Class groups in Kummer towers

Jianing Li

University of Science and Technology of China Joint with Y. Ouyang, Y. Xu and S. Zhang

ICCGNFRT October 16-19, 2019

The Kummer towers

Let $K_{n,m} = \mathbb{Q}(\sqrt[\ell^n]{p}, \mu_{2\ell^m})$ where ℓ and p are two primes.

Warm up: class numbers in cyclotomic towers

So $K_{0,m} = \mathbb{Q}(\mu_{2\ell^m})$. Let $h_{0,m}$ be its class number.

Warm up: class numbers in cyclotomic towers

So $K_{0,m} = \mathbb{Q}(\mu_{2\ell^m})$. Let $h_{0,m}$ be its class number.

Then $h_{0,m} \mid h_{0,m+1}$ for any $m \ge 1$ by class field theory.

Warm up: class numbers in cyclotomic towers

So $K_{0,m} = \mathbb{Q}(\mu_{2\ell^m})$. Let $h_{0,m}$ be its class number.

Then $h_{0,m} \mid h_{0,m+1}$ for any $m \ge 1$ by class field theory.

Theorem (Iwasawa, Ferrono-Washington)

- If $\ell \nmid h_{0,1}$, then $\ell \nmid h_{0,m}$ for any $m \geq 1$.
- If $\ell \mid h_{0,1}$, then there exists $\lambda \in \mathbb{Z}_{>0}$ and $\nu \in \mathbb{Z}_{\geq 0}$ such that $\operatorname{ord}_{\ell}(h_{0,m}) = \lambda m + \nu$ for sufficiently large m.

Example: $\ell = 2$

So $K_{n,m}=\mathbb{Q}(\sqrt[2^n]{p},\mu_{2^{m+1}})$. Let us look at the class numbers of the non-Galois tower $K_{n,0}=\mathbb{Q}(\sqrt[2^n]{p})$.

Example: $\ell = 2$

So $K_{n,m} = \mathbb{Q}(\sqrt[2^n]{p}, \mu_{2^{m+1}}).$

Let us look at the class numbers of the non-Galois tower $K_{n,0} = \mathbb{Q}(\sqrt[2^n]{p})$.

Gauss genus theory

We have $h_{1,0} := h(\mathbb{Q}(\sqrt{p}))$ is odd.

Remark

Let h^+ denote the narrow class numbers, then

$$\begin{cases} 2 \mid\mid h^+(\mathbb{Q}(\sqrt{p})), & \text{if } p \equiv 3 \bmod 4, \\ 2 \nmid h^+(\mathbb{Q}(\sqrt{p})), & \text{if } p \equiv 1 \bmod 4. \end{cases}$$

Results on class groups of $K_{2,0}=\mathbb{Q}(\sqrt[4]{p})$

In 1980s, Parry showed that $A(\mathbb{Q}(\sqrt[4]{p})) := \mathrm{Cl}(\mathbb{Q}(\sqrt[4]{p}))[2^{\infty}]$ is cyclic.

- (i) (Parry)If p = 2 or $p \equiv 3, 5 \mod 8$, then $2 \nmid h_{2,0}$.
- (ii) (Parry) If $p \equiv 1,7 \mod 8$, then $2 \mid h_{2,0}$.

Results on class groups of $K_{2,0}=\mathbb{Q}(\sqrt[4]{p})$

In 1980s, Parry showed that $A(\mathbb{Q}(\sqrt[4]{p})) := \mathrm{Cl}(\mathbb{Q}(\sqrt[4]{p}))[2^{\infty}]$ is cyclic.

- (i) (Parry)If p = 2 or $p \equiv 3, 5 \mod 8$, then $2 \nmid h_{2,0}$.
- (ii) (Parry) If $p \equiv 1,7 \mod 8$, then $2 \mid h_{2,0}$.
- (iii) (Parry)If $p \equiv 7 \mod 16$, then $2 \parallel h_{2,0}$.

Results on class groups of $K_{2,0}=\mathbb{Q}(\sqrt[4]{p})$

In 1980s, Parry showed that $A(\mathbb{Q}(\sqrt[4]{p})) := \mathrm{Cl}(\mathbb{Q}(\sqrt[4]{p}))[2^{\infty}]$ is cyclic.

