Assignment

Subject: Mathematics

Topic: Continuity

1. Determine the values of a, b, c for which the function
$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x} & \text{for } x < 0 \\ C & \text{for } x = 0 \\ \frac{(x+bx^2)^{1/2} - x^{1/2}}{bx^{3/2}} & \text{for } x > 0 \end{cases}$$

is continuous at x = 0.

2. If
$$f(x) = \begin{cases} \frac{1-\cos x}{x^2}, & x < 0 \\ a, & x = 0 \text{ then correct statement is :} \\ \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}, & x > 0 \end{cases}$$

(A) f(x) is discontinuous at x=0 for any value of a (B) f(x) is continuous at x=0 for a=8 (C) f(x) is continuous at x=0 for a=0 (D) N.O. T

3. Discuss the continuity of the function
$$f(x) = \begin{cases} \frac{a^{|x|+x} - 1}{[x] + x}, & x \neq 0 \\ \log_e a, & x = 0 \end{cases}$$
 at $x = 0$, $a > 0$.

4. Discuss the continuity of the function f(x) $\begin{cases} \frac{a^{2[x]+\{x\}}-1}{2[x]+\{x\}}, & x \neq 0 \\ \log_e a, & x = 0 \end{cases}$ at x = 0

where [.] denotes greatest integral part and $\{.\}$ denotes fractional part of x.

5. If
$$f(x) = \begin{cases} a + \frac{\sin[x]}{x}, & x > 0 \\ T - J \frac{x}{2}, E, & x = 0 \end{cases}$$
 Pre-Foundation
$$b + \left[\frac{\sin x - x}{x^3}\right], x < 0$$

(whre [.] denotes the greatest integer function). If f(x) is continuous at x = 0, then find b

6. Give a real valued function
$$f$$
 such that $f(x) =\begin{cases} \frac{\tan^2 x}{(x^2 - [x])^2} & \text{for } x > 0 \\ 1 & \text{for } x = 0 \\ \sqrt{\{x\} \cot\{x\}} & \text{for } x < 0 \end{cases}$

where, [x] is the integral part and $\{x\}$ is the fractional part of x, then

(a)
$$\lim_{x\to 0} f(x) = 1$$

(b)
$$\lim_{x\to 0^{-}} f(x) = \cot 1$$

1

(c)
$$\cot^{-1} \left(\lim_{x \to 0^{-}} f(x) \right)^{2} = 1$$

(d) f is continuous at x = 0

- If $f(x) = \begin{cases} \frac{\sin{\{\cos{x}\}}}{x \pi/2}, & x \neq \frac{\pi}{2} \\ 1, & x = \frac{\pi}{2} \end{cases}$, where $\{.\}$ denotes the fractional part of x hence f(x) is:
 - (a) continous at $x = \frac{\pi}{2}$
 - (b) $\lim_{x \to \frac{\pi}{2}} f(x)$ exists, but f(x) is not continuous $x = \frac{\pi}{2}$
 - (c) $\lim_{x \to \frac{\pi}{2}} f(x)$ does not exists (d) $\lim_{x \to \frac{\pi}{2}} f(x) = 1$
- If $f(x) = \{x^2\} (\{x\})^2$, where $\{x\}$ denotes the fractional part of x, then discuss continuity at x = 2, -28.

$$\begin{cases} \frac{\sin[x]}{[x]+1}, x > 0 \end{cases}$$

If $f(x) = \begin{cases} \frac{\sin[x]}{[x]+1}, & x > 0 \\ \frac{\cos\frac{\pi}{2[x]}}{[x]}, & x < 0 \text{ is continuous at } x = 0, \text{where } [] \text{ denotes the greatest integer function, then } \\ k, & x = 0 \end{cases}$

k equal to

- Discuss the continuity of $f(x) = \{x + (x [x])^2\}$ at x = 2& x = 2.5, where $\{\}$ stands for frational part of 10... x and [] is greatest integer function.
- The function $f(x) = \arctan \frac{1}{x-5}$ has: 11.

 - (a) discontinuity of the first kind at x = 5 (b) discontinuity of the second kind at x = 5 (c) removable discontinuity at x = 5 (d) continuous at x = 5

12. Consider
$$f(x) = \begin{bmatrix} x[x]^2 \log_{(1+x)} 2 & \text{for } -1 < x < 0 \\ \frac{\ln(e^{x^2} + 2\sqrt{x})}{\tan \sqrt{x}} & \text{for } 0 < x < 1 \end{bmatrix}$$

where [*] & {*} are the greatest integer function & fractional part function respectively, then

- (A) $f(0) = ln2 \Rightarrow f$ is continuous at x = 0 (B) $f(0) = 2 \Rightarrow f$ is continuous at x = 0 (C) $f(0) = e^2 \Rightarrow f$ is continuous at x = 0 (D) f has an irremovable discontinuity at x = 0

13. If
$$f(x) = \begin{cases} \frac{\sin 3x}{\tan x}, & x < 0 \\ \frac{3}{2}, & x = 0 \text{ then } f(x) \text{ is } \\ \frac{\log(1+3x)}{e^{2x}-1}, & x > 0 \end{cases}$$

(A)continuous at x = 0

- (B) discontinuous at x = 0
- (C) limit does not exists at x = 0
- (D)N.O.T

Let f(x) be a polynomial of degree one and f(x) be a function defined by $f(x) = \begin{cases} g(x), & x \le 0 \\ \frac{1+x}{(2+x)^{1/x}}, & x > 0 \end{cases}$ 14.

