

Lecture 4.2a Variance-based sensitivity analysis for models with independent inputs

Gürkan Sin, Associate Professor PROSYS- DTU Chemical Engineering

DTU Kemiteknik
Institut for Kemiteknik

Objective of this lecture

- At the end of the lecture, you should be able to:
 - Perform sensitivity analysis using Variance-based sensitivity method
 - Understand and use analytical, approximate and monte-carlo based solution methods to calculate variance based sensitivity indices

Outline

- Variance-based sensitivity measure
 - Sobol's HDMR
 - Law of total variance
- Computing sensitivity indices
- Analytical example: a simple linear model
- Exercise: a nonlinear model

Variance based-sensitivity measure: Sobol's method

For simplicity, let us take a model of the form:

$$y = f(\mathbf{\theta})$$
 where $\mathbf{\theta} = (\theta_1, ..., \theta_k)$

Sobol's method considers a higher dimensional model representation (HDMR) (note: this is not series expansion as it has finite terms.)

$$f = f_0 + \sum_{i=1}^k f_i(\theta_i) + \sum_{i=1}^k \sum_{j>i} f_{ij}(\theta_i, \theta_j) + \dots + f_{1,2,\dots,k}(\theta_i, \theta_j, \dots, \theta_k)$$

Where each term is chosen with zero mean:

$$\int_{0}^{1} f(\theta_i) d\theta_i = 0 \quad \forall \theta_i \ i = 1, 2 \dots k$$

$$\int_{0}^{1} \int_{0}^{1} f(\theta_i) f(\theta_j) d\theta_i d\theta_j = 0 \quad \forall \theta_i, \theta_j \ i < j$$

Variance based-sensitivity measure: Sobol's method

$$f = f_0 + \sum_{i=1}^k f_i(\theta_i) + \sum_{i=1}^k \sum_{j>i} f_{ij}(\theta_i, \theta_j) + \dots + f_{1,2,\dots k}(\theta_i, \theta_j, \dots, \theta_k)$$

Then the HDMR decomposition is unique and has the following properties:

$$\int_{\Omega} f(\theta) = f_0$$

Mean/expected value of $f(\theta)$

$$f_i = E(y|\theta_i) - f_0$$

Contribution of θ i

$$f_{ij} = E(y|\theta_i, \theta_j) - f_i - f_j - f_0$$

Joint of effects of θ i & θ j

Decomposition of variance

For independent inputs, the variance of y can be partitioned as follows:

$$var(y) = \sum_{i}^{k} V_{i} + \sum_{i} \sum_{j} V_{ij} + \sum_{i} \sum_{j} \sum_{l} V_{ijl} + \cdots V_{123..k}$$

Where
$$V_i = \int f(\theta_i)^2 d\theta_i$$
 $f(\theta_i) = E(y|\theta_i) - f_0$

Defining a sensitivity measure: Sobol's method

The variances of the terms in the HDMR decomposition are proposed as measures of sensitivity:

$$V(f_i(\theta_i)) = V(E(y|\theta_i))$$

Hence the variance decomposition of sobol's HDMR model:

$$V = \sum_{i=1}^{k} V_i + \sum_{i=1}^{k} \sum_{j>i} V_{ij} \left(\theta_i, \theta_j\right) + \ldots + V_{i,j,\ldots,k} \left(\theta_i, \theta_j, \ldots, \theta_k\right)$$

Dividing by V one obtains (first order) sensitivity indices (also known as Sobol index):

$$1 = \sum_{i=1}^{k} S_i + \sum_{i=1}^{k} \sum_{j>i} S_{ij} + \ldots + S_{i,j,\ldots k}$$

Properties of sensitivity index, Si

First-order sensitivity index has the following properties:

$$1 = \sum_{i=1}^{k} S_i + \sum_{i=1}^{k} \sum_{j>i} S_{ij} + \ldots + S_{12,\ldots k}$$

