УЛК 576.895.132: 576.312.37

ГЕНЕТИКО-ФИЗИОЛОГИЧЕСКАЯ СОВМЕСТИМОСТЬ, КАРИОТИПЫ И СИСТЕМАТИКА СТЕБЛЕВЫХ НЕМАТОД

Н. М. Ладыгина, В. Н. Барабашова

Научно-исследовательский институт биологии Харьковского университета

Вид Ditylenchus dipsaci рассматривается как комплекс видов и форм, находящихся на разных этапах внутривидовой дифференциации и в становлении новых видов.

Стеблевые нематоды поражают сотни видов возделываемых и дикорастущих растений из многих семейств и широко распространены в зоне умеренного климата. Известно несколько видов этой группы фитогельминтов, в том числе *Ditylenchus dipsaci* (Kühn, 1857), Filipjev, 1936, объем которого дискуссионен.

В статье обобщены оригинальные и литературные данные по скрещиванию и кариотипам различных дитиленхов комплекса *D. dipsaci* (а также стеблевой нематоды картофеля — *Ditylenchus destructor* Thorne, 1945), на основании которых рассматривается их систематическое положение.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ОБСУЖДЕНИЕ

К настоящему времени изучена генетико-физиологическая совместимость стеблевых нематод комплекса $D.\ dipsaci$ из ржи, овса, картофеля, земляники, кормовой свеклы, лука, чеснока, петрушки, пастернака, красного и белого клеверов, клевера Trifolium sp. (очевидно, тоже красного), люцерны, конских бобов, нарцисса, флокса, тюльпана, ворсянки сукновальной — Dipsacus fullonum L., валерианы обыкновенной — Valeriana officinalis L., наперстянки желтой — Digitalis lutea L., подорожника приморского — Plantago maritima L., осота щетинистого — Cirsium setosum Bieb., одуванчика лекарственного — Taraxacum officinale Web. et Wigg. и, возможно, из других растений (в некоторых работах перечень объектов скрещиваний не приводится), а кроме того, $D.\ destructor$ из картофеля (Sturhan, 1964, 1966, 1969, 1970; Eriksson, 1965, 1974; Webster, 1967; Ладыгина, 1969, 1970, 1973—1976, 1978a, 19786; Windrich, 1974; Caubel, 1977 (1978)).

Кариотипы изучены в половых клетках D. destructor из картофеля и стеблевых нематод комплекса D. dipsaci из земляники, лука, чеснока, петрушки, пастернака, флокса, нарцисса, красного клевера, конских бобов, осота щетинистого, резака обыкновенного — Falcaria vulgaris Bernth, одуванчика лекарственного, ястребинки луговой — Hieracium pratense Tauch. (Zahn.) и волосистой — H. pilosella L., горлюхи — Picris sp. (Парамонов, 1962, 1970; Барабашова, 1974—1976, 1978, 1979; Sturhan, 1969, 1970), а также у не названных Штурханом, Триантафиллоу (Triantaphyllou, 1971) и Каубелем (Caubel, 1977 (1978)) дитиленхов этой группы.

Установлено, что D. destructor из картофеля имеет набор хромосом $2\pi=48$ и не скрещивается с D. dipsaci из лука, чеснока, петрушки и пастернака, у которых основные хромосомные числа $2\pi=24$ (Ладыгина, 1970, 1975а; Барабашова, 1974, 1978; Ладыгина, Барабашова, 1976).

Дитиленхи одуванчика лекарственного и осота щетинистого обладают основными хромосомными числами 2n=44 и 2n=52 соответственно. Они скрещиваются с D. dipsaci из лука и красного клевера, характеризующимися низкими хромосомными числами 2n=24. Однако эти дитиленхи генетически не совместимы (Барабашова, 1974-1976, 1978, 1979; Ладыгина, 1978а, 19786). Кроме того, стеблевые нематоды одуванчика и осота отличаются от D. dipsaci по морфологии. Судя по кариотипам и морфологии, дитиленхи одуванчика лекарственного и осота щетинистого являются разными видами. Возможно, что украинская популяция стеблевой нематоды одуванчика относится к Ditylenchus sonchophila Kirjanova, 1958. Дитиленхи осота щетинистого и осота розового (или бодяка полевого) — Cirsium arvense Scop. принадлежат к одному и тому же еще не описанному виду, а не к D. sonchophila, как мы считали ранее.