If f(x) is continuous at x = 0 and f(-1) = f'(1), then g(x) is equal to:

(a)
$$-\frac{1}{9}(1+6\log_e 3)x$$

(b)
$$\frac{1}{9}(1+6\log_e 3)x$$

(c)
$$-\frac{1}{9}(1-6\log_e 3)x$$

(d) none of these

- If $(x) = \begin{cases} [x] + [-x], & x \neq 2 \\ \lambda, & x = 2, \end{cases}$ then f is continuous at x = 2, provided λ is equal to: 15.

- (c)-1
- (d) 2

- $f(x) = \begin{cases} \frac{e^{e/x} e^{-e/x}}{e^{1/x} + e^{-1/x}}, & x \neq 0 \\ k, & x = 1 \end{cases}$

 - (A) f is continuous at x, when k = 0 (B) f is not continuous at x = 0 for any real k.
 - (C) $\lim_{x\to 0} f(x)$ exist infinitely.

- (D) None of these
- If $f(x) = \left(\tan\left(\frac{\pi}{4} + \ell nx\right)\right)^{\log_{1} e}$ is to be made continuous at x = 1, then f(1) should be equal to **17.**

- (a) e^2 (b) e (c) 1/e (d) e^{-2} Value of 'a' such that $f(x) = \begin{cases} \frac{\left(e^x 1\right)^3 \cdot \csc(ax)}{\ln(1 + x^2)} & x \neq 0 \\ b, & x = 0 \end{cases}$ is continuous at x = 0, is equal to (a) e^{-2} (a) e^{-2} Value of 'a' such that $f(x) = \frac{\left(e^x 1\right)^3 \cdot \csc(ax)}{\ln(1 + x^2)} & x \neq 0 \end{cases}$ is continuous at e^{-2} (a) e^{-2} Value of 'a' such that $f(x) = \frac{1}{x} \ln\left(\frac{1 + ax}{1 bx}\right)$ can be made continuous at e^{-2} , is equal to e^{-2} 18.

- 19.
 - (a) a b (b) a + b (c) $\ln \left(\frac{a}{b}\right)$ (d) $\ln \left(ab\right)$
- Value of f(0) so that $f(x) = \frac{1}{x^2} (1 \cos(\sin x))$ can be made continuous at x = 0, is equal to 20.
 - (a) 1/2

- (d)4
- If $f(x) = \frac{(a+x)^2 \cdot \sin(a+x) a^2 \cdot \sin a}{x}$ $x \ne 0$, Then the value of f(0) so that f is continuous at x = 0 is 21.
 - (a) $a^2 \cos a + a \sin a$

(b) $a^2 \cos a + 2a \sin a$

(c) $2a^2 \cos a + a \sin a$

(d) N.O.T

22. 'f' is a continuous function on the real line. Given that

 $x^{2} + (f(x) - 2) x - \sqrt{3} \cdot f(x) + 2\sqrt{3} - 3 = 0$. Then the value of $f(\sqrt{3})$

- (A) can not be determined (B) is $2(1-\sqrt{3})$ (C) is zero
- (D) is $\frac{2(\sqrt{3}-2)}{\sqrt{2}}$
- If $f(x) = \left(\frac{\sin x}{\sin \alpha}\right)^{\frac{1}{(x-\alpha)}}$ is continuous at $\alpha \neq m\pi(m \in I)$ then, 23.
- (A) $f(\alpha) = e^{\tan \alpha}$ (B) $f(\alpha) = e^{\cot \alpha}$ (C) $f(\alpha) = e^{2\cot \alpha}$
- (D) $f(\alpha) = \cot \alpha$
- 24. The set of points where $f(x) = \sec 2x + \cos ec 2x$ is discontinuous:
 - (A) $\{n\pi : n = 0, \pm 1, \pm 2, ...\}$
- (B) $\left\{ \frac{n\pi}{2} : n = 0, \pm 1, \pm 2, \dots \right\}$
- (C) $\left\{ \frac{(2n+1)\pi}{4} : n = 0, \pm 1, \pm 2, \dots \right\}$
- (D) $\left\{ \frac{n\pi}{4} : n = 0, \pm 1, \pm 2, \dots \right\}$
- If $f(x) = \sqrt{\sin^{-1} x + \sqrt{\cos^{-1} x}}$ is defined in [0,1] then: 25.
 - (A) f(x-3) is continuous in the interval [3,4]
- (B) f(x-3) is continuous in the interval [0,1]
- (C) f(x-3) is continuous in the interval [0,1)
- (D) f(x-3) is continuous in the interval (0,1)
- The set of points where $f(x) = \frac{\tan x \cdot \ln(x-2)}{x^2 4x + 3}$ is discontinuous is: 26.

