

Support Vector Machine

Semester 1, 2021 Ling Luo

Outline

- Nearest Prototype Classification
- SVMs
 - Hyperplane
 - Margins
 - Classification
 - Non-linear SVMs
 - Multi-class SVMs
- Maths behind SVMs

- Calculate the centroid of each class, and classify each test instance according to the class of the centroid it is nearest to
- A parametric variant of nearest-neighbour classification
- The **centroid** is calculated simply by averaging the numeric values along each axis:

For a class
$$C_j$$
 with M instances $\{\boldsymbol{x}_i \colon [a_{i,1}, a_{i,2}, \dots, a_{i,D}]\}$
Prototype $P_j = [a_1^*, a_2^*, \dots, a_D^*]$
Each $a_k^* = \frac{\sum_{i=1}^M a_{i,k}}{M}$

Classification is based on simple Euclidean distance

Classification is based on simple Euclidean distance

Classification is based on simple Euclidean distance

Forms a linear decision boundary

SVM

- Hyperplane
- Margins
- Classification
- Non-linear SVM
- Multi-class SVM

Support Vector Machine

 Goal: find a straight line/hyperplane that separates two classes

Linear separability

• A separating hyperplane in D dimensions can be defined by a **normal** \boldsymbol{w} and an **intercept** \boldsymbol{b}

$$\mathbf{w} = [w_1, w_2, ..., w_D]$$

• The hyperplane passing a point $\mathbf{x} = [x_1, x_2, ..., x_D]$ is:

$$w_1 x_1 + \dots + w_D x_D + b = 0$$
$$w \cdot x + b = 0$$

 ${\pmb w}$ and ${\pmb x}$ are column vectors, and the dot product ${\pmb w}\cdot {\pmb x}$ is often written as ${\pmb w}^{\rm T}{\pmb x}$

- Linear classifier takes the form $f(x) = w^{T}x + b$
- In 2D space, this is a straight line

- Linear classifier takes the form $f(x) = w^{T}x + b$
- In 3D space, this is a plane

One solution

Another solution

More solutions

• How can we rate different decision boundaries?

Week 5, Lecture 1

Margins

Consider the distance from a data point to the boundary

- For point A, we should be quite confident about the prediction of its class.
- For point C, a small change to the decision boundary might change our decision to change; we are less confident in the prediction.

Optimal Solution

- Aim: find a decision boundary that allows to make all correct and confident (far from the decision boundary) predictions for a given training set.
- SVM finds an optimal solution
 - Maximises the distance between the hyperplane and the difficult points close to decision boundary
 - Most stable under perturbations of the inputs

Optimal Solution

• What is the best hyperplane?

Classification using SVM

- Task: Associate one class as positive (+1), and one as negative (-1)
- Build the model: find the best hyperplane ${\it w}$ and ${\it b}$, which maximises the margin between the positive and negative training instances

How to learn \boldsymbol{w} and \boldsymbol{b} ? Naïve approach for small training sets:

- 1) Pick a plane w and b;
- 2) Find the worst classified sample (x_i, y_i) ;
- 3) Move plane (adjust w and b) to improve the classification of (x_i, y_i) ;
- 4) Repeat steps 2-3 until the algorithm converges.

Classification using SVM

- Make prediction for a test instance $t = [t_1, t_2, ..., t_D]$
 - Find the sign of $f(t) = \mathbf{w}^{\mathrm{T}} t + b$
 - The value of f(t) can be transformed into a probability, which shows the confidence.
 - Sometimes we assign "?" to instances within the margin

Comparison with KNN

- For a linear classifier SVM, the training data is used to learn the weight vector **w** and intercept **b** and mostly discarded.
- For a KNN classifier, the model must memorise all training data

Non-linearly Separable: Soft Margins

- Possibly large margin solution is better even though one constraint is violated
- Soft margins: trade-off between the margin and the number of mistakes on the training data

Non-linear SVM

- Make non-linearly separable problem separable
- Map data into better representation space

Non-linear SVM

 Solution: transform data by applying a mapping function, and then apply a linear classifier to the new feature vectors.

