Лабораторная работа 5.5.5. Компьютерная сцинтилляционная γ -спектрометрия

Мельникова Юлия, Калинин Даниил, Б01-108 $6 \ \mbox{ноября} \ 2023 \ \mbox{г}.$

Цель работы: В данной работе проводится исследование спектров γ -лучей от различных образцов при помощи сцинтилляционных γ -спектрометров на основе неорганического кристалла NaI(Tl) и органической сцинтиллирующей пластмассы.

В работе используются: Схема экспериментальной установки отображена на рис. 1. В работе используются:

- 1. Сцинтиллятор
- 2. Фотоэлектронный умножитель (ФЭУ)
- 3. Предусилитель импульсов
- 4. Высоковольтный блок питания ФЭУ
- 5. Блок АЦП
- 6. Компьютер для сбора данных

Исходные данные:

Спектры, полученные по результатам проведения опытов, представлены на рис. 2-7.

Ход работы:

После проверки работоспособности приборов и калибровки проведём измерение фона. Соответствующий спектр отображён на рис. 7.

Также найдём и проанализируем пики полного поглощения для веществ 22 Na, 60 Co, 137 Cs, 152 Eu и 241 Am. Результаты анализа и апроксимации пиков отображены на рис. 8-12 соответственно.

В каждом спектре определим номера каналов, отвечающие центрам пиков полного поглощения излучения от радиоактивных источников 22 Na и 137 Cs. Этим каналам присваивают соответствующие табличные значения энергий и проводят линейную аппроксимацию зависимости энергии от номера канала для данного γ -спектрометра при данной геометрии измерения и настройках γ -спектрометра. Построим калибровочный

Рис. 1: Принципиальная схема экспериментальной установки

Рис. 2: Спектр ²²Na

Рис. 3: Спектр ⁶⁰Со

Рис. 4: Спектр $^{152}\mathrm{Eu}$

Рис. 5: Спектр ²⁴¹Аm

Рис. 6: Спектр $^{137}\mathrm{Cs}$

Рис. 7: Спектр, соответствующий фону

Peak Analysis

Рис. 8: Пики полного поглощения для $^{22}{\rm Na}$

Peak Analysis

Рис. 9: Пики полного поглощения для $^{60}\mathrm{Co}$

Peak Analysis

Рис. 10: Пики полного поглощения для $^{137}\mathrm{Cs}$

Peak Analysis

Рис. 11: Пики полного поглощения для $^{152}{\rm Eu}$

Peak Analysis

Рис. 12: Пики полного поглощения для $^{241}\mathrm{Am}$

Рис. 13: Калибровочный график $N_i=a+bE_i$

Рис. 14: Сравнение теоретических и практических значений максимальной энергии при эффекте Комптона

Источник	N_i	ΔN_i	E_i , МэВ	ΔE_i , МэВ	R_i
²² Na	719±1	50.3 ± 0.5	0.511 ± 0.001	0.038 ± 0.001	0.070 ± 0.001
	1695±2	68±4	1.274 ± 0.003	0.051 ± 0.003	0.040 ± 0.004
⁶⁰ Co	1567 ± 1	75±1	1.168 ± 0.001	0.058 ± 0.001	0.049 ± 0.002
	1771±1	80±2	1.327 ± 0.001	0.062 ± 0.002	0.047 ± 0.003
$^{137}\mathrm{Cs}$	914±1	57±1	0.662 ± 0.001	0.044 ± 0.001	0.066 ± 0.001
¹⁵² Eu	114.8 ± 0.1	15±1	0.039 ± 0.001	0.011 ± 0.001	0.280 ± 0.003
Eu	227±1	15 ± 0.5	0.126 ± 0.001	0.011 ± 0.002	0.081 ± 0.001
$^{241}\mathrm{Am}$	145.5 ± 0.5	11±1	0.0630 ± 0.0005	0.008 ± 0.001	0.128 ± 0.002
	99.3 ± 0.5	14.1 ± 0.5	0.027 ± 0.001	0.0103 ± 0.0005	0.370 ± 0.002

Таблица 1: Сводная таблица пиков

график зависимости номера канала от энергии γ -кванта на рис. 13. Из него можно получить формулу для энергии: $E_i = N_i/1286 - 0.047$ МэВ. Используя калибровочный график, определим для всех остальных источников значения энергии пиков полного поглощения E_i , их ширины на половине высоты ΔE_i и энергетическое разрешение R_i . Результаты сохраним в таблице 1.

По результатам измерения энергии края комптоновского поглощения (табл. 2) построим график 14, по одной оси которого отложим экспериментальные значения, а по другой – расчетные значения этой энергии.

	$E_{\mathrm{.max}}$, МэВ		
	Эксп.	Teop.	
^{22}Na	1.041	1.062	
$^{60}\mathrm{Co}$	1.002	0.963	
$^{137}\mathrm{Cs}$	0.497	0.477	

Таблица 2: Результаты измерения энергии края комптоновского поглощения

Для проверки зависимости (1), построим по полученным данным график 15. Значение минимальной энергии для 241 Am исключим из рассмотрения из-за большой погрешности.

Далее, построим график зависимости энергии пика обратного рассеяния от энергии на рис. 16.

По данным осциллографа, отображённым на рис. \ref{puc} , где виден импульс от высокоэнергетической частицы, из соотношения \ref{puc} 0 оценим величины \ref{puc} 0 и \ref{puc} 0 по переднему и заднему фронтам импульса соответственно

$$\tau_0 \approx 0.8 \pm 0.03 \text{ MC},$$

$$RC pprox 2 \pm 0.4$$
 мс.

Оценка погрешностей: В данной работе крайне сложно проводить оценку погрешностей по причине характера исходных данных. В частности, не представляется возможным сделать оценку инструментальных погрешностей. Поэтому все оценки погрешностей проводились исключительно из статистических

Рис. 15: График зависимости $R_i = f(1/E_i)$

Рис. 16: Теоретическая и экспериментальная зависимости $E_{\mathrm{ofp}} = f(E_i)$

соображений, посчитаны из апроксимации пиков и являются существенно заниженными. Погрешности косвенных измерений рассчитаны по стандартной формуле.

Заключение:

В ходе работы после калибровки прибора были сняты спектры образцов 22 Na, 60 Co, 137 Cs, 241 Am, 152 Eu. В спектрах были исследованы пики, соответствующие следующим взаимодействиям гамма-квантов с веществом:

- фотоэффект (пики полного поглощения)
- эффект Комптона (характерное распределение энергий в спектре, оканчивающееся комптоновским краем)
- обратное рассеяние (пики обратного рассеяния)
- аннигиляция позитронов (пик 511 кэВ в спектре натрия, по которому проводилась калибровка)

Также была проверена линейная зависимость квадрата спектрального разрешения прибора от величины, обратной энергии полного поглощения.

Проведено сравнение спектров 137 Cs для двух разных сцинтилляторов: на красталлах NaI(Tl) и на органической сцинтиллирующей пластмассе. Также даны оценки характеристик экспериментальной установки – времени высвечивания сцинтиллятора, а также постоянной времени анодной цепи $\Phi \ni V$.