Работа 1.1.1

Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромой проволоки

Валеев Рауф Раушанович группа 825

6 сентября 2018 г.

В работе используеются: линейка, линейка, штангенциркуль, микрометр, отрезок проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, реостат, ключ.

- 1. Точность измерения с помощью штангенциркуля -0.1 мм. Точность измерения с помощью микрометра -0.01 мм.
- 2. Измеряем диаметр проволки с помощью штангенциркуля $(d_1, \text{ табл. } 1)$ и микрометра $(d_2, \text{ табл. } 2)$ на 10 различных участках.

При измерении диаметра проволоки штангенциркулем случайная погрешность отсутствует. Следовательно, точность резульата определяется только точностью штангенциркуля $\Rightarrow d_1 = (0, 4 \pm 0, 1)$ мм

При измерении микрометром есть как систематичская, так и случайная ошибка:

$$\sigma_{\mathrm{сист}} = 0,01$$
 мм, $\sigma_{\mathrm{сл}} = \frac{1}{N} \cdot \sqrt{\sum_{i=1}^{N} (d - \overline{d})^2} = \frac{1}{10} \sqrt{2, 4 \cdot 10^{-4}} \approx 1,6 \cdot 10^{-3}$ мм
$$\sigma = \sqrt{\sigma_{\mathrm{сист}}^2 + \sigma_{\mathrm{сл}}^2} \approx 0,01$$
мм
$$d_2 = (0,364 \pm 0,1)$$
мм

Поскольку погрешность микрометра на порядок меньше погрешности штангенциркуля, для расчета площади поперечного сечения проволоки будем использовать значение, полученное измерением с помощью микрометра \Rightarrow

3. Определим площадь поперечного сечения проволоки:

$$S = \frac{\pi d^2}{4} = \frac{3,14 \cdot (0,364)^2}{4} \approx 0,104$$
mm

Погрешность находим по формуле:

$$\left(\frac{\sigma_s}{S}\right)^2 = \frac{2\ \sigma_{d_2}}{d_2} \Rightarrow \frac{\sigma_s}{S} = \frac{\sqrt{2}\ \sigma_{d_2}}{d_2} \Rightarrow \sigma_s = \frac{\sqrt{2}\ \sigma_{d_2}S}{d_2} \approx 4,04\cdot 10^{-3} \mathrm{mm}$$

- 4. см. табл. 2
- 5. Очевидно, что надо мерять способом показанным на рис. 1а, так как: для схемы на рисунке 1а: $R_{\rm np}/R_{\rm V}=5/400=0,0125,$ т.е. 1,25 а для схемы на рисунке 16: $R_{\rm A}/R_{\rm np}=1,2/5=0,24,$ т.е. 24

6. Собираем схему рис. 1

Рис. 1. Схема измерения вольт-амперной характеристики проволоки

- 7. Опыт проводим для трех величин: $l_1=(50\pm0,1)~{\rm cm}, l_2=(30\pm0,1)~{\rm cm}, l_3=(20\pm0,1)~{\rm cm}.$ Измерения ведем для возрастающих и убывающих значений тока, все измерения записываем в табл. 3, табл. 4, табл. 5.
- 8. Строим графики зависимостей V=f(I) для всех трех отрезков проволоки, так как 1 прямая не проходит через все точки, но с точность до погрешностей мы ее провести можем, то, ищем график прямой V=f(I) по формуле

$$V = \frac{\langle VI \rangle}{\langle I^2 \rangle} x$$

- 9. Запишем в табл. 6 данные средних значений некоторых величин, которые мы в дальнейшем будем использовать.
- 10. По формулам

$$\begin{split} \sigma_{R_{\rm cp}}^{\rm chyq} &= \frac{1}{\sqrt{N}} \cdot \sqrt{\frac{\left\langle V^2 \right\rangle}{\left\langle I^2 \right\rangle} - R_{\rm cp}^2} \\ \sigma_{R_{\rm cp}}^{\rm chct} &= R_{\rm cp} \sqrt{\left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_I}{I}\right)^2} \\ \sigma_R &= \sqrt{\sigma_{\rm chct}^2 + \sigma_{\rm ch}^2} \\ R_{\rm cp} &= \frac{\left\langle VI \right\rangle}{\left\langle I^2 \right\rangle} \end{split}$$

Находим сопротивления и погрешности для каждого из участков проволоки. Данные заносим в табл. 7. В эту же таблицу заносим результаты измерения сопротивления мостом Уитстона (P4833), изображенном ниже.

11. по формулам

$$\sigma_{\rho} = \rho \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_S}{S}\right)^2}$$
$$\rho = \frac{R \cdot S}{l}$$

находим удельное сопротивление и погрешность для каждой из длин проволоки и заносим эти значения в табл.8.

Окончательно:
$$\rho=(1,08\pm0,04)\frac{{\rm Om\cdot mm^2}}{{\rm M}}$$
 Полученное значение удельного сопротивления сравниваем с табличны-

Полученное значение удельного сопротивления сравниваем с табличными значениями. В справочнике (Физические велечины. М.: Энергоиздат, 1991. С. 444) для удельного сопротивления нихрома при 20 °C в зависимости от массового содержания компонента сплава меняются в промежутке (1,12–0,97) $\frac{\mathrm{Om} \cdot \mathrm{mm}^2}{\mathrm{M}}$. Полученное значение наиболее близко к значению 1,06 $\frac{\mathrm{Om} \cdot \mathrm{mm}^2}{\mathrm{M}}$ для сплава с содержанием 78 процентов Никеля, 20 процентов Хрома и 2 Марганца (проценты по массе).

