## Exercise 2

using CSV, DataFrames, Statistics, GLM, StatsPlots, StatsModels, StatsBase

file\_path = "/Users/michelletorres/Desktop/Homeworks AI/archive/bottle.csv"
data = CSV.read(file\_path, DataFrame)

→ 864863×74 DataFrame

864838 rows omitted

| Row Cst_Cnt Btl_Cnt Sta_ID |       |                    | Depth_ID                                                   | Depthm | T_degC   | Salnty   | O2ml_L   | STheta   | O2Sat    |
|----------------------------|-------|--------------------|------------------------------------------------------------|--------|----------|----------|----------|----------|----------|
| Int64                      | Int64 | String15           | •                                                          | Int64  | Float64? | Float64? | Float64? | Float64? | Float641 |
| 1                          | 1     | 1 054.0<br>056.0   | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0000A-3 | 0      | 10.5     | 33.44    | missing  | 25.649   | missinį  |
| 2                          | 1     | 2 054.0<br>2 056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0008A-3 | 8      | 10.46    | 33.44    | missing  | 25.656   | missinį  |
| 3                          | 1     | 3 054.0<br>056.0   | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0010A-7 | 10     | 10.46    | 33.437   | missing  | 25.654   | missinį  |
| 4                          | 1     | 4 054.0<br>4 056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0019A-3 | 19     | 10.45    | 33.42    | missing  | 25.643   | missinį  |
| 5                          | 1     | 5 054.0<br>5 056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0020A-7 | 20     | 10.45    | 33.421   | missing  | 25.643   | missinદ્ |

| 6  | 1 | 6 054.0<br>056.0         | 4903CH-<br>HY-060-<br>0930-<br>05400560-<br>0030A-7        | 30  | 10.45 | 33.431 | missing | 25.651 | missinį |
|----|---|--------------------------|------------------------------------------------------------|-----|-------|--------|---------|--------|---------|
| 7  | 1 | 7 054.0<br>056.0         | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0039A-3 | 39  | 10.45 | 33.44  | missing | 25.658 | missinį |
| 8  | 1 | 8 <sup>054.0</sup> 056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0050A-7 | 50  | 10.24 | 33.424 | missing | 25.682 | missinį |
| 9  | 1 | 9 <sup>054.0</sup> 056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0058A-3 | 58  | 10.06 | 33.42  | missing | 25.71  | missinţ |
| 10 | 1 | 10 054.0<br>056.0        | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0075A-7 | 75  | 9.86  | 33.494 | missing | 25.801 | missinţ |
| 11 | 1 | 11 054.0<br>056.0        | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0078A-3 | 78  | 9.83  | 33.51  | missing | 25.819 | missinų |
| 12 | 1 | 12 054.0<br>056.0        | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0100A-7 | 100 | 9.67  | 33.58  | missing | 25.9   | missinţ |
| 13 | 1 | 13 054.0<br>056.0        | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0117A-3 | 117 | 9.5   |        | missing | 25.975 | missinį |
| ÷  | : | :                        | : :                                                        | :   | :     | :      | ÷       | :      |         |

