

Introduction to Web Graphs

Sebastian Nagel Pedro Ortiz Suarez Thom Vaughan Greg Lindahl sebastian@commoncrawl.org
 pedro@commoncrawl.org
 thom@commoncrawl.org
 greg@commoncrawl.org

IIPC Web Archiving Conference 2025, 8 – 10 April 2025, Oslo, Norway

Webgraph - Basic Concepts

The Webgraph or Hyperlink Graph

Example Webgraph

Aggregation Levels

Aggregation Levels - Host and Domain

Aggregation Levels - Top-Level Domain

Related Types of Graphs

The WebGraph Framework

Webgraphs At Common Crawl

Centrality Ranks as Relevance Signal for Web Crawling

CCF Webgraph - Interactive Exploration

The Webgraph or Hyperlink Graph

- The webgraph describes the link structure between pages of the World Wide Web [1]
- Web pages correspond to the nodes (or "vertices") of the graph
- The hyperlinks connecting the web pages are the edges (or "arcs")
- The webgraph is a directed graph because hyperlinks are unidirectional
- Web pages are (usually) represented by URLs

Example Webgraph

A sample graph based on five Wikipedia pages:

 $0 \\ \hspace{0.2in} \textbf{https://en.wikipedia.org/wiki/Webgraph} \\$

. https://en.wikipedia.org/wiki/PageRank

https://en.wikipedia.org/wiki/Popularity

3

https://en.wikipedia.org/wiki/World_Wide_Web

4 https://en.wikipedia.org/wiki/Citation_graph

Aggregation Levels

- web pages / URL
- host part of the URL
- pay-level domain, registered domain, one level below the registry suffix
- top-level domain (TLD): org, uk
- example 1: https://en.wikipedia.org/wiki/Webgraph page/URL
 https://en.wikipedia.org/wiki/Webgraph host
 en.wikipedia.org domain
 wikipedia.org TLD

Aggregation Levels - Host and Domain

Figure 1: Page-level webgraph and aggregations on host and domain level [2]

Related Types of Graphs

- Citation graph
- Social network
 - Directed: Twitter, BlueSky, Mastodon, Instagram
 - Undirected: Facebook
- Software dependencies

Webgraph - Basic Concepts

The WebGraph Framework

The WebGraph Framework

LAW Libraries

Overview WebGraph Classes

BVGraph Intro

The Wikipedia Graph - Interactive Session

Ranking Webgraphs - Harmonic Centrality

Ranking Webgraphs - PageRank

WebGraph Classes For Ranking

Webgraphs At Common Crawl

Centrality Ranks as Relevance Signal for Web Crawling

CCF Webgraph - Interactive Exploration

The WebGraph Framework

- Paolo Boldi, Sebastiano Vigna, Laboratory of Web Algorithms (LAW),
 University of Milano
- Framework for graph compression [4] and graph algorithms
- Java, developed over 20 years
- (in progress) Reimplementation in Rust [5]

LAW Libraries

WebGraph – efficiently store (compress) and work with "immutable" graphs, includes "HyperBall" to compute Harmonic Centrality

Sux4J – map strings to integers

fastutil – type-specific Java collections (small memory footprint) including big arrays (more than 2 billion items)

dsiutils - various utils

law – includes classes to compute PageRank, but also utility classes for WARC and crawling

Overview WebGraph Classes

BVGraph – binary, compressed graph representation

- basename.graph the graph itself
- basename.properties text files with graph properties, including the class name
- basename.offsets required for non-sequential access
- used as pair: graph and its "transpose" (inverted direction of arcs):basename-t.*

ArcListASCIIGraph - read/write textual graph representations

- nodes are integers from 0 to n-1
- one line for every arc: $\langle source \rangle \ \langle target \rangle$
- numerically sorted by source and target

