Théorie régulière dans les groupes de tresses complexes Séminaire GATo

Owen GARNIER

LAMFA

6 octobre 2022

- Introduction
- Série infinie
- 3 Centralisateurs d'éléments réguliers
- 4 Isodegréismes
- 5 Les deux groupes restants

Notations

- $W \leq GL(V)$ un groupe de réflexions complexes (GRC) irréductible de rang $n \geq 2$.
- lacktriangle X le complémentaire dans V des hyperplans de réflexion de W.
- Pour k > 0, $\zeta_k := \exp\left(\frac{2i\pi}{k}\right) \in \mu_k^* \subset \mu_k$

Pour k > 0, on pose

$$A(k) := \{ \text{Degrés de } W \text{ divisibles par } k \}$$

$$B(k) := \{ \text{Codegr\'es de } W \text{ divisibles par } k \}$$

Et a(k), b(k) leurs cardinaux respectifs.

Definition

On dit qu'un élément $g \in W$ est ζ -régulier si l'espace propre $V(g,\zeta)$ n'est contenu dans aucun des hyperplans de réflexion de W. On notera k-régulier pour ζ_k -régulier.

Théorie de Springer dans les groupes de réflexions

Théorème [Springer 74, Broué 88, Lehrer-Michel 03]

- Des éléments k-réguliers existent dans W si et seulement si a(k) = b(k).
- Tous les éléments k-réguliers de W sont conjugués entre eux.
- Si $g \in W$ est k-régulier, alors son centralisateur $W' := C_W(g)$ agit sur $V(g, \zeta_k)$ comme un GRC.
- Les degrés (resp. codegrés) de W' sont les éléments de A(k) (resp. de B(k)).

Les degrés (codegrés) de G_{30} sont 2, 12, 20, 30 (resp. 0, 10, 18, 28). Pour k=4, on a A(4)=12, 20 et B(4)=0, 28. Donc 4 est régulier, le centralisateur associé est G_{22} .

Qu'en est-il des groupes de tresses ?

Centres des groupes de tresses irréductibles

Soit $B(W) = \pi_1(X/W, W.x_0)$ (resp. $P(W) = \pi_1(X, x_0)$) le groupe de tresses (pures) de W.

Théorème (Broué, Malle, Rouquier 98, Bessis 15, Digne, Marin, Michel 11)

Le centre de B(W) est monogène, engendré par un élément z_B . Le centre de W est cyclique engendré par l'image de z_B dans W. Le centre de P(W) est monogène et engendré par $z_P:=z_B^{\mid Z(W)\mid}$. On a une suite exacte courte

$$1 \longrightarrow Z(P(W)) \longrightarrow Z(B(W)) \longrightarrow Z(W) \longrightarrow 1$$

L'élément z_P est appelé le **full-twist**. Il a une élégante définition topologique comme l'élément de B(W) représenté par la boucle

$$t\mapsto e^{2i\pi t}x_0$$

Travaux de Bessis

Un GRC W est **bien-engendré** si il peut être engendré par n réflexions. Autrement, W est dit **mal-engendré** (et il peut être engendré par n+1 réflexions).

Théorème (Bessis 15)

On suppose que W est bien-engendré

- Oes racines k-èmes de z_P existent dans B(W) si et seulement si k est régulier pour W.
- Les racines k-èmes de z_P forment une classe de conjugaison dans B(W). Elles sont envoyées dans W sur des éléments k-réguliers.
- 9 Si ρ est une racine k-ème de z_P , et w son image dans W. Alors $C_{B(W)}(\rho) \simeq B(W')$, où $W' := C_W(w)$.

En général on appellera tresses k-régulières les racines k-èmes de z_P .

Les cas que nous devons traiter

Ce théorème couvre une large variété de groupes de tresses irréductibles. Nous voulons l'étendre à **tous** les groupes de tresses irréductibles. Il reste donc à prouver le théorème pour les groupes mal-engendrés :

	Série infinie	$G(de, e, n)$ avec $d \geqslant 2$ et $e \geqslant 2$							
_	Groupes exceptionnels	G ₇ ,	G ₁₁ ,	G_{12} ,	G_{13} ,	G_{15} ,	G_{19} ,	G ₂₂ et	G ₃₁ .

Premières réductions

Soit g un élément ζ_k -régulier pour W, et $y \in V(g,\zeta)$ un vecteur régulier. On considère le chemin

$$\gamma: t \mapsto e^{\frac{2i\pi t}{k}}y$$

Il induit une tresse k-régulière \tilde{g} dans B(W), qui est envoyée dans W sur un conjugué de g (donc k-régulier).