| 864852 | 34403 864852 <sup>093.3</sup> 120.0 | 1611SR-<br>MX-313-<br>2053-<br>09331200-<br>0300A-7               | 300 | 7.831  | 34.0234 | 2.218 | 26.5407 | 33.2   |
|--------|-------------------------------------|-------------------------------------------------------------------|-----|--------|---------|-------|---------|--------|
| 864853 | 34403 864853 <sup>093.3</sup> 120.0 | 20-<br>1611SR-<br>MX-313-<br>2053-<br>09331200-<br>0321A-3        | 321 | 7.538  | 34.042  | 1.984 | 26.5979 | 29.5   |
| 864854 | 34403 864854 <sup>093.3</sup> 120.0 | 20-<br>1611SR-<br>MX-313-<br>2053-<br>09331200-<br>0381A-3        | 381 | 6.943  | 34.1104 | 1.108 | 26.7357 | 16.26  |
| 864855 | 34403 864855 <sup>093.3</sup> 120.0 | 20-<br>1611SR-<br>MX-313-<br>2053-<br>09331200-<br>0400A-7        | 400 | 6.694  | 34.1101 | 1.096 | 26.7693 | 15.99  |
| 864856 | 34403 864856 <sup>093.3</sup> 120.0 | 20-<br>1611SR-<br>MX-313-<br>2053-<br>09331200-<br>0440A-3        | 440 | 6.312  | 34.1563 | 0.718 | 26.8564 | 10.38  |
| 864857 | 34403 864857 <sup>093.3</sup> 120.0 | 20-<br>1611SR-<br>MX-313-<br>2053-<br>09331200-<br>0500A-7        | 500 | 5.993  | 34.216  | 0.456 | 26.9452 | 6.58   |
| 864858 | 34403 864858 <sup>093.3</sup> 120.0 | 20-<br>1611SR-<br>MX-313-<br>2053-<br>09331200-<br>0521A-3        | 521 | 5.818  | 34.2382 | 0.366 | 26.9848 | 5.20   |
| 864859 | 34404 864859 093.4<br>026.4         | 20-<br>1611SR-<br>MX-310-<br>2239-<br>09340264-<br>0000A-7<br>20- | 0   | 18.744 | 33.4083 | 5.805 | 23.8706 | 108.74 |

| 864860 | 34404 864860 <sup>093.4</sup> 026.4 | 1611SR-<br>MX-310-<br>2239-<br>09340264-<br>0002A-3        | 2  | 18.744 | 33.4083 | 5.805 | 23.8707 | 108.74 |
|--------|-------------------------------------|------------------------------------------------------------|----|--------|---------|-------|---------|--------|
| 864861 | 34404 864861 <sup>093.4</sup> 026.4 | 20-<br>1611SR-<br>MX-310-<br>2239-<br>09340264-<br>0005A-3 | 5  | 18.692 | 33.415  | 5.796 | 23.8891 | 108.46 |
| 864862 | 34404 864862 <sup>093.4</sup> 026.4 | 20-<br>1611SR-<br>MX-310-<br>2239-<br>09340264-<br>0010A-3 | 10 | 18.161 | 33.4062 | 5.816 | 24.0143 | 107.74 |
| 864863 | 34404 864863 093.4<br>026.4         | 20-<br>1611SR-<br>MX-310-<br>2239-<br>09340264-<br>0015A-3 | 15 | 17.533 | 33.388  | 5.774 | 24.153  | 105.66 |

```
names(data) .= strip.(names(data)) # Remove extra spaces from column names
println("Columnas disponibles:")
for col in names(data)
    println("`$col`")
end
```

```
→ Columnas disponibles:
    `Cst_Cnt`
    `Btl_Cnt`
    `Sta_ID`
    `Depth_ID`
    `Depthm`
    `T_degC`
    `Salnty`
    `02ml_L`
    `STheta`
    `02Sat`
    `Oxy_µmol/Kg`
    `BtlNum`
    `RecInd`
    `T_prec`
    `T_qual`
    `S_prec`
```

- `S\_qual`
- `P\_qual`
- `0\_qual`
- `SThtaq`
- `02Satq`
- `ChlorA`
- `Chlqua`
- `Phaeop`
- `Phaqua`
- `P04uM`
- `P04q`
- `Si03uM`
- `Si03qu`
- `N02uM`
- `N02g`
- `N03uM`
- `N03q`
- `NH3uM`
- `NH3q`
- `C14As1`
- `C14A1p`
- `C14A1q`
- `C14As2`
- `C14A2p`
- `C14A2q`
- `DarkAs`
- `DarkAp`
- `DarkAq`
- `MeanAs`
- `MeanAp`
- `MeanAq`
- `IncTim`
- `LightP`
- `R\_Depth`
- `R\_TEMP`
- `R\_POTEMP`
- `R\_SALINITY`
- `R\_SIGMA`
- `R\_SVA`
- `R\_DYNHT`
- `R\_02`
- `R 02Sat`

```
columns_of_interest = [:T_degC, :Salnty, :Depthm, :02ml_L] # Necessary columns as
missing_columns = setdiff(columns_of_interest, Symbol.(names(data))) # Check if re
if !isempty(missing_columns)
    println("Faltan las siguientes columnas en DataFrame: $missing_columns")
    error("Faltan columnas necesarias")
end
```

