Index

Page numbers in bold refer to figures and	characteristics 72
page numbers in <i>italic</i> indicate tables.	characteristics curves 70, 71
	craft, classification 6
AALC 150-50 model 350	flow rate due to mass change rate of 301
Acceleration 124, 468	performance
Acceleration/frequency toleration limits 369	on rigid surface 51
Accidents 185	prediction 55-65
ACVs 13	pressure distribution 472, 472
hovercraft 13, 13, 14	stability 76–83
Accommodation space requirements 399	supported vehicles, see ACV
ACV	system 282-4, 299-301, 313-17
accidents 13	theory 48–83
applications 41–5	early developments 50-5
calculation of transverse stability 163-8,	Air duct 70, 71 , 424
166–8	calculation 410–12
development in UK 9-21	characteristics 78
dimensions of 386-7, 389-90	configuration 413
dynamic trim 190	loss coefficient 411
factors affecting transverse stability	non-dimensional characteristic curves
168–72	345–6
longitudinal motion in regular waves for	non-dimensional characteristics 350
308–22	system 412, 413
manœuvrability 206	valves 216
moving over deep water 190-3	Air flow coefficient 64
operation modes over ground terrain 122	Air flow rate 133–4, 339, 340
over shallow water 194-6	coefficient 149
water surface deformation in/beyond air	determination 407–10
cushion over calm water 190-3	distribution effect 339
weight of 389–90	Air gap 83, 128
Aerodynamic force and moment 221, 223	Air inlet
Aerodynamic momentum drag 96	inclination angle 417
Aerodynamic profile drag 95-6, 96	of integrated lift/propulsion systems 414
Aerodynamic yawing moment 226	pressure losses 414
Air clearance 50, 62, 65	Air jet moment from cushion to atmosphere
characteristic curves 424	286–7
Air cushion 2, 42	Air jet propulsion 504–7
adiabatic stiffness coefficient 348	Air jet streamlines 54

Air leakage 79	Bag stern skirt, geometry and analysis of
flow rate of 300, 314–15	forces in double or triple 258-60
under SES sidewall 67	Bag to cushion pressure ratio 62, 65, 251
Air lubrication 2–3, 9, 48	coefficient 60
Air propellers 507–14	Beam seas, differential equations of coupled
blade erosion and its mitigation 514-15	roll and heave motion of SES in 291
blade types and efficiency 509-10	Bearings 571
construction 513	Bell Aerospace Corporation 25, 29
diameter/tip speed relationship 511	Bell-Halter Corporation 29
selection 510 , 511	Bell Textron Jeff (B) 599
weight 513	Bending 469
Air propulsors 211–14	Bending moment 470, 470, 471
Air rudders 217	acting on midship section 469-70
Air streamlines 55	cushion-borne operation 470
Air supply to bow skirt area 328	hull-borne operation 471
Aluminium alloy 459	transverse 471
Amphibious capability 41, 48	Bernoulli equation 53, 412, 495
Amphibious hovercraft 1, 3, 4, 4, 274	Bernoulli theory 67
Anti-plough-in	BH.7 14, 15 , 239
hydrofoils 327	BH.110 29–30, 29
requirements 453	Blade element theory 499–500, 501 , 524
Anti-roll systems 3356	Blade velocity vector diagram 496
Anti-spray plate 335	Bliss, Dennis 11, 233
Anti-submarine vessels 41, 42	Blohm and Voss 40
AP1.88 15, 20, 21, 40, 41, 213, 507, 520, 592,	Boundary layer thickness 54
594	Bow acceleration 307
AP1.88-400 44	Bow finger tip line 327
Aprons 271	Bow hydrofoils 333–4, 334
Archimedes' principle 66	Bow seal during take off, water contact
Arctic transport 45	phenomenon of 105
Axial flow pumps 559	Bow skirt
* *	emergence 302
Bag and finger bow seal 247	tuck-in 326
Bag and finger bow skirt 153, 247, 249	Bow skirt area
Bag and finger skirt 49, 52, 55, 59 , 62, 71,	air supply to 328
129, 238 , 243, 262, 451	relative to stern 327
equations for static geometry and force	Bow skirt finger tip 258
analysis 251–5	Bow/stern acceleration, frequency response
forces acting on 263	for 321
model tests 250-1	Bow/stern seal
static geometry 250–7	and base-line gap 149
supporting forces acting on joints 256-7	during heeling, righting moment of 155
Bag and nozzle skirt	equipment 326–7
chain connection for 237	heave stiffness for 328
flexible diaphragm connection 237	relative gap 150
Bag and pericell skirt 243, 244, 261	Bow/stern seal drag 102-3
Bag chord length 251	B.A. Kolezaev method 103
Bag cushion pressure ratio 63, 262	MARIC method 102
Bag pressure 59	Rin-Ichi Marao method 103
Bag skirt 49	Bow/stern seals 246–9
Bag stern seal 248	interaction 188

