### Lecture 11:

# Long Short-Term Memory Networks (LSTMs) – Part I



Markus Hohle
University California, Berkeley

Machine Learning Algorithms
MSSE 277B, 3 Units
Fall 2024



## **Outline**

- Idea and classic RNNs
- LSTMs
- BackPropagation Through Time (BPTT)
- Syntax and some examples



## **Outline**

- Idea and classic RNNs
- LSTMs
- BackPropagation Through Time (BPTT)
- Syntax and some examples



## - Recurrent Neural Network

- time series analysis regression (prediction and forecasting)
- first step towards GenAl
- time series analysis classification
- early speech recognition
- handwriting
- "precursor" of LSTMs
- invented by **Shun'ichi Amari** in 1972





## - Recurrent Neural Network

- time series analysis regression (prediction and forecasting)
- first step towards GenAl
- time series analysis classification
- early speech recognition
- handwriting
- "precursor" of LSTMs
- invented by **Shun'ichi Amari** in 1972





























### Applying the identical cell recursively!

- → easy to implement
- → direction (arrow of time, see later)
- → exploding/vanishing gradients
- → classic RNN has a "short memory"



















$$h(t) = \tanh[x(t) * W_x + W_h * h(t-1) + b]$$





**n:** number of states/ neurons





## **Outline**

- Idea and classic RNNs
- LSTMs
- BackPropagation Through Time (BPTT)
- Syntax and some examples

- Long-Short Term Memory

#### new:

- long-term and short-term memory
- dealing with vanishing/exploding gradient
- invented 1997 by Sepp Hochreiter und Jürgen Schmidhuber

#### **LSTM**





(adding more noise)

#### classical RNN









#### "classic" RNN cell













#### electrical circuits:



$$\underline{\mathbf{AC:}} \quad I(t) = I_0 \ e^{i(\boldsymbol{\omega}t + \varphi)}$$

 $R_c$ : passes **short** -term changes

 $R_L$ : passes **long** -term changes

$$\frac{1}{R_{tot}} = \frac{1}{R_R} + \frac{1}{R_C} + \frac{1}{R_L}$$



$$f(t) = \sigma \left( U_f \oplus x(t) + W_f \oplus h(t-1) + b_f \right)$$

\* element – wise multiplication



$$f(t) = \sigma \left( U_f \oplus x(t) + W_f \oplus h(t-1) + b_f \right)$$
 \* element – wise multiplication 
$$i(t) = \sigma \left( U_i \oplus x(t) + W_i \oplus h(t-1) + b_i \right)$$
 
$$\tilde{c}(t) = tanh(U_g \oplus x(t) + W_g \oplus h(t-1) + b_g)$$



$$f(t) = \sigma \left( U_f \oplus x(t) + W_f \oplus h(t-1) + b_f \right) \qquad * \text{ element - wise multiplication}$$
 
$$i(t) = \sigma \left( U_i \oplus x(t) + W_i \oplus h(t-1) + b_i \right) \qquad \tilde{c}(t) = \tanh(U_g \oplus x(t) + W_g \oplus h(t-1) + b_g)$$
 
$$c(t) = f(t) * c(t-1) + i(t) * \tilde{c}(t)$$
 
$$h(t) = \tanh(c(t)) * o(t)$$
 
$$o(t) = \sigma \left( U_o \oplus x(t) + W_o \oplus h(t-1) + b_o \right)$$
 
$$(t-1)$$
 
$$v(t)$$
 
$$v(t)$$

### There is one more thing:

\* element – wise multiplication







## **Outline**

- Idea and classic RNNs
- LSTMs
- BackPropagation Through Time (BPTT)
- Syntax and some examples



#### because of the RNN/LSTM architecture, backpropagation works a bit different:





## **Outline**

- Idea and classic RNNs
- LSTMs
- BackPropagation Through Time (BPTT)
- Syntax and some examples





no data to compare with

predicting **one** step in the future by **one** step from the past

$$dt_{futu} = 1$$
 y(t)  
 $dt_{past} = 1$ 



length of training data is:  $len[y(t)] - dt_{futu} - dt_{past} + 1$ 

length of training data



length of training data is: 
$$len[y(t)] - dt_{futu} - dt_{past} + 1$$

predicting  ${\bf m}$  steps in the future d by  ${\bf n}$  steps from the past d

$$dt_{futu} = m$$
$$dt_{past} = n$$





length of training data is: 
$$len[y(t)] - dt_{futu} - dt_{past} + 1$$

predicting **m** steps in the future by **n** steps from the past

$$dt_{futu} = m$$
$$dt_{past} = n$$

predicting m steps of the future



each of the time points will influence the forecast



predicting **m** steps in the future by **n** steps from the past

$$dt_{futu} = m$$
$$dt_{past} = n$$

#### predicting m steps of the future



X.shape = (len[y(t)] 
$$-dt_{futu} - dt_{past} + 1$$
) x  $dt_{past} \times n_{feature}(X)$   
Y.shape = (len[y(t)]  $-dt_{futu} - dt_{past} + 1$ ) x  $dt_{futu} \times n_{feature}(Y)$ 



