SVM application with R

Introduction

- Support Vector Machine is one of the most popular supervised machine learning algorithms.
 - The training of the model is very efficient
 - And the kernel function allows us to fit a non-linear curve as the classification boundary
- Agenda
 - Example 1: face recognition
 - Understanding SVM
 - Example 2: spam email classification (hands-on)

Example 1: Yale face recognition (1/4)

- This example aims to compare SVM with KNN and show the visualization of SVM model.
- Data: <u>Yale FR database</u>, 494 frontal face picture of 38 people (13 picture per person), with resolution of 192x168.

- Learning target: recognize the identity of the photo.
- Training and test: 50 photos are randomly selected as test set
- Algorithm comparison: SVD+KNN vs SVM
- SVM strategy: 703* "one vs one" classifiers are built

^{*} Choose 2 from 38

Example 1: Yale face recognition (2/4)

Solution 1:

- SVD + 1-nearest-neighbor
- Result: reduce dimension to less than 444 and achieve the highest accuracy of 47/50.

Solution 2:

- SVM + Support Vector Face
- Result: achieve accuracy of 50/50, SV-Face is used to visualize the model

Comments:

- Solution 1 is a quick solution and it fits for huge training set scenarios, yet
 it does not generate any statistical information of the training set.
- Solution 2 is slower than solution 1 but it is generalizable, and compared to other classification algorithm, it is more stable because it focus on the boundary of different classes.

Example 1: Yale face recognition (3/4)

Linear classification function:

$$f(x) = \left(\sum_{i} \alpha_{i} x_{i} y_{i}\right)^{T} x + b$$

• Support Vector Face—visualization of f(x)

Example 1: Yale face recognition (4/4)

Visualization of the distance

Understanding SVM (1/5)

- SVM is trying to find
 - Boundary points (support vectors)
 - Maximum in-between distance

Boundary function

$$y = \sum_{s} \alpha_{s} x_{s} x + b$$
; s for all support vectors

Boundary points defines separation line

Cost function

$$cost = \frac{1}{2}||w||^2 - \sum_{i} \alpha_i (y_i(wx_i) + b) - 1) + C \sum_{i} \xi_i - \sum_{i} r_i \xi_i for \ i = 1, 2, ..., n$$

Change to kernel function $K(w, x_i)$ for non-linear fitting

Tolerance of outliers, avoiding over fitting

Understanding SVM (2/5)

Input & Output

- Input:
 - Data: numerical, ordinal, categorical
 - Parameters:
 - + Slack variable C
 - + Kernel functions and parameters
- Output:
 - SV index: which are the boundary points
 - Coefficients

Understanding SVM (3/5)

Kernel function

Why we need kernel?

-Non-linear boundary and high dimension projection

Understanding SVM (4/5)

Gaussian Kernel in 2D space

SVM classification plot

Understanding SVM (5/5)

Cost function

$$cost = \frac{1}{2}||w||^2 - \sum_{i} \alpha_i (y_i(K(w, x_i) + b) - 1) + C \sum_{i} \xi_i - \sum_{i} r_i \xi_i for i$$

$$= 1, 2, ..., n$$

Polynomial Kernel

$$K(w, x) = (w^T x + b)^d$$

Gaussian Kernel

$$K(w, x) = a \exp\left(-\frac{(w - x)^2}{2\sigma^2}\right)$$

- / larger/smaller value increases the boundary curvature
- Other Kernels

Example 2: spam email

R code hands-on

- Loading library, data
- Segregating the dataset to training and testing set
- Training SVM and result interpretation
- Tuning parameters

Tips for R programming

- Describe your problem with key words and Google them
- Use R help
- Visualize each steps

Example 2: spam email

Error on the test set

Kernel/ para	ameter	_	Spam->Nonspam False negative	False rate
Linear		6.7%	11.1%	8.4%
Gausian(RDB)				
(sigma)	0.01	4.5%	11.5%	7.3%
	0.03	4.5%	12.4%	7.7%
	0.05	4.1%	14.3%	8.1%
	0.07	4.3%	16.0%	9.0%
	0.09	4.1%	18.1%	9.7%
Polynomial				
(degree)	2	10.3%	13.2%	11.4%
	3	9.4%	15.3%	11.7%
	4	11.7%	14.7%	12.9%

