Mathematische Knobeleien

Teil 3 - Ein Dreieck im Trapez

Mathematik - Verständlich gemacht!*

24. März 2023

Problemstellung

Es sei T:=ABCD ein gleichschenkliges Trapez mit den Seiten¹ a:=AB, b:=BC, c:=CD und d:=DA. Seine Höhe bezeichnen wir mit h_T . Nun ziehen wir die beiden Diagonalen AC und DB ein und bezeichnen ihren Schnittpunkt mit S. Von C und D fällen wir jeweils das Lot auf a; die entstehenden Schnittpunkte nennen wir S_C bzw. S_D . Es entsteht ein Dreieck $\Delta:=S_DS_CS$. Bestimme den Flächeninhalt von Δ .

Lösung

Wir kombinieren Methoden der klassischen Geometrie und der analytischen Geometrie. Im Folgenden verwenden wir die Bezeichnungen der nachstehenden Skizze.

TODO: SKIZZE!

Da T gleichschenklig ist, ist b=d und folglich $t_1=t_3$. Aus dem Satz von Pythagoras folgt

$$t_1 = \sqrt{d^2 - h_T^2} = t_3.$$

Daraus ergeben sich unmittelbar

$$t_2 = a - t_3 = a - \sqrt{d^2 - h_T^2}$$
 und $t_4 = a - t_1 - t_3 = a - 2\sqrt{d^2 - h_T^2}$.

Nun führen wir ein kartesisches Koordinatensystem mit Ursprung in A ein, sodass a auf der Abszissenachse liegt. Damit lesen wir die Koordinaten von A, B, C und D ab:

$$A = (0,0), B = (a,0), C = (t_2, h_T), D = (t_1, h_T).$$

 $^{^*}$ Email: kontakt@mschulte-mathematik.ruhr

¹Wir identifizieren Seitennamen mit ihren Längen.

Hiermit bestimmen wir Funktionsgleichungen für die Diagonalen:

$$d_1(x) = \frac{h_T}{a - \sqrt{d^2 - h_T^2}} x, \ x \in [0, t_2] \text{ (Diagonale } AC)$$

$$d_2(x) = \frac{h_t}{\sqrt{d^2 - h_T^2} - a} x - \frac{a \cdot h_T}{\sqrt{d^2 - h_T^2} - a}, \ x \in [t_1, a] \text{ (Diagonale } DB)$$

Gleichsetzen liefert den Schnittpunkt S der beiden Diagonalen:

$$S = \left(\frac{a}{2}, \frac{a \cdot h_t}{a - \sqrt{d^2 - h_T^2}}\right).$$

Es ist also h = y(S). Hiermit erhalten wir den gesuchten Flächeninhalt als

$$F_{\Delta} = \frac{1}{2} \cdot h \cdot t_4 = \frac{1}{2} \cdot \frac{a \cdot h_T \cdot \left(a - 2\sqrt{d^2 - h_T^2}\right)}{a - \sqrt{d^2 - h_T^2}}.$$

Ergänzungen

Wir können den Flächeninhalt von Δ natürlich auch ausrechnen, wenn T nicht gleichschenklig ist; die Rechnungen werden lediglich algebraisch komplizierter, da wir keine Symmetrien mehr ausnutzen können. Wir geben hier nur die Lösungen an, der Weg zur Herleitung läuft analog zu oben.

TODO: SKIZZE!

Punktkoordinaten:

$$A = (0,0), B = (a,0), C = (t_2, h_T), D = (t_1, h_T).$$

Diagonalengleichungen:

$$d_1(x) = \frac{h_T}{a - \sqrt{b^2 - h_T^2}} x, \ x \in [0, t_2] \ \text{(Diagonale } AC)$$

$$d_2(x) = -\frac{h_t}{a - \sqrt{d^2 - h_T^2}} x + \frac{a \cdot h_T}{a - \sqrt{d^2 - h_T^2}}, \ x \in [t_1, a] \ \text{(Diagonale } DB)$$

Schnittpunkt:

$$\begin{aligned} &d_1(x_S) = d_2(x_S) \\ \Leftrightarrow \left(\frac{h_T}{a - \sqrt{b^2 - h_T^2}} + \frac{h_T}{a - \sqrt{d^2 - h_T^2}}\right) x_S = \frac{a \cdot h_T}{a - \sqrt{d^2 - h_T^2}} \\ \Leftrightarrow \left(\frac{a - \sqrt{d^2 - h_T^2}}{a - \sqrt{b^2 - h_T^2}} + 1\right) x_S = a. \quad \text{(K\"{u}rzen und Bruch rausmultiplizieren)} \end{aligned}$$

Setzen wir nun

$$\frac{a - \sqrt{d^2 - h_T^2}}{a - \sqrt{b^2 - h_T^2}} + 1 =: \frac{1}{\Gamma},$$

so erhalten wir

$$x_S = \Gamma \cdot a$$
.

Dies ist mit den vorherigen Ergebnissen konsistent, den
nb=dergibt $\Gamma=\frac{1}{2}.$ Flächeninhalt:

$$\begin{split} F_{\Delta} &= \frac{1}{2} \cdot \Gamma \cdot a \cdot \left(a - \sqrt{d^2 - h_T^2} - \sqrt{b^2 - h_T^2} \right) \\ &= \frac{1}{2} \cdot a \cdot \left(a - \sqrt{b^2 - h_T^2} \right) \cdot \frac{a - \sqrt{d^2 - h_T^2} - \sqrt{b^2 - h_T^2}}{2a - \sqrt{d^2 - h_T^2} - \sqrt{b^2 - h_T^2}}. \end{split}$$

Quellen

Die Aufgabe entspringt eigenen Überlegungen.