Санкт-Петербургский политехнический университет Петра Великого

Физико-механический институт Кафедра «Прикладная математика»

> Отчёт по курсовой работе по дисциплине «Интервальный анализ»

> > Выполнил студент: Шагваливе Михаил Александрович группа: 5030102/80201

Проверил: Баженов Александр Николаевич

Санкт-Петербург 2022 г.

1 Постановка задачи

На лекции была предложена следующая задача "Малоракурсной томографии плазмы":

Дана матрица длин хорд размера 256×36 , вектор длины 36 - модельное распределение светимостей(решение) и вектор длины 256 - показания детектора(правая часть).

Выделим из этой системы блок матрицы 126 × 16, и требуется решить с помощью субдифференциального метода Ньютона эту переопределённую систему путем нахождения решений с различными матрицами из исходной СЛАУ и взятием минимума по включению.

Для величин модельного распределения светимостей рассмотрим два случая:

- 1. Равномерная светимость
- 2. Градиентная с максимумом на половине высоты и радиуса цилиндра

2 Теория

Пусть имеется ИСЛАУ $\mathbf{C}y = d, y \in \mathbb{K}\mathbb{R}^n$.

Процедура субградиентного метода Ньютона состоит в следующем:

- 1. Задаём начальное приближение $x^0 \in \mathbb{R}^{2n}$, релаксационный параметр $\tau \in (0;1]$ и точность $\varepsilon > 0$
- 2. Строим отображение \mathcal{G} :

$$G(x) = sti(\mathbf{C}sti^{-1}(x)) - sti(d)$$

- 3. Вычисляем субградиент D^{k-1} отображения $\mathcal G$ в точке $x^{(k-1)}$
- 4. $x^{(k)} = x^{(k-1)} \tau(D^{k-1})^{-1}\mathcal{G}(x^{(k-1)})$
- 5. Итерационная процедура повторяется, пока $||x^{(k)}-x^{(k-1)}|| \ge \varepsilon$. В качестве ответа возвращается $\mathrm{sti}^{-1}(x^{(k)})$

Начальное приближение можно найти, решив 'среднюю систему':

$$mid\mathbf{C}\,\dot{x}^{(0)} = sti\,\mathbf{d}$$

3 Результаты

Пусть нам дана система с матрицей размерности 126×16 , правой частью - интервальным вектром и элементами вектора-решения - либо одинаковые значения, либо соответствующие "градиентной ветимости"

Решение такой задачи будет состоять в выборе 18 строк из такой матрицы и решением подсистемы субдифференциальным методом Ньютона в том случае, если определить матрицы не равен 0. А после этого найдём пересечение полученных решений и проведём сравнения с истинным.

Продемонстрируем градиентную светимость в виде матрицы:

Рис. 1: Воксели при градиентной светимости

3.1 Способ формирования подматрицы

Из всего множества индексов строк случайным образом выбираются 18 таким образом, чтобы определитель полученной матрицы не был равен нулю (не меньше, чем заданный $\varepsilon=10^{-8}$)

3.2 Решение

Будем искать решение-пересечения для случайного выбора 1, 5, 15, 30, 50 и 100 подсистем. Тем самым у нас получаются разные подсистемы, которые мы будем решать соответсвующим методом и которые будем сравнивать для того, чтобы получить зависимость получаемого решения от количества выборов подматриц. Также сравним правые части таких систем с истинной.

Исходная прямоугольная матрица имеет вид (2)

Рис. 2: Исходная матрица

Далее представлены сравнения полученных и истинных решений при выборе 1, 5, 15, 30, 30 и 100 подсистем. Также представлены и сравение полученных правых частей с исходными.

Так же продемонстрируем разницу между каждыми вокселями в x_{mid} и x_{sol} в качестве матрицы (heatmap)

3.2.1 Равномерная светимость

Рис. 3: Правые части для 1 подматрицы, равномерная светимость

Рис. 4: Исходное решение с полученным для 1 подматрицы, равномерная светимость

Рис. 5: $|x_{mid}-x_{sol}|$ для каждого вокселя, 1 подматрица, равномерная светимость

Рис. 6: Правые части для 5 подматриц, равномерная светимость

Рис. 7: Исходное решение с полученным для 5 подматриц , равномерная светимость

Рис. 8: $|x_{mid}-x_{sol}|$ для каждого вокселя, 5 подматриц, равномерная светимость

Рис. 9: Правые части для 15 подматриц, равномерная светимость

Рис. 10: Исходное решение с полученным для 15 подматриц, равномерная светимость

Рис. 11: $|x_{mid} - x_{sol}|$ для каждого вокселя, 15 подматриц, равномерная светимость

