CS4.301 Data & Applications

Ponnurangam Kumaraguru ("PK") #ProfGiri @ IIIT Hyderabad

Formal Definitions - Schema

The **Schema** (or description) of a Relation:

Denoted by R(A1, A2,An)

R is the **name** of the relation

The **attributes** of the relation are A1, A2, ..., An

Example:

CUSTOMER (Cust-id, Cust-name, Address, Phone#)

CUSTOMER is the relation name

Defined over the four attributes: Cust-id, Cust-name, Address, Phone#

Each attribute has a domain or a set of valid values.

For example, the domain of Cust-id is 6 digit numbers.

Formal Definitions - Tuple

A tuple is an ordered set of values (enclosed in angled brackets '< ... >')

Each value is derived from an appropriate domain.

A row in the CUSTOMER relation is a 4-tuple and would consist of four values, for example:

<632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000">

This is called a 4-tuple as it has 4 values

A tuple (rew) in the CUSTOMER relation.

A relation is\a set of such tuples (rows)

Formal Definitions - Domain

A **domain** has a logical definition:

Example: "USA_phone_numbers" are the set of 10 digit phone numbers valid in the U.S.

A domain also has a data-type or a format defined for it.

The USA_phone_numbers may have a format: (ddd)ddd-dddd where each d is a decimal digit. Dates have various formats such as year, month, date formatted as yyyy-mm-dd, or as dd mm,yyyy etc.

The attribute name designates the role played by a domain in a relation:

Used to interpret the meaning of the data elements corresponding to that attribute Example: The domain Date may be used to define two attributes named "Invoice-date" and "Payment-date" with different meanings

Formal Definitions - State

The **relation state** is a subset of the Cartesian product of the domains of its attributes

each domain contains the set of all possible values the attribute can take.

Example: attribute Cust-name is defined over the domain of character strings of maximum length 25

dom(Cust-name) is varchar(25)

The role these strings play in the CUSTOMER relation is that of the name of a customer.

Formal Definitions - Example

```
Let R(A1, A2) be a relation schema:
    Let dom(A1) = \{0,1\}
    Let dom(A2) = \{a,b,c\}
Then: dem(A1) X dom(A2) is all possible combinations:
   {<0,a>, <0,b>, <0,c>, <1,a>, <1,b>, <1,c>}
The relation state r(R) \subset dom(A1) \times dom(A2)
For example: r(R) could be \{<0,a>,<0,b>,<1,c>\}
    this is one possible state (or "population" or "extension") r of the relation R, defined
    over A1 and A2.
    It has three 2-tuples: <0,a>, <0,b>, <1,c>
```

Example – A relation STUDENT

Figure 5.1
The attributes and tuples of a relation STUDENT.

Same state as previous Figure (but with different order of tuples)

Figure 5.2

The relation STUDENT from Figure 5.1 with a different order of tuples.

STUDENT

Name	Ssn	Home_phone Address (Office_phone	Age	Gpa
Dick Davidson	422-11-2320	NULL 3452 Elgin Road		749-1253	25	3.53
Barbara Benson	533-69-1238	839-8461 7384 Fontana Lane		NULL	19	3.25
Rohan Panchal	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
Chung-cha Kim	381-62-1245	375-4409	125 Kirby Road	NULL	18	2.89
Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	NULL	19	3.21

Characteristics Of Relations

Values in a tuple:

All values are considered atomic (indivisible).

Each value in a tuple must be from the domain of the attribute for that column

If tuple t = <v1, v2, ..., vn> is a tuple (row) in the relation state r of R(A1, A2, ..., An)

Then each vi must be a value from dom(Ai)

A specia **null** value is used to represent values that are unknown or not available or inapplicable in certain tuples.

Characteristics Of Relations

Notation:

We refer to **component values** of a tuple t by:

t[Ai] or t.Ai

This is the value vi of attribute Ai for tuple t

Similarly, t[Au, Av, ..., Aw] refers to the subtuple of t containing the values of

Nay location - -

attributes Au, Av, ..., Aw, respectively in t

CONSTRAINTS

Constraints determine which values are permissible and which are not in the database.