(B) $\left(-\infty,2\right] \cup \left\{3, n\pi + \frac{\pi}{2}, n \in N\right\}$

- At origin the function $f(x) = |x| + \frac{|x|}{x}$ is: 27.
 - (A) continuous (B) discontinuous because $\frac{|x|}{x}$ is discontinuous there
 - (C) discontinuous because | x | is discontinuous there
 - (D) discontinuous because $|x| & \frac{|x|}{x}$ both are discontinuous there
- 28. Which of the following function have finite number of points of discontinuity?
 - (a) tan x
- (b) x [x]
- (c) $\frac{|X|}{|X|}$
- (d) $sin[n\pi x]$
- The function $f(x) = \frac{1}{\ell n |x|}$ has non removable discontinuity at x =_____ & removable discontinuity at 29.

____ respectively.

- (a) x = 0 & x = 1, -1 (b) x = 2, -1 & x = 0 (c) x = 1, -1 & x = 0 (d) None of these

30.	$f(x) = [tan^{-1} x]$, where [.] denotes the greatest integer function, is discontinuous at			
	(a) $x = \frac{\pi}{4}, -\frac{\pi}{4} \text{ and } 0$	(b) $x = \frac{\pi}{3}, -\frac{\pi}{3}$	and 0	
	(c) $x = \tan 1$, $-\tan 1$ and 0	(d) None of thes	e	
31.	Let $f(x) = [x^3 - 3]$, where [.] denotes the greatest integer function. then the number of points in the in			
	(1, 2) where the function is discontinuous, is			
	(a) 4 (b) 2	(c) 6	(d) none of these	
32.	$f(x) = [\sin x]$, where [.] denotes the greatest integer function, is continuous at			

(a)
$$x = \frac{\pi}{2}$$

(b)
$$x = \pi$$

(b)
$$x = \pi$$
 (c) $x = \frac{3\pi}{2}$

(d)
$$x = 2\pi$$

33. Let $f(x) = [\sin x + \cos x], 0 < x < 2\pi$, (where [.] denotes the greatest integer function) Then the number of point of discontinuity of f(x) is:

(b)
$$5$$

 $f(x) = 1 + x (\sin x) [\cos x], 0 < x < \pi/2$ is discontinuous at([.] denotes the greatest integer function) 34.

Points of discontinuity of $f(x) = [x] \sin \frac{\pi}{[x+1]}$, where [.] denotes the greatest integer function, are 35.

(a)
$$x \in 1 \sim \{-1, 0\}$$
 (b) $x \in 1 \sim \{0\}$ (c) $x \in 1 \sim \{-1\}$

(b)
$$x \in 1 \sim \{0\}$$

(c)
$$x \in 1 \sim \{-1\}$$

(d) None of these

Prove that $f(x) = [\tan x] + \sqrt{\tan x - [\tan x]}$. (where [.] denotes greatest integer function) is continuous in **36.** $\left| 0, \frac{\pi}{2} \right|$.

Function $f(x) = [x] \cos\left(\frac{2x-1}{2}\right)\pi$ is discontinuous at

(a) every x

(b) no x

(c) Every integral point

(d) Every non integral point 37.

38. If
$$f(x) = \left[\frac{x}{2} - 1\right]$$
, then in the interval $[0, \pi]$:

(A) tan[f(x)] is discontinuous but $\frac{1}{f(x)}$ is continuous

(B) tan[f(x)] is continuous but $\frac{1}{f(x)}$ is discontinuous.

(C) $tan[f(x)] & f^{-1}(x)$ both are continuous

(D) $tan[f(x)] \& \frac{\int_{f(x)}^{E} F(x)}{f(x)}$ both are discontinuous. Pre-Foundation

39. Which of the following functions are continuous for all x.

$$f(x) = |x - 1| + |\sin x| + \cos x$$
,

$$g(x) = \frac{|x|}{|x|+1} ,$$

$$h(x) = e^{|x|} + |\sin x| + \frac{1}{\sin x + 2}$$
,

$$k(x) = |x||x-1| + \frac{x^2}{x^2+1}$$

$$(D)$$
 all f, g, h, k

Function $f(x) = [x.\sin \pi x]$ is continuous at x = :40.

$$(C) -1$$

$$(D)(-1,1)$$

- Points of discontinuity of $f(x) = \left| \frac{6x}{\pi} \right| \cdot \cos \left| \frac{3x}{\pi} \right|$, where [] denotes the greatest integer function 41.
 - (A) $\frac{\pi}{6}$
- (C) $\frac{\pi}{2}$, π
- (D) N.O.T
- 42. Which one of the following is not continuous function?
 - $(A) \cos[x]$
- (B) $\sin \pi [x]$
- (C) $\sin \frac{\pi}{2}[x]$