filtered\_data = data[:, columns\_of\_interest] # Filter columns
filtered\_data = dropmissing(filtered\_data) # Ensure there are no missing values in
println("Datos después de filtrado:") # Verify that the columns have been loaded

→ Datos después de filtrado:

```
data_model = @formula(T_degC ~ Salnty + Depthm + O2ml_L) # Linear regression with
lm_model = lm(data_model, filtered_data)
println("Resumen del modelo:")
println(coef(lm_model))
println(summary(lm_model))
```

Resumen del modelo:

 $[-168.2751028141903,\ 5.115126418319546,\ -0.005011889278487319,\ 2.117981438058] \\ StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}},\ GLM.LmResp{Vector{Float64}},\ GLM.LmResp{Vector{Float6$ 

```
function calculate_rmse(model, data)
    predictions = StatsBase.predict(model, data) # Utiliza StatsBase.predict
    residuals = data[:, :T_degC] .- predictions
    return sqrt(mean(residuals .^ 2))
end
```

calculate\_rmse (generic function with 1 method)

```
rmse = calculate_rmse(lm_model, filtered_data)
println("RMSE del modelo: $rmse")
```

FMSE del modelo: 1.9436411276934393

histogram(filtered\_data[!, :T\_degC], title="Distribución T\_degC", xlabel="T\_degC"



histogram(filtered\_data[!, :Salnty], title="Distribución Salnty", xlabel="Salnty"



histogram(filtered\_data[!, :Depthm], title=" Distribución Depthm", xlabel="Depthm"



histogram(filtered\_data[!, :02ml\_L], title="Distribución 02ml\_L", xlabel="02ml\_L"



```
combinations = [ # List of independent v
    [:Salnty, :Depthm, :O2ml L],
    [:Salnty, :Depthm],
    [:Salnty, :02ml_L],
    [:Depthm, :02ml L],
    [:Salnty],
    [:Depthm],
   [:02ml L]
1
best rmse = Inf
best_model = nothing
best combination = nothing
names(filtered data)
println(names(filtered data)) # Verify
for combination in combinations
   formula = @eval @formula(T degC ~ $(
   lm model = lm(formula, filtered data
    rmse = calculate_rmse(lm_model, filt
   println("RMSE para combinación $comb
                         # If RMSE is
   if rmse < best rmse
       best rmse = rmse
       best_model = lm_model
       best combination = combination
   end
end
```

"@eval" no es una anotación válida. Se permiten los siguientes valores: [@param, @title, @markdown].

```
["T_degC", "Salnty", "Depthm", "02ml_L"]

RMSE para combinación [:Salnty, :Depthm, :02ml_L]: 1.9436411276934393

RMSE para combinación [:Salnty, :Depthm]: 3.0811490028449944

RMSE para combinación [:Salnty, :02ml_L]: 2.3063058428905685

RMSE para combinación [:Depthm, :02ml_L]: 2.345609992014096

RMSE para combinación [:Salnty]: 3.64457684656509

RMSE para combinación [:Depthm]: 3.152476963183015

RMSE para combinación [:02ml_L]: 2.5625749572805048
```

println("Mejor variable para combianción: \$best\_combination with RMSE: \$best\_rmse'
correlation\_matrix = cor(Matrix(filtered\_data[:, [:T\_degC, :Salnty, :Depthm, :02m
heatmap(correlation\_matrix, xlabel="Variables", ylabel="Variables", title="Matriz")

Mejor variable para combianción: [:Salnty, :Depthm, :O2ml\_L] with RMSE: 1.9436

Matriz de correlación

