CA3 ON HW 990 83 J56 R5

URBAN/MUNICIPAL

Air Quality Surveys. Final Report - Upper Ottawa Street Landfill Study Reference Paper 5

Reference 5

FINAL REPORT

AIR QUALITY SURVEYS

OF

UPPER OTTAWA STREET LANDFILL SITE

Prepared For:
UPPER OTTAWA STREET LANDFILL STUDY,
42 JAMES STREET SOUTH, SUITE 33,
HAMILTON, ONTARIO L8P 2Y4

Prepared By:

SCIEX

Division of MDS HEALTH GROUP LIMITED,

55 Glen Cameron Road, Suite 202,

Thornhill, Ontario L3T 1P2

REFERENCE 5

January 1983

TABLE OF CONTENTS

			Page
1.0	SUMMAI	RY AND CONCLUSIONS	1
2.0	INTRO	DUCTION	6
	2.1	GENERAL WORK PROGRAM	6 13
3.0	DISCR	ETE SAMPLE ANALYSIS BY MS/MS	15
	3.1 3.2 3.3	GENERAL SAMPLE ANALYSIS RESULTS	15 15 15
4.0		NTRATION ESTIMATES OF PRIORITY CHEMICALS 981 SURVEY	20
5.0	COMPA	RATIVE FIELD STUDIES	22
	5.1 5.2	GENERAL UPPER OTTAWA STREET LANDFILL/	22
*	5.3	ANCASTER LANDFILL RESIDENTIAL AREA COMPARISON	22 22
6.0	CHLOR!	INATED HYDROCARBON SURVEY	25
	6.1	GENERAL RESULTS	25 25

LIST OF TABLES

		Page
1.0-1	Summary of Quantitative Results for the Confirmed Chemicals and Carbaryl	5
2.1-1	Summary of Sampling Sites and Dates	7
4.0-1	Concentration Estimates for Confirmed Chemicals (1981 Survey)	21
5.2-1	Upper Ottawa/Ancaster - Sampling Date, June 30, 1982	23
5.3-1	Hamilton - Sampling Date - June 30, 1982	24
	LIST OF FIGURES	
2.1-1	Approximate Locations of the Sampling Sites	8
2.1-2	Selective Monitoring of Volatile Pollutants	10
2.1-3	Schematic Representation of the Similarities Between GC/MS and MS/MS Analytical Techniques	s 12
3.3-1	CID Spectra of m/z 94 in Air Bag and o-, m -, and p- methylpyridine	18
6.2-1	Background Van Air Using DASCI After Vent 1, HI RE/RO	26
6.2-2	Site 7: Sampling Vent 4A Using DASCI Source, HI RE/RO	27
6.2-3	Scan of Bag Content from Hamilton Dump Minus Background	28
	LIST OF APPENDICES	
1.	Analysis Methodology Using the TAGA System	
2.	Chemicals Tentatively Identified Using the Mobile TAGA 3000 Single MS System	
3.	Profile of Detected Chemicals, Uses, Toxicity and TLV's	
4.	TAGA Calibration	

1.0 SUMMARY AND CONCLUSIONS

This report is the result of extended air quality studies in the Upper Ottawa Street Landfill site, Hamilton, Ontario. The total program consisted of:

a) Air quality field surveys conducted on August 19, 20, 21, and November 5, 1981. These surveys consisted of discrete sample analysis and realtime monitoring using the mobile TAGA 3000 single mass spectrometer. Discrete samples were collected from vents 1 and 2 using both passive badge monitors:

(Dupont; Pro-Tech; activated charcoal) and sorbent tubes (Florisil and charcoal). The samples and sorbent tubes were analyzed by Wellington Environmental Consultants Inc., Guelph, Ontario using capillary column GC with an electron capture detector. It was found that:

- i) No PCBs were detected above 0.1 μ g/m³.
- ii) The air extracts were analyzed for 12 common chlorinated pesticides (including Mirex). Of these, only lindane was detected and its level was very close to the detection limit of less than 0.1 $\mu g/m^3$.
- iii) Chlorinated benzenes were detected in trace levels close to the detection limits of GC/ECD 0.1 µg/m³.

The realtime monitoring using the TAGA 3000 consisted of direct analysis of gas vents, off-site monitoring in the residential areas and the general landfill surface. These results showed a complex mixture of chemicals emanating from the site. <u>Tentative</u> identification of the detected chemicals was proposed using the molecular weight assignment of mixture components, selective chemical ionization methodology, and thermochemical properties of chemical structures.

Based on a toxicity assessment (by FDC Consultants Inc.) of the preliminary lists of detected chemicals, a short priority list of chemicals was selected for further study.

b) The priority list chosen by FDC and the Study Group consists of four general classes as follows:

Proven Carcinogens (First Priority)

benzidine dimethyl nitrosamine ethylenimine 8-hydroxy quinoline 1-, 2- naphthylamine xylenol phenol

Reproductive Toxins (Second Priority)

acetaminophen butyl acrylate acrylic acid thiocyanic acid

Indefinite Carcinogens (Third Priority)

acrolein
aniline (
cresols
diphenylamine
hydroquinone
maleic anhydride
maleic hydrazide
quinone
sorbic acid
styrene
urethane

Potential Nitrosation Substrates (Fourth Priority)

dimethylamine
cyclohexylamine
carbofuran
bufencarb
carbaryl
nitrosodiphenylamine
nitrosophenol
tributylamine
triethanolamine

c) Further investigation of this priority list consisted of detailed analysis of air bag samples collected from the Upper Ottawa Street Landfill and Ancaster Municipal Landfill. The analysis technique used in this study utilized direct analysis of the collected air samples on a sequential mass spectrometer (TAGA 6000 MS/MS). Detailed analysis of the mass spectra of the priority chemical standards was compared to the corresponding peaks in the air bags. The results of this analysis can be broken qualitatively into confirmed identities, unconfirmed identities and insufficient information.

The <u>unconfirmed</u> chemicals (that is the pure priority standards did not correspond to the detected peaks in the air bags) are:

Proven Carcinogens

benzidine dimethyl nitrosamine ethylenimine 8- hydroxyquinoline 1-,2- naphthylamine

Reproductive Toxins

acetaminophen butyl acrylate thiocyanic acid

Indefinite Carcinogens

acrolein
aniline
diphenylamine
hydroquinone
maleic anhydride
maleic hydrazide
quinone
sorbic acid
styrene
urethane

Potential Nitrosation Products

dimethylamine
cyclohexylamine
carbofuran
bufencarb
nitrosodiphenylamine
nitrosophenol
tributylamine
triethanolamine

Alternate assignments of the unconfirmed chemicals were formulated based on the fundamental mass spectra of chemicals. Of the alternate assignments only one chemical: methylpyridine (alternate to aniline) was considered potentially toxic. This chemical was subsequently acquired and confirmed as a component in the air bag samples. Hence, the confirmed chemicals are: methylpyridine acrylic acid phenol cresol xvlenol Inconclusive evidence was found for carbaryl due to its low abundance in the air bag samples. This chemical will be assumed to exist as a worst case possibility and the corresponding concentration will be assumed to be due to carbaryl. d) Quantitation and comparative studies were conducted for sampling locations near the Upper Ottawa Street Landfill and the Ancaster Municipal Landfill as well as the residential area of Upper Ottawa Street and the residential areas of Hamilton. Table 1.0-1 shows the total results for 1981 surveys and 1982 surveys. The results show:

- Very low concentrations for the five chemicals. i)
- No significant differences exist between the residential ii) areas surrounding the landfill sites (Upper Ottawa and Ancaster).
- The comparative studies of the residential area around iii) Upper Ottawa and Hamilton show that the two industrial sites. Burlington and Stapleton, and Gage and King, show higher concentrations of the chemicals than the Upper Ottawa Street or the control areas (Chester, Mahony Park).
- A chlorinated hydrocarbon survey was conducted on August 13, 1982 e) at Vents 1 and 4A of Upper Ottawa Street Landfill, Blessed Kateri School and Sterling School using a modified TAGA 3000 specially adapted for chlorinated hydrocarbon detection and monitoring. No chlorinated hydrocarbons were detected above the detection limits of 1 ppb.

Detailed information on all of the above programs are included in this report.

TABLE 201

SUPPRIARY OF QUARTITATIVE RESULTS FOR THE CONFIRMED CHEMICALS AND CARDARYL

* All Concentrations are in parts-per-billion (ppb)

Sampling Site		Methylpyridine	Carbaryl	Acrylic Acid	Phenol	Cresol	Xylenol
P	Threshold Limit Value (TLV)	5 იილ	5 ррш	Mo Data	5 ppm	5 ppm	No Sata
(A)	1981 Survey: Tekawitha School 10 meters from Landfill Gate Lime Ridge Road Stone Church and Upper Ottawa Arbur Street	0.010 0.008 0.016 0.024 0.011	0.002 0.001 0.018 0.015 0.014	1.22 1.37 3.49 4.72 3.16	0.15 0.04 0.15 0.23 0.11	0.001 0.001 0.005 0.007 0.004	0.50 0.35 1.11 1.25 0.95
(8)	June 30, 1982 Survey: i) Upper Ottawa Landfill - Upwind Near Lime Ridge and Upper Kenilworth Downwind (NE) From Stone Church	0.22	0.00 0.07	0.74 0.87	0.15	0.004	0.40
	ii) Ancaster Landfill - Upwind Rear Hwy. 2 and Shavers St. Downwind at Gate (SE-SW)	0.07	0.00 0.05	0.38 0.43	0.08	0.003	0.26 0.25
(c)	Comparative Residential Area Studies: Stone Church (by the Reservoir) King Ridge Plaza on Lime Ridge Rd. Chester Avenue Burlington & Stapleton Mahony Park Ottawa/Parkdale/Marton/Burlington Hamilton Downlown (Gage & King)	0.10 0.12 0.01 3.17 0.00 0.01 0.63	0.00 0.00 0.03 0.20 0.00 0.00	0.80 0.42 0.68 3.60 0.00 0.00	0.07 0.06 0.22 1.29 0.00 0.33	0.003 0.002 0.003 0.017 0.00 0.00 0.29	0.65 0.46 0.94 1.94 0.00 0.00 44.54

2.0 INTRODUCTION

2.1 GENERAL

The SCIEX Division of MDS Health Group Limited was contracted by the Upper Ottawa Street Landfill Study to conduct air quality surveys at the Upper Ottawa Street Landfill (UOSL) in Hamilton, Ontario.

The overall objectives of the 1981 program were:

- a) To qualitatively identify as many pollutants as possible emanating from the UOSL site.
- b) To compare the "air quality", in terms of pollutant types, on UOSL to air quality upwind and downwind of the site. This will enable the UOSL Study Group to determine whether or not the landfill is contributing any air pollutants to the general background in Hamilton.

In order to achieve the above objectives, field surveys were conducted on August 19, 20, 21 and November 5, 1981. The sampling program consisted of discrete samples and realtime monitoring on location using the mobile Trace Atmospheric Gas Analayzer (TAGA 3000). A summary of sampling sites and dates is shown in Table 2.1-1. The approximate locations of the sampling sites are shown in Figure 2.1-1.

In February 1982, we submitted a report detailing the <u>preliminary</u> identification of chemicals detected within the vents and on the residential sites. Appendix 1 is included to assist in understanding the advantages and limitations of the technique used in 1981.

The results showed that a large number of chemicals exist on the site. These chemicals were vented into ambient air at very small flow rates and volumes. Appendix 2 shows the lists of chemical compounds detected in the vents and on the residential sites. In order to appreciate the significance of the 1981 results, it is important to highlight the following:

- a) The mobile TAGA 3000 is a single mass spectrometric technique where ambient air/vented gases are directly sampled and analyzed.
- b) The observed measurement is in ion intensity for a given massto-charge (m/z).
- c) Each m/z can be correlated to the Molecular Weight (MW) of a chemical as follows:
 - i) positive ion mode: m/z = MW+1
 - ii) negative ion mode: m/z = MW-1

TABLE 2.1-1

SUMMARY OF SAMPLING SITES AND DATES

Date	Location
August 19	<pre>Inner Gate of Landfill Site Tekokwitha School Vent #4 (opposite Arbur Street) Vent #3 (opposite Arbur Street) Vent #2 (opposite Stone Church Road) Vent #1 (opposite Stone Church Road)</pre>
August 20	Vent #0 (opposite Ottawa Street) Vent #1 Vent #2
August 21	Lime Ridge Road (Solomone Street) Stone Church and Upper Ottawa Street, Arbur Street
November 5	Vent #2A (old solidification site) Vent #2B (old solidification site) Vent #4A (same as 4, new core) Vent #4B (same as 4, new core)

FIGURE 2.1-1 Approximate locations of the sampling sites.

Thus a detected peak contains two pieces of information: the m/z leads to a MW and the intensity after appropriate calibration leads to a concentration of the chemical in ambient air.

d) The mass analyzer of the TAGA 3000 is a quadrupole capable of 1 atomic mass unit resolution, that is two chemicals that differ by 1 atomic mass unit will be distinguished from one another. However, two or more chemicals of the same nominal molecular weight will appear at the same m/z and will not be distinguished. This type of interference is generally alleviated by the use of a chromatographic technique, usually gas chromatograph (GC) coupled to a mass spectrometer (MS).

This technique has its own limitations that will not be discussed in this report since it was not used.

- e) In order to achieve further separation of chemicals with the same molecular weight and at the same time retain the realtime monitoring capability of the TAGA 3000, a technique of chemical ionization (CI) mass spectrometry was developed for use with the TAGA 3000. This technique is based on the known thermochemical properties of chemicals. Figure 2.1-2 shows the complete scheme of chemical ionization reagents used to 'selectively' monitor chemical classes of volatile pollutants.
- f) Even with this technique (CI/MS) some chemicals will still overlap and will not be distinguished. For example, the following two chemicals:

$$N = 93$$
 methylpyridine (picolines) $MW = 93$ m/z = 94 $MW = 93$ m/z = 94 $MW = 93$ m/z = 94

In the 1981 data (Appendix 2) when faced with this limitation, we made an <u>assumption</u> that the chemical associated with industrial use will be assigned for the detected m/z. Appendix 3 shows the detected peaks and the possible industrial chemicals that might lead to it. At the time this seemed a reasonable assumption based on the fact that the UOSL was used for industrial chemical disposal. However, due to biodegradation and chemical reactions among the disposed industrial wastes, some "new" chemicals can be formed.

g) After the completion of our 1982 survey, a more sophisticated technique based on sequential mass spectrometry (MS/MS) became available. This technique, in one of its several operating modes, can be used as a separation/detection technique. The first mass spectrometer can be used for separating components of a mixture according to their m/z, a collision induced dissociation of the selected peaks leads to a mass spectral pattern that can be analyzed on the second mass spectrometer.

Figure 2.1-3 shows schematically the GC/MS and the MS/MS separation and detection.

Based on the potential of MS/MS for direct mixture analyses and component identification, it was agreed that this technique should be used to confirm or reject the identities of a select number of peaks detected in the 1981 survey (Appendix 2).

Since the TAGA 6000 MS/MS is not available yet in a mobile platform, it was decided that discrete air bag samples will be collected and brought back to SCIEX in Thornhill for MS/MS analysis.

2.2 WORK PROGRAM

FDC Consultants Inc. was retained by the Study Group to perform a toxicity assessment of the <u>tentatively</u> identified chemicals in Appendix 2. The following list of priority chemicals was chosen by FDC for further study.

Proven Carcinogens (First Priority)

benzidine
dimethyl nitrosamine
ethylenimine
8-hydroxy quinoline
1-, 2- naphthylamine
xylenol
phenol

Reproductive Toxins (Second Priority)

acetaminophen butyl acrylate acrylic acid thiocyanic acid

Indefinite Carcinogens (Third Priority)

acrolein
aniline
cresols
diphenylamine
hydroquinone
maleic anhydride
maleic hydrazide
quinone
sorbic acid
styrene
urethane

Potential Nitrosation Substrates (Fourth Priority)

dimethylamine
cyclohexylamine
carbofuran
bufencarb
carbaryl
nitrosodiphenylamine
nitrosophenol
tributylamine
triethanolamine

Upon mutual agreement between SCIEX and the Study Group. the following work program was initiated: a) Discrete Tedlar bags of vented gases to be collected and analyzed on the MS/MS for the priority chemicals. b) Calibration methodology development for the priority chemicals and generation of calibration constants for concentration estimates. c) Concentration estimates of the priority chemicals in the 1981 survey. d) Comparative field sampling and analysis in the priority chemicals using the TAGA 3000 Mobile for Ancaster Landfill, Upper Ottawa Street Landfill. Upper Ottawa residential area and Hamilton control area. Field sampling and analysis for chlorinated hydrocarbons, e) using the TAGA 3000 mobile adapted for chlorinated hydrocarbons. - 14 -

3.0 DISCRETE SAMPLE ANALYSIS BY MS/MS

3.1 GENERAL

Tedlar Air Bag Samples were collected on August 23, 1982 from Vent 1 of the Ancaster Landfill and Vents 1 and 4 of Upper Ottawa Street Landfill. The air bag samples were transported to SCIEX and analyzed on August 24, 1982 along with a blank air bag in order to eliminate any contribution from the bag.

Two more air bag samples were collected from a newly bored vent (approximately 8 feet below the surface) at the Upper Ottawa Street vent on January 11, 1983. The samples were immediately transported to SCIEX and analyzed within two hours of collection to minimize sample adsorption/degradation.

3.2 SAMPLE ANALYSIS

The sample analysis consisted of:

- a) Single MS scans in both the positive and negative ion modes for each bag.
- b) The peaks corresponding to the priority chemicals were selectively separated by the first MS and a collision induced (CID) mass spectrum was taken of the ion. Thus the procedure can simply be described as taking the mass spectrum of an ion in a mass spectrum.
- c) The CID spectrum of the priority chemical standards was obtained under the same operating conditions of the instrument.
- d) The spectra of the standards and the sample were then compared in order to confirm or reject the tentative assignments based on the single MS identification reported in the 1981 survey.
- e) For peaks that did not match the priority chemical, the identity of the peak was assigned on the basis of its characteristic fragments. In this part the EPA/NIH Mass Spectral library was searched for comparative purposes.

