Hands-on Exercise 4: Spatial Point Patterns Analysis-spatstat methods

AUTHOR

AFFILIATION

Dr. Kam Tin Seong, Associate Professor of Information Systems (Practice)

School of Computing and Information Systems, Singapore Management University

PUBLISHED

May 25, 2021

Contents

Overview

The research questions

The data

Installing and Loading the R packages

Spatial Data Wrangling

Importing the spatial data

Converting the spatial point data frame into generic sp format

Converting the generic sp format into spatstat's ppp format

Handling duplicated points

Creating **owin**

Combining childcare points and the study area

First-order SPPA

Kernel Density Estimation

Computing kernel density estimation using automatic bandwidth selection method

Working with different automatic badwidth methods

Working with different kernel methods

Fixed and Adaptive KDE

Computing KDE by using fixed bandwidth

Computing KDE by using adaptive bandwidth

Converting KDE output into grid object.

Converting gridded output into raster

Assigning projection systems

Visualising the output in tmap

Comparing Spatial Point Patterns using KDE

Extracting study area

Converting the spatial point data frame into generic sp format

Creating **owin** object

Combining childcare points and the study area

Computing KDE

Computing fixed bandwidth KDE

Nearest Neighbour Analysis

Testing spatial point patterns using Clark and Evans Test

Clark and Evans Test: Choa Chu Kang planning area

Clark and Evans Test: Tampines planning area

Second-order Spatial Point Patterns Analysis

Analysing Spatial Point Process Using G-Function

Choa Chu Kang planning area

Computing G-function estimation

Performing Complete Spatial Randomness Test

Tampines planning area

Computing G-function estimation

Performing Complete Spatial Randomness Test

Analysing Spatial Point Process Using F-Function

Choa Chu Kang planning area

Computing F-function estimation

Performing Complete Spatial Randomness Test

Tampines planning area

Computing F-function estimation

Performing Complete Spatial Randomness Test

Analysing Spatial Point Process Using K-Function

Choa Chu Kang planning area

Computing K-fucntion estimate

Performing Complete Spatial Randomness Test

Tampines planning area

Computing K-fucntion estimation

Performing Complete Spatial Randomness Test

Analysing Spatial Point Process Using L-Function

Choa Chu Kang planning area

Computing L Fucntion estimation

Performing Complete Spatial Randomness Test

Tampines planning area

Computing L-fucntion estimate

Performing Complete Spatial Randomness Test

Overview

Spatial Point Pattern Analysis is the evaluation of the pattern or distribution, of a set of points on a surface. The point can be location of:

- events such as crime, traffic accident and disease onset, or
- business services (coffee and fastfood outlets) or facilities such as childcare and eldercare.

In this hands-on exercise, you will gain hands-on experience on using appropriate functions of <u>spatstat</u> to perform. The case study aims to discover the spatial point processes of childecare centres in Singapore.

The research questions

The specific questions we would like to answer are as follows:

- are the childcare centres in Singapore randomly distributed throughout the country?
- if the answer is not, then the next logical question is where are the locations with higher concentration of childcare centres?

The data

To provide answers to the questions above, three data sets will be used. They are:

- CHILDCARE, a point feature data providing both location and attribute information of childcare centres. It is downloaded from www.data.gov.sg and is in ESRI shapefile format.
- MP14_SUBZONE_WEB_PL, a polygon feature data providing information of URA 2014 Master Plan
 Planning Subzone boundary data. It is in ESRI shapefile format.
- CostalOutline, a polygon feature data showing the national boundary of Singapore. It is provided by SLA and is in ESRI shapefile format.

Installing and Loading the R packages

In this hands-on exercise, five R packages will be used, they are:

-rgdal, which provides bindings to the 'Geospatial' Data Abstraction Library (GDAL) (>= 1.11.4) and access to projection/transformation operations from the PROJ library. In this exercise, rgdal will be used to import geospatial data in R and store as sp objects.

• **spatstat**, which has a wide range of useful functions for point pattern analysis. In this hands-on exercise, it will be used to perform 1st- and 2nd-order spatial point patterns analysis and derive kernel density estimation (KDE) layer.

- <u>raster</u> which reads, writes, manipulates, analyses and model of gridded spatial data (i.e. raster). In this hands-on exercise, it will be used to convert image output generate by spatstat into raster format.
- <u>maptools</u> which provides a set of tools for manipulating geographic data. In this hands-on exercise, we mainly use it to convert *Spatial* objects into *ppp* format of **spatstat**.
- <u>tmap</u> which provides functions for plotting cartographic quality static point patterns maps or interactive maps by using leaflet API.

Use the code chunk below to install and launch the five R packages.

```
'rgdal' , 'maptools', 'raster' ,'spatstat', 'tmap'
packages =
                              (
)
for
          (
                              in
                                        packages )
                                                           {
if
                           require (
                                                        , character.only =
                                                                                   Т
         )
install.packages(
                                   )
library (
                  р
                          ,character.only =
}
```

Spatial Data Wrangling

Importing the spatial data

In this section, *readOGR()* of **rgdal** package will be used to import the three geospatial data in R's *spatialpolygonsdataframe*.

```
childcare <-
                      readOGR (
                                         dsn =
                                                        "data"
                                                                 , layer=
                                                                                  "CHILDCARE")
OGR data source with driver: ESRI Shapefile
Source: "D:\tskam\GeoDSA\Hands-on_Ex\Hands-on_Ex04\data", layer: "CHILDCARE"
with 1312 features
It has 18 fields
                      readOGR
                                         dsn =
                                                                                  "CostalOutline"
  sg
                                                        "data"
                                                                 , layer=
  )
OGR data source with driver: ESRI Shapefile
Source: "D:\tskam\GeoDSA\Hands-on_Ex\Hands-on_Ex04\data", layer: "CostalOutline"
with 60 features
It has 4 fields
                      readOGR (
                                         dsn =
                                                        "data"
  mpsz
                                                                 , layer=
  "MP14 SUBZONE WEB PL")
```

```
OGR data source with driver: ESRI Shapefile
Source: "D:\tskam\GeoDSA\Hands-on_Ex\Hands-on_Ex04\data", layer: "MP14_SUBZONE_WEB_PL"
with 323 features
It has 15 fields
```

Before we can use these data for analysis, it is important for us to ensure that they are projected in same projection system. We can retrieve the information of these geospatial data by using the code chunk below.

```
childcare)
CRS arguments:
+k=1 +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m
+no_defs
 crs
              mpsz
CRS arguments:
+k=1 +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m
+no_defs
 crs
               sg
                      )
CRS arguments:
+proj=tmerc +lat_0=1.3666666666667 +lon_0=103.833333333333333
+k=1 +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m
+no_defs
Next, we can examine the imported geospatial data by using plot().
```

(

, 3

)

mfrow=

mpsz

sg

childcare)

)

par plot

plot

plot

)

Alternatively, we can also plotting these three geospatial data in one plot by using code chunk below.

```
plot ( sg , border= "lightgrey")
plot ( sg , add= TRUE )
plot ( childcare, add= TRUE )
```


We can also prepare an interactive pin map by using the code chunk below.

```
tmap_mode( 'view' )
tm_shape ( childcare) +
tm_dots ( )
```



```
tmap_mode( 'plot' )
```

Lastly, let us examine the childcare SpatialPointsDataFrame.

childcare

class : SpatialPointsDataFrame

features : 1312

extent : 11203.01, 45404.24, 25667.6, 49300.88 (xmin, xmax, ymin, ymax)

crs : +proj=tmerc +lat_0=1.3666666666667 +lon_0=103.8333333333333333333333333333 +k=1 +x_0=28001.642 +y_0=38

variables : 18

names : OBJECTID, ADDRESSBLO, ADDRESSBUI, ADDRESSPOS, min values : 1, NA, NA, 038983,

max values : 1312, NA, NA, 829646, UPPER BASEMENT LEVEL WEST WING TERMINAL 1

Converting the spatial point data frame into generic sp format

spatstat requires the analytical data in ppp object form. There is no direct way to convert a
SpatialDataFrame into ppp object. We need to convert the SpatialDataFrame into Spatial object first.

