CA2 ON EVR 50 1979 C56

CONFEDERATION PARK (HAMILTON)

MICROBIOLOGICAL SURVEY

1979

Ministry of the Environment

Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact ServiceOntario Publications at copyright@ontario.ca

Lwater Quality J. Ontario CA20N EV 565
1979
CS6

CONFEDERATION PARK (HAMILTON)

MICROBIOLOGICAL SURVEY

1979

Technical Support Section

West Central Region

Ontario Ministry of the Environment

TABLE OF CONTENTS

Preface

Acknowledgements

List of Figures

List of Tables

Executive Summary

1. INTRODUCTION

- 1.1 Background
- 1.2 Survey Method
- 1.3 General Significance of Bacterial Parameters
 - 1.3.1 Fecal Coliforms MF
 - 1.3.2 Fecal Streptococci MF
 - 1.3.3 Pseudomonas aeruginosa MF
 - 1.3.4 Heterotrophic Bacteria (aerobic)
 - 1.3.5 Candida albicans
- 1.4 Previous Studies
 - 1.4.1 Hamilton-Wentworth Regional Health Unit Monitoring, pre 1979
 - 1.4.2 CCIW Bathing Beach Study
 - 1.4.3 CCIW Hamilton Harbour Plume Study

2. SURVEY RESULTS & DISCUSSION

- 2.1 Hamilton-Wentworth Regional Health Unit Data, 1979
- 2.2 MOE Survey Results
 - 2.2.1 General
 - 2.2.2 Smith's Creek
 - 2.2.3 Lake Ontario
- 2.3 Discussion

CONCLUSIONS

References

Appendix I Hamilton Harbour Bacterial Plume (CCIW Dat	Appendix I	Hamilton	Harbour	Bacterial	Plume	(CCIW	Data
---	------------	----------	---------	-----------	-------	-------	------

- Appendix 2 Hamilton-Wentworth Regional Health Unit Data (1979)
- Appendix 3 Climatological Data (June, July, August, 1979)
- Appendix 4 MOE Bacterial Data

Preface

This report was completed at the request of the Hamilton City Council for an investigation into the causes of high bacterial populations in Lake Ontario, offshore of Confederation Park. Data were collected by the Ontario Ministry of the Environment, the Canada Centre for Inland Waters and the Hamilton-Wentworth Regional Health Unit.

While representatives of the above two outside organizations have reviewed this document, the conclusions reached do not necessarily reflect their opinions.

Acknowledgments

The authors H. D. Craig and Dr. S. S. Rao would like to express their appreciation to Dr. A. Qureshi and S. Janhurst (MOE, Microbiology Labs) for their help and suggestions in survey design and analyses. Staff of the Hamilton-Wentworth Regional Health Unit provided data from their surveys, without which, this study could not have been possible.

A. Thachuk, T. Waram and M. Thompson carried out the field sampling in an efficient and professional manner.

The manuscript was reviewed by Mr. S. Irwin, Dr. A. Qureshi and Ms S. Janhurst. Their comments and suggestions were very helpful in the final write up.

EXECUTIVE SUMMARY

This study was carried out as a result of a request by Hamilton City Council to determine the extent and causes of bacterial pollution along the Confederation Park shoreline in Lake Ontario. The survey method was designed to determine inputs to nearshore Lake Ontario in the study area and then determine fluctuations in nearshore bacterial populations in order to relate these factors.

The problem of elevated bacterial counts in the nearshore of Lake Ontario in the vicinity of Confederation Park appears to be a direct result of stormwater runoff in most cases. The problem of high bacterial counts in Smith's Creek appears to affect Lake Ontario only locally around the discharge point. Bacterial populations in nearshore Lake Ontario following a major runoff event are elevated, but decrease rapidly by an order of magnitude in the next 24 to 48 hours.

CONFEDERATION PARK BACTERIOLOGICAL SURVEY

I. INTRODUCTION

I.I Background

The nearshore waters of Lake Ontario at Confederation Park at Hamilton occasionally show elevated levels of total coliform and fecal coliform bacteria which are above the Ministry of the Environment and Ministry of Health Guidelines for body contact recreation, resulting in posting of the beach as unsuitable for body contact recreation by the Hamilton-Wentworth Regional Health Unit. The contamination is transitory and not clearly related to a specific source. During 1978 the beach at Confederation Park was posted once for a three day period, August 27th to 30th.

In the fall of 1978, Hamilton City Council requested that the MOE carry out a study "To Review the Extent of Pollution in Lake Ontario along Confederation Park and Determine the source of such Pollution". As a result of this request, a series of meetings were initiated between concerned parties (including MOE regional staff, MOE laboratory services branch staff, Regional Municipality of Hamilton-Wentworth Engineering Committee, Hamilton Pollution Control Sub-Committee, the Regional Health Unit and the Hamilton Region Conservation Authority) in order to discuss the proposed project. A survey plan was arrived at and is described below.

1.2 Survey Method

The MOE survey consisted of two main parts, the first of which was the identification and sampling of various inputs to the lake, while the second part was concerned with determining the fluctuations in bacterial populations in near shore Lake Ontario following rainfall events. Water quality samples were collected during the morning at the stations shown in Figure 1.1. These were then transported to the MOE Toronto Laboratories as soon as possible.

The Hamilton-Wentworth Regional Health Unit monitored bacterial water quality on a routine basis daily from Monday to Saturday throughout the summer. These data were made available to the MOE and integrated with the results of our study. The Canada Centre for Inland Water (CCIW, Environment Canada) conducted a study under Dr. S. Rao on the bacterial quality of the plume from Hamilton Harbour. These data are included in this report.

1.3 General Significance of Bacterial Parameters

1.3.1 Fecal Coliforms (FC)

The fecal coliform group is associated with human and warm blooded animal fecal material. This test is useful as an indicator of relatively recent fecal pollution inputs, however, it is by no means completely selective for Escherichia coli, the coliform most directly related to fecal pollution. For body contact recreation the MOE has established an objective of 100/ 100 mL for fecal coliforms (MOE, 1978). As the detection of specific pathogens in water is often too expensive or time consuming, the presence of fecal coliforms is used as an indicator that such pathogens may be present.

1.3.2 Fecal Streptococci (FS)

This group of bacteria is used as indicators of fecal contamination from warm blooded animals including humans. It can best be used in conjunction with the FC parameter to indicate the nature of the potential fecal source. If the ratio of the geometric mean densities of FC to FS at pollution sources or outfalls exceeds 4.0 then the source is likely to be

human in origin. A ratio of 0.7 or less indicates a non-human source. Ratios between these values are difficult to interpret and may be mixtures. Numerous environmental factors may influence the densities of FC and FS and thus care must be used in interpretation of the above ratio. The ratio is considered valid only when the FC density approaches or exceeds 100/100 mL (MOE, 1978).

1.3.3 Pseudomonas aeruginosa (PsA)

 \underline{P} . aeruginosa probably does not occur in waters unaffected by human activity and domestic animals (Hoadley, 1967). Isolates of \underline{P} . aeruginosa are found in human feces and their presence in water is generally a direct result of recent fecal waste input from a nearby source. Their presence and frequent isolation indicates a potential health hazard. The organism is an opportunistic pathogen and has been identified as the causitive agent of a number of infections that may be transmitted through a contaminated water body to a susceptible host. Of chief concern to bathers is the association between \underline{P} . aeruginosa and the disease known as otitis externia or swimmer's ear (MOE, 1978).

PsA populations in excess of 100/100 mL may occur in water recently contaminated by sewage. Populations of 10 to 100/mL are observed in streams immediately below sewage outfalls (Hoadley, 1967). Although some sterile waters support growth of <u>P. aeruginosa</u> in the laboratory, populations of <u>P. aeruginosa</u> are rapidly reduced in natural surface waters, being diminished ordinarily by over 90% in three hours. <u>P. aeruginosa</u> appears to be a sensitive indicator of the contamination of surface water by sewage, and municipal and barnyard runoff (Hoadley, 1967).

1.3 Aerobic Heterotrophic Bacteria (HB)

The HB count is designed to enumerate as large a number as possible of those bacteria that require some carbon for their growth. The concentration of Heterotrophic bacteria in water is affected by levels of organic nutrients present. Densities of Aerobic Heterotrophic bacteria in lakes of high trophic status are greater than AHB levels in oligotrophic lakes (Rao & Jurkovic, 1977). Large numbers of heterotrophs in water indicate increased productivity and deterioration of water quality.

1.3.6 Candida albicans (CA)

<u>C. albicans</u> is a pathogenic yeast having an intestinal habit in humans, some animals and birds. As it is not normally associated with non-polluted waters, its presence may indicate fecal contamination. It is responsible for a number of superficial (oral, vaginal and cutaneous) infections in humans. <u>C. albicans</u> also occurs as a normal component of the body flora. It appears that it behaves as a pathogen only in hosts whose resistance has been altered by some predisposing factor (Sherry et al, 1979).

1.4 Previous Studies

1.4. | Hamilton-Wentworth Regional Health Unit Monitoring (1978)

The Hamilton-Wentworth Regional Health Unit has collected bacterial data from the Confederation Park area for several years. The data from 1978 show a pattern of rapidly varying population densities. That is, for a period of time, most of the values will be acceptable (based on MOE guidelines for body contact recreation), then, for some undefined reason, populations will increase across the local lake front. These levels then usually drop rapidly to the normal background levels. These elevated levels may, in some instances, persist for several days. A detailed evaluation of 1979 survey results is contained in Section 2.1.

1.4.2 CCIW Bathing Beach Study

A study published by the Canada Centre for Inland Waters in Burlington "Occurence and Significance of <u>Candida albicans</u> in Lake Ontario Bathing Beaches" by Sherry et al (1979) described bacterial studies completed on specific days during summer 1977 on Hamilton Beach, adjacent to the Burlington Canal and Confederation Park. The results showed for both

areas of interest, maximum populations (F C and F S) usually occur in a narrow band adjacent to shore (1 meter) and that highest mean numbers for all populations occurred in July and August. In their conclusions they state:

"Maximum numbers of all microbial parameters were observed in July and August in association with peak bather loads at these beaches. When microbial population levels were adequate, a decreasing distribution pattern from the shoreline to the offshore waters was observed. In only one instance does our data suggest that a beach has been subjected to fecal contamination (St. Catharines). Storm water runoff seems to be the most possible source of the contamination in most other cases (Hamilton), although the possiblity that the bathers themselves may contribute to the pollution levels of a beach must be considered".

1.4.3 CCIW Study (Hamilton Harbour Plume)

During 1977 and 1978, an extensive bacterial sampling program was undertaken by the Microbiology Laboratories of the Canada Centre for Inland Waters under the direction of Dr. S. Rao. Some of the results of this program are shown in Appendix I. These figures clearly define the extent of the plume from Hamilton Harbour in Lake Ontario. In most cases, the plume is localized; in any case, under all conditions studied, the plume tends toward the east, away from the Confederation Park area.

Water from Hamilton Harbour, being warmer than that in Lake Ontario, will tend to float on the surface of the lake water. In the plume, the highest bacterial populations were measured in the surface samples, however, averaging all the samples from the various depths still produced the same basic patterns.

2.0 SURVEY RESULTS & DISCUSSION

2.1 Hamilton-Wentworth Regional Health Unit Data (1979)

As previously stated, the Hamilton-Wentworth Regional Health Unit (HWRHU) carried out their routine sampling from Monday through Saturday on a weekly basis throughout the summer at the stations shown in Figure 2.1. The data for summer 1979 are shown in Appendix 2.

