

RECURSION

Dr. Isaac Griffith

IDAHO STATE UNIVERSITY

Recursion

- · A self referential style of definition useful when it is difficult to directly define objects
- We can use recursion to define
 - Sequences
 - Functions
 - Algorithms
 - Data Structures
- A recursive or inductive definition requires two components
 - Basis Step (or Base Case): which defines an initial element or defines the simplest form of a problem that can be directly solved
 - Recursive Step: provides a rule by which the current element uses a previous one, or a means by which a larger problem is subdivided into the smaller problem
- The functional form of recursion is a form of the Divide and Conquer algorithm design strategy

Outline

The lecture if structured as follows:

- Recursively Defined Functions
- Algorithms
 - Search
 - Sorting
 - String Matching
 - Greedy
- **Data Recursion**

CS 1187

Recursively Defined Functions

- Recursively defined functions are well-defined
 - for every positive integer, the value of the function at this integer is determined in an unambiguous way.
 - Suppose f is defined recursively by:

$$f(0) = 3$$

$$f(n+1) = 2f(n) + 3$$

• Find *f*(1), *f*(2), *f*(3), *f*(4):

$$f(1) = 2f(0) + 3 = 2 \cdot 3 + 3 = 9$$

 $f(2) = 2f(1) + 3 = 2 \cdot 9 + 3 = 21$
 $f(3) = 2f(2) + 3 = 2 \cdot 21 + 3 = 45$

$$f(4) = 2f(3) + 3 = 2 \cdot 45 + 3 = 93$$

• Give a recursive definition of:

$$\sum_{k=0}^{n} a_{k}$$

Basis Case: $\sum_{k=0}^{0} a_k = a_0$

Recursive Case:
$$\sum_{k=0}^{n+1} a_k = \left(\sum_{k=0}^{n+1} a_k\right) + a_{n+1}$$

Factorial

- We can define the function n! as: $n! = 1 \times 2 \times ... \times n$
- However, this is far too imprecise for implementation
- We can define *n*! recursively

Basis Step: 0! = 1

•

Recursive Step: $(n+1)! = (n+1) \times n!$

Haskell Implementation:

factorial :: Int -> Int
factorial 0 = 1

factorial (n +)

factorial (n + 1) = (n + 1) * factorial n

Recursion Over Lists

- Recursion over lists
 - Base Case: [], the empty list
 - Recursive Case: the non-empty list i.e., (x:xs)
 - General Form:

```
f :: [a] -> type of result
f [] = result of empty list
f (x:xs) = result defined using (f xs) and x
```

• Example: length

```
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs
```

```
length [1,2,3]
= 1 + length [2,3]
= 1 + (1 + length [3])
= 1 + (1 + (1 + length []))
= 1 + (1 + (1 + 0))
= 3
```

 It is better to think of recursion as a systematic calculation using a high-level equational view rather than via a low-level machine view

Recursion Over Lists

Idaho State Computer Science

• Another Simple Example: sum

```
sum :: Num a => [a] -> a
sum [] = 0
sum (x:xs) = x + sum xs
sum [1,2,3]
 = 1 + sum [2.3]
 = 1 + (2 + sum [3])
 = 1 + (2 + (3 + sum []))
 = 1 + (2 + (3 + 0))
 = 6
```

• Returning a List: (++)

```
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)
```

```
[1,2,3] ++ [9,8,7,6]

= 1 : ([2,3] ++ [9,8,7,6])

= 1 : (2 : ([3] ++ [9,8,7,6]))

= 1 : (2 : (3 : ([] ++ [9,8,7,6])))

= 1 : (2 : (3 : [9,8,7,6]))

= 1 : (2 : [3,9,8,7,6])

= 1 : [2,3,9,8,7,6]

= [1,2,3,9,8,7,6]
```

Recursion Over Lists

Recursing over 2 lists: zip

Recursing a list of lists: concat

Higher-Order Recursive Functions

- · Each of the prior recursive functions are quite similar
- It would be elegant if we had a function which express this general computational pattern
- Such a general function would need to be provided both
 - the functions inputs
 - the computation (a function) to perform
- Such functions are called higher order functions or a combinator
- We have several choices of combinators
 - \bullet $\,$ map takes a function and applies it to all items in a list \Rightarrow List
 - $\bullet \;\; \mathtt{zipWith} \, \text{-} \, \mathtt{takes} \, \mathtt{a} \, \mathtt{function} \, \mathtt{and} \, \mathtt{applies} \, \mathtt{it} \, \mathtt{to} \, \mathtt{all} \, \mathtt{items} \, \mathtt{in} \, \mathtt{two} \, \mathtt{lists} \Rightarrow \mathtt{List}$
 - foldr and foldl takes a function, aggregation variable, and applies to the function to combine the list values into the var ⇒ singleton variable

Algorithms

- There are many general classes of problems that arise in Discrete Mathematics and Computing
- The key to solving such problems is to
 - 1. Construct a model that translates the problem into a mathematical context
 - 2. Define a method that will solve the general problem using the model
- The second step is the purview of algorithm design
- Algorithm: a finite sequence of precise instructions for performing a computation or for solving a problem
 - Typically expressed in English or Pseudocode
- Pseudocode: an intermediate step between an English language description of an algorithm and an implementation of the algorithm in a programming language

Pseudocode Example

• Finding the maximum element in a finite sequence

```
procedure MAX(A)

max := A_1

for i := 2 to n do

if max < A_i then max := A_i

return max
```

 To gain insight into how an algorithm works it is useful to construct a trace that shows the steps for a given specific input.

Algorithm Properties

- Algorithms generally share several properties:
 - Input: An algorithm has input values from a specified set
 - · Output: From each set of input values an algorithm produces output values from a specific set.
 - The *output* values are the solution to the problem
 - Definiteness: The steps of an algorithm must be defined precisely
 - Correctness: An algorithm should produce the correct output values for each set of input values
 - Finiteness: An algorithm should produce the desired output after a finite (but perhaps large) number of steps for any input in the set
 - Effectiveness: It must be possible to perform each step of an algorithm exactly and in a finite amount of time
 - Generality: The procedure should be applicable for all problems of the desired form, not just for a particular set of
 input values.

CS 1187

Search Algorithms

- Search Problem Definition: Locate an element x in a list of distinct elements, a_1, a_2, \ldots, a_n , or determine that it is not in the list
- The solution to this problem is the location of the term int he list that equals *x* and 0 if *x* is not in the list.
- This is one of the most commonly occurring problems in computer science, and occurs in many different contexts

Linear Search

• Linear Search (sequential search): searches an ordered list (a_1, a_2, \ldots, a_n) for some value x, starting at a_1 and ending at a_n terminating when either the value if found (i.e., $x = a_i$) or the end of the list is reached.

Iterative Linear Search Alg:

```
procedure LINEARSEARCH(A, x)
i := 1
while i \le n and x \ne A_i do
i := i + 1
if i \le n then location := i
else location := 0
return location
```


Linear Search

Recursive Linear Search Alg:

- A → array/list to search
- $i \rightarrow$ current index
- $i \rightarrow \text{size of list}$
- $x \rightarrow \text{value to find}$

```
procedure LINSEARCH(A, i, j, x)
   if A_i = x then
       return i
   else if i = i then
       return 0
   else
       return LINSEARCH(A, i + 1, j, x)
```

• Requires: *O*(*n*) comparisons

Haskell Implementation:

```
linSearch :: Eq a => [a] -> Int -> a -> Int
linSearch [] = 0
linSearch (v:vs) i x =
   if x == v then i
   else linSearch ys (i + 1) x
```


Binary Search

- Can be used when the list is ordered in either ascending or descending order
- · Successively searches smaller and smaller sections, until either the item is found or not
- Requires $O(\log n)$ comparisons

```
procedure BINSEARCH(A, x)

i := 1
j := n

while i < j do

m := \lfloor (i+j)/2 \rfloor

if x > A_m then i := m+1

else j := m

if x = A_j then location := i

else location := 0

return location
```


Binary Search

Recursive Binary Search Alg:

- A → arrav/list to search
- $i \rightarrow \text{current index}$
- $j \rightarrow \text{size of list}$
- $x \rightarrow \text{value to find}$

```
procedure BINSEARCH(A,i,j,x)
m:=\lfloor (i+j)/2 \rfloor
if x=A_m then return m
else if x < A_m and i < m then
return BINSEARCH(A,i,m-1,x)
else if x > A_m and j > m then
return BINSEARCH(A,m+1,j,x)
elsereturn 0
```

• Requires $O(\log n)$ comparisons

Haskell Implementation

```
binSearch :: (Ord a) => [a] -> a -> Int -> In
binSearch arr x lo hi
   | hi < lo = -1
   | pivot > x = binSearch arr x lo (mid - 1)
   | pivot < x = binSearch arr x (mid + 1) hi
   | otherwise = mid
   where
   mid = lo + (hi - lo) `div` 2
   pivot = arr!!mid</pre>
```


CS 1187

Sorting

- Sorting: the problem of ordering a collection of element (i.e., a list or set)
 - This problem occurs in many contexts, including:
 - Telephone directory
 - Addresses in mailing lists
 - Directory of songs for download
 - Dictionaries
- A significant amount of computing resources is devoted to sorting ⇒ a large amount of effort has gone into developing efficient sorting algs
 - 100+ existing sorting algorithms
 - Recently Timsort and Library Sort were developed

Insertion Sort

```
procedure SORT(A)
for j \coloneqq 2 to n do
i \coloneqq 1
while A_j > A_i do
i \coloneqq i+1
m \coloneqq A_j
for k \coloneqq 0 to j-i-1 do
A_{j-k} \coloneqq A_{j-k-1}
A_i \coloneqq m
```

Haskell Implementation:

Merge Sort

- Idea is to recursively split the list in half until each piece is size 1 or less
- Each sublist is then merged to form a sorted combined list
- Lemma: Two sorted lists with m and n elements can be merged into a sorted list in no more than m + n 1 comparisons.
- Theorem: The number of comparisons needed to merge sort a list with n elements is O(n log n)

Merge Sort

The Algorithm

```
procedure MSORT(L)
   if n > 1 then
       m := |n/2|
       L1 \leftarrow L_1, L_2, \ldots, L_m
       L2 := L_{m+1}, L_{m+2}, \dots, L_n
       L := MERGE(MSORT(L1), MSORT(L2))
procedure MERGE(L1, L2)
   L := []
   while L1 and L2 are both nonempty do
       remove smaller of L1_1 and L2_1, add to L
   if one list is empty then
       remove all elements of the other list and
append to L
   return L
```

Haskell Implementation

```
merge :: (Ord a) => [a] -> [a] -> [a]
merge [] [] = []
merge [] vs = vs
merge xs [] = xs
merge allX@(x:xs) allY@(y:ys)
 | x > y = y : merge allX ys
  | otherwise = x : merge xs allY
sort :: (Ord a) => [a] -> [a]
sort [] = []
sort [a] = [a]
sort [a,b]
 |a>b=[b,a]
  | otherwise = [a, b]
sort list =
 let split = splitAt(length list `div` 2) list
     firstHalf = sort (fst split)
      secondHalf = sort (snd split)
 in merge firstHalf secondHalf
```

QuickSort

- A sorting approach based on the idea of divide and conquer where we take a list and we attempt
 to successively cut it in half to make the problem size smaller
- The goal is to gain more than by reducing by one while also ensuring the recursion will complete
- The algorithm in a nutshell works as follows:
 - Base Case: empty list o empty list
 - Recursive Case: non-empty list
 - Select a *pivot* (typically the first or last item in the list)
 - We then select all items from the list < pivot and quick sort those and add them before the pivot
 - ullet We select all items from the list \geq pivot and quick sort them and place them after the pivot

QuickSort

The Algorithm:

```
 \begin{aligned} & \textbf{procedure} \ \text{SORT}(L, lo, hi) \\ & \text{if } lo \geq hi \ \text{or} \ lo < 0 \ \text{then} \\ & \textbf{return} \\ & p \coloneqq \text{PARTITION}(L, lo, hi) \\ & \text{SORT}(L, lo, p - 1) \\ & \text{SORT}(L, p + 1, hi) \end{aligned}
```

```
\begin{array}{l} \textbf{procedure} \ \mathsf{PARTITION}(L, lo, hi) \\ pivot := L_{lo} \\ i := lo \\ \textbf{for } j := lo \ \textbf{to} \ hi - 1 \ \textbf{do} \\ \textbf{if } L_i \leq pivot \ \textbf{then} \\ i := i + 1 \\ \textbf{swap } L_i \ \textbf{with } L_j \\ \textbf{swap } L_i \ \textbf{with } L_{lo} \\ \textbf{return } i \end{array}
```

