9 1/0端口

概述

S3C2440A有130个多功能输入/输出端口引脚,八个端口如下所示:

- 。— 端口 A(GPA):25位输出端口
- 。— 端口 B(GPB):11位输入/输出端口
- 。— 端口 C(GPC):16位输入/输出端口
- 。— 端口 D(GPD):16位输入/输出端口
- 。— 端口 E(GPE):16位输入/输出端口
- 。— 端口 F(GPF):8位输入/输出端口
- 。— 端口 G(GPG):16位输入/输出端口
- 。— 端口 H(GPH):9位输入/输出端口
- 。— 端口 J(GPJ):13位输入/输出端口

为了满足各种不同的系统设计需求,每个端口可以很容易地通过软件配置。每个引脚的功能应在启动主程序前进行定义。如果一个引脚无复用功能,该引脚可定义成输入/输出端口。

要避免问题引脚应进行完全初始化配置

表 9-1. S3C2440A 端口结构 (1-5)

端口A	引脚可选功能			
GPA22	仅输出	nFCE	_	-
GPA21	仅输出	nRSTOUT	nRSTOUT	
GPA20	仅输出	nFRE	-	_
GPA19	仅输出	nFWE	_	_
GPA18	仅输出	ALE	-	_
GPA17	仅输出	CLE	-	_
GPA16	仅输出	nGCS5	-	_
GPA15	仅输出	nGCS4	_	_
GPA14	仅输出	nGCS3	_	_
GPA13	仅输出	nGCS2	_	_
GPA12	仅输出	nGCS1 – -		_
GPA11	仅输出	ADDR26 –		_
GPA10	仅输出	ADDR25 – -		_
GPA9	仅输出	ADDR24 – –		_
GPA8	仅输出	ADDR23 – –		_
GPA7	仅输出	ADDR22	-	_
GPA6	仅输出	ADDR21	_	_
GPA5	仅输出	ADDR20	_	-
GPA4	仅输出	ADDR19	_	-
GPA3	仅输出	ADDR18 – –		_
GPA2	仅输出	ADDR17 – –		_
GPA1	仅输出	ADDR16		
GPA0	仅输出	ADDR0	_	_

表 9-1. S3C2440A 端口结构 (2-5)

端口 B	引脚可选功能			
GPB10	输入/输出	nXDREQ0 – –		_
GPB9	输入/输出	nXDACK0	-	_
GPB8	输入/输出	nXDREQ1	-	_
GPB7	输入/输出	nXDACK1	-	_
GPB6	输入/输出	nXBREQ	-	_
GPB5	输入/输出	nXBACK	-	_
GPB4	输入/输出	TCLK0	-	_
GPB3	输入/输出	TOUT3	_	_
GPB2	输入/输出	TOUT2	_	_
GPB1	输入/输出	TOUT1	_	_
GPB0	输入/输出	TOUT0	_	_

端口 C	引脚可选功能			
GPC15	输入/输出	VD7 – –		-
GPC14	输入/输出	VD6	ı	_
GPC13	输入/输出	VD5	ı	_
GPC12	输入/输出	VD4	ı	_
GPC11	输入/输出	VD3	ı	_
GPC10	输入/输出	VD2	ı	_
GPC9	输入/输出	VD1	ı	_
GPC8	输入/输出	VD0	ı	_
GPC7	输入/输出	LCD_LPCREVB	ı	_
GPC6	输入/输出	LCD_LPCREV	ı	_
GPC5	输入/输出	LCD_LPCOE	ı	_
GPC4	输入/输出	VM	ı	_
GPC3	输入/输出	VFRAME	-	_
GPC2	输入/输出	VLINE	_	_
GPC1	输入/输出	VCLK	_	_
GPC0	输入/输出	LEND	_	_

表 9-1. S3C2440A 端口结构 (3-5)

端口 D		引脚可选功能		
GPD15	输入/输出	VD23	nSS0	_
GPD14	输入/输出	VD22	nSS1	_
GPD13	输入/输出	VD21	_	_
GPD12	输入/输出	VD20	_	_
GPD11	输入/输出	VD19	_	_
GPD10	输入/输出	VD18	SPICLK1	_
GPD9	输入/输出	VD17	SPIMOSI1	_
GPD8	输入/输出	VD16	SPIMISO1	_
GPD7	输入/输出	VD15	_	_
GPD6	输入/输出	VD14	_	_
GPD5	输入/输出	VD13	_	_
GPD4	输入/输出	VD12	_	_
GPD3	输入/输出	VD11	_	_
GPD2	输入/输出	VD10	_	_
GPD1	输入/输出	VD9	_	_
GPD0	输入/输出	VD8	_	_

端口 E	引脚可选功能				
GPE15	输入/输出	IICSDA –			
GPE14	输入/输出	IICSCL	ı		
GPE13	输入/输出	SPICLK0	ı		
GPE12	输入/输出	SPIMOSI0	-		
GPE11	输入/输出	SPIMISO0	-		
GPE10	输入/输出	SDDAT3	-	_	
GPE9	输入/输出	SDDAT2	-		
GPE8	输入/输出	SDDAT1	-	_	
GPE7	输入/输出	SDDAT0	ı		
GPE6	输入/输出	SDCMD	-	_	
GPE5	输入/输出	SDCLK	ı	_	
GPE4	输入/输出	I2SSDO	AC_SDATA_OUT		
GPE3	输入/输出	I2SSDI	AC_SDATA_IN	_	
GPE2	输入/输出	CDCLK	AC_nRESET	_	
GPE1	输入/输出	I2SSCLK AC_BIT_CLK		-	
GPE0	输入/输出	I2SLRCK	AC_SYNC	_	

表 9-1. S3C2440A 端口结构 (4-5)

端口 F	引脚可选功能			
GPF7	输入/输出	EINT7	ı	_
GPF6	输入/输出	EINT6	ı	_
GPF5	输入/输出	EINT5	ı	_
GPF4	输入/输出	EINT4	ı	_
GPF3	输入/输出	EINT3	ı	_
GPF2	输入/输出	EINT2		
GPF1	输入/输出	EINT1		
GPF0	输入/输出	EINT0		

