[CC511] Homework 9 20204817 Federico Berto

November 17, 2020

1 Homework 9 - Federico Berto

```
[2]: # Importing useful libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats
import statsmodels.stats.weightstats as sms
from scipy.stats import t
from scipy.stats import z
from scipy.stats import norm
import math
```

1.1 Exercise 10.1.4

The 95% confidence can be calculated via $z_{0.05}$

1.6448536269514722

The confidence interval is:

$$\left(\frac{35}{44} - \frac{1.645}{44} \times \sqrt{\frac{35 \times (44 - 35)}{44}}, 1\right) = (0.695, 1) \tag{1}$$

1.2 Exercise 10.1.8

We know that $L=2z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},$ therefore:

$$n \ge \frac{4z_{\alpha/2}^2 \hat{p}(1-\hat{p})}{L^2} \tag{2}$$

2.5758293035489004

Given L = 0.04, then we have for $\hat{p} = 0.50$:

$$n \ge \frac{4 \times 2.5758 \times 0.50(1 - 0.50)}{0.04^2} = 1609.9 \tag{3}$$

So, n has to be at least 1610.

If $\hat{p} = 0.40$:

$$n \ge \frac{4 \times 2.5758 \times 0.40(1 - 0.40)}{0.04^2} = 1545.5 \tag{4}$$

In this case, n has to be at least 1546.

1.3 Exercise 10.1.18

- a) The hypoteses are:
- $H_0: p_A \leq 0.05$
- $H_A: p_B > 0.05$

We calculate the statistics for the normal approximation as:

$$z = \frac{x - np_0 - 0.5}{\sqrt{np_0(1 - p_0)}} = \frac{13 - 62 \times 0.05 - 0.5}{\sqrt{62 \times 0.05 \times (1 - 0.05)}} = 5.48$$
 (5)

p-value: 2.1266291838628604e-08

We can conclude that with the p value close to 0, there is sufficient evidence to conclude that the probability of breakdown is above 5%.

b) The 95% confidence can be calculated via $z_{0.05}$

Thus the confidence interval is:

$$\left(\frac{13}{62} - \frac{1.645}{62} \times \sqrt{\frac{13 \times (62 - 13)}{62}}, 1\right) = (0.125, 1)$$
(6)

1.4 Exercise 10.2.2

a) The 95% confidence can be calculated via $z_{0.005}$

2.5758293035489004

The confidence interval can be calculated as such:

$$\hat{p}_a - \hat{p}_b \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_a (1 - \hat{p}_a)}{n} + \frac{\hat{p}_b (1 - \hat{p}_b)}{m}}$$
 (7)

So, the confidence interval is:

$$\frac{4}{50} - \frac{10}{50} \pm 2.576 \times \sqrt{\frac{4 \times (50 - 4)}{50^3} + \frac{10 \times (50 - 10)}{50^3}} = (-0.296, 0.056)$$
 (8)

b) We can use the pooled probability estimate, which is $\hat{p} = \frac{x+y}{n+m} = \frac{4+10}{50+50} = 0.14$

The test statistcs is:

$$z = \frac{\hat{p}_A - \hat{p}_b}{\sqrt{\hat{p}(1-\hat{p})(\frac{1}{n} + \frac{1}{m})}}$$
(9)

Therefore:

$$z = \frac{\frac{4}{50} - \frac{10}{50}}{\sqrt{0.14 \times (1 - 0.14) \times (\frac{1}{50} + \frac{1}{50})}} = -1.729$$
 (10)

[33]: print('p value: ', 2*norm.cdf(-1.729))

p value: 0.08380909507894739

c) The confidence interval becomes:

$$\frac{40}{500} - \frac{100}{500} \pm 2.576 \times \sqrt{\frac{40 \times (500 - 40)}{500^3} + \frac{100 \times (500 - 100)}{500^3}} = (-0.176, 0.064) \tag{11}$$

We can use the pooled probability estimate, which is $\hat{p} = \frac{x+y}{n+m} = \frac{40+100}{500+500} = 0.14$

$$z = \frac{\frac{40}{500} - \frac{100}{500}}{\sqrt{0.14 \times (1 - 0.14) \times (\frac{1}{500} + \frac{1}{500})}} = -5.468$$
 (12)

[35]: print('p value: ', 2*norm.cdf(-5.468))

p value: 4.551418826709858e-08

In this case, the p-value becomes almost zero.

