Sparse Table

Bruce

What is a sparse table?

 Sparse Table is a data structure that answers static Range Minimum Query (RMQ).

• It is recognized for its relatively **fast query** and **short implementation** compared to other data structures.

- Applications:
 - Range Minimum Query (Range min/max query)
 - Lowest Common Ancestor Query (LCA)

Range Minimum Queries

The RMQ Problem

 The Range Minimum Query problem (RMQ for short) is the following:

Given an array A and two indices $i \le j$, what is the smallest element out of A[i], A[i+1], ..., A[j-1], A[j]?

31	41	59	26	53	58	97	93
----	----	----	----	----	----	----	----

The RMQ Problem

 The Range Minimum Query problem (RMQ for short) is the following:

Given an array A and two indices $i \le j$, what is the smallest element out of A[i], A[i+1], ..., A[j-1], A[j]?

31 41 59 26 53 58 97 93

The RMQ Problem

 The Range Minimum Query problem (RMQ for short) is the following:

Given an array A and two indices $i \le j$, what is the smallest element out of A[i], A[i+1], ..., A[j-1], A[j]?

Methods

- Naïve way: no preprocessing, O(n) query
- Cache everything: O(n²) preprocessing,
 O(1) query
- Segment Tree: O(nlogn) preprocessing, O(logn) query
- Sparse Table: O(nlogn) preprocessing,
 O(1) query

Cache every pairs

The Intuition

- If we precompute the answers over too many ranges, the preprocessing time will be too large.
- If we precompute the answers over too few ranges, the query time won't be O(1).
- Goal: Precompute RMQ over a set of ranges such that there are fewer than $o(n^2)$ total ranges, but there are enough ranges to support O(1) query.

Some Observations

The Approach

- For each index i, compute RMQ for ranges starting at i of size 1, 2, 4, 8, 16, ..., 2^k as long as they fit in the array.
 - Gives both large and small ranges starting at any point in the array.
 - Only O(log n) ranges computed for each array element.
 - Total number of ranges: $O(n \log n)$.
- *Claim*: Any range in the array can be formed as the union of two of these ranges.

Doing a Query

- To answer RMQ $_{A}(i, j)$:
 - Find the largest k such that $2^k \le j i + 1$.
 - With the right preprocessing, this can be done in time O(1); you'll figure out how in the problem set!
 - The range [i, j] can be formed as the overlap of the ranges $[i, i + 2^k 1]$ and $[j 2^k + 1, j]$.
 - Each range can be looked up in time O(1).
 - Total time: O(1).

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute

31	41	59	26	53	58	97	93
0	1	2	3	4	5	6	7

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute

31	41	59	26	53	58	97	93
0	1	2	3	4	5	6	7

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute

31	41	59	26	53	58	97	93
0	1	2	3	4	5	6	7

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute

31	41	59	26	53	58	97	93
	1						

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute

31	41	59	26	53	58	97	93
0	1	2	3	4	5	6	7

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute

20

31

0

21 22 23

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute

31	41	59	26	53	58	97	93
0	1	2	3	4	5	6	7

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute

31	41	59	26	53	58	97	93
0	1	2	3	4	5	6	7

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute

31	41	59	26	53	58	97	93
		2					

• There are $O(n \log n)$ ranges to precompute.

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute all of them in time $O(n \log n)$.

 31
 41
 59
 26
 53
 58
 97
 93

 0
 1
 2
 3
 4
 5
 6
 7

• There are $O(n \log n)$ ranges to precompute.

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute

31	41	59	26	53	58	97	93
				4			

	20	2 '	22	2 ³
0	31	31		
1	41			
2	59			
3 4	26			
4	53			
5	58			
6	97			
7	93			

• There are $O(n \log n)$ ranges to precompute.

31	41	59	26	53	58	97	93
0	1	2	3	4	5	6	7

• There are $O(n \log n)$ ranges to precompute.

31	41	59	26	53	58	97	93
				4			

• There are $O(n \log n)$ ranges to precompute.

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute all of them in time $O(n \log n)$.

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute all of them in time $O(n \log n)$.

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute

all of them in time $O(n \log n)$.

31	41	59	26	53	58	97	93
0							

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute all of them in time $O(n \log n)$.

21 22 23

31

								•	• •	• •	
								2	59	26	
								3	26	26	
								4	53	53	
31	41	59	26	53	58	97	93	5	58	58	
	1							6	97	93	
O	1	_	J	7	J	J	•	7	93		I

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute all of them in time $O(n \log n)$.

20

3 I

41

59

26

0

2 1

31

41

26

26

2²

 \star

2 ³

									53	
31	41	59	26	53	58	97	93	5	58 97	58
	1							6	97	93

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute

all of them in time $O(n \log n)$.

31	41	59	26	53	58	97	93
		2					

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute all of them in time $O(n \log n)$.

2² 2³

26

20

3 I

41

59

0

2 1

31

41

26

								3	26	26	
								4	53	53	
31	41	59	26	53	58	97	93	5	58	58	
0				4				6	97	93	
O	ı	_	<u> </u>	_)	U	1				

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute

all of them in time $O(n \log n)$.

0	31	31	26	26
1	41	41	26	
2	59	26	26	
3	26	26	26	
4	53	53	53	
5	58	58		
6	97	93		
7	93			

20 21 22 23

31	41	59	26	53	58	97	93
0							

Sparse Tables

- This data structure is called a sparse table.
- It gives an $O(n \log n)$ preprocessing, and O(1) query solution to RMQ.
- This is asymptotically better than precomputing all possible ranges!

A B C C B A D E E D F F D A G G A

This is called an *Euler tour* of the tree. Euler tours have all sorts of nice properties. Depending on what topics we explore, we might see some more of them later in the quarter.

A	В	С	С	В	A	D	E	E	D	F	F	D	A	G	G	A
0	1	2	2	1	0	1	2	2	1	2	2	1	0	1	1	0

A	В	С	С	В	A	D	E	E	D	F	F	D	A	G	G	A
0	1	2	2	1	0	1	2	2	1	2	2	1	0	1	1	0

A																
0	1	2	2	1	0	1	2	2	1	2	2	1	0	1	1	0

A																
0	1	2	2	1	0	1	2	2	1	2	2	1	0	1	1	0

A	В	С	С	В	A	D	Е	Е	D	F	F	D	A	G	G	A
0	1	2	2	1	0	1	2	2	1	2	2	1	0	1	1	0

A	В	С	С	В	A	D	E	Е	D	F	F	D	A	G	G	A
0	1	2	2	1	0	1	2	2	1	2	2	1	0	1	1	0

Summary

Sparse table is a data structure, which can efficiently answer RMQ query

 LCA problem can be converted to a RMQ problem on the Euler tour sequence

 By using sparse table, we can get O(nlogn) preprocessing and O(1) querying time for both RMQ and LCA problems