	IA	2A	UA	١.
ФИО				
группа				

1A	2A	3A	4A	5A	6A	Оценка

1 зад.	2 зад.	Σ баллов

Подпись преп. _____

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА по механике

24 декабря 2019 г.

Вариант А

1А. (1,5) К оси лабораторного гироскопа, закреплённого на кардановом подвесе в центре масс, подвешен груз массой m = 306 г на расстоянии $\ell = 120$ мм от центра. За один оборот регулярной прецессии исходно горизонтальная ось гироскопа опустилась на $\Delta \alpha = 10^{\circ}$. Определите величину момента силы трения в вертикальной оси крепления подвеса.

2А. (1,5) Однородная плоская квадратная рамка со сторонами внутреннего и внешнего квадратов a и b=3a висит на тонком гвоздике (см. рис.). На каком расстоянии x от центра масс O подвешена рамка, если период её колебаний на гвоздике минимален?

- **3А.** (2) При частотах синусоидальной вынуждающей силы $f_1 = 120$ Γ ц и $f_2 = 480$ Γ ц, приложенной к маятнику с вязким трением, амплитуды скоростей вынужденных малых колебаний одинаковы. Полагая амплитуду вынуждающей силы неизменной, найдите частоту f_0 , соответствующую максимуму амплитуды скорости (резонансу скоростей).
- 4А. (2) На Большом адронном коллайдере ядра свинца-208 во встречных пучках имеют в системе их центра инерции кинетическую энергию $K=2.8~{
 m TpB}$ на нуклон (протон или нейтрон). Найти продольный размер одного из ядер в системе отсчёта другого. Покоящееся ядро имеет форму шара радиусом $r \approx 7 \cdot 10^{-15}$ м. Массу нуклона внутри ядра принять равной $m = 0.93 \, \Gamma \text{эВ}/c^2$.
- **5А.** (2) К лёгкому резиновому шнуру с сечением $S_0=5~{
 m km}^2$ подвесили груз массой $m_1=0.2~{
 m kr},$ так что длина шнура увеличилась в полтора раза: $L_1 = 1.5L_0$. Найдите модуль Юнга резины E и определите массу m_2 груза, требуемого для растяжения шнура вдвое: $L_2 = 2L_0$. Для конечных деформаций резины предлагается использовать закон Гука в следующей дифференциальной форме: $\frac{dF}{S}=E\frac{dL}{L}$, где dF — приращение силы натяжения, L и S его текущие длина и площадь сечения, а E не зависит от L и S. Коэффициент Пуассона резины принять равным $\mu \approx 0.5$.

 $\Pi pume vanue$: для конечных деформаций коэффициент Пуассона определяется как $\mu = -\frac{dr/r}{dL/L}$, где r — текущий радиус стержня.

6А. (2) На шероховатой наклонной плоскости клина, находящегося на гладкой горизонтальной поверхности, сначала удерживают небольшой мяч (тонкостенную сферу), а затем отпускают. Система приходит в движение, мяч скатывается по клину без проскальзывания. Угол при вершине клина $\alpha = \pi/4$, отношение массы клина M к массе мяча m равно n=M/m=2. За какое время T мяч скатится с

клина высотой H = 0.6 м?

	ТБ	26	3Б	4 B	5 B	6B	
ФИО							
							-

1 зад.	2 зад.	Σ баллов

Подпись преп. _____

Оценка

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО МЕХАНИКЕ

24 декабря 2019 г.

Вариант Б

1Б. (1,5) Лабораторный гироскоп закреплён на кардановом подвесе в центре масс. Груз массой m=360 г находится на оси гироскопа на некотором расстоянии от центра. Из-за трения в подвесе за один оборот прецессии ось отклоняется от горизонтали на угол $\Delta \alpha = 12^\circ$. Какую дополнительную силу нужно приложить в точке крепления груза, чтобы при неизменной скорости прецессии ось оставалась в горизонтальной плоскости? Куда направлена эта сила?

