Multi-armed Bandits: Learning through Experimentation

CS246: Mining Massive Datasets
Caroline Lo, Stanford University
http://cs246.stanford.edu

Learning through Experimentation

Web advertising

- We've learned how to match advertisers to queries in real-time
- But how to estimate the CTR (Click-Through Rate)?
- Recommendation engines
 - We've learned how to build recommender systems
 - But how to solve the cold-start problem?

Learning through Experimentation

- What do CTR and cold start have in common?
- Getting the answer requires experimentation
 - With every ad we show/ product we recommend we gather more data about the ad/product
- Theme: Learning through experimentation

Example: Web Advertising

- Google's goal: Maximize revenue
- The old way: Pay by impression (CPM)

Example: Web Advertising

- Google's goal: Maximize revenue
- The old way: Pay by impression (CPM)
 - Best strategy: Go with the highest bidder
 - But this ignores "effectiveness" of an ad
- The new way: Pay per click! (CPC)
 - Best strategy: Go with expected revenue
 - What's the expected revenue of ad a for query q?
 - $E[revenue_{a,q}] = P(click_a | q) * amount_{a,q}$

Prob. user will click on ad **a** given that she issues query **q** (Unknown! Need to gather information)

Bid amount for ad a on query q (Known)

Other Applications

Clinical trials:

 Investigate effects of different treatments while minimizing patient losses

Adaptive routing:

 Minimize delay in the network by investigating different routes

Asset pricing:

 Figure out product prices while trying to make most money

Approach: Multiarmed Bandits

Approach: Multiarmed Bandits

k-Armed Bandit

- Each arm a
 - **Wins** (reward=**1**) with fixed (unknown) prob. μ_a
 - **Loses** (reward=**0**) with fixed (unknown) prob. **1-\mu_a**
- All draws are independent given $\mu_1 \dots \mu_k$
- How to pull arms to maximize total reward?

k-Armed Bandit

- How does this map to our advertising example?
- Each query is a bandit
- Each ad is an arm
- We want to estimate the arm's probability of winning μ_a (i.e., the ad's CTR μ_a)
- Every time we pull an arm we do an 'experiment'

Stochastic k-Armed Bandit

The setting:

- Set of k choices (arms)
- Each choice α is tied to a probability distribution P_{α} with average reward/payoff μ_{α} (between [0, 1])
- We play the game for T rounds
- For each round t:
 - (1) We pick some arm j
 - (2) We win reward X_t drawn from P_j
 - Note reward is independent of previous draws
- Our goal is to maximize $\sum_{t=1}^{T} X_t$
- We don't know $\mu_a!$ But every time we pull some arm a we get to learn a bit about μ_a

Online Optimization

Online optimization with limited feedback

Choices	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	•••
a_1					1	1	
a_2	0		1	0			
•••							
\boldsymbol{a}_k		0					

Time

Like in online algorithms:

- Have to make a choice each time
- But we only receive information about the chosen action

Solving the Bandit Problem

- Policy: a strategy/rule that in each iteration tells me which arm to pull
 - Hopefully policy depends on the history of rewards
- How to quantify performance of the algorithm? Regret!

Performance Metric: Regret

- μ_a is the mean of P_a
- Payoff/reward of **best arm**: $\mu^* = \max_a \mu_a$
- Let a_1 , a_2 ... a_T be the sequence of arms pulled
- Instantaneous regret at time t: $r_t = \mu^* \mu_{a_t}$
- Total regret:

$$R_T = \sum_{t=1}^T r_t$$

- Typical goal: Want a policy (arm allocation strategy) that guarantees: $\frac{R_T}{T} \to 0$ as $T \to \infty$
 - Note: Ensuring $R_T/T \to 0$ is stronger than maximizing payoffs (minimizing regret), as it means that in the limit we discover the true best arm.

Allocation Strategies

If we knew the payoffs, which arm would we pull?

Pick
$$\underset{a}{\operatorname{arg max}} \mu_a$$

- We'd always pull the arm with the highest average reward.
- But we don't know which arm that is without exploring/experimenting with the arms first.

 $X_{a,j}$... payoff received when pulling arm a for j-th time

Exploration vs. Exploitation

- Minimizing regret illustrates a classic problem in decision making:
 - We need to trade off exploration (gathering data about arm payoffs) and exploitation (making decisions based on data already gathered)
 - Exploration: Pull an arm we never pulled before
 - **Exploitation:** Pull an arm a for which we currently have the highest estimate of μ_a

Algorithm: Epsilon-Greedy

Algorithm: Epsilon-Greedy

- For t=1:T
 - Set $\varepsilon_t = O(1/t)$
 - With prob. ε_t : Explore by picking an arm chosen uniformly at random
 - With prob. $1 \varepsilon_t$: Exploit by picking an arm with highest empirical mean payoff
- Theorem [Auer et al. '02]

For suitable choice of ε_t it holds that $R_T =$

$$O(k \log T) \Rightarrow \frac{R_T}{T} = O\left(\frac{k \log T}{T}\right) \to 0$$

k...number of arms $_{17}$

Issues with Epsilon Greedy

- What are some issues with Epsilon Greedy?
 - "Not elegant": Algorithm explicitly distinguishes between exploration and exploitation
 - More importantly: Exploration makes suboptimal choices (since it picks any arm with equal likelihood)
- Idea: When exploring/exploiting we need to compare arms

Comparing Arms

- Suppose we have done experiments:
 - **Arm 1**: 1001100101
 - **Arm 2**: 1
 - Arm 3: 1 1 0 1 1 1 0 1 1 1
- Mean arm values:
 - **Arm 1**: 5/10, **Arm 2**: 1, **Arm 3**: 8/10
- Which arm would you pick next?
- Idea: Don't just look at the mean (that is, expected payoff) but also the confidence!

