

INFORMATICS INSTITUTE OF TECHNOLOGY In Collaboration with UNIVERSITY OF WESTMINSTER

Multilingual Dialogue Summary Generation System for Customer Services

Project Specification Design and Prototype

Mr Tharindu De Silva

Supervised by

Ms Dileeka Alwis

Submitted in partial fulfilment of the requirements for the BEng (Hons) Software Engineering degree at the University of Westminster.

February 2023

Abstract

A written or spoken conversation between two or more people is known as a dialogue. In most of modern-day applications where the conversation happens, it generates lots of data either in textual format or audio format. Summarizing these data or dialogues is known as the dialogue summarization where it only focusses on the relevant information. Dialogue summarization aims summarize only the necessary information where a reader can quickly capture the highlights of the dialogue without reviewing the whole.

Customer service is a domain where it generates lot of data daily. Conversation between a support agent and the customer can take up to a lengthy dialogue. At the end of the dialogue conversation, support agents should write a short description (a summary) of the dialogue which will help for later reference. This is a time consuming and requires human resources.

MultiDialogSum is a dialogue summary generation system for customer services where it supports generating summaries for multiple languages. The use of recent cross-lingual transfer modals and machine translations techniques are utilized to achieve these capabilities. This will be developed and release as a web application for the users.

Keywords: Dialogue Summarization, Natural language processing, Cross-lingual transfer modals, Machine translation, Machine Learning

Project Descriptors:

Artificial Intelligence → Natural Language Processing → Language models, Machine translation

Contents

Abstract	2
Chapter 1: Introduction	1
1.1 Chapter Overview	1
1.2 Problem Domain	1
1.2.1 Impact of Dialogues on Communication Technology	2
1.2.2 The necessity of Dialogues Summarization	2
1.2.2.1 Lengthy Dialogues	2
1.2.2.2 Time Consuming and Resource Cost	2
1.3 Problem Definition	3
1.3.1 Problem Statement	3
1.4 Aims and Objectives	3
1.4.1 Aims	3
1.4.2 Research Objectives	4
1.5 Novelty of the Research	6
1.5.1 Problem Novelty	6
1.5.2 Solution Novelty	6
1.6 Research Gap	6
1.7 Contribution to the Body of the Knowledge	7
1.7.1 Contribution to Problem Domain	7
1.7.2 Contribution to the Research Domain	7
1.8 Research Challenge	7
1.9 Chapter Summary	8
Chapter 2: Software Requirements Specification	9
2.1. Chapter Overview	9

	2.2. Rich Picture Diagram	10
	2.3. Stakeholder Analysis	11
	2.3.1 Stakeholder Onion Model	11
	2.3.2. Stakeholder Viewpoints	11
	2.3.3. Stake Holder Grouping	12
	2.3.4 Data gathering instruments.	13
	2.4 Selection of Requirement Elicitation Methodologies	14
	2.5 Discussion of Findings	15
	2.5.1 Literature Reviews	15
	2.5.2 Interviews	15
	2.5.3 Survey	18
	2.5.4 Prototyping	20
	2.5.4 Summary of Findings	20
	2.6 Context Diagram	21
	2.7 Use case Diagram	22
	2.8 Use case description	22
	2.9 Requirements	24
	2.9.1 Functional Requirements	24
	2.9.2 Non-functional requirements	25
	2.10 Chapter Summary	25
(Chapter 3: Design	26
	3.1 Chapter Overview	26
	3.2 Design Goals	26
	3.3. High-Level Design	27
	3.3.1 Tiered Architecture	27

3.3.2 Discussion of tiers	29
3.4. System Design	29
3.4.1. Choice of the Design Paradigm	29
3.5. Design Diagrams	30
3.5.1 Data Flow Diagram	30
3.5.2 System Process Flow Chart	32
3.5.3 User Interface Design	33
3.6. Chapter Summary	34
Chapter 4: Initial Implementation	35
4.1 Chapter Overview	35
4.2 Technology Selection	35
4.2.1 Technology Stack	35
4.2.2 Data-set Selection	36
4.2.3 Development Framework	36
4.2.4 Programming Languages	36
4.2.5 Libraries	37
4.2.6 IDE	37
4.2.7 Summary of Technology Selection	38
4.3 Implementation of the Core Functionality	38
4.4 User Interface	42
4.5 Chapter Summary	42
Chapter 05: Conclusion	43
5.1 Chapter Overview	43
5.2 Deviations	43
5.2.1 Scope related deviations.	43

5.2.2 Schedule related deviations	43
5.3 Initial Test Results	43
5.4 Required Improvements	44
5.5 Demo of the Prototype	44
5.6 Chapter Summary	44
Reference	
List of Figures	
Figure 1 - Dialogue Summary	1
Figure 2 - Rich Picture Diagram	10
Figure 3 - Stake Holder Onion Model	11
Figure 4 - Context Diagram	21
Figure 5 - Use Case Diagram	22
Figure 6 - Tiered Architecture Diagram	28
Figure 7 - Data Flow Diagram Level 1	30
Figure 8 - Data Flow Diagram Level 2	31
Figure 9 - System Process Flow Chart	32
Figure 10 - Low level fidelity wireframe	33
Figure 11 - High level fidelity wireframe	34
Figure 12 - Technology Selection	35
Figure 13 - Implementation of the core function 1	39
Figure 14 - Implementation of the core function 2	40
Figure 15 - Implementation of the core function 3	40
Figure 16 - Implementation of the core function 4	42
Figure 17 - Implementation of the core function 5	42
Figure 18 - Initial Test Results	43
Figure 19 - Final Output	44

List of Tables

Table 1 - Research Objectives6
Table 2 - Stake holder Viewpoints
Table 3 - Stakeholder Grouping
Table 4 - Data gathering instruments Group 1
Table 5 - Data gathering instrument Group 2
Table 6 - Requirement Elicitation Methodologies
Table 7 - Discussion of Findigs LR
Table 8 - Discussion of Findigs Interview
Table 9 -Discussion of Findigs Survey
Table 10 - Prototyping
Table 11 - Summary of Findings
Table 12 - Use Case: UC1
Table 13 - Use Case: UC2
Table 14 - Use Case: UC3
Table 15 - MoSCoW Priority
Table 16 - Functional Requirement
Table 17 - Non-functional Requirement
Table 18 - Design Goals
Table 19 - Development Framework
Table 20 - Libraries
Table 21 - IDE Selection
Table 22 - Summary of the Technology Selection

Chapter 1: Introduction

1.1 Chapter Overview

Introduction chapter will include the summary of this research project which is a dialogue summary generation system that support more languages. This chapter will include the information about the problem domain, research gap, research challenges and objectives that the author wishes to achieve by the end of project completion.

