Artificial Intelligence 人工智慧

Dynamic Programming VS. Ant Colony Optimization (TSP)

> Computer Science and Information Engineering National Taipei University of Technology

Algorithm

- □ Exact Algorithm
 - O Problem-solving method without approximate or error
- □ Heuristic Algorithm
 - Problem-solving method to produce approximate solutions
 - > Select the best solution within an acceptable time and cost
 - > Obtain a certain trade-off in complexity and quality of resolution
 - Most are based on an imitation of natural algorithms
 - > e.g., Ant Colony Algorithm (ACO), Genetic Algorithm (GA), etc.

Dynamic Programming (DP)

□ Dynamic Programming (DP) is an optimization technique that solves problems with overlapping subproblems by breaking them into smaller subproblems, storing results, and avoiding redundant computations to improve efficiency.

□ Main idea

- Set up a recurrence relating a solution to a larger instance to solutions of some smaller instances
- O Solve smaller instances once
- Record solutions in a table
- O Extract solution to the initial instance from that table

Divide-and-Conquer

Divide

- Break down the original problem into smaller subproblems
- Each subproblem should represent a part of the overall problem

□ Conquer

• If the subproblem is small enough, solve it directly; otherwise, break the subproblem down recursively

□ Combine

• Combine the sub-problems to get the final solution of the whole problem

- □ Traveling Salesman Problem (TSP)
 - We are given n cities 1, 2, ..., n and the coordinates or the distance d_{ij} between any two cities i and j
 - The Traveling Salesman Problem (TSP) asks for the total distance of the shortest tour of the cities
 - > Each city is visited exactly once
 - > At the end, come back to the start city
 - \triangleright Assume that the distance is equal to the cost, let $d_{ij} = d_{ji}$

 \Box Let g(i, S) be the length of a shortest path starting at vertex i, going through all unvisited vertices in S and terminating at vertex i.

$$g(i,S) = \begin{cases} \min_{k \in S} \left\{ C_{ik} + g(k, S - \{k\}) \right\} & \text{if } S \neq \emptyset, \\ C_{is} & \text{otherwise,} \end{cases}$$

- $\circ g(i,S)$ represents the minimum total cost of traveling from city i while visiting all unvisited cities in set S.
- $\circ C_{ik}$ is the cost of traveling from city *i* to city *k*
- $\circ C_{is}$ is the cost of traveling from city *i* to start city *s*

 \Box Cities n = 5

□ City Coordinates

1	2	3	4	5
(70, 42)	(48, 40)	(2, 58)	(46, 12)	(76, 15)

- \Box Distance d_{ij} between any two cities i and j
 - $\circ d_{ij} = Round(d_{ij}, 0)$

	1	2	3	4	5
1	0	22	69	38	27
2	22	0	49	28	37
3	69	49	0	63	85
4	38	28	63	0	30
5	27	37	85	30	0

$$\Box i = 1, S = \{2, 3, 4, 5\}$$

$$\Box i = 2, S = \{3,4,5\}$$

$$\Box i = 3, S = \{4,5\}$$

$$\Box i = 4, S = \{3,5\}$$

$$\Box i = 5, S = \{3,4\}$$

$$\Box i = 2, S = \{3,4,5\}$$

$$\Box i = 3, S = \{2,4,5\}$$

$$\Box i = 2, S = \{4,5\}$$

$$\Box i = 4, S = \{2,5\}$$

$$\Box i = 5, S = \{2,4\}$$

$$\Box i = 3, S = \{2,4,5\}$$

$$\Box i = 4, S = \{2, 3, 5\}$$

$$\Box i = 2, S = \{3,5\}$$

$$\Box i = 3, S = \{2,5\}$$

$$\Box i = 5, S = \{2,3\}$$

$$\Box i = 4, S = \{2,3,5\}$$

$$\Box i = 5, S = \{2,3,4\}$$

$$\Box i = 2, S = \{3,4\}$$

$$\Box i = 3, S = \{2,4\}$$

$$\Box i = 4, S = \{2,3\}$$

$$\Box i = 5, S = \{2,3,4\}$$

$$\Box i = 1, S = \{2, 3, 4, 5\}$$

$$min \{ C_{12} + 169, C_{13} + 134, C_{14} + 176, C_{15} + 164 \}$$

 $(C_{12} = 22, C_{13} = 69, C_{14} = 38, C_{15} = 27)$

- OMinimum Cost: 191
- OBest Path: [1, 2, 3, 4, 5] *or* [1, 5, 4, 3, 2]

