2. Konzeptueller Datenbankentwurf

Literaturempfehlung

- A. Kemper, A. Eickler: Datenbanksysteme – Eine Einführung, De Gruyter Verlag, 10. Auflage, 2015
- Andreas Gadatsch: Datenmodellierung Einführung in die Entity-Relationship-Modellierung und das Relationenmodell, Springer, Vieweg, 2. Auflage, 2019 als EBook in HTWG:Bib vorhanden
- http://www3.in.tum.de/research/publica tions/books/DBMSeinf/

Hochschule Konstanz

Fakultät Informatik

Datenbankentwurf Entwurfsschritte

Sammlung aller für eine Miniwelt bedeutsamen Gegenstände, Eigenschaften, Beziehungen und Operationen

Präzise Beschreibung einer Miniwelt durch relationale oder objektorientierte Modelle

Abbildung auf ein rechnergestützt interpretierbares Schema, z.B. relationales Schema

Abbildung des logischen Datenbankschemas in eine effiziente physische Datenbasisstruktur

Datenbankentwurf

Entwurfsschritte

Datenbankentwurf - Ebenen

Konzeptuelle Ebene

- Strukturierung des projektierten Anwendungsbereichs
- Unabhängigkeit von verwendeten Datenbanksystem
- Verwendung einer Modellierungssprache
 - Entity-Relationship-Modellierung
 - UML

Implementationsebene

 Beschreibung der Datenbankanwendung in den Konzepten des verwendeten Datenbanksystems

Physischer Entwurf

- Erhöhung der Leistungsfähigkeit (Performance) der Datenbankanwendung
- Tiefgehende Kenntnisse des Datenbanksystems, des zugrundeliegenden Betriebssystems und sogar der Hardware notwendig

Konsolidierung, Sichtenintegration

- Aufteilung in Anwendersichten bei größeren Anwendungen
- Nach Modellierung der einzelnen Sichten Zusammenfassung zu einem globalen Schema
- Konsolidierung, Sichtenintegration
 - Entfernung Redundanzen
 - Entfernung Widersprüche
 - Bereinigung von Synonyme
 Mehrere Worte haben gleiche Bedeutung, Bsp: senkrecht vertikal
 - Bereinigung von Homonyme
 Ein Wort hat verschiedene Bedeutungen, Bsp: Bank, Kiefer

Anforderungsanalyse

- Informationsanforderungen
 - Statische Informationen
 - Z.B. Angaben über Daten, Realwelt-Objekte, deren Typen, charakterisierende Eigenschaften bzw. Attribute mit Wertebereichen
 - Integritätsbedingungen: Konsistenz
- Bearbeitungsanforderungen
 - Dynamische Aktivitäten und Prozesse, welche später auf der Datenbank ablaufen sollen
 - Anfragen, Updates, Auswertungen, etc.
 - Verfügbarkeit, Sicherheit der Daten
- Aktivitäten während dieser Entwurfsphase
 - Identifikation der wesentlichen Benutzergruppen
 - Modellierung der relevanten Daten

Hochschule Konstanz

Fakultät Informatik

Methoden zur Informationsgewinnung

- Interviews
 - Persönliche Befragung der betreffenden Mitarbeiter
- Fragebogen
 - Vorgegebene Fragen an Mitarbeiter verteilen
 - Rücklaufquote und Qualität der Antworten als Problem
- Inventur
 - Analysieren von Unterlagen, z.B. Statistiken, Pläne, Bilanzen, Vordrucke
- Beobachtung
 - Beobachtung von Prozesse

Materialname	Kfz-Mietrertrag	
Projekt	Fitz-Auto	
Quelle / erhalten von	Hr. Nouland	
Empfänger, erhalten am	21. 8. 2003 BOE	
Erläuterung	Vertrag und unit alka Lapal after Ci Firmerung ridby?	

