Modèle standard et théories de jauge

PHY 575 B

Vincent Verbavatz & Mikael Frosini 11 novembre 2016

Table des matières

I\ Introd	luction
II\ Équat	ions relativistes
1.	Rappels sur le champ électromagnétique
1.	
2.	Équation de Klein-Gordon
2.	1. Principe de correspondance 4
2.	2. Établissement de l'équation de Klein-Gordon 4
2.	
3.	Équation de Dirac
III\ Cham	ps 4
١	Champs et formalisme Lagrangien
1.	1. Champs relativistes et champs quantiques 4
1.	2. Lagrangiens et champs 4
1.	3. Seconde quantification 4
2.	Champ électromagnétique
2.	1. Équations de Lagrange du champ électromagnétique 4
3.	Champ de Klein-Gordon
3.	
3.	2. Quantification du champ 4
3.	3. Interprétation
4.	Champ de Dirac
4.	
4.	- Quantimoution an onemp
4.	
IV\Théor	ie de Jauge
1.	Invariance de jauge
2.	Champ de Jauge
3.	Couplage entre matière et jauge
	le standard et brisure de symétrie
1.	Présentation qualitative du modèle standard
2.	Interactions électro-faibles
3.	Chromodynamique quantique
4.	Champ de Higgs et brisure de symétrie
	là du modèle standard
	el sur le formalisme lagrangien classique
B Boson	de Higgs et énergie du vide

I\ Introduction

II\ Équations relativistes

- 1. Rappels sur le champ électromagnétique
- 1.1. Formalisme tensoriel et équations de Maxwell
- 2. Équation de Klein-Gordon
- 2.1. Principe de correspondance
- 2.2. Établissement de l'équation de Klein-Gordon
- 2.3. Invariance de jauge
- 3. Équation de Dirac

III\ Champs

- 1. Champs et formalisme Lagrangien
- 1.1. Champs relativistes et champs quantiques
- 1.2. Lagrangiens et champs
- 1.3. Seconde quantification
- 2. Champ électromagnétique
- 2.1. Équations de Lagrange du champ électromagnétique
- 3. Champ de Klein-Gordon
- 3.1. Formalisme Lagrangien pour une particule chargée
- 3.2. Quantification du champ
- 3.3. Interprétation
- 4. Champ de Dirac
- 4.1. Formalisme Lagrangien
- 4.2. Quantification du champ
- 4.3. Interprétation

IV\ Théorie de Jauge

- 1. Invariance de jauge
- 2. Champ de Jauge
- 3. Couplage entre matière et jauge

V\ Modèle standard et brisure de symétrie

- 1. Présentation qualitative du modèle standard
- 2. Interactions électro-faibles