

An Application to Optimize Lap-times for Race Cars

Group Members:

Alaa Bashir ge73cec

Ankit Khot ge73xuq

Máté Kelemen ge49pil

Supervised by: Jan Janse van Rensburg

and Steve Schaefer

Outline:

Goals and Problem Statement

> Goals:

- Determine optimal racing lines
- Minimize total lap time
- Simulate the results for different tracks

> Problem Statement:

- Optimal race lines is a dual problem
- Compromises are needed
- Car dynamics must be considered

Literature Review: Roadmap

Literature Review

- Several researches covered the geometric consideration
- ➤ "Race driver model" by F. Braghin, F. Cheli, S. Melzi, E. Sabbioni covered the geometric consideration and vehicle dynamics

Introduction: Point Mass Model

Point mass model of the vehicle:

- The point mass model is the simplest model, considers vehicle as a point mass
- The dynamics of the point mass model are:

Acceleration: a (assumed constant)

Weight : mg

Height of CG from ground level : h

Overall friction coefficient : μ

Frictional force $F_{frictional} = \mu mg$

Centripetal force
$$F_{\text{centripetal}} = \frac{mv^2}{R}$$

$$V_{critical} = \sqrt{\mu Rg}$$
 (Sliding)OR

$$V_{critical} = \sqrt{(g/h)} R (Overturning)$$

Illustrative example: L-bend

> Forces and constraints on a body going around the corner

 $F_{fr} = -\mu N$

Source: https://lifeatlean.com/what-is-the-racing-line/

Force Balance:

$$F_{centripetal} = F_{frictional}$$

$$V_{critical} = \sqrt{\mu R g}$$

Results:		
V _{critical _A}	12.13 m/s	
V _{critical _B}	14.35 m/s	
V _{critical _C}	18.79 m/s	
t _A	2.62 s	
t _B	2.70 s	
t _C	2.01 s	

Vehicle Dynamics: Literature Review

- Vehicle Models :
- Single Track Model :

3 DOFs: Longitudinal, Lateral and Yaw Does not consider the rolling effect

- Double Track Model :
 - 6DOFs : Longitudinal, Lateral, Vertical Yaw, Roll, Pitch
- These models involve modelling of the Tire, Suspension system, Chassis, Transmission system etc

Image source: Automotive engineering, systems and dynamic behavior by Pablo Luque.

> Simulink

Trajectory Planning

Track Discretization

$$\vec{\mathbf{P}}_i = x_i \vec{\mathbf{i}} + y_i \vec{\mathbf{j}}$$

$$= [x_{r,i} + \alpha_i (x_{l,i} - x_{r,i})] \vec{\mathbf{i}} + [y_{r,i} + \alpha_i (y_{l,i} - y_{r,i})] \vec{\mathbf{j}}$$

> Shortest Trajectory

Estimate line integral of the track:

$$S^{2} = \sum_{i=1}^{n} \Delta P_{x,i}^{\mathrm{T}} \Delta P_{x,i} + \Delta P_{y,i}^{\mathrm{T}} \Delta P_{y,i}$$

Minimum curvature trajectory

Find the track curvature Γ using:

$$\hat{\Gamma}^2 = \left(\frac{d^2x(s)}{ds^2}\right)^2 + \left(\frac{d^2y(s)}{ds^2}\right)^2$$

Trajectory Planning

Minimum curvature trajectory

- Interpolate track points with piecewise cubic splines
- (Numerically) integrate curvature on the entire path
- Minimize integrated curvature with respect to the track point coefficients

Spline segment and its derivatives

$$x(t) = a_0 + a_1t + a_2t^2 + a_3t^3$$

$$x'(t) = a_1 + 2a_2t + 3a_3t^2$$

$$x''(t) = 2a_2 + 6a_3t$$

Curvature of a spline segment

$$\kappa = \frac{x' \times x''}{|x'|^3}$$

Trajectory Planning

> Minimum curvature trajectory (MATLAB)

MATLAB Implementation:

Path Optimization App

Controller Design Roadmap

Test Case Creation

Using "Driving Scenario Designer" App to get:

- > Reference position
- Road curvature
- > Speed Profile
- Direction

Simulink Layout

Longitudinal Controller

Optimization Results

Scenario Reader

Optimization Results

Lateral Controller

Testing and Visualization

Start

Parameters Estimation

Vehicle Paremeters	Simulation	Parameters Estimation
Which Parameter(s) do you want to optimize?		
vvinori didirece (e) de yed want te eptimize.		
Vehicle Mass		
Vehicle Wheelbase		
Vernete Wildenbase		
Location of center of gravity		
Axle Height		
		_
Results		
Mass		0
Wa33		
Wheelbase		0
COG		0
Axle Height		0
Axic Fleight		
		Start

Parameters Estimation

Results Preprocessing

Optimization Results:

- Optimum Path
- Speed Profile

Create Driving Scenario function

Scenario Object

Helper Create Reference Path

- **Simulink Model**

- Reference Poses
 - Speed Profile
 - Curvatures

Controller Evaluation

Interface to a 3D engine (Unreal+ Simulink)

- User-controlled simulation
- Provides a reference lap time

Interface to a 3D engine (Unreal+ Simuink)

Summary

- Project goals, importance and challenges
- ➤ Literature Review : two solutions possible
 - Shortest path
 - Least curvature path
- ➤ Illustrative example with a simple L-bend.
- ➤ MATLAB script for path optimization
- Simulink model with 3D visualization.

THANK YOU FOR LISTENING

