

Lightweight Attentional Feature Fusion: A New Baseline for Text-to-Video Retrieval

Fan Hu , Aozhu Chen , Ziyue Wang, Fangming Zhou, Jianfeng Dong, Xirong Li MoE Key Lab of DEKE, Renmin University of China AIMC Lab, School of Information, Renmin University of China College of Computer and Information Engineering, Zhejiang Gongshang University

1. Summary

Background:

Given video/text samples represented by diverse features, we need an **optimal** way to combine these features.

Challenges:

- 1. Previous feature fusion SOTAs are either **too simple** (average, concatenation) or **too heavy** (Transformers).
- 2. Previous researches are **modality specific** and lack interpretation.

Our Solution:

Lightweight Attentional Feature Fusion (LAFF)

2. Proposed LAFF

Fig.1. LAFF block

2.1 The LAFF Block

- Feature transformation layer to rectify the diverse features to the same length.
- ➤ Linear and Softmax to obtain the weights of different features.

Fig.2. Paired LAFFs

2.2 Paired LAFFs for Text-to-Video Retrieval

- > LAFF for both text and video feature fusion.
- ➤ Multi-head idea to get the fusion feature for different paired LAFFs.

3. Experiments

3.1 Verification Study on MSRVTT

Feature Fusion block	Parameters	FLOPs (M)	
MHSA	$D \times d + 4 \times d^2$	94.90	LAFF is Lightweight
LAFF	$D \times d + d$	27.80	

D: the overall dimension of the input features d: the dimension of the output features

Fusion block	R1	R5	R10	\mathbf{Medr}	mAP
MHSA	18.8	43.0	54.6	8	0.305
LAFF	23.7	49.1	60.6	6	0.358 (15.5%↑)

LAFF is **effective**

Hillary Clinton gives a speech on race

LAFF can **select features** according to the attentional weights

3.2 Comparison with SOTA

CLIP2Video [17]

Model	MV-test $3k$		MV-test1 k		MSVD		TGIF			VATEX					
	R1	R5	R10	R1	R5	R10	R1	R5	R10	R1	R5	R10	R1	R5	R10
CLIP-FT (this paper)	27.7	53.0	64.2	39.7	67.8	78.4	44.6	74.7	84.1	21.5	40.6	49.9	53.3	87.5	94.0
The same video and te	ext fe	atur	e as	ours											
JE [41] (uniform weights)	21.2	46.5	58.4	36.0	65.9	76.4	35.9	71.0	81.8	18.7	37.5	47.1	50.2	88.7	95.4
JE (0.8 for clip-ft)	26.1	51.7	63.3	41.2	73.2	82.5	39.4	69.9	79.4	21.7	41.3	50.9	54.1	89.0	95.0
JE $(0.9 \text{ for } clip\text{-}ft)$	25.9	51.4	63.0	40.9	72.7	82.1	38.8	69.7	78.9	21.3	40.9	50.3	53.5	88.3	94.6
W2VV++ [28]	23.0	49.0	60.7	39.4	68.1	78.1	37.8	71.0	81.6	22.0	42.8	52.7	55.8	91.2	96.0
SEA [31]	19.9	44.3	56.5	37.2	67.1	78.3	34.5	68.8	80.5	16.4	33.6	42.5	52.4	90.2	95.9
MMT [19]	24.9	50.5	62.0	39.5	68.3	78.3	40.6	72.0	81.7	22.1	42.2	51.7	54.4	89.2	95.0
LAFF	28.0	53.8	64.9	42.2	70.7	81.2	45.2	75.8	84.3	24.1	44.7	54.3	57.7	91.3	95.9
LAFF-ml	29.1	54.9	65.8	42.6	71.8	81.0	45.4	76.0	84.6	24.5	45.0	54.5	59.1	91.7	96.3

➤ With the same video and text feature, LAFF perform best compare to Baselines.

n.a n.a n.a 44.5 71.3 80.6 44.7 74.8 83.7 n.a n.a n.a 54.8 89.1 95.1 n.a n.a n.a 45.8 71.5 82.0 45.4 75.5 84.1 n.a n.a n.a 58.3 91.7 96.3

➤ Including the global video/text features extracted by CLIP2Video (arXiv SOTA), LAFF can flexibly harness new and more powerful features.