

Instituto Politécnico de Leiria Escola Superior de Tecnologia e Gestão Departamento de Engenharia Informática Mestrado em Cibersegurança e Informática Forense

INTELIGÊNCIA ARTIFICIAL APLICADA À
DETEÇÃO DE INCIDENTES DE SEGURANÇA EM
REDES IOT

TIÉZER COSTA DE MELO

Leiria, Março de 2023

Instituto Politécnico de Leiria Escola Superior de Tecnologia e Gestão Departamento de Engenharia Informática Mestrado em Cibersegurança e Informática Forense

INTELIGÊNCIA ARTIFICIAL APLICADA À
DETEÇÃO DE INCIDENTES DE SEGURANÇA EM
REDES IOT

TIÉZER COSTA DE MELO Número: 2200175

Dissertação realizada sob orientação do Professor Doutor Carlos Manuel da Silva Rabadão (carlos.rabadao@ipleiria.pt), do Professor Doutor Leonel Filipe Simões Santos (leonel.santos@ipleiria.pt) e do Professor Doutor Rogério Luís de Carvalho Costa (rogerio.l.costa@ipleiria.pt).

Primeiramente, quero gostaria de agradecer ao meu Deus, que me sustentou em todos os momentos de dificuldade e sempre se manteve fiel.

Gostaria de agradecer também aos meus pais, Cláudia e Gilberto, que são os melhores pais do mundo, que não mediram esforços para me proporcionar a realização de um sonho e sempre que necessário, traziam palavras de conforto. Também, a minha avó, que todos os dias demonstra o que é o amor em forma de pessoa. Agradecer também a Kelen, que mesmo com a distância, sempre se manteve presente, trazendo palavras de incentivo e algumas verdades, quando necessário.

Agradeço aos meus orientadores, Carlos, Leonel e Rogério, pela extrema paciência e solicitude em meio a inúmeros questionamentos e curiosidades e por todo os ensinamentos ao longo deste trabalho.

Aos meus colegas, Rafaela e António, e ao meu professor Professor Doutor Miguel Frade, agradeço pela oportunidade de ter participado de inúmeros momentos inusitados em meio às aulas e trabalhos académicos. Aos meus colegas Rafael Ascensão e João Cardo pelo coleguismo nas atividades profissionais.

Por fim, mas não menos importante, agradeço também aos meus amigos e colegas por, de alguma forma, terem participado desta pequena e desafiadora fase da minha vida e terem contribuído para a conclusão dela.

Internet of Thing ou IoT são dispositivos de limitado poder computacional, interconectados através da internet ou outra rede de comunicação, que partilham informação entre si e atuam de forma autónoma com uma mínima intervenção humana. Devido a algumas destas características, eles têm sido utilizados em diversas áreas da sociedade. Porém, apesar dos diversos benefícios trazidos por este tipo de dispositivos, estes apresentam alguns problemas de segurança. Tais problemas surgem devido à sua menor capacidade computacional, que impede a aplicação de técnicas de proteção mais complexas, e à grande diversidade ou heterogeneidade de tecnologias utilizadas (hardware, protocolos etc.). Como alternativa, técnicas de machine learning (ML) tem sido aplicadas como forma de melhorar a capacidade de deteção de ataques e tráfego anómalo. Neste trabalho foram criados dois datasets com intuito de representar os serviços de uma smart greenhouse e um conjunto de apartamentos que utilizam sistemas inteligentes de controlo. Os datasets, que representam o tráfego de dados destas duas redes IoT, são compostos pelos protocolos CoAP e MQTT. Foi realizada a revisão e a análise das ferramentas de simulação e geração de tráfego IoT, onde, através de comparação das características, foram selecionadas as ferrametas Contiki e Netsim. As simulações foram executadas através destas duas ferramentas e, além do tráfego normal, foram simulados 6 diferentes ataques, cuja maior parte destes estava relacionado com o protocolo RPL. Aos dados destes datasets, foram aplicados modelos de aprendizagem de máquina com o intuito de identificar os ataques utilizados, onde foi obtido um alto índice de acerto no que se refere à classificação do tráfego malicioso.

