Geometric Objects

4TH WEEK, 2021

Basic Elements

- Geometry the study of the relationships among objects in an n-dimensional space
 - In computer graphics, objects exist in three dimensions
- Minimum set of primitives from which we can build more sophisticated objects
- Three basic elements
 - Points
 - <u>Scalars</u>
 - <u>Vectors</u>

Scalars, Points, and Vectors

Points

Position in space

• <u>Scalars</u>

- To specify quantities such as the distance between two points
- Ex) real numbers, complex numbers

• <u>Vectors</u>

- Any quantity with direction and magnitude
- Ex) velocity, force

Vector Operations

- Every vector has an <u>inverse</u>
 - Same magnitude but points in opposite direction
- Every vector can be multiplied by a scalar
- There is a <u>zero</u> vector
 - Zero magnitude, undefined orientation
- The sum of any two vectors is a vector
 - Using head-to-tail axiom

Mathematical View (1)

- Scalar field
 - Entities: <u>scalar</u>s
 - Operations: addition and multiplication
- (Linear) Vector space
 - Entities: <u>vector</u>s and scalars
 - Operations: <u>vector-vector</u> addition, <u>vector-scalar</u> multiplication
- Euclidean space
 - Entities: vectors and scalars
 - Operations: vector-vector addition, vector-scalar multiplication, <u>measure</u> of size or <u>distance</u>

Mathematical View (2)

- Affine space
 - Entities: vectors, scalars, and <u>points</u>
 - Operations: vector-vector addition, vector-scalar multiplication, <u>vector-point</u> addition, <u>point-point subtraction</u>

Linear Vector Spaces

- Mathematical system for manipulating vectors
- Operations
 - Scalar-vector multiplication: $u = \alpha v$
 - <u>Vector-vector</u> <u>addition</u>: w=u+v
- Expression
 - Ex) v = u + 2w 3v

Vector Lack Position

- These vectors are identical
 - Same direction and magnitude

- Vector spaces are insufficient for geometry
 - Need <u>points</u>

Points

- Location in space
- Operations allowed between points and vectors
 - Point-point subtraction yields a vector
 - Equivalent to point-vector addition

Affine Spaces

- Vector space + <u>points</u>
- Operations
 - Scalar-scalar operations
 - Scalar-vector multiplication
 - Vector-vector addition
 - Vector-point addition
 - <u>Point-point</u> subtraction

Lines

- Considering all points of the form
 - $P(\alpha) = P_0 + \alpha d$
 - Set of all points that pass through P_0 in the direction of the vector d

$$P(\alpha) = P_0 + \alpha d$$

Affine Sums

- In affine space
 - O: vector-vector addition, vector-scalar multiplication, vector-point addition
 - X: <u>addition</u> of two points, point-<u>scalar</u> multiplication
- Affine addition

$$P(\alpha) = Q + \alpha v$$

$$v = R - Q$$

$$P(\alpha) = Q + \alpha (R - Q)$$

$$= \alpha R + (1 - \alpha)Q$$

$$P = \alpha_1 R + \alpha_2 Q$$
where $\alpha_1 + \alpha_2 = 1$

Convexity

- Convex object
 - Any point lying on the line segment connecting any two points in the object is also in the object $\nearrow R$
- Using affine sums
 - Convex object such as line segment

$$P(\alpha) = \alpha R + (1 - \alpha)Q$$
 where $0 \le \alpha \le 1$

Convex hull

$$P = \alpha_1 P_1 + \alpha_2 P_2 + \dots + \alpha_n P_n$$

$$\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$$

$$\alpha_i \ge 0, \quad i = 1, 2, \dots, n$$

 $P(\alpha)$

Dot Products

- <u>Inner</u> products <u>u·v</u>
 - Orthogonal: $u \cdot v = 0$
 - Magnitude of a vector: $|u|^2 = u \cdot u$
 - Angle between two vectors: $\cos \theta = \frac{u \cdot v}{|u||v|}$
 - Orthogonal projection: $|v|\cos\theta = u \cdot v/|u|$

$$(x_1 y_1 z_1) \cdot (x_2 y_2 z_2)$$

= $x_1 x_2 + y_1 y_2 + z_1 z_2$

Cross Products

- Outer products $u \times v = n$
 - Right-handed coordinates system
 - Direction of the thumb of the right hand

$$\left|\sin\theta\right| = \frac{|u \times v|}{|u||v|}$$

$$\begin{vmatrix} (x_1 & y_1 & z_1) \times (x_2 & y_2 & z_2) \\ = (y_1 z_2 - y_2 z_1 & z_1 x_2 - z_2 x_1 & x_1 y_2 - x_2 y_1) \end{vmatrix}$$