620	Index	
	Bow/stern skirts, height determination 453	static 224–5
	Brødrene Aa 39–40	vertical fins for 208, 209
	British Hovercraft Corporation 10	see also Stability
	Britten-Norman 12	Cushion air
		compressibility 321, 322–3
	Cabin 370, <i>373</i>	flow rate and pressure 71
	volume 41–2	Cushion attenuation coefficient vs. craft
	Captured air bubble 2–3, 246	speed 465
	Cargo vessels 40	Cushion-borne operation
	Catamarans 1, 42–3, 113	bending moment 470
	Cavitation 522–4, 523 , 531, 537 , 545, 561	in high waves 336–8
	water jets 556–7	Cushion compartmentation 163–4, 169, 170
	Cavitation tunnel 552	Cushion depth, damping effect of 323
	Centrifugal fans 425–9, 507	Cushion depth f beam ratio 359
	aerodynamics characteristics 426	Cushion flow coefficient 401
	Centrifugal pumps 558	Cushion flow rate 334
	CG 359, 359 , 461, 463, 464, 469, 564	Cushion flow rate coefficient 62
	China, ACV and SES development 32–9	Cushion force 214–16, 222–3, 284
	Chong Cheng Shipping Company 35 Cirrus 39	Cushion geometry 49 Cushion height 359
	Cobblestone effect 322, 323, 324	Cushion height/width ratio versus transverse
	Cockerell, Sir Christopher 3, 7, 9, 48, 233,	roll stiffness 360
	275	Cushion length/beam ratio 87, 101, 132,
	Coefficient f 50	150–1 , 330–1, 33 2 , 357, 400
	Coefficient of added mass 278	Cushion lift power coefficient 62
	Coefficient of elongation 347	Cushion moment 222–3, 284
	Commercial design parameters 378	Cushion pressure 41, 50, 59-60, 73, 79, 80,
	Computer program for differential equations	89
	of motion 290	analysis of forces acting on fingers under
	Constant cushion volume 74	264
	Construction cost per unit seat 398	and heave amplitude 81
	Contact forces 441–2	during plough-in 326
	Continuity equation of flow 282	fluctuations 277, 324
	Control equipment 208	spatial distribution 278
	Control surfaces 207–17	trends 401
	features 216	Cushion pressure distribution 472, 473
	state of the art 216–17, 216	Cushion pressure distribution 472, 473
	Control system components 565 Controllable pitch air propellers (ducted	vs. ship speed 181 Cushion pressure/length ratio 89, 132, 149,
	propellers) 211–13	400
	Coordinate system 297–8, 298 , 308, 309	Cushion pressure ratio 344
	Correction coefficient of wetted surface 109	Cushion static pressure 506, 506
	Correction coefficient of wetted surface area	Cushion system fans 507
	of sidewalls 110	Cushion wave-making drag 98
	Couplings 571	Cushioncraft CC1 12
	Course-keeping ability	Cushioncraft CC2 12
	and handling 374	Cushioncraft CC5 12, 507
	under quartering or beam winds 375	,
	Course stability 224–7	Damping coefficient 76-83, 278

