实变函数

舒予

2022 Spring

2021-2022 学年西安交通大学实变函数 (MATH311107) 课程笔记.

- 教师: 王立周
- 教材:《实变函数论与泛函分析》(上册) 夏道行等
- 参考书: Real and Abstract Analysis by Hewitt & Stromberg

目录

1	集与	直线上的点集	1
	1.1	集与集的运算	1
	1.2	映照与势	2
2	测度		3
	2.1	集类和集函数	3
	2.2	环	4
	2.3	代数	5
	2.4	σ-环	6
	2.5	σ-代数	6
	2.6	ℝ上的环 <i>R</i> ₀	7
	2.7	单调类方法	7
	2.8	测度的定义	8
	2.9	测度的性质	8
	2.10	极限与测度交换次序	10
	2.11	R ₀ 上的 Lebesgue 测度	11
	2.12	测度的延拓	14
	2.13	测度的完备性	19
	2 14	Lebesque 测度的完义	25

2.16 Lebesgue 测度的正则性 2.17 Lebesgue 测度的不变性 2.18 Lebesgue-Stieltjes 测度 2.19 n 维 Lebesgue 测度 3 可测函数与积分 3.1 可测函数 3.2 几乎处处相等的函数 3.3 简单函数的逼近 3.4 连续函数的逼近	 29 32 33 34 36 36 38 39 		
2.18 Lebesgue-Stieltjes 测度 2.19 n 维 Lebesgue 测度 3 可测函数与积分 3.1 可测函数 3.2 几乎处处相等的函数 3.3 简单函数的逼近	33 34 36 36 38		
2.19 n 维 Lebesgue 测度 3 可测函数与积分 3.1 可测函数 3.2 几乎处处相等的函数 3.3 简单函数的逼近	34 36 36 38		
3 可测函数与积分 3.1 可测函数	36 36 38		
3.1 可测函数	36 38		
3.2 几乎处处相等的函数	38		
3.3 简单函数的逼近			
	39		
3.4 连续函数的逼近			
	41		
3.5 逐点收敛,一致收敛,依测度收敛	42		
3.6 Egoroff 定理	44		
3.7 Riesz 定理	46		
3.8 Lebesgue 积分的定义	48		
3.9 Lebesgue 积分的性质	50		
3.10 几乎处处有定义的函数的积分	53		
3.11 Lebesgue 单调收敛定理	57		
3.12 Lebesgue 控制收敛定理	62		
3.13 有界变差函数	65		
3.14 Lebesgue 微分定理	69		
3.15 微积分基本定理	70		
3.16 绝对连续函数	71		
3.17 Newton-Lebniz 公式	73		
4 期末习题课	75		
· · · · · · · · · · · · · · · · · · ·			

1 集与直线上的点集

1.1 集与集的运算

定义 1.1.1. 把具有某种特定性质的具体的或抽象的对象的全体称做集合,简称集,其中的每个对象称为该集的元素.

集合的并又叫做集合的和,用 $A \cup B$ 或 A + B 表示.集合的交又叫做集合的通,用 $A \cap B$ 或 AB 表示.一族集合的并用 $\bigcup_{\alpha \in N} A_{\alpha}$ 或 $\sum_{\alpha \in N} A_{\alpha}$ 表示.一族集合的交用 $\bigcap_{\alpha \in N} A_{\alpha}$ 或 $\prod_{\alpha \in N} A_{\alpha}$ 表示.**差集** 用 $A \setminus B$ 或 A - B 表示.**对称差**定义为 $(A - B) \cup (B - A)$.B 关于 A 的**余集**用 $\mathbb{C}_A B$ 表示.若固定 A,则 B 的余集可以记为 B^c .

记 $(-\infty, +\infty) = \mathbb{R}$,定义 $[-\infty, +\infty] := \mathbb{R} \cup \{-\infty, +\infty\}$,称为广义实数集(即实数集加上 $+\infty$ 和 $-\infty$).设 $-\infty < a < +\infty$,则 $[-\infty, a) := \{x : -\infty \le x < a\}$.函数 $f : A \to [-\infty, +\infty]$ 称为广义实值函数.关于无穷与无穷之间的代数运算,需要注意 $(+\infty) - (+\infty)$ 无意义, $(+\infty) \cdot (-\infty) = -\infty$, $0 \cdot (+\infty) = 0$, $0 \cdot (-\infty) = 0$ (因为一条直线的面积为 0).

定义 1.1.2. 设 $A \subset \mathbb{R}^n$, $B \to A$ 的子集. 如果存在开集 $\Omega \subset \mathbb{R}^n$, 使得 $B = A \cap \Omega$, 称 $B \to A$ 的相对开集⁴.

"在数学分析中称为**开子集**.

下面介绍两个有用的关系式——和通关系式.

设 S 是任意一个集, $\{A_{\alpha}: \alpha \in N\}$ 是任一族集,有

$$S - \bigcup_{\alpha \in N} = \bigcap_{\alpha \in N} (S - A_{\alpha});$$

$$S - \bigcap_{\alpha \in N} = \bigcup_{\alpha \in N} (S - A_{\alpha}).$$

定义 1.1.3. 设 $A_1,A_2,\ldots,A_n,\ldots$ 是任一列集. 由属于该集列中无穷多个集的那种元素全体组成的集 称为这一集列的上限集,记作 $\overline{\lim}_{n\to+\infty}A_n$;而由属于集列中从某个指标 $n_0(x)$ 以后所有集 A_n 的那种元素 x 的全体组成的集称为这一集列的下限集,记作 $\underline{\lim}_{n\to+\infty}A_n$.

Remark.

$$\bigcap_{n=1}^{+\infty} A_n \subset \underline{\lim}_{n \to +\infty} A_n \subset \overline{\lim}_{n \to +\infty} A_n \subset \bigcup_{n=1}^{+\infty} A_n$$

注意: $\bigcap_{n=1}^{+\infty} A_n$ 中的元素在全部无穷多个集合中出现过.

 $\underline{\lim}_{n\to+\infty}A_n$ 中的元素为 $\bigcap_{n=1}^{+\infty}A_n$ 中的元素加上在无穷多个集合中出现过,仅在有限个集合中没出现过的元素.

 $\overline{\lim}_{n\to+\infty}A_n$ 中的元素为 $\underline{\lim}_{n\to+\infty}A_n$ 中的元素加上在无穷多个集合中出现过,且在无穷多个集合中没出现过的元素.

 $\bigcup_{n=1}^{+\infty} A_n$ 中的元素只用在任意一个 A_n 中出现过一次.

¹常用 $\sum_{\alpha \in N} A_{\alpha}$ 表示不相交的集合的并.

从上到下,入选的标准逐渐放松.

集列的上限集与下限集都可以用集列 $\{A_n\}$ 的"并"、"交"运算表示出来,它们的表达式是

$$\overline{\lim_{n \to +\infty}} A_n = \bigcap_{n=1}^{+\infty} \bigcup_{m=n}^{+\infty} A_m;$$

$$\underline{\lim_{n \to +\infty}} A_n = \bigcup_{n=1}^{+\infty} \bigcap_{m=n}^{+\infty} A_m.$$

定义 1.1.4. 如果集列 $\{A_n\}$ 的上限集和下限集相等

$$\overline{\lim}_{n \to +\infty} A_n = \underline{\lim}_{n \to +\infty} A_n,$$

那么就说集列 $\{A_n\}$ 收敛. $A = \overline{\lim}_{n \to +\infty} A_n = \underline{\lim}_{n \to +\infty} A_n$ 为集列 $\{A_n\}$ 的极限(或极限集),记为 $A = \lim_{n \to +\infty} A_n$.

定义 1.1.5. 如果集列 $\{A_n\}$ 满足

$$A_n \subset A_{n+1} \ (A_n \supset A_{n+1}), \quad n = 1, 2, 3, \dots,$$

那么称 $\{A_n\}$ 是单调增加(减少)集列. 单调增加与单调减少的集列统称为单调集列.

Remark. 单调集列是收敛的. (单调集列必有极限, 认为 ∞ 也为极限)

命题 1.1.6. 如果集列 $\{A_n\}$ 单调增,则 $\lim_{n\to+\infty}A_n=\cup_{n=1}^{+\infty}A_n$;如果集列 $\{A_n\}$ 单调减,则 $\lim_{n\to+\infty}A_n=\cap_{n=1}^{+\infty}A_n$.

证明. 如果集列 $\{A_n\}$ 单调增,则 $\overline{\lim}_{n\to+\infty}A_n=\cap_{n=1}^{+\infty}\cup_{m=n}^{+\infty}A_m=\cap_{n=1}^{+\infty}\cup_{m=1}^{+\infty}A_m=\cup_{m=1}^{+\infty}A_m,$ $\underline{\lim}_{n\to+\infty}A_n=\cup_{n=1}^{+\infty}\cap_{m=n}^{+\infty}A_m=\cup_{n=1}^{+\infty}A_n.$ 故 $\lim_{n\to+\infty}A_n=\cup_{n=1}^{+\infty}A_n.$

单调减的情况同理可证.

1.2 映照与势

势——比较两个集合中所含的元素"个数的多少".

定义 1.2.1. 设 A, B 是两个集合.

 $\overline{A} = A \neq \emptyset$, 如果存在单射 $f: A \to B$, 则称A 的势小于或等于 B 的势,记作 $\overline{A} \leq \overline{B}$. 若 $A = \emptyset$, 规定 $\overline{A} \leq \overline{B}$.

如果 $\overline{\overline{A}} \leq \overline{\overline{B}}$,并且 $\overline{\overline{B}} \leq \overline{\overline{A}}$,则称A, B等势,记作 $\overline{\overline{A}} = \overline{\overline{B}}$.

如果 $\overline{\overline{A}} \leq \overline{\overline{B}}$, 并且 $\overline{\overline{A}} \neq \overline{\overline{B}}$, 则称A 的势严格小于 B 的势, 记作 $\overline{\overline{A}} < \overline{\overline{B}}$.

例。(1) $\overline{\overline{\{1\}}} < \overline{\overline{\{1,2\}}}; \quad (2)$ $\overline{\overline{A}} = \overline{\overline{A}}; \quad (3)$ 如果 $A \neq \varnothing$,则 $\overline{\overline{A}} > \overline{\overline{\varnothing}}; \quad (4)$ $\overline{\overline{\{\mathbb{N}^*\}}} = \overline{\overline{\{\mathbb{N}\}}}.$

定理 1.2.2 (Schröder-Berstein). 设 $A, B \neq \emptyset$, 则 $\overline{\overline{A}} = \overline{\overline{B}}$ 当且仅当存在双射 $f: A \to B$.

证明. 证明较复杂, 详见参考书.

定义 1.2.3. 如果 $A=\varnothing$ 或者 $\exists n\in\mathbb{N}^*$,使得 $\overline{A}=\overline{\{0,1,2,\ldots,n\}}$,则称 A 为有限集. 否则称 A 为无限集.

定理 1.2.4. № 是无限集.

证明. 反设 \mathbb{N}^* 是有限集,即有 $\overline{\{0,1,2,\ldots,n\}} = \overline{\mathbb{N}^*}$,即存在双射 $f:\{0,1,2,\ldots,n\} \to \mathbb{N}^*$.令 $M = \max\{f(1),f(2),\ldots,f(n)\}$,则 $M+1 \notin \operatorname{Rg}(f)^2$,但 $M+1 \in \mathbb{N}^*$,矛盾.

定理 1.2.5. 如果 A 为无限集,则 $\overline{\overline{A}} \geq \overline{\overline{\mathbb{N}^*}}$.

证明. 证明见参考书.

定义 1.2.6. 设 A 为无限集,如果有 $\overline{A} = \overline{\mathbb{N}^*}$,则称 A 为无限可数集. 若 A 为有限集或无限可数集,称 A 为可数集. 否则称 A 为不可数集.

定理 1.2.7. 可数个可数集的并仍为可数集.

定理 1.2.8. 用 ◎ 表示有理数集,则

- (i) ◎ 为可数集;
- (ii) ℝ 为不可数集;
- (iii) ℝ ℚ 为不可数集.

证明. (ii) 的证明较困难,详见参考书. 假设已经证明了(ii),下证(i)和(iii).

- (i) 注意到 $\mathbb{Q} = \mathbb{Q}^+ \cup \{0\} \cup \mathbb{Q}^-$. 因为 $\overline{\mathbb{Q}^-} = \overline{\mathbb{Q}^+}$,故只用证明 \mathbb{Q}^+ 可数. $\forall k \in \mathbb{N}^*$,记 $A_k = \{\frac{n}{k}: n = 1, 2, \dots\}$,则 A_k 可数. 由 $\mathbb{Q}^+ = \bigcup_{k \in \mathbb{N}^*} A_k$ 知 \mathbb{Q}^+ 可数. 从而 \mathbb{Q} 为可数集.
- (iii) 反设 $\mathbb{R} \mathbb{Q}$ 为可数集,则 $\mathbb{R} = (\mathbb{R} \mathbb{Q}) \cup \mathbb{Q}$,又因为 \mathbb{Q} 为可数集,故由定理1.2.7知 \mathbb{R} 为可数集,与 (ii) 矛盾.

2 测度

2.1 集类和集函数

定义 2.1.1. 由集合构成的的集合称为集类. 定义域为集类的函数称为集函数.

设 ⋈ 为集类,记

$$\cap \mathscr{A} := \cap_{A \in \mathscr{A}} A$$
,

$$\cup \mathscr{A} := \cup_{A \in \mathscr{A}} A,$$

 $^{{}^{2}}$ Rg(f) 表示 f 的像集

用X表示全集,记

$$2^X := \{A : A \subset X\}.$$

下面介绍几种特殊的集类:环, σ -环,代数, σ -代数.这些集类都是对几种集合运算封闭的集合.

- (1) 对集合的交、并、差封闭的集类称为环;
- (2) 对集合的交、并、差、补封闭的集类称为代数;
- (3) 对集合的交、并、差、极限封闭的集类称为 σ -环;
- (4) 对集合的交、并、差、补、极限封闭的集类称为 σ -代数.

在实变函数中,常用" σ "表示"可数".注意极限运算可以表示为可数次的"并"和"交".

2.2 环

定义 2.2.1. 设 $R \subset 2^X$, $R \neq \emptyset$. 如果

$$A, B \in R \implies A \cup B, A - B \in R,$$

则称 R 为 X 上的环 (ring).

由定义知环对并、差封闭.

| 命题 2.2.2. 环对交,并,差封闭.

证明. 注意到 $A \cap B = A - (A - B)$, 故 $A \cap B \in R$.

下面介绍环的一些基本性质. 设R为X上的环.

(1) 设 $A_i \in R, i = 1, 2, ..., n$, 由数学归纳法, $\bigcap_{i=1}^n A_i \in R$, $\bigcup_{i=1}^n A_i \in R$. 此外 $A_1 - A_2 - A_3 - \cdots - A_n \in R$. (作有限次交、并、差仍在环中)

- (2) R 对补运算不一定封闭. 如 $R = \emptyset$,但 $X = \emptyset^c \notin R$. (主要原因:全集不一定在 R中)
- (3) R 对极限运算不一定封闭. 如设 $X = \mathbb{R}$, $R = \{A \subset X : A$ 为有限集 $\}$, 则 R 为 X 上的环. $A_n = \{1, 2, 3, \dots, n\}$,但 $\lim_{n \to +\infty} A_n = \mathbb{N}^* \notin R$.
- (4) $\varnothing \in R$,全集 X 不一定属于 R. 由定义知, $R \neq \varnothing$ (环中至少有一个元素). 设 $A \in R$,则 $A A = \varnothing \in R$. 设 $R = \{\varnothing\}$,则 $X \notin R$.

环的构造:设 \mathscr{F} 是 X 上的一族环³,记

$$\widetilde{R} = \cap \mathscr{F}$$
,

则 \widetilde{R} 也是 X 上的环.

Remark. 若干个环的交集也是环.

 $^{^{3}}$ 也就是说 $\mathscr{F} \neq \varnothing$, $\forall R \in \mathscr{F}$,R 为 X 上的一个环

证明. 设 $A,B \in \widetilde{R}$, 则 $\forall R \in \mathscr{F}$, 都有 $A,B \in R$, 故有 $A \cup B \in R$, $A-B \in R$, $\forall R$. 故 $A \cup B \in \widetilde{R}$, $A-B \in \widetilde{R}$.

定义 2.2.3. 设 $E \subset 2^X$. 记

$$R(E) = \bigcap \{R \subset 2^X : R \$$
为 $X \$ 上的环, $R \supset E\}$,

称 R(E) 为 E 的生成环.

例. 设 $a,b \in X$, $a \neq b$, 设 $E = \{\{a\}\}$, 则 $R(E) = \{\emptyset,\{a\}\}$. 设 $E = \{\{a\},\{b\}\}$, 则 $R(E) = \{\emptyset,\{a\},\{b\},\{a,b\}\}$.

集合 E 本身不是环,添加一些元素后形成环,这些环中最小的即为生成环.

Remark. 生成环 R(E) 是包含 E 的最小的环.

Remark. $\{\emptyset\}$ 是 X 上最小的环, 2^X 是 X 上最大的环, 这两个环称为平凡的环.

2.3 代数

定义 2.3.1. 设 R 是 X 上的一个环. 如果 $X \in R$, 称 R 为代数.

代数是包括全集的环.

┃命题 2.3.2. 代数对交、并、差、补封闭.

代数的构造:设 \mathcal{F} 是X上的一族代数.记

$$\widetilde{R} = \cap \mathscr{F}$$
,

则 \widetilde{R} 也是 X 上的代数.

定义 **2.3.3.** 设 $E \subset 2^X$. 记

称 F(E) 为 E 的生成代数.

Remark. 生成代数 F(E) 是包含 E 的最小的代数.

Remark. $\{\emptyset, X\}$ 是 X 上最小的代数, 2^X 是 X 上最大的代数, 这两个代数称为平凡的代数.

2.4 σ -环

定义 2.4.1. 设 $S \subset 2^X$, $S \neq \emptyset$. 如果 S 满足

- (i) $\forall A_n \in S, \ n = 1, 2, \dots, \ \cup_{n=1}^{+\infty} A_n \in S;$
- (ii) $\forall A, B \in S, A B \in S$,

 $称 S 为 X 上的 \sigma - 环.$

 σ -环中可数个集合的并仍在 σ -环中.

推论 2.4.2. 设 $\forall A_n \in S, \ n = 1, 2, \ldots, \ \ \mathbb{M} \cap_{n=1}^{+\infty} A_n \in S.$

推论 2.4.3. σ-环对极限运算封闭.

 σ -环的构造: 设 \mathscr{F} 是 X 上的一族 σ -环. 记

$$\widetilde{S} = \cap \mathscr{F},$$

则 \tilde{S} 也是X上的 σ -环.

定义 2.4.4. 设 $E \subset 2^X$. 记

$$S(E) = \bigcap \{ S \subset 2^X : S \ \, \exists \ \, X \ \, \bot \ \, \text{的 } \sigma\text{-x}, S \supset E \},$$

称 S(E) 为 E 的生成 σ -环.

Remark. 生成 σ -环 S(E) 是包含 E 的最小的 σ -环.

Remark. $\{\emptyset\}$ 是 X 上最小的 σ -环, 2^X 是 X 上最大的 σ -环,这两个 σ -环称为平凡的 σ -环.

2.5 σ -代数

定义 2.5.1. 设 $S \neq X$ 上的一个 σ -环. 如果 $X \in S$, 称 $S \rightarrow \sigma$ -代数.

- σ -代数是一种代数,也是一种环.
- σ -代数对集合的代数运算(交、并、差、补)和极限运算封闭. σ -代数是4种集类中性质最好的.
- σ -代数的构造: 设 \mathscr{F} 是 X 上的一族 σ -代数. 记

$$\widetilde{S} = \cap \mathscr{F},$$

则 \widetilde{S} 也是 X 上的 σ -代数.

定义 2.5.2. 设 $E \subset 2^X$. 记

$$\mathscr{F}(E) = \bigcap \{S \subset 2^X : S \to X \perp b \mid \sigma - \text{代数}, S \supset E\},$$

称 $\mathscr{F}(E)$ 为 E 的生成 σ -代数.

Remark. 生成 σ -代数 $\mathscr{F}(E)$ 是包含 E 的最小的 σ -代数.

Remark. $\{\emptyset, X\}$ 是 X 上最小的 σ -代数, 2^X 是 X 上最大的 σ -代数,这两个 σ -环称为平凡的 σ -代数.

2.6 \mathbb{R} 上的环 R_0

记 \mathbb{R} 为全体实数. 设 $a,b \in \mathbb{R}$, 记

$$(a, b] = \{x \in \mathbb{R}; \ a < x \le b\}.$$

若 $a \ge b$,则 $(a, b] = \emptyset$.

记

$$P = \{(a, b] : a, b \in \mathbb{R}, a \le b\},\$$

$$R_0 = \{ \bigcup_{i=1}^n (a_i, b_i] : n \in \mathbb{N}^*, \ a_i, b_i \in \mathbb{R}, \ a_i \le b_i \} \},$$

命题 2.6.1. R_0 为 P 的生成环,即

$$R_0 = R(P)$$
.

命题 2.6.2.

$$S(R_0) = \mathscr{F}(R_0).$$

2.7 单调类方法

下面介绍一种构造 σ -环的方法——单调类方法.

定义 2.7.1. 设 $M \subset 2^X$, $M \neq \emptyset$. 如果 M 满足

$$A_n \in M, \{A_n\}$$
单调 $\Longrightarrow \lim_{n \to +\infty} A_n \in M,$

则称 M 为 X 上的单调类 (monotone).

单调类就是对单调的集合列的极限封闭的集合类. σ -环和 σ -代数都是单调类.

定义 2.7.2. 设 $E \subset 2^X$. 记

$$M(E) = \bigcap \{ M \subset 2^X : M$$
是单调类, $M \supset E \}$,

称 M(E) 为 E 的生成单调类.

定理 2.7.3. 设 $R \neq X$ 上的环,则

$$S(R) = M(R)$$
.

推论 2.7.4. 设 R 是 X 上的一个代数,则

$$\mathscr{F}(E) = M(R).$$

2.8 测度的定义

定义 2.8.1. 设 $R \neq X$ 上的环, $\mu: R \to [0, +\infty]$. 如果 μ 满足

- (i) $\mu(\varnothing) = 0$
- (ii) (可数可加性) 如果 $A_n \in R, \ n=1,2,\ldots$ 互不相交且 $\sum_{n=1}^{+\infty} A_n \in R$,则

$$\mu(\sum_{n=1}^{+\infty} A_n) = \sum_{n=1}^{+\infty} \mu(A_n),$$

则称 μ 为 R 上的测度.

定义中的 (i),(ii) 是对测度的最基本的要求. 如果 μ 为 R 上的测度, $A \in R$,称 $\mu(A)$ 为 A 的 μ -测度.

Remark. 由可数可加性可得有限可加性.

下面介绍一些常见的测度.

例. 设 $\mu: 2^X \to [0, +\infty]$, $\mu(A) = 0$, $\forall A \subset X$. 则 μ 是一个测度, 称为零测度.

例. 设 $\mu: 2^X \to [0, +\infty]$,

$$\mu(A) = \begin{cases} 0, & a = \varnothing, \\ n, & \overline{\overline{A}} = \overline{\overline{\{1, 2, \dots, n\}}}, \ n \in \mathbb{N}^*, \\ +\infty, & A \not\ni \mathcal{L} \mathbb{R} \, \rlap{\mbox{$\rlap/$\rlap{$\rlap/$}\rlap{$\rlap/$}$}}. \end{cases}$$

则 μ 是一个测度, 称为计数测度.

例. 设 $a \in X$, a 固定. 定义 $\mu: 2^X \to [0, +\infty]$,

$$\mu(A) = \begin{cases} 1, & a \in A, \\ 0, & a \notin A. \end{cases}$$

则 μ 是一个测度, 称为 Dirac 测度.

例. 设 μ 是 R 上的测度, $X \in R$, $\mu(X) = 1$, 称 μ 为概率测度. (其中 X 表示全集)

2.9 测度的性质

定理 2.9.1 (测度的基本性质). 设 μ 是环 R 上的测度.

(i) (单调性) 设 $A, B \in R$, $A \subset B$, 则

$$\mu(A) \leq \mu(B);$$

(ii) (可减性) 设 $A, B \in R, A \subset B, \mu(B) < +\infty$, 则

$$\mu(B - A) = \mu(B) - \mu(A);$$

(iii)(下可数可加性)设 $A, A_n \in R, n = 1, 2, \ldots, A \subset \bigcup_{n=1}^{+\infty} A_n, 则$

$$\mu(A) \le \sum_{n=1}^{+\infty} \mu(A_n).$$

Remark. (ii) 中条件 $\mu(B) < +\infty$ 不可去,否则可能出现 $+\infty - (+\infty)$.

例如设 μ 是 \mathbb{N}^* 上的计数测度, $A=\mathbb{N}^*$, $B=\{n+1,n+2,\dots\}$.则 $\mu(A-B)=n$,但 $\mu(A)-\mu(B)=+\infty-(+\infty)$ 无定义.

证明. (i) $B = A \cup (B \setminus A)$, 由测度的可数可加性知 $\mu(B) = \mu(A) + \mu(B - A) \ge \mu(A)$.

- (ii) 由单调性知 $\mu(A)$ 和 $\mu(B-A)$ 均 $<+\infty$. 因为 $\mu(B)=\mu(A)+\mu(B-A)$,故有 $\mu(B-A)=\mu(B)-\mu(A)$.
- (iii) 记 $B_1 = A_1$, $B_2 = A_2 A_1$, $B_2 = A_3 (A_1 \cup A_2)$, . . . , $B_n = A_n \bigcup_{k=1}^{n-1} A_k$. 则 $B_n \in R$,且 $\bigcup_{n=1}^{+\infty} A_n = \bigcup_{n=1}^{+\infty} B_n$.由己知 $A \subset \bigcup_{n=1}^{+\infty} B_n$,因此 $A = \sum_{n=1}^{+\infty} (A \cap B_n)$.又因为 $A \cap B_n \subset A_n$,故 $\mu(A \cap B_n) \leq \mu(A_n)$.由此可得: $\mu(A) \leq \sum_{n=1}^{+\infty} \mu(A)$.

定理 2.9.2 (单调收敛定理). 设 μ 是环 R 上的测度, 设 $A_n \in R$, $n = 1, 2, \ldots$

(i) 如果 $\{A_n\}$ 单调增, $\bigcup_{n=1}^{+\infty} A_n \in R$,则

$$\mu(\cup_{n=1}^{+\infty} A_n) = \lim_{n \to +\infty} \mu(A_n);$$

(ii) 如果 $\{A_n\}$ 单调减, $\bigcap_{n=1}^{+\infty}A_n\in R$,并且 $\mu(A_1)<+\infty$,则

$$\mu(\cap_{n=1}^{+\infty} A_n) = \lim_{n \to +\infty} \mu(A_n).$$

证明. (i) 记 $B_1 = A_1$, $B_2 = A_2 - A_1$, $B_3 = A_3 - A_2$, ..., $B_n = A_n - A_{n-1}$. 则 $B_n \in R$, 并且 $A_n = \sum_{k=1}^n B_k$, $\bigcup_{n=1}^{+\infty} A_n = \sum_{n=1}^{+\infty} B_n$. 因此

$$\mu(\bigcup_{n=1}^{+\infty} A_n) = \mu(\sum_{n=1}^{+\infty} B_n) = \sum_{n=1}^{+\infty} \mu(B_n) = \lim_{n \to +\infty} \sum_{n=1}^{n} \mu(B_n) = \lim_{n \to +\infty} \mu(A_n).$$

(ii) 应用 de Morgan 律. 记 $A = A_1$,则

$$\bigcap_{n=1}^{+\infty} A_n = A - (A - \bigcap_{n=1}^{+\infty} A_n) = A - \bigcup_{n=1}^{+\infty} (A - A_n).$$

由于 $\mu(A) < +\infty$, $\{A - A_n\}$ 单调增,所以

$$\mu(\bigcap_{n=1}^{+\infty} A_n) = \mu(A) - \mu(\bigcup_{n=1}^{+\infty} (A - A_n))$$
$$= \mu(A) - \lim_{n \to +\infty} \mu(A - A_n)$$

$$= \mu(A) - \lim_{n \to +\infty} (\mu(A) - \mu(A_n))$$

$$= \mu(A) - (\mu(A) - \lim_{n \to +\infty} \mu(A))$$

$$= \lim_{n \to +\infty} \mu(A)$$

2.10 极限与测度交换次序

下面考虑一般集合列的极限与测度交换次序的问题,即是否有

$$\mu(\lim_{n\to+\infty} A_n) = \lim_{n\to+\infty} \mu(A_n).$$

为此, 我们设 μ 是 X 上的 σ -环 R 上的测度, 满足

- (i) $\mu(\varnothing) = 0$;
- (ii) 如果 $A_n \in R$, n = 1, 2, ... 互不相交,则

$$\mu(\sum_{n=1}^{+\infty} A_n) = \sum_{n=1}^{+\infty} \mu(A_n).$$

此时 $\mu(\lim_{n\to+\infty}A_n)=\lim_{n\to+\infty}\mu(A_n)$ 不成立. 一个反例如下.

