DCC008 - Cálculo Numérico Interpolação

Bernardo Martins Rocha

Departamento de Ciência da Computação Universidade Federal de Juiz de Fora bernardomartinsrocha@ice.ufjf.br

Conteúdo

- ► Introdução
- ► Interpolação
- ► Forma de Lagrange
- ► Forma de Newton
- ► Forma de Gregory-Newton
- ► Erro na Interpolação
- ► Interpolação de Hermite
- ► Outros

Introdução

Suponha que temos um conjunto de pontos x_0, x_1, \ldots, x_n e os valores de uma funçãos f(x) nestes pontos $y_0 = f(x_0), \ldots, y_n = f(x_n)$.

0 1 2 3 4 5 6

Interpolar a função f(x) nos pontos x_1,\dots,x_n consiste em aproximá-la por uma função g(x) tal que:

$$g(x_0) = y_0$$

$$\dots$$

$$g(x_2) = y_2$$

Introdução

Iremos supor que a função interpolante g(x) é um **polinômio**.

Porque polinômios? Polinômios são facilmente computáveis, suas derivadas e integrais são também polinômios, e etc.

A interpolação polinomial é usada para aproximar uma função f(x), principalmente, nas seguintes situações:

- Não conhecemos a expressão analítica de f(x). Isto é, somente conhecemos o valor da função em um conjunto de pontos (isso ocorre frequentemente quando se trabalha com dados experimentais).
- f(x) é complicada e de difícil manejo.
 - Interpolação será usada também para calcular a integral numérica de f(x).
 - Veremos mais sobre isso em Integração Numérica.

Definição do problema

O problema geral da interpolação por meio de polinômios consiste em, dados n+1 pontos distintos

$$x_0, x_1, \ldots, x_n$$

e n+1 números $y_0,\ y_1,\ \dots\ ,\ y_n$, valores de uma função y=f(x) em x_0,x_1,\dots,x_n , isto é

$$y_0 = f(x_0), \quad y_1 = f(x_1), \quad \dots \quad y_n = f(x_n)$$

determinar um polinômio $P_n(x)$ de grau no máximo n tal que:

$$P_n(x_0) = y_0, \quad P_n(x_1) = y_1, \quad \dots \quad P_n(x_n) = y_n$$
 (1)

Veremos que tal polinômio <u>existe e é único</u>, desde que os pontos x_0, x_1, \ldots, x_n sejam <u>distintos</u>.

Sendo assim, procuramos um polinômio na forma:

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

Para isso é preciso encontrar os coeficientes $a_0, a_1, \dots a_n$ de tal forma que (1) é satisfeito. Isto é

$$P_n(x_0) = a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = y_0$$

$$P_n(x_1) = a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = y_1$$

$$\vdots$$

$$P_n(x_n) = a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^n = y_0$$

que pode ser visto como um sistema de equações lineares $(n+1)\times (n+1)$ onde as incógnitas são a_0,a_1,\ldots,a_n .

Escrevendo de forma matricial temos

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

A matriz de coeficientes é chamada de <u>Matriz de Vandermonde</u>. Sabe-se que $\det(\mathbf{A}) \neq 0$ desde que os pontos x_0, x_1, \dots, x_n sejam distintos.

Teorema

Dados n+1 pontos <u>distintos</u> x_0, x_1, \ldots, x_n e seus valores $y_0 = f(x_0), y_1 = f(x_1), \ldots, y_n = f(x_n)$, existe um <u>único</u> polinômio $P_n(x)$, de grau $\leq n$, tal que:

$$P_n(x_i) = f(x_i), \quad i = 0, 1, \dots, n$$

Vamos começar com um exemplo simples. Interpolação linear. É a forma mais simples de interpolação, pois consiste em encontrar a reta que passa pelos pontos (x_0,y_0) e (x_1,y_1) . Existe uma única reta que passa por esses pontos. Então procuramos

$$P_1(x) = a_0 + a_1 x$$

tal que

(i)
$$P_1(x_0) = a_0 + a_1 x_0 = y_0$$

(ii)
$$P_1(x_1) = a_0 + a_1 x_1 = y_1$$

De (i) temos que $a_0 = y_0 - a_1x_0$. Substituindo em (ii) temos que

$$y_0 - a_1 x_0 + a_1 x_1 = y_1$$

$$a_1(x_1 - x_0) = y_1 - y_0$$

$$a_1 = \frac{y_1 - y_0}{x_1 - x_0}$$

Como

$$a_0 = y_0 - a_1 x_0$$
$$a_1 = \frac{y_1 - y_0}{x_1 - x_0}$$

temos

$$P_1(x) = a_0 + a_1 x$$

$$P_1(x) = y_0 - \frac{y_1 - y_0}{x_1 - x_0} x_0 + \frac{y_1 - y_0}{x_1 - x_0} x$$

$$P_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0} (x - x_0)$$

Basta avaliar $P_1(x)$ em $x=x_0$ e $x=x_1$ para verificar que de fato este é o polinômio interpolador de (x_0,y_0) e (x_1,y_1) . \square

Exemplo

Dada a seguinte tabela

use interpolação linear para estimar o valor de $\tan{(1.15)}$.