They are of three main types:

- 1. **Inherent or Implicit Constraints**: These are based on the data model itself. (E.g., relational model does not tuples to be duplicates)
- 2. **Schema-based or Explicit Constraints**: They are expressed in the schema by using the facilities provided by the model. (E.g., max. cardinality ratio constraint in the ER model)
- 3. **Application based or semantic constraints**: These are beyond the expressive power of the model and must be specified and enforced by the application programs.

Relational Integrity Constraints

Constraints are **conditions** that must hold on **all** valid relation states.

There are three *main types* of (explicit schema-based) constraints that can be expressed in the relational model:

Key constraints

Entity integrity constraints

Referential integrity constraints

Another schema-based constraint is the **domain** constraint

Every value in a tuple must be from the *domain of its attribute* (or it could be **null**, if allowed for that attribute)

Key Constraints

Superkey of R:

Super Key is an attribute (or set of attributes) that is used to uniquely identifies all attributes in a relation.

Is a set of attributes SK of R with the following condition:

No two tuples in any valid relation state r(R) will have the same value for SK

That is, for any distinct tuples t1 and t2 in r(R), t1[SK] \neq t2[SK]

This condition must hold in any valid state r(R)

Key of R:

A "minimal" superkey

A candidate key (or key) is a set of attributes (or attributes) that uniquely identify the tuples in relation to or table.

Key Constraints (continued)

Example: Student{ID, First_name, Last_name, Age, Sex, Phone_no}
Two candidate keys: ID & {First_name, Last_name, Age, Sex, Phone_no}

Consider the STUDENT relation schema:

Attribute Ssn is a key, because no 2 students tuples can have the same Ssn Any set of attributes that include Ssn, like {Ssn, Name, Age} is a superkey it uniquely identifies all attributes in a relation

In general:

Any key is a superkey (but not vice versa)

Any set of attributes that includes a key is a superkey

A minimal superkey is also a key

This lecture

Candidate key & Super key difference

Super Key	Candidate Key
Super Key is an attribute (or set of attributes) that is used to uniquely identifies all attributes in a relation.	Candidate Key is a subset of a super key.
All super keys can't be candidate keys.	But all candidate keys are super keys.
Various super keys together makes the criteria to select the candidate keys.	Various candidate keys together makes the criteria to select the primary keys.
In a relation, number of super keys is more than number of candidate keys.	While in a relation, number of candidate keys are less than number of super keys.
Super key attributes can contain NULL values.	Candidate key attributes can also contain NULL values.

Key Constraints (continued)

If a relation has several **candidate keys**, one is chosen arbitrarily to be the **primary key**.

The primary key attributes are <u>underlined</u>.

Example: Consider the CAR relation schema:

License_number & Engine_serial_number

We chose Engine_serial_number as the primary key

The primary key value is used to *uniquely identify* each tuple in a relation Provides the tuple identity

Also used to reference the tuple from another tuple

General rule: Choose as primary key the smallest of the candidate keys (in terms of size)

Not always applicable – choice is sometimes subjective

CAR table with two candidate keys — LicenseNumber chosen as Primary Key

CAR

Figure 5.4					
The CAR relation, with					
two candidate keys:					
License_number and					
Engine_serial_number.					

License_number	Engine_serial_number	Make	Model	Year
Texas ABC-739	A69352	Ford	Mustang	02
Florida TVP-347	B43696	Oldsmobile	Cutlass	05
New York MPO-22	X83554	Oldsmobile	Delta	01
California 432-TFY	C43742	Mercedes	190-D	99
California RSK-629	Y82935	Toyota	Camry	04
Texas RSK-629	U028365	Jaguar	XJS	04

Super & Primary key difference

S.NC	Super Key	Primary Key
1.	Super Key is an attribute (or set of attributes) that is used to uniquely identifies all attributes in a relation.	Primary Key is a minimal set of attribute (or set of attributes) that is used to uniquely identifies all attributes in a relation.
2.	All super keys can't be primary keys.	Primary key is a minimal super key.
3.	Various super keys together makes the criteria to select the candidate keys.	We can choose any of the minimal candidate key to be a primary key.
4.	In a relation, number of super keys are more than number of primary keys.	While in a relation, number of primary keys are less than number of super keys.
5.	Super key's attributes can contain NULL values.	Primary key's attributes cannot contain NULL values.

