

Összefoglalás

Matematika G3 – Többváltozós analízis Utoljára frissítve: 2025. október 18.

7.1. Elméleti áttekintő

Differenciáloperátorok

Legyen $\mathbf{v}(\mathbf{r}): \mathbb{R}^3 \to \mathbb{R}^3$ vektormező, $\varphi(\mathbf{r}): \mathbb{R}^3 \to \mathbb{R}$ skalármező, ahol \mathbf{r} az \mathbb{R}^3 -beli Descartes koordináta-rendszerben $\mathbf{r} = (x; y; z)$.

Rotáció	Divergencia	Gradiens
rot v	div v	$\operatorname{grad} \varphi$
$ abla imes oldsymbol{v}$	$\langle \nabla; \boldsymbol{v} \rangle$	abla arphi
$\begin{bmatrix} \partial_x \\ \partial_y \\ \partial_z \end{bmatrix} \times \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$	$\left\langle \begin{bmatrix} \partial_x \\ \partial_y \\ \partial_z \end{bmatrix}; \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} \right\rangle$	$egin{bmatrix} \partial_x arphi \ \partial_y arphi \ \partial_z arphi \end{bmatrix}$
$\mathcal{D}_{\boldsymbol{v}} = \mathbb{R}^3$	$\mathcal{D}_{\boldsymbol{v}} = \mathbb{R}^3$	$\mathcal{D}_{arphi}=\mathbb{R}^3$
$\mathcal{R}_{oldsymbol{v}} = \mathbb{R}^3$	$\mathcal{R}_{m{v}} = \mathbb{R}^3$	$\mathcal{R}_{\varphi}=\mathbb{R}$
$\mathcal{R}_{\mathrm{rot}\boldsymbol{v}} = \mathbb{R}^3$	$\mathcal{R}_{\operatorname{div} oldsymbol{v}} = \mathbb{R}$	$\mathcal{R}_{arphi} = \mathbb{R}$ $\mathcal{R}_{\operatorname{grad} arphi} = \mathbb{R}^3$

Azonosságok

• Teljesül a linearitás:

$$\operatorname{grad}(\lambda \Phi + \mu \Psi) = \lambda \operatorname{grad} \Phi + \mu \operatorname{grad} \Psi$$
$$\operatorname{rot}(\lambda \boldsymbol{v} + \mu \boldsymbol{w}) = \lambda \operatorname{rot} \boldsymbol{v} + \mu \operatorname{rot} \boldsymbol{w}$$
$$\operatorname{div}(\lambda \boldsymbol{v} + \mu \boldsymbol{w}) = \lambda \operatorname{div} \boldsymbol{v} + \mu \operatorname{div} \boldsymbol{w}$$

• Zérusság:

$$\operatorname{rot} \operatorname{grad} \Phi \equiv \mathbf{0}$$
$$\operatorname{div} \operatorname{rot} \mathbf{v} \equiv 0$$

Potenciálosság

Egy $\mathbf{v}: V \to V$ vektormező skalárpotenciálos, ha létezik olyan $\varphi: V \to \mathbb{R}$ skalármező, hogy $\mathbf{v} = \operatorname{grad} \varphi$. Ekkor rot $\mathbf{v} = \operatorname{rot} \operatorname{grad} \varphi = \mathbf{0}$.

• v skalárpotenciálos \Leftrightarrow rot v = 0, hiszen rot grad $\varphi \equiv 0$ (örvénymentes)

Egy $v: V \to V$ vektormező vektorpotenciálos, ha létezik olyan $u: V \to V$ vektormező, hogy v = rot u. Ekkor div v = div rot u = 0.

• v vektorpotenciálos \Leftrightarrow div v = 0, hiszen div rot $u \equiv 0$ (forrásmentes)

Skalárpotenciál

Legyen φ skalármező \boldsymbol{v} vektormező skalárpotenciálja. Ebben az esetben tudjuk, hogy $\boldsymbol{v} = \operatorname{grad} \varphi$. Ekkor \boldsymbol{v} vektormező skalárpotenciálja:

$$\varphi(\mathbf{r}) = \int_0^{x_1} v_1(\xi; x_2; \dots; x_n) \, \mathrm{d}\xi + \int_0^{x_2} v_2(0; \xi; \dots; x_n) \, \mathrm{d}\xi + \dots + \int_0^{x_n} v_n(0; 0; \dots; \xi) \, \mathrm{d}\xi.$$

Vektorpotenciál

Legyen $u(u_x; u_y; 0)$ vektormező v vektormező vektorpotenciálja. Ebben az esetben tudjuk, hogy v = rot u. Ekkor v komponensei az alábbi módon számíthatóak:

$$u_x = \int_0^z v_y(x; y; \zeta) \,\mathrm{d}\zeta, \qquad u_y = \int_0^x v_z(\xi; y; 0) \,\mathrm{d}\xi - \int_0^z v_x(x; y; \zeta) \,\mathrm{d}\zeta.$$

