

Our country, our future

525/1

S6 CHEMISTRY

Exam 3

PAPER 1

DURATION: 2 HOUR 45 MINUTES

For Marking guide contact and consultations: Dr. Bbosa Science 0776 802709.

INSTRUCTIONS

Attempt all questions in Section A and only six in Section B.

SECTION A

1. (a) Explain why an azeotrope is a mixture and not a compound
(b) Name three methods for separating azeotropic mixtures

More exams? browse: digitaltears.co.ug For consultations call: +256 776 802709

(b) Naphthalene ($C_{10}H_8$) distils in steam at 98.3 $^{\circ}C$ under a pressure of 753mmHg. The vapor pressure
of water at this temperature is 715mmHg. Calculate the percentage by mass of Naphthalene in the distillate.
2. (a) complete the following equations and name the major product.
(i) $+ CH_3CH=CH_2$ $+ CH_3CH=CH_2$ $+ CH_3CH=CH_2$
Name of the product
(i) PCl ₅
Name of the product
(b) Write the mechanism for the reaction in a (i)

3. (a) State three properties of beta particles.

(b) Complete the following nuclea	r transformations	
(i) ${}^{239}_{94}Pu + {}^{1}_{0}n \rightarrow {}^{86}_{34}Se + {}^{15}_{6}$	⁰ ₀ Nd +	
(ii) $^{235}_{96}Cm + {}^{4}_{2}He \rightarrow $		
(iii) $^{235}_{92}U + ^{1}_{0}n \rightarrow ^{148}_{57}La +$	$-3^{1}_{0}n$	
(c) Francium isotope (²²³ ₈₇ Fr) emits	s beta particles. the rate of emission	reduces from 14.0 to 7.5 counter
in 80 second. Calculate the half	life of isotopes.	
4. (a) Draw the structures and	I name the shapes of the following s	pecies
Species	Structure	shape
HCO ₃ -		
NO ₂ -		
SO ₂ ² -		

(b) Explain why the nitrite ion (NO₂) adopts the shape you have named in (a)

• • • • •	
• • • • •	
5.	Name the reagent(s) that can be used to distinguish between the following compounds. In each
	case state what would be observed when each compound is separately treated with the reagent.
	$\begin{array}{c c} CH_3 & \\ \hline \\ CI & \end{array}$ and
	Reagents
	Observations(s)
	(b) CH ₃ COCH ₃ and CH ₃ CH ₂ CHO Reagents
	Observations(s)
6.	The graph below was obtained when nitric acid was gradually added to 50cm ³ of 0.72M potassium

hydroxide in a calorimeter of negligible heat capacity

		•••••
		•••••
/ I= \	Calaulata	

(b) Calculate

(i)	Molarity of nitric acid
•••••	
••••••	

 (ii)		Heat of neutralization of nitric acid by potassium hydroxide (Density of solution = 1.0gcm³)
7. ((a) A	synthetic rubber, Z, was made from (n) monomers with structure
	CH ₂	₂ =C-CH=CH ₂ Cl
((i)	State the condition for the reaction
((ii)	Write the equation leading the formation of Z.
((b) 1	Name the type reaction in a (i).

• • • • • • •	•••••	
(c)	A solut	tion containing 5.0g of Z in 200cm ³ of benzene is found to have an osmotic pressure of 34kF
	at 17ºC	C. Calculate the:
	(i)	Molar mass of Z
•••••		
•••••		
	(ii)	Number of moles of monomers
	••••••	
	••••••	
(a) :	State Ra	aoult's law of relative lowering of vapour pressure.

(b) (i) Calculate the vapour pressure of a solution containing 18g of glucose ($C_6H_{12}O_6$) in 50g of water at $60^{\circ}C$. (vapour pressure of water at $60^{\circ}C$ is 150mmHg.)

••••••		
••••••		
(ii)	State any assumptions made in (b)(i)	
••••••		
 a) State t	three properties in which boron resembles silicon	(1 ½ mark
 a) State t	three properties in which boron resembles silicon	(1 ½ mark
) State t	three properties in which boron resembles silicon	(1 ½ mark
) State t	three properties in which boron resembles silicon	(1 ½ mark
) State t	three properties in which boron resembles silicon	(1 ½ mark
) State t	three properties in which boron resembles silicon	(1 ½ mark
) State t	three properties in which boron resembles silicon	(1 ½ mark
) State t	three properties in which boron resembles silicon	(1 ½ mark
) State t	three properties in which boron resembles silicon	(1 ½ mark
	three properties in which boron resembles silicon equation(s) for the reaction of the chloride of boron and silicon with water	(1 ½ mark

SECTION B

Attempt any six questions from this section

10.	10. Bauxite is the principal ore used for the extraction of aluminium.					
(a)	(i) Write the formula of bauxite.					
	Name two impurities in bauxite	(1mark)				
(b)	Briefly explain how pure aluminium can be obtained from bauxite. (Include appropriate equations where necessary)	(3marks)				

