Классические алгоритмы поиска образца в строке Дискретный анализ 2017/18

18 ноября 2017 г.

Литература

- Дэн Гасфилд, «Строки деревья и последовательности в алгоритмах: Информатика и вычислительная биология», 2003. Глава 3, «Более глубокий взгляд», стр. 46–94.
- ► Билл Смит, «Методы и алгоритмы вычислений на строках», 2006.

Алгоритм Кнута-Морриса-Пратта Классический вариант алгоритма

Алгоритм Ахо-Корасик

Задача множественного поиска Связи неудач Полный алгоритм поиска

Поиск с джокером

Двумерное точное совпадение

Раздел

Алгоритм Кнута-Морриса-Пратта Классический вариант алгоритма

Алгоритм Ахо-Корасик

Задача множественного поиска Связи неудач Полный алгоритм поиска

Поиск с джокером

Двумерное точное совпадение

Отличия

- lacktriangle Не использует Z-блоки для расчёта значений $sp_i.$
- ightharpoonup Строит последовательно значения sp_k по рассчитанным значениям от 1 до k-1.
- Легко обобщается на случай большого количества образцов (алгоритм Ахо-Корасик)

Обозначения

- ightharpoonup α префикс длиной sp_k , α' суффикс.
- ▶ x k + 1-й символ.
- $lacktriangleright eta=\overline{eta}x$ префикс длины sp_{k+1} , нахождение \overline{eta} эквивалентно вычислению sp_{k+1} .

Связь sp_{k+1} и sp_k

Теорема

$$\forall k: sp_{k+1} \le sp_k + 1;$$

$$sp_{k+1} = sp_k + 1 \Longleftrightarrow P(sp_k + 1) = P(k+1)$$

Доказательство.

Если $sp_{k+1}>sp_k+1$, то $|\beta|>|\alpha|$, причём β является одновременно префиксом P и суффиксом P[1..k], что противоречит выбору sp_k .

Общий случай

Если $P(k+1) \neq P(sp_k+1)$, то $sp_{k+1} \leq sp_k$ и $\overline{\beta}$ — собственный префикс и суффикс α .


```
3 \qquad x \leftarrow P(k+1)
4 \qquad v \leftarrow sp_k
5 \qquad \text{while } P(v+1) \neq x \text{ and } v \neq 0
6 \qquad v \leftarrow sp_v
7 \qquad \text{if } P(v+1) = x
8 \qquad sp_{k+1} \leftarrow v + 1
9 \qquad \text{else } sp_{k+1} \leftarrow 0
```

```
\begin{array}{lll} 3 & x \leftarrow P(k+1) & \text{abxabqabxabx} \\ 4 & v \leftarrow sp_k \\ 5 & \text{while } P(v+1) \neq x \text{ and } v \neq 0 \\ 6 & v \leftarrow sp_v \\ 7 & \text{if } P(v+1) = x \\ 8 & sp_{k+1} \leftarrow v+1 \\ 9 & \text{else } sp_{k+1} \leftarrow 0 \end{array}
```

```
\begin{array}{lll} 3 & x \leftarrow P(k+1) & \texttt{abxabqabxabx} \\ 4 & v \leftarrow sp_k \\ 5 & \texttt{while} \ P(v+1) \neq x \ \text{and} \ v \neq 0 \\ 6 & v \leftarrow sp_v \\ 7 & \texttt{if} \ P(v+1) = x \\ 8 & sp_{k+1} \leftarrow v+1 \\ 9 & \texttt{else} \ sp_{k+1} \leftarrow 0 \end{array}
```

```
\begin{array}{lll} 3 & x \leftarrow P(k+1) & \text{abxabqabxabx} \\ 4 & v \leftarrow sp_k \\ 5 & \text{while } P(v+1) \neq x \text{ and } v \neq 0 \\ 6 & v \leftarrow sp_v \\ 7 & \text{if } P(v+1) = x \\ 8 & sp_{k+1} \leftarrow v+1 \\ 9 & \text{else } sp_{k+1} \leftarrow 0 \end{array}
```

```
\begin{array}{lll} 1 & sp_1 \leftarrow 0 \\ 2 & \text{for } k \leftarrow 1 \text{ to } n-1 \\ 3 & x \leftarrow P(k+1) \\ 4 & v \leftarrow sp_k \\ 5 & \text{while } P(v+1) \neq x \text{ and } v \neq 0 \\ 6 & v \leftarrow sp_v \\ 7 & \text{if } P(v+1) = x \\ 8 & sp_{k+1} \leftarrow v+1 \\ 9 & \text{else } sp_{k+1} \leftarrow 0 \end{array}
```

Линейность

Теорема

Алгоритм находит все значения $sp_i(P)$ за время O(n), где n-длина P.

