

Current Topics in Data Science and Al

Denoising in Scientific Imaging Background:

Fluorescence Microscopy and Noise

The Problem of Noise

Low exposure:

- Gentle 🙂
- Noisy 8

High exposure:

- Damaging 8
- Clean ©

What is Fluorescence Microscopy?

What is Fluorescence?

Fluorescence

Fluorescence Microscopy

Fluorescence Microscopy

https://en.wikipedia.org/wiki/File:Fluorescent_and_confocal_microscopes.ogv

https://en.wikipedia.org/wiki/File:Fluorescent_and_confocal_microscopes.ogv

Why is too much Light Harmful?

Phototoxicity

- Cells do not like fluorophores + light.
- Prevents cells from dividing.
- Can damage and kill cells.

After 24 hours

5min of blue light

After 24 hours

Laissue et al. 2018

Photobleaching

• Too much light damages fluorophores

Why does Low Light Lead to Noisy Images? How can we Quantify Noise?

https://en.wikipedia.org/wiki/File:Fluorescent_and_confocal_microscopes.ogv

Full light exposure

Photon 光子

More light Less light

100% light

50% light

50% light

25% light

25% light

Poisson Shot Noise

$$p(\mathbf{x}_i|s_i) = \frac{s_i^{x_i} e^{-s_i}}{x_i!}$$

standard deviation is the square root of variance

Quantifying Noise

- The noise increases with the signal.
- We must consider the ratio between signal and noise.

Peak Signal to Noise Ratio (PSNR):

$$MSE(s, x) = \frac{1}{n} \sum_{i}^{n} (s_{i} - x_{i})^{2}$$

$$PSNR(s, x) = 20 \log_{10} \left(\frac{\max(s) - \min(s)}{\sqrt{MSE(s, x)}} \right)$$
decibel

Content preseveration

Clean image s

Noisy image x

Summary

- Fluorescence microscopy:
 - Excitation in one wavelength
 - Emit in other wavelength
 - Trade off between noise and sample preservation
- Noise:
 - Shot noise is result of discrete photons
 - Stronger signal:
 - More noise
 - Better signal to noise ratio
 - Measured in Peak Signal to Noise Ratio
 - Requires clean image

