

Escola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona

UNIVERSITAT POLITÈCNICA DE CATALUNYA

DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS

MICROONES

27 de Juny de 2008

Data notes provisionals: 03/07

Fi d'al·legacions: 04/07

Data notes revisades: 07/07

Professors: Albert Aguasca, Adolf Comerón, Núria Duffo.

Informacions addicionals:

• Temps: 3 hores. Comenci cada exercici en un full apart.

PROBLEMA 1

En el circuit de la figura, la xarxa de dos accessos està dissenyada per a que a la fregüència de 150MHz, el generador estigui adaptat a la càrrega:

Si Z_0 =50 Ω , $\ell = 50cm$, L=53nH, V_p =2,4x10⁸m/s,

- a) Calculeu el valor de C per a que la xarxa estigui completament adaptada en un sistema d'impedància Z₀ a la fregüència de 150MHz.
- b) Calculeu la matriu de paràmetres S de la xarxa.
- c) Si es connecta a un generador canònic de potència disponible 5 dBm, calculi la potència dissipada a una càrrega connectada al port 2 de 50Ω
- d) El mateix si la càrrega és de 100Ω
- e) Calculi la pèrdua de transferència de potència (P_L/P_{avs}) a f=75MHz amb la càrrega de l'apartat c)

PROBLEMA 2

L'acoblador direccional en guia de la figura 1 té la matriu:

$$\begin{bmatrix} s \end{bmatrix} = \begin{bmatrix} 0 & \gamma e^{j\theta} & 0 & \delta e^{j\phi} \\ \gamma e^{j\theta} & 0 & \delta e^{j\phi} & 0 \\ 0 & \delta e^{j\phi} & 0 & \gamma e^{j\theta} \\ \delta e^{j\phi} & 0 & \gamma e^{j\theta} & 0 \end{bmatrix}$$

Fig. 1

amb γ , δ , θ i ϕ reals, i γ , $\delta > 0$ a la frequència $f = 10 \; GHz$.

a) Si $\lambda_g = \lambda / \sqrt{1 - \left(\frac{\lambda}{2a}\right)^2}$, determineu el valor que ha de tenir la distància entre orificis l.

- b) Determineu la relació que hi ha d'haver entre els mòduls γ i δ . Determineu els valors possibles de $\theta \phi$.
- c) Determineu, en funció de γ , δ , θ i ϕ , la matriu [s] del circuit de 4 accessos resultant d'interconnectar dos acobladors idèntics com s'indica a la figura 2.
- d) Quant ha de valer l'acoblament C d'un dels acobladors si es vol que el circuit de la figura 2 sigui un acoblador direccional de 3 dB, sabent que C > 3 dB?

Fig. 2

PROBLEMA 3

Els paràmetres S d'un transistor (Z_0 =50 Ω), a la freqüència de 1,5GHz, i amb les condicions de polarització corresponents, són els següents,

$$[s] = \begin{bmatrix} 0.64 \angle 160^{\circ} & 0.04 \angle 50^{\circ} \\ 4 \angle 65^{\circ} & 0.2 \angle -45^{\circ} \end{bmatrix}$$

El valor de Γ g que proporciona màxim guany (sense cap aproximació) és $\Gamma_g = 0.71 \angle -160^\circ$. Es vol sintetitzar un amplificador tot seguint l'esquema de la figura, on totes les línies són *microstrip* (per totes les línies s'assumeix $\epsilon_{reff} = 4$)

- a) Trobi les longituds de 1_1 i 1_2 que sintetitzaran Γ_g .
- b) Calculi el valor de Γ_L per assolir màxim guany G_T .
- c) Trobi els valors de 1_3 i \mathbb{Z}_0 ' que proporcionaran aquest guany (no necessariament la línia \mathbb{Z}_0 ' ha de ser més estreta que la \mathbb{Z}_0).
- d) Calculi el guany de transferència de potència total obtingut si s'hagués fet el disseny sota l'aproximació unilateral per assolir màxim guany. Quina és la pèrdua en dB?.