Planes

Defined by a <u>point</u> and two <u>vectors</u> or by three <u>points</u>

$$P(\alpha,\beta) = Q + \alpha u + \beta v$$

$$P(\alpha, \beta) = Q + \alpha(S - Q) + \beta(R - Q)$$

Triangles

$$T(\alpha, \beta) = P_0 + \alpha u + \beta v$$
, $0 \le \alpha, \beta \le 1$

$$S(\alpha) = \alpha P + (1 - \alpha)Q, \quad 0 \le \alpha \le 1$$

$$T(\beta) = \beta S + (1 - \beta)R, \quad 0 \le \beta \le 1$$

$$T(\alpha, \beta) = \beta [\alpha P + (1 - \alpha)Q] + (1 - \beta)R$$

$$T(\alpha, \beta) = P + \beta (1 - \alpha)(Q - P) + (1 - \beta)(R - P)$$

Normals

- Every plane a vector n normal (perpendicular, orthogonal) to it
- From two vectors which form $P(\alpha, \beta) = Q + \alpha u + \beta v$, we can use the <u>cross</u> product

Coordinate Systems (1)

• 3D vector space

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$$

- Scalar component : α_1 , α_2 , α_3
- Basis vector : v_1 , v_2 , v_3
 - Defining a coordinate system
 - The origin: fixed reference point
- Representation: column matrix

$$\mathbf{a} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix}^T$$

Coordinate Systems (2)

• Example: $v = 2v_1 + 3v_2 + 4v_3$

$$\mathbf{a} = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}^T$$

- Note that this representation is with respect to a particular basis
- In OpenGL, we start by representing vectors using object basis but later the system needs a representation in terms of the camera or eye basis
 - → "Change of Basis"

Coordinate Systems (3)

• Which is correct?

• Both are because vectors have no fixed location

Frames (1)

A coordinate system is insufficient to represent points

• In affine space, we can add a single point, the <u>origin</u>, to the basis

vectors to form a frame

Frames (2)

- Basis set of vectors and a particular point P_0
 - More general representation
 - Fixing the origin at P_0

$$\underline{vector}: \quad v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$$

point:
$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3$$

• <u>Homogeneous</u> coordinates

$$\underline{vector}: v = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & 0 \end{bmatrix}^T$$

point:
$$P = \begin{bmatrix} \beta_1 & \beta_2 & \beta_3 & 1 \end{bmatrix}^T$$

Homogeneous Coordinates (1)

$$P = \begin{bmatrix} x_w & y_w & z_w & w \end{bmatrix}^T$$

- If w=0, the representation is that of a <u>vector</u>
- Otherwise $(w\neq 0)$, we return a three dimensional <u>point</u> by

$$P = \begin{bmatrix} x_w \\ y_w \\ z_w \\ w \end{bmatrix} = \begin{bmatrix} x_w/w \\ y_w/w \\ z_w/w \\ w/w \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

 To represent points and vectors with <u>matrices</u> but maintain a distinction between points and vectors

Homogeneous Coordinates (2)

- Homogeneous coordinates are key to all computer graphics systems
 - All standard transformation (rotation, translation, scaling) can be implemented with multiplications of $\underline{4} \times \underline{4}$ matrices
 - Hardware pipeline works with <u>4</u> dimensional representations
 - For orthographic viewing, we can maintain w=0 for vectors and w=1 for points
 - For perspective viewing, we need a <u>perspective</u> <u>division</u>

Changes of Coordinate Systems (1)

• Two basis: { v_1 , v_2 , v_3 }, { u_1 , u_2 , u_3 } $u_1 = \gamma_{11} v_1 + \gamma_{12} v_2 + \gamma_{13} v_3$ $u_2 = \gamma_{21} v_1 + \gamma_{22} v_2 + \gamma_{23} v_3$ $u_3 = \gamma_{31}v_1 + \gamma_{32}v_2 + \gamma_{33}v_3$ $M = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{bmatrix}$

Changes of Coordinate Systems (2)

• Vector: w

$$w = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$$

$$w = \mathbf{a}^T \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$
, where $\mathbf{a} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$ $\mathbf{w} = \mathbf{b}^T \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$, where $\mathbf{b} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}$

$$w = \mathbf{b}^T \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \mathbf{b}^T M \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \mathbf{a}^T \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

$$\mathbf{a} = M^T \mathbf{b}$$

$$\mathbf{b} = \left(M^T\right)^{-1} \mathbf{a}$$

Changes of Basis

- Origin unchanged
 - Rotation and scaling of a set of basis vectors
- Origin changed
 - Translation of the origin, or change of frame

→ <u>Homogeneous</u> coordinates

Example of Change Basis (1)

- Suppose a vector: $w \leftarrow \mathbf{a} = [1 \ 2 \ 3]^T$
 - Three basis vectors : v_1 , v_2 , v_3

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$w = v_1 + 2v_2 + 3v_3$$

$$w = v_1 + 2v_2 + 3v_3$$

• New basis : u_1 , u_2 , u_3

$$u_1 = v_1$$
 $u_2 = v_1 + v_2$
 $u_3 = v_1 + v_2 + v_3$

$$M = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Example (2)