calculation 77-80

experimental methods 80-2

analysis 225-7

dynamic 225

Damping effect	in waves 338
of cushion depth 323	of non-flush sea-water strainers 116–17
on seaworthiness 333–5	of rudders 115–16
Deck area 41–2	of shafts (or quill shafts) and boss 116
Deck plates, design load 473	of strut palms 116
de Laval, Gustav 2	over calm water 120, 130
Design 46–7	see also Hydrodynamic drag; Residual
concepts 190	drag; Seal drag; Skirt drag; Total drag;
inertial loads 461–3	Wave-making drag
leading particulars selection prior to 402	Drag/weight ratio 94
loads 469	Driver technique 185
methodology 353-5	D-shape bags 184, 184 , 251
parameters 354, 377, 378–9	diaphragms of 264-5
checks during design 397–9	DTNSRDC 28
process 377	Duct system characteristic 323-4
sequence 377	Ducted fans 515–20
Detachable bow/stern seals 249	duct design 518-19
Diaphragms 251	fan selection 517
installation 451	stators 518
of D-shape bags 264-5	Ducted propellers 211–13, 507, 515
Diesel engines 579, 581 , 588–96	Ducted propulsors 274, 520
cooling systems 590–4	Dynamic motions 273–341, 604
exhausts 595	historical review 274-6
lubrication system 595	Dynamic transverse righting moment of SES
maintenance 610-11	159
number of engines and layout 588-90, 589	Dynamic trim 156
operation 607–10	on cushion over calm water 200-4, 201
relief valves 595	over calm water for ACV 308-12
vibration 594–5	prediction over calm water 200-3
Differential air momentum drag from	•
leakage under bow/stern seals 97	Elastic modulus 347
Differential equations of coupled roll and	Electrical equipment, weight of 396
heave motion in beam seas 291	Elevons 208–10
Differential equations of longitudinal	Energy equation 141
motion in waves, block diagram 297, 305	Engine
Differential equations of motion 223–4,	cooling water, hydrodynamic momentum
281–90, 304–7, 317–18	drag due to 115
computer program for 290	failure modes and effects 606
formation 219–20	heating for sub-zero temperatures 584–5
in regular waves 313	monitoring and control system 608
Dimensions	operating characteristics 581–2
determination 354, 377–404	power ranges 579
limitations 399	starting 605
of ACV 386–7, 389–90, 403	systems and controls 607
Disc loading 498	Equations of motion 217
Displacement, ACV 384–97	Equilibrium equation
Docking, strength calculation 473	of forces 265–6
Drag	static forces 309–10
components, classification 84-5	Euler number 344
forces 84–134	Extended segment skirts 245, 244, 260
in head seas 338	External air stream lines 180

External forces on hull 461–5	Flexible bow seal 135
External response 327	Flexible bow/stern seal 153–4
Esterial response 321	Flexible skirt 11, 28, 47–9, 52, 56, 91, 100 ,
Fan air duct	127, 173, 232, 235
characteristic 323	advantages 232
characteristic equation 310	development 233
Fan air inlet/outlet system 413–19	Flow coefficient 407, 408
Fan blade regulation 216	Flow continuity equation 78, 141
Fan characteristic equation 142	for small perturbations 315–17
Fan characteristics 284	Flow modes in heaving motion 77, 78
Fan curve gradient 327	Flow rate
Fan flow rate 172	air leakage 300
Fan inlet	air leakage and cross-flow, small
loss coefficient 412	perturbation equation for 314–15
pressure recovery coefficient at 412	coefficient 49, 71–3, 345
system 413–17	continuity equation 310–12
Fan outlet system, SES 419	due to mass change rate of air cushion
Fan overall pressure 412–13	301
Fan speed 148	equation 141
Fans	minimum calm water drag 409–10
aerodynamic characteristics 423	Flow rate-pressure head linear equation with
air flow rate 430	small perturbation 313–14
centrifugal 425–9, 507	Fluttering 437
cushion system 507	Foil-shaped appendages 115
efficiency-flow rate characteristics 431	Footprint pressure 41
horizontal arrangement 418–19	France 40
HVAC systems 423	Frequency response
impeller diameter 428–9	bow/stern acceleration 321
noise reduction 430	cushion pressure 293
non-dimensional characteristic curves	heave acceleration 292, 319
345–6	heave amplitude 318-19, 318
non-dimensional characteristics 350	heave motion 77
off-design operation 422	pitch amplitude 319-20, 319, 333
overall pressure-flow rate characteristics	roll amplitude 293
431	wave exciting force 320
overall pressure head 410-13	wave exciting moment 320
pressure-flow characteristic curve 430	Froude-Krilov hypothesis 276-7, 296
selection of type 420–5, 421	Froude number 85, 87, 91, 92, 102, 103, 109,
by means of specific speed 426-8	110 , 115 , 177 , 181 , 196, 338 , 348–9
vertical arrangement 418	and wave profile 189
see also Ducted fans; Lift fans	Froude scaling relationship 342
Fast Attack SES 44	Fuel and oil, weight of 396
Fast vessels 42	Fuel consumption 397–8
Fatigue endurance of transmission shafts	Fuel filtering 606
569–71	Fuel system 605
Finger bow skirt 247	
Finger height ratio 454	Gap height 123
Finger inclination angle 454	Gas turbines 579, 583, 596-603, 597, 602
Fins 217	air intake filtration 601-3, 603
Flagellation 437	air intake flow requirements 600
Flat lift fan 323–4	alarms 605

