BUNNIES

TOWERS OF HANOI

How many moves are needed to solve the towers of Hanoi puzzle with n disks?

SOLVING RECURRENCE RELATIONS

Use induction to show that the purported solutions are really solutions.

(2)
$$a_n = 2a_{n-1} + 1$$
, $a_0 = 1$

Solution: ??

SECOND ORDER HOMOGENEOUS LINEAR RECURRENCE RELATIONS

Solve: $a_n = a_{n-2}$, $a_0 = 1$, $a_1 = 3$.

 $a_n = 6a_{n-1} - 9a_{n-2}, a_0 = 1, a_1 = 0$

an=2an-1+an-2, a0=0, a1=1

MORE PROBLEMS

(a)
$$Q_0 = 6$$
, $Q_1 = 12$

(b)
$$a_0 = 6$$
, $a_2 = 54$

SECOND ORDER NONHOMOGENEOUS LINEAR RECURRENCE RELATIONS

Solve:
$$a_n = 2a_{n-1} + 1$$
, $a_1 = 1$
 $a_n = 3a_{n-1} + 5 \cdot 7^n$, $a_0 = 2$.
 $a_n = -a_{n-1} + n$, $a_0 = 1/4$.
 $a_n = 2a_{n-1} - n/3$, $a_0 = 1$

MORE PROBLEMS

O Solve an = 5an-1 - 6an-2 + 6.4"

② Solve $a_n = a_{n-1} + 3n^2$, $a_0 = 7$

By the way, there is another method for solving #2, the method of undetermined coefficients. Idea: recursively substitute: $a_n = a_0 + \frac{\pi}{2\pi} f(i) = 7 + 3 \Xi i^2 = \cdots$