Podstawowe statystyki próbkowe i funkcje w R wyliczające te statystyki

Oznaczenia podstawow	ych kwantyli i funkcje	w R wyliczające te kwantyle
dla rozkładu normalnego	dla rozkładu t-Studenta	dla rozkładu chi-kwadrat
u_{lpha}	$t_{lpha,n}$	$\chi^2_{lpha,n}$
$> \operatorname{qnorm}(\alpha)$	$> \operatorname{qt}(\alpha, n)$	$> qchisq(\alpha, n)$

 ${f UWAGA}$: Jeśli wyznaczone wartości statystyk testowych należą do odpowiednich zbiorów krytycznych, to H_0 odrzucamy.

Weryfikacje hipotez dotyczących wa	rtości średniej na pozi	iomie istotności α
Model I. $X \sim N(\mu, \sigma^2), \mu$ - nieznane, σ - zr	nane.	
Hipoteza zerowa $H_0: \mu = \mu_0$. Statystyka test	owa $U = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$.	
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna
$H_1: \mu \neq \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu < \mu_0$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = (-\infty; -u_{1-\alpha/2}) \cup \langle u_{1-\alpha/2}; +\infty \rangle$ Model II (t.test). $X \sim N(\mu, \sigma^2), \mu$ - niezna	$W = \langle u_{1-\alpha}; +\infty \rangle$	$W = (-\infty; -u_{1-\alpha})$
Model II (t.test). $X \sim N(\mu, \sigma^2), \mu$ - niezna	ne, σ -nieznane.	
Hipoteza zerowa $H_0: \mu = \mu_0$. Statystyka test	owa $T = \frac{\overline{X} - \mu_0}{s} \sqrt{n}$.	
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna
$H_1: \mu \neq \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu < \mu_0$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = \left(-\infty; -t_{1-\alpha/2, n-1}\right) \cup \left\langle t_{1-\alpha/2, n-1}; +\infty\right)$	$W = \langle t_{1-\alpha,n-1}; +\infty \rangle$	$W = (-\infty; -t_{1-\alpha, n-1})$
\mid Model III. X ma rozkład dowolny (próba o	luża: $n \ge 100$).	
Hipoteza zerowa $H_0: \mu = \mu_0$. Statystyka test	owa $U = \frac{X - \mu_0}{s} \sqrt{n}$.	
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna
$H_1: \mu \neq \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu < \mu_0$
Zbiór krytyczny	Zbiór krytyczny	
$W = (-\infty; -u_{1-\alpha/2}) \cup \langle u_{1-\alpha/2}; +\infty \rangle$ Model IV (prop.test). X ma rozkład dwu:	$W = \langle u_{1-\alpha}; +\infty \rangle$	$W = (-\infty; -u_{1-\alpha})$
p - nieznane, $n\hat{p} \geq 5$ i $n\hat{q} \geq 5,$ gdzie $\hat{p} = \frac{k}{n} =$		
Hipoteza zerowa $H_0: p = p_0$. Statystyka testo	owa $U = \frac{p - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}}.$	
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna
$H_1: p \neq p_0$	$H_1: p > p_0$	$H_1 : p < p_0$
Zbiór krytyczny	Zbiór krytyczny	
$W = \left(-\infty; -u_{1-\alpha/2}\right) \cup \left\langle u_{1-\alpha/2}; +\infty\right\rangle$	$W = \langle u_{1-\alpha}; +\infty \rangle$	$W = (-\infty; -u_{1-\alpha})$
Jeśli w modelu IV nie jest spełnione założe	nie, że $n\hat{p} \ge 5$ i $n\hat{q} \ge 5$, te	o zamiast prop.test
używamy testu dokładnego binom.test.		