Assim

$$(x_0, y_0) = (1.1, 1.9648), \quad (x_1, y_1) = (1.2, 2.5722)$$

e portanto

$$\tan(1.15) \approx 1.9648 + \frac{(2.5722 - 1.9648)}{(1.2 - 1.1)}(1.15 - 1.1) = 2.2685$$

Valor exato: $\tan{(1.15)} = 2.2345$.

Exemplo

Exemplo

De forma geral, dados (x_i,y_i) para $i=0,1,\ldots,n$, para encontrar o polinômio $P_n(x)$, precisamos resolver o sistema de equações lineares

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

usando algum método que já estudamos (Eliminação de Gauss, decomposição LU, etc).

Exemplo

$$\begin{array}{c|ccccc} x & -1 & 0 & 1 \\ \hline f(x) & 0.54 & 1 & 0.54 \end{array}$$

Vamos encontrar o polinômio de grau ≤ 2 que interpola estes pontos.

Exemplo

$$a_0 + a_1(-1) + a_2(-1)^2 = 0.54$$

 $a_0 + a_1(0) + a_2(0)^2 = 1.00$
 $a_0 + a_1(1) + a_2(1)^2 = 0.54$

isto é

$$\begin{bmatrix} 1 & -1 & -1^2 \\ 1 & 0 & 0^2 \\ 1 & 1 & 1^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0.54 \\ 1 \\ 0.54 \end{bmatrix}$$

Resolvendo este sistema encontramos que $a_0=1$, $a_1=0$ e $a_2=-0.46$ e portanto

$$P_2(x) = 1 - 0.46x^2$$

Observações:

- Veremos formas mais simples de se obter o polinômio interpolante, sem a necessidade de resolver um sistema de equações lineares.
- Além disso, a matriz de Vandermonde costuma ser malcondicionada, o que leva a perda de precisão na solução quando temos que resolver o sistema.

Para ilustrar a idéia vamos começar com um exemplo onde temos três pontos distintos (x_0,y_0) , (x_1,y_1) e (x_2,y_2) . Queremos encontrar o polinômio

$$P_2(x) = a_0 + a_1 x + a_2 x^2$$

que satisfaz

$$P_2(x_i) = y_i, \quad i = 0, 1, 2$$

para os dados fornecidos.

Uma fórmula para encontrar tal polinômio é a seguinte:

$$P_2(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x)$$
 (2)

onde

$$L_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}$$

$$L_1(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}$$

$$L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$$

As funções $L_0(x)$, $L_1(x)$ e $L_2(x)$ são chamadas de funções de base de Lagrange para interpolação quadrática.

Figura: Exemplo das funções de base de Lagrange quadráticas.

Essas funções possuem a seguinte propriedade

$$L_i(x_j) = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases}$$
 (3)

para i,j=0,1,2. E ainda, cada uma possui grau 2. Consequentemente $P_2(x)$ tem grau ≤ 2 e assim fica claro que este polinômio interpola os dados, pois

$$P_{2}(x_{0}) = y_{0} \underbrace{L_{0}(x_{0})}_{=1} + y_{1} \underbrace{L_{1}(x_{0})}_{=0} + y_{2} \underbrace{L_{2}(x_{0})}_{=0} = y_{0}$$

$$P_{2}(x_{1}) = y_{0}L_{0}(x_{1}) + y_{1}L_{1}(x_{1}) + y_{2}L_{2}(x_{0}) = y_{1}$$

$$P_{2}(x_{0}) = y_{0}L_{0}(x_{2}) + y_{1}L_{1}(x_{2}) + y_{2}L_{2}(x_{2}) = y_{2}$$

Interpolação Quadrática

Exemplo

Voltando ao exemplo anterior

$$\begin{array}{c|ccccc} x & -1 & 0 & 1 \\ \hline f(x) & 0.54 & 1 & 0.54 \end{array}$$

Assim

$$L_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} = \frac{(x-0)(x-1)}{(-1-0)(-1-1)} = \frac{x(x-1)}{2}$$

$$L_1(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} = \frac{(x+1)(x-1)}{(0+1)(0-1)} = \frac{x^2-1}{-1} = 1-x^2$$

$$L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} = \frac{(x+1)(x-0)}{(1+1)(1-0)} = \frac{x(x+1)}{2}$$

Interpolação Quadrática

Exemplo

Obtemos então

$$P_2(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x)$$

$$= (0.54) \frac{x(x-1)}{2} + (1)(1-x^2) + (0.54) \frac{x(x+1)}{2}$$

$$= \frac{0.54}{2} x(x-1+x+1) + 1 - x^2$$

$$= 0.54x^2 + 1 - x^2$$

$$= 1 - 0.46x^2$$

* Observe que este é o mesmo polinômio obtido anteriormente, pois como vimos este polinômio é único. □

Casos especiais

Considere o seguinte conjunto de pontos

$$(x_0,1), (x_1,1), (x_2,1)$$

Qual é o polinômio $P_2(x)$ neste caso?

O polinômio interpolante tem que ser

$$P_2(x) = 1$$

o que significa que $P_2(x)$ é a função constante.

- ▶ A função constante satisfaz a propriade que $P_2(x)$ tem que ter grau ≤ 2 .
- Claramente essa função interpola os dados fornecidos.
- Pela unicidade da interpolação, $P_2(x)$ tem que ser a função constante 1.

