PHIL 112 Homework 4

Hardy Jones 999397426 Dr. Landry Winter 2014

1. Define

(a) Theorem in PD

A sentence \mathbf{P} of PL is a theorem in PD if and only if \mathbf{P} is derivable in PD from the empty set.

(b) Equivalence in PD

Sentences \mathbf{P} and \mathbf{Q} of PL are equivalent in PD if and only if \mathbf{Q} is derivable in PD from $\{\mathbf{P}\}$ and \mathbf{P} is derivable in PD from $\{\mathbf{Q}\}$.

2. Construct derivations that show each of the following:

(a) $\{\neg(\forall x)(\exists y)Lxy,(\exists y)(\forall x)Lxy\}$ is inconsistent in PD

$ \begin{array}{c c} 1. \ \neg(\forall x)(\exists y)Lxy \\ 2. \ (\exists y)(\forall x)Lxy \end{array} $	
3. $(\exists x) \neg (\exists y) Lxy$ 4. $(\exists x) (\forall y) \neg Lxy$	QN 1 QN 3
$\lfloor 5. \ (\forall y) \neg Lay$	$\mathbf{Assum} \exists \mathbf{Elim}$
6. (∀y)¬Lay	Reit: 5
7. (∀y)¬Lay	$\exists \mathbf{Elim}: 5, 6$
_8. (∀x)Lxb	$\mathbf{Assum} \exists \mathbf{Elim}$
9. (∀x)Lxb	Reit: 8
10. (∀x)Lxb	\exists Elim: 8, 9
11. ¬Lab	$\forall \mathbf{Elim} \colon 7$
12. Lab	$\forall \mathbf{Elim} \colon 10$

From lines 11 and 12 we have $\neg Lab \wedge Lab$.

Thus $\{\neg(\forall x)(\exists y)Lxy,(\exists y)(\forall x)Lxy\}$ is inconsistent in PD.

(b) $\{((\exists x)Fx \lor (\exists x)Gx) \rightarrow (\exists x)(Fx \lor Gx)\}\$ is a theorem in PD

```
1. (\exists x) Fx \lor (\exists x) Gx
                                                                                Assum
                                                                                Assum
                                                                                Assum
                                                                                \vee Intro: 3
      5. (\exists x) (\mathsf{Fx} \lor \mathsf{Gx})
                                                                                \exists Intro: 4
                                                                                ∃Elim: 2, 3–5
      7. (∃x )Gx
                                                                                Assum
         8. Gb
                                                                                Assum
          9. Fb \vee Gb
                                                                                ∨Intro: 8

\begin{vmatrix}
10. & (\exists x)(Fx \lor Gx) \\
10. & (\exists x)(Fx \lor Gx)
\end{vmatrix}

11. & (\exists x)(Fx \lor Gx)

12. & (\exists x)(Fx \lor Gx)

                                                                                \exists Intro: 9
                                                                                ∃Elim: 7, 8–10
                                                                               \vee Elim: 1, 2–6,7–11,
13. ((\exists x) \mathsf{Fx} \lor (\exists x) \mathsf{Gx}) \to (\exists x) (\mathsf{Fx} \lor \mathsf{Gx}) \to \mathbf{Intro:} \ 1-12
```

3. Symbolize Casino Slim's reasoning and construct a derivation in PD+ showing that the symbolized argument is valid in PD+.

```
1. (\forall x)(\forall y)[(Fx \land Sy) \rightarrow Bxy]
                                                               Assum
2. (\mathsf{Fh} \vee \mathsf{Ff}) \wedge \mathsf{Ss}
                                                               Assum
3. \mathsf{Fh} \vee \mathsf{Ff}
                                                               \wedge Elim: 2
4. \mathsf{Ss}
                                                               \wedge Elim: 2
5. (\forall y)[(Fx \land Sy) \rightarrow Bhy]
                                                               \forall Elim: 1
                                                               \forall Elim: 5
6. (Fh \wedge Ss) \rightarrow Bhs
7. \neg(\mathsf{Fh} \wedge \mathsf{Ss}) \vee \mathsf{Bhs}
                                                               Impl: 5
  8. Fh \vee Ff
                                                               Assum
     9. Fh
                                                                Assum
     10. (∃x )Fx
                                                                \exists Intro: 9
     11. Ff
                                                                Assum
    12. (∃x )Fx
                                                                \exists Intro: 11
  13. (∃x )Fx
                                                               ∀ Elim: 8, 9–10, 11–12
                                                               \exists Intro: 13
14. (∃x )Fx
  15. Fh
                                                               Assum
  16. Fh
                                                               Reit: 15
17. Fh
                                                               ∃ Elim: 14, 15–16
18. Fh \wedge Ss
                                                               \wedge Intro: 4,17
19. Bhs
                                                               \rightarrow Elim: 6, 18
20.~\mathsf{Bhs} \lor \mathsf{Bfs}
                                                               ∨ Intro: 19
21. (\exists x)(Bhx \lor Bfx)
                                                               \exists Intro: 20
```