

EECE 5698 Project: Movie Recommender System using Collaborative Filtering

Emmanuel Ojuba Iuliia Klykova

Types of recommender systems

- Demographic Filtering
- Content Based filtering
- Collaborative Filtering
- Hybrid Filtering

CONTENT-BASED FILTERING

Dataset

The Movies Dataset from Kaggle.com:

- The dataset contains: movies_metadata.csv, keywords.csv, credits.csv, links_small.csv, ratings_small.csv:
- **Ratings.csv** file that consists of 26 million ratings from 270,000 users for all 45,000 movies. Ratings are on a scale of 1-5.
- We picked 450,000 random samples and randomly divided them into 5 folds.
 - Fold 0: 121650 users and 8611 items.
 - Fold 1: 121573 users and 8613 items.
 - Fold 3: 121646 users and 8578 items.
 - Fold 3: 121695 users and 8610 items.
 - Fold 4: 121693 users and 8593 items

Collaborative Filtering (Matrix Factorization)

 r_{ij} : rating by user i to item j.

$$\mathsf{RSE}(U,V) = \sum_{(i,j,r_{ij}) \in \mathcal{D}} (u_i^\top v_j - r_{ij})^2 + \lambda \sum_{i=1}^n \|u_i\|_2^2 + \mu \sum_{j=1}^n \|v_j\|_2^2,$$

Assumption: Bilinear relationship between user profiles, ui, and item profiles vj

Goal: To learn ui and vj, given a sparse set of ratings

Objective Function:

Least-Square Error with Parameter Regularization

Optimization: Stochastic Gradient Descent; Alternating Least Squares

Alternating Least Squares

$$\mathsf{RSE}(U,V) = \sum_{(i,j,r_{ij}) \in \mathcal{D}} (u_i^\top v_j - r_{ij})^2 + \lambda \sum_{i=1}^n \|u_i\|_2^2 + \mu \sum_{j=1}^n \|v_j\|_2^2,$$

We alternate between fixing $U \ni \{u_1, u_2, \dots, u_n\}$ and $V \ni \{v_1, v_2, \dots, v_n\}$

With either U or V fixed, the objective becomes convex least-squares estimation problem that can be optimized using the an analytic formulation:

$$v_j = \left[\sum_i u_i u_i^T + \mu I\right]^{-1} \left[\sum_i r_{ij} u_i\right]$$

This process is allowed to continue for a set number of iterations.

We utilize Spark's MLLib's implementation which offers these hyperparameters:

Stochastic Gradient Descent

- 1. Randomly initialize the U and V matrices
- 2. Predict the ratings for the initialized U and V matrices
- 3. Update U and V iteratively until convergence using a stochastic estimate of the gradient, obtained by calculating the gradient over a subsampled set of the data:

$$\widetilde{\nabla_{\mathbf{u}_{1}}RSE} = 2 \sum_{v_{j}, subsampled} \delta_{ij}v_{j} + 2\lambda u_{i}$$

$$\widetilde{\nabla_{v_j}RSE} = 2 \sum_{u_i.subsampled} \delta_{ij}u_i + 2\mu v_j$$

$$u^{k+1} = u^k - \gamma \nabla_u \widetilde{RSE(U,V)}$$

$$v^{k+1} = v^k - \gamma \nabla_{\!v} R \widetilde{SE(U,V)}$$

Results: Alternating Least Squares (ALS)

Number of latent features d = 2Regularization parameters $\lambda = \mu = 0.3$ The smallest TestRMSE = 1.1248

Results: Stochastic Gradient Descent

Number of latent features d = 3Regularization parameters $\lambda = \mu = 10.0$ The smallest *TestRMSE*=3.388762

Parallelism

ALS

almost 2x speed up between 1 and 8 numbers of blocks used to parallelize computation

SGD

- no speed up observed

Conclusions

- Best performing model is the ALS-optimized MF with parameters of d = 2, $\lambda = \mu = 0.3$. This yielded and RMSE of 1.125
- Unexpectedly, there is huge discrepancy between the best performing ALS and SGD models, with SGD yielding RMSE of 3.389
- Parallelism yields a speedup in the ALS computation, although not in our implementation of SGD.

Future Work

- Hybrid Approaches
- Deep Learning Methods

References

- [1] Ahmed I. Getting Started with a Movie Recommendation System.

 https://www.kaggle.com/ibtesama/getting-started-with-a-movie-recommendation-system/

 notebook
- [2] The Movies Dataset https://www.kaggle.com/rounakbanik/the-movies-dataset
- [3] Koren Y., Bell R., Volinsky C. Matrix Factorization Techniques for Recommender Systems
- [4] Ioannidis, E. Homework 4 Handout
- [5] Matrix Completion via Alternating Least Squares http://stanford.edu/~rezab/classes/cme323/S15/notes/lec14.pdf
- [6] Various Implementations of Collaborative Filtering https://towardsdatascience.com/various-implementations-of-collaborative-filtering-100385 c6dfe0