□ Dynamic Programming

Ant Colony Algorithm (ACO)

- □ Ant colony (群體) optimization (ACO) takes inspiration from the foraging behavior (覓食行為) of some ant species.
- □ These ants deposit pheromone (費洛蒙) on the ground in order to mark some favorable path that should be followed by other members of the colony.

Biological Inspiration

- □ Stigmergy (共識主動性)
 - Stigmergy is an indirect, non-symbolic form of communication mediated by the environment
 - OStigmergic information is local: it can only be accessed by those insects that visit the locus in which it was released

Double Bridge Experiment

- □ Branches have equal lengths
 - Each ant randomly chooses one of the two bridges
 - > Ants start to explore the surrounding of the nest
 - > Ants deposit pheromones along their path

- One of the two bridges accumulates a higher concentration of pheromones
- Over time, the entire colony converges to using the same bridge

Double Bridge Experiment

- □ Branches have different lengths
 - The short bridge is the first to reach the nest
 - Faster pheromone accumulation on the short bridge
 - O Higher probability of more ants choosing the short bridge

• Further ants select the short one instead of the long one

Ant Colony Optimization Algorithms

- □ Several ACO algorithms have been proposed in the literature.
 - o e.g., Ants, Hyper-Cube AS, Rank-Based AS, etc.
- □ Main ACO Algorithms
 - OAnt System (AS)
 - Variants
 - > Max Min Ant System (MMAS)
 - > Ant Colony System (ACS)

- □ ACO for Traveling Salesman Problem (TSP)
 - O Iterative Algorithm
 - > Simulate ants moving on a graph
 - > Allow each city to be visited once and only once
 - > Ants select the next city stochastically from unvisited cities
 - Pheromone Mechanism
 - > Ants can read and modify pheromone
 - > Path selection is biased by pheromone concentrations
 - > At the end of each iteration, pheromone values are updated to influence future decisions.

- □ Basic Concept
 - Set Initial Positions
 - > Each ant starts from a unique city to avoid local optima
 - Calculate Transition Probabilities
 - > Ants select the next city based on calculated transition probabilities
 - O Complete the Tour and Calculate Path Length
 - > After visiting all cities, the ant calculates the total path length.
 - Update Pheromone
 - > Pheromone concentrations are updated based on path quality, length, and evaporation rate

□ Flowchart

- □ Proper Nouns
 - ○Pheromone (費洛蒙)
 - OEvaporation Mechanism (揮發機制)
 - OHeuristic Information (啟發訊息)
 - ○Transition Probability (轉移機率)

□ Pheromone

- The pheromone τ_{ij} associated with the edge joining cities i and j.
- $\circ \rho$ is the evaporation rate, m is the number of ants, and $\Delta \tau_{ij}^k$ is the quantity of pheromone laid on edge(i, j) by ant k.
- ot represents the iteration number in the optimization process.
- At each iteration, the pheromone values are updated by all the *m* ants that have built a solution in the iteration itself.

$$\tau_{ij}(t+1) \leftarrow (1-\rho) \cdot \tau_{ij}(t) + \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$$

□ Pheromone

 \circ Q is a constant related to the quantity of trail laid by ants, and L_k is the length of the tour constructed by ant k

$$\Delta \tau_{ij}^k = \begin{cases} Q/L_k & \text{if ant } k \text{ used edge}(i,j) \text{ in its tour,} \\ 0 & \text{otherwise,} \end{cases}$$

