	Departamento	de	Matemáti	ica
--	--------------	----	----------	-----

Universidade do Minho

Álgebra

exame de recurso - segunda parte - 4 fev 2021

Lic. em Ciências de Computação/Lic. em Matemática - $2^{\underline{0}}$ ano

duração: duas horas

Nome	
Curso	Número

Responda no próprio enunciado, colocando uma cruz no quadrado correspondente. Cada questão está cotada com 0,8 valores numa escala de 0 a 20. Respostas erradas descontam 0,2 valores na mesma escala.

Declaração de Honra: "Ao submeter esta avaliação online, declaro por minha honra que irei resolver a prova recorrendo apenas aos elementos de consulta autorizados, de forma autónoma e sem trocar qualquer informação por qualquer meio, com qualquer pessoa ou repositório de informação, físico ou virtual"

Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente:

Р	roposição, assindiando a opção conveniente.	
1.	Em S_6 existem pelo menos uma permutação α par e uma permutação β ímpar tais que $o(\alpha)=o(\beta)=4.$	V⊠ F□
1.	Em S_7 existem pelo menos uma permutação α par e uma permutação β ímpar tais que $o(\alpha)=o(\beta)=6.$	V⊠ F□
1.	Em S_6 existem pelo menos uma permutação α par e uma permutação β ímpar tais que $o(\alpha)=o(\beta)=5.$	V□ F⊠
1.	Em S_6 existem pelo menos uma permutação α par e uma permutação β ímpar tais que $o(\alpha)=o(\beta)=6.$	V□ F⊠
2.	Num anel A de característica 13 com identidade 1_A , o elemento $5 \cdot 1_A$ é um divisor de zero de A .	V□ F⊠
2.	Num anel A de característica 12 com identidade 1_A , o elemento $10 \cdot 1_A$ é um divisor de zero de A .	V⊠ F□
2.	Num anel A de característica 14 com identidade 1_A , o elemento $4\cdot 1_A$ é um divisor de zero de A .	V⊠ F□
2.	Num anel A de característica 12 com identidade 1_A , o elemento $11\cdot 1_A$ é um divisor de zero de A .	V□ F⊠
3.	Se A é um anel e B é um subanel de A com identidade 1_B , então, A tem identidade.	V□ F⊠
3.	Se A é um anel com identidade 1_A e B é um subanel de A tal que $1_A \in B$, então, B tem identidade e $1_B = 1_A$.	V⊠ F□
3.	Se A é um anel com identidade 1_A e B é um subanel de A que tem identidade, então, $1_B=1_A.$	V□ F⊠
3.	Se A é um anel com identidade 1_A e B é um subanel de A , então, B tem identidade e $1_B=1_A$.	V□ F⊠
4.	Se a é uma unidade de um anel A com identidade, então a^2 é simplificável.	V⊠ F□
4.	Se a é uma unidade de um anel A com identidade, então a^2-a é simplificável.	V□ F⊠
4	Se a é uma unidade de um anel A com identidade então $a^2 + a$ é simplificável	V□ F⊠

- 4. Se a é uma unidade de um anel A com identidade, então a^3 é simplificável.
- 5. $A = \left\{ \begin{bmatrix} a & b \\ b & a \end{bmatrix} : a, b \in \mathbb{R} \right\}$ é um subanel do anel das matrizes quadradas
- 5. $A=\left\{\left[egin{array}{cc} a & 0 \\ b & a \end{array}
 ight]:a,b\in\mathbb{R}
 ight\}$ é um subanel do anel das matrizes quadradas

