Оглавление

1	Фун	нкцональные последовательности и ряды	4
	1.1	Равномерная сходимость	•
	1.2	Критерий Коши равномерной сходимости	
	1.3	Достаточные условия равномерной сходимости функциональных рядов	4
		1.3.1 Признак Вейерштрасса	4
		1.3.2 Признак Дирихле	
		1.3.3 Признак Абеля	
	1.4	Теорема о переходе к пределу в равномерно сходящейся функциональной последовательности	

Глава 1

Функцональные последовательности и ряды

Определение 1. X,d(x,y) – метрическое пространство $f_1(x),f_2(x),...,f_n(x),...$ – функции, $f_n:X\to\mathbb{R}, n=1,...$ { $f_n(x)$ } $_{n=1}^\infty$ – функциональная последовательность

Определение 2. $\{v_n(x)\}_{n=1}^{\infty}$

Функциональным рядом будем называть символ

$$\sum_{n=1}^{\infty} v_n(x)$$

Определение 3. $x_0 \in X$

Будем называть x_0 точкой сходимости последовательности { $f_n(x)$ } $_{n=1}^\infty$, если

$$\exists \lim_{n \to \infty} f_n(x_0) \in \mathbb{R}$$

Точку $x_1 \in X$ будем называть точкой расходимости последовательности $\{f_n(x)\}_{n=1}^{\infty}$, если предел $\lim_{n\to\infty} f_n(x_1)$ не существует или бесконечен

Определение 4. Определим сумму ряда $\sum v_n(x)$:

$$S_n(x) = v_1(x) + \dots + v_n(x)$$

Будем называть точку $x_0 \in X$ точкой сходимости ряда, если существует конечный предел последовательности $\{S_n(x)\}_{n=1}^\infty$

Аналогично определяется точка расходимости ряда

Замечание. Любая точка для фиксированной последовательности или фиксированного ряда является либо точкой сходимости, либо точкой расходиомости

Определение 5. Множество всех точек сходимости функциональной последовательности или ряда будем называть множеством сходимости

Обозначение. E_0

Множество точек расходимости – множеством расходимости

Обозначение. E_1

Замечание. Какое-то из них может быть пусто. Выполняются соотношения:

$$E_0 \cup E_1 = X, \qquad E_0 \cap E_1 = \emptyset$$

Определение 6. $f: X \to \mathbb{R}, \qquad \forall x \in X \quad f_n(x) \xrightarrow[n \to \infty]{} f(x)$

Говорят, что функцоинальная последовательность **поточечно** сходится к f(x)

Определение 7. $S: X \to \mathbb{R}, \qquad \forall x \in X \quad S_n(x) \xrightarrow[n \to \infty]{} S(x)$

Говорят, что функциональный ряд поточечно сходится к S

Замечание. В этих определениях мы нигде не использовали метрику, так что можно говорить о функциональных последовательностях и рядах на более общих множествах. Однако, нам это не надо

1.1 Равномерная сходимость

Определение 8. $f_n(x)$ равномерно на X сходится (стремится) к f(x), если

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall n > N \quad \forall x \in X \quad |f_n(x) - f(x)| < \varepsilon$$

Обозначение. $f_n(x) \xrightarrow[n \to \infty]{x \in X} f(x)$

Определение 9. Будем говорить, что функциональный ряд **равномерно** сходится на X к сумме S(x), если

$$S_n(x) \xrightarrow[n \to \infty]{x \in X} S(x)$$

Тогда ряду приписывается значение:

$$\sum_{n=1}^{\infty} v_n(x) \coloneqq S(x)$$

1.2 Критерий Коши равномерной сходимости

Теорема 1. Для того чтобы функцональная последовательность **равномерно** сходилась на X к некоторой функции f, **необходимо и достаточно**, чтобы

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall n > N, \ m > N \quad \forall x \in X \quad |f_n(x) - f_m(x)| < \varepsilon$$

Доказательство.

