Lecture 1.4

Phylogenetic Methods

Simon Ho

Popular phylogenetic methods

- 1. Maximum parsimony
- 2. Distance-based methods
- Maximum likelihood

Model-based methods

4. Bayesian inference

Maximum parsimony brown bear CGTTAGTACACT brown bear **CGATAGTTCACT** cave bear black bear CGTTAGTTTACC cave bear black bear giant panda **CATTGGTTTACT** giant panda 7 steps cave bear brown bear black bear cave bear brown bear black bear giant panda giant panda 7 steps 6 steps

Distance-Based Methods

Neighbour joining

Neighbour joining

Neighbour joining

Distance-based methods

- · Clustering algorithms
 - Unweighted Pair Group Method with Arithmetic Mean (UPGMA)
 - · Neighbour joining
- · Tree searching using optimality criteria
 - Minimum evolution
 - Least-squares inference

Strengths and weaknesses

Strengths

- Very quick method
- Deals with multiple substitutions and long-branch attraction

Weaknesses

- Does not use all information in alignment
- Loss of information in pairwise comparisons
- Unable to implement sophisticated evolutionary models

Maximum Likelihood

Maximum likelihood

Likelihood of hypothesis *H* =

Probability of the data, given the hypothesis

Maximum likelihood

Likelihood optimisation

- Search through the space of possible trees and parameter values
- · Calculate the likelihood for these
- Find best tree and model parameter values
- Multivariate optimisation

Strengths and weaknesses

Strengths

- · Rigorous statistical method
- Deals with multiple substitutions and long-branch attraction
- · Highly robust to violations of assumptions

Weaknesses

- Not feasible to implement very parameter-rich models
- · Searching tree space can be difficult

29

RAxML

- Randomized Axelerated Maximum Likelihood
- · Compile to suit your processor architecture
- Can run sequentially or in parallel
- Rapid bootstrapping (Stamatakis et al. 2008)

Software

PAUI

Garli

MEGA

Mesquite

Jaii

ExaML

- Exascale Maximum Likelihood
- Phylogenetic inference on supercomputers
- New MPI parallelisation approach
- Koslov, Aberer, & Stamatakis (2015) Bioinformatics

Bootstrapping

Nonparametric bootstrap

- Uncertainty in the estimate of the tree is inferred indirectly using bootstrapping analysis
- "pull oneself up by one's bootstraps"

- Bootstrapping analysis can be used in various phylogenetic methods:
 - Maximum parsimony
 - Distance-based methods
 - · Maximum likelihood

34

Bootstrapping

35

Bootstrapping

Bootstrapping

ML tree

37

Useful references

Phylogeny estimation and hypothesis testing using maximum likelihood

Huelsenbeck & Crandall (1997) Annu Rev Ecol Syst, 28: 437-466.

Interpreting bootstrap values

• Felsenstein (1985)

bootstrapping provides a confidence interval that contains the phylogeny that would be estimated from repeated sampling of many characters from the underlying set of all characters

- Bootstrap values are measures of repeatability
 - · High when the data set is large
 - · Not meaningful when analysing genome-scale data

Soltis & Soltis (2003) Stat Sci

38

Phylogenetic methods

	Algorithm- based	Optimality criterion	Other
No explicit substitution model	Distance-based methods	Maximum parsimony	
$ \begin{array}{ccc} A \longleftrightarrow G \\ \uparrow & \downarrow & \uparrow \\ C \longleftrightarrow T \end{array} $	Distance-based methods	Maximum likelihood	Bayesian inference

39