Estimadores de Mínimos Cuadrados Regresión Lineal con Dos Regresores

Demostración Matemática

9 de junio de 2025

Contenido

- Modelo de Regresión Lineal
- Método de Mínimos Cuadrados
- 3 Sistema de Ecuaciones Normales
- 4 Solución del Sistema
- 5 Propiedades de los Estimadores
- 6 Forma Matricial

Modelo de Regresión Lineal con Dos Regresores

Modelo Poblacional

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

donde:

- Y_i: variable dependiente
- X_{1i}, X_{2i} : variables independientes (regresores)
- $\beta_0, \beta_1, \beta_2$: parámetros poblacionales
- u_i: término de error
- $i = 1, 2, \dots, n$ observaciones

Supuestos del Modelo

- Linealidad: El modelo es lineal en parámetros
- **2** Muestreo aleatorio: (X_{1i}, X_{2i}, Y_i) es una muestra aleatoria
- **No colinealidad perfecta**: X_1 y X_2 no son perfectamente colineales
- **Media condicional cero**: $E[u_i|X_{1i},X_{2i}]=0$
- **1** Homocedasticidad: $Var(u_i|X_{1i}, X_{2i}) = \sigma^2$

Función Objetivo

Suma de Cuadrados de Residuos

Queremos minimizar:

$$SSR(\beta_0, \beta_1, \beta_2) = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_{1i} - \beta_2 X_{2i})^2$$

Condiciones de Primer Orden

Derivamos respecto a cada parámetro e igualamos a cero:

$$\frac{\partial SSR}{\partial \beta_0} = 0 \tag{1}$$

$$\frac{\partial SSR}{\partial \beta_1} = 0 \tag{2}$$

$$\frac{\partial SSR}{\partial \beta_2} = 0 \tag{3}$$

Derivación - Paso 1

Primera Derivada respecto a β_0

$$\frac{\partial SSR}{\partial \beta_0} = \frac{\partial}{\partial \beta_0} \sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_{1i} - \beta_2 X_{2i})^2 \tag{4}$$

$$=\sum_{i=1}^{n}2(Y_{i}-\beta_{0}-\beta_{1}X_{1i}-\beta_{2}X_{2i})(-1)$$
 (5)

$$=-2\sum_{i=1}^{n}(Y_{i}-\beta_{0}-\beta_{1}X_{1i}-\beta_{2}X_{2i})$$
(6)

Igualando a cero:

$$\sum_{i=1}^{n} Y_{i} = n\beta_{0} + \beta_{1} \sum_{i=1}^{n} X_{1i} + \beta_{2} \sum_{i=1}^{n} X_{2i}$$

Derivación - Paso 2

Primera Derivada respecto a eta_1

$$\frac{\partial SSR}{\partial \beta_1} = -2 \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_{1i} - \beta_2 X_{2i}) X_{1i}$$
 (7)

Igualando a cero:

$$\sum_{i=1}^{n} X_{1i} Y_{i} = \beta_{0} \sum_{i=1}^{n} X_{1i} + \beta_{1} \sum_{i=1}^{n} X_{1i}^{2} + \beta_{2} \sum_{i=1}^{n} X_{1i} X_{2i}$$

Derivación - Paso 3

Primera Derivada respecto a eta_2

$$\frac{\partial SSR}{\partial \beta_2} = -2\sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_{1i} - \beta_2 X_{2i}) X_{2i}$$
 (8)

Igualando a cero:

$$\sum_{i=1}^{n} X_{2i} Y_{i} = \beta_{0} \sum_{i=1}^{n} X_{2i} + \beta_{1} \sum_{i=1}^{n} X_{1i} X_{2i} + \beta_{2} \sum_{i=1}^{n} X_{2i}^{2}$$

Ecuaciones Normales

Sistema de 3 ecuaciones con 3 incógnitas

$$n\hat{\beta}_0 + \hat{\beta}_1 \sum X_{1i} + \hat{\beta}_2 \sum X_{2i} = \sum Y_i$$
 (9)

$$\hat{\beta}_0 \sum X_{1i} + \hat{\beta}_1 \sum X_{1i}^2 + \hat{\beta}_2 \sum X_{1i} X_{2i} = \sum X_{1i} Y_i$$
 (10)

$$\hat{\beta}_0 \sum X_{2i} + \hat{\beta}_1 \sum X_{1i} X_{2i} + \hat{\beta}_2 \sum X_{2i}^2 = \sum X_{2i} Y_i$$
 (11)

donde $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2$ son los estimadores de mínimos cuadrados.