Figure 2.2 Variation in Fecal Coliform Population,
Max. Daily Air Temp.,
Precipitation vs Time.

Figure 2.3 Variation in Fecal Strep. Population,
Max. Daily Air Temp.,
Precipitation vs Time.

Fecal coliform and fecal streptocci data are summarized in Figures 2.2 and 2.3 respectively. These figures show the variation in the geometric means of the daily population of all the Lake Ontario nearshore stations over time, and compares them to (a) precipitation (Bar graph on bottom axis) and (b) maximum air temperature. These graphs suggest a relationship between the high bacterial counts (FC>100/100 mL, TC>500/100 mL) observed on June 29, 30; July 26 and August I and preceding rainfall. High bacterial counts (FC>100/100 mL, TC>500/100 mL) observed on June 18, July 14 and 17 are not related to precipitation but may be related to elevated temperature. These elevated air temperatures would result in a greatly increased user load at the beach.

A more detailed examination of the data, station by station, is shown in Appendix 2 and helps to further substantiate the above observations.

In Appendix 2, values exceeding the MOE guidelines for body contact recreation are highlighted for ease in reading.

Weather factors that may have affected these parameters are also shown at the bottom of the table. Complete Meterological Summaries are provided in Appendix 3. These data show the following general features:

I. The general effects of the unnamed watercourse flowing past the E. D. Smith plant to Lake Ontario (referred to in this report as Smith's Creek) on the local Lake Ontario shoreline. This is shown by the high bacterial counts (TC>1000/100 mL) found at McNeilly and Winona Roads (Hamilton-Wentworth Regional Health Unit stations 10 and II, respectively) on numerous occasions. This level of contamination was observed on June 12, 13, 16, 20, 21, 23, 25, 26; July 11, 16, 18, 19, 24, 25, 28; August 3, 13, and 29. It should be noted that on these days the contamination is local and does not appear to extend beyond the waterfront at the adjacent roads (H.W.R.H.U. staions 9 and 11). The source of bacteria to this creek is predominently the E. D. Smith factory at Highway #8 and will be discussed in more detail in the report under the MOE survey results.

- 2. The effects of Stoney Creek were observed in the Confederation Park area as high bacterial counts (TC>1000/100 mL, F.C.>100/100 mL) on July 12, August 8, 9 10, 15 and 23. The source of contamination to Stoney Creek is the urban storm water runoff. It is well known that bacterial populations in urban runoff approach the level of dilute sewage. (Dutka and Rybakowski, 1978).
- 3. The effects of major rainfall events were clearly shown in the data from June 28, 29, 30; July 12, 26, 27; and August 1 and 2. On each of these days the occurence of large bacterial populations (TC I000/I00 mL, FC > I000/I00 mI) was preceded by precipitation events, causing substantial urban and/or rural runoff and associated contamination. It is important to note that this is a region-wide feature, extending from the Burlington Canal to Winona Road.
- 4. The high bacterial counts (TC>1000/100 mL, FC>100/100 mL) observed on June 18, July 14 and 17, have no obvious causes and are not related to urban runoff. As a certain set of conditions may cause transport along the lakeshore from a given source, wind data were examined for the given days as shown below.

Date	Wind Speed	Direction
	Km/hr	
June 17	19.2	SSW
June 18	15.5	E
July 13	9.0	NE
July 14	9.2	SSW
July 16	9.9	WNW
July 17	14.6	swirling but max.
		velocity from NE

As can be seen, wind direction on these days with high bacterial counts, and those days immediately preceding them show no similarity and are indeed highly divergent. Such conditions can be expected to set up different degrees of longshore drift and dispersion. In light of this it does not seem reasonable to attribute these events to transport from a specific source.

It is interesting to note that on the above days, air temperatures were extremely high. In fact, without exception each of these high readings was preceded by the three highest temperature days of that month (please refer to meteorological data in Appendix III).

Date	Max. Temp.	(°C) Mean Temp. (°	'C)
June 1	5 30.0	23.4	
June 1	6 30.9	24.2	
June 1	7 29.2	22.0	
July 1	2 30.1	24.2	
July 1	3 30.1	30.9	
July 1	4 30.1	25.5	
July 1	5 31.0	25.1	
July 1	6 31.0	24.3	
July 1	7 23.0	19.9	

All of these values are far above the monthly mean air temperature (June = 17.5 $^{\circ}$ C, July = 20.8 $^{\circ}$ C). During August, 1979, these extended hot periods did not occur, in fact, the mean monthly temperature was 1° C below normal for that month. These data raise some interesting questions. During these prolonged hot periods, usage of the beach area will be at a maximum. In these cases it is not possible to rule out the effects of the bathing population on bacterial water quality. Previous studies have demonstrated a possible relationship between bather load and elevated microbial populations (Foster et al, 1971).

2.2 MOE Survey Results

2.2.1 General

Phase I of the MOE Field Study consisted of the collection of bacterial samples from the numerous inputs to Lake Ontario (Figure I.I). An examination of flows indicates the only major inputs to Lake Ontario are; Stoney Creek (station 2), the large storm sewer east of Grays Road (station 6), Smith's Creek (station I4), and the unnamed stream at station I5. The remainder of the stations consist of intermittent streams, ditches

and small storm sewers. The results can be divided into wet and dry weather runs (Table 2.1). These data show that bacterial counts during or immediately after periods of precipitation are consistently higher than those from dry weather periods. Also during periods of storm runoff, flows will be much greater, as will total loadings to Lake Ontario. During sampling under wet weather conditions it is unlikely that samples were collected during peak bacterial populations in the streams. Studies have shown that monitoring of the "initial flush" alone is not important in bacteriological studies, and peak microbial populations can occur at any time during runoff events (Qureshi, 1978). In general, the inputs show higher bacterial populations due to runoff episodes.

2.2.2 Smith's Creek

The bacterial counts on samples from the mouth of Smith's Creek are normally high, but do display some fluctuations. The main source of the contamination to the creek is the E. D. Smith plant at Highway #8 which discharges a lagoon containing waste from fruit processing operations and some sanitary hook-ups in the plant. The organic loadings (BOD, etc.) from the discharge will vary, as the production of the plant is cyclical, corresponding to peak periods of fruit production on the surrounding While the effluent is presently being chlorinated the effectiveness of this will vary inversely with the amount of organic matter in the waste stream. This shows up in the samples from their outfall as the numbers of fecal coliform vary from 4 up to 16,000/100 mL. The chlorination appears to be effective in the short term, but increased populations are seen in Smith's Creek below Highway #8, possibly indicating in-stream regrowth of bacteria. The samples from Smiths Creek show large fluctuations in quality, but in general bacterial quality in the entire system is very poor.

2.2.3 Lake Ontario

Phase 2 of the MOE study was directed at trying to determine the bacterial populations in Lake Ontario, adjacent to the shoreline. In order to do this, five transects were constructed perpendicular to the shoreline

TABLE 2.1 Bacterial Populations in Watercourses draining to Lake Ontario in the Study Area

	Co	Fecal liform 100 mL	Strep	ecal otococci 100 mL	Вас	otrophic teria 1 mL	Pseudo aerugi per 10	inosa	Cand albi per	
Station	$\#^1$									
	Dry^2	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet
2	85	132	78	272	325,000	840,000	3	17	2	7
4	13	14	26	108	116,000	264,000	3	4	03	7
6	397	2,470	289	4,860	630,000	1,640,000			4 ³	20
7	27	159	240	1,660	178,000	316,000	6	11	2	3
8	103	1,000	159	2,310	352,000	1,230,000	7	98	2	6
9	54	843	271	2,810	115,000	938,000	3	36	2	6
11	116	1,240 ³	756	8,600 ³	112,000	2,150,000 ³	3	340 ³		
12b	486	423	828	2,250	1,040,000	1,400,000	4	8	2	7
12d	162	600	448	1,750	195,000	1,100,000	4	7	2	7
14	2,125	1,240	5,043	12,060	1,450,000	2,130,000	4	8	2	14
15	78	184	63	1,363	540,000	920,000	4	28	2	6
17	4	45	85	460	111,000	35,600	3	17		
18	60	238	155	2,060	62,000	480,000	5	8	03	6
All stations										
	90	330	240	1,670	257,000	723,000	4	18	2	7

Note: all values expressed as geometric means of samples

only those stations with observable flows were sampled Dry: stream sampled following period of no precipitation Wet: stream sampled immediately following or during precipitation events

only one sample 3

as shown in Figure 2.4. Samples were collected daily at 1, 10 and 20 meters from shore, for a three-day study period. These transects were sampled both during dry weather and wet weather following runoff events.

Figures 2.5a, 2.5b and 2.6 show the geometric mean of the observed bacterial population density for all of the transects. Figure 2.5a shows that in the majority of cases the maximum population of fecal coliform is seen in the near shore zone (ie I-I0 meters). Following a precipitation event, the populations of fecal coliforms are higher in a wide zone (I-20 meters) for the first 2 days. On the third day following the precipitation event, the near shore zone still shows high density (I0 to I00 per I00 mL) but the offshore zone (I0 to 20 meters) has fallen to approximately 2/I00 mL. The same observation can be made from Figure 2.5(b) which shows fecal streptococci densities. In figure 2.6, the Heterotroph population densities per mL show very similar levels over the 3 days of dry weather. For the samples following the precipitation events, day I shows elevated levels (compared to the dry samples), while day 2 and day 3 levels subsequently decrease until by day 3 the I0 and 20 meter samples have decreased by approximately an order of magnitude from the day I value.

It is significant to note the difficulties in this type of event sampling. The ideal sequence would have been to have a heavy rainstorm (approximately 10 mm of precipitation) followed by 3 days of calm, dry weather. Samples on the transect would then have represented the effect of the sudden input due to runoff followed by a period of recovery. Two separate series of wet samples were carried out on July 31 to August 2 and August 23 to August 25. The July 3I series was not ideal with an initial rainfall of 8 mm in the afternoon, follwed by a slight rainfall 3.0 mm on August I (day 2). This was then followed by an intense rainfall of 23.2 mm in the morning of August 2 (day 3). The Hamilton-Wentworth Regional Health Unit data for this time period (Appendix 3) show elevated levels on July 3I (3 stations having FC > 100/100 ml), more extensive contamination on August I (7 stations FC > 100/100 ml) and widespread effects on August 2 (12 stations FC >100/100 ml) due to the sudden intense rainfall that morning. It should be noted that on August 2, only the I meter stations were sampled due to adverse wave conditions. This rainfall and resultant runoff, greatly complicated the interpretation of data for this run.

Figure 2.5 Microbial Population Densities
Perpendicular to Shore at Confederation Park

Figure 2.6

Microbial Population Densities

Perpendicular to Shore at Confederation Park

Day 1 ---Day 2 ---

The August 22 set was somewhat more suitable having a measured rainfall of 4.6 mm in the early morning of day I. Day 2 had a trace of rainfall recorded while day 3 had no precipitation recorded.

The Hamilton-Wentworth Regional Health Unit data for this period (Appendix I) show some high levels (FC>100/100 mL) at four stations in the vicinity of Stoney Creek on day I with no high levels on days 2 or 3. The geometric mean for all transects of the August 23 run only are graphed in Figure 2.7. Both the Fecal Coliform and Fecal Streptococci populations show the following characteristics.

