# Paths in the lambda-calculus

Three years of communications without understanding

A. Asperti University of Bologna Bologna

> C. Laneve INRIA-CMA Sophia-Antipolis

V. Danos University Paris 7-CNRS Paris

> L. Regnier CNRS Marseille

#### Abstract

Since the rebirth of  $\lambda$ -calculus in the late sixties, three major theoretical investigations of  $\beta$ -reduction were undertaken: 1) Lévy's analysis of families of redexes (and the associated concept of labeled reductions); 2) Lamping's graph-reduction algorithm; 3) Girard's geometry of interaction.

All these three studies happened to make crucial (if not always explicit) use of a notion of path. Namely and respectively: legal, consistent and regular paths.

Now, these three different notions stand in no obvious relation at first sight. In this paper we prove they are equivalent.

#### 1 Introduction

Let us first survey the three different notions of paths which we want to prove are equivalent.

Lévy took hold in [12] of the difficult notion of two redexes being created in the "same" way during a reduction (in which case they were said to belong to the same "family"). Then he labeled terms and made beta reductions act on labels so that two redexes were in the same family iff they had the same labels.

Labels then slept fifteen years before the awakening in [2] where they were identified with  $legal\ paths$ . More precisely: 1) labels of redexes in any reduct N of M denote paths in M; 2) those paths are legal; 3) conversely, any legal path in M denotes a label of a redex to appear somewhere in the set of reducts of M. Legality is a simple and effective condition that intuitively asks for enough symmetry in the path so that the reduction may unfold it into a redex.

In the meantime, people were seeking for a shared reduction faithfully implementing the notion of families, i.e., a reduction where families could be said to be reduced in one step. Such a reduction was discovered by Lamping in [11], and also by Kathail in [10] (important subsequent simplifications were given in [9] and [1]). The invariants which were used to prove the correctness of Lamping's implementation were consistent paths.

Finally Girard unveiled in [8] an interpretation of the cut-elimination procedure for linear logic. Again the alternative computation could be defined as the computation of a particular set of paths on proofs, namely regular paths which were defined through an algebraic and computational device the dynamic algebra (see [5, 14] where this is also extended to pure lambda-calculus).

A fact to marvel at, is that none of the three conditions above seems to bear any relation with beta-reduction. There is yet another equivalent definition which may be the most natural one, but which is also the most uneffective one: persistent paths. Call a path persistent if its residuals through any reductions are still connected. In [7] this fourth condition is shown to be equivalent to regularity hence to all the three with which we deal in this paper.

Apart from the satisfaction gained in knowing that there is essentially one notion of paths in lambdacalculus, we also expect these studies to yield some new insights about the (implementation of) betareduction based on the unification of the different perspectives.

A word about linear logic. This paper could have been written entirely in the framework of proof-nets. Actually, since proof-nets are a graphical syntax based on a duality (the linear negation) and have a nice geometrical structure given by their correctness condition (the trips), they are much more appealing for working out these investigations on paths. We choose to stick to lambda-calculus because two of the three related works were done for it. However the results presented here may be transposed to linear logic and proof-nets without any difficulty. This point is important since other calculi may be encoded in proof-nets; for instance lambda-calculus-like systems for classical logic such as the  $\lambda\mu$ -calculus of Parigot [13].

# 2 The graphical representation of $\lambda$ terms

We deal with a graph representation of  $\lambda$ -terms which unifies in a single shot the usual representation (referred to as the Bourbarki representation, [3]) linking the bound variables to their lambda, the dynamic graph [5, 14, 6] and the sharing graph representation as defined in [1]. Our graphs are unoriented but have a natural orientation defined on the figures below. The edges are labeled by some weight belonging to the dynamic algebra (see section 4). Each node m has a depth (an index in sharing graphs terminology) which is a positive integer marking m. Similarly an edge is at depth n if its final node (w.r.t. the natural orientation) is at depth n and the depth of a path is the smallest depth of the nodes it traverses. Each node is defined together with an associated set of entering edges (w.r.t. the natural orientation) called its premises. There are three kind of nodes:

Communication nodes: the *context* (c) and the *variable* (v) nodes are zero-ary, i.e., have no associated premises;

Multiplicative nodes: the application and the lambda nodes are binary, i.e., have two associated premises which are labeled respectively by  $!^k(p)$  and  $!^k(q)$  for some k;

**Exponential nodes:** in sharing graph terminology the *control* nodes; the *croissant* is unary, i.e., has one premise which is labeled by  $!^k(d)$  where k is the depth of the node; the *bracket* is unary and its premise is labeled by  $!^k(t)$  where k is the depth of the node; the fan is binary and its premises are labeled respectively by  $!^k(r)$  and  $!^k(s)$  where k is the depth of the node; the *weakening* is zero-ary.

For each integer n and each term M we define by induction on M a graph  $\mathcal{G}_n(M)$  together with its boundary consisting in a single root node (represented on the

figure as the topmost node) and a set of control nodes, the free nodes of  $\mathcal{G}_n(M)$  in one-to-one correspondence with the free variables of M (represented as the bottomost nodes). The translation of a lambda-term M is defined to be  $\mathcal{G}(M) = \mathcal{G}_0(M)$ .

Variable x.

$$G_n(x) = \bigvee_{\substack{n \ n}} {}^n(d)$$

**Application** (MN). Only free nodes corresponding to free variables both in M and N are linked together by means of a fan:



The premises of the application are respectively called the context and the argument edges; the argument node of the application is the initial node of the argument edge. The exiting edge is called the function edge and its final node the function node of the application. Note that the argument node is also the root node of  $\mathcal{G}_{n+1}(N)$  whereas the function node is the root node of  $\mathcal{G}_n(M)$ .

Abstraction  $\lambda x.M$ . There are two cases whether the variable does or does not appear in M. In the former we link the corresponding node to the lambda node; in the latter we link a weakening node to

the lambda node:





The premises of the lambda are respectively called the variable and the body edges. The initial node of the body edge is the body node of the abstraction.

In the definition of  $\mathcal{G}(M)$  we have mentionned a top-down orientation of the graph; this is not meaningful in pure graph theoretic terms (it depends on the drawing). We use it though: the root node is the *topmost* node of the graph; the variable edge of a lambda nodes is bend, it moves *downwards* then up to the lambda. The reason why we feel quiet about it is that there is a way of formalizing "being below" in a graph theoretic manner by means of the correctness condition for proof-nets.

While we are on with proof-nets, let us note that if @ is an application node in  $\mathcal{G}(M)$  at depth n, then the set of nodes below @ at depth strictly greater than n corresponds exactly to a !-box in the translation of M into a net. Also note that this set is of the form  $\mathcal{G}_{n+1}(N)$  where N is the argument of the application.

More generally if  $\mathbf{n}$  is a context, variable or lambda node at depth n in  $\mathcal{G}(M)$  then the set of nodes below  $\mathbf{n}$  at depth greater than n must be of the form  $\mathcal{G}_n(N)$  for some subterm N of M. We shall say that  $\mathbf{n}$  is the root of N in M. If N is not equal to M than there is an edge on top of  $\mathbf{n}$  which will be called the root edge of N in M or the root edge of  $\mathbf{n}$ .

A path is a sequence of consecutive nodes or equivalently a sequence of oriented edges and reversed oriented edges w.r.t. the natural orientation. We shall use both conventions and even mix them without mention. The reverse of a path  $\varphi$  is denoted  $\varphi^r$ . A path is straight if it contains no subpath of the form  $\varphi\varphi^r$  nor  $uv^r$  where u and v are the two premises of some binary node. From now on and unless specified we assume that all the paths are straight.