Casos especiais

Considere o seguinte conjunto de pontos

$$(x_0, mx_0), (x_1, mx_1), (x_2, mx_2)$$

para uma constante m qualquer. Qual é o polinômio $P_2(x)$ nesse caso? De forma similar ao caso anterior, concluimos que

$$P_2(x) = mx, \quad \forall x$$

Observe que, o grau de $P_2(x)$ pode ser menor do que 2.

Caso Geral

Vamos considerar que agora temos n+1 pontos:

$$(x_0,y_0),\ldots,(x_n,y_n)$$

e queremos encontrar um polinômio $P_n(x)$ de grau $\leq n$ que interpola os pontos acima.

Definindo os polinômios de Lagrange:

$$L_{i}(x) = \frac{(x - x_{0})(x - x_{1}) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x - x_{n})}{(x_{i} - x_{0})(x_{i} - x_{1}) \dots (x_{i} - x_{i-1})(x_{i} - x_{i+1}) \dots (x_{i} - x_{n})}$$

$$= \prod_{j=0, j\neq i}^{n} \frac{(x - x_{j})}{(x_{i} - x_{j})}$$

logo o polinômio interpolador (na forma de Lagrange!) é dado por:

$$P_n(x) = y_0 L_0(x) + y_1 L_1(x) + \ldots + y_n L_n(x) = \sum_{i=0}^n y_i L_i(x)$$

Exemplo

Dada a seguinte tabela

$$\begin{array}{c|ccccc} x & 1 & 1.1 & 1.2 & 1.3 \\ \hline \tan(x) & 1.5574 & 1.9648 & 2.5722 & 3.6021 \end{array}$$

podemos construir polinômios interpoladores de grau n=1,2,3, com os seguintes nós:

$$x_0 = 1$$
, $x_1 = 1.1$, $x_2 = 1.2$, $x_3 = 1.3$

Sem descrever a construção temos os seguintes resultados

n	1	2	3
$P_n(x)$	2.2685	2.2435	2.2296
erro	-0.0340	-0.0090	0.0049

considerando que o valor exato é tan(1.15) = 2.2345.

Exemplo

Vemos que:

- A aproximação melhora a medida que aumentamos o grau n, entretanto a uma taxa não muito rápida.
- Veremos mais adiante que o erro piora quando aumentamos n ainda mais.
- ▶ Em geral interpolação polinomial de alta ordem, digamos $n \ge 10$, pode causar problemas.
- Veremos também outras formas de interpolação (por partes, splines).
 - Dividir o intervalo em subintervalos e usar interpolação de grau menor em cada um dos subintervalos.

Algoritmo

```
entrada: n: numero de pontos
         x, y: vetores dos dados
         z: valor a interpolar
saída: r : valor interpolado
r = 0:
para i=1 até n faça
   para j=1 até n faça
       se i \neq j então
      c = c * (z - x_j);

d = d * (x_i - x_j);
       fim-se
   fim-para
   r = r + y_i * (c/d);
fim-para
```

Observações

- ▶ O número de operações desse algoritmo é:
 - Adições: $2n^2 + 3n + 1$
 - Multiplicações $2n^2 + 3n + 1$
 - ▶ Divisões: n+1
- Ou seja, o algoritmo executa um total de operações aritméticas da ordem de n².
- ▶ Realiza menos operações do que encontrar os coeficientes do polinômios resolvendo o sistema de equações lineares, que executa um total de operações que é da ordem de n³.
- Embora seja fácil de determinar o polinômio interpolador pela forma de Lagrange, ela é mais custosa para avaliar o polinômio em um certo ponto.
- ▶ Outra desvantagem é a necessidade de se recomputar todos os polinômios $L_i(x)$ se desejarmos aumentar o grau de $P_n(x)$.

Diferenças divididas

Antes de estudarmos a forma de Newton para se obter o polinômio interpolador, iremos apresentar o conceito de **operador de diferença dividida**.

Considere a função f(x). A diferença dividida de *ordem zero* é simplesmente o valor de f no ponto x_i

$$f[x_i] = f(x_i)$$

Considere agora dois pontos distintos x_0 e x_1 , definimos

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

que é chamada de diferença dividida de primeira ordem de f(x).

Diferenças divididas

Podemos definir os operadores de diferença divida de ordem mais alta de forma **recursiva**:

segunda ordem

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

terceira ordem

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$$

▶ n-ésima ordem

$$f[x_0, \dots, x_n] = \frac{f[x_1, \dots, x_n] - f[x_0, \dots, x_{n-1}]}{x_n - x_0}$$

* Lembrando que a definição é válida para x_0, x_1, \ldots, x_n distintos.

Diferenças divididas

Observe que, do lado direito de cada uma das expressões de diferença dividida de ordem >1, precisamos aplicar sucessivamente a definição de diferença dividida até que os cálculos envolvam apenas o valor da função nos pontos.

Exemplo:

$$\begin{split} f[x_0,x_1,x_2] &= \frac{f[x_1,x_2] - f[x_0,x_1]}{x_2 - x_1} \\ &= \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0} \end{split}$$

Entretanto, como veremos a seguir, podemos calcular as diferenças divididas de uma função, de uma forma mais simples e sistemática.