- Initial high population density (FC = 57/100 ml, FS = 72/100 ml) on day I. While these values are not exceedingly high, 2 of the 5 transects showed significantly high levels. For example, Hutchs' transect had fecal coliform densities of up to 300/100 mL and fecal streptococci populations of up to 750/100 mL. The transect at station 6 had fecal coliform levels in excess of 600/100 mL and fecal streptococci levels as great as 1040/100 mL.
- 2. During wet weather, bacterial populations do not appear to decline as rapidly with distance offshore as the samples during normal weather (dry) conditions (Fig. 2.5).
- 3. By day 3, both the Fecal Coliform and Fecal Streptococci levels have decreased by approximately an order of magnitude

day
$$I = 28$$
 to $57/100$ ml day $3 = 1$ to $2/100$ ml

Samples were also analysed for <u>Pseudomonas aeruginosa</u> during both wet and dry periods. Figure 2.8 shows the relative occurence of <u>P. aeruginosa</u> in the samples for the wet and dry periods. As this figure shows there is a marked tendency for the higher population densities of <u>P. aeruginosa</u> to occur following precipitation events. For example, the dry weather samples (n = 43) yielded only 4 samples having densities greater than 10 per 100 mL. The samples following precipitation events (n = 74) had 13 samples with densities greater than 10 per 100 mL. As the ratio of the total number of samples collected during wet and dry periods is 1.72:1.0 the observed ratio of 3.25:1.0 (73:43) of <u>P. aeruginosa</u> density greater than 10/100 mL would indicate increased levels following precipitation events.

Microbial Population Densities

in Near Shore Lake Ontario

Following The Aug. 22 Precipitation Event

Day 1 ---Day 2 ---Day 3 -----

2.3 DISCUSSION

It has long been recognized that urban runoff, even in areas having completely separate sewer systems is highly contaminated with bacteria of various types. In fact, storm water microbial levels are similar to dilute sewage (Dutka and Rybakowski, 1978), and have high numbers of fecal coliform bacteria (10^2 to 10^5 per 100 mL). In areas having separate storm sewers, this pollution appears to be predominantly of non-human origin, and is mainly derived from animal waste (Qureshi, 1978).

In storm runoff from areas having combined sewers, total coliforms will be approximately 10 times the levels observed in areas having separate storm sewers. Also, combined sewers discharge contain about 40 times as many fecal coliforms as were detected in the separate storm sewer systems (Burns and Vaughan, 1966). This is due to the greater fraction of human waste in the combined sewer overflows.

Water infiltrating into storm sewers is also a source of continuous pollution during periods of no rainfall. Levels of bacteria in infiltration water can be on the order of 10^2 to 10^3 per 100 mL for Fecal and 10^3 to 10^7 for total coliforms (Dutka and Rybakowski, 1978). Urban streams are known to contain high levels of indicator bacteria during periods of no precipitation (Olivieri, 1977). This contamination may result from bacterial regrowth, started by contaminated sediment within the sewer system (Dutka and Rybakowski, 1978; Dutka and Tobin, 1978; Qureshi, 1978).

In light of the above, it is not surprising to find that the observed bacterial populations in near shore Lake Ontario in the Confederation Park area are related to runoff events. Stoney Creek, which discharges in the middle of the park area, had mean fecal coliform levels of 132/100 mL and fecal streptococci levels of 272/100 mL, and the storm sewer at station 6 had levels of FC = 2,470/100 mL and FS = 4,860/100 mL, following or during precipitation events. All of the inputs along the Lake Ontario lake front will carry some contamination as a result of runoff, but the above two are the closest to the main study area. The data provided by the Hamilton-Wentworth Regional Health Unit show numerous occasions when the nearshore Lake Ontario bacterial population are elevated following runoff events. The transect run following the slight rain on August 23 shows slightly elevated levels, decreasing by an order of magnitude over the next 48 hours.

The transect at station 6 showed the highest individual population density in Lake Ontario nearshore waters (FC = 600/100 mL and FS = 1040/100 mL). All of the above is consistant with sudden loadings from runoff following precipitation events.

It is interesting to examine the two occasions when the H.W.R.H.U. data (1979) shows elevated (FC 100/100 mL, FC 500/100 mL) levels that are not related to runoff events. It has been stated that increased numbers of indicator bacteria in shallow beach water may be caused by higher bather numbers in such waters (Foster et al, 1971). The three days preceding the June 18 event of this type were all extremely hot, having an average maximum temperature of 30.0° C (86° F) at the Mount Hope weather station. The five days preceding the July 17 event had an average maximum temperature of 30.5° C (87° F). The temperature in Hamilton, where most of the bathers would come from, would certainly be higher than those recorded at the weather station.

3.0 CONCLUSIONS

 Incidents of high bacterial counts extending along the Lake Ontario shoreline (from the Burlington Canal to Fifty Point) are related to runoff following significant rainfall events.

- 2. On the two occasions during dry weather conditions, area-wide bacterial problems occurred immediately after prolonged periods (3 to 4 days) of abnormally high temperatures (maximum of about 30.0°C). It has not been demonstrated whether these incidents are related to increased swimmer usage of the area during these unusually warm periods or some more complex temperature effects on the bacterial population dynamics.
- 3. The local effects of the poor water quality in Smith's Creek are very pronounced in nearshore Lake Ontario around McNeilly and Winona Roads. This effect does not appear to extend beyond this area.
- 4. Following a significant runoff event, bacterial populations in the near-shore (less than 20 meters off shore) Lake Ontario are elevated, but decrease by an order of magnitude in the following 24 to 48 hours.
- 5. Following periods of slight rainfall (i. e. trace or I 2 ml) which does not produce significant runoff events, bacterial populations were elevated in Lake Ontario in the vicinity of the large inputs (Stoney Creek, and storm sewer No. 6).

REFERENCES

- Burm R. J., Vaughan R. D., 1966: Bacteriological Comparison between combined and separate sewer dischargers in Southwestern Michigan. Jour. Water Pollut. Control Fed. Vol. 38 pp. 400-409
- Dutka B. J., Tobin S., 1978: Monitoring of Storm Water Runnoffs for Bacterial and Viral Pathogens of Man.
 In Environment Canada Research Report No. 82
- Dutka, B.J., Rybakowski I., 1978: Microbiological Study of Some Canadian Storm Water Runoffs at Burlington and Brucewood. In Environment Canada, Research Report No. 87.
- Foster D.M., Hanes N.B., Lord S.M., 1971: A Critical Examination of Bathing Water Quality Standards
 Jour. Water Pollut. Control Fed. Vol. 42, pp 2229-2241
- Hoadley A.W., 1967: The Occurance and Behaviour of <u>Pseudomonas</u> <u>aeruginosa</u> in Surface Waters, Unpublished Ph.D. Thesis, U. of Wisconsin
- MOE, 1978: Outline of Microbiological Methods, M. Young, Microbiology Section, Laboratory Services
- Olivieri V.P. et al 1971: Microganisms in Urban Stormwater, U.S. EPA /600/ 2/77/087, Cincinnati, Ohio
- Qureshi A.A., 1978: Microbiological Characteristics of Storm Water Runoffs at East York (Toronto) and Guelph Separate Storm Sewers. Environment Canada Research Report No. 87
- Rao, S.S.; Jurkovic A.A., 1967: Differentiation of the Trophic Status of the Great Lakes By Means of a Bacterial Index Ratio.

 Jour. Great Lakes Reserach 1, Vol. 3, pp 323-326
- Sherry J.P., Kuchma S.R., Zarzour J., Dutka B.J., 1979: Occurance and Significance of <u>Candida albicans</u> in Lake Ontario Bathing Beacher, Environment Canada, Scientific Series No. 98

Appendix I Hamilton Harbour Bacterial Plume (CCIW Data)

Appendix 2

Hamilton-Wentworth Regional Health Unit Data (1979)

WEEK OF: June 10 -16 1979

	//		12		13		14		5		16
STATION	TC FC	TC	FC	TC	FC	TC	FC	TC	FC	TC	FC
1. Ship Canal		120	20	10	<10	10	10	20	20	<10	0</th
2. Killarney Avenue											
3. Concession Stand		220	20	120	Z 10	/00	50				
4. Marine Dock		130	80	200	20	90	20	2 IC	110	20	<10
5. W. Confederation Park		210	210	20	Z10	10	×10	< 10	4/ 5	-10	√/3
5c. Change House		1 1 (1)	N 7		æ	C.	0</th <th>410</th> <th><10</th> <th>2 c</th> <th>20</th>	410	<10	2 c	20
5d. E. Confederation Park		130:	2 દ	6C	20	10	<10	110	<10	10	L 10
6. Grays Road		60	50	50	<10	20	410	30	20	20	<10
7. Greens Road		50	< 10	20	20	10	<10	/0	<10	ن (ر.	10
8. Cherry Beach		140	70	250	20	20	20	290	40	120	PO
9. Fruitland Road		160	30	250	50	40	۵۱>	30	Įυ	150	90
10. McNeilly Road		2100	250	2100	120	30	< 10	160	Jo	2400	1/00
11. Winona Road		260	. 80	220	11	30	20	<i>ب</i> ور /	ن ن	80	40
12. Smiths Creek								,		2000	700
Daily Precipitation	Trace										,
Average Wind Speed and Direction	24.5 Wsm	16	5 wniu	14.5	5 iv	16	L 55W	.29	150	16.	2 60'
Maximum Wind Speed and Direction	41 NW	24	New	26	W	28		34	6,5%		147

June 17 - 23 WEEK OF: FC TC FC TC FC TC FC TC FC TC FC STATION TC Ship Canal 2,300 Killarney Avenue Concession Stand Marine Dock 2,300 </0 <10 5-0 W. Confederation Park 5c. Change House 5 C <10 5d. E. Confederation Park <10 2,100 Grays Road \$10 4/0 Greens Road 4/0 5,300 Cherry Beach >3,000 Late Fruitland Road **≥2.00**0 26,000 10. McNeilly Road 5,500 11. Winona Road >6000 >1000 >1000 3. 12. Smiths Creek 7.00 > 12:30 Daily Precipitation D. 4 mm O. 8 mm Truce Average Wind Speed 15.5 E 15.7 ENE 18 4 SSE 20.0 WNW 20.4 554 224 W and Direction Maximum Wind Speed 26.0 ENE 28 W 260 5 33.0 W 30 55E LO ENE and Direction زيا ڪ

June 24 - 30 WEEK OF: 29 25 26 2+ 28 20 FC TC FC FCTC TC TC FC TC FC FC STATION TC 80 150 150 1000 700 Ship Canal 20 <10 245 100 110 (10 210 Killarney Avenue Concession Stand 1500 180 50 10 10 410 1300 340 1000 10 410 600 Marine Dock 80 10 410 410 410 < 10 1200 160 POC 70 600 700 W. Confederation Park >8000 3,600 1300 900 1000 100 190 40 410 10 10 410 5c. Change House 28000 3,300 2,500 <10. 4 10 10 500 100 <10 410 410 410 5d. E. Confederation Park <10: 72000 3,440 1.600 400 140 410 50 10 10 <10 320 Grays Road 60 410 30 150 1)0 70 120 10 410 410 10 40 Greens Road 70 20 20 300 20 100 350 10 410 2,200 200 500 Cherry Beach 10 270 1,100 60 300 10 10 10 4/0. 160 200 . 10 Fruitland Road 40 10 20 10 410 410 700 130 40 >1000 160 50 10. McNeilly Road 30 70 10 10 <10 410 50 40 500 100 1,600 220 ll. Winona Road 250 240 100 >8000 78000 3,100 2800 100 600 1700 3,400 78000 12. Smiths Creek 1.100 350 10 >3000 2500 110 >6000 2800 75,000 100 1 510 3,700 0 -> 6:00 15:30-3 20.25 14 607 10 50 2'00 2 24:00 Daily Precipitation Truce 10.0 mm 12.7 mm 5.2 19.2 155 Average Wind Speed 19.7 suri 13.4 SSW 87 NE 18.6 SSW 9.3 5 138 E N and Direction 220 Maximum Wind Speed 120 556 IN NE 370 55% 26 LAL 19 1111 170 SE and Direction

