Chap.1 선형 회귀 (Linear Regression)

방 수 식 교수

(bang@tukorea.ac.kr)

한국공학대학교 전자공학부

2024년도 1학기 머신러닝실습 & 인공지능설계실습1

본 강의의 목표

* Al Starter — Train and test your first neural network classifier in Keras from scratch

우리는 자비스를 만들려는 것이 아닙니다. 그저 <u>단순한 형태의 분류기 정도</u>를 만드는 겁니다.

두려워하지 마세요!

준비 되셨나요?

- 벡터(Vector)
 - 샘플을 특징 벡터로feature vector 표현 Input data

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5.1 \\ 3.5 \\ 1.4 \\ 0.2 \end{pmatrix}$$

그림 3-2 iris의 세 가지 품종(왼쪽부터 Setosa, Versicolor, Virginica)

■ 여러 개의 특징 벡터를 첨자로 구분

$$\mathbf{x}_{1} = \begin{pmatrix} 5.1 \\ 3.5 \\ 1.4 \\ 0.2 \end{pmatrix}, \ \mathbf{x}_{2} = \begin{pmatrix} 4.9 \\ 3.0 \\ 1.4 \\ 0.2 \end{pmatrix}, \ \mathbf{x}_{3} = \begin{pmatrix} 4.7 \\ 3.2 \\ 1.3 \\ 0.2 \end{pmatrix}, \ \cdots, \ \mathbf{x}_{150} = \begin{pmatrix} 5.9 \\ 3.0 \\ 5.1 \\ 1.8 \end{pmatrix}$$

Input data 1 Input data 2 Input data 3

- iris 데이터
 - 특징이 4개이므로 4차원 특징 공간을 형성
 - 150개 샘플 각각은 4차원 특징 공간의 한 점

특징이 많을수록 사람이 다차원 특징 공간에서 분석하는 것은 불가능 => Machine은 가능하다. (행렬 연산을 통해)

- 행렬 (Matrix)
 - 여러 개의 벡터를 담음
 - 훈련집합 (Training set)을 담은 행렬
 - 예) Iris 데이터에 있는 150개의 샘플을 행렬 X로 표현

$$\mathbf{X} = \begin{pmatrix} 5.1 & 3.5 & 1.4 & 0.2 \\ 4.9 & 3.0 & 1.4 & 0.2 \\ 4.7 & 3.2 & 1.3 & 0.2 \\ 4.6 & 3.1 & 1.5 & 0.2 \\ \vdots & \vdots & \vdots & \vdots \\ 6.2 & 3.4 & 5.4 & 2.3 \\ 5.9 & 3.0 & 5.1 & 1.8 \end{pmatrix} = \begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} \\ x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4} \\ x_{3,1} & x_{3,2} & x_{3,3} & x_{3,4} \\ x_{4,1} & x_{4,2} & x_{4,3} & x_{4,4} \\ \vdots & \vdots & \vdots & \vdots \\ x_{149,1} & x_{149,2} & x_{149,3} & x_{149,4} \\ x_{150,1} & x_{150,2} & x_{150,3} & x_{150,4} \end{pmatrix}$$

■ 행렬 **A**의 전치행렬 **A**^T

Transpose matrix

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}, \quad \mathbf{A}^{\mathrm{T}} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & \cdots & a_{nm} \end{pmatrix}$$

예를 들어,
$$\mathbf{A} = \begin{pmatrix} 3 & 4 & 1 \\ 0 & 5 & 2 \end{pmatrix}$$
라면 $\mathbf{A}^{\mathrm{T}} = \begin{pmatrix} 3 & 0 \\ 4 & 5 \\ 1 & 2 \end{pmatrix}$

■ Iris의 설계 행렬을 전치 행렬 표기에 따라 표현하면,

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1^{\mathrm{T}} \\ \mathbf{x}_2^{\mathrm{T}} \\ \vdots \\ \mathbf{x}_{150}^{\mathrm{T}} \end{pmatrix}$$

- 행렬 연산
 - 행렬 곱셈 $\mathbf{C} = \mathbf{AB}$, 이때 $c_{ij} = \sum_{k=1,s} a_{ik} b_{kj}$

$$2*3$$
 행렬 $\mathbf{A} = \begin{pmatrix} 3 & 4 & 1 \\ 0 & 5 & 2 \end{pmatrix}$ 와 $3*3$ 행렬 $\mathbf{B} = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 0 & 5 \\ 4 & 5 & 1 \end{pmatrix}$ 을 곱하면 $2*3$ 행렬 $\mathbf{C} = \mathbf{A}\mathbf{B} = \begin{pmatrix} 14 & 5 & 24 \\ 13 & 10 & 27 \end{pmatrix}$