• Необходимость

Пусть
$$f_n(x) \xrightarrow[n \to \infty]{x \in X} f(x)$$

В таком случае, по определению равномерной сходиомости,

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall n > N \quad \forall x \in X \quad |f_n(x) - f(x)| < \frac{\varepsilon}{2}$$

Возьмём произвольный $x \in X$

$$|f_m(x) - f_n(x)| = \frac{1}{\pm f(x)} \left| \left(f_m(x) - f(x) \right) + \left(f(x) - f_n(x) \right) \right| \leq |f_m(x) - f(x)| + |f(x) - f_n(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

• Достаточность

 Φ иксируем $x \in X$

Получаем числовую последовательность $\left\{f_n(x)\right\}_{n=1}^{\infty}$

По критерию Коши для числовых последовательностей, она имеет конечный предел:

$$\exists \lim_{n \to \infty} f_n(x) \in \mathbb{R}$$

То есть, любая точка из X является точкой сходиомости:

$$E_0 = X$$

Получается, что $f_n(x)$ поточечно сходится к f(x) на X:

$$f_n(x) \xrightarrow[n \to \infty]{} f(x)$$
 (1.1)

При фиксированных x и ε имеем

$$|f_m(x) - f_n(x)| < \varepsilon$$

Фиксируем $\forall m > N$ и переходим к пределу по n:

$$\lim_{n \to \infty} |f_m(x) - f_n(x)| \le \varepsilon \quad \Longrightarrow |f_m(x) - f(x)| \le \varepsilon$$

T. к. мы брали $\forall m > N$ и $\forall x \in X$, это и есть определение равномерной сходимости

Теорема 2. Имеется ряд

$$\sum_{n=1}^{\infty} v_n(x), \qquad x \in X$$

Для того чтобы он равномерно сходился, необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall m > n > N \quad \forall x \in X \quad \left| \sum_{k=n+1}^{m} v_k(x) \right| < \varepsilon$$
 (1.2)

Доказательство. По определению равномерная сходимость функционального ряда означает, что равномерно сходится последовательность $\{S_n(x)\}_{n=1}^{\infty}$

Применяя к ней критерий Коши, получаем, что для её равномерной сходимости необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall m > n > N \quad \forall x \in X \quad |S_n(x) - S_m(x)| < \varepsilon$$

Это и есть условие (1.2)

1.3 Достаточные условия равномерной сходимости функциональных рядов

1.3.1 Признак Вейерштрасса

Теорема 3. Имеется ряд

$$\sum_{n=1}^{\infty} v_n(x) \tag{1.3}$$

$$\exists c_n : \sum_{n=1}^{\infty} c_n \text{ сходится}$$
 (1.4)

$$|v_n(x)| \le c_n \quad \forall x \in X \tag{1.5}$$

Тогда ряд (1.3) сходится равномерно

Доказательство. Вспомним критерий Коши для числовых рядов:

Возьмём $\forall \varepsilon > 0$

$$(1.4) \implies \exists N: \quad \forall m > n > N \quad \sum_{k=n+1}^{m} c_k < \varepsilon \tag{1.6}$$

Примечание. Мы не ставим модуль, поскольку c_k положительные

4

Зафиксируем эти m, n, N и возьмём $\forall x \in X$

$$(1.6) \implies \left| \sum_{k=n+1}^{m} v_k(x) \right| \stackrel{\triangle}{\leq} \sum_{k=n+1}^{m} |v_k(x)| \stackrel{\leq}{\underset{(1.5)}{\leq}} \sum_{k=n+1}^{m} c_k \stackrel{<}{\underset{(1.6)}{\leq}} \varepsilon$$

Применяем критерий Коши для функционального ряда

1.3.2 Признак Дирихле

Теорема 4. Имеется ряд

$$\sum_{n=1}^{\infty} b_n(x)v_n \tag{1.7}$$

 b_n монотонна по $n \quad \forall$ фиксированного $x \in X$ (1.8)

Примечание. Она может возрастать при одних x и убывать при других

$$b_n(x) \xrightarrow[n \to \infty]{x \in X} 0 \tag{1.9}$$

Примечание. Имеется в виду функция $0_X:X o\mathbb{R}$ такая, что $0_X(x)=0\quad \forall x\in X$

$$\exists c > 0: \quad \forall n \quad \forall x \in X \quad \left| \sum_{k=1}^{n} v_k(x) \right| \le c$$
 (1.10)

Тогда ряд (1.7) равномерно сходится на X

Доказательство. Возьмём $\forall \varepsilon > 0$

$$(1.9) \implies \exists N: \quad \forall n > N \quad \forall x \in X \quad |b_n(x)| < \varepsilon \tag{1.11}$$

$$\forall m > n \ge 1 \quad \left| \sum_{k=n+1}^{m} v_k(x) \right| = \left| \sum_{k=1}^{m} v_k(x) - \sum_{k=1}^{n} v_k(x) \right| \le \sum_{k=1}^{m} |v_k(x)| - \sum_{k=1}^{n} |v_k(x)| \le (1.12)$$