Notación Simplificada

Definamos:

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

$$\bar{X}_1 = \frac{1}{n} \sum_{i=1}^n X_{1i}$$

$$\bar{X}_2 = \frac{1}{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \left(\frac{1}{n} \right)^{n}$$

(13)

(15)

$$S_{11} = \sum_{i=1}^{n} (X_{1i} - \bar{X}_1)^2$$

$$S_{22} = \sum_{i=1}^{n} (X_{2i} - \bar{X}_2)^2$$

$$S_{12} = \sum_{i=1}^{\infty} (X_{1i} - \bar{X}_1)(X_{2i} - \bar{X}_2)$$

$$S_{1Y} = \sum_{i=1}^{n} (X_{1i} - \bar{X}_1)(Y_i - \bar{Y})$$

$$S_{1Y} = \sum_{i=1}^{n} (X_{1i} - \bar{X}_1)(Y_i - \bar{Y}) \qquad S_{2Y} = \sum_{i=1}^{n} (X_{2i} - \bar{X}_2)(Y_i - \bar{Y})$$

Estimador de $\hat{\beta}_0$

De la primera ecuación normal:

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}_1 - \hat{\beta}_2 \bar{X}_2$$

Interpretación

El intercepto se ajusta automáticamente para que la línea de regresión pase por el punto de medias $(\bar{X}_1, \bar{X}_2, \bar{Y})$.

Estimadores de las Pendientes

Sustituyendo $\hat{\beta}_0$ en las ecuaciones 2 y 3, y simplificando:

Fórmulas de los Estimadores

$$\hat{\beta}_1 = \frac{S_{1Y}S_{22} - S_{2Y}S_{12}}{S_{11}S_{22} - S_{12}^2} \tag{16}$$

$$\hat{\beta}_2 = \frac{S_{2Y}S_{11} - S_{1Y}S_{12}}{S_{11}S_{22} - S_{12}^2} \tag{17}$$

El denominador $S_{11}S_{22} - S_{12}^2 > 0$ cuando no hay colinealidad perfecta.

Interpretación Geométrica

Caso Sin Correlación ($S_{12} = 0$)

Si X_1 y X_2 no están correlacionadas:

$$\hat{\beta}_1 = \frac{S_{1Y}}{S_{11}} = \frac{\sum (X_{1i} - \bar{X}_1)(Y_i - \bar{Y})}{\sum (X_{1i} - \bar{X}_1)^2}$$
(18)

$$\hat{\beta}_2 = \frac{S_{2Y}}{S_{22}} = \frac{\sum (X_{2i} - \bar{X}_2)(Y_i - \bar{Y})}{\sum (X_{2i} - \bar{X}_2)^2}$$
(19)

Estos son exactamente los estimadores de regresión simple de Y sobre X_1 y Y sobre X_2 respectivamente.

Caso General con Correlación

Cuando X_1 y X_2 están correlacionadas ($S_{12} \neq 0$):

- $\hat{\beta}_1$ mide el efecto de X_1 sobre Y manteniendo constante X_2
- $\hat{\beta}_2$ mide el efecto de X_2 sobre Y manteniendo constante X_1
- Los estimadores se ajustan por la correlación entre regresores
- Si $S_{12} > 0$ (correlación positiva), los efectos se "descuentan" mutuamente

Propiedades Estadísticas

Insesgadez

Bajo los supuestos del modelo:

$$E[\hat{\beta}_j] = \beta_j$$
 para $j = 0, 1, 2$

Varianzas

$$Var(\hat{\beta}_1) = \frac{\sigma^2 S_{22}}{S_{11}S_{22} - S_{12}^2}$$
 (20)

$$Var(\hat{\beta}_2) = \frac{\sigma^2 S_{11}}{S_{11} S_{22} - S_{12}^2}$$
 (21)

$$Var(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{X}_1^2 S_{22} + \bar{X}_2^2 S_{11} - 2\bar{X}_1 \bar{X}_2 S_{12}}{S_{11} S_{22} - S_{12}^2} \right]$$
(22)

