SQL: Data Definition, Constraints, and Basic Queries and Updates

Data Definition, Constraints, and Schema Changes

 Used to CREATE, DROP, and ALTER the descriptions of the tables (relations) of a database

CREATE TABLE

- Specifies a new base relation by giving it a name, and specifying each of its attributes and their data types (INTEGER, FLOAT, DECIMAL(i,j), CHAR(n), VARCHAR(n))
- A constraint NOT NULL may be specified on an attribute

```
CREATE TABLE DEPARTMENT (
DNAME VARCHAR(10) NOT NULL,
DNUMBER INTEGER NOT NULL,
MGRSSN CHAR(9),
MGRSTARTDATE CHAR(9));
```

CREATE TABLE

- In SQL2, can use the CREATE TABLE command for specifying the primary key attributes, secondary keys, and referential integrity constraints (foreign keys).
- Key attributes can be specified via the PRIMARY KEY and UNIQUE phrases

```
CREATE TABLE DEPT (
DNAME VARCHAR(10) NOT NULL,
DNUMBER INTEGER NOT NULL,
MGRSSN CHAR(9),
MGRSTARTDATE CHAR(9),
PRIMARY KEY (DNUMBER),
UNIQUE (DNAME),
FOREIGN KEY (MGRSSN) REFERENCES EMP );
```

REFERENTIAL INTEGRITY OPTIONS

 We can specify RESTRICT, CASCADE, SET NULL or SET DEFAULT on referential integrity constraints (foreign keys)

```
CREATE TABLE DEPT
                 VARCHAR (10)
  DNAME
                                NOT
                                    NULL,
                 INTEGER
                                    NULL,
  DNUMBER
                                NOT
                 CHAR (9),
  MGRSSN
  MGRSTARTDATE CHAR (9),
               (DNUMBER),
  PRIMARY KEY
  UNIQUE (DNAME)
  FOREIGN KEY (MGRSSN)
                         REFERENCES
                                     EMP
 ON DELETE SET DEFAULT
                         ON UPDATE
 CASCADE);
```

REFERENTIAL INTEGRITY OPTIONS (continued)

```
CREATE TABLE EMP (
            VARCHAR (30) NOT NULL,
 ENAME
            CHAR (9),
 ESSN
           DATE,
 BDATE
         INTEGER DEFAULT 1,
 DNO
 SUPERSSN CHAR (9),
 PRIMARY KEY (ESSN)
 FOREIGN KEY (DNO) REFERENCES DEPT
  ON DELETE SET DEFAULT ON UPDATE
 CASCADE,
 FOREIGN KEY (SUPERSSN) REFERENCES EMP
 ON DELETE SET NULL ON UPDATE CASCADE);
```

Additional Data Types in SQL2 and SQL-99

Has DATE, TIME, and TIMESTAMP data types

- DATE:
 - Made up of year-month-day in the format yyyy-mm-dd
- TIME:
 - Made up of hour:minute:second in the format hh:mm:ss
- **TIME(i)**:
 - Made up of hour:minute:second plus i additional digits specifying fractions of a second
 - format is hh:mm:ss:ii...i

Additional Data Types in SQL2 and SQL-99 (contd.)

TIMESTAMP:

Has both DATE and TIME components

INTERVAL:

- Specifies a relative value rather than an absolute value
- Can be DAY/TIME intervals or YEAR/MONTH intervals
- Can be positive or negative when added to or subtracted from an absolute value, the result is an absolute value

DROP TABLE (from Section 5.4)

- Used to remove a relation (base table) and its definition
- The relation can no longer be used in queries, updates, or any other commands since its description no longer exists
- Example:

DROP TABLE DEPENDENT;

ALTER TABLE (from Section 5.4)

- Used to add an attribute to one of the base relations
 - The new attribute will have NULLs in all the tuples of the relation right after the command is executed; hence, the NOT NULL constraint is not allowed for such an attribute
- Example: ALTER TABLE EMPLOYEE ADD JOB VARCHAR (12);
- The database users must still enter a value for the new attribute JOB for each EMPLOYEE tuple.
 - This can be done using the UPDATE command.