3.3 RESULTS

The cumulative results for the priority chemicals in the five air bag samples can be classified according to the qualitative criteria: confirmed, unconfirmed, inconclusive evidence.

		Confirmed	Unconfirmed	Inconclusive				
a)	Proven Carcinogens							
	benzidine dimethylnitrosamine ethylenimine 8-hydroxy quinoline 1-, 2-naphthylamine xylenol phenol	X X	X X X X					
ь)	Reproductive Toxins							
	acetaminophen butylacrylate acrylic acid thiocyanic acid	Χ	X X					
c)	Indefinite Carcinogens							
	acrolein aniline cresols diphenylamine hydroquinone maleic anhydride maleic hydrazide quinone sorbic acid styrene urethane	X	X X X X X X X					
d)	Potential Nitrosation Products							
	dimethylamine cyclohexylamine carbofuran bufencarb carbaryl nitrosodiphenylamin nitrosophenol tributylamine triethanolamine	<u>ə</u>	X X X X X X	Χ				

In summary, the following priority chemicals have been conclusively identified:

acrylic acid phenol cresol xylenol

The inconclusive evidence for carbaryl is due to the absence of the m/z 202 in the air bags collected on January 11, 1983. However, the air bags collected on August 23, 1982 showed the following ion intensities in counts per second (CPS):

Air Bag	+ CPS	Concentration		
UOSL Vent 1	7000	0.94 ppb		
UOSL Vent 4	-	0 ppb		
Ancaster Vent 1	500	0.07 ppb		

The concentration is based on the calibration of carbaryl (sensitivity 7448 cps/ppb). Since the threshold limit value (TLV) for carbaryl is 5000 ppb, the detected concentration in the vent is well below the permissible exposure level. The concentration of this chemical in the residential areas, as will be shown later, will be much less than the value in the vent due to dilution with ambient air.

For the unconfirmed peaks, alternate chemical identities were assigned based on fundamental fragmentation of patterns of chemical compounds. The alternate chemicals were discussed with the Study Group and submitted in a draft report. Only one alternate chemical poses potential toxic effects, methylpyridine. This compound is the alternate assignment to aniline. Subsequent to the initial identification, we have obtained a pure standard of methylpyridine and confirmed the identity of the m/z 94 as methylpyridine. Figure 3.3-1 shows the CID spectrum of m/z 94 in the air bag as well as o-, m-, and p- methylpyridine.

In order to compare the relative magnitudes of the confirmed toxic chemicals between an industrial landfill and municipal landfill, the air bag sample results are:

FIGURE 3.3-1

CID SPECTRA OF M/Z

94 IN AIR BAG AND

6-, m-, AND p
METHYLPYRIDINE

<u>Chemical</u>	Upper Vent 1 (%)	Ottawa Vent 4 (%)	Ancaster Vent 1 (%)
methylpyridine	1604	6	100
acrylic acid	284	79	100
phenol	323	102	100
cresol	381	110	100
xylenol	718	135	100

These results show that vent 1 on UOSL has consistently higher concentrations than UOSL Vent 4 and Ancaster Vent 1. These results are consistent with our observation during the 1981 survey that Vent 1 was "active". This activity was manifested by condensation at the cooler pipe surface exposed to ambient air and the fact that the pipe was "hot" to touch.

4.0 CONCENTRATION ESTIMATES OF PRIORITY CHEMICALS FOR 1981 SURVEY

The TAGA calibration methodology and calibration results for the list of priority chemicals are given in Appendix 4. The relevant calibration constants for the confirmed toxic chemicals and the concentration estimates for the 1981 survey are shown in Table 4.0-1.

It is evident that Site 4 (Stone Church & Upper Ottawa Street) has the highest concentration compared to the other four sites. During sampling in August of 1981, site 4 was directly downwind of the landfill.

Table 4.0-1 shows clearly that the confirmed chemicals downwind of the site exist at very low concentrations, the highest observed is 4.72 ppb for acrylic acid at Stone Church and Upper Ottawa Street.

TABLE 4.0-1 CONCENTRATION ESTIMATES FOR CONFIRMED CHEMICALS (1981 SURVEY)

			Concentration (ppb)				
Chemical Chemical	Calibration Constant	TLV	Site 1	Site 2 Site 3		Site 4	Site 5
	7						
methylpyridine	1.666 x 10 ⁷ cps/ppm	5 ppm	0.0097	0.008	0.016	0.024	0.011
carbaryl	7.448 x 10 ³ cps/ppb	5 ppm	0.002	0.001	0.018	0.015	0.014
acrylic acid	6.762 x 10 ⁵ cps/ppm	no data	1.22	1.37	3.49	4.72	3.16
phenol	6.030 x 10 ³ cps/ppb	5 ppm	0.15	0.04	0.15	0.23	0.11
p-cresol	1.031 x 10 ⁵ cps/ppb	5 ppm	0.001	0.001	0.005	0.007	0.004
2,4- xylenol	5.27 x 10 ² cps/ppb	no data	0.50	0.35	1.11	1.25	0.95

Legend

Site 1: Site 2: Site 3: Site 4: Site 5: Tekawitha School 10 metres from gate Lime Ridge Road Stone Church & Upper Ottawa Street Arbur Street

5.0 COMPARATIVE FIELD STUDIES

5.1 GENERAL

In order to assess any <u>unique</u> problems that might be associated with the industrial Upper Ottawa Street Landfill site and the associated residential area, comparative field surveys were conducted during May and June of 1982.

5.2 UPPER OTTAWA STREET LANDFILL/ANCASTER LANDFILL

The comparative study was conducted under the same conditions of instrument operation and field sampling. Two sites were monitored for each landfill, one upwind site and one downwind site. Table 5.2-1 shows the concentrations of confirmed chemicals and carbaryl.

The concentrations for the confirmed chemicals are all below 1 ppb. At such low concentrations no significant differences exist between any of the two sites.

5.3 RESIDENTIAL AREA COMPARISON

Comparative air quality surveys were conducted on eight locations in the Hamilton area. The peaks corresponding to the confirmed priority chemicals were quantified based on their respective calibration constants. Table 5.3-1 shows the results for all sites.

The results in Table 5.3-1 show that the concentrations estimated for Burlington and Stapleton and Hamilton Downtown are higher than the Upper Ottawa Street area. These two sites which are remote from the landfill are the only ones showing concentrations higher than 1 ppb. Based upon the results in Table 5.3-1, it is evident that the residential areas of Stone Church and King Ridge Plaza are not any different from the control residential areas on Chester, Mahony Park and Ottawa/Parkdale/Marton/Burlington. As expected the industrial areas (Burlington and Stapleton) and the urban area (Gage and King) show higher concentrations of the five chemicals. This has also been observed for the confirmed chemicals as well.

TABLE 5.2-1

UPPER OTTAWA/ANCASTER - SAMPLING DATE, JUNE 30, 1982

	UPPER OTT.	AWA	ANCASTER			
CHEMICAL	UPWIND NEAR LIME RIDGE RD. & UPPER KENILWORTH	DOWNWIND (NE) FROM STONE CHURCH	UPWIND NEAR HWY.2 AND SHAVERS ST.	DOWNWIND AT GATE SE-SW (23°C)		
me thylpyridine	0.22 ppb	0.12 ppb	0.07 ppb	0.09 ppb		
carbaryl	0.00 ppb	0.07 ppb	0.00 ppb	0.05 ppb		
acrylic acid	0.74 ppb	0.87 ppb	0.38 ppb	0.43 ppb		
phenol	0.15 ppb	0.10 ppb	0.08 ppb	0.047 ppb		
cresol	0.004 ppb	0.003 ppb	0.003 ppb	0.00 ppb		
xylenol	0.40 ppb	0.34 ppb	0.26 ppb	0.25 ppb		
-						

TABLE 5.3-1

HARMLTON - SAMPLING DATE - JUNE 30, 1982

CHEMI CAL	STONE CHURCH BY THE RESERVOIR	KING RIDGE PLAZA ON LIME RIDGE RD.	CHESTER AVENUE	BURL THGTON AND STAPLETON	MAHONY PARK	OTTAWA, PARK- DALE, HARTON, BURLINGTON	HAMILTON DOWNTOWN ARLA (GAGE & KING STS.)
methylpyridine	0.10 ppb	0.12 ppb	0.01 ppb	3.17 ppb	0.00 ppb	0.01 ppb	0.63 ppb
carbaryl	0.00 ppb	0.00 ppb	0.03 ppb	0.20 ppb	0.00 ppb	0.00 ppb	0.10 ppb
acrylic acid	0.80 ppb	0.42 ppb	0.68 ppb	3.6 ppb	0.00 ppb	0.CJ ppb	2.22 ppb
phenol	0.067 ppb	0.35 ppb	0.22 pp5	1.29 ppb	0.00 ppb	0.33 ppb	1.28 ppb
cresol	0.003 ppb	0.C02 ppb	0.003 ppb	0.017 ppb	0.00 ppb	0.CJ ppb	0.29 ppb
xylenol	0.65 ppb	0.45 ppb	0.94 ppb	1.94 ppb	0.00 ppb	0.CO pp5	44.54 ppo

6.0 CHLORINATED HYDROCARBON SURVEY

6.1 GENERAL

A special survey for chlorinated hydrocarbons was conducted on August 13, 1982 at Vents 1 and 4A of Upper Ottawa Street Landfill, and at the Blessed Kateri and Sterling schools. The SCIEX® mobile TAGA® 3000 was equipped with a specialized Direct Air Sampling Chemical Ionization (DASCI) source. The DASCI operates in the pressure range of 0.1 to 10 torr compared to the regular ion source which operates at 760 torr. The DASCI source was specially designed for the monitoring of chlorinated hydrocarbons. A discrete air bag sample was also collected from both Vents 1 and 4A. The sample was analyzed back at SCIEX® for total chlorine content.

6.2 RESULTS

Figure 6.2-1 shows a realtime spectrum of Vent 1 and van air between m/z 80 and 90. This is the range suitable for detection of chloroform and breakdown products of higher chlorinated hydrocarbons. The peaks at 83 and 85 do not have the appropriate ratio for the chlorine isotopes. Figure 6.2-2 shows a similar experiment with Vent 4A. The same result was obtained: no chlorinated hydrocarbons at concentrations of greater than 1 ppb. Figure 6.2-2 shows the appropriate peaks when spiked with chloroform thus demonstrating the capability of detection.

The air bag analysis for total chlorides using the TAGA® MS/MS also indicated the absence of chlorinated hydrocarbons. Figure 6.2-3 shows the mass spectrum between m/z 15 and 250. The Cl⁻ peaks should have appeared at m/z 35 and 37. The absence of the peaks indicate that no chlorinated hydrocarbons exist in the bag at concentrations above 1 ppb. The latter is the detection limit for a number of chlorinated hydrocarbons using the TAGA® system.

EACKGROUND VAN AIR USING DASCI AFTER VENT1.HI RE/RO

FIGURE 6.2-1

SITE #7 SAMPLING VENT#4A USING DASCI SOURCE, HI RE AND RO.

FIGURE 6.2-2

FIGURE 6.2-3

APPENDIX 1

ANALYSIS METHODOLOGY USING THE TAGA SYSTEM

1.1 Introduction

In order to fully comprehend the results and their significance, a brief summary of the TAGA™ methodology is necessary.

1.2 TAGA™ Technology

The TAGAT technique is based on the use of mass spectrometry to identify and/or quantify trace species in gases at atmospheric or near atmospheric pressure. To make this approach practical for trace concentrations in the range of 1 in 10^6 to 1 in 10^{14} , it is necessary to produce a massive degree of pre-separation or preselection of the trace gas molecules from normal air constituents before their introduction into the mass spectrometer. This is done in Atmospheric Pressure Chemical Ionization (APCI) by an extremely rapid preferential ionization of the trace gas molecules using as reagents the ions produced in a primary ionization process from air. The primary ions are derived from water and oxygen for the positive and the negative modes, respectively.

In the positive modes, the reactant ions are dominated by the series ${\rm H_30}^+$ ${\rm (H_20)_m}$ which in turn ionize traces by simple non-fragmenting soft-ionization processes, as:

$$H_30^+(H_20)_n$$
 $T \longrightarrow TH^+$ (1)
 $T \longrightarrow TH_30^+$ (2)

In the negative mode, the ions $0_2^-({\rm H}_20)_n$, ${\rm C}0_3^-$ tend to be the dominant species which lead to simple non-fragmenting ionization processes such as:

$$02^{-}(H_20)_n \qquad T \longrightarrow T^{-} \qquad (3)$$

$$T \longrightarrow (T-H)^{-} \qquad (4)$$

The symbol T, in all equations, represents a trace consistituent in ambient air, carrier reagent gas.

In the positive ion mode, species with the highest gas phase basicity (proton affinity) tend to be the most reactive, while in the

negative ion mode, species with the highest gas phase acidity or electron affinity are the most reactive. Thus the ease of detection of traces will depend upon their <u>relative</u> basicities, acidities, ionization potentials or electron affinities to these primary reactant ions.

The classes of molecules that show high reactivity can be generally classified as those being polar or polarizable. Molecules containing a heteroatom such as 0,N,P,S, halogen, a metal etc., and those containing conjugated double bonds fall into this category. Saturated alkanes, unconjugated alkenes, and cyclic hydrocarbons do not show any appreciable reactivity and thus the TAGA[™] is "blind" to these chemicals under atmospheric pressure chemical ionization (APCI). A new ionization source developed at SCIEX[™] overcomes this shortcoming if operated at reduced pressure (approximately 1 torr). This however, was not used for any of the surveys conducted at UOSL.

1.3 TAGA™ Selectivity

As discussed in the previous section, the classes of compounds that can be detected by the TAGA $^{\text{m}}$ are those containing heteroatoms. This constitutes the first degree of selectivity. A second degree of selectivity depends on the utilization of the fact that reactivities of different chemical classes depend on the <u>relative</u> magnitudes of the thermochemical properties (basicities, acidities, ionization potentials and electron affinities) for the reagent and the trace components. For example, if ammonia is added to the carrier gas in parts per million or greater concentrations, the proton hydrates, $H_30^+(H_20)n$, will rapidly pass a proton to the ammonia forming ammonia hydrates as well as ammonia clusters, reactions (6) and (7) respectively.

$$H_30^+(H_20)_n + NH_3 \longrightarrow NH_4^+(H_20)_{n-m} + m+1(H_20)$$
 (6)

$$NH_4^+(H_2O)_n + NH_3 \longrightarrow NH_4^+(NH_3)(H_2O)_{n-1} + H_2O$$
 (7)

Since the basicity (proton affinity) of ammonia is so much higher than that of water, the ammonium ion, NH_4^+ , will protonate fewer types of trace compounds than would the hydronium ion, H_30^+ . This will effectively "clean" up the spectrum by removing peaks due to oxygenated organics which were protonated by water, and intensify the peaks due to nitrogen based compounds. Thus the use of ammonia is said to "highlight" the nitrogen-containing species as amines, amides, etc.

Table 3.3-1 shows a summary of the chemical ionization reagents used to highlight chemicals of environmental concern. These reagents were used at the UOSL and its vicinity.

1.4 Data Acquisition

The TAGA™ 3000 system can acquire real time data in two generalized modes:

- (a) Targeted compound analysis where the nature of the chemical is known. Thus prior calibration of the TAGA™ is performed and the selected chemicals up to 8 at a time, are monitored as a function of time while stationary or mobile. This mode was not used at UOSL since no prior knowledge of the chemicals was available.
- (b) Scanning mode for unknowns. In this mode, the TAGA™ 3000 is set at a unit mass resolution in the mass-to-charge range of 2 to 500 atomic mass units. This range encompasses most of the volatile chemicals to be expected in ambient air. Because of the variety of chemicals that can have the same nominal mass-to-charge ratio, within 1 amu, a unique and unequivocal identification of a detected peak cannot be guaranteed. However, the use of selective chemical ionization reagents, Table 3.3-1 and "context" as well as tables of thermochemical parameters (proton affinities, ionization potentials, gas phase acidities, and electronegativities) can narrow the number of possible compounds to within two or three chemicals. Further detailed experimentation can be designed, in most cases, to achieve better identification. This limitation was resolved by developing the TAGA™ 6000 MS/MS system.

1.5 Data Reduction

The acquired data at the UOSL site can be reduced in two general approaches:

(a) an internally consistent single site analysis where the data for each sampling site is analyzed without reference to an upwind or background site. In this case, the data acquired under normal water and oxygen ion chemistries are analyzed and then subtracted from data obtained using other chemical ionization reagents. The resultant information can then be used to obtain a list of chemicals detected on the site.

TABLE 1.3-1

Summary of Chemical Ionization Reagents Used to Highlight Chemicals of Environmental Concern

Reagent	Highlighted Classes
	POSITIVE MODE:
H ₃ 0(H ₂ 0) ⁺ n	Oxygenated Organics: ketones, alcohols, esters, etc.
NH ₄ +	Nitrogen-Containing species: amines, amides, etc.
C ₆ H ₆ +	Aromatics, polyaromatic hydrocarbons
photolysis pre-reactor	Sulfur compounds, alkenes
	NEGATIVE MODE:
02 ⁻ (H ₂ 0)n	Phenolic group, carboxylic acids, aldehydes, SO ₂ , NO ₂
photolysis pre-reactor	Sulfur compounds (RSH, RSR, RSSR)
C1 -	Inorganic acids: H ₂ SO ₄

(b) comparative data analysis where two sites are compared regarding their differences and similarities. This allows for background subtraction or correction. For example, two vents can be directly compared by the computer to determine whether there are qualitative or quantitative differences in their contents.