BVGraph Intro

```
java it.unimi.dsi.webgraph.BVGraph -g ArcListASCIIGraph edges.txt exmpl
# Load exmpl.graph and convert it back to text (written to stdout)
java it.unimi.dsi.webgraph.ArcListASCIIGraph exmpl /dev/stdout
# Transpose of the graph
java it.unimi.dsi.webgraph.Transform transposeOffline exmpl exmpl-t
# Statistics
java it.unimi.dsi.webgraph.Stats --save-degrees exmpl
```

- instructions: https://github.com/commoncrawl/wac2025-webgraph-workshop
- working directory: wac2025-webgraph-workshop/data/example-graph/
- Java CLASSPATH set
- commands listed in process-example.sh)

The Wikipedia Graph - Interactive Session

```
$> ishell --class-path "$CC WEBGRAPH JAR"
jshell> import org.commoncrawl.webgraph.explore.GraphExplorer
ishell> GraphExplorer e = new GraphExplorer("enwiki-2024")
jshell> e.ls("Webgraph")
ishell> e.sl("Webgraph")
ishell> /exit
# A JShell script loading the graph before starting the interactive session:
$> ishell
     --class-path "$CC WEBGRAPH JAR" \
     -R-Dgraph="enwiki-2024" \
     "$CC WEBGRAPH"/src/script/webgraph ranking/graph explore load graph.jsh
```

Ranking Webgraphs - Harmonic Centrality

Ranking Webgraphs - PageRank

Paolo Boldi's explanation [8]: https://youtu.be/cnGJtGP4gL4?t=2044

WebGraph Classes For Ranking

Webgraph - Basic Concepts

The WebGraph Framework

Webgraphs At Common Crawl

Webgraphs Based on Common Crawl Data

Why the WebGraph Framework?

Common Crawl Webgraph Datasets

CCF Webgraph Datasets: Number of Nodes

CCF Webgraph Datasets: Max Outdegree

Centrality Ranks as Relevance Signal for Web Crawling

CCF Webgraph - Interactive Exploration

Webgraphs Based on Common Crawl Data

- 2013—2015 Web Data Commons, University of Mannheim: hyperlink graphs and rankings [10, 11, 3, 2]
 - Page/host/domain-level hyper-link graphs
 - Host-level site ranking by harmonic centrality, pagerank, indegree centrality, Katz centrality [12]
- 2016 Common Search: host-level webgraph and pagerank [13, 14]
- 2017— "In-house" host/domain-level webgraph datasets by CCF [15, 16]

Why the WebGraph Framework?

- Proven to work for ranking the Web Data Commons hyperlink graphs
- Main goal of the CCF webgraphs: graph-based rankings as relevance signal for the web crawls
- Frank McSherry [17, 18]: "throwing more machines at a problem isn't necessarily the best approach. A laptop can outperform clusters when used effectively."
- Same experience while evaluation and comparing Spark's GraphX and the WebGraph framework

Common Crawl Webgraph Datasets

- One graph dataset combines three "monthly" crawl datasets
- Initially released quarterly
- Since monthly using a sliding window of the three latest crawls

- Only host and domain-level aggregations
- ! A page-level graph would be too large and costly to build and rank
- A small dataset (only Gigabytes) but a good representation of the sample crawled by CCBot

CCF Webgraph Datasets: Number of Nodes

CCF Webgraph Datasets: Max Outdegree

Webgraph - Basic Concept

The WebGraph Framework

Webgraphs At Common Craw

Centrality Ranks as Relevance Signal for Web Crawling

The Need for Sampling

Stratified Domain-Level Sampling

Domain-Level Graph-Based Ranking Example

Domain-Level Graph-Based Ranking Example

CCF Webgraph - Interactive Exploration

The Need for Sampling

Why sampling and prioritization are necessary? Why not just follow links?

- An average "monthly" crawl includes 3 billion page captures with 500+ billion links
 25+ billion unique URLs linked
- Up to 2.5 billion URLs listed in a single sitemap (sitemap index) [19]

Need to select a diverse and representative sample given

- Limited resources
- Requirements for crawler politeness: do not overload a single web site
- It's easy to get lost in the wrong corner of the web!

