

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

## Департамент Информатика

Школа "Състезателно програмиране" Състезание, 22 ноември 2014 г.

#### А. Придвижване

Дадена е таблица с размери N на N, съдържаща символите + (плюс) или – (минус). От дадена клетка може да се придвижвате в съседна на нея (на изток, запад, север или юг), като времето ви за придвижване е равно на A, ако двете клетки са с еднакъв символ и B - в противен случай. Да приемем, че винаги се движите оптимално, т.е. за най-кратко време, от всяка клетка, до всяка друга. Интересуваме се кое е най-лошото възможно време, измежду всички тези времена.

На първия ред на стандартния вход е зададен броят на тестовите примери. На първия ред на всеки от тях са зададени числата N ( $1 \le N \le 30$ ), A ( $0 \le A \le 1000000$ ) и B ( $0 \le B \le 1000000$ ). Следват N реда, с по N символа + или -.

За всеки тест на отделен ред на стандартния изход изведете търсеното време.

| Вход  | Изход |
|-------|-------|
| 1     | 5     |
| 3 1 2 |       |
| +++   |       |
| +-+   |       |
| ++-   |       |

**Пояснение към примера:** Най-лошото време е при придвижване от горния ляв ъгъл до долния десен и то е 5.



София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

## Департамент Информатика

Школа "Състезателно програмиране" Състезание, 22 ноември 2014 г.

#### В. Среднощно кодене

| Освен всичко друго Панко е и луд програмист, коди и денем и нощем! Той трябва да                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
| напише програма, която се състои <b>n</b> от реда код. Нощем силите му намаляват, за това той                                                    |
| действа по следния начин: първоначално пише $oldsymbol{v}$ реда код, след което изпива една бира                                                 |
| След това пише още $\left\lfloor rac{v}{k}  ight floor$ реда, пие нова бира, после пише $\left\lfloor rac{v}{k^2}  ight floor$ реда, нова бира |
| ит.н: $\left\lfloor \frac{v}{k^3} \right\rfloor$ , $\left\lfloor \frac{v}{k^4} \right\rfloor$ , $\left\lfloor \frac{v}{k^5} \right\rfloor$ ,     |

Израза  $\left[ \frac{a}{b} \right]$  се изчислява, като резултат от целочисленото делене на a и b.

В момента, в който тане равно на 0, Панко моментално заспива и се събужда чак на сутринта, когато програмата вече трябва да е готова.

Панко се чуди, кое е най-малкото целочислено  $\mathbf{v}$ , такова че той да може да напише не помалко от  $\mathbf{n}$  реда код.

#### Вход

Всеки тестов пример е зададен на отделен ред на стандартния вход и се състои от целочислените n и k,  $1 \le n \le 10^9$ ,  $2 \le k \le 10$ . Края на входа е маркиран с нула.

#### Изход

За всеки тестов пример извеждайте на отделен ред на стандартния изход – търсеното  ${\it v}$ .

| Вход | Изход |
|------|-------|
| 7 2  | 4     |
| 59 9 | 54    |
| 0    |       |

Пояснение към изхода: В първия тест отговора е 4. Панко пише код на съответните порции: първо 4 реда, след това 2, след това 1 ред и после заспива. Той успява да напише 4 + 2 + 1 = 7 реда код, с което задачата му е изпълнена. Във втория тест първоначално написва 54 реда, след което още 6 и заспива. Той дори е успял да напише 1 ред повече от планираното, т.е. преизпълнил е плана. Написал е 54 + 6 = 60 реда, а е бил планирал да напише 59. Браво, Панко!

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

## Департамент Информатика

Школа "Състезателно програмиране" Състезание, 22 ноември 2014 г.

#### С. Шапки долу!

N (2  $\leq$  N  $\leq$  100000) човека са разположени на различни позиции на числовата права. i-я човек е на целочислена позиция  $x_i$  (0  $\leq$   $x_i$   $\leq$  1000000000) и може да има шапка на главата, а може и да няма. Няма двама на една и съща позиция.