Relational Database Schema

Relational Database Schema:

A set S of relation schemas that belong to the same database.

S is the name of the whole database schema

S = {R1, R2, ..., Rn} and a set IC of integrity constraints.

R1, R2, ..., Rn are the names of the individual **relation schemas** within the database S

Following slide shows a COMPANY database schema with 6 relation schemas

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
							, ,		4

DEPARTMENT

Dname	<u>Dnumber</u>	Mgr_ssn	Mgr_start_date
-------	----------------	---------	----------------

DEPT_LOCATIONS

Dnumber	Dlocation
---------	-----------

PROJECT

Pname Pnumber	Plocation	Dnum
---------------	-----------	------

WORKS_ON

DEPENDENT

Essn Dependent_name	Sex	Bdate	Relationship
---------------------	-----	-------	--------------

Figure 5.5 Schema diagram for the COMPANY relational database schema.

Pname	Pnumber	Plocation	V	Dnum

WORKS_ON

Essn	<u>Pno</u>	Hours
------	------------	-------

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
------	----------------	-----	-------	--------------

Relational Database State

A **relational database state** DB of S is a set of relation states DB = $\{r_1, r_2, ..., r_m\}$ such that each r_i is a state of R_i and such that the r_i relation states satisfy the integrity constraints specified in IC.

A relational database *state* is sometimes called a relational database *snapshot* or *instance*.

Populated database state

Each relation will have many tuples in its current relation state

The relational database state is a union of all the individual relation states.

Whenever the database is changed, a new state arises

Basic operations for changing the database:

TNSERT a new tuple in a relation

DELETE an existing tuple from a relation

MODIFY an attribute of an existing tuple

Figure 5.6

One possible database state for the COMPANY relational database schema.

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX		30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dname <u>Dnumber</u>		Mgr_start_date	
Research	5	333445555	1988-05-22	
Administration	4	987654321	1995-01-01	
Headquarters	1	888665555	1981-06-19	

DEPT LOCATIONS

Dnumber	Dlocation			
1	Houston			
4	Stafford			
5	Bellaire			
5	Sugarland			
5	Houston			

WORKS_ON

ESSII	Pho	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

Populated DB state for COMPANY

Entity Integrity

Entity Integrity;

The primary key attributes PK of each relation schema R in S cannot have null values in any tuple of r(R).

This is because primary key values are used to *identify* the individual tuples.

 $t[PK] \neq null for any tuple t in r(R)$

If PK has several attributes, null is not allowed in any of these attributes

Note: Other attributes of R may be constrained to disallow null values, even though they are not members of the primary key.

Referential Integrity

Tuples in the **referencing relation** R1 have attributes FK (called **foreign key** attributes) that reference the primary key attributes PK of the **referenced relation** R2.

A tuple t1 in R1 is said to **reference** a tuple t2 in R^{2} if t1[FK] = t2[PK].

A referential integrity constraint can be displayed in a relational database schema as a directed arc from R1.FK to R2.PK

Referential Integrity (or foreign key) Constraint

Statement of the constraint

The value in the foreign key column (or columns) FK of the **referencing relation** R1 can be **either**:

- (1) a value of an existing primary key value of a corresponding primary key PK in the referenced relation R2, or
- (2) a **null**.

In case (2), the FK in R1 should **not** be a part of its own primary key.

Displaying a relational database schema and its constraints

Each relation schema can be displayed as a row of attribute names

The name of the relation is written above the attribute names

The primary key attribute (or attributes) will be underlined

A foreign key (referential integrity) constraints is displayed as a directed arc (arrow) from the foreign key attributes to the referenced table

Can also point the the primary key of the referenced relation for clarity

Next slide shows the COMPANY relational schema diagram with referential integrity constraints

Referential integrity constraints for Company

Figure 5.7Referential integrity constraints displayed on the COMPANY relational database schema.

