Abstract	

i

Sammendrag	

	Preface	

Table of Con	Table of Contents ist of Figures				
List of Figures					
List of Tables	xi				
Notation	xiii				
1 Introduction	1				
2 Theory	3				
3 Method	5				
4 Results	7				
5 Discussion	9				
6 Conclusions	11				
References	13				
A Appendix A	15				

List of Figures	

	List of Ta	ıbles		

Notation	

Introduction			

2 Theory

In three dimensions, the matrix $m{L}$ is defined as

$$\boldsymbol{L} = \begin{pmatrix} \nabla^{2}\boldsymbol{C}^{-1} \left[\boldsymbol{\xi}_{3}, \boldsymbol{\xi}_{3}, \boldsymbol{\xi}_{3}, \boldsymbol{\xi}_{3} \right] & 2\frac{\lambda_{3} - \lambda_{1}}{\lambda_{1}\lambda_{3}} \left\langle \boldsymbol{\xi}_{1}, (\nabla \boldsymbol{\xi}_{3}) \boldsymbol{\xi}_{3} \right\rangle & 2\frac{\lambda_{3} - \lambda_{2}}{\lambda_{2}\lambda_{3}} \left\langle \boldsymbol{\xi}_{2}, (\nabla \boldsymbol{\xi}_{3}) \boldsymbol{\xi}_{3} \right\rangle \\ 2\frac{\lambda_{3} - \lambda_{1}}{\lambda_{1}\lambda_{3}} \left\langle \boldsymbol{\xi}_{1}, (\nabla \boldsymbol{\xi}_{3}) \boldsymbol{\xi}_{3} \right\rangle & 2\frac{\lambda_{3} - \lambda_{1}}{\lambda_{1}\lambda_{3}} & 0 \\ 2\frac{\lambda_{3} - \lambda_{2}}{\lambda_{2}\lambda_{3}} \left\langle \boldsymbol{\xi}_{2}, (\nabla \boldsymbol{\xi}_{3}) \boldsymbol{\xi}_{3} \right\rangle & 0 & 2\frac{\lambda_{3} - \lambda_{2}}{\lambda_{2}\lambda_{3}} \end{pmatrix}, \quad (2.1)$$

where the dependence of L and its constituent parts on t, t_0 and \mathbf{x}_0 has been omitted for brevity. The distinction between so-called strong and weak hyperbolic LCSs is based upon whether or not L is positive definite (Haller 2010; Farazmand and Haller 2011). By Sylvester's theorem, a square matrix is positive definite if and only if all of the leading principal minors of L are positive. The term *leading principal minors* is defined as follows (Gilbert 1991):

Definition 1 (Principals of square matrices). Let A be an $n \times n$ matrix. For $1 \le k \le n$, the k^{th} principal submatrix of A is the $k \times k$ submatrix formed from the first k rows and first k columns of A. Its determinant is the k^{th} principal minor.

Thus, in three dimensions, the matrix $m{L}$ being positive definite amounts to the simultaneous fulfillment of the three requirements

$$\nabla^2 C^{-1} [\xi_3, \xi_3, \xi_3, \xi_3] > 0, \tag{2.2a}$$

$$2\frac{\lambda_3 - \lambda_1}{\lambda_1 \lambda_3} \left\{ \nabla^2 \mathbf{C}^{-1} \left[\boldsymbol{\xi}_3, \boldsymbol{\xi}_3, \boldsymbol{\xi}_3, \boldsymbol{\xi}_3 \right] - 2\frac{\lambda_3 - \lambda_1}{\lambda_1 \lambda_3} \left\langle \boldsymbol{\xi}_1, (\nabla \boldsymbol{\xi}_3) \boldsymbol{\xi}_3 \right\rangle^2 \right\} > 0, \tag{2.2b}$$

$$\det(\boldsymbol{L}) > 0. \tag{2.2c}$$

By straightforward algebraic manipulations, the inequality (2.2c) is equivalent to

$$4\frac{(\lambda_{3}-\lambda_{2})(\lambda_{3}-\lambda_{1})}{\lambda_{1}\lambda_{2}\lambda_{3}^{2}}\left\{\nabla^{2}\boldsymbol{C}^{-1}\left[\boldsymbol{\xi}_{3},\boldsymbol{\xi}_{3},\boldsymbol{\xi}_{3},\boldsymbol{\xi}_{3}\right]-\left(2\frac{\lambda_{3}-\lambda_{1}}{\lambda_{1}\lambda_{3}}\left\langle\boldsymbol{\xi}_{1},(\nabla\boldsymbol{\xi}_{3})\boldsymbol{\xi}_{3}\right\rangle^{2}\right.\right.\right.$$

$$\left.+2\frac{\lambda_{3}-\lambda_{2}}{\lambda_{2}\lambda_{3}}\left\langle\boldsymbol{\xi}_{2},(\nabla\boldsymbol{\xi}_{3})\boldsymbol{\xi}_{3}\right\rangle^{2}\right\}>0.$$

$$(2.3)$$

Now, we make use of the following result from Haller (2010):

Lemma 1. At each point of a weak LCS in three dimensions, the following identity holds:

$$\nabla^{2} \mathbf{C}^{-1} \left[\boldsymbol{\xi}_{3}, \boldsymbol{\xi}_{3}, \boldsymbol{\xi}_{3}, \boldsymbol{\xi}_{3} \right] = -\frac{1}{\lambda_{3}^{2}} \left\langle \boldsymbol{\xi}_{3}, \nabla^{2} \lambda_{3} \boldsymbol{\xi}_{3} \right\rangle + 2 \frac{\lambda_{3} - \lambda_{1}}{\lambda_{1} \lambda_{3}} \left\langle \boldsymbol{\xi}_{1}, (\nabla \boldsymbol{\xi}_{3}) \boldsymbol{\xi}_{3} \right\rangle^{2} + 2 \frac{\lambda_{3} - \lambda_{2}}{\lambda_{2} \lambda_{3}} \left\langle \boldsymbol{\xi}_{2}, (\nabla \boldsymbol{\xi}_{3}) \boldsymbol{\xi}_{3} \right\rangle^{2}.$$

$$(2.4)$$

Proof. See theorem 7 in Haller (2010).

		• -
Usin	uation (2.4) in conjunction with equation (2.3) and the relationships $0 \le \lambda_1$	$\leq \lambda_2 \leq \lambda_3$
the 1	ualities (2.2) can be expressed as follows: Foo	
1		

3	Method

Results			

5	Discussion

6	Conclusions

References								
 Farazmand, M. and Haller, G. (2011). "Erratum and addendum to 'A variational theory of hyperbolic Lagrangian coherent structures' [Physica D 240 (2011) 547–598]". In: <i>Physica D: Nonlinear Phenomena</i> 241.4, pp. 439–441. ISSN: 0167-2789. Gilbert, G. T. (1991). "Positive Definite Matrices and Sylvester's Criterion". In: <i>The American Mathematical Monthly</i> 98.1, pp. 44–46. Haller, G. (2010). "A variational theory of hyperbolic Lagrangian Coherent Structures". In: <i>Physica D: Nonlinear Phenomena</i> 240.7, pp. 547–598. ISSN: 0167-2789. 								
Physica D: Nonlinear Phenomena 240.7, pp. 547-598. ISSN: 0167-2789.								

A Appendix A						