Лабораторная работа №3.

Нахождение кратчайших путей. Алгоритм Дейкстры

Рассмотрим несколько алгоритмов нахождения кратчайшего пути между двумя заданными вершинами в орграфе. Пусть $G=\{S,U,\Omega\}$ – ориентированный граф с взвешенными дугами. Обозначим через s-вершину начало пути, через t-вершину конец пути.

Общий подход к решению задачи о кратчайшем пути был развит американским математиком Ричардом Белланом¹, который предложил название динамического программирования. Задача о кратчайшем пути частный случай следующей задачи: найти в заданном графе пути, соединяющие две заданные вершины и доставляющие минимум или максимум некоторой аддитивной функции, определенной на путях. Чаще всего это функция трактуется как длина пути, и задача называется задачей о кратчайших путях. Алгоритм Дейкстры² – одна из реализаций этой задачи. Его часто называют алгоритмом расстановки меток. В процессе работы этого алгоритма узлами сети $x_i \in S$ приписываются числа (метки) $d(x_i)$, которые служат оценкой длины (веса) кратчайшего пути от вершины к вершине хі. Если вершина x_i получила на некотором шаге метку $d(x_i)$, это означает, что в графе G существует путь из s в x_i , имеющий вес $d(x_i)$. Метки могут находиться в двух состояниях - быть временными или постоянными. Превращение метки в постоянную означает, что кратчайшее расстояние от вершины s до соответствующей найдено.

Алгоритм Дейкстры содержит одно ограничение — веса дуг должны быть положительными. Сам алгоритм состоит из двух этапов. На первом находится длина кратчайшего пути, на втором стоится сам путь от вершины s к вершине t.

¹Ридард Эрнест Беллман (1920–1984) – американский математик

²Едсгер Дейкстра (1930–2002) – нидерландский математик

Этап 1. Нахождение длины кратчайшего пути.

Шаг 1. Присвоение вершинам начальных меток.

Полагаем $d(s) = 0^*$ и считаем эту метку постоянной (постоянные метки помечаются звездочкой). Для остальных вершин $x_i \in S$, $x_i \neq s$ полагаем $d(s) = \infty$ и считаем эти метки временными. Пусть $\tilde{x} = s$, \tilde{x} — обозначение текущей вершины.

Шаг 2. Изменение меток.

Для каждой вершины x_i с временной меткой, непосредственно следующей за вершиной $\mathbf{\hat{x}}$, меняем ее метку в соответствии со следующим правилом:

$$d_{\text{hob}}(x_i) = \min\{ d_{\text{crap}}(x_i), d(\tilde{\mathbf{x}}) + \omega(\tilde{\mathbf{x}}, x_i) \}$$
(1.2)

Шаг 3. Превращение метки из временной в постоянную.

Из всех вершин с временными метками выбираем вершину x_j с наименьшим значением метки

$$d(x_i^*) = \min\{ d(x_i)/x_i \in S, d(x_i) - временная \}$$
(1.3)

Превращаем эту метку в постоянную и полагаем $\tilde{\mathbf{x}} = {x_j}^*$.

Шаг 4. Проверка завершения первого этапа.

Если $\mathbf{\hat{x}} = \mathbf{t}$, то $\mathbf{d}(\mathbf{\hat{x}})$ — длина кратчайшего пути от s до t. В противном случае происходит возвращение ко второму шагу.

Этап 2. Построение кратчайшего пути.

Шаг 5. Последовательный поиск дуг кратчайшего пути.

Среди вершин, непосредственно предшествующих вершине Ξ с постоянными метками, находим вершину x_i , удовлетворяющую соотношению

$$d(\tilde{\mathbf{x}}) = d(\mathbf{x}_i) + \omega(\mathbf{x}_i, \tilde{\mathbf{x}}) \tag{1.4}$$

Включаем дугу (x_i, \hat{x}) в искомый путь и полагаем $\hat{x} = x_i$.

Шаг 6. Проверка на завершение второго этапа.

Если $\tilde{\mathbf{x}} = \mathbf{s}$, то кратчайший путь найден — его образует последовательность дуг, полученных на пятом шаге и выстроенных в обратном порядке. В противном случае, возвращаемся к шагу пять.

Пример 1.

Задана весовая матрица Ω графа G. Необходимо найти минимальный путь из вершины x_1 в вершину x_6 по алгоритму Дейкстры.

Решение: На рис. 1.24 изображен сам граф по данной матрице весов. Поскольку в данном графе есть цикл между вершинами x_2, x_3, x_5 , то вершины графа нельзя упорядочить по алгоритму Фалкерсона, который будет рассматриваться ниже.

На рисунке графа временные и постоянные метки указаны над соответствующей вершиной. Итак, распишем подробно работу алгоритма по шагам.

		X_1	X_2		X_4		X_6
	X_1	-	9	∞	6 ∞ ∞ - ∞	11	∞
	X_2	∞	-	8	∞	∞	∞
$\Omega =$	X_3	∞	∞	-	∞	6	9
	X_4	∞	5	7	-	6	∞
	X_5	∞	6	∞	∞	-	4
	X_6	∞	∞	∞	∞	∞	-

Рис. 1.24.

