Unsupervised clustering

Guillaume TOCHON & Joseph CHAZALON

LRDE

Why do we care?

Clustering: Group the input data into clusters that share some characteristics.

(yup, that's a vague definition)

- → Find general patterns in the data (data mining problem)
- → Visualize the data (in a simpler way)
- → Infer some properties of a given data point based on how it relates to other data points (statistical learning)

ightarrow Clustering belongs to unsupervised learning \Rightarrow no ground truth available to learn/evaluate the quality of a clustering algorithm.

 \rightarrow Clustering belongs to unsupervised learning \Rightarrow no ground truth available to learn/evaluate the quality of a clustering algorithm.

 \rightarrow Clustering belongs to unsupervised learning \Rightarrow no ground truth available to learn/evaluate the quality of a clustering algorithm.

- ightarrow How to assess how much data points are related to each other?
 - ⇒ Which criteria (features) are the more relevant for our problem?
 - ⇒ Which metric makes the most sense?

Clustering belongs to unsupervised learning ⇒ no ground truth available to learn/evaluate the quality of a clustering algorithm.

- → How to assess how much data points are related to each other?
 - ⇒ Which criteria (features) are the more relevant for our problem?
 - ⇒ Which metric makes the most sense?

→ How to assess the soundness of the created clusters? Is that even a relevant question?

Clusteringception

One can try to divide existing clustering approaches into several categories:

Centroid-based clustering Clusters are summarized using a single representative point, and points are assigned to clusters based on their distance to this *centroid* (k-means and its direct variants).

Clusteringception

One can try to divide existing clustering approaches into several categories:

Centroid-based clustering Clusters are summarized using a single representative point, and points are assigned to clusters based on their distance to this *centroid* (k-means and its direct variants).

Density-based clustering Clusters are defined as set of dense points in the feature space (mean shift clustering, DB-SCAN, \dots)

Clusteringception

One can try to divide existing clustering approaches into several categories:

Centroid-based clustering Clusters are summarized using a single representative point, and points are assigned to clusters based on their distance to this *centroid* (k-means and its direct variants).

Density-based clustering Clusters are defined as set of dense points in the feature space (mean shift clustering, DB-SCAN, . . .)

Distribution-based clustering Clusters are defined based on the likelihood of points to belong to the same probability distribution (Gaussian mixture models, ...)

Clusteringception

One can try to divide existing clustering approaches into several categories:

- **Centroid-based clustering** Clusters are summarized using a single representative point, and points are assigned to clusters based on their distance to this *centroid* (k-means and its direct variants).
- **Density-based clustering** Clusters are defined as set of dense points in the feature space (mean shift clustering, DB-SCAN, . . .)
- **Distribution-based clustering** Clusters are defined based on the likelihood of points to belong to the same probability distribution (Gaussian mixture models, ...)
- **Hierarchical clustering** Clusters are organized in a hierarchical way (Hiearchical Agglomerative Clustering, Recursive K-Means).

Clusteringception

One can try to divide existing clustering approaches into several categories:

- **Centroid-based clustering** Clusters are summarized using a single representative point, and points are assigned to clusters based on their distance to this *centroid* (k-means and its direct variants).
- **Density-based clustering** Clusters are defined as set of dense points in the feature space (mean shift clustering, DB-SCAN, . . .)
- **Distribution-based clustering** Clusters are defined based on the likelihood of points to belong to the same probability distribution (Gaussian mixture models, ...)
- **Hierarchical clustering** Clusters are organized in a hierarchical way (Hiearchical Agglomerative Clustering, Recursive K-Means).

And so on ...

k-means clustering

Partition n observations $\mathbf{x}_1, \dots, \mathbf{x}_n$ into k clusters $\mathbf{C} = \{C_1, \dots C_k\}$ where each observation \mathbf{x}_i belongs to the clusters C_{j^*} whose mean μ_{i^*} is the closest: $\mathbf{x}_i \in S_{j^*}$ with $j^* = \arg\min_j \|\mathbf{x}_i - \mu_i\|_2$.

