

CLAIMS

1. A compound of formula I:

and salts, solvates and chemically protected forms thereof,
wherein:

R⁶ and R⁹ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo;

R and R' are independently selected from optionally substituted C₁₋₁₂ alkyl, C₃₋₂₀ heterocyclyl and C₅₋₂₀ aryl groups;

R⁷ and R⁸ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo,

or the compound is a dimer with each monomer being of formula (I), where the R⁷ groups or R⁸ groups of each monomers form together a dimer bridge having the formula -X-R"-X- linking the monomers, where R" is a C₃₋₁₂ alkylene group, which chain may be interrupted by one or more heteroatoms and/or aromatic rings, and each X is independently selected from O, S, or NH;

or any pair of adjacent groups from R⁶ to R⁹ together form a group -O-(CH₂)_p-O-, where p is 1 or 2;

R¹⁰ is a carbamate-based nitrogen protecting group;

R¹¹ is an oxygen protecting group; and

R² is a labile leaving group.

2. A compound according to claim 1, wherein R⁹ is H.

3. A compound according to either claim 1 or claim 2, wherein R⁶ is selected from H, OH, OR, SH, NH₂, nitro and halo.

4. A compound according to any one of the preceding claims, wherein R¹⁰ is Troc.

5. A compound according to any one of the preceding claims, wherein R¹¹ is a silyl oxygen protecting group or THP.

6. A compound according to any one of the preceding claims, wherein R² is triflate.

7. A compound according to any one of the preceding claims, wherein R⁷ and R⁸ are independently selected from H, OH, OR, SH, NH₂, NHR, NRR' and halo.

8. A compound according to any one of claims 1 to 6, wherein the compound is a dimer with each monomer being of formula (I), where the R⁷ groups or R⁸ groups of each monomer form together a dimer bridge having the formula -O-(CH₂)_n-O- linking the monomers, where n is from 3 to 12.

9. A compound according to claim 8, wherein n is from 3 to 7.

10. A compound according to either claim 8 or claim 9, wherein the substituents R⁸ join to form the dimer bridge.

11. A compound of formula III:

and salts, solvates, chemically protected forms and prodrugs thereof, wherein:

R⁶ and R⁹ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo;

R and R' are independently selected from optionally substituted C₁₋₁₂ alkyl, C₃₋₂₀ heterocyclyl and C₅₋₂₀ aryl groups;

R⁷ and R⁸ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo,

or any pair of adjacent groups from R⁶ to R⁹ together form a group -O-(CH₂)_p-O-, where p is 1 or 2;

R¹⁰ is a carbamate-based nitrogen protecting group; and

R¹⁶ is O-R¹¹, wherein R¹¹ is an oxygen protecting group, and R¹⁵ is R.

12. A compound according to claim 11, wherein when R⁷ and R⁸ are OMe, R⁶ and R⁹ are H, and R¹⁵ is R, R is selected from the group 3-methoxyphenyl, 4-biphenyl, 4-phenoxyphenyl, 3,4-methylenedioxyphenyl, trans-2-(4-methylphenyl)vinyl, trans-propenyl, 4-dimethylaminophenyl, 4-methylthiophenyl, 4-vinylphenyl, 3,4-dichlorophenyl, 4-trifluoromethylphenyl, 4-isopropylphenyl, 4-cyanophenyl, 3-pyridinyl, 4-pyridinyl, 4-formylphenyl, 4-carboxyphenyl, 2,6-dimethoxyphenyl, 4-acetanilide, 4-aminophenyl, 1-naphthyl, 5-indole, 3-aminophenyl, 2,6-difluorophenyl, 1-pyrenyl, 4-hydroxyphenyl and trans-hexenyl.

13. A compound according to either claim 11 or claim 12, wherein when R⁷ and R⁸ are OMe, R⁶ and R⁹ are H, and R¹⁵ is R, R is selected from a C₃₋₂₀ heterocyclyl group having a nitrogen ring atom, C₅₋₂₀ aryl group having a nitrogen-containing substituent, or a C₅₋₂₀ heteroaryl group having a nitrogen ring atom or a nitrogen-containing substituent.

14. A compound of formula III:

and salts, solvates, chemically protected forms and prodrugs thereof, wherein:

R⁶ and R⁹ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo;

R and R' are independently selected from optionally substituted C₁₋₁₂ alkyl, C₃₋₂₀ heterocyclyl and C₅₋₂₀ aryl groups;

the compound is a dimer with each monomer being of formula (I), where the R⁸ groups of each monomer form together a dimer bridge having the formula -X-R"-X- linking the monomers, where R" is a C₃₋₁₂ alkylene group, which chain may be interrupted by one or more heteroatoms and/or aromatic rings, and each X is independently selected from O, S, or NH, and R⁷ is selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo, or any pair of adjacent groups from R⁶ to R⁹ together form a group -O-(CH₂)_p-O-, where p is 1 or 2; R¹⁰ is a carbamate-based nitrogen protecting group; and R¹⁶ is O-R¹¹, wherein R¹¹ is an oxygen protecting group, and R¹⁵ is an optionally substituted C₅₋₂₀ aryl group.

