

Statistical Shape Analysis of Human Infant Skull

Ezgi Mercan Murat Maga Richard Hopper

Skull Shape in Craniosynostosis A Complex Phenotype

Cranial Reconstruction

2yr follow-up

Shape Maintenance

- What *changes* are due to growth?
- What factors affect the long term outcome?
 - Timing of the repair
 - Initial severity
 - Individual characteristics
 - How does the skull *grow* in different diagnoses?

Goal: minimal surgical intervention

Hypothetical Growth

Outline

Template Building

Growth Modeling

Suture Closure Analysis

Hypothetical Growth

- Avants BB, Tustison NJ, Song G, Gee JC (2009) ANTS: open-source tools for normalization and neuroanatomy, TransacMed Imagins Penn Image Comput Sci Lab.
- Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration, *Neuroimage* 54(3), 2033-2044.

Outline

Growth Modeling

Suture Closure Analysis

Data

N = 34 normal samples (17 male and 17 female) N = 81 sagittal CS samples (62 male and 19 female) 0-6 months old

Pre-processing

Average Image

source

Non-rigid Registration

SyN non-rigid registration rotate scale "warping" target

- Avants BB, Tustison NJ, Song G, Gee JC (2009) ANTS: open-source tools for normalization and neuroanatomy, *TransacMed Imagins Penn Image Comput Sci Lab*.
- Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration, *Neuroimage* 54(3), 2033-2044.

Template Construction

In each iteration:

- Warp each sample to the current template
- Average warped images to create a new template
- Repeat until *convergence*

Population Templates

Normal Infant Template

Sagittal CS Template

What can a template do?

- Models a population
 - age, sex, ethnicity ...
- Generates references
- Automates annotation:
 - Landmarking
 - Segmentation

Hypothetical Growth

Outline

Suture Closure Analysis

Growth Modeling

Thin Plate Splines

• Bookstein, FL (1989) Principal Warps: Thin-Plate Splines and the Decomposition of Deformations, *IEEE Transactions on Pattern Analysis and Machine Intelligence* 11(6), 567-585.

Outline

Automated Landmarking

Warp fields, displacement vectors from one sample to the template (or backwards), can be used to describe shape differences.

PEDIATRIC/CRANIOFACIAL

Identifying Reproducible Patterns of Calvarial Dysmorphology in Nonsyndromic Sagittal Craniosynostosis May Affect Operative Intervention and Outcomes Assessment

Rodney E. Schmelzer, M.D.
Chad A. Perlyn, M.D.
Alex A. Kane, M.D.
Thomas K. Pilgram, Ph.D.
Daniel Govier
Jeffrey L. Marsh, M.D.

St. Louis, Mo.

Background: The authors tested the premise that there are four distinctive patterns of calvarial dysmorphology in nonsyndromic sagittal craniosynostosis that can be reproducibly recognized.

Methods: Twenty-nine computed tomographic scan data sets of infants met the following criteria: nonsyndromic sagittal craniosynostosis, age younger than 12 months, and satisfactory computed tomographic data. Osseous reformations were constructed in the anteroposterior, right lateral, and vertex projections for each patient. From these images, four templates—coronal constriction, occipital

Bifrontal Bossing

Occipital Protuberance

Bitemporal Protrusion

Coronal Constriction

PC1

PC2

- 1. Principle Component Analysis
- 2. Angle histograms

Sagittal Sample

Angle Histograms

Generate a 2D histogram based on the azimuth and elevation angles of 3D deformation vectors.

Angle Histograms

Normal Template

Sagittal Sample

Sagittal Sample

Clustering - Angle Histograms

Cluster Dendrogram

Sanity Check

Do principle components capture the same clusters?

Yes!

Observed Phenotypes

Bifrontal bossing: 0 1 2 Occipital protuberance: 0 1 2 Bitemporal protusion: 0 1 2 Coronal constuction: 012 Saddle: 012

CT0411214

Bifrontal bossing: 0 1 2 Occipital protuberance: 0 1 2 Bitemporal protusion: 0 1 2 Coronal constuction: 0 1 2 Saddle: 012

CT0408969

Bifrontal bossing: 0 1 2 Occipital protuberance: 0 1 2 Bitemporal protusion: 0 1 2 Coronal constuction: 0 1 2 Saddle: 012

CT0501524

Bifrontal bossing: 0 1 2 Occipital protuberance: 0 1 2 Bitemporal protusion: 0 1 2 Coronal constuction: 0 1 2 Saddle: 012

CT0411107

Bifrontal bossing: 0 1 2 Occipital protuberance: 0 1 2 Bitemporal protusion: 0 1 2 Coronal constuction: 012 Saddle: 012

CT0501526

Bifrontal bossing: 0 1 2 Occipital protuberance: 0 1 2 Bitemporal protusion: 0 1 2 Coronal constuction: 0 1 2 Saddle: 0.1.2

Collected rankings from a surgeon N = 48

Can computed clusters capture the observed phenotypes?

No

pc1

pc1

Recovering observed phenotypes

- Observed phenotypes are mixture of the 4 published
 - More clusters
 - More ranking
- Are observed phenotypes reliable?
- Our approach is unsupervised
 - Try a supervised approach: learn from surgeon rankings

Recovering observed phenotypes

- We deformed all sagittals to a normal template
 - Deform to a sagittal template?
- Parameter search

Sagittal Template

sagittal template (0-3m)

normal template (0-3m)

Recovering observed phenotypes

- Maybe more than 4 phenotypes?
- Clinical relevance of phenotypes
 - Shape maintenance
 - Initial severity

Outline

