UNIVERSITY OF ALBERTA

Library Release Form

Name of Author: Stéphan Zefeng Ao

Title of Thesis: STABILITY ENHANCEMENT OF MULTI-MACHINE POWER SYSTEMS

BY HYBRID NEURAL FUZZY-LOGIC CONTROL

Degree: Doctor of Philosophy

Year This Degree Granted: Fall, 1996

Permission is hereby granted to the University of Alberta Library to reproduce single

copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only.

The author reserves all other publication and other rights in association with

the copyright in the thesis, and except as hereinbefore provided neither the thesis nor

any substantial portion thereof may be printed or otherwise reproduced in any

material form whatever without the author's prior written permission.

Signed:

Address: Box #308

Herschel, Saskatchewan,

S0L 1L0 CANADA

Date:

i

ACKNOWLEDGMENT

I am deeply indebted to my supervisor, Professor K. E. Bollinger, for his constant encouragement, guidance, and support given throughout the research reported in this thesis.

I would like to thank Emeritus Professor R. J. Fleming, Emeritus Professor Maria Green for their encouragement and support in the past few years.

I am grateful to the Wiebe family, without their love, trust, and support,

I would not be able to finish this work.

Last, but by no means least, I am truly indebted to the people I have met and the people I have heard of but not met yet, for your life-time inspiration,

"The Best You Can Be."

I would like to express my deep appreciation to NSERC and the University of Alberta for providing financial assistance throughout this research.

ABSTRACT

This thesis presents a hybrid modeling technique for designing intelligent controllers for multimachine power systems using artificial neural networks (ANNs) and fuzzy logic (FL). ANNs are unstructured numerical estimators that can learn, generalize and adapt. FL is a structured representation of knowledge. An ANN–FL controller is designed in Chapter 5 for speed–tracking control of a DC motor. Simulation studies have shown that the newly–designed ANN–FL controller outperforms fixed parameter PID control when the DC motor experiences a load or a reference speed change.

This technique is then utilized to design supplementary excitation control for a two-machine infinite-bus power system. Two ANN-FL power system stabilizers (PSSs), one using speed deviation as input and the other using accelerating power, are designed. As ANN-FL PSSs have no dynamics themselves, and require only simple algorithms, they respond instantly to changes in the state variables and are robust to changes in the operating conditions. This research has led to an innovative design technique for supplementary excitation control of synchronous generators. An ANN-FL PSS synthesized using this technique can be employed on different generators without customized design.

Finally, an innovation to programming transient simulation has been achieved in this research. Difficulties in handling generator saliencies have been overcome in designing a simulation algorithm implemented by using the Transient Stability Simulation Package (TSSP) under SIMULINK.

TABLE OF CONTENTS

LIBRAR	RY RELEASE FORM	i
ACKNO	WLEDGMENT	. ii
ABSTRA	ACT	iii
TABLE	OF CONTENTS	iv
LIST O	F TABLESv	iii
LIST OI	F FIGURES	ix
LIST OF	F PRINCIPAL SYMBOLSx	iii
1. Intro	duction	. 1
1.1 I	Power System Stability	. 1
1.2 \$	Stability of Synchronous Generators	. 5
1	1.2.1 General Concepts	. 5
1	1.2.2 Conventional PSS control	. 6
1	1.2.3 Adaptive PSS Control	. 9
1	1.2.4 Intelligent Control Systems	11
1.3 \$	Statement of Objectives	21
1.4 (Outline of the Thesis	23
2. Artifi	icial Neural Networks	26
2.1 I	Introduction	26
2.2 A	A Biological Neuron	28
2.3 1	Mathematical Model of A Neuron	39
2.4 A	Actuation Functions	34
2.5 1	Neural Network Architectures	37
2.6 I	Learning Rules	38
2.7	Multilaver Perceptrons	39

3. Fuz	zy Sets and Fuzzy Reasoning	43
3.1	Introduction	43
3.2	Fuzzy Sets	44
3.3	Fuzzy Set Operations	45
3.4	Linguistic Variables	49
3.5	Fuzzy Logic and Approximate Reasoning	50
3.6	Inference Methods	52
3.7	Defuzzification	58
4. Hy b	orid ANN-Fuzzy Logic Modeling	60
4.1	Introduction	60
4.2	Fuzzy Logic Control System	61
4.3	Architecture of ANN-Fuzzy Logic Modeling	64
4.4	Learning Rules	70
5. ANN	N-FLC Application: Speed-Tracking Control of A DC Motor	76
5.1	Introduction	76
5.2	Problem Formulation	77
5.3	Design of An ANN–FL Controller	82
	5.3.1 Introduction	82
	5.3.2 Structure of the ANN–FL Controller	83
5.4	Performance Evaluation	94
	5.4.1 Introduction	94
	5.4.2 Step Response with Different Reference Speeds	95
	5.4.3 Different Disturbances	97
	5.4.4 Trajectory Control	101
6. Mod	deling of Composite Power Systems	103
6.1	Introduction	103
6.2	Modeling of Power Components	104

