Big Data L12: Socio-cultural Impact

Topics Covered:

- Socio-cultural impact of recommender and information retrieval systems
- Privacy issues and de-anonymization
- Introduction to Differential Privacy

1 Socio-cultural Impact of Recommender Systems

Claim:

Recommender systems might have contributed to the downfall of sites like Buzzfeed.

- Echo Chambers and Filter Bubbles:
 - Recommendations rely on **similarity**.
 - Over time, diversity decreases; users herd around similar content.

Pariser, 2011 coined "filter bubble."

- * Best case: users get what they like.
- * Typical case: users get bored and leave.
- * Worst case: users become **isolated** and **polarized**.

• Targeted Advertising:

- Personalization often based on user features (Age, Gender, Zip code).
- Can lead to discrimination issues (e.g., lawsuits against Facebook).

• Ethical Challenges in Representation:

- Recommenders are shaped by **biased past behaviors**.
- Important questions:
 - * How is the model biased?
 - * How are atypical users treated?
 - * Who truly benefits from personalization?

2 Privacy and De-anonymization

Problems with Anonymization:

- Simply removing identifiers (names, IDs) isn't enough.
- Common but flawed methods:
 - Obfuscate identifiers: Replacing names with random numbers.
 - Perturb observations: Adding random noise.
 - **k-anonymity** [Sweeney, 2002]: each attribute shared by at least k people.
 - Only publishing summary statistics: Still leaky!

3 De-anonymization Attacks

Netflix Prize Attack ([Narayanan & Shmatikov, 2008]):

- Netflix released "anonymized" movie rating data.
- Attack:
 - 1. Define **similarity** between users.
 - 2. Given partial ratings, compute similarity to users.
 - 3. If the match is strong, re-identify the user.

• Result:

- With just 8 ratings (allowing 2 mistakes) and 14 days timestamp fuzziness, 99% of users could be uniquely identified!
- Even without timestamps, rare movie ratings leak identity.

Why it matters:

- Preferences (movies, music) correlate with sensitive personal attributes (politics, religion, sexual orientation).
- Privacy breaches are irreversible.

4 Broader Examples of Privacy Violations

- 2010 US Census Attack ([Abowd, 2019]):
 - Reconstruction attacks using public census summaries.
- Target Pregnancy Prediction ([Duhigg, 2012]):
 - Target inferred a teenager's pregnancy based on shopping patterns, disclosed it accidentally.

5 Differential Privacy (DP)

Concept:

If one individual's data is removed, the result of any computation should not substantially change.

- DP is a property of algorithms, not datasets.
- Randomization happens at the algorithm level, not by modifying the raw data.

Formal Definition:

For datasets D and D' differing by one record:

$$\Pr[A(D) \in S] \le e^{\epsilon} \times \Pr[A(D') \in S] \tag{1}$$

where:

- ϵ (epsilon) controls **privacy loss**.
 - Smaller ϵ : Stronger privacy.
 - Larger ϵ : Weaker privacy but more accuracy.

Mechanism: Adding Laplace Noise

• Sensitivity (Δf): Maximum change one row can cause in the output.

- Laplace mechanism: Add noise drawn from Laplace $(0, \Delta f/\epsilon)$.
- Why Laplace noise?
 - Heavy tails \rightarrow better protection compared to Gaussian noise.

Trade-off:

Noise Level	Privacy	Accuracy
High Noise (small ϵ)	High	Low
Low Noise (large ϵ)	Low	High

• Larger datasets \rightarrow easier privacy (sensitivity decreases).

Differential Privacy in Action:

- Sum queries (e.g., total clicks) are less sensitive than Max queries (e.g., maximum income).
- Privacy loss accumulates over multiple queries!

6 Summary

- Simply de-identifying data is not enough high-dimensional data is easy to re-identify.
- Differential Privacy offers a mathematically sound way to release data while protecting individuals.
- Laplace noise carefully balances privacy and reproducibility.