July 1-7 WEEK OF: 7 STATION TC FC TC FC TC FC TC FC TC FC TC FC 70 70 Ship Canal 60 280 410 10 Killarney Avenue Concession Stand 160 40 40 20 160 20 Marine Dock 10 40 10 10 40 10 W. Confederation Park 410 10 10 410 140 140 5c. Change House 18 10 60 290 10 5d. E. Confederation Park 10 10 60 10 40 40 40 Grays Road 18 18 10 Greens Road 150 90 40 20 40 10 8. Cherry Beach 2400 10 20 50 50 410 Fruitland Road 40 170 410 60 10 10 10. McNeilly Road 50 10 410 40 40 30 11. Winona Road 70 (10 210 410 770 40 12. Smiths Creek 3/0 1700 310 700 3:00-7 10:30 c no Daily Precipitation 3.2 0.9 15.7 Average Wind Speed 16-9 Lu 17.5 WWW 12.3 NNW 18.0 serl 13 8 W 8-1 surl and Direction 16 30.0 NW Maximum Wind Speed 260 W 28.0 NNW 30.0 NNW 190 13.8 15.0 SW and Direction

r		WEEK	OF:	Ju	15 8	- 14		-					
			9	1	0		11	/	٧	1.	?	/	7
STATION		TC	FC	TC	FC	TC	FC	TC	FC '	TC	FC	TC	FC
1. Ship Canal		180	160	180	180	2,100	1700	40	O	760	630	210	2/0
2. Killarney Avenue						30	10					30	410
3. Concession Stand		20	L 10	130	60	80	₽0	350	130	10	410	280	130
4. Marine Dock		40	20	40	10	10	10	260	230	30	10	320	2/0
5. W. Confederation Park		50	5-0	40	20.	210	2 0	240	2/0	20	10	230	230
5c. Change House		250	/80	30	L10	70	50	150	80	20	10	300	3**
5d. E. Confederation Park	9	190	130	2ο;	20	60	40	20	70	10	10	240	240
6. Grays Road		30	/ 0	20	20	10	L 10	20	20	40	40	160	160
7. Greens Road		40	40	3 o	20	7 000	800	10	۷ (۵	1000	/40	160	160
8. Cherry Beach		40	30	40	Ž ō	ţc	10	10	110	10	< 10	210	150
9. Fruitland Road		10	410	30	10	رن	<10	40	Jε	10	< /c	150	150
10. McNeilly Road		/0	10	30	۷10	70	(10	70	20	210	80	40	3.0
ll. Winona Road		190	5-0	2,700	1700	3500	Poa	170	30			73,000	1600
12. Smiths Creek		320	180	210	טכ	110	50	400	2.80			490	2%
Daily Precipitation			20:10		> 18:10		-> 15 30						
Average Wind Speed and Direction	8.5° 5071		Ne		\$5€		W SW	9.1	W	9	ONE	92	SJW.
Maximum Wind Speed and Direction	15.0 3	17.0	,550-	26.0	5	₹ ₹.0	5	17.0) 55h	19	i Në	5 6	15 c

July 15 -21 WEEK OF: TC FC TC TC FC TC FC TC FC TC FC STATION FCShip Canal 2,300 Lion 120 3 Killarney Avenue Concession Stand 540 8 Marine Dock FC <10 W. Confederation Park 90 2,300 5c. Change House 3,300 2.500 5d. E. Confederation Park RC 1,500 1,300 Grays Road 7. Greens Road 1/0 Cherry Beach <10 Fruitland Road 10. McNeilly Road 950 : 11. Winona Road OK 1,700 70c 12. Smiths Creek 71.000 2,700 3,400 Daily Precipitation 11-3 9.9 WNW Average Wind Speed 14 6 Seel 8.3 NW 95 6 8.7 36 8.4 55W and Direction WNW 26.0 24.0 NNW 26.0 NE Maximum Wind Speed 5.0 MMW 140 5 110 SW 170 55W and Direction

W

July 22 - 28 WEEK OF: STATION TC FC TC FC TC FC TC FC TC FC TC FC Ship Canal 4;0 Killarney Avenue 0 (Concession Stand Marine Dock W. Confederation Park <10 5c. Change House 5d. E. Confederation Park 30: Grays Road > 8000 26,000 Greens Road L10 Cherry Beach Ito Fruitland Road #10 10. McNeilly Road 220 290 3,500 1,600 11. Winona Road 71000 75.000 12. Smiths Creek 78,000 76,000 >8.00 4,500 18.00 - 20:15 8.00 + 16.30 Daily Precipitation 20.9 2.2 Average Wind Speed 9.3 556 17:1 Sw 188 WNa 55 suit 20.8 SIL and Direction 129 svil 20.0 Maximum Wind Speed 17.0 556 700 50 77.0 Sw www 110 Na 30.0 300 5W and Direction

July 29 Aug 4 WEEK OF: STATION TC FC TC FC TC FC TC FC TC FC TC FC Ship Canal 420 8 < 10 Killarnev Avenue Concession Stand Marine Dock W. Confederation Park 8C /200 1,100 (10 5c. Change House 5d. E. Confederation Park Grays Road Greens Road Cherry Beach 1 300 L 300 Fruitland Road 10. McNeilly Road 2+0 1 11. Winona Road 78000 76,000 18,000 0.6. 12. Smiths Creek 72000 74.00 > 1 tota > 000 13:10 \$ 18:00 21:00 > 24:00 (.00 + 24 0) 0:00 - 12:20 Daily Precipitation 3.2 mm 8.0 mm 3.0 mm 23.2 mm Trace Average Wind Speed 11.2 Sw 15.3 ESW 11.9 ENE 17.8 W 13.750 11.4 S5W and Direction NW Maximum Wind Speed 190 NE 220 5500 10.0 Wsw 37.0 W 330 W50 20.0 5 and Direction ENE

WEEK OF: TC STATION TC FC FC TC FC TC FC TC FC TC FC Ship Canal 2. Killarney Avenue Concession Stand 2 (Marine Dock W. Confederation Park 2,400 2,200 5c. Change House 5d. E. Confederation Park 40: Grays Road Greens Road Cherry Beach Fruitland Road 10. McNeilly Road 1,600 1.600 11. Winona Road 5-60 12. Smiths Creek 78,000 76,000 18.50 120:0. 0-36:00 Daily Precipitation 0.4. 1-5 mm Truce Trace 13 2 SUNT Average Wind Speed 185 SW 93 Nic 13.7 W 15.5 NNE 20.7 New and Direction W 26.0 Maximum Wind Speed 28.3 NE 770 Sim 15.0 ENE 24.4 NNE 46.0 W and Direction

*		WEEK	OF:	Auc	12-	18							
,	12		3	Ž	4		15		16	1.	}	18	
STATION		TC	FC	TC	FC	TC	FC	TC	FC .	TC	FC	TC	FĆ
1. Ship Canal		70	<10	10	< 10	50	40	40	2 0	210	<10		•
2. Killarney Avenue		60	20	10	10	30	<10	120	10	<10	<10		
3. Concession Stand		30	70	30	20	30	10	60	30	110	90		
4. Marine Dock		440	jo _b	30	ļo	500	/// 0	170	90	10	10		
5. W. Confederation Park		90	90	26	Zo	200	190	30	30	20	20		
5c. Change House		80	90	60	40	110	70	40	40				
5d. E. Confederation Park		120	100	60	60	30	10	70	40	20	20		
6. Grays Road		140	40	3 c	30	Po	30	20	20	10	10		
7. Greens Road		120	120	20	20	80	60	50	20	20	20		
8. Cherry Beach		150	40	/00	30	70	30	50	50	60	10		
9. Fruitland Road		20	10	120	5-0	80	50	110	<i>j10</i>	40	10		
10. McNeilly Road		700	600	40	10	70	30	50	50	30	<10		
11. Winona Road		3700	2400	110	10	30	40	110	60	410	410		
12. Smiths Creek				80	10								-
Daily Precipitation		19.00	= 14.00 6 mm								72400		+ 12:00
Average Wind Speed and Direction	13 9 sv1		3 s'u	25.1	h'		4 nm Nicv	9.0) WWW		in'n'u		sur/
Maximum Wind Speed and Direction	24.0 ENE	37.0	Wsa	440	WNW	24.0	www	15-0	w	19.0	Su		S5(~

		WEEK	OF:	Aug	19-	25			•				
	19	2	0	-	21		22		23 .	2			25
STATION		TC	FC	TC	FC	TC	FC	TC	FC .	TC	FC	TC	FC
1. Ship Canal		140	10	410	<10			70	10	10	10	410	Ĺ/0
2. Killarney Avenue		80	210	L10	<10			100	40	10	10	10	10
3. Concession Stand		10	10	900	800			70	50	10	0</td <td>10</td> <td>10</td>	10	10
4. Marine Dock		10	10	10	10			210	180	20	20	10	210
5. W. Confederation Park		160	/50	30	20			230	/00	60	10	30	20
5c. Change House		50	40	80	80			330	/00	90	40	90	10
5d. E. Confederation Park	Parameter (NAC) and the control of t	30	30	410:	Z10			220	100	20	10	30	410
6. Grays Road		<10	L10	410	410			30	20			40	10
7. Greens Road		100	70	210	410			100	10	10	10	50	10
8. Cherry Beach		<10	410	410	<10			50	/0	<10	210	30	30
9. Fruitland Road		<10	410	10	410			10	<10	10	4/0	70	60
10. McNeilly Road		< 10	<10	10	/ V	and the state of t		80	/ D	10	10	2,500	2,000
11. Winona Road		10	/ C	10	410			50	ر" ی	410	0</td <td>60</td> <td>10</td>	60	10
12. Smiths Creek		400	400							210	< 10		
Daily Precipitation								Augustino de la Companya de la Compa	830 6mm				
Average Wind Speed and Direction	6.4 NE	7	3 50.1	97	NE	14.	NE.		8 SSW	17.1	L Sim	16.3	WSW.
Maximum Wind Speed and Direction	15-0	1	ENE	190	ENE	24	ENE	24	.o 55W	24	0 5 6	30.0	Wish