1.2 Problem Domain

A written or spoken conversation between two or more people is called a dialogue. Dialogue summarization is the technique of condensing a dialogue so that a reader can quickly understand the exchange. The dialogue summarization method involves extracting important information from the discourse to produce a summary highlighting the conversation's main points. With the development of communication technology in recent years, dialogues have become an important way of information exchange.

Figure 1 - Dialogue Summary

This proposal aims to provide the reader with an outline of dialogue summarization and how it has grown in recent years in different problem domains. The related work is discussed, which will identify and justify the existing research gap and challenges.

1.2.1 Impact of Dialogues on Communication Technology

Dialogues have been utilized within different domains as a communication technology for real-life applications. For example, some are in meetings, chats, interviews, and customer service. A dialogue can be represented in both textual and audible forms. Both are widely used in the real world. For example, chatbots are considered an intelligent way of communicating with minimal human interactions. These chatbots heavily use dialogues in a textual form as their primary source of communication. Another example is dialogues in the audible form in interviews. An interview between the two parties can be recorded and represented as a dialogue in an audible format.

1.2.2 The necessity of Dialogues Summarization

As previously mentioned, with these real-life applications' rapid growth, the dialogues' Summarization came into place because of various factors.

1.2.2.1 Lengthy Dialogues

Dialogues can be used as a way of storing information for later reference. But the vast amount of data generation and length of the dialogues practically caused problems. In the customer service domain, a conversation between a customer and a support agent can be as follows. A customer can raise a complaint, and a support agent tries to solve the issue. End of the conversation, support agents are asked to write a summary of the problem and the proposed solution. So, this summary can be used by other agents who may have to deal with similar or the same customer issues without going through the entire dialogue.

1.2.2.2 Time Consuming and Resource Cost

When it comes to massive data generation, analyzing a longer conversation requires human interaction and can cost much time and resources. Sometimes it is overwhelming to go through lengthy dialogues to understand what happened within the conversation.

1.3 Problem Definition

To automate dialogue summarization without human interaction, many researchers have put their effort into building solutions using machine learning and natural language processing technologies for this challenging problem because of their unique application value (Gao and Wan, 2022). However, these solutions are heavily focused on the high resource languages such as English, Chinese etc.(Feng, Feng and Qin, 2022). High-resources languages are known as languages in which many data resources exist.

With globalization's acceleration, a domain like customer service can be involved with multinational participants. Yet the current solutions are only capable of primarily handling the dialogues which are in English languages. This can be a critical situation where global customer service is required to summarize the dialogues between an agent and a customer using human resources with linguistic fluency in multiple languages.

1.3.1 Problem Statement

Dialogue summarization in customer service is not developed to handle languages other than mostly English. Customer services can always be engaged with multiple languages, yet there is no solution for multilingual dialogue summarization.

1.4 Aims and Objectives

1.4.1 Aims

The aim of this research is to design, develop and evaluate a multilingual dialogue summary generation system for customer services using low linguistic resources with the help of the cross-lingual transfer method.

To explain the research aim, this research project will focus on developing a system which is capable of utilizing low linguistic resources to build a multilingual dialogue summarizer. The recent development in pre-trained language models and the capabilities of cross-lingual transfer learning will be applied to achieve this. Cross-lingual transfer learning is the mechanism of learning and transferring knowledge from one natural language to another. The number of supporting languages of the multilingual dialogue summarizer can depend on the selected pre-trained model and its capabilities.

To prove or disprove the selected hypothesis, the necessary knowledge will be examined and researched through the project timeline, components will be developed, and the performance will be evaluated. This multilingual dialogue summary generation platform will be released on a hosted server for public use.

1.4.2 Research Objectives

Research	Description	Learning	Research
Objectives		Outcomes	Questions
Literature Review	Gather required material on previous work and	LO1,	RQ1,
	critically evaluate the findings.	LO4, LO8	RQ2
	 RO1: Study on existing dialogue summarization techniques in the customer service domain. RO2: Study on existing methods of text summarization techniques. RO3: Conduct a preliminary study on pre-trained language models. RO4: Analyze the recent advancements in multilingual models. 		

Requirement	Determine the project's requirements using the	LO2,	RQ2,
Elicitation	proper methods to give a solution for the	LO6,	RQ3
	research problems and gaps should be handled	LO8	
	based on relevant prior research knowledge.		
	• RO1: Gather information about		
	requirements and resources related to		
	dialogue summarization.		
	• RO2: Gather requirements related to		
	the pre-trained language model and		
	understand the capabilities of recent		
	advancements.		
	• RO3: Gather information related to		
	cross-lingual transfer learning.		
Design	Designing a system capable of generating a	LO1,	RQ2,
	dialogue summary with multiple languages	LO3,	RQ3
	involved.	LO5,	
	• RO1 : To design a cross-lingual transfer learning model which can be	LO8	
	implemented from the existing		
	resources.		
	• RO2: To identify a suitable algorithm for the proposed methodology and		
	design to summarize the dialogues.		
Implementation	Implementing a multilingual dialogue	LO1,	RQ2
	summarization platform.	LO5,	
	• RO1: To train the cross-lingual model	LO7,	
	using the existing resources.RO2: Develop a model to summarize	LO8	
	the dialogues.		