Weryfikacja hipotezy dotyczącej		ziomie istotności α
Model. $X \sim N(\mu, \sigma^2), \mu$ - nieznane, σ -	nieznane.	
Hipoteza zerowa $H_0: \sigma^2 = \sigma_0^2$. Statystyk	ta testowa $\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$.	
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna
$H_1:\sigma^2 eq\sigma_0^2$	$H_1: \sigma^2 > \sigma_0^2$	$H_1:\sigma^2<\sigma_0^2$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = \left(0, \chi_{\alpha/2; n-1}^2\right) \cup \left\langle \chi_{1-\alpha/2; n-1}^2; +\infty \right)$	$W = \left\langle \chi^2_{1-\alpha;n-1}; +\infty \right)$	$W = \left(0; \chi^2_{\alpha; n-1}\right)$

Weryfik	acje hipotez dotyczących	Weryfikacje hipotez dotyczących dwóch średnich na poziomie istotności α
$\overline{\mathbf{UWAGA}}$: jeżeli wyznaczone wartości statystyk (U lub T) należą do odpowiednich zbiorów krytycznych, to H_0 odrzucamy.	$\sigma(T)$ należą do odpowiednich	zbiorów krytycznych, to H_0 odrzucamy.
Model I. $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, μ_1, μ_2 - micz Hipoteza zerowa $H_0: \mu_1 = \mu_2$. Statystyka testowa $U = -1$	eznane, σ_1, σ_2 - znane; dysp: $\frac{\overline{x} - \overline{y}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}.$	Model I. $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, μ_1, μ_2 - nieznane, σ_1, σ_2 - znane; dysponujemy niezależnymi próbami losowymi z tych populacji. Hipoteza zerowa $H_0: \mu_1 = \mu_2$. Statystyka testowa $U = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2^2}}}$.
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna
$H_1:\mu_1 eq\mu_2$	$H_1:\mu_1>\mu_2$	$H_1:\mu_1<\mu_2$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = (-\infty; -u_{1-\alpha/2}) \cup \langle u_{1-\alpha/2}; +\infty \rangle$	$W = (u_{1-lpha}; +\infty)$	$W=(-\infty;-u_{1-lpha})$
Model II. (unpaired t-test: t.test(,paired=FALSE,var.equal=TRU	SE, var.equal=TRUE))	
$X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, μ_1, μ_2 - nieznane, σ_1 ,	$ au_2$ - nieznane, ale takie, że σ	$X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, μ_1, μ_2 - nieznane, σ_1, σ_2 - nieznane, ale takie, że $\sigma_1 = \sigma_2$; dysponujemy niezależnymi próbami losowymi z tych populacji.
Hipoteza zerowa $H_0: \mu_1 = \mu_2$. Statystyka testowa $T=$	$x-y$ $\sqrt{(n_1-1)s_1^2+(n_2-1)s_2^2\left(\frac{1}{x_1}+\frac{1}{x_2}\right)}$	
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna
$H_1:\mu_1 eq\mu_2$	$H_1:\mu_1>\mu_2$	$H_1:\mu_1<\mu_2$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = \left(-\infty, -t_{1-\alpha/2, n_1+n_2-2}\right) \cup \left\langle t_{1-\alpha/2, n_1+n_2-2}; +\infty\right)$	$W = \langle t_{1-\alpha, n_1+n_2-2}; +\infty \rangle$	$W=(-\infty,-t_{1-\alpha,n_1+n_2-2})$
Jeśli w modelu II nie jest spełnione założenie, że $\sigma_1 = \sigma_2$, to zamiast t.test(= σ_2 , to zamiast t.test(,pai	paired=FALSE, var.equal=TRUE) nalezy uzyć t.test(,paired=FALSE, var.equal=FALSE)
Model III.(paired t -test: t.test(, paired=TRUE))	E))	