Haskell Implementation:

```
quickSort :: Ord a => [a] -> [a]
quickSort [] = []
quickSort (pivot:xs) =
  quickSort [y | y <- xs, y < pivot]
++ [pivot]
++ quicksort [y | y <- xs, y >= pivot]
```

```
Idaho State
University
8 2 4 6 9
                 5
      4
1
          6
                 5 | 3
             5 6 7
```

Recursion | Dr. Isaac Griffith,

Page 26/56

String Matching

String Matching: finding where a particular string of characters *P*, called a *pattern*, occurs, if it does, within another string *T*, called the *text*

- this is another commonly occurring problem with a wide array of applications, including:
 - Text editing
 - Spam filters
 - Detecting network attacks
 - Search engines
 - Plagiarism detection
 - Bioinformatics
 - and many others

String Matching

Naive String Matcher

```
procedure MATCH(n, m, T, P)

for s := 0 to n - m do

j := 1

while j \le m and T_{s+j} = P_j do

j := j + 1

if j > m then print "s is a valid shift"
```

Haskell Implementation

s = 4

CS 1187

Greedy Algorithms

- Optimization Problems: Problems where the goal is to find a solution to the given problem that either minimizes or maximizes the value of some parameter. Examples include:
 - Finding a route between two cities with the least total mileage
 - Encoding a message using the fewest bits possible
- Greedy Algorithms: Algorithm design strategy, wherein we select the "best" choice at each step
 rather than attempt to consider all sequences of steps that may lead to the optimal solution
 - Once we know a greed alg finds a feasible solution, then we must prove it is an optimal one
- Greedy algs are often the approach used to solve optimization problems

Greedy Algorithms

 Make n cents change with Quarters, dimes, nickels, and pennies using the least total number of coins.

```
\begin{array}{l} \textbf{procedure} \; \texttt{CHANGE}(\textit{Coins}, \textit{n}) \\ \textbf{for} \; \textit{i} \coloneqq 1 \; \textbf{to} \; \textit{r} \; \textbf{do} \\ D_{\textit{i}} \coloneqq 0 \\ \textbf{while} \; \textit{n} \leq \textit{Coins}_{\textit{i}} \; \textbf{do} \\ D_{\textit{i}} \coloneqq \textit{D}_{\textit{i}} + 1 \\ \textit{n} \coloneqq \textit{n} - \textit{Coins}_{\textit{i}} \\ \textbf{return} \; \textit{D} \end{array}
```

 The proof of optimality can be found in DMA on page 211

Recursion | Dr. Isaac Griffith, Page 32/56

Peano Arithmetic

• This date structure serves as an example of a recursive ADT

```
data Peano = Zero | Succ Peano deriving Show
```

• Example:

```
1 = Succ Zero
2 = Succ (Succ (Succ Zero))
```

• Some operations:

```
decrement :: Peano -> Peano
decrement zero = Zero
decrement (Succ a) = a

add :: Peano -> Peano -> Peano
add Zero b = b
add (Succ a) b = Succ (add a b)
```

Data Recursion

- Recursive functions are useful in nearly all programming languages
 - They are especially important for data structures such as Trees and Graphs.
- Data Recursion: An important technique that uses recursion to define data structures
 - The idea is to define *circular* data structures
 - **Example**: An infinite list of 1's

Rather than a function, we could simply use a circular list

```
twos = 2 : twos
```


Data Recursion

- Data recursion is possible in languages like Haskell due to the use of lazy evaluation
- Lazy Evaluation: is a technique where expressions are not evaluated until their value is actually needed
- However, most imperative languages (such as C or Java) do not support this and thus we cannot construct infinite data structures in this manner
 - Rather, they would cause an infinite loop
- Yet, we can create circular data structures in other ways

Recursively Defined Strings

- · Recursion can play a role when working with strings
- We can define a string over an alphabet \sum as a finite sequence of symbols from \sum
 - We can then define \sum^* as the set of strings over \sum
 - The recursive definition is:

```
Basis Step: \lambda \in \sum^* (where \lambda is the empty string)

Recursive Step: if w \in \sum^* and x \in \sum^*, then wx \in \sum^*
```

- Example: $\Sigma = \{0, 1\}, \Sigma^* = \{\lambda, 0, 1, 00, 01, 10, 11, \ldots\}$
- Basic string operations can also be defined recursively, for example
 - Concatenation
 - Length

Recursively Defined Trees

Idaho State University Computer Science

- Graph: A data structure composed of vertices and edges connecting pairs of vertices
 - Graphs can be constructed by defining each node with an equation in a let expression
 - Thus, each node can be referred to by any other node (including itself)

```
object = let a = 1 : b
b = 2 : c
c = [3] ++ a
in a
```


• Tree: A special type of graph

Rooted Trees

- Rooted Tree: a tree consisting of vertices containing a distinguished vertex called the root and edges connecting these vertices.
 - We can define such a structure recursively

Basis Step: A single vertex r is a rooted tree

Recursive Step: Suppose that T_1, T_2, \ldots, T_n are disjoint rooted trees with roots r_1, r_2, \ldots, r_n . Then the graph formed by starting with a root r not in any T_i and adding an edge from r to each of the vertices r_1, \ldots, r_n , is also a rooted tree.

Step 1

Step 2

Step 3

Binary Trees

- Binary Tree: A rooted tree in which a vertex may have only two children, each of which is a subtree
 - Full Binary Tree: if a vertex has children, it must have both a left and right child
 - Extended Binary Tree: either the left or right subtree may be empty

Extended Binary Trees

The set of extended binary trees is defined as:

Basis Step: the empty set is an extended binary tree

Recursive Step: If T_1 and T_2 are disjoint extended binary trees, there is an extended binary tree denoted $T_1 \cdot T_2$, consisting of a root r together with edges connecting r to the roots of T_1 (left) and T_2 (right) when T_1 and T_2 are nonempty.

Full Binary Trees

Recursively defined as:

Basis Step: There is a full binary tree consisting of only a single vertex r

Recursive Step: If T_1 and T_2 are disjoint fully binary trees, there is a full binary tree denoted $T_1 \cdot T_2$, consisting of a root r together with edges connecting r to the roots of T_1 and T_2

Basis Step

Step 2

Step 1

Inductively Defined Sets

- One approach for defining sets is to simply enumerate all of its elements.
 - Unfortunately, this is impractical for all but the smallest sets
 - For larger sets, we could simply use an ellipsis "..." to indicate the definition continues.
 - However, this is an informal approach which is both imprecise and ambiguous

 What we need is an approach that can define these types of sets which is concise, precise, and unambiguous

The Idea Behind Induction

- Induction is sort of a form of mathematical programming which produces a proof when needed
 - i.e., we can assert that something is a member of a set defined by induction

• Example:

$$0 \in S$$

 $n \in S \rightarrow n+1 \in S$

- By $modus\ ponens$ and the first assertion we can deduce $1 \in S$, by similar reasoning we can also deduce $2 \in S$
- Furthermore, we can continually build up this chain for any natural number

The Idea Behind Induction

- Such inductive definitions can show that a set contains a value v, but requires us to enumerate the values prior to v
- · Sequence: a set with an ordering
 - The inductively enumerated values form a sequence
- · Computationally we can use this idea to generate sets

```
imp1 :: Integer -> Integer
imp1 1 = 2
imp1 x = error "premise does not match"

imp2 :: integer -> Integer
imp2 2 = 3
imp x = error "premise does not match"

s :: [Integer]
s = [1, imp1 (s!!0), imp2 (s!!1)]
```

The Induction Rule

Recall,

$$0 \in S$$
 {base case}
 $n \in S \rightarrow \{\text{induction case}\}$

- The induction case generate the links of the chain which define the set, starting from the base case
 - By simply modifying our induction rule, we can create completely different sets

$$n \in S \rightarrow n + 2 \in S$$

This rule generates the set of even natural number, however if we change the base case to be $1 \in S$, this same induction case then generates the set of odd natural numbers.

The Induction Rule

- Our prior implementation was fairly restricted
- If we want to implement the following set:

```
0 \in S
\mathbf{x} \in S \rightarrow \mathbf{x} + 1 \in S
```

• We can do the following

```
increment :: Integer -> Integer
increment x = x + 1

s :: [Integer]
s = 0 : map increment s
```

- This style of programming is called data recursion
- map will proceed down s, creating each value it needs, then using it.