Hence, the following interpretation holds:

$$\sum_{i=1}^{n} S_i \le 1 \qquad \text{always}$$

$$\sum_{i=1}^{n} S_i = 1 \quad \text{model is additive}$$

$$1 - \sum_{i=1}^{n} S_i$$
 indicates presence of interactions

Properties of sensitivity measure: Total effects, S_{Ti}

Total effects index, S_{Ti} , is total contribution to the output variance, var(y), due to parameter, θ_i :

$$1 = \sum_{i=1}^{k} S_i + \sum_{i=1}^{k} \sum_{j>i} S_{ij} + \ldots + S_{12,\ldots,k}$$

Example: for a three-parameter model, total effects would be the sum of all the terms in S_i eqn (above):

$$\begin{split} S_{T1} &= S_1 + S_{12} + S_{13} + S_{123} \\ S_{T2} &= S_2 + S_{12} + S_{23} + S_{123} \\ S_{T3} &= S_3 + S_{13} + S_{23} + S_{123} \end{split}$$

Provides answer to :"Which parameter can be fixed arbitrarily in its range without affecting output variance, var(y)?" $S_{Ti} = 0$ is sufficient condition for this answer.

Hence, S_{Ti} useful information for factor fixing.

Law of total variance: a different look at the sensitivity measures

Law of total variance

$$V(y) = V(E(y|\mathbf{\theta}_i)) + E(V(y|\mathbf{\theta}_i))$$

Explained variance (due to variation in θ i)

Residual variance (any variance due to sources other than θ i)

law of total variance concept: revisiting S_i and S_{Ti} measures

Both S_i and S_{Ti} measure can be calculated from variance decomposition (law of variance) in fact.

$$V(y) = V_{\theta_{i}}\left(E_{\theta_{\sim i}}\left(y\middle|\theta_{i}\right)\right) + E_{\theta_{i}}\left(V_{\theta_{\sim i}}\left(y\middle|\theta_{i}\right)\right)$$
Main effect of θ i

$$V\left(\left.y\right) = V_{\boldsymbol{\theta}_{\sim i}}\left(\left.E_{\boldsymbol{\theta}_{i}}\left(\left.y\right|\boldsymbol{\theta}_{\sim i}\right)\right) + E_{\boldsymbol{\theta}_{\sim i}}\left(V_{\boldsymbol{\theta}_{i}}\left(\left.y\right|\boldsymbol{\theta}_{\sim i}\right)\right)$$
 Total effect of $\boldsymbol{\theta}$ i

$$S_{i} = \frac{V_{\theta_{i}}\left(E_{\theta_{\sim i}}\left(y\middle|\boldsymbol{\theta}_{i}\right)\right)}{V\left(y\right)} \qquad S_{Ti} = \frac{E_{\theta_{\sim i}}\left(V_{\theta_{i}}\left(y\middle|\boldsymbol{\theta}_{\sim i}\right)\right)}{V\left(y\right)}$$

Main (First Order), Si vs Total effect indices, S_{Ti}

Each measure has a different meaning obviously

$$S_{i} = \frac{V_{\boldsymbol{\theta}_{i}}\left(E_{\boldsymbol{\theta}_{\sim i}}\left(y\middle|\boldsymbol{\theta}_{i}\right)\right)}{V\left(y\right)}$$

First order effect=

 $S_i = \frac{V_{\theta_i} \left(E_{\theta_{\sim i}} \left(y \middle| \theta_i \right) \right)}{V(y)}$ = the expected reduction in variance which would be achieved if factor θ i could be fixed.

Si used for Factors prioritisation

$$S_{Ti} = \frac{E_{\theta_{\sim i}} \left(V_{\theta_i} \left(y \middle| \theta_{\sim i} \right) \right)}{V \left(y \right)}$$
Total effect
= the expected variance which would be left
if all parameters but 0 sould be fixed

if all parameters but θ i could be fixed.

STi is used for Fixing (dropping) non-important factors

One remark: Si vs SRC

It is important to remark that for linear and additive models the following relationship between Si (first-order sensitivity index) and SRC (standardized regression coefficient) holds:

$$S_i = \beta_i^2$$

The proof can be checked at Salltelli et al (2009) pp 23.

This provides a nice data quality check on the results.