Algorithm Basic Kenteurn algorithm

- is Solvet & polate as initial controlds.
- 2 repent
 - Form K charters by assigning each period to its closest controld.
- 4: Recompute the control of each chatter.
- A: until Centrally do not charge.

k-means clustering

Partition n observations $\mathbf{x}_1, \dots, \mathbf{x}_n$ into k clusters $\mathbf{C} = \{C_1, \dots C_k\}$ where each observation \mathbf{x}_i belongs to the clusters C_{j^*} whose mean μ_{j^*} is the closest: $\mathbf{x}_i \in S_{j^*}$ with $j^* = \arg\min_j \|\mathbf{x}_i - \mu_j\|_2$.

Algorithm Basic K-mours algorithm

- 1: Soleet & points as initial controlds
- T. ceb
 - Form K charters by analyzing each point to its chosen controld.
 - 4: Recompute the controld of such chatter.
- A: until Centrolds do not change.

- → Minimizes within-cluster sum of squares (variance)
- $\rightarrow \ \, \text{Overall optimization problem:}$

$$\underset{\mathbf{C}=\{C_1,...C_k\}}{\operatorname{arg min}} \sum_{i=1}^{n} \sum_{\mathbf{x} \in C_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|^2$$

- → NP-hard problem, no guarantee to find the global optimum
- ightarrow Stochastic and very sensitive to initial conditions
- \rightarrow Sensitive to outliers (thank you, L_2 norm...)
- ightarrow Yet it's probably the most used clustering algorithm out there

k-means and Voronoi tesselation

Voronoi tesselation: partition of the Euclidean space relatively to discrete points/seeds. Each region/Voronoi cell is composed of all the points in the space that are closer to the cell seed than to any other seed

k-means and Voronoi tesselation

Voronoi tesselation: partition of the Euclidean space relatively to discrete points/seeds. Each region/Voronoi cell is composed of all the points in the space that are closer to the cell seed than to any other seed

- \rightarrow k-means provides a way to obtain a Voronoi tesselation of the input space, where seeds are the final cluster means.
- → Alternatively, one can use some pre-computed Voronoi tesselation seeds as initial clusters for k-means

How many clusters for this data set?

ightarrow Compute explained variance for an increasing number of clusters k

$$\operatorname{Var}(\mathbf{C} = \{C_1, \dots C_k\}) = \sum_{i=1}^{\kappa} \sum_{\mathbf{x} \in C_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|^2$$

 \rightarrow Plot and find the bend of the elbow

How many clusters for this data set?

 \rightarrow Compute explained variance for an increasing number of clusters k

$$Var(\mathbf{C} = \{C_1, \dots C_k\}) = \sum_{i=1}^{\kappa} \sum_{\mathbf{x} \in C_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|^2$$

 \rightarrow Plot and find the bend of the elbow

How many clusters for this data set?

ightarrow Compute explained variance for an increasing number of clusters k

$$Var(\mathbf{C} = \{C_1, \dots C_k\}) = \sum_{i=1}^{n} \sum_{\mathbf{x} \in C_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|^2$$

 \rightarrow Plot and find the bend of the elbow

Sometimes, k-means works...

But most of the time, not as expected. And it is probably because of the L_2 norm that k-means tries to minimize:

- \rightarrow Sensible to curse of dimensonality
- → Form "normalized Gaussian" clusters (spherical)
- \rightarrow Does not adapt to manifold geometry
- \rightarrow Sensible to class imbalance
- \rightarrow Sensible to outliers

Simple Linear Iterative Clustering

A kickass image segmentation algorithm using k-means

SLIC superpixels uses a modified k-means clustering in the Labxy space to produce k clusters regularly sampled and perceptually coherent from a color point of view.

