COMPSCI-1DM3: Assignment #2 CH 4-5

Author: Qusay Qadir Instructor: Mahdee Jodayree MacID: qadirq Tut: T02

Due Date: July 21st, 2023

Contents

1	Question #1. [30 Marks]	3
2	Question #2. [20 Marks]	5
3	Question #3. [30 Marks]	6
4	Question #4. [10 Marks]	8
5	Question #5. [20 Marks]	9
6	Question #6. [20 Marks]	10
7	Question #7. [30 Marks]	11
8	Question #8. [30 Marks]	12
9	Question #9. [30 Marks]	13
10	Question #10. $[10 \text{ Marks}]$	14
11	Question #11. [20 Marks]	15
12	Questions #12. [20 Marks]	16

1 Question #1. [30 Marks]

Suppose that **a** and **b** are integers, $a \equiv 11 \pmod{19}$, and $b \equiv 3 \pmod{19}$. Find the integer c with $0 \le c \le 18$ such that

First we need to determine the value of a, which can be done by finding the remainder of 11 / 19. This would be as such that 11 = 19(0) + 11. Thus the lowest non-negative value of a that satisfies a $\equiv 11 \pmod{19}$ is 11

Second, we need to determine the value of b, which can be done so as finding the remainder of 3 / 19 which is 3 = 19(0) + 3. Thus the lowest non-negative value of b that satisfies $b \equiv 3 \pmod{19}$ is 3.

```
a) c \equiv 13a \pmod{19}
c \equiv (13)(11) \pmod{19}
c \equiv 143 \pmod{19}
Therefore, the value of c is 10 such that the remainder of 143 / 19 is 10, 143 =
19(7) + 10
c \equiv 10 \pmod{19}
b) c \equiv 8b \pmod{19}
c \equiv (8)(3) \pmod{19}
c \equiv 24 \pmod{19}
Therefore, the value of c is 5 such that the remainder of 24/19 is 5, 24 =
19(0) + 5
c \equiv 5 \pmod{19}
c) c \equiv a - b \pmod{19}
c \equiv (11 - 3)(\bmod 19)
c \equiv 8 \pmod{19}
Therefore, the value of c is 8 such that the remainder of 9 / 19 is 8, 8 = 19(0) + 8
c \equiv 8 \pmod{19}
d) c \equiv 7a + 3b \pmod{19}
```

$$c \equiv 7(11) + 3(3) \pmod{19}$$

$$c \equiv 86 \pmod{19}$$

Therefore, the value of c is 10 such that the remainder of 86 / 19 is 10, 86 = 19(4) + 10

 $c \equiv 10 \pmod{19}$

$$e) c \equiv 2a^2 + 3b^2 \pmod{19}$$

$$c \equiv 2(11)^2 + 3(3)^2 \pmod{19}$$

$$c \equiv 269 \pmod{19}$$

Therefore, the value of c is 8 such that the remainder of 269 / 19 is 3, 269 = 19(14) + 3

 $c \equiv 3 \pmod{19}$

$$f) c \equiv a^3 + 4b^3 \pmod{19}$$

$$c \equiv (11)^3 + 4(3)^3 \pmod{19}$$

$$c \equiv 1439 \pmod{19}$$

Therefore, the value of c is 14 such that the remainder of 1439 / 19 is 14, 1439 = 19(75) + 14

$$c \equiv 14 \pmod{19}$$

2 Question #2. [20 Marks]

What are the quotient and remainder when

To solve the following questions take into consideration the division algorithm. a=dq+r where d represents the divisor, q represents the quotient, and r represents the remainder with r being $0 \leq r < d$

a) 19 is divided by 7

$$19 = 7(2) + 5$$

$$2 = 19 \text{ div } 7$$

$$5 = 19 \mod 7$$

b) -111 is divided by 11

$$-111 = 11(-11) + 10$$

$$-11 = -111 \text{ div } 11$$

$$10 = -111 \mod 11$$

c) 789 is divided by 23

$$789 = 23(34) + 7$$

$$34 = 789 \text{ div } 23$$

$$7 = 789 \mod 23$$

d) 1001 is divided by 13

$$1001 = 13(77) + 0$$

$$77=1001~\mathrm{div}~13$$

$$0 = 1001 \mod 13$$

3 Question #3. [30 Marks]

Find all the solutions of the congruence $x^2 \equiv 16 \pmod{105}$

The prime factorization of 105 is 3 * 5 * 7. Now we can solve the congruence modulo for each prime factor separately.