Рассмотрим сумму

$$\sum_{k=n+1}^{m} b_k(x) v_k(x)$$

Определим

$$V_n(x) : \equiv 0$$
$$V_{n+1}(x) := v_{n+1}(x)$$

$$V_l(x) = v_{n+1}(x) + \dots + v_l(x), \qquad n+1 < l \le m$$

Тогда $v_k(x) = V_k(x) - V_{k-1}(x), \quad k \ge n+1$ Перепишем нашу сумму:

$$\sum_{k=n+1}^{m} b_k(x) v_k(x) = \sum_{k=n+1}^{m} b_k(x) \left(V_k(x) - V_{k-1}(x) \right) = \\
= \sum_{k=n+1}^{m} b_k(x) V_k(x) - \sum_{k=n+1}^{m} b_k(x) V_{k-1}(x) \xrightarrow{\text{во второй сумме заменим } k-1 \text{ на } k} \\
= \sum_{k=n+1}^{m} b_k(x) V_k(x) - \sum_{k=n}^{m-1} b_{k+1}(x) V_k(x) \xrightarrow{\text{def } 0} b_m(x) V_m(x) + \sum_{k=n+1}^{m-1} \left(b_k(x) - b_{k+1}(x) \right) V_k(x) \quad (1.13)$$

$$(1.12) \implies |V_k(x)| \le 2c \quad \forall k \tag{1.14}$$

Возьмём N из (1.11), m > n > N и $\forall x \in X$

$$(1.13) \implies \left| \sum_{k=n+1}^{m} b_k(x) v_k(x) \right| \leq |b_m(x)| \cdot |V_m(x)| + \sum_{k=n+1}^{m-1} |b_k(x) - b_{k+1}(x)| \cdot |V_k(x)| <$$

$$< \varepsilon \cdot 2c + 2c \sum_{k=n+1}^{m-1} |b_k(x) - b_{k+1}(x)| \xrightarrow{\text{(1.8)}} 2c\varepsilon + 2c \left| \sum_{k=n+1}^{m-1} \left(b_k(x) - b_{k+1}(x) \right) \right| = 2c\varepsilon + 2c |b_{n+1}(x) - b_m(x)| \leq$$

$$\leq 2c\varepsilon + 2c \left(\underbrace{|b_{n+1}(x)|} + \underbrace{|b_m(x)|} \right) < 6c\varepsilon$$

Можно применить критерий Коши

1.3.3 Признак Абеля

Теорема 5. Имеется ряд

$$\sum_{n=1}^{\infty} b_n(x)v_n(x) \tag{1.15}$$

$$b_n(x)$$
 монотонна по $n \quad \forall x \in X$ (1.16)

$$\exists c > 0: \quad |b_n(x)| \le c \quad \forall n \quad \forall x \in X \tag{1.17}$$

$$\sum_{n=1}^{\infty} v_n(x)$$
 равномерно сходится на X (1.18)

$$\implies$$
 ряд (1.19) равномерно сходится (1.19)

Доказательство. Применим необходимую часть критерия Коши к условию (1.18):

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall m > n > N \quad \forall x \in X \quad \left| \sum_{k=n+1}^{m} v_k(x) \right| < \varepsilon$$
 (1.20)

Возьмём какое-нибудь $m_0 > n > N$

Соотношение (1.20) действует при $m = n + 1, ..., m_0$

Определим функции $V_k(x)$ так же, как в доказательстве признака Дирихле Там было доказано, что

$$\sum_{k=1}^{m_0} b_k(s) v_k(x) = \sum_{k=n+1}^{m_0-1} V_k(x) \left(b_k(x) - b_{k+1}(x) \right) + b_{m_0}(x) V_{m_0}(x)$$
(1.21)

$$(1.21), (1.20) \implies \left| \sum_{k=n+1}^{m_0} b_k(x) v_k(x) \right| \le \left| \sum_{k=n+1}^{m_0-1} V_k(x) \left(b_k(x) - b_{k+1}(x) \right) \right| + |b_{m_0}(x)| \cdot |V_{m_0}(x)| \le$$

$$\le \sum_{k=n+1}^{m_0-1} |V_k(x)| \cdot \left| b_k(x) - b_{k+1} \right| + |b_{m_0}(x) V_{m_0}(x)| \le \underbrace{|b_{m_0}(x)|}_{\le c} \varepsilon + \varepsilon \sum_{k=n+1}^{m_0-1} |b_k(x) - b_{k+1}(x)| \le$$

$$\le c\varepsilon + \varepsilon \left| \sum_{k=n+1}^{m_0-1} \left(b_k(x) - b_{k+1} \right) \right| = c\varepsilon + \varepsilon |b_{n+1}(x) - b_{m_0}(x)| \le 3c\varepsilon \implies (1.19)$$

1.4 Теорема о переходе к пределу в равномерно сходящейся функциональной последовательности

