Función de costo para TSP

Canek Peláez

8 de febrero de 2018

1. La gráfica

Nuestras ciudades y sus conexiones están determinadas por una gráfica $G(E,V), E \subset V \times V$ con una función de peso para las aristas $w: E \longrightarrow \mathbb{R}^+$. La gráfica, aunque muy densa, no es completa, por lo que $w(e) = \infty$ si $e \notin E$.

Para facilitarle la vida a nuestros sistemas, vamos a completar la gráfica G(E,V) a la gráfica completa $K_{|V|}$, y definir la función w' para todas las aristas en $K_{|V|}$.

Definición 1.1 (Pares conectados) Sea $S \subset V$; definimos a los pares conectados E_S de S como

$$E_S = \{(u, v) : u, v \in S \ y \ (u, v) \in E\}.$$

Cada par en E_S es único; esto es, si $(u, v) \in E_S$, entonces no consideramos a (v, u) como parte del conjunto.

Definición 1.2 (Promedio de peso) Sea $S \subset V$; el promedio de peso de S (denotado por $\mathcal{A}(S)$) estará definido por:

$$\mathscr{A} = \frac{\sum_{e \in E_S} w(e)}{|E_S|}.$$

En otras palabras, el promedio de peso de un subconjunto S de V está definido por el promedio de todos los pesos entre pares conectados en S.

Definición 1.3 (Castigo) Sea $S \subset V$; el castigo de V (denotado por \mathscr{P}) está definido como:

$$\mathscr{P}(S) = \mathscr{F} \max\{S\}.$$

La constante $\mathcal F$ es un factor libre (pero mayor a 1) que debe ser sintonizado experimentalmente.

Con $\mathcal P$ podemos definir la función de peso aumentada w' para todas las aristas de $K_{|V|}$.

Definición 1.4 (Función de peso aumentada) Definimos $w': V \times V \longrightarrow \mathbb{R}^+$ de la siguiente manera:

$$w'(u,v) = \begin{cases} w(u,v) & si(u,v) \in E \\ \mathscr{P} & en \ otro \ caso \end{cases}$$

Con esto ya podemos definir nuestra función de costo para TSP.

2. Función de costo

Sea $S\subset V$; la función de costo f de una permutación $P=\{v_1,\ldots,v_k\}$ de los elementos de S se define como:

$$f(S) = \frac{\sum_{i=2}^{k} w'(v_{i-1}, v_i)}{\mathscr{A}(|S| - 1)}.$$