Il s'agit d'un nivellement par rayonnement à l'aide d'un niveau.

- a- Calculez les distances D_{S1-Pi}
- b- Calculez les dénivelées dh_{P1-Pi} entre le point P1 et le point Pi.
- c- Calculez les dénivelées dh_{Pi-Pi+1} entre le point Pi et le point Pi+1.
- d- Sachant que la cote du point 1 est $C_{P1} = 20$ m, calculez les cotes des autres points.
- e- Calculez la dénivelée dh_{Pli-P6} entre le point P1 et le point P6.

N° station	N° Point	fil sup. (cm)	fil axial (cm)	fil inf. (cm)	distance (m)	dénivelée dh1-i:(m)	dénivelée dhi-i+1:(m)	Cote (m)
1	1	156.5	143.2	130.0	26.5			20
	2	144.2	126.2	108.2	36.0	0.17	0.17	20.170
	3	182.8	169.4	156.0	26.8	-0.262	-0.432	19.738
	4	193.4	180.1	166.8	26.6	-0.369	-0.107	19.631
	5	157.1	132.8	108.6	48.5	0.104	0.473	20.104
	6	138.5	124.9	111.3	27.2	0.183	0.079	20.183

a- Calcul des distances

$$D_{\text{S1-Pi}} = 100 \text{ (fil Sup.} - \text{fil Inf.)}$$

$$D_{\text{S1-P1}} = 100 (156.5 - 182.8) = 26.5 \text{ m}$$

b- Calcul des dénivelées entre le point P1 et le point Pi

Dans ce cas le point N°1 est pris comme point de référence pour tous les autres points.

$$dh_{P_1-P_1} = LR_1 - LV_i$$
 Les lectures sont sur le fil axial (fil niveleur)

$$dh_{P1-P2} = LR_1 - LV_2 = 143.2 - 126.2 = +17 \text{ cm} = +0.17 \text{ m}$$

 $dh_{P1-P2} = LR_1 - LV_3 = 143.2 - 169.4 = -26.2 \text{ cm} = -0.262 \text{ m}$

c- Calcul des dénivelées entre le point Pi et le point Pi+1

Dans ce cas on revient au point précédent qui sera pris comme point de référence pour le point suivant.

$$dh_{Pi-Pi+1} = LR_i - LV_{i+1}$$
 Les lectures sont sur le fil axial (fil niveleur)

$$dh_{P1-P2} = LR_1 - LV_2 = 143.2 - 126.2 = +17 \text{ cm} = +0.17 \text{ m}$$

$$dh_{P2-P3} = LR_2 - LV_3 = 126.2 - 169.4 = -43.2 \text{ cm} = -0.432 \text{ m}$$

d- calculez les cotes des autres points

$$Cp_{i+1} = Cp_1 + dh_{P_1-P_i}$$

$$Cp_2 = Cp_1 + dh_{P_1-P_2} = 20.0 + 0.17 = 20.170 \text{ m}$$

$$Cp_3 = Cp_1 + dh_{P_1-P_3} = 20.0 + (-0.262) = 19.738 \text{ m}$$
 ou en revenant au point 2 :

$$Cp_3 = Cp_2 + dh_{P2-P3} = 20.170 + (-0.432) = 19.738 \text{ m}$$

e- Calcul de la dénivelée dh_{Pli-P6} entre le point P1 et le point P6

$$dh_{P1-P6} = LR_1 - LV_6 = 143.2 - 124.9 = +18.3 \text{ cm} = +0.183 \text{ m}.$$

$$dh_{P1-P6} = Cp_6 - Cp_1 = 20.183 - 20.0 = +0.183 \text{ m}.$$

Il s'agit d'un levé par rayonnement à l'aide d'un théodolite.