Change of basis

$$\mathbf{b} = (M^{T})^{-1}\mathbf{a}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} -1 \\ -1 \\ 3 \end{bmatrix}$$

$$w = -u_1 - u_2 + 3u_3$$

Homogeneous Coordinates (1)

Confusion between points and vectors !!

$$P = \begin{bmatrix} x & y & z \end{bmatrix}^T, \quad w = \begin{bmatrix} \delta_1 & \delta_2 & \delta_3 \end{bmatrix}^T$$

• Point P and vector w in frame (v_1, v_2, v_3, P_0)

$$P = P_0 + xv_1 + yv_2 + zv_3$$

$$P = \begin{bmatrix} x & y & z & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ P_0 \end{bmatrix}$$

$$P = \begin{bmatrix} x & y & z & 1 \end{bmatrix}^T$$

$$P = P_0 + xv_1 + yv_2 + zv_3$$

$$P = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ P_0 \end{bmatrix}$$

$$w = \begin{bmatrix} \delta_1 v_1 + \delta_2 v_2 + \delta_3 v_3 \\ w = \begin{bmatrix} \delta_1 & \delta_2 & \delta_3 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ P_0 \end{bmatrix}$$

$$W = \begin{bmatrix} \delta_1 & \delta_2 & \delta_3 & 0 \end{bmatrix}^T$$

$$W = \begin{bmatrix} \delta_1 & \delta_2 & \delta_3 & 0 \end{bmatrix}^T$$

Homogeneous Coordinates (2)

• Change of frames (v_1, v_2, v_3, P_0) , (u_1, u_2, u_3, Q_0)

$$u_{1} = \gamma_{11}v_{1} + \gamma_{12}v_{2} + \gamma_{13}v_{3}$$

$$u_{2} = \gamma_{21}v_{1} + \gamma_{22}v_{2} + \gamma_{23}v_{3}$$

$$u_{3} = \gamma_{31}v_{1} + \gamma_{32}v_{2} + \gamma_{33}v_{3}$$

$$Q_{0} = \gamma_{41}v_{1} + \gamma_{42}v_{2} + \gamma_{43}v_{3} + P_{0}$$

$$\begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \\ Q_{0} \end{bmatrix} = M \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ P_{0} \end{bmatrix}$$

$$\mathbf{b} = (\mathbf{M}^{T})^{-1}\mathbf{a} \qquad \mathbf{b}^{T} \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \\ Q_{0} \end{bmatrix} = \mathbf{b}^{T} M \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ P_{0} \end{bmatrix} = \mathbf{a}^{T} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ P_{0} \end{bmatrix} \qquad M = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\ \gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\ \gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\ \gamma_{41} & \gamma_{42} & \gamma_{43} & 1 \end{bmatrix}$$

Example of Change in Frames

• Change of frames (v_1, v_2, v_3, P_0) , (u_1, u_2, u_3, Q_0) $u_1 = v_1$ $u_2 = v_1 + v_2$ $u_3 = v_1 + v_2 + v_3$ $Q_0 = P_0$ $M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

• Point $P = [1 \ 2 \ 3 \ 1]^T \rightarrow P' = [-1 \ -1 \ 3 \ 1]^T$

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 3 \\ 1 \end{bmatrix}$$

Another Example

- Change of frames (v_1, v_2, v_3, P_0) , (u_1, u_2, u_3, Q_0) $u_1 = v_1$ $u_2 = v_1 + v_2$ $u_3 = v_1 + v_2 + v_3$ $Q_0 = P_0 + v_1 + 2v_2 + 3v_3$ $M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 1 \end{bmatrix}$
- Point $P = [1 \ 2 \ 3 \ 1]^T \rightarrow P' = [0 \ 0 \ 0 \ 1]^T$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Frames in WebGL (1)

- Six representations embedded in the WebGL pipeline
 - Object (or model) coordinates
 - World coordinates
 - Eye (or camera) coordinates
 - <u>Clip</u> coordinates
 - Normalized devices coordinates
 - <u>Window</u> (or <u>screen</u>) coordinates
- Change in frames are defined by <u>4×4</u> matrices
 - Sequence of transformations

Frames in WebGL (2)

Moving the camera frame relative to the object frame

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Summary

- Basic elements points, scalars, vectors
- Scalar fields, linear vector spaces, Euclidean spaces, affine spaces
 - Lines $P(\alpha) = P_0 + \alpha d$
 - Planes $P(\alpha, \beta) = Q + \alpha u + \beta v$
- Dot product $-\cos\theta = \frac{u \cdot v}{|u||v|}$, Cross product $-\sin\theta = \frac{|u \times v|}{|u||v|}$
- Frames = basis + origin
 - Homogenous coordinates $\rightarrow \underline{vector}$: $v = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & 0 \end{bmatrix}^T$

point: $P = \begin{bmatrix} \beta_1 & \beta_2 & \beta_3 & 1 \end{bmatrix}^T$

수고하셨습니다