The codes below will convert the SpatialPoint and SpatialPolygon data frame into generic spatialpoints and spatialpolygons objects.

```
childcare_sp <- as ( childcare, "SpatialPoints")
sg_sp <- as ( sg , "SpatialPolygons")</pre>
```

Do you know what are the differences between SpatialPoints object and SpatialPointDataFrame object?

Let us plot the childcare_sp data by using the code chun below.

```
plot ( childcare_sp)
```


Note that the output map look similar to the earlier plot.

How about we view the properties of childcare_sp data object by using the code chun below?

childcare_sp

class : SpatialPoints

features : 1312

extent : 11203.01, 45404.24, 25667.6, 49300.88 (xmin, xmax, ymin, ymax)

crs : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.83333333333 +k=1 +x_0=28001.642 +y_0=38

Can you see the different now?

Converting the generic sp format into spatstat's ppp format

Now, we will use as.ppp() function of spatstat to convert the spatial data into spatstat's ppp object format.

```
childcare_ppp <- as ( childcare_sp, "ppp" )
childcare_ppp</pre>
```

Planar point pattern: 1312 points

window: rectangle = $[11203.01, 45404.24] \times [25667.6, 49300.88]$ units

Now, let us plot *childcare_ppp* and examine the different.

```
plot ( childcare ppp)
```

childcare_ppp

You can take a quick look at the summary statistics of the newly created ppp object by using the code chunk below.

Notice the warning message about duplicates. In spatial point patterns analysis an issue of significant is the presence of duplicates. The statistical methodology used for spatial point patterns processes is based largely on the assumption that process are *simple*, that is, that the points cannot be coincident.

Handling duplicated points

We can check the duplication in a **ppp** object by using the code chunk below.

```
any ( duplicated( childcare_ppp) )
[1] TRUE
```

To count the number of coindicence point, we will use the *multiplicity()* function as shown in the code chunk below.

mul	<pre>multiplicity(childcare_ppp)</pre>												
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1	4	1	1	1	1	1	1	1	1	1	1	1
15	16	17	18	19	20	21	22	23	24	25	26	27	28
1	1	1	1	1	1	1	1	1	1	1	1	1	1
29	30	31	32	33	34	35	36	37	38	39	40	41	42
1	1	1	1	1	1	1	1	1	1	1	1	1	1
43	44	45	46	47	48	49	50	51	52	53	54	55	56
3	1	1	1	1	1	1	1	1	1	1	1	1	1
57	58	59	60	61	62	63	64	65	66	67	68	69	70
1	2	1	1	1	1	1	1	1	1	2	1	1	1
71	72	73	74	75	76	77	78	79	80	81	82	83	84
1	1	1	7	1	1	1	1	1	1	1	1	1	1
85 2	86 1	87 1	88 1	89 1	90	91 1	92 1	93 1	94 1	95 1	96 1	97 2	98 1
99	100	1 101	102	103	1 104	105	106	107	108	109	1 110	111	112
1	1	1	1	1	2	1	1	1	1	1	1	1	1
113	- 114	- 115	116	- 117	118	- 119	120	121	122	123	- 124	- 125	- 126
1	1	1	1	1	1	2	1	1	1	1	5	1	1
127	128	129	130	131	132	133	134	135	136	137	138	139	140
1	1	2	1	1	1	1	1	1	2	1	1	1	1
141	142	143	144	145	146	147	148	149	150	151	152	153	154
1	1	1	1	1	1	1	1	1	1	1	1	1	2
155	156	157	158	159	160	161	162	163	164	165	166	167	168
1	1	1	1	1	1	1	1	1	1	1	1	1	1
169	170	171	172	173	174	175	176	177	178	179	180	181	182
1	1	1	1	1	1	1	1	1	1	1	1	1	1
183	184	185	186	187	188	189	190	191	192	193	194	195	196
1	1	7	1	1	1	1	1	1	1	1	1	1	1
197 5	198 1	199	200	201 1	202	203	204	205	206	207	208	209	210
	_	213	_	_	_	_	_	_	_	_	_	_	_
1		1											
225			228	229					234			237	
1			1			1			1		1		
239	240	241	242	243	244	245	246	247	248	249	250	251	252
1	1	1	1	1	1	1	1	1	1	1	2	1	1
253	254	255	256	257	258	259	260	261	262	263	264	265	266
1	1	2	2	1	2	1	1	3	1	1	1	1	1
267	268	269	270	271	272	273	274	275	276	277	278	279	280
2	1	1	1	1	1	1	1	7	1	1	1	1	2
281	282	283	284	285		287		289		291	292	293	294
1	2		1	2			1			1			1
295	296	297	298	299		301	302		304		306		308
1	1		1			1			1		1		1
309	310	311	312	313	314	315	316	317	318	319	320	321	322

