Pre-Calculus 11

Chapter 8.1: Graphing Linear Inequalities with Two Variables

Created by Yi-Chen Lin

June 19, 2025

What is a Linear Inequality in Two Variables?

Definition

A linear inequality in two variables is an inequality that can be written in the form ax+by < c, $ax+by \le c$, ax+by > c, or $ax+by \ge c$.

- The solution is a region (half-plane) on the coordinate plane.
- The boundary is a straight line, which may be solid (included) or dotted (not included).

Examples:

- y > 2x 1
- $3x + 2y \le 6$

How to Graph a Linear Inequality

Step-by-Step Method

- Graph the boundary line:
 - Use a dotted line for < or > (not included)
 - Use a solid line for \leq or \geq (included)
- 2 Pick a test point not on the line (often (0,0))
- 3 Substitute the test point into the inequality:
 - If it makes the inequality true, shade that side
 - If false, shade the opposite side
- The shaded region is the solution set.

Step 1: Rearrange

$$3x + 2y > 6$$

$$2y > -3x + 6$$

$$y > -\frac{3}{2}x + 3$$

Slope: $-\frac{3}{2}$, y-intercept: 3

Step 2: Graph the Line

Dotted line (since >, not \geq)

Step 3: Test Point

Use (0,0) as a test point:

$$3(0) + 2(0) > 60 > 6$$
 False

So, shade the side **not** containing (0,0).

Practice: Graphing Linear Inequality

Practice

Graph the solution set for $y \leq \frac{1}{2}x - 2$.

- Identify the boundary line and whether it is solid or dotted.
- Pick a test point and determine which side to shade.

Graphing Systems of Linear Inequalities

Systems of Linear Inequalities

- If you have two or more equations in a system of inequalities:
- Graph each inequality separately
- Shade the common area of all the inequalities involved
- The solution will be the common area
- If asked to find the area of the common shaded zone, use area formulas:

Area of a Triangle:

Example: Graph the System and Find the Area

System:

$$x > 2$$
$$y > 1$$
$$x + y \le 10$$

BASE: =
$$9 - 2 = 7$$

HEIGHT: = $8 - 1 = 7$
 $A = \frac{7 \times 7}{2} = 24.5 \text{ units}^2$

Example: Write the System of Inequalities for the Shaded Region

Pick a point in the shaded region (e.g., (4,0)). Use the point to determine the inequality sign.

Dotted line: 3y > -x

Solid line: $x \le 6$, $3y \le x$

Problems Involving Linear Inequalities

Translating Words to Inequalities

- Two numbers add up to 100: $x + y \le 100$
- The sum is at least 99: $x + y \ge 99$
- The sum is more than 50: x + y > 50
- Jack's age is less than 35: x < 35
- Some variables cannot be negative: t > 0 (time, age, quantity)

Application Example: Work Hours

John has 2 jobs: a stock broker for BMO and a financial planner for London Life. He works up to 55 hours a week. Let x be the hours at BMO, y at London Life.

$$x + y \le 55$$
$$x \ge 0$$
$$y \ge 0$$

Graph each equation separately. The solution is the common area.

Summary: Graphing Linear Inequalities

Key Points

- Graph the boundary line (solid for \leq , \geq ; dotted for <, >)
- Pick a test point (often (0,0))
- Shade the region where the test point makes the inequality true
- The shaded area is the solution set

Practice Problem 1

Practice 1

Graph the solution set for 2x - y < 4.

Practice 1: Blank Grid

Practice Problem 2

Practice 2

Graph the solution set for the system:

$$x + y \ge 2$$
$$y < 3x - 1$$

Practice 2: Blank Grid

Practice Problem 3

Practice 3

A company can produce up to 100 units of product A and B combined. At least 30 units of A and at least 20 units of B must be produced.

Write and graph the system of inequalities for the feasible region.

Practice 3: Blank Grid

