15/06/2007

Geometria 2– Corso di laurea in Matematica

Nome:	Cognome:	Matricola:	
l'esercizio stesso N.B.2 Gli eserc N.B.3 Per pote	o (gli esercizi svolti in altri fo izi senza nome e cognome ha	leve essere riportata nello spazio sotto gli non verranno presi in considerazio nno valore nullo. necessario aver risolto gli Esercizi A ,	one).
	mostrare che se il nucleo di un'a olicazione è iniettiva.	applicazione lineare è costituito dal solo	vettore
	mostrare che se $L_A:\mathbb{R}^n o\mathbb{R}$ ha solo la soluzione nulla.	${\bf r}^n$ è un'applicazione lineare invertibile a	allora il
	sfinire il concetto di isometria ta si può dire della matrice A ?	ra spazi vettoriali metrici. Se $L_A: \mathbb{R}^n$ -	$ ightarrow \mathbb{R}^n$ è

Esercizio 1

Dire se la matrice $A=\begin{pmatrix}1&1\\2&1\end{pmatrix}$ è invertibile. In caso affermativo calcolarne l'inversa . Scrivere inoltre A come prodotto di matrici elementari.

Risposta:

Esercizio 2

Sia $T:\mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione lineare rappresentata rispetto alle basi canoniche dalla matrice

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array}\right).$$

 $\mathcal{C}_1 = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}.$ e Trovare la matrice $\boldsymbol{A}^{'}$ che rappresenta Trispetto alle basi

$$C_2 = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}.$$

Esercizio 3

Si dica se la matrice

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right).$$

è diagonalizzabile su $\mathbb R$ e, in caso affermativo, si trovi una base di $\mathbb R^2$ formata da autovettori di A.

Risposta:

Esercizio 4

Si dica se l'espressione

$$x \cdot y = x_1 y_1 - x_1 y_2 - x_2 y_1 - x_3 y_3, \ x = (x_1, x_2, x_3), \ y = (y_1, y_2, y_3)$$

definisce un prodotto scalare in \mathbb{R}^3 , dove $x=(x_1,x_2,x_3)$ e $y=(y_1,y_2,y_3)$.

Risposta:

Esercizio 5

Trovare l'equazione del piano α parallelo al piano x-y+z-1=0 e passante per il punto di intersezione tra le rette: $r: x=y, \ x=z$ e s: x=t, y=2t+1, z=t.

Risposta:

Esercizio 6

Trovare la distanza tra le rette: $r: x=y, \ x=z$ e s: x=t, y=t+1, z=t-2.

Risposta: