Assignment 3

The project in class is divided into three steps: **Scanner, Parser**, and **Code Generator**. Source language for the compiler project is a subset of C, and the output target code is the MIPS codes. In the second step, we list the BNF context free grammars of the language. *Note that you are not allowed to use existing tool (eg. YACC)*, so you have to construct a parser for C entirely on your self. **C/C++ 11 is required.** Your parser must cooperate with scanner in Assignment2.

Pic1. The CFG(Control Flow Graph) of three assignments

A BNF grammar for Mini C is as follows:

- 1. program: var_declarations statements
- 2. var_declarations : var_declarations | var_declaration | /* empty */
- 3. var_declaration : INT declaration_list SEMI
- 4. declaration_list: declaration_list COMMA declaration | declaration
- 5. declaration : IDENTIFIER ASSIGN NUMBER | IDENTIFIER LSQUARE NUMBER RSQUARE | IDENTIFIER
- 6. code_block: statement | LBRACE statements RBRACE
- 7. statements : statement | statement
- 8. statement : assign_statement SEMI | control_statement | read_write_statement SEMI | SEMI |
- 9. control_statement : if_statement | while_statement | do_while_statement SEMI
 | return_statement SEMI
- 10. read write statement : read statement | write statement
- 11. assign_statement : IDENTIFIER LSQUARE exp RSQUARE ASSIGN exp | IDENTIFIER ASSIGN exp
- 12. if_statement : if_stmt | if_stmt ELSE code_block

```
13. if_stmt : IF LPAR exp RPAR code_block
```

- 14. while_statement : WHILE LPAR exp RPAR code_block
- 15. do_while_statement : DO code_block WHILE LPAR exp RPAR
- 16. return_statement : RETURN
- 17. read statement: READ LPAR IDENTIFIER RPAR
- 18. write_statement : WRITE LPAR exp RPAR
- 19. exp: INT_NUM | IDENTIFIER | IDENTIFIER LSQUARE exp LSQUARE | NOT_OP exp | exp AND_OP exp | exp OR_OP exp | exp PLUS exp | exp MINUS exp | exp MUL_OP exp | exp DIV_OP exp | exp LT exp | exp GT exp | exp EQ exp | exp NOTEQ exp | exp LTEQ exp | exp GTEQ exp | exp SHL_OP exp | exp SHR_OP exp | exp ANDAND exp | exp OROR exp | LPAR exp RPAR | MINUS exp

Review the token in scanner:

The Keywords of the language are the following:

main, if, else, break, do, while, void, int, scanf, printf

Reserve words and corresponding token

```
"int" {INT}
"main" { MAIN }
"void" { VOID }
"break" { BREAK }
"do" { DO }
"else" { ELSE }
"if" { IF }
"while" { WHILE }
"return" { RETRUN }
"scanf" { READ }
"printf" { WRITE }
```

Special symbols are the following:

Special symbols and corresponding token

```
"{" { LBRACE }
"}" { RBRACE }
"[" { LSQUARE }
"]" { RSQUARE }
"(" { LPAR }
")" { RPAR
";" { SEMI }
"+" { PLUS }
"-" { MINUS }
"*" { MUL_OP }
"/" { DIV OP }
"&" { AND_OP }
"|" { OR_OP }
"!" { NOT_OP }
"=" { ASSIGN }
"<" { LT }
">" { GT }
"<<" { SHL_OP }
">>" { SHR OP }
"==" { EQ }
"!=" { NOTEQ }
"<=" { LTEQ }
">=" { GTEQ }
"&&" { ANDAND
"||" { OROR }
"," { COMMA }
Other tokens are INT_NUM, ID, defined by the following regular expressions:
digit
             [0-9]
            [a-z A-Z]
letter
             =
INT_NUM
                    [+|-]? [digit]<sup>+</sup>
```

[letter] + [digit | letter | _]*

Evaluation

ID

1. Technique Report 20%; Source Code 80%

- 2. In source code part, If you can get Token-List from Assignment 2 (Scanner generate from LEX), you can get 60% score; If you can show the correctness of program, you can get 85% score; If you can not only show the correctness of program, but construct a parsing tree, you can get 100% score.
- 3. You can choose LL(1) or LALR(1), 10 bonus points for LL(1) parser.
- 4. By implementing the parser, you will **only have a** shift / reduce conflict when the grammars NO.17 **[if() / if()else]** is encountered. Therefore, you need to handle the conflict when you implement your PARSER. The default solution is When you match('else'), you should shift.

 When you match('other tokens'), you should reduce.
- 5. Comment in Parser should be avoided.

Format

1. Technique Report

Please turn in a report(in PDF format) includes

- Cover
- Purpose
- Method and Design
- Experiment Environment
- Results and Analysis
- What you have learned

You need to describes how to execute your program in the report.

2. Source Code

Please upload your work to Blackboard

Create a package named as your student ID

Your package should include:

/Source code

/Makefile // If you need.

/Readme

Evaluation

Technique Report 20% (A4 not less than 10 pages)

Source Code 80%

(Base: 60% + Output Display & Source Code Comments: 20%)

Due date: 2021.04.14

Do not copy or you will get 0 point