У дитиленха резака преобладающее хромосомное число 2n=56, хотя в некоторых половых клетках наблюдались такие же хромосомные числа, как у стеблевой нематоды осота щетинистого (Барабашова, 1978, 1979). Эти дитиленхи имеют большое морфологическое сходство. Очевидно, стеблевые нематоды резака обыкновенного и осота щетинистого представляют собою близкие, но в определенной степени обособленные друг от друга дивергирующие формы.

Стеблевые нематоды ястребинки луговой и волосистой имеют одинаковые основные хромосомные числа $2n\!=\!46$ и, очевидно, представляют собою одну и ту же форму. По кариотипу и морфологии дитиленх ястребинки близок к дитиленху одуванчика. Но у стеблевой нематоды ястребинки обнаружена лишь одна половая клетка с $2n\!=\!44$, числом, характерным для дитиленха одуванчика. Это позволяет думать, что дитиленхи ястребинки и одуванчика, вероятно, являются генетически обособленными разными видами. Данные по кариотипу стеблевой нематоды горлюхи $(2n\!=\!36\!-\!38)$ свидетельствуют о ее видовой самостоятельности (Барабашова, 1976, 1978, 1979).

У стеблевых нематод подорожника приморского и конских бобов хромосомные числа также высокие, приблизительно 2n=54. Эти дитиленхи слабо отличаются от диплоидных $D.\ dipsaci$ по морфологии, сходны с ними по биологии и кругу растений-хозяев, а при скрещивании с диплоидами дают жизнеспособное потомство F_1 . Близкие к тетраплоидным хромосомные числа позволяют предполагать полиплоидное происхождение дитиленхов из конских бобов и подорожника приморского и рассматривать их в качестве видов-двойников $D.\ dipsaci$ (Sturhan, 1969—1971).

Большинство изученных дитиленхов $D.\ dipsaci$ возделываемых растений имеет $2n{=}24$, скрещивается друг с другом и дает плодовитое потомство.

Основные хромосомные числа 2n=24 обнаружены у стеблевых нематод лука, чеснока, земляники, петрушки, пастернака, красного клевера, флокса, нарцисса, а также у ряда дитиленхов, исследованных, но не перечисленных Штурханом, Триантафиллоу и Каубелем. Эти дитиленхи, очевидно, представляют собою диплоидные формы (Sturhan, 1969—1971; Triantaphyllou, 1971; Барабашова, 1974, 1976, 1978, 1979; Caubel, 1977 (1978)). Сходство кариотипов по числу хромосом у стеблевых нематод группы D. dipsaci возделываемых растений, за исключением формы из конских бобов, свидетельствует о большей ее однородности по сравнению с группой дитиленхов дикорастущих растений, что согласуется с морфологическими данными.

Вместе с тем у всех указанных выше диплоидных форм стеблевых нематод, а также у полиплоидов из дикорастущих растений, обнаружены половые клетки с гипо- и гипермодальным числом хромосом. Поскольку аберрации последнего типа у ряда форм преобладают, неправильное расхождение хромосом в метафазе мейоза, наблюдавшееся Барабашовой (1974)

¹ Приведенное Парамоновым (1962) для дитиленха земляники хромосомное число 2n=16, по-видимому, опибочно.

у дитиленха одуванчика, является, по-видимому, не единственным способом образования анеуплоидных клеток. Размах аберраций и частота встречаемости анеуплоидных клеток различны у разных дитиленхов (Sturhan, 1970, 1971; Барабашова, 1974—1976, 1978, 1979). Широко распространенное у стеблевых нематод явление анеуплоидии, по-видимому, является одним из показателей генетической неоднородности как группы в целом, так и у отдельных включаемых в ее состав форм, поскольку полиморфизм по числу хромосом наблюдается также внутри одной и той же формы и даже внутри популяций (Барабашова, 1975).

Значительная генетическая неоднородность группы D. dipsaci возделываемых растений установлена при исследовании генетико-физиологической совместимости дитиленхов различных культур.

Некоторые расы совсем не скрещивались или продуцировали нежизнеспособные яйца. Например, Штурхан (1964, 1966) получил положительные результаты только в 29 из 205 скрещиваний. По данным Эриксона (1974), красноклеверная и тюльпановая расы не давали гибрилов, однако Вебстер (1967) обнаружил бесплодные гибриды в односторонней комбинации этих дитиленхов. По его наблюдениям одностороннее скрещивание с развитием бесплодных гибридов происходило, кроме того, между дитиленхами тюльпана и стеблевыми нематодами овса и нарцисса, тогда как Уиндрих (1974) получил жизнеспособное гибридное потомство в реципрокных комбинациях тюльпановой и нарциссовой рас. Некоторые односторонне скрещивающиеся дитиленхи давали небольшое, но плодовитое потомство гибридов, например дитиленх ржи с дитиленхами овса, люцерны, свеклы, наперстянки, а также овсяная раса со свекловичной. Наряду с этим в отдельных комбинациях односторонне скрещивающихся дитиленхов, например самок валериановой расы с самцами овсяной расы, самцов люцерновой расы с самками белоклеверной и овсяной рас, развивались многочисленные гибридные популяции (Sturhan, 1964, 1966; Webster, 1967).

