Stat 602 Homework 2

Kiegan Rice and Nate Garton

Due 3/4/2019

Problem 1

Problem 4.3

A table of RMSEs for 8-fold cross-validation can be found in Table 1.

Table 1: 8-fold CV Model Model	RMSEs for Problem 4.3 8-fold CV RMSE
None	35861.43
Size	27231.49
Fireplace	28347.08
Bsmt Bath	35310.72
Land	32843.6
Size, Fireplace	23768.45
Size, Bsmt Bath	26697.35
Size, Land	25440.13
Fireplace, Bsmt Bath	28265.62
Fireplace, Land	26754.4
Bsmt Bath, Land	32310.41
Size, Fireplace, Bsmt Bath	22417.13
Size, Fireplace, Land	22625.1
Fireplace, Bsmt Bath, Land	27556.14
Size, Fireplace, Bsmt Bath, I	Land 21397.04

The lowest RMSE appears to be for the full model which includes Size, Fireplace, Bsmt Bath, and Land.

Problem 4.4

Part a

```
## k-Nearest Neighbors
##
## 146 samples
    9 predictor
##
     2 classes: '1', '2'
##
##
## Pre-processing: centered (9), scaled (9)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 131, 132, 131, 132, 131, 131, ...
## Resampling results across tuning parameters:
##
##
    k
         Accuracy
                    Kappa
##
     1 0.8095238 0.6189730
      2 0.8157143 0.6329419
      3 0.8090476 0.6191764
##
```

```
##
         0.7747619
                     0.5512255
##
      5
         0.7742857
                     0.5506780
##
      6
         0.7590476
                     0.5200733
##
      7
         0.7457143
                     0.4944270
##
      8
         0.7319048
                     0.4682404
      9
##
         0.7666667
                     0.5378997
##
     10
         0.7666667
                     0.5365162
##
     11
         0.7666667
                     0.5381736
##
     12
         0.7757143
                     0.5573981
##
     13
         0.7604762
                     0.5252273
##
     14
         0.7676190
                     0.5395213
         0.7609524
##
     15
                     0.5264157
     16
##
         0.7542857
                     0.5126567
         0.7747619
##
     17
                     0.5540149
##
         0.7480952
     18
                     0.5034327
##
     19
         0.7619048
                     0.5291162
##
        0.7547619
                     0.5155154
##
```

Accuracy was used to select the optimal model using the largest value. ## The final value used for the model was k = 2.

Based on 10-fold cross-validation, the accuracy is estimated to be highest when k=4.

Part b

The classification rule $\hat{y} = 2I[t(x) \ge k/2] + I[t(x) < k/2]$ is equivalent to $\hat{y} = 2I[t(x)/k \ge 1/2] + I[t(x)/k < 1/2]$. Here, t(x)/k is an estimate of E[type = 2|x] = P(type = 2|x). Thus, this is directly an estimate of a posterior class probability which accounts for the prior class probabilities. This means that no modification of kNN needs to be made to account for differing prior probabilities.

Problem 5.1

The following are decompositions using the matrix

$$X = \begin{bmatrix} 2 & 4 & 7 & 2 \\ 4 & 3 & 5 & 5 \\ 3 & 4 & 6 & 1 \\ 5 & 2 & 4 & 2 \\ 1 & 3 & 4 & 4 \end{bmatrix}$$

Part a

The QR decomposition of X is:

$$Q = \begin{bmatrix} -0.27 & 0.57 & 0.77 & 0.04 \\ -0.54 & -0.07 & -0.13 & 0.56 \\ -0.4 & 0.37 & -0.35 & -0.71 \\ -0.67 & -0.5 & 0.1 & -0.13 \\ -0.13 & 0.53 & -0.5 & 0.4 \end{bmatrix}, \quad R = \begin{bmatrix} -7.42 & -6.07 & -10.25 & -5.53 \\ 0 & 4.15 & 5.99 & 2.28 \\ 0 & 0 & 1.06 & -1.23 \\ 0 & 0 & 0 & 3.57 \end{bmatrix}$$

Thus, the basis for C(X) will be the columns of the matrix Q.

