

🗣 : Ιακώβου Πολυλά 24 - Πεζόδρομος | 📞 : 26610 20144 | 🖫 : 6932327283 - 6955058444

26 Maiou 2025

Μαθηματικά Γ' Λυκείου

ΟΡΙΣΜΟΙ - ΑΠΟΔΕΙΞΕΙΣ ΑΝΤΙΠΑΡΑΔΕΙΓΜΑΤΑ - ΒΑΣΙΚΕΣ ΠΡΟΤΑΣΕΙΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ

1ο Κεφάλαιο Ορισμοί

Ορισμός 1 :

Πραγματική συνάρτηση με πεδίο ορισμού ένα σύνολο A είναι μια διαδικασία (αντιστοίχηση) με την οποία κάθε στοιχείο $x \in A$ αντιστοιχεί σε ένα μόνο πραγματικό αριθμό $y \in \mathbb{R}$. Το y λέγεται τιμή της συνάρτησης f στο x και συμβολίζεται f(x).

Ορισμός 2:

Σύνολο τιμών μιας συνάρτησης f με πεδίο ορισμού A λέγεται το σύνολο που περιέχει όλες τις τιμές f(x) της συνάρτησης για κάθε $x \in A$. Συμβολίζεται με f(A) και είναι

$$f(A) = \{y \in \mathbb{R} : y = f(x)$$
για κάθε $x \in A\}$

Ορισμός 3:

Γραφική παράσταση μιας συνάρτησης f με πεδίο ορισμού ένα σύνολο A ονομάζεται το σύνολο των σημείων της μορφής M(x, f(x)) για κάθε $x \in A$. Συμβολίζεται με C_f

$$C_f = \{M(x, y) : y = f(x)$$
 για κάθε $x \in A\}$

Ορισμός 4 :

Δύο συναρτήσεις f, g που έχουν το ίδιο πεδίο ορισμού A ονομάζονται ίσες δηλαδή f = g όταν ισχύει f(x) = g(x) για κάθε $x \in A$.

Ορισμός 5 :

Δύο συναρτήσεις f,g με πεδία ορισμού A,B αντίστοιχα, ονομάζονται ίσες δηλαδή f=g όταν ισχύει f(x)=g(x) για κάθε $x\in A\cap B$. Αν $A\cap B=\varnothing$ τότε δεν είναι ίσες.

Ορισμός 6:

Δίνονται δύο συναρτήσεις f, g με πεδία ορισμού A, B αντίστοιχα.

- **1.1** Η συνάρτηση f+g του αθροίσματος των δύο συναρτήσεων ορίζεται ως η συνάρτηση με τύπο f(x)+g(x) και πεδίο ορισμού $D_{f+g}=A\cap B$.
- **1.2** Η συνάρτηση f-g της διαφοράς των δύο συναρτήσεων ορίζεται ως η συνάρτηση με τύπο f(x)-g(x) και πεδίο ορισμού $D_{f-g}=A\cap B$.

- **1.3** Η συνάρτηση $f \cdot g$ του γινομένου των δύο συναρτήσεων ορίζεται ως η συνάρτηση με τύπο $f(x) \cdot g(x)$ και πεδίο ορισμού $D_{f \cdot g} = A \cap B$.
- **1.4** Η συνάρτηση $\frac{f}{g}$ του πηλίκου των δύο συναρτήσεων ορίζεται ως η συνάρτηση με τύπο $\frac{f(x)}{g(x)}$ και πεδίο ορισμού $D_{\frac{f}{g}}=\{x\in A\cap B:g(x)\neq 0\}.$

Αν $A \cap B = \emptyset$ τότε οι παραπάνω συναρτήσεις δεν ορίζονται.

Ορισμός 7:

Αν f, g είναι δύο συναρτήσεις με πεδίο ορισμού , αντιστοίχως, τότε ονομάζουμε σύνθεση της f με την g, και τη συμβολίζουμε με $g \circ f$, τη συνάρτηση με τύπο

$$(g \circ f)(x) = g(f(x))$$

Το πεδίο ορισμού της $g \circ f$ αποτελείται από όλα τα στοιχεία x του πεδίου ορισμού της f για τα οποία το f(x) ανήκει στο πεδίο ορισμού της g. Δηλαδή είναι το σύνολο

$$D_{g \circ f} = \{x \in \mathbb{R} | x \in A \text{ Kal } f(x) \in B\}$$

Είναι φανερό ότι η $g \circ f$ ορίζεται αν $A_1 \neq \emptyset$, δηλαδή αν f(A) $B \neq \emptyset$.

Για να ορίζεται η συνάρτηση $g \circ f$ θα πρέπει να ισχύει $f(A) \cap B \neq \emptyset$.

