Pandas

Data Manipulation in Python

Pandas

- ▶ Built on NumPy
- ▶ Adds data structures and data manipulation tools
- ► Enables easier data cleaning and analysis

import pandas as pd

Pandas Fundamentals

Three fundamental Pandas data structures:

- Series a one-dimensional array of values indexed by a pd.Index
- Index an array-like object used to access elements of a Series or DataFrame
- DataFrame a two-dimensional array with flexible row indices and column names

Series from List

```
In [4]: data = pd.Series(['a','b','c','d'])
In [5]: data
Out[5]:
0     a
1     b
2     c
3     d
dtype: object
```

The 0..3 in the left column are the pd.Index for data:

```
In [7]: data.index
Out[7]: RangeIndex(start=0, stop=4, step=1)
```

The elements from the Python list we passed to the pd.Series constructor make up the values:

```
In [8]: data.values
Out[8]: array(['a', 'b', 'c', 'd'], dtype=object)
```

Notice that the values are stored in a Numpy array.

Series from Sequence

You can construct a list from any definite sequence:

```
In [24]: pd.Series(np.loadtxt('exam1grades.txt'))
Out[24]:
0 72.0
1 72.0
2 50.0
...
134 87.0
dtype: float64
```

or

```
In [25]: pd.Series(open('exam1grades.txt').readlines())
Out[25]:
0     72\n
1     72\n
2     50\n
...
134    87\n
dtype: object
```

... but not an indefinite sequence:

```
In [26]: pd.Series(open('exam1grades.txt'))
...
TypeError: object of type '_io.TextIOWrapper' has no len()
```

Series from Dictionary

```
salary = {"Data Scientist": 110000,
    "DevOps Engineer": 110000,
    "Data Engineer": 106000,
    "Analytics Manager": 112000,
    "Database Administrator": 93000,
    "Software Architect": 125000,
    "Software Engineer": 101000,
    "Supply Chain Manager": 100000}
```

Create a pd.Series from a dict: 1

```
In [14]: salary_data = pd.Series(salary)
In [15]: salary_data
Out[15]:
Analytics Manager
                       112000
Data Engineer
                       106000
Data Scientist
                       110000
Database Administrator 93000
DevOps Engineer
                       110000
Software Architect 125000
Software Engineer
                       101000
Supply Chain Manager 100000
dtype: int64
```

The index is a sorted sequence of the keys of the dictionary passed to pd.Series

¹ https://www.glassdoor.com/List/Best-Jobs-in-America LST_KQ0,20.htm

Series with Custom Index

General form of Series constructor is pd.Series(data, index=index)

- ► Default is integer sequence for sequence data and sorted keys of dictionaries
- ► Can provide a custom index:

```
In [29]: pd.Series([1,2,3], index=['a', 'b', 'c'])
Out[29]:
a    1
b    2
c    3
dtype: int64
```

The index object itself is an immutable array with set operations.

```
In [30]: i1 = pd.Index([1,2,3,4])
In [31]: i2 = pd.Index([3,4,5,6])
In [32]: i1[1:3]
Out[32]: Int64Index([2, 3], dtype='int64')
In [33]: i1 & i2 # intersection
Out[33]: Int64Index([3, 4], dtype='int64')
In [34]: i1 | i2 # union
Out[34]: Int64Index([1, 2, 3, 4, 5, 6], dtype='int64')
In [35]: i1 ^ i2 # symmetric difference
Out[35]: Int64Index([1, 2, 5, 6], dtype='int64')
```

Series Indexing and Slicing

Indexing feels like dictionary access due to flexible index objects:

```
In [37]: data = pd.Series(['a', 'b', 'c', 'd'])
In [38]: data[0]
Out[38]: 'a'
In [39]: salary_data['Software Engineer']
Out[39]: 101000
```

But you can also slice using these flexible indices:

```
In [40]: salary_data['Data Scientist':'Software Engineer']
Out[40]:
Data Scientist 110000
Database Administrator 93000
DevOps Engineer 110000
Software Architect 125000
Software Engineer 101000
dtype: int64
```