$$G_{T} = \frac{P_{L}}{P_{avs}} = \frac{\left|S_{21}\right|^{2} \left(1 - \left|\Gamma_{L}\right|^{2}\right) \left(1 - \left|\Gamma_{s}\right|^{2}\right)}{\left|\left(1 - S_{11}\Gamma_{s}\right) \left(1 - S_{22}\Gamma_{L}\right) - S_{12}S_{21}\Gamma_{L}\Gamma_{s}\right|^{2}}$$

RESOLUCIÓ DE L'EXAMEN FINAL DE MICROONES PRIMAVERA 08

PROBLEMA 1

En el circuit de la figura, la xarxa de dos accessos està dissenyada per a que a la freqüència de 150MHz, el generador estigui adaptat a la càrrega:

Si $Z_0=50\Omega$, $\ell=50cm$, L=53nH, $V_p=2.4x10^8$ m/s,

a) Calculeu el valor de C per a que la xarxa estigui completament adaptada en un sistema d'impedància Z₀ a la freqüència de 150MHz.

Xarxa totalment adaptada vol dir S₁₁=0. Càlcul d'aquest paràmetre, fen servir simetria i sense les línies que només impliquen un canvi de fase:

$$S_{11} = \frac{\Gamma^e + \Gamma^o}{2} = 0 \rightarrow \Gamma^e = -\Gamma^o$$

Impedància en mode parell (pla de simetria en circuit obert) $\bar{Z}^e = \frac{j\omega L}{Z_0} - j\frac{2}{\omega cZ_0} = j - j\frac{2}{\omega cZ_0}$ Impedància en mode imparell (pla de simetria en curtcircuit): $\bar{Z}^o = \frac{j\omega L}{Z_o} = j$

Tenint en compte que $\Gamma^e = \frac{\bar{Z}^e - 1}{\bar{Z}^e + 1}$ i que $\Gamma^o = \frac{\bar{Z}^o - 1}{\bar{Z}^o + 1}$, s'obté: C=21,2pF

b) Calculeu la matriu de paràmetres S de la xarxa.

Primer sense les línies. Per simetria $S_{11}=S_{22}=0$, $S_{12}=S_{21}=\Gamma^e=-\Gamma^o$, que substituint el resultat de l'apartat anterior: $S_{12} = S_{21} = -\frac{j-1}{j+1} = -j$

Ara falta afegir el retard de les línies: $\beta\ell=1,96$. Llavors, $S_{12}=S_{21}=-je^{-j2\beta\ell}=1\angle65^\circ$ Per tant, la matriu demanada és igual a: $[S]=\begin{bmatrix}0&1\angle65^\circ\\1\angle65^\circ&0\end{bmatrix}$

c) Si es connecta a un generador canònic de potència disponible 5 dBm, calculi la potència dissipada a una càrrega connectada al port 2 de 50Ω

La xarxa està adaptada i no té pèrdues, per tant, es dissipa tota la potència disponible de generador: P_L=5 dBm

d) El mateix si la càrrega és de
$$100\Omega$$

$$P_L = \frac{1}{2}(|b_2|^2 - |a_2|^2) = \frac{1}{2}|b_2|^2(1 - |\Gamma_L|^2) = \frac{4}{9}|b_2|^2 = \frac{8}{9}P_{avs} = 4,48d\text{Bm}$$

e) Calculi la pèrdua de transferència de potència (P_L/P_{avs}) a f=75MHz amb la càrrega de l'apartat c)

El que canvien són els paràmetres S. Ja no és compleix S₁₁=0. S'haurà de tornar a calcular, fent servir igualment simetria.

Impedància en mode parell $\bar{Z}^e=rac{j\omega L}{Z_0}-jrac{2}{\omega CZ_0}=jrac{1}{2}-j4=-jrac{7}{2}$ Impedància en mode imparell: $\bar{Z}^o=rac{j\omega L}{Z_0}=jrac{1}{2}$

Llavors, $\Gamma^e = \frac{-j28+45}{53}$ i $\Gamma^o = \frac{4j-3}{5}$, per tant, $S_{21} = -j0.66 + j0.72$

I la potència lliurada a la càrrega és igual a: $P_L = \frac{1}{2}|b_2|^2 = |S_{21}|^2 P_{avs} = 4.82 d \text{Bm}$