For modulo 3:

The solutions are $x \equiv 1 \pmod{3}$ and $x \equiv 2 \pmod{3}$ where x = 1 and x = 2

For modulo 5:

The solutions are $x \equiv 1 \pmod{5}$ and $x \equiv 4 \pmod{5}$ where x = 1 and x = 4

For modulo 7:

The solutions are $x \equiv 3 \pmod{7}$ and $x \equiv 4 \pmod{7}$ where x = 3 and x = 4

Since we only need to find 3 solutions of the 8, we only need to use 3 of the possibilities of the Chinese remainder theorem.

The first system for the Chinese remainder theorem looks like this:

 $1 \pmod{3}$

 $1 \pmod{5}$

 $3 \pmod{7}$

The second system for the Chinese remainder theorem looks like this:

 $1 \pmod{3}$

 $1 \pmod{5}$

 $4 \pmod{7}$

The third system for the Chinese remainder theorem looks like this:

 $1 \pmod{3}$

 $4 \pmod{5}$

 $4 \pmod{7}$

Step 1: Find $M_1, M_2 \ \& \ M_3$, for each individual value of the modulo

$$M_1 = 105 / 3 = 35$$

$$M_2 = 105 / 5 = 21$$

$$M_3 = 105 / 7 = 15$$

Step 2: Find the inverse of each of the M values above with there respective modulo and let them be dictated by y_1, y_2, y_3

2 is the inverse of $35 \pmod{3}$ as $2*35 = 1 \pmod{3}$. Thus the value of y_1 is 2 1 is the inverse of $21 \pmod{5}$ as $1*(21) = 1 \pmod{5}$. Thus the value of y_2 is 1 1 is the inverse of $15 \pmod{7}$ as $1*(15) = 1 \pmod{7}$. Thus the value of y_3 is 1

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + a_3 M_3 y_3$$

For the first system solution the values of $a_1 = 1$, $a_2 = 1$ and $a_3 = 3$. Where x:

$$= (1)(35)(2) + (1)(21)(1) + (3)(15)(1)$$

= 136
136 \(\pi 31\)(mod 105)

For the second system solution the values of $a_1 = 1$, $a_2 = 1$ and $a_3 = 4$. Where x:

$$= (1)(35)(2) + (1)(21)(1) + (4)(15)(1)$$

= 151
151 \pm 46(mod 105)

For the third system solution the values of $a_1=1,\,a_2=4$ and $a_3=4.$ Where x:

$$= (1)(35)(2) + (4)(21)(1) + (4)(15)(1)$$

= 214

$$214 \equiv 4 \pmod{105}$$

Therefore 3 of 8 solutions of the congruence of $x^2 \equiv 16 \pmod{105}$ are $x = 31 \pmod{105}$, $x = 46 \pmod{105}$, $x = 4 \pmod{105}$

4 Question #4. [10 Marks]

Solve the congruence $2x = 7 \pmod{17}$ using the inverse of 2 modulo 17

First, since the gcd (2,17) = 1, we know these numbers are relatively prime. Next, we need to find the inverse of 2 modulo 17, this means 2^* (some integer) $= 1 \pmod{17}$, and by inspection, we can determine that the integer must be 9, as 2(9) = 18 when divided by 17 gives remainder 1 thus 9 is the inverse of $2 \pmod{17}$ as $2^*(9) = 1 \pmod{17}$

Next, we can multiply both sides of the equation by 9 to $2x = 7 \pmod{17}$

$$9*(2x) \equiv 7*(9) \pmod{17}$$

 $x \equiv 63 \pmod{17}$
 $x = 12$

Therefore, all solutions of x are in the form 12 + 17n where n is any real integer

5 Question #5. [20 Marks]

6 Question #6. [20 Marks]

7 Question #7. [30 Marks]

8 Question #8. [30 Marks]

9 Question #9. [30 Marks]

10 Question #10. [10 Marks]

11 Question #11. [20 Marks]

12 Questions #12. [20 Marks]