Théorie bayésienne de la décision - L3 Info SD

TP - feuille n°4 - Classification multi-classes

1 Premier jeu de données

Les fichiers $\boxed{ \mathsf{tp4_data1_train.txt} }$ et $\boxed{ \mathsf{tp4_data1_valid.txt} }$ contiennent des données :

- ullet avec une seule caractéristique réelle ${\color{black} |x|}$
- réparties en trois classes (0, 1 ou 2) désignées par y
- 1) Visualisez les données d'entraînement et proposez un modèle de prédiction basé sur une ou plusieurs frontières de décision.
- 2) Testez votre modèle sur les données de validation : affichez le taux d'erreur et la matrice de confusion.

2 Deuxième jeu de données

 $\label{lem:memory:lem:memory:memor:memory:$

3 Automatisation

Proposez des fonctions Python permettant de rechercher les meilleures frontières de décision de manière automatique, quel que soit le nombre de classes.