Chap. 4: Partitioning Single Stage Networks

network into independent subnetworks of different sizes;
each subnetwork size N' < N
has all capabilities of complete network of same type built to be size N'

necessary for multiple-SIMD and partitionable SIMD/MIMD useful for MIMD and SIMD

no production cake > shuffle

	TEST	SCHEOVLE
		TEST #1
	Contres classes	Wed 2/15/89
		Room 117
		8130-9130 (~ (0130) pm
		TEST # 2
	00 ver Un 15e5 15-27	Thurs 3/30/89
		Rapon 117.
		9:30, 9:30 (-10:30) pm
	CAVE	TEST #3
	Jasses 20	FINALS
	28-42	•

```
permutation - bijection from a set onto itself (recall - bijection is one-to-one and onto mapping) cyclic notation - (j f(j) f^2(j) ... f^{k-1}(j)) where f^k(j) = j
j \rightarrow f(j) \rightarrow f^2(j) \rightarrow ... \rightarrow f^k(j) = j
length of cycle is k
Ex. p(j) = j+3 \mod 8
p = (0 \ 3 \ 6 \ 1 \ 4 \ 7 \ 2 \ 5)
Ex. q(j) = j-2 \mod 8
q = (0 \ 6 \ 4 \ 2) (1 \ 7 \ 5 \ 3)
```

product of permutations -
$$p*q(j) \equiv pq(j) \equiv q(p(j))$$

$$pq = (0 \ 3 \ 6 \ 1 \ 4 \ 7 \ 2 \ 5)$$

$$(0 \ 6 \ 4 \ 2) \ (1 \ 7 \ 5 \ 3)$$

$$= 0 \rightarrow 3 \rightarrow 1$$

$$1 \rightarrow 4 \rightarrow 2$$

$$2 \rightarrow 5 \rightarrow 3$$

$$3 \rightarrow 6 \rightarrow 4$$

$$4 \rightarrow 7 \rightarrow 5$$

$$5 \rightarrow 0 \rightarrow 6$$

$$6 \rightarrow 1 \rightarrow 7$$

$$7 \rightarrow 2 \rightarrow 0$$

$$= (0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7)$$

$$pq(j) = q(p(j)) = (j+3)-2 \mod 8 = j+1 \mod 8$$

cycle structure of an interconnection function - unique disjoint cycles representation

Ex.
$$q(j) = j-2 \mod 8$$

= $(0 \ 6 \ 4 \ 2) \ (1 \ 7 \ 5 \ 3)$

Cube Network Cycle Structure

$$cube_i = \prod_{j=0}^{N-1} (j \ cube_i(j))$$

where i^{th} bit of j = 0

Ex.
$$N = 8$$
, $i = 1$:

$$cube_1 = (0 \ 2) \ (1 \ 3) \ (4 \ 6) \ (5 \ 7)$$

if PEs 0 and 2 inactive:

$$cube'_{1} = (1 \ 3) \ (4 \ 6) \ (5 \ 7)$$

if just PE 0 inactive, transfer not permutation

- $0 \rightarrow 0$ and $2 \rightarrow 0$ (not one-to-one)
- 2 does not receive data (not onto)
- .. whole cycle active or whole cycle inactive to have permutation (or else data destroyed)

Illiac Network Cycle Structure

$$\begin{aligned} & \text{Illiac}_{+1} = (0 \ 1 \ 2 \dots N-1) \\ & \text{Illiac}_{-1} = (N-1 \dots 2 \ 1 \ 0) \\ & \text{Illiac}_{+n} = \prod_{j=0}^{n-1} (j \ j+n \ j+2n \ \dots \ j+N-n) \\ & \text{Illiac}_{-n} = \prod_{j=0}^{n-1} (j+N-n \ \dots \ j+2n \ j+n \ j) \end{aligned}$$

Ex. N = 16:

Illiac₊₄ =
$$(0 \ 4 \ 8 \ 12) \ (1 \ 5 \ 9 \ 13)$$

(2 \ 6 \ 10 \ 14) \ (3 \ 7 \ 11 \ 15)