端口 G		引脚可选功能		
GPG15	输入/输出	EINT23	_	_
GPG14	输入/输出	EINT22	_	_
GPG13	输入/输出	EINT21	_	_
GPG12	输入/输出	EINT20	_	_
GPG11	输入/输出	EINT19	TCLK1	_
GPG10	输入/输出	EINT18	nCTS1	_
GPG9	输入/输出	EINT17	nRTS1	_
GPG8	输入/输出	EINT16	_	_
GPG7	输入/输出	EINT15	SPICLK1	_
GPG6	输入/输出	EINT14	SPIMOSI1	_
GPG5	输入/输出	EINT13	SPIMISO1	_
GPG4	输入/输出	EINT12	LCD_PWREN	_
GPG3	输入/输出	EINT11	nSS1	_
GPG2	输入/输出	EINT10	nSS0	_
GPG1	输入/输出	EINT9	_	_
GPG0	输入/输出	EINT8	_	_

表 9-1. S3C2440A 端口结构 (5-5)

端口 H	引脚可选功能			
GPH10	输入/输出	CLKOUT1	-	_
GPH9	输入/输出	CLKOUT0	-	_
GPH8	输入/输出	UEXTCLK	-	_
GPH7	输入/输出	RXD2	nCTS1	_
GPH6	输入/输出	TXD2	nRTS1	_
GPH5	输入/输出	RXD1	-	_
GPH4	输入/输出	TXD1	-	_
GPH3	输入/输出	RXD0	_	_
GPH2	输入/输出	TXD0	_	_
GPH1	输入/输出	nRTS0	_	_
GPH0	输入/输出	nCTS0	_	_

端口 J	引脚可选功能			
GPJ12	输入/输出	CAMRESET		-
GPJ11	输入/输出	CAMCLKOUT	_	_
GPJ10	输入/输出	CAMHREF	_	_
GPJ9	输入/输出	CAMVSYNC	_	_
GPJ8	输入/输出	CAMPCLK	_	_
GPJ7	输入/输出	CAMDATA7	_	_
GPJ6	输入/输出	CAMDATA6	_	_
GPJ5	输入/输出	CAMDATA5	_	_
GPJ4	输入/输出	CAMDATA4	_	_
GPJ3	输入/输出	CAMDATA3	_	_
GPJ2	输入/输出	CAMDATA2	_	_
GPJ1	输入/输出	CAMDATA1	_	_
GPJ0	输入/输出	CAMDATA0	_	_

端口控制描述

端口配置寄存器 (GPACON-GP.JCON)

在S3C2440A 中,大部份引脚是多功能引脚。 因此,每个引脚应选择各自的功能。 PnCON(端口控制寄存器) 决定每个引脚功能。

如果PEO-PE7作为掉电唤醒信号,这些端口应配置成中断方式。

端口数据寄存器(GPADAT-GPJDAT)

如果端口被配置当输出端口,数据能被写到PnDAT的对应位。 如果端口被配置当输入端口,数据能从PnDAT的对应位被读。

端口上拉寄存器(GPBUP-GPJUP)

端口上拉寄存器控制每个端口的上拉电阻使能或禁止。 当对应的位是0的时候,该位引脚的上拉电阻使能。为1时上拉电阻无效。

如果端口上拉寄存器被使能,无论端口被配置成何种工作方式 (输入,输出, DATAn, EINTn 和及其他),上拉电阻都会起作用。

其它控制寄存器

这一个寄存器在休眠状态控制数据端口上拉电阻, USB pad, CLKOUT选项。

外部的中断控制寄存器

24个外部的中断以不同的信号方式申请。EXTINT 寄存器配置外部中断请求在低电平触发, 高电平触发,下降沿触发,上升沿触发和双边沿触发。

因为每个外部的中断引脚有一个数字滤波器,中断控制器能识别请求比 3个时钟长的信号。

EINT[15:0] 作为唤醒源。

输入/输出端口控制寄存器

端口A控制寄存器(GPACON, GPADAT)

寄存器	地址	R/W	描述	复位值
GPACON	0x56000000	R/W	配置端口A引脚	0xffffff
GPADAT	0x56000004	R/W	端口A数据寄存器	Undef.
保留	0x56000008	-	保留	Undef
保留	0x5600000c	-	保留	Undef

GPACON	Bit		描述
GPA24	[24]	保留	
GPA23	[23]	保留	
GPA22	[22]	0 = 输出	1 = nFCE
GPA21	[21]	0 = 输出	1 = nRSTOUT
GPA20	[20]	0 = 输出	1 = nFRE
GPA19	[19]	0 = 输出	1 = nFWE
GPA18	[18]	0 = 输出	1 = ALE
GPA17	[17]	0 = 输出	1 = CLE
GPA16	[16]	0 = 输出	1 = nGCS[5]
GPA15	[15]	0 = 输出	1 = nGCS[4]
GPA14	[14]	0 = 输出	1 = nGCS[3]
GPA13	[13]	0 = 输出	1 = nGCS[2]
GPA12	[12]	0 = 输出	1 = nGCS[1]
GPA11	[11]	0 = 输出	1 = ADDR26
GPA10	[10]	0 = 输出	1 = ADDR25
GPA9	[9]	0 = 输出	1 = ADDR24
GPA8	[8]	0 = 输出	1 = ADDR23
GPA7	[7]	0 = 输出	1 = ADDR22
GPA6	[6]	0 = 输出	1 = ADDR21
GPA5	[5]	0 = 输出	1 = ADDR20
GPA4	[4]	0 = 输出	1 = ADDR19
GPA3	[3]	0 = 输出	1 = ADDR18
GPA2	[2]	0 = 输出	1 = ADDR17
GPA1	[1]	0 = 输出	1 = ADDR16
GPA0	[0]	0 = 输出	1 = ADDR0

注意: GPA21 信号电平取决VDDOP, 其他引脚(GPA0~20, GPA22~24)取决VDDMOP。

端口A控制寄存器(GPACON,GPADAP)(续表)

GPADAT	bit	描述
GPA[24: 0]	[24: 0]	当端口配置成输出端口时,引脚状态对应于相应位。 当端口按照功能引脚配置时,读得值不确定

注: nRSTOUT=nRESET&nWDTRST&SW_RESET

端口 B 控制寄存器 (GPBCON, GPBDAT, GPBUP)

寄存器	地址	R/W	描述	复位值
GPBCON	0x56000010	R/W	配置端口B引脚	0x0
GPBDAT	0x56000014	R/W	端口B数据寄存器	Undef.
GPBUP	0x56000018	R/W	端口B上拉阻止寄存器	0x0
保留	0x5600001c			