Vonalmenti integrálok

Legyen $\mathbf{v}(\mathbf{r}): \mathbb{R}^3 \to \mathbb{R}^3$ vektormező, $\varphi(\mathbf{r}): \mathbb{R}^3 \to \mathbb{R}$ skalármező, $\gamma: I \to \mathcal{C}$ paraméterezett görbe, ahol $t \in I$ a görbe paraméterezése, $\gamma(I) = \mathcal{C}$ a görbe képe, $\mathrm{d} s = \|\dot{\gamma}(t)\| \, \mathrm{d} t$, $\mathrm{d} \mathbf{r} = \dot{\gamma}(t) \, \mathrm{d} t$. Ekkor:

• skalármező görbe menti skalárértékű integrálja:

$$\int_{\mathcal{Q}} \varphi(\mathbf{r}) \, ds = \int_{I} \varphi(\mathbf{\gamma}(t)) \, ||\dot{\mathbf{\gamma}}(t)|| \, dt,$$

• vektormező görbe menti skalárértékű integrálja:

$$\int_{\mathcal{C}} \langle \boldsymbol{v}(\boldsymbol{r}); d\mathbf{r} \rangle = \int_{I} \langle \boldsymbol{v}(\boldsymbol{\gamma}(t)); \dot{\boldsymbol{\gamma}}(t) \rangle dt,$$

Felületi integrálok

Legyen $\mathbf{v}(\mathbf{r}): \mathbb{R}^3 \to \mathbb{R}^3$ vektormező, $\varphi(\mathbf{r}): \mathbb{R}^3 \to \mathbb{R}$ skalármező, $\varphi: U \to \mathcal{S}$ paraméterezett felület, ahol $s; t \in U$ a felület paraméterezése, $\varphi(U) = \mathcal{S}$ a felület képe, $\mathrm{d} S = \|\partial_s \varphi \times \partial_t \varphi\| \, \mathrm{d} s \, \mathrm{d} t$, $\mathrm{d} \mathbf{S} = \hat{\mathbf{n}} \, \mathrm{d} S = \partial_s \varphi \times \partial_t \varphi \, \mathrm{d} s \, \mathrm{d} t$, $\hat{\mathbf{n}} = (\partial_s \varphi \times \partial_t \varphi) / \|\partial_s \varphi \times \partial_t \varphi\|$. Ekkor:

• skalármező skalárértékű felületi integrálja:

$$\int_{\mathcal{S}} \varphi(\mathbf{r}) \, dS = \int_{U} \varphi(\mathbf{g}(s;t)) \left\| \frac{\partial \mathbf{g}}{\partial s} \times \frac{\partial \mathbf{g}}{\partial t} \right\| \, ds \, dt,$$

• vektormező skalárértékű felületi integrálja:

$$\int_{\mathcal{E}} \langle \boldsymbol{v}(\boldsymbol{r}); d\mathbf{S} \rangle = \int_{U} \left\langle \boldsymbol{v}(\boldsymbol{\varrho}(s;t)); \left(\frac{\partial \boldsymbol{\varrho}}{\partial s} \times \frac{\partial \boldsymbol{\varrho}}{\partial t} \right) \right\rangle ds dt,$$

Térfogati integrál

Legyen $\varphi(\mathbf{r}): \mathbb{R}^3 \to \mathbb{R}$ skalármező, $\mathbf{\Omega}: D \to \mathcal{V}$ paraméterezett tértartomány, ahol $r; s; t \in D$ a tértartomány paraméterezése, $\mathbf{\Omega}(D) = \mathcal{V}$ a tértartomány képe, $\mathrm{d}V = \mathrm{det}(\mathbf{D}\mathbf{\Omega}(r; s; t))\,\mathrm{d}r\,\mathrm{d}s\,\mathrm{d}t$. Ekkor:

• skalármező térfogati integrálja:

$$\iiint_{\mathcal{V}} \varphi(\mathbf{r}) \, dV = \iiint_{D} \varphi(\mathbf{\Omega}(r; s; t)) \det(\mathbf{D}\mathbf{\Omega}(r; s; t)) \, dr \, ds \, dt.$$

Integrálási tételek

· Gradiens-tétel:

$$\int_{\mathcal{C}} \langle \operatorname{grad} \varphi(\mathbf{r}); d\mathbf{r} \rangle = \varphi(\mathbf{y}(b)) - \varphi(\mathbf{y}(a)).$$

Vagyis ha egy vektormező előáll egy skalármező gradienseként, akkor annak bármely zárt görbe mentén vett integrálja csak a kezdő- és végpontoktól függ.

Stokes-tétel:

$$\iint_{\mathcal{S}} \langle \operatorname{rot} \boldsymbol{v}; d\mathbf{S} \rangle = \oint_{\partial \mathcal{S}} \langle \boldsymbol{v}; d\mathbf{r} \rangle.$$

A tételből következik, hogy skalárpotenciálos vektormező bármely zárt görbén vett integrálja zérus.

