

Gowin Video Frame Buffer IP 用户指南

IPUG769-1.0,2021-03-05

版权所有© 2021 广东高云半导体科技股份有限公司

未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

版本信息

日期	版本	说明
2021/03/05	1.0	初始版本。

目录

目录	i
图目录	iii
表目录	iv
1 关于本手册	1
1.1 手册内容	1
1.2 相关文档	1
1.3 术语、缩略语	1
1.4 技术支持与反馈	2
2 概述	3
2.1 概述	3
2.2 主要特征	3
2.3 资源利用	3
3 功能描述	5
3.1 系统框图	5
3.2 实现原理	
3.2.1 电路结构	
3.2.2 带宽估算	
3.3 端口列表	
3.4 参数配置	10
3.5 时序说明	10
3.5.1 视频接口时序	10
3.5.2 存储器接口控制器 IP 用户接口时序	11
4 界面配置	12
5 参考设计	16
5.1 设计实例一	
5.2 设计实例二	
5.3 设计实例三	

6 文件	交付	18
6.1	文档	18
6.2	设计源代码(加密)	18
63	。 参考设计	18

图目录

图 3-1 系统框图	5
图 3-2 结构框图	6
图 3-3 Gowin Video Frame Buffer IP 端口示意图	8
图 3-4 视频接口时序示意图	10
图 3-5 视频输出接口时序	11
图 4-1 打开 IP Core Generator	12
图 4-2 打开 Video Frame Buffer IP 核	13
图 4-3 Video Frame Buffer IP 核接口示意图	13
图 4-4 Help 文档	14
图 4-5 基本信息配置界面	14
图 4-6 Options 选项卡	15
图 5-1 参考设计实例一基本结构框图	
图 5-2 参考设计实例二基本结构框图	17
图 5-3 参考设计实例三基本结构框图	17

表目录

表 1-1 术语、缩略语	1
表 2-1 Gowin Video Frame Buffer IP	3
表 2-2 Gowin Video Frame Buffer IP 占用资源	4
表 2-3 不同配置 BSRAM 资源占用数	4
表 3-1 Gowin Video Frame Buffer IP 的端口列表	8
表 6-1 文档列表	. 18
表 6-2 Video Frame Buffer IP 设计源代码列表	. 18
表 6-3 Gowin VFB DDR3 RefDesign 文件夹内容列表	. 18
表 6-4 Gowin VFB PSRAM RefDesign 文件夹内容列表	. 19
表 6-3 Gowin VFB HyperRAM RefDesign 文件夹内容列表	. 19

IPUG769-1.0 iv

1 关于本手册 1.1 手册内容

1 关于本手册

1.1 手册内容

Gowin Video Frame Buffer IP 用户指南主要内容包括产品概述、功能描述、配置调用、参考设计等,旨在帮助用户快速了解 Gowin Video Frame Buffer IP 的特性及使用方法。

1.2 相关文档

通过登录高云半导体网站 <u>www.gowinsemi.com.cn</u> 可以下载、查看以下相关文档:

- DS100, GW1N 系列 FPGA 产品数据手册
- DS117, GW1NR 系列 FPGA 产品数据手册
- DS821, GW1NS 系列 FPGA 产品数据手册
- DS861, GW1NSR 系列 FPGA 产品数据手册
- DS881, GW1NSER 系列安全 FPGA 产品数据手册
- DS891, GW1NRF 系列蓝牙 FPGA 产品数据手册
- DS102, GW2A 系列 FPGA 产品数据手册
- DS226, GW2AR 系列 FPGA 产品数据手册
- DS961, GW2ANR 系列 FPGA 产品数据手册
- DS976, GW2AN-55 器件数据手册
- SUG100, Gowin 云源软件用户指南

1.3 术语、缩略语

本手册中出现的相关术语、缩略语及相关释义如表 1-1 所示。

表 1-1 术语、缩略语

术语、缩略语	全称	含义					
FPGA	Field Programmable Gate Array	现场可编程门阵列					
VESA	Video Electronics Standards Association	视频电子标准协会					
VS	Vertical Sync	垂直同步					

IPUG769-1.0 1(19)

术语、缩略语	全称	含义
HS	Horizontal Sync	水平同步
DE	Data Enable	数据使能
IP	Intellectual Property	知识产权

1.4 技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网址: <u>www.gowinsemi.com.cn</u>

