

Concepts in Artificial Intelligence & Machine Learning Technologies

Machine Learning Basis – Decision tree, Kmeans, PCA

By Dr. Hu Wang, Dr. Wei Zhang

• Decision Tree --- what is a tree

Decision Tree --- what is a tree

https://www.youtube.com/watch?v=7VeUPuFGJHk

Decision Tree – Root Node

Gini impurity for Chest Pain = 0.364

Gini impurity for Good Blood Circulation = 0.360

Gini impurity for Blocked Arteries = 0.381

Decision Tree – Gini Impurity

• Then the Gini Impurity of the dataset *D* is defined as:

$$Gini(D) = 1 - \sum_{i=1}^k p_i^2$$

- D: the data set
- k: number of classes
- p_i : The probability of samples belonging to class i at a given node.

It was developed by the Italian <u>statistician</u> and <u>sociologist</u> <u>Corrado</u> <u>Gini</u> and published in his 1912 paper *Variability and Mutability*

Decision Tree – Further Split

Decision Trees...

Ensemble Learning

Ensemble Learning

Random Forest

Random forest can limit the instability by the average predicted value of multiple trees

Random Forest

Random forest can limit the instability by the average predicted value of multiple trees

K-Means

K-Means --- clustering

step 0

http://bldimensionin.net/Katherine_hsr

- 1. First enter the value of k, that is, we specify that we want to get k groups through clustering.
- 2. Randomly select k data points from the data set as the initial centroid.

3. For each point in the set, calculate the distance to each centroid, and decide which centroid is the closest to this point. Then assign this group (represented by the centroid) to the point.

4. At this time, each of the centroids has a set of points associated with it. Then a new centroid was selected based on the distances between each points in the group to its centroid.

5. If the distance between the new boss and the old boss is less than a certain set threshold (indicating that the position of the recalculated centroid has not changed much, tends to stabilize, or converges), we can consider that the clustering we have performed has reached the desired result, The algorithm terminates.

If the distance between the new boss and the boss changes greatly, iterate step 3~5.

K-Means --- Implementation


```
epoch = 5
for _ in range(epoch):
    for i in range(k):
        clusters[i]=[]

# Calculate the distance from all points to the k cluster centers
for i in range(x.shape[0]):
        xi = x[i]
        distances = np.sum((cluster_center-xi)**2,axis=1)
        # add the point to the cluster that is closer
        c = np.argmin(distances)
        clusters[c].append(i)

# Recalculate the cluster centers of k clusters (all points in each cluster are added up and averaged)
for i in range(k):
        cluster_center[i] = np.sum(x[clusters[i]],axis=0)/len(clusters[i])
```

Demo

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

Other Clustering Algorithms

PCA --- Principal component analysis

PCA --- intuition

PCA Main : ...

..in only 5 min!!!

PCA --- Why Dimension Reduction

PCA --- Process

	House Price (in million)
\overline{a}	10
b	2
c	1
d	7
e	3

	House Price (in million)
a	10
b	2
c	1
d	7
e	3

If plotted on x axis...

	House Price (in million)
a	10
b	2
c	1
d	7
e	3

$$\overline{X} = rac{X_1 + X_2 + X_3 + X_4 + X_5}{5} = rac{10 + 2 + 1 + 7 + 3}{5} = 4.6$$

The mean is ...

	House Price (in million)
a	10
b	2
c	1
d	7
e	3

$$\overline{X} = rac{X_1 + X_2 + X_3 + X_4 + X_5}{5} = rac{10 + 2 + 1 + 7 + 3}{5} = 4.6$$

Let mean point be the origin point...

PCA --- Example Centralization

	House Price (in million)		
a	10		
b	2		
c	1		
d	7		
e	e 3		
	House Price (in million)		
a	$10-\overline{X}=5.4$		
b	$2-\overline{X}=-2.6$		
c	$1-\overline{X}=-3.6$		
d	$7-\overline{X}=2.4$		

So the table is changed to ...

 $3 - \overline{X} = -1.6$

PCA --- Example Centralization

	House Price (in million)		
a	$10-\overline{X}=5.4$		
b	$2-\overline{X}=-2.6$		
c	$1-\overline{X}=-3.6$		
d	$7-\overline{X}=2.4$		
e	$3-\overline{X}=-1.6$		

After centralization ...

PCA --- Example Sample variance

	House Price (in million)		
a	$10-\overline{X}=5.4$		
b	$2-\overline{X}=-2.6$		
c	$1-\overline{X}=-3.6$		
d	$7-\overline{X}=2.4$		
e	$3-\overline{X}=-1.6$		

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

So the sample variance is ...

$$Var(X) = \frac{1}{n} \left(5.4^2 + (-2.6)^2 + (-3.6)^2 + 2.4^2 + (-1.6)^2 \right)$$

PCA --- Example2

	House Price (in million)	House Space (in m ²)		
\overline{a}	10	10		
b	2	2 1 7		
c	1			
d	7			
e	3	3		

PCA --- Example 2 Centralization

	House Price (in million)	House Space (in m ₂)	
\overline{a}	10	10	
b	2	2 1	
c	1		
d	7	7	
e	3	3	

	House Price (in million)	House Space (in m ₂)	
\overline{a}	5.4	5.4	
b	-2.6	-2.6	
c	-3.6	-3.6	
d	2.4	2.4	
e	-1.6	-1.6	

PCA --- Example 2 Centralization

After centralization ...

PCA --- Example 2 Sample covariance

	House Price (in million)	House Space (in m²)	
\overline{a}	5.4	5.4	
b	-2.6	-2.6	
c	-3.6	-3.6	
d	2.4	2.4	
e	-1.6	-1.6	

The sample covariance of house price (X) and area (Y) is ...

$$Cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})$$

PCA --- Example 2 Centralization

If we rotate the coordinate system...

PCA --- Example 2 Principal component

In the rotated coordinate system, the horizontal and vertical coordinates no longer represent "house price" and "space", but a mixture of the two (the term is **linear combination**). Here they are called "principal component 1" and "principal component 2", The coordinate value is easily calculated using the Pythagorean theorem:

PCA --- Example 2 Principal component

	PC1	PC2
\overline{a}	7.64	0
b	-3.68	0
c	-5.09	0
d	3.39	0
e	-2.26	0

PCA --- Example 2 Principal component

Because "PC 2" is all 0, it is completely redundant. We only need "PC 1" to reduce the data to one dimension without losing any information:

PCA --- Example2 Non-ideal case

	Price	Space		Price	Space
a	10	9	a	5.4	4.4
b	2	3	<i>b</i>	-2.6	-1.6
c	1	2	c	-3.6	-2.6
d	7	6.5	d	2.4	1.9
e	3	2.5	e	-1.6	-2.1

PCA --- Example2 Non-ideal case

PCA – Higher Dimensions

- Calculate the covariance matrix of the data for each pair of dimension values
- Calculate the eigenvalues and eigenvectors of the covariance matrix. The are the principle components of the data
 - an eigenvector is a non-zero vector which, when multiplied by a square matrix, yields a constant times the vector):

Matrix we are finding the eigenvector/eigenvalue of
$$Ax = \lambda x$$

Demo

Reference

PCA Wikipidia

https://en.wikipedia.org/wiki/Principal_component_anal_ysis_