Locul rădăcinilor

1. Se scrie ecuația caracteristică astfel încât parametrul de interes k apare ca factor de multiplicare:

$$1 + kP(s) = 0.$$

2. Se factorizează P(s) în forma cu n_p poli și n_z zerouri

$$1 + k \frac{\prod_{i=1}^{n_z} (s + z_i)}{\prod_{i=1}^{n_p} (s + p_i)} = 0$$

(zerourile sunt $-z_i$, iar polii sunt $-p_j$)

- 3. Se plasează polii și zerourile sistemului deschis în planul s cu simbolurile: \mathbf{x} polii, \mathbf{o} zerourile.
- 4. Se determină numărul de ramuri $SL = n_p$, unde $n_p \ge n_z$, $n_p =$ numărul de poli, $n_z =$ numărul de zerouri.
- 5. Se determină segmentele LR de pe axa reală
 - (a) LR se află pe axa reală la stânga unui număr impar de poli și zerouri ai sistemului deschis.
 - (b) LR începe într-un pol al sistemului deschis şi de termină la un zero sau la infinit de-a lungul unei asimptote (dacă numărul de zerouri este mai mic decât numărul de poli). Numărul de asimptote = $n_p n_z$.
- 6. LR este simetric față de axa reală.
- 7. LR tinde la infinit de-a lungul asimptotelor centrate în σ_A și care fac unghiurile Φ_A cu axa reală.

$$\sigma_A = \frac{\sum (poli) - \sum (zerouri)}{n_p - n_z} = \frac{\sum_{j=1}^{n_p} (-p_j) - \sum_{i=1}^{n_z} (-z_i)}{n_p - n_z}$$

$$\Phi_A = \frac{2q+1}{n_p - n_z} \cdot 180^o, \quad q = 0, 1, 2, ...(n_p - n_z - 1)$$

- 8. Din criteriul Routh-Hurwitz ⇒ intersecția cu axa imaginară (dacă există).
- 9. Se determină punctele de desprindere de pe axa reală sau de revenire pe axa reală (dacă există)
 - (a) Se scrie: $k = -\frac{1}{P(s)} = p(s)$, (din ecuația caracteristică 1 + kP(s) = 0)
 - (b) Se obţine dp(s)/ds = 0
 - (c) Se determină rădăcinile lui (b) sau se utilizează o metodă grafică pentru a găsi maximul lui p(s).

Dacă este necesar:

1. Se determină unghiul de plecare din polii complecși și unghiul sub care LR ajunge în zerouri din condiția de fază

$$\angle P(s) = \pm 180^{\circ}(2q+1), \ la \ s = -p_i \ sau \ -z_i.$$

2. Se determină locația polilor care satisfac condiția de fază

$$\angle P(s) = \pm 180^{\circ}(2q+1) \ la \ un \ pol \ s_r$$

3. Se determină valoarea parametrului k la o rădăcină s_x

$$k_x = \frac{\prod_{j=1}^{n_p} |s + p_j|}{\prod_{i=1}^{n_z} |s + z_i|} |_{s=s_x}$$