### Algoritmos para estatísticas de ordem

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br





"A maioria das pessoas usa estatísticas como um bêbado usa um poste de luz; mais para apoio do que para iluminação."

Andrew Lang.

# ESTATÍSTICAS DE ORDEM



### Estatísticas de ordem

Estamos interessados no seguinte problema

### Problema (Problema da seleção)

Entrada: Um vetor A com n números reais e um inteiro i.

**Saída:** O i-ésimo menor elemento de A.

### Casos particulares importantes:

- Mínimo: i = 1.
- Máximo: i = n.
- ▶ Mediana:  $i = \lfloor \frac{n+1}{2} \rfloor$  (mediana inferior).
- ▶ Mediana:  $i = \left\lceil \frac{n+1}{2} \right\rceil$  (mediana superior).

# MÍNIMO E MÁXIMO



### Mínimo

### **Algoritmo:** MÍNIMO(A, n)

```
\begin{array}{c|cccc} \mathbf{1} & \mathsf{m\'nimo} \leftarrow A[1] \\ \mathbf{2} & \mathsf{para} \ j \leftarrow 2 \ \mathsf{at\'e} \ n \\ \mathbf{3} & \mathsf{se} \ \mathsf{m\'nimo} > A[j] \\ \mathbf{4} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array}
```

5 devolva mínimo

### Análise:

- Realiza n-1 comparações.
- É possível fazer menos? Não. Como provar?



### Cota inferior para problema do mínimo

### Problema

**Entrada:** Um vetor A[1...n]. **Saída:** O menor elemento de A.

O algoritmo trivial executa n-1 comparações:

- É o melhor algoritmo baseado em comparações.
- Para ver isso, vamos investigar um algoritmo **genérico**.



### Algoritmo genérico para o problema do mínimo

Para um algoritmo, defina uma coleção  ${\cal A}$  de pares (i,j)

- ▶ Um par (i,j) representa uma  $A[i] \ge A[j]$ .
- Dizemos que *i* perdeu a disputa.
- Adicionamos um par para cada comparação executada.

```
Algoritmo: MÍNIMO(A, n)
```

```
1 \mathcal{A} \leftarrow \emptyset

2 enquanto o algoritmo não encontrou o mínimo

3 | escolha índices i e j em \{1, \ldots, n\}, que Alg compara

4 | se A[i] \geq A[j]

5 | \mathcal{A} \leftarrow \mathcal{A} \cup \{(i, j)\}

6 | senão

7 | \mathcal{A} \leftarrow \mathcal{A} \cup \{(j, i)\}
```

8 devolva o mínimo encontrado



### Cota inferior para problema do mínimo

### Considere a coleção de pares A:

- O mínimo nunca perde uma disputa.
- Cada um dos outros deve perder pelo menos uma vez.
- Assim A tem pelo menos n-1 pares.

### Concluímos:

- Todo algoritmo para o problema do mínimo baseado em comparações executa **pelo menos** n-1 comparações.
- O algoritmo trivial dado é ótimo.



### Mínimo e máximo

### **Algoritmo:** MIN-MAX(A, n)

```
1 mínimo \leftarrow máximo \leftarrow A[1]
2 para j \leftarrow 2 até n
3 | se A[j] < mínimo \leftarrow A[j]
```

se A[j] > máximo

 $\mathsf{m\acute{a}ximo} \leftarrow A[j]$ 

### 7 devolva (mínimo, máximo)

### Análise:

5

- ▶ Realiza 2(n-1) comparações.
- É possível fazer melhor!



### Mínimo e máximo (melhorado)

### Ideia para melhorar algoritmo:

- Inicializamos mínimo e máximo:
  - Com o primeiro elemento se *n* for ímpar.
  - Com o mínimo e o máximo dos dois primeiros se *n* for par.
- Comparamos os demais elementos em pares:
  - O menor deles com mínimo.
  - O maior deles com máximo.
- ► Fazemos 3 comparações para cada 2 elementos.

