Tarea Producto de Grupos

Maira Florez y Tomás Galeano

1. Sea $G=G_1 imes G_2$, el producto directo de los grupos G_1 y G_2 . Determinar el centro de G.

Veamos que $Z(G)=Z(G_1)\times Z(G_2)$:

- $Z(G)\subseteq Z(G_1)\times Z(G_2)$: Sea $x\in Z(G), xy=yx$, $\forall y\in G$, donde $x=(x_1,x_2)$ y $y=(y_1,y_2)$. Por la forma en la que esta definida el producto directo se tiene que $x_1y_1=y_1x_1$ para todo $y_1\in G_1$, por lo que $x_1\in Z(G_1)$ y análogamente $x_2\in Z(G_2)$, así, $(x_1,x_2)=x\in Z(G_1)\times Z(G_2)$.
- $Z(G)\supseteq Z(G_1)\times Z(G_2)$: Sean $x\in Z(G_1),\,y\in Z(G_2)$, naturalmente y dado que $Z(G_i)\le G_i$ para $i\in\{1,2\}$, entonces $(x,y)\in G_1\times G_2$, ahora, sea $(a,b)\in G$ donde $a\in G_1$ y $b\in G_2$, se tiene que por la definición de producto directo, (x,y)(a,b)=(xa,yb)=(ax,by)=(a,b)(x,y).

Así, $(x,y)\in Z(G)$ y por la doble contenencia, queda demostrado que $Z(G)=Z(G_1) imes Z(G_2)$.

2. Sea $G=A_1\times A_2\times ... \times A_n$ y suponga que B_i es un subgrupo normal de A_i para cada i=1,2,...,n. Pruebe que $B_1\times B_2\times ... \times B_n$ es normal en G y que

$$(A_1 imes A_2 imes ... imes A_n)/(B_1 imes B_2 imes ... imes B_n)\cong (A_1/B_1) imes (A_2/B_2) imes ... imes (A_n/B_n)$$

Para simplificar notación definimos $I=\{1,2,...,n\}$,a $B=\prod_{i\in I}B_i$ y $A=\prod_{i\in I}A_i.$

- Veamos primero que $B \leq A$.
 - Dado que $B_i \leq A_i$ para todo i, se tiene que $e_i \in B_i$ y por tanto, $(e_1,e_2,...,e_n) \in B$ luego $B \neq \varnothing$. Ahora, sean $x=(x_1,x_2,...,x_n)$ y $y=(y_1,y_2,...,y_n)$ en B, se tiene que $x_i,y_i \in B_i$ con $i \in I$, como $B_i \leq A_i$ se tiene que $y_i^{-1} \in B_i$ y además $x_iy_i^{-1} \in B_i$ por lo que $(x_1y_1^{-1},x_2y_2^{-1},...,x_ny_n^{-1})=xy^{-1} \in B$. Concluyendo que $B \leq A$.
- Ahora veamos que $B \unlhd A$ probando que $yxy^{-1} \in B$ para todo $x \in B$ y $y \in A$: Sea $x \in B$, $x = (x_1, x_2, ..., x_n)$, y sea un elemento cualquiera $y \in A$, $y = (y_1, y_2, ..., y_n)$

sabemos que

$$egin{aligned} yxy^{-1} &= (y_1, y_2, ..., y_n)(x_1, x_2, ..., x_n)(y_1^{-1}, y_2^{-1}, ..., y_n^{-1}) \ &= (y_1x_1y_1^{-1}, y_2x_2y_2^{-1}, ..., y_nx_ny_n^{-1}) \end{aligned}$$

Como $B_i \subseteq A_i$, $y_i x_i y_i^{-1} \in B_i$ para todos $y_i \in A_i$, $x_i \in B_i$ e $i \in I$. Por tanto $yxy^{-1} \in B$ y concluimos que es normal con respecto a A.

Ahora bien hay dos formas de probar el isomorfismo de los cocientes:

1. Demos la siguiente función φ :

$$arphi:A/B o\prod_{i\in I}A_i/B_i$$
 $[f]=\{f_b\}_{b\in B}\mapsto (\{f_b(i)\}_{b\in B})_{i\in I}$

