

Chapter: Introduction to Database

Instructor: Nítesh Kumar Jha

niteshjha@soa.ac.in

July 2018

Course Info

■ Course website:

http://niteshjha.ml/idb.html

Course Info

Contact:

Email: niteshjha@soa.ac.in

Office: C-227

Webpage: http://niteshjha.ml

Books and Materials

■ Reference books:

Abraham Silberschatz, Henry F Korth and S. Sudarshan, Database System Concepts 6th Edition, 2011:Tata McGraw-Hill

Lecture Materials:

- Lecture Slides
- Additional readings

Course Evaluation Plan: Tentative

- Mid-Sem:15%
- End-Sem:45%
- Assignments:20%
- Attendance:5%
- SQL Lab:15%

Course Syllabus: Tentative

- Introduction
- E.R Model
- Relational Database Design
- Formal Relational Query Language
- Transaction management
- Concurrency Control
- Database Recovery
- Indexing and Hashing

Introduction

What is What?

Data

- Set of values representing some information.
- Ex: age is 21 years, blue shirt, today's temp. is 30°C
- Salary of ₹20,000, height of john 6'2", . . .
- Database (DB)
 - Is a collection of interrelated data (pertaining to one organization or business house) organized in a meaningful way.
- Database Management System (DBMS)
 - Is a collection of interrelated data and a set of programs to store/retrieve those data.

DBMS Package

A software package designed to define, manipulate, retrieve and manage data in a database in a user friendly environment

Microsoft

Database Management System (DBMS)

- DBMS contains information about a particular enterprise
 - Collection of interrelated data
 - Set of programs to access the data
 - An environment that is both convenient and efficient to use

Applications

- Database Applications:
 - Banking: transactions
 - Airlines: reservations, schedules
 - Universities: registration, grades
 - Sales: customers, products, purchases
 - Online retailers: order tracking, customized recommendations
 - Manufacturing: production, inventory, orders, supply chain
 - Human resources: employee records, salaries, tax deductions
 - . . .
- Databases can be very large
- Databases touch all aspects of our lives

Database Use

- In early days, people used to interact with the database indirectly
 - Printed reports such as credit card statements, bank teller, reservation agents
- Currently, people interact with the database directly
 - ATM
 - E-Shopping
 - E-Banking
 - E-Application

University Database Example

- Application program examples
 - Add new students, instructors, and courses
 - Register students for courses, and generate class rosters
 - Assign grades to students, compute grade point averages (GPA) and generate transcripts
- In the early days, database applications were built directly on top of file systems

Traditional Approach-file system

Drawbacks of using file systems-I

- Data redundancy and inconsistency
 - Multiple file formats: due to multiple programmers over a period of time.
 - Duplication of information in different files: A student record (name, regno, address, ...) is maintained in CSIT, Maths, Phy, ECE depts.
 - If address info is changed but not reflected every where, then data becomes inconsistent.
- Difficulty in accessing data
 - Need to write a new program to carry out each new task
 - Ex: find students from out side odisha?

Drawbacks of using file systems-II

Data isolation

 Data scattered in various files possibly of different formats.
 Writing application program to retrieve required data becomes impossible.

Integrity problems

- Integrity constraints are in program code rather than being stated explicitly with data e.g.,
 - account balance > 0
 - Reg No can't be blank
 - Age can't be a negative number
 - etc.
- Hard to add new constraints or change existing ones as it needs application program modification.

Drawbacks of using file systems-III

- Atomicity problems (of updates)
 - Failures may cause an inconsistent state with partial updates carried out.
 - Ex: Transfer of funds from one account to another should either complete or not happen at all (debited but not credited)
- Concurrent access anomalies (by multiple users)
 - Concurrent access needed for performance
 - Uncontrolled concurrent accesses can lead to inconsistencies
 - Example: Two people reading a balance (say 100) and updating it by withdrawing money (say 50 each) at the same time
- Security problems
 - Hard to provide user access to some, but not all, data
 - i.e. defining user roles

Database systems offer solutions to all the above problems

Data Abstraction

- A major purpose of database system is to provide users with an abstract view of the data.
- That is the system hides certain details how the data are stored and maintained.
- The abstraction helps avoiding mishandling of data by normal database users and makes it simple and
- Makes it convenient to access and understand the information

Example Abstraction

- Map
 - is an abstraction of a geographical region (easy to understand the world)
- Riding a bike
 - No abstraction: Read and understand the mechanism of IC engine, gear mechanism, brake system, electrical section . . .
 - Abstraction: Understand only the use of accelerator, gear and brake leavers. (life is simple)

Three Schema architecture of DBMS

Data abstraction in Database

- Database system provide three different levels of abstraction
- Physical level / Internal Schema:
 - The lowest level that describes how data are actually stored.
 - It describes the complex low-level data structures in detail.
 - Used by package developers

Levels of Abstraction

Logical level / Conceptual Schema: describes what data are stored in database, and the relationships among the data.

```
type instructor = record
```

```
ID : string;
name : string;
dept_name : string;
salary : integer;
```

end;

- Deals with simple structures (tables) to store database information.
- Database administrators use this abstraction without knowing the details of complex physical structure called physical data independence.

Levels of Abstraction

- View level / External Schema: highest level of abstraction that presents a specific portion of the database view for different users.
- This level may contain many different views of the database required by different users.
- All these views are mapped on a single unified conceptual level.
- Application programs hide details of data types. Views can also hide information (such as an employee's salary) for security purposes.
- User access layer that is used to simplify the interaction between a user and the database.

Instances and Schemas

- Database Instance (variables values)
 - The collection of database information at a given time is called the instance of the database of that time. (Actual content of the database)
 - Ex: Reg: 001, Name: john, Branch: CSIT, Sem: 4, . . .
 - With database operations like, insertion, deletion, updation, the instance changes
 - Ex: Reg: 001, Name: john, Branch: CSIT, Sem: 5, . . .
 - Reg: 002, Name: Smith, Branch: CSIT, Sem: 5, . . .
- Database Schema (types, variables)
 - It refers to the overall design of the database
 - Depending upon the level of abstraction, there exists 3 types of database schemas

Three level Schemas

- Physical schema— the overall physical structure of the database
- Logical Schema the overall logical structure of the database
 - Ex: The database consists of information about a set of customers and accounts in a bank and the relationship between them
 - Analogous to type information of a variable in a program
- External Schema / View At the external level, we find multiple views of the database referred as subschemas
- Schema changes infrequently than instances.

Data Independence

- Data Independence Any changes made to the lower-level schema does not affect the higher level schema.
- Physical Data Independence the ability to modify the physical schema without changing the logical schema
 - Applications depend on the logical schema
 - In general, the interfaces between the various levels and components should be well defined so that changes in some parts do not seriously influence others.
- Logical Data Independence Any change made to the conceptual level schema, do not require any change modification to the external schema.

Database Language

- The language used for database is broadly classified into two categories of languages.
- Data Definition Language (DDL)— basically used for defining/modifying the logical schema.
- Data Manipulation Language (DML) used to access and manipulate the database instance.
- In practice, these are not two separate languages, rather they are the two parts of the same commercial database language called Structural Query Language (SQL)
- That is SQL integrates all

Data Definition Language (DDL)

 Specification notation for defining the database schema (create, alter, drop, rename, ...)

```
Example: create table instructor (
ID char(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))
```

- DDL compiler generates a set of table templates stored in a data dictionary
- Data dictionary contains metadata (i.e., data about data)
 - Database schema
 - Integrity constraints
 - Primary key (ID uniquely identifies instructors)
 - Authorization
 - Who can access what

Data Manipulation Language (DML)

- Language for accessing and manipulating the data organized by the appropriate data model
 - DML also known as query language
 - Operations supported: insert, delete, update, retrieve
- Two classes of languages
 - Pure used for proving properties about computational power and for optimization
 - Relational Algebra
 - Tuple relational calculus
 - Domain relational calculus
 - Commercial used in commercial systems
 - SQL is the most widely used commercial language

DML-II

- DML can be of two types
- Procedural DML: Requires user to specify what data are needed and how to get those data?
- **Declarative / non-procedural DML**: Requires user to specify what data are needed? without specifying how to get those data.
 - It is easy to use and popular
 - When DML is executed, the meta data present in the data dictionary are referred to check the validity of the intended DML operation.

Database Users

Naive users

The don't have much knowledge on databases

Application Programmers

Those have developed the application.

Sophisticated users

- They are not direct users, they are analyst, knowledge workers.
- Specialized users (Database administrators)
 - One of the primary objective of database system is to have centralized control over the entire database and the application programmes. It is achieved by database administrators.

Database Administrators (DBA)

- DBA may be a person or a group of persons in an organization acts as the manager of the database and take full responsibility of the database of that organization.
- The important roles and responsibilities of DBA are
 - Defining the Database schema
 - Defining the storage structure and access methodology
 - Modifying the database schema and storage organization
 - Granting authorization and ensuring security
 - Monitoring the database performance
 - Routine maintenance of database

Data Model

- A collection of conceptual tools for describing
 - Data
 - Data relationships
 - Data semantics
 - Data constraints
- The data models can be classified into following four different categories
 - Relational model
 - Entity-Relationship data model (mainly for database design)
 - Object-based data models (Object-oriented and Objectrelational)
 - Semi-structured data model (XML)
 - Other older models:
 - Network model
 - Hierarchical model

End of Chapter Thank You