- 교환법칙 성립하지 않음: AB ≠ BA
- 분배법칙과 결합법칙 성립: A(B+C) = AB + AC이고 A(BC) = (AB)C
- 벡터의 내적

벡터의 내적
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^{\mathrm{T}} \mathbf{b} = \sum_{k=1,d} a_k b_k$$

$$\mathbf{x}_1 = \begin{pmatrix} 5.1 \\ 3.5 \\ 1.4 \\ 0.2 \end{pmatrix}$$
와 $\mathbf{x}_2 = \begin{pmatrix} 4.9 \\ 3.0 \\ 1.4 \\ 0.2 \end{pmatrix}$ 의 내적 $\mathbf{x}_1 \cdot \mathbf{x}_2 \succeq 37.49$

회귀(Regression) 란?

- 여러 개의 독립변수와 한 개의 종속변수 간의 상관관계를 모델링하는 기법
 - ➤ 독립변수 (Independent Variable)
 - 다른 변수의 변화와 관계없이 독립적으로 변하는 값
 - > 종속변수 (Dependent Variable)
 - 다른 변수의 변화에 따라 변하는 값
 - 예 추의 무게에 따라 늘어나는 용수철의 길이 독립변수 종속변수

F = kx

F: 용수철의 무게 [N]

k: 탄성 계수

x: 늘어난 길이 [m]

탄성 계수를 구하고 싶다!!

How??

선형 회귀(Linear Regression)

- 선형 조합(Linear Combination)으로 모델링하는 회귀 기법
- 단순 선형 회귀 (Simple Linear Regression)
 - ▶ 하나의 x값 만으로 y값을 예측할 때

$$Ex) y = w_0 x + w_1$$

- 다중 선형 회귀 (Multiple Linear Regression)
 - \triangleright y값을 예측하기 위해 여러가지 x가 사용될 때 Ex) $y = w_0 x_0 + w_1 x_1 + w_2 x_2 + \cdots + w_{M-1} x_{M-1} + w_M$

비용 함수(Cost Function)

- <u>모든 입력에 대해</u> 예측값 (\hat{y}) 과 실제값(y)의 차이를 나타낸 함수
- 머신러닝 회귀분석의 목표: Cost Function을 최소화 하는 것

[그림 1] 데이터 그래프

$$\sum_{n=0}^{5} (\hat{y}_n - y_n)$$

차이를 모두 양의 값으로 표현하고 싶다.

$$\sum_{n=0}^{N-1} (\hat{y}_n - y_n)^2$$

값이 너무 크니 평균을 취하자

$$\epsilon_{MSE} = \frac{1}{N} \sum_{n=0}^{N-1} (\hat{y}_n - y_n)^2$$

Mean Square Error 평균 제곱 오차

Cost Function의 최소화

(목표) 최대한 $\hat{y} \approx y$ 을 만족하는 적절한 w_0 와 w_1 을 찾는다.

(수정된 목표) 평균제곱오차를 최소화하는 w_0 와 w_1 를 찾는다.

수학적 표현

$$(w_0^*, w_1^*) = \underset{(w_0, w_1)}{\operatorname{arg min}} \ \epsilon_{MSE}$$

Arguments of the minimum

Arguments: 함수의 입력

 \Rightarrow 즉, ϵ_{MSE} 를 최소로 만드는 $\frac{\mathbf{0}$ 력값 자체</u>를 의미 (w_0, w_1)

(수학적 목표)
$$(w_0^*, w_1^*) = \underset{(w_0, w_1)}{\arg \min} \frac{1}{N} \sum_{n=0}^{N-1} (w_0 x_n + w_1 - y_n)^2$$

Analytic Solution

$$\epsilon_{MSE}(w_0, w_1) = \frac{1}{N} \sum_{n=0}^{N-1} (w_0 x_n + w_1 - y_n)^2$$

$$\frac{\partial}{\partial w_0} \epsilon_{MSE}(w_0, w_1) = 0 \\ \frac{\partial}{\partial w_1} \epsilon_{MSE}(w_0, w_1) = 0 \\ w_0^* = \frac{\frac{1}{N} \sum_{n=0}^{N-1} y_n \left(x_n - \frac{1}{N} \sum_{i=0}^{N-1} x_i \right)}{\frac{1}{N} \sum_{n=0}^{N-1} x_n^2 - \left(\frac{1}{N} \sum_{n=0}^{N-1} x_n \right)^2} \\ w_1^* = \frac{1}{N} \sum_{n=0}^{N-1} \left(y_n - w_0^* x_n \right)$$