1	1	1	1	1	1	1	1	1	1	1	1	1	1
323	324	325	326	327	328	329	330	331	332	333	334	335	336
1	1	1	1	1	1	1	1	1	1	1	1	1	1
337	338	339	340	341	342	343	344	345		347	348	349	350
1	1	1	1	1	1	1	1	1	1	1	1	1	1
351	352	353	354	355	356	357	358	359	360	361	362	363	364
1	1	4	1	1	1	1	1	1	2	1	1	1	1
365	366	367	368	369	370	371	372	373	374	375	376	377	378
1	1	1	1	1	1	1	2	1	1	1	1	1	1
379	380	381	382	383	384	385	386	387	388	389	390	391	392
1	1	1	1	1	1	1	1	1	1	1	1	1	1
393	394	395	396	397	398	399	400	401		403	404	405	406
1	1	1	1		1	1	1	1	1	1	1	1	1
407	408	409	410	411	412	413	414	415		417	418	419	420
1	1	1	1	1	1	1	1	1	1	1	1	1	1
421	422	423	424	425	426	427	428	429	430	431	432	433	434
1	1	1	1	1	1	1	1		1	1	1	1	7
435	436	437	438	439	440	441	442	443	444	445	446	447	448
1	2	1	1	1		1			1		1	1	1
449	450	451	452		454	455	456	457		459	460	461	462
1	3	1	1	1	1	1	1		1	1	2	2	2
463	464	465	466	467	468	469	470	471	472	473	474	475	476
1	1	1	1	1		1	1	1			1	1	1
477	478	479	480	481	482	483	484	485		487	488	489	490
4	1	1	1	1		1	1		1	3	1	1	1
491	492	493	494	495	496	497	498	499	500	501	502	503	504
1	1	1	1	1	1	1	1	1	1	1	1	1	1
505	506	507	508	509	510	511	512	513	514	515	516	517	518
1	1	3	1	1		1	1	1			1	1	1
519	520	521	522			525		527		529	530		532
				4									
	534			537									546
1	1	1				1		1			1		1
547	548	549	550			553			556	557			560
1	1	1	1	1		1			1	1	1	1	1
561	562	563	564	565	566	567	568	569		571	572		574
	1	1		4		1		1			1		1
575	576	577	578			581	582		584	585	586		588
1	1	1	1	1		1			1		1		602
589	590	591	592	593		595 1	596 1		598		600		602
1	2	1	1	1	1	1	1	1	1	1	1	1	1
603	604	605	606	607	608	609	610	611	612	613	614	615	616
2	1	1	1	1	1	1	1	1	1	1	1	1	1
617	618	619	620	621	622	623	624	625	626	627	628	629	630
1	1	1	2	1	1	1	1	1		1	1	1	1
631	632	633	634	635		637			640	641	642	643	644
1	1	1	1	2	1	1	7	1	1	1	1	4	1
645	646	647	648	649	650	651	652	653	654	655	656	657	658
1	1	2	1	1	1	1	1	1	1	1	1	1	1
659	660	661	662	663	664	665	666	667	668	669	670	671	672
1	1	1	1	1	1	1	1	1	1	1	2	1	3

1	673	674	675	676	677	678					683			686
1														
715 716 717 718 719 720 721 722 723 724 725 726 721 11 1														
1														
729 730 731 732 733 734 735 736 736 738 739 740 741 741 741 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
1														
743 744 745 746 747 748 749 750 751 752 753 754 751 1<														
1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 4 762 763 764 765 766 767 768 769 770 1 1 1 1 4 1 2 2 1														
7557 758 759 760 761 762 763 764 765 766 767 778 771 772 773 774 775 776 777 778 779 780 781 782 783 784 78 786 787 778 779 779 779 780 781 782 783 784 789 790 791 792 793 794 795 796 797 798 1														
1 1 1 1 4 1 2 2 1 1 1 1 1 78 775 776 777 778 779 780 781 782 783 784 782 1 <td></td>														
771 772 773 774 775 776 777 778 779 780 781 782 783 784 789 790 791 792 793 794 795 796 797 798 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
2 1 1 1 1 1 1 1 1 1 1 1 2 1														
788 786 787 788 789 790 791 792 793 794 795 796 797 798 1														
1 1						_	_			_			_	
799 800 801 802 803 804 805 806 807 808 809 810 811 1<											_			
1 1														
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 830 831 832 833 834 835 836 837 838 839 840 1														
1 1														
827 828 829 830 831 832 833 835 835 836 837 838 839 840 1														
1 1 1 1 1 1 1 2 1														
841 842 843 844 845 846 847 848 849 850 851 852 853 854 866 861 862 863 864 865 866 867 868 1 1 1 1 2 1														
1 1														
855 856 857 858 859 860 861 862 863 864 865 866 867 871 1														
1 1 1 2 1														
869 870 871 872 873 874 875 876 877 878 879 880 881 1														
1 1														
883 884 885 886 887 888 889 890 891 892 893 894 895 896 1														
1 1														
897 898 899 900 901 902 903 904 905 906 907 908 909 910 1														
1 1														
911 912 913 914 915 916 917 918 919 920 921 922 923 924 1														
1 1														
925 926 927 928 929 930 931 932 933 934 935 936 937 938 934 935 936 937 938 938 938 934 935 936 937 938 938 938 938 936 937 938 938 938 939 950 950 950 952 952 946 947 948 949 950 951 952 952 953 940 947 948 949 950 951 952 952 953 954 955 955 956 957 958 959 960 961 962 963 964 965 966 966 967 968 969 966 966 967 978 978 978 978 977 978 979 988 989 989 990 991 992 993 994 994 994 994 <td></td>														
1 1														
939 940 941 942 943 944 945 946 947 948 949 950 951 952 1 1 1 1 1 3 1 1 1 1 2 1 1 953 954 955 956 957 958 959 960 961 962 963 964 965 966 1														
1 1 1 1 1 3 1 1 1 1 2 1 1 953 954 955 956 957 958 959 960 961 962 963 964 965 966 1														
953 954 955 956 957 958 959 960 961 962 963 964 965 966 966 968 969 970 971 972 973 974 975 976 977 978 979 980 1<							_						_	
1 1														
967 968 969 970 971 972 973 974 975 976 977 978 979 980 980 980 980 971 978 980 980 981 971 971 971 971 971 971 971 971 971 971 972 973 994 993 994 980 988 989 990 991 992 993 994 994 990 991 992 993 994 994 990 991 992 993 994 994 990 991 992 993 994 994 990 991 992 993 994 994 990 991 992 993 994 994 1000								200					202	200
1 1 1 1 1 2 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
981 982 983 984 985 986 987 988 989 990 991 992 993 994 1	967	968	969	970	971	972	973	974	975	976	977	978	979	980
1 1	1	1	1	1	1	1	2	1	1	1	1	1	1	1
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1 5 1 <td>981</td> <td>982</td> <td>983</td> <td>984</td> <td>985</td> <td>986</td> <td>987</td> <td>988</td> <td>989</td> <td>990</td> <td>991</td> <td>992</td> <td>993</td> <td>994</td>	981	982	983	984	985	986	987	988	989	990	991	992	993	994
1 5 1 <td>1</td>	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008
1 1 1 1 1 1 1 1 1 1 1 1 1	1	5	1	1	1	1	1	1	1	1	1	1	1	1
	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036

```
1
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
                        1
                             1
                                   1
                                        1
                                             1
                                                  1
                                                       1
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
                        1
                             1
                                   1
                                        1
                                             1
                                                  1
                                                       1
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
                             1
                                   1
                                        1
                                             1
                                                  1
                                                       1
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
                                   1
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
                   1
                             1
                                   1
                                        1
                                             1
                                                  1
                                                       1
                        1
                                                             1
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
                   1
                        1
                             1
                                   1
                                             1
                                                  1
                                                       1
                                        1
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
                             1
                                   1
                                        1
                                             1
                                                  1
                                                       1
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
                        2
                             1
                                   1
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
                                             1
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
                             1
                                   1
                                        1
                                             1
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
                   1
                        2
                                  1
                                             1
                                                  1
                             1
                                        1
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
                        1
                             1
                                   1
                                        1
                                             1
                                                  1
                                                       1
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
                                   1
                                             1
                                                  1
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
                        1
                             1
                                   1
                                        4
                                             2
                                                  1
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
                        1
                             1
                                   2
                                        1
                                             1
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
                                                  1
                   1
                        1
                             1
                                   1
                                        1
                                             1
                                                       1
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
                                   1
                             1
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
        1
                   1
                        1
                             1
                                   1
                                        1
```

If we want to know how many locations have more than one point event, we can use the code chunk below.

```
sum ( multiplicity( childcare_ppp) > 1 )

[1] 85
```

The output shows that there are 85 duplicated point events.