Иска се да намерите максималната последователност от хора, в която броят на тези с шапки е равен на тези без шапки. Дължината на максималната последователност е разликата в минималната и максималната позиции на хората, участващи в последователността. Имате възможност да поискате от хора с шапки да ги свалят, ако считате, че това ще максимизира резултата ви.

На първия ред на стандартния вход е зададен броят на тестовите примери. Всеки от тях започва с броя на хората – N. Следват N реда, като всеки ред съдържа позиция, на която е разположен човек и символа W или S. W показва, че човека е с шапка, а S – човека е без шапка.

За всеки тест извеждайте по една число на отделен ред – дължината на търсената последователност.

| Вход | Изход |
|------|-------|
| 1    | 7     |
| 5    |       |
| 8 W  |       |
| 11 S |       |
| 3 W  |       |
| 10 W |       |
| 5 S  |       |

**Пояснение към изхода:** Максималната последователност от хора започва от позиция 3 и завършва в позиция 10. В нея трима човека са с шапки, а един — без. Ако помолите някой от тримата с шапки да си я свали, то ще получите равен брой хора с и без шапки.



София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

## Департамент Информатика

Школа "Състезателно програмиране" Състезание, 22 ноември 2014 г.

#### **D.** Геокешинг

Панко вече си има GPS и веднага тръгнал в планината да търси първия си кеш. Преходът му се сторил изключително тежък, но за отказване и дума да не става! Няма как да не се похвали на приятелите си за приключението, в което се е вкарал. За това решил на всяка минута да си записва надморската височина (в метри) на мястото, където се намира. След като погледнал редицата от записани стойности, решил да намери колко минути е най-дългият интервал, когато непрекъснато се е изкачвал. Това число е неговата гордост! Помогнете му, като напишете програма, която пресмята това.

#### Вход

Всеки тестов пример е зададен на отделен ред на стандартния вход. Първото число задава броя на записаните от Панко числа в редицата. Следват записаните стойности на височини. Между всеки две числа има по един интервал. Края на входа е 0.

#### Изход

За всеки тест - едно цяло число, равно на търсената дължина в минути, изведено на отделен ред на стандартния изход.

#### Ограничения

Броят на записаните числа не е по-голям от 1000.

Всяко от записаните числа е цяло с възможни стойности от 0 до 1000.

| Вход                         | Изход |
|------------------------------|-------|
| 13 1 2 3 2 3 1 5 6 7 8 9 2 3 | 6     |
| 3 123 123 123                | 1     |
| 8 1 2 1 2 1 2 1 2            | 2     |
| 0                            |       |

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

## Департамент Информатика

Школа "Състезателно програмиране" Състезание, 22 ноември 2014 г.

#### Е. Оцветяване

Даден е граф с N ( $1 \le N \le 50000$ ) върха, номерирани за удобство с числата от 1 до N, свързани чрез M ( $1 \le M \le 100000$ ) двупосочни ребра. Ребро і свързва връх A<sub>i</sub> ( $1 \le A_i \le N$ ) с B<sub>i</sub> ( $1 \le A_i \ne B_i$ ). Възможно е две ребра да свързват една и съща двойка върхове.

Искате да оцветите върховете на графа с два различни цвята X и Y. Два върха трябва да бъдат оцветени с различен цвят, ако са свързани с ребро. Имате обаче предпочитание към цвят X и искате възможно най-много от върховете да са оцветени с този цвят. Намерете максималния броя върховете, които могат да бъдат оцветени с цвят X.

Всеки тестов пример започва с числата M и N. Следват M реда, на които са зададени числата A<sub>i</sub> и B<sub>i</sub>, указващи двупосочно ребро между двата върха.

За всеки тестов пример извеждайте на отделен ред търсения брой върхове или -1, ако оцветяване, отговарящо на гореописаните правила не е възможно.

| Вход | Изход |
|------|-------|
| 4 4  | 2     |
| 1 2  |       |
| 2 3  |       |
| 3 4  |       |
| 4 1  |       |
| 0 0  |       |

**Пояснение към изхода:** върхове 1 и 3 могат да бъдат боядисани с цвят X, алтернативно 2 и 4 също.



София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

## Департамент Информатика

Школа "Състезателно програмиране" Състезание, 22 ноември 2014 г.

