Nuclear Physics - Summary - Basic definitions

by Dr. Helga Dénes (hdenes@yachaytech.edu.ec)

This summary is based on the book Chapter 1 from Krane, Kenneth: Introductory Nuclear Physics, and the lecture slides NPP_1.1.

1 Basic definitions

Notation for nuclear species: ${}^A_Z X_N$ where A is the atomic mass number, Z is the atomic number (number of protons in the nucleaus), N is the number of neutrons in the nucleus.

Isotopes: chemical elements with the same number of Z (protons), but different number of neutrons (N and A are different). They have similar chemical properties to each other, but different physical properties. Examples: ¹²C, ¹⁴C, ²³⁵U, ²³⁸U.

Isotone: chemical elements with the same number of N (neutrons), but different number of protons (Z and A are different). Examples: ²H, ³He.

Isobar: chemical elements with the same A. They can have different Z nad N. Examples: 3 H, 3 He; 40 S, 40 Cl, 40 Ar.

Isotopologue: molecules that differ in isotopes. Example: ¹²CO, ¹⁸CO.

Atomic mass unit (u or a.m.u.): basic mass unit in nuclear physics. It is defined that so that the ¹²C nucleus is exactly 12 u. This makes protons and neutrons approximately, but not exactly 1u in mass.

2 Particles and Forces:

Antiparticles: All charged particles have anti particles, whether the particle is an elementary particle or a hadron. The neutron has an anti particle, however neither the photon (γ) nor the neutral pion (π^0) has a distinct antiparticle. It is a convention to call the electron the particle and the positron its antiparticle.

Elementary Particles:

- Fermions: particles with half-integer spin.
 - **Leptons**: do not interact trough the strong force. Have spin $\frac{1}{2}$. Examples: $e^-, \mu^-, \tau^-, \nu_e, \nu_\mu, \nu_\tau$
 - Quarks: interact trough the strong force. Have spin $\frac{1}{2}$. Examples: u, d, c, s, t, b
- Bosons: particles with integer spin. Examples: γ , gluons, W^+ , W^- , Z, Higgs boson

Composit Particles:

- Hadrons: bound state of quarks or antiquarks
 - Baryons: bound state of 3 quarks or antiquarks. Example: proton, neutron, antiproton
 - **Mesons:** bound state of an equal number of quarks and antiquarks. The most typical ones have one quark and an antiquark. Examples: π^0 , π^+ , π^-

Basic Forces:

- electromagnetic: acts between charged particles, the force carrier particle is the photon.
- strong: acts between quarks, the force carrier particles are the gluons.
- weak: acts between all fermions. The force carrier particles are: W⁺, W⁻, Z bosons
- gravity (negligible for nuclear and particle physics): acts between all particles with mass