Page 106

- **1.1** Consider the order of rational numbers (Q, <), consider the set $Q[a] \cup \{a\}$ for some $a \in Q$.
- 1.2 Notice that ω is the initial segment of $\omega + 1$, since $\omega = (\omega + 1)[\omega]$ (compare to the notation W[a]), then it follows from Corollary 1.5 (a) that they can not be isomorphic.
- **1.3** (We assume the question is about the well-ordering of order type ω , since otherwise, the answer is \aleph_1).

Intuitively, each well ordering on N can be seen as a permutation of elements of N, we are just changing the position of objects in the well-ordering. Let $B \subseteq N^N$ be the set of all bijections and X be the set of all well-ordering on N. We prove that they have the same cardinality: define $F: X \to B$ as follows: F((N,R)) = f, such that f is the isomorphism between (N,<) and (N,R), clearly each order has a unique isomorphism function, thus the function is one-to-one. Conversely, define $G: B \to X$ for any $f \in B$ such that G(f) = (N,R) in which, R is defined as follows: for each $x,y \in N$, x < y iff f(x)Rf(y), it is easy to see that R is a well-ordering on N and for each f such a well-ordering is unique, thus G is one-to-one. Having F and G, Cantor-Bernstein theorem implies |X| = |B|. But Theorem 2.5(c) (page 100) implies $|B| = 2^{\aleph_0}$.

- 1.4 let k be the least element of A, define a recursive function f such that $f_0 = k$ and for each n, $f_{n+1} = t$ such that t is the least element of $A \{f_0, \ldots, f_n\}$. To show f is one-to-one consider $f_n = f_m$, it means that f_n is the least element of $A \{f_0, \ldots, f_{m-1}\}$ and f_m is the least element of $A \{f_0, \ldots, f_{m-1}\}$, assume that n < m (or vice versa) then $n \le m 1$, thus $f_n \in \{f_0, \ldots, f_{m-1}\}$ and $f_n \notin A \{f_0, \ldots, f_{m-1}\}$ but it contaradicts that f_m is in this set.
- **1.5** Let $(W_1 \cup W_2, \prec)$ be the sum of the two ordering, f and g be the two isomorphic functions from N to W_1 and W_2 , and define $F: W_1 \cup W_2 \to (\omega + \omega)$, if $a \in W_1$ let F(a) = f(a), otherwise $F(a) = \omega + g(a)$. F is one-to-one and onto. To see it preserves order, Assume F(a) = F(b) for some $a, b \in dom F$, if a, b both are W_1 or both are in W_2 we are done by the

isomorphism of either f or g. Suppose that $a \in W_1$ and $b \in W_2$ (or vice versa). Then $F(a) = f(a) \in \omega$, and $F(b) = \omega + g(b)$, thus $f(a) \in \omega + g(b)$ which means $F(a) \in F(b)$.

- **1.6** Define $f: N \times N \to \omega \cdot \omega$ such that $f(n,m) = \omega \cdot n + m$, since every $x \in \omega \cdot \omega$ has the form $\omega \cdot n + m$ (see the definition of it in page 104) the function is onto. To see it preserves order, assume that (n,m) < (j,k) then either n < m: from it follows that $\omega \cdot n \in \omega \cdot m$, thus $\omega \cdot n + m \in \omega \cdot j + k$, thus f(m,n) < f(j,k). or m = n and j < k, which means $\omega \cdot n = \omega \cdot j$, but since m < k we get $\omega \cdot n + m < \omega \cdot j + k$ (k-th successor of anything contains m-th (where m < k) successor of it), thus f(m,n) < f(j,k).
- **1.7** Because x < a for any $x \in W' = W \cup \{a\}$ such that $x \in W$, we get W = W'[a] which means W is an initial segment of W, thus has a smaller order type.
- **1.8** One order type is ω , while the other one is $\omega + \omega$, so they are nonisomorphic.