Example 30.4. Considering the polynomial $f(X) = X^2 - 1$, both +1 and -1 are zeros of f(X). Over the field of reals, the polynomial $g(X) = X^2 + 1$ has no zeros. Over the field \mathbb{C} of complex numbers, $g(X) = X^2 + 1$ has two roots i and -i, the square roots of -1, which are "imaginary numbers."

We have the following basic proposition showing the relationship between polynomial division and roots.

Proposition 30.19. Let $f \in A[X]$ be any polynomial and $\alpha \in A$ any element of A. If the result of dividing f by $X - \alpha$ is $f = (X - \alpha)q + r$, then r = 0 iff $f(\alpha) = 0$, i.e., α is a root of f iff r = 0.

Proof. We have $f = (X - \alpha)q + r$, with $\deg(r) < 1 = \deg(X - \alpha)$. Thus, r is a constant in K, and since $f(\alpha) = (\alpha - \alpha)q(\alpha) + r$, we get $f(\alpha) = r$, and the proposition is trivial. \square

We now consider the issue of multiplicity of a root.

Proposition 30.20. Let $f \in A[X]$ be any nonnull polynomial and $h \ge 0$ any integer. The following conditions are equivalent.

- (1) f is divisible by $(X \alpha)^h$ but not by $(X \alpha)^{h+1}$.
- (2) There is some $g \in A[X]$ such that $f = (X \alpha)^h g$ and $g(\alpha) \neq 0$.

Proof. Assume (1). Then, we have $f = (X - \alpha)^h g$ for some $g \in A[X]$. If we had $g(\alpha) = 0$, by Proposition 30.19, g would be divisible by $(X - \alpha)^{h+1}$, contradicting (1).

Assume (2), that is, $f = (X - \alpha)^h g$ and $g(\alpha) \neq 0$. If f is divisible by $(X - \alpha)^{h+1}$, then we have $f = (X - \alpha)^{h+1} g_1$, for some $g_1 \in A[X]$. Then, we have

$$(X - \alpha)^h g = (X - \alpha)^{h+1} g_1,$$

and thus

$$(X - \alpha)^h (g - (X - \alpha)g_1) = 0,$$

and since the leading coefficient of $(X - \alpha)^h$ is 1 (show this by induction), by Proposition 30.1, $(X - \alpha)^h$ is not a zero divisor, and we get $g - (X - \alpha)g_1 = 0$, i.e., $g = (X - \alpha)g_1$, and so $g(\alpha) = 0$, contrary to the hypothesis.

As a consequence of Proposition 30.20, for every nonnull polynomial $f \in A[X]$ and every $\alpha \in A$, there is a unique integer $h \geq 0$ such that f is divisible by $(X - \alpha)^h$ but not by $(X - \alpha)^{h+1}$. Indeed, since f is divisible by $(X - \alpha)^h$, we have $h \leq \deg(f)$. When h = 0, α is not a root of f, i.e., $f(\alpha) \neq 0$. The interesting case is when α is a root of f.