CÁLCULO EM VÁRIAS VARIÁVEIS :: PROVA 01

PROF. TIAGO MACEDO

Nome:	Assinatura:	RA:
-------	-------------	-----

Questão 1. Seja F uma função tal que F(x, y, z) = |x| + |y| + |z| - 1 para todo (x, y, z) no domínio de F.

- (a) Determine o domínio de F. Justifique.
- (b) Determine a imagem de F. Justifique.
- (c) Para cada $k \in \mathbb{R}$, esboce a superfície de nível k de F. Justifique.
- (d) Determine se F é contínua no ponto (0,0,1). Justifique.
- (a) Por definição, o domínio de F é o conjunto de pontos onde F está definida. Como F está definida para todo ponto $(x, y, z) \in \mathbb{R}^3$, então o domínio de F é \mathbb{R}^3 .
- (b) Vamos denotar a imagem de F por $\operatorname{im}(F)$. Por definição, $\operatorname{im}(F)$ é o subconjunto

$$\{w \in \mathbb{R} \mid \text{existe } (x, y, z) \in \mathbb{R}^3 \text{ tal que } F(x, y, z) = w\} \subseteq \mathbb{R}.$$

Como $F(x, y, z) = |x| + |y| + |z| - 1 \ge 0 + 0 + 0 - 1 = -1$ para quaisquer $x, y, z \in \mathbb{R}$, então $\operatorname{im}(F) \subseteq \{t \in \mathbb{R} \mid t \ge -1\}$. Isso **não** mostra que $\operatorname{im}(F) = \{t \in \mathbb{R} \mid t \ge -1\}$!

Ainda é necessário mostrar que $\{t \in \mathbb{R} \mid t \geq -1\} \subseteq \operatorname{im}(F)$. Para isso, observe que, dado $t \geq -1$, temos que F(t+1,0,0) = |t+1|+0+0-1 = |t+1|-1. Como $t \geq -1$, então $t+1 \geq 0$ e, consequentemente, |t+1| = t+1. Assim, segue que $F(t+1,0,0) = t \in \operatorname{im}(F)$ para todo $t \geq -1$. Isso mostra que $\operatorname{im}(F) = \{t \in \mathbb{R} \mid t \geq -1\}$.

(c) Por definição, para cada $k \in \mathbb{R}$, a superfície de nível k de F é o conjunto

$$F^{-1}(k) = \{(x, y, z) \in \mathbb{R}^3 \mid F(x, y, z) = k\}$$
$$= \{(x, y, z) \in \mathbb{R}^3 \mid |x| + |y| + |z| = k + 1\}.$$

- Se k < -1: Como k+1 < 0 e $|x|+|y|+|z| \ge 0$ para todo $(x,y,z) \in \mathbb{R}^3$, então $F^{-1}(k) = \emptyset$.
- Se k = -1: então |x| + |y| + |z| = k + 1 = 0 se, e somente se, x = y = z = 0. Portanto $F^{-1}(-1) = \{(0, 0, 0)\}.$

• Se $k \ge -1$: em cada octante de \mathbb{R}^3 , teremos um plano diferente

$$\begin{cases} x+y+z=(k+1), & \text{se } x>0,\,y>0,\,z>0,\\ -x+y+z=(k+1), & \text{se } x-0,\,y>0,\,z>0,\\ x-y+z=(k+1), & \text{se } x>0,\,y<0,\,z>0,\\ x+y-z=(k+1), & \text{se } x>0,\,y<0,\,z<0,\\ x+y-z=(k+1), & \text{se } x>0,\,y<0,\,z<0,\\ -x+y-z=(k+1), & \text{se } x<0,\,y<0,\,z<0,\\ -x+y-z=(k+1), & \text{se } x<0,\,y<0,\,z<0,\\ -x-y+z=(k+1), & \text{se } x<0,\,y<0,\,z<0,\\ -x-y+z=(k+1), & \text{se } x<0,\,y<0,\,z<0.\\ \end{cases}$$

Juntando esses planos, o esboço dessa superfície de nível k de F fica o seguinte:

(d) Por definição, F é contínua em (0,0,1) quando $\lim_{(x,y,z)\to(0,0,1)} F(x,y,z) = F(0,0,1)$. Observe que F(0,0,1) = |0| + |0| + |1| - 1 = 0. Além disso,

$$\lim_{(x,y,z)\to(0,0,1)} F(x,y,z) = \lim_{(x,y,z)\to(0,0,1)} |x| + \lim_{(x,y,z)\to(0,0,1)} |y| + \lim_{(x,y,z)\to(0,0,1)} |z| - 1$$

$$= 0 + 0 + 1 - 1$$

$$= 0.$$

Portanto F é contínua em (0,0,1).

Questão 2. Denote por D o conjunto $\mathbb{R}^2 \setminus \{(0,0)\} = \{(x,y) \in \mathbb{R}^2 \mid (x,y) \neq (0,0)\}.$

(a) Considere a função $G \colon D \to \mathbb{R}$ dada por $G(x,y) = \frac{x^3}{x^2 + y^2}$. Calcule

$$\lim_{(x,y)\to(0,0)} G(x,y),$$

ou mostre que esse limite não existe.

(b) Considere a função $H: D \to \mathbb{R}$ dada por $H(x,y) = \frac{x^2y^2}{x^2+y^4}$. Calcule

$$\lim_{(x,y)\to(0,0)} H(x,y),$$

ou mostre que esse limite não existe.

