(51) Int (16

(12) 公開特許公報(A)

FI

广内戴班妥县

(11)特許出願公開番号

特開平10-25327

技術表示簡所

(43)公開日 平成10年(1998) 1月27日

(51)IntCl.	政別配写 厅内登理备	7 F 1	纹帽:	改 不固历
C 0 8 G 18/42	NDX	C 0 8 G	18/42 NDX	
18/48	NEA	!	18/48 NEA	
C 0 8 J 9/02	CFF	C 0 8 J	9/02 CFF	
// H04R 7/18		H04R	7/18	
(C08G 18/42				
	· ** 查	開求 未請求 請求	項の数9 FD (全 25 頁) 最終	質に続く
(21)出願番号	特願平9-33087	(71)出顧人	000119232 株式会社イノアックコーポレーシ	774
(22)出願日	平成9年(1997)1月31日		受知県名古屋市中村区名駅南2丁 号	•
(31)優先権主張番号	特願平8 -140850	(72)発明者	藤田 直志	
(32)優先日	平8 (1996) 5月9日		愛知県安城市今池町3丁目1番36	号 株式
(33)優先権主張国	日本 (JP)		会社イノアックコーポレーション	安城事業
			所内	
		(72)発明者	一鈴木 実	
			愛知県安城市今池町3丁目1番36	号 株式
			会社イノアックコーポレーション	安城事業
			所内	
		(74)代理人		
			最終	頁に続く

(54)【発明の名称】 軟質ポリウレタンフォーム及びそれを用いたスピーカエッジ

離別紀長

(57)【要約】

【課題】 耐湿熱老化性、耐オゾン劣化性等の良好な軟質ポリウレタンフォーム、及びこのフォームを用いた防水性等に優れるスピーカエッジを提供する。

【解決手段】 ポリオールとして、炭素数5以上の長鎖のアルキレングリコールのアジペート等のポリエーテルポリオールとの相溶性に優れるポリエステルポリオールなどを使用し、これに発泡剤、触媒、整泡剤等を配合したポリオール成分と、ポリイソシアネートとを反応させて耐湿熱老化性及び耐オゾン劣化性等の良好な軟質ポリウレタンフォームを得る。また、特定の芳香族第2級アミン系化合物、末端単官能性化合物及び紫外線吸収剤を配合し、より耐オゾン劣化性及び耐候性に優れた軟質フォームを得る。更に、この軟質フォームからなり、圧縮成形等による強度、伸びの低下が小さく、特に、優れた防水性、耐候性等を併せ有するスピーカエッジを得る。

Applicants: Takahiro Tanaka
Title: Low Air-Permeability Flexible
Polyurethane Foam Block, and...
U.S. Serial No. not yet known
Filed: July 23, 2003
Exhibit 12

【特許請求の範囲】

ポリイソシアネート及びポリオール成分 【請求項1】 を含有する組成物を反応させて得られるポリウレタンフ ォームにおいて、上記ポリオール成分は、エステル結合 の間に、(1) 炭素数5以上の炭化水素基及び(2) 合計数 が5以上の炭素原子とヘテロ原子とからなる骨格に水素 原子が結合した基のうちの少なくとも一方を有するポリ エステルポリオールと、ポリエーテルポリオールとを含 有することを特徴とする軟質ポリウレタンフォーム。

上記ポリエステルポリオールと、上記ポ 10 【請求項2】 リエーテルポリオールとの合計量を100重量%とした 場合に、上記ポリエステルポリオールは50重量%以下 である請求項1記載の軟質ポリウレタンフォーム。

【請求項3】 上記ポリオール成分は、一分子中にエー テル結合とエステル結合とを有するヒドロキシ化合物を 含有する請求項1又は2記載の軟質ポリウレタンフォー

【請求項4】 上記ポリオール成分は、2級の末端水酸 基を有するポリエステルポリオールを含有する請求項1

【請求項5】 ポリイソシアネート及びポリオール成分 を含有する組成物を反応させて得られるポリウレタンフ ォームにおいて、上記ポリオール成分は、一分子中にエ ーテル結合とエステル結合とを有するヒドロキシ化合物 及び2級の末端水酸基を有するポリエステルポリオール のうちの少なくとも一方と、ポリエーテルポリオールと を含有することを特徴とする軟質ポリウレタンフォー

【請求項6】 上記ポリオール成分は、ポリマーポリオ 30 ールを含有する請求項1乃至5のいずれか1項に記載の 軟質ポリウレタンフォーム。

【請求項7】 上記組成物は、上記ポリオール成分に含 まれるポリオールを100重量部とした場合に、1~2 5 重量部の芳香族第2級アミン系化合物を含有する請求 項1乃至6のいずれか1項に記載の軟質ポリウレタンフ ォーム。

【請求項8】 上記組成物は、一端又は中間部に、(1) 炭素数5以上の炭化水素基及び(2) 合計数が5以上の炭 素原子とヘテロ原子とからなる骨格に水素原子が結合し 40 た基のうちの少なくとも一方を有し、他端に、上記ポリ イソシアネートに含まれるイソシアネート基と反応する 1個の活性基、若しくは上記ポリオール成分中のポリオ ールに含まれる活性水素基と反応する1個の活性基(こ れらの活性基は分子鎖の末端の炭素原子又は該末端の炭 素原子の隣の炭素原子に結合している。)を有する末端 単官能性化合物を含有する請求項1乃至7のいずれか1 項に記載の軟質ポリウレタンフォーム。

【請求項9】 請求項1乃至8のいずれか1項に記載の 軟質ポリウレタンフォームからなることを特徴とするス 50

ピーカエッジ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、加水分解し難く、 且つオゾンに晒した場合に引張強度等の低下の小さい軟 質ポリウレタンフォーム(以下、「軟質フォーム」とい う。) に関する。また、本発明は、引張強度、伸び等の 物性がより向上し、加えて紫外線等による劣化が生じ難 く、且つ適度な通気性を有し、成形性が良好であって、 優れた防水性を有する軟質フォームに関する。更に、本 発明は、これら種々の性能に優れた軟質フォームからな るスピーカエッジに関する。また、本発明の軟質フォー ムは、スピーカエッジの他、ハードディスク装置用の防 音材、ダンピング材、各種プリンタのロール及びトナー カートリッジ等のシール材など、広範囲の用途において 使用することができる。

[0002]

【従来の技術】軟質フォームには、ポリエステルポリオ ールを使用して得られるフォーム(以下、「エステル系 乃至3のいずれか1項に記載の軟質ポリウレタンフォー 20 フォーム」という。)と、ポリエーテルポリオールを使 用して得られるフォーム(以下、「エーテル系フォー ム」という。)の2種類がある。これらのフォームの特 性は、使用するポリオールの影響を強く受け、ポリオー ルの分子構造、フォームの分子間凝集力の相違などによ って、その機械的、化学的特性が基本的に異なる。

> 【0003】エステル系フォームは、セルが細かく、優 れた外観を有し、引張強度、伸び等が大きく、特に、圧 縮成形後の伸びは、エーテル系フォームに比べ非常に優 れている。また、エステル系フォームは、耐油性、耐溶 剤性にも優れ、化学的に安定であり、耐熱性、耐候性も 良好である。しかし、エステル系フォームは、フォーム 生成に使用されるポリエステルポリオールに起因する、 エステル結合の加水分解による強度低下という大きな問 題点を有している。以下、この加水分解が抑えられるこ とを耐湿熱老化性という。更に、エステル系フォーム は、ヒステリシスロスがやや大きく緩衝材としての用途 には適さない。

> 【0004】一方、エーテル系フォームは、加水分解と いう点では、エステル系フォームに比べ、非常に優れて いる。また、柔軟性、復元性等も良好である。しかし、 耐油性、耐溶剤性等はエステル系フォームに比べて劣 る。また、通気性の非常に低いものは得られ難く、引張 強度、伸び等も小さく、特に、圧縮成形による強度及び 伸びの低下が大きい。更に、オゾンに晒された場合の劣 化についても、エステル系フォームに比べて相当に劣っ ている。そのため、加水分解し難く、耐湿熱老化性に優 れるとの長所はあるものの、多くの用途において、実際 にはエステル系フォームが用いられているのが現状であ る。以下、上記のオソンによる劣化が抑えられることを 耐オゾン劣化性という。更に、エーテル系フォームは、

紫外線等による劣化(以下、この紫外線等による劣化が 抑えられることを耐候性という。)についてもエステル 系フォームに比べ劣っている。

【0005】また、本来、軟質フォームは多孔質であっ て、エステル系フォーム、エーテル系フォームいずれ も、たとえ加熱圧縮しても所要の防水性を得ることはで きない。この防水性の問題を解決するため、以下の方法 が提案されている。

①軟質フォームの表面に防水性の皮膜を設ける。

②軟質フォームにフッ素樹脂のエマルジョンを含浸し、 乾燥させて水を除去し、撥水性のフォームとする。

[0006] しかし、①の方法では、多くの微細孔が開 口する軟質フォームの表面に、透水性のない均質な被膜 を形成することは困難である。また、被膜を形成する素 材は耐熱性の低いものが多く、加熱圧縮時に被膜が軟 化、溶融し、破壊されてしまうことがある。更に、この 方法ではコストが高くなる。一方、〇の方法では、防水 性を高めるため、通気性を低くした軟質フォームに、フ ッ素樹脂のエマルジョンを均一に含浸させることはかな り難しい。また、含浸させることができたとしても、フ ォームから水分を完全に除去することは困難であり、防 水性が不均質になり易い。更に、フッ素樹脂のエマルジ ョンは非常に高価であり、得られるフォームが高価なも のになるという問題もある。

【0007】また、ポリエステルポリオールとポリエー テルポリオールとを併用し、エステル系フォームとエー テル系フォームの長所を併せ有するフォームを開発する ことも試みられている。しかし、汎用の両ポリオールで は相溶性に劣り、通常、ポリエステルポリオールを少な くとも50重量%を越え、特に80重量%以上にしない 30 と、均一に混合することはできず、相分離を生じて、正 常なフォームを得ることはできない。しかし、ポリエス テルポリオールを上記のように大量に配合した場合、物 性等のバランスのよいフォームを得ることができない。 【0008】尚、ポリエーテルポリオールにエステル結

合を導入し、このポリオールを使用することにより、フ ォームの特性を向上させようとの試みがなされている。 また、含リンポリエステルポリオール等、特殊なポリオ ールを用い、これに特定の整泡剤等を組み合わせて反応 させる方法、水酸基末端プレポリマー、イソシアネート 40 末端プレポリマーを使用する方法なども提案されてい る。更に、モールド成形によってポリ塩化ビニル等から なる表皮にフォームを接合する技術分野においても、特 定のポリエステルポリオールとポリエーテルポリオール との併用が提案されている。

