

Matemáticas II

Tema 1: Límites y continuidad en \mathbb{R}^n

_	•	
-a	1111/2	lencias
Lu	uiva	iciicias

Si $f(x) \xrightarrow[x \to x_0]{} 0$, entonces:

- $\frac{1}{1-f(x)} \sim 1 + f(x)$
- $\operatorname{sen} f(x) \sim f(x) \sim \operatorname{tan} f(x) \sim \operatorname{arc} \operatorname{sen} f(x) \sim \operatorname{arctan} f(x)$
- $1 \cos f(\boldsymbol{x}) \sim \frac{(f(\boldsymbol{x}))^2}{2}$
- $\log(1+f(\boldsymbol{x})) \sim f(\boldsymbol{x})$
- $e^{f(\boldsymbol{x})} 1 \sim f(\boldsymbol{x})$

Orden de infinitud

Si $x \to \infty$, los siguientes *infinitos* verifican:

• $(\log x)^p \ll x^q \ll a^x \ll x^{kx}$, a > 1, p, q, k > 0.

Haz de rectas por (x_0, y_0) .

 $y - y_0 = m(x - x_0)$

Haz de parábolas por (x_0, y_0) .

 $y - y_0 = m(x - x_0)^2$

Tema 2: Cálculo diferencial en \mathbb{R}^n

Derivada direccional de f en x_0 en la dirección de v unitario:

$$D_{\boldsymbol{v}}f(\boldsymbol{x_0}) = \lim_{h \to 0} \frac{f(\boldsymbol{x_0} + h\boldsymbol{v}) - f(\boldsymbol{x_0})}{h}$$

Diferenciabilidad de f en x_0 :

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - \nabla f(x_0) \cdot (x - x_0)}{\|x - x_0\|} = 0$$

Plano tangente a f en $x_0 = (x_0, y_0)$

$$z = f(\boldsymbol{x_0}) + \frac{\partial f}{\partial x}(\boldsymbol{x_0})(x - x_0) + \frac{\partial f}{\partial y}(\boldsymbol{x_0})(y - y_0)$$

Diferenciabilidad y continuidad

lacksquare Si f es diferenciable en x_0 , entonces f es continua en x_0

Derivadas parciales continuas y diferenciabilidad

■ Si las derivadas parciales $\frac{\partial f}{\partial x_i}$, $i=1,\ldots,n$, son continuas en x_0 , entonces f es diferenciable en x_0 .

Derivada direccional para funciones diferenciables

$$D_{\boldsymbol{v}}f(\boldsymbol{x_0}) = \nabla f(\boldsymbol{x_0}) \cdot \boldsymbol{v}$$
, \boldsymbol{v} unitario

Ortogonalidad entre el conjunto de nivel y el vector gradiente

■ Sea $f: D \subset \mathbb{R}^n \to \mathbb{R}$, con n=2 ó n=3. Si f es diferenciable en x_0 , entonces el conjunto de nivel que pasa por x_0 es ortogonal a $\nabla f(x_0)$.

Regla de la cadena

lacksquare Si f es diferenciable en x_0 y g es diferenciable en $f(x_0)$, entonces $g\circ f$ es diferenciable en x_0 y además

$$J(\boldsymbol{g} \circ \boldsymbol{f})(\boldsymbol{x_0}) = J\boldsymbol{g}(\boldsymbol{f}(\boldsymbol{x_0})) \cdot J\boldsymbol{f}(\boldsymbol{x_0})$$

Teorema de Schwartz

 Bajo determinadas condiciones de regularidad, las derivadas parciales segundas de f verifican la siguiente igualdad

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) (\boldsymbol{x_0}) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) (\boldsymbol{x_0}).$$

Extremos relativos de funciones diferenciables

 \blacksquare Si f es diferenciable y tiene un extremo relativo en ${m x_0}$, entonces $\nabla f({m x_0}) = {m 0}.$

