Fourier Transformation Welcome To The World of Signals

Gourove Roy

Department of CSE, BUET

November 29, 2024

What is Fourier Transformation?(Recap)

The generalized form of the complex Fourier series is referred to as the Fourier transform. It helps to expand the non-periodic functions and convert them into easy sinusoid functions.

(b) Fourier transformed signal

* Fourier transform Formula

- * Fourier transform Formula
- * Forward Fourier Transform

- * Fourier transform Formula
- * Forward Fourier Transform
- * Inverse Fourier Transform

- * Fourier transform Formula
- * Forward Fourier Transform
- * Inverse Fourier Transform
- * Fourier Transform Notation

- * Fourier transform Formula
- * Forward Fourier Transform
- * Inverse Fourier Transform
- * Fourier Transform Notation
- * Properties of Fourier Transform

- * Fourier transform Formula
- * Forward Fourier Transform
- * Inverse Fourier Transform
- * Fourier Transform Notation
- * Properties of Fourier Transform
- * Fourier Transform Table

Fourier Transform Formula

There are two types of Fourier transform i.e., forward Fourier transform and inverse Fourier transform.

The forward Fourier transform of a continuous-time signal x(t) is given by

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

The inverse Fourier transform is given by

$$x(t) = \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

where ω is the angular frequency, j is the imaginary unit $(\sqrt{-1})$, and t is the time.

Forward Fourier Transform

The forward Fourier transform is a mathematical technique used to transform a time-domain signal into its frequency-domain representation. The forward Fourier transform of a continuous-time signal x(t) is given by

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

where $X(\omega)$ is the Fourier transform of x(t).

Inverse Fourier Transform

The inverse Fourier transform is the process of converting a frequency-domain representation of a signal back into its time-domain form. The inverse Fourier transform is given by

$$x(t) = \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

where x(t) is the time-domain signal and $X(\omega)$ is the Fourier transform of x(t).

Fourier Transform Notation

For convenience, we will write the Fourier transform of a signal x(t) as

$$X(f) = \mathcal{F}\{x(t)\}\$$

and the inverse Fourier transform of X(f) as

$$x(t) = \mathcal{F}^{-1}\{X(f)\}\$$

Note that

$$\mathcal{F}^{-1}\{\mathcal{F}\{x(t)\}\} = x(t)$$

at points of continuity of x(t).

Example of Fourier Transform

Let x(t) = rect(t) where rect(t) is the rectangular pulse function defined as

$$rect(t) = egin{cases} 1 & ext{if } |t| < rac{1}{2} \\ 0 & ext{otherwise} \end{cases}$$

and $sinc(\omega)$ is the sinc function defined as

$$sinc(\omega) = egin{cases} rac{sin(\omega/2)}{\omega/2} & ext{if } \omega
eq 0 \\ 1 & ext{if } \omega = 0 \end{cases}$$

The forward Fourier transform of rect(t) is $sinc(\omega)$ and the inverse Fourier transform of $sinc(\omega)$ is rect(t).

Example of Fourier Transform

(b) Fourier transformed signal

- * Linearity
- * Time Shifting
- * Frequency Shifting
- * Time Scaling
- * Time Reversal
- * Differentiation
- * Integration
- * Convolution

* Linearity

- * Time Shifting
- * Frequency Shifting
- * Time Scaling
- * Time Reversal
- * Differentiation
- * Integration
- * Convolution

Linearity

The Fourier transform of a linear combination of signals is linear:

$$F\{ax_1(t) + bx_2(t)\} = aX_1(\omega) + bX_2(\omega)$$

Linearity

Let $x_1(t) = rect(t-1)$ and $x_2(t) = rect(t+1)$ be two signals and let $X_1(\omega) = \mathcal{F}\{rect(t-1)\}$ and $X_2(\omega) = \mathcal{F}\{rect(t+1)\}$ be their fourier transforms respectively.

Here,

$$\mathcal{F}\{2 \cdot rect(t-1)\} = 2 \cdot \mathcal{F}\{rect(t-1)\}$$

Linearity

(a)
$$2 \cdot rect(t-1) + 3 \cdot rect(t+1)$$

(b)
$$\mathcal{F}$$
{2 · $rect(t-1) + 3 \cdot rect(t+1)$ }

Here,

$$\mathcal{F}\{2 \cdot rect(t-1) + 3 \cdot rect(t+1)\} = 2 \cdot \mathcal{F}\{rect(t-1)\} + 3 \cdot \mathcal{F}\{rect(t+1)\}$$

- * Linearity
- * Time Shifting
- * Frequency Shifting
- * Time Scaling
- * Time Reversal
- * Differentiation
- * Integration
- * Convolution

Time Shifting

Shifting a signal in time corresponds to a phase shift in its Fourier transform:

$$x(t-t_0) \xrightarrow{\mathsf{FT}} X(\omega) e^{-j\omega t_0}$$

Time Shifting

Let x(t) = rect(t) be a signal with Fourier transform $X(\omega) = \mathcal{F}\{rect(t)\}$.

- * Linearity
- * Time Shifting
- * Frequency Shifting
- * Time Scaling
- * Time Reversal
- * Differentiation
- * Integration
- * Convolution

Frequency Shifting

Shifting in frequency results in modulation of the time-domain signal:

$$X(\omega - \omega_0) \xrightarrow{\mathsf{IFT}} x(t)e^{j\omega_0 t}$$

Frequency Shifting

Let $X(\omega)=rac{\sinrac{\omega}{2}}{rac{\omega}{2}}$ and $x(t)=\mathcal{F}^{-1}\{X(\omega)\}$ is the inverse Fourier transform of $X(\omega)$.

