PCSO: physique des ondes Cours 1 - introduction aux ondes

Mathieu Markovitch mathieu.markovitch@cern.ch

Les ondes sont partout en physique (et au quotidien)

Une onde, c'est quoi?

C'est la propagation d'une perturbation.

- Elle produit sur son passage une variation des propriétés physiques environnantes
- Elle transporte de l'énergie depuis sa source, et non de la matière (mais peut déplacer de la matière localement de façon réversible)

Propagation d'une onde

- Une onde mécanique (sonore, sismique...) a besoin d'un milieu matériel pour se propager : gaz, liquide, solide

Pas de son dans l'espace

- Une onde électromagnétique (OEM) peut se propager dans le vide!

Chaîne de propagation

Emetteur (source) - Milieu (éventuellement vide) - Récepteur

La source impose ses caractéristiques à l'onde qu'elle génère

- Caillou dans l'eau
- Corde d'une guitare
- Antenne

Chaîne de propagation

Emetteur (source) Milieu (éventuellement vide) Récepteur

La source impose ses caractéristiques à l'onde qu'elle génère

- Caillou dans l'eau
 Corde d'une guitare
 Émettent des ondes mécaniques
- Antenne émet des ondes électromagnétiques

Le récepteur transforme la perturbation en signal mesurable

Emetteur et récepteur sont des oscillateurs

Onde longitudinale, onde transversale

- Dans une onde longitudinale, la perturbation est dans la direction de propagation de l'onde Exemples : compression d'un ressort, onde sonore

Onde longitudinale, onde transversale

- Dans une onde longitudinale, la perturbation est dans la direction de propagation de l'onde Exemples : compression d'un ressort, onde sonore

- Dans une onde transversale, la perturbation est perpendiculaire à la propagation

Exemples: vague, agitation d'une corde ou d'un ressort

Onde progressive

Une onde est dite progressive lorsqu'elle se propage sans déformation ni atténuation à l'infini.

Si une onde se propage selon un axe x, on parle d'onde droite si elle la propagation se fait dans le sens des x croissants et d'onde gauche si elle se fait dans les sens des x décroissants.

Si l'onde rencontre un obstacle ou si le milieu de propagation change de nature, il peut y avoir réflexion.

Célérité

Une caractéristique importante d'une onde est sa célérité, c'està-dire sa vitesse de propagation. On la note en général c.

c dépend du milieu!

Onde et milieu	Son dans l'air à 25°C	Son dans l'acier	Lumière dans le vide	Lumière dans le verre
Célérité	346 m.s ⁻¹	5600 m.s ⁻¹	3×10 ⁸ m.s ⁻¹	2×10 ⁸ m.s ⁻¹

Directions de propagation

Jusqu'ici on a surtout regardé des propagations à une dimension d'espace.

Une onde peut aussi se propager en 2D (vagues sur l'eau...) ou en 3D (onde électromagétique se propageant dans toutes les directions...)

Surface d'onde

La surface d'onde est l'ensemble des points atteints après un même temps de parcours depuis la source.

- Pour une onde sonore progressive 3D, la surface d'onde est une sphère.
- Pour des vagues créées par un caillou dans l'eau (2D), la «surface d'onde» est un cercle.
- Pour une onde se propageant le long d'une corde à une dimension, la «surface d'onde» est un point.

Propagation à une dimension

On considère une onde progressive droite à une dimension :

La coordonnée y d'un point est fonction de l'espace et du temps : y = f(x,t).

Entre les deux instants, l'onde a parcouru une distance

Propagation à une dimension

On considère une onde progressive droite à une dimension :

La coordonnée y d'un point est fonction de l'espace et du temps : y = f(x,t).

Entre les deux instants, l'onde a parcouru une distance c.∆t

Ne pas confondre les vitesses

Une onde fait intervenir plusieurs vitesses : sa célérité (vitesse de propagation) et la vitesse de déplacement de la propriété physique perturbée (df/dt). La vitesse à laquelle la matière d'un milieu, par exemple une vague oscillant de bas en haut, se déplace, n'a rien à voir avec la vitesse à laquelle cette perturbation se propage dans le milieu.

Exercices

TD1: 1.1, 1.2.1, 1.2.3, 1.2.4