1 Sistemas Lineares Determinados

Sistemas lineares podem ser representados na notação de multiplicação de matrizes:

$$[A]_{m \times n} \cdot \{X\}_{n \times 1} = \{B\}_{m \times 1}$$

No caso em que (m = n), obtém-se como coeficientes lineares uma matriz quadrada.

$$[A]_{n \times n} \cdot \{X\}_{n \times 1} = \{B\}_{n \times 1}$$

1.1 Teorema de Gauss (escalonamento)

Para sistemas lineares com (n) variáveis e (n) equações independentes do ponto de vista linear, o sistema terá solução única. Isto acontece quando

$D = \det(A) \neq 0$	(*)	

(i)	$1 \cdot x + 2 \cdot y - 2 \cdot z = 7$		Г 1	2	-21	(X	(7)	
(ii)	$-3 \cdot x + 7 \cdot y + 6 \cdot z = 5$	\Leftrightarrow	-3	7	6	$\cdot \} y$	$= \{5\}$	
(iii)	$2 \cdot x + 1 \cdot y + 2 \cdot z = 2$		L 2	1	2]	\ _Z ,	(2)	

Vamos verificar se este sistema tem solução única, isto é, se ele atende à condição (*).

$D = \det(A) =$	$\begin{vmatrix} 1 \\ -3 \\ 2 \end{vmatrix}$	2 7 1	$\begin{bmatrix} -2 \\ 6 \\ 2 \end{bmatrix}$	= 78	≠ 0
-----------------	--	-------------	--	------	------------

Vamos resolver este sistema por escalonamento. Para isto, efetue combinações lineares de equações para desaparecer com uma das três variáveis. Para desaparecer com a variável (z), vamos fazer a seguinte escolha:

3 · (i)	\Rightarrow	$3 \cdot x + 6 \cdot y - 6 \cdot z = 21$	
(ii)	\Rightarrow	$-3 \cdot x + 7 \cdot y + 6 \cdot z = 5$	(+)
$3 \cdot (i) + (ii)$	\Rightarrow	$0 \cdot x + 13 \cdot y = 26$	y = 2

1.1.1 Teorema de Cramer bidimensional

Vamos desaparecer com a variável (y).

7 · (i)	\Rightarrow	$7 \cdot 1 \cdot x + 7 \cdot 2 \cdot y - 7 \cdot 2 \cdot z = 7 \cdot 7$	
2 · (ii)	\Rightarrow	$-2 \cdot 3 \cdot x + 2 \cdot 7 \cdot y + 2 \cdot 6 \cdot z = 2 \cdot 5$	

7 · (i)	\Rightarrow	$7 \cdot x + 14 \cdot y - 14 \cdot z = 49$	
2 · (ii)	\Rightarrow	$-6 \cdot x + 14 \cdot y + 12 \cdot z = 10$	(–)
	\Rightarrow	$13 \cdot x - 26 \cdot z = 39$	

1.2 Teorema de Cramer tridimensional

$$\begin{bmatrix} 1 & 2 & -2 \\ -3 & 7 & 6 \\ 2 & 1 & 2 \end{bmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \\ 2 \end{pmatrix} \qquad \Rightarrow \qquad D = \begin{vmatrix} 1 & 2 & -2 \\ -3 & 7 & 6 \\ 2 & 1 & 2 \end{vmatrix} = 78 \neq 0$$

$$D_{x} = \begin{vmatrix} 7 & 2 & -2 \\ 5 & 7 & 6 \\ 2 & 1 & 2 \end{vmatrix} = 78 \qquad \Rightarrow \qquad x = \frac{D_{x}}{D} = \frac{78}{78} = 1$$

$$D_{y} = \begin{vmatrix} 1 & 7 & -2 \\ -3 & 5 & 6 \\ 2 & 2 & 2 \end{vmatrix} = 156 \qquad \Rightarrow \qquad y = \frac{D_{y}}{D} = \frac{156}{78}$$

$$D_{z} = \begin{vmatrix} 1 & 2 & 7 \\ -3 & 7 & 5 \\ 2 & 1 & 2 \end{vmatrix} = -78 \qquad \Rightarrow \qquad z = \frac{D_{z}}{D} = \frac{-78}{78} = -1$$

1.3 Demonstração do teorema de Cramer tridimensional

Vamos desaparecer com a variável (z).

