Cuarta Parte: Clase 2 – Decisiones Miopes

Optimización Dinámica - ICS

Mathias Klapp

Política de decisión miope

- Heurística más simple para tomar decisiones dinámicas.
- Una política miope π^M ejecuta decisiones en cada etapa t y estado visitado s_t resolviendo:

$$d_t^M(s_t) \in \underset{x \in \mathbb{X}_t(s_t)}{\operatorname{argmax}} \{r_t(s_t, x)\}$$

- Al planificar asume que $Q_t(y)=0$, es decir, que no hay valor futuro;
 - En la prácitica puede haberlo.
- No es proactiva contra potenciales estados futuros, pero es reactiva al estado actual del sistema.

Evaluación simulada de una política miope:

- **Input:** Estado inicial s_1
- Simular m ejecuciones de π en una muestra Ω :

Para cada corrida $\omega \in \Omega$:

- 1. Inicializar: $s \leftarrow s_1, V_{\omega} \leftarrow 0$
- 2. Para cada etapa t = 1, ..., T:
 - $d_t^M(s_t) \underset{x \in \mathbb{X}_t(s_t)}{\operatorname{argmax}} \{r_t(s_t, x)\}$ Calcular:
 - Actualizar valor: $V_{\omega} \leftarrow V_{\omega} + r_t(s, d_t^M(s_t))$
 - Actualizar estado: $s \leftarrow f_t(s, x_t, \omega_t)$
- 3. Guardar indicador: $V_{\omega}(s_1)$
- Estimar el valor de la política:
 - $\bar{V}_{\Omega}^{\pi}(s_1) \coloneqq \frac{1}{m} \sum_{\omega \in \Omega} V_{\omega}(s_1)$

 - $S_{\Omega}^{\pi} = \sqrt{\frac{1}{|\Omega| 1}} \sum_{\omega \in \Omega} (V_{\omega}(s_1) \bar{V}_{\Omega}^{\pi}(s_1))^2$ $\text{IdC para } V^{\pi}(s_1) \colon \left[\bar{V}_{\Omega}^{\pi}(s_1) S_{\Omega}^{\pi} \frac{Z_{1 \frac{\alpha}{2}}}{\sqrt{m}} ; \bar{V}_{\Omega}^{\pi}(s_1) + S_{\Omega}^{\pi} \frac{Z_{1 \frac{\alpha}{2}}}{\sqrt{m}} \right]$

Acerca de decisions Miopes

- También se conoce como políticas reactivas o de screenshot policy, pues resuelve la `foto visible' del sistema.
- Solución simple y ampliamente utilizada porque:
 - 1. No requiere información probabilística.
 - 2. Usa lo disponible: Optimización determinística. Decisiones en dominios X complejos (LP, MILP, no-lineal).
 - 3. A veces, ser reactivo es suficiente.
- Puede resultar bien, pero puede ser un ``desastre'':
 - El ``pan para hoy`` puede generar ``hambre para mañana''.
- Cómputo *online* recae en optimizar r(s,x) sobre $x \in \mathbb{X}(s)$

Ejemplo 1: Traveling Saleman Problem (TSP)

Estado:

- S: clientes por visitar
- *i*: ubicación actual

Ecuaciones del Bellman para todo $S \subset \{1, ..., n\}$:

$$Q(i,S) = \begin{cases} \min_{j \in S \setminus \{1\}} \{c_{ij} + Q(j,S \setminus \{j\})\} \\ c_{i1} \qquad si S = \{1\} \end{cases}$$

, es decir:
$$d^*(i,S) \in \operatorname*{argmin}\{c_{ij} + Q(j,S\backslash\{j\})\}$$

$$j \in N_i^+ \cap S$$

El problema está ``maldito", pues posee $\mathcal{O}(n2^n)$ estados.

Política heurística miope: vecino más cercano

Vecino más cercano asume Q(i,S) = 0. Luego:

$$d^{NN}(i,S) \leftarrow \underset{j \in N_i^+ \cap S}{\operatorname{argmin}} \{c_{ij}\}$$

- Ventaja: Simple
- Desventaja: No es proactivo con la distancia remanente del tour desde el vecino j en adelante.

Evaluación de la heurística:

```
1. Inicializar: i \leftarrow 1, S \leftarrow N \setminus \{1\}

2. Para cada etapa t = 1, ..., n - 1:

• Calcular: j \in \underset{j \in N_i^+ \cap S}{\operatorname{argmin}} \{c_{ij}\}

• Actualizar valor: Q \leftarrow Q + c_{ij}

• Actualizar estado: (i, S) \leftarrow (j, S \setminus \{j\})

3. Cierre del tour: Q \leftarrow Q + c_{i1}
```

Ejecuta en $\mathcal{O}(n^2)$ operaciones.

Ejemplo: DP del vendedor viajero

Ejemplo 2: Same-day delivery (SDD)

Two-day delivery

Compras online hoy, recibes pasado-mañana

Next-day delivery:

Compras online hoy, recibes mañana

Same-day delivery:

Pides online hoy, recibes hoy

Problema de SDD: Ruteo es dinámico.

2018 - Klapp, Erera & Toriello (European Journal of Operations Research)

Modela decisiones dinámicas de un centro despacho (CD) para $\underline{\text{same-day}}$ delivery a lo largo de un horizonte de T periodos (olas) de despacho.

