

Course Specialist Year 12 Test Four 2022

Student name:	Teacher name:	
Task type:	Response	
Time allowed for this task:40 mins		
Number of questions:	6	
Materials required:	Upto 3 Calculators with CAS capability (to be provided by the student)	
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters	
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations	
Marks available:	40 marks	
Task weighting:	_10%	
Formula sheet provided: Yes		
Note: All part questions worth more than 2 marks require working to obtain full marks.		

Q1 (5 marks)

Determine the volume of the solid formed by rotating the area enclosed between

Determine the volume of the solid formed by rotating the are
$$y = \sqrt{x-3} \& y = \frac{1}{2}x - \frac{3}{2}$$
 about the y axis, as shown below.

Specific behaviours

- ✓ uses correct integral type
- ✓ determines x as the subject for each graph
- ✓ sets up integrals for both functions with limits
- ✓ uses subtraction after squaring
- ✓ states approx. volume of solid

Q2 (5, 3 & 2= 10 marks)

a) By using integration and partial fractions, show how to derive $N = \frac{a}{b + Ce^{-at}}$ from the differential equation $\frac{dN}{dt} = aN - bN^2$ (a, b > 0) and c is a constant

Solution
$$\frac{dN}{dt} = aN - bN^{2} = N(a - bN)$$

$$\frac{dN}{dt} \rightarrow 0, a - bN = 0 \therefore N < \frac{a}{b} \rightarrow a - bN > 0$$

$$\int \frac{dN}{N(a - bN)} = \int dt$$

$$\frac{1}{N(a - bN)} = \frac{c}{N} + \frac{d}{a - bN}$$

$$1 = c(a - bN) + dN$$

$$N = 0$$

$$1 = ca, c = \frac{1}{a}$$

$$N = \frac{a}{b}$$

$$1 = d\frac{a}{b}, d = \frac{b}{a}$$

$$\frac{1}{N} + \frac{b}{a - bN} dn = t + c$$

$$\frac{1}{a} \ln |N| - \frac{1}{a} \ln |a - bN| = t + c$$

$$As a - bN > 0$$

$$\ln N - \ln(a - bN) = at + c$$

$$\ln \frac{N}{a - bN} = at + c$$

$$\frac{N}{a - bN} = e^{at + c} = Ce^{at}, \frac{a - bN}{N} = Ce^{-at}$$

$$a = N(b + Ce^{-at}), N = \frac{a}{b + Ce^{-at}}$$

Specific behaviours

- ✓ explains limit of N and sign of a-bN
- ✓ separates dN & dt and integrates
- ✓ uses partial fractions
- \checkmark uses logs and obtains expression of N in terms of t
- ✓ shows derivation of final rule

Q2 continued

b) Let $\frac{N}{dt}$ equal the number of kangaroos living in a habitat after t years and $\frac{dN}{dt} = \frac{1}{5}N - \frac{1}{12500}N^2$.If initially there are t0 kangaroos, determine the number in 10 years time.

c) Determine the size of the population at the maximum growth rate.

Q3 (3, 2 & 3 = 8 marks)

$$\frac{dy}{}=3^{3}$$

a) Sketch the slope field on the axes below for dx

Specific behaviours

- ✓ left side near zero gradients
- ✓ 45 degrees on y axis i.e 1
- ✓ right side approaches vertical lines, i.e infinite
- b) Show the solution curve on the axes above that passes through point (2,2).

c) Determine in cartesian form the solution curve for b above without using a classpad.

Hint – use logarithmic differentiation. Show all working.

