(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-190719 (P2001 - 190719A)

(43)公開日 平成13年7月17日(2001.7.17)

(51) Int.Cl.7

A 6 3 B 53/04

識別記号

 \mathbf{F} I

テーマコート*(参考)

A 6 3 B 53/04

С Α

В

審査請求 未請求 請求項の数24 OL (全 12 頁)

(21)出願番号

特願2000-392961(P2000-392961)

(22)出願日

平成12年12月25日(2000.12.25)

(31)優先権主張番号 474670

(32)優先日

平成11年12月29日(1999.12.29)

(33)優先権主張国 米国 (US) (71)出願人 300044551

キャラウェイ・ゴルフ・カンパニ

アメリカ合衆国 カリフォルニア州92008 -8815, カールスパッド, ラザーフォー

ド・ロード 2180

(72)発明者 ジェイムズ エム マーフィー

アメリカ合衆国 カリフォルニア州 92677 オーシャンサイド レッドウィン

グ・ドライヴ 3339

(74)代理人 100070150

弁理士 伊東 忠彦 (外1名)

最終頁に続く

(54) 【発明の名称】 複合材料ゴルフクラブヘッド及びその製法

(57)【要約】

【課題】 反発係数の優れた複合材料からなるゴルフク ラブヘッドを提供する。

【解決手段】 複合材料からなり、0.010インチか ら0.250インチの厚みを持つ打撃プレートを持つゴ ルフクラブヘッドが記載されている。ゴルフクラブヘッ ドは、また、1998年-1999年のゴルフ規則。付 則II,規則4-1eに従って規定されるUSGAテス ト条件のような条件のもとで0.8よりも大きい反発係 数を持つ。ゴルフクラブヘッドのボディはまた複合材料 で形成され、ボディのリボン内にウェイトストリップが 配置される。

【特許請求の範囲】

【請求項1】 0.010インチから0.250インチの範囲の厚みと、少なくとも0.83の反発係数を持ち、複合材料からなる打撃プレートを有するゴルフクラブヘッド。

1

【請求項2】 打撃プレートは0.100インチから0.200インチの範囲の厚みを有する請求項1に記載のゴルフクラブヘッド。

【請求項3】 打撃プレートは0.110インチから の複数のフルフェースフ 0.155インチの範囲の厚みを有する請求項1に記載 10 のゴルフクラブヘッド。 のゴルフクラブヘッド。 【請求項19】 打撃フ

【請求項4】 複合材料からなり互いに一体となったクラウン、ソール及びリボンをさらに有する請求項1に記載のゴルフクラブヘッド。

【請求項5】打撃プレートとクラウンとの間に配され、0.100インチから0.200インチの範囲の厚みを持つリターンをさらに有する請求項4に記載のゴルフクラブヘッド。

【請求項6】 打撃プレートは中心部において厚みが最も厚い領域を有する厚みが変化する同心状の領域を有す 20 る請求項1に記載のゴルフクラブヘッド。

【請求項7】 複合材料はプリプレグシートプライである請求項1に記載のゴルフクラブヘッド。

【請求項8】 リボン上に配される金属材料からなるウェイトストリップをさらに有する請求項4に記載のゴルフクラブヘッド。

【請求項9】 ソールに取り付けられる一体化したホーゼル及びソールをさらに有する請求項4のゴルフクラブヘッド。

【請求項10】 打撃プレートはプリプレグシートの複 30数のフェース/クラウンプライと、複数のフルフェースプライとを有する請求項1に記載のゴルフクラブへッド。

【請求項11】 打撃プレートはプリプレグシートの複数のフェース重ねプライを有する請求項10に記載のゴルフクラブヘッド。

【請求項12】 プリプレグシートプライは90°の方向を持つ請求項10に記載のゴルフクラブヘッド。

【請求項13】 プリプレグシートプライは45°の方向を持つ請求項10記載のゴルフクラブヘッド。

【請求項14】 クラウンは複数のプリプレグシートのフェース/クラウンプライと、複数のプリプレグシートのソールプライを有する請求項4に記載のゴルフクラブヘッド。

【請求項15】 内部空洞を持ち、プリプレグシートの複数のプライからなり、打撃プレートと、ソールと、クラウンと、ソールとクラウンと並列に配置されたリボンと、ヒールエンドとトオエンドを持つボディを有し、ゴルフクラブヘッドは少なくとも0.83の反発係数を有するゴルフクラブヘッド。

【請求項16】 リボン上に配される金属材料からなる ウェイトストリップをさらに有する請求項15に記載の ゴルフクラブヘッド。

【請求項17】 ソールに取り付けられ一体化されたホーゼルとソールプレートをさらに有する請求項15に記載のゴルフクラブヘッド。

【請求項18】 打撃プレートが、プリプレグシートの複数のフェース/クラウンプライと、プリプレグシートの複数のフルフェースプライを有する請求項15に記載のゴルフクラブヘッド。

