Indian Institute of Technology Hyderabad

EE6310: Image and Video Processing Quiz 2, 17.03.2023, 10 points

- 1. The SSIM index between image patches \mathbf{x}, \mathbf{y} can be defined as $\mathrm{SSIM}(\mathbf{x}, \mathbf{y}) = \frac{2\mu_{\mathbf{x}}\mu_{\mathbf{y}} + C_1}{\mu_{\mathbf{x}}^2 + \mu_{\mathbf{y}}^2 + C_1} \cdot \frac{2\sigma_{\mathbf{xy}} + C_2}{\sigma_{\mathbf{x}}^2 + \sigma_{\mathbf{y}}^2 + C_2}$. μ, σ correspond to local patch mean and standard deviation respectively, and C_1, C_2 are stabilizing constants. If the patches are zero-mean, can $\mathrm{SSIM}(\mathbf{x}, \mathbf{y})$ be related to the MSE between \mathbf{x} and \mathbf{y} ? If yes, show your work. If not, justify. What happens when the patches have non-zero but equal means? (2)
- 2. Give an example of a pair of 3×3 patches \mathbf{x}, \mathbf{y} such that $SSIM(\mathbf{x}, \mathbf{y}) = -1$. (1)
- 3. For a continuous 2-D function f(x,y), the Laplacian is defined as $\nabla^2 f(x,y) = \frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}$. Show that $\nabla^2 f(x,y)$ remains the same irrespective of the choice of the orthogonal basis. (3)
- 4. Show that the convolution operation is commutative, i.e., (h * g) * f = (g * h) * f where h, g are linear and time-invariant systems, f is a signal. For simplicity, work with 1-D digital signals and systems. (2)
- 5. Use the above result to derive the efficient form of the LoG kernel. Assume the Gaussian low-pass filter to be $G(x,y) = \frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}}$. (2)