#### Contents

| 1 | Basic       1.1 .vimrc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Data Structure  2.1 Bigint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3 | Graph  3.1 Tarjan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4 | Flow         6           4.1 ISAP         6           4.2 Dinic         6           4.3 Bipartite Matching (Augmenting Path)         6           4.4 Kuhn Munkres         7           4.5 SW-Mincut         8           4.6 Maximum Simple Graph Matching         8           4.7 Minimum Weight Matching (Clique version)         9           4.8 2-Commodity Flow         9           4.9 (+1) SW-mincut O(NM)         10                                                                                       |
| 5 | Math         16           5.1 ax+by=gcd         16           5.2 Chinese Remainder         17           5.3 Fast Fourier Transform         17           5.4 (+1) ntt         17           5.5 Mod         17           5.6 (+1) Miller Rabin         17           5.7 (+1) Pollard Rho         17           5.8 Algorithms about Primes         17           5.9 (+1) PolynomialGenerator         17           5.10Gauss Elimination         17           5.11Simplex         17           5.12Theorom         18 |
| 6 | Geometry         14           6.1 Point operators         14           6.2 Intersection of two circles         14           6.3 Intersection of two lines         14           6.4 Half Plane Intersection         15           6.5 Point Class         16           6.6 Convex Hull         16           6.7 Minimum Covering Circle         16           6.8 (+1) KDTreeAndNearestPoint         16                                                                                                              |
| 7 | Stringology       1         7.1 Suffix Array       1         7.2 Suffix Array (SAIS TWT514)       1         7.3 Aho-Corasick Algorithm       18         7.4 Z value       1         7.5 Z value (palindrome ver.)       18         7.6 Lexicographically Smallest Rotation       19         7.7 Suffix Automaton       19                                                                                                                                                                                         |
| 8 | Problems  8.1 Find the maximum tangent (x,y is increasing)                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### 1 Basic

## 1.1 .vimrc

#### 1.2 IncreaseStackSize

```
//stack resize
asm( "mov %0, %%esp\n" :: "g"(mem+10000000) );
//change esp to rsp if 64-bit system

//stack resize (linux)
#include <sys/resource.h>
void increase_stack_size() {
   const rlim_t ks = 64*1024*1024;
   struct rlimit rl;
   int res=getrlimit(RLIMIT_STACK, &rl);
   if(res==0){
     if(rl.rlim_cur<ks){
       rl.rlim_cur=ks;
       res=setrlimit(RLIMIT_STACK, &rl);
   }
   }
}</pre>
```

# 1.3 Default Code

```
#include<bits/stdc++.h>
#include<unistd.h>
using namespace std;
#define FZ(n) memset((n),0,sizeof(n))
#define FMO(n) memset((n),-1,sizeof(n))
#define F first
#define S second
#define PB push_back
#define ALL(x) begin(x),end(x)
#define SZ(x) ((int)(x).size())
\begin{tabular}{ll} \beg
template<typename A, typename B>
ostream& operator <<(ostream &s, const pair<A,B> &p) {
         return s<<"("<<p.first<<","<<p.second<<")";</pre>
template<typename T>
ostream& operator <<(ostream &s, const vector<T> &c) {
         s<<"/";
         for (auto it : c) s << it << " ";</pre>
         s<<"j";
         return s;
// Let's Fight!
int main() {
                  return 0;
}
```

#### 2 Data Structure

# 2.1 Bigint

```
struct Bigint{
  static const int LEN = 60;
  static const int BIGMOD = 10000;
  int s;
  int v1, v[LEN];
  // vector<int> v;
  Bigint() : s(1) \{ vl = 0; \}
  Bigint(long long a) {
   s = 1; v1 = 0;
    if (a < 0) { s = -1; a = -a; }
    while (a) {
      push_back(a % BIGMOD);
      a /= BIGMOD;
  Bigint(string str) {
    s = 1; v1 = 0;
    int stPos = 0, num = 0;
    if (!str.empty() && str[0] == '-') {
      stPos = 1;
      s = -1;
    for (int i=SZ(str)-1, q=1; i>=stPos; i--) {
  num += (str[i] - '0') * q;
      if ((q *= 10) >= BIGMOD) {
        push_back(num);
        num = 0; q = 1;
    if (num) push_back(num);
  int len() const {
   return vl:
         return SZ(v);
  bool empty() const { return len() == 0; }
  void push_back(int x) {
   v[vl++] = x;
         v.PB(x);
    //
  void pop_back() {
   v1--;
        v.pop_back();
  int back() const {
   return v[v1-1];
    //
         return v.back();
  void n() {
    while (!empty() && !back()) pop_back();
  void resize(int nl) {
   v1 = n1;
    fill(v, v+vl, 0);
         v.resize(nl);
   //
          fill(ALL(v), 0);
  void print() const {
    if (empty()) { putchar('0'); return; }
    if (s == -1) putchar('-');
    printf("%d", back());
    for (int i=len()-2; i>=0; i--) printf("%.4d",v[i]);
  friend std::ostream& operator << (std::ostream& out,</pre>
     const Bigint &a) {
    if (a.empty()) { out << "0"; return out; }</pre>
    if (a.s == -1) out << "-";</pre>
    out << a.back();</pre>
    for (int i=a.len()-2; i>=0; i--) {
      char str[10];
      snprintf(str, 5, "%.4d", a.v[i]);
      out << str;
```

```
return out:
int cp3(const Bigint &b)const {
  if (s != b.s) return s > b.s;
  if (s == -1) return -(-*this).cp3(-b);
  if (len() != b.len()) return len()>b.len()?1:-1;
  for (int i=len()-1; i>=0; i--)
   if (v[i]!=b.v[i]) return v[i]>b.v[i]?1:-1;
  return 0;
bool operator < (const Bigint &b)const{ return cp3(b)</pre>
    ==-1; }
bool operator == (const Bigint &b)const{ return cp3(b
    )==0; }
bool operator > (const Bigint &b)const{ return cp3(b)
    ==1: }
Bigint operator - () const {
  Bigint r = (*this);
  r.s = -r.s;
  return r;
Bigint operator + (const Bigint &b) const {
  if (s == -1) return -(-(*this)+(-b));
  if (b.s == -1) return (*this)-(-b);
  Bigint r;
  int nl = max(len(), b.len());
  r.resize(nl + 1);
  for (int i=0; i<nl; i++) {</pre>
    if (i < len()) r.v[i] += v[i];</pre>
    if (i < b.len()) r.v[i] += b.v[i];</pre>
    if(r.v[i] >= BIGMOD) {
     r.v[i+1] += r.v[i] / BIGMOD;
      r.v[i] %= BIGMOD;
    }
  r.n();
  return r;
Bigint operator - (const Bigint &b) const {
  if (s == -1) return -(-(*this)-(-b));
  if (b.s == -1) return (*this)+(-b);
  if ((*this) < b) return -(b-(*this));</pre>
  Bigint r;
  r.resize(len());
  for (int i=0; i<len(); i++) {</pre>
    r.v[i] += v[i];
    if (i < b.len()) r.v[i] -= b.v[i];</pre>
    if (r.v[i] < 0) {</pre>
      r.v[i] += BIGMOD;
      r.v[i+1]--;
   }
  }
  r.n();
  return r;
Bigint operator * (const Bigint &b) {
  Bigint r;
  r.resize(len() + b.len() + 1);
  r.s = s * b.s;
  for (int i=0; i<len(); i++) {</pre>
    for (int j=0; j<b.len(); j++) {</pre>
      r.v[i+j] += v[i] * b.v[j];
      if(r.v[i+j] >= BIGMOD) {
        r.v[i+j+1] += r.v[i+j] / BIGMOD;
        r.v[i+j] %= BIGMOD;
      }
   }
  r.n();
  return r;
Bigint operator / (const Bigint &b) {
  r.resize(max(1, len()-b.len()+1));
  r.s = s * b.s;
  for (int i=r.len()-1; i>=0; i--) {
    int d=0, u=BIGMOD-1;
    while(d<u) {</pre>
      int m = (d+u+1)>>1;
      r.v[i] = m;
```

```
if((r*b) > (*this)) u = m-1;
  else d = m;
}
  r.v[i] = d;
}
  r.n();
  return r;
}
Bigint operator % (const Bigint &b) {
  return (*this)-(*this)/b*b;
}
};
```

#### 2.2 unordered map

```
struct Key {
  int first, second;
  Key () {}
  Key (int _x, int _y) : first(_x), second(_y) {}
bool operator == (const Key &b) const {
    return tie(F,S) == tie(b.F,b.S);
 }
struct KeyHasher {
  size_t operator()(const Key& k) const {
    return k.first + k.second*100000;
};
typedef unordered_map<Key,int,KeyHasher> map_t;
int main(int argc, char** argv){
 map_t mp;
  for (int i=0; i<10; i++)</pre>
    mp[Key(i,0)] = i+1;
  for (int i=0; i<10; i++)</pre>
    printf("%d \mid n", mp[Key(i,0)]);
  return 0;
```

# 2.3 extc balance tree

```
#include <bits/extc++.h>
using namespace __gnu_pbds;
typedef tree<int,null_type,less<int>,rb_tree_tag,
    tree_order_statistics_node_update> set_t;
int main()
{
  // Insert some entries into s.
  set_t s;
  s.insert(12);
  s.insert(505):
 // The order of the keys should be: 12, 505.
  assert(*s.find_by_order(0) == 12);
  assert(*s.find_by_order(3) == 505);
 // The order of the keys should be: 12, 505.
 assert(s.order_of_key(12) == 0);
  assert(s.order_of_key(505) == 1);
 // Erase an entry.
 s.erase(12);
  // The order of the keys should be: 505.
  assert(*s.find_by_order(0) == 505);
  // The order of the keys should be: 505.
  assert(s.order_of_key(505) == 0);
}
```