■ Heuristic Information

• Heuristic information η_{ij} associated with the edge joining cities i and j which is given by:

$$\eta_{ij} = \frac{1}{d_{ij}}$$

 $\circ d_{ij}$ is the distance between cities i and j

$$d_{ij} = \left[\left(x_i - x_j \right)^2 + \left(y_i - y_j \right)^2 \right]^{\frac{1}{2}}$$

- □ Transition Probability
 - An ant in city *i* chooses the next city to visit
 - \circ Cities g, j, k has not been previously visited

□ Transition Probability

$$p_{ij}^{k} = \begin{cases} \frac{\tau_{ij}^{\alpha} \cdot \eta_{ij}^{\beta}}{\sum_{c_{il} \in N(s^{p})} \tau_{il}^{\alpha} \cdot \eta_{il}^{\beta}} & \text{if } c_{ij} \in N(s^{p}), \\ 0 & \text{otherwise,} \end{cases}$$

- $\circ N(s^p)$ is the set of feasible components; that is, l is a city not yet visited by the ant k
- Ant k is in city i and has so far constructed the partial solution s^p , the probability of going to city j is given by:
- The parameters α and β control the relative importance of the pheromone

□ Roulette Wheel

- Cities with higher transition probabilities have a greater chance of being selected
- The next city to visit is determined through a random selection process

- □ Stochastic Mechanism
 - OPython random.choices() in C language

```
int main() {
    srand(time(NULL));
    const int items[] = {1, 2, 3, 4};
    double probabilities[] = {0.5, 0.3, 0.1, 0.1};

int n = 4;  // number of items
    int k = 1;  // number of items to select

int selected_items[k];

choices(items, probabilities, n, k, selected_items);

return 0;
}
```

- □ Select k random elements based on probabilities
 - onormalize()
 - oaccumulate probabilities()
 - choose index()

```
void choices(const int population[], const double probabilities[], int n, int k, int result[]) {
   double cum_probabilities[n];
   double normalized_probabilities[n];
   normalize(probabilities, normalized_probabilities, n);
   accumulate_probabilities(normalized_probabilities, cum_probabilities, n);

for (int i = 0; i < k; i++) {
    result[i] = population[choose_index(cum_probabilities, n)];
   }
}</pre>
```

- □ normalize()
 - Calculate the total sum of the probabilities
 - Normalize the probabilities

```
void normalize(const double probabilities[], double normalized_probabilities[], int size) {
    double total_probability = 0.0;

// Calculate the total sum of the probabilities
    for (int i = 0; i < size; i++) {
        total_probability += probabilities[i];
    }

// Normalize the probabilities
    for (int i = 0; i < size; i++) {
        normalized_probabilities[i] = probabilities[i] / total_probability;
    }
}</pre>
```

- □ accumulate_probabilities()
 - Initialize the first cumulative probability
 - Accumulate each probability

```
void accumulate_probabilities(const double probabilities[], double cum_probabilities[], int size) {
    // Initialize the first cumulative probability as the first probability value
    cum_probabilities[0] = probabilities[0];

    // Accumulate each probability to the previous cumulative probability
    for (int i = 1; i < size; i++) {
        cum_probabilities[i] = cum_probabilities[i - 1] + probabilities[i];
    }
}</pre>
```

- □ Choose index()
 - Generate a random number between 0 and 1
 - Find the Selected Index

```
int choose_index(const double cum_probabilities[], int size) {
    // Generate a random number between 0 and 1
    double r = ((double) rand() / RAND_MAX);

    // Find the first cumulative probability that is greater than the random number
    for (int i = 0; i < size; i++) {
        if (r < cum_probabilities[i]) {
            return i; // return the selected index
        }
    }
    return size - 1;
}</pre>
```