例. 设 μ 是 \mathbb{N}^* 上的 计数测度, $A_n = \{n, n+1, \dots\}$,则 $\mu(\lim_{n \to +\infty} A_n) = \mu(\emptyset) = 0$,而 $\lim_{n \to +\infty} \mu(A_n) = +\infty$.

因此,如果不加任何条件,(2.10)不成立.

定理 2.10.1 (控制收敛定理). 设 R 是 X 上的 σ -环, μ 是 R 上的测度. 设 $A_n \in R$, $n=1,2,\ldots$, $\mu(\bigcup_{n=1}^{+\infty}A_n)<+\infty$. 如果 $\{A_n\}$ 有极限,则

$$\mu(\lim_{n\to+\infty} A_n) = \lim_{n\to+\infty} \mu(A_n).$$

为了证明上述定理, 先给出两个引理.

引理 **2.10.2.** 设 R 是 X 上的 σ -环, μ 是 R 上的测度. 设 $A_n \in R$, n = 1, 2, ...,则

$$\mu(\underbrace{\lim_{n\to+\infty} A_n}) \le \underbrace{\lim_{n\to+\infty} \mu(A_n)}.$$

证明. 我们有

$$\underline{\lim}_{n \to +\infty} A_n = \bigcup_{n=1}^{+\infty} \cap_{k=n}^{+\infty} A_k.$$

注意到集合列 $\{\bigcap_{k=n}^{+\infty} A_k\}_{n=1}^{+\infty}$ 单调增,因此

$$\mu(\underbrace{\lim_{n \to +\infty}} A_n) = \mu(\lim_{n \to +\infty} \cap_{k=n}^{+\infty} A_k) = \lim_{n \to +\infty} \mu(\cap_{k=n}^{+\infty} A_k) \le \underline{\lim}_{n \to +\infty} \mu(A_n).$$

Remark. 经常用上述引理估计集合的测度.

引理 **2.10.3.** 设 R 是 X 上的 σ -环, μ 是 R 上的测度. 设 $A_n \in R, n = 1, 2, \ldots$,如果 $\mu(\cup_{n=1}^{+\infty} A_n) < +\infty$,则

$$\mu(\overline{\lim}_{n\to+\infty} A_n) \ge \overline{\lim}_{n\to+\infty} \mu(A_n).$$

证明. 应用 de Morgan 律. 记 $A=\cup_{n=1}^{+\infty}A_n$,则 $A\in R$, $\mu(A)<+\infty$.则

$$\mu(\overline{\lim}_{n \to +\infty} A_n) = \mu(A - (A - \overline{\lim}_{n \to +\infty} A_n))$$

$$= \mu(A - \underline{\lim}_{n \to +\infty} (A - A_n))$$

$$= \mu(A) - \mu(\underline{\lim}_{n \to +\infty} (A - A_n))$$

$$\geq \mu(A) - \underline{\lim}_{n \to +\infty} \mu(A - A_n)$$

$$= \mu(A) - \underline{\lim}_{n \to +\infty} (\mu(A) - \mu(A_n))$$

$$= \mu(A) - (\mu(A) - \overline{\lim}_{n \to +\infty} \mu(A_n))$$

$$= \overline{\lim}_{n \to +\infty} \mu(A_n).$$

下面给出定理2.10.1的证明.

证明. 因为 A_n 有极限,所以 $\varliminf_{n\to+\infty} A_n = \varlimsup_{n\to+\infty} A_n$. 由引理2.10.2和引理2.10.3,有

$$\underline{\lim_{n\to+\infty}}\,\mu\left(A_{n}\right)\geq\mu\left(\underline{\lim_{n\to+\infty}}\,A_{n}\right)=\mu\left(\overline{\lim_{n\to+\infty}}\,A_{n}\right)\geq\overline{\lim_{n\to+\infty}}\,\mu\left(A_{n}\right).$$

又因为 $\underline{\lim}_{n\to+\infty}\mu(A_n) \leq \overline{\lim}_{n\to+\infty}\mu(A_n)$ 恒成立,故 $\underline{\lim}_{n\to+\infty}\mu(A_n) = \overline{\lim}_{n\to+\infty}\mu(A_n)$. 因此, $\lim_{n\to+\infty}\mu(A_n)$ 存在,并且

$$\mu(\lim_{n \to +\infty} A_n) = \lim_{n \to +\infty} \mu(A_n).$$

2.11 R_0 上的 Lebesgue 测度

记

$$P = \{(a, b] : a, b \in \mathbb{R}, a \le b\},\$$

$$R_0 = \{ \bigcup_{i=1}^n (a_i, b_i] : n \in \mathbb{N}^*, \ a_i, b_i \in \mathbb{R}, \ a_i \le b_i \} \},$$

 R_0 是 \mathbb{R} 上的一个环. 设 $(a,b] \in P$. 记

$$l\left((a,b]\right) = b - a.$$

我们将计算 R_0 中集合的长度(一维 Lebesgue 测度).为此,我们首先证明: $\forall A \in R_0$,存在互不相交的 $P_i \in P, \ i=1,2,\ldots,n$,使得

$$A = \sum_{i=1}^{n} P_i,$$

并且如果

$$A = \sum_{i=1}^{n} P_i = \sum_{j=1}^{m} Q_j,$$

其中 $Q_j \in P$, $j = 1, 2, \ldots, m$ 互不相交,则必有

$$\sum_{i=1}^{n} l(P_i) = \sum_{j=1}^{m} l(Q_j).$$

推论 2.11.1. 设 $A \in R_0$,则存在互不相交的 $P_i \in P$, i = 1, 2, ..., n,使得

$$A = \sum_{i=1}^{n} P_i.$$

推论 2.11.2. 设 $P_i \in P, \ i=1,2,\ldots,n$ 互不相交, $Q_j \in P, \ j=1,2,\ldots,m$ 互不相交,并且

$$\sum_{i=1}^{n} P_i = \sum_{j=1}^{m} Q_j,$$

则

$$\sum_{i=1}^{n} l(P_i) = \sum_{j=1}^{m} l(Q_j).$$

Remark. 上面两个引理的证明只用到初等方法, 故略.

定义 2.11.3. 设 $A \in R_0$, $A = \sum_{i=1}^n P_i$, $P_i \in P$, 记

$$m(A) = \sum_{i=1}^{n} l(P_i),$$

称 m(A) 为 A 的 (一维) Lebesgue 测度.

Remark. $m: R_0 \to [0, +\infty)$ 为 R_0 上的非负函数.

定理 2.11.4. $m: R_0 \to [0, +\infty)$ 是一个测度.

证明. 按定义, $\emptyset = (0,0]$, 故 $m(\emptyset) = l((0,0]) = 0$.

下证可数可加性. (即定义2.8.1中(ii))

Claim 1: 设 $A_i \in R_0$, i = 1, 2, ..., n 互不相交,则 $m(\sum_{i=1}^n A_i) = \sum_{i=1}^n m(A_i)$.

证:设 $A,B\in R_0$, $A\cap B=\varnothing$,设 $A=\sum_{i=1}^n P_i$,其中 $P_i\in P$ 互不相交. $B=\sum_{j=1}^m Q_j$,其中 $Q_j\in P$ 互不相交. 则

$$m(A+B) = m(\sum_{i=1}^{n} P_i + \sum_{j=1}^{m} Q_j) = \sum_{i=1}^{n} l(P_i) + \sum_{j=1}^{m} l(Q_j) = m(A) + m(B).$$

再由数学归纳法可证.

证: B = A + (B - A), 由 Claim 1 知 $m(B) = m(A) + m(B - A) \ge m(A)$.

Claim 3: $\mbox{if } A, A_i \in R_0, \ i = 1, 2, ..., n, \ A \subset \bigcup_{i=1}^n A_i, \ \mbox{if } m(A) \leq \sum_{i=1}^n m(A_i).$

证: 记 $B_1 = A_1$, $B_2 = A_2 - A_1$, $B_3 = A_3 - (A_1 \cup A_2)$, \cdots . 则有 $m(A) \le m(\bigcup_{i=1}^n A_i) = m(\sum_{i=1}^n B_i) = \sum_{i=1}^n m(B_i) \le \sum_{i=1}^n m(A_i)$.

Claim 4: 设 $P_i \in P$, i = 1, 2, ..., n 互不相交, $Q_j \in P$, j = 1, 2, 3, ... 互不相交,并且 $\sum_{i=1}^n P_i = \sum_{j=1}^{+\infty} Q_j$,则 $\sum_{i=1}^n l(P_i) = \sum_{i=1}^{+\infty} l(Q_j)$.

证: 一方面, $\sum_{i=1}^{N} l(Q_j) = m(\sum_{j=1}^{N} Q_j) \le m(\sum_{i=1}^{N} P_j) = \sum_{i=1}^{n} l(P_i)$,故 $\sum_{i=1}^{n} l(P_i) \le \sum_{j=1}^{+\infty} l(Q_j)$. 另一方面,设 $P_i = (a_i, b_i]$, $Q_j = (c_j, d_j]$.假设 $l(P_i) \ge 0$ (否则 $P_i = \varnothing$,可以去掉),并假设 $\sum_{j=1}^{+\infty} Q_j < +\infty$ (若 $\sum_{j=1}^{+\infty} Q_j$ 为 $+\infty$,则显然 $\ge \sum_{i=1}^{n} l(P_i)$),则有

$$\sum_{i=1}^{n} (a_i, b_i] \subset \cup_{j=1}^{+\infty} (c_j, d_j].$$

 $\forall \varepsilon > 0$ (要保证 $a_i + \frac{\varepsilon}{2^i}$ 不超过 b_i),有

$$\sum_{i=1}^{n} [a_i + \frac{\varepsilon}{2^i}, b_i] \subset \bigcup_{j=1}^{+\infty} (c_j, d_j + \frac{\varepsilon}{2^i}].$$

由有限覆盖定理, $\exists N \in \mathbb{N}^*$,使得

$$\sum_{i=1}^{n} [a_i + \frac{\varepsilon}{2^i}, b_i] \subset \bigcup_{j=1}^{N} (c_j, d_j + \frac{\varepsilon}{2^i}],$$

由上式得(因为只定义了半开半闭区间 (a,b] 的测度)

$$\sum_{i=1}^{n} (a_i + \frac{\varepsilon}{2^i}, b_i] \subset \bigcup_{j=1}^{N} (c_j, d_j + \frac{\varepsilon}{2^i}].$$

由单调性,得

$$\sum_{i=1}^{n} (b_i - a_i] - \varepsilon \le \bigcup_{j=1}^{N} (d_j - c_j) + \varepsilon.$$

故

$$m(\sum_{i=1}^{n} l(P_i)) \le \sum_{j=1}^{N} m((c_j, d_j + \frac{\varepsilon}{2^i}]) = \sum_{j=1}^{N} l((c_j, d_j + \frac{\varepsilon}{2^i}]) \le \sum_{j=1}^{+\infty} (d_j - c_j) + \varepsilon.$$

故有

$$\sum_{i=1}^{n} (b_i - a_i] \le \bigcup_{j=1}^{N} (d_j - c_j) + 2\varepsilon.$$

由 ε 任意性,令 $\varepsilon \to 0$,则有 $\sum_{i=1}^{n} l(P_i) \ge \sum_{j=1}^{+\infty} l(Q_j)$.

设 $A_i \in R_0$, $i = 1, 2, 3, \ldots$ 互不相交. $A = \sum_{i=1}^{+\infty} A_i \in R_0$. $A = \sum_{i=1}^n P_i$, $P_i \in P$, 则 $A_j = \sum_{i=1}^{n_j} Q_{ij}$, $Q_{ji} \in P$. 所以 $\sum_{i=1}^n P_i = \sum_{j=1}^{+\infty} \sum_{i=1}^{n_j} Q_{ji}$. 由 Claim 4 得

$$\sum_{i=1}^{n} l(P_i) = \sum_{j=1}^{+\infty} \sum_{i=1}^{n_j} l(Q_{ji}),$$

即

$$m(A) = \sum_{j=1}^{+\infty} m(A_j).$$

综上,定理得证.

设 $g: \mathbb{R} \to \mathbb{R}$ 单调增,定义

$$l_g((a,b]) = g(b) - g(a).$$

Remark. 物理意义为求线段 (a,b] 的质量. $l_g((a,b]) = g(b) - g(a) = \int_a^b g'(t) dt$, 其中 g'(t) 可以理解为 "线密度".

设 $A = \sum_{i=1}^{n} P_i \in R_0$, $P_i \in P$, 定义

$$\mu_g(A) = \sum_{i=1}^n l_g(P_i).$$

Remark. 如果 μ_g 是一个测度,则 g 一定是右连续的. 设 $x_n > x$, 当 $x_n \to x$ 时, $\mu_g((x,x_n]) \to \mu_g((x,x]) = \mu_g(\emptyset) = 0$, 即 $g(x_n) - g(x) \to 0$, 即 $g(x_n) \to g(x)$.

事实上, μ_q 是一个测度 \iff g 是右连续的.

定义 2.11.5. 设 $g: \mathbb{R} \to \mathbb{R}$ 单调递增且右连续,则 μ_g 是一个测度,称为 Lebesgue-Stieltjes 测度.

2.12 测度的延拓

延拓测度的方法: 1. 外测度 2. 外测度和内测度 3. 积分

我们只讨论用外测度延拓测度.

仍用 X 表示全集,R 表示环,S(R) 表示 R 生成的 σ -环.

定义 2.12.1. 设 $\lambda: R \to [0, +\infty]$ 满足

- (i) $\lambda(\varnothing) = 0$;
- (ii) (下可数可加性) 如果 $A,A_i\in R,\ i=1,2,3,\ldots$, $A\subset \cup_{i=1}^{+\infty}A_i$,则

$$\lambda(A) \le \sum_{i=1}^{+\infty} \lambda(A_i).$$

命题 2.12.2. 设 λ 是S上的外测度,则

- (i) (单调性) 若 $A,B \in S,A \subset B$, 则 $\lambda(A) \leq \lambda(B)$;
- (ii) (下有限可加性) 若 $A_i \in S$, i = 1, 2, ..., n, 则 $\lambda(\bigcup_{i=1}^n) \leq \sum_{i=1}^n \lambda(A_i)$.

证明. (i) 因为 $A \subset B \cup \emptyset \cup \emptyset \cup \cdots$,由下可数可加性得 $\lambda(A) \leq \lambda(B)$.

(ii) 令 $A_i = \emptyset, i > n$,则有 $\bigcup_{i=1}^n A_i \subset \bigcup_{i=1}^{+\infty} A_i$,由下可数可加性即得.

Remark. 一般情况下, $\lambda(E)$ 比 E 的真实的测度 $\mu(E)$ 大, 故称为外测度.

我们说,存在S(R)上的测度 $\tilde{\mu}$,使得

$$\tilde{\mu}|_R = \mu,$$

⁴根据控制收敛定理

而且在一定条件下, $\tilde{\mu}$ 是唯一的.

Remark. 符号 $\tilde{\mu}|_R$ 表示将 $\tilde{\mu}$ 限制在 R 上.

下面讨论如何把 μ 延拓成外测度.

定义 2.12.3. 设

$$H(R) = \{ E \subset X : \exists E_i \in R, i = 1, 2, \dots, \notin \exists E \subset \bigcup_{i=1}^{+\infty} E_i \},$$

定义 $\mu^*: H(R) \to [0, +\infty]$,

$$\mu^*(E) = \inf \left\{ \sum_{i=1}^{+\infty} \mu(E_i) : E_i \in R, i = 1, 2, \dots, E \subset \bigcup_{i=1}^{+\infty} E_i \right\},$$

其中 $E_i \in H(R)$.

Remark. $\bigcup_{i=1}^{+\infty}$ 表示可数个 E_i 的并.

将一切可由R里可数个集合覆盖的集合的全体记作H(R).

命题 **2.12.4.** (i) H(R) 是一个包含 R 的 σ -环;

(ii) μ^* 是 H(R) 上的外测度,而且

$$\mu^*|_R = \mu.$$

证明. (i) 首先,易知 H(R) 包含 R. 这是因为 $\forall E \in R, E \subset E \cup \varnothing \cup \varnothing \cup \cdots$,故 $E \in H(R)$.

下证 H(R) 是一个 σ -环. 先证若 $A_j \in H(R)$, $j=1,2,\ldots$, 则 $\bigcup_{i=1}^{+\infty} A_j \in H(R)$. 由 $A_j \in H(R)$ 知, A_j 被一族集合 $\{E_{ij}\}_{i=1}^{+\infty}$ 覆盖,则 $\bigcup_{i=1}^{+\infty} A_j$ 被 $\{E_{ij}\}_{i,j=1}^{+\infty}$. 由于可数个可数集的并仍为可数集,故 $\bigcup_{i=1}^{+\infty} A_j$ 被可数个集合覆盖,故属于 H(R). 再证若 $A,B \in H(R)$,则 $A-B \in H(R)$. 易知, $A \subset \{E_i\}_{i=1}^{+\infty}$,而 $A-B \subset A$,故 $A-B \subset \{E_i\}_{i=1}^{+\infty}$,从而 A-B 属于 H(R).

(ii) 先证 $\mu^*(\emptyset) = 0$. 由于 $\emptyset \subset \emptyset$, $\emptyset \in R$,故 $0 \le \mu^*(\emptyset) \le \mu(\emptyset) = 0$,得证.

再证若 $A, A_i \in H(R), i = 1, 2, \ldots, A \subset \cup A_i$,则 $\mu^*(A) \leq \sum \mu^*(A_i)$.不妨设 $\sum \mu^*(A_i) < +\infty$ (否则不等式自然成立),则有 $\mu^*(A_i) < +\infty$.设 $\varepsilon > 0, \exists E_{ij} \in R$,使得 $A_i \subset \cup_{i=1}^{+\infty}$,且有

$$\mu^*(A_i) \le \sum_{i=1}^{+\infty} \mu(E_{ij}) \le \mu^*(A_i) + \frac{\varepsilon}{2^i}.$$

两边对i求和,则有

$$\sum_{i,j=1}^{+\infty} \mu(E_{ij}) \le \sum_{i=1}^{+\infty} \mu^*(A_i) + \varepsilon.$$

令 $\varepsilon \to 0$,得 $\sum_{i,j=1}^{+\infty} \mu(E_{ij}) \le \sum \mu^*(A_i)$.按定义有 $\sum_{i,j=1}^{+\infty} \mu(E_{ij}) \ge \sum_{i=1}^{+\infty} \mu^*(A_i)$,故 $\sum_{i,j=1}^{+\infty} \mu(E_{ij}) = \sum_{i=1}^{+\infty} \mu^*(A_i)$

设 $A \in R$, 证 $\mu^*(A) = \mu(A)$. 因为 $A \subset A$, 故 $\mu^*(A) \leq \mu(A)$. 设 $A \subset \cup E_i, E_i \in R$, 由测度 的定义可得测度满足可数可加性,从而 $\mu(A) \leq \sum_{i=1}^{+\infty} \mu(E_i)$, 两边取下确界,得 $\mu^*(A) \geq \mu(A)$, 故 $\mu^*(A) = \mu(A)$.

一般来说,外测度估计了 H(R) 里集合的测度的上界,但对于 H(R) 中某些集合, μ^* 即为其准确的测度.

定义 2.12.5. 设 $A \in H(R)$, 如果

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c), \quad \forall E \in H(R),$$

则称 A 满足 Carathéodory 条件.

Remark. 为方便起见,下文中将 Carathéodory (卡拉西奥多里)条件简称为 C-条件.

下面给出一个非常重要的定理.

定理 2.12.6. 将 H(R) 中满足 C-条件的集合的全体记为 R^* ,即 $R^* = \{A \in H(R) : A满足 C$ -条件 $\}$,则有

- (i) R^* 是一个包含 R 的 σ -环;
- (ii) $\mu^*|_{R^*}$ 是一个测度.

这一定理的证明比较复杂,需要分4步进行.在证明之前,先进行一些讨论.

注意到 $E = E \cap A + E \cap A^c$,故 $\mu^*(E) \leq \mu^*(E \cap A) + \mu^*(E \cap A^c)$ 恒成立 (因为 $E \subset E \cap A + E \cap A^c$,由外测度的下可数可加性即得). 故实际上只用验证 $\mu^*(E) \geq \mu^*(E \cap A) + \mu^*(E \cap A^c)$. 换言之,A 满足 C-条件当且仅当 $\mu^*(E) \geq \mu^*(E \cap A) + \mu^*(E \cap A^c)$, $\forall E \in H(R)$.

图 1: $E = (E \cap A) \cup (E \cap A^c)$.

证明. Step 1: 证明 $R^* \supset R$.

设 $A \in R$,下证 $A \in R^*$ (即 A 满足 C-条件). 设 $E \subset E_i$, $E_i \in R$. 因为 $E_i \in R$, $A \in R$,所以 $E_i \cap A \in R$, $E_i \cap A^c = E_i - A \in R$. 故 $E \cap A \subset \cup (E_i \cap A)$, $E \cap A^c \subset \cup (E_i \cap A^c)$. 故

$$\mu^*(E \cap A) + \mu^*(E \cap A^c) \le \sum \mu(E_i \cap A) + \sum \mu(E_i \cap A^c) = \sum [\mu(E_i \cap A) + \mu(E_i \cap A^c)] = \sum \mu(E_i \cap A) + \mu(E_i \cap A) + \mu(E_i \cap A) = \sum \mu(E_i \cap A) + \mu(E_i \cap A) = \sum \mu(E_i \cap A) + \mu(E_i \cap A) = \sum \mu(E_i \cap A) + \mu(E_i \cap A) = \sum \mu(E_i \cap A)$$

上式中不等号成立是因为测度满足可加性. 对 $\mu^*(E \cap A) + \mu^*(E \cap A^c) \leq \sum \mu(E_i)$ 两边取下确界,得 $\mu^*(E \cap A) + \mu^*(E \cap A^c) \leq \mu^*(E)$,故满足 C-条件.

Step 2: 证明 *R** 是一个环.

只用证若 $A, B \in R^*$,则 $A \cup B, A - B \in R^*$. (即若 A, B 满足 C-条件,则 $A \cup B, A - B$ 也满足 C-条件)

设 $E \in H(R)$,

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c),$$

$$\mu^*(E) = \mu^*(E \cap A \cap B) + \mu^*(E \cap A \cap B^c) + \mu^*(E \cap A^c \cap B) + \mu^*(E \cap A^c \cap B^c).$$

由于 $E \cap A \cap B$, $E \cap A^c \cap B$, $E \cap A \cap B^c$, $E \cap A^c \cap B^c$ 互不相交,且前 3 个集合的并为 $E \cap (A \cup B)$, 而 $E \cap A^c \cap B^c = E \cap (A \cup B)^c$. 由外测度的下可数可加性有

$$\mu^*(E) \ge \mu^*(E \cap (A \cup B)) + \mu^*(E \cap (A \cap B)^c).$$

这说明了 $A \cup B$ 满足 C-条件.

$$\mu^*(E) = \mu^*(E \cap A \cap B) + \mu^*(E \cap A \cap B^c) + \mu^*(E \cap A^c \cap B) + \mu^*(E \cap A^c \cap B^c).$$

注意到 $E \cap A \cap B^c = E \cap (A - B)$, 其余 3 个集合的并为 $E \cap (A - B)^c$. 由外测度的下可数可加性有

$$\mu^*(E) \ge \mu^*(E \cap (A - B)) + \mu^*(E \cap (A - B)^c).$$

这说明了A-B满足C-条件.

综上, R^* 是一个环.

Step 3: 证明 R^* 是一个 σ - 环.

只用证若 A_i , i = 1, 2, ... 满足 C-条件,则 $A = \cup A_i$ 也满足 C-条件.

令
$$B_1 = A_1, B_2 = A_2 - A_1, B_3 = A_3 - (A_1 \cup A_2), \dots$$
,则 B_i 互不相交,且 $B_i \in R^*$, $A = \sum B_i$.

$$\mu^{*}(E) = \mu^{*}(E \cap B_{1}) + \mu^{*}(E \cap B_{1}^{c})$$

$$= \mu^{*}(E \cap B_{1}) + \mu^{*}(E \cap B_{1}^{c} \cap B_{2}) + \mu^{*}(E \cap B_{1}^{c} \cap B_{2}^{c})$$

$$= \mu^{*}(E \cap B_{1}) + \mu^{*}(E \cap B_{2}) + \mu^{*}(E \cap (B_{1} \cup B_{2})^{c})$$

$$= \mu^{*}(E \cap B_{1}) + \mu^{*}(E \cap B_{2}) + \mu^{*}(E \cap B_{3}) + \mu^{*}(E \cap (B_{1} \cup B_{2} \cup B_{3})^{c})$$

$$= \cdots$$

$$= \sum_{i=1}^{n} \mu^{*}(E \cap B_{i}) + \mu^{*}(E \cap (\sum_{i=1}^{n} B_{i})^{c})$$

$$\geq \sum_{i=1}^{n} \mu^{*}(E \cap B_{i}) + \mu^{*}(E \cap (\sum_{i=1}^{+\infty} B_{i})^{c})$$

<math> <math>

$$\mu^*(E) \ge \sum_{i=1}^{+\infty} \mu^*(E \cap B_i) + \mu^*(E \cap (\sum_{i=1}^{+\infty} B_i)^c),$$

$$\mu^*(E) \ge \mu^*(E \cap \sum_{i=1}^{+\infty} B_i) + \mu^*(E \cap (\sum_{i=1}^{+\infty} B_i)^c),$$

$$\mu^*(E) \ge \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

综上, R^* 是一个 σ - 环.

Step 4: 证明 $\mu^*|_{R^*}$ 是一个测度.

首先, $\mu^*|_{R^*}(\emptyset) = \mu^*(\emptyset) = \mu(\emptyset) = 0$.

设 $A_i \in R^*, i = 1, 2, ...$ 互不相交,下证 $A = \sum A_i$ 满足 $\mu^*(A) = \sum \mu^*(A_i)$.

$$\mu^*(A) = \mu^*(A \cap A_1) + \mu^*(A \cap A_1^c)$$

$$= \mu^*(A_1) + \mu^*(\sum_{i=2}^{+\infty} A_i)$$

$$= \mu^*(A_1) + \mu^*(A_2) + \mu^*(\sum_{i=3}^{+\infty} A_i)$$

$$= \cdots$$

$$= \sum_{i=1}^{n} \mu^*(A_i) + \mu^*(\sum_{i=n+1}^{+\infty} A_i)$$

$$\geq \sum_{i=1}^{n} \mu^*(A_i)$$

令 $n \to +\infty$,得 $\mu^*(A) \ge \sum_{i=1}^{+\infty} \mu^*(A_i)$,故 $\mu^*(A) = \sum_{i=1}^{+\infty} \mu^*(A_i)$. 综上, $\mu^*|_{R^*}$ 是一个测度.

由定理2.12.6,可得到我们希望的结论,即将 μ 延拓到 S(R) 上.

推论 2.12.7. 存在 S(R) 上的测度 $\tilde{\mu}$, 使得

$$\tilde{\mu}|_R = \mu.$$

证明. 由于 $R \subset R^*$,而 S(R) 是包含 R 的最小的 σ — 环,故 $S(R) \subset R^*$.

由定理2.12.6知, $\mu^*|_{R^*}$ 是一个测度,故 $\mu^*|_{S(R)}$ 也是一个测度.

设
$$A \in R$$
,则有 $\mu^*|_{S(R)}(A) = \mu^*(A) = \mu(A)$,故 $\tilde{\mu}|_R = \mu$.

Remark.

$$R \subset S(R) \subset R^* \subset H(R)$$

注意其中 S(R), R^* , H(R) 都是 σ -环, R 是环.

- μ^* 是 H(R) 上的外测度,故 μ^* 在 H(R) 上仅满足下可数可加性.即如果 $E, E_i \in H(R)$ 且 $E \subset \cup E_i$,则有 $\mu^*(E) \leq \sum \mu^*(E_i)$.
- μ^* 限制在 R^* 上是一个测度,满足可数可加性. 即如果 $E, E_i \in H(R)$,其中 E_i 互不相交,且 $E = \sum E_i$,则有 $\mu^*(E) = \sum \mu^*(E_i)$.

- μ^* 限制在 S(R) 上是一个测度.
- μ^* 限制在 R 上即是测度 μ .

因为 $R^* \subset S(R)$, 故 $\mu^*|_{R^*}$ 比 $\mu^*|_{S(R)}$ 的定义域大,之后我们会说明 $\mu^*|_{R^*}$ 是完备的(定理2.13.6),且是 $\mu^*|_{S(R)}$ 的完备化(定理2.13.7).