Stratified Domain-Level Sampling

Domain-level harmonic centrality ranks

- Define a "budget" [20] per registered domain
 - How many URLs/pages are sampled per domain
 - Domain: one level below the registry suffix, e.g. w.org, data.gov.uk)
- Are used during URL discovery to sample sitemaps or home pages (top-ranking domains: always, decreasing likelihood for lower ranks)
- Are "projected" to the page-level by inlink count or OPIC [21]
 - Rank the pages within a domain
 - ! We have no absolute "page quality metrics" comparing two pages from two different domains

Domain-Level Graph-Based Ranking Example

- Top-N . edu domains ranked by harmonic centrality (or pagerank)
 calculated on CC's domain-level hyperlink graphs [22]
- Reverse domain name notation [23]
- Order by harmonic centrality ("hc") [7, 8]
 - ranks are shown not scores
 - PageRank rank [24], too
 - global ranks over domains below all top-level domains, not only .edu
- Includes not only universities (*)
- Compared with university rankings by QS World [25] and Forbes [26]

Domain-Level Graph-Based Ranking Example

pos	hc	pr	rev. domain	rank	QS World [25]	rank	Forbes [26]
1	71	297	edu.stanford	1	MIT	1	Princeton
2	78	285	edu.harvard	4	Harvard	2	Stanford
3	90	392	edu.mit	6	Stanford	3	MIT
4	135	588	edu.berkeley	10	Caltech	4	Yale
5	157	757	edu.psu	11	U. Pennsylvania	5	Berkeley
6	167	515	edu.cornell	12	Berkeley (UCB)	6	Columbia
7	203	522	edu.cmu	16	Cornell	7	U. Pennsylvania
8	213	978	edu.princeton	21	Chicago	8	Harvard
9	228	998	edu.utexas	22	Princeton	9	Rice
10	236	818	edu.columbia	23	Yale	10	Cornell
11	239	1011	edu.yale	32	Johns Hopkins	11	Northwestern
12	249	1063	edu.wisc	34	Columbia	12	Johns Hopkins
13	268	1050	edu.washington	42	UCLA	13	UCLA
14	292	1358	edu.brookings*	43	NYU	14	Chicago
15	300	1405	edu.usc	44	Michigan-Ann Arbor	15	Vanderbilt
16	349	2076	edu.ncsu	50	Northwestern	16	Dartmouth College
17	352	1243	edu.si*	58	Carnegie Mellon	17	Williams College
18	391	1824	edu.georgetown	61	Duke	18	Brown
19	397	1248	edu.academia*	66	Texas at Austin	19	Claremont McKenna
20	398	1010	edu.uchicago	69	Illinois	20	Duke

Webgraph - Basic Concept

The WebGraph Framework

Webgraphs At Common Craw

Centrality Ranks as Relevance Signal for Web Crawling

CCF Webgraph – Interactive Exploration

CCF Domain-Level Graph – Interactive Session

Questions?

References

CCF Domain-Level Graph - Interactive Session

```
$> jshell \
    --class-path "$CC_WEBGRAPH_JAR" \
    -R-Dgraph="cc-main-2025-jan-feb-mar-domain" \
    "$CC_WEBGRAPH"/src/script/webgraph_ranking/graph_explore_load_graph.jsh
```

- instructions: https://github.com/commoncrawl/wac2025-webgraph-workshop
- see also: https://github.com/commoncrawl/cc-webgraph/blob/main/graph-exploration-README.md

Questions? 30

References i

- [1] **Webgraph.** https://en.wikipedia.org/w/index.php?title=Webgraph.
- [2] Robert Meusel et al. "The Graph Structure in the Web Analyzed on Different Aggregation Levels". In: The Journal of Web Science 1.1 (2015), pp. 33–47. https://pdfs.semanticscholar.org/b5d5/88298e6845b4bfd40ea779ce21e628239ef3.pdf.
- Oliver Lehmberg, Robert Meusel, and Christian Bizer. "Graph structure in the web: aggregated by pay-level domain". In: Web Science Conference. 2014. https://dl.acm.org/doi/10.1145/2615569.2615674.
- [4] Paolo Boldi and Sebastiano Vigna. "The WebGraph framework I: Compression techniques". In: WWW '04 (2004), pp. 595–602. https://doi.org/10.1145/988672.988752.

