COMP 7270/76 Spring 2013 Final Exam 150 Minutes Time Limit Strictly Enforced 5 Questions 100 Points
Name:
Write and draw neatly and clearly. <u>If we can't read it, you will NOT get credit even if it is correct.</u> Each question carries 20 points.
1. Consider the efficient algorithm to compute the Maximum Subsequence Sum: MSS-Algorithm-3 (A:array[pq] of integer) 1
MSS-ALG-5 (A:array[pq])
sum = max = 0
start = start-index = p
end = end-index = 0
for $i = p$ to q do
sum = sum + A[i]
end =
if sum > max then
max = sum
start-index =
end-index =
else if sum < 0 then
sum = 0

{this return statement returns both values}

start = _____

return (start-index, end-index)

2. Genetic information is encoded as represented using the letters G, A, T, a nucleotide pattern GAGA in a strand alphabet. Provide its transition table.	a sequence of nucleotides (guanine, a and C. Design a finite automaton to d of DNA represented as a string T with You do not need to draw the automat	denine, thymine, and cytosine), letect all occurrences of the h characters from this 4-letter on.

3. Given the matrix chain consisting of 4 matrices <A1, A2, A3, A4>, where the size of each matrix is provided in the table below:

Matrix	Size
A1	5 X 10
A2	10 X 5
A3	5 X 20
A4	20 X 10

Compute the optimal costs of the matrix-chain multiplication and show them in the matrices **m** and **s**. Provide the **fully parenthesized** expression for the multiplication.

4. Given the following set of symbols and their frequency of appearance in a document, design the optimal variable length binary code for these symbols so that the file size of the document can be minimized. **State the codes and the tree** constructed by the Huffman algorithm.

	Λ	Γ	П	Δ	Θ	Σ	Ω
I	2	5	15	3	7	1	8

5. A simple cycle in a graph is a loop that starts from one node and returns to that starting node without visiting any node more than once. The length of a simple cycle is the number of its edges.
The Hamiltonian Circuit Problem (HCP): Given an unweighted graph of n nodes determine whether it has a simple cycle of length n that visits all n nodes. This is a known NP-Complete problem.
The Longest Simple Cycle Problem (LSCP) is the problem of finding a simple cycle of <u>maximum length</u> in a graph, if there is at least one simple cycle of any length in the graph.
(5a) LSCP is in the class of problems NP because (a) no polynomial time algorithm to solve it is known but (b) a potential solution to it can be checked in polynomial time. Explain the strategy of a polynomial time algorithm to check a potential solution to LSCP.
(5b) We can show that LSCP is an NP-Complete problem by (1) showing that LSCP is in NP and (2) that HCP, a known NP-Complete problem, can be reduced or transformed to LSCP in polynomial time. <u>Explain briefly but clearly why these two steps are sufficient</u> to prove that LSCP is an NP-Complete problem.
(5c) The reduction or transformation from HCP to LSCP is trivial in that no changes to the graph are needed. That is, given an instance of the HCP problem on a graph G, the corresponding instance of the LSCP problem uses the same graph G. The last part of proving the NP-Completeness of LSCP is to show two
properties: (1) if G has a Hamiltonian Circuit, then from it we can derive a simple cycle of maximum length in G Explain how:
(2) if G has a simple cycle of maximum length, then from it we can determine whether or not there is a
Hamiltonian Circuit in G. Explain how: