Math 244 Lecture Notes

Chapter 24: Chi-Squared Goodness of Fit

Overview: We return today to analyzing counts and proportions, much like the material from Exam I. Today, however, we will find a way to analyze multiple counts all at once.

Mr. Wherry is given a "fair" six sided die. He's not convinced in its fairness however, and after rolling it several times he gets the following outcomes:

Outcome of Die	1	2	3	4	5	6
# of trials	9	13	9	12	8	15

- **Example 1.** (a) If the die is actually fair, what proportion of the time should Mr. Wherry get an outcome of a "1"? How many counts should be expect for the number of "1"s? Do this for all values.
 - (b) In terms of counts, how far off is the observed number of trials (table) from the expected number of trials (last part)?
 - (c) What is the relative/percentage error for each outcome? For example, maybe the observed outcome 2 is 50% more than what we were expecting [not actual numbers].

(d) Should we use a test or an interval to determine if the die is fair?

NOTE: Our total for the relative/percentage errors for each outcome is ____.

Page 2 of 6

What happened?!

Let's create a new model:

$$\chi^2 =$$

Degrees of freedom are based off the number of groups. For example, our die problem has df=______. In general, df=.

The assumptions are...

- (a) Countable data.
- (b)
- (c)
- (d)

To help you visualize it, χ^2 looks like the graph below. The **mean=df** and the mound is at df-2.

Example 2. Let's look at the six-sided die hypothesis test in detail. Recall that

Outcome of Die	1	2	3	4	5	6
OBSERVED # of trials	9	13	9	12	8	15
EXPECTED # of trials						

STEP I:

STEP II:

STEP III:

STEP IV:

Instructor: J.Wherry Page 3 of 6

Which way do we shade?

Assume that the die is perfectly fair...

- (a) How should the observed and expected compare?
- (b) Should we have a large value for χ^2 or a small value?
- (c) Do we want to reject or fail to reject the null-hypothesis?
- (d) Do we want a large or small P-value?
- (e) SHADE IN THE CURVE:

Assume that the die is extremely unfair...

- (a) How should the observed and expected compare?
- (b) Should we have a large value for χ^2 or a small value?
- (c) Do we want to reject or fail to reject the null-hypothesis?
- (d) Do we want a large or small P-value?
- (e) SHADE IN THE CURVE:

OBSERVATION:

TI-83 and TI-84: $[2nd] \rightarrow [Vars] \rightarrow [chi-square cdf].$

TI-89: [Apps] \rightarrow [Stat/List] \rightarrow [F5:Dist] \rightarrow [chi-square cdf].

The general setup is the same for all calculators. We need to type in "chisquarecdf(low χ^2 -score, high χ^2 -score, df)".

Our P-value=____

Instructor: J.Wherry Page 4 of 6

Example 3. We're going to analyze a bag of M&M's. Let's test the claim that the color distribution is uniform. The colors are blue, brown, green, orange, red, and yellow.

	Blue	Brown	Green	Orange	Red	Yellow
OBSERVED # of trials						
EXPECTED # of trials						

α		-
Q'I	'F' D	١.
L) 1	171	Ι.

STEP II:

STEP III:

STEP IV:

We call Obs - Exp the residual.

We call $\frac{Obs-Exp}{\sqrt{Exp}}$ the standardized residual. It looks like the square-root of a single entry for our χ^2 and it works like a z-score!

Example 4. Calculate all the standardized residuals.

	Blue	Brown	Green	Orange	Red	Yellow
St. Res.						

Instructor: J.Wherry Page 5 of 6

Critical Value: Just like Z^* and t^* , we can find $(\chi^2)^*$ using a table. This can be thought of as the cutoff for what we consider a large or small χ^2 -score.

Example 5. Let's reanalyze the bag of M&M's. This time, we will test the claim for the company itself. They claim that the percentages are as follows: blue= 24%, brown= 13%, green= 16%, orange= 20%, red= 13%, and yellow= 14%.

	Blue	Brown	Green	Orange	Red	Yellow
OBSERVED # of trials						
EXPECTED # of trials						

S^{-}	$\Gamma E P$) I.

STEP II:

STEP III:

STEP IV:

Example 6. Recalculate all the standardized residuals.

	Blue	Brown	Green	Orange	Red	Yellow
St. Res.						

Instructor: J.Wherry Page 6 of 6