To view the locations of these duplicate point events, we will plot *childcare* data by using the code chunk below.


```
tmap_mode( "plot" )
```

There are three ways to overcome this problem. The easiest way is to delete the duplicates. But, that will also mean that some useful point events will be lost.

The second solution is use *jittering*, which will add a small perturbation to the duplicate points so that they do not occupy the exact same space.

The third solution is to make each point "unique" and then attach the duplicates of the points to the patterns as **marks**, as attributes of the points. Then you would need analytical techniques that take into account these marks.

The code chunk below implements the jittering approach.

```
childcare_ppp_jit <- rjitter ( childcare_ppp, retry= TRUE , nsim
= 1 , drop= TRUE )
plot ( childcare_ppp_jit)</pre>
```



```
any ( duplicated( childcare_ppp_jit) )
```

[1] FALSE

Notice the difference with the original plot. Can you see how the circumference do not overlap perfectly now?

Creating owin

When analysing spatial point patterns, it is a good practice to confine the analysis with a geographical area like Singapore boundary. In **spatstat**, an object called **owin** is specially designed to represent this polygonal region.

The code chunk below is used to covert sg SpatialPolygon object into owin object of spatstat.

```
sg_owin <- as ( sg_sp , "owin" )
```

The ouput object can be displayed by using plot() and summary() functions.

```
plot ( sg_owin )
```

sg_owin

summary (sg_owin)

Window: polygonal boundary 60 separate polygons (no holes)

oo sepai	acc	porygons	(110 110103)	
		vertices	area	relative.area
polygon	1	38	1.56140e+04	2.09e-05
polygon	2	735	4.69093e+06	6.27e-03
polygon	3	49	1.66986e+04	2.23e-05
polygon	4	76	3.12332e+05	4.17e-04
polygon	5	5141	6.36179e+08	8.50e-01
polygon	6	42	5.58317e+04	7.46e-05
polygon	7	67	1.31354e+06	1.75e-03
polygon	8	15	4.46420e+03	5.96e-06
polygon	9	14	5.46674e+03	7.30e-06
polygon	10	37	5.26194e+03	7.03e-06
polygon	11	53	3.44003e+04	4.59e-05
polygon	12	74	5.82234e+04	7.78e-05
polygon	13	69	5.63134e+04	7.52e-05
polygon	14	143	1.45139e+05	1.94e-04
polygon	15	165	3.38736e+05	4.52e-04
polygon	16	130	9.40465e+04	1.26e-04
polygon	17	19	1.80977e+03	2.42e-06
polygon	18	16	2.01046e+03	2.69e-06
polygon	19	93	4.30642e+05	5.75e-04
polygon	20	90	4.15092e+05	5.54e-04
polygon	21	721	1.92795e+06	2.57e-03
polygon	22	330	1.11896e+06	1.49e-03
polygon	23	115	9.28394e+05	1.24e-03
polygon	24	37	1.01705e+04	1.36e-05
polygon	25	25	1.66227e+04	2.22e-05
polygon	26	10	2.14507e+03	2.86e-06
polygon	27	190	2.02489e+05	2.70e-04
polygon	28	175	9.25904e+05	1.24e-03
polygon	29	1993	9.99217e+06	1.33e-02
polygon	30	38	2.42492e+04	3.24e-05
polygon	31	24	6.35239e+03	8.48e-06
polygon	32	53	6.35791e+05	8.49e-04
polygon	33	41	1.60161e+04	2.14e-05
polygon	34	22	2.54368e+03	3.40e-06

```
polygon 35
                  30 1.08382e+04
                                       1.45e-05
polygon 36
                 327 2.16921e+06
                                       2.90e-03
polygon 37
                 111 6.62927e+05
                                       8.85e-04
polygon 38
                  90 1.15991e+05
                                       1.55e-04
polygon 39
                  98 6.26829e+04
                                       8.37e-05
polygon 40
                 415 3.25384e+06
                                       4.35e-03
polygon 41
                 222 1.51142e+06
                                       2.02e-03
polygon 42
                 107 6.33039e+05
                                       8.45e-04
polygon 43
                   7 2.48299e+03
                                       3.32e-06
polygon 44
                  17 3.28303e+04
                                       4.38e-05
polygon 45
                  26 8.34758e+03
                                       1.11e-05
polygon 46
                 177 4.67446e+05
                                       6.24e-04
polygon 47
                                       4.27e-06
                  16 3.19460e+03
polygon 48
                  15 4.87296e+03
                                       6.51e-06
polygon 49
                                       2.16e-05
                  66 1.61841e+04
polygon 50
                 149 5.63430e+06
                                       7.53e-03
polygon 51
                 609 2.62570e+07
                                       3.51e-02
polygon 52
                   8 7.82256e+03
                                       1.04e-05
polygon 53
                 976 2.33447e+07
                                       3.12e-02
polygon 54
                  55 8.25379e+04
                                       1.10e-04
polygon 55
                 976 2.33447e+07
                                       3.12e-02
polygon 56
                  61 3.33449e+05
                                       4.45e-04
polygon 57
                   6 1.68410e+04
                                       2.25e-05
polygon 58
                   4 9.45963e+03
                                       1.26e-05
                  46 6.99702e+05
polygon 59
                                       9.35e-04
polygon 60
                  13 7.00873e+04
                                       9.36e-05
enclosing rectangle: [2663.93, 56047.79] x [16357.98, 50244.03] units
                      (53380 x 33890 units)
Window area = 748741000 square units
Fraction of frame area: 0.414
```

Combining childcare points and the study area

By using the code below, we are able to extract childcare that is within the specific region to do our analysis later on.

```
childcareSG_ppp = childcare_ppp[ sg_owin ]
```

Here we plot the combined childcare point and Punggol region to prove that it works

```
plot ( childcareSG_ppp)
```

childcareSG_ppp

summary (childcareSG_ppp)

Planar point pattern: 1312 points

Average intensity 1.752274e-06 points per square unit

Pattern contains duplicated points

Coordinates are given to 3 decimal places i.e. rounded to the nearest multiple of 0.001 units

Window: polygonal boundary
60 separate polygons (no holes)