Retrieval Queries in SQL

- SQL has one basic statement for retrieving information from a database; the SELECT statement
 - This is not the same as the SELECT operation of the relational algebra
- Important distinction between SQL and the formal relational model:
 - SQL allows a table (relation) to have two or more tuples that are identical in all their attribute values
 - Hence, an SQL relation (table) is a multi-set (sometimes called a bag) of tuples; it is not a set of tuples
- SQL relations can be constrained to be sets by specifying PRIMARY KEY or UNIQUE attributes, or by using the DISTINCT option in a query

Retrieval Queries in SQL (contd.)

- A bag or multi-set is like a set, but an element may appear more than once.
 - Example: {A, B, C, A} is a bag. {A, B, C} is also a bag that also is a set.
 - Bags also resemble lists, but the order is irrelevant in a bag.
- Example:
 - {A, B, A} = {B, A, A} as bags
 - However, [A, B, A] is not equal to [B, A, A] as lists

Retrieval Queries in SQL (contd.)

 Basic form of the SQL SELECT statement is called a mapping or a SELECT-FROM-WHERE block

```
SELECT <attribute list>
FROM 
WHERE <condition>
```

- <attribute list> is a list of attribute names whose values are to be retrieved by the query
- is a list of the relation names required to process the query
- <condition> is a conditional (Boolean) expression that identifies the tuples to be retrieved by the query

Relational Database Schema--Figure 5.5

EMPLOYEE

FNAME MINIT LNAME <u>SSN</u> I	BDATE ADDRESS SEX	SALARY SUPERSSN DNO
--------------------------------	-------------------	---------------------

DEPARTMENT

DNAME <u>DNUMBER</u>	MGRSSN	MGRSTARTDATE
----------------------	--------	--------------

DEPT_LOCATIONS

PROJECT

WORKS_ON

DEPENDENT

ESSN	DEPENDENT_NAME	SEX	BDATE	RELATIONSHIP
		I		

Populated Database--Fig.5.6

EMPLOYEE	FNAME	MINIT	LNAME	<u>SSN</u>	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
	Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
	Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
	Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
	James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	null	1

					DEPT_LOCAT	ONS	DNUMBER	DLOCATION
							1	Houston
							4	Stafford
DEPARTMENT	DNAME	<u>DNUMBER</u>	MGRSSN	MGF	RSTARTDATE		5	Bellaire
	Research	5	333445555	1	988-05-22		5	Sugarland
	Administration	4	987654321	1	995-01-01		5	Houston
	Headquarters	1	99966555	1	081-06-10			

WORKS_ON	<u>ESSN</u>	<u>PNO</u>	HOURS
	123456789	1	32.5
	123456789	2	7.5
	666884444	3	40.0
	453453453	1	20.0
	453453453	2	20.0
	333445555	2	10.0
	333445555	3	10.0
	333445555	10	10.0
	333445555	20	10.0
	999887777	30	30.0
	999887777	10	10.0
	987987987	10	35.0
	987987987	30	5.0
	987654321	30	20.0
	987654321	20	15.0
	888665555	20	null

PROJECT	PNAME	<u>PNUMBER</u>	PLOCATION	DNUM
	ProductX	1 Bellaire		5
	ProductY	2	Sugarland	5
	ProductZ	3	Houston	5
	Computerization	10	Stafford	4
	Reorganization	20	Houston	1
	Newbenefits	30	Stafford	4

DEPENDENT	ESSN	DEPENDENT_NAME	SEX	BDATE	RELATIONSHIP
	333445555	Alice	F	1986-04-05	DAUGHTER
	333445555	Theodore	М	1983-10-25	SON
	333445555	Joy	F	1958-05-03	SPOUSE
	987654321	Abner	М	1942-02-28	SPOUSE
	123456789	Michael	М	1988-01-04	SON
	123456789	Alice	F	1988-12-30	DAUGHTER
	123456789	Elizabeth	F	1967-05-05	SPOUSE

Simple SQL Queries

- Basic SQL queries correspond to using the following operations of the relational algebra:
 - SELECT
 - PROJECT
 - JOIN
- All subsequent examples use the COMPANY database

Simple SQL Queries (contd.)