Diferenças divididas

Pelo Teorema do Valor Médio (TVM),

$$f(x_1) - f(x_0) = f'(c)(x_1 - x_0)$$

para algum c entre x_0 e x_1 . Então

$$f[x_0, x_1] = f'(c)$$

e podemos ver que a diferença dividida é muito parecida com a derivada, especialmente se x_0 e x_1 são muito próximos.

Diferenças divididas

Exemplo

Seja $f(x) = \cos(x)$ e $x_0 = 0.2$ e $x_1 = 0.3$. Então

$$f[x_0, x_1] = \frac{\cos(x_1) - \cos(x_0)}{x_1 - x_0} = \frac{\cos(0.3) - \cos(0.2)}{0.3 - 0.2} = -0.2473\dots$$

Note que

$$f'\left(\frac{x_0+x_1}{2}\right) = -\sin\left(\frac{x_0+x_1}{2}\right) = -0.2474\dots$$

isto é

$$f[x_0, x_1] \approx f'\left(\frac{x_0 + x_1}{2}\right)$$

Diferenças divididas

A relação entre estes operadores com as derivadas de alta ordem da função f(x) é dada pelo teorema abaixo:

Teorema

Seja $n \geq 1$, e assuma que f(x) é n vezes continuamente diferenciável no intervalo [a,b]. Seja x_0,x_1,\ldots,x_n pontos distintos em [a,b]. Então existe um ponto c entre x_0,x_1,\ldots,x_n , tal que

$$\frac{1}{n!}f^{(n)}(c) = f[x_0, x_1, \dots, x_n]$$

Diferenças divididas

Dada uma função f(x) e um conjunto de pontos $x_0, x_1, x_2, x_3, \ldots$ podemos usar o seguinte esquema para calcular as suas diferenças divididas.

x_i	$f(x_i)$	$[x_i, x_j]$	$[x_i, x_j, x_k]$
x_0	$f[x_0] = f(x_0)$		
		$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$	
x_1	$f[x_1] = f(x_1)$		$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$
		$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	
x_2	$f[x_2] = f(x_2)$		$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$
		$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$, ,
x_3	$f[x_3] = f(x_3)$		$f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_4 - x_2}$
		$f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_3}$	
x_4	$f[x_4] = f(x_4)$		
:	:	:	:

Diferenças divididas

Exemplo

Seja
$$f(x)=\cos{(x)}$$
, encontre $f[x_0,x_1,x_2]$ onde $x_0=0.2$, $x_1=0.3,\ x_2=0.4$.

x	f(x)	ordem 1	ordem 2
0.2	0.980		
0.3	0.955	$f[x_0, x_1] = (0.955 - 0.98)/0.1 = -0.247$ $f[x_1, x_2] = (0.921 - 0.955)/0.1 = -0.342$	-0.475
0.4	0.921	, , , , , , , , , , , , , , , , , , ,	

Observe que

$$\frac{1}{2}f''\left(\frac{x_0+x_1}{2}\right) = \frac{1}{2}f''(0.3) = -\frac{1}{2}\cos(0.3) = -0.4777$$
$$f[0.2, 0.3, 0.4] \approx \frac{1}{2}f''(0.3)$$

Diferenças divididas - Ordem dos nós

Analisando $f[x_0, x_1]$ vemos que

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(x_0) - f(x_1)}{x_0 - x_1} = f[x_1, x_0]$$

Ou seja, a ordem de x_0 e x_1 não importa. Podemos mostrar que de forma geral

$$f[x_0, \dots, x_n] = \frac{f[x_1, \dots, x_n] - f[x_1, \dots, x_{n-1}]}{x_n - x_0}$$

é independente da ordem dos argumentos $\{x_0,\dots,x_n\}$, isto é

$$f[x_0,\ldots,x_n]=f[x_{i_0},\ldots,x_{i_n}]$$

para qualquer permutação (i_0, i_1, \ldots, i_n) de $(0, 1, \ldots, n)$.

Considere que os dados sejam gerados de uma função $f(\boldsymbol{x})$

$$y_i = f(x_i), \quad i = 0, 1, \dots, n$$

Usando as diferenças divididas

$$f[x_0, x_1], f[x_0, x_1, x_2], \dots f[x_0, \dots, x_n]$$

podemos escrever polinômios interpoladores

$$P_1(x), P_2(x), \ldots, P_n(x)$$

de forma simples de calcular

$$P_1(x) = f(x_0) + f[x_0, x_1](x - x_0)$$

$$P_2(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

$$= P_1(x) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

Para o caso geral, temos

$$P_n(x) = f(x_0) + f[x_0, x_1](x - x_0)$$

$$+ f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots$$

$$+ f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

que podemos escrever de forma recursiva como

$$P_n(x) = P_{n-1}(x) + f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

Observações:

- ▶ Desta forma, tendo em mãos um polinômio de grau $\leq n-1$, sobre n pontos, podemos obter $P_n(x)$ apenas somando o último termo associado ao operador de diferença dividida de ordem n.
- Note a semelhança com a série de Taylor

Teorema

O polinômio:

$$P_n(x) = f(x_0) + f[x_0, x_1](x - x_0)$$

$$+ f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots$$

$$+ f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

é o polinômio de interpolação da função y=f(x) sobre os pontos x_0,x_1,\ldots,x_n , isto é,

$$P_n(x_k) = f(x_k), \quad k = 0, 1, \dots, n$$

Prova

Prova por indução, livro da Neide, página 308.