【0009】しかし、これらはセル膜のないフィルター フォーム(特公昭52-35077号公報及び特開昭5 5-27315号公報等)及び半硬質フォーム(特公平 3-26694号公報及び特開昭62-148516号 公報等)など、限られた分野において実施されているに 50 にエッジのクリープによる音質の劣化が少ない。同時に

すぎず、一般の軟質フォームの技術分野においては実用 化されていない。また、上記のポリエーテルポリオール にエステル結合を導入した特定のポリエステルポリオー ルは、これらを生成させるための工程が複雑であって、 高価でもあり、単独で使用した場合、フォームの特性を 大きく変化させることができない。更に、得られるフォ ーム中に導入されるエステル基の濃度が低く、フォーム の物性等を十分に向上させることもできない。

【0010】軟質フォームは多くの用途において使用さ 10 れているが、特に、エステル系フォームは従来よりスピ ーカエッジの素材として多用されている。スピーカは、 コーン紙、このコーン紙に接続され、コーン紙を駆動す るためのボイスコイル、このボイスコイルを駆動するた めのマグネット、及びこのマグネットを固定するための フレームにより構成されている。そして、スピーカエッ ジとは、コーン紙とフレームとを接続し、コーン紙の自 由な振動を可能にするための部材である。現在、この部 材としては、軟質フォームをプレス成形したもの、ファ ブリックに樹脂を含浸させ、それを熱成形したもの、或 20 いはゴム又は熱可塑性樹脂のシートを成形したもの等が 使用されている。

【0011】 このスピーカエッジには、

①コーン紙の自由な振動を妨げない程度の柔軟性を有す ること、

2コーン紙を所定の位置に保持し、ポイスコイルとマグ ネットのフレームとの接触を防止し、且つリニアーな振 動を維持するため、縦方向には柔軟であって、横方向で は、スピーカコーンとボイスコイルの重量を支えるため の剛性を有すること、

③スピーカポックス内と外部とを遮音し、音の回斥作用 を減じ、低温域の音圧を向上させ、スピーカの再生音の 音質を改善するため、通気性が低いこと、等の各種の機 能が要求されている。

【0012】そして、スピーカエッジの素材としては、 これまで主としてエステル系フォームが使用されてき た。このスピーカエッジは、通常、軟質スラブフォーム から厚さ10mm程度のシートを切り出し、これを20 0℃程度に調温された成形機によって圧縮成形して得ら れ、コーン紙とフレームとに接合して使用される。軟質 フォームからなるスピーカエッジは、上記の各種機能を 有し、また他の素材よりなるスピーカエッジに比べ、下 記の長所がある。

【0013】①軽量、且つ柔軟であるため小口径スピー 力に使用した場合に、再生能率が低下しない。また、エ ッジ部よりの音の発生が少ないため、ノイズの少ない良 質な再生音が得られる。

②立体的な成形が可能であり、幅広い振幅に対応するこ とができる。

③材料自体の伸縮性が優れているため、大音量の再生時

低音域の大出力時にもコーン紙が追従することができ、 比較的小口径のスピーカであっても、大音量が得られ

④圧縮成形時の圧縮倍率によって、硬度、強度等を容易 に変えることができる。また、圧縮倍率を変えることに より、各部材の重量、その他のばらつきにより生じる最 低共振周波数を調整することができる。

⑤原材料及び圧縮成形に多くのコストを要しない。

【0014】しかし、近年、自動車にオーディオシステ ムが搭載されるようになり、より長期の耐久性が強く求 10 められるようになった。特に、このところ自動車のドア トリムにスピーカを設置したドア構造の採用が増加して いるが、ドアトリムと外板の間からは雨水等の水分が侵 入することにより、想像以上に内部の湿度は高くなって いる。そのため、本来、多孔質な素材である軟質フォー ムでは、エステル系、エーテル系いずれも、たとえ加熱 圧縮しても所要の防水性を有するスピーカエッジとする ことはできない。また、エステル系フォームからなるス ピーカエッジを使用した場合は、その湿熱劣化が大きな 観点から、エステル系フォームからなるスピーカエッジ を使用したスピーカであっても、直射日光を受け易い自 動車の後部トレイに設置するタイプの車載用としては使 用できないとの問題もある。

[0015]

【発明が解決しようとする課題】本発明は、上記の問題 点を解決するものであり、ポリエーテルポリオールとの 相溶性のよい、特定のポリエステルポリオールを使用す ることにより、特に、その配合量が50重量%以下であ っても、相溶性に優れ、耐湿熱老化性と耐オゾン劣化性 30 とが相当に改善された軟質フォーム及びそれを用いたス ピーカエッジを提供することを課題とする。また、本発 明は、特定の芳香族第2級アミン系化合物を配合するこ とにより、耐オゾン劣化性がより向上した軟質フォーム 及びそれを用いたスピーカエッジ、並びに特定の末端単 官能性化合物を配合することにより、止水性が改良され た軟質フォーム及びそれを用いたスピーカエッジを提供 することを課題とする。

[0016]

は、ポリイソシアネート及びポリオール成分を含有する 組成物を反応させて得られるポリウレタンフォームにお いて、上記ポリオール成分は、エステル結合の間に、

(1) 炭素数5以上の炭化水素基及び(2) 合計数が5以上 の炭素原子とヘテロ原子とからなる骨格に水素原子が結 合した基のうちの少なくとも一方を有するポリエステル ポリオールと、ポリエーテルポリオールとを含有するこ とを特徴とする。

【0017】また、第5発明の軟質フォームは、ポリイ ソシアネート及びポリオール成分を含有する組成物を反 50 の長鎖ポリエステルポリオールがポリオール全量中50

応させて得られるポリウレタンフォームにおいて、上記 ポリオール成分は、一分子中にエーテル結合とエステル 結合とを有するヒドロキシ化合物及び2級の末端水酸基 を有するポリエステルポリオールのうちの少なくとも一 方と、ポリエーテルポリオールとを含有することを特徴

【0018】上記「ポリオール成分」には、各種のポリ オールの他、発泡剤、触媒、整泡剤等が含有されてい る。また、上記「組成物」には、必要に応じて第7発明 の芳香族第2級アミン系化合物、及び第8発明の末端単 官能性化合物などを配合することができる。発泡剤とし ては水が主に使用されるが、発熱の抑制等を目的として ジクロルメタン等を併用することもできる。触媒として は、通常、アミン系触媒、特に3級アミンと、スタナス オクトエート、ジブチルチンジアセテート、ジブチルチ ンジラウレート等の有機錫化合物とを併用する。また、 整泡剤としては、汎用のジメチルポリシロキサンとポリ エーテルとのプロック共重合体等を使用することができ る。この他、酸化防止剤、紫外線吸収剤、光安定剤、カ 問題になることが明らかとなってきた。更に、耐候性の 20 ーポンプラック等の導電性物質、着色剤及び各種充填剤 等を配合してもよい。

> 【0019】上記「ポリイソシアネート」としては、一 般に軟質フォームの製造に使用されるものを特に制限さ れることなく用いることができる。例えばトルエンジイ ソシアネート(TDI)、ジフェニルメタンジイソシア ネート (MDI) 及びTDIとMDIとの混合物、又は TDI、MDI等の変性物などを使用することができ る。この他、ポリメリックMDI、1、5-ナフタレン ジイソシアネート、トリジンジイソシアネート(TOD I)、パラフェニレンジイソシアネート、キシリレンジ イソシアネート (XDI) 及びテトラメチルキシレンジ イソシアネート等の芳香族系ポリイソシアネートを用い ることができる。また、ヘキサメチレンジイソシアネー ト、水添XDI(H, XDI)、水添MDI(H, MD 1)、イソホロンジイソシアネート、シクロヘキシルジ イソシアネート及びリシンジイソシアネート(LDI) 等の脂肪族系又は脂環族系ポリイソシアネートを使用す ることもできる。

【0020】ポリオール成分に含まれるポリオールとし 【課題を解決するための手段】第1発明の軟質フォーム 40 ては、エステル結合の間に、「(1)炭素数5以上の炭化 水素基」及び「(2) 合計数が5以上の炭素原子とヘテロ 原子とからなる骨格に水素原子が結合した基」(以下、 「ヘテロ原子含有基」という。) のうちの少なくともー 方を有するポリエステルポリオール(以下、「長鎖ポリ エステルポリオール」という。)と「ポリエーテルポリ オール」とを併用する。

> 【0021】長鎖ポリエステルポリオールは、従来の短 鎖の炭化水素基を有するポリエステルポリオールに比べ てポリエーテルポリオールとの相溶性に優れ、たとえこ

重量%以下であっても、反応は何ら問題なく進み、良好な品質の軟質フォームを得ることができる。尚、上記の炭化水素基及びヘテロ原子含有基を構成する骨格は、直鎖状であってもよいし、分岐したものであってもよい。また、長鎖ポリエステルポリオールのエステル結合の間のすべての炭化水素基の炭素数及びヘテロ原子含有基の炭素原子とヘテロ原子との合計数が5以上である必要はない。この長鎖の基がエステル結合の間の炭化水素基及びヘテロ原子含有基の総数の1/3以上、好ましくは1/2以上であれば、特に発泡反応過程においてポリエー 10テルポリオールとの相溶性に優れる長鎖ポリエステルポリオールとすることができる。

【0022】長鎖ポリエステルポリオールの配合量は、耐湿熱老化性の点からは、むしろ第2発明のように50重量%以下であることが好ましい。配合量が50重量%以下であれば、エーテル系フォームの耐湿熱老化性と同等以上の優れた特性の軟質フォームを得ることができる。

【0023】長鎖ポリエステルポリオールは、炭素数5 以上の炭化水素基を有する多価アルコール(以下、「長 20 鎖多価アルコール」という。)と、炭素数4以下の炭化 水素基を有する二塩基酸(以下、「短鎖二塩基酸」とい う。)との縮合反応によって得ることができる。また、 炭素数4以下の炭化水素基を有する多価アルコール(以 下、「短鎖多価アルコール」という。)と、炭素数5以 上の炭化水素基を有する二塩基酸(以下、「長鎖二塩基 酸」という。)との縮合反応によって得ることもでき る。更に、長鎖多価アルコールと長鎖二塩基酸とを反応 させて調製することもでき、この場合、ポリエーテルポ リオールとの相溶性により優れた長鎖ポリエステルポリ オールが得られる。また、炭素数5以上の炭化水素基を 有する環状化合物の開環重合によって生成させることも でき、長鎖多価アルコールを利用したポリカーボネート ポリオール等も長鎖ポリエステルポリオールとして使用 することができる。