 μ 是 R 上的测度, μ 可以延拓成 S(R) 上的一个测度. (因为 S(R) 比 R 大得多,故这种延拓很有意义)

实际上,如果μ满足一定条件,这种延拓是唯一的.

定义 2.12.8. 设 μ 是环 R 上的测度. 如果 $\forall E \in R, \exists E_i \in R, \mu(E_i) < +\infty, i = 1, 2, \ldots$, 使得

$$E \subset \cup_{i=1}^{+\infty} E_i$$

则称 μ 是 σ -有限的.

Remark. $\forall E$ (E 的测度不一定有限), E 能够被可数个测度有限的集合覆盖,则称 μ 是 σ -有限的. 有限的测度一定是是 σ -有限的.

下面给出一个例子. 设 μ 是 \mathbb{N}^* 上的计数测度,则 μ 不是有限的(因为 \mathbb{N}^* 中有无穷多个元素,故 $\mu(\mathbb{N}^*) = +\infty$)但 μ 是 σ -有限的,因为 $E \subset \cup_{i=1}^{+\infty} \{n\}$,而 $\{n\}$ 的测度为 1.

分析学中绝大多数有用的测度都是 σ -有限的.

我们说,如果 μ 是 σ -有限的,则 μ 在S(R)上的延拓是唯一的.

定理 2.12.9 (测度延拓的唯一性). 设 μ 是环 R 上的 σ -有限的测度. 设 μ_1 , μ_2 是 S(R) 上的测度, 若

$$\mu_1|_R = \mu_2|_R = \mu,$$

则 $\mu_1 = \mu_2$.

Remark, 这个定理说明了, 用不同的方法延拓测度得到相同的结果,

证明. 这个定理的证明主要为代数技巧, 故略去.

2.13 测度的完备性

完备与完备化类似于闭集与闭包.

定义 2.13.1. 设 X 为全集, R 是 X 上的一个 σ -环, μ 是 R 上的测度.

- (i) 设 $A \subset X$, 如果 $A \in R$, 称 $A 为 \mu$ -可测集.
- (ii) 设 $A \in R$, 如果 $\mu(A) = 0$, 称 A 为 μ -零测集.
- (iii) 如果所有 μ -零测集的子集均为 μ -可测集, 称测度 μ 完备.

Remark. 零测集的子集不一定是零测集. 零测集的可测子集才是零测集.

下面举一个不完备的简单例子. 设 $X = \{a,b\}$, $R = \{\varnothing,X\}$ (可以验证,R 为一个 σ -环), μ 是 R 上的零测度,即 $\mu(\varnothing) = \mu(X) = 0$. 则 X 为 μ -零测集,但 X 的子集 $\{a\} \notin R$.

应该注意到,如果零测集的子集可测,则其测度一定为 0,故造成测度不完备的原因是零测集的某些子集不可测,即测度的定义域不完善.

虽然 μ 不一定完备,但 μ 可以延拓成一个完备的测度 $\bar{\mu}$,这就是测度的**完备化**.

定义 2.13.2. 记

$$N = \{A \subset X : \exists B \in R, \mu(B) = 0, \notin \mathcal{A} \subset B\},$$

$$\bar{R} = \{F \cup A : F \in R, A \in N\},$$

定义 $\bar{\mu}: \bar{R} \to [0, +\infty]$ 满足

$$\bar{\mu}(E) = \mu(F),$$

其中 $E = F \cup A, F \in R, A \in N$.

Remark. N 为 R 中零测集的子集.

在上述定义中,我们需要验证:如果

$$E = F_1 \cup A_1 = F_2 \cup A_2, F_1, F_2 \in R, A_1, A_2 \in N,$$

则 $\mu(F_1) = \mu(F_2)$.

证明. 设 $A_1 \subset B_1, A_2 \subset B_2, B_1, B_2 \in R, \mu(B_1) = \mu(B_2) = 0$,则 $F_1 \subset F_2 \cup B_2$,因此

$$\mu(F_1) \le \mu(F_2 \cup B_2) \le \mu(F_2) + \mu(B_2) = \mu(F_2).$$

同理可证 $\mu(F_2) \leq \mu(F_1)$. 因此, $\mu(F_1) = \mu(F_2)$.

Remark. 测度是这门课程中极为重要的概念,要理解清楚测度的定义,

Remark. \bar{R} 有多种不同的表示方法.

在定义中

$$\boxed{\bar{R} = \{F \cup A : F \in R, A \in N\}} =: R_1.$$

也可写作

$$\bar{R} = \{G - A : G \in R, A \in N\}$$
 =: R_2 .

证明. 先证 $R_1 \subset R_2$. R_1 中任意一个给定的集合可以表示为 $F \cup A$,其中 $F \in R, A \in N$. 选取集合 B,满足 $A \subset B, B \in R, \mu(B) = 0$. 则 $F \cup A = F \cup B - A'$,其中 $A' \subset B$. 注意到 $F \cup B \in R$, $A' \in N$,故 $F \cup A = F \cup B - A' \in R_2$.

再证 $R_2 \subset R_1$. R_2 中任意一个给定的集合可以表示为 G-A, 其中 $G \in R, A \in N$. 注意到 $G-A=(G-B)\cup A'$, 其中 $A'\subset B$. 由于 $G-B\in R$, $A'\in N$, 故 $G-A=(G-B)\cup A'\in R_1$.

综上,
$$R_1=R_2$$
.

还可以写作

$$\bar{R} = \{E \subset X : \exists F \in R, \notin \exists E \triangle F \in N\}.$$

也就是说, \bar{R} 是 "与 μ -可测集相差一个 μ -零测集的子集的集合"的集合. (换句话说, \bar{R} 中的集合与 μ -可测集仅相差一个 μ -零测集的子集)

定理 2.13.3. \bar{R} 是包含 R 的 σ -环, $\bar{\mu}$ 是 \bar{R} 上完备的测度, 并且 $\bar{\mu}|_{R}=\mu$.

这样,我们就将 μ 延拓成了一个完备的测度 $\bar{\mu}$.

定义 2.13.4. 称 $\bar{\mu}$ 是 μ 的完备化.

下面证明定理2.13.3.

证明. Step 1: 证明 $R \subset \bar{R}$.

设 $A \in R$,则 $A = A \cup \emptyset$,因为 $\emptyset \in N$,所以 $A \in \overline{R}$.

Step 2: 证明 \bar{R} 是 σ -环.

(1) 首先验证 \bar{R} 对集合的可数并封闭.

设 $E_i \in \bar{R}, i=1,2,\ldots$,记 $E=\cup_{i=1}^{+\infty}$.下面验证 $E\in \bar{R}$.设

$$E_i = F_i \cup A_i, F_i \in R, A_i \in N, i = 1, 2, \dots,$$

则

$$E \subset (\cup_{i=1}^{+\infty} F_i) \cup (\cup_{i=1}^{+\infty} A_i).$$

因为 R 是 σ -环, $\bigcup_{i=1}^{+\infty} F_i \in R$. 设 $A_i \subset B_i, B_i \in R, \mu(B_i) = 0$,则

$$\bigcup_{i=1}^{+\infty} B_i \in R, \quad \bigcup_{i=1}^{+\infty} A_i \subset \bigcup_{i=1}^{+\infty} B_i.$$

由测度的下可数可加性,得

$$\mu(\bigcup_{i=1}^{+\infty} B_i) \le \sum_{i=1}^{+\infty} \mu(B_i) = 0.$$

因此, $\mu(\bigcup_{i=1}^{+\infty} B_i) = 0$,这就证明了 $E \in \bar{R}$.

(2) 下面验证 \bar{R} 对集合的差运算封闭.

设 $E_1, E_2 \in \bar{R}$,下面验证 $E_1 - E_2 \in \bar{R}$. 设

$$E_1 = F_1 \cup A_1, E_2 = F_2 \cup A_2, F_1, F_2 \in R, A_1, A_2 \in N.$$

设

$$A_1 \subset B_1, B_1 \in R, \mu(B_1) = 0,$$

$$A_2 \subset B_2, B_2 \in R, \mu(B_2) = 0.$$

则

$$E_1 - E_2 = (F_1 \cup A_1) - (F_2 - A_2)$$

$$= (F_1 - F_2 \cup A_2) \cup (A_1 - F_2 \cup A_2)$$

$$= (F_1 - F_2 - A_2) \cup (A_1 - (F_1 \cup A_2))$$

$$= (F_1 - F_2 - B_2) \cup A_3 \cup (A_1 - (F_1 \cup A_2))$$

其中 $A_3 \subset B_2$. 因为 $A_3 \cup (A_1 - (F_1 \cup A_2)) \subset B_1 \cup B_2$, $\mu(B_1 \cup B_2) = 0$, 所以 $E_1 - E_2 \in \bar{R}$. 综上, \bar{R} 是 σ -环.

Step 3: 证明 $\bar{\mu}|_R = \mu$.

设 $E \in R$,则 $E = E \cup \varnothing$, $\varnothing \in R$,且 $\mu(\varnothing) = 0$,因此 $\bar{\mu}(E) = \mu(E)$.

Step 4: 证明 $\bar{\mu}$ 是测度.

由 Step 3, $\bar{\mu}(\emptyset) = 0$. 设 $E_i \in \bar{R}, i = 1, 2, \ldots$, 互不相交, $E_i = F_i \cup A_i, F_i \in R, A_i \in N$, 则

$$\sum_{i=1}^{+\infty} E_i = (\sum_{i=1}^{+\infty} F_i) \cup A,$$

其中 $A = \bigcup_{i=1}^{+\infty} A_i \in N$. 因此,

$$\bar{\mu}(\sum_{i=1}^{+\infty} E_i) = \bar{\mu}\left((\sum_{i=1}^{+\infty} F_i) \cup (\sum_{i=1}^{+\infty} A_i)\right) = \mu(\sum_{i=1}^{+\infty} F_i) = \sum_{i=1}^{+\infty} \mu(F_i) = \sum_{i=1}^{+\infty} \bar{\mu}(E_i).$$

这就证明了 $\bar{\mu}$ 是测度.

Step 5: 证明 $\bar{\mu}$ 完备.

首先, $N \subset \bar{R}$. 设 $A \in N$, 则 $A = \emptyset \cup A, \emptyset \in R$. 因此 $A \in \bar{R}$, 所以 $N \subset \bar{R}$.

设 $E \in \bar{R}, \bar{\mu}(E) = 0$. 设 $E = F \cup A, F \cup A, F \in R, A \in N, 则 \mu(F) = \bar{\mu}(E) = 0$. 因此, $E \in N$. 设 $B \subset E, 则 B \in N$. 因此 $B \in \bar{R}$. 这就说明了 $\bar{\mu}$ 完备.

定理 2.13.5. 设 $A \in H(R)$, 如果 $\mu^*(A) = 0$, 则 $A \in R^*$.

Remark. 这个定理说明了外测度为 0 的集合是可测的, 且其测度为 0.

证明. 只用验证 A 满足 C-条件,即 $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$. 由之前的讨论 (P16),只用验证 \geq 成立即可.

因为 $E \cap A \in A$,而 $\mu^*(A) = 0$,由外测度的单调性知 $\mu^*(E \cap A) = 0$.故只用证 $\mu^*(E) \ge \mu^*(E \cap A^c)$.因为 $E \cap A^c \subset E$,由外测度的单调性即得 $\mu^*(E) \ge \mu^*(E \cap A^c)$.

从而
$$A$$
 满足 C -条件,故 $A \in \mathbb{R}^*$.

定理 **2.13.6.** $\mu^*|_{R^*}$ 是完备的.

析. 回忆测度 μ 完备的定义: 所有 μ -零测集的子集均为 μ -可测集.

证明. 设 $B \in R^*$,满足 $\mu^*|_{R^*}(B) = \mu^*(B) = 0$. (因为 $R^* \in H(R)$,而 μ^* 定义在 H(R) 上,故 $\mu^*|_{R^*}(B) = \mu^*(B)$) (这里的 B 就是 $\mu^*|_{R^*}$ -零测集)

设 $A \subset B$,下证 $A \in R^*$. 由 $B \in H(R)$,知 $A \in H(R)$,故 A 在 μ^* 的定义域内,故可算 $\mu^*(A)$. 由外测度的单调性, $\mu^*(A) \le \mu^*(B) = 0$,故 $\mu^*(A) = 0$. 由定理2.13.5,知 $A \in R^*$. 故 $A \not\in \mu^*|_{R^*}$ -可测集.

定理 **2.13.7.** 设 μ 是 σ -有限的,则 $\mu^*|_{R^*}$ 是 $\mu^*|_{S(R)}$ 的完备化.

析. 符号说明:设 $\mu: S \to [0, +\infty]$ 是一个测度,测度 $\bar{\mu}: \bar{S} \to [0, +\infty]$ 为 μ 的完备化.

只用证明 $\overline{\mu^*|_{S(R)}} = \mu^*|_{R^*}$. 要证两个映射相同,需证: (i) 定义域相同; (ii) 对应法则相同. 故证明分 3 步进行: (i) 证明 $\overline{S(R)} \subset R^*$; (ii) 证明 $R^* \subset \overline{S(R)}$ (这步最困难,故放在最后证明); (iii) 设 $E \in \overline{S(R)}$, 证明 $\overline{\mu^*|_{S(R)}}(E) = \mu^*|_{R^*}(E)$.

证明. 先说明各个符号的意义.

$$N := \{ A \subset X : \exists B \in S(R), \mu^*|_{S(R)}(B) = 0, \notin A \subset B \}$$

= $\{ A \subset X : \exists B \in S(R), \mu^*(B) = 0, \notin A \subset B \}$

$$\overline{S(R)} := \{ F \cup A : F \in S(R), A \in N \} = \{ G - A : G \in S(R), A \in N \}$$

注意到 $\overline{\mu^*|_{S(R)}}(F \cup A) = \mu^*|_{S(R)}(F) = \mu^*(F)$. 5

Claim 1: 设 $A \subset N$,则 $A \in R^*$, $\mu^*(A) = 0$. (即 N 中的集合都可测,且测度为 0)

证:存在 $B \in S(R)$, $\mu^*(B) = 0$,使得 $A \subset B$. 因为 $B \in S(R)$,故 $B \in H(R)$,故 $A \in H(R)$. 故可计算 A 的外测度. 由外测度的单调性知 $\mu^*(A) \le \mu^*(B) = 0$,故 $\mu^*(A) = 0$,从而由定理2.13.5知 $A \in R^*$,即 A 可测.

Step 1: 证明 $\overline{S(R)} \subset R^*$.

设 $E \in \overline{S(R)}$,则 $E = F \cup A, F \in S(R), A \in N$,因为 $S(R) \subset R^*$,故 $F \in R^*$.由 Claim 1,知 $A \in R^*$.因为 R^* 是一个环,故 $E = F \cup A \in R^*$.

Step 2: 证明 $\overline{\mu^*|_{S(R)}} = \mu^*|_{R^*}$

设 $E \in \overline{S(R)}$,由 Step 1 知, $E \in R^*$.下面验证 $\overline{\mu^*|_{S(R)}}(E) = \mu^*|_{R^*}(E)$.因为 $E \in \overline{S(R)}$,故 $E = F \cup A, F \in S(R), A \in N$.

按定义, $\overline{\mu^*|_{S(R)}}(E) = \mu^*|_{S(R)}(F) = \mu^*(F)$, $\mu^*|_{R^*}(E) = \mu^*(E)$. 故要证 $\mu^*(F) = \mu^*(E)$. 因为

$$\mu^*(F) \le \mu^*(E) = \mu^*(F \cup A) \le \mu^*(F) + \mu^*(A) = \mu^*(F)$$

(其中第一个不等号是由外测度的单调性 $(F \subset E)$,第二个不等号是由下可数可加性),故 $\mu^*(F) = \mu^*(E)$.

Step 3: 证明 $R^* \subset S(R)$.

⁵因为外测度 μ^* 定义在 H(R) 上, $S(R) \subset H(R)$,故把 μ^* 限制在 S(R) 上,外测度的值不变.

设 $E \in \mathbb{R}^*$,下证 $E \in \overline{S(\mathbb{R})}$. 证明分步进行,先讨论 $\mu^*(E) < +\infty$ 的情况.

Claim 2: 设 $\mu^*(E) < +\infty$, $\forall \varepsilon > 0$, 存在 $G \in S(R)$, $G \supset E$, 使得

$$\mu^*(E) \le \mu^*(G) \le \mu^*(E) + \varepsilon.$$

(即可用 S(R) 中的集合逼近 E)

证: $\exists E_i \in R, i = 1, 2, \ldots, \cup E_i \supset E$,使得 $\sum \mu(E_i) \leq \mu^*(E) + \varepsilon$ (由下确界的定义). 令 $G = \cup E_i$,则 $G \in S(R)$, $G \supset E$. 故

$$\mu^*(G) \le \sum \mu(E_i) \le \mu^*(E) + \varepsilon.$$

其中第一个不等号成立是由于下可数可加性(也可由外测度的定义得到).

Claim 3: 设 $\mu^*(E) < +\infty$, 存在 $G \in S(R)$, $G \supset E$, 并且

$$\mu^*(G) = \mu^*(E).$$

证: 由 Claim 2, 存在 $G_n \in S(R)$, $G_n \supset E$, 使得

$$\mu^*(G_n) \le \mu^*(E) + \frac{1}{n}.6$$

 $\diamondsuit G = \cap G_n$, 则 $G \in S(R)$, $G \supset E$, 从而

$$\mu^*(G) \le \mu^*(G_n).$$

故

$$\mu^*(G) \le \mu^*(E) + \frac{1}{n}.$$

左右两边同取极限(令 $n \to +\infty$),得 $\mu^*(G) \le \mu^*(E)$. 因为 $E \subset G$,故 $\mu^*(G) \ge \mu^*(E)$. 从而 $\mu^*(G) = \mu^*(E)$.

Claim 4: 设 $\mu^*(E) < +\infty$, 则 $E \in \overline{S(R)}$.

证: 由 Claim 3 知存在 $G \in S(R)$, $G \supset E$, 并且 $\mu^*(G) = \mu^*(E) < +\infty$. 因为 E = G - (G - E). 其中 $G \in S(R)$.

因为 $G \in R^*, E \in R^*$,故 $G - E \in R^*$. 注意到 μ^* 限制在 R^* 上为测度,故 $\mu^*(G - E) = \mu(G - E) = \mu(G) - \mu(E) = \mu^*(G) - \mu^*(E) = 0$.

下面说明 $G-E\in N$. 由 Claim 3,存在 $B\in S(R)$, $\mu^*(B)=0$,使得 $B\supset G-E$,故 $G-E\in N$. 从而 $E=G-(G-E)\in \overline{S(R)}$.

至此, $\mu^*(E) < +\infty$ 的情况证毕.

Claim 5: $\mu^*|_{B^*}$ 是 σ -有限的.

⁶不能直接令 $n \to +\infty$,因为 $\mu^*(G_n)$ 不一定有极限.

 $^{^{7}}$ 注意, $\mu(G) < +\infty$ 时才能使用可减性 (见命题2.9.1).

证: 设 $E \in R^*$,存在 $E_i \in R, i = 1, 2, ...$,使得 $E \subset \cup E_i$. 故存在 $E_{ij} \in R$, $\mu(E_{ij}) < +\infty$,使得 $E_i \subset \cup_{i=1}^{+\infty} E_{ij}$. 故 $E \subset \cup_{i,i=1}^{+\infty} E_{ij}$.

$$\mu^*|_{R^*}(E_{ij}) = \mu^*(E_{ij}) = \mu(E_{ij}) < +\infty.$$

上式中第二个等号成立是因为外测度限制在 R^* 上就是 μ . 再由下可数可加性即可证明 $\mu^*|_{R^*}(E) < +\infty$. Claim 6: $E \in \overline{S(R)}$.

证: 存在 $E_i \in R^*$, $\mu^*(E_i) < +\infty$, 使得 $E \subset \cup E_i$. $E = \cup (E \cap E_i)$. 因为 $E \cap E_i \subset E_i$, 由外测度 的单调性,知 $\mu^*(E \cap E_i) \le \mu^*(E_i) < +\infty$,由 Claim 4 知 $E \cap E_i \in \overline{S(R)}$. 由于 $\overline{S(R)}$ 是 σ -环(见定理2.13.3),故 $E = \cup (E \cap E_i) \in \overline{S(R)}$.

综上,
$$R^* \subset \overline{S(R)}$$
.

2.14 Lebesgue 测度的定义

用 ℝ 表示全体实数. 记

$$P = \{(a, b | : a, b \in \mathbb{R}, a \le b\}.$$

记

$$l((a,b]) = b - a.$$

记

$$R_0 = \left\{ \bigcup_{i=1}^n I_i : I_i \in P, i = 1, 2, \dots, n, \ n \in \mathbb{N}^* \right\}.$$

Remark. R_0 中的集合可以表示为有限多个左开右闭区间的并.

设 $E \in R_0$, E可以写成如下的形式

$$E = \sum_{i=1}^{m} I_i,$$

其中 $I_i \in P$ (i = 1, 2, ..., m) 互不相交, $m \in \mathbb{N}^*$.

Remark. 表示互不相交的集合的并时,用 \sum 代替 \bigcup . 即 $\sum_{i=1}^{n} A_i := \bigcup_{i=1}^{n} A_i$.

定义

$$m(E) = \sum_{i=1}^{m} l(I_i).$$

可以证明 m(E) 与 $\{I_i\}$ 的选择无关. 即如果

$$E = \sum_{i=1}^{m} I_i = \sum_{i=1}^{m'} I_i',$$

则

$$\sum_{i=1}^{m} l(I_i) = \sum_{i=1}^{m'} l(I'_i).$$

m 是环 R_0 上的测度,并且

$$m((a,b]) = l((a,b]) = b - a, \ a,b \in \mathbb{R}, \ a \le b.$$

Remark. 上面的内容在 P11 中已经讨论过.

下面对 $m: R_0 \to [0, +\infty]$ 进行延拓.

记

$$H(R_0) = \{ E \subset R_j : \exists E_i \in R_0, i = 1, 2, \dots, \notin \exists E \subset \bigcup_{i=1}^{+\infty} E_i \}.$$

设 $E \subset \mathbb{R}$,则

$$E \subset \bigcup_{n=1}^{+\infty} (-n, n].$$

因此 $H(R_0) = 2^{\mathbb{R}}$.

Remark. $H(R_0) = 2^{\mathbb{R}}$ 说明了 \mathbb{R} 里的任一子集都可被 R_0 中可数个集合覆盖.

定义 2.14.1. 定义 $m^*: 2^{\mathbb{R}} \to [0, +\infty]$,

$$m^*(E) = \inf \left\{ \sum_{i=1}^{+\infty} m(E_i) : E_i \in R_0, E \subset \bigcup_{i=1}^{+\infty} E_i \right\},$$

则 m^* 为外测度,称 m^* 为(一维)Lebesgue 外测度.

Remark. 外测度是定义在 $H(R_0)$ 上的.

由测度的延拓(P14)知识,我们有

$$m^*|_{R_0} = m.$$

特别的,

$$m^*((a,b]) = m((a,b]) = l((a,b]) = b - a.$$

注意,因为 $H(R_0)=2^{\mathbb{R}}$,故 $\forall E\subset\mathbb{R}$,我们都可以计算其Lebesgue 外测度.

定义

$$\mathscr{L} = \{ A \subset \mathbb{R} : \mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c), \forall E \in \mathbb{R} \}.$$

即 \mathscr{L} 是所有满足 Carathéodory 条件的 \mathbb{R} 的子集构成的集类.

Remark. 有 $R_0 \subset \mathcal{L} \subset H(R_0)$. 这里的 $R_0, \mathcal{L}, H(R_0)$ 分别相当于上一节中的 $R, R^*, H(R)$ (见 P_18).

定理 2.14.2. (i) \mathcal{L} 是 \mathbb{R} 上的 σ -代数, $R_0 \subset \mathcal{L}$;

(ii)
$$m^*|_{\mathscr{L}}$$
 为测度, $m^*|_{R_0} = m$.

证明. 只证明 \mathcal{L} 是 σ -代数. 即证 \mathbb{R} 满足 \mathbb{C} -条件. 记 $E \subset \mathbb{R}$, 则

$$m^*(E \cap \mathbb{R}) + m^*(E \cap \mathbb{R}^c) = m^*(E) + m^*(\varnothing)^{8} = m^*(E).$$

因此, \mathbb{R} 满足 \mathbb{C} -条件,所以 $\mathbb{R} \in \mathcal{L}$,从而 σ -环 \mathcal{L} 是一个 σ -代数.

定义 2.14.3. 记 $m=m^*|_{\mathscr{L}}$, 称 m 为 (一维) Lebesgue 测度. 记 $A\subset\mathbb{R}$, 如果 $A\in\mathscr{L}$, 称 A Lebesgue 可测, 称 m(A) 为 A 的 Lebesgue 测度.

Remark. 利用选择公理可以证明,存在 Lebesgue 不可测集,也就是说 $\mathcal{L} \neq 2^{\mathbb{R}}$. 但是,我们并不能给出一个具体的 Lebesgue 不可测集. (我们在分析中用到的集合都是可测的)

定理 2.14.4. Lebesgue 测度具有如下性质:

- (i) Lebesgue 测度是完备的; a
- (ii) 如果 $A \subset \mathbb{R}$, $m^*(A) = 0$, 则 A Lebesgue 可测且 m(A) = 0;
- (iv) Lebesgue 测度是 σ -有限的.

"所有用外测度定义的测度都是完备的.

 b 因为 $\mu(A) \leq \mu^{*}(A)$.

证明. 我们只需证明 (iii), (iv).

(iii) 因为 $R_0 \subset \mathcal{L}$,所以 $(a,b] \in \mathcal{L}$,并且

$$m((a,b]) = m^*((a,b]) = b - a.$$

(iv) 设 $E \in \mathcal{L}$,则

$$E \subset \bigcup_{n=1}^{+\infty} (-n, n].$$

因为

$$m((-n, n]) = 2n < +\infty,$$

所以 m 是 σ -有限的.

例。 (1) 设 $a, b \in \mathbb{R}$, a < b, 则 $(a, b) \in \mathcal{L}$, 并且 m((a, b)) = b - a.

证: 因为 $(a,b) = \lim_{k \to +\infty} (a,b-\frac{1}{k}]$, 故 $(a,b) \in \mathcal{L}$. 由单调收敛定理

$$m((a,b)) = \lim_{k \to +\infty} m((a,b-\frac{1}{k}]) = b-a.$$

(2) 设 $a \in \mathbb{R}$, 则 $\{a\} \in \mathcal{L}$, 并且 $m(\{a\}) = 0$.

证: 因为 $\{a\}=\lim_{k\to +\infty}(a-\frac{1}{k},a+\frac{1}{k})$,故 $\{a\}\in \mathcal{L}$.由单调收敛定理

$$m(\{a\}) = \lim_{k \to +\infty} m((a - \frac{1}{k}, a + \frac{1}{k})) = 0.$$

⁸空集的外测度为0.

(3) 设 $a, b \in \mathbb{R}$, a < b, 则 $[a, b), [a, b] \in \mathcal{L}$, 并且 m([a, b]) = m([a, b]) = b - a.

证: 因为 $[a,b) = (a,b) \cup \{a\}, [a,b] = (a,b) \cup \{a\} \cup \{b\}.$ 由测度的可数可加性

$$m([a,b)) = m((a,b)) + m(\{a\}) = b - a;$$

$$m([a,b]) = m((a,b)) + m(\{a\}) + m(\{b\}) = b - a.$$

(4) 设 $a \in \mathbb{R}$, 则

$$(-\infty, a), (-\infty, a], (a, +\infty), [a, +\infty) \in \mathcal{L},$$

并且

$$m((-\infty, a)) = m((-\infty, a]) = m((a, +\infty)) = m([a, +\infty)) = +\infty.$$

证: 由于 $(-\infty, a) = \lim_{k \to +\infty} (a - k, a)$, 故 $(-\infty, a) \in \mathcal{L}$, 且

$$m((-\infty, a)) = \lim_{k \to +\infty} m((a - k, a)) = +\infty.$$

其他结论可类似证明.

(5) 有理数集 $\mathbb{Q} \in \mathcal{L}$, 并且 $m(\mathbb{Q}) = 0$.

证: 设 $\mathbb{Q} = \{q_k : k \in \mathbb{N}^*\}^9$, 则

$$\mathbb{Q} = \sum_{k \in \mathbb{N}^*} \{q_k\}.$$

因此 $\mathbb{Q} \in \mathcal{L}$. 由测度的可数可加性,

$$m(\mathbb{Q}) = \sum_{k=1}^{+\infty} m(\{q_k\}) = 0.$$

(6) $m(\mathbb{R}) = +\infty$.

证:由于 \mathcal{L} 是 σ -代数,故 \mathbb{R} \in \mathcal{L} .记 $A_n = (-n,n)$,则 $A_n \in \mathcal{L}$ (由(1)).注意到 $\{A_n\}$ 单调递增,并且 $\bigcup_{i=1}^{+\infty} A_n = \mathbb{R}$ \in \mathcal{L} ,由单调收敛定理

$$m(\mathbb{R}) = \lim_{n \to +\infty} m((-n, n)) = +\infty.$$

(7) $m(\mathbb{R} - \mathbb{Q}) = +\infty$.

