IoT & Mobile Cloud Technology Technology

MCC (Mobile Cloud Computing)

IoT & Mobile Cloud Technology

Trends in Cloud Computing

- User requirements for high data rates and QoS (Quality of Service) are exponentially increasing
- Technological evolutions in smartphones,
 IoT devices, sensors, and actuators enable
 new highly advanced services and apps
- New IoT and mobile devices have more powerful CPUs (Central Processing Units)

IoT & Mobile Cloud Technology

Issues in Cloud Computing

- However, CPUs are not sufficient to process all data and provide results in time
- Optimal decisions based on comprehensive
 SA (Situational Awareness) are needed
- Not all data is available at a node
- Collected data size is too big to compute at one node
- Limited battery energy restricts fast & large amounts of computing

IoT & Mobile Cloud Technology

❖ MCC (Mobile Cloud Computing)

- MCC (Mobile Cloud Computing) allows cloud computing to mobile and IoT users
- UE (User Equipment) and IoT systems can use power computing and storage resources of a distant CC (Centralized Cloud) through a CN (Core Network) of a mobile operator and the Internet

IoT & Mobile Cloud Technology

❖ MCC over LTE Networks

IoT & Mobile Cloud Technology

- ❖ MCC (Mobile Cloud Computing)
- MCC Major Advantages
 - 1. Extends battery lifetime by Offloading energy consuming computations to the cloud
 - 2. Enables faster sophisticated application support (i.e., IaaS, PaaS, SaaS) to mobile users and IoT systems
 - 3. Provides massive data storage to mobile users and IoT systems

Cloud Technology Edge Computing

IoT & Mobile Cloud Technology

- Comparing MCC & Edge Computing
 - Conventional MCC
 - Cloud services to the mobile device are accessed via the Internet connection
 - Conventional MCC Characteristics
 - Long delay time & QoS performance
 - High usage of the network resources
 - High battery usage of IoT & Smart Devices
 - Significant packet interarrival time jitter
 - Large DBV (Delay Bound Violation) for real-time multimedia services

IoT & Mobile Cloud Technology

Comparing MCC & Edge Computing

- Edge Computing
 - Computing & storage resources are moved closer to the edge (i.e., near the BS (Base Station) or AP (Access Point)) of the network closer to the UE
 - Edge Computing Characteristics
 - Very short delay time with high QoS support
 - Low usage of the network resources
 - Low battery usage of IoT & Smart Devices
 - More Complex: Prediction and pre-fetching of contents and control functions needed

IoT & Mobile Cloud Technology

Comparing MCC & Edge Computing

Technical Aspect	MCC	Edge Computing
Deployment	Centralized	Distributed
Distance to the UE	Far	Close
Latency	Long	Short
Jitter	High	Low
Computational Power	Abundant	Limited
Storage Capacity	Abundant	Limited