Internet of Thing or IoT are devices with limited computational power, interconnected via the internet or another communication network, which share information with each other and act autonomously with minimal human intervention. Due to some of these characteristics, they have been used in different areas of society. However, despite the many benefits brought by this type of devices, they have some security problems. Such problems arise due to its lower computational capacity, which prevents the application of more complex protection techniques, and to the great diversity or heterogeneity of technologies used (hardware, protocols, etc.). As an alternative, machine learning (ML) techniques have been applied as a way to improve the ability to detect attacks and anomalous traffic. In this work, two datasets were created in order to represent the services of a smart greenhouse and a set of apartments that use intelligent control systems. The datasets, which represent the data traffic of these two IoT networks, are composed of the CoAP and MQTT protocols. A review and analysis of the IoT simulation and traffic generation tools was carried out, where, by comparing the characteristics, the Contiki and Netsim tools were selected. The simulations were performed using these two tools and, in addition to normal traffic, 6 different attacks were simulated, most of which were related to the RPL protocol. Machine learning models were applied to the data from these datasets in order to identify the attacks used, where a high success rate was obtained regarding the classification of malicious traffic.

ÍNDICE

Αę	grade	cimentos	i
Re	esumo		iii
Al	ostrac	et	v
Ín	dice		vii
Lis	sta de	e Figuras	xi
Lis	sta de	e Tabelas	xiii
Lis	sta de	e Abreviaturas	xvii
1	INT	RODUÇÃO	1
	1.1	Objetivos e contribuições	. 3
	1.2	Estrutura do trabalho	. 3
2	ВАС	CKGROUND	5
	2.1	Internet of Things	. 5
	2.1	2.1.1 Caracterização de Internet of Things	
		2.1.2 Componentes	
		2.1.3 Arquiteturas	
		2.1.4 Protocolos	
		2.1.5 Segurança, ameaças e vulnerabilidades	. 11
		2.1.6 Ataques	. 12
		2.1.7 Smart Farming	. 14
		2.1.8 Smart Cities	. 17
	2.2	Inteligencia Artificial	. 18
	2.3	Intrusion Detection System	. 22
	2.4	Datasets	. 24
	2.5	Trabalhos Relacionados	. 27
3	SOL	UÇÕES DE GERAÇÃO DE DADOS	31

	3.1	Soluçõ	es de Geração de Dados	31
	3.2	Caract	terísticas de interesse	31
	3.3	Contik	ci/Cooja	33
		3.3.1	Características e Funcionalidades	33
		3.3.2	Avaliação das Características	34
	3.4	Netwo	rk Simulator 3	34
		3.4.1	Características e Funcionalidades	34
		3.4.2	Avaliação das Características	35
	3.5	IoT D	ataset Generator Framework	35
		3.5.1	Características e Funcionalidades	35
		3.5.2	Avaliação das Características	36
	3.6	IoT-Fl	lock	37
		3.6.1	Características e Funcionalidades	37
		3.6.2	Avaliação das Características	37
	3.7	MQTT	Γ Generator	38
		3.7.1	Características e Funcionalidades	38
		3.7.2	Avaliação das Características	38
	3.8	COAP	Protocol Simulator	39
		3.8.1	Características e Funcionalidades	39
		3.8.2	Avaliação das Características	39
	3.9	Scapy		39
		3.9.1	Características e Funcionalidades	40
		3.9.2	Avaliação das Características	40
	3.10	Netsin	1	41
		3.10.1	Características e Funcionalidades	41
		3.10.2	Avaliação das Características	42
	3.11	Resum	no Comparativo das Ferramentas	42
	3.12	Defini	ção da Ferramenta	42
	3.13	Soluçõ	es de geração de fluxo de dados	44
	3.14	Anális	e das ferramentas de geração de fluxo	44
4	DEF	INIÇÃ	O E CARACTERIZAÇÃO DO AMBIENTE E SIMULAÇÃO	47
	4.1	Caract	terísticas e definições gerais	47
	4.2	Defini	ção do âmbito das simulações	48
	4.3	Caract	terísticas tecnológicas das simulações	50
	4.4	Caract	terização dos Ambientes Propostos	51
		4.4.1	Composição da rede na ferramenta Netsim	52
		4.4.2	Composição da rede na ferramenta Contiki	53

