

Abstract Meaning Representation

Broad-coverage CCG Semantic Parsing with AMR

Yoav Artzi Cornell University Kenton Lee Luke Zettlemoyer University of Washington

Semantic Parsing

Show me all papers about semantic parsing

 $\lambda x. \operatorname{paper}(x) \wedge \operatorname{topic}(x, \operatorname{SEMANTIC_PARSING})$

Less Supervision

Answers
Demonstrations
Conversations

More Domains

Time

Databases
Large Knowledge-bases
Instructions
Web Tables

Situated Parsing

Spatial Observations
Linguistic Context
Database Content

Semantic Parsing

Show me all papers about semantic parsing

 $\lambda x. \operatorname{paper}(x) \wedge \operatorname{topic}(x, \operatorname{SEMANTIC_PARSING})$

Non-compositional Semantics

Broad-coverage Grammar Induction

Abstract Meaning Representation

AMR: Instances

AMR: Instances

AMR: Relations

AMR: Relations

AMR: Relations

AMR and Combinatory Categorial Grammar

Great opportunity study CCG semantic parsing at scale

Challenges:

- Distant non-compositional dependencies
- Longer sentences
- Higher syntactic variability

Parsing Approach

- Use CCG to recover compositional parse structure
- Second stage to resolve non-compositional phenomena, such as co-reference resolution

Combinatory Categorial Grammar

Category

 $S \backslash NP/NP : \lambda x. \lambda y. \lambda d. \text{deny-01}(d) \land \text{ARG0}(d,y) \land \text{ARG1}(d,x)$

Semantics

Lexicon

Unary and binary operators to combine categories

CCG

Entries from Lexicon

Parse Steps

Logical Form

Combinators

Lexicon

Learned

AMR to Lambda Calculus

AMR to Lambda Calculus

Pyongyang officials denied their involvement

 $ARG1(d, A_7(\lambda i.involve-01(i) \land ARG1(i, \mathcal{R}(2)))))$

Deterministic Conversion

Lambda Calculus

AMR Lambda Calculus: Instances

```
\mathcal{A}_{1}(\lambda d. \text{deny-01}(d) \land \\ \operatorname{ARG0}(d, \mathcal{A}_{2}(\lambda p. \text{person}(p) \land \\ \operatorname{ARG0-of}(p, \mathcal{A}_{3}(\lambda h. \text{have-org-role-91}(h) \land \\ \operatorname{ARG1}(h, \mathcal{A}_{4}(\lambda c. \text{city}(c) \land \\ \operatorname{name}(c, \mathcal{A}_{5}(\lambda n. \operatorname{name}(n) \land \operatorname{op1}(n, \operatorname{PYONGYANG}))))) \land \\ \operatorname{ARG2}(h, \mathcal{A}_{6}(\lambda o. \operatorname{official}(o)))))) \land \\ \operatorname{ARG1}(d, \mathcal{A}_{7}(\lambda i. \operatorname{involve-01}(i) \land \operatorname{ARG1}(i, \mathcal{R}(2))))))
```

AMR Lambda Calculus: Relations

```
\begin{array}{l} \mathcal{A}_{1}(\lambda d. \mathrm{deny}\text{-}01(d) \wedge \\ & \mathrm{ARG0}(d, \mathcal{A}_{2}(\lambda p. \mathrm{person}(p) \wedge \\ & \mathrm{ARG0}\text{-}\mathrm{of}(p, \mathcal{A}_{3}(\lambda h. \mathrm{have}\text{-}\mathrm{org}\text{-}\mathrm{role}\text{-}91(h) \wedge \\ & \mathrm{ARG1}(h, \mathcal{A}_{4}(\lambda c. \mathrm{city}(c) \wedge \\ & \mathrm{name}(c, \mathcal{A}_{5}(\lambda n. \mathrm{name}(n) \wedge \mathrm{op1}(n, \mathrm{PYONGYANG}))))) \wedge \\ & \mathrm{ARG2}(h, \mathcal{A}_{6}(\lambda o. \mathrm{official}(o)))))) \wedge \\ & \mathrm{ARG1}(d, \mathcal{A}_{7}(\lambda i. \mathrm{involve}\text{-}01(i) \wedge \mathrm{ARG1}(i, \mathcal{R}(2)))))) \end{array}
```

