# 스토브 개발자 센터 MCP 서버

차세대 개발자 지원 시스템

기술위원회 공유용 | 2025.06.24

# 개요 및 배경

# MCP(Model Context Protocol) 개념

Al 모델이 외부 데이터 소스 및 도구와 안전하고 제어된 방식으로 상 호작용할 수 있게 해주는 **오픈 프로토콜** 

## 개발자 센터 문서화 현황

방대한 API 문서(1,360개 문서)가 존재하나, **검색 및 접근성 한계**로 개발자 경험 저하

## 현재 문제점

- 복잡한 API 문서 탐색 어려움
- 자연어 질의 불가능
- 개발자 지원 부담 증가

### MCP 서버 솔루션

FastMCP 프레임워크 기반으로 **자연어 질의응답**을 통해 개발자 경험 혁신



# 핵심 기술 아키텍처

### MCP 프로토콜 구조

- ✓ 표준 프로토콜: AI 모델과 외부 도구 간 통신 규약
- ✓ Transport 지원: STDIO, HTTP(SSE) 방식
- ✓ Tool 기반 아키텍처: @mcp.tool 데코레이터

### 데이터 흐름

- ① 개발자가 자연어로 질문
- 2 LLM이 질문을 분석하고 MCP를 통해 검색 요청
- 3 MCP Server가 BM25 알고리즘으로 관련 문서 검색
- 4 검색 결과를 MCP Protocol로 LLM에 전달
- 5 LLM이 컨텍스트를 활용해 개발자에게 답변 제공



### 연결 구조도

개발자  $\leftarrow$   $\rightarrow$  LLM(Claude/Cursor)  $\leftarrow$   $\rightarrow$  MCP Protocol  $\leftarrow$   $\rightarrow$  MCP Server  $\leftarrow$   $\rightarrow$  STOVE Developer Center 컨텐츠

# 검색 엔진 기술

### 기본 버전

- 단순 키워드 매칭 기반 검색
- 제목/내용 문자열 포함 검색
- 간단한 구현, 제한된 정확도

### 고도화 버전 (BM25)

- BM25 Okapi 알고리즘 적용
- 제목 가중치 부여 (3배)
- 토큰 기반 정확도 향상

### 검색 품질 최적화 방안

- 문서 필드별 가중치 조정
- 한국어 형태소 분석기 적용 가능
- 문서 인덱싱 최적화

```
# BM25 인덱스 생성 코드

corpus = [text.lower().split() for text in corpus_texts]

BM25_INDEX = BM250kapi(corpus)

# 검색 시 점수 계산

tokenized_query = query.lower().split()

doc_scores = BM25_INDEX.get_scores(tokenized_query)
```



| 구분     | 기본 버전 | BM25 버전 |
|--------|-------|---------|
| 검색 정확도 | 낮음    | 높음      |
| 구현 복잡도 | 단순    | 중간      |
| 확장성    | 제한적   | 우수      |

# 기술적 핵심 가치

# 🦺 개발자 경험(DX) 혁신

- 자연어 인터페이스: 복잡한 API 문서를 일반 언어로 질문 가능
- 실시간 응답: 즉시 관련 문서와 코드 예시 제공
- 컨텍스트 유지: 연속적인 대화를 통한 깊이 있는 문제 해결

# 🛊 확장성 및 유연성

- 모듈화 설계: 새로운 검색 알고리즘 쉬운 교체/확장
- **다중 Transport**: STDIO(IDE 통합), HTTP(웹 서비스) 동시 지 원
- 플랫폼 독립적: 다양한 AI 클라이언트와 호환

# 검색 품질 최적화

- BM25 알고리즘: 정보 검색 분야의 검증된 알고리즘
- 가중치 조정: 제목 중요도 강화로 정확도 향상
- **멀티 필드 검색**: 제목, 설명, 내용 통합 검색





# 활용 사례

# 개발자 지원 시나리오



🤏 개발자 질의응답 예시

개발자: 스토브 로그인 연동 방법 알려줘

MCP 서버: [인증] GNB 방식 연동 가이드

- JavaScript 코드 예시: STOVE.login({ ... })