	4.5	Características da Simulação	53
	4.6	Temporização das simulações	54
	4.7	Ataques Selecionados	56
	4.8	Limitações das ferramentas	58
	4.9	Versões dos Softwares utilizados	60
5	SIM	ULAÇÕES E DATASETS	61
0	5.1	Alterações realizadas nas ferramentas de simulação	61
	0.1	5.1.1 Alterações necessárias na ferramenta Contiki	62
		5.1.2 Alterações necessárias na ferramenta Netsim	62
	5.2	Preparação do ambiente da ferramenta Contiki	63
	0.2	5.2.1 Configuração da simulação na ferramenta Contiki	65
		5.2.2 Configuração da simulação na ferramenta Netsim	66
	5.3	Realização das simulações	67
	5.4	Captura do tráfego e geração dos ficheiros PCAP	67
	5.5	Definição dos filtros de protocolos	68
	5.6	Pré-processamento de dados	69
		5.6.1 Conversão de ficheiros PCAP em CSV	
		5.6.2 Separação dos dados	71
		5.6.3 Limpeza dos dados	72
		5.6.4 Adição dos atributos-alvo	72
		5.6.5 Eliminação seletiva de atributos	74
		5.6.6 Geração dos <i>datasets</i> finais	74
	5.7	Descrição dos datasets gerados	75
		5.7.1 Descrição do dataset smart_greenhouse	75
		5.7.2 Descrição do dataset smart_city	79
6	APL	ICAÇÃO DE ALGORITMOS DE MACHINE LEARNING	83
	6.1	Seleção dos algoritmos	86
	6.2	Técnicas de predição	86
	6.3	Eliminação de dados	87
	6.4	Separação dos dados	88
	6.5	Tratamento dos dados	88
	6.6	Normalização dos dados	89
	6.7	Codificação de variáveis categóricas	90
	6.8	Redução do domínio de dados	91
	6.9	Identificação dos melhores hiperparâmetros $\dots \dots \dots \dots$	92
	6.10	Caracterização dos algoritmos de classificação	93

ÍNDICE

	6.11 Métricas de Avaliação	. 94
	6.12 Classificação Binária	. 97
	6.12.1 smart_city-binary	. 97
	6.12.2 smart_greenhouse-binary	. 100
	6.13 Classificação Multi-classe	. 103
	6.13.1 smart_city-multiclass	. 104
	6.13.2 smart_greenhouse-multiclass	. 108
	6.14 Resultados	. 114
7	CONCLUSÕES	119
	7.1 Contributos	. 121
	7.2 Trabalhos Futuros	. 122
	BIBLIOGRAFIA	128
	DECLARAÇÃO	127

LISTA DE FIGURAS

Figura 1	Representação das arquiteturas IoT baseadas em 3, 4, 5 e 6 camadas	10
Figura 2	Representação das tecnologias e disposição dos sensores no	
9	ambiente do conjunto de apartamentos	48
Figura 3	Representação das tecnologias e disposição dos sensores no	
	ambiente da smart greenhouse	49
Figura 4	Configuração no componente para geração do ficheiro PCAP	
	na ferramenta Netsim	52
Figura 5	Topologias de rede das simulações com 3 sensores realizadas	
	no Netsim	54
Figura 6	Topologias de rede das simulações com 9 sensores realizadas	
	no Netsim	54
Figura 7	Topologias de Rede das simulações realizadas no Contiki	55
Figura 8	Ambiente da simulação do ataque DoS na ferramenta Netsim.	57
Figura 9	Ambiente da simulação do ataque Sinkhole na ferramenta	
	Netsim	57
Figura 10	Ambiente da simulação do ataque DIO Supression na ferra-	
	menta Netsim	57
Figura 11	Erro apresentado na simulação do ataque RPL DIS Flooding	
	quando habilitada a opção de gerar os ficheiros PCAP	58
Figura 12	Topologias de rede das simulações dos ataques realizados	
	com o protocolo MQTT no Contiki	59
Figura 13	Topologias de rede das simulações dos ataques realizados	
	com o protocolo CoAP no Contiki	59
Figura 14	Erro apresentado ao tentar inicializar uma simulação em um	
	branch diferente ao do ataque selecionado	64
Figura 15	Lista de atributos e respetivos tipos de dados do dataset	
	$smart_greenhouse. \dots \dots \dots \dots \dots \dots$	78
Figura 16	Lista de atributos e respetivos tipos de dados do dataset	
	$smart_city.$	81
Figura 17	Exemplo do output da função classification_report	96