【請求項19】 打撃プレートはプリプレグシートの複数のフェース重ねプライをさらに有する請求項18に記載のゴルフクラブヘッド。

【請求項20】 プリプレグシートのフルフェースプライ及びフェース/クラウンプライは準等方性の方向にある請求項18に記載のゴルフクラブへッド。

【請求項21】 プリプレグシートのフルフェースプライ及びフェース/クラウンプライは準等方性の方向にある請求項18に記載のゴルフクラブヘッド

【請求項22】 クラウンはプリプレグシートの複数のフェース/クラウンプライを有し、ソールはプリプレグシートの複数のソールプライを有する請求項15に記載のゴルフクラブヘッド。

【請求項23】 ゴルフクラブヘッドは、300立方センチメータから310立方センチメータの範囲にある体積と、100グラムから195グラムの範囲の重量を持つ請求項15に記載のゴルフクラブヘッド。

【請求項24】 少なくとも一つの0°から45°の方向を持つプリプレグシートのソールプライをプリフォームの一部を形成するために成形型に置き、

各々が準等方性の方向を持ち、少なくともプリプレグシートの少なくとも一つのフェース/クラウンプライと、プリプレグシートの少なくとも一つのフルフェースプライをプリフォームの一部を形成するために成形型に置き、

上記プリフォームの部分と空気袋を組み合わせて内部に おいて空気袋とともにプリフォームを形成し、

空気袋を膨張させてプリプレグシートのプライを合体 し、プリフォームを硬化させて複合材料からなるゴルフ クラブヘッドを形成する、

複合材料からなるゴルフクラブヘッドを製造する方法。 【発明の詳細な説明】

[0001]

40

【発明の属する技術分野】 [関連出願] 本出願は、本出願において全てが組み込まれる1997年10月23日に出願され継続中の米国特許出願第08/958,723号の一部継続出願である。

【0002】本発明は、本発明は複合材料よりなる打撃 プレートを備えたゴルフクラブヘッドに関する。特に、 50 本発明は、インパクト時においてゴルフボールにエネル ギーを効率的に伝達するために特に方向性のあるシートを持つ複合材料からなるゴルフクラブヘッドに関する。 【0003】

【従来の技術】ゴルフクラブヘッドがボールを打撃するとき、クラブフェースとボールにかかる大きな衝撃が生じる。エネルギーの大部分はヘッドからゴルフボールに移されるが、衝突によりいくらかのエネルギーは失われる。ゴルフボールは典型的にはゴムのようなコアを囲むポリマー(イオノマーのような)のカバーにより構成される。柔らかいポリマーは歪みの損失特性を持ち、金属10の打撃プレートの損失特性より10-100倍のオーダーの歪み率従属性を持っている。したがって、インパクトの間、メタルフェースが少ない変形であるのに対し(0.025から0.050インチ)、大きいゴルフボールの変形(0.001から0.20インチ)と高い応力の結果、エネルギーの大部分は失われる。より有効にクラブヘッドからゴルフボールにエネルギーを伝達させればゴルフボールの飛距離は増大する。

【0004】金属やクラブヘッドの変形を少なくするために、クラブヘッドのフェースの硬度を増すというアプ 20ローチが一般的に受け入れられてきた。しかしながら、これはゴルフボールの大きな変形を生み、したがって、エネルギーの伝達に問題が生じる。

【0005】何人かはこの問題を認識し、可能な解決手段を提示している。例として、キャンパウ(Campau)の、可撓性を有するインパクト面を持つアイアンゴルフクラブを製造する方法に関する米国特許第4,398,965号は、フェースプレートが撓むことを許すスロットを備えた可撓性及び弾力性を有するフェースプレートを持つクラブを開示している。このキャンパウのフェースプレートはステンレススチールのような鉄からなり、0.1-0.125インチの範囲の厚みを持っている。

【0006】他の例として、エッギマン(Eggiman)の、弾力的に変形するフェース及びバックプレートを持つゴルフクラブヘッドに関する米国特許第5,863,261号は、ゴルフボールに対してインパクトの間、スプリングのような効果を生むように提携して作用する複数のプレートを使用することが開示されている。少なくとも二枚のプレートの間に粘性のある結合剤とし40て作用する流体が配される。

【0007】さらに他の例として、ジェプソン(Jepson)の、ポリウレタンインサートを持つゴルフクラブに関する米国特許第3, 937, 474号は、ポリウレタンインサートは $40\sim70$ のショアD硬度を持つことが開示されている。

【0008】さらに別の例として、イナモリ(Inam 0インチの範囲の厚めのri)のセラミックフェースプレートを持つゴルフク るようなテスト条件のラブヘッドに関する米国特許第3,975,023号 数を持つ複合材料からは、セラミックは通常は硬い材料であるが、高いエネル 50 クラブヘッドである。

ギー伝達係数をもつセラミック材料からなるフェースプレートを使用することを開示している。チェン(Chen)他によるゴルフクラブヘッドに関する米国特許第5,743,813号は、ゴルフボールのショックを吸収する多重プライのプレートを使用することを開示している。材料の一つは非金属材料である。