1.5 Exercise 10.2.12

1.6448536269514722

We can construct the uppder confidence bound for $p_A - p_B$, where p_A is the probability of following the link in the original design and p_B is the probability after the modification, as following:

$$\left(-1, \frac{22}{542} - \frac{64}{601} + 1.645 \times \sqrt{\frac{22 \times (542 - 22)}{542^3} + \frac{64 \times (601 - 64)}{601^3}}\right) = (-1, -0.041) \tag{13}$$

- a) The hypoteses are:
- $H_0: p_A \ge p_B$
- $H_A: p_A < p_B$

We can use the pooled probability estimate, which is $\hat{p} = \frac{x+y}{n+m} = \frac{22+64}{542+601} = 0.0752$

The test statistics becomes

$$z = \frac{\frac{22}{542} - \frac{64}{601}}{\sqrt{0.0752 \times (1 - 0.0752) \times (\frac{1}{542} + \frac{1}{601})}} = -4.22 \tag{14}$$

[38]: print('p value: ', norm.cdf(-4.22))

p value: 1.2215115925253025e-05

Being the p-value almost zero, there is sufficient evidence to conclude that the probability of the link being following has increased.

1.6 Exercise 10.3.6

Soft drink type | Formulation

Formulation I 225

Formulation II 223

Formulation III 152

If the formulations are equally likely, then the expected cell frequencies are: $e_i = 600 \times \frac{1}{3} = 200$ We can use the Pearson chi-square statistics to calculate the *p-value*:

$$X^{2} = \sum_{i=1}^{k} \frac{(x_{i} - e_{i})^{2}}{e_{i}}$$
(15)

yielding

$$X^{2} = \frac{225 - 200)^{2}}{200} + \frac{223 - 200)^{2}}{200} + \frac{152 - 200)^{2}}{200} = 17.29$$
 (16)

The p-value is given by $P(\chi_2^2 \ge 17.29)$:

[41]: from scipy.stats import chi2 print('p-value: ', chi2.sf(17.29, 2))

p-value: 0.00017600467513708998

We can state that it is not plausible that the formulations of the soft drinks are equally likely.

1.7 Exercise 10.3.14

We can calculate the probabilities given the Weibull distribution with $\lambda=0.065$ and a=0.45: - $p_1^*=P(X\leq 24)=1-e^{-(\lambda x)^\alpha}=1-e^{-(0.065\times 24)^{0.45}}=0.705$ - $p_2^*=P(X\leq 48)=1-e^{-(\lambda x)^\alpha}=1-e^{-(\lambda x)^\alpha}=1-e^{-(0.065\times 48)^{0.45}}=0.812$ - $p_3^*=P(X\leq 72)=1-e^{-(\lambda x)^\alpha}=1-e^{-(0.065\times 72)^{0.45}}=0.865$

The observed cell frequencies are: 12, 53, 39, 21. Therefore: $-e_1 = np_1^* = 125 \times (0.705) = 88.125$ $-e_2 = np_2^* = 125 \times (0.812 - 0.705) = 13.375 - e_3 = np_3^* = 125 \times (0.865 - 0.812) = 6.625 - e_4 = np_4^* = 125 \times (1 - 0.865) = 16.87$

We use the Pearson X^2 statistics which yield

$$X^{2} = \sum_{i=1}^{k} \frac{(x_{i} - e_{i})^{2}}{e_{i}} \sim 342.4 \tag{17}$$

```
[43]: print('p-value: ', chi2.sf(342.4, 3))
```

p-value: 6.595603058895007e-74

Which is basically 0. Thus, the null hypotesis of the Weibull distribution approximation is clearly rejected.

1.8 Exercise 10.4.2

We do the experiment via the software package:

```
[56]: from scipy.stats import chi2_contingency aptocc = np.array([[48,111,186,142],[71,89,174,181],[63,95,181,190]]) aptocc = pd.DataFrame(data=aptocc, index=['No Fertilizer','Fertilizer I', 'Fertilizer II'], columns=['Dead','Slow_ Growth','Medium Growth','Strong growth']) print("Observed cell frequencies:\n", aptocc)
```

Observed cell frequencies:

```
Dead Slow Growth Medium Growth Strong growth
No Fertilizer
                  48
                              111
                                              186
                                                               142
Fertilizer I
                  71
                               89
                                              174
                                                               181
Fertilizer II
                  63
                               95
                                                               190
                                              181
```

Pearson's Chi-squared test X-squared = 13.6591, p-value = 0.0337, df = 6, Expected cell frequencies:

	Dead	Slow Growth	Medium Growth	Strong growth
No Fertilizer	57.892880	93.837361	172.088178	163.181581
Fertilizer I	61.221424	99.232528	181.982364	172.563684
Fertilizer II	62.885696	101.930111	186.929458	177.254735

There is a suggestion that the growth pattern is different for the different growing conditions, but there is no overwhelming evidence.