	6.2.1 Synchronous Machines	. 104
	6.2.2 Excitation Systems	. 112
	6.2.3 Prime Movers	. 116
	6.2.4 Conventional PSS	. 119
	6.2.5 Power System Loads	. 121
	6.2.6 Induction Motors	. 123
	6.2.7 DC Transmissions	. 129
6.3	System Disturbances	. 133
7. A T 1	ransient Stability Simulation Package (TSSP) under	
Sim	ulink	135
7.1	TSSP under DOS	. 135
7.2	Necessity of Improvement	. 139
7.3	TSSP under Simulink	. 141
	7.3.1 Introduction	. 141
	7.3.2 Basics of SIMULINK	. 142
	7.3.3 Building Blocks	. 143
	7.3.4 Model Construction	. 156
7.4	TSSP's Potential with Simulink	. 157
8. Stal	bility Enhancement of A Multimachine Power System	
Usi	ng An ANN-FL PSS	. 160
8.1	Introduction	. 160
8.2	Stability Analysis	. 164
	8.2.1 A Multimachine Power System	. 164
	8.2.2 Stability Studies	. 165
8.3	Design of Two ANN-FL PSSs.	. 171
	8.3.1 General Comments	. 171
	8.3.2 ANN-FL PSS Using Speed Deviation	. 172
	8.3.3 ANN-FL PSS Using Accelerating Power	. 176

8.4 Performance Evaluation of the ANN-FL PSS	180
8.4.1 General Comments	180
8.4.2 Step Reference Voltage Change	180
8.4.3 Step Load Change	184
8.4.4 Fault Conditions	185
8.4.5 ANN-FL PSS Using Accelerating Power	193
8.5 Summary	194
9. Conclusions	195
9.1 The Initiative	195
9.2 Realization	197
9.3 Significance of the Work	198
9.4 Future Work	200
References	201
Appendix A Saturated Reactance and Time Constants	212
Appendix B M–File find_vif.m	216
Appendix C Specifications of the Two-Machine Infinite-Bus System	220
Appendix D TSSP Block Library	222

LIST OF TABLES

Table 5.1	Rule Base of the ANN–FL Controller	. 88
Table 5.2	Training Data as Obtained from Simulation Studies	. 93
Table 8.1	Load Flow Results: Node Power	168
Table 8.2	Load Flow Results: Branch Power	168
Table 8.3	Sources of Data Collection	177

LIST OF FIGURES

2.1	A Biological Neuron	30
2.2	Response to A Stimulus	30
2.3	Mathematical Model of the Neuron	31
2.4	Nonlinear Model of A Neuron	33
2.5	Final Model of the Neuron	33
2.6	Symmetric Hard Limit Activation Function	35
2.7	Tanh Sigmoid Activation Function	36
2.8	Log Sigmoid Activation Function	36
2.9	A Feedforward Multilayer Neural Network	38
2.10	Output Neuron j	42
3.1	Fuzzy Set Operations	46
3.2	Support, Core and Boundary	49
3.3	Membership Functions of Temperature	50
3.4	Type 1 Fuzzy Reasoning	56
3.5	Type 2 Fuzzy Reasoning	56
4.1	Fuzzy Logic Control System	63
4.2	ANN-FL Modeling, Types 1 & 2 Reasoning	66
4.3	ANN-FL Modeling, Types 3 & 4 Reasoning. For Type 4 reasoning,	
	The Input Vector x Has to Be Fed to the Function Vector g	67
5.1	Schematic Representation of A DC Motor	80
5.2	Block Diagram of A DC Motor	80
5.3	Simulation Model of A DC Motor	81
5.4	Speed Response of the DC Motor with No Feedback Control	83
5.5	Membership Functions for State Variable $\Delta\omega/\Delta t$	87
5.6	Membership Functions for State Variable $\Delta \omega$	87
5.7	Membership Functions for Output Variable ΔV	88