Update Operations on Relations

INSERT a tuple

DELETE a tuple

MODIFY a tuple

Integrity constraints should not be violated by the update operations

Several update operations may have to be grouped together

Updates may **propagate** to cause other updates automatically. This may be necessary to maintain integrity constraints

Update Operations on Relations

In case of integrity violation, several actions can be taken:

Cancel the operation that causes the violation (RESTRICT or REJECT option)

Perform the operation but inform the user of the violation

Trigger additional updates so the violation is corrected

Execute a user-specified error-correction routine

Possible violations for each operation

INSERT may violate any of the constraints:

Domain constraint:

if one of the attribute values provided for the new tuple is not of the specified attribute domain

Key constraint:

if the value of a key attribute in the new tuple already exists in another tuple in the relation

Referential integrity:

if a foreign key value in the new tuple references a primary key value that does not exist in the referenced relation

Entity integrity:

if the primary key value is null in the new tuple

Names until now

Karthik

George

Nidhi

Chaitanya

Aryan

Naureen

Today - ?? ??

Chief Co

Administrativia

Quiz – How did it go?

HW2 is out

17th Thursday – Institute Quiz

Project Phase #1

Topportow tutorial

Anything else? We can help

Referential integrity constraints for Company

Figure 5.7Referential integrity constraints displayed on the COMPANY relational database schema.

Figure 5.7

Referential integrity constraints displayed on the COMPANY relational database schema.

EMPLOYEE

EMPLOYE	EMPLOYEE								
Fname Minit Lname Ss		Ssn	Bdate Address S		Sex	Salary	Super_ssn	Dno	
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

One possible database state for the COMPANY relational database schema.

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_LOCATIONS

Dnumber	Dlocation		
1	Houston		
4	Stafford		
5	Bellaire		
5	Sugarland		
5	Houston		

Figure 5.6

WORKS_ON

Essn	Pno	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

38

Operation: Insert <'Cecilia', 'F', 'Kolonsky', NULL, '1960-04-05', '6357 Windy Lane, Kath TX', F, 28000, NULL, 4> into EMPLOYEE. Result: This insertion violates the entity integrity constraint (NULL for the primary key Ssn), so it is rejected. Operation: Insert <'Alicia', 'J', 'Zelaya', '999887777', '1960-04-05', '6357 Windy Lane, Kah TX', F, 28000, '987654321', 4> into EMPLOYEE. Operation: Insert < 'Cecilia', 'F', 'Kolonsky', '677678989', '1960-04-05', '6357 Windswept Katy, TX', F, 28000, '987654321', 7> into EMPLOYEE.

Insert <'Cecilia', 'F', 'Kolonsky', NULL, '1960-04-05', '6357 Windy Lane, Kath TX', F, 28000, NULL, 4> into EMPLOYEE.

Result: This insertion violates the entity integrity constraint (NULL for the primary key Ssn), so it is rejected.

Operation:

Insert <'Alicia', 'J', 'Zelaya', '999887777', '1960-04-05', '6357 Windy Lane, Kath, TX', F, 28000, '987654321', 4> into EMPLOYEE.

Result: This insertion violates the key constraint because another tuple with the same Ssn value already exists in the EMPLOYEE relation, and so it is rejected.

Operation:

Insert < 'Cecilia', 'F', 'Kolonsky', '677678989', '1960-04-05', '6357 Windswept Katy, TX', F, 28000, '987654321', 7> into EMPLOYEE.

Insert <'Cecilia', 'F', 'Kolonsky', NULL, '1960-04-05', '6357 Windy Lane, Kath TX', F, 28000, NULL, 4> into EMPLOYEE.

Result: This insertion violates the entity integrity constraint (NULL for the primary key Ssn), so it is rejected.

Operation:

Insert <'Alicia', 'J', 'Zelaya', '999887777', '1960-04-05', '6357 Windy Lane, Kah, TX', F, 28000, '987654321', 4> into EMPLOYEE.

Result: This insertion violates the key constraint because another tuple with the same Ssn value already exists in the EMPLOYEE relation, and so it is rejected.