	• RO3: Develop a user interface and which a user can interact with the application from a browser.		
Evaluation	Testing the implemented system and dialogue	LO1,	RQ2
	summary generation with evaluation metrics.	LO5, LO8	
	• RO1: Test each component by creating unit tests.		
	• RO2: Using performance metrics to evaluate the effectiveness of the		
	summary generation.		
	• RO3: To verify the functional and non-		
	functional requirements were made		
	after the research is completed.		

Table 1 - Research Objectives

1.5 Novelty of the Research

1.5.1 Problem Novelty

Currently existing solution for dialogue summarization limited to a one language, but taking consideration that customer service is a globalized service and there is an urgent need to provide the dialogue summarization to a preferred language. (Feng, Feng and Qin, 2022a)

1.5.2 Solution Novelty

Developing a multilingual dialogue summarizer with use of cross-lingual transformer modal will be the proposed solution. During the past years cross-lingual transfer modal have been significantly improved for various natural language related works. With these recent advancements authors aim is to develop a multilingual dialogue summarizer which will provide a solution for the existing problem.

1.6 Research Gap

Based on the previous work on dialogue summarization, researchers have focused on the problem of low resources, which can be further divided into low linguistic resources and domain-specific data sets. Yet the approaches are heavily focused on English languages. This is due to the scarcity of the datasets, and the investment in such datasets can be costly (Zou et al., 2021). This can be addressed as a theoretical gap in the Dialogue summarization domain.

Dialogue summarization in customer service is where multiple languages get involved. But the currently available solutions can only perform an English dialogue summarization. This can be identified as an empirical gap in the customer service domain. This project focuses on the empirical gap in customer service and the theoretical gap in the Dialogue summarization domain.

1.7 Contribution to the Body of the Knowledge

Upon the completion of this research project, contributions can be summarized as follow:

- A platform to generate dialogue summary for customer service: Data Science [Machine Learning]
- A novel approach to use existing datasets for low resource languages: [Cross-Lingual Transfer, Pre-trained Language Models]

1.7.1 Contribution to Problem Domain

A platform that supports dialogue summary generation for multiple languages for the customer service domain will be explored. Considering current solutions' availability, a platform capable of generating summaries for more languages can be valuable for the growth of the customer service domain globally. The proposed solution can save both time and cost when it comes to preparing summarize for large quantity of dialogues without human resources.

1.7.2 Contribution to the Research Domain

A novel approach to utilize the existing datasets for dialogue summary generation and overcome the multilingual and scarcity of the datasets in low-resource languages. The recent developments in pre-trained language models and their capabilities of zero-short cross-lingual transfer will be explored to develop a multilingual dialogue summarizer. Later it is a hypothesis that this proposed approach can be used as a baseline method for low-resource natural langue tasks.

1.8 Research Challenge

Dialogue summarization is a trendy domain on which both large-scale enterprise companies and small companies are focused. Recently Microsoft cognitive azure team has started developing solutions for dialogue summarization.

During the past years, a wide variety of research projects have focused on text summarization, document summarization, news, etc. Yet the limited resources currently available

and the complexity reduce the expansion of technology in this domain. Previous studies have explained how real-world dialogues challenge current summarization models (Zhang et al., 2021). Unlike text or document summarization, dialogues carry more complex attributes such as general knowledge, intentions, and informal sentences. Therefore, existing text summarization techniques cannot directly apply to dialogue summarization.

With the limited resources of datasets available in high-resource languages, existing work and future work is more focused on a few languages. This restricts the development of practical solutions that can summarize dialogues other than English. Considering these identified factors, a system to support a multilingual dialogue summarizer is needed.

1.9 Chapter Summary

In the introduction chapter author has discussed about the problem with research gap, challenges and the expected contribution to each research and problem domain. Also the research objectives and the learning outcomes are mapped under the requirement of the University of Westminster, BEng(Hons) Software Engineering course final year research project module.

Chapter 2: Software Requirements Specification

2.1. Chapter Overview

This chapter will focus on determining different stakeholders and their interaction to the proposed system, a rich picture diagram and the different requirement gathering methodologies with results. Finally possible use cases with the system, functional and non-functional requirements of the prototype.

2.2. Rich Picture Diagram

Figure 2 - Rich Picture Diagram

2.3. Stakeholder Analysis

2.3.1 Stakeholder Onion Model

Figure 3 - Stake Holder Onion Model

2.3.2. Stakeholder Viewpoints

Stakeholder	Role	Description
Data scientist, NLP Engineers	Operational Maintenance	Develops the system using tools.
Customer Service Support Agent	Functional Beneficiary	Uses the developed system to summarize dialogues.

Product Owners	Functional Beneficiary	Owner of the dialogue summary generation system.	
Investors	Financial Beneficiary	Invest to make profit and support the future developments and	
		improvements.	
Competitor	Negative Stakeholder	Creates a system that directly contest with the proposed system's features	
Hacker	Negative Stakeholder	To disrupt the system and the data it holds.	
Technical Experts	Expert	Decides whether the product is capable of handling set of requirements from a technical perspective.	
Researcher	Advisor	Analyze the existing solutions for research purpose.	

Table 2 - Stake holder Viewpoints

2.3.3. Stake Holder Grouping

Stakeholder Groups	Stakeholder	What is the method that you	
		will be used to gather	
		requirements	
Group 1	Customer Service support	Questionnaires	
	agents (End-User)		
Group 2	Data scientists and NLP researchers	Interviews	
Group 3	Competitors (Existing work)	LR	

Table 3 - Stakeholder Grouping

2.3.4 Data gathering instruments.

Questionnaire for Group 1

Question	Research/Relevance to the	Research
	research	Question
Do your organization uses dialogue		RQ1
summarizations?		
What is the current technique you are using for	Study the currently available solution	RQ1
dialogue summarization?	in the industry.	
How often are summaries being used for later	Impact of dialogue summarization in	RQ1
reference	customer services.	
Do you summarize all the dialogues?	Identifying the specific attributes that	RQ1
	will be considered for dialogue	
	summarization.	
If you selected "No, only if it is required" for	Identifying the specific attributes that	RQ1
previous questions, select the specific	will be considered for dialogue	
attributes considered to summarize dialogues.	summarization.	
How many languages do you support in	Overview of language support in	RQ1, RQ3
customer service?	customer service.	
Do you find it challenging to use currently	Understanding limitations in current	RQ1, RQ2
available solutions to summarize dialogues	solutions from the end-user's	
that are not in English?	perspective.	
How much do you think it will be helpful to	Identifying the end-user's	RQ2, RQ3
summarize dialogues which are not in English	requirement for the proposed system	
languages?		
Will you be interested in a solution that can	Identifying the end-user's	RQ2, RQ3
summarize the dialogues between customer	requirement for the proposed system	
support and the customer?		
If you have any suggestions, please mention	Identifying the end-users'	RQ1
them below.	suggestions based on prior	
	experience with existing solutions.	

