<u>definitions</u> given t_1, \ldots, t_m and $k \ge 0$, we'll write $f_k = t_1^k + \cdots + t_m^k$ in addition to $e_k = \sum_{i_1 < \cdots < i_k} t_{i_1} \ldots t_{i_k}$.

<u>example</u> if m = 3 then $e_0 = 1$, $e_1 = t_1 + t_2 + t_3$, $e_2 = t_1t_2 + t_2t_3 + t_1t_3$, $e_3 = t_1t_2t_3$, and $e_k = 0$ for $k \ge 4$.

<u>observation</u> e_k is the coefficient of t^{m-k} in $(t+t_1)\ldots(t+t_m)$.

identity (Newton-Girard) for
$$k \ge 1$$
 we have $f_k = (-1)^{k-1} \left[ke_k + \sum_{\ell=1}^{k-1} (-1)^{\ell} e_{k-\ell} f_{\ell} \right]$.

examples $f_1 = \sum t_i = e_1$, and $\sum t_i^2 = -\left[2 \sum_{i < j} t_i t_j - \left(\sum t_i \right)^2 \right]$.

exercise verify the case k = 3 by hand.

 $\underline{\text{proof}} \text{ (Euler) let } P(t) = (t+t_1)\dots(t+t_m). \text{ then } \frac{P'(t)}{P(t)} = \frac{1}{t+t_1} + \dots + \frac{1}{t+t_m}. \text{ applying } \frac{1}{x-\alpha} = \frac{1}{x} + \frac{\alpha}{x^2} + \frac{\alpha^2}{x^3} + \dots$ we have $P'(t) = P(t) \sum_{n \geq 0} \frac{(-1)^n f_n}{t^{n+1}}.$ we finish by plugging $P(t) = \sum_{m = 1}^{\infty} e_{m-j} t^j$ and equating the t^{m-k-1} coefficients.