                                                              | 264 M                                               | 12          |                                                   | 3188                                      | 518                               | 87      | 84        | 17%          | 25%                                  | 634,782           | 1,518,909        |
| es      | Spanish                         | AF AS EU NA SA        |                                                                              | 513 M                                               | 8           |                                                   | 4135                                      | 544                               | 71      | 36        | 17%          | 37%                                  | 417,439           | 1,496,759        |
| it      | Italian                         | EU                    |                                                                              | 68 M                                                | 35          |                                                   | 2355                                      | 398                               | 109     | 173       | 29%          | 32%                                  | 270,709           | 1,489,914        |
| pl      | Polish                          | EU                    |                                                                              | 43 M                                                | 29          |                                                   | 1256                                      | 237                               | 106     | 68        | 34%          | 19%                                  | 185,774           | 1,313,943        |

Source: https://stats.wikimedia.org/EN/Sitemap.htm#comparisons





# Motivation: Multilingual NER

#### NER trained on tweets using Multilingual Word Embeddings and BiLSTM

| Language                | English  | German   | Dutch    | Spanish  | French | Italian | Turkish     | Hindi | Arabic |
|-------------------------|----------|----------|----------|----------|--------|---------|-------------|-------|--------|
| Testing Dataset         | CoNLL-03 | CoNLL-03 | CoNLL-02 | CoNLL-02 | xLIME  | xLIME   | $_{ m JRC}$ | SEAS  | CS-18  |
| Lookup                  | 36.6     | 22.8     | 36.8     | 29.7     | 15.6   | 23.3    | 22.9        | 20.4  | 16.7   |
| Mono Training           | 40.2     | 35.5     | 39.4     | 27.4     | 27.7   | 29.3    | 24.8        | 11.8  | 22.8   |
| Mul Training            | 38.3     | 36.6     | 43.2     | 29.1     | 26.4   | 28.9    | 28.0        | 9.8   | 14.0   |
| Mono Training + WikiANN | 47.2     | 41.2     | 55.4     | 37.6     | 30.3   | 28.4    | 27.8        | 14.0  | 21.9   |
| Mul Training + WikiANN  | 43.2     | 39.6     | 52.8     | 44.0     | 32.6   | 25.4    | 28.6        | 8.3   | 11.3   |

Table 1: Entity-Level Micro-Average F1-scores for the PERSON, LOCATION and ORGANIZATION types

Table Source: Ramy Eskander, Peter Martigny, Shubhanshu Mishra. Multilingual Named Entity Recognition in Tweets using Wikidata in WeCNLP 2020



Source: [1810.04805] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

We use the Multilingual BERT as an encoder for representing the text and tokens.

# Is mBERT aligned? No.



Can we align it to improve zero-shot transfer on social media text?

Yes.



Misalignment of Language Models → lower zero-shot transfer capabilities.

Significant accuracy drop for orthographically diff. languages.

Availability of translation pairs of varying quality can align Language Models.



# Translation Pair Prediction → New Pretraining task





# Translation Datasets (Size)

Translations from wikidata descriptions and labels (WD) [NEW] Wikimatrix Wikidata Tatoeba Lang pair 1.6M 28K 773K en-ar Translations mined from -Wikipedia using Cross 220K 480K 509K en-ja Lingual Model (WM) 11K 77K en-hi 134K Human written translations (TT)



## Wikidata Translation Pairs

#### natural language processing (Q30642)

field of computer science and linguistics

NLP

#### ▼ In more languages

Configure

| Language            | Label                                   | Description                                                                                      |
|---------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------|
| English             | natural language processing             | field of computer science and linguistics                                                        |
| Spanish             | procesamiento de lenguajes<br>naturales | subdisciplina de la inteligencia artificial y rama<br>de la ingeniería lingüística computacional |
| Traditional Chinese | 自然語言處理                                  | No description defined                                                                           |
| Chinese             | 自然语言处理                                  | 以通过语音输入文字为例,自然语言处理是用计<br>算机来处理、理解以及运用人类语言。                                                       |

For each wikidata items with label and description in languages part of translation pair, e.g. English (en) and Hindi (hi), create sentences as follows:

```
Source[en] : Label[en] + " " + Description[en]
Target[hi] : Label[hi] + " " + Description[hi]
```



# Translation Pair Prediction (TPP) Setup

- mBERT: Baseline
- +TPP (ONE): Single pair training.
  - The language pair data comes from either Tatoeba (TT),
     Wikimatrix (WM), or Wikidata (WD).
- +TPP (BP): Consecutive pair training on best two dataset.
  - $\circ$  mBERT  $\rightarrow$  TPP(TT)  $\rightarrow$  TT(WM).
- +TPP (ALL): All language pair training.
  - mBERT → TPP(TT-AR + TT-HI + TT-JA)
  - This model can give us a good trade-off for model serving and improved accuracy.



# Downstream Zero Shot Evaluation Setup

- Fine-tune on only English dataset for the task
- Hypothesis: Alignment helps zero-shot transfer.
- This assumption may fail when translation of task does not exist, e.g. abuse in one language not translatable in other language.
- NER and Sentiment dataset are based on Tweets, UD POS is included to check performance in standard domain.



