

Evolusi Komputer dan Pengukuran Perfoma

- ✓ Dasar dasar CPU
- ✓ Register Set
- ✓ Datapath
- ✓ CPU Instruction Cycle

Tim pengampu

Sistem Komputer, Komunikasi dan Keamanan Data

T.A. 2020

Computer Timeline

1950s

Silicon Transistor

Transistor

1960s

TTL Quad Gate

16 **Transistors**

8-bit

4500

1970s

Microprocessor

Transistors

1980s

32-bit Microprocessor

275,000 **Transistors** 1990s

32-bit Microprocessor

3,100,000 **Transistors** 2000s

64-bit Microprocessor

592,000,000 Transistors

2010s

MATA KULIAH

KOMPUTER

3072-Core GPU

8,000,000,000 **Transistors**

Gambar: http://www.computerhistory.org/siliconengine/

TABLE 1.1 Four Decades of Computing

Feature	Batch	Time-sharing	Desktop	Network
Decade	1960s	1970s	1980s	1990s
Location	Computer room	Terminal room	Desktop	Mobile
Users	Experts	Specialists	Individuals	Groups
Data	Alphanumeric	Text, numbers	Fonts, graphs	Multimedia
Objective	Calculate	Access	Present	Communicate
Interface	Punched card	Keyboard & CRT	See & point	Ask & tell
Operation	Process	Edit	Layout	Orchestrate
Connectivity	None	Peripheral cable	LAN	Internet
Owners	Corporate computer centers	Divisional IS shops	Departmental end-users	Everyone

CRT, cathode ray tube; LAN, local area network.

sumber: mustofa hesam/ Fundamental of Computer Organization and Artitechtur/intorduction of Computer System

Early Age

ABACUS

300 BC Roman Abacus

1600AD Napier Bones

1642 AD Pascal's Calculator

1822AD Automatic difference Engine Charles Babbage

1842AD *Analytical Engine* Ada Lovelace

200 BC Chinesse Abacus

Early Age

1942 Collosus I

Punch Card

1944 Mark I

Computer Timeline

ENIAC (Electronic Numerical Integrator And Computer)

- Eckert and Mauchly University of Pennsylvania
- Trajectory tables for weapons,
- 1943 -1946 Used until 1955

Gambar: http://www.columbia.edu/cu/computinghistory/eniac.html

Computer Timeline

ENIAC (Electronic Numerical Integrator And Computer)

- Decimal (not binary)
- 20 accumulators of 10 digits (ring of 10 tubes)
- Programmed manually by switches
- 18,000 vacuum tubes
- 30 tons, 15,000 square feet
- 140 kW power consumption
- 5,000 additions per second

Gambar: www.thecompuseum.org

von Neumann/Turing

- Konsep Stored Program
- Dibagi menjadi 4 bagian utama
 - Memory
 - ALU
 - CU
 - I/O
- Princeton Institute for Advanced Studies
 - IAS
- Completed 1952

Gambar: http://americanhistory.si.edu

KONSEP DASAR ARSITEKTUR KOMPUTER Structure of von Neumann machine

- Memory utama, menyimpan data and instructions
- ALU mampu memproses data biner
- Control Unit, Menerjemahkan perintah untuk disimpan memory agar bisa dieksekusi
- I/O perangkat yang dioperasikan oleh CU

Structure of von Neumann machine

MATA KULIAH ORGANISASI DAN ARSITEKTUR KOMPUTER

IAS – details

- 1000 x 40 bit words
 - Binary number
 - 2 x 20 bit instructions
- 1000 alamat memori
- 40 bit word tiap alamat
- 2 instruksi per word
- 1 word 20 bit

IAS memory format

term

Word: instruction set

Opcode : Operation Code (instruksi / data)

IAS – details

- Set of registers (storage inside CPU)
 - Memory Buffer Register
 - Memory Address Register
 - Instruction Register
 - Instruction Buffer Register
 - Program Counter
 - Accumulator
 - Multiplier Quotient

MATA KULIAH

KOMPUTER

■ First Computer Generation: 1940s -1950s: (Vacuum Tubes and Plugboards)

- ENIAC (1946)
- EDSAC (1949)
- EDVAC (1950)
- UNIVAC I (1951)

UNIVAC I - half the CPU 1956

 Second Generation Computers: 1950s -1960s: (Transistors and Batch Filing)

Gambar : https://turbofuture.com

- IBM-7000
- CDC 3000 series
- **UNIVAC 1107**
- IBM-7094
- MARK III
- Honeywell 400

Operator console IBM 7094

■ 1958 - 1962 Programming languages

From 1958-1962 many programming languages were developed.

FORTRAN (FORmula TRANslator)
COBOL (COmmon Business Oriented Language)
LISP (LISt Processor)
ALGOL (ALGOrithmic Language)
BASIC (Beginners All-purpose Symbolic Instruction Code)

Gambar: https://turbofuture.com

■ Third Computer Generation: 1960 - 1970s (Integrated Circuits and Multi-Programming)

Chip of IBM system 360, 10 components per Chip

- IBM-360
- Personal Data Processor (PDP)
- IBM-370

IBM 360 Mainframe

■ Fourth Computer Generation: 1970s to Present (The Microprocessor, OS and GUI)

• OS, PC,workstation,Smartphone etc

Gambar : https://turbofuture.com

• Fifth Computer Generation : The Present and The Future

artificial intelligence (AI) and machine learning (ML)

Gambar : https://turbofuture.com

Moore's Law

- Gordon Moore –Intel co Founder "Jumlah transistor pada chip akan berlipat ganda setiap tahun dengan biaya separuh lebih murah"
- Peningkatan kepadatan komponen pada chip
- Kepadatan kemasan yang tinggi berarti jalur listrik yang lebih pendek, memberikan kinerja yang lebih tinggi
- Ukuran yang lebih kecil memberikan peningkatan fleksibilitas
- Mengurangi daya dan kebutuhan pendinginan
- Interkoneksi yang lebih sedikit meningkatkan reliabilitas

Relevan???

Gambar: intel

Evolution

(a) 1970s Processors

		_	_		
	4004	8008	8080	8086	8088
Introduced	1971	1972	1974	1978	1979
Clock speeds	108 kHz	108 kHz	2 MHz	5 MHz, 8 MHz, 10 MHz	5 MHz, 8 MHz
Bus width	4 bits	8 bits	8 bits	16 bits	8 bits
Number of transistors	2,300	3,500	6,000	29,000	29,000
Feature size (µm)	10		6	3	6
Addressable memory	640 Bytes	16 KB	64 KB	1 MB	1 MB

(b) 1980s Processors

	80286	386TM DX	386TM SX	486TM DX CPU
Introduced	1982	1985	1988	1989
Clock speeds	6 MHz-12.5 MHz	16 MHz-33 MHz	16 MHz-33 MHz	25 MHz-50 MHz
Bus width	16 bits	32 bits	16 bits	32 bits
Number of transistors	134,000	275,000	275,000	1.2 million
Feature size (µm)	1.5	1	1	0.8–1
Addressable memory	16 MB	4 GB	16 MB	4 GB
Virtual memory	1 GB	64 TB	64 TB	64 TB
Cache	_	_	_	8 kB

(c) 1990s Processors

Evolution of Intel Microprocess	Evolution	of Intel	Microproces	sor
--	------------------	----------	-------------	-----

Microprocessor	486TM SX	Pentium	Pentium Pro	Pentium II
Introduced	1991	1993	1995	1997
Clock speeds	16 MHz-33 MHz	60 MHz-166 MHz,	150 MHz-200 MHz	200 MHz-300 MHz
Bus width	32 bits	32 bits	64 bits	64 bits
Number of transistors	1.185 million	3.1 million	5.5 million	7.5 million
Feature size (μm)	1	0.8	0.6	0.35
Addressable memory	4 GB	4 GB	64 GB	64 GB
Virtual memory	64 TB	64 TB	64 TB	64 TB
Cache	8 kB	8 kB	512 kB L1 and 1 MB L2	512 kB L2

(d) Recent Processors

	Pentium III	Pentium 4	Core 2 Duo	Core 2 Quad
Introduced	1999	2000	2006	2008
Clock speeds	450-660 MHz	1.3-1.8 GHz	1.06-1.2 GHz	3 GHz
Bus sidth	64 bits	64 bits	64 bits	64 bits
Number of transistors	9.5 million	42 million	167 million	820 million
Feature size (nm)	250	180	65	45
Addressable memory	64 GB	64 GB	64 GB	64 GB
Virtual memory	64 TB	64 TB	64 TB	64 TB
Cache	512 kB L2	256 kB L2	2 MB L2	6 MB L2

