Lecture 9 NLLS

1

M-Estimation

• An extremum estimator is one obtained as the optimizer of a criterion function, $q(\mathbf{z},\mathbf{b})$.

Examples:

OLS:
$$\mathbf{b} = \arg\max(-\mathbf{e}'\mathbf{e}/T)$$

MLE: $\mathbf{b}_{\text{MLE}} = \arg\max\ln L = \sum_{i=1,...,T} \ln f(\mathbf{y}_i, \mathbf{x}_i, \mathbf{b})$
GMM: $\mathbf{b}_{\text{GMM}} = \arg\max - \mathbf{g}(\mathbf{y}_i, \mathbf{x}_i, \mathbf{b})' \mathbf{W} \mathbf{g}(\mathbf{y}_i, \mathbf{x}_i, \mathbf{b})$

- There are two classes of extremum estimators:
- M-estimators: The objective function is a sample average or a sum.
- Minimum distance estimators: The objective function is a measure of a *distance*.
- "M" stands for a maximum or minimum estimators --Huber (1967).

M-Estimation

- The objective function is a sample average or a sum.
- We want to minimize a population (first) moment:

$$min_{b} \operatorname{E}[q(\boldsymbol{z},\!\boldsymbol{\beta})]$$

– Using the LLN, we move from the population first moment to the sample average:

$$\sum_{i} q(\mathbf{z}_{i}, \mathbf{b}) / T \xrightarrow{p} E[q(\mathbf{z}, \boldsymbol{\beta})]$$

- We want to obtain: $\mathbf{b} = \operatorname{argmin} \sum_{i} q(\mathbf{z}_{i}, \mathbf{b})$ (or divided by T)
- In general, we solve the f.o.c. (or zero-score condition):

Zero-Score:
$$\sum_{i} \partial q(\mathbf{z}_{i}, \mathbf{b}) / \partial \mathbf{b'} = \mathbf{0}$$

– To check the s.o.c., we define the (pd) Hessian:

$$\mathbf{H} = \sum_{i} \frac{\partial^{2} q(\mathbf{z}_{i}, \mathbf{b})}{\partial \mathbf{b} \partial \mathbf{b'}}$$

M-Estimation

- If $\mathbf{s}(\mathbf{z}, \mathbf{b}) = \partial \mathbf{q}(\mathbf{z}, \mathbf{b}) / \partial \mathbf{b}'$ exists (almost everywhere), we solve $\sum_{i} \mathbf{s}(\mathbf{z}_{i}, \mathbf{b}_{M}) / T = 0 \qquad (*)$
- If, in addition, $E_X[s(z,b)] = \partial/\partial b' E_X[q(z,b)]$ -i.e., differentiation and integration are exchangeable-, then

$$\mathrm{E}_{\mathrm{X}}[\partial q(z,\!\beta)/\partial \beta'] = 0.$$

- Under this assumptions the M-estimator is said to be of ψ -type (ψ = $\mathbf{s}(\mathbf{z},\mathbf{b})$ =score). Often, \mathbf{b}_{M} is taken to be the solution of (*) without checking whether it is indeed a minimum).
- Otherwise, the M-estimator is of ϱ -type. (ϱ = $q(\mathbf{z},\boldsymbol{\beta})$).

M-Estimation: LS & ML

• Least Squares

- DGP:
$$\mathbf{y} = f(\mathbf{x}, \boldsymbol{\beta}) + \boldsymbol{\epsilon}$$
, $\mathbf{z} = [\mathbf{y}, \mathbf{x}]$

$$- q(\mathbf{z}; \boldsymbol{\beta}) = S(\boldsymbol{\beta}) = \boldsymbol{\varepsilon}' \boldsymbol{\varepsilon} = \sum_{i=1,...,T} (y_i - f(\mathbf{x}_i; \boldsymbol{\beta}))^2$$

- Now, we move from population to sample moments

$$- \ q(\mathbf{z};\!\mathbf{b}) \equiv S(\mathbf{b}) \equiv \mathbf{e'e} \equiv \sum_{i=1,\ldots,T} (y_i - f\!(\mathbf{x}_i;\!\mathbf{b}))^2$$

- $-\mathbf{b}_{NLLS} = \operatorname{argmin} S(\mathbf{b})$
- Maximum Likelihood
 - Let $f(\mathbf{x}_i, \boldsymbol{\beta})$ be the pdf of the data.

-
$$L(\mathbf{x}, \boldsymbol{\beta}) = \prod_{i=1,...,T} f(\mathbf{x}_i; \boldsymbol{\beta})$$

-
$$log L(\mathbf{x}, \boldsymbol{\beta}) = \sum_{i=1,...,T} ln f(\mathbf{x}_i; \boldsymbol{\beta})$$

- Now, we move from population to sample moments
- $q(\mathbf{z}, \mathbf{b}) = -log L(\mathbf{x}, \mathbf{b})$
- $\mathbf{b}_{\text{MLE}} = \operatorname{argmin} \log L(\mathbf{x}; \mathbf{b})$

M-Estimation: Minimum L_p -estimators

• Minimum L_p -estimators

$$-q(\mathbf{z};\boldsymbol{\beta}) = (1/p) |\mathbf{x} - \boldsymbol{\beta}|^p \qquad \text{for}$$

$$-q(\mathbf{z}; \boldsymbol{\beta}) = (1/p) | \mathbf{x} - \boldsymbol{\beta}|^{p} \qquad \text{for } 1 \le p \le 2$$
$$-\mathbf{s}(\mathbf{z}; \boldsymbol{\beta}) = |\mathbf{x} - \boldsymbol{\beta}|^{p-1} \qquad \mathbf{x} - \boldsymbol{\beta} < 0$$

$$= -|\mathbf{x} - \mathbf{\beta}|^{p-1} \qquad \mathbf{x} - \mathbf{\beta} > 0$$

- Special cases:
- -p = 2: We get the sample mean (LS estimator for β).

$$\mathbf{s}(\mathbf{z};\boldsymbol{\beta}) = \sum_{i} (x_i - \mathbf{b}_{M}) = 0$$
 => $\mathbf{b}_{M} = \sum_{i} x_i / T$

-p = 1: We get the sample median as the estimator with the least absolute deviation (LAD) for the median β . (There is no unique solution if *T* is even.)

