

Two Dimensional Wavelet and its Application

Iman Makaremi

Outline

- Problem Statement
- Fourier Transform
- Short Time Fourier Transform
- One Dimensional Wavelet
- Two Dimensional Wavelet
- Two Dimensional Wavelet in Application
- Conclusion

Problem Statement

- What is wavelet?
- How and where can I use it?

Fourier Transform

- In early 1800 was introduced by Josef Fourier
- It is good for analyzing periodic functions.
- Has a sinusoidal basis.
- Just contains frequency domain information.
- Time domain information are lost.

Short Time Fourier Transform

- In 1964, Gabor introduced windowed Fourier atoms.
- The support area of the basis has reduced using windows.

$$g_{\alpha}(t) = \frac{1}{2\sqrt{\pi\alpha}}e^{-\frac{t^2}{4\alpha}}$$

$$g_{b,\omega}(t) = e^{t\omega t}g_{\alpha}(t-b).$$

How does wavelet work?

- A row of an image [8 4 1 3]
- Representing in the *Haar basis*

Resolution	Average	Detail Coefficients
4	[8 4 1 3]	
2	[6 2]	[2 -1]
1	[4]	[2]

- The wavelet transform is [4 2 2 -1].
- Two Function in wavelet transform,
 - Scaling Function (Average, Lowpass Filter)
 - Wavelet Function (Detail, Highpass Filter)

- Haar Scaling Function
 - V_0 the space of all function $\sum_{k \in \mathbb{Z}} a_k \varphi(x k)$
 - V_j the space of all function $\sum_{k \in \mathbb{Z}} a_k \varphi(2^j x k)$
- Haar Wavelet Function
 - W_0 the space of all function $\sum_{k=2}^{\infty} a_k \psi(x-k)$
 - W_j the space of all function $\sum_{k=2}^{n} a_k \psi(2^j x k)$
- W_j is the orthogonal complement of V_j in V_{j+1} .
- Multiresolution Concept

- Two approaches for dealing with 2D signals.
 - Standard decomposition

- Non-standard decomposition
- Advantages and disadvantages
 - S.D. is simple.
 - N.S.D is more efficient in computation.

- Non-standard Approach
 - Scaling Function

$$\Phi(x,y) = \varphi(x)\varphi(y)$$

Wavelet Functions

$$\Psi_1(x, y) = \varphi(x)\psi(y),$$

$$\Psi_2(x, y) = \psi(x)\varphi(y),$$

$$\Psi_3(x, y) = \psi(x)\psi(y).$$

LL_2	HL_2	Ш	
LH ₂	HH_2	HL₁	
LH₁		HH₁	

Wavelet Functions

Different purposes, different wavelets,

2D Wavelet in Application

- Filtering
- Image Comparison
- Fault Prognosis
- Classification
- Document Analysis
- Hardware Implementation
- Feature Extracting(*)

Feature Extraction

- "Wavelet Segmentation for Fetal Ultrasound Images", 2001
 - Efficient algorithm for segmentation
 - Decomposes the input image into a multiresolution space
 - Feature vector for each pixel in the wavelet domain including
 - Mean
 - Variance
 - Fuzzy C-means Clustering for segmentation
 - Less noisy segmented image

Feature Extraction

- "Efficient Segmentation in MRI Applying Discrete Wavelet Transform", 2005
 - Main goal is a better identification of abrupt changes without increasing the presence of noise.
 - A sliding window scanning the image and calculating the wavelet coefficients
 - Use of ICA to extract *Independent* wavelet descriptors
 - Kohenen's Self Organizing Feature Map as the unsupervised classifier

Feature Extracting

- "Choosing Best Basis in Wavelet Packets for Fingerprint Matching" 2004
 - Wavelet packets: An over-complete version of regular wavelet decomposition
 - The ridge-valley structure of fingerprint
 - Energy in a sub-band reaches a local MAX when the scale of wavelet packet basis best matches the spatial freq. of the ridge-valley struct.
 - Energy of different sub-bands gives information regarding both the edge spatial frequency as well as the ridge orientation.
 - A tree selection algorithm for selecting the best informative branch.

Feature Extracting

- "Advanced System for Automating Eddy-Current Nondestructive Evaluation", 2000
 - Measuring a metal's impedance using c-scanning mode, which gives a matrix format data, like an image.
 - Images divided into sub-images, wavelet decomposition is applied on them.
 - Average, standard deviation of each sub-images as the feature vector.
 - A neural network as a classifier to classify sub-surface flaws.

Conclusion

- About five books and 17 papers
- Most of the papers were published after 2000
- More focus on feature extraction application
- Different methods for feature extraction