Nom: Correcteur: Note:

Démontrer le résultat suivant (théorème de changement de variable). Soit I et J deux intervalles de \mathbb{R} , $(a,b) \in I^2$, $f: J \to \mathbb{R}$ une fonction continue et $\varphi: I \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 , avec $\varphi(I) \subset J$. Alors

$$\int_{\varphi(a)}^{\varphi(b)} f(t) dt = \int_a^b f(\varphi(t))\varphi'(t) dt.$$

Donner l'ensemble des solutions réelles de l'équation différentielle y''-y'+y=0.

Déterminer une solution sur \mathbb{R}_+^* de l'équation $y' - \frac{y}{2x} = \sqrt{x} \ln(x)$, en utilisant la méthode de la variation de la constante.

Indication : une solution homogène est $x \mapsto \sqrt{x}$.

Soit $n \in \mathbb{N}$ et $z \in \mathbb{C}$. Donner la valeur des sommes suivantes : $\sum_{k=1}^{n} k$, $\sum_{k=1}^{n} k^2$ et $\sum_{k=0}^{n-1} z^k$.