Analytic Solution

데이터 번호	무게 (g)	늘어난 길이 (cm)
1	5	11.66
2	6	13.10
3	7	13.79
4	8	16.71
5	9	17.74
6	10	18.70

Analytic Solution

$$\hat{y}$$
= 1.4875 x + 4.1274

Python 실습 과제 #1

- 데이터 set "lin_regression_data01.csv" 는 추의 무게에 따른 늘어난 용수철의 길이에 대한 새로운 데이터일 때, (1열: 추의 무게 [g], 2열: 늘어난 길이 [cm])
- 제공된 데이터 파일을 불러들여 x축은 추의 무게, y축은 늘어난 길이를 나타내는 2차원 평면에 각 데이터의 위치를 점으로 표시하라.
 - 필수요소: x축, y축 이름, grid, legend → 기본적으로 다음 실습에도 추가
 - 결과물: 코드, 그래프
- 2) 제공된 데이터에 대한 선형회귀의 Analytic solution을 구하고, 그래프로 표시하라.
 - 필수요소: Analytic solution, x축, y축 이름, grid, legend
 - 결과물: 코드, 그래프
- 3) 2)에서 구한 선형회귀 모델의 평균제곱오차(MSE)를 구하라
 - 결과물: 코드, 평균제곱오차

[공통 사항] 실습 과제 수행 요령 (1)

- 각 주차에 해당하는 실습 과제에 대해 **하나의 보고서로 작성**
 - ▶ 예시) 이번 주 범위가 실습 과제 #1 & #2 => 실습과제 #1 & #2에 대해서 하나의 보고서로 작성
- 보고서 작성 형식은 <u>PPT</u> (캡쳐 도구 적극 활용), Template 신경 X
 - ▶ 업로드 파일 형식은 PDF (저장 시 PDF로 저장) => E-class 과제 Tap에 업로드
 - ▶ 첫 페이지(표지)에 O주차, 실습과제 #O, 이름, 학번, 제출 날짜 기입
 - ▶ 각 결과에 대한 해석은 <u>간단 명료</u>하게 서술
- 보고서: PPT로 작성 => PDF 변환 후 제출
 - ➢ 결과 그림, 결과에 대한 분석(개조식 서술)
- 코드: 한글/워드에 전체복사=> PDF 변환 후 제출
 - 주석 포함, 표절 검사용

[공통 사항] 실습 과제 수행 요령 (2)

- 실습
 - 주차별 시작 점수 : 60 (만점 : 100)
 - ▶ 실습 당일 : Pass(+10), Non-pass(0), Drop(-20) → 조교에게 권한 부여
 - ▶ 보고서 평가 : 1등(+30), 제출(0), 미흡(-10), 미제출(-30)
 - → 주차별 1등 : 학기동안 1회(중복 수혜 불가)
 - → 주차별 1등은 학기말 공개

- 보고서 평가 기준
 - ▶ 표지 작성 여부
 - ▶ 주석 처리에 따른 Code의 가독성
 - ▶ 보고서의 가독성 (Code & 그래프에 대한 해상도, X축 Y축 Label 등)
 - 수행 결과 및 결과에 대한 해석의 적절성
 - ▶ 학생 간 Code 표절 여부
 - 구글링을 통한 소스코드 활용 시, 출처 반드시 표기

경사하강법(Gradient Decent Method)

- 대부분의 Cost function은 Analytic solution을 구할 수 없음.
 - ▶ 머신러닝에서는 수치적으로 접근하는 방법을 사용

독립변수가 1개일 때

[보충] 미분

- 미분에 의한 최적화
 - 미분의 정의

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} , \qquad f''(x) = \lim_{\Delta x \to 0} \frac{f'(x + \Delta x) - f'(x)}{\Delta x}$$

- 1차 도함수 f'(x)는 함수의 기울기, 즉 값이 커지는 방향을 지시함
- 따라서 -f'(x) 방향에 목적함수의 최저점이 존재

[보충] 미분

- 편미분
 - <u>독립변수가 여러 개인 함수</u>에 대한 미분 개념을 적용할 때 사용
 - 미분값이 이루는 벡터를 그레이디언트(Gradient)라 부름
 - 여러 가지 표기: ∇f , $\frac{\partial f}{\partial \mathbf{x}}$, $\left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right)^{\mathrm{T}}$
 - 예)

$$f(\mathbf{x}) = f(x_1, x_2) = \left(4 - 2.1x_1^2 + \frac{x_1^4}{3}\right)x_1^2 + x_1x_2 + (-4 + 4x_2^2)x_2^2$$

$$\nabla f = f'(\mathbf{x}) = \frac{\partial f}{\partial \mathbf{x}} = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right)^{\mathrm{T}} = (2x_1^5 - 8.4x_1^3 + 8x_1 + x_2, 16x_2^3 - 8x_2 + x_1)^{\mathrm{T}}$$