More exams? browse: digitaltears.co.ug For consultations call: +256 776 802709

	••••••		
	Sodium	carbonate solution was added to an aqueous solution of aluminium chloride	
	(i)	State what was observed	(1mark)
	(ii)	Write equation of the reaction that took place	(1 ½ mark)
11.	(a) Stat	e three reasons why fluorine differs in some of its properties from the rest of gro	up (VII)
	elemen	rts.	(3marks)

(b) Write equation for ionization of hydrogen fluoride in aqueous solution that are

(i) Dilute

More exams? browse: digitaltears.co.ug

(1 ½ marks)

For consultations call: +256 776 802709

	(ii)	Concentrated	(1 ½ marks)
(c)	Explain	why hydrogen fluoride is a weaker acid than hydrogen chloride	(3marks)
12.	(a) State	e three characteristics of a chemical equilibrium	
(b)		gen and iodine react according to the following equations 2(g) 2HI(aq)	
		he expression for the equilibrium constant Kc.	
	•••••		

(c) 0.5 molar quantities of hydrogen and iodine were sealed in a glass bulb at 445°C until equilibrium was reached. The glass bulb was then rapidly cooled and broken under alkali.

	(i) Explain why the glass bulb was rapidly cooled and broken under alkalis.
	The equilibrium mixture was found to contain 0.78moles of hydrogen iodide. Calculate the value of the equilibrium constant, Kc for the reaction at 445°C.
(d)	State what would happen to the position of equilibrium of the reaction in (b) when (i) Sodium thiosulphate solution is added to the equilibrium mixture.
	(ii) Argon gas is added at constant volume.
13.	(a) A compound Z contain 19.1% nitrogen, 43.6% oxygen and rest manganese.(i) Calculate the empirical formula of Z.

(ii) 10g of Z in 1000g of water lowered the freezing point by 0.127° C. Calculate the molecular formula of Z . (kf for water is 1.86° Cmol⁻¹kg⁻¹) .

(b)	When Z was strongly heated brown fumes were given off. Z dissolved in water to form a pink solution
	which decolorizes acidified potassium permanganate (VII). Identify Z.
<i>(</i> - \	
	State what would be observed and write equation(s) for the reaction(s) that took place in the reaction
	in (b) when:
	(i) Concentrated nitric acid and lead (IV) oxide was added and the mixture boiled.
	Observation
	Equation

(ii) Sodium carbonate solution was added

_					
()	bse	rva	ıtı	0	r

••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••

(iii) Equation

14. Complete the following equations and in each case write acceptable mechanism of the reaction.

(3marks each)

(b)
$$\begin{array}{c} \text{Br} \\ \hline \\ \text{heat} \end{array}$$

(c) Identify condition and reagent A and product B in the following equation

$$CH_3C$$
 \longrightarrow CH_3C \longrightarrow CCu $\xrightarrow{(CH_3)_2CHCl}$ B

Reagent A
Product B

15. Show how the following conversions can be attained. In each case indicate the reagent and conditions for the reaction.(3marks each)

(a)
$$OH$$
 $CH(CH_3)_2$ from

(c) $(CH_3)_2CO$ from CH_3CH_2OH

16.	(a) The solubility of lead (II) iodide is 0.122g in 100cm ³ of water at 40°C.						
	(i)	Write equation for the solubility of lead (II) iodide in water.					
	(ii)	Write expression for the solubility product of lead (II) iodide.					
	(iii)	Calculate the solubility product of lead (II) iodide.					
(c)	50cm³ of 0.001M lead (II) nitrate was mixed with 50cm³ of 0.001M potassium iodide. Deduce whether lead (II) iodide will be precipitated or not. Show your working.						

For consultations call: +256 776 802709

		•••••	•••••	•••••	•••••		
17. (a) State factors tha	at can affect s	tandard electrode	potential of an ele	ement.			
The standard electrod	e potential M	²⁺ (aq)/M(s) for gro	oup II elements are	given in the table	below:		
Element	Ве	Mg	Ca	Sr	Ва		
S.E.P M ²⁺ (aq)/M(s)	-1.85	-2.37	-2.87	-2.89	-2.91		
(i) State a	nd explain the	e trend in the varia	ation of standard e	lectrode potential			
	••••••						
			••••				

(ii) Explain why the values of standard electrode potentials are negative.

(b)

(c)	Electro	Electrode potential for some cells are given below						
	Half cell		E ⁰ /V					
	Pt(s)/SO ₄ ²⁻ , SO ₃ ²⁻		-0.90					
	Cu ²⁺ (aq), Cu(s)		+0.34					
	(i)	Write the equation of reaction that takes place at the						
		Anode						
		Cathode						
		Overall equation						
	(ii)	Calculate the emf of the cell.						
				•				
	(iii)	State whether the reaction	n in (a)(ii) above is feasible or not. Give a reason for your answer.					
				•				

END