Leveraging Simulation-Based Inference for Precision Cosmology

Maximilian von Wietersheim-Kramsta

mwiet.github.io

Recipe for Cosmological Inference

Modelling Likelihoods

e.g.

 $P(d \mid \theta) \propto e^{-(d-\mu)^2}$

Biased

e.g.

Instrumental systematics

Signaldependent uncertainty

e.g.

Cosmic variance

Intractable

e.g.

Non-trivial selection functions

Bayes' Theorem

Simulation-Based Inference

Cosmic Shear & Large-Scale Structure

In collaboration with K. Lin, N. Tessore, B. Joachimi, A. Loureiro, R. Reischke, A.H. Wright

Simulating Large-Scale Structure

Realistic Selection and Systematics

SBI in Cosmic Shear

Conclusions

SBI allows for uncertainty propagation of arbitrary complexity

Including a realistic systematics and selections shifts S_8 to 0.731 ± 0.033 (1σ lower!)

As future surveys become **systematics-limited**, SBI may help address modelling challenges