ЛАБОРАТОРНАЯ РАБОТА 4 – 7 ИЗУЧЕНИЕ ЗАКОНОВ ВНЕШНЕГО ФОТОЭФФЕКТА

Студент !	<u> Пахомов Владислав А</u>	<u> Андреевич</u> группа <u>ПВ-223</u>		
Допуск		Выполнение	Защита	

Цель работы: Исследование вольт-амперной характеристики вакуумного фотоэлемента. Определение работы выхода электронов из вещества $A_{\text{вых}}$, красной границы фотоэффекта $v_{\text{кр}}$ и постоянной Планка h.

Приборы и принадлежности: вакуумный фотоэлемент, галогеновая лампа, набор светофильтров, электронный блок приборов (включает микроамперметр, вольтметр, источник питания).

Упражнение 1

Таблица 1

λ = 550 нм												
Напряжение U, B	U₃=- 0.66	0	1	2	4	8	12	14	16	18	20	22
Фототок I, мкА	0	0.31	1.29	1.93	3.67	4.05	7.33	7.75	7.96	7.98	7.95	7.97
График _{9,00}												

(синия линия – полученный график, серая прерывистая линия – предполагаемая линия вольт-амперной характеристики фотоэлемента)

Вывод: полученный график соответствует вольт-амперной характеристике фотоэлемента

Упражнение 2

Таблица 2

							•
λ, нм	670	580	560	550	525	510	500
ν , 10¹⁴ Г ц	4.4776	5.1724	5.3571	5.4545	5.7143	5.8824	6
20-00	-0.41	-0.58	-0.61	-0.64	-0.74	-0.89	-1.09
Задерживающий	-0.43	-0.59	-0.63	-0.65	-0.72	-0.91	-1.12
потенциал U₃, В	-0.42	-0.57	-0.60	-0.63	-0.73	-0.90	-1.13
Среднее значение $\langle U_3 \rangle$, В	-0.42	-0.58	-0.6133	-0.64	-0.73	-0.90	-1.1133

$$v = \frac{c}{\lambda}, c = 3 \cdot 10^{8} \frac{M}{c}$$

$$v_{1} = \frac{3 \cdot 10^{8}}{670 \cdot 10^{-9}} = 4.4776 \cdot 10^{-14} \Gamma u$$

$$v_{2} = \frac{3 \cdot 10^{8}}{580 \cdot 10^{-9}} = 5.1724 \cdot 10^{-14} \Gamma u$$

$$v_{3} = \frac{3 \cdot 10^{8}}{560 \cdot 10^{-9}} = 5.3571 \cdot 10^{-14} \Gamma u$$

$$v_{4} = \frac{3 \cdot 10^{8}}{550 \cdot 10^{-9}} = 5.4545 \cdot 10^{-14} \Gamma u$$

$$v_{5} = \frac{3 \cdot 10^{8}}{510 \cdot 10^{-9}} = 5.8824 \cdot 10^{-14} \Gamma u$$

