# TÉCNICAS DE PROGRAMAÇÃO AVANÇADA

Série 6 – Programação Dinâmica

# Introdução

- Programação Dinâmica Também conhecida como recursão tabular
  - Método de resolver problemas combinando as soluções dos sub-problemas que formam o problema.
  - útil quando os sub-problemas compartilham subproblemas.
    - Nestes casos algoritmos baseados no paradigma dividir para conquistar trabalham muito mais pois resolvem um mesmo sub-problema várias vezes.

# Introdução

- Na solução baseada em programação dinâmica
  - o resultado dos sub-problemas são gravados em uma tabela
  - Esses resultados podem ser consultados evitando o recálculo toda vez que a solução de um sub-problema é necessária.
  - PD é muito utilizada na solução de problemas de otimização
    - Nesses problemas podem haver várias soluções com diversos valores e desejamos encontrar a solução com o valor ótimo.

# Soluções usando PD

- Um algoritmo usando PD é obtido pelos seguintes passos:
  - Caracterização da solução ótima
  - Obtenção da solução ótima recursiva
  - Calcular o valor de uma solução ótima em um processo botton-up.
  - Construir a solução ótima a partir das informações calculadas.

# Ex: Problema da linha de montagem flexível

- □ Situação:
  - Duas linhas de montagem
  - Cada linha com 6 estações
  - Cada estação com tempo aii
  - Tempo de mudar de uma estação para outra na mesma linha é desprezível
  - Tempo para mudar de uma estação para outra em linhas diferentes é tij
- Problema: Determinar que estações escolher para minimizar o tempo total de um único automóvel na fábrica

## Ex: Problema da linha de montagem

- Nota-se que o espaço de solução tem tamanho 2<sup>n</sup>
  - Logo, um algoritmo de força bruta teria complexidade de tempo igual a Ω(2<sup>n</sup>)



Algoritmo Força Bruta gasta  $\Omega(2^n)$ 

#### Caracterizando a estrutura da solução

- Seja fi[j] o tempo mais rápido possível para se chegar desde o ponto de partida até a estação sij
- O objetivo é descobrir o tempo mais rápido para fazer todo o percurso da fábrica (f\*)
  - $f^* = min (f1[n] + x1, f2[n]+x2)$
  - □ F1[1]= e1 + a1,1, e1 é o tempo de entrada em L1, a11 é o tempo de s11
  - □ F2[1]=e2 + a2,1, e2 é o tempo de entrada em L2, a2,1, o tempo de s2,1

# Solução recursiva

□ Temos então que

□ Desse modo

```
\Box f1[j] = min(f1[j-1] + a1,j, f2[j-1] + t2,j-1 + a1,j)
```

Para 
$$j = 2..n$$

E

# Solução recursiva

Combinando as equações temos

```
□ f1[j] =
```

- el+all, para j = 1
- $\blacksquare$  min(f1[j-1] + a1,j, f2[j-1] + t2,j-1 + a1,j), para j = 2..n
- □ f2[i] =
  - e2+a21, para j=1
  - $\blacksquare$  min(f2[j-1] + a2,j, f1[j-1] + t1,j-1 + a2,j), para j = 2..n

#### Resultado

#### Resultados para a instância do problema (T. Commer pg. 261)

|        | 1  | 2  | 3  | 4  | 5  | 6  |
|--------|----|----|----|----|----|----|
| F1[j]  | 9  | 18 | 20 | 24 | 32 | 35 |
| f[2[j] | 12 | 16 | 22 | 25 | 30 | 37 |

$$f^* = 38$$

|       | 2 | 3 | 4 | 5 | 6 |
|-------|---|---|---|---|---|
| L1[j] | 1 | 2 | 1 | 1 | 2 |
| L2[j] | 1 | 2 | 1 | 2 | 2 |

$$|* = 1$$

#### Algoritmo em Programação Dinâmica

- Calcula-se os fi[j] valores em uma ordem diferente da recursiva:
  - □ Para j<=1 fi[j] depende apenas dos valores de f1[j-1] e f2[j-1]
  - Então calculando-se os fi[j] na ordem crescente de j, da esquerda para a direita teremos um algoritmo  $\Theta(n)$ .

#### Algoritmo em Programação Dinâmica

```
Alg. CaminhoMaisRapido(a,t,e,c,n)

f1[1]← e1+a1,1

f2[1]← e2+a2,1

Para j← 2 até n faça

se (f1[j-1] + a1,j <= f2[j-1] + t2, j-1 + a1,j)
então

f1[j]← f1[j-1] + a1,j

l1[j] = 1

senão

f1[j] ← f2[j-1] + t2, j-1 + a1,j

l1[j] ← 2

Fim se /*fazer condicional identica para determinar f2[j]*/

Fim para
```

# Apresentando a solução ótima

□ Para apresentar a solução:

```
imprimeEstacoes(I,n)
  i=I*
  Imprime ("Linha: " i, "estação", n);
  Para j ← n até 2 faça
      i=Ii[j] Imprime ("Linha: " i, "estação", j-1);
Fim
```

- □ Problema base: Dado um sequência de n Matrizes ( A1, ..., An), com dimensão pi-1 x pi, ( $1 \le i \le n$ ) obter o resultado da multiplicação das mesmas.
- Problema de otimização: Encontrar a ordem de multiplicação que minimize o número de multiplicações escalares.
  - Dado que, para multiplicar uma matriz de dimensões p x q, com uma matriz de dimensões q x r, pqr operações serão necessárias.