Algorithm SLIC superpixel segmentation

- Initialize cluster senters C_k = |l_k, u_S, b_k, x_S, y_k|² by sampling pixels at regular grid steps S.
- 2: Perturb cluster centers in an n × n neighborhood, to the lowest gradient position.
- 3: repeat
- 4: for each cluster center Co do
 - Assign the best matching pixels from a 25 × 25 square neighborhood around the cluster center according to the distance measure (Eq. 1).
- 6: end for
- Compute new cluster centers and residual error E {L1 distance between previous centers and recomputed centers}
- k until $E \le threshold$
- % Eaforce connectivity.

$$\begin{aligned} d_{lab} &= \sqrt{(l_k - l_i)^2 + (a_k - a_i)^2 + (b_k - b_i)^2} \\ (1) \ d_{xy} &= \sqrt{(x_k - x_i)^2 + (y_k - y_i)^2} \\ D_S &= d_{lab} + \frac{m}{S} d_{SK}, \end{aligned}$$

k-medoids clustering

A possible extension to k-means

Clusters centroids are not initial data points \rightarrow can be problematic

⇒ Replace centroid by medoid (point with the smallest distance to all other points in the cluster)

$$\mathbf{m}_{\mathcal{C}} = \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{C}} \sum_{\mathbf{x}_i \in \mathcal{C}} d(\mathbf{x}, \mathbf{x}_i)$$

 \Rightarrow k-medoids algorithm

Overall objective: find k medoids $\mathbf{m}_1, \dots, \mathbf{m}_k$ that minimize the partitioning cost

$$\sum_{i=1}^k \sum_{\mathbf{x} \in \mathcal{C}_i} d(\mathbf{x}, \mathbf{m}_i)$$

Fuzzy c-means clustering

Let it fuzz

k-means is a hard clustering method \rightarrow each data point 100% belongs to its cluster.

Soft (aka fuzzy) clustering methods allow each data point to belong to several clusters with various degrees of membership.

Fuzzy c-means clustering

Let it fuzz

k-means is a hard clustering method \rightarrow each data point 100% belongs to its cluster.

Soft (aka fuzzy) clustering methods allow each data point to belong to several clusters with various degrees of membership.

Mand choices: prives are cubacid red or title depending on their cluster mantisorphy.

Sold Chairm yours Jan on good chairm and their promotions

FCM clustering: outputs clusters C_1, \ldots, C_k and membership matrix $\mathbf{W}_{n \times k}$ ($w_{ij} = \%(\mathbf{x}_i \in C_j)$)

$$\Rightarrow \mathop{\mathsf{arg\,min}}_{\mathsf{C} = \left\{\mathit{C}_{1}, \ldots \mathit{C}_{k}\right\}} \textstyle\sum_{i=1}^{n} \sum_{j=1}^{k} \mathit{w}_{ij}^{\mathit{m}} \left\| \mathbf{x}_{i} - \boldsymbol{\mu}_{j} \right\|^{2}$$

$$\Rightarrow$$
 Alternatively update $m{\mu}_j = rac{\sum_{\mathbf{x}_i} w_{ij}^m \mathbf{x}_i}{\sum_{\mathbf{x}_i} w_{ij}^m}$ and

$$W_{ij} = \frac{1}{\sum_{l=1}^{k} \left(\frac{\left\| \mathbf{x}_{i} - \boldsymbol{\mu}_{j} \right\|}{\left\| \mathbf{x}_{i} - \boldsymbol{\mu}_{l} \right\|} \right)^{\frac{2}{m-1}}}$$

k-means on steroids

k-means on steroids

k-means on steroids

k-means on steroids

k-means on steroids

k-means on steroids

k-means on steroids

Gaussian mixture model:
$$f(\mathbf{x}) = \sum_{i=1}^{k} \phi_i \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

recall that
$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^N \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$
 for $\mathbf{x} \in \mathbb{R}^N$

k-means on steroids

k-means works for spherical clusters, but fails in any other case \Rightarrow try harder Model probability density function f of data as a mixture of multivariate Gaussian

Gaussian mixture model: $f(\mathbf{x}) = \sum_{i=1}^{k} \phi_i \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$

recall that
$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^N \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$
 for $\mathbf{x} \in \mathbb{R}^N$

 $ightarrow \phi_i$ are mixture component weights $(\sum_{i=1}^k \phi_i = 1)$

k-means on steroids

k-means works for spherical clusters, but fails in any other case \Rightarrow try harder Model probability density function f of data as a mixture of multivariate Gaussian

Gaussian mixture model: $f(\mathbf{x}) = \sum_{i=1}^{k} \phi_i \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$

recall that
$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^N \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$
 for $\mathbf{x} \in \mathbb{R}^N$

- $\rightarrow \phi_i$ are mixture component weights $(\sum_{i=1}^k \phi_i = 1)$
- \rightarrow How to estimate $\phi_i, \mu_i, \Sigma_i \ \forall i = 1, \dots, k$?