$$v_{6} = \frac{3 \cdot 10^{8}}{500 \cdot 10^{-9}} = 6 \cdot 10^{-14} \Gamma u$$

$$v_{7} = \frac{3 \cdot 10^{8}}{500 \cdot 10^{-9}} = 6 \cdot 10^{-14} \Gamma u$$

$$v_{7} = \frac{3 \cdot 10^{8}}{500 \cdot 10^{-9}} = 6 \cdot 10^{-14} \Gamma u$$

$$v_{7} = \frac{3 \cdot 10^{8}}{500 \cdot 10^{-9}} = 6 \cdot 10^{-14} \Gamma u$$

$$v_{1} = \frac{3 \cdot 10^{8}}{3} = -0.428$$

$$v_{2} = \frac{-0.41 - 0.42 - 0.43}{3} = -0.588$$

$$v_{3} = \frac{-0.58 - 0.59 - 0.57}{3} = -0.588$$

$$v_{4} = \frac{-0.61 - 0.63 - 0.60}{3} = -0.61338$$

$$v_{5} = \frac{-0.64 - 0.65 - 0.63}{3} = -0.648$$

$$v_{7} = \frac{-0.64 - 0.65 - 0.63}{3} = -0.648$$

$$v_{1} = \frac{-0.64 - 0.65 - 0.63}{3} = -0.648$$

$$v_{2} = \frac{-0.74 - 0.72 - 0.73}{3} = -0.738$$

$$v_{3} = \frac{-0.74 - 0.72 - 0.73}{3} = -0.738$$

$$v_{1} = \frac{-0.89 - 0.91 - 0.90}{3} = -0.908$$

$$v_{2} = \frac{-0.99 - 0.91 - 0.90}{3} = -0.908$$

$$\begin{array}{l} \textit{U}_{\scriptscriptstyle 3} = 1.4630~\text{B} \\ \nu_{\scriptscriptstyle \mathrm{Kp}} = 3.6541 \cdot 10^{14}~\Gamma\text{ц} \\ |\textit{e}| = \textit{e} = 1.6 \cdot 10^{-19} \text{Кл} \\ \textit{U}_{\scriptscriptstyle 3} = \frac{A_{\scriptscriptstyle \mathrm{BbIX}}}{|\textit{e}|}; A_{\scriptscriptstyle \mathrm{BbIX}} = \textit{U}_{\scriptscriptstyle 3} \cdot |\textit{e}| = 1.4630 \text{B} \cdot 1.6 \cdot 10^{-19} \text{Kл} = 2.3408 \cdot 10^{-19} \text{Дж} \\ \text{h} = \frac{A_{\scriptscriptstyle \mathrm{BbIX}}}{\nu_{\scriptscriptstyle \mathrm{Kp}}} = \frac{2.3408 \cdot 10^{-19} \text{Дж}}{3.6541 \cdot 10^{14}~\Gamma\text{ц}} = 6.4060 \cdot 10^{-34}~\text{Дж} \cdot \textit{c} \; (\text{табличное значение h} \\ = 6.6261 \cdot 10^{-34} \text{Дж} \cdot \textit{c}) \end{array}$$

Контрольные вопросы

1. Что такое явление внешнего фотоэффекта?

Внешним фотоэффектом называется явление вылета электронов с поверхности твёрдых и жидких веществ под действием электромагнитного излучения. (при этом вещество электризуется, приобретая положительный заряд).

2. Нарисуйте вольтамперные характеристики вакуумного фотоэлемента. Объясните их особенности.

 $E = const; v_3 > v_2 > v_1$

он вылетает из вещества.

- $v = const; E_2 > E_1$
- 1) При любой освещённости фотокатода E существует ток насыщения I_н (то есть максимальная величина силы тока при данной освещённости света). Это объясняется тем, что анода достигают все фотоэлектроны, которые возникают при фотоэффекте за одно и то же время.
- 2) При U = 0 В наблюдается небольшой фототок. Это объясняется тем, что некоторая часть фотоэлектронов обладает достаточной скоростью и направлением движения, чтобы самостоятельно долететь до анода)
- 3) Чтобы прекратить фототок, необходимо на катод подать обратное напряжение (то есть на катод К подать более высокий потенциал по отношению к аноду А). Это напряжение называется задерживающим или запирающим напряжением U₃.
- 3. Сформулируйте законы внешнего фотоэффекта.
 - а. Максимальная начальная скорость вылетающих фотоэлектронов прям пропорциональная v_{max} и не зависит от интенсивности I
 - b. При v = const величина фототока прямо пропорционально интенсивности света.
 - с. Для любого вещества существует $v_{\kappa p}$ красная граница, минимальная частота падающего на вещество свет при котором ещё возможен фотоэффект.
 - d. Вылет электронов с поверхности вещества при начале фотоэффекта безынерционен (практически мгновенен).
- 4. Запишите и расшифруйте уравнение Эйнштейна для внешнего фотоэффекта

$$hv = A_{\text{BMX}} + \frac{mv_{max}^2}{2}$$

 $A_{
m Bыx}$ - работа выхода фотоэлектронов из вещества \mathcal{J} ж $u_{
m max}^2$ — максимальная скорость движения вылетающих фотоэлектронов m/c Согласно гипотезе Эйнштейна, каждый фотон падающего светового потока взаимодействует только с одним электроном вещества, передавая ему всю свою энергию. Энергия, полученная от фотона, расходуется электроном на совершение им работы выхода $A_{
m Bыx}$ из вещества и на сообщение ему кинетической энергии, с которой

Энергия фотона $h\nu$ расходуется на работу выхода и кинетическую энергию.

5. Что понимают под красной границей фотоэффекта? Что такое работа выхода электронов из вещества?

Минимальная частота падающего на вещество свет при котором ещё возможен фотоэффект. Работа выхода — энергия необходимая фотоэлектрону для выхода из вещества

6. Что такое задерживающий потенциал?

Обратное напряжение необходимое для прекращение фототока

- 7. Современные представления о природе света. Напишите связь между корпускулярными и волновыми свойствами квантов света.
 - а. Свет представляет собой поток частиц (квантов или фотонов) которые являются по своей природе электромагнитными волнами. Кванты света излучаются атомами вещества при переходе электронов с орбиты с большей энергией на орбиту с меньшей энергией. Время перехода составляет 10-8 с. Излученный излишек энергии (цуг) является электр.магн. волной длиной 3 м.

$$E_{m{\phi}} = h \, v$$
 , массой $m_{m{\phi}} = rac{h \, v}{c^2}$, импульсом $p_{m{\phi}} = m_{m{\phi}} c$. и скоростью $c = 3 \cdot 10^{-8} \, ext{м/c}$.

с. Корпускулярные свойства света проявляются в том, что свет всегда излучается, распространяется в пространстве и поглощается веществом порциями. Поглощается фотон всегда целиком, а не частями. При поглощении фотон исчезает, передавая энергию и импульс веществу поглотившему ему.

Наблюдения показывают, что свет в одних явлениях ведёт себя как волна (явления дифракции, поляризации, интерференции), а в других явлениях ведёт себя как частица (закономерности теплового излучения, явление фотоэффекта и др). Поглощаемая энергия и импульс фотона зависят от частоты/длины волны.

$$E_{\phi}=h
u=rac{hc}{\lambda}$$
 _ - как волна $E_{\phi}=m_{\phi}c^2$ _ - как частица $p_{\phi}=rac{h}{\lambda}$ _ - как волна $p_{\phi}=m_{\phi}c$ _ - как частица