CLASE 4 SALIDAS ANALÓGICAS

SUSCRÍBETE

SEÑAL ANALÓGICA

O B O

Una señal analógica es aquella que tiene un comportamiento continuo en el tiempo.

Puede tomar una cantidad de números finitos en el tiempo, tomando su valores entre dos puntos

SEÑAL ANALÓGICA VS DIGITAL

O B O

SALIDAS ANALÓGICAS

En la placa arduino Uno contamos con 6 pines que pueden ser utilizados como salidas analógicas los cuales se identifican con este símbolo: "~"

Estos pines son:

3, 5, 6, 9, 10, 11,

Nos permite obtener hasta 256 valores:

0 - 255

MODULACIÓN POR ANCHO DE PULSO (PWM)

Modifica el ciclo de trabajo de una señal periódica, a través de la modulación por ancho de pulso podremos jugar con el voltaje y la corriente. Usando los valores ya mencionados.

EJEMPLO 1 – CIRCUITO

Encender un led empleando un pin PWM, los valores a imprimir son: 255, 128 y 0 a razón de 1 segundo.

EJEMPLO 1 – SOLUCIÓN

Encender un led empleando un pin PWM, los valores a imprimir son: 255, 128 y 0 a razón de 1 segundo.

```
1 int ledN=5;
2 void setup() {
3
   pinMode(ledN,OUTPUT);
4
5 void loop() {
   analogWrite(ledN, 255);
   delay(1000);
   analogWrite(ledN, 128);
   delay (1000);
   analogWrite(ledN,0);
   delay(1000);
                        TUTOR: NAGIB LUIS VALLEJOS M.
```


EJEMPLO 2 – CIRCUITO

Encender un led empleando un pin PWM, los valores a imprimir son: 255, 160, 80 y 0 a razón de 1 segundo.

EJEMPLO 2 – SOLUCIÓN

Encender un led empleando un pin PWM, los valores a imprimir son: 255, 160, 80 y 0 a razón de 1 segundo.

```
S4-E2
                                    analogWrite(ledN, 160);
1 int ledN=5;
2 void setup(){
                                    delay(1000);
                                    analogWrite(ledN,80);
   pinMode(ledN,OUTPUT);
                                    delay(1000);
5 void loop(){
                                    analogWrite(ledN, 0);
    analogWrite(ledN, 255);
                                    delay(1000);
                                       TUTOR: NAGIB LUIS VALLEJOS M.
```


ESTRUCTURA DE CONTROL: FOR

La estructura de control FOR es un ciclo que nos permite generar un contador automático, el cual se incrementará mientras se cumpla una condición y a través de esta también se ejecutará un conjunto de instrucciones.

Su sintaxis se divide en tres partes las cuales son:

```
INICIO, CONDICIÓN, CONTEO
for (int i=0;i<=255;i++) {
    PROCESO
}
```


EJEMPLO 3 – CIRCUITO

Encender/apagar un led de manera escalar a razón de 10 milisegundos. El led debe encenderse de 0 a 255 y apagarse en sentido contrario.

EJEMPLO 3 – SOLUCIÓN

Encender/apagar un led de manera escalar a razón de 10 milisegundos. El led debe encenderse de 0 a 255 y apagarse en sentido contrario.

```
S4-E3
1 int ledV=5;
                                        delay(10);
2 void setup() {
   pinMode(ledV,OUTPUT);
                                      for (int i=254; i>0; i--) {
                                        analogWrite(ledV,i);
5 void loop() {
                                        delay(10);
   for (int i=0; i<=255; i++) {
      analogWrite(ledV,i);
                                        TUTOR: NAGIB LUIS VALLEJOS M.
```


EJEMPLO 4 – CIRCUITO

Encender/apagar dos leds de manera escalar a razón de 10 milisegundos. Ambos leds se encienda y apagan al mismo tiempo.

EJEMPLO 4 – SOLUCIÓN

Encender/apagar dos leds de manera escalar a razón de 10 milisegundos. Ambos leds se encienda y apagan al mismo tiempo.

```
S4-E4
1 int ledV=5, ledA=6;
                                         delay(10);
2 void setup() {
   pinMode(ledV,OUTPUT);
                                      for (int i=254; i>0; i--) {
    pinMode(ledA,OUTPUT);
                                         analogWrite(ledV,i);
                                         analogWrite(ledA,i);
6 void loop(){
                                         delay(10);
                                 15
    for (int i=0; i<=255; i++) {
      analogWrite(ledV,i);
      analogWrite(ledA,i);
```

EJEMPLO 5 – CIRCUITO

Encender un RGB de manera analógica en el siguiente orden: Rojo, verde y azul a razón de 500 milisegundos

EJEMPLO 5 – SOLUCIÓN

Encender un RGB de manera analógica en el siguiente orden: Rojo, verde y azul a razón de 500 milisegundos

```
S4-E5
1 int R=9, G=11, B=10;
                                10
                                     analogWrite(B,0);
2 void setup() {
                                     delay (500);
    pinMode(R,OUTPUT);
                                12
                                     analogWrite(R,0);
    pinMode(G,OUTPUT);
                                13
                                     analogWrite(G, 255);
    pinMode(B,OUTPUT);
                                14
                                     delay (500);
                                15
                                     analogWrite(G,0);
                                     analogWrite (B, 255);
                                16
8 void loop() {
                                     delay (500);
    analogWrite(R, 255);
                                      TUTOR: NAGIB LUIS VALLEJOS M.
```

RETO – CIRCUITO

Si presionamos el pulsador, el LED amarillo se enciende y apaga de manera escalar a razón de 10 ms, de lo contario se enciende y apaga de manera escalar el LED verde

CONTACTOS

@NagibVallejos

Robotics Space NV

You Tube

https://github.com/nagibvalejos/Robotics-Space-NV