【0009】ルー(Lu)の偏向インサートフェースプレートを持つ中空クラブヘッドに関する米国特許第5,499,814号は、ステンレススチール、チタニウム、KEVAL(登録商標)、などを含む種々の材料に用いられ、0.01~0.30インチの範囲の厚さを有するフェースプレートが僅かにゆがむことができるようなプラスチック又はアルミニウム合金からなる補強部材を開示している。さらに、他のキャンパウ(Canpau)の弾性的に撓むことのできるインサートを持つゴルフクラブに関する米国特許第3,989,248号は、金属インサートを持つ木材からなるウッドクラブを開示している。

[0011]

【発明が解決しようとする課題】 先行技術には種々の打撃プレートについて開示されているが、薄い材料からなる高い反発係数を持つフェースは未だ提供されていない。

[0012]

【課題を解決するための手段】本発明は、与えられたインパクト前のクラブヘッドの速度に対し、ゴルフボールのインパクト後の速度を増加するため高い反発係数を持つ打撃プレートを備えるゴルフクラブヘッドを提供する。本発明は薄い複合材料からなる打撃プレートを使用することにより達成することができる。

【0013】本発明の一態様は、0.010-0.250インチの範囲の厚みを持ち、USGAにより特定されるようなテスト条件の下で少なくとも0.83の反発係数を持つ複合材料からなる打撃プレートを備えるゴルフクラブヘッドである。

【0014】反発係数を測定する標準的USGAの条件は、USGAより入手でき、「規則4-1e、付則IIの1998年7月6日付けの改定0、1998年8月4日付けの改定1に従うクラブヘッドの速度比を測定するためのUSGA手順」に定められている。

【0015】本発明の他の態様は、複合材料からなるボディを含むゴルフクラブヘッドである。ボディは、クラウン、打撃プレート、ソール、リボン、トオ及びヒールエンドを持っている。ゴルフクラブヘッドは、標準的なテスト条件下において、0.83より大きい反発係数を持つ。複合材料は特定の方向性をもつプリプレグシートのプライ(ply)である。ボディもまた、打撃プレートのより大きな追従を許すように特定の厚さによる応答を持っている。

【0016】本発明の他の態様は、複合材料からなるゴルフクラブヘッドを製造する方法である。この方法は、プリフォームを形成するための成形型にプリプレグシートのプライを配置することを含む。各プライは準等方性の方向性を持っている。プリフォームは複合材料のゴルフクラブヘッドを製造するために空気袋を用いて硬化さ 20れる。

【0017】本発明を概略説明したが、上述の、又はさらなる目的、特徴及び利点は、当業者であれば、以下の添付図面を参照にした本発明の詳細な説明から理解されるであろう。

【発明の実施の形態】本発明は、薄く高い反発係数を持ち、それにより本発明によるゴルフクラブヘッドでヒットされたボールがより長い比距離となるようなゴルフクラブヘッドに向けられている。反発係数(ここでは"COR"と言う)は下記の式により決定される。

[0018]

【数1】

e = <u>v2-v1</u> U1-U2

ここで、U1はインパクト前のクラブヘッドの速度;U2は速度0のインパクト前のゴルフボール速度;v1はクラブヘッドの打撃プレートをゴルフボールが離れた直後のクラブヘッドの速度;v2はクラブヘッドの打撃プレートをゴルフボールが離れた直後のゴルフボールの速度;eはゴルフボールとクラブ打撃プレートの間の反発40係数である。

【0019】eの値はエネルギーの付与がないシステムにおいては0と1.0の間である。柔らかい粘度やパテのような材料の反発係数は0に近く、完全な弾性材料で変形の結果エネルギー損失がない場合は、eは1.0となる。本発明は、通常のテスト条件のもとで測定した場合、0.9に近い反発係数を持つ打撃プレート又はフェースを持つクラブヘッドを提供する。

【0020】図1~4に示されるように、本発明による ゴルフクラブヘッドは全体として20により示されてい 50 る。クラブヘッド20はフェアウェイウッド又はドライバーである。クラブヘッド20は、一般的には、カーボンプリプレグシートのプライのような材料からなる複合材料からなるボディ22を持っている。

6

【0021】ボディ22は、クラウン24、打撃プレート26、ソール28、ソール28とクラウン24により並列されるリボン30を有している。リボン30は、概ね、トオエンド32からヒール34エンド34に延びている。リボン30は、略打撃プレート26の端部より始まり打撃プレート26の反対側の端部で終わる。ボディ22の後部36は打撃プレート26の反対側であり、リボン30、クラウン24及びソール28の部分により画成される。また、クラブヘッド20のヒールエンド34はシャフトを入れるための開口39を備えるホーゼル38となっている。