- Example of a simple query on one relation
- Query 0: Retrieve the birthdate and address of the employee whose name is 'John B. Smith'.

Q0:SELECT BDATE, ADDRESS

FROM EMPLOYEE

WHERE FNAME='John' AND MINIT='B'

AND LNAME='Smith'

- Similar to a SELECT-PROJECT pair of relational algebra operations:
 - The SELECT-clause specifies the projection attributes and the WHERE-clause specifies the selection condition
- However, the result of the query may contain duplicate tuples

Simple SQL Queries (contd.)

 Query 1: Retrieve the name and address of all employees who work for the 'Research' department.

Q1:SELECT FNAME, LNAME, ADDRESS FROM EMPLOYEE, DEPARTMENT WHERE DNAME='Research' AND DNUMBER=DNO

- Similar to a SELECT-PROJECT-JOIN sequence of relational algebra operations
- (DNAME='Research') is a selection condition (corresponds to a SELECT operation in relational algebra)
- (DNUMBER=DNO) is a join condition (corresponds to a JOIN operation in relational algebra)

Simple SQL Queries (contd.)

 Query 2: For every project located in 'Stafford', list the project number, the controlling department number, and the department manager's last name, address, and birthdate.

Q2: SELECT PNUMBER, DNUM, LNAME, BDATE, ADDRESS FROM PROJECT, DEPARTMENT, EMPLOYEE WHERE DNUM=DNUMBER AND MGRSSN=SSN AND PLOCATION='Stafford'

- In Q2, there are two join conditions
- The join condition DNUM=DNUMBER relates a project to its controlling department
- The join condition MGRSSN=SSN relates the controlling department to the employee who manages that department

Aliases, * and DISTINCT, Empty WHERE-clause

- In SQL, we can use the same name for two (or more) attributes as long as the attributes are in different relations
- A query that refers to two or more attributes with the same name must *qualify* the attribute name with the relation name by *prefixing* the relation name to the attribute name
- Example:
- EMPLOYEE.LNAME, DEPARTMENT.DNAME

ALIASES

- Some queries need to refer to the same relation twice
 - In this case, aliases are given to the relation name
- Query 8: For each employee, retrieve the employee's name, and the name of his or her immediate supervisor.

Q8: SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME FROM EMPLOYEE E S
WHERE E.SUPERSSN=S.SSN

- In Q8, the alternate relation names E and S are called aliases or tuple variables for the EMPLOYEE relation
- We can think of E and S as two different copies of EMPLOYEE; E represents employees in role of supervisees and S represents employees in role of supervisors

ALIASES (contd.)

- Aliasing can also be used in any SQL query for convenience
- Can also use the AS keyword to specify aliases

Q8: SELECT E.FNAME, E.LNAME,

S.FNAME, S.LNAME

FROM EMPLOYEE AS E,

EMPLOYEE AS S

WHERE E.SUPERSSN=S.SSN

UNSPECIFIED WHERE-clause

- A missing WHERE-clause indicates no condition; hence, all tuples of the relations in the FROM-clause are selected
 - This is equivalent to the condition WHERE TRUE
- Query 9: Retrieve the SSN values for all employees.

• Q9: SELECT SSN

FROM EMPLOYEE

If more than one relation is specified in the FROM-clause and there is no join condition, then the CARTESIAN PRODUCT of tuples is selected

UNSPECIFIED WHERE-clause (contd.)