E-mail: support@gowinsemi.com

Tel: +86 755 8262 0391

IPUG769-1.0 2(19)

2 概述 2.1 概述

2 概述

2.1 概述

Video Frame Buffer 是用于接收并行视频输入数据,然后缓存至存储器,并同时输出并行视频数据,从而实现帧缓存的功能。

Gowin Video Frame Buffer IP 位于 VESA 标准的视频输入输出接口和存储器接口控制器 IP 的用户接口之间,使用户能够方便地实现基于存储器的视频帧缓存功能。

表 2-1 Gowin Video Frame Buffer IP

Gowin Video Frame Buffer IP					
逻辑资源 请参见表 2-2。					
交付文件					
设计文件 Verilog (encrypted)					
参考设计 Verilog					
TestBench Verilog					
测试设计流程					
综合软件 GowinSynthesis					
应用软件 Gowin Software					

2.2 主要特征

- 支持 VESA 标准视频接口;
- 支持 16/24/32 视频数据位宽;
- 支持高云 DDR3/PSRAM/HyperRAM 存储器接口 IP。

2.3 资源利用

通过 Verilog 语言实现 Video Frame Buffer IP。因使用器件的密度、速度和等级不同,其性能和资源利用情况可能不同。以高云 GW2A-18 系列 FPGA 为例,Video Frame Buffer IP 资源利用情况如表 2-2 和表 2-3 所示。

IPUG769-1.0 3(19)

2.3 资源利用

表 2-2 Gowin Video Frame Buffer IP 占用资源

存储器	DDR3	PSRAM	HyperRAM
器件	GW2A-18	GW2A-18	GW2A-18
Video width	16	16	16
FIFO Depth	2048	2048	2048
LUTs	818	642	589
Registers	402	386	419
BSRAMs	8	8	8

表 2-3 不同配置 BSRAM 资源占用数

存储器数据位宽	32		64		128	
读写 FIFO 深度	1024 2048		1024	2048	1024	2048
BSRAM(个)	4	8	4	8	8	8

IPUG769-1.0 4(19)

3 功能描述 **3.1** 系统框图

3 功能描述

3.1 系统框图

Gowin Video Frame Buffer with IP用于实现基于外部存储器的视频输入和输出帧缓存的功能。系统框图如图 3-1 所示。

图 3-1 系统框图

3.2 实现原理

3.2.1 电路结构

视频帧缓存应用系统包括视频信号源 video source, 视频接收器 video sink,视频帧缓存 Video Frame Buffer,存储器接口控制器 IP 和外部存储器。

其中 Video Frame Buffer 主要分为 4 个部分,输入行缓存控制电路,输出行缓存控制电路,基地址切换控制电路,仲裁器控制电路。电路结构如图 3-2 所示。

IPUG769-1.0 5(19)

3 功能描述 3.2 实现原理

图 3-2 结构框图

输入行缓存控制电路接收并行视频输入数据,然后缓存到输入 FIFO 行缓存中。当 FIFO 中数据存储到预先设定的阈值时,就向仲裁控制器发出写请求。当仲裁控制器响应请求,给与存储器控制权,则开始发送写数据,地址和命令。

输出行缓存控制电路会设定一个读取阈值,当输出 FIFO 行缓存内数据数量少于这个阈值时,就会向仲裁器发出读请求,当仲裁器响应请求,给与存储器控制权,则开始发送读命令和地址,并将接收的数据存到输出 FIFO 中。当输出 FIFO 收到输出视频的 DE 信号,即作为 FIFO 读使能信号后,则从 FIFO 中输出视频数据。

为了避免出现图像撕裂现象,通常会使用 3 帧缓存方式。使用 3 帧缓存就是有 1 帧在写,1 帧在读,还有 1 帧中间过渡,可以用读指针,写指针来指示,读写指针分别指向帧缓存的起始地址,即每帧的基地址。基地址切换控制电路就是负责控制读写指针的跳转。如果选择不使用 3 帧缓存方式,则读写操作都在相同地址空间。

仲裁器控制电路负责接收输入行缓存控制电路和输出行缓存控制电路发出的存储器读写访问请求,并进行仲裁。同时将输入行缓存控制电路和输出行缓存控制电路的数据接口与存储器接口控制器 IP 用户接口端的数据接口相连接。