AMR Lambda Calculus: Instances

```
A_{\mathbf{I}}(\lambda d.\operatorname{deny-01}(d) \wedge \\ ARG0(d, \underline{\mathcal{A}_{2}}(\lambda p.\operatorname{person}(p) \wedge \\ ARG0-\operatorname{of}(p, \underline{\mathcal{A}_{3}}(\lambda h.\operatorname{have-org-role-91}(h) \wedge \\ ARG1(h, \underline{\mathcal{A}_{4}}(\lambda c.\operatorname{city}(c) \wedge \\ \operatorname{name}(c, \underline{\mathcal{A}_{5}}(\lambda n.\operatorname{name}(n) \wedge \operatorname{op1}(n,\operatorname{PYONGYANG}))))) \wedge \\ ARG2(h, \underline{\mathcal{A}_{6}}(\lambda o.\operatorname{official}(o)))))) \wedge \\ ARG1(d, \underline{\mathcal{A}_{7}}(\lambda i.\operatorname{involve-01}(i) \wedge \operatorname{ARG1}(i, \mathcal{R}(2)))))) \\ \mathbf{Skolem \ ID} \\ \mathbf{Instance \ Quantifier}
```

AMR Lambda Calculus: Referen

Reference Predicate

Pyongyang officials denied their involvement

```
A_{1}(\lambda d.\text{deny-}01(d) \land \\ ARG0(d, A_{2}(\lambda p.\text{person}(p) \land \\ ARG0-\text{of}(p, A_{3}(\lambda h.\text{have-org-role-}91(h) \land \\ ARG1(h, A_{4}(\lambda c.\text{city}(c) \land \\ name(c, A_{5}(\lambda n.\text{name}(n) \land \text{op1}(n, \text{PYONGYANG}))))) \land \\ ARG2(h, A_{6}(\lambda o.\text{official}(o)))))) \land \\ ARG1(d, A_{7}(\lambda i.\text{involve-}01(i) \land ARG1(i, \mathcal{R}(2))))))
```

Instance Quantifier


```
\mathcal{A}_{1}(\lambda d.\text{deny-}01(d) \wedge \\ \text{ARG0}(d, \mathcal{A}_{2}(\lambda p.\text{person}(p) \wedge \\ \text{ARG0-of}(p, \mathcal{A}_{3}(\lambda h.\text{have-org-role-}91(h) \wedge \\ \text{ARG1}(h, \mathcal{A}_{4}(\lambda c.\text{city}(c) \wedge \\ \text{name}(c, \mathcal{A}_{5}(\lambda n.\text{name}(n) \wedge \text{op1}(n, \text{PYONGYANG}))))) \wedge \\ \text{ARG2}(h, \mathcal{A}_{6}(\lambda o.\text{official}(o)))))) \wedge \\ \text{ARG1}(d, \mathcal{A}_{7}(\lambda i.\text{involve-}01(i) \wedge \text{ARG1}(i, \mathcal{R}(2))))))
```

Pyongyang officials denied their involvement

CCG Parse

 $\mathcal{A}_1(\lambda d.\text{deny-}01(d)\wedge$

 $ARGO(d, \mathcal{A}_2(\lambda p.person(p) \wedge$

REL-of $(p, \mathcal{A}_3(\lambda h.\text{have-org-role-}91(h) \land$

 $ARG1(h, \mathcal{A}_4(\lambda c. city(c) \wedge$

 $\operatorname{name}(c, \mathcal{A}_5(\lambda n.\operatorname{name}(n) \wedge \operatorname{op1}(n, \operatorname{PYONGYANG}))))) \wedge$

