Code used in BPPM model spreadsheet

This Mathematica notebook generates the code is used in the BPPM model spreadsheet.

BPPM model equations

The BPPM modeling equations are symbolically solved for the variables of interest. Here are the design equations to be solved.

```
substitutions = {
   dehc -> hc lambda D0^2,
   M \rightarrow 2^m
   BPP \rightarrow (1 - Exp[-KsR]) m / KsR
  };
BPPMmodel = {
   LambdaPeakS == PpT AeT AeS / dehc,
   KxS == effic Fx LambdaPeakS TF,
   KsS == effic LambdaPeakS Ts,
   KnS == effic We LambdaNS TF,
   KiS == effic We Fc AeS LambdaIS TF,
   KdS == LambdaDS TF,
   KsS == SBR (KxS + KnS + KiS + KdS),
   SXR == KsS / KxS,
   SNR == KsS / KnS,
   SIR == KsS / KiS,
   SDR == KsS / KdS,
    (* maximum feasible value of SBR corresponding to NS=1 *)
   SBRmax = KsR / (KxS + KnS + KiS + KdS),
   PpT Ts == PaT TI,
   TF == M Ts,
    (* OmegaA assumed to have units of arcsec^2, asToSr converts to steradians *)
   AeS (asToSr OmegaA) == lambda^2,
   RTI == KsR BPP,
   \delta = TF/TI,
   1 - PO = (1 - PD) (1 - PW),
   Ractual == (1 - P0) R,
   NS KsS == KsR
  };
outputs = {
   PaT, PpT, KsS, KxS, KnS, KiS, KdS, SXR, SNR, SIR, SDR,
   SBRmax,
   LambdaPeakS, TF, AeS, TI,
   \delta, PO, Ractual, NS
  };
(* substitute for BPP and M after Solve[],
because otherwise Solve[] has difficulty *)
solutions = Solve[BPPMmodel, outputs, Reals][[1]] /. substitutions // Simplify;
```

The following are the convenient formatted solutions for parameters and metrics of interest.