Operation:

Insert < 'Cecilia', 'F', 'Kolonsky', '677678989', '1960-04-05', '6357 Windswept Katy, TX', F, 28000, '987654321', 7> into EMPLOYEE.

Result: This insertion violates the referential integrity constraint specified of Dno in EMPLOYEE because no corresponding referenced tuple exists is DEPARTMENT with Dnumber = 7.

Possible violations for each operation

DELETE may violate only referential integrity:

If the primary key value of the tuple being deleted is referenced from other tuples in the database

Can be remedied by several actions: RESTRICT, CASCADE, SET NULL

RESTRICT option: reject the deletion

CASCADE option: by deleting tuples that reference the tuple that is being deleted

SET NULL option: set the foreign keys of the referencing tuples to NULL

One of the above options must be specified during database design for each foreign key constraint

Figure 5.7

Referential integrity constraints displayed on the COMPANY relational database schema.

EMPLOYEE

Figure 5.6 One possible database state for the COMPANY relational database schema.

Ξ	M	P	L)	Y	E	E	

Dno

Fname	Minit	Lnane	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT LOCATIONS

DEI I_EOOAI	10110
Dnumber	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

WORKS_ON

Essn	Pno	Hours	
123456789	1	32.5	
123456789	2	7.5	
666884444	3	40.0	
453453453	1	20.0	
453453453	2	20.0	
333445555	2	10.0	
333445555	3	10.0	
333445555	10	10.0	
333445555	20	10.0	
999887777	30	30.0	
999887777	10	10.0	
987987987	10	35.0	
987987987	30	5.0	
987654321	30	20.0	
987654321	20	15.0	
888665555	20	NULL	
	-		

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

	Essn	Dependent_name	Sex	Bdate	Relationship
;	33445555	Alice	F	1986-04-05	Daughter
-	33445555	Theodore	М	1983-10-25	Son
	333445555	Joy	F	1958-05-03	Spouse
1	987654321	Abner	М	1942-02-28	Spouse
ľ	123456789	Michael	М	1988-01-04	Son
	123456789	Alice	F	1988-12-30	Daughter
	123456789	Elizabeth	F	1967-05-05	Spouse

44

Delete the WORKS_ON tuple with Essn = '999887777' and Pno = 10.

Result: This deletion is acceptable and deletes exactly one tuple.

Operation:

Delete the EMPLOYEE tuple with Ssn = '999887777'.

Result: This deletion is not acceptable, because there are tuples in WORKS_ON that refer to this tuple. Hence, if the tuple in EMPLOYEE is deleted, referential integrity violations will result.

Operation:

Delete the EMPLOYEE tuple with Ssn = '333445555'.

Delete the WORKS_ON tuple with Essn = '999887777' and Pno = 10.

Result: This deletion is acceptable and deletes exactly one tuple.

Operation:

Delete the EMPLOYEE tuple with Ssn = '999887777'.

Result: This deletion is not acceptable, because there are tuples in WORKS_ON that refer to this tuple. Hence, if the tuple in EMPLOYEE is deleted, referential integrity violations will result.

Operation:

Delete the EMPLOYEE tuple with Ssn = '333445555'.

Result: This deletion will result in even worse referential integrity violations, because the tuple involved is referenced by tuples from the EMPLOYEE, DEPARTMENT, WORKS_ON, and DEPENDENT relations.

Possible violations for each operation

UPDATE may violate domain constraint and NOT NULL constraint on an attribute being modified

Any of the other constraints may also be violated, depending on the attribute being updated:

Updating the primary key (PK):

Similar to a DELETE followed by an INSERT

Need to specify similar options to DELETE

Updating a foreign key (FK):

May violate referential integrity

Updating an ordinary attribute (neither PK nor FK):

Can only violate domain constraints

Update the salary of the EMPLOYEE tuple with Ssn = '999887777' to 28000.

Operation:

Update the Dno of the EMPLOYEE tuple with Ssn = '999887777' to 1.

Operation:

Update the Dno of the EMPLOYEE tuple with Ssn = '999887777' to 7.

Operation:

Update the Ssn of the EMPLOYEE tuple with Ssn = '999887777' to '987654321.