 $REL(h, A_6(\lambda o.official(o))))) \land$

 $ARG1(d, A_7(\lambda i.involve-01(i) \land ARG1(i, \mathcal{R}(ID))))))$

Constant Mapping

```
 \begin{split} &\mathcal{A}_{1}(\lambda d.\text{deny-}01(d) \wedge \\ & \text{ARG0}(d, \mathcal{A}_{2}(\lambda p.\text{person}(p) \wedge \\ & \text{ARG0-of}(p, \mathcal{A}_{3}(\lambda h.\text{have-org-role-}91(h) \wedge \\ & \text{ARG1}(h, \mathcal{A}_{4}(\lambda c.\text{city}(c) \wedge \\ & \text{name}(c, \mathcal{A}_{5}(\lambda n.\text{name}(n) \wedge \text{op1}(n, \text{PYONGYANG}))))) \wedge \\ & \text{ARG2}(h, \mathcal{A}_{6}(\lambda o.\text{official}(o)))))) \wedge \\ & \text{ARG1}(d, \mathcal{A}_{7}(\lambda i.\text{involve-}01(i) \wedge \text{ARG1}(i, \mathcal{R}(2)))))) \end{split}
```

Pyongyang officials denied their involvement

REL-of

Passive relation placeholder

 $ARGO(d, \mathcal{A}_2(\lambda p. person(p) \wedge$

REL-of $(p, \mathcal{A}_3(\lambda h.\text{have-org-role-}91(h) \land$

 $\overline{ARG1}(h, \mathcal{A}_4(\lambda c. \mathrm{city}(c) \wedge$

 $\operatorname{name}(c, \mathcal{A}_5(\lambda n.\operatorname{name}(n) \wedge \operatorname{op1}(n, \operatorname{PYONGYANG}))))) \wedge$

 $\operatorname{REL}(h, \mathcal{A}_6(\lambda o.\operatorname{official}(o)))))) \land$

 $ARG1(d, A_7(\lambda i.involve-01(i) \land ARG1(i, \mathcal{R}(ID))))))$

Reference placeholder

 $\mathcal{A}_{1}(\lambda d.\text{deny-}01(d) \wedge \\ \text{ARG0}(d, \mathcal{A}_{2}(\lambda p.\text{person}(p) \wedge \\ \text{ARG0-of}(p, \mathcal{A}_{3}(\lambda h.\text{have-org-role-}91(h) \wedge \\ \text{ARG1}(h, \mathcal{A}_{4}(\lambda c.\text{city}(c) \wedge \\ \text{name}(c, \mathcal{A}_{5}(\lambda n.\text{name}(n) \wedge \text{op1}(n, \text{PYONGYANG}))))) \wedge \\ \text{ARG2}(h, \mathcal{A}_{6}(\lambda o.\text{official}(o)))))) \wedge \\ \text{ARG1}(d, \mathcal{A}_{7}(\lambda i.\text{involve-}01(i) \wedge \text{ARG1}(i, \mathcal{R}(2))))))$

Active relation placeholder

Model Advantages

- Reason about non-compositional distant references, including:
 - Co-reference
 - Control structures (often compositional, but not distinguished)
- Defer certain compositional decisions from the difficult CCG parsing problem

Derivation

CCG Parse

```
officials
                                                                                                                                                                                                              denied
                                                                                                                                                                                                                                                          their
                                                                                                                                                                                                                                                                                     involvement
                        Pyongyang
                                                                                                                                                                                                       S \setminus NP/NP
                                                                                                         N_{\lceil pl \rceil} \setminus (N_{\lceil pl \rceil}/N_{\lceil pl \rceil})
                                                                                                                                                                                                                                                                                         N_{[nb]}
                                                                                                                                                                                          \lambda x.\lambda y.\lambda d.\text{deny-01}(d) \wedge
                                                                                                                                                                                                                                                                              \lambda i.involve-01(i)
\mathcal{A}_1(\lambda c. \operatorname{city}(c) \wedge
                                                                               \lambda f. \lambda p. \operatorname{person}(p) \wedge
    \begin{array}{c} \text{name}(c, \mathcal{A}_2(\lambda n. \text{name}(n) \land \\ \text{op}(n, \text{PYONGYANG})))) \end{array}
                                                                                \text{REL-of}(p, \mathcal{A}_3) (f(\lambda h.\text{have-org-role-91}(h)) \wedge
                                                                                                                                                                                             ARGO(d, y) \wedge
                                                                                REL(h, \mathcal{A}_{\Delta}(\lambda o. official(o)))))
                                                                                                                                                                                             ARG1(d, x)
```