Note: Unlike LS, LAD does not have an analytical solving method. Numerical optimization is not feasible. Linear programming is used.

The Score Vector

- Let $\{X = X_1; X_2;...\}$ be *i.i.d.*
- If $\mathbf{s}(\mathbf{z}, \mathbf{b}) = \partial \mathbf{q}(\mathbf{z}, \mathbf{b}) / \partial \mathbf{b}'$ exists, we solve

$$\sum_{i} \mathbf{s}(\mathbf{z}_{i}, \mathbf{b}_{M}) / T = 0$$
 (s(z_i,b) is a kx1 vector).

- $\ \mathrm{E}[s(z,b_0)] = \mathrm{E}[\partial \mathrm{q}(z,b)/\partial b'] = 0$
- Using the LLN: $\sum_{i} \mathbf{s}(\mathbf{z}_{i},\mathbf{b})/T \xrightarrow{P} \mathrm{E}[\mathbf{s}(\mathbf{z},\mathbf{b}_{0})] = \mathbf{0}$
- $V = Var[s(z,b_0)] = E[s(z,b)s(z,b)']$ (V is a kxk matrix). $= E[(\partial q(z,b)/\partial b') (\partial q(z,b)/\partial b)]$
- Using the LLN: $\sum_{i} [s(z_{i},b)s(z_{i},b)']/T \xrightarrow{p} \mathrm{Var}[s(z,b_{0})]$
- Using the Lindeberg-Levy CLT: $\sum_{i} \mathbf{s}(\mathbf{z}_{i},\mathbf{b})/\sqrt{T} \stackrel{d}{\longrightarrow} N(\mathbf{0},\mathbf{V})$

Note: We have already shown these results for the ML case.

The Hessian Matrix

- $\mathbf{\textit{H}}(\mathbf{z},\mathbf{b}) = E[\partial s(\mathbf{z},\mathbf{b})/\partial \mathbf{b}] = E[\partial^2 q(\mathbf{z},\mathbf{b})/\partial \mathbf{b}\partial \mathbf{b'}]$
- Using the LLN: $\sum_{i} [\partial s(\mathbf{z}_{i},\mathbf{b})/\partial \mathbf{b}]/T \xrightarrow{p} \mathbf{H}(\mathbf{z},\mathbf{b}_{0})$
- In general, the Information (Matrix) Equality does not hold. That is, $H \neq V$. The equality only holds if the model is correctly specified.
- Recall the Mean Value Theorem: f(x) = f(a) + f'(b) (x-a) a < b < x
- Apply MVT to the score:

$$\begin{array}{ll} \sum_{i} \ \mathbf{s}(\mathbf{z}_{i}, \mathbf{b}_{\mathbf{M}}) & = \sum_{i} \ \mathbf{s}(\mathbf{z}_{i}, \mathbf{b}_{0}) \ + \sum_{i} \mathbf{H}(\mathbf{z}_{i}, \mathbf{b}^{*}) \ (\mathbf{b}_{\mathbf{M}} - \mathbf{b}_{0}) \ \mathbf{b}_{0} \leq \mathbf{b}^{*} \leq \mathbf{b}_{\mathbf{M}} \\ 0 & = \sum_{i} \ \mathbf{s}(\mathbf{z}_{i}, \mathbf{b}_{0}) \ + \sum_{i} \mathbf{H}(\mathbf{z}_{i}, \mathbf{b}^{*}) \ (\mathbf{b}_{\mathbf{M}} - \mathbf{b}_{0}) \\ & = > \ (\mathbf{b}_{\mathbf{M}} - \mathbf{b}_{0}) \ = [\sum_{i} \mathbf{H}(\mathbf{z}_{i}, \mathbf{b}^{*})]^{-1} \sum_{i} \ \mathbf{s}(\mathbf{z}_{i}, \mathbf{b}_{0}) \\ & = > \sqrt{T} \ (\mathbf{b}_{\mathbf{M}} - \mathbf{b}_{0}) \ = [\sum_{i} \mathbf{H}(\mathbf{z}_{i}, \mathbf{b}^{*}) / T]^{-1} \sum_{i} \ \mathbf{s}(\mathbf{z}_{i}, \mathbf{b}_{0}) / \sqrt{T} \end{array}$$

The Asymptotic Theory

• Theorem: Consistency of M-estimators

Let $\{X = X_1; X_2;...\}$ be *i.i.d.* and assume

- (1) $\mathbf{b} \in \mathbf{B}$, where \mathbf{B} is compact. ("compact")
- (2) $[\sum_{i} q(\mathbf{X}_{i}, \mathbf{b})/T] \xrightarrow{p} g(\mathbf{b})$ uniformly in \mathbf{b} for some continuous function $g: \mathbf{B} \to R$ ("continuity")
- (3) g(b) has a unique global minimum at b₀. ("identification")

Then, $\mathbf{b_M} \xrightarrow{p} \mathbf{b_0}$

 $\begin{array}{l} \underline{\text{Remark:}} \text{ a) Since } \textbf{\textit{X}} \text{ are } \textit{i.i.d.} \text{ by the LLN (without uniformity) it} \\ \text{must hold } g(\textbf{b}) = \mathrm{E_X}[q(\textbf{\textit{X}},\textbf{b})], \text{ thus } \mathrm{E_X}[q(\textbf{z},\,\textbf{b_0})] = \min_{\textbf{b} \in \textbf{B}} \mathrm{E_X}[q(\textbf{z},\boldsymbol{\beta})]. \\ \end{array}$

b) If B is not compact, find a compact subset $B_0,$ with $b_0 \in B_0$ and $P[b_M \in B_0] \to 1.$

The Asymptotic Theory

- **Theorem**: Asymptotic Normality of M-estimators Assumptions:
- (1) $\mathbf{b_M} \xrightarrow{p} \mathbf{b_0}$ for some $\mathbf{b_0} \in \mathbf{B}$
- (2) $\mathbf{b_M}$ is of ψ -type and \mathbf{s} is continuously (for almost all x) differentiable w.r.t. \mathbf{b} .

