Variables sous-gaussiennes [Mines 2015]

Dans tout le problème, toutes les varibales considérées sont réelles et discrètes, définies sur un espace probabilisé (Ω, \mathcal{A}, P) .

DÉFINITION

Soit $\alpha > 0$. On dit qu'une variable aléatoire X est α -sous-gaussienne si:

$$\forall t \in \mathbb{R}, \quad \exp(tX) \text{ admet une espérance et } \mathbb{E}\left(\exp(tX)\right) \leqslant \exp\left(\frac{\alpha^2 t^2}{2}\right)$$

On rappelle la notation

$$\cosh(t) = \frac{\exp(t) + \exp(-t)}{2}$$

et pour tout $s \in]1, +\infty[$, on note

$$\zeta(s) = \sum_{n=1}^{+\infty} \frac{1}{n^s}$$

et on donne $\zeta(2) = \frac{\pi^2}{6}$.

1. Montrer que pour tout $t \in \mathbb{R}$, on a $\cosh(t) \leqslant \exp\left(\frac{t^2}{2}\right)$.

Indication : On pourra au préalable établir le développement de la fonction \cosh en série entière \sup $\mathbb R$

2. Soit $t \in \mathbb{R}$. Démontrer que si $x \in [-1,1]$, on a l'inégalité de convexité:

$$\exp(tx) \leqslant \frac{1+x}{2} \exp(t) + \frac{1-x}{2} \exp(-t)$$

- 3. Soit X une variable aléatoire réelle bornée par 1 et centrée.
 - (a) Soit $t \in \mathbb{R}$. Montrer que la famille $(\exp(tx)\mathbb{P}(X=x))_{x \in X(\Omega)}$ de réels positifs est sommable.
 - (b) Montrer que X est 1-sous-gaussienne.
- 4. En déduire que, si X est une variable aléatoire bornée par $\alpha > 0$ et centrée, alors elle est α -sous-gaussienne.

Indication : On pourra considérer la variable $Y = \frac{X}{\alpha}$

5. Soit X_1, \dots, X_n des variables aléatoires mutuellement indépendantes et α - sous-gaussiennes, et μ_1, \dots, μ_n des nombres réels tels que $\sum_{i=1}^n \mu_i^2 = 1$.

Montrer que la variable aléatoire $\sum_{i=1}^{n} \mu_i X_i$ est α -sous-gaussienne.

En déduire que si X est α -sous-gaussienne, alors -X est α -sous-gaussienne

- 6. Soit X une variable aléatoire α -sous-gaussienne et $\lambda > 0$.
 - (a) En appliquant l'inégalité de Markov, montrer que pour tout t > 0:

$$\mathbb{P}(X \geqslant \lambda) \leqslant \exp\left(\frac{\alpha^2 t^2}{2} - t\lambda\right)$$

(b) En déduire que:

$$\mathbb{P}(|X| \geqslant \lambda) \leqslant 2 \exp\left(\frac{\alpha^2 t^2}{2} - t\lambda\right)$$

(c) Pour
$$t = \frac{\lambda}{\alpha^2}$$
, en déduire

$$\mathbb{P}(|X| \geqslant \lambda) \leqslant 2 \exp\left(-\frac{\lambda^2}{2\alpha^2}\right)$$

7. Soit X une variable à valeurs dans \mathbb{N} . Montrer que X admet une espérance si, et seulement, si la série $\sum_{k\geq 1} \mathbb{P}(X\geqslant k) \text{ converge et que, dans ce cas :}$

$$\mathbb{E}(X) = \sum_{k=1}^{+\infty} \mathbb{P}(X \geqslant k)$$

 $Indication: \ On \ pourra \ considérer \ la \ famille \ la \ famille \ (\mathbb{P} \ (X=n))_{(n,k) \in I} \ de \ r\'eels \ positifs \ o\`u \ I = \left\{ (n,k) \in \mathbb{N}^{*2} \ | \ n \geqslant k \right\}$

8. Si X est une variable aléatoire à valeurs dans \mathbb{R}^+ , montrer que X est d'espérance finie si et seulement si la série de terme général $\mathbb{P}(X \ge k)$ converge et que, dans ce cas :

$$\sum_{k=1}^{+\infty} \mathbb{P}\left(X \geqslant k\right) \leqslant \mathbb{E}(X) \leqslant 1 + \sum_{k=1}^{+\infty} \mathbb{P}\left(X \geqslant k\right)$$

