4.3 ANSWERS TO EXERCISES

4.3 Exercise 1

1. a) acid

2.

- b) both g) both
- c) acid h) both
- d) both i) both
- e) base j) both

- f) base
- k) both a) H₂O
- b) HClO₄
- c) HSO₄
- d) H_3O^+
- a) HCO₃⁻ (acid) and CO₃²- (base), H₂O (base) and H₃O⁺ (acid) 3.
 - b) HCO_3^- (base) and $CO_2 + H_2O$ (acid), H_3O^+ (acid) and H_2O (base)
 - c) H₂SO₄ (acid) and HSO₄⁻ (base), HNO₃ (base) and NO₂⁺ + H₂O (acid)
 - d) HSO₄⁻ (acid) and SO₄²⁻ (base), OH⁻ (base) and H₂O (acid)

4.3 Exercise 2

- 1. a) 3.00
- b) 11.30
- c) 2.60
- d) 4.89
- e) 1.65

- f) 12.60
- a) 1.0 x 10⁻³ moldm⁻³ b) 6.3 x 10⁻³ moldm⁻³ c) 1.0 x 10⁻³ moldm⁻³ 2.
- $2.0 \times 10^{-5} \text{ moldm}^{-3}$ 3.
- 76 4.

4.3 Exercise 3

- 1. a) resists large pH change on addition of small amounts of acid or alkali b) 4.60
 - c) $CH_3CH_2COOH + OH^- \rightarrow CH_3CH_2COO^- + H_2O$ $CH_3CH_2COO^- + H^+ \rightarrow CH_3CH_2COOH$
 - d) 4.84
- e) 4.30
- f) 12.30
- the buffer solution restricts the pH change to 0.24 units, but the water g) changes its pH by 5.30 units (from 7 to 12.3).
- 2. a) 2.85
- b) 3.33 g
- c) 4.41
- d) 4.77

- 3. 8.65
- salt: acid ratio 1.58:1 4.
- 5. a) 10.21
- b) 10.01
- c) 10.54
- d) 13.00
- e) buffering capacity has been exceeded, so cannot resist change in pH.

4.3 Exercise 4

1. a)

i) 2.37

ii) 3.27

iii) 3.74

iv) 4.22

v) 11.85

b)

c) the salt produced is sodium methaoate, and the methanoate ion is basic: $HCOO^- + H_2O \rightarrow HCOOH + OH^-$

2. a) 1.70

b) 12.30

3. a)

b)

c)

d)

- 4. a) methyl red, as it will change colour completely within the pH range (4 7), over which the end point occurs
 - b) both, as they will both change colour completely within the pH range (4 10), over which the end point occurs
 - c) phenolphthalein, as it will change colour completely within the pH range (7-10), over which the end-point occurs
 - d) neither, as there is no sharp pH change at the end-point of this titration, so indicators will not change colour sharply