- (i) (Parry)If p = 2 or $p \equiv 3, 5 \mod 8$, then $2 \nmid h_{2,0}$.
- (ii) (Parry) If $p \equiv 1,7 \mod 8$, then $2 \mid h_{2,0}$.
- (iii) (Parry)If $p \equiv 7 \mod 16$, then $2 \parallel h_{2,0}$.
- (v) (Lemmermeyer 2010) If $p \equiv 9 \mod 16$, then $2 \parallel h_{2,0}$.
- (vi) (L. 2019) If $p \equiv 15 \mod 16$, then $4 \mid h_{2,0}$.

Remark

We do not have congruence conditions to describe the 2-divisibility when $p \equiv 1,15 \mod 16$.

Our Observation(2018)

Recall $h_{n,0} = h(\mathbb{Q}(\sqrt[2^n]{p}))$ where p is a prime.

Observation(2018):

(1) If $p \equiv 3,5 \mod 8$, then $h_{n,0}$ is odd for any $n \ge 1$.

Our Observation(2018)

Recall $h_{n,0} = h(\mathbb{Q}(\sqrt[2^n]{p}))$ where p is a prime.

Observation(2018):

- (1) If $p \equiv 3,5 \mod 8$, then $h_{n,0}$ is odd for any $n \ge 1$.
- (2) If $p \equiv 7 \mod 16$, then $2 \parallel h_{n,0}$ for any $n \geq 2$.

Ingredients of the proof

• Genus theory; Chevalley's ambiguous class number formula and Gras' generalization.

Ingredients of the proof

 Genus theory; Chevalley's ambiguous class number formula and Gras' generalization.

0

$$\stackrel{2^{n+1}\sqrt{p}}{\longrightarrow} - \stackrel{\mathbf{N}}{\checkmark} \overline{p} \stackrel{\mathbf{N}}{\longrightarrow} \stackrel{2^{n-1}\sqrt{p}}{\cdots}$$

Ingredients of the proof

 Genus theory; Chevalley's ambiguous class number formula and Gras' generalization.

$$\sqrt[2^{n+1}]{p} \xrightarrow{\mathbf{N}} -\sqrt[2^n]{p} \xrightarrow{\mathbf{N}} \sqrt[2^{n-1}]{p} \cdots$$

• The norm functoriality, i.e. the diagram commutes.

$$M^{\times} \xrightarrow{\phi_{M}} \operatorname{Gal}(M^{ab}/M)$$

$$\downarrow^{\mathbf{N}_{M/L}} \qquad \qquad \downarrow^{\operatorname{res}}$$

$$L^{\times} \xrightarrow{\phi_{L}} \operatorname{Gal}(L^{ab}/k)$$

Here M/L are extension of p-adic fields and ϕ_M is the local reciprocity map.

Definition

Let ℓ be a prime. A tower of number fields $K_0 \subset K_1 \subset \cdots \subset K_n$ is called ℓ -norm-compatible if

Definition

Let ℓ be a prime. A tower of number fields $K_0 \subset K_1 \subset \cdots \subset K_n$ is called ℓ -norm-compatible if

(i)
$$\operatorname{Gal}(K_{i+1}/K_i) \cong \mathbb{Z}/\ell\mathbb{Z}$$
 for $0 \leq i < n$;

Definition

Let ℓ be a prime. A tower of number fields $K_0 \subset K_1 \subset \cdots \subset K_n$ is called ℓ -norm-compatible if

- (i) $\operatorname{Gal}(K_{i+1}/K_i) \cong \mathbb{Z}/\ell\mathbb{Z}$ for $0 \leq i < n$;
- (ii) there exists a system $\{a_i \in K_i(\mu_\ell)\}_{0 \le i < n}$ such that $K_{i+1}(\mu_\ell) = K_i(\mu_\ell, \sqrt[\ell]{a_i})$ and $a_i \equiv \mathbf{N}_{K_{i+1}(\mu_\ell)/K_i(\mu_\ell)}(a_{i+1}) \mod K_i(\mu_\ell)^{\times \ell}$.