inflow distortions 600	restoration moment 145
layout and engine selection issues 598-9	restoring moment during 223
maintenance 610-11	righting arm 147
noise 603	righting moment of bow/stern seal during
operation 610	155
protection from foreign object damage 600–1	with air cushion compartmentation on rigid surface 164
Gearbox 572–3, 575	with air cushion compartmentation on
power flow diagram 574	water 164
Generators 595	without air cushion compartmentation on
Geometrical dimensions 297–8, 298 , 308, 309	water 164
Germany 40	High-performance marine vehicles,
Goldstein factor 525, 526	classification 2
Gorkovchanin 127	High-speed marine vehicle types 1
Griffon Hovercraft 25	HM-2 14–15, 20, 330, 356, 408
GRP 38, 38, 39, 459	bow seal 17
Guide wheels on land 210-11, 211	glass reinforced structures under
	construction 16
Habitability requirements 365–74	stern seal 17
Halter Marine Inc. 29	HM-5 20
Harbin Shipbuilding Engineering Institute	HM-218 16
(HSEI) 32, 48	HM-221 18
HD-1 12	Holland 40
HD-2 194	Horizontal air rudders 208-10
Head winds, performance 341	Hovercraft
Heat generation 28	accidents 13, 13, 14
Heave 273	classification 6
Heave acceleration, frequency response 292,	future 45–6
319	historical background 1-4
Heave amplitude 75, 80	principal particulars for early Chinese and
and cushion pressure 81	British 7
frequency response 318–19, 318	see also ACV; SES
Heave attenuation system 335–6	Hovercraft Development Ltd 10, 11, 275
Heave displacement 81	Hovering damping 76–83
Heave frequency 80	Hoverlloyd 16
Heave motion 76, 76, 81, 306, 341	Hovermarine Limited 14, 18
flow modes in 77, 78	Hull
frequency response for 77	design 185
Heave position 83	efficiency 544
Heave stability 80, 83	external forces on 461–5
derivatives	strength of 464
calculation 77–80	structural design 474, 476
experimental methods 80–2	weight of 393, 397
Heave stiffness for bow/stern seals 328	Hull-borne operation, bending moment 471
Heave velocity 81, 83	Hump drag 132
HEBA high efficiency fan 431–2	Hump transition speed 364
Heeling 138, 141 angle 361–2	HVAC 515
	Hydrodynamic coefficients 222
moment 361 regulation using weight of persons and	Hydrodynamic drag 274
water (oil) ballast 215	due to engine cooling water 115

