Contents

1	Fun	${f ctions}$						
	1.1	arygcd	- binary-like gcd algorithms					
		1.1.1	bit_num - the number of bits					
		1.1.2	binarygcd – gcd by the binary algorithm					
		1.1.3	arygcd i – gcd over gauss-integer					
		1.1.4	arvgcd w - gcd over Eisenstein-integer					

Chapter 1

Functions

- 1.1 arygcd binary-like gcd algorithms
- 1.1.1 bit num the number of bits

```
\text{bit} \quad \text{num(a: } integer) \rightarrow integer
```

Return the number of bits for a

1.1.2 binarygcd – gcd by the binary algorithm

```
binarygcd(a: integer, b: integer) \rightarrow integer
```

Return the greatest common divisor (gcd) of two integers a, b by the binary gcd algorithm.

1.1.3 arygcd i – gcd over gauss-integer

```
arygcd_i(a1: integer, a2: integer, b1: integer, b2: integer) 
 <math>\rightarrow (integer, integer)
```

Return the greatest common divisor (gcd) of two gauss-integers a1+a2i, b1+b2i, where "i" denotes the imaginary unit.

If the output of arygcd_i(a1, a2, b1, b2) is (c1, c2), then the gcd of a1+a2i and b1+b2i equals c1+c2i.

†This function uses (1+i)-ary gcd algorithm, which is an generalization of the binary algorithm, proposed by A. Weilert[?].

1.1.4 arygcd w – gcd over Eisenstein-integer

```
arygcd\_w(a1: integer, a2: integer, b1: integer, b2: integer) \rightarrow (integer, integer)
```

Return the greatest common divisor (gcd) of two Eisenstein-integers $a1+a2\omega$, $b1+b2\omega$, where " ω " denotes a primitive cubic root of unity.

If the output of arygcd_w(a1, a2, b1, b2) is (c1, c2), then the gcd of a1+a2 ω and b1+b2 ω equals c1+c2 ω .

†This functions uses $(1-\omega)$ -ary gcd algorithm, which is an generalization of the binary algorithm, proposed by I.B. Damgård and G.S. Frandsen [?].

Examples

```
>>> arygcd.binarygcd(32, 48)
16
>>> arygcd_i(1, 13, 13, 9)
(-3, 1)
>>> arygcd_w(2, 13, 33, 15)
(4, 5)
```