Duração: 1h30

Álgebra Linear e Geometria Analítica

1.ª Prova de Avaliação Mista - 27/10/2010

Nome: _______ N.º mecanográfico: ______

Questão	1	2	3	4	Total
Cotação	55	25	60	60	200
Classificação					

Classificação final
valores

Justifique convenientemente todas as suas respostas e indique os cálculos que efectuar.

1. Considere a matriz invertível

$$A = \left[\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array} \right].$$

- (a) Calcule a inversa de A.
- (b) Resolva a equação matricial $(A^{-1} + X)A = A^T$ na incógnita X.

2. Sabendo que $\begin{vmatrix} 1 & 2 & s \\ t & 1 & 1 \\ 1 & s+t & 2 \end{vmatrix} = 1$, calcule $\begin{vmatrix} 1 & t & st \\ 2 & st+t^2 & s \\ s & 2t & s \end{vmatrix}$, utilizando apenas propriedades dos determinantes.

3. Considere o sistema de equações lineares nas incógnitas x,y,z:

$$\begin{cases} x + y + az = a \\ x + ay + z = a \\ ax + y + z = 1 \end{cases}.$$

- (a) Discuta o sistema em função do parâmetro real a. Indique o grau de indeterminação do sistema, em caso de sistema possível e indeterminado.
- (b) Sabendo que (1,0,0) é uma solução do sistema, determine o conjunto de todas as soluções.

4. Para $k \in \mathbb{R}$, considere a matriz

$$A = \left[\begin{array}{cccc} k & 0 & 0 & k \\ -k & 0 & 1 & 0 \\ -1 & 1 & 0 & -1 \\ 0 & k^4 & 1 & 0 \end{array} \right].$$

- (a) Utilize o Teorema de Laplace para calcular det(A), efectuando o desenvolvimento a partir da linha 2.
- (b) Indique os valores de k para os quais A é invertível e, nesse caso, indique
 - i. o elemento (1,2) de A^{-1} sem determinar a matriz A^{-1} ;
 - ii. $\det(kA^{-1})$, utilizando exclusivamente propriedades dos determinantes e o valor calculado em (a).