

Operating system

胡燕 大连理工大学

内容纲要

13.3 IO缓冲技术

- 一、IO子系统中的缓冲技术
- 二、单缓冲
- 三、双缓冲
- 四、环形缓冲

一、IO子系统中的缓冲技术

IO子系统中引入缓冲的目的

- 应对CPU与外设间速度不匹配的矛盾
- 解决逻辑记录与物理记录不匹配的矛盾

二、IO缓冲技术-单缓冲

Single Buffer

- 提供足够大的单个缓冲区,可以减少访问设备的 频次,提升效率

三、IO缓冲技术-双缓冲

Double Buffer

- 对单缓冲的优化,通过增加一个系统buffer来获 得数据输入与数据处理的并发

三、IO缓冲技术-双缓冲

双缓冲依旧存在的不足:

- 无法应对IO bursts (例如, 网卡, 可能突然有 大量数据涌入, 需要IO子系统处理)

四、IO缓冲技术-环形缓冲

Circular Buffer

- 有限环形缓冲,通过缓冲区数量的扩容,加上有限缓冲的并发处理,可以应对IO Bursts

本讲小结

- IO缓冲技术概述
- 三种典型的缓冲模式
 - 单缓冲
 - 双缓冲
 - 环形缓冲