Quelle: www.oose.de

Datenverarbeitungsanforderungen

- Behandlung der Verarbeitung der Daten
- Beispiel: Zeugnisausstellung
 - Häufigkeit: halbjährlich
 - Benötigte Daten
 - Prüfungen
 - Studienordnungen
 - Studenteninformationen
 - Priorität hoch
 - Zu verarbeitende Datenmenge
 - 600 Studierende
 - 4000 Prüfungen
 - 5 Studienordnungen

Informationsstrukturanforderungen

Bestandteile

- Objekte
- Attribute dieser Objekte
- Beziehungen zwischen diesen Objekten
- Beispiel: Objektbeschreibung Angestellter Beschreibung: Ein Angestellter ist eine Person, die einen zur Zeit gültigen Arbeitsvertrag besitzt.

Attribut Personalnummer

Beschreibung: eindeutige Nummer

Typ: char

Länge: 6

Wertebereich: 0 ... 999.999

Anzahl Wiederholungen: 0

Definiertheit: 100%

Identifizierend: ja

Attribut Gehalt

Beschreibung: monatliches Bruttogehalt

Typ: dezimal

Länge: (8.2)

Anzahl Wiederholungen: 0

Definiertheit: 90%

Identifizierend: nein

Entity Relationship-Modellierung

- P. Chen 1976
- Entity Relationship Diagramme (ERD) sind eine Beschreibungsnotation für statische Beziehungen zwischen "Objekten"
- Ursprünglich eingesetzt für den Datenbankentwurf (relationale Datenbanken)
- Erweiterungen der Original-Notation von Chen
 - Erweiterte Entity Relationship-Modelle (EER-Modelle)
- Übersicht Notation
 - Entitytypen: Abstraktion ähnlicher Gegenstände
 - Relationshiptypen: Beziehungen zwischen Gegenstandstypen
 - Attribut: Charakterisierung von Gegenständen und Beziehungen

Entity

Definition Entity

 Individuelles und identifizierbares Exemplar eines Objekts, einer Person, eines Begriffes, eines Ereignisses, ... der realen oder der Vorstellungswelt

Beispiele

- Mitarbeiter (Mitarbeiter mit Personalnummer 13334)
- Auto BMW (KN-LP 56)
- Angebot vom 7.11.2017 an Herrn Schmidt-Fröhlich
- Vertrag (mit einer bestimmten Vertragsnummer)
- Ein Entity ist immer eine eindeutig identifizierbare Einheit!
 - identifizierbar durch Schlüssel
 - relevant
 - Informationen werden zum Begriff gesammelt (Attribute)

Entity-Typ

- Oberbegriff für eine Menge von Entities, die gleiche Attribute (nicht Attributwerte) besitzen
- Darstellungsform
 - Darstellung von Entity-Typen als Rechtecke
 - Eindeutiger Name: Substantiv, singular

Student

- Beispiele
 - Maier, Hans, 01.02.1965, Konstanz
 - Müller, Hugo, 12.06.1997, Singen
 - ...
 - Zugehöriger Entity-Typ: Student

Beziehungstypen

- Beziehungstypen
 - Zusammenfassung gleichartiger, d.h. hinsichtlich ihrer Art und der beteiligten Entitytypen übereinstimmende Beziehungen
 - Name: Verb
- Notation

Name

- Entitätstyp (Menge von Objekten)
 - Entity type

- Beziehungstyp (Assoziation zwischen Entitätstypen)
 - Relationship

- m n
- Verbindung zwischen Entitätstypen und Beziehungstypen mit zugehörigen Kardinalitäten

Beziehungstypen

Beispiele

Grad von Beziehungstypen

Grad eines Beziehungstyps F:

grad(F) := Anzahl der an F beteiligten Entity-Typen "n-stellige Beziehung"

$$F = ((E_1, E_2, ..., E_n), Y) \Rightarrow grad(F) = n$$

- Beispiel einer dreistelligen Beziehung
 - Häufig bessere Modellierung durch Koppelobjekte