 $\mathcal{A}_{1}(\lambda d.\text{deny-}01(d) \land \text{ARG0}(d, \mathcal{A}_{2}(\lambda p.\text{person}(p) \land \text{REL-of}(p, \mathcal{A}_{3}(\lambda h.\text{have-org-role-}91(h) \land \text{ARG1}(h, \mathcal{A}_{4}(\lambda c.\text{city}(c) \land \text{name}(c, \mathcal{A}_{5}(\lambda n.\text{name}(n) \land \text{op}(n, \text{PYONGYANG}))))) \land \text{REL}(h, \mathcal{A}_{6}(\lambda o.\text{official}(o)))))) \land \text{ARG1}(d, \mathcal{A}_{7}(\lambda i.\text{involve-}01(i) \land \text{ARG1}(i, \mathcal{R}(\text{ID})))))))$

 \overline{A}

```
\mathcal{A}_1(\lambda d.\text{deny-}01(d) \wedge \text{ARG0}(d, \mathcal{A}_2(\lambda p.\text{person}(p) \wedge \text{ARG0-of}(p, \mathcal{A}_3(\lambda h.\text{have-org-role-}91(h) \wedge \text{ARG1}(h, \mathcal{A}_4(\lambda c.\text{city}(c) \wedge \text{name}(c, \mathcal{A}_5(\lambda n.\text{name}(n) \wedge \text{op}(n, \text{PYONGYANG})))))) \wedge \text{ARG2}(h, \mathcal{A}_6(\lambda o.\text{official}(o)))))) \wedge \text{ARG1}(d, \mathcal{A}_7(\lambda i.\text{involve-}01(i) \wedge \text{ARG1}(i, \mathcal{R}(2))))))
```

Log-linear Model

CCG Lexicon Feature Function

- Given a sentence $x \in \mathcal{X}$:
 - The probability of a logical form z is:

$$p(z \mid x; \theta, \Lambda) = \sum_{d \in \mathcal{D}(z)} p(d \mid x; \theta, \Lambda)$$

- The probability of a derivation $d \in \mathcal{D}$ is:

$$p(d \mid x; \theta, \Lambda) = \frac{e^{\theta \cdot \phi(x,d)}}{\sum_{d' \in \mathcal{D}} e^{\theta \cdot \phi(x,d')}}$$

Inference

Joint Scoring **CCG Parse**

CKY parsing

Factor graph

 $\frac{Pyongyang}{NP[sg]} \qquad \qquad \frac{officials}{N[pl] \setminus (N[pl]/N[pl])} \\ \mathcal{A}_1(\lambda c. \operatorname{city}(c) \wedge \qquad \qquad \lambda f. \lambda p. \operatorname{person}(p) \wedge \\ \operatorname{name}(c, \mathcal{A}_2(\lambda n. \operatorname{name}(n) \wedge \\ \operatorname{op}(n, \operatorname{PYONGYANG})))) \qquad \qquad \text{REL-of}(p, \mathcal{A}_3(f(\lambda h. \operatorname{have-org-role-91}(h) \wedge \\ \operatorname{REL}(h, \mathcal{A}_4(\lambda o. \operatorname{official}(o)))))) \qquad \qquad \qquad \text{Rel}(h, \mathcal{A}_4(\lambda o. \operatorname{official}(o))))))$

 $\mathcal{A}_1(\lambda d.\text{deny-01}(d) \wedge \text{ARG0}(d, \mathcal{A}_2(\lambda p.\text{person}(p)) \wedge \text{RI})$ $\text{ARG1}(h, \mathcal{A}_4(\lambda c.\text{city}(c)) \wedge \text{name}(c, \mathcal{A}_5(\lambda p.\text{name}(c)))$

