

Exploratory Data Analysis NumPy

Lecture 4 – HCCDA-AI

Imran Nawar

Exploratory Data Analysis

Exploratory Data Analysis

- The process of examining datasets to summarize their main characteristics, often with visual methods.
- **Purpose:** A crucial step in the data analysis workflow to gain a deep understanding of the dataset before modeling.

Objectives:

- Understand data structure and underlying patterns.
- Identify anomalies, missing values, and outliers.
- Detect trends and relationships between variables
- Form hypothesis to inform further analysis or modeling

Importance:

- Provides insights for data-driven decision making.
- Improves predictive model quality by identifying issues early
- Ensures data integrity and readiness for analysis.

Exploratory Data Analysis

Key Steps in Exploratory Data Analysis (EDA)

- Understanding the Data: Get familiar with the dataset, look at the number of rows, columns, and types of data.
- Data Cleaning: Handle missing values, duplicates, and inconsistencies.
- Statistical Analysis: Use basic statistics like mean, median, and standard deviation to understand each variable.
- Data Visualization: Use charts to uncover patterns, trends and outliers.
- Data Transformation (if needed): Normalize or standardize values, or convert data into a better format for analysis.

Exploratory Data Analysis Process

Python Libraries for EDA

Pandas

• Initial release: 2009

• Purpose: Data manipulation and analysis

Key Features:

- **DataFrame and Series Objects:** Provide a flexible structure for handling tabular and time-series data.
- **Data Cleaning:** Handle missing values, duplicates, and data type conversions
- **Filtering and Indexing:** Retrieve specific data easily based on conditions or indices.
- **Grouping and Aggregation:** Perform operations like sum, mean, and count on grouped data.
- **Data Merging and Joining:** Combine datasets using functions like merge() and concat().
- **Time Series Support:** Includes built-in tools for resampling, shifting, and rolling computations.

Python Libraries for EDA Matplotlib:

- Initial release: 2003
- First Python data visualization library.
 - Most popular and widely used data visualization library.
- Matplotlib is the grandfather of python visualization packages.
 - Foundation for many other libraries.
 - Popular libraries like Seaborn and Plotly are built on Matplotlib, using it as the core for rendering plots.

Highly Customizable:

- Low-level, highly customizable plotting library.
- It offering fine-grained control over plot elements (axes, labels, ticks, colors), enabling a wide range of visualizations from basic bar charts to complex interactive 2D graphs.

• Key Strengths:

- Powerful but Complex:
 - While flexible, it can be challenging for beginners compared to higher-level libraries like Seaborn.

Multiple Visualization Modes:

• Supports static, animated, and interactive plots for diverse use cases.

Matplotlib's original logo (2003 -- 2008).

Matplotlib's logo (2008 -- 2015).

Python Libraries for EDA

Seaborn:

- Initial Release: 2014
- It is an advanced data visualization library built on top of Matplotlib, designed to make complex statistical plots easier to create.

Key Features

- High-Level Interface
 - Intuitive API for statistical graphics
 - Minimal effort required

Advanced Visualizations

- Built-in functions for complex plots
- Examples: heatmaps, pair plots, violin plots, regression p

Data Integration

- Seamless integration with Pandas DataFrames
- Efficient handling of large datasets

Key Strengths

- User-friendly and less complex compared to Matplotlib.
- Designed to make statistical visualizations accessible and attractive.

Seaborn Plots

Python Libraries for EDA Plotly:

- A powerful open-source graphing library for Python, R, and JavaScript.
- · Creates interactive, publication-quality visualizations.
- Supports a wide range of chart types and interactive features.
- Enables Python users to create stunning web-based visualizations.
- Integrates seamlessly with web applications and Jupyter notebooks.
- Visualizations can be saved as standalone HTML files or displayed directly in Jupyter notebooks.

Installation and Setup

• Install Plotly using pip.

pip install plotly

• For notebook environments, install additional package *notebook* if required:

pip install "notebook>=5.3" "ipwidgets>=7.5"

• Basic usage in Python:

import plotly.graph_objects as go
import plotly.express as px

NumPy

Introduction to NumPy

NumPy: "Numerical Python" – The foundation of scientific computing in Python

- Initial release: As Numeric (1995); as NumPy, (2006)
- Python library for efficient array operations and mathematical computations
- Core Data Structure: N-dimensional array (ndarray)

Why NumPy?

- **Speed:** Up to 50x faster than Python lists.
- **Memory Efficient:** Uses less memory than traditional Python data structures.
- Foundation: Backend for Pandas, SciPy, Matplotlib, and machine learning libraries
- Versatile: Supports 1D arrays, matrices, tensors, and higher dimensions.

The Evolution and Impact of NumPy

Key Features

1. Efficient Data Structures:

- Memory-efficient: Contiguous storage reduces memory footprint
- Homogeneous data: All elements have the same data type for optimal performance

2. Mathematical Operations:

- Vectorized operations: Apply functions to entire arrays at once
- Built-in functions: Comprehensive library for complex mathematical calculations

3. Random Number Generation:

- Functions for generating random numbers and datasets.
- Useful in simulations, statistical modeling, and testing.

4. Performance Optimization:

- Low-level implementation: Core written in C and Fortran for speed
- **Significant speedup:** Up to 50x faster than native Python operations

5. Ecosystem Integration:

- Foundation library: Backend for major Python data science libraries
- Seamless compatibility: Works with Pandas, SciPy, Matplotlib, Scikit-learn

Why NumPy Arrays are Faster Than Lists

1. Fixed Data Type:

• NumPy arrays have a uniform data type, which eliminates the overhead of managing different data types like in Python lists.

2. Contiguous Memory Storage:

• Data stored in continuous memory blocks enhances cache efficiency and reduces memory consumption.

3. No Runtime Type Checking:

• Operations on NumPy arrays skip runtime type checks, making computations faster compared to Python lists.

4. Optimized Implementation:

• Core operations written in C and Fortran for maximum performance.

Differences Between Python Lists and NumPy

Arrays:

Feature	Python Lists	NumPy Arrays
Data Type	Mixed Types	Homogeneous types
Memory Efficiency	Low	High
Computation Speed	Slow	Fast

Advanced Operations in NumPy

Slicing, Indexing, and Advanced Operations

1) Array Slicing:

- Access subsets of data.
- **Example:** array[1:5] retrieves elements from index 1 to 4.

2) Array Indexing:

- Access or modify specific elements.
- **Example**: array[0, 2] retrieves the element at row 0, column 2 in a 2D array.

3) Broadcasting:

- Perform operations on arrays of different shapes.
- **Example:** Add a scalar to an array.

4) Mathematical Functions:

- Built-in functions for trigonometry, statistics, linear algebra, etc.
- Example: np.mean(array) computes the mean.

5) Shape Manipulation:

- Reshape arrays to desired dimensions.
- Example: array.reshape(3, 4) reshapes flat array to 3x4.

Thank You