Jeudi 26 octobre 2017; Durée: 08h30 à 10h20

Aucune documentation permise; une calculatrice permise

Problème 1 (15 points sur 100)

Trouvez la transformée de Fourier de la fonction $f(t) = e^{-jt\pi/2} \operatorname{Rect}\left(\frac{t-3}{2}\right)$.

Problème 2 (20 points sur 100)

Trouvez la transformée de Fourier de la fonction périodique suivante :

$$f_p(t) = t+1$$
 $-1 \le t < 1$

$$f_p(t) = f_p(t-2n)$$
 pout tout n

Problème 3 (30 points sur 100)

En sachant que $\delta_{T_0}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_0)$

A. (10 points) Donnez une esquisse de $f(t) = \delta_4(t-1)$ et trouvez sa transformée de Fourier.

B. (10 points) Donnez une esquisse du spectre de phase de $f(t) = \delta_4(t-1)$ pour $-5 < \omega < 5$. Vous pouvez supposer une phase entre moins infini et infini, ou une phase modulo 2π .

C. (10 points)Trouvez la transformée de Fourier $g(t) = \delta_4''(t)$, soit la deuxième dérivée de $\delta_4(t)$.

Problème 4 (35 points sur 100)

A. (20 points)Trouvez la transformée de Fourier de la fonction $f(t) = \begin{cases} \sin(\omega_0 t) & t > 0 \\ -\sin(\omega_0 t) & t < 0 \end{cases}$.

- B. (5 points) Est-ce que la fonction est périodique ? Est-ce que le spectre est discret ?
- C. (5 points) Quel est le taux de décroissance de la transformée de Fourier ?
- D. (5 points) Est-ce que f(t) est une fonction d'énergie ? Une fonction de puissance ?

fonction temporelle	transformée
$\operatorname{Rect}(t/\tau)^{(1)}$	$ au \operatorname{Sa}(\omega au/2)$
$\operatorname{Tri}(t/ au)^{(2)}$	$ au \operatorname{Sa}^2(\omega au/2)$
$\delta(t)$	1
1	$2\pi\delta(\omega)$
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
U(t)	$1/j\omega + \pi\delta(\omega)$
Sgn(t)	2/ <i>jω</i>
$\delta_{T_0}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_0)$	$\omega_0 \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_0)$
$e^{-eta t}\mathrm{U}ig(tig)$	$\frac{1}{\beta + j\omega}$
$e^{-eta t }$	$\frac{2\beta}{\beta^2 + \omega^2}$
$\delta'(t)$	jω
$\delta''(t)$	$(j\omega)^2$

domaine temporelle	domaine fréquentiel
$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$	$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$
f(t)	$F(\omega)$
F(t)	$2\pi f(-\omega)$
f(t+a)	$e^{ja\omega}F(\omega)$
$e^{jbt}f(t)$	$F(\omega-b)$
f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
$t^n f(t)$	$(j)^n \frac{d^n}{d\omega^n} F(\omega)$
$\frac{d^n}{dt^n}f(t)$	$(j\omega)^n F(\omega)$
f(t) pas continue	décroissance $1/\omega$
f(t) continue $f'(t)$ pas continue	décroissance $1/\omega^2$
f(t), f'(t) continue $f''(t)$ pas continue	décroissance $1/\omega^3$
$E = \int_{-\infty}^{+\infty} \left f(t) \right ^2 dt$	$E = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left F(\omega) \right ^2 d\omega$

rectangle de hauteur un, centré sur $t=t_0$, et de longueur τ .

² Tri
$$\left(\frac{t-t_0}{\tau}\right)$$

² Tri $\left(\frac{t-t_0}{\tau}\right)$ triangle de hauteur un, τ centré sur $t=t_0$, avec un base de longueur 2τ .

¹ $\operatorname{Rect}\left(\frac{t-t_0}{\tau}\right)$

$$f(t) \Leftrightarrow F(\omega) = TF\{f(t)\}$$

$$F(\omega) = A(\omega) + jB(\omega) = |F(\omega)|e^{jArg(\omega)}$$

$$E(\omega) = \frac{1}{2\pi}|F(\omega)|^2$$

$$fonction réelle en temps$$

$$f(t) réelle \Leftrightarrow F^*(\omega) = F(-\omega)$$

$$paire \qquad impaire$$

$$A(\omega) = \operatorname{Re} F(\omega) \qquad B(\omega) = \operatorname{Im} F(\omega)$$

$$|F(\omega)| \qquad \operatorname{Arg} F(\omega)$$

$$f(t) = f_{paire}(t) + f_{impaire}(t)$$

 $f_{paire}(t) \Leftrightarrow \operatorname{Re} F(\omega) \mid f_{impaire}(t) \Leftrightarrow \operatorname{Im} F(\omega)$

fonction delta, etc.
$$f_p(t) \Leftrightarrow 2\pi \sum_{n=-\infty}^{+\infty} F_{S\acute{e}rie}(n) \delta(\omega - n\omega_0)$$

$$f_p(t) \text{ p\'eriodique avec p\'eriode } T_0, \ T_0\omega_0 = 2\pi$$

$$F_{S\acute{e}rie}(n) = \frac{1}{T_0} \cdot F_r(\omega) \Big|_{\omega = n\omega_0}, \ f_r(t) = \begin{cases} f_p(t) & \frac{-T_o}{2} < t < \frac{T_o}{2} \\ 0 & ailleurs \end{cases}$$

$$f'(a) = \begin{bmatrix} \lim_{t \to a^+} f(t) - \lim_{t \to a^-} f(t) \end{bmatrix} \delta(t - a)$$

$$t = a \quad \text{est un point de discontinuit\'e de } f(t)$$

$$h(t) \delta(t - t_0) = h(t_0) \delta(t - t_0)$$
 propriét\'e d'échantillonnage

 $x_0 \sum_{n=-\infty}^{\infty} \delta(x - nx_0) = \sum_{n=-\infty}^{\infty} e^{-j2\pi nx/x_0}$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}$$

$$\int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax$$

$$\int e^{bx} \sin ax dx = \frac{1}{a^2 + b^2} e^{bx} (b \sin ax - \int x e^{ax} dx = \left(\frac{x}{a} - \frac{1}{a^2}\right) e^{ax}$$

$$\int e^{bx} \cos ax dx = \frac{1}{a^2 + b^2} e^{bx} (a \sin ax - \int x^2 e^{ax} dx = \left(\frac{x^2}{a} - \frac{2x}{a^2} + \frac{2}{a^3}\right) e^{ax}$$

$$\cos x = \frac{e^{bx} + e^{-bx}}{2j}$$

$$e^{bx} \cos x + j \sin x$$

$$\sin x = \frac{e^{bx} - e^{-bx}}{2j}$$

$$e^{jn\pi} = (-1)^n$$

$$\cos^2 \theta = \frac{1}{2} [1 + \cos 2\theta]$$

$$\cos \theta = \sin(\pi/2 - \theta)$$

$$e^{jn\pi/2} = \begin{cases} (-1)^{n/2} & n \text{ paire } \\ j(-1)^{(n-1)/2} & n \text{ impaire} \end{cases}$$