Gaussian mixture models

k-means on steroids

k-means works for spherical clusters, but fails in any other case \Rightarrow try harder Model probability density function f of data as a mixture of multivariate Gaussian

Gaussian mixture model: $f(\mathbf{x}) = \sum_{i=1}^{k} \phi_i \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$

recall that
$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^N \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$
 for $\mathbf{x} \in \mathbb{R}^N$

- $\rightarrow \phi_i$ are mixture component weights $(\sum_{i=1}^k \phi_i = 1)$
- \rightarrow How to estimate $\phi_i, \mu_i, \Sigma_i \ \forall i = 1, \dots, k$?

The nightmare of any EECS grad student around the world

Initialization

- ightarrow Select k random points as initial means $\hat{m{\mu}}_1,\ldots,\hat{m{\mu}}_k$
- \to Init all covariance matrices $\hat{\Sigma}_1,\dots,\hat{\Sigma}_k$ as whole data sample covariance matrix $\hat{\Sigma}$
- ightarrow Set uniform mixture weights $\hat{\phi}_1,\ldots,\hat{\phi}_k=rac{1}{k}$

Alternate until convergence

Expectation step

ightarrow Compute membership weight $\hat{\gamma}_{ij}$ of \mathbf{x}_i with respect to \mathbf{j}^{th} component $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \Sigma_j)$

$$\hat{\gamma}_{ij} = \frac{\hat{\phi}_{j} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{j}, \hat{\boldsymbol{\Sigma}}_{j})}{\sum_{m=1}^{k} \hat{\phi}_{m} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{m}, \hat{\boldsymbol{\Sigma}}_{m})}$$

$$\hat{\gamma}_{ij} \equiv$$
 posterior probability of jth component given data $\mathbf{x}_i \to \sum_{i=1}^k \hat{\gamma}_{ij} = 1$

Maximization step

$$\hat{\phi}_j = \frac{N_j}{n}$$
 with $N_j = \sum_i \hat{\gamma}_{ij}$;

$$\hat{\boldsymbol{\mu}}_{i} = rac{1}{N_{i}} \sum_{i} \hat{\gamma}_{ij} \mathbf{x}_{i}$$
 ;

$$\hat{\Sigma}_j = rac{1}{N_i} \sum_i \hat{\gamma}_{ij} (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j) (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j)^T$$

The nightmare of any EECS grad student around the world

Initialization

- ightarrow Select k random points as initial means $\hat{m{\mu}}_1,\ldots,\hat{m{\mu}}_k$
- \to Init all covariance matrices $\hat{\Sigma}_1,\dots,\hat{\Sigma}_k$ as whole data sample covariance matrix $\hat{\Sigma}$
- ightarrow Set uniform mixture weights $\hat{\phi}_1,\ldots,\hat{\phi}_k=rac{1}{k}$

Alternate until convergence

Expectation step

ightarrow Compute membership weight $\hat{\gamma}_{ij}$ of \mathbf{x}_i with respect to \mathbf{j}^{th} component $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \Sigma_j)$

$$\hat{\gamma}_{ij} = \frac{\hat{\phi}_{j} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{j}, \hat{\boldsymbol{\Sigma}}_{j})}{\sum_{m=1}^{k} \hat{\phi}_{m} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{m}, \hat{\boldsymbol{\Sigma}}_{m})}$$

 $\hat{\gamma}_{ij} \equiv$ posterior probability of jth component given data $\mathbf{x}_i
ightarrow \sum_{i=1}^k \hat{\gamma}_{ij} = 1$

Maximization step

$$\hat{\phi}_j = \frac{N_j}{n}$$
 with $N_j = \sum_i \hat{\gamma}_{ij}$;

$$\hat{\boldsymbol{\mu}}_{i} = rac{1}{N_{i}} \sum_{i} \hat{\gamma}_{ij} \mathbf{x}_{i}$$
 ;

$$\hat{\Sigma}_j = rac{1}{N_i} \sum_i \hat{\gamma}_{ij} (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j) (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j)^T$$

