HAPSRAV – Kinematic Aircraft 6DOF Model Description

Jack Marriott Ben Thomsen

August 7, 2017

Description

Kinematic Aircraft 6DOF

- Aircraft simulation using ideal response models from the commanded inputs
- Kinematic relationships used to simulated the vehicle's inertial behavior
- Drag polar and sum of forces used to compute wind angles, lift, drag, and thrust
- Solar model computes sun's position
- Battery model for energy storage/consumption
- Propulsion model for power consumption

Modes

- Trajectory Optimization
 - Uses rate of climb for vertical control and bank angle for lateral control
- Waypoint Following
 - Uses altitude for vertical control and course angle for lateral control
- Both modes use equivalent airspeed for longitudinal control
- Both modes take wind vector as input with individual components for North-East-Down directions, $\mathbf{W}^{\mathsf{T}} = [w_n \ w_e \ w_d]$

Commanded Inputs

Trajectory Optimization Mode

Vertical

Altitude Rate

Airspeed

• True airspeed and rate computed using $\sqrt{\rho/\rho_{SL}}$

Lateral Bank Angle

- ϕ_{lim} = 5° at SL up to 10° at 23 km
- $\dot{\phi}_{lim}$ = 1°/sec at SL up to 3°/sec at 23 km

Commanded Inputs

Waypoint Following Mode

Vertical

Altitude

Altitude Rate Limits

- Descent Rate Limit
 - -3.0 deg glideslope
 - Descent rate not to exceed -0.8 m/sec
- Climb Rate Limit
 - Climb rate not to exceed 0.8 m/sec

Airspeed

Lateral

Course

Course Limits

- Course Rate Limit, $\dot{\chi}_{lim}$
 - $\dot{\chi}_{lim} = \frac{g}{V_g} \tan \phi_{lim}$
- Course Error Limit,
 - $\ddot{\chi}_{lim} = \frac{g}{V_g} \dot{\phi}_{lim} \sec^2 \phi_{lim} \frac{g}{V_g^2} \dot{V}_g \tan \phi_{lim}$

Kinematic Models

Flight Path Angles

- Inertial Flight Path, γ_i
 - $\gamma_i = \sin^{-1}(\dot{h}/V_g)$
- Wind Flight Path, γ
 - $\gamma = \sin^{-1}((\dot{h} + w_d)/V_{tas})$

Euler Angles

- Roll, ϕ
 - $\phi = \tan^{-1}(\dot{\chi}V_g/g)$
- Pitch, θ
 - $\theta = \gamma + \alpha$
- Heading, ψ
 - $\psi = \chi \sin^{-1} \left\{ \frac{w_e \cos \chi w_n \sin \chi}{V_{tas} \cos \gamma} \right\}$
- Euler rates computed from band limited differentiator

•
$$\frac{S}{\left(\frac{1}{2\pi f_d}\right)S+1}$$

Ground Speed

• V_g , solve from wind triangle

•
$$V_g^2 = V_{tas}^2 + V_W^2 + 2V_{tas} \begin{bmatrix} \cos \psi \cos \gamma \\ \sin \psi \cos \gamma \\ -\sin \gamma \end{bmatrix}^T \begin{bmatrix} w_n \\ w_e \\ w_d \end{bmatrix}$$

• $\dot{V_a}$ also computed from band limited differentiator

Aerodynamic Models

Lift & Drag

Aerodynamics

- Dynamic Pressure, \bar{q}
 - $\bar{q} = \rho V_{tas}^2/2$
- Unbanked Lift Coefficient, $C_{L,ub}$
 - Sum of forces along lift axis

•
$$C_{L,ub}\overline{q}S - mg\cos\gamma = m\frac{V_{tas}^2}{(r_{earth}+h)}$$

- Lift Coefficient, C_L
 - $C_L = C_{L,ub} / \cos \phi$
- Angle of Attack, α
 - Reverse lookup from $C_{L,ub}$ vs lpha curve

Aerodynamics

- Angle of Attack, α
 - Reverse lookup from $C_{L,ub}$ vs α curve
- Drag Coefficient, C_D
 - Table lookup from C_D vs α curve
- Note
 - α and C_D are only exact in level unaccelerated flight