solutions // TableForm

```
Out[29]//TableForm=
                        PaT \rightarrow - \frac{2^m \, D0^2 \, \, e^{KsR} \, hc \, R \, SBR \, Ts \, \left(effic \, Fc \, lambda^2 \, LambdaIS \, We + asToSr \, OmegaA \, \left(LambdaDS + effic \, LambdaNS \, We\right) \, \right)}{}
                                                                                                                        AeT (-1+e^{KsR}) effic lambda m (-1+2^m Fx SBR)
                        \textbf{PpT} \rightarrow - \frac{2^{m}\,\text{D0}^{2}\,\text{hc}\,\text{SBR}\,\left(\text{effic}\,\text{Fc}\,\text{lambda}^{2}\,\text{LambdaIS}\,\text{We} + \text{asToSr}\,\text{OmegaA}\,\left(\text{LambdaDS} + \text{effic}\,\text{LambdaNS}\,\text{We}\right)\right)}{}
                                                                                                                            AeT effic lambda (-1+2<sup>m</sup> Fx SBR)
                        \text{KsS} \rightarrow - \ \frac{2^{\text{m}} \ \text{SBR} \ \text{Ts} \ \left( \text{effic Fc lambda}^2 \ \text{LambdaIS We+asToSr OmegaA} \ \left( \text{LambdaDS+effic LambdaNS We} \right) \right)}{2^{\text{m}} \ \text{SBR} \ \text{Ts} \ \left( \text{effic Fc lambda}^2 \ \text{LambdaIS We+asToSr OmegaA} \ \left( \text{LambdaDS+effic LambdaNS We} \right) \right)}
                                                                                                                           asToSr OmegaA (-1+2<sup>m</sup> Fx SBR)
                        KxS \rightarrow - \frac{4^m \; Fx \; SBR \; Ts \; \left( effic \; Fc \; lambda^2 \; LambdaIS \; We + as ToSr \; OmegaA \; \left( LambdaDS + effic \; LambdaNS \; We \right) \; \right)}{4^m \; Fx \; SBR \; Ts \; \left( effic \; Fc \; lambda^2 \; LambdaIS \; We + as ToSr \; OmegaA \; \left( LambdaDS + effic \; LambdaNS \; We \right) \; \right)}
                                                                                                                               asToSr OmegaA (-1+2<sup>m</sup> Fx SBR)
                        KnS \rightarrow 2^m effic LambdaNS Ts We
                        \text{KiS} \, \rightarrow \, \tfrac{2^{\text{m}} \, \text{effic Fc lambda}^2 \, \text{LambdaIS Ts We}}{}
                                                                     asToSr OmegaA
                        KdS \rightarrow 2^m LambdaDS Ts
                        \text{SXR} \, \to \, \tfrac{2^{-m}}{}
                         \mathsf{SNR} \to \frac{\mathsf{asToSr}\,\mathsf{LambdaDS}\,\mathsf{OmegaA}\,\mathsf{SBR+effic}\,\mathsf{Fc}\,\mathsf{lambda}^2\,\mathsf{LambdaIS}\,\mathsf{SBR}\,\mathsf{We+asToSr}\,\mathsf{effic}\,\mathsf{LambdaNS}\,\mathsf{OmegaA}\,\mathsf{SBR}\,\mathsf{We}}{\mathsf{Vertical}}
                                                                            asToSr effic LambdaNS OmegaA We-2^{\mathrm{m}} asToSr effic Fx LambdaNS OmegaA SBR We
                         \mathsf{SIR} \to \frac{\mathsf{asToSr}\,\mathsf{LambdaDS}\,\mathsf{OmegaA}\,\mathsf{SBR+effic}\,\mathsf{Fc}\,\mathsf{lambda}^2\,\mathsf{LambdaIS}\,\mathsf{SBR}\,\mathsf{We+asToSr}\,\mathsf{effic}\,\mathsf{LambdaNS}\,\mathsf{OmegaA}\,\underline{\mathsf{SBR}}\,\mathsf{We}}{\mathsf{NegaA}}