Variants: MMAS

- \square Max Min Ant System (MMAS)
 - The value of the pheromone is bound
 - Only best ant updates the pheromone trails
 - \circ τ_{max} and τ_{min} are respectively the upper and lower bounds imposed on the pheromone

$$\tau_{ij}(t+1) \leftarrow \left[(1-\rho) \cdot \tau_{ij}(t) + \Delta \tau_{ij}^{best} \right]_{\tau_{min}}^{\tau_{max}}$$

• The operator $[x]_b^a$ is defined as:

$$[x]_b^a = \begin{cases} a & \text{if } x > a, \\ b & \text{if } x < b, \\ x & \text{otherwise;} \end{cases}$$

Variants: MMAS

 \square Max - Min Ant System (MMAS)

$$\Delta \tau_{ij}^{best} = \begin{cases} \frac{1}{L_{best}} & \text{if } (i,j) \text{ belongs to the best tour,} \\ \chi & \text{otherwise,} \end{cases}$$

- $\circ L_{best}$ is the length of the tour of the best ant.
- $\circ L_{best}$ may be L_{ib} *iteration-best*, L_{bs} *best-so-far* or a combination of both
- $\bigcirc L_{ib}$ is the best tour found in the current iteration
- $\circ L_{bs}$ is the best solution found since the start of the algorithm

Variants: ACS

- □ Ant Colony System (ACS)
 - Local pheromone update
 - > Performed by all the ants after each construction step
 - > s represents a step in the solution construction process
 - > Each ant applies it only to the last edge traversed

$$\tau_{ij}(s+1) = (1-\varphi) \cdot \tau_{ij}(s) + \varphi \cdot \tau_0 \quad \varphi \in (0,1]$$

- $\triangleright \varphi$ is the pheromone decay coefficient
- $\succ \tau_0$ is the initial value of the pheromone

Variants: ACS

□ Ant Colony System (ACS)

- Offline pheromone update
 - > Similarly to MMAS is applied at the end of iteration by only one ant
 - $\triangleright L_{best}$ can be either the L_{ib} or the L_{bs}

$$\tau_{ij}(t+1) \leftarrow \begin{cases} (1-\rho) \cdot \tau_{ij}(t) + \rho \cdot \Delta \tau_{ij} & \text{if } (i,j) \text{ belongs to best tour,} \\ (1-\rho) \cdot \tau_{ij}(t) & \text{otherwise,} \end{cases}$$

- Pseudorandom Proportional rule
 - The probability for an ant to move from city i to city j depends on a random variable q uniformly distributed over [0, 1]
 - \Rightarrow if $q \le q0$, then $j = \arg\max_{c_{il} \in \mathbb{N}(s^p)} \left\{ \tau_{il} \eta_{il}^{\beta} \right\}$, otherwise original Equation is used

□ City Coordinates

1	2	3	4	5
(70, 42)	(48, 40)	(2, 58)	(46, 12)	(76, 15)

- \Box Distance d_{ij} between any two cities i and j
 - $\circ d_{ij} = Round(d_{ij}, 0)$

	1	2	3	4	5
1	0	22	69	38	27
2	22	0	49	28	37
3	69	49	0	63	85
4	38	28	63	0	30
5	27	37	85	30	0

Parameters

$$\circ \alpha = 1$$
, $\beta = 1$, $\rho = 0.5$, $Q = 100$, $Start\ City = 1$

□ Pheromone Matrix

 \circ For every edge(i, j) set an initial value $\tau_{ij} = 1$

	1	2	3	4	5
1	0	1	1	1	1
2	1	0	1	1	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	0

$$\circ k = 1$$
, $s^p = \{1\}$, $N(s^p) = \{2, 3, 4, 5\}$, $Selected = C_{1 \to 5}$

