Overview

- Theory and Background (Andrea, 15m)
- Properties and Taxonomy (Thomas, 12m)
 - Skeletonization Properties
 - Taxonomy of Skeletons
 - Question (5m)
- Skeletonization Methods (Andrea, 12m)
 - Questions (5m)
- Analyzing Skeletons (Thomas, 10m)
- Applications (Thomas, 10m)
- Conclusions (Andrea, 10m)
 - Questions (10m)

Properties of skeletonizations

Property	[CSM07]	[SYJT13]	[SJT14]	[SBdB15]
Homotopy	√	√	√	\checkmark
Invariance	\checkmark	\checkmark		
Thinness	\checkmark	\checkmark	\checkmark	
Centeredness	\checkmark	\checkmark	\checkmark	
Smoothness	\checkmark	\checkmark	\checkmark	
Details	\checkmark	\checkmark		
Regularization	\checkmark	\checkmark	\checkmark	\checkmark
Reconstructibility	\checkmark			
Scalability			√	\checkmark

skeleton(ization) properties and their coverage in previous surveys

[Cornea et al. TVCG'13] Curve-Skeleton Properties, Applications and Algorithms [Sobiecki et al. ISMM'13] A survey on voxel-based skeletonization algorithms and their applications [Sobiecki et al. PRL'14] Comparison of curve and surface skeletonization methods for voxel shapes [Saha PRL'15] A survey on skeletonization algorithms and their applications

Homotopy

Practical skeletons should maintain the homotopy of their formal def.

- disconnected parts when regularization is too aggressive
- tunnels (dis)appear for low resolution input models [SYJT13,SJT13]
- defects affect topology-based analyses [SSGD03]

from lower resolution input shape

from higher resolution input shape

Invariance

For T an isometric transform, MAT(T(O)) = T(MAT(O))

- analytic methods (in \mathbb{R}^3) are **invariant**
- voxel-based methods cannot be fully invariant
 - especially true for chamfer distances
 - better for exact Euclidean distance transforms [MQR03,HR08]
- without invariance one needs to be careful about shape orientation

Thinness

Practical skeletons should be as thin as allowed by the space sampling

- mesh-based skeletons achieve zero-thickness
- issues for voxel-based skeletons
 - lower bounded by fixed grid resolution
 - conflicts with centeredness
 - --- cannot use exact distance comparisons in Maxwell set definition

Centeredness

Skeleton points should be at equal distance from n > 2 surface points

- voxel-based skeletons cannot be perfectly centered
- no universally accepted definition for curve skeletons
- critical for shape reconstruction [ASS11] and metrology [JKT13]

Smoothness

Practical skeletons should be piecewise-smooth (C^2)

- how to assess when skeletons are smooth enough?
- limited by space sampling in \mathbb{Z}^3
- depends on the local surface point density in \mathbb{R}^3
- improved by filtering [ATC*08,HF09,JT12]
- unconstrained smoothness adversely affect centeredness

smoothness improved surface skeletons [JT12]

Detail Preservation

Practical skeletons should capture all shape topology and geometry

- detect junction, perform component-wise differentiation of input shape
- conflicts with semi-continuity/instability of the MAT
- distinction shape details vs noise?
- important for global shape matching, retrieval & reconstruction [CSM07,RvWT08a]

part-based shape segmentation using skeletons

Regularization

Key MAT's challenge: sensitivity to small shape changes / noise

- regularization: removal of instability to make the MAT robust to noise
 - local criteria [ACK01,HR08,FLM03,CL05a]
 - no way to separate locally identical, yet globally different, contexts
 - simple to compute, can disconnect skeletons
 - global criteria [BGP10,DS06,RvWT08a]
 - measures monotonically increase from skeleton boundary inwards
 - thresholding measures preserves homotopy
- conflicts with detail preservation

Reconstruction

In theory, we can exactly reconstruct a shape from its MAT, but:

- representation & computation approximations
- sampling limits
- regularization & smoothing filters
- exact reconstruction is rarely possible

Scalability & Speed

Need for interactive & scalable 3D skeletonizations [CSM07]

- Voronoi-based $O(n \cdot \log(n))$ for n shape samples*
- distance-based $O(T \cdot \log ||S||)$, ||S|| shape boundary length, T average shape thickness [TvW02,FSL04]
- contraction & ball-inscription $O(n \cdot s)$ for n samples and s iterations [MBC12,JKT13]

Parallelizing practical skeleton detection operations

- e.g. ball inscription [MBC12,JKT13], distance transform [CTMT10]
- highly increase speed
- complex implementations

^{* [}Attali et al., SCG'03] Complexity of the delaunay triangulation of points on surfaces: the smooth case

Overview

- Theory and Background (Andrea, 15m)
- Properties and Taxonomy (Thomas, 12m)
 - Skeletonization Properties
 - Taxonomy of Skeletons
 - Question (5m)
- Skeletonization Methods (Andrea, 12m)
 - Questions (5m)
- Analyzing Skeletons (Thomas, 10m)
- Applications (Thomas, 6m)
- Conclusions (Andrea, 10m)
 - Questions (10m)

Taxonomy of Skeletons

Skeletonizations as a multidimensional attribute space

- points are skeletonization methods
- attributes describe how well a method complies with properties
- present such space via a taxonomy

Type of components

- curves only for Curve Skeleton
- surfaces as well for Surface Skeleton

Space sampling

- \mathbb{R}^3 sampling for Analytic Skeleton
- \mathbb{Z}^3 sampling for Image Skeleton