To each variable node (occurrence of variable)  $\mathbf{v}$  we associate its discriminant  $\gamma_{\mathbf{v}}$ : it is the maximal path starting at  $\mathbf{v}$  and moving downwards. Note that it is uniquely determined by  $\mathbf{v}$  and that it may contain only control nodes. The last node of  $\gamma_{\mathbf{v}}$  will be called its discriminant node. The discriminant node  $\mathbf{m}$  of  $\gamma_{\mathbf{v}}$  may or not have an exiting edge. In the former case this edge must be the variable edge of some  $\lambda$ -node  $\lambda$  and we say that  $\mathbf{v}$  and  $\gamma_{\mathbf{v}}$  are bound by  $\lambda$ ; if  $\mathbf{m}$  has no exiting edge than it must be a free node of  $\mathcal{G}(M)$ .

Let  $\gamma$  be a discriminant; then among all the nodes visited by  $\gamma$ , its variable node has a maximal depth and its discriminant node m has a minimal depth. The difference between the two will be called the *lift* of  $\gamma$ . Note that if  $\gamma$  is bound by some  $\lambda$ -node  $\lambda$  then the depth of  $\lambda$  is the same than the depth of m.

We will say that a path is of type  $t_1$ — $t_2$  if it starts from a node of type  $t_1$  and ends in a node of type  $t_2$ . In particular an edge of type @- $\lambda$  will be called a redex edge. There is a one to one correspondence between redexes in M and redex edges in  $\mathcal{G}(M)$ . We say that a path  $\varphi$  crosses a redex if it contains the corresponding redex edge.

If  $\psi$  is a path in  $\mathcal{G}(M)$  then M has a minimal subterm N such that  $\psi$  is a path in  $\mathcal{G}(N)$ . We define the leftmost outermost redex crossed by  $\psi$  to be the leftmost outermost redex of N.

Let M be a term and M' be obtained by some betacontraction of M. We define a notion of residual of the edges of  $\mathcal{G}(M)$  in  $\mathcal{G}(M')$  in the obvious way and extend it to the notion of residual of a path along some beta-contraction of M. Note that some paths of  $\mathcal{G}(M)$  don't have any residual in  $\mathcal{G}(M')$ . For a precise definition see [14].

# 3 Legal paths

In order to express the legality condition, we begin with a definition on paths. Well balanced paths (shortly wbp) are inductively defined by the following clauses:

- the function edge of any application node is a wbp.
- let  $\varphi_1$  be a wbp ending at a context node **c** of an application @, u be the context edge of @,  $\varphi_2$  be a wbp connecting @ to a lambda node  $\lambda$  and u' be the body edge of  $\lambda$ . Then

$$\varphi_1 u \varphi_2 u'^r$$

is a wbp.

• let  $\varphi_1$  be a wbp terminating at some variable node  $\mathbf{v}$ ,  $\gamma$  be the discriminant starting at  $\mathbf{v}$ , u be the variable edge starting from the discriminant node of  $\gamma$  and ending in some  $\lambda$ -node  $\lambda$ ,  $\varphi_2$  be a wbp connecting an application node @ to  $\lambda$  and u' be the argument edge of @. Then

$$\varphi_1 \gamma u \varphi_2^r u'^r$$

is a wbp.

Remark.

The following lemma expresses some properties of wbp's that shall be useful later on.

#### Lemma 3.1

**Straight.** If  $\varphi$  is a wbp then  $\varphi$  is straight and has the form  $@u\varphi'v^{(r)}\mathbf{m}$  where @ is some application node, u is the function edge of @,  $\mathbf{m}$  is some lambda, variable or context node and v is the root edge of  $\mathbf{m}$ .

**Prefix.** Let  $\varphi_1$  and  $\varphi_2$  be two wbp's connecting the same application node @ to respectively the lambda nodes  $\lambda_1$  and  $\lambda_2$ . If  $\varphi_2$  is a prefix of  $\varphi_1$  then  $\lambda_2 = \lambda_1$  and  $\varphi_2 = \varphi_1$ .

**Sub-wbp.** Let  $\varphi$  be a wbp of type @- $\lambda$  and @ (resp.  $\lambda$ ) be an application node (resp. a  $\lambda$ -node) visited by  $\varphi$ . Then  $\varphi$  has a unique subpath  $\phi$  which is a wbp of type @- $\lambda$  and starts at @ (resp. ends at  $\lambda$ ).

These are more or less immediate consequences of the definition of wbp's.

Actually the "interesting" wbp's are those of type  $@-\lambda$ ; they intend to be isomorphical to redexes family. However it is not enough to ask only for well balancing on paths of type  $@-\lambda$  to get this result. The stronger condition of legality to come hereafter is needed. But first let us define by crossed induction two other kinds of paths in a term M: @-cycles and v-cycles.

(@-cycle) Let @ be an application node in  $\mathcal{G}(M)$ , u its argument edge and denote by N the subterm argument of @. An @-cycle at @ is a path of the form

$$@ u^r \psi_1 \xi_1 \psi_2 \cdots \psi_n \xi_n \psi_{n+1} u @$$

where the  $\psi_i$ 's are entirely contained in N and the  $\xi_i$ 's are v-cycles over some free occurrences of variables of N in M. A particular case of @-cycle, which is the very base case of the crossed induction, is n=0; then the @-cycle is just  $@u^r \psi u$ @

where  $\psi$  is a cycle contained in N starting and ending at the root node of N (the agument node of @). Note that a path entirely contained in N is at depth strictly greater than the depth of @.

(v-cycles) Let  $\mathbf{v}$  be a variable node corresponding to a bound occurrence of variable in M,  $\gamma$  be its discriminant and u be the variable edge of its binder  $\lambda$ . A v-cycle over  $\mathbf{v}$  is a path of the form

$$\mathbf{v}\,\gamma\,u\,\lambda\,\varphi^{\,r}\,@\,\psi\,@\,\varphi\,\lambda\,u^{\,r}\,\gamma^{\,r}\,\,\mathbf{v}$$

where @ is some application node,  $\varphi$  is a wbp linking @ to  $\lambda$ , and  $\psi$  is an @-cycle at @.

We now state a proposition relating wbp and @-cycles (proved in [2]):

**Proposition 3.2** Let  $\varphi$  be a wbp and  $@\psi @$  be an @-cycle at @ contained in  $\varphi$ . Then  $\varphi$  can be uniquely decomposed into:

$$\zeta_1 \gamma_1 u_1 \lambda_1 \varphi_1^r @ \psi @ \varphi_2 \lambda_2 u_2^r \gamma_2^r \zeta_2$$

where both  $\varphi_i$ 's are wbp's linking @ to some lambda nodes  $\lambda_1$  and  $\lambda_2$ ,  $u_i$  is the variable edge of  $\lambda_i$  and  $\gamma_1$ ,  $\gamma_2$  are the discriminants of some occurrences of variables bound respectively by  $\lambda_1$  and  $\lambda_2$ .

In the situation of Proposition 3.2, we will say that  $\varphi_1$  and  $\varphi_2$  are the *call* and *return* paths of the @-cycle  $\psi$  and that  $\gamma_1$  and  $\gamma_2$  are the discriminants of respectively the call and return paths.

**Definition 3.3** A wbp  $\varphi$  is a legal path iff for any @-cycle  $\psi$  contained in  $\varphi$ , the call and return paths of  $\psi$  and their discriminants are pairwise equal.

Legal paths are related to Lévy's families [12] in a very strong way as expressed by the following theorem (in [2]).

**Theorem 3.4** Given a  $\lambda$ -term M, there exists a bijective correspondence between legal paths of type @- $\lambda$  in M and all the possible redex families obtained by reduction of M.

## 4 LS and Regular paths

We give a presentation of the dynamic algebra LS as an equational theory. Terms of LS will be called monomials. We define at the same time the language and the (equational) axioms of LS. Items are:

• a composition function which is associative;

- a neutral 1 and an absorbing 0 for composition;
- an involution  $U^*$  satisfying  $0^* = 0$ ,  $1^* = 1$  and  $(UV)^* = V^*U^*$  for any U and V in LS:
- a morphism! for composition, 0, 1 and \*;
- two multiplicative coefficients p and q satisfying the annihilation axioms:

$$p^*p = q^*q = 1,$$
  
 $p^*q = q^*p = 0.$ 

 Four exponential constants r, s, t, d satisfying the annihilation axioms:

$$r^*r = s^*s = d^*d = t^*t = 1,$$
  
 $s^*r = 0$ 

and the commutation equations:

$$!(U)r = r!(U)$$
  $!(U)s = s!(U),$   
 $!(U)t = t!^{2}(U),$   
 $!(U)d = dU$ 

where U is any monomial.

The weight of the oriented edges is already defined in section 2. The weight  $w(\varphi)$  of a path  $\varphi$  is inductively given by: if  $\varphi$  is a null path (a path starting and ending in the same node, crossing no edge) then its weight is 1, if  $\varphi$  is  $u\varphi'$  (resp.  $u^r\varphi'$ ) where u is an oriented edge then  $w(\varphi) = w(\varphi')w(u)$  (resp.  $w(\varphi')w(u)^*$ ). Note that weights are composed antimorphically w.r.t. paths and that we have  $w(\varphi^r) = w(\varphi)^*$ .

**Definition 4.1** A path  $\varphi$  is regular iff  $LS \not\vdash w(\varphi) = 0$ .

At first sight this definition looks pretty ineffective since it is usually hard to show that something is not provable in an axiomatic theory. However the thetheorem  $AB^*$  below (proved in [14]) shows that it is actually easy to compute whether a weight of a path is (provably) null or not in LS.

IMPORTANT CONVENTION. From now on, when U and V are monomials and unless otherwise specified we shall write U = V for  $LS \vdash U = V$ .

We say that a monomial in which the symbol! (resp. \*) doesn't occur is flat (resp. positive). Positive monomials are interesting in that they satisfy  $A^*A = 1$  as can be easily checked by induction on the number of constants occurring in A. We define inductively the

stable forms of LS to be the monomials of the form  $AB^*$  or  $A!(M)B^*$  when A and B are positive and flat and M is in turn a stable form. Note that if M is a stable form of LS, then  $M = AB^*$  for some positive (but not necessarily flat) A and B.

#### Proposition 4.2 (Confluence of LSO)

The rewriting system LSO on monomials defined by orienting all the equations from left to right is noetherian. Stable form are normal w.r.t. LSO.

Let U be monomial:

- if U = for some stable form V of LS then U rewrites to V w.r.t. LSO;
- if U = 0 in then U rewrites to 0 w.r.t. LSO.

REMARK. This entails that LSO is confluent on monomials which are either null or equal to some stable form.

**Theorem 4.3**  $(AB^*)$  Let M be a term and  $\varphi$  be a path in  $\mathcal{G}(M)$  possibly not straight. Then  $w(\varphi)$  rewrites w.r.t. LSO into either 0, or a stable form of 1 S

Suppose  $AB^* = 0$  for some positive A and B. Since  $A^*A = B^*B = 1$  we immediately get 0 = 1 in LS. But this is contradicted by the fact that LS has some non trivial models (see the next section). Thus rewriting a weight into  $AB^*$  form indeed shows that it is provably not null in LS.

The foregoing argument has an interesting corollary concerning models of LS:

Corollary 4.4 (Semantical  $AB^*$ .) Let  $\mathcal{M}$  be a non trivial model of LS and M be a term. Then, for every path  $\varphi$  (possibly not straight) in  $\mathcal{G}(M)$  we have

$$LS \vdash w(\varphi) = 0$$
 iff  $\mathcal{M} \models w(\varphi) = 0$ .

REMARK. This property is very specific to weights of paths: generally a model satisfies more equations than the theory it is a model of. For instance one may find some non trivial models of LS in which  $t^*d = 0$  which is not provable in LS (there are some other models in which  $t^*d \neq 0$ ). The theorem  $AB^*$  and its corollary are only valid for weights of paths. However it is a strong result since it states that any non trivial model of LS is as good as the theory for computing weights of paths.

In order to help with some of the weight computations to come, we give a first interpretation of the equational theory LS (the second one is the context semantic in the last section). The verification that the interpretation satisfies the equations of LS is left to the reader.

Put  $\mathcal{T}$  the set of partial transformations of  $\mathbb{N}$ ; that is, an element f of  $\mathcal{T}$  is a one-to-one mapping of a subset of  $\mathbb{N}$  (the domain of f) onto a subset of  $\mathbb{N}$  (the codomain or range of f). Composition of partial transformations is defined in the obvious way (the domain of fg is the set of n such that n is in the domain of g and g(n) is in the domain of f). We interpret each monomial G of G by a partial transformation G of G. The interpretation is defined by induction on the number of symbols appearing in G.

We denote by  $0_{\mathcal{T}}$  the nowhere defined transformation, by  $1_{\mathcal{T}}$  the identity on  $\mathbb{N}$  and set  $|0|_{\mathcal{T}} = 0_{\mathcal{T}}$  and  $|1|_{\mathcal{T}} = 1_{\mathcal{T}}$ . If f is a partial transformation then  $f^*$  is the inverse transformation from the codomain to the domain of f so that for any monomial U we define  $|U^*|_{\mathcal{T}} = |U|_{\mathcal{T}}^*$ .

Let  $|p|_{\mathcal{T}}$  and  $|q|_{\mathcal{T}}$  be two transformations of  $\mathcal{T}$  with full domain and disjoint codomains; for instance take  $|p|_{\mathcal{T}}(n) = 2n$  and  $|q|_{\mathcal{T}}(n) = 2n + 1$ .

Let  $(m, n) \mapsto \lceil m, n \rceil$  be a one-to-one mapping of  $\mathbb{N}^2$  onto  $\mathbb{N}$ . We shall denote  $\lceil n_1, \ldots, n_k \rceil$  the integer  $\lceil n_1, \lceil n_2, \ldots, \lceil n_{k-1}, n_k \rceil \cdots \rceil \rceil$ . For any transformation f we define  $!_{\mathcal{T}}(f)$  by:

$$!_{\mathcal{T}}(f)\lceil m, n \rceil = \lceil m, f(n) \rceil$$

whenever n is in the domain of f. For any monomial U we set  $|!(U)|_{\mathcal{T}} = !_{\mathcal{T}}(|U|_{\mathcal{T}})$ . Note that if f has a full domain, since any integer may be written  $\lceil m, n \rceil$  for some m and n, then  $!_{\mathcal{T}}(f)$  has full domain. In particular  $!_{\mathcal{T}}(1_{\mathcal{T}}) = 1_{\mathcal{T}}$ . Also  $!_{\mathcal{T}}(0_{\mathcal{T}}) = 0_{\mathcal{T}}$ .

Let k be an integer,  $\rho$ ,  $\sigma$  and  $\tau$  be three transformations with full domains. Assume that the codomains of  $\rho$  and  $\sigma$  are disjoint. We define  $|d|_{\mathcal{T}}$ ,  $|r|_{\mathcal{T}}$ ,  $|s|_{\mathcal{T}}$  and  $|t|_{\mathcal{T}}$  by:

$$\begin{array}{rcl} |d|_{\mathcal{T}}(n) & = & \lceil k, n \rceil, \\ |r|_{\mathcal{T}}\lceil m, n \rceil & = & \lceil \rho(m), n \rceil, \\ |s|_{\mathcal{T}}\lceil n, m \rceil & = & \lceil \sigma(n), m \rceil, \\ |t|_{\mathcal{T}}\lceil l, \lceil m, n \rceil \rceil & = & \lceil \tau \lceil l, m \rceil, n \rceil \end{array}$$

This interpretation is subjected to a lot of arbitrary choices, beginning with the choice of the one-to-one mapping from  $\mathbb{N}^2$  onto  $\mathbb{N}$ . The effect of this is that we

can easily build some interpretation satisfying some additional equations.

As a matter of fact, T satisfies the *inverse semi-group (isg)* [4] equations:

$$(f^*)^* = f$$

$$ff^*f = f$$

$$ff^*gg^* = gg^*ff^*$$

Actually,  $\mathcal{T}$  is a universal isg in the sense that any countable isg is isomorphical with a sub-isg of  $\mathcal{T}$ . Isg's enjoy a lot of properties some of which we shall use later, namely: for any f in an isg,  $ff^*$  is an idempotent; if  $\pi$  and  $\pi'$  are two idempotents of an isg, then  $\pi\pi' = \pi'\pi$ ; if  $\pi$  is an idempotent and f an element of an isg, then  $\pi f = ff^*\pi f$  and  $f^*\pi f$  is in turn an idempotent; if  $\pi$  is an idempotent and f, g are elements of an isg such that fg = 0 then  $f\pi g = 0$ . All these properties are immediate in  $\mathcal{T}$  once remarked that idempotents are just identities on some subset of  $\mathbb{N}$ ; they may be more tricky to prove in general.

The following property is a kind of converse of the semantical version of  $AB^*$  (corollary 4.4).

**Proposition 5.1** A monomial U rewrites w.r.t. LSO into an  $AB^*$  form iff it is non null in each non trivial model of LS.

PROOF. (sketch) The only if part is given by the semantical  $AB^*$  corollary 4.4. For the if part, let  $U_0$  be some normal form of U w.r.t. LSO (which exists since, by the confluence proposition 4.2, LSO is noetherian) and suppose that  $U_0$  is not an  $AB^*$  form. Then there must be a configuration  $x^*!^k(y)$  or  $!^k(x^*)y$  in  $U_0$  where x and y are two coefficients of LS, k is a positive or null integer and such that no oriented equation can be applied. By symmetry we may consider only the first case. With a bit of work, one can find some interpretation of the constants of LS in T such that  $|x^*!^k(y)|_T$  is the null transformation. Since  $x^*!^k(y)$  is occurring in U this entails that  $T \models U = 0$ .

## 6 More about regular paths

If  $\gamma$  is a discriminant of lift c in  $\mathcal{G}(M)$ , then its weight is  $!^k(G)$  for a monomial G of the form:

$$G = \omega_1 t_{i_1}!(\omega_2 t_{i_2}!(\dots \omega_c t_{i_c}!(\omega_{c+1}d)))$$

where the  $\omega_i$ 's are products of r's and s's only. Such a G will be called a w-discriminant of lift c. A w-

discriminant G of lift c satisfies the generalized commutation equation:

$$!(U)G = G!^c(U)$$

for any monomial U. If  $\gamma$  and  $\gamma'$  are two discriminants bound by the same lambda node  $\lambda$ , then their weights are respectively  $!^k(G)$  and  $!^k(G')$  where k is the depth of  $\lambda$  and G and G' are some w-discriminants. Furthermore G and G' satisfy the generalized annihilation equation:

$$G^*G' = 1$$
 if  $\gamma = \gamma'$   
= 0 otherwise.

Proposition 6.1 (Rendez-vous property) Let  $\varphi$  be a path linking two nodes m and n and let m and n be the respective depths of m and n. If  $\varphi$  is a wbp then its weight satisfies the rendez-vous equation:

$$!^n(X)w(\varphi) = w(\varphi)!^m(X).$$

PROOF. The proof is by induction on the definition of wbp's.

( $\varphi$  is an edge).  $\varphi$  is the function edge of some application node so U=1 and n=m. There is not much more to say.

 $(\varphi = \varphi_1 \ u \ \varphi_2 \ u'^r)$ . By definition  $\varphi_1$  is a wbp ending at the context node c of an application node @ whose context edge is u and  $\varphi_2$  is a wbp starting at @ and ending in some  $\lambda$ -node  $\lambda$  whose body edge u' ends in the node c. Let  $U_1$  and  $U_2$  be their respective weights and k be the depth of @. Notice that c being the context node of @ is also at depth k and that  $\lambda$  has the same depth n than c. Let  $U = w(\varphi)$ ; with these notations we have:

$$U = !^n(q^*)U_2!^k(q)U_1$$

By induction hypothesis on  $\varphi_2$  (which begins at depth k) we get  $!^n(q^*)U_2!^k(q) = !^n(q^*)!^n(q)U_2$ , which is equal to  $U_2$  by the annihilation equations of q so that finally  $U = U_2U_1$  Now again by induction on  $\varphi_1$  and  $\varphi_2$  we have:

$$!^{n}(X)U = !^{n}(X)U_{2}U_{1}$$
  
 $= U_{2}!^{k}(X)U_{1}$   
 $= U_{2}U_{1}!^{m}(X)$   
 $= U!^{m}(X)$ 

which shows that  $\varphi$  in turn satisfies the rendezvous equation.

 $(\varphi = \varphi_1 \gamma u (\varphi_2)^r u'^r)$ . Both  $\varphi_1$  and  $\varphi_2$  are wbp's,  $\varphi_1$  ends in some variable node  $\mathbf{v}$ ,  $\gamma$  is the discriminant of  $\mathbf{v}$  bound by some  $\lambda$ -node  $\lambda$ , u is the variable edge of  $\lambda$ ,  $\varphi_2$  starts in some application node @ and ends in  $\lambda$  and u' is the argument edge of @. We denote by k the depth of  $\lambda$  and by c the lift of  $\gamma$ . By definition  $\mathbf{v}$  is therefore at depth k+c. Since  $\varphi$  ends in the argument node  $\mathbf{n}$  of @ which is at depth n it must be that n is strictly positive and that the depth of @ is n-1. Let  $U_i$  be the weight of  $\varphi_i$  and G be the w-discriminant such that  $w(\gamma) = !^k(G)$ . With these notation we have

$$U = !^{n-1}(p^*)U_2^*!^k(p)!^k(G)U_1$$

Now since  $\varphi_1$  starts at depth m and ends at depth k+c and  $\varphi_2$  starts at depth k and ends at depth n-1, the induction hypothesis tells us that  $!^{k+c}(X)U_1 = U_1!^m(X)$  and  $!^k(X)U_2 = U_2!^{n-1}(X)$ . Thus we have  $!^{n-1}(p^*)U_2^*!^k(p) = !^{n-1}(p^*)!^{n-1}(p)U_2^*$  so that by the annihilation equation of p this is equal to  $U_2^*$  and therefore  $U = U_2^*!^k(G)U_1$ . Again the rendez-vous equation applied to  $U_2$  gives  $U = !^{n-1}(G)U_2^*U_1$ . Finally we may write

$$!^{n}(X)U = !^{n}(X)!^{n-1}(G)U_{2}^{*}U_{1} 
= !^{n-1}(!(X)G)U_{2}^{*}U_{1} 
= !^{n-1}(G!^{c}(X))U_{2}^{*}U_{1} 
= !^{n-1}(G)!^{n-1+c}(X)U_{2}^{*}U_{1} 
= !^{n-1}(G)U_{2}^{*}!^{k+c}(X)U_{1} 
= !^{n-1}(G)U_{2}^{*}U_{1}!^{m}(X)$$

so that  $\varphi$  indeed satisfies the rendez-vous property.

REMARK. The proof uses the equations of LS in an unoriented fashion. In other words the rendezvous equation cannot be obtained only by using the rewriting system LSO.

**Lemma 6.2 (Subweight)** Let  $\phi$  be a regular path such that  $w(\phi) = U\pi V$  for some monomials U,  $\pi$  and V. There are some positive monomial A and B such that  $\pi$  rewrites into  $AB^*$  w.r.t. LSO.

If  $\pi$  is idempotent in LS then A=B so that  $\pi=AA^*$ . If  $\pi=\pi_1\pi_2$  where  $\pi_1$  and  $\pi_2$  are two idempotents of LS, then  $\pi$  is an idempotent of LS.

PROOF. Since  $\phi$  is regular,  $w(\phi)$  and thus  $\pi$  are not null in any model of LS. Hence by the proposition 5.1,  $\pi$  has an  $AB^*$  form.

Now suppose that  $\pi^2 = \pi$ , thus we have  $AB^*AB^* = AB^*$ . Since A and B are positive, we have  $A^*A = B^*B = 1$  so that  $B^*A = 1$ . Now it is fairly easy to show by induction on the length of A and B that this is possible only if A = B so that we finally get  $\pi = AA^*$ .

If  $\pi = \pi_1 \pi_2$  with  $\pi_1$  and  $\pi_2$  idempotent, then we have just shown that there are some positive  $A_1$  and  $A_2$  in LS such that  $\pi_i = A_i A_i^*$ . Therefore  $A_1^*A_2$  is a subweight of  $w(\phi)$  thus by applying the first part of the lemma we get two positive  $A_i'$  so that  $A_1^*A_2 = A_2' {A_1'}^*$ . Hence  $\pi = A_1 A_2' {A_1'}^* A_2^*$  and we have:

$$\pi^{2} = A_{1}A'_{2}A'_{1}^{*}A_{2}^{*}A_{1}A'_{2}A'_{1}^{*}A_{2}^{*}$$

$$= A_{1}A'_{2}A'_{1}^{*}A'_{1}A'_{2}^{*}A'_{2}A'_{1}^{*}A_{2}^{*}$$

$$= A_{1}A'_{2}A'_{1}^{*}A_{2}^{*}$$

$$= \pi$$

showing that  $\pi$  is an idempotent.

# 7 Regular well balanced paths are legal

The *legality* of a well balanced path is a necessary condition for its regularity, as shown by Theorem 7.2. This statement relies on the following proposition:

**Proposition 7.1 (@-cycle property)** Let @ be an application node in  $\mathcal{G}(M)$  at depth k, u be its application edge and  $u^r\psi u$  be an @-cycle at @. There is two monomials U and  $\pi$  such that:

$$w(\psi) = !^{k+1}(U)\pi,$$

and  $\pi$  is a k-commuting idempotent, i.e.  $\pi$  satisfies:

$$\begin{array}{rcl} \pi^2 & = & \pi, \\ !^k(X)\pi & = & \pi!^k(X), \end{array}$$

for any monomial X;

REMARK. This proposition expresses that the weight of any @-cycle is essentially similar to the weight of an elementary @-cycle. The difference only lies in some idempotent which is interpreted in the model  $\mathcal T$  by a partial identity; furthermore the k-commutation property says that  $\pi$  is in some sense "invisible", at least it doesn't interact with U.

PROOF. If the weight of  $\psi$  is null then the proposition is true by taking  $\pi = 0$  and any monomial. So we may suppose that  $w(\psi)$  is non null in LS. Let N be the

subterm argument of the application @. By definition of @-cycles,  $\psi$  has the form:

$$\psi_0 \mathbf{v}_1 \gamma_1 v_1 \lambda_1 \varphi_1^r @_1 u_1^r \phi_1 u_1 @_1 \varphi_1 \lambda_1 v_1^r \gamma_1^r \mathbf{v}_1 \psi_1 \dots \psi_n$$

where for each i,  $\psi_i$  is a path entirely contained in N,  $\gamma_i$  is the discriminant of some free occurrence of variable in N corresponding to the variable node  $\mathbf{v}_i$ ,  $\lambda_i$  is the lambda node binding  $\mathbf{v}_i$  and  $v_i$  is its variable edge,  $\varphi_i$  is a wbp linking an application node  $@_i$  to the lambda node  $\lambda_i$ ,  $u_i$  is the argument edge of  $@_i$  and  $u_i^r \phi_i u_i$  is an @-cycle at the application node  $@_i$ .

We shall prove by induction on n then on  $\psi$  that any path with the shape of  $\psi$  (defined in the foregoing paragraph) has the @-cycle property. Note that this is a bit more general than the statement of the proposition since for the sake of induction loading, we don't suppose that the starting node of  $\psi_0$  and the ending node of  $\psi_n$  is the argument node of @.

The base case is n = 0. Then  $\psi = \psi_0$  is entirely contained in N. But N being the argument of @ which is at depth k, the weight of  $\psi$  must be of the form:

$$w(\psi) = w(\psi_0) = !^{k+1}(W_0)$$

for some monomial  $W_0$ . Thus the proposition is proved with  $\pi = 1$ .

If n > 0 let  $l_1$  be the depth of  $\lambda_1$  so that the weight of  $\gamma_1$  is of the form  $!^{l_1}(G_1)$  for some w-discriminant  $G_1$  of lift  $c_1$ . Furthermore let  $U_1$  be the weight of  $\varphi_1$  and  $k_1$  the depth of  $@_1$ . Since  $u_1^r \phi_1 u_1$  is an @-cycle,  $\phi_1$  has the good shape so we may suppose by induction on  $\phi_1$  that its weight is of the form

$$w(\phi_1) = !^{k_1+1}(V_1)\pi_1$$

for some monomial  $V_1$  and some  $k_1$ -commuting idempotent  $\pi_1$ . Furthermore the suffix  $\psi_1 \dots \psi_n$  of  $\psi$  again has the right shape so that its weight is by induction on n

$$w(\psi_2 \dots \psi_n) = !^{k+1}(V)\pi$$

for some V and some k-commuting idempotent  $\pi$  of LS. Thus the weight of  $\psi$  is equal to:

$$w(\psi) = !^{k+1}(V)\pi$$

$$!^{l_1}(G_1^*)!^{l_1}(p^*)U_1 !^{k_1}(p)!^{k_1+1}(V_1)\pi_1!^{k_1}(p^*)U_1^*!^{l_1}(p) !^{l_1}(G_1)$$

$$!^{k+1}(W_0)$$

Now since  $\varphi_1$  is a wbp linking two nodes whose respective depths are  $k_1$  and  $l_1$  the rendez-vous property of  $\varphi_1$  states that for any monomial X,

$$!^{l_1}(X)U_1 = U_1!^{k_1}(X).$$

Thus we have  $!^{l_1}(p^*)U_1!^{k_1}(p) = !^{l_1}(p^*)!^{l_1}(p)U_1$  so that by the morphism equations of ! and the annihilation equation of p this is equal to  $U_1$ . The weight of  $\psi$  is therefore equal to:

$$!^{k+1}(V)\pi!^{l_1}(G_1^*)U_1!^{k_1+1}(V_1)\pi_1U_1^*!^{l_1}(G_1)!^{k+1}(W_0)$$

If we let X be  $!^{l_1}(G_1^*)U_1!^{k_1+1}(V_1)\pi_1U_1^*!^{l_1}(G_1)$  then we have:

$$\begin{split} X &= U_1!^{k_1}(G_1^*)!^{k_1+1}(V_1)\pi_1U_1^*!^{l_1}(G_1) \\ &= U_1!^{k_1}(G_1^*!(V_1))\pi_1U_1^*!^{l_1}(G_1) \\ &= U_1!^{k_1}(!^{c_1}(V_1)G_1^*)\pi_1U_1^*!^{l_1}(G_1) \\ &= U_1!^{k_1+c_1}(V_1)!^{k_1}(G_1^*)\pi_1U_1^*!^{l_1}(G_1) \\ &= U_1!^{k_1+c_1}(V_1)\pi_1!^{k_1}(G_1^*)U_1^*!^{l_1}(G_1) \\ &= U_1!^{k_1+c_1}(V_1)\pi_1U_1^*!^{l_1}(G_1^*)!^{l_1}(G_1) \\ &= U_1!^{k_1+c_1}(V_1)\pi_1U_1^* \\ &= U_1!^{k_1+c_1}(V_1)T_1U_1^* \end{split}$$

by using the rendez-vous equation of  $U_1$ , the generalized commutation equation of  $G_1$ , the  $k_1$ -commutativity of  $\pi_1$ , the rendez-vous equation of  $U_1$ , the generalized annihilation equation of  $G_1$  and finally the rendez-vous equation of  $U_1$ . Thus we get:

$$w(\psi) = !^{k+1}(V)\pi!^{l_1+c_1}(V_1)U_1\pi_1U_1^*!^{k+1}(W_0).$$

Now note that  $l_1$  being the depth of  $\lambda_1$ , it is also the depth of the discriminant node of  $\gamma_1$  thus we have  $l_1 \leq k$ . In other words there is a positive or null  $d_1$  such that  $k = l_1 + d_1$ . Let X be any monomial. By using (again) the rendez-vous property of  $\varphi_1$  and the  $k_1$ -commuting property of  $\pi_1$  we have that:

$$U_{1}\pi_{1}U_{1}^{*}!^{k}(X) = U_{1}\pi_{1}U_{1}^{*}!^{l_{1}+d_{1}}(X)$$

$$= U_{1}\pi_{1}!^{k_{1}+d_{1}}(X)U_{1}^{*}$$

$$= U_{1}!^{k_{1}+d_{1}}(X)\pi_{1}U_{1}^{*}$$

$$= !^{l_{1}+d_{1}}(X)U_{1}\pi_{1}U_{1}^{*}$$

$$= !^{k}(X)U_{1}\pi_{1}U_{1}^{*}$$

so that  $U_1\pi_1U_1^*$  is k-commuting. We have to show that it is an idempotent. But by the subweight lemma (6.2),  $\pi_1$  being an idempotent there is a positive monomial  $A_1$  such that  $\pi_1 = A_1A_1^*$ . Furthermore the same lemma states that there are some positive B and C such that  $U_1A_1 = BC^*$ . Thus we have

$$U_1 \pi_1 U_1^* = BC^* CB^*$$
$$= BB^*$$

which by positivity of B is clearly idempotent.

So we are in position to write

$$w(\psi) = !^{k+1}(V)\pi!^{l_1+c_1}(V_1)!^{k+1}(W_0)\pi'_1$$

where  $\pi'_1 = U_1 \pi_1 U_1^*$  is a k-commuting idempotent of LS. But  $c_1$  is the lift of the discriminant  $\gamma_1$  which starts at depth strictly greater than k and ends at depth  $l_1$ . Thus  $l_1 + c_1$  is strictly greater than k; in other words there is a positive or null  $d'_1$  such that  $l_1 + c_1 = k + 1 + d'_1$  so that by the k-commutation of  $\pi$  we may write:

$$\begin{split} w(\psi) &= !^{k+1}(V)\pi!^{k+1+d_1'}(V_1)!^{k+1}(W_0)\pi_1' \\ &= !^{k+1}(V)\pi!^{k+1}(!^{d_1'}(V_1)W_0)\pi_1' \\ &= !^{k+1}(V)!^{k+1}(!^{d_1'}(V_1)W_0)\pi\pi_1' \\ &= !^{k+1}(V!^{d_1'}(V_1)W_0)\pi\pi_1'. \end{split}$$

Since  $\pi$  and  $\pi'_1$  are k-commuting their product is also k-commuting and being both idempotent, by the subweight lemma their product is an idempotent.

## Theorem 7.2 Every regular wbp is legal.

PROOF. Let  $\varphi$  be a regular wbp. We have to check that any @-cycle in  $\varphi$  satisfies the legality condition; so let  $u^r \psi u$  be an @-cycle at some application node @ (whose argument edge is u) and for i=1 or 2,  $\varphi_i$  be a wbp linking @ to a lambda node  $\lambda_i$ ,  $u_i$  be the variable edge of  $\lambda_i$ ,  $\mathbf{v}_i$  be a variable node bound by  $\lambda_i$ ,  $\gamma_i$  be the discriminant of  $\mathbf{v}_i$  and suppose that the path

$$\phi = \mathbf{v}_1 \, \gamma_1 \, u_1 \, \lambda_1 \, \varphi_1^{\ r} \, @ \, u^r \, \psi \, u \, @ \, \varphi_2 \, \lambda_2 \, u_2^{\ r} \, \gamma_2^{\ r} \, \mathbf{v}_2$$

is entirely contained in  $\varphi$ . We are to show that  $\psi_1 = \mathbf{v}_1 \, \gamma_1 \, u_1 \, \lambda_1 \, \varphi_1^{\, r} \, @ \, u^r$  and  $\psi_2 = \mathbf{v}_2 \, \gamma_2 \, u_2 \, \lambda_2 \, \varphi_2^{\, r} \, @ \, u^r$  are equal.

Let k and  $k_i$  be the respective depth of @ and  $\lambda_i$ ; the weights of  $\varphi_i$  and  $\gamma_i$  are respectively of the form  $U_i$  and  $!^{k_i}(G_i)$  where  $G_i$  is some w-discriminant of lift  $c_i$ . Then the weight of  $\phi$  is:

$$!^{k_2}(G_2^*)!^{k_2}(p^*)U_2!^k(p)w(\psi)!^k(p^*)U_1^*!^{k_1}(p)!^{k_1}(G_1)$$

By the rendez-vous property of  $\varphi_1$  and  $\varphi_2$ , and the annihilation equations of p this is equal to:

$$w(\phi) = !^{k_2}(G_2^*)U_2w(\psi)U_1^*!^{k_1}(G_1)$$

But the @-cycle property tells us that  $w(\psi) = !^{k+1}(U)\pi$  for some U and some idempotent  $\pi$ . Furthermore  $G_i$  is a w-discriminant with lift  $c_i$ . So by the rendez-vous property again, the morphism equation of ! and the generalized commutation equation of

 $G_i$  we have:

$$\begin{split} w(\phi) &= !^{k_2}(G_2^*) U_2 !^{k+1}(U) \pi U_1^* !^{k_1}(G_1) \\ &= !^{k_2}(G_2^*) !^{k_2+1}(U) U_2 \pi U_1^* !^{k_1}(G_1) \\ &= !^{k_2}(G_2^* !(U)) U_2 \pi U_1^* !^{k_1}(G_1) \\ &= !^{k_2}(!^{c_2}(U) G_2^*) U_2 \pi U_1^* !^{k_1}(G_1) \\ &= !^{k_2+c_2}(U) !^{k_2}(G_2^*) U_2 \pi U_1^* !^{k_1}(G_1) \end{split}$$

Let  $W_i = !^k(p^*)U_i^*!^{k_i}(p)!^{k_i}(G_i)$  be the weight of  $\psi_i$ . By the rendez-vous property and the annihilation equations of p we have  $W_i = U_i^*!^{k_i}(G_i)$ . Thus  $w(\phi) = !^{k_2+c_2}(U) W_2^*\pi W_1$ .

Now by lemma 3.1 (straight property) we easily get that  $\psi_1$  and  $\psi_2$  are straight paths ending in the same node. Since they are straight, we must have either  $\psi_i = \phi_i v_i \phi$  where  $v_1$  and  $v_2$  are two distinct premises of a binary node, or one  $\psi_i$  is a suffix of the other.

In the first case let  $x_i$  be the weight of  $v_i$ ,  $V_i$  and V be the respective weights of  $\psi_i$  and  $\psi$  so that  $W_i = V x_i V_i$ . Since the  $v_i$ 's are distinct premises of a binary node we have  $x_2^* x_1 = 0$  in LS, thus they are interpreted by partial transformations with disjoint codomains in T. But

$$w(\phi) = !^{k_2 + c_2}(U)V_2^* x_2^* V^* \pi V x_1 V_1.$$

 $V^*\pi V$  being an idempotent of  $\mathcal T$  we get that  $x_2^*V^*\pi V x_1$  and therefore  $w(\phi)$  are null in  $\mathcal T$ . By the semantical  $AB^*$  corollary 4.4 we deduce that  $w(\phi)$  is null in LS which contradicts the hypothesis that  $\phi$  is regular.

Hence we have for example that  $\psi_2$  is a suffix of  $\psi_1$ . This entails that  $\varphi_2$  is a prefix of  $\varphi_1$ . But both are wbp's of type @- $\lambda$  thus by the lemma 3.1 (prefix property) are equal. Thus we have  $\psi_i = \mathbf{v}_i \gamma_i u_1 \lambda_1 \ \varphi_1^r @ u^r$ ; joined to the fact that  $\psi_2$  is a suffix of  $\psi_1$  we obtain that  $\psi_2 = \psi_1$ .