【0024】長鎖多価アルコールとしては、メチルベンタンジオール(炭素数;6)、ベンタンジオール(炭素数;6)、ヘキサンジオール(炭素数;6)、ネオペンチルグリコール(炭素数;5)、トリメチルへキサンジオール(炭素 40数;9)、3ーメチルー1,5ーペンタンジオール(炭素数;6)、1,9ーノナンジオール(炭素数;9)、メチルー1,8ーオクタンジオール(炭素数;9)及びシクロヘキサンジメタノール(炭素数;6)等を使用することができる。また、ポリテトラメチレンエーテルグリコール(PTMG)、ダイマージオール(炭素数;36)、或いはグリセリンのリシノール酸エステルを主成分とするひまし油(炭素数;18×3+3)等を用いることもできる。

【0025】長鎖二塩基酸としては、アゼライン酸(炭 50 多官能の多価アルコールは軟質フォーム用としては適さ

素数;7)、セバチン酸(炭素数;8)、ドデカン二酸 (炭素数;10)等の脂肪族系のものを使用することが できる。また、フタル酸、イソフタル酸、テレフタル酸 (以上、いずれも炭素数は6)等の芳香族系のもの、シ クロヘキサンジカルボン酸(炭素数;6)等の脂環族系 のもの、或いは上記のダイマー酸等を用いることもでき る。長鎖ポリエステルポリオールは、これらの長鎖多価 アルコール及び長鎖二塩基酸を、それぞれ1種又は2種 以上使用して、或いは短鎖の多価アルコール又は二塩基 酸を用いて、脱水縮合反応によって生成させることがで きる。更に、炭素数5以上の炭化水素基を有する環状化 合物であるメチルバレロラクトン(炭素数;5)、カプ ロラクトン(炭素数;5)等のラクトンを開環重合させ ることによって長鎖ポリエステルポリオールを得ること もできる。

【0026】尚、上記のダイマージオールは、乾性油、半乾性油等を精製して得られる植物性脂肪酸等の炭素数 18の不飽和脂肪酸の熱重合によって生成するダイマー酸を水添することによって得られ、主に炭素数 36の脂肪族又は脂環式ジオールである。このダイマージオール又はダイマー酸のように炭素数の非常に多いアルコール又は酸を使用すれば、ポリエーテルポリオールが得られるため特に好ましい。また、ダイマージオール及びダイマー酸を、他の長鎖又は短鎖の多価アルコール或いは二塩基酸と併用してもよい。この場合、ダイマージオール及びダイマー酸を、多価アルコール或いは二塩基酸の全量の10重量%以上とすれば、十分に相溶性に優れた長鎖ポリエステルポリオールを得ることができる。

【0027】また、長鎖ポリエステルポリオールはヘテロ原子含有基を有する長鎖多価アルコール或いは長鎖二塩基酸を用いて調製することもできる。ヘテロ原子含有基に含まれるヘテロ原子としては、O、S及びN等が挙げられる。このような基は、例えば、ジエチレングリコール、ジプロピレングリコール等を用いることによって形成される。ジエチレングリコールであれば、エステル結合の間に-CH,-CH,-O-CH,-CH,-なる基(炭素原子と酸素原子の合計数;5)を有する長鎖ポリエステルポリオールが得られる。

【0028】長鎖ポリエステルポリオールにおいて、2官能のアルコールを使用した場合は、伸びは向上するものの、硬さは改善されない。しかし、トリメチロールプロパンのような3官能のアルコールを使用した場合は、伸び、硬さともに向上する。このようにその機能に差異はあるものの、2~4官能の多価アルコールを使用した長鎖ポリエステルポリオールは軟質フォームに適しており、要求されるフォームの特性に応じて官能数を適宜選択すればよい。尚、5官能以上の多価アルコールを用いた場合は、フォームが硬くなりすぎるため、そのような名字的の名価アルコールは軟質フォーム用としては適宜

ない。

【0029】また、多価アルコールの1官能当たりの分 子量は400~2000程度が適当である。更に、得ら れる長鎖ポリエステルポリオールの分子量は、800~ 6000の範囲が好ましく、その水酸基価は40~12 0mgKOH/g程度が好ましい。長鎖ポリエステルポ リオールの分子量が800以下(水酸基価が120mg KOH/g以上) の場合、フォーム生成時の架橋密度が 高くなりすぎて硬いフォームとなる。また、分子量が6 000以上 (水酸基価が40mgKOH/g以下) の場 10 合、長鎖ポリエステルポリオールの粘度が高くなりすぎ て取り扱い難くなる。

.9

【0030】本発明では、ポリエステルポリオールとし て、長鎖ポリエステルポリオールの他に、エステル結合 の間に炭素数4以下の炭化水素基を有するポリエステル ポリオールを併用することもできる。この短鎖の炭化水 素基を有するポリエステルポリオールとしては、通常、 軟質フォームの製造において用いられるものを使用する ことができる。この短鎖のポリエステルポリオールは、 ポリエステルポリオールとポリエーテルポリオールとの 20 ル」としては、プロピレングリコール、1, 3-ブタン 良好な相溶性が妨げられない範囲で使用することができ る。その量比は、長鎖ポリエステルポリオールと、この 短鎖のポリエステルポリオールとの合計量を100重量 %とした場合に、70重量%以下とすることが好まし 67

【0031】短鎖のポリエステルポリオールとしては、 以下の多価アルコールと二塩基酸との縮合反応によって 得られるものなどを使用することができる。多価アルコ ールとしては、エチレングリコール、プロピレングリコ ール、1.4ープタンジオール、1,3-プタンジオー 30 ル等の2価アルコールを使用することができる。また、 二塩基酸としては、コハク酸、グルタル酸、アジピン 酸、マレイン酸、フマル酸等を用いることができる。

【0032】また、長鎖ポリエステルポリオールと併用 される上記「ポリエーテルポリオール」としては、2個 以上の活性水素を有する出発物質に、アルキレンオキサ イドをランダム又はブロック状に付加重合したものを使 用することができる。この出発物質としては、プロピレ ングリコール、ジプロピレングリコール、グリセリン、 価アルコール、及びエチレンジアミン、トリレンジアミ ン等のアミン類が挙げられる。更に、前記のPTMG等 を使用することもでき、これらはエーテル結合を有して いる。また、上記の各種のポリオールの変性体等を用い ることもできる。アルキレンオキサイドとしては、エチ レンオキサイド、プロピレンオキサイド、トリメチレン オキサイド、ブチレンオキサイド、スチレンオキサイ ド、αーメチルトリメチレンオキサイド、3,3'ージ メチルトリメチレンオキサイド等が挙げられる。

反応過程においてポリエーテルポリオールとの十分な相 溶性を有するが、より相溶性を高めるため、第3発明の ように、「一分子中にエーテル結合とエステル結合とを 有するヒドロキシ化合物」を併用することもできる。こ のようなポリオールの代表的なものとして、ポリエステ ルポリエーテルポリオールが挙げられる。また、イソシ アネートとの反応を利用して、分子内にエステル基を導 入したもの、末端に水酸基或いはイソシアネート基を有 するプレポリマーを利用した組成物等のウレタン変性ポ リオールを用いることもできる。この一分子中にエーテ ル結合とエステル結合とを有するヒドロキシ化合物は、 その分子内にポリエステル部分とポリエーテル部分とを 有しており、その相溶化剤のような作用によって、長鎖 ポリエステルポリオールとポリエーテルポリオールとの 相溶性が更に向上する。

【0034】また、本発明では、第4発明のように、2 級の末端水酸基を有するポリエステルポリオールを併用 することによっても、相溶性を高めることができる。こ の「2級の末端水酸基を有するポリエステルポリオー ジオール等と、アジピン酸等が縮合して得られるポリオ ールなどが挙げられる。これら一分子中にエーテル結合 とエステル結合とを有するヒドロキシ化合物及び2級の 末端水酸基を有するポリエステルポリオールは、ポリオ ールの全量を100重量%とした場合に、30重量%以 下程度の量比で使用することが好ましい。

【0035】この2級の末端水酸基を有するポリエステ ルポリオールの使用によって、相溶性が向上する理由は 明らかではない。末端の水酸基又はエステル基の隣の炭 素原子に、水素原子よりもメチル基等の短鎖のアルキル 基が結合しているほうが極性及び水素結合がやや弱ま り、ポリエーテルポリオールとの相溶性が向上すること も一因と考えられる。また、立体障害により、ポリオー ルとしての反応性が低下し、ポリエーテルポリオールの 活性により近いものとなって、泡の生成から泡の安定、 成長、及び樹脂化の各過程において、エステル系とエー テル系のポリオールの反応が同程度の速度で進行し、エ ステル系フォームとエーテル系フォームとが同様に生成 することも考えられる。それによって両フォームが均一 トリメチロールプロパン、ペンタエリスリトール等の多 40 層をなすか、又はその分散度が高くなり、エステル系フ オームとエーテル系フォームとがミクロに微細に分散さ れた軟質フォームが形成されるものと思われる。

【0036】また、第5発明では、ポリオール成分に は、第1発明において必須としている長鎖ポリエステル ポリオールは含有されていない。しかし、短鎖のポリエ ステルポリオールに比べて、ポリエーテルポリオールと の相溶性に優れる特定のポリエステルポリオールを併用 している。そのため、第1発明と同様にエステル系フォ ームとエーテル系フォームの長所を兼ね備えた軟質フォ 【0033】長鎖ポリエステルポリオールは、特に発泡 50 一ムが得られ、実用的な防水性を有するスピーカエッジ

を得ることができる。

【0037】本発明では、得られるフォームの強度、硬 さ等を向上させるため、第6発明のようにポリマーポリ オールを併用することができる。この「ポリマーポリオ ール」は、ポリエーテルポリオール等に、アクリロニト リル、スチレン等をグラフト重合させたものである。ポ リマーポリオールとしては、特に、スチレン成分とアク リロニトリル成分の重量比が、80/20~50/50 の範囲にあるものが好ましい。

【0038】また、ポリマーポリオール中の固形分が少 10 ない場合は、得られるフォームの強度、硬さ等を十分に 向上させるためには、このポリオールを多量に配合する 必要がある。その場合、長鎖ポリエステルポリオール、 ポリエーテルポリオール等、他のポリオールの配合量を 減らさざるを得ず、強度と伸びの改良が不十分となる。 そのため、ポリマーポリオール中の固形分が、ポリマー ポリオールを100重量%とした場合に、30重量%以 上であるものが好ましい。このポリマーポリオールは、 ポリオールの全量を100重量%とした場合に、30重 量%以下程度の量比で使用することが好ましい。