Gauss-Osztogradszkij-tétel:

$$\iiint_{\mathcal{V}} \operatorname{div} \boldsymbol{v} \, \mathrm{d}V = \oiint_{\partial \mathcal{V}} \langle \boldsymbol{v}; \mathrm{d}\mathbf{S} \rangle.$$

A tételből következik, hogy vektorpotenciálos vektormező bármely zárt felületen vett integrálja zérus.

Integrálásos összefüggések

• Belső függvény megjelenik szorzótényezőként:

$$\int (f \circ g)(x) g'(x) dx = (F \circ g)(x) + C, \text{ ahol } F(x) \text{ az } f(x) \text{ primitiv függvénye.}$$

Hatványfüggvény integrálása:

$$\int f^{\alpha}(x) f'(x) dx = \begin{cases} \frac{f^{\alpha+1}(x)}{\alpha+1} + C, & \alpha \neq -1\\ \ln|f(x)| + C, & \alpha = -1 \end{cases}$$

7.2. Feladatok

- 1. Adja meg a $\varphi(\mathbf{r}) = 2x^2y + xy^2z + 3xz^2$ skalármező gradiensét a P(-3; -2; 1) pontban!
- 2. Adja meg a $\mathbf{v}(\mathbf{r}) = (xy^2 z)\hat{\mathbf{i}} + (yz)\hat{\mathbf{j}} + (xy + 2z)\hat{\mathbf{k}}$ vektormező divergenciáját és rotációját a P(-1;2;-1) pontban!
- 3. Adja meg a $\mathbf{v}(\mathbf{r}) = (y^2)\,\hat{\mathbf{i}} + (2xy + 3e^{3z})\,\hat{\mathbf{j}} + (3ye^{3z})\,\hat{\mathbf{k}}$ egy olyan φ skalárpotenciálját, melyre $\varphi(\mathbf{0}) = 0$.
- 4. Legyen $\gamma(t) = x(t) \cdot \hat{i} + y(t) \cdot \hat{j}$ a $(2;1) \to (6;4)$ egyenes szakasz paraméterezése. Adja meg x(t) és y(t) függvényeket, ha a paramétertartomány $t \in [0;1]$. Számítsa ki a $\varphi(x;y) = 3x 4y$ skalármező γ görbe menti integrálját!
- 5. Adott az $F(x;y) = x^2 \cdot \hat{i} xy \cdot \hat{j}$ erőmező. Számítsa ki az erőmező munkáját, az origó középpontú, r=1 sugarú első síknegyedben lévő körív mentén, ha a bejárás az óramutató járásával ellentétes irányú! Mit mondhatunk el, ha a bejárási irányt megfordítjuk?
- 6. Számítsa ki a $\varphi(x; y; z) = 2x$ skalármező egységgömbömbön vett felületi integrálját! Segítség: $\varphi(s; t) = (\sin s \cos t) \hat{i} + (\sin s \sin t) \hat{j} + (\cos s) \hat{k}$, d $S = \sin s \, ds \, dt$.
- 7. Számítsa ki a \boldsymbol{v} vektormező $\boldsymbol{\varrho}$ felületen vett fluxusát, ha

$$\boldsymbol{v}(x;y;z) = \begin{bmatrix} xy \\ 2x + y \\ z \end{bmatrix}, \qquad \boldsymbol{\varrho}(s;t) = \begin{bmatrix} s + 2t \\ -t \\ s^2 + 3t \end{bmatrix}, \qquad \begin{array}{c} s \in [0;3] \\ t \in [0;1] \end{array}.$$

- 8. Számítsa ki a $\mathbf{v}(\mathbf{r}) = (y^2)\hat{\mathbf{i}} + (2xy + 3e^{3z})\hat{\mathbf{j}} + (3ye^{3z})\hat{\mathbf{k}}$ vektormező $(0; 1; 1) \rightarrow (0; -1; 1)$ szakaszon vett vonalmenti integrálját!
- 9. Adja meg a $\mathbf{v}(\mathbf{r}) = (z y)\hat{\mathbf{i}} + (x z)\hat{\mathbf{j}} + (y x)\hat{\mathbf{k}}$ vektormezőt az alábbi zárt görbén:
 - a) Az origóból először egy egyenes szakasz mentén eljutunk az (1;0;0) pontba.
 - b) Ezután egy origó középpontú körív mentén az (-1; 0; 0) pontba jutunk. (A körív síkja legyen az xy sík, és a bejárás az óramutató járásával ellentétes irányú.)
 - c) Végül egy egyenes szakasz mentén visszatérünk az origóba.
- 10. Határozza meg a $\mathbf{v}(\mathbf{r}) = (x)\,\hat{\mathbf{i}} + (y)\,\hat{\mathbf{j}} + (z)\,\hat{\mathbf{k}}$ vektormező azon zárt felületen vett felületi integrálját, melyet az $x = y^2 + z^2$ forgásparaboloid z > 0 része, a z = 0 és az x = 4 síkok határolnak.