Доказательство.

Время работы пропорционально числу присваиваний v:

- ▶ Один раз на каждом шаге, $v \leftarrow sp_k$.
- ▶ Несколько раз уменьшается внутри while .
- lacktriangle Число увеличений ограничено n-1, следовательно и число уменьшений ограничено n-1
- ▶ Тогда общее число присваиваний v ограничено сверху 2(n-1) = O(n)

Вычисление sp_i'

```
\begin{array}{lll} 1 & sp_1' \leftarrow 0 \\ 2 & \text{for } i \leftarrow 2 \text{ to } n \\ 3 & v \leftarrow sp_i \\ 4 & \text{if } P(v+1) \neq P(i+1) \\ 5 & sp_i' \leftarrow v \\ 6 & \text{else } sp_i' \leftarrow sp_v' \end{array}
```

Раздел

Алгоритм Кнута-Морриса-Пратта

Классический вариант алгоритма

Алгоритм Ахо-Корасик

Задача множественного поиска

Связи неудач Полный алгоритм поиска

Поиск с джокером

Двумерное точное совпадение

Формулировка

- ▶ Задано множество образцов, $\mathbb{P} = \{P_1, P_2, \dots, P_z\}.$
- Необходимо найти все вхождения в T любых образцов из $\mathbb{P}.$
- ▶ Теперь $n = \sum_{k=1}^{z} |P_k|$
- lacktriangle Предыдущие алгоритмы могут решить за O(n+zm).
- ▶ Возможно решение за O(n+m+k), где k количество вхождений в T образцов из $\mathbb P$

Дерево ключей $\mathbb K$

Дерево ключей \mathbb{K} для множества образцов $\mathbb{P} = \{potato, poetry, pottery, science, school\}$. Дерево ключей строится за время O(n).

Очевидный способ

- ▶ Последовательно прикладывать корень дерева Ж к каждой позиции в тексте и пытаться пройти путь в дереве согласно символам текста.
- ▶ Время работы O(nm).
- ▶ Можно ли сдвигать дерево более чем на одну позицию?
- ▶ Для простоты: ни один образец в \mathbb{P} не является собственной подстрокой другого образца.

Раздел

Алгоритм Кнута-Морриса-Пратта

Классический вариант алгоритма

Алгоритм Ахо-Корасик

Задача множественного поиска

Связи неудач

Полный алгоритм поиска

Поиск с джокером

Двумерное точное совпадение

lp(v)

- ▶ $\mathbb{L}(v)$ конкатенация символов на пути от корня \mathbb{K} до вершины v в порядке их появления (v помечена строкой).
- ▶ Для любой вершины $v \in \mathbb{K}$ определим lp(v) как длину наибольшего собственного суффикса строки $\mathbb{L}(v)$, которая является префиксом некоторого образца из \mathbb{P} .

Связь неудачи

- ▶ Допустим, α суффикс строки $\mathbb{L}(v)$ длины lp(v). Тогда существует единственная вершина в дереве ключей, помеченная строкой α . (очевидно)
- ▶ Для вершины $v \in \mathbb{K}$ пусть n_v единственная вершина в \mathbb{K} , помеченная суффиксом $\mathbb{L}(v)$ длины lp(v). Если lp(v) = 0, то n_v корень \mathbb{K} .
- lacktriangle Упорядоченная пара $\langle v, n_v
 angle$ связь неудачи.

Использование связей неудач при поиске

```
\begin{array}{lll} 1 & l \leftarrow 1, \ c \leftarrow 1, \ w \leftarrow root[\mathbb{K}] \\ 2 & \mathbf{repeat} \\ 3 & \mathbf{while} \ \mathsf{есть} \ \mathsf{дугa} \ \langle w, w' \rangle, \ \mathsf{помеченная} \ \mathsf{символом} \ T(c) \\ 4 & \mathbf{if} \ w' \ \mathsf{занумерованa} \ \mathsf{образцом} \ i \\ 5 & P_i \ \mathsf{встретилась} \ \mathsf{в} \ T \ \mathsf{в} \ \mathsf{позиции} \ l \\ 6 & w \leftarrow w', \ c \leftarrow c + 1 \\ 7 & \mathbf{if} \ w = root[\mathbb{K}] \\ 8 & c \leftarrow c + 1 \\ 9 & \mathbf{else} \ w \leftarrow n_w, \ l \leftarrow c - lp(w) \\ 10 & \mathbf{until} \ c > m \end{array}
```


Корректность и линейность алгоритма

- Доказательство аналогично приведённым соображениям для алгоритма Кнута-Морриса-Пратта.
- Время поиска (с предположением об образцах, не являющимеся собственными подстроками) получается порядка O(m).