(3)
$$\sum_{i} [\partial s(z_{i},b)/\partial b]/T|_{b=b^{*}} \xrightarrow{p} H(z,b_{0})$$
 for $b^{*} \xrightarrow{p} b_{0}$

$$(4) \sum_{i} \mathbf{s}(\mathbf{z}_{i}, \mathbf{b}) / \sqrt{T} \stackrel{d}{\longrightarrow} N(\mathbf{0}, \mathbf{V}_{0}) \qquad \qquad \mathbf{V}_{0} = \operatorname{Var}[\mathbf{s}(\mathbf{z}, \mathbf{b}_{0})] < \infty$$

Then,
$$\sqrt{T} (\mathbf{b_M} - \mathbf{b_0}) = \{ \sum_i \mathbf{H}(\mathbf{z}_i, \mathbf{b^*}) / T \}^{-1} [-\sum_i \mathbf{s}(\mathbf{z}_i, \mathbf{b_0}) / \sqrt{T}]$$

=> $\sqrt{T} (\mathbf{b_M} - \mathbf{b_0}) \stackrel{d}{\longrightarrow} N(\mathbf{0}, H_0^{-1} V_0 H_0^{-1})$

-
$$V = E[s(z,b)s(z,b)'] = E[(\partial q(z,b)/\partial b)'(\partial q(z,b)/\partial b)]$$

-
$$H = \partial s(z,b)/\partial b = E[\partial^2 q(z,b)/\partial b\partial b']$$

Asymptotic Normality

- Summary
 - $-\mathbf{b_M} \xrightarrow{p} \mathbf{b_0}$
 - $\mathbf{b_M} \xrightarrow{a} N(\mathbf{b_0}, \text{Var}[\mathbf{b_0}])$
 - $Var[\mathbf{b_M}] = (1/T) \ \boldsymbol{H_0}^{-1} \ \boldsymbol{V_0} \ \boldsymbol{H_0}^{-1}$
 - If the model is correctly specified: $-\mathbf{H} = \mathbf{V}$.

Then,
$$Var[\mathbf{b}] = V_0$$

- \mathbf{H} and \mathbf{V} are evaluated at \mathbf{b}_0 :
 - $\mathbf{H} = \sum_{i} \left[\frac{\partial^{2} q(\mathbf{z}_{i}, \mathbf{b})}{\partial \mathbf{b} \partial \mathbf{b'}} \right]$
 - V = $\sum_{\rm i} [\partial q(\mathbf{z}_{\rm i},\!\mathbf{b})/\partial \mathbf{b}][\partial q(\mathbf{z}_{\rm i},\!\mathbf{b})/\partial \mathbf{b'}]$

M-Estimation: Example

- DGP: $y = f(x_i; \beta) + \epsilon = \exp(x\beta) + \epsilon$,
 - Objective function:

$$q(\mathbf{X},\boldsymbol{\beta}) = \frac{1}{2} \epsilon' \epsilon = \frac{1}{2} [\mathbf{y} - \exp(\mathbf{X}\boldsymbol{\beta})]' [\mathbf{y} - \exp(\mathbf{X}\boldsymbol{\beta})]$$

- Score:
$$\mathbf{s}(\mathbf{z}, \boldsymbol{\beta}) = \partial_{\mathbf{q}}(\mathbf{z}, \boldsymbol{\beta}) / \partial \boldsymbol{\beta} = \partial_{\mathbf{f}}(\mathbf{x}_{i}; \boldsymbol{\beta}) / \partial \boldsymbol{\beta}' \; \boldsymbol{\epsilon}$$

= - $[\exp(\mathbf{X}\boldsymbol{\beta})\mathbf{X}]' [\mathbf{y} - \exp(\mathbf{X}\boldsymbol{\beta})]$
= - $[\exp(\mathbf{X}\boldsymbol{\beta})\mathbf{X}]' \; \boldsymbol{\epsilon} = -\mathbf{X}' \exp(\mathbf{X}\boldsymbol{\beta})' \; \mathbf{y} + \mathbf{X}' \exp(2\sum_{i} \mathbf{x}_{i}' \boldsymbol{\beta})$

-
$$V = \text{Var}[\mathbf{s}(\mathbf{z}, \boldsymbol{\beta})] = \text{E}[[\exp(\mathbf{X}\boldsymbol{\beta})\mathbf{X}]'\mathbf{\epsilon} \; \mathbf{\epsilon}'[\exp(\mathbf{X}\boldsymbol{\beta})\mathbf{X}]]$$

-
$$\mathbf{H} = \mathrm{E}[\partial^2 q(\mathbf{z}, \boldsymbol{\beta})/\partial \boldsymbol{\beta} \partial \boldsymbol{\beta'}] = \mathrm{E}[\partial f(\mathbf{x}_i; \boldsymbol{\beta})/\partial \boldsymbol{\beta'} \partial f(\mathbf{x}_i; \boldsymbol{\beta})/\partial \boldsymbol{\beta'} - \partial^2 f(\mathbf{x}_i; \boldsymbol{\beta})/\partial \boldsymbol{\beta} \partial \boldsymbol{\beta'} \boldsymbol{\epsilon}] = \mathrm{E}[\exp(\mathbf{X}\boldsymbol{\beta})\mathbf{X'}\mathbf{X}\exp(\mathbf{X}\boldsymbol{\beta})' - \exp(\mathbf{X}\boldsymbol{\beta})\mathbf{X'}\mathbf{X} \boldsymbol{\epsilon}]$$

-
$$Var[\mathbf{b_M}] = (1/T) \ \boldsymbol{H_0}^{-1} \ \boldsymbol{V_0} \ \boldsymbol{H_0}^{-1}$$

M-Estimation: Example

- $Var[\mathbf{b_M}] = (1/T) \ \mathbf{H_0}^{-1} \ \mathbf{V_0} \ \mathbf{H_0}^{-1}$
- We approximate

$$\begin{aligned} \operatorname{Var}[\mathbf{b_{M}}] &= (1/T) \ \{ \sum_{i} \left[\partial \mathbf{s}(\mathbf{z_{i}}, \mathbf{b_{M}}) / \partial \mathbf{b_{M}} \right] \}^{-1} \left[\sum_{i} \mathbf{s}(\mathbf{z_{i}}, \mathbf{b_{M}}) \ \mathbf{s}(\mathbf{z_{i}}, \mathbf{b_{M}})' \right] \\ &\qquad \{ \sum_{i} \left[\partial \mathbf{s}(\mathbf{z_{i}}, \mathbf{b_{M}}) / \partial \mathbf{b_{M}} \right] \}^{-1} \end{aligned}$$

Two-Step M-Estimation

• Sometimes, nonlinear models depend not only on our parameter of interest β , but nuisance parameters or unobserved variables in some way. It is common to estimate β using a "two-step" procedure:

1st-stage:
$$\mathbf{y_2} = g(\mathbf{w}; \boldsymbol{\gamma}) + \mathbf{v}$$
 => we estimate $\boldsymbol{\gamma}$, say \mathbf{c} 2nd-stage $\mathbf{y} = f(\mathbf{x}; \boldsymbol{\beta}, \mathbf{c}) + \boldsymbol{\epsilon}$ => we estimate $\boldsymbol{\beta}$, given \mathbf{c} .

