

КЛАССИЧЕСКАЯ ДИФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ

ИВАНОВ АЛЕКСАНДР ОЛЕГОВИЧ

MEXMAT MCY

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ ПРОФ. РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ. СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU.

ЕСЛИ ВЫ ОБНАРУЖИЛИ
ОШИБКИ ИЛИ ОПЕЧАТКИ
ТО СООБЩИТЕ ОБ ЭТОМ,
НАПИСАВ СООБЩЕСТВУ
VK COM/TFACHINMSU

БЛАГОДАРИМ ЗА ПОДГОТОВКУ КОНСПЕКТА СТУДЕНТКУ МЕХАНИКО-МАТЕМАТИЧЕСКОГО ФАКУЛЬТЕТА МГУ ТАГИРОВУ ДЖАННЕТ ДЖАБРАИЛОВНУ

Содержание

1.	Лекция 1	6
	Кривые в евклидовом пространстве	6
	Параметрические кривые	6
	Кривые-графики	Ć
	Неявные кривые	10
	Локальная эквивалентность	11
2.	Лекция 2	15
	Кривизна натурально параметризованной кривой	15
	Кривые в трехмерном пространстве	17
	Натуральные уравнения	19
3.	Лекция 3	20
	Натуральные уравнения	20
	Параметрические поверхности	21
	Поверхности-графики	22
	Неявные поверхности	23
	Локальная эквивалентность	24
4.	Лекция 4	27
	Кривые на поверхности	27
	Касательное пространство	27
	Дифференциал	29
	Первая фундаментальная форма	30
	Длины и углы	32
	Изометрии поверхностей	33
5.	Лекция 5	35
	Поверхности. Вторая фундаментальная форма	35
	Геометрический смысл второй формы	37
	Главные кривизны и главные направления	39
	Средняя и гауссова кривизны	41
6.	Лекция 6	44
	Теорема Лапласа-Пуассона	44
	О теореме Бонне	45
	Деривационные формулы Вейнгартена–Гаусса	45
	Теорема Гаусса	47
	Ковариантная производная касательного векторного поля	48

7.	Лекция 7	51
	Геодезические кривые на поверхности	51
	Поверхности вращения	53
	Теорема Клеро	56
8.	Лекция 8	58
	Определение криволинейных координат	58
	Касательное пространство к области	59
	Евклидова метрика в криволинейных координатах	61
	Регулярные координаты на поверхности	62
	Стереографические координаты сферы	63
9.	Лекция 9	66
	Риманова и псевдориманова метрики	66
	Псевдоевклидовы пространства	68
	Геометрия псевдосферы	68
10.	. Лекция 10	72
	Геометрия Лобачевского	72
	Модель Пуанкаре в круге	73
	Дробно-линейные преобразования	74
	Метрика в комплексном виде	77
	Модель в верхней полуплоскости	78
11.	. Лекция 11	80
	Топология и топологическое пространство	80
	Топологическая внутренность и топологическое замыкание	80
	Непрерывные отображения	81
12.	. Лекция 12	83
	Классы топологических пространств	83
	Линейно связное топологическое пространство	84
	Аксиомы отделимости	84
	Компактность	86
13.	. Лекция 13	89
	Топологические многообразия	89
	Функции и отображения	89
	Задание многообразий уравнениями — геометрический смысл теоремы о неявной функции	91
14.	. Лекция 14	93
	Касательное пространство	93

КЛАССИЧЕСКАЯ ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ • ИВАНОВ АЛЕКСАНДР ОЛЕГОВИЧ

	Определения касательного вектора	93
	Определение дифференциала	96
15	б. Лекция 1 5	98
	Понятия погружение, вложение и подмногообразие	98
	Теоремы о вложении	98
	Риманова метрика, риманово многообразие	99
	Эквивалентное определение римановой метрики	100
	Длины и углы	101
	Ориентируемые и неориентируемые многоообразия	101

1. Лекция 1

Кривые в евклидовом пространстве

Классическая дифференциальная геометрия изучает объекты, расположенные в конечномерном евклидовом пространстве. Мы начнем с напоминания необходимых определений и обозначений из математического анализа и линейной алгебры.

Через \mathbb{R}^n мы будем обозначать n-мерное арифметическое евклидово линейное пространство, т.е. множество всех упорядоченных наборов $x = (x^1, \dots, x^n)$ вещественных чисел x_i , на котором введена естественная структура линейного пространства, а также стандартное скалярное произведение

$$\langle (v^1, \dots, v^n), (w^1, \dots, w^n) \rangle = \sum_{i=1}^n v^i w^i$$

Скалярное произведение порождает норму $||v||=\sqrt{\langle v,v\rangle}$ и функцию расстояния |vw|=||v-w||. С помощью функции расстояния определяются замкнутый шар $B^n_r(x)$, открытый шар $U^n_r(x)$ и сфера $S^{n-1}_r(x)$ радиуса r с центром в точке x:

$$B_r^n(x) = \{ y \in \mathbb{R}^n : |xy| \le r \}$$

$$U_r^n(x) = \{ y \in \mathbb{R}^n : |xy| < r \}$$

$$S_r^{n-1}(x) = \{ y \in \mathbb{R}^n : |xy| = r \}$$

Пустое множество, а также произвольные объединения открытых шаров называются открытыми множествами в \mathbb{R}^n . Также можно сказать, что подмножество евклидова пространства открыто, если и только если оно вместе с каждой точкой содержит и некоторый открытый шар с центром в этой точке. Перейдем теперь к определению кривых.

Параметрические кривые

Обозначим через $I \subset \mathbb{R}$ конечный или бесконечный промежуток одного из следующих видов: отрезок [a,b], интервал (a,b), полуинтервал (a,b] или [a,b). Для каждой точки $t \in I$ ее окрестностью будем называть каждое множество вида $I \cap (t-\varepsilon_1,t+\varepsilon_2)$, где $\varepsilon_1,\varepsilon_2$ — произвольные положительные числа.

Рассмотрим отображение $\gamma: I \mapsto \mathbb{R}^n$. Для каждого $t \in I$ точка $\gamma(t) \in \mathbb{R}^n$ имеет вид $(x^1(t), \dots, x^n(t))$, поэтому отображение порождает n функций $x^i(t)$, которые называются координатными функциями отображения γ . Напомним, что отображение γ является непрерывным (векторнозначным отображением), тогда и только тогда, когда все его координатные функции непрерывны.

Определение 1.1. Непрерывное отображение $\gamma: I \mapsto \mathbb{R}^n$ называется параметрической кривой, а переменная $t \in I$ — ее параметром.

Рассмотрим теперь кривую Пеано — это непрерывная кривая, заполняющая квадрат или треугольник, может быть построена, например, следующим образом. Возьмем равнобедренный прямоугольный треугольник T, разобьем его на два равнобедренных прямоугольных треугольника T_1 и T_2 , проведя высоту h из вершины прямого угла. Обозначим через r_1 отрезок, соединяющий центры треугольников T_i , i=1,2.

Чтобы построить ломаную r_2 , в каждом из треугольников $T_j, j=1,2$, построим такую же ломаную, как во всем треугольнике T на первом шаге. Другими словами, возьмем два экземпляра треугольника T с уже построенной ломаной r_1 , уменьшим их до размера треугольников T_j и отождествим каждый из экземпляров с соответствующим треугольником $T_j, j=1,2$. Полученное объединение отрезков достроим до связной ломаной, соединив две концевые вершины, ближайшие к высоте h.

Наконец, на i+1 -м шаге построим ломаную из ломаной r_i , полученной на i-м шаге. Для этого вновь разобьем треугольник T на два треугольника T_1 и T_2 , проведя в T высоту h из вершины прямого угла. Возьмем два экземпляра треугольника T с уже построенной ломаной r_i , уменьшим их до размера треугольников T_j и отождествим каждый из них с соответствующим треугольником T_j , j=1,2. Полученное объединение двух ломаных, лежащих в треугольнике T, достроим до связной ломаной, соединив две концевые вершины этих ломаных, ближайшие к высоте h.

Продолжим этот процесс до бесконечности. Предельная кривая называется кривой Пеано.

Рис. 1. Кривая Пеано

Определение 1.2. Если при некоторых $t \neq t'$ точки $\gamma(t)$ и $\gamma(t')$ совпадают, то $P = \gamma(t) = \gamma(t')$ называется точкой самопересечения параметрической кривой γ . Если γ не имеет точек самопересечения, то ее называют вложенной.

Определение 1.3. Параметрическая кривая $\gamma: I \mapsto \mathbb{R}^n$ называется гладкой, если все ее координатные функции $x^i(t)$ — гладкие.

Для каждого значения параметра t_0 гладкой параметрической кривой $\gamma(t)$ определен вектор $\dot{\gamma}(t_0)=(\dot{x}^1(t_0),\ldots,\dot{x}^n(t_0)),$ составленный из производных координатных функций, вычисленных в точке t_0 .

Определение 1.4. Вектор $\dot{\gamma}(t_0)$ называется вектором скорости параметрической кривой γ в точке $\gamma(t_0)$, соответствующим значению параметра $t=t_0$.

Точка гладкой параметрической кривой, в которой вектор скорости обращается в ноль, называется особой или сингулярной, а остальные точки — неособыми или регулярными.

Определение 1.5. Гладкая параметрическая кривая называется регулярной, если ее вектор скорости всюду отличен от нуля

Пример 1.1

• Интуитивное представление о гладкости кривой как об отсутствии изломов оказывается не всегда верным в рамках данного определения. Рассмотрим полукубическую параболу — плоскую гладкую параметрическую кривую $\gamma(t)=(t^3,t^2),t\in[-1,1]$, изображенную на рис. 1. Вектор скорости $\dot{\gamma}(t)$ в начале координат равен нулю, а его направление, т.е. нормированный вектор $\frac{\dot{\gamma}(t)}{||\dot{\gamma}(t)||}$, имеет разрыв, т.е. направление скорости меняется скачком. В этом случае говорят, что кривая имеет излом. Ясно, что регулярная кривая не может иметь изломов. •

Рис. 2. Полукубическая парабола

Теперь Пусть t(s) — некоторая строго монотонная непрерывная функция, отображающая промежуток I' на промежуток I, а $\gamma(t), t \in I$ — некоторая параметрическая кривая. Тогда $\delta(s) = \gamma(t(s))$ — тоже некоторая параметрическая кривая.

Определение 1.6. Отображение $t:I'\mapsto I$ называется заменой параметра, а про кривую $\delta(s)=\gamma(t(s))$ говорят, что она получена из кривой γ заменой параметра t=t(s)

Если кривая δ получена из γ заменой параметра, то, очевидно, γ и δ имеют одинаковые образы. Однако, замена параметра гладкой кривой может привести к потере гладкости.

Пример 1.2

• Если в гладкой параметрической кривой $\gamma(t)=(t,0)$ сделать замену t=t(s), для которой функция t(s) равна s при $s\leq 0$ и 2s при $s\geq 0$, то полученная кривая $\gamma(t(s))$ не будет дифференцируемой в s=0.

Если замена параметра t=t(s) и обратная замена параметра s=s(t) — гладкие, то регулярность кривой $\gamma(t)$ равносильна регулярности кривой $\delta(s)$, полученной из $\gamma(t)$ такой заменой параметра.

Замена параметризации может превратить нерегулярную параметрическую кривую в регулярную. Например, параметрическая кривая γ с координатными функциями $x(t)=t^3, y(t)=t^6$ не регулярна. Положив $\tau=t3$, мы получим регулярную параметрическую кривую $x(\tau)=\tau, y(\tau)=\tau^2$. При этом, отображение $\tau(t)=t^3$ не обладает гладким обратным, так как производная $\tau'(t)$ обращается в нуль.

Определение 1.7. Углом между γ_1 и γ_2 в их точке пересечения P, соответствующим значениям параметров t_1 и t_2 , называется угол между векторами скоростей $\dot{\gamma}_1(t_1)$ и $\dot{\gamma}_2(t_2)$

Кривые-графики

Пусть $f:I\mapsto \mathbb{R}^n$ — непрерывная векторнозначная функция.

Определение 1.8. Множество $Gr(f) = \{(t, f(t)) | t \in I\} \subset \mathbb{R}^n$ называется кривой-графиком в пространстве \mathbb{R}^n .

По определению, множество Gr(f) — образ непрерывного отображения $\gamma_f(t)=(t,f(t))$, представляющего собой параметрическую кривую, про которую будем говорить, что она соответствует кривой—графику Gr(f). Если отображение f гладкое,

то Gr(f) назовем гладкой кривой-графиком.

Параметрическая кривая γ_f , соответствующая гладкой кривой—графику, всегда регулярна, так как $\dot{\gamma}_f(t) = (1, f(t)) \neq 0$

Образ параметрической кривой не всегда является кривой—графиком. Действительно, кривая—график однозначно проецируется на координатную прямую, а, например, дуга окружности угловой величины больше π — нет.

Теорема 1.1. Пусть $\gamma(t) = (x^1(t), \dots, x^n(t))$ — регулярная параметрическая кривая. Для каждого $t_0 \in I$ существует такая его окрестность $U \subset I$, что множество $\gamma(U)$ является кривой-графиком Gr(f) для некоторой гладкой векторнозначной функции f (возможно, после перенумерации координат).

Доказательство.

Так как $\dot{\gamma}(t_0) \neq 0$, для некоторого i имеем $\dot{x}^i(t_0) \neq 0$. Без ограниче общности будем считать, что i=1 (иначе перенумеруем координаты). Тогда при всех t из некоторой окрестности U точки t_0 функция $x^1(t)$ строго монотонна и имеет ненулевую производную, поэтому на промежутке $I'=x^1(U)$ существует гладкая обратная функция $t=t(x^1)$. Но тогда функция $f(x^1)=(x^2(t(x^1)),\ldots,x^n(t(x^1)))$ является гладкой и порождает искомую кривую—график Gr(f).

Неявные кривые

Пусть $F^i:\Omega\mapsto\mathbb{R}, i=2,\ldots,n$ — гладкие функции, заданные на области $\Omega\subset\mathbb{R}^n$ и $c=(c^2,\ldots,c^n)$ — некоторый постоянный вектор. Предположим, что семейство функций F^i удовлетворяет условиям теоремы о неявной функции, т.е. множество M_c всех решений системы уравнений $F^i(x^1,\ldots,x^n)=c^i, i=2,\ldots,n$ не пусто, и ранг матрицы Якоби $J=(\partial F^i/\partial^j)$ в каждой точке из M_c равен n-1.

Определение 1.9. Mножество M_c называется неявной кривой

Каждая гладкая кривая—график Gr(f) векторнозначной функции $f=(f^2,\ldots,f^n)$, определенной на некотором интервале (a,b), является также и неявной кривой, заданной системой уравнений $x^i-f^i(x1)=0, i=2,\ldots,n$, на области $(a,b)\times\mathbb{R}^{n-1}$. Обратный результат снова не имеет места: например окружность $(x^1)^2+(x^2)^2=1$ не представляется в виде кривой-графика.

Лемма 1.1 Пусть P — произвольная точка неявной кривой M_c . Тогда в некоторой окрестности точки P в \mathbb{R}^n множество M_c можно представить как гладкую

кривую—график для некоторой векторнозначной функции f (возможно, после перенумерации координат).

Доказательство.

Без ограничения общности, предположим, что минор, порожденный столбцами матрицы Якоби J в точке P, начиная со второго, отличен от нуля. Тогда, по теореме о неявной функции, в некоторой окрестности точки P система уравнений, задающая M_c , разрешима в том смысле, что переменные x^2, \ldots, x^n выражаются через x^1 . Это означает, что часть множества M_c , попавшая в эту окрестность, представляется в виде $(x^1, x^2(x^1), \ldots, x^n(x^1))$, т.е. является гладкой кривой—графиком.

Локальная эквивалентность

Теорема 1.2. С локальной точки зрения три способа задания регулярной кривой эквивалентны в следующем смысле:

- если $\gamma:(a,b) \mapsto \mathbb{R}^n$ регулярная параметрическая кривая, то для каждого $t \in (a,b)$ существует такая окрестность U точки t в интервале (a,b),), что ее образ $\gamma(U)$ является и гладкой кривой-графиком, и неявной кривой;
- для каждой точки P кривой-графика Gr(f) произвольной гладкой функции f, заданной на некотором интервале (a,b), существует такая окрестность $U \subset \mathbb{R}^n$, что $U \cap Gr(f)$ есть и образ регулярной параметрической кривой, и неявная кривая;
- для каждой точки P неявной кривой M_c существует такая окрестность $U \subset \mathbb{R}^n$, что $U \cap M_c$ есть и образ регулярной параметрической кривой, и кривая-график в \mathbb{R}^n

Приведем одно очевидное, но полезное следствие локальной эквивалентности параметрического задания кривой и представления ее в виде кривой—графика.

Пусть $\gamma:I\mapsto \mathbb{R}^n$ — регулярная параметрическая кривая. Для каждого $t\in I$ существует такая окрестность U точки t в промежутке I, что ограничение отображения γ на U взаимно однозначно с образом.

Далее мы будем заниматься локальной теорией регулярных кривых, поэтому будем использовать следующее соглашение.

Там, где это не вызовет недоразумений, мы будем говорить просто о регулярной кривой, подразумевая что соответствующий объект задан удобным для нас способом (или как кривая—график, или как неявная кривая, или как регулярная параметрическая кривая). Причем в последнем случае, если не оговорено противное,

параметризующее отображение предполагается взаимно однозначными с образом, а замены параметризации —гладкими и с гладкими обратными.

Теперь определим понятия длины кривой и натурального параметра.

Общее определение длины кривой обычно использует приближение кривой вписанными ломаными. Для случая гладкой параметрической кривой $\gamma:[a,b]\mapsto \mathbb{R}^n$ мы сразу дадим определение через интеграл.

Определение 1.10. Длиной $l(\gamma)$ гладкой параметрической кривой $\gamma:[a,b]\mapsto \mathbb{R}^n$ называется величина интеграла $\int_a^b ||\dot{\gamma}(t)|| dt$.

Лемма 1.2 Длина гладкой параметрической кривой не меняется при замене параметризации.

Доказательство.

Действительно, пусть $\gamma(t)$ — гладкая кривая, t=t(s) — замена параметра, где $t\in[t_0,t_1]$, а $s\in[s_0,s_1]$. Положим $\tilde{\gamma}(s)=\gamma(t(s))$. По теореме о замене параметра в определенном интеграле имеем:

$$l(\tilde{\gamma}) = \int_{s_0}^{s_1} ||\frac{d\tilde{\gamma}}{ds}||ds = \int_{t(s_0)}^{t(s_1)} ||\frac{d\gamma}{dt}|| \cdot |\frac{dt}{ds}|\frac{ds}{dt}dt$$

Осталось избавиться от модуля в правой части. Так как t(s) - строго монотонная функция, ее производная по s знакопостоянна. Если t(s) монотонно возрастает, то производная dt/ds неотрицательна и модуль можно опустить. При этом, $t(s_0) = t_0$ и $t(s_1) = t_1$, поэтому правая часть равна длине $l(\gamma)$ параметрической кривой γ , т.е. утверждение доказано. Если же функция t(s) убывает, то dt/ds < 0, и модуль раскрывается с минусом. Но $t(s_0) = t_1$ и $t(s_1) = t_0$, что и дает недостающий "минус" в правой части.

Определение 1.11. Параметр $s, s \in [a, b]$, гладкой параметрической кривой $\gamma(s)$ называется натуральным, если величина s-a равна длине части кривой γ между точками $\gamma(a)$ и $\gamma(s)$ для любого $s \in [a, b]$.

Лемма 1.3 Параметр s на гладкой кривой $\gamma(s)$ является натуральным тогда и только тогда, когда $||\dot{\gamma}(s)||=1$.

Доказательство.

Пусть s - натуральный параметр, т.е.

$$s = a + \int_{a}^{s} ||\dot{\gamma}(\sigma)|| d\sigma.$$

Дифференцируя левую и правую части равенства по s, получаем требуемое. Обратно, если $||\dot{\gamma}(s)||=1$, то

$$s - a = \int_a^s 1d\sigma = \int_a^s ||\dot{\gamma}(\sigma)||d\sigma,$$

поэтому s-a равно длине части кривой γ между точками $\gamma(a)$ и $\gamma(s)$, т.е. s - натуральный параметр, что и требовалось доказать.

Лемма 1.3 Переход к натуральному параметру сохраняет гладкость параметрической кривой, если и только если эта кривая регулярна.

Доказательство.

Если кривая $\gamma(t)$ регулярна, то отображение

$$\varphi: t \mapsto \int_a^t ||\dot{\gamma}(\tau)|| d\tau$$

имеет гладкое обратное (так как $\dot{\varphi}(t) = ||\dot{\gamma}(t)|| \neq 0$), поэтому результирующая кривая $\gamma(\varphi^{-1}(s))$ — это гладкая кривая с натуральным параметром $s = \varphi(t)$. Обратное утверждение следует из предыдущей леммы.

Определение 1.12. Вектором ускорения гладкой параметрической кривой γ в точке $\gamma(t)$ называется вектор $\ddot{\gamma}(t) = (\ddot{x}^1(t), \dots, \ddot{x}^n(t))$

Лемма 1.3 Пусть s — натуральный параметр на регулярной кривой γ . Тогда в каждой точке кривой γ вектор ускорения $\ddot{\gamma}$ перпендикулярен вектору скорости $\dot{\gamma}$.

Доказательство.

Действительно, $\langle \dot{\gamma}(s), \dot{\gamma}(s) \rangle = 1$ в силу леммы 1.3. Дифференцируя это равенство по s, получаем

$$2\langle \dot{\gamma}(s), \ddot{\gamma}(s) \rangle = 0,$$

что и требовалось доказать.

Чтобы охарактеризовать степень искривления отдельных участков кривой, обычно используют величину ускорения при равномерном движении по рассматриваемой кривой.

Определение 1.13. Пусть γ — произвольная регулярная кривая, параметризованная натуральным параметром s. Величина $k(s) = ||\ddot{\gamma}(s)||$ называется кривизной кривой γ в точке $\gamma(s)$, а величина R(s) = 1/k(s) — радиусом кривизны в точке $\gamma(s)$ (если k(s) = 0, то полагают $R(s) = \infty$).

Определение 1.14. Регулярная параметрическая кривая $\gamma(t)$ называется бирегулярной, если ее кривизна всюду отлична от нуля.

Регулярная кривая γ бирегулярна, если и только если ее векторы скорости $\dot{\gamma}(t)$ и ускорения $\ddot{\gamma}(t)$ линейно независимы в каждой точке $\gamma(t)$ в произвольной параметризации.

Пусть $\gamma(s)$ — натурально параметризованная бирегулярная кривая в \mathbb{R}^n . Обозначим через τ единичный вектор скорости $\dot{\gamma}(s)$ в точке $\gamma(s)$, а через ν — нормированный вектор ускорения в точке $\gamma(s)$, т.е. $\nu = \ddot{\gamma}(s)/||\ddot{\gamma}(s)||$. Векторы τ и ν ортогональны.

Определение 1.15. Пара векторов (τ, ν) называется репером Френе плоской бирегулярной кривой в соответствующей её точке.

Теорема 1.3. Пусть γ — натурально параметризованная плоская бирегулярная кривая, и s — натуральный параметр. Тогда справедливы следующие соотношения:

$$\left\{ \begin{array}{l} = k \ \nu \\ = \text{-} \ k \ \tau \end{array} \right.$$

 $\operatorname{гde} k = k(s) - \kappa \operatorname{puвизна} \kappa \operatorname{puвой} \gamma$ в точке $\gamma(s)$.

Доказательство.

Первое равенство мгновенно следует из определения векторов τ и ν . Докажем второе равенство. Дифференцируя тождество $\langle \nu, \nu \rangle = 1$, находим, что $\langle \dot{\nu}, \nu \rangle = 0$, т.е. вектор $\dot{\nu}$ перпендикулярен ν и поэтому коллинеарен τ (здесь мы пользуемся тем, что кривая — плоская). Следовательно,

$$\dot{\nu} = \langle \dot{\nu}, \tau \rangle \tau$$

Покажем, что $\langle \dot{\nu}, \tau \rangle = -k$. Для этого продифференцируем тождество $\langle \nu, \tau \rangle = 0$. Получим, что $0 = \langle \dot{\nu}, \tau \rangle + \langle \nu, \dot{\tau} \rangle = \langle \dot{\nu}, \tau \rangle + \langle \nu, k\nu \rangle = \langle \dot{\nu}, \tau \rangle + k$, что и требовалось доказать.

2. Лекция 2

Кривизна натурально параметризованной кривой

Напомним некоторые соотношения и понятия из предыдущей лекции.

Определение 2.1. Пусть γ — произвольная регулярная кривая, параметризованная натуральным параметром s. Величина $k(s) = ||\ddot{\gamma}(s)||$ называется кривизной кривой γ в точке $\gamma(s)$, а величина R(s) = 1/k(s) — радиусом кривизны в точке $\gamma(s)$ (если k(s) = 0, то полагают $R(s) = \infty$).

Определение 2.2. Регулярная параметрическая кривая $\gamma(t)$ называется бирегулярной, если ее кривизна всюду отлична от нуля.

Регулярная кривая γ бирегулярна, если и только если ее векторы скорости $\dot{\gamma}(t)$ и ускорения $\ddot{\gamma}(t)$ линейно независимы в каждой точке $\gamma(t)$ в произвольной параметризации.

Пусть $\gamma(s)$ — натурально параметризованная бирегулярная кривая в \mathbb{R}^n . Обозначим через τ единичный вектор скорости $\dot{\gamma}(s)$ в точке $\gamma(s)$, а через ν — нормированный вектор ускорения в точке $\gamma(s)$, т.е. $\nu = \ddot{\gamma}(s)/||\ddot{\gamma}(s)||$. Векторы τ и ν ортогональны.

Определение 2.3. Пара векторов (τ, ν) называется репером Френе плоской бирегулярной кривой в соответствующей её точке.

Теорема 2.1. Пусть γ — натурально параметризованная плоская бирегулярная кривая, и s — натуральный параметр. Тогда справедливы следующие соотношения:

$$\begin{cases} = k \ \nu \\ = -k \ \tau \end{cases}$$
 где $k = k(s) - \kappa$ ривизна кривой γ в точке $\gamma(s)$.

Доказательство.

Первое равенство мгновенно следует из определения векторов τ и ν . Докажем второе равенство. Дифференцируя тождество $\langle \nu, \nu \rangle = 1$, находим, что $\langle \dot{\nu}, \nu \rangle = 0$, т.е. вектор $\dot{\nu}$ перпендикулярен ν и поэтому коллинеарен τ (здесь мы пользуемся тем, что кривая — плоская). Следовательно,

$$\dot{\nu} = \langle \dot{\nu}, \tau \rangle \tau$$

Покажем, что $\langle \dot{\nu}, \tau \rangle = -k$. Для этого продифференцируем тождество $\langle \nu, \tau \rangle = 0$. Получим, что $0 = \langle \dot{\nu}, \tau \rangle + \langle \nu, \dot{\tau} \rangle = \langle \dot{\nu}, \tau \rangle + \langle \nu, k\nu \rangle = \langle \dot{\nu}, \tau \rangle + k$, что и требовалось доказать.

Для плоских кривых можно определить понятие ориентированной кривизны, которое в некоторых случаях оказывается более удобным.

Фиксируем стандартную ориентацию плоскости, т.е. объявим положительно ориентированными те базисы, матрицы перехода от которых к стандартному базису имеют положительный определитель, а все остальные — отрицательно ориентированными. Пусть $\gamma(s)$ — натурально параметризованная плоская регулярная кривая, и $\nu_0(s)$ — семейство единичных нормалей, таких, что при каждом s пара $(\dot{\gamma}(s), \nu_0(s))$ образует положительно ориентированный базис.

Определение 2.4. Базис $(\dot{\gamma}(s), \nu_O(s))$ называется ориентированным репером Френе. Ориентированной кривизной $k_O(s)$ кривой γ в точке $\gamma(s)$ называется число $\langle \ddot{\gamma}(s), \nu_O(s) \rangle$.

Легко видеть, что $k_O(s)=\pm k(s)$. Кроме того, имеет место следующий аналог формул Френе.

Теорема 2.2. Справедливы следующие соотношения:

$$\begin{cases} = k_O \nu_O \\ O = -k_O \tau \end{cases}$$
 где $k = k(s)$ — кривизна кривой γ в точке $\gamma(s)$.

Теорема 2.3. Пусть f(s) — произвольная гладкая функция, заданная на промежутке I. Тогда существует плоская регулярная кривая γ , натурально параметризованная параметром s, такая, что ее ориентированная кривизна $k_O(s)$ в каждой точке $\gamma(s)$ равна f(s), причем такая кривая единственна c точностью до движения плоскости, сохраняющего ориентацию.

Доказательство.

Пусть $\gamma(s)$ — произвольная натурально параметризованная регулярная плоская кривая, ориентированная кривизна которой $k_O(s)$ равна f(s). Выясним, как такая кривая может выглядеть. Так как вектор $\dot{\gamma}$ — единичный, его можно представить в виде $(cos(\varphi), sin(\varphi))$, где $\varphi = \varphi(s)$. Поэтому:

$$\ddot{\gamma} = \dot{\varphi}(-\sin(\varphi), \cos(\varphi)) = \dot{\varphi}\nu_O(s)$$

откуда $\dot{\varphi}=k_O$. Следовательно, $\varphi(s)=\varphi_0+\int_a^s f(t)dt, a\in I,$ и

$$x^{1}(s) = x_{0}^{1} + \int_{a}^{s} \cos(\varphi(t))dt, x^{2}(s) = x_{0}^{2} + \int_{a}^{s} \sin(\varphi(t))dt$$

где φ_0, x_0^1 и x_0^2 - некоторые числа. Таким образом, мы нашли кривую γ с точностью до чисел φ_0, x_0^1 и x_0^2 , т.е. с точностью до поворота плоскости на угол φ_0 и

сдвига на вектор (x_0^1, x_0^2) .