- 머신러닝에서의 편미분
 - 매개변수 집합 Θ에 독립변수(특징)들이 있으므로 편미분을 사용

[보충] 미분

- 연쇄법칙
 - 합성함수 f(x) = g(h(x))의 미분

$$f'(x) = g'(h(x))h'(x)$$

$$f'(x) = g'(h(i(x)))h'(i(x))i'(x)$$

• 예)
$$f(x) = 3(2x^2 - 1)^2 - 2(2x^2 - 1) + 5 일 때 h(x) = 2x^2 - 1 로 두면,$$

$$f'(x) = \underbrace{(3 * 2(2x^2 - 1) - 2)}_{g'(h(x))} \underbrace{(2 * 2x)}_{h'(x)} = 48x^3 - 32x$$

- 다층 퍼셉트론은 합성함수
 - $\blacksquare \frac{\partial o_i}{\partial u_{23}^1}$ 를 계산할 때 연쇄법칙 적용
 - 인공신경망 파트에서 자세히 설명

그림 2-26 다층 퍼셉트론은 합성함수

경사하강법(Gradient Decent Method)

- 최소값에서 접선의 기울기에 해당하는 미분 계수는 0
 - > 여러 번의 반복 (iteration)을 통해 미분 계수가 0이 되는 지점을 찾는다.
- 미분 계수(Gradient)는 언제나 현재 위치에서 함수값이 커지는 방향을 가리키므로, 미분 계수의 반대 방향으로 이동하면 최솟값을 찾을 수 있음
 - ➤ 즉 Gradient에 마이너스(-)를 취하여 더한다.

경사하강법(Gradient Decent Method)

- 1) w_0 와 w_1 에 대해서 임의의 값을 설정 => Initialization(초기화)
- 2) t 지점에서 Cost Function에 대한 미분 계수(기울기)를 구함
- 3) 기울기의 반대 방향으로 point를 $\alpha \times$ 기울기의 크기 만큼 이동시킴. (t+1 로 이동)
- 4) Stop 조건 확인
 - 4-1) Stop 조건에 만족할 경우: 현재의 값을 최종 값으로 선택
 - 4-2) Stop 조건에 만족하지 않을 경우, step 2)로 돌아감
- ❖ Stop 조건
 - 더 이상 변수가 변하지 않는다. (미분 값이 0)
 - 변화량이 매우 작다. (미분 값이 매우 작다)

학습률(Learning Rate)

- 학습률 (Learning Rate)
 - 경사 하강법에서 미분 계수 앞에 곱해져 이동 거리를 결정하는 변수
 - 미분 계수의 크기는 최소값에서 멀어질수록 커지는 성질을 가짐
 - ▶ 학습률을 곱하지 않을 경우 발산 가능
 - 적절한 값을 찾아야 머신러닝의 학습 성공이 가능
 - ▶ 하이퍼 파라미터(Hyper-parameter)의 최적화

머신러닝 설계자가 직접 세팅하는 값

경사하강법의 선형회귀 적용

• 초기값: $w_0[0] = 2$ 와 $w_1[0] = 2.5$

■ 3000회 반복 시: $w_0 = 1.4902$, $w_1 = 4.1063$

• Learning Rate: $\alpha = 0.015$.

[그림 3] 경사하강법의 단계별 매개변수 값의 변화, $\alpha = 0.01$

Optimal Solution

$$\hat{y} = 1.4875x + 4.1274$$

[그림 4] 단계별 평균제곱오차의 변화

Python 실습 과제 #2

- 실습 과제 #1에서의 데이터 set "lin_regression_data01.csv" 에 대해서
- 1) 앞에서 배운 경사하강법을 사용자 지정 함수로 구현하라 (**1차 다항식 모델 한정, Stop 조건은 제외 => 반복횟수 지정**)
 - 결과물: 코드, 그래프
- 2) 구현한 경사하강법 함수를 이용해 Optimal Solution (weights, w)을 구하고, 학습 진행(epoch)에 따른 w 와 MSE에 대한 그래프(교재 7쪽의 그림 3,4 참조)를 그려라.
 - 결과물: 코드 및 그래프
 - 필수요소: 각 그래프별 학습률, 초기값, 반복횟수 등에 따른 분석 내용
- 3) 선형회귀모델로 구한 Optimal Solution과 데이터 set을 하나의 그래프에 표시하고, 실습과제 #1-2)의 결과와 비교하라.
 - 결과물: 코드 및 비교 분석내용