Indication : On pourra pour cela considérer la partie entière [X]

- 9. Soit X une variable aléatoire α -sous-gaussienne et $\beta>0$.
 - (a) On pose $\eta = \alpha^{-2}\beta^{-2}$. Montrer que pout tout entier k > 0:

$$\mathbb{P}\left(\exp\left(\frac{\beta^2 X^2}{2}\right) \geqslant k\right) \leqslant 2k^{-\eta}$$

Indication : On pourra distinguer les cas k=1 et $k\geqslant 2$ et utiliser le résultat de la question 6c

- (b) En déduire que si $\alpha\beta < 1$, la variable aléatoire $\exp\left(\frac{\beta^2 X^2}{2}\right)$ est d'espérance finie majorée par $1 + 2\zeta(\eta)$
- 10. Montrer que si X est une variable aléatoire α -sous-gaussienne, on a l'inégalité d'Orlicz:

$$\mathbb{E}\left(\exp\left(\frac{X^2}{4\alpha^2}\right)\right) \leqslant 5$$

On pourra prendre $\beta = \frac{1}{\alpha\sqrt{2}}$,

1. Soit $t \in \mathbb{R}$, on a $\cosh(t) = \sum_{k=0}^{+\infty} \frac{t^{2k}}{(2k)!}$. Or $\forall k \in \mathbb{N}$, on a $(2k)! \geqslant 2^k k!$ (récurrence simple), donc par positivité de t^{2k} on obtient

$$\cosh(t) = \sum_{k=0}^{+\infty} \frac{t^{2k}}{(2k)!} \leqslant \sum_{k=0}^{+\infty} \frac{t^{2k}}{2^k k!} = \exp\left(\frac{t^2}{2}\right)$$

2. La fonction exp est convexe sur \mathbb{R} . Comme $x \in [-1,1]$, donc $\frac{1+x}{2}, \frac{1-x}{2} \in [0,1]$ et de somme 1. D'après l'inégalité de Jensen

$$\exp(tx) = \exp\left(\frac{1+x}{2}t + \frac{1-x}{2}(-t)\right) \leqslant \frac{1+x}{2}\exp(t) + \frac{1-x}{2}\exp(-t)$$

3. (a) Pour tout $x \in X(\Omega) \subset [-1,1]$, on utilise l'inégalité précédente, on obtient:

$$\exp(tx)\mathbb{P}\left(X=x\right)\leqslant\frac{1+x}{2}\exp(t)\mathbb{P}\left(X=x\right)+\frac{1-x}{2}\exp(-t)\mathbb{P}\left(X=x\right)$$

Les deux familles $\left(\frac{1+x}{2}\exp(t)\mathbb{P}\left(X=x\right)\right)_{x\in X(\Omega)}$ et $\left(\frac{1-x}{2}\exp(-t)\mathbb{P}\left(X=x\right)\right)_{x\in X(\Omega)}$ de réels positifs sont sommables de sommes respectives $\mathbb{E}\left(\frac{1+X}{2}\exp(t)\right)=\frac{1}{2}\exp(t)$ et $\mathbb{E}\left(\frac{1-X}{2}\exp(-t)\right)=\frac{1}{2}\exp(-t)$, car X est centrée. Donc la famille $(\exp(tx)\mathbb{P}\left(X=x\right))_{x\in X(\Omega)}$ est sommable et

$$\sum_{x \in X(\Omega)} \exp(tx) \mathbb{P}\left(X = x\right) \leqslant \frac{\exp(t) + \exp(-t)}{2} = \cosh(t) \leqslant \exp\left(\frac{t^2}{2}\right)$$

(b) Par le théorème du transfert $\exp(tX)$ admet une espérance et

$$\mathbb{E}\left(\exp(tX)\right) = \sum_{x \in X(\Omega)} \exp(tx) \mathbb{P}\left(X = x\right) \leqslant \exp\left(\frac{t^2}{2}\right)$$