WEEK OF: Aug 26 - Sept 1

	26		27	2	F	ż	9		70		11		/
STATION		TC	FC	TC	FC	TC	FC	TC	FC	TC	FC	TC	FC
1. Ship Canal		70	70	<10	470	40	<10	20	Z 10	10	410	700	
2. Killarney Avenue		40	20	<10	410	80	30	410	410	410	410	150	O.G.
3. Concession Stand		50	10	10	10	10	<10	10	10	10	10	90	<10
4. Marine Dock		110	20	30	<10	įο	L10	10	10	60	40	200	200
5. W. Confederation Park		130	20	410	۷ / ٥	210	60	10	410	40	40	400	/e ø
5c. Change House		50	50	20	Z10	60	ĵo	20	20	410	410	60	0.6.
5d. E. Confederation Park		300	50	410	L10	220	20	10	۷/0	410	4/0	.]00	50
6. Grays Road		650	600	L10	<10	40	30	<i>(</i> 0	20	40	20	200	/90
7. Greens Road		130	(10	10	< 10	60	20	30	30	10	410	800	20
8. Cherry Beach		300	200	30	30	/0	410	10	10	40	40	200	/0
9. Fruitland Road		i60	<10.	20	20	50	10	30	30	20	20	120	<i>(i</i>
10. McNeilly Road		70	30	70	<10	1000	400	40	40	30	30	103	20
ll. Winona Road		20	210	40	410	[jee	400	20	20	20	10	500	300
12. Smiths Creek			>/400	3,400	4 %**					v		0.6.	0.6.
Daily Precipitation	12.4	0:00→ 2	6 45		22:00 6ma	The second second second	18.20						
Average Wind Speed and Direction	85 NE	7.5	TSSW		ENE		csω	17.7	- W.SW	6.3	2 hwn		,
Maximum Wind Speed and Direction	não NG	19	o Sih	130	NE	37.0	5W	30 0	\ W3W	19	ONE		

WEEK OF: TC FC FCSTATION FC TC FCTC FC TC FC Ship Canal Killarney Avenue f DO Concession Stand Marine Dock Ho W. Confederation Park Ha 5c. Change House 5d. E. Confederation Park Grays Road Greens Road Cherry Beach 5°C 9. Fruitland Road 10. McNeilly Road 3,000 11. Winona Road 12. Smiths Creek 6,000 Daily Precipitation Average Wind Speed and Direction Maximum Wind Speed and Direction

Appendix 3

Climatological Data (June, July, August, 1979)

Fisheries and Environment Canada Atmospheric Environment atmospherique

MONTHLY METEOROLOGICAL SUMMARY SOMMAIRE MÉTÉOROLOGIQUE MENSUEL

MONTH/MOIS

JULY/JULLET

19 79

AT/A

HAMILTON AIRFORT ONTARIO

-			-																	
LA	43° ° 10		LONG:	79°	56 W		ALTITUD		METRES MÈTRES							ME USED E UTILISÉ		e l'		
ž.		EMPERATUR EMPERATUR		DEGR	EE-DAYS ÉS-JOURS		UMIDITY ITÉ REL.			PRECIPITAT RÉCIPITATI						WIN			, i	2
DATE	MAXIMUM MAXIMALE	ت MINIMUM MINIMALE	MEAN MOYENNE	HEATING DE CHAUFFE	GROWING GROWING CROISSANCE		MINIMUM MINIMALE	THUNDERSTORM	B RAINFALL B PLUIE (HAUTEUR)	SNOWFALE 3 NEIGE (HAUTEUR)	TOTAL PRECIP.	3 PRÉCIP. TOTALE	SNOW ON GROUND NEIGE AUSUL		VITESSE MOYENNE	PREVAILING DIRECTION DIRECTION	MAXIMUM SPEED	S VITESSE MAXIMALE	3	SSS EFFECTIVE
1	18.1	15.5	15.9	1,1	11,		1 2	_	3.2	Cits	1	.2	Cm	-	15.7	3	8	Search conservation	6*	1.0
2 3 4 5	20.2 23.5 21.5 20.8	13.8 9.7 10.0 8.0	17.0 16.6 15.8 14.4	1.0 1.4 2.2 3.6	12, 11, 10, 9,	.6			0.9		0	.9		1	17.5 16.9 12.3 18.0	MNM	N W NN NN	W 2	8 1	5.0 14.2 13.6 13.4
6 7 8 9	24.0 25.6 26.7 25.5 24.5	8.7 10.3 13.9 15.1 17.8	16.4 18.0 20.3 20.8 21.2	1,3	11. 13. 15. 15.	.0			1.2 5.2	Angle and delight annual management of the control		.2		1	13.8 8.1 8.5 7.5 13.7	svrl svrl NE	SW S SS SS	1 1 W 1	5 1	14.7 14.2 13.7 3.9 3.9
11 12 13 14 15	27.5 30.1 30.1 30.0 31.0	15.7 18.6 17.6 20.9 19.2	21.6 24.4 23.9 25.5 25.1		16. 19. 18. 20. 20.	9			0.2		C	.2		The state of the state of	9.1 9.0 9.2	WSW W NE SSW WNW	SS'NE NE SW	V 1 1 1 2	9 6	7.0 10.5 13.1 8.4 9.8
16 17 18 19 20	31.0 23.0 26.0 27.2 27.9	17.5 16.7 13.0 11.2 13.7	24.3 19.9 19.5 19.2 21.3		19. 14. 14. 14.	9 5 2					Accepts garages were able to the confidence of t	er seemin out out out on the seeming of the			9.9 4.6 8.3 9.5 8.4	WNW SVTI NW - W SW	NN NE NN S	W 1	4659	13.1 6.1 11.2 13.9 13.9
21 22 23 24 25	29.1 29.9 30.5 30.2 29.7	13.3 15.2 16.5 19.2 21.3	21.2 22.6 23.5 24.7 25.5		16. 17. 18. 19. 20.	.6 .5 .7			20.9		20	1.9		-	8.4 11.5 9.3 17.1 20.8	SSW SSW SW	SSI WSI SSI SW SW	V 2	0 1	13.5 13.0 10.1 11.1 4.0
26 27 28 29 30	22.5 24.6 23.7 28.0 27.9	17.5 15.6 15.9 12.8 15.0	20.0 20.1 19.8 20.4 21.5	1	15. 15. 14. 15. 16.	.8			2.2		2.	1		1 1	18.8 5.5 12.9 6.6 1.2	svrl SSW NW	WIN NW SW EX	1 3	1 0 1*	2.5 7.6 2.9 13.7
31	26.0	21.2	23.6		18,	.6		1	8.0		8.			1	15.3		SSW		2	2.1
MEAN MOYENN	E 26.4	15.2	20.8	11.0	469.9	9		TOTAL 1	45.0	0.0	45.			11		PREVAILING SSW DOMINANTE	SW	37		10TAL 96.2
NORMAL		14.6	20.6	10.1	472.6	6	, , ,		71.9	0.0	71.	.9	ż							81.2
		DE	GREE-DAY	SUMMAR	Y - SOMM	AIRE DE DE	GRÉSJOUR	RS	ja ramanana.			URS AV	OTAL PAI EC PRÉCI TOTALES	PITATIO			IAYS WI	CHÛTE		
	LOW 18°C Sous de 18°C	THIS YEAR ANNÉE EN COURS	PREVIO YEAR ANNÉE PRÉCÈDE	NO NO	JAMAL PAMALE	ABOVE AU-DESSUS		THIS YEAR ANNÉE EN COURS	PREVIOUS YEAR ANNÉE PRÉCÉDENTE	NORMAL NORMALE	O.2 OR MORE	1.0 OR MORE	2.0 0R	10.0 08	50.0 OR MORE	OR	1.0 OR MORE	2.0 OR MORE	10.0 OR MORE	50.0 0R MORE
	FOR MONTH L DU MOIS	11.0	15.	3 10	0.1	TOTAL FOR		469.9	466.6	472.6	OU PLUS	OU PLUS	DU PLUS	OU PLUS	OU PLUS	GU PLUS	OU PLUS	OU PLUS	OU PLUS	OU PLUS
SIN	JMULATED CE JULY 1 UMULÉE LE 187 JUILLET	11.0	15.	3 10	0.1	ACCUMUL SINCE AP ACCUMU DEPUIS LE 19	RIL 1	1137.2	1136.3	1176.6	9	7	6	1	0	0	0	0	0	0

UUC 551.506.1 (713.53) * Indicates more than one occurrence.
** Sunshine recorder at Royal Botanical Cardens. Tr= trace

Subscription Price: \$1.00 monthly: \$10.00 per calendar year (January to December) Prix d'abonnement: mensuel \$1.00; annuel \$10.00 (janvier à décembre)

Atmospheric

Environnement

MONTHLY METEOROLOGICAL SUMMARY SOMMAIRE METEOROLOGIQUE MENSUEL

MONTH/MOIS

AUGUST/AOUT

SEP 1 4 1979

19 79

AT/A

					P	T/À			STO	71 1. A	CF	REEL	(
LAT:	43 °	10 'N	LONG:	79 •	56 W		LEVATION ALTITUDE		METRE METRE				- 31	ANDA		ME USED			tern	
		TEMPERATU TEMPERATU			EE-DAYS SJOURS	REL. HU HUMIDIT			P	PRECIPITAT RECIPITAT	TION IONS					WIN				y
DATE	MAXIMUM	MINIMUM	MEAN	HEATING DE CHAUFFE	GROWING DE CROISSANCE	MAXIMUM MAXIMALE	MINIMUM	THUNDERSTORM ORAGE	RAINFALL PLUIE (HAUTEUR)	SNOWFALL NEIGE (HAUTEUR)	TOTAL PRECIP	PRÉCIP. TOTALE	SNOW ON GROUND NEIGE AU SOL	AVERAGE SPEEN	VITESSE MOYENNE	PREVAILING DIRECTION DIRECTION	MAXIMUM SPEED	AND DIRECTION VITESSE MAXIMALE	ET DIRECTION	BRIGHT SUNSHINE S * INSOLATION EFFECTIVE
	°c	°c	*c	BASE 18.0			%		mm	cm	-	nm	cm	-	m/h		_	km/h	-	HEURES
1 2 3 4 5	21.5 23.4 26.5 29.0 28.1	19.6 16.6 15.0 17.4 19.7	20.6 20.0 20.8 23.2 23.9		15.0 15.0 15.0 18.0 18.0	0		1	3.0 23.2 Tr		23	3.0 3.2 Tr		17	1.9 7.8 3.7 1.4	ene W SW SSW W	WS WS WS	W W	19* 37 33 20* 26	0.0 6.2 10.4 12.3 11.8
6 7 8 9	23.6 28.0 25.6 23.7 25.0	15.5 10.9 15.0 10.8 16.2	19.6 19.5 20.3 17.3 20.6	0.7	14.6 14.5 15.3 12.3 15.6	3		1	1.5 Tr		T	•5 r		18	.7	svrl SW W NW NW	NE SW W EN	E 1	37 28	12.0 4.0 1.8 10.0 6.6
11 12 13 14 15	19.5 20.6 22.6 19.8 17.0	14.1 11.0 9.2 9.6 9.6	16.8 15.8 15.9 14.7 13.3	1.2 2.2 2.1 3.3 4.7	11.8 10.8 10.9 9.7 8.3	3			2.6			.6	,	15 13 17 25 16	0,0	NNE svrl SW W NW	NN EN WS! WN	E 2 W 3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.8 12.8 7.7 8.6 4.6
16 17 18 19 20	21.6 19.5 19.9 24.8 25.3	7.2 8.9 12.9 14.6 13.5	14.4 14.2 16.4 19.7	3.6 3.8 1,6	9.4 9.2 11.4 14.7	;			2.0 0.8	To the state of th		.0 .8		9 11 6	.0 .4 .7 .4	WNW WNW svrl NE svrl	W SW SS' N EN	W 1	9	10.7 2.3 0.0 11.1 8.6
21 22 23 24 25	26.7 24.1 24.7 25.0 23.0	14.2 15.2 18.4 20.2 12.8	20.5 19.7 21.6 22.6 17.9	0.1	15.5 14.7 16.6 17.6			1	4.6 Tr		4 T	.6 r		9	.7 .7 .8	NE NE SSW SSW WSW	EN EN SS SW WS	E 2 W 2		12.5 10.6 0.2 4.4 7.2
26 27 28 29 30	21.5 22.8 22.7 24.0 27.6	14.7 14.2 16.2 18.2 16.0	18.1 18.5 19.5 21.1 21.8		13.5 13.5 14.5 16.1	5		1	12.4 2.0 10.6 1.2	es .	10	.4 .0 .6 .2		7 8 15	.5 .6 .0	ne SSW Ene SW WSW	NE SS NE SW	W 1	15 19 13* 37	3.6 9.0 1.8 2.3
31	24.5	11.0	17.8	0.2	12.8	3		TOTAL	TOTAL	TOTAL	TOT			6	.2	NNW	NE	AXIMUM		12.7
MEAN IOYENNE	23.6	14.1	18.9	23.5	430.5	5		4	64.7	0.0	182	.7	. —	13	-3	W	W	46*	- 1	221.1
NORMAL ORMALE	26.0	13.5	19.8	12.6	470.	9			71.1	0.0	71.	.1							, 2	262.6
		0	EGREE-DA	Y SUMMARY	- SOMN	IAIRE DE DEGI					URS AV	TOTAL PR PEC PRÉC TOTALES	PITATI			DAYS W RS AVE	C CHÚT			
	OW 18°C	THIS YEAR ANNÉE EN COURS	ANN	PREVIOUS YEAR NORMAL ABOVE 5°C AMMÉE PRÉCÉDENTE AU-DESSUS DE 5°C					PREVIOUS VEAR ANNÉE PRÉCÉDENTE	NORMAL NORMALE	0.2 OR MORE	1.Q OR MORE	2.0 08 MORE	10.0 OR MORE	50.0 08 MORI	OR	1.0 OR MORE	2.0 OR MORE	10.0	OR
	OR MONTH DU MOIS	2,5	2.	2.3 12.6 TOTAL FOR MONTH TOTAL DU MOIS 4				430.5	474.1	470.9	OU PLUS	OU PLUS	OU PLUS	OU PLUS	OU PLUS	OU	OU PLUS	OU PLUS	OU PLUS	QU.
SINC	ULATED F JULY 1 WULEE	34.5	17.6	22	.7	ACCUMULA SINCE APRI ACCUMUL		567.7	1610.4	1647.5	13	10	8	3 0 0 0 0 0			o			