3.2.2 带宽估算

视频帧缓存系统如需正常工作,必须保证视频输入输出带宽与存储器带 宽满足一定条件。以 PSRAM 存储器为例进行计算。

假设输入视频水平分辨率为 H_{in} , 垂直分辨率为 V_{in} , 场频为 F_{vsin} Hz, 像素位宽 N_{in} bit; 输出视频水平分辨率为 H_{out} , 垂直分辨率为 V_{out} , 场频为 F_{vsout} , 像素位宽 N_{out} bit; PSRAM 时钟频率为 F_{clk} MHz, 数据位宽为 D bit, 数据双

IPUG769-1.0 6(19)

3.2 实现原理

沿传输(即数据带宽需乘 2), 读写操作效率 e%。

带宽估算方法如下:

- 视频输入带宽 W_{in} = H_{in} *V_{in} *F_{vsin} *N_{in} (bit/s)
- 视频输出带宽 Wout = Hout *Vout *Fvsout *Nout (bit/s)
- 存储器理论带宽 W_{mem} = F_{clk} *D *2 (bit/s)
- 存储器有效带宽 W_{meme} = F_{clk} *D *2 * e% (bit/s)

注!

只有当 W_{meme} > (W_{in}+W_{out}) 时,视频帧缓存系统才能正常工作。

举例如下,假设输入视频格式 1280x720@60Hz, 像素格式 RGB565, 像素位宽 16bit; 输出视频格式 1280x720@60Hz, 像素格式 RGB565, 像素位宽 16bit; PSRAM 时钟频率 166MHz, 数据位宽 16bit, 读写操作效率 60%。

- $W_{in} = 1280*720*60*16 = 884,736,000 \text{bit/s} = 0.824 \text{Gbit/s}$
- $W_{out} = 1280*720*60*16 = 884,736,000 \text{bit/s} = 0.824 \text{Gbit/s}$
- W_{meme} = 166MHz*16*2*60% = 3187Mbit/s = 3.112Gbit/s

注!

读写操作效率取决于 PSRAM 的带宽效率和视频带宽利用率。

因为 3.112Gbit/s > (0.824Gbit/s +0.824Gbit/s), 所以视频帧缓存系统能正常工作。

IPUG769-1.0 7(19)

3 功能描述 3.3 端口列表

3.3 端口列表

Gowin Video Frame Buffer IP 的 IO 端口如图 3-3 所示。

图 3-3 Gowin Video Frame Buffer IP 端口示意图

根据配置参数不同,端口会略有不同。

Gowin Video Frame Buffer IP的 IO端口详细描述如表 3-1 所示。

表 3-1 Gowin Video Frame Buffer IP 的端口列表

序号	信号名称	方向	描述	备注
1	I_rst_n	1	复位信号, 低有效。	所有信号
2	I_dma_clk	I	存储器读写时钟信号	输入输出 方向均以
3	l_wr_halt	I	写指针暂停控制信号,1表示暂停 3 帧缓存模式有效。	Video Frame
4	I_rd_halt	I	读指针暂停控制信号,1表示暂停 3 帧缓存模式有效。	Buffer IP 为参考;
5	I_vin0_clk	1	输入视频时钟信号	
6	I_vin0_vs_n	1	输入场同步信号,负极性。	
7	I_vin0_de	1	输入数据有效信号	
8	I_vin0_data	1	输入视频数据信号	
9	O_vin0_fifo_full	0	输入 FIFO 满指示信号	
10	I_vout0_clk	I	输出视频时钟信号	

IPUG769-1.0 8(19)

3.3 端口列表

ウロ	片口力和	++	+#·\-	友许
序号	信号名称	方向	描述	备注
11	I_vout0_vs_n	1	输出场同步信号,负极性。	
12	I_vout0_de	I	输出数据读使能信号	
13	O_vout0_den	0	输出数据有效信号,比 I_vout0_de 信号延时 2 个时钟周期。	
14	O_vout0_data	0	输出视频数据信号	
15	O_vout0_fifo_em pty	0	输出 FIFO 空指示信号	
DDR3	存储器接口(1)			
16	I_cmd_ready	_	高电平时指示 Memroy Interface 可接收命令与地址	
17	O_cmd	0	命令通道	
18	O_cmd_en	0	命令与地址使能信号	
19	O_app_burst_nu mber	0	连续突发次数输入端口	
20	O_addr	0	地址输入	
21	I_wr_data_rdy	I	高电平时表示 MC 可以接收用户数据	
22	O_wr_data_en	0	wr_data 使能信号	
23	O_wr_data_end	0	高电平指示当前时钟周期是此组数据 wr_data 的最后一个周期	
24	O_wr_data	0	写数据通道	
25	O_wr_data_mas k	0	为 wr_data 提供遮挡信号	
26	I_rd_data_valid	I	rd_data 有效信号	
27	I_rd_data_end	1	高电平时指示当前输出的一组rd_data 的结束周期	
28	I_rd_data	I	读数据通道	
29	I_init_calib_comp lete	I	初始化完成信号	
PSRAI	M 或 HyperRAM 存储	者器接口	(2)	
31	O_cmd	0	命令通道	
32	O_cmd_en	0	命令与地址使能信号	
33	O_addr	0	地址输入	
34	O_wr_data	0	写数据通道	
35	O_data_mask	0	写数据掩模信号	
36	I_rd_data_valid	I	读数据有效信号	
37	I_rd_data	1	读数据通道	
38	I_init_calib	I	初始化完成信号	

