§1.7: Linear Independence

In this picture, the plane is Span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\} = \text{Span} \{\mathbf{u}, \mathbf{v}\}$, so we do not need to include \mathbf{w} to describe this plane.

We can think that ${\bf w}$ is "too similar" to ${\bf u}$ and ${\bf v}$ - and linear dependence is the way to make this idea precise.

Definition: A set of vectors $\{v_1,\ldots,v_p\}$ is *linearly independent* if the only solution to the vector equation

$$x_1\mathbf{v_1} + \dots + x_p\mathbf{v_p} = \mathbf{0}$$

is the trivial solution $(x_1 = \cdots = x_p = 0)$.

The opposite of linearly independent is linearly dependent:

Definition: A set of vectors $\{\mathbf{v_1}, \dots, \mathbf{v_p}\}$ is *linearly dependent* if there are weights c_1, \dots, c_p , not all zero, such that

$$c_1\mathbf{v_1} + \dots + c_p\mathbf{v_p} = \mathbf{0}.$$

The equation $c_1\mathbf{v_1} + \cdots + c_p\mathbf{v_p} = \mathbf{0}$ is a linear dependence relation.

Definition: A set of vectors $\{\mathbf{v_1}, \dots, \mathbf{v_p}\}$ is *linearly dependent* if there are weights c_1, \dots, c_p , not all zero, such that

$$c_1\mathbf{v_1} + \dots + c_p\mathbf{v_p} = \mathbf{0}.$$

The equation $c_1\mathbf{v_1} + \cdots + c_p\mathbf{v_p} = \mathbf{0}$ is a linear dependence relation.

A picture of a linear dependence relation: "you can use the given directions to move in a circle".

$$\mathbf{u} + 2\mathbf{v} - \mathbf{w} = \mathbf{0}$$

$$x_1\mathbf{v_1} + \dots + x_p\mathbf{v_p} = \mathbf{0}$$

The only solution is $x_1 = \cdots = x_p = 0$ → linearly independent

Example: $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 3\\0 \end{bmatrix} \right\}$ is linearly

independent because

$$x_{1} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + x_{2} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Longrightarrow \begin{cases} 2x_{1} + 3x_{2} = 0 \\ x_{1} = 0 \end{cases}$$

$$\Longrightarrow x_{1} = 0, x_{2} = 0.$$

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

There is a solution with some $x_i \neq 0$ \rightarrow linearly dependent

Example: $\left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \end{bmatrix} \right\}$ is linearly

dependent because
$$2\begin{bmatrix}2\\1\end{bmatrix} + (-1)\begin{bmatrix}4\\2\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix}.$$

Semester 2 2018, Week 3, Page 4 of 15

$$x_1\mathbf{v_1} + \dots + x_p\mathbf{v_p} = \mathbf{0}$$

The only solution is $x_1 = \cdots = x_p = 0$ (i.e. unique solution)

→ linearly independent

Informally: $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in "totally different directions"; there is "no relationship" between $\mathbf{v}_1, \dots \mathbf{v}_p$.

There is a solution with some $x_i \neq 0$ (i.e. infinitely many solutions)

→ linearly dependent

Informally: $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in "similar directions"

Semester 2 2018, Week 3, Page 5 of 15

Some easy cases:

• Sets containing the zero vector $\{0, v_2, \dots, v_p\}$: then the linear dependence equation is

$$x_1\mathbf{0} + x_2\mathbf{v_2} + \dots + x_p\mathbf{v_p} = \mathbf{0}.$$

A non-trivial solution is

$$(1)\mathbf{0} + (0)\mathbf{v_2} + \dots + (0)\mathbf{v_p} = \mathbf{0},$$

so such a set is linearly dependent (it doesn't matter what $\mathbf{v}_2, \dots, \mathbf{v}_p$ are).

• Sets containing one vector $\{v\}$: then the linear dependence equation is

$$x\mathbf{v} = \mathbf{0}$$
 i.e. $\begin{bmatrix} xv_1 \\ \vdots \\ xv_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$.

If some $v_i \neq 0$, then x = 0 is the only solution. So $\{v\}$ is linearly independent if $v \neq 0$.