4. Lorsque X est une variable aléatoire bornée par $\alpha > 0$ et centrée, on pose $Y = \frac{X}{\alpha}$. La variable Y est bornée par 1 et centrée, donc elle 1-sous-gaussienne, ainsi pour tout $t \in \mathbb{R}$

$$\mathbb{E}\left(\exp(t\alpha Y)\right) \leqslant \exp\left(\frac{(t\alpha)^2}{2}\right)$$

Ou encore $\mathbb{E}(\exp(tX)) \leqslant \exp\left(\frac{t^2\alpha^2}{2}\right)$

5. Soit $t \in \mathbb{R}$. Les variables aléatoires $\exp(t\mu_1 X_1), \cdots \exp(t\mu_n X_n)$ sont mutuellement indépendantes et chacune admet une espérance, donc $\prod_{i=1}^n \exp(t\mu_i X_i)$ admet une espérance et

$$\mathbb{E}\left(\prod_{i=1}^{n} \exp(t\mu_i X_i)\right) = \prod_{i=1}^{n} \mathbb{E}\left(\exp(t\mu_i X_i)\right)$$

Or pour tout $i \in [1, n]$, la variable X_i est α -sous-gaussienne $E\left(\exp(t\mu_i X_i)\right) \leqslant \exp\left(\frac{\alpha^2 t^2 \mu_i^2}{2}\right)$. Donc $\exp\left(t\sum_{i=1}^n \mu_i X_i\right)$ admet une espérance et

$$\mathbb{E}\left(\exp\left(t\sum_{i=1}^{n}\mu_{i}X_{i}\right)\right) = \mathbb{E}\left(\prod_{i=1}^{n}\exp(t\mu_{i}X_{i})\right)$$

$$= \prod_{i=1}^{n}\mathbb{E}\left(\exp(t\mu_{i}X_{i})\right)$$

$$\leqslant \prod_{i=1}^{n}\exp\left(\frac{\alpha^{2}t^{2}\mu_{i}^{2}}{2}\right)$$

$$\leqslant \exp\left(\sum_{i=1}^{n}\frac{\alpha^{2}t^{2}\mu_{i}^{2}}{2}\right) = \exp\left(\frac{\alpha^{2}t^{2}}{2}\right)$$

Déduction: Pour $X_1 = X$ et $\mu_1 = -1$, on a -X est α -sous-gaussienne

6. (a) Soit t > 0. L'événement $[X \ge \lambda] = [\exp(tX) \ge \exp(t\lambda)]$. La variable $\exp(tX)$ est positive et admettant une espérance. D'après l'inégalité de Markov

$$\mathbb{P}\left(\exp(tX) \geqslant \exp(t\lambda)\right) \leqslant \frac{\mathbb{E}\left(\exp(tX)\right)}{\exp(t\lambda)}$$
$$\leqslant \exp\left(\frac{t^2\alpha^2}{2} - t\lambda\right)$$

(b) La variable -X est aussi α -sous-gaussienne et que $[|X| \geqslant \lambda] = [X \geqslant \lambda] \cup [-X \geqslant \lambda]$ où $[X \geqslant \lambda]$ et $[-X \geqslant \lambda]$ sont des événements incompatibles, donc

$$\mathbb{P}(|X| \geqslant \lambda) = \mathbb{P}(X \geqslant \lambda) + \mathbb{P}(-X \geqslant \lambda)$$

$$\leqslant 2 \exp\left(\frac{t^2 \alpha^2}{2} - t\lambda\right)$$

- (c) Ceci vrai pour tout t > 0. En particulier pour $t = \frac{\lambda}{\alpha^2}$, on obtient $\frac{t^2\alpha^2}{2} t\lambda = -\frac{\lambda^2}{2\alpha^2}$ et l'inégalité désirée
- 7. Notons

$$I = \{(n, k) \in \mathbb{N}^{*2} \mid n \geqslant k\}$$

et considérons la famille $(\mathbb{P}(X=n))_{(n,k)\in I}$ de réels positifs. Pour $(n,k)\in \in \mathbb{N}^{*2}$, on pose