- a- Calculez les distances réduites à l'horizontale D_{S1-Pi}.
- b- Calculez les dénivelées dh_{S1-pi} entre S1 et le point Pi sachant que H_{théod}=1.50 m.
- c- Sachant que la cote de la station S1 est $C_{S1} = 10$ m, calculez les cotes des différents points 1 à 5.
- d- Sachant que le gisement de la direction S1-P1 est 48.00 gr et que les coordonnées de la station S1 sont (100, 100) m, calculez les coordonnées des différents points.
- e- Représentez les différents points à l'échelle 1/500ème.
- f- Calculez analytiquement la surface (réelle) du polygone (1,2,3,4,5,1).

N° Station			1		
N° Point	1	2	3	4	5
fil sup. (cm)	156,5	144,2	182,8	157,1	149,3
fil axial (cm)	143,2	126,2	169,4	132,8	124,6
fil inf. (cm)	130	108,2	156	108,6	100
angle H. (gr)	48	92	170	305,4	354,2
angle V. (gr)	0	0	2	0	4
distance (m)	26,5	36	26,774	48,5	49,106
D tg(V)	0	0	0,841	0	3,089
dénivelée (m)	0,068	0,238	0,647	0,172	3,343
Cote (m)	10,068	10,238	10,647	10,172	13,343
X (m)	118,140	135,716	112,155	51,674	67,642
Y (m)	119,318	104,512	76,145	104,109	136,937
Dist.Ech. (mm)	53	72	53.5	97	98

a- Calcul des distances

$$D_{S1-Pi} = 100$$
 (fil Sup. – fil Inf.) $\cos^2 Vi$

$$D_{S1-P1} = 100 (156.5 - 182.8) \cos^2(0) = 26.5 \text{ m}$$

$$D_{S1-P2} = 100 (144.2 - 126.2) \cos^2(0) = 36.0 \text{ m}$$

$$D_{S1-P3} = 100 (182.8 - 156.0) \cos^2(2) = 26.774 \text{ m}$$

$$D_{S1-P4} = 100 (157.1 - 108.6) \cos^2(0) = 48.5 \text{ m}$$

$$D_{S1-P5} = 100 (149.3 - 100.0) \cos^2(4) = 49.106 \text{ m}$$

b- Calcul des dénivelées

$$X1-i = Di tg(vi)$$

$$X1-1 = D_1 tg(0) = X1-2 = X1-4 = 0 m.$$
 $v1 = v2 = v4 = 0$

$$X1-3 = D_3 \operatorname{tg}(v3) = 26.774 \operatorname{tg}(2) = 0.841 \text{ m}$$

$$X1-5 = D_5 \operatorname{tg}(v5) = 49.106 \operatorname{tg}(4) = 3.089 \operatorname{m}$$

$$dh_{S1\text{-pi}} = H_{th\acute{e}od} + X1\text{-}i - Ai$$

$$dh_{S1-p1} = H_{th\acute{e}od} + X1-1 - A1 = 1.5 + 0 - 1.432 = 0.068 \text{ m}$$

$$dh_{S1-p2} = H_{th\'{e}od} + X1-2 - A2 = 1.5 + 0 - 1.262 = 0.238 \ m$$

$$dh_{S1-p3} = H_{th\acute{e}od} + X1-3 - A3 = 1.5 + 0.841 - 1.694 = 0.647 \text{ m}$$

$$dh_{S1-p4} = H_{th\acute{e}od} + X1-4 - A4 = 1.5 + 0 - 1.328 = 0.172 \text{ m}$$

$$dh_{S1-p5} = H_{th\acute{e}od} + X1-5 - A5 = 1.5 + 3.089 - 1.246 = 3.343 \text{ m}$$