PM2I Network Cycle Structure

$$PM2_{+i} = \prod_{j=0}^{2^{i}-1} (j \ j+2^{i} \ j+2^{*}2^{i} \dots j+N-2^{i})$$

$$PM2_{-i} = \prod_{j=0}^{2^{i}-1} (j+N-2^{i} \dots j+2^{*}2^{i} j+2^{i} j)$$

Ex.
$$N = 8$$
, $i = 1$:

$$PM2_{-1} = (0 \ 6 \ 4 \ 2) \ (1 \ 7 \ 5 \ 3)$$

Shuffle-Exchange Network Cycle Structure

exchange =
$$\prod_{j=0}^{N-2}$$
 (j j+1)

where j is even

$$\mathrm{shuffle} = \prod_{j=0}^{N-1} \; (j \; \mathrm{shuffle}(j) \; \mathrm{shuffle}^2(j) \; ...)$$

where j is not in a previous cycle

Ex. N = 8:

shuffle =
$$(0)$$
 $(1 \ 2 \ 4)$ $(3 \ 6 \ 5)$ (7)
= $(1 \ 2 \ 4)$ $(3 \ 6 \ 5)$

$$N=16$$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$
 $1 = 16$

Notation

- physical PE addresses $P = \{0,1,...,N-1\}$
- s_i size of partition i (power of 2)
- logical PE addresses for partition i $\ell_i = \{\ell_{i/0}, \, \ell_{i/1}, \, ..., \, \ell_{i/(s_i-1)}\}$
- v number of partitions
- set of all logical PE addresses

$$L = \bigcup_{j=0}^{v-1} \ell_j$$

$$|L| = \sum_{i=0}^{v-1} s_i = N$$

•
$$t: P \to L$$
 $t_{\text{translation}} physical in legical parties, $t_{\text{translation}} physical parties, \\ t_{\text{translation}} physical physical parties, \\ t_{\text{translation}} physical physical physical parties, \\ t_{\text{translation}} physical physic$$$$$$$$$$$$$$$$$$$$$

Ex.
$$N = 8$$

Even subnetwork — solid lines

Odd subnetwork — dashed lines

t:
$$0 \to \ell_{E/0}$$
 $2 \to \ell_{E/1}$ $4 \to \ell_{E/2}$ $6 \to \ell_{E/3}$
 $1 \to \ell_{O/0}$ $3 \to \ell_{O/1}$ $5 \to \ell_{O/2}$ $7 \to \ell_{O/3}$

physical cube₁ = $(0 \ 2) \ (4 \ 6) \ (1 \ 3) \ (5 \ 7)$

$$= (\ell_{E/0} \ell_{E/1}) (\ell_{E/2} \ell_{E/3}) (\ell_{O/0} \ell_{O/1}) (\ell_{O/2} \ell_{O/3})$$

$$= (\ell_{E/0} \ell_{E/1}) (\ell_{E/2} \ell_{E/3}) (\ell_{O/0} \ell_{O/1}) (\ell_{O/2} \ell_{O/3})$$

$$= cvhe_{E/0}$$

$$= cvhe_{E/0}$$

$$= cvhe_{E/0}$$

$$= cvhe_{O/0} cvhe_{E/0} (\ell_{E/0})$$

$$= \ell_{E/0} \ell_{E/0}$$
similarly, physical cube₂ acts as logical cube₁

$$= \ell_{E/1}$$

in general, constraints on t:

- $\begin{array}{ll} \bullet & \text{partition } \ell_i \text{ must have } \log_2 s_i \text{ cube functions, } 0 \leq i < v \\ & \text{obs}_i < \vee \\ & \text{cube}_{i/r} \text{ means logical cube}_r \\ & \text{for partition } \ell_i, \ 0 \leq r < \log_2 s_i \\ \end{array}$
- labeling constraints: $\ell_{i/j}$ and $\ell_{i/k} \in \ell_i$ $\ell_{i/j} \text{ and } \ell_{i/k} \text{ connected if and only if } H(j,k) = 1$ these PEs are only ones $\ell_{i/j}$ can communicate with
- if physical cube_x \equiv logical cube_{i/r} and cube_x(t⁻¹($\ell_{i/j}$)) = t⁻¹($\ell_{i/k}$) then j and k differ only in bit r

Intuitive argument, N=8

$$cube_0 = (0\ 1)\ (2\ 3)\ (4\ 5)\ (6\ 7)$$

$$cube_1 = (0\ 2)\ (1\ 3)\ (4\ 6)\ (5\ 7)$$

$$cube_2 = (0 \ 4) \ (1 \ 5) \ (2 \ 6) \ (3 \ 7)$$

For a size N/2 = 4 partition you can:

- (1) disallow cube₀ [0,2,4,6] [1,3,5,7] p₀ fixed
- (2) disallow cube₁ [0,1,4,5] [2,3,6,7] p₁ fixed
- (3) disallow cube₂ [0,1,2,3] [4,5,6,7] p₂ fixed

cube_i
$$(p_{m-1}...p_i...p_0) = p_{m-1}...\overline{p}_i...p_0$$

in general, size N Cube into two size N/2 Cubes pick bit position i, $0 \leq i < m$

 $N/2 \text{ PEs } p_i = 0, N/2 \text{ PEs } p_i = 1$

 $use \; cube_j \qquad 0 \leq j < m \qquad j \neq i$

for j \neq i, N/4 disjoint cycles cube_j $p_i = 0$

N/4 disjoint cycles cube_j $p_i = 1$

repeat process to get smaller partitions

Ex. N = 16, v = 3, $s_0 = 4$, $s_1 = 4$, $s_2 = 8$

divide on p_3 : 0 to $7 = \ell_2$ 8 to 15 = another group

divide 8 to 15 on p_1 : 8,9,12,13 = ℓ_0 10,11,14,15 = ℓ_1

$$p_1 = 0 \qquad p_1 = 1$$

\$\ell_2\$ uses cycles from cube_0, cube_1, and cube_2

 l_0 and l_1 use cycles from cube₀ and cube₂

Ex. N = 16, v = 3,
$$s_0 = 4$$
, $s_1 = 4$, $s_2 = 8$
divide on p_3 : 0 to 7 = ℓ_2 8 to 15 = another group
divide 8 to 15 on p_1 : 8,9,12,13 = ℓ_0 10,11,14,15 = ℓ_1
 $p_1 = 0$ $p_1 = 1$

once choice for t:

$$\begin{array}{lll} 0 \to \ell_{2/0} & 1 \to \ell_{2/1} & 2 \to \ell_{2/2} & 3 \to \ell_{2/3} \\ 4 \to \ell_{2/4} & 5 \to \ell_{2/5} & 6 \to \ell_{2/6} & 7 \to \ell_{2/7} \\ 8 \to \ell_{0/0} & 9 \to \ell_{0/1} & 10 \to \ell_{1/0} & 11 \to \ell_{1/1} \\ 12 \to \ell_{0/2} & 13 \to \ell_{0/3} & 14 \to \ell_{1/2} & 15 \to \ell_{1/3} \end{array}$$

$$\ell_0$$
: (8 9) (12 13) from cube₀ for cube_{0/0}
(8 12) (9 13) from cube₂ for cube_{0/1}
 ℓ_1 : (10 11) (14 15) from cube₀ for cube_{1/0}
(10 14) (11 15) from cube₂ for cube_{1/1}

$$\ell_2$$
: (0 1) (2 3) (4 5) (6 7) from cube₀ for cube_{2/0} (0 2) (1 3) (4 6) (5 7) from cube₁ for cube_{2/1} (0 4) (1 5) (2 6) (3 7) from cube₂ for cube_{2/2}

t for
$$l_0$$
: $8 \to l_{0/0}$ $9 \to l_{0/1}$ $12 \to l_{0/2}$ $13 \to l_{0/3}$
t for l_0 : $p_3p_2p_1p_0 \to p_2p_0$
(8 9) (12 13) from cube₀ for cube_{0/0} $frac{1}{\sqrt{2}} \int_{0}^{\infty} \int_{0}^{\infty}$

Summary of ways to vary t

- A. choice of bit positions physical addresses of PEs in partition agree
- B. choice of partition to subdivide
- C. choice of association of physical bit positions to logical
- D. choice of which bit positions in C to complement

A and B: which PEs in partition

C and D: mapping within partition

all PEs in ℓ_i must agree in m-log₂s_i bit positions

and use $\log_2 s_i$ cube functions corresponding to the other positions

Partitioning the Illiac

cannot be partitioned into independent subnetworks need four interconnection functions for each partition cannot use ${\rm Illiac}_{\pm 1}$ since they include all PEs Ex. to partition into two N/2 subnetworks need independent logical ${\rm Illiac}_{+1}$ cycle of size N/2