Result:

Figure 5.7

Referential integrity constraints displayed on the COMPANY relational database schema.

EMPLOYEE

One possible database state for the COMPANY relational database schema.

EMPLOYEE

Fname	Minit	Lnan	ne	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smtl	h	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wor	g	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelay	ya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Walla	ace	987654821	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Naray	yan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	Engli	ish	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabba	ar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg		888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_LOCATIONS

Dnumber	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

WORKS_ON

Essn	Pno	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

PROJECT

Pnumber	Plocation	Dnum
1	Bellaire	5
2	Sugarland	5
3	Houston	5
10	Stafford	4
20	Houston	1
30	Stafford	4
	1 2 3 10 20	1 Bellaire 2 Sugarland 3 Houston 10 Stafford 20 Houston

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

Update the salary of the EMPLOYEE tuple with Ssn = '999887777' to 28000. Result: Acceptable.

Operation:

Update the Dno of the EMPLOYEE tuple with Ssn = '999887777' to 1.

Operation:

Update the Dno of the EMPLOYEE tuple with Ssn = '999887777' to 7.

Operation:

Update the Ssn of the EMPLOYEE tuple with Ssn = '999887777' to '987654321.

Result:

Update the salary of the EMPLOYEE tuple with Ssn = '999887777' to 28000.

Result: Acceptable.

Operation:

Update the Dno of the EMPLOYEE tuple with Ssn = '999887777' to 1.

Result: Acceptable.

Operation:

Update the Dno of the EMPLOYEE tuple with Ssn = '999887777' to 7.

Operation:

Update the Ssn of the EMPLOYEE tuple with Ssn = '999887777' to '987654321.

Result:

Update the salary of the EMPLOYEE tuple with Ssn = '999887777' to 28000. Result: Acceptable.

Operation:

Update the Dno of the EMPLOYEE tuple with Ssn = '999887777' to 1. *Result*: Acceptable.

Operation:

Update the Dno of the EMPLOYEE tuple with Ssn = '999887777' to 7. Result: Unacceptable, because it violates referential integrity.

Operation:

Update the Ssn of the EMPLOYEE tuple with Ssn = '999887777' to '987654321.

Update the salary of the EMPLOYEE tuple with Ssn = '999887777' to 28000. Result: Acceptable.

Operation:

Update the Dno of the EMPLOYEE tuple with Ssn = '999887777' to 1. *Result*: Acceptable.

Operation:

Update the Dno of the EMPLOYEE tuple with Ssn = '999887777' to 7. Result: Unacceptable, because it violates referential integrity.

Operation:

Update the Ssn of the EMPLOYEE tuple with Ssn = '999887777' to '987654321'. Result: Unacceptable, because it violates primary key constraint by repeating a value that already exists as a primary key in another tuple; it violates referential integrity constraints because there are other relations that refer to the existing value of Ssn.

Referential integrity constraints displayed on the COMPANY relational database schema.

EMPLOYEE

Activity

EMDLOVEE

EMPLOTEE									
Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_LOCATIONS

_	
Dnumber	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

WORKS_ON

Essn	<u>Pno</u>	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Essn		Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

One INSERT on EMPLOYEE that is acceptable

One INSERT that violates key constraint

One INSERT that violates referential integrity constraints

One DELETE on EMPLOYEE that is acceptable

One DELETE on EMPLOYEE that violates referential integrity constraints

One UPDATE on EMPLOYEE that is acceptable

One UPDATE on EMPLOYEE that violates referential integrity constraints

One UPDATE on EMPLOYEE that violates primary key constraint

One INSERT on DEPARTMENT that is acceptable

One INSERT on DEPARTMENT that is NOT acceptable

One DELETE on PROJECT that is acceptable

One DELETE on PROJECT that is NOT acceptable

One UPDATE on WORKS_ON that is acceptable

One UPDATE on WORKS_ON that is NOT acceptable

Bibliography / Acknowledgements

Instructor materials from Elmasri & Navathe 7e

- f Ponnurangam.kumaraguru
 - in /in/ponguru
 - ponguru

Thank you for attending the class!!!