Ainsi, si k est régulier pour W, il existe des tresses k-régulières dans B(W). Pour prouver le point (A), il suffit de montrer que l'existence de tresses k-régulières entraı̂ne que k est régulier.

Pour le point (B), on doit seulement montrer que toutes les tresses k-régulières sont conjuguées: si c'est le cas, alors elles seront automatiquement envoyées dans W sur des éléments k-réguliers.

B(de, e, n) et B(de, 1, n)

Soit W:=G(de,e,n) avec $d,e\geqslant 2$. C'est un sous-groupe distingué de G(de,1,n) (d'indice e). De même pour B(de,e,n) dans B(de,1,n). Le groupe $B(de,1,n)\simeq B(2,1,n)$ est engendré par des éléments b_1,\cdots,b_n avec les relations

- ② $b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1}$ pour $i \in [[2, n-1]]$
- **3** $b_i b_j = b_j b_i \text{ pour } |i j| > 1$

On définit un morphisme $\operatorname{wd}: B(de,1,n) \to \mathbb{Z}$ en posant $\operatorname{wd}(b_1) := 1$ et $\operatorname{wd}(b_i) := 0$ pour i > 1.

On a $\rho \in B(de, e, n)$ si et seulement si $wd(\rho) \equiv 0[e]$.

B(de, e, n) et B(de, 1, n)

La définition topologique de z_P donne que $z_{P(de,e,n)} = z_{P(de,1,n)}$. Donc les tresses régulières de B(de,e,n) sont exactement les tresses régulières de B(de,1,n) qui sont dans B(de,e,n).

Un nombre k est régulier pour G(de, 1, n) si et seulement si il divise den. Il est régulier pour G(de, e, n) si et seulement si il divise dn.

Éléments réguliers dans G(de, 1, n) et B(de, 1, n)

Soit $\varepsilon := b_1 b_2 \dots b_n$ dans B(de, 1, n). On a $z_B = \varepsilon^n$ et $z_P = \varepsilon^{den}$. Donc ε est une tresse *den*-régulière.

Lemme

Tout éléments de B(de,1,n) qui admet une puissance centrale est conjugué à une puissance de ε .

Ce résultat est en fait plus fort que la propriété (B) pour B(de, 1, n):

- Les tresses régulières sont un cas particulier d'élément admettant une puissance centrale (ici, la puissance centrale est z_P)
- Non seulement toutes les tresses k-régulières sont conjuguées, mais elles sont conjuguées à une puissance d'une même tresse régulière ε .

Comme $\operatorname{wd}(\varepsilon) = 1$, on a que $\lambda := \varepsilon^e \in B(de, e, n)$ est une tresse dn-régulière dans B(de, e, n)

Conséquences sur B(de, e, n)

Proposition

Tout élément de B(de, e, n) qui admet une puissance centrale est conjugué dans B(de, e, n) à une puissance de λ .

Cela donne les propriétés (A) et (B) pour B(de, e, n). On doit seulement montrer la propriété (C) pour les puissances de λ .

Soit W := G(de, e, n), $\widehat{W} := G(de, 1, n)$, B := B(W), $\widehat{B} := B(\widehat{W})$, $G := C_W(\overline{\lambda}^p)$, $\widehat{G} := C_{\widehat{W}}(\overline{\lambda}^p)$. On a le diagramme suivant:

Qui donne le résultat voulu: $B(G) \simeq C_B(\lambda^p)$.

Centralisateurs d'éléments régulier: le Lemme principal

Soit W un groupe pour lequel (A),(B),(C) sont vrais. Soit δ une tresse r-régulière dans B(W). On pose $G:=C_W(\overline{\delta})$, et on sait que $B(G)\simeq C_{B(W)}(\delta)$. On pose

$$d:=k\wedge r,\ k':=\frac{k}{d},\ r':=\frac{r}{d}$$

Proposition

Soit $\rho \in B(G)$ une tresse k-régulière. La valeur de $q(\rho) = \rho^v \delta^u$ est la même pour tout couple (u,v) tel que k'u+r'v=1. C'est une tresse $k \vee r$ -régulière dans B(W), avec $q(\rho)^{k'} = \delta$ et $q(\rho)^{r'} = \rho$.

Preuve des points (A) et (B)

Soit ρ une tresse k-régulière dans B(G). $q(\rho)$ est une tresse $k \vee r$ -régulière pour B(W). Par le point (A) pour W, $k \vee r$ est régulier pour W.

Un degré de W est divisible par $k \vee r$ si et seulement si il est divisible à la fois par k et par r, c'est à dire si et seulement si c'est un degré de G divisible par k.