Teorema de Gauss-Markov

Mejor Estimador Lineal Insesgado (BLUE)

Bajo los supuestos clásicos, los estimadores de mínimos cuadrados son:

- Lineales: en Yi
- Insesgados: $E[\hat{\beta}_j] = \beta_j$
- Eficientes: tienen la menor varianza entre todos los estimadores lineales insesgados

Normalidad Asintótica

Con muestras grandes:

$$\hat{eta}_{j} \sim \textit{N}\left(eta_{j}, \mathsf{Var}(\hat{eta}_{j})
ight)$$

Representación Matricial

El modelo se puede escribir como:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u}$$

donde:

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} 1 & X_{11} & X_{21} \\ 1 & X_{12} & X_{22} \\ \vdots & \vdots & \vdots \\ 1 & X_{1n} & X_{2n} \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix}$$

Estimador Matricial

$$\hat{oldsymbol{eta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

¿Por qué necesitamos $(X'X)^{-1}$?

Del sistema de ecuaciones normales:

$$\mathbf{X}'\mathbf{X}\hat{\boldsymbol{eta}}=\mathbf{X}'\mathbf{Y}$$

Objetivo: Despejar $\hat{oldsymbol{eta}}$

Para aislar $\hat{\beta}$, multiplicamos ambos lados por $(\mathbf{X}'\mathbf{X})^{-1}$:

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

Propiedad de la Matriz Inversa

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X} = \mathbf{I}$$

donde I es la matriz identidad.

Por lo tanto:

$$\mathbf{I}\hat{\boldsymbol{eta}}=\hat{oldsymbol{eta}}=(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

Cálculo de $(\mathbf{X}'\mathbf{X})^{-1}$

Para el modelo con dos regresores:

$$\mathbf{X}'\mathbf{X} = \begin{pmatrix} n & \sum X_{1i} & \sum X_{2i} \\ \sum X_{1i} & \sum X_{1i}^2 & \sum X_{1i}X_{2i} \\ \sum X_{2i} & \sum X_{1i}X_{2i} & \sum X_{2i}^2 \end{pmatrix}$$

$$\mathbf{X}'\mathbf{Y} = \begin{pmatrix} \sum Y_i \\ \sum X_{1i}Y_i \\ \sum X_{2i}Y_i \end{pmatrix}$$

Inversión de la Matriz 3 × 3

Para una matriz 3×3 :

$$\mathbf{A} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

El determinante es:

$$\det(\mathbf{A}) = a(ei - fh) - b(di - fg) + c(dh - eg)$$

La matriz inversa es:

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{pmatrix} ei - fh & ch - bi & bf - ce \\ fg - di & ai - cg & cd - af \\ dh - eg & bg - ah & ae - bd \end{pmatrix}$$

Aplicación al Caso Específico

Sustituyendo en $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$:

Relación con Fórmulas Anteriores

Al realizar la multiplicación matricial, recuperamos exactamente:

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}_1 - \hat{\beta}_2 \bar{X}_2 \tag{23}$$

$$\hat{\beta}_1 = \frac{S_{1Y}S_{22} - S_{2Y}S_{12}}{S_{11}S_{22} - S_{12}^2} \tag{24}$$

$$\hat{\beta}_2 = \frac{S_{2Y}S_{11} - S_{1Y}S_{12}}{S_{11}S_{22} - S_{12}^2} \tag{25}$$

Ventaja: La forma matricial se generaliza fácilmente a k regresores.

Conclusiones

- Los estimadores de mínimos cuadrados minimizan la suma de cuadrados de residuos
- Se obtienen resolviendo un sistema de ecuaciones normales
- Cuando los regresores están correlacionados, los efectos se ajustan mutuamente
- Los estimadores son BLUE bajo los supuestos clásicos
- La interpretación es de efectos parciales (ceteris paribus)

Extensión

Este método se generaliza fácilmente a k regresores, manteniendo la misma lógica matemática.

¡Gracias por su atención!

¿Preguntas?