國立清華大學資訊工程系 110 學年度 2 學期專題報告

專題名稱	-	onment Prediction Based on Dynamic Hierarchical Attention ks with Topological Concept					
參加競賽 或計畫	□參加對外競賽		□參與其他計畫		☑無參加對外競賽或任 何計畫		
學號	107062333	100	6062336				
姓名	湯睿哲	徐	鈺勝				

摘要

自然語言技術出現,你成功地使電腦能讀懂我們日常生活中所使用的文字、語言等,藉此將人工智慧在文本分類,段落摘要、解讀等皆能有出色的表現,對於法律項目,也能利用文本分類的方式自事實描述準確得出罪刑指控、觸犯法條,進而輔佐法官進行判決。然而在量刑數值上的預測,準確程度仍無法達到很高,需要考量的因素也比較多(如關鍵字詞、事實中所描述的主觀敘述等)。也因此本次專題,我們希望能藉由資料文本內容分析,建構出能有效預測刑期判決的模型。

而在實驗過程中,我們先試著嘗試使用一般 Machine Lerning 常見的型,對經過 TFIDF 轉換後的文本進行訓練。隨後為了能提高準確度,除了需要針對一些文字進行過濾或制式化外,也需要探討詞於詞之間的關係,也因此借助詞嵌入,並加入些對文本字詞的動態加權方式,包裝成 Layer 來構築出神經網路。並在最後評估是否有真效提高準確程度。

中華民國 110年 11月

實驗動機與目標

透過案件描述預測判決解果在法律領域中,對被告、律師及法官都很有幫助,然而預測並不是件簡單的事且需要大量法律知識,因此我們希望透過專題建立一個模型能夠有效**預測最終刑期**,輔助法官或是律師進行判斷。

資料描述

使用的資料為 CAIL 2018 的中文刑法法案 dataset,約 18 萬筆資料,實驗目標是利用自然語言處理去有效地預測出最終"刑期"的判決結果,結構如下圖:

Attribute	Value		
Fact	经审理查明·2013年10月4日11时许·被告		
Accusation	['故意伤害']		
Related LAW	['234']		
Imprisonment	8		
Live Imprisonment	0		
Death Penalty	0		

圖 1. 資料描述

資料前處理

- 文字過濾
 - 1. 刪減非重要的文字敘述,例如:時間日期、換行符號等
 - 2. 對一些數字編排詞彙進行一制化,例如: 發票號碼、車牌號碼等,將這 些數字轉乘固定的標記。
- 斷句

以逗號、句號、冒號等做為分界,進行段落切分。

斷詞

在切分字詞上我們使用 Jieba 斷詞工具進行操作,而在本次專題中,我們分別對文本進行兩種切分方式

1. 將所有字詞與標點符號視為不同詞彙,並執行斷詞 (Word Level

Fact) •

2. 將上述斷句後的結果, 進行個段落的斷詞 (Sentence Level Fact)

文字轉換

• TF.IDF

先利用詞頻-倒文件頻的統計去分析每個詞出現在文本中其對應的重要程度,來分析影響刑期的關鍵字詞,計算公式如下:

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

 $tf_{i,j}$ = number of occurrences of i in j df_i = number of documents containing iN = total number of documents

圖 2. TF.IDF 計算公式

● 詞嵌入 (Embedding)

相較於 TF-IDF Transform 著重於單一字詞的重要程度, 詞嵌入針對於詞 與詞之間的相似程度, 將詞轉 map 到更高維度的點

圖 3. 詞嵌入舉例 (非實際數值)

圖 4. 利用機器學習流程

● Fact 經過 TF IDF 轉換,即每筆 Fact 會大小變成字典詞數 * 1 的一維向量,藉此當作 input ,我們嘗試丟入一些機器學習常用來做分類問題的哦型如 linearSVC、RandomForestClassifier ,將每種刑期當作一個類別進行訓練,結果會於後面"結果評估"做比較。

模型訓練-神經網路

整體架構

圖 5. Hierarchical Attention Networks with Topology concept

● 設計原理 - 拓樸(Topology)時序關係

一般有完整架構判決書,在書寫上應會對應法官在自由心證的思考順序,即藉由事實描述 (fact)來得知罪刑 (accusation),並藉由罪刑找出查找對應的相關法條 (Law Article),得到一個客觀的刑期量範圍。以此整個法案判決書的書寫結構應會如下圖:

也因此在預測刑期時我們將刑期判決的上一層書寫內容,即相關法條,做適當處理(於下方 **HAN** 會做說明),加入神經網路的進行預測。

● 設計原理 – 注意力 (Attention)機制

在沒注意力機制的 LSTM encoder 中只會將最後一個 LSTM 處理完的 hidden state(隱藏層)當成 context vector 作為輸出,這個 context vector 中包含著整個 input 的資訊。而加入了 attention 後的 encoder 則是會將所有 LSTM unit 的隱藏層作為輸出,輸出前會透過一些可學習的參數控制哪些 unit 的資訊較為重要,使其輸出時的占比較大。

圖 7. 有/無注意力機制的 encoder 架構

• 設計原理 – Hierarchical Attention Networks(HAN)