注!

● DDR3 存储器接口说明,参考 <u>IPUG281</u>, Gowin DDR3 Memory Interface IP 用户指南。

IPUG769-1.0 9(19)

3 功能描述 3.4 参数配置

 PSRAM 存储器接口说明,参考 <u>IPUG943</u>, Gowin PSRAM HS Memory Interface IP 用户指南。

 HyperRAM 存储器接口说明,参考 <u>IPUG944</u>, Gowin HyperRam Memory Interface IP 用户指南。

3.4 参数配置

表 3-2 Gowin Video Frame Buffer IP 参数

序号	参数名称	允许范围	默认值	描述
1	Memory Type	DDR3/PSRA M/HyperRA M	DDR3	外部存储器类型
2	Addr Width	21/22/28	28	存储器接口控制器 IP 用户接口地址位宽
3	Data Width	32/64/128/2 56	128	存储器接口控制器 IP 用户接口地址位宽
4	Write Burst Length	64/128	64	连续突发写长度
5	Read Burst Length	64/128	64	连续突发读长度
6	Write Video Width	16/24/32	16	写视频数据位宽
7	Read Video Width	16/24/32	16	读视频数据位宽
8	Image Size	0x00000001 ~0xFFFFF FF	0x00800000	单帧视频地址空间
9	Use Three Frame Buffer	Yes/No	Yes	是否使用3帧缓存
10	Write FIFO Depth	1024/2048/4 096	2048	写 FIFO 深度,数据单 元 32 bits
11	Read FIFO Depth	1024/2048/4 096	2048	读 FIFO 深度,数据单 元 32 bits
12	Read FIFO Burst Mult	2/4/8/16	4	读 FIFO 门限值,是读 突发长度倍数

3.5 时序说明

本节介绍 Gowin Video Frame Buffer IP 的时序情况。

3.5.1 视频接口时序

视频接口时序图如图 3-4 所示。

图 3-4 视频接口时序示意图

注!

I_vin0_de 在一行内必须连续,不支持一行内 DE 不连续。

IPUG769-1.0 10(19)

3 功能描述 3.5 时序说明

视频输出接口时序示意图如图 3-5 所示。

图 3-5 视频输出接口时序

注!

I_vout0_de 在一行内必须连续,不支持一行内 DE 不连续。

3.5.2 存储器接口控制器 IP 用户接口时序

- DDR3 存储器接口控制器 IP 用户接口读写操作时序,参考 <u>IPUG281</u>,Gowin DDR3 Memory Interface IP 用户指南。
- PSRAM 存储器接口控制器 IP 用户接口读写操作时序参考,参考 IPUG943,Gowin PSRAM HS Memory Interface IP 用户指南。
- HyperRAM 存储器接口控制器 IP 用户接口读写操作时序,参考 <u>IPUG944</u>, Gowin HyperRam Memory Interface IP 用户指南。

IPUG769-1.0 11(19)

4 界面配置

用户可以使用 IDE 中的 IP 内核生成器工具调用和配置高云 Video Frame Buffer IP。

1. 打开 IP Core Generator

用户建立工程后,单击左上角"Tools"选项卡,下拉单击"IP Core Generator"选项,即可打开 Gowin IP Core Generator,如图 4-1 所示。

图 4-1 打开 IP Core Generator

2. 打开 Video Frame Buffer IP 核

单击"Multimedia"选项,双击"Video Frame Buffer",打开 Video Frame Buffer IP 核的配置界面,如图 4-2 所示。