PBCON	Bit		描述
GPB10	[21:20]	00 = Input 10 = nXDREQ0	01 = Output 11 = 保留
GPB9	[19:18]	00 = Input 10 = nXDACK0	01 = Output 11 = 保留
GPB8	[17:16]	00 = Input 10 = nXDREQ1	01 = Output 11 = 保留
GPB7	[15:14]	00 = Input 10 = nXDACK1	01 = Output 11 = 保留
GPB6	[13:12]	00 = Input 10 = nXBREQ	01 = Output 11 = 保留
GPB5	[11:10]	00 = Input 10 = nXBACK	01 = Output 11 = 保留
GPB4	[9:8]	00 = Input 10 = TCLK [0]	01 = Output 11 = 保留
GPB3	[7:6]	00 = Input 10 = TOUT3	01 = Output 11 = 保留
GPB2	[5:4]	00 = Input 10 = TOUT2	01 = Output 11 = 保留
GPB1	[3:2]	00 = Input 10 = TOUT1	01 = Output 11 = 保留
GPB0	[1:0]	00 = Input 10 = TOUT0	01 = Output 11 = 保留

GPBDAT	Bit	描述
GPB[10:0]	[10:0]	当端口按照输入端口配置时,相应位即引脚状态。 当端口按照输出端口配置时,相应位即引脚状态。 当端口按照功能引脚配置时,读得值不确定

GPBUP	Bit	描述
-------	-----	----

GPB[10:0]	[10:0]	0: 对应端口引脚上上拉功能使能 1: 上拉功能禁止
-----------	--------	-------------------------------

端口C控制寄存器 (GPCCON, GPCDAT, GPCUP)

寄存器	地址	R/W	描述	复位值
GPCCON	0x56000020	R/W	配置端口C引脚	0x0
GPCDAT	0x56000024	R/W	端口C数据寄存器	Undef.
GPCUP	0x56000028	R/W	端口C上拉阻止寄存器	0x0
保留	0x5600002c	-	-	_

GPCCON	Bit		描述
GPC15	[31:30]	00 = Input 10 = VD[7]	01 = Output 11 = 保留
GPC14	[29:28]	00 = Input 10 = VD[6]	01 = Output 11 = 保留
GPC13	[27:26]	00 = Input 10 = VD[5]	01 = Output 11 = 保留
GPC12	[25:24]	00 = Input 10 = VD[4]	01 = Output 11 = 保留
GPC11	[23:22]	00 = Input 10 = VD[3]	01 = Output 11 = 保留
GPC10	[21:20]	00 = Input 10 = VD[2]	01 = Output 11 = 保留
GPC9	[19:18]	00 = Input 10 = VD[1]	01 = Output 11 = 保留
GPC8	[17:16]	00 = Input 10 = VD[0]	01 = Output 11 = 保留
GPC7	[15:14]	00 = Input 10=LCD_LPCREVB	01 = Output 11 = 保留
GPC6	[13:12]	00 = Input 10 = LCD_LPCREV	01 = Output 11 = 保留
GPC5	[11:10]	00 = Input 10 = LCD_LPCOE	01 = Output 11 = 保留
GPC4	[9:8]	00 = Input 10 = VM	01 = Output 11 = I2SSDI
GPC3	[7:6]	00 = Input 10 = VFRAME	01 = Output 11 = 保留
GPC2	[5:4]	00 = Input 10 = VLINE	01 = Output 11 = 保留

GPC1	[3:2]	00 = Input 10 = VCLK	01 = Output 11 = 保留
GPC0	[1:0]	00 = Input 10 = LEND	01 = Output 11 = 保留

端口C控制寄存器 (GPCCON, GPCDAT, GPCUP) (续表)

GPCDAT	Bit	00 = Input 01 = Output 10 = VLINE 11 = 保留
GPC[15:0]	[15:0]	当端口按照输入端口配置时,相应位即引脚状态。 当端口按照输出端口配置时,相应位即引脚状态。 当端口按照功能引脚配置时,读得值不确定

GPCUP	Bit	00 = Input 01 = Output 10 = VLINE 11 = 保留
GPC[15:0]	[15:0]	0: 对应端口引脚上拉功能使能 1: 上拉功能禁止

端口D控制寄存器 (GPDCON, GPDDAT, GPDUP)

寄存器	地址	R/W	描述	复位值
GPDCON	0x56000030	R/W	配置端口D引脚	0x0
GPDDAT	0x56000034	R/W	端口D数据寄存器	Undef.
GPDUP	0x56000038	R/W	端口D上拉阻止寄存器	0xf000
保留	0x5600003c	-	_	_

GPDCON	Bit		描述
GPD15	[31:30]	00 = Input 10 = VD[23]	01 = Output 11 = nSS0
GPD14	[29:28]	00 = Input 10 = VD[22]	01 = Output 11 = nSS1
GPD13	[27:26]	00 = Input 10 = VD[21]	01 = Output 11 = 保留
GPD12	[25:24]	00 = Input 10 = VD[20]	01 = Output 11 = 保留
GPD11	[23:22]	00 = Input 10 = VD[19]	01 = Output 11 = 保留
GPD10	[21:20]	00 = Input 10 = VD[18]	01 = Output 11 = SPICLK1
GPD9	[19:18]	00 = Input 10 = VD[17]	01 = Output 11 = SPIMOSI1
GPD8	[17:16]	00 = Input 10 = VD[16]	01 = Output 11 = SPIMISO1
GPD7	[15:14]	00 = Input 10 = VD[15]	01 = Output 11 = 保留
GPD6	[13:12]	00 = Input 10 = VD[14]	01 = Output 11 = 保留
GPD5	[11:10]	00 = Input 10 = VD[13]	01 = Output 11 = 保留
GPD4	[9:8]	00 = Input 10 = VD[12]	01 = Output 11 = 保留
GPD3	[7:6]	00 = Input 10 = VD[11]	01 = Output 11 = 保留
GPD2	[5:4]	00 = Input 10 = VD[10]	01 = Output 11 = 保留

GPD1	[3:2]	00 = Input 10 = VD[9]	01 = Output 11 = 保留
GPD0	[1:0]	00 = Input 10 = VD[8]	01 = Output 11 = 保留

端口D控制寄存器 (GPCCON, GPCDAT, GPCUP) (续表)

GPDDAT	Bit	描述
GPD[15:0]	[15:0]	当端口按照输入端口配置时,相应位即引脚状态。 当端口按照输出端口配置时,相应位即引脚状态。 当端口按照功能引脚配置时,读得值不确定