$f \cdot (i)$	\Rightarrow	$f \cdot a \cdot x + f \cdot b \cdot y + f \cdot c \cdot z = f \cdot p$	
c · (ii)	\Rightarrow	$c \cdot d \cdot x + c \cdot e \cdot y + c \cdot f \cdot z = c \cdot q$	(–)
	\Rightarrow	$(f \cdot a - c \cdot d) \cdot x + (f \cdot b - c \cdot e) \cdot y = f \cdot p - c \cdot q$	

Vamos desaparecer com a variável (z).

i · (ii)	\Rightarrow	$i \cdot d \cdot x + i \cdot e \cdot y + i \cdot f \cdot z = i \cdot q$	
f · (iii)	\Rightarrow	$f \cdot g \cdot x + f \cdot h \cdot y + f \cdot i \cdot z = f \cdot r$	(–)
	\Rightarrow	$(i \cdot d - f \cdot g) \cdot x + (i \cdot e - f \cdot h) \cdot y = i \cdot q - f \cdot r$	

Obtivemos um sistema bidimensional

$$(iv) \qquad (f \cdot a - c \cdot d) \cdot x + (f \cdot b - c \cdot e) \cdot y = f \cdot p - c \cdot q$$

$$(i \cdot d - f \cdot g) \cdot x + (i \cdot e - f \cdot h) \cdot y = i \cdot q - f \cdot r$$

Em notação matricial:

E que pode ser resolvido usando o teorema de Cramer.

Vamos calcular o denominador das frações que aparecem no teorema:

$$E = \begin{vmatrix} f \cdot a - c \cdot d & f \cdot b - c \cdot e \\ i \cdot d - f \cdot g & i \cdot e - f \cdot h \end{vmatrix}$$

$$E = (f \cdot a - c \cdot d) \cdot (i \cdot e - f \cdot h) - (i \cdot d - f \cdot g) \cdot (f \cdot b - c \cdot e)$$

$$f \cdot a \cdot i \cdot e - f \cdot a \cdot f \cdot h - \frac{c \cdot d \cdot i \cdot e}{c \cdot d \cdot i \cdot e} + c \cdot d \cdot f \cdot h - i \cdot d \cdot f \cdot b + \frac{i \cdot d \cdot c \cdot e}{c} + f \cdot g \cdot f \cdot b - f \cdot g \cdot c \cdot e$$

$$E = f \cdot a \cdot i \cdot e + c \cdot d \cdot f \cdot h + f \cdot g \cdot f \cdot b - [f \cdot a \cdot f \cdot h + i \cdot d \cdot f \cdot b + f \cdot g \cdot c \cdot e]$$

$$E = f \cdot \{a \cdot i \cdot e + c \cdot d \cdot h + g \cdot f \cdot b - [a \cdot f \cdot h + i \cdot d \cdot b + g \cdot c \cdot e]\}$$

(iv)	$[f \cdot a - c \cdot d f \cdot b - c \cdot e] (x) = (f \cdot p - c \cdot q)$
(v)	$[i \cdot d - f \cdot g i \cdot e - f \cdot h] \cdot \{y\} = \{i \cdot q - f \cdot r\}$

Vamos calcular os numeradores.

$$E_{x} = \begin{vmatrix} f \cdot p - c \cdot q & f \cdot b - c \cdot e \\ i \cdot q - f \cdot r & i \cdot e - f \cdot h \end{vmatrix}$$

$$E_{y} = \begin{vmatrix} f \cdot a - c \cdot d & f \cdot p - c \cdot q \\ i \cdot d - f \cdot g & i \cdot q - f \cdot r \end{vmatrix}$$

$$E_{x} = (f \cdot p - c \cdot q) \cdot (i \cdot e - f \cdot h) - (i \cdot q - f \cdot r) \cdot (f \cdot b - c \cdot e)$$

