Bevezetés a bioinformatikába

Szabó-Zsidai Krisztina szabo-zsidai.krisztina@nik.uni-obuda.hu

Prof. Dr. Kozlovszky Miklós

kozlovszky.miklos@nik.uni-obuda.hu

2. előadás

2022.09.19.

Bevezetés

- Mi a kémia?
- Mi a biokémia?
- Mitől lesz valami élő anyag?
 - Fehérjék (aminosavak)
 - Nukleinsavak
 - Lipidek
 - Poliszacharidok

I. Fehérjék

Aminosav egységekből felépülő makromolekulák.

- Aminosavak:
 - COOH karboxil-csoport
 - NH₂ amino-csoport
 - Szénatom (alfa helyzetű)
 - R = valamilyen gyök
 - Általános képlet (képen):
 - (Prolin ettől kicsit eltér)

Fehérjék szerepe az élőlényekben

- Enzimek (katalitikus folyamatok)
- Transzportfehérjék (pl. sejthártyáknál)
- Védőfehérjék
- Toxinok
- Hormonok
- Struktúrafehérjék
- Tartalékfehérjék (pl. tojás, növények magvai)
- stb.

Aminosavak 1.

- Szerkezetük az R-csoportban különbözik
- 20 természetes aminosavból építkezünk (fehérjeépítők)
 - Az esszenciális aminosavakat a táplálékkal veszünk magunkhoz
 - A többit képesek vagyunk szintetizálni
- Az oldalláncok kiemelkednek és ezek a biológiailag aktív csoportok

Aminosavak 2.

Tudtad?

Az esszenciális aminosavak a fehérjék olyan alkotórészei, melyeket a szervezet egyáltalán nem, vagy csak részben képes szintetizálni. Ezeket az aminosavakat a táplálékkal, "készen" kell bevinni a hiányállapotok elkerülése végett.

Aminosavak 3.

Tudtad?

Limitáló aminosavnak nevezzük az olyan esszenciális aminosavakat, melyek az adott fehérje aminosav-összetételében a legkisebb arányban vannak jelen.

Aminosavak az emberi szervezetben

Esszenciális (nélkülözhetetlen)	Nem esszenciális (előállítjuk)
Izoleucin – Ile	Alanin – Ala
Leucin – Leu	Aszparagin – Asn
Lizin – Lys	Aszpartánsav – Asp
Metionin – Met	Cisztein – Cys
Fenilalanin – Phe	Glutaminsav – Glutamát – Glu
Treonin – Thr	Glutamin – Gln
Triptofán – Trp	Glicin – Gly
Valin – Val	Prolin – Pro
Arginin* - Arg	Szerin – Ser
Hisztidin* - His	Tirosin – Tyr

Részben esszenciális: - Gyermekekben az előállítás nem megoldott

- Arginin csak újszülötteknél lényeges

Aminosavak csoportosítása

Oldallánc szerint

Sav-bázis tulajdonság szerint

Vízoldhatóság szerint

Oldallánc szerint 1.

- Glicin: nincs oldallánca
 - Gly glicin H₂N-CH₂-COOH
- Egyszerű alkil (apoláris, szénhidrogén) oldallánc:
 - Ala alanin
 - Val valin
 - Leu leucin
 - Ile izoleucin
- Gyűrűs oldallánc (szekunder amin-csoport):
 - Pro prolin

Oldallánc szerint 2.

- Aromás oldallánc:
 - Phe fenil-alanin
 - Tyr tirozin
 - Trp triptofán
- Alkoholos oldallánc (-OH csoport):
 - Ser szerin
 - Thr treonin
- Kéntartalmú oldallánc (-SH csoport):
 - Cys cisztein HS-CH₂-
 - Met metionin H₃C-S-CH₂-CH₂-

Oldallánc szerint 3.

- (Karbon)savas oldallánc (parciális negatív töltés):
 - Asp aszparaginsav HOOC–CH₂–
 - Glu glutaminsav HOOC-CH₂-CH₂-
- Amid oldallánc (a fenti savakból):
 - Asn aszparagin H₂NOC-CH₂-
 - Gln glutamin H₂NOC-CH₂-CH₂-
- Bázikus oldallánc (parciális pozitív töltés):
 - Lys lizin $H_2N-(CH_2)_4$
 - Arg arginin
 - His hisztidin

Aminosavak csoportosítása

Aminosavak kapcsolódása 1.

Az aminosavak egymáshoz peptidkötéssel kapcsolódnak.

Peptidek: molekulasúly < 10.000 (10-100 aminosav)

Proteinek: peptideknél nagyobbak, 100 aminosav felett

Dipeptid = két összekapcsolódott aminosav Polipeptid = több összekapcsolódott aminosav 10-100

Aminosavak kapcsolódása 2.

• N-terminális vég: A polipeptidlánc szabad amino-csoport (-NH₂) felőli vége.

- C-terminális vég: A polipeptidlánc szabad karboxil-csoport (-COOH) felőli vége.
- A peptidek elnevezését mindig az N-terminális aminosav felől kezdjük és a C-terminális aminosavval fejezzük be.

Fehérjék

 Proteinek: Egyszerű fehérjék, csak aminosavakból épülnek fel.

(pl.: albumin, miozin)

 Proteidek: Összetett fehérjék, aminosavakon kívül más, nem fehérje alkotórészt is tartalmaznak.

(pl.: kromoproteidek – hemoglobin, glükoproteidek – mucin)

Fehérjék alakja

A makromolekula alakja szerint:

- Globuláris (gömbszerű) fehérjék
 - Gomolyagforma (pl.: mioglobin)

- Fibrilláris (fonalszerű) fehérjék (pl.: vázfehérjék)
 - Nagy szilárdság, viszonylagos oldhatatlanság
 - Pl.:tollak, szőrszálak, inak,stb.