## 8 Legal paths are regular

We shall prove in this section the coincidence of legal paths and (well-balanced) regular paths. For the regularity of every legal path, we need two lemmas. The former is proved in [2], the latter in [14].

**Lemma 8.1** Let M be a term,  $\varphi$  a legal path in  $\mathcal{G}(M)$ ,  $\rho$  the leftmost outermost redex crossed by  $\varphi$  and M' the term obtained by firing  $\rho$ . Then  $\varphi$  has a unique residual  $\varphi'$  in M' and  $\varphi'$  is in turn legal.

**Lemma 8.2 (The Lifting Lemma)** Let  $\varphi$  be a straight path in  $\mathcal{G}(M)$  whose weight is P,  $\rho$  be the

leftmost outermost redex crossed by  $\varphi$  and u the corresponding redex edge in  $\mathcal{G}(M)$ , @ and  $\lambda$  be respectively the application and the lambda node linked by u. Suppose  $\varphi$  has a residual  $\varphi'$  by the reduction of  $\rho$ . Then we have:

$$w(\varphi) = A(w(\varphi')B^*$$

for some positive A and B in LS.

PROOF (sketch). We use some key properties of  $\varphi$  w.r.t. its leftmost outermost redex, namely that under the hypotheses of the lemma  $\varphi$  may be decomposed into:

$$\varphi = \varphi_0 \gamma_0 v u v'^*$$

$$\psi_0 v' u v^* \gamma_0^* \varphi_1 \cdots \varphi_n \gamma_n v u v'^* \psi_n$$

$$v' u v^* \gamma_n^* \varphi_{n+1})$$

where v and v' are respectively the variable edge of  $\lambda$  and the argument edge of  $(0, \gamma_i)$ 's are discriminants of occurrences of the variable bound by  $\lambda$ ,  $\varphi_i$ 's are subpaths of  $\varphi$  lying completely outside the argument of  $(0, \gamma_i)$  are subpaths of  $\varphi$  lying completely inside the argument of  $(0, \gamma_i)$ . The parenthesized subpaths may possibly be empty. From this a straightforward computation of the weight gives the result.

#### **Theorem 8.3** Every legal path $\varphi$ is regular.

PROOF. We prove by induction on the length of  $\varphi$ that its weight is in the  $AB^*$  form thus giving also a proof of the  $AB^*$  theorem for legal paths. If  $\varphi$  is the function edge of an application node then its weight is 1 so it is in  $AB^*$  form. Otherwise by definition of wbp,  $\varphi$  must cross some redex. Let  $\rho$  be the leftmost outermost redex of  $\varphi$  and  $\varphi'$  be the residual of  $\varphi$  by the contraction of  $\rho$  which uniquely exists and is legal by lemma 8.1. Then by induction hypothesis, the weight of  $\varphi'$  is  $AB^*$  for some positive elements A and B of LS. But by the lifting lemma, there are some positive C and D such that  $w(\varphi) = Cw(\varphi')D^* = CAB^*D^*$ . Remark. Actually the proof of the  $AB^*$  theorem is essentially similar. One has just to take care of the fact that if  $\varphi$  is not legal then its weight may possibly be 0.

## 8.1 Another proof.

We shall give here the outline of another proof of the foregoing theorem. We call *cycle* a straight path of the form  $\psi \equiv u\psi'u^r$  where u is the variable edge of a lambda node  $\lambda$ . Let  $\gamma_1, \ldots, \gamma_n$  be the discriminants bound by  $\lambda$ . We say that the cycle  $\psi$  is deterministic if  $\psi$  satisfies:

$$w(\gamma_i \psi \gamma_j) = 0 \iff \gamma_i \neq \gamma_j.$$

With this definition, it is possible to show the following proposition:

**Proposition 8.4** Let  $\varphi$  be a wbp and  $\psi$  be a subpath of  $\varphi$ . If  $\psi$  is a deterministic cycle at some lambda node  $\lambda$ , then for any discriminant  $\gamma$  bound by  $\lambda$  the path  $\gamma\psi\gamma^r$  is a v-cycle.

REMARK. This proposition mirrors the @-cycle property 7.1 of the foregoing section. The @-cycle property states that a path having such geometrical property (being an @-cycle) has such weight property; the deterministic cycles property state that a path having such weight property has such geometrical property (it is a v-cycle). Also note that a v-cycle is a path of the form  $\gamma u \varphi^r \psi \varphi u^r \gamma^r$  where  $\gamma$  is a discriminant bound by some lambda node  $\lambda$ , u is the variable edge of  $\lambda$ ,  $\varphi$  is a wbp linking some application node @ to  $\lambda$  and  $\psi$  is an @-cycle at @; now the @-cycle property of  $\psi$  and the rendez-vous-property of  $\varphi$  show that  $u \varphi^r \psi \varphi u$  is a deterministic cycle. This allows us to see the deterministic cycle property as a kind of converse of the @-cycle property.

Let now  $\varphi$  be a non regular wbp. Then one may show that  $\varphi$  has a subpath of the form  $\gamma_1 \psi \gamma_2$  where  $\gamma_1$  and  $\gamma_2$  are two distinct discriminants bound by the same lambda node  $\lambda$  and  $\psi$  is a deterministic cycle at  $\lambda$ . Therefore  $\varphi$  cannot be legal since this would entail that  $\gamma_1 = \gamma_2$ .

## 9 The sharing graph implementation

Paths provide a basic semantics of sharing graphs [11, 9]. Let us rephrase the notions in [9] in  $\mathcal{G}(M)$ .

The (finite) *contexts* are terms defined by the following grammar:

$$a ::= \square \mid \circ \cdot a \mid \star \cdot a \mid \sharp \cdot a \mid \sharp \cdot a \mid \langle a, b \rangle$$

**Definition 9.1** A consistent path along a  $\mathcal{G}(M)$  is an undirected path that can be consistently labeled by contexts. By "consistently" we mean that any pair of consecutive edges satisfies the corresponding constraint in the figure below, where  $A^n[b]$  denotes a context of the form  $\langle \cdots \langle b, a_n \rangle \cdots, a_1 \rangle$ . In the cases of the context and variable nodes, the constraint is just to have the same context on top and below.

$$\mathbf{a} \qquad A_{n}[a] \qquad \qquad A_{n}[\langle a, \Box \rangle]$$

$$\mathbf{b} \qquad A_{n}[\langle a, b \rangle, c \rangle] \qquad \qquad A_{n}[\langle a, \langle b, c \rangle \rangle]$$

$$\mathbf{c} \qquad A_{n}[\langle a, b \rangle] \qquad \qquad A_{n}[\langle a, \star \cdot b \rangle]$$

$$\mathbf{d} \qquad A_{n}[\langle a, b \rangle] \qquad \qquad A_{n}[\langle a, \circ \cdot b \rangle]$$

$$\mathbf{e} \qquad \qquad A_{n}[a] \qquad \qquad A_{n}[\sharp \cdot a]$$

$$\mathbf{f} \qquad \qquad A_{n}[a] \qquad \qquad A_{n}[\sharp \cdot a]$$

$$\mathbf{g} \qquad \qquad A_{n}[a] \qquad \qquad A_{n}[\sharp \cdot a]$$

$$\mathbf{h} \qquad \qquad A_{n}[a] \qquad \qquad A_{n}[\sharp \cdot a]$$

Figure 1: Context transformations

## 9.1 Regular paths and consistent paths

The property we are going to prove states that a path is consistent if and only if it is regular. The "only if" direction will follow by showing that the partial transformations of contexts based on the eight operations illustrated in Figure 1 are a model of dynamic algebras. The "if" direction is a consequence of corollary 4.4

Actually, in order to prove that context transformations are a model of dynamic algebras, we must consider infinite contexts. Let  $C^{\infty}$  be the class of functions from natural numbers to contexts; we shall denote  $C \in C^{\infty}$  as  $\langle \langle \cdots C(1) \rangle, C(0) \rangle$ . Definition 9.1 can be easily generalized to infinite contexts. Note that any infinite context may be written  $\langle C, a \rangle$  where C is in turn an infinite context and a is a finite context.