Some easy cases:

• Sets containing two vectors $\{\mathbf{u}, \mathbf{v}\}$: then the linear dependence equation is $x_1\mathbf{u} + x_2\mathbf{v} = \mathbf{0}$.

Using the same argument as in the example on p4, we can show that, if $\mathbf{v} = c\mathbf{u}$ for any c, then \mathbf{u} and \mathbf{v} are linearly dependent:

$$\mathbf{v} = c\mathbf{u}$$
 means $c\mathbf{u} + (-1)\mathbf{v} = \mathbf{0}$.

The same argument applies if $\mathbf{u} = d\mathbf{v}$ for any d. Is this the only way in which two vectors can be linearly dependent?

Suppose we have $x_1\mathbf{u} + x_2\mathbf{v} = \mathbf{0}$ and x_1, x_2 are not both zero.

If $x_1 \neq 0$, then we can divide by it: $\mathbf{u} = \frac{-x_2}{x_1}\mathbf{v}$.

Similarly, if
$$x_2 \neq 0$$
, then $\mathbf{v} = \frac{-x_1}{x_2}\mathbf{u}$.

So $\{u, v\}$ is linearly dependent if and only if one of the vectors is a multiple of the other , i.e. u, v are in the same or opposite direction.

When there are more vectors, it is hard to tell quickly if a set is linearly independent or dependent.

As shown in this example from p3, three vectors can be linearly dependent without any of them being a multiple of any other vector.

The correct generalisation of the two-vector case is the following: a set of vectors is linearly dependent if and only if one of the vectors is a linear combination of the others. (More specifically: if the weight x_i in the linear dependency relation $x_1\mathbf{v_1} + \cdots + x_p\mathbf{v_p} = \mathbf{0}$ is non-zero, then \mathbf{v}_i is a linear combination of the other \mathbf{v}_i , by the same argument as in the case of two vectors.)

How to determine if $\{v_1, v_2, ..., v_p\}$ is linearly independent:

EXAMPLE Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix}$.

- a. Determine if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.
- b. If possible, find a linear dependence relation among $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

Solution: (a) $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ is linearly independent if ______

Augmented matrix:

$$\begin{bmatrix} 1 & 2 & -3 & 0 \\ 3 & 5 & 9 & 0 \\ 5 & 9 & 3 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -3 & 0 \\ 3 & 5 & 9 & 0 \\ 5 & 9 & 3 & 0 \end{bmatrix} \quad \text{row reduces to} \quad \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & 1 & -18 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 x_3 is a free variable \Rightarrow there are nontrivial solutions.

$$\{\mathbf v_1,\mathbf v_2,\mathbf v_3\}$$
 is _____

(b) Reduced echelon form: $\begin{vmatrix} 1 & 0 & 33 & 0 \\ 0 & 1 & -18 & 0 \end{vmatrix}$

Let $x_3 =$ ____ and $x_2 =$ ____.

$$\begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix} + \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

or

$$\underline{}$$
 $\mathbf{v}_1 + \underline{}$ $\mathbf{v}_2 + \underline{}$ $\mathbf{v}_3 = \mathbf{0}$

(one possible linear dependence relation)

A non-trivial solution to $A\mathbf{x} = \mathbf{0}$ is a linear dependence relation between the columns of A: $A\mathbf{x} = \mathbf{0}$ means $x_1\mathbf{a}_1 + \cdots + x_n\mathbf{a}_n = \mathbf{0}$.

Theorem: Uniqueness of solutions for linear systems: For a matrix A, the following are equivalent:

- a. $A\mathbf{x} = \mathbf{0}$ has no non-trivial solution.
- b. If $A\mathbf{x} = \mathbf{b}$ is consistent, then it has a unique solution.
- c. The columns of A are linearly independent.
- d. rref(A) has a pivot in every column (i.e. all variables are basic).

In particular: the row reduction algorithm produces at most one pivot in each row of $\operatorname{rref}(A)$. So, if A has more columns than rows (a "fat" matrix), then $\operatorname{rref}(A)$ cannot have a pivot in every column.

So a set of more than n vectors in \mathbb{R}^n is always linearly dependent.