Donde usamos hecho que la clase de un elemento $f\in A$ es $[f]=\{fb:b\in B\}$ y por tanto, un elemento $x\in A/B$ es una familia de funciones con dominio I. Ahora, veamos que nuestra función φ está **bien definida**: Sean $f,g\in [f]$, sabemos que $g=f_{b_j}$ para algún $b_j\in B$ y $j\in |B|$, así,

$$\begin{split} \varphi([g]) &= (\{g_{b_1}(1), g_{b_2}(1), ..., g_{b_{k_1}}(1)\}, ..., \{g_{b_1}(n), g_{b_2}(n), ..., g_{b_{k_n}}(n)\}) \\ &= (\{f_{b_j b_1}(1), f_{b_j b_2}(1), ..., f_{b_j b_{k_1}}(1)\}, ..., \{f_{b_j b_1}(n), f_{b_j b_2}(n), ..., f_{b_j b_{k_n}}(n)\}) \\ &= (\{f_{b_1'}(1), f_{b_2'}(1), ..., f_{b_{k_1'}}(1)\}, ..., \{f_{b_1'}(n), f_{b_2'}(n), ..., f_{b_{k_n}'}(n)\}) \\ &= \varphi([f]) \end{split}$$

usando el hecho que B_i es cerrado pues es un subgrupo y también definimos $k_i \in |B_i|$ para $i \in I$. Veamos que φ es un **homomorfismo**: sean $[x], [y] \in A/B$,

$$egin{aligned} arphi([x][y]) &= arphi(\{x_{b_1}y_{b_2}\}_{b_1,b_2 \in B}) \ &= (\{x_{b_1}y_{b_2}(i)\}_{b_1,b_2 \in B})_{i \in I} \ &= (\{x_{b_1}(i)\}_{b_1 \in B})_{i \in I} (\{y_{b_2}(i)\}_{b_2 \in B})_{i \in I} \ &= arphi([x]) arphi([y]) \end{aligned}$$

Si $\varphi([x])=\varphi([y])$ entonces $(\{x_b(i)\}_{b\in B})_{i\in I}=(\{y_{b'}(i)\}_{b'\in B})_{i\in I}$ entonces son iguales componente a componente, luego $x(i)\in \{y_{b'}(i)\}_{b\in B}$ por lo que $x\in [y]$, así, necesariamente [x]=[y] y concluimos φ es un **monomorfismo**.

Ahora, sea $x\in\prod_{i\in I}A_i/B_i, x=([a_1],[a_2],...,[a_n])$ entonces podemos definir $f\in A$ tal que $f(i)=a_i, \forall i\in I$. Naturalmente $f\in [f]$ y además se tiene que $\varphi([f])=$

 $(\{f_b(i)\}_{b\in B})_{i\in I}$, particularmente $e\in B$ por lo que $a_i\in \{f_b(i)\}_{b\in B}$ y por tanto $[a_i]=\{f_b(i)\}_{b\in B}$ por lo que $\varphi([f])=x$. Concluimos que φ es además un **epimorfismo**.

Así, φ resulta un **isomorfismo**.

2. Definamos otra función

$$\phi:A o\prod_{i\in I}A_i/B_i \ (a_i)_{i\in I}\mapsto ([a_i])_{i\in I}$$

Veamos que ϕ es un **homomorfismo**:

Sean $(x_i)_{i\in I}$, $(y_i)_{i\in I}\in A$, tenemos que

$$egin{aligned} \phi((x_i)_{i \in I} \cdot (y_i)_{i \in I}) &= \phi((x_i y_i)_{i \in I}) \ &= ([x_i y_i])_{i \in I} \ &= (B_i x_i y_i)_{i \in I} \ &= (B_i x_i)_{i \in I} (B_i y_i)_{i \in I} \ &= ([x_i])_{i \in I} ([y_i])_{i \in I} \ &= \phi((x_i)_{i \in I}) \phi((y_i)_{i \in I}) \end{aligned}$$

Donde usamos que $([a_i])_{i\in I}=(B_ia_i)_{i\in I}$ para todo $a\in A$.

Ahora, probemos que $\ker(\phi) = B$.

Sea $x \in \ker(\phi)$,

$$egin{aligned} x \in \ker(\phi) &\Leftrightarrow \phi(x) = ([e_i])_{i \in I} \ &\Leftrightarrow \phi(x) = (B_i)_{i \in I} \ &\Leftrightarrow x(i) \in B_i, \ orall i \in I \ &\Leftrightarrow x \in B \end{aligned}$$

Por último, veamos que ϕ es sobreyectiva:

Sea $y\in\prod_{i\in I}A_i/B_i$, y es una n-upla donde cada componente es una clase lateral de A_i/B_i , así, $y=([x_i])_{i\in I}$ donde $x_i\in A_i$, por lo que podemos formar la preimagen $x=(x_1,x_2,...,x_n)\in A$ y es natural que $\phi(x)=y$. Por lo que concluimos que ϕ es un **epimorfismo**.

Así, por el **Teorema Fundamental del Homomorfismo**, tenemos que

$$A/B \cong \prod_{i \in I} A_i/B_i$$

Quedando por ambos caminos demostrado lo que buscabamos.