As a first approach, it is usually recommended that data be analyzed according to the internally consistent method, part (a) above. Depending on the results further analysis according to part (b) can then be efficiently and economically utilized. This approach has been adopted in this report.

1.6 Data Interpretation

The peak assignment, or identification is based on several factors as follows:

- (a) Thermochemical parameters: proton affinity, ionization potential, gas phase acidity and electronegativity.
- (b) Reactivity under various chemical ionization reagents and at APCI conditions.
- (c) Context. The Merck Index and the EPA/NIH Mass Spectral data bases were consulted. Each detected peak was matched with all possible chemicals according to the above data base. A process of elimination based on the known behaviour in the TAGA™, (a) and (b) above, was used to arrive at a list of most likely chemicals. This list was further reduced by consulting the Merck Index regarding the uses of each chemical on the short list. Chemicals that were not used in large industrial quantities were eliminated as unlikely to be found in an industrial landfill site. It is to be noted that this is only an assumption to reduce the list of detected chemicals into a more manageable size. It is to be expected that some non-industrial use chemicals will be formed upon interaction of two industrial chemicals landfilled in the same location. As mentioned in Section 2.4, evidence of such interaction was observed in vent #1 during the sampling program.

APPENDIX 2

CHEMICALS TENTATIVELY IDENTIFIED

USING THE MOBILE TAGA 3000 SINGLE MS SYSTEM

2.1 Introduction

Extensive analysis of data for each site was performed as outlined in the previous section. This was followed by grouping the data into two generalized categories: chemicals that are normal constituents of ambient air and those considered unusual. The former group will not be included in this report. The unusual group of chemicals will be presented below.

2.2 Chemicals Detected in the Negative Ion Mode

The final results for this group of chemicals with all relevant information are included in Tables 2.2-1 and 2.2-2. The tables are divided into the following columns; mass-to-charge, M/Z; empirical formulae assignment; comments or identification whenever possible of the responsible chemical; and the sampling locations used in this survey. Table 2.2-1 shows the vents where a given chemical was detected, while Table 2.2-2 shows the same information for the residential sites. In other words, the two tables are identical except for the sampling locations. Table 2.2-1 deals with the vents while Table 2.2-2 shows the residential sites. The two tables can be used to determine whether a detected chemical originates in the UOSL site or is a constituent of the Hamilton urban environment. Chemicals detected on (Stone Church Road and Upper Ottawa Street) but not on Lime Ridge Rd or Arbur St. can most likely be attributed to the UOSL site, and similarly for chemicals detected at Tekokwitha School. It is to be noted that chemicals detected on the UOSL but not in the residential areas are not necessarily absent from the latter; these chemicals may exist at concentrations below the detection limits of the TAGA™ 3000 in realtime.

2.3 Chemicals Detected in the Positive Ion Mode

Similar to the results in Section 2.2, the final list of unusual chemicals detected in the positive ion mode is given in Table 2.3-1 for the vents and in Table 2.3-2 for the residential sites. The self explanatory tables are structured similar to Tables 2.2-1 and 2.2-2 and can be used for the same purposes.

TABLE 2.2-1

SUMMARY RESULTS OF CHEMICALS TENTATIVELY IDENTIFIED WITHIN THE VENTS USING THE NEGATIVE ION MASS SPECTRAL ANALYSES.

	H/Z	ASSIGNMENTS	COMMENTS	VENT*	VENT	VENT 2	VENT 2A	VENT 2B	VENT 3	VENT	VEHT
	35	35 _{C1} -	possibly from chlorinated organic compounds	NO	x	х	х	х	X	x	x
1		37 _{C1} -	possibly from chlorinated organic compounds	ND	x	x	X	х	X	x	X
		CNO-	isocyanyl anion	NO				x		-	^
		HC00-	formic acid	ND	х		х	x			1
		C3H3O-	acrolein	ND	^	x	^	^			
		CNS-	thiocyanic acid	ND ND		x					
			acetic acid	NO	x	^					
		C2H502-	ethyl mercaptan	NO	^		x				
		C2H5S-	propiolic acid	ND	_	u u	*				
		C3H2O2-	acrylic acid/Oxid. Prod. of mass 55	ND	x	X X					
		C3H3O2T	methyl thiocyanate	ND		^					X
		C ₂ H ₂ NS ⁻	-								_
		C3H50-	propanoic acid	NO	х		X	Х			ж
		C2H3OS-/C2H3O3-	thio acetic acid/glycolic acid	NO		х					
		C2H5SO-	ethyl sulfonic acid	ND	х	x	х	Х			X
		C10 ₃ - (C1=35)	chloric acid	NO		X					
		C103- (C1=37)/C4H502-	chloric acid/crotonic acid or methacrylic acid	ND		X		X			×
		C3H3O3-	pyruvic acid	ND	Х	Х	X	Х	х		X
		C3H6O3-	lactic acid	ND		Х			Х		
	91	C3H7SO-	propyl mercaptan	ND			Х	x			
	92	(C2H5NO3)-	ethyl nitrate anion	ND							X
	93	C2H5SO2-	ethyl mercaptan	ND	x	х	х	X			
	93	C6H50-	phenol	ND						X	
	95	CH303S-	methanesulfonic acid	ND							
	99	C5H7O2-	carboxylic acid	ND	x	х		X			
	101	C5H9O2-	valeric acid or isovaleric acid	HD	x	х	х	X			x
	105	C4H9SO-	butyl mercaptan	ND			х	X			X
	107	C3H7SO2-	propyl mercaptan	HD	х						
	107	C7H80+	cresol	ND		х				x	
	108	C6H6NO-	nicotinyl alcohol	ND			Х	x		х .	X
	109	C2H5SO3-	ethyl mercaptans	ND		x	х	ж			
	111	C6H702-	sorbic acid	NO		x	х	х			x
	115	C5H703-/C4H304-/C6H1102-	levulinic acid/fumaric acid or maleic acid/n-caproic acid	מא	x	х	х	х	х	х	
		C4H9SO2-	butylmercaptan or ethyl sulfide	ND	x						X
		C8H90-/C7H502-	benzoic acid/dimethylphenol	ND		x				x	
		C6H4NO2-	nitrosophenol or picolinic acid	ND							
		C3H7SO3-	propyl mercaptan	DM				x			х
		C2H5045-	ethyl sulfate or dimethyl sulfate	ND				x			х
	127	C6H4C10-/C7H1102-	chlorinated phenols/cyclohexane carboxylic acid	ND	х	х		x			х
		C7H13O2-	heptanoic acid	HD	x	х					
		C7H15S-	hepta mercaptan	ND	х						
		C8H702-	toluic acid or phenylacetic acid	ND		x					
		C5H11502-	pentyl mercaptan	ND							
		C4H9SO3-	butyl mercaptan, ethyl sulfide	MD							
		C7H4FO2-(?)	fluoropenzoic acid(?)	HD		x					х
		C6H5O4-(?)	kojic acid(?)	ND							x
		-20M8H9	NI	ND		x					
		CH3(CH2)6C00-	caprylic acid	HD	x	x	х		х	х	
		C7H5O2S-	thiosalicyclic acid	ND	x	x					x
		C9H1702	pelargonic acid	ND	x	^			X	х	
		C8H704-	dehydroacetic acid	AD	*				^	^	
		C7H50S2-	dithiosalicylic acid	ND	x						
		C7H7035-/C10H1902-	toluenesulfonic acid/capric acid	Dא		v					
		C8H3H2O3S-			X X	х					
			diazobenzenesulfonic acid	ND	^						
	100	C2H2IO2-(?)	iodoacetic acid(?)	ND		X					

^{*}hegative Mode Scan was not done for Vent O (ND = Not Determined)

TABLE 2.2-2 SUMMARY RESULTS OF CHEMICALS TENTATIVELY IDENTIFIED WITHIN THE RESIDENTIAL AREAS USING THE NEGATIVE ION MASS SPECTRAL ANALYSES.

H/Z	ASSIGNMENTS	COMMENTS	1	S 2	1 T E		5_
35	35 _{C1} -	possibly from chlorinated organic compounds	¥	х	¥	х	¥
37	37 _{C1} -	possibly from chlorinated organic compounds		Х		Х	
4.2	CNO-	isocyanyl anion					
45	HCOO-	formic acid	Х	х			
5.5	C3H30-	acrolein					
	CNS"	thiocyanic acid				х	
59	C2H5O2-	acetic acid					
	C2H5S-	ethyl mercaptan					
	C ₃ H ₂ O ₂ -	propiolic acid					
	C3H3O2=	acrylic acid/Oxid. Prod. of mass 55					х
	C2H2NS=	methyl thiocyanate				х	
	C3H50-	propanoic acid					х
	C2H30S-/C2H303-	thio acetic acid/glycolic acid					
	C2H5SO-	ethyl sulfonic acid					
	Cl03- (Cl=35)	chloric acid					
						J	X
	C103- (C1=37)/C4H502-	chloric acid/crotonic acid or methacrylic acid				A	Х
	C3H3O3~	pyruvic acid	Х				Х
	C3H6O3T	lactic acid	X	X	X	X	X
	C3H7SO-	propyl mercaptan					
	(C2H5NO3)-	ethyl nitrate anion					
	C542205_	ethyl mercaptan					
	C6H50-	phenol					
95	СН3032-	methanesulfonic acid					
99	C5H702-	carboxylic acid					
101	C5H902-	valeric acid or isovaleric acid				Х	х
105	C4H9SO-	butyl mercaptan					
107	C3H7502-	propyl mercaptan					
107	C7H80-	cresol					
108	C6H6NO-	nicotinyl alcohol					
109	C2H5SO3-	ethyl mercaptans					
111	C6H702-	sorbic acid					
115	C5H703-/C4H304-/C6H1102-	levulinic acid/fumaric acid or maleic acid/n-caproic acid	х			х	x
121	C4H9SO2-	butylmercaptan or ethyl sulfide					
121	C8H90-/C7H502-	benzoic acid/dimethylphenol					
122	C6H4NO2-	nitrosophenol or picolinic acid					
123	C3H7SO3-	propyl mercaptan					
125	C2H504S-	ethyl sulfate or dimethyl sulfate					
	C6H4C10-/C7H1102-	chlorinated phenols/cyclohexane carboxylic acid				х	
	C7H13O2-	heptanoic acid				х	
	C7H15S-	hepta mercaptan				^	
	C8H702-	toluic acid or phenylacetic acid					
	C5H11SO2-	pentyl mercaptan					
	C4H9S03*	butyl mercaptan, ethyl sulfide					
	C7H4FO2-(?)	fluorobenzoic acid(?)					
	C6H5O4-(?)	kojic acid(?)					
	C6H8NOS-	NI					
	CH3(CH2)6COO-	caprylic acid					
	C7H502S-					X	
	C9H17O2-	thiosalicyclic acid	х				
	C8H7O4-	pelargonic acid					
	C7H50S2=	dehydroacetic acid					
		dithiosalicylic acid					
	C7H703S-/C10H1902-	toluenesulfonic acid/capric acid					
	C6H3Y2O3S-	diazobenzenesulfonic acid					
100	C2H2IO2-(?)	iodoacetic acid(?)					
L E GE	N.O.						
Site		Tekawitha School					
Site		10 metres from gate					
Site Site		Line Ridge Road StoneChurch Road and Upper Ottawa Street					
Site		Arbur Street					

Site	1 =	Tekawitha School
Site	2=	10 metres from gate
Site	3=	Line Ridge Road
Site	4 =	StoneChurch Road and Upper Ottawa Street
Site	5 =	Arbur Street

TABLE 2.3-1

SUMMARY RESULTS OF CHEMICALS TENTATIVELY IDENTIFIED WITHIN THE VENTS USING THE POSITIVE ION MASS SPECTRAL ANALYSES

		MASS SPECTRAL ANALYSES				VEH	TS				
H/Z	ASSIGNMENTS	COMMENTS	0	1	2	2 A	28	3	4	4 A	48
29	C ₂ H ₅ +	fragment	х		х			X	х		
	H ₂ CO+	methane derivative		,							
31	CH30+	fragment		Х				χ	х	x	
32	(CH3NH2)H+	methylamine		_		_					
39	C3H3*	fragment ion	Х	Х		x				X	x
43	C ₂ H ₃ O ⁺	fragment ion		х	х	x	х	х	X	X	^
	C2H5NH ⁺	hylenimine		Y		х					
	C ₂ H ₅ 0 ⁺	agment		^	х	X		X	X	x	
46	[(CH ₃) ₂ NH]H ⁺	-	methylamine or ethylamine x								
48	CH5NO+	noxyamine x			х	X					
	CH5S+	oxyamine ^				^					
				х		х					
	C3H6N+	proponitrile				^					
	C3H5O+/C4H9+	acrolein or fragment		X	X		Х			х	T
	(C3H7N)H+	allylamine								X	
	C3H6OH+	acetone or fragment ion	Х		Х			I	X		
60	(C3H10H)+	acetamide and/or propanamine	Х			X	X				X
61	C3H9O+/C2H5O2+/C2H9N2+	ethyl methylether, propyl alcohol/	X								
		methyl formate/ethylenediamine									
63	(C2H6O2)H+	ethylene glycol				ж				Х	
6.5	(CH3SH.OH)+	methyl mercaptan derivative				х					
6.5	C5H5+	fragment ion					X				
66	C5H6*	fragment ion								X.	
67	C5H7+	cyclopentadiene			ж						
69	C4H5O+/C3H5N2+	fragment or furan/pyrazole	х	Х	х		Х	X	Х	Х	
70	(C4H7N)H+	butane mitrile			х	90					
71	(C4H60)H+	crotonaldehyde, methyl vinyl ketone		х			х				
	C3H6NO+	acrylamide or hydracrylonitrile		^	X		^				
	$(C_4H_{11}N)H^+/(C_3H_7NO)H^+$	butylamine/diethylamine/dimethylformamide		_		_					
	[(CH ₃) ₂ N ₂ O]H ⁺ /[(C ₂ H ₅) ₂ O]H ⁺	dimethylnitrosoamine/diethylether or t-butanol		Х		X	X				X
	(C3H9NO)H+	possibly an amino alcohol			X	х	х				
	C3H9O2+	methyl cellosolve, or propylene glycol or trimethylene gly	1								
	- / -		-01		X						
79	(C ₂ H ₆ OS)H ⁺	dimethyl sulfoxide or 2-mercaptoethanol		_	1	_	_	I		X	
80	(C5H5N)H+	pyridine		X	X	X	X		X	X	I
	C4H5N2*	pyrazine/pyridazine/pyrimidine		×	Х					X	
	C6H10+	cyclohexane or 2,3-dimethyl-1,3-butadiene								X	
83	C5H70+/C6H11+	methylfuran or fragment or 2,3,dimethyl-1,3-butadiene	X	х	Х	X	X	x	X	X	
	C4H502+/C5H90+	diketene/cyclopentanone	X	X	X	X	X	X	Х	X	X
	(C4H7O2)+/C5H11O+	methylacrylate or methacrylic acid/NI			X						
	(C4H8O2)H+/(C5H12O)H+	esters and/or alcohols		X			X				
	C4H12NO+/C3H8NO2+	2-amino-2-methyl-1-propanol/urethan			Х	Х					
	(C3H7SH.OH)+	propylmercaptan derivative			X						
	C3H9O3+	glycerol		Х			Х				
	(C6H7N)H+/C6H5NH2)H+	methyl pyridine/aniline		х		X	X				X
95	$(C_2H_5SHO_2H)^+/[(CH_3)_2SO_2H]^+$	ethyl mercaptan and/or methyl sulfide derivatives		х	х	х					
95	(C5H6N2)H+/(C6H60)H+	aminopyridine/phenol					Х	X	X		
96	C5H6NO+	pyridine-1-oxide		х		X	X				
97	C5H5O2*/C6H9O*/CH5O3S*	furfural/1-pentol/methane sulfonic acid	ж	Х	X	X		X	X	Х	
99	C6H110+/C5H702+/C4H30+	cyclohexanone/lactone/maleic anhydride		х	X	x	x		х	х	
100	C6H14N+	cyclohexylamine					X				
101	C6H130+/C5H902+/C4H503+	hexanone/ethylacrylate/succinic anhydride	X		X		X	X	X		
	(C6H15N)H+ -	alkylamine				X					
	(C6H140)H+/(C5H1002)H+	diisopropyl ether/propyl acetate/pyruvic acid,									
	1 0 17 / 1 1 3 10 2/	methyl ester/methyl butyrate		х			ж				х
104	CgHg+	M ⁺ ion of styrene			X	х	х			x	
	C4H12NO2+	2-amino-2-methyl-1,3-propanediol or diethanolamine	Х		^	^	^			•	
	(C7H60)H+	benzaldehyde			x		х		X	х	
	C7H7+.NH3/C7H10N+	tropylium-ammonia cluster/benzylamine or ethyl pyridine or									
.00	-7.73/ -710	methyl aniline	х	Х	х	х	×			x	x
100	C6H5O2+/C7H9O+	quinone/cresols		х	х						
	C6H8N0+	aminophenols	х	^	x	x	х			ж	
		hydroquinone	Y	Х		×	х	Y	¥	x	7
	(C-4-540-4)+ ((C4-)-50-47+		^		X	X	^	^	Α.	^	^
	(C2H5SHO3H)*, [(CH3)2SO3H]*										
113	C4H5N2O2+/C6H9O2+/	maleic hydrazide/sorbic acid/			х		х			х	
	C7H13O+/C6H13N2+	cycloheptanone/triethylenediamine								^	

TABLE 2.3-1 (continued)