【0022】リボン30はクラブへッド20の体積を増加させ、また、クラブへッド20の慣性モーメントを高める。リボン30は、また、より偏平なクラウン24、即ち、カリフォルニア、カールバッドのキャラウェイゴルフカンパニーから得られるドライバーのグレイトビッグバーサ(GREAT BIG BERTHA)のような従来の伝統的なウッドクラブのクラウンより曲率半径がより小さいクラウン24を提供する。図1に示すように、クラウンはセクション24を提供する。図1に示すように、クラウンの中央セクション24 a は曲率を殆ど持たない最も平坦なせクション24 a は曲率を殆ど持たない最も平坦なせクション24 c 及び24 d はクラウントオセクション24 e と同様に、リボン30に向けて下方に凸状である。

【0023】図5-8に示されるように、クラブヘッドはクラブヘッドのリボン30の内部にウェイトストリップ40を有している。ウェイトストリップ40は好ましくはプリプレグ41a-bのプライの層に組み入れられる。ウェイトストリップ40は、更には、一体化されたウェイトストリップを持つゴルフクラブヘッドの名称で本出願と同日に出願された継続中の米国特許第09/

号に記載され、その全体はここに組み込まれるものである。ソールプレート 42はボディ 22のソール 28に固定されている。また、図5に示されるように、リターン 100は打撃プレート 26からクラウン 24への境界領域である。リターン 100は打撃プレート 26の応答性をコントロールするため、0.100~0.200の範囲の所定の厚みを有する。

【0024】図8に示されるように、ソールプレート42はクラブヘッド20の中に組み入れられるソールプレートホーゼル一体ピース43を形成するホーゼル38と一体とされる。ホーゼル38はクラブヘッド20の内部空洞44内に入り込んでいる。好ましくはクラブヘッド20は内部空洞44を持つものであるが、複合材料ボデ

ィ22は、重り、発泡部材、サウンド増加部材、その他を内部空洞44に配置のための種々の操作を可能にする。

【0025】図9に示されるように、ソールプレートホーゼルー体ピース43はソールプレート42を収容するように形成されたソールキャビティ内に挿入される。ホーゼル38はシャフトが配置されるためのシャフト開口39に連結するようにホーゼル穴50に挿入される。ソールプレート穴52は下記に述べるようにクラブヘッド20を作成するのに利用されるソール28を通して空洞10内部44にアクセスすることを可能とする。好ましい実施例においては、ソールプレートホーゼル一体ピース43はステンレススチールの材料により作られる。ソールプレートホーゼル一体ピース43は、更に、組み入れられるゴルフクラブヘッドの一体化されたソールプレート及びホーゼルに関する同日付け出願された継続中の米国特許出願09/に記載されている。

【0026】ウェイトストリップ40は、好ましくは、 銅、タングステン、鉄、アルミニウム、錫、銀、金、プ ラチナ、又はその種のものから構成される。好ましくは 20 銅が使用される。ウェイトストリップ40はボディ22 の複合材料より大きい密度を有する。好ましくは、ウェ イトストリップ40は、概略、打撃プレート26のヒー ルエンド34より後部36を通って打撃プレート26の トオエンド32に延びている。しかしながら、ウェイト ストリップ40はリボン30の後部36にのみに、リボ ン30のヒールエンド34のみに、リボン30のトオエ ンド32のみに、又はそれらの組み合わせた部分に沿っ て延びるようにすることができる。ウェイトストリップ 40はリボン30の大部分を占めるようにするのが好ま 30 しい。しかしながら、ウェイトストリップ40はリボン 30の少ない部分にだけ占めるようにすることもでき る。また、ウェイトストリップ40に替えて高密度化充 填フィルムを使用することができる。高密度化充填フィ ルムについては、ここに全てが組み入れられる、199 7年10月23日に出願され、複合材料ゴルフクラブへ ッドにおける高密度化充填フィルムに関する米国特許出 願第08/958,723に記載されている。

【0027】USGAテスト基準条件のもとでの与えられたボールに対する本発明のクラブヘッドの反発係数は 400.8~0.9であり、好ましくは0.83~0.88、最もこのましいいものは0.876である。打撃プレート26の薄さとプリプレグプライの方向性は、本発明のゴルフクラブヘッド20の反発係数を0.83より大きくすることを可能にしている。ウェイトストリップ40と一体化してソールプレート及びホーゼル43もまた、本発明のゴルフクラブヘッド20の反発係数を高めるの助長する。

【0028】更に、ゴルフクラブヘッド20のリターン 100の厚みは打撃プレート26のより大きな偏向を許 50

容し、ゴルフクラブヘッド20の反発係数を増加させる。

【0029】リターン100は打撃プレート100をクラウン24に結合させ、打撃プレート26がゴルフボールとインパクトする間のエネルギーの損失を減少させる。もし、リターン100が厚みが大き過ぎると、打撃プレート26が孤立して硬くなり、これによって反発係数が減少することとなる。もし、リターン100が薄すぎると、ゴルフボールとインパクトするとき打撃プレートに損傷が生ずる。