### Análise:

O número de comparações é dado por:

$$\begin{cases} 3\lfloor n/2 \rfloor & \text{se } n \text{ for impar} \\ 3(n-2)/2+1 & \text{se } n \text{ for par} \end{cases}$$

Não é possível fazer melhor (exercício).

# Problema da seleção



### Algoritmo para problema da seleção

Podemos selecionar o i-ésimo elemento ordenando o vetor.

### **Algoritmo:** SELECT-ORD(A, n, i)

- 1 ORDENE(A, n)
- 2 devolva A[i]

### Análise:

- ▶ Usamos Merge-Sort ou Heap-Sort como Ordene.
- O algoritmo realiza  $O(n \log n)$  comparações.

### É possível fazer melhor que isso?

- Achamos mínimo e máximo com O(n) comparações.
- ► Vamos tentar descobrir o *i*-ésimo em **tempo linear**.



### Relembrando particionamento

### Problema

**Entrada:** Um vetor  $A[p \dots r]$ .

**Saída:** Um índice q, com  $p \le q \le r$ , tal que

$$A[p \dots q-1] \leq A[q] < A[q+1 \dots r].$$

### Entrada:

### Saída:



### Relembrando PARTICIONE

### **Algoritmo:** Particione(A, p, r)

```
1 \ x \leftarrow A[r] \ \triangleright x \text{ \'e o piv\^o}
```

$$i \leftarrow p-1$$

3 para 
$$j \leftarrow p$$
 até  $r-1$ 

4 | se 
$$A[j] \leq x$$

$$i \leftarrow i + 1$$

$$\begin{array}{c|c} \mathbf{6} & A[i] \leftrightarrow A[j] \end{array}$$

7 
$$A[i+1] \leftrightarrow A[r]$$

8 devolva 
$$i+1$$



### Selecionando via particionamento

### Ideia:

Particionamos o vetor de forma que:

$$A[1 \dots q-1] \le A[q] < A[q+1 \dots n]$$

- Verificamos o índice q do pivô:
  - 1. Se i = q, então o i-ésimo menor é A[q]!
  - 2. Se i < q, então o i-ésimo menor está em  $A[1 \dots q 1]$ .
  - 3. Se i > q, então o i-ésimo menor está em A[q+1...n].



### Algoritmo recursivo

### Subproblema recursivo:

- A entrada é um subvetor  $A[p \dots r]$  e posição  $i = 1, 2, \dots$
- A saída é o *i-*ésimo menor valor **nesse subvetor**.

### Exemplo:

- Considere um subvetor A[9...18] e posição i = 5.
- Se A estivesse ordenado, a saída deveria ser A[13].
- Suponha que após particionar, o pivô esteja em q=11.
- A posição do pivô é k = q p + 1 = 11 9 + 1 = 3.
- Então A[q] é terceiro menor valor nesse subvetor.
- Assim, procuramos o segundo menor depois do pivô.



### Algoritmo baseado em particionamento

### **Algoritmo:** Select-NL(A, p, r, i)

- p e r são os índices de limite do vetor.
- k é a posição do pivô no vetor considerado.



### Análise do algoritmo melhorado

| -V/ |      |                                           |             |
|-----|------|-------------------------------------------|-------------|
|     | Seli | ECT- $NL(A, p, r, i)$                     | Tempo       |
| -/- | 1    | se $p = r$                                | Θ(1)        |
|     | 2    | devolva $A[p]$                            | O(1)        |
|     | 3    | $q \leftarrow \text{Particione}(A, p, r)$ | $\Theta(n)$ |
|     | 4    | $k \leftarrow q - p + 1$                  | $\Theta(1)$ |
|     | 5    | se $i = k$                                | $\Theta(1)$ |
|     | 6    | devolva A[q]                              | O(1)        |
|     | 7    | senão                                     | O(1)        |
|     | 8    | se $i < k$                                | O(1)        |
|     | 9    | devolva Select-NL $(A, p, q - 1, i)$      | T(k-1)      |
|     | 10   | senão                                     | O(1)        |
|     | 11   | devolva Select-NL $(A, q + 1, r, i - k)$  | T(n-k)      |
|     |      |                                           |             |

Seja n = r - p + 1:

- No pior caso  $T(n) = \max\{T(k-1), T(n-k)\} + \Theta(n)$ .
- ▶ Já sabemos que  $T(n) = \Theta(n^2)$ .



