An Efficient Cryptographic Protocol Verifier Based on Prolog Rules

Bruno Blanchet, 2001

January 24, 2016

Mikael Elkiær Christensen michri11@student.aau.dk

Department of Computer Science
Aalborg University
Denmark

The Problem

Blanchet (2001) Mikael Elkiær Christensen

Introduction

Protocol

representa

Definition

Solving Algorith

0----

The Needham-Schroeder Public Key Protocol (1978):

- 1. $A \rightarrow S : A, B$
- **2.** $S \to A : \{K_b, B\}_{K_s^{-1}}$
- 3. $A \to B : \{N_a, A\}_{K_b}$
- **4.** $B \to S : B, A$
- 5. $S \rightarrow B : \{K_a, A\}_{K_s^{-1}}$
- 6. $B \rightarrow A : \{N_a, N_b, {\color{red} B}\}_{K_a}$
- 7. $A \rightarrow B : \{N_b\}_{K_b}$

Man-in-the-middle attack presented by Gabin Lowe (1995).

Introduction

Overview

representation

Definitions

Solving Algorithn

Conclusion

(CVE-2014-0160)

Introducti

Overview

Protocol representation

Definition

Solving Algorithm

- ightharpoonup Previously: Applied π Calculus, Multiset Rewriting, Model checking
 - Limiting runs, inefficient, non-automatic, state space explosion
- ► Now: Prolog (First-order logic)
 - ► FOL: Generally, **sound**, but not **complete**
 - ▶ Uses custom resolution and unification
 - Makes approximations
 - Proves secrecy

Syntax

Blanchet (2001)

Mikael Elkiær Christensen

ntroductio

Overviev

Protocol representation

Definition

Solving Algorithm

Conclusion

M, N ::=

X

 $a[M_1,\ldots,M_n]$ $f(M_1,\ldots,M_n)$

 $r(m_1,\ldots,m_n)$

 $F ::= p(M_1, \ldots, M_n)$

 $R ::= F_1 \wedge \cdots \wedge F_n \rightarrow F$

terms

variable name

function application

fact

predicate application

rule

implication

Blanchet (2001)

Mikael Elkiær Christensen

Protocol representation

 $sk_A[], sk_B[]$ $k[x_1,\ldots,x_n]$

constructor

 $pk_A = \mathbf{pk}(sk_A[])$ pencrypt(m, pk(sk))sencrypt(m, k)

sign(m, sk)

 $(_,\ldots,_)$

destructor

decrypt(encrypt(m, pk(sk)), sk) = msdecrypt(sencrypt(m, k), k) = m

getmess(sign(m, sk))

ith $((x_1,...,x_n)) = x_i | i \in \{1,...,n\}$

Dept. of Computer Science Aalborg University Denmark

Abilities of the attacker

Blanchet (2001) Mikael Elkiær Christensen

Introducti

Overviev

Protocol representation

Definition

Solving Algorithm

. . .

It is assumed that the protocol is executed in the presence of an attacker that can:

- intercept all messages,
- compute new messages from the messages it has received, and
- send any message it can build.

ntroducti

Overview

Protocol representation

горгозопа

_ -----

Solving Algorithn

Conclusion

A protocol can be represented by three sets of rules:

- 1. Rules representing the computation abilities of the attacker $attacker(x_1) \wedge ... \wedge attacker(x_n) \rightarrow attacker(f(x_1,...,x_n)),$ $attacker(M_1) \wedge ... \wedge attacker(M_n) \rightarrow attacker(M)$
- Facts corresponding to initial knowledge of the attacker
 e.g. attacker(pk(sk_A[]))
- 3. Rules representing the protocol itself $attacker(M_{i_n}) \wedge \cdots \wedge attacker(M_{i_n}) \rightarrow attacker(M_i)$.

Approximations

Blanchet (2001)

Mikael Elkiær Christensen

ntroducti

Overviev

Protocol representation

B 0 10

Solving Algorithm

- ▶ New names are functions of messages previously received, unless altered.
- ► The same step of a protocol can be completed several times, yielding the same result, provided that the previous steps have been completed.

- ► Correctness still holds intuitively, more attacker options and safe, still safe with less options.
- ► However, can lead to false attacks.

Introducti

Overvie

Protocol representation

Definitions

Solving Algorithm

- ► A hypotheses $F_1, ..., F_n$ of a rule are considered a multiset.
- ► A multiset of facts S is a function *S*(*F*) yielding the number of repetitions of *F* in *S*.
- ▶ Giving a point-wise order on functions: $S \subset S' \Leftrightarrow \forall F, S(F) < S'(F)$.