c- Calcul des côtes

$$\begin{split} Cpi &= Cps + dh_{S1\text{-}pi} \\ Cp1 &= Cps + dh_{S1\text{-}p1} = 10 + 0.068 = 10.068 \text{ m} \\ Cp2 &= Cps + dh_{S1\text{-}p2i} = 10 + 0.238 = 10.238 \text{ m} \\ Cp3 &= Cps + dh_{S1\text{-}p3} = 10 + 0.647 = 10.647 \text{ m} \\ Cp4 &= Cps + dh_{S1\text{-}p4} = 10 + 0.172 = 10.172 \text{ m} \\ Cp5 &= Cps + dh_{S1\text{-}p5} = 10 + 3.343 = 13.343 \text{ m} \end{split}$$

d- Calcul des coordonnées

Comme le gisement de la direction S1-P1 est égal à l'angle horizontal AH on prendra donc :

$$\begin{array}{lll} G_{S1,\,i} = AH_{i} \\ X_{i} = X_{S1} + D_{S1\text{-Pi}} \sin(G_{S1,\,i}) & Y_{i} = Y_{S1} + D_{S1\text{-Pi}} \cos(G_{S1,\,i}) \\ X_{1} = X_{S1} + D_{S1\text{-Pi}} \sin(G_{S1,\,1}) & Y_{1} = Y_{S1} + D_{S1\text{-Pi}} \cos(G_{S1,\,i}) \\ X_{1} = 100 + 26.5 \sin(48) = 118.140 \text{ m} & Y_{1} = 100 + 26.5 \cos(48) = 119.318 \text{ m} \\ X_{2} = 100 + 36.0 \sin(92) = 135.716 \text{ m} & Y_{2} = 100 + 36 \cos(92) = 104.512 \text{ m} \\ X_{3} = 100 + 26.774 \sin(170) = 112.155 \text{ m} & Y_{3} = 100 + 26.774 \cos(170) = 76.145 \text{ m} \\ X_{4} = 100 + 48.5 \sin(305.4) = 51.674 \text{ m} & Y_{4} = 100 + 48.5 \cos(305.4) = 104.109 \text{m} \\ X_{5} = 100 + 49.106 \sin(354.2) = 67.642 \text{ m} & Y_{5} = 100 + 49.106 \cos(354.2) = 136.937 \text{m} \end{array}$$

e- Représentation des points

Calcul des distances à l'échelle 1/500 ème.

$$\begin{array}{ll} Di_{\text{\'e}ch} = D_{S1\text{-Pi}} \, / 500 & D1_{\text{\'e}ch} = D_{S1\text{-Pi}} \, / 500 = 26.5 / 500 = 0.053 \; m = 53 \; mm \\ D2_{\text{\'e}ch} = D_{S1\text{-Pi}} \, / 500 = 36.0 / 500 = 0.072 \; m = 72 \; mm \end{array}$$

f- Calcul de la surface

On va appliquer la méthode analytique se basant sur les distances et les angles α i au sommet. On représente une esquisse à main levée pour respecter l'ordre des points dans le polygone obtenu. La formule à appliquer est :

$$2S=l_1\ l_2\sin\alpha_1+l_2\ l_3\sin\alpha_2+l_3\ l_4\sin\alpha_3+l_4\ l_5\sin\alpha_4+\ l_5\ l_1\sin\alpha_5$$
 . Les li sont égaux aux $D_{S1\text{-Pi}}$

On calcul les différents ai de la façon suivante :

$$\begin{array}{l} \alpha 1 = G_{S1,\,2} - G_{S1,\,1} = \ 92.0 - 48.0 = 44 \ \mathrm{gr.} \\ \alpha 2 = G_{S1,\,3} - G_{S1,\,2} = \ 170 - 92.0 = 78 \ \mathrm{gr.} \\ \alpha 1 = G_{S1,\,4} - G_{S1,\,3} = \ 305.4 - 170 = 135.4 \ \mathrm{gr.} \\ \alpha 1 = G_{S1,\,5} - G_{S1,\,4} = \ 354.2 - 305.4 = 48.8 \ \mathrm{gr.} \\ \alpha 1 = G_{S1,\,5} - G_{S1,\,4} = \ 354.2 - 305.4 = 48.8 \ \mathrm{gr.} \\ \alpha 1 = G_{S1,\,5} - G_{S1,\,5} = \ 448.0 - 354.2 = 93.8 \ \mathrm{gr.} \\ \alpha_1 = 44 \ \mathrm{gr} \qquad \alpha_2 = 78 \ \mathrm{gr} \qquad \alpha_3 = 135.4 \ \mathrm{gr} \\ \alpha_1 + \alpha_2 + \alpha_4 + \alpha_5 = 400.00 \ \mathrm{gr} \\ \mathrm{La \ surface} \ \mathbf{S} = \mathbf{2782.31 \ m}^2. \end{array}$$