Table 4 - Data gathering instruments Group 1

Interview Questions for Group 2

Question	Research / Relevance to the	Research
	research	Question
What are the current limitations of using text	Understanding the current	RQ1, RQ2,
summarization techniques directly to dialogue	limitations in the dialogue	RQ3
summarization	summarization domain.	
Recent advancements in cross-lingual transfer	An exploratory study on cross-	RQ2
techniques in the NLP domain	lingual transfer techniques.	
How effective are cross-lingual transfer	Identifying the practicality of using	RQ2, RQ3
techniques for low-resource language use	cross-lingual transfer techniques	
cases?		

Table 5 - Data gathering instrument Group 2

2.4 Selection of Requirement Elicitation Methodologies

There were multiple requirement elicitation methodologies were followed to gather requirement for this research project. Literature review, interview, survey, and prototyping are selected as for this purpose.

Method 1: Literature Reviews

In the beginning of the project, the author conducted an analysis of the existing research projects related to the chosen domain to identify a solid research gap. The existing system and the technologies were thoroughly studied for this research project. These finding are mentioned in literature.

Method 2: Interviews

Collecting knowledge to the research body and to get qualitative feedback on the proposed solution, to get insights from the domain specific experts several interviews were conducted. By using this method, it supports the researcher to early identify the challenges of the proposed solution when it comes to development of the prototype.

Method 3: Survey

A questionnaire was used to gather requirements from the end user's perspective. This will help to identify the requirements and the problems with a existing solutions that the end user is facing. These data will be helpful to improve the proposed solution to become more practical.

Method 4: Prototyping

Selected software development life cycle for this research project is agile as it would help to improve the proposed system in a recursive development method.

Table 6 - Requirement Elicitation Methodologies

2.5 Discussion of Findings

2.5.1 Literature Reviews

Finding	Citation
The proposed method shows that latent variables cope with the variance	(Xiang et al., 2021)
of semantically similar sentences across different languages. Cross-lingual	
transfer between English to Spanish and English-to-Thai have	
demonstrated state-of-the-art results.	
The proposed framework can generate an abstractive summarization with	(Bai, Gao and
limited parallel resources by sharing a unified decoder that generates both	Huang, 2021)
monolingual and cross-lingual summaries	
This proposed approach has shown the state-of-the-art models are very	(Labruna and
sensitive to language shift through automatic translation and combining	Magnini, 2021)
training data for the two languages (English – Italian) is beneficial.	
This proposed method uses a novel Leader-writer network with auxiliary	(Liu et al., 2019)
key point sequences, ensuring the generated summary is logical and	
integral.	

Table 7 - Discussion of Findigs LR

2.5.2 Interviews

To get opinion on the proposed solutions and the research area both research experts from dialogue summarization and domain experts from the customer service area were chosen. The interviews were conducted as open-ended question therefore the output of these interviews was documented based on thematic analysis.

Codes	Theme	Conclusion
Slow-moving	Existing limitations in	All the participants were
• Utilized existing	dialogue summarization	mentioned about the current text
resources.	domain.	summarization techniques and
Missing context		why it cannot directly apply to
		the dialogue summarizations.
		Because the nature of the
		dialogues constructive and
		logical text data, keeping the
		context while summarizing is
		challenging compared to text
		summarization. According to the
		experts they suggest to fine tune
		text summarization techniques
		and use of pre-trained language
		models to build the base stage for
		dialogue summarizations rather
		than developing from the scratch.
• Not well explored.	Integrating cross-lingual	Most of the cross-lingual transfer
Transfer learning	transfer techniques for low	techniques are not yet explored in
	resources language.	the dialogue summarization
		domain. Due to the minimum
		number of datasets that are
		currently available, use of cross-
		lingual transfer techniques will
		be very useful. Experts suggest to
		use of a cross-lingual transfer
		modal which can be used as a
		intermediate process for machine
		translation when developing the
		solution.

Research gap	Research gap and Scope	The opinion from the research
 Contribution 		domain experts were that the
		research gap and the proposed
		solution is an innovative use of
		existing methods to overcome the
		problem.
Globalized	Understanding the use of	As from the experts from the
customer base.	dialogue summarization in a	problem domain, they suggested
Human resources.	practical use case.	that the use of supporting to more
 Practicality 		languages is very useful as one of
		the problems they are facing is
		the human resources cost that is
		required when it comes to
		manually summarizing the
		dialogues. Throughout the
		interviews the customer supports
		that have globally expanded have
		this as a major issue when
		comparing with services that are
		only available in English.
Save work.	Features of the proposed	Proposed system should be
• Later refer.	system.	capable of saving the generated
• Generate Insights		summaries and allow the users or
		the system administrators to refer
		later. As from the experts they
		mentioned that summaries can be
		use for various purposes later
		such as categorize and analyze to
		get new insights related to
		customers issues.
	<u> </u>	<u>.</u>

Table 8 - Discussion of Findigs Interview

2.5.3 Survey

Question	Do your organization uses dialogue summarizations?
Aim of Question	To understand the awareness of these tools among the end users.
Do your organization uses dialogue summarizations ? 109 responses	• Yes • No

Majority of the participants are aware and currently using dialogue summarization within their organizations. Lesser number of responses shows that not all the customer services are not using dialogue summarizations.