                                                                                     effic Fc lambda<sup>2</sup> LambdaIS We-2<sup>m</sup> effic Fc Fx lambda<sup>2</sup> LambdaIS SBR We
                        \mathsf{SDR} \to \frac{\mathsf{asToSr}\,\,\mathsf{LambdaDS}\,\,\mathsf{OmegaA}\,\,\mathsf{SBR+effic}\,\,\mathsf{Fc}\,\,\mathsf{lambda}^2\,\,\mathsf{LambdaIS}\,\,\mathsf{SBR}\,\,\mathsf{We+asToSr}\,\,\mathsf{effic}\,\,\mathsf{LambdaNS}\,\,\mathsf{OmegaA}\,\,\mathsf{SBR}\,\mathsf{We}}{\mathsf{Vertical}}
                                                                                                  asToSr LambdaDS OmegaA-2<sup>m</sup> asToSr Fx LambdaDS OmegaA SBR
                                                                                                                       asToSr KsR OmegaA (2-m-Fx SBR)
                        \mathsf{SBRmax} \to \frac{\mathsf{BSRmax}}{\mathsf{Ts} \; \big( \mathsf{effic} \, \mathsf{Fc} \, \mathsf{lambda}^2 \, \mathsf{LambdaIS} \, \mathsf{We+asToSr} \, \mathsf{OmegaA} \, \, (\mathsf{LambdaDS+effic} \, \mathsf{LambdaNS} \, \mathsf{We}) \, \big)}
                        \textbf{LambdaPeakS} \rightarrow - \  \, \frac{2^{\text{m SBR}} \left( \text{effic Fc lambda}^2 \, \text{LambdaIS We+asToSr OmegaA} \, \left( \text{LambdaDS+effic LambdaNS We} \right) \right)}{2^{\text{m SBR}} \left( \text{lambdaPeakS}} \right)} = \frac{2^{\text{m SBR}} \left( \text{effic Fc lambda}^2 \, \text{LambdaIS We+asToSr OmegaA} \, \left( \text{LambdaDS+effic LambdaNS We} \right) \right)}{2^{\text{m SBR}} \left( \text{lambdaPeakS}} \right)} = \frac{2^{\text{m SBR}} \left( \text{effic Fc lambda}^2 \, \text{LambdaIS We+asToSr OmegaA} \, \left( \text{LambdaDS+effic LambdaNS We} \right) \right)}{2^{\text{m SBR}} \left( \text{lambdaPeakS}} \right)} = \frac{2^{\text{m SBR}} \left( \text{lambdaPeakS}} {2^{\text{m SBR}}} \right)}{2^{\text{m SBR}} \left( \text{lambdaPeakS}} = \frac{2^{\text{m SBR}} \left( \text{lambdaPeakS}} {2^{\text{m SBR}}} \right)}{2^{\text{m SBR}}} \right)}
                                                                                                                                                asToSr effic OmegaA (-1+2m Fx SBR)
                        TF \to 2^m \; Ts
                       AeS \rightarrow \frac{lambda^2}{r}
                                              asToSr OmegaA
                        \mathsf{TI} \, 	o \, rac{\mathsf{m} - \mathsf{e}^{-\mathsf{KsR}} \, \mathsf{m}}{\mathsf{m}}
                        \delta \rightarrow \frac{2^{\text{m}} e^{\text{KsR}} R Ts}{\sqrt{1 + \frac{1}{2} + \frac{1}{2}}}
                                      (-1+eKsR) m
                         PO \, \rightarrow \, PD \, + \, PW \, - \, PD \, \, PW
                        Ractual \rightarrow (-1 + PD) (-1 + PW) R
                                                                                                           asToSr KsR OmegaA (2^{-m}-Fx SBR)
                        \mathsf{NS} \to \frac{\mathsf{SISCE}(\mathsf{NSSE})}{\mathsf{SBRTs}\left(\mathsf{efficFclambda}^2 \ \mathsf{LambdaISWe+asToSrOmegaA} \ (\mathsf{LambdaDS+efficLambdaNSWe}) \right)}
```