V⊠ F□

V⊠ F□

V⊠ F□

V□ F⊠

- 5. $A = \left\{ \begin{bmatrix} a & 0 \\ a & b \end{bmatrix} : a, b \in \mathbb{R} \right\}$ é um subanel do anel das matrizes quadradas reais de ordem 2.
- 5. $A = \left\{ \begin{bmatrix} a & b \\ a & b \end{bmatrix} : a, b \in \mathbb{R} \right\}$ é um subanel do anel das matrizes quadradas reais de ordem 2. $V \boxtimes F \square$
- 6. Seja A um anel. Então, $I=\{x\in A: 4x=0_A\}$ é um ideal de A. \bigvee \bigvee \bigvee \bigvee \bigvee
- 6. Seja A um anel. Então, $I=\{x\in A:5x=0_A\}$ é um ideal de A. \bigvee \bigvee \bigvee \bigvee \bigvee
- 6. Seja A um anel. Então, $I=\{x\in A: 3x=0_A\}$ é um ideal de A.
- 6. Seja A um anel. Então, $I=\{x\in A: 6x=0_A\}$ é um ideal de A. \bigvee \bigvee \bigvee \bigvee \bigvee \bigvee
- 7. Se I e J são ideais de A tais que $I+J\subseteq I\cap J$, então, I=J. $\bigvee \boxtimes \ \mathsf{F} \ \Box$
- 7. Se I e J são ideais de A tais que $I \neq J$, então, $I + J \subsetneq I \cap J$. $V \square F \boxtimes$
- 7. Se I e J são ideais de A tais que $I \neq J$, então, $I \cap J \neq I + J$. $\bigvee \boxtimes \mathsf{F} \square$
- 7. Se I e J são ideais de A tais que $I\cap J=I+J$, então, I=J. V \boxtimes $\mathsf{F}\,\square$
- 8. Se A é um domínio de integridade e I é um ideal de A, então, A/I é um domínio de integridade. $V \square F \boxtimes$
- 8. Se A é um anel comutativo e I é um ideal de A, então, A/I é um anel comutativo. ${\sf V} \boxtimes {\sf F} \, \Box$
- 8. Se A é um anel não comutativo e I é um ideal de A, então, A/I é um anel não comutativo. $V \square F \boxtimes$
- 8. Se A é um anel com identidade e I é um ideal de A, então, A/I é um anel com identidade. $V \boxtimes F \square$
- 9. Sejam A um anel comutativo com identidade, I um ideal primo e B um subanel de A.

 Então $I \cap B$ é um ideal primo de A. $V \square F \boxtimes$
- 9. Sejam A um anel comutativo com identidade, I um ideal maximal e J um ideal de A.

 Então I+J é um ideal maximal de A. $V \square F \boxtimes$
- 9. Sejam A um anel comutativo com identidade, I um ideal maximal e B um subanel de A. V \square F \boxtimes
- 9. Sejam A um anel comutativo com identidade, I um ideal primo e J um ideal de A.

 Então $I \cap J$ é um ideal primo de A.

 V \square F \boxtimes
- 10. Se A é um anel de característica 5, então $(x+y)^5=x^5+y^5$ para todo $x\in A$.
- 10. Se A é um anel com identidade e $o(1_A)=6$, então $(x+y)^6=x^6+y^6$ para todo $x\in A$. $V\Box$ $F\boxtimes$
- 10. Se A é um anel de característica 6, então $(x+y)^6=x^6+y^6$ para todo $x\in A$. $V\square F\boxtimes$
- 10. Se A é um anel com identidade e $o(1_A)=5$, então $(x+y)^5=x^5+y^5$ para todo $x\in A$. $\bigvee \boxtimes \ \mathsf{F} \ \Box$
- 11. Se A é um anel com identidade 1_A , então, existe um morfismo de anéis $f: A \times A \to A'$ tal que $\operatorname{Nuc} f = \{1_A\} \times A$. $\bigvee \Box \ \mathsf{F} \boxtimes$

11. Se A é um anel, então, existe um morfismo de anéis $f: A \times A \to A'$ tal que

 $V \square F \boxtimes$

 $\operatorname{Nuc} f = \{0_A\} \times A.$

11. Se A é um corpo, então, existe um morfismo de anéis $f: A \times A \to A'$ tal que

V⊠ F□

11. Se A é um domínio de integridade, então, existe um morfismo de anéis $f: A \times A \to A'$ tal que $\operatorname{Nuc} f = A \times \{0_A\}$.

V⊠ F□

12. Existem anéis comutativos com identidade onde o ideal nulo é maximal.

V⊠ F□

12. O anel \mathbb{Z} tem uma infinidade de ideais maximais.

V⊠ F□

12. O ideal nulo de um anel comutativo com identidade nunca é maximal.

 $V \square F \boxtimes$

12. No anel dos números reais, $\{0\}$ é um ideal maximal.

V⊠ F□

13. $3\mathbb{Z} \times \mathbb{Z}$ é um ideal maximal de $\mathbb{Z} \times \mathbb{Z}$.