Ex.
$$N = 8$$

Even subnetwork — solid lines

Odd subnetwork — dashed lines

t:
$$0 \rightarrow \ell_{E/0}$$
 $2 \rightarrow \ell_{E/1}$ $4 \rightarrow \ell_{E/2}$ $6 \rightarrow \ell_{E/3}$ $1 \rightarrow \ell_{O/0}$ $3 \rightarrow \ell_{O/1}$ $5 \rightarrow \ell_{O/2}$ $7 \rightarrow \ell_{O/3}$

physical $PM2_{+1} = (0 \ 2 \ 4 \ 6) \ (1 \ 3 \ 5 \ 7)$

$$= (\ell_{E/0} \, \ell_{E/1} \, \ell_{E/2} \, \ell_{E/3}) \, (\ell_{O/0} \, \ell_{O/1} \, \ell_{O/2} \, \ell_{O/3})$$

$$logical \, PM2_{+0} \qquad logical \, PM2_{+0}$$

similarly, physical $PM2_{-1}$ acts as logical $PM2_{-0}$ and physical $PM2_{+2}$ acts a logical $PM2_{+1}$

Partitioning the PM2I (all arithmetic mod si or N)

in general, constraints on t:

- partition ℓ_i must have $2\log_2 s_i$ PM2I functions, $0 \le i < v$ $\mathrm{PM2}_{i/\pm r} \text{ means logical PM2}_{\pm r}$ for partition ℓ_i , $0 \le r < \log_2 s_i$
- labeling constraints: $\ell_{i/j}$ and $\ell_{i/k} \in \ell_i$ $\ell_{i/j} \text{ and } \ell_{i/k} \text{ connected if an only if}$ $k = j \pm 2^r \qquad 0 \le r < \log_2 s_i$
- if physical $PM2_{\pm x} \equiv logical PM2_{i/+r}$ and $PM2_{\pm x}(t^{-1}(\ell_{i/j})) = t^{-1}(\ell_{i/k}) \text{ then}$ $k = j + 2^r \text{ for some } r, 0 \le r < log_2s_i$
- similar for logical PM2_{i/-r}

Intuitive argument, N=16

$$PM2_{+0} = (0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10\ 11\ 12\ 13\ 14\ 15)$$

$$PM2_{+1} = (0\ 2\ 4\ 6\ 8\ 10\ 12\ 14)$$

$$(1\ 3\ 5\ 7\ 9\ 11\ 13\ 15)$$

$$PM2_{+2} = (0 \ 4 \ 8 \ 12) (1 \ 5 \ 9 \ 13)$$

$$(2 \ 6 \ 10 \ 14) (3 \ 7 \ 11 \ 15)$$

$$PM2_{+3} = (0\ 8) (1\ 9) (2\ 10) (3\ 11)$$

 $(4\ 12) (5\ 13) (6\ 14) (7\ 15)$

For a size N/2 = 8 partition: cannot use $PM2_{+0}$ can use even or odd (fix p_0)

For a size N/4 = 4 partition: cannot use $PM2_{+0}$ or $PM2_{+1}$ can use PEs in any one cycle of $PM2_{+2}$ (fix p_1p_0)

Note: PM2_{+i} has 2ⁱ cycles of size N/2ⁱ

Partition of size 2^j cannot use $PM2_{+i}$ if $N/2^i > 2^j \rightarrow 2^{m-i} > 2^j \rightarrow m-i > j$

$$\begin{array}{ll} PM2_{+i}(P) = P + 2^i \mod N & 0 \leq i < m \\ PM2_{-i}(P) = P - 2^i \mod N & 0 \leq i < m \end{array}$$

Let
$$s_i = N/2^a = 2^{m-a}$$
, $j \in P$, $t(j) \in \emptyset$;

- Physical PM2_{$\pm b$} for $0 \le b < a$ cannot be used by j
 - length cycles of PM2_{±b} \geq N/2^{a-1} = 2^{m-a+1} = 2 * s_i
 - $PM2_{\pm x}$ has 2^x cycles of length $N/2^x = 2^{m-x}$
 - $PM2_{\pm 0}$: $2^0 = 1$ cycle of length N $PM2_{\pm 1}$: $2^1 = 2$ cycles of length N/2 (odd, even) etc.
 - since $PM2_{\pm b}$ cycles of length $\geq 2 *s_i$ must contain some $q \in P$, $t(q) \notin l_i$
- l_i needs $2 \log_2 s_i = 2(m-a)$ PM2I functions to use
 - cannot use a function PM2 $_{\pm b}$ for $0 \le b < a$
 - must use 2(m-a) functions PM2 $_{\pm c}$ for a \leq c < m

