Carlos A. Silva

PATTERN RECOGNITION

Introdução: Motivação

Classificação: Abordagens – Model driven X Data driven

- □ Abordagens à extração de modelos empíricos a partir dos dados:
 - □ Statistical model estimation:
 - O objectivo é estimar o modelo "verdadeiro" usando metodologias estatísticas de estimação de modelos.

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{p(\mathbf{x})}$$

■ Quais são os desafios nesta abordagem?

□ Preditive learning:

■ O objectivo é a estimação de modelos com boa capacidade de generalização em vez de procurar estimar o modelo "verdadeiro".

Classificação: Definições

- □ Definamos:
 - \blacksquare Vectores de treino: x_i , i=1, ..., L.
 - Vectores de características.
 - Por exemplo,
 - Um paciente= [Altura, peso, ...]
 - Considere o caso em que temos apenas duas classes:
 - Defina um vector indicador y, tal que

$$y_i = \begin{cases} 1, & \text{se } x_i \in \text{classe } 1 \\ -1, & \text{se } x_i \in \text{classe } 2 \end{cases}$$

■ Um hiperplano que separe todos os dados

PI, Carlos A. Silva

Classificação: Support Vector Machine

Classificação: Support Vector Machine

$$\mathbf{c}_{+} = \frac{1}{m_{+}} \sum_{\{i \mid u_{i}=+1\}} \mathbf{x}_{i},$$

$$\mathbf{c}_{+} = \frac{1}{m_{+}} \sum_{\{i \mid y_{i} = +1\}} \mathbf{x}_{i},$$

$$\mathbf{c}_{-} = \frac{1}{m_{-}} \sum_{\{i \mid y_{i} = -1\}} \mathbf{x}_{i},$$

Classificação: Support Vector Machine

 $c := (c_+ + c_-)/2.$

Como podemos classificar uma nova amostra com base nos elementos definidos ?

Classificação: Support Vector Machine

$$y = \operatorname{sgn} \langle (\mathbf{x} - \mathbf{c}), \mathbf{w} \rangle$$

= $\operatorname{sgn} \langle (\mathbf{x} - (\mathbf{c}_+ + \mathbf{c}_-)/2), (\mathbf{c}_+ - \mathbf{c}_-) \rangle$
= $\operatorname{sgn} (\langle \mathbf{x}, \mathbf{c}_+ \rangle - \langle \mathbf{x}, \mathbf{c}_- \rangle + b).$

$$b := \frac{1}{2}(\|\mathbf{c}_{-}\|^{2} - \|\mathbf{c}_{+}\|^{2}),$$

PI, Carlos A. Silva

Classificação: Margem Máxima

□ Pressupondo que os dados são separáveis linearmente.

□ Qual é a relação entre o vector de parâmetros w e o hiperplano de decisão ?

Classificação: Margem Máxima

 $y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$

Dois pontos x_A e x_B que estão sobre o hiperplano de decisão, por definição, satisfazem a equação abaixo:

$$y(\mathbf{x}_{\mathrm{A}}) = y(\mathbf{x}_{\mathrm{B}}) = 0$$

 $\mathbf{w}^{\mathrm{T}}(\mathbf{x}_{\mathrm{A}} - \mathbf{x}_{\mathrm{B}}) = 0$

Classificação: Margem Máxima

□ Equação do hiperplano separador:

$$\mathbf{w}^T \mathbf{x}_i + \mathbf{b} > 0,$$

se
$$y_i = 1$$

$$\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$$

$$\mathbf{w}^{T}\mathbf{x}_{i} + \mathbf{b} > 0, \quad \text{se } y_{i} = 1 \qquad \mathbf{w}^{T}\mathbf{x} + \mathbf{b} = 0$$
$$\mathbf{w}^{T}\mathbf{x}_{i} + \mathbf{b} < 0, \quad \text{se } y_{i} = -1$$

se
$$v_i = -1$$

- \Box A função de decisão é dada por $f(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}^T \mathbf{x} + \mathbf{b})$, onde \mathbf{x} é um vector de teste.
 - Existirão muitas escolhas possíveis para w e b.