#### **F.** Състезания

Почти сме сигурни, че сте експерти в четенето на входа, но дали е така и с изхода? Разполагате със списък от участници в състезания. Всеки запис се състои от името на участника S (уникална последователност от малки и/или големи латински букви, не по-дълга от 10 символа), броя решени задачи - R, както и времето за което са решени задачите – T ( $0 \le R$ ,  $T \le 10^4$ ).

Напишете програма, която извежда К-те най-добре представили се студенти на поредното състезание. Класирането става първо по брой решени задачи. При равен брой такива се гледа времето, за което са решени и ако и то е еднакво, то тогава по-напред в класирането трябва да се появи участника, чието име е по-напред в лексикографската подредба.

Програмата ви трябва да обработи няколко тестови примера. Всеки от тях съдържа по-малко от 100 реда, описващи резултатите на всеки от състезателите, участвали в поредното състезание. На i-я ред са зададени  $R_i$ ,  $T_i$  и  $S_i$ , разделени с интервал. На последния ред е зададено K.

Първия ред на изхода за всеки тест трябва да съдържа "Summary for contest C (top K of N participants):", където С е номера на поредния тестов пример. Следва празен ред, последван от класацията на състезателите. Символите използвани за визуализирането на таблицата са '-', '#' и '|' (ASCII кодове 45, 35 и 124). Първата колона показва номера на съответния състезател в класирането, втората – името му, третата – броя задачи, които е решил, а четвъртата – времето, за което ги е решил. Числата в първата колона се разполагат в две позиции (на една позиция може да седи точно един символ) и са дясно подравнени. Имената на състезателите се разполагат в колона с десет позиции и трябва да са ляво равнени. В последните две колони числата са разположени на пет позиции и са дясно равнени. Имената на всички колоните са дясно равнени. Броят символи '-' на всеки ред трябва да е точно 27. Всеки два теста трябва да са разделени с по един празен ред. Изхода трябва да изглежда точно така, като е показано:

| Вход                                  | Изход                                              |
|---------------------------------------|----------------------------------------------------|
| 4 256 Drago<br>2 387 Yasen            | Summary for contest 1 (top 10 of 11 participants): |
| 2 52 Spaska<br>1 9 Deqn<br>2 387 Bobo | #  name tasks  time                                |
| 0 0 Toni                              | 1 Panko   10  788                                  |
| 10 788 Panko                          | 2 Stefan   5  891                                  |
| 5 891 Stefan                          | 3 Drago                                            |
| 2 387 Asen                            | 4 Spaska   2  52                                   |
| 1 12 Denis                            | 5 Asen   2  387                                    |
| 0 0 Pencho                            | 6 Bobo   2  387                                    |
| 10                                    | 7 Yasen   2  387                                   |
|                                       | 8 Deqn   1  9                                      |
|                                       | 9 Denis   1  12                                    |
|                                       | 10 Pencho                                          |



София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

## Департамент Информатика

Школа "Състезателно програмиране" Състезание, 22 ноември 2014 г.

#### G. Израз

Да се напише програма, която пресмята аритметични изрази. За всеки пример програмата чете аритметичен израз - редица от реални числа и аритметичните операции събиране, изваждане, умножение и деление и отпечатва резултата на нов ред на изхода. Програмата трябва да спазва приоритета на операциите.

Входът съдържа повече от един пример и започва с цяло число, което оказва броя на примерите.

Резултата от пресметнатия израз да се извежда на отделен ред на стандартния изход.

| Вход       | Изход |
|------------|-------|
| 2          | 11    |
| 1+2*5      | 0.5   |
| 4-7*2+10.5 |       |



София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

# Департамент Информатика

Школа "Състезателно програмиране" Състезание, 22 ноември 2014 г.