			VENTS		SINJA								
M/Z	ASSIGNMENTS	COMMENTS	0	1	2	2 A	28	3	4	4 A	4.8		
115	(C7H14O)H+	2-heptanone					X						
116		1sobuty1 thiocyanate/indene											
117	(C7H160)H+/(C6H12O2)H+	heptanol and/or butylacetate			д	×	Х		ж	x			
118	C6H16N0+	2-diethylaminoethanol		_					Ŷ				
	C4H7O2S+/C8H7O+/	3-sulfolene/benzofuran		X	Х		Ж						
	C6H1502+	cellosolve (2-butoxyethanol)			д		X	Х					
120	C5H14NO2+	2-amino-2-ethyl-1,3-propanediol				х	х						
	C5H13O3+/C8H9O+	methyl carbitol/acetophenone											
	C8H12N+	N.I.		х	Х		×			x	x		
123	C8H110+/C7H702+	xylenol, phenethyl alcohol/benzoic acid	_								^		
	C6H6NO2+	nitrosophenol	X X	X	Х	х	x		X	×			
	C8H130+	N.I.	^	^			Î			Ŷ			
	C8H16N+(?)	coniceine (?)	х			X				χ			
	C3H7N6+ or C6H7O3+	melamine or pyrogallol	^							^			
	C5H6HOS+	pyrithione	х		X	ж	X			х			
	C7H130Z+/C8H170Z+		^		^	^	^						
	c/11305 \c811\05	n-butyl acrylate/ethyl amyl ketone					_						
130	C6H12NS+	or hexyl methyl ketone			Х		X			X			
		isoamyl thiocyanate					Х						
	C7H1502+/C8H190+	ester/alcohol or ether			Ж		Х						
	C9H10N+	skatole					Х						
133	C9H9O+/C6H13O3+	cinnamaldehyde, 2,2,dimethyl-1, 3-dioxolane-4-											
		methanol or 2,5-tetrahydrofurandimethanol	х		X								
	N.I.	N.I.					X		Х				
	C6H15SO+	hexylmercaptan or dipropyl sulfide derivatives					Х			Х	X		
136	C7H6NS+	benzothiazole		Х		ж	X				X		
	C8H9O2+/C9H13O+	esters/alcohols, ethers									16		
138	C8H12NO+	phenylethanolamine			Х	ж	Х						
139	C8H1102+/C6H7N202+/	cresols/nitroanilines/											
	C4H1103S+	2-(ethylsulfonyl) ethanol	х	X	X	X	х			×	X		
140	C3H10H03S/C6H6H03+	n-methyltaurine/nitrophenols			х	х	х						
141	C6H13N4+	methenamine (?)	х				х			х	x		
142	C8H16NO+ (7)	n-acetylcyclohexylamine (?)		х		х	х			х			
	C8H1502+	cyclohexane carboxylic acid, methyl ester		х	ж		х	x			1		
	C ₁₀ H ₁₀ N+	naphthylamine				х	х				X		
	C6H9O4+/C8H17O2+/	fumaric acid, dimethyl ester or lactide/				. ^	^				^		
	C10H90+	ester compound/naphthol					х			×			
146	C9H8N0+	8-hydroxyquinoline			д	X	x			^			
	N.I.	N.I.								х			
148	C8H6NO2+ (?)	pthalimide (?)					х						
	C8H5O3+	pthalic anhydride			_			_					
150	C6H16NO3+		х		х	х		X	X		x		
	C ₆ H ₁₅ O ₄ +	triethanolamine	^						Ŷ		^		
		triethylene glycol				X X	X						
	C8H10NO2+	acetaminophen											
	C ₈ H ₉ O ₃ + C ₇ H ₈ NO ₃ +	cresotic acids		X	Ж	X	X			į.	X		
		amino salicylic acid		Х			X			X			
155	C7H702S+/C4H13FH20P+/												
156	C10H190+	Thiosalicylic acid/Dimefox/-Terpineol/citronellal			X	Х	х	X					
156		NI				Х	Х						
	C10H210+	citronellal, menthal or rhodinal					X		X		X		
	C ₁₀ H ₂₄ N ⁺	Diisoamylamine		Х		X	х						
	C6H703S+	benzene sulfonic acid		Х	X		X						
	C6H10N02S+	citiolone	X		Х		X				X		
161		NI					X						
162		NI	х				х						
	C8H19SO+	octyl mercaptan or dibutylsulfide derivatives			Х	X	Х						
164	C6H14NO4+	2-Nitro-2propyl-1,3- propanediol					X	Д	X				
165	C8H9N2O2+/C10H13O2+/												
	C ₁₁ H ₁₇ O+	phthalamide/ethylphenyl acetate/ Jasmone					х						
166	C10H16H0+	(aminopropyl) benzył alcohol					х						
	C9H1103+/C9H15N20+	ethyl salicylate or ethyl vanillin/											
		5-amino-2-butoxypyridine					х			х			
168	C ₁₂ H ₁₀ N ⁺	carbazole					х						
	C8H9O4+	dehydroacetic acid	х	х	х		х						
	(C ₁₂ H ₁₁ N)H ⁺	diphenylamine				,	Y			Y	7		
	C12H110+	phenylphenol		Х	X	X	X			X	^		
	C7H11C1N3+/C8H18N3O+	crimidine/2-heptanone, semicarbazone		ye.	- '								
	C6H9N2O2S+/C10H21O2+	Porofor BSH/octyl acetate		X	у	×	X				х		
	9.5-5-1-10.51-5	. V. V. V. Dany occy: acecate											

TABLE 2.3-1 (continued)

						AEMI	2				
M/Z	ASSIGNMENTS	COMMENTS	0	1	2	2A	2 B	3	4	4 A	48
174	C6H8N03S+	sulfanilic acid									
175	C7H1105*	adipic acid, dimethyl ester or dimethoxane		X	X		X				
	C6H7FNO2S*	sulfanilyl fluoride									
177	C9H21S0+	nonylmercaptan derivative		Х		x	X			X	X
	C10H12NO2+	acetoacetanilide									
179	C8H19SO2+	octylmercaptan or dibutyl sulfide derivative				X	X				
180	C ₁₀ H ₁₄ NO ₂ *	IPC	x								
181	C ₁₀ H ₁₃ O ₃ +	2-phenoxyethanol acetate	^		X	х	X				
	C ₁₂ H ₂₄ N ⁺	dicyclohexylamine			^	^					
	C6H17FN2OP+	a ray a romany ramina									X
	/C ₁₁ H ₁₉ O ₂ +/										
	C6H15O6+	mipafox/geraniol, formate/sorbitol	,								
1.84	C4H11NO3PS+	acephate	Х	X							X
	C ₁₂ H ₁₃ N ₂ +	benzidine		Ų.							X
186	C ₁₂ H ₂₈ N ⁺	tributylamine		X	х		X				X
	NI NI	NI									-
	C ₁₂ H ₁₆ NO ⁺ (?)	benzoylpiperidine, or ethyl crotonanilide(?)		X	X						
		N,N-diethyl-m-toluamide/2,6-Di-tert			X		Х				
132	C ₁₂ H ₁₈ NO ⁺ /C ₁₃ H ₂₂ N ⁺	butylpyridine			x		X				
103	C40+/C40-+	ionone/isoamyl benzoate									
	C ₁₃ H ₂₁ O ⁺ /C ₁₂ H ₁₇ O ₂ ⁺					х	Х			X	
	C11H16N02+	isobutyl-p-aminobenzoate		X	Х		Х		X		
	C ₁₁ H ₁₇ NS ⁺	1-naptholisothiocyanate			х				X		
197	C ₁₁ H ₁₄ C10+/C ₁₂ H ₂₀ O ₂ +	dowicide/geraniol, acetate or linalyl									
1.00	a il und	acetate	X X								
	C ₁₃ H ₁₂ NO+	benzan111de									
	(C12H10H2O)H+	N-nitrosodiphenylamine		X							X
201	C6H5N2O6+	2,4-dinitroresorcinol		Ж							x
	C12H12NO2+	carbaryl			X						
	C10H1904+	ethyl adipate/hexyleneglycol, diacetate		х			X				x
204	C9H18NO2S+/C10H22NOS+	Lethane/pebulate		X	X		X			X	
	NI	NI .			x					X	
208	C12H18NO2+	promecarb		X							
214	C13H12NO2+	salicylanilide				X				х	
217	C ₁₁ H ₂₁ O ₄ +	esters			Х	Х	X				
218	NI	MI					X				
219	C7H7O6S+	sulfosalicylic acid					X				
220	NI	н		X			X				
221	C4H8C1204P+/C11H905+										
	/C ₁₅ H ₂₅ 0 ⁺ 50 ⁺	Dichlorvos/Purpurogallin/DBMC or					X				
		santalol or butylated hydroxytoluene									
222	C12H16NO3+/C13H20NO2+	carbofuran/bufencarb					Х			X	
223	C ₁₀ H ₂₃ O ₃ S ⁺	decylmercaptan or dipentyl sulfide derivatives				X					
225	C ₁₀ H ₉ O ₄ S ⁺ /C ₇ H ₁₈ O ₆ P ⁺	cassella's acid or napthol sulfonic acid/mevinphos/		Х							
226	C ₁₃ H ₁₂ N ₃ O+	Tinuvin P,		Х							
234	NI	MI								x	
235	C ₁₃ H ₁₉ N ₂ O ₂ +/C ₁₇ H ₁₅ O+										
	C8H16N2O4P+/C10H17N2OS2+	lenacil/dibenzalacetone/									
	7	0,0,diethyl-O-(3-methyl-5-pyrazolyl)phosphate									
		or Quinomethionate							X		
240	C10H10H04S+/C16H17H0+	amino-napthol-sulfonic acid/		х							
	20 10 10 10	diphenamid									
246	C13H16N3O2+	pyrolan		Х						X	
	NI Z	NI		х						X	

			•

TABLE 2.3-2

SUMMARY RESULTS OF CHEMICALS TENTATIVELY IDENTIFIED WITHIN THE RESIDENTIAL AREAS USING THE POSITIVE ION MASS SPECTRAL ANALYSES

					SITI		
M/Z	ASSIGNMENTS	COMMENTS	1	2	3	4	5
		_					
29	C2H5 ⁺	fragment	X	ж	Х	Ж	X
	H ₂ CO ⁺	methane derivative					ж
31	CH30+	fragment					Ж
32	(CH3NH2)H+	methylamine			х		
39	C ₃ H ₃ +	fragment ion			х		
43	C2H30+	fragment ion	X	х	х	x	x
44	C2H5NH+	ethylenimine					
45	C2H50+	fragment	х	х	X		х
	[(CH3)2NH]H+	dimethylamine or ethylamine	^	^	^		
	CH5NO+	methoxyamine					х
	CH5S+						х
56		methylmercaptan					^
	C3H6N+	proponitrile					
	C3H5O+/C4H9+	acrolein or fragment			X	X	Х
	(C3H7H)H+	allylamine					
59	C3H6OH+	acetone or fragment ion		X	X	X	Х
60	(C3H10M)+	acetamide and/or propanamine					
61	C3H9O+/C2H5O2+/C2H9N2+	ethyl methylether, propyl alcohol/		ж	Ж		ж
		methyl formate/ethylenediamine					
63	(C2H6O2)H+	ethylene glycol					
	(CH3SH.OH)+	methyl mercaptan derivative					
	C ₅ H ₅ ⁺	fragment ion					
	C5H6 ⁺	fragment ion					
		*					
67	C ₅ H ₇ *	cyclopentadiene			х		
69	C4H50+/C3H5N2+	fragment or furan/pyrazole	X		X	X	X
	(C4H7H)H+	butane nitrile		X			
71	(C4H60)H+	crotonaldehyde, methyl vinyl ketone			x		ж
72	C3H6NO+	acrylamide or hydracrylonitrile			X	X	
74	(C4H11H)H+/(C3H7HO)H+	butylamine/diethylamine/dimethylformamide					
	[(CH3)2N20]H+/[(C2H5)20]H+	dimethylnitrosoamine/diethylether or t-butanol			X		
	(C3H9NO)H+	possibly an amino alcohol					
	C3H9O2+	methyl cellosolve, or propylene glycol or trimethylene glyco	1		X	X	х
	(C2H60S)H+				x	^	^
		dimethyl sulfoxide or 2-mercaptoethanol					
	(C5H5N)H+	pyridine					
	C4H5N2+	pyrazine/pyridazine/pyrimidine			X		X
	C6H10+	cyclohexane or 2,3-dimethyl-1,3-butadiene		_			_
	C5H7O+/C6H11+	methylfuran or fragment or 2,3,dimethyl-1,3-butadiene	X	X	X		X
	C4H502+/C5H90+	diketene/cyclopentanone	X	X	X		
87	(C4H7O2)+/C5H110+	methylacrylate or methacrylic acid/NI		X	х		X
89	(C4H8O2)H+/(C5H12O)H+	esters and/or alcohols					
	C4H12H0+/C3H8H02+	2-amino-2-methyl-1-propanol/urethan				X	
93	(C3H7SH.OH)+	propylmercaptan derivative				^	
	C ₃ H ₉ O ₃ *	glycerol					
	(C6H7N)H+/C6H5NH2)H+	methyl pyridine/aniline					
	(C2H5SHO2H)+/[(CH3)2SO2H]+	ethyl mercaptan and/or methyl sulfide derivatives					
	(C5H6N2)H+/(C6H6O)H+	aminopyridine/phenol	X	X		Х	X
	C5H6NO*	pyridine-1-oxide					
97	C5H502+/C6H90+/CH503S+	furfural/1-pentol/methane sulfonic acid	X		X		х
99	C6H110+/C5H702+/C4H30+	cyclohexanone/lactone/maleic anhydride		X	Х		х
100	C6H14N+	cyclohexylamine					
101	C6H13O+/C5H9O2+/C4H5O3+	hexanone/ethylacrylate/succinic anhydride					ж
	(C ₆ H ₁₅ N)H ⁺	alkylamine					
103	(C6H14O)H+/(C5H10O2)H+	diisopropyl ether/propyl acetate/pyruvic acid,			х		Х
100	(661140)11 / (65111002)11						
104	S 11 +	methyl ester/methyl butyrate					
	C ₈ H ₈ ⁺	M ⁺ ion of styrene					
	C4H12NO2+	2-amino-2-methyl-1,3-propanediol or diethanolamine					
107	(C7H60)H+	benzaldehyde					
108	C7H7+. NH3/C7H10N+	tropylium-ammonia cluster/benzylamine or ethyl pyridine or				Х	
		methyl aniline					
109	C6H5O2+/C7H9O+	quinone/cresols			х		X
	С648и0+	amtnophenols	x				
	C6H7NO2+	hydroquinone	X	X	х		Х
		ethylmercaptan or dimethylsulfide					
	C4H5N2O2+/C6H9O2+/	maleic hydrazide/sorbic acid/					
113							х
	C7H13O+/C6H13M2+	cycloheptanone/triethylenediamine					

TABLE 2.3-2 (continued)

					SIT	53	
H/Z	ASSIGNMENTS	COMMENTS	1	2	3	4	5
115	(C7H14O)H+	Z-heptanone					х
	(C5H9NS)H+/C9H8+	isobutyl thiocyanate/indene					-
117	$(C_7H_{16}O)H^+/(C_6H_{12}O_2)H^+$	heptanol and/or butylacetate	х		x		х
118	C6H16NO+	2-diethylaminoethanol	^		^		^
119	C4H702S+/C8H70+/	3-sulfolene/benzofuran			х		
	C6H1502+	cellosoive (2-butoxyethanol)					
120	C5H14NO2+	2-amino-2-ethyl-1,3-propanediol					
	C5H13O3+/C8H9O+	methyl carbitol/acetophenone					
	C8H12N+	N.I.					
	C8H110+/C7H702+						
		xylenol, phenethyl alcohol/benzoic acid					х
	C6H6NO2+	nitrosophenol					
	C8H130+	M.I.					х
	C8H16N+(7)	coniceine (?)					
	C3H7N6+ or C6H7O3+	melamine or pyrogallol		x	х		x
128	C5H6NOS+	pyrithione					
129	C7H13U2+/C8H17U2+	n-butyl acrylate/ethyl amyl ketone			х		
		or hexyl methyl ketone			^		
130	C6H12NS+	isoamyl thiocyanate					
	C7H15O2+/C8H19O+	ester/alcohol or ether					
	C9H10N+						X
		skatole					
133	C9H9O+/C6H13O3+	cinnamaldehyde, 2,2,dimethyl-1, 3-dioxolane-4-					
		methanol or 2,5-tetrahydrofurandimethanol	х		X	X	×
134	N.I.	N.I.					
135	C6H15SO+	hexylmercaptan or dipropyl sulfide derivatives					
136	C7H6NS+	benzothiazole					
	C8H9O2+/C9H13O+	esters/alcohols, ethers					
	C8H12NO+	phenylethanolamine					
	C8H1102+/C6H7H202+/						
147		cresols/nitroanilines/	-				
1.40	C4H ₁₁ O ₃ S+	2-(ethylsulfonyl) ethanol	х		X	х	X
	C3H10NO3S/C6H6NO3+	n-methyltaurine/nitrophenols					
	C6H13N4+	methenamine (?)					
	C8H16NO+ (?)	n-acetylcyclohexylamine (?)					
143	C8H1502+	cyclohexane carboxylic acid, methyl ester					
144	C ₁₀ H ₁₀ N+	naphthylamine					
145	C6H9O4+/C8H17O2+/	fumaric acid, dimethyl ester or lactide/					
	C10H90+	ester compound/naphthol			_		_
146	C9H8N0+	8-hydroxyquinoline			X		Х
	N.I.						
		N.I.					
	C8H6NO2+ (7)	pthalimide (7)				х	
	C8H503+	pthalic anhydride		X	X		Х
150	C6H16NO3+	triethanolamine					
151	C6H15O4+	triethylene glycol					
152	C8H10NO2+	acetaminophen		х			
153	C8H9O3+	cresotic acids		^			
	C7H8NO3+	amino salicylic acid					
	C7H702S+/C4H13FN2OP+/						
200	C10H19O+	This could not be the second of the second o					
156		Thiosalicylic acid/Dimefox/-Terpineol/citronellal					
156		MI			X		
	C ₁₀ H ₂₁ 0+	citronellal, menthal or rhodinal	х		х		
158	C ₁₀ H ₂₄ N ⁺	Diisoamylamine					
159	C6H7O3S+	benzene sulfonic acid					
160	C6H10NO2S+	citiolone					
161		NI					
162		NI			X		
	C ₈ H ₁₉ SO ⁺						
		octyl mercaptan or dibutylsulfide derivatives					
	C6H14NO4+	2-Mitro-2propyl-1,3- propanedial	X	ж			
165	C8H9N2O2+/C10H13O2+/						
	C ₁₁ H ₁₇ O ⁺	phthalamide/ethylphenyl acetate/ Jasmone					
	C ₁₀ H ₁₆ NO*	(aminopropyl) benzyl alcohol					
	C9H1103+/C9H15H2O+	ethyl salicylate or ethyl vanillin/					
	7 7 6	5-amino-Z-butoxypyridine					
168	C ₁₂ H ₁₀ N ⁺	carbazole					
	C8H9O4+				Х		
		dehydroacetic acid			^		
	(C ₁₂ H ₁₁ N)H+	diphenylamine					
	C ₁₂ H ₁₁ O ⁺	phenylphenol					
	C7H11C1N3+/C8H18N3O+	crimidine/2-heptanone, senicarbazone					
173	C6H9N2O2S+/C10H2102+	Porofor BSH/octyl acetate					

