Apellido y Nombres	
Carrera:	DNI:
Llenar con letra mayúscu	la de imprenta GRANDE]

Globalizador, tema 1 [Lunes 27 de Junio de 2011]

Instrucciones: entregar en hojas SEPARADAS POR EJERCICIO, numeradas, cada una con APELLIDO en el margen SUPERIOR DERECHO. La evaluación dura 3 hs (tres horas). NO se asignan puntos a las respuestas aún correctas pero sin justificación o desarrollo. Respuestas incompletas reciben puntajes incompletos .

- 1) a) (i) Demuestre el valor de verdad de la siguiente afirmación: $\forall x \exists y \ (x \neq y \rightarrow x > y)$, donde $x, y \in D$, con $D = \{1, 2, 3\}$; (ii) Escriba un pseudocódigo que devuelve *True* cuando $\exists x \forall y \ P(x, y)$ lo es y *False* en caso contrario.
 - b) Dado un entero n probar que n^2 es impar ssi 1-n es par.
 - c) Dé un ejemplo de una función f(x) tal que sea inyectiva pero no sobreyectiva, cuyo dominio y codominio tengan un infinito número de elementos.
- 2) a) Suponga las funciones $g:A\to B$ y $f:B\to C$. Demuestre o refute: si f y g son inyectivas, entonces la composición $f\circ g$ también es inyectiva.
 - b) Defina los números de Fibonacci f_i y demuestre que $f_1 + f_3 + ... + f_{2n-1} = f_{2n}$.
 - c) (i) Escriba una definición recursiva (matemática!) de la función min de tal forma que $\min(a_1, a_2, ..., a_n)$ sea el mínimo de los números $a_1, a_2, ..., a_n$; (ii) Escriba un pseudocódigo (recursivo!) que la implemente.
- 3) a) Sean $P_i(x_i, y_i, z_i)$, con $i \in \mathbb{Z}_1^9$, un conjunto de 9 puntos distintos del espacio con coordenadas enteras. Probar que, de entre los segmentos que unen cada pareja de puntos, hay al menos 1 cuyo punto medio tiene coordenadas enteras.
 - b) ¿Cuántas soluciones tiene la inecuación diofántica $x_1+x_2<19$, en enteros no-negativos tales que $x_1\geq 2$ y $1\leq x_2\leq 3$?
 - c) ¿De cuántas maneras se pueden distribuir 7 bolas distinguibles en 3 cajas distintas, de modo que las cajas contengan 2, 4 y 1 bolas cada una ?
- 4) a) Sea un conjunto A de n elementos. Usando los principios de conteo demuestre que el número z de relaciones R simétricas en A es $z=2^n2^{(n^2-n)/2}$.
 - b) Determine que tipo de grafo representa la matriz de adyacencia A = [O A; B O] donde los cuatro elementos representan bloques rectangulares. Incluya un ejemplo.
 - c) Sea el grafo G = (V, E) y \mathbf{A} su matriz de adyacencia con respecto al orden natural de los vértices y con posibles aristas múltiples y bucles. Demuestre que el número de caminos distintos de longitud r entre los vértices v_i y v_j , con r > 0 es igual al elemento ubicado en la posición i, j de \mathbf{A}^r .
- 5) a) Determine si los grafos G_1 y G_2 en la Fig. 1 son (o no) isomorfos.
 - b) Para el grafo G_1 de la Fig. 1 (izq.): (i) obtenga un árbol de expansión T_1 por búsqueda en profundidad usando el orden abcdef; (ii) luego indique en T_1 : raíz, hojas, niveles, altura, antecesores y descendientes de c.
 - c) Para el grafo G_2 de la Fig. 1 (der.): (i) obtenga un árbol de expansión T_2 por búsqueda a lo ancho usando el orden $\alpha\beta\gamma\delta\varepsilon\phi$; (ii) listar T_2 en preorden, en inorden y en postorden.

Figura 1: Grafos G_1 (izq.) y G_2 (der.) para los incisos 5a-5c .