MCS-8 INSTRUCTION SET

Index Register Instructions

The load instructions do not affect the flag flip-flops. The increment and decrement instructions affect all flip-flops assent the assent

MNEMONIC	MINIMUM STATES REQUIRED	INSTRUCTION D7 D6 D5 D4 D3							D ₀	DESCRIPTION OF OPERATION
		1	_	D	В	D	S	s	S	Load index register r1 with the content of index register r2.
(2) LrM	(8)	1	1			D	1	1	1	Load index register r with the content of memory register M,
LMr	(7)	1	1	1	1	1	s	s	s	Load memory register M with the content of index register r.
(3) _{Lrl}	(8)	0	0	D	D	D	1	1	0	Load index register r with data B B.
		В	В	В	В	В	В	В	В	Load fildex register r with bata b B.
LMI	(9)	0	0	1	1	1	1	1	0	Load memory register M with data B B.
		В	В	В	В	В	В	В	В	Load memory register in with data B B.
INr	(5)	0	0	D	D	D	0	0	0	Increment the content of index register r (r # A),
DCr	(5)	0	0	D	D	D	0	0	1	Decrement the content of index register r (r # A).

Accumulator Group Instructions

The result of the ALU instructions affect all of the flag flip-flops. The rotate instructions affect only the carry flip-flop.

ADr	(5)	1 0	0 0 0	S S S	Add the content of index register r, memory register M, or data
ADM	(8)	1 0	0 0 0	1 1 1	BB to the accumulator, An overflow (carry) sets the carry
ADI	(8)	0 0	0 0 0	1 0 0	flip-flop.
		ВВ	B B B	BBB	
ACr	(5)	1 0	0 0 1	S S S	Add the content of index register r, memory register M, or data
ACM	(8)	1 0	0 0 1	1 1 1	B B from the accumulator with carry. An overflow (carry)
ACI	(8)	0 0	0 0 1	1 0 0	sets the carry flip-flop.
		ВВ	8 B B	ввв	
SUr	(5)	1 0	0 1 0	SSS	Subtract the content of index register r, memory register M, or
SUM	(8)	1 0	0 1 0	1 1 1	data B , . , B from the accumulator. An underflow (borrow)
SUI	(8)	0 0	0 1 0	1 0 0	sets the carry flip-flop.
		в в	8 B B	ввв	
SBr	(5)	1 0	0 1 1	S S S	Subtract the content of index register r, memory register M, or data
SBM	(8)	1 0	0 1 1	1 1 1	data B B from the accumulator with borrow. An underflow
SBI	(8)	0 0	0 1 1	1 0 0	(borrow) sets the carry flip-flop.
	i	вв	888	ввв	
NDr	(5)	1 0	1 0 0	s s s	Compute the logical AND of the content of index register r.
NDM	(8)	1 0	1 0 0	1 1 1	memory register M, or data B B with the accumulator.
NDI	(8)	0 0	1 0 0	1 0 0	
		ВВ	B B B	ввв	
XRr	(5)	1 0	1 0 1	S S S	Compute the EXCLUSIVE OR of the content of index register
XRM	(8)	1 0	1 0 1	1 1 1	r, memory register M, or data B B with the accumulator,
XRI	(8)	0 0	1 0 1	1 0 0	
		вв	B B B	8 8 8	
ORr	(5)	1 0	1 1 0	SSS	Compute the INCLUSIVE OR of the content of index register
ORM	(8)	1 0	1 1 0	1 1 1	r, memory register in, or data B B with the accumulator .
ORI	(8)	0 0	1 1 0	1 0 0	
		вв	ввв	ввв	
CPr	(5)	1 0	1 1 1	S S S	Compare the content of index register r, memory register M.
СРМ	(8)	1 0	1 1 1	1 1 1	or data B B with the accumulator. The content of the
CPI	(8)	0 0	1 1 1	1 0 0	accumulator is unchanged.
		вв	8 B B	888	•
RLC	(5)	0 0	0 0 0	0 1 0	Rotate the content of the accumulator left,
RRC	(5)	0 0	0 0 1	0 1 0	Rotate the content of the accumulator right,
RAL	(5)	0 0	0 1 0	0 1 0	Rotate the content of the accumulator left through the carry.
RAR	(5)	0 0	0 1 1	0 1 0	Rotate the content of the accumulator right through the carry.

