OWC Keynote: Visible light communication (VLC) for cars

Visible Light Communication (VLC) for Cars

Takaya Yamazato, Nagoya University https://yamazato.nuee.nagoya-u.ac.jp/

WORKSHOP CO-CHAIRS

Chedlia Ben Naila, Nagoya University, Japan

Takaya Yamazato, Nagoya University, Japan

Anna Maria Vegni, Roma Tre University, Italy

Hanaa Abumarshoud, University of Glasgow, UK

SCOPE AND MOTIVATION

Optical wireless communication (OWC) systems over terrestrial, space or underwater links are gaining much attention as cost-effective, sustainable and energy efficient candidates to meet the ever-increasing demand for capacity and quality for B5G/6G networks. Besides the compelling advantages of the high-power solid-state laser diodes for medium to long range applications, remarkable advances have been achieved in semiconductor sources such as light emitting diodes (LEDs) in visible light and ultraviolet wavelengths, multi-array light sources and detectors, tracking and steering. These advances provide huge potential for short/medium range wireless communication applications at low power and cost.

OWC Keynote: Visible light communication (VLC) for cars

Visible Light Communication (VLC) for Cars

Special thanks to:

- Dr. Chedlia Ben Naila, Nagoya University, Japan (OWC co-chair)
- Dr. Anna Maria Vegni, Roma Tre University, Italy (OWC co-chair)
- Dr. Hanaa Abumarshoud, University of Glasgow, UK (OWC co-chair)
- •Dr. Habib M. Kammoun, University of Sfax, Tunisia (ISCC local organizing chair)

This presentation is partially supported by

- Suzuki Foundation
- Okawa Foundation of Information and Telecommunications

Takaya Yamazato, Nagoya University

https://yamazato.nuee.nagoya-u.ac.jp/

Visible light communications for Cars

- ☐ Brief history of LED and invention of blue LED
- □ Visible light communications (VLC), Image sensor communications (ISC)
- □ VLC using high-speed camera
- ☐ High-speed image processing for automotive applications
 - Vehicle to infrastructure visible light communication system
 - Range estimation using POC
 - ISC using rolling-shutter image sensor

Blue LED (innovation history)

1961 Robert Biard and Gary Pittman (TI) invented an infra-red LED.

1962 Nick Holonyak, Jr. (GE) invented a visible red light LED.

1970s Scientists succeeded in making
LEDs that emit a cyan (pale green)
light.

1980s Ultra-bright magenda (orange-red), orange, green, and yellow LEDs were produced.

1961 Robert Biard and Gary Pittman (TI) invented an infra-red LED.

1962 Nick Holonyak, Jr. (GE) invented a visible red light LED.

But scientists realized that the emission of blue light was considerably difficult.

light.

1980s Ultra-bright magenda (orange-red), orange, green, and yellow LEDs were produced.

Gallium nitride (GaN)

- Gallium nitride was the material of choice.
- Material was considered appropriate, but practical difficulties had proved enormous.
- No one could grow gallium nitride crystals of high enough quality

Dr. Isamu Akasaki

1952	Graduated from the School of Science, Kyoto University Began working at Kobe Kogyo Corporation		
1959	Research Associate, School of Engineering, Nagoya University		
1964	Lecturer, School of Engineering, Nagoya University		
1964	Received Doctorate of Engineering, School of Engineering, Nagoya University		
1981	Professor, School of Engineering, Nagoya University		
1992	Retirement from Nagoya University Professor, Meijo University Professor Emeritus, Nagoya		
2004	University Professor at Nagoya University		

Dr. Hiroshi Amano

1960	Born in the city of Hamamatsu, Shizuoka Prefecture
1979	Graduated from Shizuoka Prefectural Hamamatsu Nishi Senior School
1983	Graduated from the School of Engineering, Nagoya University
1985	Completed Master's Course of the Graduate School of Engineering, Nagoya University
1988	Completed All But Dissertation (ABD) for a PhD degree of the Graduate School of Engineering, Nagoya University
1988	Research Associate, School of Engineering, Nagoya University
1989	Acquired the Doctor of Engineering, Nagoya University
1992	Assistant Professor, Faculty of Science and Technology, Meijo University
1998	Associate Professor, Faculty of Science and Technology, Meijo University
2002	Professor, Faculty of Science and Technology, Meijo University
2010	Professor, Graduate School of Engineering, Nagoya University
	12

1986 Profs. Akasaki and Amano were the first to create a high-quality GaN crystal.

End of 1980s, they made a breakthrough in creating a p-type layer.

1992 Profs. Akasaki and Amano were able to present their first diode emitting a bright blue light.

Without a blue LED, there is no white light

White light source implementation

Energy-efficient LED lights up the world brighter than ever.

Light emitting data (LED)

Visible Light Communication (VLC)