Example:

Q10: SELECT SSN, DNAME

FROM EMPLOYEE, DEPARTMENT

It is extremely important not to overlook specifying any selection and join conditions in the WHEREclause; otherwise, incorrect and very large relations may result

USE OF *

To retrieve all the attribute values of the selected tuples, a
 * is used, which stands for all the attributes
 Examples:

Q1C: SELECT *

FROM EMPLOYEE

WHERE DNO=5

Q1D: SELECT *

FROM EMPLOYEE, DEPARTMENT

WHERE DNAME='Research' AND

DNO=DNUMBER

USE OF DISTINCT

- SQL does not treat a relation as a set; duplicate tuples can appear
- To eliminate duplicate tuples in a query result, the keyword **DISTINCT** is used
- For example, the result of Q11 may have duplicate SALARY values whereas Q11A does not have any duplicate values

Q11: SELECT SALARY

FROM EMPLOYEE

Q11A: SELECT **DISTINCT** SALARY

FROM EMPLOYEE

SET OPERATIONS

- SQL has directly incorporated some set operations
- There is a union operation (UNION), and in some versions of SQL there are set difference (MINUS) and intersection (INTERSECT) operations
- The resulting relations of these set operations are sets of tuples; duplicate tuples are eliminated from the result
- The set operations apply only to union compatible relations; the two relations must have the same attributes and the attributes must appear in the same order

SET OPERATIONS (contd.)

 Query 4: Make a list of all project names for projects that involve an employee whose last name is 'Smith' as a worker or as a manager of the department that controls the project.

Q4: (SELECT PNAME

FROM PROJECT, DEPARTMENT,

EMPLOYEE

WHERE DNUM=DNUMBER AND

MGRSSN=SSN AND LNAME='Smith')

UNION

(SELECT PNAME

FROM PROJECT, WORKS_ON, EMPLOYEE

WHERE PNUMBER=PNO AND

ESSN=SSN AND LNAME='Smith')

SUBSTRING COMPARISON

- The LIKE comparison operator is used to compare partial strings
- Two reserved characters are used: '%' (or '*' in some implementations) replaces an arbitrary number of characters, and '_' replaces a single arbitrary character

SUBSTRING COMPARISON (contd.)

 Query 25: Retrieve all employees whose address is in Houston, Texas. Here, the value of the ADDRESS attribute must contain the substring 'Houston,TX' in it.

Q25: SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE ADDRESS LIKE

'%Houston,TX%'

SUBSTRING COMPARISON (contd.)

- Query 26: Retrieve all employees who were born during the 1950s.
 - Here, '5' must be the 3th character of the string (according to our format for date), so the BDATE value is '___5____', with each underscore as a place holder for a single arbitrary character.

Q26: SELECT FNAME, LNAME FROM EMPLOYEE WHERE BDATE LIKE '__5____'

- The LIKE operator allows us to get around the fact that each value is considered atomic and indivisible
 - Hence, in SQL, character string attribute values are not atomic

ARITHMETIC OPERATIONS

- The standard arithmetic operators '+', '-'. '*', and '/' (for addition, subtraction, multiplication, and division, respectively) can be applied to numeric values in an SQL query result
- Query 27: Show the effect of giving all employees who work on the 'ProductX' project a 10% raise.

Q27: SELECT FNAME, LNAME, 1.1*SALARY

FROM EMPLOYEE, WORKS_ON,

PROJECT

WHERE SSN=ESSN AND PNO=PNUMBER

AND PNAME='ProductX'

ORDER BY

- The **ORDER BY** clause is used to sort the tuples in a query result based on the values of some attribute(s)
- Query 28: Retrieve a list of employees and the projects each works in, ordered by the employee's department, and within each department ordered alphabetically by employee last name.

Q28: SELECT DNAME, LNAME, FNAME, PNAME

FROM DEPARTMENT, EMPLOYEE,

WORKS_ON, PROJECT

WHERE DNUMBER=DNO AND SSN=ESSN

AND PNO=PNUMBER

ORDER BY DNAME, LNAME

ORDER BY (contd.)