Week 5, Lecture 1

COMP30027 Machine Learning

Multi-Class SVM

- Most common approaches for multiple classes is to convert to two-class problem.
 - one-versus-all: one classifier to separate one class from the rest of classes, choose the class which classifies test data point with greatest margin
 - **one-versus-one**: one classifier per pair of classes, choose the class selected by most classifiers
- Training time can be a serious issue, as we need to build many SVMs

Summary

- SVM is a linear hyperplane-based classifier for a two-class classification problem
- SVM selects the hyperplane with maximum margin
- Soft margins allow some data points to violate the separating hyperplane
- Non-linear SVM transforms data to a new feature space and finds a hyperplane separating two classes in the new space

Maths behind SVM

Specification of SVM

- Training set: N examples (x_1, y_1) , (x_2, y_2) , ..., (x_N, y_N) , where $x_i \in \mathbb{R}^D$ and $y_i \in \{-1,1\}$. Assume that two classes are linearly separable.
- The hyperplane separating two classes can be represented as:

$$\mathbf{w}^{\mathrm{T}}\mathbf{x} + b = 0$$

and for training samples,

$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i} + b \ge 1 \text{ for } y_{i} = +1$$
 $\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i} + b \le -1 \text{ for } y_{i} = -1$
 $y_{i}(\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i} + b) - 1 \ge 0$

Support Vectors

- Objective: find the data points that act as the boundaries of the two classes
- They constrain the margin between the two classes

Optimisation

- Optimisation problem: maximising the margin $\frac{2}{\|w\|}$
- Constraints: all points are on the correct side of the hyperplane

$$y_i(\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b) - 1 \ge 0$$

• Maximising $\frac{2}{\|w\|}$ is inconvenient, so we minimise

$$\frac{1}{2}\|\boldsymbol{w}\|^2 = \frac{1}{2}(w_1^2 + w_2^2 +, \dots + w_D^2)$$

Optimisation

Constrained optimisation problem

$$\min_{\pmb{w}} \frac{1}{2} \|\pmb{w}\|^2$$
 subject to $y_i (\pmb{w}^{\mathrm{T}} \pmb{x}_i + b) - 1 \ge 0, \forall i \in \{1, 2, ..., N\}$

 Determination of model parameters corresponds to a convex quadratic optimisation problem. Any local solution is also a global optimum.

Soft Margins

- Introduce slack variables $\{\xi_1, \xi_2, ..., \xi_i, ..., \xi_N\}$, which allows few points to be on the "wrong" side of the hyperplane at some cost
- New objective function with slack variables

$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{N} \xi_i$$

subject to $y_i(\mathbf{w}^T \mathbf{x}_i + b) + \xi_i - 1 \ge 0$,
 $\xi_i \ge 0, \forall i \in \{1, 2, ..., N\}$

where C makes a trade-off between maximising the margin and minimising the training error, and it must be tuned.

Solving Optimisation Problem

- Solve constrained optimisation problem using Lagrange multipliers, where we introduce a value α_i for each constraint.
 - How many α_i do we need?
 - Solve α_i ... the derivation is out of scope
 - Eventually, most α_i are 0, and the non-zero values correspond to support vectors

$$w_d = \sum_{i}^{N} \alpha_i y_i x_{id} \qquad b = \frac{1}{N_{sv}} \sum_{j \in N_{sv}} \frac{1 - y_j \mathbf{w}^{\mathrm{T}} \mathbf{x}_j}{y_j}$$

Solving Optimisation Problem

Support vectors

x 1	x2	У	α
0.3858	0.4687	1	65.5261
0.4871	0.611	-1	65.5261
0.9218	0.4103	-1	0
0.7382	0.8936	-1	0
0.1763	0.0579	1	0
0.4057	0.3529	1	0
0.9355	0.8132	-1	0
0.2146	0.0099	1	0
· · · · · · · · · · · · · · · · · · ·			

$$w_1 = \sum_i \alpha_i y_i x_{i1} = 65.5261^*1^*0.3858 + 65.5261^* (-1)^*0.4871 = -6.64$$

$$w_2 = \sum_i \alpha_i y_i x_{i2} = 65.5261^*1^*0.4687 + 65.5261^* (-1)^*0.611 = -9.32$$