【0039】第1発明では、必須の長鎖ポリエステルポ リオールとポリエーテルポリオールの他、上記のよう に、ポリエステルポリエーテルポリオール等の他、2級 の末端水酸基を有するポリエステルポリオール或いはポ リマーポリオールなどを併用することができる。しか し、長鎖ポリエステルポリオールとポリエーテルポリオ ールとの合計量は、少なくとも全ポリオールの半分量程 度以上とすることが好ましい。

【0040】第1発明では、長鎖ポリエステルポリオー ルとポリエーテルポリオールとを併用することにより、 実用的な耐湿熱老化性と耐オゾン劣化性とを備えた軟質 フォームを得ることができる。また、第5発明でも、特 定のポリエーテルポリオールとの相溶性に優れるポリエ ステルポリオールを用いることにより、第1発明と同様 に優れた特性を有する軟質フォームを得ることができ る。更に、特に耐オゾン劣化性をより向上させるため、 第7発明のように、組成物に特定量の芳香族第2級アミ ン系化合物を配合することもできる。これによって、よ り優れた耐オゾン劣化性を有する軟質フォームを得るこ とができる。

【0041】上記「芳香族第2級アミン系化合物」(以 下、2級アミン化合物という。)としては、フェニルー 1-ナフチルアミン、アルキル化ジフェニルアミン、 N, N'-ジフェニル-p-フェニレンジアミン、p-(p-トルエンスルホニルアミド) ジフェニルアミン、 4, 4'-(α, α-ジメチルベンジル) ジフェニルア ミン、混合ジアリルーp-フェニレンジアミン、オクチ ル化ジフェニルアミン等が挙げられる。また、、ポリ (2, 2, 4-トリメチル-1, 2-ジヒドロキノリー

トリメチルキノリン等のアミンーケトン系の化合物など を使用することもできる。

【0042】これら2級アミン化合物は、ゴム等の老化 防止剤などとして使用されているものである。しかし、 それら化合物が、ポリウレタンフォームのオゾン劣化を 抑制する作用を有することは知られていない。また、ゴ ムの老化防止剤などとして使用する場合、その配合量 は、通常、ゴムに対して数百から数千ppm、高々50 00ppm程度である。一方、本発明では、ポリオール に対して1重量部以上、特に3重量部以上、更には5重 量部以上と多量に配合する。これをフォームに対する配 合量に換算しても、7000ppm以上、特に2重量 部、更には3.5重量部以上となる。このように、本発 明においては、2級アミン化合物は、その作用、効果が 知られていないばかりか、従来の通常の配合量を大きく 越えて多量に使用されている。

【0043】上記の2級アミン化合物は1種のみを用い てもよいし、2種以上を併用してもよい。この化合物の 配合量が1重量部未満では、耐オソン劣化性の向上が十 20 分ではない。また、この配合量が25重量部を越える場 合は、組成物を反応、硬化させることが難しく、正常な フォームが得られないことがある。2級アミン化合物の 配合量は、特に1~10重量部の範囲が好ましい。この 配合量であれば、優れた耐オゾン劣化性を備えた軟質フ オームが得られ、同時に反応、硬化も容易であり、操作 上も何ら問題がなく好ましい。

【0044】また、この2級アミン化合物の配合によ り、特に耐オゾン劣化性が向上するとともに、耐候性も 改善される。しかし、耐候性を更に向上させるためには 紫外線吸収剤を添加することが好ましい。紫外線吸収剤 としては、ベンゾトリアゾール系、ベンゾフェノン系、 サリチル酸系、ヒンダードアミン系等、各種のものを使 用することができる。更に、特定のピペリジン系の紫外 線吸収剤を用いることもできる。紫外線吸収剤の配合量 は、ポリオールを100重量%とした場合に、0.1~ 3重量%、特に0.5~1.5重量%程度が好ましい。 尚、2級アミン化合物と紫外線吸収剤とは、ポリオール 成分又はポリイソシアネートに予め添加しておいてもよ いし、ポリオール成分とポリイソシアネートとを混合す る際に、同時に加えてもよい。

【0045】更に、本発明の軟質フォームでは、第8発 明のように、一端又は中間部に炭素数5以上の炭化水素 基及び合計数が5以上の炭素原子とヘテロ原子とからな る骨格に水素原子が結合した基(以下、第1発明の場合 と同様に「ヘテロ原子含有基」という。)のうちの少な くとも一方を有し、他端に、上記ポリイソシアネートに 含まれるイソシアネート基と反応する1個の活性基、若 しくは上記ポリオール成分中のポリオールに含まれる活 性水素基と反応する1個の活性基(これら活性基は分子 ン)、6-エトキシ-1,2-ジヒドロ-2,2,4-50 鎖の末端の炭素原子又は該末端の炭素原子の隣の炭素原

子に結合している。)を有する末端単官能性化合物を含有する組成物を使用することもでき、これによってより優れた防水性を有する軟質フォームを得ることができる。

【0046】上記「末端単官能性化合物」の炭化水素基及びヘテロ原子含有基は、直鎖状の基でも分岐した基でもよく、また、飽和基でも不飽和基でもよい。更に、脂肪族基の他、芳香族基、脂環族基或いはこれらの基を含むものであってもよい。末端単官能性化合物は、これら各種の炭化水素基及びヘテロ原子含有基の1種を有する10ものであってもよいし、2種以上の炭化水素基及びヘテロ原子含有基を有するものの混合物であってもよい。

【0047】また、炭化水素基及びヘテロ原子含有基の炭素数又はヘテロ原子数は6~48、特に8~36程度が好ましく、これらは必要とされる防水性、取り扱い易さ等を勘案して適宜選択すればよい。更に、末端単官能性化合物としては、上記「イソシアネート基若しくは活性水素基と反応する1個の活性基」を有する化合物の1種類を使用してもよいし、各種のものを2種以上併用してもよい

[0048]上記の末端単官能性化合物とは、複数の分子末端を有する化合物の、該複数の分子末端のうち一つのみに上記活性基が結合していることを意味している。末端以外の中間部は、炭化水素基或いは、-NH-、-O-、-S-、-CO-及び-N(R)-(Rはアルキル基とする。)などのヘテロ原子を含有する基によって構成されている。また、これらの基の両側に結合している炭化水素基及びヘテロ原子含有基のうちの少なくとも一方の炭素数或いは炭素原子とヘテロ原子との合計数が5以上であればよい。

【0049】末端単官能性化合物としては、オクタデシ ルイソシアネート、ヘキサデシルアミンとオクタデシル アミンとの混合物から誘導されるモノイソシアネート等 のモノイソシアネートを使用することができる。また、 1-オクタノール、1-デカノール、ラウリルアルコー ル、オレイルアルコール、その他分岐高級アルコール、 及び末端側に一〇一、一S一等を有するモノアルコール (例えば、ROCH,-CH,-OH等)等のモノアルコー ルを用いることもできる。更に、オクチルアミン、ラウ リルアミン、オクタデシルアミン及び末端側に一〇一、 - S - 等を有するモノアミン等を例示することができ る。尚、末端に水酸基を有するシリコーン系整泡剤を、 この末端単官能性化合物として兼用することもできる。 【0050】末端単官能性化合物の配合量は、ポリイソ シアネートとポリオールとの合計量を100重量部とし た場合に、0.1~35重量部、好ましくは0.1~2 5重量部、特に好ましくは0.3~10重量部の範囲が 好適である。配合量は添加する末端単官能性化合物の炭 化水素基の炭素数等、或いは官能基の種類、及び主成分

等を考慮し、必要とする防水性によって決定される。この配合量が0.1重量部未満であると十分な防水性が得られない。一方、35重量部を越えて多い場合は、フォームの成形そのものが困難となったり、得られるフォームの物性等、本来軟質フォームが有する特性が損なわれたりするため好ましくない。

【0051】末端単官能性化合物の配合により、得られる軟質フォームの防水性は十分優れたものとなる。しかし、この防水性をより向上させるためには、ポリイソシアネート、ポリオール等の主成分も親水性のものより疎水性のものの方が防水効果が大きい。また、フォームの表面積を可能な限り大きくした方が防水効果が大きい。そのため、フォームセルはより細かい方が好ましく、セル数は、50個/25mm以上、特に55個/25mm以上、更には60個/25mm以上とすることが好ましい。このセル数が50個/25mm未満では安定した防水性が得られないことがある。

【0052】尚、末端単官能性化合物は、モノアルコール、モノアミン等はポリオール成分に、モノイソシアネ つトはポリイソシアネートに予め配合しておけばよい。また、ポリオール成分とポリイソシアネートとを混合する際に、同時に加えてもよい。更に、この末端単官能性化合物は、ポリオール、ポリイソシアネート等に比べて反応性が低いため、ウレタン生成の反応開始後に添加しても、フォーム生成を阻害するようなことはまったくない。

[0053] 第9発明のスピーカエッジは、請求項1乃 至8のいずれか1項に記載の軟質フォームからなること を特徴とする。

30 【0054】軟質フォームからなるスピーカエッジを用いたスピーカを、自動車のドアトリム内に設置する場合、雨水等、内部に侵入する水分が問題であることは前記の通りである。このような車載用のスピーカに使用されるスピーカエッジを構成する軟質フォームに要求される防水性の指標は、30mmの水圧において12時間以上、漏水及び透水がないことである。この要求性能を満足するためには、後記の方法によって測定した吸水率が圧縮率50%で10%以下、圧縮率80%で2%以下あり、且つ圧縮成形前の軟質フォーム(厚さ;10m が のJIS L1096(A法)によって測定した通気性が0.5~10cc/cm ・砂であって、圧縮成形後のフォームのJIS P8117によって測定した通気度が20秒以上であればよい。

ームの通気性が低すぎると、フォーム中の空気がクッション作用をして、成形が難しく、且つ得られるスピーカエッジが変形することがある。この通気性が高すぎる場合は、実用的な範囲を越えて高い率で圧縮しても、通気度が十分に低くならず、防水性が不十分となる。

【0056】本発明の軟質フォームでは、エステル系フォーム及びエーテル系それぞれの短所が抑えられ、それぞれの長所を兼ね備えたフォームとなっている。例えば、エステル系フォームの優れた機械特性及び耐オゾン劣化性と、エーテル系フォームの優れた耐湿熱老化性と 10を併せ有する軟質フォームを得ることができる。また、使用するポリオールの相溶性が良好であるため、セル膜が必要以上に除去されることなく、且つ比較的低通気の軟質フォームが得られる。このように本発明では、優れた耐湿熱老化性及び耐オゾン劣化性とを有し、且つ耐久性が非常に高い軟質フォームを得ることができ、特に優れた性能のスピーカエッジを得ることができる。