The following unformatted versions of the design equations are useful for pasting into spreadsheets or programs.

solutions // InputForm // TableForm

```
Out[30]//TableForm=
              {PaT →
                   -((2^m * D0^2 * E^KsR * hc * R * SBR * Ts * (effic * Fc * lambda^2 * LambdaIS * We + asToSr * LambdaIS * LambdaIS * We + asToSr * LambdaIS 
                                       OmegaA * (LambdaDS + effic * LambdaNS * We)))/
                           (AeT * (-1 + E^KsR) * effic * lambda * m * (-1 + 2^m * Fx * SBR)))
                PpT \rightarrow - (2^m * D0^2 * hc * SBR * (effic * Fc * lambda^2 * LambdaIS * We +
                                    asToSr * OmegaA * (LambdaDS + effic * LambdaNS * We)))/
                           (AeT * effic * lambda * (-1 + 2^m * Fx * SBR))),
                KsS \rightarrow - ((2^m * SBR * Ts * (effic * Fc * lambda^2 * LambdaIS * We +
                                     asToSr * OmegaA * (LambdaDS + effic * LambdaNS * We)))/
                           (asToSr * OmegaA * (-1 + 2^m * Fx * SBR))), KxS ->
                   - ( (4^m * Fx * SBR * Ts * (effic * Fc * lambda^2 * LambdaIS * We +
                                     asToSr * OmegaA * (LambdaDS + effic * LambdaNS * We))) /
                           (asToSr * OmegaA * (-1 + 2^m * Fx * SBR))),
                KnS -> 2^m * effic * LambdaNS * Ts * We,
                   (2^m * effic * Fc * lambda^2 * LambdaIS * Ts * We) /
                      (asToSr * OmegaA),
                KdS -> 2 ^ m * LambdaDS * Ts,
                SXR ->
                  1/(2^{m} * Fx),
                SNR -> (asToSr * LambdaDS * OmegaA * SBR + effic * Fc * lambda^2 * LambdaIS * SBR * We +
                           asToSr * effic * LambdaNS * OmegaA * SBR * We) /
                      (asToSr * effic * LambdaNS * OmegaA * We -
                          2 ^ m * asToSr * effic * Fx * LambdaNS * OmegaA * SBR * We),
                SIR -> (asToSr * LambdaDS * OmegaA * SBR + effic * Fc * lambda^2 * LambdaIS * SBR * We +
                           asToSr * effic * LambdaNS * OmegaA * SBR * We) /
                      (effic * Fc * lambda ^ 2 * Lambda IS * We -
                          2^m * effic * Fc * Fx * lambda^2 * LambdaIS * SBR * We),
                SDR -> (asToSr * LambdaDS * OmegaA * SBR + effic * Fc * lambda^2 * LambdaIS * SBR * We +
                          asToSr * effic * LambdaNS * OmegaA * SBR * We) /
                      (asToSr * LambdaDS * OmegaA - 2 ^ m * asToSr * Fx * LambdaDS * OmegaA * SBR),
                SBRmax \rightarrow (asToSr * KsR * OmegaA * (2 ^ (\rightarrow m) \rightarrow Fx * SBR)) /
                      (Ts * (effic * Fc * lambda ^ 2 * Lambda IS * We +
                                asToSr * OmegaA * (LambdaDS + effic * LambdaNS * We))),
                LambdaPeakS -> - ((2 ^ m * SBR * (effic * Fc * lambda ^ 2 * LambdaIS * We +
                                     asToSr * OmegaA * (LambdaDS + effic * LambdaNS * We))) /
                           (asToSr * effic * OmegaA * (-1 + 2 ^m * Fx * SBR))),
                TF -> 2 ^ m * Ts, AeS -> lambda ^ 2 / (asToSr * OmegaA),
```

```
TI ->
 (m - m / E ^ KsR) / R,
\delta \rightarrow (2^m \star E^K SR \star R \star TS) / ((-1 + E^K SR) \star m),
PO \rightarrow PD + PW - PD * PW,
Ractual ->
 (-1 + PD) * (-1 + PW) * R,
NS \rightarrow (asToSr * KsR * OmegaA * (2 ^ (-m) - Fx * SBR)) /
   (SBR * Ts * (effic * Fc * lambda ^ 2 * Lambda IS * We +
        asToSr * OmegaA * (LambdaDS + effic * LambdaNS * We)))}
```