#### 2.4 Treap

```
struct Node{
  int pri,num,cnt,lc,rc;
  Node () : pri(-1), num(0), cnt(0), lc(0), rc(0) {}
  Node (int _num){
    pri = (rand()<<15) + rand();</pre>
    num = _num;
cnt = 1;
    1c = rc = 0;
}tree[MX];
int nMem;
int get_rand(){
  return (rand()<<15) + rand();</pre>
int get_node(){
  tree[nMem] = Node();
  if (nMem >= MX) while(1);
  return nMem++;
void upd_node(int rt){
  if (!rt) return ;
  int lc=tree[rt].lc;
  int rc=tree[rt].rc;
  tree[rt].cnt = tree[lc].cnt + tree[rc].cnt + 1;
int merge(int a, int b){
  if (!a) return b;
  if (!b) return a;
  int res=0:
  if (tree[a].pri > tree[b].pri){
    res = a; //get_node();
tree[res] = tree[a];
    tree[res].rc = merge(tree[res].rc,b);
  } else {
    res = b; //get_node();
    tree[res] = tree[b];
    tree[res].lc = merge(a,tree[res].lc);
  upd_node(res);
  return res;
pair<int,int> split(int a, int k){
  if (k == 0) return {0,a};
  if (k == tree[a].cnt) return {a,0};
  int lc=tree[a].lc, rc=tree[a].rc;
  pair<int,int> res;
  int np=a; //get_node();
  //tree[np] = tree[a];
  if (tree[lc].cnt >= k){
    res = split(lc,k);
    tree[np].lc = res.S;
    res.S = np;
  } else {
    res = split(rc,k-tree[lc].cnt-1);
    tree[np].rc = res.F;
    res.F = np:
  upd_node(res.F);
  upd_node(res.S);
  return res;
```

# 2.5 Heavy Light Decomposition

```
// only one segment tree / no 0/1 base issue
// getPathSeg return the segment in order u->v
// fa[root] = root
typedef pair<int,int> pii;
int N,fa[MXN],belong[MXN],dep[MXN],sz[MXN],que[MXN];
int step,line[MXN],stPt[MXN],edPt[MXN];
vector<int> E[MXN], chain[MXN];

void DFS(int u){
   vector<int> &c = chain[belong[u]];
```

```
for (int i=c.size()-1; i>=0; i--){
    int v = c[i];
    stPt[v] = step;
    line[step++] = v;
  for (int i=0; i<(int)c.size(); i++){</pre>
    u = c[i];
    for (auto v : E[u]){}
      if (fa[u] == v || (i && v == c[i-1])) continue;
      DFS(v);
    edPt[u] = step-1;
 }
void build_chain(int st){
 int fr,bk;
  fr=bk=0; que[bk++] = 1; fa[st]=st; dep[st]=0;
  while (fr < bk){</pre>
    int u=que[fr++];
    for (auto v : E[u]){}
      if (v == fa[u]) continue;
      que[bk++] = v;
      dep[v] = dep[u]+1;
      fa[v] = u;
   }
  for (int i=bk-1,u,pos; i>=0; i--){
    u = que[i]; sz[u] = 1; pos = -1;
    for (auto v : E[u]){
      if (v == fa[u]) continue;
      sz[u] += sz[v];
      if (pos==-1 || sz[v]>sz[pos]) pos=v;
    if (pos == -1) belong[u] = u;
    else belong[u] = belong[pos];
    chain[belong[u]].PB(u);
  step = 0;
 DFS(st);
int getLCA(int u, int v){
 while (belong[u] != belong[v]){
    int a = chain[belong[u]].back();
    int b = chain[belong[v]].back();
    if (dep[a] > dep[b]) u = fa[a];
    else v = fa[b];
 }
  return sz[u] >= sz[v] ? u : v;
vector<pii> getPathSeg(int u, int v){
  vector<pii> ret1,ret2;
  while (belong[u] != belong[v]){
    int a = chain[belong[u]].back();
    int b = chain[belong[v]].back();
    if (dep[a] > dep[b]){
      ret1.PB({stPt[a],stPt[u]});
      u = fa[a];
    } else +
      ret2.PB({stPt[b],stPt[v]});
      v = fa[b];
   }
 if (dep[u] > dep[v]) swap(u,v);
  ret1.PB({stPt[u],stPt[v]});
  reverse(ret2.begin(), ret2.end());
  ret1.insert(ret1.end(),ret2.begin(),ret2.end());
  return ret1;
// Usage
void build(){
  build_chain(1); //change root
  init(0,step,0); //init segment tree
int get_answer(int u, int v){
  int ret = -2147483647;
  vector<pii> vec = getPathSeg(u,v);
  for (auto it : vec)
    ; // check answer with segment [it.F, it.S]
  return ret;
```

# 3 Graph

# 3.1 Tarjan

```
const int MAXV = 101000;
int V. E:
vector<int> el[MAXV];
int dfn[MAXV], low[MAXV], did;
bool ins[MAXV];
stack<int> st;
int scc[MAXV], scn;
void tarjan(int u){
  cout << u << endl;</pre>
  dfn[u] = low[u] = ++did;
  st.push(u); ins[u] = true;
  for(int i=0; i<(int)el[u].size(); i++){</pre>
    int v = el[u][i];
    if(!dfn[v]){
      tarjan(v);
      low[u] = min(low[u], low[v]);
    }else if(ins[v]){
      low[u] = min(low[u], dfn[v]);
  }
  if(dfn[u] == low[u]){
    int v;
    do{
      v = st.top();
      st.pop();
      scc[v] = scn;
      ins[v] = false;
    }while(v != u);
    scn ++;
}
void calcscc(){
  did = scn = 0;
  for(int i=0; i<V; i++){</pre>
    if(!dfn[i]) tarjan(i);
}
```

# 3.2 Strongly Connected Components

```
struct Scc{
  int n, nScc, vst[MXN], bln[MXN];
  vector<int> E[MXN], rE[MXN], vec;
  void init(int _n){
    n = _n;
for (int i=0; i<MXN; i++){</pre>
      E[i].clear();
      rE[i].clear();
    }
  void add_edge(int u, int v){
    E[u].PB(v);
    rE[v].PB(u);
  void DFS(int u){
    vst[u]=1;
    for (auto v : E[u])
      if (!vst[v]) DFS(v);
    vec.PB(u);
  void rDFS(int u){
    vst[u] = 1;
    bln[u] = nScc;
    for (auto v : rE[u])
      if (!vst[v]) rDFS(v);
  void solve(){
    nScc = 0;
    vec.clear();
```

```
FZ(vst);
    for (int i=0; i<n; i++)
        if (!vst[i]) DFS(i);
    reverse(vec.begin(),vec.end());
    FZ(vst);
    for (auto v : vec){
        if (!vst[v]){
            rDFS(v);
            nScc++;
        }
    }
}</pre>
```

## 3.3 DMST\_with\_sol

```
const int INF = 1029384756;
struct edge_t{
 int u,v,w;
 set< pair<int,int> > add, sub;
  edge_t() : u(-1), v(-1), w(0) {}
 edge_t(int _u, int _v, int _w) {
   u = _u; v = _v; w = _w;
   add.insert({u, v});
  edge_t& operator += (const edge_t& obj) {
    w += obj.w;
    FOR (it, obj.add) {
      if (!sub.count(*it)) add.insert(*it);
      else sub.erase(*it);
    FOR (it, obj.sub) {
      if (!add.count(*it)) sub.insert(*it);
      else add.erase(*it);
    return *this;
 edge_t& operator -= (const edge_t& obj) {
    w -= obj.w;
    FOR (it, obj.sub) {
     if (!sub.count(*it)) add.insert(*it);
      else sub.erase(*it);
    for (auto it : obj.add) {
      if (!add.count(it)) sub.insert(it);
      else add.erase(it);
    return *this;
}eg[MXN*MXN],prv[MXN],EDGE_INF(-1,-1,INF);
int N,M;
int cid,incyc[MXN],contracted[MXN];
vector<int> E[MXN];
edge_t dmst(int rt){
 edge_t cost;
  for (int i=0; i<N; i++){</pre>
    contracted[i] = incyc[i] = 0;
    prv[i] = EDGE_INF;
 cid = 0:
 int u,v;
 while (true){
    for (v=0; v<N; v++){</pre>
      if (v != rt && !contracted[v] && prv[v].w == INF)
           break;
    if (v >= N) break; // end
    for (int i=0; i<M; i++){</pre>
      if (eg[i].v == v && eg[i].w < prv[v].w)</pre>
        prv[v] = eg[i];
    if (prv[v].w == INF) // not connected
      return EDGE_INF;
    cost += prv[v];
    for (u=prv[v].u; u!=v && u!=-1; u=prv[u].u);
    if (u == -1) continue;
    incyc[v] = ++cid;
    for (u=prv[v].u; u!=v; u=prv[u].u){
```

```
contracted[u] = 1:
      incyc[u] = cid;
    for (int i=0; i<M; i++){</pre>
      if (incyc[eg[i].u] != cid && incyc[eg[i].v] ==
          cid){
        eg[i] -= prv[eg[i].v];
      }
    for (int i=0; i<M; i++){</pre>
      if (incyc[eg[i].u] == cid) eg[i].u = v;
      if (incyc[eg[i].v] == cid) eg[i].v = v;
      if (eg[i].u == eg[i].v) eg[i--] = eg[--M];
    for (int i=0; i<N; i++){</pre>
      if (contracted[i]) continue;
      if (prv[i].u>=0 && incyc[prv[i].u] == cid)
        prv[i].u = v;
    prv[v] = EDGE_INF;
  return cost;
}
void solve(){
  edge_t cost = dmst(0);
  for (auto it : cost.add){ // find a solution
    E[it.F].PB(it.S);
    prv[it.S] = edge_t(it.F,it.S,0);
}
```

#### 3.4 Maximum Clique

```
class MaxClique {
public:
    static const int MV = 210;
    int V:
    int el[MV][MV/30+1];
    int dp[MV];
    int ans;
    int s[MV][MV/30+1];
    vector<int> sol;
    void init(int v) {
        V = v; ans = 0;
        FZ(el); FZ(dp);
    /* Zero Base */
    void addEdge(int u, int v) {
         if(u > v) swap(u, v);
         if(u == v) return;
         el[u][v/32] |= (1<<(v%32));
    bool dfs(int v, int k) {
         int c = 0, d = 0;
         for(int i=0; i<(V+31)/32; i++) {</pre>
             s[k][i] = el[v][i];
             if(k != 1) s[k][i] &= s[k-1][i];
             c += __builtin_popcount(s[k][i]);
         if(c == 0) {
             if(k > ans) {
                 ans = k;
                 sol.clear();
                 sol.push back(v);
                 return 1;
             }
             return 0;
         for(int i=0; i<(V+31)/32; i++) {</pre>
             for(int a = s[k][i]; a; d++) {
                 if(k + (c-d) <= ans) return 0;
int lb = a&(-a), lg = 0;</pre>
                 a ^= lb;
                 while(lb!=1) {
                      lb = (unsigned int)(lb) >> 1;
```

```
lg ++:
                 int u = i*32 + lg;
                 if(k + dp[u] <= ans) return 0;</pre>
                 if(dfs(u, k+1)) {
                      sol.push_back(v);
                      return 1;
             }
        return 0:
    }
    int solve() {
        for(int i=V-1; i>=0; i--) {
             dfs(i, 1);
             dp[i] = ans;
         return ans;
    }
};
```

