

IIC2343 – Arquitectura de Computadores

Clase 2 - Lógica Digital (continuación...)

Ahora... que pasa si queremos restar dos números binarios? Nos sirve el sumador que acabamos de diseñar?

Representación de Números Negativos

- Si queremos usar el circuito sumador para restar, necesitamos primero tener una forma de representar números negativos.
- Para poder encontrar la mejor manera de representarlos, primero hay que darnos cuenta de que propiedad queremos que cumpla nuestra representación.
- Pensemos en números decimales, tenemos que la resta cumple con lo siguiente.

$$A - B = A + (-B)$$

Es decir, que tenemos un inverso aditivo para B.

Entonces vamos a buscar una representación para números negativos en binario tal que

$$A + (-A) = 0$$

- Nuestra primera intuición de como representar negativos puede ser tener un bit extra que indique el signo del número.
- Es decir, que si el número es negativo el bit más significativo (más a la izquierda) debe valer 1, y si es positivo debe ser 0.
- Ejemplos de cómo quedaría esta representación:

$$3_{10} \xrightarrow{Base 2} 11_2 \xrightarrow{S/M} 011_2$$

$$-3_{10} \xrightarrow{Base 2} -11_2 \xrightarrow{S/M} 111_2$$

Es importante siempre agregar un bit extra para el signo. Si la magnitud del número se representa en n bits, entonces el número con signo quedará de n+1 bits.

- Nuestra primera intuición de como representar negativos puede ser tener un bit extra que indique el signo del número.
- Es decir, que si el número es negativo el bit más significativo (más a la izquierda) debe valer 1, y si es positivo debe ser 0.
- Ejemplos de cómo quedaría esta representación:

$$3_{10} \xrightarrow{Base 2} 11_2 \xrightarrow{S/M} 011_2$$

$$-3_{10} \xrightarrow{Base 2} -11_2 \xrightarrow{S/M} 111_2$$

Es importante siempre agregar un bit extra para el signo. Si la magnitud del número se representa en n bits, entonces el número con signo quedará de n+1 bits. Pero cumple con tener inverso aditivo?

Probemos si cumple con la propiedad con un ejemplo:

$$5 + (-5)$$

Pasamos ambos números a su representación signo-magnitud

$$0101 + (1101)$$

= 10010

Entonces, la representación cumple que el inverso aditivo de un número sea el mismo, pero con signo opuesto?

Probemos si cumple con la propiedad con un ejemplo:

$$5 + (-5)$$

Pasamos ambos números a su representación signo-magnitud

$$0101 + (1101)$$

= 10010

Entonces, la representación cumple que el inverso aditivo de un número sea el mismo, pero con signo opuesto?

Probemos si cumple con la propiedad con un ejemplo:

$$5 + (-5)$$

Pasamos ambos números a su representación signo-magnitud

$$0101 + (1101)$$

= 10010

Entonces, la representación cumple que el inverso aditivo de un número sea el mismo, pero con signo opuesto?

Noo!

Debemos seguir con la búsqueda de encontrar una buena representación.

- Para la siguiente representación usaremos el complemento de 1 del número binario, cuál es esta? Corresponde a
 invertir todos los bits del número.
- Para obtener el numero en complemento de 1, es necesario que el bit más significativo sea un 0, en caso de que no lo sea se debe agregar uno.
 - Si el número a representar es negativo, todos los bits del número se invierten.
 - Si el número a representar es positivo, se mantiene igual.
- Por ejemplo,

Ahora si... Cumple esta representación con el inverso aditivo?

Probemos si cumple con la propiedad

$$5 + (-5)$$

Pasamos ambos números a su representación en complemento de 1.

$$0101 + (1010)$$

= 1111

Entonces, aunque la representación no es perfecta podemos ver que estamos llegando a algo. Qué pasa si le sumamos un 1?

- Ahora veremos complemento de 2. Cual es esta representacion? Es complemento de 1 y después se suma 1.
- Para obtener el numero en complemento de 2, es necesario que el bit más significativo sea un 0, en caso de que no lo sea se debe agregar uno.
 - Si el número a representar es negativo, todos los bits del número se invierten y después se suma 1.
 - Si el número a representar es positivo, se mantiene igual.
- Por ejemplo,

Ahora si... Cumple esta representación con el inverso aditivo?

