4: Forced undamped vibration

• The system is now acted on by a periodic force (Excitation force):

$$F = F_0 \cos(\omega t)$$

• If we consider the static condition firstly:

$$X_{static} = rac{F_0}{k}$$

To start with the EOM:

$$F_0\cos(\omega t) - kx = m\ddot{x}(t)$$

• If we assume the equation of x:

$$x=X_0\cos(\omega t_\phi)$$

The substitution occurs as:

$$F_0\cos(\omega t)-kX_0\cos(\omega t+\phi)=-m\omega^2\cos(\omega t+\phi)$$

- As the equation above is satisfied in all situations, so we assume $\omega t=\frac{\pi}{2}$, and we find that $\phi=0$. So there is no phrase.
- Then we got:

$$\frac{X_0}{F_0} = \frac{1}{k - m\omega^2}$$

If we use the conditions we got previously:

$$x_{static} = rac{F_0}{k} \ \omega_n = rac{k}{m}$$

• We got the Magnification factor:

$$M = rac{X_0}{x_{static}} \ = rac{1}{1-(rac{\omega}{\omega_n})^2}$$

- When $\omega o \omega_n$, we have the resonance.
- The amplitude (X_0) is maximized when ω is minimized or F_0 maximized.
- If we plot the result:

- Another way of looking at the effect of the forcing term is transmissibility (T).
- T looks at how much of forcing term is transmitted to the system.
- Force transmitted is connected to the spring force:

$$F_s = kx = kX_0\cos(\omega t)$$

• Transmissibility is defined as the ratio of the amplitude of the force transmitted to he amplitude of the applied force:(F_0 as external force)

$$T = \frac{kX_0}{F_0}$$

• As we defined $M=rac{X_0}{F_0/k}$, so:

$$T = \frac{1}{|1 - \frac{\omega^2}{\omega_n^2}|}$$

5: Forced Damped Vibration

- The system is acted on a periodic force (excitation force) $F=F_0\cos\omega t$ and there is a damping force which opposes motion.
- We assume that the damping is proportional to velocity (linear damping):

$$F_d = -C\dot{x}$$

- Damping is characterized by ${\cal C}$ the **Damping Coefficient**

FBD

$$F_{s} = kx \longleftarrow F_{d} = C\dot{x}$$

· Firstly, the equation of motion:

$$F - kx - C\ddot{x} = m\ddot{x}$$

• Taking the steady sate form of the excitation force and system response:

$$F = F_0 \cos(\omega t) \ x = X_0 \cos(\omega t + \phi)$$

• The do the substitution:

$$-mX_0\omega^2\cos(\omega t+\phi)-CX_0\omega\sin(\omega t+\phi)+kX_0\cos(\omega t+\phi)=F_0\cos(\omega t)$$

• If we set $\omega t = \frac{\pi}{2}$ to find the ϕ :

$$-(-m\omega^2+k)\sin(\phi)-C\omega\cos(\phi)=0 \ an(\phi)=rac{-C\omega}{(-m\omega^2+k)}$$

• By setting $\omega t = 0$:

$$rac{X_0}{F_0} = rac{1}{(-m\omega^2 + k)\cos(\phi)}$$

• Use the former result of tangent of ϕ :

$$rac{X_0}{F_0/k} = rac{1}{\sqrt{(1-rac{\omega^2}{\omega_n^2})^2+(rac{C}{m\omega_n})^2rac{\omega^2}{\omega_n^2}}}$$

If we plot the result:

6: Unforced (Free) damped vibration

• Physically we know that the amplitude will decay exponentially with time:

• So $X o X e^{-nt}$, where n is an unknown constant.

Free damped vibration:										
	As we theat	this ex	umple							
$\leftarrow f_{\mathcal{U}} = C \dot{x}$	as linear vi	luvisn,	Fd= (:	i						
,	(damping o	(1)								
k>(
Newton's Znd Law:	Substitu	de back	;							
$-kx-c\dot{x}=m\dot{x}$	" m [(n - w) cos (wt+	p)+2n1	vsin (wt+p)) + C[-	ncos(wt+	\$> - WSi	1 (wt+p)	+ kcos(wt t	$\phi) = 0$
	,					13	To tind	w we set	wt = 0:	
Assume the form of a with	i of we	Treat T	$=0$, λ	= Xo, Ø=	π , /					
ecaying amplitude:	for con	lenien(E	, then .	set wt=	Z 7	not n.i	$W = \frac{R}{m}$	m + n =	$\frac{k}{m} = \frac{C}{4m^2}$	
$x = x_0 e^{-rt} \cos(wt + \phi)$	m [(2hW)]+	([-w]	=0 =>	$\gamma = \frac{1}{2}$	n =	> Wd = 5	k-(c)2	. The damping	,
1 = 100 205(100.7)	1 . 4	- XP	≟nt 2mt	not.		1	requery of	5451em	1 0	
	/	_ /8C	COST	,,,,,,						
2										
$> W_d = W_n \cdot \sqrt{1 - \left(\frac{1}{2} \frac{c}{mw_n}\right)^2}$										
Detino (visual domosing:	7 19 10/10									
	CI ZMIN	- <u>C</u> t	г ,							
Define Chibital damping: C: $Wd = W_n \int F\left(\frac{C}{C}\right)^2 \Rightarrow$	X = Xoe	. 005	. Wht	+(c)						
N GC			LN							

7: Types of Damping Coefficient

7.1: Critically damped

- The system is at the limit of vi
- vibration:

$$\frac{C}{C_c} = 1$$

7.2: Over damped

• The system does not vibrate and return to equilibrium:

$$\frac{C}{C_c} > 1$$

7.3: Under damped

• The system vibrates with reducing amplitude at a reduced frequency:

$$\frac{C}{C_c} < 1$$