The nightmare of any EECS grad student around the world

Initialization

- ightarrow Select k random points as initial means $\hat{m{\mu}}_1,\ldots,\hat{m{\mu}}_k$
- \to Init all covariance matrices $\hat{\Sigma}_1,\dots,\hat{\Sigma}_k$ as whole data sample covariance matrix $\hat{\Sigma}$
- ightarrow Set uniform mixture weights $\hat{\phi}_1,\ldots,\hat{\phi}_k=rac{1}{k}$

Alternate until convergence

Expectation step

ightarrow Compute membership weight $\hat{\gamma}_{ij}$ of \mathbf{x}_i with respect to \mathbf{j}^{th} component $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \Sigma_j)$

$$\hat{\gamma}_{ij} = rac{\hat{\phi}_{j}\mathcal{N}(\mathbf{x}_{i}|\hat{oldsymbol{\mu}}_{j},\hat{oldsymbol{\Sigma}}_{j})}{\sum_{m=1}^{k}\hat{\phi}_{m}\mathcal{N}(\mathbf{x}_{i}|\hat{oldsymbol{\mu}}_{m},\hat{oldsymbol{\Sigma}}_{m})}$$

 $\hat{\gamma}_{ij} \equiv$ posterior probability of jth component given data $\mathbf{x}_i
ightarrow \sum_{i=1}^k \hat{\gamma}_{ij} = 1$

Maximization step

$$\hat{\phi}_j = \frac{N_j}{n}$$
 with $N_j = \sum_i \hat{\gamma}_{ij}$;

$$\hat{\boldsymbol{\mu}}_{i} = rac{1}{N_{i}} \sum_{i} \hat{\gamma}_{ij} \mathbf{x}_{i}$$
 ;

$$\hat{\Sigma}_j = rac{1}{N_i} \sum_i \hat{\gamma}_{ij} (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j) (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j)^T$$

The nightmare of any EECS grad student around the world

Initialization

- ightarrow Select k random points as initial means $\hat{m{\mu}}_1,\ldots,\hat{m{\mu}}_k$
- \to Init all covariance matrices $\hat{\Sigma}_1,\dots,\hat{\Sigma}_k$ as whole data sample covariance matrix $\hat{\Sigma}$
- ightarrow Set uniform mixture weights $\hat{\phi}_1,\ldots,\hat{\phi}_k=rac{1}{k}$

Alternate until convergence

Expectation step

ightarrow Compute membership weight $\hat{\gamma}_{ij}$ of \mathbf{x}_i with respect to \mathbf{j}^{th} component $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j,\Sigma_j)$

$$\hat{\gamma}_{ij} = \frac{\hat{\phi}_{j} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{j}, \hat{\boldsymbol{\Sigma}}_{j})}{\sum_{m=1}^{k} \hat{\phi}_{m} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{m}, \hat{\boldsymbol{\Sigma}}_{m})}$$

 $\hat{\gamma}_{ij} \equiv$ posterior probability of jth component given data $\mathbf{x}_i
ightarrow \sum_{i=1}^k \hat{\gamma}_{ij} = 1$

Maximization step

$$\hat{\phi}_j = \frac{N_j}{n}$$
 with $N_j = \sum_i \hat{\gamma}_{ij}$;

$$\hat{\boldsymbol{\mu}}_{i} = rac{1}{N_{i}} \sum_{i} \hat{\gamma}_{ij} \mathbf{x}_{i}$$
 ;

$$\hat{\Sigma}_j = rac{1}{N_i} \sum_i \hat{\gamma}_{ij} (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j) (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j)^T$$

The nightmare of any EECS grad student around the world

Initialization

- ightarrow Select k random points as initial means $\hat{m{\mu}}_1,\ldots,\hat{m{\mu}}_k$
- \to Init all covariance matrices $\hat{\Sigma}_1,\dots,\hat{\Sigma}_k$ as whole data sample covariance matrix $\hat{\Sigma}$
- ightarrow Set uniform mixture weights $\hat{\phi}_1,\ldots,\hat{\phi}_k=rac{1}{k}$

