Team ID: 3

Team Name: Bayes and Bert Text Source Detectors

Comparison of Multinomial Naïve Bayes and BERT in Detecting Human vs. Machine-Generated Text

Abstract

This project compares Multinomial Naïve Bayes (MNB) and BERT-based models (including DistilBERT) for detecting human vs. machine-generated text using the SemEval Task 8 and GenAl datasets. The task is complex, requiring models to identify nuanced features between human and machine text. Evaluation focuses on accuracy, precision, recall, and F1-score. Results show that BERT-based models outperform MNB, though MNB still captures some patterns effectively. DistilBERT offers a more efficient alternative to BERT. Hyperparameter tuning plays a critical role in optimizing performance.

Goal of the Project

- Compare Multinomial Naïve Bayes (MNB) and BERT-based models (including DistilBERT) for detecting human vs. machine-generated text using SemEval Task 8 and GenAl datasets.
- Through comparison, understand the complexity of detecting nuanced features in machine-generated text.
- Understand each model's strengths and weaknesses.
- Assess the impact of hyperparameters on model performance.
- Compare performance across key metrics like accuracy, precision, recall, and F1-score.

Methodology

1. Data Preprocessing:

- Loaded SemEval and GenAl datasets; labeled Human (0), Machine (1).
- Stratified GenAl split: 90% train, 10% test; BERT: small subset for validation.
- BERT/DistilBERT: Preprocessed with BERT tokenizer, max length = 128, padding/truncation applied.
- MNB: Lowercasing, whitespace handling, punctuation, number, stopword removal, tokenising based on spaces for vocabulary building and likelihood calculations.

2. Model Implementation:

- Built binary classifiers with PyTorch for MNB, BERT and DistilBERT.
- DistilBERT: Smaller BERT variant with fewer layers, no NSP pre-training, and knowledge distillation.
- Initial hyperparameters:
 - BERT: Batch size = 16, Learning rate = 2×10^{-5} , Epochs = 4.
 - DistilBERT: Batch size = 16, Learning rate = 2×10^{-5} , Epochs = 5.
 - MNB: Smoothing factor = 0.2

3. Model Training:

- Fine-tuned on SemEval and GenAl datasets.
- Hyperparameter tuning for BERT/DistilBERT:
 - Batch size: 16, 64.
 - Learning rate: 2×10^{-5} to 1×10^{-4} .
- **Epochs: 4, 5.**
- Smoothing factor varied as part of hyperparameter tuning for MNB [0.1, 0.2, 0.5, 1.0, 2.0, 3.0]
- Best settings: For MNB based on smoothing factors SemEval: 0.5, GenAl: 3.0; For BERT models: Batch size = 16, Learning rate = 2×10^{-5} ; BERT: 3 epochs, DistilBERT: 4 epochs

4. Evaluation:

- Tested on GenAI and SemEval sets.
- Metrics: Accuracy, precision, recall, F1-score. Training time included for BERT vs. DistilBERT. MNB has comparatively much lesser training time.

Results

Figure 1. Hyperparameter Tuning and Training Time Comparison Results.

Results

Table 1. Performance Comparison Across Models and Datasets

Model	Dataset	Accuracy %	Precision %	Recall %	F1-score %
BERT	Train (SemEval)	94.51	90.38	98.87	94.44
	Train (GenAI)	97.39	96.05	99.94	97.96
	Validation (SemEval)	94.52	90.21	99.88	94.80
	Validation (GenAI)	93.56	91.25	99.20	95.06
	Test (SemEval)	52.77	52.65	99.99	68.98
	Test (GenAI)	93.56	91.27	99.19	95.06
DistilBERT	Train (SemEval)	94.22	89.65	99.19	94.18
	Train (GenAI)	97.81	96.66	99.95	98.28
	Validation (SemEval)	93.62	88.74	99.92	94.00
	Validation (GenAI)	93.78	91.58	99.16	95.22
	Test (SemEval)	52.85	52.70	99.97	69.01
	Test (GenAI)	93.95	91.79	99.20	95.35
MNB	Train (SemEval)	72.14	72.69	72.14	72.14
	Train (GenAI)	74.34	76.56	74.34	74.73
	Validation (SemEval)	51.44	51.44	51.44	51.40
	Validation (GenAI)	69.52	71.92	69.52	69.99
	Test (SemEval)	84.13	84.80	84.13	84.12
	Test (GenAI)	69.43	71.83	69.43	69.91

Analysis

Performance Metrics:

- **BERT/DistilBERT:** High accuracy (94%-98%), precision (91%-96%), and recall (99%) due to contextualized embeddings.
- MNB: Strong on SemEval Test set (84.13%) but weaker elsewhere (51.44%), with lower precision (76%) but reasonable recall (84%).

Generalization:

- **BERT/DistilBERT:** Generalized well, except on SemEval Test, where high recall led to misclassifications with potential overfitting with GenAl.
- MNB: Stable generalization (69%-84%), capturing basic text patterns effectively.

Efficiency:

- **BERT:** High accuracy but slow (5 hours/epoch).
- DistilBERT: Faster (1.5-2.5 hours/epoch), nearly as effective.
- MNB: Extremely fast (in minutes), suitable for quick results in resource-limited settings.

Conclusion:

- **BERT/DistilBERT:** Ideal for nuanced, high-accuracy tasks, leveraging pre-trained contextual embeddings to capture subtle linguistic differences; DistilBERT offers faster, more efficient performance.
- MNB: Performed well but fell short of BERT in capturing complex patterns. Likely succeeded due to predictable LLM outputs (e.g., repetition, low entropy). A solid baseline for simpler tasks.

Limitations and Future Work

What would we change?

- Simplify fine-tuning with BertForSequenceClassification.
- Explore other transformer or simpler models beyond BERT and MNB.
- Further tune learning rate, batch size, sequence length, epochs, and regularization.
- Experiment with skip gram models instead of just CBOW for MNB.

• What simplifications did we assume?

- Assumed 128 tokens were sufficient.
- Underestimated resources for large GenAI data.
- Did not consider the impact of data imbalance on model performance; while GenAl training was balanced, other data splits were not.
- Treated Machine text from various sources (e.g., ChatGPT, Cohere, BLOOMz) as a single unified class, overlooking source-specific nuances or biases.

• What research question would we address with more time?

- How effective are fixed BERT embeddings vs. fine-tuning for classification?
- Can smaller architectures like MobileBERT match DistilBERT's performance?
- How well does fine-tuned BERT generalize to multilingual datasets for this nuanced task?
- Understand the scope better to calculate the trade off in using a higher time consuming model like BERT vs faster models like MNB. Is the cost to the environment worth the benefits?

References

- [1] J. Shaikh, Machine learning, nlp: Text classification using scikit-learn, python and nltk, https://towardsdatascience.com/machine-learning-nlp-text-classification-using-scikit-learn-python-and-nltk-c52b92a7c73a.
- [2] H. Face, Bert, https://huggingface.co/docs/transformers/en/model_doc/bert.