В группе реципрокно скрещивающихся дитиленхов во многих сочетаниях родительских пар наблюдалась односторонняя совместимость, поскольку в обратных комбинациях были обнаружены либо яйца и единичные личинки, либо стерильные гибриды или, несмотря на плодовитость гибридов в двухсторонних комбинациях, гибридные популяции развивались только в одной из них. Ситуация, соответствующая какому-нибудь одному из перечисленных вариантов проявления односторонней несовместимости реципрокно скрещивающихся форм стеблевых нематод, наблюдалась в комбинациях дитиленха красного клевера с дитиленхами люцерны, картофеля, овса, ржи и лука, при скрещиваниях овсяной расы с нарциссовой расой, белоклеверной расы с расами из овса, ржи и люцерны, флоксовой нематоды с дитиленхами лука, земляники, красного клевера, петрушки, пастернака и нарцисса, а также в других вариантах родительских пар (Sturhan, 1964, 1966; Webster, 1967; Ладыгина, 1972, 1974, 1976, 1978; Eriksson, 1974).

Вместе с тем многие двусторонне скрещивающиеся расы продуцировали многочисленное гибридное потомство в обеих комбинациях, например дитиленхи лука, земляники, красного клевера, петрушки, пастернака и нарцисса (Ладыгина, 1969, 1973, 1976, 1978б); люцерновая раса с овсяной, нарциссовой и свекловичной расами; дитиленх белого клевера с дитиленхами лука и красного клевера (Webster, 1967; Eriksson, 1974); стеблевые нематоды тюльпана и нарцисса (Windrich, 1974) и др.

В общем гибриды размножались слабее родительских форм. Во многих вариантах скрещиваний отмечены повышенная смертность гибридного потомства, нарушения структуры гибридных популяций и значительное количество анатомо-морфологических аберраций у нематод (Sturhan, 1964, 1966; Webster, 1967; Eriksson, 1965, 1974; Ладыгина, 1969, 1972—19786).

Обнаруженные в целом ряде комбинаций дитиленхов группы D. dipsaci возделываемых растений нескрещиваемость, односторонняя скрещиваемость, слабая реципрокная скрещиваемость, бесплодие, снижение плодовитости, гибель гибридов в первом или последующих поколениях, нарушения структуры и отсутствие гибридных популяций в реципрокных или односторонних комбинациях, повышенное по сравнению с контролем количество аномальных особей в гибридном потомстве — все эти факты свидетельствуют об определенной генетико-физиологической несовместимости скрещиваемых дитиленхов, о наличии механизмов репродуктивной изоляции между ними, развитых в разной степени между различными формами стеблевых нематол. Это, в свою очередь, указывает на разнообразие в уровнях дифференциации генетической структуры различных дитиленхов данной группы, в характере и глубине их генетической обособленности друг от друга (Ладыгина, 1972, 1975б, 1978б; Ладыгина, Барабашова, 1976). Однако в ряде скрещиваний отрицательные результаты могли быть следствием неблагоприятных условий опытов: подбора неподходящих общих растений-хозяев и других факторов.

Существенная генетическая неоднородность выявлена также внутри рас между популяциями различного происхождения (Webster, 1967; Eriksson, 1974; Windrich, 1974; Ладыгина, 1969, 1976, 19786, и др.).

Наличие у стеблевых нематод комплекса *D. dipsaci* полиплоидии, кариотипического полиморфизма по числу хромосом, полной или частичной несовместимости различных дитиленхов за счет развитых в разной степени механизмов репродуктивной изоляции указывает на генетическую дифференциацию данной группы от внутривидового до межвидового уровня. В основе этой дифференциации лежит адаптация к условиям существования, к специфике жизни в растениях-хозяевах.

В настоящее время общепризнано давно известное мнение о сборном характере вида $D.\ dipsaci$. Некоторые формы дитиленхов, например стеблевые нематоды люцерны, земляники, лука, флокса, красного клевера, осота огородного — Sonchus oleraceus L., пикульника обыкновенного — Galeopsis tetrahit L. и другие, были выделены рядом авторов в отдельные виды, но самостоятельность многих из них или подвергается сомнению или отвергается.

