Object Detection With YOLO

What if there is no object present in an image?

What if there is no object present in an image?

Class probability (Pc): If the object is one of the classes, then this value should be 1, otherwise this value should be zero (i.e. for background).

Then, for a single object, the label vector **y** becomes something like this:

One step further: Detecting multiple objects in a single image

Sliding windows detection algorithm

Training set:

Sliding windows detection algorithm

Sliding windows detection algorithm

Sliding windows detection algorithm

Problem with Sliding window detection algorithm?

Sliding windows detection algorithm

Problem with Sliding window detection algorithm?

- Fix sized bounding boxes (inaccurate)
- Slow speed

HOG: Histograms of oriented gradients

Direction of maximum color gradient

DPM: Deformable Parts Model

HOG feature maps of an image are convolved with part filters to give heat maps of object occurrences.

DPM: Deformable Parts Model

R-CNN: Regions with CNN features

warped region

1. Input image

tvmonitor? no.

aeroplane? no.

person? yes.

CNN ~

	*Pascal 2007 **mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img

^{*}Visual Object Classes dataset; **mean Average Precision

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img

1/₃ Mile, 1760 feet

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img

176 feet

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img

12 feet

JOSEPH

ROSS

SANTOSH

ALI

REDMON

GIRSHICK DIVVALA

FARHADI

"You ONLY LOOK ONCE" REAL-TIME DETECTION

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img
YOLO	69.0	45 FPS	22 ms/img

2 feet

Sliding window, DPM, R-CNN all train region-based classifiers to perform detection

DPM: Deformable Part Models

R-CNN: Regions with CNN features

With YOLO, you only look once at an image to perform detection

YOLO: You Only Look Once

We split the image into a grid

Each cell also predicts a class probability.

Each cell also predicts a class probability.

Bicycle Dog

Car

Dining
Table DICE

Joesph Redmon

Conditioned on object: P(Car | Object)

Car

Dining
Table DIC

Joesph Redmon

Then we combine the box and class predictions.

Finally we do NMS and threshold detections

This parameterization fixes the output size

Each cell predicts:

- For each bounding box:
 - 4 coordinates (x, y, w, h)
 - 1 confidence value
- Some number of class probabilities

For Pascal VOC:

- 7x7 grid
- 2 bounding boxes / cell
- 20 classes

Box #1

Box #2

Class Probabilities

 $7 \times 7 \times (2 \times 5 + 20) = 7 \times 7 \times 30$ tensor = **1470 outputs**

Thus we can train one neural network to be a whole detection pipeline

During training, match example to the right cell

During training, match example to the right cell

Adjust that cell's class prediction

Dog = 1 Cat = 0 Bike = 0

Look at that cell's predicted boxes

Find the best one, adjust it, increase the confidence

Find the best one, adjust it, increase the confidence

Find the best one, adjust it, increase the confidence

Decrease the confidence of other boxes

Decrease the confidence of other boxes

Some cells don't have any ground truth detections!

Some cells don't have any ground truth detections!

Decrease the confidence of these boxes

Decrease the confidence of these boxes

Don't adjust the class probabilities or coordinates

The architecture

Yolo is trained with standard tricks:

- Pretraining on Imagenet
- SGD with decreasing learning rate
- Extensive data augmentation
- For details, you can go <u>here</u>

Intersection over union (IoU) of the bounding boxes

DICE

Intersection over union (IoU) of the bounding boxes:

IoU = (size of intersection) / (size of union)

Ground truth

- Correctness of prediction depends on IoU having a value above a certain threshold value (hyperparameter)
- The range of IoU is from 0 (totally disjoint) to 1 (identical)

Non-Maximum suppression:

To prevent multiple detections of the same object in an image.

Non-Maximum suppression:

To prevent multiple detections of the same object in an image.

Non-Maximum suppression:

For each output prediction:

- Discard all boxes having a confidence value below a threshold (let's say 0.6)
- 2. While there are remaining boxes:
 - a. Pick the box with the largest confidence value and output that as prediction
 - b. Discard any remaining box with an IoU above a certain threshold (let's say 0.5) with the box output in the previous step.

Non-Maximum suppression:

To prevent multiple detections of the same object in an image.

YOLO works across a variety of natural images

It also generalizes well to new domains (like art)