[참고] Error에 대한 편미분

$$\epsilon_{MSE} = \frac{1}{N} \sum_{n=0}^{N-1} (\hat{y}_n - y_n)^2$$

• 1차 다항식 모델

$$\hat{y}_n = \mathbf{w}_0 x + \mathbf{w}_1$$

$$\frac{\partial}{\partial w_0} \epsilon_{MSE}(w_0, w_1) = \frac{1}{N} \sum_{n=0}^{N-1} (\hat{y}_n - y_n) x$$

$$\frac{\partial}{\partial w_1} \epsilon_{MSE}(w_0, w_1) = \frac{1}{N} \sum_{n=0}^{N-1} (\hat{y}_n - y_n)$$

다차원 데이터로의 확장

단일 변수 대한 Cost Function:
$$\epsilon_{MSE} = \frac{1}{N} \sum_{n=0}^{N-1} (w_0 x_n + w_1 - y_n)^2$$
 단일 변수 $(8 + 2 - 2)$

$$\begin{split} \epsilon_{MSE} &= \frac{1}{N} \sum_{n=0}^{N-1} (\hat{y}_n - y_n)^2 \\ &= \frac{1}{N} \sum_{n=0}^{N-1} (w_0 \underbrace{x_{0,n}}_{x_{0,n}} + w_1 \underbrace{x_{1,n}}_{x_{1,n}} + \dots + w_{M-1} \underbrace{x_{M-1,n}}_{x_{M-1,n}} + w_M - \underbrace{y_n}_{x_{M-1,n}}^2)^2 \\ &\stackrel{\rightleftharpoons}{=} \mathcal{F} \quad \text{ Input} \quad \mathcal{P}_{\mathcal{F}} \\ &\stackrel{\rightleftharpoons}{=} \mathcal{F} \quad \text{ Input} \quad \mathcal{P}_{\mathcal{F}} \\ &\stackrel{\rightleftharpoons}{=} \mathcal{F} \quad \text{ Input} \\ &\stackrel{\rightleftharpoons}{=} \mathcal{F} \quad \text{$$

n: 측정한 데이터 수에 대한 Index M: 입력 데이터 Type 수 (데이터 차원 수)

Notation에 대한 개념 확실하게 이해필요

데이터 번호	입력	출력
0	$x_{0,0}, x_{1,0}, \dots, x_{m,0}, \dots, x_{M-1,0}$	y_0
1	$x_{0,1}, x_{1,1}, \cdots, x_{m,1}, \cdots, x_{M-1,1}$	y_1
:	:	:
n	$x_{0,n}, x_{1,n}, \cdots, x_{m,n}, \cdots, x_{M-1,n}$	\mathcal{Y}_n
:	:	:
<i>N</i> -1	$x_{0,N-1}, x_{1,N-1}, \cdots, x_{m,N-1}, \cdots, x_{M-1,N-1}$	y_{N-1}

다차원 데이터를 위한 벡터 표현

$$\begin{split} \epsilon_{MSE} &= \frac{1}{N} \sum_{n=0}^{N-1} (\hat{y}_n - y_n)^2 \\ &= \frac{1}{N} \sum_{n=0}^{N-1} (w_0 x_{0,n} + w_1 x_{1,n} + \dots + w_{M-1} x_{M-1,n} + w_M - y_n)^2 \end{split}$$

$$\hat{y} = w_0 x_0 + w_1 x_1 + \cdots + w_{M-1} x_{M-1} + w_M x_M$$

$$\frac{x}{w_1 + w_2 + w_3} = \frac{x}{w_1 + w_2}$$

$$\hat{y} = egin{bmatrix} x & \neq 1 & \neq 2 \\ w^T & x_0 \\ x_1 \\ \vdots \\ x_{M-1} \\ x_M \end{bmatrix} = w^T x$$
 부잡했던 식을 백터의 곱으로 간단하게 표현

$$\epsilon_{MSE} = \frac{1}{N} \sum_{n=0}^{N-1} (\hat{y}_n - y_n)^2 = \frac{1}{N} \sum_{n=0}^{N-1} (w^T x_n - y_n)^2$$

다차원 입력데이터에 대한 Cost Function

=> Cost Function 이 최소가 되는 $\mathbf{w} = [w_0 \ w_1 \ w_2 \ \cdots \ w_M]$ 가 Optimal Solution

다차원 데이터에 대한 Analytic Solution

$$\epsilon_{MSE} = \frac{1}{N} \sum_{n=0}^{N-1} (\hat{y}_n - y_n)^2 = \frac{1}{N} \sum_{n=0}^{N-1} (w^T x_n - y_n)^2$$