TABLE 2.3-2 (continued)

			21152
M/Z	ASSIGNMENTS	COMMENTS	1 2 3 4 5
174	C ₆ H ₈ NO ₃ S ⁺	sulfamilic acid	
	C7H1105 ⁺	adipic acid, dimethyl ester or dimethoxane	
		sulfanilyl fluoride	
	C6H7FN025+		
	C9H21SO+	nonylmercaptan derivative	
	C10H12H02+	acetoacetanilide	
	C8H19SO2*	octylmercaptan or dibutyl sulfide derivative	
180	C10H14NO2*	1PC	
181	C ₁₀ H ₁₃ O ₃ +	2-phenoxyethanol acetate	х х
	C ₁₂ H ₂₄ N+	dicyclohexylamine	
183	C6H17FN2OP+		
	/C ₁₁ H ₁₉ O ₂ +/		
	C6H15O6+	mipafox/geraniol, formate/sorbitol	
184	C4H11NO3PS+	acephate	
	C12H13N2+	benzidine	
	C ₁₂ H ₂₈ N ⁺	tributylamine	
188		NI ,	
	C ₁₂ H ₁₆ NO ⁺ (?)	benzoylpiperidine, or ethyl crotonanilide(?)	
192	C12H18H0+/C13H22N+	N,N-diethyl-m-toluamide/2,6-Di-tert	
		butylpyridine	
	C ₁₃ H ₂₁ 0 ⁺ /C ₁₂ H ₁₇ O ₂ ⁺	ionone/isoamyl benzoate	
	C11H16H02+	isobutyl-p-aminobenzoate	X
	C ₁₁ H ₁₇ NS ⁺	1-naptholisothiocyanate	
197	C11H14C10+/C12H2002+	dowicide/geraniol, acetate or linalyl	
		acetate	
198	C13H12NO+	benzanilide	
199	(C ₁₂ H ₁₀ H ₂ 0)H+	N-nitrosodiphenylamine	
201	C6H5N2O6+	2,4-dinitroresorcinal	
	C12H12NO2+	carbaryl	
	C10H19O4+	ethyl adipate/hexyleneglycol, diacetate	
	C9H18H02S+/C10H22HOS+	Lethane/pebulate	
206		NI	
	C12H18H02+	promecarb	
	C ₁₃ H ₁₂ NO ₂ +	salicylanilide	х
	C ₁₁ H ₂₁ O ₄ +	esters	
	NI NI	NI	
		sulfosalicylic acid	
	C7H706S+		
	NI	MI	
221	C4H8C1 204P+/C11H9O5+	0/ 11 / 12 / 13/4 / 120/45	
	/C ₁₅ H ₂₅ 0+50+	Dichlorvos/Purpurogallin/DBMC or	
		santalol or butylated hydroxytoluene	
222	C12H16NO3+/C13H20NO2+	carbofuran/bufencarb	
223	C ₁₀ H ₂₃ O ₃ S ⁺	decylmercaptan or dipentyl sulfide derivatives	
225	C10H9O4S+/C7H18O6P+	cassella's acid or napthol sulfonic acid/mevinphos/	
226	C ₁₃ H ₁₂ N ₃ O ⁺	Tinuvin P,	
234	NI	N1	
235	C13H19H2O2+/C17H15O+		
	C8H16N2O4P+/C10H17N2OS2+	lenacil/dibenzalacetone/	
	0 10 2 4 . 10 1/ 2 2	0,0,diethyl-0-(3-methyl-5-pyrazolyl)phosphate	
		or Quinomethionate	
240	C10H10NO4S+/C16H17NO+	amino-napthol-sulfonic acid/	
240	010/10/10/45 /016/11/110	diphenamid	
2.65	C 11 H 0 +		
	C ₁₃ H ₁₆ N ₃ O ₂ +	pyrolan	
248	NI	MI	

			•

APPENDIX 3

PROFILE OF DETECTED CHEMICALS, USES, TOXICITY AND TLV'S

CHEMICALS DETECTED IN THE POSITIVE ION MODE - 3A

CHEMICALS DETECTED IN THE NEGATIVE ION MODE - 3B

Appendices 3A and 3B provide six distinct types of information: (1) The masses (m/z) and the tentatively identified compounds associated with these masses; (positive and negative ions). (2) Alternate names and structure or molecular formulae of the compounds whenever available. (3) Data on uses and man made sources. (4) Data on toxicological effects of exposing these compounds to human beings whenever available. (5) Threshold Limit Values (T.L.V.) whenever available for the protection of human exposure. The above information have been carefully extracted from the published literature. The length of data for each compound is by no means a measure of the relative importance of a compound, but more likely a reflection of the amount of available material published on the specific compound. The chemical list is arranged in ascending mass to charge values, (M/Z), and are believed to be present in the Hamilton Landfill site. - 1 -

· REFERENCES SITED

- 1. Jan. 1/76 issue of 29CFR 190-OSHA Standards
- 2. NIOSH/OSHA Pocket Guide to Chemical Hazards; DHEW (NIOSH) Publication No. 78-210.
- The Merck Index, 9th Edition. Published by Merck & Co. Inc. 1976. Printed in U.S.A. Martha Windholz, Editor.
- 4. ACGIH, 1980. American Conference of Governmental Industrial Hygienists ISBN: 0-936712-29-5.
- 5. Karel Verschueren, 'Handbook of Environmental Data on Organic Chemicals'. Van Nostrand Reinhold Co; New York, N.Y., 1977.
- Hazardous Chemicals Data Book. Environmental Health Review No. 4, 1980. Edited by G. Weiss, New Jersey, U.S.A.
- 7. Pesticide Manual Jan., 1977 edited by H. Martin and Charles R. Worthing.
- 8. Pesticides Safety Handbook. Prepared by Pesticides Control Section, Pollution Control Branch, Ontario Ministry of the Environment, Oct. 1979.

Appendix 3A Catalog of chemicals with generic and chemical names and structures, uses, and toxicity information.

POSITIVE MODE

TLV	6 ppm (NIOSH value) (6).	0.1 ppm (1) k y s	, Data not available (6)	1000 ppm (2)	Not available (6)	none available
TOXICITY	May cause dizziness, 6 pprapriation, value headache, drowsiness, drop in blood pressure & pulse, and unconsiousness, delayed symptoms, chronic exposure may result in eye irritation, loss of appetite, mental deterioration (2)	Irritates skin, eyes and mucous membranes. Vapors cause lacrimation. A weak sensitizer; inhalation may cause asthmatic reaction. Inhalation of high conc'ns causes pulmonary edema.	a strong irritant to eyes, mucous membranes, can cause excitement, convulsions, death. (3)	prolonged or repeated topical use may cause erythema, dryness. Inhalation may produce headache, fatigue, excitement. (3)	No skin/eye irritation (6), Carcinogenic (6) Drowsiness, fatigue, nausea, acidosis, skin eruptions may occur upon exposure to cpd. (6)	no data available
USES	Data not available	manufacture colloidal forms of metals; making plastics, perfumes (3). Also used as an aquatic herbicide (7).	in the manufacture of mercurial diuretics. (3)	Solvent for fats, oils, waxes, resins, rubber, plastics, lacquers varnishes, rubber cements. (3)	Solvent; solubilizer, plasticizer, stabilizer. Manufacture of methylamine, denaturing alcohol. In organic sytheses. (3)	no data available
STRUCTURE	CH ₃ CH ₂ CN	сн ₂ =снсно	CH ₂ =CHCH ₂ NH ₂	сн3сосн3	CH3 CONH2	
SYNONYM	propane nitrile	2-propenal	2-propen-1-amine	2 propanone	acetic acid amide	1
M/Z COMPOUND	56 propionitrile	57 acrolein	58 allylamine	59 acetone	60 acetamide	60 propanamine

					••	
77.	No data available.	200 ppm (1)	100 ppm (1)	10 ppm (1)	lethal dose: 1.4ml/kg or 100 ml (3)	
TOXICITY	No data available	Mildly irritating to eyes, mucous membranes; depressant action similar to ethyl alcohol (3)	inhalation of vapor produces nasal and conjunctival irritation, retching, narcosis, death from pulmonary irritation. (3)	because of its caustic nature and irritating properties, can cause nasal irritation, sensitization dermatitis, irritation of the respiratory system. (3)	Constitutes a hazard when ingested, e.g. drinking of antifreeze fluid. Transient stimulation of CNS followed by depression; vamiting, drowsiness, cama, respiratory failure. May proceed to death. (3)	ı
USES	Data not available	Solvent for resins and cellulose esters. (3)	Funigant and larvicide for tobacco, dried fruits, cereals, etc. (3)	Solvent for casein, albumin, shellac, and sulfur; emulsifier; stabilizing rubber latex; as inhibitor in antifreeze solutions (3)	Antifreeze in cooling and heating systems. Solvent in paints, and plastics industries. Softening agent for cellophane. (3)	I
STRUCTURE	C2H50CH3	сн ₃ (сн ₂)он		H ₂ N(CH ₂) ₂ NH ₂	носн ₂ сн ₂ он	CH ₅ SO+
WANDNAS	methoxyethane	1-propanol		1,2-ethanediamine	1,2-ethanediol	
COMPOUND	ethylmethylether methoxyethane	propyl alcohol	methyl formate	ethylenediamine	ethylene glycol	methy] mercaptan derivative
M/Z	61	61	61	61	63	99

TLV	75ppm (1)	not pertinent	no data available	P.O.L: 50 ppm (3)	фы (6)	data not available (6)	no data available	0.3 mg/m3 (4)
TOXICITY	irritating to the eyes and nose. (3)	vapors are narcotic, can be absorbed through skin (3)	no data available	highly toxic (3)	highly irritating to eyes, skin and mucous membranes (3)	readily absorbed through skin causing general poisoining of the organism. Irrit to mucous membranes and respiratory tract (3)	no data available	highly toxic and irritant. Causes CNS paralysis. Can be absorbed through unbroken skin (3)
USES	manuf resins; in organic syntheses, synthetic alkaloids, camphors. (3)	no data available	no data available	no data available	in organic syntheses, as solvent in purification of mineral oils, manuf of resins, rubber antioxidants, insecticides (3)	commercial starting material for plastics (3)	solvent for same cellulose esters and many inorganic salts (3)	no data available
STRUCTURE			老			сн ₃ сосн=сн ₂	Ð	CH ₂ =CHCONH ₂
SYNONYM	1,3-cyclopentadiene	divinylene oxide or furfuran	l,2-diazole	propyl cyanide or butyronitrile	trans 2-butenal	3-buten-2-one	3-hydroxy-propanenitrile	propenamide
COMPOUND	cyclopentadiene	furan	pyrazole	butane nitrile	crotonaldehyde	methyl vinyl ketone	hydracrylo- nitrile	acrylamide
M/Z	19	69	69	70	K	F		72

7/1	M/Z COMPOUND	SYNONYM	STRUCTURE	USES	TOXICITY	TLV
74	butylamine	l-amino-butane	сн ₃ (сн ₂) ₃ NH ₂	intermediate for pharmaceuticals, dyestuffs rubber chemicals, emulsifying agents, insecticides, synthetic tanning agents (3)	potent skin, eye, mucous membrane irritant. Direct skin contact causes severe primary irritation and blistering (3)	5ppm (1)
74	diethylamine	n-ethylethanamine	(C ₂ H ₅) ₂ NH	in the rubber and petroleum industry; in resins, dyes pharmaceuticals (3)	may be irritating to skin, mucous membranes (3)	25ppm (1)
74	dimethyl- fonnamide	4	(CH ₃) ₂ NCH 0	solvent for ligs and gases. In the synthesis of organic compounds, solvent for orlon and similar polyacrylic fibers. (3)	vapour harmful. Irritant is to eyes, skin and mucous membranes. Liver injury has been produced in expt'l animals by prolonged inhalation of 100ppm (3)	130ppm (1)
75	dimethyl- nitrosoamine			no data available	no data available	
75	diethylether			no data available	no data available	
75	t-butanol	3-butanol		not data available	no data available	
77	propylene glycol	1,2-propandiol	сн _{3 г} нсн ₂ он он	as non-toxic antifreeze in breweries and dairy establishments. In the manuf of synthetic resins as mist to disinfect air (3)	Therap cat: pharmaceutic aid (humectant solvent). Liquid may irritate eyes (3)	not pertinent (6)
77	methyl- cellosolve®	2-methoxyethanol	HO(CH ₂) ₂ OCH ₃	solvent for low-viscosity cellulose acetate, natural and synthetic resins, and some alcohol-soluble dyes; sealing moisture-proof cellophane, nail polishes, wood stains (3)	may cause anemia, macro- cytosis, appearance of young granulocytes in blood; also CNS symptoms. Readily absorbed through skin (3)	25ppm (1)

H

۸٦٦	none available n (6) ita- ay (3)	not available (6)		i, Sppm (1)				300ppm (1)		not pertinent
TOXICITY	exposure may cause cold- no ness, spastic contraction (of muscles, loss of reflexes, coma, death, pulmonary edema, eye irritation. Chronic exposure may cause weakened reflexes. (3)	slight eye irritation may occur (6)	no data available	may cause CNS depression, 5ppm (1) irriation of skin and respiration tract. Large dose may produce GI disturbances, kidney and liver damage (3)	no data available	no data available	no data available	high concns may act as narcotic, skin irritant (3)	no data available	no data available
USES	no data available	solvent for acetylene, sulfur dioxide and gases. As paint and varnish remover (3)	no data available	as a solvent for anhydrous mineral salts, in organic syntheses, and in analytical chemistry (3)	no data available	no data available	no data available	solvent for lacquers and resins. Paint and varnish remover. In fungicidal formulations (3)	in manuf of synthetic rubber and polymers (3)	no data available
STRUCTURE	но(сн ₂) ₃ он	сн ³ госн ³		Z	Z		Z S		CH2=C-C=CH2 CH2	C1, H3 OCH3
SYNONYM	1,3-propanediol	methylsulfoxide or DMSO	nonothioglycol		1,4-diazine	1,2-diazine	l,3-diazine	hexahydrobenzene	diisopropenyl	
M/Z COMPOUND	77 trimethylene- glycol	79 dimethyl sulf- oxide	79 2 mercaptoe- thanol	80 pyridine	81 pyrazine	81 pyridazine	81 pyrimidine	82 cyclohexane	82 2,3-dimethyl- l,3-butadiene	83 methylfuran

