APRENDIZAGEM DE MÁQUINA

(usando Python)

Thiago Marzagão

ÁRVORE DE DECISÃO & VALIDAÇÃO

- Aulas passadas: queríamos prever variáveis quantitativas.
- Aula de hoje (e seguintes): queremos prever variáveis qualitativas.
- Em outras palavras: queremos prever a classe.
- Em outras palavras (2): queremos classificar.
- Vários algoritmos de classificação: regressão logística, árvore de decisão, SVM, NN.

Table 4.1. The vertebrate data set.

Name	Body	Skin	Gives	Aquatic	Aerial	Has	Hiber-	Class
	Temperature	Cover	Birth	Creature	Creature	Legs	nates	Label
human	warm-blooded	hair	yes	no	no	yes	no	mammal
python	cold-blooded	scales	no	no	no	no	yes	reptile
salmon	cold-blooded	scales	no	yes	no	no	no	fish
whale	warm-blooded	hair	yes	yes	no	no	no	mammal
frog	cold-blooded	none	no	semi	no	yes	yes	amphibian
komodo	cold-blooded	scales	no	no	no	yes	no	reptile
dragon								
bat	warm-blooded	hair	yes	no	yes	yes	yes	mammal
pigeon	warm-blooded	feathers	no	no	yes	yes	no	bird
cat	warm-blooded	fur	yes	no	no	yes	no	mammal
leopard	cold-blooded	scales	yes	yes	no	no	no	fish
shark								
turtle	cold-blooded	scales	no	semi	no	yes	no	reptile
penguin	warm-blooded	feathers	no	semi	no	yes	no	bird
porcupine	warm-blooded	quills	yes	no	no	yes	yes	mammal
eel	cold-blooded	scales	no	yes	no	no	no	fish
salamander	cold-blooded	none	no	semi	no	yes	yes	amphibian

(Intro to Data Mining, p. 147)

visão geral

- Objetivo: dividir as amostras recursivamente até obter "folhas" suficientemente homogêneas.
- Começamos com as amostras todas.
- Dividimos as amostras em dois grupos, com base em alguma variável (e ponto de corte, se a variável é quantitativa).
- Mas não arbitrariamente! Dividimos as amostras em dois grupos de tal maneira que os dois grupos sejam tão homogêneos quanto possível com relação a y.
- Dividimos cada grupo da mesma forma e assim vamos "crescendo" a árvore de cima p/ baixo.
- Diferentes medidas de homogeneidade são usadas na prática. Duas mais comuns: Gini e entropia.

Gini

- $G = \sum_{c=1}^{C} p_{gc} (1 p_{gc})$
- p_{gc} é a porcentagem de amostras no grupo g que pertencem à classe c.
- ullet Quanto menor G, maior a homogeneidade dos grupos.
- Exemplo: 2 classes, um grupo c/ 70 amostras dividido 50/50, um grupo c/ 30 amostras dividido 60/40.
- $G_{g=1} = (0, 5 \times (1-0, 5)) + (0, 5 \times (1-0, 5)) = 0, 5$
- $G_{q=2} = (0, 6 \times (1-0, 6)) + (0, 4 \times (1-0, 4)) = 0,48$
- $G = 70/100 \times 0, 5 + 30/100 \times 0, 48 = 0,494$
- Dividimos as amostras recursivamente. P/ cada divisão escolhemos a variável e ponto de corte que minimizam G. Paramos quando os grupos forem 100% homogêneos.

Entropia

- $E = -\sum_{c=1}^{C} p_{gc}(\log(p_{gc}))$
- (log geralmente na base 2, mas base não é fundamental)
- p_{gc} é a porcentagem de amostras no grupo g que pertencem à classe c.
- Quanto menor E, maior a homogeneidade dos grupos.
- Exemplo: 2 classes, um grupo c/ 70 amostras dividido 50/50, um grupo c/ 30 amostras dividido 60/40.
- $E_{g=1} = -0.5 \times \log 0.5 0.5 \times \log 0.5 \approx 0.693$
- $E_{g=2} = -0.6 \times \log 0.6 0.4 \times \log 0.4 \approx 0.673$
- $E = 70/100 \times 0,693 + 30/100 \times 0,673 = 0,687$
- Dividimos as amostras recursivamente. P/ cada divisão escolhemos a variável e ponto de corte que minimizam E. Paramos quando os grupos forem 100% homogêneos.

- Crescemos a árvore de cima p/ baixo, usando G ou E, até que os grupos sejam 100% homogêneos.
- A cada divisão é preciso identificar qual variável maximiza a homogeneidade dos grupos resultantes.
- Isso é feito iterativamente i.e., na base da tentativa e erro.
- Parece uma tarefa hercúlea mas seu laptop é capaz de fazer isso em uma fração de segundos.
- Depois de pronta, podemos usar a árvore p/ classificar novas amostras.