-		. , ,	•	
		vertices	area	relative.area
polygon	1	38	1.56140e+04	2.09e-05
polygon	2	735	4.69093e+06	6.27e-03
polygon	3	49	1.66986e+04	2.23e-05
polygon	4	76	3.12332e+05	4.17e-04
polygon	5	5141	6.36179e+08	8.50e-01
polygon	6	42	5.58317e+04	7.46e-05
polygon	7	67	1.31354e+06	1.75e-03
polygon	8	15	4.46420e+03	5.96e-06
polygon	9	14	5.46674e+03	7.30e-06
polygon	10	37	5.26194e+03	7.03e-06
polygon	11	53	3.44003e+04	4.59e-05
polygon	12	74	5.82234e+04	7.78e-05
polygon	13	69	5.63134e+04	7.52e-05
polygon	14	143	1.45139e+05	1.94e-04
polygon	15	165	3.38736e+05	4.52e-04
polygon	16	130	9.40465e+04	1.26e-04
polygon	17	19	1.80977e+03	2.42e-06
polygon	18	16	2.01046e+03	2.69e-06
polygon	19	93	4.30642e+05	5.75e-04
polygon	20	90	4.15092e+05	5.54e-04
polygon	21	721	1.92795e+06	2.57e-03
polygon	22	330	1.11896e+06	1.49e-03
polygon	23	115	9.28394e+05	1.24e-03

```
polygon 24
                  37 1.01705e+04
                                       1.36e-05
polygon 25
                  25 1.66227e+04
                                       2.22e-05
polygon 26
                  10 2.14507e+03
                                       2.86e-06
                                       2.70e-04
polygon 27
                 190 2.02489e+05
polygon 28
                 175 9.25904e+05
                                       1.24e-03
polygon 29
                1993 9.99217e+06
                                       1.33e-02
polygon 30
                  38 2.42492e+04
                                       3.24e-05
polygon 31
                  24 6.35239e+03
                                       8.48e-06
polygon 32
                  53 6.35791e+05
                                       8.49e-04
polygon 33
                  41 1.60161e+04
                                       2.14e-05
polygon 34
                  22 2.54368e+03
                                       3.40e-06
                  30 1.08382e+04
polygon 35
                                       1.45e-05
polygon 36
                 327 2.16921e+06
                                       2.90e-03
                 111 6.62927e+05
polygon 37
                                       8.85e-04
polygon 38
                  90 1.15991e+05
                                       1.55e-04
polygon 39
                  98 6.26829e+04
                                       8.37e-05
polygon 40
                 415 3.25384e+06
                                       4.35e-03
polygon 41
                 222 1.51142e+06
                                       2.02e-03
                 107 6.33039e+05
polygon 42
                                       8.45e-04
polygon 43
                   7 2.48299e+03
                                       3.32e-06
polygon 44
                  17 3.28303e+04
                                       4.38e-05
polygon 45
                  26 8.34758e+03
                                       1.11e-05
polygon 46
                 177 4.67446e+05
                                       6.24e-04
polygon 47
                  16 3.19460e+03
                                       4.27e-06
polygon 48
                  15 4.87296e+03
                                       6.51e-06
polygon 49
                  66 1.61841e+04
                                       2.16e-05
polygon 50
                 149 5.63430e+06
                                       7.53e-03
polygon 51
                 609 2.62570e+07
                                       3.51e-02
polygon 52
                   8 7.82256e+03
                                       1.04e-05
polygon 53
                 976 2.33447e+07
                                       3.12e-02
polygon 54
                  55 8.25379e+04
                                       1.10e-04
polygon 55
                 976 2.33447e+07
                                       3.12e-02
polygon 56
                  61 3.33449e+05
                                       4.45e-04
                                       2.25e-05
polygon 57
                   6 1.68410e+04
polygon 58
                   4 9.45963e+03
                                       1.26e-05
polygon 59
                  46 6.99702e+05
                                       9.35e-04
polygon 60
                  13 7.00873e+04
                                       9.36e-05
enclosing rectangle: [2663.93, 56047.79] x [16357.98, 50244.03] units
                      (53380 x 33890 units)
Window area = 748741000 square units
```

Fraction of frame area: 0.414

First-order SPPA

In this section, you will learn how to perform first-order SPPA by using spatstat package. The hands-on exercise will focus on:

- deriving kernel density estimation (KDE) layer for visualising and exploring the intensity of point processes,
- norforming Confirmatory Coatial Daint Dattorne Analysis by using Magraet Maighbour statistics

Kernel Density Estimation

In this section, you will learn how to compute the kernel density estimation of childcare services in Singapore.

Computing kernel density estimation using automatic bandwidth selection method

The code chunk below computes a kernel density by using the following configurations of <u>density()</u> of **spatstat**: - <u>bw.diggle()</u> automatic bandwidth selection method. Other recommended methods are <u>bw.CvL()</u>, bw.scott() or bw.ppl().

- The smoothing kernel used is *gaussian*, which is the default. Other smoothing methods are: "epanechnikov", "quartic" or "disc".
- The intensity estimate is corrected for edge effect bias by using method described by Jones (1993) and Diggle (2010, equation 18.9). The default is *FALSE*.

The plot() function of Base R is then used to display the kernel density derived.

```
plot ( kde_childcareSG_bw)
```

kde_childcareSG_bw

The density values of the output range from 0 to 0.000035 which is way too small to comprehend. This is because the default unit of measurement of svy21 is in meter. As a result, the density values computed is in "number of points per square meter".

In the code chunk below, rescale() is used to covert the unit of measurement from meter to kilometer.

```
childcareSG_ppp.km <- rescale ( childcareSG_ppp, 1000 , "km" )</pre>
```

Now, we can re-run *density()* using the resale data set and plot the output kde map.

```
kde_childcareSG.bw <- density ( childcareSG_ppp.km, sigma= bw.diggle, edge
= TRUE    , kernel= "gaussian")
plot ( kde_childcareSG.bw)</pre>
```

kde_childcareSG.bw

Notice that output image looks identical to the earlier version, the only changes in the data values (refer to the legend).

WORKING WITH DIFFERENT AUTOMATIC BADWIDTH METHODS

Beside bw.diggle(), there are three other spatstat functions can be used to determine the bandwidth, they

are: bw.CvL(), bw.scott(), and bw.ppl().

Let us take a look at the bandwidth return by these automatic bandwidth calculation methods by using the code chunk below.

```
bw.CvL
                    childcareSG_ppp.km)
  sigma
3.080455
 bw.scott (
                    childcareSG_ppp.km)
sigma.x sigma.y
2.303178 1.492997
 bw.ppl
                  childcareSG ppp.km)
   sigma
0.3310477
 bw.diggle(
                   childcareSG_ppp.km)
   sigma
0.2984095
```

Baddeley et. (2016) suggested the use of the *bw.ppl()* algorithm because in ther experience it tends to produce the more appropriate values when the pattern consists predominantly of tight clusters. But they also insist that if the purpose of once study is to detect a single tight cluster in the midst of random noise then the *bw.diggle()* method seems to work best.

The code chunk beow will be used to compare the output of using bw.diggle and bw.ppl methods.

```
kde_childcareSG.ppl <-
                          density (
                                          childcareSG_ppp.km, sigma=
                                                                        bw.ppl
                                                                                , edge
       TRUE
               , kernel=
                              "gaussian")
               mfrow=
                            С
                                  (
                                                            )
                                                                   )
par
                                                    , 2
                                             "bw.diggle")
              kde_childcareSG.bw, main =
plot
               kde_childcareSG.ppl, main =
                                               "bw.ppl" )
plot
```

bw.diggle bw.ppl

By default, the kernel method used in *density.ppp()* is *gaussian*. But there are three other options, namely: Epanechnikov, Quartic and Dics.