- $s_i = 2^{m-a}, j \in P, t(j) \in \ell_i$
- PM2 $_{\pm a}$ cycle contains $y + k * 2^a$, for a given y, $0 \le y < 2^a$, and $0 \le k < 2^{m-a}$
 - since $t(j) \in \ell_i$, $t(j + k * 2^a) \in \ell_i$ for $0 \le k < 2^{m-a}$ $2^{m-a} = s_i = |\ell_i|, \text{ all PEs lo-order a bits} = j$
- $PM2_{+c}$ for $a \le c < m$
 - must show if cycle of $PM2_{\pm c}$ includes j it has no q such that

$$t(q) \notin \ell_i = \{j+k*2^a \mid 0 \le k < 2^{m-a}\}$$

in general, consider PM2_{+h} (PM2_{-h} similar):

$$PM2_{+h} = \prod_{u=0}^{2^{h}-1} (u \ u+2^{h} \ u+2*2^{h} \dots \ u+N-2^{h})$$

elements in cycle with u: $X^{m-h}u_{h-1/0}$

if
$$t(j) \in \ell_i$$
 and $j \in X^{m-a} j_{a-1/0}$ then

if
$$j \in X^{m-c}u_{c-1/0}$$
 then $u_{c-1/0} = u_{c-1/a}j_{a-1/0}$

and
$$X^{m-c}u_{c-1/0} \subseteq X^{m-a}j_{a-1/0}$$

in general, size N PM2I into two size N/2 PM2Is

$$N/2 \text{ PEs } p_0 = 0, N/2 \text{ PEs } p_0 = 1$$

use physical
$$PM2_{+i}$$
 $0 < i < m$

$$2^{i}/2$$
 disjoint cycles of $PM2_{\pm i}$ $p_0 = 0$

$$2^{i}/2$$
 disjoint cycles of $PM2_{\pm i}$ $p_0 = 1$

repeat process to get smaller partitions

Ex. N = 16, v = 3,
$$s_0 = 4$$
, $s_1 = 4$, $s_2 = 8$

must divide on
$$p_0$$
: even $= \ell_2$ odd $=$ another group must divide on p_1 : $1,5,9,13 = \ell_0$ $3,7,11,15 = \ell_1$

$$p_1 = 0 p_1 = 1$$

 ℓ_2 uses cycles from PM2 $_{\pm 1}$, PM2 $_{\pm 2}$, and PM2 $_{\pm 3}$

 ℓ_0 and ℓ_1 uses cycles from PM2 $_{\pm 2}$ and PM2 $_{\pm 3}$

Ex. N = 16, v = 3,
$$s_0 = 4$$
, $s_1 = 4$, $s_2 = 8$
must divide on p_0 : even = ℓ_2 odd = another group
must divide on p_1 : 1,5,9,13 = ℓ_0 3,7,11,15 = ℓ_1
 $p_1 = 0$ $p_1 = 1$

one choice for t:

$$\ell_0$$
: (1 5 9 13) from $PM2_{+2}$ for $PM2_{0/+0}$
(1 9) (5 13) from $PM2_{+3}$ for $PM2_{0/+1}$
 ℓ_1 : (3 7 11 15) from $PM2_{+2}$ for $PM2_{0/+0}$

(3 11) (7 15) from
$$PM2_{+3}$$
 for $PM2_{0/+1}$

$$\ell_2$$
: (0 2 4 6 8 10 12 14) from $PM2_{+1}$ for $PM2_{2/+0}$ (0 4 8 12) (2 6 10 14) from $PM2_{+2}$ for $PM2_{2/+1}$ (0 8) (4 12) (2 10) (6 14) from $PM2_{+3}$ for $PM2_{2/+2}$

t for
$$l_0$$
: $1 \to l_{0/0}$ $5 \to l_{0/1}$ $9 \to l_{0/2}$ $13 \to l_{0/3}$
t for l_0 : $p_3p_2p_1p_0 \to p_3p_2$
(1 5 9 13) from $PM2_{+2}$ for $PM2_{0/+0}$
(1 9) (5 13) from $PM2_{+3}$ for $PM2_{0/+1}$
t' for l_0 : $p_3p_2p_1p_0 \to \overline{p_3}\overline{p_2}$
t' for l_0 : $1 \to l_{0/3}$ $5 \to l_{0/2}$ $9 \to l_{0/1}$ $13 \to l_{0/0}$
(13 9 5 1) from $PM2_{-2}$ for $PM2_{0/+0}$ remains h/r_5 .
(9 1) (13 5) from $PM2_{-3} = PM2_{+3}$ for $PM2_{0/+1}$
if $y + 2^r = z$ then $\overline{y} - 2^r = \overline{z}$ and
if $y - 2^r = z$ then $\overline{y} + 2^r = \overline{z}$, $0 \le r < \log_2 s_i$

