La Modélisation et Blender

Guillaume MAS Diane PRIMAULT

Licence 3 Informatique Université Montpellier 2

04 décembre 2014

Sommaire

- La modélisation et ses techniques
 - Définition de la modélisation
 - Modélisation polygonale
 - Modélisation par courbes
 - Modélisation par subdivisions de faces
 - Modélisation par surfaces implicites
 - Modélisation par géométrie de construction de solides
- 2 Blender
 - Présentation de Blender
 - L'interpréteur python
 - Rendu 3D
 - Sources

Plan

- La modélisation et ses techniques
 - Définition de la modélisation
 - Modélisation polygonale
 - Modélisation par courbes
 - Modélisation par subdivisions de faces
 - Modélisation par surfaces implicites
 - Modélisation par géométrie de construction de solides
- 2 Blender
 - Présentation de Blender
 - L'interpréteur python
 - Rendu 3D
 - Sources

Modélisation

Introduction

Définition : modélisation 2D/3D

C'est l'étape en infographie tridimensionnelle consistant à créer un objet en 2D/3D, par ajouts, soustractions, ou par modifications de ses constituants.

Utilisations de la modélisation

Elle trouve sa place, dans de nombreux domaines variés tels que :

- L'industrie
- L'infographie
- La programmation dédiée aux jeux videos
- Aux sciences

Modélisation

Introduction

Images vectorielles

- Des images numériques composées d'objets géométriques individuels.
- Définies par divers attributs de formes, de positions, de couleurs, etc.
- En comparaison avec les images matricielles qui sont constituées de pixels.

Plan

- La modélisation et ses techniques
 - Définition de la modélisation
 - Modélisation polygonale
 - Modélisation par courbes
 - Modélisation par subdivisions de faces
 - Modélisation par surfaces implicites
 - Modélisation par géométrie de construction de solides
- Blender
 - Présentation de Blender
 - L'interpréteur python
 - Rendu 3D
 - Sources

Modelisation Polygonale

- Construction à partir de plans, ou polygones simples.
- En multipliant ces polygones, on va générer des formes de bases.
- En combinant ces formes de bases on crée des objets simples ou complexes.

Modelisation Polygonale

Composition d'un polygone

- Vertex (Sommet)
- Edge (Arêtes)
- Face

Modélisation Polygonale

 En multipliant ces polygones, nous pouvons générer des formes basiques.

• Pour éviter de devoir reconstruire des formes simples, Blender propose des primitives simples.

Modélisation Polygonale

 Les objets plus complexes sont obtenus, par combinaisons ou déformations de polygones ou de primitives

Modélisation Polygonale

 Simple à première vue, elle permet tout de même de modéliser des objets complexes.

Plan

- La modélisation et ses techniques
 - Définition de la modélisation
 - Modélisation polygonale
 - Modélisation par courbes
 - Modélisation par subdivisions de faces
 - Modélisation par surfaces implicites
 - Modélisation par géométrie de construction de solides
- 2 Blender
 - Présentation de Blender
 - L'interpréteur python
 - Rendu 3D
 - Sources

- Les courbes, tout comme les surfaces sont des objets calculés à partir de fonctions mathématiques, au lieu de vertices.
- Ces courbes sont calculées à partir des fonctions de Bezier et des Nurbs(NonRationalB Splines).
 Ces deux types de fonctions bien que différentes, travaillent à l'aide de vertices de contrôles afin de créer un polygone de contrôle.
- Comparé au mesh, les courbes ont des avantages mais aussi des inconvénients :
 - elles sont des fonctions mathématiques, donc facile à manipuler pendant la modélisation,
 - en contrepartie, lors du rendu, leurs manipulations peux devenir rapidement lourd pour le CPU.

Pour mieux comprendre, prenons un exemple

A partir d'une image dessinée à la main, nous allons la modéliser.

Résolution de la courbe

Même si ces courbes sont des objets mathématiques, il faut définir le nombre de points intermédiaires entre chaque paires de points de contrôles.

Plan

- La modélisation et ses techniques
 - Définition de la modélisation
 - Modélisation polygonale
 - Modélisation par courbes
 - Modélisation par subdivisions de faces
 - Modélisation par surfaces implicites
 - Modélisation par géométrie de construction de solides
- Blender
 - Présentation de Blender
 - L'interpréteur python
 - Rendu 3D
 - Sources

Qu'est-ce qu'une subdivision?

Vocabulaire

- Mesh = maillage
- Subdiviser les faces d'un mesh pour l'adoucir.
- Modeler des surfaces complexes sans trop de données (vertices, UV-mapping, ...).