# 3.5 (+1) MinimumMeanCycle

```
/* minimum mean cycle */
class Edge { public:
  int v,u;
  double c;
int n,m;
Edge e[MAXEDGE];
double d[MAXNUM][MAXNUM];
inline void relax(double &x,double val) { if(val<x) x=</pre>
    val; }
inline void bellman_ford() {
  int i,j;
  for(j=0;j<n;j++) d[0][j]=0.0;</pre>
  for(i=0;i<n;i++) {</pre>
    for(j=0;j<n;j++) d[i+1][j]=inf;</pre>
    for(j=0;j<m;j++)</pre>
      if(d[i][e[j].v]<inf-eps) relax(d[i+1][e[j].u],d[i</pre>
           11
           e[j].v]+e[j].c);
  }
inline double karp_mmc() {
 // returns inf if no cycle, mmc otherwise
  int i,k; double mmc=inf,avg;
  bellman_ford();
  for(i=0;i<n;i++) {</pre>
    avg=0.0;
    for(k=0;k<n;k++) {</pre>
      if(d[n][i]<inf-eps) avg=max(avg,(d[n][i]-d[k][i])</pre>
           /(
             n-k));
      else avg=max(avg,inf);
    mmc=min(mmc,avg);
  return mmc;
```

#### 4 Flow

#### 4.1 ISAP

```
struct Isap{
    static const int MXN = 10000;
    struct Edge{ int v,f,re; };
    int n,s,t,h[MXN],gap[MXN];
    vector<Edge> E[MXN];
    void init(int _n, int _s, int _t){
        n = _n; s = _s; t = _t;
        for (int i=0; i<n; i++) E[i].clear();
    }
    void add_edge(int u, int v, int f){</pre>
```

```
E[u].PB({v,f,SZ(E[v])});
    E[v].PB({u,0,SZ(E[u])-1});
  int DFS(int u, int nf, int res=0){
    if (u == t) return nf;
    for (auto &it : E[u]){
      if (h[u]==h[it.v]+1 && it.f>0){
        int tf = DFS(it.v,min(nf,it.f));
         res += tf; nf -= tf; it.f -= tf;
        E[it.v][it.re].f += tf;
         if (nf == 0) return res;
      }
    if (nf){
      if (--gap[h[u]] == 0) h[s]=n;
      gap[++h[u]]++;
    return res;
  int flow(int res=0){
    FZ(h); FZ(gap);
    gap[0] = n;
    while (h[s] < n) res += DFS(s,2147483647);
    return res;
}flow;
```

#### 4.2 Dinic

```
struct Dinic{
  static const int MXN = 10000;
  struct Edge{ int v,f,re; };
  int n,s,t,level[MXN];
  vector<Edge> E[MXN];
  void init(int _n, int _s, int _t){
    n = _n;    s = _s;    t = _t;
    for (int i=0; i<n; i++) E[i].clear();</pre>
  void add_edge(int u, int v, int f){
    E[u].PB({v,f,SZ(E[v])});
    E[v].PB({u,0,SZ(E[u])-1});
  bool BFS(){
    FMO(level);
    queue<int> que;
    que.push(s);
    level[s] = 0;
    while (!que.empty()){
      int u = que.front(); que.pop();
       for (auto it : E[u]){
         if (it.f > 0 && level[it.v] == -1){
           level[it.v] = level[u]+1;
           que.push(it.v);
      }
    }
    return level[t] != -1;
  int DFS(int u, int nf){
    if (u == t) return nf;
    int res = 0;
    for (auto &it : E[u]){
      if (it.f > 0 && level[it.v] == level[u]+1){
         int tf = DFS(it.v, min(nf,it.f));
         res += tf; nf -= tf; it.f -= tf;
         E[it.v][it.re].f += tf;
         if (nf == 0) return res;
      }
    if (!res) level[u] = -1;
    return res;
  int flow(int res=0){
    while ( BFS() )
      res += DFS(s,2147483647);
    return res;
}flow;
```

# 4.3 Bipartite Matching (Augmenting Path)

```
bool DFS(int u){
  for (auto v : E[u]){}
    if (!vst[v]){
      vst[v]=1:
      if (match[v] == -1 || DFS(match[v])){
        match[v] = u;
        match[u] = v;
        return true;
      }
   }
  return false;
int DoMatch(int res=0){
 memset(match,-1,sizeof(match));
  for (int i=1; i<=N; i++){</pre>
    if (match[i] == -1){
      memset(vst,0,sizeof(vst));
      DFS(i);
   }
  for (int i=1; i<=N; i++)</pre>
   if (match[i] != -1) res++;
  return res;
```

#### 4.4 Kuhn Munkres

```
struct KM{
// Maximum Bipartite Weighted Matching (Perfect Match)
  static const int MXN = 650;
  static const int INF = 2147483647; // long long
  int n, match[MXN], vx[MXN], vy[MXN];
  int edge[MXN][MXN],lx[MXN],ly[MXN],slack[MXN];
  // ^^^^ Long Long
  void init(int _n){
   n = _n;
for (int i=0; i<n; i++)</pre>
      for (int j=0; j<n; j++)</pre>
        edge[i][j] = 0;
  void add_edge(int x, int y, int w){ // Long Long
    edge[x][y] = w;
  bool DFS(int x){
    vx[x] = 1;
    for (int y=0; y<n; y++){</pre>
      if (vy[y]) continue;
      if (1x[x]+1y[y] > edge[x][y]){
        slack[y] = min(slack[y], lx[x]+ly[y]-edge[x][y
            1);
      } else {
        vy[y] = 1;
        if (match[y] == -1 || DFS(match[y])){
          match[y] = x;
          return true;
        }
      }
    return false;
  int solve(){
    fill(match, match+n, -1);
    fill(lx,lx+n,-INF);
    fill(ly,ly+n,0);
    for (int i=0; i<n; i++)</pre>
      for (int j=0; j<n; j++)</pre>
        lx[i] = max(lx[i], edge[i][j]);
    for (int i=0; i<n; i++){</pre>
      fill(slack,slack+n,INF);
      while (true){
        fill(vx,vx+n,0);
        fill(vy,vy+n,0);
        if ( DFS(i) ) break;
        int d = INF; // long long
        for (int j=0; j<n; j++)</pre>
          if (!vy[j]) d = min(d, slack[j]);
```

```
for (int j=0; j<n; j++){
    if (vx[j]) lx[j] -= d;
    if (vy[j]) ly[j] += d;
    else slack[j] -= d;
    }
    }
    int res=0;
    for (int i=0; i<n; i++)
       res += edge[match[i]][i];
    return res;
}
}graph;</pre>
```

#### 4.5 SW-Mincut

```
struct SW{ // O(V^3)
  static const int MXN = 514;
  int n, vst[MXN], del[MXN];
  int edge[MXN][MXN], wei[MXN];
  void init(int _n){
    n = _n;
    FZ(edge);
    FZ(del);
  void add_edge(int u, int v, int w){
    edge[u][v] += w;
    edge[v][u] += w;
  void search(int &s, int &t){
    FZ(vst); FZ(wei);
    s = t = -1;
    while (true){
      int mx=-1, cur=0;
       for (int i=0; i<n; i++)</pre>
         if (!del[i] && !vst[i] && mx<wei[i])</pre>
           cur = i, mx = wei[i];
      if (mx == -1) break;
      vst[cur] = 1;
      s = t;
      t = cur;
      for (int i=0; i<n; i++)</pre>
         if (!vst[i] && !del[i]) wei[i] += edge[cur][i];
    }
  int solve(){
    int res = 2147483647;
     for (int i=0,x,y; i<n-1; i++){</pre>
      search(x,y);
      res = min(res,wei[y]);
      del[y] = 1;
      for (int j=0; j<n; j++)</pre>
         edge[x][j] = (edge[j][x] += edge[y][j]);
    return res;
  }
}graph;
```

#### 4.6 Maximum Simple Graph Matching

```
struct GenMatch { // 1-base
  static const int MAXN = 250;
 int V;
 bool el[MAXN][MAXN];
  int pr[MAXN];
 bool inq[MAXN],inp[MAXN],inb[MAXN];
 queue<int> qe;
 int st,ed;
 int nb;
 int bk[MAXN],djs[MAXN];
 int ans;
 void init(int _V) {
   V = V;
   FZ(el); FZ(pr);
   FZ(inq); FZ(inp); FZ(inb);
    FZ(bk); FZ(djs);
    ans = 0;
 void add_edge(int u, int v) {
    el[u][v] = el[v][u] = 1;
 int lca(int u,int v) {
   memset(inp,0,sizeof(inp));
    while(1) {
     u = djs[u];
      inp[u] = true;
      if(u == st) break;
      u = bk[pr[u]];
    while(1) {
     v = djs[v];
      if(inp[v]) return v;
      v = bk[pr[v]];
    return v;
 void upd(int u) {
   int v:
    while(djs[u] != nb) {
      v = pr[u];
     inb[djs[u]] = inb[djs[v]] = true;
      u = bk[v];
      if(djs[u] != nb) bk[u] = v;
   }
 }
  void blo(int u,int v) {
   nb = lca(u,v);
    memset(inb,0,sizeof(inb));
    upd(u); upd(v);
    if(djs[u] != nb) bk[u] = v;
    if(djs[v] != nb) bk[v] = u;
    for(int tu = 1; tu <= V; tu++)</pre>
      if(inb[djs[tu]]) {
        djs[tu] = nb;
        if(!inq[tu]){
          qe.push(tu);
          inq[tu] = 1;
        }
      }
  void flow() {
   memset(inq,false,sizeof(inq));
    memset(bk,0,sizeof(bk));
    for(int i = 1; i <= V;i++)</pre>
      djs[i] = i;
   while(qe.size()) qe.pop();
    qe.push(st);
    inq[st] = 1;
    ed = 0;
    while(qe.size()) {
      int u = qe.front(); qe.pop();
      for(int v = 1; v <= V; v++)</pre>
        if(el[u][v] && (djs[u] != djs[v]) && (pr[u] !=
            v)) {
          if((v == st) || ((pr[v] > 0) && bk[pr[v]] >
              0))
            blo(u,v);
          else if(bk[v] == 0) {
```

```
bk[v] = u;
             if(pr[v] > 0) {
               if(!inq[pr[v]]) qe.push(pr[v]);
             } else {
               ed = v;
               return;
            }
          }
        }
    }
  void aug() {
    int u,v,w;
    u = ed;
    while(u > 0) {
      v = bk[u];
      w = pr[v];
      pr[v] = u;
      pr[u] = v;
      u = w;
    }
  }
  int solve() {
    memset(pr,0,sizeof(pr));
    for(int u = 1; u <= V; u++)</pre>
      if(pr[u] == 0) {
        st = u;
        flow();
        if(ed > 0) {
          aug();
          ans ++;
        }
      }
    return ans;
};
int main() {
  gp.init(V);
  for(int i=0; i<E; i++) {</pre>
    int u, v;
    cin >> u >> v;
    gp.edge(u, v);
  cout << gp.solve() << endl;</pre>
```