Definition

Let ℓ be a prime. A tower of number fields $K_0 \subset K_1 \subset \cdots \subset K_n$ is called ℓ -norm-compatible if

- (i) $\operatorname{Gal}(K_{i+1}/K_i) \cong \mathbb{Z}/\ell\mathbb{Z}$ for $0 \leq i < n$;
- (ii) there exists a system $\{a_i \in K_i(\mu_\ell)\}_{0 \le i < n}$ such that $K_{i+1}(\mu_\ell) = K_i(\mu_\ell, \sqrt[\ell]{a_i})$ and $a_i \equiv \mathbf{N}_{K_{i+1}(\mu_\ell)/K_i(\mu_\ell)}(a_{i+1}) \mod K_i(\mu_\ell)^{\times \ell}$.

An infinite tower $K_0 \subset K_1 \subset K_2 \subset \cdots$ is called ℓ -norm-compatible if $K_0 \subset K_1 \subset \cdots \subset K_n$ is ℓ -norm-compatible for each $n \geq 2$.

Definition of Norm-Compatible

$$egin{array}{c} \mathcal{K}_3 \\ \mathbb{Z}/\ell \\ \mathcal{K}_2 \\ \mathbb{Z}/\ell \\ \mathcal{K}_1 \\ \mathbb{Z}/\ell \\ \mathcal{K}_0 \end{array}$$

Definition of Norm-Compatible

$$\begin{array}{ccc} K_3 & K'_3 \\ \left\| \mathbb{Z}/\ell & \left\| \mathbb{Z}/\ell \right\| \\ K_2 & K'_2 \\ \left\| \mathbb{Z}/\ell & \left\| \mathbb{Z}/\ell \right\| \\ K_1 & K'_1 \\ \left\| \mathbb{Z}/\ell & \left\| \mathbb{Z}/\ell \right\| \\ K_0 & K'_0 \end{array}$$

Here
$$K' = K(\mu_{\ell})$$
.

Definition of *l*-Norm-Compatible Towers

Definition of *l*-Norm-Compatible Towers

Here ℓ -NC= ℓ -norm-compatible.

Properties and Examples:

Cyclic ℓ -extension is ℓ -norm compatible

If K_n/K_0 is a $\mathbb{Z}/\ell^n\mathbb{Z}$ -extension, then $K_0\subset K_1\subset\cdots\subset K_n$ is ℓ -norm-compatible.

If K_{∞}/K_0 is a \mathbb{Z}_{ℓ} -extension, then $K_0\subset K_1\subset K_2\subset \cdots$ is ℓ -norm-compatible.

Properties and Examples:

Cyclic ℓ -extension is ℓ -norm compatible

If K_n/K_0 is a $\mathbb{Z}/\ell^n\mathbb{Z}$ -extension, then $K_0\subset K_1\subset \cdots \subset K_n$ is ℓ -norm-compatible.

If K_{∞}/K_0 is a \mathbb{Z}_{ℓ} -extension, then $K_0\subset K_1\subset K_2\subset \cdots$ is ℓ -norm-compatible.

Radical extension is *ℓ*-norm compatible

Let ℓ be odd and $a \in \mathbb{Z}$.

..

Assume $K_0 \subset \cdots \subset K_n$ is an ℓ -norm-compatible tower satisfying the following hypothesis:

RamHyp: Every place of K_0 ramified in K_n/K_0 is totally ramified and at least one prime is ramified.

We are interested in the A_{K_i} , ℓ -part of the class group of K_i .

Assume $K_0 \subset \cdots \subset K_n$ is an ℓ -norm-compatible tower satisfying the following hypothesis:

RamHyp: Every place of K_0 ramified in K_n/K_0 is totally ramified and at least one prime is ramified.

We are interested in the A_{K_i} , ℓ -part of the class group of K_i .

Let S_0 be a set of prime ideals of K_0 . Let S_i be the set of prime ideals of K_i above S_0 for each $i \ge 0$.

Assume $K_0 \subset \cdots \subset K_n$ is an ℓ -norm-compatible tower satisfying the following hypothesis:

RamHyp: Every place of K_0 ramified in K_n/K_0 is totally ramified and at least one prime is ramified.

We are interested in the A_{K_i} , ℓ -part of the class group of K_i .

Let S_0 be a set of prime ideals of K_0 . Let S_i be the set of prime ideals of K_i above S_0 for each $i \geq 0$. Suppose that every prime ideal of S_1 splits completely in K_n/K_1 or ramifies in K_n/K_1 .