$(X,Y) \sim N_2(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2, ho), \;\; \mu_1,\mu_2$ - nieznane, σ_1,σ_2	lub ρ - nieznane. Dysponuj	$(X,Y) \sim N_2(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho), \ \mu_1,\mu_2$ - nieznane, σ_1,σ_2 lub ρ - nieznane. Dysponujemy parami obserwacji, gdzie pary są wzajemnie niezależne.
Hipoteza zerowa $H_0: \mu_1 = \mu_2$. Statystyka testowa $T = \frac{\overline{z}}{s_z} \sqrt{n}$, gdzie $z_i = x_i - y_i, i = 1, 2,, n$.	$\frac{\overline{z}}{s_x}\sqrt{n}$, gdzie $z_i=x_i-y_i,i$	$=1,2,\ldots,n.$
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna
$H_1:\mu_1 eq\mu_2$	$H_1:\mu_1>\mu_2$	$H_1:\mu_1<\mu_2$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = \left(-\infty; -t_{1-\alpha/2, n-1}\right) \cup \left\langle t_{1-\alpha/2, n-1}; +\infty\right)$	$W = \langle t_{1-\alpha, n-1}; +\infty \rangle$	$W=(-\infty;-t_{1-\alpha,n-1})$
Model IV. Cechy X, Y mają rozkłady dowolne $(n_1 \ge$	$100, n_2 \ge 100), \ \mu_1, \mu_2, \sigma_1,$	Model IV. Cechy X, Y mają rozkłady dowolne $(n_1 \ge 100, n_2 \ge 100)$, $\mu_1, \mu_2, \sigma_1, \sigma_2$ - nieznane; dysponujemy niezależnymi próbami losowymi z tych populacji.
Hipoteza zerowa $H_0: \mu_1 = \mu_2$. Statystyka testowa $U = \mu_2$	$\frac{x-y}{\sqrt{\frac{s_1^2}{n_1^4} + \frac{s_2^2}{n_2^2}}}$	
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna
$H_1:\mu_1 eq\mu_2$	$H_1:\mu_1>\mu_2$	$H_1:\mu_1<\mu_2$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = (-\infty; -u_{1-\alpha/2}) \cup \langle u_{1-\alpha/2}; +\infty)$	$W = \langle u_{1-\alpha}; +\infty \rangle$	$W=(-\infty;-u_{1-lpha})$
Model V (prop. test). Cechy X, Y mają rozkłady dwupunktowe, $P(X=1$	wupunktowe, $P(X=1)=p_1$	$= 1 - P(X = 0), P(Y = 1) = p_2 = 1 - P(Y = 0), p_1, p_2$ - nieznane, $n_1\hat{p}_1 \ge 5$
$ i n_1(1-\hat{p}_1) \ge 5 i n_2 \hat{p}_2 \ge 5 i n_2(1-\hat{p}_2) \ge 5.$		
Hipoteza zerowa $H_0: p_1 = p_2$. Statystyka testowa $U = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{ \vec{p} }}$, gdzie $\hat{p}_1 = \frac{k_1}{n_1}$, $\hat{p}_2 = \frac{k_2}{n_2}$, $\bar{p} = \frac{k_1 + k_2}{n_1 + n_2}$, $\bar{q} = 1 - \bar{p}$, $n = \frac{n_1 n_2}{n_1 + n_2}$.	$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{pq}}$, gdzie $\hat{p}_1 = \frac{k_1}{n_1}$, $\hat{p}_2 =$	$n_2^{k_2}$, $\bar{p} = \frac{k_1 + k_2}{n_1 + n_2}$, $\bar{q} = 1 - \bar{p}$, $n = \frac{n_1 n_2}{n_1 + n_2}$.
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna
$H_1: p_1 \neq p_2$	$H_1:p_1>p_2$	$H_1:p_1 < p_2$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = (-\infty; -u_{1-\alpha/2}) \cup \langle u_{1-\alpha/2}; +\infty)$	$W = \langle u_{1-\alpha}; +\infty \rangle$	$W = (-\infty; -u_{1-\alpha})$
Jeśli w modelu V nie jest spełnione założenie, że n_1, n_2	12 są wystarczająco duże, to	Jeśli w modelu V nie jest spełnione założenie, że n_1, n_2 są wystarczająco duże, to zamiast prop.test należy zastosować dokładny test Fishera fisher.test oparty na
rozkładzie hipergeometrycznym.		