$$f \cdot p \cdot i \cdot e - f \cdot p \cdot f \cdot h - c \cdot q \cdot i \cdot e + c \cdot q \cdot f \cdot h - i \cdot q \cdot f \cdot b + i \cdot q \cdot c \cdot e + f \cdot r \cdot f \cdot b - f \cdot r \cdot c \cdot e$$

$$f \cdot p \cdot i \cdot e - f \cdot p \cdot f \cdot h + c \cdot q \cdot f \cdot h - i \cdot q \cdot f \cdot b + f \cdot r \cdot f \cdot b - f \cdot r \cdot c \cdot e$$

$$E_{x} = f \cdot \{p \cdot i \cdot e + c \cdot q \cdot h + r \cdot f \cdot b - [p \cdot f \cdot h + i \cdot q \cdot b + r \cdot c \cdot e]\}$$

$$E_{y} = \begin{vmatrix} (f \cdot a - c \cdot d) \cdot (i \cdot q - f \cdot r) - (i \cdot d - f \cdot g) \cdot (f \cdot p - c \cdot q) \\ f \cdot a \cdot i \cdot q - f \cdot a \cdot f \cdot r - \frac{c \cdot d \cdot i \cdot q}{c \cdot d \cdot i \cdot q} + c \cdot d \cdot f \cdot r - i \cdot d \cdot f \cdot p + \frac{i \cdot d \cdot c \cdot q}{c \cdot d \cdot r} + f \cdot g \cdot f \cdot p - f \cdot g \cdot c \cdot q \end{vmatrix}$$

$$E_{y} = \begin{vmatrix} f \cdot \{[a \cdot i \cdot q + c \cdot d \cdot r + g \cdot f \cdot p] - [a \cdot f \cdot r + i \cdot d \cdot p + g \cdot c \cdot q]\} \end{vmatrix}$$

$$x = \frac{E_x}{E}$$

$$\frac{f \cdot \{p \cdot i \cdot e + c \cdot q \cdot h + r \cdot f \cdot b - [p \cdot f \cdot h + i \cdot q \cdot b + r \cdot c \cdot e]\}}{f \cdot \{a \cdot i \cdot e + c \cdot d \cdot h + g \cdot f \cdot b - [a \cdot f \cdot h + i \cdot d \cdot b + g \cdot c \cdot e]\}}$$

$$y = \frac{E_y}{E}$$

$$\frac{f \cdot \{[a \cdot i \cdot q + c \cdot d \cdot r + g \cdot f \cdot p] - [a \cdot f \cdot r + i \cdot d \cdot p + g \cdot c \cdot q]\}}{f \cdot \{a \cdot i \cdot e + c \cdot d \cdot h + g \cdot f \cdot b - [a \cdot f \cdot h + i \cdot d \cdot b + g \cdot c \cdot e]\}}$$

Conclusão: o termo (f) pode ser cancelado nas frações:

D ≝	$\left[a \cdot i \cdot e + c \cdot d \cdot h + g \cdot f \cdot b\right] - \left[a \cdot f \cdot h + i \cdot d \cdot b + g \cdot c \cdot e\right]$
$x = \frac{D_x}{D}$	$\frac{\{p \cdot i \cdot e + c \cdot q \cdot h + r \cdot f \cdot b - [p \cdot f \cdot h + i \cdot q \cdot b + r \cdot c \cdot e]\}}{\{a \cdot i \cdot e + c \cdot d \cdot h + g \cdot f \cdot b - [a \cdot f \cdot h + i \cdot d \cdot b + g \cdot c \cdot e]\}}$
$y = \frac{D_y}{D}$	$\frac{f \cdot \{[a \cdot i \cdot q + c \cdot d \cdot r + g \cdot f \cdot p] - [a \cdot f \cdot r + i \cdot d \cdot p + g \cdot c \cdot q]\}}{f \cdot \{a \cdot i \cdot e + c \cdot d \cdot h + g \cdot f \cdot b - [a \cdot f \cdot h + i \cdot d \cdot b + g \cdot c \cdot e]\}}$

Assim, define-se o determinante de uma matriz (3×3) .

