Procesador

El microprocesador o CPU

Es un componente informático. También llamado procesador, micro o CPU

Aparecen en torno a 1978 y dan inicio a la 4ª generación de ordenadores

_Ejecuta las instrucciones _ de un programa.

Para ello realiza operaciones lógicas, aritméticas, de control y de entrada/salida

¿Cómo están fabricadas?

CPUs actuales están dentro de un único __circuito integrado __ junto con otros componentes.

Este circuito integrado está compuesto por millones de transistores.

Principales fabricantes

AMD vs Intel Market Share Updated 12th of November 2017

Parámetros de los procesadores

Parámetros de un procesador

Velocidad de reloj (MHz y GHz)

• La _velocidad del reloj o frecuencia _ determina la cantidad de operaciones que puede realizar el procesador por segundo.

- La frecuencia se mide en hercios (Hz).
 - o 1 Kilohercio (KHz) equivale a 1.000 Hercios.
 - o 1 Megahercio (MHz) equivale a 1.000.000 Hercios.
 - o 1 **Gigahercio** (GHz) equivale a 1.000.000.000 Hercios.
- La velocidad del reloj
 - No indica la velocidad **real** del microprocesador.
 - o Intervienen la eficacia del microprocesador, la tecnología, el número de núcleos, etc.

Frecuencia: evolución histórica

- Bus frontal (FSB)
- El bus que comunica el **microprocesador** con la placa base (**northbridge**)
- Bus de sistema de alta velocidad
- En los procesadores actuales sustituye al bus frontal
- Cada fabricante lo llama de una manera
 - Quick path interconnect o **QPI** (Intel)
 - Hypertransport o **HTT** (AMD)

Funcionamiento de la caché

- Cuando envía un programa a la CPU, realmente ejecuta muchos pequeños programas al mismo tiempo
- En el momento en que se ejecuta un programa:
 - Windows comienza a enviar muchos programas a la CPU.
 - o Cada uno de estos programas se divide en algunas piezas pequeñas, llamadas hilos y datos.
 - Cada hilo es una serie de instrucciones diseñadas para hacer un trabajo particular con los datos.
- Las CPU modernas ejecutan varios hilos o programas al mismo tiempo
- Muchas aplicaciones tienen instrucciones y datos que se vuelven a utilizar, a veces muchas veces .

Funcionamiento de la caché

- La CPU está desaprovechada
- La CPU _ejecuta más rápido _ de lo que la RAM puede suministrarle la información
- Siempre tendrá tiempos de espera mientras espera que la RAM envíe más información
- Objetivo: Reducir los estados de espera
- Las CPU vienen con una RAM incorporada de muy alta velocidad llamada RAM estática (SRAM)

- o Precarga tantas instrucciones como sea posible
- Guarda copias _ de las instrucciones y datos ya ejecutados para cuando CPU los necesite de nuevo

• La SRAM utilizada de esta manera se llama caché

Memoria caché interna

- Caché X Mbytes
 - X: Valor compartido por todos los núcleos
- Caché X KBytes + Y KBytes
 - X: Para instruccions
 - Y: Para datos
- Caché X x Y Mbytes
 - o X: Número de núcleos
 - Y: Capacidad memòria por núcleo
- Existen varios tipos de caché:
- L1 o primaria de nivel 1.
 - o Integradas en el núcleo del microprocesador y funciona a la máxima velocidad.
- _L2 y L3 o de nivel 2 y 3. __
 - Conectadas al micro mediante el back side bus (bus trasero) el cual es más rápido que el bus frontal.
 - o Pueden estar implementadas en el núcleo, encapsulado o ser externas.
 - La caché L2 es más lenta que la L1 y la L3 que la L2.