CS 1187

Defining Sets Using Induction

- Beyond the base and inductive cases, inductive set definition needs one more component: the extremal clause
- Extremal Clause: A statement which excludes anything from the set that are not introduced by
 the base case, or are instantiations of the induction case, it reads something like the following:
 "Nothing is an element of the set unless it can be constructed by a finite number of uses of the
 first two clauses"
- Thus all inductive set definitions include 3 parts:
 - Base Case: a simple statement of some mathematical fact: i.e., $1 \in S$
 - Induction Case: an implication in a general form: $\forall x \in U, x \in S \rightarrow x + 1 \in S$
 - Extremal Clause: Nothing is in the set being defined unless it got there by a finite number of uses of the first two
 cases

The Natural Numbers

- The set of natural numbers. N. is defined as follows
 - Base Case: $0 \in \mathbb{N}$
 - Induction case: $x \in \mathbb{N} \to x + 1 \in \mathbb{N}$
 - Extremal clause: nothing is an element of the set $\mathbb N$ unless it can be constructed with a finite number of uses of the base and induction cases.
- ullet We can show that an arbitrary number above and including 0 are in ${\mathbb N}$
 - 1. $0 \in \mathbb{N}$ Base Case
 - 2. $0 \in \mathbb{N} \to 1 \in \mathbb{N}$ instantiationrule, inductioncase
 - 3. $1 \in \mathbb{N}$ 1, 2, Modus Ponens
 - 4. $1 \in \mathbb{N} \to 2 \in \mathbb{N}$ instantiation rule, induction case
 - 5. $2 \in \mathbb{N}$ 3, 4, Modus Ponens

Binary Machine Words

- Let BinDigit be the set {0,1}. The set BinWords of machine words in binary is defined as follows:
 - Base Case: $X \in BinDigit \rightarrow X \in BinWords$
 - Induction Case: if x is a binary digit and y is a binary word, then their concatenation xy is also a binary word

$$(x \in \mathtt{BinDigit} \land y \in \mathtt{BinWords}) \rightarrow xy \in \mathtt{BinWords}$$

- Extremal Clause: Nothing is an element of BinWords unless it can be constructed with a finite number of uses of the base and induction cases
- A set based on another set S in this way is given the name S⁺
 - it is the set of all possible non-empty strings over S
 - S^* is similar to S^+ except S^* includes the empty string
 - BinWords could have also been written as BinDigit+

Haskell Implementation

- We can define a function to create two new BinWords based on one that has been provided
 - i.e., given [1, 0] it will return [0, 1, 0] and [1, 1, 0]

```
newBinaryWords :: [Integer] -> [[Integer]]
newBinaryWords ys = [0:ys, 1:ys]
```

• We then define the set of BinWords as:

```
mappend :: (a -> [b]) -> [a] -> [b]
mappend f [] = []
mappend f (x:xs) = f x ++ mappend f xs

binWords = [0] : [1] : (mappend newBinaryWords binWords)
```

The Set of Integers

- Both of the prior sets are well-founded, meaning they are infinite in only one direction, and they
 have a least element
- Countable Set: a set which can be counted using the natural numbers
 - Are the integers countable?
 - Doesn't have a least element
 - · Infinite in two directions
 - However we can count hem using natural numbers as follows:
 - Start at 0
 - For every number $n \in \mathbb{N}$, we count both n and -n in \mathbb{Z}
 - That is, we can consider the set of integers as an infinitely long tape folded in half at 0, and then count the
 overlapping numbers (i, −i) for each i ∈ N
- \bullet Yet, this does not specify $\mathbb Z$

The Set of Integers

Idaho State Computer Science

- The set \mathbb{Z} of integer is defined as follows:
 - Base Case: $0 \in \mathbb{Z}$
 - Induction Case:

$$(\mathbf{x} \in \mathbb{Z} \land \mathbf{x} \ge 0) \to \mathbf{x} + 1 \in \mathbb{Z} \land -(\mathbf{x} + 1) \in \mathbb{Z}$$

Extremal Clause: nothing is in

unless its
presence is justified by a finite number of uses
of the base and induction cases

Thus, we can define integers using Haskell, as follows

```
build:: a -> (a -> a) -> Set a
build a f = set
   where set = a : map f set
builds :: a -> (a -> [a]) -> Set a
builds a f = set
   where set = a : mappend f set
nextInteger :: Integer -> [Integer]
nextInteger x
  = if x > 0 / x == 0
      then [x + 1, -(x + 1)]
      else []
integer :: [Integer]
integers = builds 0 next Integers
```

For Next Time

Idaho State University Computer Science

- Review DMUC Chapter 3 and 9
- Review DMA Chapters 3.1 and 5.3 5.5
- Review this Lecture
- Read DMUC Chapter 4
- Read DMA Chapters 5.1 5.2

Are there any questions?