Figura 18	Matriz de confusão dos algoritmos aplicados ao dataset
	$smart_city-binary$ com o conjunto de atributos número 1 99
Figura 19	Matriz de confusão dos algoritmos aplicados ao dataset
	$smart_city\text{-}binary$ com o conjunto de atributos número 2 100
Figura 20	Matriz de confusão dos algoritmos aplicados ao dataset
	smart_greenhouse-binary com o conjunto de atributos nú-
	mero 1
Figura 21	Matriz de confusão dos algoritmos aplicados ao dataset
	smart_greenhouse-binary com o conjunto de atributos nú-
	mero 3
Figura 22	Matriz de confusão dos algoritmos aplicados ao dataset
	smart_greenhouse-binary com o conjunto de atributos nú-
	mero 5
Figura 23	Matriz de confusão dos algoritmos aplicados ao dataset
	$smart_city\text{-}multiclass$ com o conjunto de atributos número 1.107
Figura 24	Matriz de confusão dos algoritmos aplicados ao dataset
	$smart_city\text{-}multiclass$ com o conjunto de atributos número 2.108
Figura 25	Matriz de confusão dos algoritmos aplicados ao dataset
	$smart_city\text{-}multiclass$ com o conjunto de atributos número 5.110
Figura 26	Matriz de confusão dos algoritmos aplicados ao dataset
	$smart_greenhouse\text{-}multiclass$ com o conjunto de atributos
	número 1
Figura 27	Matriz de confusão dos algoritmos aplicados ao dataset
	$smart_greenhouse-multiclass$ com o conjunto de atributos
	número 2
Figura 28	Matriz de confusão dos algoritmos aplicados ao dataset
	$smart_greenhouse-multiclass$ com o conjunto de atributos
	número 3
Figura 29	Matriz de confusão dos algoritmos aplicados ao dataset
	$smart_greenhouse\text{-}multiclass$ com o conjunto de atributos
	número 4
Figura 30	Matriz de confusão dos algoritmos aplicados ao dataset
	$smart_greenhouse\text{-}multiclass$ com o conjunto de atributos
	número 5

LISTA DE TABELAS

Tabela 1	Comparação das características das ferramentas de geração	
	de dados IoT	2
Tabela 2	Lista dos softwares utilizados na simulação e respectivas	
	versões	0
Tabela 3	Valor respetivo a cada classe nos atributos $IS_MALICIOUS$	
	e <i>ATTACK_TYPE</i>	3
Tabela 4	Número de ficheiros para cada tipo de simulação realizada	
	na ferramenta Contiki	6
Tabela 5	Endereços IP maliciosos para cada tipo de ataque nas simu-	
	lações realizadas na ferramenta Contiki	7
Tabela 6	Número de registos normais e maliciosos do $dataset\ smart_greenho$	ouse. 78
Tabela 7	Número de ficheiros para cada tipo de simulação realizada	
	na ferramenta Netsim	9
Tabela 8	Endereços IP maliciosos para cada tipo de ataque nas simu-	
	lações realizadas na ferramenta Netsim	9
Tabela 9	Número de registos normais e maliciosos do $dataset\ smart_city\ 8$	0
Tabela 10	Números de registos dos dois novos datasets criados a partir	
	do $dataset\ smart_greenhouse$ com base no tipo de classificação. 8	4
Tabela 11	Números de registos por tipo de tráfego nos datasets baseados	
	no $smart_greenhouse$ com base no tipo de classificação 8	5
Tabela 12	Números de registos do dois novos datasets criados a partir	
	do $dataset\ smart_greenhouse$ com base no tipo de classificação. 8	5
Tabela 13	Números de registos por tipo de tráfego nos $datas ets$ baseados	
	no $smart_city$ com base no tipo de classificação 8	5
Tabela 14	Distribuição dos dados de treino e teste em cada $\mathit{dataset}.$ 8	8
Tabela 15	Sensibilidade dos algoritmos quanto a variância na escala	
	dos dados	9
Tabela 16	Número identificador do conjunto de atributos e o algoritmo	
	utilizado na seleção destes atributos	2
Tabela 17	Número de registos de cada classe no conjunto de teste do	
	$dataset\ smart_city-binary$ quando usada a classificação binária. 9	7