Exemplo

Encontre o polinômio de grau ≤ 2 que interpola os dados:

$$\begin{array}{c|ccccc} x & -1 & 0 & 1 \\ \hline f(x) & 0.54 & 1 & 0.54 \end{array}$$

Pela forma de Newton temos

x	f(x)	ordem 1	ordem 2
-1	0.54	0.46	-0.46
0	1	-0.46	
1	0.54		

Logo o polinômio $P_2(x)$ na forma de Newton é dado por

$$P_2(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

= 0.54 + 0.46(x + 1) - 0.46(x + 1)(x - 0) = 1 - 0.46x²

Exemplo

Encontre o polinômio que interpola os dados

usando a forma de Newton.

Solução do Exemplo

x	f(x)	ordem 1	ordem 2	ordem 3
	0.3162		-1.0333	1.1494
0.3	0.5477	0.848	-0.4583	
0.4	0.6325	0.710		
0.6	0.5477 0.6325 0.7746			

$$P_3(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + f[x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2)$$

Solução do Exemplo

Logo,

$$P_3(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

$$+ f[x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2)$$

$$= 0.3162 + (1.158)(x - 0.1) + (-1.033)(x - 0.1)(x - 0.3)$$

$$+ (1.1494)(x - 0.1)(x - 0.3)(x - 0.4)$$

$$= 1.1494x^3 - 1.95252x^2 + 1.789586x + 0.1556172$$

Vamos avaliar o polinômio em x=0.2

Algoritmo para calcular os coeficientes do polinômio na forma de Newton

```
entrada: n : numero de pontos
          x_0,\ldots,x_n: pontos
         y_0, \ldots, y_n: valores
saída: d_0, \ldots, d_n: coeficientes
para i=0 até n faca
  d_i = y_i;
fim-para
para k=1 até n faca
   para i=n até k faça
    d_i = (d_i - d_{i-1})/(x_i - x_{i-k}):
   fim-para
fim-para
retorne d :
```

Dado que temos os coeficientes do polinômio na forma de Newton, os quais são $f[x_0], f[x_0, x_1], \ldots, f[x_0, \ldots, x_n]$, podemos avaliar de forma fácil e eficiente o polinômio em um ponto z não tabelado ($z \neq x_i$) usando o algoritmo de Horner. Vejamos um exemplo.

Dado um polinômio de grau 3, escrito como

$$P_3(z) = f[x_0] + f[x_0, x_1](z - x_0) + f[x_0, x_1, x_2](z - x_0)(z - x_1)$$

+ $f[x_0, x_1, x_2, x_3](z - x_0)(z - x_1)(z - x_2)$

podemos escreve-lo na forma

$$P_3(z) = f[x_0] + (z - x_0) \left\{ f[x_0, x_1] + (z - x_1) \left[f[x_0, x_1, x_2] + f[x_0, x_1, x_2, x_3](z - x_2) \right] \right\}$$

Algoritmo para avaliar o polinômio na forma de Newton

$$\begin{split} P_3(z) &= \underbrace{f[x_0]}_{d_0} \\ &+ (z-x_0) \bigg\{\underbrace{f[x_0,x_1]}_{d_1} + (z-x_1) \Big[\underbrace{f[x_0,x_1,x_2]}_{d_2} + \underbrace{f[x_0,x_1,x_2,x_3]}_{d_3} (z-x_2) \Big] \bigg\} \end{split}$$
 então
$$P_3(z) = d_0 + (z-x_0) \bigg\{ d_1 + (z-x_1) \Big[d_2 + d_3(z-x_2) \Big] \bigg\}$$

$$r = d_n \; ;$$
 para $i = n-1$ até 0 faça
$$\Big| \begin{array}{c} r = r * (z-x_i) + d_i \; ; \\ \text{fim-para} \\ \text{retorne } r \; ; \\ \end{split}$$

Algoritmo para avaliar o polinômio na forma de Newton

```
entrada: n : numero de pontos
         z : valor a ser interpolado
         x_0,\ldots,x_n: pontos
         d_0, \ldots, d_n: coeficientes do polinômio
saída: P(z): valor do polinômio no ponto z
r=d_n:
para i = n - 1 até 0 faca
r = r * (z - x_i) + d_i ;
fim-para
retorne r:
```

Conteúdo

- Aula passada
 - ► Introdução
 - ► Forma de Lagrange
 - Forma de Newton
- Aula de hoje
 - ► Forma de Gregory-Newton
 - ► Erro na Interpolação

Na aula passada vimos que o polinômio interpolador de $(x_0,y_0),\ldots,(x_n,y_n)$ na **forma de Newton** é dado por

$$P_n(x) = f(x_0) + f[x_0, x_1](x - x_0)$$

$$+ f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots$$

$$+ f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

que pode ser escrito como

$$P_n(x) = P_{n-1}(x) + f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

onde

$$f[x_0, \dots, x_n] = \frac{f[x_1, \dots, x_n] - f[x_0, \dots, x_{n-1}]}{x_n - x_0}$$

é o operador de **diferença dividida** de ordem n.