Построение связей неудач

- lacktriangle Нужно найти для всех вершин v соответствующие им n_v .
- ▶ Предположим, что n_v вычислено для всех вершин, отстоящих на k дуг от корня.
- lacktriangle Вычисляем n_v для одной из вершин v, остоящих на k+1 дуг от корня.

Функция неудач узла v

- ▶ v' отец v в \mathbb{K} .
- ▶ $n_{v'}$ известно, т.к. v' отстоит на k дуг от корня.
- ▶ x символ на дуге $\langle v', v \rangle$.
- ▶ Нужно проверить, есть ли дуга $\langle n'_v, w' \rangle$, помеченая символом x.
- ▶ Если есть, то $n_v \leftarrow w'$.
- ▶ В противном случае $\mathbb{L}(n_v)$ собственный суффикс $\mathbb{L}(n_{v'})$, за которым следует x.

Построение связей неудач

```
1 v' — отец v в \mathbb{K}, x — символ на дуге \langle v',v \rangle. 2 w \leftarrow n_{v'} w while нет дуги, выходящей из w, помеченной x и w \neq r w \leftarrow n_w w \leftarrow n_w
```

Линейность построения связей неудач

Теорема

Полное время, затрачиваемое алгоритмом построения связей неудач в применении его ко всем вершинам из $\mathbb K$ равно O(n).

Доказательство.

- ▶ Изменение lp(v) при выполнении алгоритма по пути одного образца P длиной t.
- ▶ $lp(v) \le lp(v') + 1$, следовательно lp(v) увеличивается не более чем на t.
- ▶ При уменьшении $lp(v) \ge 0$ и внутренний цикл не может выполняться более t раз.
- Следовательно, связи неудач по пути P находятся за время O(t), а все связи за O(n).

Раздел

Алгоритм Кнута-Морриса-Пратта

Классический вариант алгоритма

Алгоритм Ахо-Корасик

Задача множественного поиска Связи неудач

Полный алгоритм поиска

Поиск с джокером

Двумерное точное совпадение

Снятие предположения о подстроках

Пример: $\mathbb{P}=\{acatt,ca\}$, T=acatg: образец ca не будет найден.

Снятие предположения о подстроках

Пример: $\mathbb{P}=\{acatt,ca\}$, T=acatg: образец ca не будет найден.

Теорема

1. Пусть в дереве ключей $\mathbb K$ существует путь из связей неудач от вершины v к вершине, занумерованной образцом i. Тогда в T должен обнаружиться образец P_i , который оканчивается в позиции c (текущий символ), как только во время фазы поиска алгоритма Ахо-Корасик будет достигнута вершина v.

Снятие предположения о подстроках

Пример: $\mathbb{P}=\{acatt,ca\}$, T=acatg: образец ca не будет найден.

Теорема

- 1. Пусть в дереве ключей \mathbb{K} существует путь из связей неудач от вершины v к вершине, занумерованной образцом i. Тогда в T должен обнаружиться образец P_i , который оканчивается в позиции c (текущий символ), как только во время фазы поиска алгоритма Ахо-Корасик будет достигнута вершина v.
- 2. И наоборот: если в ходе работы достигнута вершина v, то образец P_i появляется в T, заканчиваясь в позиции c, только если v имеет номер i или существует путь из связей неудач из v в вершину c номером i.

Путь от potat до at через tat

Полный алгоритм

```
l \leftarrow 1, c \leftarrow 1, w \leftarrow root[\mathbb{K}]
     repeat
           while есть дуга \langle w, w' \rangle, помеченная символом T(c)
                  if w' занумерована образцом i или
                  существует путь из связей неудач из w^\prime
                  в вершину с номером i
 5
                        P_i встретилась в T в позиции l
 6
                  w \leftarrow w'. c \leftarrow c+1
           if w = root[\mathbb{K}]
 8
                  c \leftarrow c + 1
 9
           else w \leftarrow n_w, l \leftarrow c - lp(w)
10
     until c > m
```

Детали реализации

- Связь выхода в вершине v указывает на нумерованную вершину, отличную от v и достижимую из v за наименьшее число связей неудач.
- Связи выхода можно получить за время O(n) при построении связей неудач.
- Использование связей выхода можно решить задачу множественного совпадения за O(m+k), где k полное число вхождений.
- ▶ Полное время работы алгоритма: O(n) на подготовку и O(m+k) на поиск, т.е. O(n+m+k).