$C_{i o j}$	d_{ij}	$ au_{ij}$	P_{ij}^k
$C_{1 o 2}$	22	1	$\frac{1^{1} \cdot \left(\frac{1}{22}\right)^{1}}{1^{1} \cdot \left(\frac{1}{22}\right)^{1} + 1^{1} \cdot \left(\frac{1}{69}\right)^{1} + 1^{1} \cdot \left(\frac{1}{38}\right)^{1} + 1^{1} \cdot \left(\frac{1}{27}\right)^{1}} = 0.37$
$C_{1 o 3}$	69	1	$\frac{1^{1} \cdot \left(\frac{1}{69}\right)^{1}}{1^{1} \cdot \left(\frac{1}{22}\right)^{1} + 1^{1} \cdot \left(\frac{1}{69}\right)^{1} + 1^{1} \cdot \left(\frac{1}{38}\right)^{1} + 1^{1} \cdot \left(\frac{1}{27}\right)^{1}} = 0.12$
$C_{1 o 4}$	38	1	$\frac{1^{1} \cdot \left(\frac{1}{38}\right)^{1}}{1^{1} \cdot \left(\frac{1}{22}\right)^{1} + 1^{1} \cdot \left(\frac{1}{69}\right)^{1} + 1^{1} \cdot \left(\frac{1}{38}\right)^{1} + 1^{1} \cdot \left(\frac{1}{27}\right)^{1}} = 0.21$
$C_{1 o 5}$	27	1	$\frac{1^{1} \cdot \left(\frac{1}{27}\right)^{1}}{1^{1} \cdot \left(\frac{1}{22}\right)^{1} + 1^{1} \cdot \left(\frac{1}{69}\right)^{1} + 1^{1} \cdot \left(\frac{1}{38}\right)^{1} + 1^{1} \cdot \left(\frac{1}{27}\right)^{1}} = 0.30$

$$\circ k = 1$$
, $s^p = \{1, 5\}$, $N(s^p) = \{2, 3, 4\}$, $Selected = C_{5\rightarrow 2}$

$C_{i o j}$	d_{ij}	$ au_{ij}$	P_{ij}^k
$C_{5 o 2}$	37	1	$\frac{1^{1} \cdot \left(\frac{1}{37}\right)^{1}}{1^{1} \cdot \left(\frac{1}{37}\right)^{1} + 1^{1} \cdot \left(\frac{1}{85}\right)^{1} + 1^{1} \cdot \left(\frac{1}{30}\right)^{1}} = 0.38$
$C_{5 o 3}$	85	1	$\frac{1^{1} \cdot \left(\frac{1}{85}\right)^{1}}{1^{1} \cdot \left(\frac{1}{37}\right)^{1} + 1^{1} \cdot \left(\frac{1}{85}\right)^{1} + 1^{1} \cdot \left(\frac{1}{30}\right)^{1}} = 0.16$
$C_{5 o4}$	30	1	$\frac{1^{1} \cdot \left(\frac{1}{30}\right)^{1}}{1^{1} \cdot \left(\frac{1}{37}\right)^{1} + 1^{1} \cdot \left(\frac{1}{85}\right)^{1} + 1^{1} \cdot \left(\frac{1}{30}\right)^{1}} = 0.46$

$$\circ k = 1$$
, $s^p = \{1, 5, 2\}$, $N(s^p) = \{3, 4\}$, $Selected = C_{2\rightarrow 4}$

$C_{i o j}$	d_{ij}	$ au_{ij}$	P_{ij}^k
$C_{2 o 3}$	49	1	$\frac{1^{1} \cdot \left(\frac{1}{49}\right)^{1}}{1^{1} \cdot \left(\frac{1}{49}\right)^{1} + 1^{1} \cdot \left(\frac{1}{28}\right)^{1}} = 0.36$
$C_{2 o4}$	28	1	$\frac{1^1 \cdot \left(\frac{1}{28}\right)^1}{1^1 \cdot \left(\frac{1}{49}\right)^1 + 1^1 \cdot \left(\frac{1}{28}\right)^1} = 0.64$

$$\circ k = 1$$
, $s^p = \{1, 5, 2, 4\}$, $N(s^p) = \{3\}$, $Selected = C_{4\to 3}$