Quando os valores dos pontos x_i forem igualmente espaçados (Exemplo: $x_0=1, x_1=1.5, x_2=2, x_3=2.5$), a forma de Newton pode ser simplificada, resultando na forma de Newton-Gregory.

Antes de estudar a forma de Newton-Gregory, vamos estudar o operador de **diferença ordinária**.

Definição (Operador de Diferença Ordinária)

Sejam x_0, x_1, x_2, \ldots pontos igualmente espaçados com passo h:

$$x_1 = x_0 + h$$
, $x_2 = x_1 + h = x_0 + 2h$, $x_3 = x_2 + h = x_0 + 3h$

o operador de diferença ordinária é dado por

ordem 1:
$$\Delta f(x) = f(x+h) - f(x)$$
 ordem 2:
$$\Delta^2 f(x) = \Delta f(x+h) - \Delta f(x)$$

. . .

ordem n:
$$\Delta^n f(x) = \Delta^{n-1} f(x+h) - \Delta^{n-1} f(x)$$

$$\Delta f(x) = f(x+h) - f(x)$$

$$\Delta^2 f(x) = \Delta \{\Delta f(x)\}$$

$$= \Delta \{f(x+h) - f(x)\}$$

$$= \Delta f(x+h) - \Delta f(x)$$

$$= [f(x+2h) - f(x+h)] - [f(x+h) - f(x)]$$

$$= f(x+2h) - 2f(x+h) + f(x)$$

$$\Delta^3 f(x) = f(x+3h) - 3f(x+2h) + 3f(x+h) - f(x)$$

$$\vdots$$

$$\Delta^n f(x) = \binom{n}{0} f(x+nh) - \binom{n}{1} f(x+(n-1)h)$$

$$+ \dots + (-1)^n \binom{n}{n} f(x)$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

As diferenças ordinárias podem ser calculadas de forma prática através do seguinte esquema:

Exemplo

Calcule $\Delta^3 f(x_0)$ onde:

Logo, temos que
$$\Delta^3 f(x_0) = -0.1$$
. \square

A relação entre os operadores de diferenças ordinária e dividida é dada pela expressão (prova completa, livro da Neide, página 316)

$$f[x_0, x_1, \dots, x_n] = \frac{\Delta^n f(x_0)}{n! \ h^n}$$

Vejamos:

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

$$= \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{2 h}$$

$$= \frac{\frac{1}{h} [f(x_2) - 2f(x_1) - f(x_0)]}{2 h}$$

$$= \frac{f(x_2) - 2f(x_1) - f(x_0)}{2 h^2}$$

$$= \frac{\Delta^2 f(x_0)}{2 h^2}$$

O polinômio interpolador na forma de Newton é dado por

$$P_n(x) = f(x_0) + f[x_0, x_1](x - x_0)$$

$$+ f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots$$

$$+ f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

Defina

$$u = \frac{(x - x_0)}{h}$$

Note que

$$x - x_0 = hu$$

$$x - x_1 = x - x_0 - h = hu - h = h(u - 1)$$

$$x - x_2 = x - x_0 - 2h = hu - 2h = h(u - 2)$$
...
$$x - x_{n-1} = x - x_0 - (n-1)h = hu - nh + h = h(u - n + 1)$$

Substituindo na forma de Newton temos

$$P_{n}(x) = f(x_{0}) + f[x_{0}, x_{1}](x - x_{0}) + f[x_{0}, x_{1}, x_{2}](x - x_{0})(x - x_{1})$$

$$+ \dots + f[x_{0}, \dots, x_{n}](x - x_{0}) \dots (x - x_{n-1})$$

$$= f(x_{0}) + hu \frac{\Delta f(x_{0})}{1! h} + (hu)[h(u - 1)] \frac{\Delta^{2} f(x_{0})}{2! h^{2}}$$

$$+ \dots + (hu)[h(u - 1)][h(u - 2)] \dots [h(u - n + 1)] \frac{\Delta^{n} f(x_{0})}{n! h^{n}}$$

Assim

$$P_n(u) = f(x_0) + u\Delta f(x_0) + u(u-1)\frac{\Delta^2 f(x_0)}{2!} + \dots + u(u-1)(u-2)\dots(u-n+1)\frac{\Delta^n f(x_0)}{n!}$$

ou

$$P_n(u) = f(x_0) + \sum_{i=1}^n \frac{\Delta^i f(x_0)}{i!} \prod_{j=0}^{i-1} (u-j)$$

Exemplo

Calcular $P_1(0.2)$ usando os dados da tabela abaixo:

$$\begin{array}{c|ccc} x & 0.1 & 0.6 \\ \hline f(x) & 1.221 & 3.320 \\ \end{array}$$

Solução do Exemplo

Calculamos a tabela de diferenças ordinárias:

$$\begin{array}{c|cc} x & f(x) \\ 0.1 & 1.221 \\ & & 2.099 \\ 0.6 & 3.320 \end{array}$$

e a variável
$$u = \frac{x - x_0}{h} = \frac{0.2 - 0.1}{0.5} = 0.2$$
. Então

$$P_1(0.2) = f(x_0) + u\Delta f(x_0) = 1.221 + (0.2)2.099 = 1.641$$

Exemplo

Dada a função tabelada:

determinar o polinômio de interpolação usando a fórmula de Newton-Gregory e calcular o seu valor em x=0.5.