Покажем теперь, что построенная кривая γ — искомая. Действительно, вычислив скорость и ускорение кривой γ , заметим, что она регулярна, натурально параметризована, и ее ориентированная кривизна равна f(s). Доказательство закончено.
Мы нашли явные формулы для восстановления регулярной кривой γ по ее ориентированной кривизне. Любая гладкая функция может быть реализована как ориентированная кривизна некоторой плоской регулярной кривой. Чтобы задать на плоскости регулярную кривую (с точностью до движения), достаточно задать одну гладкую функцию — ориентированную кривизну этой кривой.

Предыдущую теорему можно переформулировать и для обычной кривизны кривой.

Теорема 2.4. Пусть f(s) — произвольная положительная гладкая функция, заданная на промежутке I. Тогда существует плоская бирегулярная кривая γ , натурально параметризованная параметром s, такая, что ее кривизна k(s) в кажедой точке $\gamma(s)$ равна f(s), причем такая кривая единственна c точностью до движения плоскости.

Кривые в трехмерном пространстве

Рассмотрим теперь регулярные кривые в трехмерном евклидовом пространстве \mathbb{R}^3 . В предыдущем разделе мы построили репер Френе для плоской бирегулярной кривой и изучили его зависимость от натурального параметра, что, в конечном счете, позволило нам решить натуральное уравнение. В трехмерном пространстве двух векторов — скорости и главной нормали, — не хватает для репера, поэтому нужны дополнительные построения.

Пусть $\gamma(s)$ - натурально параметризованная бирегулярная кривая в \mathbb{R}^3 . Как и выше, пусть τ - вектор скорости $\dot{\gamma}(s)$, и ν - главная нормаль к γ в точке $\gamma(s)$. Обозначим через β - векторное произведение $[\tau,\nu]$. Тройка (τ,ν,β) образует положительно ориентированный ортонормальный базис в \mathbb{R}^3 .

Определение 2.5. Вектор β называется бинормалью к бирегулярной кривой γ в точке $\gamma(s)$, а базис (τ, ν, β) — репером Френе кривой γ в точке $\gamma(s)$.

Лемма 2.1

Производная $\dot{\beta}(s)$ вектора бинормали по натуральному параметру коллинеарна вектору главной нормали ν .

Доказательство.

По формуле Лейбница имеем:

$$\dot{\beta} = [\tau, \nu] = [\dot{\tau}, \nu] + [\tau, \dot{\nu}] = [\tau, \dot{\nu}]$$

где последнее равенство справедливо, т.к. вектор $\dot{\tau}$, равный $\ddot{\gamma}$, коллинеарен ν и $[\dot{\tau},\nu]=0$. Отсюда следует, что $\dot{\beta}$ ортогонален τ . Далее, т.к. вектор $\beta(s)$ - единичный при каждом s, то $\dot{\beta}$ перпендикулярен β . Следовательно, $\dot{\beta}$ коллинеарен вектору ν .

Определение 2.6. Величина $\varkappa = -\langle \dot{\beta}, \nu \rangle$ называется кручением бирегулярной кривой γ в точке $\gamma(s)$.

Теорема 2.5. сделанных предположениях справедливы следующие соотношения:

$$\begin{cases} \dot{\tau} = k\nu \\ \dot{\nu} = -k\tau + \varkappa\beta \\ \dot{\beta} = -\varkappa\nu \end{cases}$$

где k и \varkappa - кривизна и кручение бирегулярной кривой γ в точке $\gamma(s)$ coombemственно.

Доказательство.

Первое и третье уравнения — это фактически определения кривизны и кручения. Осталось доказать второе равенство.

Так как вектор $\dot{\nu}$ перпендикулярен ν , то его можно разложить по векторам τ и β . Положим $\dot{\nu} = a\tau + b\beta$. В силу ортонормальности репера Френе имеем $a = \langle \dot{\nu}, \tau \rangle$ и $b = \langle \dot{\nu}, \beta \rangle$. Мы должны показать, что a = -k, а $b = \varkappa$.

Так как $\langle \nu, \tau \rangle = \langle \nu, \beta \rangle = 0$, то, дифференцируя эти равенства, заключаем, что

$$0 = \langle \dot{\nu}, \tau \rangle + \langle \nu, \dot{\tau} \rangle = a + k, 0 = \langle \dot{\nu}, \beta \rangle + \langle \nu, \dot{\beta} \rangle = b - \varkappa$$

что и требовалось доказать.

Приведем теперь явные формулы для вычисления кривизны и кручения кривой в произвольной параметризации.

Теорема 2.6. Пусть $\gamma(t)$ — бирегулярная кривая. Тогда

$$k = \frac{||[\dot{\gamma}, \ddot{\gamma}]||}{||\dot{\gamma}||^3}, \varkappa = \frac{(\dot{\gamma}, \ddot{\gamma}, \ddot{\gamma})}{||[\dot{\gamma}, \ddot{\gamma}]||^2}$$

где через (u,v,w) обозначено смешанное произведение векторов $u,v,w\in\mathbb{R}^3$

18

Доказательство.

Пусть сначала t=s — натуральный параметр. Тогда

$$\dot{\gamma} = \tau, ||\dot{\gamma}|| = 1, \ddot{\gamma} = k\nu, ||[\dot{\gamma}, \ddot{\gamma}]|| = k$$

$$\ddot{\gamma} = \dot{k}\nu + k(-k\tau + \varkappa\beta), (\dot{\gamma}, \ddot{\gamma}, \ddot{\gamma}) = k^2\varkappa$$

поэтому в этом случае теорема имеет место. Сделаем замену параметра. Оказывается, что приведенные формулы при этом не изменятся. Действительно, обозначая начальный параметр через s, новый параметр — через t, а дифференцирования по параметрам — соответствующими нижними индексами, получаем

$$\gamma_s = \gamma_t t_s, \gamma_{ss} = \gamma_{tt} t_s^2 + \gamma_t t_{ss}, \gamma_{sss} = \gamma_{ttt} t_s^3 + 3\gamma_{tt} t_s t_s s + \gamma_t t_{sss}$$

откуда получаем, что

$$[\gamma_s, \gamma_{ss}] = [\gamma_t, \gamma_{tt}]t_s^3, (\gamma_s, \gamma_{ss}, \gamma_{sss}) = (\gamma_t, \gamma_{tt}, \gamma_{ttt})t_s^6$$

$$\frac{\|[\gamma_s,\gamma_{ss}]\|}{\|\gamma_s\|^3} = \frac{\|[\gamma_t,\gamma_{tt}]\|}{\|\gamma_t\|^3}, \frac{(\gamma_s,\gamma_{ss},\gamma_{ss})}{\|[\gamma_s,\gamma_{ss}]\|^2} = \frac{(\gamma_t,\gamma_{tt},\gamma_{ttt})}{\|[\gamma_t,\gamma_{tt}]\|^2}.$$

Натуральные уравнения

Оказывается, кривизна и кручение полностью определяют форму бирегулярной кривой в трехмерном пространстве. Сформулируем соответствующую теорему.

Теорема 2.7. Пусть f(s) и g(s) — две гладкие функции на отрезке [a,b], причем функция f(s) положительна. Тогда существует единственная, с точностью до сохраняющего ориентацию движения пространства, натурально параметризованная кривая $\gamma(s)$, такая, что ее кривизна k(s) и кручение $\varkappa(s)$ равны соответственно f(s) и g(s).

3. Лекция 3

Натуральные уравнения

Докажем теорему, на которой завершилась предыдущая лекция.

Теорема 3.1. Пусть f(s) и g(s) — две гладкие функции на отрезке [a,b], причем функция f(s) положительна. Тогда существует единственная, с точностью до сохраняющего ориентацию движения пространства, натурально параметризованная кривая $\gamma(s)$, такая, что ее кривизна k(s) и кручение $\varkappa(s)$ равны соответственно f(s) и g(s).

Доказательство.

Формулы Френе, в которые вместо кривизны подставлена функция f, а вместо кручения — функция g, можно рассматривать как систему линейных дифференциальных уравнений первого порядка с девятью неизвестными — компонентами векторов τ , ν и β . Эту систему будем обозначать символом *. Нам будем удобно записать ее в матричном виде. Пусть $\tau = (\tau^1, \tau^2, \tau^3), \nu = (\nu^1, \nu^2, \nu^3), \beta = (\beta^1, \beta^2, \beta^3),$ тогда система * имеет вид

$$\begin{pmatrix} \dot{\tau}^1 & \dot{\tau}^2 & \dot{\tau}^3 \\ \dot{\nu}^1 & \dot{\nu}^2 & \dot{\nu}^3 \\ \dot{\beta}^1 & \dot{\beta}^2 & \dot{\beta}^3 \end{pmatrix}$$

Матрицу из системы *, строками которой являются координаты векторов τ, ν и β , обозначим через η , а матрицу, содержащую f и g, — через Ω . Таким образом, система * имеет вид $\dot{\eta} = \Omega \eta$. Отметим, что Ω — кососимметричная матрица.

Выберем в \mathbb{R}^3 некоторый ортонормальный положительно ориентированный репер (τ_0, ν_0, β_0) . По теореме существования и единственности решения задачи Коши для системы дифференциальных уравнений существуют и единственны вектор-функции $(\tau(s), \nu(s), \beta(s))$, удовлетворяющие системе * и начальным условиям $\tau(a) = \tau_0, \nu(a) = \nu_0, \beta(a) = \beta_0$. Положим

$$\gamma(s) = \gamma_0 + \int_a^s \tau(t)dt$$

где γ_0 — произвольный вектор, и покажем, что γ — искомая кривая, т.е. γ — бирегулярная кривая, параметризованная натуральным параметром s, её кривизна k(s) равна f(s), а кручение $\varkappa(s)$ равно g(s).

Параметрические поверхности

Понятие кривых естественным образом обобщается на объекты большей размерности, которые называются поверхностями. Как и в случае кривых, мы рассмотрим несколько подходов к определению понятия поверхности, которые приводят к, вообще говоря, разным, но, тем не менее, локально эквивалентным объектам.

Обозначим через Ω область в евклидовом пространстве \mathbb{R}^k , т.е. его открытое связное подмножество.

Определение 3.1. Непрерывной параметрической поверхностью размерности k в n-мерном евклидовом пространстве $\mathbb{R}^n, n \geq k$, называется произвольное непрерывное отображение $r: \Omega \mapsto \mathbb{R}^n$ из некоторой области $\Omega \subset \mathbb{R}^k$ в \mathbb{R}^n .

Такое отображение r задается набором из координатных функций $x^i(u^1,\ldots,u^k)$, где u^1,\ldots,u^k — стандартные координаты в $\mathbb{R}^k \supset \Omega$, а x^1,\ldots,x^n - стандартные координаты в \mathbb{R}^n . При этом непрерывность отображения r равносильна непрерывности всех функций $x^i(u^1,\ldots,u^k)$. Координаты u^i называются параметрами для r, или координатами на параметрической поверхности r.

Непрерывная параметрическая поверхность r может, вообще говоря, иметь самопересечения, т.е. могут существовать такие точки P и P' из Ω , что r(P) = r(P').

Определение 3.2. Если отображение r взаимно-однозначно c образом, то параметрическая поверхность r называется вложенной.

Определение 3.3. Будем называть непрерывную параметрическую поверхность $r: \Omega \mapsto \mathbb{R}^n$ гладкой, если все ее координатные функции $x^i(u^1, \dots, u^k)$ — гладкие, т.е. непрерывно дифференцируемые бесконечное число раз.

Для каждой точки (u^1,\ldots,u^k) области Ω гладкой параметрической поверхности определены векторы $r_{u^i}=(x^1_{u^1},\ldots,x^n_{u^k})$, где через $x^j_{u^i}$ обозначена частная производная функции x^j по параметру u^i в этой точке.

Определение 3.4. Векторы $r_{u^j}, j = 1, \dots, k$ называются базисными касательными векторами поверхности r в точке (u^1, \dots, u^k) .

Одна и та же точка образа параметрической поверхности может соответствовать разным точкам параметризующей области (именно так дело обстоит в точках самопересечения). Поэтому, чтобы выделить один набор базисных касательных векторов, нужно указывать значения параметров.

Для поверхностей "изломы" могут возникать лишь в тех точках, в которых базисные касательные векторы линейно зависимы. Такие точки называются особыми, или сингулярными, а все остальные — регулярными, или неособыми.

Определение 3.5. Гладкая параметрическая поверхность называется регулярной, если ее базисные касательные векторы линейно независимы в каждой точке параметризующей области.

Пусть $r:\Omega\mapsto\mathbb{R}^n$ — непрерывная параметрическая поверхность. Рассмотрим взаимно-однозначное непрерывное вместе со своим обратным отображение $\varphi:\Omega'\mapsto\Omega$ области $\Omega\subset\mathbb{R}^k$ на область $\Omega'\subset\mathbb{R}^k$. Каждое такое отображение порождает новую непрерывную параметрическую поверхность $r\circ\varphi:\Omega'\mapsto\mathbb{R}^n$

Определение 3.6. Отображение φ называется заменой параметризации, а поверхность $r \circ \varphi$ получена из поверхности r заменой параметризации.

Ясно, что если φ — замена параметризации, то φ^{-1} также является заменой параметризацией. Параметрические поверхности r и r0, полученные друг из друга заменой параметризации, имеют совпадающие образы в \mathbb{R}^n .

Как и в случае параметрических кривых, гладкая замена параметризации может нарушить регулярность параметрической поверхности. Однако, если оба отображения φ и φ^{-1} , задающие замену параметризации, — гладкие, то отличающиеся на такую замену параметризации параметрические поверхности регулярны одновременно.

Поверхности-графики

Пусть $f:\Omega\mapsto\mathbb{R}^{n-k}$ — векторнозначная функция, заданная на области $\Omega\subset\mathbb{R}^k$, и u^1,\dots,u^k — стандартные координаты на \mathbb{R}^k .

Определение 3.7. Множество $Gr(f) = \{(u^1, \dots, u^k, f(u^1, \dots, u^k) | (u^1, \dots, u^k) \in \Omega)\} \subset \mathbb{R}^n$ называется поверхностью-графиком в пространстве \mathbb{R}^n

По определению, поверхность—график Gr(f) представляет собой образ k-мерной параметрической поверхности $r_f:\Omega\mapsto\mathbb{R}^n$, где $r_f:(u^1,\ldots,u^k)\mapsto(u^1,\ldots,u^k,f(u^1,\ldots,u^k))$, про которую будем говорить, что она соответствует поверхности—графику Gr(f). Если функция f — гладкая, то Gr(f) будем называть гладкой поверхностью—графиком. В этом случае, очевидно, r_f — гладкая параметрическая поверхность.

Лемма 3.1

Для любой регулярной параметрической поверхности $r:\Omega\mapsto\mathbb{R}^n$ и любой точки $P\in\Omega$ существует такая окрестность $U\subset\Omega$ этой точки, что образ отображения $r|_U$ является графиком некоторой гладкой функции (возможно, после перенумерации координат в \mathbb{R}^n).

Доказательство.

Пусть x^i — стандартные координаты в \mathbb{R}^n , а u^i — координаты на поверхности r. В силу регулярности поверхности r ранг матрицы $(x^i_{u^j}(P))$ равен k. Без ограничения общности будем считать, что квадратная матрица $(x^i_{u^j}(P))^k_{i,j=1}$ невырождена (иначе — перенумеруем координаты x^j). Тогда по теореме об обратной функции отображение

$$\psi: (u^1, \dots, u^k) \mapsto (x^1(u^1, \dots, u^k), \dots, x^k(u^1, \dots, u^k))$$

ограниченное на некоторую окрестность U точки P, имеет гладкое обратное отображение $\varphi:\psi(U)\mapsto U$, где

 $\varphi:(x^1,\dots,x^k)\mapsto (u^1(x^1,\dots,x^k),\dots,u^k(x^1,\dots,x^k)),$ являющееся, по определению, заменой параметризации для поверхности $r:U\mapsto \mathbb{R}^n.$ Согласно определению отображения φ имеем

$$x^{i}(u^{1}(x^{1},...,x^{k}),...,u^{k}(x^{1},...,x^{k})), i = 1,...,k.$$

Положим $\psi(U)=\Omega'$. Тогда параметрическая поверхность $r\circ\varphi:\Omega'\mapsto\mathbb{R}^n$ имеет вид

$$r \circ \varphi : (x^1, \dots, x^k) \mapsto$$

$$\mapsto (x^1, \dots, x^k, x^{k+1}(u^1(x^1, \dots, x^k), \dots, u^k(x^1, \dots, x^k)), \dots, x^n(u^1(x^1, \dots, x^k), \dots, u^k(x^1, \dots, x^k)))$$

т.е. ее образ $r \circ \varphi(\Omega') = r(U)$ является графиком гладкой векторнозначной функции $f: \Omega' \mapsto \mathbb{R}^{n-k}$, где

$$f(x^1, \dots, x^k) =$$

$$= (x^{k+1}(u^1(x^1, \dots, x^k), \dots, u^k(x^1, \dots, x^k)), \dots, x^n(u^1(x^1, \dots, x^k), \dots, u^k(x^1, \dots, x^k)))$$

Лемма доказана.

Неявные поверхности

Пусть $F: U \mapsto \mathbb{R}^{n-k}$ — гладкая векторнозначная функция, заданная на некоторой области $U \subset \mathbb{R}^n$, и пусть c — некоторый постоянный вектор из \mathbb{R}^{n-k} . Предположим, что система уравнений $F(x^1,\ldots,x^n)=c$ удовлетворяет условиям теоремы о неявной функции, а именно, множество $M_c=\{(x^1,\ldots,x^n)|F(x^1,\ldots,x^n)=c\}$ всех

решений этой системы не пусто, и ранг матрицы Якоби $(\frac{\partial F^i}{\partial x^j})$ в каждой точке из M_c максимален и равен n-k.

Определение 3.8. *Множество* M_c называется неявной поверхностью.

Поверхность-график произвольной гладкой векторнозначной функции $f:\Omega\mapsto\mathbb{R}^{n-k},\Omega\subset\mathbb{R}^k$, является неявной поверхностью, поскольку может быть задана как множество решений системы уравнений $x^i-f^{i-k}(x^1,\ldots,x^k)=0, i=k+1,\ldots,n$, где через f^i обозначены компоненты вектора f. Обратное неверно.

Лемма 3.2

Пусть P — произвольная точка неявной поверхности M_c . Тогда в некоторой окрестности точки $P \in M_c$ в пространстве \mathbb{R}^n множество M_c можно представить как гладкую поверхность—график некоторой векторнозначной функции f (возможно, после перенумерации координат).

Доказательство.

По условию ранг матрицы Якоби $(\frac{\partial F^i}{\partial x^j})$ в точке P равен n-k. Предположим, что невырожденной оказалась подматрица $(\frac{\partial F^i}{\partial x^j}), i=1,\ldots,n-k$ и $j=k+1,\ldots,n$ (иначе — перенумеруем координаты). Обозначим через P' проекцию точки P на координатную плоскость $x^{k+1}=\cdots=x^n=0$. Тогда по теореме о неявной функции в некоторой окрестности U' точки P' (на этой плоскости) определена гладкая векторнозначная функция $f:U'\mapsto \mathbb{R}^{n-k}$, такая, что

$$F(x^1,\ldots,x^k,f(x^1,\ldots,x^k))=c$$
 для всех $(x^1,\ldots,x^k)\in U^{'}$

т.е. точки $(x^1,\ldots,x^k,f(x^1,\ldots,x^k))$, где $(x^1,\ldots,x^k)\in U'$ принадлежат M_c . Таким образом, положив $U=U'\times\mathbb{R}^{n-k}$, заключаем, что множество $U\cap M_c$ является графиком гладкой функции f. Лемма доказана.

Локальная эквивалентность

Мы описали три разных подхода к определению понятия поверхности. При этом, каждая поверхность—график представляет собой также и неявную поверхность, и образ регулярной параметрической поверхности, однако, неявная поверхность не обязана быть поверхностью—графиком, а образ регулярной параметрической поверхности не обязан быть неявной поверхностью. Таким образом все три определения поверхности задают разные объекты. С другой стороны, с локальной точки зрения эти три подхода к определению регулярной поверхности эквивалентны в следующем смысле.

Теорема 3.2. С локальной точки зрения три способа задания регулярной поверхности эквивалентны в следующем смысле:

- если $r: \Omega \mapsto \mathbb{R}^n$ регулярная параметрическая поверхность, то для каждого $u \in \Omega$ существует такая окрестность U точки u в области Ω , что ее образ r(U) является поверхностью-графиком для некоторой гладкой векторзначной функции;
- для каждой точки P неявной поверхности M_c существует такая окрестность $U \subset \mathbb{R}^n$, что $U \cap M_c$ есть поверхность-график;

Пусть $r:\Omega\mapsto \mathbb{R}^n$ — регулярная параметрическая поверхность. Для каждого $u\in\Omega$ существует такая окрестность U точки u в области Ω , что ограничение отображения r на U взаимно однозначно с образом.

Там, где это не вызовет недоразумений, мы будем говорить просто о регулярной поверхности, подразумевая, что соответствующий объект задан удобным для нас способом (или как поверхность—график, или как неявная поверхность, или как регулярная параметрическая поверхность или её образ). Причем в последнем случае, если не оговорено противное, параметризующее отображение предполагается вза-имно однозначными с образом, а замены параметризации гладкими и с гладкими обратными.

Пусть $M \subset \mathbb{R}^n$ — регулярная поверхность, и $f: M \mapsto \mathbb{R}^m$ - (векторнозначная) функция на поверхности. Пусть $r_M: \Omega_M \mapsto \mathbb{R}^n$ — (взаимно-однозначное с образом) параметризующее отображение поверхности M. Положим $\tilde{f} = f \circ r_M$. Обратно, так как отображение r_M взаимно-однозначно с образом, то для каждой функции $\tilde{f}: \Omega_M \mapsto \mathbb{R}^m$ однозначно определена функция $f: \Omega \mapsto \mathbb{R}^m$, такая, что $\tilde{f} = f \circ r_M$, а именно $f = \tilde{f} \circ r_M^{-1}$, где $r_M^{-1}: M \mapsto \Omega_M$.

Аналогично, пусть задано отображение $\gamma: I \mapsto M$ промежутка I в регулярную поверхность M. Тогда определено отображение $\tilde{\gamma} = r_M^{-1} \circ \gamma: I \mapsto \Omega_M$ и наоборот, для каждого отображения $\tilde{\gamma}: I \mapsto \Omega_M$ из промежутка I в параметрическую область Ω_M однозначно определено отображение $\gamma = r_M \circ \tilde{\gamma}: I \mapsto M$, причем $\tilde{\gamma} = r_M^{-1} \circ \gamma$.

Наконец, пусть $N \subset \mathbb{R}^n$ - еще одна регулярная поверхность, и $r_N : \Omega_N \mapsto \mathbb{R}^n$ - ее (взаимно-однозначное с образом) параметризующее отображение. Пусть $F: M \mapsto N$ отображение поверхности M в поверхность N. Тогда в силу взаимной однозначности параметризующих отображений определено отображение $\tilde{F}: \Omega_M \mapsto \Omega_N$ следующего вида: $\tilde{F} = r_N^{-1} \circ F \circ r_M$. Обратно, для каждого отображения $\tilde{F}: \Omega_M \mapsto \Omega_N$ однозначно определено отображение поверхностей $F: M \mapsto N$, такое, что $\tilde{F} = r_N^{-1} \circ F \circ r_M$.

Определение 3.9. Функция \tilde{f} и отображения \tilde{F} и $\tilde{\gamma}$ называются координатными представлениями функции f и отображения F и γ соответственно.

Определение 3.10. Гладкое отображение F одной регулярной поверхности в другую называется регулярным, если регулярным является его координатное представление, т.е. если ранг матрицы Якоби отображения \tilde{F} максимален в каждой точке.

4. Лекция 4

Кривые на поверхности

Пусть $M\subset \mathbb{R}^n$ — регулярная поверхность и $\gamma:I\mapsto \mathbb{R}^n$ — параметрическая кривая.

Определение 4.1. Говорят, что кривая γ лежит на M, если $\gamma(I) \subset M$. Лежащая на поверхности параметрическая кривая называется гладкой, если она гладкая как отображение промежутка в поверхность, т.е., если её координатное представление гладкое.

Если γ — гладкая параметрическая кривая, лежащая на регулярной поверхности, то соответствующая параметрическая кривая в \mathbb{R}^n тоже гладкая. В этом случае координатное представление кривой γ задает регулярную кривую в \mathbb{R}^k , если и только если кривая γ регулярна.

Пусть $r:\Omega\mapsto\mathbb{R}^n$ — параметризация регулярной поверхности $M,\,u^1,\ldots,u^k$ — координаты в пространстве \mathbb{R}^k , в котором лежит область $\Omega,\,$ и x^1,\ldots,x^n - координаты в объемлющем пространстве. Координатное представление кривой γ задается набором функций $u^i(t),t\in I,i=1,\ldots,k$, которые называются координатными функциями кривой. Сама параметрическая кривая γ записывается через координатные функции так: $\gamma(t)=r(u^1(t),\ldots,u^k(t))$. Координатные функции кривой γ имеют вид $x^i(t)=x^i(u^1(t),\ldots,u^k(t))$, где $x^i(u^1,\ldots,u^k)$ — координатные функции поверхности r.

Касательное пространство

Пусть $P \in M$ — произвольная точка регулярной поверхности M, и $\gamma : I \mapsto \mathbb{R}^n$ -гладкая кривая, лежащая на M. Пусть $\gamma(t_0) = P$, т.е. γ проходит через P.

Определение 4.2. Вектор скорости $\bar{\gamma}(t_0) \in \mathbb{R}^n$ кривой γ в точке P назовем касательным вектором κ поверхности M в точке P. Совокупность касательных векторов в точке P, построенных по всем гладким кривым на поверхности M, проходящим через эту точку, называется касательным пространством κ поверхности M в точке P и обозначается через T_PM .

Лемма 4.1

Пусть $P \in M$ — произвольная точка регулярной k-мерной поверхности $M \subset \mathbb{R}^n$. Тогда касательное пространство T_PM является линейным пространством размерности k.

Доказательство.

Пусть, как и выше, $x^i = x^i(u^1, \dots, u^k), i = 1, \dots, n$ — координатные функции поверхности M. Возьмем произвольную кривую $\gamma(t)$ на поверхности, проходящую через точку P, и пусть $u^j = u^j(t)$ — координатные функции этой кривой, а $P = \gamma(t_0)$. Тогда i-я координата соответствующего касательного вектора имеет вид

$$\frac{dx^{i}}{dt}|_{t=t_{0}} = \sum_{j=1}^{k} \frac{\partial x^{i}}{\partial u^{j}}|_{P} \frac{du^{j}}{dt}|_{t=t_{0}}$$

Таким образом, вектор скорости кривой γ — произвольный элемент касательного пространства T_PM , — это линейная комбинация вида

$$\begin{pmatrix} \frac{\partial x^1}{\partial u^1} \\ \dots \\ \frac{\partial x^n}{\partial u^1} \end{pmatrix} \frac{du^1}{dt} + \dots + \begin{pmatrix} \frac{\partial x^1}{\partial u^k} \\ \dots \\ \frac{\partial x^n}{\partial u^k} \end{pmatrix} \frac{du^k}{dt}$$

где векторы-столбцы $(\frac{\partial x^1}{\partial u^i},\dots,\frac{\partial x^n}{\partial u^i})^T, i=1,\dots,k$, не зависят от выбора кривой γ и однозначно определяются координатными функциями $x^i(u^1,\dots,u^k)$ поверхности M и точкой P. В то же время, в силу произвольности гладкой кривой γ числа $\frac{du^i}{dt}|_{t=t_0}$ произвольны. Поэтому касательное пространство T_PM — это линейное пространство, натянутое на векторы $\partial_{u^1},\dots,\partial_{u^k}$, где через ∂_{u^i} обозначен вектор-столбец

$$\left(\frac{\partial x^1}{\partial u^i}, \dots, \frac{\partial x^n}{\partial u^i}\right)^T$$

Матрица, составленная из векторов-столбцов ∂_{u^i} — это в точности матрица Якоби отображения $x^i = x^i(u^1, \dots, u^k)$, задающего поверхность M. Ранг этой матрицы, в силу регулярности поверхности M, равен k, поэтому векторы $\partial_{u^1}, \dots, \partial_{u^k}$ линейно независимы и образуют базис в линейном пространстве T_PM .

Определение 4.3. Базис в касательном пространстве T_PM , составленный из векторов ∂_{u^i} , называется каноническим базисом в точке P, соответствующим координатам u^1, \ldots, u^k на поверхности. Коэффициенты разложения касательного вектора к поверхности по элементам канонического базиса (∂_{u^i}) называются компонентами или координатами этого вектора в этом каноническом базисе или его координатами (компонентами) относительно системы координат (u^1, \ldots, u^k) .

Лемма 4.2

При замене координат на регулярной поверхности, векторы канонического базиса в каждой точке поверхности преобразуются с помощью матрицы Якоби этой замены координат, которая играет роль матрицы перехода от одного базиса к другому. Компоненты одного и того же касательного вектора в разных системах координат

связаны между собой с помощью этой матрицы перехода.

Доказательство.