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \implies \det A \stackrel{\text{def}}{=} [a \cdot i \cdot e + c \cdot d \cdot h + g \cdot f \cdot b] - [a \cdot f \cdot h + i \cdot d \cdot b + g \cdot c \cdot e]$$

Método de Sarrus

а	b	C	а	b	
d	e	f	d	е	
g	h	i	g	h	

а	b	С	а	<i>b</i>	
d	е	f	d	е	
${\it g}$	h	i	g	h	

Com esta definição, os numeradores das frações correspondem aos seguintes determinantes:

$$D_{x} = [p \cdot i \cdot e + c \cdot q \cdot h + r \cdot f \cdot b] - [p \cdot f \cdot h + i \cdot q \cdot b + r \cdot c \cdot e]$$

p	<i>b</i>	С	р	b	
q	e	f	q	е	
r	h	i	r	h	

р	b	С	p	b	
q	е	f	q	е	
r	h	i	r	h	

$$D_{\mathcal{Y}} = \left[a \cdot i \cdot q + c \cdot d \cdot r + g \cdot f \cdot p \right] - \left[a \cdot f \cdot r + i \cdot d \cdot p + g \cdot c \cdot q \right]$$

а	p	С	а	р	
d	q	f	d	q	
g	r	i	${\it g}$	r	

а	p	С	а	p	
d	q	f	d	q	
g	r	i	g	r	

A condição de existência de uma única solução é a de que o determinante (D) da matriz de coeficientes seja diferente de zero.

· · · · · · · · · · · · · · · · · · ·		
1 1	i i	
$D = \det(A) \neq 0$	(*)	

2 Sistemas tridimensionais

(i)	$3 \cdot x_1 + 2 \cdot x_2 + 4 \cdot x_3 = 1$		$[3 \ 2 \ 4 \ 1 \ (^{x_1}) \ (^{1})$
(ii)	$1 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3 = \frac{2}{3}$	←	$\begin{vmatrix} 1 & 1 & 2 & \cdot \{x_2\} = \{2\} \end{vmatrix}$
(iii)	$4 \cdot x_1 + 3 \cdot x_2 - 2 \cdot x_3 = \frac{3}{3}$		$[4 \ 3 \ -2] \ (x_3) \ (3)$

2.1 Classificação do sistema

Vamos verificar se este sistema possui solução:

	,		·····		,	
	1 . (4)	_				
· /) — ·	dot(/I) —	_Ω		1	i i	
ν –	$ucu(\pi)$ —	-0		1		

Como $(D \neq 0)$, então o sistema possui uma única solução.

2.2 Solução pelo teorema de Cramer

x_1	_	$\frac{D_x}{D}$	_	$ \begin{array}{c cccc} 1 & 2 & 4 & \\ 2 & 1 & 2 & \\ 3 & 3 & -2 & \\ \hline 3 & 2 & 4 & \\ 1 & 1 & 2 & \\ 4 & 3 & -2 & \\ \end{array} $	=	24 -8	=	-3
<i>x</i> ₂	_	$\frac{D_{\mathcal{Y}}}{D}$	_	$ \begin{vmatrix} 3 & 1 & 4 \\ 1 & 2 & 2 \\ 4 & 3 & -2 \\ \hline \begin{vmatrix} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 4 & 3 & -2 \end{vmatrix} $	_	<u>-40</u> <u>-8</u>	=	5
<i>x</i> ₃	_	$\frac{D_z}{D}$		$ \begin{vmatrix} 3 & 2 & 1 \\ 1 & 1 & 2 \\ 4 & 3 & 3 \end{vmatrix} $ $ \begin{vmatrix} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 4 & 3 & -2 \end{vmatrix} $	_	<u>0</u> -8	=	0

Verificação da solução:

$$\begin{bmatrix} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 4 & 3 & -2 \end{bmatrix} \cdot \begin{Bmatrix} x_1 \\ x_2 \\ x_3 \end{Bmatrix} = \begin{Bmatrix} 1 \\ 2 \\ 3 \end{Bmatrix} \implies \begin{bmatrix} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 4 & 3 & -2 \end{bmatrix} \cdot \begin{Bmatrix} -3 \\ 5 \\ 0 \end{Bmatrix} = \begin{Bmatrix} 1 \\ 2 \\ 3 \end{Bmatrix} \implies \begin{Bmatrix} 1 \\ 2 \\ 3 \end{Bmatrix} = \begin{Bmatrix} 1 \\ 2 \\ 3 \end{Bmatrix}$$

Tendo obtido uma sentença verdadeira, a solução obtida está correta.