We remark that we can correctly shift the reasonings to infinite contexts because every finite path is consistent if and only if it can be consistently labeled with infinite contexts.

#### Definition 9.2 (transformations of contexts)

We denote by  $\mathcal{H}$  the set of partial transformations over  $\mathcal{C}^{\infty}$ , i.e. of one-to-one functions from some subset of  $\mathcal{C}^{\infty}$  into  $\mathcal{C}^{\infty}$ . Composition of partial transformations is defined in the obvious way.

Among the transformations of  $\mathcal{H}$ , we shall recognize the following ones:

- if h∈ H then h\* is the reverse transformation: its domain is the codomain of h and its codomain is the domain of h;
- $0, 1 \in \mathcal{H}$ , 0 is the erroneous transformation nowhere defined; 1 is the identity on  $\mathcal{H}$ ;
- each constraint of figure 1 may be seen as a partial transformation: namely associate the context labelling the premise to the context labelling the non premise edge of the node. In particular the transformations associated to the context and variable nodes both are the identity and the ones corresponding to cases (e) and (h) (resp. (f) and (g)) are equal. We denote by  $\mathbf{d}^n$ ,  $\mathbf{t}^n$ ,  $\mathbf{r}^n$ ,  $\mathbf{s}^n$ ,  $\mathbf{p}^n$  and  $\mathbf{q}^n$  the transformations defined respectively by cases (a), (b), (c), (d), (e), (f). These are the basic transformations of level n;
- if h is a partial transformation then we denote by !(h) the transformation defined by:

$$!(\mathbf{h})\langle C, a \rangle = \langle \mathbf{h}(C), a \rangle.$$

**Theorem 9.3** The family  $\mathcal{H}$  is a non trivial model of LS.

PROOF. The constants 0, 1 are interpreted by 0 and 1; p and q by  $\mathbf{p}^0$  and  $\mathbf{q}^0$ ; for each i the exponential coefficients d, t, r and s are interpreted respectively by  $\mathbf{d}^0$ ,  $\mathbf{t}^0$ ,  $\mathbf{r}^0$ ,  $\mathbf{s}^0$ ; the involution \* by the inversion of partial transformation and the morphism! (in LS) by! (in  $\mathcal{H}$ ). When it is not ambiguous, we shall drop the superscript 0 from the interpretations of the constants.

Note that if  $b^n$  is a basic transformation of level n then we have  $!(b^n) = b^{n+1}$ . Thus  $b^n = !^n(b^0)$ .

Let us check some of the axioms. The facts that the ! of  $\mathcal{H}$  is a morphism and that the inversion is an antimorphism for composition are immediate. Let  $C = \langle C_0, a \rangle$  be any context; then  $\mathfrak{p}^*\mathfrak{p}(C) = \mathfrak{p}^*\langle C_0, \sharp \cdot a \rangle = \langle C_0, a \rangle = C$ . Furthemore  $\mathfrak{p}^*\mathfrak{q}(C) = \mathfrak{p}^*\langle C_0, \sharp \cdot a \rangle$ ; but  $\langle C_0, \sharp \cdot a \rangle$  is not in the codomain of  $\mathfrak{p}$  thus not in the domain of  $\mathfrak{p}^*$ , thus  $\mathfrak{p}^*\mathfrak{q}$  is nowhere defined, i.e. equal to 0. Now  $C_0$  may be written  $\langle C_1, b \rangle$  so that

 $C = \langle \langle C_1, b \rangle, a \rangle$ . Let **h** be any partial transformation; then  $(!(\mathbf{h})\mathbf{t})(C) = !(\mathbf{h})\langle C_1, \langle a, b \rangle\rangle = \langle \mathbf{h}(C_1), \langle a, b \rangle\rangle$  and  $(\mathbf{t}!^2(\mathbf{h}))(C) = \mathbf{t}\langle \langle \mathbf{h}(C_1), b \rangle, a \rangle = \langle \mathbf{h}(C_1), \langle a, b \rangle\rangle$  so they are indeed equal; this shows that **t** satisfies the commutation axiom of t. The computations for the other axioms are similar.

To any path  $\varphi$  in  $\mathcal{G}(M)$  we can associate a context transformation  $\mathbf{h}_{\varphi}$  by (anti)composing the basic transformations of the edges crossed by  $\varphi$ . This construction immediately yields the following lemma:

#### Lemma 9.4

$$\mathcal{H} \models \mathbf{h}_{\varphi} = w(\varphi).$$

**Theorem 9.5** A path  $\varphi$  in  $\mathcal{G}(M)$  is consistent iff it is regular.

PROOF. By definition,  $\varphi$  is consistent iff  $\mathbf{h}_{\varphi}$  is not the 0 transformation. By the foregoing lemma this is equivalent to  $w(\varphi) \neq 0$  in  $\mathcal{H}$ . The only if part of the theorem follows from the fact that  $\mathcal{H}$  is a model of LS. The if part is a consequence of the corollary 4.4 of the  $AB^*$  theorem.

REMARK. The model  $\mathcal{H}$  is not initial in the category of dynamic algebras. For instance  $d^*t$  is not provably equal to 0 in LS. But it is 0 in  $\mathcal{H}$ , since the transformation  $d^*t$  is nowhere defined. What expresses the theorem is that  $\mathcal{H}$  is a good model for computing weights of paths (see the remark after corollary 4.4).

#### References

- [1] A. Asperti. Linear Logic, Comonads, and Optimal Reductions. To appear on Fundamenta Informaticae, 1993.
- [2] A. Asperti and C. Laneve. Paths, Computations and Labels in the λ-calculus. In RTA '93, volume 690 of Lecture Notes in Computer Science, pages 152 – 167. Springer-Verlag, 1993.
- [3] N. Bourbaki. Théorie des ensembles. Hermann & C. Editeurs, 1954.
- [4] A.H. Clifford and G.B. Preston. The Algebraic Theory of Semi-groups. In *Mathematical Surveys*, vol. 7, A.M.S., 1961.
- [5] V. Danos. La Logique Linéare appliquée à l'étude de divers processus de normalisation (principalement du λ-calcul). PhD thesis, Université Paris VII, 1990.

- [6] V. Danos and L. Regnier. Local and asynchronous beta-reduction. In Proceedings 8<sup>th</sup> Annual Symposium on Logic in Computer Science, Montreal, pages 296 – 306, 1993.
- [7] V. Danos and L. Regnier. GOI Recollection. submitted, 1994.
- [8] J. Y. Girard. Geometry of Interaction I: Interpretation of system F. In Ferro, Bonotto, Valentini, and Zanardo, editors, Logic Colloquium '88, pages 221 – 260. North Holland, 1988.
- [9] G. Gonthier, M. Abadi, and J.J. Lévy. The geometry of optimal lambda reduction. In Proceedings 19<sup>th</sup> ACM Symposium on Principles of Programmining Languages, pages 15 26, 1992.
- [10] V. Katail. Optimal interpreters for lambdacalculus based functional languages. Interaction nets. PhD thesis, MIT. 1990
- [11] J. Lamping. An algorithm for optimal lambda calculus reductions. In Proceedings 17<sup>th</sup> ACM Symposium on Principles of Programmining Languages, pages 16 – 30, 1990.
- [12] J.J. Lévy. Réductions correctes et optimales dans le lambda calcul. PhD thesis, Université Paris VII, 1978.
- [13] M. Parigot.  $\lambda\mu$ -calculus: an algorithmic interpretation of classical natural deduction. In *LCS vol 624*, proceedings *LPAR 92*, St-Petersburg, 1992.
- [14] L. Regnier. Lambda Calcul et Réseaux. PhD thesis, Université Paris VII, 1992.