Forces

- Lift & Drag Forces
 - D = $C_D \overline{q} S$
 - L = $C_L \overline{q} S$
- Centerline Thrust, T
 - Sum of forces along speed axis
 - $T C_D \bar{q}S mg\sin \gamma = m\dot{V}_{tas}$

Flat Earth Model

NED (ENU) Reference Frame

North-East-Down (East-North-Up)

• Origin at aircraft CG, moves with aircraft

- North axis points to true North
- East axis points to East
- Down axis points to the ground

Flat Earth Position

- North Position, p_n
 - $\dot{p}_n = V_{tas} \cos \psi + w_n$
 - $p_n = \int \dot{p}_n + p_{n,init}$
- East Position, p_e
 - $\dot{p}_e = V_{tas} \sin \psi + w_e$
 - $p_e = \int \dot{p}_e + p_{e,init}$

LLA Coordinate System

Reference Ellipsoid

WGS-84

- f flattening
 - f = 1 b/a
- e eccentricity

•
$$e^2 = (a^2 - b^2)/a^2$$

- M Meridian radius of curvature
 - $M = a(1 e^2)/(1 e^2 \sin^2 \phi)^{3/2}$

- N Prime vertical radius of curvature
 - $N = a/(1 e^2 \sin^2 \phi)^{1/2}$

LLA

- Polar coordinate system relative to WGS-84, origin at Earth's center of mass
- Frame rotates with earth, coordinates of a fixed point along the surface do not change
- Longitude, λ
- Latitude, φ
- Height above reference ellipsoid, h
- Convention is to first rotate by λ

Flat Earth to LLA Transformation

- Latitude
 - $\phi = \int (\dot{p}_n / (M+h)) + \phi_{init}$
- Longitude
 - $\lambda = \int (\dot{p}_e / ((N+h)\cos\phi)) + \lambda_{init}$
- Implementation uses the Aerospace Blockset

Moments

Body Rotational Rates

- Roll Rate, p
 - $p = \dot{\phi} \dot{\psi} \sin \theta$
- Pitch Rate, q
 - $q = \dot{\theta} \cos \phi + \dot{\psi} \cos \theta \sin \phi$
- Yaw Rate, r
 - $r = \dot{\psi} \cos \theta \cos \phi \dot{\theta} \sin \phi$

Solar Model

Solar Model

- Adjust solar irradiance for annual variation
 - $G_1 = G_0 \left(1 + 0.034 \cos \frac{2\pi JD}{365.25} \right)$
- Adjust for atmospheric absorption: $G_2 = G_1 \cdot f(h, \theta_s)$
 - Rays travel through more atmosphere when the sun is lower
- Solar angle calculations (azimuth $\phi_{\scriptscriptstyle S}$, zenith $\theta_{\scriptscriptstyle S}$) from NREL
- Solar panel distribution with mean pitch offset approx.
 9° from vehicle body axes

Battery Model

Batteries

- Battery modeled as energy storage device with fixed energy capacity
- Battery has charge and discharge efficiencies $\eta_{B,in}$ and $\eta_{B,out}$
- Max. charge/discharge rates, voltage vs. SOC not considered

Power Storage $\eta_{B,in} = 93\%$ $\eta_{B,out} = 97\%$ $m_{batt} = 200 \, \text{kg}$ $e_{batt} = 320 \, \text{Wh/kg}$ $E_{batt} = 64.0 \, \text{kWh}$

Propulsion Model

Propulsion

- Propulsion system consists of motor controller(s), motors, propellers
- Propulsive power $P_p=TV_{tas}$, and electric power to produce this propulsive power is $P_{el,p}=TV_{tas}/\eta_{motor}\eta_{prop}\eta_{ctrl}$
- Propeller efficiency modeled as $\eta_{prop} = \frac{2\,\eta_{prop,0}}{1+\sqrt{\frac{2T}{A_{disk}V_{tas}^2\rho}+1}}$

Power Consumption

Consumption			
η_{motor}	=	95%	
η_{ctrlr}	=	97%	
$\eta_{prop,0}$	=	90%	
R_{prop}	=	1.5 m	
n_{motors}	=	4	
$P_{el,acc}$	=	360 W	

