## 1 Correction du DM1

Exercice 1 Session2 2018-2019

Soit A un arbre binaire, on rappelle la définition inductive de h(A), la hauteur de A:

- (i) Si A est l'arbre vide, h(A) = -1.
- (ii) Si  $A = (\cdot, B, C)$  où B est le sous-arbre gauche et C est le sous-arbre droit, alors  $h(A) = 1 + \max(h(B), h(C))$ .
  - 1. Redonnez le schéma d'induction des arbres complets.

**Solution** Schéma d'induction de  $\mathcal{C}$ , l'ensemble des arbres complets.

- i) L'arbre racine appartient à C.
- ii) Soit  $C \in \mathcal{C}$  alors l'arbre binaire  $A = (\cdot, C, C) \in \mathcal{C}$ .
- 2. On attribue une valeur à chacun des nœuds des arbres complets de la manière suivante :
  - (i) Si A est l'arbre racine  $\cdot$ , alors la racine prend la valeur 1.
  - (ii) Soit  $A = (\cdot, B, C)$ . Tous les nœuds de A différents de la racine conservent les valeurs de B ou C. La racine de A prend comme valeur la somme de la valeur de la racine de B et de celle de C.
- 3. Donnez les valeurs de nœuds de l'arbre complet de hauteur 3.



4. Montrez par induction que tout arbre complet A a une racine de valeur  $2^{h(A)}$ .

**Solution** Pour tout A de  $\mathcal{C}$ , notons V(A) la valeur prise par la racine.

On définit sur  $\mathcal{C}$  la propriété  $\mathcal{P}: V(A) = 2^{\hat{h}(A)}$ .

Montrons par induction  $\forall A \in \mathcal{C} \mathcal{P}(A)$ .

- i) Soit A l'arbre racine. Par définition, V(A) = 1 et comme h(A) = 0, nous avons bien  $V(A) = 2^{h(A)}$ ,  $\mathcal{P}(A)$  est vraie.
- ii) Soit  $C \in \mathcal{C}$ . Supposons  $\mathcal{P}(C)$  vraie.

Nous avons donc  $V(C) = 2^{h(C)}$ .

Par définition,  $V(A) = 2V(C) = 2^{h(C)+1}$ .

Comme h(A) = h(C) + 1,  $\mathcal{P}(A)$  est vraie.

Nous avons montré par induction  $\forall A \in \mathcal{C} \mathcal{P}(A)$ .

Remarque : le schéma d'induction possède comme base l'arbre racine car nous n'avons pas précisé quelle valeur retourner pour l'arbre vide. Pour un autre exercice, nous pouvons définir le schéma d'induction :

1

- i) L'arbre vide appartient à C.
- ii) Soit  $C \in \mathcal{C}$  alors l'arbre binaire  $A = (\cdot, C, C) \in \mathcal{C}$ .