Question	What is the current technique you are using for		
	dialogue summarization?		
Aim of Question	Study the currently available solution in the		
	industry.		

From the gathered responses it clearly shows that majority of the users are summarizing dialogues by manually. 39.3% of users are already using automated solutions for dialogues summarization. Observation from the this can be considered that the awareness of the dialogue summarization solutions are not yet expanded in the industry. This can be a major reason that the tools are not yet well developed or in the early stages.

How many languages you support in customer service? 86 responses

Only EnglishEnglish and few other languages

Majority of the customer services supports more than English language. This can be potential requirement as dialogue summarization that it should not be limited for English.

Question	How much do you think it will be helpful to		
	summarize dialogues which are not in		
	English languages?		
Aim of Question	Identifying the end-user's requirement for the		
	proposed system		

From the responses that more than 60% of users are interested in the proposed solution which can be helping to solve the existing problems with the current solutions or to replace the current solutions.

Table 9 -Discussion of Findigs Survey

2.5.4 Prototyping

Criteria	Findings
Developing core component	Use of transformers and their capabilities
	needs to be identified clearly. Different
	transformers have different capabilities
Applying cross-lingual transfer techniques	Final output of the summary must be clear.
	Context cannot be changed during the transfer
	process as it may lead to different meaning.

Table 10 - Prototyping

2.5.4 Summary of Findings

Finding	Literature	Interviews	Questionnaire	Prototyping
	Review			
The proposed system will help to		✓	√	√
benefit users who are using existing				

solutions and users with no prior				
use of dialogue summarization				
solutions.				
The limitation in dialogue	✓	✓	✓	
summarization systems can be				
pushed by using pre-trained				
language models and cross lingual				
transfer techniques.				
Identified research gap would	✓	✓		
contribute to dialogue				
summarization research domain.				
Within the system summaries		✓		
should be stored and allow user or				
administrators for later reference.				

Table 11 - Summary of Findings

2.6 Context Diagram

The scope of the proposed system and the interaction with internal and external components should be identified before the development. The following diagram represent the context of the proposed system.

Figure 4 - Context Diagram

2.7 Use case Diagram

Figure 5 - Use Case Diagram

2.8 Use case description

Use Case: UC1	Generate Dialogue Summary
Description	Generate a summary for the dialogue input
Primary Actor	Support Agent (User)
Pre-condition	Textual dialogue data should be in a valid input
	format.
Post condition	Generated summary should be displayed to the
	user.
Trigger	A support agent wishes to generate a summary
	for the dialogue which he/she had with the
	customer.

Success scenario	A summary for the input data will be
	generated.
	Generated summary will be stored in
	the system.

Table 12 - Use Case: UC1

Use Case: UC2	Search for a stored dialogue summary	
Description	Find a previously generated summary with	
	matching search results.	
Primary Actor	Support Agent (User), System Admin	
Pre-condition	Previously generated summaries should be	
	saved on the system.	
Post condition	Matching summaries should be displayed.	
Trigger	A support agent / system admin wishes to	
	search for previously generated summaries.	
Success scenario	Matching summaries will be displayed.	
	• If there are no matching summaries	
	will display a message as 0 results.	

Table 13 - Use Case: UC2

Use Case: UC3	Categorize stored summaries
Description	Categorize summaries based on their
	similarities.
Primary Actor	System Admin
Pre-condition	Previously generated summaries should be
	saved on the system.
Post condition	Summaries should be categorized.
Trigger	A system admin wishes to categorize
	summaries based on their similarities to
	generate insights.
Success scenario	Stored summaries will be categorize
	based on their similarities.

Table 14 - Use Case: UC3

2.9 Requirements

2.9.1 Functional Requirements

In order to prioritize the levels of the system requirements the MoSCoW principle was used.

Priority Level	Description
Must have (M)	This priority level indicates the core functional requirements and
	must be implemented.
Should have (S)	This priority level indicates the requirements that are not necessary
	but do add a great value.
Could have (C)	This priority level indicates the optional requirements
Will not have (W)	This priority level indicates the requirements that are out of the
	project scope.

Table 15 - MoSCoW Priority

FR ID	Requirement		Use
		Level	Case
1	User must be able to generate a summary for an inputted	M	UC1
	dialogue data at least for 1 language option.		
2	Summary of the dialogue should be represented to the user.	M	UC1
3	User should be able to generate summary for a dialogue data	S	UC1
	with multiple language options.		
4	The system should store the generated dialogue summaries	S	UC2
	and allow users to view the summaries		
5	The system should allow the users to search stored summaries	S	UC2
	with matching keywords.		
6	The system should allow the admins to categorize the stored	С	UC3
	summaries based on their similarities		

Table 16 - Functional Requirement

2.9.2 Non-functional requirements

NFR ID	Requirement	Description	Priority
			Level
1	Quality of the Output	The quality of the generated summary should	M
		be clear and meaningful as much as possible.	
2	Performance	Time to generate a summary should be	S
		acceptable.	
3	Security	The system should prevent any data breaches	S
		from attackers to keep the information safe.	
4	Usability	The system should be easy to use followed by	M
		good user interface and user experience	
		principles.	

Table 17 - Non-functional Requirement

2.10 Chapter Summary

In this chapter, to represent the overview of the system and how it connects with the different parties have been displayed using the rich picture diagram. Sounder's onion model was used to display the stakeholders and how they connect with each other. In order to get opinions for the proposed solution different requirement elicitation methodologies were followed using the stakeholders. In the latter part the use cases of the system, functional and nonfunctional requirements were documented based on the input from the data gathering results.

Chapter 3: Design

3.1 Chapter Overview

This chapter will include the all the design decision that were made to develop the proposed system. Authors main design goals, overview of the architecture and both high-level and low-level design and wireframes will be discussed.