HAN 為一種由 word encoder 跟 sentence encoder 加起來的雙層模型。在 word encoder 以及 sentence encoder 中都導入了前面提到過的 attention 機制,因此可以使在 encode sentence 時提取比較重要的單字,同時在 encoder 時也提取重要的句子。

• 設計原理 – HAN 中的動態 attention 參數

在 attention 機制中,通常會定義一條 scoring function 來計算出該 input 的 重要程度,而 scoring function 內的參數變是可透過學習的方式來取得,也可透過接受其他輸入來動熊挑整參數

圖 7. Hierarchical Attention Networks

● 設計原理 - 量刑區間化

在拓樸關係提到,我們家入了相關法條來訓練希望能得到客觀的量刑範圍。除此之外,從 CAIL 2018 評估刑期準確度的方式中,可以發現當刑期越高,所能容忍的誤差就會越多 (CAIL 評分公式於下方欄位),如下圖:

圖 8. Hierarchical Attention Networks

因此對於連續正整數分布的刑期 Label,我們能依據刑期取對數後的分布,來進行劃分,劃分出的每個區間中,任兩數的相差值,在 CAIL 的評分下都能確保拿到 0.8 分或以上,區分結果如下:

區間(月)	值(月)	[20,24]	22
[-2,-2]	-1	[25,30]	13
[-1,-1]	-1	[31,37]	14
[0,0]	0	[38,46]	42
[1,1]	1	[47,57]	52
[2,2]	2	[58,71]	17
[3,3]	3	[72,88]	18
[4,5]	4.5	[89,108]	19
[6,7]	7	[109,133]	20
[8,9]	8.5	[134,163]	21
[10,12]	9	[164,200]	22
[13,15]	14	[201,245]	23
[16,19]	11	[246,300]	24

圖 9. 量刑區分表格

以此不但能大幅降低訓練時的 Labels 數量,更能降低電腦硬體的負擔,來減少訓練所花的時間。

評分方式

• Accuracy:

對任一筆測資若預測值與實際相等,則得1分,反之則0,並加總除以總筆數,得到準確值。

• CAIL 評分:

$$v = |\log(l_p + 1) - \log(l_a + 1)|$$

圖 CAIL 評分方公式 (v表示差值、lp: 預測值、la: 實際值) score(i) = 1 - |log(預測值 i+1) - log(實際值 i+1)| 將每筆 socre(i)加總除以總比數,得到準確值。

結果評估							
LinearSVC	RF Classifier	BiLSTM	BiLSTM Range prediction Topology	HAN	Dynamic HAN Topology		
0.42	0.44	0.44	0.48	0.45	0.48		
0.53	0.44	0.54	0.62	0.589	0.63		
	0.42	0.42 0.44	LinearSVC RF Classifier BiLSTM 0.42 0.44 0.44	LinearSVC RF Classifier BiLSTM BiLSTM Range prediction Topology 0.42 0.44 0.44 0.48	LinearSVC RF Classifier BiLSTM BiLSTM Range prediction Topology 0.42 0.44 0.44 0.48 0.45		

黃色為本次實作所建構的神經網路訓練結果

總結與討論

本次專題研究,嘗試機器學習中常見的模型進行預測,只單就字詞重要程度當作輸入,,若出現單一判決書出現多位犯人需要分別給出不同的刑期,所需要會發現不管是在 Accuracy 或是 CAIL 的評分上,普遍都不高。而利用詞嵌入分析,並建構神經網路,除了能減少訓練時間,能得到更高的準確值。

結果歸納如下:

- •Machine Learning model: 成果相對不佳
- •HAN 使 encoding 關注更重要的資訊、加入拓樸概念可使預測過程多了客觀條件,並利用 dynamic context vector 則將上述兩種方法結合

當然仍還有許多問題值得去探討,針對於刑期範圍預測結果,將這些範圍 再與 Fact 進行進一步的訓練,是否能得到更高的準確值。另外考慮到的問題 也就更多,這值得我們往後深入探討。

未來規劃

• 在量刑區間化後加入回歸模型來計算詳細刑期,架構如下圖:

圖 10. 完整架構

- 考慮多個被告的情況發生。
- 將成果應用於台灣刑法法案,甚至更多非中文語系的國家法案。

團隊合作方式

在分工部分,對於每一項實驗操作,我們都是一起進行的,以此達到互相 監督與教導,藉此成員們也都能了解每一步驟的內仍與原理,藉此來達到完 整的學習過程。

參考文獻

- Chaojun Xiao. Haoxi Zhong. Zhipeng Guo. Cunchao Tu. Zhiyuan Liu. Maosong Sun. 2018. CAIL2018: A Large-Scale Legal Dataset for Judgment Prediction
- Bingfeng Luo. Yansong Feng. Dongyan Zhao. 2017. Learning to Predict Charges for Criminal Cases with Legal Basis
- Haoxi Zhong. Zhipeng Guo. Cunchao Tu. Chaojun Xiao. Zhiyuan Liu.
 Maosong Sun. 2018. Legal Judgment Prediction via Topological Learning