Column-II

(D) All of the above

43. Matrix match:

Column-I

- (A) A function $f(x) = \sin x + \{x\}$ is
- (P) Continuous for all x
- (B) A function $g(x) = \sin x + \frac{x^2}{1 + x^2}$ is
- (Q) discontinuous at infinite number of points
- (C) A function $h(x) = |x||x-1| + \frac{\sin x}{2 + \sin x}$ is
- (R) discontinuous at finite number of points
- (D) A function $k(x) = \sin[x] + \frac{\cos x}{3 + \sin x}$ is
- (S) discontinuous at all the integres

44. **Matrix match:**

Column-I

- (A) A function $f(x) = x[x], 1 \le x \le 4$ is
- (P) Continuous for all x

Column-II

- (B) A function $g(x) = \frac{x}{x^2 1} + |x|$ is
- (Q) discontinuous at infinite number of points
- (C) A function $h(x) = \{\sin x\} + x \cdot \sin x$ is
- (R) discontinuous at finite number of points
- (D) A function $k(x) = \ln[x] + \frac{\sin x}{|x| + 1}$ is (S) discontinuous at all the integres
- Function f(x) = a[x+1] + b[x+1], (where [] denotes the greatest integer function) is continuous 45.
- at x = 1, if (a + b) is equal to _____.

 If f(x) is continuous for $x \in R$ and range of $f(x) = (2, \sqrt{26})$ & $g(x) = \left\lceil \frac{f(x)}{a} \right\rceil$ is continuous $\forall x \in R$, 46.

where [x] denotes the greatest intefer function .then least positive integral value of a is equal to

- 47. If f(x) = sgn(cos 2x - 2sin x + 3), where sgn() is the signum function, then f(x)
 - (A) is continuous over its domain
- (B) has a missing point discontinuity
- (C) has isolated point discontinuity
- (D) has irremovable discontinuity.
- Let $g(x) = \tan^{-1}|x| \cot^{-1}|x|$, $f(x) = \frac{\lfloor x \rfloor}{\lceil x+1 \rceil}$ $\{x\}$, $h(x) = \left| g(f(x)) \right|$ where $\{x\}$ denotes fractional part and [x]48.

denotes the integral part then which of the following holds good?

(A) h is continuous at x = 0

(B) h is discontinuous at x = 0

(C) $h(0^{-}) = \frac{\pi}{2}$

(D) $h(0^+) = -\frac{\pi}{2}$

The set of points where $f(x) = \frac{\tan x \cdot \log x}{1 - \cos 4x}$ is discontinuous:

$$(A)\left\{\frac{n\pi}{2}:n\in Z\right\}$$

$$(B)\left\{\frac{n\pi}{2}:n\in\mathcal{Q}\right\}$$

$$(\mathrm{A}) \left\{ \frac{n\pi}{2} : n \in Z \right\} \qquad (\mathrm{B}) \left\{ \frac{n\pi}{2} : n \in Q \right\} \qquad (\mathrm{C}) \left(-\infty, 0 \right] \cup \left\{ \frac{n\pi}{2} : n \in N \right\}$$

- Function $f(x) = [x]^2 [x^2]$, where [] denotes the greatest integer function is discontinuous at 50.
 - (A) all integers

(B) all integers except 0&1

(C) all integers except 0

- (D) all integers except 1
- Let $f(x) = x |x x^2|, -1 \le x \le 1$. 51.

Discuss the continuity of f(x) in the closed interval [-1,1]. Draw the graph of f(x) in the interval.

- Let $f(x) = \sec^{-1}([1 + \sin^2 x])$; is discontinuous at(where [.] denotes greatest integral function.) 52.
- **Statement-1**: $f(x) = \sin x + [x]$ is discontinuous at x = 0. 53.

Statement-2: If g(x) is continous & h(x) is discontinuous at x = a, then g(x) + h(x) will necessarily be discontinuous at x = a.

Let $f(x) = \begin{cases} \frac{2x+1}{x-2}, & x \in [0,1] \\ \frac{\sqrt{1+ax}-\sqrt{1-ax}}{x}, & x \in [-1,0) \end{cases}$ if f(x) is continuous in [-1,1], then

(a) a = -1 (b) $a = -\frac{1}{2}$ (c) a = -2 (d) N

If $f(x) = \begin{cases} |x^2 - 1| - 1, & x \le 1 \\ |2x - 3| - |x - 2|, & x > 1 \end{cases}$, then f(x) is continuous for

(a)
$$a = -1$$

(b)
$$a = -\frac{1}{2}$$

(c)
$$a = -2$$

- (d) None of these

- (d) None of these

TM

56. Discuss the continuity of f(x) in [0, 2]

 $f(x) = \begin{cases} [\cos \pi x], & x \le 1 \\ |2x - 3|[x - 2], & x > 1 \end{cases}$ where [t] represents the greatest integer function.