3.2 Design Goals

Design Goals	Description
Correctness	The output summary should be accurate and
	should not drop the context of the dialogues.
	The proposed system should be able to
	summarize the dialogues with similar to
	human annotated summaries.
Performance	The system should be capable of handling
	lengthy dialogues and optimized to generate
	summaries within a short period of time.
Usability	One of goal of the proposed system is to
	minimize the human resources that will take to
	summarize the dialogues manually, so it
	should be user friendly and be able to work
	with minimum effort.
Testability	The system should be divided into components
	within the development process to test and
	identify errors in the early stages.
Scalability	In the production environment there will be
	more users using the system and the workload
	should be handled to continue the process.

Table 18 - Design Goals

3.3. High-Level Design

3.3.1 Tiered Architecture

The overview of the system architecture is given bellow, in the tiered architecture diagram. The presentation, logic and the data layers are organized in the three-tier architecture.

Figure 6 - Tiered Architecture Diagram

Above composed diagram is represented in a modular form which will be easy to understand, apart from the above diagram a backend services will be used to communicate among each layer.

3.3.2 Discussion of tiers

Data Tier

Data tier will consist of the database which will be using to store the generated dialogue summaries. Also, the user logins will use the database for authentication purposes to ensure the system security.

Logic Tier

Logic tier will be responsible for processing the user input before putting through the summarization process. User input will be pre-processed by removing stop words etc. Then the processed input will be pass through the language detection modular. Machine translation will modular will go through process where it translates the input while minimizing the loss of context from the original user input. Then finally the summary will be generated.

Presentation Tier

User input component is where the end-user will input the dialogue in textual format. Results viewer will display the generated summary to the user. Search dialogue summaries will enable the user to search through previously generated summaries with matching keywords from the database.

3.4. System Design

3.4.1. Choice of the Design Paradigm

After the requirements gathering through multiple requirement elicitation methodologies Author has selected the **SSADM** (Structured Systems Analysis and Design Method) for the development of the proposed prototype because the requirement for the proposed system is well defined.

3.5. Design Diagrams

3.5.1 Data Flow Diagram

Level 01

Level 1 Data flow diagram represent the flow of data through different process within the system.

Figure 7 - Data Flow Diagram Level 1

Level 02

Level 2 Data flow diagram represent more expanded breakdown of the level 1 data flow diagram.

Figure 8 - Data Flow Diagram Level 2

3.5.2 System Process Flow Chart

Figure 9 - System Process Flow Chart

3.5.3 User Interface Design

1. Low level fidelity wireframe diagram

Figure 10 - Low level fidelity wireframe

2. High level fidelity prototype

Figure 11 - High level fidelity wireframe

3.6. Chapter Summary

Design of the proposed system and the architecture of the system were discussed, also the overview of the expected UI for the system is explained using wireframe diagrams in this chapter.

Chapter 4: Initial Implementation

4.1 Chapter Overview

This chapter will consist of the technology stack, data set selection and other information related to the development of the prototype. Reasons for selecting those specific attributes will be discussed.

4.2 Technology Selection

4.2.1 Technology Stack

The chosen technologies for the proposed system in each layer is represented in the bellow diagram.

Figure 12 - Technology Selection

4.2.2 Data-set Selection

This research project requires a dataset with dialogues in customer service domain. As for the data set selection TWEETSUM dataset was chosen for the project. Tweetsum dataset is focused on twitter customer care conversation. It was made with 1,100 dialogs from tweets that is available on the Kaggle customer support on twitter. Each dialogue is summarized with 3 extractive and 3 abstractive summaries by human annotators. Tweetsum dataset contains total summaries of 6500. (Feigenblat et al., 2021). Dataset is publicly available on the official GitHub repo under CDLA-sharing license.

4.2.3 Development Framework

Framework	Justification for selection
Flask	Since the proposed system is a web application, flask is chosen.
	Flask is a light weight and extensible web framework that will allow
	to develop web applications. Also, flask has integrated unit testing
	feature which will be useful for API test validation.
Material Design	Material design is used by many industrial applications. Material
	design is useful for rapid prototyping as it will allow the developer
	to focus on the logical components while not spending too much
	time on the css and other ui parts.
PyTorch	Main reason to choose pytorch over its competitive machine
	learning framework tensorflow is that pytorch well-designed
	comparing to tensorflows frequent api changes.

Table 19 - Development Framework

4.2.4 Programming Languages

Python will be used as the main development language for the core component to preprocess the dataset and training modals. Python is one of the most chosen programming languages for data science projects because of its package's availability and support.

For the API development the flask framework is chosen, and the programming language will be python. Flask is a python based microframework which will allow to develop light weight web APIs.

For the frontend development, typescript was decided to be used. Even typescript will require more time to compile the code when comparing with the plain JavaScript, typescript allows to check the correctness at the compile time which will be useful while developing the prototype.

4.2.5 Libraries

Library	Justification for the selection
Pandas	Pandas dataframe library is capable of performing various
	operation on datasets such as cleaning, sorting, filtering etc.
Numpy	Numpy python library allow to perform mathematical
	operation on multidimensional arrays.
transformers	Transformers libraries provide API access to tools with
	large amount of pre-trained language transformer modals.
ROUGE	This rouge python package will allow to access the rouge
	metrices for evaluating the summarization and machine
	translations.
TensorBoard	TensorBoard is a package that will allow to visualize the
	machine learning related work such as loss and accuracu etc.
	TensorBoard can be easily integrate with pytorch.

Table 20 - Libraries

4.2.6 IDE

IDE	Justification for the selection
Google Collab	More convenient cloud-based development environment
	and being able to work on multiple devices.
PyCharm	Fully fledged IDE which support lot of useful tools for local
	development.
VS code	Convenient IDE for development with lot of tools and
	extensions.