证:由测度的可数可加性

$$m(\mathbb{R}) = m(\mathbb{Q}) + m(\mathbb{R} - \mathbb{Q}) = +\infty.$$

Remark. 对于有限集合, 其测度就是其长度.

Remark. $A \subset \mathbb{R}$, 若 A 可测,则 ∂A 也可测.要注意 m(A) = 0, $m(\partial A)$ 不一定为 0.如取 $A = \mathbb{Q}$,则 $m(\partial A) = m(\mathbb{R}) = +\infty$.这说明了即使集合很小,边界也可能很大.

^{9◎} 为可数个单点集的并.

2.15 Borel 集

记

$$\mathcal{O} = \{A \subset \mathbb{R} : A$$
为开集 $\}.$

则 $S(\mathcal{O})$ 为 σ -环,因为 $R \in \mathcal{O}$,所以 $R \in S(\mathcal{O})$,因此 $S(\mathcal{O})$ 为 σ -代数.

Remark. S(O) 表示由 O 生成的 σ-环. (实际上是 σ-代数)

定义 2.15.1. 称 $S(\mathcal{O})$ 为 Borel 代数. 如果 $A \in S(\mathcal{O})$, 称 A 为 Borel 集.

Remark. Borel 集是从开集出发,做可数次代数运算得到的集合.

例. (1) 开集和闭集都是 Borel 集;

- (2) 设 $A_k \subset \mathbb{R}$ 为开集,k = 1, 2, ...,则 $\bigcap_{k=1}^{+\infty} A_k$ 为 Borel 集; 10
- (3) 设 $A_k \subset \mathbb{R}$ 为闭集, $k = 1, 2, \ldots$,则 $\bigcup_{k=1}^{+\infty} A_k$ 为 Borel 集; 11
- (4) 设 $a \in \mathbb{R}$,则 $\{a\}$ 为Borel集;
- (5) 有理数集为 Borel 集, 无理数集为 Borel 集;
- (6) 设 $a, b \in \mathbb{R}$, a < b, 则 (a, b], [b, a) 为 Borel 集.

Remark. Borel 集(几乎)包括了所有有用的集合.

命题 **2.15.2.** $S(\mathcal{O}) = S(R_0)$.

定理 2.15.3. Borel 集是 Lebesgue 可测集.

证明. 由命题2.15.2可得.

Remark. (i) 可以证明 $S(\mathcal{O}) \subsetneq \mathcal{L}$;

(ii) $m: \mathcal{L} \to [0, +\infty]$ 是 $m: S(\mathcal{O}) \to [0, +\infty]$ 的完备化.

2.16 Lebesgue 测度的正则性

大概可以说, ℝ的子集都是 Lebesgue 可测集.

Lebesgue 可测集的形式可能十分复杂(性质很差),故我们希望用开集,闭集这样性质好的集合(开集中每个点都是内点,闭集对极限封闭)去逼近这些性质不好的集合.

定理 2.16.1 (正则性). 设 $A \in \mathcal{L}$, $\varepsilon > 0$, 则

- (i) (外正则性) 存在开集 $G \supset A$, 使得 $m(G A) \leq \varepsilon$;
- (ii) (内正则性) 存在闭集 $H \subset A$, 使得 $m(A H) \leq \varepsilon$.

Remark. 这个定理说明了,一定能找到比 A 大的开集和比 A 小的闭集去逼近 Lebesgue 可测集.

¹⁰可数个开集的交不一定是开集,如 $\bigcap_{k=1}^{+\infty}(-\frac{1}{k},\frac{1}{k})=\{0\}$ 为闭集.

[&]quot;可数个闭集的并不一定是闭集,如 $\bigcup_{k=1}^{+\infty} [-1 + \frac{1}{k}, 1 - \frac{1}{k}] = (-1, 1)$ 为开集.

证明. Claim 1: 设 $A \in R_0$,则存在开集 $G \supset A$,使得 $m(G) \leq m(A) + \varepsilon$.

证:设

$$A = \sum_{i=1}^{n} (a_i, b_i], \quad a_i, b_i \in \mathbb{R}, a_i \le b_i.$$

令

$$G = \bigcup_{i=1}^{n} (a_i, b_i + \frac{\varepsilon}{n}),$$

则 G 为开集, $G \supset A$,且

$$m(G) \le \sum_{i=1}^{n} m((a_i, b_i + \frac{\varepsilon}{n})) = \sum_{i=1}^{n} (b_i - a_i) + \varepsilon$$
$$= \sum_{i=1}^{n} m((a_i, b_i]) + \varepsilon = m(A) + \varepsilon$$

Claim 2: 设 $m(A) \leq +\infty$,则存在开集 $G \supset A$,使得 $m(G) \leq m(A) + \varepsilon$.

证: 由外测度的定义,存在 $E_i \in R_0$, i = 1, 2, ...,使得 $A \subset \bigcup_{i=1}^{+\infty} E_i$,

$$\sum_{i=1}^{+\infty} m(E_i) \le m^*(A) + \varepsilon.$$

因为 $A \in \mathcal{L}$,所以 $m^*(A) = m(A)$. 因此

$$\sum_{i=1}^{+\infty} m(E_i) \le m(A) + \varepsilon.$$

由 Claim 1,存在开集 $G_i \supset E_i$,使得

$$m(G_i) \le m(E_i) + \frac{\varepsilon}{2^i}.$$

令 $G = \bigcup_{i=1}^{+\infty} G_i$,则 G 为开集, $G \supset A$,且

$$m(G) \le \sum_{i=1}^{+\infty} m(G_i) \le \sum_{i=1}^{+\infty} m(E_i) + \varepsilon \le m(A) + \varepsilon.$$

Claim 3:存在开集 $G \supset A$,使得 $m(G - A) \leq \varepsilon$.

证:记

$$A_i = A \cap (-i, i), i \in \mathbb{N}^*,$$

则 $A_i \in \mathcal{L}$, $A = \bigcup_{i=1}^{+\infty} A_i$,并且

$$m(A_i) \le m((-i,i)) < +\infty.$$

因此,存在开集 G_i , $G_i \supset A_i$, 使得

$$m(G_i) \leq m(A_i) + \frac{\varepsilon}{2i},$$

即

$$m(G_i - A_i) \le \frac{\varepsilon}{2^i}.$$

令 $G = \cup_{i=1}^{+\infty} G_i$,则 G 为开集, $G \supset A$,并且

$$G - A = \bigcup_{i=1}^{+\infty} G_i - \bigcup_{i=1}^{+\infty} A_i \subset \bigcup_{i=1}^{+\infty} (G_i - A_i),$$
¹²

因此,

$$m(G-A) \le \sum_{i=1}^{+\infty} m(G_i - A_i) \le \varepsilon.$$

Claim 4:存在闭集 $H \subset A$,使得 $m(A - H) \leq \varepsilon$.

图 2: 用开集 G(红色阴影部分)逼近 A^c .

证:因为 $A \in \mathcal{L}$,所以 $A^c \in \mathcal{L}$.存在开集 $G \supset A^c$,使得

$$m(G - A^c) \le \varepsilon$$
.

令 $H = G^c$, 则 H 为闭集, $H \subset A$. 因为

$$A - H = A \cap H^c = G \cap A = G - A^c$$

所以

$$m(A-H) = m(G-A^c) < \varepsilon.$$

综上,定理证毕.

|推论 **2.16.2.** 设 $E \in \mathcal{L}$,则

$$m(A) = \inf\{m(G) : G \supset A$$
为开集},

$$m(A) = \sup\{m(K) : K \subset A$$
为紧集}.

证明. 仅简要说明第 2 个式子的证法. 由定理2.16.1知, $m(E) = \sup\{m(H) : H \subset A$ 为闭集}. 闭集可用紧集逼近. H 为闭集,记 $H_n = H \cap [-n,n]$,则 H_n 为紧集(闭集交闭集仍为闭集, \mathbb{R}^n 中的有界闭集为紧集). 注意 $\{H_n\}$ 单调递增且趋于 H,由单调收敛定理,当 $n \to +\infty$ 时, $m(H_n) \to m(H)$. 其余的证明为数学分析中的技巧,不再赘述.

¹²证明: 设 $x \in \bigcup_{i=1}^{+\infty} G_i - \bigcup_{i=1}^{+\infty} A_i$,则x在某个 G_i 中,且不在全部的 A_i 中,故x在某个 $G_i - A_i$ 中,即 $x \in \bigcup_{i=1}^{+\infty} (G_i - A_i)$.

2.17 Lebesgue 测度的不变性

设 $A\subset\mathbb{R}$,记

$$A + b = \{a + b : a \in A\}, b \in \mathbb{R},$$

$$kA = \{ka : a \in A\}, k \in \mathbb{R}, k > 0,$$

$$-A = \{-a : a \in A\}.$$

分别称为平移,伸缩,对称.

定理 **2.17.1.** 设 $A \in \mathcal{L}$,则

- (i) $\forall b \in \mathbb{R}, A+b \in \mathcal{L}, \mathbb{L} m(A+b) = m(A);$
- (ii) $\forall k > 0$, $kA \in \mathcal{L}$, $\mathbb{E} m(kA) = km(A)$;
- (iii) $-A \in \mathcal{L}$, $\mathbb{H} m(-A) = m(A)$.

证明. 只证明(i), 其余类似.

Step 1: 若 $A \in R_0$, 则 $A + b \in R_0$, 且 m(A + b) = m(A).

证: $A \in R_0$,则 $A = \sum_{i=1}^n (a_i, b_i]$, $a_i \leq b_i$.则 $A + b = \sum_{i=1}^n (a_i + b, b_i + b]$. $m(A + b) = \sum_{i=1}^n (b_i - a_i) = m(A)$.

Step 2: 若 $A \subset \mathbb{R}$,则 $m^*(A+b) = m^*(A)$.

证: 设 $E_i \in R_0$, $A \subset \cup E_i$, 则 $A + b \subset \cup (E_i + b)$. 由外测度的下可数可加性,有 $m^*(A + b) \leq \sum m^*(E_i + b) = \sum m(E_i + b)$. 由 Step 1,得 $m^*(A + b) \leq \sum m(E_i)$. 两边取下确界,得

$$m^*(A+b) \le m^*(A).$$

反过来, $m^*(A) = m^*((A+b)-b)$, 再次利用上式, 得

$$m^*(A) \le m^*(A+b).$$

故 $m^*(A+b) = m^*(A)$ 得证.

Step 3: 若 $A \in \mathcal{L}$,则 $A + b \in \mathcal{L}$.

证: 只用证明 A + b 满足 C-条件,即 $\forall E$,都有 $m^*(E \cap (A + b)) + m^*(E \cap (A + b)^c) = m^*(E)$.

$$m^*(E \cap (A+b)) + m^*(E \cap (A+b)^c)$$

$$= m^*(E \cap (A+b) - b) + m^*(E \cap (A+b)^c - b)$$

$$= m^*((E-b) \cap (A+b-b)) + m^*((E-b) \cap A^c)$$

$$= m^*(E-b) = m^*(E)$$

上式中第二个等式中有 $(A+b)^c-b=A^c$ 成立,实际上考虑几何意义就不难理解(注意 $\pm b$ 表示平移). 倒数第二个等式成立是因为 A 满足 C-条件.

Step 4: 完成证明.

证: $m(A+b) = m^*(A+b) = m^*(A+b-b) = m^*(A) = m(A)$, 其中第一个等号成立是因为 A+b可测,最后一个等号成立是因为 A 可测.

2.18 Lebesgue-Stieltjes 测度

前面已经简要介绍过 Lebesgue-Stieltjes 测度 (P14), 下面再详细介绍.

设 $g: \mathbb{R} \to \mathbb{R}$ 单调递增右连续. 设 $A \in R_0$,

$$A = \sum_{i=1}^{n} (a_i, b_i], \quad n \in \mathbb{N}^*, a_i, b_i \in \mathbb{R}, a_i \le b_i, i = 1, \dots, n.$$

定义

$$g(A) = \sum_{i=1}^{n} (g(b_i) - g(a_i)),$$

则 $g: R_0 \to [0, +\infty]$ 为环 R_0 上的测度.

定义

$$g^*: 2^{\mathbb{R}} \to [0, +\infty],$$

$$g^*(E) = \inf \left\{ \sum_{i=1}^{+\infty} g(E_i) : E_i \in R_0, , i = 1, 2 \dots, E \subset \bigcup_{i=1}^{+\infty} \right\},$$

则 g^* 是 $2^{\mathbb{R}}$ 上的外测度,并且 $g^*|_{R_0} = g$.

记

$$\mathscr{L}_{q} = \{ A \subset \mathbb{R} : g^{*}(E) = g^{*}(E \cap A) + g^{*}(E \cap A^{c}), \forall E \subset \mathbb{R} \}.$$

定理 **2.18.1.** (i) \mathcal{L}_q 是 \mathbb{R} 上的 σ -代数, $R_0 \subset \mathcal{L}_q$;

(ii) $m^*|_{\mathcal{L}_g}$ 为测度, $g^*|_{R_0} = g$.

记 $g = g^*|_{\mathcal{L}_g}$,称 g 为 Lebesgue-Stieltjes 测度. 设 $A \subset \mathbb{R}$,如果 $A \in \mathcal{L}_g$,称 A 为 g-可测集,称 g(A) 为 A 的 g-测度.

Remark. 取 g(x) = x, Lebesgue-Stieltjes 测度即为 Lebesgue 测度.

下面的结论是(一维) Lebesgue 测度的相应结论的直接推广.

定理 2.18.2. Lebesgue 测度具有如下性质:

- (i) q-测度是完备的;
- (ii) 如果 $A \subset \mathbb{R}^n$, $g^*(A) = 0$, 则 Ag-可测且 g(A) = 0;
- (iii) 设 $a,b \in \mathbb{R}$, $a \le b$, 则 $(a,b] \in \mathcal{L}_g$, 且g((a,b]) = g(b) g(a);
- (iv) g-测度是 σ-有限的.

记

$$\mathscr{O} = \{A \subset \mathbb{R}^n : A \ni \mathcal{A} \notin \mathbb{R} \}.$$

则 $S(\mathcal{O})$ 为 σ -代数. 称 $S(\mathcal{O})$ 为 **Borel 代数**. 如果 $A \in S(\mathcal{O})$,称 A 为 **Borel 集**.

定理 2.18.3. Borel 集是 g-可测集.

定理 2.18.4 (正则性). 设 $A \in \mathcal{L}_g$, $\varepsilon > 0$, 则

- (i) (外正则性) 存在开集 $G \supset A$, 使得 $g(G A) \le \varepsilon$;
- (ii) (内正则性) 存在闭集 $H \subset A$, 使得 $g(A H) \leq \varepsilon$.

推论 2.18.5. 设 $A \in \mathcal{L}_g$, 则

$$g(A) = \inf\{g(G): G \supset A$$
为开集},

$$g(A) = \sup\{g(K) : K \subset A$$
为紧集}.

Remark. Lebesgue-Stieltjes 测度不一定有(平移、伸缩、对称)不变性.

2.19 *n* 维 Lebesgue 测度

用 \mathbb{R}^n 表示 n 维欧式空间. 记

$$P = \{ \prod_{i=1}^{n} (a_i, b_i] : a_i, b_i \in \mathbb{R}, a_i \le b_i, i = 1, \dots, n \}.$$

设

$$Q = \prod_{i=1}^{n} (a_i, b_i], a_i \le b_i, i = 1, \dots, n.$$

记

$$V(Q) = \prod_{i=1}^{n} (b_i - a_i),$$

称 V(Q) 为 Q 的体积.

记

$$R_0 = \{ \bigcup_{i=1}^m Q_i : m \in \mathbb{N}^*, Q_i \in P \}.$$

则对于任意的 $A \in R_0$,存在 $Q_i \in P, i = 1, ..., m$,满足 Q_i 互不相交,且

$$A = \sum_{i=1}^{m} Q_i.$$

可以证明,如果

$$A = \sum_{i=1}^{m} Q_i = \sum_{i=1}^{m'} Q'_i, \quad Q_i, Q'_i \in P,$$

则

$$\sum_{i=1}^{m} V(Q_i) = \sum_{i=1}^{m'} V(Q'_i).$$

我们定义

$$m(A) = \sum_{i=1}^{m} V(Q_i),$$

其中

$$A = \sum_{i=1}^{m} Q_i, \quad Q_i \in P,$$

则 m 为 R_0 上的测度.

定义

$$m^*(E) = \inf \left\{ \sum_{i=1}^m m(Q_i) : E_i \in R_0, \ i = 1, \dots, m, \ E \subset \bigcup_{i=1}^m E_i \right\}, \quad E \subset X,$$

则 $m^*: 2^{\mathbb{R}^n} \to [0, +\infty]$ 为外测度,并且

$$m^*|_{R_0} = m.$$

Remark. \mathbb{R}^n 的任意子集都可以算外测度.

记

$$\mathscr{L} = \{A \subset \mathbb{R}^n : m^*(E) = m^*(E \cap A) + m^*(E \cap A^c), \forall E \subset \mathbb{R}^n\}.$$

定理 **2.19.1.** (i) \mathscr{L} 是 \mathbb{R}^n 上的 σ -代数, $R_0 \subset \mathscr{L}$;

(ii) $m^*|_{\mathscr{L}}$ 为测度, $m^*|_{R_0} = m$.

定义 2.19.2. 记 $m=m^*|_{\mathscr{L}}$, 称 $m:\mathscr{L}\to [0,+\infty]$ 为 (n 维) Lebesgue 测度. 设 $A\subset \mathbb{R}^n$, 如果 $A\in \mathscr{L}$, 称 A Lebesgue 可测,称 m(A) 为 A 的 Lebesgue 测度.

下面的结论是(一维) Lebesgue 测度的相应结论的直接推广.

定理 2.19.3. Lebesgue 测度具有如下性质:

- (i) Lebesgue 测度是完备的;
- (ii) 如果 $A \subset \mathbb{R}^n$, $m^*(A) = 0$, 则 A Lebesgue 可测且 m(A) = 0;
- (iii) 设 $Q \in P$, 则 $Q \in \mathcal{L}$, 且m(Q) = V(Q);
- (iv) Lebesgue 测度是 σ -有限的.

记

$$\mathscr{O} = \{A \subset \mathbb{R}^n : A$$
 开集 $\}.$

则 $S(\mathcal{O})$ 为 σ -代数. 称 $S(\mathcal{O})$ 为 **Borel** 代数. 如果 $A \in S(\mathcal{O})$,称 A 为 **Borel** 集.

定理 2.19.4. Borel 集是 Lebesgue 可测集.

定理 2.19.5 (正则性). 设 $A \in \mathcal{L}$, $\varepsilon > 0$, 则

- (i) (外正则性) 存在开集 $G \supset A$, 使得 $m(G A) < \varepsilon$;
- (ii) (内正则性) 存在闭集 $H \subset A$, 使得 $m(A H) \leq \varepsilon$.

推论 2.19.6. 设 $A \in \mathcal{L}$,则

$$m(A) = \inf\{m(G) : G \supset A$$
为开集},

$$m(A) = \sup\{m(K) : K \subset A 为 紧集\}.$$

设 $A \subset \mathbb{R}^n$,记

$$A + b = \{a + b : a \in A\}, b \in \mathbb{R}^n,$$

$$kA = \{ka : a \in A\}, k \in \mathbb{R}, k > 0,$$

$$-A = \{-a : a \in A\}.$$

分别称为平移,伸缩,对称.

定理 2.19.7. 设 $A \in \mathcal{L}$, 则

- (i) $\forall b \in \mathbb{R}^n$, $A+b \in \mathcal{L}$, $\mathbbm{L} m(A+b) = m(A)$;
- (ii) $\forall k > 0$, $kA \in \mathcal{L}$, $\mathbb{L}m(kA) = k^n m(A)$;
- (iii) $-A \in \mathcal{L}$, $\mathbb{H} m(-A) = m(A)$.

更一般的,设M为n阶方阵, det $M \neq 0$ (否则可能将高维空间映为低维), $A \subset \mathbb{R}^n$,记

$$\mathscr{T}A = \{Mx + b : x \in A\}.$$

则若 $A \in \mathcal{L}$, $\mathcal{T}A \in \mathcal{L}$,

$$m(\mathcal{T}A) = |\det M| m(A).$$

Remark. 这实际上就是矩阵行列式的几何意义.

3 可测函数与积分

3.1 可测函数

首先介绍水平集的概念.

定义 3.1.1. 设 $f: A \to [-\infty, +\infty]$, $t \in \mathbb{R}$, 分别称

$${f > t} := {x \in A : f(x) > t},$$

$$\{f < t\} := \{x \in A : f(x) < t\},\$$

为 f 的t-上水平集和t-下水平集. 类似的, $\{f \geq t\}$, $\{f \leq t\}$, $\{f = t\}$, $\{t_1 \leq f \leq t_2\}$ 等都称为 f 的水平集.

¹³ ⑦ 表示线性变换.

定理 3.1.2. 设 $A \subset \mathbb{R}^n$, $f: A \to \mathbb{R}$, 则 f 连续当且仅当 $\forall t \in \mathbb{R}$, $\{f > t\}$ 和 $\{f < t\}$ 为 A 的相对开集.

设 X 为全集, \mathscr{A} 为 X 上的一个 σ -环, $\mu:\mathscr{A}\to [0,+\infty]$ 是一个测度. 设 $A\subset X$,如果 $A\in\mathscr{A}$,称 A 是 μ -可测集. 我们简称 $\{X,\mathscr{A},\mu\}$ 是一个测度空间. 如果测度 μ 是完备的,我们称 $\{X,\mathscr{A},\mu\}$ 是一个完备的测度空间. 例如, $\{\mathbb{R}^n,\mathscr{L},m\}$ 是一个测度空间.

定义 3.1.3. 设 $E\in\mathscr{A}$, $f:E\to[-\infty,+\infty]$. 如果 $\forall \alpha\in\mathbb{R}$, $\{f>\alpha\}\in\mathscr{A}$, 称 f 是可测函数.

Remark. 若一个函数的所有水平集都是可测集,则称这个函数为可测函数. 定义为了简洁起见,只要求 f 的 α -上水平集可测.

Remark. 如果 $f: E \to [+\infty, -\infty]$ 是 μ -可测函数,则 f 的所有水平集

$$\{f \ge \alpha\}, \{f < \alpha\}, \{f \le \alpha\}, \{f = \alpha\}, \{f = +\infty\}, \{f = -\infty\}, \{\alpha \le f < \beta\}, \cdots$$

都是 μ -可测的. 这是因为

$$\{f \ge \alpha\} = \bigcap_{n=1}^{+\infty} \{f > \alpha - \frac{1}{n}\},$$

$$\{f < \alpha\} = E - \{f \ge \alpha\},$$

$$\{f \le \alpha\} = E - \{f > \alpha\},$$

$$\{f = \alpha\} = \{f \ge \alpha\} \cap \{f \le \alpha\},$$

$$\{f = +\infty\} = \bigcap_{n=1}^{+\infty} \{f > n\},$$

$$\{f = -\infty\} = \bigcap_{n=1}^{+\infty} \{f < n\},$$

$$\{\alpha \le f < \beta\} = \{f \ge \alpha\} \cap \{f < \beta\}.$$

(因为 $\forall n \in \{1,2,\dots\}$, $\{f > \alpha - \frac{1}{n}\} \in \mathcal{A}$, 而 \mathcal{A} 为 σ -环,所以对可数交封闭,故 $\{f \geq \alpha\} \in \mathcal{A}$,故水平集 $\{f \geq \alpha\}$ 可测. 其余原因类似.)

Remark. 可测函数作代数运算(加,减,乘,除,取绝对值等)和极限运算得到的函数仍然是可测函数。例如,设 $f,g,f_n:E\to [+\infty,-\infty]$ 是 μ -可测函数,其中 $n=1,2,\ldots$,则 f+g, fg, fg, kf, $k\in\mathbb{R}$, |f|, \sqrt{f} , f^+ , f^- 14, $\max\{f,g\}$, $\min\{f,g\}$, $\sup f_n$, $\inf f_n$, $\lim_{n\to+\infty} f_n$, $\overline{\lim}_{n\to+\infty} f_n$, $\lim_{n\to+\infty} f_n$ (如果极限存在)均为 μ -可测函数. 这里,我们要注意,

$$\begin{split} \operatorname{Dom}^{\text{15}}(f+g) &= E - \{f = +\infty\} \cap \{g = -\infty\} - \{f = -\infty\} \cap \{g = +\infty\}, \\ \operatorname{Dom}(\frac{f}{g}) &= E - \{g = 0\} \cup \{g = +\infty\} \cap \{g = -\infty\}. \end{split}$$

这是因为 $+\infty$ 与 $-\infty$ 不能相加;要去掉让分母无意义的点.

 $^{^{14}}f^{+}$ 和 f^{-} 分别表示 f 的正部和负部.

¹⁵用 Dom 表示函数的定义域 (domain).

Remark. 能从理论上证明存在不可测函数,但是无法具体给出一个不可测函数.也就是说,能写出来的函数都是可测的.

例. 设 $E \in \mathcal{A}$, $f: E \to [+\infty, -\infty]$, $f(x) \equiv c$, c 为常数, 则 $f \mu$ -可测.

解. 这是因为

$$\{f > \alpha\} = \begin{cases} E, & \alpha < c \\ \varnothing, & \alpha \ge c \end{cases}$$

而 E 和 \varnothing 均可测.

例. 设 $E \subset \mathbb{R}^n$ Lebesgue 可测, $f: E \to \mathbb{R}$ 连续, 则 f Lebesgue 可测.

证明. 设 $\alpha \in \mathbb{R}$,由于f连续,由定理3.1.2,存在开集 $\Omega \subset \mathbb{R}^n$,使得

$$\{f > \alpha\} = \Omega \cap E.$$

因为 Ω, E Lebesgue 可测 ¹⁶, 所以 $\{f > \alpha\}$ Lebesgue 可测 ¹⁷. 因此 f Lebesgue 可测.

命题 3.1.4. 设 $E, E_i \in \mathscr{A}, i = 1, \dots, n, \ E = \bigcup_{i=1}^n E_i$. 设 $f: E \to [-\infty, +\infty]$,则 $f \mu$ -可测当且仅当 $\forall i \in \{1, \dots, n\}, \ f|_{E_i} \mu$ -可测.

Remark. 这个命题常用于验证函数是否可测.

证明. 设 $\alpha \in \mathbb{R}$,则

$$\{f > \alpha\} = \bigcup_{i=1}^{n} (\{f > \alpha\} \cap E_i) = \bigcup_{i=1}^{n} \{f|_{E_i} > \alpha\}.$$

如果 $f \mu$ -可测,则

$$\{f|_{E_i} > \alpha\} = \{f > \alpha\} \cap E_i \in \mathscr{A},$$

因此, $f|_{E_i}\mu$ -可测. 反之, 如果 $\forall i \in \{1, ..., n\}$, $f|_{E_i}\mu$ -可测, 则

$$\{f > \alpha\} = \bigcup_{i=1}^{n} \{f|_{E_i} > \alpha\} \in \mathscr{A},$$

因此, $f\mu$ -可测.

3.2 几乎处处相等的函数

定义 3.2.1. 设 $E \subset X$, $f,g: E \to [-\infty, +\infty]$, 如果存在 μ -零测集 $A \in \mathcal{A}$, 使得

$$f(x) = g(x), \quad \forall x \in E - A,$$

则称 f,g μ -几乎处处相等,记为 f=g μ -a.e..

¹⁶Ω 为开集, 故为 Borel 集, 故 Lebesgue 可测.

¹⁷两个可测集的交仍为可测集,因为 𝔄 是 σ-环.

Remark. 在实分析中常用 a.e.(almost everywhere) 表示"几乎处处", 而在概率论中则更常用 a.s.(almost surely) 表示"几乎处处", 二者等价. μ -a.e. 表示"用 μ -测度来看".

一般地,如果 $E\subset X$,p 是一个与 E 中的点有关的命题($\forall x\in E$,p 要么成立,要么不成立).如果存在 μ -零测集 $A\subset X$,使得

$$\forall x \in E - A, \quad p \not \boxtimes \vec{\Delta},$$

称命题 $p \mu$ -几乎处处成立,简记为命题 $p \mu$ -a.e. 成立.

命题 3.2.2. 设 $\{X, \mathscr{A}, \mu\}$ 是一个完备的测度空间, $E \in \mathscr{A}$, $f, g : E \to [-\infty, +\infty]$,并且 $f = g \mu$ -a.e.. 如果 $f \mu$ -可测则 $g \mu$ -可测.

Remark. 这个命题说明了在 μ -可测函数的一个零测集上改动函数值不会影响可测性.

