Orthogonal subspaces: Let V be an inner product Space, U and W be two subspaces of V U and W are Said to be orthogonal if (x,y)=0 for all xeV and yeW Example; Consider 12° with what inner product and Subspaces $U = g(x, \frac{1}{2}x) \mid x \in \mathbb{R}^3 = \text{line } y = \frac{1}{2}x$ $W = \left\{ \left(\frac{1}{2} \chi_1 \chi_1 \right) \middle| \chi \in \mathbb{R}^3 = \lim_{x \to \infty} -2x = 4 \right\}$ then U and W are orthogonal. Take $(x_0, \frac{1}{2}x_0) \in V$ and $(\frac{-1}{2}y_0, y_0) \in W$ $\langle (\chi_0, \frac{1}{2}\chi_0), (\frac{1}{2}\chi_0, y_0) \rangle = \frac{1}{2}\chi_0 y_0 + \frac{1}{2}\chi_0 y_0$: U and W are orthogonal.

Hote: If I and W are orthogonal subspaces then we write it as U + W Orthogonal Complement! Let U be a subspace of un Inner product space V then the set q ye V/ (x,y)=0 for all xeU} is called orthogonal complement of V. We write it as U (U perfo) Note: - VI is a subspace of V.

Example: Consider the inner product space \mathbb{R}^2 with standard inner product. Suppose $U = d(x, x) \mid x \in \mathbb{R}^3$ is a subspace Find U+

50/n:-

$$U^{\perp} = \left\{ (z_{1}, z_{2}) \in \mathbb{R}^{2} \middle| ((z_{1}, z_{2}), (\chi, \chi)) > \pm 0 \right\}$$

$$= \left\{ (z_{1}, z_{2}) \in \mathbb{R}^{2} \middle| \chi z_{1} + \chi z_{2} = 0 \right\}$$

:- A suitable choice for $Z_1 = \chi$ and $Z_2 = -\chi$ Thus $U = \{(\chi_1 - \chi_1) \mid \chi \in \mathbb{R}^2\}$ Theorem: - let V be an inner product space Ube a subspace of V then

(a) dim $U + dim U^{\dagger} = V$ (b) $(U^{\dagger})^{\dagger} = U$ (c) $V = U \oplus U^{\dagger}$

Projections: - Let V and W be subspace of an inner product space V. A linear transformation $T:V\to V$ is called a projection of V on to the subspace U along W if (a) V=U Θ W (b) $T(\chi)=U$ for $\chi=U+W$ G V Θ W.

Orthogonal Projections Let V be an inner product Space and U be a subspace of V so that V=UD UL. The projection of V on to U along ut is called Orthogonal projection of V onto U denoted as Proj . Note: For X E V the Component vector Proj (x) EU is called the orthogonal projection of x into U.

Theorem: Let U be a subspace of an inner product space V and let $u_{11}u_{2},...,u_{m}$ be an orthonormal basis of U. Then for any $x \in V$ the orthogonal projection $Proj_{U}(x)$ is given by $Proj_{U}(x) = \langle x, u_{1} \rangle u_{1} + \langle x_{1}u_{2} \rangle u_{2} + \cdots + \langle x, u_{m} \rangle u_{m}$

Theorem:

U be a Subspace of an inner product Space V. Let $x \in V$ then $\|x - Prij_{v}(x)\| \leq \|x - y\|$ for all $y \in U$.

Pb:1 Let W be the subspace of
$$\mathbb{R}^3$$
 with standard inner product. Suppose W is spanned by $V_1=(1,1,2)$ and $V_2=(1,1,-1)$ then (a) Find Proj $(1,3,-2)$ (b) Find the W Shortest distance between $(1,3,-2)$ and W.

$$\frac{80 \ln 7}{(1,1,2), (1,1,-1)} = 1 + 1 - 2 = 0$$

.. (VI, V2 } is an orthogonal set

$$\|V_1\| = \|(1,1,2)\| = \sqrt{1^2 + 1^2 + 2^2} = \sqrt{6}$$

$$\|V_2\| = \|(||,||,+|)\| = \sqrt{||^2+|^2+(-1)|^2} = \sqrt{3}$$

Normall zation of
$$V_1 = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)$$

Normalization of
$$V_2 = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{2}}\right)$$

An orthonormal basis to w is
$$\left\{ \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{2}{\sqrt{6}} \right), \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}} \right) \right\}$$

Take
$$b = (1_{13}-2)$$
; $u_{1} = (\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}})$; $u_{2} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}})$

$$= \langle (1,3,-2), (\frac{1}{\sqrt{6}},\frac{2}{\sqrt{6}}), (\frac{1}{\sqrt{6}},\frac{2}{\sqrt{6}}) \rangle \left(\frac{1}{\sqrt{6}},\frac{2}{\sqrt{6}},\frac{2}{\sqrt{6}}\right) \rangle \left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{-1}{\sqrt{3}}\right) \rangle \left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{-1}{\sqrt{3}}\right)$$

$$= \left(\frac{1}{\sqrt{6}} + \frac{3}{\sqrt{6}} - \frac{2}{\sqrt{6}}\right) \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right) + \left(\frac{1}{\sqrt{3}} + \frac{3}{\sqrt{3}} + \frac{2}{\sqrt{3}}\right) \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right)$$

$$= 0 \cdot \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \right) + \frac{6}{\sqrt{3}} \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}} \right)$$

$$P_{soj}_{W(b)} = (2, 2, -2)$$

Shortest distance = 11 b - Proj (b)

$$= \|(1,3,-2)-(2,2,-2)\| = \|(1,1,0)\|$$

$$=\sqrt{|^2+|^2+b^2}=\sqrt{2}$$
.