Probemos si cumple con la propiedad

$$5 + (-5)$$

Pasamos ambos números a su representación en complemento de 2.

$$0101 + (1011)$$
= 10000

Es esto igual a 0?

Probemos si cumple con la propiedad

$$5 + (-5)$$

Pasamos ambos números a su representación en complemento de 2.

$$0101 + (1011)$$
 $= 10000$

Es esto igual a 0?

Probemos si cumple con la propiedad

$$5 + (-5)$$

Pasamos ambos números a su representación en complemento de 2.

$$0101 + (1011)$$
= 10000

Es esto igual a 0? S

Recordar que cuando sumamos números de n bits, esperamos que el resultado sea de n bits también. El resto corresponde al carry, el cual no vamos a considerar para el valor del resultado de la suma (como lo hicimos para el half adder, separamos suma y carry).

Entonces ahora tenemos una forma de representar números negativos de tal manera que podamos usar,

$$\bullet \quad A - B = A + (-B)$$

• Como sabemos que podemos restar, sumando A con el inverso aditivo de B, podemos usar el mismo circuito sumador, pero con una modificación en los inputs.

•
$$A - B = A + (-B)$$

- Como sabemos que podemos restar, sumando A con el inverso aditivo de B, podemos usar el mismo circuito sumador, pero con una modificación en los inputs.
- Cuál modificación?

•
$$A - B = A + (-B)$$

- Como sabemos que podemos restar, sumando A con el inverso aditivo de B, podemos usar el mismo circuito sumador, pero con una modificación en los inputs.
- Cuál modificación? Ya no queremos tener a B como input del circuito sumador, si no que su complemento de 2.

$$A - B = A + (-B)$$

- Como sabemos que podemos restar, sumando A con el inverso aditivo de B, podemos usar el mismo circuito sumador, pero con una modificación en los inputs.
- Cuál modificación? Ya no queremos tener a B como input del circuito sumador, si no que su complemento de 2.
- Cómo podemos hacer que el input sea en complemento de 2?

•
$$A - B = A + (-B)$$

- Como sabemos que podemos restar, sumando A con el inverso aditivo de B, podemos usar el mismo circuito sumador, pero con una modificación en los inputs.
- Cuál modificación? Ya no queremos tener a B como input del circuito sumador, si no que su complemento de 2.
- Cómo podemos hacer que el input sea en complemento de 2? Necesitamos invertir B (negar)

•
$$A - B = A + (-B)$$

- Como sabemos que podemos restar, sumando A con el inverso aditivo de B, podemos usar el mismo circuito sumador, pero con una modificación en los inputs.
- Cuál modificación? Ya no queremos tener a B como input del circuito sumador, si no que su complemento de 2.
- Cómo podemos hacer que el input sea en complemento de 2? Necesitamos invertir B (negar) y sumar 1.

•
$$A - B = A + (-B)$$

- Como sabemos que podemos restar, sumando A con el inverso aditivo de B, podemos usar el mismo circuito sumador, pero con una modificación en los inputs.
- Cuál modificación? Ya no queremos tener a B como input del circuito sumador, si no que su complemento de 2.
- Cómo podemos hacer que el input sea en complemento de 2? Necesitamos invertir B (negar) y sumar 1.
- Cómo podemos sumar 1?

•
$$A - B = A + (-B)$$

- Como sabemos que podemos restar, sumando A con el inverso aditivo de B, podemos usar el mismo circuito sumador, pero con una modificación en los inputs.
- Cuál modificación? Ya no queremos tener a B como input del circuito sumador, si no que su complemento de 2.
- Cómo podemos hacer que el input sea en complemento de 2? Necesitamos invertir B (negar) y sumar 1.
- Cómo podemos sumar 1? Podemos usar el carry inicial para sumar.

- Para poder obtener un circuito combinacional a partir de una tabla de verdad es super sencillo, talvez es tedioso pero fácil.
- Primero, debes identificar cuantos 1's y 0's.
 - Si hay menos 1's: Minterms
 - Si hay menos 0's: Maxterms
 - Si hay igual cantidad: Da lo mismo cual usar

Х	У	Z	f (x, y, z)
0	0	0	0
0		0	0
	0	0	0
		0	1
0	0	1	0
0		1	1
	0	1	1
		1	1

- Para poder obtener un circuito combinacional a partir de una tabla de verdad es super sencillo, talvez es tedioso pero fácil.
- Primero, debes identificar cuantos 1's y 0's hay en el output.
 - Si hay menos 1's: Minterms
 - Si hay menos 0's: Maxterms
 - Si hay igual cantidad: Da lo mismo cual usar
- Contemos primero la cantidad de 1's.