 $Nuc f = A \times \{1_A\}$

V⊠ F□

13. $3\mathbb{Z} \times 5\mathbb{Z}$ não é um ideal maximal de $\mathbb{Z} \times \mathbb{Z}$.

V⊠ F□

13. $3\mathbb{Z} \times 5\mathbb{Z}$ é um ideal maximal de $\mathbb{Z} \times \mathbb{Z}$.

V□ F⊠

13. $3\mathbb{Z} \times \{0\}$ é um ideal maximal de $\mathbb{Z} \times \mathbb{Z}$.

V□ F⊠

- 14. Se I e J são ideais maximais de um anel comutativo com identidade A, então, $1_A \in I + J$.
- V□ F⊠
- 14. Se I e J são ideais maximais de um anel comutativo com identidade A, então, A = I + J.
- V□ F⊠
- 14. Se I e J são ideais maximais distintos de um anel comutativo com identidade A, então, A = I + J.
- V⊠ F□

14. Se I e J são ideais maximais de um anel comutativo com identidade A, então, I+J é um ideal maximal de A.

V□ F⊠

15. No anel dos inteiros, temos que $9\mathbb{Z} + 6\mathbb{Z} = 3\mathbb{Z}$.

V⊠ F□

15. No anel dos inteiros, temos que $4\mathbb{Z} + 6\mathbb{Z} = 2\mathbb{Z}$.

V⊠ F□

15. No anel dos inteiros, temos que $9\mathbb{Z} + 6\mathbb{Z} = 18\mathbb{Z}$.

15. No anel dos inteiros, temos que $4\mathbb{Z} + 6\mathbb{Z} = 12\mathbb{Z}$.

V□ F⊠

V□ F⊠ V□ F⊠

16. Seja $f: A \to A'$ um morfismo de anéis. Então, $A'/\operatorname{Nuc} f$ é isomorfo a A. 16. Seja $f: A \to A'$ um morfismo de anéis. Então, $A/\operatorname{Nuc} f$ é isomorfo a f(A).

V⊠ F□

16. Seja $f: A \to A'$ um morfismo de anéis. Então, $A/\operatorname{Nuc} f$ é isomorfo a A'.

V□ F⊠

16. Seja $f: A \to A'$ um morfismo de anéis. Então, $A'/\operatorname{Nuc} f$ é isomorfo a f(A).

V□ F⊠

- 17. Seja $\varphi: A \to A'$ um morfismo de anéis.
 - Se A é um corpo então $\varphi(A)$ é um corpo.

V□ F⊠

17. Seja $\varphi: \mathbb{R} \to A$ um morfismo de anéis. Então $\varphi(\mathbb{R})$ é um corpo.

V□ F⊠

17. Seja $\varphi: \mathbb{R} \to A$ um morfismo não nulo de anéis. Então $\varphi(\mathbb{R})$ é um corpo.

- V⊠ F□
- 17. Seja $\varphi:A\to A'$ um morfismo não nulo de anéis. Se A é um corpo então $\varphi(A)$ é um corpo
- V⊠ F□

Em cada uma das questões seguintes, assinale a opção correta:

18. Em S_8 , a permutação $\sigma=(12$	3)(451) tem orde	em			
	$\square 3$	$\Box 4$	⊠ 5	□ 6	
18. Em S_8 , a permutação $\sigma=(12$	3)(132) tem orde	em			
	⊠ 1	$\square \ 2$	\square 3	□ 6	
18. Em S_8 , a permutação $\sigma=(12$	3)(456) tem orde	em			
	⊠ 3	$\Box 4$	\Box 5	□ 6	
18. Em S_8 , a permutação $\sigma=(12$	3)(4321) tem ord	dem			
	$\boxtimes 2$	$\square 3$	$\Box 4$	□ 8	
19. Em S_{10} , se $eta=(9876)$, então					
$\Box \beta^2 = (67)$	$89) \qquad \boxtimes \beta^2 = (6)$	88)(79)	$\square \beta^2$	= (96)(78)	$\Box \ \beta^2 = (97)$
19. Em S_{10} , se $\gamma=(98756)$, entã	0				
$\Box \gamma^2 = (976)$	$(85) \qquad \boxtimes \gamma^2 =$	(68597)		$y^2 = (65789)$	$\Box \ \gamma^2 = (97)$
19. Em S_{10} , se $\delta = (987654)$, ent	ão				
$\boxtimes \delta^2 = (759)(4$	$ 86) \qquad \Box \ \delta^2 = (9)$	96)(85)(7	74) [$\Box \ \delta^2 = (65789)$	$\Box \ \delta^2 = (9 7)$
19. Em S_{10} , se $lpha=(98765)$, entã	O				
$\boxtimes \alpha^2 = (586)$		975)(86)	$\Box c$	$\alpha^2 = (68579)$	$\Box \ \alpha^2 = (97)$
20. Em S_7 , sabendo que $lpha^3=(12)$	eta^2 , podemos afirr	nar que			
	\square α é par e eta é ín $old M$ α é ímpar	npar		é ímpar e β é pa é par	r
20. Em S_7 , sabendo que $(34)\alpha^2=$	$(123)\beta$, podemos	afirmar o	que		
	\square α é par e eta é ín $old B$ é ímpar	npar		é ímpar e β é pa é par	r
20. Em S_7 , sabendo que $\alpha(12)\alpha^{-1}$	$=(123)\beta$, poder	nos afirm	ar que		
	$\ \square \ lpha$ é par e eta é ín $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	npar		é ímpar e β é pa é par	r
20. Em S_7 , sabendo que $lpha^2=(12$	(3)eta, podemos afir	mar que			
	$\ \square \ lpha$ é par e eta é ín $\ \square \ eta$ é ímpar	npar		é ímpar e β é pa é par	r
21. O anel \mathbb{Z}_{16} tem exatamente					
\square 4 divisores de zero	\square 2 divisores	de zero	⊠ 8 d	ivisores de zero	\square 1 divisor de zero
21. O anel \mathbb{Z}_{17} tem exatamente					
\square 17 divisores de zero	\square 3 divisores	de zero	\square 2 d	divisores de zero	□ 1 divisor de zero