편미분을 통한 해석해 구하기

$$\begin{split} \frac{\partial}{\partial w_m} \epsilon_{MSE} &= \frac{2}{N} \sum_{n=0}^{N-1} (w^T x_n - y_n) \frac{\partial}{\partial w_m} w^T x_n \\ &= \frac{2}{N} \sum_{n=0}^{N-1} (w^T x_n - y_n) x_{m,n} = 0 \text{ O/ } \text{E/} \text{ if } \end{split}$$

$$m=0$$
일 때,
$$\sum_{n=0}^{N-1} (w^T x_n - y_n) x_{0,n} = 0$$
 $m=1$ 일 때,
$$\sum_{n=0}^{N-1} (w^T x_n - y_n) x_{1,n} = 0$$
 \vdots
 $m=M-1$ 일 때,
$$\sum_{n=0}^{N-1} (w^T x_n - y_n) x_{M-1,n} = 0$$
 $m=M$ 일 때,
$$\sum_{n=0}^{N-1} (w^T x_n - y_n) x_{M,n} = 0$$

$$\sum_{n=0}^{N-1} (w^T x_n - y_n) x_{M,n} = 0$$

다차원 데이터에 대한 Optimal Solution

$$\sum_{n=0}^{N-1} \left(w^Tx_n - y_n\right)x_n^T = \begin{bmatrix}0\ 0 \cdots 0\ 0\end{bmatrix}$$
 데이터 수에 대한 Summation 계산을 행렬 계산으로 한번에 계산 가능해짐

$$w^T \mathbf{X}^T \mathbf{X} - y^T \mathbf{X} = [0 \ 0 \cdots 0 \ 0]$$

$$(w^{T}X^{T}X - y^{T}X)^{T} = (w^{T}X^{T}X)^{T} - (y^{T}X)^{T}$$

$$= (X^{T}X)^{T}w - X^{T}y$$

$$= X^{T}Xw - X^{T}y = [0 \ 0 \cdots 0 \ 0]$$

$$X^TXw = X^Ty$$

$$w = (X^{T}X)^{-1}X^{T}y$$

역행렬이 항상 존재한다는 것을 보장 할 수 없음

다차원 데이터에서의 경사하강법

■ 비용 함수(Cost Function)

•
$$cost(a,b) = \epsilon_{MSE}(a,b) = \frac{1}{N} \sum_{n=0}^{N-1} (ax_i + b - y_i)^2$$

$$\rightarrow cost(W) = \epsilon_{MSE}(W) = \frac{1}{N} \sum_{n=0}^{N-1} (W^T X^{(i)} - Y^{(i)})^2$$

■ 경사하강법(Gradient Decent Method)

•
$$a_{new} = a_{old} - \alpha \frac{\partial cost(a,b)}{\partial a} \Big|_{(a_{old},b_{old})}$$

•
$$b_{new} = b_{old} - \alpha \frac{\partial cost(a,b)}{\partial b} \Big|_{(a_{old},b_{old})}$$

$$\rightarrow W_{new} = W_{old} - \alpha \frac{\partial cost(W)}{\partial W}\Big|_{W_{old}}$$

Python 실습 과제 #3

- "lin_regression_data_02.csv"는 X0, X1, y로 이루어진 3차원 데이터일 때,
- 1) 제공된 데이터 파일을 불러들여 x축은 X0, y축은 X1, z축은 y를 나타내는 3차원 평면에 각 데이터의 위치를 점으로 표시하라.
 - 필수요소 : x축, y축, z축 이름, grid, legend
 - 결과물: 코드, 그래프
- 2) 주어진 X 데이터에 더미(dummy) 데이터를 추가하여 행렬을 생성하고, 초기 가중치(weights) 값을 이용하여 예측한 \hat{y} 을 3차원 축에 평면으로 나타내라.
 - 결과물: 코드 및 그래프 초기 가중치(weights) 지정은 random 함수 사용
- 3) 실습 #2에서 구현한 경사하강법 함수를 다차원 데이터 입력이 가능하도록 변경해 Optimal Solution (weights, \mathbf{w})을 구하고, 학습 진행(epoch)에 따른 \mathbf{w} 와 MSE에 대한 그래프(본 ppt 자료 23page 참고)를 그려라.
 - 필수요소: 각 그래프 별 학습률, 초기값, 반복횟수 등에 따른 분석 내용
 - 결과물: 코드 및 그래프
- 4) 3차원 축에 y와 Optimal Solution을 이용한 \hat{y} 을 점으로 표시하고, \hat{y} 은 3차원 축에 평면으로 나타내라. 보고서에최소 3개이상의 각도로 그래프를 회전하여 분석할 것.
 - 결과물: 코드 및 그래프

