Nikolas Mavrogeneiadis - 161014 gravitorious University Of West Attica Department of Informatics and Computer Engineering Professor: Panagiotis Rouvelas June 7, 2022

Graph Theory-Exercise Set 3

1. (From Set 2 exercise 4)Let G be a simple graph. Prove that if L(G) is Eulerian, then we can't conclude that G is Eulerian.

<u>Proof:</u> If L(G) is Eulerian this means that each vertex degree of L(G) is even number. This vertex will become an edge e(v, u) on G with deg(v) + deg(u) = even. In this case, we can't deduce whether deg(v) and deg(u) are even or not. The line graph of K_4 (on the right in the following picture) is Eulerian but the K_4 is not Eulerian itself (all vertices have odd degree as we can see on the left). This completes the proof.

Figure 1: K_4 and its Line graph

2. (Ασκηση 5 από το σετ 2) Δείξτε ότι αν ένας γράφος με τουλάχιστον 3 κορυφές που έχει απομονωμένη ή εκκρεμή κορυφή, τότε έχει μη πλήρη κλειστότητα.

Εστω μια κορυφή v_k με $d(v_k) \leqslant 1$. Εστω v_i ο προς εξέταση κόμβος για το αν θα υπάρξει ακμή $e(v_k,v_i)$ στην κλειστότητα του γράφου. Προφανώς ο v_k δεν είναι γείτονας με τον v_i στον αρχικό γράφο. Για να υπάρξει ακμή θα πρέπει $d(v_i)+d(v_k)\geqslant n$, δηλαδή $d(v_i)\geqslant n-1$. Αυτό όμως είναι αδύνατον γιατί αν ίσχυε ότι $d(v_i)=n-1$ τότε οι δύο κόμβοι θα ήταν γειτονικοί στον αρχικό κόμβο, πράγμα άτοπο. Επομένως αυτοί οι δύο κόμβοι δεν θα γίνουν γειτονικοί στην κλειστότητα και άρα η κλειστότητα δεν είναι πλήρης.

3. (Ασκηση 8 από το σετ 2) Δ είξτε ότι αν ένας διμερής γράφος είναι περιττής τάξης, τότε δεν είναι Ηαμιλτονιαν.

Εστω ο διμερής γράφος K(n,m) για τον οποίο ισχύει ότι n+m=odd. Χωρίς βλάβη της γενικότητας υποθέτουμε ότι n>m. Θέτουμε $S_1=\{v_{11},v_{12},...,v_{1n}\}$ το σύνολο με τις n κορυφές και $S_2=\{v_{21},v_{22},...,v_{2m}\}$ το σύνολο με τις m κορυφές του K. Αν υπάρχει Hamiltonian κύκλος, τότε αυτό θα πρέπει να περιέχει όλους τους κόμβους του S_1 . Εστω ο v_{1k} και ο v_{1p} ο πρώτος και ο τελευταίος κόμβος που επισκεπτόματε από το S_1 με την προυπόθεση ότι έχουμε επισκεφθεί όλους τους κόμβους του. Το μονοπάτι αυτό είναι της μορφής $H=\{v_{1k},...,v_{1p}\}$. Ομως για κάθε ζευγάρι κόμβων $(v_{1i},v_{1(i+1)})$ του S_1 πρέπει αναγκαστικά να επισκεφθούμε έναν κόμβο του S_2 . Αυτό σημαίνει ότι το H περιλαμβάνει και όλους τους κόμβους του S_2 (αφού n>m). Για να είναι το H Hamiltonian κύκλος θα πρέπει ο v_{1p} να συνδέεται με τον v_{1k} κάτι το οποίο είναι αδύνατον αφού ο v_{1p} συνδέεται μόνο με κόμβους του S_2 που ήδη τους έχουμε επισκεφτεί. Επομένως ο γράφος δεν είναι Hamiltonian.