х	У	Z	f (x, y, z)
0	0	0	0
0		0	0
1	0	0	0
1	1	0	1
0	0	1	0
0	1	1	1
1	0	1	1
1	1	1	1

- Para poder obtener un circuito combinacional a partir de una tabla de verdad es super sencillo, talvez es tedioso pero fácil.
- Primero, debes identificar cuantos 1's y 0's hay en el output.
 - Si hay menos 1's: Minterms
 - Si hay menos 0's: Maxterms
 - Si hay igual cantidad: Da lo mismo cual usar
- Contemos primero la cantidad de 1's.
- Contemos la cantidad de 0's.

х	У	Z	f (x, y, z)
0	0	0	0
0	1	0	0
1	0	0	0
1	1	0	1
0	0	1	0
0	1	1	1
	0		
1	1	1	1

- Para poder obtener un circuito combinacional a partir de una tabla de verdad es super sencillo, talvez es tedioso pero fácil.
- Primero, debes identificar cuantos 1's y 0's hay en el output.
 - Si hay menos 1's: Minterms
 - Si hay menos 0's: Maxterms
 - Si hay igual cantidad: Da lo mismo cual usar
- Contemos primero la cantidad de 1's.
- Contemos la cantidad de 0's.

Como tienen la misma cantidad no importa cual usar.

х	У	z	f (x, y, z)
0	0	0	0
0		0	0
1	0	0	0
		0	1
0	0	1	0
0		1	1
1	0	1	1
1		1	1

- Partimos con los minterms. La idea es crear una formula combinacional que de siempre 0, a menos que se cumpla algunos de los casos en donde el output sea 1.
- Cómo se logra esto? Forma normal disyuntiva (DNF)
 - Por cada caso en donde el output sea 1:
 - Todos los inputs deben aparecer ya sea en su forma "normal" o negada, unidas por compuertas AND (∧).
 - Cuando se debe negar el input? Cuando aparece como un
 0.

Х	У	Z	f (x, y, z)
0	0	0	0
0	1	0	0
1	0	0	0
1	1	0	1
0	0	1	0
0	1	1	1
1	0	1	1
1	1	1	1

- Partimos con los minterms. La idea es crear una formula combinacional que de siempre 0, a menos que se cumpla algunos de los casos en donde el output sea 1.
- Cómo se logra esto? Forma normal disyuntiva (DNF)
 - Por cada caso en donde el output sea 1:
 - Todos los inputs deben aparecer ya sea en su forma "normal" o negada, unidas por compuertas AND (∧).
 - Cuando se debe negar el input? Cuando aparece como un
 0.
- Partamos con el primer caso. Como x e y valen 1, aparecen tal cual en la formula. Por otro lado, z vale 0, entonces se debe usar su versión negada.

$$m_3 = x \cdot y \cdot \bar{z}$$

X	У	Z	f (x, y, z)
0	0	0	0
0	1	0	0
1	0	0	0
1	1	0	1
0	0	1	0
0		1	1
	0	1	1
			1

- Partimos con los minterms. La idea es crear una formula combinacional que de siempre 0, a menos que se cumpla algunos de los casos en donde el output sea 1.
- Cómo se logra esto? Forma normal disyuntiva (DNF)
 - Por cada caso en donde el output sea 1:
 - Todos los inputs deben aparecer ya sea en su forma "normal" o negada, unidas por compuertas AND (∧).
 - Cuando se debe negar el input? Cuando aparece como un
 0.
- Partamos con el primer caso. Como x e y valen 1, aparecen tal cual en la formula. Por otro lado, z vale 0, entonces se debe usar su versión negada.