- Un conjunto de N clientes arriba dinámicamente en el tiempo.
- En CD se preparan paquetes y se despachan en un grafo $([n] \cup \{0\}, A)$.
- Vehículos disponibles en el CD (uno para simplificar análisis).
- Cada cliente $i \in [n]$ posee tres características:
 - 1. Release date $r_i \in [T]$: Ola de despacho desde la cual el paquete es conocido y está para despacho.
 - 2. Tiempo de viaje c_{ij} : Tiempo que toma ir desde i a j.
 - 3. Penalidad p_i : Por no atender al cliente i.
- Objetivo: min E(penalidades + costos de ruteo)

- Sea R_t : conjunto de clientes pendientes para despacho desde CD en ola t.
- Decisiones cuando vehículo está disponible en el CD al inicio de la ola t:
 - 1. Esperar una ola o no.
 - 2. Despachar al vehículo y seleccionar un subconjunto $S \subseteq R_t$ de clientes a costo $\alpha \cdot T(S)$.
- Vehículo despachado en t queda inutilizado hasta retorno en t+W(S), donde $W(S)=\lceil T(S)/\delta \rceil$.

Trade-offs:

- 1. Depachar (reducir cola) vs Esperar (acumular opciones).
- 2. Depachos cortos (caros y flexibles) vs largos (baratos e inflexibles).

Ecuaciones de Bellman:

Para todo $t \in \{1, \dots, T-1\}$ y todo $R_t \subset N$: $V_t(R_t) = \min_{S \subseteq R_t : t+W(S) \le T} \left\{ \alpha \cdot C(S) - \sum_{i \in S} p_i + \mathbb{E} \left(V_{t+W(S)} \left(R_t \backslash S \cup N_{t,t+W(S)} \right) \right) \right\}$, donde $N_{t,t'}$ es el conjunto de órdenes reveladas entre t y t'.

Terminar: $V_T(R_t) = \sum_{i \in N_{1,T}} p_i$

¡Problema tiene cuatro maldiciones!

Trade-off 1:

¿Con qué frecuencia despachar a clientes que solicitan pedidos durante el día?

Despachar:

• reduce cola de pendientes, pero pierde la oportunidad de consolidar en ese vehículo potenciales pedidos futuros cercanos a los ya programados.

Esperar:

Mejora consolidación, pero quema tiempo.

Trade-off 2:

¿Rutas largas versus rutas cortas?

Ruta larga:

 Menor costo por orden, pero menor capacidad de reacción al postergar decisión futura.

Esperar:

 Más cara por cliente, pero flexible (decisión futura más cerca del presente)

- ¿Cuántos pedidos cargar en el vehículo a despachar?
- Rutas largas

- ¿Cuántos pedidos cargar en el vehículo a despachar?
- Rutas largas

Trade-off 3: El peso de las penalidad: Eficiencia operativa versus Cobertura

$$\begin{aligned} \operatorname{Para} \operatorname{todo} t &\in \{1, \dots, T-1\} \operatorname{y} \operatorname{todo} R_t \subset N \colon \\ V_t(R_t) &= \min_{S \subseteq R_t : t+W(S) \leq T} \left\{ \alpha \cdot C(S) - \sum_{i \in S} p_i + \mathbb{E} \left(V_{t+W(S)} \left(R_t \backslash S \cup N_{t,t+W(S)} \right) \right) \right\} \end{aligned}$$

, donde $N_{t,t'}$ es el conjunto de órdenes reveladas entre t y t'.

Enfoque miope sería omitir el costo esperado futuro y resolver:

$$d^{H}(R_{t}) = \underset{S \subseteq R_{t}: W(s) \leq T-t}{\operatorname{argmin}} \left\{ \alpha \cdot C(S) - \sum_{i \in S} p_{i} \right\},\,$$

es decir, evaluar decisión de despacho sólo considerando clientes pendientes

- Descarta valor futuro de consolidación geográfica con potenciales clientes futuros.
- Requiere resolver un TSP con recolección de premios (prize colecting TSP).

Decisiones pseudo-miopes

- También conocidas como miopes calibradas.
- Decisiones miopes equipadas heurísticamente con parámetros en costos y espacio de decisiones que ``limitan la avaricia'' y permiten un buen comportamiento a futuro.
- Parámetros son típicamente calibrados mediante optimización-simulación.
- Muy utilizadas por su simpleza y practicidad.
- Ejemplos:
 - Decisiones de inventario con stock de seguridad predefinido.
 - Planificación de rutas aéreas con buffers de tiempo entre despegues.
 - Asignación dinámica de taxistas a pasajeros (Uber) con stock de seguridad de taxistas para el futuro.

DDWP con decisión miope calibrada

Un enfoque miope es omitir el valor futuro y resolver:

$$d^{H}(R_{t}) = \underset{S \subseteq R_{t}: W(s) \leq (T-t) \cdot \gamma}{\operatorname{argmin}} \left\{ \alpha \cdot C(S) - \sum_{i \in S} \beta p_{i} \right\}$$

- Luego, se hace simulación computacional para evaluar $C^{MIOPE}(\beta,\gamma)$ en función de γ y β .
 - γ: evita consumir todo el tiempo de reacción a futuro
 - β : reduce o aumenta el valor relativo de cubrir a un cliente ahora ya.
- Se búsca el α y β que mejor funciona mediante optimización-simulación:

$$\min_{\beta,\gamma} \quad C^{MIOPE}(\beta,\gamma)$$

Cuarta Parte: Clase 2 – Decisiones Miopes

Optimización Dinámica - ICS

Mathias Klapp