Devoir surveillé n° 5 – v2

Durée : 4 heures, calculatrices et documents interdits

Mines-Ponts 2009 - PC - Maths I

Étude spectrale d'un opérateur de transfert

Soit V un \mathbb{C} -espace vectoriel et T un endomorphisme de V: on dira que le complexe λ est une valeur propre de T s'il existe un élément f de V non nul tel que $Tf = \lambda f$. Soit \mathscr{C}^0 l'espace des fonctions de \mathbb{R} dans \mathbb{C} qui sont continues et 1-périodiques. Cet espace

est normé par

$$||f||_{\infty} = \sup\{|f(x)|, x \in \mathbb{R}\}$$

On désigne par e_0 la fonction constante égale à 1 sur tout \mathbb{R} et par D le sous-espace vectoriel de \mathscr{C}^0 engendré par e_0 .

Si $f \in \mathscr{C}^0$, on définit

$$Tf(x) = \frac{1}{2} \left(f(\frac{x}{2}) + f(\frac{x+1}{2}) \right)$$

L'objet du problème est l'étude des propriétés spectrales de diverses restrictions de T à des sous-espaces invariants de \mathscr{C}^0 . On mettra en évidence sur certains de ces sous-espaces la propriété de "trou spectral" : il existe 0 < r < 1 tel que les valeurs propres autres que 1 sont de module inférieur ou égal à r.

A - Préliminaires.

- 1) Montrer que si f appartient à \mathscr{C}^0 alors Tf aussi.
- 2) Montrer que pour tout élément f de \mathscr{C}^0 on a l'inégalité $\|Tf\|_{\infty} \leqslant \|f\|_{\infty}$ puis que

$$\sup_{\|f\|_{\infty}=1} \|Tf\|_{\infty} = 1$$

On appelle H° l'hyperplan de \mathscr{C}^{0} des fonctions f telles que

$$\int_0^1 f(t) \ dt = 0$$

- 3) Montrer que H° est stable par T.
- 4) Montrer que D et H° sont des sous-espaces vectoriels supllémentaires de \mathscr{C}^{0} , et expliciter le projecteur P sur D parallèlement à H° .

B - Fonctions trigonométriques.

Pour tout entier relatif k, on note $e_k(x) = e^{2i\pi kx}$ de sorte que e_k est continue et 1-périodique, c'est-à-dire que e_k appartient à \mathscr{C}^0 . Pour tout entier n, on désigne par E_n le sous-espace de \mathscr{C}^0 engendré par $e_0, e_1, e_{-1}, \ldots, e_n, e_{-n}$.

5) Montrer que T est linéaire. Déterminer Te_k (respectivement Pe_k) pour tout entier relatif k et en déduire que les espaces E_n sont T-stables (respectivement P-stables).

On note T_n (respectivement P_n) l'endomorphisme de E_n induit par T (respectivement par P).

Pour $f, g \in \mathcal{C}^0(\mathbb{R}, \mathbb{C})$, on notera aussi $\varphi(f, g) = \int_0^1 \overline{f(t)} g(t) dt$.

- **6)** Soit $k, l \in \mathbb{Z}$ tels que $k \neq l$. Montrer que $\varphi(e_k, e_l) = 0$ et $\varphi(e_k, e_k) \neq 0$.
- 7) En déduire que la famille $(e_0, e_1, e_{-1}, \dots, e_n, e_{-n})$ est libre et est une base de E_n .
- 8) Calculer les valeurs propres de T_2 . L'endomorphisme T_2 est-il diagonalisable?
- 9) Soit $n \in \mathbb{N}^*$ et k l'unique entier tel que $2^{k-1} \leq n < 2^k$. Montrer pour tout entier $p \geq k$, l'identité suivante :

$$T_n^p = P_n$$

C - Fonctions höldériennes.