The Singular Value Decomposition of X is:

$$U = \begin{bmatrix} -0.5 & 0.53 & 0.16 & -0.66 \\ -0.5 & -0.59 & 0.13 & -0.11 \\ -0.46 & 0.49 & -0.25 & 0.65 \\ -0.39 & -0.33 & -0.68 & -0.09 \\ -0.37 & -0.17 & 0.65 & 0.35 \end{bmatrix}, \quad D = \begin{bmatrix} 16.58 & 0 & 0 & 0 \\ 0 & 3.78 & 0 & 0 \\ 0 & 0 & 3.38 & 0 \\ 0 & 0 & 0 & 0.55 \end{bmatrix},$$

$$V = \begin{bmatrix} -0.4 & -0.43 & -0.8 & 0.12 \\ -0.44 & 0.3 & 0.18 & 0.83 \\ -0.71 & 0.45 & 0.04 & -0.54 \\ -0.38 & -0.72 & 0.57 & -0.06 \end{bmatrix}$$

Thus, the basis for C(X) will be the columns of the matrix U.

Part b

We can find the eigen (spectral) decomposition of X'X by calculating the eigenvalues, D^2 , and the eigenvectors, which will be the columns of V:

$$D^{2} = \begin{bmatrix} 274.94 \\ 14.32 \\ 11.44 \\ 0.3 \end{bmatrix}, \quad V = \begin{bmatrix} -0.4 & -0.43 & -0.8 & 0.12 \\ -0.44 & 0.3 & 0.18 & 0.83 \\ -0.71 & 0.45 & 0.04 & -0.54 \\ -0.38 & -0.72 & 0.57 & -0.06 \end{bmatrix}$$

We can find the eigen (spectral) decomposition of XX' by calculating the eigenvalues, D^2 , and the eigenvectors, which will be the columns of U (rather than V as for X'X):

$$D^{2} = \begin{bmatrix} 274.94 \\ 14.32 \\ 11.44 \\ 0.3 \end{bmatrix}, \quad V = \begin{bmatrix} -0.5 & 0.53 & 0.16 & -0.66 \\ -0.5 & -0.59 & 0.13 & -0.11 \\ -0.46 & 0.49 & -0.25 & 0.65 \\ -0.39 & -0.33 & -0.68 & -0.09 \\ -0.37 & -0.17 & 0.65 & 0.35 \end{bmatrix}$$

Part c

The best rank = 1 approximation to X will be $X^{*1} = U_1 diag(d_1)V'_1$, where U_1 is a matrix with the first column of U, and V_1 is a matrix with the first column of V:

$$X^{*1} = U_1 diag(d_1)V_1' = \begin{bmatrix} -0.5 \\ -0.5 \\ -0.46 \\ -0.39 \\ -0.37 \end{bmatrix} \times \begin{bmatrix} 16.58 \end{bmatrix} \times \begin{bmatrix} -0.4 & -0.44 & -0.71 & -0.38 \end{bmatrix}$$

$$= \begin{bmatrix} 3.35 & 3.61 & 5.89 & 3.11 \\ 3.38 & 3.64 & 5.94 & 3.14 \\ 3.08 & 3.31 & 5.4 & 2.85 \\ 2.63 & 2.83 & 4.62 & 2.43 \\ 2.45 & 2.64 & 4.31 & 2.27 \end{bmatrix}$$