GPDUP	Bit	描述
GPD[15:0]	[15:0]	0: 对应端口引脚上拉功能使能 1: 上拉功能禁止

端口E控制寄存器 (GPECON, GPEDAT, GPEUP)

寄存器	地址	R/W	描述	复位值
GPECON	0x56000040	R/W	配置端口D引脚	0x0
GPEDAT	0x56000044	R/W	端口D数据寄存器	Undef.
GPEUP	0x56000048	R/W	端口D上拉阻止寄存器	0x0000
保留	0x5600004c	_	-	_

GPECON	Bit	描述	
GPE15	[31:30]	00 = Input 01 = Output 10 = IICSDA 11 = 保留 此引脚开路,无上拉电阻	
GPE14	[29:28]	00 = Input 01 = Output 10 = IICSCL 11 = 保留 此引脚开路,无上拉电阻	
GPE13	[27:26]	00 = Input 01 = Output 10 = SPICLK0 11 = 保留	
GPE12	[25:24]	00 = Input 01 = Output 10 = SPIMOSI0 11 = 保留	
GPE11	[23:22]	00 = Input 01 = Output 10 = SPIMISO0 11 = 保留	
GPE10	[21:20]	00 = Input 01 = Output 10 = SDDAT3 11 = 保留	
GPE9	[19:18]	00 = Input 01 = Output 10 = SDDAT2 11 = 保留	
GPE8	[17:16]	00 = Input 01 = Output 10 = SDDAT1 11 = 保留	
GPE7	[15:14]	00 = Input	
GPE6	[13:12]	00 = Input	
GPE5	[11:10]	00 = Input 01 = Output 10 = SDCLK 11 = 保留	
GPE4	[9:8]	00 = Input 01 = Output	

		10 = I2SDO	11 = AC_SDATA_OUT	
GPE3	[7:6]	00 = Input 10 = I2SDI	01 = Output 11 = AC_SDATA_IN	
GPE2	[5:4]	00 = Input 10 = CDCLK	01 = Output 11 = AC_nRESET	

GPE1	[3:2]	00 = Input 10 = I2SSCLK	01 = Output 11 = AC_BIT_CLK
GPE0	[1:0]	00 = Input 10 = I2SLRCK	01 = Output 11 = AC_SYNC

端口E控制寄存器 (GPECON, GPEDAT, GPEUP)

GPEDAT	Bit	描述
GPE[15:0]	[15:0]	当端口按照输入端口配置时,相应位即引脚状态。 当端口按照输出端口配置时,相应位即引脚状态。 当端口按照功能引脚配置时,读得值不确定

GPEUP	Bit	描述
GPE[13:0]	[13:0]	0: 对应端口引脚上拉功能使能 1: 上拉功能禁止

端口F控制寄存器 (GPFCON, GPEDAT)

如果 GPF0-GPF7作为掉电唤醒信号,端口将会在中断模态中被设定。

寄存器	地址	R/W	描述	复位值
GPFCON	0x56000050	R/W	配置端口F引脚	0x0
GPFDAT	0x56000054	R/W	端口F数据寄存器	Undef.
GPFUP	0x56000058	R/W	端口F上拉阻止寄存器	0x000
保留	0x5600005c	_	-	_

GPFCON	Bit		描述
GPF7	[15:14]	00 = Input 10 = EINT[7]	01 = Output 11 = 保留
GPF6	[13:12]	00 = Input 10 = EINT[6]	01 = Output 11 = 保留
GPF5	[11:10]	00 = Input 10 = EINT[5]	01 = Output 11 = 保留
GPF4	[9:8]	00 = Input 10 = EINT[4]	01 = Output 11 = 保留
GPF3	[7:6]	00 = Input 10 = EINT[3]	01 = Output 11 = 保留
GPF2	[5:4]	00 = Input 10 = EINT2]	01 = Output 11 = 保留
GPF1	[3:2]	00 = Input 10 = EINT[1]	01 = Output 11 = 保留
GPF0	[1:0]	00 = Input 10 = EINT[0]	01 = Output 11 = 保留

GPFDAT	Bit	描述描述
GPF[7:0]	[7:0]	当端口按照输入端口配置时,相应位即引脚状态。 当端口按照输出端口配置时,相应位即引脚状态。 当端口按照功能引脚配置时,读得值不确定

GPFDAT	Bit	描述
GPF[7:0]	[7:0]	0:对应端口引脚上拉功能使能 1:上拉功能禁止

端口G 控制寄存器 (GPGCON, GPGDAT)

如果 GPG0-GPG7作为休眠唤醒信号,端口将会在中断模态中被设定。

寄存器	地址	R/W	描述	复位值
GPGCON	0x56000060	R/W	配置端口G引脚	0x0
GPGDAT	0x56000064	R/W	端口G数据寄存器	Undef.
GPGUP	0x56000068	R/W	端口G上拉阻止寄存器	0xfc00

GPGCON	Bit		描述
GPG15*	[31:30]	00 = Input 10 = EINT[23]	01 = Output 11 = 保留
GPG14*	[29:28]	00 = Input 10 = EINT[22]	01 = Output 11 = 保留
GPG13*	[27:26]	00 = Input 10 = EINT[21]	01 = Output 11 = 保留
GPG12	[25:24]	00 = Input 10 = EINT[20]	01 = Output 11 = 保留
GPG11	[23:22]	00 = Input 10 = EINT[19]	01 = Output 11 = TCLK[1]
GPG10	[21:20]	00 = Input 10 = EINT[18]	01 = Output 11 = nCTS1
GPG9	[19:18]	00 = Input 10 = EINT[17]	01 = Output 11 = nRTS1
GPG8	[17:16]	00 = Input 10 = EINT[16]	01 = Output 11 = 保留
GPG7	[15:14]	00 = Input 10 = EINT[15]	01 = Output 11 = SPICLK1
GPG6	[13:12]	00 = Input 10 = EINT[14]	01 = Output 11 = SPIMOSI1
GPG5	[11:10]	00 = Input 10 = EINT[13]	01 = Output 11 = SPIMISO1

GPG4	[9:8]	00 = Input 0 = EINT[12]	01 = Output 11 = LCD_PWRDN
GPG3	[7:6]	00 = Input 10 = EINT[11]	01 = Output 11 = nSS1
GPG2	[5:4]	00 = Input 10 = EINT[10]	01 = Output 11 = nSS0
GPG1	[3:2]	00 = Input 10 = EINT[9]	01 = Output 11 = 保留
GPG0	[1:0]	00 = Input 10 = EINT[8]	01 = Output 11 = 保留