证明. 由已知,存在 μ -零测集A,使得

$$f(x) = g(x), \quad x \in E - A.$$

记

$$E_1 = E - A, E_2 = E \cap A,$$

则 $E_2 \in \mathcal{A}$,且 $\mu(E_2) = 0$. 因为 $f \mu$ -可测,由命题3.1.4, $f|_{E_1} \mu$ -可测,因此 $g|_{E_1} \mu$ -可测.因为 μ 完备,所以 E_2 的所有子集均可测,因此 $g|_{E_2} \mu$ -可测18.由命题3.1.4, $g \mu$ -可测.

3.3 简单函数的逼近

分析中几乎所有的函数都是可测的,故可测函数的形式可能非常复杂,因此我们考虑用简单的函数逼近一般的可测函数.

设 $\{X, \mathscr{A}, \mu\}$ 是一个测度空间.

定义 3.3.1. 设 $E \in \mathcal{A}$, $\varphi : E \to \mathbb{R}$ μ -可测. 如果 $Rg\varphi^a$ 为有限集, 称 φ 为简单函数.

"用 Rg 表示函数的值域 (range).

Remark. 简单函数是指只能取有限个值的函数, 又称阶梯函数.

定理 3.3.2. 设 $E \in \mathscr{A}$, $f: E \to [0, +\infty]$ μ -可测. 则存在非负简单函数列 $\varphi_n: E \to [0, +\infty)$, 使得

- (i) $\varphi_n \le \varphi_{n+1}, \quad n = 1, 2, ...,$
- (ii) $\varphi_n \to f$, $n \to +\infty$.

Remark. 用非负单调增的简单函数列逼近非负可测函数.

证明. (1) 首先, 我们定义 φ_n . 记

$$E_{k,m} = \{x \in E : k + m \times 10^{-n} \le f(x) < k + (m+1) \times 10^{-n}\}, \quad 0 \le k, m < 10^n.$$

 $^{^{18}}g|_{E_2}\mu$ -可测的定义是 f 的所有水平集都可测,而水平集为定义域的的子集,故所有水平集都可测。

$$F = \{ f \ge 10^n \}.$$

则

$$E = \sum_{k,m=0}^{10^n - 1} E_{k,m} + F.$$

定义

$$\varphi_n(x) = \begin{cases} k + m \times 10^{-n}, & x \in E_{k,m} \\ 10^n, & x \in F \end{cases}$$

显然, φ_n 最多取 10^{2n} 个值.

由于 f 可测,所以 $E_{k,m}$, F 可测.由于 $\varphi|_{E_{k,m}}$, $\varphi_n|_F$ 为常值函数,所以 $\varphi|_{E_{k,m}}$, $\varphi_n|_F$ 可测.因此, φ_n 可测.

(2) 下面验证 $\{\varphi_n\}$ 单调增, $\varphi_n \to f$. 设 $f(x) = +\infty$,则 $\varphi_n(x) = 10^n$,因此, φ_n 单调增, $\varphi_n(x) \to f(x)$. 设 $10^k \le f(x) < 10^{k+1}$ 19,则

$$\varphi_{n}(x) = \begin{cases} 10^{k}, & n < k \\ f(x)$$
小数点后取 n 位, $n \ge k + 1$

因此, $\varphi_n(x)$ 单调增, $\varphi_n(x) \to f(x)$.

Remark. 考虑如何用有理数逼近无理数,如 π . 一种直接的方法是取 π 小数点后几位,如此得到的数列 3.1、3.14、3.141、3.1415... 单调递增趋于 π .

定理 3.3.3. 设 $E\in\mathscr{A}$, $f:E\to[-\infty,+\infty]$ μ -可测,则存在简单函数列 $\varphi_n:E\to\mathbb{R}, n=1,2,\ldots$,使得

- (i) $|\varphi_n| \leq |f|$,
- (ii) $\varphi_n \to f$, $n \to +\infty$.

Remark. 注意,这里的f可变号,与定理3.3.2中不同.

定理 3.3.4. 设 $E \in \mathcal{A}$, $f: E \to \mathbb{R}$ μ -可测, f 有界, 则存在简单函数列 $\varphi_n: E \to \mathbb{R}$, 使得当 $n \to +\infty$ 时, φ_n 一致收敛于 f.

Remark. 用 → 表示逐点收敛, 用 ⇒ 表示一致收敛.

证明. (1) 首先设 $f \geq 0$. 设 $0 \leq f \leq M$,则存在 $N \in \mathbb{N}^*$,使得 $f(x) \leq N - 1$, $\forall x \in E$. 设 φ_n 为定理3.3.2的证明中定义的函数,则当 $n \geq N$ 时,

$$|\varphi_n(x) - f(x)| \le 10^{-n}, \quad \forall x \in E.$$

因此, $\varphi_n \Rightarrow f$.

¹⁹若 f(x) 为有限数,则一定能找到 k 使得 $10^k \le f(x) < 10^{k+1}$.

(2) 设 f 有界,则 f^+, f^- 有界. 由 (1),存在非负单调增的简单函数列 g_n, h_n ,使得

$$g_n \Rightarrow f^+, \quad f_n \Rightarrow f^-.$$

 $\varphi_n = g_n - h_n$,则 $\varphi_n \Rightarrow f$.

3.4 连续函数的逼近

一些 Lebesgue 可测的函数并不连续. 一个极端的例子是 Dirichlet 函数可测但处处不连续. 下面说明所有可测函数都可以用连续函数逼近.

定理 3.4.1 (Lusin (卢津) 定理). 设 $E \subset \mathbb{R}^n$ Lebesgue 可测, $f: E \to \mathbb{R}$ Lebesgue 可测,则 $\forall \varepsilon > 0$,存在 Lebesgue 可测集 $F \subset E$,使得

- (i) $m(E F) \le \varepsilon$,
- (ii) $f|_F$ 连续.

Remark. 将定义域缩小一点, 可测函数就变为连续函数. 换句话说, 可测函数几乎就是连续函数.

证明. Step 1: 证明 f 为简单函数的情况.

记

$$Rgf = {\lambda_1, \ldots, \lambda_N},$$

$$E_i = \{ f = \lambda_i \}.$$

则 E_i 可测²⁰且 $E = \sum_{i=1}^{N} E_i$.

因为 E_i 可测,由定理2.16.1,存在闭集 $F_i \subset E_i$,使得

$$m(E_i - F_i) \le \frac{\varepsilon}{N}.$$

记

$$F = \sum_{i=1}^{N} F_i,$$

则

$$m(E - F) = m(\sum_{i=1}^{N} (E_i - F_i)) = \sum_{i=1}^{N} m(E_i - F_i) \le \varepsilon.$$

因为 $f|_{F_i}$ 连续, F_i 互不相交,所以 $f|_F$ 连续.

Step 2: 证明 $f: E \to \mathbb{R}$ Lebesgue 可测, f 有界的情况.

由定理3.3.4, 存在简单函数列 $\varphi_n: E \to \mathbb{R}$, 使得 $\varphi_n \Rightarrow f$. 由 Step 1, 存在 $F_n \subset E$, $m(E-F_n) \leq \frac{\varepsilon}{2^n}$, 使得 $\varphi_n|_{F_n}$ 连续. 记

$$F = \bigcap_{n=1}^{+\infty} F_n.$$

²⁰可测函数的所有水平集均可测.

则 $F \subset E$,且

$$m(E-F) \le \sum_{n=1}^{+\infty} m(E-F_n) \le \varepsilon.$$

由于 $\varphi_n|_F \Rightarrow f|_F$, 且 φ_n 连续, 故 $f|_F$ 连续.

Step 3: 证明 $f: E \to \mathbb{R}$ Lebesgue 可测的情况.

记

$$g = \frac{f}{1+|f|}, \quad f = \frac{g}{1-|g|},$$

则 g 有界(|g|<1)。由 $Step\ 2$,存在 $F\subset E$,使得 $m(E-F)\leq \varepsilon$,且 $g|_F$ 连续,则 $f|_F$ 连续²¹. \square

推论 3.4.2 (Lusin). 设 $E \subset \mathbb{R}^n$ Lebesgue 可测, $f: E \to \mathbb{R}$ Lebesgue 可测,则 $\forall \varepsilon > 0$,存在连续函数 $g: \mathbb{R}^n \to \mathbb{R}$,使得

$$m(\{x \in E : f(x) \neq g(x)\}) \le \varepsilon.$$

Remark. 这是另一个版本的 Lusin 定理,与定理3.4.1等价.

在给出这个定理的证明前, 先介绍一个引理.

引理 3.4.3 (Tietze (蒂茨) 延拓定理). 设 $F \subset \mathbb{R}^n$ 为闭集, $f: F \to \mathbb{R}$ 连续, 则存在连续函数 $\tilde{f}: \mathbb{R}^n \to \mathbb{R}$, 使得

$$\tilde{f}|_F = f.$$

Remark. *Tietze* 延拓定理说明了可将闭集上的连续函数延拓到 \mathbb{R}^n 上. 详见周民强《实变函数论》定理 1.27.

下面给出推论3.4.2的证明.

证明. 由定理3.4.1,存在 $F_1 \subset E$,使得 $m(E - F_1) \leq \frac{\varepsilon}{2}$,并且 $f|_{F_1}$ 连续. F_1 是可测集,故存在闭集 $F \subset F_1$,使得 $m(F_1 - F) \leq \frac{\varepsilon}{2}$,则

$$m(E-F) \le m(E-F_1) + m(F_1-F) \le \varepsilon.$$

由 Tietze 延拓定理,存在连续函数 $f: \mathbb{R}^n \to \mathbb{R}$,使得 $g|_F = f|_F$,则

$$m(\lbrace x \in E : f(x) \neq g(x)\rbrace) \leq m(E - F) \leq \varepsilon.$$

3.5 逐点收敛,一致收敛,依测度收敛

设 $\{X, \mathcal{A}, \mu\}$ 为测度空间, $E \in \mathcal{A}$, $f_n, f : E \to \mathbb{R}$ μ -可测, $n = 1, 2 \dots$

定义 3.5.1. 任取 $\delta > 0$, 如果 $\forall x \in E$, 存在 $N \in \mathbb{N}^*$, 满足当 $n \geq N$ 时,

$$|f_n(x) - f(x)| \le \delta,$$

称 f_n 逐点收敛于 f ,记为 $f_n \to f$.

²¹连续函数作代数运算仍然连续.

我们称 $|f_n - f|$ 为误差函数. 下面用误差函数的上水平集描述逐点收敛.

命题 3.5.2. $f_n \to f$ 当且仅当 $\forall \delta > 0$,

$$\lim_{n \to +\infty} \{ |f_n - f| > \delta \} = \varnothing.$$

证明. 设 $\delta > 0$, 则

$$\lim_{n \to +\infty} \{ |f_n - f| > \delta \} = \emptyset$$

$$\iff \overline{\lim}_{n \to +\infty} \{ |f_n - f| > \delta \} = \emptyset$$

$$\iff \cap_{N \in \mathbb{N}^*} \cup_{n \ge N} \{ |f_n - f| > \delta \} = \emptyset$$

$$\iff \cup_{N \in \mathbb{N}^*} \cap_{n \ge N} \{ |f_n - f| > \delta \} = E$$

$$\iff \cap_{N \in \mathbb{N}^*} \cup_{n \ge N} \{ |f_n - f| > \delta \} \supset E$$

$$\iff \forall x \in E, \exists N \in \mathbb{N}^*, \notin \exists n \ge N \ \forall n, |f_n(x) - f(x)| < \delta$$

因此, $f_n \to f$ 当且仅当 $\forall \delta > 0$,

$$\lim_{n \to +\infty} \{ |f_n - f| \} = \varnothing.$$

定义 3.5.3. 任取 $\delta > 0$, 如果存在 $N \in \mathbb{N}^*$, 使得当 $n \geq N$ 时

$$|f_n(x) - f(x)| \le \delta, \quad \forall x \in E,$$

称 f_n 一致收敛于 f, 记为 $f_n \Rightarrow f$.

命题 3.5.4. $f_n \Rightarrow f$ 当且仅当 $\forall \delta > 0$,存在 $N \in \mathbb{N}^*$,使得当 $n \geq N$ 时

$$\{|f_n - f| > \delta\} = \varnothing.$$

证明. 显然.

下面引入一种新的收敛: 依测度收敛.

定义 3.5.5. 如果 $\forall \delta > 0$,

$$\mu(\{|f_n - f| > \delta\}) \to 0, \quad n \to +\infty,$$

称 f_n 依测度收敛于 f, 记为 $f_n \stackrel{\mu}{\rightarrow} f$.

Remark. 依测度收敛又叫依概率收敛, 究竟收不收敛并不确定.

下面考察这三种收敛之间的关系. 显然, $f_n \to f \Longrightarrow f_n \to f$ (一致收敛一定逐点收敛). 下面证明,如果 $\mu(E) < +\infty$,则 $f_n \to f \Longrightarrow f_n \overset{\mu}{\to} f$ (逐点收敛一定依测度收敛).

命题 3.5.6. 设 $\mu(E) < +\infty$. 如果 $f_n \to f$,则 $f_n \stackrel{\mu}{\to} f$.

证明. 设 $\delta > 0$, 由命题3.5.2,

$$\{|f_n - f| > \delta\} \to \emptyset.$$

由于

$$\bigcup_{n=1}^{+\infty} \{ |f_n - f| > \delta \} \subset E,$$

所以

$$\mu(\bigcup_{n=1}^{+\infty} \{|f_n - f| > \delta\}) < +\infty.$$

由控制收敛定理, $\mu(\bigcup_{n=1}^{+\infty}\{|f_n-f|>\delta\})\to\mu(\varnothing)=0$. 因此, $f_n\stackrel{\mu}{\to}f$.

Remark. 该命题中 $\mu(E) < +\infty$ 的条件不能去掉. 例如: 设 $f_n : \mathbb{R} \to \mathbb{R}$,

$$f_n(x) = \begin{cases} 0, & x < n \\ 1, & x \ge n \end{cases}$$

则 $f_n \to 0$. 但是

$$m(\{|f_n| > \delta\}) = +\infty,$$

因此, f_n 并不依测度 m 收敛于 0.

如果 $f_n \stackrel{\mu}{\to} f$,我们不一定能得到 $f_n \to f$. 例如: 设 $f_n : [0,1] \to \mathbb{R}$,

$$f_{1} = \chi[0, \frac{1}{2}], \quad f_{2} = \chi[\frac{1}{2}, 1],$$

$$f_{3} = \chi[0, \frac{1}{3}], \quad f_{4} = \chi[\frac{1}{3}, \frac{2}{3}], \quad f_{5} = \chi[\frac{2}{3}, 1],$$

$$f_{6} = \chi[0, \frac{1}{4}], \quad f_{7} = \chi[\frac{1}{4}, \frac{2}{4}], \quad f_{8} = \chi[\frac{2}{4}, \frac{3}{4}], \quad f_{9} = \chi[\frac{3}{4}, 1],$$

则 $f_n \xrightarrow{m} f$. 但是, $\forall x \in [0,1]$, $f_n(x) \rightarrow f(x)$.

因此,这三种收敛之间有如下关系:

一致收敛 \Longrightarrow 逐点收敛 $\stackrel{\mu(E)<+\infty}{\Longrightarrow}$ 依测度收敛

利用测度,我们可以考虑反过来的问题.

3.6 Egoroff 定理

定理 3.6.1 (Egoroff (叶戈罗夫)). 设 $E \in \mathscr{A}$, $\mu(E) < +\infty$, $f_n, f : E \to \mathbb{R}$ Lebesgue 可测, $n = 1, 2, \ldots$, 并且 $f_n \to f$. 则 $\forall \varepsilon > 0$,存在 $F \in \mathscr{A}$, $F \subset E$,使得

- (i) $\mu(E-F) \leq \varepsilon$,
- (ii) $f_n|_F \Rightarrow f|_F$.

Remark. 如果 $\forall \varepsilon > 0$, $\exists F \in \mathscr{A}$, $F \subset E$, 使得 $\mu(F) \leq \varepsilon$ 并且 $f_n|_{E-F} \Rightarrow f|_{E-F}$, 称 f_n 近一致收敛. 逐点收敛几乎就是一致收敛.

证明. Claim 1: 设 $\varepsilon, \delta > 0$,则 $\exists N \in \mathbb{N}^*$,使得

$$\mu(\bigcup_{n=N}^{+\infty}\{|f_n-f|>\delta\})\leq \varepsilon.$$

证:由命题3.5.2,

$$\overline{\lim}_{n \to +\infty} \{ |f_n - f| > \delta \} = \emptyset,$$

即

$$\bigcap_{n\in\mathbb{N}^*} \cup_{n\geq N} \{|f_n - f| > \delta\} = \varnothing,$$

即

$$\lim_{k \to +\infty} \cup_{n=k}^{+\infty} \{ |f_n - f| > \delta \} = \varnothing.$$

由控制收敛定理,

$$\lim_{k \to +\infty} \mu(\bigcup_{n=k}^{+\infty} \{|f_n - f| > \delta\}) = 0.$$

因此, $\exists N \in \mathbb{N}^*$,使得

$$\mu(\bigcup_{n=N}^{+\infty}\{|f_n-f|>\delta\})\leq \varepsilon.$$

从而 Claim 1 得证.

曲 Claim 1,

$$\exists n_1 \in \mathbb{N}^*, \notin \exists \mu(\cup_{n \geq n_1} > \frac{1}{1}) \leq \frac{\varepsilon}{2^1},$$
$$\exists n_2 \in \mathbb{N}^*, \notin \exists \mu(\cup_{n \geq n_2} > \frac{1}{2}) \leq \frac{\varepsilon}{2^2},$$

. . .

$$\exists n_k \in \mathbb{N}^*, \notin \mathcal{A}\mu(\cup_{n \geq n_k} > \frac{1}{k}) \leq \frac{\varepsilon}{2^k},$$

记

$$A_k = \bigcup_{n \ge n_k} \{ |f_n - f| > \frac{1}{k} \}, \quad A = \bigcup A_k.$$

$$F := E - A = E - \bigcup A \xrightarrow{\text{de Morgan}} \bigcap_{k=1}^{+\infty} \bigcap_{k=1}^{+\infty} \{ |f_n - f| \le \frac{1}{k} \}.$$

设 $\delta > 0$, $\exists k$, 使得 $\frac{1}{k} < \delta$. 令 $N = n_k$, 由上式

$$F \subset \bigcap_{k=1}^{+\infty} \bigcap_{n \ge n_k} \{ |f_n - f| \le \frac{1}{k} \}.$$

故
$$|f_n - f| \leq \frac{1}{k} < \varepsilon$$
.

Remark. Egoroff 定理(定理3.6.1)的条件 $\mu(E) < +\infty$ 不能去掉. 例如: 设 $f_n : \mathbb{R} \to \mathbb{R}$,

$$f_n(x) = \begin{cases} 0, & x < n \\ 1, & x \ge n \end{cases}$$

则 $f_n \to 0$. 设 $F \subset \mathbb{R}$, $m(F) < \varepsilon$, 则

$$(\mathbb{R} - F) \cap (n, +\infty) \neq \varnothing.$$

因此

$$\sup_{\mathbb{R}-F}|f_n|=1,$$

所以 $f_n|_{\mathbb{R}-F} \Rightarrow 0$.

3.7 Riesz 定理

定义 3.7.1. 设 $E \in \mathcal{A}$, $f_n, f: E \to \mathbb{R}$ Lebesgue 可测, $n=1,2,\ldots$ 如果存在 μ -零测集 F, 使得

$$f_n(x) \to f(x), \quad x \in E - F,$$

称 f_n μ **-几乎处处收敛**于 f,记为

$$f_n \to f$$
, μ -a.e..

定理 3.7.2 (Riesz (里斯)). 设 $E \in \mathcal{A}$, $f_n, f : E \to \mathbb{R}$ Lebesgue 可测, $n = 1, 2, \ldots$ 设 $f_n \stackrel{\mu}{\to} f$, 则 存在子列 f_{n_k} ,使得当 $k \to +\infty$ 时,

$$f_{n_k} \to f$$
, μ -a.e..

Remark. 由于是依测度收敛,故当 n 充分大时, f_n 不一定与 f 很像(即不一定有 $f_n(x) \to f$). 但是可以选择子列,使得 $\forall x \in E$, $f_{n_k}(x) \to f$ 的概率为 1.

证明. Claim 1: $\forall \varepsilon, \delta > 0$, $\exists N \in \mathbb{N}^*$, 使得当 n > N 时,有

$$\mu(\{|f_n - f| \ge \delta\}) \le \varepsilon.$$

证:显然.

曲 Claim 1,

$$\exists n_1, \quad \text{\'eta} \mu(\{|f_n - f| \ge 1\}) \le \frac{1}{2},$$
$$\exists n_2 > n_1, \quad \text{\'eta} \mu(\{|f_n - f| \ge \frac{1}{2}\}) \le \frac{1}{2^2},$$

. . .

$$\exists n_k > n_{k-1}, \quad \notin \#\mu(\{|f_n - f| \ge \frac{1}{3}\}) \le \frac{1}{2^k}.$$

记

$$F_k = \{ |f_{n_k} - f| \ge \frac{1}{k} \},$$

则

$$\mu(F_k) \le \frac{1}{2^k}.$$

♦22

$$F = \overline{\lim}_{k \to +\infty} F_k.$$

下面证明 $\mu(F) = 0$,且

$$f_{n_k}(x) \to f(x), \quad \forall x \in E - F.$$

(i) 由于

$$F = \bigcap_{m=1}^{+\infty} \bigcup_{k > m} \{ |f_{n_k} - f| \ge \frac{1}{k} \},$$

所以 $\forall m \in \mathbb{N}^*$,有

$$\mu(F) \le \mu(\bigcup_{k \ge m} \{|f_{n_k} - f| \ge \frac{1}{k}\})$$

$$\le \sum_{k=m}^{+\infty} \mu(\{|f_{n_k} - f| \ge \frac{1}{k}\})$$

$$\le \sum_{k=m}^{+\infty} \frac{1}{2^k}$$

$$= \frac{2}{2^m}$$

再令 $m \to +\infty$,得 $\mu(F) = 0$.

(ii) 由于

$$F = \bigcap_{N \in \mathbb{N}^*} \bigcup_{k > N} \{ |f_{n_k} - f| \ge \frac{1}{k} \},$$

由 de Morgan 律23, 得

$$E - F = \bigcup_{N \in \mathbb{N}^*} \bigcap_{k \ge N} \{ |f_{n_k} - f| < \frac{1}{k} \}.$$

设 $x \in E - F$,则 $\exists N \in \mathbb{N}^*$,使得当 $k \ge N$ 时,

$$|f_{n_k}(x) - f(x)| < \frac{1}{k}.$$

在上式中, $\Diamond k \to +\infty$ 得

$$|f_{n_k}(x) - f(x)| \to 0,$$

 $^{^{22}}$ 证明的思路是去掉误差较大的点(但不能把 F_k 全部去掉,否则去掉的部分过大)。事实上,我们只关心当 $n \to +\infty$ 时误差较大的点.

^{23 &}quot;交变并,并变交,集合取余."

即

$$f_{n_k}(x) \to f(x)$$
.

所以在 E-F 上, f_{n_k} 逐点收敛于 f.

3.8 Lebesgue 积分的定义

设 $\{X,\mathscr{A},\mu\}$ 为测度空间, $E\in\mathscr{A}$, $f:E\to[-\infty,+\infty]$ Lebesgue 可测.下面定义 f 的 Lebesgue 积分 $\int_E f\,\mathrm{d}\mu$.这个定义分 3 步.

Remark. Lebesgue 积分的符号为 $\int_E f \, \mathrm{d}\mu$,注意" $\mathrm{d}\mu$ ",与 Riemann 积分的" $\mathrm{d}x$ " 区分." $\mathrm{d}\mu$ "表示用测度 μ 来度量"面积".

定义 3.8.1. 设 f 为非负简单函数,

$$\operatorname{Rg} f = \{\lambda_1, \dots, \lambda_n\}.$$

定义

$$\int_E f \,\mathrm{d}\mu = \sum_{i=1}^n \lambda_1 \mu(\{f = \lambda_1\}).$$

定义 3.8.2. 设 $f \ge 0$, 定义

$$\int_{E} f \, \mathrm{d}\mu = \sup \left\{ \int_{E} \varphi \, \mathrm{d}\mu \, \middle| \, \varphi : E \to [0, +\infty) \, \text{为 简单函数}, \varphi \leq f \right\}.$$

Remark. 这里要求 φ 非负, 这是因为只定义了非负简单函数的积分.

定义 3.8.3. 如果

$$\int_E f^+ \,\mathrm{d}\mu < +\infty \quad \mathring{\underline{\mathbf{M}}} \quad \int_E f^- \,\mathrm{d}\mu < +\infty,$$

称 f 的积**分有定义**,并定义

$$\int_E f \, \mathrm{d}\mu = \int_E f^+ \, \mathrm{d}\mu - \int_E f^- \, \mathrm{d}\mu.$$

Remark. f^+ 表示 f 的正部, f^- 表示 f 的负部.

$$f^{+} = \begin{cases} f, & f > 0 \\ 0, & f \le 0 \end{cases} \qquad f^{-} = \begin{cases} -f, & f < 0 \\ 0, & f \le 0 \end{cases}$$

计算公式为

$$f^+ = \frac{|f| + f}{2}, \quad f^- = \frac{|f| - f}{2}.$$

它们满足

$$f = f^+ - f^-, \quad |f| = f^+ + f^-.$$

图 3: f 的正部 f^+ 和负部 f^- .

Remark. f 的积分有定义是指 f^+ 或 f^- 的积分有限. 显然,如果 f^+ 和 f^- 的积分都为 $+\infty$,则在计算 f 的积分时会出现 $(+\infty)$ - $(+\infty)$,无法计算,此时我们说积分无定义.

换句话说,积分有定义是指能够得到积分 $\int_E f \, \mathrm{d}\mu$ 的值. 上面三种定义的都能得到积分的值, 故都说 f 的积分有定义(注意:非负函数的积分都有定义).

 $\int_E f^+ d\mu$ 表示 x 轴上方的积分(即 x 轴上方图形的面积), $\int_E f^- d\mu$ 表示 x 轴下方的积分(即 x 轴下方图形的面积).

这样,我们就定义了 f 的积分. 由这种方式定义的 f 的积分称为 f 的 **Lebesgue** 积分. 设 f 的积分有定义,则有三种可能的情况:

- (i) $\int_E f^+ d\mu = +\infty$, $\int_E f^- d\mu < +\infty$, 在这种情况下, $\int_E f d\mu = +\infty$. 即图形在 x 轴上方的面积无穷大,在 x 轴下方的面积有限,故积分为 $+\infty$.
- (ii) $\int_E f^+ d\mu < +\infty$, $\int_E f^- d\mu = +\infty$,在这种情况下, $\int_E f d\mu = -\infty$. 即图形在 x 轴上方的面积有限,在 x 轴下方的面积无穷大,故积分为 $-\infty$.
- (iii) $\int_E f^+ d\mu < +\infty$, $\int_E f^- d\mu < +\infty$.

前两种情况是平凡的情况:在这两种情况下,我们不需要计算 f 的积分.只有在第三种情况下我们才真正需要计算 f 的积分.

定义 3.8.4. 如果

$$\int_{E} f^{+} d\mu < +\infty \quad \mathbf{L} \quad \int_{E} f^{-} d\mu < +\infty,$$

称 $f \mu$ -可积,记 $f \in L^1(E;\mu)$ (简记为 $f \in L^1(E)$ 或 $f \in L(E)$).

Remark. 符号 $f \in L^1(E)$ 中的 1 表示被积函数是 f 的一次方.

Remark. f 可积是指 f^+ 和 f^- 的积分都有限. 意义是真正需要计算积分.

- (i) 如果 f 可积,则 f 的积分一定有定义. 但是,积分有定义不一定可积(实际上,是否可积应该理解为是否需要真正计算积分). f 不可积不一定意味着无法得到 f 的积分值.
- (ii) 在两种重要的情况下, f 的积分一定有定义: f 非负或 f 可积.

下面定义 f 在 E 的子集上的积分.

定义 3.8.5. 设 $E' \in \mathcal{A}$, $E' \subset E$. 如果 $f|_{E'}$ 的积分有定义, 定义

$$\int_{E'} f \, \mathrm{d}\mu = \int_{E'} f|_{E'} \, \mathrm{d}\mu.$$

如果 $f|_{E'} \in L(E')$, 称 f 在 E' 上 μ -可积, 记为 $f \in L(E')$.

例. 设 $E \in \mathcal{A}$, $A \in \mathcal{A}$, $A \subset E$. 由定义3.8.5 (因为 χ 为简单函数),

$$\int_{E} \chi_A \, \mathrm{d}\mu = 0 \times \mu(E - A) + 1 \times \mu(A) = \mu(A).$$

例. 设 $E \in \mathscr{A}$, $f: E \to \mathbb{R}$, $f \equiv c$, 则 $\int_E f \, \mathrm{d}\mu = c\mu(E)$.