The best rank = 2 approximation to X will be $X^{*2} = U_2 diag(d_1, d_2)V_2'$, where U_2 is a matrix with the first two columns of U, and V_2 is a matrix with the first two columns of V:

$$X^{*2} = U_2 diag(d_1, d_2) V_2' = \begin{bmatrix} -0.5 & 0.53 \\ -0.5 & -0.59 \\ -0.46 & 0.49 \\ -0.39 & -0.33 \\ -0.37 & -0.17 \end{bmatrix} \times \begin{bmatrix} 16.58 & 0 \\ 0 & 3.78 \end{bmatrix} \times \begin{bmatrix} -0.4 & -0.44 & -0.71 & -0.38 \\ -0.43 & 0.3 & 0.45 & -0.72 \end{bmatrix}$$

$$= \begin{bmatrix} 2.49 & 4.2 & 6.78 & 1.66 \\ 4.35 & 2.97 & 4.95 & 4.75 \\ 2.28 & 3.86 & 6.23 & 1.51 \\ 3.16 & 2.46 & 4.07 & 3.33 \\ 2.73 & 2.44 & 4.02 & 2.75 \end{bmatrix}$$

Part d

Note that

$$\tilde{X} = \begin{bmatrix} -1 & 0.8 & 1.8 & -0.8 \\ 1 & -0.2 & -0.2 & 2.2 \\ 0 & 0.8 & 0.8 & -1.8 \\ 2 & -1.2 & -1.2 & -0.8 \\ -2 & -0.2 & -1.2 & 1.2 \end{bmatrix}$$

The Singular Value Decomposition of \tilde{X} is:

$$\tilde{U} = \begin{bmatrix} -0.57 & 0.17 & 0.29 & -0.6 \\ 0.51 & 0.11 & 0.7 & 0.21 \\ -0.5 & -0.25 & -0.09 & 0.69 \\ 0.34 & -0.69 & -0.32 & -0.33 \\ 0.22 & 0.65 & -0.57 & 0.03 \end{bmatrix}, \quad \tilde{D} = \begin{bmatrix} 3.83 & 0 & 0 & 0 \\ 0 & 3.38 & 0 & 0 \\ 0 & 0 & 2.01 & 0 \\ 0 & 0 & 0 & 0.48 \end{bmatrix}$$

$$\tilde{V} = \begin{bmatrix} 0.34 & -0.81 & 0.45 & 0.18 \\ -0.37 & 0.18 & 0.26 & 0.88 \\ -0.58 & 0.03 & 0.68 & -0.45 \\ 0.64 & 0.56 & 0.52 & 0 \end{bmatrix}$$

Therefore, the principal component directions will be the columns of \tilde{V} , the principal components will be the inner products $z_j = \langle x_i, v_j \rangle$, the columns of:

$$z = \begin{bmatrix} -2.19 & 0.56 & 0.57 & -0.29 \\ 1.95 & 0.39 & 1.4 & 0.1 \\ -1.91 & -0.84 & -0.18 & 0.33 \\ 1.3 & -2.32 & -0.65 & -0.16 \\ 0.85 & 2.21 & -1.14 & 0.02 \end{bmatrix}$$

The "loadings" of the first principal component are the first column of the matrix \tilde{V} ,

$$\tilde{V}_1 = \begin{bmatrix} 0.34 \\ -0.37 \\ -0.58 \\ 0.64 \end{bmatrix}$$

Part e

The best rank = 1 approximation to \tilde{X} will be $\tilde{X}^{*1} = \tilde{U}_1 diag(\tilde{d}_1), \tilde{V}_1$, where \tilde{U}_1 is a matrix with first column of \tilde{U} and \tilde{V}_1 is a matrix with the first column of \tilde{V} :

$$\tilde{X}^{*1} = \tilde{U}_1 diag(\tilde{d}_1) \tilde{V}_1' = \begin{bmatrix} -0.57\\0.51\\-0.5\\0.34\\0.22 \end{bmatrix} \times \begin{bmatrix} 3.83 \end{bmatrix} \times \begin{bmatrix} 0.34 & -0.37 & -0.58 & 0.64 \end{bmatrix}$$

$$= \begin{bmatrix} -0.75 & 0.81 & 1.26 & -1.41\\0.67 & -0.72 & -1.12 & 1.26\\-0.66 & 0.71 & 1.1 & -1.23\\0.45 & -0.48 & -0.75 & 0.84\\0.29 & -0.31 & -0.49 & 0.55 \end{bmatrix}$$

