Vehicle Dynamics and Simulation

Dr B Mason

Torque Generation

Intake manifold

- Can be represented as open system of constant volume.
- System stores mass and energy, represented by state variables P and T.

$$\frac{dm}{dt} = \dot{m}_{in} - \dot{m}_{out} \tag{1}$$

Energy balance;

$$\frac{dE}{dt} = \dot{m}_{in} h_{0_{in}} - \dot{m}_{out} h_{0_{out}} + \dot{Q}$$
 (2)

Where;

$$h_0 = C_p T + \frac{u^2}{2}$$

And the energy within the volume is;

$$E = mc_v T + \frac{mu^2}{2} + mgz$$

Intake manifold

- Making some assumptions
 - GPE change is 0
 - KE change is 0
- So that;

$$E = mc_{v}T$$

$$h_{0} = c_{p}T \qquad (3)$$

Taking the derivative wrt to t;

$$\frac{dE}{dt} = c_v T \frac{dm}{dt} + c_v m \frac{dT}{dt} \tag{4}$$

And by substitution (1, 3, 4 into 2);

$$c_v T(\dot{m}_{in} - \dot{m}_{out}) + c_v m \frac{dT}{dt} = \dot{m}_{in} C_p T_{in} - \dot{m}_{out} c_p T_{out} + \dot{Q}$$

(5)

Intake manifold

Coupling the energy and mass balances using the ideal gas law;

$$m = \frac{PV}{RT} \tag{6}$$

Taking the derivative;

$$\frac{dm}{dt} = \frac{V}{RT} \frac{dP}{dt} - \frac{PV}{RT^2} \frac{dT}{dt} \tag{7}$$

• Substituting (1, 6 and 7 into 5) and assuming $T_{out} = T$;

$$\frac{dT}{dt} = \left[c_p \dot{m}_{in} T_{in} - c_p \dot{m}_{out} T - c_v T \dot{m}_{in} + \frac{dQ}{dt}\right] \frac{RT}{c_v PV}$$

$$\frac{dP}{dt} = \left[c_p \dot{m}_{in} T_{in} - c_p \dot{m}_{out} T + \frac{dQ}{dt}\right] \frac{R}{c_p V}$$

$$\frac{dQ}{dt} = hA_{wall}(T_{wall} - T) \tag{7}$$

(8)

(9)

Torque model

- Torque produced is a function of;
 - Spark advance
 - Inducted air mass flow
 - AFR
- Data is usually obtained experimentally and incorporated within a regression model.
- Friction torque is deducted (imep bmep) to establish output torque.
- Fmep is calculated;

$$fmep = 0.97 + 0.15 \left(\frac{N}{1000}\right) + 0.05 \left(\frac{N}{1000}\right)^2$$

And;

$$T_f = \frac{fmepV_{sw}}{4\pi} = \frac{0.97 + 0.15\left(\frac{N}{1000}\right) + 0.05\left(\frac{N}{1000}\right)^2 V_{sw}}{4\pi}$$

Parameterisation effort

- Model has 5 unknown parameters, C_d , η_{vol} , h, V and V_{disp} .
- With $\eta_{vol} = f(P, T, N, IVO, EVC)$
- η_{vol} is obtained by experiment at some P, T, N, IVO, EVC. Recall;

$$\eta = \frac{120m_{actual}}{\rho V_{disp} N_{eng}}$$

- C_d is also experimentally obtained (usually on flow rigs)
- Obtaining h in reality is very difficult and this is normally one of the tuned parameters.
- V and V_{disp} are obtained relatively easily but can also be used to tune the model response to match reality.

Other considerations

- Adding a turbocharger complicates matters significantly and introduces a causality loop.
 - The loop is normally broken by a delay.
- Heat transfer from the exhaust manifold has a significant effect on the turbo performance.
- Errors in the 'turbo loop' are accumulated within the loop.
- Each additional volume adds two model states (T and P) increasing significantly the computational burden.
- Volumes of very different sizes result in stiff models i.e. slow and fast dynamics.

Engine Timing Model with Closed-Loop Control

Copyright 1990-2012 The Math Works, Inc.

Throttle

Intake Manifold

Torque Generation

