Number	Functional form	Range of γ
1	$p = \text{poly}(t, \gamma) + (1/k)$	$\gamma \in \mathbb{Z}\left[3, 10\right]$
2	$p = \text{poly}(t, \gamma) + (1/k) + \text{poly}(t, \gamma) * 1/k$	$\gamma \in \mathbb{Z}\left[3,10\right]$
3	$p = \text{poly}(t, \gamma) + \log(k) + \text{poly}(k, \gamma) * \log(k)$	$\gamma \in \mathbb{Z}\left[3,10\right]$
4	$p = \text{poly}(t, \gamma) + k + (1/k)$	$\gamma \in \mathbb{Z}\left[3,10\right]$
5	$p = \text{poly}(\log(t), \gamma) + \log(k)$	$\gamma \in \mathbb{Z}\left[3, 10\right]$
6	$p = \text{poly}(\log(t), \gamma) * \log(k)$	$\gamma \in \mathbb{Z}\left[3, 10\right]$
7	$p = \text{poly}(\log(t), \gamma) + k$	$\gamma \in \mathbb{Z}\left[3,10\right]$
8	$p = \text{poly}(\log(t), \gamma) * k$	$\gamma \in \mathbb{Z}\left[3,10\right]$
9	$p = \text{poly}(\log(t), \gamma) * k + 1/k$	$\gamma \in \mathbb{Z}\left[3,10\right]$
10	$p = \operatorname{poly}(\log(t), \gamma) * \log(k)$	$\gamma \in \mathbb{Z}\left[3, 10\right]$
11	$p = \text{poly}(\log(t), \gamma) * \log(k) + 1/k$	$\gamma \in \mathbb{Z}\left[3, 10\right]$
12	$p = \operatorname{poly}(\operatorname{bc}(t), \gamma) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), \gamma) * 1/k$	$\gamma \in \mathbb{Z}\left[3,10\right]$
13	$p = \text{poly}(bc(t), \gamma) * \log(k) + \text{poly}(bc(t), \gamma) * \sqrt{k}$	$\gamma \in \mathbb{Z}\left[3,10\right]$
14	$p = \operatorname{poly}(\operatorname{bc}(t), \gamma) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), \gamma) * 1/k + \sqrt{k}$	$\gamma \in \mathbb{Z}\left[3,10\right]$
15	$bc(p) = poly(bc(t), \gamma) + log(k)$	$\gamma \in \mathbb{Z}\left[3, 10\right]$
16	$bc(p) = poly(bc(t), \gamma) * log(k)$	$\gamma \in \mathbb{Z}\left[3, 10\right]$
17	$bc(p) = poly(bc(t), \gamma) * log(k) + 1/k$	$\gamma \in \mathbb{Z}\left[3,10\right]$
18	$bc(p) = poly(bc(t), \gamma) * log(k) + poly(bc(t), \gamma) * 1/k$	$\gamma \in \mathbb{Z}\left[3,10\right]$
19	$bc(p) = poly(bc(t), \gamma) * log(k) + poly(bc(t), \gamma) * \sqrt{k}$	$\gamma \in \mathbb{Z}\left[3,10\right]$
20	$\log(p) = \operatorname{poly}(\operatorname{bc}(t), \gamma) * \log(k)$	$\gamma \in \mathbb{Z}\left[3, 10\right]$
21	$\log(p) = \text{poly}(bc(t), \gamma) * \log(k) + 1/k$	$\gamma \in \mathbb{Z}\left[3, 10\right]$
22	$\log(p) = \operatorname{poly}(\operatorname{bc}(t), \gamma) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), \gamma) * \sqrt{k}$	$\gamma \in \mathbb{Z}\left[3, 10\right]$
23	$\log(p) = \operatorname{poly}(\operatorname{bc}(t), \gamma) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), \gamma) * 1/k$	$\gamma \in \mathbb{Z}\left[3, 10\right]$
24	$\log(p) = \operatorname{poly}(\operatorname{bc}(t), \gamma) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), \gamma) * 1/k + \sqrt{k}$	$\gamma \in \mathbb{Z}\left[3, 10\right]$

Table 1: Description of all tested models....