注: 在NAND引导方式时, GPG[15: 13]必须选择输入

端口G控制寄存器(GPGCON, GPGDAT)(续表)

GPGDAT	Bit	描述
GPG[15:0]	[15:0]	当端口按照输入端口配置时,相应位即引脚状态。 当端口按照输出端口配置时,相应位即引脚状态。 当端口按照功能引脚配置时,读得值不确定

GPGDAT	Bit	描述
GPG[15:0]	[15:0]	0:对应端口引脚上拉功能使能 1:上拉功能禁止

端口H控制寄存器 (GPFCON, GPEDAT)

寄存器	地址	R/W	描述	复位值
GPHCON	0x56000070	R/W	配置端口H引脚	0x0
GPHDAT	0x56000074	R/W	端口H数据寄存器	Undef.
GPHUP	0x56000078	R/W	端口H上拉阻止寄存器	0x000
保留	0x5600007c	ı	-	_

GPHCON	Bit		描述
GPH10	[21:20]	00 = Input 10 = CLKOUT1	01 = Output 11 = 保留
GPH9	[19:18]	00 = Input 10 = CLKOUT0	01 = Output 11 = 保留
GPH8	[17:16]	00 = Input 10 = UEXTCLK	01 = Output 11 = 保留
GPH7	[15:14]	00 = Input 10 = RXD[2]	01 = Output 11 = nCTS1
GPH6	[13:12]	00 = Input 10 = TXD[2]	01 = Output 11 = nRTS1
GPH5	[11:10]	00 = Input 10 = RXD[1]	01 = Output 11 = 保留
GPH4	[9:8]	00 = Input 10 = TXD[1]	01 = Output 11 = 保留
GPH3	[7:6]	00 = Input 10 = RXD[0]	01 = Output 11 = 保留
GPH2	[5:4]	00 = Input 10 = TXD[0]	01 = Output 11 = 保留
GPH1	[3:2]	00 = Input 10 = nRTS0	01 = Output 11 = 保留
GPH0	[1:0]	00 = Input 10 = nCTS0	01 = Output 11 = 保留

GPHDAT	Bit	描述
--------	-----	----

GPH[10:0]	[10:0]	当端口按照输入端口配置时,相应位即引脚状态。 当端口按照输出端口配置时,相应位即引脚状态。
		当端口按照功能引脚配置时,读得值不确定

GPHDAT	Bit	描述
GPH[10:0]	[10:0]	0: 对应端口引脚上拉功能使能 1: 上拉功能禁止

端口J控制寄存器(GPJCON, GPJDAT)

	地址	R/W	描述	复位值
GPJCON	0x560000d0	R/W	配置端口J引脚	0x0
GPJDAT	0x560000d4	R/W	端口J数据寄存器	Undef.
GPJUP	0x560000d8	R/W	端口J上拉阻止寄存器	0x0000
保留	0x560000dc	-	-	_

GPJCON	Bit		描述
GPJ12	[25:24]	00 = Input 10 = CAMRESET	01 = Output 11 = 保留
GPJ11	[23:22]	00 = Input 10 = CAMCLKOUT	01 = Output 11 = 保留
GPJ10	[21:20]	00 = Input 10 = CAMHREF	01 = Output 11 = 保留
GPJ9	[19:18]	00 = Input 10 = CAMVSYNC	01 = Output 11 = 保留
GPJ8	[17:16]	00 = Input 10 = CAMPCLK	01 = Output 11 = 保留
GPJ7	[15:14]	00 = Input 10 = CAMDATA[7]	01 = Output 11 = 保留
GPJ6	[13:12]	00 = Input 10 = CAMDATA[6]	01 = Output 11 = 保留
GPJ5	[11:10]	00 = Input 10 = CAMDATA[5]	01 = Output 11 = 保留
GPJ4	[9:8]	00 = Input 10 = CAMDATA[4]	01 = Output 11 = 保留
GPJ3	[7:6]	00 = Input 10 = CAMDATA[3]	01 = Output 11 = 保留
GPJ2	[5:4]	00 = Input 10 = CAMDATA[2]	01 = Output 11 = 保留
GPJ1	[3:2]	00 = Input 10 = CAMDATA[1]	01 = Output 11 = 保留
GPJ0	[1:0]	00 = Input 10 = CAMDATA[0]	01 = Output 11 = 保留

端口J控制寄存器(GPJCON, GPJDAT)(续表)

GPJDAT	Bit	描述
GPJ 15:0]	[12:0]	当端口按照输入端口配置时,相应位即引脚状态。 当端口按照输出端口配置时,相应位即引脚状态。 当端口按照功能引脚配置时,读得值不确定

GPJUP	Bit	描述
GPJ[12:0]	[12:0]	0: 对应端口引脚上拉功能使能 1: 上拉功能禁止

注: 表中红字15: 0]是否应改为[12:0]

杂项控制寄存器(MISCCR)

在休眠方式,数据总线(D[31:0] 或 D[15:0])能被设成高阻和0输出。 但是,由于I0引脚的特点,填补的特性,数据数据总线上拉电阻必须被打开或关闭减少耗电量。 D[31:0] 引脚上拉电阻可通过MISCCR 寄存器控制。

主USB被这一个寄存器控制,或对于USB装置。

寄存器	地址	R/W	描述	复位值
MISCCR	0x56000080	R/W	Miscellaneous control 寄存器	0x10020

MISCCR	Bit	描述	复位值
保留	[24]	Reserve to 0.	0
保留	[23]	Reserve to 0.	0
BATT_FUNC	[22:20]	电池功能选择 OXX:在nBATT_FLT=0时,系统处于复位状态,在复位之后改变位的值,此位用于防止电池故障。 10X:在休眠方式,当nBATT_FLT=0,系统被唤醒到正常方式。当nBATT_FLT=0电池故障中断发生。 110:在休眠方式,当nBATT_FLT=0,系统不理睬所有的唤醒(系统不能通过唤醒源唤醒).在正常方式 nBATT_FLT 信号不能影响系统 111: nBATT_FLT 功能禁止.	000
OFFREFRESH	[19]	0: Self refresh retain disable 1: Self refresh retain enable When 1, 在休眠唤醒之后, The self-refresh will be retained.	0
nEN_SCLK1	[18]	SCLK1输出使能 0: SCLK1 = SCLK 1: SCLK1 = 0	0
nEN_SCLK0	[17]	SCLK0输出使能 0: SCLK0 = SCLK 1: SCLK 0 = 0	0

nRSTCON	[16]	nRSTOUT信号手动控制 0: nRSTOUT信号为低电平 ('0') 1: nRSTOUT 信号为高电平 ('1')	1
保留	[15:14]	-	00
SEL_SUSPND1	[13]	USB 端口 1 挂起方式 0 = 正常方式 1 = 挂起方式	0
SEL_SUSPND0	[12]	USB 端口 0 挂起方式 0 = 正常方式 1 = 挂起方式	0

