

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment

Functional Analysis

Author: Adam J. Gray Student Number: 3329798

Declaration

I declare that this assessment item and has not been submitted for a	*		nere ackı	nowledged,
I certify that I have read and un	derstood the U	University F	Rules in	respect of
Student Academic Misconduct.		v		•
Adam J. Gray				Date
3329798				

Question 1

See that

$$\langle Tx, x \rangle = \overline{\langle x, Tx \rangle}$$

 ≥ 0

which means

$$\overline{\langle x, Tx \rangle} = \langle x, Tx \rangle$$
$$= \langle T^*x, x \rangle$$

so

$$\langle (T - T^*)x, x \rangle = 0$$

for all $x \in \mathcal{H}$.

We just want to show that $(T - T^*) = 0$. Say $\langle Jx, x \rangle = 0$ for all $x \in \mathcal{H}$ then for $x, y \in \mathcal{H}$ see that

$$\langle J(x+y), x+y \rangle = \langle Jx, y \rangle + \langle Jy, x \rangle + \underbrace{\langle Jx, x \rangle}_{=0} + \underbrace{\langle Jy, y \rangle}_{=0}$$
$$= \langle Jx, y \rangle + \langle Jy, x \rangle \tag{1}$$

and see that

$$\langle J(x+iy), x+iy \rangle = \langle Jx, iy \rangle + \langle Jiy, x \rangle + \underbrace{\langle Jx, x \rangle}_{=0} + \underbrace{\langle Jiy, iy \rangle}_{=0}$$
$$= -i\langle Jx, y \rangle + i\langle Jy, x \rangle \tag{2}$$

Now multiplying (1) by i and subtracting it from (2) yields

$$\langle Jx, y \rangle = 0$$

for all $x,y\in\mathcal{H}$ which implies $J\equiv 0.$ Letting $J=(T-T^*),$ yields $(T-T^*)=0$ as required.

So
$$T \equiv T^*$$
.

Question 2

Part 1

From a toeplitz operator $T = \{a_{i-j}\}_{i,j\in\mathbb{Z}}$ define the diagonal operator D_j as the matrix-type operator taken as then j-th diagonal of T. Ie.

$$D_{j} = \begin{pmatrix} 0 & 0 & 0 & \cdots \\ \vdots & \ddots & \ddots & \ddots \\ 0 & \ddots & \ddots & \ddots \\ a_{j} & \ddots & \ddots & \ddots \\ 0 & a_{j} & \ddots & \ddots \\ 0 & 0 & a_{j} & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix}$$

If $\mathbf{x} = (x_1, x_2, \ldots)$ then it is clear that $D_j\mathbf{x} = (0, \ldots, 0, a_jx_1, a_jx_2, \ldots)$. if j > 0, and that $D_j\mathbf{x} = (a_jx_{j+1}, a_jx_{j+2}, a_jx_{j+3}, \ldots)$ when j < 0 In the case j = 0 then $D_0\mathbf{x} = (a_0x_1, a_0x_2, a_0x_3, \ldots)$. In all three cases we have bonded linear operators. We can regard $D_j = a_j(S^*)^j$ when j < 0, and $D_j = a_jS^j$ when j > 0 and the a_0 times the identity operator when j = 0. Importantly in all three cases the norm of the operator is just 1.

Also it is clear that

$$T = \sum_{j \in \mathbb{Z}} D_j.$$

Since we have that

$$\sum_{j\in\mathbb{Z}}|a_j|=M<\infty$$

we can write

$$\begin{aligned} ||T\mathbf{x}|| &= ||\sum_{j \in \mathbb{Z}} D_j \mathbf{x}|| \\ &\leq \sum_{j \in \mathbb{Z}} ||D_j \mathbf{x}|| \\ &\leq \sum_{j \in \mathbb{Z}} |a_j|||x|| \\ &= ||x|| \sum_{j \in \mathbb{Z}} |a_j| \\ &= ||x||M \end{aligned}$$

and so T is a bounded on ℓ^2 .

Part 3

Since Hilbert-Schmidt operators are independent of the basis we can just use the standard ℓ^2 basis for this argument. Using the idea that $T = \sum_{j \in \mathbb{Z}} D_j$ from part 1 we consider

$$\sum_{n=1}^{\infty} ||Te_n||^2 = \sum_{n=1}^{\infty} ||\sum_{j \in \mathbb{Z}} D_j \mathbf{e}_n||^2$$

$$= \sum_{n=1}^{\infty} ||(a_{n-1}, a_{n-2}, \dots)||^2$$

$$= \sum_{n=1}^{\infty} ||\sum_{j=0}^{\infty} a_{n-j}^2||$$

Now suppose that $a_k \neq 0$ for some k then there exits an N such that n > N implies that a_k^2 is in the sum $\sum_{j=0}^{\infty} a_{n-j}^2$ and consequently $\sum_{n=1}^{\infty} ||\sum_{j=0}^{\infty} a_{n-j}^2|| = \infty$. So $a_k = 0$ for all k and Hilbert-Schmidt Toeplitz operators are just the 0 operator.

Question 3

Part 1

$$x \in (\operatorname{Im} T)^{\perp}$$
 iff

So
$$(\operatorname{Im} T)^{\perp} = \ker T^*$$
.

Part 2

Setting $T = T^*$ in the result of part a yields

$$(\operatorname{Im} T^*)^{\perp} = \ker T^{**} \qquad \Leftrightarrow (\operatorname{Im} T^*)^{\perp} = \ker T$$

and taking orthogonal complements of both sides gets

$$(\operatorname{Im} T^*)^{\perp \perp} = (\ker T)^{\perp}$$

 $\Leftrightarrow \overline{\operatorname{Im} T^*} = (\ker T)^{\perp}.$

So
$$\overline{\operatorname{Im} T^*} = (\ker T)^{\perp}$$
.

Acknowledgements

Thank you to Ed McDonald for pointing out an elementary flaw in my original solution to question 1.

Thank you to Roberto Riedig for suggesting a method which I latter developed for the solution to question 2.