Implementation of Univariate Linear Regression

Aim:

To implement univariate Linear Regression to fit a straight line using least squares.

Equipment's required:

- 1. Hardware PCs
- 2. Anaconda Python 3.7 Installation / Moodle-Code Runner

'Algorithm:

- 1. Get the independent variable X and dependent variable Y.
- 2. Calculate the mean of the X -values and the mean of the Y -values.
- 3. Find the slope m of the line of best fit using the formula.

$$m=rac{\sum\limits_{i=1}^{n}ig(x_{i}-\overline{X}ig)ig(y_{i}-\overline{Y}ig)}{\sum\limits_{i=1}^{n}ig(x_{i}-\overline{X}ig)^{2}}$$

4. Compute the y -intercept of the line by using the formula:

$$b = \overline{Y} - m\overline{X}$$

- 5. Use the slope m and the y -intercept to form the equation of the line.
- 6. Obtain the straight line equation Y=mX+b and plot the scatterplot.

[']Program

```
import numpy as np
import matplotlib.pyplot as plt
#Preprocessing the input data
X=np.array(eval(input()))
Y=np.array(eval(input()))
#Building the model
Xmean=np.mean(X)
```

```
Ymean=np.mean(Y)
num,den=0,0
for i in range(len(X)):
   num+=(X[i]-Xmean)*(Y[i]-Ymean)
   den+=(X[i]-Xmean)**2
m=num/den
c=Ymean-m*Xmean
print (m,c)
#Predict the Output
Y_pred = m*X+c
print(Y_pred)
plt.scatter(X,Y)
plt.plot(X,Y_pred,color="red")
plt.show()
```

'Sample Input and Output

Input										Result						
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]									9]	1.16969696969697 1.23636363636363						
[1,	3,	2,	5,	7,	8,	8,	9,	10,	12]	[1.23636364	2.40606061	3.57575758	4.74545455	5.91515152	7.0848484	
										8.25454545	9.42424242	10.59393939	11.76363636]			

Output

Result

Thus the univariate Linear Regression was implemented to fit a straight line using least squares.