Kardinalität von Beziehungstypen

Kardinalität von Beziehungstypen

kard(F,A) := Anzahl der Beziehungen f∈F, an denen ein Entity a ∈A beteiligt sein kann

- Mehrere Notationen für Kardinalitäten
 - 1:n-Notation
 - Min-Max-Notation
 - etc.
- 1:n-Notation
 - Kardinalitäten: 1:1, 1:n, n:m

Grafische Veranschaulichung der Kardinalität 1:n Notation

Beispiele für Kardinalitäten

Kardinalität von Beziehungstypen

Min-Max-Notation

 $kard(F,A) = (\alpha, \beta)$

- α: Mindestanzahl der konkret vorhandenen Beziehungen
- β: Höchstanzahl der konkret vorhandenen Beziehungen
- *: Symbol für beliebig viele Beziehungen

Kardinalität von Beziehungstypen Min-Max-Notation

- kard(gehörtZu, Angestellter) = (1, 1)
 bedeutet, daß jeder Angestellte zu genau einer Abteilung gehört
- kard(gehörtZu, Abteilung) = (1, *)
 bedeutet, daß zu einer Abteilung mindestens ein Angestellter gehört

Kardinalitäten Min-Max-Notation

Kann-Beziehung, einfach

• Muss-Beziehung, einfach

Kann-Beziehung, mehrfach

Muss-Beziehung, mehrfach

Kardinalität einer Beziehung

Darstellungsmöglichkeiten für Kardinalität

- Beschränkung auf zweistellige Beziehungen
- Verwendete Kardinalitäten: (m:n), (1:n), (m:1), (1:1)
- Zusammenhang zu Min-Max-Notation

E ₁		E_2
	1:1	
(0,1)		(0,1)
(1,1)		(1,1)
	1:n	
(0,*)		(0,1)
(1,*)		(1,1)
	n:m	
(0,*)		(0,*)
(1,*)		(1,*)

Weitere Darstellungsmöglichkeiten für Kardinalität

Entity Eigenschaften

- Eine Eigenschaft wird Entities zugeordnet und ermöglicht damit deren
 - Charakterisierung
 - Eindeutige Identifizierung
- Eine Eigenschaft hat einen Namen und einen Wert
 - NAME → Müller
 - VORNAME → Hans
 - GEB.DAT → 01.02.1965
 - GRÖSSE → 180
 - BERUF → Schreiner

Attribut

- Attribute tragen die relevanten Informationen und Eigenschaften von Entity- und Beziehungsmengen
- Attributsnamen sollten etwas über den Inhalt aussagen
 - "Datum" ist als Attributsname nicht geeignet
 - Besser: Buchungsdatum, Stornierdatum, etc.
- Entität Student
 - Matrikelnummer
 - Name
 - Telefon
 - Geburtsdatum
- Klassifizierung
 - Schlüssel
 - Mehrwertige Attribute

Hochschule Konstanz

Fakultät Informatik

Modellierung von Attributen

Darstellung als Ellipsen

- Schlüsselattribut
 - Ein Schlüsselattribut identifiziert ein Tupel eines Entities eindeutig
 - Darstellung durch Unterstreichung des Attributnamens

Attribute

- Mehrwertige Attribute
 - Ablegen von mehreren Attributwerten
 - Darstellung durch Doppelkreis

- Zusammengesetzte Attribute
 - Ein Attribut setzt sich aus mehreren anderen zusammen

Attribute von Beziehungen

- Zuordnung von Attributen zu Beziehungen
 - Detaillierte Beschreibung der Beziehung
 - Ergänzende Eigenschaften der Beziehung
 - Nur sinnvoll bei n:m-Beziehungen

Schwache Entitytypen

- Schwache (existenzabhängige) Entities
 - Entities, die nicht autonom existieren, sondern nur in Verbindung mit einem anderen Entity
 - Nur in Kombination mit übergeordneten Entity eindeutig identifizierbar
 - Darstellung durch doppelte Linie
 - Partieller Schlüssel: Unterstreichung mit gestrichelter Linie
 - Identifizierende Relationship: Darstellung durch doppelte Linie

Beispiel schwache Entities

Erweiterung ER-Diagramme

Aggregation

Spezialisierung und Generalisierung

Ein korrektes Beispiel?