Пусть, $v^i = v^i(u^1, \dots, u^k)$ замена координат на регулярной поверхности M. Тогда в каждой точке P определены сразу два канонических базиса: (∂_{u^i}) и ∂_{v^i} . Из определения векторов канонических базисов и теоремы о дифференцировании сложной функции получаем:

$$\partial_{v^i} = \begin{pmatrix} \frac{\partial x^1}{\partial v^i} \\ \dots \\ \frac{\partial x^n}{\partial v^i} \end{pmatrix} = \frac{du^1}{dt} + \dots + \begin{pmatrix} \sum_j \frac{\partial x^1}{\partial u^j} \frac{\partial u^j}{\partial v^i} \\ \dots \\ \sum_j \frac{\partial x^n}{\partial u^j} \frac{\partial u^j}{\partial v^i} \end{pmatrix} = \sum_j \begin{pmatrix} \frac{\partial x^1}{\partial u^j} \\ \dots \\ \frac{\partial x^n}{\partial u^j} \end{pmatrix} \frac{\partial u^j}{\partial v^i}$$

т.е. окончательно имеем:

$$\partial_{v^i} = \sum_j \partial_{u^j} \frac{\partial u^j}{\partial v^i}$$

или, в матричном виде,

$$(\partial_{v^1}, \dots, \partial_{v^k}) = (\partial_{u^1}, \dots, \partial_{u^k})J, J = (\frac{\partial u^j}{\partial v^i})$$

Далее, пусть $a \in T_P M$ - произвольный касательный вектор, и пусть

$$a = \sum_{j=1}^{k} a^{j} \partial_{u^{j}} = \sum_{i=1}^{k} \tilde{a}^{i} \partial_{v^{i}}$$

т.е. $(a^1,\ldots,a^k),(\tilde{a}^1,\ldots,\tilde{a}^k)$ — компоненты вектора a в базисах ∂_{u^i} и ∂_{v^i} соответственно. Тогда из теорем линейной алгебры о преобразовании компонент вектора при замене базиса вытекает, что

$$(\tilde{a}^1,\ldots,\tilde{a}^k)^T=J^{-1}(\tilde{a}^1,\ldots,\tilde{a}^k)^T$$

или, поскольку матрицы $(\partial u^j \frac{1}{\partial v^i})(\partial v^i \frac{1}{\partial u^j})$ взаимно обратны, в координатах имеем:

$$\tilde{a}^i = \sum_{\alpha=1}^k (\frac{\partial v^i}{\partial u^\alpha} a^\alpha), i = 1, \dots, k$$

Дифференциал

Пусть $F: M \mapsto N$ — гладкое отображение регулярных поверхностей, $P \in M$ — произвольная точка поверхности M и $v \in T_P M$ — произвольный касательный вектор. Напомним, что каждый такой вектор является по определению вектором скорости некоторой кривой ., проходящей через точку P. Пусть $v = \dot{\gamma}(t_0)$, где γ — гладкая кривая на M и $\gamma(t_0) = P$. Построим отображение $dF|_P: T_P M \mapsto T_{F(P)} N$, положив

$$dF|_{P}(v) = \frac{d}{dt}|_{t=t_0} F(\gamma(t))$$

Заметим, что $F \circ \gamma$ — гладкая кривая на поверхности N, проходящая через точку F(P), а именно, $F(\gamma(t_0)) = F(P)$, поэтому отображение $dF|_P$ определено корректно.

Определение 4.4. Отображение $dF|_P : T_PM \mapsto T_{F(P)}N$ называется дифференциалом отображения F в точке P.

Лемма 4.3

Дифференциал гладкого отображения регулярных поверхностей — линейное отображение соответствующих касательных пространств. В канонических базисах систем координат он задается матрицей Якоби координатного представления отображения, вычисленной в соответствующей точке

Доказательство.

Пусть u^1, \ldots, u^m — координаты на поверхности M, а v^1, \ldots, v^n — координаты на поверхности N, точка P имеет координаты u^1_0, \ldots, u^m_0 , и $v^i = v^i(u^1, \ldots, u^m)$ — координатные функции отображения F. Рассмотрим произвольный вектор $v \in T_P M$, и пусть $a = \dot{\gamma}(t_0)$ для некоторой проходящей через P гладкой кривой γ на $M, \gamma(t_0) = P$, координатные функции которой имеют вид $u^i(t)$. Тогда компоненты a^i вектора a в каноническом базисе (∂_{u^j}) имеют вид $a^i = \dot{u}^i(t_0)$.

Вычислим вектор $dF|_P(a)$. Координатные функции кривой $F \circ \gamma$ имеют вид $v^j(t) = v^j(u^1(t), \dots, u^n(t))$, поэтому

$$\dot{v}^{j}(t_{0}) = \sum_{\alpha=1}^{m} \frac{\partial v^{j}}{\partial u^{\alpha}}|_{P} \dot{u}^{\alpha}(t_{0}) = \sum_{\alpha=1}^{m} \frac{\partial v^{j}}{\partial u^{\alpha}}|_{P} a^{\alpha}.$$

Таким образом, компоненты $\dot{v}^{j}(t_{0})$ вектора $dF|_{P}(a)$ в базисе $\partial_{v^{j}}$ получаются из столбца компонент вектора a в базисе $(\partial_{u^{i}})$ умножением на матрицу Якоби координатного представления отображения F в точке P. Это доказывает линейность дифференциала и требуемую формулу.

Первая фундаментальная форма

Пусть, как и выше, P — произвольная точка регулярной k-мерной поверхности $M \subset \mathbb{R}^n$. Скалярное произведение векторов в \mathbb{R}^n порождает скалярное произведение касательных векторов из T_PM .

Пусть ξ и η — касательные векторы к поверхности M в точке P. Определим функцию $\mathfrak{G}(P): T|PM \times T_PM \mapsto \mathbb{R}$ так: $\mathfrak{G}(\xi,\eta) = \langle \xi,\eta \rangle$, где справа стоит стандартное скалярное произведение в \mathbb{R}^n . Другими словами, функция $\mathfrak{G}(P)$ есть ограничение стандартного скалярного произведения на подпространство T_PM .

Лемма 4.4

В произвольной точке P регулярной поверхности M функция $\mathfrak{G}(P)$ — это положительно определенная симметричная билинейная форма на касательном пространстве T_PM .

Доказательство.

Линейность по каждому аргументу, положительная определенность и симметричность функции $\mathfrak{G}(P)$ вытекают из соответствующих свойств евклидова скалярного произведения.

Определение 4.5. Билинейная форма $\mathfrak{G}(P)$ называется первой фундаментальной формой поверхности в точке P или индуцированной метрикой.

Выясним, как выглядит матрица (g_{ij}) билинейной формы $\mathfrak{G}(P)$ в каноническом базисе.

Лемма 4.5

Пусть $x^i(u^1,\dots,u^k)$ — координатные функции регулярной поверхности. Тогда компоненты g_{ij} матрицы первой фундаментальной формы имеют вид:

 $g_{ij}(u^1,\dots,u^k) = \sum_{p=1}^n \frac{\partial x^p}{\partial u^i} \frac{\partial x^p}{\partial u^j}$ В частности, g_{ij} — гладкие функции координат u^i , т.е. гладко зависят от точки P.

Доказательство.

Пусть ξ и η — произвольные касательные векторы к поверхности M в точке P, а $\xi = (\xi^1, \dots, \xi^k)$ и $\eta = (\eta^1, \dots, \eta^k)$ — их компоненты в этих координатах. Тогда $\xi = \sum_j \xi^i \partial_{u^i}$ и $\eta = \sum_j \eta^j \partial_{u^j}$, где ∂_{u^i} — канонический базис в точке P. Поэтому, с одной стороны,

$$\mathfrak{G}(P)(\xi,\eta) = \langle \xi,\eta \rangle = \langle \sum_{i=1}^k \xi^i \partial_{u^i}, \sum_{i=1}^k \eta^i \partial_{u^j} = \sum_{i,j=1}^k \langle \partial_{u^i}, \sum_{i=1}^k \xi^i \partial_{u^i} \rangle \xi^i \eta^j$$

а с другой

 $\mathfrak{G}(P)(\xi,\eta)=\sum_{i,j=1}^kg_{ij}(P)\xi^i\eta^j$ откуда $g_{ij}=\langle\partial_{u^i},\partial_{u^j}\rangle$, и нам остается воспользоваться видом векторов канонического базиса.

Определение 4.6. Числа $g_{ij}(P)$ называются компонентами индуцированной метрики или компонентами первой фундаментальной формы поверхности M в координатах u^1, \ldots, u^k , а матрица $G(P) = (g_{ij}(P))$ — матрицей первой фундаментальной формы или матрицей индуцированной метрики.

Лемма 4.5

При замене координат $v^i = v^i(u^1, \dots, u^k)$ матрица первой фундаментальной фор-

31

мы поверхности меняется по закону изменения матриц билинейных форм: $G(u)=J^T(\tilde{G}(v(u)))J$, где G - матрица первой фундаментальной формы в координатах $u^1,\ldots,u^k,\,\tilde{G}$ - матрица той же формы в координатах $v^1,\ldots,v^k,\,$ а $J=(\frac{\partial v^i}{\partial u^j})$ — матрица Якоби замены координата.

Если задана первая фундаментальная форма, то для вычисления скалярного произведения касательных векторов, их длин и углов между ними нет необходимости вычислять их координаты в объемлющем пространстве. Достаточно знать их координаты на поверхности. В частности, нам не важен конкретный вид отображения r, задающего поверхность. Иногда, чтобы подчеркнуть этот факт, говорят, что скалярное произведение вычисляется во внутренних терминах, а индуцированную метрику называют внутренней метрикой поверхности, или внутренним скалярным произведением. Здесь слово "внутренний" подчеркивает независимость вычисления скалярных произведений от объемлющего пространства.

Длины и углы

В терминах первой фундаментальной формы легко записываются длины касательных векторов и углы между ними и, как следствие, — длины кривых на поверхности и углы между кривыми.

Лемма 4.6

Пусть $u^1,...,u^k$ — координаты на регулярной поверхности, $g_{ij}(u)$ — компоненты её первой фундаментальной формы в этих координатах, и $(u^1(t),...,u^k(t)),t\in[a,b]$ — координатные функции гладкой кривой γ , лежащей на этой поверхности. Тогда

$$l(\gamma) = \int_a^b ||\dot{\gamma}(t)|| dt = \int_a^b \sqrt{\sum_{i,j} g_{ij} \dot{u}^i(t) \dot{u}^j(t)} dt$$

Определение 4.7. Пусть γ_1 и γ_2 — две кривые на поверхности, пересекающиеся в точке P. Тогда углом между кривыми γ_1 и γ_2 в точке P называется меньший из двух углов между касательными векторами к этим кривым в точке P.

Угол между векторами определяется через скалярное произведение. А именно, если a и b — произвольные векторы, то косинус угла между ними, по определению, равен

$$\frac{\langle a,b\rangle}{||a||\cdot||b||}$$

Лемма 4.7

Пусть P — точка регулярной поверхности, и кривые $\gamma_p, p=1, 2$ лежат на ней и пересекаются в точке P. Пусть u^1, \ldots, u^k — координаты на этой поверхности,

 $g_{ij}(u)$ — компоненты её первой фундаментальной формы в этих координатах, а $u_p^i = u_p^i(t), p = 1, 2$ — координатные функции кривых γ_p . Тогда косинус угла между кривыми γ_p может быть вычислен по формуле

$$\frac{\sum g_{\alpha\beta}(P)\dot{u}_1^\alpha\dot{u}_1^\alpha}{\sqrt{\sum g_{\alpha\beta}(P)\dot{u}_1^\alpha\dot{u}_1^\alpha}\sqrt{\sum g_{\alpha\beta}(P)\dot{u}_2^\alpha\dot{u}_2^\alpha}}$$

Изометрии поверхностей

Общее понятие изометрии как отображения, сохраняющего расстояния относится скорее к метрической геометрии, т.е. к геометрии метрических пространств общего вида. Здесь мы дадим определение и приведем ряд результатов, основанных на дифференциально-геометрическом подходе.

Определение 4.8. Пусть заданы две k-мерные регулярные поверхности M_i , i=1,2. Будем говорить, что поверхности M_1 и M_2 изометричны, если существует гладкое, взаимно-однозначное, регулярное отображение $\psi: M_1 \mapsto M_2$, сохраняющее длины всех переходящих друг в друга гладких кривых.

Лемма 4.8

Гладкое взаимно-однозначное регулярное отображение $\psi: M_1 \mapsto M_2$ задает изометрию регулярных поверхностей M_i , если и только если отображение ψ "сохраняет первую фундаментальную форму" в следующем смысле:

$$G_1 = J^T G_2 J$$
,

где G_i — матрица первой фундаментальной формы поверхности M_i , а J — матрица Якоби отображения ψ в соответствующих координатах.

Доказательство.

Проверим достаточность. Рассмотрим произвольную гладкую кривую γ на поверхности M_1 . Зафиксируем на M_1 некоторые координаты $u^1,...,u^k$, а на M_2 — координаты $v^1,...,v^k$. Пусть $u^i(t)$ — координатные функции кривой γ . Если $v^i(u^1,...,u^k)$ — координатные функции, задающие отображение ψ , то образ кривой γ при отображении ψ имеет вид $v^i(t) = v^i(u^1(t),...,u^k(t))$. Обозначим через g_{ij} элементы матрицы $G_1(u)$ первой фундаментальной формы поверхности M_1 , а через h_{ij} — элементы матрицы $G_2(v)$ первой фундаментальной формы поверхности M_2 в выбранных координатах. Тогда длина кривой γ на M_1 имеет вид

$$l(\gamma) = \int \sqrt{\sum_{ij} g_{ij} \dot{u}^i \dot{u}^j} dt$$

В то же время длина кривой $\psi \circ \gamma$ на M_2 вычисляется как

$$l(\psi \circ \gamma) = \int \sqrt{\sum_{ij} h_{ij} \dot{v}^i \dot{v}^j} dt = \int \sqrt{\sum_{ij} h_{ij} \sum_{\alpha} \frac{\partial v^i}{\partial u^{\alpha}} \dot{u}^{\alpha} \sum_{\beta} \frac{\partial v^j}{\partial u^{\beta}} \dot{u}^{\beta}} dt =$$

$$= \int \sqrt{\sum_{\alpha\beta} (\sum_{ij} h_{ij} \frac{\partial v^i}{\partial u^{\alpha}} \frac{\partial v^j}{\partial u^{\beta}}) \dot{u}^{\alpha} \dot{u}^{\beta}} dt = \int \sqrt{\sum_{\alpha,\beta} g_{\alpha\beta} \dot{u}^{\alpha} \dot{u}^{\beta}} dt = l(\gamma)$$

поскольку

$$\sum_{ij} h_{ij} \frac{\partial v^i}{\partial u^\alpha} \frac{\partial v^j}{\partial u^\beta} = g_{\alpha\beta}$$

по предположению, что и требовалось.

Докажем справедливость обратного утверждения. Пусть ψ — некоторое регулярное взаимно-однозначное отображение из M_1 в M_2 , сохраняющее длины всех кривых. Это означает, что для произвольной кривой γ при сделанных выше обозначениях справедливо приведенное выше интегральное равенство. Из произвольности кривой γ следует совпадение подынтегральных выражений для каждого вектора. Действительно, для вектора $a \in T_P(M)$ достаточно рассмотреть семейство кривых $\gamma_s: [0;s] \mapsto M$, координатные функции которых имеют вид $u^i(t) = u^i_0 + a^i t$, где $(u^1_0, ..., u^k_0)$ — координаты точки P, и a^i — компонент вектора a. Тогда интегральное равенство имеет вид

$$l(\gamma_s) = \int_0^s \sqrt{\sum_{ij} g_{ij} \dot{u}^i \dot{u}^j} dt = l(\psi \circ \gamma_s) = \int_0^s \sqrt{\sum_{ij} h_{ij} \dot{v}^i \dot{v}^j} dt$$

откуда, дифференцируя его по верхнему пределу в s=0, получаем равенство подынтегральных выражений:

$$\sum_{ij} g_{ij} a^i a^j = \sum_{\alpha\beta} \left(\sum_{ij} h_{ij} \frac{\partial v^i}{\partial u^\alpha} \frac{\partial v^j}{\partial u^\beta} \right) a^\alpha a^\beta$$

Далее, из произвольности вектора a вытекает, что $g_{\alpha\beta} = \sum_{ij} h_{ij} \frac{\partial v^i}{\partial u^\alpha} \frac{\partial v^j}{\partial u^\beta}$ в каждой точке поверхности M_1 . Последнее, по определению, означает, что отображение ψ сохраняет первую квадратичную форму. Доказательство закончено.

5. Лекция 5

Поверхности. Вторая фундаментальная форма

В данной лекции мы будем рассматривать гиперповерхности в \mathbb{R}^n . Пусть M — регулярная гиперповерхность в евклидовом пространстве \mathbb{R}^n . Обозначим через (x^1,\ldots,x^n) стандартные координаты \mathbb{R}^n , а через (u^1,\ldots,u^{n-1}) — координаты на поверхности. В каждой точке P на M определен канонический базис ∂_{u^i} касательного пространства T_PM . Поэтому в каждой точке P поверхности однозначно определен единичный вектор N(P), ортогональный всем векторам ∂_u^i и дополняющий систему векторов ∂_{u^i} до положительно ориентированного базиса в \mathbb{R}^n . Другими словами, вектор N(P) однозначно определяется из соотношений $\langle \partial_{u^i}, N(P) \rangle = 0$, $\langle N(P), N(P) \rangle = 1$ и, наконец,

$$det(\partial_{u^1},\ldots,\partial_{u^{n-1}},N(P))>0$$

Так как векторы ∂_{u^i} гладко зависят от точки поверхности, то и вектор N(P) тоже гладко зависит от точки.

Определение 5.1. Вектор N(P) называется (ориентированной) поле нормалью к поверхности M, соответствующей координатам (u^i) . Также будем говорить, что N — это поле ориентированных нормалей, имея ввиду, что вектор N(P) задан в каждой точке $P \in M$.

Лемма 5.1

Предположим, что на поверхности M заданы две системы координат: (u^1, \ldots, u^{n-1}) , (v^1, \ldots, v^{n-1}) , и $v^i = v^i(u^1, \ldots, u^{n-1})$. Тогда векторы ориентированных нормалей в точке P, соответствующие координатам $(u^i)(v^i)$, отличаются на знак определителя матрицы Якоби $(\partial v^i/\partial u^j)$ замены координат.

Доказательство.

Прямая, проходящая через вектор N(P) в точке P, однозначно определяется касательным пространством T_PM и не зависит от выбора базиса в нем.

На регулярной гиперповерхности существуют в точности два ориентированных поля нормалей, которые в каждой точке поверхности противонаправлены.

Пусть M — регулярная гиперповерхность в \mathbb{R}^n и $P \in M$ — некоторая ее точка. Фиксируем одно из двух полей нормалей к поверхности M и обозначим его через N. Пусть $\gamma(t)$ — произвольная кривая, лежащая на M и проходящая через P, $\gamma(t_0) = P$, и $\xi \in T_P M$ — вектор скорости $\dot{\gamma}(t_0)$ кривой $\gamma(t)$ в точке P. Построим функцию $\mathfrak{q}: T_P M \to \mathbb{R}$, положив $\mathfrak{q}(\xi) = \langle \ddot{\gamma}(t_0), N \rangle$.

Лемма 5.2

Пусть на регулярной гиперповерхности M фиксировано поле нормалей N. Функция \mathfrak{q} является квадратичной формой на линейном пространстве T_PM . Если (u^1,\ldots,u^{n-1}) — координаты на M, то матрица квадратичной формы \mathfrak{q} в соответствующем каноническом базисе (∂_{u^i}) имеет вид $q_{ij} = \langle r_{u^i u^j}, N \rangle$.

Доказательство.

Пусть (u^1,\ldots,u^{n-1}) — координаты на поверхности M и $u^i(t)$ — координатные функции кривой γ . Тогда $\xi=(u^1,\ldots,u^{n-1})$ и

$$\ddot{\gamma} = (\sum_{i} \dot{r}_{u^i} \dot{i}) = \sum_{ij} r_{u^i u^j} \dot{u}^i \dot{u}^j + \sum_{i} r_{u^i} \ddot{u}^i,$$

поэтому

$$\mathfrak{q}(\xi) = \langle \ddot{\gamma}, N \rangle = \sum_{ij} \langle r_{u^i u^j}, N \rangle \dot{u}^i \dot{u}^j$$

поскольку $\langle r_{u^i}, N \rangle = 0$. Таким образом, $\mathfrak{q}(\xi)$ зависит лишь от компонент вектора ξ и величин $\langle r_{u^i u^j(P)}, N(P) \rangle$, которые не зависят от вектора ξ , а зависят только от точки P. Более того, при фиксированной P величина $\mathfrak{q}(\xi)$ равна значению квадратичной формы на векторе ξ , где форма эта задана в базисе (∂_{u^i}) матрицей $Q(u) = (\langle r_{u^i u^j(P)}, N(P) \rangle)$.

Лемма 5.3

Пусть $(u^1,\ldots,u^{n-1}),(v^1,\ldots,v^{n-1})$ — две системы координат на регулярной поверхности M. Тогда в каждой точке P матрицы $Q(u)=(\langle r_{u^iu^j(P)},N(P)\rangle)$ и $Q(v)=(\langle r_{v^iv^j(P)},N(P)\rangle)$ связаны между собой по правилу $Q(u)=J^tQ(v)J$, где $J=\frac{(\partial_{v^i})}{(\partial_{u^j})}$ — матрица Якоби замены координат, вычисленная в точке P.

Доказательство.

Величина $\mathfrak{q}(\xi) = \langle \ddot{\gamma}, N \rangle$. не зависит от выбора координат (напомним, что мы зафиксировали поле нормалей N, т.е. рассматриваем только замены координат с положительным якобианом). С другой стороны,

$$q(\xi) = \sum_{ij} \langle r_{v^i v^j}, N \rangle \dot{v}^i \dot{v}^j = \sum_{ij} \langle r_{u^i u^j}, N \rangle \dot{u}^i \dot{u}^j$$

где \dot{u}^i и \dot{v}^i — компоненты одного и того же касательного вектора ξ в координатах u^i и v^i соответственно. Поэтому матрицы Q(u) и Q(v) — суть матрицы одной и той же квадратичной формы в разных базисах. Осталось применить теорему из линейной алгебры об изменении матрицы квадратичной формы.

Определение 5.2. Квадратичная форма \mathfrak{q} на касательном пространстве T_PM называется второй фундаментальной формой, или второй квадратичной формой,

 $zunepnoвepxнocmu\ M\ в\ moчкe\ P\ (no\ omнoшeнию\ \kappa\ нopмaлu\ N).$

Если заменить поле N на N, то вторая фундаментальная форма изменит знак. Вторую фундаментальную форму также часто записывают в дифференциальном виде:

$$dq^2 = \sum_{ij} q_{ij} du^i du^j$$

Геометрический смысл второй формы

Пусть M — регулярная гиперповерхность, ориентированная с помощью поля нормалей N, P — произвольная ее точка, и \mathfrak{q} — вторая фундаментальная форма поверхности. Мы начнем со следующего общего результата.

Теорема 5.1. Пусть γ — произвольная регулярная кривая на M, проходящая через точку P. Обозначим через $\xi \in T_P M$ её вектор скорости в точке P, а через k — ее кривизну. Тогда или k и $\mathfrak{q}(\xi)$ одновременно равны нулю, или кривая γ бирегулярна в точке p и $k \cos \theta = \frac{\mathfrak{q}(\xi)}{\mathfrak{G}(\xi)}$, где θ — угол между главной нормалью кривой γ и нормалью N к поверхности M в точке P (напомним, что вторая фундаментальная форма вычисляется по отношению κ N).

Доказательство.

Рассмотрим первую возможность. Условие k=0 равносильно линейной зависимости векторов $\dot{\gamma}$ и $\ddot{\gamma}$, что, в свою очередь, возможно, если и только если $\ddot{\gamma}$ лежит в касательной плоскости T_PM . Значит, условие k=0 равносильно перпендикулярности векторов $\ddot{\gamma}$ и N, что равносильно условию $\mathfrak{q}(\xi)=0$. В первом случае теорема доказана.

Рассмотрим теперь случай k=0. Покажем сначала, что равенство, которое мы доказываем, не меняется при регулярной замене параметра на кривой . Действительно, левая часть вообще не зависит от параметризации, а вектор скорости кривой при замене растягивается в некоторое число раз. С другой стороны, каждая квадратичная форма — однородная функция степени однородности 2, поэтому $\mathfrak{q}(\lambda\xi)=\lambda^2\mathfrak{q}(\xi)$ и $\mathfrak{G}(\lambda\xi)=\lambda^2\mathfrak{G}(\xi)$ для любых вектора $\xi\in T_PM$ и числа $\lambda=0$. Поэтому

$$\frac{\mathfrak{q}(\xi)}{\mathfrak{G}(\xi)} = \frac{\mathfrak{q}(\lambda \xi)}{\mathfrak{G}(\lambda \xi)}$$

Таким образом, теорему достаточно доказать для натурально параметризованной кривой γ .

Выберем на кривой γ натуральный параметр s, такой, что $\gamma(t_0) = P$, $\dot{\gamma}(s_0) = \xi$, тогда $\ddot{\gamma}(s_0) = k$, $\mathfrak{G}(\xi) = 1$ и $\frac{\mathfrak{q}(\xi)}{\mathfrak{G}(\xi)} = \langle \ddot{\gamma}(s_0), N \rangle = \langle kv, N \rangle = k \langle v, N \rangle = k \cos \theta$, что и требовалось доказать.

Чтобы выяснить геометрический смысл второй фундаментальной формы, рассмотрим на поверхности кривые специального вида.

Пусть $\Pi \in \mathbb{R}^n$ — произвольная, проходящая через $P \in M$ двумерная аффинная плоскость, не лежащая в $T_P M$. Несложно показать, что она пересекает поверхность M около точки P по некоторой регулярной кривой γ .

Определение 5.3. Кривая γ называется плоским сечением, проходящим через P. Если плоскость Π проходит через нормаль N к поверхности M в точке P, то плоское сечение γ называется нормальным. Нам также будет удобно говорить, что сечение γ проведено в направлении вектора $\gamma(\dot{t}_0)$, где t — произвольный параметр на γ , такой, что $\gamma(t_0) = P$.

Лемма 5.4

Пусть $\xi \in T_P M$ — произвольный ненулевой вектор, γ — плоское сечение, проведенное через P в направлении ξ , и Π — плоскость сечения. Фиксируем в плоскости Π некоторый единичный вектор m перпендикулярны ξ и фиксируем ориентацию этой плоскости α помощью базиса α 0. Обозначим через α 0 ориентированную кривизну плоского сечения α 1 в точке α 2. Тогда α 3 сов α 4 = α 4 угол между α 4 и нормалью α 5 к поверхности α 6 в точке α 6.

Доказательство.

Заметим, что знак выражения $k_o \cos \theta$ не зависит от выбора вектора m, поскольку при замене m на -m меняется знак и у ориентированной кривизны, и у $\cos \theta$. Поэтому, если кривая γ бирегулярна в точке P, то достаточно выбрать m = u применить теорему 5.1. Если же кривая не является бирегулярной, то ориентированная кривизна равна нулю, а величина $\mathfrak{q}(\xi)$ равна нулю снова по теореме 5.2.

Лемма 5.5

Значение $\mathfrak{q}(\xi)$ второй фундаментальной формы поверхности М на единичном векторе $\xi \in T_P M$ равно ориентированной кривизне k_o плоского нормального сечения γ , проведенного через P в направлении ξ (плоскость сечения ориентирована с помощью базиса (ξ, N) . В частности, для обычной кривизны плоского нормального сечения выполнено равенство $k = |q(\xi)|$

Определение 5.4. Ориентированной кривизной нормального сечения, проведенного через точку P в направлении $\xi \in T_P M$, (без явного указания ориентации плоскости сечения) будем называть его ориентированную кривизну, соответствующую ориентации плоскости сечения базисом (ξ, N) .

Фиксируем касательный вектор $\xi \in T_P M$ и проведем через него два плоских сечения, одно — нормальное, которое мы обозначим через γ_n , и еще одно, не нор-

мальное, которое обозначим через γ .

Теорема 5.2. Пусть $\xi \in T_P M$ — ненулевой вектор, γ и γ_n — некоторое плоское и плоское нормальное сечения, проведенные через P в одном и том же направлении ξ , а k и k_n — их кривизны. Тогда или одновременно k=0 и $k_n=0$, или $k_n=k\cos\alpha$, где α — угол между главными нормалями κ этим сечениям.

Доказательство.

По следствию Лемме 5.5 из равенства нулю одной из кривизн равносильно равенству нулю величины $\mathfrak{q}(\xi)$, что, в свою очередь, равносильно равенству нулю второй кривизны снова по следствию Лемме 5.5.

Пусть теперь $k \neq 0$. Выберем в качестве нормали N к поверхности в точке P главную нормаль к плоскому нормальному сечению γ_n . По Теореме 5.1

$$k\cos\theta = \frac{\mathfrak{q}(\xi)}{\mathfrak{G}(\xi)} = kn\cos\theta = kn,$$

что и требовалось доказать.

Главные кривизны и главные направления

Пусть, как и выше, P — произвольная точка регулярной гиперповерхности M в \mathbb{R}^n . Тогда, как уже известно, в точке P определены две квадратичные формы: \mathfrak{G} и \mathfrak{q} . Следующая теорема, известная в линейной алгебре как теорема о паре квадратичных форм, позволяет выбрать удобный базис, в котором обе формы имеют простой вид.

