Examen final

Lundi 26 janvier 2015 - 2h

Documents manuscrits et polycopié du cours autorisés. Tout autre document interdit.

Exercice 1

Soit $F = C^0([0,1], \mathbb{R})$ et $E = \{ \varphi \in C^2([0,1], \mathbb{R}), \varphi(0) = \varphi(1) = 0 \}$ munis des normes :

$$||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|, \ f \in F, \ \text{et} \ ||\varphi||_E = |\varphi'(0)| + ||\varphi''||_{\infty}, \ \varphi \in E.$$

- 1. Montrer que pour tout $\varphi \in E$, $\|\varphi\|_{\infty} \leq \|\varphi'\|_{\infty}$, puis que $\|\varphi'\|_{\infty} \leq \|\varphi\|_{E}$. Vérifier que $\varphi \to \|\varphi\|_{E}$ est bien une norme sur E.
- 2. Montrer que l'application $\mathfrak{G}: E \to F$, définie par $\mathfrak{G}(\varphi) = \varphi'' \varphi^2$ est différentiable sur E et calculer sa différentielle en $\varphi \in E$, appliquée à $h \in E$.
- 3. L'application \mathcal{G} est-elle de classe C^1 ?

Exercice 2

On considère une fonction $g: \mathbb{R}^2 \to \mathbb{R}$ de la forme

$$g(x,y) = \int_0^1 h(t x + (1-t) y) \ a(t) dt,$$

où $h \in C^0(\mathbb{R})$ et $a \in L^1(0,1)$.

- 1. Soit $(x,y) \in \mathbb{R}^2$. Montrer que la fonction $t \to h(tx + (1-t)y)$ est bornée sur [0,1].
- 2. Montrer que g est continue sur \mathbb{R}^2 .

Indication : étant donné deux suites convergentes $(x_n)_{n\geq 0}$, $(y_n)_{n\geq 0}$ vers x et y, on pourra étudier $\lim_{n\to +\infty} g(x_n,y_n)$ par convergence dominée.

- 3. On suppose maintenant $h \in C^1(\mathbb{R})$. Montrer que g est dérivable suivant x et y, et exprimer ses dérivées partielles à l'aide d'intégrales.
- 4. On pose h = f' avec $f \in C^1(\mathbb{R})$, et a = 1. Montrer que

$$g(x,y) = \begin{cases} \frac{f(x) - f(y)}{x - y} & \text{si } x \neq y, \\ f'(x) & \text{si } x = y. \end{cases}$$

Quelle est la régularité de q?

Exercice 3

1. Montrer que la transformée de Fourier de la fonction $h(x) = e^{-|x|}$ $(x \in \mathbb{R})$ est :

$$\hat{h}(\nu) = \frac{2}{1 + 4\pi^2 \nu^2} \;, \quad \nu \in \mathbb{R}$$

En déduire la transformée de Fourier de la fonction h_a définie par :

$$h_a(x) = e^{-a|x|} \quad (a > 0)$$

2. Pour a > 0 et $t \in \mathbb{R}$, on définit la fonction

$$f_a(t) = \int_{-\infty}^{+\infty} \frac{e^{-2i\pi tx}}{1 + 4\pi^2 x^2} e^{-a|x|} dx$$

En utilisant la question précédente et le théorème de Fubini (justifié!), montrer que

$$f_a(t) = \int_{-\infty}^{+\infty} \frac{a}{a^2 + 4\pi^2(y+t)^2} e^{-|y|} dy$$

- 3. Calculer la limite de $f_a(t)$ quand $a \to 0$ dans chacune des expressions précédentes.
- 4. En déduire la transformée de Fourier de la fonction :

$$g(x) = \frac{1}{1 + 4\pi^2 x^2}$$

Exercice 4

(FACULTATIF)

Soit $(f_n)_{n\geq 0}$ une suite de $\mathcal{L}^1(\mathbb{R})$. Montrer que

$$\sum_{n\geq 0} \int_{\mathbb{R}} |f_n| \ dx < +\infty \Rightarrow \int_{\mathbb{R}} \sum_{n\geq 0} f_n \ dx = \sum_{n\geq 0} \int_{\mathbb{R}} f_n \ dx$$