$$m_3 = x \cdot y \cdot \bar{z}$$

$$m_5 = \bar{x} \cdot y \cdot z$$

Х	У	Z	f (x, y, z)
0	0	0	0
0	1	0	0
	0	0	0
		0	1
0	0	1	0
0	1	1	1
1	0	1	1
	1	1	1

- Partimos con los minterms. La idea es crear una formula combinacional que de siempre 0, a menos que se cumpla algunos de los casos en donde el output sea 1.
- Cómo se logra esto? Forma normal disyuntiva (DNF)
 - Por cada caso en donde el output sea 1:
 - Todos los inputs deben aparecer ya sea en su forma "normal" o negada, unidas por compuertas AND (∧).
 - Cuando se debe negar el input? Cuando aparece como un
 0.
- Partamos con el primer caso. Como x e y valen 1, aparecen tal cual en la formula. Por otro lado, z vale 0, entonces se debe usar su versión negada.

$$m_3 = x \cdot y \cdot \bar{z}$$

 $m_5 = \bar{x} \cdot y \cdot z$
 $m_7 = x \cdot \bar{y} \cdot z$

х	У	Z	f (x, y, z)
0	0	0	0
0		0	0
	0	0	0
		0	1
0	0	1	0
0		1	1
1	0	1	1
1	1	1	1

- Partimos con los minterms. La idea es crear una formula combinacional que de siempre 0, a menos que se cumpla algunos de los casos en donde el output sea 1.
- Cómo se logra esto? Forma normal disyuntiva (DNF)
 - Por cada caso en donde el output sea 1:
 - Todos los inputs deben aparecer ya sea en su forma "normal" o negada, unidas por compuertas AND (∧).
 - Cuando se debe negar el input? Cuando aparece como un
 0.
- Partamos con el primer caso. Como x e y valen 1, aparecen tal cual en la formula. Por otro lado, z vale 0, entonces se debe usar su versión negada.

m_3	=	$x \cdot y \cdot \bar{z}$
m_5	=	$\bar{x} \cdot y \cdot z$
m_7	=	$x \cdot \bar{y} \cdot z$
m_8	=	$x \cdot y \cdot z$

х	У	Z	f (x, y, z)
0	0	0	0
0		0	0
	0	0	0
		0	1
0	0	1	0
0		1	1
1	0	1	1
1	1	1	1

$$m_{3} = x \cdot y \cdot \bar{z}$$

$$m_{5} = \bar{x} \cdot y \cdot z$$

$$m_{7} = x \cdot \bar{y} \cdot z$$

$$m_{8} = x \cdot y \cdot z$$

- Una vez que ya se tienen todas las fórmulas de las combinaciones, se deben juntar usando compuertas OR's (V).
- Entonces la fórmula que se obtiene para la tabla de verdad es la siguiente.

$$f(x, y, z) = (x \cdot y \cdot \bar{z}) + (\bar{x} \cdot y \cdot z) + (x \cdot \bar{y} \cdot z) + (x \cdot y \cdot z)$$

Х	У	Z	f (x, y, z)
0	0	0	0
0		0	0
1	0	0	0
1	1	0	1
0	0	1	0
0	1	1	1
1	0	1	1
1	1	1	1

$$m_{3} = x \cdot y \cdot \bar{z}$$

$$m_{5} = \bar{x} \cdot y \cdot z$$

$$m_{7} = x \cdot \bar{y} \cdot z$$

$$m_{8} = x \cdot y \cdot z$$

- Una vez que ya se tienen todas las fórmulas de las combinaciones, se deben juntar usando compuertas OR's (V).
- Entonces la fórmula que se obtiene para la tabla de verdad es la siguiente.

$$f(x, y, z) = (x \cdot y \cdot \bar{z}) + (\bar{x} \cdot y \cdot z) + (x \cdot \bar{y} \cdot z) + (x \cdot y \cdot z)$$

Pueden comprobar que si reemplazan con cualquier valor de la tabla de verdad, la formula va a dar el resultado esperado.

х	У	Z	f (x, y, z)
0	0	0	0
0		0	0
1	0	0	0
1	1	0	1
0	0	1	0
0	1	1	1
1	0	1	1
1	1	1	1

Maxterms

- Para los maxterms es el mismo procedimiento, pero inverso. La idea es crear una formula combinacional que de siempre 1, a menos que se cumpla algunos de los casos en donde el output sea 0.
- Cómo se logra esto? Forma normal conjuntiva (CNF)
 - Por cada caso en donde el output sea 0:
 - Todos los inputs deben aparecer ya sea en su forma "normal" o negada, unidas por compuertas OR (V).
 - Cuando se debe negar el input? Cuando aparece como un
 1.

