

Assignment Project Exam Help

https:s/powendancom

Add WeChat powcoder

What is the Relational Data Model?

Assignment of the Control of the Research in 1970. Assignment of the Control of t

 A database contains tables (called relations), and each table is made up of columns and rows.

htumans have used tables for centuries to keep track of data

Add Wechat powcoder

 Used as the standard for relational DBMSs (e.g., Oracle, IBM DB2, Microsofts Access, Microsofts SQL Server, MySQL, postgreSQL, etc.).

Relation

Assignment Project Exam Help

• coresponde co With Carpart to powcoder

INFORMAL TERMS	FORMAL TERMS
Table	Relation
Column	Attribute
Data type	Domain
Row	Tuple
Table definition	Relation schema

Assimple and define the perfect of the second of the secon

Example: To capture the information of a person, we can use attributes like Name, Age, Gender, Address and PhoneNumber.

- o Donald Days sers Days McQuarter attribute M
 - STRING = $\{A, B, CD, ...\}$;
 - **Example**: DATE = $\{01/01/2005, 03/07/1978, ...\}$;
- Recall that, **Cartesian product** $D_1 \times ... \times D_n$ is the set of all possible combinations of values from the sets $D_1, ..., D_n$.

Example: Let D_1 ={book,pen}, D_2 ={1,2} and D_3 ={red}. Then

• $D_1 \times D_2 \times D_3 = \{(book, 1, red), (book, 2, red), (pen, 1, red), (pen, 2, red)\}$

 The attributes are Student CourseNo, Semester, Status and Engol ate. tillutes are as follows.C dom(CourseNo)=STRING; dom(StudentID)=INT;

dom(Semester)=STRING;

dom(Status)=STRING;

dom(EnrolDate)=DATE.

The virge table can be general as a see (216, COMP2410, 2016 S2, active, 25/05/2010), (458, COMP1130, 2016 S1, active, 20/02/2016), (459, COMP2400, 2016 S2, active, 11/06/2016)}.

	ENROL						
Λ	Sturlent D	CourseNo	Semester	Status	Enroll ate		
	56	COMP2400	2046 \$2	active	25/03/2018		
	458	COMP1130	2016 \$1	active	20/02/2016		
	459	COMP2400	2016 S2	active	11/06/2016		

Is the above set a subset of

INT × STRING × STRING × STRING × DATE?

Answer: Yes.

Assignment Project Exam Help

- Each attribute is associated with a domain.
- A relation schema can be expressed by http://or powcoder.com
 - $R(A_1 : dom(A_1), ..., A_n : dom(A_n)),$

where $A_1 \dots A_n$ are attributes of R and $dom(A_i)$ is the domain of A_i .

Example: The relation schema in the previous example is

- ENROL(StudentID, CourseNo, Semester, Status, EnrolDate), or
- ENROL(StudentID: INT, CourseNo: STRING, Semester: STRING, Status: STRING, EnrolData: DATE).

Assignment elaptoriect Exam Help

Example: The previous example has the following tuples:

https://possycupetopologom

• (458, COMP1130, 2016 S1, active, 20/02/2016)∈

 $\mathtt{INT} \times \mathtt{STRING} \times \mathtt{STRING} \times \mathtt{STRING} \times \mathtt{DATE}.$

459 COMP2400, 2076 62, active, 11/06/2016) € CONT & FRING 19 RNV TRING 121.

• A relation r(R) is a set of tuples $r(R) \subseteq dom(A_1) \times ... \times dom(A_n)$.

Example: The previous example has the following relation:

• $r(\mathsf{ENROL}) \subseteq \mathsf{INT} \times \mathsf{STRING} \times \mathsf{STRING} \times \mathsf{STRING} \times \mathsf{DATE}$.

Assignment Project Exam Help

A relational database schema S is

```
hatset of relation/schemas S-CB-der and omega a set of integrity constraints IC.
```

- A relational database state of S is a set of relations such that there is just one relation for each relation schema in S, and
 - all the relations satisfy the integrity constraints *IC*.

Assignational data are scheina Stuento that has three relation p

- STUDENT(StudentID, Name, DoB, Email).
- Course(No, Cname, Unit);

Add WeChat powcoder

ENROL					
StudentID CourseNo Semester Status EnrolDate					

That is, StuEnrol={Student, Course, Enrol}.

Assignment Project Exam Help

_	STUDENT				
	StudentID	Name	DoB	Email	
	456	Tom	25/01/1988	tom@gmail.com	
1. 44	458 /	Peter	23/05/1993	peter@gmail.com	
nttn	459	ra	1,1/19/1987	a 🕰 🥝 gmail.com	M
TILL	D•//			uci.cc	
	_	_			

		COURSE					
No		Cname			Unit		
CO. (P. 13) COM 72 (0)	Int oduct		lotok po lo	ting I	/ <mark>6</mark> (ode	er
	No CO (P 13) CON 72 00	COLIP 13/ Infoat a	COLP 137 Introduct on to Adva	No Cname CO P 187 Introduction to Advanced Comput COM 22 00 Fell tige II pataleas	No Cname CO. P. 187 Introduction to Advanced Computing I CON 22 00 Fell tige II patalt as a	No Cname Unit CO P 39 Invocept on to Advanced Computing I 6 COMP2 00 Fell tight Datat as s	No Cname Unit CO P 37 Invoite to not Advanced Computing 6 COM 22 00 Fell tigal Datal as s

ENROL						
StudentID	CourseNo	Semester	Status	EnrolDate		
456	COMP2400	2016 S2	active	25/05/2016		
458	COMP1130	2016 S1	active	20/02/2016		
459	COMP2400	2016 S2	active	11/06/2016		