[참고] 3차원 그래프 그리기 설정

- Spyder 3차원 그래프 환경 세팅 방법
 - 1) Tools => Preferences 클릭
 - 2) IPython console => Graphics => Backend를 Automatic으로 설정 후 apply
 - 3) Figure 옵션을 통해 그래프 제어

[참고] 실습 결과

■ # 3-1, 3-2 결과

3-1(원 데이터)

3-2 (원 데이터 + 초기화 가중치)

■ #3-3,3-4 결과

3-3 (weight, mse 그래프)

3-4 (3차원 plot)

확률적 경사하강법(SGD)

출처: https://engmrk.com/mini-batch-gd/

- Batch: 경사하강법에서 기울기를 계산하는데 사용하는 데이터의 갯수
- 확률적 경사하강법(Stochastic Gradient Descent, SGD)

Stochastic Gradient Descent

Gradient Descent

Batch Size: 1

Batch Size: N (데이터 전체)

■ Mini Batch : 일부 모음으로 SGD를 적용하는 방법

출처: https://www.slideshare.net/vongho/ss-79607172

[참고] Keras로 다중 선형회귀 구현하기

■ Keras로 다중 선형회귀 구현하기

```
# Python 실습 과제 #3
import numpy as np
                                                                                       Train Loss
from tensorflow.keras.models import Sequential
                                                                                              Loss 출력
                                                                     20000
from tensorflow.keras.layers import Dense
from tensorflow.keras import optimizers
                                                                     15000
import matplotlib.pyplot as plt
                                                                   S 10000
x data = np.array([ [73,80,75],
                                                                     5000
                  [93,88,93],
                  [89,91,90],
                  [80,80,80],
                                                                                20
                                                                                                         100
                  [96,98,100],
                  [73,66,70], ])
y data = np.array([72,88,92,81,100,71])
model = Sequential()
model.add(Dense(1, input dim = 3, activation='linear'))
                                       1. Learning rate에 따른 학습 상태 관측
sgd = optimizers.SGD learning_rate = )
model.compile(loss='mse', optimizer=sgd, metrics=['mse'])
history = model.fit(x_data, y_data, batch_size= , epochs= , verbose=
                                                   2. batch size에 따른 학습 상태 관측
x_test = np.array([[90,88,93], [70,70,70]])
```

- 4. Test set에 대한 예측 결과 출력
- 3. epochs, verbose의 의미와 값에 따른 변화
- 5. 학습 완료된 상태에서의 Weight 출력
- 6. 학습 과정에 대한 MSE 출력 (Loss 출력)

[참고] sklearn 활용: 다중 선형회귀 (1)

■ 맨해튼 집값 예측하기

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

url = "https://raw.githubusercontent.com/Codecademy/datasets/master/streeteasy/manhattan.csv" manhattan = pd.read_csv(url)

맨해튼 집값 데이터 load

Nam	e 📤			Type				Size										
manhatt	can Da	ataFrame	ē				(353	39, 18)										
Index	rental id	d rent	bedrooms	bathroom	s size saft	n to subw	v floor	lding age	no fee	as roofde	c washer d	llas doorma	a las elevato	h s dishwas	r has patio	⊥ has gvm	neiahborhood	borouah
0	1545	2550	0	1	480	9	2	17	1			0				1	Upper East Side	Manhattan
1	2472	11500			2000												Greenwich Village	Manhattan
2	2919	4500								1		1					Midtown	Manhattan
3	2790	4795			975							1				1	Greenwich Village	Manhattan
4	3946	17500			4800			136				1				1	Soho	Manhattan
5	10817	3800			1100												Central Harlem	Manhattan
6	9077				600			115									Midtown East	Manhattan
7	5150	2995			579		21										Battery Park City	Manhattan
8	9507	15000			1715												Flatiron	Manhattan
9	1437				915			106									Upper East Side	Manhattan
10	404					43	17	14	1			1					Upper East Side	Manhattan
11	8293	6920			1439				1								Midtown East	Manhattan
12	6594	4875			900				1							1	East Village	Manhattan

[참고] sklearn 활용: 다중 선형회귀 (2)

■ 맨해튼 집값 예측하기

```
x = manhattan[['bedrooms', 'bathrooms', 'size_sqft', 'min_to_subway', 'floor', 'building_age_yrs', 'no_fee', 'has_roofdeck', 'has_washer_dryer', 'has_doorman', 'has_elevator', 'has_dishwasher', 'has_patio', 'has_gym']] 다차원입력
y = manhattan[['rent']] 출력: 집값
```

사이킷런 라이브러리 활용

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y, train_size = 0.7, test_size = 0.3)
```

Train data : Test data = 70 : 30 으로 분할