# 4.7 Minimum Weight Matching (Clique ver- int cap[MAXN][MAXN]; sion)

```
struct Graph {
 // Minimum General Weighted Matching (Perfect Match)
  static const int MXN = 105;
  int n, edge[MXN][MXN];
  int match[MXN],dis[MXN],onstk[MXN];
  vector<int> stk;
  void init(int _n) {
   n = n;
   FZ(edge);
  void add_edge(int u, int v, int w) {
    edge[u][v] = edge[v][u] = w;
  bool SPFA(int u){
    if (onstk[u]) return true;
    stk.PB(u);
    onstk[u] = 1;
    for (int v=0; v<n; v++){</pre>
      if (u != v && match[u] != v && !onstk[v]){
        int m = match[v];
        if (dis[m] > dis[u] - edge[v][m] + edge[u][v]){
          dis[m] = dis[u] - edge[v][m] + edge[u][v];
          onstk[v] = 1;
          stk.PB(v);
          if (SPFA(m)) return true;
          stk.pop_back();
          onstk[v] = 0;
        }
      }
    onstk[u] = 0;
    stk.pop_back();
    return false;
  int solve() {
    // find a match
    for (int i=0; i<n; i+=2){</pre>
      match[i] = i+1;
      match[i+1] = i;
    while (true){
      int found = 0;
      FZ(dis); FZ(onstk);
      for (int i=0; i<n; i++){</pre>
        stk.clear();
        if (!onstk[i] && SPFA(i)){
          found = 1;
          while (SZ(stk)>=2){
            int u = stk.back(); stk.pop_back();
            int v = stk.back(); stk.pop_back();
            match[u] = v;
            match[v] = u;
          }
        }
      if (!found) break;
    int ret = 0;
    for (int i=0; i<n; i++)</pre>
      ret += edge[i][match[i]];
    ret /= 2;
    return ret;
}graph;
```

# 4.8 2-Commodity Flow

```
const int MAXN = 64;
const int INF = 1029384756;
int N;
int s1, s2, t1, t2, d1, d2, S, T;
int edge[MAXN][MAXN];
```

```
int h[MAXN], gap[MAXN];
bool vis[MAXN];
int isap(int v, int f)
    if(v == T)return f;
    if(vis[v])return 0;
    vis[v] = true;
    for(int i=0; i<N+2; i++)</pre>
         if(cap[v][i] <= 0)continue;</pre>
         if(h[i] != h[v] - 1)continue;
         int res = isap(i, min(cap[v][i], f));
         if(res > 0)
         {
             cap[v][i] -= res;
             cap[i][v] += res;
             return res;
         }
    }
    gap[h[v]]--;
    if(gap[h[v]] <= 0)h[S] = N + 4;
    h[v]++;
    gap[h[v]]++;
    return 0;
}
int get_flow()
{
    for(int i=0; i<MAXN; i++)</pre>
        h[i] = gap[i] = 0;
    gap[0] = N + 2;
    int flow = 0;
    while(h[S] <= N + 3)
         for(int i=0; i<N+2; i++)</pre>
             vis[i] = false;
         int df = isap(S, INF);
         flow += df;
    return flow;
}
int main()
    ios_base::sync_with_stdio(0);
    int TT;
    cin>>TT:
    while(TT--)
         cin>>s1>>t1>>d1>>s2>>t2>>d2;
         for(int i=0; i<MAXN; i++)</pre>
             for(int j=0; j<MAXN; j++)</pre>
                  edge[i][j] = 0;
             }
         for(int i=0; i<N; i++)</pre>
             string s;
             cin>>s;
             for(int j=0; j<N; j++)</pre>
```

```
if(s[j] == 'X')edge[i][j] = 0;
                 else if(s[j] == '0')edge[i][j] = 1;
                 else if(s[j] == 'N')edge[i][j] = INF;
             }
        int ans = 0;
        S = N:
        T = N + 1;
        //first
        for(int i=0; i<MAXN; i++)</pre>
             for(int j=0; j<MAXN; j++)</pre>
                 cap[i][j] = edge[i][j];
        cap[S][s1] = cap[t1][T] = d1;
        cap[S][s2] = cap[t2][T] = d2;
        ans = get_flow();
         //second
        for(int i=0; i<MAXN; i++)</pre>
             for(int j=0; j<MAXN; j++)</pre>
                 cap[i][j] = edge[i][j];
        cap[S][s1] = cap[t1][T] = d1;
        cap[S][t2] = cap[s2][T] = d2;
        ans = min(ans, get_flow());
        cout<<(ans == d1 + d2 ? "Yes" : "No")<<endl;</pre>
    }
    return 0;
}
```

# 4.9 (+1) SW-mincut O(NM)

```
// {{{ StoerWagner
const int inf=1000000000;
// should be larger than max.possible mincut
class StoerWagner {
 public:
    int n,mc; // node id in [0,n-1]
    vector<int> adj[MAXN];
    int cost[MAXN][MAXN];
    int cs[MAXN];
    bool merged[MAXN], sel[MAXN];
    // --8<-- include only if cut is explicitly needed
      DisjointSet djs;
    vector<int> cut;
    //--8<-----
      StoerWagner(int _n):n(_n),mc(inf),djs(_n) {
        for(int i=0;i<n;i++)</pre>
          merged[i]=0;
        for(int i=0;i<n;i++)</pre>
          for(int j=0;j<n;j++)</pre>
            cost[i][j]=cost[j][i]=0;
    void append(int v,int u,int c) {
      if(v==u) return;
      if(!cost[v][u]&&c) {
        adj[v].PB(u);
        adj[u].PB(v);
      cost[v][u]+=c;
      cost[u][v]+=c;
    void merge(int v,int u) {
      merged[u]=1;
      for(int i=0;i<n;i++)</pre>
```

```
append(v,i,cost[u][i]);
       // --8<-- include only if cut is explicitly</pre>
         dis.merge(v,u);
    void phase() {
      priority_queue<pii> pq;
       for(int v=0;v<n;v++) {</pre>
        if(merged[v]) continue;
         cs[v]=0;
        sel[v]=0;
        pq.push({0,v});
      int v,s,pv;
       while(pq.size()) {
         if(cs[pq.top().S]>pq.top().F) {
           pq.pop();
           continue;
        }
        pv=v;
        v=pq.top().S;
        s=pq.top().F;
         pq.pop();
         sel[v]=1;
         for(int i=0;i<adj[v].size();i++) {</pre>
           int u=adj[v][i];
           if(merged[u]||sel[u]) continue;
           cs[u]+=cost[v][u];
           pq.push({cs[u],u});
        }
       if(s<mc) {</pre>
        mc=s;
        // --8<-- include only if cut is explicitly
        needed ----
           cut.clear();
         for(int i=0;i<n;i++)</pre>
           if(djs.getrep(i)==djs.getrep(v)) cut.PB(i);
      merge(v,pv);
     int mincut() {
      if(mc==inf) {
         for(int t=0;t<n-1;t++)</pre>
           phase();
      return mc;
     // --8<-- include only if cut is explicitly needed
      vector<int> getcut() { // return one side of the
        mincut();
        return cut;
};
// }}}
```

#### 5 Math

#### 5.1 ax+by=gcd

```
typedef pair<int, int> pii;

pii gcd(int a, int b){
   if(b == 0) return make_pair(1, 0);
   else{
      int p = a / b;
      pii q = gcd(b, a % b);
      return make_pair(q.second, q.first - q.second * p);
   }
}
```

#### 5.2 Chinese Remainder

```
int pfn; // number of distinct prime factors
int pf[MAXNUM]; // prime factor powers
int rem[MAXNUM]; // corresponding remainder
int pm[MAXNUM];
inline void generate_primes() {
  int i,j;
 pnum=1
  prime[0]=2;
  for(i=3;i<MAXVAL;i+=2) {</pre>
   if(nprime[i]) continue;
    prime[pnum++]=i;
    for(j=i*i;j<MAXVAL;j+=i) nprime[j]=1;</pre>
 }
inline int inverse(int x,int p) {
  int q,tmp,a=x,b=p;
  int a0=1,a1=0,b0=0,b1=1;
 while(b) {
    q=a/b; tmp=b; b=a-b*q; a=tmp;
    tmp=b0; b0=a0-b0*q; a0=tmp;
    tmp=b1; b1=a1-b1*q; a1=tmp;
  return a0:
inline void decompose_mod() {
  int i,p,t=mod;
  pfn=0;
  for(i=0;i<pnum&&prime[i]<=t;i++) {</pre>
    p=prime[i];
    if(t%p==0) {
      pf[pfn]=1;
      while(t%p==0) {
        t/=p;
        pf[pfn]*=p;
      pfn++;
    }
  if(t>1) pf[pfn++]=t;
inline int chinese_remainder() {
 int i,m,s=0;
  for(i=0;i<pfn;i++) {</pre>
   m=mod/pf[i];
    pm[i]=(long long)m*inverse(m,pf[i])%mod;
    s=(s+(long long)pm[i]*rem[i])%mod;
  }
  return s;
```