2Б. (1,5) Однородное плоское кольцо с внутренним радиусом r и внешним R=2r висит на тонком гвоздике (см. рис.). На каком расстоянии x от центра масс O подвешено кольцо, если период его колебаний на гвоздике минимален?

- **3Б.** (2) При угловых частотах синусоидальной вынуждающей силы $\Omega_1=300~{\rm pag/c}$ и $\Omega_2=400~{\rm pag/c}$, приложенной к маятнику с вязким трением, амплитуды вынужденных малых колебаний одинаковы. Полагая амплитуду вынуждающей силы неизменной, найдите частоту $\Omega_{\rm p}$, соответствующую максимуму амплитуды колебаний (резонансу смещений).
- **4Б.** (2) На Большом адронном коллайдере сталкивающиеся во встречных пучках ядра 208 Pb имеют настолько большую энергию, что релятивистское сжатие вдоль оси движения для одного из ядер в системе отсчёта другого сравнимо со сжатием железнодорожного состава $(L=1\ {\rm km})$ до толщины листа бумаги $(h=0,1\ {\rm km})$. Определите суммарную энергию сталкивающихся ядер в системе их центра инерции. Масса ядра $m\approx 200\ {\rm F}$ ${\rm e}$ ${\rm$
- **5Б.** (2) К лёгкому резиновому шнуру диаметром $2r_0=2.5$ мм подвесили груз массой $m_1=0.2$ кг, из-за чего длина шнура увеличилась в полтора раза: $L_1=1.5L_0$. Найдите модуль Юнга резины E и определите массу груза m_2 , требуемого для растяжения шнура вдвое: $L_2=2L_0$. Для конечных деформаций предлагается использовать закон Гука в следующей дифференциальной форме: $d\sigma=E\frac{dL}{L}$, где $d\sigma$ приращение напряжения в шнуре, L— его текущая длина, а E— константа. Коэффициент Пуассона резины принять равным $\mu\approx0.5$.

 $\Pi pumeчahue$: для конечных деформаций коэффициент Пуассона определяют как $\mu = -rac{dr/r}{dL/L}$, где r — текущий радиус стержня.

6Б. (2) На шероховатой наклонной плоскости клина, находящегося на гладкой горизонтальной поверхности, сначала удерживают однородный тонкостенный цилиндр, а затем отпускают. Система приходит в движение, цилиндр катится по клину без проскальзывания. Угол при вершине клина $\alpha=\pi/4$, отношение массы —

клина M к массе цилиндра m равно n=M/m=3. Найдите смещение s клина за время T=1,5 с после старта.

РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНОЙ РАБОТЫ 24 декабря 2019 г.

