Importance

$$r'(P_i) = \sum_{j \in E(i)} r'(P_j) / I(P_j)$$

The Algorithm

Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks

- Assign each node an initial page rank
- repeat until convergence

calculate the page rank of each node (using the equation in the previous slide)

Example

	Iteration 0	Iteration I	Iteration 2	Page Rank
Pı	1/5	1/20	1/40	5
P ₂	1/5	5/20	3/40	4
P ₃	1/5	1/10	5/40	3
P ₄	1/5	5/20	15/40	2
P ₅	1/5	7/20	16/40	

$$r_1(P_5)=1/5 + 1/5 \times 1/4 + 1/5 \times 1/2 = 7/20$$

Matrix representation

$$\begin{bmatrix} 1/20 & 5/20 & 1/10 & 5/20 & 7/20 \end{bmatrix} = \begin{bmatrix} 1/5 & 1/5 & 1/5 & 1/5 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1/4 & 1/4 & 0 & 1/4 & 1/4 \\ 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{r}_{(t+1)}^{\mathsf{T}} = \mathbf{r}_{(t)}^{\mathsf{T}} \qquad \qquad \mathbf{H}$$

Three Questions

$$\mathbf{r}_{(t+1)}^{\mathsf{T}} = \mathbf{r}_{(t)}^{\mathsf{T}} \mathbf{H}$$

Also known as the power method

- Does this converge?
- Does it converge to what we want?
- Are the results reasonable?

Does it converge?

	Iteration 0	Iteration I	Iteration 2	Iteration 3
Pı	I	0	I	0
P ₂	0	I	0	I

Does it converge to what we want?

	Iteration 0	Iteration I	Iteration 2	Iteration 3
Pı	I	0	0	0
P ₂	0	I	0	0

Does it converge to what we want?

Page ranks to converge to 0.

Looks a lot like ...

$$\mathbf{r}_{(t+1)}^{\mathsf{T}} = \mathbf{r}_{(t)}^{\mathsf{T}} \mathbf{H}$$

Markov Chains

Set of states X

Transition matrix P where $P_{ij} = P(X_t=j \mid X_{t-1}=i)$

 π specifying the probability of being at each state $x \in X$

Goal is to find π such that $\pi^T = \pi^T P$

Why is this analogy useful?

There exists a theory about Markov chains that says that for any start vector, the power method applied to a Markov transition matrix P will converge to a unique positive stationary vector as long as P is stochastic, irreducible and aperiodic.

Make H stochastic

$$S = H + a(I/n e^{T})$$


```
      0
      I
      0
      0
      0

      I/5
      I/5
      I/5
      I/5
      I/5

      I/4
      I/4
      0
      I/4
      I/4

      0
      0
      I/2
      0
      I/2

      0
      0
      0
      I
      0
```

Make H aperiodic

A chain is periodic if there exists k > 1 such that the interval between two visits to some state s is always a multiple of k.

Make H irreducible

From any state, there is a non-zero probability of going from one state to another.

The Google Matrix

$$G = \alpha S + (I-\alpha) I/n ee^T$$

The Random Surfer Model: for each page, time spent ∝ importance.

Are the results reasonable?

$$G = \alpha S + (I-\alpha) I/n ee^T$$

G is stochastic, aperiodic and irreducible.

$$\mathbf{r_{(t+1)}}^{\mathsf{T}} = \mathbf{r_{(t)}}^{\mathsf{T}} \mathbf{G}$$

G is dense but computable using the sparse matrix H.

$$G = \alpha S + (I-\alpha) I/n ee^{T}$$

$$= \alpha (H + I/nae^{T}) + (I-\alpha) I/n ee^{T}$$

$$= \alpha H + (\alpha a + (I-\alpha)e) I/n e^{T}$$