1999 Proposed by Prof. Masao Nakagawa, Keio University

2001 Visible Light Communication Consortium (Chair: Prof. Shinichiro Haruyama, Keio University)

2014 Visible Light Communications Association

2023 JPC Optical Wireless Group (Chair: Prof. Yamazato)

Electromagnetic spectrum

	Class	Wavelength λ	Frequency f		
γ	Gamma rays	1 pm	300 EHz		
нх	Hard X-rays	10 pm	30 EHz	750 nm Visible Speatrum 38	
sx	0.477	100 pm	3 EHz	750 nm Visible Spectrum	30 nm
	Soft X-rays	1 nm	300 PHz	VISTEL STECTION	,
EUV	Extreme ultraviolet	10 nm	30 PHz		
NUV	Near ultraviolet, visible	100 nm	3 PHz		
		1 µm	300 THz		
NIR	Near infrared	10 μm	30 THz		
MIR	Mid infrared	100 μm	3 THz		
FIR	Far infrared	1 mm	300 GHz		
EHF		1 cm	30 GHz		
SHF	Super high frequency	1 dm	3 GHz	400 THz 79	90 THz
UHF	Ultra high frequency	1 m	300 MHz	400 102	90 I MZ
VHF	Very high frequency	10 m	30 MHz 3 MHz		
MF	High frequency Medium frequency	1 km	300 kHz	Radio wave	
I F	Low frequency	10 km	30 kHz	Radio wave	
VLF	Very low frequency	100 km	3 kHz		
ULF	Ultra low frequency	1000 km	300 Hz	Audible sounds color TV Microwave infra red Wiltra X-rays	
SLF	Super low frequency	10000 km	30 Hz	Thoughte sounds radio & TV 1 Emonate SI (Intra reason violety X rays	->
ELF	Extremely low frequency	100000 km	3 Hz		1
	wavel.	ength	大地	SLF VLF MF VHF SHT FIR NIR NUV EUV SX HX SLF VLF MF VHF SHT FIR NIR NUV EUV SX HX SLF VLF MF VHF SHT FIR NIR NUV EUV SX HX NM NM NM NM NM NM NM NM NM N	Y

VLC Transmitter

In most cases, VLC uses LEDs for a transmitter.

- VLC signal modulation
 - On-off keying (OOK)
 - Pulse-width modulation (PWM)
 - Intensity modulation (IM)
 - Optical orthogonal frequency division multiplexing (optical OFDM)

On-off keying (OOK)

The simplest form of modulation

Data rate is $R_b = 1/T_b$

Pulse-width modulation (PWM)

The simplest form of modulation

VLC Transmitter

In most cases, VLC uses LEDs for a transmitter.

Intensity modulation and direct detection (IM/DD) systems

Image sensor communications (ISC)

Image Sensor Communications (ISC)

Norio lizuka, Advisory Engineer, Casio

- Proposed by Mr. lizuka of Casio Co.
- Basically the same as optical camera communication (OCC) standardized in IEEE 802.15.7
- It has spatial separation characteristics:
 - Spatial separation characteristics enable spatial parallel transmission using LED arrays.
 - Easy tracking of the transmission source
 - Simultaneous communication and ranging (position estimation)

CMOS (complementary metal oxide semiconductor)

using row and column decoders, like a digital memory.

https://en.wikipedia.org/wiki/Active-pixel_sensor

High-Speed Image Sensor as a Reception Device of VLC Signals

LED array transmitter and Image sensor receiver

Spatial separation

Image sensor receiver can receive and process multiple transmitting sources.

VLC using high-speed camera

How fast can we achieve? — Ideal case —

iPhone 1080p 240 fps

 $1920 \times 1080 \times 240 \ fps \times 12 \ bit \times 3 \ colors$

Considering Nyquist sampling (1/2)

$$960 \times 540 \times 120 \ fps \times 6 \ bit \times 3 \ colors$$

Spatial

Temporal

Dynamic range

1,119,744,000 bps (1.1 **Gbps**)

Xperia 1080p 920 fps

 $1920 \times 1080 \times 920 \text{ fps} \times 12 \text{ bit} \times 3 \text{ colors}$

Considering Nyquist sampling (1/2)

 $960 \times 540 \times 460$ fps $\times 6$ bit $\times 3$ colors

4,292,352,000 bps (**4.3 Gbps**)

High-speed camera: 1000 fps

High-speed Image Sensor

160 km/h

High-speed image processing for automotive applications

LED traffic light to vehicles (I2V-VLC) **V2X Visible Light Communication** LED pavement marker to vehicle (I2V-VLC) LED tail lights to vechicle (V2V-VLC)

Vehicle-to-Infrastructure Visible Light Communications (V2I-VLC) System

T. Yamazato, et al. "Image Sensor Based Visible Light Communication for Automotive Applications," IEEE Communication Magazine, Jul., 2014.

Fast recognition of LED arrays

T. Yamazato, et al. "Image Sensor Based Visible Light Communication for Automotive Applications," IEEE Communication Magazine, Jul., 2014.

How we estimate distance using only one camera

by using parameter W

Phase-only correlation (POC) result and Sinc function approximation

Sinc-approximation

$$G_{k,k+1}(m,n) \simeq \operatorname{sinc}(m+\Delta_m)\operatorname{sinc}(n+\Delta_n)$$
 (2)

Estimate the displacement in sub-pixel order

The range estimation error

The range estimation error plots along with numerically obtained error curves assuming sub-pixel error.

The curves labeled 2-pixel and I-pixel are the case without POC while the curves labeled 0.5-pixel and 0.1-pixels are the case with POC. The black solid curve is the approximate curve of the range estimation (plots).

ISC using Rolling-shutter image sensor

Rolling-shutter image sensor

Achieving Successful VLC Signal Reception Using a Rolling Shutter Image Sensor While Driving at 40 km/h

Conclusion

- □ Brief history of LED and invention of blue LED
- ☐ Visible light communications (VLC)
 - Image sensor communications (ISC)
- □ VLC using high-speed camera
 - High-speed image processing (eyes of robot)
- ☐ High-speed image processing for automotive applications
 - Vehicle to infrastructure visible light communication system
 - Successful audio signal transmission at driving speed of 30 km/h
 - 55Mbps VLC signal transmission (faster than DSRC)
 - Range estimation using POC
 - Estimation error of less than 0.5 m from a 30-60 m range
 - ISC using Rolling-shutter image sensor
 - Successful VLC signal reception using a rolling shutter image sensor while driving at 40 km/h

Thank you and your questions or comments are welcome! https://yamazato.nuee.nagoya-u.ac.jp/