PROBLEMA 2

L'acoblador direccional en guia de la figura 1 té la matriu:

$$\begin{bmatrix} s \end{bmatrix} = \begin{bmatrix} 0 & \gamma e^{j\theta} & 0 & \delta e^{j\phi} \\ \gamma e^{j\theta} & 0 & \delta e^{j\phi} & 0 \\ 0 & \delta e^{j\phi} & 0 & \gamma e^{j\theta} \\ \delta e^{j\phi} & 0 & \gamma e^{j\theta} & 0 \end{bmatrix}$$

amb γ , δ , θ i ϕ reals, i γ , $\delta > 0$ a la frequència $f = 10 \; GHz$.

a) Si $\lambda_g = \lambda / \sqrt{1 - \left(\frac{\lambda}{2g}\right)^2}$, determineu el valor que ha de tenir la distància entre orificis ℓ .

La distància entre orificis ha de ser $\ell=\lambda_g/4$, per tant, $\ell=9{,}94mm$

b) Determineu la relació que hi ha d'haver entre els mòduls γ i δ . Determineu els valors possibles de $\theta - \phi$.

És un acoblador sense pèrdues, per tant, $[S][S]^{\prime *}=0$. Això implica: $\delta=\sqrt{1-\gamma^2}$. I en quant a les fases: $\theta - \phi = \pm \pi/2$

c) Determineu, en funció de γ , δ , θ i ϕ , la matriu [S] del circuit de 4 accessos resultant d'interconnectar dos acobladors idèntics com s'indica a la figura 2.

Si suposem una ona entrant per l'accés 1 i tots els altres terminats, tenim:

$$\begin{aligned} b_3 &= 0 \to S_{31} = 0 \\ b_2 &= \delta e^{j\phi} b_4' + \gamma e^{j\theta} b_2' = \delta^2 e^{2j\phi} a_1 + \gamma^2 e^{2j\theta} a_1 = \\ &= e^{2j\phi} \left[\delta^2 + \gamma^2 e^{2j(\theta - \phi)} \right] a_1 = e^{2j\phi} (\delta^2 - \gamma^2) a_1 \\ b_4 &= \delta e^{j\phi} b_2' + \gamma e^{j\theta} b_4' = 2\gamma \delta e^{2j(\theta + \phi)} a_1 \end{aligned}$$

Així tenim:

$$S_{21} = e^{2j\phi}(\delta^2 - \gamma^2)$$

$$S_{41} = 2\gamma \delta e^{2j(\theta + \phi)}$$

I per reciprocitat i simetria,

$$S_{12}=S_{34}=S_{43}=S_{21}$$

$$S_{14}=S_{32}=S_{23}=S_{41}$$
 Tots els altres elements són cero. La matriu queda:

tres elements són cero. La matriu queda:
$$[S] = \begin{bmatrix} 0 & e^{2j\phi}(\delta^2 - \gamma^2) & 0 & 2\delta\gamma e^{j2(\theta + \phi)} \\ e^{2j\phi}(\delta^2 - \gamma^2) & 0 & 2\delta\gamma e^{j2(\theta + \phi)} & 0 \\ 0 & 2\delta\gamma e^{j2(\theta + \phi)} & 0 & e^{2j\phi}(\delta^2 - \gamma^2) \\ 2\delta\gamma e^{j2(\theta + \phi)} & 0 & e^{2j\phi}(\delta^2 - \gamma^2) & 0 \end{bmatrix}$$
 pa de valer l'acoblament C d'un dels acobladors si es vol que el circui

d) Quant ha de valer l'acoblament C d'un dels acobladors si es vol que el circuit de la figura 2 sigui un acoblador direccional de 3 dB, sabent que C > 3 dB?