Représentation des points à l'échelle 1/500ème.

Il s'agit d'un nivellement par rayonnement à l'aide d'un niveau.

- a- Calculez les distances.
- b-Calculez la différence de niveau entre le 1^{er} points et les autres points.
- c- Sachant que la côte du point 1 est Cp1 = 20 m, calculez les côtes des autres points.

Tableau de mesures N°1:

N° St.	N° Pt	Fil Sup	Fil Axial	Fil Inf	Distance	Dénivel.	Côte
		(cm)	(cm)	(cm)	(m)	(cm)	(m)
1	1	138.5	124.9	111.3	27.2		20
	2	151.9	137.9	123.9	28.0	-13	19.87
	3	190.2	176.4	162.6	27.6	-51.5	19.485
	4	150.1	136.5	122.9	27.2	-11.6	19.884
	5	143.8	132.4	121.0	22.8	-7.5	19.925
	6	103.6	88.8	74.0	29.6	36.1	20.361

Exercice N°4

- Il s'agit d'un nivellement par cheminement à l'aide d'un niveau.
- a- Calculez les distances et les dénivelées.
- b- Calculez la dénivelée entre le point 1 et le point 5 (Dh₁₋₅).

Tableau de mesures N°1:

Station	Points	Fil Sup	Fil Axial	Fil Inf	Distances	Dénivelée
N°:	N°:	(cm)	(cm)	(cm)	(m)	(cm)
1	1	117.5	104.2	91.1	26.4	
	2	170.2	154.2	138.8	31.4	-50
2	2	138.5	124.9	111.3	27.2	
	3	151.9	137.9	123.9	28.0	-13
3	3	190.2	176.4	162.6	27.6	
	4	150.1	136.5	122.9	27.2	+39.9
4	4	143.8	132.4	121.0	22.8	
	5	103.6	88.8	74.0	29.6	+43.6
					$Dh_{1-5} =$	+20.5 cm

Exercice N°5

Il s'agit d'un nivellement par rayonnement à l'aide d'un niveau.

- a- Calculez les distances.
- b-Calculez la différence de niveau entre le 1^{er} points et les autres points.
- c- Sachant que la côte du point 1 est Cp1 = 20 m, calculez les côtes des autres points.

N° St.	N° Pt	Fil Sup	Fil Axial	Fil Inf	Distance	Dénivel.	Côte
		(cm)	(cm)	(cm)	(m)	(cm)	(m)
1	1	138.5	124.9	111.3	27.2		20
	2	151.9	137.9	123.9	28.0	-13	19.87
	3	190.2	176.4	162.6	27.6	-51.5	19.485
	4	150.1	136.5	122.9	27.2	-11.6	19.884
	5	143.8	132.4	121.0	22.8	-7.5	19.925
	6	103.6	88.8	74.0	29.6	36.1	20.361

Il s'agit d'un levé à l'aide d'un théodolite.

- a- Calculez les distances réduites à l'horizontale D_{S1-Pi} et D_{S2-Pi} , (K = 100).
- a- Calculez les dénivelées dh_{S1-pi} entre la station S1 et les points 1,2,3 et S2. HS₁ =1.45m
- b- Calculez les dénivelées dh_{S2-pi} entre la station S2 et les points 7 et 8. $HS_2 = 1.50m$.
- d- Sachant que la côte de la station S1 est $C_{\text{S1}} = 10$ m, calculez les côtes des différents points.
- e- Calculez les coordonnées des différents points en prenant comme origine des angles horizontaux de la station S1 le Nord Lambert et comme coordonnées de S1 (10,10) m.