Confidence Intervals (1)

- A confidence interval is a range of values within which we are sure the mean lies with a certain probability
 - We could believe μ_a is within [0.2,0.5] with probability 0.95
 - If we have tried an action less often, our estimated reward is less accurate so the confidence interval is larger
 - Interval shrinks as we get more information (i.e. try the action more often)

Confidence Intervals (2)

- Assuming we know the confidence intervals
- Then, instead of trying the action with the highest mean we can try the action with the highest upper bound on its confidence interval
- This is called an optimistic policy
 - We believe an action is as good as possible given the available evidence

Confidence Based Selection

Calculating Confidence Bounds

Suppose we fix arm a:

- Let $Y_{a,1} \dots Y_{a,m}$ be the payoffs of arm α in the first m trials
 - $Y_{a,1} \dots Y_{a,m}$ are i.i.d. rnd. vars. with values in [0,1]
- Expected mean payoff of arm $a: \mu_a = E[Y_{a,m}]$
- Our estimate: $\widehat{\mu_{a,m}} = \frac{1}{m} \sum_{\ell=1}^{m} Y_{a,\ell}$
- Want to find confidence bound b such that with high probability $|\mu_a \widehat{\mu_{a,m}}| \leq b$
 - Also want b to be as small as possible (why?)
- Goal: Want to bound $P(|\mu_a \widehat{\mu_{a,m}}| \leq b)$

Hoeffding's Inequality

- Hoeffding's inequality bounds $P(|\mu_a \widehat{\mu_{a,m}}| \leq b)$
 - Let $Y_1 \dots Y_m$ be i.i.d. rnd. vars. with values between [0,1]
 - Let $\mu = E[Y]$ and $\widehat{\mu_m} = \frac{1}{m} \sum_{\ell=1}^m Y_\ell$
 - Then: $P(|\mu \widehat{\mu_m}| \ge b) \le exp(-2b^2m) = \delta$
- To find out the confidence interval b (for a given confidence level δ) we solve:
 - $e^{-2b^2m} \le \delta$ then $-2b^2m \le \ln(\delta)$
 - So: $b \ge \sqrt{\frac{\ln(1/\delta)}{2 m}}$

UCB₁ Algorithm

- UCB1 (Upper confidence sampling) algorithm
 - $lacksymbol{\blacksquare}$ Set: $\widehat{\mu_1}=\cdots=\widehat{\mu_k}=lacksymbol{0}$ and $m_1=\cdots=m_k=lacksymbol{0}$
 - $\widehat{\mu}_a$ is our estimate of payoff of arm i
 - m_a is the number of pulls of arm i so far
 - For t = 1:T

- Upper confidence interval (Hoeffding's inequality)
- For each arm a calculate: $UCB(a) = \widehat{\mu_a} + \sqrt{\frac{2 \ln t}{m_a}}$
- Pick arm $j = arg max_a UCB(a)$
- lacktriangle Pull arm j and observe y_t
- Set: $m_j \leftarrow m_j + 1$ and $\widehat{\mu_j} \leftarrow \frac{1}{m_j} (y_t + (m_j 1) \widehat{\mu_j})$

UCB1: Discussion

$$UCB(a) = \widehat{\mu_a} + \sqrt{\frac{2 \ln t}{m_a}}$$

$$b \geq \sqrt{\frac{\ln(1/\delta)}{2 m}}$$

- t impacts the value of δ : $t = f(1/\delta)$
- Confidence interval **grows** with the total number of actions t we have taken
- But shrinks with the number of times m_a we have tried arm a
- This ensures each arm is tried infinitely often but still balances exploration and exploitation

"Optimism in face of uncertainty":

The algorithm believes that it can obtain extra rewards by reaching the unexplored parts of the state space

Performance of UCB1

Theorem [Auer et al. 2002]

- Suppose optimal mean payoff is $\mu^* = \max \mu_a$
- And for each arm let $\Delta_a = \mu^* \mu_a$
- Then it holds that

$$E[R_T] \leq \left[8 \sum_{a:\mu_a < \mu^*} \frac{\ln T}{\Delta_a}\right] + \left(1 + \frac{\pi^2}{3}\right) \left(\sum_{i=a}^k \Delta_a\right)$$

• So: $O\left(\frac{R_T}{T}\right) \leq k \frac{\ln T}{T}$

3/10/2016

O(k)

Summary

- k-armed bandit problem is a formalization of the exploration-exploitation tradeoff
- Simple algorithms are able to achieve no regret (limit towards infinity)
 - Epsilon-greedy
 - UCB (Upper Confidence Sampling)

News Recommendation

- Every round receive context [Li et al., WWW '10]
 - Context: User features, articles view before
- Model for each article's click-through rate

News Recommendation

- Feature-based exploration:
 - Select articles to serve users based on contextual information about the user and the articles

 Simultaneously adapt article selection strategy based on user-click feedback to maximize total number of user clicks

Example: A/B testing vs. Bandits

- Imagine you have two versions of the website and you'd like to test which one is better
 - Version A has engagement rate of 5%
 - Version B has engagement rate of 4%
- You want to establish with 95% confidence that version A is better
 - You'd need 22,330 observations (11,165 in each arm) to establish that
 - Use student's t-test to establish the sample size
 - Can bandits do better?

Example: Bandits vs. A/B testing

- How long it does it take to discover A > B?
 - A/B test: We need 22,330 observations. Assuming 100 observations/day, we need 223 days
 - Bandits: We use UCB1 and keep track of confidences for each version we stop as soon as A is better than B with 95% confidence.

How much do we save?

- 175 days on the average!
- 48 days vs. 223 days
- More at: http://bit.ly/1pywka4