- The default order is in ascending order of values
- We can specify the keyword **DESC** if we want a descending order; the keyword **ASC** can be used to explicitly specify ascending order, even though it is the default

Summary of SQL Queries

A query in SQL can consist of up to six clauses, but only the first two, SELECT and FROM, are mandatory. The clauses are specified in the following order:

Specifying Updates in SQL

 There are three SQL commands to modify the database: INSERT, DELETE, and UPDATE

INSERT

- In its simplest form, it is used to add one or more tuples to a relation
- Attribute values should be listed in the same order as the attributes were specified in the CREATE TABLE command

Example:

```
U1: INSERT INTO EMPLOYEE VALUES ('Richard','K','Marini', '653298653', '30-DEC-52', '98 Oak Forest,Katy,TX', 'M', 37000,'987654321', 4)
```

- An alternate form of INSERT specifies explicitly the attribute names that correspond to the values in the new tuple
 - Attributes with NULL values can be left out
- Example: Insert a tuple for a new EMPLOYEE for whom we only know the FNAME, LNAME, and SSN attributes.

U1A: INSERT INTO EMPLOYEE (FNAME, LNAME, SSN)

VALUES ('Richard', 'Marini', '653298653')

- Important Note: Only the constraints specified in the DDL commands are automatically enforced by the DBMS when updates are applied to the database
 - Another variation of INSERT allows insertion of multiple tuples resulting from a query into a relation

- Example: Suppose we want to create a temporary table that has the name, number of employees, and total salaries for each department.
 - A table DEPTS_INFO is created by U3A, and is loaded with the summary information retrieved from the database by the query in U3B.

CREATE TABLE DEPTS_INFO U3A:

> VARCHAR(10), (DEPT_NAME

NO OF EMPS INTEGER. TOTAL SAL INTEGER);

U3B: INSERT INTO

DEPTS_INFO (DEPT_NAME, NO_OF_EMPS, TOTAL_SAL)

DNĀME, COUNT (*), SŪM (SALARY) DEPARTMENT, EMPLOYEE SELECT

FROM

DNUMBER=DNO WHERE

GROUP BY DNAME;

Note: The DEPTS_INFO table may not be up-to-date if we change the tuples in either the DEPARTMENT or the EMPLOYEE relations after issuing U3B. We have to create a view (see later) to keep such a table up to date.

DELETE

- Removes tuples from a relation
 - Includes a WHERE-clause to select the tuples to be deleted
 - Referential integrity should be enforced
 - Tuples are deleted from only one table at a time (unless CASCADE is specified on a referential integrity constraint)
 - A missing WHERE-clause specifies that all tuples in the relation are to be deleted; the table then becomes an empty table
 - The number of tuples deleted depends on the number of tuples in the relation that satisfy the WHERE-clause

DELETE (contd.)

Examples:

U4A: DELETE FROM EMPLOYEE

WHERE LNAME='Brown'

U4B: DELETE FROM EMPLOYEE

WHERE SSN='123456789'

U4C: DELETE FROM EMPLOYEE

WHERE DNO IN

(SELECT DNUMBER

FROM DEPARTMENT

WHERE

DNAME='Research')

U4D: DELETE FROM EMPLOYEE

UPDATE

- Used to modify attribute values of one or more selected tuples
- A WHERE-clause selects the tuples to be modified
- An additional SET-clause specifies the attributes to be modified and their new values
- Each command modifies tuples in the same relation
- Referential integrity should be enforced

UPDATE (contd.)

 Example: Change the location and controlling department number of project number 10 to 'Bellaire' and 5, respectively.

U5: UPDATE PROJECT

SET PLOCATION = 'Bellaire',

DNUM = 5

WHERE PNUMBER=10

UPDATE (contd.)

Example: Give all employees in the 'Research' department a 10% raise in salary.

U6: UPDATE EMPLOYEE
SET SALARY = SALARY *1.1
WHERE DNO IN (SELECT DNUMBER
FROM DEPARTMENT

WHERE DNAME='Research')

- In this request, the modified SALARY value depends on the original SALARY value in each tuple
 - The reference to the SALARY attribute on the right of = refers to the old SALARY value before modification
 - The reference to the SALARY attribute on the left of = refers to the new SALARY value after modification