Quantum Algorithms via Semidefinite Programming

Michael Czekanski '20 & R. Teal Witter '20

Abstract

Let f be a Boolean function and x be a bitstring input to f. We consider the query model where an algorithm evaluates f(x) by asking an oracle about the bits of x. The optimal quantum query complexity of f is the fewest queries any quantum algorithm takes to determine f(x) over all inputs x. We determine the optimal quantum query complexity of f by solving a semidefinite programming (SDP) problem. This solution also provides a span program that evaluates f in optimal quantum query complexity on a quantum computer.

Query Complexity

$$f_1(x) = (x_1 \wedge (x_2 ee ar{x}_2)) ee x_3 \ f_2(x) = x_1 ee x_2 ee x_3$$

$\boldsymbol{\mathcal{X}}$	$f_1(x)$	$f_2(x)$	I(x)	Span?
000	0	0	0,0,0	False
010	0	1	0,1,0	True
001	1	1	0,0,1	True

Span Programs

Do the input vectors I span to the target vector τ ?

For OR, I(x) = x and $\tau = 1$.

Problem

Given a Boolean function f...

- 1. What is the optimal quantum query complexity of *f*?
- 2. What algorithms meet the optimal quantum query complexity?

Semidefinite Program (SDP)¹

Minimize

$$\max_{y \in D} \sum_{j \in [n]} \langle y, j | \mathbb{X} | y, j
angle$$

subject to

$$\sum_{j\in[n]:y_j
eq z_j}raket{y,j|\mathbb{X}|z,j}=1$$
 for all y,z s.t. $\mathrm{f}(y)
eq f(z)$

Quantum Query Optimizer

github.com/rtealw/QuantumQueryOptimizer

```
# Example 1
D = ['00', '01', '10', '11']
E = ['0', '1', '1', '1']
qqo.runSDP(D=D, E=E)

# Example 2
qqo.runSDPForN(
  getD=qqo.getDAll, getE=qqo.getEOR,
  n_end=2, n_start=2)
```

Results²

Complexity of OR by Input Size

Solution to SDP for 2-bit OR

$$\mathbb{X} = \begin{bmatrix} 0.7 & 0 & 0 & 0 & 1 & 0 & 0.5 & 0 \\ 0 & 0.7 & 0 & 1 & 0 & 0 & 0 & 0.5 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & \sqrt{2} & 0 & 0 & 0 & 0.7 \\ \hline 1 & 0 & 0 & 0 & \sqrt{2} & 0 & 0.7 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0.5 & 0 & 0 & 0 & 0.7 & 0 & 0.6 & 0 \\ 0 & 0.5 & 0 & 0.7 & 0 & 0 & 0 & 0.6 \end{bmatrix}$$

¹Reichardt, Ben W. "Span programs and quantum query complexity: The general adversary bound is nearly tight for every boolean function." 50th Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2009.

²Wen, Zaiwen, Donald Goldfarb, and Wotao Yin. "Alternating direction augmented Lagrangian methods for semidefinite programming." Mathematical Programming Computation 2.3-4 (2010): 203-230.