EE364b Prof. S. Boyd

## EE364b Homework 2

1. Subgradient optimality conditions for nondifferentiable inequality constrained optimization. Consider the problem

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le 0$ ,  $i = 1, ..., m$ ,

with variable  $x \in \mathbf{R}^n$ . We do not assume that  $f_0, \ldots, f_m$  are convex. Suppose that  $\tilde{x}$  and  $\tilde{\lambda} \succeq 0$  satisfy primal feasibility,

$$f_i(\tilde{x}) \le 0, \quad i = 1, \dots, m,$$

dual feasibility,

$$0 \in \partial f_0(\tilde{x}) + \sum_{i=1}^m \tilde{\lambda}_i \partial f_i(\tilde{x}),$$

and the complementarity condition

$$\tilde{\lambda}_i f_i(\tilde{x}) = 0, \quad i = 1, \dots, m.$$

Show that  $\tilde{x}$  is optimal, using only a simple argument, and definition of subgradient. Recall that we do not assume the functions  $f_0, \ldots, f_m$  are convex.

**Solution.** Let g be defined by  $g(x) = f_0(x) + \sum_{i=1}^m \tilde{\lambda}_i f_i(x)$ . Then,  $0 \in \partial g(\tilde{x})$ . By definition of subgradient, this means that for any y,

$$g(y) \ge g(\tilde{x}) + 0^T (y - \tilde{x}).$$

Thus, for any y,

$$f_0(y) \ge f_0(\tilde{x}) - \sum_{i=1}^m \tilde{\lambda}_i (f_i(y) - f_i(\tilde{x})).$$

For each i, complementarity implies that either  $\lambda_i = 0$  or  $f_i(\tilde{x}) = 0$ . Hence, for any feasible y (for which  $f_i(y) \leq 0$ ), each  $\tilde{\lambda}_i(f_i(y) - f_i(\tilde{x}))$  term is either zero or negative. Therefore, any feasible y also satisfies  $f_0(y) \geq f_0(\tilde{x})$ , and  $\tilde{x}$  is optimal.

2. Optimality conditions and coordinate-wise descent for  $\ell_1$ -regularized minimization. We consider the problem of minimizing

$$\phi(x) = f(x) + \lambda ||x||_1,$$

where  $f: \mathbf{R}^n \to \mathbf{R}$  is convex and differentiable, and  $\lambda \geq 0$ . The number  $\lambda$  is the regularization parameter, and is used to control the trade-off between small f and small  $||x||_1$ . When  $\ell_1$ -regularization is used as a heuristic for finding a sparse x for which f(x) is small,  $\lambda$  controls (roughly) the trade-off between f(x) and the cardinality (number of nonzero elements) of x.

(a) Show that x = 0 is optimal for this problem (i.e., minimizes  $\phi$ ) if and only if  $\|\nabla f(0)\|_{\infty} \leq \lambda$ . In particular, for  $\lambda \geq \lambda_{\max} = \|\nabla f(0)\|_{\infty}$ ,  $\ell_1$  regularization yields the sparsest possible x, the zero vector.

Remark. The value  $\lambda_{\text{max}}$  gives a good reference point for choosing a value of the penalty parameter  $\lambda$  in  $\ell_1$ -regularized minimization. A common choice is to start with  $\lambda = \lambda_{\text{max}}/2$ , and then adjust  $\lambda$  to achieve the desired sparsity/fit trade-off.

**Solution.** A necessary and sufficient condition for optimality of x = 0 is that  $0 \in \partial \phi(0)$ . Now  $\partial \phi(0) = \nabla f(0) + \lambda \partial \|0\|_1 = \nabla f(0) + \lambda [-1, 1]^n$ . In other words, x = 0 is optimal if  $-\nabla f(x) \in [-\lambda, \lambda]^n$ . This is equivalent to  $\|\nabla f(0)\|_{\infty} \leq \lambda$ .

(b) Coordinate-wise descent. In the coordinate-wise descent method for minimizing a convex function g, we first minimize over  $x_1$ , keeping all other variables fixed; then we minimize over  $x_2$ , keeping all other variables fixed, and so on. After minimizing over  $x_n$ , we go back to  $x_1$  and repeat the whole process, repeatedly cycling over all n variables.

Show that coordinate-wise descent fails for the function

$$g(x) = |x_1 - x_2| + 0.1(x_1 + x_2).$$

(In particular, verify that the algorithm terminates after one step at the point  $(x_2^{(0)}, x_2^{(0)})$ , while  $\inf_x g(x) = -\infty$ .) Thus, coordinate-wise descent need not work, for general convex functions.

**Solution.** We first minimize over  $x_1$ , with  $x_2$  fixed as  $x_2^{(0)}$ . The optimal choice is  $x_1 = x_2^{(0)}$ , since the derivative on the left is -0.9, and on the right, it is 1.1. We then arrive at the point  $(x_2^{(0)}, x_2^{(0)})$ . We now optimize over  $x_2$ . But it is optimal, with the same left and right derivatives, so x is unchanged. We're now at a fixed point of the coordinate-descent algorithm.

On the other hand, taking x = (-t, t) and letting  $t \to \infty$ , we see that  $g(x) = -0.1t \to -\infty$ .