Теорема 6. X, d(x,y) – метрическое пространство, $x_0 \in X$ – точка сгущения $X \in \{f_n(x)\}_{n=1}^{\infty}$, $f_n: X \setminus \{x_0\} \to \mathbb{R}$, $f: X \setminus \{x_0\} \to \mathbb{R}$

$$f_n(x) \xrightarrow[n \to \infty]{x \in X \setminus \{x_0\}} f(x)$$
 (1.22)

$$\forall x \in X \setminus \{x_0\} \quad \exists \lim_{x \to x_0} f_n(x) = a_n \tag{1.23}$$

$$\implies \begin{cases} \exists \lim_{n \to \infty} a_n = A \in \mathbb{R} \\ \exists \lim_{x \to x_0} f(x) \end{cases}$$

$$\lim_{x \to x_0} f(x) = A$$

$$(1.24)$$

$$(1.25)$$

$$(1.26)$$

Доказательство. Применим критерий Коши к (1.22):

$$\implies \forall \varepsilon > 0 \quad \exists N: \quad \forall m, n > N \quad \forall x \in X \quad |f_m(x) - f_n(x)| < \varepsilon \tag{1.27}$$

Зафиксируем всё, кроме x, а x устремим к x_0 :

$$\implies \lim_{x \to x_0} |f_m(x) - f_n(x)| \le \varepsilon \tag{1.28}$$

$$\underset{42}{\Longrightarrow} |a_m - a_n| \le \varepsilon \tag{1.29}$$

$$\implies \exists \lim_{n \to \infty} a_n = A \in \mathbb{R}$$

(1.24) доказано

Докажем (1.26) (из него будет следовать (1.25)):

Возьмём $\forall \varepsilon > 0$

Выберем N_1 такое, что

$$\forall n > N \quad \forall x \in X \setminus \{x_0\} \quad |f_n(x) - f(x)| < \varepsilon \tag{1.30}$$

Выберем N_2 такое, что

$$\forall n > N_2 \quad |a_n - A| < \varepsilon \tag{1.31}$$

Выберем $N_0 := \max\{N_1, N_2\} + 1$

Замечание. N_1,N_2,N_0 зависят от ε

Выберем $\delta > 0$ такое, что

$$\forall y \in X \setminus \{x_0\} \quad \left(d(y, x_0) < \delta \implies |f_{N_0}(y) - A_{N_0}| < \varepsilon\right)$$
(1.32)

Замечание. δ зависит **только** от ε

$$f(y) - A = \frac{f(y) - f(y) - f$$

$$\implies |f(y) - A| \stackrel{\triangle}{\leq} \underbrace{|f(y) - f_{N_0}(y)|}_{\stackrel{(1.22)}{\leq} \varepsilon} + \underbrace{|f_{N_0}(y) - a_{N_0}|}_{\stackrel{(1.32)}{\leq} \varepsilon} + \underbrace{|a_{N_0} - A|}_{\stackrel{(1.31)}{\leq} \varepsilon} < 3\varepsilon \implies (1.26)$$

Следствие (о непрерывности предельной функции равномерно сходящейся функциональной последовательности). X, $x_0 \in X$, $f_n:X\to\mathbb{R}$

$$f_n(x) \xrightarrow[n \to \infty]{x \in X} f(x) \tag{1.33}$$

$$f_n(x)$$
 непрерывна в $x_0 \quad \forall n$ (1.34)

$$\implies f(x)$$
 непрерывна в $x_0 \quad \forall n$ (1.35)

Доказательство. (1.34) означает, что

$$\lim_{x \to x_0} f_n(x) = \underbrace{f_n(x_0)}_{a_n} \in \mathbb{R}$$

То есть, выполнено второе условие из теоремы

$$(1.33) \implies f_n(x_0) \xrightarrow[n \to \infty]{} f(x_0) \tag{1.36}$$

$$\exists \lim_{n \to \infty} a_n = \lim_{n \to \infty} f_n(x_0) \xrightarrow{(1.36)} f(x_0)$$

$$\exists \lim_{x \to x_0} f(x) = \lim_{n \to \infty} a_n = f(x_0)$$

Следствие. X всюду плотно (т. е. все точки X являются точками сугщения) $f_n \in \mathcal{C}\bigg(X\bigg), \qquad f_n(x) \xrightarrow[n \to \infty]{x \in X} f(x)$

$$f_n \in \mathcal{C}\left(X\right), \qquad f_n(x) \xrightarrow[n \to \infty]{x \in X} f(x)$$

$$\implies f \in \mathcal{C}(X)$$