#### 5.3 Fast Fourier Transform

```
// const int MAXN = 262144;
// (must be 2^k)
typedef long double ld;
typedef complex<ld> cplx;
const ld PI = acosl(-1);
const cplx I(0, 1);
cplx omega[MAXN+1];
void pre_fft()
  for(int i=0; i<=MAXN; i++)</pre>
    omega[i] = exp(i * 2 * PI / MAXN * I);
void fft(int n, cplx a[], bool inv=false)
  int basic = MAXN / n;
  int theta = basic;
  for (int m = n; m >= 2; m >>= 1) {
    int mh = m >> 1;
    for (int i = 0; i < mh; i++) {</pre>
      cplx w = omega[inv ? MAXN-(i*theta%MAXN) : i*
          theta%MAXN];
      for (int j = i; j < n; j += m) {</pre>
        int k = j + mh;
```

```
cplx x = a[j] - a[k];
    a[j] += a[k];
    a[k] = w * x;
}

theta = (theta * 2) % MAXN;

int i = 0;
for (int j = 1; j < n - 1; j++) {
    for (int k = n >> 1; k > (i ^= k); k >>= 1);
    if (j < i) swap(a[i], a[j]);
}

if (inv)
    for (i = 0; i < n; i++)
    a[i] /= n;
}</pre>
```

#### 5.4 (+1) ntt

```
int P=605028353, root=3, MAXNUM=262144;
// Remember coefficient are mod P
p=a*2^n+1
    2^n
                                      root
n
                               а
    32
                97
                193
    64
                                      5
6
                               3
7
    128
                257
                               2
                                      3
8
    256
                257
                               1
                                      3
9
                7681
                                     17
    512
                               15
10 1024
                12289
    2048
                12289
11
                               6
                                     11
12
    4096
                12289
                               3
                                     11
                40961
13 8192
   16384
                65537
14
                               4
                                     3
15
   32768
                65537
                               2
                                      3
16 65536
                65537
                               1
                                     3
17 131072
                786433
                                     10
                               6
18 262144
                786433
                               3
                                     10 (605028353,
    2308, 3)
19 524288
                5767169
                               11
                                     3
20
   1048576
                                      3
21 2097152
                23068673
                                      3
                               11
22 4194304
                104857601
                               25
                                      3
23
    8388608
                167772161
                               20
                                     3
   16777216
                167772161
24
                               10
   33554432
                167772161
                                      3 (1107296257, 33,
    10)
                                      3
26
   67108864
                469762049
27
   134217728
                2013265921
int bigmod(long long a,int b){
 if(b==0)return 1;
  return (bigmod((a*a)%P,b/2)*(b%2?a:111))%P;
int inv(int a,int b){
  if(a==1)return 1;
  return (((long long)(a-inv(b%a,a))*b+1)/a)%b;
std::vector<long long> ps(MAXNUM);
std::vector<int> rev(MAXNUM);
struct poly{
  std::vector<unsigned int> co;
  int n;//polynomial degree = n
  poly(int d){n=d;co.resize(n+1,0);}
  void trans2(int NN){
    int r=0,st,N;
    unsigned int a,b;
    while((1<<r)<(NN>>1))++r;
    for(N=2;N<=NN;N<<=1,--r){</pre>
      for(st=0;st<NN;st+=N){</pre>
        int i,ss=st+(N>>1);
        for(i=(N>>1)-1;i>=0;--i){
          a=co[st+i]; b=(ps[i<<r]*co[ss+i])%P;
          co[st+i]=a+b; if(co[st+i]>=P)co[st+i]-=P;
          co[ss+i]=a+P-b; if(co[ss+i]>=P)co[ss+i]-=P;
        }
      }
    }
  }
  void trans1(int NN){
```

```
int r=0,st,N;
    unsigned int a,b;
    for(N=NN;N>1;N>>=1,++r){
      for(st=0;st<NN;st+=N){</pre>
        int i,ss=st+(N>>1);
        for(i=(N>>1)-1;i>=0;--i){
           a=co[st+i]; b=co[ss+i];
           co[st+i]=a+b; if(co[st+i]>=P)co[st+i]-=P;
          co[ss+i]=((a+P-b)*ps[i<<r])%P;
        }
      }
    }
  poly operator*(const poly& _b)const{
    poly a=*this,b=_b;
    int k=n+b.n,i,N=1;
    while(N<=k)N*=2;</pre>
    a.co.resize(N,0); b.co.resize(N,0);
    int r=bigmod(root,(P-1)/N),Ni=inv(N,P);
    ps[0]=1;
    for(i=1;i<N;++i)ps[i]=(ps[i-1]*r)%P;</pre>
    a.trans1(N);b.trans1(N);
    for(i=0;i<N;++i)a.co[i]=((long long)a.co[i]*b.co[i</pre>
         ])%P
    r=inv(r,P);
    for(i=1;i<N/2;++i)std::swap(ps[i],ps[N-i]);</pre>
    a.trans2(N);
    for(i=0;i<N;++i)a.co[i]=((long long)a.co[i]*Ni)%P;</pre>
    a.n=n+_b.n; return a;
  }
};
```

#### 5.5 Mod

```
/// _fd(a,b) floor(a/b).
/// _{rd(a,m)} a-floor(a/m)*m.
/// _pv(a,m,r) largest x s.t x<=a && x%m == r.
/// _nx(a,m,r) smallest x s.t x>=a && x%m == r.
/// \_ct(a,b,m,r) |A|, A = \{ x : a <= x <= b && x %m == r \}.
int _fd(int a,int b){ return a<0?(-~a/b-1):a/b; }</pre>
int _rd(int a,int m){ return a-_fd(a,m)*m; }
int _pv(int a,int m,int r)
{
     r=(r\%m+m)\%m;
     return _fd(a-r,m)*m+r;
int _nt(int a,int m,int r)
{
    m=abs(m);
     r=(r\%m+m)\%m;
     return _fd(a-r-1,m)*m+r+m;
int _ct(int a,int b,int m,int r)
    m=abs(m);
     a=_nt(a,m,r);
     b = pv(b, m, r);
     return (a>b)?0:((b-a+m)/m);
}
```

```
long long nx=mult(x,x,n);
    if(nx==1&&x!=1&&x!=n-1) return 1;
    x=nx;
 }
  return x!=1;
bool miller_rabin(long long n,int s=100) {
 // iterate s times of witness on n
  // return 1 if prime, 0 otherwise
  if(n<2) return 0;</pre>
  if(!(n&1)) return n==2;
  long long u=n-1;
  int t=0;
  // n-1 = u*2^t
  while(u&1) {
    u >>=1;
    t++;
  while(s--) {
    long long a=randll()%(n-1)+1;
    if(witness(a,n,u,t)) return 0;
  return 1;
```

bool witness(long long a,long long n,long long u,int t)

#### 5.7 (+1) Pollard Rho

long long x=power(a,u,n);

for(int i=0;i<t;i++) {</pre>

```
/* pollard rho */
// does not work when n is prime
long long modit(long long x,long long mod) {
  if(x>=mod) x-=mod;
  //if(x<0) x+=mod;
  return x;
long long mult(long long x,long long y,long long mod) {
  long long s=0, m=x%mod;
  while(y) {
    if(y&1) s=modit(s+m,mod);
    y>>=1;
    m=modit(m+m, mod);
  }
  return s:
long long f(long long x,long long mod) {
  return modit(mult(x,x,mod)+1,mod);
long long pollard_rho(long long n) {
  long long x,x2;
  if(!(n&1)) return 2;
  //x=x2=randLL()%n;
  x = x2 = 2:
  while(1) {
    x=f(x,n); x2=f(f(x2,n),n);
    long long d=__gcd(abs(x-x2),n);
    if(d!=1&&d!=n) return d;
  }
}
```

#### 5.6 (+1) Miller Rabin

# 5.8 Algorithms about Primes

```
* 12721
 * 13331
 * 14341
 * 75577
 * 123457
 * 222557
 * 556679
 * 999983
 * 1097774749
   1076767633
 * 100102021
 * 999997771
   1001010013
 * 1000512343
 * 987654361
   999991231
 * 999888733
 * 98789101
   987777733
 * 999991921
 * 1010101333
 * 1010102101
 * 1000000000039
 * 1000000000000037
 * 2305843009213693951
 * 4611686018427387847
 * 9223372036854775783
 * 18446744073709551557
int mu[MX],p_tbl[MX];
vector<int> primes;
void sieve() {
  mu[1] = p_tbl[1] = 1;
  for (int i=2; i<MX; i++) {</pre>
    if (!p_tbl[i]) {
      p_{tbl[i]} = i;
      primes.PB(i);
      mu[i] = -1;
    for (auto p : primes) {
      int x = i*p;
      if (x >= M) break;
      p_{tbl}[x] = p;
      mu[x] = -mu[i];
      if (i%p==0) {
        mu[x] = 0;
        break;
      }
    }
  }
}
vector<int> factor(int x) {
  vector<int> fac{1};
  while (x > 1) {
    int fn=SZ(fac), p=p_tbl[x], pos=0;
    while (x\%p == 0) {
      x /= p;
      for (int i=0; i<fn; i++)</pre>
        fac.PB(fac[pos++]*p);
    }
  return fac;
}
```

#### 5.9 (+1) PolynomialGenerator

```
class PolynomialGenerator {
   /* for a nth-order polynomial f(x), *
   * given f(0), f(1), ..., f(n) *
   * express f(x) as sigma_i{c_i*C(x,i)} */
public:
   int n;
   vector<long long> coef;
   // initialize and calculate f(x), vector _fx should
   he
```

#### 5.10 Gauss Elimination

```
const int MAX = 300;
const double EPS = 1e-8;
double mat[MAX][MAX];
void Gauss(int n) {
   for(int i=0; i<n; i++) {</pre>
     bool ok = 0;
     for(int j=i; j<n; j++) {</pre>
       if(fabs(mat[j][i]) > EPS) {
         swap(mat[j], mat[i]);
         ok = 1;
         break;
       }
     if(!ok) continue;
     double fs = mat[i][i];
     for(int j=i+1; j<n; j++) {</pre>
       double r = mat[j][i] / fs;
       for(int k=i; k<n; k++) {</pre>
         mat[j][k] -= mat[i][k] * r;
     }
  }
}
```

