

# ISTANBUL TECHNICAL UNIVERSITY

UCK 419E

COMPUTATIONAL AERODYNAMICS

CRN: 12167

# HomeWork 6

NAME: NESLİHAN GÜLSOY

*STUDENT ID* : 110160111

DEPARTMENT: AEROSPACE ENGINEERING

INSTRUCTORS : Prof.Dr. Melike Nikbay

**QUESTION 1:** Using the following periodic function, evaluate both first and second derivatives using the following formulas:

$$u = -\sin(x) + (\sin(2x))\cos(x) \tag{1}$$

- 1. First Derivative
- (a) 1st order backward
- (b) 2nd order central
- (c) 2nd order backward
- (d) 4th order central
- 2. Second Derivative
- (a) 1st order backward
- (b) 2nd order central
- (c) 4th order central

Start with a  $\Delta x$  that yields five subdivisions for one period of the function, and then halve  $\Delta x$  until you reach "grid independence". Analytically determine the derivatives from the given function.

- Compare the analytic results with the numerical results obtained using up to twelve levels of halving.
- Plot total error versus  $\Delta x$  on a log-log scale. Write an explanation of what you observed. Perform a hand calculation of each of the derivatives for the first Ax at x = 3.0 and compare your answers with the results from the spreadsheet.

#### **SOLUTION 1:**

Analytical first and second order derivatives are:

$$\frac{\partial u}{\partial x} = -\cos(x) + 2\sin(4x)\cos(x) - \sin(2x)^2\sin(x) \tag{2}$$

$$\frac{\partial^2 u}{\partial x^2} = \sin(x) + 8\cos(4x)\cos(x) - 2\sin(x)\sin(4x) - 2\sin(4x)\sin(x) - \cos(x)\sin(2x)^2 \tag{3}$$

Period of u is equal to  $2\pi$ . So first  $\Delta x_1 = 2\pi/5$ . After that,  $\Delta x$  is halved 12 times. Formulas for finite differences are taken from Ref. [1] and they are implemented on MatLab. To check grid in-dependency, numeric solutions are compared and it is seen that after 9 halving, grid in-dependency is achieved.

Numeric solutions are conducted on x = 3. Total error versus  $\Delta x$  on a log-log scale are given in Fig. 1 and Fig. 2. By looking the Figs. 1, 2 it is seen that, total error decreases as  $\Delta x$  decreases. Also 4th order central finite difference method gives more accurate results that others. As expected 1st order backward method gives less accurate results.



Fig. 1 Total error versus  $\Delta x$ , First Derivative



Fig. 2 Total error versus  $\Delta x$ , Second Derivative

### **QUESTION 2:** Solve the Heat Equation

$$u_t = 0.2u_{xx} \tag{4}$$

on a computer using the simple explicit method for the initial conditions

$$u(x,0) = 100\sin\left(\frac{\pi x}{L}\right) \tag{5}$$

use  $\pi = 4tan^{-1}(1) =$ , L = 1 and the boundary conditions

$$u(0,t) = u(L,t) = 0 (6)$$

Compute to t=1.5 for the following cases (if possible)

| Case | <b>Number of Grid Points</b> | CFL                          |
|------|------------------------------|------------------------------|
| 1    | 19                           | 0.25                         |
| 2    | 9                            | 0.50                         |
| 3    | 19                           | 0.50                         |
| 4    | 19                           | Find the CFL for instability |
| 5    | 19                           | 2.00                         |

Where the CFL number is  $\alpha \frac{\Delta t}{\Delta x^2}$  and  $\alpha = 0.2$  (the coefficient of u,, in the governing equation). Repeat the problem using Laasonen's simple implicit method. Compare all of your results with the exact solution.

$$u(x,t) = 100e^{-\alpha \pi^2 t} \sin(\pi x) \tag{7}$$

Comment on the results relative to stability, accuracy, type of error, number of grid points, method used, etc.

#### **SOLUTION 2:**

Formulation for simple explicit and Laasonen's simple implicit methods are taken from Refs. [1], [2]. CFL number is taken as 0.72 for Case4. Fig. 3 represents comparison of analytical results with explicit method at t = 0 and t = 1.5 s for first 3 cases. At Fig. 4, simple implicit method solutions are represented for first 3 cases. Solution for Case 4 and Case 5 are shown at Fig. 5.

|       | max. $\varepsilon$ % |          |  |
|-------|----------------------|----------|--|
|       | Explicit             | Implicit |  |
| Case1 | 0.3765               | 1.8458   |  |
| Case2 | 8.1726               | 13.2610  |  |
| Case3 | 1.5239               | 2.9221   |  |

Table 1 Error Analysis of Methods



Fig. 3 Simple Explicit Method



Fig. 4 Simple Implicit Method

As seen above figure and Tab. 1 there is a strong relationship between accuracy and grid number. Also, CFL number affects accuracy. Accuracy increases as the number of grids increases and CFL number decreases. Maximum error occurs at  $t = 1.5 \, s$  at both methods because of cumulative error. Cumulative error occurs mainly due to truncation error of numeric approaches to derivatives.



Fig. 5 Solutions for Case 4 and Case 5

For first 3 cases simple implicit method gives less accurate results than simple explicit method. But as seen at Fig 5, explicit method becomes unstable for CFL numbers greater than a certain number. Stability condition is given with  $CFL \le 0.5$  [1]. Unlike the first 3 cases, random errors are also seen when stability conditions are not satisfied in explicit method. However, the implicit method remains stable under higher CFL numbers.

## References

- [1] Cummings, R. M., Mason, W. H., Morton, S. A., and McDaniel, D. R., *Applied Computational Aerodynamics: A Modern Engineering Approach*, Cambridge University Press, 2015. https://doi.org/10.1017/CBO9781107284166.
- [2] Chapra, S. C., and Canale, R. P., Numerical Methods for Engineers, 7th ed., McGraw-Hill Education, 2015.