- Principal vantagem:
- Matematicamente simples: método não-paramétrico. Não exitem parâmetros p/ estimar (≠ regressão; não existe b).
- Principal desvantagem:
- Pouca robustez. Pequenas perturbações nos dados podem criar uma árvore completamente diferente. E um corte ótimo num determinado ponto pode resultar em cortes subótimos depois.
- Vamos ver como resolver isso no final da aula.

validação

- Como avaliar o poder preditivo de uma árvore?
- Existem vários métodos de validação.
- Método mais simples: dividir as amostras em 2/3 treinamento e 1/3 teste.
- "Crescemos" a árvore usando apenas os 2/3 de treinamento e depois usamos a árvore p/ prever a classe dos 1/3 de teste.
- Na verdade isso serve p/ qualquer algoritmo de classificação, não apenas árvores de decisão. Serve inclusive p/ compararmos o desempenho de diferentes algoritmos (ex.: árvore de classificação vs SVM, usando o mesmo dataset).

matriz de confusão

Table 4.2. Confusion matrix for a 2-class problem.

		Predicted Class			
		Class = 1	Class = 0		
Actual	Class = 1	f_{11}	f_{10}		
Class	Class = 0	f_{01}	f_{00}		

(Intro to Data Mining, p. 149)

medidas de desempenho: acurácia

Acurácia = predições corretas / predições totais

$$\bullet = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

• Diagonal contém as predições corretas.

medidas de desempenho: taxa de erros

• Taxa de erros = predições incorretas / predições totais

$$\bullet = \frac{f_{10} + f_{01}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

 $\bullet = 1 - acurácia$

medidas de desempenho: precisão

 Precisão = % de vezes em que a classe correta é 0 quando o modelo prevê 0

$$= \frac{f_{00}}{f_{10} + f_{00}}$$

• P/ mais de 2 classes: média ponderada.

medidas de desempenho: recall

- Recall = % de vezes em que o modelo prevê 0 quando a classe correta é 0
- $\bullet = \frac{f_{00}}{f_{01} + f_{00}}$
- P/ mais de 2 classes: média ponderada.

medidas de desempenho: F1

- $\bullet \ F1 = 2 \frac{ \text{precisão} \times \text{recall} }{ \text{precisão} + \text{recall} }$
- Melhor: 1. Pior: 0.
- P/ mais de 2 classes: média ponderada.

medidas de desempenho: ROC

medidas de desempenho

- Ok, mas como sei se um modelo é suficientemente bom?
- R: Não existe um valor "mágico" p/ acurácia, etc.
- Depende do caso concreto em análise.
- Ex.: acurácia de 70% p/ qualidade do tomador de crédito. Bom?
 Ruim?
- Importante: classes desbalanceadas podem ser um problema.
- Ex.: exame médico que detecta um determinado tipo de câncer.
- A cada 100 exames, apenas 1 efetivamente é câncer.
- Classificador que sempre dá não-câncer vai estar correto 99% das vezes!
- Nesse caso a acurácia não é uma boa métrica. É preciso aceitar mais falsos positivos. (Ou usar correções p/ rebalancear classes - e.g., bootstrapping.)

validação

- Uma alternativa comum à divisão 2/3 1/3 é a chamada validação cruzada:
- ... divide-se o dataset em n grupos; freqüentemente n=10
- ullet ... treina-se o algoritmo classificador usando n-1 grupos
- ... afere-se o desempenho do classificador usando o grupo deixado de fora como teste
- ... repete-se o procedimento p/ cada grupo (i.e., cada grupo será usado como teste uma vez)
- ... afere-se o desempenho médio do classificador

overfitting

- Todo algoritmo de classificação está sujeito a overfitting.
- Overfitting: o classificador (árvore, SVM, o que seja) responde a idiossincrasias do dataset e assim não desempenha bem com novas amostras. Ex.: por uma razão qualquer todos os candidatos a uma determinada linha de crédito que tinham altura superior a 1,90 foram bons pagadores. Mas poucas pessoas têm mais que 1,90, então esse achado é provavelmente inócuo. Mas o classificador pode "aprender" erroneamente que candidatos mais altos são bons pagadores.
 Overfitting = classificador confunde ruído com sinal.
- Importante validar o classificador: é preciso avaliar seu desempenho com amostras ainda não vistas.

random forest

- Em vez de criar uma árvore, criamos centenas ou milhares. P/ novas amostras, vale a predição modal das árvores. Isso aumenta a robustez das predições.
- \bullet P/ "crescer" cada árvore usamos bootstrapping: pegamos N amostras, com reposição, com N sendo o número total de amostras no dataset.
- A cada partição usamos não as variáveis todas, mas um subset aleatório delas, geralmente \sqrt{K} .
- Quantas árvores? O necessário p/ que as predições fiquem estáveis.
- Individualmente cada árvore tem desempenho ruim, mas a predição modal tende a ser boa.
- Variante: extreme random forest, em que o ponto de corte das variáveis contínuas também é aleatório.
- Na prática: quase ninguém usa uma única árvore de decisão; é random forest ou boosting.