Web Transport Security: SSL

SSL Handshake

- Secure socket Layer (SSL/TLS)
- Used to authenticate servers
 - ▶ Uses certificates. "root" CAs
- Can authenticate clients
- Inclusive security protocol
- · Security at the socket layer
 - ▶ Transport Layer Security (TLS)
 - ▶ Provides
 - authentication
 - · confidentiality
 - integrity

(1) Client Hello (algorithms,...) (2) Server Hello (alg. selection,

(3) Server Oertificate

(4) ClientKeyRequest

(5) ChangeCipherSuite

(6) ChangeCipherSuite

(7) Finished

(8) Finished

Server

NC State -- Department of Computer Science

Page 11

NC State -- Department of Computer Science

Page 1

Simplified Protocol Detail

Participants: Alice/A (client) and Bob/B (server)

Crypto Elements: Random R, Certificate C, k_i^+ Public Key (of i)

 $Crypto\ Functions$: Hash function H(x), Encryption E(k,d), Decryption D(k,d),

Keyed MAC HMAC(k, d)

1. Alice \rightarrow Bob R_A

2. Bob \rightarrow Alice R_B, C_B

Alice pick pre-master secret S

Alice calculate master secret $K = H(S, R_A, R_B)$

3. Alice \rightarrow Bob $E(k_B^+, S)$, HMAC(K, CLNT' + [#1, #2])Bob recover pre-master secret $S = D(k_B^-, E(k_B^+, S))$ Bob calculate master secret $K = H(S, R_A, R_B)$

4. Bob \rightarrow Alice HMAC(K, SRVR' + [#1, #2])

Note: Alice and Bob: IV Keys, Encryption Keys, and Integrity Keys 6 keys, where each key $k_i = g_i(K, R_A, R_B)$, and g_i is key generator function.

SSL Tradeoffs

- Pros
 - Server authentication*
 - ▶ GUI clues for users
 - Built into every browser
 - Easy to configure on the server
 - Protocol has been analyzed like crazy
- Cons
 - Users don't check certificates
 - ▶ Too easy to obtain certificates
 - Too many roots in the browsers
 - Some settings are terrible

