Trust the highest order language model that contains n-gram

$$\begin{split} p_n^{BO}(w_i|w_{i-n+1},...,w_{i-1}) &= \\ &= \begin{cases} \alpha_n(w_i|w_{i-n+1},...,w_{i-1}) \\ &\text{if } \mathsf{count}_n(w_{i-n+1},...,w_i) > 0 \\ d_n(w_{i-n+1},...,w_{i-1}) \; p_{n-1}^{BO}(w_i|w_{i-n+2},...,w_{i-1}) \\ &\text{else} \end{cases} \end{split}$$

- Requires

 - adjusted prediction model $\alpha_n(w_i|w_{i-n+1},...,w_{i-1})$ - discounting function $d_n(w_1, ..., w_{n-1})$