Niveles de caché

- Ordenadores antiquos
- Primeras cachés: 16 KB
- Muchos fabricantes comenzaron a agregar caché a las placas base.
- Estas memorias caché eran mucho más grandes (128 a 512 KB)
- Cuando la CPU buscaba una línea de código
 - o Busca en la memoria caché incorporada (L1)
 - o Si el código no está allí, la CPU en la memoria caché de la placa base (L2)
- ¿De donde vienen los nombres?
- Caché de la CPU → caché L1 : la 1ª que la CPU intentó usar por primera vez.
- Caché de la PB → **caché L2:** la 2^a memoria caché que comprobó la CPU.
- Finalmente, los ingenieros tomaron este concepto de caché aún más y agregaron la caché L2 en el paquete de la CPU.

Niveles de caché

- Ordenadores actuales
- CPU nuevas incluyen **tres cachés** : un L1, un L2 y un caché L3
- Caché L1
 - Estaba en la CPU y funcionaba a la velocidad de la CPU.
- Caché L2
 - Se conectó a la CPU a través de un pequeño conjunto de cables en el paquete de la CPU.
 - o Primeras caché L2 corrieron a la _mitad de velocidad _ que la CPU.
- Términos para describir conexiones entre la CPU, MCC, RAM y caché L2.
 - Frontside __ bus: __ Bus de direcciones + bus de datos externo (conectan la CPU, MCC y RAM)

- Backside __ bus:__ Conexión entre la CPU y el caché L2 se conoció como el bus de la parte posterior
- Hoy en día estos términos han dejado de usarse

Tecnología de fabricación

- Separación entre los transistores que forman el microprocesador
- Cuanto menor es la separación
 - Mayor la __densidad de integración __ (caben más Transistores)
 - Más rendimiento
- Microprocesadores modernos: tecnología de 14 nanómetros (nm)

1. Overview of the evolution of Intel's basic microarchitectures-4

The cadence of Intel's technology transitions [179]

On Intel's Q2 2015 earnings conference call, on July 16 2015, Krzanich: in the second half of 2017, we expect to launch our first 10-nanometer product, code named Cannonlake.

The last two technology transitions have signaled that our cadence today is closer to 2.5 years than two" [180].

Tecnología de fabricación

En 1965 Gordon Moore predijo que el __número de transistores __ que incorpora un microprocesador se **duplicaría cada 18/24 meses** . A dicha afirmación se le conoce como __Ley de Moore __ y prácticamente se ha cumplido hasta nuestros días.

- Voltaje
- Vcore o voltaje del núcleo
- A mayor voltaje
 - Mayor frecuencia de funcionamiento del procesador
 - Más calor disipado y más consumo de energía
- Hay que respetar los parámetros del fabricante y no modificarlo salvo que se esté seguro de lo que se está haciendo.
- TDP
- En la actualidad se utiliza el Thermal __ _ Design __ _ Power
- Máxima cantidad de calor que necesitar disipar el microprocesador.

_Turbo _ Boost _ _

Tecnología de Intel para **overclocking** automático de un procesador

Aumentando velocidad de reloj superior a la configuración predeterminada.

La CPU controla su temperatura y, cuando está funcionando lo suficientemente fría, aplicará el overclock.

Core i5 e i7 tienen esta tecnología, Core i3 no.

Modelos K

Cualquier CPU que tenga un modelo terminando con un K significa que la CPU está desbloqueada.

Esto significa que puede utilizar la configuración

Unidad de gráficos integrada

- Procesamiento de vídeo y GPU
- PC dedica parte de su procesamiento a colocar una imagen cambiante en el monitor
- Existe un microprocesador con una arquitectura diferente a la CPU
- Término para procesador de video: unidad de procesamiento de gráficos (GPU).
- GPU pueden manejar ciertas tareas _mucho más eficientemente _ que la CPU estándar.
- En los procesadores actuales
- Integración de una GPU en la CPU

- Ventajas:
 - o Mejora el rendimiento general del PC
 - Reduce el uso de *energía* , *tamaño* y *coste* (beneficio en móviles, tablets, portátiles)
- Tanto Intel como AMD producen CPU con GPU integradas.