Numerical calculation of Sensitivity indices

To compute S_i and S_{Ti} , one needs to estimate the conditional variances $V(E(y|\theta_i))$ and $E(V(y|\theta_{\sim i}))$

There are two approaches:

- 1) Analytical (exact) solution
- 2) Numerical solutions using Brute force, random sampling with bins, efficient Monte-Carlo sampling methods.

Analytical solution

This uses symbolic integral evaluation of HDMR terms. A simple example:

$$f(x) = x_1 + x_2 + x_3$$

$$x_1 \sim U(0.5; 1.5); x_2 \sim U(1.5; 4.5) & x_3 \sim U(4.5; 13.5)$$

$$p(x) = \frac{1}{b-a}$$

$$f_0 = \int f(x)p(x)dx = 13$$

$$D = \int f(x)^2 p(x)dx = 7.5833$$

$$f_1(x_1) = E(y|x_1) - f_0 = \int f(x)p(x_1)dx_1 - f_0 = x_1 - 1$$

$$f_2(x_2) = E(y|x_2) - f_0 = \int f(x)p(x_2)dx_2 - f_0 = x_2 - 3$$

$$f_1(x_3) = E(y|x_3) - f_0 = \int f(x)p(x_3)dx_3 - f_0 = x_3 - 9$$

$$f_{12}(x_1, x_2) = 0; f_{13}(x_1, x_3) = 0; f_{23}(x_2, x_3) = 0$$

	Si=Vi/D
X ₁	0.011
X ₂	0.099
X ₃	0.89

Brute force method

Brute force method, uses intuitive approach (two nested full-factorial sampling): e.g. to estimate $V(E(y|\theta_i))$, one fixes θ_i at some point in its range and perform N number of simulations using parameter samples minus θ_i . This is repeated r times to average over the range of θ_i .

Total costs: N^*r^*k (typically k^*N^2). Too many evaluations (10⁵) easily needed.

Approximate method: random sampling & bining

N monte carlo simulations M=no of bins j=no of points in each bin

$$D_{y} = \frac{1}{M} \sum_{j=1}^{M} \left(\frac{1}{N_{m}^{j}} \sum_{k=1}^{N_{m}^{j}} f(y_{k}, z_{k}) \right)^{2} - f_{0}^{2}.$$

$$f(x) = x_1 + x_2 + x_3$$

$$x_1 \sim U(0.5; 1.5)$$
; $x_2 \sim U(1.5; 4.$
 $x_3 \sim U(4.5; 13.5)$

Approximate method: random sampling & bining

N monte carlo simulations M=no of bins j=no of points in each bin

$$D_{y} = \frac{1}{M} \sum_{j=1}^{M} \left(\frac{1}{N_{m}^{j}} \sum_{k=1}^{N_{m}^{j}} f(y_{k}, z_{k}) \right)^{2} - f_{0}^{2}.$$

$$f(x) = x_1 + x_2 + x_3$$

$$x_1 \sim U(0.5; 1.5)$$
; $x_2 \sim U(1.5; 4.5)$
 $x_3 \sim U(4.5; 13.5)$

	Si_analytic	Si_rand&bin
X ₁	0.011	0.011
X ₂	0.099	0.103
X ₃	0.89	0.949
(N,m)		(1000,15)

Efficient Monte Carlo sampling

Alternatively, monte carlo sampling is used. Generate 2 matrices of random samples A and B with Nxk dimension. And then define mixture matrices $\mathbf{A_B}^i$ and $\mathbf{B_A}^i$. Explanation: $\mathbf{A_B}^i$ where column i comes from matrix B and all other k –1 columns come from matrix A. $\mathbf{B_A}^i$ matrix, where column i comes from matrix A and all other k –1 columns come from matrix B

$$A = \begin{pmatrix} \theta_{11} & \dots & \theta_{1k} \\ \vdots & \vdots & \vdots \\ \theta_{N1} & \dots & \theta_{Nk} \end{pmatrix} \qquad \mathbf{A}_{\mathbf{B}}^{i} = \begin{pmatrix} \theta_{11} & \dots & \theta_{1k} \\ \vdots & \vdots & \vdots \\ \theta_{N1} & \dots & \theta_{Nk} \end{pmatrix}$$

$$B = \begin{pmatrix} \theta'_{11} & \dots & \theta'_{1k} \\ \vdots & \vdots & \vdots \\ \theta'_{N1} & \dots & \theta'_{Nk} \end{pmatrix} \qquad \mathbf{B}_{\mathbf{A}}^{i} = \begin{pmatrix} \theta'_{11} & \dots & \theta'_{1k} \\ \vdots & \vdots & \vdots \\ \theta'_{N1} & \dots & \theta'_{Nk} \end{pmatrix}$$