Assume $K_0 \subset \cdots \subset K_n$ is an ℓ -norm-compatible tower satisfying the following hypothesis:

RamHyp: Every place of K_0 ramified in K_n/K_0 is totally ramified and at least one prime is ramified.

We are interested in the A_{K_i} , ℓ -part of the class group of K_i .

Let S_0 be a set of prime ideals of K_0 . Let S_i be the set of prime ideals of K_i above S_0 for each $i \geq 0$. Suppose that every prime ideal of S_1 splits completely in K_n/K_1 or ramifies in K_n/K_1 .

Theorem (L-Ouyang-Xu-Zhang 2019)

If
$$A_{K_1} = \langle \operatorname{cl}(S_1) \rangle$$
, then $A_{K_i} = \langle \operatorname{cl}(S_i) \rangle$ for any $i \geq 1$.

Corollaries

Corollary

Assume $K_0 \subset \cdots \subset K_n$ is ℓ -norm-compatible and satisfies **RamHyp.**

(1) If A_{K_1} is generated by the ramified primes of K_1 , then A_{K_m} is generated by the ramified primes of K_m for each m.

Corollaries

Corollary

Assume $K_0 \subset \cdots \subset K_n$ is ℓ -norm-compatible and satisfies **RamHyp.**

- (1) If A_{K_1} is generated by the ramified primes of K_1 , then A_{K_m} is generated by the ramified primes of K_m for each m.
- (2) If A_{K_1} is trivial, then A_{K_m} is trivial for each m.

Theorem (L-Ouyang-Xu-Zhang 2019)

Let p be a prime number, $K_{n,m} = \mathbb{Q}(\sqrt[2^n]{p}, \mu_{2^{m+1}}).$

Theorem (L-Ouyang-Xu-Zhang 2019)

Let p be a prime number, $K_{n,m} = \mathbb{Q}(\sqrt[2^n]{p}, \mu_{2^{m+1}}).$

(1) If p = 2 or $p \equiv 3 \mod 8$, then $h_{n,m}$ is odd for $n, m \ge 0$.

Theorem (L-Ouyang-Xu-Zhang 2019)

Let p be a prime number, $K_{n,m} = \mathbb{Q}(\sqrt[2^n]{p}, \mu_{2^{m+1}})$.

- (1) If p = 2 or $p \equiv 3 \mod 8$, then $h_{n,m}$ is odd for $n, m \ge 0$.
- (2) If $p \equiv 5 \mod 8$, then $h_{n,0}$ and $h_{1,m}$ are odd for $n, m \ge 0$ and $2 \parallel h_{n,m}$ for $n \ge 2$ and $m \ge 1$.

Theorem (L-Ouyang-Xu-Zhang 2019)

Let p be a prime number, $K_{n,m} = \mathbb{Q}(\sqrt[2^n]{p}, \mu_{2^{m+1}})$.

- (1) If p = 2 or $p \equiv 3 \mod 8$, then $h_{n,m}$ is odd for $n, m \ge 0$.
- (2) If $p \equiv 5 \mod 8$, then $h_{n,0}$ and $h_{1,m}$ are odd for $n, m \geq 0$ and $2 \parallel h_{n,m}$ for $n \geq 2$ and $m \geq 1$.
- (3) If $p \equiv 7 \mod 16$, then $A_{n,0} \cong \mathbb{Z}/2\mathbb{Z}$, $A_{n,1} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ for $n \geq 2$, and $A_{1,m} \cong \mathbb{Z}/2^{m-1}\mathbb{Z}$ for $m \geq 1$.

Theorem (L-Ouyang-Xu-Zhang 2019)

Let p be a prime number, $K_{n,m} = \mathbb{Q}(\sqrt[2^n]{p}, \mu_{2^{m+1}})$.

- (1) If p = 2 or $p \equiv 3 \mod 8$, then $h_{n,m}$ is odd for $n, m \ge 0$.
- (2) If $p \equiv 5 \mod 8$, then $h_{n,0}$ and $h_{1,m}$ are odd for $n, m \ge 0$ and $2 \parallel h_{n,m}$ for $n \ge 2$ and $m \ge 1$.
- (3) If $p \equiv 7 \mod 16$, then $A_{n,0} \cong \mathbb{Z}/2\mathbb{Z}$, $A_{n,1} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ for $n \geq 2$, and $A_{1,m} \cong \mathbb{Z}/2^{m-1}\mathbb{Z}$ for $m \geq 1$.