UDC 551.508.1(713.53) * Indicates more than one occurrence.
** Sunshine recorder at Royal Botanical Gardens. Tr = trace.

DEPUIS LE 19 AVRIL

MONTHLY METEOROLOGICAL SUMMARY SOMMAIRE MÉTÉOROLOGIQUE MENSUEL

MONTH/MOIS

SEPTEMBER/SEPTEMBRE OUT 1 7 1979

AT/A

HAMILTON AIRPORT ONTARID

							LEVATIO	אר:	METRES	I DAI			1 - ET	YINT'S S	IO TO L	Œ jicen.	F	ster	'n	
LAT:	,	10N	LONG:		6 W		ALTITUO		MÈTRES	(NMM)		roi	HEUR	EVOL	HAT !	USED:		e 1'E		
	E	EMPERATUI EMPERATUI	100		E-DAYS SAUOURS	REL. HU HUMIDI				RECIPITAT RÉCIPITATI			_			WINE			¥	Į.
DATE	MAXIMUM MAXIMALE	MINIMUM	MEAN	HEATING DE CHAUFFE	GROWING DE CROISSANCE	MAXIMUM	MINIMUM	THUNDERSTORM	RAINFALL PLUIE (HAUTEUR)	SNOWFALL NEIGE (HAUTEUR)	TOTAL PRECIP.	PRÉCIP. TOTALE	SNOW ON GROUND NEIGE AU SOL	l	. 1	PREVAILING DIRECTION DIRECTION DOMINANTE	MAXIMUM SPEED	VITESSE MAXIMALE ET DIRECTION	H	S * INSOLATION
1	30.1	13.8	22.0	BASE 18.0°C	17.0		%	-	mm	cm	<u> </u>	<u>m</u>	cm		n/h	s	S	km/h	H	8.9
2 3 4 5	24.1 25.7 23.0 24.8	20.2 16.5 13.3 14.2	22.2 21.1 18.2 19.5		17.2 16.1 13.2 14.5	2			0.4		C	0-4		20	.9 .2 .8	SW W NE NE	SW W NE NE	35 17 19	7 6	0.6 9.3 9.4 8.1
6 7 8 9	28.2 18.0 15.3 18.6 23.0	15.0 11.1 7.5 5.7 9.5	21.6 14.6 11.4 12.2 16.3	3.4 6.6 5.8 1.7	16.6 9.6 6.4 7.2 11.3			1	3.0			.0 .4		16 12 12 10 20	.1	WNW NNW N SSW SW	W NNI NNI SSV SW	22	* 10	7.4 1.2 0.5 9.0 3.6
11 12 13 14 15	18.2 23.3 25.1 19.0 17.6	7.6 9.5 15.2 9.0 6.2	12.9 16.4 20.2 14.0 11.9	5.1 1.6 4.0 6.1	7.9 11.4 15.2 9.0 6.9			15	8.4 38.8		8, 38,	4 8		12, 11, 18, 17,	6 0 3	ne Ne S Wnw W	NE NE SSW NW W	26 19 33 35 26	* 10 2	1.0 0.6 2.3 3.6
16 17 18 19 20	21.6 23.0 24.2 15.0 19.3	8.4 9.5 13.5 3.6 2.1	15.0 16.3 18.9 9.3 10.7	3.0 1.7 8.7 7.3	10.0 11.3 13.9 4.3 5.7			1	4.4		4.	.4		11. 16. 21. 15.	9 1	em Kum em Pem em	WEW WEW WYN BW	30 32	10 7 10	3.8
21 22 23 24 25	20.0 15.6 15.0 19.0 22.9	9.2 6.6 4.7 4.7 8.2	14.6 11.1 9.9 11.9 15.6	3.4 6.9 8.1 6.1 2.4	9.6 6.1 4.9 6.9 10.6		c						s	14. 17. 15. 9.	8 8	n Ene S	SW NE ENE S WSW	19	9 9	.0
26 27 28 29 30	23.0 24.0 17.9 21.4 22.9	8.5 8.2 13.5 11.6 10.5	15.8 16.1 15.7 16.5 16.7	2.2 1.9 2.3 1.5 1.3	10.8 11.1 10.7 11.5 11.7				3.0		3,	.0		8. 10. 8. 3. 9.	8 8	d svrl svrl E SSW	W SSW SSW NE SSW	19 11	* 9 * 3	.9).3).0 3.2
VEAN	21.3	9.9	15.6	TOTAL	TOTAL	n/s	n/a	TOTAL	TOTAL	TOTAL	101		*		l.	PREVAILING	SW	XIMUM 44		4.6
MOYENNE				91.1	318.6	3.0	100	2	59.4	0.0	59.	4		13.		DOMMANTE	777	12.55	1	
NORMAL	21.7	10.2	15.9	87.1	336.	4	31.0		73.4	0.0	73.		OTAL PR	1_	TION				17	
		DE	GREE-DAY	SUMMARY	- SOMM	AIRE DE DEG	RĖSJOU	RS	· · · · · · · · · · · · · · · · · · ·			URS AV	EC PRÉCI	PITATIO				CHOTE		
	DW 18°C	THIS YEAR ANNÉE EN COURS	PREVIC YEAI ANNÉ PRÉCÉDI	R NOR	MALE	ABOVE !	L. Haven	THIS YEAR ANNÉE EN COURS	PREVIOUS YEAR ANNÉE PRÉCÉDENTE	NORMAL	O.2 OR MORE	1.0 CR MORE	2.0 QR MORE	10.0 OR MORE	50.0 OR MORE	OR	1.0 OR MORE	2.0 OR MORE	10.0 OR MORE	50.0 OR MORE
	OR MONTH DU MOIS	91.1	90	.8 87	7.1	TOTAL FOR I		318.6	317.3	336.4	PLUS	PLUS	PLUS	OU PLUS	OU PLUS	PLUS 1	OU PLUS	OU PLUS	PLUS	PLUS
SINC	AULATED E JULY 1 MULÉE 10° JUILLET	125.6	108	.4 109	8.6	ACCUMUL SINCE APP ACCUMUI DEPUIS LE 1**	IIL 1 LÉE	1886.3	1927.7	1983.9	7	6	5	1	0	0	0	0	0	0

UDC 551 506.1 (713.53) * Indicates more than one occurrence.

505.1(//3.53) * Indicates more than one occurrence. Subscription Price: \$1.00 monthly; \$10.00 per calendar year (January to December)

** Sunshine recorder at Royal Botanical Gardens. Tr = trace. Prix d'abonnement: managed \$1.00; annuel \$10.00 (janvier à décembre)

Monthly Weather Summary Hamilton Ontario

For the month of JUNE 1979 at the ROYAL BOTANICAL GARDENS Headquarters - Plains Road West, BURLINGTON, ONTARIO.

		Temp	eratur	3	Deg. Dav		Pre	ecipita	tion		Wir	nd km/	h .	Sunsh	ine
(Date	Maximum	Minimum C		Heating Below 18°C	Growing Over 5 ^o C	Rain	Snow	Total Precipitation	Rainfall in 10 min.	Average Speed	Prevailing Direction	Maximum speed and direction	Actual	Total possible
		°c	°c	°c			mn	cm	mm	ma				. hrs	hr
		20.2	12.0	16.2	1.8	11.2					9.5	NE	SE19	13.3	15.
	2	26.2	14.6	20.4		15.4					7.5	NW	NW13	10.0	15.
	3	27.6	12.9	20.3		15.3			,		11.7	SW	SW21	12.8	15.
	4	30.4	13.9	22.2		17.2	1.6		1.6	1.4	11.5	SW	SW19	12.1	15.
-	5	23.0	16.2	19.6 14.3	3.7	14.6	1.2		1.2	0.6	10.0	NW	NW19	7.4	15:
(1	20.1	11.5	15.8	2.2	9.3	3.6		2.6	1 2	13.4	NE	F19	11.5	15.
1	1	27.7	16.0	21.9	۲.۲		3.0		3.6	1.3	5.5	NE	NE13	7.2	15.
	.3		The second second second			16.9					9.1	SW	SW18	5.5	15.
	9	25.3 31.9	18.2	21.8		16.8	7.0		3 2		7.3	NE:	_E]]_	7_6_	15.
	11	18.9	12.5	24.7 15.7	2.2	19.7	1.0		1.0	1.0	14.5	SW	SW27	6.9	15 15.
	12	19.4	6.8		2.3 4.9	10.7 8.1					18.5 14.5	NW NW	NW27 NW21		
	13	24.4	8.3	16.4	1.6									8.8	15.
	٦4_	27.7	9.0		1.0	11.4 13.4					11.1	NW SW	NW18 SW18	13.0	15. 15.
(. ' <u>+</u>	32.7	19.5			21.1	******					SW	SW24-	12.4	15.
	16	33.7	19.7	26.7	-1	21.7					16.0 12.9	SW	SW21	11.9	15.
	17	32.1	17.6			19.9					13.7	SW	SW24	11.9	15.
	18	22.0	13.4	17 7	0.3	12.7					9.0	NE	NE16	7.7	15.
	19 -	23.7	10.6	17.2	0.8	12.2					9.1	NE	NET4	14.3	15.
	20	23.5	11.0	17.8	0.2	12.8	·		1	V	9.2	NE	NE18	14.5	15.
	21	30.2	16.0		0.2		TR		TR	, or - 125	12.6	·SW	SW18	4.9	15.
	22	26.0	_	20.5		15.5	118				15.9	NW ·	16W34	4.1	15.
	23	14.1	9.7	11.9	6.1	. 6.9					16.9	NW	NW21	0.2	15.
	24	22.4	7.1	14.8	3.2	9.8	-				10.7	NW	N 16	12.9	15.
	25	21.5	9.1	15.3	2.7	10.3					8.6	NE	H 14	14.4	15.
	26	26.8	. 7.2	17.0	1.0	12.0			,		8.7	SW	SW18	14.1	15.
ı	27	27.3	15.9			16.6	17.4		17.4	3.4	12.7	SW	SW21	4.5	15.
ı	28	23.6	15.4			14.5			1.8	1.0	7.3	NE	NW16		15.
	;29	19.5	13.0		1.7	· 11.3	4.2		4.2	1.0.	7.0	NE	SE13	0.0	15.
	30	19.4	14.0		1.3	11.7	7.6		7.6	3.4	7.3	NE	NE13	0.0	15.
, .															
,	cal	738.7	394.6	-	33.8	417.8	38.4		38.4		-	SW	-	273.6	458.
1	. an		13.2		-	-	-	-	-	_	11.1	-	-	-	_
6	Vorm		13.1		37.4	413.3	65.0	NIL	65.0		11.4	-		256.3	
•	Obcor	ration	e are	takon	at 7.	00	and 7	·00 n n						0	7