【0030】更に、本発明の打撃プレート26は、従来の打撃プレートよりアスペクト比が小さくなる。ここで使用される「アスペクト比」とは、図9に示されるように、打撃プレートの幅wを打撃プレートの高さhで割ったものとして定義される。

【0031】一つの実施例においては、幅wは90ミリメータ、高さhは54ミリメータでアスペクト比は1.666である。通常のゴルフクラブヘッドでは、アスペクト比は一般には1よりかなり大きい。例えば、最初のGREAT BIG BERTHA(グレイト ビッグバーサ)(登録商標)では、アスペクト比は1.9である。本発明のアスペクト比は、好ましくは、1.0~1.7である。

【0032】本発明によるクラブへッド20は、従来のものと重量が実質的に小さいか等しいものであっても、従来のクラブへッドよりより大きな体積を持つ。本発明によるクラブへッド20の体積は、175立方センチメータから400立方センチメータの範囲であり、より好ましくは、300立方センチメータから310立方センチメータである。本発明のクラブへッド20の重量は165グラムから300グラムの範囲であり、好ましくは、175グラムから225グラムの範囲であり、さらに最も好ましくは、188グラムから195グラムである。

【0033】図10~図17は、本発明のゴルフクラブ ヘッド20の複合材料ボディを形成するための好ましい プリプレグシートを示す。図10及び図11は全体を5 5で示されたフェース/クラウンプリプレグシートプラ イを示している。フェース/クラウンプライ55は樹脂 ボディ53内に分散された複数のファイバー51を有し ている。ファイバー51は好ましくはカーボン材料から なる。これとは別に、ファイバー51はアラミドファイ バーやグラスファイバーあるいはそれに類似するもので もよい。打撃プレートがゴルフボールに対して置かれた ときの打撃プレート26に対するファイバー51の関係 は、ファイバー51の方向性を決定する。もし、ファイ バー51が打撃プレート26と平行であるとき、即ち、 図10に示されるように、トオエンドからヒールエンド に向けて延びているとき、フェース/クラウンプライは 方向が0°である。図11に示されるように、ゴルフク

ラブヘッドボディ22のプリフォーム56上に置かれたとき、フェース/クラウンプライ55はクラブヘッド20の後端部36から打撃プレート26の低部に延び、次にソール28のプリプレグシートのプライに係合するように内側に向けられる。

【0034】図12及び図13は全体として57で示されるフルフェースのプリプレグシートプライを示している。フェース/クラウンプライ55のように、フルフェースプライ57は樹脂ボディ53内に分散された複数のファイバー51を持っている。ファイバー51はソール 1028からクラウン24に延びており、従って、フルフェースプライ57は、打撃プレート26がゴルフボールに対して置かれたとき打撃プレート26に直交するファイバーを持つ。したがって、図12のフルフェースプライ57は90°の方向を持つ。図13に示されるように、フルフェースプライ57は、クラウン24及びソール28のプリプレグシートに係合する延長部分を持って打撃プレート26を必然的に覆う。

【0035】図14及び図15は、全体を58で示されるフェース重ねプリプレグシートプライを示す。フェー20ス/クラウンプライ55のように、フェース重ねプライ58は樹脂ボディ53内に分散された複数のファイバー51を有している。ファイバー51はソール28からクラウン24に向けて延び、これにより、フェース重ねプライ58はゴルフボールに打撃プレート26に対したとき、打撃プレート26に対して直交するファイバーを持つ。従って、図14のフェース重ねプライ58は90°の方向を持つ。図15に示されるように、フェース2重プライ58は打撃プレート26を必然的に覆い、フルフェースプライ57、フェース/クラウンプライ55、又30はその両方と合同して使用される。

【0036】図16及び図17は、全体を59で示すソ ールプリプレグシートプライを示す。フェース/クラウ ンプライ55のように、ソールプライ59は樹脂ボディ 53内に分散された複数のファイバー51を有してい る。ファイバー51は、打撃プレート26がゴルフボー ルに対して置かれたとき、打撃プレート26に対し45 °の角度を持つ。したがって、図16のソールプライ5 9は45°の方向を持つ。図17に示されるように、ソ ールプライ59はソール28とリボン30を画成する。 【0037】先に述べたように、好ましい複合材料は、 カーボンプリプレグシートのプライである。プリプレグ 複合材シートプライは、好ましくはカーボン、アラミ ド、又はグラスファイバーの紐を平行状態で樹脂フィル ム内を通して引き、樹脂を部分的に硬化又はステージす ることにより製造される。樹脂が部分的にステージされ ると、樹脂はファイバーを保持し、これにより、ファイ バーは、シートのエッジに対して特定の方向に向いた全 てのファイバーを有する柔順なシートを形成する。好ま しい方向は0°、+45°、マイナス45°及び90°