Unidad de gráficos integrada

Evolución

Intel HD Graphics y Intel Iris Pro Graphics (Core i3 / i5 / i7)

_Ligeramente inferiores _ a la APU de AMD, como AMD A10.

AMD compró **ATI** (uno de los 2 principales fabricantes de GPU)

Utilizó su tecnología para microprocesadores con CPU y GPU integradas (Xbox One y PlayStation 4 usan APU AMD)

Intel está cerrando la brecha poco a poco, pero no está presente en el momento de escribir esto.

Unidad de gráficos integrada

IGP within the same housing as the CPU cores

Unidad de gráficos integrada

- Muchos procesadores actuales tienen chips gráficos (GPU) integrados
- Ejemplos de GPU
 - o __Intel HD Graphics 4600: __ Bien para un poco de juego ligero
 - _Intel HD 4400: _ Bien para algunos juegos más antiguos menos exigentes.
 - Intel Iris Pro (en micros más caros)
 - Son un poco más rápidos en los juegos
 - Pueden hacer frente a 4K de vídeo (edición de vídeo gama alta)
- En caso de necesitar unos requisitos altos de gráficos, lo recomendado es tener una tarjeta gráfica dedicada .

Multinúcleo

Procesadores multinúcleo

- Límites de tecnología de 1 núcleo
 - Las velocidades de reloj alcanzan un límite (4GHz sobre 2002-2003)
 - Aumento temperatura + necesidad refrigeración
 - o Se buscan maneras de obtener más potencia de procesado
- Consecuencia: multinúcleo
 - o AMD-Intel deciden combinar 2 CPU (llamados cores o núcleos) en 1 chip
 - Crean la arquitectura *Dual- core* .
 - Estos 2 núcleos comparten una memoria caché (L3) y RAM
 - Hoy en día arquitecturas de 2,4,8 núcleos

https://www.youtube.com/watch?v=VcoVYfDVEww

- Los **núcleos** son unidades de procesamiento físicas e independientes (como un procesador)
- Según número de núcleos:

- __Dual __ **core** __: __ 2 núcleos
- Quad _ _ core _: _ 4 núcleos
- Octa _ _ core: 8 núcleos
- _Ejemplo procesador Dual Core _
- Puede ejecutar 2 aplicaciones al mismo tiempo
- Cada una en su propio procesador dedicado.

- ¿Cuántos más núcleos mejor?
- Son útiles para:
 - o Aplicaciones de múltiples hilos, como la __edición de vídeo. __
 - o Estas aplicaciones pueden utilizar múltiples núcleos para _mejorar el rendimiento. _
- No son útiles para:
 - Las aplicaciones de un solo hilo
 - o Sólo pueden utilizar un solo núcleo dejando a otros inactivos.
- Conclusiones
 - o Mayoría de aplicaciones no pueden aprovechar al máximo 6 u 8 núcleos
 - o Aumento de rendimiento de los núcleos adicionales no es tan grande.

Parámetros de un procesador

Permite que cada núcleo pueda ejecutar 2 hilos de programa al mismo tiempo.

_Procesador de doble núcleo (Dual _ core)

__Sin HT: __ Tiene 2 cores (reales) y 2 threads (lógicos)

_Con HT: _ Tiene 2 _ cores _ (reales) y 4 threads (lógicos)

Procesador de cuatro núcleos (Quad _ _ core _)_

Sin HT: 4 cores (reales) y 4 threads (lógicos)

_Con HT _ tiene 4 _ cores _ (reales) y 8 threads (lógicos)

Conclusión

SO piensa que la CPU tiene 2x núcleos.

Aumento rendimiento entre un 15% - 30%

¿ Qué _ _ ventajas _ _ tiene ?

Acelera aplicaciones multitarea y multihilo.

No es tan rápido ni tan eficiente como los núcleos "reales"

Es una mejora con respecto a un Core único.