- Из уравнения $\vec{M} = \vec{\Omega} \times \vec{L}$ находим для прецессии под действием груза: 1A. $mg\ell = \frac{2\pi}{T}L$ (скорость прецессии не зависит от угла α). Тогда для прецессии под действием силы трения в вертикальной оси получим $M_{\rm TP} = \frac{\Delta \alpha}{T} L = mg\ell \frac{\Delta \alpha}{2\pi} = 0.306 \cdot 9.8 \cdot 0.120 \cdot \frac{10}{360} \approx \boxed{0.01 \; {\rm H\cdot M}}.$
- **2А.** (*Кармазин С.В.*) Пусть $\rho = m/(b^2 a^2)$ плотность материала рамки (на единицу площади). Момент инерции рамки относительно центра масс $J=\frac{1}{6}\rho(b^4-a^4)=\frac{1}{6}m(a^2+b^2)=\frac{5}{3}ma^2$. Из формулы для периода колебаний $(T/2\pi)^2 = \frac{J+mx^2}{mgx}$ находим, что минимум T достигается при $x = \sqrt{\frac{J}{m}} = \left| \sqrt{\frac{5}{3}} a \right|.$
- $v \propto \frac{\Omega}{\sqrt{(\Omega_0^2 \Omega^2)^2 + 4\gamma^2\Omega^2}} = \frac{\Lambda_{\text{мплитуда}}}{\sqrt{(\Omega_0^2/\Omega \Omega)^2 + 4\gamma^2}}. \quad \text{Максимум } v(\Omega) \quad \text{достигается при } \Omega = \Omega_0, \quad \text{где } \Omega_0$ собственная частота в отсутствие затухания. Равенство $v(\Omega_1) = v(\Omega_2)$ достигается при 3A. $\frac{\Omega_0^2}{\Omega_1}-\Omega_1=\Omega_2-\frac{\Omega_0^2}{\Omega_2},$ откуда $\Omega_0=\sqrt{\Omega_1\Omega_2}$ и $f_0=\sqrt{f_1f_2}=\sqrt{120\cdot 480}=\boxed{240~{
 m pag/c}}$
- В СЦИ $\gamma \approx K/mc^2 \approx 3\cdot 10^3, \ \beta=\sqrt{1-\gamma^{-2}}=\frac{\sqrt{\gamma^2-1}}{\gamma}.$ В системе одного из ядер по закону сложения скоростей $\beta'=\frac{2\beta}{1+\beta^2}=\frac{\gamma\sqrt{\gamma^2-1}}{\sqrt{2\gamma^2-1}},$ отку, а после преобразований находим 4A. $\gamma' = \frac{1}{\sqrt{1+\beta'^2}} = 2\gamma^2 - 1 \approx 2\gamma^2 = 1.8 \cdot 10^7$. Размер ядра в этой сис геме: $r' = r/\gamma' \approx \boxed{4 \cdot 10^{-7} \text{ фм}}$

2-й cnocoб. Инвариант энергии-импуль в СЦИ и в системе одной из частиц: $E^2 = (mc^2 + \gamma' mc^2)^2 - p'^2 c^2$, где $E = K + 2mc^2$ — полная энергия в СЦИ. Отдельно для одной частицы $p'^2 c^2 = (\gamma' mc^2)^2 - (mc^2)^2$ Отсюда $\gamma' = \frac{E^2 - 2(mc^2)^2}{2(mc^2)^2} \approx 2\left(\frac{K}{mc^2}\right)^2 \approx 2\gamma^2$.

3-й способ. Запишем преобразования Лоренца для энергии второй частицы при переходе из СЦИ в систему первой: $E' = \gamma (E + \beta pc)$. Поскольку $E = \gamma mc^2$, а для ультрарелятивистской частицы $E \approx pc$ и $\beta \approx 1$, немедленно получаем $\gamma' \approx 2\gamma^2$.

- Поскольку $\mu=1/2$, объём резины сохраняется: $SL={\rm const.}$ Отсюда получаем $dF=ES\frac{dL}{L}=ES_0L_0\frac{dL}{L^2}$. Интегрируя, находим $F=ES_0\left(1-\frac{L_0}{L}\right)$. Модуль 5A. Юнга: $E = \frac{1}{1 - L_0/L_1} \frac{m_1 g}{S_0} = \frac{3 \cdot 0.2 \cdot 10}{5 \cdot 10^{-6}} = \boxed{1.2 \text{ М}\Pi \text{a}}$. Второй груз $m_2 = m_1 \frac{1 - L_0/L_2}{1 - L_0/L_1} = 1.5 m_1 = \boxed{0.3 \text{ кг}}$.
- Пусть V скорость клина в ЛСО, U скорость центра скатывающегося тела 6A. относительно клина. Из сохранения горизонтальной проекции импульса имеем:

$$m(U\cos\alpha + V) + MV = 0, \quad V = -U\frac{\cos\alpha}{n+1}$$

Полная механическая энергия системы сохраняется:

$$\frac{1}{2}MV^{2} + \frac{1}{2}m\left((U\cos\alpha + V)^{2} + (U\sin\alpha)^{2}\right) + K_{\rm Bp} = mgH.$$