### Análise do algoritmo melhorado (cont)

### Comparando:

- ▶ Sabemos que SELECT-ORD gasta tempo  $O(n \log n)$ .
- ▶ Mas, no pior caso, SELECT-NL tem complexidade  $\Theta(n^2)$ .

### Seria melhor usar SELECT-ORD?

- ▶ Não, SELECT-NL é eficiente na prática.
- No caso médio, ele tem complexidade O(n).



### Versão aleatorizada

- O pior caso ocorre devido a escolhas infelizes do pivô.
- Podemos minimizar isso usando aleatoriedade.
- ▶ Vamos reutilizar Particione-Aleatorizado.

### **Algoritmo:** Particione-Aleatorizado(A, p, r)

- $1 i \leftarrow \text{RANDOM}(p, r)$
- $2 A[i] \leftrightarrow A[r]$
- 3 devolva Particione(A, p, r)



### Algoritmo aleatorizado

### **Algoritmo:** Select-Aleatorizado(A, p, r, i)

```
1 se p = r
devolva A[p]
3 q \leftarrow \text{PARTICIONE-ALEATORIZADO}(A, p, r)
4 k \leftarrow q - p + 1
5 se i = k
6 devolva A[q]
7 senão
      se i < k
8
          devolva Select-Aleatorizado(A, p, q - 1, i)
9
      senão
10
          devolva Select-Aleatorizado(A, q + 1, r, i - k)
11
```



### PARTICIONE-ALEATORIZADO devolve um pivô q aleatoriamente:

- $\triangleright$  O tamanho do subvetor  $A[p \dots q]$  pode ser  $1, 2, \dots, n$ .
- Para cada possibilidade k, defina uma variável indicadora:

$$X_k = \begin{cases} 1 & \text{se } A[p \dots q] \text{ tem exatamente } k \text{ elementos} \\ 0 & \text{caso contrário} \end{cases}$$



- Seja n = r p + 1 o tamanho do vetor de entrada.
- Podemos limitar o tempo de execução como:

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 0, 1\\ \sum_{k=1}^{n} X_k \ T(\max\{k-1, n-k\}) + \Theta(n) & \text{se } n \ge 2 \end{cases}$$

- Note que T(n) é uma variável aleatória.
- ightharpoonup Queremos calcular E[T(n)].



$$E[T(n)] \le E\left[\sum_{k=1}^{n} X_{k} T(\max\{k-1, n-k\}) + an\right]$$

$$\le \sum_{k=1}^{n} E[X_{k}] E[T(\max\{k-1, n-k\})] + an$$

$$\le \sum_{k=1}^{n} \frac{1}{n} E[T(\max\{k-1, n-k\})] + an$$

$$\le \frac{2}{n} \sum_{k=1}^{n-1} E[T(j)] + an.$$

Pois:

$$\max\{k-1, n-k\} = \begin{cases} k-1 & \text{se } k > \lceil n/2 \rceil, \\ n-k & \text{se } k \le \lceil n/2 \rceil. \end{cases}$$



