Exam 1, EE5350, Summer 2008

- **1.** Convolve h(n) and x(n) to get y(n) below. Put y(n) in closed form when possible.
- (a) $h(n) = a^{-n}u(-n)$ and $x(n) = b^{-n}u(-n)$.
- (b) $h(n) = a^n u(n)$ and $x(n) = e^{jwn}$. Is x(n) an eigenfunction of the system?
- (c) h(n) = u(n+3)-u(n-4), x(n) = u(n-2)-u(n-5). Express the result in terms of r(n),
- 2. A system is described by the recursive difference equation

$$y(n) = \frac{8}{15}y(n-1) - \frac{1}{15}y(n-2) + 5x(n) - \frac{7}{5}x(n-1)$$

- (a) Find H(e^{jw}) in closed form.
- (b) Find the homogeneous solution for y(n).
- (c) Find h(0) and h(1)
- (d) Find the impulse response h(n).
- (e) State whether or not the given difference equation is causal.
- **3.** Let x(n), y(n), and h(n) denote complex sequences.
- (a) Find $Y(e^{jw})$ in terms of $X(e^{jw})$ and $H(e^{jw})$ if

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(k-n)$$

(b) If

$$y(n) = \sum_{k = -\infty}^{\infty} h(k)x(n + s_2 k)$$

find $Y(e^{jw})$ in terms of $X(e^{jw})$ and $H(e^{jw})$ if s_2 can equal either +1 or -1. (Hint: you already know the answer for $s_2 = -1$.)

(c) Let

$$y(n) = \sum_{k = -\infty}^{\infty} h(k)x(s_1n + s_2k)$$

We want to find $Y(e^{jw})$ in terms of $X(e^{jw})$ and $H(e^{jw})$ where if s_1 can equal either +1 or -1 and s_2 can equal either +1 or -1. Multiplying both sides of the equation by $\sum e^{-jwn}$, we can write $\exp(-jwn) = \exp(-jf(w)(s_1n + s_2k)) \cdot \exp(-j(-(s_2f(w))\cdot k))$.

Looking only at terms above having "n", give an expression for f(w).

(d) Continuing part (c), give an expression for $Y(e^{jw})$.

- **4.** Let $x_c(t)$ denote an analog signal with upper cut-off frequency Ω_o rad/sec. A system has a C/D converter that samples input $x_c(t)$, producing x(n). x(n) is then convolved with h(n) which is a digital lowpass filter impulse response with cut-off frequency w_c radians. The filtered output y(n) passes through a D/C converter, producing the analog output $y_c(t)$. The C/D and D/C converters both use a sampling rate 1/T.
- (a) If we want $y_c(t)$ to be a lowpass filtered version of $x_c(t)$, where the filter's cut -off frequency is Ω_c rad/sec., what should w_c be equal to, for the digital filter?
- (b) For the system of part (a), give an upper limit on the sampling period T so that $y_c(t)$ is not aliased.
- (c) Assume that h(n) now has a constant cut-off frequency of $w_c = \pi/8$ radians. For what range of sampling periods T is $y_c(t)$ a lowpass filtered, unaliased version of $x_c(t)$?

5. Assume that

$$X(e^{jw}) = e^{-d/w/}$$
 for $|w| \le \pi$

- (a) Find x(0)
- (b) Using Parseval's theorem, find the numerical value of

$$\sum_{n=-\infty}^{\infty} x^2(n)$$

- (c) Given your answer in part (b), give $\lim x(n)$ as n approaches infinity.
- (d) Find a real expression for x(n) and state whether or not it is absolutely summable.

- **6.** A signal x(n), which has N_3 samples numbered 0 to N_3 -1, is to be convolved with a causal filter h(n), which has N_4 samples numbered 0 to N_4 -1. The output is y(n).
- (a) In the time domain convolution pseudocode below, give expressions for X and Y.

$$y(n) = 0$$
 for $0 \le n \le N_3 + N_4 - 2$
For $0 \le k \le N_3 - 1$
For $0 \le i \le N_4 - 1$
 $n = X$
 $y(n) = y(n) + Y$
End
End

(b) In the time domain convolution pseudocode below, give expressions for X and Y.

For
$$n = 0$$
 to $N_3 + N_4 - 2$
 $y(n) = 0$
For $0 \le k \le N_3 - 1$
If (X) $y(n) = y(n) + Y$
End
End

(c) In the time domain convolution pseudocode below, give expressions for YY and ZZ.

For
$$0 \le n \le N_3 + N_4 - 2$$

 $XX = x(n)$
Call Update(XX,X,h, N₄,Y)
 $y(n) = Y$
End

Function Update does the following operations

$$\begin{array}{l} X(0)=XX\\ Y=0.\\ For\ 0\leq k\leq N_4-1\\ Y=Y+YY\\ End\\ For\ N_4-1\geq n\geq 1\ \ (counting\ backwards\ from\ (N_4-1)\ to\ 1)\\ X(n)=ZZ\\ End \end{array}$$