4.3 Pochodne cząstkowe funkcji wielu zmiennych

Definicja 4.3. Granicę właściwą

$$\lim_{\Delta x_i \to 0} \frac{f(P) - f(P_0)}{\Delta x_i}$$

nazywamy pochodną cząstkową rzędu pierwszego funkcji f(P) względem zmiennej x_i i oznaczamy $\frac{\partial f}{\partial x_i}$ w P_0 .

Dla funkcji dwóch zmiennych f(x,y) pochodną cząstkową pierwszego rzędu względem zmiennej x nazywamy granicę właściwą

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} = \frac{\partial f}{\partial x} = f_x,$$

a pochodna względem zmiennej y nazywamy granice właściwa

$$\lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y} = \frac{\partial f}{\partial y} = f_y.$$

Przy obliczaniu pochodnych cząstkowych funkcji stosuje się takie same reguły jak przy obliczaniu pochodnej jednej zmiennej z tym, że jeżeli obliczamy pochodną cząstkową funkcji f(x,y) względem zmiennej x to zmienną y traktujemy jako stałą, analogicznie przy obliczaniu pochodnej cząstkowej względem zmiennej y, zmienną x, traktujemy jako stałą.

Pochodne wyższych rzędów

Pochodne drugiego rzędu funkcji dwóch zmiennych są następujące

$$\frac{\partial}{\partial x} \left[\frac{\partial f}{\partial x} \right] = f_{xx}, \qquad \frac{\partial}{\partial y} \left[\frac{\partial f}{\partial y} \right] = f_{yy},$$

oraz pochodne mieszane

$$\frac{\partial}{\partial x} \left[\frac{\partial f}{\partial y} \right] = f_{xy}, \qquad \frac{\partial}{\partial y} \left[\frac{\partial f}{\partial x} \right] = f_{yx}.$$

Twierdzenie 4.4 (Schwarza). Jeżeli pochodne mieszane funkcji f(x,y) są funkcjami ciąglymi to są sobie równe, czyli

$$f_{xy} = f_{yx}$$
.

Definicja 4.5. Jeżeli funkcja f(P) ma w zbiorze Z ciągłe pochodne do rzędu n włącznie, to mówimy, że jest klasy C^n .

Jeżeli np. funkcja f(x,y) jest klasy C^1 , to jej pochodne cząstkowe pierwszego rzędu są funkcjami ciągłymi.

Pochodne cząstkowe funkcji f(x,y) wyznaczają szybkość zmian funkcji w kierunku, z tym, że pochodna cząstkowa pierwszego rzędu względem zmiennej x wyznacza szybkość zmian funkcji w kierunku równoległym do osi Ox, zaś pochodna cząstkowa pierwszego rzędu względem zmiennej y wyznacza szybkość zmian funkcji w kierunku równoległym do osi Oy.

Przykład 4.6. Obliczyć pochodne cząstkowe pierwszego oraz pochodne mieszane drugiego rzędu funkcji $f(x,y)=\sin\frac{x}{y},\,y\neq0.$

Rozwiązanie.

$$f_{x} = \left[\cos\frac{x}{y}\right] \cdot \left(\frac{1}{y}\right),$$

$$f_{y} = \left[\cos\frac{x}{y}\right] \cdot \left(-\frac{x}{y^{2}}\right),$$

$$f_{xy} = \frac{\partial}{\partial x}\left(-\frac{x}{y^{2}}\cos\frac{x}{y}\right) = \left[-\sin\frac{x}{y}\right] \cdot \left[-\frac{x}{y^{2}}\right] \cdot \frac{1}{y} + \cos\frac{x}{y}\left[-\frac{1}{y^{2}}\right] = \frac{x}{y^{3}}\sin\frac{x}{y} - \frac{1}{y^{2}}\cos\frac{x}{y},$$

$$f_{yx} = \frac{\partial}{\partial y}\left(\frac{1}{y}\cos\frac{x}{y}\right) = \left[-\sin\frac{x}{y}\right] \cdot \left[\frac{1}{y}\right] \cdot \left[-\frac{x}{y^{2}}\right] + \cos\frac{x}{y}\left[-\frac{1}{y^{2}}\right] = \frac{x}{y^{3}}\sin\frac{x}{y} - \frac{1}{y^{2}}\cos\frac{x}{y}.$$

Jak widać pochodne cząstkowe mieszane dla $y \neq 0$ są równe.