5.8	An ANN-FL Controller for DC Motor Control	91
5.9	Membership Functions for State Variable $\Delta\omega$ / Δt	91
5.10	Membership Functions for State Variable $\Delta \omega$	92
5.11	Membership Functions for Output Variable ΔV	92
5.12	RMSE Curve vs. Epochs	92
5.13	Step Sizes vs. Epochs	93
5.14(a)	Response of PID and ANN–FL Control to A	
	Step Input of 90 rad/s	96
5.14(b)	Response of PID and ANN–FL Control to A	
	Step Input of 130 rad/s	96
5.15	Performance Comparison of ANN–FL vs. PID Control, with A	
	Periodical Load Disturbance Applied	98
5.16	Window Graphic Showing Transient Details in Figs. 5.15(b) & (c)	99
5.17(a)	A Periodical Field Voltage Disturbance	99
5.17(b)	Performance of PID Control	
	Responding to the Disturbance of Fig. 5.17(a)	100
5.17(c)	Performance of ANN–FL Control	
	Responding to the Disturbance of Fig. 5.17(a)	100
5.18	Window Graphic Showing Transient Details in Figs. 5.17(b) & (c)	100
5.19	Trajectory Tracking Control of the DC Motor by	
	(a) PID or (b) ANN-FL Controller	102
6.1	Pictorial Representation of A Synchronous Machine	106
6.2	Block Diagram of the Synchronous Generator Model	109
6.3	Block Diagram of DC Type 1 Excitation System	114
6.4	Block Diagram of A Digital Excitation System	114
6.5	Alternator–Rectifier Excitation System	115
6.6	Detailed Representation of Hydrogovernor Turbine System	117
6.7	Equivalent Representation of Hydrogovernor Turbine System	117
6.8	Speed Governing System for Steam Turbines	118

6.9	Block Diagram of A Steam Turbine	118
6.10	IEEE Standard PSS Model	120
6.11	IEEEST PSS Using Net Accelerating Power As Input	120
6.12	IEEE PSS Using Generated Electric Power As Input	120
6.13	Induction Motor	125
6.14	Block Diagram of An Induction Motor	129
6.15	Schematic Diagram of A DC Line	131
6.16	Equivalent Circuit of A HVDC Link	131
6.17	Converter Representation	132
7.1	Overall Structure of the TSSP	140
7.2	Simulation Model of A Synchronous Generator	145
7.3	Simulation Model of the DC Type 1 Excitation System	146
7.4	Simulation Model of the Hydrogovernor Turbine System	149
7.5	Speed Governing System for Steam Turbines	150
7.6	Tandem-Compound Double-Reheat Steam Turbine	151
7.7	Simulation Model of IEEE Standard PSS	152
7.8	Simulation Model of IEEEST PSS	153
7.9	Simulation Model of IEEESN PSS	153
7.10	Simulation Model of An Induction Motor Model	154
7.11	Single-Line Diagram of the One-Machine System	158
7.12	Simulation Model of the One–Machine System	159
8.1	Single-Line Diagram of the Two Machine Infinite Bus System	165
8.2	Frequency Response Showing the Two Oscillatory Modes	169
8.3	Simulation Model of the Study System	169
8.4(a)	Field Voltage Responses of the Test Machine, Following A 3–	
	Phase To Ground Fault of 6–Cycles at the Terminal Bus of G#1	170
8.4(b)	Field Voltage Responses of the Test Machine, Following A 3–	
	Phase To Ground Fault of 6–Cycles at the Terminal Bus of G#1	170
8.5	Generator Angle Responses of the Test Machine, Following A 3–	

