Optimization for Engineers

2. Lab Exercise

28.05.2018 Summer Term 2018 Dr. Johannes Hild Department Mathematik Friedrich-Alexander-Universität Erlangen-Nürnberg

Assignment 1: Conjugate Gradient Algorithm - 5 Credits

Complete the conjugate gradient algorithm in the template conjugateGradient.m, for solving $Ax_s = b$

- a) Input: $A \in \mathbb{R}^{n \times n}$; $b, x_0 \in \mathbb{R}^n$; $\varepsilon > 0$.
- b) Set $x_k \leftarrow x_0$, $r_k \leftarrow Ax_k b$ and $d_k \leftarrow -r_k$.
- c) While $||r_k|| > \varepsilon$ do
 - i) Set $\rho_k \leftarrow d_k^{\mathsf{T}} A d_k$.
 - ii) Set $t_k \leftarrow -\frac{r_k^\top d_k}{\rho_k}$.
 - iii) Set $x_k \leftarrow x_k + t_k d_k$.
 - iv) Set $r_k \leftarrow r_k + t_k A d_k$.
 - v) Set $\beta_k \leftarrow \frac{r_k^\top A d_k}{\rho_k}$
 - vi) Set $d_k \leftarrow -r_k + \beta_k d_k$.
- d) Return $x_s \leftarrow x_k$.

Hint: Use **norm(x)** for ||x||.

Test the algorithm with the command **sheet02Script(1)**;

Assignment 2: Newton's Method - 5 Credits

Complete Newton's method in the template newtonsMethod.m, for minimizing $f: \mathbb{R}^n \to \mathbb{R}$ with Hessian evaluation:

- a) Input: $f \in \mathcal{C}^2$; $x_0 \in \mathbb{R}^n$; $\varepsilon > 0$.
- b) Set $x_k \leftarrow x_0$.
- c) While $||\nabla f(x_k)|| > \varepsilon$ do:
 - i) Solve $\nabla^2 f(x_k) d_k = -\nabla f(x_k)$ for d_k using **conjugateGradient.m**.
 - ii) If d_k is a descent direction compute t_k by calling backtrackingLineSearch.m for f at x_k along d_k .
 - iii) Else throw a warning, set d_k to steepest descent and use **bisectionLineSearch.m** for t_k .
 - iv) Set $x_k \leftarrow x_k + t_k d_k$.
- d) Return $x_s \leftarrow x_k$.

Hints:

- a) Use **getHessian(f_handle,x_k)** to get the Hessian matrix at x_k.
- b) For the conjugate Gradient call only provide A and b.
- c) Throw a warning with warning('yourPersonalWarningMessage');
- d) Test the algorithm with the command **sheet02Script(2)**;

Evaluation and Upload

Hand in the following files (unzipped) to StudOn using the Exercises object again:

- a) conjugateGradient.m
- b) newtonsMethod.m