	Full distribution		Lower tail $(p < 0.2)$	
Functional form	RMSE	cRMSE	RMSE	cRMSE
$\mathrm{bc}(p) = \mathrm{poly}(\mathrm{bc}(t), 10) * \log(k) + \mathrm{poly}(\mathrm{bc}(t), 10) * \sqrt{k}$	$4.97\cdot10^{-4}$	$4.69\cdot 10^{-4}$	$8.05\cdot10^{-4}$	$7.16\cdot 10^{-4}$
bc(p) = poly(bc(t), 10) * log(k) + poly(bc(t), 10) * 1/k	$5.39\cdot10^{-4}$	$5.11\cdot 10^{-4}$	$8.54\cdot10^{-4}$	$7.61\cdot 10^{-4}$
$p = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * \sqrt{k}$	$7.68\cdot10^{-4}$	$6.91\cdot 10^{-4}$	$1.01\cdot 10^{-3}$	$8.97\cdot 10^{-4}$
$p = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k + \sqrt{k}$	$7.79\cdot 10^{-4}$	$7.04\cdot10^{-4}$	$1.05\cdot 10^{-3}$	$9.31\cdot 10^{-4}$
$p = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k$	$7.82\cdot10^{-4}$	$7.07\cdot 10^{-4}$	$1.06\cdot 10^{-3}$	$9.41\cdot 10^{-4}$

Table 2: The 5 best models for the combined Non-Cointegration test of Bayer and Hanck, where *all* underlying test are included and case 1.

	Full distribution		Lower tail $(p < 0.2)$	
Functional form	RMSE	cRMSE	RMSE	cRMSE
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k)$	$1.27\cdot 10^{-3}$	$1.25\cdot 10^{-3}$	$1.05\cdot 10^{-3}$	$9.52\cdot 10^{-4}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * \sqrt{k}$	$6.82\cdot10^{-4}$	$6.22\cdot 10^{-4}$	$1.28\cdot 10^{-3}$	$1.12\cdot 10^{-3}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k$	$7.32\cdot 10^{-4}$	$6.63\cdot 10^{-4}$	$1.39\cdot 10^{-3}$	$1.20\cdot 10^{-3}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k + \sqrt{k}$	$8.38\cdot 10^{-4}$	$7.78\cdot 10^{-4}$	$1.48\cdot 10^{-3}$	$1.31\cdot 10^{-3}$
$\mathrm{bc}(p) = \mathrm{poly}(\mathrm{bc}(t), 10) * \log(k) + \mathrm{poly}(\mathrm{bc}(t), 10) * 1/k$	$9.08\cdot10^{-4}$	$8.42\cdot 10^{-4}$	$1.69\cdot 10^{-3}$	$1.50\cdot 10^{-3}$

Table 3: The 5 best models for the combined Non-Cointegration test of Bayer and Hanck, where *all* underlying test are included and case 2.

	Full distribution		Lower tail $(p < 0.2)$	
Functional form	RMSE	cRMSE	RMSE	cRMSE
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * \sqrt{k}$	$4.58\cdot 10^{-4}$	$4.55\cdot 10^{-4}$	$3.37\cdot 10^{-4}$	$3.16\cdot 10^{-4}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k$	$5.17\cdot 10^{-4}$	$5.14\cdot 10^{-4}$	$3.90\cdot10^{-4}$	$3.73\cdot 10^{-4}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k)$	$1.04\cdot10^{-3}$	$1.04\cdot 10^{-3}$	$6.76\cdot10^{-4}$	$6.50\cdot10^{-4}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k + \sqrt{k}$	$1.18\cdot 10^{-3}$	$1.17\cdot 10^{-3}$	$2.06\cdot10^{-3}$	$2.05\cdot 10^{-3}$
bc(p) = poly(bc(t), 10) * log(k) + poly(bc(t), 10) * 1/k	$1.16\cdot 10^{-3}$	$1.06\cdot 10^{-3}$	$2.08\cdot10^{-3}$	$1.80\cdot10^{-3}$

Table 4: The 5 best models for the combined Non-Cointegration test of Bayer and Hanck, where *all* underlying test are included and case 3.