Observations are taken at 7:00 a.m. and 7:00 p.m. E.S.T. under contract to Canada Environment. Normals for temperature, precipitation and means are based on the period 1941 to 1970.

Latitude N. 43° 17'
Longitude W. 79° 53'
Elevation 352 ft.

Monthly Weather Summary Hamilton Ontario

For the month of JULY 19 79 at the ROYAL BOTANICAL GARDENS Headquarters - Plains Road West, BURLINGTON, ONTARIO.

		Temperature Degree Precipitation Wind km/h Sunshine													
		Temp	eratur	е	Deg. Da		Pre	cipita	tion		Wir	nd km/	h	Sunsh	ine
) +e	}	Maximin	Minimum () Mean	Heating Below 18 ^C C	Growing Over 5°C	Rain	Snow	Total Precipitation	Rainfall in 10 min.	Average Speed	Prevailing Direction	Maximum speed and direction	Actual	Total, possible
		°c	°c	°c			nm	cm	ma	mm		·		. hrs	hrs
		20.8	16.5	18.7		13.7	1.2		1.2	0.4	8.5	SW	\$16	1.0	15.3
2		23.4	17.2	20.3		15.3					12.7	NW	NW22	5.0	-15.3
3		25.3	12.2	18.8		13.8		2	•		11.9	NW	NW16	14.2	15.3
4		23.6	11.5	17.5.	0.5	12.6					9.8	NW	NW22	13.6	15.2
5		22.6	8.9	15.8	2.2	10.8					12.9	NW	N19	13.4	15.2
6		26.5	10.9	18.7		13.7					9.8	NW	NW16	14.7.	15.2
7		28.4	11.0	19.7		14.7					8.1	SW	SW13	14.2	15.2
		30.1	14.5	22.3		17.3					6.1	SW	SWIO	13.7	15.2
Γ.		26.0	15.1	20.5		15.5	0.8		0.8	0.6	5.8	NE	NE13	3.9	15.2
10		27.4	18.8	23.1		18.1	2.2		2.2	1.6	8.7	SW	SW16	3.9	15.2
11		28.5	17.1	22:8		17.8					6.7	SW	SW16	7.0	15.1
12		32.4	20.1	26.3		21.3					7.0	SW	WIO	10.5	15.1
13		29.4	17.8	23.6		18.6	TR		TR		6.9	NE	E14	13.1	15.1
14		32.9	21.0	26.9		21.9	TR		TR		5.2	SW	SW8	8.4	15.1
15		33.6	22.9	28.3		23.3					8.1	SW	NW14	9.8	15.0
16		33.0	20.1	26.6		21.6	V				7.9	NE	NE16	13.1	15.0
17		24.4	17.5	21.0		16.0					10.7	NE	NE18	6.1	15.0
18		26.3	15.1	20.7		15.7					8.0	NE	SE14	11.2	15.0
19		30.6	12.5	21.6		16.6					7.1	NW	WIO	13.9	15.0
20		30.4	16.1	23.3		18.3					8.5	SW	NE11	13.9	14.9
21		31.8	16.1	24.0		19.0					9.0	SW	E18	13.5	14.9
22		33.1	18.1	25.6		20.6		4			9.2	SW .	SW14	13.0	14.9
23		29.0	18.6	23.8		18.8					8.5	NE	NE14	10.1	14.8
24		33.5	21.0	27.3		22.3	TR		TR		11.6	SW	SW21	11.1	14.8
25 26		32.1	21.4	26.8		21.8	15.2		15.2		12.4	SW	SW21	4.0	14.8
26		26.2	20.2	23.2		18.2			1.		13.2	NW	NW21	2.5	14.7
27		26.5	17.4	22.0		17.0			0.2	3.4	4.7	SW	SW8	7.6	14.7
28	3		17.9	22.6		17.6	0.6		0.6	0.6	9.1	SW	SW19	2.9	_14.7
29		27.3	15.5	21.4		16.4					8.5	NE	NE13		14.6
30		28.5	14.9	21.7		16.7	8.2		8.2		6.6	NE	SW11	11.1	14.6
31		29.6	20.2	24.9		19.9			4.0	1.2	8.3	SW	SW16	2.1	14.6
ota			518.1		2.7	544.91	32.4	,	32.4	_		SW	_	296.2	464.7
19			16.7	22.6		-	-		-	-	8.8	-	-		-
lorn			15.9		6.4	513.6		nil	71.6	-	10.6			287.1	-
				taken	at 7:	00 a.m	. and 7	:00 p.n	1.				•	420	v namenar

Observations are taken at 7:00 a.m. and 7:00 p.m. E.S.T. under contract to Canada Environment. Normals for temperature, precipitation and means are based on the period 1941 to 1970.

Latitude N. 43^O 17' Longitude W. 79^O 53' Elevation 352 ft.

Monthly Weather Summary Hamilton Ontario

For the month of August 1979 at the ROYAL BOTANICAL GARDENS Headquarters - Plains Road West, BURLINGTON, ONTARIO.

	Temp	eratur	2	Degr Dav		Pre	ecipita	tion		Wir	d km		Sunsh	ine
Dațe	O Maximm	o Minimum	റ ⁰ Mean	Heating Below 18 C	Growing Over 5°C	g Rain	Mous 5	Frecipitation	Rainfall g in 10 min.	Average Speed	Prevailing Direction	Maximum speed and direction	g Actual	Total g possible
1	24.2	21.0	22.6		17.6	23.2		23.2	7.0	8.3	NE	NE13	0.0	14.5
2	27.5	20.5	24.0		19.0				7.0	12.9	SW	SV:26	6.2	14.5
3	30.1	18.5	24.3		19.3					9.8	SW	SW21	10:4	14.4
4	31.8	19.1	25.5		20.5					8.9	SW	SW14	12.3	14.4
5	31.1	21.0	26.1		21.1	2.8		2.8	2.8		SW	SW16	11.8	14.4
6	23.8	19.6	21.7		16.7					9.7	NE	NF18	12.0	14.3
1	29.3	12.8	21.1		16.1	0.4		0.4	0.4		SW	SW26	4.0	14.3
(27.8	16.4	22.1		17.1					10.4	SW	SW16	1.8	14.3
1	21.1	12.8	17.0	1.0	12.0	4.6		4.6	4.2	9.2	NE	NE18	10.0	14.2
10	26.2	17.3	21.8		16.8	0.6		0.6	0.6	12.0	NW	NW27	6.6	14.2.
11	19.2	15.6	17.4	0.6	12.4					9.9	NE	NIA	2.8	14.1
12	19.9	12.2	16.1	1.9	11.1					9.8	NE	NE21	12.8	14.1
13	25.0	9.4	17.2	0.8	12.2	1.6		1.6	0.5		SW	SW26	7.7	14.0
14	21.2	14.0	17.6	0.4	12.6	TR		TR		18.7	NW	NW34	8.6	14.0
15	18.9	11.2	15.1	2.9	10.1					14.5	NW	NW22	4.6	14.0
16	20.3	8.7	14.5	3.5	9.5					7.9	NE	NE16	10.7	13.9
17	21.9	10.5	16.2	1.8	11.2	2.6 0.2		2.6	0.6	6.7	SW	SW11	2.3	13.9
18	21.3	13.9	17.6	0.4	12.6	0.2		0.2		4.1	SW	SW8	0.0	13.8
19	22.9	15.0	18.9		13.9					8.1	NE	NE14	11.1	13.8
20	24.6	12.9	19.0		14.0					7.6	NE_	NE10	8.6	13.7
21	25.6	12.8	19.2		14.2					5.6	NE	E10	12.5	13.7
22	21.0	14.5	17.8	0.2	12.8	2.6		2.6	0.8	9.2	NE_	E19	10.6	13.6
23	26.2	16.9	21.6		16.6	6.4		6.4	1.2	6.5	SW	SW13	0.2	13.6
24	27.1	21.4	24.3		19.3	0.4		0.4	0.2		SW	SW18	4.4	13.5
25	24.2	14.5	19.4		14.4					11.0	SW	SW16	7.2	13.5
26	20.0	14.5	17.3	0.7	12.3	11.2		11.2	1.4	6.8	NE .	NE14	3.6	13.5
27	24.2	15.2	19.7		14.7	0.2		0.2	0.1	5.6	SW	Svr11	9.0	13.4
28	21.1	16.0			13.6	4.0		4.0	1.0		NE	NE14		13.4
29	26.2	18.6	22.4		17.4	1.8		1.8	0.8		SW	SW24		13.3
30 30	29.5	19.5	24.5		19.5					13,9	SW	W21	12.5	13.3
. 4	26.6	13.1	19.9		14.9					8.1	NE_	NE14		13.3
	759.8			14.2	465.5	62.6	0	62_6			SM		221.1	432.1
<u></u>	24.5	15.5	20.0		406 5			-		9.6			202.0	_=_
orma i j	26.2	15.2		10.9	486.5	85.9	0	85.9	-	10.1			262.0	

Observations are taken at 8:00 a.m. and 7:00 p.m. E.S.T. under contract to Canada Environment. Normals for temperature, precipitation and means are based on the period 1941 to 1970.