- * Linearity
- * Time Shifting
- * Frequency Shifting
- * Time Scaling
- * Time Reversal
- * Differentiation
- * Integration
- * Convolution

Time Scaling

Stretching or compressing a signal in time inversely scales its frequency spectrum:

$$x(at) \xrightarrow{\mathsf{FT}} \frac{1}{|a|} X\left(\frac{\omega}{a}\right)$$

Time Scaling

Let x(t) = rect(t) be a signal with Fourier transform $X(\omega) = \mathcal{F}\{rect(t)\}$.

- * Linearity
- * Time Shifting
- * Frequency Shifting
- * Time Scaling
- * Time Reversal
- * Differentiation
- * Integration
- * Convolution

Time Reversal

Time reversal in the time domain corresponds to frequency reversal in the frequency domain:

$$x(-t) \xrightarrow{\mathsf{FT}} X(-\omega)$$

Time Reversal

Let x(t) = rect(t) be a signal with Fourier transform $X(\omega) = \mathcal{F}\{rect(t)\}$.

- * Linearity
- * Time Shifting
- * Frequency Shifting
- * Time Scaling
- * Time Reversal
- * Differentiation
- * Integration
- * Convolution

Differentiation

Differentiation in the time domain corresponds to multiplication by $j\omega$ in the frequency domain:

$$\frac{d}{dt}x(t) \xrightarrow{\mathsf{FT}} j\omega X(\omega)$$

Differentiation

Let x(t) = rect(t) be a signal with Fourier transform $X(\omega) = \mathcal{F}\{rect(t)\}$.

- * Linearity
- * Time Shifting
- * Frequency Shifting
- * Time Scaling
- * Time Reversal
- * Differentiation
- * Integration
- * Convolution

Integration

Integration in the time domain corresponds to multiplication by $\frac{1}{j\omega}$ in the frequency domain:

$$\int x(t)dt \xrightarrow{\mathsf{FT}} \frac{1}{j\omega} X(\omega)$$

Integration

Let x(t) = rect(t) be a signal with Fourier transform $X(\omega) = \mathcal{F}\{rect(t)\}$.

- * Linearity
- * Time Shifting
- * Frequency Shifting
- * Time Scaling
- * Time Reversal
- * Differentiation
- * Integration
- * Convolution

Convolution

Convolution in the time domain corresponds to multiplication in the frequency domain:

$$x(t) * y(t) \xrightarrow{\mathsf{FT}} X(\omega)Y(\omega)$$

Convolution

Let x(t) = rect(t) and y(t) = rect(t) be signals with Fourier transforms $X(\omega) = \mathcal{F}\{rect(t)\}\$ and $Y(\omega) = \mathcal{F}\{rect(t)\}\$. The convolution in the time domain corresponds to the product in the frequency domain:

$$z(t) = x(t) * y(t) \leftrightarrow Z(\omega) = X(\omega) \cdot Y(\omega).$$

(b) $\mathcal{F}\{rect(t)\}$ (Sinc function)

Fourier Transform Properties (Table 1)

Property	Time Domain	Fourier Transform
Linearity	$x(t) = Ax_1(t) + Bx_2(t)$	$X(j\omega) = AX_1(j\omega) + BX_2(j\omega)$
Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
Conjugation	x*(t)	$X^*(-j\omega)$
Differentiation in Time	$\frac{d^n x(t)}{dt^n}$	$(j\omega)^n X(j\omega)$
Differentiation in Frequency	-jtx(t)	$\frac{dX(j\omega)}{d\omega}$
Time Integration	$\int_{-\infty}^t x(\tau) d\tau$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$

Fourier Transform Properties (Table 2)

Property	Time Domain	Fourier Transform
Time Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Time Reversal	x(-t)	$X(-j\omega)$
Frequency Shifting	$x(t)e^{j\omega_0t}$	$X(j(\omega-\omega_0))$
Duality	X(t)	$2\pi x(-j\omega)$
Time Convolution	x(t) * h(t)	$X(j\omega)H(j\omega)$
Parseval's Theorem	$\int_{-\infty}^{\infty} x(t) ^2 dt$	$\frac{1}{2\pi}\int_{-\infty}^{\infty} X(j\omega) ^2d\omega$
Modulation	z(t) = x(t)y(t)	$Z(\omega) = \frac{1}{2\pi}X(j\omega) * Y(j\omega)$

Fourier Transform Table

Signal in Time Domain	Fourier Transform
$\delta(t)$	1
u(t)	$rac{1}{j\omega}+\pi\delta(\omega)$
$\delta(t-t_0)$	$e^{-j\omega t_0}$
$te^{-at}u(t)$	$rac{1}{(a+j\omega)^2}$
u(-t)	$\pi\delta(\omega)-rac{1}{j\omega}$
$e^{at}u(-t)$	$rac{1}{a-j\omega}$

Fourier Transform Table

Signal in Time Domain	Fourier Transform
$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$
$\cos(\omega_0 t)$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
$\sin(\omega_0 t)$	$-j\pi[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$
$\frac{1}{a^2+t^2}$	$e^{-a \omega }$
Sgn(t)	$\frac{2}{j\omega}$
1 (for all t)	$2\pi\delta(\omega)$