Tabela 18	Conjunto de atributos selecionados pelos algoritmos de se-
	leção de atributos a serem usados no dataset smart_city-
	multiclass.
Tabela 19	Resultados das métricas em relação ao dataset smart_city-
	binary
Tabela 20	Resultados do desempenho dos algoritmos aplicados ao $data$ -
	$set\ smart_city\text{-}binary$ de acordo com as métricas de avaliação
	selecionadas
Tabela 21	Número de registos de cada classe no conjunto de teste do da -
	$taset\ smart_greenhouse\text{-}binary\ $ quando usada a classificação
	binária
Tabela 22	Conjunto de atributos selecionados pelos algoritmos de sele-
	ção de atributos a serem usados no dataset smart_city-binary.101
Tabela 23	Resultados das métricas em relação ao $datas et \ smart_smart greenhouse$ -
	binary
Tabela 24	Resultados do desempenho dos algoritmos aplicados ao da -
	taset smart_greenhouse-binary de acordo com as métricas
	de avaliação selecionadas
Tabela 25	Número de registos de cada classe no conjunto de teste do
	dataset smart_city-multiclass quando usada a classificação
	multi-classe
Tabela 26	Conjunto de atributos selecionados pelos algoritmos de se-
	leção de atributos a serem usados no dataset smart_city-
	multiclass.
Tabela 27	Resultados das métricas em relação ao dataset smart_city-
	multiclass
Tabela 28	Resultados do desempenho dos algoritmos aplicados ao da -
	taset smart_city-multiclass de acordo com as métricas de
	avaliação selecionadas
Tabela 29	Número de registos de cada classe no conjunto de teste do
	dataset smart_grenhouse-multiclass quando usada a classifi-
	cação multi-classe
Tabela 30	Conjunto de atributos selecionados pelos algoritmos de sele-
	ção de atributos a serem usados no dataset smart_greenhouse-
	multiclass.
Tabela 31	Resultados das métricas em relação ao dataset smart_greenhouse-
	multiplace 111

Tabela 32	Resultados do desempenho dos algoritmos aplicados ao da -
	$taset\ smart_smartgreenhouse-multiclass\ de\ acordo\ com\ as$
	métricas de avaliação selecionadas

LISTA DE ABREVIATURAS

6LowPAN IPv6 over Low-Power Wireless Personal Area

Networks.

AIDS Anomaly-based Intrusion detection systems.

AMQP Advanced Message Queuing Protocol.

API Application Programming Interface.

APT advanced persistent threat.

AWS Amazon Web Services.

BLE Bluetooth Low Energy.

BSD Berkeley Source Distribution.

CIDS Colaborative Intrusion detection systems.

CO2 Dióxido de Carbono.

CoAP Constrained Application Protocol.

CPU Central Processing Unit.

CSV Comma-separated values.

DDoS Distributed Denial of Service.

DL Deep Learning.

DNS Domain Name System.

DoS Denial of Service.

DTC Decision Tree Classifier.

FN false negative.

FP false positive.

GA Genetic Algorithm.

GPRS General Packet Radio Service.

GPS Global Positioning System.

GSM Global System for Mobile communication.

GUI graphical user interface.

HIDS Host-based intrusion detection system.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

IA Inteligência Artificial.

IBM International Business Machines Corporation.

IDGF IoT Dataset Generation Framework.

IDS Intrusion detection systems.

IETF The Internet Engineering Task Force.

IIoT Industrial internet of things.

IOT Internet of Things.

IP Internet Protocol.

IPFIX Internet Protocol Flow Information Export.

IPv4 Internet Protocol versão 4.

IPv6 Internet Protocol versão 6.

JSON JavaScript Object Notation.

KNN K-neighbors Classifier.

LAN Local Area Networks.

LPWAN Low-power, wide-area network.

LP-WAN Low-power, wide-area network.

LRC Logistic Regression Classifier.

LTE Long Term Evolution.

MITM Man-in-the-middle attack.

ML Machine Learning.

MQTT Message Queuing Telemetry Transport.

MQTT-SN MQTT for Sensor Networks.

NAT Network address translation.

NFC Near field communication.

NIDS Network-based intrusion detection system.

NoSQL Non SQL ou not only SQL.

OSI Open Systems Interconnection.

PCAP Packet Capture.

pH Potential of hydrogen.

PKI Public key infrastructure.

QUIC Quick UDP Internet Connections.

RFC Random Forest Classifier.

RFID Radio-frequency identification.

RNA Redes Neuronais Artificiais.

RPL IPv6 Routing Protocol for Low-Power and Lossy

Networks.

RSSF Redes de Sensores sem-fio.

SIDS Signature-based Intrusion detection systems.

SO Sistema Operativo.

Lista de Abreviaturas

TCP Transmission Control Protocol.

TIC Tecnologia da Informação e Comunicação.

TLS Transport Layer Security.

TN true negative.

TP true positive.

UART universal asynchronous receiver / transmitter.

UDP User Datagram Protocol.

UWB Ultra-wideband.

WAN Wide Area Netwoks.

WSN wireless sensor networks.

XML extensible markup language.

XMPP Extensible Messaging and Presence Protocol.

YAF Yet Another Flowmeter.