Definition 1 (Rule Implication)

Blanchet (2001)

Mikael Elkiær Christensen

Introduction

Overview

Protocol representation

Definitions

Solving Algorithn

$$(H_1 \rightarrow C_1) \Rightarrow (H_2 \rightarrow C_2)$$

if and only if
 $\exists \sigma, \sigma C_1 = C_2, \sigma H_1 \subseteq H_2$

Definition 2 (Derivability)

Blanchet (2001) Mikael Elkiær Christensen

Definitions

Let F be a closed fact. Let B be a set of rules. F is derivable from B if and only if there exists a finite tree defined as follows:

- 1. Its nodes (except the root) are labelled by rules $R \in B$;
- 2. Its edges are labelled by closed facts:
- If the tree contains a node labelled by R with one incoming edge labelled by F_0 and noutgoing edges labelled by F_1, \ldots, F_n , then $R \Rightarrow \{F_1, \ldots, F_n\} \rightarrow F_0.$
- 4. The root has one outgoing edge, labelled by F.

Definition 3 (Resolution)

Blanchet (2001) Mikael Elkiær Christensen

Introducti

OVCIVIO

representa

Definitions

Solving Algorithm

Conclusion

Let R and R' be two rules. $R = H \rightarrow C, R' = H' \rightarrow C'$.

Assume there exists $F_0 \in H'$ such that: C and F_0 are unifiable, and σ is the most general unifier of C and F_0 .

In this case, we define

$$R \circ_{F_0} R' = \sigma(H \cup (H' - F_0)) \to \sigma C'.$$

First phase: completion of the rule base

Blanchet (2001) Mikael Elkiær

Christensen

Solving Algorithm

Let $B = \emptyset$ and let B_0 be the initial set of rules.

- 1. For each $R \in B_0, B \leftarrow \operatorname{add}(\operatorname{elimdup}(R), B)$.
- 2. Let $R \in B$, $R = H \rightarrow C$ and $R' \in B$, $R' = H' \rightarrow C'$. Assume that there exists $F_0 \in H'$ such that:
 - a) $R \circ_{F_0} R'$ is defined;
 - b) $\forall F \in H, F \in_r S$:
 - c) $F_0 \notin_r S$.

In this case, we execute

$$B \leftarrow \mathsf{add}(\mathsf{elimdup}(R \circ_{F_0} R'), B).$$

This procedure is executed until a fixed point is reached.

3. Let $B' = \{(H \to C) \in B | \forall F \in H, F \in_r S\}.$

18

Lemma 1 (Correctness of Phase 1)

Blanchet (2001)

Mikael Elkiær Christensen

Introduction

Overview

Protocol representation

Definition

Solving Algorithm

Conclusion

Let F be a closed fact. F is derivable from rules in B_0 if and only if F is derivable from the rules in B'.

Second phase: backward depth-first search

Blanchet (2001) Mikael Elkiær Christensen

Introducti

Overview

Protocol representa

Definition

Solving Algorithm

Conclusion

We define derivablerec(R, B'') by

- 1. **derivablerec** $(R, B'') = \emptyset$ if $\exists R' \in B'', R' \Rightarrow R$;
- 2. **derivablerec**($\emptyset \to C, B''$) = {C} otherwise;
- 3. **derivablerec** $(R, B'') = \bigcup \{ \text{$ **derivablerec** $}(\text{$ **elimdup** $}(R' \circ_{F_0} R), \{R\} \cup B'') | R' \in B', F_0 \text{ such that } R' \circ_{F_0} R \text{ is defined } \} \text{ otherwise.}$

 $derivable(F) = derivablerec(\{F\} \rightarrow F, \emptyset).$

Theorem 2 (Correctness)

Blanchet (2001) Mikael Elkiær Christensen

IIIIIOUUCII

Overview

representati

Definition

Solving Algorithm

Conclusion

Let F be a closed fact. Let F' such that there exists a substitution σ such that $\sigma F' = F$. F is derivable from the rules in B_0 if and only if $\exists F'' \in \mathbf{derivable}(F'), \exists \sigma, F = \sigma F''$. In particular, F is derivable from B_0 if and only if $F \in \mathbf{derivable}(F)$.

Experimental results

Blanchet (2001)

Mikael Elkiær Christensen

ntroductio

Overview

Protocol representation

Definitions

Solving Algorithm

Conclusion

Protocol	Result	# Rules	Time (ms)
Needham-Schroeder public key	Attack	14	70
Needham-Schroeder public key corrected	Secure	14	60
Needham-Schroeder shared key	Attack	47	760
Needham-Schroeder shared key corrected	Secure	51	1190
	1		l

٠.

18

Conclusion

Blanchet (2001) Mikael Elkiær Christensen

....

Overview

Protocol representation

Definition

Solving Algorithn

Conclusion

► Protocol error discovery: from 17 years to 70 ms

► Still work to be done: non-termination

Prototyping and debugging

► Aftermath: ProVerif

Time for questions...

