# CHAPTER 6

**GRAPH THEORY** 

#### **HOMEWORK**

- Again, all homework is from the Exercises
  - No problems are from the Review Exercises
- Section 6.1, (p. 271), #5-10, 17-18, 22, 27-28, 46-48
- Section 6.2, (p. 281), #20-21, 28-38, 39, 41
- Section 6.3, (p. 296), #I-7
- Section 6.5, (p. 300), #1-3, 7-9, 13-14, 24-25
- Section 6.6, (p. 305), #1-7
- Section 6.7, (p. 311), #6-9, 18-24

#### **APPLICATIONS OF GRAPHS**

- There are lots of ideas that come from or lead to applications of graphs
- Here are a few

#### **VOCABULARY TO KNOW**

- · A graph is made up of
  - Vertices
  - Edges connecting the vertices

### THE KÖNIGSBERG BRIDGES



# THE KÖNIGSBERG BRIDGES AND GRAPHS

- Here is the connection to graphs
  - We label the top bank A
  - We label the bottom bank B
  - We label the left island C
  - We label the right island D
- We connect the vertices as in the picture

### THE KÖNIGSBERG BRIDGE GRAPH



#### THE ROAD INSPECTOR PROBLEM

- A person is responsible for keeping the roads in an area in good working (driving?) order
- We draw a map of the area
- This is the connection to graphs
  - The cities are vertices
  - The roads are edges

## THE TRAVELING SALESPERSON PROBLEM

- This is similar to the road inspector problem
- This is the connection to graphs
  - The vertices in the graph are cities
  - The edges are roads connecting the cities
- The graph could be weighted
  - The edges might be weighted based on the cost of travel
  - The edges might be weighted based on the number of miles

#### A DRILL PRESS

- You have a sheet of metal
- You have a drill press that can be programmed
- You want to drill a series of holes in the metal
- What's the shortest path connecting all holes?
- This is the connection to graphs
  - The holes are vertices
  - Thee graph is made up of edges connecting each pair of holes

### ERDÖS NUMBERS

- · Paul Erdös was a mathematician
- His Erdös number is 0
- If you wrote a paper with him, your Erdös number would be I
- If you wrote a paper with someone who wrote a paper with him, your Erdös number would be 2
- This continues

# CONNECTING ERDÖS NUMBERS TO GRAPHS

- This is the connection to graphs
  - Erdös is one vertex in the graph
  - People who wrote papers with him are connected to him
  - People who wrote papers with those people are connected to them
- The process continues

#### SIMILARITY GRAPHS

- · We want to know how complicated a program is
- We need some criteria
- For example, we could use
  - The number of lines
  - The number of calls to methods
  - The number of return statements

#### ARE TWO PROGRAMS SIMILAR?

- We can then tell if two programs are similar
- Let's call s the dissimilarity function
  - -S(PI, P2) = |L2-LI| + |M2-MI| + |R2-RI|
- This is the connection to graphs
  - Each program is a vertex
  - We connect programs that have the same similarity
  - This graph may be quite disconnected

#### THE KNIGHT'S TOUR

- A knight is a chess piece
- It has a specific L-shaped move
- Chess boards are 8 x 8
  - We will allow any size, but the board must be square
- Can we place the knight somewhere so that it can, in successive moves, visit every square on the board?
- We want to know which sizes of boards allow this kind of knight's tour

## CONNECTING THE KNIGHT'S TOUR TO GRAPH THEORY

- This is the connection to graphs
  - The squares are vertices
  - Edges are added if the knight can move from one square (vertex)
    to another square (vertex)

#### **PATHS**

- A path connects two vertices
  - It is nothing more than a list of the edges in the path
- There are many special types of paths
  - One type of path is a cycle
  - A cycle starts and ends at the same point
  - We usually don't allow a cycle to repeat an edge
- Two important kinds are of cycles are
  - Euler cycles
  - Hamiltonian cycles

#### **CONNECTED GRAPHS**

- · Often, I will assume the graph comes in one piece
- We call this kind of graph connected
- You can adapt most of what I do to graphs that are not connected
  - Just apply it to each piece
  - Those pieces are called components

#### **EULER CYCLES**

- An Euler cycle is a path that traverses each edge exactly once
  - No edges are omitted
  - No edge is traversed twice (or more!)
- Not every graph has an Euler cycle
  - The Königsburg Bridge graph doesn't

#### FINDING AN EULER CYCLE

- If a graph has an Euler cycle, every vertex has an even number of edges incident on it
- Interestingly, the reverse is true also
  - If in a (connected) graph every vertex has an even number of edges incident on it, then the graph has an Euler cycle

#### HAMILTONIAN CYCLES

- A Hamiltonian cycle is a path that
  - Starts and ends at the same place
  - Visits every vertex exactly once

#### **HOMEWORK**

- Again, all homework is from the Exercises
  - No problems are from the Review Exercises
- Section 6.1, (p. 271), #5-10, 17-18, 22, 27-28, 46-48
- Section 6.2, (p. 281), #20-21, 28-38, 39, 41
- Section 6.3, (p. 296), #I-7
- Section 6.5, (p. 300), #1-3, 7-9, 13-14, 24-25
- Section 6.6, (p. 305), #1-7
- Section 6.7, (p. 311), #6-9, 18-24