- The objective function: $\min_{\beta} \{ \sum_i q(\mathbf{x}; \boldsymbol{\beta}, \mathbf{c}) = \boldsymbol{\epsilon}' \; \boldsymbol{\epsilon} \}$
- Examples:
 - (i) DHW Test for endogeneity
 - (ii) Weighted NLLS: $\min_{\beta} \{ \sum_{i} [\mathbf{y} f(\mathbf{x}; \boldsymbol{\beta})]^2 / g(\mathbf{z}; \mathbf{c}) \}$
 - (iii) Selection Bias Model: $y = X\beta + \delta \hat{h} + \epsilon \quad \hat{h} = G(z,c)$.

Two-Step M-Estimation

- Properties -- Pagan (1984, 1986), generated regressors:
 - Consistency. We need to apply a uniform weak LLN.
 - Asymptotic normality: We need to apply CLT.
- Two interesting results:
- The 2S estimator can be consistent even in some cases where $g(\mathbf{z}; \boldsymbol{\gamma})$ is not correctly specified –i.e., situations where \mathbf{c} may be inconsistent.
- The S.E. –i.e., Var[**b**₂₈]- needs to be adjusted by the 1st stage estimation, in most cases.

Two-Step M-Estimation

• Recall $\sqrt{T}(\mathbf{b_M} - \mathbf{b_0}) = H_0^{-1}[-\sum_i \mathbf{s}(\mathbf{z}_i, \mathbf{b_0}, \mathbf{c})/\sqrt{T}] + o(1)$ (*)

The question is weather the following equation holds:

$$\sum_{i} \mathbf{s}(\mathbf{z}_{i}, \mathbf{b}_{0}, \mathbf{c}) / \sqrt{T} = \sum_{i} \mathbf{s}(\mathbf{z}_{i}, \mathbf{b}_{0}, \mathbf{c}_{0}) / \sqrt{T} + o(1)$$
 where \mathbf{c}_{0} is the true value of $\mathbf{\gamma}$.

If this equality holds, $\mathbf{b_M}$ would be consistent.

• Let's do a 1st order Taylor expansion:

$$\sum_{i} s(\mathbf{z}_{i}, \mathbf{b}_{0}, \mathbf{c}) / \sqrt{T} \approx \sum_{i} s(\mathbf{z}_{i}, \mathbf{b}_{0}, \mathbf{c}_{0}) / \sqrt{T} + \mathbf{\textit{F}}_{0} (\mathbf{c} - \mathbf{c}_{0}) / \sqrt{T}$$
 where $\mathbf{\textit{F}}_{0} = \partial s(\mathbf{z}, \mathbf{b}_{0}, \mathbf{c}) / \partial \gamma$

Note: If $\mathbf{c} = \mathbf{c_0}$ or $\mathbf{F_0} = 0$, then (**) holds.

Two-Step M-Estimation

- Then, substituting back in (***) and then in (*), we have $\sqrt{T}(\mathbf{b_M} \mathbf{b_0}) = H_0^{-1}[-\sum_i \mathbf{r}(\mathbf{z_i}, \mathbf{b_0}, \mathbf{c_0})/\sqrt{T}] + o(1),$ (****)

where
$$\mathbf{r}(\mathbf{z}_{i}, \mathbf{b}_{0}, \mathbf{c}_{0}) = \mathbf{s}(\mathbf{z}_{i}, \mathbf{b}_{0}, \mathbf{c}_{0}) + F_{0} \mathbf{h}(\mathbf{w}_{i}, \mathbf{c}_{0})$$

Note: Difference between (*) and (****): $\mathbf{r}(\mathbf{z}_i, \mathbf{b}_0, \mathbf{c}_0)$ replaces $\mathbf{s}(\mathbf{z}_i, \mathbf{b}_0, \mathbf{c})$. The second term in $\mathbf{r}(\mathbf{z}_i, \mathbf{b}_0, \mathbf{c}_0)$ reflects the 1st-stage adjustment.

• $Var[\mathbf{b_M}] = (1/T) \ \boldsymbol{H_0}^{-1} \ Var[\mathbf{r}(\mathbf{z_i,b_0,c_0})] \ \boldsymbol{H_0}^{-1}$

Applications

- Heteroscedastity Autocorrelation Consistent (HAC) Variance-Covariance Matrix
 - Non-spherical disturbances in NLLS
- Quasi Maximum Likelihood (QML)
 - Misspecified density assumption in ML
 - Information Equality may not hold

Special case of M-estimation: NL Regression

- We start with a regression model: $y_i = f(\mathbf{x}_i, \boldsymbol{\beta}) + \boldsymbol{\epsilon}_i$
- Q: What makes a regression model nonlinear?
- Recall that OLS can be applied to nonlinear functional forms. But, for OLS to work, we need *intrinsic linearity*—i.e., the model linear in the parameters.