 $-dt_{futu} - dt_{past} +$ 

len[y(t)]

## Syntax and some examples



```
[0.23364871, 0.25531086, 0.29226308, 0.30477917, 0.34526381]
[0.25531086, 0.29226308, 0.30477917, 0.34526381, 0.32876229]
[0.29226308, 0.30477917, 0.34526381, 0.32876229, 0.34967038]
[0.30477917, 0.34526381, 0.32876229, 0.34967038, 0.32374534]
[0.34526381, 0.32876229, 0.34967038, 0.32374534, 0.34168462]
[0.32876229, 0.34967038, 0.32374534, 0.34168462, 0.27602807]
[0.34967038, 0.32374534, 0.34168462, 0.27602807, 0.2313527]
[0.32374534, 0.34168462, 0.27602807, 0.2313527, 0.20877584]
[0.34168462, 0.27602807, 0.2313527, 0.20877584, 0.16455034]
[0.27602807, 0.2313527, 0.20877584, 0.16455034, 0.11714726]
```

[0.05263142, 0.10779498, 0.12263184], [0.10779498, 0.12263184, 0.12821065], [0.12263184, 0.12821065, 0.20806335], [0.12821065, 0.20806335, 0.2518744], [0.20806335, 0.2518744, 0.28025766], [0.2518744, 0.28025766, 0.27699119], [0.28025766, 0.27699119, 0.30965494], [0.27699119, 0.30965494, 0.37666627], [0.37666627, 0.37879347], [0.37666627, 0.37879347], [0.37666627, 0.37879347, 0.36811853]]



```
Once, we have fitted the model: how do we apply the prediction?
```

```
PredY = model.predict(TestX)
```

(TestX.shape[0], dt\_futu) = PredY.shape

```
\begin{array}{c} X & dt_{past} \\ \hline 0.23364871 & 0.25531086, \ 0.29226308, \ 0.30477917, \ 0.34526381] \\ 0.25531086 & 0.29226308, \ 0.30477917, \ 0.34526381, \ 0.32876229] \\ 0.29226308 & 0.30477917, \ 0.34526381, \ 0.32876229, \ 0.34967038, \ 0.32374534] \\ 0.30477917 & 0.34526381, \ 0.32876229, \ 0.34967038, \ 0.32374534, \ 0.34168462] \\ \hline [0.32876229, \ 0.34967038, \ 0.32374534, \ 0.34168462, \ 0.27602807, \ 0.2313527 \ ] \\ [0.32374534, \ 0.34168462, \ 0.27602807, \ 0.2313527, \ 0.20877584, \ 0.16455034] \\ [0.27602807, \ 0.2313527, \ 0.20877584, \ 0.16455034, \ 0.11714726] \end{array}
```

```
dt_{futu} [0.05263142, 0.10779498, 0.12263184], 0.10779498, 0.12263184, 0.12821065], 0.12263184, 0.12821065, 0.20806335], [0.12821065, 0.20806335, 0.2518744], [0.20806335, 0.2518744], [0.20806335, 0.2518744, 0.28025766], [0.2518744, 0.28025766, 0.27699119], [0.28025766, 0.27699119, 0.30965494], [0.27699119, 0.30965494, 0.37666627], [0.30965494, 0.37666627, 0.37879347], [0.37666627, 0.37879347, 0.36811853]]
```

```
TestX[0,:,0] should predict TestY[0,:,0]
TestX[1,:,0] should predict TestY[1,:,0] etc
```



#### Let us explore LSTMI.ipynb

| Layer (type)  | Output Shape | Param # |
|---------------|--------------|---------|
| lstm (LSTM)   | (None, 200)  | 161600  |
| dense (Dense) | (None, 8)    | 1608    |
|               |              |         |

Total params: 163208 (637.53 KB)
Trainable params: 163208 (637.53 KB)
Non-trainable params: 0 (0.00 Byte)



### Let us explore LSTMI.ipynb







### **Explore LSTMII.ipynb** for a multivariate, multi feature time series:





### **Explore LSTMII.ipynb** for a multivariate, multi feature time series:









### **Explore LSTMII.ipynb** for a multivariate, multi feature time series:







Thank you very much for your attention!