	Full distribution		Lower tail $(p < 0.2)$	
Functional form	RMSE	cRMSE	RMSE	cRMSE
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k$	$4.75\cdot10^{-4}$	$4.44\cdot 10^{-4}$	$7.81 \cdot 10^{-4}$	$6.84 \cdot 10^{-4}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k)$	$6.54\cdot10^{-4}$	$5.87\cdot 10^{-4}$	$1.01\cdot 10^{-3}$	$7.81\cdot 10^{-4}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * \sqrt{k}$	$7.60\cdot10^{-4}$	$6.13\cdot 10^{-4}$	$1.46\cdot10^{-3}$	$1.06\cdot 10^{-3}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k + \sqrt{k}$	$7.64\cdot10^{-4}$	$7.45\cdot 10^{-4}$	$1.29\cdot 10^{-3}$	$1.23\cdot 10^{-3}$
$\mathrm{bc}(p) = \mathrm{poly}(\mathrm{bc}(t), 10) * \log(k) + \mathrm{poly}(\mathrm{bc}(t), 10) * 1/k$	$1.01\cdot 10^{-3}$	$9.17\cdot 10^{-4}$	$1.89\cdot 10^{-3}$	$1.65\cdot 10^{-3}$

Table 5: The 5 best models for the combined Non-Cointegration test of Bayer and Hanck, where EG-J underlying test are included and case 1.

	Full distribution		Lower tail $(p < 0.2)$	
Functional form	RMSE	cRMSE	RMSE	cRMSE
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k)$	$7.36\cdot 10^{-4}$	$7.25\cdot 10^{-4}$	$7.04\cdot10^{-4}$	$6.45\cdot 10^{-4}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k$	$5.53\cdot10^{-4}$	$5.12\cdot 10^{-4}$	$9.75\cdot10^{-4}$	$8.56\cdot10^{-4}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * \sqrt{k}$	$5.53\cdot 10^{-4}$	$5.11\cdot 10^{-4}$	$9.87\cdot 10^{-4}$	$8.66\cdot10^{-4}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k + \sqrt{k}$	$6.00\cdot10^{-4}$	$5.62\cdot 10^{-4}$	$1.11\cdot 10^{-3}$	$1.01\cdot 10^{-3}$
$bc(p) = poly(bc(t), 10) * log(k) + poly(bc(t), 10) * \sqrt{k}$	$1.05\cdot 10^{-3}$	$9.54\cdot 10^{-4}$	$2.00\cdot 10^{-3}$	$1.75\cdot 10^{-3}$

Table 6: The 5 best models for the combined Non-Cointegration test of Bayer and Hanck, where EG-J underlying test are included and case 2.

	Full distribution		Lower tail $(p < 0.2)$	
Functional form	RMSE	cRMSE	RMSE	cRMSE
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * \sqrt{k}$	$3.85\cdot10^{-4}$	$3.73\cdot 10^{-4}$	$5.03\cdot10^{-4}$	$4.58\cdot 10^{-4}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k)$	$7.55\cdot 10^{-4}$	$7.54\cdot 10^{-4}$	$4.85\cdot10^{-4}$	$4.70\cdot 10^{-4}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k$	$3.73\cdot 10^{-4}$	$3.59\cdot 10^{-4}$	$5.34\cdot10^{-4}$	$4.83\cdot 10^{-4}$
$\log(p) = \operatorname{poly}(\operatorname{bc}(t), 10) * \log(k) + \operatorname{poly}(\operatorname{bc}(t), 10) * 1/k + \sqrt{k}$	$4.87\cdot 10^{-4}$	$4.76\cdot 10^{-4}$	$8.52\cdot10^{-4}$	$8.19\cdot 10^{-4}$
$\mathrm{bc}(p) = \mathrm{poly}(\mathrm{bc}(t), 10) * \log(k) + \mathrm{poly}(\mathrm{bc}(t), 10) * \sqrt{k}$	$1.02\cdot 10^{-3}$	$9.35\cdot 10^{-4}$	$1.94\cdot 10^{-3}$	$1.70\cdot 10^{-3}$

Table 7: The 5 best models for the combined Non-Cointegration test of Bayer and Hanck, where EG-J underlying test are included and case 3.