[0057]

【発明の実施の形態】表1~2 (比較例) 及び表3~1 1 (実施例) に示すポリイソシアネート、ポリオール、 20 触媒及び整泡剤等からなる組成物を使用し、常法に従って軟質スラブフォームを製造した。各成分の詳細は下記の通りである。尚、実施例25及び27では、ポリエーテルポリオールは後記のポリエステルポリエーテルポリオール (商品名「CP3943」) に含まれている。また、実施例29、31、33、47、49及び51では、ポリエーテルポリオールは後記のポリマーポリオール(商品名「CP3943」)に含まれている。

【0058】(1) ポリオール

a) 商品名「N 2 2 0 0」(日本ポリウレタン株式会社 製):ジエチレングリコー(D E G)及びトリメチロー ルプロパンと、アジピン酸とを縮合させたポリエステル ポリオール、水酸基価(O H V); 6 0

b)商品名「GP3000」 (三洋化成株式会社製):グリセリンを出発物質としたプロピレンオキサイドベースの3官能のポリエーテルポリオール、OHV;56c)商品名「GP2000」 (三洋化成株式会社製):プロピレンオキサイドベースの2官能のポリエーテルポリオール、OHV;56

【0059】d)商品名「3P56B」(武田薬品工業株式会社製):商品名「PPG1500」(同社製、ポリエーテルポリオール)に、フタル酸とプロピレングリコールを付加したポリエステルポリエーテルポリオールと、商品名「PPG3000」(同社製、ポリエーテルポリオール)との75/25(重量比)の量比の混合品、OHV;56

f)商品名「クラポールF3010」(株式会社クラレー製):メチルペンタンジオール及びトリメチロールプロパンと、アジピン酸とを縮合させたポリエステルポリオール、OHV;56

g) 商品名「クラポールL2010」 (株式会社クラレ製) :メチルバレロラクトンを開環重合させたポリエステルポリオール、〇HV;56

【0061】h)商品名「ニューボールF1212-29」(旭電化工業株式会社製): ヘキサンジオールと、アジピン酸及びイソフタル酸とを縮合させたポリエステルポリオール、OHV;65

i)商品名「TA22-221」(日立化成ポリマー株式会社製): ヘキサンジオール及びネオペンチルグリコールと、アジピン酸とを縮合させたポリエステルポリオール、OHV; 40

j) 商品名「プラクセル220」(ダイセル化学工業株式 会社製):カプロラクトンを開環重合させたポリエステ ルポリオール、〇HV;56

【0062】k)商品名「CP3943」(三菱化成ダウ株式会社製);スチレン成分70重量%とアクリルニトリル30重量%のポリマーポリオール、固形分は42重量%、OHV;28

【0063】1)商品名「テスラック2458」 (日立化成ポリマー株式会社製): DEGとダイマー酸とを縮合させたポリエステルポリオール、OHV;70

1) 商品名「ニューエースF7-67」(旭電化工業株式会社製):プロピレングリコールとアジピン酸とを縮合させたポリエステルポリオール、OHV;56

1)商品名「TA22~248C」(日立化成ポリマー株 30 式会社製):1,3~ブタンジオールとアジピン酸とを 縮合させたポリエステルポリオール、OHV;112 [0064](2)ポリイソシアネート;商品名「TDI 80」(日本ポリウレタン株式会社製)

(3) 触媒;日本乳化剤株式会社製のアミン系触媒、商品名「LV33」、及び城北化学株式会社製の金属触媒、スタナスオクトエート(SO)

(4) 整泡剤;商品名「L532」、「L520」及び「SZ1919」(いずれも日本ユニカー株式会社製)

(5) 2級アミン化合物;商品名「ノクラック C D」(大40 内新興化学工業株式会社製)、4,4'-(α,α-ジメチルベンジル)ジフェニルアミン

(6) 紫外線吸収剤;商品名「サノールLS-744」 (三共株式会社製)、4-ベンゾイルオキシー2,2, 6,6-テトラメチルピペリジン

【0065】得られた軟質フォームから試片を切り出し、JIS K6401に従って密度(kg/m³)、25%硬さ(g/cm²)を、JIS K6402に従ってセル数(個/25mm)を測定した。また、JIS K6301に従って引張強度(kg/cm²)及び伸び(%)を評価した。更に、JIS J1096(A

法)に従って通気性(cc/cm²・秒)を、JIS P8117 (A法)に従って圧縮成形後の通気度(秒) を測定した。尚、防水性を評価するための吸水率及び止 水性、並びに耐湿熱劣化性、耐オゾン劣化性及び耐候性 については、下記の方法によって評価した。

【0066】吸水率:50×50×20(厚さ)mmのフォームを、厚さ方向に圧縮率50%又は80%で圧縮し、この圧縮された試験片を水温23℃で、水面下10cmの水中に24時間浸漬した時の重量の増加を測定する。この重量増加の割合を、50%圧縮時及び80%圧10縮時の試験片の体積を基準とし、百分率を単位として表

吸水率 (%) = [{浸漬前後の重量変化 (g) / 50% 又は80%圧縮時の試験片の体積 (c m³)} ×10 0]

【0067】止水性(時間);内径30mmのアクリル 樹脂製円筒を水平に置き、この上端面に圧縮率14倍で 圧縮成形された軟質用フォームを乗せ、このフォームの 上面に、同じく内径30mmのアクリル製円筒を下部の 円筒と対応する位置に置く。その後、上部円筒の内部に 20 水深30mmとなる量の水を入れ、漏水、透水の有無を 目視で観察する。軟質フォームの上面と、上部円筒の下 部端面との界面からの漏水及びフォームそのものの透水 が12時間経過後もまったくないことを目標とする。

【0068】耐湿熱劣化性;温度80℃、相対湿度95%に調温、調湿された雰囲気に400、800、1600及び2400時間暴露した時点で、JIS K6301に従って引張強度を測定する。

耐オソン劣化性; JIS K6301のオゾン劣化試験に従って200、400、600及び800時間オゾンに暴露した時点で、JIS K6301に従って引張強度を測定する。

【0069】耐候性;紫外線ロングライフフェードメータ(スガ試験機株式会社製、型式「FAL-31」)を用いて、ブラックパネル温度63℃で、100、200、300及び400時間紫外線に暴露した時点で、JIS K6301に従って引張強度を測定する。以上の評価結果を表1~11に併記する。

[0070]

【表1】

		7	ŧ .1.			
			Ŀ		y	
		1	2	. 3	4	5
N 2 2	200	100				
6 P 3	1000		100	50	75	50
GP2	2000			50		
3 9 5	56B		_ /		25	50
TDI	80	43.4	43.4	43.4	43.4	43.4
インラ	デックス	115	115	115	115	115
LVS	33	0.30	0.30	0.30	0.30	0.30
水		3.00	3.00	3.00	3.00	3.00
୬ リ:	1-> L532	1.50				
	L520		1.20	1.20	1.20	1.20
791	トスオクトエート	0.10	0.30	0.30	0.30	0.30
	密度	36.5	35. 9	35.6	35.0	34.6
フ	25% 6€ さ	23.5	14. 5	11.5	13.5	12.5
*	セル数	. 50	35	36	40	44
	引張強度	1.55	0.85	0.95	0.90	0.95
4	伸び	250	130	180	120	140
9 20	通気性(L1096)	8.3	121.0	121.0	72.3	48.5
性	50% 压缩吸水率	32. 1	33.5		31.2	32.6
	85% 圧縮吸水率	14.2	13.5		15.2	13.2
	引張強度	24.56	12. 35	11.56	12.35	11.35
	伸び	280	80	120	100	120
	通気度(P8117)	17.5	3≥	. 3≥	3≥	3≥
	止水性	0.5	0.5≧			0.5≧
圧	湿:熱器器 400hr	6.14	11.73			10.78
縮	80°C,95% 800hr	0	10.50			9.65
品	. 1600hr		9. 26			8.51
ונו	2400hr		8.65			7. 95
E E	tリン 暴露 200hr	18.42	4. 32			7.60
)	400hr	11.05	0	_	_	4.20
物	600hr	6.14				3.41
性	800hr	0				1. 70
	紫外線器 100hr	13.51	4. 32			4.31
	露 200hr	6.14	0	_	_	0
	63° 300hr	0				ļ
	400hr				١	!

【表 2】

[0071]

		表 2	2		
,			. 比 ·	Ŷ (A)	
<u> </u>		6	7	.8	9
GP3	3000	25		50	25
3P5	68	75	100	50	75
TDI	80	43.4	43.4	47. 2	47.2
インラ	プラクス	115	115	125	125
LVS	33	0.30	0.30	0.30	0.30
冰		3.00	3.00	3.00	3.00
୬ リ:	1-> L520	1.20	1. 20	1.20	1.20
スタナ	トスオクトエート	0.30	0.30	0.30	0.30
	密度	35.5	35.8	35. 1	35.0
フ	25% 硬さ	11.5	10.5	13.5	12.5
*	セル数	48	53	46	46
1	引張強度	1.10	1.20	1.33	1.36
	伸び	160	170	120	140
物	通気性(L1096)	43.5	28.3	160. Ó	165.0
性	50% 压缩吸水率	28.5	24.9	27.8	28.7
	85% 圧縮吸水率	13.5	12.6	13.6	14.6
	引張強度	13.12	10.35	13. 85	12.46
	伸び	160	180	120	140
	通気度(P8117)	3 ≧	3 ≥	3≥	3≥
	止水性		0.5≥		
匥	超熟暴露 400hr		9.83		
縮	80°,95% 800hr	_	8.80		<u> </u>
<u>12</u>	1600hr		7.76		
ก	2400hr		7. 25		
肾	オゾン 楽鑑 200hr		6.93		
)	400hr		3.83		_
物	600hr		3. 11		
性	800hr		1. 55		
	業外線量 100hr		4. 14	,	
	200hr.		0	_	
	63° 300hr	.			
	· 400hr				

[0072]

【表3]