$$I_n = \{(n, q) \in \mathbb{N}^{*2} \mid n \geqslant q\}$$

et

$$J_k = \left\{ (p, k) \in \mathbb{N}^{*2} \mid p \geqslant k \right\}$$

X admet une espérance, si et seulement si la série à termes positifs $\sum_{n\geqslant 1} n\mathbb{P}(X=n)$ est convergente, si et seulement si la famille $(\mathbb{P}(X=n))_{(n,k)\in I}$ est sommable, si et seulement si pour tout $k\in\mathbb{N}^*$ la famille $(\mathbb{P}(X=n))_{(n,k)\in J_k}$ est sommable de somme $\mathbb{P}(X\geqslant k)=\sum_{n=k}^{+\infty}\mathbb{P}(X=n)$ et la série $\sum_{k\geqslant 1}\mathbb{P}(X\geqslant k)$ est convergente. Au quel cas, on a

$$\sum_{n=1}^{+\infty} n \mathbb{P}(X=n) = \sum_{(n,k) \in I} \mathbb{P}(X=n) = \sum_{k=1}^{+\infty} \mathbb{P}(X \geqslant k)$$

8. Les variables X et [X] sont positives et vérifient $[X] \leq X < [X] + 1$. Par domination, X admet une espérance si, et seulement, si [X] admet une espérance si, et seulement si la série $\sum \mathbb{P}([X] \geqslant k)$ converge. Mais $[[X] \geqslant k] = [X \geqslant k]$, d'où l'équivalence est assurée.

Pour les inégalités, on tient compte de la croissance et la linéarité de l'espérance

$$\mathbb{E}([X]) \leqslant \mathbb{E}(X) \leqslant \mathbb{E}([X]) + 1$$

où, d'après les données, $\mathbb{E}\left([X]\right)=\sum_{k=1}^{+\infty}\mathbb{P}\left([X]\geqslant k\right)=\sum_{k=1}^{+\infty}\mathbb{P}\left(X\geqslant k\right)$

9. (a) L'inégalité est triviale si k=1: La probabilité d'un événement est inférieure ou égale à 1. Si $k\geqslant 2$, on a $\left[\exp\left(\frac{\beta^2X^2}{2}\right)\geqslant k\right]=\left[|X|\geqslant \frac{\sqrt{2}\sqrt{\ln k}}{\beta}\right]$ et d'après la question 6 avec $\lambda=\frac{\sqrt{2}\sqrt{\ln k}}{\beta}$, on a

bien

$$\mathbb{P}\left(\exp\left(\frac{\beta^2 X^2}{2} \geqslant k\right)\right) = \mathbb{P}\left(|X| \geqslant \frac{\sqrt{2}\sqrt{\ln k}}{\beta}\right)$$

$$\leqslant 2\exp\left(-\frac{\ln k}{\alpha^2 \beta^2}\right) = 2\exp\left(\ln\left(k^{\alpha^{-2}\beta^{-2}}\right)\right)$$

$$= 2k^{-\eta}$$

Où
$$\eta = \alpha^{-2}\beta^{-2}$$
.

(b) Lorsque $\alpha\beta < 1$, alors $\eta > 1$, la série de Riemann $\sum_{k\geqslant 1} k^{-\eta}$ converge et, par le critère de comparaison, la série ATP $\sum_{k\geqslant 1} \mathbb{P}\left(\exp\left(\frac{\beta^2 X^2}{2}\right)\geqslant k\right)$ converge, donc la variable aléatoire $\exp\left(\frac{\beta^2 X^2}{2}\right)$ est une espérance et

$$\mathbb{E}\left(\exp\left(\frac{\beta^2 X^2}{2}\right)\right) \leqslant 1 + \sum_{k=1}^{+\infty} \mathbb{P}\left(\exp\left(\frac{\beta^2 X^2}{2}\right) \geqslant k\right)$$
$$\leqslant 1 + 2\sum_{k=1}^{+\infty} k^{-\eta} = 1 + 2\zeta(\eta)$$

10. Si X est une variable aléatoire α -sous-gaussienne. Pour $\beta = \frac{1}{\alpha\sqrt{2}}$, on a $\alpha\beta < 1$ et $\eta = 2$. D'après la question précédente

$$\mathbb{E}\left(\exp\left(\frac{X^2}{4\alpha^2}\right)\right) = \mathbb{E}\left(\exp\left(\frac{\beta^2 X^2}{2}\right)\right)$$

$$\leqslant 1 + 2\zeta(2) \leqslant 5$$