(Αντίστοιχα ορίζεται και η σύνθεση $f\circ g$ με πεδίο ορισμού το $D_{f\circ g}=\{x\in\mathbb{R}|x\in B \text{ και } g(x)\in A\}$ και τύπο $(f\circ g)(x)=f(g(x)).$)

Ορισμός 8:

Δίνεται μια συνάρτηση f ορισμένη σε ένα διάστημα Δ του πεδίου ορισμού της και έστω x_1, x_2 δύο στοιχεία του Δ . Η f θα ονομάζεται

1.1 γνησίως αύξουσα στο Δ αν για κάθε $x_1, x_2 \in \Delta$ με $x_1 < x_2$ ισχύει $f(x_1) < f(x_2)$:

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

1.2 γνησίως φθίνουσα στο Δ αν για κάθε $x_1, x_2 \in \Delta$ με $x_1 < x_2$ ισχύει $f(x_1) > f(x_2)$:

$$x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

Η f σε κάθε περίπτωση λέγεται γνησίως μονότονη.

Ορισμός 9 :

Έστω μια συνάρτηση f με πεδίο ορισμού ένα σύνολο A και έστω $x_0 \in A$. Η f θα λέμε ότι παρουσιάζει

1.1 ολικό μέγιστο στο x_0 το $f(x_0)$ όταν

$$f(x) \le f(x_0)$$
 για κάθε $x \in A$

1.2 ολικό ελάχιστο στο x_0 το $f(x_0)$ όταν

$$f(x) \ge f(x_0)$$
 για κάθε $x \in A$

Το ολικό μέγιστο και ολικό ελάχιστο μιας συνάρτησης ονομάζονται **ολικά ακρότατα**. Το x_0 λέγεται **θέση** ακρότατου.

Ορισμός 10:

Μια συνάρτηση $f:A\to\mathbb{R}$ ονομάζεται 1-1 εάν κάθε στοιχείο $x\in A$ του πεδίου ορισμού αντιστοιχεί μέσω της συνάρτησης, σε μοναδική τιμή f(x) του συνόλου τιμών της. Για κάθε ζεύγος αριθμών $x_1,x_2\in A$ του πεδίου ορισμού της f θα ισχύει

$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

Ορισμός 11:

Έστω μια συνάρτηση $f:A\to\mathbb{R}$ με σύνολο τιμών f(A). Η συνάρτηση με την οποία κάθε $y\in f(A)$ αντιστοιχεί σε ένα **μοναδικό** $x\in A$ για το οποίο ισχύει f(x)=y, λέγεται αντίστροφη συνάρτηση της f.

- Συμβολίζεται με f^{-1} και είναι $f^{-1}: f(A) \to A$.
- Το πεδίο ορισμού της f^{-1} είναι το σύνολο τιμών f(A) της f, ενώ το σύνολο τιμών της f^{-1} είναι το πεδίο ορισμού A της f.
- Ισχύει ότι $x = f^{-1}(y)$ για κάθε $y \in f(A)$.

Ορισμός 12:

Μια συνάρτηση f ονομάζεται συνεχής σε ένα σημείο x_0 του πεδίου ορισμού της όταν το όριο της στο x_0 είναι ίσο με την τιμή της στο σημείο αυτό. Δηλαδή

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Ορισμός 13:

1.1 Μια συνάρτηση f θα λέμε ότι είναι **συνεχής** εάν είναι συνεχής σε κάθε σημείο του πεδίου ορισμού της.

- **1.2** Μια συνάρτηση f θα λέγεται συνεχής σε ένα **ανοιχτό** διάστημα (a, β) εάν είναι συνεχής σε κάθε σημείο του διαστήματος.
- **1.3** Μια συνάρτηση f θα λέγεται συνεχής σε ένα **κλειστό** διάστημα $[a, \beta]$ εάν είναι συνεχής σε κάθε σημείο του ανοιχτού διαστήματος και επιπλέον ισχύει

$$\lim_{x \to a^+} f(x) = f(a) \text{ kal } \lim_{x \to \beta^-} f(x) = f(\beta)$$

Ορισμός 14:

Μια συνάρτηση f λέγεται παραγωγίσιμη σε ένα σημείο x_0 του πεδίου ορισμού της αν το όριο

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

υπάρχει και είναι πραγματικός αριθμός. Το όριο αυτό ονομάζεται παράγωγος της f στο x_0 και συμβολίζεται $f'(x_0)$.

Ορισμός 15 : Μία συνάρτηση f θα λέγεται παραγωγίσιμη στο πεδίο ορισμού της ή απλά παραγωγίσιμη, όταν είναι παραγωγίσιμη σε κάθε σημείο $x_0 \in D_f$.