Alternate until convergence

Expectation step

ightarrow Compute membership weight $\hat{\gamma}_{ij}$ of \mathbf{x}_i with respect to \mathbf{j}^{th} component $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j,\Sigma_j)$

$$\hat{\gamma}_{ij} = \frac{\hat{\phi}_{j} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{j}, \hat{\boldsymbol{\Sigma}}_{j})}{\sum_{m=1}^{k} \hat{\phi}_{m} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{m}, \hat{\boldsymbol{\Sigma}}_{m})}$$

 $\hat{\gamma}_{ij} \equiv$ posterior probability of jth component given data $\mathbf{x}_i
ightarrow \sum_{i=1}^k \hat{\gamma}_{ij} = 1$

Maximization step

$$\hat{\phi}_j = \frac{N_j}{n}$$
 with $N_j = \sum_i \hat{\gamma}_{ij}$;

$$\hat{\boldsymbol{\mu}}_{i} = rac{1}{N_{i}} \sum_{i} \hat{\gamma}_{ij} \mathbf{x}_{i}$$
 ;

$$\hat{\Sigma}_j = rac{1}{N_i} \sum_i \hat{\gamma}_{ij} (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j) (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j)^T$$

The nightmare of any EECS grad student around the world

Initialization

- ightarrow Select k random points as initial means $\hat{m{\mu}}_1,\ldots,\hat{m{\mu}}_k$
- \to Init all covariance matrices $\hat{\Sigma}_1,\dots,\hat{\Sigma}_k$ as whole data sample covariance matrix $\hat{\Sigma}$
- \rightarrow Set uniform mixture weights $\hat{\phi}_1,\ldots,\hat{\phi}_k=rac{1}{k}$

Alternate until convergence

Expectation step

ightarrow Compute membership weight $\hat{\gamma}_{ij}$ of \mathbf{x}_i with respect to \mathbf{j}^{th} component $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j,\Sigma_j)$

$$\hat{\gamma}_{ij} = \frac{\hat{\phi}_{j} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{j}, \hat{\boldsymbol{\Sigma}}_{j})}{\sum_{m=1}^{k} \hat{\phi}_{m} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{m}, \hat{\boldsymbol{\Sigma}}_{m})}$$

 $\hat{\gamma}_{ij} \equiv$ posterior probability of jth component given data $\mathbf{x}_i
ightarrow \sum_{i=1}^k \hat{\gamma}_{ii} = 1$

Maximization step

$$\hat{\phi}_j = \frac{N_j}{n}$$
 with $N_j = \sum_i \hat{\gamma}_{ij}$;

$$\hat{\boldsymbol{\mu}}_{i} = rac{1}{N_{i}} \sum_{i} \hat{\gamma}_{ij} \mathbf{x}_{i}$$
 ;

$$\hat{\Sigma}_j = rac{1}{N_i} \sum_i \hat{\gamma}_{ij} (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j) (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j)^T$$

The nightmare of any EECS grad student around the world

Initialization

- ightarrow Select k random points as initial means $\hat{m{\mu}}_1,\ldots,\hat{m{\mu}}_k$
- \to Init all covariance matrices $\hat{\Sigma}_1,\dots,\hat{\Sigma}_k$ as whole data sample covariance matrix $\hat{\Sigma}$
- ightarrow Set uniform mixture weights $\hat{\phi}_1,\ldots,\hat{\phi}_k=rac{1}{k}$

Alternate until convergence

Expectation step

ightarrow Compute membership weight $\hat{\gamma}_{ij}$ of \mathbf{x}_i with respect to \mathbf{j}^{th} component $\mathcal{N}(\mathbf{x}|oldsymbol{\mu}_j,\Sigma_j)$

$$\hat{\gamma}_{ij} = \frac{\hat{\phi}_{j} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{j}, \hat{\boldsymbol{\Sigma}}_{j})}{\sum_{m=1}^{k} \hat{\phi}_{m} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{m}, \hat{\boldsymbol{\Sigma}}_{m})}$$

 $\hat{\gamma}_{ij}\equiv$ posterior probability of jth component given data $\mathbf{x}_i\to\sum_{i=1}^k\hat{\gamma}_{ii}=1$

