- 1. This question concerns the statement $\forall a \in \mathbb{R}, \exists b \in \mathbb{R}, b^2 = a$
 - (a) Is this statement true or false? For reach $a \in \mathbb{R}$, there is $ab \in \mathbb{R}$ for which $b^2 = a$ False: If a were negative, Then there is no $b \in \mathbb{R}$ for which $b^2 = a$
 - (b) Form the negation of the statement, and simplify.

$$\neg (\forall \alpha \in \mathbb{R}, \exists b \in \mathbb{R}, b^2 = \alpha)$$

$$= \exists \alpha \in \mathbb{R}, \neg (\exists b \in \mathbb{R}, b^2 = \alpha)$$

$$= \exists \alpha \in \mathbb{R}, \forall b \in \mathbb{R}, \neg (b^2 = \alpha)$$

$$= [\exists \alpha \in \mathbb{R}, \forall b \in \mathbb{R}, b^2 \neq \alpha]$$

Name:

Quiz 18 💠

MATH 211 April 18, 2023

- 1. This question concerns the statement $\forall a \in \mathbb{R}, \exists b \in \mathbb{R}, b^3 = a$
 - (a) Is this statement true or false?

For each a & TR, there is a b ER for which $b^3 = a$.

TRUE For any $a \in \mathbb{R}$, just let $b = \sqrt[3]{a}$.

Then $b^3 = \sqrt[3]{a^3} = a$

(b) Form the negation of the statement, and simplify.