It's good to visualize coordinate-wise descent for this function, to see why x gets stuck at the crease along  $x_1 = x_2$ . The graph looks like a folded piece of paper, with the crease along the line  $x_1 = x_2$ . The bottom of the crease has a small tilt in the direction (-1, -1), so the function is unbounded below. Moving along either axis increases g, so coordinate-wise descent is stuck. But moving in the direction (-1, -1), for example, decreases the function.

(c) Now consider coordinate-wise descent for minimizing the specific function  $\phi$  defined above. Assuming f is strongly convex (say) it can be shown that the iterates converge to a fixed point  $\tilde{x}$ . Show that  $\tilde{x}$  is optimal, *i.e.*, minimizes  $\phi$ .

Thus, coordinate-wise descent works for  $\ell_1$ -regularized minimization of a differentiable function.

**Solution.** For each  $i, \tilde{x}_i$  minimizes the function  $\psi$ , with all other variables kept

fixed. It follows that

$$0 \in \partial_{x_i} \psi(\tilde{x}) = \frac{\partial f}{\partial x_i}(\tilde{x}) + \lambda \mathcal{I}_i, \quad i = 1, \dots, n,$$

where  $\mathcal{I}_i$  is the subdifferential of  $|\cdot|$  at  $\tilde{x}_i$ :  $\mathcal{I}_i = \{-1\}$  if  $\tilde{x}_i < 0$ ,  $\mathcal{I}_i = \{+1\}$  if  $\tilde{x}_i > 0$ , and  $\mathcal{I}_i = [-1, 1]$  if  $\tilde{x}_i = 0$ .

But this is the same as saying  $0 \in \nabla f(\tilde{x}) + \partial ||\tilde{x}||_1$ , which means that  $\tilde{x}$  minimizes  $\psi$ .

The subtlety here lies in the general formula that relates the subdifferential of a function to its partial subdifferentials with respect to its components. For a separable function  $h: \mathbb{R}^2 \to \mathbb{R}$ , we have

$$\partial h(x) = \partial_{x_1} h(x) \times \partial_{x_2} h(x),$$

but this is false in general.

(d) Work out an explicit form for coordinate-wise descent for  $\ell_1$ -regularized least-squares, *i.e.*, for minimizing the function

$$||Ax - b||_2^2 + \lambda ||x||_1$$
.

You might find the deadzone function

$$\psi(u) = \begin{cases} u - 1 & u > 1 \\ 0 & |u| \le 1 \\ u + 1 & u < -1 \end{cases}$$

useful. Generate some data and try out the coordinate-wise descent method. Check the result against the solution found using CVX, and produce a graph showing convergence of your coordinate-wise method.

**Solution.** At each step we choose an index i, and minimize  $||Ax - b||_2^2 + \lambda ||x||_1$  over  $x_i$ , while holding all other  $x_j$ , with  $j \neq i$ , constant.

Selecting the optimal  $x_i$  for this problem is equivalent to selecting the optimal  $x_i$  in the problem

minimize 
$$ax_i^2 + cx_i + |x_i|$$
,

where  $a = (A^T A)_{ii}/\lambda$  and  $c = (2/\lambda)(\sum_{j\neq i} (A^T A)_{ij}x_j + (b^T A)_i)$ . Using the theory discussed above, any minimizer  $x_i$  will satisfy  $0 \in 2ax_i + c + \partial |x_i|$ . Now we note that a is positive, so the minimizer of the above problem will have opposite sign to c. From there we deduce that the (unique) minimizer  $x_i^*$  will be

$$x_i^{\star} = \begin{cases} 0 & c \in [-1, 1] \\ (1/2a)(-c + \mathbf{sign}(c)) & \text{otherwise,} \end{cases}$$

where

$$\mathbf{sign}(u) = \begin{cases} -1 & u < 0 \\ 0 & u = 0 \\ 1 & u > 0. \end{cases}$$

Finally, we make use of the deadzone function  $\psi$  defined above and write

$$x_i^{\star} = \frac{-\psi((2/\lambda)\sum_{j\neq i}(A^T A)_{ij}x_j + (b^T A)_i)}{(2/\lambda)(A^T A)_{ii}}.$$

Coordinate descent was implemented in Matlab for a random problem instance with  $A \in \mathbf{R}^{400 \times 200}$ . When solving to within 0.1% accuracy, the iterative method required only a third the time of cvx. Sample code appears below, followed by a graph showing the coordinate-wise descent method's function value converging to the CVX function value.

```
% Generate a random problem instance.
randn('state', 10239); m = 400; n = 200;
A = randn(m, n); ATA = A'*A;
b = randn(m, 1);
1 = 0.1;
TOL = 0.001;
xcoord = zeros(n, 1);
% Solve in cvx as a benchmark.
cvx_begin
    variable xcvx(n);
    minimize(sum_square(A*xcvx + b) + 1*norm(xcvx, 1));
cvx_end
% Solve using coordinate-wise descent.
while abs(cvx_optval - (sum_square(A*xcoord + b) + ...
                  1*norm(xcoord, 1)))/cvx_optval > TOL
    for i = 1:n
        xcoord(i) = 0; ei = zeros(n,1); ei(i) = 1;
        c = 2/1*ei'*(ATA*xcoord + A'*b);
        xcoord(i) = -sign(c)*pos(abs(c) - 1)/(2*ATA(i,i)/1);
    end
end
```

