Why study chance?

Othe Prosecutor's Fallacy

P(innoceut | evidence) & P(evidence | matches | innoceut)

2) The relationship between population & samples

Charce = P(Event) = % of times on event is likely
to occur, if a process is
repeated long-term.

Sample space = all the possible outcomes of an event

T6: Understanding Chance 17: Chance Variability (The Box Model) T8: Sample Surveys

LOG: Use the box model to describe chance & chance Variability, including sample surveys the CLT.

Example: throw a fair die once.				
	P(Event)			
Impossible	P(throwing a 7)			
certain	P (throwing a number less than 7) (1throw			
Possible	P(throwing a 1)			
opposite/ complement	P(not throwing a 2)			
Rardon	z throws: P(throwing a 6) < 95 its			
Conditional	2 throws: P(throwing 9 6 got a 6 on 2nd throw on 1st throw)			
(ii) Independent				
Mutually Exclusive	1 throw = $P(getfing d and q 6)$			

Classic FAAs

FAAIL What's the difference between mutually exclusive & independence?

Mutually exclusive = the occurrence of Event 1

pravents Event 2 occurring

("no overlap")

P(Event 1 Devent 2) = 0

Independence = the occurrence of Event 1

does not change the chance

of Event 2 occurring

$$P(\text{Event 2}|_{\text{Event 1}})$$

$$= P(\text{Event 1}_{n} \text{ Event 2})$$

$$= P(\text{Event 1})$$

$$= P(\text{Event 2})$$

FAA2. When to I add & wultiply?

			Whed o
Addition	Pat least of 2 events 0 ccyrs	P(Event 2) + P(Event 2)	mu fually exclosive
		E _t O 2	
Multiplication Rule	P(bth events occur	P(Event1) X P(Event2)	independent
		P(Event 1) * P(Event 2 Event 1)	dependent
		E1 52	

Simulation i

the easy, quick way to estimate chance of event

Example: 2 fair dice are thrown.

What is the chance of getting a total of 6?

2. Estimate

Binomial Model

1. Suppose we have m distinct objects in a row.

ABC----

the number of ways of orlanging the objects is $N_0 = N(N-1)(N-2)....(3)(2)(1) \quad 0! = 1$

2. Suppose we have nobjects of 2 types, in a row.

A A B A

B X U-2

the number of ways of orlanging the objects is

$$= \frac{\mathcal{N}_{0}}{\mathcal{N}_{0}}$$

$$= \frac{\mathcal{N}_{0}}{\mathcal{N}_{0}}$$

$$= \frac{\mathcal{N}_{0}}{\mathcal{N}_{0}}$$

3. Suppose we have n independent binary fridge

where P(Event) = p.

The fixed
or Event

occurs excus

$$P\begin{pmatrix} observing \\ exact(0) \\ x events \end{pmatrix} = \begin{pmatrix} n \\ x \end{pmatrix} P \times (1-P) \quad 0 \le x \le n$$

time

Example: We throw a fair dice 5 times.

What is the chance of getting 4 6's.

P(6) = 1

Let X = the ff of 6's in 5 throws of a fair dice. $\sim \text{Bin } \left(n = 5 \right) p = \frac{1}{6}$

So
$$P(X = 4) = \begin{pmatrix} x \\ x \end{pmatrix} p^{\chi} \begin{pmatrix} 1 \\ 6 \end{pmatrix}^{\mu} \begin{pmatrix} \frac{5}{6} \\ \frac{5}{6} \end{pmatrix}^{\mu}$$

$$= \begin{pmatrix} \frac{5}{4!} & \frac{1}{6!} & \frac{5}{6!} \\ \frac{4!}{6!} & \frac{1}{6!} & \frac{5}{6!} \\ \frac{5}{6!} & \frac{1}{6!} & \frac{5}{6!} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{5}{4!} & \frac{1}{6!} & \frac{5}{6!} \\ \frac{5}{6!} & \frac{1}{6!} & \frac{5}{6!} \\ \frac{5}{6!} & \frac{1}{6!} & \frac{5}{6!} & \frac{1}{6!} \\ \frac{5}{6!} & \frac{1}{6!} & \frac{1}{6!} & \frac{1}{6!} \\ \frac{5}{6!} & \frac{1}{6!} & \frac{1}{6!} & \frac{1}{6!} & \frac{1}{6!} \\ \frac{5}{6!} & \frac{1}{6!} & \frac{1}{6!} & \frac{1}{6!} & \frac{1}{6!} & \frac{1}{6!} & \frac{1}{6!} \\ \frac{5}{6!} & \frac{1}{6!} & \frac{1}{6!} & \frac{1}{6!} & \frac{1}{6!} & \frac{1}{6!} \\ \frac{5}{6!} & \frac{1}{6!} \\ \frac{5}{6!} & \frac{1}{6!} & \frac{1$$