Outline

When is a pole spurious?

I. Markovsky

joint work with J. Boets, B. Vanluyten, K. De Cock, B. De Moor

K.U.Leuven, ESAT-SISTA

Introduction

LTI systems

Spurious poles

Simulation example

SISTA

Introduction

Modal analysis → System identification

given data from a mechanical structure, modal analysis: find eigen frequencies and dampings

linear system identification: given observed data, find LTI system that fits that data

the frequencies and dampings are parameters of an LTI system

modal analysis is a special linear system identification problem

operational modal analysis \leftrightarrow ARMA or autonomous SYSID

Introduction

Detect physical poles → Choose model order

important questions

- in modal analysis: detect physical poles
- in system identification: choose the model order

tools used to answer these questions

- in modal analysis: stabilization diagram
- in system identification:
 - balanced model reduction
 - decay of singular values (in subspace identification)
 - Kumaresan–Tufts's method
 - Akaike's information criterion
 - Cross-validation

Our aim

give a definition of a physical/spurious pole

show that

"detecting physical poles" and "choosing model order"

are equivalent problems

compare the methods

- stabilization diagram
- balanced model reduction
- subspace identification
- Kumaresan–Tufts's

on simulation example

SISTA

ntroduction

LTI systems

Spurious pole

Simulation examp

Representations and parameters of LTI systems

notation:

$$\mathscr{B}(R) := \{ w \in (\mathbb{R}^{w})^{\mathbb{N}} \mid (\mathsf{DE}) \text{ holds} \}$$

$$\mathscr{B}_{\mathsf{i}/\mathsf{s}/\mathsf{o}}(A, B, C, D, \Pi) := \{ w \in (\mathbb{R}^{w})^{\mathbb{N}} \mid (\mathsf{SS}) \text{ holds} \}$$

lag of (DE)order of (SS)

given $\mathscr{B} \in \mathscr{L}$, the smallest lag $\mathbf{I}(\mathscr{B})$ and order $\mathbf{n}(\mathscr{B})$ are independent of the representations

minimal kernel and state space representations

Representations and parameters of LTI systems

 \mathscr{L} — discrete-time LTI model class

 σ — shift operator $(\sigma w)(t) := w(t+1)$

any $\mathcal{B} \in \mathcal{L}$ can be represented as a solution set of a constant coefficients difference equation (kernel representation)

$$R_0 \sigma^0 w + R_1 \sigma^1 w + \dots + R_1 \sigma^1 w = 0$$
 (DE)

or a first order system of equations (input/state/output repr.)

$$w = \Pi \operatorname{col}(u, y), \quad \sigma x = Ax + Bu, \quad y = Cx + Du,$$
 (SS)

where Π is a permutation matrix

the polynomial matrix $R(\xi) := R_0 \xi^0 + R_1 \xi^1 + \cdots + R_1 \xi^1$ and the matrices (A, B, C, D, Π) are parameters of \mathscr{B}

SISTA

Introduction

LTI systems

Spurious pole:

Simulation example

Autonomous systems

 \mathcal{L}_0 — model class of autonomous systems

kernel representation

$$P_0 \sigma^0 y + P_1 \sigma^1 y + \dots + P_1 \sigma^1 y = 0$$
, $\det(P(\xi)) \neq 0$ (DE AUT)

state space representation

$$\sigma x = Ax, \quad y = Cx$$
 (SS AUT)

 $\mathscr{B}(P)$, $\mathscr{B}(A,C)$ — systems defined by (DE AUT) and (SS AUT)

 $\lambda(\mathscr{B})$ — the poles of \mathscr{B} (zeros of $\det(P(\xi)) = 0$)

if $\mathscr{B}(A,C)$ is minimal, the set of eigenvalues $\lambda(A) \equiv \lambda(\mathscr{B})$

Spurious poles

"Physical" poles \leftrightarrow "True" data generating system

Consider given: v_d — data and \mathcal{M} — model class

the intuition behind "physical" pole is:

 λ is a physical pole for $y_{\rm d}$

 λ is a pole of a true data generating system $\bar{\mathscr{B}} \in \mathscr{M}$ for v_d

The question "when is a pole spurious" is actually the question:

What does it mean " $\bar{\mathscr{B}} \in \mathscr{M}$ is a data generating system for y_d "?

SISTA

Spurious poles

Alternative deterministic approach

Definition (Most powerful unfalsified model (MPUM))

 $\mathscr{B}_{\mathrm{mpum}}(y_{\mathrm{d}})$ is the MPUM of $y_{\mathrm{d}} \in (\mathbb{R}^{p})^{T}$ in the model class \mathscr{L}^{p} if

- 1. $\mathscr{B}_{mpum}(y_d)$ is unfalsified by y_d , i.e., $y_d \in \mathscr{B}_{mpum}(y_d)$,
- 2. $\mathscr{B}_{mpum}(y_d)$ is in the model class, *i.e.*, $\mathscr{B}_{mpum}(y_d) \in \mathscr{L}^p$, and
- 3. any other unfalsified model in \mathcal{L}^{p} is less powerful, *i.e.*,

$$y_{\mathrm{d}} \in \mathscr{B} \in \mathscr{L}^{\mathrm{p}} \implies \mathscr{B}_{\mathrm{mpum}}(y_{\mathrm{d}}) \subseteq \mathscr{B}.$$

Notes:

- the MPUM exists and is unique (no prior assumptions)
- there are algorithms for computing it from y_d
- $\mathcal{B}_{mpum}(y_d)$ is an exact model for y_d

Classical approaches to define "true" system

let \mathcal{M} be the class of autonomous LTI systems \mathcal{L}_0

output error: v_d is a noise corrupted trajectory of $\bar{\mathscr{B}}$

$$y_{\rm d} = \bar{y} + \tilde{y}, \quad \text{where} \quad \bar{y} \in \bar{\mathscr{B}} \in \mathscr{L}_0 \quad \text{and} \quad \tilde{y} \sim \mathsf{N}(0, \sigma^2 I) \quad \mathsf{(OE)}$$

ARMA: $col(y_d, e_d) \in \bar{\mathcal{B}}$, where $e_d \sim N(0, \sigma^2 I)$

the classical approaches are stochastic, they

- assume that $\bar{\mathscr{B}}$ exists in the model class, but
- even if $\bar{\mathscr{B}} \in \mathscr{M}$ exists, it is not computable from v_4

Spurious poles

Alternative deterministic approach

Definition (Physical poles)

The poles $\lambda(\mathscr{B}_{mpum}(y_d))$ of the MPUM of $y_d \in (\mathbb{R}^p)^T$ are called physical poles w.r.t. the data y_d . Any $z \in \mathbb{C}$, such that $z \notin \lambda(\mathscr{B}_{mpum}(y_d))$, is called a spurious pole.

⇒ by computing the MPUM, we compute the physical poles

question:

Assuming there is a "true" data generating system $\bar{\mathscr{B}}$ for y_d , i.e., $y_d \in \bar{\mathcal{B}}$, under want conditions $\mathcal{B}_{mpum}(y_d)$ coincides with $\bar{\mathscr{B}}$?

ntroduction

LTI systems

Spurious poles

Simulati

Recovering the data generating system

Theorem (Identifiability)

If $\mathscr{B} \in \mathscr{L}^{p,n}_{0,1}$ and $y_d \in (\mathbb{R}^p)^T$ satisfy the following conditions:

- 1. y_d is an exact trajectory of \mathcal{B} , i.e., $y_d \in \mathcal{B}|_{[1,T]}$, and
- 2. y_d is persistently exciting of order $\mathbf{n}(\mathcal{B})$,

then $\mathscr{B} = \mathscr{B}_{\mathrm{mpum}}(y_{\mathrm{d}})$.

condition 2 is restrictive for practical applications → need of approximation

SISTA

troduction

LTI systems

Spurious poles

Simulation example

Physical modes in the example

Simulation setup

exact data generating system $\bar{\mathscr{B}}\in\mathscr{L}^1_{0,4}$ with physical poles

$$\lambda(\bar{\mathcal{B}}) = \{0.8556 \pm 0.4674j, 0.8980 \pm 0.3797j\}$$

exact trajectory $\textit{y}_{d} \in \mathbb{R}^{250},$ persistently exciting of order 4

the MPUM of y_d is $\mathcal{B}(P)$, where

$$P(\xi) = 0.1278\xi^{0} - 0.4716\xi^{1} + 0.7037\xi^{2} - 0.4961\xi^{3} + 0.1414\xi^{4}$$

$$\mathscr{B}(P) = \bar{\mathscr{B}}$$
 and $\lambda(\mathscr{B}(P)) = \lambda(\bar{\mathscr{B}})$

SISTA

Introduction

LTI systems

Spurious pole

Simulation example

Noisy data

perturb the exact data $y_{\rm d}$ by a zero mean white Gaussian noise consider a bounded complexity model class $\mathcal{L}_{0,1}$

for given 1, we can find an approximation $\widehat{\mathscr{B}} \in \mathscr{L}_{0,1}$ of $\mathscr{B}_{mpum}(y_d)$

Main question: How to find the correct 1? Compared methods:

- 1. stabilization diagram
- method of Kumaresan and Tufts
- 3. singular value analysis in Kung's algorithm
- 4. principal angle analysis in subspace identification
- 5. trade-off curve, used with a maximum likelihood method

ntroduction LTI systems Spurious poles Simulation example

Stabilization diagram

Introduction LTI systems Spurious poles Simulation example

Method of Kumaresan and Tufts L = 20

Introduction LTI systems Spurious poles Simulation example

Method of Kumaresan and Tufts

assuming exact data, specifying a higher order L > 1 implies

$$\lambda\left(\mathscr{B}(\widehat{P})
ight)=\lambda\left(\mathscr{B}(P)
ight)\cup\lambda\left(\mathscr{B}(\mathsf{S})
ight)$$

where P, degree(P) = L-1-1 is arbitrary

 $\implies \widehat{\mathscr{B}}$ contains all physical poles and L-1-1 spurious poles

S depends on the identification method

Kumaresan–Tufts method — force the spurious poles to be outside the unit circle

 \implies the stable physical poles can be extracted

SISTA

Introduction

_TI system:

Spurious pole:

Simulation example

Singular value analysis in Kung's algorithm

Introduction LTI systems Spurious poles Simulation example

Misfit-complexity trade-off

Introduction LTI systems Spurious poles Simulation example

Thank you

SISTA

Introduction LTI systems Spurious poles Simulation example

Conclusions

- can be done in many ways (one of which is the stabilization diagram)
- Kumaresan-Tufts', Kung's, and subspace methods
 - 1. compute a model of complexity higher than intended
 - 2. perform model reduction

they have tests that indicate an appropriate low order