Computation of Sensitivity indices

Perform Monte Carlo simulations (evaluate the model with A, B and k times $\mathbf{A}_{\mathbf{B}}^{i}$ and $\mathbf{B}_{\mathbf{A}}^{i}$ matrices) obtaining three vectors of model outputs:

$$\mathbf{y}_{A} = f(\mathbf{A}) \quad \mathbf{y}_{B} = f(\mathbf{B}) \quad \mathbf{y}_{BAi} = f(\mathbf{B}_{\mathbf{A}}^{i}) \quad \mathbf{y}_{ABi} = f(\mathbf{A}_{\mathbf{B}}^{i})$$

Compute the S_i measure (different approximations)

$V(E(y \theta_i))$ for Si calculation	Reference
$(1/N)\sum_{j}^{N} y_{A}(j) y_{BAi}(j) - f_{0}^{2}$	Sobol (1993)
$V(y) - (1/2N) \sum_{j=1}^{N} (y_B(j) - y_{ABi}(j))^2$	Jansen (1999)
$(1/N)\sum_{j}^{N}y_{B}(j)(y_{ABi}(j)-y_{A}(j))$	Saltelli (2010)

Computation of Sensitivity indices: Sobol's method

Perform Monte Carlo simulations (evaluate the model with A, B and k times $\mathbf{A_B}^i$ and $\mathbf{B_A}^i$ matrices) obtaining three vectors of model outputs:

$$\mathbf{y}_{A} = f(\mathbf{A}) \quad \mathbf{y}_{B} = f(\mathbf{B}) \quad \mathbf{y}_{BAi} = f(\mathbf{B}_{\mathbf{A}}^{i}) \quad \mathbf{y}_{ABi} = f(\mathbf{A}_{\mathbf{B}}^{i})$$

Compute the S_i measure (different approximations)

$E(V(y \theta_{\sim_i}))$ for S_T i calculation	Reference
$(1/N)\sum_{j}^{N}y_{A}(j)(y_{A}(j)-y_{ABi}(j))$	Sobol (2007)
$(1/2N)\sum_{j}^{N}(y_{A}(j)-y_{ABi}(j))^{2}$	Jansen (1999)
$(1/2N)\sum_{j}^{N}(y_{A}(j)-y_{ABi}(j))^{2}$	Saltelli (2010)* recommended best practice

Example 1: A simple model

COMPUTE SENSITIVITY INDICES OF A SIMPLE LINEAR MODEL

Sobol's method of sensitivity with Monte Carlo sampling

Monte Carlo simulations + Saltelli method of S_i and S_{Ti} computation

Step 1. Specify range for each input parameter

Step 2. Random Sampling: generate A, B and Ci matrices

Step 3. Model evaluations of A, B and Ci matrices

Step 4. Compute and tabulate S_{Ti}

Step 5. Interpret results / compare them with SRC!

Step 1: Input ranges of model parameters

This simple exercise is taken from Saltelli et al 2009, pp 174:

$$y = x_1 + x_2 + x_3$$
with
$$x_1 \sim U(0.5, 1.5)$$

$$x_2 \sim U(1.5, 4.5)$$

$$x_3 \sim U(4.5, 13.5)$$

step 2: Random sampling results

Matlab code (randomsampling.m)

```
%% Define a priori probability distribution of parameters.
% uniform distribution is considered.
par = \{ x_1', x_2', x_3' \};
xlu = [0.5 1.5 4.5]
    1.5 4.5 13.5];
nvar = length(xlu);
% specify no of samples
nsample = 5000;
%% generate two matrices of random samples nsampleXnvar
Ap = rand(nsample,nvar); % 'rand' generates pseudo-random numbers
Bp = rand(nsample,nvar) ;
%% from probability to value
% uniform distribution
Xl = ones(nsample, 1) * xlu(1,:) ; % this is needed for unifinv
Xu = ones(nsample, 1) * xlu(2,:) ; % this is needed for unifinv
A = unifinv(Ap, Xl, Xu);
B = unifinv(Bp, Xl, Xu);
```