15. A compound according to claim 14, wherein the dimer bridge has the formula -O-(CH₂)_n-O- linking the monomers, where n is from 3 to 12.

16. A compound according to claim 15, wherein n is from 3 to 7.

17. A compound according to any one of claims 14 to 16, wherein R¹⁰ and R¹⁶ together form a double bond between N10 and C11.

18. A compound according to any one of claims 11 to 17, wherein R⁹ is H.

19. A compound according to any one of claims 11 to 18, wherein R⁷ and R⁸ are independently selected from H, OH, OR, SH, NH₂, NHR, NRR' and halo.

20. A compound according to any one of claims 11 to 19 for use in a method of therapy.

21. A pharmaceutical composition containing a compound of any one of claims 11 to 19, and a pharmaceutically acceptable carrier or diluent.

22. Use of a compound according to any one of claims 11 to 19 in the manufacture of a medicament for treating a proliferative disease.

23. A method of treatment of a proliferative disease, comprising administering to a subject in need of treatment a therapeutically-effective amount of a compound of any one of claims 11 to 19.

24. A method of synthesising a compound of formula I:

from a compound of formula IIa:

wherein:

R⁶ and R⁹ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo;

R and R' are independently selected from optionally substituted C₁₋₁₂ alkyl, C₃₋₂₀ heterocyclyl and C₅₋₂₀ aryl groups;

R⁷ and R⁸ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo,

or the compound is a dimer with each monomer being of formula (I), where the R⁷ groups or R⁸ groups of each monomers form together a dimer bridge having the formula -X-R"-X- linking the monomers, where R" is a C₃₋₁₂ alkylene group, which chain may be interrupted by one or more heteroatoms and/or aromatic rings, and each X is independently selected from O, S, or NH;

or any pair of adjacent groups from R⁶ to R⁹ together form a group -O-(CH₂)_p-O-, where p is 1 or 2;

R¹⁰ is a carbamate-based nitrogen protecting group;

R^{11} is an oxygen protecting group;
 R^2 is a labile leaving group; and
 R^{12} and R^{13} together form =O.

25. A method according to claim 24, wherein the compound of formula **IIa** is synthesised from a compound of formula **IIIb**:

wherein said compound of formula **IIIb** has R^6 , R^7 , R^8 , R^9 , R^{10} and R^{11} defined according to claim 25, and for said compound of formula **IIIb** R^{12} is $O-R^{14}$, and R^{13} is H; and
 R^{14} is an oxygen protecting group orthogonal to R^{11} .

26. A method according to claim 25, wherein the compound of formula **IIa** is synthesised using an oxidation reaction performed under Swern conditions, or a method involving the TPAP or the Dess Martin reagents.

27. A method according to any one of claims 24 to 26, wherein when R^2 in the compound of formula **I** is $-OSO_2CH_3$, $-OSO_2(C_nF_{2n+1})$ where $n = 0, 1$ or 4 , or $-OSO_2R^S$ where R^S is an optionally substituted phenyl group, then said compound of formula **I** is synthesised by using a treatment step with the appropriate R^2 anhydride.

28. A method according to any one of claims 24 to 26, wherein when R^2 in the compound of formula **I** is $-I$ or $-Br$, then said compound of formula **I** is synthesised by using a reaction step involving hydrazine and iodine or bromine.

29. A method according to any one of claims 24 to 26, wherein when R^2 in the compound of formula **I** is $-Cl$, then said compound of formula **I** is synthesised by using a reaction step involving phosphorous oxychloride.

30. A method of synthesising a compound of formula **III**:

from a compound of formula **I**:

wherein

R⁶ and R⁹ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo;

R and R' are independently selected from optionally substituted C₁₋₁₂ alkyl, C₃₋₂₀ heterocyclyl and C₅₋₂₀ aryl groups;

R⁷ and R⁸ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo,

or the compound is a dimer with each monomer being of formula **(I)**, where the R⁷ groups or R⁸ groups of each monomers form together a dimer bridge having the formula -X-R"-X- linking the monomers, where R" is a C₃₋₁₂ alkylene group, which chain may be interrupted by one or more heteroatoms and/or aromatic rings, and each X is independently selected from O, S, or NH;

or any pair of adjacent groups from R⁶ to R⁹ together form a group -O-(CH₂)_p-O-, where p is 1 or 2;

R¹⁰ is a carbamate-based nitrogen protecting group;

R² is a labile leaving group;

R¹⁶ is either O-R¹¹, where R¹¹ is an oxygen protecting group, or OH, or R¹⁰ and R¹⁶ together form a double bond between N10 and C11; and

R¹⁵ is R.

31. A method according to claim 30, wherein the synthesis of said compound of formula **III** uses a palladium catalysed coupling step.

ARTICLE 34 AMENDMENTS

32. A method according to claim 31, wherein the palladium catalyst is $\text{Pd}(\text{PPh}_3)_4$, $\text{Pd}(\text{OCOCH}_3)_2$, PdCl_2 or $\text{Pd}(\text{dba})_3$.

33. A method according to either claim 31 or claim 32, wherein the coupling reaction is performed under microwave conditions.

34. A method according to any one of claims 31 to 33, wherein the palladium catalyst is solid supported.