Этап 1.

Шаг 1. Полагаем

$$d(x_1) = 0^*, \tilde{\mathbf{x}} = x_1,$$

$$d(x_2) = d(x_3) = d(x_4) = d(x_5) = d(x_6) = \infty.$$

1-я итерация

Шаг 2

Множество вершин, непосредственно следующих за $\tilde{\mathbf{x}} = \mathbf{x}_1$ с временными метками $\tilde{\mathbf{S}} = \{\mathbf{x}_2, \, \mathbf{x}_4, \, \mathbf{x}_5\}$. Пересчитываем временные метки этих вершин:

$$d(x_2) = min\{\infty, 0^* + 9\} = 9,$$

$$d(x_4) = \min\{\infty, 0^* + 6\} = 6,$$

$$d(x_5) = \min\{\infty, 0^* + 11\} = 11.$$

IIIa2 3

Одна из временных меток превращается в постоянную:

$$\min\{9,\infty,6,11,\infty\} = 6^* = d(x_4), \mathfrak{A} = x_4$$

Шаг 4

 $\tilde{\mathbf{x}} = \mathbf{x}_4 \neq \mathbf{t} = \mathbf{x}_6$, происходит возвращение на второй шаг.

2-я итерация

Шаг 2

$$\tilde{S} = \{x_2, x_3, x_5\}, d(x_2) = \min\{9, 6^* + 5\} = 9$$

$$d(x_3) = min\{\infty, 6^* + 7\} = 13$$

$$d(x_5) = min\{11,6^*+6\} = 11.$$

Шаг 3

Шаг 4

х₂≠х₆, возвращение на второй шаг.

3-я итерация

Шаг 2

$$\tilde{S} = \{x_3\}, d(x_3) = \min\{13.9^* + 8\} = 13.$$

Шаг 3.

 $\min\{d(x_3),d(x_5),d(x_6)\}=\min\{13,11,\infty\}=11^*=d(x_5), \tilde{x}=x_5.$

Шаг 4

х₅≠х₀, возвращение на второй шаг.

4-я итерация

Шаг 2

$$\tilde{S} = \{x_6\}, d(x_6) = \min\{\infty, 11^* + 4\} = 15.$$

Шаг 3

$$\min\{d(x_3),d(x_6)\} = \min\{13,15\} = 13^* = d(x_3), \ \tilde{X} = x_3.$$

Шаг 4

х₃≠х₀, возвращение на второй шаг.

5-я итерация

Шаг 2

$$\tilde{S} = \{x_6\}, d(x_6) = \min\{15, 13^* + 9\} = 15.$$

Шаг 3.

$$\min\{d(x_6)\} = \min\{15\} = 15^*, \, \mathfrak{X} = x_6.$$

Шаг 4

 $x_6 = t = x_{6,}$ конец первого этапа.

Этап 2

1-я итерация

Шаг 5

Составим множество вершин, непосредственно следующих за $\mathbf{\tilde{x}} = \mathbf{x}_6$ с постоянными метками $\mathbf{\tilde{S}} = \{\mathbf{x}_3, \ \mathbf{x}_5\}$. Проверим для этих двух вершин выполнение равенства (1.4).

$$d(\mathbf{X}) = 15 = 11^* + 4 = d(x_5) + \omega(x_5, x_6),$$

$$d(\mathbf{x}) = 15 \neq 13^* + 9 = d(x_3) + \omega(x_3, x_6).$$

Включаем дугу $(x_{5,}x_{6})$ в кратчайший путь $X = x_{5,}$

Шаг 6

 $x \neq s = x_1$, возвращение на пятый шаг.

2-я итерация

IIIaz 5

$$\tilde{\mathbf{S}} = \{\mathbf{x}_1, \, \mathbf{x}_4\},\,$$

$$d(\mathbf{X}) = 11 = 0^* + 11 = d(x_1) + \omega(x_1, x_5),$$

$$d(\mathbf{X}) = 11 \neq 6^* + 6 = d(x_4) + \omega(x_4, x_5).$$

Включаем дугу $(x_{1,}x_{5})$ в кратчайший путь. $\mathbf{\tilde{x}} = x_{1.}$

Шаг б

 $\tilde{\mathbf{x}} = \mathbf{s} = \mathbf{x}_1$, завершение второго этапа.

Итак, кратчайший путь от вершины x_1 до вершины x_6 построен. Его длина (вес) равен 15, сам путь образует следующая последовательность дуг: $\mu = (x_1, x_5) - (x_5, x_6)$ – ответ.

Вопросы для подготовки к отчету лабораторной работы:

- 1. МАРШРУТЫ, ПУТИ, ЦЕПИ, ЦИКЛЫ, КОНТУРЫ
- 2. Операции над графами
- 3. Цикломатическое число графа. Изоморфизм, гомоморфизм
- 4. Части графа
- 5. Алгоритм Дейкстры