Hydrodynamic forces and moments 221–2	balancing 429
acting on sidewalls 285–6, 295, 303	basic data 427
acting on skirts 294 , 301–3	characteristics at small flow rate 429
acting on stern seal 303	impellor speed and diameter 429
Hydrodynamic resistance 1, 178	installation 430, 430
Hydrofoil patrol boat (PHM) 32	pressure-flow of 296
Hydrofoils 42, 43	selection and design 420–32
anti-plough-in 327	statistics 427
Hydrostatic pressure acting on bottom and	technical issues 429–32
sidewalls 473	Lift power 51, 54–5, 148
Hyperbolic distribution 89	output coefficient 65
Tryperbone distribution 89	versus air inlet location 415
Ice breaker 45	
	Lift system
Inducer pumps 559	design 406–32
Inflatable diaphragms, tension calculation	distribution of pressure 406
252	ducting problems 326
Inner draft 132, 133	insufficiency 326
Inner/outer water lines 126	layout 406
Inner/outer water surfaces 188	power 412–13
Insulation 370	simulated pressure distribution 411
Internal air stream lines 180	Lifting situation, strength calculation 473
Internal wave profiles 177	Limiting roll angles versus relative cushion
Italy 40	height 362
	Limiting stress design 564
Japan 40	Liquid load 396-7
JEFF(A) 25, 164, 241, 436, 463	Load transporters 45
JEFF(B) 25, 96, 463	Local loading 471–2
Jet extensions 49	Longitudinal centre of gravity, see LCG
Jet velocity 498	Longitudinal metacentric height 356–60
Jetted air rudder 208	Longitudinal motion
Jetted bag type skirt 235	in regular waves for ACV 308–22
Jetted extensions 128	in waves 294–307
Jetted nozzle skirts 236	principal parameters 298
Jetted skirt 127	Longitudinal stability keel (LSK) 139
Jin Sah River 5, 35	LSD-1 26
Jin Sun River 3, 33	L3D-1 20
3K-SES 28	M10 44
Kaario, Toivio 3	Machinery
Korea 40	
Korea 40	control 604–5, 604–5
T A CN 20 00	space layout 606
LACV-30 26	Manœuvrability 205–31
Laplace transformation 317	ACV 206
LCAC 25–6, 43, 241, 507	basic assumptions and nomenclature 218
LCAC-001 207	218, 219
LCG 99, 130–2, 130 , 131 , 185	differential equations of motion 217–24
LEBED 23	features of ACV/SES 205-6
LHD-4 26	key factors 205-7
Life-saving equipment, weight of 395	on ice 376
Lift drag 185	requirements 374–6
ratio 134	MARIC 3, 33–8, 56, 62, 84, 88, 102, 104–6,
Lift fans 282-4	111, 117, 119, 125, 143, 465–7

Marine Design & Research institute of	Wiodel /19 455
China, see MARIC	Model 719–II 43, 460
Marine propellers	Model 7202 35
blade pitch 529	Model 7203 36
blade sections 521	Model 7205 199
design 520–37	Model experiments 342–52
efficiency 520	Moment of inertia 463
example propeller and shaft layouts for	Momentum exchange principle diagram 496
SES 533	Momentum theory 97, 493–8, 524, 548–55
for SES 535-6	Motion pumping 274
installation 521	Motion standards 369
K_T and K_O diagrams 530	Motions in waves 273–341
selection procedure 526–31, 528	characteristic features of ACV and SES
types 522	276–8
Market development 17–22	historical review 274–6
Materials 28	key craft parameters 278
Mayer velocity distribution 54	short crested waves 322–4
MCM 31–9, 44	MTBO (Mean Time Between Overhaul) 577
detail design and construction 31–2	Multi-bag stern skirt 247
primary design 31	Multi-cell skirt system 165
MCMH 31, 40	Multiple engines 579–81
MCR (Maximum Continuous power Rating)	MV.PP5 15, 19 , 226
577	MV.PP15 15
Medium sized patrol SES 32	141 4.1 1 1 3 1 3
MEKAT 40	NACA 16 series 524
Metacentric height	NACA 63 series 519
longitudinal 356–60	NACA 65 series 519 NACA 66 series 524
transverse 356–60, 358	National Research Development
Military design personators 378	Corporation 10
Military design parameters 378	Needham, C.H. Latimer 11, 232
Military SES/ACV 32	Net positive suction head (NPSH) 544, 547,
Military transport vehicles, time interval	561–2 Nama aria farannia 52
from invention to first application 9	Newton's formula 53
Mine countermeasures 11, 30–9	Noise
Mine sweepers 41	fans 430
Mixed flow pumps 558	gas turbines 603
Model 711 127, 173	levels 369–72, 370, 372–4, 372
Model 711–3 138	water jets 539, 540
Model 711–I 33, 33 , 235, 236	Non-flush sea-water strainers, drag of 116–17
Model 711–II 34, 34, 214, 257, 441	Norway 39–40
Model 711–III 34, 34, 326, 327	Nozzles 546–7
Model 713 189, 327	elevation 547
Model 716 36	01 4 1 1 1 177 275 276
Model 716–II 37, 37	Obstacle clearance capability 375, 376
Model 717 35 , 145, <i>151</i> , 151 , 188, 189	Oil exploration 22, 39
Model 717–II 36 , 356	Oil field applications 44–5
Model 717–III 356	Open loop and segment skirt 243, 261
Model 717A 156, 158	Operating modes 136
Model 717C 121, 130, 131, 156, 158, 159,	Outline design procedure 535
160, 357	Overall propulsive efficiency (OPC) 538, 554,
Model 719–II 36	562