证明. (1) $c \ge 0$ 时,由定义3.8.5 (非负简单函数的积分), $\int_E f \, \mathrm{d}\mu = c\mu(E)$;

(2) c < 0 时,由定义3.8.5(非负简单函数的积分), $\int_E f^+ d\mu = 0$, $\int_E f^- d\mu = |c|\mu(E)$. 因此,f的积分有定义,且

$$\int_{E} f \, \mathrm{d}\mu = 0 - |c|\mu(E) = c\mu(E).$$

命题 3.8.6. 设 $\mu(E)=0,\;f:E\to[-\infty,+\infty]\;\mu$ - 可测,则 $f\in L^1(E)$,且

$$\int_{E} f \, \mathrm{d}\mu = 0.$$

证明. 按定义分三步证明.

(i) 设 f 为非负简单函数. 设

$$Rgf = {\lambda_1, \ldots, \lambda_N},$$

则

$$\int_{E} f \, \mathrm{d}\mu = \sum_{i=1}^{N} \lambda_{i} \mu(\{f = \lambda_{i}\}) = 0.$$

(ii) 设 f 是非负可测函数. 设 $\varphi: E \to [0, +\infty]$ 为简单函数, $0 \le \varphi \le f$,由 (i), $\int_E \varphi \, \mathrm{d}\mu = 0$. 因此,由定义3.8.2,

$$\int_{E} f \, \mathrm{d}\mu = 0.$$

(iii) 设 $f: E \to [-\infty, +\infty] \mu$ -可测. 由 (ii),

$$\int_E f^+ \, \mathrm{d}\mu = \int_E f^- \, \mathrm{d}\mu = 0.$$

因此, $f \in L^1(E)$ 且

$$\int_{E} f \, \mathrm{d}\mu = 0.$$

3.9 Lebesgue 积分的性质

我们很少用定义计算积分,更多地使用积分的性质计算.

定理 3.9.1 (积分的基本性质). 设 $E \in \mathcal{A}$, $f, g: E \to [-\infty, +\infty]$ Lebesgue 可测.

- (i) (非负性) 设 $f \ge 0$, 则 $\int_E f \, \mathrm{d}\mu \ge 0$, 并且 "="成立当且仅当 f = 0, μ -a.e..
- (ii) (线性性) 设 $f,g \ge 0$, $\alpha,\beta \ge 0$, 则

$$\int_{E} (\alpha f + \beta g) d\mu = \alpha \int_{E} f d\mu + \beta \int_{E} g d\mu.$$

设 $f, g \in L^1(E)$, $\alpha, \beta \in \mathbb{R}$, 则 $\alpha f + \beta g \in L^1(E)$, 且

$$\int_{E} (\alpha f + \beta g) d\mu = \alpha \int_{E} f d\mu + \beta \int_{E} g d\mu.$$

(iii) (区域可加性) 设 $E_i \in \mathcal{A}, i=1,\ldots,n$ 互不相交, $E=\sum_{i=1}^n E_i$. 如果 $f\geq 0$,则

$$\int_{E} f \, \mathrm{d}\mu = \int_{E_{1}} f \, \mathrm{d}\mu + \dots + \int_{E_{m}} f \, \mathrm{d}\mu.$$

设 $f \in L^1(E)$, 则 $f \in L^1(E_i)$, i = 1, ..., n 且

$$\int_E f \, \mathrm{d}\mu = \int_{E_1} f \, \mathrm{d}\mu + \dots + \int_{E_n} f \, \mathrm{d}\mu.$$

(iv) (单调性) 设 $f,g \ge 0$ 或 $f,g \in L^1(E)$. 如果 $f \le g$, 则

$$\int_{E} f \, \mathrm{d}\mu \le \int_{E} g \, \mathrm{d}\mu.$$

Remark. 可以看出, Lebesgue 积分性质的条件比 Riemann 积分相应性质的条件简单得多.

学习了 Lebesgue 积分之后提到"积分"都是指 Lebesgue 积分.

证明. 略.

定义 3.9.2. 设 $E \in \mathscr{A}$, $f: E \to [-\infty, +\infty]$ μ -可测. 如果

$$\int_{E} |f| \, \mathrm{d}\mu < +\infty,$$

称 *f μ*-绝对可枳

对于 Riemann 积分而言,绝对可积不等价与可积(可积一定绝对可积,但绝对可积不一定可积). 一个例子:

$$f(x) = \begin{cases} 1, & x \in [0, 1] \cap \mathbb{Q} \\ -1, & x \notin [0, 1] \cap \mathbb{Q} \end{cases}$$

由于 f 在 [0,1] 上处处间断,故而不可积²⁴. 但是 $|f| \equiv 1$ 为常值函数,故而可积. 这就说明了在 Riemann 积分的意义下,绝对可积的函数不一定可积. 而在 Riemann 积分的意义下,可积一定绝对可积. 这其实是 Riemann 积分的一个性质,因为 |f| 的间断点不多于 f 的间断点.

²⁴Riemann 可积要求间断点构成 Lebesgue 零测集.

但对于 Lebesgue 积分而言,绝对可积与可积是等价的.

定理 3.9.3 (可积与绝对可积). 设 $E \in \mathcal{A}$, $f : E \to [-\infty, +\infty]$ μ -可测,则 f μ -可积当且仅当 f μ -绝对可积.

证明. 设 f 绝对可积. 由积分的单调性,

$$\int_{E} f^{+} d\mu \leq \int_{E} |f| d\mu < +\infty,$$
$$\int_{E} f^{-} d\mu \leq \int_{E} |f| d\mu < +\infty.$$

因此,f可积.

设 f 可积,则由积分的线性性,

$$\int_{E} |f| \, \mathrm{d}\mu = \int_{E} f^{+} \, \mathrm{d}\mu + \int_{E} f^{-} \, \mathrm{d}\mu < +\infty.$$

定理 3.9.4 (积分不等式). 设 $f,g \in L^1(E)$, 则

- (i) $\left| \int_{E} f \, \mathrm{d}\mu \right| \leq \int_{E} \left| f \right| \, \mathrm{d}\mu$;
- (ii) $\int_E |f+g| d\mu \le \int_E |f| d\mu + \int_E |g| d\mu$.

证明. (i) 由积分的单调性和线性性,

$$\int_E f \, \mathrm{d}\mu \le \int_E |f| \, \mathrm{d}\mu,$$

$$-\int_E f \, \mathrm{d}\mu = \int_E (-f) \, \mathrm{d}\mu \le \int_E |f| \, \mathrm{d}\mu.$$

因此

$$-\int_E |f| \,\mathrm{d}\mu \le \int_E f \,\mathrm{d}\mu \le \int_E |f| \,\mathrm{d}\mu,$$

即

$$|\int_E f \,\mathrm{d}\mu| \le \int_E |f| \,\mathrm{d}\mu.$$

(ii) 由积分的单调性和线性性,

$$\int_{E} |f+g| \,\mathrm{d}\mu \leq \int_{E} (|f|+|g|) \,\mathrm{d}\mu = \int_{E} |f| \,\mathrm{d}\mu + \int_{E} |g| \,\mathrm{d}\mu. \qquad \Box$$

例. 设 $E\in\mathscr{A}$, $f:E\to[-\infty,+\infty]$ μ 可测. 设 $\mu(E)<+\infty$, 并且 f μ -a.e. 有界,也就是说,存在 M>0,使得

$$|f(x)| \le M, \quad \forall x \in E - A,$$

其中 $\mu(A) = 0$. 证明: $f \in L^1(E)$.

Remark, 定义在测度有限的集合上的几乎处处有界的函数是可积的,

证明. 只用证明 f 绝对可积. 因为

$$\int_{E} |f| \, \mathrm{d}\mu = \int_{E-A} |f| \, \mathrm{d}\mu + \int_{A} |f| \, \mathrm{d}\mu = \int_{E-A} |f| \, \mathrm{d}\mu \le M\mu(E),$$

(其中 $\int_A |f| \,\mathrm{d}\mu = 0$ 是因为命题3.8.6) 所以 $f \in L^1(E)$.

命题 3.9.5. 设 $E\in\mathscr{A}$, $f:E\to[-\infty,+\infty]$ μ -可测,设 $A\subset E$ 为 μ -零测集,则 f 的积分有定义当且仅当 f 在 E-A 上的积分有定义.且当 f 的积分有定义时,

$$\int_{E} f \, \mathrm{d}\mu = \int_{E-A} f \, \mathrm{d}\mu.$$

证明.

$$\int_{E} f^{+} d\mu = \int_{E-A} f^{+} d\mu + \int_{A} f^{+} d\mu = \int_{E-A} f^{+} d\mu$$
$$\int_{E} f^{-} d\mu = \int_{E-A} f^{-} d\mu + \int_{A} f^{-} d\mu = \int_{E-A} f^{-} d\mu$$

若 f 的积分在 E 上有定义,则 $\int_E f^+ d\mu$ 和 $\int_E f^- d\mu$ 中有一个有限,从而 $\int_{E-A} f^+ d\mu$ 与 $\int_{E-A} f^- d\mu$ 中有一个有限,故 f 在 E-A 上的积分有定义.且有

$$\int_{E} f \, \mathrm{d}\mu = \int_{E} f^{+} \, \mathrm{d}\mu - \int_{E} f^{-} \, \mathrm{d}\mu = \int_{E-A} f^{+} \, \mathrm{d}\mu - \int_{E-A} f^{-} \, \mathrm{d}\mu = \int_{E-A} f \, \mathrm{d}\mu. \qquad \Box$$

命题 **3.9.6.** 设 $E \in \mathcal{A}$, $f,g: E \to [-\infty, +\infty]$ μ -可测, f = g μ -a.e.. 如果 f 的积分有定义,并且 g 的积分有定义,并且

$$\int_{E} f \, \mathrm{d}\mu = \int_{E} g \, \mathrm{d}\mu.$$

证明. 存在 μ -零测集 A, 使得

$$f(x) = g(x), \quad \forall x \in E - A.$$

$$\int_{E} g^{+} d\mu = \int_{E-A} g^{+} d\mu + \int_{E\cap A} g^{+} d\mu$$
$$= \int_{E-A} g^{+} d\mu$$
$$= \int_{E-A} f^{+} d\mu$$
$$= \int_{E} f^{+} d\mu$$

同理, $\int_{E} g^{-} = \int_{E} f^{-} d\mu$.

故若 f 的积分有定义,则 $\int_E f^+ \,\mathrm{d}\mu$ 和 $\int_E f^- \,\mathrm{d}\mu$ 中有一个有限,则 $\int_E g^+ \,\mathrm{d}\mu$ 和 $\int_E g^- \,\mathrm{d}\mu$ 中有一个有限,从而 $\int_E g \,\mathrm{d}\mu$ 有定义.且有

$$\int_{E} g \, d\mu = \int_{E} g^{+} \, d\mu - \int_{E} g^{-} \, d\mu = \int_{E} f^{+} \, d\mu - \int_{E} f^{-} \, d\mu = \int_{E} f \, d\mu.$$

3.10 几乎处处有定义的函数的积分

命题 3.10.1. 设 $E\in\mathscr{A}$, $A\subset E$ 为 μ -零测集, $f:E\to [-\infty,+\infty]$ μ -可测, $f\geq 0$ 或 $f\in L^1(E)$, 则

$$\int_{E} f \, \mathrm{d}\mu = \int_{E-A} f \, \mathrm{d}\mu.$$

Remark. 由上述命题知, $\int_E f \, \mathrm{d}\mu$ 的值与 f 在一个零测集上的值无关:改变 f 在一个零测集上的值,f 的积分不变;即使不知道 f 在一个零测集上的值,我们也可以计算 f 的积分.

证明. 由积分的区域可加性,

$$\int_{E} f \, \mathrm{d}\mu = \int_{E-A} f \, \mathrm{d}\mu + \int_{A} f \, \mathrm{d}\mu.$$

由于 $\mu(A) = 0$, 所以 $\int_A f \, \mathrm{d}\mu = 0$. 因此,

$$\int_{E} f \, \mathrm{d}\mu = \int_{E-A} f \, \mathrm{d}\mu.$$

定义 3.10.2. 设 $E \subset \mathcal{A}$, $f: Dom f \subset E \to [-\infty, +\infty]$ μ -可测. 如果存在 μ -零测集 A, 使得

$$E - A \subset \text{Dom} f$$
,

定义 3.10.3. 设 $E \subset \mathscr{A}$, $f: \mathsf{Dom} f \subset E \to [-\infty, +\infty]$ μ -可测, f 在 $E \perp \mu$ -几乎处处有定义. 如果 f 在 $\mathsf{Dom} f$ 上的积分有定义,我们称 f 在 E 上的积分有定义,并且定义

$$\int_{E} f \, \mathrm{d}\mu = \int_{\mathrm{Dom}f} f \, \mathrm{d}\mu.$$

例. 设 f(x) = 1, $x \in [0,1] - \mathbb{Q}$, 计算 $\int_{[0,1]} f \, dm$.

解.
$$\int_{[0,1]} f \, dm = \int_{[0,1]-\mathbb{Q}} f \, dm = \int_{[0,1]-\mathbb{Q}} 1 \, dm = 1 \times m([0,1]-\mathbb{Q}) = 1.$$

上面的例子说明了,即使f在某些地方没定义(或者不知道f在这些地方的值),仍可计算Lebesgue 积分.

f 定义在 $\mathsf{Dom} f \perp$, $\mathsf{Dom} f \subset E$,其中 E 是我们讨论的集合. 也就是说 f 在 $E - \mathsf{Dom} f$ 上无定义,有时会感到不太"踏实",我们可将 f 从 $\mathsf{Dom} f$ 延拓到 E 上.

命题 3.10.4. 设 $E \subset \mathscr{A}$, $f: \mathsf{Dom} f \subset E \to [-\infty, +\infty]$ μ -可测,f 在 $E \perp \mu$ -几乎处处有定义.设 f 在 E 上的积分有定义.设 $\tilde{f}: E \to [-\infty, +\infty]$ μ -可测, $\tilde{f}|_{\mathsf{Dom} f} = f$,则 \tilde{f} 的积分有定义,且 $\int_E f \, \mathrm{d}\mu = \int_E \tilde{f} \, \mathrm{d}\mu$.

Remark. 该命题把 f 延拓到 E 上,实际上"多此一举",有时为了形式上的简洁美观会延拓 f. 常见的延拓是将 f 在 E – Domf 上的值令为 0,即令 $f|_{E-Dom f}=0$,称为零延拓.

在欧式空间中,Lebesgue 积分是 Riemann 积分的推广. 若 Riemann 可积,则 Lebesgue 可积,且积分的值相同.

我们只证明一种简单的情况,即一维闭区间上的连续函数.

在下文中,若无特殊说明,用 m 表示 \mathbb{R}^n 上的 Lebesgue 测度(提到 \mathbb{R}^n ,默认用 Lebesgue 测度),用 \mathscr{L} 表示 \mathbb{R}^n 上所有的 Lebesgue 可测集构成的 σ -代数. $E \in \mathscr{L}$, $f: E \to [-\infty, +\infty]$ μ -可测,f 的 Lebesgue 积分有定义.用 $\int_E f \, \mathrm{d} m$ 表示 f 的 Lebesgue 积分.

定理 3.10.5. 设 $f \in C([a,b])$, 则 $f \in L^1([a,b])$, 且

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \int_{[a,b]} f \, \mathrm{d}m.$$

Remark. 在这个定理中,左边 $\int_a^b f(x) \, \mathrm{d}x$ 表示 *Riemann* 积分,右边 $\int_{[a,b]} f \, \mathrm{d}m$ 表示 *Lebesgue* 积分. 证明. 首先证明 f 可积²⁵.

因为有界闭区间上的连续函数有界,故3M,使得 $|f| \leq M$,则

$$\int_{[a,b]} |f| \,\mathrm{d} m \le \int_{[a,b]} M \,\mathrm{d} m = M(b-a) < +\infty.$$

将 [a,b] 等分成 n 份,记

$$a = a_0 < a_1 < \dots < a_n = b,$$

则

$$a_i - a_{i-1} = \frac{b-a}{n}.$$

按照 Riemann 积分的定义,有

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \sum_{i=1}^{n} f(a_{i-1})(a_i - a_{i-1}).$$

定义

$$f_n(x) = \begin{cases} f(a_{i-1}), & x \in [a_{i-1}, a_i), i = 1, \dots, n-1 \\ f(a_{n-1}), & x \in [a_{n-1}, a_n] \end{cases}$$

下面计算 f_n 的 Lebesgue 积分.

首先 f_n 可积(因为 $|f| \le M$,仿造上面的过程 $\int_{[a,b]} |f_n| \, \mathrm{d}m$ 有限). 可将 f_n 写为如下形式:

$$f_n = \sum_{i=1}^{n-1} f(a_{i-1}) \chi_{[a_{i-1}, a_i)} + f(a_{n-1}) \chi_{[a_{n-1}, a_n]}.$$

故

$$\int_{[a,b]} f_n \, \mathrm{d}m = \sum_{i=1}^{n-1} f(a_{i-1})(a_i - a_{i-1}) + f(a_{n-1})(a_n - a_{n-1}).$$

从而

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \sum_{i=1}^{n} f(a_{i-1})(a_i - a_{i-1}) = \lim_{n \to +\infty} \int_{[a,b]} f_n dm.$$

 $^{^{25}}$ 只用说明 |f| 的积分有限,就能说明 f 可积

下面证明当 $n \to +\infty$ 时, $\int_{[a,b]} f_n dm \to \int_{[a,b]} f dm$.

$$\left| \int_{[a,b]} f_n \, dm - \int_{[a,b]} f \, dm \right| = \left| \int_{[a,b]} (f_n - f) \, dm \right|$$

$$\leq \int_{[a,b]} |f_n - f| \, dm$$

$$\leq \int_{[a,b]} \sup |f_n - f| \, dm$$

$$= \sup |f_n - f| (b - a)$$

因为 f_n 一致收敛于 f, 故当 $n \to +\infty$ 时, $\sup |f_n - f| \to 0$, 故 $\int_{[a,b]} f_n \, \mathrm{d}m \to \int_{[a,b]} f \, \mathrm{d}m$.

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \sum_{i=1}^{n} f(a_{i-1})(a_i - a_{i-1}) = \lim_{n \to +\infty} \int_{[a,b]} f_n dm = \int_{[a,b]} f dm.$$

Remark. 在数学分析中,用 $\int_a^b f(x) dx$ 表示 *Riemman* 积分,由于 *Lebesgue* 积分是 *Riemann* 积分的推广(换句话说,*Riemann* 积分也是 *Lebesgue* 积分),故 *Lebesgue* 积分的记号也可用 *Riemann* 积分的记号,即

$$\int_{[a,b]} f \, dm = \int_a^b f \, dm = \int_a^b f(x) \, dx.$$

有时使用 Riemman 积分的符号更加方便.

下面用定理3.10.5计算一个积分.

例. 设 $f(x) = \frac{1}{x}$, $x \in (0,1]$, 计算 $\int_{[0,1]} f \, dm$.

解. 由于 $f(x) = \frac{1}{x}$ 为非负函数, 故积分 $\int_{(0,1]}$ 有定义.

$$\int_{(0,1]} f \, dm = \int_{(0,\frac{1}{n})} f \, dm + \int_{[\frac{1}{n},1]} f \, dm$$

$$\geq \int_{[\frac{1}{n},1]} f \, dm = \int_{\frac{1}{n}}^{1} f(x) \, dx = \ln n$$

故 $\int_{(0,1]} f \, \mathrm{d}m \ge \ln n$,由 n 的任意性, $\int_{(0,1]} f \, \mathrm{d}m = +\infty$.由于 $\{0\}$ 测度为 0,故 $\int_{[0,1]} f \, \mathrm{d}m = \int_{(0,1]} f \, \mathrm{d}m = -\infty$.

Remark. 在 Lebesgue 积分中不存在广义积分这种说法. (广义积分是 Riemann 积分的说法)

定理 3.10.6 (Fubini 定理). 设 $f:\mathbb{R}^{n+k} \to [-\infty,+\infty]$ Lebesgue 可测, $f \geq 0$ 或 $f \in L^1(\mathbb{R}^{n+k})$,记

$$f = f(x, y), \quad x \in \mathbb{R}^n, y \in \mathbb{R}^k,$$

则

$$\int_{\mathbb{R}^{n+k}} f \, \mathrm{d}m = \int_{\mathbb{R}^n} \left\{ \int_{\mathbb{R}^k} f(x, y) \, \mathrm{d}y \right\} \, \mathrm{d}x = \int_{\mathbb{R}^k} \left\{ \int_{\mathbb{R}^n} f(x, y) \, \mathrm{d}x \right\} \, \mathrm{d}y.$$

Remark. 比起 *Riemann* 积分的 *Fubini* 定理, *Lebesgue* 积分的 *Fubini* 定理的条件非常简单, 只要求 f 非负或可积.

命题 **3.10.7.** 设 $f \in C([a,b])$, $f \ge 0$, 记

$$G = \{(x, y) : a < x < b, 0 < y < f(x)\},\$$

则 G Lebesgue 可测, 且

$$m(G) = \int_a^b f(x) \, \mathrm{d}x.$$

证明. 因为G为开集,故G为Borel集,故GLebesgue 可测.

$$m(G) = \int_{\mathbb{R}^2} \chi_G \, dm$$

$$= \int_{\mathbb{R}^2} \chi_G(x, y) \, dx \, dy$$

$$= \int_{\mathbb{R}} \left\{ \int_{\mathbb{R}} \chi_G(x, y) \, dy \right\} \, dx$$

$$= \int_a^b \left\{ \int_{\mathbb{R}} \chi_G(x, y) \, dy \right\} \, dx$$

$$= \int_a^b \left\{ \int_0^{f(x)} 1 \, dy \right\} \, dx$$

$$= \int_a^b f(x) \, dx$$

3.11 Lebesgue 单调收敛定理

设 $f, f_n : E \to \mathbb{R}$. 下面讨论积分和极限交换顺序的问题, 即如果有 $f_n \to f$, 是否有

$$\int_{E} f_n \, \mathrm{d}\mu \to \int_{E} f \, \mathrm{d}\mu.$$

答案是否定的. 一个反例:

$$f_n(x) = \begin{cases} 1, & x > n \\ 0, & x \le n \end{cases}$$

则 $\int_E f_n d\mu = +\infty$. 但由于 $\lim_{n \to +\infty} f_n = 0$,故 $\int_E f d\mu = 0$. 从而 $\int_E f_n d\mu \nrightarrow \int_E f d\mu$.

在数学分析关于 Riemann 积分的讨论中,关于积分和极限交换的问题,最常用的定理是:若 $f_n, f \in C([a,b])$, f_n 一致收敛于 f,则

$$\lim_{n \to +\infty} \int_a^b f_n(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x.$$

连续是一个很强的条件. 在 Lebesgue 积分的情况下, 我们可以减弱这一条件.

我们将讲述两个分析中最重要的积分与极限交换次序的定理: Lebesgue 单调收敛定理和Lebesgue 控制收敛定理.

定理 3.11.1 (Lebesgue 单调收敛定理). 设 $E \in \mathcal{A}$, $f_n, f: E \to [0, +\infty]$ μ -可测,其中 $n=1,2,\ldots$ 如果

(i)
$$f_n \leq f_{n+1}, n = 1, 2, \dots,$$

(ii)
$$f_n \to f$$
,

则

$$\int_E f_n \, \mathrm{d}\mu \to \int_E f \, \mathrm{d}\mu.$$

Remark. 条件: f_n 非负单调增,逐点收敛于 f. 注意本定理只适用于 f_n 非负的情况,若 f_n 变号,则用控制收敛定理.

Remark. 这个定理的证明比较复杂,不要求掌握,重要的是会应用定理.

证明. 因为 $f_n \leq f_{n+1}$, 由积分的单调性,

$$\int_{E} f_n \, \mathrm{d}\mu \le \int_{E} f_{n+1} \, \mathrm{d}\mu,$$

因为单调数列必有极限²⁶,故 $\lim_{n\to+\infty}\int_E f_n \,\mathrm{d}\mu$ 存在.

由积分的单调性,

$$\int_{E} f_n \, \mathrm{d}\mu \le \int_{E} f \, \mathrm{d}\mu,$$

因此

$$\lim_{n \to +\infty} \int_{F} f_n \, \mathrm{d}\mu \le \int_{F} f \, \mathrm{d}\mu.$$

所以我们只用证明

$$\lim_{n \to +\infty} \int_{E} f_n \, \mathrm{d}\mu \ge \int_{E} f \, \mathrm{d}\mu. \tag{1}$$

设0 < c < 1, $\varphi : E \to [0, +\infty]$ 为非负简单函数,并且

$$\varphi \leq f$$
.

下面我们将会证明

$$\lim_{n \to +\infty} \int_{E} f_n \, \mathrm{d}\mu \ge c \int_{E} \varphi \, \mathrm{d}\mu. \tag{2}$$

如果我们能够证明(2),则由非负函数积分的定义

$$\int_E f \,\mathrm{d}\mu = \sup \left\{ \int_E \varphi \,\mathrm{d}\mu \;\middle|\; \varphi : E \to [0,+\infty] \right\} 非负简单函数, \varphi \le f \right\},$$

可得

$$\lim_{n \to +\infty} \int_{F} f_n \, \mathrm{d}\mu \ge c \int_{F} f \, \mathrm{d}\mu,$$

然后令 $c \rightarrow 1$,即得(1).

 $^{^{26}}$ 极限可为 $+\infty$.

记

$$E_n = \{ x \in E : f_n(x) \ge c\varphi(x) \},$$

则

$$\int_{E} f_n \, \mathrm{d}\mu \ge \int_{E_n} f_n \, \mathrm{d}\mu \ge \int_{E_n} c\varphi \, \mathrm{d}\mu.$$

下面我们将会证明, 当 $n \to \infty$ 时,

$$\int_{E_n} c\varphi \,\mathrm{d}\mu \to \int_E c\varphi \,\mathrm{d}\mu. \tag{3}$$

如果能够证明(3),则

$$\lim_{n \to +\infty} \int_{E} f_n \, \mathrm{d}\mu \ge \lim_{n \to +\infty} \int_{E_n} c\varphi \, \mathrm{d}\mu = \int_{E} c\varphi \, \mathrm{d}\mu.$$

这就证明了(2).

Claim: $\{E_n\}$ 单调增,并且 $E_n \to E$.

证:因为 $\{f_n\}$ 单调增,所以 E_n 单调增.下面证明 $E_n \to E$.由于

$$\lim_{n \to +\infty} E_n = \bigcup_{n=1}^{+\infty} E_n \subset E,$$

故只用证明

$$E \subset \bigcup_{n=1}^{+\infty} E_n.$$

设 $x \in E$. 下面分两种情况说明 $x \in \bigcup_{n=1}^{+\infty} E_n$.

Case 1: f(x) = 0.

因为 $f_n, \varphi \leq f$,因此 $f_n(x) = \varphi(x) = 0$. 所以 $x \in E_n, \forall n = 1, 2, \ldots$ 因此 $x \in \bigcup_{n=1}^{+\infty} E_n$.

Case 2: f(x) > 0.

由于 $\varphi(x) \leq f(x)$, 0 < c < 1, 所以 $c\varphi(x) < f(x)$. 又因为 $f_n(x) \to f(x)$, 所以 $\exists N \in \mathbb{N}^*$, 使得

$$f_N(x) \ge c\varphi(x)$$
.

由此可得 $x \in E_N$,从而 $x \in \bigcup_{n=1}^{+\infty} E_n$.

这就证明了该 Claim.

下面证明(3). 设

$$Rg\varphi = \{\lambda_1, \ldots, \lambda_m\},\$$

$$A_i = \{ \varphi = \lambda_i \}, \quad i = 1, \dots, m.$$

则

$$\varphi = \sum_{i=1}^{m} \lambda_i \chi_{A_i}.$$

因此,

$$c\varphi\chi_{E_n} = \sum_{i=1}^m c\lambda_i\chi_{A_i}\chi_{E_n} = \sum_{i=1}^m c\lambda_i\chi_{A_i\cap E_n}.$$

因此可得

$$\int_{E_n} c\varphi \, \mathrm{d}\mu = \int_E c\varphi \chi_{E_n} \, \mathrm{d}\mu = \sum_{i=1}^m c\lambda_i \chi_{A_i \cap E_n}.$$

因为 $\{E_n\}$ 单调增, $E_n \to E$,所以 $\{A_i \cap E_n\}_{n=1}^{+\infty}$ 单调增, $A_i \cap E_n \to A_i, n \to +\infty$. 由测度的单调收敛定理,

$$\mu(A_i \cap E_n) \to \mu(A_i), n \to +\infty.$$

从而

$$\int_{E} c\varphi \chi_{E_n} d\mu \to \sum_{i=1}^{m} c\lambda_i \mu(A_i) = \int_{E} c\varphi d\mu.$$

因此(3)成立. 定理证毕.