HS1 = 1.45 m HS2 = 1.50 m S1 (10,10,10) Angle H = Gisement

N° St.	N° Pt	fil sup. (cm)	fil axial (cm)	fil inf. (cm)	angle H. (gr)	angle φ. (gr)	Dist. (m)	Déniv. dh (m)		D cotg(φ) (m)	X (m)	Y (m)
S1	1	192,2	180	167,8	328,945	102,73	24,355	-1,395	8,604	-1,045	-11,881	20,696
	2	143,5	125	107	306,445	102,87	36,426	-1,443	8,556	-1,643	-26,239	13,681
	3	79	50	21	305,117	102,607	57,903	-1,422	8,577	-2,372	-47,716	14,649
	S2	159,6	140	120,1	154,688	97,856	39,455	1,379	11,379	1,329	35,771	-19,876
S2	S1	-	-	-	0	-						
	7	171,8	160	148,1	311,876	99,721	23,700	0,003	11,382	0,104	15,266	-31,759
	8	169	150	131	363,005	102,307	37,950	-1,375	10,003	-1,376	-0,723	-9,464

Exercice N°7

Il s'agit d'un levé par rayonnement à l'aide d'une station totale.

- a- Calculez les dénivelées dh_{S1-pi} entre la station S1 et les point 1 et S1 sachant que HS1= 1 50 m
- b- Calculez les dénivelées dh_{S2-pi} entre la station S2 et les point 2 et S1 sachant que HS2= 1.43 m.
- c- Calculez les coordonnées des différents points en prenant comme origine des angles horizontaux de la station S1 le Nord Lambert et comme coordonnées de S1 (10,10) m.

HS1 = 1.50 m HS2 = 1.43 m S1 (0, 0, 0) Angle H = Gisement

N°Pt	H Prisme (m)	Gisement (gr)	angle H. (gr)	angle φ. (gr)	Distance (m)	Dénivelée (m)	Cote (m)	Dcotg(φ) (m)	X (m)	Y (m)
P1	1.80	88.289	88.289	94.917	7.093	0.2675	0.2675	0.5675	6.973	1.297
S2	1.80	2.8726	2.8726	100.818	98.697	-1.5689	-1.5689	-1.2689	4.452	98.597
S1	1.80	202.872	0	98.837	98.699	1.4320	-0.1369	1.8020	0.000	-0.002
P2	1.80	172.037	369.1646	98.638	32.333	0.3214	-1.2475	0.6914	18.202	69.333

Il s'agit d'un nivellement par rayonnement à l'aide d'un niveau.

- a- Calculez les distances D_{S1-Pi} et les dénivelées dh_{p1-pi} entre le <u>point 1 et le point i</u>.
- b- Sachant que la cote du point 1 est C_{P1} = 30 m, calculez les cotes des points 2 et 3.

N° station	N° Point	fil sup. (cm)	fil axial (cm)	fil inf. (cm)	distance (m)	dénivelée dh : (cm)	Cote (m)
1	1	182.8	169.4	156.0	26.80		30
	2	157.1	132.8	108.6	48.50	36.6	30.366
	3	138.5	124.9	111.3	27.20	44.5	30.445

D1 = 100(fil sup - fil inf)

D1 = 100(182.8-156) = 2680 cm = 26.80 m.

D2 = 100(157.1-108.6) = 48.5 m

D3 = 100(138.5-111.3) = 27.2 m.

