## Recommendations









PANDORA











## From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
  - Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products
  - From scarcity to abundance
- More choice necessitates better filters
  - Recommendation engines
  - How Into Thin Air made Touching the Void a bestseller: <a href="http://www.wired.com/wired/archive/12.10/tail.html">http://www.wired.com/wired/archive/12.10/tail.html</a>

## Types of Recommendations

- Editorial and hand curated
  - List of favorites
  - Lists of "essential" items
- Simple aggregates
  - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
  - Amazon, Netflix, ...

### **Formal Model**

- X = set of Customers
- S = set of Items
- Utility function  $u: X \times S \rightarrow R$ 
  - R = set of ratings
  - R is a totally ordered set
  - e.g., 0-5 stars, real number in [0,1]

# **Utility Matrix**

|       | Avatar | LOTR | Matrix | Pirates |
|-------|--------|------|--------|---------|
| Alice | 1      |      | 0.2    |         |
| Bob   |        | 0.5  |        | 0.3     |
| Carol | 0.2    |      | 1      |         |
| David |        |      |        | 0.4     |

# **Key Problems**

- (1) Gathering "known" ratings for matrix
  - How to collect the data in the utility matrix
- (2) Extrapolate unknown ratings from the known ones
  - Mainly interested in high unknown ratings
    - We are not interested in knowing what you don't like but what you like
- (3) Evaluating extrapolation methods
  - How to measure success/performance of recommendation methods

# (1) Gathering Ratings

#### Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

#### Implicit

- Learn ratings from user actions
  - E.g., purchase implies high rating
- What about low ratings?

# (2) Extrapolating Utilities

- Key problem: Utility matrix U is sparse
  - Most people have not rated most items
  - Cold start:
    - New items have no ratings
    - New users have no history
- Three approaches to recommender systems:
  - 1) Content-based2) CollaborativeToday!

  - 3) Latent factor based

# Content-based Recommender Systems

### **Content-based Recommendations**

 Main idea: Recommend items to customer x similar to previous items rated highly by x

#### Example:

- Movie recommendations
  - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
  - Recommend other sites with "similar" content

## Plan of Action



### **Item Profiles**

- For each item, create an item profile
- Profile is a set (vector) of features
  - Movies: author, title, actor, director,...
  - Text: Set of "important" words in document
- How to pick important features?
  - Usual heuristic from text mining is TF-IDF (Term frequency \* Inverse Doc Frequency)
    - Term ... Feature
    - Document ... Item

### Sidenote: TF-IDF

 $f_{ij}$  = frequency of term (feature) i in doc (item) j

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

**Note:** we normalize TF to discount for "longer" documents

 $n_i$  = number of docs that mention term i

**N** = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF-IDF score:  $w_{ij} = TF_{ij} \times IDF_i$ 

Doc profile = set of words with highest **TF-IDF** scores, together with their scores

## **User Profiles and Prediction**

#### User profile possibilities:

- Weighted average of rated item profiles
- Variation: weight by difference from average rating for item
- •

#### Prediction heuristic:

• Given user profile  $\mathbf{x}$  and item profile  $\mathbf{i}$ , estimate  $u(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i}) = \mathbf{x} \cdot \mathbf{i} / |\mathbf{x}| |\cdot |\mathbf{i}|$ 

# Pros: Content-based Approach

- +: No need for data on other users
  - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
  - No first-rater problem
- +: Able to provide explanations
  - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

# Cons: Content-based Approach

- -: Finding the appropriate features is hard
  - E.g., images, movies, music
- -: Recommendations for new users
  - How to build a user profile?
- -: Overspecialization
  - Never recommends items outside user's content profile
  - People might have multiple interests
  - Unable to exploit quality judgments of other users

# **Collaborative Filtering**

Harnessing quality judgments of other users

# **Collaborative Filtering**

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N



#### Cosine sim:

# **Similarity Metric**

|                | HP1 | HP2 | HP3 | TW | SW1 | SW2 | SW3 |
|----------------|-----|-----|-----|----|-----|-----|-----|
| $\overline{A}$ | 4   |     |     | 5  | 1   |     |     |
| B              | 5   | 5   | 4   |    |     |     |     |
| C              |     |     |     | 2  | 4   | 5   |     |
| D              |     | 3   |     |    |     |     | 3   |

- Intuitively we want: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4</p>
- Cosine similarity: 0.386 > 0.322
  - Considers missing ratings as "negative"
  - Solution: subtract the (row) mean

|                  |     |     | HP3  | TW   | SW1  | SW2 | SW3 |
|------------------|-----|-----|------|------|------|-----|-----|
| $\boldsymbol{A}$ | 2/3 | 1/3 |      | 5/3  | -7/3 |     |     |
| B                | 1/3 | 1/3 | -2/3 |      |      |     |     |
| C                |     |     |      | -5/3 | 1/3  | 4/3 |     |
| D                |     | 0   |      |      |      |     | 0   |