杂项控制寄存器 (MISCCR)(续表)

MISCCR	Bit	描述	复位值
CLKSEL1 (Note)	[10:8]	Select source clock with CLKOUT1 pad 000 = MPLL output 001 = UPLL output 010 = RTC clock output 011 = HCLK 100 = PCLK 101 = DCLK1 11x = 保留	000
保留	[7]	-	0
CLKSEL0 (Note)	[6:4]	Select source clock with CLKOUT0 pad 000 = MPLL INPUT Clock(XTAL) 001 = UPLL output 010 = FCLK 011 = HCLK 100 = PCLK 101 = DCLK0 11x = 保留	010
SEL_USBPAD	[3]	USB1 Host/Device select 寄存器. 0 = Use USB1 as device 1 = Use USB1 as host	0
保留	[2]	保留	0
SPUCR1	[1]	0 = DATA[31:16] 端口 pull-up resister is enabled 1 = DATA[31:16] 端口 pull-up resister is disabled	0
SPUCR0	[0]	0 = DATA[15:0] 端口 pull-up resister is enabled 1 = DATA[15:0] 端口 pull-up resister is disabled	0

注意: 我们推荐不要再使用对其他的装置 pl1 时钟来源的这一个 ouput 填补。

DCLK控制寄存器 (DCLKCON)

寄存器	地址	R/W	描述	复位值
DCLKCON	0x56000084	R/W	DCLK0/1 control 寄存器	0x0

DCLKCON	Bit	描述		
DCLK1CMP	[27:24]	DCLK1 compare value clock toggle value. (< DCLK1DIV) If the DCLK1CMP is n, 低电平 duration is(n + 1), 高电平 duration is((DCLK1DIV + 1) –(n +1))		
DCLK1DIV	[23:20]	DCLK1 divide value DCLK1 frequency = source clock /(DCLK1DIV + 1)		
DCLK1SelCK	[17]	Select DCLK1 source clock 0 = PCLK 1 = UCLK(USB)		
DCLK1EN	[16]	DCLK1 enable 0 = DCLK1 disable 1 = DCLK1 enable		
DCLK0CMP	[11:8]	DCLK0 compare value clock toggle value.(< DCLK0DIV) 若DCLK0CMP=n, 低电平持续时间(n + 1), 高电平持续时间((DCLK0DIV + 1) –(n +1))		
DCLK0DIV	[7:4]	DCLK0 divide value. DCLK0 frequency = source clock /(DCLK0DIV + 1)		
DCLK0SelCK	[1]	Select DCLK0 source clock 0 = PCLK 1 = UCLK(USB)		
DCLK0EN	[0]	DCLK0 enable 0 = DCLK0 disable 1 = DCLK0 enable		

EXTINTn(外部的中断控制寄存器 n)

8个外部的中断能被各种不同的方法作信号请求。EXTINT 寄存器按照电平触发或外部中断申请 边沿触发配置信号方式, 配置信号极性。

要确认中断等级,在EXTINTn 引脚上正确的逻辑电平必须保留40 ns噪音滤波。

寄存器	地址	R/W	描述	复位值
EXTINT0	0x56000088	R/W	外部中断控制寄存器 0	0x000000
EXTINT1	0x5600008c	R/W	外部中断控制寄存器 1	0x000000
EXTINT2	0x56000090	R/W	外部中断控制寄存器 2	0x000000

EXTINT0	Bit	描述
EINT7	[30:28]	设置EINT7的信号方式. 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发
EINT6	[26:24]	设置EINT6的信号方式. 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发
EINT5	[22:20]	设置EINT5的信号方式. 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发
EINT4	[18:16]	设置EINT4的信号方式. 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发

EINT3	[14:12]	设置EINT3的信号方式. 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发
EINT2	[10:8]	设置EINT2的信号方式. 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发
EINT1	[6:4]	设置EINT1的信号方式. 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发
EINT0	[2:0]	设置EINTO的信号方式. 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发

EXTINTn(外部的中断控制寄存器 n) (续表)

EXTINT1	Bit	描述
FLTEN15	[31]	EINT15滤波器使能 0 = 无滤波器 1 = 滤波器使能
EINT15	[30:28]	设置EINT15的信号方式. 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发
FLTEN14	[27]	EINT14滤波器使能 0 = 无滤波器 1 = 滤波器使能
EINT14	[26:24]	设置EINT14的信号方式. 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发
FLTEN13	[23]	EINT13滤波器使能 0 = 无滤波器 1 = 滤波器使能
EINT13	[22:20]	设置EINT13.的信号方式 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发
FLTEN12	[19]	EINT12滤波器使能 0 = 无滤波器 1 = 滤波器使能
EINT12	[18:16]	设置EINT12的信号方式. 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发
FLTEN11	[15]	EINT11滤波器使能 0 = 无滤波器 1 = 滤波器使能

EINT11	[14:12]	设置EINT11的信号方式. 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发
FLTEN10	[11]	EINT10滤波器使能 0 = 无滤波器 1 = 滤波器使能
EINT10	[10:8]	设置EINT10的信号方式. 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发
FLTEN9	[7]	EINT9滤波器使能 0 = 无滤波器 1 = 滤波器使能
EINT9	[6:4]	设置EINT9的信号方式 . 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发
FLTEN8	[3]	EINT8滤波器使能 0 = 无滤波器 1 = 滤波器使能
EINT8	[2:0]	设置EINT8的信号方式. 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发

EXTINTn(外部的中断控制寄存器 n)(续表)

EXTINT2	Bit	描述	复位值
FLTEN23	[31]	EINT23滤波器使能 0 = 无滤波器 1= 滤波器使能	0
EINT23	[30:28]	设置EINT23的信号方式 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发	000
FLTEN22	[27]	EINT22滤波器使能 0 = 无滤波器 1= 滤波器使能	0
EINT22	[26:24]	设置EINT22的信号方式 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发	000
FLTEN21	[23]	EINT21滤波器使能 0 = 无滤波器 1= 滤波器使能	0
EINT21	[22:20]	设置EINT21的信号方式 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发	000
FLTEN20	[19]	EINT20滤波器使能 0 = 无滤波器 1= 滤波器使能	0