(c) Considere a função $J \colon \mathbb{R}^3 \to \mathbb{R}$ dada por

$$J(x,y,z) = \begin{cases} x \operatorname{sen}\left(\frac{1}{y}\right) + y \operatorname{sen}\left(\frac{1}{z}\right) + z \operatorname{sen}\left(\frac{1}{x}\right), & \operatorname{se} x \neq 0, y \neq 0 \text{ e } z \neq 0, \\ 1, & \operatorname{se} x = 0 \text{ ou } y = 0 \text{ ou } z = 0. \end{cases}$$

Calcule

$$\lim_{(x,y,z)\to(0,0,0)} J(x,y,z),$$

ou mostre que esse limite não existe.

(a) Observe que G(x,y) pode ser escrita como G(x,y) = xK(x,y), onde $K(x,y) = \frac{x^2}{x^2+y^2}$. Além disso, como $x^2 \le x^2 + y^2$, então $|K(x,y)| \le 1$ para todo $(x,y) \in D$, ou seja, K(x,y) = 1 ferminada em (x,y) = 1 para todo $(x,y) \in D$, ou seja, (x,y) = 1 ferminada em (x,y) = 1 para todo $(x,y) \in D$, ou seja, (x,y) = 1 ferminada em (x,y) = 1 para todo $(x,y) \in D$, ou seja, $(x,y) \in D$, ou seja

$$\lim_{(x,y)\to(0,0)} G(x,y) = 0.$$

(b) Observe que H(x,y) pode ser escrita como $H(x,y)=y^2L(x,y)$, onde $L(x,y)=\frac{x^2}{x^2+y^4}$. Além disso, como $x^2 \leq x^2+y^4$, então $|L(x,y)| \leq 1$ para todo $(x,y) \in D$, ou seja, L é limitada em D. Como $\lim_{(x,y)\to(0,0)}y^2=0$, segue que

$$\lim_{(x,y)\to(0,0)} H(x,y) = 0.$$

(c) Primeiro observe que, sobre a curva x=y=z, temos $J(x,x,x)=3x \operatorname{sen}\left(\frac{1}{x}\right)$ para todo $x \neq 0$. Como seno é uma função limitada $(|\operatorname{sen}(\theta)| \leq 1 \operatorname{para} \operatorname{todo} \theta \in \mathbb{R})$ e $\lim_{(x,y,z)\to(0,0,0)} 3x = 0$, segue que $\lim_{x\to 0} J(x,x,x) = 0$.

Por outro lado, sobre a curva x=y=0, temos que J(0,0,z)=1 para todo $z\in\mathbb{R}$. Como J(0,0,z) é uma função constante, então $\lim_{z\to 0}J(0,0,z)=1$. Como $0\neq 1$, isso mostra que o limite não existe.

Questão 3. Construa uma função $f: \mathbb{R} \to \mathbb{R}^2$ (ou seja, Domínio $(f) = \mathbb{R}$) tal que:

- (a) f é contínua em todos os pontos de \mathbb{R} . Justifique.
- (b) f é contínua em todos os pontos de \mathbb{R} exceto em 1 e -1. Justifique.
- (c) f é contínua em $\mathbb{R} \setminus \{0\}$, tem limite (e está definida) em 0, mas não é contínua em 0. Justifique.

Toda função $f: \mathbb{R} \to \mathbb{R}^2$ pode ser escrita como $f(t) = (f_1(t), f_2(t))$, onde $f_1, f_2: \mathbb{R} \to \mathbb{R}$. Além disso, $\lim_{t\to a} f(t) = (\lim_{t\to a} f_1(t), \lim_{t\to a} f_2(t))$. Consequentemente, f é contínua em $a \in \mathbb{R}$ se, e somente se,

$$(f_1(a), f_2(a)) = f(a) = \lim_{t \to a} f(t) = \left(\lim_{t \to a} f_1(t), \lim_{t \to a} f_2(t)\right).$$

- (a) Para que f seja contínua em todos os pontos de \mathbb{R} é necessário e suficiente que f_1 e f_2 sejam contínuas em todos os pontos de \mathbb{R} . Por exemplo, $f_1(t) = |t|$ e $f_2(t) = \operatorname{sen}(t)$ são contínuas em todos os pontos de \mathbb{R} . Mas existem outros exemplos.
- (b) Para que f não seja contínua em um ponto $a \in \mathbb{R}$ é necessário e suficiente que f_1 ou f_2 não seja contínua em a. Por exemplo, para que f seja contínua em $\mathbb{R} \setminus \{-1, 1\}$, podemos tomar: $f_1(t) = \frac{1}{1-t}$ para todo $t \neq 1$, que é contínua em $\mathbb{R} \setminus \{1\}$, e completar com $f_1(1) = 1$ (porque f deve ser definida em todos os pontos de \mathbb{R} !); e

$$f_2(t) = \begin{cases} 1, & \text{se } t \ge -1, \\ 0, & \text{se } t < -1, \end{cases}$$

que é contínua em $\mathbb{R} \setminus \{-1\}$ e também está definida em todos os pontos de \mathbb{R} . Mas existem outros exemplos.

(c) Considere, por exemplo, $f_1, f_2 \colon \mathbb{R} \to \mathbb{R}$ dadas por $f_1(t) = e^t \in f_2(t) = \begin{cases} t, & \text{se } t \neq 0, \\ 1, & \text{se } t = 0. \end{cases}$ Observe que

$$\lim_{t \to 0} f(t) = \left(\lim_{t \to 0} f_1(t), \lim_{t \to 0} f_2(t) \right) = \left(\lim_{t \to 0} e^t, \lim_{t \to 0} t \right) = (1, 0).$$

Isso mostra que $\lim_{t\to 0} f(t)$ existe. Observe também que $f(0)=(e^0,1)\neq (1,0)$. Portanto f não é contínua em 0.

Existem outros exemplos.