#### 5.11 Simplex

```
const int maxn = 111;
const int maxm = 111;
const double eps = 1E-10;
double a[maxn][maxm], b[maxn], c[maxm], d[maxn][maxm];
double x[maxm];
int ix[maxn + maxm]; // !!! array all indexed from 0
// max{cx} subject to {Ax<=b,x>=0}
// n: constraints, m: vars !!!
\begin{subarray}{c} \beg
//
// usage :
// value = simplex(a, b, c, N, M);
double simplex(double a[maxn][maxm], double b[maxn],
                 double c[maxm], int n, int m) {
               int r = n, s = m - 1;
memset(d, 0, sizeof(d));
                 for (int i = 0; i < n + m; ++i) ix[i] = i;</pre>
                for (int i = 0; i < n; ++i) {</pre>
                               for (int j = 0; j < m - 1; ++j) d[i][j] = -a[i</pre>
                                                ][j];
                               d[i][m - 1] = 1;
                                d[i][m] = b[i];
                               if (d[r][m] > d[i][m]) r = i;
                for (int j = 0; j < m - 1; ++j) d[n][j] = c[j];</pre>
               d[n + 1][m - 1] = -1;
                for (double dd;; ) {
```

```
if (r < n) {
             int t = ix[s]; ix[s] = ix[r + m]; ix[r + m]
             d[r][s] = 1.0 / d[r][s];
             for (int j = 0; j <= m; ++j) if (j != s) d[</pre>
                 r][j] *= -d[r][s];
             for (int i = 0; i <= n + 1; ++i) if (i != r</pre>
                 for (int j = 0; j <= m; ++j) if (j != s</pre>
                      ) d[i][j] += d[r][j] * d[i][s];
                 d[i][s] *= d[r][s];
             }
        r = -1; s = -1;
        for (int j = 0; j < m; ++j) if (s < 0 || ix[s]
             > ix[j]) {
             if (d[n + 1][j] > eps || (d[n + 1][j] > -
                 eps && d[n][j] > eps)) s = j;
        if (s < 0) break;
        for (int i = 0; i < n; ++i) if (d[i][s] < -eps)</pre>
             if (r < 0 || (dd = d[r][m] / d[r][s] - d[i</pre>
                 ][m] / d[i][s]) < -eps || (dd < eps &&
                 ix[r + m] > ix[i + m])) r = i;
        if (r < 0) return -1; // not bounded
    if (d[n + 1][m] < -eps) return -1; // not</pre>
         executable
    double ans = 0:
    for(int i=0; i<m; i++) x[i] = 0;</pre>
    for (int i = m; i < n + m; ++i) { // the missing</pre>
         enumerated x[i] = 0
        if (ix[i] < m - 1)</pre>
        {
             ans += d[i - m][m] * c[ix[i]];
             x[ix[i]] = d[i-m][m];
    return ans;
}
```

# 5.12 Theorom

```
Lucas ' Theorem:
 For non-negative integer n,m and prime P,
 C(m,n) \mod P = C(m/M,n/M) * C(m/M,n/M) \mod P
  = mult_i ( C(m_i,n_i) )
 where m_i is the i-th digit of m in base P.
Sum of Two Squares Thm (Legendre)
 For a given positive integer N, let
 D1 = (# of positive integers d dividing N that d=1(
     mod 4))
 D3 = (\# of positive integers d dividing N that d=3(
     mod 4))
 then N can be written as a sum of two squares in
     exactly
 R(N) = 4(D1-D3) ways.
Difference of D1-D3 Thm
  let N = 2^t * [p1^e1 * ... * pr^er] * [q1^f1 * ... *
     qs^fs]
                <- mod 4 = 1 prime -> <- mod 4 = 3
                    prime ->
 then D1 - D3 = (e1+1)(e2+1)...(er+1) ... if (fi)s all
       even
                 0 ... if any fi is odd
```

# 6 Geometry

#### 6.1 Point operators

```
#include<bits/stdc++.h>
using namespace std;
#define _x first
#define _y second
typedef pair<double, double> pdd;
pdd operator + (const pdd p1, const pdd p2){
 return pdd(p1._x + p2._x, p1._y + p2._y);
pdd operator - (const pdd p1, const pdd p2){
 return pdd(p1._x - p2._x, p1._y - p2._y);
pdd operator * (const double c, const pdd p){
 return pdd(p._x * c, p._y * c);
pdd operator - (const pdd p){
 return (-1.0) * p;
double operator * (const pdd p1, const pdd p2){
  return p1._x * p2._x + p1._y * p2._y;
double operator % (const pdd p1, const pdd p2){
  return p1._x * p2._y - p2._x * p1._y;
```

#### 6.2 Intersection of two circles

```
Let \mathbf{0_1} = (x_1,y_1), \mathbf{0_2} = (x_2,y_2) be two centers of circles, r_1,r_2 be the radius. If: d = |\mathbf{0_1} - \mathbf{0_2}| \ \mathbf{u} = \frac{1}{2}(\mathbf{0_1} + \mathbf{0_2}) + \frac{(r_2^2 - r_1^2)}{2d^2}(\mathbf{0_1} - \mathbf{0_2}) \mathbf{v} = \frac{\sqrt{(r_1 + r_2 + d)(r_1 - r_2 + d)(r_1 + r_2 - d)(-r_1 + r_2 + d)}}{2d^2}(y_1 - y_2, -x_1 + x_2) \text{ then } \mathbf{u} + \mathbf{v}, \mathbf{u} - \mathbf{v} \text{ are the two intersections of the circles, provided that } d < r_1 + r_2.
```

# 6.3 Intersection of two lines

```
#include<bits/stdc++.h>
using namespace std;
const double EPS = 1e-9;

pdd interPnt(pdd p1, pdd p2, pdd q1, pdd q2){
    double f1 = (p2 - p1) % (q1 - p1);
    double f2 = (p2 - p1) % (p1 - q2);
    double f = (f1 + f2);

if(fabs(f) < EPS) return pdd(nan(""), nan(""));
    return (f2 / f) * q1 + (f1 / f) * q2;
}</pre>
```

#### 6.4 Half Plane Intersection

```
#include<bits/stdc++.h>
using namespace std;
#define PB push_back
#define _x first
#define _y second
const int MXL = 5000;
const double EPS = 1e-8;
typedef pair<double, double> pdd;
typedef pair<pdd, pdd> Line;
pdd operator + (const pdd p1, const pdd p2){
 return pdd(p1._x + p2._x, p1._y + p2._y);
pdd operator - (const pdd p1, const pdd p2){
 return pdd(p1._x - p2._x, p1._y - p2._y);
pdd operator * (const double c, const pdd p){
 return pdd(p._x * c, p._y * c);
double operator % (const pdd p1, const pdd p2){
  return p1._x * p2._y - p2._x * p1._y;
vector<Line> lnlst;
double atn[MXL];
bool lncmp(int 11, int 12){
  return atn[l1] < atn[l2];</pre>
pdd interPnt(pdd p1, pdd p2, pdd q1, pdd q2){
  double f1 = (p2 - p1) % (q1 - p1);
double f2 = (p2 - p1) % (p1 - q2);
  double f = (f1 + f2);
 if(fabs(f) < EPS) return pdd(nan(""), nan(""));</pre>
  return (f2 / f) * q1 + (f1 / f) * q2;
}
deque<Line> dq;
void halfPlaneInter(){
  int n = lnlst.size();
  vector<int> stlst;
  for(int i=0; i<n; i++){</pre>
    stlst.PB(i);
    pdd d = lnlst[i].second - lnlst[i].first;
    atn[i] = atan2(d._y, d._x);
  sort(stlst.begin(), stlst.end(), lncmp);
  vector<Line> lst:
  for(int i=0; i<n; i++){</pre>
    if(i) {
      int j = i-1;
      Line li = lnlst[stlst[i]];
      Line lj = lnlst[stlst[j]];
      pdd di = li.second - li.first;
      pdd dj = lj.second - lj.first;
      if(fabs(di%dj) < EPS){</pre>
        if(di % (lj.second - li.second) < 0) {</pre>
          lst.pop_back();
        }else continue;
      }
    lst.PB(lnlst[stlst[i]]);
  dq.PB(1st[0]);
  dq.PB(lst[1]);
```

```
for(int i=2; i<n; i++){</pre>
     int dsz = dq.size();
     Line 1 = lst[i];
     while(dsz >= 2){
       Line l1 = dq[dsz-1];
       Line 12 = dq[dsz-2];
       pdd it12 = interPnt(l1.first, l1.second, l2.first
           , 12.second);
       if((1.second - 1.first) % (it12 - 1.first) < 0){</pre>
         dq.pop_back();
         dsz --;
       } else break;
     while(dsz >= 2){
       Line 11 = dq[0];
       Line 12 = dq[1];
       pdd it12 = interPnt(l1.first, l1.second, l2.first
           , 12.second);
       if((1.second - 1.first) % (it12 - 1.first) < 0){</pre>
         dq.pop_front();
         dsz --;
       } else break;
     Line l1 = dq[dsz - 1];
     if(!std::isnan(interPnt(l.first, l.second, l1.first
            11.second)._x)){
       dq.PB(1);
   }
   int dsz = dq.size();
   while(dsz >= 2){
     Line 11 = dq[dsz - 1];
     Line 12 = dq[dsz - 2];
     Line l = dq[0];
     pdd it12 = interPnt(l1.first, l1.second, l2.first,
         12.second);
     if(std::isnan(it12._x)) {
       dq.pop_back();
       dq.pop_back();
       dsz -= 2;
     } else if((1.second - 1.first) % (it12 - 1.first) <</pre>
       dq.pop_back();
       dsz --;
     } else break;
  }
}
int main(){
  int N;
   cin >> N;
   for(int i=0; i<N; i++){</pre>
     double x1, x2, y1, y2;
     cin >> x1 >> y1 >> x2 >> y2;
     lnlst.PB({pdd(x1, y1), pdd(x2, y2)});
  halfPlaneInter();
  int dsz = dq.size();
  cout << dsz << endl;
for(int i=0; i<dsz; i++){</pre>
    int j = (i+1) % dsz;
     pdd it = interPnt(dq[i].first, dq[i].second, dq[j].
         first, dq[j].second);
     cout << it._x << ' ' << it._y << endl;</pre>
  }
}
```

