University of Toronto

Faculty of Applied Science and Engineering

Final Examination, 6:30 pm 10 December 2018

First Year, Program 5

MAT194F Calculus I

Exam Type A

No aids of any kind are permitted. No calculators of any kind are permitted.

Time allowed: 2 ½ hours. There are 10 questions.

You can write on both sides of each page. There are also 2 extra pages at the end that you can use.

Examiners: P.C. Stangeby and F. Al-Faisal

Family Name:	
Given Name:	3
Student #:	

FOR MARKER USE ONLY		
Question	Marks	Earned
1	10	
2	10	
3	10	e .
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
TOTAL	100	/100

- 1. (a) [5 marks] Find the derivative of: $3x^4$, $\cos(\sqrt{x})$, $\ln(x^2)$, e^{-3x} , $7^{\sqrt{x}}$.
 - (b) [5 marks] Find the anti-derivative of: $2x^5$, $\cos(3x)$, $5x^3e^{x^4}$, $(9+x^2)^{-1}$, 7^x .

- (a) [7 marks] Provide a δ − ε style of proof that lim x² = ∞.
 (b) [3 marks] Prove that lim x² ≠ 10¹⁰ using a proof by contradiction: assume that lim x² = 10¹⁰ and use a δ − ε style of proof to show that this results in a contradiction.

3. [10 marks] Sketch the curve $y = \frac{1}{x} + \ln x$, x > 0. Indicate on the sketch: intercepts with the 2 axes, if they exist; the regions where y is increasing, decreasing, concave up, concave down; local and absolute maxima and minima, if they exist; points of inflexion if they exist; vertical asymptotes, horizontal asymptotes and vertical tangents if they exist; symmetry or periodicity if they exist.

- 4. Let \mathcal{R} be the region in the first quadrant bounded by the curves $y = x^2$ and $y = 2x x^2$. Calculate the following quantities:
 - (a) [4 marks] The area of \mathcal{R} .
 - (b) [3 marks] The volume obtained by rotating \mathcal{R} about the x-axis.
 - (c) [3 marks] The volume obtained by rotating \mathcal{R} about the y-axis.

- 5. (a) [4 marks] Find two positive numbers whose product is 400 and whose sum is a minimum.
 - (b) [3 marks] Find two positive numbers whose product is 400 and whose difference is a minimum.
 - (c) [3 marks] Find the point on the parabola $y = 1 x^2$ at which the tangent line intercepts the positive x-axis and positive y-axis to make the triangle of smallest area.

6. [10 marks] A curve has the property that the normal line through any point (x_0, y_0) on the curve passes through (2, 0). If the curve contains the point (2, 3), find its equation and sketch its graph. [Note: there are no marks for guessing the answer; you must prove your answer is correct.]

- 7. (a) [4 marks] Show that $\int \sqrt{a^2 x^2} dx = \frac{1}{2} x \sqrt{a^2 x^2} + \frac{1}{2} a^2 sin^{-1} \left(\frac{x}{a}\right) + C$ (a > 0). [Hint: do not integrate.]
 - (b) [2 marks] Hence find $\int \sqrt{1 (x 1)^2} dx$.
 - (c) [4 marks] Find the area of the region enclosed by the circles $x^2 + y^2 = 1$ and $(x-1)^2 + y^2 = 1$.

- 8. (a) [5 marks] Solve the differential equation y'' 6y' + 10y = 0, y(0) = 2, y'(0) = 3.
 - (b) [3 marks] Consider the differential equation $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2y^2}$. Let $z = y^3$. Express $\frac{dz}{dx}$ in terms of y and $\frac{dy}{dx}$, and hence re-write the D.E. in terms of z and x.
 - (c) [2 marks] Solve the D.E. you found in (b) for z . Hence solve the original D.E.

(a)
$$\int e^x \sqrt{e^x + 3} dx$$

9. [10 marks] Compute: (a)
$$\int e^x \sqrt{e^x + 3} dx$$
 (b) $\int \frac{dx}{x(1+\ln x)^2}$

(c)
$$\int \frac{dx}{\sin 3x \cos 3x}$$
 (d)
$$\int \frac{xdx}{x^2 + 4x + 6}$$

$$(d) \int \frac{xdx}{x^2 + 4x + 6}$$

10. Let
$$f(x) = \int_0^{x^2} e^{t^3} dt$$
, $x \in (0, \infty)$.

- (a) [6 marks] Prove that $\frac{df}{dx}$ is increasing on $(0, \infty)$.
- (b) [4 marks] Prove that every tangent line to y = f(x) intersects it only once.

Extra page

Extra page