Overturning 173–85, 175 , <i>182</i>	test data 180
and yawing angles 183	see also Anti-plough-in
at high speed 177–85	Position determination 220–3
at low speed 176	Post-hump speed 374
in waves 185–6	Power augmented ram wing (PARWIG) craft
measures for improving resistance to	5-9, 6
183–5	Power consumption
principal reasons 180–3	in head winds and waves 406
SR.N6 186	per ton-knot 20
	Power loss with increased temperature 584–5
Parabola-shaped sidewalls 114	Power per unit seat 398
Parabolic water planes 114	Power plant
Passenger accommodation 42	limitations 399
Passenger ferries 44	weight of 395-6
Patrol vessels 40	Power transmission 564–73
Payload factor 397	design criteria 564-6
Payload fraction 384–93	Power unit selection 577–611
Peripheral Interface Module (PIM) 609	design requirements 604-6
Peripheral jet air cushion 50–1	Powering estimation 585–7, 586 , <i>587</i>
Peripheral jet hovercraft 48	Pressure coefficient 345, 462
Pitch	Pressure-flow of lift fans 296
amplitude, frequency response 319-20,	Pressure head equation 283
319, 333	Pressure/length ratio 86, 87
angle 306	Propulsion devices, turning tracks for 229
damping 333–4	Propulsion system 28, 37, 37, 41, 42
exciting moment 307	design 487–576
motions 340–1	ACV 487
Pitching 273	basic theories 492–504
Planing craft 1, 42	methodology 508–9
Planing stern seal 154	SES 488–92
Plate thickness in hull structural design 474,	PUC-22 592
476	Puff ports 213–14, 214 , 231
Platforming 73–4, 74	Pump
analysis 74–6	characteristics, types and selection 555–6
Pleasure craft 44	efficiency 559
Plenum chamber	Ovill shafts does does to 116
cushion 8, 52	Quill shafts, drag due to 116
on rigid surface 51–2 theory 72	Padial flavy numna 550
	Radial flow pumps 558
Plough-in 173–85, 174 , <i>182</i> , 325 at high speed 177–85	Ram air pressure recovery 417 Range determination 399
boundary 181	Recreation design parameters 379
SR.N6 186	Reduction drives 572–3
cushion pressure during 326	Relative air gap 65
in following waves for SES 324–8	Relative initial static transverse metacentric
internal reasons 326–7	height 148–9, 148, 149, 150
measures for improving resistance to	Relative sidewall thickness 148–9, 148
183–5	Relative transverse righting arm 150
methods for preventing 327–8	Remote monitoring 604–5, 604–5
principal reasons 180–3	Residual drag 84–5
progression 178–80 179	coefficient of sidewall 115