DataFrame

The simplest way to create a DataFrame is with a dictionary of dictionaries:

```
In [42]: jobs = pd.DataFrame({'salary': salary_data, 'openings': openings})
In [43]: iobs
Out[43]:
                    openings salary
Analytics Manager
                       1958 112000
Data Engineer
                     2599 106000
Data Scientist
                   4184 110000
Database Administrator 2877 93000
                2725 110000
DevOps Engineer
Software Architect 2232 125000
Software Engineer 17085 101000
Supply Chain Manager 1270 100000
UX Designer
                      1691 92500
In [46]: jobs.index
Out[46]:
Index(['Analytics Manager', 'Data Engineer', 'Data Scientist',
      'Database Administrator', 'DevOps Engineer', 'Software Architect',
      'Software Engineer', 'Supply Chain Manager', 'UX Designer'],
     dtype='object')
In [47]: jobs.columns
Out[47]: Index(['openings', 'salary'], dtvpe='object')
```

Simple DataFrame Indexing

Simplest indexing of DataFrame is by column name.

```
In [48]: jobs['salary']
Out[48]:
Analytics Manager
                       112000
Data Engineer
                       106000
Data Scientist
                       110000
Database Administrator 93000
DevOps Engineer
                       110000
Software Architect
                   125000
Software Engineer
                       101000
Supply Chain Manager 100000
UX Designer
                        92500
Name: salary, dtype: int64
```

Each colum is a Series:

```
In [49]: type(jobs['salary'])
Out[49]: pandas.core.series
```

General Row Indexing

The loc indexer indexes by row name:

Note that slice ending is inclusive when indexing by name.

The iloc indexer indexes rows by position:

Note that slice ending is exclusive when indexing by integer position.

Special Case Row Indexing

```
In [16]: jobs[:2]
Out[16]:
                openings salary
Analytics Manager 1958 112000
Data Engineer
                   2599 106000
In [17]: jobs[jobs['salary'] > 100000]
Out[17]:
                 openings salary
Analytics Manager
                    1958 112000
Data Engineer
                    2599 106000
Data Scientist
                    4184 110000
DevOps Engineer 2725 110000
Software Architect 2232 125000
Software Engineer 17085 101000
```

These are shortcuts for loc and iloc indexing:

```
In [20]: jobs.iloc[:2]
Out[20]:
               openings salary
Analytics Manager 1958 112000
Data Engineer
                   2599 106000
In [21]: jobs.loc[jobs['salary'] > 100000]
Out[21]:
                openings salary
Analytics Manager
                    1958 112000
Data Engineer
                    2599 106000
                                                   イロト イ部ト イミト イミト
Data Scientist
                   4184 110000
DevOps Engineer
                    2725 110000
```

Adding Columns

Add column by broadcasting a single value:

```
In [23]: jobs
Out [23]:
                      openings salary 2316 Prepares
Analytics Manager
                          1958 112000
                                              True
Data Engineer
                         2599 106000
                                              True
Data Scientist
                         4184 110000
                                              True
Database Administrator
                         2877
                                93000
                                              True
DevOps Engineer
                         2725 110000
                                              True
Software Architect
                         2232 125000
                                              True
Software Engineer
                         17085 101000
                                              True
Supply Chain Manager
                         1270 100000
                                              True
```

Add column by computing value based on row's data:

```
In [24]: jobs['6 Figures'] = jobs['salary'] > 100000
In [25]: iobs
Out[25]:
                      openings salary 2316 Prepares 6 Figures
Analytics Manager
                         1958 112000
                                             True
                                                       True
Data Engineer
                         2599 106000
                                             True
                                                      True
Data Scientist
                         4184 110000
                                             True
                                                      True
Database Administrator
                         2877
                               93000
                                             True
                                                      False
DevOps Engineer
                         2725 110000
                                             True
                                                      True
Software Architect
                         2232 125000
                                             True
                                                      True
Software Engineer
                        17085 101000
                                             True
                                                      True
Supply Chain Manager
                        1270 100000
                                             True
                                                      False
```

Messy CSV Files

Remember the Tides Exercise? Pandas's read_csv can handle most of the data pre-processing:

Let's use the indexing and data selection techniques we've learned to re-do the Tides Exercise as a Jupyter Notebook. For convenience, wpb-tides-2017.txt is in the code/analytics directory, or you can download it.