21. O anel \mathbb{Z}_{18} tem exatamente					
\boxtimes 12 divisores de zero	\square 9 divisores	de zero	□ 8 0	divisores de zero	\square 1 divisor de zero
21. O anel \mathbb{Z}_{20} tem exatamente					
\boxtimes 12 divisores de zero	☐ 9 divisores	de zero	□ 8 0	divisores de zero	\square 1 divisor de zero
22. A caraterística do anel $\mathbb{Z}_{12} imes \mathbb{Z}_{15}$ é	□ 12	⊠ 60	□ 15	□ 3	
22. A caraterística do anel $\mathbb{Z}_3 \times \mathbb{Z}_6$ é	□ 18	□ 3	⊠ 6	□ 9	
22. A caraterística do anel $\mathbb{Z}_4\times\mathbb{Z}_6$ é	⊠ 12	$\square \ 2$	□ 6	□ 24	
22. A caraterística do anel $\mathbb{Z}\times\mathbb{Z}_3\times\mathbb{Z}$	₆ é ⊠ 0	□ 3	□ 6	□ 18	
23. Sejam $a \in \{n \in \mathbb{Z} : 0 \le n \le 11\}$ e f_a é um morfismo de anéis se e só		₂ a funçã	o definida	a por $f_a([x]_{12}) = [a$	$[ax]_{12}$, para todo $x\in\mathbb{Z}$. Então
	$a \in \{0, 1\}$ $a \in \{1, 5, 7, 1\}$			$\{0, 1, 4, 9\}$ $\{0, 1, 2, 3, 4, 6\}$	
23. Sejam $a \in \{n \in \mathbb{Z} : 0 \le n \le 6\}$ e é um morfismo de anéis se e só se	$f_a:\mathbb{Z}_7 o\mathbb{Z}_7$ a	a função (definida _I	$\text{por } f_a([x]_7) = [ax]$	$_{7}$, para todo $x\in\mathbb{Z}.$ Então, f_{6}
	$\in \{0, 1\}$ $\in \{0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,$			$a \in \{0, 1, 4\}$ $a \in \{1, 2, 3, 4, 5, 6\}$	
23. Sejam $a \in \{n \in \mathbb{Z} : 0 \le n \le 9\}$ e j f_a é um morfismo de anéis se e só		a função	definida	$por f_a([x]_{10}) = [a$	$[x]_{10}$, para todo $x\in\mathbb{Z}$. Então
	$\Box \ a \in \{0, 1\}$ $\Box \ a \in \{0, 1, 4\}$			$\in \{0, 1, 5, 6\} \\ \in \{1, 3, 7, 9\}$	
23. Sejam $a \in \{n \in \mathbb{Z} : 0 \le n \le 7\}$ e é um morfismo de anéis se e só se	$f_a:\mathbb{Z}_8 o\mathbb{Z}_8$:	a função (definida _I	$\text{por } f_a([x]_8) = [ax]$	$_{8}$, para todo $x\in\mathbb{Z}$. Então, f_{6}
	$a \in \{0, 1\}$ $a \in \{1, 3, 5, 7\}$	}	$\Box \ a \in \{ \\ \Box \ a \in \{ \\$	$\{0, 2, 4, 6\} \\ \{0, 1, 2, 3, 4, 6, 7\}$	
24. Sejam A um anel e I e J ideais de A . Se $A=I+J$, então, o anel $A/I\times A/J$ é isomorfo ao anel					
	$A \boxtimes A/(I)$	$\cap J)$ [$\Box A/(I -$	$\vdash J)$ $\Box A \times A$	
24. Sejam A um anel e K e L ideais d	e A . Se K é n	naximal e	$L \not\subseteq K$,	então, o anel $A/{\cal F}$	K imes A/L é isomorfo ao anel
$\Box A$	$\boxtimes A/(K)$	$\cap L)$ [$\Box A/(K$	$+L$) $\Box A \times A$	I
24. Sejam A um anel e I e J ideais de	$A. \operatorname{Se} A = I$	$+J$, ent \hat{z}	ío, o anel	$A/I \times A/J$ é iso	morfo ao anel
	A/(I+J)	$\square A \times A$	$\boxtimes A$	$/(I \cap J)$ $\square A$	
24. Seja A um anel tal que $A=I+J$, com I e J id	eais de $\cal A$. Então,	o anel $A/I \times A/J$	é isomorfo ao anel
	A/(I+J)	$\square A \times A$	$\Box A$	$\boxtimes A/(I\cap J)$	
25. Se I é um ideal primo não maximal do anel $\mathbb{R} \times \mathbb{Z}$, então, I pode ser					
$\square \ \mathbb{Z}$	$\times 2\mathbb{Z}$ $\square \mathbb{R}$	$\times 2\mathbb{Z}$	$\boxtimes \mathbb{R} \times$	$\{0\} \qquad \Box \ \{0\} \times \mathbb{Z}$	7

25. Se I é um ideal primo não maximal do anel $\mathbb{R} \times \mathbb{Z}$, então, I pode ser

 $\square \ \mathbb{Z} \times 11\mathbb{Z} \qquad \square \ \mathbb{R} \times 11\mathbb{Z} \qquad {\color{red} \boxtimes} \ \mathbb{R} \times \{0\} \qquad \square \ \{0\} \times \mathbb{Z}$

25. Se I é um ideal primo não maximal do anel $\mathbb{R} \times \mathbb{Z}$, então, I pode ser

 $\square \ \mathbb{Z} \times 7\mathbb{Z} \qquad \square \ \mathbb{R} \times 7\mathbb{Z} \qquad \boxtimes \ \mathbb{R} \times \{0\} \qquad \square \ \{0\} \times \mathbb{Z}$

25. Se I é um ideal primo não maximal do anel $\mathbb{R} \times \mathbb{Z}$, então, I pode ser

 $\square \ \mathbb{Z} \times 3\mathbb{Z} \qquad \square \ \mathbb{R} \times 3\mathbb{Z} \qquad {\color{red} \boxtimes} \ \mathbb{R} \times \{0\} \qquad \square \ \{0\} \times \mathbb{Z}$