である。模範的なカーボンプリプレグファイバーシートは、カリフォルニアのニュウポート コンポジット オブ サンタナ (Newport Composite of Santa Ana) , テキサスのファイバライト インコーポレーテッド オブ グリーンビレ (Fiberite Imc. OfGreenville) 又はカルフォルニアのエクセル インコーポレイテッド オブプリゾントン (Hexcel Inc. of Pleasoton) より入手できる。それに替えて、複合材料ボディ22の層は、樹脂なしの複合材ファイバーの複数のプライとすることができ、各プライは代表的には、ドライ強化プリフォームを製造するのに使用される連続する紐又はマットにより作ることができ、これらについては、ここに全体が参照として組み入れられる、1997年10月23日に出願され出願継続中の米国特許第08/958,723号に記載されている。

10

【0038】ゴルフクラブへッド20の成形型は、雄型でも雌型でもよいが、現在では雌型が好ましい。図18に示すように、成形型60は、ソールピース62、クラウンピース64、フェースピース66の3個のピースにより構成され、それらは、成形する間は一体とされる。フェースピース66はプライをその上に置く前にクラウンピース64に固定される。ソールピース62はソールプレート膨出部70とリボンセクション72とともに主キャビティ68を有している。ソールピース62は前側口74を有する。フェースピース66はソールピース62の前側開口に配置されるフェース突出部76を有している。クラウンピース64はクラウンキャビティ78を有している。ソールピース62はまたブラダー(空気袋)入口82を有している。

【0039】プリプレグシートのプライ55、57、58及び59及び望む場合は、ウェイトストリップ40はプリフォーム56を製造するため所定の方法により成形型60に施される。先ず。プリプレグシートプライ55、57、58及び59の層が成形型60の上の所定の位置に施される。次に、ウェイトストリップ40がソールピース62のリボンセクション72内に配置される。そして、追加的なソールプライ59がウェイトストリップがプリフォーム56の複合材ボディ22のリボン30内に組み入れられる。

【0040】別な方法としては、追加的ソールプライ59がウェイトストリップ40上に置かない方法があり、その場合、ウェイトストリップ40はボディ22のリボン30の内部壁と一体に硬化され、他の表面は内部空洞44に顕れるようになる。フェース/クラウンプライ55、フルフェースプライ57及びフェース重ねプライ58はフェース膨出部76及びキャビティ78の上に置かれる。

【0041】ゴルフクラブヘッド20は実質的には空洞コア44を持つ囲まれた複合材料ボディ22よりなるた

め、最終のゴルフクラブヘッド20に組み上げて硬化させる二つ又はそれ以上の片またはセクションに分けてプリフォーム56を作る必要がある。

【0042】図20~図22に示されるように、成形型 60の分割片が組み立てられると、好ましくはラテック ス、シリコン、又は同様な材料からなる膨張式の空気袋 90が開口82から空洞コア44内に導入される。その 結果できるゴルフクラブヘッド20の開口52は一体化 したホーゼルとソールプレート43によって覆われる。 一旦、空気袋90が空洞コア44内に置かれると、加圧 ガス源(図示せず)がガスラインにより空気袋90に接 続され、空気袋90は空洞コア44内で膨張させられ る。空気袋90はこれによりプリフォーム56の内面に 当接し、プリプレグシートプライ55、57、57、5 9及びウェイトストリップ40を成形型60の内壁に押 しつける。次に、成形型60は、所定の温度で所定時 間、即ち、プリプレグシート55、57、58び59及 びウェイトストリップ40内の樹脂が適切に硬化すまで の十分な時間、加熱される。減圧した後、空気袋90は 開口82を通して取り出され、ゴルフクラブヘッド20 は成形型60より取り出される。成形型60内で出来上 がったゴルフクラブヘッド20が図22に示されてい る。

【0043】使用される樹脂の種類により硬化温度は250°Fから800°Fの範囲で、硬化時間は数分(例えば、急速硬化エポキシ又は熱可塑性樹脂の場合)から1.5時間、ラテックス又はシリコン空気袋90に与える圧力は100から300psiの範囲となることは当業者であれば理解できるところであろう。

【0044】第1の実施例においては、ボディ22の打撃プレート26及びクラウン24は準等方性の方向の19のフルフェースプライ57と8のフェース/クラウンプライ55により形成される。準等方性方向は、0°から始まり少なくとも15°間隔で回転する方向により定義される。好ましい方向は、0°、プラス45°、マイナス45°、及び90°である。ボディ22のソール28とリボン30は準等方性の方向の8のソールプライ59とウェイトストリップ40により形成される。本例の打撃プレート26の厚みは0.117インチ、リターンの厚みは0.117インチ、反発係数は0.876である。

【0045】第2の例においては、ボディ22の打撃プレート26とクラウン24は、全てが準等方性の方向の19のフルフェースプライ57と、8のフェース/クラウンプライ55と2つのフェース重ねプライ59から形成される。ボディ22のソール28とリボン30は、準等方性の方向の8のソールパイル59と1つのウェイトストリップ40から形成される。本例の打撃プレート26は厚さが0.122インチ、リターンの厚さが0.1

