THE FOURIER TRANSFORM

Arthur Lei Qiu

7 November 2019

1 The Fourier transform

1.1 Introduction

Roughly speaking, the Fourier transform is a "continuous" version of the Fourier series. Recall that the n^{th} Fourier coefficient of an integrable function $f: [0,1] \to \mathbb{C}$ is given by

$$a_n = \int_0^1 f(x)e^{-2\pi i nx} dx.$$

The Fourier transform can be thought of as indexing Fourier coefficients over \mathbb{R} instead of \mathbb{Z} (that is, allowing a_{ξ} for $\xi \in \mathbb{R}$).

Definition 1.1. The **Fourier transform** of a function $f: \mathbb{R} \to \mathbb{C}$ is the function $\hat{f}: \mathbb{R} \to \mathbb{C}$ defined by

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i \xi x} dx, \tag{1.1}$$

the integral being taken in the Riemann sense.

Of course, this definition is purely formal; it is not clear if the integral even converges. To make sense of this, we need some hypotheses on the smoothness and decay of f.

1.2 Schwartz functions

DEFINITION 1.2. A smooth function $f: \mathbb{R} \to \mathbb{C}$ is called a **Schwartz function** if f and all of its derivatives are rapidly decreasing, in the sense that

$$\sup_{x \in \mathbb{R}} |x^k f^{(\ell)}(x)| < \infty, \qquad \forall k, \ell \ge 0.$$
 (1.2)

The collection of all such functions is called the **Schwartz space** on \mathbb{R} and denoted by \mathcal{S} .

Proposition 1.3. The following are true about Schwartz space.

- (i) S forms a vector space over \mathbb{C} . Moreover, S is closed under differentiation and multiplication by polynomials.
- (ii) $C_c^{\infty}(\mathbb{R}, \mathbb{C}) \subsetneq \mathcal{S} \subsetneq C^{\infty}(\mathbb{R}, \mathbb{C})$ and $\mathcal{S} \subsetneq \mathcal{M}$.

Proof. (i) This is mostly an application of the triangle inequality. Fix $k, \ell \geq 0$. Given $f, g \in \mathcal{S}$ and $a \in \mathbb{C}$, we have

$$\sup_{x \in \mathbb{R}} \left| x^k (af + g)^{(\ell)}(x) \right| \le \sup_{x \in \mathbb{R}} \left(\left| x^k (af)^{(\ell)}(x) \right| + \left| x^k g^{(\ell)}(x) \right| \right) \le |a| \sup_{x \in \mathbb{R}} |x^k f^{(\ell)}(x)| + \sup_{x \in \mathbb{R}} |x^k g^{(\ell)}(x)|.$$

Since $|x^k(f')^{(\ell)}(x)| = |x^k f^{(\ell+1)}(x)|$, Schwartz space is closed under differentiation. To show that \mathcal{S} is closed under multiplication by polynomials, we show that for all $f \in \mathcal{S}$, we have $xf(x) \in \mathcal{S}$, and using this and the fact that \mathcal{S} is a vector space, we obtain the result. We can show inductively that

$$(xf(x))^{(\ell)} = \ell f^{(\ell-1)}(x) + xf^{(\ell)}(x), \qquad \forall \ell \ge 0,$$

and hence,

$$\sup_{x\in\mathbb{R}}|x^k(xf(x))^{(\ell)}|\leq \ell\sup_{x\in\mathbb{R}}|x^kf^{(\ell-1)}(x)|+\sup_{x\in\mathbb{R}}|x^{k+1}f^{(\ell)}(x)|<\infty.$$

(ii) An example of a smooth function that is not Schwartz is given by e^x . The inclusion $C_c^{\infty}(\mathbb{R},\mathbb{C}) \subseteq \mathcal{S}$ is a consequence of the extreme value theorem, and an example of a Schwartz function with non-compact support is the Gaussian

$$f(x) = e^{-ax^2}, \qquad a > 0.$$

To see this, observe that every derivative of f is of the form $f^{(\ell)}(x) = P_{\ell}(x)f(x)$ for some polynomial P_{ℓ} , and that

$$\sup_{x \in \mathbb{R}} |x^k f(x)| < \infty, \qquad \forall k \ge 0.$$

Finally, if f(x) is bounded by α and $x^2 f(x)$ is bounded by β , then

$$(1+x^2)|f(x)| \le \alpha + \beta,$$

hence $S \subseteq \mathcal{M}$. On the other hand, the function $e^{-|x|}$ is moderately decreasing (in fact, rapidly decreasing) but not Schwartz because it is not differentiable at 0.

Since Schwartz functions are moderately decreasing, their Fourier transform is well-defined, and it turns out that Schwartz functions play particularly nicely with the Fourier transform. In the following statements, the notation $f(x) \mapsto \hat{f}(\xi)$ means that \hat{f} is the Fourier transform of f.

PROPOSITION 1.4. Let $f \in \mathcal{S}$. The following are true:

(i) If $h \in \mathbb{R}$, then

$$f(x+h) \mapsto \hat{f}(\xi)e^{2\pi i\xi h}$$

and

$$f(x)e^{-2\pi ihx} \mapsto \hat{f}(\xi+h).$$

(ii) If $\delta > 0$, then

$$f(\delta x) \mapsto \frac{1}{\delta} \hat{f}\left(\frac{\xi}{\delta}\right).$$

(iii) We have

$$f'(x) \mapsto 2\pi i \xi \hat{f}(\xi).$$

Furthermore, \hat{f} is differentiable, and

$$-2\pi i x f(x) \mapsto (\hat{f})'(\xi).$$

Proof. Exercise.