- Exemplo: para as seguintes matrizes:
  - 1. M1<sub>3x2</sub>
  - 2.  $M2_{2x4}$
  - 3.  $M3_{4x1}$ 
    - Temos que a multiplicação de (M1xM2), produzirá (3x2x4) = 24 operações escalares e resultará em uma matriz R de dimensão 3x4.
    - Assim, a multiplicação da matriz R<sub>3x4</sub> x M3<sub>4x1</sub> produzirá
       12 operações escalares
    - Logo, a multiplicação considerando a ordem (M1xM2) x
       M3 irá realizar 24 +12 = 36 operações escalares.
  - Pergunta? Existe uma ordem de multiplicação para esta sequência que produza menos operações escalares?

#### Exemplo:

- $\blacksquare$  M= M1<sub>10x20</sub> x M2<sub>20x50</sub> x M3<sub>50x1</sub> x M4<sub>1x100</sub>
- Qual o número de multiplicações escalares para
  - M1xM2xM3xM4?
  - 2. (M1xM2)x(M3xM4)?
  - 3. M1x(M2xM3xM4)?
  - 4. (M1xM2xM3)xM4?
  - 5. M1x(M2xM3)xM4?

- Tentar todas as possibilidades até encontrar a melhor ordem tem complexidade exponencial
  - $\blacksquare$  F(n) = O(2<sup>n-2</sup>), onde n é o número de matrizes.
- Já o algoritmo de programação dinâmica possui complexidade cúbica.
  - $\Box$  F(n) = O(n<sup>3</sup>)

#### Modelo do Problema

- □ Seja A<sub>i...i</sub>, i<=j, o resultado da multiplicação da sequência de matrizes a ser obtida.</p>
- □ Qualquer colocação ótima de parênteses para i<j divide o produto entre A<sub>k</sub> e A<sub>k+1</sub>, i<=k<j.</p>
- $\square$  Ou seja, para algum valor de k, computar primeiro  $A_{i..k}$  e depois  $A_{k+1..i}$  e depois multiplica estes dois resultados
- Exemplo: para  $A_{1..4}$  e k=2 teremos a ordem (A1xA2) x (A3xA4).
  - Se X<sub>i..k</sub> é total de multiplicações de A1..k e X<sub>k+1..j</sub> é o total de multiplicações de A<sub>k+1..j</sub>, então o número de multiplicações total é

$$X_{i..k} + X_{k+1..j} + d_{i-1}xd_kxd_j$$

### Modelo do problema

- Seja m<sub>ij</sub> o menor custo para computar o produto
- □  $M_i \times M_{i+1} \times .... M_j$ , para  $1 \le i \le j \le n$
- Nesse caso:
  - $\square$   $M_{ij} = 0$  se i=j
  - $\square M_{ij} = Min_{i \le k < j} (m_{ik} + m_{k+1,j} + d_{i-1}xd_kxd_j) \text{ se } j > i$

## Modelo do problema

- O termo m<sub>ik</sub> representa o custo mínimo para calcular:
- $\square$   $M' = M_i \times M_{i+1} \times .... \times M_k$
- O termo m<sub>k+1</sub>, j representa o custo mínimo para calcular:
- $\square$   $M''=M_{k+1} \times M_{k+2} \times .... \times M_i$
- O termo d<sub>i-1</sub>d<sub>k</sub>d<sub>j</sub> representa o custo de multiplicar
   M'[d<sub>i-1</sub>,d<sub>k</sub>] por M''[d<sub>k</sub>,d<sub>j</sub>]

# Modelo do problema

| m11=0 | m22=0 | m33=0 | m44=0 |
|-------|-------|-------|-------|
| m12=? | m23=? | m34=? |       |
| m13=? | m24=? |       |       |
| m14=? |       |       |       |

# Algoritmo (Cormen)

```
Para k← i até j-1 faça
Matrix-chain-order(p)
N \leftarrow comprimento[p]-1
                              q \leftarrow m[i,k] + m[k+1,j] + p_{i-1}p_kp_i
Para i ← 1 até n faça
                               Se q < m[i,j] então
                                  m[i,j] \leftarrow q
    m[i,i] \leftarrow 0
                                   s[i,j] \leftarrow k
Para I← 2 até n faça
                               Fim para // I
 para i← 1 até n-l+1
                               Fim para // i
  faça
                               Fim para // k
       i← i+l-1
                               Retorna m e s
       m[i,j] \leftarrow INF
```

# Algoritmo Geral