

FIRST SEMESTER 2024-2025 COURSE HANDOUT (PART II)

Date: 25/07/2024

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No.: CS F372

Course Title: Operating Systems
Instructor-In-Charge: Dipanjan Chakraborty

Co-instructors: G. Geethakumari, Sk Aziz Ali

Scope of the Course:

An operating system (OS) is a set of software that manages the computer hardware resources and provides common services for all computer programs that are executed on it. Alternatively stated, an OS acts as a manager of resources. OS provides an established, convenient, and efficient interface between user programs and the bare hardware of the computer on which it runs. It provides relatively uniform interfaces to access the extremely wide variety of devices that a computer interacts with, ranging from input/output devices such as printers and digital cameras, to multiple processors that are available on a single board. OS is responsible for sharing resources (e.g., disks, and processors), providing common services needed by many different programs (e.g., access to the printer), and protecting individual programs from interfering with one another. There is a huge range and variety of computer systems for which operating systems are being designed: from embedded devices like on-board computers for the space shuttle or a luxury sedan and cellphones to PCs, workstations, and mainframes, to supercomputers. The intent of this course is to provide a thorough discussion of the fundamentals of operating system concepts and to relate these to contemporary design issues and current directions in the development of operating systems.

Objectives of the Course:

- To learn about how process management is carried by the OS. This will include process creation, thread creation, CPU scheduling, process synchronization and deadlocks.
- To learn about memory management carried out by OS. This will include the concepts of paging, segmentation, swapping, and virtual memory.
- To learn how permanent storage like files and disks are managed by OS. This will include topics related to access methods, mounting, disk scheduling, and disk management.
- To gain hands-on experience on the above-mentioned topics through the Linux operating system.

Text Book:

T1. Silberschatz, Galvin, and Gagne, "Operating System Concepts", 10th Edition, Global Edition, Wiley India, 2023.

Reference Books:

R1. Russ Cox, Frans Kaashoek, Robert Morris, "xv6 a simple, Unix-like teaching operating system". Online Draft, 2021. https://pdos.csail.mit.edu/6.828/2021/xv6/book-riscv-rev2.pdf

R2. Smruti R. Sarangi, "Operating Systems: A Linux Kernel-Oriented Approach", 2024. https://www.cse.iitd.ac.in/~srsarangi/osbook/osbook-v0.56.pdf

- R3. W. Stallings, "Operating Systems: Internals and Design Principles", 6th edition, Pearson, 2009.
- R4. Tanenbaum, Woodhull, "Operating Systems Design & Implementation", 3rd edition, Pearson, 2006.
- R5. Dhamdhere, "Operating Systems: A Concept based Approach", 2nd edition, McGrawHill, 2009.
- R6. Robert Love, "Linux Kernel Development", 3rd edition, Pearson, 2010.

Course Plan:

Lecture	Learning Objectives	Topics to be covered	Chapter
No.			in the
			Text
1	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Book
1	To understand the various components of	1	T1: Ch. 1
	a computer and the role OS plays to	System Organization & Architecture, OS	
2.2	control them.	Operations, Computing environments.	T1: Ch. 2
2-3	To learn what functions and services an	OS Structures: OS Services, Interfaces,	11: Cn. 2
4-6	OS provides To learn how processes are created and	System calls, OS structure, OS Debugging	T1: Ch. 3
4-0	handled by the OS and how they	Processes: Process Control Block (PCB), Process states, Operations on processes, Inter	11: Cn. 3
	communicate with each other.	Process Communication (IPC), Scheduling	
	communicate with each other.	queues, Types of schedulers, Context switch.	
7-9	To understand how threads are created	Threads: Motivation, Benefits, Multicore	T1: Ch. 4
1-7	and managed by OS and differences	programming, Multithreading models,	11. Cli. 4
	between processes & threads	Thread library, Threading issues.	
10-13	To understand how OS manages the	Process Synchronization: Critical section	T1: Ch. 6,
10 13	concurrent resource access requests	problem, Peterson's solution, Hardware	7
		solutions, Semaphores, Classical	,
		synchronization problems, Monitors.	
14-17	To identify how two or more processes	Deadlocks: Resource Allocation Graphs,	T1: Ch. 8
	can wait indefinitely for accessing	Cycle and Knot, Solutions to deadlock:	
	resources and how to resolve the situation	Prevention, Avoidance, Detection, and	
		Recovery from deadlocks.	
18-21	To learn how multiple processes are	CPU Scheduling: Scheduling Criteria,	T1: Ch. 5
	executed by OS	Scheduling Algorithms, Thread scheduling,	
		Algorithm evaluation.	
22-25	To learn how main memory is divided	Main Memory Management: Address	T1: Ch. 9
	into different parts and allocated to the	binding, Logical vs physical address space,	
	processes so that degree of	Dynamic loading, Swapping, Contiguous	
	multiprogramming can be increased.	memory allocation, Paging: Hardware	
		support, Structure of Page table,	
26-29	To understand how to combine RAM and	Segmentation. Virtual Memory: Demand paging, Page	T1: Ch.
20-29	Hard disk to get a Virtual memory so that	replacement algorithms, Allocation of	11: Cn. 10
	larger programs can be run.	frames, Thrashing, Memory mapped files,	10
	larger programs can be run.	Allocating Kernel memory.	
30-32	To learn how secondary storage structures	Mass Storage:	T1: Ch.
30 32	are implemented and managed	HDD: Disk structure, disk scheduling, disk	11. Cm.
	T	management and RAID.	
		NVM (Non-Volatile Memory): differences	
		between HDD and NVM scheduling.	
33-34	To identify what abstraction OS provides	File System Interface: File system, Access	T1: Ch.
	to access contents from a hard disk	methods, Mounting, sharing, and disk	13
25 27	To understand have file eventure	structures.	T1. Ch
35-37	To understand how file system	File System Implementation: Structure and	T1: Ch.

	implementation helps to improve the	Implementation, Allocation methods and	14
	efficiency of storage space	Free space management.	
38-40	To understand how OS manages various	I/O Systems: I/O hardware, I/O Interface,	T1: Ch.
	I/O devices	Kernel I/O subsystem.	12

Evaluation:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Mid Semester	90 minutes	30%	TBA	Closed Book
Examination				
Programming	-	35%	TBA	Open Book
Assignments		(Assignment 1: 15%, to be graded before the mid-semester grading		
(2 no.s)		Assignment 2: 20%, to be released		
		after the mid-semester exams)		
Comprehensive	180 minutes	35%	TBA	Closed Book
Examination				

Note: A minimum of 40% of the evaluation will be completed at the time of mid-semester grading.

Chamber Consultation Hour:

To be announced in class.

Notices:

Announcements will be made in class and/or put up on CMS and/or Piazza

Make-up Policy:

- ➤ Institute rules will apply for make-up for mid-semester and comprehensive examinations. The decision of the I/C is final.
- No make up for missing take-home components

Academic Honesty and Integrity Policy:

Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE CS F372