Designing for Performance

- Image processing
- Speech recognition
- Videoconferencing
- Multimedia authoring
- Voice and video annotation of files
- Simulation modeling

Gambar: http://sf.co.ua

Microprocessor Speed

- Pipelining
- On board cache
- On board L1 & L2 cache
- Branch prediction
- Data flow analysis
- Speculative execution

Gambar : https://superuser.com/

Gambar : http://www.rarecpus.com

Performance Balance

- Peningkatan kecepatan Processor
- Peningkatan kapasitas Memory
- Kecepatan memory tertinggal dengan kecepatan processor

Teknologi chip memory yang umum adalah DRAM = Dynamic Random Access Memory

Gambar: https://www.researchgate.net

Performance Balance

Solusi Pendekatan

- Menambah jumlah bit yg diambil sekaligus, untuk diproses
 - membuat DRAM "wider" dibanding "deeper" dengan menambah jalur data
- Merubah interface DRAM
 - Cache
- Mengurangi frequency access ke memory
 - Cache lebih komplek dan cache on chip (dlm CPU)
- Increase interconnection bandwidth
 - High speed buses
 - Hierarchy of buses

Problem yang sama dengan I/O devices, misal graphics, network Perlu balance pada computer design

PROGRAM STUDI TEKNIK INFORMATIKA

Data Storage

8 bits = 1 byte

1024 bytes = 1 kilobyte

1024 K = 1 Megabyte = 1,048,576 bytes

1024 Mb = 1 Gigabyte = 10,73,741,824 bytes

1024 Gb = 1 Terabyte = 1,099,511,627,776 bytes

1024 Tb = 1 Petabyte = 1,125,899,906,842,624 bytes

1024 Pb = 1 Exabyte = 1,152,921,504,606,846,976 bytes

1024 Eb = 1 Zettabyte = 1,180,591,620,717,411,303,424 bytes

1024 Zb = 1 Yottabyte = 1,208,925,819,614,629,174,706,176 bytes

Improvements in Chip Organization and Architecture

- Meningkatkan kecepatan hardware prosesor
- Meningkatkan size dan kecepatan cache
- Perubahan pada organisasi dan arsitektur prosesor

Multiple processors on single chip

• Large shared cache

Intel Core i7-2600K : CPU Gambar : https://www.pcmag.com

Embedded systems and the ARM

embedded system adalah sistem kontrol dan Sistem operasi dengan fungsi khusus sebagai bagian dari perangkat sistem yg lebih besar.

An *embedded system* on a plug-in card with processor, memory, power supply, and external interfaces Gambar: https://en.wikipedia.org

Embedded systems and the ARM

ARM processors didesain untuk 3kategori system:

- Embedded real-time systems: sistem untuk storage, automotive bod dan power-train, industrial, dan networking applications
- **Application platforms:** Devices running open operating systems including Linux, Palm OS, Symbian OS, and Windows CE in wireless, consumer entertainment and digital imaging applications
- **Secure applications:** Smart cards, SIM cards, and payment terminals

<u>Die</u> of an ARM610 microprocessor Gambar: https://en.wikipedia.org

Teknologi di 2020 **Wearable Technology**

KOMPUTER

Teknologi di 2020

Transforming Computer Technology

1st Gen. 2nd Gen. 3rd Gen.

Durable Bendable Foldable / Rollable

Flexible Display

Teknologi di 2020 Controller by Thought Technology

Teknologi di 2020

Artificial Intellegence Technology

Referensi

UIAMA
☐ William Stalling, Computer Organization and organization 8 th edition, Pearson Education, Inc,
Pearson Prentice Hall, 2010
☐ Andrew S. Tanenbaum, Structured Computer Organization 4 th Edition Pearson Prentice Hall,2001
Mostafa Abd-El-Barr- Hesham El-Rewini, Fundamentals Of Computer Organization And Architecture
John Wiley & Sons, Inc, 2005

TAMBAHAN

- ☐ http://www.computerhistory.org
- ☐ https://homepage.cs.uri.edu/faculty/wolfe/book/Readings/Reading04.htm
- ☐ https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/
- ☐ https://www.electronics-tutorials.ws/binary/bin_2.html
- □ http://www.ict.griffith.edu.au/~johnt/1004ICT/lectures/