Лемма 5.6

Пусть в линейном пространстве \mathbb{R}^n , в котором фиксирован произвольный базис, задано скалярное произведение $\langle \ \dot{} \ , \ \dot{} \ \rangle$ с помощью симметричной невырожденной, положительно определенной матрицы G. Пусть, кроме того, задана квадратичная форма \mathfrak{q} . Тогда в \mathbb{R}^n существует такой базис (e_i) , ортонормальный относительно указанного скалярного произведения, что форма \mathfrak{q} имеет в нем диагональный вид. При этом если Q — это матрица формы \mathfrak{q} в исходном базисе, то базис (e_i) и соответствующие собственные числа формы Q относительно формы G могут быть найдены из следующего характеристического уравнения:

$$det(Q - \lambda G) = 0.$$

Доказательство.

Как известно из линейной алгебры (теорема о собственном базисе квадратичной

формы), в пространстве \mathbb{R}^n существует базис (f_i) , ортонормированный относительно невырожденной, положительно определенной квадратичной формы, задающей скалярное произведение. Пусть A — матрица перехода к этому базису, другими словами, компоненты X произвольного вектора в исходном базисе связаны с его компонентами X_f в базисе (f_i) так: $X_f = AX$. Тогда матрица G_f квадратичной формы \mathfrak{G} , задающей скалярное произведение, связана с матрицей G этой квадратичной формы в исходном базисе: $A^TG_fA = G$. Аналогично, $A^TQ_fA = Q$. Отметим, что, так как базис (f_i) выбран ортонормированным относительно нашего скалярного произведения, матрица G_f — это единичная матрица, т.е. $A^TA = G$.

Теперь воспользуемся теоремой о приведении квадратичной формы q в евклидовом пространстве \mathbb{R}^n к главным осям. В силу этой теоремы форма q имеет ортонормированный собственный базис (e_i) . Отметим, что, так как базис (e_i) ортонормированный, матрица формы \mathfrak{G} в нем по-прежнему единичная. Собственные числа и собственные векторы формы q могут быть найдены, как известно, при решении характеристического уравнения $det(Qf - \lambda E) = 0$. Умножив это уравнение на не равный нулю квадрат определителя матрицы перехода A и внеся матрицу A под знак определителя, получим

$$det A^T det(Q_f - \lambda E) det A = det(A^T Q_f A - \lambda A E A^T) = det(Q - \lambda G).$$

Таким образом, характеристическое уравнение эквивалентно уравнению $det(Q\lambda G) = 0$, что и требовалось доказать.

Определение 5.5. Пусть G и Q — матрицы первой и второй фундаментальных форм регулярной гиперповерхности M в некоторой ее точке P. Корни уравнения $det(Q-\lambda G)=0$ называются главными кривизнами поверхности M в точке P. Если λ_0 — главная кривизна, то векторы из T_PM , соответствующие нетривиальным решениям линейного уравнения $(Q-\lambda_0 G)X=0$, называются главными направлениями поверхности M в точке P.

Если λ_0 — главная кривизна, $det(Q-\lambda_0G)=0$, поэтому уравнение $(Q-\lambda_0G)X=0$ имеет нетривиальные решения.

Главная кривизна λ_i поверхности M в точке P равна ориентированной кривизне нормального сечения поверхности в точке P вдоль соответствующего главного направления.

С помощью главных кривизн и главных направлений можно легко вычислить кривизну любого нормального сечения. Фиксируем в касательном пространстве T_PM к поверхности M в точке P произвольный касательный вектор V единичной длины. Выберем в касательном пространстве T_PM ортонормированный базис, состоящий из векторов главных направлений. Тогда координаты вектора V в этом базисе могут быть записаны в виде

$$V = (\cos \varphi_1, \dots, \cos \varphi_{n1}),$$

где φ_i — угол между вектором V и i-м базисным вектором. Ориентированная кривизна kn(V) нормального сечения поверхности в точке P в направлении V может быть вычислена следующим образом: $k_n(V) = dq^2(V,V) = \sum_i \lambda_i (\cos \varphi_i)^2$.

Особенно полезна эта формула в случае двумерной поверхности в \mathbb{R}^3 . Пусть M^2 — двумерная регулярная поверхность в \mathbb{R}^3 и P — точка из M. Тогда ориентированная кривизна $\mathrm{kn}(\mathrm{V})$ нормального сечения в точке P в направлении $V \in T_P M$ может быть вычислена следующим образом:

$$k_n(V) = \lambda_1(\cos\varphi)^2 + \lambda_2(\sin\varphi)^2$$
,

где $\lambda_1,\ \lambda_2$ — главные кривизны поверхности в точке $M,\ {\rm a}\ \varphi$ — угол между вектором V и главным направлением, соответствующим главной кривизне $\lambda_1.$

Лемма 5.7

Главные кривизны и главные направления двумерной регулярной поверхности в точке P соответствуют наибольшему и наименьшему значениям функции $\lambda_1(\cos\varphi)^2 + \lambda_2(\sin\varphi)^2$, значение которой равно ориентированной кривизне нормального сечения, проведенного в направлении вектора $(\cos\varphi,\sin\varphi)$.

Доказательство.

Производная функции $k_n(\varphi) = \lambda_1(\cos\varphi)^2 + \lambda_2(\sin\varphi)^2$ по φ имеет вид

$$k'_{n}(\varphi) = 2(\lambda_{2} - \lambda_{1})\cos\varphi\sin\varphi = (\lambda_{2} - \lambda_{1})\sin2\varphi$$

поэтому, если $\lambda_1 \neq \lambda_2$, то точки экстремума функции $k(\varphi)$ — это точки вида $\varphi = k\pi$ и $\varphi = \pi/2 + k\pi$, т.е. как раз главные направления. Если же $\lambda_1 = \lambda_2$, то все ориентированные кривизны нормальных сечений одинаковы. Доказательство закончено.

Средняя и гауссова кривизны

Как и в линейной алгебре, иногда бывает полезно исследовать инвариантные функции главных кривизн, а не сами главные кривизны.

Определение 5.6. Сумма главных кривизн поверхности M в точке P называется средней кривизной поверхности M в точке P и обозначается H(P). Произведение главных кривизн называется гауссовой кривизной и обозначается K(P).

Лемма 5.8

Средняя и гауссова кривизны поверхности не зависят от выбора координат на поверхности. При этом, если G и Q — матрицы первой и второй квадратичных форм поверхности в точке P в некотором базисе, то средняя и гауссова кривизны могут быть вычислены следующим образом:

$$H(P) = trace(G^{-1}Q), K(P) = det(G^{-1}Q) = \frac{detQ}{detG}.$$

Доказательство.

Первое утверждение очевидно, так как сами главные кривизны не зависят от выбора параметризации. Второе утверждение тоже очевидно, так как приведенные формулы справедливы в базисе, составленном из главных направлений, а в силу первого утверждения и инвариантности этих формул — и в любом другом базисе.

Знак гауссовой кривизны двумерной поверхности имеет простой геометрический смысл.

Лемма 5.9

Пусть P — произвольная точка двумерной регулярной поверхности $M \subset \mathbb{R}^3$. Если в точке P гауссова кривизна K(P) поверхности M положительна, то достаточно малая окрестность точки P поверхности расположена целиком в одном из двух полупространств, определяемых касательной плоскостью T_PM , рассматриваемой как аффиная плоскость, проходящая через точку P пространства \mathbb{R}^3 . Если же K(P) < 0, то это не так, а именно, любая окрестность точки P пересекается с внутренностью обоих полупространств.

Доказательство.

Действительно, пусть гауссова кривизна K(P) положительна. В двумерном случае это равносильно тому, что обе главных кривизны поверхности M в точке P имеют один и тот же знак, т.е. их главные нормали лежат в одном и том же полупространстве по отношению к касательной плоскости T_PM . Но тогда из формулы Эйлера вытекает, что главная нормаль любого нормального сечения поверхности в точке P определена и расположена в том же полупространстве. Отсюда следует, что в том же полупространстве находятся и сами сечения (в некоторой достаточно малой окрестности). Если же K(P) < 0, то из сказанного выше очевидно, что нормальные сечения вдоль главных направлений лежат в разных полупространствах по отношению к T_PM . Доказательство закончено.

Определение 5.7. Точка двумерной поверхности, в которой K>0, называется точкой выпуклости, или сферической точкой. Точка, в которой K<0, называется седловой.

Следующее важное свойство средней кривизны, объясняет отчасти ее название.

Лемма 5.10

Пусть P — произвольная точка гиперповерхности $M \subset \mathbb{R}^n$ и N — нормаль к M в точке P. Пусть v_1, \ldots, v_{n-1} — произвольный набор попарно ортогональных единичных векторов из T_PM . Обозначим через k_i ориентированную кривизну нормального сечения поверхности M в доль направления v_i . Тогда сумма чисел k_i равна средней кривизне поверхности M в точке P.

Доказательство.

Пусть $A = (a_i^j)$ - матрица, столбцы которой — суть координаты векторов v_i в ортонормированном базисе из главных направлений поверхности M в точке P. Тогда, по определению, матрица A ортогональна. Величина k_i равна

$$\lambda_1(a_i^1) + \dots + \lambda_{n-1}(a_i^{n-1})^2$$
,

поэтому, суммируя все k_i , меняя порядок суммирования и пользуясь тем свойством ортогональной матрицы, что скалярный квадрат любой ее строки равен единице, получаем

$$\sum_{i} k_{i} = \sum_{i} (\sum_{\alpha} \lambda_{\alpha} (a_{i}^{\alpha})^{2}) = \sum_{\alpha} (\lambda_{\alpha} \sum_{i} (a_{i}^{\alpha})^{2}) = \sum_{\alpha} \lambda_{\alpha} 1 = H(P)$$

что и требовалось доказать.

6. Лекция 6

Теорема Лапласа-Пуассона

Рассмотрим малый участок поверхности раздела двух физических сред, в одной из которых давление равно p_1 , а в другой — p_2 (в окрестности поверхности). Представим себе малое возмущение поверхности, при котором каждая точка движется вдоль нормального поля N, направленного, скажем, в сторону второй среды. При этом, если поверхность смещается на , то объем пространства между исходной и возмущений поверхностями равен $\delta N dS$, где dS — элемент площади исходной поверхности. Полная работа δA при таком возмущении складывается из работы по изменению объема, которая есть $(p_2p_1)\delta N dS$ -, и работы поверхностных сил, которая, в свою очередь, есть $\sigma \delta S$. Здесь через δS обозначено изменение площади поверхности, а через σ — коэффициент поверхностного натяжения. Условие термодинамического равновесия записывается так:

$$\delta A = (p_2 - p_1)\delta N dS + \sigma \delta S = 0$$

Вычислим площадь возмущенной поверхности. Рассмотрим пару главных нормальных сечений, проведенных через фиксированную точку P, и пусть $r_i(t_i)$ — их натуральные параметризации. Элемент dS площади невозмущенной поверхности можно записать в виде dt_1 , dt_2 . Рассмотрим возмущения главных сечений в их плоскостях вдоль вектора N(P) нормали к поверхности в этой точке. Эти возмущения имеют вид $r_i + \varepsilon N$. Однако, по определению, вектор нормали N и вектор главной нормали n_i к кривой r_i коллинеарны, поэтому возмущения имеют вид $r_i + \varepsilon s_i n_i$, где $s_i = \langle n_i, N \rangle$. Из плоских формул Френе следует, что элемент длины возмущенной кривой r_i имеет вид $(1+\varepsilon s_i k_i)dt_i$, что в силу следствий 4.25 и 4.32 можно переписать в виде $(1+\varepsilon \lambda_i)dt_i$. Здесь через λ_i обозначена главная кривизна, соответствующая i-му главному направлению. Наконец, элемент площади возмущенной поверхности равен произведению элементов длин возмущенных кривых γ_i (эти кривые ортогональны), поэтому приращение δS площади равно

$$(1 + \varepsilon \lambda_1)(1 + \varepsilon \lambda_2)dt_1dt_2 - dS = ((\lambda_1 + \lambda_2)\varepsilon + o(\varepsilon))dS$$

Подставляя полученный результат в условие термодинамического равновесия, заменяя в нем ε на δN и пренебрегая членами порядка $o(\varepsilon)$, получаем

$$((p_2 - p_1) + \sigma(\lambda_1 + \lambda_2))dS\delta N = 0$$

Отсюда окончательно получаем уравнение Лапласа:

$$\sigma(P)H(P) = p_1 - p_2$$

Итак, доказан следующий результат.

Теорема 6.1. Средняя кривизна поверхности раздела двух равновесных физических сред пропорциональна разности давлений в этих средах вблизи поверхности раздела.

О теореме Бонне

Пусть Ω — область, в точках которой заданы две квадратичные формы g и q, гладко зависящие от точки. Если фиксированы координаты, то можно считать, что просто заданы матрицы G и Q этих форм, гладко зависящие от координат. Предположим, что форма g невырождена и положительно определена. Можно ли задать на Ω параметрическую поверхность r так, чтобы ее первая квадратичная форма совпадала с g, а вторая — q? Оказывается, в общем случае ответ — отрицательный. Дело в том, что первая и вторая формы не являются независимыми. Связь между ними выражается в так называемых условиях Петерсона—Кодацци. Мы поговорим о них в следующей лекции. Бонне удалось показать, что этих условий достаточно для восстановления поверхности.

Теорема 6.2. Пусть на Ω заданы положительно определенная квадратичная форма g и произвольная квадратичная форма q, удовлетворяющие условиям Петерсона-Кодации. Тогда существует единственная (с точностью до движения объемлющего пространства) регулярная поверхность на Ω , такая, что ее первая квадратичная форма совпадает c g, а вторая квадратичная форма — c g.

Деривационные формулы Вейнгартена-Гаусса

Определение 6.1. Гладкое отображение $X: M \to \mathbb{R}^n$ регулярной поверхности M в объемлющее пространство \mathbb{R}^n называется (гладким) векторным полем на M. Если при этом $X(P) \in T_pM$ для всех $P \in M$, то векторное поле X называется касательные векторным полем.

Пусть на регулярной гиперповерхности M с полем нормалей N задано векторное поле X. Если на M фиксированы координаты u^1, \ldots, u^{n-1} , то в каждой точке P вектор X(P) можно разложить по базису, полученному из канонического базиса $(\partial_u{}^i)$ добавлением вектора нормали:

$$X=X^1\partial_u{}^1+\ldots+X^{n-1}\partial_u{}^{n-1}+X^nN.$$

При этом гладкость отображения X равносильна гладкости функций X^i ($u^1,...,u^{n-1}$). Обратно, по набору $X^i(u^1,...,u^{n-1})$, i=1,...,n, гладких функций однозначно восстанавливается векторное поле. Если поле X - касательное, то достаточно (n-1)

Определение 6.2. Функции X^i называются компонентами векторного поля X в координатах u^1, \ldots, u^{n-1} .

Пусть поверхность задана параметрически в виде $r:\Omega\to\mathbb{R}^n$, и на ней фиксированы координаты $u1,\ldots,u^{n-1}$. Напомним, что вектор $\partial_u{}^i$ каноническогобазиса в точке P — это производная $\partial r/\partial u^i$ радиус-вектора поверхности по координате u^i в точке P. Поэтому производная вектора $\partial_u{}^i$ по координате u^j — это вектор, равный второй производной радиус-вектора:

$$\frac{\partial}{\partial u^j}\partial_u{}^i = \frac{\partial^2 r}{\partial u^i \partial u^j}$$

Для краткости будем обозначать дифференцирование по и і нижним индексом і, например $\frac{\partial^2 r}{\partial u^i \partial u^j} = r_{ij}$, а $\partial_u{}^i = r_i$. Как и любой другой вектор, вектор r_{ij} раскладывается по базису объемлющего пространства \mathbb{R}^n , составленного из векторов r_i канонического базиса и вектора N нормали к гиперповерхности. Аналогично, по этому же базису раскладывается производная N_j по u^j вектора нормали. Запишем соответствующие разложения:

$$r_{ij} = \Sigma_{\alpha} \Gamma_{ij}^{\alpha} r_{\alpha} + q_{ij} N, N_j = \Sigma_{\alpha} b_i^{\alpha} r_{\alpha} + c_j N$$

где через Γ^{α}_{ij} , b^{α}_{j} , q_{ij} и с обозначены соответствующие коэффициенты. Коэффициенты ij , b^{j} , q_{ij} и c_{j} выражаются через компонентыпервой и второй фундаментальных форм.

Определение 6.3. Набор величин

$$\Gamma_{ij}^{\alpha} = 1/2\Sigma_{\alpha} \left(g^{k\alpha} \left(\frac{\partial g_{j\alpha}}{\partial u^i} + \frac{\partial g_{\alpha i}}{\partial u^j} - \frac{\partial g_{ij}}{\partial u^\alpha}\right)\right)$$

называется символами Кристоффеля поверхности M в точке P в системе координат (u^1, \ldots, u^{n-1}) .

Лемма 6.3 Для вторых производных радиус-вектора неособой поверхности М имеют место следующие деривационные формулы Гаусса—Вейнгартена:

$$\frac{\partial}{\partial u^i} \partial_u^{\ i} = \sum_{\alpha} \Gamma_{ij}^{\alpha} r_{\alpha} + q_{ij} N$$

где q_{ij} — матрица второй квадратичной формы поверхности, а Γ_{ij}^{α} — символы Кристоффеля поверхности M. Производные нормального векторного поля N на поверхности имеют вид

$$\frac{\partial N}{\partial u^i} = \sum_{\alpha} b_i^{\alpha} \partial_u^{\alpha},$$

где коэффициенты b_i^{α} выражаются через первую и вторую квадратичные формы

поверхности так:

$$b_i^{\alpha} = -\sum_k q_{ik} g^{k\alpha}$$

Теорема Гаусса

Теорема 6.3. Гауссова кривизна двумерной поверхности не меняется при изометрии. Другими словами, двумерные изометричные поверхности имеют в соответствующих точках одинаковую гауссову кривизну.

Доказательство.

Итак, пусть M — регулярная гиперповерхность, заданная параметрически в виде r : $\Omega \to \mathbb{R}^n$, и пусть $u^1,...,u^{n-1}$ — координаты на M. Как и выше, будем обозначать нижним индексом i производную вектора по координате u^i . В этих обозначениях, напомним, вектор канонического репера $\partial_u{}^i$ — это вектор r_i . Тогда, сохраняя обозначения предыдущего пункта и пользуясь леммой 6.4, найдем, что

$$r_{iij} = (r_{ii})_j = (\Sigma_k \Gamma_{ii}^k r_k + q_{ii} N)_j = \Sigma_k \frac{\partial \Gamma_{ii}^k}{\partial u^j} r_k + \Sigma_k \Gamma_{ii}^k (\Sigma_\alpha \Gamma_{kj}^\alpha r_\alpha + q_{kj} N) + \frac{\partial q_{ii}}{\partial u^j} N + q_{ii} \Sigma_\alpha b_j^\alpha r_\alpha = \Sigma_\beta (\frac{\partial \Gamma_{ii}^\beta}{\partial u^j} + \Sigma_k \Gamma_{ii}^k \Sigma_k \Gamma_{kj}^\beta + q_{ii} b_j^\beta) r_\beta + (\Sigma_k \Gamma_{ii}^k q_{kj} + \frac{\partial q_{ii}}{\partial u^j}) N$$

В то же время аналогично

$$r_{iji} = (r_{ij})_i = \sum_{\beta} \left(\frac{\partial \Gamma_{ij}^{\beta}}{\partial u^i} + \sum_k \Gamma_{ij}^k \Gamma_{ki}^{\beta} + q_{ij} b_i^{\beta} \right) r_{\beta} + \left(\sum_k \Gamma_{ij}^k q_{ki} + \frac{\partial q_{ij}}{\partial u^i} \right) N$$

Очевидно, что $r_{iij}=r_{iji}$. Приравняв коэффициенты при r_{β} и воспользовавшисьвыражением для b_i^{β} , получим для любого набора индексов i,j и β следующее равенство:

$$\frac{\partial \Gamma_{ii}^{\beta}}{\partial u^{j}} - \frac{\partial \Gamma_{ij}^{\beta}}{\partial u^{i}} + \Sigma_{k} (\Gamma_{ii}^{k} \Gamma_{kj}^{\beta} - \Gamma_{ij}^{k} \Gamma_{ki}^{\beta}) = q_{ij} b_{i}^{\beta} - q_{ii} b_{j}^{\beta} = \Sigma_{\alpha} (q_{ii} q_{j\alpha} - q_{ij} q_{i\alpha}) g^{\alpha\beta}$$

Умножим последнее равенство на $g_{\beta j}$ и просуммируем по всем β . Поскольку $\Sigma_{\beta} g^{\alpha\beta} g_{\beta j} = \delta^j_{\alpha}$ — символ Кронекера, получим в итоге уравнения Гаусса:

$$\Sigma_{\beta} g_{\beta j} \{ \frac{\partial \Gamma_{ij}^{\beta}}{\partial u^{j}} - \frac{\partial \Gamma_{ij}^{\beta}}{\partial u^{i}} + \Sigma_{k} (\Gamma_{ii}^{k} \Gamma_{kj}^{\beta} - \Gamma_{ij}^{k} \Gamma_{ki}^{\beta}) \} = q_{ii} q_{jj} - q_{ij} q_{ij}.$$

Заметим, что до этого момента мы нигде не пользовались тем, что поверхность M двумерна. Теперь запишем уравнение Гаусса для двумерной поверхности при i=1 и j=2:

$$\Sigma_{\beta} g_{\beta 2} \left\{ \frac{\partial \Gamma_{11}^{\beta}}{\partial u^2} - \frac{\partial \Gamma_{12}^{\beta}}{\partial u^1} + \Sigma_k (\Gamma_{11}^k \Gamma_{k2}^{\beta} - \Gamma_{12}^k \Gamma_{k1}^{\beta}) \right\} = detQ.$$

Здесь Q — матрица второй квадратичной формы. Однако в силу лемма 5.8 гауссова кривизна K равна отношению определителей первой и второй квадратичных форм. Из этого факта и уравнения Гаусса следует, что гауссова кривизна выражается только через элементы первой квадратичной формы. Доказательство закончено. \blacksquare

Лемма 6.4

Никакую окрестность точки на стандартной двумерной сфере невозможно изометрично отобразить на плоскость.

Доказательство.

Действительно, в противном случае их гауссовы кривизны совпадали бы. Однако гауссова кривизна сферы радиуса R равна 1/R2, а гауссова кривизна плоскости равна нулю. Доказательство закончено.

Ковариантная производная касательного векторного поля

Определение 6.4. Ковариантной производной $\nabla_i X$ касательного векторного поля X по координате u^i называется касательное векторное поле, полученное в каждой точке из вектора $\frac{\partial X}{\partial u^i}$ ортогональным проецированием на касательную плоскость:

$$\nabla_i X = (\frac{\partial X}{\partial u^i})^T,$$

где через $(.)^T$ обозначена операция ортогонального проецирования на касательную плоскость. Непосредственно из определения получаем следующее выражение для координат векторного поля $\nabla_i X$

Лемма 6.5

Пусть в окрестности точки P регулярной гиперповерхности M задано касательное векторное поле X, имеющее в координатах $(u^1,...,u^{n-1})$ вид $X=\Sigma_{\alpha}X^{\alpha}\partial u^{\alpha}$. Тогда координаты касательного векторного поля $\nabla_i X$ относительно $(u^1,...,u^{n-1})$ могут быть вычислены следующим образом:

$$(\nabla_i X)^j = \frac{\partial X^j}{\partial u^i} + \Sigma_\alpha \Gamma^j_{i\alpha} X^\alpha,$$

где Γ_{ij}^k — символы Кристоффеля поверхности M.

Лемма 6.6

Если X и Y — произвольные касательные векторные поля на поверхности, то

$$\nabla_i \langle X, Y \rangle = \langle \nabla_i X, Y \rangle + \langle X, \nabla_i Y \rangle.$$

Лемма 6.7

Иногда этот факт формулируют так: ковариантное дифференцирование сохраняет первую фундаментальную форму поверхности, или метрика поверхности ковариантно постоянна.

Доказательство.

Воспользуемся определением ковариантной производной:

$$\frac{\partial X}{\partial u^i} = (\frac{\partial X}{\partial u^i})^T + (\frac{\partial X}{\partial u^i})^N = \nabla_i X + (\frac{\partial X}{\partial u^i})^N$$

где через $(.)^N$ обозначена ортогональная проекция на нормаль к поверхности. Для любого касательного поля Y

$$\langle \frac{\partial X}{\partial u^i}, Y \rangle = \langle \nabla_i X, Y \rangle,$$

так как нормальный вектор $(Z)^N$ перпендикулярен касательному вектору Y для любого исходного вектора Z. Итак,

$$\nabla_i X \langle X, Y \rangle = \frac{\partial \langle X, Y \rangle}{\partial u^i} = \langle \frac{\partial X}{\partial u^i}, Y \rangle + \langle X, \frac{\partial Y}{\partial u^i} \rangle = \langle \nabla_i X, Y \rangle + \langle X, \nabla_i Y \rangle,$$

что и требовалось доказать.

Определение 6.5. Ковариантной производной поля Y вдоль поля X называется касательное векторное поле

$$\nabla_X Y = \Sigma_{\alpha} X^{\alpha} \nabla_{\alpha} Y.$$

Лемма 6.8

Пусть X и Y — касательные векторные поля на регулярной гиперповерхности M с координатами $u^1,...,\ u^{n-1}$. Тогда $\nabla_X Y$ — касательное векторное поле, компоненты которого имеют вид: $(\nabla_X Y)^i = \sum_{\alpha} \frac{\partial Y^i}{\partial u^{\alpha}} X^{\alpha} + \sum_{k\alpha} \Gamma^i_{\alpha k} X^{\alpha} Y^k$.

Доказательство.

В силу определений и леммы 6.5 имеем:

$$\nabla_X Y = \sum_{\alpha} X^{\alpha} \nabla_{\alpha} Y = \sum_{\alpha} (X^{\alpha} \sum_{\beta} (\nabla_{\alpha} Y)^{\beta} r_{\beta}) = \sum_{\alpha, \beta} X^{\alpha} (\frac{\partial Y^{\beta}}{\partial u^{\alpha}} + \sum_{k} \Gamma^{\beta}_{\alpha k} Y^{k}) r_{\beta} = \sum_{\beta} (\sum_{\alpha} \frac{\partial Y^{\beta}}{\partial u^{\alpha}} X^{\alpha} + \sum_{k} \Gamma^{\beta}_{\alpha k} X^{\alpha} Y^{k}) r_{\beta},$$

т.е. мы записали $\nabla_X Y$ в виде линейной комбинации векторов канонического базиса, что и требовалось.

Из лемм 6.3 и 6.8 немедленно получается следующий результат.

Лемма 6.9

Пусть на поверхности M задано три касательных векторных поля X1, X2 и Y. Тогда $\nabla_Y \langle X_1, X_2 \rangle = \langle \nabla_Y X_1, X_2 \rangle + \langle X_1, \nabla_Y X_2 \rangle$.

Определение 6.6. Векторное поле $\nabla_{\dot{\gamma}X}$, заданное в точках кривой $\gamma(t)$ называется производной векторного поля X вдоль кривой γ .

Если $u^1, ..., u^{n-1}$ — регулярные координаты на M и $u^i(t)$ — координатные функции кривой γ , то компоненты поля $\nabla_{\dot{\gamma}X}$ X имеют вид $(\nabla_{\dot{\gamma}X})^k = \frac{d}{dt}X^k + \Sigma_{ip}\Gamma^k_{ip}\dot{u}^iX^p$. В частности, поле $\nabla_{\dot{\gamma}X}$ полностью определяется значениями поля X в точках кривой γ , т.е. ограничением $X|_{\gamma}$ поля X на эту кривую.

7. Лекция 7

Геодезические кривые на поверхности

Пусть M — регулярная гиперповерхность, заданная параметрически в виде r: $\Omega \to \mathbb{R}^n$, и пусть γ — гладкая кривая на M с параметром s. Фиксируем на M какие-нибудь координаты (u^1,\cdots,u^{n-1}) , и пусть $u^i(s),\,i=1,\cdots,n,$ — координатные функции кривой γ . Обозначим через $x^k(u^1,\cdots,u^{n-1})$ координатные функции поверхности M. Как и выше, будем обозначать дифференцирование по u^i нижним индексом i, а по параметру s — точкой. Тогда вектор скорости $\dot{\gamma}$ кривой γ как элемент касательного пространства к поверхности имеет вид

$$\dot{\gamma} = \Sigma_{\alpha} r_{\alpha} \dot{u}^{\alpha}$$
.