Table 21 - IDE Selection

4.2.7 Summary of Technology Selection

Component	Tools
Programming language	Python, typescript
Development framework	Flask
UI framework	Material design of Angular
Libraries	Pandas, Numpy, transformers, ROUGE, TensorBoard
IDE	Google Collab (core functionality), PyCharm (API
	development), VS code (frontend)
Version control	Git, GitHub, Hugging Face
Web app hosting	Netlify (frontend-host), AWS (backend-host)
CI/CD	Github Actions

Table 22 - Summary of the Technology Selection

4.3 Implementation of the Core Functionality

For the implementation, the format of the tweetsum data set needs to be changed. Summaries in the tweetsum dataset is annotated by humans. But the tweetsum dataset doesn't have original conversations instead it has tweet Ids. So for this research project will be using the twitter customer support data and tweetsum data set to map the conversations and their respective summaries into a single data set for the modal training purposes. Following code is to extract those conversations and summaries from both datasets to finally produce a single complete dataset.

```
!pip install pandas
     !pip·install·json
     !pip install re
[ ] import pandas as pd
     import json
     import re
    import numpy as np
    import re
    # Reading main customer support dataset from kaggle
    df_twcs = pd.read_csv('drive/MyDrive/ColabNotebooks/Dataset/twcs.csv')
[ ] # opening jsonl files to map with main customer support data
    with open('drive/MyDrive/ColabNotebooks/Dataset/tweet_sum_data_files/final_test_tweetsum.jsonl') as f:
        lines = f.read().splitlines()
        df_tweetsum_json = pd.DataFrame(lines)
        df_tweetsum_json.columns = ['json_element']
[\ ] # preparing the TWEETSUM dataset files to a csv files with mapped coloumns
    df_tweetsum_json['json_element'].apply(json.loads)
    df_tweetsum_csv = pd.json_normalize(df_tweetsum_json['json_element'].apply(json.loads))
    df_tweetsum_csv.to_csv('tweetsum_test.csv') # tweetsum json to csv
    list_tweet_id = [] # python list to append rows with tweet id
    tweet_id_offset = 1 # tweet_id_offset coloumn in df_tweetsum_csv (tweetsum_test.csv)
     for index, col in df_tweetsum_csv.iterrows():
        arr = col[tweet id offset]
        df_row = pd.DataFrame(arr)
        # adding to a list
        list_tweet_id.append(df_row['tweet_id'])
    # writing to a csv file with tweet id sequnce
    df_final_output = pd.DataFrame(list_tweet_id)
    print(df_final_output)
    df_final_output.to_csv('tweet_id_seq.csv')
```

Figure 13 - Implementation of the core function 1

```
# loading dataset with tweet id sequnce
 df_preprocessed = pd.read_csv('tweet_id_seq.csv')
 tweet_id_seq_arr = [] # array to append tweet id
 arr = df_preprocessed.to_numpy() # converting the dataframe to a numpy array with float numbers and NaN values
 # function to remove float numbers
 def formatNumber(num):
   if num % 1 == 0:
    return int(num)
   else:
     return num
 # removing tweet_id text, and NaN values from the numpyarray
 for i in range (df_preprocessed.shape[0]):
   index = np.argwhere(arr[i]=='tweet_id')
  y = np.delete(arr[i], index)
   z = y.tolist()
   cleanedList = [x \text{ for } x \text{ in } z \text{ if } str(x) != 'nan']
   for i in range(len(cleanedList)):
    cleanedList[i] = formatNumber(cleanedList[i])
   tweet_id_seq_arr.append(cleanedList)
 print(tweet_id_seq_arr)
```

Figure 14 - Implementation of the core function 2

```
# Creating dataset with matching tweet Ids
 # **dialogue | summary** format
#print(df_twcs)
 #print(tweet_id_seq_arr[0])
 #df_twcs.loc[df_twcs['tweet_id'] == 1]
text_arr = []
 for tweet id in tweet id seq arr[0]:
  text = df_twcs['text'].loc[df_twcs['tweet_id'] == tweet_id].values
  text_arr.append(text)
# 0, 2, 4 ...
 def customer dialog(text):
  first = text.partition(' ')[0]
  customer_txt = text.replace(first, 'customer:')
  return customer_txt
 # 1, 3, 5 ...
 def support_dialog(text):
  first = text.partition(' ')[0]
  customer_txt = text.replace(first, 'support:')
  return customer_txt
```

Figure 15 - Implementation of the core function 3

Next process will be to train the transformer backbone modal which will be the 'bart' using the processed dataset. For the modal training will be using the hugging face trainer API. With this API modal training will be done using a hugging face server machine.

```
import transformers
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer
from datasets import load_dataset, load_from_disk
import numpy as np
import nltk
nltk.download('punkt')
```

[nltk_data] Downloading package punkt to /root/nltk_data...
[nltk_data] Unzipping tokenizers/punkt.zip.

```
max_input = 512
max_target = 128
batch_size = 3
model_checkpoints = "facebook/bart-large-xsum"
data = load_dataset("tweetsum_processed.csv")
```

tokenizer = AutoTokenizer.from_pretrained(model_checkpoints)

```
def preprocess_data(data_to_process):
    #get all the dialogues
    inputs = [dialogue for dialogue in data_to_process['dialogue']]
    #tokenize the dialogues
    model_inputs = tokenizer(inputs, max_length=max_input, padding='max_length', truncation=True)
    #tokenize the summaries
    with tokenizer.as_target_tokenizer():
        targets = tokenizer(data_to_process['summary'], max_length=max_target, padding='max_length', truncation=True)

#set labels
    model_inputs['labels'] = targets['input_ids']
    #return the tokenized data
    #input_ids, attention_mask and labels
    return model_inputs
```

```
[ ] tokenize_data = data.map(preprocess_data, batched = True)
```

```
args = Seq2SeqTrainingArguments(
    'finetuned-multidial', #save directory
    evaluation_strategy='epoch',
    learning_rate=2e-5,
    per_device_train_batch_size=2,
    per_device_eval_batch_size= 2,
    gradient_accumulation_steps=2,
    weight_decay=0.01,
    save_total_limit=2,
    num_train_epochs=3,
    predict_with_generate=True,
    eval_accumulation_steps=3,
    fp16=True #available only with CUDA
)
```

```
trainer = Seq2SeqTrainer(
    model,
    args,
    train_dataset=tokenize_data['train'],
    eval_dataset=tokenize_data['validation'],
    tokenizer=tokenizer
)
```


Figure 16 - Implementation of the core function 4

After the modal training completion, the modal will be saved to personal hugging face account, which will be useful for directly calling the modal.

