General Solubility Rules for Inorganic Compounds

Ion	Characteristic Solubility of Compounds Containing Ion				
Nitrate, NO ₃	All nitrates are soluble.				
Chloride, Cl	All chlorides are soluble except AgCl, PbCl ₂ , and Hg ₂ Cl ₂ .				
Sulfate, SO_4^{2-}	Sulfates are soluble, except BaSO ₄ and PbSO ₄ ; Ag ₂ SO ₄ , CaSO ₄ , and Hg ₂ SO ₄ are only slightly soluble.				
Carbonate, CO_3^- ; phosphate, PO_4^{3-} ; silicate, SiO_4^{4-}	Carbonates, phosphates, and silicates are insoluble, except those of sodium, potassium, and ammonium.				
Hydroxide, OH ⁻	Most hydroxides are insoluble. Exceptions include LiOH, NaOH, KOH and NH ₄ OH (soluble); Ba(OH) ₂ (moderately soluble); and Ca(OH) ₂ and Sr(OH) ₂ (slightly soluble).				
Sulfide, S ²⁻	All sulfides are insoluble, with the exception of alkali metal sulfides (Na ₂ S, K ₂ S, etc.), (NH ₄) ₂ S, MgS, CaS, and BaS.				
Sodium, Na ⁺ ; potassium, K ⁺ ; ammonium, NH ₄ ⁺	All sodium, potassium, and ammonium compounds are soluble, with the exception of a few compounds that contain these ions along with a heavy metal (for example, K ₂ PtCl ₆).				

I Based on Dean, J. A., Lange's Handbook of Chemistry, 14th ed., McGraw-Hill, 1992.

Source: Table 1.2; Water Chemistry, Benjamin, 2002/ 2010

Solubility Constants of Solids of Interest

Table 8.7 The K_{s0} values of some solids of interest

Metal	Mineral Name	Formula	$\text{Log } K_{\mathfrak{sl}}$	Metal	Mineral Name	Formula	Log K,
Ag ⁺		AgOH(s)	-7.70	Cu ⁺	Nantokite	CuCl(s)	-6.76
		$Ag_2CO_3(s)$ $Ag_3PO_4(s)$ $Ag_2S(s)$ AgCl(s)	-11.07 -17.55 -48.97 -9.75	Fe ²⁺	Siderite Vivianite	Fe(OH) ₂ (s) FeCO ₃ (s) Fe ₃ (PO ₄) ₂ (s) FeS(s)	-15.90 -10.55 -36.00 -16.84
A1 ³⁺	Gibbsite	$Al(OH)_3(s)$ $Al(OH)_3(s)$ $AlPO_4(s)$	-31.62 -33.23 -22.50	Fe ³⁺	Ferriliydrite Goethite Lepidocrocite	Fe(OH) ₃ (s) α -FeOOH(s) γ -FeOOH(s)	-37.11 -41.50 -46.00
Ca ²⁺	Calcite	CaCO ₃ (s)	-8.48	Hg ²⁺	Hematite	α -Fe ₂ O ₃ (s)	-40.63
	Aragonite Portlandite Lime Gypsum Hydroxylapatite	$CaCO_3(s)$ $Ca(OH)_2(s)$ CaO(s) $CaSO_4(s)$ $Ca_5(OH)(PO_4)_3(s)$	-8.36 -5.32 4.80 -4.85 -44.2		Cinnubar	$Hg(OH)_2(s)$ HgO(s) $Hg(CN)_2(s)$ $HgCO_3(s)$ HgS(s)	-25.40 -25.55 -39.28 -22.52 -52.01

In terms of OH⁻ K_{s0} : Fe(OH)_{3(s)}= Fe³⁺ + 3OH⁻

Source: Water Chemistry, Benjamin, 2002

Metal-Complexation Reactions with OH-

-12.00 -24.00

-10.10 -16.00 -23.00 -12.60

-10.08 -20.35 -33.30

-47.35

-9.20 -18.30 -31.20 -4.00

-13.60 -21.60

-4.99 V

a cumulative

Table 8.2	Stability constants for complexation of metals by OH-
	Diddinii constante de la

	i	$\operatorname{Log} K_i$	$\operatorname{Log} *K_i$	$Log \beta_i$
Ag ⁺	1	2.00	-12.00	2.00
* * &	2	2.00	-12.00	4.00
A13+	1	9.01	-4.99	10.0
		8.89	-5.11	17.90
	2 3	8.10	-5.90	26.00
	4	7.00	-7.00	33.00
Ca ²⁺	1	1.40	-12.60	1.40
Cd ²⁺	1	3.92	-10.08	3.92
	2	3.73	-10.27	7.65
	- 3	1.05	-12.95	8.70
	4	-0.05	-14.05	8.65
Co ²⁺	1	4.80	-9.20	4.80
		4.90	-9.10	9.70
*	2 3	1.10	-12.90	10.80
Cr3+	1	10.00	-4.00	10.00
	2	8.38	-5.62	18.38
	3	6.87	-7.13	25.25
	4	2.98	-11.02	28.23
Cu ²⁺	1	6.00	-8.00	6.00
	2	8.32	-5.68	14.32
	3	0.78	-13.22	15.10
	4	1.30	-12.70	16.40
Fe ²⁺	1	4.50	-9.50	4.50
	2	2.93	-11.07	`7.43
	2 3	3.57	-10.43	11.00
Fe ³⁺	1-04	11.81	-2.19°	11.81
	2	10.52	-3.48	22.33
	3	6.07	-7.93	28.40
	4	6.00	-8.00	34.40

In terms of OH-

$$K_i$$
: $Fe^{3+} + OH^- = Fe(OH)^{2+}$
 β_i : $Fe^{3+} + 2OH^- = Fe(OH)_2^+$

In terms of H+

$$K_i^*$$
: Fe³⁺ + H₂O = Fe(OH)²⁺ + H⁺
 β_i^* : Fe³⁺ + 2H₂O = Fe(OH)₂⁺ + H⁺

Listing all reactions and constants

$$pK_1^* = 2.19$$
: $Fe^{3+} + H_2O = Fe(OH)^{2+} + H^+$
 $pK_2^* = 3.48$: $Fe(OH)^{2+} + H_2O = Fe(OH)_2^+ + H^+$
 $pK_3^* = 7.93$: $Fe(OH)_2^+ + H_2O = Fe(OH)_{3(aq)} + H^+$
 $pK_4^* = 8.00$: $Fe(OH)_{3(aq)} + H_2O = Fe(OH)_4^- + H^+$

Solubility Curve for Fe(OH)_{3(s)}

 $[Fe_{T, diss}] = [Fe^{3+}] + [Fe(OH)^{2+}] + [Fe(OH)_{2}^{+}] + [Fe(OH)_{3(aq)}] + [Fe(OH)_{4}^{-}]$

Class problem

1a) Solid calcium fluoride ($CaF_{2(s)}$) is added to pure water so that at equilibrium some solid remains dissolved. Given that the solubility product is 3 x 10^{-11} M^{3,} what is the equilibrium concentration of F⁻ in water?