1.9 Exercise 10.4.6

For the 2×2 contingency table we obtain:

	<i>c</i> 1	c2	Sum up
r1	x11	x12	x1 = x11 + x12
r2	x21	x22	x2 = x21 + x22
Sum up	x 1 = x11 + x21	x 2 = x12 + x22	n = x1 + x2 = x + 1 + x + 2

$$e_{ij} = \frac{x_{i\cdot} \cdot x_{\cdot j}}{n}$$

So, we have:

$$\frac{(x_{11} - e_{11})^2}{e_{11}} = \frac{(x_{11} - \frac{(x_{11} + x_{12})(x_{11} + x_{21})}{x_{11} + x_{21} + x_{12} + x_{22}})^2}{\frac{x_1 \cdot x_1}{x_{11} + x_{21} + x_{12} + x_{22}}} = \frac{x_2 \cdot x \cdot 2(x_{11} x_{22} - x_{12} x_{21})^2}{n x_2 \cdot x \cdot 2x_1 \cdot x \cdot 1}$$

We also have in a similar way:

$$\frac{(x_{21} - e_{21})^2}{e_{21}} = \frac{x_{1} \cdot x_{2} (x_{11} x_{22} - x_{12} x_{21})^2}{n x_{2} \cdot x_{2} x_{1} \cdot x_{1}}$$

and we can easily obtain the other coefficients in the same way. Finally, we can prove the result by substituting:

$$\chi^{2} = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(x_{ij} - e_{ij})^{2}}{e_{ij}} = \frac{x_{2} \cdot x_{2} (x_{11} x_{22} - x_{12} x_{21})^{2}}{n x_{2} \cdot x_{2} x_{1} \cdot x_{11}} + \frac{x_{2} \cdot x_{1} (x_{11} x_{22} - x_{12} x_{21})^{2}}{n x_{2} \cdot x_{2} x_{1} \cdot x_{11}}$$

$$+ \frac{x_{1} \cdot x_{1} (x_{11} x_{22} - x_{12} x_{21})^{2}}{n x_{2} \cdot x_{2} x_{1} \cdot x_{11}} + \frac{x_{1} \cdot x_{2} (x_{11} x_{22} - x_{12} x_{21})^{2}}{n x_{2} \cdot x_{2} x_{1} \cdot x_{11}}$$

$$= \frac{(x_{11} x_{22} - x_{12} x_{21})^{2}}{n x_{2} \cdot x_{2} x_{1} \cdot x_{11}} (x_{2} \cdot x_{2} + x_{2} \cdot x_{11} + x_{1} \cdot x_{2} + x_{1} \cdot x_{11})$$

$$= \frac{(x_{11} x_{22} - x_{12} x_{21})^{2}}{n x_{2} \cdot x_{2} x_{1} \cdot x_{11}} (x_{2} + x_{11})^{2} = \frac{n(x_{11} x_{22} - x_{12} x_{21})^{2}}{x_{2} \cdot x_{2} x_{1} \cdot x_{11}}$$

1.10 Exercise 10.4.10

We may conduct the experiment via the software package

```
[73]: from scipy.stats import chi2_contingency aptocc = np.array([[31, 17, 9], [36,9,4], [56, 19, 15]]) aptocc = pd.DataFrame(data=aptocc, index=['A', 'B', 'C'], columns=['Minor Cracking', 'Medium cracking', 'Severeu cracking']) print("Observed cell frequencies:\n", aptocc)
```

Observed cell frequencies:

```
Minor Cracking Medium cracking Severe cracking
A 31 17 9
B 36 9 4
C 56 19 15
```

```
Pearson's Chi-squared test
X-squared = 5.0237, p-value = 0.2849, df = 4,
Expected cell frequencies:
    Minor Cracking Medium cracking Severe cracking
        35.770408
                                           8.142857
Α
                         13.086735
В
        30.750000
                         11.250000
                                           7.000000
С
        56.479592
                         20.663265
                                          12.857143
```

Therefore, the null hypotesis of independence is plausible and we have no overwhelming evidence to state the three types of asphalt are different with respect to cracking.