【0046】第3の例においては、ボディ22の打撃プレート26及びクラウン24は、全て準等方性方向の26のフルフェースプライ57と、8のフェース/クラウンプライと、6のフェース重ねプライ58から形成される。ボディ22のソール28とリボン30は、準等方性の方向の8のソールプライ59と1つのウェイトストリップ40から形成される。本例の打撃プレート26は厚さが0.140インチ、リターンの厚さが0.120インチ、反発係数が0.851である。

12

【0047】第4の例においては、ボディ22の打撃プレート26及びクラウン24は、全て準等方性方向の19のフルフェースプライ57と、8のフェース/クラウンプライと、10のフェース重ねプライ58から形成される。ボディ22のソール28とリボン30は、準等方性の方向の8のソールプライ59と1つのウェイトストリップ40から形成される。本例の打撃プレート26は厚さが0.152インチ、リターンの厚さが0.117インチ、反発係数が0.834である。

【0048】第5の例においては、ボディ22の打撃プレート26及びクラウン24は、全て準等方性方向の28のフルフェースプライ57と、8のフェース/クラウンプライと、2つのフェース重ねプライ58から形成される。ボディ22のソール28とリボン30は、準等方性の方向の8のソールプライ59と1つのウェイトストリップ40から形成される。本例の打撃プレート26は厚さが0.135インチ、リターンの厚さが0.126インチ、反発係数が0.851である。

【0049】打撃プレート26の薄さと方向性は、ゴルフクラブヘッド20が反発係数0.83以上となることを可能とする。しかしながら、本発明のゴルフクラブヘッド20は、1998~1999年のゴルフ規則の付則 II,規則4-1eに従ったUSGAのテスト条件において、ゴルフボールに対してより大きな反発係数を達成するような構造、面積比及びリターンの厚みを使用している。このように、本発明は、スプリングと違って、打撃プレート26の応答性を高めて、システムにエネルギーを加えるkとなしにゴルフボールのインパクトに対しエネルギー損失を減らすことができる。

【0050】上述のように、当業者であれば、本発明の優れた効果を認識し、本発明が好ましい実施例と図面に記載された他の実施例により説明されているが、下記のクレームに示されることを除いて限定されない本発明の精神と範囲から離れることなく、他の多くの変更、改良や均等物による置換が可能であることは理解できるであろう。したがって、排他的所有権即ち特権がクレームされている本発明の実施例は添付のクレームによりその範囲が明確とされている。

【0051】以下に本発明の実施の態様をまとめて記載する。

0 【0052】(1) 0.010インチから0.250

インチの範囲の厚みと、少なくとも0.83の反発係数 を持ち、複合材料からなる打撃プレートを有するゴルフ クラブヘッド。

【0053】(2) 打撃プレートは0.100インチ から0.200インチの範囲の厚みを有する項1に記載 のゴルフクラブヘッド。

【0054】(3) 打撃プレートは0.110インチ から0.155インチの範囲の厚みを有する項1に記載 のゴルフクラブヘッド。

【0055】(4) 複合材料からなり互いに一体とな 10 ったクラウン、ソール及びリボンをさらに有する項1に 記載のゴルフクラブヘッド。

【0056】(5)打撃プレートとクラウンとの間に配 され、0.100インチから0.200インチの範囲の 厚みを持つリターンをさらに有する4に記載のゴルフク ラブヘッド。

【0057】(6) 打撃プレートは中心部において厚 みが最も厚い領域を有する厚みが変化する同心状の領域 を有する項1に記載のゴルフクラブヘッド。

【0058】(7) 複合材料はプリプレグシートプラ イである項1に記載のゴルフクラブヘッド。

【0059】(8) リボン上に配される金属材料から なるウェイトストリップをさらに有する項4に記載のゴ ルフクラブヘッド。

【0060】(9) ソールに取り付けられる一体化し たホーゼル及びソールをさらに有する項4のゴルフクラ ブヘッド。

【0061】(10) 打撃プレートはプリプレグシー トの複数のフェース/クラウンプライと、複数のフルフ ェースプライとを有する1に記載のゴルフクラブヘッ ド。

【0062】(11) 打撃プレートはプリプレグシー トの複数のフェース重ねプライを有する項10に記載の ゴルフクラブヘッド。

[0063] (12) プリプレグシートプライは90 °の方向を持つ項10に記載のゴルフクラブヘッド。

【0064】(13) プリプレグシートプライは45 。の方向を持つ項10記載のゴルフクラブヘッド。

[0065] (14) クラウンは複数のプリプレグシ ートのフェース/クラウンプライと、複数のプリプレグ 40 シートのソールプライを有する項4に記載のゴルフクラ ブヘッド。

[0066] (15)内部空洞を持ち、プリプレグシ ートの複数のプライからなり、打撃プレートと、ソール と、クラウンと、ソールとクラウンと並列に配置された リボンと、ヒールエンドとトオエンドを持つボディを有 し、ゴルフクラブヘッドは少なくとも0.83の反発係 数を有するゴルフクラブヘッド。