Donc $a(k \lor r)$ pour W est égal à a(k) pour G. Il en va de même pour $b(k \lor r)$ et b(k). Donc k est régulier pour G.

Soient ρ et ρ' deux tresses k-régulières de B(G). Les tresses régulières $q(\rho)$ et $q(\rho')$ sont conjuguées dans B(W) par un élément b.

On a $b\delta b^{-1} = bq(\rho)^{k'}b^{-1} = q(\rho')^{k'} = \delta$. Donc $b \in C_{B(W)}(\delta) = B(G)$.

On a $b\rho b^{-1}=bq(\rho)^{r'}b^{-1}=q(\rho')^{r'}=\rho'$. Donc ρ et ρ' sont conjuguées dans B(G).

Preuve du point (*C*)

Soit ρ une tresse k-régulière de B(G). On sait que $C_{B(W)}(q(\rho))$ s'identifie au groupe de tresses de $C_W(\overline{q(\rho)})$. On a :

$$C_G(\overline{\rho}) = G \cap C_W(\overline{\rho}) = C_W(\overline{\rho}) \cap C_W(\overline{\delta}) = C_W(\overline{q(\rho)})$$

$$C_{B(G)}(\rho) = B(G) \cap C_{B(W)}(\rho) = C_{B(W)}(\rho) \cap C_{B(W)}(\delta) = C_{B(W)}(q(\rho))$$

C'est la propriété (C) pour G.

Cette section traite les cas de G_{22} et G_{31} . En effet ils apparaissent comme comme des centralisateurs d'éléments 4-réguliers, respectivement dans G_{30} et G_{37} , qui sont bien-engendrés.

Isodegréismes: Définition

Notre résultat concerne les groupes de tresses. Qu'en est-il de deux groupes de réflexion ayant le même groupe de tresses ?

On a besoin de plus que d'un simple isomorphisme entre les groupes de tresses (par exemple $B_{13} \simeq B(6,6,2)$).

L'isodiscriminantalité n'est pas suffisante non plus: l'isomorphisme ne préserve pas le full-twist (eg $B_7 \simeq B_{11} \simeq B_{19}$).

Une notion suffisante est celle d'isodegréisme (isograde ?).

Definition

Soient W et W' deux GRC. On dit que W et W' sont **isodegréiques** (isogrades?) si ils ont les mêmes degrés et les mêmes codegrés. En particulier, deux groupes isodegréiques ont même rang, même cardinal

et leurs centres ont même cardinal.

Classification des couples isodegréiques.

Les degrés et codegrés des groupes de réflexions irréductibles sont (très) bien connus. Une analyse directe de ces (co)degrés donne la classification suivante.

Lemme

Les couples de GRC irréductibles isodegréiques sont

$$G_5 \leftrightarrow G(6,1,2)$$
 $G_{10} \leftrightarrow G(12,1,2)$ $G_{18} \leftrightarrow G(30,1,2)$
 $G_7 \leftrightarrow G(12,2,2)$ $G_{11} \leftrightarrow G(24,2,2)$ $G_{15} \leftrightarrow G(24,4,2)$
 $G_{19} \leftrightarrow G(60,2,2)$ $G_{26} \leftrightarrow G(6,1,3)$

On pourrait ajouter $G(2,2,3)\leftrightarrow G(1,1,4)$, $G(3,3,2)\leftrightarrow G(1,1,3)$ et $G(2,1,2)\leftrightarrow G(4,4,2)$, mais ces paires sont en fait isomorphes en tant que groupes de réflexions.

Conséquences sur notre théorème

On peut voir que deux groupes isodegréiques sont toujours isodiscriminantaux. De plus, l'isomorphisme entre les groupes de tresses obtenu préserve le full-twist.

Corollaire

Soient W et W' des groupes isodegréiques. Si les propriétés (A) et (B) sont vraies pour W, alors elles le sont également pour W'. De plus, si W et W' sont de rang 2, alors la propriété (C) pour W implique également la propriété (C) pour W'.

Ceci règle les cas de G_7 , G_{11} , G_{15} et G_{19} .

Un peu de théorie de Garside: Définitions

Rappelons qu'un *monoïde de Garside homogène* est un monoïde muni d'un élément particulier Δ, satisfaisant les conditions suivantes:

- M est homogène est simplifiable.
- M admet des pgcd et des ppcm (pour la divisibilité à gauche et à droite).
- L'élément Δ doit être **équilibré**. L'ensemble S de ses diviseurs doit être fini, et engendrer M.