Optimización de la ejecución

Se divide (segmenta) cada instrucción en varias fases.

Cada componente de la CPU puede estar ocupado por una fase distinta de una instrucción distinta.

Se pretende usar todos los componentes de la CPU, el 100% del tiempo.

• Fases de ejecución

- o Búsqueda de la instrucción (fetch).
- o Decodificación de la instrucción (decode) y carga de operandos (load).
- o Ejecución de las operaciones (execute).
- o Escritura de resultados (store).

Parámetros de un procesador

Procesadores de 32 bit y 64 bit

Procesador	SO	Aplicación	Compatibilidad
32 bit	32 bit	32 bit	Funciona
32 bit	32 bit	64 bit	No funciona
32 bit	64 bit	32 bit	No funciona
32 bit	64 bit	64 bit	No funciona
64 bit	32 bit	32 bit	Funciona
64 bit	32 bit	64 bit	No funciona
64 bit	64 bit	32 bit	Funciona
64 bit	64 bit	64 bit	Funciona

Ordenador con procesador 32 bit: Podemos instalar SO de 32

Ordenador con procesador 64 bit: Podemos instalar SO de 32 y de 64

Refrigeración

- Todo componente electrónico al paso de corriente eléctrica genera calor.
- Consecuencias
 - o Dispositivo puede volverse inestable
 - Producir **errores** en su funcionamiento
- Relación Voltaje/Frecuencia vs calor
 - o A mayor voltaje → más calor
 - o A mayor velocidad de trabajo (frecuencia) → más calor
- Solución: _ _
 - o Disipar (extraer) el calor que producen los elementos de un ordenador.

Disipación del calor

Disipadores y ventiladores

Disipadores

A partir del 486 empezaron a utilizar disipadores

Incrementan la superficie de contacto con el aire

Capaces de retirar más calor

Cuanto + aletas y + delgadas \rightarrow + calor se disipa

Ventiladores

A los disipadores se le colocó un ventilador

Aumentaba la refrigeración

Fuerza a que el aire recircule más deprisa.

Solución habitual

Combinación de ventilador + disipador.

Refrigeración **activa** : Disipador + ventilador

Refrigeración **pasiva** : Disipador

- Es recomendable usarla _ _ entre el microprocesador y el disipador
- Favorece la conductividad térmica
- Elimina zonas de no-contacto entre el disipador y el microprocesador
 - Áreas de elevadas temperaturas
 - o Inestabilidad de los semiconductores en forma de "cuelgues"

Difusor térmico integrado (IHS)

http://www.hardwaresecrets.com/thermal-compound-roundup-february-2012/5/

Refrigeración

Refrigeración líquida

- Consiste en extraer el calor de los componentes de un ordenador _utilizando fluidos _ específicos para la conducción del mismo.
- Sistema compuesto de:
 - o Radiador
 - o Depósito
 - o Bomba de agua
 - o Circuito de tubos.
- Más eficaz que refrigeración por aire
- Menos ruidosa.
- Permite refrigerar todos los componentes a la vez (procesador, chipsets, gráfica, disco duro y memoria)
- Cara, compleja y peligrosa

Refrigeración por inmersión

El computador es totalmente sumergido en un líquido de conductividad eléctrica muy baja, como aceite mineral.

Refrigeración por heatpipes

Circuito cerrado en el que un fluido se calienta en la base de contacto con el CPU

Se evapora, sube por una tubería hasta el disipador

Se condensa y baja como líquido a la base nuevamente.