Vamos demonstrar por indução que  $E[T(n)] \le cn$ 

$$E[T(n)] \le \frac{2}{n} \sum_{i=\lfloor n/2 \rfloor}^{n-1} E[T(i)] + an$$

$$\stackrel{\text{h.i.}}{\leq} \frac{2}{n} \sum_{i=\lfloor n/2 \rfloor}^{n-1} cj + an$$

$$= \frac{2c}{n} \left( \sum_{j=1}^{n-1} j - \sum_{j=1}^{\lfloor n/2 \rfloor - 1} j \right) + an$$

$$=\frac{2c}{n}\left(\frac{(n-1)n}{2}-\frac{(\lfloor n/2\rfloor-1)\lfloor n/2\rfloor}{2}\right)+an.$$



$$E[T(n)] \le \frac{2c}{n} \left( \frac{(n-1)n}{2} - \frac{(\lfloor n/2 \rfloor - 1)\lfloor n/2 \rfloor}{2} \right) + an$$

$$\le \frac{2c}{n} \left( \frac{(n-1)n}{2} - \frac{(n/2-2)(n/2-1)}{2} \right) + an$$

$$= \frac{c}{n} \left( \frac{3n^2}{4} + \frac{n}{2} - 2 \right) + an$$

$$\le \frac{3cn}{4} + \frac{c}{2} + an$$

$$= cn - \left( \frac{cn}{4} - \frac{c}{2} - an \right) \le cn.$$

Se c > 4a e  $n \ge 2c/(c - 4a)$ .

# Algoritmo linear



### Algoritmo linear para seleção

Veremos um algoritmo linear para o problema da seleção.

- Chamaremos de algoritmo BFPRT.
- Os autores Blum, Floyd, Pratt, Rivest e Tarjan.
- ▶ Vamos supor que os elementos em *A* são distintos.



1. Divida os n elementos em  $\lfloor \frac{n}{5} \rfloor$  subconjuntos de 5 elementos e um subconjunto de n mod 5 elementos.

| 1 | • | • |   | • | • | • | <br>• | • |   |
|---|---|---|---|---|---|---|-------|---|---|
| 2 | • | • | \ | • | • | • | <br>• | • |   |
|   | • | • |   | • | • | • | <br>• | • | n |
|   | • | • |   | • | • | • | <br>• |   |   |
|   | • | • |   | • | • | • | <br>• |   |   |

2. Encontre a mediana de cada um dos  $\lceil \frac{n}{5} \rceil$  subconjuntos.





3. Determine, recursivamente, a **mediana das medianas x** dos subconjuntos de no máximo 5 elementos.



Note que o algoritmo não ordena as medianas!



- 4. Usando x como pivô, particione o conjunto original A criando dois subconjuntos A e A, em que:
  - ► A contém os elementos menores que x.
  - A> contém os elementos maiores que x.

Se a posição final de  $\mathbf{x}$  após o particionamento for k, então

$$|\mathbf{A}_{<}| = k - 1$$
 e  $|\mathbf{A}_{>}| = n - k$ .



- 5. Finalmente, para encontrar o *i*-ésimo menor elemento do conjunto, compare *i* com a posição *k* de **x** após o particionamento:
  - Se i = k, o elemento procurado é **x**.
  - Se i < k, procure recursivamente o i-ésimo de  $A_{<}$ .
  - Se i > k, procure recursivamente o (i k)-ésimo de  $A_>$ .



Seja T(n) a complexidade de tempo no pior caso:

| 1. Divisão em subconjuntos de 5 elementos. | $\Theta(n)$ |
|--------------------------------------------|-------------|
|--------------------------------------------|-------------|

2. Encontrar a mediana de cada subconjunto. 
$$\Theta(n)$$

3. Encontrar 
$$x$$
, a mediana das medianas.  $T(\lceil n/5 \rceil)$ 

4. Particionamento com pivô 
$$x$$
.  $O(n)$ 

5. Encontrar o *i*-ésimo menor de 
$$A_{<}$$
,  $T(k-1)$  ou encontrar o  $i-k$ -ésimo menor de  $A_{>}$ .  $T(n-k)$ 

Obtemos a recorrência para o pior caso:

$$T(n) = T(\lceil n/5 \rceil) + T(\max\{k-1, n-k\}) + \Theta(n).$$



O diagrama abaixo classifica os elementos da última figura.