The code chunk below will be used to compute three more kernel density estimations by using these three kernel function.

```
par ( mfrow= c ( 1 ,2 ) )
plot ( density ( childcareSG_ppp.km, sigma= bw.ppl , edge=
TRUE , kernel= "gaussian") , main= "Gaussian")
plot ( density ( childcareSG_ppp.km, sigma= bw.ppl , edge=
TRUE , kernel= "epanechnikov") , main= "Epanechnikov")
```

Gaussian

Epanechnikov


```
par ( mfrow= c ( 1 ,2 ) )
plot ( density ( childcareSG_ppp.km, sigma= bw.ppl , edge=
TRUE , kernel= "quartic") , main= "Quartic")
```

```
prot ( density ( cniidcaresu_ppp.km, sigma= bw.ppr , edge= TRUE , kernel= "disc" ) , main= "Disc" )
```

Quartic Disc

Fixed and Adaptive KDE

COMPUTING KDE BY USING FIXED BANDWIDTH

Next, you will compute a density map by defining a bandwidth of 600 meter. Notice that in the code chunk below, the sigma value used is 0.6. This is because the unit of measurement of *childcareSG_ppp.km* object is in kilometer, hence the 600m is 0.6km.

```
kde_childcareSG_600 <- density ( childcareSG_ppp.km, sigma= 0.6 , edge
= TRUE , kernel= "gaussian")
plot ( kde_childcareSG_600)</pre>
```

kde_childcareSG_600

COMPUTING KDE BY USING ADAPTIVE BANDWIDTH

Fixed bandwidth method is very sensitive to highly skew distribution of spatial point patterns over geographical units for example urban versus rural. One way to overcome this problem is by using adaptive bandwidth instead.

In this section, you will learn how to derive adaptive kernel density estimation by using <u>density.adaptive()</u> of **spatstat**.

```
kde_childcareSG_adaptive <- adaptive.density( childcareSG_ppp.km, method=
"kernel" )
plot ( kde childcareSG adaptive)</pre>
```

kde_childcareSG_adaptive

We can compare the fixed and adaptive kernel density estimation outputs by using the code chunk below.

```
par ( mfrow= c ( 1 ,2 ) )
plot ( kde_childcareSG.bw, main = "Fixed bandwidth" )
plot ( kde_childcareSG_adaptive, main = "Adaptive bandwidth")
```

Fixed bandwidth

Adaptive bandwidth

Converting KDE output into grid object.

The result is the same, we just convert it so that it is suitable for mapping purposes

```
gridded_kde_childcareSG_bw <- as.SpatialGridDataFrame.im( kde_childcareSG.bw
)
spplot ( gridded_kde_childcareSG_bw)</pre>
```


CONVERTING GRIDDED OUTPUT INTO RASTER

Next, we will convert the gridded kernal density objects into RasterLayer object by using raster() of raster package.

```
kde_childcareSG_bw_raster <-</pre>
                             raster (
                                                     gridded_kde_childcareSG_bw)
```

Let us take a look at the properties of kde_childcareSG_bw_raster RasterLayer.

kde_childcareSG_bw_raster

class : RasterLayer

dimensions: 128, 128, 16384 (nrow, ncol, ncell)

resolution: 0.4170614, 0.2647348 (x, y)

extent : 2.663926, 56.04779, 16.35798, 50.24403 (xmin, xmax, ymin, ymax)

crs : NA : memory source names : v

values : -6.052971e-15, 28.01036 (min, max)

Notice that the crs property is NA.

ASSIGNING PROJECTION SYSTEMS

The code chunk below will be used to include the CRS information on kde_childcareSG_bw_raster RasterLayer.

```
projection(
                   kde childcareSG bw raster)
                                                  <- CRS
 "+init=EPSG:3414")
 kde_childcareSG_bw_raster
      : RasterLayer
dimensions: 128, 128, 16384 (nrow, ncol, ncell)
resolution: 0.4170614, 0.2647348 (x, y)
         : 2.663926, 56.04779, 16.35798, 50.24403 (xmin, xmax, ymin, ymax)
extent
```

: +proj=tmerc +lat_0=1.3666666666667 +lon_0=103.83333333333 +k=1 +x_0=28001.642 +y_0=387 crs

: memory source

names : v

: -6.052971e-15, 28.01036 (min, max) values

Notice that the crs property is completed.

Visualising the output in tmap

Finally, we will display the raster in cartographic quality map using tmap package.

```
tm_shape (
                   kde_childcareSG_bw_raster)
```


Notice that the raster values are encoded explicitly onto the raster pixel using the values in "v"" field.

Comparing Spatial Point Patterns using KDE

In this section, you will learn how to compare KDE of childcare at Ponggol, Tampines, Chua Chu Kang and Jurong West planning areas.

EXTRACTING STUDY AREA

The code chunk below will be used to extract the target planning areas.

pg =	mpsz	[mpsz	@	data	\$ PLN_AREA_N ==
"PUNGGOL",]	mpsz	[mpsz	@	data	\$ PLN_AREA_N ==
"TAMPINES",]	mpsz	[mpsz	@	data	\$ PLN_AREA_N ==
"CHOA CHU KA	NG",] mpsz	[mpsz	@	data	\$ PLN_AREA_N ==
"JURONG WEST]					

Plotting target planning areas

```
par ( mfrow= c ( 2 ,2 )
```

```
plot (      pg    , main = "Ponggol")
plot (      tm    , main = "Tampines")
plot (      ck    , main = "Choa Chu Kang")
plot (      jw    , main = "Jurong West" )
```

Ponggol

Tampines

Choa Chu Kang

Jurong West

CONVERTING THE SPATIAL POINT DATA FRAME INTO GENERIC SP FORMAT

Next, we will convert these SpatialPolygonsDataFrame layers into generic spatialpolygons layers.

```
pg_sp = as ( pg , "SpatialPolygons")
tm_sp = as ( tm , "SpatialPolygons")
ck_sp = as ( ck , "SpatialPolygons")
jw_sp = as ( jw , "SpatialPolygons")
```

CREATING **OWIN** OBJECT

Now, we will convert these SpatialPolygons objects into owin objects that is required by **spatstat**.

```
      pg_owin
      =
      as
      (
      pg_sp
      , "owin"
      )

      tm_owin
      =
      as
      (
      tm_sp
      , "owin"
      )

      ck_owin
      =
      as
      (
      ck_sp
      , "owin"
      )

      jw_owin
      =
      as
      (
      jw_sp
      , "owin"
      )
```

COMBINING CHILDCARE POINTS AND THE STUDY AREA

By using the code chunk below, we are able to extract childcare that is within the specific region to do our analysis later on.

```
childcare_pg_ppp = childcare_ppp_jit[ pg_owin ]
childcare_tm_ppp = childcare_ppp_jit[ tm_owin ]
childcare_ck_ppp = childcare_ppp_jit[ ck_owin ]
childcare_jw_ppp = childcare_ppp_jit[ jw_owin ]
```

Next, rescale() function is used to trasnform the unit of measurement from metre to kilometre.

```
"km"
childcare_pg_ppp.km =
                              rescale (
                                                childcare_pg_ppp, 1000
childcare_tm_ppp.km =
                              rescale (
                                                childcare_tm_ppp, 1000
                                                                             "km"
childcare_ck_ppp.km =
                              rescale (
                                                childcare_ck_ppp, 1000
                                                                             "km"
                              rescale (
childcare jw ppp.km =
                                                childcare jw ppp, 1000
                                                                             "km"
```