- **1.2** Μια συνάρτηση f θα λέγεται παραγωγίσιμη σε ένα **ανοικτό** διάστημα (a, β) του πεδίου ορισμού της όταν είναι παραγωγίσιμη σε κάθε σημείο $x_0 \in (a, \beta)$.
- **1.3** Μια συνάρτηση f θα λέγεται παραγωγίσιμη σε ένα **κλειστό** διάστημα $[a, \beta]$ του πεδίου ορισμού της όταν είναι παραγωγίσιμη σε κάθε σημείο $x_0 \in (a, \beta)$ και επιπλέον ισχύει

$$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} \in \mathbb{R} \quad \text{kal} \quad \lim_{x \to \beta^-} \frac{f(x) - f(\beta)}{x - \beta} \in \mathbb{R}$$

Ορισμός 16:

Έστω μια συνάρτηση $f: \to \mathbb{R}$ και έστω A_1 το σύνολο των σημείων $x \in A$ για τα οποία η f είναι παραγωγίσιμη. Η συνάρτηση με την οποία κάθε $x \in A_1$ αντιστοιχεί στο f'(x) ονομάζεται πρώτη παράγωγος της f η απλά παράγωγος της f. Συμβολίζεται με f'.

Ορισμός 17:

Έστω A_1 το σύνολο των σημείων για τα οποία η f είναι παραγωγίσιμη. Αν υποθέσουμε ότι το A_1 είναι διάστημα ή ένωση διαστημάτων τότε η παράγωγος της f', αν υπάρχει, λέγεται δεύτερη παράγωγος της f και συμβολίζεται με f''. Επαγωγικά ορίζεται και η ν -οστή παράγωγος της f και συμβολίζεται με $f^{(\nu)}$. Δηλαδή

$$f^{(v)} = \left[f^{(v-1)} \right]'$$

Ορισμός 18:

Αν δύο μεταβλητά μεγέθη x, y συνδέονται με τη σχέση y = f(x), όταν f είναι μια συνάρτηση παραγωγίσιμη στο x_0 , τότε ονομάζουμε **ρυθμό μεταβολής** του y ως προς το x στο σημείο x_0 την παράγωγο $f'(x_0)$.

Ορισμός 19:

Μια συνάρτηση f, με πεδίο ορισμού A, θα λέμε ότι παρουσιάζει τοπικό μέγιστο στο $x_0 \in A$ όταν υπάρχει $\delta > 0$ τέτοιο ώστε

$$f(x) \le f(x_0)$$
, για κάθε $x \in A \cap (x_0 - \delta, x_0 + \delta)$

Το x_0 λέγεται θέση η σημείο τοπικού μέγιστου, ενώ το $f(x_0)$ τοπικό μέγιστο της f.

Ορισμός 20:

Μια συνάρτηση f, με πεδίο ορισμού A, θα λέμε ότι παρουσιάζει τοπικό ελάχιστο στο $x_0 \in A$ όταν υπάρχει $\delta > 0$ τέτοιο ώστε

$$f(x) \ge f(x_0)$$
, για κάθε $x \in A \cap (x_0 - \delta, x_0 + \delta)$

Το x_0 λέγεται **θέση** η σημείο τοπικού ελάχιστου, ενώ το $f(x_0)$ τοπικό ελάχιστο της f.

Ορισμός 21 :

Τα τοπικά ελάχιστα και τα τοπικά μέγιστα της f ονομάζονται τοπικά ακρότατα της f.

Ορισμός 22:

Μια συνάρτηση f λέμε ότι στρέφει τα κοίλα προς τα άνω ή είναι κυρτή στο Δ , αν η f' είναι γνησίως αύξουσα στο Δ .

Ορισμός 23:

Μια συνάρτηση f λέμε ότι στρέφει τα κοίλα προς τα κάτω ή είναι κοίλη στο Δ , αν η f' είναι γνησίως φθίνουσα στο Δ .

Ορισμός 24:

Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (a, β) , με εξαίρεση ίσως ένα σημείο x_0 . Αν:

- η f είναι κυρτή στο (a, x_0) και κοίλη στο (x_0, β) η αντιστρόφως και
- η C_f έχει εφαπτομένη στο $A(x_0, f(x_0))$

τότε το σημείο $A(x_0, f(x_0))$ λέγεται σημείο καμπής της C_f .

Ορισμός 25 :

Αν ένα τουλάχιστον από τα όρια $\lim_{x\to x_0^-}f(x), \lim_{x\to x_0^+}f(x)$ ισούται με $\pm\infty$ τότε η ευθεία $x=x_0$ λέγεται κατακόρυφη ασύμπτωτη της C_f .

Ορισμός 26:

Aν $\lim_{x\to +\infty} f(x)=l$ (αντιστοίχως $\lim_{x\to -\infty} f(x)=l$) τότε η ευθεία y=l λέγεται **οριζόντια ασύμπτωτη** της C_f στο $+\infty$ (αντίστοιχα στο $-\infty$).