2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Third Semester B.E. Degree Examination, Dec.2018/Jan.2019

Advanced Mathematics

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

1 a. If
$$Z = \frac{(2+3i)(1-i)}{(1+i)}$$
, find $z + \overline{z}$ and $z\overline{z}$. (06 Marks)

- b. Express the complex number $1+\sqrt{3}i$ in the polar form and exponential form. (07 Marks)
- c. Find the modulus and amplitude of $\frac{(1+2i)(2-i)}{4+3i}$. (07 Marks)
- 2 a. Find the nth derivative of $y = \frac{x+2}{x+1} + \log\left(\frac{x+2}{x+1}\right) + \cos^2 2x$. (06 Marks)
 - b. If $y = a\cos(\log x) + b\sin(\log x)$, show that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$.
 - c. Find the angle between the curves $\gamma = a(1 + \cos \theta)$ and $\gamma = a(1 \cos \theta)$. (07 Marks)
- 3 a. Obtain the Maclaurin's series for $\sqrt{1+\sin 2x}$ upto the term involving x^4 . (06 Marks)
 - b. If $u = \sin^{-1} \left(\frac{x^2 + y^2}{x + y} \right)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$. (07 Marks)
 - c. If $u = x + 3y^2 z^3$, $v = 4x^2yz$, $w = 2z^2 xy$, evaluate $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at (1, -1, 0). (07 Marks)
- 4 a. If ϕ is the angle between the radius vector and tangent to the polar curve $r=t(\theta)$ at (r, θ) , show that $\tan \phi = r \frac{d\theta}{dr}$. (06 Marks)
 - b. If v = f(x y, y + z, z x), show that $\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial v}{\partial z} = 0$. (07 Marks)
 - c. State and prove Euler's theorem for a homogeneous function u in x and y of degree n.

 (07 Marks)
- 5. a. Obtain the reduction formula for $\int \sin^n x \, dx$ and hence evaluate $\int \sin^3 x \, dx$. (06 Marks)
 - b. Evaluate $\int_{0}^{2a} x^2 \sqrt{2ax x^2} dx$ (07 Marks)
 - c. Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} (x^2 + y^2) dy dx$. (07 Marks)

MATDIP301

6 a. Evaluate
$$\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz$$
.

(06 Marks)

b. Show that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$

(07 Marks)

c. Evaluate $\int_{0}^{\pi/2} \sqrt{\tan \theta} \ d\theta$.

(07 Marks)

7 a. Solve $e^x \tan y dx + (1 + e^x) \sec^2 y dy = 0$.

(06 Marks)

b. Solve $x \frac{dy}{dx} + y = x^3 y^6$.

(07 Marks)

c. Solve $(3x^2 + 6xy^2)dx + (6x^2y + 4y^3)dy = 0$.

(07 Marks)

8 a. Solve $\frac{d^3y}{dx^3} + 4\frac{dy}{dx} = \sin 2x$.

(06 Marks)

b. Solve $(D-2)^2 y = 8(e^{2x} + x^2)$.

(07 Marks)

c. Solve $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = e^{-2x}\cos 2x$

(07 Marks)

* * * * *