Un tel monoïde se plonge dans son groupe de fractions G(M), que l'on appelle un **groupe de Garside**.

Cas de B_{12} et B_{13}

Considérons les présentations usuelles de B_{12} et B_{13} :

$$B_{12} := \langle s, t, u \mid stus = tust = ustu \rangle$$

 $B_{13} := \langle a, b, c \mid cabc = bcab, abcab = cabca \rangle$

Ces présentations définissent également des monoïdes M_{12} et M_{13} . Ce sont des monoïdes de Garside homogènes, d'éléments de Garside $\Delta_{12}=stus$ et $\Delta_{13}=(abc)^3$.

De plus, on a

$$z_{B_{12}} = (\Delta_{12})^3, \quad z_{P_{12}} = (\Delta_{12})^6$$

 $z_{B_{13}} = \Delta_{13}, \quad z_{P_{13}} = (\Delta_{13})^4$

Ainsi, les tresses régulières deviennent des *éléments périodiques* au sens de la théorie de Garside.

Éléments périodiques

Soient deux entier positifs p et q. On veut étudier les éléments ρ de G(M) tels que $\rho^p = \Delta^q$ On dit qu'un tel élément est (p,q)-**périodique**.

Théorème

Tout élément (p,q)-périodique de G(M) est conjugué à un $\rho \in M$ tel que $\rho^{p'} = \Delta^{q'}$ où $p' = \frac{p}{p \wedge q}$ et $q' = \frac{q}{p \wedge q}$.

Grâce à la fonction longueur, on a maintenant un nombre fini d'éléments à tester : Si Δ est de longueur k, un élément (p', q')-périodique doit être de longueur $\frac{q'k}{p'}$.

Schéma de preuve

Pour étudier les éléments (p, q)-périodiques, on peut suivre les étapes suivantes

- Énumérer tous les éléments de longueur $\frac{q'k}{p'}$ dans M, et trouver ceux (si ils existent) tels que $\rho^{p'} = \Delta^{q'}$.
- Construire le "graphe de conjugaison" suivant : les sommets sont les éléments (p',q')-périodiques dans M. Les arêtes entre deux éléments ρ,ρ' sont les atomes s tels que $\rho^s=\rho'$. En particulier, les composantes connexes de ce graphe sont en bijection avec les classes de conjugaisons d'éléments (p',q')-périodiques.
- ullet Le centralisateur d'un élément ρ est engendré par les boucles autour de ρ dans le graphe de conjugaison (un autre théorème de théorie de Garside).

Exemples de calculs pour B_{12}

L'élément $z_{P_{12}}$ est de longueur 24, donc des tresses k-régulières ne peuvent exister que si k divise 24. On ne donne pas les détails pour tous les diviseurs de 24. On donne trois exemples.

• Pour k=24, on étudie les éléments (24,6)-réguliers dans M_{12} . Cela revient à étudier les éléments (4,1)-réguliers, autrement dit les racines 4-èmes de Δ_{12} . De telles racines seraient de longueur 1, ce qui laisse s,t ou u. Clairement aucune de ces possibilités ne convient. Il n'y a donc pas d'éléments (24,6)-réguliers dans B_{12} , donc pas de tresses 24-régulières, ce qui est cohérent car 24 n'est pas régulier pour G_{12} .

• Pour k=8, on étudie les éléments (8,6)-réguliers dans M_{12} . Cela revient à étudier les éléments (4,3)-réguliers dans M. Des calculs directs montrent que les seuls tels éléments sont stu, tus et ust. Le graphe de conjugaison est le suivant

Il y a une seule boucle dans ce graphe, on obtient que toute tresse 8-régulière engendre son centralisateur.

• Pour k=2, on étudier les éléments (2,6)-réguliers dans M_{12} . Cela revient à étudier les éléments (1,3)-réguliers. Le seul élément est $(\Delta_{12})^3=z_B$. Comme il est central, son centralisateur est B_{12} .

Racines d'éléments centraux

Corollaire (G. 22)

Soit W un GRC irréductible. Les éléments périodiques de B(W) sont exactement les puissances de tresses régulières.

En particulier leurs images dans W sont des éléments réguliers.

Les racines k-èmes de z_P sont des analogues des éléments ζ_k -réguliers. Les racines de puissances de z_P sont alors de bons analogues des éléments réguliers en général.

Corollaire (G. 22)

Pour $z \in Z(B(W))$, les racines de z dans B(W) sont uniques à conjugaison près.

C'est un peu plus général que l'unicité des racines de z_P . Le problème d'unicité des racines de tout élément de B(W) est un problème ouvert.

Merci de votre attention