Solução do Exemplo

Temos:

$$x_0 = -1, \quad f(x_0) = 3,$$

 $x_1 = 0, \quad f(x_1) = 1,$
 $x_2 = 1, \quad f(x_2) = -1,$
 $x_3 = 2, \quad f(x_3) = 0$

portanto n=3.

Solução do Exemplo

Logo devemos construir o seguinte polinômio

$$P_3(x) = f(x_0) + u\Delta f(x_0) + u(u-1)\frac{\Delta^2 f(x_0)}{2!} + u(u-1)(u-2)\frac{\Delta^3 f(x_0)}{3!}$$

Construimos então a tabela de diferenças ordinárias:

Solução do Exemplo

Assim temos

$$f(x_0) = 3$$
, $\Delta f(x_0) = -2$, $\Delta^2 f(x_0) = 0$, $\Delta^3 f(x_0) = 3$

Portanto

$$P_3(x) = 3 + u \frac{(-2)}{1!} + u(u-1)\frac{(0)}{2!} + u(u-1)(u-2)\frac{(3)}{3!}$$

onde $u=\frac{x-x_0}{h}$. Para calcular $P_3(0.5)$ temos que h=1, x=0.5 e $x_0=-1$, portanto

$$u = \frac{0.5 - (-1)}{1} = 1.5$$

assim calculamos

$$P_3(1.5) = 3 - 2(1.5) + 0.5 * (1.5)(1.5 - 1)(1.5 - 2) = -0.1875$$

Estamos interessados em estimar o erro cometido quando aproximamos uma função f(x) por $P_n(x)$ em um ponto x=z entre x_0,x_1,\ldots,x_n . Isto é, queremos encontrar uma expressão para o erro, denotado por $E_n(z)$ onde:

$$E_n(z) = f(z) - P_n(z)$$

para z entre x_0, x_1, \ldots, x_n .

Para isso, considere que $P_{n+1}(x)$ é o polinômio de grau $\leq n+1$ que interpola os pontos $(x_0,y_0),\ldots,(x_n,y_n),(z,f(z))$, onde supomos que $z\neq x_i,\ i=0,1,\ldots,n$. Assim, pela forma de Newton temos que

$$P_{n+1}(x) = P_n(x) + (x - x_0) \dots (x - x_n) f[x_0, x_1, \dots, x_n, z]$$

como $P_{n+1}(x)$ é o polinômio interpolador, no ponto x=z temos

$$P_{n+1}(z) = f(z)$$

Note que, podemos escrever $P_n(x)$ como

$$P_n(x) = P_{n+1}(x) - (x - x_0) \dots (x - x_n) f[x_0, \dots, x_n, z]$$

$$E_n(z) = f(z) - P_n(z)$$

$$f_n(z) = f(z) - P_n(z)$$

$$= f(z) - \{P_{n+1}(z) - (z - x_0) \dots (z - x_n) f[x_0, \dots, x_n, z]\}$$

$$= f(z) - \{f(z) - (z - x_0) \dots (z - x_n) f[x_0, \dots, x_n, z]\}$$

$$= (z - x_0) \dots (z - x_n) f[x_0, \dots, x_n, z]$$

Através da relação entre o operador de diferenças divididas e derivada, dada por

$$f[x_0,\ldots,x_n] = \frac{f^n(\xi)}{n!}$$

obtemos que

$$E_n(z) = (z - x_0) \dots (z - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

onde ξ é algum ponto entre x_0, \ldots, x_n .

Teorema (Erro na interpolação)

Sejam x_0, \ldots, x_n um conjunto de n+1 pontos distintos. Seja f(x) uma função n+1 continuamente diferenciável. Então, em qualquer ponto x entre x_0, \ldots, x_n o erro é dado por:

$$E_n(x) = f(x) - P_n(x) = (x - x_0) \dots (x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

onde ξ está entre x_0, \ldots, x_n .

Obs: existem outras formas de se chegar a esse resultado, como por exemplo o Teorema 8.4, página 295, do livro da Neide B. Franco, que usa resultados fundamentais de Cálculo.

A importância do teorema do erro é mais teórica do que prática, visto que não conhecemos o ponto ξ .

Na prática para **estimar** o erro cometido ao aproximar o valor da função em um ponto por seu polinômio interpolador, usamos o seguinte resultado.

Seja $E_n(x)=f(x)-P_n(x)$. Se f(x) e suas derivadas até ordem n+1 são contínuas em [a,b], então:

$$|E_n(x)| \le \frac{|x - x_0||x - x_1| \dots |x - x_n|}{(n+1)!} \max_{a \le t \le b} |f^{(n+1)}(t)|$$

Exemplo

Sejam $f(x)=e^x$ e o polinômio que interpola $P_1(x)$ nos pontos $x_0,x_1\in[0,1]$. Estimar o erro para um ponto x entre x_0 e x_1 .