#### Н. Метро

Панко започна да пътува и с метрото! Обикновен билет за едно пътуване струва  $\boldsymbol{a}$  лева. Специален билет за  $\boldsymbol{m}$  пътувания струва  $\boldsymbol{b}$  лева. Помогнете на Панко да си купи билети за общо  $\boldsymbol{n}$  пътувания на възможно най-ниска обща цена.

Всеки тест е зададен на отделен ред на стандартния вход и се състои от четири цели положителни числа - n, m, a, b (1  $\leq$  n, m, a, b  $\leq$  1000).

Изхода за всеки тест е търсената цена, която трябва да се извежда на отделен ред на стандартния изход.

| Вход    | Изход |
|---------|-------|
| 6 2 1 2 | 6     |
| 5 2 2 3 | 8     |



София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

#### I. Морски шах

Играта морски шах се играе от двама играчи на квадратна дъска с размери 3 на 3. Единия играч използва X, за да маркира своите ходове, а другия – 0. Първи винаги е играча с X. Двамата играчи се редуват и този, които успее да постави три свои символа по хоризонтал, вертикал или диагонал печели играта. Ако дъската е попълнена, но няма разположени три еднакви символа, както се изисква, то няма победител.

По зададена 3 x 3 дъска, всяка клетката на която съдържа точка, хикс или нула, трябва да определите кой играч е на ход. Извеждайте *first* за първи играч и *second* за втория или някое от следните:

- *Illegal* ако дъската няма как да бъде получена при валидни ходове на двамата;
- the first player won ако първия играч току-що е спечелил играта;
- the second player won ако втория играч току-що е спечелил играта;
- draw ако играта е приключила и няма победител;

Първия ред на входа съдържа броя на тестовите примери. Всеки от тях се състои от три реда, всеки с по три символа измежду ".", "X" или "0" (ASCII кодове 46, 88 и 48).

За всеки тест извеждайте на отделен един от шестте възможни резултата.

| Вход | Изход                 |
|------|-----------------------|
| 6    | second                |
| X0X  | illegal               |
| .0.  | first                 |
| .X.  | the first player won  |
| 0.X  | the second player won |
| XX.  | draw                  |
| 000  |                       |
| X.X  |                       |
| X.0  |                       |
| 0.0  |                       |
| XXX  |                       |
| X00  |                       |
| X00  |                       |
| .XX  |                       |
| 000  |                       |
| XX0  |                       |
| X00  |                       |
| 0XX  |                       |
| XX0  |                       |



София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

#### **J.** Подмасиви

*Подмасив* a[i...j]  $(1 \le i \le j \le n)$  на масива  $a = (a_1, a_2, ..., a_n)$  е масив от последователните елементи на а, включващ елементите между i-та и j-та позиции:  $a[i...j] = (a_i, a_{i+1}, ..., a_i)$ .

Интересуваме се от броя на всички подмасиви на a, в които има поне k еднакви числа.

На първия ред на всеки тест са зададени n и k ( $1 \le k \le n \le 4 \cdot 10^5$ ). На следващия ред са зададени n-те цели  $a_i$  ( $1 \le a_i \le 10^9$ ) — елементите на масива. Входа завършва с нула.

Търсения брой за всеки тест да се извежда на отделен ред на стандартния изход.

| Вход      | Изход |
|-----------|-------|
| 4 2       | 3     |
| 1 2 1 2   | 2     |
| 5 3       | 6     |
| 1 2 1 1 3 |       |
| 3 1       |       |
| 1 1 1     |       |
| 0         |       |

**Пояснение към примерите:** В първия пример трите подмасива, съдържащи поне 2 еднакви елемента са (1, 2, 1), (2, 1, 2) и (1, 2, 1, 2). Във втория пример подмасивите с поне 3 еднакви числа са (1, 2, 1, 1, 3) и (1, 2, 1, 1), а в третия тези с поне 1 са (1), (1), (1), (1, 1), (1, 1) и (1, 1, 1).