TLV	none available		10ppm(1)	not pertinent (5)			
TOXICITY	monomer is a severe pulmonary irritant causing pulmonary edema if inhaled (3)	no data available	the monomer is highly irritating to eyes, skin, mucous membranes. Lethargy and convulsions may occur if vapors of monomer are inhaled in high concns. (3)	s strong ir-		Therap Cat: antineo- plastic (3)	Therap Cat: Pharmaceutic aid (humectant;solvent) (3)
USES	monomer is used for the conversion of higher acids into their anhydrides; for acetylation in the manuf of cellulose acetate and aspirin (3)	no data available	monomer in manuf of leather finish resins, textile and paper coatings, and plastic films (3)	manuf of methacrylate resins and plastics (3)	in synthesis of surface active agents, vulcanization accelerators, pharmaceuticals as emulsifying agent for cosmetic creams and lotions, mineral oil, polishes, cleaning compounds (3)	molten urethan is a good solvent for various organic materials. As solubilizer and cosolvent for pesticides, fumigants (3)	as solvent, humectant, plasticizer, sweetener. In manuf of cosmetics, liquers, confectioneries, lubricants, as antifreeze, in shock absorber fluids (3)
STRUCTURE	$(CH_2 = C = 0)_2$		сн ₂ =снд-осн ₃	сн ₂ =с-соон	CH ₃ CCH ₂ OH CH ₃ CCH ₃	NH26-0C2H5	
SYNONYM		ketocylcopentane	2-propenoic acid methyl ester	2-methyl propenoic acid		carbamic acid ethyl ester	1,2,3-propanetriol
COMPOUND	diketene	cyclopentanone	methylacrylate	methacrylic acid	2-amino-2- methyl-1- propanol	urethan	glycerol
Z/W	82	85	87	87	8	8	93

not available	0.5pm (1)	0.5pm (2)		5ррт ·(2)
severe skin & eye irritation, narcosis, headache, nausea, giddiness, vomitting. Chronic exposure may result in occasional vomitting and diarrhea, weight loss and anemia (3)	intoxication may occur from inhalation, inges- tion, or cutaneous ab- sorption. Acute: cyano- sis, methemoglobinemia, vertigo, headache, mental confusion (3)	inhalation may cause headaches, dizziness, nausea. Flush extrem- ities and high blood pressure may result from skin adsorption (2)	no data available	irritates mucous membranes and acts on CNS. Causes lacrimation, inflammation of eyes, irritation of throat, headache (3)
no data available	manuf dyes, medicinals, resins, varnishes, perfumes, shoe blacks, vulcanizing rubber, as solvent	manuf. of drugs and dyes (3)	synthetic intermediate (3)	in the manuf of furfuralphenol plastics such as durite; in solvent refining of petroleum oils. In the manuf of varnishes; as insecticides, fungicide, germicide (3)
NH2		N NH2	700	ОНО
picoline	benzenamine			2-furancarboxal dehye
94 methylpyridine	94 aniline	95 aminopyridine	96 pyridine-l-oxide	97 furfural
	methylpyridine picoline no data available severe skin & eye irritation, narcosis, headache, nausea, giddiness, vomitting. Chronic exposure may result in occasional vomitting and diarrhea, weight loss and anemia (3)	methylpyridine picoline no data available severe skin & eye irritation, narcosis, head-ache, nausea, giddiness, vomitting. Chronic exposure may result in occasional vomitting and diarrhea, weight loss and anemia (3) NH2 manuf dyes, medicinals, resins, intoxication may occur varmishes, perfunes, shee blacks, from inhalation, ingesvulcanizing rubber, as solvent from inhalation, ingesvulcanizing rubber, as solvent sorption. Acute: cyanosis, methemoglobinemia, vertigo, headache, mental confusion (3)	methylpyridine picoline no data available severe skin & eye irritation, narcosis, head-adre, nauces, gridiness, vomiting and diarrhea, weight loss and anemia (3) anemia	methylpyridine picoline no data available severe skin & eye irri- tation, narcosis, head- ade, narcosis, head- ade, narcosis, head- ben, narcosis, head- ade, narcosis, head- ben, narcosis, head- casional vomitting and darke, weight loss and anenia (3) intoxication may occur varmishes, perfunes, shoe blacks, intoxication may occur sorption. Acute: cyano- sis, methanoglobinemna, vertigo, headache, mental confusion (3) inhalation may cause headaches, dizziness, nausea. Flush extrem- ities and high blood pressure may result from skin adsorption (2) pressure may result from skin adsorption (2) pressure may result from skin adsorption (2) no data available

TLV	none available		50pm (1)		0.25ppm (1)	10ppm, 1972 (5)	100 ppm (2)		25 ppm (1) "gy" (3)
TOXICITY	both isomers tend to polymerize and will ex- plode when heated above above 120° in a sealed bomb tube (3)	strong irritant (3)	irritating to eyes, mucous membranes (3)	no data available	powerful irritant, causes burns. Inhala- tion can cause pulmonary edema. Avoid contact with skin, eyes (3)	can cause irritation and 10ppm, 1972 (5) sensitization. High cocn's cause nausea and narcotic effects (3)	200 ppm; eye irritation 400; nasal irritation inhalation: survived: 2,000 ppm, 4hr death: 400 ppm, 4hr (2)	no data available	monomer is highly irritating to eyes, skin, mucous membranes. Lethargy and convulsions may occur if vapors of monomer are inhaled in high conculs. (3
USES	intermediate in Vitamin A synthesis (3)	as a catalyst in polymerization, alkylation and esterification as a solvent (3)	solvent for cellulose acetate, nitrocellulose, natural resins, crude rubber, waxes, fats, DOT. In prod of adipic acid for nylon (3)	no data available	in organic syntheses, manuf of alkyd-type of resins, dye intermediates, agricultural chemicals, pharmaceuticals (3)	in organic synthesis, manuf insecticides, plasticizers, rubber chemicals, dyestuffs, dry-cleaning soaps (3)	no data available	no data available	in manuf, of water emulsion paint vehicles, textile and paper coatings leather finish resins and adhesives (3)
STRUCTURE	HC≡CC=CHCH ₂ OH CH ₃	сн38020н	o=			NH ₂			
SYNONYM	3-methyl-2-penten-4- ł yn-1-ol	methylsulfonic acid			2,5-furandione	aminocyclohexane	methylisobutyl ketone	succinic anhydride dihydro-2,5-furandione	2-propenoic acid ethyl ester
COMPOUND	1-pentol	methanesulfonic acid	cyclohexanone	lactone	maleic anhydride	cyclohexylamine	hexanone	succinic anhydride	ethyl acrylate

M/Z

V_I			200 ppm (1)	100 ppm (1)		not pertinent	not available (6)	
TOXICITY	no data available	no data available	may be irritating to 1 skin, mucous membranes, and in high concn's narcotic (3)	may be irritating to eyes mucous membranes, and in high concns, narcotic (3)	on data available	Vapors may cause moderate irritation, skin contact may cause first-degree burns on short exposure) and may cause secondary burns on long exposure (6)	narcotic in high concn's May cause contact dermatitis. (3)	highly irritating to skin, mucous membranes (3)
USES	no data available	manuf, artificial rum and fruit essences (3)	manuf. flavors, perfumes. Solvents for resins, cellulose derivatives and plastics. (3)	manuf. plastics; synthetic rubber; resins; insulator (3)	in synthesis of surface active agents. As emulsifying agent for cosmetic creams and lotions, mineral oil and paraffin wax, polishes, cleaning compounds (3)	as rubber chemicals intermediate, in surface active agents used in textile specialities, herbicides, petr demulsifiers. In various agricultural chemicals, cosmetics (3)	manuf. of dyes, perfumery, cinnamic and mandelic acids; as solvent; in flavors (3)	in organic syntheses (3)
STRUCTURE					NH2 CCCH2 CH3	(HOCH ₂ CH ₂) ₂ NH	СНО	CH ₂ NH ₂
SYNONYM		butanoic acid methyl ester		ethenylbenzene		2,2'-Iminobis ethanol	benzenecarbonal	α-aminotoluene
M/Z COMPOUND	103 diisopropylether	103 methyl butyrate	103 propyl acetate	104 styrene	106 2-amino-2-methyl- 1,3-propanediol	106 diethanolamine	107 benzaldehyde	108 benzylamine

<u>\</u>		5 ppm 1974 (5)	0.1 ppm (1)	5ppm (2)		2ng/m ³ (2)
TOXICITY	no data available	severe toxic effects: 40 ppm, 60 min. Symptoms of illness, 10 ppm. Unsatisfactory, 5 ppm	can cause dermatitis, erythema, formation of papules and vesicles. Vapors acting on eye can cause conjunctivitis and corneal ulceration (3)	inhalation can cause depression, resp. failure; dyspnea (3)	no data available	dermatitis can result from skin contact. Staining and opacification of cornea occur in workers exposed for prolonged periods to concu's of vapor not high enough for prod of systemic effects (3)
USES	no data available	biodegradation: decomposition by a soil microflora (3)	oxidizing agent; in photography; manuf. dyes; tanning hides; strengthening animal fibers (3)	as disinfectant like phenol; also as a solvent (3)	manuf of azo and sulfur dyes; dyeing furs and hairs (3)	as photographic reducer and developer (3)
STRUCTURE	Z	CH2CH3	0===0	Č	NH2	Но-Он
WNONAS		N-methylbenzenamine	2,5-cyclohexadiene-1,4 -dione		hydroxy aniline	
WZ COMPOUND	108 ethyl pyridine	108 methyl aniline	109 quinone	109 cresols	110 aminophenols	111 hydroquinone

V_T_	Not available (6)				100 pm, 1974 (5)		10 ppm, 45ng/m³ (6)	not available (6)	200 ppm (1)
TOXICITY	Inhalation of dust causes irritation of nose & throat. Contact with skin or eyes causes irritation (3)	no data available	no data available	no data available	no data available	no data available	Slight skin & eye irritation of mucuous membranes & lungs, pulmonary edema. Chronic exposure may cause dermatitis, liver & kidney damage (6)	low toxicity, liquid may irritate eyes (6)	mild eye and nose irritation: 200-300 ppm. unsatisfactory >200 ppm symptoms of illness: 500ppm severe toxic effects: 2,000 ppm, 60 min. (5)
USES	as photographic reducer and developer (3)	mold and yeast inhibitor. Fungi- static agent for foods, especially cheeses. To improve characteristics of drying oils. (3)	no data available	catalyst in making urethane foams (3)	in perfumery as constituent of artificial carnation oils; as industrial solvent (3)	no data available	found in tars from coal, lignite and crude petroleum. Used in paint and coating mfg. chemical synthesis intermediate (3)	no data available	as gasoline additive (3)
STRUCTURE	TZ //			-	сн ₃ (сн ₂) _ф сосн ₃				CH3C-OC(CH3)3
SYNONYM	1,2-dihydro-3,6- pyridazinedione	2,4-hexadienoic acid	ketoheptamethylene	triethylenediamine 1,4-diazabicyclo (2.2.2)octane	methylamyl ketone	isobutyl sulfocyanate	indonapthene	n-heptyl alcohol	acetic acid 1,1- dimethylethyl ester
COMPOUND	maleic hydrazide	sorbic acid	cycloheptanone	triethylenediam	2-heptanone	isobutyl thiocyanate	indene	heptanol	117 butylacetate
Z/W	113	113	113	113	115	116	116	117	117

, <u>\\</u>	10 ppm (6)			50 ppm (1)			Not available (6)
TOXICITY	severe skin & eye irritation, Dermatitis, weight loss, slight increase in clotting time. (3)	no data available	no data available	Inhalation can result in kidney damage; brain damage eye irritation. (3)	no data available	no data available	Therap Cat: Hypnotic (3) Notoxicity expected from inhalation or ingestion except slight narcotic effect. Liquid can cause eye & skin irritation on contact. (6)
USES	OHno data available	organic solvent (3)	manuf. of coumarone-indene resins (3) no data available	solvent for nitrocellulose resins, grease, oil, albumin; dry cleaning (3)	in synthesis of surface active agents, pharmaceutical. As emul- sifying agent for cosmetic creams and lotions, mineral oil, paraffin wax, polishes, dry cleaning compounds (3)	solvent for nitrocellulose, lacquers no data available and dopes; in varnish namovers, cleaning solutions, dye baths. (3)	in perfumery, catalyst for polymeri- zation of olefins, in organic synthesis, esp. as a photosensitizer. (3)
STRUCTURE	(C ₂ H ₅) ₂ NCH ₂ CH ₂ OH ^{no} data available			>	CH ₂ OHCCH ₂ OH CH ₂ CH ₂ CH	lor	CocH3
SYNONYM	2,hydroxy triethylamine	2,5-dihydrothiophene 1,1-dioxide	coumarone	2-butoxyethanol		2-(2-methoxyethoxy) ethanol	1-phenyl ethanone
Z COMPOUND	8 2-diethyl amino ethanol	9 3-sulfolene	119 benzofuran	119 butyl cellosolve®	:0 2-amino-2ethyl 1,3propanediol	121 methyl carbitol®	.1 acetophenone
MZ	118	119	11	11	120	12	121

	(9) mdd .		Not pertinent (6)	ø				
TLV	Vapor irritates eyes, nose 45 ppm (6) & throat, and is readily absorbed through mucous membranes & lungs, producing general toxic symptoms (weakness, dizziness, headache, difficult breathing, twitching) (6)	utic gent)	es	ation,			severe al and ysis	v. as al orrheic
	tates eyes and is rea hrough muc & lungs, general to weakness, headache, oreathing, (6)	Therap Cat: Pharmaceutic aid (antimicrobial agent (3)	ant to skin ucous membi	skin irrita ion. (3)	ailable	ailable	may cause stition, renaminage, hemo, s, circulativeath (3)	Zinc deri al; topica anti sebo
TOXICITY	Vapor irritates eyes, now & throat, and is readily absorbed through mucous membranes & lungs, producing general toxic symptoms (weakness, dizziness, headache, difficult breathing, twitching) (6)	Therap Cat: Pharmaceutic aid (antimicrobial agent) (3)	preserving foods, fats, fruit juices, Mild irritant to skin, alkaloidal sol'ns. in dyes; for eyes and mucous membranes curing tobacco (3)	can cause skin irritation, sensitization. (3)	no data available	no data available	developer in photography, as mordant ingestion may cause severe for wool, staining leather, process G.I. irritation, renal and engraving; manuf. various dyes, furs, hepatic damage, hemolysis hairs (3) convulsions, circulatory collapse, death (3)	Therap Cat: Zinc deriv. as antibacterial; topical antifungal; anti seborrheic (3)
	isinfec- resins		it juices, for				s mordant process /es, furs,	,
	coal tar d artificial	rfunery (3)	fats, fwi in dyes;			esins with	ography, as g leather, various dy	iacide (3)
	for the prep, of coal tar disinfectants; manuf, of artificial resins (3)	in flavors and perfumery (3)	preserving foods, alkaloidal sol'ns. curing tobacco (3)	no data available	no data available	forms synthetic resins with formaldehyde (3)	developer in photography, as mordant for wool, staining leather, process engraving; manuf. various dyes, furshairs (3)	fungicide, bacteriacide (3)
USES	for the tants; (3)		preserv alkaloi curing	no data	no data	forms s formald	developer for wool, engraving hairs (3)	fungici
	#C	12СН2ОН	100H	HO-		-NH2	HO HO	HS
STRUCTURE	HO HO	CH			7		Z P	z'
	H 3C		c acid	NO			[0	
	phenol	ethanol	benzene carboxylic acid			riazine- riamine	1,2,3 benzene triol	1-hydroxy-2(1H)- pyridinethione
SYNONYM	dimethyl phenol	1 2-phenyl	benzene			1,3,5-triazine- 2,4,6-triamine	1,2,3 be	1-hydroxy-2(1H pyridinethione
91		phenethyl alcchol 2-phenyl ethanol	cacid	phenol	ne	ЭС	[0]	one
COMPOUND	xylenol	pheneth	123 benzoic acid	124 nitrosophenol	coniceine	melamine	pyrogallol	128 pyrithione
M/Z	123	123	123	124	126	127	127	128

	Data Not available (6)	25 ppm (1)	not pertinent								
YTIOXICITY	s Vapor is irritating when breathed at high concen- trations. Contact with liquid causes irritation of skin & burning of eyes (6)	narcotic in high concentrations (3)	no data available	no data available	no data available	no data available	highly irritating to eyes skin, mucous membranes (3)	no data available	no data available	no data available	no data available
USES	the monomer in the manuf. of polymers and resins for textile and leather finishes, paint formulations. (3)	solvent for nitrocellulose —alkyd nitrocellulose-maleic, and vinyl resins. (3)	no data available	no data available V	constituent of beetroot nectandra, wood and coal tar (3)	in flavor and perfume industry (3)	solvent, softener, humectant. In the synthesis of plasticizers, resins, surfactants, agricultural chemicals (3)	versatile solvent and plasticizer (3)	no data available	no data available	photographic dye mfg; rubber chemicals mfg. (3)
STRUCTURE	CH 2= CHC-0C4H9		сн ₃ (сн ₂) _{5 [[} сн ₃	$(cH_3)_2$ CH $(cH_2)_2$ SCN	IZ	CH3 CH=CHCH	H0H2C CH2OH	CH ₃	C6H1580+	C3H2-S-S-C3H2	
SYNONYM	n-butyl acrylate 2-propenoic acid butyl ester	129 ethyl amyl ketone 5-methyl-3-heptanone	2-octanone	isoanyl sulfocyanate	3-methyl-1H-indole	3-phenyl-2-propenal	THF glycol				
M/Z COMPOUND	129 n-butyl acrylate	129 ethyl anyl keton	129 hexyl methyl ketone	130 isoamylthio- cyanate	132 skatole	133 cinnamaldehyde	133 2,5-tetrahydro- furan-dimethanol	133 2,2-dimethyl-1,3- dioxolane -4- methanol	135 hexylmercaptan derivative	135 dipropylsulfide	136 benzothiazole

no data available
solubilizer for vulcanized rubber, clarifier for mineral oil; in insecticide formulations. (3)
-cooch3
143 cyclohexane carboxylic acid, methyl ester
CVC Chexy (amine)

Nbt available (6)		None available (6)	None available (6)		2 pam (1)
hamful dust and vapor. Not The FDA has declared this avaisubstance a carcinogen. (3) Unsatisfactory >.01 mg/m³ (5)	no data available	Local action may produce peeling of the skin which c may be followed by persistent pigmentation. Ingestion of large quantities may cause nephritis, lens opacity, vomitting and diarrhea abdominal pain, circulatory collapse, death. (3)	Carcinogen stimulation of CNS, digestive system irritation, eye irritation (6)	no data available	Vapor is moderately irritating, skin contact may cause first degree burns on short exposure, and secondary burns on long exposure (6)
USES manuf, dyes (3)	substitute for tartaric acids in beverages and baking powders. As an antioxidant. Manuf. polyhydric alcohols, synthetic resins. As mordant in dyeing. (3)	manuf. dyes, perfumes, intermediates, Local action may produce the largest use is probably in peeling of the skin which making antioxidants for the synthetic may be followed by persistent pigmentation. Ingestion of large quantities may cause nephritis, lens opacity, vomitting and diarrhea abdominal pain, circulatory collapse, death. (3)	as fungistat, also as a chelating agent (3)	no data available	manuf, phthaleins, phthalates, benzoic acid, synthetic indigo, artificial resins (glyptal) (3)
STRUCTURE NH2	нооссн П нссоон	To	7	o T	
SYNONYM	(E)-butenedioic acid	hydroxy napthalene	ine 8-quinolinol	1 H-Isoindole-1,3 (2H)-dione	pthalic anhydride 1,3-isobenzo furandione
WZ COMPOUND 144 napthylamine	145 fumaric acid, dimethyl ester	145 napthol	146 8-hydroxyquinoline	148 pthalimide	149 pthalic anhydri