The best rank = 2 approximation to \tilde{X} will be $\tilde{X}^{*2} = \tilde{U}_2 diag(\tilde{d}_1, \tilde{d}_2)\tilde{V}_2'$, where \tilde{U}_2 is a matrix with the first two columns of \tilde{U} , and \tilde{V}_2 is a matrix with the first two columns of \tilde{V} :

$$\tilde{X}^{*2} = \tilde{U}_2 diag(\tilde{d}_1, \tilde{d}_2) \tilde{V}_2' = \begin{bmatrix} -0.57 & 0.17 \\ 0.51 & 0.11 \\ -0.5 & -0.25 \\ 0.34 & -0.69 \\ 0.22 & 0.65 \end{bmatrix} \times \begin{bmatrix} 3.83 & 0 \\ 0 & 3.38 \end{bmatrix} \times \begin{bmatrix} 0.34 & -0.37 & -0.58 & 0.64 \\ -0.81 & 0.18 & 0.03 & 0.56 \end{bmatrix}$$

$$= \begin{bmatrix} -1.2 & 0.91 & 1.28 & -1.1 \\ 0.36 & -0.65 & -1.11 & 1.47 \\ 0.02 & 0.56 & 1.07 & -1.71 \\ 2.32 & -0.89 & -0.83 & -0.46 \\ -1.49 & 0.08 & -0.41 & 1.79 \end{bmatrix}$$

Part f

Note that since here we are dealing with a sample covariance matrix, we have a symmetric non-negative definite matrix, so an eigen analysis will also yield all the information we need for a singular value decomposition, and thus we can easily find the best 1 and 2 component approximations.

We begin with the matrix:

$$\frac{1}{5}\tilde{X}'\tilde{X} = \begin{bmatrix} 2 & -0.6 & -0.4 & -0.2 \\ -0.6 & 0.56 & 0.76 & -0.36 \\ -0.4 & 0.76 & 1.36 & -0.76 \\ -0.2 & -0.36 & -0.76 & 2.16 \end{bmatrix}$$

An eigen decomposition yields:

$$\text{Eigenvalues} = D = \begin{bmatrix} 2.94 \\ 2.29 \\ 0.81 \\ 0.05 \end{bmatrix}, \quad \text{Eigenvectors} = U = V = \begin{bmatrix} 0.34 & 0.81 & -0.45 & -0.18 \\ -0.37 & -0.18 & -0.26 & -0.88 \\ -0.58 & -0.03 & -0.68 & 0.45 \\ 0.64 & -0.56 & -0.52 & 0 \end{bmatrix}$$

Thus, a best 1 component approximation will be of the form:

$$\frac{1}{5}\tilde{X}'\tilde{X}^{*1} = \tilde{U}_1 diag(\tilde{d}_1)\tilde{V}_1' = \begin{bmatrix} 0.34\\ -0.37\\ -0.58\\ 0.64 \end{bmatrix} \times \begin{bmatrix} 2.94 \end{bmatrix} \times \begin{bmatrix} 0.34\\ -0.37 \end{bmatrix} -0.58 \quad 0.64$$

$$= \begin{bmatrix} 0.35 & -0.37 & -0.58 & 0.65\\ -0.37 & 0.4 & 0.62 & -0.7\\ -0.58 & 0.62 & 0.97 & -1.09\\ 0.65 & -0.7 & -1.09 & 1.22 \end{bmatrix}$$