【0067】(16) リボン上に配される金属材料か らなるウェイトストリップをさらに有する項15に記載 50

のゴルフクラブヘッド。

【0068】(17) ソールに取り付けられ一体化さ れたホーゼルとソールプレートをさらに有する項15に 記載のゴルフクラブヘッド。

14

【0069】(18) 打撃プレートが、プリプレグシ ートの複数のフェース/クラウンプライと、プリプレグ シートの複数のフルフェースプライを有する項15に記 載のゴルフクラブヘッド。

【0070】(19) 打撃プレートはプリプレグシー トの複数のフェース重ねプライをさらに有する項18に 記載のゴルフクラブヘッド。

【0071】(20) プリプレグシートのフルフェー スプライ及びフェース/クラウンプライは準等方性の方 向にある項18に記載のゴルフクラブヘッド。

【0072】(21) プリプレグシートのフルフェー スプライ及びフェース/クラウンプライは準等方性の方 向にある項18に記載のゴルフクラブヘッド

(22) クラウンはプリプレグシートの複数のフェー ス/クラウンプライを有し、ソールはプリプレグシート の複数のソールプライを有する項15に記載のゴルフク ラブヘッド。

【0073】(23) ゴルフクラブヘッドは、300 立方センチメータから310立方センチメータの範囲に ある体積と、100グラムから195グラムの範囲の重 量を持つ項15に記載のゴルフクラブヘッド。

【0074】(24) 少なくとも一つの0°から45 。 の方向を持つプリプレグシートのソールプライをプリ フォームの一部を形成するために成形型に置き、各々が 準等方性の方向を持ち、少なくともプリプレグシートの 30 少なくとも一つのフェース/クラウンプライと、プリプ レグシートの少なくとも一つのフルフェースプライをプ リフォームの一部を形成するために成形型に置き、上記 プリフォームの部分と空気袋を組み合わせて内部におい て空気袋とともにプリフォームを形成し、空気袋を膨張 させてプリプレグシートのプライを合体し、プリフォー ムを硬化させて複合材料からなるゴルフクラブヘッドを 形成する、複合材料からなるゴルフクラブヘッドを製造 する方法。

【図面の簡単な説明】

【図1】本発明によるゴルフクラブヘッドの平面図であ

【図2】図1のゴルフクラブヘッドの背面図である。

【図3】図1のゴルフクラブヘッドのトオエンド側の図 である。

【図4】図1のゴルフクラブヘッドのヒールエンド側の 図である。

【図5】図1の線5-5に沿う断面図である。

【図6】図1の線6-6に沿う断面図である。

【図7】図1の線7-7に沿う断面図である。

【図8】図1の線8-8に沿う断面図である

【図9】本発明のゴルフクラブヘッドの分解構成図である。

【図10】0°の方向性を持つ打撃プレート/クラウンプライの平面図である。

【図11】本発明のゴルフクラブヘッドの打撃プレート /クラウンプライの断面図である。

【図12】0°の方向性を持つ打撃プレートプライの平面図である。

【図13】本発明のゴルフクラブヘッドの打撃プレートプライ全体の断面図である。

【図14】90°の方向性を持つ打撃プレート2重プライの平面図である。

【図15】本発明のゴルフクラブヘッドの打撃プレート2重プライの断面図である。

【図16】45°の方向性を持つソールプライの平面図である。

【図17】本発明のゴルフクラブヘッドのソールプライの断面図である。

【図18】本発明のゴルフクラブヘッドの製造に用いるマルチプルピース成形型の分解図である。

【図19】図18の型のソールピースの斜視図である。

【図20】本発明のゴルフクラブヘッドの型内に配置されたプリフォームの断面図である。

*【図21】本発明のゴルフクラブヘッドの型内に配置されたプリフォームの側面断面図である。

【図22】型内の硬化された本発明のゴルフクラブへッドを示す図である。

16

【符号の説明】

20 クラブヘッド

22 ボディ

24 クラウン

26 打撃プレート

10 28 ソール

30 リボン

40 ウェイトストリップ

42 ソールプレート

43 ソールプレートホーゼル一体ピース

51 ファイバー

53 樹脂ボディ

55 フェース/クラウンプリプレグシート

56 プリフォーム

57 フルフェースプライ

58 フェース重ねプライ

59 ソールプライ

100 リターン

20

フロントページの続き

- (72)発明者 ハーバート レイズアメリカ合衆国 カリフォルニア州92766 ラグーナ・ニゲル ヴィスタ・ニゲル 10
- (72)発明者 ジェイ アンドリュー ギャロウェイ アメリカ合衆国 カリフォルニア州 92029 エスコンディード クウェイル・ グレン・ウェイ 10197
- (72)発明者 リチャード シー ヘルムステッター アメリカ合衆国 カリフォルニア州 92067 ランチョ・サンタ・フェ カレ・ ヴィーダ・ブエナ 17993
- (72)発明者 ダニエル アール ジェイコブソン アメリカ合衆国 カリフォルニア州 92131 サン・ディエゴ ニキータ・コート 12133