- If $f(x) = \begin{cases} -2\sin x & , x \le -\frac{\pi}{2} \\ a\sin x + b & , -\frac{\pi}{2} < x < \frac{\pi}{2} \text{ is continuous function , then a+b is equal to} \\ \cos x & , x \ge \frac{\pi}{2} \end{cases}$
- 58. If $f(x) = \begin{cases} 1 + \sin\frac{\pi a}{2}, -\infty < x \le 1 \\ ax + b, 1 < x < 3 \text{ is continuous in } (-\infty, 6), \text{then values of a + b is equal to} \\ 6\tan\frac{\pi x}{2}, 3 \le x < 6 \end{cases}$

Comprehension # 1

There are two system S_1 and S_2 of definition of limit and contiuity. In system S1 the defintion are as usual. In System S₂ the defintion of limit is as usual but the continuity is defined as follows:

(i)
$$\left| \lim_{x \to a^{-}} f(x) - \lim_{x \to a^{+}} f(x) \right| \leq 1$$

(ii) f(a) lies between the values of $\lim_{x\to a^-}$ and $\lim_{x\to a^+} f(x)$ if $\lim_{x\to a^-} f(x) \neq \lim_{x\to a^+} f(x)$

else $f(a) = \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$. Read the above passage carefully and answer the following

59. If
$$f(x) = \begin{cases} x + 2.7 \ , & x < 0 \\ 2.9 \ , & x = 0 \\ 2x + 3 \ , & x > 0 \end{cases}$$
 amd $g(x) = \begin{cases} 3x + 3 \ , & x < 0 \\ 2.8 \ , & x = 0 \end{cases}$ then consider statements $-x^2 + 2.7 \ , & x > 0 \end{cases}$

- (i) f(x) is discontinuous under the system S₁
- (ii) f(x) is continuous under the system S₃
- (iii) g(x) is condinuous under the system S_{a} which of the following option is correct
- (A) only (i) is true

(B) only (i) and (ii) are true

(C) only (ii) and (iii) are true

- (D) all (i), (ii), (iii) are true
- If each of f(x) and g(x) is continuous at x = a in S_2 , then in S_2 which of the following is continuous 60. (D) None of these (A) f + g(B) f - g
- 61. Which of the following is correct
 - (A) A continuous function under the definition in S, must also be continuous under the definition in S,
 - (B) A continuous function under the definition in S₂ must be continuous under the definition in S₄
 - (C) A discontinuous function under the definition in S, must also be discondinuous under the definition in
 - (D) A discontinuous function under the definition in S₁ must be continuous under the definition in S₂.
- Which of the following function contains single point discontinuity: **62.**

(A)
$$f(x) = \begin{cases} 1 & , x \in Q \\ 0 & , x \notin Q \end{cases}$$
(B)
$$g(x) = \begin{cases} x & , x \in Q \\ 1-x & , x \notin Q \end{cases}$$
(C)
$$h(x) = \begin{cases} x & , x \in Q \\ 0 & , x \notin Q \end{cases}$$
(D)
$$k(x) = \begin{cases} x & , x \in Q \\ -x & , x \notin Q \end{cases}$$

$$(B) g(x) = \begin{cases} x \\ 1 - x \end{cases}$$

(C)
$$h(x) = \begin{cases} x, & x \in Q \\ 0, & x \notin Q \end{cases}$$

(D)
$$k(x) = \begin{cases} x, & x \in Q \\ -x, & x \notin Q \end{cases}$$

63. If
$$f(x) = \begin{cases} x^a \cdot \sin \frac{1}{x} = x \neq 0 \text{ is continuous at } x = 0 \text{ then} \\ 0 \quad , x = 0 \end{cases}$$
(A) $a > 0$ (B) $a < 0$ (C) $a = 0$ (D) $a \ge 0$

- (A) a > 0

- (D) $a \ge 0$

64. If
$$f(x) =\begin{cases} -1, & x < 0 \\ 0, & x = 0 \text{ and } g(x) = x(1-x^2), \text{ then } ; f(g(x)) \text{ is continuous for }, \\ 1, & x > 0 \end{cases}$$
(a) R
(b) $R = \{0\}$
(c) $R = \{0, 1\}$
(d) $R = \{-1, 0, 1\}$

- (a) R

65. If
$$f(x) = \begin{cases} -1, x < 0 \\ 0, x = 0 \text{ and } g(x) = x(1 - x^2), \text{ then } ; g(f(x)) \text{ is continuous form } 1, x > 0 \end{cases}$$

(a) R (b) R - {0} (c) R - {0, 1} (d) R - {-1, 0, 1}
66. If
$$f(x) = \begin{cases} 1-x & 0 \le x \le 1 \\ x+2 & 1 < x \le 2 \end{cases}$$
, then check the points of discontinuity of fof. $4-x$, $2 < x \le 4$

67. If
$$f(x) = \begin{cases} 2x^2 + 12x + 16 & , -4 \le x \le -2 \\ 2 - |x| & , -2 < x \le 1 \\ 4x - x^2 - 2 & , 1 < x \le 3 \end{cases}$$
, then check the continuity of $|f(x)| & f(|x|)$.

68. Let
$$f(x) = \begin{cases} x+2, & -4 \le x \le 0 \\ 2-x^2, & 0 < x \le 4 \end{cases}$$

then find f(f(x)), domain of f(f(x)) and also comment upon the continuity of f(f(x)).