Пусть момент инерции относительно центра масс равен $J=\beta mR^2$, тогда вращательная энергия $K_{\text{вр}} = \frac{1}{2} J \omega^2 = \frac{1}{2} \beta m U^2$. Из приведённых соотношений после преобразований получим

$$\left(1 + \beta - \frac{\cos \alpha^2}{n+1}\right)U^2 = 2gH \quad \to \quad a_y = \frac{U^2 \sin^2 \alpha}{2H} = \frac{g \sin^2 \alpha}{1 + \beta - \frac{\cos^2 \alpha}{n+1}}.$$

— вертикальная компонента ускорения относительно клина. Подставляя $\ddot{\beta}=2/3,~\alpha=\pi/4,$

находим $a_y=\frac{g/2}{1+\frac{2}{3}-\frac{1}{2}\frac{1}{3}}=\frac{g}{3}$ и $T=\sqrt{\frac{2H}{a_y}}=\sqrt{\frac{2\cdot 0.6}{10/3}}=\boxed{0,6}$ с . 2-й способ. В системе клина на мяч действует горизонтальная сила инерции $F=-m\dot{V}=m\frac{\cos\alpha}{n+1}\dot{U}$. С учетом этого уравнение моментов относительно точки касания мяча:

$$(1+\beta)mR^2\dot{\omega} = FR\cos\alpha + mgR\sin\alpha,$$

откуда подставляя $\dot{\omega} = \dot{U}/R$ и $a_y = \dot{U} \sin \alpha$ приходим к полученному выше результату:

$$(1+\beta)\dot{U} = \frac{\cos^2 \alpha}{n+1}\dot{U} + g\sin \alpha \quad \to \quad a_y = \frac{g\sin^2 \alpha}{1+\beta - \frac{\cos \alpha^2}{n+1}}.$$

1Б.
$$F_{\rm TP}=\frac{M_{\rm TP}}{\ell}=\frac{mg\Delta\alpha}{2\pi}=\frac{0.36\cdot 9.8\cdot 12}{360}\approx \boxed{0.12~{\rm H}}$$
, перпендикулярно рисунку по направлению движения оси.

2Б. (Кармазин С.В.) Аналогично 2А
$$J=\frac{1}{2}m(R^2+r^2)=\frac{5}{2}mr^2$$
. Минимум T достигается при $x=\sqrt{J/m}=\boxed{\sqrt{\frac{5}{2}}r}$.

3Б. Амплитуда при вынужденных колебаниях $x \propto \frac{1}{\sqrt{(\Omega_0^2 - \Omega^2)^2 + 4\gamma^2 \Omega^2}}$ достигает максимума при $-4\Omega(\Omega_0^2 - \Omega^2) + 8\gamma^2\Omega = 0$, то есть $\Omega^2 = \Omega_{\rm p}^2 = \Omega_0^2 - 2\gamma^2$. Из условия $x(\Omega_1) = x(\Omega_2)$ находим

$$(\Omega_0^2 - \Omega_1^2)^2 + 4\gamma^2 \Omega_1^2 = (\Omega_0^2 - \Omega_2^2)^2 + 4\gamma^2 \Omega_2^2.$$

Раскрывая скобки, получим $(-2\Omega_0^2 + 4\gamma^2)\Omega_1^2 + \Omega_1^4 = (-2\Omega_0^2 + 4\gamma^2)\Omega_2^2 + \Omega_2^4$, откуда $\Omega_{\rm p} = \sqrt{\frac{\Omega_1^2 + \Omega_2^2}{2}} = 500/\sqrt{2} \approx \boxed{353~{\rm pag/c}}.$