		表 3					
	!			実が	逆 例		
		1	2	3	_ 4	5	6
GP3	3000	50	75	50	75	50	75
クラゼ	K-⊈ P2010	50	25				
クラ	F-1 F3010 ·			. 50	25		
クラ	K-A L2010	,				50	_ 25
70	180	41.5	41.5	41.5	41.5	41.5	41.5
725	マックス	110	110	110	110	110	110
LV:	33	0.30	0.30	. 0.30	0.30	0.30	0.30
水		3.00	3.00	3.00	3. 00	3.00	3.00
>1):	J−ソ L520	1. 20	1. 20	1. 20	1. 20	1. 20	1, 20
79:	トスオクトエート	0.30	0. 30	0.30	0. 30	0. 30	0.30
	密度	34.5	35. 6	35. 6	35.0	34.6	35. 5
フ	25% 硬さ	19. 5	17.5	20.5	16. 5	17.5	.15. 7
*	セル数	55	54	56	55	53	50
1	引張強度	1. 55	1. 25	1. 82	1. 65	1. 35	1. 25
A	伸び	250	180	180	140	180	180
物	通気性(L1096)	3. 2	9.5	3. 0	6.5	6. 1	5. 6
性	50% 圧縮吸水率	28.6	28. 5	24.6	28.7	28. 7	28.6
	85% 圧縮吸水率	13. 2	13.0	12, 5	12, 1	13, 0	13.0
	引張強度	19. 55	17.65	22. 65	21. 55	15. 30	14. 55
1	.伸び	180	160	220	210	180	160
1	通気度(P8117)	150.5	3. 5	135. 0	36.0	43.0	65.0
	止水性	2≥	0.5≥			0. 5	
圧	湿熱暴露 400hr	17. 12	17. 12	21.06	20.47	14.69	13.68
縮	80°,95% 800hr	15, 71	15. 71	18. 57	18.75	12.62	12. 37
品	1600hr	14.12	14.12	16. 76	16.16	11.63	10.19
ก	2400hr	13.59	13.59	14.04	14.55	9. 95	9.46
倍	オゾン 暴露 200hr	12.00	12.00	15. 86	14.87	11.48	9.46
)	· 400hr	7. 24	7. 24	9.74.	9. 16	7.04	582
物	600hr	4.41	4. 41	6. 12	4.96	3, 83	2, 91
性	800hr	1.94	1. 94	2. 27	1.94	1. 30	1.46
	柴外線器 100hr	6. 53	6. 53	8. 83	8.30	6. 12	5.09
	200hr	. 0	0	0	0	0	0
	63°C 300hr						
	400hr	<u> </u>			` `		

[0073]

【表4】

			表				
				実力	6 (9)		
<u></u>		7.	8	9	10	· 11	12 ·
GP:	3000	50	75	50	75	50	75
=2.	-#-1F1212-29			50	25		
TA	22-221		,			50	25
75:	7t1220	50	25		25		
TD	180	41.5	41.5	41.9	41.9	. 40.1	40.8
<u>ال</u> ك	デックス	110	110	110	110	110	110
LV:	33	0.30	0.30	0.30	0, 30	0.30	0. 30
水		3.00	3.00	3.00	3, 00	3.00	3. 00
پر و	7-> L520	1.20	1.20	1.20	1. 20	1.20	1. 20
23	フォクトエート	0, 30	0.30	0.30	0, 30	0.30	0.30
	密度 .	35. 8	35. 1	35. 0	36, 5	35. 9	35. 6
フ	25% 硬さ	16. 8	15, 4	17.6	19. 5	18.9	16. 3
*	セル数	58	56	56	56	55	. 36
1	引張強度	1. 85	1.45	1.75	1. 76	2. 15	1. 73
4	伸び	190	150	170	200	200	190
物	通気性(L1096)	4. 5	4.6	3. 2	1.3	2.6	1.8
性	50% 圧縮吸水準	28.6	27. 3	28.5	26. 5	27. 5	27. 2
L	85% 圧縮吸水率	10.5	15, 1	13, 5	13. 1	14.2	13.6
	引張強度	23, 56	22. 34	19.56	19, 45	22. 35	18.46
1	伸び	230	190	230	260	200	180
	通気度(P8117)	73: 5	69. 0	180.5	360. 5	245.,5	300.0
	止水性			2	3	3	3
Æ	湿熱暴露 400hr	22, 38	21.67	18.78	18, 48	21. 46	17. 35
縮	80°,95% 800hr	20. 03	19.88	16, 14	16, 92	18. 44	15.69
品	1600hr	17. 67	17.87	14.87	14, 59	16. 99	12. 92
乃	2400hr	16. 49	—17.20 .	12. 71	13. 13	14.53	12.00
留	オゾン 暴露 200hr	16. 73	15, 19	14.67	13.42	,	12.00
	400hr	9. 90	. 9.16	9.00	8, 27	10. 28	7. 38
物	60Dhr	6. 83	5. 59	4. 89	4, 47	5. 59	3.69
性	800hr	2. 59	2, 46	1.66	1, 75	1.90	1. 85
	紫外線暴 100hr	8. 72	8. 27	7. 82	7. 49	8. 94	6. 46
	200hr	0	0	0	0	0.	0
	63°C 300hr					,	1
لـــــا	400hr						ļ

[0074]

【表5】

₹ 5

_		- 3	x 0		<u> </u>	
· ·	•					
-		13	14	15	16	17
	3000	25	50	25	50	25
•	R-1 P2010	50	25			
	F-& F3010 .			50	25	
251	I-I. L2010					· 50
3P5		25	25	25	25	25
TDI	180	41.5	41.5	41.5	· 41. 5	41.5
インフ	プックス	· 110	110	110	110	110
LV:	33	0.30	0.30	0.30	0.30	0.30
水	·	3.00	3.00	3.00	3.00	3.00
١ ١	ユーン L520	1. 20	1. 20	~~1. 20-	1. 20	1.20
スタナ	スオクトエート	0. 30	0.30	0.30	0. 30	0.30
	密度	34.8	34. 6	35. 3	35. 1	35. 4
フ	25% 硬さ	18. 6	18.0	21.5	20. 5	17.0
*	セル数	60	64	68	63	56
1	引張強度	1.60	1. 55	2. 10	1. 90	1. 42
7	伸び	. 260	230	230	210	180
物	通気性(L1096)	5. 6	4.6	1. 2	3.5	3. 4
性	50% 压縮吸水率	26, 5	26. 9	· 28. 6	28.6	29. 1
	85% 压縮吸水率	12.9	• 15.1	13. 5	13. 4	14.1
	引張強度	- 19. 55	17. 85	23.34	21. 75	17.55
	伸び	260	220	230	210	170
	·通気度 (P8117)	58. 5	65. 0	480.5	120.0	145.5
	止水性	3				
匥	湿熟暴翼 400hr	18. 57	17. 31	21.71	20, 66	16. 85
粹	80°C,95% 800hr	16, 62	15. 89	. 19.14	18. 92	14.48
品	1600hr	14. 66	14. 28	17.27	16. 31	13.34
Ω	2400hr	13, 69	13.74	14.47	14.68	11.41
肾	オリン 暴盤 200hr	13. 88	12. 14	16.34	15. 01	13. 16
_	400hr	8. 21	7. 32	10.04	9. 24	8. 07
物	600hr	5. 67	4. 46	6, 30	5. 00	4.39
性	800hr	2. 15	1. 96	2. 33	1. 96	1. 49
	紫外線器 100hr	7. 23	6. 60	9. 10	8. 37	7. 02
	🗯 200hr	0	0	0	0	0
	63 C 300hr					
	400hr					

[0075]

【表 6 】

•						
		18	19	20	21	22
GP3	1000	50	25	50	25	50
クラる	- L L2010 · ··	25				
=2-	#-1F1212-29		50	25		1
TA2	2-221				50	25
395	66B	25	25	25	25	25
TDI	80	41.5	41.9	41.7	40.1	40.1
イン ラ	っクス	110	110	110	110	110
LVS	33	0. 30	0.30	0.30	0. 30	0.30
水		3.00	3.00	3.00	3.00	3. 00
シリニ	י-> L520	1. 20	1.20	1. 20	1. 20	1. 20
スタナ	スオクトエート	0. 30	0.30	0. 30	0. 30	0. 30
	密度	35.3	36, 4	35. 2	35. 6	35. 7
フ	25% 硬さ	14.0	17.8	15.6	17.5	15.4
*	ゼル数	56	65	65	62	5B
ı	引張強度	1. 25	1. 93	1. 76	1. 85	1. 82
7	伸び	160	220	200	220	190
物	通気性(L1096)	2.6	2. 3	5.6	4.3	5. 1
性	50% 圧縮吸水率	25. 9	28.7	29.6	28. 1	28.5
	85% 圧縮吸水率	13.9	14.6	13.0	14. 2	15. 1
	引張強度	16, 55	22. 32	18. 65	21. 58	17. 32
	伸び・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	170	260	240	220	, 200
	通気皮(P8117)	55.0	38. 5	19.5	25. 0	24.5
Æ	湿熱暴躁 400hr	15. 56	21. 43	17. 53	20. 50	16, 80
縮	80℃,95% 800hr	14. 07	18. 41	15. 85	18. 34	15. 41
=	1600hr	11. 59	16.96	13.06	16. 19	13. 86
n	2400hr	10. 76	14.51	12. 12	15. 11	13. 34
肾	オリン 暴露 200hr	.10. 76	16.74	12. 12	15. 32	11. 78
~	400hr	6. 62	10.27	7.46	9. 06	7. 10
物	600hr	3. 31	5. 58	3. 73	6. 26	4. 33
性	800hr	1.66	1.90	1.87	2: 37	1, 91
	葉外線器 100hr	5. 79	8. 93	6. 53	7.98	6.41
	翼 200hr	0	0	. 0	0	0
	63℃ 300hr			}		
	400hr	•		L		L

