STATISTICAL DISTRIBUTION

~ABHISHEK KUMAR

DISTRIBUTION

• A statistical distribution is a representation of the frequencies of potential events or the percentage of time each event occurs.

TYPES

- Discrete distribution
- Continuous distribution

DISCRETE DISTRIBUTION

Rolling a dice

outcome	1	2	3	4	5	6
probability	1/6	1/6	1/6	1/6	1/6	1/6

- Known number of possible outcomes.
- Probability Mass Function (PMF)

CONTINUOUS DISTRIBUTION

Temp in New York on Jun 1st

Probability Density Function (PDF)
this is what we use to find it

HOW TO DESCRIBE IT?

- Expected value or mean
- Variance

EXAMPLES OF DISCRETE DISTRIBUTIONS

- The Bernoulli Distribution: represents the probability of success for a certain experiment (binary outcome).
- The Poisson Distribution:- represents the probability of n events in a given time period when the overall rate of occurrence is constant.
- The Uniform Distribution:- occurs when all possible outcomes are equally likely.

EXAMPLES OF CONTINUOUS DISTRIBUTIONS

gaussian exists in nature

The Normal or Gaussian distribution.

PROBABILITY MASS FUNCTION (PMF)

- Frequency function or probability distribution
- Associate probabilities with discrete random variables

$$f(x)=P(X=x)$$

$$R_{x} = \{x_{1}, x_{2}, x_{3}, \ldots\}$$

where x_1, x_2, x_3, \dots are the possible values of x

PROBABILITY MASS FUNCTION (PMF)

- To convert any random variable's frequency into a probability, we need to perform the following steps:
 - Get the frequency of every possible value in the dataset
 - Divide the frequency of each value by the total number of values (length of dataset)
 - Get the probability for each value

PROBABILITY MASS FUNCTION (PMF)

$$E(X) = \mu = \sum_{i} p(x_i) x_i$$

$$E((X - \mu)^{2}) = \sigma^{2} = \sum_{i} p(x_{i})(x_{i} - \mu)^{2}$$

PROBABILITY DENSITY FUNCTION (PDF)

Continuous variables can take on any real value.

Helps identify the regions in the distribution where observations are more likely to occur

PROBABILITY DENSITY FUNCTION (PDF)

$$E(X) = \mu = \int_{-\infty}^{+\infty} p(x)xdx$$
$$E((X - \mu)^2) = \sigma^2 = \int_{-\infty}^{+\infty} p(x)(x - \mu)^2 dx$$

To obtain exact number, you would get a 1-dimensional line down which isn't really an "area". For this reason, P(X=n)=0

HOW TO INTERPRET IT?

CUMULATIVE DISTRIBUTION FUNCTION

n=we cannot have an absolute value here

- Percentile probability function
- For continuous random variables, obtaining probabilities for observing a specific outcome is not possible
- Have to be careful with interpretation in PDF

CUMULATIVE DISTRIBUTION FUNCTION

Step functions for discrete random variables

Smooth curves for continuous random variables

CUMULATIVE DISTRIBUTION FUNCTION

- What is the probability that you throw a value ≤ 4 when throwing a dice?
- What is the probability that the temperature in NYC is ≤ 79 ?

BERNOULLI OR BINARY DISTRIBUTION

A simple experiment in which there is a binary outcome:
0-1, success-failure, heads-tails, etc.

$$E(X) = p \text{ and } \sigma^2 = p * (1 - p).$$

BINOMIAL DISTRIBUTION

- If we repeat this process multiple times
- n independent Bernoulli trials

Eg:

P(Y=0) (or the soccer player doesn't score a single time)?

P(Y=1) (or the soccer player scores exactly once)?

P(Y=2) (or the soccer player scores exactly twice)?

P(Y=3) (or the soccer player scores exactly three times)?

BINOMIAL DISTRIBUTION

NORMAL DISTRIBUTION

- Most important and most widely used
 - here mean, median, and mode are all similar. we can calculate this distribution by variance which is dev ^2
- "Gaussian curve" after the German mathematician

Karl Friedrich Gauss.

NORMAL DISTRIBUTION

NORMAL DISTRIBUTION

Central Limit Theorem:

When you add a large number of independent random variables, irrespective of the original distribution of these variables, their sum tends towards a normal distribution.

STANDARD NORMAL DISTRIBUTION

in standard normal dist the mean is always 0 and the deviation is always 1

mean of 0 and a standard deviation of 1.

look up Z score and Z test and theorems mentioned here, make flashcards for formulas on deviation, variance, etc.

DISCUSSION

THANK YOU!!

