CSCI 320: Introduction to Theory of Computation Spring 2015

Gara Pruesse

Gara.Pruesse@viu.ca

Office: 315/218

Course page:

http://www.csci.viu.ca/~gpruesse/teaching/320

Finite automata

Ch. 1.1: Deterministic finite automata (DFA)

We will:

- Design automata for simple problems
- Study languages recognized by finite automata.

Recognizing finite languages

- Just need a lookup table and a search algorithm
- Problem cannot express infinite sets,
 e.g. odd integers

Finite Automata

The simplest machine that can recognize an infinite language.

"Read once", "no write" procedure.

Useful for describing algorithms also. Used a lot in network protocol description.

Remember: DFA's can accept finite languages as well.

A Simple Automaton (0)

accepting state

A Simple Automaton (1)

on input "0110", the machine goes:

$$q_1 \rightarrow q_1 \rightarrow q_2 \rightarrow q_2 \rightarrow q_3 = "reject"$$

A Simple Automaton (1)

on input "0110", the machine goes:

$$q_1 \rightarrow q_1 \rightarrow q_2 \rightarrow q_2 \rightarrow q_3 = "reject"$$

A Simple Automaton (2)

on input "101", the machine goes: $q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_2 =$ "accept"

A Simple Automaton (3)

010: reject

11: accept

010100100100100: accept

010000010010: reject

ε: reject

Examples of languages accepted by DFA

- L = { w | w ends with 1}
- L = { w | w contains sub-string 00}
- L = { w | |w| is divisible by 3}
- L = { w | |w| is odd or w ends with 1}
- $L = \{ w \mid |w| \text{ is divisible by } 10^6 \}$

Note: $\Sigma = \{0,1\}$ in each case

DFA design

- Design DFA for language
 - $-L = \{w \in \{0,1\}^* \mid w \text{ contains substring } 01\}$
- Three states to remember:
 - Have seen the substring 01
 - Not seen substring 01 and last symbol was 0
 - Not seen substring 01 and last symbol was not 0
- General principles?

DFA: Formal definition

A deterministic finite automaton (DFA)
 M is defined by a 5-tuple M=(Q,Σ,δ,q₀,F)

- Q: finite set of states
- $-\Sigma$: finite alphabet
- $-\delta$: transition function $\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}$
- $-q_0 \in \mathbb{Q}$: start state
- F⊆Q: set of accepting states

$M = (Q, \Sigma, \delta, q, F)$

$$\underline{\text{states}} \ Q = \{q_1, q_2, q_3\}$$

alphabet $\Sigma = \{0,1\}$

start state q1

<u>accept states</u> $F=\{q_2\}$

transition function δ :

Recognizing Languages (defn)

A finite automaton $\mathbf{M} = (\mathbf{Q}, \mathbf{\Sigma}, \mathbf{\delta}, \mathbf{q}, \mathbf{F})$ accepts a string/word $\mathbf{w} = \mathbf{w}_1 \dots \mathbf{w}_n$ if and only if there is a sequence $\mathbf{r}_0 \dots \mathbf{r}_n$ of states in \mathbf{Q} such that:

1)
$$r_0 = q_0$$

2)
$$\delta(r_i, w_{i+1}) = r_{i+1}$$
 for all $i = 0, ..., n-1$

3)
$$r_n \in F$$

Regular Languages

The language recognized by a finite automaton M is denoted by L(M).

A <u>regular language</u> is a language for which there exists a recognizing finite automaton.

Two DFA Questions

Given the description of a finite automaton $\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, \mathbf{q}, \mathbf{F})$, what is the language $\mathbf{L}(\mathbf{M})$ that it recognizes?

In general, what kind of languages can be recognized by finite automata? (What are the regular languages?)

Union of Two Languages

Theorem 1.12: If A_1 and A_2 are regular languages, then so is $A_1 \cup A_2$. (The regular languages are 'closed' under the union operation.)

<u>Proof idea</u>: A_1 and A_2 are regular, hence there are two DFA M_1 and M_2 , with A_1 = $L(M_1)$ and A_2 = $L(M_2)$. Out of these two DFA, we will make a third automaton M_3 such that $L(M_3) = A_1 \cup A_2$.