step 2: Random sampling results

step 2: Random sampling results

step 3-4. Perform MCs and compute Si and STi

Matlab scripts (mcsims.m and computeSiandSTi.m)

```
%% run Monte Carlo simulations for sampling matrix mcsims.m
for i=1:n
         %% calculate Si for each parameter
                                                             computeSiandSTi.m
    par
         [n2 m2] = size(yA);
         for i=1:m2 % for each model output
    X1
             ya = yA ;
    X2
             yb = yB ;
    Х3
             mu = mean([ya; yb]); % to improve the estimate of mean
     y(i
             vary = var([ya; yb]);
 end
             for j=1:m % for each parameter
cd(drnm)
                 %% sobol's method
hd = 'yA
                 ybai = yBA(:,j);
save(hd)
                 yabi = yAB(:,j);
cd(dr0)
                 vx1(j,1) = mean(ya .* ybai) - mu^2;
                 Sil(j,i) = vxl(j,1) / vary ; % first-order sensitivity index
                 ex1(j,1) = mean(ya .* (ya - yabi));
                 STil(j,i) = exl(j,1) / vary ; % total effects index
```


step 3-4. Perform MCs and compute Si and STi

	Si	Si	Si	Si	Si
N: samples	500	1000	2000	5000	Analytical Solution
x1	0.0193	-0.011	0.023	0.010	0.011
x2	0.177	0.125	0.122	0.096	0.099
x 3	0.872	0.852	0.879	0.888	0.890
Sim cost: N*(k+2)	2500	5000	10000	25000	-

Sampling number is very important!
While exact solution may not be reached, however the relative ranking of parameter importance doesnt change.

Quasirandom sampling improves the efficiency

• See the quasirandomsampling script for generating Sobol sequences

	Si	Si	Si	Si	Si
N: samples	500	1000	1500	2000	Analytical Solution
x1	0.063	0.039	0.035	0.023	0.011
x2	0.14	0.108	0.11	0.108	0.099
x 3	0.89	0.89	0.89	0.89	0.890
Sim cost: N*(k+2)	2500	5000	7500	10000	-

- Is this more efficient than random sampling?
- To be fair, it is better to use an average of several repetition and report some standard deviation on the indices

step 5. Interpretation

The higher the S_i, the more important a factor is. Plus sum of Si close to 1, hence model is additive.

	S _i	Rank	Analytical Solution	Rank
x1	0.010	1	0.011	1
x2	0.096	2	0.099	2
х3	0.888	3	0.890	3
Sum	0.994		1.00	

 S_{Ti} which factor is non-influential. As none of S_{Ti} are zero, none of these factors can be deemed non-influential.

To sum up

- S_i is a global measure of sensitivity of model parameters
- S_i indicates by how much one could reduce on average the output variance if a parameter could be fixed.
- S_{Ti} is useful measure to fix non-influential parameters of the model (S_{Ti} =0). (though Morris screening more efficient computational wise).
- The sum of all S_i equal to 1 for additive model, while sum of all S_{Ti} is always greater than 1.
- Many methods to compute sensitivity indices: Analytical solution (integral evaluation of HDMR terms), brute force (not recommended), approximate random sampling with bins & efficient Monte Carlo sampling
- Quasirandom sampling (e.g. Sobol or Halton sequences) improves computations efficiency
- These methods are based on the assumption that inputs are independent.

Exercise 1: Sobol indices of a simple nonlinear model

SIMPLE NONLINEAR MODEL

Exercise details

Consider the following problem:

$$y = 4x_1^2 + 3x_2$$
with
$$x_1 \sim U(-0.5, 0.5)$$

$$x_2 \sim U(-0.5, 0.5)$$

Calculate Si. Use the matlab scripts, provided to you.

Define your own sampling number. Repeat if necessary your calculations.

Analytical solution: Si=[0.106 0.894]