Méthodes sous Blender :

- Simple Algorithme basique
- Avancée Catmull-Clark, subdivise et lisse le maillage

Niveaux de subdivision

Niveaux de subdivision

Niveau:1

Faces: 4

Niveaux de subdivision

Niveau: 2

Faces: 16

Niveaux de subdivision

Niveau: 3

Faces: 64

Catmull-Clark

Algorithme récursif

• Pour chaque surface : ajouter un *point de face* (moyenne des 4 *points originaux*),

Catmull-Clark

Algorithme récursif

- Pour chaque surface : ajouter un *point de face* (moyenne des 4 *points originaux*),
- Pour chaque arête : ajouter un point d'arête (moyenne des 2 points de face et des 2 points originaux),

Catmull-Clark

Algorithme récursif

- Pour chaque surface : ajouter un point de face (moyenne des 4 points originaux),
- Pour chaque arête : ajouter un point d'arête (moyenne des 2 points de face et des 2 points originaux),
- Relier les points de face créés aux points d'arête correspondant,

04 décembre 2014

Catmull-Clark

Algorithme récursif

 Pour chaque arête : ajouter un point d'arête (moyenne des 2 points de face et des 2 points originaux),

• Relier les points de face créés aux points d'arête correspondant,

Pour chaque point original P :

Catmull-Clark

Algorithme récursif

 Pour chaque arête : ajouter un point d'arête (movenne des 2 points de face et des 2 points originaux),

• Relier les points de face créés aux points d'arête correspondant,

Pour chaque point original P :

 considérer toutes les faces qui touchent P et calculer la position moyenne **F** de leur *point de face*,

Catmull-Clark

Algorithme récursif

• Pour chaque arête : ajouter un point d'arête (moyenne des 2 points de face et des 2 points originaux),

• Relier les points de face créés aux points d'arête correspondant,

Pour chaque point original P :

 considérer toutes les faces qui touchent P et calculer la position moyenne **F** de leur *point de face*,

• considérer toutes les arêtes qui touchent P et calculer la position moyenne A des milieux de chaque arête,

Catmull-Clark

Algorithme récursif

(moyenne des 2 points de face et des 2 points originaux),

• Pour chaque surface : ajouter un point de face

• Relier les points de face créés aux points d'arête correspondant,

Pour chaque point original P :

 considérer toutes les faces qui touchent P et calculer la position moyenne **F** de leur *point de face*,

• considérer toutes les arêtes qui touchent P et calculer la position moyenne A des milieux de chaque arête,

• déplacer P au barycentre de ces positions $\frac{F+2A+(n-3)P}{2}$

Catmull-Clark

Algorithme récursif

• Pour chaque arête : ajouter un point d'arête (moyenne des 2 points de face et des 2 points originaux),

• Relier les points de face créés aux points d'arête correspondant,

Pour chaque point original P :

 considérer toutes les faces qui touchent P et calculer la position moyenne **F** de leur *point de face*,

• considérer toutes les arêtes qui touchent P et calculer la position moyenne A des milieux de chaque arête,

• déplacer P au barycentre de ces positions $\frac{F+2A+(n-3)P}{2}$

Modifier les points originaux → modifier leurs points d'arêtes.

Quel niveau choisir?

Pour un quadrangle et pour une subdivision de niveau n :

 $\rightarrow \text{4n faces produites}$

Pourquoi ne pas choisir le niveau le plus élevé?

- Résolution de l'écran
- Temps de chargement + Mémoire système
- ullet Objet éloigné o bas niveau

Plan

- La modélisation et ses techniques
 - Définition de la modélisation
 - Modélisation polygonale
 - Modélisation par courbes
 - Modélisation par subdivisions de faces
 - Modélisation par surfaces implicites
 - Modélisation par géométrie de construction de solides
- 2 Blender
 - Présentation de Blender
 - L'interpréteur python
 - Rendu 3D
 - Sources

Primitives implicites : Surface équipotentielle

- ullet \neq modèles paramétriques (coordonnées des points)
- Pas représentées explicitement : f(x, y, z) = 0
- Sphère : $f(x, y, z) = x^2 + y^2 + z^2 + 1$

Primitives implicites : Surface équipotentielle

- ullet \neq modèles paramétriques (coordonnées des points)
- Pas représentées explicitement : f(x, y, z) = 0
- Sphère : $f(x, y, z) = x^2 + y^2 + z^2 + 1$
- Réduitent à \mathbb{R}^3 pour la modélisation de formes
- Le formalisme implicite définit une surface comme un ensemble de points de l'espace vérifiant une propriété
- Liée à la valeur prise en ces points par une fonction $F:\mathbb{R}^3\to\mathbb{R} \text{ on associe un scalaire à tout point de l'espace}$