EINT20	[18:16]	设置EINT20的信号方式 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发	000
FLTEN19	[15]	EINT19滤波器使能 0 = 无滤波器 1= 滤波器使能	0
EINT19	[14:12]	设置EINT19的信号方式 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发	000
FLTEN18	[11]	EINT18滤波器使能 0 = 无滤波器 1= 滤波器使能	0
EINT18	[10:8]	设置EINT18的信号方式 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发	000

EXTINTn(外部的中断控制寄存器 n)(续表)

EXTINT2	Bit	描述	复位值
FLTEN17	[7]	EINT17滤波器使能 0 = 无滤波器 1= 滤波器使能	0
EINT17	[6:4]	设置EINT17的信号方式. 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发	000
FLTEN16	[3]	EINT16滤波器使能 0 = 无滤波器 1= 滤波器使能	0
EINT16	[2:0]	设置EINT16的信号方式. 000 = 低电平 001 = 高电平 01x = 下降沿触发 10x = 上升沿触发 11x = 边沿触发	000

EINTFLTn(外部的中断滤波寄存器 n)

要确认中断等级,在EXTINTn 引脚上正确的逻辑电平必须保留40 ns噪音滤波。

寄存器	地址	R/W	描述	复位值
EINTFLT0	0x56000094	R/W	保留	0x000000
EINTFLT1	0x56000098	R/W	保留	0x000000
EINTFLT2	0x5600009c	R/W	外部中断控制 寄存器 2	0x000000
EINTFLT3	0x4c6000a0	R/W	外部中断控制 寄存器 3	0x000000

EINTFLT2	Bit	描述
EINTFLT19	[30:24]	EINT19滤波宽度
FLTCLK18	[23]	EINT18滤波时钟(通过OM设置) 0 = PCLK 1= EXTCLK/OSC_CLK
EINTFLT18	[22:16]	EINT18滤波宽度
FLTCLK17	[15]	EINT17滤波时钟(通过OM设置) 0 = PCLK 1= EXTCLK/OSC_CLK
EINTFLT17	[14:8]	EINT17滤波宽度
FLTCLK16	[7]	滤波时钟EINT16 (通过OM设置) 0 = PCLK 1= EXTCLK/OSC_CLK
EINTFLT16	[6:0]	滤波宽度EINT16

EINTFLT3	Bit	描述
FLTCLK23	[31]	滤波时钟EINT23 (通过OM设置) 0 = PCLK 1= EXTCLK/OSC_CLK
EINTFLT23	[30:24]	滤波宽度EINT23
FLTCLK22	[23]	滤波时钟EINT22 (通过OM设置) 0 = PCLK 1= EXTCLK/OSC_CLK
EINTFLT22	[22:16]	滤波宽度EINT22
FLTCLK21	[15]	滤波时钟EINT21(通过OM设置) 0 = PCLK 1= EXTCLK/OSC_CLK
EINTFLT21	[14:8]	滤波宽度EINT21
FLTCLK20	[7]	滤波时钟EINT20 (通过OM设置) 0 = PCLK 1= EXTCLK/OSC_CLK
EINTFLT20	[6:0]	滤波宽度EINT20

EINTMASK(外部中断屏蔽寄存器)

寄存器	地址	R/W	描述	复位值
EINTMASK	0x560000a4	R/W	外部中断屏蔽寄存器	0x000fffff

EINTMASK	Bit		描述	
EINT23	[23]	0=允许中断	1=屏蔽中断	
EINT22	[22]	0=允许中断	1=屏蔽中断	
EINT21	[21]	0=允许中断	1=屏蔽中断	
EINT20	[20]	0=允许中断	1=屏蔽中断	
EINT19	[19]	0=允许中断	1=屏蔽中断	
EINT18	[18]	0=允许中断	1=屏蔽中断	
EINT17	[17]	0=允许中断	1=屏蔽中断	
EINT16	[16]	0=允许中断	1=屏蔽中断	
EINT15	[15]	0=允许中断	1=屏蔽中断	
EINT14	[14]	0=允许中断	1=屏蔽中断	
EINT13	[13]	0=允许中断	1=屏蔽中断	
EINT12	[12]	0=允许中断	1=屏蔽中断	
EINT11	[11]	0=允许中断	1=屏蔽中断	
EINT10	[10]	0=允许中断	1=屏蔽中断	
EINT9	[9]	0=允许中断	1=屏蔽中断	

EINT8	[8]	0=允许中断	1=屏蔽中断
EINT7	[7]	0=允许中断	1=屏蔽中断
EINT6	[6]	0=允许中断	1=屏蔽中断
EINT5	[5]	0=允许中断	1=屏蔽中断
EINT4	[4]	0=允许中断	1=屏蔽中断
保留	[3:0]	保留	

EINTPEND (外部中断挂起寄存器)

寄存器	地址	R/W	描述	复位值
EINTPEND	0x560000a8	R/W	外部中断挂起寄存器	0x00

EINTPEND	Bit	描述	复位值
EINT23	[23]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
EINT22	[22]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
EINT21	[21]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
EINT20	[20]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
EINT19	[19]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
EINT18	[18]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
EINT17	[17]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
EINT16	[16]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
EINT15	[15]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0

zaiwu0000@126.com

EINT14	[14]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
EINT13	[13]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
EINT12	[12]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
EINT11	[11]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
EINT10	[10]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
EINT9	[9]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
EINT8	[8]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
EINT7	[7]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
EINT6	[6]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
EINT5	[5]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
EINT4	[4]	通过写"1"清除 0 = 没发生中断 1 = 发生中断	0
保留	[3:0]	保留	0000

GSTATUSn (通用状态寄存器)

寄存器	地址	R/W	描述	复位值
GSTATUS0	0x560000ac	R	外部引脚状态	Not define
GSTATUS1	0x560000b0	R	芯片 ID	0x32440001
GSTATUS2	0x560000b4	R/W	复位状态	0x1
GSTATUS3	0x560000b8	R/W	通知寄存器	0x0
GSTATUS4	0x560000bc	R/W	通知寄存器	0x0

GSTATUS0	Bit	描述
nWAIT	[3]	nWAIT 引脚 状态
NCON	[2]	NCON 引脚状态
RnB	[1]	RnB 引脚状态
BATT_FLT	[0]	BATT_FLT 引脚状态