Program Counter and Stack Control Instructions

(4) JMP	(11)	0 1	x x x	1 0 0	Unconditionally jump to memory address B3B3B2B2.
		B ₂ B ₂	B2 B2 B2	B ₂ B ₂ B ₂	
		x x	B3 B3 B3	B3 B3 B3	
(5) _{JFc}	(9 or 11)	0 1	0 C ₄ C ₃	0 0 0	Jump to memory address B3B3B2B2 if the condition
		B ₂ B ₂	B ₂ B ₂ B ₂	B ₂ B ₂ B ₂	flip-flop c is false. Otherwise, execute the next instruction in sequence,
		x x	B3 B3 B3	83 B3 B3	
JTc	(9 or 11)	0 1	1 C4C3	0 0 0	Jump to memory address 83 8382 82 if the condition
		8 ₂ 8 ₂	8 ₂ 8 ₂ 8 ₂	B ₂ B ₂ B ₂	flip-flop c is true. Otherwise, execute the next instruction in sequence.
		x x	B3 B3 B3	B3 B3 B3	
CAL	(11)	0 1	x x x	1 1 0	Unconditionally call the subroutine at memory address B3
		B ₂ B ₂	B ₂ B ₂ B ₂	B ₂ B ₂ B ₂	B3B2B2. Save the current address (up one level in the stack),
		x x	B3 B3 B3	B3 B3 B3	
CFc	(9 or 11)	0 1	0 C4 C3	0 1 0	Call the subroutine at memory address B3 B3B2 B2 if the
		B ₂ B ₂	B ₂ B ₂ B ₂	B ₂ B ₂ B ₂	condition flip-flopic is false, and save the current address (up one
		x x	83 B3 B3	B3 B3 B3	level in the stack.) Otherwise, execute the next instruction in sequence,
CTc	(9 or 11)	0 1	1 C4 C3	0 1 0	Call the subroutine at memory address B3 B3B2 B2 if the
		B ₂ B ₂	B2 B2 B2	82 82 B2	condition flip-flopic is true, and save the current address (up one
		x x	B3 B3 B3	B3 B3 B3	level in the stack), Otherwise, execute the next instruction in sequence.
RET	(5)	0 0	xxx	1 1 1	Unconditionally return (down one level in the stack).
RFc	(3 or 5)	0 0	0 C ₄ C ₃	0 1 1	Return (down one level in the stack) if the condition flip-flop c is
					false. Otherwise, execute the next instruction in sequence,
RTc	(3 or 5)	0 0	1 C4 C3	0 1 1	Return (down one level in the stack) if the condition flip-flop c is
			, ,		true. Otherwise, execute the next instruction in sequence.
RST	(5)	0 0	A A A	1 0 1	Call the subroutine at memory address AAA000 (up one leve) in the stack

Input/Output Instructions

INP	(8)	0 1	0	0	М	M	М	1	Read the content of the selected input port (MMMI) into the accumulator,
OUT	(6)	0 1	R	R	М	М	М	1	Write the content of the accumulator into the selected output port (RRMMM, RR # 00).

Machine Instruction

HLT	(4)	0 0	0 0 0	0 0 X	Enter the STOPPED state and remain there until interrupted.
HLT	(4)	1 1	1 1 1	1 1 1	Enter the STOPPED state and remain there until interrupted.
NOTCC.					·

- NOTES:

 (1) SSS = Source Index Register DDD = Destination Index Register B001), Cl0101, Dl011), E(100), H1011, L(110).

 (2) Memory registers are addressed by the contents of registers H & L. Additional bytes of instruction are designated by 8BB8BBB.

 (4) X = "Don't Care".

 (5) Flag flip-flops are defined by C₄C₃ carry (00-overflow or underflow), zero (01-result is zero), sign (10-MSB of result is "1"), parity (11-parity is even).