Tensor network diagrams

Tensor = multi-dimensional array

Rank-3 tensor

Rank (order, degree) of a tensor = # of dimensions = # of indices = # of legs

Dimension of a leg = size of the tensor along the corresponding dimension

ATY = (A Y)

NB: Rank of matrix

= # of non-zero

Rank 0: scalar
$$A^{\dagger} = A^{\dagger}$$
Rank 1: vector
$$A^{\alpha}$$

Rank 2: matrix
$$A^{\alpha}_{\beta}$$
 A^{α}_{β} A^{β}_{α} A^{\dagger}_{β} A^{\dagger}_{α} A^{\dagger}_{α} A^{\dagger}_{β} A^{\dagger}_{α}

In TN:
$$|\alpha\rangle = |\beta\rangle \cup |\beta\rangle$$
 (ket) Vs. $|\alpha\rangle = |\beta\rangle$ (sum over repeated indices)

Example: two spins

Consider spin 1/2 (or qubit):
$$\{(1), (1)\}$$
 $(\{(0), (1)\})$

Tensor network representation of two spins:

$$|S| = |S| = |S|$$

If we exploit the conservation of $S_{\frac{1}{2}}$:

$$S_{2} = S_{12} + S_{22}$$
"Kirchhoff's law"

$$|E_{i}\rangle = |n_{i,7}, n_{2,7}, \dots, n_{N}\rangle A_{i,n_{2}} \dots n_{N}$$

$$|n_{N}\rangle \dots |n_{2}\rangle |n_{1}\rangle = (c_{N}^{\dagger})^{n_{N}} \dots (c_{2}^{\dagger})^{n_{1}} (c_{i}^{\dagger})^{n_{1}} (c_{i}^{\dagger})^{$$

6, 62 6N (6e = net(:index))

If we exploit the particle number conservation:

$$\begin{array}{c|c}
A & \longrightarrow N_{tot} = N_1 + N_1 + \cdots + N_N \\
\uparrow \uparrow & --- & \uparrow \\
N_1 & N_2 & N_N
\end{array}$$

Projection onto a specific state:

"dummy" leg with singleton dimension

Rank-1 tensors do not appear in practice

Physical reason: conservation laws

Computational reason: vectors are "thin" matrices

Why some of literature don't specify arrows?

If symmetries (conservation laws) are not used (e.g., our coding materials based on the bare MATLAB), arrow directions are mere bookkeeping.

If a tensor network library exploits symmetries (e.g., QSpace), arrow directions should be incorporated into the data structure.

In any case, it's a good practice to specify arrows for identifying underlying quantum mechanical structure!