A fehérjék térszerkezetének szintjei

- Elsődleges szerkezet
- Másodlagos szerkezet
- Harmadlagos szerkezet
- Negyedleges szerkezet

Elsődleges szerkezet

 A peptidláncot alkotó aminosavak minősége és sorrendje határozza meg.

 100 aminosayból álló fehérje esetén 20¹⁰⁰ számú egymástól eltérő kombináció létezhetne!

Másodlagos szerkezet

- A lánc gerincének rövid távú szerkezete.
- Szakaszokat különböztethetünk meg:
 - Periódikus szakasz (pl. hélix, ill béta-redő):
 - Homokonformációk: a (fi, pszi) pár ismétlődik.
 - Aperiódikus szakasz (pl. prolinban gazdag részek)
 - Heterokonformációk: a (fi, pszi) változik
 - Kanyarok (angolul: turn)
 - Béta kanyar
 - Gamma kanyar

Hélixek

- 3₁₀ hélix, Alfa-hélix, Pi-hélix
 - Az oldalláncok kifelé állnak.
 - Jobbkezes hélixek.
 - A balkezes energetikailag kedvezőtlen az oldalláncok ütközései miatt, ezért nem fordul elő.
- Amfipatikus alfa-hélix
 - A hélixnek a fehérje belseje felé eső oldalán elsősorban apoláros, a víz felé eső oldalán poláros oldalláncok vannak
- Egyéb
 - Poliprolin hélix, stb.

Béta-redő

 Parallel vagy antiparallel módon futó szálak, közöttük Hkötések (mint a csúcsos háztetők).

Az oldalláncok váltakozva lefelé és fölfelé állnak.

A legtöbb béta-lemezben balkezes csavar van.

Harmadlagos szerkezet

 A teljes polipeptidlánc térbeli szerkezete, a másodlagos szerkezeti elemek térbeli elrendeződése.

A stabilitást jelentősen meghatározzák a feltekeredés miatt egymáshoz került oldalláncok között kialakuló kötések:

- Diszulfidhidak
- Ionkötések
- Hidrogénkötések
- Apoláris kötések

Az egymáshoz nagyjából hasonló térszerkezetű fehérjék általában egy szerkezeti családba tartoznak.

Negyedleges szerkezet

Több polipeptidláncból álló fehérjék alegység szerkezete.

II. Nukleinsavak 1.

Monomer nukleotid láncokból álló makromolekulák.

Genetikai információt hordozó építőelemek.

• Pl: DNS, RNS

Nukleinsavak 2.

- Felépítésük:
- heterociklusos bázis (purin, pirimidin)
- pentóz (5-tagú cukorgyűrű)
- foszfátcsoport

Heterociklusos bázis 1.

Pirimidin bázisok: citozin (DNS-ben és RNS-ben is), uracil (csak RNS), timin (csak DNS)

Heterociklusos bázis 2.

Purin bázisok: adenin, guanin (DNS-ben és RNS-ben is)

Heterociklusos bázisok 3.

Nukleinsavak 3.

Nukleinsavak 4.

Kromoszómák

Hosszú DNS molekulák, amelyekben sok gén található.

III. Lipidek

- Glicerint és zsírsavat tartalmazó apoláris makromolekulák.
- Hidrolizálható lipidek:
- Neutrális zsírok
- Foszfatidok
- Nem hidrolizálható lipidek:
- Szteroidok
- Karontinoidok

Neutrális zsírok

- Felépítésük: háromértékű alkohol (glicerin) + 3 zsírsav
- Tulajdonságuk: apoláris molekulák
- "Hasznuk": vitamin oldószer, hő és mechanikai védelem
- Pl: sertészsír, cetzsír, tőkeolaj, repceolaj

Foszfatidok

• Felépítésük: glicerin + 2 zsírsav + H₃PO₄ + poláris molekula észtere

Tulajdonságuk: poláris és apoláris (amfipatikus)

 "Hasznuk": micellákat (belül hidrofób rész, kívül pedig hidrofil rész) és membránokat (határhártyákat) képeznek

• Pl: lecitin, kefalin

Szteroidok

- Felépítésük: szteránváz (gonán alapváz) + oldalláncok
- Tulajdonságuk: apolárisak

- "Hasznuk": hormonok, epesav, felületi feszültség csökkentők
- Pl: ösztrogén, tesztoszteron, koleszterin, D-vitamin

Karotinoidok

- Felépítésük: izoprén származékok
- Tulajdonságuk: apoláris, konjugált kötések jellemzik a szénláncot, ami miatt ezek a lipidek színanyagok
- "Hasznuk": fotoszintetikus festékek, színanyagok
- Pl: karotin, likopil, xantofill, A-vitamin

$$\sum_{\beta-\text{ karotin}}$$

IV. Poliszacharidok

 Nagyszámú monoszacharid egység összekapcsolódása glikozidos kötéssel, H₂O molekula kilépése közben.

Tulajdonságaik

- Nem oldódnak vízben: polárisak.
- Nem redukáló hatásúak (nem redukálószerek).
- Nem édes ízűek.
- Semmi cukorszerű nincs bennük.
- Állati és növényi sejtek építőkövei.

Csoportosításuk

Az élő szervezetben betöltött funkciójuk szerint csoportosítják:
Vázanyagok (cellulóz, xilán, mannán, pektin, kitin)

Tartalék tápanyagok (keményítő, glikogén)

Köszönöm a figyelmet!