	Phase To Ground Fault of 6–Cycles at the Terminal Bus of G#1	171
8.6	Triangular Membership Function	177
8.7	Trapezoidal Membership Function	177
8.8	Membership Functions for State Variable $\Delta\omega$ / Δt	178
8.9	Membership Functions for State Variable $\Delta \omega$	178
8.10	Membership Functions for Output Variable ΔV	178
8.11(a)	Machine Angle Response to A 4% Step Voltage Change	182
8.11(b)	Reactive Power Response to A 4% Step Voltage Change	182
8.11(c)	Terminal Voltage Response to A 4% Step Voltage Change	183
8.11(d)	Field Voltage Response to A 4% Step Voltage Change	183
8.12(a)	Machine Angle Response to A 0.25pu Step Load Change	186
8.12(b)	Electric Power Response to A 0.25pu Step Load Change	186
8.12(c)	Terminal Voltage Response to A 0.25pu Step Load Change	187
8.12(d)	Controller Response to A 0.25pu Step Load Change	187
8.13(a)	Rotor Angle Response to A Three–Phase to Ground Fault at Bus G#1 for 6–Cycles, with One Controller	189
8.13(b)	Electric Power Response to A Three–Phase to Ground Fault	
	at Bus G#1 for 6–Cycles, with One Controller	189
8.14(a)	Rotor Angle Response to A Three–Phase to Ground Fault at Bus G#1 for 6–Cycles, with Two Controllers	190
8.14(b)	Terminal Voltage Response to A Three-Phase to Ground Fault	
	at Bus G#1 for 6–Cycles, with Two Controllers	190
8.15	Rotor Angle Response to A Three-Phase to Ground Fault	
	on the Line 1–4 for 6–Cycles	192
8.16	Rotor Angle Response to A Three–Phase to Ground Fault	
	on the Line 2–3 for 6–Cycles	192
8.17	Angle Response to the 3–Phase to Ground Fault on Line 1–2, with	
	the ANN-FL PSS Using Accelerating Power As Input Signal	193

LIST OF PRINCIPAL SYMBOLS

Rotor angles of synchronous generators are with reference to the infinite—bus synchronous frame. Parameters of transmission lines are in per unit (pu) based on the system base 100 MVA. Machine impedance is in per unit based on its own rated capacity. All time constants are in seconds. Machine inertial H is also in seconds based on the machine capacity.

Abbreviations:

deg = degree

rad = radian

s = second

ANN = Artificial Neural Network

AI = Artificial Intelligence

FL = Fuzzy Logic

PR = Probabilistic Reasoning

AVR = Automatic Voltage Regulator and Exciter

AGC = Automatic Generation Control

CPSS = Conventional Power System Stabilizer

STC = Self-Tuning Control

MRAC = Model Reference Adaptive Control

RLS = Recursive Least Squares

CMAC = Cerebeelar Model Arithmetic Computer

ATO = Automatic Train Operation at Sandai, Japan

FFT = Fast Fourier Transform

G = Generator

DC = Direct Current

AC = Alternating Current

PID = Proportional, Integral, and Derivative

PE = Processor/Processing Element

HVDC = High Voltage Direct Current

A/D = Analog/Digital

D/A = Digital/Analog

RAM = Random Access Memory

DSP = Digital Signal Processing

TGR = Transient Gain Reduction

TSSP = Transient Stability Simulation Package

FDLF = Fast Decoupled Load Flow

STCC = Short Circuit Calculation

WPLOT = Plotting Program

Symbols:

 \rightarrow = mapping

= fuzzy union(continuous), integral

= fuzzy union(discrete)

 \cup , \cap ,- = union, intersection, complement, respectively

 \in = belong to

 δ = machine rotor angle (radian or degree), propagation error

 ω = machine angular speed

 ω_0 = synchronous speed (rad/s)

 η = learning rate

 φ = activation function

 θ = threshold, mechanical angle

E = voltage, error function

e = error function

E' = voltage behind transient reactance

 $E^{"}$ = subtransient voltage

f = frequency

i,I = current

P,Q = active and reactive power

v,V = voltage

H = machine inertial constant (s)

k = saturation factor

K = gain of transfer function

D = machine damping coefficient

 τ , T = time constant

t = target output

 $\phi = flux$

x = reactance, input to neural network

R = resistance

T = torque, term set

X = fuzzy set

U = universe of discourse

 μ_x = membership function

 α = firing strength

u = control variable

v = net internal activation

L = Laplace transform

A,B = label of membership function

Superscripts:

```
' = transient
```

" = subtransient

(0) = unsaturated value

l = layer

Subscripts:

a = armature

e = electrical

m = mechanical

D,Q, or

d,q = direct and quadrature axes

l = leakage, power losses

t,T = terminal

s = supplementary signal

f, fd = field

i, j = index

ref = reference

err = error

min = minimum

max = maximum

o = open circuit, initial value

p = pattern, product

ad,aq = mutual

x, y = x and y coordinates

w =washout, weight

0 = initial value

Operators:

- \wedge = intersection
- \oplus = bounded product
- \cap = drastic product
- $x \cdot y$ = algebraic product
- = fuzzy composition
- Δ = small change
- \sum = summation
- \times = multiplication
- || = parallel
- s = Laplace operator