 $dh_{p_1-p_2} = LR1 - LV2 = 169.4 - 132.8 = +36.6 \text{ cm} = 0.366 \text{ m}$

 $dh_{p1-p3} = LR1 - LV3 = 169.4 - 124.9 = +44.5 \text{ cm} = 0.445 \text{ m}$

 $C_{Pi} = C_{P1} + dh_{p1-pi}$

 $C_{P1} = 30 + 0.366 = 30.366 \text{ m}$

 $C_{P2} = 30 + 0.445 = 30.445 \text{ m}$

Exercice N° 9

On a effectué un levé topographique à l'aide d'un tachéomètre. Les mesures sont données dans le tableau suivant.

- a- Calculez les distances réduites à l'horizontale d₁ et d_{moy}.
- b- Représenter sur cercle gradué les différents points à l'échelle 1/250ème.
- c- Calculez la surface du polygone (1,2,S2,3).
- d- Sachant que GS1-S2 = 19.900 gr et S1 (10, 100), déterminez les gisements des directions S1-2, S1-3 et S2-4.
- e- Déterminez les coordonnées des points 3, S2 et 4.

N°station	N° Point	L0 (cm)	L1 (cm)	L2 (cm)	L3 (cm)	angle H. (gr)
S 1	1	265.0	290.0	310.2	319.8	269.0
	2	14.4	35.9	53.0	61.5	7.5
	3	37.5	66.4	89.5	101.0	223.5
	S2	120.0	141.4	158.6	167.0	95.9
S2	S1	100.0	121.4	138.6	147.0	309.2
	4	121.2	163.5	197.4	214.1	267.2

N°station	N° Point	D1 (m)	Dmoy (m)	Gisement (gr)	X (m)	Y (m)
S1	1	25.0	25.0			
	2	21.5	21.44	GS1-2 =331.5		
	3	28.9	28.88	GS1-3 =147.5	31.207	80.396
	S2	21.4	21.4	GS1-S2 =19.9	16.580	120.362
S2	S1	21.4	21.4		10	100
	4	42.3	42.28	GS2-4 =177.9	30.965	80.605

a- Calcul des distances:

b- Représentation graphique

c- Calcul de la surface du polygone (1,2,S2,3).

On calcule les angles au sommet $\alpha 1$ à $\alpha 4$ à partir des angles horizontaux et en tenant compte de la disposition des différents points sur le graphique.

$$\alpha 1 = 138.5 \text{ gr} = \text{AH2- AH1} = (400+7.5)-269$$

 $\alpha 2 = 88.4 \text{ gr} = \text{AHS2} - \text{AH2} = 95.9-7.5$
 $\alpha 3 = 127.6 \text{ gr} = \text{AH3} - \text{AHS2} = 223.5 - 95.9$
 $\alpha 4 = 45.5 \text{ gr} = \text{AH1} - \text{AH3} = 269 - 223.5$
 $\alpha 1 + \alpha 2 + \alpha 3 + \alpha 4 = 400 \text{ gr}$
 $2S = 11x12 \sin \alpha 1 + 12x13 \sin \alpha 2 + 13x14 \sin \alpha 3 + 14x11 \sin \alpha 4$
 $S = 835.097 \text{ m}^2$

d- Calcul des gisements

 $G_{S1-S2}=19.900~gr$ Angle H. S1-S2=95.9~gr Différence = 95.9-19.9=76~gr. Donc pour retrouver les différents gisements de S1-P2 et S1-P3 on doit retrancher à chaque fois 76~gr.

$$G_{S1-P2} = AH_{P2} - 76 = 7.5 - 76 = -68.5 \text{ gr}$$

Comme les gisements sont tous positifs, donc $G_{S1-P2} = -68.5 + 400 = 331.5$ gr.

