Федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и технологий Кафедра «Компьютерные интеллектуальные технологии»

В.Г. ПАК

ДИСКРЕТНАЯ МАТЕМАТИКА

СЛАЙДЫ ВИДЕОЛЕКЦИЙ ДЛЯ СТУДЕНТОВ II КУРСА ЗАОЧНОГО ОТДЕЛЕНИЯ БАКАЛАВРИАТА НАПРАВЛЕНИЯ ПОДГОТОВКИ «ПРИКЛАДНАЯ ИНФОРМАТИКА»

Санкт-Петербургский политехнический университет Петра Великого 2018

Санкт-Петербургский политехнический университет Петра Великого, 2018 ©

Федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и технологий Кафедра «Компьютерные интеллектуальные технологии»

ЛЕКЦИЯ №2

КАРДИНАЛЬНЫЕ ЧИСЛА

СЛАЙДЫ ВИДЕОЛЕКЦИЙ ДЛЯ СТУДЕНТОВ II КУРСА ЗАОЧНОГО ОТДЕЛЕНИЯ БАКАЛАВРИАТА НАПРАВЛЕНИЯ ПОДГОТОВКИ «ПРИКЛАДНАЯ ИНФОРМАТИКА»

Санкт-Петербургский политехнический университет Петра Великого 2018

Санкт-Петербургский политехнический университет Петра Великого, 2018©

Содержание

- §3. Кардинальные числа
 - 3.1. Эквивалентность и мощность множеств. Теорема Кантора-Бернштейна
 - 3.2. Конечные и бесконечные множества
 - 3.3. Счётные множества
 - 3.4. Бессчётные множества. Теорема Кантора
 - 3.5. Шкала кардинальных чисел

§3. Кардинальные числа

3.1. Эквивалентность и мощность множеств. Теорема Кантора-Бернштейна

Определение. Множества A и B называются *эквивалентными*, если между ними существует взаимно-однозначное соответствие: $A \sim B$.

Очевидно, что отношение эквивалентности между множествами как бинарное отношение является эквивалентностью. По теореме 2.1 все множества разбиваются на классы эквивалентности.

Определение. Классы эквивалентности множеств называются мощностями множеств. Множества равной мощности называются равномощными.

Обозначение мощности множества A: card(A). Если A эквивалентно некоторому подмножеству множества B, будем писать $card(A) \le card(B)$.

Теорема 3.1 (Кантора-Бернштейна). Если $card(A) \leq card(B)$ и $card(B) \leq card(A)$, то card(A) = card(B).

3.2. Конечные и бесконечные множества

3.2. Конечные и бесконечные множества

Определение. Множество A называется *конечным*, если существует такое конечное натуральное число n, что $card(A) = card(\{0; 1; ...; n-1\})$.

Для конечных множеств мощность эквивалентна числу элементов.

Мощность конечного множества A обозначается |A|.

Свойства конечных множеств:

- 1. Подмножество конечного множества конечно.
- 2. Объединение конечного числа конечных множеств конечно.
- 3. Декартово произведение конечного числа конечных множеств конечно.

Теорема 3.2. Множество конечно тогда и только тогда, когда оно не эквивалентно собственному подмножеству.

Теорема 3.2 даёт эквивалентное определение конечного множества.

Определение. Множество, не являющееся конечным, называется *бесконечным.*

Определение. Множество A называется *счётным*, если оно либо конечно, либо бесконечно и эквивалентно \mathbb{N}_0 . Счётные бесконечные множества называются *счётно-бесконечными*.

3.3. Счётные множества

Теорема 3.3. Бесконечное множество содержит счётно-бесконечное подмножество.

Теорема 3.4. Множество бесконечно тогда и только тогда, когда оно эквивалентно собственному подмножеству.

Теорема 3.4 даёт эквивалентное определение бесконечного множества.

3.3. Счётные множества

Свойства счётных множеств:

- 1. Если A счётно-бесконечно, B конечно, то $A \setminus B \sim A$.
- 2. Если A бесконечно, B счётно, то $A \cup B \sim A$.

Теорема 3.5. Объединение счётного числа счётных множеств счётно.

Теорема 3.6. Всякое подмножество счётного множества счётно.

Примеры счётных множеств: \mathbb{N} , \mathbb{N}_0 , \mathbb{Z} , \mathbb{Q} .

3.4. Бессчётные множества

3.4. Бессчётные множества. Теорема Кантора

Определение. Множество, не являющееся счётным, называется *бессчётным*.

Лемма 3.1. Если A бессчётно, B счётно, то $A \backslash B \sim A$.

Теорема 3.7(теорема Кантора). Множество счётных кортежей нулей и единиц бессчётно.

Примеры бессчётных множеств: (0; 1), [0; 1], [a; b], $[0; 1]^2, \mathbb{R}, \mathbb{R}^2, \mathbb{R}^n.$

Определение. Множество, равномощное множеству \mathbb{R} , называется *континуальным.*

3.5. Шкала кардинальных чисел

3.5. Шкала кардинальных чисел

Определение. Кардинальными числами множеств называются их мощности.