命题 3.11.2. 设 $E_n, E \in \mathcal{A}$, $\{E_n\}$ 单调增,且 $E_n \to E$, 设 $f: E \to [0, +\infty]$ μ -可测,则有

$$\int_{E_n} f \, \mathrm{d}\mu \to \int_E f \, \mathrm{d}\mu.$$

Remark. 该命题常用于用有界域逼近无界域.

证明. 注意到:

$$\int_{E_n} f \, \mathrm{d}\mu = \int_E f \chi_{E_n} \, \mathrm{d}\mu.$$

又因为当 $n \to +\infty$ 时, χ_{E_n} 单调递增趋于 χ_E . 因为在 E 上, $\chi_E = 1$,故在 E 上, $f\chi_{E_n}$ 单调递增趋于 f. 由单调收敛定理(定理3.11.1)知

$$\int_{E_n} f \, \mathrm{d}\mu = \int_E f \chi_{E_n} \, \mathrm{d}m \to \int_E f \, \mathrm{d}\mu.$$

下面展示如何计算 Lebesgue 积分.

例. 设p>0. 用 \mathbb{B}_1 表示以原点为中心,半径为1的n维球. 计算积分:

(i)

$$\int_{\mathbb{R}^n - \mathbb{R}_+} \frac{1}{|x|^p} \, \mathrm{d}x.$$

(ii)

$$\int_{\mathbb{B}_1} \frac{1}{|x|^p} \, \mathrm{d}x.$$

Remark. 这两个积分很重要, 经常用于做估计.

证明. 用 \mathbb{B}_r 表示以原点为中心,半径为 r 的 n 维球. 用 ω_n 表示 n 维单位球的表面积²⁷.

²⁷对于给定的 n, ω_n 为常数.

(i)

$$\begin{split} \int_{\mathbb{R}^n - \mathbb{B}_1} \frac{1}{|x|^p} \, \mathrm{d}x &= \lim_{N \to +\infty} \int_{\mathbb{B}_N - \mathbb{B}_1} \frac{1}{|x|^p} \, \mathrm{d}x \\ &= \lim_{R \to +\infty} \int_1^R \left\{ \int_{\partial \mathbb{B}_r} \frac{1}{|x|^p} \, \mathrm{d}s \right\} \, \mathrm{d}r \\ &= \lim_{R \to +\infty} \int_1^R r^{-p} r^{n-1} \omega_n \, \mathrm{d}r \\ &= \omega_n \lim_{R \to +\infty} \int_1^R r^{n-p-1} \, \mathrm{d}r \end{split}$$

(上式中第三个等号成立是因为在 $\partial \mathbb{B}_r$ 上,|x|=r. 故

$$\int_{\partial \mathbb{B}_r} \frac{1}{|x|^p} \, \mathrm{d} s = r^{-p} \int_{\partial \mathbb{B}_r} 1 \, \mathrm{d} s.$$

由于半径为r 的球的表面积是单位球的 r^{n-1} 倍,故 $\int_{\mathbb{B}_r} 1 \, \mathrm{d}s = r^{n-1} \omega_n$.)

当 p=n 时,

$$\omega_n \int_1^R r^{-1} dr = \omega_n \ln r \Big|_1^R = \omega_n \ln R \to +\infty.$$

当 $p \neq n$ 时,

$$\omega_n \lim_{R \to +\infty} \left(\frac{1}{n-p} r^{n-p} \right) \Big|_1^R = \omega_n \lim_{R \to +\infty} \frac{1}{n-p} (R^{n-p} - 1),$$

当 $0 ,上式 <math>\rightarrow +\infty$. 当 p > n 时,上式 $\rightarrow \frac{\omega_n}{p-n}$.

综上,

$$\int_{\mathbb{R}^n - \mathbb{B}_1} \frac{1}{|x|^p} dx = \begin{cases} +\infty, & 0 n \end{cases}$$

(ii) 虽然 0 是奇点,但由于 $m(\{0\}) = 0$,故不影响积分的值.

$$\int_{\mathbb{B}_1} \frac{1}{|x|^p} dx = \int_0^1 \left\{ \int_{\partial \mathbb{B}_r} \frac{1}{|x|^p} ds \right\} dr$$
$$= \int_0^1 r^{-p} r^{n-1} \omega_n dr$$
$$= \omega_n \int_0^1 r^{n-p-1} dr$$

当 p = n 时,上式 $\rightarrow +\infty$.

当 $p \neq n$ 时,

$$\int_0^1 r^{n-p-1} dr = \frac{\omega_n}{n-1} r^{n-p} \Big|_0^1,$$

故当 $0 是,上式 <math>\rightarrow \frac{\omega_n}{n-1} r^{n-p}$,当 p > n 时,上式 $\rightarrow +\infty$.

综上,

$$\int_{\mathbb{B}_1} \frac{1}{|x|^p} dx = \begin{cases} \frac{\omega_n}{n-p}, & 0$$

3.12 Lebesgue 控制收敛定理

定理 3.12.1 (积分的绝对连续性). 设 $E \in \mathscr{A}$, $f \in L^1(E)$, 则 $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得当 $A \in \mathscr{A}$, $A \subset E$, $\mu(A) \leq \delta$ 时,

$$\int_{A} |f| \, \mathrm{d}\mu \le \varepsilon.$$

Remark. 因为

$$\left| \int_{A} f \, \mathrm{d}\mu \right| \le \int_{A} |f| \, \mathrm{d}\mu \le \varepsilon,$$

故该定理说明了:只要积分域的测度足够小28,积分值就足够接近 ().

证明. (i) 设 f 有界. 则 $\exists M \geq 0$, 使得 |f| < M.

$$\int_A |f| \,\mathrm{d}\mu \le \int_A M \,\mathrm{d}\mu = M \int_A 1 \,\mathrm{d}\mu = M\mu(A).$$

只用取 $\delta = \frac{\varepsilon}{M}$ 即满足条件.

(ii) 设 f 无界. $f \in L^1(E)$,|f| 非负,故存在简单函数列 $\varphi_n : E \to [0, +\infty]$,使得 φ_n 单调递增,逐点收敛于 |f|. 由单调收敛定理,

$$\int_{E} \varphi_n \, \mathrm{d}\mu \to \int_{E} |f| \, \mathrm{d}\mu.$$

$$\int_{A} |f| \, \mathrm{d}\mu = \int_{A} \varphi_n \, \mathrm{d}\mu + \int_{A} \{|f| - \varphi_n\} \, \, \mathrm{d}\mu \le \int_{A} \varphi_n \, \mathrm{d}\mu + \int_{E} \{|f| - \varphi_n\} \, \, \mathrm{d}\mu$$

存在 $n_0 \in \mathbb{N}^*$,使得 $\int_E \{|f| - \varphi_n\} d\mu \leq \frac{\varepsilon}{2}$. 由 (i) 知,存在 $\delta > 0$,当 $\mu(A) \leq \delta$ 时, $\int_A \varphi_n d\mu \leq \frac{\varepsilon}{2}$ 29.证 毕.

定理 **3.12.2** (Fatou 引理). 设 $E \in \mathcal{A}$, $f_n : E \to [0, +\infty]$ μ -可测, $n = 1, 2, \ldots$, 则

$$\int_{E} \underline{\lim}_{n \to +\infty} f_n \, \mathrm{d}\mu \le \underline{\lim}_{n \to +\infty} \int_{E} f_n \, \mathrm{d}\mu.$$

Remark. 下极限的积分不超过积分的下极限.

该定理的条件非常简单, 只要求 $\{f_n\}$ 非负.

经常用该定理估计函数的积分.

证明.

$$\underline{\lim}_{n \to +\infty} f_n = \sup_{n \ge 1} \inf_{k \ge n} f_k.$$

记 $g_n = \inf_{k \ge n} f_k$,则 $\{g_n\}$ 非负单调递增. 故

$$\underline{\lim}_{n \to +\infty} f_n = \lim_{n \to +\infty} g_n.$$

²⁸与积分域的位置无关.

 $^{^{29}}$ 因为 φ_n 是简单函数,而简单函数有界.

故有

$$\int_{E} \underline{\lim}_{n \to +\infty} f_n = \int_{E} \lim_{n \to +\infty} g_n \, d\mu$$
$$= \lim_{n \to +\infty} \int_{E} g_n \, d\mu$$
$$\leq \underline{\lim}_{n \to +\infty} \int_{E} f_n \, d\mu$$

上式中第二个等号成立是由单调收敛定理. 上式中的 \leq 成立是因为: $g_n \leq f_n$,故 $\int_E g_n \, \mathrm{d}\mu \leq \int_E f_n \, \mathrm{d}\mu$,由于 $\lim_{n \to +\infty} \int_E g_n \, \mathrm{d}\mu$ 不一定存在,故只能得到 $\leq \underline{\lim}_{n \to +\infty} \int_E f_n \, \mathrm{d}\mu$.

定理 3.12.3 (Lebesgue 控制收敛定理). 设 $E \in \mathcal{A}$, $f_n, f: E \to \mathbb{R}$ μ -可测, $f_n \to f$. 如果存在 $g \in L^1(E)$, 使得

$$|f_n| \le g, \quad \forall n \in \{1, 2, \dots\},$$

则

$$\int_{E} |f_n - f| \, \mathrm{d}\mu \to 0.$$

Remark. 因为

$$\left| \int_{E} f_n \, \mathrm{d}\mu - \int_{E} f \, \mathrm{d}\mu \right| = \left| \int_{E} (f_n - f) \, \mathrm{d}\mu \right| \le \int_{E} |f_n - f| \, \mathrm{d}\mu \to 0,$$

故有30

$$\int_E f_n \, \mathrm{d}\mu \to \int_E f \, \mathrm{d}\mu.$$

事实上, $\int_E |f_n - f| d\mu \to 0$ 是一个比 $\int_E f_n d\mu \to \int_E f d\mu$ 更强的结论,因为前者能推出后者,而后者不能推出前者.

证明.

$$|f_n - g| \le |f_n| + |g| \le 2g.$$

由 Fatou 引理,

$$\int_{E} \underline{\lim}_{n \to +\infty} \{2g - |f_n - f|\} d\mu \le \underline{\lim}_{n \to +\infty} \int_{E} \{2g - |f_n - f|\} d\mu.$$

因为 $\int_E \underline{\lim}_{n \to +\infty} \{2g - |f_n - f|\} d\mu = \int_E 2g d\mu$,故

$$\int_{E} 2g \, \mathrm{d}\mu \le \int_{E} 2g \, \mathrm{d}\mu + \lim_{n \to +\infty} \int_{E} \{-|f_{n} - f|\} \, \mathrm{d}\mu$$
$$= \int_{E} 2g \, \mathrm{d}\mu - \overline{\lim}_{n \to +\infty} \int_{E} |f_{n} - f| \, \mathrm{d}\mu$$

上式成立当且仅当31

$$\overline{\lim}_{n \to +\infty} \int_{E} |f_n - f| \, \mathrm{d}\mu = 0.$$

 $^{^{30}}$ 严谨地说,要先验证 f_n 和 f 的可积性. 由于 $\int_E f_n \, \mathrm{d}\mu \leq \int_E g \, \mathrm{d}\mu < +\infty$,故 f_n 可积. 已知 $|f_n| \leq g$,两边同时对 n 取极限,得 $|f| \leq g$,故 $\int_E f \, \mathrm{d}\mu \leq \int_E g \, \mathrm{d}\mu < +\infty$,故 f 可积.

 $^{^{31}}$ 因为 $g \in L^1(E)$,故 $\int_E g \, d\mu < +\infty$,故 $\int_E 2g \, d\mu$ 为有限数.

又因为 $\int_{E} |f_n - f| d\mu \ge 0$,故

$$\lim_{n \to +\infty} \int_E |f_n - f| \, \mathrm{d}\mu = 0.$$

下面给出一些应用控制收敛定理的例子.

例. 设 $E \in \mathcal{A}$, $\mu(A) < +\infty$. 设 $f_n, f \in L^1(E), n = 1, 2, \ldots$, $f_n \to f$. 如果存在 M > 0, 使得

$$|f_n| \le M, \quad n = 1, 2, \dots,$$

则

$$\int_E f_n \, \mathrm{d}\mu \to \int_E f \, \mathrm{d}\mu.$$

例. 设 $E_n, E \in \mathscr{A}$, $E_n \subset E, n = 1, 2, \ldots$, $E_n \to E$. 设 $f \in L^1(E)$, 证明:

$$\int_{E_n} f \, \mathrm{d}\mu \to \int_E f \, \mathrm{d}\mu.$$

例. 设 $f \in L^1(E)$. 记

$$f_n(x) = \begin{cases} f(x), & |f(x)| \le n \\ n, & f(x) > n \\ -n, & f(x < -n) \end{cases}$$

证明:

$$\int_E f_n \, \mathrm{d}\mu \to \int_E f \, \mathrm{d}\mu.$$

例. 设 $E\in\mathscr{A}$, $f\in L^1(E)$. 证明:存在简单函数列 $\varphi_n:E\to\mathbb{R}$,使得 $\varphi_n\to f$ 且

$$\int_{E} \varphi_n \, \mathrm{d}\mu \to \int_{E} f \, \mathrm{d}\mu.$$

例. 设 $f \in C^1(\mathbb{R}^2)$,则

$$\frac{\partial}{\partial x} \int_a^b f(x, y) \, \mathrm{d}y = \int_A^b \frac{\partial}{\partial x} f(x, y) \, \mathrm{d}y.$$

证明. 设 $x_0 \in \mathbb{R}$. 我们需要证明

$$\lim_{h \to 0} \frac{1}{h} \left\{ \int_a^b (x_0 + h, y) \, dy - \int_a^b f(x_0, y) \, dy \right\} = \int_a^b D_1 f(x_0, y) \, dy.$$

设 $h_n \to 0$. 我们只需证明

$$\lim_{h_n \to 0} \frac{1}{h_n} \left\{ \int_a^b (x_0 + h_n, y) \, \mathrm{d}y - \int_a^b f(x_0, y) \, \mathrm{d}y \right\} = \int_a^b D_1 f(x_0, y) \, \mathrm{d}y.$$

即

$$\lim_{n\to 0} \int_a^b \frac{1}{h_n} \left\{ f(x_0 + h_n, y) - f(x_0, y) \right\} dy = \int_a^b D_1 f(x_0, y) dy.$$

 $^{^{32}}$ 用 D_1 表示对第一变量求偏导.

记

$$g_n(y) = \frac{1}{h_n} \left\{ f(x_0 + h_n, y) - f(x_0, y) \right\}, \quad y \in [a, b],$$

则

$$g_n(y) \to D_1 f(x_0, y), \quad y \in [a, b].$$

设 $|h_n| \le M$, $n = 1, 2, \ldots$, 则

$$|D_1 f(x,y)| \le N, \quad (x,y) \in [x_0 - M, x_0 + M] \times [a,b],$$

则

$$|g_n(y)| = |D_1 f(x_0 + \theta h_n, y)| \le N.$$

因此由控制收敛定理,

$$\int_{a}^{b} g_{n}(y) dy \to \int_{a}^{b} D_{1}f(y) dy.$$

3.13 有界变差函数

在分析中,我们需要考虑一个函数的变化. 例如,导数就是一个函数的变化率. 下面我们引入另一个概念: 函数的**全变差**. 一个一元函数 $f:[a,b]\to\mathbb{R}$ 的全变差就是这个函数的所有<mark>变化的绝对值</mark>之和,记为V(f). 例如:

图 4: 从左到右 3 个函数的全变差分别为 1,1,2.

上面的函数都是分段单调函数.对于分段单调函数,我们很容易计算它的全变差.下面我们考虑如何计算一般的一元函数的全变差.

定义 3.13.1. 设 $f:[a,b]\to\mathbb{R}$. 设 $p=\{a_0,a_1,\ldots,a_N\}$ 是 [a,b] 的一个分划, 其中

$$a = a_0 < a_1 < \dots < a_N = b, \quad N > 1.$$

记

$$V(f;p) = \sum_{i=1}^{N} |f(a_i) - f(a_{i-1})|.$$

定义

$$V(f)=\sup\{V(f;p):p\mathbb{\textit{Q}}\;[a,b]\;\text{$\mathfrak{o}-$}\wedge\text{\mathfrak{I}}\},$$

Remark. V 代表变化 (variation).

由定义知, $\forall p$, $V(f;p) \leq V(f)$.

设 $f:[a,b]\to\mathbb{R}$, 设 $[c,d]\subset[a,b]$, 记

$$V(f; [c,d]) = V(f|_{[c,d]}),$$

称 V(f; [c,d]) 为 f 在区间 [c,d] 上的全变差. 特别地,

$$V(f; [a, b]) = V(f).$$

命题 3.13.2. 设 $f:[a,b] \to \mathbb{R}$ 单调,则

$$V(f) = |f(b) - f(a)|.$$

Remark. 注意,有界闭区间上的单调函数必定有界(两端点处的函数值就是"界"33). 故有界闭区间上的单调函数都是有界变差函数.

证明. 设 f 单调增. 设 p:

$$a = a_0 < a_1 < \dots < a_N = b$$

是 [a,b] 的一个分划,则

$$V(f;p) = \sum_{i=1}^{N} (f(a_i) - f(a_{i-1})) = f(b) - f(a).$$

由于 f(b) - f(a) 与 p 无关, 故

$$V(f) = f(b) - f(a).$$

类似可证明,如果f单调减,则

$$V(f) = f(a) - f(b).$$

因此,若f单调,则

$$V(f) = |f(b) - f(a)|.$$

命题 3.13.3 (区域可加性). 设 $f:[a,b] \to \mathbb{R}, c \in (a,b), 则$

$$V(f; [a, b]) = V(f; [a, c]) + V(f; [c, b]).$$

证明. (1) 首先证明

$$V(f; [a, b]) \le V(f; [a, c]) + V(f; [c, b]).$$

设p是[a,b]的一个分划.记

$$p' = p \cup \{c\},\,$$

 $[\]exists 3f: [a,b] \to \mathbb{R}$,即 $\forall x \in [a,b]$, $\exists y \in \mathbb{R}$,使得 f(x) = y. 由于 y 为实数,故有限.

则 p' 是 [a,b] 的一个分划. 由 V(f;p) 的定义,结合三角不等式,有

$$V(f;p) \le V(f;p').$$

记

$$p_1 = p \cap [a, c], \quad p_2 = p \cap [c, b],$$

则 p_1 是 [a,c] 的一个分划, p_2 是 [c,b] 的一个分划. 显然,

$$V(f; p') = V(f|_{[a,c]}; p_1) + V(f|_{[c,b]}; p_2)$$

$$\leq V(f; [a,c]) + V(f; [c,b]).$$

对 p_1 和 p_2 取上确界得到上式中的不等号.

因此

$$V(f;p) \le V(f;[a,c]) + V(f;[c,b]).$$

对p取上确界,得

$$V(f; [a, b]) \le V(f; [a, c]) + V(f; [c, b]).$$

(2) 下面证明

$$V(f; [a, b]) \ge V(f; [a, c]) + V(f; [c, b]).$$

设 p_1 是 [a,c] 的一个分划, p_2 是 [c,b] 的一个分划,记

$$p=p_1\cup p_2,$$

则 p 是 [a,b] 的一个分划,且

$$V(f|_{[a,c]}; p_1) + V(f|_{[c,b]}; p_2) = V(f;p) \le V(f;[a,b]).$$

由此可得

$$V(f; [a, c]) + V(f; [b, c]) \le V(f; [a, b]).$$

这就证明了 (2).

例. 设 $f(x) = \sin x$,则

$$V(f;[0,2\pi]) = V(f;[0,\frac{\pi}{2}]) + V(f;[\frac{\pi}{2}]) + V(f;[\pi,\frac{3\pi}{2}]) + V(f;[\frac{3\pi}{2},2\pi]) = 4.$$

下面介绍有界变差函数.

定义 3.13.4. 设 $f:[a,b]\to\mathbb{R}$. 如果 $V(f)<+\infty$, 称 f 为有界变差函数. 记

$$BV([a,b]) = \{ f : [a,b] \to \mathbb{R} : V(f) < +\infty \}.$$

Remark. B 代表有界 (bounded).

 $BV([a,b]) = \{f : [a,b] \to \mathbb{R} : V(f) < +\infty\}$ 表示定义在 [a,b] 上全体有界变差函数的集合.

注意,有界闭区间上的连续函数不一定是有界变差函数.下面给出一个例子.

如图**5**所示的函数 f 在 [0,1] 上连续,其中 f(0)=0. 该函数满足: $\forall n \in \mathbb{N}$,f 在区间 $[\frac{1}{2^{n+1}},\frac{1}{2^n}]$ 上的全变差都为 $\frac{3}{9}$. 则

$$V(f;[0,1]) = \frac{3}{2} + \frac{3}{2} + \frac{3}{2} + \dots = +\infty.$$

故该函数不是有界变差函数.

图 5: 函数 f(省略了 $[0,\frac{1}{8}]$ 上的图像)

下面介绍有界变差函数的一些性质.

命题 3.13.5. 设 $f, g \in BV([a, b]), \ \alpha, \beta \in \mathbb{R}$, 则

$$\alpha f + \beta g \in BV([a, b]).$$

Remark. 有界变差函数的线性组合也是有界变差函数.

证明. 设p是[a,b]的一个分划,则由三角不等式有

$$V(\alpha f + \beta g; p) \le |\alpha|V(f; p) + |\beta|V(g; p) \le |\alpha|V(f) + |\beta|V(g),$$

对p取上确界,得

$$V(\alpha f + \beta g) \le |\alpha|V(f) + |\beta|V(g) < +\infty.$$

所以 $\alpha f + \beta g \in BV([a,b])$.

命题 3.13.6. 设 $f:[a,b]\to\mathbb{R}$ 单调递增, $g:[a,b]\to\mathbb{R}$ 单调递减,则

$$f + q \in BV([a, b]).$$

证明. 由命题3.13.2和命题3.13.5可得.

该命题的逆命题也成立.

命题 3.13.7. 设 $f:[a,b]\to\mathbb{R}$ 单调递增,则存在 $g,h:[a,b]\to\mathbb{R}$,g 单调递增,h 单调递减,使得

$$f = g + h$$
.

证明. 记

$$g(x) = \begin{cases} 0, & x = a \\ V(f; [a, x]), & a < x \le b \end{cases}$$

设 $a < x < y \le b$. 由命题3.13.3,

$$g(y) = V(f; [a, y]) = V(f; [a, x]) + V(f; [x, y]) \ge V(f; [a, x]) = g(x).$$

因此,q单调增.

令 h = f - g. 下面证明 h 单调减. 设 $a \le x < y \le b$, 则

$$h(x) - h(y) = (f(x) - g(x)) - (f(y) - g(y))$$
$$= (g(y) - g(x)) - (f(y) - f(x))$$
$$= V(f; [x, y]) - (f(y) - f(x))$$

由全变差的定义,

$$V(f; [x, y]) \ge |f(y) - f(x)|,$$

因此

$$h(x) - h(y) \ge 0,$$

所以h单调减.这就证明了该命题.

3.14 Lebesgue 微分定理

我们知道,单调函数不一定连续. 在数学分析中,我们证明了,单调函数的不连续点至多有可数个. 因此,我们可以说,单调函数 m-a.e. 连续. 事实上,有更强的结论成立: 单调函数 m-a.e. 可导,这就是 Lebesgue 微分定理.

定理 3.14.1 (Lebesgue 微分定理). 设 $f:[a,b]\to\mathbb{R},\ f$ 单调递增,则 f m-a.e. 可导,f' Lebesgue 可测,且

$$\int_{a}^{b} f' \, \mathrm{d}m \le f(b) - f(a).$$

证明. 证明很复杂, 详见课本, 这里略去.

Remark. 注意,在 $\int_a^b f' dm \le f(b) - f(a)$ 中,"="不一定成立. 例如

$$f(x) = \begin{cases} 0, & x \in [0, \frac{1}{2}] \\ 1, & x \in (\frac{1}{2}, 1] \end{cases}$$

则 f'(x) = 0, m-a.e.. 因此

$$\int_0^1 f'(x)x = 0 < f(1) - f(0) = 1.$$

在这里, 等号不成立的原因是没有考虑函数在 1分处的变化.

推论 3.14.2. 设 $f \in BV([a,b])$, 则 f m-a.e. 可导,且 $f' \in L^1([a,b])$.

证明. 由命题3.13.7, f = g - h, 其中 $g, h : [a, b] \to \mathbb{R}$ 单调递增³⁴. 由定理3.14.1, g, h m-a.e. 可导. 由于

$$f'(x) = g'(x) - h'(x)$$
, m-a.e.

所以35

$$\int_{a}^{b} |f'| dm = \int_{a}^{b} |g'(x) - h'(x)| dm$$

$$\leq \int_{a}^{b} |g'| dm + \int_{a}^{b} |h'| dm$$

$$= \int_{a}^{b} g' dm + \int_{a}^{b} h' dm$$

$$\leq g(b) - g(a) + h(b) - h(a)$$

$$< +\infty$$

因此, $f' \in L^1([a,b])$.

3.15 微积分基本定理

设 $f \in L^1([a,b])$,记

$$g(x) = \int_a^x f \, \mathrm{d}m, \quad x \in [a, b].$$

则

$$g(x) = \int_{a}^{x} f^{+} dm - \int_{a}^{x} f^{-} dm.$$

由于 $f^+, f^- \ge 0$,因此随着 x 增大, $\int_a^x f^+ \, \mathrm{d} m$ 和 $\int_a^x f^- \, \mathrm{d} m$ 均单调递增. 由命题**3.13.6**知, $g \in BV([a,b])$. 由推论**3.14.2**知,g m-a.e. 可导.

定理 3.15.1 (微积分基本定理). 设 $f \in L^1([a,b])$, 则

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f \, \mathrm{d}m = f(x)$$

在 [a,b] 上 m-a.e. 成立.

证明. 略.

Remark. 数学分析中的微积分基本定理的条件是 f 连续,是一个很强的条件. 而这里只要求 $f \in L^1([a,b])$ (即 f 可积).

Remark. 注意, $\frac{\mathrm{d}}{\mathrm{d}x}\int_a^x f\,\mathrm{d}m = f(x)$ 在 [a,b] 上只能m-a.e. 成立. 换句话说,如果仅假设 $f\in L^1([a,b])$,该式子不一定 $\forall x\in [a,b]$ 成立. 这是因为在一个零测集上改变 f 的值积分 $\int_a^x f\,\mathrm{d}m$ 不变,故式子左侧不变. 但函数 f(x) 却改变了,即式子右侧改变. 故等式不成立.

³⁴则 -h 单调递减.

³⁵对于 Lebesgue 积分,可积等价与绝对可积.

下面给出一个例子:

$$f(x) = \begin{cases} 0, & x \in [0, \frac{1}{2}] \\ 1, & x \in (\frac{1}{2}, 1] \end{cases}$$

则

$$\int_{a}^{x} f \, dm = \begin{cases} 0, & x \in \left[0, \frac{1}{2}\right] \\ x - \frac{1}{2}, & x \in \left(\frac{1}{2}, 1\right] \end{cases}$$

因此,

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_a^x f \, \mathrm{d}m = f(x), \quad x \in [0, 1], x \neq \frac{1}{2}.$$

3.16 绝对连续函数

定义 3.16.1. 设 $f:[a,b]\to\mathbb{R}$. 如果 $\forall \varepsilon>0$, $\exists \delta>0$, 使得当 $(a_1,b_1),\ldots,(a_N,b_N)$ 为 [a,b] 的互不相 交的子集, $N\geq 1$, 且

$$\sum_{i=1}^{N} (b_i - a_i) \le \delta,$$

时,

$$\sum_{i=1}^{N} |f(b_i) - f(a_i)| \le \varepsilon,$$

称 f 为绝对连续函数.

Remark. 若 N=1, 则为一致连续的概念.

如果 $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得对于满足 $|x-y| < \delta$ 的任意 $x,y \in [a,b]$,都有 $|f(x)-f(y)| < \varepsilon$,则称 f 一致连续.

记

$$AC([a,b]) = \{f : [a,b] \rightarrow \mathbb{R} : f$$
绝对连续\}.

其中 AC 表示绝对连续 (absolutely continuous). 容易验证,如果 $f,g \in AC([a,b])$, $\forall \alpha,\beta \in \mathbb{R}$,则 $\alpha f + \beta g \in AC([a,b])$. 因此,AC([a,b]) 是一个线性空间.

下面我们考查绝对连续,一致连续,Lipschitz 连续,连续可微³⁶这几个概念之间的关系. 首先回忆起 Lipschitz 连续的定义.

定义 3.16.2 (Lipschitz 连续). 设 $f:[a,b]\to\mathbb{R}$, 若存在 $L\in\mathbb{R}$, 使得

$$|f(x) - f(y)| \le L|x - y|, \quad \forall x, y \in [a, b],$$

则称 f 在 [a,b] 上 Lipschitz 连续.

Remark. |x| 是一个典型的 Lipschitz 连续函数. 但 |x| 不连续可微.