Procesadores en la actualidad Evolucion de los procesadores

Año	Procesador	Frecuencia	Transistores	
1977	8080	2 Mhz	6.000	
1985	386DX	33 Mhz	275.000	
1995	Pentium Pro	200 Mhz	5.500.000	
2003	Pentium 4	3.800 Mhz	125.000.000	1r Hyperthreading
2005	Pentium D	3.700 Mhz	169.000.000	1r dual core
2008	i7 920	2.670 Mhz	731.000.000	1r quad core
2017 (INTEL)	i7 7700K	4.200 Mhz	5.200.000.000	(4 core)
2017 (AMD)	Ryzen 1800X	3.600 Mhz	4.800.000.000	(8 core)

_4004: _ 92.000 instrucciones por segundo

__8080: __ 640.000 instrucciones por segundo

_AMD Athlon FX-60: __ 27.100.000.000 instrucciones por segundo

Procesadores actuales

Tornet Co	_	Processor ¢ branding and model		CPU	CPU to	urbo cloc	k rate			Max							Release
Target segment	Cores (threads)			clock ¢	Single Dual Quad core core	GPU +	EUs ÷	graphics + clock rate	L2 cache	L3 ¢	L4 cache (eDRAM)	TDP ÷	Socket +	Release date	price + (USD)		
	18 (36)		7980XE ₽	2.6 GHz	TBD TBD									September 25,	\$1999		
	16 (32)		7960X₽	2.8 GHz	4.4 GHz	TBD	TBD				1 MB	1.375 MB		165W		2017 ^[77]	\$1699
	14 (28)	Core i9	7940X₽	3.1 GHz	4.4 GHZ	TBD	TBD				×	×				2017	\$1399
Enthusiast/	12 (24)		7920X₽	2.9 GHz		TBD	TBD		N/A		number	number	N/A		LGA 2066	August 28, 2017	\$1189
High-End	10 (20)		7900X₽	3.3 GHz	4.5 GHz	TBD	TBD				of	of	IN/A	140 W			\$999
	8 (16)		7820X₺	3.6 GHz	4.5 GHZ	TBD	TBD				cores	cores		140 W		June 19, 2017	\$599
	6 (12)		7800X₽	3.5 GHz	4.0 GHz	TBD	TBD										\$389
		Coro i7	6700K₽	4.0 GHz	4.2 GHz	4.0 GHz	4.0 GHz	HD 530	24					91 W	LGA 1151	August 5, 2015	\$339
	4 (8)	Core i7	6785R₽	3.3 GHz	3.9 GHz	3.8 GHz	3.5 GHz	Iris Pro 580	72			8 MB	128MB	65 W	FCBGA1440	May 3, 2016	\$370
	4 (0)		6700₺	3.4 GHz	4.0 GHz	3.9 GHz	3.7 GHz	HD 530	24	1150 MHz ^[78]		3 MB			LGA 1151	September 1, 2015	\$303
			6700T₽	2.8 GHz	3.6 GHz	3.5 GHz	3.4 GHz						N/A	35 W			\$303
			6600K₽	3.5 GHz	3.9 GHz	3.8 GHz	3.6 GHz							91 W		August 5, 2015	\$242
			6685R₽	3.2 GHz	3.8 GHz	3.7 GHz	3.3 GHz	Iris Pro 580	72				128MB		FCBGA1440	May 3, 2016	\$288
			6600₽	3.3 GHz	3.9 GHz	3.8 GHz	3.6 GHz	HD 530	24		4× 256 KB		N/A	65 W LGA 1151	LGA 1151	September 1, 2015	\$213
			6585R₽	2.8 GHz	3.6 GHz	3.5 GHz	3.1 GHz	Iris Pro 580	72	1100 MHz	4× 200 KB		128MB	65 W	FCBGA1440	May 3, 2016	\$255
	4 (4)	Core i5	6500₺	3.2 GHz	3.6 GHz	3.5 GHz	3.3 GHz			1050 MHz		6 MP	6 MB			September 1, 2015	\$192
	4 (4)	Core is	6600T₽	2.7 GHz	3.5 GHz	3.4 GHz	3.3 GHz	HD 530	24			6 MB		35 W	IA.	00.0045	\$213
			6500T₽	2.5 GHz	3.1 GHz	3.0 GHz	2.8 GHz			1100 MHz				35 W		Q3 2015	\$192
			6402P₽	2.8 GHz	3.4 GHz	3.4 GHz	3.2 GHz	HD 510	12					65 W		December 27, 2015	
			6400T₽	2.2 GHz	2.8 GHz	2.7 GHz	2.5 GHz			950 MHz				35 W		Q3 2015	\$182
			6400₺	2.7 GHz	3.3 GHz	3.3 GHz	3.1 GHz							65 W		August 5, 2015	
			6320₺	3.9 GHz						1150 MHz		4 MB				TBD	\$149
Mainstream			6300₺	3.8 GHz				HD 530	24	1150 MINZ		4 IVID		51 W		IBD	\$138
	0.40	010	6100₽	3.7 GHz						1050 MHz		3 MB					\$117
	2 (4)	Core i3	6300T₽	3.3 GHz						OEO MUE		4 MB		25 14		October 2015	\$138
			6100T₽	3.2 GHz						950 MHz			NIA	35 W	1.00.4454		6447
			6098P₽	3.6 GHz				HD 510	12				N/A	54 W	LGA 1151	December 27, 2015	\$117