# Downstream Zero Shot Evaluation Setup

|            | Hi    | Hindi      |                | nese       | Arabic         |            |
|------------|-------|------------|----------------|------------|----------------|------------|
| NER        | $F_1$ | $\Delta\%$ | F <sub>1</sub> | $\Delta\%$ | F <sub>1</sub> | $\Delta\%$ |
| mBERT      | 21.1  | 0.0        | 16.5           | 0.0        | 32.1           | 0.0        |
| +TPP (ONE) | 24.3  | 15.2       | 29.9           | 81.4       | 39.4           | 22.8       |
| +TPP (ALL) | 23.2  | 10.3       | 27.4           | 66.4       | 38.5           | 19.9       |
| Sentiment  | $F_1$ | $\Delta\%$ | F <sub>1</sub> | $\Delta\%$ | F <sub>1</sub> | $\Delta\%$ |
| mBERT      | 31.7  | 0.0        | 55.0           | 0.0        | 51.5           | 0.0        |
| +TPP (ONE) | 32.7  | 3.0        | 66.4           | 20.6       | 58.3           | 13.2       |
| +TPP (ALL) | 32.4  | 2.3        | 67.7           | 23.1       | 58.5           | 13.7       |
| UD POS     | acc.  | $\Delta\%$ | acc.           | $\Delta\%$ | acc.           | $\Delta\%$ |
| mBERT      | 67.4  | 0.0        | 52.7           | 0.0        | 64.0           | 0.0        |
| +TPP (ONE) | 71.5  | 6.0        | 57.6           | 9.2        | 67.1           | 4.8        |
| +TPP (ALL) | 66.4  | -1.5       | 52.7           | 0.1        | 65.0           | 1.5        |

- NER: 37% relative improvement in F1.
- **Sentiment:** 12% relative improvement in F1.
- **UD POS:** 6.7% relative improvement in accuracy.



# Performance using various translation pairs (NER)

|                | Hindi |            | Japa    | nese       | Arabic  |            |
|----------------|-------|------------|---------|------------|---------|------------|
| NER            | $F_1$ | $\Delta\%$ | $ F_1 $ | $\Delta\%$ | $ F_1 $ | $\Delta\%$ |
| mBERT          | 21.1  | 0.0        | 16.5    | 0.0        | 32.1    | 0.0        |
| +TPP (TT)      | 23.1  | 9.6        | 27.8    | 68.6       | 36.3    | 13.2       |
| +TPP (WD)      | 22.4  | 6.3        | 26.5    | 60.8       | 36.9    | 15.0       |
| +TPP(WM)       | 21.6  | 2.6        | 27.7    | 68.3       | 38.3    | 19.3       |
| +TPP (BP)      | 24.3  | 15.2       | 29.9    | 81.4       | 39.4    | 22.8       |
| +TPP (ALL) 23. |       | 10.3       | 27.4    | 66.4       | 38.5    | 19.9       |



# Performance using various translation pairs (Sentiment)

|            | Hir   | ndi        | Japa       | nese       | Ara     | bic        |
|------------|-------|------------|------------|------------|---------|------------|
| Sentiment  | $F_1$ | $\Delta\%$ | $\mid F_1$ | $\Delta\%$ | $ F_1 $ | $\Delta\%$ |
| mBERT      | 31.7  | 0.0        | 55.0       | 0.0        | 51.5    | 0.0        |
| +TPP (TT)  | 31.8  | 0.3        | 62.4       | 13.5       | 58.3    | 13.2       |
| +TPP (WD)  | 30.8  | -2.9       | 50.2       | -8.7       | 53.0    | 3.0        |
| +TPP(WM)   | 32.7  | 3.0        | 63.2       | 14.8       | 54.7    | 6.4        |
| +TPP (BP)  | 32.0  | 0.9        | 66.4       | 20.6       | 55.3    | 7.5        |
| +TPP (ALL) | 32.4  | 2.3        | 67.7       | 23.1       | 58.5    | 13.7       |



# Performance using various translation pairs (UD POS)

|               | Hir  | Hindi      |      | nese       | Arabic |            |
|---------------|------|------------|------|------------|--------|------------|
| <b>UD POS</b> | acc. | $\Delta\%$ | acc. | $\Delta\%$ | acc.   | $\Delta\%$ |
| mBERT         | 67.4 | 0.0        | 52.7 | 0.0        | 64.0   | 0.0        |
| +TPP (TT)     | 65.1 | -3.5       | 54.0 | 2.4        | 66.7   | 4.1        |
| +TPP (WD)     | 70.5 | 4.5        | 53.0 | 0.5        | 66.4   | 3.7        |
| +TPP(WM)      | 70.4 | 4.3        | 54.4 | 3.1        | 65.4   | 2.2        |
| +TPP (BP)     | 71.5 | 6.0        | 57.6 | 9.2        | 67.1   | 4.8        |
| +TPP (ALL)    | 66.4 | -1.5       | 52.7 | 0.1        | 65.0   | 1.5        |



# Impact of Translation Quality (see paper for details)

- Tatoeba is likely to be the most accurate as it is manually curated.
- Wikidata is likely to be higher quality for HI (low resource)
- Wikimatrix is auto generated hence likely to perform worse on low-resource languages compared to AR and JA (high resource).



# Conclusion

- TPP is simple way to align any encoder.
- Don't expect embeddings or models trained on all languages data to share information across orthographically different languages
- Task type impacts transfer:
  - Good: Syntactic tasks (NER, POS)
  - OK: Semantic tasks (Sentiment, Abuse).
- Our results are promising given the lack of social media bitext corpus.
- Our downstream setup can serve as a benchmark to evaluate multilingual performance on social media text.

# Thank You!

Questions @TheShubhanshu and @aria42

Code and experiment details at:

https://github.com/twitter-research/multilingual-alignment-tpp