- **4Б.** Аналогично 4А получаем соотношение $\gamma'=2\gamma^2$. Из условия имеем в системе одного из ядер $\gamma'=L/h=10^7$, откуда в СЦИ $\gamma=\sqrt{\gamma'/2}\approx 2,2\cdot 10^3$. Энергия двух ядер в СЦИ: $Q=2E=2\gamma mc^2\approx \boxed{880 \text{ TэB}}\ (2,1 \text{ ТэВ/нуклон}).$
- 5Б. Площадь сечения $S_0=\pi r^2\approx 4,9$ мм². Интегрируя предлагаемый закон, получим $\sigma=E\ln L/L_0$, откуда сила натяжения $F=\sigma S=ES_0\frac{L_0}{L}\ln\frac{L}{L_0}$. Модуль Юнга $E=\frac{F}{S_0\frac{L_0}{L}\ln\frac{L}{L_0}}=\frac{0,2\cdot9.8\cdot1.5}{4.9\cdot\ln1.5}\approx \boxed{1,5\ \mathrm{M}\Pi a}$. Масса $m_2=m_1\frac{L_1}{L_2}\frac{\ln(L_2/L_0)}{\ln(L_1/L_0)}\approx 1,28m_1\approx \boxed{0,26\ \mathrm{Kr}}$. Примечание: модель варианта А лучше ложится на экспериментальные данные.
- **6Б.** Аналогично 6А с учётом $\beta=1$ найдём

$$\dot{V} = -\frac{\cos \alpha}{n+1}\dot{U} = -\frac{g\sin \alpha \cos \alpha}{(1+\beta)(n+1) - \cos^2 \alpha} = -\frac{\frac{1}{2}g}{8-1/2} = -\frac{g}{15}.$$

Смещение клина: $s = \frac{1}{2}\dot{V}T^2 = -\frac{1}{2}\frac{10}{15}(1.5)^2 = \boxed{-0.75}$ м

Инструкция для проверяющих

За каждую задачу выставляется кратное 0.5 число баллов исходя из стоимости задачи (x):

x	+	Задача решена верно: приведено обоснованное решение и даны ответы на все вопросы
		задачи. Возможно наличие арифметических ошибок, не влияющих на ход решения и не
		приводящих к ошибке в порядке или знаке величины.
x - 0.5	±	Ход решения задачи в целом верен и получены ответы на все вопросы задачи, но реше-
		ние содержит ошибки, не касающиеся физического содержания: арифметические ошиб-
		ки, влияющие на порядок или знак величины; ошибки в размерности; вычислительные
		ошибки в выкладках.
x-1	+/2	Задача решена частично: дан ответ только на часть вопросов; выкладки не доведены до
		конца; отсутствуют необходимые промежуточные доказательства; либо решение содер-
		жит грубые ошибки (вычислительные, логические), влияющие на ход решения.
x - 1.5	Ŧ	Задача не решена, но есть некоторые подвижки в её решении: сформулированы физиче-
		ские законы, на основе которых задача может быть решена.
0	_	Задача не решена: основные физические законы применены с грубыми ошибками, пе-
		речислены не полностью или использованы законы, не имеющие отношения к задаче /
		подход к решению принципиально неверен / решение задачи не соответствует условию
		/ попытки решить задачу не было.
		<u> </u>

Оценка за письменную работу ставится по сумме баллов за все задачи с округлением в большую сторону (но не более 10 и не менее 1).

Итоговая Σ баллов = оценка за письм. работу + баллы за задания: «отл»: +2 б./задание; «хор»: +1 б./задание; «удовл»: +0 б./задание; не сдано: -3 б./задание. Итоговая сумма Σ определяет максимальную оценку на устном экзамене.

Все замечания направлять редактору-составителю контрольной работы Попову П.В. <u>popov.pv@mipt.ru</u>. Обсуждение замечаний, критериев проверки и результатов — на форуме кафедры board.physics.mipt.ru.

Обсуждение результатов письменного и порядка проведения устного экзаменов состоится 28 декабря в 8:45 в Главной физической ауд.