Example: A nonlinear functional form, but intrinsic linear:

$$y_i = \exp(\beta_1) + \beta_2 x_i + \beta_2 x_i^2 + \epsilon_i$$

Example: A non intrinsic linear model:

$$y_i = \beta_0 + \beta_1 x_i^{\beta 2} + \epsilon_i.$$

Nonlinear Least Squares

• Least squares: Min $_{\pmb{\beta}}$ S($\pmb{\beta}$) = {½ Σ_i [y_i - $f(\mathbf{x_i}, \pmb{\beta})$]² } = ½ Σ_i ϵ_i ² F.o.c.:

$$\begin{split} \partial^{1/2} \Sigma_{i} [y_{i}^{-} f(\mathbf{x}_{i}, \pmb{\beta})]^{2}] / \partial \pmb{\beta} \\ &= {}^{1/2} \Sigma_{i} (-2) [y_{i}^{-} f(\mathbf{x}_{i}, \pmb{\beta})] \ \partial f(\mathbf{x}_{i}, \pmb{\beta}) / \partial \pmb{\beta} = -\Sigma_{i} \ e_{i} \ \mathbf{x}_{i}^{0} \\ &= > -\Sigma_{i} \ e_{i} \ \mathbf{x}_{i}^{0} = \mathbf{0} \qquad \text{we solve for } \mathbf{b}_{\text{NLLS}} \end{split}$$

In general, there is no explicit solution, like in the OLS case:

$$\mathbf{b} = g(\mathbf{X}, \mathbf{y}) = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

• In this case, we have a *nonlinear* model: the f.o.c. cannot be solved explicitly for $\mathbf{b}_{\rm NLLS}$. That is, the nonlinearity of the f.o.c. defines a nonlinear model.

Nonlinear Least Squares: Example

• Q: How to solve this kind of set of equations?

Example: Min
$$_{\beta}$$
 S(β) = { $\frac{1}{2} \sum_{i} [y_{i} - f(\mathbf{x}_{i}, \boldsymbol{\beta})]^{2}$ } = $\frac{1}{2} \sum_{i} \varepsilon_{i}^{2}$ $y_{i} = f(\mathbf{x}_{i}, \boldsymbol{\beta}) + \varepsilon_{i} = \beta_{0} + \beta_{1} x_{i}^{\beta 2} + \varepsilon_{i}$. f.o.c.:
$$\partial [\frac{1}{2} \sum_{i} e_{i}^{2}] / \partial \beta_{0} = \sum_{i} (-1) (y_{i} - \beta_{0} - \beta_{1} x_{i}^{\beta 2}) 1 = 0$$

$$\partial [\frac{1}{2} \sum_{i} e_{i}^{2}] / \partial \beta_{1} = \sum_{i} (-1) (y_{i} - \beta_{0} - \beta_{1} x_{i}^{\beta 2}) x_{i}^{\beta 2} = 0$$

$$\partial [\frac{1}{2} \sum_{i} e_{i}^{2}] / \partial \beta_{2} = \sum_{i} (-1) (y_{i} - \beta_{0} - \beta_{1} x_{i}^{\beta 2}) \beta_{1} x_{i}^{\beta 2} \ln(x_{i}) = 0$$

• Nonlinear equations require a nonlinear solution. This defines a nonlinear regression model: the f.o.c. are not linear in $\pmb{\beta}$.

Note: If $\beta_2 = 1$, we have a linear model. We would get the normal equations from the f.o.c.

Nonlinear Least Squares: Example

Example: Min _B $S(\beta) = \{\frac{1}{2} \Sigma_i [y_i - (\beta_0 + \beta_1 x_i^{\beta_2})]^2 \}$

- From the f.o.c., we cannot solve for β explicitly. But, using some steps, we can still minimize RSS to obtain estimates of β .
- Nonlinear regression algorithm:
- 1. Start by guessing a plausible values for β , say β ⁰.
- 2. Calculate RSS for $\beta^0 => \text{get RSS}(\beta^0)$
- 3. Make small changes to β^0 , => get β^1 .
- 4. Calculate RSS for $\beta^1 => \text{get RSS}(\beta^1)$
- 5. If $RSS(\mathbf{\beta}^0) < RSS(\mathbf{\beta}^0) => \mathbf{\beta}^1$ becomes your new starting point.
- 6. Repeat steps 3-5 until you RSS(β i) cannot be lowered. => get β i. => β i is the (nonlinear) least squares estimates.

NLLS: Linearization

- We start with a nonlinear model: $y_i = f(\mathbf{x}_i, \boldsymbol{\beta}) + \varepsilon_i$
- We expand the regression around some point, β^0 :

$$\begin{split} \textit{f}(\mathbf{x}_{i}, & \boldsymbol{\beta}) &\approx \textit{f}(\mathbf{x}_{i}, \boldsymbol{\beta}^{0}) + \boldsymbol{\Sigma}_{k}[\partial f(\mathbf{x}_{i}, \boldsymbol{\beta}^{0}) / \partial \boldsymbol{\beta}_{k}^{0}](\boldsymbol{\beta}_{k} - \boldsymbol{\beta}_{k}^{0}) \\ &= \textit{f}(\mathbf{x}_{i}, \boldsymbol{\beta}^{0}) + \boldsymbol{\Sigma}_{k} \; \mathbf{x}_{i}^{0} \; (\boldsymbol{\beta}_{k} - \boldsymbol{\beta}_{k}^{0}) \\ &= [\textit{f}(\mathbf{x}_{i}, \boldsymbol{\beta}^{0}) - \boldsymbol{\Sigma}_{k} \; \mathbf{x}_{i}^{0} \; \boldsymbol{\beta}_{k}^{0}] + \boldsymbol{\Sigma}_{k} \; \mathbf{x}_{i}^{0} \; \boldsymbol{\beta}_{k} \\ &= f^{0} + \boldsymbol{\Sigma}_{k} \; \mathbf{x}_{i}^{0} \; \boldsymbol{\beta}_{k} = f^{0} + \mathbf{x}_{i}^{0} \; \boldsymbol{\beta} \end{split}$$

where

$$f_i^{\,0} = \textit{f}(\mathbf{x}_i,\!\boldsymbol{\beta}^0) - \mathbf{x}_i^{\,0\,\bullet} \; \boldsymbol{\beta}^0 \qquad \qquad (f_i^{\,0} \; does \; not \; depend \; on \; unknowns)$$

Now, $f(\mathbf{x}_i, \boldsymbol{\beta})$ is (approximately) linear in the parameters! That is,

$$\begin{aligned} y_i &= f_i^0 + \mathbf{x}_i^{0} \mathbf{\beta} + \boldsymbol{\epsilon}_i^0 \\ &=> y_i^0 = y_i - f_i^0 = \mathbf{x}_i^{0} \mathbf{\beta} + \boldsymbol{\epsilon}_i^0 \end{aligned} \qquad (\boldsymbol{\epsilon}_i^0 = \boldsymbol{\epsilon}_i + \text{linearization error i})$$

NLLS: Linearization

• We linearized $f(\mathbf{x}_i, \boldsymbol{\beta})$ to get:

$$\mathbf{y} = \mathbf{f}^0 + \mathbf{X}^0 \, \mathbf{\beta} + \mathbf{\epsilon}^0$$
 ($\mathbf{\epsilon}^0 = \mathbf{\epsilon} + \text{linearization error}$)
=> $\mathbf{y}^0 = \mathbf{y} - \mathbf{f}^0 = \mathbf{X}^0 \, \mathbf{\beta} + \mathbf{\epsilon}^0$

• Now, we can do OLS:

$$\mathbf{b}_{\rm NLLS} = (\mathbf{X}^{0'} \ \mathbf{X}^{0})^{-1} \ \mathbf{X}^{0'} \ \mathbf{y}^{0}$$

Note: **X**⁰ are called *pseudo-regressors*.