Maximization step

$$\hat{\phi}_j = \frac{N_j}{n}$$
 with $N_j = \sum_i \hat{\gamma}_{ij}$;

$$\hat{\boldsymbol{\mu}}_{i} = rac{1}{N_{i}} \sum_{i} \hat{\gamma}_{ij} \mathbf{x}_{i}$$
 ;

$$\hat{\Sigma}_j = rac{1}{N_i} \sum_i \hat{\gamma}_{ij} (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j) (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j)^T$$

The nightmare of any EECS grad student around the world

Initialization

- ightarrow Select k random points as initial means $\hat{m{\mu}}_1,\ldots,\hat{m{\mu}}_k$
- \to Init all covariance matrices $\hat{\Sigma}_1,\dots,\hat{\Sigma}_k$ as whole data sample covariance matrix $\hat{\Sigma}$
- ightarrow Set uniform mixture weights $\hat{\phi}_1,\ldots,\hat{\phi}_k=rac{1}{k}$

Alternate until convergence

Expectation step

ightarrow Compute membership weight $\hat{\gamma}_{ij}$ of \mathbf{x}_i with respect to \mathbf{j}^{th} component $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \Sigma_j)$

$$\hat{\gamma}_{ij} = \frac{\hat{\phi}_{j} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{j}, \hat{\boldsymbol{\Sigma}}_{j})}{\sum_{m=1}^{k} \hat{\phi}_{m} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{m}, \hat{\boldsymbol{\Sigma}}_{m})}$$

 $\hat{\gamma}_{ij} \equiv$ posterior probability of jth component given data $\mathbf{x}_i \to \sum_{i=1}^k \hat{\gamma}_{ij} = 1$

Maximization step

$$\hat{\phi}_j = \frac{N_j}{n}$$
 with $N_j = \sum_i \hat{\gamma}_{ij}$;

$$\hat{\boldsymbol{\mu}}_{i} = rac{1}{N_{i}} \sum_{i} \hat{\gamma}_{ij} \mathbf{x}_{i}$$
 ;

$$\hat{\Sigma}_j = rac{1}{N_i} \sum_i \hat{\gamma}_{ij} (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j) (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j)^{\mathsf{T}}$$

The nightmare of any EECS grad student around the world

Initialization

- ightarrow Select k random points as initial means $\hat{m{\mu}}_1,\ldots,\hat{m{\mu}}_k$
- \to Init all covariance matrices $\hat{\Sigma}_1,\dots,\hat{\Sigma}_k$ as whole data sample covariance matrix $\hat{\Sigma}$
- ightarrow Set uniform mixture weights $\hat{\phi}_1,\ldots,\hat{\phi}_k=rac{1}{k}$

Alternate until convergence

Expectation step

ightarrow Compute membership weight $\hat{\gamma}_{ij}$ of \mathbf{x}_i with respect to \mathbf{j}^{th} component $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \Sigma_j)$

$$\hat{\gamma}_{ij} = \frac{\hat{\phi}_{j} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{j}, \hat{\boldsymbol{\Sigma}}_{j})}{\sum_{m=1}^{k} \hat{\phi}_{m} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{m}, \hat{\boldsymbol{\Sigma}}_{m})}$$

 $\hat{\gamma}_{ij}\equiv$ posterior probability of jth component given data $\mathbf{x}_i\to\sum_{i=1}^k\hat{\gamma}_{ii}=1$

Maximization step

$$\hat{\phi}_j = \frac{N_j}{n}$$
 with $N_j = \sum_i \hat{\gamma}_{ij}$;

$$\hat{\boldsymbol{\mu}}_{i} = rac{1}{N_{i}} \sum_{i} \hat{\gamma}_{ij} \mathbf{x}_{i}$$
 ;

$$\hat{\Sigma}_j = rac{1}{N_i} \sum_i \hat{\gamma}_{ij} (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j) (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j)^T$$