$C_{i o j}$	d_{ij}	$ au_{ij}$	P_{ij}^k
$C_{4 o 3}$	63	1	$\frac{1^1 \cdot \left(\frac{1}{63}\right)^1}{1^1 \cdot \left(\frac{1}{63}\right)^1} = 1$

$$\circ s_{best} = \emptyset$$
, $L_{best} = inf$

ant_k	L_k	s_k	L _{best}	S _{best}
ant_1	224	{ 1, 5, 2, 4, 3 }	224	{ 1, 5, 2, 4, 3 }
ant ₂	214	{ 1, 4, 3, 2, 5 }	214	{ 1, 4, 3, 2, 5 }
ant_3	257	{ 1, 3, 5, 2, 4 }	214	{ 1, 4, 3, 2, 5 }
ant_4	221	{ 1, 3, 4, 5, 2 }	214	{ 1, 4, 3, 2, 5 }
ant_5	225	{ 1, 2, 4, 3, 5 }	214	{ 1, 4, 3, 2, 5 }

- \Box *Iteration* = 1
 - Pheromone Evaporation

	1	2	3	4	5
1	0	$1 \cdot (1-\rho) = 0.5$			
2	$1 \cdot (1-\rho) = 0.5$	0	$1 \cdot (1-\rho) = 0.5$	$1 \cdot (1-\rho) = 0.5$	$1 \cdot (1-\rho) = 0.5$
3	$1 \cdot (1-\rho) = 0.5$	$1 \cdot (1-\rho) = 0.5$	0	$1 \cdot (1-\rho) = 0.5$	$1 \cdot (1-\rho) = 0.5$
4	$1 \cdot (1-\rho) = 0.5$	$1 \cdot (1-\rho) = 0.5$	$1 \cdot (1-\rho) = 0.5$	0	$1 \cdot (1-\rho) = 0.5$
5	$1 \cdot (1-\rho) = 0.5$	0			

$$\bigcirc k = 1$$
, $s = \{1, 5, 2, 4, 3\}$, $L_1 = 224$, $\Delta \tau_{ij}^1 = 0.45$

	1	2	3	4	5
1	0	0.5	$0.5 + \Delta \tau_{ij}^1$	0.5	$0.5 + \Delta \tau_{ij}^1$
2	0.5	0	0.5	$0.5 + \Delta \tau_{ij}^1$	$0.5 + \Delta \tau_{ij}^1$
3	$0.5 + \Delta \tau_{ij}^1$	0.5	0	$0.5 + \Delta \tau_{ij}^1$	0.5
4	0.5	$0.5 + \Delta \tau_{ij}^1$	$0.5 + \Delta \tau_{ij}^1$	0	0.5
5	$0.5 + \Delta \tau_{ij}^1$	$0.5 + \Delta \tau_{ij}^1$	0.5	0.5	0

$$0k = 2$$
, $s = \{1, 4, 3, 2, 5\}$, $L_2 = 214$, $\Delta \tau_{ij}^2 = 0.47$

	1	2	3	4	5
1	0	0.5	0.95	$0.5 + \Delta \tau_{ij}^2$	$0.95 + \Delta \tau_{ij}^2$
2	0.5	0	$0.5 + \Delta \tau_{ij}^2$	0.95	$0.95 + \Delta \tau_{ij}^2$
3	0.95	$0.5 + \Delta \tau_{ij}^2$	0	$0.95 + \Delta \tau_{ij}^2$	0.5
4	$0.5 + \Delta \tau_{ij}^2$	0.95	$0.95 + \Delta \tau_{ij}^2$	0	0.5
5	$0.95 + \Delta \tau_{ij}^2$	$0.95 + \Delta \tau_{ij}^2$	0.5	0.5	0

