- 1. (30 points) Consider a linear regression model $Y = X\beta + \epsilon$, where Y is a $n \times 1$ vector, X is a $n \times k$ matrix with the first column equals to one, β is $k \times 1$ vector, and ϵ is a $n \times 1$ vector with mean 0 and variance $\sigma^2 I$. The following sub-questions are based on this model setting.
 - (a) (5 mins) The OLS method provides the estimator of β by minimizing the sum of residual squares. Set up this minimization problem and derive the OLS estimator β_{ols}. = (xx) xy
 (y-x) = 0 = xy xx p = x'(y-xp)
 - (b) (5 mins) Using the least square normal equation to show for each regressor X_k of X, we have $X'_k e = 0$, where $e = Y X\hat{\beta}_{ols}$ is the vector of residuals. What is the mean of e? Why $X'_k e = 0$ implies X_k and e are uncorrelated?
 - (c) (5 mins) Show $\hat{\beta}_{ols}$ is an unbiased estimator, i.e., $E(\hat{\beta}_{ols}) = \beta$? List necessary assumptions and show how to use them in proving the unbiasedness of $\hat{\beta}_{ols}$.
 - (d) (5 mins) Show $\operatorname{var}(\hat{\beta}_{ols}) = \sigma^2 \operatorname{E}((X'X)^{-1})$.
 - (e) (5 mins) Define the ridge regression estimator

$$\hat{\beta}_{ridge} = (X'X + I_k \lambda)^{-1} X' y$$

where $\lambda > 0$ is a fixed coefficient. Find $E(\hat{\beta}_{ridge}|X)$. Is $\hat{\beta}_{ridge}$ unbiased?

- (f) (2 mins) What are the justifications of using the normal distribution as the sampling distribution of $\hat{\beta}_{ols}$ in the small sample case and in the large sample case?
- 2. (25 points) When studying cross-sectional data, such as individual, firm, city, or country level data in a regression model, the problem of heteroskedasiticity should be addressed.
 - (a) (2 mins) In a regression model, $Y = X\beta + \epsilon$, ϵ has mean 0 and variance Ω , where Ω is a $n \times n$ square matrix. Provide a general specification of Ω for the heteroskedasticity problem.
 - (b) (5 mins) One may inspect the plot of residuals to detect the heteroskedasticity problem. Other than that, what formal tests can be used? (Note: you should name one test and provide details about this test)
 - (c) If the heteroskedasiticty problem is confirmed in the regression, answer the following true or false questions. No explanation is needed.
 - (i) (1 min) The OLS estimator is biased. True or False?
 - F (ii) (1 min) The OLS estimator is efficient. True or False?

I.
$$a_{y}$$
 μ in $Z e e = \mu m \le (Y \times k_{0}^{2}(Y \times k_{0}^{2}) e) \mu m YY \cdot YXR - RXY + RXXR$

$$F_{1}(...(X \times)R - XY = 0)$$

$$\Rightarrow R = (X \times)^{1} \times Y$$

$$\Rightarrow X = 0 \Rightarrow X = 0$$

$$E(e|X) = E(Y - XRX) = E(Y|X) - XE(RX)$$

$$= XR - XR = 0$$

$$\Rightarrow E(e) = 0$$

$$Cox(Xu, e) = E(X(e) - E(X_{0}) E(e)$$

$$= 0 - 0 = 0$$

$$Y = E(X_{0}^{2}(X_{0}^{2}) \times E(X_{0}^{2}) \times E(X_{0}^{2}))$$

$$= E(X_{0}^{2}(X_{0}^{2}) \times E(X_{0}^{2}))$$

$$= E(X_{0}^{2}(X_{0}^{2}) \times E(X_{0}^{2}))$$

$$= e = e \times (X_{0}^{2}(X_{0}^{2}) \times E(X_{0}^{2}))$$

$$= e \times (X_{0}^{2}(X_{0}^{2}) \times E(X_{0}^{2})$$

$$= e \times (X_{0}^{2}(X_{0}^{2}) \times E(X_{0}^{2})$$

$$= e \times (X_{0}^{2}(X_{0}^{2}) \times E(X_{0}^{2}))$$

$$= e \times (X_{0}^{2}(X_{0}^{2}) \times E(X_{0}^{2})$$

$$= e \times (X_{0}^$$

-T (33) (1 --) x 19

- (iii) (1 min) When using HAC (Heteroskedasticity and Autocorrelation Consistent) estimation, the OLS estimates of regression slopes will not change. True or False?
- (iv) (1 min) Asymptotically, the OLS estimator is still consistent and has a limiting normal distribution. True or False?
- (v) (1 min) The Generalized Least Square (GLS) estimator is more efficient than OLS estimator. True or False?
- (e) (5 mins) Consider the OLS and GLS estimators $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ and $\tilde{\beta} = (\mathbf{X}'\Omega^{-1}\mathbf{X})^{-1}\mathbf{X}'\Omega^{-1}\mathbf{y}$. Compute the (conditional) covariance for $\hat{\beta} \tilde{\beta}$:

$$E\left(\left(\hat{\beta}-\tilde{\beta}\right)\left(\hat{\beta}-\tilde{\beta}\right)'\middle|\mathbf{X}\right).$$

3. (20 points) Suppose the random variable y is generated from the density of log-normal distribution

$$f(y_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}y_i} \exp\left[-\frac{(\ln(y_i) - \mu)^2}{2\sigma^2}\right], \ y_i > 0$$