- In general, we get different $b_{\rm NLLS}$ for different $\pmb{\beta}^0$. An algorithm can be used to get the *best* $b_{\rm NLLS}$.
- ullet We will resort to numerical optimization to find the ullet $\mathbf{b}_{\mathrm{NLLS}}$.

NLLS: Linearization

• We can also compute the asymptotic covariance matrix for the NLLS estimator as usual, using the pseudo regressors and the RSS:

Est.
$$Var[\mathbf{b}_{NLLS} | \mathbf{X}^{\mathbf{0}}] = s_{NLLS}^{2} (\mathbf{X}^{\mathbf{0}} | \mathbf{X}^{\mathbf{0}})^{-1}$$

 $s_{NLLS}^{2} = [\mathbf{y} - f(\mathbf{x}_{i}, \mathbf{b}_{NLLS})]' [\mathbf{y} - f(\mathbf{x}_{i}, \mathbf{b}_{NLLS})]/(T-k).$

• Since the results are asymptotic, we do not need a degrees of freedom correction. However, a *df* correction is usually included.

Note: To calculate $s^2_{\rm NLLS}$, we calculate the residuals from the nonlinear model, not from the linearized model (linearized regression).

NLLS: Linearization - Example

- Nonlinear model: $y_i = f(\mathbf{x}_i, \boldsymbol{\beta}^0) + \epsilon_i = \beta_0 + \beta_1 x_i^{\beta_2} + \epsilon_i$
- Linearize the model to get:

$$\mathbf{y}^0 = \mathbf{y} - \mathbf{f}^0 = \mathbf{X}^0 \; \boldsymbol{\beta} + \boldsymbol{\epsilon}^0, \qquad \quad \text{where } f_i^{\;0} = \mathit{f}(\mathbf{x}_i, \boldsymbol{\beta}^0) - \mathbf{x}_i^{\;0} \; \boldsymbol{\beta}^0$$

Get
$$\mathbf{x}_{i}^{0} = \partial f(\mathbf{x}_{i}, \boldsymbol{\beta}) / \partial \boldsymbol{\beta} \mid_{\boldsymbol{\beta} = \boldsymbol{\beta}0}$$

 $\partial f(\mathbf{x}_{i}, \boldsymbol{\beta}) / \partial \boldsymbol{\beta}_{0} = 1$
 $\partial f(\mathbf{x}_{i}, \boldsymbol{\beta}) / \partial \boldsymbol{\beta}_{1} = \mathbf{x}_{i}^{\beta 2}$
 $\partial f(\mathbf{x}_{i}, \boldsymbol{\beta}) / \partial \boldsymbol{\beta}_{2} = \boldsymbol{\beta}_{1} \mathbf{x}_{i}^{\beta 2} \ln(\mathbf{x}_{i})$

$$\begin{split} f_i^0 &= \beta^0_{~0} + \beta^0_{~1} \, x_i^{\beta 0,2} - \{\beta^0_{~0} + \beta^0_{~1} \, x_i^{\beta 0,2} + \beta^0_{~2} \, \beta^0_{~1} \, x_i^{\beta 0,2} \ln(x_i) \} \\ y^0_{~i} &= \beta_0 + \beta_1 \, x_i^{\beta 0,2} + \beta_2 \, \beta^0_{~1} \, x_i^{\beta 0,2} \ln(x_i) + \, \epsilon^0_{~i} \end{split}$$

To get \boldsymbol{b}_{NLLS} , regress \boldsymbol{y}^0 on a constant, $\boldsymbol{x}^{\beta0,2}$, and $\beta^0_{~1}\,\boldsymbol{x}^{\beta0,2}\ln(\boldsymbol{x}).$

Gauss-Newton Algorithm

- Recall that \mathbf{b}_{NLLS} depends on $\mathbf{\beta}^0$. That is, $\mathbf{b}_{\text{NLLS}}(\mathbf{\beta}^0) = (\mathbf{X^{0'}} \ \mathbf{X^0})^{-1} \mathbf{X^{0'}} \ \mathbf{y^0}$
- We use a Gauss-Newton algorithm to find the **b**_{NLLS}. Recall GN:

$$\beta_{k+1} = \beta_k + (\mathbf{J}^T \mathbf{J})^{-1} \mathbf{J}^T \mathbf{\epsilon}$$
 -- \mathbf{J} : Jacobian = $\delta f(x\mathbf{i}; \boldsymbol{\beta})/\delta \boldsymbol{\beta}$.

• Given a \mathbf{b}_{NLLS} at step m, $\mathbf{b}(j)$, we find the \mathbf{b}_{NLLS} for step j+1 by: $\mathbf{b}(j+1) = \mathbf{b}(j) + [\mathbf{X}^0(j)'\mathbf{X}^0(j)]^{-1}\mathbf{X}^0(j)'\mathbf{e}^0(j)$

Columns of
$$\mathbf{X}^0(j)$$
 are the derivatives: $\partial f(\mathbf{x}_i, \mathbf{b}(j)) / \partial \mathbf{b}(j)'$
 $\mathbf{e}^0(j) = \mathbf{y} - f[\mathbf{x}, \mathbf{b}(j)]$

• The *update* vector is the slopes in the regression of the residuals on \mathbf{X}^0 . The update is zero when they are orthogonal. (Just like OLS)

Box-Cox Transformation

• It's a simple transformation that allows non-linearities in the CLM.