Remark

In the above cases, $A_{n,m}$ is generated by the prime ideals above 2.

Applications: Odd Regular ℓ

```
Recall K_{n,m} = \mathbb{Q}(\sqrt[\ell^n]{p}, \mu_{2\ell^m}).
Recall \ell is called regular if \ell \nmid h_{0,1} = h(\mathbb{Q}(\mu_{\ell})).
```

Applications: Odd Regular ℓ

Recall $K_{n,m} = \mathbb{Q}(\sqrt[\ell^n]{p}, \mu_{2\ell^m})$. Recall ℓ is called regular if $\ell \nmid h_{0,1} = h(\mathbb{Q}(\mu_{\ell}))$.

Theorem (L-Ouyang-Xu-Zhang 2019)

Let ℓ be an odd regular prime. Assume that p is a prime generating the group $(\mathbb{Z}/\ell^2\mathbb{Z})^{\times}$ or $p = \ell$. Then $\ell \nmid h_{n,m}$ for any $n, m \geq 0$.

Applications: $\ell = 3$

Theorem (L-Ouyang-Xu-Zhang 2019)

Let p be a prime number, $K_{n,m} = \mathbb{Q}(\sqrt[3^n]{p}, \mu_{3^m})$. (1) If p = 3 or $p \equiv 2, 5 \mod 9$, then $3 \nmid h_{n,m}$ for $n, m \geq 0$.

Applications: $\ell = 3$

Theorem (L-Ouyang-Xu-Zhang 2019)

Let p be a prime number, $K_{n,m} = \mathbb{Q}(\sqrt[3^n]{p}, \mu_{3^m})$. (1) If p = 3 or $p \equiv 2, 5 \mod 9$, then $3 \nmid h_{n,m}$ for $n, m \geq 0$.

(2) If $p \equiv 4,7 \mod 9$ and $\left(\frac{3}{p}\right)_3 \neq 1$, then $A_{n,m} \cong \mathbb{Z}/3\mathbb{Z}$ and $A_{n,m}$ is generated by the prime ideals above 3 for $n \geq 1$, $m \geq 0$.

Another proof for the above results on class groups of $K_{n,m}$

Lemma (Stable lemma) Suppose K_2/K_0 satisfies RamHyp.

Another proof for the above results on class groups of $K_{n,m}$

Lemma (Stable lemma)

$$|A_{K_0}| = |A_{K_1}|$$
 implies that

$$|A_{K_0}| = |A_{K_1}| = |A_{K_2}|.$$

Remarks on the Stable lemma

Apply to \mathbb{Z}_{ℓ} -extension

Let K_{∞}/K be a \mathbb{Z}_{ℓ} -extension and K_n its n-th layer. It is well known there exists n_0 such that K_{∞}/K_{n_0} satisfies **RamHyp**. Then we recover Fukuda's result on Stable theorems in \mathbb{Z}_{ℓ} extensions.

Remarks on the Stable lemma

Apply to \mathbb{Z}_{ℓ} -extension

Let K_{∞}/K be a \mathbb{Z}_{ℓ} -extension and K_n its n-th layer. It is well known there exists n_0 such that K_{∞}/K_{n_0} satisfies **RamHyp**. Then we recover Fukuda's result on Stable theorems in \mathbb{Z}_{ℓ} extensions.

Apply to radical extension

Suppose $\mu_{\ell^2} \subset K$. Let $K_n = K(\ell^n \ a)$ where $a \in K$. Then $\operatorname{Gal}(K_{m+2}/K_m) \cong \mathbb{Z}/\ell^2\mathbb{Z}$ for any m. We show that there exists some n_0 such that K_∞/K_{n_0} satisfies RamHyp . If $|\operatorname{Cl}_{K_m}[\ell^\infty]| = |\operatorname{Cl}_{K_{m+1}}[\ell^\infty]|$ for some $m \geq n_0$, repeatedly applying the Stable lemma, then one can get $|\operatorname{Cl}_{K_{m+i}}[\ell^\infty]| = |\operatorname{Cl}_{K_m}[\ell^\infty]|$ for any $i \geq 0$.