Figure 17 - Implementation of the core function 5

4.4 User Interface

Current development stage doesn't have a proper frontend development. All the designs related wireframe and mockups are included in the design chapter.

4.5 Chapter Summary

This chapter is consisting of the technologies and tools that were selected to the development of the proposed system with the reasonings. Also, the discussion on the development of the core component.

Chapter 05: Conclusion

5.1 Chapter Overview

This chapter is consisting of the conclusion of the product specification and prototype design. Deviations with both scopes related, and schedule related, initial test results and required improvements for the final product.

5.2 Deviations

5.2.1 Scope related deviations.

As for the status of the project, there are no scope deviations from the project proposal.

5.2.2 Schedule related deviations

There are no schedule-related deviations in progress. Fine-tuning of the prototype (Minimum viable product) to align with the Gantt chart is expected to be delivered as planned in March 2023.

5.3 Initial Test Results

After running 3 epochs the modal scored training loss of 0.144 and validation loss of 0.35. This will be fine-tuned and evaluate with evaluate metrices in the future.

```
***** Running training *****
  Num examples = 14732
  Num Epochs = 3
  Instantaneous batch size per device = 2
  Total train batch size (w. parallel, distributed & accumulation) = 4
  Gradient Accumulation steps = 2
  Total optimization steps = 11049
  Number of trainable parameters = 406290432
                                      [11049/11049 1:55:54, Epoch 3/3]
Epoch Training Loss Validation Loss
     1
             0.307300
                              0.329423
     2
             0.199000
                              0.337761
             0.144500
                              0.352294
```

Figure 18 - Initial Test Results

Output of the dialogue summary generated by the modal.

```
customer: My watchlist is not updating with new episodes (past couple days). Any idea why? support: Apologies for the trouble, Norlene! We're looking into this. In the meantime, try navigating to the season / episode manually. customer: Tried logging out/back in, that didn't help support: Sorry! ③ We assure you that our team is working hard to investigate, and we hope to have a fix ready soon! customer: Thank you! Some shows updated overnight, but others did not... support: We definitely understand, Norlene. For now, we recommend checking the show page for these shows as the new eps will be there customer: As of this morning, the problem seems to be resolved. Watchlist updated overnight with all new episodes. Thank you for your attention to this matter! I love Hulu ⑤ support: Awesome! That's what we love to hear. If you happen to need anything else, we'll be here to support! ⑥ Generated Summary -

"Customer's Hulu watchlist is not updating with new episodes. Some shows updated overnight, but others did not. The problem has been resolved as of this morning. The watchlist updated overnight with all new episodes, so the new episodes will be there."
```

Figure 19 - Final Output

5.4 Required Improvements

Language translation capability to the summarizer needs to be implemented and overall performance of the summarization and the translation needs to be evaluated with evaluation metrices.

5.5 Demo of the Prototype

https://youtu.be/CHCC3ujmIwM

5.6 Chapter Summary

This chapter concludes the conclusion of the product specification and prototyping design with a deviation and the required improvements and the link to the demo of the prototype.

Reference

- Chen, Y. et al. (2021). DIALOGSUM: A Real-Life Scenario Dialogue Summarization Dataset. *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*, 5062–5074. Available from https://doi.org/10.18653/V1/2021.FINDINGS-ACL.449.
- Feigenblat, G. et al. (2021). TWEETSUMM A Large Scale Dialog Summarization Dataset for Customer Service. 7 November 2021. Available from https://research.ibm.com/publications/tweetsumm-a-large-scale-dialog-summarization-dataset-for-customer-service [Accessed 7 February 2023].
- Feng, Xiachong, Feng, Xiaocheng and Qin, B. (2022a). A Survey on Dialogue Summarization: Recent Advances and New Frontiers. Available from https://pypi.org/project/pyrouge/[Accessed 29 October 2022].
- Feng, Xiachong, Feng, Xiaocheng and Qin, B. (2022b). MSAMSum: Towards Benchmarking Multi-lingual Dialogue Summarization. *DialDoc 2022 Proceedings of the 2nd DialDoc Workshop on Document-Grounded Dialogue and Conversational Question Answering, Proceedings of the Workshop*, 1–12. Available from https://doi.org/10.18653/V1/2022.DIALDOC-1.1.
- Gao, M. and Wan, X. (no date). DialSummEval: Revisiting Summarization Evaluation for Dialogues. 5693–5709.
- Labruna, T. and Magnini, B. (2021). From Cambridge to Pisa: A Journey into Cross-Lingual Dialogue Domain Adaptation for Conversational Agents. *CLiC-it*.
- Liu, J. et al. (2021). Topic-Aware Contrastive Learning for Abstractive Dialogue Summarization. *Findings of the Association for Computational Linguistics, Findings of ACL: EMNLP 2021*, 1229–1243. Available from https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.106.
- Liu, Z., Shi, K. and Chen, N.F. (2021). Coreference-Aware Dialogue Summarization. undefined.
- Park, S., Shin, D. and Lee, J. (2022a). Leveraging Non-dialogue Summaries for Dialogue Summarization. Available from https://doi.org/10.48550/arxiv.2210.09474 [Accessed 2 November 2022].
- Park, S., Shin, D. and Lee, J. (2022b). Leveraging Non-dialogue Summaries for Dialogue Summarization. *TU*, 1–7.
- Wang, B. et al. (2022). A Focused Study on Sequence Length for Dialogue Summarization. Available from https://doi.org/10.48550/arxiv.2209.11910 [Accessed 2 November 2022].
- Wang, J. et al. (no date). CLIDSUM: A Benchmark Dataset for Cross-Lingual Dialogue Summarization. Available from https://github.com/krystalan/ [Accessed 18 October 2022].

Xiang, L. et al. (2021). Zero-Shot Deployment for Cross-Lingual Dialogue System. *undefined*, 13029 LNAI, 193–205. Available from https://doi.org/10.1007/978-3-030-88483-3_15.