Low-Power Acoustic Array

Theory of Operation

The device is powered via USB or J101. J101 voltage range between 4.5–13v DC. Power source is selected with a header jumper on J101.

Micro SD card must be present for normal operation. SD card is formatted as ExFAT.

USB port 1 (J102) is connected to the STM32 and enumerates as a serial port. USB port 2 (J103) is connected to the GPS module.

There are two modes of operation (selected with MODE_SEL jumper on J201)

1. Start recording immediately when powered on. (no jumper)
2. Start/stop recording with pushbutton SW201. (jumper)

Microphone board can be connected to J1 or with headers on J201. Microphone input format is 8-channel TDM with 32-bit frame length.

Charlie Gilliland

UM NCPA

Sheet: /

File: LowPowerArray.kicad_sch

Title: Low Power Array

 Size: USLetter
 Date: 2023-02-01
 Rev: 1

 KiCad E.D.A. kicad (6.0.0-0)
 Id: 1/6

LDO Voltage Regulators RC style connector 4.5 < Vin < 13 U101 +3V3AP2210K-3.3TRG1 PWR_SWITCHED J101 OUT Conn_02x03_Counter_Clockwise D101 _ C101 + L. PWR_SWITCHED 10u 0.1u 100p VBUS_USB DESD5V0S1BAQ GND GPS +3v3 supply U102 +3.3VA AP2210K-3.3TRG1 Primary USB Connector & ESD Protection GPS USB Connector & ESD Protection C105 C107 C108 10uT 10u 0.1u J102 J103 100p D103 D104 USB_B_Micro USB_B_Micro B240 VBUS_USB _VBUS_USB_GPS GND -⊲STM_D_P ⊸GPS_D_P -⊲STM_D_N ⊸⊒GPS_D_N D105 D106 TPD2E001DZDR TPD2E001DZDR GND GND U104 GPS USB_3v3 supply AP2210K-3.3TRG1 VBUS_USB_GPS GPS_USB_3V3 - C112 10u 100p GND GND GND Coin Cell Backup Battery R101 D107 B240 10144830-10102LF + BT101 Battery_Cell 10u _ Charlie Gilliland GND UM NCPA Sheet: /USB_PWR/ File: USB_PWR.kicad_sch Title: USB & Power Size: USLetter Date: 2023-02-01 Rev: 1

KiCad E.D.A. kicad (6.0.0-0)

ld: 2/6

24MHz Oscillator +3V3 +3V3 Λ `X201 +3V3 ▼ ECS-2520MV-480-BN _ C202L C203L C204 ∿0 5 **_** C207<u>×1</u> 0.1u 0.1u 0.1u ± C207 0.1u Tri-State OUT S For Bootloader recovery, short BOOTO (TP201) to 3v3 GND GND $^{+}$ NRST GND NRST PA0 14 -⊲STM_MCLK2 O TP201 PA1 15 TestPoint _ C205 PA2 16 воото -⊲STM_RX R203 VCAP 30 10k C206 4u7 0.1u -⊲STM_FSYNC_IN PA4 20 VCAP_1 PA5 21 Pixhawk "Safety Switch" Connector (Hirose DF13-3P-1.25DSA) PA6 22 Internal pull—down resistor on BUTTON Open drain on LED (drive LOW for LED ON) PA7 GND PA8 41 PA9 42 PA10 43 +3V3 OSC_IN_48_ PA11 44 5 PH0 -⊲STM_D_N J202 R202 PA12 45 ×⁶ PH1 -dSTM_D_P Conn_01<u>x0</u>3_Male SDWIO 100R PA13 46 LED _ _SWCLK SD_CMDD-PA14 BUTTON PA15 50 —⊲SD_DET 8 PC0 PB0 26 PC1 PB1 27 10 _{PC2} 11 PC3

-⊲STM_SDATA_IN

MODE_SEL

_LED

BUTTON

_STM_TX2

PB7 59 STM_RX2

PB2 PB3 55

PB4 56 PB5 57

PB6 58

PB8 61

PB9 62

PB10 29

PB12 33

PB13 34

PB15 36

STM32F446RETx

PB14

U201

25 _{PC5}

38 _{PC7}

40 PC9

51 _{PC10}

52 PC11

53 PC12

2 PC13

PC14

PC15

GND

PC6

STM_PPSD-

SD_DATOD-

SD_DAT1D-

SD_DAT2D-

SD_DAT3D-

SD_CLKD-

STM_FSYNC_OUTD-

Charlie Gilliland UM NCPA Sheet: /STM32F446/ File: STM32F446.kicad_sch Title: STM32F446 Size: USLetter Date: 2023-02-01 Rev: 1 KiCad E.D.A. kicad (6.0.0-0) ld: 3/6