On rappelle que pour tous les réels x et y,

$$|e^{ix} - e^{iy}| \leqslant |x - y|$$

Soit $\alpha \in]0,1[$. On appelle \mathscr{C}^{α} le sous-espace de \mathscr{C}^{0} des fonctions f telles que

$$\left\{\frac{|f(x)-f(y)|}{|x-y|^{\alpha}}/\;(x,y)\in\mathbb{R}^2,\;x\neq y\right\}\;\;\text{soit major\'e}$$

On notera alors

$$m_{\alpha}(f) = \sup \left\{ \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} / (x, y) \in \mathbb{R}^2, \ x \neq y \right\}$$

On admettra que

$$||f||_{\alpha} = m_{\alpha}(f) + ||f||_{\infty}$$

définit une norme sur \mathscr{C}^{α} .

- 10) Montrer que pour tout $f \in \mathscr{C}^{\alpha}$, $m_{\alpha}(Tf) \leq 2^{-\alpha} m_{\alpha}(f)$ et que \mathscr{C}^{α} est stable par T. On notera T_{α} l'endomorphisme de \mathscr{C}^{α} induit par T.
- 11) Montrer que pour tout $f \in \mathscr{C}^{\alpha}$, $||T_{\alpha}f||_{\alpha} \leqslant ||f||_{\alpha}$ puis que $\sup_{f \in \mathscr{C}^{\alpha}, ||f||_{\alpha} = 1} ||T_{\alpha}f||_{\alpha} = 1$.

Soit λ un nombre complexe de module strictement inférieur à 1. On pose, pour tout réel x,

$$S_n(x) = \sum_{k=0}^n \lambda^k e_{2^k}(x)$$

12) Montrer que la série de fonctions $\sum_{k\geqslant 0} \lambda^k e_{2^k}$ converge normalement sur \mathbb{R} vers une fonction $f_{\lambda} \in \mathscr{C}^0$ et que $Tf_{\lambda} = \lambda f_{\lambda}$.

On admettra, que dans ce cas, la suite $(S_n, n \ge 0)$ converge dans l'espace vectoriel $(\mathscr{C}^0, || ||_{\infty})$ vers f_{λ} :

$$\lim_{n \to +\infty} \|S_n - f_\lambda\|_{\infty} = 0$$

- 13) Montrer qu'alors $Tf_{\lambda} = \lambda f_{\lambda}$. Est-ce que λ est une valeur propre de T?
- **14)** Soit maintenant λ tel que $|\lambda| \leq 2^{-\alpha}$ et deux réels x et y tels que $|x-y| \leq 1$. Montrer qu'il existe $n \in \mathbb{N}$ tel que

$$2^{-n-1} < |x - y| \leqslant 2^{-n}.$$

En considérant séparément les sommes avec $k \leq n$ et k > n dans la série ayant pour valeur $f_{\lambda}(x) - f_{\lambda}(y)$, montrer que $f_{\lambda} \in \mathscr{C}^{\alpha}$.

- **15)** Montrer que $H^{\alpha} = H^{\circ} \cap \mathscr{C}^{\alpha}$ est stable par T_{α} .
- **16)** Soit $f \in \mathcal{C}^0$, montrer que pour tout $n \in \mathbb{N}$,

$$T^{n}(f)(x) = 2^{-n} \sum_{k=0}^{2^{n}-1} f(k2^{-n} + x2^{-n})$$

17) Établir, pour $f \in \mathscr{C}^{\alpha}$ et $n \in \mathbb{N}$, l'inégalité suivante :

$$\sup_{x \in [0,1]} |T_{\alpha}^{n}(f)(x) - \int_{0}^{1} f(t) dt| \leq m_{\alpha}(f) 2^{-n\alpha}$$

18) Montrer que si $f \in H^{\alpha}$ alors pour tout entier $n \in \mathbb{N}$, l'inégalité suivante est vérifiée :

$$||T_{\alpha}^{n}(f)||_{\alpha} \leqslant 2^{1-n\alpha}||f||_{\alpha}$$

19) En déduire que l'ensemble des valeurs propres de T_{α} est la réunion du singleton $\{1\}$ et du disque fermé de centre 0 et de rayon $2^{-\alpha}$ (phénomène de trou spectral).

— FIN —