 $\mathbf{REL}(h, \mathcal{A}_6(\lambda o.\operatorname{official}(o)))))) \wedge \mathbf{ARG1}(d, \mathcal{A}_7(\lambda i.\operatorname{in}_{\mathcal{A}_7}(\lambda i.)))))))))))))))))))))))))))))$

 $\mathcal{A}_1(\lambda d.\text{deny-01}(d) \wedge \text{ARG0}(d, \mathcal{A}_2(\lambda p.\text{person}(p)) \wedge \text{ARG1}(h, \mathcal{A}_4(\lambda c.\text{city}(c) \wedge \text{name}(c, \mathcal{A}_5(\lambda n.\text{name}(c)))))) \wedge \text{ARG1}(h, \mathcal{A}_6(\lambda o.\text{official}(o)))))) \wedge \text{ARG1}(d, \mathcal{A}_7(\lambda i.\text{i})))))$

Consta

Constant Mapping with a Factor Graph

Build a factor graph for each underspecified logical form

```
 \begin{array}{c} \mathcal{A}_{1}(\lambda d. \text{deny-}01(d) \wedge \\ & \text{ARG0}(d, \mathcal{A}_{2}(\lambda p. \text{person}(p) \wedge \\ & \text{REL-of}(p, \mathcal{A}_{3}(\lambda h. \text{have-org-role-}91(h) \wedge \\ & \text{ARG1}(h, \mathcal{A}_{4}(\lambda c. \text{city}(c) \wedge \\ & \text{name}(c, \mathcal{A}_{5}(\lambda n. \text{name}(n) \wedge \text{op}(n, \text{PYONGYANG}))))) \wedge \\ & \text{REL}(h, \mathcal{A}_{6}(\lambda o. \text{official}(o)))))) \wedge \\ & \text{ARG1}(d, \mathcal{A}_{7}(\lambda i. \text{involve-}01(i) \wedge \\ & \text{ARG1}(i, \mathcal{R}(\text{ID})))))) \end{array}
```

Factor Graph

Each constant is a random variable

```
 \begin{split} \mathcal{A}_{1}(\lambda d. \text{deny-}01(d) \wedge \\ & \text{ARG0}(d, \mathcal{A}_{2}(\lambda p. \text{person}(p) \wedge \\ & \text{REL-of}(p, \mathcal{A}_{3}(\lambda h. \text{have-org-role-}91(h) \wedge \\ & \text{ARG1}(h, \mathcal{A}_{4}(\lambda c. \text{city}(c) \wedge \\ & \text{name}(c, \mathcal{A}_{5}(\lambda n. \text{name}(n) \wedge \text{op}(n, \text{PYONGYANG}))))) \wedge \\ & \text{REL}(h, \mathcal{A}_{6}(\lambda o. \text{official}(o)))))) \wedge \\ & \text{ARG1}(d, \mathcal{A}_{7}(\lambda i. \text{involve-}01(i) \wedge \\ & \text{ARG1}(i, \mathcal{R}(\text{ID})))))) \end{split}
```

Factor Graph

Potential mapping of placeholders defines assignments

Factor Graph

Features define factors to resolve underspecified constants

```
\begin{array}{c} \mathcal{A}_1(\lambda d. \mathrm{deny}\text{-}01(d) \wedge \\ \mathrm{ARG0}(d,\mathcal{A}_2(\lambda p. \mathrm{person}(p) \wedge \\ \mathrm{REL-of}(p,\mathcal{A}_3(\lambda h. \mathrm{have-org-role}\text{-}91(h) \wedge \\ \mathrm{ARG1}(h,\mathcal{A}_4(\lambda c. \mathrm{city}(c) \wedge \\ \mathrm{name}(c,\mathcal{A}_5(\lambda n. \mathrm{name}(n) \wedge \mathrm{op}(n, \mathrm{PYONGYANG}))))) \wedge \\ \mathrm{REL}(h,\mathcal{A}_6(\lambda o. \mathrm{official}(o)))))) \wedge \\ \mathrm{ARG1}(d,\mathcal{A}_7(\lambda i. \mathrm{involve}\text{-}01(i) \wedge (1 + 1)))))) \wedge \\ \mathrm{ARG1}(i,\mathcal{R}(\mathrm{ID})))))) \\ \mathrm{ARG1}(i,\mathcal{R}(\mathrm{ID})))))) \\ \mathrm{B} \\ \mathrm{A} \\ \\ \mathrm{Selectional\ preference\ features\ to} \end{array}
```