Source: Tan et al. (2018) Chapter 6.9

Classification using SVM

- After solving the optimisation problem, we get all α_i and can ignore training instances that are not support vectors
- Classify a new instance $\boldsymbol{t} = [t_1, t_2, ..., t_D]$
 - Find the sign of $f(t) = \mathbf{w}^{\mathrm{T}} t + b$

$$f(t) = \sum_{i}^{N} \alpha_{i} y_{i} x_{i}^{\mathrm{T}} t + b$$

• If f(t) > 0, class label is +1; else, class label is -1

Non-linear SVM

- Transform our dataset into a higher-order space
- For example, the *polynomial kernel of order 2*, ϕ_{P2} , transforms a vector of m dimensions into a vector of $C_m^2 + 2m + 1$ (= $\frac{m^2}{2} + \frac{3m}{2} + 1$) dimensions

$$x$$
: [$x_1, x_2, ..., x_m$]

$$\phi_{P2}(\mathbf{x}): [1, \sqrt{2}x_1, \sqrt{2}x_2, ..., \sqrt{2}x_m, x_1^2, x_2^2, ..., x_m^2, \sqrt{2}x_1x_2, \sqrt{2}x_1x_3, ..., \sqrt{2}x_{m-1}x_m]$$

Non-linear SVM

- In training, we need to calculate $x_i^{\rm T} x_j$ of all pairs of training instances when solving α_i
- Computation: $\mathcal{O}(DN^2)$ for D attributes and N training instances
- ullet After transformation using ϕ_{P2} , there are $\mathcal{O}ig(D^2ig)$ attributes
- Solution: kernel trick!

Kernel Trick

- A kernel function acts on the un-transformed vectors, but calculates the dot product of the transformed vectors
- For example, given 2D vectors and a kernel function K_{P2}

$$\mathbf{x}_i: [x_{i1}, x_{i2}]$$
 $\mathbf{x}_j: [x_{j1}, x_{j2}]$

$$K_{P2}(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^{\mathrm{T}} \mathbf{x}_j)^2$$

$$(1 + \mathbf{x}_{i}^{\mathrm{T}} \mathbf{x}_{j})^{2} = 1 + x_{i1}^{2} x_{j1}^{2} + 2x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^{2} x_{j2}^{2} + 2x_{i1} x_{j1} + 2x_{i2} x_{j2}$$

$$= [1, x_{i1}^{2}, \sqrt{2} x_{i1} x_{i2}, x_{i2}^{2}, \sqrt{2} x_{i1}, \sqrt{2} x_{i2}]^{\mathrm{T}}$$

$$[1, x_{j1}^{2}, \sqrt{2} x_{j1} x_{j2}, x_{j2}^{2}, \sqrt{2} x_{j1}, \sqrt{2} x_{j2}]$$

$$= \phi_{P2}(\mathbf{x}_{i})^{\mathrm{T}} \phi_{P2}(\mathbf{x}_{i})$$

Kernel Trick

Using the polynomial kernel function

$$K_{P2}(\boldsymbol{x}_i, \boldsymbol{x}_j) = (1 + \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j)^2$$

Computation:

- The dot product between the two vectors
- 2) One extra addition
- 3) One extra exponentiation
- We get the dot product between the higher-order vectors

$$K_{P2}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \phi_{P2}(\boldsymbol{x}_i)^{\mathrm{T}} \phi_{P2}(\boldsymbol{x}_j)$$

effectively skip the cost of transformation step, plus all of the extra calculations!

Common Kernel Functions

A kernel function K must be continuous, symmetric, and have a positive definite gram matrix

Linear Kernel

$$K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j$$

Polynomial Kernel

$$K(\mathbf{x}_i, \mathbf{x}_i) = (\mathbf{x}_i^{\mathrm{T}} \mathbf{x}_i + \theta)^d$$

Radial Basis Kernel

$$K(\mathbf{x}_i, \mathbf{x}_j) = exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$$

Classify with Kernel Function

- In non-linear SVM, we replace our dot product with the corresponding kernel function
- Classify a new instance $\boldsymbol{t} = [t_1, t_2, ..., t_D]$

original
$$f(t) = \sum_{i}^{N} \alpha_{i} y_{i} x_{i}^{T} t + b$$

$$\Rightarrow f(t) = \sum_{i}^{N} \alpha_{i} y_{i} K(x_{i}, t) + b$$

• If f(t) > 0, class label is +1; else, class label is -1

Summary and Resources

- Learning SVM models means finding the best separating hyperplanes
- Classification of new instances is efficient
- SVMs can be applied to non-linearly-separable data with an appropriate kernel function
- Resources
 - Tan et al. Introduction to Data Mining (2018, 2nd edition). Section 6.9
 - http://nlp.stanford.edu/IR-book/pdf/15svm.pdf
 - https://www.youtube.com/watch?v= PwhiWxHK8o
 - http://research.microsoft.com/pubs/67119/svmtutorial.pdf