³⁶连续可微指 f 可微并且导函数连续.

命题 3.16.3. 设 $f:[a,b] \to \mathbb{R}$,则

$$f \in C^1([a,b]) \Rightarrow f$$
 Lipschitz 连续 $\Rightarrow f \in AC([a,b]) \Rightarrow f$ 一致连续.

Remark. 连续可微最强,要求导数连续.

Lipschitz 连续要求导数有界(因为 $\frac{|f(x)-f(y)|}{|x-y|} \leq L$).

绝对连续要求导数可积.

一致连续可能没导数.

注意到在闭区间上:连续⇒有界⇒可积.

由上述命题可知,绝对连续介于一致连续与 Lipschiz 连续之间.

下面考查绝对连续与有界变差函数之间的关系.

命题 3.16.4. 设 $f \in AC([a,b])$, 则 $f \in BV([a,b])$.

Remark. 绝对连续函数一定是有界变差函数. 但有界变差函数不一定连续.

这为判断 f 是否绝对连续提供了一个思路: 若 f 不是有界变差函数,则 f 不是绝对连续函数.

证明. 由于 $f \in AC([a,b])$,存在 $\delta > 0$,使得当 $(x_1,y_1),\ldots,(x_N,y_N), N \geq 1$ 为 [a,b] 的互不相交的子集且

$$\sum_{i=1}^{N} (y_i - x_i) \le \delta$$

时,

$$\sum_{i=1}^{N} |f(y_i) - f(x_i)| \le 1.$$

设

$$a = a_0 < a_1 < \dots < a_m = b$$
,

其中 $a_i - a_{i-1} = h$, i = 1, ..., m, $h = \frac{b-a}{m} \le \delta$, 则

$$V(f) = \sum_{i=1}^{m} V(f; [a_{i-1}, a_i]).$$

设 p:

$$a_{i-1} = x_0 < x_1 < \dots < x_l = a_i$$

是区间 $[a_{i-1}, a_i]$ 的一个划分,则 $(x_{j-1}, x_j), j = 1, ..., l$ 互不相交,且

$$\sum_{i=1}^{l} (x_j - x_{j-1}) = a_i - a_{i-1} \le \delta.$$

因此

$$V(f|_{[a_{j_1},a_{j}]};p) = \sum_{j=1}^{l} |f(x_j) - f(x_{j-1})| \le 1,$$

从而

$$V(f; [a_{i-1}, a_i]) \le 1.$$

因此可得,

$$V(f) = \sum_{i=1}^{m} V(f; [a_{i-1}, a_i]) \le m < +\infty.$$

因此, $f \in BV([a,b])$.

推论 3.16.5. 设 $f \in AC([a,b])$, 则 f m-a.e. 可导,且 $f' \in L([a,b])$.

证明. 由命题3.16.4, $f \in BV([a,b])$, 因此 f m—a.e. 可导,且 f' m—a.e. 有界.

| 推论 3.16.6. 设 $f:[a,b] \to \mathbb{R}$ Lipschitz 连续,则 f m-a.e. 可导,且 f' m-a.e. 有界.

证明. 设 $|f(x)-f(y)| \le L|x-y|$, $\forall x,y \in [a,b]$. 由命题3.16.3, $f \in AC([a,b])$,因此 f m—a.e. 可导. 由于 $|f'(x)| \le L$ m—a.e.,所以 f' m—a.e. 有界.

命题 3.16.7. 设 $g \in L'([a,b])$, 记

$$f(x) = \int_{a}^{x} g \, \mathrm{d}m, \quad x \in [a, b],$$

则 $f \in AC([a,b])$.

Remark. f 是 g 的原函数. 这个命题说明了:可积函数的原函数是绝对连续的.

证明. 设 $\varepsilon > 0$, 由积分的绝对连续性, $\exists \delta > 0$, 使得当 $E \in [a,b]$, 且 $m(E) \leq \delta$ 时,

$$\int_{E} |g| \, \mathrm{d}m \le \varepsilon.$$

设 $(a_1,b_1),\ldots,(a_N,b_N)$ 为 [a,b] 的互不相交的子集, $N\geq 1$,且

$$\sum_{i=1}^{N} (b_i - a_i) \le \delta,$$

则

$$\sum_{i=1}^{N} |f(b_i) - f(a_i)| = \sum_{i=1}^{N} |\int_{a_i}^{b_i} g \, dm| \le \sum_{i=1}^{N} \int_{a_i}^{b_i} |g| \, dm = \int_{\sum_{i=1}^{N} (b_i - a_i)} |g| \, dm \le \varepsilon.$$

因此, $f \in AC([a,b])$.

3.17 Newton-Lebniz 公式

设 $f \in C^1([a,b])$,则

$$\int_a^b f' \, \mathrm{d}x = f(b) - f(a).$$

这就是 Newton-Lebniz 公式. 在 Newton-Lebniz 公式中,条件 $f \in C^1([a,b])$ 可减弱为 $f \in AC([a,b])$.

定理 **3.17.1** (Newton-Lebniz 公式). 设 $f \in AC([a,b])$,则

$$\int_a^b f' \, \mathrm{d}x = f(b) - f(a).$$

证明. 证明很复杂, 这里略去.

Remark. $f \in AC([a,b])$ 基本上就是使 Newton-Lebniz 公式成立最弱的条件了.

由定理3.17.1,我们可以得到绝对连续函数的一个刻画.

命题 3.17.2. 设 $f:[a,b]\to\mathbb{R}$,则 $f\in AC([a,b])$ 当且仅当存在 $g\in L^1([a,b])$ 以及 $c\in\mathbb{R}$,使得

$$f(x) = \int_{a}^{x} g \, \mathrm{d}m + c, \quad x \in [a, b].$$

Remark. 绝对连续函数是可积函数的不定积分. 换句话说, 绝对连续函数是可积函数的原函数.

证明. 充分性: 设 $g \in L^1([a,b])$, $c \in \mathbb{R}$,

$$f(x) = \int_{a}^{x} g \, \mathrm{d}m + c, \quad x \in [a, b].$$

由命题3.16.7,知 $\int_a^x g \, \mathrm{d}m$ 为绝对连续函数. 显然,常值函数为绝对连续函数. 由于 AC([a,b]) 为线性空间,故 $f \in AC([a,b])$.

必要性: 设 $f \in AC([a,b])$,则 $\forall x \in [a,b]$, $f \in AC([a,x])$. 由 Newton-Lebniz 公式(定理3.17.1),

$$\int_{a}^{x} f' \, \mathrm{d}m = f(x) - f(a).$$

因此

$$f(x) = \int_{a}^{x} f' dm + f(a), \quad \forall x \in [a, b].$$

因为 $f \in AC([a,b])$, 由推论3.16.5, $f' \in L^1([a,b])$.

下面给出两个关于绝对连续函数的反例.

(1)一致连续的函数不一定绝对连续.

例. 设 $f:[0,1] \to \mathbb{R}$, 37

$$f(x) = \begin{cases} x \sin \frac{\pi}{x}, & x \in (0, 1] \\ 0, & x = 0 \end{cases}$$

显然 f 连续, 因此 f 一致连续 38.

当 $x \in \left[\frac{1}{2k+1}, \frac{1}{2k+\frac{1}{2}}\right]$ 时,f(x) 单调增³⁹,因此

$$V(f; [\frac{1}{2k+1}, \frac{1}{2k+\frac{1}{2}}]) = \frac{1}{2k+\frac{1}{2}},$$

所以

$$V(f) \ge \sum_{k=1}^{N} V(f; [\frac{1}{2k+1}, \frac{1}{2k+\frac{1}{2}}]) = \sum_{k=1}^{N} \frac{1}{2k+\frac{1}{2}}.$$

在上式中令 $N \to +\infty$, 得 $V(f) = +\infty$. 因此, $f \notin BV([0,1])$.

 $³⁷f(x) = \sin \frac{\pi}{x}, x \in [0,1]$ 的全变差为 $+\infty$,在 x = 0 处定义任何值,f(x) 都不连续.

³⁸闭区间上的连续函数一致连续.

 $^{^{39}}$ 因为 $\frac{\pi}{r} \in [\frac{\pi}{2} + 2k\pi, \pi + sk\pi]$.

(2) 有界变差函数不一定 Lipschiz 连续.

首先进行一些讨论. 我们说

$$f(x) = \sqrt{x}, \quad x \in [0, 1]$$

不是 Lipschitz 连续的 40 . 这是因为 Lipschitz 连续要求 f' 处处有界,而 f' 在 0 处无界. 也可按定义证明,反设 f 在 [0,1] 上 Lipschitz 连续,则存在常数 L,使得

$$|\sqrt{x} - \sqrt{y}| \le L|x - y|, \quad \forall x, y \in [0, 1],$$

取 y=0,则有 $\sqrt{x} \le Lx$,即 $L \ge \frac{1}{\sqrt{x}}$,由于当 $x\to 0$ 时, $\frac{1}{\sqrt{x}}\to +\infty$,故常数 L 不存在,从而不 Lipschiz 连续.

例. 记 $f:[0,1] \to \mathbb{R}$,

$$f(t) = \begin{cases} \frac{1}{2}t^{-\frac{1}{2}}, & t \in (0, 1] \\ 0, & t = 0 \end{cases}$$

则

$$\int_0^1 f(t) dt = \lim_{\varepsilon \downarrow 0} \frac{1}{2} t^{-\frac{1}{2}} dt = \lim_{\varepsilon \downarrow 0} \int_{\varepsilon}^1 (t \frac{1}{2})' dt = 1.$$

因此, $f \in L^1([0,1])$. 令

$$g(x) = \int_0^x f(t) dt, \quad x \in [0, 1].$$

则

$$g(x) = \lim_{\varepsilon \downarrow 0} \int_{\varepsilon}^{x} \frac{1}{2} t^{-\frac{1}{2}} dt = \lim_{\varepsilon \downarrow 0} \int_{\varepsilon}^{x} (t^{\frac{1}{2}})' dt = \sqrt{x}.$$

由于 $f \in L^1([0,1])$, 因此 $g \in BV([0,1])$. 由于

$$\frac{|g(x) - g(0)|}{x} = \frac{1}{\sqrt{x}} \to +\infty, \quad x \to 0^+,$$

因此, g 不是 Lipschitz 连续的.

4 期末习题课

习题 1. 设 $B_1 \subset \mathbb{R}^n$ 为单位球. 证明:

- (i) B_1 , ∂B_1 Lebesgue 可测;
- (ii) $m(B_1) < +\infty$;
- (iii) $m(\partial B_1) = 0$.

证明.

(i) $B_1 = \{x \in \mathbb{R}^n : |x| < 1\}$, $\partial B_1 = \{x \in \mathbb{R}^n : |x| = 1\}$. B_1 为开集,为 Borel 集,故可测. ∂B_1 为 闭集,为 Borel 集,故可测.

⁴⁰称 \sqrt{x} Hölder 连续. 一般地, $f=x^{\alpha}$, $0<\alpha<1$ 都是 Hölder 连续的.

- (ii) $B_1 \subset (-1,1)^n$, $to m(B_1) \le 2^n < +\infty$.
- (iii) 方法一: 扩大球面.

将 ∂B_1 扩大成 $(1+\frac{1}{k})\partial B_1$,其中 $k \leq 1$. 由 n 维 Lebesgue 测度的伸缩不变性,有

$$m((1+\frac{1}{k})\partial B_1) = (1+\frac{1}{k})^n m(\partial B_1).$$

注意到对于不同的 k, $(1+\frac{1}{k})\partial B_1$ 互不相交. 则由测度的可数可加性,有

$$m(\sum_{k=1}^{N}(1+\frac{1}{k})\partial B_1)=\sum_{k=1}^{N}(1+\frac{1}{k})^n m(\partial B_1)\geq Nm(\partial B_1).$$

另一方面, $\sum_{k=1}^{N} (1 + \frac{1}{k}) \subset (-3,3)^n$,故有

$$m(\sum_{k=1}^{N}(1+\frac{1}{k}))\partial B_1) \le 6^n.$$

从而有 $Nm(\partial B_1) \le 6^n$,即 $m(\partial B_1) \le \frac{6^n}{N}$. 由 N 的任意性,令 $N \to +\infty$,得 $m(\partial B_1) = 0$. 方法二: 平移球面.

用 S^+ 表示上半球面,用 S^- 表示下半球面.将 S^+ 沿 e_n 方向平移 $\frac{1}{k}$ 个单位长度,即 $S^+ + \frac{1}{k}e_n$. 由测度的平移不变性,有

$$m(S^+ + \frac{1}{k}e_n) = m(S^+).$$

注意到对于不同的 k, $S^+ + \frac{1}{k} e_n$ 互不相交. 则由测度的可数可加性,有

$$m(\sum_{k=1}^{N}(S^{+}+\frac{1}{k}e_{n}))=Nm(S^{+}).$$

因为

$$S^+ \subset (-1, 1^{n-1}) \times [0, 2],$$

故 $Nm(s^+) \le 2^n$,即 $m(s^+) \le \frac{2^n}{N}$. 令 $N \to +\infty$,得 $m(S^+) = 0$. 同理, $m(S^-) = 0$. 故 $m(\partial B_1) = 0$.

Remark. 本题 (iii) 的证明技巧性较强,需要重点掌握.

对于 (ii), 可以用积分直接计算 m(B). 记 B_1^+ 为上半单位球, 即

$$B_1^+ = \{(\mathbf{x}, y) : \mathbf{x} \in \mathbb{R}^{n-1}, |\mathbf{x}| < 1, 0 < y < \sqrt{1 - |\mathbf{x}|^2}\}.$$

故

$$m(B^+) = \int_{\{x \in \mathbb{R}^{n-1}: |x| < 1\}} \sqrt{1 - |x|^2} \, \mathrm{d}x.$$

再用球坐标变换计算.

习题 2. 记 $E\in\mathscr{A}$, $f:E\to[-\infty,+\infty]$, $f\equiv+\infty$. 由积分的定义计算 $\int_E f\,\mathrm{d}\mu$.

解. 当 $\mu(E)=0$ 时, $\int_E f \,\mathrm{d}\mu=0$. (由命题3.8.6)

当 $\mu(E) \neq 0$ 时, $\forall N \in \mathbb{N}$,

$$\int_{E} f \, \mathrm{d}\mu \ge \int_{E} N \, \mathrm{d}\mu = N\mu(E).$$

习题 3. 设 $E \in \mathcal{A}$, $f \in L^1(E)$. 设 $A \in \mathcal{A}$, $A \subset E$. 用 $\chi_A : E \to \mathbb{R}$ 表示 A 的特征函数,

$$\chi_A(x) = \begin{cases} 1, & x \in A, \\ 0, & x \in E - A. \end{cases}$$

证明:

- (i) $f\chi_A \in L^1(E)$;
- (ii) $\int_A f \, d\mu = \int_E f \chi_A \, d\mu$.

析. 由定理3.9.3,Lebesgue 可积 \Leftrightarrow 绝对可积,故只用证明 $\int_E |f\chi_A| \,\mathrm{d}\mu < +\infty$ 即可. 这是证明这类题常用的方法.

先证明 $\int_E |f| d\mu < +\infty$, 由单调性, 知 $\int_E |f\chi_A| d\mu \leq \int_E |f| d\mu < +\infty$.

(ii) 用区域可加性证明.

习题 4. 设 $E \in \mathcal{A}$, $f: E \to \mathbb{R}^n$,

$$\mathbf{f} = (f_1, \dots, f_n),$$

其中 $f_i: E \to \mathbb{R}$, $f_i \in L^1(E)$, i = 1, 2, ..., n. 定义

$$\int_{E} \mathbf{f} d\mu = \left(\int_{E} f_{1} d\mu, \dots, \int_{E} f_{n} d\mu \right).$$

(i) 证明:

$$\left| \int_{E} \mathbf{f} \, \mathrm{d}\mu \right| \leq \int_{E} |\mathbf{f}| \, \mathrm{d}\mu.$$

(ii) 给出上面的不等式中等号成立的充要条件, 并证明.

证明. (i) 记 e 为任意单位向量,即满足 |e|=1.

$$\int_{E} \mathbf{f} \, \mathrm{d}\mu \cdot \mathbf{e} = \int_{E} \mathbf{f} \cdot \mathbf{e} \, \mathrm{d}\mu \le \int_{E} |\mathbf{f}| \, \mathrm{d}\mu.$$

上式中第一个等号由积分的线性性得到. 由于 e 的任意性, 得41

$$\left| \int_{E} \mathbf{f} \, \mathrm{d}\mu \right| \leq \int_{E} |\mathbf{f}| \, \mathrm{d}\mu.$$

 $^{^{41}}$ 若一个向量在任意单位向量 e 上的投影都不超过 c ,则这个向量的长度不超过 c .

(ii)

$$\left| \int_{E} \mathbf{f} \, \mathrm{d}\mu \right| = \int_{E} |\mathbf{f}| \, \mathrm{d}\mu$$

$$\iff \exists \, \mathbf{e}, \, s.t. \int_{E} \mathbf{f} \, \mathrm{d}\mu = \left(\int_{E} |\mathbf{f}| \, \mathrm{d}\mu \right) \mathbf{e}$$

$$\iff \exists \, \mathbf{e}, \, s.t. \int_{E} \mathbf{f} \, \mathrm{d}\mu \cdot \mathbf{e} = \int_{E} |\mathbf{f}| \, \mathrm{d}\mu$$

$$\iff \exists \, \mathbf{e}, \, s.t. \int_{E} (|\mathbf{f}| - \mathbf{f} \cdot \mathbf{e}) \, \mathrm{d}\mu = 0$$

$$\iff \exists \, \mathbf{e}, \, s.t. \, |\mathbf{f}| = \mathbf{f} \cdot \mathbf{e} \quad m\text{-a.e.}$$

$$\iff \exists \, \mathbf{e}, \, s.t. \, \mathbf{f} = |\mathbf{f}| \mathbf{e} \quad m\text{-a.e.}$$

综上,等号成立的充要条件是:存在一个单位向量 e,使得 f = |f|e m-a.e..

习题 5. 设 $E \subset \mathbb{R}^n$ Lebesgue 可测, $f: E \to [-\infty, +\infty]$ Lebesgue 可测, $f \in L^1(E)$,证明:

$$m(\{|f| = +\infty\}) = 0.$$

证明. 由于 $|f| \ge 0$, $\{|f| > \lambda\} \subset E$,故有

$$\int_{E} |f| \, \mathrm{d}m \ge \int_{\{|f| > \lambda\}} |f| \, \mathrm{d}m \ge \int_{\{|f| > \lambda\}} \lambda \, \mathrm{d}m = \lambda m(\{|f| > \lambda\}).$$

故得到

$$m(\{|f| > \lambda\}) \le \frac{\int_E |f| \, \mathrm{d}m}{\lambda}, \quad \lambda > 0.$$

因为 $\forall \lambda > 0$, $\{|f| = +\infty\} \subset \{|f| > \lambda\}$, 故

$$m(\{|f| = +\infty\}) \le \frac{\int_E |f| \, \mathrm{d}m}{\lambda}, \quad \forall \lambda > 0.$$

由于 $f \in L^1(E)$,故 $\int_E |f| \, \mathrm{d} m < +\infty$. 由 λ 的任意性,令 $\lambda \to +\infty$,得 $m(\{|f| = +\infty\}) = 0$.

习题 **6.** 设 $f \in C([a,b])$, $f \ge 0$. 证明:

$$\int_{[a,b]} f \, \mathrm{d} m = \int_0^{+\infty} m(\{f > \lambda\}) \, \mathrm{d} \lambda.$$

证明. 设 $G = \{(x,y) : a < x < b, 0 < y < f(x)\}$. 则 $\int_{[a,b]} f \, \mathrm{d}m = m(G)^{42}$.

$$m(G) = \int_{\mathbb{R}^2} \chi_G dm$$
$$= \int_{\mathbb{R}^2} \chi_G(x, y) dx dy$$
$$= \int_{\mathbb{R}} \left\{ \int_{\mathbb{R}} \chi_G(x, y) dx \right\} dy$$

⁴²这是前面证明过的结论, 见命题3.10.7.

$$= \int_0^{+\infty} \left\{ \int_{\mathbb{R}} \chi_G(x, y) \, \mathrm{d}x \right\} \, \mathrm{d}y$$

$$= \int_0^{+\infty} \left\{ \int_{\{x>y\}} \chi_G(x, y) \, \mathrm{d}x \right\} \, \mathrm{d}y$$

$$= \int_0^{+\infty} \left\{ \int_{\{x>y\}} 1 \, \mathrm{d}x \right\} \, \mathrm{d}y$$

$$= \int_0^{+\infty} m(\{f > y\}) \, \mathrm{d}y$$

Remark. 这其实就是祖暅原理.

习题 7. 设 $\varphi: \mathbb{R} \to \mathbb{R}$ Lipschitz 连续,即存在 L > 0,使得

$$|\varphi(x) - \varphi(y)| \le L|x - y|, \quad \forall x, y \in \mathbb{R}.$$

设 $E \subset \mathbb{R}$, m(A) = 0, 证明:

$$m(\varphi(A)) = 0.$$

证明. Step 1: 证明 A 是开区间 (a, b) 的情况.

用 $\varphi((a,b))$ 表示 (a,b) 的像集. $\forall x \in (a,b)$, $\varphi(x) \in \varphi((a,b))$. 由 Lipschitz 连续的定义,令 y=a,则

$$|\varphi(x) - \varphi(a)| \le L|x - a| \le L|b - a| = Lm((a, b)).$$

故43

$$m(\varphi((a,b))) \le 2Lm((a,b)).$$

Step 2: 证明 A 是开集的情况.

设 A 为开集,则可将 A 写作互不相交的开区间的并,即 $A = \sum_{i=1}^{+\infty} (a_i, b_i)$. $\forall y \in \varphi(A)$, $\exists x \in A$,使得 $\varphi(x) = y$. 因为 $A = \sum_{i=1}^{+\infty} (a_i, b_i)$,故 $\exists k$,使得 $x \in (a_k, b_k)$,故 $y = \varphi(x) \in \varphi((a_k, b_k))$,从而 $y \in \bigcup_{i=1}^{+\infty} \varphi((a_i, b_i))$. 故 $\varphi(A) \subset \bigcup_{i=1}^{+\infty} \varphi((a_i, b_i))$. 由测度的下可数可加性,有

$$m(\varphi(A)) \le \sum_{i=1}^{+\infty} m(\varphi((a_i, b_i))) \le \sum_{i=1}^{+\infty} 2L(b_i - a_i) = 2Lm(A).$$

Step 3: 证明 A 是可测集的情况.

设 $m(A) < +\infty$, 则存在开集 $G \supset A$, 使得 $m(A) \le m(G)$, 并且

$$m(G) \le m(A) + \varepsilon$$
.

曲 Step 2,

$$m(\varphi(A)) < m(\varphi(G)) < 2Lm(G) < 2L(m(A) + \varepsilon).$$

 $\Leftrightarrow \varepsilon \to 0$,则 $m(\varphi(A)) \leq 2Lm(A)$.

综上,当
$$m(A) = 0$$
 时,有 $m(\varphi(A)) = 0$.

 $^{^{43}}m$ 为 \mathbb{R} 中区间的测度,而像集的"半径"不超过 Lm((a,b)).

索引

В	积分有定义, 48, 54
Borel 代数, 29, 34, 35	集函数, 3
Borel 集, 29, 34, 35	集合,1
不可数集,3	几乎处处成立, 39
C	几乎处处收敛, 46
Carathéodory 条件(C-条件), 16	几乎处处相等,38
测度,8	几乎处处有定义,54
测度空间, 37	集类, 3
完备的测度空间, 37	绝对可积, <u>51</u>
70 B 13 03/2 - 1-3, 57	绝对连续函数,71
D	
代数,5	K
生成代数,5	可测函数,37
单调集列,2	可测集, 19, 37
单调类,7	可积, <mark>49</mark>
生成单调类,7	可数集, 3
F	控制收敛定理, 10
F Fatou 引理, <mark>62</mark>	
	L
Fatou 引理, 62	L Lebesgue 测度, 27, 35
Fatou 引理, 62 Fubini 定理, 56 负部, 48	L Lebesgue 测度, 27, 35 Lebesgue 单调收敛定理, 58
Fatou 引理, 62 Fubini 定理, 56 负部, 48 G	L Lebesgue 测度, 27, 35 Lebesgue 单调收敛定理, 58 Lebesgue 积分, 49
Fatou 引理, 62 Fubini 定理, 56 负部, 48 G g-测度, 33	L Lebesgue 测度, 27, 35 Lebesgue 单调收敛定理, 58 Lebesgue 积分, 49 Lebesgue 可测, 27, 35
Fatou 引理, 62 Fubini 定理, 56 负部, 48 G <i>g</i> -测度, 33 <i>g</i> -可测集, 33	L Lebesgue 测度, 27, 35 Lebesgue 单调收敛定理, 58 Lebesgue 积分, 49 Lebesgue 可测, 27, 35 Lebesgue 控制收敛定理, 63
Fatou 引理, 62 Fubini 定理, 56 负部, 48 G g-测度, 33 g-可测集, 33 广义实数集, 1	L Lebesgue 测度, 27, 35 Lebesgue 单调收敛定理, 58 Lebesgue 积分, 49 Lebesgue 可测, 27, 35 Lebesgue 控制收敛定理, 63 Lebesgue-Stieltjes 测度, 14, 33
Fatou 引理, 62 Fubini 定理, 56 负部, 48 G <i>g</i> -测度, 33 <i>g</i> -可测集, 33	L Lebesgue 测度, 27, 35 Lebesgue 单调收敛定理, 58 Lebesgue 积分, 49 Lebesgue 可测, 27, 35 Lebesgue 控制收敛定理, 63 Lebesgue-Stieltjes 测度, 14, 33 Lebesgue 外测度, 26
Fatou 引理, 62 Fubini 定理, 56 负部, 48 G g-测度, 33 g-可测集, 33 广义实数集, 1	L Lebesgue 测度, 27, 35 Lebesgue 单调收敛定理, 58 Lebesgue 积分, 49 Lebesgue 可测, 27, 35 Lebesgue 控制收敛定理, 63 Lebesgue-Stieltjes 测度, 14, 33 Lebesgue 外测度, 26 连续可微, 71
Fatou 引理, 62 Fubini 定理, 56 负部, 48 G g-测度, 33 g-可测集, 33 广义实数集, 1 广义实值函数, 1	L Lebesgue 测度, 27, 35 Lebesgue 单调收敛定理, 58 Lebesgue 积分, 49 Lebesgue 可测, 27, 35 Lebesgue 控制收敛定理, 63 Lebesgue-Stieltjes 测度, 14, 33 Lebesgue 外测度, 26 连续可微, 71 零测集, 19
Fatou 引理, 62 Fubini 定理, 56 负部, 48 G g-测度, 33 g-可测集, 33 广义实数集, 1 广义实值函数, 1 H	L Lebesgue 测度, 27, 35 Lebesgue 单调收敛定理, 58 Lebesgue 积分, 49 Lebesgue 可测, 27, 35 Lebesgue 控制收敛定理, 63 Lebesgue-Stieltjes 测度, 14, 33 Lebesgue 外测度, 26 连续可微, 71
Fatou 引理, 62 Fubini 定理, 56 负部, 48 G g-测度, 33 g-可测集, 33 广义实数集, 1 广义实值函数, 1 H 环, 4	L Lebesgue 测度, 27, 35 Lebesgue 单调收敛定理, 58 Lebesgue 积分, 49 Lebesgue 可测, 27, 35 Lebesgue 控制收敛定理, 63 Lebesgue-Stieltjes 测度, 14, 33 Lebesgue 外测度, 26 连续可微, 71 零测集, 19
Fatou 引理, 62 Fubini 定理, 56 负部, 48 G g-测度, 33 g-可测集, 33 广义实数集, 1 广义实值函数, 1 H 环, 4 生成环, 5	L Lebesgue 测度, 27, 35 Lebesgue 单调收敛定理, 58 Lebesgue 积分, 49 Lebesgue 可测, 27, 35 Lebesgue 控制收敛定理, 63 Lebesgue-Stieltjes 测度, 14, 33 Lebesgue 外测度, 26 连续可微, 71 零测集, 19 Lipschitz 连续, 71

微积分基本定理,70 Q 全变差,65 误差函数,43 无限集,3 S 上限集,1 X 势, **2** 相对开集,1 收敛,2 下限集,1 水平集,36 Y t-上水平集, 36 依测度收敛,43 t-下水平集, 36 (一维) Lebesgue 测度, 27 σ -代数, 6 一致连续,71 生成 σ -代数, 6 一致收敛,43 σ -环, 6 近一致收敛,45 生成 σ -环, 6 有界变差函数,67 σ -有限, 19 有限集,3 T \mathbf{Z} 体积,34 正部,48 正则性, 29 W 外测度,14 内正则性, 29, 34, 35 外正则性, 29, 34, 35 完备,19 逐点收敛,42 完备化, 20, 21