Раздел

Алгоритм Кнута-Морриса-Пратта

Классический вариант алгоритма

Алгоритм Ахо-Корасик

Задача множественного поиска Связи неудач Полный алгоритм поиска

Поиск с джокером

Двумерное точное совпадение

Джокер

- Специальный метасимвол, «джокер» ?, совпадает с любым символом.
- ▶ Образец может содержать в себе джокер, например ab??c?.
- ightharpoonup Тогда в xabvccbxababcax образец встречается дважды.
- При неограниченном количестве джокеров в строке линейное решение неизвестно.
- Конечный автомат нужно время на построение.
- ightharpoonup При ограничении на число джокеров (независимо от длины P) линейное решение основывается на алгоритме Ахо-Корасик.

- 1. C вектор длины T, инициализированный нулями.
- 2. $\mathbb{P}=\{P_1,P_2,\dots,P_k\}$ набор максимальных подстрок P без джокеров. l_1,l_2,\dots,l_k начальные позиции этих подстрок в P. Для P=ab??c?ab?? $\mathbb{P}=\{ab,c,ab\}$ и $l_1=1$, $l_2=5$ и $l_3=7$

- 1. C вектор длины T, инициализированный нулями.
- 2. $\mathbb{P}=\{P_1,P_2,\dots,P_k\}$ набор максимальных подстрок P без джокеров. l_1,l_2,\dots,l_k начальные позиции этих подстрок в P. Для P=ab??c?ab?? $\mathbb{P}=\{ab,c,ab\}$ и $l_1=1$, $l_2=5$ и $l_3=7$
- 3. Алгоритмом Ахо-Корасик найти все вхождения P_i в T. Для каждого вхождения P_i в j-й позиции текста увеличить счётчик $C[j-l_i+1]$ на единицу.

- 1. C вектор длины T, инициализированный нулями.
- 2. $\mathbb{P}=\{P_1,P_2,\dots,P_k\}$ набор максимальных подстрок P без джокеров. l_1,l_2,\dots,l_k начальные позиции этих подстрок в P. Для P=ab??c?ab?? $\mathbb{P}=\{ab,c,ab\}$ и $l_1=1$, $l_2=5$ и $l_3=7$
- 3. Алгоритмом Ахо-Корасик найти все вхождения P_i в T. Для каждого вхождения P_i в j-й позиции текста увеличить счётчик $C[j-l_i+1]$ на единицу.
- 4. Вхождение P в T, начинающиеся в позиции p, имеется в том и только том случае, если C(p)=k.

- 1. C вектор длины T, инициализированный нулями.
- 2. $\mathbb{P} = \{P_1, P_2, \dots, P_k\}$ набор максимальных подстрок P без джокеров. l_1, l_2, \dots, l_k начальные позиции этих подстрок в P. Для P = ab??c?ab?? $\mathbb{P} = \{ab, c, ab\}$ и $l_1 = 1$, $l_2 = 5$ и $l_3 = 7$
- 3. Алгоритмом Ахо-Корасик найти все вхождения P_i в T. Для каждого вхождения P_i в j-й позиции текста увеличить счётчик $C[j-l_i+1]$ на единицу.
- 4. Вхождение P в T, начинающиеся в позиции p, имеется в том и только том случае, если C(p)=k.
- 5. Время поиска O(km) из-за использования массива C, если k ограничено константой, не зависящей от |P|, то время поиска линейно.

Раздел

Алгоритм Кнута-Морриса-Пратта

Классический вариант алгоритма

Алгоритм Ахо-Корасик

Задача множественного поиска Связи неудач Полный алгоритм поиска

Поиск с джокером

Двумерное точное совпадение

Табличное перекрытие

- ightharpoonup Задана прямоугольная таблица T, в которой каждая точка задается числом, описывающим цвет и яркость.
- ightharpoonup Задан прямоугольный образец P меньшего размера, края образца и таблицы параллельны.
- ightharpoonup Требуется найти все (возможно, перекрывающиеся) вхождения P в T.

Основная идея

- ightharpoonup Линеаризуем T, склеивая строки специальным символом, не входящим в алфавит.
- ightharpoonup Каждая строка из P один из образцов.
- Алгоритмом Ахо-Корасик ищем все вхождения образцов в текст, если вхождение образца P_i было, в таблицу, совпадающую по размерам с T, в соответствующую координату записываем i.
- Ищем в таблице столбец, в котором записаны подряд числа от 1 до n.
- ightharpoonup Если в P есть одинаковые строки ищем только одно из их вхождений.