Latitude N. 43° 17' Longitude W. 79° 53' Elevation 352 ft. CLIMATE SUMMARY FOR HAMILTON MUNICIPAL LAB

ONTARIO REGION ID : 3570B AES HEADQUARTERS ID : 6153290

	10.10	****	****	*****	******	*********	***	****	* * * *
DAY	Ж	TENF	PERATU	RE *		TOTAL.	* T	Z H * SN	* WO
	364	MAX	HIH	MEAN *	RAIN	SHOW PCP	* H	R A + GH	D *
	* *	******	***	*****	******	****	*******	****	渐准物准
1	*	18.0	10.0	14.0 *			·k	aje	非
2	*	25.0	14.5	19.8 *			*	*	康
3	冰	27.0	14.0	20.5 *			串	20c	38
4	車	29.0	16.0	22.5 *	. 2	. 2	* X	*	增
5	*	23.5	12.0	17.8 *	. 8	. 8	車	賴	牵
6	*	15.0	11.5	13.3 *			*	304	*
7	渖	21.5	11.0	16.3 *	. 6	. 6	*	2§F	暭
8	эķ	27.5	14.5	21.0 *			3/4.	7\$	*
9	非	23.0	17.5	20.3 *			車	1/4	3\$4
10	2/8	31.5	16.5	24.0 *	. 4	. 4	堆	zğe	埠
11	*	18.0	13.0	15.5 *			Tật .	难	*
12	aje	18.0	9.0	13.5 *	Τ .	T	*	*	3fg
13	堆	23.0	10.5	16.8 *			庫	*	本
14	市	26.0	11.5	18.8 *			*	zljk	*
15	車	31.0	19.5	25.3 *			車	*	净
16	冰	31.0	21.5	26.3 *			*	*	車
17	*	31.0	19.0	25.0 *			*	20t	率
18	*	21.0	13.5	17.3 *			*	201	*
19	冰	21.0	14.5	17.8 *			聯	284	本
20	ъķ	23.0	13.0	18.0 *	T	T	*	冰	妆
21	*	28.0	15.5	21.8 *	3	. 3	*	*	*
22	*	25.0	15.0	20.0 *	T	Ţ	*	*	*
23	*	14.5	10.5	12.5 *			車	zļa	**
24	20/2	19.5	10.0	14.8 *			*	**	361
25	本	20.0	11.0	15.5 *			*	*	*
26	Me	25.0	9.5	17.3 *			*	*	*
27	堆	26.0	16.5	21.3 *	27.6	27.6	車	車	*
28	妆	22.0	15.5	18.8 *		0	*	冰	*
29	冰	14.0	12.5	13.3 *	4.7	4.7		*	市
30	神	17.5	13.0	15.3 *	7.3	7.3	* X	4	* M
	4. 4.		بقديدة بقديد				and the state of	the side of the side of the side of	all the sky alle

TOTAL 695.5 411.5 * 41.9 0.0 41.9 * 2 0 0 * MEAN 23.2 13.7 18.5

ONTHLY MAXIMUM TEMPERATURE WAS 31.5 ON DAY 10 ONTHLY MINIMUM TEMPERATURE WAS 9.0 ON DAY 12 IGHEST RAINFALL WAS 27.6 ON DAY 27

IST OF CODES USED IS AVAILABLE ON REQUEST

RES HEADQUARTERS ID : 6153230

	* * *	****	*****	*******	******	* * * * * * * * * * * * *	*******	* * * * *
DAY	*	TEM	PERATU	RE *	7.0	TAL *	7 Z H * S	HOW *
	.At	MAX	MIH	MEAH *	-	HOU POP +		ND *
	***	*****	*****	****	******	*****	********	****
1	妆	20.5	14.0	17.3 *	1.0	1.0 *	Mg .	*
2	本	22.5	16.0	13.3 *		*	201	*
3	alje	25.5	14.0	19.8 *		*	44	**
4	*	22.5	14.0	13.3 *		*	*	*
5	神	21.0	12.0	16.5 *		*	3 k	76.
6	nk:	25.0	13.5	19.3 *		*	妆	381
7	率	27.5	13.5	20.5 *		*	2/4	*
8	*	26.0	16.0	21.0 #		*	*	*
9	*	22.0	16.0	19.0 *	. 3	.8 *	7ÅL	本
15	ajar	26.0	19.0	22.5 *	2.0	2.0 *	*	*
11	*	28.0	18.0	23.0 *		9	n)c	本
12	ajc	29.0	20.0	24.5 *		*	**	*
13	3/s	28.0	21.0	21.5 *		*	*	*
14	*	32.0	22.0	27.0 *			*	*
15	*	33.0	22.5	27.8 *		*	*	1ge
18	冰	31.0	22.0	26.5 *		*	*	妆
17	344	23.0	18.5	20.8 *		*	7/s	*
18	*	25.0	17.5	21.3 *		*	*	*
19	*	27.5	16.0	21.8 *		*	*	aju.
20	*	28.5	18.0	23.3 *		*	*	:4:
21	*	29.0	17.0	23.0 *		. *	**	- *
22	180	32.5	13.0	25.8 *		*	*	冰
23	*	29.0	20.5	21.8 *		*	*	*
24	χķ	31.5	21.5	26.5 *	. 2	.2 *	**	*
25	*	31.0	23.5	27.3 *	8.6	3.6 *	X *	*
26	nje	24.5	22.0	23.3 *		*	*	坡
27	*	24.0	18.5	21.3 *		*	**	*
23	Apr.	26.0	19.0	22.5 *	. 5	.5 *	坡	本
29	3 j t	27.0	17.0	22.0 *		*	*	*
30	эķt	29.0	18.0	23.5 *	1.1	1.4 *	*	**
31	sptr	28.5	21.5	25.0 *	3.7	3.7 *	X *	h *
	***	*****	****	******	* * * * * * * *	*******	安徽华华华市安全市	***

TOTAL 835.5 561.0 * 21.2 0.0 21.2 * 2 0 0 * MEAN 27.0 18.1 22.5

MONTHLY MAXIMUM TEMPERATURE WAS 33.0 OH DAY 15 NONTHLY MINIMUM TEMPERATURE WAS 12.0 OH DAY 5 HIGHEST RAINFALL WAS 8.6 04 DAY 25

LIST OF CODES USED IS AVAILABLE ON REQUEST

DHY * TEMPERATURE * TOTAL FIRSH # 3.60 * # BHX MIN MEAN + CAIM DOOD TOP OF A # 650 * **有其中教徒 电影探光器 医乳腺 医生物 电电路 医克洛氏试验检验检检验 医人名 医多色色 医自由性 经现代证据 医电影 医电影 医电影 医电影** 22.5 20 0 21.3 k 1 * 25.2 25 0 h 2 * 26.0 20.0 23.0 * T 24.0 * 3 * 29.0 19.0 4 : 31.5 20.5 28.0 * 5 × 30.5 22.0 26.3 * . 3 . 6 6 * 25.0 19.5 22.3 * 7 * 30.0 15.5 22.8 * T 13.5 23.3 * 3 * 23.0 20.0 * পূ 👍 25.0 15.0 T T 10 * 27.0 17.0 22.0 * 11 * 19.0 15.0 17.0 * 19.5 13.0 16.3 * 12 * 25.5 11.5 18.5 * 13 * 1.1 1.1 * 21 5 15.0 13.3 * 7.4 4 : 5 19.5 12.5 15.5 * * . 11.5 11.0 16.3 * 1 2 % 23.4 12.0 17.5 * 17 * 1.3 1.3 15 * 21.0 14.5 17.8 * T T 4 15.5 19.5 * 19 * 23.5 * 13 4 15.0 19.0 * 14.0 15.0 19.5 * _ _ _ 22 * 20.5 18.5 18.5 * 9 0 3 . 9 27 * 26 5 17.0 21.8 * 3.3 * 27 ♦ 24.5 1 24 th 22.0 . . 15.7 15.0 20.5 * 2 / 14.5 13.0 * 13.2 13.2 * . 16.0 20.0 * 1.3 1.8 * 24.0 23 * 17.5 19.3 * 4 . 4 4.4 + 21.0 22.3 * . 3 25.5 . 8 29 × 19.0 25.3 + 200 20 5 30.0 21.0 15.0 13.0 +

TOTAL 755.0 512.5 * 61.7 0.0 61.7 0.0 0 * NEAN 24.4 16.5 20.4

MINTHLY MAXIMUM TEMPERATURE WAS 31 5 ON DAY 4 HOWTHLY MINIMUM TEMPERATURE WAS 11.0 ON DAY 16 MILHEST PAINFALL WAS 25.2 ON DAY 1

LIST OF CODES USED IS AVAILABLE ON REQUEST

Appendix 4

MOE Bacterial Data

- (a) Sources and Inputs(b) Lake Ontario Nearshore

TABLE 2.1 Bacterial Populations in Watercourses draining to Lake Ontario in the Study Area

	Fecal Coliform per 100 ml		Strep	Fecal Streptococci per 100 ml		Heterotrophic Bacteria per 1 ml		Pseudomonas aeruginosa per 100 ml		<u>Candida</u> <u>albicans</u> per litre	
Station	$\#^1$										
	Dry ²	Wet	Dry	Wet	Dry	Wet	Dry	Wet		Dry	Wet
2	85	132	78	272	325,000	840,000	3	17		2	7.
4	13	14	26	108	116,000	264,000	3	4		03	7
6	397	2,470	289	4,860	630,000	1,640,000				43	20
7	27	159	240	1,660	178,000	316,000	6	11		2	3
8	103	1,000	159	2,310	352,000	1,230,000	7	98		2	6
9	54	843	271	2,810	115,000	938,000	3	36		2	6
11	116	1,240 ³	756	8,600 ³	112,000	2,150,000 ³	3	340 ³			
12b	486	423	828	2,250	1,040,000	1,400,000	4	8		2	7
12d	162	600	448	1,750	195,000	1,100,000	4	7		2	7
14	2,125	1,240	5,043	12,060	1,450,000	2,130,000	4	8		2	14
15	78	184	63	1,363	540,000	920,000	4	28		2	6
17	4	45	85	460	111,000	35,600	3	17			
18	60	238	155	2,060	62,000	480,000	5	8		03	6
All stations											
	90	330	240	1,670	257,000	723,000	4	18		2	7

Note: all values expressed as geometric means of samples

I only those stations with observable flows were sampled

² Dry: stream sampled following period of no precipitation

Wet: stream sampled immediately following or during precipitation events

³ only one sample

Occurance of Pseudomonas aeruginosa in

Lake Ontario Nearshore Waters at Confederation Park

Population Density per 100 ml	No. of Samples Wet	having these Dry	densities
0 - 1	39	29	
1 - 2	. 12	4	
2 - 3	3		
3 - 4	6	3	
4 - 5			
5 - 6		1	
6 - 7			
. 9		2	
10	2		
11		1	
14		1	
15	1	1	
16	1	1	
17	1		
19	1	*	
20	1		
23	1		
37	1		
44	1		
47	1		
48	1	1	
71	1		
74	1		

Total Analysis $n_1 = 74$ (Wet) $n_2 = 43$ (Dry)

ration $n_1 : n_2 = 1.72 : 1.0$

Bacterial Population of Lake Ontario Transects (Geometric mean)

Distance from Shore in meters

			1		10		20
		FC	FS	FC	FS	FC	FS
Dry	Day 1	28	165	23	164	12	80
(July 18-20)	Day 2	8	68	8	22	2	3
	Day 3	14	102	2	8	2	4
Wet	Day 1	36	70	13	40	22	43
(all samples)	Day 2	10	27	13	23	12	26
	Day 3	20	61	2	4	1	4
					•		
Wet	Day 1	57	72	25	54	28	55
(Aug. 23 event	Day 2	5	8	5	9	4	12
only)	Day 3	2	8	2	4	1	4

SF4 18 1985

•

3