Numerical examples

These numerical examples are useful for checking the spreadsheet results. Here are the nominal choices for parameters.

```
(∗ these can always be overridden by prior substitution ∗)
paramNominal = {
    (* parameters governing reliabilty of data recovery *)
   m \rightarrow 12,
   KsR \rightarrow 0.2,
   (* physical parameters *)
   D0 -> Quantity[4.24, "ly"],
   hc -> Quantity["planck's constant"] x Quantity["c"],
   SBR \rightarrow 4.
   AeT -> Quantity[100., "cm^2"],
   effic \rightarrow 1.,
    (* design parrameters *)
   R -> Quantity[1., "per sec"],
   Fx \rightarrow 1. \times 10^{\wedge} - 7,
   Fc \rightarrow 1. \times 10 ^ - 2,
   OmegaA \rightarrow 10., (* implicit units of arcsec^2 *)
   Ts → Quantity[0.1, "microsec"],
   We \rightarrow Quantity[10., "MHz"], (* minimum value is 1/Ts *)
   rhoM \rightarrow 1.,
    (* this value is chosen to force SDR=SNR approximately *)
   LambdaDS → 32. / Quantity["year"],
   PW \rightarrow 0.1,
   PD \rightarrow 0.52,
   (* conversation of arcsec^2 to steradians *)
   asToSr -> (Quantity["arcsec"] / Quantity["radians"]) ^2 // N
  };
```

```
(* representation of the background numerical parameters *)
        backgroundNominal = <|</pre>
              "lambda" \rightarrow <|"400" \rightarrow Quantity[400., "nm"], "1000" \rightarrow Quantity[1., "micron"]|>,
             "interference" -> <|"400" → 8. × 10^-10 / Quantity["m^2"],
                 "1000" -> 2. × 10^-7 / Quantity["m^2"]|>,
             "zodiacal" \rightarrow < | "400" \rightarrow 2.0 \times 10 ^ - 16, "1000" \rightarrow 1.0 \times 10 ^ - 14 | >,
             "starField" -> <|"400" \rightarrow 2.0 \times 10 \(^-16\), "1000" \rightarrow 1.0 \times 10 \(^-14\)|>,
             "daylight" \rightarrow < | "400" -> 4.1 × 10^-8, "1000" -> 5. × 10^-7|>,
             "moonlight" -> <|"400" \rightarrow rhoM * 1. × 10^-13, "1000" \rightarrow rhoM * 1.3 × 10^-12|>
             |>;
        (* test *)
        backgroundNominal[[All, "400"]]
        backgroundNominal[[All, "1000"]]
Out[11]= \langle lambda \rightarrow 400. nm , interference \rightarrow 8. \times 10<sup>-10</sup> per meter<sup>2</sup> , zodiacal \rightarrow 2. \times 10<sup>-16</sup> ,
          starField \rightarrow 2. \times 10^{-16}, daylight \rightarrow 4.1 \times 10^{-8}, moonlight \rightarrow 1. \times 10^{-13} rhoM \rangle
Out[12]= \langle | lambda \rightarrow 1. microns, interference \rightarrow 2. \times 10^{-7} per meter^2, zodiacal <math>\rightarrow 1. \times 10^{-14},
          starField \rightarrow 1. \times 10<sup>-14</sup>, daylight \rightarrow 5. \times 10<sup>-7</sup>, moonlight \rightarrow 1.3 \times 10<sup>-12</sup> rhoM \rangle
```

Now we define a few useful functions.

```
(*
      implement wavelength-dependent substitions
           model = association of parameters
           wavelength = "400" or "1000" (units of nanometers)
            dayNight = "daylight" or "moonlight"
              rhoM = fraction of moonlight irradiance
      *)
      wlVals[model_, wavelength_, dayNight_] := Module[
         {column, rho},
         column = model[[All, wavelength]];
         rho = If[dayNight == "daylight", 1., rhoM];
          lambda → column["lambda"],
           LambdaIS → column["interference"],
           LambdaNS → column["zodiacal"] + column["starField"] + column[dayNight]
         }
      ]
       (* test *)
       (* note you have to input backgroundNominal before running this *)
      wlVals[backgroundNominal, "400", "moonlight"]
      wlVals[backgroundNominal, "1000", "moonlight"]
Out[14]= {lambda \rightarrow 400. nm , Lambda IS \rightarrow 8. \times 10<sup>-10</sup> per meter<sup>2</sup> , Lambda NS \rightarrow 4. \times 10<sup>-16</sup> + 1. \times 10<sup>-13</sup> rhoM}
_{\text{Out[15]=}} \left\{ \text{lambda} \rightarrow \text{ 1. microns , LambdaIS} \rightarrow \text{ 2.} \times \text{10}^{-7} \text{ per meter}^2 \right.
        LambdaNS \rightarrow 2. \times 10<sup>-14</sup> + 1.3 \times 10<sup>-12</sup> rhoM\}
```

```
In[16]:= (* for a particular model,
    print the model equations for a set of specified values
     as well as the values for a set of changes and parameters
      (changes override parameters) *)
     (* vars is a list of {variable name, desired units} *)
    prEqns[model_, vars_] :=
     Table[Print[var[[1]], " = ", var[[1]] /. model], {var, vars}]
    prVals[model_, vars_, changes_, params_] := Module[
       {val, units},
      Table[
         val = var[[1]] /. model /. changes /. params;
         (* units of "" not accepted by UnitConvert,
         so substitute the generic "Metric" *)
         units = Which[var[[2]] == "", "Metric", True, var[[2]]];
         val = UnitConvert[val, units];
         Print[var[[1]], " = ", val],
         {var, vars}
        ];
     ]
```