t for
$$\ell_0$$
: $1 \to \ell_{0/0}$ $5 \to \ell_{0/1}$ $9 \to \ell_{0/2}$ $13 \to \ell_{0/3}$

t for ℓ_0 : $p_3p_2p_1p_0 \rightarrow p_3p_2$

 $(1 \ 5 \ 9 \ 13) \ \text{from} \ PM2_{+2} \ \text{for} \ PM2_{0/+0}$

 $(1 \ 9) \ (5 \ 13) \ \text{from PM2}_{+3} \ \text{for PM2}_{0/+1}$

t" for ℓ_0 : cyclic relabeling — rotate elements of $PM2_{0/+0}$ $1 \to \ell_{0/3}$ $5 \to \ell_{0/0}$ $9 \to \ell_{0/1}$ $13 \to \ell_{0/2}$

$$\begin{array}{lll} (1 & 5 & 9 & 13) = (\ell_{0/0} \, \ell_{0/1} \, \ell_{0/2} \, \ell_{0/3}) \; \text{for t} \\ & = (\ell_{0/3} \, \ell_{0/0} \, \ell_{0/1} \, \ell_{0/2}) \; \text{for t}'' \\ \end{array}$$

use same cycles of physical PM2I functions for the logical PM2I functions as t

works for other $PM2_{\pm i}$ cycles since cycle relabeling

does not change distance between

$$t''-1(\ell_{0/j})$$
 and $t''-1(\ell_{0/j+1})$

adjacent physical numbers of PEs in a PM2 $_{\pm i}$ cycle are still $\pm 2^i$ apart

Summary of ways to vary t

A. choice of partition to subdivide

B. choice of t: $p_{m-1/0} \rightarrow p_{m-1/m-\log_2 s_i}$ or t: $p_{m-1/0} \rightarrow \overline{p}_{m-1/m-\log_2 s_i}$

C. apply cyclic relabeling

A: which PEs in partition

B and C: mapping within partition all PEs in ℓ_i must agree in lo-order m— s_i bit positions use $2*\log_2 s_i$ functions $PM2_{\pm j}$ for $(m-\log_2 s_i) \leq j < m$ within each partition can use physical $PM2_{+j}$

as logical $PM2_{i/\pm(j-(m-\log_2 s_i))}$

similar for $PM2_{-j}$

Partitioning the Shuffle-Exchange

cannot be partitioned into independent subnetworks need two interconnection functions for each partition cannot use shuffle since largest cycle

should be of length log_2s_i not m

Ex.
$$t(1) = \ell_{i/j}$$

1 is in cycle with: 1,2,4,8,...,N/2

which is of size m

$$if \; m = log_2 s_i \; then \; s_i = N$$

Partitioning for Efficiency in SIMD Mode

Efficiency:

Ex.: factor of N speedup

serial time = t

parallel time = t/N

PEs = N

Efficiency =
$$\frac{t}{(N) * (t/N)} = 100\%$$

Partitioning for Efficiency in SIMD Mode

smooth 4 images in sequence: $4*(16^2+68)=1296$ steps efficiency: $4*512^2/(1024*4*(16^2+68))=79\%$

use 4 submachines, smooth 4 images in parallel:

$$(32^2 + 132) = 1156$$
 steps

efficiency:
$$4 * 512^2/(1024 * (32^2 + 132)) = 89\%$$

Reasons for Partitioning

- multiple SIMD machine
 - set of CU's
 - partition PE's into independent SIMD machines
- reconfigurable SIMD/MIMD machines
 - partition system into independent SIMD/MIMD subsystems (PASM)
 - fault tolerance
 - multiple users
 - efficient size
 - program development
 - subtask parallelism
- SIMD machine
 - single CU, same program
 - multiple data sets
 - can improve efficiency
- MIMD machine
 - group PE's which communicate
 - reduce network conflicts