L'acoblament ve donat pel paràmetre $S_{41}=2\delta \gamma e^{j2(\theta+\phi)}$

Llavors $3 = -10 \log |S_{41}|^2 = -10 \log (4\delta^2 (1 - \delta^2))$

$$\frac{1}{2} = 4\delta^2(1 - \delta^2) \rightarrow \delta = 0.38$$

Llavors, com que aquest és el valor de l'acoblament de cadascun dels acobladors: $C = -20 \log \delta = 8.34 dB$

PROBLEMA 3

Els paràmetres S d'un transistor (Z_0 =50 Ω), a la freqüència de 1,5GHz, i amb les condicions de polarització corresponents, són els següents,

$$[s] = \begin{bmatrix} 0.64 \angle 160^{\circ} & 0.04 \angle 50^{\circ} \\ 4 \angle 65^{\circ} & 0.2 \angle -45^{\circ} \end{bmatrix}$$

El valor de Γ g que proporciona màxim guany (sense cap aproximació) és $\Gamma_g = 0.71 \angle -160^\circ$. Es vol sintetitzar un amplificador tot seguint l'esquema de la figura, on totes les línies són *microstrip* (per totes les línies s'assumeix ϵ_{reff} =4)

a) Trobi les longituds de ℓ_1 i ℓ_2 que sintetitzaran Γ_g .

Tal com diu l'enunciat, $\Gamma_G = 0.71 \angle - 160^\circ$. L'stub equival a una susceptància de valor B, per tant, el circuit equivalent és:

Situem aquest valor Γ_G a la Carta de Smith, la impedància corresponent és:

 $\bar{Z}_G = 0.17 - j0.17$. Anem al diametralment oposat per treballar amb admitàncies:

 $\overline{Y}_G=2,92+j2,86$. Ens movem cap a càrrega fins que la part real de l'admitància sigui igual a 1 (agafem la 1ª solució). Llavors, $\overline{Y}_1=1+j2$ i la longitud, $\ell_2=0,0345\lambda=3,45mm$

b) Calculi el valor de Γ_L per assolir màxim guany G_T .

Ha de ser
$$\Gamma_L = \Gamma_{out}^* = \left(S_{22} + \frac{S_{21}S_{12}\Gamma_G}{1 - S_{11}\Gamma_G}\right)^* = 0,4082 \angle 45^\circ$$

c) Trobi els valors de ℓ_3 i Z_0 ' que proporcionaran aquest guany (no necessariament la línia Z_0 ' ha de ser més estreta que la Z_0).

El circuit equivalent a la sortida és el següent:

La longitud ℓ_3 és la que fa que la impedància sigui real. Per tant, situem a la Carta de Smith el valor de $\Gamma_L=0.4082\angle45^\circ$ i ens movem cap a càrrega fins que la impedància sigui real (línia groga):

Llavors, $\overline{Z}_1=0,43$ i la longitud, $\ell_3=0,1875\lambda=18,75mm$. I la impedància de la línia es calcula:

$$Z_0' = Z_0 \sqrt{0.43} = 32.8\Omega$$

d) Calculi el guany de transferència de potència total obtingut si s'hagués fet el disseny sota l'aproximació unilateral per assolir màxim guany. Quina és la pèrdua en dB?.

$$G_{T} = \frac{P_{L}}{P_{avs}} = \frac{\left|S_{21}\right|^{2} \left(1 - \left|\Gamma_{L}\right|^{2}\right) \left(1 - \left|\Gamma_{s}\right|^{2}\right)}{\left|\left(1 - S_{11}\Gamma_{s}\right) \left(1 - S_{22}\Gamma_{L}\right) - S_{12}S_{21}\Gamma_{L}\Gamma_{s}\right|^{2}}$$

Amb l'aproximació unilateral, el guany de transferència de potència es redueix a:

$$G_T = \frac{|S_{21}|^2}{(1 - |S_{11}|^2)(1 - |S_{22}|^2)} = 28,23 \to 14,5dB$$

Sense fer l'aproximació, posant els valors del disseny i calculant el guany, s'obté:

$$G_T = \frac{|S_{21}|^2 (1 - |\Gamma_L|^2) (1 - |\Gamma_S|^2)}{|(1 - S_{11}\Gamma_S)(1 - S_{22}\Gamma_L) - S_{12}S_{21}\Gamma_S\Gamma_L|^2} = 43,51 \to 16,4dB$$

Per tant la pérdua en dB és de 1,9dB.