Target cores threads)		\$				CPU	CPU tu	ırbo cloci	k rate			Max							Release
				clock + rate	Single + Dual + Quad + core + core	GPU ÷	EUs \$	graphics \$ clock rate	L2 cache	L3 cache	L4 cache (eDRAM)	TDP \$	Socket +	Release date	price \$ (USD)				
	18 (36)		7980XE ₽	2.6 GHz		TBD	TBD									September 25,	\$1999		
	16 (32)		7960X₽	2.8 GHz	4.4 GHz	TBD	TBD				1 MB	1.375 MB		165W		2017 ^[77]	\$1699		
	14 (28)	Core i9	7940X₽	3.1 GHz	4.4 0112	TBD	TBD				×	×				2011	\$1399		
Enthusiast/	12 (24)		7920X₽	2.9 GHz		TBD	TBD		N/A		number	number	N/A		LGA 2066	August 28, 2017	\$1189		
High-End	10 (20)		7900X₽	3.3 GHz	4.5 GHz	TBD	TBD				of	of	TNO	140 W			\$999		
	8 (16)		7820X ₽	3.6 GHz	4.5 GHZ	TBD	TBD				cores	cores		140 00		June 19, 2017	\$599		
	6 (12)		7800X₽	3.5 GHz	4.0 GHz	TBD	TBD										\$389		
		Core i7	6700K₽	4.0 GHz	4.2 GHz	4.0 GHz	4.0 GHz	HD 530	24					91 W	LGA 1151	August 5, 2015	\$339		
	4 (8)	Cole II	6785R₽	3.3 GHz	3.9 GHz	3.8 GHz	3.5 GHz	Iris Pro 580	72			8 MB	128MB	65 W	FCBGA1440	May 3, 2016	\$370		
	4 (0)		6700₺	3.4 GHz	4.0 GHz	3.9 GHz	3.7 GHz			1150 MHz ^[78]		N/A	65 W		September 1, 2015	\$303			
			6700T₽	2.8 GHz	3.6 GHz	3.5 GHz	3.4 GHz	HD 530	24				N/A	35 W	LGA 1151	Coptombol 1, 2010	\$303		
			6600K₽	3.5 GHz	3.9 GHz	3.8 GHz	3.6 GHz							91 W		August 5, 2015	\$242		
			6685R₽	3.2 GHz	3.8 GHz	3.7 GHz	3.3 GHz	Iris Pro 580	72				128MB		FCBGA1440	May 3, 2016	\$288		
			6600₽	3.3 GHz	3.9 GHz	3.8 GHz	3.6 GHz	HD 530	24		4× 256 KB		N/A	65 W	LGA 1151	September 1, 2015	\$213		
			6585R₽	2.8 GHz	3.6 GHz	3.5 GHz	3.1 GHz	Iris Pro 580	72	1100 MHz	4^ 200 KB	128MB	128MB		FCBGA1440	May 3, 2016	\$255		
	4 (4)	Core i5	6500₺	3.2 GHz	3.6 GHz	3.5 GHz	3.3 GHz			1050 MHz					September 1, 2015	\$192			
	4 (4)	Core is	6600T₽	2.7 GHz	3.5 GHz	3.4 GHz	3.3 GHz	HD 530	24	1100 MHz		O IVID		35 W		Q3 2015	\$213		
			6500T₽	2.5 GHz	3.1 GHz	3.0 GHz	2.8 GHz			1100 WHZ						Q3 2013	\$192		
			6402P₽	2.8 GHz	3.4 GHz	3.4 GHz	3.2 GHz	HD 510	12					65 W		December 27, 2015			
			6400T₽	2.2 GHz	2.8 GHz	2.7 GHz	2.5 GHz			950 MHz				35 W		Q3 2015	\$182		
			6400₺	2.7 GHz	3.3 GHz	3.3 GHz	3.1 GHz							65 W		August 5, 2015			
			6320₺	3.9 GHz						1150 MHz		4 MB				TBD	\$149		
Mainstream			6300₽	3.8 GHz				HD 530	24	1150 MHZ		4 IVID		51 W		160	\$138		
	2(4)	Coro in	6100₺	3.7 GHz						1050 MHz		3 MB	3 MB				\$117		
	2 (4)	Core i3	63001₺	3.3 GHz						OEO MILIT		4 MB		35 W		October 2015	\$138		
			6100T₽	3.2 GHz					950 MHz	950 MHZ			N/A		LGA 1151		\$117		
		6098P₽	3.6 GHz				HD 510	12				IN/A	54 W	LGA 1151	December 27, 2015	\$117			

