UNIVERSITY OF LAUSANNE

TITEL

by

NAME

The work is the responsibility of the author, in no way does it engage the responsibility of the University, nor of the supervising Professor.

HEC - School of Business

January 1, 2020

Declaration of Authorship

I, NAME, declare that this thesis titled, 'TITLE' and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while I worked for XYZ.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed:			
Date:			

UNIVERSITY OF LAUSANNE

Abstract

HEC - School of Business

Master of Science in Finance

by NAME

Thesis abstract written here. Max $\frac{1}{2}$ of a page, both in Englisch & French....

Acknowledgements

The acknowledgements and the people to thank go here, don't forget to include your project advisor.

Executive Summary

The executive summary should go here. Write about 2 pages. . .

Chapter 1

Introduction

1.1 Introduction

TEXT

What follows is a reference: Merton (1973)

Bibliography

Merton, R. C. (1973). Theory of rational option pricing. The Bell Journal of economics and management science, pages 141–183.

Tables 3

Tables

$$T = 25 \qquad T = 100$$
True parameters $a = 1 \quad b = 1 \quad a = 1 \quad b = 1$
Mean $0.996 \quad 0.915 \quad 0.994 \quad 0.956$
STD $0.567 \quad 0.249 \quad 0.401 \quad 0.177$
min $0.001 \quad 0.001 \quad 0.001 \quad 0.331$
max $4.464 \quad 2.206 \quad 2.848 \quad 1.619$
RMSE $0.567 \quad 0.263 \quad 0.401 \quad 0.182$

$$T = 25 \qquad T = 100$$
True parameters $a = 1 \quad b = 1 \quad a = 1 \quad b = 1$
Mean $0.997 \quad 0.917 \quad 0.998 \quad 0.957$
STD $0.552 \quad 0.247 \quad 0.393 \quad 0.176$
min $0.001 \quad 0.001 \quad 0.001 \quad 0.330$
max $3.880 \quad 2.200 \quad 2.543 \quad 1.641$

$$\Delta RMSE (\%) \qquad 2.606 \quad 0.937 \quad 2.193 \quad 0.728$$

Table 4: This Table reports the results of the QGPML2 simulation described in model (1). The true parameters are a=1, and b=1. The RMSE is defined as $\left(\frac{1}{M}\sum_{j=1}^{M}(\hat{\theta}^{(j)}-\theta)^2\right)^{1/2}$, where $\theta=a$ or b. Here, the superscript $j=1,\cdots,M$ denotes a simulation. We took M=30'000. By Δ RMSE (%) we denote the percentage gain in the MSE if one uses QGPML2 instead of PML2.

Figures 4

Figures

Figure 1.1: This figure represents the skewness-kurtosis domain for which a density exists (the domain is symmetric with respect to the horizontal axis). The circles represent those points for which we computed the parameters α and β . The symbol + represents those points for which the distance between the original skewness and kurtosis and the recomputed skewness and kurtosis (after evaluation of the α and β) is larger than 10^{-5} .