Universidad Nacional Mayor de San Marcos

Universidad del Perú. Decana de América

Facultad de Ciencias Físicas

Escuela Profesional de Física

Sílabus

1. Datos generales de la asignatura

1.1	Nombre del curso	Física Computacional I (CF0305)
1.2	Pre – requisito	Matemática básica
1.3	Créditos	cuatro (04), 3 hs - teoría, 3 hs – Lab.
1.4	Profesor	Chachi Rojas Ayala
1.5	Año Académico/Semestre	2021-I (16 semanas)

2. Sumilla

El curso es una introducción a la programación científica enfocado a la resolución de problemas físicas. Esto incluye procesamiento de datos, metodologías y técnicas en la creación, desarrollo de algoritmos y su codificación en el lenguaje Fortran. Componentes de un programa. Estructuras de control selectivas. Estructuras de control repetitivas. Arreglos: Unidimensionales y multidimensionales. Arreglos. Funciones creadas y definidas por el usuario. Formatos. Archivos y tipos de archivos.

3. OBJETIVOS

Al finalizar el curso el estudiante será capaz de analizar y aplicar la metodología de la programación (estructurada y modular) mediante técnicas algorítmicas que son el fundamento para solución de problemas utilizando un Lenguaje de Programación.

4. PROGRAMA DE LA ASIGNATURA

Semana	Tema
01	Introducción . La computadora como herramienta del físico. La simulación computacional y su relación con la física teórica y la física experimental. Herramientas de computación.
02	Conceptos básicos . Lenguaje de programación, código fuente, pseudocódigo, Compiladores, Lenguaje FORTRAN y sus versiones.
03	Instrucciones básicas. Variables y tipos de datos, identificadores constantes y variables. Programas secuenciales. Ejemplos.
04	Operaciones elementales . Instrucciones básicas de lectura y escritura de datos.
05	Estructuras de control 1. Condicional. La estructura Si-Entonces. Ejemplos. Estructura selectiva anidada. Estructura selectiva múltiple

UNMSM 1

Semana	Tema
06	Estructuras de control 2: Repetitivas o Iterativa Ejemplos incluyendo estructuras anteriores
07	Estructuras de control anidadas Reforzamiento de las estructuras de control anteriores Ejemplos combinados con todas las estructuras
08	Primer Examen Parcial (E1)
09	Funciones Definición, variables globales y locales. Ejemplos
10	Subrutinas. Definición ,variables globales y locales. Ejemplos combinados
11	Estructuras básicas: arreglo unidimensional Definición, características. acceso, operaciones básicas. ejemplos
12	Estructuras básicas : arreglo multidimensional. Definición, características. acceso, operaciones. Ejemplos
13	Formatos Definición, formatos de escritura y lectura. Ejemplos.
14	Archivos . Definición, características, tipos. Acceso. Ejemplos. Practica: aplicación.
15	Temas finales. Exposición de proyectos.
16	Segundo Examen Parcial (E2)

5. EVALUACIÓN

La nota final (nota promocional mínima es 10.5) se obtendrá de la siguiente relación: NF = (E1 + E2 + P) / 3, donde E1 y E2 corresponde a los exámenes parciales y P al promedio de los trabajos de prácticas (+proyecto) e intervenciones.

6. BIBLIOGRAFÍA

- **Ian D. Chivers and Jane Sleightholme,** Introduction to Programming with Fortran, 2006 Springer-Verlag London Limited.
- Michael Metcalf, John Reid and Malcolm Cohen, Modern Fortran Explained (Numerical Mathematics and Scientific Computation) 4th Ed. 2011 Oxford University Press.
- **Kerlin Henney,** 97 Things Every Programmer Should Know, 2010, O'Reilly Media, Inc.
- **Donald E. Knuth,** The art of computer programming. 3ra ed. 1997 Adison Wesley Longman.

Lima, mayo del 2021

UNMSM 2