```
from sklearn.linear_model import LinearRegression
mlr = LinearRegression()
mlr.fit(x_train, y_train) # learning 실행
mlr.coef_ # weight 확인
mlr.intercept_ # bias 확인
```

SVD(특이값 분해) 기법으로 추정

[참고] sklearn 활용: 다중 선형회귀 (3)

■ 맨해튼 집값 예측하기

```
Test 데이터 50개에 대해서 예측값 출력
plt.plot(mlr.predict(x_test[:50]))
plt.plot(y_test[:50].values.reshape(-1, 1))
plt.legend(["predict","real price"])
```



```
my_apt = [[1,1,600,16,1,8,1,0,1,0,0,1,1,0]]
mlr.predict(my_apt) # 임의의 값에 대한 예측
```

array([[2951.70009882]])

mlr.score(x_train, y_train) # 성능 확인

0.7881931858162815

1에 가까울 수록 완벽하게 예측

선형 기저함수 모델

■ 선형 기저함수 모델(Linear Basis Function Model)

Non-Linear 함수들의 조합으로 표현하자!

대표적 기저함수 모델

■ Polynomial Basis Function(다항식 기저함수)

$$\phi_{\mathbf{k}}(x) = x^k$$

■ Gaussian Basis Function(가우시안 기저함수)

$$\phi_k(x) = e^{-\frac{1}{2}\left(\frac{x-\mu_k}{\sigma}\right)^2}$$

출처: https://pythonmachinelearning.pro/using-neural-networks-for-regression-radial-basis-function-networks/

기저함수 개수 K에 따른 파라미터 설정

■ Gaussian Basis Function(가우시안 기저함수)

 $\phi_k(x) = e^{-\frac{1}{2}\left(\frac{x-\mu_k}{\sigma}\right)^2}$

• k번째 가우스 함수의 평균

$$\mu_k = x_{\min} + \frac{x_{\max} - x_{\min}}{K - 1} k, \quad k = 0, 1, \dots, K - 1$$

• 모든 가우스 함수의 분산

$$\sigma = \frac{x_{\text{max}} - x_{\text{min}}}{K - 1}$$

¬1 ¬1 ⇒1 λ	매개변수					
기저함수	$\mu_{\!\scriptscriptstyle k}$	σ				
$\phi_0(x)$	5					
$\phi_1(x)$	10	5				
$\phi_2(x)$	15					

기저함수 수(K)에 따른 결과 비교

$$\hat{y} = 27.02 e^{-\frac{1}{2} \left(\frac{x-5}{5}\right)^2} + 3.46 e^{-\frac{1}{2} \left(\frac{x-10}{5}\right)^2} + 39.08 e^{-\frac{1}{2} \left(\frac{x-15}{5}\right)^2} - 23.82 \qquad w = \begin{bmatrix} 27.02 \\ 3.46 \\ 39.08 \\ -23.82 \end{bmatrix}$$

선형 기저함수 모델의 Analytic Solution

- 비용함수: 평균제곱오차

$$\epsilon_{MSE} = \frac{1}{N} \sum_{n=0}^{N-1} (\hat{y}_n - y_n)^2 = \frac{1}{N} \sum_{n=0}^{N-1} (\phi(x_n) - y_n)^2$$

 $\boldsymbol{\phi}(x_n) = \begin{bmatrix} \phi_0(x_n) \\ \phi_1(x_n) \\ \vdots \\ \phi_{K-1}(x_n) \\ \phi_K(x_n) \end{bmatrix}$

- N개의 훈련 데이터 입력에 대한 행렬

- N개의 훈련 데이터 출력에 대한 벡터

$$extbf{ extit{y}} = egin{bmatrix} y_0 \\ y_2 \\ dots \\ y_{N-1} \end{bmatrix}$$

Analytic Solution

$$\boldsymbol{w} = (\boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \boldsymbol{y}$$

다중 선형회귀 모델과 비교
$$w = (X^{T}X)^{-1}X^{T}y$$

Python 실습 과제 #4

■ 실습 과제 #1에서의 데이터 set "lin_regression_data01.csv" 에 대해서

- 1) K개의 가우스 함수를 이용한 선형 기저함수 모델의 Analytic Solution을 구하는 사용자 지정함수를 구현하라.
 - 결과물: 코드
- 2) 1)에서 구현한 기저함수 모델을 활용하여, K=3, 6, 8 일 때에 대한 weight를 표로 나타내고, raw 데이터와 회귀곡선을 그래프로 나타내라.
 - 결과물: 표, 그래프, 분석내용
- 3) K= 3~10에 대한 MSE 값을 그래프로 나타내라. (x축: K, y축:MSE)
 - 결과물: 그래프 및 분석내용