الحدوديات

ammarimaths_C

D

H

I. الحد وديات أو الدوال الحدودية:

(1) أمثلة وتعاريف: h(x) و I(x) و I(x) و في الشكل حيث أبعاده هي I(x) و I(x) و I(x)

ا و h(x) و h(x) تتغير تبعا لتغير العدد L(x) البعاد L(x) و L(x) البعد العدد

$$h(x) = 2x-3$$
; $L(x) = 3x+2$; $l(x) = x-1$

نلاحظ أن الأعداد
$$\mathbf{l}(\mathbf{x})$$
 ; $\mathbf{l}(\mathbf{x})$ هي دوال (a

على شكل $\mathbf{f}(\mathbf{x}) = \mathbf{a}\mathbf{x} + \mathbf{b}$ نقول أن \mathbf{f} حدودية من الدرجة الأولى.

ونذكر أن تمثيلها المبياني يكون على شكل مستقيم حيث b هو الأرتوب عند الأصل و a هو المعامل الموجه

$$V(x) = S(x) = I(x) \times L(x)$$
; $S(x) = I(x) \times L(x)$

$$\int S(x) = (x-1) \times (3x+2) = 3x^2 - x - 2$$

و هكذا نجد بعد إجراء الحساب أن:

 $V(x) = (3x^2 - x - 2) \times (2x - 3) = 6x^3 - 11x^2 - x + 6$

نلاحظ أن الأعداد $\mathbf{S}(\mathbf{x})$ هي دالة على شكل $\mathbf{b} + \mathbf{b} + \mathbf{c} + \mathbf{c}$ مع $\mathbf{a} \neq \mathbf{0}$ ، نقول أن \mathbf{f} حدودية من الدرجة الثانية.

ونلاحظ أن الأعداد $\mathbf{V}(\mathbf{x})$ هي دالة على شكل $\mathbf{f}(\mathbf{x}) = \mathbf{a}\mathbf{x}^3 + \mathbf{b}\mathbf{x}^2 + \mathbf{c}\mathbf{x} + \mathbf{d}$ مع $\mathbf{v} \neq \mathbf{b}$ ، نقول أن \mathbf{f} حدودية من الدرجة الثالثة.

c) أتمم الجدول التالي:

Valeurs de x	2	3	•••	•••
l(x)	l(2) = 1	l(3) =	l() = 3	l() =
L(x)	L(2) = 8	L(3) =	L() =	L() =
h(x)	h(2) = 1	h(3) =	h() =	h() = 4
S(x)	S(2) = 8	S(3) =	S() =	S() =
V(x)	V(2) = 8	V(3) =	V() =	V() =

d) تعریف عام:

الحدودية (أو الدالة الحدودية) هي كل صيغة جبرية على شكل:

$$P(X) = a_n X^n + a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + ... + a_2 X^2 + a_1 X + a_0$$

الأعداد : ${\bf a}_{\rm n}$; ${\bf a}_{\rm n-1}$; ${\bf a}_{\rm n-2}$; ... ; ${\bf a}_{\rm 2}$; ${\bf a}_{\rm 1}$; ${\bf a}_{\rm 0}$: الأعداد

 $\mathbf{P}(\mathbf{X}) = \mathbf{0}$ مهما تكن قيمة المتغير \mathbf{X} مهما تكن قيمة المتغير $\mathbf{P}(\mathbf{X})$

e) درجة حدودية غير منعدمة: الحدودية (أو الدالة الحدودية) هي كل صيغة جبرية على شكل:

$$a_n \neq 0$$
 $P(X) = a_n X^n + a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + ... + a_2 X^2 + a_1 X + a_0$

 ${f d}^0{f P}={f n}$: ونكتب ${f n}$ ونكتب ${f n}$ يسمى آخر معامل غير منعدم. في هذه الحالة نقول أن درجة الحدودية هي ملاحظة: الحدودية المنعدمة ليست لها درجة لأنها لا تتوفر على آخر معامل غير منعدم.

الحد وديات الثابتة و غير المنعدمة درجتها 0.