- (a) (5 mins) Given a total of n observations, i.e., y_1, \dots, y_n , write down the log-likelihood function for the unknown parameters μ and σ^2 .
- (b) (5 mins) Derive the ML estimator for μ and σ^2 suter product estimator
- (c) (5 mins) Derive the BHHH (Berndt–Hall–Hall–Hausman) variance estimator for the ML estimator $\hat{\mu}_{ml}$.
- (d) (2 mins) Is the ML estimator an efficient estimator for this model? Explain.
- 4. (25 points) The following questions are based on the Simultaneous Equations Model

$$hours = \beta_{10} + \alpha_1 \log(wage) + \beta_{11}edu + \beta_{12}age + \beta_{13}kidslt6 + \beta_{14}otherincome + u_1$$

$$\log(wage) = \beta_{20} + \alpha_2hours + \beta_{21}edu + \beta_{22}exper + \beta_{23}exper^2 + u_2$$

The first and second equations aim to capture labor supply and labor demand of married female—workers, respectively. The variable hour stands for working hours; log(wage) stands for the log hourly wage rate; kidslt6 stands for a dummy of having kids under age 6.

$$\int_{n}^{2} \frac{1}{\sqrt{2\pi\sigma^{2}y_{1}}} \exp\left[-\frac{(\ln(y_{1})-\mu)^{2}}{2\sigma^{2}}\right], y_{1} > 0$$

$$= -\frac{1}{2} \int_{n}^{2} 2\pi - \frac{1}{2} \int_{n}^{2} \delta^{2} - \int_{n}^{2} (y_{1}) - \frac{(\int_{n}^{2} y_{2} - u)}{2\delta^{2}} \int_{n}^{2} \frac{1}{2\delta^{2}} \int_{n}^{2} \frac{1}{2\delta$$

同族专生的生产

- (a) (2 mins) Explain why $\log(wage)$ is an endogenous variable in the labor supply equation.

 Yes, because we have \$\mathbb{Z} = \text{xopeneous} variables excluded in the first equation satisfies the order condition or not.
- (c) (5 mins) Discuss the required-coefficient constraints for the first equation to satisfy the rank condition for identification.
- (d) (2 mins) Estimation result of the first equation by OLS is reported in Figure 1 Panel (a). Comment on the estimated coefficient for log(wage).
- (e) (2 mins) Estimation result of the first equation by 2SLS using variables experience and experience square as instruments is reported in Figure 1 Panel (b). Compare the estimated coefficient for log(wage) with the OLS result.
- (f) (2 mins) Some information of the first stage in the 2SLS estimation is reported in Figure 1 Panel (c). Comment on whether we have a weak instrument problem or not.

 | To | F = 9.33 < 10 | New Manuard problem.

> regress hours lnwage educ age kidslt6 otherincome;

Source	SS	df	MS	Number of obs F(5, 422) Prob > F R-squared Adj R-squared	:	= 428 = 3.16 = 0.0082 = 0.0361 = 0.0247
Model Residual	9290528.56 248020491	5 422	1858105.71 587726.283			
Total	257311020	427	602601.92	Root MSE	=	766.63

mage 7 190

hours	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
lnwage	-2.046796	54.88015	-0.04	0.970	-109.9193	105.825
educ	-6.62187	18.11627	-0.37	0.715	-42.23123	28.9874
age	.5622541	5.140012	0.11	0.913	-9.540961	10.6654
kidalt6	-320.8584	101.4573	-3.24	0.001	-528.2831	-129.433
otherincome	-5.918459	3.683341	-1.61	0.109	-13.15844	1.32152
_cons	1523.775	305.5755	4.99	0.000	923.1352	2124.41

(a)

. ivregress 2sls hours educ age kidslt6 otherincome (lnwage=exper expersq);

428 Number of obs Instrumental variables (2SLS) regression 17.45 Wald chi2(5) 0.0037 Prob > chi2 R-squared 1344.7 Root MSE

hours = (hape) + BZ11822+-lu. --

				PNIZI	[95% Conf.	Interval]
hours lnwage educ	Coef. 1639.556 -183.7513	5td. Err. 467.2656 58.68409	3.51 -3.13	0.000 0.002	723.7318 -298.77	2555.379 -68.73257 10.44519
age kidslt6 otherincome _cons	-7.806092 -198.1543 -10.16959 2225.662	9.312048 181.6424 6.568215 570.5226	6424 -1.09 0.275 -554.1 68215 -1.55 0.122 -23.04	-26.05737 -554.1669 -23.04306 1107.458	157.8583 2.703873	

Instrumented: lnwage

educ age kidslt6 otherincome exper expersq Instruments:

(b)

phoge)

estat firststage

First-stage regression summary statistics

Adjusted Partial Prob > F F(2,421) R-sq. R-sq. R-sq. Variable 0.0001 9.32933 0.1514 0.0424 0.1633 1nwage

Ho: all O.

Hi: not all O

Minimum eigenvalue statistic = 9.32933

of endogenous regressors: 1 Critical Values # of excluded instruments: Ho: Instruments are weak 30% 5% 10% 20% (not available) 2SLS relative bias 25% 10% 15% 20% 2SLS Size of nominal 5% Wald test LIML Size of nominal 5% Wald test 11.59 8.75 7.25 19.93 3.92 5.33 8.68

(c)

Figure 1

5