						Process	_		Cach	e (MB)		Memory		Features							
Architecture	Family	Code Name	Model Group	Speed (MHz)	Socket	(nm)	Cores	FSB/HT(MHz)	L1	L2	L3	Controller	SIMD	Speed/Power	Other						
	Jaguar	Kabini, Temash, Kyoto		1000 - 2200	Socket AM1, Socket FT3	71, cket T3 28 2/4 cket										512			MMX, SSE, SSE2, SSE3,		AMD64, NX bit, AMD-V.
Jaguar	Puma	Beema, Mullins, Stepped Eagle, Crowned Eagle, Carrizo-L, LX-Family,		800 - 2400	Socket FT3b			32 kB + 32 kB (per core)	KB (per core)		DDR3	SSE3s, SSE4a, SSE4.1, SSE4.2, AVX	PowerNow!	AMD-V, AES, CLMUL, CVT16/F16C, BMI1							
Architecture	Family	Code Name	Model Group	Speed (MHz)	Socket	Process	Cores	FSB/HT(MHz)	Cach	e (MB)		Memory		Features							
Architecture	ranniy	Code Name	model Group	Speeu (MITZ)	JUCKEL	(nm)	Cores	T 3D/TT(MITZ)	L1	L2	L3	Controller	SIMD	Speed/Power	Other						
	Ryzen	Whitehaven Zen Summit Ridge	Threadripper (1900, 1920, 1920X, 1950X)	3200-3800 (3800-4000 boost)	800-4000 Socket TR4 000-3600 (700-4000 boost) 200-3600 (400-4000 boost)			8/12/16 (16/24/32 threads)				16-32 MB	Quad- channel DDR4								
			Ryzen 7 (Pro 1700, 1700, Pro 1700X, 1700X, 1800X)	3000-3600 (3700-4000 boost)			8 (16 threads)				16 MB	IB	MMX, SSE, SSE2, SSE3, SSE3, SSE48, SSE4.1, SSE4.2, AVX, AVX2	C	AMD64, AES, CLMUL, FMA3, CVT16/F16C, ABM,						
Zen			Ryzen 5 (1400, Pro 1500, 1500X, Pro 1600, 1600, 1600X)	3200-3600 (3400-4000 boost)		14	4/6 (8/12 threads)		64 kB + 32 kB (per core)	512 kB	8-16 MB	Dual- channel									
			Ryzen 3 (Pro 1200, 1200, Pro 1300, 1300X)	3100-3500 (3400-3700 boost)	AM4		4 (4 threads)			(per core)	8 MB	DDR4			BMI1, BMI2, SHA						
	APU	Raven Ridge	Ryzen 5 (2500U), Ryzen 7 (2900U)	2000-2200 (3600-3800 boost)			4 (8 threads)				4 MB										
	EPYC	Naples	7000 series	2550-2900	Socket SP3		8/16/24/32				32-64 MB	DDR4									
Architecture	Family	Code Name	Model Group	Speed (MHz)	Socket	Process	Cores	FSB/HT(MHz)	Cache (MB)		Memory	nory Features									
Architecture	railing	Code Name	woder Group	Speed (MAZ)	SUCKEL	(nm)	(nm) Cores	ores FSB/HT(MHz)	L1	L2	L3	Controller	SIMD	Speed/Power	Other						