Рис. 12: Правые части для 30 подматриц, равномерная светимость

Рис. 13: Исходное решение с полученным для 30 подматриц, равномерная светимость

Рис. 14: $|x_{mid}-x_{sol}|$ для каждого вокселя, 30 подматриц, равномерная светимость

Рис. 15: Правые части для 50 подматриц, равномерная светимость

Рис. 16: Исходное решение с полученным для 50 подматриц, равномерная светимость

Рис. 17: $|x_{mid}-x_{sol}|$ для каждого вокселя, 50 подматриц, равномерная светимость

Рис. 18: Правые части для 100 подматриц, равномерная светимость

Рис. 19: Исходное решение с полученным для 100 подматриц, равномерная светимость

Рис. 20: $|x_{mid}-x_{sol}|$ для каждого вокселя, 100 подматриц, равномерная светимость

А теперь можно проверить зависимость нормы разности исходного решения и полученного от количества используемых подматриц. Для этого будем искать нормы разности вектора-решения и вектора правых границ модельных решений, вектора-решения и вектора левых границ модельных решений, вектора-решения и вектора середины интервалов модельных решений. Такие метрики были выбраны для того, чтобы оценить, насколько близко полученное решение к исходному решению, и тем самым сделать вывод насколько количество подматриц влияет на точность решения. Полученный результат представлен на следующих графиках:

Рис. 21: Сравнение норм разности исходного вектора-решения и границ интервалов полученных решений ($||x_{sol}-x_{inf}||$ и $||x_{sol}-x_{sup}||$), равномерная светимость

Рис. 22: Сравнение норм разности исходного вектора-решения и вектора-середины интервалов полученных решений ($||x_{sol}-x_{mid}||$, равномерная светимость)

3.2.2 Градиентная светимость

Рис. 23: Правые части для 1 подматрицы, градиентная светимость

Рис. 24: Исходное решение с полученным для 1 подматрицы, градиентная светимость

Рис. 25: $|x_{mid}-x_{sol}|$ для каждого вокселя, 1 подматрица, градиентная светимость

Рис. 26: Правые части для 5 подматриц, градиентная светимость

Рис. 27: Исходное решение с полученным для 5 подматриц , градиентная светимость

Рис. 28: $|x_{mid}-x_{sol}|$ для каждого вокселя, 5 подматриц, градиентная светимость

Рис. 29: Правые части для 15 подматриц, градиентная светимость

Рис. 30: Исходное решение с полученным для 15 подматриц, градиентная светимость

Рис. 31: $|x_{mid} - x_{sol}|$ для каждого вокселя, 15 подматриц, градиентная светимость

Рис. 32: Правые части для 30 подматриц, градиентная светимость

Рис. 33: Исходное решение с полученным для 30 подматриц, градиентная светимость

Рис. 34: $|x_{mid}-x_{sol}|$ для каждого вокселя, 30 подматриц, градиентная светимость

Рис. 35: Правые части для 50 подматриц, градиентная светимость

Рис. 36: Исходное решение с полученным для 50 подматриц, градиентная светимость

Рис. 37: $|x_{mid}-x_{sol}|$ для каждого вокселя, 50 подматриц, градиентная светимость

Рис. 38: Правые части для 100 подматриц, градиентная светимость

Рис. 39: Исходное решение с полученным для 100 подматриц, градиентная светимость

Рис. 40: $|x_{mid}-x_{sol}|$ для каждого вокселя, 100 подматриц, градиентная светимость

Рис. 41: Сравнение норм разности исходного вектора-решения и границ интервалов полученных решений ($||x_{sol}-x_{inf}||$ и $||x_{sol}-x_{sup}||$), градиентная светимость

Рис. 42: Сравнение норм разности исходного вектора-решения и вектора-середины интервалов полученных решений ($||x_{sol}-x_{mid}||$, градиентная светимость)

4 Обсуждение

Выводы, которые можно сделать по проделанной работе:

- 1. Сравнивая графики, можно заметить, что для всех вариантов правая часть находилась в границах исходной правой части. А при увелечении количества выбираемых подматриц интервалы правой части суждались.
- 2. Для всех вариантов исходное решение всегда находилось в интервале полученного решения. Более того, при увеличении количества выбираемых подматриц полученный вектор сужался к исходному.
- 3. Середина полученного интервального вектора-решения почти сразу совпала с исходным решением как для равномерной, так и градиентной светимости. Норма разности имела порядок 10^{-14} для любого количества используемых подматриц.
- 4. Интересно то, что середина полученного интервального вектора-решения чуть хуже (очень незначительно) аппроксимирует исходный вектор в случае равномерной светимости, нежели градиентной. Что можно сказать и про границы интервального вектора. (Однако аппроксимация по прежнему очень хорошая)

Если суммировать все пункты выше, то можно сделать вывод, что при увеличении количества выбираемых матриц решение-пересечение стремится к истинному.