Х	У	Z	f (x, y, z)
0	0	0	0
0	1	0	0
1	0	0	0
1	1	0	1
0	0	1	0
0	1	1	1
	0	1	1
	1	1	1

Maxterms

- Para los maxterms es el mismo procedimiento, pero inverso. La idea es crear una formula combinacional que de siempre 1, a menos que se cumpla algunos de los casos en donde el output sea 0.
- Cómo se logra esto? Forma normal conjuntiva (CNF)
 - Por cada caso en donde el output sea 0:
 - Todos los inputs deben aparecer ya sea en su forma "normal" o negada, unidas por compuertas OR (V).
 - Cuando se debe negar el input? Cuando aparece como un
 1.
- Partamos con el primer caso. Como x, y, y z aparecen como 0, ninguno se debe negar.

$$M_0 = x + y + z$$

Х	У	Z	f (x, y, z)
0	0	0	0
0	1	0	0
	0	0	0
		0	
0	0		0
0			
	0		

Maxterms

- Para los maxterms es el mismo procedimiento, pero inverso. La idea es crear una formula combinacional que de siempre 1, a menos que se cumpla algunos de los casos en donde el output sea 0.
- Cómo se logra esto? Forma normal conjuntiva (CNF)
 - Por cada caso en donde el output sea 0:
 - Todos los inputs deben aparecer ya sea en su forma "normal" o negada, unidas por compuertas OR (V).
 - Cuando se debe negar el input? Cuando aparece como un
 1.
- Partamos con el primer caso. Como x, y, y z aparecen como 0, ninguno se debe negar.

$$M_0 = x + y + z$$

$$M_1 = x + \bar{y} + z$$

Х	У	Z	f (x, y, z)
0	0	0	0
0	1	0	0
1	0	0	0
	1	0	1
0	0	1	0
0		1	1
	0	1	1
	1	1	1

- Para los maxterms es el mismo procedimiento, pero inverso. La idea es crear una formula combinacional que de siempre 1, a menos que se cumpla algunos de los casos en donde el output sea 0.
- Cómo se logra esto? Forma normal conjuntiva (CNF)
 - Por cada caso en donde el output sea 0:
 - Todos los inputs deben aparecer ya sea en su forma "normal" o negada, unidas por compuertas OR (V).
 - Cuando se debe negar el input? Cuando aparece como un
 1.
- Partamos con el primer caso. Como x, y, y z aparecen como 0, ninguno se debe negar.

$$M_0 = x + y + z$$

$$M_1 = x + \bar{y} + z$$

$$M_2 = \bar{x} + y + z$$

Х	У	Z	f (x, y, z)
0	0	0	0
0	1	0	0
1	0	0	0
1	1	0	1
0	0	1	0
0			1
	0		1
		1	1

- Para los maxterms es el mismo procedimiento, pero inverso. La idea es crear una formula combinacional que de siempre 1, a menos que se cumpla algunos de los casos en donde el output sea 0.
- Cómo se logra esto? Forma normal conjuntiva (CNF)
 - Por cada caso en donde el output sea 0:
 - Todos los inputs deben aparecer ya sea en su forma "normal" o negada, unidas por compuertas OR (V).
 - Cuando se debe negar el input? Cuando aparece como un1.
- Partamos con el primer caso. Como x, y, y z aparecen como 0, ninguno se debe negar.

$$M_0 = x + y + z$$

$$M_1 = x + \bar{y} + z$$

$$M_2 = \bar{x} + y + z$$

$$M_4 = x + y + \bar{z}$$

Х	У	Z	f (x, y, z)
0	0	0	0
0		0	0
1	0	0	0
1	1	0	1
0	0	1	0
0			
1	0	1	1

$$M_0 = x + y + z$$

 $M_1 = x + \bar{y} + z$
 $M_2 = \bar{x} + y + z$
 $M_4 = x + y + \bar{z}$

- Una vez que ya se tienen todas las fórmulas de las combinaciones, se deben juntar usando compuertas AND's (Λ).
- Entonces la fórmula que se obtiene para la tabla de verdad es la siguiente.