Procesadores intel

En el caso de Intel, los sufijos indican el tipo de procesador, en función de muchas características diferentes.

Υ	Extremely low power
U	Ultra-low power
М	Mobile
Q	Quad-core

Υ	Extremely low power									
Н	High performance graphics									
НК	High performance graphics (unlocked)									
HQ	High performance graphics (Quad core)									
T	Power-optimized lifestyle									
K	Unlocked									
X	Fxtreme									

Comparativa de procesadores

¿Cómo podemos saber si uno es mejor que otro?

Difícil comparar generaciones y productos al mismo tiempo.

¿Cuándo podemos comparar 2 procesadores?

Mismo nivel

Misma generación

Mismo consumo de energía

Comparar por modelo

i3 < i5 < i7

Y < U < M < QM < HM < S < D < K < X

Atom < Celeron < Pentium < i3,5,7 < Xeon

Comparar por características:

Número de núcleos

Si disponen de hyperthreading

Velocidad del núcleo

Caché de cada núcleo

Generación del procesador

https://ark.intel.com/es-es#@Processors

¿Cómo podemos saber si uno es mejor que otro?

Procesadores Intel

Procesadores Intel Core

	i3	i5	i7	19
Cores	2	4/6	4-8	10-18
Threads	4	8/6	8-16	20-36
Turboboost	No	Sí	Sí	Sí
Proc. gráfico	No	Sí	Sí	No
Caché	Poca			
Potencia cons.	Ваја			
Precio	Barato			

7a generación: Kaby lake

6a generación: Skylake

5a generación: Broadwell

4a generación: Haswell

3a generación: Ivy Bridge

Identificar núcleos e hyperthreading

System information

Modificar el funcionamiento de la CPU

La _ _ velocidad, el multiplicador y la tensión _ de la placa base deben configurarse correctamente.

- _Intel y AMD fijan velocidad CPU: _ la más alta que garantizan que funcionará.
- _Overclocking: _
- Hacer funcionar la CPU a _velocidades de reloj _ más altas que las que tiene programadas
- Algunas placas base le permiten ajustar estas configuraciones manualmente
 - Moviendo un jumper
 - Cambiando una configuración CMOS
 - Usando software

3,50 GHz - 3,90 GHz

Desventajas

Probable pérdida de garantía

Puede destruir la CPU, hacer que el sistema sea inestable y propenso a bloqueos y reinicios.

La visión de los fabricantes

Antes: Los fabricantes de CPU no fomentan el overclocking. _¿Por qué pagarías más por un procesador más rápido cuando puedes tomar una CPU más barata y más lenta y hacer que funcione más rápido? _

Ahora: Presionados por el mercado, Intel y AMD hacen utilidades que te ayudan a overclockear sus respectivas CPU.