Primitives implicites : Surface équipotentielle

- Surface S définie comme l'iso-surface de l'iso-valeur fixée par la fonction $F: S = \{P \in \mathbb{R}^3 / F(P) = iso\}$
 - la fonction implicite
 - le champ scalaire
 - la fonction de potentiel

Figure: A chaque iso-valeur correspond une iso-surface

Primitives implicites : Surface équipotentielle

- S fermée → sépare l'espace en 2 (extérieur / intérieur)
- Connaître la position du point par rapport à la surface frontière
- Avec un potentiel strictement décroissant, position de P :
 - Si F(P) > iso, le point P est à l'intérieur de la surface,
 (Volume implicite / équipotentiel)
 - Si F(P) = iso, le point P est sur la surface,
 - Si F(P) < iso, le point P est à l'extérieur de la surface

Volumes / Surfaces implicites

Primitive implicite à squelette ponctuel

- d'un centre Q_i
- d'une fonction de densité F_i

Scène composée de n primitives

⇒ forme complexe (volume ou surface implicite)

Fonction de densité globale F

- Mélange : $F(P) = \sum_{i=1}^{n} (F_i(P))$
- Union : $\cup (F_1, F_2, ..., F_n)(P) = max(F_1(P), F_2(P), ..., F_n(P))$
- Intersection : $\cap (F_1, F_2, ..., F_n)(P) = max(F_1(P), F_2(P), ..., F_n(P))$
- Appliquer des fonctions

Figure: Mélange

Figure: Intersection

Volumes / Surfaces implicites

Influence de l'iso-valeur

Avantage

Contrôle sur la continuité et la dérivabilité des surfaces obtenues
 ⇒ réaliser la jonction de deux objets sans une arête vive mais par une surface lisse.

Plan

- La modélisation et ses techniques
 - Définition de la modélisation
 - Modélisation polygonale
 - Modélisation par courbes
 - Modélisation par subdivisions de faces
 - Modélisation par surfaces implicites
 - Modélisation par géométrie de construction de solides
- 2 Blender
 - Présentation de Blender
 - L'interpréteur python
 - Rendu 3D
 - Sources

Modélisation par géométrie de construction de solides

2 méthodes

- CSG ("Constructive Solid Geometry" dite aussi "modélisation solide" ou "modélisation volumique"),
- B-Rep ("Boundary Representation" ou "modélisation surfacique").

Modélisation par géométrie de construction de solides

Modélisation volumique

- Combinaison d'objets solides simples cylindre, sphère, cône,...
- Transformations géométriques translation, rotation, homothétie
- Utilisation d'opérateurs géométriques booléens union, soustraction, intersection,...

Figure: Homothétie

Figure: Transformations

Modélisation par géometrie de construction de solides

Modélisation volumique : Structure

- Stockée sous forme arborescente (description des opérations et des éléments manipulés)
- Facilite les modifications

Modélisation par géometrie de construction de solides

Modélisation volumique : Structure

Avantages

- Frontières parfaites et non approchées pour les volumes complexes (\neq techniques à base de polygones)
- Optimisation/accélération des calculs :
 basés sur des volumes plutôt que sur les polygones
 (calculs de projection, calculs de collision entre deux solides)

Modélisation par géometrie de construction de solides

Modélisation volumique : Structure

Avantages

- Frontières parfaites et non approchées pour les volumes complexes (\neq techniques à base de polygones)
- Optimisation/accélération des calculs : basés sur des volumes plutôt que sur les polygones (calculs de projection, calculs de collision entre deux solides)

Inconvénients

- Liberté de modélisation restreinte
- Hiérarchies d'opérations très complexes

Modélisation par géometrie de construction de solides Modélisation surfacique

- Représenter la peau des objets géométriques en "cousant" des carreaux géométriques restreints, portés par des surfaces canoniques
- Représentation dans laquelle un solide est entièrement représenté par son bord (constitué de faces, arêtes et sommets)

Plan

- La modélisation et ses techniques
 - Définition de la modélisation
 - Modélisation polygonale
 - Modélisation par courbes
 - Modélisation par subdivisions de faces
 - Modélisation par surfaces implicites
 - Modélisation par géométrie de construction de solides
- 2 Blender
 - Présentation de Blender
 - L'interpréteur python
 - Rendu 3D
 - Sources