2.3 Inversão de matrizes

No caso em que (m = n), obtém-se como coeficientes lineares uma matriz quadrada.

$$[A]_{n\times n} \cdot \{X\}_{n\times 1} = \{B\}_{n\times 1}$$

Para sistemas lineares com (n) variáveis e (n) equações independentes do ponto de vista linear, o sistema terá solução única. Isto acontece quando

$$D = \det(A) \neq 0 \tag{*}$$

Nestas condições, se a matriz de coeficientes $[A]_{n\times n}$ for inversível, então a solução da equação (*) será:

$[A]_{n\times n}\cdot \{X\}_{n\times 1}=\{B\}_{n\times 1}$	\Rightarrow	$[A^{-1}]_{n \times n} \cdot [A]_{n \times n} \cdot \{X\}_{n \times 1} = [A^{-1}]_{n \times n} \cdot \{B\}_{n \times 1}$
		$[id]_{n\times n}\cdot \{X\}_{n\times 1}=[A^{-1}]_{n\times n}\cdot \{B\}_{n\times 1}$
		${X}_{n\times 1} = [A^{-1}]_{n\times n} \cdot {B}_{n\times 1}$

Nos exemplos anteriores:

$$\begin{bmatrix} 2 & 1 \\ 5 & -1 \end{bmatrix} \cdot \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = \begin{Bmatrix} 30 \\ 40 \end{Bmatrix} \qquad \Rightarrow \qquad [A^{-1}]_{2 \times 2} = \begin{bmatrix} \frac{1}{7} & \frac{1}{7} \\ \frac{5}{7} & -\frac{2}{7} \end{bmatrix}$$

$$\begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = \begin{bmatrix} \frac{1}{7} & \frac{1}{7} \\ \frac{5}{7} & -\frac{2}{7} \end{bmatrix} \cdot \begin{Bmatrix} 30 \\ 40 \end{Bmatrix} \qquad \Rightarrow \qquad \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = \begin{Bmatrix} 10 \\ 10 \end{Bmatrix}$$

$$D = \begin{vmatrix} 2 & 1 \\ 5 & -1 \end{vmatrix} = 2 \cdot (-1) - 1 \cdot 5 = -7$$

$$\begin{bmatrix} 1 & 2 & -2 \\ -3 & 7 & 6 \\ 2 & 1 & 2 \end{bmatrix} \cdot \begin{Bmatrix} x_1 \\ x_2 \\ x_3 \end{Bmatrix} = \begin{Bmatrix} 7 \\ 5 \\ 2 \\ 1 & 2 \end{Bmatrix}$$

$$\Rightarrow D = \begin{bmatrix} \frac{4}{39} & -\frac{1}{13} & \frac{1}{3} \\ \frac{3}{13} & \frac{1}{13} & 0 \\ -\frac{17}{78} & \frac{1}{26} & \frac{1}{6} \end{bmatrix} = 78$$

$$[A^{-1}]_{3\times3} = \begin{bmatrix} \frac{4}{39} & -\frac{1}{13} & \frac{1}{3} \\ \frac{3}{13} & \frac{1}{13} & 0 \\ \frac{17}{78} & \frac{1}{26} & \frac{1}{6} \end{bmatrix} \Rightarrow [A^{-1}]_{3\times3} = \begin{bmatrix} \frac{8}{78} & -\frac{6}{78} & \frac{26}{78} \\ \frac{18}{78} & \frac{6}{78} & \frac{0}{78} \\ \frac{17}{78} & \frac{3}{78} & \frac{13}{78} \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_2 \\ x_3 \end{cases} = \frac{1}{78} \cdot \begin{bmatrix} 8 & -6 & 26 \\ 18 & 6 & 0 \\ -17 & 3 & 13 \end{bmatrix} \cdot \begin{Bmatrix} 7 \\ 5 \\ 2 \end{Bmatrix} \Rightarrow \begin{cases} x_1 \\ x_2 \\ x_3 \end{Bmatrix} = \frac{1}{78} \cdot \begin{Bmatrix} 78 \\ 156 \\ -78 \end{Bmatrix}$$