development 235-49

skirt configuration 240

SR.N5 13, 76, 173	without cushion compartmentation
SR.N6 13, 14, 15 , 86, 173, 174, 176, 214, 361 ,	170–1
418	transverse stability moment of heeled SES
overturning 186	at speed 160
plough-in boundary 186	transverse stability trunks 456
SR.N6–012 185	Standing's formula 197
Stability 135–86	Static air cushion characteristics on water
acceptable 137	surface 66–71
and cushion height	Static air cushion performance of ACVs on
ACV 355	water surface 68–71, 68 , 69
SES 356	Static hovering performance of SES on water
coordinate system of craft 167	66–8
criteria and standards for stability of SES	Static hovering tests 343–8
stability in turns 162	Static thrust 501–4
stability in waves 162	Stator systems, design 518
static stability 161–2	Steel 459
damage requirements 363	Stern bag skirts, geometric parameters 259
design requirements 355–62	Stern double planing bag 247
dynamic stability of ACV travelling over	Stern planing rigid seal 247, 249
water 173	Stern seal 128–9, 154
effect of fan flow rate on transverse	hydrodynamic force acting on 303
stability of ACV 172	with air bag 248, 248
effect of stability skirt clearance on	Stern skirt, pressure distribution acting on
transverse stability 171	inner surface 260
effect of various parameters on transverse	Streamline
stability 144–51	analysis 60–2
in waves 364	diagram 61
internal stability skirts 190	Strength calculation 461
longitudinal stability trunks 456	Strength of hull 464
requirements 399	Strouhal number 346
for large heeling angles 361–2	Structural design 458–86
skirt configurations 261	ACV 459–60
standards 355–62	current state 460
static transverse initial stability of ACV	features 458–60
360	hull 474, 476
static transverse stability of ACV 169	SES 459
static transverse stability on cushion	Structural strength
137–52, 143	analysis, former USSR 467–73
static transverse stability without LSK	calculation 465–7
141–2	Strut palms, drag of 116
transverse dynamic stability 152–63	Subcavitating propellers 520, 526
transverse stability 358 as function of Froude number 177	Subsystem design 354–5
	Supercavitating propellers 522, 531–7
during take-off 159–61	outline design procedure 535
effect of VCG 171–2	Supports 571
factors affecting ACV 168–72	Surface contact propulsion 574–6
for ACV 163–8	design considerations 574–6
in waves 161	Surface effect ships (SES) 1
on cushion in motion 154–9	Sway 273 Swiyalling pylong 211, 212
with flexible bow/stern seals 154–5	Swivelling pylons 211, 212
with rigid stern seal 155–6	Systems 28

Tacoma Marine Industries 40	Tuck-under 267
Take-off 124-9, 159-61	Turning diameter 374
dynamic stability during 127	Turning performance 227–31
holes 71	Turning tracks
performance 72	between bank and non bank turn 230
water contact phenomenon of bow seal	for propulsion devices 229
during 105	Twin bag skirt 154, 451
TCG 162	,
Teeth 271	UH-15P 502
Thornycroft, Sir John I. 2	UK 9-21, 40
Thrust	Underwater appendage drag 115-17
deduction 544	US 25–32
in head seas 338	amphibious craft 25
Thrust/lift ratio 181	surface effect ship development 26–30
Torsion 469	USSR (former) 22–5, 22–3
Torsion load 470, 470	Utility applications 44
Torsional stress 564	Utility craft 45, 590
Total drag 85	Utility design parameters 378–9
of ACV model 711–IIA 118	Othicy design parameters 376–3
of ACV model 771–11A 118	VA.1 to 3 series 11
over water 117–21	
	Variable depth sonar (VDS) 32
ACV 117–19, 117, 118	Variable-pitch ducted fans 516
SES 119–21	Variable-pitch propeller hub construction
skirt 99	and control system 514
Total system weight 577–9, 578	VCG 171–2
Transmission configuration 582–4	Velocity streamlines 501, 502
Transmission shaft	Vertical acceleration 320, 335, 336, 365–8,
design factors 566	366, 367
design load case matrix 568	Vertical fins for course stability 208, 209
design stresses 566–8	Vertical rudder 208, 209
fatigue endurance of 569–71	Vessel trim 604
sections for analysis 567	Vibration 28, 31, 368, 476–86
Transport efficiency 397	absorption 478–82
Transverse metacentric height 162, 356–60,	acceptable levels 480
358	analysis 479
Transverse motions of SES in beam seas	assessment 485
279–94	critical operational frequencies 484
Transverse righting moment 160, 295	damping 370–2
Transverse roll stiffness versus cushion	design 481
height/width ratio 360	detail design phase 483–5
Transverse shift of centre of cushion area	diesel engines 594–5
165–6, 165 , 166	during construction 485
Trim 187–204	exciting force 482
angle 181, 182, 185	high operational speed 477
calculation 153-4	ISO 2372 and ISO 3945 standards 479
factors influencing 188	low natural frequency 476
prediction above hump speed on calm	malfunctions caused by 477
water 203-4	permissible rules 482
regulation using weight of persons and	preliminary design phase 482-3
water (oil) ballast 215	severe and superharmonic excitation
TSL-A 600, 601	source 476

