1) 인공신경망 (Artificial Neural Network)과 합성곱 신경망(Convolutional Neural Network) 및 순환신경망 (Recurrent Neural Network)에 대해서 각각 설명하고 차이점에 대해서 하나의 표로 정리하여서 작성하시오.

▷ANN(인공 신경망) : 사람의 신경망 원리와 구조를 모방하고 있는 알고리즘으로 모든 입력을 출력에 매핑하는 가중치를 학습할 수 있는 능력이 있다. 들어오는 신호(자국)가 Input Data, 임계값은 weight, 거기에 따른 행동을 하는 것을 output이라고 한다. 즉 네트워크를 형성한 인공뉴런이 학습을 통해 문제 해결 능력을 가지는 모델 전반을 말한다.

▷CNN(합성곱 신경망) : 이미지 인식, 정보 추출, 얼굴 인식 등의 분야에서 널리 사용되고 있는 것으로 기존의 데이터에서 지식을 추출해 학습을 하는 방식이 아닌 데이터의 특징을 추출하여 특징들의 패턴을 파악하는 구조다. ▷RNN(순환 신경망) : 노드 간의 연결이 시간적 시퀀스를 따라 방향 그래프를 형성하는 인공 신경망의 한 종류이다. 순환(Recurrent)구조를 이용하여 과거의 학습을 weight를 통해 현재 학습에 반영하며 현재의 학습과 과거의 학습 연결을 가능하게 하고 시간에 종속된다는 특징이 있다.

차이점	ANN(Artificial Neural Network)	CNN(Convolutional Neural Network) -	RNN(Recurrent Neural Network)
학습 Data	정형 Data (Tabular Data) (행과 열로 표현이 가능한 표 형태의 데이터)	Image Data	Sequence Data (입력 데이터에 있는 순차 정보 캡쳐)
주요 적용분야	범주형 데이터의 분류나 예측	텍스트 분류, 영상인식(특히 탁월)	사진 설명, 텍스트 분류, 번역 등
Recurrent connections (노드 간 연결)	없음	없음	있음
Parameter sharing (특정 feature map에서 weight를 share)	<mark>없음</mark>	있음(Local connectivity)	있음 (필터와 콘볼루션 레이어의 평면에 있는 입 력 데이터 사이의 합성 결과에서 feature map이 생성될 때 발생)
공간 관계 (Spatial relationship) (다른 정보와 위치 기반 관계를 갖는 정보)	없음	있음 (물체들 사이의 공간 관계를 설명하는 건x)	없음
문제점	overfitting에 따른 문제가 있음 &학습시간이 느리다	하이퍼 파라메터 설정에 따라 과도한 데이터 손실에 따른 언더피팅 발생 가능	입력 데이터 전처리 필수(텍스트 임베딩 등) & 컴퓨팅 자원 추가소모(Attention)

2) CNN 코드 예제에 있었던 데이터인 MNIST를 기반으로 하여 ANN와 CNN을 직접 실행하고 분류 성능차이점에 대해서 기술하시오.

합성곱 신경망을 사용해서 분류를 수행하면 단순한 Dense층으로 이루어진 신경망 학습의 경우의 정확도(95.03%)보다 더 높은 정확도(0.9923=>99%)를 얻을 수 있다.

ANN을 사용하면 learning_rate를 줄여서 정확도를 높일 수 있었지만 아무리 높여도 CNN의 경우보다 낮은 정확도를 보여준다 (최대 0.9802 = 98%)

즉 이미지 입력 기능의 차이로 CNN이 일반적인 분류(ANN)의 경우보다 성능이 강력하다고 볼 수 있다.