Percebemos que cada elemento da matriz inversa é um quociente de determinantes cujos denominadores são o determinante da matriz original:

$$[A^{-1}]_{3 \times 3} = \frac{1}{\det A} \cdot \left[\qquad m_{ij} \qquad \right]$$
 $m_{ij} = |C|$

Vamos obter esta matriz de cofatores.

3 Operações entre Matrizes Quadradas

Uma operação é uma função de duas variáveis, em que cada variável é um elemento de um conjunto e o resultado da operação (que é a imagem da função) é um elemento do mesmo conjunto.

3.1 Adição e propriedades da soma

+:	$\mathcal{M}_{n \times n} \times \mathcal{M}_{n \times n}$	\rightarrow	$\mathcal{M}_{n imes n}$
	(a ; b)	↔	+(a;b)=a+b

(S1)	Associatividade	(a+b)+c=a+(b+c)				
(S2)	(S2) Existência do elemento neutro		$a + \mathbb{O} = a$	&&	$\mathbb{O} + a = a$	
(S3)	Existência do elemento oposto	(-a)	$a + (-a) = \mathbb{O}$	&&	$(-a) + a = \mathbb{O}$	
(S4)	Comutatividade da soma		a + b =	b+a		

3.2 Propriedades distributivas

(D1)	Distributiva à esquerda	$a \cdot (b+c) = a \cdot b + a \cdot c$
(D2)	Distributiva à direita	$(a+b)\cdot c = a\cdot c + b\cdot c$

3.3 Propriedades do produto

(P1)	Associatividade		$(a \cdot b) \cdot c =$	= a · (b	· c)
(P2)	Existência do elemento neutro	(I)	$a \cdot \mathbb{I} = a$	&&	$\mathbb{I} \cdot a = a$
(P3)	Existência do elemento inverso	(h_a)	$a \cdot h_a = \mathbb{I}$	&&	$h_a \cdot a = \mathbb{I}$

No conjunto das matrizes quadradas, não vale a comutatividade do produto:

Comutatividade do produto	$a \cdot b \neq b \cdot a$	
L	L	

Vamos demonstrar estas propriedades para as matrizes (2×2) com coeficientes inteiros. Para isto, necessitamos de três elementos:

$$a = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \qquad b = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix} \qquad c = \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix}$$

Elemento neutro da adição: trata-se do elemento:

$$\mathbb{O} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Pois:

$$\begin{vmatrix} a + \mathbb{O} & = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a_1 + 0 & a_2 + 0 \\ a_3 + 0 & a_4 + 0 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} = \begin{bmatrix} a \\ a_1 & a_2 \end{bmatrix} = \begin{bmatrix} a \\ a_1$$

A igualdade (=) é devida à existência do (0), que é o elemento neutro da adição em conjuntos numéricos, aplicando-se este axioma em cada uma das (4) coordenadas.

Elemento oposto: trata-se do elemento:

$$-a = \begin{bmatrix} -a_1 & -a_2 \\ -a_3 & -a_4 \end{bmatrix}$$

Pois:

a + (-a)	=	$\begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} + \begin{bmatrix} -a_1 & -a_2 \\ -a_3 & -a_4 \end{bmatrix}$	=	$\begin{bmatrix} a_1 + (-a_1) & a_2 + (-a_2) \\ a_3 + (a_3) & a_4 + (-a_4) \end{bmatrix}$	=
	=	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	=	0	

A igualdade (=) é devida à existência do elemento oposto em conjuntos numéricos, aplicando-se este axioma em cada uma das (4) coordenadas. Exercício de estudo: fazer o outro lado.

Exercício de estudo: mostrar que vale a comutatividade da soma de matrizes quadradas.