69. Let
$$f(x) = \begin{cases} 1 + x^3, & x < 0 \\ x^2 - 1, & x \ge 0 \end{cases}$$
; $g(x) = \begin{cases} (x - 1)^{1/3}, & x < 0 \\ (x + 1)^{1/2}, & x \ge 0 \end{cases}$. Discuss the continuity of $g(f(x))$.

70.. If
$$f(x) = \frac{x-1}{x+1}$$
, $f'(x) = f(x)$, $f^2(x) = fof(x)$, $f^{k+1}(x) = f(f^k(x))$ where $k = 1, 2, 3, \dots$ If $g(x) = f^{1999}(x)$ then check the continuity of $g(x)$.

$$f(x) = \frac{\sqrt{1+x} - \sqrt{1-x}}{\{x\}}$$

$$x \neq 0$$

$$g(x) = \cos 2x$$

$$-\frac{\pi}{4} < x < 0$$
TM

$$\mathbf{h}(\mathbf{x}) = \begin{cases} \frac{1}{\sqrt{2}} f(g(\mathbf{x})) & \text{for } \mathbf{x} < 0 \\ 1 & \text{for } \mathbf{x} = 0 \text{ then, which of the following holds good.} \end{cases}$$

$$f(\mathbf{x}) & \text{for } \mathbf{x} > 0$$

where $\{x\}$ denotes fractional part function.

(A) 'h' is continuous at x = 0

- (B) 'h' is discontinuous at x = 0
- (C) f(g(x)) is an even function
- (D) f(x) is an even function

72. Let
$$f(x) = x^3 + x$$
 be function and $g(x) = \begin{cases} f(|x|), & x \ge 0 \\ f(-|x|), & x < 0 \end{cases}$, then prove that $g(x)$ is continuous $\forall x \in \mathbb{R}$

- If α , β ($\alpha < \beta$) are the points of discontinuity of the function f(f(f(x))), where $f(x) = \frac{1}{1-x}$, then the set 73. of values of 'a' for which the points (α, β) and (a, a²) lie on the same side of the line x + 2y - 3 = 0, is:

 - (a) $\left(-\frac{3}{2},1\right)$ (b) $\left[-\frac{3}{2},1\right]$ (c) $\left[1,\infty\right]$
- (d) $\left(-\infty, -\frac{3}{2}\right)$
- $\operatorname{Given} f(\mathbf{x}) = \begin{vmatrix} \frac{1 \sin\left(\frac{\pi \mathbf{x}}{2}\right) + \ell n\left(\sin\left(\frac{\pi \mathbf{x}}{2}\right)\right)}{\sqrt{\left(2\sin\frac{\pi \mathbf{x}}{2} 1\right) + \cos^2\left(\frac{\pi \mathbf{x}}{2}\right) 1}} & \text{for } \mathbf{x} > 1 \\ \vdots & \text{where } h(\mathbf{x}) = \sin^{-1}(\operatorname{sgn}(\mathbf{x})) \& 1 \end{vmatrix}$ **74.** for x≤1
 - $g(x) = \left| x \right| + \{-x\} + [x], \text{ where } \{x\} \text{ is the fractional part of } x, [x] \text{ is the integral part of } x \& \text{sgn}(x) \text{ is the fractional part of } x = \{x\} + \{x\} +$ signum of (x). Discuss the continuity of f in $(-\infty, 2)$.
- If $f(x) = \lim_{n \to 0} \frac{(1 + \cos \pi x)^n + 1}{(1 + \cos \pi x)^n 1}$, then **75.**
 - (a) f(1+0) = 1

- (b) f(1-0) = 2
- (c) f(x) is continuous at x = 1
- (d) f(x) is not continuous at x = 1
- Discuss the continuity of f(x) where $f(x) = \lim_{n \to \infty} \left(\sin \frac{\pi x}{2} \right)^{2n}$ **76.**
- Examine the continuity of $f(x) = \lim_{n \to \infty} \frac{x}{(2 \sin x)^{2n} + 1}$ for $x \in \mathbb{R}$. 77.
- If f(x) and g(x) are two functions continuous everywhere and $F(x) = \lim_{n \to \infty} \frac{f(x) + x^{2n} \cdot g(x)}{1 + x^{2n}}$ then prove **78.** that F(x) is continuous everywhere except at x = 1, -1. Find the condition on f(x), g(x) which makes F(x)continuous everywhere.
- If $f(x) = \begin{cases} x [x], x \notin I \\ 1, x \in I \end{cases}$, where I is integer and [.] represents the greatest integer function and, **79.**

$$g(x) = \lim_{n \to \infty} \frac{\{f(x)\}^{2n} - 1}{\{f(x)\}^{2n} + 1}$$
, then NEET Pre-Foundation

- (a) Draw graphs of f(2x), g(x) and g(g(x)) and discuss their continuity.
- (b) Find the domain and range of these functions.
- (c) Are these function periodic? If yes, find their periods.
- Let $g(x) = \lim_{n \to \infty} \frac{x^n f(x) + h(x) + 1}{2x^n + 3x + 3}$, $x \ne 1$ and $g(1) = \lim_{n \to 1} \frac{\sin^2(\pi.2^x)}{\ln((\sec(\pi.2^x)))}$ be a continuous function at 80.

x = 1, find the value of 4g(1) + 2f(1) - h(1). Assume that f(x) and h(x) are continuous at x = 1.