Имеющиеся сведения, прежде всего кариологические и генетические, дают основание ставить вопрос о необходимости выведения из состава $D.\ dipsaci$ в качестве самостоятельных видов стеблевых нематод осота щетинистого и осота розового (или бодяка полевого) — Ditylenchus sp., дитиленха горлюхи — $D.\ sp.$, дитиленхов подорожника приморского — $D.\ sp.$ и конских бобов — $D.\ sp.$, дитиленха одуванчика лекарственного — $D.\ sp.$ и, возможно, дитиленха ястребинки луговой и волосистой — $D.\ sp.$, если в дальнейшем не будет установлена принадлежность стеблевых нематод одуванчика и ястребинки к $D.\ sonchophila.$ Систематическое положение близкой к дитиленху осота щетинистого стеблевой нематоды резака обыкновенного неясно, но необходимость выведения ее из состава $D.\ dipsaci$ несомненна.

Эриксон (Eriksson, 1974) высказал мнение, что красноклеверная, люцерновая и белоклеверная расы, по-видимому, подходят под концепцию видов-двойников по отношению к D. dipsaci и друг к другу, так как в его опытах и в большинстве комбинаций, изученных Вебстером (1967), они оказались генетически несовместимы или почти не совместимы с другими расами D. dipsaci. Но в наших опытах (Ладыгина, 1969, 1976) были получены многочисленные жизнеспособные гибридные популяции при двусторонних скрещиваниях стеблевой нематоды красного клевера с несколькими формами дитиленхов. Вероятно, красноклеверная, а также люцерновая, белоклеверная, пастернаково-петрушковая и другие дити-

² Однако в части наших опытов могло иметь место определенное влияние многолетнего разведения красноклеверного дитиленха в луковицах лука.

ленхи, характеризующиеся существенной спецификой генетической структуры, представляют собою зарождающиеся вилы. Расы, односторонне скрещивающиеся и односторонне совместимые (в экспериментальных условиях) с остальными расами, например флоксовая, являются либо полувидами, т. е. формами, находящимися в становлении новых видов, когда видообразование еще не завершено, либо самостоятельными видами. Совместимые расы, например земляничная, луковая и другие, составляют многообразную группу внутривидовых форм с определенной генетической обособленностью друг от друга.

Таким образом, вид $D.\ dipsaci$ в настоящем объеме представляет собой комплекс видов и форм, находящихся на разных этапах внутривидовой дифференциации и в становлении новых видов. Он останется комплексным и после выведения из его состава дитиленхов, о которых говорилось выше, так как есть основания предполагать, что среди мало изученных и не изученных форм этой обширной группы стеблевых нематод имеется еще ряд

дитиленхов видового уровня.

Литература

Барабашова В. Н. 1974. Кариотипические особенности некоторых форм стеблевых нематод сборного вида Ditylenchus dipsaci (Kühn, 1857) Fil., 1936. — Паразитология, 8 (5): 408—412. Барабашова В. Н. 1975. О кариотипах стеблевых нематод красного клевера

и нарциссов. — Бюлл. Всесоюз. ин-та гельминтологии, 15: 24-28.

Барабашова В. Н. 1976. Кариотипические особенности дитиленхов диких растений. — Тез. докл. VIII Всесоюз. совещ. по нематодным болезням сельхозкультур. Кишинев: 70—71.

Барабаш ова В. Н. 1978. Кариологические исследования стеблевых нематод комплекса Ditylenchus dipsaci. — Науч. докл. высш. школы. Биол. науки, 5:109-114.

Барабашова В. Н. 1979. Кариотипы стеблевых нематод дикорастущих растений. — Паразитология, 13 (3): 257—261. Ладыгина Н. М. 1969. О физиологической совместимости разных форм стеблевых

нематод. І. Скрещивание дитиленхов лука, земляники и клевера. — Паразитология, 3 (6): 559—567. Ладыгина Н. М. 1970. О физиологической совместимости разных форм стеблевых

нематод. П. Скрещивание дитиленхов лука, чеснока и картофеля. — Парази-

тология, 4 (2): 133—135.

Ладыгина Н. М. 1972. Итоги исследования физиологической совместимости стеблевых нематод. — В кн.: Нематодные болезни сельскохозяйственных культур и меры борьбы с ними. М.: 118-119. Л а дыт и на Н. М. 1973. О физиологической совместимости различных форм стебле-

вых нематод. III. Скрещивание дитиленхов петрушки, пастернака, лука и зем-

ляники. — Паразитология, 7 (1): 67—71.