specify REL to one of 67 active relations

Approach

- Model:
 - Two-stage model for compositional semantics and non-compositional distant references
- Learning:
 - Lexicon induction
 - Parameter estimation

Learning Algorithm Sketch

For T iterations:

For each training sample:

- **Lexicon Induction**
- Two-pass generation of new lexical entries
- Update the model lexicon
- For each mini-batch of size M
- **Parameter Estimation**
- Compute gradient with early updates
- Apply update with AdaGrad

Learning Algorithm Sketch

For T iterations:

- For each training sample:
 - Two-pass generation of new lexical entries
- Update the model lexicon
- For each mini-batch of size M
 - Compute gradient with early updates
 - Apply update with AdaGrad

Two-pass Lexical Generation

- Bottom-up: over-generate new entries and parse
- Top-down: recursive splitting to complete partial derivations

Bottom-up Pass

Bottom-up Pass

Bottom-up Pass

Common Failure

Splitting CCG Categories

- Introduced by Kwiatkowski et al. 2010
- Approximately reverses CCG parsing operations
- Explore new syntactic structures, learn new templates

Splitting CCG Categories

Given a CCG category *C* : *h*:

1. Split logical form h to f and g s.t.:

$$f(g) = h$$
 or $\lambda x. f(g(x)) = h$

$$NP_{[nb]}: \lambda i. \text{involve-}01(i) \land \\ ARG1(i, \mathcal{R}(\text{ID}))$$

 $\lambda f.\lambda i.f(i) \wedge ARG1(i, \mathcal{R}(ID))$

 λi .involve-01(i)

 $\mathcal{R}(\mathrm{ID})$

 $\lambda x.\lambda i.$ involve- $01(i) \wedge ARG1(i,x)$

Splitting CCG Categories

Given a CCG category *C* : *h*:

1. Split logical form h to f and g s.t.:

$$f(g) = h$$
 or $\lambda x. f(g(x)) = h$

2. Infer syntax from logical form type

$$NP_{[nb]}: \lambda i. \text{involve-}01(i) \land$$

$$ARG1(i, \mathcal{R}(\text{ID}))$$

$$NP_{[x]}/N_{[x]}: \lambda f.\lambda i.f(i) \wedge ARG1(i, \mathcal{R}(ID))$$

 $N_{[nb]}: \lambda i.involve-01(i)$

$$NP_{[pl]}: \mathcal{R}(\mathrm{ID})$$

$$NP_{[nb]}\backslash NP: \lambda x.\lambda i.$$
involve- $01(i) \land ARG1(i,x)$

Top-down Pass

Top-down Pass

Top-down Pass

Splitting for CCG Induction

- Kwiatkowski et al. 2010:
 - No restriction on result categories
 - Applied up to depth one
- Our approach:
 - Combined with bottom-up template approach
 - Must connect to an existing partial derivation
 - Applied recursively

Learning Algorithm Sketch

For T iterations:

- For each training sample:
 - Two-pass generation of new lexical entries
- Update the model lexicon
- For each mini-batch of size M
 - Compute gradient with early updates
 - Apply update with AdaGrad

Gradient Computation

If a correct derivation exists:

 Compute gradient with inside-outside

 Re-normalize with constant mapping features

Common Failure

No correct derivation exists,
 ~40% of training data

 Previous work assumed that all (or at least most) corpus can be parsed

Instead: early updates

Early Updates

- Collins and Roark (2004):
 - Given fully labeled parse trees
 - Update with partial derivations
- Challenge: derivation is latent