The code chunk below is used to plot these four study areas and the locations of the childcare centres.

```
par
         (
                 mfrow=
                                        (
                                                          , 2
                                                                   )
                                                                             )
                               C
plot
                 childcare pg ppp.km, main=
                                                   "Punggol")
plot
                 childcare_tm_ppp.km, main=
                                                   "Tampines")
                 childcare_ck_ppp.km, main=
                                                   "Choa Chu Kang")
plot
         (
                 childcare_jw_ppp.km, main=
                                                   "Jurong West"
plot
```

Punggol

Tampines

Choa Chu Kang

Jurong West

COMPUTING KDE

The code chunk below will be used to compute the KDE of these four planning area. **bw.diggle** method is used to derive the bandwidth of each

```
kde_childcare_pg_bw <- density ( childcare_pg_ppp.km, sigma= bw.diggle, edge

= TRIF kernel= "gaussian")</pre>
```

```
plot ( kde_childcare_pg_bw)
```

kde_childcare_pg_bw


```
kde_childcare_tm_bw <- density ( childcare_tm_ppp.km, sigma= bw.diggle, edge

= TRUE    , kernel= "gaussian")
plot ( kde_childcare_tm_bw)</pre>
```

kde_childcare_tm_bw


```
kde_childcare_ck_bw <- density ( childcare_ck_ppp.km, sigma= bw.diggle, edge

= TRUE , kernel= "gaussian")
plot ( kde_childcare_ck_bw)</pre>
```

kde_childcare_ck_bw


```
kde_childcare_jw_bw <- density ( childcare_jw_ppp.km, sigma= bw.diggle, edge

= TRUE , kernel= "gaussian")
plot ( kde_childcare_jw_bw)</pre>
```

kde_childcare_jw_bw

COMPUTING FIXED BANDWIDTH KDE

For comparison purposes, we will use 250m as the bandwidth.

```
kde_childcare_ck_250 <- density ( childcare_ck_ppp.km, sigma= 0.25 ,
edge= TRUE , kernel= "gaussian")
plot ( kde_childcare_ck_250)
```

kde_childcare_ck_250


```
kde_childcare_jw_250 <- density ( childcare_jw_ppp.km, sigma= 0.25 ,
edge= TRUE , kernel= "gaussian")
plot ( kde_childcare_jw_250)
```

kde_childcare_jw_250


```
edge= TRUE , kernel= "gaussian")
plot ( kde_childcare_pg_250)
```

kde_childcare_pg_250


```
kde_childcare_tm_250 <- density ( childcare_tm_ppp.km, sigma= 0.25 ,
edge= TRUE , kernel= "gaussian")
plot ( kde_childcare_tm_250)</pre>
```

kde_childcare_tm_250

In this section, we will perform the Clark-Evans test of aggregation for a spatial point pattern by using *clarkevans.test()* of **statspat**.

The test hypotheses are:

Ho = The distribution of childcare services are randomly distributed.

H1= The distribution of childcare services are not randomly distributed.

The 95% confident interval will be used.

Testing spatial point patterns using Clark and Evans Test

```
clarkevans.test(
                       childcareSG_ppp,
                correction=
                                 "none"
                                "sg_owin",
                clipregion=
                                С
                alternative=
                                         (
                                                  "clustered")
                nsim= 99
                                    )
   Clark-Evans test
   No edge correction
   Monte Carlo test based on 99 simulations of CSR with fixed n
data: childcareSG_ppp
R = 0.55696, p-value = 0.01
alternative hypothesis: clustered (R < 1)
```

What conclusion can you draw from the test result?

Clark and Evans Test: Choa Chu Kang planning area

In the code chunk below, <u>clarkevans.test()</u> of **spatstat** is used to performs Clark-Evans test of aggregation for childcare centre in Choa Chu Kang planning area.

```
clarkevans.test(
                       childcare_ck_ppp,
                correction=
                                 "none"
                clipregion=
                                 NULL
                alternative=
                                           (
                                                   "two.sided")
                                 С
                nsim= 999
                                    )
   Clark-Evans test
   No edge correction
   Monte Carlo test based on 999 simulations of CSR with fixed n
data: childcare ck nnn
```

```
R = 0.9811, p-value = 0.3
alternative hypothesis: two-sided
```

Clark and Evans Test: Tampines planning area

In the code chunk below, the similar test is used to analyse the spatial point patterns of childcare centre in Tampines planning area.

Second-order Spatial Point Patterns Analysis

Analysing Spatial Point Process Using G-Function

The G function measures the distribution of the distances from an arbitrary event to its nearest event. In this section, you will learn how to compute G-function estimation by using <u>Gest()</u> of **spatstat** package. You will also learn how to perform monta carlo simulation test using <u>envelope()</u> of **spatstat** package.

Choa Chu Kang planning area

COMPUTING G-FUNCTION ESTIMATION

The code chunk below is used to compute G-function using Gest() of spatat package.

```
G_CK = Gest ( childcare_ck_ppp, correction = "border" )
plot ( G_CK , xlim= c ( 0 ,500 ) )
```


To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

Ho = The distribution of childcare services at Choa Chu Kang are randomly distributed.

H1= The distribution of childcare services at Choa Chu Kang are not randomly distributed.

The null hypothesis will be rejected if p-value is smaller than alpha value of 0.001.

Monte Carlo test with G-fucntion

```
G_CK.csr <-
                 envelope (
                                childcare_ck_ppp, Gest
                                                                    999
                                                      , nsim =
Generating 999 simulations of CSR ...
1, 2, 3, .....10......20......30.......40......50......60
......70......80......90......100......110......120
......130......140......150......160......170......180
......190......200......210......220......230......240
......250......260.....270......280......290......300
  .....310......320......330......340......350......360
  .....370.......380......390.......400......410.......420
  .....430......440......450......460......470......480
   .....490.......500........510.......520.......530........540
  .....550......560......570......580......590.......600
  .....610.......620.......630........640.......650.........660
......670......680......690......700.....710......720
  .....730......740......750......760......770......780
......790......800......810......820......830......840
......850......860......870......880.....890......900
```

Done.

Tampines planning area

COMPUTING G-FUNCTION ESTIMATION

```
G_tm = Gest ( childcare_tm_ppp, correction = "best" )
plot ( G_tm )
```


To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

Ho = The distribution of childcare services at Tampines are randomly distributed.

H1= The distribution of childcare services at Tampines are not randomly distributed.

The null hypothesis will be rejected is p-value is smaller than alpha value of 0.001.

The code chunk below is used to perform the hypothesis testing.

```
G_tm.csr <-
                             childcare_tm_ppp, Gest
                                                                  "all"
                envelope (
                                                 , correction =
  nsim =
             999
Generating 999 simulations of CSR
1, 2, 3, ......10.......20.......30........40.......50.......60
......70......80......90......100......110......120
  .....130.......140.......150.......160.......170.......180
......190......200......210......220......230......240
......250......260.....270.....280.....290.....300
  .....310......320......330......340......350......360
......370......380......390......400......410......420
  .....490......500......510......520......530......540
  .....550......560......570......580......590......600
  .....610......620......630.......640......650.......660
......670......680......690......700......710......720
   .....790.......800.......810.......820.......830........840
......850......860......870......880......890......900
......910......920......930......940......950......960
........970.......980........990.........999.
```

Done.

```
plot ( G_tm.csr )
```


Analysing Spatial Point Process Using F-Function

The F function estimates the empty space function F(r) or its hazard rate h(r) from a point pattern in a window of arbitrary shape. In this section, you will learn how to compute F-function estimation by using <u>Fest()</u> of **spatstat** package. You will also learn how to perform monta carlo simulation test using <u>envelope()</u> of **spatstat** package.