# **sim A,B vs. A,C:** 0.092 > -0.559

Notice cosine sim. is correlation when data is centered at 0

# Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view: Item-item
  - For item i, find other similar items
  - Estimate rating for item *i* based on ratings for similar items
  - Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

s<sub>ij</sub>... similarity of items *i* and *j*r<sub>xj</sub>...rating of user *u* on item *j*N(i;x)... set items rated by x similar to i

# Item-Item CF (|N|=2)

|        |                                          |   |   |   |   |   | user | S |   |   |    |    |    |
|--------|------------------------------------------|---|---|---|---|---|------|---|---|---|----|----|----|
|        |                                          | 1 | 2 | 3 | 4 | 5 | 6    | 7 | 8 | 9 | 10 | 11 | 12 |
|        | 1                                        | 1 |   | 3 |   |   | 5    |   |   | 5 |    | 4  |    |
|        | 2                                        |   |   | 5 | 4 |   |      | 4 |   |   | 2  | 1  | 3  |
| movies | 3                                        | 2 | 4 |   | 1 | 2 |      | 3 |   | 4 | 3  | 5  |    |
| Ε      | 4                                        |   | 2 | 4 |   | 5 |      |   | 4 |   |    | 2  |    |
|        | 5                                        |   |   | 4 | 3 | 4 | 2    |   |   |   |    | 2  | 5  |
|        | 6                                        | 1 |   | 3 |   | 3 |      |   | 2 |   |    | 4  |    |
|        | - unknown rating - rating between 1 to 5 |   |   |   |   |   |      |   |   |   |    |    |    |

# Item-Item CF (|N|=2)

|        |   |   |   |   |   |   | user | 5 |   |   |    |    |    |
|--------|---|---|---|---|---|---|------|---|---|---|----|----|----|
|        |   | 1 | 2 | 3 | 4 | 5 | 6    | 7 | 8 | 9 | 10 | 11 | 12 |
|        | 1 | 1 |   | 3 |   | ? | 5    |   |   | 5 |    | 4  |    |
|        | 2 |   |   | 5 | 4 |   |      | 4 |   |   | 2  | 1  | 3  |
| movies | 3 | 2 | 4 |   | 1 | 2 |      | 3 |   | 4 | 3  | 5  |    |
| Ε      | 4 |   | 2 | 4 |   | 5 |      |   | 4 |   |    | 2  |    |
|        | 5 |   |   | 4 | 3 | 4 | 2    |   |   |   |    | 2  | 5  |
|        | 6 | 1 |   | 3 |   | 3 |      |   | 2 |   |    | 4  |    |



- estimate rating of movie 1 by user 5

# Item-Item CF(|N|=2)

|        |          |   |   |   |   |   | user | 5 |   |   |    |    |    |             |
|--------|----------|---|---|---|---|---|------|---|---|---|----|----|----|-------------|
|        |          | 1 | 2 | 3 | 4 | 5 | 6    | 7 | 8 | 9 | 10 | 11 | 12 | sim(1,m)    |
|        | 1        | 1 |   | 3 |   | ? | 5    |   |   | 5 |    | 4  |    | 1.00        |
|        | 2        |   |   | 5 | 4 |   |      | 4 |   |   | 2  | 1  | 3  | -0.18       |
| movies | <u>3</u> | 2 | 4 |   | 1 | 2 |      | 3 |   | 4 | 3  | 5  |    | <u>0.41</u> |
| Ε      | 4        |   | 2 | 4 |   | 5 |      |   | 4 |   |    | 2  |    | -0.10       |
|        | 5        |   |   | 4 | 3 | 4 | 2    |   |   |   |    | 2  | 5  | -0.31       |
|        |          |   |   | _ |   | _ |      |   | _ |   |    |    |    |             |

HICATC

#### **Neighbor selection:**

3

Identify movies similar to movie 1, rated by user 5

#### Here we use Pearson correlation as similarity:

- 1) Subtract mean rating  $m_i$  from each movie i  $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Compute cosine similarities between rows