$$\mathbf{y} = f(\mathbf{x}_{i}, \boldsymbol{\beta}) + \boldsymbol{\varepsilon} = \Sigma_{k} \mathbf{x}_{k}^{(\lambda)} \boldsymbol{\beta}_{k} + \boldsymbol{\varepsilon}$$
$$\mathbf{x}_{k}^{(\lambda)} = (\mathbf{x}_{k}^{\lambda} - 1)/\lambda \qquad \qquad \lim_{\lambda \to 0} (\mathbf{x}_{k}^{\lambda} - 1)/\lambda = \ln \mathbf{x}_{k}$$

- For a given λ , OLS can be used. An iterative process can be used to estimate λ . OLS standard errors have to be corrected. Probably, not a very efficient method.
- NLLS or MLE will work fine.
- We can have a more general Box-Cox transformation model:

$$\mathbf{y}^{(\lambda 1)} = \boldsymbol{\Sigma}_k \, \mathbf{x}_k^{(\lambda 2)} \, \boldsymbol{\beta}_k + \, \boldsymbol{\epsilon}$$

Testing non-linear restrictions

- Testing linear restrictions as before.
- Non-linear restrictions introduce slight modification to the usual tests. We want to test:

$$H_0: R(\beta) = 0$$

where $R(\beta)$ is a non-linear function, with rank $[\partial R(\beta)/\partial \beta = G(\beta)] = J$.

• A Wald test can be based on $\mathbf{m} = R(\mathbf{b}_{\text{NLLS}}) - \mathbf{0}$: $W = \mathbf{m'}(\text{Var}[\mathbf{m} \mid \mathbf{X}])^{-1}\mathbf{m} = R(\mathbf{b}_{\text{NLLS}})'(\text{Var}[R(\mathbf{b}_{\text{NLLS}}) \mid \mathbf{X}])^{-1}R(\mathbf{b}_{\text{NLLS}})$

<u>Problem</u>: We do not know the distribution of $R(\mathbf{b}_{NLLS})$, but we know the distribution of \mathbf{b}_{NLLS} .

Solution: Linearize $R(\mathbf{b}_{NLLS})$ around $\boldsymbol{\beta}$ $R(\mathbf{b}_{NLLS}) \approx R(\boldsymbol{\beta}) + G(\mathbf{b}_{NLLS}) (\mathbf{b}_{NLLS} - \boldsymbol{\beta})$

Testing non-linear restrictions

- Linearize $R(\mathbf{b}_{NLLS})$ around $\boldsymbol{\beta}$ (= $\mathbf{b_0}$) $R(\mathbf{b}_{NLLS}) \approx R(\boldsymbol{\beta}) + \mathbf{G}(\mathbf{b}_{NLLS})$ (\mathbf{b}_{NLLS} - $\boldsymbol{\beta}$)
- Recall $\sqrt{T} (\mathbf{b_M} \mathbf{b_0}) \xrightarrow{d} N(\mathbf{0}, \text{Var}[\mathbf{b_0}])$ where $\text{Var}[\mathbf{b_0}] = \mathbf{H}(\mathbf{\beta})^{-1} \mathbf{V}(\mathbf{\beta}) \mathbf{H}(\mathbf{\beta})^{-1}$ $=>\sqrt{T} [R(\mathbf{b_{NLLS}}) - R(\mathbf{\beta})] \xrightarrow{d} N(\mathbf{0}, \mathbf{G}(\mathbf{\beta}) \text{Var}[\mathbf{b_0}] \mathbf{G}(\mathbf{\beta})'$ $=> \text{Var}[R(\mathbf{b_{NLLS}})] = = (1/T) \mathbf{G}(\mathbf{\beta}) \text{Var}[\mathbf{b_0}] \mathbf{G}(\mathbf{\beta})'$
- Then, $W = T R(\mathbf{b}_{\text{NLLS}})' \{ \mathbf{G}(\mathbf{b}_{\text{NLLS}}) \text{ Var}[\mathbf{b}_{\text{NLLS}}] \mathbf{G}(\mathbf{b}_{\text{NLLS}})' \}^{-1} R(\mathbf{b}_{\text{NLLS}})$ $=> W \xrightarrow{d} \chi_{l}^{2}$

NLLS - Application: A NIST Application (Greene)

```
Y
                 Χ
              1.309
2.138
              1.471
3.421
                         y = \beta_0 + \beta_1 x^{\beta 2} + \varepsilon.
3.597
              1.490
4.340
              1.565
                         x_{i}^{0} = [1, x^{\beta 2}, \beta_{1}x^{\beta 2}\log x]
4.882
              1.611
5.660
              1.680
```

NLLS - Application: Iterations (Greene)

NLSQ;LHS=Y ;FCN=b0+B1*X^B2 ;LABELS=b0,B1,B2 ;MAXIT=500;TLF;TLB;OUTPUT=1;<u>DFC</u>;START=0,1,5 \$

```
Begin NLSQ iterations. Linearized regression.

Iteration= 1; Sum of squares= 149.719219 ; Gradient= 149.718223

Iteration= 2; Sum of squares= 5.04072877 ; Gradient= 5.03960538

Iteration= 3; Sum of squares= .137768222E-01; Gradient= .125711747E-01

Iteration= 4; Sum of squares= .186786786E-01; Gradient= .174668584E-01

Iteration= 5; Sum of squares= .121182327E-02; Gradient= .301702148E-08

Iteration= 6; Sum of squares= .121182025E-02; Gradient= .134513256E-15

Iteration= 7; Sum of squares= .121182025E-02; Gradient= .644990175E-20

Convergence achieved
```

 $Gradient = [e^0 'X^0]'[X^0 'X^0]^{-1}X^0 'e^0$

NLLS - Application: Results (Greene)

User Defined	Optimization	n			
Nonlinear	-	es regression			
LHS=Y	Mean =		4.0063	4.00633	
	Standard dev	viation =	1.2339	8	
	Number of ol	oservs. =		6	
Model size	Parameters = 3		3		
	Degrees of	freedom =		3	
Residuals	Sum of squares =		.0012	.00121	
	Standard er	ror of e =	.0201	0	
Fit	R-squared	=	. 9998	4	
Variable Co	efficient	Standard Erro	or b/St.Er.	P[Z >z]	
•	54559**			.0151	
B1	1.08072***	.13698	7.890	.0000	
B2	3.37287***	.17847	18.899	.0000	

NLLS - Application: Solution (Greene)

The pseudo regressors and residuals at the solution are:

X10	X20	X30	
1	$x^{\beta 2}$	$\beta_1 x^{\beta 2} \ln x$	e 0
1	2.47983	0.721624	.0036
1	3.67566	1.5331	0058
1	3.83826	1.65415	0055
1	4.52972	2.19255	0097
1	4.99466	2.57397	.0298
1	5.75358	3.22585	0124

$$X0'e0 = .3375078D-13$$

 $.3167466D-12$
 $.1283528D-10$

Application 2: Doctor Visits (Greene)

- German Individual Health Care data: N=27,236
- Model for number of visits to the doctor

Application 2: Conditional Mean and Projection

Notice the problem with the linear approach. Negative predictions.