【表7】

			表	7				·
				9				
L	· · ·	23	24	25	26	27	28	29
GP3	3000	25	37. 5		12.5		12.5	
CP3	3943 .	25	25	25	25	30	25	25
1951	F-# P3010	25	. 25	50	50	50	50	50
3P5	56B ·	25	12.5	25	12.5	20		
	-1-2P7-67					ĺ	12, 5	25
TD	180	40.3	40.3	40.3	40.3	40.1	40.3	40.3
	ナックス	110	110	110	110	110	110	110
LV	33	0.30	0.30	0.30	0.30	0.30	0. 30	0.30
 		3, 00	. 3.00	3.00	3, 00	3.00	3.00	3.00
الرو	ン L520	1. 20	1. 20				i	
	S21919			1.50	-1, 50	1.50	1. 50	1, 50
7.91	スオクトエート	0.30	0.30	0.30	0.30	0.30	0.30	0.30
	密度	35. 6	35. 3	34.8	35. 2	35. 6	35, 6	34.9
フ	25% 硬き	23.5	16.8	20.5	18.5	20, 5	17.8	16.8
*	セル数	64	58	65	. 58	65	60	55.
1:	引張強度	2, 13	1.68	2.03	1.86	2, 23	1, 93	1.68
A	伸び	190	180	220	200	230	210	190
物	通気性(L1096)	3.5	5. 6	5.6	4.5	2.1	1.0	0.5
性	50% 圧縮吸水率	27.5	29. 4	. 5.6	6.5	5.3	5.6	7.5
1	85% 圧縮吸水率	12.9	12.9	1.8	1.5	1.1	1.3	1.8
	引張強度	26. 43	23. 65	25, 84	25, 96	25. 57	28. 56	22, 87
(伸び	230	220	220	230	. 180	260	220
	通気度(P8117)	31.0	24.5	21.0	32.5	47.0	330.0	460, 0
	止水性			24	24	24	72≥	72≥
圧	湿熱暴露 400hr	25. 37	22, 23	24. 55	25. 18	24.04	27. 42	21, 50
辐	80°C, 95% 800hr	21. 80	20, 10	21.96	23, 10	21.73	23. 56	19, 44
品	1600hr	20.09	16.56	19. 38	20, 77	17.90	21.71	16.01
2	2400hr	17. 18	_15, 37	18.09	19, 99	16, 62	18.56	14, 87
層	が 級数 200hr	19. 82	1537	18_35	17. 65	16. 62	21. 42	14. 87
~	400hr	12, 16	· 9.46	10. 85	10.64	10.23	13.14.	9. 15
物	. 600hr	6.61	4. 73	7. 49	6. 49	5. 11	7. 14	4, 57
性	800hr	2, 25	2, 37	2, 84	2. 86	2.56	2.43	2. 29
	紫外額器 100hr	10. 57	8. 28	9. 56	9. 61	8, 95	11.42	8.00
	3≅ 200hr	0	0	δ	0	Ō	D	0
	63°C 300hr						1	
	400hr				<u> </u>		·	

【表8】

				. 5				
		30	31	32	33	34	· 35	36
GP3	3000	. 12. 5		12.5		25	25	25
CP3	3943	25	25	25	25	25	25	25
クラオ	F-ル P3010	50	50	50	50	25	25	25
=2-	-エースド7-67					25		1
TAZ	22-248C	12.5	25			•	25	1
777	ショク2458·			12.5	25			25
TO	180	41.5	43.9	40, 6	42.1	40.3	40.3	40.9
125	デックス	110	110	110	110	110	110	110
LV:	33	0.30	0.30	0.30	0.30	0.30	0.30	0.30
水	•	3.00	3.00	3.00	3.00	3,00	3.00	3.00
<i>≫</i>):	רַ- \$21919 אָ -	1.50	· 1.50	1.50	1.50	1.50	1.50	1.50
291	スオクトユート	0.30	0, 30	0.30	0.30	0.30	0.30	0.30
}	密度	34.3	35, 7	35. 6	34.6	34.8	35. 2	34.6
フ	25% 硬き	18.0	17.4	20, 5	17.3	18.0	18.0	20.5
≯ ;	セル数	56	50	64	58	55	58	56
ı	引起效度	1.85	L 82	1, 95	1.68	1.75	1, 65	L 82
4	伸び	200	. 190	190	180	200	200	180
物	通気性 0.1096)	-1.4	2.1	. 1.3	. L6	1.2	1.5	0.7
徃	50% 压缩吸水率	8.5	7.5	7.5	8.1	6.5	4.5	5.3
	85% 庄昭吸水率	2.8	1.5	1.4	1.4	1, 8	0. 9	1.1
	引起变	27. 55	24.75	26.89	27.45	27. 45	24, 75	· 24. 95
	他还	220	260	240	260	250	220	· 260
	通気度(P8117)	520.0	245, 0	295.0	335 , 0	325, 0	310.0	450.0
	止水性	72≤	72≤	72≦	72≦	72≤	72≤	-72≤
圧	超熱暴露 400hr	26, 17	24.01	25, 81	25, 80	26, 08	24, 01	23, 45
棉	80°C, 95% 800hr	23, 42	22, 03	22, 18	23, 33	23, 33	22.03	21, 21
品	1600hr	20, 66	19.80	20. 44	19.22	20,59	19, 80	17. 47
12	2400hr	19, 29	19,06	17. 48	17. 84	19, 22	19.06	16, 22
盟	わり 多盛 200hr	19, 56	16, 83	20, 17	17.84	19. 49	16, 83	16, 22
)	400 հո	11.57	10. 15	12.37	10.98	11. 53	10, 15	9.98
榜	600hr	7. 99	6. 19	6.72	5. 49	7. 96	6. 19	4, 99
性	800hr	3.03	2.72	2, 29	2.75	3.02	2.72	2.50
	紫外被器 100hr	10. 19	9, 16	10, 76	9.61	10, 16	9. 16	8.73
	部 200hr	0	0	0	0	0	0	0
	63°C 300hr							
	400hr	٠.				L		

【表9】

		表 9						
[実 !				
		37	38	39	40	41	42	
GP:	3000	25	50	25	50	25	50	
CP:	3943	25	25	25	25	25	25	
勿	F-▶ P2010	50	25					
勿	F-# F3010			50	25			
77	7±1220					50	25	
TO	180	40.3	40.3	40.3	40, 3	40.3	40.3	
1/2	プックス	110	110	110	110	110	110	
LV:	33	0.30	0.30	0.30	0.30	0.30	0.30	
水		3.00	3.00	3.00	3.00	3.00	3.00	
31):	÷γ SZ1919	L 50	1,50	1,50	1,50	1.50	1, 50	
7.5	スオクトエート	0, 30	0.30	0.30	0.30	0.30	0.30	
炒	in) (1)	5.0	5.0	5.0	5.0	5.0	5.0	
#}	-1 LS744	1.0	1.0	1.0	1.0	1.0	1.0	
	密度	36.5	35, 9	35, 2	34.9	35. 4	36, 0	
フ	25% 硬さ	22.9	18.6	2L 6	19.5	23.5	21.0	
*	セル数	60	59	64	61	65	59	
1	引始	2.23	1.85	2.20	1.91	2.35	1, 97	
7	伸び	260	220	220	230	250	215	
物	通気性(L1096)	0,8	1.1	1.3	11	0.8	0.8	
性	50% 压缩吸水率	5,9	8.8	5.8	4.8	7.5	4.5	
	85% 圧縮吸水率	. 1.5	1.4	1.1	1.2	1.4	1.2	
	号路路域	28.61	25. 46	28. 15	23.50	27. 20	28.00	
1	伸び	250	220	230	260	250	210	
	通気度(P8117)	365, 0	425.0	600.0	250.0	365.0	325.0	
	止水性	72≤	72≤	72≤	72≤	72≦	72≤	
Æ	湿熱暴露 400h	26, 32	23, 68	25, 62	22, 09	25, 30	25, 76	
縮	80°C, 95% 800hr	24,03	21, 64	23,65	20, 45	23, 12	23.52	
品	1600hr	21.46	19, 60	20,83	17.86	2U, 94	21,00	
171	2400tir	19.17	16.80	19.14	15, 04	17. 95	18.76	
损	が 暴露 200hr	24.60	20, 11	21. 39	18. 80	21:94	20, 46	
_	400hr	17.57	15. 79	17. 73	14.10	18.26	16, 92	
物	600hr	13, 53	11, 46	13.04	10. 81	13, 19	12.04	
性	800hr	10.42	10, 69	12.17	9.99	8. 84	10, 14	
	集外線器 100hr	25. 46	21.64	23, 93	19.98	23, 12	24.92	
	200hr	21. 46	18, 33	20.27	16.92	19.58	21.00	
	63°C 300hr	7. 15	7. 13	6, 47	6.58	7.62	7. 00	
	400hr	0	.0	0	0	0	0	

	表 10								
	•		9			<u> </u>			
		4.3	44 .	45	46	47`	48		
	3000	25	50	25	12.5	• 1	12.5		
_	3943	25	25	25	25	25	25		
	F-1 F3010				50	50	50		
÷2-	#-#F1212-29	50	25						
TAZ	22-221			50					
÷2.	-x-xf7-67				12.5	25			
TA	22-248C .						12, 5		
TD)	. 081	41.1	40.7	39.0	40.3	40.3	41.5		
	テックス	110	110	110	110	110	110		
LV		0, 30	0.30	0.30	0, 30	0.30	0, 30		
水	•	3.00	3,00	3.00	3,00	3.00	3, 00		
3J):	≻> 5Z1919	1.50	1.50	1.50	1.50	1.50	1. 50		
78	スナクトエート	0.30	0, 30	0.30	0, 30	0.30	0.30		
劝	n) CD .	5.0	5.0	5.0	5.0	5.0	5,0		
ቻታ	* LS744	1.0	1.0	1.0	1.0	1.0	1.0		
	密度	34.8	34.9	35.1	37.6	36, 8	37.2		
フ	25兆 硬さ	20.1	18.5	21.5	16.8	15.6	17. 1		
≱.	セル数	55	58	62	60	59	56		
1	引張強度	2, 35	1.79	2 15	1, 88	1.75	1.76		
7	伸び	250	- 200	230	230	200	210		
物	通気性(11096)	0.9	0.7	0.5	0.8	1, 1	1.3		
性	50% 压缩吸水率	3.9	3.4	5.3	5.9	6.8	5.8		
	85% 压縮吸水率	0.8	0.7	1.1	1, 5	1.4	1, 1		
	引張強度	27. 35	27, 50	26,50	28, 61	23.75	28. 15		
	伸び	250	220	260	250	220	230		
	通気度 (P8117)	350.0	315.0	450.0	370.0	500, 0	660, 0		
	止水性	72≦	72≤	72≤	72≤	72≤	72≦		
Æ	起熱暴露 400hr	24.89	25. 58	24.38	26. 32	22.09	25. 62		
楠	80°C, 95% 800hr	22, 97	23, 38	22.26	24.03	20. 19	23.65		
밂	1600hr	20, 24	21. 18	19.88	21.46	18.29	20. 83		
18	2400hr	18, 60	18, 15	17. 76	19. 17	15.68	19.14		
倍	カリン 暴露 200hr	21. 42	22. 18	21. 19	22, 77	17.97	22, 70		
	400hr	15. 44	17. 18	16. 54	17. 29	13.02	18. 16		
物	600hr	12.40	12.75	12, 27	. 15. 16	11.01	16, 70		
性	800hr	10, 19	8,94	9, 33	11, 50	7, 72	9, 15		
1	紫外線器 100hr	23, 25	23, 38	23.59	25, 46	20, 19	23. 93		
. 1	200hr	19.69	19, 80	19, 88	21. 46	17. 10	20. 27		
	63℃ 300hr	6.29	7.70	6.63	7. 15	6.65	6. 47		
	400hr	0	0	0	0	0	0		

【表11】

[0080]

