Roll No
Printed Pages: 4

10204

MCA/M- 13 COMPUTER SCIENCE (Computer Oriented optimization techniques) Paper- MCA- 204

Time allowed: 3 hours

[Maximum marks: 80

Note: Attempt five questions in all, selecting at least one question from each unit.

Question No. 1 is compulsory.

- 1. (compulsory Question)
 - (a) Define a model.
 - (b) Discuss surplus variable with suitable examples.
 - (c) Define duality and its benefits.
 - (d) Explain all integer programming with suitable examples.
 - (e) Define a balanced assignment problem with suitable examples.
 - (f) Explain busy period and busy cycle.
 - (g) Define PERT and CPM.
 - (h) Explain basic feasible solution.

UNIT-I

- 2. Define U.R. and also discuss its management applications and development in India.
- 3. (a) Discuss the general methods for solving models.
 - (b) State the rule of U.R. in decision making.

UNIT-II

4. Solve the following LPP by using simplen method and also chain its flow chart:

MIN
$$Z = x1 - 3x2 + 2x3$$

Subject to $3x1 - x2 + 3x3 \le 7$
 $-2x1 + 4x2 \le 12$
 $-4x1 + 3x2 + 8x3 \le 10$
And $x1,x2,x3 > 0$.

Define degeneracy and also solar the following LPP by using dual simplex method

MAX
$$Z = -2x1 - x3$$

Subject to
 $x \cdot 1 - x2 - x3 \ge 5$
 $x \cdot 1 - 2x2 + 4x3 \ge 8$
and $x1,x2,x3 \ge 0$.

UNIT-III

6. Discuss the necessities of integer programming and solve the following LPP:

$$MAX \quad Z = x1 + x2$$

Subject to

$$x 1 + x2 \leq 7$$

$$2x1 \le 11$$

 $x 1,x2 \ge 0$ and are integers.

7. (a) Define an unbalanced assignment problem with suitable example.

(b) A car hire company has one car at each of five depots a, b, c, d and e. A customer requires a car in each town, namely A, B, C, D and E. Distance (m/cm) between depots (origin) and town (destination) one given in the following distance matrix:

	a	b	c	d	e
A	160	130	175	190	200
В	135	120	130	160	175
		110	155	170	185
C	140	50	80	80	110
D	50				
E	55	35	70	80	105

How cars should be assigned to customers so as to minimize the distances traveled?

UNIT-IV

- 8. (a) State the characteristics of a queueing system.
 - (b) If for a period of 2 hours in a day (8-10 A. M.) trains arrive at the Y and every 20 minutes but the service time continuous to remain 36 minutes thus calculate for the period.

Or

- (a) The probability that the Y and is empty.
- (b) Average queue lengths. On the assumption that the line capacity of they and is limited to 4 trains only.
- 9. (a) Define slack time and critical activity.
 - (b) A project is represented by the following network shown bel