The nightmare of any EECS grad student around the world

Initialization

- ightarrow Select k random points as initial means $\hat{m{\mu}}_1,\ldots,\hat{m{\mu}}_k$
- \to Init all covariance matrices $\hat{\Sigma}_1,\dots,\hat{\Sigma}_k$ as whole data sample covariance matrix $\hat{\Sigma}$
- ightarrow Set uniform mixture weights $\hat{\phi}_1,\ldots,\hat{\phi}_k=rac{1}{k}$

Alternate until convergence

Expectation step

ightarrow Compute membership weight $\hat{\gamma}_{ij}$ of \mathbf{x}_i with respect to \mathbf{j}^{th} component $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \Sigma_j)$

$$\hat{\gamma}_{ij} = \frac{\hat{\phi}_{j} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{j}, \hat{\boldsymbol{\Sigma}}_{j})}{\sum_{m=1}^{k} \hat{\phi}_{m} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{m}, \hat{\boldsymbol{\Sigma}}_{m})}$$

 $\hat{\gamma}_{ij}\equiv$ posterior probability of jth component given data $\mathbf{x}_i\to\sum_{i=1}^k\hat{\gamma}_{ii}=1$

Maximization step

$$\hat{\phi}_j = \frac{N_j}{n}$$
 with $N_j = \sum_i \hat{\gamma}_{ij}$;

$$\hat{\boldsymbol{\mu}}_{i} = rac{1}{N_{i}} \sum_{i} \hat{\gamma}_{ij} \mathbf{x}_{i}$$
 ;

$$\hat{\Sigma}_j = rac{1}{N_i} \sum_i \hat{\gamma}_{ij} (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j) (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j)^T$$

The nightmare of any EECS grad student around the world

Initialization

- ightarrow Select k random points as initial means $\hat{m{\mu}}_1,\ldots,\hat{m{\mu}}_k$
- \to Init all covariance matrices $\hat{\Sigma}_1,\dots,\hat{\Sigma}_k$ as whole data sample covariance matrix $\hat{\Sigma}$
- ightarrow Set uniform mixture weights $\hat{\phi}_1,\ldots,\hat{\phi}_k=rac{1}{k}$

Alternate until convergence

Expectation step

ightarrow Compute membership weight $\hat{\gamma}_{ij}$ of \mathbf{x}_i with respect to \mathbf{j}^{th} component $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \Sigma_j)$

$$\hat{\gamma}_{ij} = \frac{\hat{\phi}_{j} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{j}, \hat{\boldsymbol{\Sigma}}_{j})}{\sum_{m=1}^{k} \hat{\phi}_{m} \mathcal{N}(\mathbf{x}_{i} | \hat{\boldsymbol{\mu}}_{m}, \hat{\boldsymbol{\Sigma}}_{m})}$$

 $\hat{\gamma}_{ij}\equiv$ posterior probability of jth component given data $\mathbf{x}_i\to\sum_{i=1}^k\hat{\gamma}_{ii}=1$

Maximization step

$$\hat{\phi}_j = \frac{N_j}{n}$$
 with $N_j = \sum_i \hat{\gamma}_{ij}$;

$$\hat{\boldsymbol{\mu}}_{i} = rac{1}{N_{i}} \sum_{i} \hat{\gamma}_{ij} \mathbf{x}_{i}$$
 ;

$$\hat{\Sigma}_j = rac{1}{N_i} \sum_i \hat{\gamma}_{ij} (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j) (\mathbf{x}_i - \hat{oldsymbol{\mu}}_j)^T$$

k-means vs GMM

Let the fight begin

Worth the pain, right?

Kernel density estimation

Nonparametric estimation

Goal: Estimate probability density function f based on observation $x_1 \ldots, x_n$ only, assumed to derive from f (otherwise wtf are we doing here?)

The kernel density estimator with bandwidth h at a given point x is given by

$$\widehat{f}_h(x) = \frac{1}{n} \sum_{i=1}^n K_h(x - x_i) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right),$$

Kernel density estimation

Nonparametric estimation

Goal: Estimate probability density function f based on observation $x_1 \ldots, x_n$ only, assumed to derive from f (otherwise wtf are we doing here?)

The kernel density estimator with bandwidth h at a given point x is given by

$$\widehat{f_h}(x) = \frac{1}{n} \sum_{i=1}^n K_h(x - x_i) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right),$$

