Documentation des Fonctions d'Analyse des Taux de Collision

Généré par IA (basé sur le script auxtools.py)

14 octobre 2025

Résumé

Ce document fournit une référence claire et structurée des fonctions Python incluses dans le script d'analyse des taux de collision. Chaque fonction est décrite en français avec ses paramètres d'entrée, son type de retour et son rôle principal dans la préparation ou la visualisation des données de niveaux quantiques.

Table des matières

1 Conventions Utilisées

- Les noms de fonctions, de DataFrames et de colonnes sont affichés en bleu (code).
- Les DataFrames Pandas sont désignés par pd.DataFrame.
- Les indices quantiques utilisés sont : v (vibrationnel) et J (rotationnel).

2 Fonctions de Préparation des Données

Ces fonctions sont essentielles pour enrichir les données de collision brutes avec des informations sur les niveaux quantiques et des valeurs effectives.

2.1 merge_levels_simple

Table 1: Description de la fonction merge_levels_simple

Rôle Principal	Fusionne les données de taux de collision avec les numéros quantiques (v, J) des niveaux supérieur et inférieur associés, en utilisant les indices numériques de niveau $(\mathtt{nu}, \mathtt{nl})$.
Entrée : df_coll	pd.DataFrame : Données de collision (doit contenir les indices numériques des niveaux, par défaut nu et n1).
Entrée: df_level_co	pd. Data Frame : Données détaillées des niveaux (doit contenir ${\tt n},{\tt v},{\tt J}).$
Entrée : cols	list de str (Défaut : ['nu', 'nl']) : Noms des colonnes d'index de niveau dans df_coll.
Type de Retour	pd.DataFrame : DataFrame de collision enrichi avec les colonnes vu, Ju, v1 et J1 (en tant que int64).

2.2 sort_and_create_effective_values

TABLE 2: Description de la fonction sort_and_create_effective_values

Rôle Principal	Trie le Data Frame (par v puis J pour les niveaux supérieur et inférieur) et calcule les valeurs quantiques effectives ($V_{\rm eff}$) selon la formule : $V_{\rm eff} = v + \frac{J}{J_{\rm max}(v)}$
Entrée: df_merged	pd.DataFrame : Le DataFrame fusionné, contenant les colonnes vu, Ju, v1, et J1.
Type de Retour	pd.DataFrame : Le DataFrame trié, enrichi des colonnes V_eff_u et V_eff_1.

2.3 calculate_v_eff (Fonction Auxiliaire)

Table 3: Description de la fonction calculate_v_eff

Rôle Principal	Fonction utilitaire interne pour calculer la valeur effective $V_{\rm eff}$ en fusionnant la valeur $J_{\rm max}$ correspondante.
Entrée : df	pd.DataFrame : DataFrame contenant les colonnes v et J (ex. vu, Ju).

Entrée: prefix	str : Préfixe du niveau (u ou 1).
Entrée: j_max_series	pd. Series : Série des $J_{\rm max}$ indexée par la valeur de v.
Type de Retour	pd. Data Frame : Le Data Frame mis à jour avec la colonne $V_{\rm eff}$ (ex. $$\tt V_{\tt eff_u}$).$

3 Fonctions de Détection des Données Manquantes

Ces fonctions permettent d'identifier les paires de niveaux pour lesquelles des données de collision sont théoriquement possibles mais non disponibles.

3.1 get_missing_levels_df

Table 4: Description de la fonction get_missing_levels_df

Rôle Principal	Génère un DataFrame des combinaisons de niveaux (vu, Ju, vl, Jl) qui sont manquantes dans le jeu de données actuel, en se basant sur l'ensemble des niveaux observés.
Entrée: df_merged	pd.DataFrame : DataFrame des données existantes.
Entrée : c_col	str (Défaut : '100.0') : Colonne des données de collision utilisée pour identifier les valeurs manquantes (NaN).
Type de Retour	pd.DataFrame : Un DataFrame trié contenant uniquement les colonnes vu, Ju, vl, Jl des niveaux manquants.

3.2 get_missing_levels_df_2

Table 5: Description de la fonction get_missing_levels_df_2

Rôle Principal	Identifie les combinaisons manquantes en appliquant la contrainte physique : le niveau supérieur effectif doit être strictement plus grand que le niveau inférieur effectif ($\mathbf{V}_{\mathrm{eff}_u} > \mathbf{V}_{\mathrm{eff}_l}$).
Entrée: df_merged	pd.DataFrame : DataFrame des données existantes (doit contenir les colonnes V_eff).
Entrée : c_col	str (Défaut : '100.0') : Colonne des données de collision.
Type de Retour	pd.DataFrame : DataFrame des niveaux manquants *physiquement valides*. Toutes les colonnes de données de collision sont définies à NaN.

4 Fonctions de Visualisation (Plotting)

Ces fonctions génèrent des graphiques statiques (Matplotlib) ou interactifs (Plotly) pour visualiser les données de collision en fonction des valeurs effectives $V_{\rm eff}$.

4.1 plot_static_colormap

Table 6: Description de la fonction plot_static_colormap

Rôle Principal	Génère un nuage de points statique (matplotlib) de $V_{\rm eff_u}$ vs $V_{\rm eff_l}$, coloré par une colonne de données spécifiée.
Entrée : df	pd.DataFrame : Données à tracer.

Entrée: x_col,	str (Défauts : 'V_eff_l', 'V_eff_u').
y_col	
Entrée : c_col	str (Défaut : '100.0') : Colonne pour la colormap (couleur des points).
Entrée : cmap_name	str (Défaut : 'viridis') : Nom de la colormap Matplotlib.
Entrée: log_color_scale	bool (Défaut : False) : Si True, utilise une échelle de couleur logarithmique (LogNorm).
Type de Retour	None : Affiche le graphique.

4.2 plot_interactive_plotly

Table 7: Description de la fonction plot_interactive_plotly

Rôle Principal	Génère un nuage de points interactif (Plotly) de $V_{\rm eff_u}$ vs $V_{\rm eff_l}$. Les informations détaillées (vu, Ju, vl, Jl) sont affichées au survol de la souris.
Entrée : df	pd.DataFrame : Données à tracer.
Entrée : x_col, y_col	str (Défauts : 'V_eff_l', 'V_eff_u').
Entrée : c_col	str (Défaut : '100.0') : Colonne pour la colormap.
Type de Retour	None : Affiche le graphique interactif.

4.3 plot_interactive_with_missing

TABLE 8: Description de la fonction plot_interactive_with_missing

Rôle Principal	Combine sur un même graphique Plotly les données existantes (avec colormap) et les niveaux manquants possibles (en gris transparent) pour visualiser l'exhaustivité de la matrice.
Entrée : df_merged	pd.DataFrame : DataFrame des données existantes.
Entrée: x_col, y_col, c_col	str (Défauts : 'V_eff_l', 'V_eff_u', '100.0').
Type de Retour	None : Affiche le graphique interactif combiné.

4.4 plot_interactive_combined

Table 9: Description de la fonction plot_interactive_combined

Rôle Principal	Génère un graphique Plotly interactif en superposant les données existantes (colorées) et les niveaux manquants (en noir transparent), en utilisant des DataFrames distincts pour les deux ensembles de points.
Entrée: df_merged	pd.DataFrame : Données existantes (pour la couleur).
Entrée: df_missing	pd.DataFrame : Données des niveaux manquants (généralement issues de get_missing_levels_df_2).
Entrée: x_col, y_col, c_col	str (Défauts : 'V_eff_l', 'V_eff_u', '100.0').
Type de Retour	None : Affiche le graphique interactif combiné.