Choa Chu Kang planning area

COMPUTING F-FUNCTION ESTIMATION

The code chunk below is used to compute F-function using Fest() of **spatat** package.

```
F_CK = Fest ( childcare_ck_ppp)
plot ( F_CK )
```


Performing Complete Spatial Randomness Test

To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

Ho = The distribution of childcare services at Choa Chu Kang are randomly distributed.

H1= The distribution of childcare services at Choa Chu Kang are not randomly distributed.

The null hypothesis will be rejected if p-value is smaller than alpha value of 0.001.

Monte Carlo test with F-fucntion

```
F_CK.csr <-
               envelope (
                             childcare_ck_ppp, Fest
                                                , nsim =
                                                             999
Generating 999 simulations of CSR ...
1, 2, 3, .....10......20......30.......40......50......60
......70......80......90......100......110......120
........130.......140........150.......160.......170.......180
......190......200......210......220......230......240
......250......260......270......280......290......300
......310......320......330......340......350......360
......370......380......390......400......410......420
  ......490......500......510......520......530......540
  .....550......560......570......580......590.......600
........610.......620........630........640.......650........660
......670......680......690......700......710......720
  ......790......800......810......820......830......840
.......850.......860.......870.......880.......890.......900
......910......920......930......940......950......960
......970.......980.......990........999.
```

Done.

```
plot ( F_CK.csr )
```

F_CK.csr

Tampines planning area

COMPUTING F-FUNCTION ESTIMATION

Monte Carlo test with F-fucntion

```
F_tm = Fest ( childcare_tm_ppp, correction = "best" )
plot ( F_tm )
```


To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

Ho = The distribution of childcare services at Tampines are randomly distributed.

H1= The distribution of childcare services at Tampines are not randomly distributed.

The null hypothesis will be rejected is p-value is smaller than alpha value of 0.001.

The code chunk below is used to perform the hypothesis testing.

```
F tm.csr <-
                envelope (
                              childcare tm ppp, Fest
                                                   , correction =
                                                                     "all"
 , nsim =
Generating 999 simulations of CSR ...
1, 2, 3, ......10.......20.......30.......40.......50.......60
......130......140......150......160......170......180
......190......200......210......220.....230......240
......250......260......270......280......290......300
......310......320......330......340......350......360
......370......380......390......400......410......420
......430......440......450......460......470......480
......490......500......510......520......530......540
......550......560......570......580......590......600
........610.......620........630........640.......650........660
......670......680......690......700.....710......720
......730......740......750......760......770......780
......790......800......810......820......830......840
......850......860......870......880......890......900
......910......920......930......940......950......960
........970.......980........990.........999.
```

Done.

```
plot ( F_tm.csr )
```


Analysing Spatial Point Process Using K-Function

K-function measures the number of events found up to a given distance of any particular event. In this section, you will learn how to compute K-function estimates by using <u>Kest()</u> of **spatstat** package. You will also learn how to perform monta carlo simulation test using <u>envelope()</u> of spatstat package.

Choa Chu Kang planning area

COMPUTING K-FUCNTION ESTIMATE

```
K_ck = Kest ( childcare_ck_ppp, correction = "Ripley")
plot ( K_ck , . - r ~ r , ylab=
"K(d)-r" , xlab = "d(m)" )
```


To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

Ho = The distribution of childcare services at Choa Chu Kang are randomly distributed.

H1= The distribution of childcare services at Choa Chu Kang are not randomly distributed.

The null hypothesis will be rejected if p-value is smaller than alpha value of 0.001.

The code chunk below is used to perform the hypothesis testing.

```
K_ck.csr <- envelope ( childcare_ck_ppp, Kest , nsim = 99 , rank
= 1 , glocal= TRUE )</pre>
```

Generating 99 simulations of CSR ...

Done.

```
plot ( K_ck.csr,. - r ~ r ,xlab=
"d" ,ylab= "K(d)-r" )
```

K_ck.csr

Tampines planning area

COMPUTING K-FUCNTION ESTIMATION

```
K_tm = Kest ( childcare_tm_ppp, correction = "Ripley")
plot ( K_tm , . - r ~ r ,
    ylab= "K(d)-r" , xlab = "d(m)" ,
    xlim= c ( 0 ,1000 ) )
```


PERFORMING COMPLETE SPATIAL RANDOMNESS TEST

To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

Ho = The distribution of childcare services at Tampines are randomly distributed.

H1= The distribution of childcare services at Tampines are not randomly distributed.

The null hypothesis will be rejected if p-value is smaller than alpha value of 0.001.

The code chunk below is used to perform the hypothesis testing.

```
K_tm.csr <- envelope ( childcare_tm_ppp, Kest , nsim = 99 , rank
= 1 , glocal= TRUE )</pre>
```

Generating 99 simulations of CSR ...

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28
36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 6

71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 9

Done.

```
plot (    K_tm.csr, . - r ~ r ,
    xlab= "d" , ylab= "K(d)-r" , xlim= c (
0    ,500 ) )
```


Analysing Spatial Point Process Using L-Function

In this section, you will learn how to compute L-function estimation by using <u>Lest()</u> of **spatstat** package. You will also learn how to perform monta carlo simulation test using *envelope()* of spatstat package.

Choa Chu Kang planning area

COMPUTING L FUCNTION ESTIMATION

```
L_ck = Lest ( childcare_ck_ppp, correction = "Ripley")
plot ( L_ck , . - r ~ r ,
    ylab= "L(d)-r" , xlab = "d(m)" )
```


To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

Ho = The distribution of childcare services at Choa Chu Kang are randomly distributed.

H1= The distribution of childcare services at Choa Chu Kang are not randomly distributed.

The null hypothesis will be rejected if p-value if smaller than alpha value of 0.001.

The code chunk below is used to perform the hypothesis testing.

Generating 99 simulations of CSR ...

Done.

```
plot ( L_ck.csr , . - r ~ r , xlab= "d" , ylab= "L(d)-r" )
```

L ck.csr

Tampines planning area

COMPUTING L-FUCNTION ESTIMATE

```
L_tm = Lest ( childcare_tm_ppp, correction = "Ripley")
plot ( L_tm , . - r ~ r ,
    ylab= "L(d)-r" , xlab = "d(m)" ,
    xlim= c ( 0 ,1000 ) )
```

L_tm

To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

Ho = The distribution of childcare services at Tampines are randomly distributed.

H1= The distribution of childcare services at Tampines are not randomly distributed.

The null hypothesis will be rejected if p-value is smaller than alpha value of 0.001.

The code chunk below will be used to perform the hypothesis testing.

Generating 99 simulations of CSR ...

```
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 67
71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 93
```

Done.

Then, plot the model output by using the code chun below.

```
plot ( L_tm.csr,. - r ~ r , xlab= "d" , ylab= "L(d)-r" , xlim= c (
```

L_tm.csr

u