Proof Union-Theorem (1)

$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$

Define $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$ by:

- $Q_3 = Q_1 \times Q_2 = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\}$
- $\delta_3((r_1,r_2),a) = (\delta_1(r_1,a), \delta_2(r_2,a))$
- $q_3 = (q_1, q_2)$
- $F_3 = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Proof Union-Theorem (2)

The automaton $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$ runs M_1 and M_2 in 'parallel' on a string w.

In the end, the final state (r_1,r_2) 'knows' if $w \in L_1$ (via $r_1 \in F_1$?) and if $w \in L_2$ (via $r_2 \in F_2$?)

The accepting states F_3 of M_3 are such that $w \in L(M_3)$ if and only if $w \in L_1$ or $w \in L_2$, for: $F_3 = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}.$

Concatenation of L₁ and L₂

Definition: $L_1 \cdot L_2 = \{ xy \mid x \in L_1 \text{ and } y \in L_2 \}$

Example: $\{a,b\} \cdot \{0,11\} = \{a0,a11,b0,b11\}$

Theorem 1.13: If L_1 and L_2 are regular langues, then so is $L_1 \cdot L_2$. (The regular languages are 'closed' under concatenation.)

Proving Concatenation Thm.

Consider the concatenation: {1,01,11,001,011,...} • {0,000,00000,...} (That is: the bit strings that end with a "1", followed by an odd number of 0's.)

Problem is: given a string w, how does the automaton know where the L_1 part stops and the L_2 substring starts?

We need an M with 'lucky guesses'.

Nondeterminism

Nondeterministic machines are capable of being lucky, no matter how small the probability.

A nondeterministic finite automaton has transition rules/possibilities like

22

A Nondeterministic Automaton

This automaton accepts "0110", because there is a possible path that leads to an accepting state, namely:

$$q_1 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_4 \rightarrow q_4$$

1/8/2015

A Nondeterministic Automaton

The string 1 gets rejected: on "1" the automaton can only reach: $\{q_1,q_2,q_3\}$.

Nondeterminism ~ Parallelism

For any (sub)string w, the nondeterministic automaton can be in a set of possible states.

If the final set contains an accepting state, then the automaton accepts the string.

"The automaton processes the input in a parallel fashion. Its computational path is no longer a line, but a tree." (Fig. 1.16)

Nondeterministic FA (def.)

 A nondeterministic finite automaton (NFA) M is defined by a 5-tuple M=(Q,Σ,δ,q₀,F), with

- –Q: finite set of states
- $-\Sigma$: finite alphabet
- $-\delta$: transition function $\delta: \mathbb{Q} \times \Sigma_{\varepsilon} \to \mathcal{P}(\mathbb{Q})$
- $-q_0 \in \mathbb{Q}$: start state
- –F⊆Q: set of accepting states

Nondeterministic $\delta: \mathbb{Q} \times \Sigma_{\varepsilon} \to \mathcal{P}(\mathbb{Q})$

The function $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ is the crucial difference. It means: "When reading symbol "a" while in state q, one can go to one of the states in $\delta(q,a) \subseteq Q$."

The ε in $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$ takes care of the empty string transitions.

Recognizing Languages (def)

A nondeterministic FA $\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, \mathbf{q}, \mathbf{F})$ accepts a string $\mathbf{w} = \mathbf{w}_1 \dots \mathbf{w}_n$ if and only if we can rewrite \mathbf{w} as $\mathbf{y}_1 \dots \mathbf{y}_m$ with $\mathbf{y}_i \in \Sigma_{\varepsilon}$ and there is a sequence $\mathbf{r}_0 \dots \mathbf{r}_m$ of states in \mathbf{Q} such that:

1)
$$r_0 = q_0$$

2)
$$r_{i+1} \in \delta(r_i, y_{i+1})$$
 for all $i=0,...,m-1$

3)
$$r_m \in F$$

Exercises

[Sipser 1.5]: Give NFAs with the specified number of states that recognize the following languages over the alphabet $\Sigma=\{0,1\}$:

- 1. { w | w ends with 00}, three states
- 2. {0}; two states
- 3. { w | w contains even number of 0s, or exactly two 1s}, six states
- 4. $\{0^n \mid n \in \mathbb{N}\}$, one state

Exercises - 2

Proof the following result: "If L_1 and L_2 are regular languages, then $L_1 \cap \overline{L}_2$ is a regular language too."

Describe the language that is recognized by this nondeterministic automaton:

30