$$f(x,y,z) = (x+y+z)\cdot(x+\bar{y}+z)\cdot(\bar{x}+y+z)\cdot(x+y+\bar{z})$$

х	у	Z	f (x, y, z)
0	0	0	0
0	1	0	0
1	0	0	0
1	1	0	1
0	0	1	0
0	1	1	1
	0		

$$M_0 = x + y + z$$

$$M_1 = x + \bar{y} + z$$

$$M_2 = \bar{x} + y + z$$

$$M_4 = x + y + \bar{z}$$

- Una vez que ya se tienen todas las fórmulas de las combinaciones, se deben juntar usando compuertas AND's (Λ).
- Entonces la fórmula que se obtiene para la tabla de verdad es la siguiente.

$$f(x,y,z) = (x+y+z) \cdot (x+\bar{y}+z) \cdot (\bar{x}+y+z) \cdot (x+y+\bar{z})$$

Pueden comprobar que si reemplazan con cualquier valor de la tabla de verdad, la formula va a dar el resultado esperado.

х	У	Z	f (x, y, z)
0	0	0	0
0	1	0	0
1	0	0	0
1	1	0	1
0	0	1	0
0	1	1	1
	0		1
			1

Enabler

- Maravilloso.. Ya tenemos una forma de sumar y restar números binarios usando el mismo circuito, pero como hacemos para compartirlo? Tenemos que tener alguna manera de avisarle al sumador cuando se deben sumar o restar los números.
- Tenemos que tener alguna forma de controlar que input entra al circuito sumador.
- La forma de controlar que tenemos es usar una **señal de control**, es decir que mediante otro input indicaremos que operación queremos realizar.
- El primer circuito que nos permitirá seleccionar la salida es el 1 bit enabler.

Enabler

- El 1 bit enabler nos permite controlar la salida de un circuito a partir de la señal de control E.
- Depende de la señal de control E, la salida del circuito.
 - Si E=0, la salida del circuito va a ser 0.
 - Si E=1, entonces la salida del circuito va a ser el valor de A (este puede ser 0 o 1).

E	A'
0	0
1	A

Enabler

• Este circuito se puede extender a más bits, por ejemplo a 4.

E	A'
0	0
1	A

- Otra forma que tenemos para poder controlar la salida de un circuito a partir de una señal de control son los multiplexores.
- Para que nos sirven? A diferencia de los enablers, podemos usar todos los casos de la señal de control para direccionar la salida.
- A la señal de control de los multiplexores también se le llama selector.
- Por ejemplo, si tenemos un selector de 1 bit significa que podemos hacer que el output del circuito sea A (si S = 0),
 o B (si S = 1).

Depende de la cantidad de bits del selector, la cantidad de entradas que se pueden seleccionar.

- Veamos cómo se ve un multiplexor con entradas de 1 bit y selector de 1 bit.
- El valor de M depende del selector S.
 - Si S=0, M toma el valor de A
 - Si S=1, M toma el valor de B

S	M
0	A
1	В

- Ahora, como es un multiplexor con entradas de 3 bits y selector de 1 bit.
- El valor de M depende del selector S.
 - Si S=0, M toma el valor de A
 - Si S=1, M toma el valor de B

S	M
0	А
1	В

- Ahora, como es un multiplexor con entradas de 4 bits, pero un selector de 2 bits, esto nos permite tener más entradas.
- El valor de M depende del selector S.
 - Si S=0, M toma el valor de A
 - Si S=1, M toma el valor de B
 - Si S=2, M toma el valor de C
 - Si S=3, M toma el valor de D

S ₁	S ₀	M
0	0	А
0	1	В
1	0	С
1	1	D

- Ahora, como es un multiplexor con entradas de 4 bits, pero un selector de 2 bits, esto nos permite tener más entradas.
- El valor de M depende del selector S.
 - Si S=0, M toma el valor de A
 - Si S=1, M toma el valor de B
 - Si S=2, M toma el valor de C
 - Si S=3, M toma el valor de D

S ₁	S ₀	M
0	0	А
0		В
1	0	С
1	1	D

Podemos abreviar un poco el circuito utilizando la notación de bus de datos, esto quiere decir que, en vez de ser 1 bit, son 4 bits.