A best 2 component approximation will be of the form:

$$\frac{1}{5}\tilde{X}'\tilde{X}^{*2} = \tilde{U}_2 diag(\tilde{d}_1, \tilde{d}_2)\tilde{V}_2' = \begin{bmatrix} 0.34 & 0.81 \\ -0.37 & -0.18 \\ -0.58 & -0.03 \\ 0.64 & -0.56 \end{bmatrix} \times \begin{bmatrix} 2.94 & 0 \\ 0 & 2.29 \end{bmatrix} \times \begin{bmatrix} 0.34 & -0.37 & -0.58 & 0.64 \\ 0.81 & -0.18 & -0.03 & -0.56 \end{bmatrix}$$

$$= \begin{bmatrix} 1.84 & -0.7 & -0.64 & -0.39 \\ -0.7 & 0.47 & 0.64 & -0.47 \\ -0.64 & 0.64 & 0.97 & -1.05 \\ -0.39 & -0.47 & -1.05 & 1.94 \end{bmatrix}$$

Part d - standardized

Note that

$$\tilde{X} = \begin{bmatrix}
-0.63 & 0.96 & 1.38 & -0.49 \\
0.63 & -0.24 & -0.15 & 1.34 \\
0 & 0.96 & 0.61 & -1.1 \\
1.26 & -1.43 & -0.92 & -0.49 \\
-1.26 & -0.24 & -0.92 & 0.73
\end{bmatrix}$$

The Singular Value Decomposition of $\tilde{\tilde{X}}$ is:

$$\tilde{U} = \begin{bmatrix}
-0.6 & 0 & 0.14 & -0.65 \\
0.3 & 0.22 & 0.79 & 0.2 \\
-0.44 & -0.34 & -0.16 & 0.68 \\
0.58 & -0.58 & -0.24 & -0.27 \\
0.16 & 0.7 & -0.53 & 0.04
\end{bmatrix}, \quad \tilde{D} = \begin{bmatrix}
3.04 & 0 & 0 & 0 \\
0 & 2.14 & 0 & 0 \\
0 & 0 & 1.39 & 0 \\
0 & 0 & 0 & 0.49
\end{bmatrix}$$

$$\tilde{V} = \begin{bmatrix} 0.36 & -0.69 & 0.56 & 0.29 \\ -0.63 & 0.13 & 0.19 & 0.74 \\ -0.6 & -0.17 & 0.49 & -0.61 \\ 0.33 & 0.69 & 0.64 & 0 \end{bmatrix}$$

Therefore, the principal component directions will be the columns of \tilde{V} , the principal components will be the inner products $z_j = \langle x_i, v_j \rangle$, the columns of:

$$z = \begin{bmatrix} -1.82 & -0.01 & 0.19 & -0.32 \\ 0.92 & 0.48 & 1.09 & 0.1 \\ -1.34 & -0.73 & -0.22 & 0.33 \\ 1.75 & -1.24 & -0.33 & -0.13 \\ 0.49 & 1.5 & -0.73 & 0.02 \end{bmatrix}$$

The "loadings" of the first principal component are the first column of the matrix \tilde{V} ,

$$\tilde{V}_1 = \begin{bmatrix} 0.36 \\ -0.63 \\ -0.6 \\ 0.33 \end{bmatrix}$$

Part e - standardized

The best rank = 1 approximation to \tilde{X} will be $\tilde{X}^{*1} = \tilde{U}_1 diag(\tilde{d}_1), \tilde{V}_1$, where \tilde{U}_1 is a matrix with first column of \tilde{U} and \tilde{V}_1 is a matrix with the first column of \tilde{V} :

$$\begin{split} \tilde{\tilde{X}}^{*1} &= \tilde{\tilde{U}}_1 diag(\tilde{\tilde{d}}_1) \tilde{\tilde{V}}_1' = \begin{bmatrix} -0.6 \\ 0.3 \\ -0.44 \\ 0.58 \\ 0.16 \end{bmatrix} \times \begin{bmatrix} 3.04 \end{bmatrix} \times \begin{bmatrix} 0.36 & -0.63 & -0.6 & 0.33 \end{bmatrix} \\ &= \begin{bmatrix} -0.65 & 1.15 & 1.09 & -0.61 \\ 0.33 & -0.58 & -0.55 & 0.31 \\ -0.48 & 0.85 & 0.8 & -0.45 \\ 0.63 & -1.11 & -1.05 & 0.58 \\ 0.18 & -0.31 & -0.29 & 0.16 \end{bmatrix} \end{split}$$

