

Institut für Algebra und Geometrie Dr. Rafael Dahmen Martin Günther, M. Sc.

Lineare Algebra II

Sommersemester 2021

Übungsblatt 9 21.06.21

Aufgabe 1 (Eine Bilinearform auf Polynomen)

(10 Punkte)

Es sei $V := \mathbb{R}[X] = LH_{\mathbb{R}}(X^0, X^1, X^2, \ldots)$ der reelle Vektorraum aller Polynome mit reellen Koeffizienten. Auf V definieren wir nun die folgende Bilinearform:

$$\beta: V \times V \longrightarrow \mathbb{R}, \quad \beta(p,q) := \int_{-1}^{1} \frac{t}{2} \cdot p(t) \cdot q(t) \ dt \in \mathbb{R}$$

- a) Es sei $k, \ell \in \mathbb{N}_0$. Berechnen Sie $\beta(X^k, X^\ell)$ in Abhängigkeit von k und ℓ . Hinweis: Es empfiehlt sich eine Fallunterscheidung, ob k kongruent ℓ modulo 2 ist oder nicht.
- b) Für $N \in \mathbb{N}$ sei $U_N \subseteq V$ der Untervektorraum aller Polynome mit Höchstgrad N und $\beta_N : U_N \times U_N \to \mathbb{R}$ die Einschränkung von β auf U_N . Geben Sie eine Basis B_2 von U_2 und eine Basis B_3 von U_3 an und bestimmen Sie dann die Fundamentalmatrizen

$$FM_{B_2}(\beta_2)$$
 und $FM_{B_3}(\beta_3)$.

c) Bestimmen Sie $\ker(\beta_2^{\vee})$ und $\ker(\beta_3^{\vee})$. Untersuchen Sie beide Abbildungen β_2^{\vee} und β_3^{\vee} auf Injektivität und Surjektivität.

Hinweis: Die Notation β^{\vee} für eine Bilinearform β wurde in Lemma 3.1.4 eingeführt.

Aufgabe 2 (Eine Äquivalenzrelation)

(10 Punkte)

Es sei K ein Körper und $n \in \mathbb{N}$. Wir definieren auf der Menge $\mathbb{K}^{n \times n}$ eine Relation \sim wie folgt:

$$A \sim B : \iff \left(\exists S \in \operatorname{GL}(n, \mathbb{K}) : A = S^{\top} B S\right).$$

- a) Zeigen Sie, dass \sim eine Äquivalenzrelation ist. (Äquivalenzrelationen wurden in LA1 definiert.)
- b) Bestimmen Sie die Äquivalenzklasse der Nullmatrix bezüglich ~.
- c) Es sei nun $\mathbb{K} = \mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z} = \{0,1\}$ und n=2. Zeigen Sie, dass die folgenden Matrizen

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in \mathbb{F}_2^{2 \times 2}$$

nicht äquivalent bezüglich \sim sind.

d) Es sei nun $\mathbb{K} = \mathbb{Q}$ und n = 1. Überprüfen Sie, welche der folgenden Zahlen (aufgefasst als rationale (1×1) -Matrizen) äquivalent bezüglich \sim sind:

$$1; \quad 2; \quad 4 \in \mathbb{Q} = \mathbb{Q}^{1 \times 1}.$$

Hinweis: Sie dürfen ohne Beweis verwenden, dass $\sqrt{2}$ irrational ist.

Abgabe bis Montag, den 28.06.21 um 18:00 Uhr. Bitte verfassen Sie Ihre Lösung handschriftlich und versehen Sie sie mit Ihren Namen, Ihren Matrikelnummern und E-Mail-Adressen aller Teilnehmenden ihrer Lerngruppe. Laden Sie sie dann als eine pdf-Datei in den entsprechenden Postkasten im ILIAS-Kurs hoch.