Modelling Competition: Credit Scoring

Cesar Conejo Villalobos - Xavier Bryant (Group glmnet)

20/11/2021

1. Introduction

Talk about credit scoring in general, why it is important?

Regression models for credit scoring. Advantanges (Easy to calibrated)

Trade-off Prediction power vs statistical Inference and interpretability.

Key metrics:

- Global Accuracy (General Predicted Power of the model)
- Bad customers sensitivity: In order to lower the risk, the focus of the models must be detect the biggest possible number of bad customers
- Number of good customer mis-classification (Nominal number of good customer predicted as bad customers)

2. Description Data set

Data consists of 1000 observations of past applicant, with 70% of the data set classified as good customer and 30% as bad customers. The original dataset has 30 predictor variables, but under some transformations the data set consists of 20 predictor variables (+ 1 column for the response)

Predictor variables can be classified into four groups

1. Social Background

AGE	NUM_DEPENDENTS	MALE_STATUS	PRESENT_RESIDENT	FOREIGN	JOB	TELEPH
Min. :19.00	Min. :1.000	OTHER:310	0:130	No :963	0: 22	No :596
1st Qu.:27.00	1st Qu.:1.000	SINGLE :548	1:308	Yes: 37	1:200	Yes:404
Median: 33.00	Median $:1.000$	$MAR_WID: 92$	2:149	NA	2:630	NA
Mean $:35.55$	Mean : 1.155	DIVORCED: 50	3:413	NA	3:148	NA
3rd Qu.:42.00	3rd Qu.:1.000	NA	NA	NA	NA	NA
Max. $:75.00$	Max. :2.000	NA	NA	NA	NA	NA

2. Economic Background

_					
	CHK_ACCT	SAV_ACCT	EMPLOYMENT	PROP_RSTATE	RESIDENCE
	0:274	0:603	0: 62	OTHER:564	OTHER :108
	1:269	1:103	1:172	NO_OWNS_PROP:154	RENT :179
	2: 63	2: 63	2:339	$OWNS_RS : 282$	OWN_RESID:713
	3:394	3: 48	3:174	NA	NA
	NA	4:183	4:253	NA	NA

3. Credit Products

DURATION	AMOUNT	INSTALL_RATE	PURPOSE_CREDIT	GUARANTEES
Min.: 4.0 1st Qu.:12.0 Median:18.0 Mean:20.9 3rd Qu.:24.0 Max.:72.0 NA	Min.: 250 1st Qu.: 1366 Median: 2320 Mean: 3271 3rd Qu.: 3972 Max.: 18424 NA	Min. :1.000 1st Qu.:2.000 Median :3.000 Mean :2.973 3rd Qu.:4.000 Max. :4.000 NA	OTHER: 55 RADIO_TV:280 NEW_CAR:234 USED_CAR:103 FURNITURE:181 EDUCATION: 50 RETRAINING: 97	NONE :907 CO_APPLICANT: 41 GUARANTOR : 52 NA NA NA NA

4. Credit History

HISTORY	NUM_CREDITS	OTHER_INSTALL
0: 40	Min. :1.000	No :814
1: 49 2:530	1st Qu.:1.000 Median :1.000	Yes:186 NA
3: 88	Mean :1.407	NA
4:293 N.A.	3rd Qu.:2.000	NA NA
NA	Max. :4.000	NA

5. Response

	Х
Bad	300
Good	700

3. Exploratory Analysis

Plots that the variables are relevant

Figure 1: Important Variable Applicants credit history

Figure 2: Important Variable Applicants Economic Backgorund

4. Modeling Fitting

4.1 Spliting dataset training and testing

```
set.seed(42)
trainRowNos <- createDataPartition(df$RESPONSE, p = 0.8, list = FALSE)
trainData <- df[trainRowNos,]
testData <- df[-trainRowNos,]
rm(df,trainRowNos)</pre>
```

- 4.2 Prepocessing training set (Candidates models calibration)
 - Fist, using trainData for looking the best subset of predictors. LRT works, AIC did noc converge

Then, all models were calibrated using Cross-validation (Caret package)

- 4.2.1 Base Line Model Logistic regression (simple: all variables without interactions)
- 4.2.2. Ridge regression Variable contributes mores to the model
- 4.2.3. Best subset of predictor with lrt

```
model1_baseline <- calibrated_models[[1]]</pre>
model2_ridge <- calibrated_models[[2]]</pre>
model4_LRT <- calibrated_models[[3]]</pre>
##********
# Model 1. bASElINE
##********
model1_baseline.Pred.train <- predict(model1_baseline, trainData)</pre>
cm.model1_baseline.train <- confusionMatrix(model1_baseline.Pred.train, trainData$RESPONSE)
##*********
# Model 2. ridge
##*********
model2_ridge.Pred.train <- predict(model2_ridge, trainData)</pre>
cm.model2_ridge.train <- confusionMatrix(model2_ridge.Pred.train, trainData$RESPONSE)</pre>
##********
## Model 4. LRT
##********
model4_LRT.Pred.train <- predict(model4_LRT, trainData)</pre>
cm.model4_LRT.train <- confusionMatrix(model4_LRT.Pred.train, trainData$RESPONSE)</pre>
draw_confusion_matrix(cm = cm.model1_baseline.train, Class1 = "Bad", Class2 = "Good",title_def = 'Confu
```


DETAILS

Sensitivity	Specificity	Precision	Recall 0.55	Erro ₆ Good
	Ассукасу		Kappa	

draw_confusion_matrix(cm = cm.model2_ridge.train, Class1 = "Bad", Class2 = "Good", title_def = 'Confusion_

DETAILS

•	Sensitivity	Specificity	Precision	Recall	Erro ₆ Good
		Accuracy		Kappa	

Confusion Matrix: Subset LRT

DETAILS

Sensitivity	Specificity	Precision	Recall	Erro ₅ Good
	Ассуудасу		Kappa	

- 4.3 Testing the models (with testData)
- 4.3.1. Predictions / CM (Predicting power Misclassification rate)

```
##********
## Model 1: Baseline
##*********
model1_baseline.Pred.test <- predict(model1_baseline, testData)</pre>
cm.model1_baseline.test <- confusionMatrix(model1_baseline.Pred.test, testData$RESPONSE)</pre>
##********
## Model 2: Ridge
##********
model2_ridge.Pred.test <- predict(model2_ridge, testData)</pre>
cm.model2_ridge.test <- confusionMatrix(model2_ridge.Pred.test, testData$RESPONSE)</pre>
##********
# Model 4: Fitted with LRT
##********
model4_LRT.Pred.test <- predict(model4_LRT, testData)</pre>
cm.model4_LRT.test <- confusionMatrix(model4_LRT.Pred.test, testData$RESPONSE)</pre>
draw_confusion_matrix(cm = cm.model1_baseline.test, Class1 = "Bad", Class2 = "Good", title_def = 'Confu
```

Confusion Matrix: Ridge Test

DETAILS

Sensitivity	Specificity	Precision	Recall	Erro ₂ Good
	Ассидасу		Kappa	

draw_confusion_matrix(cm = cm.model2_ridge.test, Class1 = "Bad", Class2 = "Good", title_def = 'Confusion_

DETAILS

Sensitivity	Specificity	Precision	Recall	Error Good
	Ассизасу		Kappa	

DETAILS

ſ	Sensitivity	Specificity	Precision	Recall Vanna	Erroq G ood
		Accuracy		Kappa	

5. Conclusions