Podemos contar o número de elementos maiores que x:

- ► Contém pelo menos os triângulos △ da figura.
- ► Há no mínimo  $\frac{3n}{10}$  6 tantos elementos:
  - ► Há  $\left\lceil \frac{1}{2} \left\lceil \frac{n}{5} \right\rceil \right\rceil$  grupos com 3 elementos maiores que **x**.
  - Exceto talvez o último e o que contém x.
  - Assim o número de elementos é:  $3\left(\left\lceil \frac{1}{2} \left\lceil \frac{n}{5} \right\rceil \right\rceil 2\right) \ge \frac{3n}{10} 6$ .



Repetindo o argumento para os quadrados □:

- ► Há pelo menos  $\frac{3n}{10}$  6 elementos menores que x.
- Portanto.

$$\max\{k-1, n-k\} \le n - \left(\frac{3n}{10} - 6\right) \le \frac{7n}{10} + 6.$$

Encontramos uma recorrência limitada por:

$$T(n) \leq \begin{cases} \Theta(1) & n \leq 140, \\ T(\lceil n/5 \rceil) + T(\lfloor 7n/10 \rfloor + 6) + \Theta(n) & n > 140. \end{cases}$$

- O limiar 140 foi escolhido para as contas funcionarem.
- A solução da recorrência é  $T(n) \in \Theta(n)$ .



Vamos demonstrar por indução que  $T(n) \le cn$ :

$$T(n) \le T(\lceil n/5 \rceil) + T(\lfloor 7n/10 \rfloor + 6) + an$$

h.i.
 $\le c \lceil n/5 \rceil + c(\lfloor 7n/10 \rfloor + 6) + an$ 
 $\le c(n/5 + 1) + c(7n/10 + 6) + an$ 
 $= 9cn/10 + 7c + an$ 
 $= cn + (-cn/10 + 7c + an).$ 



Queremos obter a desigualdade:

$$T(n) = cn + (-cn/10 + 7c + an)$$
  
 $\leq cn.$ 

- Para isso, queremos  $(-cn/10 + 7c + an) \le 0$ .
- lsolando c, vemos que é equivalente a  $c \ge 10an/(n-70)$ .
- Note que  $n/(n-70) \le 2$  justamente para  $n \ge 140$ .
- Portanto, para  $n \ge 140$  basta escolher  $c \ge 20a$ .



### Pseudocódigo do algoritmo BFPRT

### **Algoritmo:** SELECT-BFPRT(A, p, r, i)

- Essa versão devolve o índice do elemento, NÃO o valor.
- ► Usaremos o índice em PARTICIONE-BEPRT



### Pseudocódigo do particionamento de BFPRT

### **Algoritmo:** Particione-BFPRT(A, p, r)

```
1 \ell \leftarrow p, j \leftarrow p

2 enquanto j + 4 < r

3 | ORDENE(A, j, j + 4)

4 | A[\ell] \leftrightarrow A[j + 2]

5 | j \leftarrow j + 5, \ell \leftarrow \ell + 1

6 ORDENE(A, j, r)

7 A[\ell] \leftrightarrow A[\lfloor (j + r)/2 \rfloor]

8 m \leftarrow \ell - p + 1

9 k \leftarrow \text{SELECT-BFPRT}(A, p, \ell, \lfloor m/2 \rfloor)

10 A[k] \leftrightarrow A[r]

11 devolva Particione(A, p, r)
```

- O índice *j* marca o início de cada grupo de 5 elementos.
- ▶ O índice ℓ indexa as medianas dos grupos.
- As medianas são colocadas no começo do vetor (linhas 4 e 7).
- Na linha 9, descobrimos o índice da mediana das medianas.
- Na linha 11 particionamos com essa mediana.

### Algoritmos para estatísticas de ordem

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br