$$G_{S1-P3} = AH_{P3} - 76 = 223.5 - 76 = 147.5 \text{ gr}$$

Pour calculer le gisement $G_{S2\text{-P4}}$, il faut déterminer l'angle $\alpha 4$ et appliquer la relation suivante :

$$\begin{split} G_{S2\text{-P4}} &= G_{S1\text{-S2}} + 200 + \alpha 4 \\ \alpha 4 &= 267.2\text{-}309.2 = \text{-}42\text{gr} \qquad \alpha 4 = \text{-}42\text{+}400\text{=}\ 358\ \text{gr} \\ G_{S2\text{-P4}} &= 19.9 + 200 + 358 = 577.9\ \text{gr} \\ G_{S2\text{-P4}} &= 177.9\ \text{gr} \\ XP3 &= XS1 + Dmoy\ P3\ Sin(G_{S1\text{-P3}}) = 10 + 28.8\ Sin(147.5) = 31.207\ \text{m} \\ XS2 &= XS1 + Dmoy\ S2\ Sin(G_{S1\text{-P3}}) = 10 + 21.4\ Sin(19.9) = 16.580\ \text{m} \\ XP4 &= XS2 + Dmoy\ P4\ Sin(G_{S1\text{-P4}}) = 16.580 + 42.28\ Sin(177.9) = 30.965\ \text{m} \\ YP3 &= YS1 + Dmoy\ P3\ Cos(G_{S1\text{-P3}}) = 100 + 28.8\ Cos(147.5) = 80.396\ \text{m} \\ YS2 &= YS1 + Dmoy\ S2\ Cos(G_{S1\text{-P3}}) = 100 + 21.4\ Cos(19.9) = 120.362\ \text{m} \\ YP4 &= YS2 + Dmoy\ P4\ Cos(G_{S1\text{-P4}}) = 120.362 + 42.28\ Cos(177.9) = 80.605\ \text{m} \end{split}$$

Il s'agit d'un levé par rayonnement à l'aide d'un théodolite.

- a- Calculez les distances réduites à l'horizontale $D_{\text{S1-Pi}}$.
- b- Calculez les dénivelées dh_{S1-pi} entre la station S1 et le point i sachant que H= 1.45 m.
- c- Représentez sur le cercle gradué les différents points à l'échelle 1/250ème.
- d- Sachant que la côte de la station S1 est $C_{\text{S1}}=10$ m, calculez les côtes des différents points 1 à 7.
- e- Calculez la surface (réelle) du polygone (1, 2, 3, 4, 5, 6, 7, 1).
- f- Sachant que le gisement de la direction S1-P1 est 4.999 gr et que les coordonnées de la station S1 sont (100, 200) m, calculez les coordonnées des différents points.

N°	N°	fil	fil	fil	angle	angle	distance	dénivelée	Cote	D	X	Y
station	Point	sup.	axial	inf.	H.	V.	(m)	dh: (cm)	(m)	tg(V)	(m)	(m)
		(cm)	(cm)	(cm)	(gr)	(gr)				(m)		
1	1	229,2	208,1	187	4,999	0	42,200	-0,631	9,369	0,000	103,310	242,070
	2	238,7	222,2	204,8	6,915	0,462	33,898	-0,526	9,474	0,246	103,675	233,698
	3	247,8	230,2	212,8	16,011	4,16	34,851	1,429	11,429	2,281	108,673	233,754
	4	65,5	49,1	33	24,555	394,96	32,297	-1,603	8,397	-2,562	112,151	229,924
	5	87,5	71,2	55	27,387	395,51	32,339	-1,547	8,453	-2,285	113,487	229,392
	6	134,5	113,5	92,8	49,175	395,51	41,493	-2,616	7,384	-2,931	128,957	229,718
	7	78,5	52	22,5	51,278	397,08	55,882	-1,635	8,365	-2,565	140,300	238,714

Cours de topographie Néjib BEN JAMAA ENIG-GCV -34-

N°	Cote	X	Y
Point	(m)	(m)	(m)
P1	0.2675	6.973	1.297
S2	-1.5689	4.452	98.597
P2	-1.2475	18.202	69.333

Cours de topographie Néjib BEN JAMAA ENIG-GCV -35-