M/Z	ON-POUND	SYNONYM	STRUCTURE	USES	TOXICITY	TLV .
150) triethanolamine	trihydroxytriethylamine	(HOCH2CH2)5 N	intermediate in manuf. of surface active agents, textile specialties, waxes, polishes, herbicides, petroleum demulsifiers, toilet goods. Solvent for shellac, dyes; manuf. synthetic resins. (3)	liquid may irritate eyes and skin (6)	Not pertinent (6)
151	triethylene glycol	triglycol	CH20CH2 CH20H CH20 CH2CH20H	in various plastics to increase pliability; in air disinfection (3)	very low acute and chronic toxicity (5)	Not pertinent (6)
152	acetaminophen	4'-hydroxy acetanilide	CH3CONH	manuf. azo dyes, photographic chemicals (3)	Therap Cat: analgesic antipyretic (3)	
153	cresotic acid		CON CH3	in manuf, of dyes (3)	Toxicity similar to salicylic acid. (i.e. absorption of large amounts can cause vomiting, abdominal pain, inc. resp., acidosis. May also cause skin rashes.	•
155	thiosalicylic acid	2-mercapto benzoic acid	SH	manuf. thioindigo dyes (3)	no data available	
155	Dimefox	tetramethyl phosphorodiamidic fluoride	(CH)	pesticide (3)	a highly toxic cholinest- erase inhibitor, symptoms similar to parathion, q.v. (3)	Oral LD50= 1-2mg/kg (8)
155	terpineol	α,α,4-trimethyl-3- cyclohexene-l-methanol	H ₃ C OH -CH ₃	perfumes; denaturing fats for soap manufacture (3)	Therap Cat: antiseptic (3	3)
155	citronellal	3,7-dimethyl-6-octenal	H ₃ C CH ₃	in soap perfumes; insect repellant (3)	no data available	
157	menthol	5-methyl-2- (1-methylethyl) cyclohexanol	H ₃ C CH ₃	in liquers, confectionery, perfumery, cigarettes, cough drops, and nasal inhalers (3)	Therap Cat: topical antipruritic (3)	
157	citronellol	3,7,-dimethyl-6-octene 1-ol		in perfumery (3)	no data available	

71_/		sno	(3)										
TOXICITY	no data available	irritating to skin, mucous membranes. Has pressor effect (3)	Highly irritant to skin, eyes, mucous membranes (3)	no data available	no data available	no data available	no data available	no data available	no data available	no data available	no data available	no data available	
USES	in perfumery (3)	no data available	manuf, phenol by fusion with NaOH. (3)	photographic antifogging agent (3)	no data available	as fat-reduction additive in feed (3)	no data available	in perfumery (3)	ראים -כאיבר=כאכאים in perfumery (3) באיז	no data available	manuf. artificial perfumes (3)	in flavoring and perfunery (3)	
STRUCTURE				S NO NHCOCH3	C8H19SO+		CONH2	₹ N N N N N N N N N N N N N N N N N N N	CH2CH=CHCH2		CHOHCHCH2CH3	ıyde	H 0 - CH0
SYNONYM		3-methyl-N- (3-methyl butyl)-l butanamine		2-acetamido-4- mercaptobutyric acid Y-thiolactone			1,2-benzene dicarboxamide	benzeneacetic acid ethyl ester	3-methyl-2-(2-pentenyl)-2- cyclopenten-1-one		salicylic acid ethyl ester	3-ethoxy-4-hydroxybenzaldehyde	
GNDOWNO Z/W	157 rhodinol	158 diisoamylamine	159 benzene sulfonic acid	160 citiolone	163 octyl mercaptan derivative	164 2-nitro-2-propyl -1,3-propanediol	165 phthalamide	165 ethyl phenyl acetate	165 jasmone	166 (aminopropyl) benzylalcohol	167 ethyl salicylate	167 ethyl vanillin	

TLV				10 mg/m ³			
TOXICITY	no data available	no data available	causes impaired kidney function. Large doses can cause vomitting, ataxia, convulsions (3)	may be irritating to mucous membranes. Overexposure, including ingestion of solid or skin contact, may cause fast pulse, hypertension and bladder trouble. Contact with dust irritates eyes (6)	no data available	may cause serious CNS damage leading to fatal convulsions (3)	no data available
USES	no data available	important dye intermediate. Used in making photographic plates sensitive to ultraviolet light (3)	in organic syntheses; as plasti- cizer, compatible with nitro-, cellulose, polystyrene metha- crylate, vinylite resins; as fungicide and bacteriacide; in antienzyme toothpastes (3)	manuf, dyes; stabilizing nitro- cellulose explosives and cellu- loid. In anal. chem for the de- tection of NO3, ClO3 and other oxidizing substances (3)	as intermediate in the manufacture of resins; also in the rubber industry (3)	rodenticide (3)	in perfumery as constituent of artificial carnation oils; as industrial solvent (3)
STRUCTURE	1		H3C_000H3		HO	WI Hack IN CLAND	
SYNONYM		9-azafluorene		M-phenylbenzene amine	0-hydroxybiphenyl	2-chloro-N,N,6-trimethyl -4-pyrimidinamine	
M/Z COMPOUND	167 5-amino-2-butoxy pyridine	168 carbazole	169 dehydroacetic acid	170 diphenylamine	171 phenyl phenol	172 crimidine	172 2-heptanone semicarbazone

(9)

71.										
TOXICITY	no data available	no data available	Therap Cat: antibacterial (3)	no data available	no data available	no data available	no data available	no data available	no data available	no data available
USES	gas generating agent for use in making foam rubber and foam plastics. (3)	solvent for nitrocellulose, some resins, waxes and oils (3)	manufacture various dyes and organic chemicals (3)	manufacture artificial resins, plastics (nylon), urethan foams. Used in baking powders instead of tartaric acid, cream of tartar. As an intermediate in lubricating oil additives. (3)	preservative for cutting oils, resins, enulsions, water-based paints, cosmetics, inks. Gasoline additive. (3)	in the prep'n of dyes which pick up light readily (3)	no data available	manufacture of yellow dyes, such as Hansa and benzidine yellows. In rubber compounding. In organic syntheses. (3)	no data available	weed killer, applied as a spray to the soil (3)
STRUCTURE			C H ₂ N ₄ - SO ₃ H		H3C CH3	H2N () 502 F	C9H21SO+		CH ₃ (CH ₂) ₇ SH	NHCOOCH CH3
SYNONYM	benzene sulfonic acid hydrazide	acetic acid %- ethyl hexyl ester	4-aminobenzene sulfonic acid		2,6-dimethyl-1,3- dioxan-4-ol acetate	p-aminobenzene sulfonyl fluoride		3-oxo-N- phenylbutanamide		phenylcarbamic acid 1- methyl ethyl ester
COMPONIND	Porofor® BSH	octyl acetate	sulfanilic acid	adipic acid, dimethyl ester	dimethoxane	sulfanilyl fluoride	nonyl mercaptan derivative	acetoacetanilide	octyl mercaptan derivative	ICP
M/Z	173	173	174	175	175	176	177	178	179	180

- 23

		20 ppm (suggested) (6)			Not pertinent (6) d		
TOXICITY	no data available	(3)	cholinesterase inhibitor	no data available	Therap Cat: Pharmaceutic aid (sweetening agent; tablet excipient). (3) Hot liquiwill burn skin. (6)	No teratogenic effects noted in rats and rabbits, except for slight moderate effects on cholinisterase depression (7)	FDA has declared this substance and its salts as carcinogens. (3)
USES	fixative for perfumes in org. synthesis; as bacteriacide in conjunction with quaternary ammonium cpds; as insect repellant (3)	in organic synthesis, manufacture a skin irritant and insecticides, plasticizers, corrosion possible sensitizer inhibitors, rubber chemicals, dyestuffs, emulsifying agents, dry-cleaning soaps, acid gas absorbents (3)	insecticide (3) (3)	as constituent of artificial neroli oil and of artificial orange blossom oil. (3)	in manufacture of sorbose, ascorbic acid, propylene glycol, synthetic plasticizers and resins; as moisture conditioner on printing rolls, in leather, tobacco. In writing inks. In antifreeze mixtures with glycerol or glycols. (3)	contact and systemic insecticide (3)	manufacture dyes; as a reagent for HyOz in milk and for detection of blood. (3)
STRUCTURE			N,-N'-Bis(1-methyl (CH3),CHNH Plethyl) phosphorodiamidic (CH3), CHNH		CH20H(HCOH)4CH20H	ni- CH3CNH-P-OCH3	ohenyl H.N. () H.
SYNONYM	lou	mine N-cyclohexyl cyclohexanamine	N,-N'-Bis(l-methyl ethyl) phosphorodi fluoride	ate	D-glucitol	acetylphosphorami- dothioic acid 0,S- dimethyl ester	4,4'-diamino biphenyl
M/Z COMPOUND	181 2-phenoxyethanol acetate	182 dicyclohexylamine N-cyclohexyl cyclohexanan	183 Mipafox	183 geraniol formate	183 sorbitol	184 acephate	185 benzidine

ب

	P.O.L. 10 ppm					S		
TOXICITY	causes CNS stimulation, P. skin irritation, sensitization. (3)	no data available	Therap Cat: antipruritic (3)	Irritant to eyes, mucous membranes, but not to skin. Ingestion can cause CNS disturbances. (3)	no data available	may cause allergic reactions (3)	no data available	no data available
USES	no data available	no data available	no data available	insect repellent (3)	has been proposed as an additive for lubricating oil, gasoline and for stabilizing Cl-containing polymers. (3)	in perfumery (3)	in perfumery and cosmetics (3)	no data available
STRUCTURE	$[cH_3(cH_2)_3]_{3^N}$	7	NCOCH=CHCH3	CON (C2H5)2		kne acetone	S.	
SYNONYM	N,N-dibutyl-1- butanamine		ğί	N,N-diethyl-3- methylbenzamide		α-cyclocitrylidene acetone		
M/Z COMPOUND	tributylamine	190 benzoylpiperidine	190 ethylcrotonanilide	192 N,N-diethyl-m- toluamide	192 2,6-di-tert- butylpyridine	193 ionone	193 isoamylbenzoate	194 isobutyl-p- aminobenzoate
M/Z	186	190	190	192	192	193	193	194

							5mg/m ³ (6) oral LD50 = 400-850 mg/kg (8)			o Oral LD50 = es, 91 mg/kg (8)
hepatotoxic; may cause dermatitis (3)	no data available	no data available	no data available	no data available) no data available	no data available e	Data not available (6)	no data available	s no data available	moderately irritating to Oral LD50 = skin and mucous membranes, 91 mg/kg and, in high conch's (8) narcotic. (3)
has been used with pyrethrum as insecticide (3)	germicide (3)	no data available	in perfumery (3)	manufacture dyes and perfumes (3)	accelerator in vulcanizing rubber (3	for dyeing fabrics mordanted with iron. As a reagent for Co and for F(3)	contact insecticide (3)	no data available	<pre>in cosmetics, hydraulic brake fluids (as coupling agent to castor oil) (3)</pre>	insecticide (3)
CloH7N=C=S	5	,J					OOCNHCH ₃		diol	ارد
1-isothiocyanato naphthalene	4-chloro-2-cyclo pentylphenol		3,7-dimethyl-1,6- octadien-3-yl acetate	N-phenylbenzamide		2,4-dinitro-1,3-benz diol	l-naphthalenol methyl carbamate	hexanedioic acid diethyl ester	2-methyl-2,4-pentane	thiocyanic acid 2- (2-butoxyethoxy) ethyl ester
196 1-naphthyl isothiocyanate	197 dowicide	197 geraniol acetate	197 linalyl acetate	198 benzanilide	199 nitrosodiphenyl amine	201 2,4 dinitro resorcinol	202 carbaryl	203 ethyl adipate	203 hexylene glycol diacetate	204 lethane
	l-naphthyl l-isothiocyanato ${\rm C}_{10}{\rm H}_7{\rm N}$ =C =S insecticide (3)	1-isothiocyanato continue as insecticide (3) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1-naphthyl 1-isothiocyanato risothiocyanato risothiocyanate naphthalene control dowicide $C_{10}H_7N=C=S$ insecticide (3) germicide $C_{10}H_7N=C=S$ pentylphenol cotate	1-naphthyl 1-isothiocyanato risothiocyanato risothiocyanate naphthalene convicide apenthalene dowicide 4 -chloro-2-cyclo pentylphenol rinalyl acetate $3,7$ -dimethyl-1,6- rinalyl acetate octadien-3-yl acetate risothiocyanato risothiocyanato $C_{10}H_7N=C=S$ in perfumery (3) in perfumery (3)	1-naphthyl 1-isothiocyanato isothiocyanato isothiocyanate naphthalene cotation octation octation octation octation octation octation octation isothiocyanate naphthalene cotation octation octation isothiocyanate octation isothiocyanate naphthalene cotation isothiocyanate octation isothiocyanate naphthalene cotation isothiocyanate naphthalene isothiocyanate isothiocyanate in perfumence (3) in perfumence (4) in presentation in perfumence (4) in presentation in perfumence (5) in perfumence (6) in perfumence (7) in perfumence (7) in perfumence (8) in perfumence (8) in perfumence (9) in perfumence (10) in pe	1-isothiocyanato naphthyl l-isothiocyanato cochiocyanato isothiocyanate naphthyl l-isothiocyanate naphthalene cochiocyanate naphthalene dowicide do	1-isothiocyanate 1-isothiocyanato 1-isothiocyanate 1-isothiocy	1-isothiocyanate 1-isothiocyanato 1-isothiocyanato 1-isothiocyanate 1-isothiocy	isothiocyanate analyticate (3) germicide (3) quanticide (3) permicide (3) permicide (3) no data available no data available no data available in perfurency (3) octadien-3-yl acetate octadien-3-yl acetate nitrosodiphenyl mitrosodiphenyl amine 2,4 dinitro-1,3- benzene in occalerator in vulcanticing rubber (3) no data available incoming amine incoming and for ferminate incoming in octata available incoming and for fermitrosodiphenyl are available incoming diol carbaryl adipate hexanedioic acid no data available no data available incoming diothioly acter incoming diothioly available incoming diothioly available diethyl ester	Percention Per

TLV .	Oral LD50 = 921-1120 mg/kg (8)		S P		Jmg/m ³ (1)	
TOXICITY	rapidly metabolised in rats; about 50% of the radio-labelled cpd. administered was expired as CO ₂ in 3 days; about 25% in urine and 5% in faeces, (7)	chlonisterase inhibitor (3)	In conc'd form, may cause irritation of skin, mucous membranes. (3)	Irritating to skin, mucous membranes. (3)	Inhalation may cause nuosis, ache eyes, rhinormea. Skin/eye contact may cause, nausea, diarmea, sweating paralysis, low BP, convulsions. (2)	no data available
USES	selective herbicide (3)	insecticide (3)	anti-mildew, fungicide (3)	as metal chelating agents intermediate in the manufacture of surface active agents, organic catalysts and grease additives (3)	insecticide (3)	as an additive to edible or inedible fats or oils, hydrocarbon fuels or lubricants, retards oxidation or metal contamination (3)
SYNONYM	butyl ethyl thio C ₂ Hs Carbanic acid S-C ₄ H9 Carbanic acid S-C ₄ H9 COCNHCH3	3-methyl-5-(1- methyl cHł CHł CH) phenol methyl cHł CHł	CONH-CCHS	3-carboxy-4- hydroxybenzene sulfonic acid	phosphoric acid 2,2-dichloro ethenyl dimethyl ester · CH ₃ O OCH=CCL ₂	2,3,4,6-tetrahydroxy- 5H-benzocy-cylohepten- 5-one
W/Z COMPOUND S'	204 pebulate b	208 promecarb 3	214 salicylanilide	219 sulfosalicylic 3 acid e	221 dichlorvos	221 purpurogallin

221

Z/W

221

223

223

TLV	
TOXICITY	
USES	
STRUCTURE	
SYNONYM	
M/Z COMPOUND	

no data available

acid

225

no data available

2-(2H-benzotriazol-2-yl)-4-methyl-phenol

226 tinuvin@P.

Irritating to eyes, skin, mucous membranes. (3)

T.L.V. = Threshold Limit Values P.O.L. = Provisional Operational Limit

no data available

acaricide, fungicide (3)

6-methyl-1,3-dithiols [4,5-b]-quinoxalin-2-

235 quinamethionate

Append 3B Catalog of chemicals with generic and chemical names and structures, uses and toxicity information.

