Unveiling Transformer Models: A Revolution in ML

In the realm of ML and DL, few advancements have reshaped the field as profoundly as Transformer models
First introduced in the seminal paper "Attention Is All You Need," Transformer models have become the
backbone
of modern NLP and are extending their reach into CV and beyond.
The Challenges Before Transformers
Prior to Transformers, models like RNNs, LSTMs, and GRUs were the primary tools for sequential data.
While effective, these architectures faced significant challenges:
- **Sequential Computation**: Processing one step at a time limited their ability to leverage parallelism,
making training slower.
- **Long-Range Dependencies**: Understanding relationships between distant elements in a sequence was
difficult.
- **Vanishing Gradients**: Gradients diminished over long sequences, hampering effective learning.
Enter Transformers, which bypass these limitations with a novel approach: SA.
The Anatomy of a Transformer Model
THE THE MILLION OF A TRANSFORMER WOODS

The Transformer model's architecture is a symphony of interdependent components designed to capture and process

sequential information efficiently:

1. **Embedding Layer**

Words or tokens are first converted into dense vector representations of fixed size (d_model).

These embeddings encapsulate semantic and syntactic information.

2. **PE**

Unlike RNNs, Transformers process sequences without inherent order. PE injects sequence-order information into

the embeddings using sinusoidal functions.

3. **MHA**

The crown jewel of Transformers, MHA calculates attention scores for every pair of tokens in the input sequence.

This mechanism relies on three key components:

- **Q**: Represents the current token.
- **K**: Represents other tokens.
- **V**: Contains the information to extract.

Attention is computed by evaluating the similarity between Q and K, followed by a weighted sum of V.

4. **FFN**

After MHA, each token representation is passed through a fully connected FFN. Nonlinear activations enhance the