Application 2: NL Model Specification (Greene)

• Nonlinear Regression Model $y=\exp(X\beta) + \epsilon$

X = one, age, health_status, married, educ., household_income, nkids

nlsq;lhs=docvis;start=0,0,0,0,0,0,0;labels=k_b;fcn=exp(b1'x);maxit=25;out...

Begin NLSQ iterations. Linearized regression.

```
Iteration= 1; Sum of squares= 1014865.00 ; Gradient= 257025.070

Iteration= 2; Sum of squares= .130154610E+11; Gradient= .130145942E+11

Iteration= 3; Sum of squares= .175441482E+10; Gradient= .175354986E+10

Iteration= 4; Sum of squares= 235369144. ; Gradient= 234509185.

Iteration= 5; Sum of squares= 31610466.6 ; Gradient= 30763872.3

Iteration= 6; Sum of squares= 4684627.59 ; Gradient= 3871393.70

Iteration= 7; Sum of squares= 1224759.31 ; Gradient= 467169.410

Iteration= 8; Sum of squares= 778596.192 ; Gradient= 33500.2809

Iteration= 9; Sum of squares= 746343.830 ; Gradient= 450.321350

Iteration= 10; Sum of squares= 745898.272 ; Gradient= .287180441

Iteration= 11; Sum of squares= 745897.985 ; Gradient= .929823308E-03
```

Iteration= 15; Sum of squares= 745897.984 ; Gradient= .188041512E-10

Application 2: NL Regression Results (Greene)

```
Nonlinear
             least squares regression
                            = 3.183525
 LHS=DOCVIS Mean
              Standard deviation = 5.689690
              Number of observs. =
                                        27326
 Model size Parameters
 Degrees of freedom = 27319
Residuals Sum of squares = 745898.0
                                        27319
             Standard error of e = 5.224584
            R-squared = .1567778
              Adjusted R-squared =
 Adjusted R-squared = .1568087

Info criter. LogAmemiya Prd. Crt. = 3.307006

Akaike Info. Criter. = 3.307263
 Not using OLS or no constant. Rsqd & F may be < 0. |
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] |
        2.37667859 .06972582 34.086 .0000
.00809310 .00088490 9.146 .0000
             -.21721398
.00371129
                                                    .0000
                             .00313992 -69.178
B.3
                              .02051147
                                           .181
                                                     .8564
                              .00435601 -2.517
              -.01096227
                                                     .0118
В6
              -.26584001
                             .05664473
                                           -4.693
                                                    .0000
              -.09152326
                              .02128053
                                           -4.301
                                                     .0000
```

Partial Effects in the Nonlinear Model (Greene)

What are the slopes?

Conditional Mean Function = $E[y|x] = \exp(\beta'x)$

Derivatives of the conditional mean are the partial effects

$$\frac{\partial \mathsf{E}[\mathsf{y}|\mathbf{x}]}{\partial \mathbf{x}} = \exp(\beta'\mathbf{x}) \times \beta$$

= a scaling of the coefficients that depends on the data

Usually computed using the sample means of the data.

Asymptotic Variance of the Slope Estimator (Greene)

$$\hat{\delta} = \text{ estimated partial effects} = \frac{\partial \hat{E}[y|\mathbf{x}]}{\partial \mathbf{x}} | (\mathbf{x} = \overline{\mathbf{x}})$$

To estimate Asy.Var[$\hat{\delta}$], we use the delta method:

$$\hat{\delta} = \exp(\overline{\mathbf{x}}'\hat{\beta}) \ \hat{\beta}$$

$$\hat{\mathbf{G}} = \frac{\partial \hat{\delta}}{\partial \hat{\beta}} = \exp(\overline{\mathbf{x}}' \hat{\beta}) \ \mathrm{I} + \ \hat{\beta} \exp(\overline{\mathbf{x}}' \hat{\beta}) \overline{\mathbf{x}}'$$

Est.Asy.Var[
$$\hat{\delta}$$
]= $\hat{\mathbf{G}}$ Est.Asy.Var[$\hat{\beta}$] $\hat{\mathbf{G}}$ '

Computing the Slopes (Greene)

```
calc;k=col(x)$
nlsq;lhs=docvis;start=0,0,0,0,0,0,0
    ;labels=k_b;fcn=exp(b1'x);
matr;xbar=mean(x)$
calc;mean=exp(xbar'b)$
matr;me=b*mean$
matr;g=mean*iden(k)+mean*b*xbar'$
matr;vme=g*varb*g'$
matr;stat(me,vme)$
```

Partial Effects at the Means of X (Greene)

What About Just Using LS? (Greene)

Variable	Coefficient S	Standard Error			
Least Squa	ares Coefficient D		'	'	
Constant	9.12437987	.25731934	35.459	.0000	
AGE	.02385640	.00327769	7.278	.0000	43.5256898
NEWHSAT	86828751	.01441043	-60.254	.0000	6.78566201
MARRIED	02458941	.08364976	294	.7688	.75861817
EDUC	04909154	.01455653	-3.372	.0007	11.3206310
HHNINC	-1.02174923	.19087197	-5.353	.0000	.35208362
HHKIDS	38033746	.07513138	-5.062	.0000	.40273000
Estimated	Partial Effects				
ME_1	Constant ter	rm, marginal et	fect not	computed	
ME_2	.02207102	.00239484	9.216	.0000	
ME_3	59237330	.00660118	-89.737	.0000	
ME_4	.01012122	.05593616	.181	.8564	
ME_5	02989567	.01186495	-2.520	.0117	
ME_6	72498339	.15449817	-4.693	.0000	
ME 7	24959690	.05796000	-4.306	.0000	