Solução do Exemplo

Pela fórmula do erro

$$|E_1(x)| \le |x - x_0||x - x_1| \max_{x \in [x_0, x_1]} \frac{f''(x)}{2}$$

Considerando que $x_0 < x_1$ e que $f''(x) = e^x$, temos que

$$\max_{x \in [x_0, x_1]} e^x = e^{x_1} \le e^1$$

pois $x_0, x_1 \in [0, 1]$. Logo

$$|E_1(x)| \le |x - x_0||x - x_1|^{\frac{e}{2}}$$

Solução do Exemplo

$$|E_1(x)| \le |x - x_0||x - x_1|\frac{e}{2}$$

Vamos calcular agora o maior valor que $|x - x_0||x - x_1|$ pode tomar no intervalo $[x_0, x_1]$.

$$w(x) = (x - x_0)(x - x_1)$$

$$w'(x) = (x - x_1) + (x - x_0) = 0 \implies x = \frac{x_0 + x_1}{2}$$

Considere que $x_1 - x_0 = h$, então $x = \frac{x_0 + x_0 + h}{2} = x_0 + \frac{h}{2}$. Logo

$$w(x_0 + \frac{h}{2}) = (x_0 + \frac{h}{2} - x_0)(x_0 + \frac{h}{2} - x_0 - h) = \frac{h}{2}(-\frac{h}{2}) = -\frac{h^2}{4}$$

e assim

$$|E_1(x)| \le \frac{h^2}{4} \frac{e}{2} = \frac{h^2 e}{8}$$

De forma geral, para n+1 pontos igualmente espaçados x_0,x_1,\ldots,x_n , e para f(x) com derivada até ordem n+1 contínua, pode ser mostrado (Ruggiero, página 232) o seguinte resultado:

$$|E_n(x)| = |f(x) - P_n(x)| \le \frac{h^{n+1} M_{n+1}}{4(n+1)}, \quad \forall x \in [x_0, x_n]$$

onde

$$M_{n+1} = \max_{x \in [x_0, x_n]} |f^{(n+1)}(x)|$$

.

Exemplo

Seja $f(x)=e^x+x-1$. Encontre a interpolação linear $P_1(x)$ passando pelos pontos:

$$\begin{array}{c|ccc} x & 0.5 & 1.0 \\ \hline f(x) & 1.1487 & 2.7183 \end{array}$$

Determine um limitante L para o erro: $|E_1(x)| \leq L$.

Solução do Exemplo

$$P_1(x) = f(x_0) + (x - x_0)f[x_0, x_1]$$

$$= f(x_0) + (x - x_0)\frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$= 1.1487 + (x - 0.5)\frac{(2.7183 - 1.1487)}{1.0 - 0.5}$$

$$= 1.1487 + (x - 0.5)3.1392$$

$$= 3.1392x - 0.4209$$

Solução do Exemplo

Solução do Exemplo

Estimando o erro, temos

$$|E_1(x)| \le \frac{h^2 M_2}{4(2)} \le \frac{0.5^2 e^1}{4(2)}$$

 $\le 0.0849 = L$

onde

$$M_2 = \max_{x \in [0.5, 1.0]} f''(x) = \max_{x \in [0.5, 1.0]} e^x = e^1$$

Para x = 0.7 temos

$$f(0.7) = e^{0.7} + 0.7 - 1 = 1.71375$$

$$P_1(0.7) = 1.7765$$

$$|E_1(0.7)| = |1.71375 - 1.7765| = 0.0628 \le L$$

Solução do Exemplo

Exemplo

Dada a tabela

determinar um polinômio de interpolação de grau ≤ 2 , avaliar em x=4.5 e calcular o erro cometido neste ponto.

Solução do Exemplo

Para criar o $P_2(x)$ e avaliar em x=4.5 vamos escolher os pontos $x_0=4,\ x_1=5$ e $x_2=6.$ Vamos usar a forma de Newton e assim para encontrar

$$P_2(x) = f[x_0] + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2]$$

vamos calcular a tabela de diferenças divididas.

Solução do Exemplo

x_i	$f[x_i]$	ordem1	ordem 2	ordem 3
2	0.13			
		0.06		
3	0.19		0.01	
		0.08		$\frac{0.005}{3}$
4	0.27		0.015	
		0.11		$-\frac{0.005}{3}$
5	0.38		0.01	0.00*
		0.13		$\frac{0.005}{3}$
6	0.51		0.015	
		0.16		
7	0.67			

Solução do Exemplo

$$P_2(x) = f[x_0] + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2]$$

= 0.27 + (x - 4)0.11 + (x - 4)(x - 5)0.01
= 0.01x² + 0.02x + 0.03

Avaliando em x=4.5 encontra-se $P_2(4.5)=0.3225.$ Para obter uma estimativa do erro vamos usar a seguinte relação

$$|E_n(x)| \le |x - x_0||x - x_1||x - x_2| \max f[x_0, x_1, x_2, x]$$

Sendo assim precisamos do valor da diferença divida de terceira ordem, o qual, em módulo, é dada por 0.005/3. Assim

$$|E_2(4.5)| \le |4.5 - 4||4.5 - 5||4.5 - 6||\frac{0.005}{3}|$$

E assim:
$$|E_2(4.5)| \le 0.000625 \approx 6 \times 10^{-4}$$
. \square