الحدوديات

تساوى حدوديتين: (2

تكون الحدوديتان غير المنعدمتان P(X) و O(X) متساويتان إذا كانت لهما نفس الدرجة وكانت معملاتها متساوية على التوالي ، أي أن: P(X) = Q(X)

يعني أن
$$\mathbf{a}_{\mathbf{n}} = \mathbf{b}_{\mathbf{n}} \; \text{ et } \; \mathbf{a}_{\mathbf{n}-1} = \mathbf{b}_{\mathbf{n}-1} \; \text{ et } \; \dots \; \text{ et } \; \mathbf{a}_2 = \mathbf{b}_2 \; \text{ et } \; \mathbf{a}_1 = \mathbf{b}_1 \; \text{ et } \; \mathbf{a}_0 = \mathbf{b}_0$$
 و $\mathbf{d}^0 \mathbf{P} = \mathbf{d}^0 \mathbf{Q} = \mathbf{n}$

3 عمليات حول الحدوديات: نعتبر الحدوديات التالية بحيث:

لدىنا

$$\mathbf{Q}(\mathbf{x})=3\mathbf{x}^2+2\mathbf{x}$$
 ; $\mathbf{P}(\mathbf{x})=-2\mathbf{x}^3+5\mathbf{x}^2-3\mathbf{x}+2$. $\mathbf{Q}(\mathbf{x})$; $\mathbf{P}(\mathbf{x})$. $\mathbf{P}(\mathbf{x})$ ندينا من الحدوديتين $\mathbf{d}^0\mathbf{Q}=...$; $\mathbf{d}^0\mathbf{P}=...$

و حدد درجة الحدودية
$$\mathbf{s}(\mathbf{x}) = \mathbf{Q}(\mathbf{x}) + \mathbf{P}(\mathbf{x})$$
 ماذا تلاحظ (b) أحسب نلاحظ

لدينا $s(x) = Q(x) + P(x) = \dots$

$$s(x) = \dots$$

$$\mathbf{d}^0(\mathbf{P}+\mathbf{Q}) \leq \sup(\mathbf{d}^0\mathbf{P},\mathbf{d}^0\mathbf{Q})$$
 : نلاحظ أن

و حدد درجة الحدودية $p(x) = Q(x) \times P(x)$ ماذا تلاحظ و ربحه الحدودية و ماذا تلاحظ

$$p(x) = Q(x) \times P(x) = \dots$$

$$p(x) = \dots$$

$$\mathbf{d}^0(\mathbf{P} \times \mathbf{Q}) = \mathbf{d}^0\mathbf{P} \times \mathbf{d}^0\mathbf{Q}$$
 : نلاحظ أن

بصفة عامة: P(X) و Q(X) حدوديتان غير منعدمتان ، لدينا:

$$d^{0}(P\times Q) = d^{0}P\times d^{0}Q$$
$$d^{0}(P+Q) \leq \sup(d^{0}P, d^{0}Q)$$

d) القسمة الأقليدية:

نعتبر الحد وديات التالية بحيث:

$$B(x) = x^2 + 2x - 3$$
; $A(x) = 7x^4 - 2x^3 + 5x^2 - 3x + 2$

$P(x) = 7x^4 - 2x^3 + 5x^2 - 3x + 2$	$B(x) = x^2 + 2x - 3$
***************************************	Q(x) =
$\mathbf{R}(\mathbf{x}) = \dots$	

الحدوديات

$$0 \le d^0(R) \le d^0Q$$
 مع $A(x) = B(x) \times Q(x) + R(x)$ لدينا

بحيث:
$$\mathbf{R}(\mathbf{x})$$
 et $\mathbf{Q}(\mathbf{x})$ توجد حدوديتان $\mathbf{B}(\mathbf{X}) \neq \mathbf{0}$ و $\mathbf{B}(\mathbf{X}) \neq \mathbf{0}$ مع $\mathbf{B}(\mathbf{X}) \neq \mathbf{0}$ توجد حدوديتان $\mathbf{R}(\mathbf{x})$ بحيث:

$$0 \le d^0(R) \le d^0B$$
 مع $A(x) = B(x) \times Q(x) + R(x)$

4) **جدر حدودیة**:

$$P(a)=0$$
 ناكن $P(x)$ عدودية بحيث $a^0P\geq 1$ ، العدد a هو جدر للحدودية يعني أن $P(x)=0$ أي أن a هو حل للمعادلة $P(x)=0$.

