PadhAl: Deep Neural Networks

One Fourth Labs

Output Layer of a Multi-Class Classification Problem

Deciding the output layer

- 1. The Output Activation function is chosen depending on the task at hand (can be a softmax, linear etc)
- 2. Consider the following multi-class classification problem

- 3. At the last layer, we compute $a_3 = W_3h_2 + b_3$
- 4. We need to apply a function to $\hat{y}_i = O(a_{3i})$ such that the 4 outputs form a probability distribution.
- 5. Output activation function has to be chosen such that the output is probability.
- 6. Let's assume $a_3 = [3 \ 4 \ 10 \ 3]$
 - a. Take each entry and divide by the sum of all entries to get a probability distribution

b.
$$\hat{y}_1 = \frac{3}{(3+4+10+3)} = 0.15$$

c.
$$\hat{y_2} = \frac{4}{(3+4+10+3)} = 0.20$$

d. $\hat{y_3} = \frac{10}{(3+4+10+3)} = 0.50$

d.
$$\hat{y_3} = \frac{10}{(3+4+10+3)} = 0.50$$

e.
$$\hat{y_4} = \frac{3}{(3+4+10+3)} = 0.15$$

f. However, this will not work if any of the entries are negative

PadhAl: Deep Neural Networks

One Fourth Labs

- 7. So we consider the softmax function
- 8. $softmax(z_i) = \frac{e^{z_i}}{\sum_{j=1}^k e^{z_j}}$ for i = 1...k
- 9. Note: the output of e^x is always positive, irrespective of the input

- 10. This property is important to counter the negative-value shortcoming that we observed in the previous example
- 11. Now, let us illustrate the softmax function at the last layer of our Neural Network
- 12. $a = [a_1 \ a_2 \ a_3 \ a_4]$
- 13. $softmax(a) = \left[\frac{e^{a_1}}{\sum_{i=1}^k e^{a_i}} \frac{e^{a_2}}{\sum_{i=1}^k e^{a_i}} \frac{e^{a_3}}{\sum_{i=1}^k e^{a_i}} \frac{e^{a_4}}{\sum_{i=1}^k e^{a_i}}\right]$
- 14. Raising the numerators to e^x ensures that they are all positive
- 15. The denominator is just the sum of all the values raised to e^x
- **16**. $softmax(a_i)$ is the i^{th} element of the softmax output
- 17. So for our multi-class fruit classifier, the equations are as follows

Layer	Pre-activation	Activation/Output
Hidden Layer 1	$a_1 = W_1 * x + b_1$	$h_1 = g(a_1)$
Hidden Layer 2	$a_2 = W_2 * h_1 + b_2$	$h_2 = g(a_2)$
Output Layer	$a_3 = W_3 * h_2 + b_3$	$\hat{y} = softmax(a_3)$