LED blinker: solution

Introduction to digital Low-Level Radio Frequency Controls in Accelerators

Lab 3 Qiang Du

Contents

1	Solutions	Solutions														2										
	1.1 RTL log	gic																								2
	1.2 Your tu																									9

1 Solutions

1.1 RTL logic

If the frequency of clk is 100 MHz, what's the expected LED blinking rate for each bit?

The following gtkwave simulation shows that the least significant bit cnt[0] is blinking at frequency of 50 MHz, or $100^6/2^1$ Hz.

Given the MSB is 27, the 4 LEDs are blinking at the rate of:

```
LED3: bit 27, 100^6/2^{28} = 0.37 Hz
LED2: bit 26, 100^6/2^{27} = 0.76 Hz
LED1: bit 25, 100^6/2^{26} = 1.49 Hz
LED0: bit 24, 100^6/2^{25} = 2.98 Hz
```

1.2 Your turn: make the LED dimmable

Any implementation of PWM is acceptable. The idea is to stop the counter at a given setpoint, and then reset and repeat.

The following example is from one of the top search results of "FPGA PWM" fpga4fun.com, and just wire the 4 LEDs to the PWM module, and set the PWM_in port to a ramping setpoint using different bits of the same counter, so the 4 LEDs will change the dimming brightness over time.

```
New led_test.v:
module led_test #(
    parameter MSB = 27
) (
    input clk,
    input reset,
    output [3:0] led
);
```

```
reg [31:0] cnt=0;
always @(posedge clk) begin
    cnt <= reset ? 32'h0 : cnt + 1'b1;</pre>
end
PWM PWM_3 (.clk(clk), .PWM_in(cnt[MSB-0:MSB-3]), .PWM_out(led[3]));
PWM PWM 2 (.clk(clk), .PWM in(cnt[MSB-1:MSB-4]), .PWM out(led[2]));
PWM PWM 1 (.clk(clk), .PWM in(cnt[MSB-2:MSB-5]), .PWM out(led[1]));
PWM PWM 0 (.clk(clk), .PWM in(cnt[MSB-3:MSB-6]), .PWM out(led[0]));
endmodule
// https://www.fpga4fun.com/PWM_DAC_1.html
module PWM(
    input clk,
    input [3:0] PWM in,
    output PWM_out
);
reg [3:0] cnt=0;
reg cnt_dir=0; // O to count up, 1 to count down
wire [3:0] cnt next = cnt dir ? cnt-1'b1 : cnt+1'b1;
wire cnt end = cnt dir ? cnt==4'b0000 : cnt==4'b1111;
always @(posedge clk) cnt <= cnt_end ? PWM_in : cnt_next;</pre>
always @(posedge clk) cnt_dir <= cnt_dir ^ cnt_end;</pre>
assign PWM out = cnt dir;
endmodule
The
      following
                simulation
                            shows
                                    details
                                             when
                                                    setting
                                                            the
                                                                  MSB
                                                                            8.
                                                                        to
```


The synthesized file now results in a changing brightness with a period. For LED3, this period is defined by the frequency of cnt[27:24].