Elemento neutro da multiplicação: trata-se do elemento:

$$\mathbb{I} = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$$

Vamos descobrir as coordenadas da matriz identidade:

$a\cdot \mathbb{I}$		$\lceil a_1 \rceil$	a_{2}] [[x]	y j		$[a_1 \cdot a_2]$	$x + a_2 \cdot z$	$a_1 \cdot y$	$+ a_2 \cdot w_1$		$\lceil a_1 \rceil$	a_{21}	
$a \cdot 1$	_	$\lfloor a_3 \rfloor$	a_4] $[$	z ν	νJ	_	$\lfloor a_3 \cdot z \rfloor$	$x + a_4 \cdot z$	$a_3 \cdot y$	$+a_4 \cdot w$	_	$\lfloor a_3 \rfloor$	a_4	

Obtivemos um sistema com (4) equações e (4) incógnitas:

$a_1 \cdot x + a_2 \cdot z = a_1$	\Rightarrow	x = 1	&&	z = 0
$a_1 \cdot y + a_2 \cdot w = a_2$	\Rightarrow	w = 1	&&	y = 0
$a_3 \cdot x + a_4 \cdot z = a_3$	\Rightarrow	x = 1	&&	z = 0
$a_3 \cdot y + a_4 \cdot w = a_4$	\Rightarrow	w = 1	&&	y = 0

Obtivemos que

$$\mathbb{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Vamos verificar a outra propriedade:

$\mathbb{I} \cdot a$	_	Γ1	01	$\lceil a_1 \rceil$	a_{2}		$[1 \cdot a_1 + 0 \cdot a]$	$a_3 1 \cdot a_2 + 0 \cdot a_4$	 $\lceil a_1 \rceil$	a_{21}
11 · α	-	L ₀	1]	$\int a_3$	a_4	_	$[0 \cdot a_1 + 1 \cdot a]$	$a_3 0 \cdot a_2 + 1 \cdot a_4$	$\lfloor a_3 \rfloor$	a_4

Elemento inverso:

$$h_a = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$$

Vamos descobrir as coordenadas da matriz inversa:

$$\begin{vmatrix} a \cdot h_a \end{vmatrix} = \begin{vmatrix} \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{vmatrix} \cdot \begin{bmatrix} x & y \\ z & w \end{vmatrix} = \begin{vmatrix} \begin{bmatrix} a_1 \cdot x + a_2 \cdot z & a_1 \cdot y + a_2 \cdot w \\ a_3 \cdot x + a_4 \cdot z & a_3 \cdot y + a_4 \cdot w \end{vmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Obtivemos um sistema com (4) equações e (4) incógnitas:

(i)	$a_1 \cdot x + a_2 \cdot z = 1$	\Rightarrow	$[a, 0, a, 0]$ $\begin{pmatrix} x \\ y \end{pmatrix}$ (1)
(ii)	$a_1 \cdot y + a_2 \cdot w = 0$	\Rightarrow	$\begin{bmatrix} a_1 & 0 & a_2 & 0 \\ 0 & a_1 & 0 & a_2 \end{bmatrix} \cdot \begin{Bmatrix} y \\ z \\ w \end{Bmatrix} = \begin{Bmatrix} 1 \\ 0 \end{Bmatrix}$
(iii)	$a_3 \cdot x + a_4 \cdot z = 0$	\Rightarrow	
(iv)	$a_3 \cdot y + a_4 \cdot w = 1$	\Rightarrow	

$$\begin{bmatrix} a_1 & 0 & a_2 & 0 \\ 0 & a_1 & 0 & a_2 \\ a_3 & 0 & a_4 & 0 \\ 0 & a_3 & 0 & a_4 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Exercício: resolver o sistema para obter que:

$$h_{a} = \begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} \frac{a_{4}}{a_{1} \cdot a_{4} - a_{3} \cdot a_{2}} & \frac{-a_{2}}{a_{1} \cdot a_{4} - a_{3} \cdot a_{2}} \\ \frac{a_{3}}{a_{1} \cdot a_{4} - a_{3} \cdot a_{2}} & \frac{a_{1}}{a_{1} \cdot a_{4} - a_{3} \cdot a_{2}} \end{bmatrix}$$

https://cn.ect.ufrn.br/index.php?r=conteudo%2Fsislin-gauss