TLV	Sppm (1)	0.1ppm (1)		10ppm (1)	10ppm (2)		P.O.L.= 20ppm (5)	none available (6)
TOXICITY	dangerously caustic to skin! Chronic absorp- tion has been reported to cause albuminuria, hematuria (3)	irritates skin, mucous membranes. Vapors cause lacrimation. A weak sensitizer; inhalation may cause asthmatic re- action. Inh. of high concns causes pulmonary edema. (3)	no data available	Ing may cause severe corrosion of mouth and GI tract, with vomitting, diarrhea, circulatory collapse, eye irritation (3)	inhalation causes head- ache, nausea, muscle irritation, skin or eye contact result in par- alysis, pulmonary irri- tation, liver/kidney damage (2)	no data available	strong irritant (3)	moderate skin, eye & mucous membrane irrita-tion. Thiocyanate intox-ication (6)
USES	decalcifier, reducer in dyeing wool fast colours, dehairing and plumping hides, tanning, in sizes, electroplating, coagulating rubber latex, also in chemical analysis (3)	manuf colloidal forms of metals; making plastics, perfumes; warming agent in methyl chloride refrige- rant. Used in organic syntheses. (3) Also used as an aquatic herbicide (7)	no data available	food processing plants; organic chemical mfg; nylon, fiber, dyestuff and pigments mfg; rubber mfg., photographic chemicals & plastics mfg. (3)	no data available	no data available	in the manuf, of plastics (3)	no data available
STRUCTURE	0 HC-0H	сн ₂ = сн-сно			C ₂ H ₅ SH			CH3SCEN
SYNONYM		2-propenal		ethanoic acid		2-propynoic acid	2-propenoic acid	methyl sulfocyanate
COMPONIN	formic acid	acrolein	thiocyanic acid	acetic acid	ethylmercaptan	propiolic acid	acrylic acid	methyl thio- cyanate
Z/W	45	22	27	. 29	61	69	71	72

T <u>lV</u> toxicity by inhalation: 10ppm (6)				not available		not pertinent (5)		not available (6)
TOXICITY liquid causes skin & eye burns. Vapors may irritate eyes, nose & throat, but should not cause systemic illness (6)	no data available	mild irritant to skin and mucous membranes (3)	no data available	strongly irritating to skin and mucous mem- branes (3)	no data available	may act as a strong irritant. (3)	no data available	inhalation of mist caus- rest coughing and irrit- ation of mucous membranes (2)
USES no data available	no data available	in the processing of textiles, leather and metals; in pH control; in manuf. of adhesives, decontamina- tion cleaning, dyeing (3)	no data available	oxidizing agent; with H ₂ SO ₃ as catalyst in acrylonitrile polymerization (3)	manuf. of co-polymers with vinyl acetate used in lacquers and paper sizing; in the manuf. of softening agents for synthetic rubber (3)	manuf of methacrylate resins and plastics (3)	intermediate in sugar metabolism and in enzymatic carbohydrate de- gradation where it is converted to acetaldehyde and CO ₂ by carbocylase (3)	occurs in small quantities in blood and muscle fluid of man & animals also present in other organs & body fluids (3)
STRUCTURE CH3CH2COOH	сн ₃ сѕн	0 		стноз		CH2_	сн ₃ е-соон	acid $HO-C-COOH$
SYNDNYM propionic acid or methylacetic acid	ethanethioic acid	hydroxy acetic acid			2-butenoic acid	2-methylpropenoic acid	2-oxopropanoic acid	2-hydroxy propanoic acid
COMPOUND propanoic acid	thioacetic acid	glycolic acid	ethyl sulfonic acid	chloric acid	crotonic acid	methacrylic acid	pyruvic acid	lactic acid
M/Z 73	75	75	77	83	82	85	87	88

TLV	not avail. (6)	not avail.	Sppm (1)		not pertinent (5)
TOXICITY	no data available	no data available	Chronic poisoning with renal and hepatic damage may occur from industrial contact. Fatal poisoning may also occur by skin absorption. Ingestion of small amts may cause nausea, vomitting, circulatory collapse, paralysis, convulsions, coma, greenish or smoky colored urine and eventually death from respiratory failure (3)	strong irritant (3)	no data available
USES	no data available	no data available	as a general disinfectant, either in solution or mixed with slaked lime, etc. for toilets, cesspools, floors, drains, etc. manuf of colorless resins, many medical and industrial organic cpds and dyes; as a reagent for chemical analysis (3)	as catalyst in polymerization, alkylation and esterification reactions, as a solvent (3)	intermediate in perfumery (3)
STRUCTURE	сн ₃ сн ₂ сн ₂ so-	сн ₃ сн ₂ so ₂ -	₹ <u></u>		с4 носоон
SYNONYA		ethanethiol	hydroxy benzene	methyl sulfonic acid	pentanoic acid
W/Z COMPOUND	propyl mercaptan derivative	ethyl mercaptan derivative	phenol	methanesulfonic acid	101 valeric acid
7/41	91	93	63	95	101

TLV			(5) mg/s			
TOXICITY	no data available	no data available	oral or chromic percutaneous absorption may produce digestive disturbances, nervous disorders with faintness, vertigo, mental changes, skin eruptions, jaundice, general protoplasmic poison (3)	Therap cat: peripheral vasodilator; antilipemic (3)	no data available	no data available
<u>USES</u>	no data available	no data available	disinfectants and fumigants, in photographic developers; also as a solvent (3)	free alcohol is proposed as a solubilizer for riboflavin (3)	mold and yeast inhibitor. Fungistatic agent for foods, especially cheeses. In alkyd type coatings to improve gloss To improve milling character- istics of cold rubber (3)	in organic sythesis; in manuf of nylon, synthetic rubbers, plastics, medicinals (3)
STRUCTURE	_0s6H72	C3H2SO2				
SYNONYM				l 3-pyridine methanol	2,4-hexadienoic acid	4-oxopentanoic acid
M/Z COMPOUND	105 butyl mercaptan derivative	107 propyl mercaptan derivative	107 cresol	108 nicotinyl alcohol 3-pyridine methanol	111 sorbic acid	115 levulinic acid

TLV	not available (6)	not available (6)	not pertinent			not pertinent (6)	
TOXICITY	Oral ingestion: 500 mg/day for a year is tolerated. Inhalation of dust may cause res- piratory irritation (6)	strong irritant to nose, throat, eyes or skin (6)	no data available	no data available	no data available	Therap Cat: Pharmaceutic aid (antifungal agent) (3) mild irritant to skin, eyes and mucous membranes (6)	no data available
USES	substitute for tartaric acid in beverages and baking powders. As an antioxidant. Manuf polyhydric alcohols, synthetic resins. As mordant in dyeing (3)	manuf of artificial resins, to retard rancidity of fats and oils; dyeing and finishing wool, cotton and silk (3)	manuf of esters for artifical flavors and of hexyl derivatives, especially hexylphenols, hexyl-resorcinol etc. (3)	no data available	no data available	preserving foods, fats, fruit juices alkaloidal solutions, etc. manuf benzoates and benzoyl cpds, dyes; as a mordant in calico printing, for curing tobacco (3)	intermediate in mfg of phenolic antioxidants; plastics & resins mfg; disinfectants mfg, insecti- cides & fungicides, rubber chemi- cals mfg, wetting agent, dyestuffs (3)
STRUCTURE	Н00ССН НССООН		сн ₃ (сн ₂)соон	C4H9SO2-		D 00 00 00 00 00 00 00 00 00 00 00 00 00	
SYNONYM	(E)-butenedioic acid	(Z)-butenedioic acid	hexanoic acid			benzene carboxylic acid	
GVDOUND Z/W	115 fumaric acid	115 maleic acid	115 caproic acid	butyl mercaptan derivative	. ethyl sulfide	benzoic acid	121 dimethylphenol
MZ	115	115	115	121	121	121	121

7												
TOXICITY	can cause skin irritat- tion, sensitization (3)	no data available		no data available	no data available	no data available	no data available	no data available	no data available	no data available	, no data available	no data available
USES	no data available	no data available	no data available	solubilizer for vulcanized rubber; clarifier for mineral oil, in insecticide formulations (3)	no data available	no data available	no data available	no data available	starting material in manuf synthetic perfumes (3)	no data available	converted to maltol and ethyl maltol, no data available flavor enhancing additives (3)	an intermediate in manuf of esters used in perfumery; in manuf of dyes, etc. (3)
STRUCTURE	HO-NO	N COOH		Н000		C7H15S	Н3с ⟨ Соон	C5H11SO2			HO CH20H	3
7	quinone oxime	2-pyridine carboxylic acid					methyl benzoic acid				5-hydroxy-2(hydroxy nxthyl)-4H-pyran-4-one	octanoic acid
SYNONYM	quinon	2-pyracid					meth				5-hy	octa
COMPOUND			propyl mercaptan derivative	cyclohexane carboxylic acid	heptanoic acid	heptyl mercaptan		pentyl mercaptan derivative	phenylacetic acid	fluorobenzoic acid		
	122 nitrosophenol quinon	122 picolinic acid 2-pyr acid	123 propyl mercaptan derivative	127 cyclohexane carboxylic acid	129 heptanoic acid	131 heptyl mercaptan	135 toluic acid meth	135 pentyl mercaptan derivative	135 phenylacetic acid	139 fluorobenzoic acid	141 kojic acid 5-hy meth	143 caprylic acid octa

í
37
1

M/Z 153	M/Z COMPOUND 153 thiosalicylic acid	SYNONYM	STRUCTURE SH	USES manuf of thioindigo dyes (3)	TOXICITY	V_T
157	157 pelangonic acid	nonanoic acid		manuf of lacquers and plastics (3)	strong irritant (3)	
167	/ dehydroacetic acid	3-acetyl-6-methyl- 2H-pyran-2,4(3H)- dione	H ₃ C 0 0 H ₃	in organic sythesis; as plasticizer, compatible with nitrocellulose, polystyrene, methacrylate, vinylite resins, (3)	causes impared kichey function, large coses can cause vomitting, ataxia, convulsions (3)	not available
169	169 dithiosalicylic acid					
171	171 toluenesulfonic acid	methylbenzene sulfonic acid		in dye chemistry. Also in manuf of oral antidiabetic drugs (3)	highly irritating to skin, mucous membranes	not available (6)
17.	171 capric acid	decanoic acid	CH ₃ (CH ₂) ₈ C00H	manuf of esters for artificial fruit flavors and perfumes; as an intermediate in other chemical synthesis (3)		
183	3 diazobenzene sulfonic acid		11	in manuf of azo dyes (3)		
18	185 iodoacetic acid		0 + 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -			
Abl	Abbreviations:					
	T.L.V. = Threshold Limit Values	old Limit Values				

P.O.L. = Provisional Operational Limit

APPENDIX 4

TAGA CALIBRATION

4.1 GENERAL

The TAGA® calibration, as all other mass spectrometers, consists of two distinct types:

- (a) mass calibration
- (b) chemical calibration

The mass calibration consists of setting up the analyzer components to obtain accurate molecular weight information and hence empirical structure assignment for the detected peaks. This computer controlled function is done on a daily basis.

The chemical calibration is the injection of known amounts of a particular chemical in order to measure the instrument response and thus correlate the response to the amount of the particular chemical in the sample.

The TAGA® system can be calibrated by injection of known concentrations by:

- (a) Direct head space injection.
- (b) Flash desorption of low volatility chemicals from a direct insertion probe.
- (c) Direct analysis of certified gas mixtures.

The volatile chemicals were calibrated using a silanizied gas tight syringe. A small quantity (less than 0.5 ml) of the liquid was used to coat the inside of the glass syringe. Within a few minutes an equilibrium vapour pressure is achieved within the syringe barrel in a mixture with ambient air. The compound/air mixture is then injected into the TAGA® air inlet stream via an automated syringe drive unit. The concentration of the injected chemical is calculated from the following equation:

C (ppb)	8	P (torr) $Q_s \times 10^9$
Where -		760 x QT
C (ppb)	Ē	the concentration (V/V) of the trace gas in parts per billion (ppb)
P (torr)	=	the equilibrium vapour pressure of the chemical at the measured temperature
Qs	=	the injection rate of the vapour in L/sec from the syringe drive
QT	ī	the sampling flow rate (1.4 L/sec) of the TAGA® system
109	=	is a constant to convert measurements to ppb
760	Ē	is the atmospheric pressure

The calibration of low volatility chemicals was done by the flash desorption of known concentrations deposited on the direct insertion probe.

Using this procedure, the concentration of the trace in the air stream is determined from the following equation:

C (ppb)
$$\equiv \frac{M_C}{T_D \times Q_T} \times \frac{22.45}{MW} \times \frac{T}{273} \times 10^9$$

Where -

C (ppb) \equiv the concentration (V/V) of the trace chemical in the ambient air carrier gas

 M_C \equiv the amount of chemical deposited on the tip of the probe (in micrograms).

 T_D \equiv the desorption time determined from the peak width at half height

 Q_T \equiv The TAGA® flow rate in L/sec

 T_C \equiv the air stream temperaure in K

MW \equiv the molecular weight of the trace chemical

A comparison between the vapour injection and flash desorption methods for the chemicals shows an agreement within + 20%.

4.2 RESULTS

Calibration plots are included for:

Compound

The lower detection limits (LDL) for each chemical can be calculated from the calibration constant (Cal. Const.) as follows:

LDL =
$$3 \nabla/Cal$$
. Const.

Where ∇ is the standard deviation of the background signal at the appropriate mass-to-charge. Since the standard deviation of the background is dependent on the ambient air quality, the practical detection limits for each chemical must be measured experimentally for the chemical in its matrix. However, an inherent detection limit (ILDL) can be defined for pure chemicals on the basis of the instrumental electron noise. The standard deviation ∇ of the electronic noise is 10 cps and hence the ILDL = 30/Cal. Const.

The ILDL for the priority chemicals list names between 0.16 parts-per-trillion (ppt) for benzidine and 2.8 parts-per-billion (ppb) for acrolein.

CALIBRATION OF BENZIDINE

FOR DATA SET 1

SLOPE = 0.1781E+06 INTERCEPT = -0.6935E+05 CORR.COE. = 0.984940

8-HYDROXYQUINOLINE BY FLASH DESORB NET IONS/SEC VS. CONC.

SLOPE = 0.2027E+06 INTERCEPT = -0.3602E+05 CORR.COE. = 0.974185

CALIB. OF NAPHTHALAMINE

FOR DATA SET 1
SLOPE = 0.2183E+06
INTERCEPT = 8979.
CORR.COE. = 0.960430

2,4-XYLENOL NET ION COUNTS (COUNTS/SEC) VS. CONCENTRATION

FOR DATA SET 1
SLOPE = 527.3
INTERCEPT = 969.5
CORR.COE. = 0.999366

PHENOL NET ION COUNT (CPS) VS CONCENTRATION (PPB)

FOR DATA SET 1
SLOPE = 6030.
INTERCEPT = -3755.
CORR.COE. = 0.998828

N-BUTYL ACRYLATE NET ION COUNT VS CONCENTRATION

SLOPE = 372.4 INTERCEPT = 4512. CORR.COE. = 0.998475 MW=57

FOR DATA SET 2

SLOPE = 288.3 INTERCEPT = 193.9 MW = 129

CORR.COE. = 0.999987

		•
		•

ACRYLIC ACID NET ION COUNT (KILO IONS/SEC) VS CONC. (PPM)

FOR DATA SET 1 3
SLOPE = 676.2 X 10
INTERCEPT = 101.0 K 1CNs
CORR.COE. = 0.989694

ACROLEIN (2-PROPENAL) NET ION COUNTS VS CONCENTRATION

SLOPE = 0.1041E+05 INTERCEPT = -178.5 CORR.COE. = 0.999922

ANILINE NET ION COUNTS (IONS/SEC) VS CONC. (PPB)

FOR DATA SET 1 SLOPE = 0.1357E+05 INTERCEPT = -1343. CORR.COE. = 0.998731

CALIBRATION CURVE FOR PICOLINE

FOR DATA SET 1
SLOPE = 0.1666E+08
INTERCEPT = -0.1603E+06
CORR.COE. = 0.995758

P-CRESOL NET ION COUNT VS CONCENTRATION (PPB)

SLOPE = 0.1031E+05 INTERCEPT = 1193. CORR.COE. = 0.997151

DIPHENYL AMINE STRONG SOLUTION

FOR DATA SET 1 SLOPE = 0.1617E+06 INTERCEPT = -2234. CORR.COE. = 0.962187

MALEIC ANHYDRIDE FLASH DESORB NET JONS/SEC VS. CONCENTRATION

FOR DATA SET 1
SLOPE = 2.254
INTERCEPT = 52.17 x 10
CORR.COE. = 0.958652 m/z = 99

FOR DATA SET 2

SLOPE = 3.609 INTERCEPT = -5.456 x 10 CORR.COE. = 0.924885 m/z = 117

MALEIC HYDRAZIDE CALIBRATION USING FLASH DESORB

FOR DATA SET 1 SLOPE = 1270. INTERCEPT = -9791. CORR.COE. = 0.922429

QUINONE CALIBRATION CURVE.

FOR DATA SET 1

SLOPE = 0.2557E+06 INTERCEPT = 0.0000 CORR.COE. = 0.998527

	4
	4

FOR DATA SET 1
SLOPE = 4336.
INTERCEPT = -28.68
CORR.COE. = 0.966333

STYRENE: NET ION COUNTS (COUNTS/SEC) VS. CONC. (PPB)

FOR DATA SET 1 SLOPE = 15.42 INTERCEPT = 1595. CORR.COE. = 0.942765

					4

ETHYL CARBAMATE NET ION COUNTS VS CONCENTRATION

FOR DATA SET 1 SLOPE = 5486. INTERCEPT = -7189. CORR.COE. = 0.996623

FOR DATA SET 2

SLOPE = 9170. INTERCEPT = -0.1098E+05 CORR.COE. = 0.997155

			•
			•

CYCLOHEXYLAMINE CALIBRATION USING SYRINGE DRIVE

FOR DATA SET 1
SLOPE = 2261.
INTERCEPT = 6964.
CORR.COE. = 0.935290

CALIBRATION OF CARBOFURAN USING GARAGE AIR.

FOR DATA SET 1
SLOPE = 8595.
INTERCEPT = -2345.
CORR.COE. = 0.993454

CALIBRATION OF BUFENCARB USING GARAGE AIR.

FOR DATA SET 1

SLOPE = 0.2320E+05 INTERCEPT = -0.1294E+05 CORR.COE. = 0.972681

FOR DATA SET 2

SLOPE = 6799. INTERCEPT = -2905. CORR.COE. = 0.985070

CALIERATION OF CARBARYL USING GARAGE AIR.

FOR DATA SET 1

SLOPE = 7448.ICPS/PPB INTERCEPT = 128.4 CORR.COE. = 0.896595

CALIB.OF NITROSODIPHENYLAMINE

FOR DATA SET 1

SLOPE = 0.1664E+06 INTERCEPT = -0.3187E+05 CORR.COE. = 0.995460

TRI-N-BUTYLAMINE CALIBRATION USING SYRINGE

FOR DATA SET 1 M/Z=130

SLOPE = 1036. INTERCEPT = 699.2 CORR.COE. = 0.999480

FOR DATA SET 2 M/Z=186

SLOPE = 8108. INTERCEPT = 5577. CORR.COE. = 0.999491