GSTATUS1	Bit	描述
CHIPID	[0]	ID寄存器=0x32440001

GSTATUS2	Bit	描述
----------	-----	----

保留	[3]	保留	
WDTRST	[2]	Boot is caused by Watch Dog Reset cleared by writing "1"	
SLEEPRST	[1]	Boot is caused by wakeup reset in sleep mode cleared by writing "1".	
PWRST	[0]	Boot is caused by power on reset cleared by writing "1"	

GSTATUS3	Bit	描述		
inform	[31: 0]	通知寄存器。通过电源复位清除。保护数据。		

GSTATUS3	Bit	描述		
inform	[31: 0]	通知寄存器。通过电源复位清除。保护数据。		

DSCn (DriveStrength Control)

控制存储器I/0驱动电流

寄存器	地址	R/W	描述	复位值
DSC0	0x560000c4	R/W	电流控制寄存器 0	0x0
DSC1	0x560000c8	R/W	电流控制寄存器 1	0x0

DSC0	Bit	描述	复位值
nEN_DSC	[31]	驱动电流控制使能 0: enable 1: Disable	0
保留	[30:10]	_	0
DSC_ADR	[9:8]	地址 Bus 驱动电流 00: 12mA 10: 10mA 01: 8mA	00
DSC_DATA3	[7:6]	DATA[31:24] I/O 驱动电流 00: 12mA 10: 10mA 01: 8mA	00
DSC_DATA2	[5:4]	DATA[23:16] I/O 驱动电流 00: 12mA 10: 10mA 01: 8mA	00

DSC_DATA1	[3:2]	DATA[15:8] I/O 驱动电流 00: 12mA 10: 10mA 01: 8mA	6mA	00
DSC_DATA0	[1:0]	DATA[7:0] I/O 驱动电流 00: 12mA 10: 10mA 01: 8mA	6mA	00

DSCn (驱动电流控制)

DSC1	Bit	描述	复位值
DSC_SCK1	[29:28]	SCLK1 驱动电流 00: 12mA 10: 10mA 01: 8mA 11: 6mA	00
DSC_SCK0	[27:26]	SCLK0 驱动电流 00: 12mA 10: 10mA 01: 8mA 11: 6mA	00
DSC_SCKE	[25:24]	SCKE 驱动电流 00: 10mA 10: 8mA 01: 6mA 11: 4mA	00
DSC_SDR	[23:22]	nSRAS/nSCAS 驱动电流 00: 10mA 10: 8mA 01: 6mA 11: 4mA	00
DSC_NFC	[21:20]	Nand flash control drive strength (nFCE, nFRE, nFWE, CLE, ALE). 00: 10mA 10: 8mA 01: 6mA 11: 4mA	00
DSC_BE	[19:18]	nBE[3:0] 驱动电流 00: 10mA 10: 8mA 01: 6mA 11: 4mA	00
DSC_WOE	[17:16]	nWE/nOE 驱动电流 00: 10mA 10: 8mA 01: 6mA 11: 4mA	00

DSC_CS7	[15:14]	nGCS7 驱动电流 00: 10mA 10: 8mA 01: 6mA 11: 4mA	00
DSC_CS6	[13:12]	nGCS6 驱动电流 00: 10mA 10: 8mA 01: 6mA 11: 4mA	00
DSC_CS5	[11:10]	nGCS5 驱动电流 00: 10mA 10: 8mA 01: 6mA 11: 4mA	00
DSC_CS4	[9:8]	nGCS4 驱动电流 00: 10mA 10: 8mA 01: 6mA 11: 4mA	00
DSC_CS3	[7:6]	nGCS3 驱动电流 00: 10mA 10: 8mA 01: 6mA 11: 4mA	00
DSC_CS2	[5:4]	nGCS2 驱动电流 00: 10mA 10: 8mA 01: 6mA 11: 4mA	00
DSC_CS1	[3:2]	nGCS1 驱动电流 00: 10mA 10: 8mA 01: 6mA 11: 4mA	00
DSC_CS0	[1:0]	nGCS0 驱动电流 00: 10mA 10: 8mA 01: 6mA 11: 4mA	00

MSLCON (存储器休眠控制寄存器)

寄存器	地址	R/W	描述	复位值
MSLCON	0x560000cc	R/W	存储器休眠寄存器	0x0

MSLCON	Bit	描述	复位值
PSC_DATA	[11]	DATA[31:0] 引脚状态(休眠方式下). 0: 高阻 1: 输出 "0".	0
PSC_WAIT	[10]	nWAIT 引脚状态(休眠方式下). 0: 输入 1: 输出 "0"	0
PSC_RnB	[9]	RnB 引脚状态(休眠方式下). 0: 输入1: 输出 "0"	0
PSC_NF	[8]	NAND Flash I/F 引脚状态(休眠方式下) (nFCE,nFRE,nFWE,ALE,CLE). 0: Inactive(nFCE,nFRE,nFWE,ALE,CLE = 11100) 1: 高阻	0

PSC_SDR	[7]	nSRAS, nSCAS 引脚状态(休眠方式下). 0: Inactive("1") 1: 高阻	0
PSC_DQM	[6]	DQM[3:0]/nWE[3:0] 引脚状态(休眠方式下). 0: Inactive 1: 高阻	0
PSC_OE	[5]	nOE 引脚状态(休眠方式下). 0: Inactive("1") 1: 高阻	0
PSC_WE	[4]	nWE 引脚状态(休眠方式下). 0: Inactive("1") 1: 高阻	0
PSC_GCS0	[3]	nGCS[0] 引脚状态(休眠方式下). 0: Inactive("1") 1: 高阻	0
PSC_GCS51	[2]	nGCS[5:1] 引脚状态(休眠方式下). 0: Inactive("1") 1: 高阻	0
PSC_GCS6	[1]	nGCS[6] 引脚状态(休眠方式下). 0: Inactive("1") 1: 高阻	0
PSC_GCS7	[0]	nGCS[7] 引脚状态(休眠方式下). 0: Inactive("1") 1: 高阻	0

后记

由于工作需要,逼着鸭子上架,对S3C2440数据手册第九部分进行了翻译,由于本人水平有限,译文肯定存在很多毛病,故,在此将译文以word格式及原文的PDF格式发到网上。仅供参考,望各位高人指点。

<u>zaiwu2000@126.com</u> 2008年3月13日星期四