a) تمرين تطبيقي: (انظر التصحيح في دفتر التماؤين)

On considère les expressions algébriques suivantes:

نعتبر الحدوديتان:

$$g(x) = f(x) + (x^2 - 1) - 3(x - 1)$$
 ; $f(x) = (x - \frac{1}{3})^2 - \frac{4}{9}$

- g(1) و $g(rac{1}{3})$ و f(1) و $f(rac{1}{3})$ و (1
- $\mathbf{g}(\mathbf{x})$ و $\mathbf{g}(\mathbf{x})$ حدد درجة كل من الحدوديتن $\mathbf{g}(\mathbf{x})$ و $\mathbf{g}(\mathbf{x})$
 - g(x) عمل الحدودية f(x) و استنتج تعميلا للحدودية (3
 - f(x) على المعادلة f(x)=0 واستنتج جدور الحدودية (4
 - g(x) حدد جدور الحدودية (5
 - الحظ بشير " ضيفنا الكريم" أن هناك علاقة تجسد الكلام التالي:

 $\mathbf{x}-\mathbf{a}$ عدد حقیقی و \mathbf{h} دالة حدودیة : " $\mathbf{h}(\mathbf{a})=\mathbf{0}$ یعنی أن الحدودیة $\mathbf{h}(\mathbf{x})$ تقبل القسمة علی \mathbf{a} وضح صحة هذا الكلام بثلاثة أمثلة من التمرین.

5) خاصية استكشافية:

التكن P(x) دالة حدودية و a عدد حقيقي

$$P(a) = 0$$
 الحدودية $x - a$ على القسمة على $P(x)$ الحدودية

R(x) et Q(x) ما تحدث به بشیر کان صحیحا سنحاول أن نبرهن علی ذالك: حسب مبرهنة القسمة الأقلیدیة توجد حدودیتان $d^0(R)=0$ مع P(x)=(x-a) imes Q(x)+R(x) بحیث: P(x)=(x-a) imes Q(x)+R(x)

وبالتالي فإن الحدودية $\mathbf{R}(\mathbf{x})$ ثابثة نعوض \mathbf{x} بالعدد \mathbf{a} في العلاقة $\mathbf{P}(\mathbf{x}) = (\mathbf{x} - \mathbf{a}) imes \mathbf{Q}(\mathbf{x}) + \mathbf{R}(\mathbf{x})$ نجد:

 $\mathbf{R}(\mathbf{x}) = \mathbf{P}(\mathbf{a})$ البثة فإن $\mathbf{R}(\mathbf{x})$ ويما أن الحدودية $\mathbf{P}(\mathbf{a}) = (\mathbf{a} - \mathbf{a}) imes \mathbf{Q}(\mathbf{a}) + \mathbf{R}(\mathbf{a}) = \mathbf{R}(\mathbf{a})$

نستنتج أن: $\mathbf{P}(\mathbf{x}) = (\mathbf{x} - \mathbf{a}) \times \mathbf{Q}(\mathbf{x}) + \mathbf{P}(\mathbf{a})$ نحن جاهزون لإتمام البرهنةز

 $\mathbf{P}(\mathbf{a})=\mathbf{0}$: وهذا يعني أن $\mathbf{P}(\mathbf{x})=(\mathbf{x}-\mathbf{a}) imes \mathbf{Q}(\mathbf{x})$ ، إذن $\mathbf{x}-\mathbf{a}$ وهذا يعني أن

نفترض أن P(a)=0 ، إذن Q(x)=(x-a) imes Q(x) وهذا يعنى أن P(a)=0 نعوض في العلاقة

. x - a نجد: P(x) = P(x) = P(x) نستنتج أن: الحدودية P(x) = P(x) = P(x) = P(x) = P(x) عبد القسمة على P(x) = P(x) = P(x)