Présentation de Blender

Introduction

Imagerie de synthèse

- Modélisation d'un objet
- Mise en couleurs (matériaux et textures)
- Eclairage
- Rendu
- Animation

Présentation de Blender

Caractéristiques

Caractériquiques

- Modeleur intuitif et performant
- Méthodes d'animation multiples
- Blender Game
- Formats d'import/export variés
- Simulation de fluides
- Softbodies, moteur physique (simuler les collisions et déformations d'objets)
- Interface personnalisable
- Rendus externes possibles (YafaRay, Indigo. . .) (générer une image plus réaliste)
- Scripteur Python (permet de créer de petits plugin)

Présentation de Blender

Avantages / Inconvénients

Avantages

- Logiciel libre et gratuit
- Léger : environ 20 Mo
- Portabilité: Windows, Linux, Mac OS X
- Performant
- Visualisateur d'images, éditeur vidéo, module dédié à la création et l'exécution de jeux (Blender Game)

Inconvénients

Difficile d'utilisation au début

Plan

- La modélisation et ses techniques
 - Définition de la modélisation
 - Modélisation polygonale
 - Modélisation par courbes
 - Modélisation par subdivisions de faces
 - Modélisation par surfaces implicites
 - Modélisation par géométrie de construction de solides
- 2 Blender
 - Présentation de Blender
 - L'interpréteur python
 - Rendu 3D
 - Sources

Interpréteur Python

Généralités

- Blender possède un interpréteur python.
- Pour gérer toute la partie animation/rendu 3d...
- Pour modéliser par l'intermédiaire d'algorithme, les formes 3d désirées.
- Une grande documentation est présente sur le site de blender.org
- Launcher pour les scripts depuis le menu principal de blender, pour une interaction intuitive

Interpréteur Python

• Vous pouvez accéder à l'interpréteur depuis le menu outils.

Interpréteur Python

• Lorsque vous lancez l'interpréteur, une petite fenêtre va s'ouvrir en haut à droite, que vous pourrez agrandir à loisirs.

Interpréteur Python

 Il existe depuis Blender, un accès à la documentation relative à python et aux scripts, depuis le menu Aide.

Interpréteur Python

La documentation du python est présente sur le site de Blender.

Plan

- La modélisation et ses techniques
 - Définition de la modélisation
 - Modélisation polygonale
 - Modélisation par courbes
 - Modélisation par subdivisions de faces
 - Modélisation par surfaces implicites
 - Modélisation par géométrie de construction de solides
- 2 Blender
 - Présentation de Blender
 - L'interpréteur python
 - Rendu 3D
 - Sources

Blender Rendu 3D

Points Clés

- Le rendu 3D est l'étape finale d'un projet sur Blender, c'est le moment où tocontrollerjet va être testé.
- En fonction de la taille du projet, il est possible que vous ayez quelques soucis de puissances.
- Il existe un système, permettant de diviser le travaille demandé au(x) processeur(s), entre plusieurs machines, le renderfarm.

Blender Rendu 3D

Comment contrôler le rendu

- Output
- Render Layer
- Render
- Anim
- Baking
- Format
- Stamp

Blender Rendu3D

Les étapes pour un rendu optimisé

- Créer les images
- Éclairer la scène
- Premier rendu, qui optimise le temps de calcul
- Régler et ajuster l'éclairage et les matériaux
- Répéter les étapes précédentes
- Sauvegarde

3 outils de rendu

- Le moteur de rendu
- Compositing
- Montage

Optimisation du temps de calcul

- Blender consomme beaucoup de ressources en particulier sur le CPU, mais des solutions vous sont proposées afin d'optimiser les calculs.
- Si vous possédez un multicoeur, vous pouvez augmenter le nombre de thread afin d'utiliser tous vos coeurs dans les calculs.
- Si vous possédez plusieurs ordinateurs, sur un même LAN, vous pouvez partager le travail entre les différentes machines.
 - Passer le dossier contenant tous les fichiers de votre projet,
 - Lancer le logiciel Blender sur chaque machine,
 - Ouvrir ce projet.

Si vous passez par le chemin relatif, toutes les modifications seront automatiquement enregistrées sur le fichier original.

Plan

- La modélisation et ses techniques
 - Définition de la modélisation
 - Modélisation polygonale
 - Modélisation par courbes
 - Modélisation par subdivisions de faces
 - Modélisation par surfaces implicites
 - Modélisation par géométrie de construction de solides
- 2 Blender
 - Présentation de Blender
 - L'interpréteur python
 - Rendu 3D
 - Sources

Sources

Sources

- www.blender.org
- www.wiki.blender.org