- Ahora, como es un multiplexor con entradas de 4 bits, pero un selector de 2 bits, esto nos permite tener más entradas.
- El valor de M depende del selector S.
 - Si S=0, M toma el valor de A
 - Si S=1, M toma el valor de B
 - Si S=2, M toma el valor de C
 - Si S=3, M toma el valor de D

S ₁	S ₀	M
0	0	А
0		В
1	0	С
1	1	D

Cómo se ve por dentro? Veremos

cómo se comporta para un bit.

Podemos abreviar un poco el circuito utilizando la

notación de bus de datos, esto quiere decir que, en

- Podemos ver cómo funciona el multiplexor de varias entradas para un bit.
- Para extenderlo a n bits solo se necesitan replicar varios de estos por cada bit de los inputs.
- Si tenemos un selector de n bits, podemos tener 2ⁿ entradas.

Decodificador

- Ya estamos casi listos para construir una de las componentes más importantes de nuestro computador básico, pero antes necesitamos ver un par de circuitos más.
- Un decodificador tiene n bits de inputs y 2ⁿ de output.
- Nos permite "descomprimir" una señal más compacta.
- Por ejemplo, podemos tener un decodificador *one-hot*. Este solo enciende una de las señales de output a la vez.

A ₁	A ₀	D ₃	D ₂	D ₁	D_0
0	0	0	0	0	1
0		0	0		0
	0	0		0	0
			0	0	0

Comparador

- Compara dos patrones de bits del mismo largo.
- Si ambos números son iguales bit a bit, entonces el circuito toma el valor de 1, en caso contrario es 0.
- Ejemplo de un circuito comparador de 4 bits

- Hace varias diapos atrás dijimos que queríamos tener un circuito que sea capaz de sumar y restar.
- Sabemos que nuestro circuito sumador lo puede lograr, pero necesitamos una forma de seleccionar el input B sea su complemento de 2 para la resta. Cómo podemos lograr esto?

- Hace varias diapos atrás dijimos que queríamos tener un circuito que sea capaz de sumar y restar.
- Sabemos que nuestro circuito sumador lo puede lograr, pero necesitamos una forma de seleccionar el input B sea su complemento de 2 para la resta. Cómo podemos lograr esto? Con multiplexores!

- Hace varias diapos atrás dijimos que queríamos tener un circuito que sea capaz de sumar y restar.
- Sabemos que nuestro circuito sumador lo puede lograr, pero necesitamos una forma de seleccionar el input B sea su complemento de 2 para la resta. Cómo podemos lograr esto? Con multiplexores!

Veamos cómo queda un sumador-restador de 4 bits...

- Usaremos S para indicar si la operación que se quiere realizar es una suma o resta.
 - S = 0 indica suma
 - S = 1 indica resta
- El S nos sirve como selector para los multiplexores. Si S = 1 se usara la negación de B como input para el sumador.
- También el S nos indica el carry inicial para el sumador.

- Que es la ALU? Es la unidad aritmética lógica de un computador.
- Es un circuito que se encarga de realizar operaciones lógicas (como AND y OR) y aritméticas (como la suma y resta) sobre dos operandos.
- Los operandos que utiliza: A y B, van a ser de n bits cada uno.
- El resultado R de la operación es también de n bits.
- Tiene una señal de control S de m bits que permite seleccionar entre máximo 2^m operaciones.

- Que es la ALU? Es la unidad aritmética lógica de un computador.
- Es un circuito que se encarga de realizar operaciones lógicas (como AND y OR) y aritméticas (como la suma y resta) sobre dos operandos.
- Los operandos que utiliza: A y B, van a ser de n bits cada uno.
- El resultado R de la operación es también de n bits.
- Tiene una señal de control S de m bits que permite seleccionar entre máximo 2^m operaciones.

Por ahora vamos a considerar que nuestro computador básico tiene solamente 8 operaciones (m=3) y opera sobre números de 8 bits (n=8).

• Entonces si nuestra ALU va a ser capaz de realizar 8 operaciones y sabemos que tenemos la suma y la resta. Cuáles son las otras 6 operaciones?

• Entonces si nuestra ALU va a ser capaz de realizar 8 operaciones y sabemos que tenemos la suma y la resta. Cuáles son las otras 6 operaciones?