$$0k = 3$$
, $s = \{1, 3, 5, 2, 4\}$, $L_3 = 257$, $\Delta \tau_{ij}^3 = 0.39$

	1	2	3	4	5
1	0	0.5	$0.95 + \Delta \tau_{ij}^3$	$0.97 + \Delta \tau_{ij}^3$	1.42
2	0.5	0	0.97	$0.95 + \Delta \tau_{ij}^3$	$1.42 + \Delta \tau_{ij}^3$
3	$0.95 + \Delta \tau_{ij}^3$	0.97	0	1.42	$0.5 + \Delta \tau_{ij}^3$
4	$0.97 + \Delta \tau_{ij}^3$	$0.95 + \Delta \tau_{ij}^3$	1.42	0	0.5
5	1.42	$1.42 + \Delta \tau_{ij}^3$	$0.5 + \Delta \tau_{ij}^3$	0.5	0

$$\bigcirc k = 4$$
, $s = \{1, 3, 4, 5, 2\}$, $L_4 = 221$, $\Delta \tau_{ij}^4 = 0.45$

	1	2	3	4	5
1	0	$0.5 + \Delta \tau_{ij}^4$	$1.34 + \Delta \tau_{ij}^4$	1.36	1.42
2	$0.5 + \Delta \tau_{ij}^4$	0	0.97	1.34	$1.81 + \Delta \tau_{ij}^4$
3	$1.34 + \Delta \tau_{ij}^4$	0.97	0	$1.42 + \Delta \tau_{ij}^4$	0.89
4	1.36	1.34	$1.42 + \Delta \tau_{ij}^4$	0	$0.5 + \Delta \tau_{ij}^4$
5	1.42	$1.81 + \Delta \tau_{ij}^4$	0.89	$0.5 + \Delta \tau_{ij}^4$	0

$$0k = 5$$
, $s = \{1, 2, 4, 3, 5\}$, $L_5 = 225$, $\Delta \tau_{ij}^5 = 0.44$

	1	2	3	4	5
1	0	$0.95 + \Delta \tau_{ij}^5$	1.79	1.36	$1.42 + \Delta \tau_{ij}^5$
2	$0.95 + \Delta \tau_{ij}^5$	0	0.97	$1.34 + \Delta \tau_{ij}^5$	2.26
3	1.79	0.97	0	$1.87 + \Delta \tau_{ij}^5$	$0.89 + \Delta \tau_{ij}^5$
4	1.36	$1.34 + \Delta \tau_{ij}^5$	$1.87 + \Delta \tau_{ij}^5$	0	0.95
5	$1.42 + \Delta \tau_{ij}^5$	2.26	$0.89 + \Delta \tau_{ij}^5$	0.95	0

- \Box *Iteration* = 1
 - Pheromone Matrix

	1	2	3	4	5
1	0	1.39	1.79	1.36	1.86
2	1.39	0	0.97	1.78	2.26
3	1.79	0.97	0	2.31	1.33
4	1.36	1.78	2.31	0	0.95
5	1.86	2.26	1.33	0.95	0

OCurrent Minimum Cost: 214

OBest Path So Far: [1, 4, 3, 2, 5]

- □ In the next iteration
 - Replace the current best path with a new one if its cost is lower than the original path
 - Repeat the steps until the end criteria are met
 - > The maximum number of iteration is achieved
 - > The value repeats more than the allowed number of times
- □ Result
 - OMinimum Cost: 191
 - OBest Path: [1, 2, 3, 4, 5] *or* [1, 5, 4, 3, 2]
- □ ACO do not promise an optimal solution to the problem

□ Ant Colony Optimization

Exercise: Traveling Salesman Problem

Parameters

$$\circ \alpha = 1$$
, $\beta = 1$, $\rho = 0.5$, $Q = 100$, $Start\ City = 1$

□ City Coordinates

1	2	3	
(46, 4)	(44, 10)	(32, 97)	

□ Pheromone Matrix

	1	2	3
1	0	1	1
2	1	0	1
3	1	1	0

Exercise: Traveling Salesman Problem

- □ Suppose we have a TSP problem with 3 cities
 - The distance between cities is given by the following matrix

	1	2	3
1	0	6	94
2	6	0	87
3	94	87	0

- What is the min cost and best path in Dynamic Programming and Ant Colony Optimization?
- □ Compare the differences between these two algorithm