Early Update with Latent Structures

 Extract sub-expression from underspecified logical form

For each sub-expression:

 Identify largest maxscoring partial derivation

- Compute gradient

Early Update with Latent Structures


```
\mathcal{A}_{2}(\lambda p.\operatorname{person}(p) \wedge
\operatorname{REL-of}(p, \mathcal{A}_{3}(\lambda h.\operatorname{have-org-role-91}(h) \wedge
\operatorname{ARG1}(h, \mathcal{A}_{4}(\lambda c.\operatorname{city}(c) \wedge
\operatorname{name}(c, \mathcal{A}_{5}(\lambda n.\operatorname{name}(n) \wedge \operatorname{op}(n, \operatorname{PYONGYANG})))))
\operatorname{REL}(h, \mathcal{A}_{6}(\lambda o.\operatorname{official}(o))))))
```

 $\mathcal{A}_4(\lambda c.\mathrm{city}(c) \land \\ \mathrm{name}(c, \mathcal{A}_5(\lambda n.\mathrm{name}(n) \land \mathrm{op}(n, \mathrm{PYONGYANG}))))$

Pyongyang officials denied

their

Early Update with Latent Structures

Underspecified Logical Form


```
\mathcal{A}_{2}(\lambda p.\operatorname{person}(p) \wedge
\operatorname{REL-of}(p, \mathcal{A}_{3}(\lambda h.\operatorname{have-org-role-91}(h) \wedge
\operatorname{ARG1}(h, \mathcal{A}_{4}(\lambda c.\operatorname{city}(c) \wedge
\operatorname{name}(c, \mathcal{A}_{5}(\lambda n.\operatorname{name}(n) \wedge \operatorname{op}(n, \operatorname{PYONGYANG})))))
\operatorname{REL}(h, \mathcal{A}_{6}(\lambda o.\operatorname{official}(o))))))
```

 $\mathcal{A}_4(\lambda c.\mathrm{city}(c) \land \\ \mathrm{name}(c, \mathcal{A}_5(\lambda n.\mathrm{name}(n) \land \mathrm{op}(n, \mathrm{PYONGYANG}))))$

Pyongyang officials denied

their

Related Work

CCG Semantic Parsing	[Zettlemoyer and Collins 2005, 2007; Kwiatkowski et al. 2010, 2011;
OL - L T (OOO	Artzi and Zettlemoyer 2013]
Skolem Terms for CCG	[Steedman 2011]
AMR Evaluation	[Cai and Knight 2013]
Graph-based Parsing for	[Flanigan et al. 2014]
AMR	
Dependency Structure	[Wang et al. 2015a, 2015b]
Transformation for AMR	
Syntax-based MT for AMR	[Pust et al. 2015]
Rule-based Parsing for	[Vanderwende et al. 2015]
AMR	
AMR Applications	[Pan et al. 2015; Lin et al. 2015]

Experimental Setup

- AMR Bank release 1.0, proxy report portion
- Evaluation metric: SMATCH [Cai and Knight 2013]
- Features: lexical features, parsing operations, parsing attachment, selectional preferences, control structures
- Seed lexicon and templates:
 - 50 annotated sentences
 - Heuristic alignment from JAMR [Flanigan et al. 2014]

Ablation Results

SMATCH F1

- Full system
- w/o unrestricted lexical generation
- w/o early updates
- w/o surface-form similarity
- Without early updates we fail to learn effectively from much of the data
- Poor performance without heuristics demonstrates need for future work

Results

SMATCH F1

- JAMR (fixed)
- Werling et al. 2015
- Pust et al. 2015
- Our Approach
- Wang et al. 2015b
- AMR is getting a lot of attention!
 and will: SemEval 2016
- Using solutions sub-problem solution is a promising complimentary direction

Contributions

- Joint model for compositional and non-compositional semantics
- Scalable CCG induction for semantic parsing
- First CCG approach to AMR
- Code and models available in Cornell SPF: http://yoavarzti.com/spf

[fin]