Продифференцируем еще раз. Получим следующее выражение для вектора ускорения $\ddot{\gamma}$:

$$\frac{d}{ds}\dot{\gamma} = \sum_{\alpha} \frac{d}{ds} (r_{\alpha}\dot{u}^{\alpha}) = \sum_{\alpha} (\sum_{\beta} r_{\alpha\beta}\dot{u}^{\alpha}\dot{u}^{\beta} + r_{\alpha}\ddot{u}^{\alpha})$$

Перепишем последнее выражение, воспользовавшись деривационными формулами (см. лемма 6.3), и затем переменим порядок суммирования. Получим:

$$\ddot{\gamma} = \Sigma_{\alpha} (\Sigma_{\beta} (\Sigma_{k} \Gamma^{k}_{\alpha\beta} r_{k} + q_{\alpha\beta} N) \dot{u}^{\alpha} \dot{u}^{\beta} + r_{\alpha} \ddot{u}^{\alpha}) = \Sigma_{k} (\Sigma_{\alpha\beta} \Gamma^{k}_{\alpha\beta} \dot{u}^{\alpha} \dot{u}^{\beta} + \ddot{u}^{k}) r_{k} + (\Sigma_{\alpha\beta} q_{\alpha\beta} \dot{u}^{\alpha} \dot{u}^{\beta}) N \cdot (\Sigma_{\alpha\beta} q_{\alpha\beta} \dot{u}^{\alpha}) N \cdot (\Sigma_{\alpha\beta} q_{\alpha\beta} \dot{u}^{\alpha$$

Выполним ряд формальных преобразований. Представив производную по параметру s в виде

$$\frac{d}{ds} = \sum_{\alpha} \dot{u}^{\alpha} \frac{\partial}{\partial u^{\alpha}}$$

можно переписать вторую производную \ddot{u}^k в виде

$$\ddot{u}^k = \Sigma_\alpha \dot{u}^\alpha \frac{\partial \dot{u}^k}{\partial u^\alpha}$$

Тогда в силу леммы 6.8 выражение для вектора ускорения можно представить как

$$\ddot{\gamma} = \nabla_{\dot{\gamma}} \dot{\gamma} + q(\dot{\gamma}, \dot{\gamma}) N,$$

где через q обозначена вторая квадратичная форма поверхности. Итак, доказано следующее утверждение.

Лемма 7.1

Вектор ускорения кривой γ на гиперповерхности в каждой точке раскладывается

51

в сумму касательного вектора $\nabla_{\dot{\gamma}}\dot{\gamma}$ и нормального вектора $q(\dot{\gamma},\dot{\gamma})N$.

Определение 7.1. Параметрическая кривая γ на поверхности M называется геодезической, если в каждой её точке P вектор ускорения $\ddot{\gamma}(P)$ коллинеарен вектору нормали N(P) к поверхности.

Лемма 7.2

Гладкая кривая γ на поверхности M является геодезической, если и только если в каждой точке из γ имеет место равенство

$$\nabla_{\dot{\gamma}}\dot{\gamma}=0$$

Длина вектора скорости геодезической постоянна. Если на поверхности фиксированы координаты (u^1, \cdots, u^{n-1}) , то равенство $\nabla_{\dot{\gamma}} \dot{\gamma} = 0$ эквивалентно следующей системе уравнений:

$$\ddot{u}^k + \Sigma_{\alpha\beta} \Gamma^k_{\alpha\beta} \dot{u}^\alpha \dot{u}^\beta = 0,$$

$$k=1,\cdots,n-1$$

Доказательство.

Из леммы 7.1 немедленно вытекает, что координатные функции геодезической удовлетворяют соотношению $\nabla_{\dot{\gamma}}\dot{\gamma}$. Обратно: если координатныефункции кривой γ с параметром t удовлетворяют этому уравнению, то вектор ускорения $\ddot{\gamma}$ (относительно этого параметра t) коллинеарен нормали к поверхности. Далее, воспользовавшись леммой 6.9, имеем

$$\frac{d}{dt}(\dot{\gamma},\dot{\gamma}) = \nabla_{\dot{\gamma}}(\dot{\gamma},\dot{\gamma}) = 2(\nabla_{\dot{\gamma}}\dot{\gamma},\dot{\gamma}) = 0$$

что и требовалось. Наконец, вид уравнений уже получен нами выше.

Определение 7.2. Уравнения из леммы 7.2 называются уравнениями геодезических на гиперповерхности M.

Пусть теперь γ — натурально параметризованная кривая на поверхности. Напомним, что тогда модуль вектора γ по определению равен кривизнеэтой кривой. Из леммы 7.2 и теоремы Пифагора следует, что кривизна k(P) натурально параметризованной кривой γ в произвольной точке P может быть вычислена следующим образом:

$$k(P) = \sqrt{(\|\nabla_{\dot{\gamma}}\dot{\gamma}\|^2 + (q(\dot{\gamma},\dot{\gamma}))^2)}.$$

Определение 7.3. Для натурально параметризованной кривой γ величину $\|\nabla_{\dot{\gamma}}\dot{\gamma}\|$ обычно обозначают через $k_g(P)$ и называют геодезической кривизной кривой γ в точке P.

Лемма 7.3

Если $F:M_1\to M_2$ — изометрия регулярных поверхностей, то F переводит геодезические в геодезические. Более формально, образ геодезической $\gamma_1\subset M_1$ при изометрии F — это геодезическая на M_2 , и, обратно, кривая γ_2 — геодезическая на M_2 , если и только если она является F — некоторой геодезическойна M_1 .

Доказательство.

Коэффициенты в уравнениях геодезических — это символы Кристоффеля, которые, напомним, вычисляются в терминах первой квадратичной формы поверхности, поэтому сохраняются при изометриях. Утверждение доказано.

Поверхности вращения

В данном разделе приводится несколько простейших примеров геодезических, а также обсуждаются свойства геодезических на поверхностях вращения.

Лемма 7.4

 Γ еодезические на стандартной евклидовой плоскости — это всевозможные прямые линии.

Доказательство.

Пусть \mathbb{R}^2 — стандартная евклидова плоскость с декартовыми координатами (x, y). Напомним, что метрика на \mathbb{R}^2 имеет вид $ds^2=dx^2+dy^2$. Поэтому все символы Кристоффеля тождественно равны нулю, и уравнения геодезических принимают вид

$$\ddot{x} = 0,$$

$$\ddot{y} = 0.$$

Их решения — это всевозможные прямые на плоскости, и только они.

Пусть в евклидовом пространстве \mathbb{R}^3 задана поверхности вращения, параметризация которой имеет выглядит так:

$$x(\varphi, z) = f(z) \cos \varphi,$$

 $y(\varphi, z) = f(z) \sin \varphi,$
 $z(\varphi, z) = z.$

Здесь f(z) — строго положительная гладкая функция. Поскольку канонический базис имеет вид

$$\begin{split} \partial_{\varphi} &= (-f(z)\sin\varphi, f(z)\cos\varphi, 0), \\ \partial_{z} &= (f'(z)\cos\varphi, f'(z)\sin\varphi, 1), \end{split}$$

первая квадратичная форма поверхности вращения записывается как

$$ds^{2} = (f(z))^{2}d\varphi^{2} + (1 + (f'(z))^{2})dz^{2}$$

Вектор нормали к поверхности вращения найдем как нормированное векторное произведение векторов канонического репера. Получим:

$$N = 11 + f'(z)^2(\cos\varphi, \sin\varphi, -f'(z)).$$

Лемма 7.5

Пусть $M \subset \mathbb{R}^3$ — поверхность вращения графика положительной гладкой функции f(z). Тогда каждый меридиан на M является геодезической. Среди параллелей геодезическими являются те и только те, которые соответствуют критическим точкам функции f.

Доказательство.

Начнем с параллелей (координатных линий $z=z_0$). Каждая из них представляет собой окружность, лежащую в плоскости, перпендикулярной оси O_z . Вектор ускорения натурально параметризованной плоской окружности в точке $P=(\varphi,z_0)$ коллинеарен вектору $(\cos\varphi,\sin\varphi,0)$. Этот вектор коллинеарен вектору N(P) нормали к поверхности, если и только если $f'(z_0)=0$. Итак, параллель $z=z_0$ является геодезической, если и только если функция f(z) имеет в z_0 критическую точку. Рассмотрим теперь меридиан (координатную линию $\varphi=\varphi_0$). Он тоже является плоской кривой, лежащей в плоскости, содержащей ось O_z и получающейся при повороте координатной плоскости O_{xz} вокруг O_z на угол φ_0 . Пусть сначала $\varphi_0=0$. Тогда меридиан лежит в плоскости O_{xz} и задается в этой плоскости в виде x-f(z)=0. Поэтому вектор нормали к меридиану в этой плоскости может быть записан, как (1,-f'(z)). Вернувшись обратно в \mathbb{R}^3 , получим вектор (1,0,-f'(z)). Меридиан с произвольным φ_0 получается из рассмотренного поворотом на угол φ_0 вокруг оси O_z .

Таким образом, вектор нормали к меридиану $\varphi = \varphi_0$ в точке $P = (\varphi_0, \mathbf{z})(\cos \varphi, \sin \varphi, -f'(z))$, т.е. коллинеарен вектору N(P), поэтому любой меридиан является геодезической на поверхности вращения.

Запишем уравнения геодезических на поверхности вращения. Для этого удобно перепараметризовать ее, выбрав на графике функции f натуральный параметр. Будем считать, что эта кривая задана, как плоская натурально параметризованная кривая в плоскости O_{xz} в виде x=x(t), z=z(t), где $x(t)\neq 0$. Тогда поверхность вращения можно параметризовать как

$$x(\varphi, t) = x(t) \cos \varphi,$$

$$y(\varphi, t) = x(t) \sin \varphi,$$

$$z(\varphi, t) = z(t)$$

В этой параметризации канонический базис имеет вид

$$\partial_{\varphi} = (-x(t)\sin\varphi, x(t)\cos\varphi, 0),$$

$$\partial_{t} = (x'(t)\cos\varphi, x'(t)\sin\varphi, z'(t)),$$

поэтому первая квадратичная форма выглядит следующим образом:

$$ds^{2} = x(t)^{2} d\varphi^{2} + (x'(t)^{2} + z'(t)^{2}) dt^{2} = x(t)^{2} (d\varphi^{2} + \frac{dt^{2}}{x(t)^{2}})$$

Перейдем к новому параметру $\tau = \tau(t)$, такому, что $d\tau = dt/x(t)$. Окончательно первая квадратичная форма поверхности вращения в параметрах (φ, τ) имеет вид

$$ds^2 = \rho(\tau)^2 (d\varphi^2 + d\tau^2),$$

где $\rho(\tau)=x(t(\tau))$. Отметим, что геометрический смысл функции $\rho(\tau)$ по-прежнему очень прост — это расстояние от точки (φ,τ) поверхности до оси вращения.

Чтобы записать уравнения геодезических на поверхности вращения, нам нужна матрица G первой квадратичной формы и обратная к ней матрица G^{-1} , которые могут быть записаны, как

$$\begin{split} G &= \begin{pmatrix} \rho(\tau)^2 & 0 \\ 0 & \rho(\tau)^2 \end{pmatrix}, \\ G^{-1} &= \begin{pmatrix} 1/\rho(\tau)^2 & 0 \\ 0 & 1/\rho(\tau)^2 \end{pmatrix} \end{split}$$

Выпишем символы Кристоффеля для поверхности вращения. Поскольку матрица G^{-1} диагональна, в выражении для каждого символа Кристоффеля будет лишь одно слагаемое. Положив $u^1=\varphi, u^2=\tau$ и обратив внимание на то, что первая квадратичная форма не зависит от u^1 , получаем:

$$\begin{split} &\Gamma^1_{11} = \tfrac{1}{2}g^{11}(\tfrac{\partial g_{11}}{\partial u^1} + \tfrac{\partial g_{11}}{\partial u^1} - \tfrac{\partial g_{11}}{\partial u^1}) = 0, \\ &\Gamma^1_{12} = \tfrac{1}{2}g^{11}(\tfrac{\partial g_{11}}{\partial u^2} + \tfrac{\partial g_{21}}{\partial u^1} - \tfrac{\partial g_{12}}{\partial u^1}) = \tfrac{2\rho(\tau)\rho'(\tau)}{2\rho(\tau)^2} = \tfrac{\rho'\tau}{\rho(\tau)} = \Gamma^1_{21}, \end{split}$$

$$\Gamma^{1}_{22} = \frac{1}{2}g^{11}(\frac{\partial g_{21}}{\partial u^{2}} + \frac{\partial g_{21}}{\partial u^{2}} - \frac{\partial g_{22}}{\partial u^{1}}) = 0.$$

Точно так же получаем

$$\begin{split} &\Gamma_{11}^2 = \frac{1}{2}g^{22}\big(\frac{\partial g_{12}}{\partial u^1} + \frac{\partial g_{21}}{\partial u^1} - \frac{\partial g_{11}}{\partial u^2}\big) = \frac{-2\rho(\tau)\rho'(\tau)}{2\rho(\tau)^2} = \frac{-\rho'\tau}{\rho(\tau)},\\ &\Gamma_{12}^2 = \frac{1}{2}g^{22}\big(\frac{\partial g_{12}}{\partial u^2} + \frac{\partial g_{22}}{\partial u^1} - \frac{\partial g_{12}}{\partial u^1}\big) = 0 = \Gamma_{21}^2,\\ &\Gamma_{22}^2 = \frac{1}{2}g^{22}\big(\frac{\partial g_{22}}{\partial u^2} + \frac{\partial g_{22}}{\partial u^2} - \frac{\partial g_{22}}{\partial u^2}\big) = \frac{2\rho(\tau)\rho'(\tau)}{2\rho(\tau)^2} = \frac{\rho'\tau}{\rho(\tau)}. \end{split}$$

В итоге уравнения геодезических имеют вид

$$\begin{cases} 0 = \ddot{\varphi} + 2\frac{\rho'(\tau)}{\rho(\tau)}\dot{\varphi}\dot{\tau}, \\ 0 = \ddot{\tau} + \frac{\rho'(\tau)}{\rho(\tau)}(\dot{\tau^2} - \dot{\varphi^2}). \end{cases}$$

Мы используем приведенные выше вычисления для доказательства теоремы Клеро о первом интеграле уравнении геодезической на поверхности вращения

Теорема Клеро

Теорема 7.1. Пусть $\gamma(s)$ — произвольная геодезическая на поверхности, полученной вращением плоской регулярной кривой вокруг прямой, лежащей в той же плоскости, причем ось вращения и кривая не пересекаются. Тогда произведение c(s) расстояния $\rho(\tau)$ от оси вращения до точки $\gamma(s)$ на синус угла α между $\gamma(s)$ и соответствующим меридианом есть величина постоянная вдоль γ :

$$c(s) = \rho(\tau(s)) \sin \alpha(s) = const.$$

Доказательство.

Пусть $\gamma(s) = (\varphi(s), \tau(s))$ — решение уравнения геодезических. Вычислим угол α между геодезической и соответствующим меридианом (φ_0, τ) , с которым геодезическая γ пересекается в точке $\varphi(s_0) = \varphi_0$, $\tau_0 = \tau(s_0)$. Касательный вектор к геодезической имеет вид $\dot{\gamma} = (\dot{\varphi}, \dot{\tau})$, а касательный вектор к меридиану — (0, 1) (здесь точкой обозначена производная по параметру s, а штрихом — по параметру τ). Поэтому

$$\cos \alpha = \frac{\dot{\tau}\rho(\tau)^2}{\sqrt{(\rho(\tau)^2(\dot{\varphi}^2 + \dot{\tau}^2))\sqrt{(\rho(\tau)^2)}}} = \frac{\dot{\tau}}{\sqrt{(\dot{\varphi}^2 + \dot{\tau}^2)}}$$

и соответственно

$$\sin\alpha = \frac{\dot{\varphi}}{\sqrt{(\dot{\varphi}^2 + \dot{\tau}^2)}}$$

(при этом мы учли, что $\rho(\tau) > 0$ по предположению).

Продифференцируем функцию $c(s) = \rho(\tau) \sin \alpha$ по параметру s. Получим:

$$\dot{c}(s) = \frac{d}{ds} \left(\frac{\rho(\tau)\dot{\varphi}}{\sqrt{(\dot{\varphi}^2 + \dot{\tau}^2)}} \right) = \frac{(\rho'\dot{\tau}\dot{\varphi} + \rho\ddot{\varphi})(\dot{\varphi}^2 + \dot{\tau}^2) - \rho\dot{\varphi}(\dot{\varphi}\ddot{\varphi} + \dot{\tau}\ddot{\tau})}{(\dot{\varphi}^2 + \dot{\tau}^2)^{\frac{3}{2}}}$$

Перепишем числитель последнего выражения в виде

$$\rho\dot{\tau^2}(\ddot{\varphi}+2\frac{\rho'}{\rho}\dot{\varphi}\dot{\tau})-\rho\dot{\varphi}\dot{\tau}(\ddot{\tau}+\frac{\rho'}{\rho}(\dot{\tau^2}-\dot{\varphi}^2))$$

Так как выражения в больших скобках равны нулю в силу уравнений геодезических, заключаем, что c(s) = const вдоль произвольной геодезической, что и требовалось.

57

8. Лекция 8

Определение криволинейных координат

Пусть Ω - некоторая область в \mathbb{R}^n и $(x^1,...,x^n)$ - евклидовы координаты в \mathbb{R}^n . Рассмотрим еще один экземпляр \mathbb{R}^n (обозначим его \mathbb{R}^n_1) со стандартными координатами $(y^1,...,y^n)$.

Определение 8.1. Система из n функций $y^i = y^i(x^1,...,x^n), i = 1,...,n$, заданных на Ω , называется непрерывной системой координат, если отображение $\psi : \Omega \mapsto \mathbb{R}^n_1$, заданное в виде

$$\begin{cases} y^1 = y^1(x^1, ..., x^n) \\ ... \\ y^n = y^n(x^1, ..., x^n) \end{cases}$$

является непрерывным и взаимно-однозначным с образом, а обратное к нему отображение ψ^{-1} , заданное системой функций

$$\begin{cases} x^1 = x^1(y^1, ..., y^n) \\ ... \\ x^n = x^n(y^1, ..., y^n) \end{cases}$$

также непрерывно. Набор чисел $(y^1(P),...,y^n(P))$ для произвольной точки $P \in \Omega$ называется криволинейными координатами точки P (по отношению к системе координат, заданной функциями y^i , или, что то же самое, заданной отображением ψ).

Определение 8.2. Если все функции $x^i(y^1,...,y^n)$ — гладкие, то координаты y^i называются гладкими. Для гладкой системы координат определена матрица Якоби J, составленная из частных производных $(\frac{\partial x^i}{\partial y^j})$, и якобиан J, равный определителю матрицы Якоби.

Определение 8.3. Гладкая система координат называется регулярной, если ее якобиан всюду отличен от нуля, иными словами, матрица Якоби всюду невырождена.

Лемма 8.1

В сделанных обозначениях, гладкая система координат является регулярной, если и только если отображение ψ — гладкое. В этом случае матрица Якоби отображения ψ равна J^{-1} .

Пусть $(y_0^1,...,y_0^n)$ — криволинейные координаты некоторой точки $P\in\Omega$. Для каждого i рассмотрим кривую $\delta_i(t)$, определенную для t, близких к y_0^i так:

$$\begin{cases} x^1(t) = x^1(y_0^1,...,y_0^{i-1},t,y_0^{i+1},...,y_0^n) \\ ... \\ x^n(t) = x^n(y_0^1,...,y_0^{i-1},t,y_0^{i+1},...,y_0^n) \end{cases}$$

Аналогично, для фиксированного набора индексов $(i_1, ..., i_k), k < n$, и для t^{i_p} , близких к $y_0^{i_p}$, зададим параметрически k-мерную поверхность:

$$\begin{cases} x^{1}(t^{i_{1}},...,t^{i_{k}}) = x^{1}(y_{0}^{1},...,t^{i_{1}},...,t^{i_{k}},y_{0}^{n}) \\ ... \\ x^{n}(t^{i_{1}},...,t^{i_{k}}) = x^{n}(y_{0}^{1},...,t^{i_{1}},...,t^{i_{k}},y_{0}^{n}) \end{cases}$$

Определение 8.4. Построенная кривая $\delta_i(t)$ называется i-й координатной кривой, проходящей через точку P, а построенные поверхности — k-мерными координатными поверхностями. Если k = n-1, то k-мерные координатные поверхности называются координатными гиперповерхностями.

Лемма 8.2

Координатные кривые и поверхности регулярной системы координат являются регулярными кривыми и регулярными поверхностями соответственно.

Пусть в области Ω заданы две регулярные системы координат, скажем кооринаты $(y^1,...,y^n)$, заданные с помощью отображения ψ , и координаты $(z^1,...,z^n)$, заданные с помощью отображения ξ . Поскольку отображения, задающие эти координаты, взаимно-однозначны, на их образах определены "сквозные" отображения $\psi \circ \xi^{-1}$ и $\xi \circ \psi^{-1}$, которые задаются наборами функций $y^i(z^1,...,z^n)$ и $z^i(y^1,...,y^n)$ соответственно. В силу регулярности координат, определены матрицы Якоби $J(y,z) = \frac{\partial y^i}{\partial z^j}$ и $J(z,y) = \frac{\partial z^i}{\partial y^j}$ этих систем функций.

Определение 8.5. Отображение $\psi \circ \xi^{-1}$ и $\psi \circ \xi^{-1}$ называются заменами координат, а матрицы J(y,z) и J(z,y) - матрицами Якоби этих замен.

Касательное пространство к области

Как мы уже отмечали, область $\Omega \subset \mathbb{R}^n$ можно рассматривать как частный случай регулярной поверхности. Поэтому для нее определены касательные векторы и касательное пространство в каждой её точке.

Определение 8.6. Касательным вектором к области Ω в точке $T_P\Omega$ называется вектор скорости произвольной гладкой кривой, проходящей через P, вычисленный в этой точке. Касательным пространством $T_P\Omega$ в точке P области $\Omega \subset \mathbb{R}^n$ называется множество вычисленных в точке P векторов скоростей всевозможных гладких кривых, проходящих через P, т.е. множество всех касательных векторов к области в этой точке.

Пусть $(x^1,...,x^n)$ — регулярные координаты в $\Omega \subset \mathbb{R}^n$ и $v \in T_P\Omega$ — вектор скорости кривой $(x^1(t),...,x^n(t))$, причем $P=(x^1(t_0),...,x^n(t_0))$. Тогда вектор v в координатах $(x^1,...,x^n)$ имеет вид $(\dot{x}^1(t_0),...,\dot{x}^n(t_0))$.

Определение 8.7. Величины $(\dot{x}^1(t_0),...,\dot{x}^n(t_0))$ называются компонентами касательного вектора v или координатами касательного вектора v в системе координат $x^1,...,x^n$

Пусть снова $(x^1,...,x^n)$ — регулярные координаты в $\Omega \subset \mathbb{R}^n$. Рассмотрим i-ую координатную кривую, проходящую через точку P. Тогда компоненты ее вектора скорости, т.е. компоненты соответствующего касательного вектора из $T_P\Omega$, имеют вид: (0,...,0,1,0,...,0), где единица стоит на i-ом месте.

Определение 8.8. Векторы скоростей координатных линий регулярной системы $x^1, ..., x^n$ координат обозначаются через ∂_{x^i} и называются векторами канонического базиса, соответствующего системе координат $(x^1, ..., x^n)$.

Лемма 8.3

Касательное пространство $T_P\Omega$ представляет собой n-мерное линейное пространство. Если $x^1,...,x^n$ — регулярная система координат в области, то векторы $\partial_{x^i},i=1,...,n$ образуют базис в $T_P\Omega$, и каждый касательный вектор $v\in T_P\Omega$ представляется в виде $v=\sum_i v^i\partial_{x^i}$, где v^i — компоненты вектора v в системе координат $x^1,...,x^n$.

Доказательство. Пусть фиксирована система координат. Тогда каждый касательный вектор задает набор из n чисел — своих компонент, который является элементом арифметического пространства \mathbb{R}^n . С другой стороны, для любого вектора $a=(a^1,...,a^n)$ из арифметического пространства легко найти гладкую кривую в области, проходящую через точку P с вектором скорости a. Действительно, если P имеет координаты $(x_0^1,...,x_0^n)$, то достаточно рассмотреть кривую с координатными функциями $x^i(t)=x_0^i+a^it$, где t меняется в достаточно малой окрестности нуля. Таким образом, множество $T_P\Omega$ отождествляется с арифметическим пространством \mathbb{R}^n , что и превращает его в линейное пространство.

Линейная независимость векторов ∂_{x^i} и формула $v=\sum_i v^i \partial_{x^i}$ тривиально следует из вида векторов ∂_{x^i} .

Лемма 8.4

Пусть $v \in T_P\Omega$ — касательный вектор к области Ω , в которой задано две регулярных системы координат $x^1, ..., x^n$ и $y^1, ..., y^n$. Тогда канонические базисы (∂_{x^i}) и (∂_{y^j}) связаны между собой с помощью матрицы Якоби J(y,x) замены координат y(x), вычисленной в точке P, а именно

$$\partial_{x^i} = \sum_{\alpha=1}^n \frac{\partial y^\alpha}{\partial x^i} \partial_{y^\alpha}$$

или, в матричном виде,

$$(\partial_{x^1},...,\partial_{x^n})=(\partial_{y^1},...,\partial_{y^n})J(y,x)$$

Если $v^1,...,v^n$ и $\tilde{v}^1,...,\tilde{v}^n$ обозначают компоненты вектора v в координатах $x^1,...,x^n$ и $y^1,...,y^n$ соответственно, то

$$\tilde{v}^i = \sum_{\alpha=1}^n \frac{\partial y^i}{\partial x^\alpha} v^\alpha$$

Доказательство.

Начнем с формулы пересчета компонент вектора. Пусть $\gamma(t)$ — такая гладкая кривая в области что $\gamma(t_0)=P$ и $\dot{\gamma}(0)=v$. Если $x^i(t)$ и $y^j(t)$ — координатные функции кривой γ в системах координат $x^1,...,x^n$ и $y^1,...,y^n$, соответственно, то

$$y^{i}(t) = y^{j}(x^{1}(t), ..., x^{n}(t)),$$

где $y^j(x^1,...,x^n)$ — функции замены координат. Тогда, по теореме о дифференцировании сложной функции имеем

$$\tilde{v}^j = \dot{y}^j(t_0) = \sum_{\alpha=1}^n \frac{\partial y^j}{\partial x^\alpha} \dot{x}^\alpha(t_0) = \sum_{\alpha=1}^n \frac{\partial y^j}{\partial x^\alpha} v^\alpha$$

что и требовалось.

Применив полученную формулу к вектору ∂_{x^k} , найдем, что его i-ая компонента в координатах $y^1, ..., y^n$ имеет вид

$$(\partial_{x^k})^i = \frac{\partial y^i}{\partial x^k},$$

откуда

$$\partial_{x^k} = \sum_{\alpha} \frac{\partial y^{\alpha}}{\partial x^k} \partial_{y^{\alpha}}.$$

Евклидова метрика в криволинейных координатах

Для любых двух касательных векторов v и w из $T_P\Omega$ определено их евклидово скалярное произведение $\langle v,w\rangle$ как векторов в \mathbb{R}^n . Тем самым, для каждой точки $P\in\Omega$ определена билинейная форма $g(P):T_P\Omega\times T_P\Omega\mapsto\mathbb{R}$.

61

Определение 8.9. Семейство билинейных форм g(P) называется евклидовой метрикой в области Ω .

Лемма 8.5

Пусть $x^1,...,x^n$ — декартовы координаты в \mathbb{R}^n , а $y^1,...,y^n$ — регулярные координаты в области Ω . Матрица $G=(g_{ij})$ евклидовой метрики в точке P в базисе (∂_{y^i}) имеет вид

$$g_{ij} = \sum_{\alpha=1}^{n} \frac{\partial x^{\alpha}}{\partial y^{i}} \frac{\partial x^{\alpha}}{\partial y^{j}}$$

Если $z^1,...,z^n$ еще одна регулярная система координат в Ω , а $H=(h_{pq})$ — матрица евклидовой метрики в точке P в базисе ∂_{z^j} , то матрицы G и H связаны между собой с помощью матрицы Якоби замены координат так:

$$h_{ij} = \sum_{k,l} \frac{\partial y^k}{\partial z^i} \frac{y^l}{z^j} g_{kl}$$

Доказательство.

Пусть $(\tilde{v}^1,...,\tilde{v}^n)$ и $(\tilde{w}^1,...,\tilde{w}^n)$ — компоненты векторов v и w по отношению к y^i . Выразим скалярное произведение векторов v и w через эти компоненты. Имеем

$$v = \sum_{i} \tilde{v}^{i} \partial_{y^{i}}, w = \sum_{i} \tilde{w}^{i} \partial_{y^{i}}, \langle v, w \rangle = \sum_{i,j} \langle \partial_{y^{i}}, \partial_{y^{j}} \tilde{v}^{i} \tilde{w}^{j}$$

Таким образом, матрица g_{ij} евклидовой метрики в базисе (∂_{y^i}) совпадает с матрицей Грама $\langle \partial_{y^i}, \partial_{y^j} \rangle$ базиса $(\partial_{y^1}, ..., \partial_{y^n})$. Записав векторы ∂_{y^i} в декартовых координатах, получаем

$$g_{ij} = \sum_{k} \frac{\partial x^k}{\partial u^i} \frac{x^k}{u^j}$$

Теперь найдем связь между матрицами H и G. Так как $h_{ij}=\langle \partial_{z^i}, \partial_{z^j} \rangle$, имеем:

$$h_{ij} = \langle \partial_{z^i}, \partial_{z^j} \rangle = \langle \sum_k \frac{\partial y^k}{\partial z^i} \partial_{y^k}, \sum_k \frac{\partial y^l}{\partial z^j} \partial_{y^l} \rangle = \sum_{k,l} \frac{\partial y^k}{\partial z^i} \frac{\partial y^l}{\partial z^j} \langle \partial_{y^k}, \partial_{y^l} \rangle = \sum_{k,l} \frac{\partial y^k}{\partial z^i} \frac{\partial y^l}{\partial z^j} g_{kl}$$

Иными словами, $H = J(y,z)^T G J(y,z)$, где $(\cdot)^T$ обозначает транспонирование матрицы.

Регулярные координаты на поверхности

Понятие регулярных (криволинейных) координат естественным образом переносится на случай регулярных поверхностей.

Определение 8.10. Пусть M — регулярная k-мерная поверхность в \mathbb{R}^n . Регулярное взаимно-однозначное c образом отображение $\psi: M \mapsto \mathbb{R}^k$ называется ре-

гулярными координатами на поверхности М.

