Classification Methods

Chapter 4 – Part I

Logistic Regression

Outline

- Cases:
- ➤ Orange Juice Brand Preference
- ➤ Credit Card Default Data
- Why Not Linear Regression?
- > Simple Logistic Regression
- **▶**Logistic Function
- ➤ Interpreting the coefficients
- ➤ Making Predictions
- ➤ Adding Qualitative Predictors
- Multiple Logistic Regression

Case 1: Brand Preference for Orange Juice

We would like to predict what customers prefer to buy:

Citrus Hill or Minute Maid orange juice?

The Y (Purchase) variable is <u>categorical</u>: 0 or 1

The X (LoyalCH) variable is a numerical value (between 0 and 1)

which specifies the how much the customers are loyal to the Citrus Hill (CH) orange juice

Can we use Linear Regression when Y is categorical?

Why not Linear Regression?

- > When Y only takes on values of 0 and 1,
 - Why standard linear regression in inappropriate?

Problems

The regression line $\beta_0+\beta_1X$ can take on any value

between negative and positive infinity

In the orange juice classification problem,

Y can only take on two possible values: 0 or 1.

Therefore the regression line almost always predicts

the wrong value for Y in classification problems

Solution: Use Logistic Function

Instead of trying to predict Y,

- let's try to predict P(Y = 1),
- i.e., the probability a customer buys Citrus Hill (CH) juice.

Thus, we can model P(Y = 1) using a function that gives outputs between 0 and 1.

We can use the logistic function

Logistic Regression!

$$p = P(Y = 1) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

Logistic Regression

Logistic regression is very similar to linear regression

We come up with b_0 and b_1 to estimate β_0 and β_1 .

We have similar problems and questions

- as in linear regression
 - e.g. Is β_1 equal to 0?
 - How sure are we about our guesses for β_0 and β_1 ?

If LoyalCH is about .6 then $Pr(CH) \approx .7$.

Case 2: Credit Card Default Data

- > We would like to be able to predict
- >customers that are likely to default
- > Possible X variables are:
- ➤ Annual Income
- ➤ Monthly credit card balance
- > The Y variable (Default) is <u>categorical</u>:
- ➤ Yes or No
- How do we check the relationship between Y and X?

The Default Dataset

Why not Linear Regression?

If we fit a linear regression to the Default data,

- then for very low balances
- >we predict a negative probability,
- > and for high balances
- >we predict a probability above 1!

When Balance < 500,

Pr(default) is negative!

Logistic Function on Default Data

Now the probability of default

- is close to, but not less than zero
 - for low balances.
- And close to but not above 1
 - for high balances

Interpreting β₁

Interpreting what β_1 means is not very easy with logistic regression,

simply because we are predicting P(Y) and not Y.

If β_1 =0, this means that

there is no relationship between Y and X.

If $\beta_1 > 0$, this means that

when X gets larger so does the probability that Y = 1.

If β_1 <0, this means that

when X gets larger, the probability that Y = 1 gets smaller.

But how much bigger or smaller

· depends on where we are on the slope

Are the coefficients significant?

We still want to perform a hypothesis test

- to see whether we can be sure that β_0 and β_1
- Are significantly different from zero.

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

We use a Z test instead of a T test,

- but of course that doesn't change the way we interpret the p-value
 Here the p-value for balance is very small, and b₁ is positive,
- so we are sure that if the balance increases,
- then the probability of default will increase as well.

Making Prediction

Suppose an individual has an average balance of \$1000.

What is their probability of default?

The predicted probability of default for an individual with a balance of \$1000

is less than 1%.

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.00576$$

For a balance of \$2000, the probability is much higher,

and equals to 0.586 (58.6%).

Qualitative Predictors in Logistic Regression

We can predict if an individual defaults

by checking if she is a student or not.

Thus we can use a qualitative variable "Student"

- coded as (Student = 1, Non-student =0).
- b₁ is positive:

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

This indicates students tend to have

higher default probabilities than non-students

$$\widehat{\Pr}(\texttt{default=Yes}|\texttt{student=Yes}) = \frac{e^{-3.5041 + 0.4049 \times 1}}{1 + e^{-3.5041 + 0.4049 \times 1}} = 0.0431,$$

$$\widehat{\Pr}(\texttt{default=Yes}|\texttt{student=No}) = \frac{e^{-3.5041 + 0.4049 \times 0}}{1 + e^{-3.5041 + 0.4049 \times 0}} = 0.0292.$$

Multiple Logistic Regression

We can fit multiple logistic

just like regular regression

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}.$$

Multiple Logistic Regression- Default Data

Predict Default using:

- Balance (quantitative)
- Income (quantitative)
- Student (qualitative)

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Predictions

A student

- with a credit card balance of \$1,500
- and an income of \$40,000
- has an estimated probability of default

$$\hat{p}(X) = \frac{e^{-10.869 + 0.00574 \times 1500 + 0.003 \times 40 - 0.6468 \times 1}}{1 + e^{-10.869 + 0.00574 \times 1500 + 0.003 \times 40 - 0.6468 \times 1}} = 0.058.$$

An Apparent Contradiction!

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004
Positive				

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062
				

\ Negative

Students (Orange) vs. Non-students (Blue)

To whom should credit be offered?

A student is risker than non students

if no information about the credit card balance is available

However, that student is less risky than a non student

with the same credit card balance!