ER-Modellierung Ein korrektes Beispiel ???

ER-Modellierung

Attribute sollten zu ihrem zugehörigen Entitytyp modelliert werden

Beispiel ER-Modell

Welche Modellierung ist besser?

Hochschule Konstanz

Fakultät Informatik

n-m Relationship vs. zwei 1-n Relationships

Unterschied

- Im ersten Modell gibt es höchstens eine Beziehung zwischen einem Kunden und einem Artikel
- Im zweiten Modell kann es *mehrere* Käufe zwischen einem Kunden und einem Artikel geben

n-m Relationship vs. zwei 1-n Relationships

Korrekte Modellierung mit n-m Relation

Korrekte Modellerung mit Relationsobjekt

ER-Modellierung Häufige Fehlerquellen in Prüfungen

- Attribute modellieren, nicht Attributwerte
- Keine Modellierung künstlicher Attribute
- Entities ohne Attribute sind meist sinnlos
- Beziehungen nicht als Attribute modellieren
 - Wenn "Land" als Entity modelliert wurde, sollte z.B. Nationalität als Relationship zu Land modelliert werden
- "Rekursive" Beziehungen
 - Vorlesungen haben einen eine eindeutige Vorlesungsnummer und einen Titel. Eine Vorlesung kann Voraussetzung für andere Vorlesungen sein, während andere Vorlesungen Voraussetzung für diese Vorlesung sein können

ER-Modellierung Häufige Fehlerquellen in Prüfungen

Wahl des Schlüsselattributs

 In einem Programmkino findet t\u00e4glich um 20 Uhr eine Vorf\u00fchrung eines Films statt. Für jede Vorführung soll die Anzahl der aktuell noch freien Plätze abgelegt werden. Filme haben eindeutige Titel.

Zuordnung von Attributen

 Es wurde bereits "Wein" und "Flasche" modelliert und es soll der Preis modelliert werden

Relevanz

 Ist es für die Anwendung relevant, dass ein Kunde mehrere Bankverbindungen hat?

Typische Modellierungsfehler

Beziehungen nicht mehrfach modellieren

ER-Symbole Zusammenfassung

ER-Modellierung – Beispiele

Ein Filmstudio benötigt ein Datenbanksystem zur Verwaltung der im Studio gedrehten Filme und ihrer Mitwirkenden. Dabei soll folgender Sachverhalt gespeichert werden:

Für jeden Film sollen die beteiligten Schauspieler, der Regisseur, sowie der Titel, der Drehort und das Jahr abgelegt werden. Schauspieler können auch Regisseure sein. Für Schauspieler und Regisseure werden Name und Adresse gespeichert. Außerdem soll gespeichert werden, welche Gage ein Schauspieler für jeden gedrehten Film erhalten hat.

Damit Filme in Ländern verschiedener Sprache aufgeführt werden können, werden diese durch Synchronsprecher übersetzt. Damit ein Schauspieler in verschiedenen Filmen immer die gleiche Stimme hat, wird pro Sprache immer der gleiche Synchronsprecher für einen Schauspieler eingesetzt. In dem Datenbanksystem soll also gespeichert werden, welchen Synchronsprecher ein Schauspieler in welcher Sprache besitzt.

Damit ermittelt werden kann, wie erfolgreich ein Film ist, soll gespeichert werden, wie viel Euro der Film in einzelnen Ländern eingespielt hat.

Stellen Sie den beschriebenen Realweltausschnitt im erweiterten Entity-Relationship-Modell graphisch dar. Verwenden Sie dabei Kardinalitätsangaben.