Exercise: Combine this with the Theorem of Existence of Solutions (Week 2 p23) to show that a set of n linearly independent vectors span \mathbb{R}^n .

Theorem: Uniqueness of solutions for linear systems: For a matrix A, the following are equivalent:

- a. $A\mathbf{x} = \mathbf{0}$ has no non-trivial solution.
- b. If $A\mathbf{x} = \mathbf{b}$ is consistent, then it has a unique solution.
- c. The columns of A are linearly independent.
- d. rref(A) has a pivot in every column (i.e. all variables are basic).

Study tip: now that we're working with different types of mathematical objects (matrices, vectors, equations, numbers), you should be careful which properties apply to which objects: e.g. linear independence applies to a set of vectors, not to

a matrix (at least not until Chapter 4). Do not say " $\begin{bmatrix} 1 & 2 & -3 \\ 3 & 5 & 9 \\ 5 & 9 & 3 \end{bmatrix}$ is linearly

independent" when you mean " $\left\{ \begin{bmatrix} 1\\3\\5 \end{bmatrix}, \begin{bmatrix} 2\\5\\9 \end{bmatrix}, \begin{bmatrix} -3\\9\\3 \end{bmatrix} \right\}$ are linearly dependent".

Abstract proofs of linear dependence and independence:

To prove that $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ is linearly dependent, we need to find **one** choice of non-zero weights c_1,\ldots,c_p such that $c_1\mathbf{v}_1+\ldots+c_p\mathbf{v}_p=\mathbf{0}$. The technique that we saw in Week 2 applies here: express the information in the question as mathematical formulae, then reorganise the equations until we have something of the form $c_1\mathbf{v}_1+\ldots+c_p\mathbf{v}_p=\mathbf{0}$.

A proof that $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ is linearly independent has a different structure. Now we need to show that the **only** choice of weights c_1,\ldots,c_p such that $c_1\mathbf{v}_1+\ldots+c_p\mathbf{v}_p=\mathbf{0}$ is $c_1=\ldots=c_p=0$. So we need to start with the equation $c_1\mathbf{v}_1+\ldots+c_p\mathbf{v}_p=\mathbf{0}$, and solve it using the information given in the question.

(See p4 for this difference in a numerical example.)

EXAMPLE: Suppose $\{u, v\}$ is linearly independent. Show that $\{u, u + v\}$ is linearly independent.

What we know:

What we want to show:

Partial summary of linear dependence:

The definition: $x_1\mathbf{v_1} + \cdots + x_p\mathbf{v_p} = \mathbf{0}$ has a non-trivial solution (not all x_i are zero); equivalently, it has infinitely many solutions.

Equivalently: one of the vectors is a linear combination of the others (see p8, also Theorem 7 in textbook). But it might not be the case that every vector in the set is a linear combination of the others (see ex. sheet #5 q2c).

Partial summary of linear dependence (continued):

Easy examples:

- Sets containing the zero vector;
- Sets containing "too many" vectors (more than n vectors in \mathbb{R}^n);
- Multiples of vectors: e.g. $\left\{\begin{bmatrix}2\\1\end{bmatrix},\begin{bmatrix}4\\2\end{bmatrix}\right\}$ (this is the only possibility if the set has two vectors);
- Other examples: e.g. $\left\{ \begin{array}{c|c} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array} \right\}$. Make your own examples!

Adding vectors to a linearly dependent set still makes a linearly dependent set (see ex. sheet #5 Q2d).

Equivalent: removing vectors from a linearly independent set still makes a linearly independent set (because P implies Q is equivalent to (not Q) implies (not P) - this is the contrapositive).

Study tips:

- Linear independence will appear again in many topics throughout the class, so I suggest you add to this summary throughout the semester, so you can see the connections between linear independence and the other topics.
- Topic summaries like this one is useful for exam revision, but even more useful is making these summaries yourself. I encourage you to use my summary as a template for your own summaries of the other topics.
- Examples can be useful for solving true/false questions: if a true/false question is about a linear dependent set, try it on the examples on the previous page. Try to make a counterexample, and if you can't, it will give you some idea of why the statement is true.