Пусть регулярная поверхность M в \mathbb{R}^n , задана параметрически, $r:\Omega\mapsto\mathbb{R}^n$ — параметризующее отображение, и пусть $\varphi:M\mapsto\mathbb{R}^k$ — регулярные координаты на M. Если $u^1,...,u^k$ — евклидовы координаты в $\mathbb{R}^k\supset\Omega$, а $y^1,...,y^k$ — евклидовы координаты в $\mathbb{R}^k\supset\psi(M)$, то возникает набор гладких функций $y^i(u^1,...,u^k), i=1,...,k$, — координатное представление отображения ψ , — причем матрица Якоби $\frac{\partial y^i}{\partial u^j}$ невырождена. Поэтому отображение $\psi\circ r$ задает регулярные координаты на области Ω . Положим $\Omega'=\psi(r(\Omega))$. Ясно, что Ω' — область в \mathbb{R}^k . Отображение $\psi^{-1}:\Omega'\mapsto M\subset\mathbb{R}^n$ задает в \mathbb{R}^n регулярную поверхность $r^{'}:\Omega'\mapsto\mathbb{R}^n$, которая отличается от исходной заменой параметризации. Если $x^1,...,x^n$ — евклидовы координаты в \mathbb{R}^n , координатные функции параметризующего отображения r имеют вид $x^i(u^1,...,u^k)$, а координатные функции отображения ψ имеют вид $y^i(u^1,...,u^k)$, то координатные функции отображения r' имеют вид

$$x^{j}(y^{1},...,y^{k}) = x^{i}(u^{1}(y^{1},...,y^{k}),...,u^{k}(y^{1},...,y^{k}))$$

Стереографические координаты сферы

В качестве примера мы построим удобную систему координат на сфере.

Рассмотрим двумерную сферу радиуса R. Пусть (x,y,z) — стандартные координаты в \mathbb{R}^3 , тогда сфера S^2 задается уравнением $x^2+y^2+z^2=R^2$. Обозначим через N северный полюс сферы S^2 , т.е. точку с координатами (0,0,R), а через S — южный полюс, т.е. точку с координатами (0,0,-R). Пусть Π — координатная плоскость z=0. Зададим отображение

$$\nu: S^2 \ N \mapsto \Pi$$

следующим образом. Для каждой точки $P \in S^2$ N обозначим через P' единственную точку пересечения прямой NP с плоскостью П. Положим $\nu(P) = P'$ Отображение $\nu: S^2$ $N \mapsto \mathbb{R}^2$ задает на сфере систему координат (ниже мы покажем что это — регулярные координаты).

Определение 8.11. Отображение ν называется стереографической проекцией из северного полюса N. Соответствующие координаты на сфере S^2 без северного полюса называются стереографическими.

Лемма 8.5

Пусть P=(x,y,z) и $P^{'}=\nu(P)=(u,v,0)$ — образ точки P при стереографической проекции. Тогда

$$(x = \frac{2R^2u}{u^2+v^2+R^2}, y = \frac{2R^2v}{u^2+v^2+R^2}, z = R\frac{u^2+v^2-R^2}{u^2+v^2+R^2})$$

Доказательство.

Введем в пространстве цилиндрические координаты (r, φ, z) , и пусть $P = (r, \varphi, z)$ и $P' = (\rho, \varphi, 0)$ в этих координатах. Легко убедиться, что r и ρ связаны следующим соотношением: $\rho = \frac{rR}{(R-z)}$, откуда $r^2 = x^2 + y^2 = \frac{(R-z)^2 \rho^2}{R^2}$. Так как $P \in S^2$, то

$$R^2 = x^2 + y^2 + z^2 = \frac{\rho^2}{R^2}(R-z)^2 + z^2$$

Это уравнение описывает точки пересечения прямой NP со сферой. Корень z=R соответствует точке N, поэтому нам нужен другой:

$$R^2 - z^2 = (R - z)(R + z) = \frac{\rho^2}{R^2}(R - z)^2 \to R + z = \frac{\rho^2}{R^2}(R - z) \to R$$

$$\to z = r \frac{\rho^2 - R^2}{\rho^2 + R^2} = R \frac{u^2 + v^2 - R^2}{u^2 + v^2 + R^2}$$

откуда

$$r = \frac{\rho}{R}(R - z) = \frac{2R^2\rho}{\rho^2 + R^2}$$

и, следовательно,

$$x = r\cos(\varphi) = \frac{2R^2\rho\cos(\varphi)}{\rho^2 + R^2} = \frac{2R^2u}{u^2 + v^2 + R^2}$$

$$y = rsin(\varphi) = \frac{2R^2 \rho sin(\varphi)}{\rho^2 + R^2} = \frac{2R^2 v}{u^2 + v^2 + R^2}$$

Лемма 8.5

В полярных координатах (ρ, φ) на плоскости стереографическая проекция выглядит так:

$$(x = \frac{2R^2\rho cos(\varphi)}{\rho^2 + R^2}, y = \frac{2R^2\rho sin(\varphi)}{\rho^2 + R^2}, z = R\frac{\rho^2 - R^2}{\rho^2 + R^2})$$

Если (r, φ, z) — цилиндрическими координатами точки P, то

$$(r = \frac{2R^2\rho}{\rho^2 + R^2}, \varphi = \varphi, z = R\frac{\rho^2 - R^2}{\rho^2 + R^2})$$

Следующий результат получается прямым подсчетом.

Теорема 8.1. Индуцированная метрика $d\sigma^2$ на сфере S^2 радиуса R в стереографических координатах имеет вид

$$d\sigma^2 = \frac{4R^4}{(u^2+v^2+R^2)^2}(du^2+dv^2) = \frac{4R^4}{(\rho^2+R^2)^2(d\rho^2+\rho^2d\varphi^2)}$$

где (u,v) — декартовы, а (
ho, arphi) — полярные координаты в плоскости проекции.

9. Лекция 9

Риманова и псевдориманова метрики

В данной лекции мы обобщим понятия евклидовой и индуцированной метрик. Это позволит нам расширить класс примеров метрик, не заботясь о построении конкретной поверхности и индуцированной метрики на ней.

Пусть M — регулярная k-мерная поверхность в \mathbb{R}^n , $k \leq n$, (напомним, что при k = n мы имеем дело просто с областью в \mathbb{R}^n).

Определение 9.1. Будем говорить, что на поверхности (области) M задана билинейная форма b, если в каждой точке $P \in M$ определена билинейная форма b(P) на касательном пространстве T_PM , т.е., напомним, линейное по каждому аргументу отображение $b(P): T_PM \times T_PM \to R$.

Пусть $u^1 \dots u^k$ — регулярные координаты на поверхности M, на которой задана билинейная форма b. Тогда в каждой точке $P \in M$ определен канонический базис ∂_{u^i} в касательном пространстве $T_P M$, поэтому определена матрица $b_i^j(P)$ билинейной формы b(P), а именно, $b_i^j(P) = b(P)(\partial_{u^i}, \partial_{u^j})$. При этом величины $b_i^j(P) = b_i^j(u^1 \dots u^k)$ естественно рассматривать как функции на параметризующей области.

Определение 9.2. Величины $b_i^j(P)$ называются компонентами билинейной формы b в координатах $u^1 \dots u^k$. Они образуют матрицу $B(P) = (b_i^j(P))$ билинейной формы b в координатах $u^1 \dots u^k$.

Определение 9.3. Билинейная форма на поверхности называется гладкой, если в некоторой системе координат все ее компоненты — гладкие функции от координат.

Лемма 9.1

Пусть $v^i=v^i(u^1\dots u^k)$ — регулярная замена координат на регулярной поверхности M, и b_i^j и $\tilde{b_i^j}$ — компоненты билинейной формы b в системе координат $u^1\dots u^k$ и $v^1\dots v^k$ соответственно. Тогда

$$\tilde{b_i^j} = \sum_{\alpha,\beta=1}^k b_{\alpha\beta} \frac{\partial u}{\partial v^i} \frac{\partial u^\beta}{\partial v^j}.$$

В частности, гладкость билинейной формы не зависит от выбора системы координат, участвующей в определении.

Доказательство.

Действительно, как и в линейной алгебре, формулы преобразования компонент вытекают из формул преобразования векторов базиса:

$$\tilde{b}_{i}^{j} = b(\partial_{v^{i}}, \partial_{v^{j}}) = b(\sum_{\alpha} \frac{\partial u^{\alpha}}{\partial v^{i}} \partial u^{\alpha}, \sum_{\beta} \frac{\partial u^{\beta}}{\partial v^{j}} \partial u^{\beta}) = \sum_{\alpha\beta} \frac{\partial u^{\alpha}}{\partial v^{i}} \frac{\partial u^{\beta}}{\partial v^{j}} b(\partial_{u^{\alpha}}, \partial_{u^{\beta}}) = \sum_{\alpha\beta} \frac{\partial u^{\alpha}}{\partial v^{i}} \frac{\partial u^{\beta}}{\partial v^{j}} b_{\alpha\beta}$$
 что и требовалось.

Лемма 9.2

Пусть на регулярной поверхности М задана билинейная форма b, и пусть $x,y\in T_PM$ — касательные векторы к M в точке P. Пусть $u^1\dots u^k$ — регулярные координаты на M, и x^i,y^i и $b_{ii},1\leq i,j\leq k$ — компоненты векторов x и

$$b(P)(x,y) = \sum_{ij} b_{ij} x^i y^j$$
.

В частности, значение этого выражения не меняется при замене координат

Доказательство.

Доказательство точно такое же, как в линейной алгебре. Разложим векторы x и y по векторам канонического базиса ∂_{u^i} . Получим:

$$b(x,y) = b(\sum_i x^i \partial_{u^i}, \sum_j y^j \partial_{u^j}) = \sum_{i,j} x^i y^j b(\partial_{u^i}, \partial_{u^j}) = \sum_{i,j} b_{ij} x^i y^j$$

что и требовалось.

Определение 9.4. Билинейная форма b на поверхности M называется симметричной (невырожденной, положительно определенной), если в каждой точке $P \in M$ билинейная форма b(P), соответственно, симметрична, невырождена, положительно определена (в смысле линейной алгебры).

Лемма 9.3

Билинейная форма b на поверхности M симметрична (невырожденна, положительно определена), если в некоторой системе координат на поверхности матрица формы b в этих координатах, соответственно, симметрична, невырождена, положительно определена в каждой точке поверхности.

Доказательство.

В заданной системе координат в фиксированной точке утверждение известно из линейной алгебры. Независимость от выбора системы координат следует из Леммы 9.1. Доказательство закончено

Определение 9.5. Невырожденная симметричная билинейная форма на поверхности называется псевдоримановой метрикой, а невырожденная симметричная положительно определенная форма — риманова метрикой.

Псевдоевклидовы пространства

Рассмотрим следующий важный пример. Пусть $\Omega \in \mathbb{R}^n$ — область в \mathbb{R}^n , и $x^1 \dots x^n$ — линейные координаты в \mathbb{R}^n , как в арифметическом линейном пространстве. Рассмотрим в каждой точке области Ω билинейную форму, матрица которой в каноническом базисе ∂_{x^i} диагональна, причем на диагонали стоит s штук 1 и ns штук +1. Другими словами, в дифференциальной записи эта форма имеет вид

$$-\sum_{i=1}^{s} (dx^{i})^{2} + \sum_{i=s+1}^{n} (dx^{i})^{2}$$

Полученная билинейная форма является псевдоевклидовой метрикой.

Определение 9.6. Пространство \mathbb{R}^n на котором задана псевдоевклидова метрика из предыдущего примера, называется псевдоевклидовым пространством индекса s и обозначается через \mathbb{R}^n_s , а координаты $x^1 \dots x^n$ — псевдоевклидовыми. Соответствующая билинейная форма называется псевдоскалярным произведением. Пространство \mathbb{R}^n_1 называется пространством Минковского.

Определение 9.7. Псевдосферой $S_s^{n-1}(R)$ индекса s и радиуса R называется подмножество пространства \mathbb{R}^n_s , заданное уравнением

$$-\sum_{i=1}^{s} (x^{i})^{2} + \sum_{j=s+1}^{n} (x^{j})^{2} = R^{2}$$

Геометрия псевдосферы

Изучим более подробно геометрию псевдосферы $S_1^n(iR)$.

Пусть М — регулярная поверхность в пространстве \mathbb{R}^{n+1}_s , заданная параметрически в виде $r:\Omega\to\mathbb{R}^{n+1}_s$. Точно так же, как и в случае евклидова пространства, заданное в \mathbb{R}^{n+1}_s псевдоевклидово скалярное произведение индуцирует в каждой касательной плоскости T_PM поверхности М симметричную билинейную форму (которая может быть вырожденной).

Определение 9.8. Если эта билинейная форма является римановой метрикой, то поверхность M называется пространственноподобной

Рассмотрим в пространстве \mathbb{R}^{n+1}_1 псевдосферу S^n_1 чисто мнимого радиуса iR. По определению, она задается уравнением

$$-(x^1)^2 + (x^2)^2 + \dots + (x^{n+1})^2 = -R^2.$$

Ясно, что псевдосфера S_1^n состоит из двух компонент, разделенных координатной гиперплоскостью $x^1=0$ (при n=2 это обычный двуполостный гиперболоид). Рассмотрим половинку псевдосферы, заданную неравенством $x^1>0$, и произвольную точку P из этой половинки соединим с точкой $S=(-R,0,\dots,0)$ отрезком SP, см. рис. З Этот отрезок пересекает плоскость $x^1=0$ в некоторой точке, которую обозначим через $\sigma(P)$. Определим отображение $\sigma(P)$, положив $\sigma:P\to\sigma(P)$. Ясно, что отображение σ взаимно-однозначно отображает полусферу $S_1^n(x^1>0)$ на открытый шар радиуса R в плоскости $x^1=0$. Обозначим через $(u^1\dots u^n)$ стандартные координаты в плоскости $x^1=0$ (для точек плоскости $x^1=0$, по определению, положим $x^i=u^{i-1}, i=2,\dots,n+1$).

Рис. 3. Стереографическая проекция псевдосферы

Определение 9.9. Точка $N=(R,0,\ldots,0)$ называется северным полюсом псевдосферы, точка $S=(-R,0,\ldots,0)$ — южным полюсом, а отображение $\sigma:S_1^n(x^1>0)\to\mathbb{R}^n(x^1=0)$ — стереографической проекцией из южного полюса.

Лемма 9.4

Стереографическая проекция взаимно-однозначно отображает половину псевдосферы $S_1^n(x^1>0)$ на открытый шар радиуса R в плоскости $x^1=0$. Во введенных выше обозначениях, если (u^1,\ldots,u^n) - координаты точки $\sigma(P)$ то координаты (x^1,\ldots,x^n+1) точки P могут быть вычислены следующим образом:

$$x^{1} = R \frac{R^{2} + \sum_{i} (u^{i})^{2}}{R^{2} - \sum_{i} (u^{i})^{2}}, \ x^{i+1} = \frac{2R^{2}u^{i}}{R^{2} - \sum_{i} (u^{i})^{2}}, \ i = 1, \dots, n.$$

Доказательство.

Действительно, поскольку треугольники $S\sigma(P)O$ и SPO' подобны (рис. 3), имеют место следующие равенства:

$$\frac{u^i}{x^{i+1}} = \frac{R}{R+x^1}, i = 1, \dots, n$$

Подставляя их в уравнение псевдосферы, получаем квадратное уравнение на x^1 . Решая его и отбрасывая решение $x^1=-R$, соответствующее южному полюсу, находим

$$x^{1} = R \frac{R^{2} + \sum_{i} (u^{i})^{2}}{R^{2} - \sum_{i} (u^{i})^{2}}$$

Подставляя это соотношение в предыдущие, получаем

$$x^{i+1}=rac{2R^2u^i}{R^2-\sum_i(u^i)^2},\ i=1,\dots,n$$
что и требовалось доказать

Определение 9.10. Регулярные координаты $(u^1, dots, u^n)$, заданные стереографической проекцией на полусфере $S_1^n(x^1 > 0)$ называются координатами стереографической проекции.

Из леммы 9.4 с помощью непосредственных вычислений получаем следующее утверждение

Псевдосфера мнимого радиуса iR с центром в начале координат в пространстве Минковского \mathbb{R}^n+1_1 является пространственноподобной поверхностью. Индуцированная на ней риманова метрика в координатах стереографической проекции (соответствующая риманова метрика в шаре радиуса R) имеет вид

$$ds^2 = \frac{4R^2}{(R^2 - \sum_i (u^i)^2)^2} \sum_i (du^i)^2$$

Определение 9.11. Открытый шар радиуса $R\mathbb{R}^n$ с метрикой из предыдущего утверждения называется шаром Пуанкаре (при $n=2-\kappa$ ругом Пуанкаре).

Определение 9.12. Метрики, отличающиеся от евклидовой на функциональный множитель, называются конформно-евклидовыми.

Лемма 9.5

Предположим, что в области $\Omega \in \mathbb{R}^n$ заданы две римановых метрики ds^2 и d^2 , отличающиеся на положительную функцию λ^2 , т.е. $d^2 = \lambda^2 ds^2$. Тогда величины угла

между парой пересекающихся кривых, вычисленные по отношению к обеим этим метрикам, одинаковы.

Доказательство.

Пусть γ и δ — две кривые в Ω , пересекающиеся в точке P под углом α по отношению к ds^2 и под углом β по отношению к d^2 . Обозначим через ξ и η векторы скоростей этих кривых. Тогда

$$\cos\alpha = \tfrac{ds^2(\xi,\eta)}{ds(\xi)ds(\eta)} = \tfrac{\lambda^2 ds^2(\xi,\eta)}{\lambda ds(\xi)\lambda ds(\eta)} = \tfrac{d\sigma^2(\xi,\eta)}{d\sigma(\xi)d\sigma(\eta)} = \cos\beta$$

что и требовалось доказать. Здесь через $ds^2(\xi,\eta)$ и $d\sigma^2(\xi,\eta)$ обозначены скалярные произведения векторов ξ и η по отношению к метрикам ds^2 и $d\sigma^2$ соответственно, а через $ds(\xi)$ и $d\sigma(\xi)$ — длина вектора ξ , вычисленная по отношению к этим метрикам.

10. Лекция 10

Геометрия Лобачевского

Можно ли построить пример геометрии, где выполняются все постулаты, кроме пятого? Ответ на этот вопрос положительный. Геометрия, в которой это так, называется геометрией Лобачевского. Оказывается, чтобы ее получить, надо вместо сферы взять псевдосферу.

Рассмотрим пространство \mathbb{R}^3_1 с псевдоевклидовыми координатами (x,y,z). Псевдосфера мнимого радиуса iR (двуполостный гиперболоид) задается уравнением

$$-x^2 + y^2 + z^2 = -R^2.$$

Обозначим половинку этой псевдосферы, выделенную условием x>0, через $L^2(R)$ и рассмотрим на $L^2(R)$ геометрию, в которой прямые — это пересечения $L^2(R)$ с плоскостями, проходящими через начало координат в \mathbb{R}^3_1 , а движения — преобразования $L^2(R)$, индуцированные преобразованиями пространства \mathbb{R}^3_1 , сохраняющими псевдоскалярное произведение и переводящими $L^2(R)$ в себя.

Определение 10.1. Поверхность $L^2(R)$ называется плоскостью Лобачевского, а определенная на ней геометрия — геометрией Лобачевского, или гиперболической геометрией.

Оказывается, построенная геометрия удовлетворяет всем аксиомам евклидовой геометрии, кроме аксиомы параллельности. Мы докажем только последнее.

Лемма 10.1

Пусть ℓ — произвольная прямая на плоскости Лобачевского $L^2(R)$, и P — произвольная точка из $L^2(R)$, не лежащая на ℓ . Тогда на $L^2(R)$ существует бесконечно много прямых, проходящих через P и не пересекающих ℓ .

Доказательство.

Действительно, пусть ℓ — прямая в $L^2(R)$, порожденная плоскостью L, и $P \in L^2(R)$ — произвольная точка, не лежащая на ℓ . Обозначим через C множество всех векторов из L неотрицательной (псевдоевклидовой) длины. Легко видеть, что это множество не пусто и ограничено пересечением плоскости L с изотропным конусом, поэтому само является невырожденным конусом с центром в начале координат (другими словами, C — это подмножество плоскости, ограниченное парой пересекающихсяв начале координат прямых).

Рассмотрим произвольную прямую m', лежащую в C, и пусть L' — плоскость, проходящая через P и m'. Так как $L \cap L' = m'$ и прямая m' не пересекает $L^2(R)$, то соответствующая плоскости L' прямая ℓ' на $L^2(R)$, проходящая через P, не пересекает прямой ℓ . Из построения видно, что существует бесконечно много таких

прямых ℓ' (так как имеется бесконечно много прямых m' из конуса C), что и требовалось доказать.

Модель Пуанкаре в круге

Для того чтобы представить себе геометрию Лобачевского более наглядно, удобно воспользоваться другими координатами на $L^2(R)$, а именно координатами стереографической проекции.

Обозначим через (x,y,z) — координаты в \mathbb{R}^3_1 , причем будем предполагать, что псевдоскалярное произведение в \mathbb{R}^3_1 имеет вид $ds^2=dx^2+dy^2dz^2$. Рассмотрим стереографическую проекцию плоскости Лобачевского $L^2(R)$ из южного полюса (0,0,R) на координатную плоскость $O_{xy}=\prod$, стандартные координаты на которой обозначим через (u,v). Стереографическая проекция описана в лемме 9.4. Она переводит $L^2(R)$ во внутренность круга $D^2(R)$ радиуса R с центром в начале координат. Метрика на плоскости Лобачевского в координатах стереографической проекции, как было показано в предыдущей лекции, имеет вид

$$ds^{2} = \frac{4R^{4}}{(R^{2} - u^{2} - v^{2})^{2}}((du)^{2} + (dv)^{2}).$$

Определение 10.2. Круг $D^2(R)$ на плоскости с координатами (u,v), на котором задана метрика

$$ds^{2} = \frac{4R^{4}}{(R^{2} - u^{2} - v^{2})^{2}} ((du)^{2} + (dv)^{2}),$$

называется моделью Пуанкаре плоскости Лобачевского в круге или, кратко, кругом Пуанкаре. Окружность, ограничивающая круг $D^2(R)$, называется абсолютом.

Лемма 10.2

Углы между кривыми на плоскости Лобачевского в модели Пуанкаре совпадают с евклидовыми углами, т.е. углами, измеренными в евклидовой метрике.

Доказательство.

Это следует из конформно-евклидовой формы метрики на круге Пуанкаре.

Лемма 10.3

Стереографическая проекция $\sigma: L^2(R) \to \prod$ переводит каждую прямую Лобачевского в дугу окружности, перпендикулярную абсолюту, или в диаметр диска $D^2(R)$.

Доказательство.

Доказательство получается прямым подсчетом.

Дробно-линейные преобразования

При изучении геометрии Лобачевского оказывается очень полезным комплексный язык.

Каждую точку плоскости \mathbb{R}^2 , на которой введены стандартные декартовы координаты (u,v), можно рассматривать как комплексное число z=u+iv, где i — мнимая единица. Также полезна так называемая тригонометрическая форма записи комплексного числа, а именно, если (r,φ) — полярные координаты на \mathbb{R}^2 , то комплексное число z равно $re^{i\varphi}$, где $e^{i\varphi}=\cos\varphi+i\sin\varphi$.

Лемма 10.4

Арифметические операции над комплексными числами и комплексное сопряжение задают преобразования плоскости, являющиеся композициями сдвига, растяжения, осевой симметрии и инверсии относительно единичной окружности с центром в нуле.

Доказательство.

Пусть $c = c_1 + ic_2$ — некоторое фиксированное комплексное число. Преобразование плоскости, ставящее в соответствие каждой точке z точку z + c, т.е. в явном виде

$$z = u + iv \rightarrow z + c = (u + c_1) + i(v + c_2),$$

представляет собой сдвиг плоскости (т.е. параллельный перенос) на вектор c. Далее, напомним, что комплексное число $\bar{z}=u-iv$ называется сопряженным с z=u+iv. Преобразование, ставящее в соответствие каждому числу z число \bar{z} , является осевой симметрией относительно координатной оси O_u .

Пусть теперь $a=r_{\alpha}e^{i\varphi_{\alpha}}$ — некоторое ненулевое комплексное число, записанное в тригонометрической форме. Преобразование, ставящее в соответствие каждому числу $z=re^{i\varphi}$ число αz , имеет вид

$$z = re^{i\varphi} \to \alpha z = rr_{\alpha}e^{i(\varphi + \varphi_{\alpha})},$$

иными словами, полярный радиус точки z увеличивается в r_a раз (растяжение плоскости в r_a раз), а полярный угол φ изменяется на φ_a (поворот плоскости на угол φ_a вокруг начала координат). Таким образом, рассмотренное преобразование есть композиция растяжения и поворота.

Наконец, рассмотрим теперь преобразование, ставящее в соответствие каждой точ-

ке z точку 1/z. В явном виде

$$z = re^{i\varphi} \to \frac{1}{r}e^{-i\varphi},$$

поэтому полярный радиус r меняется на 1/r (при сохранении полярного угла φ это — инверсия относительно стандартной единичной окружности с центром в нуле), а полярный угол меняется с φ на $-\varphi$ (осевая симметрия относительно оси u).

Пополним обычную (комплексную) плоскость $\mathbb{C}=\mathbb{R}^2$, добавив к ней бесконечность ∞ . Для этого рассмотрим стереографическую проекцию ν сферы S^2 из северного полюса N на плоскость \mathbb{C} и отождествим точки из S^2 с их образами на плоскости, а точку N-c бесконечностью. Тем самым, расширенная комплексная плоскость $\mathbb{C}=\mathbb{C}\bigcup\infty$ — это вся сфера S^2 .

Определение 10.3. Расширенной комплексной плоскостью $\bar{\mathbb{C}}$ называется сфера S^2 вместе с описанным только что отождествлением ее точек с комплексными числами.

Пусть a,b,c,d — комплексные числа. Рассмотрим отображение, заданное формулой

$$\Phi: z \to \frac{az+b}{cz+d}.$$

Отметим, что Φ определено на всей плоскости $\mathbb C$, за исключение точки -d/c, в которой знаменатель дроби, стоящей в правой части, обращается в ноль. Кроме того, отображение Φ есть отображение в точку, если и только если ad-bc=0 (в этом случае числитель дроби пропорционален знаменателю), поэтому, так как нас будут интересовать преобразования плоскости, мы будем предполагать, что $ad-bc\neq 0$. Доопределим Φ до отображения расширенной комплексной плоскости на себя, положив $\Phi(-d/c)=\infty, \Phi(\infty)=a/c$.

Определение 10.4. Построенное отображение $\Phi: \bar{\mathbb{C}} \to \bar{\mathbb{C}}$ называется дробнолинейным преобразование плоскости с матрицей $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, которая, в свою очередь, называется матрицей дробно-линейного преобразования Φ .

Лемма 10.5

Каждое дробно-линейное преобразование представимо в одном из двух видов:

$$z \to Az + B$$
 или $z \to \frac{A}{z+B} + C$,

где A, B, C — некоторые комплексные числа. Поэтому каждое дробно-линейное преобразование есть или композиция поворота, растяжения и сдвига (в первом случае), или композиция сдвига, инверсии, осевой симметрии, поворота, растяжения и сдвига (во втором случае).

Доказательство.

Возможны следующие два случая: $c=0c\neq 0$. В первом случае $d\neq 0$ (матрица преобразования невырождена), поэтому

$$\frac{\alpha z + b}{cz + d} = \frac{a}{d}z + \frac{b}{d} = Az + B,$$

т.е. дробно-линейное преобразование есть композиция поворота, растяжения и сдвига. Во втором случае

$$\frac{\alpha z + b}{cz + d} = \frac{\alpha(z + d/c) + b - \alpha d/c}{c(z + d/c)} = \frac{A}{z + B} + C,$$

поэтому рассматриваемое преобразование есть композиция сдвига, инверсии, осевой симметрии, поворота, растяжения и сдвига. Утверждение доказано.

Лемма 10.6

Множество всех дробно-линейных преобразований расширенной комплексной плоскости образует группу относительно операции композиции. В частности, дробно-линейные преобразования — действительно преобразования, т.е. взаимно однозначные отображения расширенной плоскости на себя.

Доказательство.

Рассмотрим композицию $\mu \circ \nu$ двух дробно-линейных преобразований:

$$\mu: z \to \frac{\alpha z + b}{cz + d}$$
 и $\nu: z \to \frac{a'z + b'}{c'z + d'}$.

Имеем:

$$\mu \circ \nu(z) = \frac{a\frac{a'z+b'}{c'z+d'}+b}{c\frac{a'z+b'}{c'z+d'}+d} = \frac{(aa'+bc')z+ab'+bd'}{(ca'+dc')z+cb'+dd'},$$

т.е. эта композиция также является дробно-линейным преобразованием, причем его матрица $M_{\mu \circ \nu}$ совпадает с произведением матриц $M_{\mu} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ и $M_{\nu} = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ преобразований μ и ν , $M_{\mu \circ \nu} = M_{\mu} M_{\nu}$, поэтому невырождена. Ассоциативность композиции имеет место для произвольных отображений и хорошо известна. Тождественное преобразование $z : \to z$, которое, очевидно, является дробно линейным (ему

76

соответствует единичная матрица), представляет собой нейтральный элемент. Наконец, дробно-линейное преобразование с матрицей $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1}$ будет обратным для дробнолинейного преобразования с матрицей $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, поскольку матрица композиции есть произведение матриц. Таким образом, множество дробно линейных преобразований — группа. Из обратимости дробно-линейного преобразования вытекает его взаимно однозначность. Утверждение доказано.

