CS281: Introduction to Automata Theory Intersection Equivalence Seatwork

Z	Х	Υ	FA_1'	FA_2'	$FA_1' + FA_2'$	$(FA_1' + FA_2')'$	Х	Υ	XY	Х	Υ	XY
	^	•	I Al	I AZ	111111111111111111111111111111111111111	_		•	ΛI		-	
z_1	q	d	-	-	-	±	W	d	Z_4	t	f	z_{14}
z_2	q	f	-			+	W	g	z_6	t	f	z_{14}
Z 3	q	g	-	+	+		W	g	z_6	t	g	z_{15}
Z4	W	d		ı		+	W	d	Z_4	r	f	Z 8
Z 5	w	f				+	W	g	Z 6	r	f	Z 8
Z 6	w	g		+	+		W	g	Z 6	r	g	Z 9
Z 7	r	d		-		+	S	d	z_{10}	r	f	Z 8
Z 8	r	f				+	S	g	z_{12}	r	f	Z 8
Z 9	r	g		+	+		S	g	z_{12}	r	g	Z 9
z_{10}	S	d	+	-	+		S	d	z_{10}	S	f	z_{11}
z_{11}	S	f	+		+		S	g	z_{12}	S	f	z_{11}
z_{12}	S	g	+	+	+		S	g	z_{12}	S	g	z_{12}
z ₁₃	t	d		-		+	S	d	z_{10}	t	f	z_{14}
Z ₁₄	t	f				+	S	g	<i>z</i> ₁₂	t	f	z_{14}
z ₁₅	t	g		+	+		S	g	Z ₁₂	t	g	z_{15}

Step 1: Create a unique end state

Step 3: Bypass state z_{14} and z_{8} Step 4: Simplify

Step 2: Bypass state z_4 and z_{12}

Z	Χ	Υ	FA_1'	FA_2'	$FA_1' + FA_2'$	$(FA'_1 + FA_2')'$	Χ	Υ	XY	Х	Υ	XY
z_1	>	n	±	±	±	-	Х	m	Z 5	٧	0	Z 3
z_2	V	m	±		+		х	m	Z 5	V	0	z_3
Z 3	٧	0	±	+	+		Х	m	Z 5	٧	0	Z 3
Z 4	Х	n		±	+		Х	m	Z 5	٧	0	Z 3
Z 5	Х	m				+	х	m	Z 5	V	0	Z 3
Z 6	Х	0		+	+		Х	m	Z 5	٧	0	Z 3

Step 2: Bypass sta e z₃

Step 3: Bypass state z_5

Z	Χ	Υ	FA_1'	FA_2'	$FA_1' + FA_2'$	$(FA_1' + FA_2')'$	Χ	Υ	XY	Х	Υ	XY
Z 1	р	Z	-	-	-	±	u	Z	Z_4	f	Х	Z 8
Z 2	р	х	-	+	+		u	Z	Z_4	f	У	Z 9
Z 3	р	У	-	+	+		u	У	Z 6	f	У	Z 9
Z 4	u	Z		-		+	р	Z	Z 1	f	х	Z 8
Z 5	u	х		+	+		р	Z	Z 1	f	У	Z 9
Z 6	u	У		+	+		р	У	Z 3	f	У	Z 9
Z 7	f	Z	+	1	+		р	Z	z_1	k	х	z_{11}
Z 8	f	х	+	+	+		р	Z	z_1	k	У	z_{12}
Z 9	f	У	+	+	+		р	У	Z 3	k	У	z_{12}
z_{10}	k	Z	+	-	+		k	Z	z_{10}	k	х	<i>z</i> ₁₁
<i>z</i> ₁₁	k	Х	+	+	+		k	Z	z_{10}	k	У	<i>z</i> ₁₂
Z ₁₂	k	У	+	+	+		k	У	Z ₁₂	k	У	<i>z</i> ₁₂

Graph:

Step 1: Create a unique end state

Step 2: Bypass state z_4 and z_{12}

Step 3: Bypass state z_8

Step 4: Simplify

Z	Х	Υ	FA_1'	FA_2'	$FA_1' + FA_2'$	$(FA_1' + FA_2')'$	Х	Υ	XY	Χ	Υ	XY
z_1	е	h	-	1	-	±	f	h	Z 2	g	h	Z 3
Z 2	f	h		-		+	е	h	Z 1	g	h	Z 3
Z 3	g	h		-		+	f	h	Z 2	е	h	Z 1

Graph:

Step 1: Create a unique end state Step 2: Bypass state z_2

Z	Χ	Υ	FA_1'	FA_2'	$FA_1' + FA_2'$	$(FA'_1 + FA_2')'$	Χ	Υ	XY	Χ	Υ	XY
z_1	j	r	-	±	±	-	n	r	Z 5	m	S	Z4
z_2	j	S	-			+	n	r	Z 5	m	S	Z_4
Z 3	m	r		±	+		n	r	Z 5	j	S	z_2
Z_4	m	S				+	n	r	Z 5	j	S	z_2
Z 5	n	r	+	±	+		n	r	Z 5	m	S	Z4
Z 6	n	S	+		+		n	r	Z 5	m	S	Z_4

Graph:

Step 1: Create a unique end state Step 2: Bypass state z_2

Step 3: Bypass state z_4

Step 4: Bypass state z_5 a + b(bb)*(a + ba) z_1 $b(bb)*(\Lambda + b)$ $b(bb)*(\Lambda + b)$ $b(bb)*(\Lambda + b)$ $b(bb)*(\Lambda + b)$ $b(bb)*(\Lambda + b)$

Step 5: Simplify