Solution

$$y = 3^{x}$$

$$\ln y = \ln 3^{x} = x \ln 3$$

$$\frac{1}{y}y' = \ln 3$$

$$y' = y \ln 3 = 3^{x} \ln 3$$

$$\int 3^{x} dx = \frac{1}{\ln 3} 3^{x} + c$$

$$\frac{dy}{dx} = 3^{x}$$

$$y = \frac{1}{\ln 3} 3^{x} + c$$

$$2 = \frac{9}{\ln 3} + c$$

$$c = 2 - \frac{9}{\ln 3}$$

$$y = \frac{1}{\ln 3} 3^{x} + 2 - \frac{9}{\ln 3}$$

Specific behaviours

- ✓ uses log diff to diff exponential
- ✓ uses integration
- ✓ solves for exact constant

Note max 1 out of 3 if log diff not shown

Q4 (5 marks)

Determine expressions in terms of x & y only for $\frac{dy}{dx} \& \frac{d^2y}{dx^2}$ in terms of x, y & y' using the following equation $x^3y^2 = 5 - xy$

Solution

$$x^{3}y^{2} = 5 - xy$$

$$x^{3}(2yy') + y^{2}3x^{2} = -xy' - y$$

$$y'(2x^{3}y + x) = -y(1 + 3x^{2}y)$$

$$y' = \frac{-y(1 + 3x^{2}y)}{(2x^{3}y + x)}$$

$$y'(2x^{3}y' + 6x^{2}y + 1) + (2x^{3}y + x)y'' = -y(3x^{2}y' + 6xy) - y'(1 + 3x^{2}y)$$

$$y'' = \frac{-y(3x^{2}y' + 6xy) - y'(1 + 3x^{2}y) - y'(2x^{3}y' + 6x^{2}y + 1)}{(2x^{3}y + x)}$$

Specific behaviours

- ✓ uses product rule on both sides for first derivative
- \checkmark uses implicit diff in terms of x
- ✓ uses product/quotient rule for second drivative
- ✓ obtains an expression with second derivative
- \checkmark makes second derivative subject in terms of x,y and first derivative

Q5 (3 & 3 = 6 marks)

Consider a particle that is moving with SHM such that $\ddot{x} = -9x$ with a maximum speed of 12 m/s.

a) Determine the exact speed when the particle is half of an amplitude from the origin.

```
Solution
\ddot{x} = -9x
n = 3
12 = nA = 3A
A = 4
v^2 = n^2 (A^2 - x^2) = 9(16 - 4)
v = \sqrt{108}
Specific behaviours
\checkmark \text{ determines n & A}
\checkmark \text{ uses correct formula}
\checkmark \text{ states exact speed}
```

b) Determine the percentage of the time that the particle is more than half an amplitude from the centre.

- ✓ determines a model for displacement and period
- ✓ solves for times at half an amplitude in one cycle/(half cycle)
- ✓ determines percentage of time

Q6 (4 & 2 = 6 marks)

The motion of a bullet through a wall is modelled by the equation $a = -25(v + 75)^2$, v > 0 where $a m/s^2$ is its acceleration and v m/s its velocity t seconds after impact. Initially the speed is 300 and is at the origin (x = 0 metres)

a) Determine χ in terms of V.

Solution

$$v \frac{dv}{dx} = -25(v+75)^{2}, \quad v > 0$$

$$\int \frac{v}{(v+75)^{2}} dv = \int -25 dx$$

$$let \ y = v + 75$$

$$\int \frac{y-75}{y^{2}} dy = \int y^{-1} - 75 y^{-2} dy = \ln|y| + 75 y^{-1} = \ln|v+75| + \frac{75}{v+75} = -25 x + c$$

$$x = 0, v = 300$$

$$\ln 375 + \frac{75}{375} = c$$

$$x = \frac{1}{-25} \left(\ln|v+75| + \frac{75}{v+75} - \ln 375 - \frac{75}{375} \right)$$

- Specific behaviours

 ✓ uses dv & dx and separates variables v & x
- ✓ Integrates both sides
- ✓ changes variable to integrate dv
- ✓ solves for exact constant

O6 continued-

b) Determine how far the bullet penetrates the wall before coming to rest to the nearest mm.

Solution $x = \frac{1}{-25} \left(\ln|75| + 1 - \ln 375 - \frac{75}{375} \right)$ $\approx 0.0324m$ $\approx 32mm$

Specific behaviours		
✓ subs v=0	•	
✓ rounds to nearest mm		
✓ rounds to nearest mm		