- 관련 문서 링크

### 통합 환경 지원







**Cursor IDE** 

Claude





## 실제 사용 예시

#### API 문서 탐색

자연어 질의로 문서 검색, 코드 예제 제공

### 구현 가이드

단계별 구현 안내, 모범 사례 공유

#### 에러 해결

에러 코드 설명, 해결책 제안

#### 테스트 지원

테스트 시나리오, 디버깅 가이드

# 향후 발전 방향

### Q 검색 기술 고도화

### 임베딩 기반 시맨틱 검색

- 현재: 키워드/BM25 기반 → 향후: 벡터 유사도 기반
- 의도 파악 정확도 대폭 향상

```
# 목표 아키텍처
class HybridSearchEngine:
    def search(self, query):
        bm25_results = self.bm25_search(query)
        semantic_results = self.embedding_search(query)
        return self.fusion_ranking(bm25_results, semantic_results)
```

### 👜 Al 기능 확장

### 코드 생성 및 검증

- API 호출 코드 자동 생성
- 파라미터 유효성 검사

#### 상호작용 개선

- 멀티턴 대화 컨텍스트 관리
- 개인화된 답변 제공

## ■ 컨텐츠 보강

#### Example 코드 자동 생성

- API 호출 예시 코드 동적 생성
- 다양한 언어별 SDK 예제 제공

### 테스트 환경 제공

- 샌드박스 API 엔드포인트 연동
- 실시간 API 테스트 기능

### 기능 발전 로드맵



# 도입 효과 및 ROI

## ∠ 정량적 효과

- 개발자 문의 시간 단축 평균 75% 감소 예상
- 문서 접근성 향상 자연어 질의로 <mark>진입 장벽 제거</mark>
- **개발 속도 향상** API 학습 곡선 <mark>완화</mark>

# ♥ 정성적 효과

**©** 

개발자 만족도 향상

플랫폼 채택률 증가

기술 지원 부담 감소

### 시간 효율성 비교



# ♥ 기술적 차별점

| 구분  | 기존 방식     | MCP 서버       |
|-----|-----------|--------------|
| 접근성 | 수동 문서 탐색  | 자연어 질의       |
| 정확성 | 사용자 해석 의존 | AI 기반 정확한 답변 |
| 효율성 | 다중 페이지 확인 | 원스톱 솔루션      |
| 확장성 | 정적 문서     | 동적 응답        |
|     |           |              |

# 구현 로드맵

1 기반 기술 안정화

Q1

- BM25 검색 엔진 성능 최적화
- 다양한 클라이언트 호환성 테스트
- 문서 품질 관리 시스템 구축
- 2 지능화 기능 추가

Q2

- 임베딩 기반 시맨틱 검색 도입
- 코드 생성 기능 개발
- 사용자 피드백 학습 시스템

Q3

- 3 생태계 확장
- 다국어 지원 확대
- 외부 개발 도구 연동
- 실시간 문서 동기화
- 4 차세대 기능

Q4

- 멀티모달 검색 (이미지, 다이어그램)
- 개인화 추천 시스템
- 자동 문서 생성 지원

#### 기능 개발 일정 Q1 Q2 Q3 Q4 BM25 최적화 클라이언트 호환성 임베딩 검색 코드 생성 다국어 지원 도구 연동 멀티모달 검색 개인화 시스템 0.1 0.2 0.3 0.7 0.8 0.9 1.0 0.4 0.6 분기별 진행

### 현재 (Q1 시작)

BM25 기반 검색 엔진 구현 완료, 기본 MCP 서버 구축

### Q2 중간

임베딩 모델 학습 및 하이브리드 검색 시스템 테스트

#### Q4 말

완전한 멀티모달 지원 및 개인화 시스템 출시

# 결론 및 제안

"STOVE Developer Center MCP 서버는 차세대 개발자 지원 도구로서의 잠재력을 보여주는 혁신적인 프로젝트입니다."

- 🥊 핵심 제안사항
- 즉시 도입: 현재 BM25 기반 시스템으로도 충분한 가 치 제공
- 단계적 확장: 임베딩 기반 검색으로 점진적 고도화
- 생태계 연동: 주요 개발자 도구와의 통합 추진
- 지속적 개선: 사용자 피드백 기반의 반복적 개선

## 🛑 기대 효과

- 개발자 생산성 향상 및 학습 곡선 완화
- 플랫폼 채택률 증가 및 생태계 확장
- 기술 지원 비용 절감 및 효율성 증대
- 개발자 경험(DX) 차별화로 경쟁력 강화

### ▶ 다음 단계

- 기술위원회 승인 및 예산 확보
- 파일럿 프로젝트 시작 (Q1)
- 개발자 피드백 수집 및 개선
- 전체 플랫폼 통합 계획 수립

이러한 기술적 투자는 STOVE 플랫폼의 개발자 생태계 확장과 경쟁력 강화에 직접적으로 기여할 것입니다.