The best rank=2 approximation to \tilde{X} will be $\tilde{X}^{*2}=\tilde{U}_2diag(\tilde{d}_1,\tilde{d}_2)\tilde{V}_2'$, where \tilde{U}_2 is a matrix with the first two columns of \tilde{U} , and \tilde{V}_2 is a matrix with the first two columns of \tilde{V} :

$$\begin{split} \tilde{X}^{*2} &= \tilde{\tilde{U}}_2 diag(\tilde{\tilde{d}}_1, \tilde{\tilde{d}}_2) \tilde{\tilde{V}}_2' = \begin{bmatrix} -0.6 & 0 \\ 0.3 & 0.22 \\ -0.44 & -0.34 \\ 0.58 & -0.58 \\ 0.16 & 0.7 \end{bmatrix} \times \begin{bmatrix} 3.04 & 0 \\ 0 & 2.14 \end{bmatrix} \times \begin{bmatrix} 0.36 & -0.63 & -0.6 & 0.33 \\ -0.69 & 0.13 & -0.17 & 0.69 \end{bmatrix} \\ &= \begin{bmatrix} -0.65 & 1.15 & 1.09 & -0.61 \\ 0 & -0.52 & -0.63 & 0.64 \\ 0.03 & 0.75 & 0.93 & -0.95 \\ 1.49 & -1.27 & -0.84 & -0.27 \\ -0.86 & -0.12 & -0.55 & 1.2 \end{bmatrix} \end{split}$$

Part f - standardized

Note that since here we are dealing with a sample covariance matrix, we have a symmetric non-negative definite matrix, so an eigen analysis will also yield all the information we need for a singular value decomposition, and thus we can easily find the best 1 and 2 component approximations.

We begin with the matrix:

$$\frac{1}{5}\tilde{\tilde{X}}'\tilde{\tilde{X}} = \begin{bmatrix} 0.8 & -0.45 & -0.19 & -0.08 \\ -0.45 & 0.8 & 0.7 & -0.26 \\ -0.19 & 0.7 & 0.8 & -0.35 \\ -0.08 & -0.26 & -0.35 & 0.8 \end{bmatrix}$$

An eigen decomposition yields:

$$\text{Eigenvalues} = D = \begin{bmatrix} 1.85 \\ 0.91 \\ 0.39 \\ 0.05 \end{bmatrix}, \quad \text{Eigenvectors} = U = V = \begin{bmatrix} 0.36 & -0.69 & -0.56 & 0.29 \\ -0.63 & 0.13 & -0.19 & 0.74 \\ -0.6 & -0.17 & -0.49 & -0.61 \\ 0.33 & 0.69 & -0.64 & 0 \end{bmatrix}$$

Thus, a best 1 component approximation will be of the form:

$$\begin{split} \frac{1}{5}\tilde{\tilde{X}}'\tilde{\tilde{X}}^{*1} &= \tilde{\tilde{U}}_1 diag(\tilde{\tilde{d}}_1)\tilde{\tilde{V}}_1' = \begin{bmatrix} 0.36 \\ -0.63 \\ -0.6 \\ 0.33 \end{bmatrix} \times \begin{bmatrix} 1.85 \end{bmatrix} \times \begin{bmatrix} 0.36 \\ -0.63 \\ -0.63 \end{bmatrix} -0.6 \quad 0.33 \end{bmatrix} \\ &= \begin{bmatrix} 0.24 & -0.42 & -0.4 & 0.22 \\ -0.42 & 0.74 & 0.7 & -0.39 \\ -0.4 & 0.7 & 0.66 & -0.37 \\ 0.22 & -0.39 & -0.37 & 0.21 \end{bmatrix} \end{split}$$