Remarks on the Stable lemma

$$K_4 = K_0(\sqrt[\ell^4]{a})$$
 $K_3 = K_0(\sqrt[\ell^3]{a})$ cyclic
 $K_2 = K_0(\sqrt[\ell^2]{a})$ cyclic
 $K_1 = K_0(\sqrt[\ell]{a})$ cyclic
 $\mu_{\ell^2} \subset K_0$

Stable results on class groups of $K_{n,m}$

Proposition

Assume $\ell \neq 2$. Assume that all the primes above ℓ in K_{n_0,m_0} are totally ramified in K_{n_0+1,m_0+1} for some integers $n_0 \geq 0$ and $m_0 \geq 1$. Then

- All primes above ℓ in K_{n_0,m_0} are totally ramified in $K_{n,m}/K_{n_0,m_0}$ for all $n \geq n_0$ and $m \geq m_0$;
- ② If $|A_{n_0,m_0}| = |A_{n_0+1,m_0+1}|$, then $A_{n,m} \cong A_{n_0,m_0}$ for all $n \ge n_0$ and $m \ge m_0$.
- \bullet If $\ell \nmid h_{n_0+1,m_0+1}$, then $\ell \nmid h_{n,m}$ for all $n \geq n_0$ and $m \geq m_0$.

Stable results in Kummer extension

Suppose we have that the ℓ -class groups of the red fields are same.

Stable results in Kummer extension

By ramification and class field theory, we have

$$K_{n_0,m_0+2}$$
 — K_{n_0+1,m_0+2} — K_{n_0+2,m_0+2}
 K_{n_0,m_0+1} — K_{n_0+1,m_0+1} — K_{n_0+2,m_0+1}
 K_{n_0,m_0} — K_{n_0+1,m_0} — K_{n_0+2,m_0}

Stable results in Kummer extension

Apply our stable lemma to the two left vertical lines,

$$K_{n_0,m_0+2}$$
 — K_{n_0+1,m_0+2} — K_{n_0+2,m_0+2}
 K_{n_0,m_0+1} — K_{n_0+1,m_0+1} — K_{n_0+2,m_0+1}
 K_{n_0,m_0} — K_{n_0+1,m_0} — K_{n_0+2,m_0}

Stable results in Kummer extension

Apply our stable lemma to the two left vertical lines,

$$K_{n_0,m_0+2}$$
 — K_{n_0+1,m_0+2} — K_{n_0+2,m_0+2}
 K_{n_0,m_0+1} — K_{n_0+1,m_0+1} — K_{n_0+2,m_0+1}
 K_{n_0,m_0} — K_{n_0+1,m_0} — K_{n_0+2,m_0}

C. J. Parry, *A genus theory for quartic fields*. J. Reine Angew. Math. **314**(1980), 40–71.

C. J. Parry, *A genus theory for quartic fields*. J. Reine Angew. Math. **314**(1980), 40–71.

P. Monsky, *A result of Lemmermeyer on class numbers*. arXiv:1009.3990, 2010.

C. J. Parry, *A genus theory for quartic fields*. J. Reine Angew. Math. **314**(1980), 40–71.

P. Monsky, *A result of Lemmermeyer on class numbers*. arXiv:1009.3990, 2010.

Jianing Li. A note on class numbers of pure quartic field. (My webpage 2019)

C. J. Parry, *A genus theory for quartic fields*. J. Reine Angew. Math. **314**(1980), 40–71.

P. Monsky, *A result of Lemmermeyer on class numbers*. arXiv:1009.3990, 2010.

Jianing Li. A note on class numbers of pure quartic field. (My webpage 2019)

S. Aouissi, M. Talbi, M. C. Ismaili and A. Azizi, On a Conjecture of Lemmermeyer, arXiv preprint, 2018, arXiv:1810.07172.

C. J. Parry, *A genus theory for quartic fields*. J. Reine Angew. Math. **314**(1980), 40–71.

P. Monsky, *A result of Lemmermeyer on class numbers*. arXiv:1009.3990, 2010.

Jianing Li. A note on class numbers of pure quartic field. (My webpage 2019)

S. Aouissi, M. Talbi, M. C. Ismaili and A. Azizi, On a Conjecture of Lemmermeyer, arXiv preprint, 2018, arXiv:1810.07172.

Jianing Li, Yi Ouyang, Yue Xu, Shenxing Zhang. 2-Class groups in dyadic Kummer towers. (submitted) arxiv:1905.04966

Thanks for your attention