Sample Simulations

20 m Altitude Step at 8.2 m/sec $w_n = 0$, $w_e = 0$, $w_d = 0.5$ m/sec

1 m/sec EAS Step at 1500 m

$$w_n = -2$$
, $w_e = -2$, $w_d = -0.5$ m/sec

90 deg Course Step $w_n = 0$, $w_e = 2$, $w_d = 0$ m/sec

Interface

Input Signals

Trajectory Optimization Mode (default)

SW Variable	Symbol	Signal	Units
kenny_U.u_vert_cmd	\dot{h}^{cmd}	Commanded vertical rate of climb	m/sec
kenny_U.u_eas_cmd	V _{eas}	Commanded equivalent airspeed	m/sec
kenny_U.u_lat_cmd	ϕ^{cmd}	Commanded bank (roll) angle	rad
kenny_U.u_winds	W	Wind components along North, East, Down directions	m/sec

Input Signals Waypoint Following Mode

Symbol	Signal	Units
h ^{cmd}	Commanded altitude	m
V_{eas}^{cmd}	Commanded equivalent airspeed	m/sec
χ^{cmd}	Commanded course (ground track) angle	rad
W	Wind components along North, East, Down directions	m/sec

Vehicle State

Symbol	Signal	Units
u	Forward axis body velocity	m/sec
V	Right wing axis body velocity Note: always zero	m/sec
W	Down axis body velocity	m/sec
р	Angular rate about forward body axis	rad/sec
q	Angular rate about right wing body axis	rad/sec
r	Angular rate about body down axis	rad/sec
φ	Euler roll angle	rad
θ	Euler pitch angle	rad
ψ	Euler yaw angle	rad

Vehicle State

Symbol	Signal	Units
p_N	Position along North axis	m
p _E	Position along East axis	m
h	Geopotential altitude above sea level	m
V _{eas}	Equivalent airspeed	m/sec
V_{tas}	True airspeed	m/sec
V_{g}	Ground speed	m/sec
V_{v}	Vertical velocity	m/sec
α	Angle of attack	rad
β	Angle of sideslip Note: always zero	rad

Vehicle State

Symbol	Signal	Units
γ	Flight path angle	rad
γ_{i}	Inertial flight path angle	rad
χ	Course	Rad
C_L	Lift coefficient	non-dim
C_D	Drag Coefficient	non-dim
Т	Centerline Thrust	N
\overline{q}	Dynamic pressure	N/m²
M	Mach number	non-dim
φ	Latitude	deg
λ	Longitude	deg

Power State

Symbol	Signal	Units
Az	Sun azimuth angle: deviation from North	deg
El	Sun elevation angle: deviation from horizon	deg
JD	Julian day	non-dim
P_{elec}^{in}	Electric power in: power being stored as electricity	kW
P _{elec}	Electric power out: power being consumed from batteries	kW
P_{batt}	Available battery power	kW
E_{elec}^{in}	Electric energy in: electric energy being stored	kW-hr
E_{elec}^{out}	Electric energy out: electric energy being spent	kW-hr

Power State

Symbol	Signal	Units
E_{batt}	Available battery energy	kW-hr
E_{grav}	Stored gravitational energy: above minimum altitude limit	kW-hr
E_{panel}	Integrated solar flux in aircraft's horizontal plane	kW-hr
A_{proj}	Projected air vehicle area facing sun	m ²
Q	Solar Intensity	W/m²
η	Propeller efficiency: ratio of propulsion being converted into thrust	non-dim
\dot{h}^{max}	Rate of climb at available power: climbing faster than this rate drains the batteries	m/sec

Power State

Name	Description
Night Mode	1 – Sun is below horizon 0 – Sun is above horizon
Climb Mode	 -2 – Recommend descent at idle power -1 – Recommend powered descent 0 – Recommend holding altitude 1 – Recommend climbing
Charge Mode	-1 – Batteries discharging 0 – No power flow 1 – Batteries charging

References

- Anderson, J.D., *Introduction to Flight* Fifth Edition, 2005
 - Chapter 6
 - Etkin, B., Reid L.D., Dynamics of Flight
 - Third Edition, 1996
- Chapter 4
 - Beard, R.W., McLain, T.W., Small Unmanned Aircraft
- First Edition, 2011 Chapters 2, 9
- Stevens, B.L., Lewis, F.L., Aircraft Control and Simulation
- Third Edition, 2016
 - Chapter 1