A best 2 component approximation will be of the form:

$$\begin{split} \frac{1}{5} \tilde{\tilde{X}}' \tilde{\tilde{X}}^{*2} &= \tilde{\tilde{U}}_2 diag(\tilde{\tilde{d}}_1, \tilde{\tilde{d}}_2) \tilde{\tilde{V}}_2' = \begin{bmatrix} 0.36 & -0.69 \\ -0.63 & 0.13 \\ -0.6 & -0.17 \\ 0.33 & 0.69 \end{bmatrix} \times \begin{bmatrix} 1.85 & 0 \\ 0 & 0.91 \end{bmatrix} \times \begin{bmatrix} 0.36 & -0.63 & -0.6 & 0.33 \\ -0.69 & 0.13 & -0.17 & 0.69 \end{bmatrix} \\ &= \begin{bmatrix} 0.68 & -0.5 & -0.29 & -0.21 \\ -0.5 & 0.76 & 0.68 & -0.31 \\ -0.29 & 0.68 & 0.69 & -0.48 \\ -0.21 & -0.31 & -0.48 & 0.64 \end{bmatrix} \end{split}$$

Problem 2

Part a

A scatterplot of the data and the fitted values from the OLS model are shown below.

Part b

The solid line in the plot below gives (approximately) the fitted values when there are 2 nonzero coefficients, the dashed line are fitted values when there are 4 nonzero coefficients, and the dotted line are fitted values for 8 nonzero coefficients.

