The fundamental model of disease transmission: the SIR model

If we describe how an **individual** progresses through disease...

The $S \rightarrow I$ transition depends on infectiousness (β) and the number of infectious people (I)

The I → R transition depends on the recovery rate (γ)

To translate this diagram into equations, multiply the **rates** over the arrows by the **states** at the arrow's tail:

$$\frac{dS}{dt} = -\beta IS$$

$$\frac{dI}{dt} = \beta IS - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

The fundamental model of disease transmission: the SIR model

We can't solve these equations by hand, so we use computer simulations:

How many people do we expect an infectious person to infect?

They'll infect β people per unit of time, until they recover – which happens at rate γ .

So, over the entire course of their infection, we expect them to infect β/γ people.

This is the **basic reproduction number (R₀):** the expected number of people that an infectious person will infect in a totally susceptible population.

Let's imagine a disease where a person infects one person per week $(\beta = 1)$ and it takes two weeks to recover $(\gamma = 1/2)$.

The reproduction number is then

$$R_0 = \beta/\gamma = 1/(1/2) = 2$$

