WHAT IS CLAIMED IS:

l	1. A method for forming a dense Si-C-B-N composite, said method		
2	comprising:		
3	(a) mechanically activating a powder mixture comprised of silicon nitride,		
4	silicon carbide, and boron nitride; and		
5	(b) consolidating said powder mixture into a continuous mass by compressing		
5	said powder mixture in the presence of 0 to 1% by weight of metal oxide densification		
7	aids relative to said powder mixture, while passing an electric current through said		
8	powder mixture, to achieve a fused Si-C-B-N mass comprised of crystals less than		
9	100 nanometers in diameter.		
1	2. The method of claim 1 wherein said powder mixture is substantially		
2	amorphous.		
1	3. The method of claim 1 wherein said crystals of said fused Si-C-B-N		
2	mass are less than 50 nm in diameter.		
1	4. The method of claim 1 wherein any metal densification aid present in		
2	step (b) is from 0 to 0.5% by weight of said powder mixture.		
1	5. The method of claim 1 wherein any metal densification aid present in		
2	step (b) is from 0 to 0.1% by weight of said powder mixture.		
1	6. The method of claim 1 wherein step (b) is performed in the absence of		
2	metal oxide densification aids.		
1	7. The method of claim 1 wherein said powder mixture consists		
2	essentially of from about 10 to about 60 parts by volume silicon, from about 10 to about 60		
3	parts by volume carbon, from about 10 to about 60 parts by volume nitrogen, and from about		
4	2 to about 30 parts by volume boron, based on a total of 100 parts by volume of said powde		
5	mixture.		
1	8. The method of claim 1 further comprising forming said powder		
2	mixture by combining decaborane with a polyorganosilazane, followed by crosslinking and		
3	pyrolysis.		

1	7.	The method of claim 6 wherein said polyorganoshazane is a	
2	polyureasilazane.		
1	10.	The method of claim 1 wherein step (b) comprises compressing said	
2	powder mixture at a p	pressure of about 10 MPa to about 200 MPa and a temperature of about	
3	900°C to about 3,000	°C, and said electric current is a pulsed direct current of about	
4	1,000 A/cm ² to about	10,000 A/cm ² .	
1	11.	The method of claim 10 wherein said pressure is about 40 MPa to	
2	about 100 MPa.		
1	12.	The method of claim 10 wherein said temperature is about 1,000°C to	
2	about 2,000°C.		
1	13.	The method of claim 10 wherein said pulsed direct current is about	
2	1,500 A/cm ² to about	5,000 A/cm ² .	
1	14.	The method of claim 1 wherein step (b) is performed to achieve a	
2	fused mass with a de	nsity of at least 95% relative to a volume-averaged theoretical density.	
1	15.	The method of claim 1 wherein step (b) is performed to achieve a	
2	fused mass with a de	nsity of at least 98% relative to a volume-averaged theoretical density.	
1	16.	The method of claim 1 wherein step (b) is performed to achieve a	
2	fused mass with a de	nsity of at least 99% relative to a volume-averaged theoretical density.	
1	17.	The method of claim 1 wherein step (a) comprises milling said powder	
2	mixture by high-ener	gy ball milling.	
1	18.	The method of claim 17 wherein said high-energy ball milling is	
2	performed with silico	on nitride milling balls in an oscillating mill at about 6 or more impacts	
3	per second and a cha	rge ratio of at least about 10:4.	
1	19.	A dense composite of silicon nitride, silicon carbide, and boron nitride	
2	consisting essentially of crystals less than 100 nm in diameter and containing 0 to 1% by		
3	weight of metal oxide densification aids, produced by a process comprising:		

4	(a) mechanically activating a powder mixture of silicon nitride, silicon			
5	carbide, and boron nitride; and			
6	(b) consolidating said powder mixture into a continuous mass by compressing			
7	said powder mixture in the presence of 0 to 1% by weight of metal oxide densification			
8	aids while passing an electric current through said powder mixture, to achieve a fused			
9	Si-C-B-N mass comprised of crystals less than 100 nanometers in diameter.			
1	20. The composite of claim 19 wherein said powder mixture of step (a) is			
2	substantially amorphous.			
1	21. The composite of claim 19 wherein said fused mass consists of			
2	particles less than 50 nanometers in diameter.			
1	22. The composite of claim 19 wherein step (b) is performed in the			
2	presence of 0 to 0.5% by weight of metal oxide densification aids.			
1	23. The composite of claim 19 wherein step (b) is performed in the			
2	presence of 0 to 0.1% by weight of metal oxide densification aids.			
1	24. The composite of claim 19 wherein step (b) is performed in the			
2	absence of metal oxide densification aids.			
1	25. The composite of claim 19 wherein said powder mixture consists			
2	essentially of from about 10 to about 60 parts by volume silicon, from about 10 to about 60			
3	parts by volume carbon, from about 10 to about 60 parts by volume nitrogen, and from about			
4	2 to about 30 parts by volume boron, totaling 100 parts by volume of said powder mixture.			
1	26. The composite of claim 19 wherein said powder mixture is formed by			
2	combining decaborane with a pyrolysis product of a polyorganosilazane in an inert			
3	atmosphere.			
1	27. The composite of claim 26 wherein said polyorganosilazane is a			
2	polyureasilazane.			
1	28. The composite of claim 19 wherein step (b) comprises compressing			

said powder mixture at a pressure of about 10 MPa to about 200 MPa and a temperature of

- about 900°C to about 3,000°C, and said electric current is a pulsed direct current of about
- 4 1,000 A/cm² to about 10,000 A/cm².
- The composite of claim 28 wherein said pressure is about 40 MPa to about 100 MPa.
- The composite of claim 28 wherein said temperature is about 1,000°C to about 2,000°C.
- The composite of claim 28 wherein said pulsed direct current is about 1,500 A/cm² to about 5,000 A/cm².
- 1 32. The composite of claim 19 wherein step (b) is performed to achieve a fused mass with a density of at least 95% relative to a volume-averaged theoretical density.
- 1 33. The composite of claim 19 wherein step (b) is performed to achieve a fused mass with a density of at least 98% relative to a volume-averaged theoretical density.
- 1 34. The composite of claim 19 wherein step (b) is performed to achieve a 2 fused mass with a density of at least 99% relative to a volume-averaged theoretical density.
- The composite of claim 19 wherein step (a) comprises milling said powder mixture by high-energy ball milling.
- The composite of claim 19 wherein said high-energy ball milling is
 performed with silicon nitride milling balls in an oscillating mill at about 6 or more impacts
 per second and a charge ratio of at least about 10:4.