Problem 3

Problem 4 Nate

Part a

```
## [1] "Matrix H"
                   [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
            1 0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
##
    [1,]
   [2,]
            1 0.1 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
              0.2 0.008 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
##
   [3,]
   [4,]
              0.3 0.027 0.008 0.001 0.000 0.000 0.000 0.000 0.000 0.000
              0.4 0.064 0.027 0.008 0.001 0.000 0.000 0.000 0.000 0.000
    [5,]
##
    [6,]
              0.5 0.125 0.064 0.027 0.008 0.001 0.000 0.000 0.000 0.000
##
##
    [7,]
             0.6 0.216 0.125 0.064 0.027 0.008 0.001 0.000 0.000 0.000
              0.7 0.343 0.216 0.125 0.064 0.027 0.008 0.001 0.000 0.000
    [8,]
##
    [9,]
              0.8 0.512 0.343 0.216 0.125 0.064 0.027 0.008 0.001 0.000
              0.9 0.729 0.512 0.343 0.216 0.125 0.064 0.027 0.008 0.001
##
  [10,]
              1.0 1.010 0.738 0.520 0.350 0.222 0.130 0.068 0.030 0.010
   [11,]
   [1] "Matrix Omega"
         [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
##
    [1,]
                0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
   [2,]
                0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
##
    [3,]
           0
                0 4.704 3.744 2.820 1.968 1.224 0.624 0.204 0.000 0.048
                 0 3.744 3.024 2.310 1.632 1.026 0.528 0.174 0.000 0.042
   [4,]
##
           0
    [5,]
                 0 2.820 2.310 1.800 1.296 0.828 0.432 0.144 0.000 0.036
##
    [6,]
                0 1.968 1.632 1.296 0.960 0.630 0.336 0.114 0.000 0.030
##
    [7,]
                0 1.224 1.026 0.828 0.630 0.432 0.240 0.084 0.000 0.024
                0 0.624 0.528 0.432 0.336 0.240 0.144 0.054 0.000 0.018
##
    [8,]
    [9,]
                0 0.204 0.174 0.144 0.114 0.084 0.054 0.024 0.000 0.012
```

```
## [10,]
                0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
         0 0 0.048 0.042 0.036 0.030 0.024 0.018 0.012 0.006 0.000
## [11,]
## [1] "Matrix K"
                  [,1]
                               [,2]
                                            [,3]
                                                           [,4]
                                                                        [,5]
##
    [1,] 1607.6951262 -3646.1707571 2.584683e+03
                                                   -692.561356
                                                                   185.56240
   [2.] -3646.1707571 9877.0245425 -9.508098e+03
                                                   4155.368138
                                                                -1113.37438
   [3,] 2584.6830284 -9508.0981702 1.403239e+04 -10621.472553
##
                                                                  4453.49753
##
    [4.]
         -692.5613564 4155.3681382 -1.062147e+04 14330.522073 -10700.61574
   [5,]
          185.5623971 -1113.3743825 4.453498e+03 -10700.615737 14348.96542
##
   [6,]
          -49.6882320
                        298.1293918 -1.192518e+03
                                                   4471.940877 -10695.24594
                        -79.1431848 3.165727e+02
   [7,]
           13.1905308
                                                  -1187.147772
                                                                 4432.01835
##
                                                   276.650211
##
   [8,]
           -3.0738912
                       18.4433474 -7.377339e+01
                                                                 -1032.82746
##
   [9,]
           0.1774497
                         -1.0646979 4.258792e+00
                                                                    59.62308
                                                   -15.970469
## [10,]
           0.2222482
                         -1.3334891 5.333956e+00
                                                     -20.002336
                                                                    74.67539
##
  [11,]
           -0.0365436
                          0.2192616 -8.770464e-01
                                                      3.288924
                                                                   -12.27865
##
                             [,7]
                                          [,8]
                                                       [,9]
                 [,6]
                                                                     [,10]
##
    [1,]
           -49.68823
                         13.19053
                                     -3.073891
                                                   0.1774497
                                                                 0.2222482
   [2,]
           298.12939
                        -79.14318
                                     18.443347
                                                  -1.0646979
                                                                -1.3334891
##
##
    [3,] -1192.51757
                        316.57274
                                    -73.773390
                                                  4.2587917
                                                                5.3339563
##
   [4,]
          4471.94088
                     -1187.14777
                                    276.650211
                                                -15.9704689
                                                              -20.0023361
   [5,] -10695.24594
                       4432.01835 -1032.827456
                                                59.6230838
                                                               74.6753880
                                                             -278.6992159
   [6,] 14309.04289 -10540.92563 3854.659612
                                                -222.5218665
##
    [7,] -10540.92563 13731.68415 -8385.810993
                                                 830.4643821 1040.1214758
##
##
                                               2900.6643383 -3881.7866872
   [8,]
          3854.65961 -8385.81099
                                   5688.584360
   [9,]
          -222.52187
                        830.46438
                                   2900.664338 -8602.1481175
                                                              6020.8472547
## [10,]
          -278.69922
                      1040.12148 -3881.786687
                                                6020.8472547 -3504.2529772
            45.82568
##
   [11,]
                       -171.02406
                                   638.270548 -974.3301494
                                                               544.8743825
##
               [,11]
##
    [1,]
          -0.0365436
##
    [2,]
           0.2192616
##
    [3,]
          -0.8770464
##
   [4,]
           3.2889242
   [5,] -12.2786502
##
##
    [6,]
          45.8256766
##
   [7,] -171.0240560
##
   [8,] 638.2705476
## [9,] -974.3301494
## [10,] 544.8743825
## [11,] -73.9323467
```

Part b

Part c

Problem 5

Part a

Part b

Problem 6

Part a

The plots for this problem can be seen in Figure 1.

Figure 1: Plots for effective degrees of freedom 5 (top) and 9 (bottom) for Problem 6(a).

kNN
elastic net
PCR
PLS
MARS (in earth)
Problem 8 Nate
Part a
Part b
Part c

Part d

Problem 7