Algorithm 1: Train a model to generate NFA **Require:** Learning rate: $\alpha > 0$.

Require: Loss function $L(f(x; \theta), y) = ||f(x; \theta) - y||$, the combination of norms.

Initial parameters θ :

while the loss function L stop decrease do Sample a minibatch of N examples from the training set $\{x^{(1)}, \cdots, x^{(n)}\}$ $\boldsymbol{x}^{(N)}$ with corresponding targets $\boldsymbol{y}^{(i)}$, such as $\boldsymbol{x}^{(i)} = (101010, T)$, $\mathbf{y}^{(i)} = (Q, \Sigma, \delta, q, F);$

$$m{x}^{(N)}$$
} with corresponding targets $m{y}^{(i)}$, such as $m{x}^{(i)} = (101010, T)$, $m{y}^{(i)} = (Q, \Sigma, \delta, q, F)$;
Apply update:

 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \frac{1}{N} \sum_{i=1}^{N} \nabla_{\boldsymbol{\theta}} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)});$