tests and trials 486	Wave impact
water jets 540	force distribution 472–3
Vickers 12	loading coefficient 462
Vortex theory 524–6	pressure 463–5, 464
Voyageur 96	Wave interference 323
VT.2 14, 15	Wave-making drag 86–93, 90 , 91 , 92 , 94, 94
Waban Aki 45	coefficient 88, 89, 94-5
Wake factors 544	coefficient of slender sidewalls 114
Warner, D.K. 3	influence of water depth 92
Water contact phenomenon of bow seal	ratio 91
during take-off 105	Wave-making drag-lift ratio 89
Water jets 537–64	Wave profile
advantages 538	and Froude number 189
cavitation 556–7	beyond cushion, model 7205 199
efficiency 492 , 521 , 522, 548–54, 549 , 551 , 557	in/off cushion due to moving rectangular air cushion 193
flush-type inlet 538	Wave pumping 274, 278
geometries 541	concept 49, 73–6
inlet losses 544–6	motion 74, 74
inlet velocity 560-1	rate 75–6
inlet with secondary slow speed intake 546	WD-901 37, 37 , 38 , 189
integrated control systems 563–4	WD-902 38
KaMeWa 522	Weapon systems 32, 42
noise 539 , 540	Weber number 100, 349
overall propulsive efficiency (OPC) 538,	Weight
554, 562	components 379–80
performance 540–1	distribution 385, 388
physical dimensions 540	equilibrium equation 142
pressure effects around intake 553	of ACV 389–90, 403
selection 543 , 550 , 559–62	of air propellers 513
steering 562–3	of deck equipment and painting 393–4
thrust vs. craft speed 558	of electrical equipment 396
vibration 540	of equipment 394
weight vs. inlet diameter 562, 563	of fuel and oil 396
Water propulsor types 491	of hull 393, 397
Water surface deformation 189, 192	of life-saving equipment 395
at inboard profile 194	of metallic structure 393
HD-2 194	of power plant 395–6
in/beyond ACV air cushion over calm	of ship systems 395
water 190-6	of skirt system 265–7, 346, 349–50, 396
in/beyond SES air cushion on calm water	of water-jet unit 562, 563
197–200, 198	vs. displacement 394
Water surface profile 192	Weight classification
Wave amplitude 196–7	former USSR 381–2
Wave equation 298–9, 312	high-speed boats 382–4
Wave exciting force, frequency response for	MARIC 380
320	USSR 381
Wave exciting moment, frequency response	Western countries 382
for 320	Weight estimate 379–84
Wave height 338, 340	checklist 391–2

632 Index

West, A.A. 52–5, 63
Westland Aircraft Limited 11
Wetted surface
correction coefficient of 109
of sidewalls 104, 106, 107, 110
Wetted surface area, correction coefficient
107, 108
Wetted surfaces 188

Wetted surfaces 188
Whirl speed 568-9
Wind direction and speed 228
Wind tunnel model tests 347
Wind tunnel tests 343

Wing in ground effect machines (WIG and PARWIG) 1, 5–9, 6
Work boats 45

XR-1 138 XR-1A 26, **26** XR-1D 30 XR-5 29

Yaw 92, 94–5, 273 Yawing angles and overturning 183