IPUG769-1.0 12(19)

图 4-2 打开 Video Frame Buffer IP 核

3. Video Frame Buffer IP 核端口界面

配置界面左侧为 Video Frame Buffer IP 核的接口示意图,如图 4-3 所示。

图 4-3 Video Frame Buffer IP 核接口示意图

4. 打开 Help 文档

可以单击位于图 4-3 右下角的"Help"按钮可以查看配置界面中各个选项的简单英文介绍,方便用户快速完成对 IP 核的配置。Help 文档选项介绍

IPUG769-1.0 13(19)

顺序和界面顺序一致,如图 4-4 所示。

图 4-4 Help 文档

Video Frame Buffer

Information

Type: Video Frame Buffer

Vendor: GOWIN Semiconductor

Summary: The Gowin Video Frame Buffer IP is used to receive parallel video input data, cache it to Memory, and output parallel video data at the same time. The IP allows designers to create custom systems in one Gowin device that connect easily to VESA standard input/ouput interface with the Gowin Memory Interface IP. This IP located between Gowin Memory Interface IP and the user's logic, reduces the user's effort to deal with the video frame buffer application interface by connecting VESA and Memory user interface.

Options & Description

Memory Options

Memory Type:

· The type of memory interface.

Addr Width:

· The address width of user interface in memory interface IP.

Data Width

. The data width of user interface in memory interface IP.

Write Burst Length:

• The length of write burst.

Read Burst Length:

· The length of read burst.

Video Data Format

Write Video Width:

• The data width of VESA write video, support 16/24/32 bits.

Read Video Width:

5. 配置基本信息

在配置界面的上部分是工程基本信息配置界面,以 GW2A-18C 为例,封装选择 PBGA484。Module Name 选项后面是工程产生后项层文件的名字,默认为 "Video_Frame_Buffer_Top",用户可自行修改。"File Name"是 IP核文件产生的文件夹,存放 Video Frame Buffer IP核所需文件,默认为 "video_frame_buffer",用户可自行修改路径。Create In 选项是 IP核文件夹产生路径,默认为 "\工程路径\src\video_frame_buffer",用户可自行修改路径。

图 4-5 基本信息配置界面

General			
Device:	GW2A-18C	Part Number:	GW2A-LV18PG484C8/I7
Create In:	te In: D:\proj\Gowin_VFB_DDR3_RefDesign\project\src\video_frame_buffer		
File Name:	video_frame_buffer	Module Name:	Video_Frame_Buffer_Top
Language:	Verilog ▼	Synthesis Tool:	GowinSynthesis ▼

6. Options 选项卡

IPUG769-1.0 14(19)

在选项卡中,用户需要配置 Video Frame Buffer 所使用存储器等参数信息。

图 4-6 Options 选项卡

IPUG769-1.0 15(19)

5.1 设计实例一

5 参考设计

本节主要介绍 Video Frame Buffer IP 的参考设计实例的搭建及使用方法。 详细信息请参见高云半导体官网给出的 Video Frame Buffer 相关参考设计。

5.1 设计实例一

本参考设计以 DK-VIDEO-GW2A18-PG484V1.2 开发板为例,参考设计基本结构框图如图 5-1 所示。DK-VIDEO-GW2A18-PG484V1.2 开发板相关信息参考官方网站。

图 5-1 参考设计实例一基本结构框图

在参考设计中,通过 testpattern 模块产生测试图视频信号,输入到 Video Frame Buffer 进行视频数据缓存, Video Frame Buffer 与 DDR3 控制器 IP 相连, syn_gen 模块产生输出视频时序,从 Video Frame Buffer 中读取视频数据后输出,最后输出到 HDMI2 TX 端口,通过 HDMI 线缆和显示器相连,即可以看到内部产生的测试图。测试图包括彩条图,网格图,灰阶图,纯色图。

5.2 设计实例二

本参考设计以 DK-GoAl-GW2AR18-QN88P V1.1 开发板为例,参考设计基本框图如图 5-2 所示。DK-GoAl-GW2AR18-QN88P V1.1 开发板相关信息参考官方网站。

IPUG769-1.0 16(19)