SVM: Determinação da Margem

□ Problema em programação quadrática

$$\min_{w,b} \left\{ \frac{1}{2} \mathbf{w}^T \mathbf{w} \right\}$$

Satisfazendo a

$$y_i(\mathbf{w}^T\mathbf{x} + \mathbf{b}) \ge 1,$$

 $i = 1, ..., L$

PI, Carlos A. Silva

SVM: Determinação da Margem

 O sistema de equações anteriores pode ser rescrito na seguinte equação de optimização:

$$L(\mathbf{w}, b) = \frac{1}{2}(\mathbf{w} \cdot \mathbf{w}) - \sum_{i=1}^{m} \alpha_i \left[y_i((\mathbf{w} \cdot \mathbf{x}_i) + b) - 1 \right]$$

□ Que resulta na seguinte equação de decisão:

$$D(\mathbf{z}) = sign\left[\sum_{j=1}^{m} \alpha_j y_j \left(\mathbf{x}_j \cdot \mathbf{z}\right) + b\right]$$

SVM: Reformulação para outliers

□ Support Vector Classifier:

$$\begin{aligned} & \underset{\beta_0,\beta_1,\ldots,\beta_p,\epsilon_1,\ldots,\epsilon_n}{\operatorname{maximize}} & M \\ & \text{subject to } \sum_{j=1}^p \beta_j^2 = 1, \\ & y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}) \geq M(1 - \epsilon_i), \\ & \epsilon_i \geq 0, \ \sum_{i=1}^n \epsilon_i \leq C, \end{aligned}$$

SVM: Espaços não linearmente separáveis

□ Exemplo:

- □ Podemos permitir erros durante o treino.
- □ Transformar o espaço de características noutro espaço de ordem superior (possivelmente infinito).

$$\Phi(\mathbf{x}) = (\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), ...)$$
 $\mathbf{x} \in \Re^3, \ \Phi(\mathbf{x}) \in \Re^{10}$

■ Exemplo:

 $\Phi(\mathbf{x}) = \left(1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_3, x_1^2, x_2^2, x_3^2, \sqrt{2}x_1x_2, \sqrt{2}x_1x_3, \sqrt{2}x_2x_3\right)$

SVM: Espaços não linearmente separáveis

SVM: Determinação da função de decisão

- □ O vector **w** pode ter dimensão infinita.
- Neste caso resolvemos o problema de optimização através da optimização da equação dual.

$$\min_{\alpha} \left\{ \frac{1}{2} \alpha^T Q \alpha + e^T \alpha \right\}$$

Satisfazendo a
$$0 \le \alpha_i \le C, \ i = 1, ..., L$$

$$\mathbf{v}^T \alpha = 0$$

onde
$$Q_{ij} = y_i y_j \phi(x_i)^T \phi(x_j)$$
 e $e = [1, ..., 1]^T$

PI, Carlos A. Silva

SVM: Determinação da função de decisão

 □ Após a terminação dos multiplicadores de Lagrange (a_i) teremos:

$$\mathbf{w} = \sum_{i=1}^{L} \alpha_i y_i \phi(x_i)$$

□ Com base nos vectores óptimos, a classificação/resposta do sistema a futuras entrada é obtida por

$$f(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}^{T} \phi(\mathbf{x}) + \mathbf{b})$$
$$= \left[\sum_{i=1}^{L} \alpha_{i} y_{i} \phi(x_{i}) \right]^{T} \phi(\mathbf{x}) + b = \sum_{i=1}^{L} \alpha_{i} y_{i} K(x_{i}, \mathbf{x}) + b$$

 \square Usamos apenas os $\phi(x_i)$ para $\alpha_i > 0$ (Support vectors).

SVM: Determinação da função de decisão

PI, Carlos A. Silva

SVM: Determinação da função de decisão

- □ No caso finito: # variáveis= # dados de treino.
- □ No equação dual temos

$$Q_{ij} = y_i y_j \phi(x_i)^T \phi(x_j)$$

ao produto $\phi(x_i)^T \phi(x_j)$ chamamos de kernel, tal que $K(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^T \phi(\mathbf{y})$

SVM: Kernels

□ Os kernels mais comuns são:

$$K(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^T \phi(\mathbf{y})$$

■ Radial Basis Function (RBF),

$$K(x_i, x_j) = e^{-\gamma ||x_i - x_j||^2}$$

■ Kernel polinomial,

$$K(\mathbf{x}_i, \mathbf{x}_j) = \left(\frac{1}{a} \mathbf{x}_i^T \mathbf{x}_j + b\right)^d$$

PI, Carlos A. Silva

Figure 7.9 Toy problem (task: separate circles from disks) solved using ν -SV classification, with parameter values ranging from $\nu=0.1$ (top left) to $\nu=0.8$ (bottom right). The larger we make ν , the more points are allowed to lie inside the margin (depicted by dotted lines). Results are shown for a Gaussian kernel, $k(x,x')=\exp(-\|x-x'\|^2)$.

ν	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
fraction of errors	0.00	0.07	0.25	0.32	0.39	0.50	0.61	0.71
fraction of SVs	0.29	0.36	0.43	0.46	0.57	0.68	0.79	0.86
margin $\rho/\ \mathbf{w}\ $	0.005	0.018	0.115	0.156	0.364	0.419	0.461	0.546