Multi-probe coverage in moonlight @ 400 nm

```
paramTot = Join[paramNominal,
               wlVals[backgroundNominal, "400", "moonlight"] /. paramNominal];
ofInterest = {{SBRmax, ""}, {m, ""}, {TF, "ms"}, {AeS, "cm^2"}, {TI, "s"},
                 \{\delta, \text{""}\}, \{\text{Ractual}, \text{"s^-1"}\}, \{\text{PaT}, \text{"mW"}\}, \{\text{PaT AeT}, \text{"meters^2*Watts"}\},
                \{PpT, "kW"\}, \{PpT/PaT, ""\}, \{SXR, ""\}, \{SIR, ""\}, \{SNR, ""\}, \{SDR, ""\}, \{SNR, "", ""\}, \{SNR,
                {NS, ""}, {AeS NS, "km^2"}, {PaT AeT AeS NS, "meter^4*Watts"}};
prVals[solutions, ofInterest, {OmegaA → 10.}, paramTot];
SBRmax = 2.35138 \times 10^8
m = 12
TF = 0.4096 \, \text{ms}
AeS = 6.80723 \text{ cm}^2
TI = 2.17523 s
\delta = 0.000188302
Ractual = 0.432 per second
PaT = 29.3771 \text{ mW}
AeT PaT = 0.000293771 m^2 W
PpT = 639.02 \, kW
 \frac{\mathsf{PpT}}{\mathsf{PaT}} \ = \ 2.17523 \times 10^7
SXR = 2441.41
SIR = 152.527
SNR = 8.2732
SDR = 8.18585
NS = 5.87845 \times 10^7
AeS NS = 0.0400159 \text{ km}^2
AeS AeT NS PaT = 11.7555 \text{ m}^4\text{W}
```

Multi-probe coverage in moonlight @ 1000 nm

```
paramTot = Join[paramNominal,
               wlVals[backgroundNominal, "1000", "moonlight"] /. paramNominal];
ofInterest = {{SBRmax, ""}, {m, ""}, {TF, "ms"}, {AeS, "cm^2"}, {TI, "s"},
                 \{\delta, \text{""}\}, \{\text{Ractual}, \text{"s^-1"}\}, \{\text{PaT}, \text{"mW"}\}, \{\text{PaT AeT}, \text{"meters^2*Watts"}\},
                \{PpT, "kW"\}, \{PpT/PaT, ""\}, \{SXR, ""\}, \{SIR, ""\}, \{SNR, ""\}, \{SDR, ""\}, \{SNR, "", ""\}, \{SNR,
                {NS, ""}, {AeS NS, "km^2"}, {PaT AeT AeS NS, "meter^4*Watts"}};
prVals[solutions, ofInterest, {OmegaA → 10.}, paramTot];
SBRmax = 4.90893 \times 10^6
m = 12
TF = 0.4096 \, \text{ms}
AeS = 42.5452 \text{ cm}^2
TI = 2.17523 s
\delta = 0.000188302
Ractual = 0.432 per second
PaT = 562.867 \text{ mW}
AeT PaT = 0.00562867 \text{ m}^2\text{W}
PpT = 12243.7 \, kW
 \frac{\mathsf{PpT}}{\mathsf{PaT}} \ = \ 2.17523 \times 10^7
SXR = 2441.41
SIR = 4.67588
SNR = 30.1418
SDR = 392.103
NS = 1.22723 \times 10^6
AeS NS = 0.00522128 \text{ km}^2
AeS AeT NS PaT = 29.3888 \text{ m}^4\text{W}
```