Обозначим через $GL(2,\mathbb{C})$ группу невырожденных комплексных (2×2) -матриц. Рассмотрим отображение ψ из группы $GL(2,\mathbb{C})$ в группу дробнолинейных преобразований:

$$\psi: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \to (z \to \frac{az+b}{cz+d}).$$

Лемма 10.7

Отображение является эпиморфизмом (т.е. сюрьективным гомоморфизмом групп). Группа дробно-линейных преобразований изоморфна группе $GL(2,\mathbb{C})\mathbb{C}^*$.

Доказательство.

Действительно, $\psi(AB) = \psi(A) \circ \psi(B)$ для любых $A, B \in GL(2, \mathbb{C})$. Далее, если M_{μ} — матрица дробно линейного преобразования μ , то $\psi(M_{\mu}) = \mu$, поэтому ψ — сюръекция. Вычислим теперь ядро эпиморфизма ψ . Если $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ задает тождественное дробно-линейное отображение $z \to z$, то $z = \frac{az+b}{cz+d}$, при всех z, откуда $cz^2 + dz = az + b$, $\Rightarrow c = b = 0, a = d$. Итак, ядро отображения ψ состоит из всех диагональных невырожденных матриц вида $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ и изоморфно группе $C^*()$...

Множество комплексных (2×2) - матриц с единичным определителем образует группу, которая, напомним, называется комплексной специальной линейной группой, обозначается через $SL(2,\mathbb{C})$ и является подгруппой в группе $GL(2,\mathbb{C})$. Обозначим через ψ' ограничение отображения ψ , описанного в лемме 10.7 на $SL(2,\mathbb{C})$.

Метрика в комплексном виде

Работая с дробно-линейными (комплексными) преобразованиями плоскости, удобно уметь записывать метрику на ней в комплексной форме. Особенно удобным это оказывается в случае конформно-евклидовых метрик.

Пусть на плоскости со стандартными координатами u, v задана конформно-евклидова

метрика $ds^2 = \lambda(u, v)(du^2 + dv^2)$. Поскольку $z = u + iv\bar{z} = u - iv$, введем в рассмотрение следующие комплексные дифференциалы:

$$dz = du + idv, d\bar{z} = du - idv.$$

Легко сосчитать, что $du^2 + dv^2 = dz d\bar{z}$, поэтому конформно-евклидова метрика $ds^2 = \lambda(u,v)(du^2 + dv^2)$ в комплексном виде выглядит так:

$$ds^2 = \mu(z, \bar{z})dzd\bar{z},$$

где функция $\mu(z,\bar{z})$ получается из $\lambda(u,v)$ подстановкой $u=(z,\bar{z})/2, v=(z-bz)/(2i)$.

Лемма 10.8

Дробно-линейное преобразование сохраняет конформно-евклидов вид метрики. В частности, для конформно-евклидовых метрик дробно-линейные преобразования сохраняют углы между кривыми.

Доказательство.

Пусть $z=rac{a\omega+b}{c\omega+d}$ — дробно-линейное преобразование. Тогда

$$dz = \frac{a(c\omega + d) - c(a\omega + b)}{(c\omega + d)^2} d\omega = \frac{ad - cb}{(c\omega + d)^2} d\omega, \ d\bar{z} = \frac{ad - cb}{(c\bar{\omega} + d)^2} d\bar{\omega},$$

поэтому

$$ds^{2} = \lambda dz d\bar{z} = \lambda \frac{|ad - cb|^{2}}{|c\omega + d|^{4}} d\omega d\bar{\omega},$$

т.е. метрика по-прежнему имеет конформно-евклидов вид, что и требовалось.

Модель в верхней полуплоскости

Мы будем искать изометрии плоскости Лобачевского среди дробно-линейных преобразований. Для этого мы построим еще одну модель плоскости Лобачевского. Выберем на плоскости Лобачевского в модели Пуанкаре в круге новую систему координат. Для этого рассмотрим дробно-линейное преобразование плоскости, заданное в виде

$$\omega = -iR \tfrac{z+iR}{z-iR}.$$

Это дробно-линейное преобразование отображает круг Пуанкаре на верхнюю (открытую) полуплоскость. Чтобы проверить это, выясним сначала, куда перейдет

окружность $S^1 = |z| = R$, т.е. абсолют. Так как дробно-линейные преобразования переводят прямые и окружности в прямые и окружности, то образ каждой окружности однозначно задается образами любых трех ее точек. В качестве таких точек возьмем -R, -iR и R. Имеем:

$$-R \rightarrow -iR\frac{-R+iR}{-R-iR} = -iR\frac{-1+i}{-1-i} = -iR\frac{(-1+i)(-1+i)}{2} = -R,$$

$$-iR \rightarrow 0$$
,

$$R \to -iR\tfrac{R+iR}{R-iR} = -iR\tfrac{1+i}{1-i} = -iR\tfrac{(1+i)(1+i)}{2} = -iR\tfrac{2i}{2} = R,$$

поэтому абсолют переходит в вещественную координатную прямую. Отсюда следует, что внутренность круга $D^2(R)$ при рассматриваемом преобразовании переходит или в верхнюю, или в нижнюю полуплоскость. Но поскольку точка $0 \in D^2(R)$ переходит в точку iR, внутренность $D^2(R)$ переходит именно в верхнюю полуплоскость.

Лемма 10.9

В модели верхней полуплоскости метрика Лобачевского имеет вид

$$ds^2 = R^2 \frac{du^2 + dv^2}{v^2} = -\frac{4R^2 d\omega d\bar{\omega}}{(\omega - \bar{\omega})^2},$$

где $\omega = u + iv$ — соответствующая комплексная координата.

Доказательство.

Доказательство получается прямым подсчетом, аналогичным приведенному в доказательстве леммы 10.8.

Определение 10.5. Верхняя полуплоскость v>0 с метрикой $ds^2=(du^2+dv^2)/v^2$, где u,v-cтандартные координаты на плоскости, называетсямоделью Пуанкаре плоскости Лобачевского в верхней полуплоскости.

11. Лекция 11

Топология и топологическое пространство

Определение 11.1. Пусть X — произвольное множество и $\tau = \{U_{\alpha}\}$ — некоторое семейство подмножеств множества X. Семейство τ называется топологией, если оно удовлетворяет следующим свойствам:

- (1) само пространство X и пустое множество принадлежат τ ;
- (2) объединение любого семейства множеств из принадлежит τ ;
- (3) пересечение любого конечного семейства множеств из также принадлежит τ .

Определение 11.2. Множество X с фиксированной топологией τ называется топологическим пространством и обозначается через (X,τ) . Элементы множества X называются точками. Множества из τ называются открытыми в (X,τ) . Подмножество F топологического пространства называется замкнутым, если его дополнение $X \setminus F$.

Определение 11.3. Окрестностью точки x топологического пространства (X, τ) будем называть произвольное открытое подмножество U, т.е. $U \in \tau$, содержащее x.

Топологическая внутренность и топологическое замыкание

Лемма 11.1

Пусть (X, τ) — топологическое пространство. Множество $A \subset X$ является открытым, если и только если int A = A. Множество $A \subset X$ является замкнутым, если и только если $\bar{A} = A$.

Доказательство.

Каждое открытое множество само является окрестностью каждой своей точки, поэтому совпадает со своей внутренностью. Обратно, если каждая точка множества A является внутренней, то для каждой точки $a \in A$ существует открытое множество $U(a) \subset A$, содержащее a. Возьмем объединение $U =_{a \in A} U(a)$. По определению, $U =_{a \in A} U(a)$

открыто. Кроме того, так как каждое $U(a)\subset U=A$ и, в частности, A — открыто. Кроме того, так как каждое $U(a)\subset A$, то само множество U содержится в A. В то же время $A\subset U$, так как каждая точка $a\in U(a)$. Поэтому U=A и, в частности, A — открыто. Далее, множество A — замкнуто, если и только если $X\backslash A$ открыто. Последнее, как мы только что показали, равносильно тому, что каждая точка из $X\backslash A$ обладает окрестностью, не пересекающейся с A, что, в свою очередь, равносильно включению $\bar{A}\subset A$, т.е. $\bar{A}=A$. Доказательство закончено.

Непрерывные отображения

Определение 11.5. Отображение $f: X \to Y$ топологического пространства (X,τ) в топологическое пространство $(Y,\tau Y)$ называется непрерывным в точке $x_0 \in X$, если для любой окрестности $V(f(x_0)) \in \tau Y$ точки $f(x_0)$ в пространстве Y существует такая окрестность $U(x_0) \in \tau X$ точки x_0 в пространстве X, что $f(U(x_0)) \subset V(f(x_0))$. Отображение f называется непрерывным, если оно непрерывно в каждой точке $x \in X$.

Теорема 11.1. Отображение $f: X \to Y$ непрерывно, если и только если выполнено одно из следующих эквивалентных условий: • прообраз любого открытого множества $A \subset Y$ открыт в X; • прообраз любого замкнутого множества замкнут.

Доказательство.

Пусть сначала f непрерывно. Рассмотрим произвольное открытое множество $A \subset Y$ и обозначим через $f^{-1}(A)$ его прообраз при отображении f. Пусть $x \in f^{-1}(A)$ произвольная точка из прообраза; обозначим через y = f(x) образ точки х при отображении f. Тогда у принадлежит открытому множеству A. Возьмем A в качестве окрестности точки y:V(y)=A. Так как отображение f непрерывно в точке x, то существует окрестность U(x) точки x, такая, что $f(U(x)) \subset V(y) = A$, но тогда U(x)A, и множество f1(A) открыто по лемме 11.1 Обратно, пусть прообраз произвольного открытого подмножества из Y открыт в X. Фиксируем произвольную точку $x \in X$, и пусть, как и выше, y = f(x). Рассмотрим произвольную окрестность V(y) точки Y. По определению, V(y) — открытое множество, значит, $f^{-1}(V(y))$ открытое подмножество в X, причем $x \in f^{-1}(V(y))$. Выберем в качестве окрестности U(x) точки x множество $f^{-1}(V(y))$. Тогда $f(U(x)) \subset V(y)$, поэтому отображение f непрерывно в произвольной точке x, что и требовалось доказать. Для завершения доказательства утверждения осталось показать, что сформулированные в нем условия непрерывности эквивалентны. Это немедленно следует из соотношения $f^{-1}(Y \backslash A) = X \backslash f^{-1}(A)$, справедливого для произвольного множества $A \subset Y$ и отображения f. Доказательство закончено.

Вообще говоря, образ открытого (замкнутого) множества при непрерывном отображении не обязан быть открытым (замкнутым). Приведите соответствующие примеры. Композиция непрерывных отображений непрерывна.

Определение 11.6. Пусть (X_1, τ_1) и (X_2, τ_2) — топологические пространства. Взаимно-однозначное непрерывное отображение $\phi: X_1 \to X_2$ называется гомеоморфизмом пространств X_1X_2 , если обратное отображение также непрерывно. Если существует гомеоморфизм пространств X_1X_2 , то сами пространства называются гомеоморфными. Отображение $\phi: X_1 \to X_2$ называется вложением X_1X_2, X_1 и $\phi(X_1) \subset X_2$. Свойство пространства называется топологическим, если оно сохраняется при гомеоморфизме.

12. Лекция 12

Классы топологических пространств

Среди огромного разнообразия топологических пространств естественно выделить некоторые классы, обладающие специальными топологически инвариантными свойствами. В данной лекции рассматриваются некоторые из таких классов.

Определение 12.1. Топологическое пространство X называется связным, если его нельзя представить в виде объединения двух непересекающихся непустых подмножеств A_1 и A_2 , каждое из которых является открытым в X. Если такое представление возможно, пространство X называется несвязным.

Определение 12.2. Подмножество A топологического пространства X называется связным, если связным является топологическое пространство A c топологией, индуцированной из X.

Лемма 12.1

Отрезок $[a,b] \in \mathbb{R}^1$ — связен.

Доказательство.

Предположим противное, и пусть $[a,b] = A \cup B$, где множества A и B открыты, непусты и не пересекаются. Предположим для определенности, что $a \in A$. Рассмотрим множество всех таких ε , что полуинтервал $[a,a+\varepsilon)$ содержится в A, и пусть ε_0 — точная верхняя грань этого множества. Тогда, так как A — открыто, $\varepsilon_0 > 0$. Поскольку множество A замкнуто, точка $a+\varepsilon_0$ принадлежит A. Но тогда, если только $a+\varepsilon_0 \neq b$, существует открытый интервал $(a+\varepsilon_0\delta,a+\varepsilon_0+\delta)$, целиком лежащий в A, и поэтому полуинтервал $[a,a+(\varepsilon_0+\delta))$ содержится в A, что противоречит выбору δ_0 . Поэтому $a+\varepsilon_0 = b$. Но тогда A = [a,b] и множество B пусто. Полученное противоречие завершает доказательство.

Лемма 12.2

Пусть некоторое топологическое пространство X представлено в виде объединения своих подмножеств X_{α} , каждое из которых связно. Предположим, что пересечение $\bigcap_{\alpha} X_{\alpha}$ непусто. Тогда пространство X связно

Доказательство.

Предположим противное, т.е. $X = A \cup B$, где A и B — открыты, непусты, причем $A \cap B = \emptyset$. Тогда каждое X_{α} можно представить в виде $X_{\alpha} = (X_{\alpha} \cap A) \cup (X_{\alpha} \cap B)$. Однако, так как по условию X_{α} связно, то или $X_{\alpha} \cap A = \emptyset$, или $X_{\alpha} \cap B = \emptyset$, т.е. каждое из X_{α} целиком лежит или в A, или в B. В то же время, так как A и B не пусты, существуют $X_{\alpha_0} \subset A$ и $X_{\alpha_1} \subset B$. Однако $A \cap B = \emptyset$, поэтому и $X_{\alpha_0} \cap X_{\alpha_1} = \emptyset$, что противоречит условию. Утверждение доказано.

Определение 12.3. Максимальное по включению связное подпространство пространства X называется его связной компонентой или компонентой связности.

Лемма 12.3

Предположим, что в топологическом пространстве X для каждой пары его различных точек (x,y) найдется связное подмножество C_{xy} , содержащее x и y. Тогда пространство X связно.

Доказательство.

В самом деле, если образ Y = f(X) связного множества X при непрерывном отображении f несвязен, то, по определению, $Y = A \cup B$, где A и B — открыты, непусты и не пересекаются. Но тогда $X = f^{-1}(A) \cup f^{-1}(B)$, причем множества $f^{-1}(A)$ и $f^{-1}(B)$ непусты, открыты и не пересекаются, т.е. X несвязно. Полученное противоречие и завершает доказательство.

Связность топологического пространства — топологический инвариант, т.е. сохраняется при гомеоморфизмах.

Лемма 12.4

Непрерывная функция, заданная на связном топологическом пространстве X, принимает все промежуточные значения.

Доказательство.

Действительно, если, скажем, значение y_0 не принимается непрерывной функцией $f: X \to \mathbb{R}$, но принимаются некоторые значения больше и меньше y_0 , то образ f(X) распадается в объединение двух открытых, непустых, непересекающихся подмножеств $f(X) \cap (y_0, \infty)$ и $f(X) \cap (-\infty, y_0)$. Последнее противоречит Лемме 12.3. Лемма доказана

Линейно связное топологическое пространство

Определение 12.4. Топологическое пространство X называется линейно связным, если любые две точки из X можно соединить непрерывной кривой, т.е. для любых x и y из X существует непрерывное отображение $\gamma:[0,1]\to X$, такое, что $\gamma(0)=x$ и $\gamma(1)=y$.

Аксиомы отделимости

Определение 12.5. Две различные точки топологического пространства X называются отделимыми, если у них существуют непересекающиеся окрестности.

Более общо, два произвольных подмножества A_1 и A_2 топологического пространства называются отделимыми, если у них существуют непересекающиеся окрестности, т.е. непересекающиеся открытые множества U_1 и U_2 , такие, что $A_i \in U_i$, i = 1, 2.

Определение 12.6. Топологическое пространство X называется хаусдорфовым, если любые его две различные точки отделимы.

Пусть X — произвольное бесконечное множество. Зададим на X топологию, объявив замкнутыми все возможные конечные подмножества из X и само множество X. Полученная топология называется топологией Зарисского.

Лемма 12.5

Каждая точка хаусдорфова пространства является его замкнутым подмножеством.

Доказательство.

Пусть X — хаусдорфово топологическое пространство и х — произвольная точка из X. Так как любая точка $y \in X \setminus x$ отделима от x, т.е. существует открытое множество U_y , содержащее y и не содержащее x, то множество $X \setminus x$ представимо в виде $\bigcup_{y \neq x} U_y$ и поэтому открыто в X. Следовательно, x — замкнуто. Доказательство закончено.

Определение 12.7. Топологическое пространство называется нормальным, если оно хаусдорфово, и, более того, любые его два непересекающихся замкнутых подмножества отделимы.

Лемма 12.6

Каждое метрическое пространство нормально.

Доказательство.

Пусть (X,ρ) — метрическое пространство. Покажем сначала, что топологическое пространство (X,τ_ρ) , где $\tau_\rho)$ — соответствующая метрическая топология, хаусдорфово. Действительно, для произвольных различных точек x и y пространства X рассмотрим открытые шары $O_\varepsilon(x)O_\varepsilon(y)$, где $\varepsilon=\rho(x,y)/3$. Из неравенства треугольника следует, что эти шары не пересекаются, что и доказывает хаусдорфовость пространства X.

Пусть теперь A_1 , A_2 — два произвольных непересекающихся замкнутых подмножества в X. Для каждой точки x из множества A_1 выберем число $\varepsilon(x)>0$, положив $\varepsilon(x)=(1/3)\rho(x,A_2)$. Аналогично для каждой точки y из A_2 определим число $\varepsilon'(y)=(1/3)\rho(y,A_1)$. Построим открытые множества U_1 и U_2 , положив

 $U_1 = \bigcup_{x \in A_1} O_{\varepsilon(x)}, \ U_2 = \bigcup_{y \in A_2} O_{\varepsilon'(y)}(y)$

Очевидно, $U_i \supset A_i, \ i=1,2$. Покажем, что U_1 и U_2 не пересекаются. Действительно, пусть существует $z \in U_1 \cap U_2$. Тогда имеются такие $x \in A_1$ и $y \in A_2$, что $z \in O_{\varepsilon(x)}(x)$ и $z \in O_{\varepsilon'(y)}(y)$ Но тогда $\rho(z,x) < (1/3)\rho(x,A_2) \leq (1/3)\rho(x,y)$, $\rho(z,y) < (1/3)\rho(y,A_1) \leq (1/3)\rho(y,x)$. Складывая последние два неравенства, получаем $\rho(y,z) + \rho(z,x) < (2/3)\rho(y,x)$, что противоречит неравенству треугольника. Утверждение доказано.

Компактность

Определение 12.8. Система открытых множеств $\{U_{\alpha}\}$ топологического пространства X называется открытым покрытием пространства X, если $\cup_{\alpha} U_{\alpha} = X$.

Определение 12.9. Топологическое пространство называется компактным или компактом, если всякое его открытое покрытие $\{U_{\alpha}\}$ содержит конечное покрытие $\{U_{\alpha i}\}_{i=1}^{N}$ этого пространства. Подмножество Y топологического пространства называется компактным, если подпространство Y — компактное пространство.

Лемма 12.7

Замкнутое подмножество компактного топологического пространства компактно.

Доказательство.

Действительно, пусть $\{V_{\alpha}\}$ — произвольное открытое покрытие замкнутого подмножества A компактного топологического пространства X. Тогда каждое V_{α} — это пересечение некоторого открытого в X множества U_{α} со множеством A. Набор открытых множеств $U_{\alpha} \cup X \setminus A$ образует открытое покрытие пространства X, из которого можно выбрать конечное подпокрытие $U_{\alpha k} \cup X \setminus A$. Но тогда конечная система множеств $V_{\alpha k}$ образует конечное подпокрытие множества A. Утверждение доказано.

Лемма 12.8

Каждое хаусдорфово компактное топологическое пространство нормально.

Доказательство.

Пусть X — хаусдорфово компактное пространство, A — произвольное замкнутое подмножество в X и x — точка из X, не лежащая в A. Покажем, что x и A отделимы в X. Действительно, в силу хаусдорфовости пространства X, для каждой точки $a \in A$ существуют окрестности U(a) точки a и V(x,a) точки x (вообще говоря, зависящая от x), такие, что x0 y1 семейство y2. Семейство y3 образует открытое

покрытие множества A, в котором, в силу Леммѕ 12.7, можно выбрать конечное подпокрытие $U(a_k)_{k=1}^N$. Поэтому окрестность $\bigcap_{k=1}^N V(x,a_k)$ точки x определена и не пересекается с содержащим A открытым множеством $\bigcup_{k=1}^N U(a_k)$.

Рассмотрим теперь два произвольных непересекающихся замкнутых множества A_1 и A_2 в компактном пространстве X. Как мы только что доказали, для любой точки $a \in A_1$ существуют открытая окрестность U(a) точки a и содержащее множество A_2 открытое множество V_a , такие, что $U(a) \cap V_a = \emptyset$. Семейство U(a) образует открытое покрытие замкнутого множества A_1 , в котором, в силу Леммы 12.7, можно выделить конечное подпокрытие $U(a_k)_{k=1}^N$. Поэтому определено открытое множество $\bigcap_{k=1}^N V_{a_k}$, содержащее множество A_2 и не пересекающееся с содержащим множество A_1 открытым множеством $\bigcup_{k=1}^N U(a_k)$. Утверждение доказано. Вообще говоря, компактное подпространство топологического пространства не является замкнутым.

Лемма 12.9

Пусть A — компактное подпространство в хаусдорфовом пространстве X. Тогда A — замкнуто.

Доказательство.

Рассмотрим произвольную точку x из $X \setminus A$. Достаточно показать, что x не является точкой прикосновения для A. В силу хаусдорфовости пространства X, для каждой точки a из A существуют окрестности U(a) точки a и V(x,a) точки x, такие, что $U(a) \cap V(x,a) = \emptyset$. Семейство $\{U(a)\}$ образует открытое покрытие компакта A, поэтому в нем можно выделить конечное подпокрытие $\{U(a_k)\}_{k=1}^N$. Следовательно, определена открытая окрестность $\bigcap_{k=1}^N V(x,a_k)$ точки x, которая не пересекается со множеством A, т.е. $x \notin \bar{A}$. Утверждение доказано.

Лемма 12.10

Пусть $f:X\to Y$ — непрерывное отображение компактного топологического пространства X в произвольное топологическое пространство Y . Тогда образ f(X) компактен в Y

Доказательство.

Действительно, рассмотрим произвольное открытое покрытие $\{U_{\alpha}\}$ множества f(X). Тогда система множеств $\{f^{1(U_{\alpha})}\}$ образует открытое покрытие пространства X. В силу компактности X в ней можно выделить конечное подпокрытие, образ которого и даст искомое конечное покрытие для f(X). Доказательство закончено.

Лемма 12.11

Функция, непрерывная на компактном топологическом пространстве X, ограничена и принимает наибольшее и наименьшее значения.

Доказательство.

В силу утверждения Леммы 12.10 образ f(X) функции f компактен, а в силу утверждения Леммы 12.9 — замкнут. Если бы образ f(X) не был бы ограничен, то система открытых интервалов $U_n = (n,n)$ покрывала бы f(X), но не содержала бы конечного подпокрытия, поэтому множество f(X) ограничено. Далее, очевидно, что точки $\sup_{x \in X} f(x)$ и $\inf_{x \in X} f(x)$ являются точками прикосновения замкнутого множества f(X) и поэтому принадлежат f(X). Утверждение доказано

Лемма 12.12

Непрерывное взаимно-однозначное отображение f компактного пространства X в хаусдорфово пространство Y является гомеоморфизмом.

Доказательство.

Достаточно показать непрерывность обратного отображения, что, в силу теоремы 11.1, равносильно замкнутости прообраза произвольного замкнутого подмножества $F \subset X$ при отображении f^1 , т.е. замкнутости $f(F) \subset Y$. Но замкнутое подмножество компакта — компакт (см. лемму 12.7). Далее, образ компакта F при непрерывном отображении f — тоже компакт (см. лемму 12.10). Наконец, компактное подмножество f(F) хаусдорфова пространства Y замкнуто в силу леммы 12.9. Доказательство закончено.

13. Лекция 13

Топологические многообразия

Определение 13.1. Атласом размерности n на топологическом пространстве X называется семейство $\mathcal{A}=(\mathcal{U}_{\alpha},\phi_{\alpha})$, где $\{U_{\alpha}\}$ — покрытие пространства X его открытыми связными подмножествами, каждое из которых гомеоморфно некоторой области V_{α} в \mathbb{R}^{n} , а $\phi_{\alpha}:U_{\alpha}\to V_{\alpha}$ — соответствующие гомеоморфизмы. Пара (U,ϕ_{α}) называется картой, гомеоморфизм $\phi_{\alpha}lpha^{-}.R^{n}$ фиксированы некоторые координаты, то говорят, что карта $(U_{\alpha},\phi_{\alpha})$ задает в окрестности U_{α} координаты, сопоставляя каждой точке $P\in U_{\alpha}$ координаты вектора $\phi_{\alpha}(P)\in\mathbb{R}^{n}$. Если $U\cap U_{\beta}$ непусто, то возникает гомеоморфизм

$$\phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \subset \mathbb{R}^n \to \phi_{\beta}(U_{\alpha} \cap U_{\beta}) \subset \mathbb{R}^n,$$

который называется отображением склейки, или функцией перехода (от одной карты к другой или от одних координат к другим).

Определение 13.2. Хаусдорфово топологическое пространство называется топологическим многообразием размерности n, если на нем существует не более чем счетный атлас размерности n.

Функции и отображения

Определение 13.3. Функцию $\tilde{f}(x^1,...,x^n)$ будем называть координатным представлением функции f в карте (U,ϕ) , или координатным представлением функции f в координатах $(x^1,...,x^n)$. При этом часто, допуская некоторую вольность речи, будем отождествлять разные функции f и f и записывать координатное представление \tilde{f} функции f в виде $f(x^1,...,x^n)$.

Определение 13.4. Отображение называется координатным представлением отображения F в картах (U, ϕ) и (W, ξ) , или координатным представлением отображения F в координатах $(x^1, ..., x^m)$ и $(y^1, ..., y^n)$. При этом часто, допуская некоторую вольность речи, будем отождествлять разные отображения F и \tilde{F} и записывать координатное представление \tilde{F} отображения F как $F^i(x^1, ..., x^m)$.

Пусть M — гладкое многообразие (напомним, на M, по определению, фиксирован некоторый гладкий атлас \mathcal{A}) и $f: M \to \mathbb{R}^1$ — непрерывная функция на M.

Определение 13.5. Функция f называется гладкой в точке $P \in M$, если для некоторой карты $(U,\phi) \in A$, такой, что $P \in U$, координатное представление функции f является гладким в точке $\phi(P)$. Функция f называется гладкой на многообразии M, если она гладкая во всех точках многообразия M.

Далее, пусть M и N — два гладких многообразия и $F: M \to N$ — непрерывное отображение из M в N.

Определение 13.6. Отображение F называется гладким в точке $P \in M$, если для некоторых карт (U,ϕ) на M и (W,ξ) на N, таких, что $P \in U$ и $F(U) \subset W$ (напомним, что такие карты существуют для любой точки $P \in M$), соответствующее координатное представление отображения F является гладким в точке $\phi(P)$. Отображение F называется гладким, если оно является гладким в каждой точке $P \in M$.

Лемма 13.1

Определения гладкой функции и гладкого отображения зависят только от гладких структур рассматриваемых гладких многообразий и не зависят от выбора координат (в фиксированных гладких структурах).

Доказательство.

Действительно, если (U,ϕ) и (U',ϕ') — две карты на M, содержащие точку P, и f — непрерывная функция на M, то координатные представления $f \circ \phi^{-1} f \circ (\phi')^{-1}$ функции f в этих разных картах одновременно являются гладкими в точках $\phi(P)$ и $\phi'(P)$ соответственно, поскольку отличаются друг от друга на гладкую функцию перехода $\phi' \circ \phi^{-1}$. Аналогично, если $F: M \to N$ — гладкое отображение гладких многообразий, то при заменах координат в окрестности точки $P \in M$ и точки $F(P) \in N$ координатные представления функции F отличаются на гладкие функции перехода.

Пусть $F:M^m\to N^n$ — гладкое отображение гладких многообразий, P— произвольная точка из M и Q=F(P). Рассмотрим координатное представление функции F в координатах $(x^1,...,x^m)$ в окрестности P M и $(y^1,...,y^n)$ в окрестности Q, которое запишем в виде

$$y^i = f^i(x^1,...,x^m), i = 1,...,n.$$

Тогда определена матрица Якоби этого координатного представления, т.е. матрица

$$J(P) = (\frac{\partial y^i}{\partial x^j}(P)).$$

Определение 13.7. Матрица J(P), построенная выше, называется матрицей Якоби отображения F в точке P в координатах $(x^1,...,x^m)$ и $(y^1,...,y^n)$.

Определение 13.8. Пусть F — гомеоморфизм гладкого многообразия M в гладкое многообразие N. Если отображение F является гладким u, более того, обратное отображение F^{-1} также является гладким, то отображение F называется

диффеоморфизмом. Если существует диффеоморфизм M в N, то говорят, что многообразия M и N диффеоморфны.