Таблица 1: Результаты измерения диаметра проволоки

	1	2	3	4	5	6	7	8	9	10
d_1 , MM	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
d_2 , MM	0,37	0,36	0,36	0,36	0,37	0,36	0,37	0,37	0,36	0,36
		$\overline{d_1} = 0,4 \text{ mm}$					$\overline{d_2}$ =	= 0,364	MM	

Таблица 2: Основные характеристики амперметра и вольтметра

	Вольтметр	Амперметр
Система	Магнитоэлектрическая	Электромагнитная
Погрешность	Класс точности: 0,5	$0.002{ m X} + 2{ m k}$, где ${ m X}$ - значение
		измеряемой велечини, а k - еди-
		ница младшего разряда
Предел измерений	0,6 B	автоматически настраивается
x_n		в зависимости от силы тока
Число делений	150	_
шкалы п		
Цена делений	4 мВ/дел	_
x_n/n		
Чувствительность	250 дел/В	_
n/x_n		
Абсолютная по-	1,5	_
грешность $\triangle x_M$		
Внутреннее сопро-	400 Ом	1,2 Ом
тивление прибора		
(на данном преде-		
ле измерений)		

Таблица 3: Результаты ВАХ для l_1

	1	2	3	4	5	6	7	8	9	10
V, мВ	464	420	356	180	80	0	152	260	412	436
σ_V , мВ	0,93	0,84	0,71	0,36	0,16	0	0,3	0,52	0,82	0,87
І, мА	90	81,35	69,1	34,16	14,91	0	29,44	51,17	80,14	84,2
σ_I , мА	0,2	0,18	0,16	0,09	0,05	0,0002	0,08	0,12	0,18	0,19

Таблица 4: Результаты ВАХ для l_2

	1	2	3	4	5	6	7	8	9	10
V, MB	288	236	146	92	24	0	68	104	176	252
σ_V , MB	0,58	0,47	0,3	0,18	0,05	0	0,14	0,21	0,35	0,5
І, мА	93,17	74,32	46,68	29,69	7,55	0	22	34,52	55,79	80,78
σ_I , MA	0,21	0,17	0,11	0,06	0,02	0,0002	0,05	0,07	0,13	0,18

Таблица 5: Результаты ВАХ для l_1

Г		1	2	3	4	5	6	7	8	9
Γ	V, мВ	204	152	100	60	0	28	68	128	184
Γ	σ_V , мВ	0,41	0,3	0,2	0,12	0	0,06	0,14	0,26	0,37
Γ	І, мА	96,46	71,6	47,37	27,1	0	11,92	33,56	61,39	87,23
	σ_I , мА	0,21	0,14	0,11	0,07	0,0002	0,04	0,08	0,14	0,19

Таблица 6: Средние величины

	$\langle V \rangle$	$\langle I \rangle$	$\langle I^2 \rangle$	$\langle V^2 \rangle$	$\langle IV \rangle$
l_1	276	53,45	100777,6	3783,9	19537,6
l_2	138,6	44,45	27891,6	2863,52	8936,21
l_3	92,4	43,66	13396,8	3005,56	6344,81

Таблица 7: Результаты измерения сопротивления провлоки

l_1	l_2	l_3					
$R_0 = 5{,}1472 \; { m Om} \; ({ m mo} \; { m P4833})$	$R_0 = 3{,}0999 \; \mathrm{Om} \; (\mathrm{по} \; \mathrm{P4833})$	$R_0 = 2{,}0857~{ m Om}~{ m (по}~{ m P4833)}$					
$R_{ m cp}=5{,}16~{ m Om}$	$R_{ m cp}=3{,}12\;{ m O}$ м	$R_{ m cp}=2{,}11\;{ m O}{_{ m M}}$					
$\sigma_R^{ m cn ar{y} \Psi} = 0.07 \; { m OM}$	$\sigma_{R}^{ ext{c.ny'q}}=0.008 \; ext{Om}$	$\sigma_{R}^{ ext{c.ny-q}}=0{,}008\; ext{Om}$					
$\sigma_R^{ ext{cuct}} = 0.015 \; ext{Om}$	$\sigma_R^{ ext{chct}} = 0.014 \; ext{Om}$	$\sigma_R^{ ext{chct}} = 0.012 ext{Om}$					
$\sigma_R=0.07~{ m Om}$	$\sigma_R=0.017\;\mathrm{O}$ м	$\sigma_R=0{,}014$ Ом					

l, м	$\rho, \frac{\mathrm{Om} \cdot \mathrm{mm}^2}{\mathrm{m}}$	$\sigma_{\rho}, \frac{\mathrm{O}_{\mathrm{M}} \cdot \mathrm{MM}^2}{\mathrm{M}}$
0,5	1,07	0,04
0,3	1,08	0,04
0,2	1,09	0,04