Single-probe coverage in moonlight @ 400 nm

```
paramTot = Join[paramNominal,
               wlVals[backgroundNominal, "400", "moonlight"] /. paramNominal];
ofInterest = {{SBRmax, ""}, {m, ""}, {TF, "ms"}, {AeS, "cm^2"}, {TI, "s"},
                 \{\delta, \text{""}\}, \{\text{Ractual}, \text{"s^-1"}\}, \{\text{PaT}, \text{"mW"}\}, \{\text{PaT AeT}, \text{"meters^2*Watts"}\},
                \{PpT, "kW"\}, \{PpT/PaT, ""\}, \{SXR, ""\}, \{SIR, ""\}, \{SNR, ""\}, \{SDR, ""\}, \{SNR, "", ""\}, \{SNR,
                {NS, ""}, {AeS NS, "km^2"}, {PaT AeT AeS NS, "meter^4*Watts"}};
prVals[solutions, ofInterest, {OmegaA → 0.01}, paramTot];
SBRmax = 8.63157 \times 10^6
m = 12
TF = 0.4096 \, \text{ms}
AeS = 6807.23 \text{ cm}^2
TI = 2.17523 s
\delta = 0.000188302
Ractual = 0.432 per second
PaT = 0.800281 \text{ mW}
AeT PaT = 8.00281 \times 10^{-6} \text{ m}^2\text{W}
PpT = 17.4079 \, kW
 \frac{\mathsf{PpT}}{\mathsf{PaT}} \ = \ 2.17523 \times 10^7
SXR = 2441.41
SIR = 4.15508
SNR = 225.375
SDR = 222.996
NS = 2.15789 \times 10^6
AeS NS = 1.46893 \text{ km}^2
AeS AeT NS PaT = 11.7555 \text{ m}^4\text{W}
```

Single-probe coverage in moonlight @ 1000 nm

```
paramTot = Join[paramNominal,
               wlVals[backgroundNominal, "1000", "moonlight"] /. paramNominal];
ofInterest = {{SBRmax, ""}, {m, ""}, {TF, "ms"}, {AeS, "cm^2"}, {TI, "s"},
                 \{\delta, \text{""}\}, \{\text{Ractual}, \text{"s^-1"}\}, \{\text{PaT}, \text{"mW"}\}, \{\text{PaT AeT}, \text{"meters^2*Watts"}\},
                \{PpT, "kW"\}, \{PpT/PaT, ""\}, \{SXR, ""\}, \{SIR, ""\}, \{SNR, ""\}, \{SDR, ""\}, \{SNR, "", ""\}, \{SNR,
                {NS, ""}, {AeS NS, "km^2"}, {PaT AeT AeS NS, "meter^4*Watts"}};
prVals[solutions, ofInterest, {OmegaA → 0.01}, paramTot];
SBRmax = 5728.03
m = 12
TF = 0.4096 \, \text{ms}
AeS = 42545.2 \text{ cm}^2
TI = 2.17523 s
\delta = 0.000188302
Ractual = 0.432 per second
PaT = 482.377 \text{ mW}
AeT PaT = 0.00482377 m^2 W
PpT = 10492.8 \, kW
 \frac{\mathsf{PpT}}{\mathsf{PaT}} \ = \ 2.17523 \times 10^7
SXR = 2441.41
SIR = 4.00723
SNR = 25831.6
SDR = 336033.
NS = 1432.01
AeS NS = 0.0060925 \text{ km}^2
AeS AeT NS PaT = 29.3888 \text{ m}^4\text{W}
```