#### 6.5 Point Class

```
struct Point{
  typedef double T;
  T x, y;
  Point(): x(0), y(0) {}
  Point(T_x, T_y) : x(_x), y(_y) {}
  bool operator < (const Point &b) const{</pre>
    return tie(x,y) < tie(b.x,b.y);</pre>
  bool operator == (const Point &b) const{
    return tie(x,y) == tie(b.x,b.y);
  Point operator + (const Point &b) const{
    return Point(x+b.x, y+b.y);
  Point operator - (const Point &b) const{
    return Point(x-b.x, y-b.y);
  T operator * (const Point &b) const{
    return x*b.x + y*b.y;
  T operator % (const Point &b) const{
    return x*b.y - y*b.x;
  Point operator * (const T &b) const{
    return Point(x*b, y*b);
  T abs(){
    return sqrt(abs2());
  T abs2(){
    return x*x + y*y;
  }
};
```

#### 6.6 Convex Hull

```
double cross(Point o, Point a, Point b){
 return (a-o) % (b-o);
vector<Point> convex_hull(vector<Point> pt){
 sort(pt.begin(),pt.end());
 int top=0;
  vector<Point> stk(2*pt.size());
 for (int i=0; i<(int)pt.size(); i++){</pre>
    while (top >= 2 && cross(stk[top-2],stk[top-1],pt[i
        ]) <= 0)
      top--:
    stk[top++] = pt[i];
  for (int i=pt.size()-2, t=top+1; i>=0; i--){
   while (top >= t && cross(stk[top-2],stk[top-1],pt[i
       ]) <= 0)
      top--;
   stk[top++] = pt[i];
 stk.resize(top-1);
 return stk;
```

## 6.7 Minimum Covering Circle

```
struct Mcc{
  // return pair of center and r^2
  static const int MAXN = 1000100;
  int n;
  Point p[MAXN],cen;
  double r2;

  void init(int _n, Point _p[]){
    n = _n;
    memcpy(p,_p,sizeof(Point)*n);
  }
  double sqr(double a){ return a*a; }
```

```
Point center(Point p0, Point p1, Point p2) {
    Point a = p1-p0;
     Point b = p2-p0;
     double c1=a.len2()*0.5;
     double c2=b.len2()*0.5;
     double d = a % b;
    double x = p0.x + (c1 * b.y - c2 * a.y) / d;
double y = p0.y + (a.x * c2 - b.x * c1) / d;
    return Point(x,y);
  pair<Point,double> solve(){
     random_shuffle(p,p+n);
     r2=0;
     for (int i=0; i<n; i++){</pre>
       if ((cen-p[i]).len2() <= r2) continue;</pre>
       cen = p[i];
       r2 = 0;
       for (int j=0; j<i; j++){</pre>
         if ((cen-p[j]).len2() <= r2) continue;</pre>
         cen = Point((p[i].x+p[j].x)*0.5, (p[i].y+p[j].y)
              )*0.5);
         r2 = (cen-p[j]).len2();
         for (int k=0; k<j; k++){</pre>
           if ((cen-p[k]).len2() <= r2) continue;</pre>
            cen = center(p[i],p[j],p[k]);
            r2 = (cen-p[k]).len2();
         }
      }
    return {cen,r2};
  }
}mcc:
```

#### 6.8 (+1) KDTreeAndNearestPoint

```
const INF = 1100000000:
class NODE{ public:
  int x,y,x1,x2,y1,y2;
  int i,f;
  NODE *L,*R;
inline long long dis(NODE& a,NODE& b){
  long long dx=a.x-b.x;
  long long dy=a.y-b.y;
  return dx*dx+dy*dy;
NODE node[100000];
bool cmpx(const NODE& a,const NODE& b){ return a.x<b.x;</pre>
bool cmpy(const NODE& a,const NODE& b){ return a.y<b.y;</pre>
NODE* KDTree(int L,int R,int dep){
  if(L>R) return 0;
  int M=(L+R)/2;
  if(dep%2==0){
    nth_element(node+L,node+M,node+R+1,cmpx);
    node[M].f=0;
  }else{
    nth_element(node+L,node+M,node+R+1,cmpy);
    node[M].f=1;
  node[M].x1=node[M].x2=node[M].x;
  node[M].y1=node[M].y2=node[M].y;
  node[M].L=KDTree(L,M-1,dep+1);
  if(node[M].L){
    node[M].x1=min(node[M].x1,node[M].L->x1);
    node[M].x2=max(node[M].x2,node[M].L->x2);
    node[M].y1=min(node[M].y1,node[M].L->y1);
    node[M].y2=max(node[M].y2,node[M].L->y2);
  node[M].R=KDTree(M+1,R,dep+1);
  if(node[M].R){
    node[M].x1=min(node[M].x1,node[M].R->x1);
    node[M].x2=max(node[M].x2,node[M].R->x2);
    node[M].y1=min(node[M].y1,node[M].R->y1);
    node[M].y2=max(node[M].y2,node[M].R->y2);
  return node+M;
```

```
inline int touch(NODE* r,int x,int y,long long d){
  long long d2;
  d2 = (long long)(sqrt(d)+1);
  if(x<r->x1-d2 || x>r->x2+d2 || y<r->y1-d2 || y>r->y2+
    return 0;
  return 1;
void nearest(NODE* r,int z,long long &md){
  if(!r || !touch(r,node[z].x,node[z].y,md)) return;
  long long d;
  if(node[z].i!=r->i){}
    d=dis(*r,node[z]);
    if(d<md) md=d;</pre>
  if(r->f==0){
    if(node[z].x<r->x){
      nearest(r->L,z,md);
      nearest(r->R,z,md);
    }else{
      nearest(r->R,z,md);
      nearest(r->L,z,md);
  }else{
    if(node[z].y<r->y){
      nearest(r->L,z,md);
      nearest(r->R,z,md);
    }else{
      nearest(r->R,z,md);
      nearest(r->L,z,md);
  }
int main(){
  int TT,n,i;
  long long d;
  NODE* root;
  scanf("%d",&TT);
  while(TT--){
    scanf("%d",&n);
    for(i=0;i<n;i++){</pre>
      scanf("%d %d",&node[i].x,&node[i].y);
      node[i].i=i;
    root=KDTree(0,n-1,0);
    for(i=0;i<n;i++){</pre>
      d=90000000000000000000LL;
      nearest(root,i,d);
      ans[node[i].i]=d;
  }
}
```

# 7 Stringology

# 7.1 Suffix Array

```
memset(ct, 0, sizeof(ct));
    for(int j=0;j<len;j++) ct[tp[j][1]+1]++;</pre>
    for(int j=1;j<len+2;j++) ct[j]+=ct[j-1];</pre>
    for(int j=0;j<len;j++) tsa[ct[tp[j][1]]++]=j;</pre>
    memset(ct, 0, sizeof(ct));
    for(int j=0;j<len;j++) ct[tp[j][0]+1]++;</pre>
    for(int j=1;j<len+1;j++) ct[j]+=ct[j-1];</pre>
    for(int j=0;j<len;j++) sa[ct[tp[tsa[j]][0]]++]=tsa[</pre>
    rk[sa[0]]=0;
    for(int j=1;j<len;j++){</pre>
      if( tp[sa[j]][0] == tp[sa[j-1]][0] &&
         tp[sa[j]][1] == tp[sa[j-1]][1] )
         rk[sa[j]] = rk[sa[j-1]];
      else
         rk[sa[j]] = j;
    }
  }
  for(int i=0,h=0;i<len;i++){</pre>
    if(rk[i]==0) h=0;
    else{
      int j=sa[rk[i]-1];
      h=max(0,h-1);
      for(;ip[i+h]==ip[j+h];h++);
    he[rk[i]]=h;
}
```

#### 7.2 Suffix Array (SAIS TWT514)

```
struct SA{
#define REP(i,n) for ( int i=0; i<int(n); i++ )</pre>
#define REP1(i,a,b) for ( int i=(a); i<=int(b); i++ )</pre>
    static const int MXN = 300010;
    bool _t[MXN*2];
    int operator [] (int i){ return _sa[i]; }
void build(int *s, int n, int m){
        memcpy(_s, s, sizeof(int) * n);
        sais(_s, _sa, _p, _q, _t, _c, n, m);
        mkhei(n);
    void mkhei(int n){
        REP(i,n) r[_sa[i]] = i;
        hei[0] = 0;
        REP(i,n) if(r[i]) {
             int ans = i>0 ? max(hei[r[i-1]] - 1, 0) :
             while(_s[i+ans] == _s[_sa[r[i]-1]+ans]) ans
            hei[r[i]] = ans;
        }
    void sais(int *s, int *sa, int *p, int *q, bool *t,
         int *c, int n, int z){
        bool uniq = t[n-1] = true, neq;
int nn = 0, nmxz = -1, *nsa = sa + n, *ns = s +
              n, lst = -1;
#define MSO(x,n) memset((x),0,n*sizeof(*(x)))
#define MAGIC(XD) MS0(sa, n); \
        memcpy(x, c, sizeof(int) * z); \
        XD; \
        memcpy(x + 1, c, sizeof(int) * (z - 1)); \
        REP(i,n) \ \ \textbf{if}(sa[i] \ \&\& \ !t[sa[i]-1]) \ sa[x[s[sa[i]-1]])
             ]-1]]++] = sa[i]-1; \
        memcpy(x, c, sizeof(int) * z); \
        for(int i = n - 1; i >= 0; i--) if(sa[i] && t[
             sa[i]-1]) sa[--x[s[sa[i]-1]]] = sa[i]-1;
        MSO(c, z);
        REP(i,n) uniq \&= ++c[s[i]] < 2;
        REP(i,z-1) c[i+1] += c[i];
        if (uniq) { REP(i,n) sa[--c[s[i]]] = i; return;
```

```
for(int i = n - 2; i >= 0; i--) t[i] = (s[i]==s
             [i+1] ? t[i+1] : s[i] < s[i+1]);
        MAGIC(REP1(i,1,n-1) if(t[i] && !t[i-1]) sa[--x[
             s[i]]]=p[q[i]=nn++]=i);
        REP(i, n) if (sa[i] && t[sa[i]] && !t[sa[i]-1])
             neq=1st<0 \mid |memcmp(s+sa[i],s+lst,(p[q[sa[i]]))|
                  ]]+1]-sa[i])*sizeof(int));
             ns[q[lst=sa[i]]]=nmxz+=neq;
         sais(ns, nsa, p + nn, q + n, t + n, c + z, nn,
             nmxz + 1);
        MAGIC(for(int i = nn - 1; i >= 0; i--) sa[--x[s]]
             [p[nsa[i]]]] = p[nsa[i]]);
    }
}sa;
void suffix_array(int* ip, int len) {
    // should padding a zero in the back
    // s is int array, n is array length
// s[0..n-1] != 0, and s[n] = 0
    // resulting SA will be length n+1
    ip[len++] = 0;
    sa.build(ip, len, 128);
    // original 1-base
    for (int i=0; i<1; i++) {</pre>
        hei[i] = sa.hei[i + 1];
        sa[i] = sa.\_sa[i + 1];
    }
}
```