- 81. Tick the correct alternatives for the following.
 - If $f(x) = \frac{\tan(\frac{\pi}{4} x)}{\cos^2 2x}$ for $x \neq \frac{\pi}{4}$, then the value which can be given to f(x) at $x = \frac{\pi}{4}$ (I).

so that the function becomes continuous every where in $(0,\pi/2)$ is 1/4.

- The function f, defined by $f(x) = \frac{1}{1 + 2^{\tan x}}$ is continuous for real x. (II)
- $f(x) = \underset{n \to \infty}{\text{Limit}} \frac{1}{1 + n \sin^2 \pi x} \text{ is continuous at } x = 1.$ (III)
- The function $f(x) = \begin{bmatrix} 2x+1 & \text{if} & -3 < x < -2 \\ x-1 & \text{if} & -2 \le x < 0 \\ x+2 & \text{if} & 0 \le x < 1 \end{bmatrix}$ is continuous everywhere in (-3,1). (IV)
- (A) TTTT
- (B) T F T F
- (C) T T F F
- (D) F F F F
- The function defined as $f(x) = \underset{n \to \infty}{\text{Limit}} \frac{\cos \pi x x^{2n} \sin(x-1)}{1 + x^{2n+1} x^{2n}}$ 82.
 - (A) is discontinuous at x = 1 because $f(1^+) \neq f(1^-)$
 - (B) is discontinuous at x = 1 because f(1) is not defined
 - (C) is discontinuous at x = 1 because $f(1^+) = f(1^-) \neq f(1)$
 - (D) is continuous at x = 1
- Discuss the continuity of the function $f(x) = Lt \frac{\log(2+x) x^{2n} \sin x}{1 + x^{2n}}$ at x = 183.
- The set of points of discontinuity of the function $f(x) = \lim_{n \to \infty} \frac{(2 \sin x)^{2n}}{3^n (2 \cos x)^{2n}}$ is given by 84.c
 - R (a)
- (b) $\left\{ n\pi \mp \frac{\pi}{3}, n \in I \right\}$ (c) $\left\{ n\pi \pm \frac{\pi}{6}, n \in I \right\}$ (d) none of these
- Let y = f(x) be defined parametrically as $y = t^2 + t |t|$, x = 2t |t|, $t \in \mathbb{R}$, find f(x) and discuss **85.** continuity. at x = 0.
- Discuss the continuity for; $f(x) = \frac{1 u^2}{2 + u^2}$ where $u = \tan x$ 86.
- If $y = \frac{1}{t^2 t 6}$ and $t = \frac{1}{x 2}$, then the values of x which make the function y discontinuous, are **87.**

 - (a) $2, \frac{2}{3}, \frac{7}{3}$ (b) $2, \frac{3}{2}, \frac{7}{3}$
- (d) none of these

- 88. If $f(x) = \min(\tan x, \cot x)$, then
 - (a) f(x) is discontinuous at x = 0, $\frac{\pi}{4}$, $\frac{5\pi}{4}$ (b) f(x) is continuous at x = 0, $\frac{\pi}{2}$, $\frac{3\pi}{2}$

(c) $\int_{0}^{\pi/2} f(x) dx = 2 \ln \sqrt{2}$

(d) f(x) is periodic with period π

89. Let $f(x) = 1 + 4x - x^2$, $\forall x \in \mathbb{R}$ $g(x) = \max. \{ f(t); x \le t \le (x+1); 0 \le x < 3 \}$ $\min. \{ (x+3); 3 \le x \le 5 \}$

Verify continuity of g(x) for all $x \in [0,5]$

- 90. Let $f(x) = \{\min(x, y)\}^{\{\max(y, x)\}}$ where $y = \sqrt{1 x^2}$ discuss the continuity of f(x) in [0,1].
- **91.** If $f(x) = \left\{ \left(\frac{1}{2^n} (1 + \cos x) \left(1 + \cos \frac{x}{2} \right) \left(1 + \cos \frac{x}{4} \right) \dots \left(1 + \cos \frac{x}{2^{n+1}} \right) \right\}^{1/2}, \ x \neq 0 \ , x = 0 \right\}$

Discuss the continuity of f(x) at x = 0,

92. Given $f(x) = \sum_{r=1}^{n} \tan\left(\frac{x}{2^{r}}\right) \sec\left(\frac{x}{2^{r-1}}\right); r, n \in \mathbb{N}$

$$g(x) \underset{n \to \infty}{\text{Limit}} \frac{\ln \left(f(x) + \tan \frac{x}{2^n} \right) - \left(f(x) + \tan \frac{x}{2^n} \right)^n \left[\sin \left(\tan \frac{x}{2} \right) \right]}{1 + \left(f(x) + \tan \frac{x}{2^n} \right)^n} = k \text{ for } x = \frac{\pi}{4}$$

and the domain of g(x) is $(0, \pi/2)$ where [] denotes the greatest integer function.