Ладыгина Н. М. 1974. О генетико-физиологической совместимости различных форм стеблевых нематод. IV. Скрещивание флоксовой нематоды с другими дитиленхами. — Паразитология, 8 (1): 63—69.

Ладыгина Н. М. 1975а. Скрещивание стеблевой нематоды из картофеля-Ditylenchus destructor Thorne, 1945 с нематодами из петрушки и пастернака D. dipsaci (Kühn, 1857) Filipjev, 1936. — Науч. докл. высш. школы. Биол. науки, 10:118—120.

Ладыгина Н. М. 1975б. Изучение генетико-физиологической совместимости стеблевых нематод. — Тез. докл. VIII научн. конф. паразитологов Украины. Киев: 92-94.

Ладыгина Н. М. 1976. О генетико-физиологической совместимости различных форм стеблевых нематод. V. Скрещивание красноклеверной расы с другими дитиленхами. — Паразитология, 10 (1): 40—47.

Л а д ы г и н а Н. М. 1978а. О генетико-физиологической совместимости различных форм стеблевых нематод. VI. Скрещивание очетивности возделываемых и сорных

растений. — Паразитология, 12 (3): 218—222.

Ладыгина Н. М. 1978б. Генетико-физиологическая совместимость и таксономическое положение различных форм стеблевых нематод. — В кн.: Фитогельмин-тологические исследования. «Наука», М.: 65—77. Ладыгина Н. М., Барабашова В. Н. 1976. О генетико-физиологической

совместимости и кариотипах стеблевых нематод. — Паразитология, 10 (5): 449—

Парамонов А. А. 1962. Основы фитогельминтологии, т. 1. Изд-во АН СССР, M.: 1-480.

Парамонов А. А. 1970. Основы фитогельминтологии, т. III. Изд-во АН СССР, M.: 1-253.

- C a u b e l G. 1977 (1978). Variabilité intraspécifique chez Ditylenchus dipsaci (Kühn), Fil. Ann. zool. Ecol. anim., 9 (3): 570—571.

 E r i k s s o n K. B. 1965. Crossing experiments with races of Ditylenchus dipsaci on callus cultures. Nematologica, 11 (2): 244—248.

 E r i k s s o n K. B. 1974. Intraspecific variation in Ditylenchus dipsaci. I. Compatibility tests with races. Nematologica, 20 (2): 147—162.

 S t u r h a n D. 1964. Kreuzungsversuche mit biologischen Rassen des Stengelalchens (Ditylenchus dipsaci) Nematologica, 10 (2): 328—334.

- (Ditylenchus dipsaci). Nematologica, 10 (2): 328—334. S t u r h a n D. 1966. Wirtspflanzenuntersuchungen an Bastardpopulationen von Ditylenchus dipsaci — Rassen. — Z. Pflanzenkrankh. und Pflanzenschutz., 73 (3): 168—174.
- Sturhan D. 1969. Das Rassenproblem bei Ditylenchus dipsaci. Mitt. Biol. Bundesanst. Land= und Forstwirt., Berlin—Dahlem, 136:87—98.

 Sturhan D. 1970. Ditylenchus dipsaci— ein Artenkomplex? Nematologica, 16 (2):327—328.

- Sturhan D. 1971. Biological Races. In: Zuckerman B. M., Mai W. F. and Rohde R. A. Plant parasitic nematodes, v. 2, N. Y. a. London: 51—69.

 Triantaphyllou A. C. 1971. Genetics and Citology. In: Zuckerman B. M., Mai W. F. and Rohde R. A. Plant parasitic nematodes, v. 2, N. Y. a. London: 1—
- Webster J. M. 1967. The significance of biological races of Ditylenchus dipsaci and their hybrids. Ann. appl. Biol., 59:77—83.
 Windrich W. A. 1974. Attack of tulip by hybrids of tulip and narcissus races of Ditylenchus dipsaci. Nematologica, 20 (2): 269—270.

GENETIC AND PHYSIOLOGICAL COMPATIBILITY, KARIOTYPES AND TAXONOMY OF THE STEM EELWORM

N. M. Ladygina, V. N. Barabashova

SUMMARY

On the basis of generalization of our own and literary data on the crossing and kario-types of stem eelworms the species <code>Ditylenchus dipsuci</code> is regarded herein as a complex of species and forms which are at different atages of intraspecific differentiation and at the stage of formation of new species. A question is raised on the necessity to exclude some forms of stem eelworms from the species and to accord them a distinct species status.