Matriz simétrica definida posi- tiva, definida negativa y no de- finida	■ A es definida positiva si y solo si $\lambda_i>0$ para todo $i=1,2,\ldots,n$. ■ A es definida negativa si y solo si $\lambda_i<0$ para todo $i=1,2,\ldots,n$. ■ Si A tiene un valor propio $\lambda_i>0$ y otro valor propio $\lambda_j<0$, entonces A es no definida.		
Caracterización de matriz simétrica definida positiva y negativa. Condición suficiente para matriz simétrica no definida	■ $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ una matriz simétrica, y $\Delta_1, \ldots, \Delta_n$ sus menores principales. Entonces: - A es definida positiva si y sólo si $\Delta_i > 0$ para todo $i = 1, 2, \ldots, n$. - A es definida negativa si y sólo si $(-1)^i \Delta_i > 0$ para todo $i = 1, 2, \ldots, n$. - Si det $(A) \neq 0$ y los menores principales no verifican " $\Delta_i > 0$ para todo $i = 1, 2, \ldots, n$ " ni " $(-1)^i \Delta_i > 0$ para todo $i = 1, 2, \ldots, n$ ", entonces A es no definida.		
Criterios de máximo relativo, mínimo relativo y punto de silla $\operatorname{Si} Hf(x_0)$ es definida positiva, f tiene en x_0 un mínimo relativo. $\operatorname{Si} Hf(x_0)$ es definida negativa, f tiene en x_0 un máximo relativo. $\operatorname{Si} Hf(x_0)$ es no definida, f tiene en x_0 un punto silla.			
Teorema de Weierstrass	■ Sean $D \subset \mathbb{R}^n$ cerrado y acotado y $f:D \to \mathbb{R}$ una función continua en D . Entonces f alcanza su máximo y su mínimo en D .		
Multiplicadores de Lagrange	Los candidatos a extremo relativo de f condicionado a $m{g}$ son los puntos críticos de la función de Lagrange $ m{L}(m{x}, m{\lambda}) = f(m{x}) + \lambda_1 g_1(m{x}) + \lambda_2 g_2(m{x}) + \dots + \lambda_m g_m(m{x}) $		
Polinomio de Taylor de orden 2 de f en $oldsymbol{x_0} \in \mathbb{R}^n.$	$ P_2(x) = f(x_0) + \nabla f(x_0) \cdot (x - x_0) + \frac{1}{2}(x - x_0)^t H f(x_0)(x - x_0) $		

Apéndice A: Algunos elementos de geometría

Parametrización de algunas curvas en \mathbb{R}^2						
Ecuación en cartesianas	Una parametrización	Otra parametrización	Curva	Curva		
$x^2 + y^2 = r^2$	$\begin{cases} x(t) = r \cos t, \ t \in [0, 2\pi] \\ y(t) = r \sin t, \ t \in [0, 2\pi] \end{cases}$	$\begin{cases} x(t) = r\cos(2t), \ t \in [0, \pi] \\ y(t) = r\sin(2t), \ t \in [0, \pi] \end{cases}$				
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\begin{cases} x(t) = a\cos t, \ t \in [0, 2\pi] \\ y(t) = b\sin t, \ t \in [0, 2\pi] \end{cases}$	$\begin{cases} x(t) = a \operatorname{sen} t, \ t \in [0, 2\pi] \\ y(t) = b \operatorname{cos} t, \ t \in [0, 2\pi] \end{cases}$				
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\begin{cases} x(t) = a \sec t, \ t \in [0, 2\pi] \\ y(t) = b \tan t, \ t \in [0, 2\pi] \end{cases}$					
$y^3 = x^2$	$\begin{cases} x(t) = t^3, \ t \in \mathbb{R} \\ y(t) = t^2, \ t \in \mathbb{R} \end{cases}$	8	12			
	$\begin{cases} x(t) = a e^{bt} \cos t, \\ y(t) = a e^{bt} \sin t, \end{cases}$	$egin{aligned} & t \in \mathbb{R} \ & t \in \mathbb{R} \end{aligned} \qquad (a > 0, b < 0)$				

Parametrización de algunas superficies en \mathbb{R}^3					
Ecuación en implícitas	Una parametrización	Superficie			
$x^2 + y^2 + z^2 = r^2$ Esfera	$\begin{cases} x(\alpha, \phi) = r \sin \phi \cos \alpha, \\ y(\alpha, \phi) = r \sin \phi \sin \alpha, \\ z(\alpha, \phi) = r \cos \phi, \end{cases}$				
$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Elipsoide	$\begin{cases} x(\alpha, \phi) = a \sec \phi \cos \alpha, \\ y(\alpha, \phi) = b \sec \phi \sec \alpha, \\ z(\alpha, \phi) = c \cos \phi, \end{cases}$				
$z^2 = x^2 + y^2$ Cono	$\begin{cases} x(\rho, \alpha) = \rho \cos \alpha, \\ y(\rho, \alpha) = \rho \sin \alpha, \\ z(\rho, \alpha) = \rho, \end{cases}$				
$x^2-y^2-z^2=-1$ Hiperboloide de 1 hoja	$\begin{cases} x(\rho, \alpha) = \pm \sqrt{\rho^2 - 1}, \\ y(\rho, \alpha) = \rho \cos \alpha, \\ z(\rho, \alpha) = \rho \sin \alpha, \end{cases}$				
$x^2 - y^2 - z^2 = 1$ Hiperboloide de 2 hojas	$\begin{cases} x(\rho, \alpha) = \pm \sqrt{\rho^2 + 1}, \\ y(\rho, \alpha) = \rho \cos \alpha, \\ z(\rho, \alpha) = \rho \sin \alpha, \end{cases}$				
$a^2 = x^2 + y^2$ Cilindro	$\begin{cases} x(\rho, \alpha) = a \cos \alpha, \\ y(\rho, \alpha) = a \sin \alpha, \\ z(\rho, \alpha) = \rho, \end{cases}$				
$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Paraboloide elíptico	$\begin{cases} x(u,v) = a u, \\ y(u,v) = b v, \\ z(u,v) = u^2 + v^2, \end{cases}$				