Fourier transform in option pricing

Abstract

Our goal is to use Fourier transform method for European call pricing whenever characteristic function is available for its log price.

1 Fourier transform

There are different types Fourier transforms. If we use wiki, one definition of FT is given by the following:

$$\hat{f}(u) = \int_{-\infty}^{\infty} e^{-2\pi i x u} f(x) dx. \tag{1}$$

ex. Write $\hat{f}(-u)$.

Proposition 1 If \hat{f} is FT of f in the above sense, then f is the inverse FT of \hat{f} in the sense

$$f(x) = \int_{-\infty}^{\infty} e^{2\pi i x u} \hat{f}(u) du = \hat{f}(-x).$$

In our context, we will use different definition of Fourier transform.

Definition 2 FT of f is a function defined by

$$\mathcal{F}[f](u) = \int_{-\infty}^{\infty} e^{ixu} f(x) dx.$$

If f is a density function of a random variable X, then $\mathcal{F}[f]$ is called characteristic function of X.

ex. Prove $\mathcal{F}[f](u) = \hat{f}(-\frac{u}{2\pi})$.

Proposition 3 Inverse transform of \mathcal{F} is given by

$$\mathcal{F}^{-1}[h](x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} h(u)e^{-iux}du.$$

PROOF: It's enough to show that

$$\mathcal{F}^{-1}\circ\mathcal{F}[f]=f.$$

Setting $h(u) = \mathcal{F}[f](u) = \hat{f}(-\frac{u}{2\pi})$, we have

$$\mathcal{F}^{-1}[h](x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(-\frac{u}{2\pi}) e^{-iux} du$$
$$= \int_{-\infty}^{\infty} \hat{f}(v) e^{2\pi i v x} dv$$

and the conclusion holds by Propostion 1. \square

 $\mathbf{ex.}$ If f is a real valued function, then prove that

- 1. The real part of $\mathcal{F}[f]$ is even,
- 2. The imaginary part of $\mathcal{F}[f]$ is odd.

There are many useful well known Fourier transforms, see https://en.wikipedia.org/wiki/Fourier_transform. For instance,

$$\mathcal{F}[\frac{1}{x}](u) = i\pi \operatorname{sgn}(u).$$

Let's use this to prove the following identity.

ex. Prove

$$\int_0^\infty \frac{\sin x}{x} dx = \pi/2.$$

Proof.

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{1}{2} \int_{-\infty}^\infty \frac{\sin x}{x} dx$$

$$= \frac{1}{2} \operatorname{Img} \int_{-\infty}^\infty \frac{e^{ix}}{x} dx$$

$$= \frac{1}{2} \operatorname{Img} \int_{-\infty}^\infty \frac{e^{iux}}{x} dx \Big|_{u=1}$$

$$= \frac{1}{2} \operatorname{Img} \mathcal{F}[1/x](1) = \pi/2.$$

2 Fourier transform methods in option pricing

We consider the price of European call with maturity T and strike K underlying a given stock price S_T . In many cases, the characteristic function of the log price $\ln S_T$ can be explicitly written, for instance in BSM and Heston. Our question is:

If a characteristic function of $\ln S_T$ is given, what is the price of Call with T and K?

We assume that

- interest rate is r > 0,
- $s_T = \ln S_T$
- $k = \ln K$
- and the characteristic function of a random variable $s_T = \ln S_T$ is given by

$$\phi(u) = \mathbb{E} \exp(ius_T).$$

2.1 First Fourier transform method

Our objective is to design an engine with

• Input: r, ϕ, T, K

• output: $C = e^{-rT}\mathbb{E}[(S_T - K)^+].$

Proposition 4 The price of Call(T, K) is

$$C = S_0 I_1 - K e^{-rT} I_2$$

where

$$I_1(\phi, k) = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty Re\left(\frac{e^{-iuk}\phi(u-i)}{iu\phi(-i)}\right) du$$

and

$$I_2(\phi, k) = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty Re\left(\frac{e^{-iuk}\phi(u)}{iu}\right) du.$$

The above presentation actually gives straightforward evaluation for python as long as the characteristic function is available. One may use scipy.integrate.quad for two integrations in the formula.

PROOF: One can verify step by step

• $I(a>b)=\frac{1}{2}+\frac{1}{\pi}\int_0^\infty \frac{\sin(u(a-b))}{u}du$ from from $\int_0^\infty \frac{\sin x}{x}dx=\pi/2$ in the exercise in the above,

• For $\phi = \phi_X$, we have

$$\mathbb{P}(X > H) = I_2(\phi, H)$$

and

$$\frac{\mathbb{E}[e^X I(X > H)]}{\mathbb{E}[e^X]} = I_1(\phi, H).$$

$$C = \mathbb{E}[e^{-rT}S_T I(\ln S_T > \ln K)] - Ke^{-rT}\mathbb{E}[I(\ln S_T > \ln K)].$$

Note that

$$\mathbb{E}[e^{-rT}S_T] = S_0.$$

Therefore, we have

$$C = S_0 \frac{\mathbb{E}[S_T I(\ln S_T > \ln K)]}{\mathbb{E}[S_T]} - Ke^{-rT} \mathbb{E}[I(\ln S_T > \ln K)].$$

Now, we conclude the result by utilizing the above lemmas with $X = \ln S_T$.

2.2 Fourier transform method by Carr-Madan

We denote

•

$$C_T(k) = e^{-rT} \mathbb{E}[(S_T - K)^+]$$

• For some damping factor $\alpha > 0$, we denote

$$c_T(k) = e^{\alpha k} C_T(k)$$

•

$$\psi = \mathcal{F}[c_T].$$

The key is to find a formula of ψ_T in terms of ϕ , and take inverse FT for $c_T(k)$. Our objective is to design an engine with

• Input: r, ϕ, T, k, α

• output: $C_T(K)$

In theory, any $\alpha > 0$ works for this pricing engine. However, the performance is dependent to the choice of α . Often, α is chosen in [1/2, 2] for better performance.

Proposition 5 The call price is

$$C_T(k) = \frac{e^{-\alpha k}}{\pi} \int_0^\infty e^{-iwk} \psi(w) dw,$$

where

$$\psi(w) = \frac{e^{-rT}\phi(w - (\alpha + 1)i)}{\alpha^2 + \alpha - w^2 + i(2\alpha + 1)w}.$$

PROOF: First we look for ψ . By definition, we have with p_T the density of s_T

$$\begin{array}{ll} \psi(w) &= \int_{-\infty}^{\infty} e^{iwk} e^{\alpha k} e^{-rT} \int_{k}^{\infty} (e^{s} - e^{k}) p_{T}(s) ds dk \\ &= \int_{-\infty}^{\infty} e^{-rT} p_{T}(s) \int_{-\infty}^{s} (e^{(iw+\alpha)k+s} - e^{(iw+\alpha+1)k}) dk ds \end{array}$$

This leads to the formula of ψ after some calculations.

Next, we write c_T .

• We can prove that $w \mapsto \psi(w)e^{-iwx}$ has even real part and odd imaginary part. Indeed, c_T is real, we have

$$\psi = \text{even} + i \text{odd}.$$

Therefore,

$$\psi(w)e^{-iwx} = (\text{even} + i\text{odd})(\text{even} + i\text{odd}) = \text{even} + i\text{odd}.$$

•

$$c_T(x) = \mathcal{F}^{-1}[\psi](x)$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \psi(w) e^{-iwx} dw$$

$$= \frac{1}{\pi} \int_{0}^{\infty} \psi(w) e^{-iwx} dw$$

Finally, we use the definition of $C_T(x) = e^{-\alpha k} c_T(k)$. \square