0.59

# Item-Item CF (|N|=2)

| users |
|-------|
|-------|

|        |          | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | sim(1,m)    |
|--------|----------|---|---|---|---|---|---|---|---|---|----|----|----|-------------|
|        | 1        | 1 |   | 3 |   | ? | 5 |   |   | 5 |    | 4  |    | 1.00        |
|        | 2        |   |   | 5 | 4 |   |   | 4 |   |   | 2  | 1  | 3  | -0.18       |
| movies | <u>3</u> | 2 | 4 |   | 1 | 2 |   | 3 |   | 4 | 3  | 5  |    | <u>0.41</u> |
| E      | 4        |   | 2 | 4 |   | 5 |   |   | 4 |   |    | 2  |    | -0.10       |
|        | 5        |   |   | 4 | 3 | 4 | 2 |   |   |   |    | 2  | 5  | -0.31       |
|        | <u>6</u> | 1 |   | 3 |   | 3 |   |   | 2 |   |    | 4  |    | <u>0.59</u> |

#### Compute similarity weights:

$$s_{1,3}$$
=0.41,  $s_{1,6}$ =0.59

# Item-Item CF (|N|=2)

| U | IS | e | rs |
|---|----|---|----|
|   |    |   |    |

|        |          | 1 | 2 | 3 | 4 | 5   | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|--------|----------|---|---|---|---|-----|---|---|---|---|----|----|----|
|        | 1        | 1 |   | 3 |   | 2.6 | 5 |   |   | 5 |    | 4  |    |
|        | 2        |   |   | 5 | 4 |     |   | 4 |   |   | 2  | 1  | 3  |
| movies | <u>3</u> | 2 | 4 |   | 1 | 2   |   | 3 |   | 4 | 3  | 5  |    |
| Ε      | 4        |   | 2 | 4 |   | 5   |   |   | 4 |   |    | 2  |    |
|        | 5        |   |   | 4 | 3 | 4   | 2 |   |   |   |    | 2  | 5  |
|        | <u>6</u> | 1 |   | 3 |   | 3   |   |   | 2 |   |    | 4  |    |

Predict by taking weighted average:

$$r \downarrow ix = \sum j \in N(i;x) \uparrow = s \downarrow ij \cdot i$$

$$r_{1.5} = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6$$

#### Item-Item vs. User-User

|       | Avatar | LOTR | Matrix | Pirates |
|-------|--------|------|--------|---------|
| Alice | 1      |      | 0.8    |         |
| Bob   |        | 0.5  |        | 0.3     |
| Carol | 0.9    |      | 1      | 0.8     |
| David |        |      | 1      | 0.4     |

- In practice, it has been observed that <u>item-item</u> often works better than user-user
- Why? Items are simpler, users have multiple tastes

## Pros/Cons of Collaborative Filtering

#### + Works for any kind of item

- No feature selection needed
- Cold Start:
  - Need enough users in the system to find a match
- Sparsity:
  - The user/ratings matrix is sparse
  - Hard to find users that have rated the same items
- First rater:
  - Cannot recommend an item that has not been previously rated
  - New items, Esoteric items
- Popularity bias:
  - Cannot recommend items to someone with unique taste
  - Tends to recommend popular items

# **Hybrid Methods**

- Implement two or more different recommenders and combine predictions
  - Perhaps using a linear model
- Add content-based methods to collaborative filtering
  - Item profiles for new item problem
  - Demographics to deal with new user problem

# Remarks & Practical Tips

- Evaluation
- Error metrics
- Complexity / Speed

# Evaluation



## **Evaluation**



# **Evaluating Predictions**

- Compare predictions with known ratings
  - Root-mean-square error (RMSE)
    - $\sqrt{\sum xi} = (r \downarrow xi r \downarrow xi \uparrow *) \uparrow 2$  where rxi is predicted,  $r \downarrow xi \uparrow *$  is the true rating of x on i
  - Precision at top 10:
    - % of those in top 10
  - Rank Correlation:
    - Spearman's correlation between system's and user's complete rankings
- Another approach: 0/1 model
  - Coverage:
    - Number of items/users for which system can make predictions
  - Precision:
    - Accuracy of predictions
  - Receiver operating characteristic (ROC)
    - Tradeoff curve between false positives and false negatives

### **Problems with Error Measures**

- Narrow focus on accuracy sometimes misses the point
  - Prediction Diversity
  - Prediction Context
  - Order of predictions
- In practice, we care only to predict high ratings:
  - RMSE might penalize a method that does well for high ratings and badly for others

# Collaborative Filtering: Complexity

- Expensive step is finding k most similar customers: O(|X|)
- Too expensive to do at runtime
  - Could pre-compute
- Naïve pre-computation takes time O(k · | X | )
  - X ... set of customers
- We already know how to do this!
  - Near-neighbor search in high dimensions (LSH)
  - Clustering
  - Dimensionality reduction

## Tip: Add Data

#### Leverage all the data

- Don't try to reduce data size in an effort to make fancy algorithms work
- Simple methods on large data do best

#### Add more data

e.g., add IMDB data on genres

#### More data beats better algorithms

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html