Exercise 1 (5.2 Stein& Shakarchi). Find the order of growth of the following entire functions:

i)
$$p(z)$$
, p is a polynomial. ii) e^{bz^n} , and

iii)
$$e^{e^z}$$
.

Answer

Recall an entire function f has order of growth at most ρ if there exist A, B such that

$$|f(z)| \leqslant Ae^{B|z|^{\rho}}$$

We will use the fact that if f, g have order of growth ρ_f and ρ_g , then $\operatorname{ord}(fg) \leq \max \rho_f, \rho_g$. This can be seen to be true as follows:

$$|fg(z)| \le A_1 e^{B_1|z|^{\rho_f}} A_2 e^{B_2|z|^{\rho_g}} = A_1 A_2 e^{B_1|z|^{\rho_f} + B_2|z|^{\rho_g}}.$$

If it happens that $\rho_f = \rho_g$, then $\operatorname{ord}(fg) \leqslant \rho_f$. Otherwise, suppose $\rho_f > \rho_g$ then

i) For this case, assume first that p is linear, so p(z) = az + b with $a \neq 0$. Without losing generality we may take a = 1 because $|az + b| = |a| |z + \frac{b}{a}|$. Now for $t \in \mathbb{R}$ we have $e^t \geqslant 1 + t$, so for $t = n|z|^{\frac{1}{n}}$ where $n \in \mathbb{N}$ we have

$$e^{n|z|^{1/n}} \geqslant 1 + n|z|^{\frac{1}{n}}$$

ii) Note that

$$|e^{bz^n}| = \left| \exp\left(b\sum_{k=0}^n \binom{n}{k} x^k (iy)^{n-k}\right) \right|.$$

If $z = re^{i\theta}$ then $z^n = r^n \cos(n\theta) + i\sin(n\theta)$ so

$$|e^{bz^n}| = |\exp(br^n\cos(n\theta) + ibr^n\sin(n\theta))| = |\exp(br^n\cos(n\theta))|$$