- Vamos a tener:
 - A + B
 - A B
 - A AND B
 - A OR B
 - NOT A
 - A XOR B

- Entonces si nuestra ALU va a ser capaz de realizar 8 operaciones y sabemos que tenemos la suma y la resta. Cuáles son las otras 6 operaciones?
- Vamos a tener:
 - A + B
 - A B
 - A AND B
 - A OR B
 - NOT A
 - A XOR B

Operaciones lógicas super básicas pero muy útiles para aplicaciones más complejas

- Así se ven los circuitos de las operaciones lógicas.
- Recordar que cada operación se realiza bit a bit, esta es solo una forma de representarlo para que quede más compacto.

Coincidiremos...

A = 1101B = 1010

- Así se ven los circuitos de las operaciones lógicas.
- Recordar que cada operación se realiza bit a bit, esta es solo una forma de representarlo para que quede más compacto.

- Así se ven los circuitos de las operaciones lógicas.
- Recordar que cada operación se realiza bit a bit, esta es solo una forma de representarlo para que quede más compacto.

• Entonces si nuestra ALU va a ser capaz de realizar 8 operaciones y sabemos que tenemos la suma y la resta. Cuáles son las otras 6 operaciones?

- Vamos a tener:
 - A + B
 - A B
 - A AND B
 - A OR B
 - NOT A
 - A XOR B
 - Shift Left A
 - Shift Right A

- Los shifts corresponden a desplazar el numero una posición a la izquierda o derecha.
 - El bit que sale se descarta.
 - Quedará una posición vacía:
 - SHL: se rellena con 0
 - SHR: se mantiene el bit

Shift Left

0100101 Shift Right 00100101

- Los shifts corresponden a desplazar el numero una posición a la izquierda o derecha.
 - El bit que sale se descarta.
 - Quedará una posición vacía:
 - SHL: se rellena con 0
 - SHR: se mantiene el bit por qué??

0100101 Shift Left 10010110

0100101 Shift Right 00100101

- Los shifts parecen no representar nada, pero en realidad son muy útiles.
- SHL: Veamos que representa.
 - SHL(0010) = 0100

- Los shifts parecen no representar nada, pero en realidad son muy útiles.
- SHL: Veamos que representa.
 - SHL(0010) = 0100
 - SHL(0101) = 1010

- Los shifts parecen no representar nada, pero en realidad son muy útiles.
- SHL: Veamos que representa.
 - SHL(0010) = 0100
 - SHL(0101) = 1010

Multiplicación por 2!

- Los shifts parecen no representar nada, pero en realidad son muy útiles.
- SHL: Veamos que representa.
 - SHL(0010) = 0100
 - SHL(0101) = 1010

Multiplicación por 2!

- SHR: Veamos que representa.
 - SHR(0010) = 0001

- Los shifts parecen no representar nada, pero en realidad son muy útiles.
- SHL: Veamos que representa.
 - SHL(0010) = 0100
 - SHL(0101) = 1010

Multiplicación por 2!

- SHR: Veamos que representa.
 - SHR(0010) = 0001
 - SHR(0101) = 0010

- Los shifts parecen no representar nada, pero en realidad son muy útiles.
- SHL: Veamos que representa.
 - SHL(0010) = 0100
 - SHL(0101) = 1010
- Multiplicación por 2!
- SHR: Veamos que representa.
 - SHR(0010) = 0001
 - SHR(0101) = 0010

División entera por 2!

- Los shifts parecen no representar nada, pero en realidad son muy útiles.
- SHL: Veamos que representa.
 - SHL(0010) = 0100
 - SHL(0101) = 1010
- Multiplicación por 2!
- SHR: Veamos que representa.
 - SHR(0010) = 0001
 - SHR(0101) = 0010

División entera por 2!

Estas operaciones nos permiten implementar algoritmos más eficientes.

Por ejemplo, si queremos multiplicar no necesitamos repetir la suma n veces, sino que podemos primero multiplicar por la mayor potencia de 2 (usando SHL) y luego sumar la cantidad necesaria para llegar a n.

Con esto tenemos lista nuestra ALU de 8 operaciones.

S ₂	S ₁	S ₀	Operación
0	0	0	Suma
0	0		Resta
0		0	AND
0			
	0	0	
	0		XOR
		0	
			SHR

- El R corresponderá al resultado de la operación que se "ejecutó" según lo que indica S.
 - S = 100, entonces R = NOT A
 - S = 001, entonces R = A B

IIC2343 – Arquitectura de Computadores

Clase 2 - Lógica Digital (continuación...)