			表 1		_		
				実ま	6 例		
		49	50	51	. 52	53	54
GP3	3000		12.5		25	න	25
CP:	3943	25	25	25	25	25	25
251	F-A F3010	50	50	50	25	25	25
=2.	-x-xf7-67				25		
TAZ	22-248C	25				25	
ラスラ	シック2458		12.5	25			25
70	180	40.9	40,6	40, 9	40.3	40.3	42.7
か	トゥウス	110	110	110	110	110	110
LY:	33	0.30	0, 30	0.30	0.30	0.30	0.30
水		3.00	3.00	3.00	3.00	3.00	3.00
(i)	ン SZ1919	L 50	1, 50	1,50	1,50	1, 50	1, 50
79	スナクトエート	0.30	0.30	0, 30	0.30	0, 30	.0, 30
ル	לדים	5, 0	5.0	5.0	5.0	5.0	5.0
サル	1 LS744	1.0	1.0	1.0	1.0	1.0	1.0
	经投	38, 2	37.9	38. 9	34.8	38. 2	38.6
フ	25% 硬さ	16.5	20.5	17, 2	17.5	16.5	19.6
*	セル数	61	65	59	55	58	62
	引强強度	1.82	1.90	1.73	1.86	1.79	1.82
7	伸び	200	200	190	200	200	230
物	通気性(L1096)	1.1	0.8	0.8	0.9	0.7	0.5
性	50% 圧縮吸水率	4.8	7.5	4.5	3.9	3.4	5.3
L_	85% 圧縮吸水率	1, 2	1.4	1, 2	0.8	0. 7	1.1
	引强強度	25, 25	27. 15	28,00	27, 35	25, 25	26, 10
	伸び	260	240	260	250	220	260
	通気度(P8117)	240.0	350.0	315.0	330.0	300.0	470.0
	此水性	72≥	72≥	72≥	72≧	72≧	72≧
圧	湿熱暴露 400hr	23. 74	25, 25	25, 76	24, 89	23, 48	24.01
縮	80°C, 95% 800hr	21. 97	23.08	23, 52	22, 97	21. 46	21, 92
品	1600hr	19, 19	20, 91	21,00	20, 24	19, 44	19, 58
17	2400hr	16. 16	17. 92	18.76	18, 60	16. 67	17, 49
福	ガン 暴露 200元	20. 12	21, 62	21. 86	23.66	20. 36	20, 78
<u>ا</u>	400hr	16.02	16, 96	16, 64	17.08	15, 27	16, 29
物	600hr	13, 43	13, 40	12, 19	12, 40	12, 71	12, 08
性	800hr	9. 15	8.82	10.70	9. 37	10, 73	9, 19
	集外級器 100hr	21. 46	23.08	24. 92	23, 25	21. 46	23, 23
	200hr	18. 18	19.55	21.00	19.69	18. 18	19, 58
ļ	63°C 300hr	7. 07	7. 60	7. 00	6.29	7. 07	6, 53
	400hr	. 01	0	0	0	. 0	0

【0081】表1及び表2の結果によれば、比較例1の エステル系フォームでは、圧縮品の初期の引張強度、伸 びに優れ、耐オソン劣化性も比較的良好であるが、耐湿 熱老化性は劣っていることが分かる。一方、比較例2の エーテル系フォームでは、耐湿熱老化性は良好であるも のの、圧縮品の強度、伸びは小さく、耐オゾン劣化性も 劣っていることが分かる。また、2種類のポリエーテル 40 ポリオールを併用したエーテル系フォームである比較例 3でも強度、伸びは向上しない。更に、ポリエーテルポ リオールとポリエステルポリエーテルポリオールを併用 した比較例4~6及び8~9と、ポリオールの全量をポ リエステルポリエーテルポリオールとした比較例?で も、強度、伸びの向上はみられず、耐オゾン劣化性の改 善も十分ではないことが分かる。

【0082】一方、表3~4の結果によれば、長鎖ポリ エステルポリオールとポリエーテルポリオールとを併用 に向上し、耐湿熱老化性及び耐オゾン劣化性もかなり改 善される。この改善の程度は長鎖ポリエステルポリオー ルの種類によるが、特に、実施例3、4、また、実施例 7、8などでは、強度はエステル系フォームと同程度と なり、耐湿熱老化性及び耐オゾン劣化性も大きく向上し ていることが分かる。

【0083】尚、図1に、比較例1及び2と、実施例3 及び4の軟質フォームの耐湿熱老化性の結果をグラフに して表す。この図1によっても、実施例3及び4のフォ ームでは、初期強度はエーテル系フォームを相当に上回 り、しかも耐湿熱老化性もエーテル系フォームと同様に 優れていることが分かる。

【0084】また、表5~6の結果によれば、ポリエス テルポリエーテルポリオールを25重量%併用した実施 例13~22では、実施例1~12と比べて、強度、伸 び及び耐オゾン劣化性等に大きな差異はない。しかし、 した実施例1~12では、フォームの強度、伸びが相当 50 長鎖ポリエステルポリオールとポリエーテルポリオール

との相溶性は向上し、混合後、放置しても分離すること はなく、より安定した反応が可能となる。更に、表7~ 8の結果によれば、第6発明に対応する実施例23~3 6では、ポリマーポリオールを25~30重量%配合す ることにより、長鎖ポリエステルポリオールの種類によ らず、圧縮成形後の強度が大きく向上することが分か

[0085] 更に、表9~11の結果によれば、第7及 び第8発明に対応する実施例37~54では、強度が非 改善されていることが分かる。また、紫外線吸収剤の添 加により耐候性にもかなりの改良がみられる。

【0086】尚、図2に、比較例1及び2と、実施例 3、4及び実施例39、40のフォームの耐オゾン劣化 性の結果をグラフにして表す。この図2によっても、実 施例3、4のフォームでは、初期強度はエステル系フォ ームと同等になり、耐オゾン劣化性もエステル系フォー ムと同様に優れていることが分かる。また、実施例3 9、40のフォームでは、初期強度はエステル系フォー ムと同等又はそれ以上となり、耐オゾン劣化性もエステ 20 通気度3秒以下、数値が小さいほど通気し易い。)、エ ル系フォームを上回っていることが分かる。

【0087】更に、図3に、比較例1及び2と、実施例 3、4及び実施例39、40のフォームの耐候性の結果 をグラフにして表す。この図3によれば、実施例3、4

のフォームでは、耐候性はエステル系フォームよりは劣 るものの、エーテル系フォームに比べればかなり改善さ れる。また、実施例30、40のフォームでは、その耐 候性は、エステル系フォームを大きく上回っていること

【0088】また、実施例37~54では、第8発明に 対応した末端単官能性化合物(この場合、整泡剤である シリコーンSZ1919が末端単官能性化合物として作 用する。)が使用されている。そのため、フォームの通 常に大きく、耐オソン劣化性及び耐湿熱老化性が著しく 10 気性及び圧縮吸水率が大きく低下し、圧縮品の通気度も 非常に低通気性で好ましい範囲となり、いずれの実施例 においても、止水性が72時間以上と、非常に止水性に 優れた軟質フォームが得られることが分かる。

> 【0089】この通気性及び通気度については、表12 のように、圧縮前の通気性が、特に実施例40のように 適度な範囲にあることが好ましい。比較例1の場合もこ の通気性、通気度についてはよい結果となっているが、 比較例2のように通気性が非常に大きい場合は、圧縮後 の通気度も圧縮率によらず大きすぎ(ほとんどの場合、 アーシール性、止水性に劣ったフォームとなる。

[0090] 【表12】

1 2

		比較例1	比較例2	実施例:40.
圧縮前(JIS L1096)		8.3	121	1. 1
圧縮後	厚さ 5→0.5∞∞(10倍)	3 ≥	3 ≥	92.0
	厚さ 6→0.5mm(12倍)	5.5	3 ≥	134.0
	厚さ 7→0.5㎜(14倍)	17.5	3 ≥	275.0
	厚さ 8→0.5㎜(16倍)	65.0	3 ≥	325.0
	厚さ 9→0.5ma(18倍)	115.0	3 ≩	485.0
	厚さ10~0.5mm(20倍)	265.0	5.3	720.0

(圧縮後の測定法は JIS P8117)

【0091】尚、各比較例では、セル数は50個/25 mm以下の場合もあり、フォームセルは比較的大きい。 一方、各実施例では、セル数は50個/25mm以上、 多くの例で55個/25mm以上であり、特にポリエス テルポリエーテルポリオール、ポリマーポリオールを併 50 用した場合は、60個/25mm以上であることが多 く、フォームセルは比較的小さい。この点からも、本発 明の軟質フォームを使用すれば、安定した止水性を有す るスピーカエッジが得られ易いことが分かる。

[0092]

【発明の効果】第1発明によれば、ポリオールとして、特定の、ポリエーテルポリオールとの相溶性のよいポリエステルポリオールと、ポリエーテルポリオールとを併用することにより、耐湿熱老化性及び耐オゾン劣化性が相当に改善された軟質フォームを得ることができる。また、第3発明のポリエステルポリエーテルポリオール等、第4発明の2級の末端水酸基を有するポリエステルポリオールを併用することにより、上記の特定のポリエステルポリオールとポリエーテルポリオールとの相溶性を更に向上させることができる。

【0093】更に、第5発明では、第3発明及び第4発明の特定のポリエステルポリオールを使用することにより、第1発明と同様の優れた特性を有する軟質フォームを得ることができる。尚、第6発明のようにポリマーポリオールを併用することにより、より強度の大きなフォームが得られる。また、第7発明によれば、特定の2級

アミン化合物を使用することにより、フォームの耐オソン劣化性を改善することができる。更に、第8発明によれば、特定の末端単官能性化合物を配合することにより、吸水率、通気性を大きく低下させ、適度な通気度を有するフォームとすることができる。また、第9発明では、これら第1~8発明の特定の軟質フォームを用いることにより、特に止水性、耐候性などに優れたスピーカエッジを得ることができる。

【図面の簡単な説明】

10 【図1】比較例1、2及び実施例3、4の軟質フォームの耐湿熱老化性を表すグラフである。

【図2】比較例1、2及び実施例3、4、39、40の 軟質フォームの耐オゾン劣化性を表すグラフである。

【図3】比較例1、2及び実施例3、4、39、40の 軟質フォームの耐候性を表すグラフである。

【図1】

[図2]

【図3】

フロントページの続き

(51) Int. Cl. 4

識別記号 庁内整理番号

FΙ

技術表示箇所

C 0 8 G 101:00) C08L 75:04

(72)発明者 加藤 健一

愛知県安城市今池町3丁目1番36号 株式 会社イノアックコーポレーション安城事業 所内 (72)発明者 近藤 敏

愛知県安城市今池町3丁目1番36号 株式 会社イノアックコーポレーション安城事業 所内