An Efficient Approach to Model-Based Hierarchical Reinforcement Learning

• Yunqiu Xu

1. Introduction

- Current HRL can not handle real world problems:
 - Multiple tasks
 - Changing subgoals
 - Uncertain subtask specifications
- Two limitations of MAXQ-based (pre-defined task hierarchy) methods
 - All of the tasks / subtasks need to be clearly specified
 - Even similar subtasks have to be learned separately
- Our work: context-sensitive reinforcement learning
 - ∘ Exploit common knowledge in subtasks → learn transition dynamics efficiently
 - o Actively evaluate different subtasks as execution choices
 - Based on simulation

2. Problem Setup

- ullet Task $T_i = \{I_i, G_i, F_i, A_i, T_i, R_i\}$
 - \circ I_i : input set
 - $\circ \; G_i$: goal, terminating states
 - \circ F_i : relevent features
 - \circ A_i : actions
 - $\circ \ T_i$: transition functions
 - $\circ \; R_i$: reward functions
 - 。 这个比我之前看得 Task 定义要复杂不少
 - \circ Well-defined MDP : $\{F_i, A_i, T_i, R_i\}$

- Fragment $\{F_j, A_j, T_j\}$
 - No goal states or local reward functions
 - Can describe similar multiple tasks → share same transition function, but differ in goals
 - \circ How to generate: combine tasks with same F_i and A_i
 - o How it be used: facilitate efficient learning of task transition functions
 - 例如 Fig 4 中 Get 和 Put 两个任务都可以归于一个 Fragement

Navigate Put Down

Up Down Left Right Navigation (fragment)

Figure 3: MAXQ hierarchy

Figure 4: CSRL hierarchy

Figure 5: A general CSRL hierarchy

General CSRL:

- o Node: task or fragment
- Different from MAXQ:
 - A task can be decomposed as fragments / smaller tasks
 - Actions are defined inside each node → primitive actions won't appear as the leaf nodes
 - lacksquare $oldsymbol{F}$ of a node is also the subset of $oldsymbol{F}$ of its parent
- o Fragments allow us specify tasks without goal states
 - 这里按照我的理解就是把两个动作/特征相似的任务归为一类
 - 例如抓取和放置都可以归类为定位
 - 因此学会抓取之后很快就能学会放置

3. Algorithm

3.1 Overview of CSRL

Algorithm 1 CSRL Algorithm

```
1: Input: m, F_i for all tasks i
 2: s \leftarrow s_0, X_a \leftarrow \{i | a \in A_i\}
 3: for all components k do
         X_{C_k} \leftarrow \{i | C_k \subseteq F_i\} for all actions a do
                                            /\!\!/ tasks using C_k
 4:
 5:
             \mathcal{P}_{k,a} \leftarrow \bigcap_{i \in X_{C_k} \cap X_a} F_i
 6:
             n(\mathcal{P}_{k,a}, a) \leftarrow 0; P(\cdot | \mathcal{P}_{k,a}, a) \leftarrow \emptyset
 7:
 8:
         end for
 9: end for
10: while s \notin \text{terminal state do}
         for all components k, action a do
11:
12:
             if n(\mathcal{P}_{k,a},a) < m then
                \hat{P}(C_k^f | \mathcal{P}_{k,a}, a) \leftarrow 1
13:
14:
             else
                 \hat{P}\left(\cdot|\mathcal{P}_{k,a},a\right) \leftarrow P\left(\cdot|\mathcal{P}_{k,a},a\right)
15:
16:
17:
         end for
18:
         if current task is completed or no task selected then
19:
             ConstructSMDP(s)
20:
             Solve previous SMDP to get next task i.
21:
         end if
22:
         Construct model for task i using Alg 1.
         Solve model for task i to get a task policy \pi_i.
23:
         Execute (s, \pi_i(s)) \to s'
24:
25:
         for all components k do
             n(\mathcal{P}_{k,a},a) \leftarrow n(\mathcal{P}_{k,a},a) + 1
26:
             Update P(\cdot|\mathcal{P}_{k,a},a) with s,s'
27:
28:
         end for
29:
         s \leftarrow s'
30: end while
```

- ullet m : exploration threshold
- ullet $P_{k,a} = Parent(C_k,a)$: the parent of C_k with action a
- Line 6 : init $P_{k,a}$
- $n(P_{k,a},a)$: exploration count
 - \circ If smaller than m o transits to a fictitious component C_k^f
 - \circ Else \rightarrow update probability values

Line 18-21: select a new task when a task is finished

3.2 Select a new task

Algorithm 2 ConstructSMDP(current_state)

```
1: state_queue.enqueue(current_state)
 2: while state_queue not empty do
       s = state\_queue.dequeue
 3:
       if s is new then
 4:
 5:
          for all tasks i do
 6:
             [succ, reward, dist] = SimulateTask(s, i)
             if \neg succ then
 7:
                R(s,i) \leftarrow R_{\text{max}}
 8:
               P(s|s,i) \leftarrow 1
 9:
             else
10:
                R(s,i) \leftarrow reward
11:
               P(\cdot|s,i) \leftarrow dist
12:
13:
             end if
             for all states s' in dist do
14:
                state_queue.enqueue(s')
15:
             end for
16:
          end for
17:
       end if
18:
19: end while
```

- Model task selection as an S(semi)MDP
- Recursively: given a task policy for any node, we can construct the task selection
 SMDP at the parent node

3.3 Task Simulation

- Why simulate the task?
 - As the transition function has been computed for each node in the hierarchy
 - o The parameters can be more efficiently estimated by simulating

- What do we simulate?
 - The effect of executing the task policy on the task's parent node's transition function
- How to simulate?

Algorithm 3 SimulateTask(s, i)

```
1: distribution \leftarrow \varnothing, average\_reward \leftarrow 0
 2: for simulation_num: 1 to NUM_SIM do
       reward \leftarrow 0; steps \leftarrow 0
 3:
       while True do
 4:
          a \leftarrow \pi_i(s); reward \leftarrow reward + R_i(s, a)
 5:
          s \leftarrow \text{SampleRootTransition}(s, a)
 6:
          R(s,i) \leftarrow R_{\text{max}}
 7:
          if steps > NUM STEPS or s is fictitious then
 8:
            return [False, Null, Ø]
 9:
          end if
10:
11:
          if s is goal state then
             Update average_reward with reward
12:
            Update distribution with s as terminal state
13:
            Update distribution with duration to complete
14:
15:
            break
          end if
16:
17:
       end while
18: end for
19: return [True, average_reward, distribution]
```

• Given the policies of the child tasks, CSRL can simulate the results of executing the task on the root node

4. Experiments

- Robot pickup and place : does not require task selection
- Pickup and place with two objects
- Household robot experiment

- o Requires multiple levels of reasoning
- Cannot be solved using existing methods due to incomplete problem specification at the lower level

Figure 6: Robot pickup and place

Figure 7: Pickup and place: 2 objects

Figure 8: Household assistive robot

5. Conclusion

- Task learning mechanism: learn both task and global transition dynamics
- Hierarchical execution mechanism: handle task selection by formulating and solving the underlying SMDP
- Limitation:
 - Specify relevant features manually
 - Can not build sub-tasks automatically
 - No transfer learning: in the future we can try to perform transfer learning for those with similar hierarchy