5.3 设计实例三

图 5-2 参考设计实例二基本结构框图

在参考设计中,通过 testpattern 模块产生测试图视频信号,输入到 Video Frame Buffer 进行视频数据缓存, Video Frame Buffer 与 PSRAM 控制器 IP 相连, syn_gen 模块产生输出视频时序,从 Video Frame Buffer 中读取视频数据,然后输出到 HDMI(J4)端口,通过 HDMI 线缆和显示器相连,即可以看到内部产生的测试图。测试图包括彩条图,网格图,灰阶图,纯色图。

5.3 设计实例三

本参考设计以 DK-GoAl-GW1NSR4C-QN48 V1.1 开发板为例,参考设计基本框图如图 5-3 所示。 DK-GoAl-GW1NSR4C-QN48 V1.1 开发板相关信息参考官方网站。

图 5-3 参考设计实例三基本结构框图

在参考设计中,通过 testpattern 模块产生测试图视频信号,输入到 Video Frame Buffer 进行视频数据缓存, Video Frame Buffer 与 HyperRAM 控制器 IP 相连, syn_gen 模块产生输出视频时序,从 Video Frame Buffer 中读取视频数据,然后输出到 HDMI(J4)端口,通过 HDMI 线缆和显示器相连,即可以看到内部产生的测试图。测试图包括彩条图,网格图,灰阶图,纯色图。

IPUG769-1.0 17(19)

6 文件交付 6.1 文档

6 文件交付

Gowin Video Frame Buffer IP 交付文件主要包含三个部分,分别为: 文档、设计源代码和参考设计。

6.1 文档

文件夹主要包含用户指南 PDF 文档。

表 6-1 文档列表

名称	描述
IPUG769_Gowin Video Frame Buffer IP 用户指南	高云 Video Frame Buffer IP 用户 手册,即本手册。

6.2 设计源代码(加密)

加密代码文件夹包含 Gowin Video Frame Buffer IP 的 RTL 加密代码, 供 GUI 使用,以配合高云云源软件产生用户所需的 IP 核。

表 6-2 Video Frame Buffer IP 设计源代码列表

名称	描述
video_frame_buffer.v	IP 核顶层文件,给用户提供接口信息,加密。

6.3 参考设计

Gowin VFB DDR3 RefDesign 文件夹主要包含 Gowin Video Frame Buffer IP 的网表文件,用户参考设计,约束文件、顶层文件及工程文件夹等。

表 6-3 Gowin VFB DDR3 RefDesign 文件夹内容列表

名称	描述
video_top.v	参考设计的顶层 module
testpattern.v	测试图产生模块
dk_video.cst	工程物理约束文件
dk_video.sdc	工程时序约束文件
video_frame_buffer	Video Frame Buffer IP 文件夹
ddr3_memory_interface	DDR3 Memory Interface IP 文件夹
i2c_master	I2C Master IP 文件夹

IPUG769-1.0 18(19)

6文件交付 6.3 参考设计

名称	描述
gowin_rpll	rPLL IP 文件夹
syn_code	同步时序产生模块文件夹

Gowin VFB PSRAM RefDesign 文件夹主要包含 Gowin Video Frame Buffer IP 的网表文件,用户参考设计,约束文件、顶层文件及工程文件夹等。

表 6-4 Gowin VFB PSRAM RefDesign 文件夹内容列表

名称	描述
video_top.v	参考设计的顶层 module
testpattern.v	测试图产生模块
dk_video.cst	工程物理约束文件
dk_video.sdc	工程时序约束文件
video_frame_buffer	Video Frame Buffer IP 文件夹
psram_memory_interface_hs	PSRAM Memory Interface IP 文件夹
dvi_tx_top	DVI TX IP 文件夹
gowin_rpll	rPLL IP 文件夹
syn_code	同步时序产生模块文件夹

Gowin VFB HyperRAM RefDesign 文件夹主要包含 Gowin Video Frame Buffer IP 的网表文件,用户参考设计,约束文件、顶层文件及工程文件夹等。

表 6-3 Gowin VFB HyperRAM RefDesign 文件夹内容列表

名称	描述
video_top.v	参考设计的顶层 module
testpattern.v	测试图产生模块
dk_video.cst	工程物理约束文件
dk_video.sdc	工程时序约束文件
video_frame_buffer	Video Frame Buffer IP 文件夹
hyperram_memory_interface_hs	HyperRAM Memory Interface IP 文件夹
dvi_tx_top	DVI TX IP 文件夹
gowin_pllvr	PLLVR IP 文件夹
syn_code	同步时序产生模块文件夹

IPUG769-1.0 19(19)