# 7.3 Aho-Corasick Algorithm

```
struct ACautomata{
  struct Node{
    int cnt,dp;
    Node *go[26], *fail;
    Node (){
      cnt = 0:
      dp = -1;
      memset(go,0,sizeof(go));
      fail = 0;
 };
 Node *root, pool[1048576];
 int nMem;
 Node* new_Node(){
    pool[nMem] = Node();
    return &pool[nMem++];
  void init(){
    nMem = 0;
    root = new_Node();
  void add(const string &str){
    insert(root,str,0);
  void insert(Node *cur, const string &str, int pos){
    if (pos >= (int)str.size()){
      cur->cnt++;
      return;
    int c = str[pos]-'a';
    if (cur->go[c] == 0){
      cur->go[c] = new_Node();
    insert(cur->go[c],str,pos+1);
  void make_fail(){
    queue<Node*> que;
    que.push(root);
    while (!que.empty()){
      Node* fr=que.front();
      que.pop();
      for (int i=0; i<26; i++){</pre>
        if (fr->go[i]){
          Node *ptr = fr->fail;
          while (ptr && !ptr->go[i]) ptr = ptr->fail;
```

```
if (!ptr) fr->go[i]->fail = root;
    else fr->go[i]->fail = ptr->go[i];
    que.push(fr->go[i]);
    }
}
}
}
```

#### 7.4 Z value

```
char s[MAXLEN];
int len,z[MAXLEN];
void Z_value() {
   int i,j,left,right;
   left=right=0; z[0]=len;
   for(i=1;i<len;i++) {
      j=max(min(z[i-left],right-i),0);
      for(;i+j<len&&s[i+j]==s[j];j++);
      z[i]=j;
      if(i+z[i]>right) {
         right=i+z[i];
         left=i;
      }
   }
}
```

#### 7.5 Z value (palindrome ver.)

```
const int MAX = 1000:
int len;
char ip[MAX];
char op[MAX*2];
int zv[MAX*2];
int main(){
  cin >> ip:
  len = strlen(ip);
  int 12 = len*2 - 1;
  for(int i=0; i<12; i++){</pre>
    if(i&1) op[i] = '@';
    else op[i] = ip[i/2];
  int l=0, r=0;
  zv[0] = 1;
  for(int i=1; i<12; i++){</pre>
    if(i > r){
      l = r = i:
      while( 1>0 && r<12-1 && op[1-1] == op[r+1] ){</pre>
        1 --;
        r ++:
      zv[i] = (r-l+1);
    }else{
      int md = (1+r)/2;
      int j = md + md - i;
      zv[i] = zv[j];
      int q = zv[i] / 2;
      int nr = i + q;
      if( nr == r ){
        l = i + i - r;
        while( 1>0 && r<12-1 && op[1-1] == op[r+1] ){</pre>
          1 --;
          r ++;
        zv[i] = r - 1 + 1;
      else\ if(nr > r){
        zv[i] = (r - i) * 2 + 1;
    }
  }
  return 0;
```

# 7.6 Lexicographically Smallest Rotation

```
string mcp(string s){
  int n = s.length();
  s += s;
  int i=0, j=1, k=0;
  while (j<n && k<n){
    if (s[i+k] == s[j+k]) k++;
    else {
        if (s[i+k] < s[j+k]) {
            j += k + 1;
        } else {
        i = j;
        j = max(j+1, j+k);
        }
        k = 0;
    }
} return s.substr(i, n);
}</pre>
```

#### 7.7 Suffix Automaton

```
// par : fail link
// val : a topological order ( useful for DP )
// go[x] : automata edge ( x is integer in [0,26) )
struct SAM{
  struct State{
    int par, go[26], val;
State () : par(0), val(0){ FZ(go); }
    State (int _val) : par(0), val(_val){ FZ(go); }
  };
  vector<State> vec;
  int root, tail;
  void init(int arr[], int len){
    vec.resize(2);
    vec[0] = vec[1] = State(0);
    root = tail = 1;
    for (int i=0; i<len; i++)</pre>
      extend(arr[i]);
  void extend(int w){
    int p = tail, np = vec.size();
    vec.PB(State(vec[p].val+1));
    for ( ; p && vec[p].go[w]==0; p=vec[p].par)
      vec[p].go[w] = np;
    if (p == 0){
      vec[np].par = root;
      if (vec[vec[p].go[w]].val == vec[p].val+1){
        vec[np].par = vec[p].go[w];
      } else {
        int q = vec[p].go[w], r = vec.size();
        vec.PB(vec[q]);
        vec[r].val = vec[p].val+1;
        vec[q].par = vec[np].par = r;
        for ( ; p && vec[p].go[w] == q; p=vec[p].par)
          vec[p].go[w] = r;
      }
    }
    tail = np;
  }
};
```

#### 8 Problems

# 8.1 Find the maximum tangent (x,y is increasing)

```
typedef long long LL;
const int MAXN = 100010;
struct Coord{
  LL x, y;
```

```
Coord operator - (Coord ag) const{
     Coord res;
     res.x = x - ag.x;
     res.y = y - ag.y;
     return res;
  }
}sum[MAXN], pnt[MAXN], ans, calc;
inline bool cross(Coord a, Coord b, Coord c){
   return (c.y - a.y) * (c.x - b.x) > (c.x - a.x) * (c.y)
        - b.v):
}
int main(){
  int n, 1, np, st, ed, now;
scanf("%d %d\n", &n, &1);
   sum[0].x = sum[0].y = np = st = ed = 0;
   for (int i = 1, v; i <= n; i++){</pre>
     scanf("%d", &v);
     sum[i].y = sum[i - 1].y + v;
     sum[i].x = i;
  }
  ans.x = now = 1;
   ans.y = -1;
   for (int i = 0; i <= n - 1; i++){
     while (np > 1 && cross(pnt[np - 2], pnt[np - 1],
         sum[i]))
       np--;
     if (np < now && np != 0) now = np;</pre>
     pnt[np++] = sum[i];
     while (now < np && !cross(pnt[now - 1], pnt[now],</pre>
         sum[i + 1]))
       now++;
     calc = sum[i + 1] - pnt[now - 1];
     if (ans.y * calc.x < ans.x * calc.y){</pre>
       ans = calc;
       st = pnt[now - 1].x;
       ed = i + 1;
    }
   double res = (sum[ed].y-sum[st].y)/(sum[ed].x-sum[st
       1.x);
   printf("%f \setminus n", res);
   return 0;
}
```

# 8.2 Orange Protection

```
* Given a Tree and the power of every node.
 * Each Node can protect the nodes whose distance <=
     cover[i] with it
 * output the number of each node that it can protect.
const int MXN = 100005;
int cover[MXN], ans[MXN];
int N, ok[MXN];
int fr,bk,que[MXN],vst[MXN],dis[MXN],fa[MXN],sz[MXN];
vector<int> E[MXN];
int bit[MXN];
int lb(int a){ return a & -a; }
void reset_bit(int st){
  for (int i = st+1; i < MXN; i+=lb(i))</pre>
    bit[i] = 0;
void update(int st){
  for (int i = st+1; i < MXN; i+=lb(i))</pre>
    bit[i]++;
int query(int st, int ret = 0){
  for (int i = st+1; i > 0; i-=lb(i))
   ret += bit[i];
  return ret;
}
void BFS(int st){
 fr = bk = 0;
  que[bk++] = st;
```

```
printf("%d \setminus n", ans[i]);
  vst[st] = 1;
  dis[st] = 0;
                                                                  return 0;
  while (fr < bk){</pre>
    int u = que[fr++];
    for (auto v : E[u]){
      if (!ok[v] || vst[v]) continue;
      vst[v] = 1;
      dis[v] = dis[u] + 1;
      fa[v] = u;
      que[bk++] = v;
  }
  for (int i=0; i<bk; i++)</pre>
    vst[que[i]] = 0;
int find_centroid(int st){
  int ret=-1, cnt=MXN+100;
  BFS(st);
  for (int i = bk-1; i>=0; i--){
    int u = que[i], mx = 0;
    sz[u] = 1;
    for (auto v : E[u]){
      if (!ok[v] || v == fa[u]) continue;
      sz[u] += sz[v];
      mx = max(mx, sz[v]);
    mx = max(mx, bk-sz[u]);
    \quad \textbf{if} \ (\texttt{mx} \ < \ \texttt{cnt}) \{
      ret = u;
      cnt = mx;
    }
  }
  return ret;
void solve(int u){
  int root = find_centroid(u);
  ok[root] = 0;
  for (auto v : E[root])
    if (ok[v]) solve(v);
  for (auto v : E[root]){
    if (!ok[v]) continue;
    BFS(v);
    for (int i=0; i<bk; i++){</pre>
      dis[que[i]]++;
      update(dis[que[i]]);
    for (int i=0; i<bk; i++){</pre>
      int it = que[i];
      ans[it] -= query(cover[it] - dis[it]);
    for (int i=0; i<bk; i++)</pre>
      reset_bit(dis[que[i]]);
  BFS(root);
  for (int i=0; i<bk; i++) update(dis[que[i]]);</pre>
  for (int i=0; i<bk; i++){</pre>
    int v = que[i];
    ans[v] += query(cover[v] - dis[v]);
  for (int i=0; i<bk ;i++) reset_bit(dis[que[i]]);</pre>
  ok[root] = 1;
}
int main(int argc, char** argv){
  scanf("%d", &N);
  for (int i=0; i<N; i++){</pre>
    scanf("%d", &cover[i]);
    cover[i] = min(cover[i], N);
  for (int i=0,u,v; i<N-1; i++){</pre>
    scanf("%d%d", &u, &v);
    u--; v--;
    E[u].PB(v);
    E[v].PB(u);
  fill(ok,ok+N,1);
  FZ(vst); FZ(ans); FZ(bit);
  solve(0);
  for (int i=0; i<N; i++)</pre>
```