Find the value of k, if possible, so that g(x) is continuous at $x = \pi/4$. Also state the points of discontinuity of g(x) in $(0, \pi/4)$, if any.

- 93. Let f be a function satisfying $f(x+y) = f(x)f(y) \sqrt{4-f(y)}$ and $f(h) \to 4$ as $h \to 0$ discuss the continuity of f(x) if f(x) is continuous at x = 0.
- 94. Let $f(x+y) = f(x) + f(y) \forall x, y \in R$. If f(x) is continuous at x = 0 then show that f(x) is also continuous other than zero.
- 95. If f(x) be a continuous function in $[0,2\pi]$ and $f(0) = f(2\pi)$ then prove that there exists point $c \in (0,\pi)$ such that $f(c) = f(c + \pi)$.
- **96.** If f(x) is continuous in [0,1] & f(x) = 1 for all rational numbers in [0,1] then $f\left(\frac{1}{\sqrt{2}}\right) = \underline{\qquad}$.
- **(A)** 0 **(B)** 1 **97.** Tick the correct alternatives for the following.
 - (I) The function defined by $f(x) = \frac{Ex}{|x| + 2x^2}$ for $x \ne 0$ & f(0) = 1 is continuous at x = 0.
 - (II) The function $f(x) = 2^{-2^{1/(1-x)}}$ if $x \ne 1$ & f(1) = 1 is not continuous at x = 1.
 - (III) The function $f(x) = 2x \sqrt{(x^3 1)} + 5\sqrt{x} \sqrt{(1 x^4)} + 7x^2 \sqrt{(x 1)} + 3x + 2$ is continuous at x = 1.
 - (IV) There exists a continuous function $f: [0, 1] \longrightarrow [0, 10]$, but there exists no continuous function $g: [0, 1] \longrightarrow (0, 10)$.
 - (A) T T T T
- (B) TFTF
- (C) F T F T
- (D) F F F F

(D)-1

- 98. Let 'f' be a continuous function on R. If $f(1/4^n) = \left(\sin e^n\right) e^{-n^2} + \frac{n^2}{n^2 + 1}$ then f(0) is:
 - (A) not unique

- (B) 1
- (C) data sufficient to find f(0)
- (D) data insufficient to find f(0)
- 99. If g: [a, b] onto [a, b] is continuous show that there is some $c \in [a, b]$ such that g(c) = c.
- **100.** Which of the following functions are continuous in $(0, \pi)$:
 - (A)tanx

- (B) $\int_{0}^{x} t \cdot \sin \frac{1}{t} dt$
- (C) $\begin{cases} 1, 0 < x \le \frac{3\pi}{4} \\ 2\sin\frac{2}{9}x, \frac{3\pi}{4} < x < \pi \end{cases}$
- (D) $\begin{cases} x.\sin x & , 0 < x \le \frac{\pi}{2} \\ \frac{\pi}{2}\sin(\pi + x) & , \frac{\pi}{2} < x < \pi \end{cases}$
- 101. Discuss the continuity of $f(x) = \int_{-1}^{1} \frac{\sin x}{1 2t \cos x + t^2} dx$
- 102. Draw the graph of $f(x) = (-1)^{[|x|]}$, where [] denotes the greatest integer function.
- 103. Let (x) denote the positive or negative excess of x over the nearest integer, and when x exceeds an integer by $\frac{1}{2}$ · let (x) = 0. What do you say about the continuity of (x)? Draw the graph.

Answer Key

- 4. Disc 3. Disc **5.** a +1 6.c 7.c 2.a **8.** continuous at x = 2 but not at x = -2**9.** 0 11.a 12.d 13.bc 15.c 16.b 17.a 18.b 19.b 20.a 21.b **TM** 28.c 22.b 23.b 24.d 25.a 26.b 27.b 30.c 32.c 34. no point 29.c 31.c 33.b 35.c 39.d 42.ac **45.** 0 37.b 38.d 41.abc **52.** $\left\{ (2n-1)\frac{\pi}{2}, n \in I \right\}$ 49.c **46.** 6 47.c **48.**a 50.d **56.** 0, 1/2, 2 **57.** 0 **58.** 2 53.a 56. 0, 1/2, 2 57. 0 58. 2 63.a Pre 64.c Un 65.c Tor 61.b JEE 60.d 73.a 75.c **76.** f(x) discontinuous at $x = (2n+1), n \in I$ 83. Discontinous 81.d 82.d
- **85.** $f(x) = \begin{cases} 2x^2, & x \ge 0 \\ 0, & x < 0 \end{cases}$ f(x) is continuous at x = 0 **87.b 88.cd**
- 92. k = 0; $g(x) = \begin{bmatrix} \ln(\tan x) & \text{if } 0 < x < \frac{\pi}{4} \\ 0 & \text{if } \frac{\pi}{4} \le x < \frac{\pi}{2} \end{bmatrix}$. Hence g(x) is continuous everywhere.
- 97.c
- 98.b
- 100.bc