References ii

- [5] Tommaso Fontana, Sebastiano Vigna, and Stefano Zacchiroli. "WebGraph: The Next Generation (Is in Rust)". In: Companion Proceedings of the ACM on Web Conference 2024. WWW '24. Singapore, Singapore: Association for Computing Machinery, 2024, pp. 686–689. https://doi.org/10.1145/3589335.3651581.
- [6] Ian H. Witten, Marco Gori, and Teresa Numerico. "Web Dragons: Inside the Myths of Search Engine Technology". In: 2006. https://api.semanticscholar.org/CorpusID:1192963.
- [7] Paolo Boldi and Sebastiano Vigna. "Axioms for Centrality". In: CoRR abs/1308.2140 (2013). https://arxiv.org/abs/1308.2140.
- [8] Paolo Boldi. A modern view of centrality measures. 2013. https://www.youtube.com/watch?v=cnGJtGP4gL4.

References iii

- [9] Paolo Boldi and Sebastiano Vigna. "In-Core Computation of Geometric Centralities with HyperBall: A Hundred Billion Nodes and Beyond". In: 2013 IEEE 13th International Conference on Data Mining Workshops (2013), pp. 621–628. https://vigna.di.unimi.it/papers.php#BoVHB.
- [10] Web Data Commons Hyperlink Graphs. 2013. https://webdatacommons.org/hyperlinkgraph/index.html.
- [11] Robert Meusel et al. "Graph Structure in the Web Revisited". In: (2014). http://vigna.di.unimi.it/ftp/papers/GraphStructureRevisited.pdf.
- [12] The Common Crawl WWW Ranking. http://wwwranking.webdatacommons.org/.

References iv

- [13] Common Search: Our first public datasets: Host-level WebGraph and PageRank. https://web.archive.org/web/20170729110709/https://about.commonsearch.org/2016/07/our-first-public-datasets-host-level-webgraph-and-pagerank/.
- [14] https://github.com/commonsearch/cosr-back/blob/master/spark/jobs/pagerank.py.
- [15] **Web Graphs.** https://commoncrawl.org/web-graphs.
- [16] Web Graphs Statistics.
 https://commoncrawl.github.io/cc-webgraph-statistics/.
- [17] Frank McSherry. **Scalability! But at what COST?** 2015. https://www.frankmcsherry.org/graph/scalability/cost/2015/01/15/COST.html.

References v

- [18] Frank McSherry. **Bigger data; same laptop.** 2015. https://www.frankmcsherry.org/graph/scalability/cost/2015/02/04/COST2.html.
- [19] **sitemaps.org.** https://www.sitemaps.org/protocol.html.
- [20] Hsin-Tsang Lee et al. "IRLbot: Scaling to 6 Billion Pages and Beyond". In: ACM Trans. Web 3.3 (July 2009). ISSN: 1559-1131. https://doi.org/10.1145/1541822.1541823.
- [21] Serge Abiteboul, Mihai Preda, and Gregory Cobena. "Adaptive on-line page importance computation". In: (2003). https://dx.doi.org/10.1145/775152.775192.
- [22] Host- and Domain-Level Web Graphs October, November, December 2024. https://commoncrawl.org/blog/host--and-domain-level-web-graphs-october-november-and-december-2024.

References vi

- [23] **Reverse domain name notation.**https://en.wikipedia.org/wiki/Reverse_domain_name_notation.
- [24] **PageRank.** https://en.wikipedia.org/wiki/PageRank.
- [25] **QS World University Rankings: The top 100 universities in the USA.** https://www.topuniversities.com/where-to-study/north-america/united-states/ranked-top-100-us-universities.
- [26] Forbes America's Top Colleges List 2025 Best US Universities Ranked. https://www.forbes.com/top-colleges/.