2. Write the Boolean expression for output x in the following figure. Determine the value of x for all possible input conditions, and list the values in a truth table.

The output expression is,

$$\begin{split} X &= \left(\overline{A}, \overline{B}, \overline{C} \right) + \left(A, \overline{B}, \overline{C} \right) + \left(\overline{A}, \overline{B}, D \right) \\ &= \overline{B}, \overline{C} \Big(A + \overline{A} \Big) + \left(\overline{A}, \overline{B}, D \right) \\ &= \overline{B}, \overline{C} + \left(\overline{A}, \overline{B}, D \right) \end{split}$$

Truth table:

Α	В	С	D	х
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

$$X = \overline{(A + B)(B + \overline{C})}$$

$$= (A + B) + (B + \overline{C}) = A + B + \overline{C}$$

Α	В	С	Output
0	0	0	Т
0	0	1	F
0	1	0	Т
0	1	1	Т
1	0	0	Т
1	0	1	Т
1	1	0	Т
1	1	1	Т

- 4. Simplify the following expression using Boolean theorems
 - a. The output of Figure 2b

b.
$$y = (M + N)(\overline{M} + P)(\overline{N} + \overline{P})$$

c.
$$z = \overline{A}B\overline{C} + AB\overline{C} + B\overline{C}D$$

a.

Start $\overline{A+BB+\overline{C}}$ Apply: Demorgan Theorm $\overline{A+B}+\overline{B+\overline{C}}$ Apply the Involution Law: $\overline{\overline{A}}=A$ $A+B+\overline{B+\overline{C}}$ Apply the Involution Law: $\overline{\overline{A}}=A$ $A+B+B+\overline{C}$ Apply the Idempotent Law: A+A=A $A+B+\overline{C}$

Start

 $(M+N)(\overline{M}+P)(\overline{N}+\overline{P})$

Apply: Distribution

 $(\overline{M}+P)(\overline{N}+\overline{P})M+(\overline{M}+P)(\overline{N}+\overline{P})N$

Apply: Distribution

 $(\overline{N} + \overline{P})M\overline{M} + (\overline{N} + \overline{P})MP + (\overline{M} + P)(\overline{N} + \overline{P})N$

Apply the Complement Law: $A\overline{A} = 0$

 $0+(\overline{N}+\overline{P})MP+(\overline{M}+P)(\overline{N}+\overline{P})N$

Apply the Identity Law: A+0 = A

 $(\overline{N} + \overline{P})MP + (\overline{M} + P)(\overline{N} + \overline{P})N$

Apply: Distribution

 $MP\overline{N}+MP\overline{P}+(\overline{M}+P)(\overline{N}+\overline{P})N$

Apply the Complement Law: $A\overline{A} = 0$

 $MP\overline{N}+()+(\overline{M}+P)(\overline{N}+\overline{P})N$

Apply the Identity Law: A+0 = A

 $MP\overline{N} + (\overline{M} + P)(\overline{N} + \overline{P})N$

Apply: Distribution

 $MP\overline{N} + (\overline{N} + \overline{P})N\overline{M} + (\overline{N} + \overline{P})NP$

Apply: Distribution

 $MP\overline{N} + N\overline{M}\overline{N} + N\overline{M}\overline{P} + (\overline{N} + \overline{P})NP$

Apply the Complement Law: $A\overline{A} = 0$

 $MP\overline{N}+0+N\overline{M}\overline{P}+(\overline{N}+\overline{P})NP$

Apply the Identity Law: A+0 = A

 $MP\overline{N} + N\overline{M}\overline{P} + (\overline{N} + \overline{P})NP$

Apply: Distribution

 $MP\overline{N}+N\overline{M}\overline{P}+NP\overline{N}+NP\overline{P}$

Apply the Complement Law: $A\overline{A} = 0$

 $MP\overline{N} + N\overline{M}\overline{P} + 0 + NP\overline{P}$

Apply the Identity Law: A+0 = A

 $MP\overline{N} + N\overline{M}\overline{P} + NP\overline{P}$

Apply the Complement Law: $A\overline{A} = 0$

 $MP\overline{N} + N\overline{M}\overline{P} + 0$

Apply the Identity Law: A+0 = A

 $MP\overline{N} + N\overline{M}\,\overline{P}$

Start $\overline{A}B\overline{C}+AB\overline{C}+B\overline{C}D$ Apply the Distributive Law: AB+AC=A(B+C) $B\overline{C}(\overline{A}+A)+B\overline{C}D$ Apply the Complement Law: $A+\overline{A}=1$ $B\overline{C}1+B\overline{C}D$ Apply the Identity Law: A1=A $B\overline{C}+B\overline{C}D$ Apply the Absorption Law: A+AB=A $B\overline{C}$

6.

The logic circuit of the given output expression using NAND gates is,

8.

Here from the given diagram let's write a logic equation $\overline{A}.B+\overline{A}.\overline{B}$ Therefore from the given diagram let's write the truth tables

For 00 -->
$$\overline{0.0+\overline{0}.\overline{0}}=\overline{0+1}=0$$

For 01 --> $\overline{0.1+\overline{0}.\overline{1}}=\overline{0+0}=1$
For 10 --> $\overline{1.0+\overline{1}.\overline{0}}=\overline{0+0}=1$
For 11 --> $\overline{1.1+\overline{1}.\overline{1}}=\overline{1+0}=0$

A	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

Here at present condition the switch is in off condition

--> No matter which switch you press the circuit will closed and bulb will glow.

One more press will make the circuit open and bulb will turn off.

