▼ Chapter 6 - Exercise 2: Phân tích dữ liệu thế giới qua các năm

Cho các dữ liệu year, pop, gdp_cap, life_exp, pop2, col từ tập tin data_year_pop_cap_life.txt

```
# Năm thu thập dữ liệu
year = [1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963
# Dân số thế giới thực tế và dự đoán tương ứng với năm (year)
pop = [2.53, 2.57, 2.62, 2.67, 2.71, 2.76, 2.81, 2.86, 2.92, 2.97, 3.03, 3.08, 3.14, 3.2,
# Thu nhập bình quân đầu người và tuổi thọ trung bình của một số quốc gia
gdp_cap = [974.5803384, 5937.029525999998, 6223.367465, 4797.231267, 12779.37964, 34435.36]
life_exp = [43.828, 76.423, 72.301, 42.731, 75.32, 81.235, 79.829, 75.635, 64.062, 79.441,
# life exp1950 tương tự như life_exp nhưng của một số quốc gia khác
life_exp1950 = [28.8, 55.23, 43.08, 30.02, 62.48, 69.12, 66.8, 50.94, 37.48, 68.0, 38.22,
import matplotlib.pyplot as plt
import numpy as np
# Câu 1: In item cuối của year và pop
print(year[-1])
print(pop[-1])
     2100
     10.85
```

Câu 2: Vẽ biểu đồ line thể hiện sự thay đổi dân số thế giới qua các năm (x-axis: year, plt.plot(year, pop) plt.show()

Câu 3: Cho biết thu nhập bình quân đầu người và tuổi thọ trung bình của item cuối trong print('Thu nhập bình quân đầu người của item cuối là:', round(gdp_cap[-1],2)) print('Tuổi thọ trung bình của item cuối là:', round(life exp[-1],1))

Thu nhập bình quân đầu người của item cuối là: 469.71 Tuổi thọ trung bình của item cuối là: 43.5

Câu 4: Thử vẽ biểu đồ line liên hệ giữa gdp_cap và life_exp với x-axis: gdp_cap, y-axis:
plt.plot(gdp_cap, life_exp)
plt.show()

Biểu đồ này có thể xem được không? Nếu không thì bạn hãy đề xuất một loại biểu đồ phù hợ

Có thể thay biểu đồ line thành biểu đồ scatter plot
plt.scatter(gdp_cap, life_exp)
plt.show()

Câu 5: Vẽ biểu đồ histogram của life_exp, màu cột xanh, viền đỏ
Bạn nhận xét gì qua biểu đồ vừa vẽ
plt.hist(life_exp, color='g', edgecolor='r')
plt.show()

Câu 6: Vẽ biểu đồ histogram của life_exp, màu cột xanh dương, viền đỏ, với bins = 5, 15, # Bạn nhận xét gì qua các biểu đồ vừa vẽ ?

Với bins = 5
plt.hist(life_exp, bins=5, color='b', edgecolor='r')
plt.show()

Với bins = 15
plt.hist(life_exp, bins=15, color='b', edgecolor='r')
plt.show()


```
# Với bins = 20
plt.hist(life_exp, bins=20, color='b', edgecolor='r')
plt.show()
```


Câu 7: Tạo scatter plot của gdp_gap và life_exp nhưng sử dụng plt.xscale('log').
Khi trực quan hóa dữ liệu thay đổi trong phạm vi rất rộng, thang đo logarit plt.xscale('
chúng ta hình dung các thay đổi một cách trực quan hơn.

```
plt.scatter(gdp_cap, life_exp)
plt.xscale('log')

# Thiết lập xlabel, ylabel, title
plt.xlabel('GDP per Capita [in USD]')
plt.ylabel('Life Expectancy [in years]')
plt.title('World Development in 2007')

plt.show()
```



```
# Câu 8: Tạo Scatter plot của gdp_gap và life_exp, sử dụng plt.xscale('log'). Thiết lập xl
# Với: tick_val = [1000,10000,100000] và tick_lab = ['lk','10k','100k'] => plt.xticks(tick_outledge)
plt.xscatter(gdp_cap, life_exp)

plt.xlabel('log')
plt.xlabel('GDP per Capita [in USD]')
plt.ylabel('Life Expectancy [in years]')
plt.title('World Development in 2007')

tick_val = [1000,10000,100000]
```

```
tick_rab = [ rk , rok , rook ]
plt.xticks(tick_val, tick_lab)
plt.show()
```



```
# Câu 9: Tạo numpy array np_pop từ pop2 trong file dữ liệu:
pop2 = [31.889923, 3.600523, 33.333216, 12.420476, 40.301927, 20.434176, 8.199783, 0.70857

np_pop = np.array(pop2)

# Vẽ scatter plot của gdp_cap và life_exp, với s = np_pop * 2, màu magenta
plt.scatter(gdp_cap, life_exp , s = np_pop * 2, color='m')

# Thiết lập xlabel, ylabel, title và plt.xticks([1000, 100000, 100000],['1k', '10k', '100k'
plt.xscale('log')
plt.xlabel('GDP per Capita [in USD]')
plt.ylabel('Life Expectancy [in years]')
plt.title('World Development in 2007')
plt.xticks([1000, 10000, 100000],['1k', '10k', '100k'])
```


Ve scatter plot của gdp_cap và life_exp, với s = np.array(pop) * 2, màu c = col (giá trị
plt.scatter(x = gdp_cap, y = life_exp, s = np.array(pop2) * 2, c= col, alpha=0.8)

```
# Thiết lập xlabel, ylabel, title và plt.xticks([1000, 100000, 100000],['1k', '10k', '100k'
plt.xscale('log')
plt.xlabel('GDP per Capita [in USD]')
plt.ylabel('Life Expectancy [in years]')
plt.title('World Development in 2007')
plt.xticks([1000,10000,100000], ['1k','10k','100k'])
plt.show()
```

Bạn nhận xét gì về biểu đồ vừa vẽ

plt.ylabel('Life Expectancy [in years]')


```
# Câu 11: Vẽ scatter plot của gdp_cap, life_exp, với s = np.array(pop) * 2, màu c = col, a
plt.scatter(x = gdp_cap, y = life_exp, s = np.array(pop2) * 2, c = col, alpha = 0.8)
# Thiết lập xlabel, ylabel, title và plt.xticks([1000, 100000, 100000],['1k', '10k', '100k'
plt.xscale('log')
plt.xlabel('GDP per Capita [in USD]')
```

```
plt.title('World Development in 2007')
plt.xticks([1000,100000,100000], ['1k','10k','100k'])

# Thêm text cho 2 nơi là India và China: plt.text(1550, 71, 'India'), plt.text(5700, 80, 'plt.text(1550, 71, 'India'))
plt.text(5700, 80, 'China')

# Thêm lưới cho biểu đồ
plt.grid()

plt.show()
```


X