ZAVRŠNI ISPIT 31.1.2019.

- 1. (10 bodova) Dane su točke A(1, -2, 0), B(2, 0, 1), C(0, -1, 2) i D(4, 2, 4).
 - (a) Neka je Π ravnina koja prolazi točkama A,B i C. Odredite ortogonalnu projekciju točke D na ravninu Π .
 - (b) Neka je Π ravnina iz a) dijela zadatka i p pravac koji prolazi točkama C i D. Odredite jednadžbu pravca s simetričnog pravcu p s obzirom na ravninu Π .
- 2. (10 bodova) Neka je $A:V^2\to V^2$ linearni operator simetrije s obzirom na pravac kroz ishodište koji s pozitivnim dijelom x-osi zatvara kut od 30°.
 - (a) Odredite matricu prikaza A zadanog linearnog operatora u kanonskoj bazi.
 - (b) Pokažite da za zadani linearni operator vrijedi $A \circ A = I$, gdje je I jedinični operator.
- 3. (10 bodova) Neka je $A: X \to Y$ linearni operator.
 - (a) Dokažite da je jezgra operatora Ker(A) vektorski potprostor od X, a slika operatora Im(A) vektorski potprostor od Y.
 - (b) Neka je $\{\mathbf{e}_1,...,\mathbf{e}_d\}$ baza od $\operatorname{Ker}(A),\ d < n = \dim X$, i neka je $\{\mathbf{e}_1,...,\mathbf{e}_d,\mathbf{e}_{d+1},...,\mathbf{e}_n\}$ baza od X. Dokažite da je onda $\{A(\mathbf{e}_{d+1}),...,A(\mathbf{e}_n)\}$ baza od $\operatorname{Im}(A)$.

4. (10 bodova) Neka je
$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 2 & -2 \\ -1 & 1 \end{bmatrix}$$
. Tada je $\mathbf{A}\mathbf{A}^{\mathsf{T}} = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 8 & -4 \\ -2 & -4 & 2 \end{bmatrix}$.

- (a) Nađite vlastite (svojstvene) vrijednosti i vlastite (svojstvene) vektore od $\mathbf{A}\mathbf{A}^{\mathsf{T}}$ te pokažite da se $\mathbf{A}\mathbf{A}^{\mathsf{T}}$ može dijagonalizirati.
- (b) Nađite ortonormiranu bazu prostora \mathbb{R}^3 u kojoj je $\mathbf{A}\mathbf{A}^\intercal$ dijagonalna.
- (c) Ako je **B** matrica tipa $m \times n$, može li se **BB**^{\dagger} uvijek dijagonalizirati? Kratko obrazložite.
- 5. (10 bodova)
 - (a) Neka je $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, definiramo skalarni umnožak $\langle \mathbf{x} | \mathbf{y} \rangle := \mathbf{A} \mathbf{x} \cdot \mathbf{A} \mathbf{y}$ gdje je · standardni skalarni umnožak u \mathbb{R}^2 .
 - Odredite formulu za $\langle \mathbf{x} | \mathbf{y} \rangle$.
 - Odredite α tako da vektori $\mathbf{x}=(1,1), \mathbf{y}=(1,\alpha)$ budu ortogonalni u tom skalarnom umnošku.
 - (b) Neka je sada **A** proizvoljna matrica reda n. Definirajmo analogno $\langle \mathbf{x} | \mathbf{y} \rangle := \mathbf{A} \mathbf{x} \cdot \mathbf{A} \mathbf{y}$ gdje je \cdot standardni skalarni umnožak u \mathbb{R}^n . Uz koje uvjete na **A** će $\langle \mathbf{x} | \mathbf{y} \rangle$ biti skalarni umnožak? Provjerite sva svojstva: pozitivnost, homogenost, komutativnost i aditivnost.

Napomena: Ispit se piše 120 minuta. Nije dopuštena upotreba kalkulatora ni podsjetnika.