Отношение диффеоморфности является отношением эквивалентности на классе гладких многообразий, и мы, как правило, не будем различать диффеоморфные многообразия. Свойства многообразий, сохраняющиеся при диффеоморфизмах, называются дифференциальными инвариантами. Такие свойства являются важными характеристиками многообразий. Одним из таких инвариантов является размерность многообразия.

Теорема 13.1. Если гладкие многообразия M и N диффеоморфны, то их размерности совпадают.

Доказательство.

Пусть $F:M\to N$ — диффеоморфизм. Обозначим через m и n размерности многообразий MN соответственно. Фиксируем произвольную точку P на многообразии M, обозначим через Q ее образ при отображении F и рассмотрим координатные представления отображений F и F^{-1} в координатах $(x^1,...,x^m)$ в окрестности точки P на M и $(y^1,...,y^n)$ в окрестности точки Q на N. Эти координатные представления — суть векторнозначные функции

$$(y^1,...,y^n) = F(x^1,...,x^m), (x^1,...,x^m) = F^{-1}(y^1,...,y^n),$$

причем эти функции взаимно-обратны:

Задание многообразий уравнениями

Один из наиболее часто встречающихся в приложениях объектов — это подмножество евклидового пространства \mathbb{R}^n , заданное системой уравнений.

Теорема 13.2. Если множество M_c не пусто и матрица Якоби отображения F имеет в каждой точке из M_c максимальный ранг, равный k, то M_c является гладким многообразием размерности n-k. При этом, в подходящей окрестности U произвольной точки из M_c в качестве координат можно выбрать некоторые n-k декартовых координат объемлющего пространства \mathbb{R}^{n-k} . Другими словами, в качестве координатного гомеоморфизма можно выбрать проекцию окрестности U на подходящую (n-k)-мерную координатную плоскость.

Доказательство.

Пусть P — произвольная точка из M_c . По условию, ранг матрицы Якоби dF(P) отображения F в точке P равен k. Это означает, что имеется набор из k столбцов матрицы Якоби такой, что определитель соответствующего $(k \times k)$ - минора матрицы dF(P) отличен от нуля. Без ограничения общности предположим, что это столбцы с номерами 1, ..., k. Обозначим через \tilde{P} образ точки P при стандартной проекции на координатную плоскость \mathbb{R}^{n-k} , определенную соотношениями $x^1 = ... = x^k = 0$. Тогда по теореме о неявной функции, известной из математического анализа, в некоторой окрестности W точки \tilde{P} в координатной плоскости \mathbb{R}^{n-k} существуют гладкие функции

$$x^{i}(x^{k+1},...,x^{n}), i = 1,...,k,$$

разрешающие нашу систему уравнений $F(x^1,...,x^n)=c$, т.е.

$$F(x^{1}(x^{k+1},...,x^{n}),...,x^{k}(x^{k+1},...,x^{n}),x^{k+1},...,x^{n}) = c$$

для всех $(x^{k+1},...,x^n)$ из W.

Обозначим через U окрестность точки P в M_c , проектирующуюся на W. В качестве карты в окрестности точки P на M_c возьмем пару (U, π) , где — стандартная проекция на координатную плоскость \mathbb{R}^{n-k} . Обратное отображение π^{-1} задается в виде

$$\pi^{-1}(x^{k+1},...,x^n) = (x^1(x^{k+1},...,x^n),...,x^k(x^{k+1},...,x^n),...,x^{k+1},...,x^n)$$

По построению, для каждой точки $(x^{k+1},...,x^n)W\subset \mathbb{R}^{n-k}$ точка $\pi^{-1}(x^{k+1},...,x^n)$ принадлежит множеству уровня M_c . Отображения π и π^{-1} непрерывны и взаимнообратны. Итак, для каждой точки $P\in M_c$ мы построили карту. Тем самым доказано, что M_c — топологическое многообразие размерности n-k.

Осталось проверить гладкость многообразия M_c . Предположим, что точка P содержится как в построенной выше карте (U,π) , так и в другой карте (U',π') . Напомним, что во всех картах в качестве координат выступают некоторые n k декартовых координат объемлющего пространства. В карте (U,π) координаты — это $(x^{k+1},...,x^n)$, а в карте (U',π') - $(x^{i_1},...,x^{i_{n-k}})$. Тогда функции перехода имеют вид

$$x^{i_p} = \begin{cases} x^{i_p}(x^{i+1},...,x^n), \text{если } i_p <= k \\ x^{i_p}, \text{если } i_p > k \end{cases}$$

Но, по построению, функции $x^{i_p}, p=1,...,k$, являются гладкими, что и доказывает гладкость многообразия M_c .

14. Лекция 14

Касательное пространство

Напомним, что касательными векторами к поверхности M в данной точке $P \in M$ называются вычисленные в точке P векторы скоростей гладких кривых, лежащих на поверхности M и проходящих через точку P. В этом определении использовано то обстоятельство, что поверхность рассматривалась как подмножество векторного пространства.

В случае абстрактных многообразий дело обстоит несколько сложнее (абстрактное гладкое многообразие нигде, вообще говоря, не лежит). Тем не менее, имеется естественное определение касательного вектора в точке к гладкому многообразию M, использующее возможность ввести в окрестности каждой точки многообразия локальные координаты. Мы приведем три эквивалентных определения касательного вектора (в разных задачах оказывается удобным использовать разные определения).

Определения касательного вектора

Итак, пусть M — гладкое многообразие размерности $nP \in M$ — некоторая точка. Мы начнем с так называемого "алгебраического" или тензорного определения.

Определение 14.1. Касательный вектор V в точке P — это соответствие, сопоставляющее каждой системе координат (x^1, \cdots, x^n) в P набор из n чисел (v^1, \cdots, v^n) , которые называются компонентами касательного вектора V в координатах (x^1, \cdots, x^n) , причем, если (x^1, \cdots, x^n) и (y^1, \cdots, y^n) — две системы координат в окрестности точки P и

$$V: (x^1, \dots, x^n) \to (v^1, \dots, v^n), V: (y^1, \dots, y^n) \to (\omega^1, \dots, \omega^n),$$

то $w^i = \sum_j \frac{\partial y^i}{\partial x^j} v^j, J = \left(\frac{\partial y^i}{\partial x^j}\right)$ — матрица Якоби функции перехода из координат x в координаты y, вычисленная в точке P (сравните c законом изменения касательного κ поверхности вектора при замене криволинейных координат).

Пусть в окрестности точки $P \in M$ фиксированы некоторые координаты (x^1, \cdots, x^n) . Сопоставим им произвольный набор чисел (v^1, \cdots, v^n) . С помощью правила пересчета компонент касательного вектора, приведенного в определении 14.1, вычислим набор чисел $(\omega^1, \cdots, \omega^n)$ в каждой другой системе координат (y^1, \cdots, y^n) . Тем самым, мы продолжим соответствие $V: (x^1, \cdots, x^n) \to (v^1, \cdots, v^n)$, положив

$$V: (y^1, \cdots, y^n) \to (\omega^1, \cdots, \omega^n)$$
, где $\omega^i = \sum_j \frac{\partial y^i}{\partial x^j} (P) v^j$.

Построенное соответствие V сопоставляет каждой системе координат в окрестности точки P свой набор чисел.

Лемма 14.1

Построенное выше соответствие V задает касательный вектор к многообразию M в точке P.

Доказательство.

Для доказательства достаточно проверить, что для двух произвольных систем координат $(y^1, \cdots, y^n)(z^1, \cdots, z^n)$ в точке P соответствующие им наборы чисел связаны между собой так, как предписано определением 14.1.

Положим

$$V: (y^1, \dots, y^n) \to (\omega^1, \dots, \omega^n), V: (z^1, \dots, z^n) \to (u^1, \dots, u^n).$$

По определению отображения V , числа u^iw^i выражаются через исходный набор чисел (v^1,\cdots,v^n) так:

$$\omega^i = \sum_{k=1}^n \frac{\partial y^i}{\partial x^k}(P) v^k$$
 и $u^i = \sum_{k=1}^n \frac{\partial z^i}{\partial x^k}(P) v^k$, $i = 1, \dots, n$.

Отсюда, в силу обратимости матрицы Якоби функции перехода, легко находим, что

$$v^k = \sum_{p=1}^n \frac{\partial x^k}{\partial z^p}(P)u^p, k = 1, \dots, n.$$

и окончательно

$$\omega^i = \Sigma_{k=1}^n \tfrac{\partial y^i}{\partial x^k} (\Sigma_{p=1}^n \tfrac{\partial x^k}{\partial z^p}) = \Sigma_{p=1}^n (\Sigma_{k=1}^n \tfrac{\partial y^i}{\partial x^k} \tfrac{\partial x^k}{\partial z^p}) u^p = \Sigma_{p=1}^n \tfrac{\partial y^i}{\partial z^p} u^p,$$

т.е. построенные наборы чисел связаны так, как и предписано определением. Лемма доказана.

Лемма 14.2

Множество $T_P M$ всех касательных векторов в произвольной точке P гладкого многообразия M образует n — векторное пространство, называемое касательным пространством к многообразию M в точке P.

Доказательство.

В силу леммы 14.1 любой набор чисел (v^1, \dots, v^n) , заданный в фиксированной системе координат (x^1, \dots, x^n) (в окрестности точки P), можно единственным образом превратить в касательный вектор v, и обратно: касательный вектор v однозначно определяет набор чисел (v^1, \dots, v^n) — своих компонент в выбранной системе координат. Определив сложение и умножение касательных векторов на числа как соответствующие покомпонентные операции на этих наборах, мы введем на множестве $T_P M$ всех касательных векторов структуру n-мерного векторного пространства. Осталось заметить, что эти операции не зависят от выбора системы координат (x^1, \dots, x^n) . Утверждение доказано.

Пусть (x^1, \dots, x^n) — фиксированная система координат в окрестности точки P многообразия M. Из доказательства леммы 14.2 вытекает, что следующий набор касательных векторов, заданных в соответствии с леммой 14.1, образует базис в линейном пространстве T_PM :

$$E_i:(x^1,\cdots,x^n)\to(0,\cdots,0,1,0,\cdots,0),\ i=1,\cdots,n.$$

где единица расположена на i-. Если $V\in T_PM$ — произвольный касательный вектор и $V:(x^1,\cdots,x^n)\to (v^1,\cdots,v^n)$, то $V=\Sigma_i v_i E_i$.

Определение 14.2. Базис E_1, \dots, E_n называется каноническим базисом в T_PM , соответствующим координатам x^1, \dots, x^n .

Пусть $\gamma:I\to M$ — гладкая кривая на многообразии M, проходящая через точку $P=\gamma(t_0)$. Сопоставим локальным координатам (x^1,\cdots,x^n) набор компонент вектора скорости кривой γ в точке P в этих координатах. Более точно, если $x^i(t), i=1,\cdots,n$, — координатные функции кривой γ , то

$$\dot{\gamma}:(x^1,\cdots,x^n)\to(\dot{x}^1,\cdots,\dot{x}^n).$$

Теорема 14.1. Три приведенные выше определения касательного вектора эквивалентны.

Доказательство.

Действительно, (x^1, \dots, x^n) — координаты в окрестности точки P, и V — касательный вектор из T_PM в смысле первого определения,

$$V: (x^1, \cdots, x^n) \to (v^1, \cdots, v^n),$$

то ему соответствует дифференцирование

$$\partial v: f \to \Sigma_i v^i \frac{\partial f}{\partial x_i}(P),$$

и наоборот. Построенное соответствие определено корректно, так как компоненты вектора V меняются при замене координат по тому же правилу, что и коэффициенты, стоящие при частных производных в формуле для дифференцирования ∂V . Теорема доказана.

Определение дифференциала

Перейдем к построению основ дифференциального исчисления гладких отображений многообразий. Это даст возможность изучать локальные свойства таких отображений, пользуясь техническими средствами математического анализа. Фактически, мы просто "пересадим" соответствующие понятия с областей в \mathbb{R}^n на гладкие многообразия, воспользовавшись имеющейся на них гладкой структурой. Пусть F:MBN — гладкое отображение m-мерного гладкого многообразия M в n-мерное гладкое многообразие N и $v\in T_PM$ — произвольный касательный вектор. Пусть γ — кривая, такая, что $\gamma(0)=P$ и $\gamma'(0)=v$. Рассмотрим образ кривой γ при отображении F. Если кривая γ задается гладким отображением $\gamma:(1,1)\to M$, то ее образ — это гладкая кривая в N, заданная отображением $F\circ\gamma$. Кривая $F\circ\gamma$ проходит через образ F(P) точки P. Обозначим через w вектор скорости кривой $F\circ\gamma$ в точке F(P). По определению, $\omega\in T_{F(P)}N$

Определение 14.3. Дифференциал dF_P отображения F в точке P — это отображение $dF_P: T_PM \to T_{F(P)}N$ касательных пространств, заданное так: $dF_P(v) = \omega$.

Лемма 14.3

Дифференциал отображения F — это линейное отображение касательных пространств. Если F(P)=Q, и в окрестностях точек P и Q фиксированы системы координат, то, в соответствующих канонических базисах, матрица дифференциала dF_P — это матрица Якоби отображения F в этих координатах.

Доказательство.

Пусть (x^1,\cdots,x^m) — координаты на M в окрестности точки P и (y^1,\cdots,y^n) — координаты на N в окрестности точки Q, а $y^i=y^i(x^1,\cdots,x^m)$ — координатное представление отображения F. Пусть $x^i=x^i(t)$ — координатное представление кривой . Тогда координатное представление кривой $F\circ\gamma$ имеет вид $y^i=y^i(x^1(t),\cdots,x^n(t))$.

В результате получаем.

$$dF_P(v) = \frac{d(F \circ \gamma)}{dt}(0) = \left(\sum_j \frac{\partial y^1}{\partial x^j}(P)v^i, \cdots, \sum_j \frac{\partial y^n}{\partial x^j}(P)v^j\right) = J_v,$$

где J — матрица Якоби отображения F в точке P в локальных координатах (x^1,\cdots,x^m) и (y^1,\cdots,y^n) . Утверждение доказано.

15. Лекция 15

Понятия погружение, вложение и подмногообразие

Определение 15.1. Пусть $F: M \to N$ — гладкое отображение гладких многообразий. Отображение F назовем погружением, или иммерсией, если в каждой точке P из M дифференциал dF_P отображения F в точке P является мономорфизмом, m.e. отображение dF_P взаимно-однозначно c образом.

Если дифференциал отображения $F:M\to N$ — мономорфизм, то выполнено следующее соотношение на размерности многообразий: $rankdF_P=m=dimM\le dimN=n$.

Определение 15.2. Погружение F называется вложением, если оно задает гомеоморфизм многообразия M с образом F(M) (на F(M) рассматривается топология, индуцированная из N)

Определение 15.3. Подмножество M гладкого многообразия N размерности n называется гладким подмногообразием размерности m, если для каждой точки $P \in M$ существует такая карта (U, ϕ) многообразия $N, P \in U$, что множество $\phi(M \cap U)$ является m-мерной регулярной поверхностью в \mathbb{R}^n .

Теоремы о вложении

Теорема 15.1. Пусть M- произвольное компактное гладкое многообразие. Тогда существует вложение $\Phi: M \to \mathbb{R}^N$ многообразия M в евклидово пространство подходящей размерности.

Доказательство.

В силу компактности многообразия M на нем можно выбрать конечный атлас $\{(U_{\alpha},\alpha)\}_{\alpha=1}^K$, причем можно считать без ограничения общности, что каждый координатный гомеоморфизм ϕ_{α} переводит U_{α} в открытый шар D_{α} .

Теорема 15.2. Пусть M — гладкое компактное многообразие размерности n. Тогда существует вложение $F: M \to \mathbb{R}^{2n+1}$.

Доказательство.

Воспользуемся предыдущей теоремой и построим вложение Φ многообразия M в евклидово пространство \mathbb{R}^N . Рассмотрим произвольную, проходящую через начало координат прямую l в пространстве \mathbb{R}^N и обозначим через πl ортогональную проекцию пространства \mathbb{R}^N вдоль прямой l на ортогональное подпространство размерности на единицу меньше: $\pi_l: \mathbb{R}^N \to \mathbb{R}^{N-1}$. Попробуем понизить размерность, для чего рассмотрим композицию $_{\circ\Phi:M\to\mathbb{R}^{N-1}}$. Нужно выбрать прямую l так, чтобы

композиция $_{\circ\Phi}$ по-прежнему являлась бы вложением (этот способ называется методом проекций). Для этого достаточно проверить выполнение двух условий:

- (1) мономорфность дифференциала композиции $_{\circ\Phi}$ (тогда эта композиция является погружением);
- (2) биективность композиции биективность композиции $_{\circ\Phi}$ (взаимно однозначное погружение $_{\circ\Phi}$ компактного многообразия M является вложением).

Наша цель — показать, что прямую l можно выбрать так, чтобы оба условия были выполнены.

Рассмотрим первое условие. Пусть P — произвольная точка из M. Обозначим через Π_P образ $d\Phi(T_PM)$ касательного пространства T_PM в точке P к многообразию M под действием дифференциала $d\Phi$ отображения Φ в точке P. Так как Φ — вложение, то Π_P — это n-мерное подпространство в $\mathbb{R}^N T_\Phi(P) \mathbb{R}^N$. Для того чтобы дифференциал отображения \circ был мономорфизмом в точке P, необходимо и достаточно, чтобы прямая l не принадлежала бы подпространству Π_P (напомним, что и прямая, и подпространство проходят через нуль).

Риманова метрика, риманово многообразие

Как мы уже отмечали, риманова метрика является аналогом первой фундаментальной формы поверхности или римановой метрики в области евклидова пространства.

Пусть M — произвольное гладкое многообразие размерности m. Предположим, что в каждой точке $P \in M$ в касательном пространстве T_PM фиксирована некоторая билинейная форма b(P). Рассмотрим произвольные координаты (x^1, \ldots, x^m) ., определенные на M в некоторой окрестности U. Тогда для каждой точки $P \in U$ в касательном пространстве T_PM имеется канонический базис ∂_i . В этом базисе форма b(P) задается матрицей $B(P) = (b_{ij}(P))$, где $b_{ij}(P) = b(P)(\partial_i, \partial_j)$. Компоненты $b_{ij}(P)$ являются функциями от координат точки $P \in U$, т.е. функциями от (x^1, \ldots, x^m) .

Определение 15.4. Если в каждой точке P многообразия M задана билинейная форма $b(P): T_P M T_P M \to \mathbb{R}$, то говорят, что на многообразии задана билинейная форма b. Величины $b_{ij}(P) = b(P)(\partial_i, \partial_j)$ называются компонентами формы b в координатах (x^1, \ldots, x^m) .

Лемма 15.1

Пусть (x^1, \ldots, x^m) и (y^1, \ldots, y^m) — две системы координат, b_{ij} и c_{ij} — компоненты билинейной формы b в первой и второй системах координат соответственно. Тогда во всех точкам многообразия, где эти координаты определены одновременно, функции b_{ij} и c_{ij} связаны так:

$$b_{ij} = \sum_{\alpha,\beta=1}^{m} \frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} c_{\alpha\beta}$$

Доказательство.

Пусть $P \in M$ — точка, в которой определены обе системы координат, ∂_{x^i} — векторы канонического базиса первой из этих систем, а ∂_{y^i} — второй. Тогда $\partial_{x^i} = \sum_{\alpha} \frac{\partial y^{\alpha}}{\partial x^i} \partial y^{\alpha}$, поэтому

$$b_{ij} = b(\partial_{x^i}, \partial_{x^j}) = b(\sum_{\alpha} \frac{\partial y^{\alpha}}{\partial x^i} \partial y^{\alpha}, \sum_{\beta} \frac{\partial y^{\beta}}{\partial x^j} \partial y^{\beta} = \sum_{\alpha, \beta} \frac{\partial y^{\alpha}}{\partial x^i} \frac{\partial y^{\beta}}{\partial x^j} b(\partial_{y^{\alpha}}, \partial_{y^{\beta}}) = \sum_{\alpha, \beta} \frac{\partial y^{\alpha}}{\partial x^i} \frac{\partial y^{\beta}}{\partial x^j} c_{\alpha\beta}$$

Определение 15.5. Будем говорить, что на многообразии M задана риманова метрика, если на M задано скалярное произведение (т.е. невырожденная положительно определенная симметричная билинейная форма), которое гладко зависит от точки в том смысле, что в каждой системе координат (x^1, \ldots, x^m) на M компоненты этого скалярного произведения являются гладкими функциями от (x^1, \ldots, x^m) .

Многообразие, на котором задана риманова метрика называется римановым многообразием.

Определение 15.6. Говорят, что на гладком многообразии M задана риманова метрика, если в каждой системе координат (x^1, \ldots, x^m) на M в области определения этих координат задан набор величин g_{ij} (x^1, \ldots, x^m) , $i, j = 1, \ldots, m$, которые гладко зависят от (x^1, \ldots, x^m) и называются компонентами римановой метрики в этих координатах, и выполнены следующие два условия:

- (1) матрицы (g_{ij}) являются симметричными и положительно определенными в каждой точке области определения;
- (2) компоненты римановой метрики в разных системах координат, связаны друг с другом по формуле из Леммы 15.1 во всех точкам многообразия, где эти координаты определены одновременно.

Эквивалентное определение римановой метрики

Лемма 15.2

Два определения римановой метрики эквивалентны.

Доказательство.

Если дана риманова метрика в смысле определения 15.5, то наборы величин $g_{ij}(x^1,\ldots,x^m)$ из предыдущего определения — это компоненты скалярного произведения в координатах (x^1,\ldots,x^m) . Требуемые свойства вытекают из определения и леммы 15.1 Обратно, пусть задана риманова метрика в смысле предыдущего определения. Определим на M скалярное произведение так. Пусть (x^1,\ldots,x^m) — некоторые координаты на M, и P — произвольная точка из соответствующей карты U. Сопоставим паре

векторов v и w из T_PM число $\langle v,w\rangle_P = \sum_{i,j=1}^m g_{ij}v^iw^j$, где g_{ij} компоненты римановой метрики, а v^i и w^j — компоненты касательных векторов v и w в координатах (x^1,\ldots,x^m) соответственно. Заметим, что мы определили билинейную форму на T_PM , которая, в силу свойств матрицы (g_{ij}) , является скалярным произведением, причем $\langle \partial_{x^i}, \partial_{x^j} \rangle_P = g_{ij}(P)$, поэтому это скалярное произведение гладко зависит от точки (в силу гладкости g_{ij}). Таким образом, мы построили в U риманову метрику в смысле первого определения, причем g_{ij} представляют собой компоненты этой римановой метрики в координатах (x^1,\ldots,x^m) .

Остается проверить, что построенная нами риманова метрика не зависит от выбора координат (x^1,\ldots,x^m) и, значит, корректно определена на всем многообразии М. Пусть в окрестности точки Р М заданы две системы координат (x^1,\ldots,x^m) и (y^1,\ldots,y^m) , и пусть g_{ij} и h_{ij} компоненты римановой метрики из определения в этих координатах соответственно. Тогда для произвольных касательных векторов $v,w\in T_PM$, имеющих в (x^1,\ldots,x^m) компоненты v^i и w^i , а в (y^1,\ldots,y^m) — компоненты ξ^i и η^i соответственно, числа $\sum_{i,j=1}^m g_{ij}v^iw^j$ и $\sum_{i,j=1}^m ij} \xi^i\eta^j$ равны.

Длины и углы

Определение 15.7. Величина

 $l(\gamma)=\int_a^b\|\gamma'(t)\|dt$ называется длиной гладкой кривой γ на римановом многообразии M .

Определение 15.8. Пусть $\gamma_1(t)$ и $\gamma_2(s)$ — гладкие кривые на римановом многообразии M, пересекающиеся в некоторой точке P из M. Пусть $\gamma_1(t_0) = \gamma_2(s_0) = P$, тогда угол α между γ_1 и γ_2 в точка P определяется из соотношений $\cos \alpha = \frac{\langle \gamma_1'(t_0), \gamma_2'(s_0) \rangle_P}{\|\gamma_1'(t_0)\|\|\gamma_2'(s_0)\|}$, $0 \le \alpha \le \pi$

Определение 15.9. *Метрика* $\langle \dot{}, \dot{} \rangle_P$ на многообразии M называется индуцированной из R^n .

Ориентируемые и неориентируемые многоообразия

Определение 15.10. Каждый из построенных классов называется ориентацией векторного пространства L. Задать ориентацию на L или ориентировать пространство L означает выбрать один из двух этих классов. Каждый базис, принадлежащий выбранному классу называется положительно ориентированным, а остальные базисы — отрицательно ориентированными.

Для задания ориентации линейного пространства L достаточно фиксировать в нем один произвольный базис и объявить выбранной ориентацией ту, в которую он входит. При этом выбранный базис будет положительно ориентированным.

Определение 15.11. Пусть M гладкое многообразие. Ориентацией многообразия M называется семейство ориентаций всех его касательных пространств T_pM , $P \in M$, непрерывно зависящее от точки многообразия в следующем смысле. Для произвольной системы координат $(x^1,...,x^m)$ на M канонические базисы $(\partial x^1,...,\partial x^m)$ во всех касательных пространствах T_pM , где P — произвольная точка из области определения координат, имеют одну и ту же ориентацию. Если ориентация существует, то многообразие M называется ориентируемым, иначе — неориентируемым. Если ориентация фиксирована, то многообразие называется ориентированным.

Лемма 15.3

Пусть $M \subset Rn$ — гладкое k-мерное многообразие, 1k < n, являющееся решением системы $F_1(x^1,...x^n) = 0,..., F_{n-k}(x^1,...,x^n) = 0$, удовлетворяющей условию теоремы о неявной функции: функции F_i — гладкие, и в каждой точке из M матрица Якоби $(\frac{\partial F_i}{\partial x^j})$ имеет максимально возможный ранг n-k. Тогда многообразие M ориентируемо.

Доказательство.

Напомним, что в каждой точке Р М градиенты $\nabla F_i = (\frac{\partial F_i}{\partial x^1}, ..., \frac{\partial F_i}{\partial x^n})$ функций F_i линейно независимы и ортогональны касательному пространству $T_p M$. Зададим в каждом $T_p M$ ориентацию, назвав базис $(f_1,...,f_k)$ пространства $T_p M$ положительно ориентированным, если и только если построенный с помощью него базис $(f_1,...,f_k,\nabla F_1,...,\nabla F_{n-k})$ пространства Rn положительно ориентирован по отношению к стандартной ориентации пространства \mathbb{R}^n . Покажем, что так заданное семейство ориентаций касательных пространств $T_p M$ многообразия M непрерывно зависит от точки. Выберем произвольную точку $P \in M$ и в некоторой ее связной окрестности $U \subset M$ рассмотрим локальные координаты $(y_1,...,y_k)$ и соответствующие канонические базисы $(\partial_1,...,\partial_k)$ касательных пространств $T_pM,P\in U$, тогда векторы базисов $B = (\partial_1, ..., \partial_k, \nabla F_1, ..., \nabla F_{n-k})$ пространства \mathbb{R}^n непрерывно меняются при изменении точки $P \in U$, так что если C(P) обозначает матрицу перехода от стандартного базиса $(e_1, ..., e_n)$ пространства Rn к базису B в точке P, то detC(P)является нигде не обращающейся в ноль непрерывной функцией, определенной на связном множестве, поэтому эта функция имеет везде один и тот же знак. Но тогда, по определению заданной выше ориентации касательных пространств $T_p M$, все канонические базисы $(\partial_1,...,\partial_k)$ имеют одну и ту же ориентацию. Итак, заданное семейство ориентаций непрерывно зависит от точки, поэтому задает ориентацию многообразия M, так что M — ориентируемо.

Определение 15.12. Пусть M — ориентированное в смысле определения 15.11 гладкое многообразие и (U,ϕ) — некоторая карта на нем. Карту (U,ϕ) назовем положительной, если определенные ей канонические базисы во всех точках из U

положительно ориентированы. Если же все такие базисы отрицательно ориентированы, то карту (U, ϕ) назовем отрицательной.

Определение 15.13. Пусть $\gamma(t)$, $t \in [a,b]$, — непрерывная кривая на гладком многообразии M. При каждом t выберем в $T_{\gamma(t)}M$ некоторый базис $E(t) = (e_1(t),...,e_n(t))$. Будем говорить, что семейство базисов E(t) непрерывно вдоль γ , если при каждом t_0 существуют некоторые координаты в окрестности точки $\gamma(t_0)$, в которых компоненты $e_i(t)^{\alpha}$ векторов $e_i(t)$ являются непрерывными функциями параметра t в некоторой окрестности точки t_0 .

Лемма 15.4

Для каждой непрерывной кривой $\gamma(t)$, $t \in [a,b]$, на гладком многообразии М существует семейство базисов E(t) касательных пространств $T_{\gamma(t)}M$, непрерывно зависящее от t.

Пусть P и Q — две произвольные точки гладкого многообразия M, соединенные непрерывной кривой $\gamma(t)$, $t \in [0,1]$, $P = \gamma(a)$, $Q = \gamma(b)$. Ориентируем касательное пространство T_PM . Рассмотрим непрерывное вдоль γ семейство E(t) базисов касательных пространств $T_{\gamma(t)}M$. Ориентируем пространство T_QM так, чтобы ориентации базисов E(a) и E(b) были одинаковы.

Определение 15.14. Во введенных выше обозначениях, будем говорить, что полученная на $T_Q M$ ориентация получена в результате переноса ориентации пространства $T_P M$ вдоль кривой γ .

Определение 15.15. Гладкое многообразие M назовем ориентируемым, если перенос ориентации вдоль непрерывных кривых, соединяющих одну и ту же пару точек из M, не зависит от выбора таких кривых.

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ МГУ ИМЕНИ М.В. ЛОМОНОСОВА

