PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-122212

(43) Date of publication of application: 30.04.1999

(51)Int.CI.

H04J 13/00 H04B 7/26

(21)Application number: 09-277180

(71)Applicant: OKI ELECTRIC IND CO LTD

(22)Date of filing:

09.10.1997

(72)Inventor: SHIRAKI YUICHI

YAMANO CHIHARU

(54) SIR ESTIMATION METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a device which executes more suitable transmission power control without depending on the speed of fading fluctuation by forming one tine-sequential signal with a known signal in a prescribed period and a previous known signal, linearly predicting and analyzing the time-sequential signal, calculating the average power of the signal in the prescribed period and setting it as the average reception power of a desired signal component.

SOLUTION: The reception signal received by a reception antenna 21 is converted into the signal of a diffusion band by a high frequency part 22 and is decoded as a bas band signal by inverse diffusion parts 31–33. Decoded outputs from the inverse diffusion parts 31–38 are respectively inputted to transmission line prediction parts 41–43 and intra–slot interference noise power calculation part 60. A signal power calculation part 50 calculates a signal power estimation value by using transmission line prediction values outputted from the

transmission line prediction parts 41-43. The intra-slot interference noise power calculation part 60 calculates interference noise power in a slot and the output is inputted to an inter-slot average interference noise power calculation part 70. Then, a final interference noise power estimation value is calculated.

LEGAL STATUS

[Date of request for examination]

09.02.2001

[Date of sending the examiner's decision of

19.11.2002

rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-122212

(43)公開日 平成11年(1999)4月30日

識別記号

H 0 4 J 13/00 H 0 4 B 7/26 FΙ

H 0 4 J 13/00 H 0 4 B 7/26 A K

審査請求 未請求 請求項の数1 OL (全 6 頁)

(21)	HIE	引 丞 日	

(22)出願日

特願平9-277180

平成9年(1997)10月9日

(71)出願人 000000295

沖電気工業株式会社

東京都港区虎ノ門1丁目7番12号

(72)発明者 白木 裕一

東京都港区虎ノ門1丁目7番12号 沖電気

工業株式会社内

(72)発明者 山野 千晴

東京都港区虎ノ門1丁目7番12号 沖電気

工業株式会社内

(74)代理人 弁理士 佐々木 宗治 (外3名)

(54) 【発明の名称】 SIR推定方法

(57)【要約】

【課題】 フェージングの変動の速さによらず、より好適な送信電力制御を行うのに適したSIR推定方法を得る。

【解決手段】 移動局から所定の周期間隔で既知の信号を含んだ信号が送信され、その受信信号に含まれる所望の信号成分の電力とそれ以外の干渉雑音信号との比を求める。そして、所望の信号成分の電力を求める際に、信号電力算出部50は、所定の周期内の既知の信号とそれ以前の既知信号とで1つの時系列信号を形成し、この時間系列信号を線形予測分析して所定の周期内の信号の平均電力を算出し、その平均電力を所望の信号成分の平均受信電力とする。

10

【特許請求の範囲】

【請求項1】 移動局から所定の周期間隔で既知の信号 を含んだ信号が送信され、その受信信号に含まれる所望 の信号成分の電力とそれ以外の干渉雑音信号との比を求 めるSIR推定方法において、

所定の周期内の所望の信号成分の平均受信電力を求める 際に、前記所定の周期内の既知の信号とそれ以前の既知 信号とで1つの時系列信号を形成し、この時間系列信号 を線形予測分析して前記所定の周期内の信号の平均電力 を算出し、その平均電力を前記所望の信号成分の平均受 信電力とすることを特徴とするSIR推定方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、移動無線通信、特 に符号分割多重通信システム(CDMA)における送信 電力制御のために用いられる、所望の信号成分の電力と それ以外の干渉雑音信号との比(SIR)の推定方法に 関するものである。

[0002]

【従来の技術】従来、このような技術としては、例えば 20 次の文献に記載されたものがある。

文献:「DC-CDMAの適応送信電力制御におけるS IR測定法の検討」清尾 俊輔等1996年電子情報通 信学会ソサイエティ大会B-330

【0003】CDMAにおいては、各移動局は同じ周波 数帯域を共有して使用し、その代わりに、各移動局から の送信信号は、各移動局に固有に割り当てられた拡散符 号により識別される。この場合、各移動局の通話品質が 同一、公平であるためには、基地局での所望局の受信電 力 (所望の信号成分の電力) とその他の局から被る干渉 電力の比(それ以外の干渉雑音信号)との比(SIR) が一定、同一であることが必要である。上記の文献では このような目的で用いるSIR推定方法について提案さ れている。

【0004】図2はそのSIR推定方法が適用された基 地局の機能プロック図である。移動局からの送信信号は 送受信アンテナ10にて受信され、そして、高周波増幅 器11にて拡散帯域の信号に変換される。移動局からの 送信信号には一定の周期(Tp)で既知の符号であるパ イロット信号が挿入されており、RAKE受信部12は 送受信アンテナ10の受信信号の逆拡散と合成の処理を 行い、スロット内信号電力算出部13は、RAKE受信 部12の出力信号の内、スロット内のパイロット信号を 用いて信号電力を推定する。同様にして干渉雑音も、ス ロット内干渉雑音電力算出部14においてスロット内の 信号を用いて、その分散により算出される。ここで干渉 雑音に関しては、更に、スロット間平均干渉雑音電力算 出部15において長時間の平均的干渉雑音を算出してい る。しかし、信号電力については瞬時瞬時の電力変動の 観測が重要となるため、スロット内信号電力算出部13 50 1~33からの復号出力を d (i, k) とする。ここで i は

は1スロット内での観測を行っている。

[0005]

【発明が解決しようとする課題】しかし、上記の推定方 法では、信号電力の算出に際して、スロット内の受信電 力の算出精度をあげるには、より長い算出区間(スロッ ト全体)が好ましいが、一方、そうすることにより演算 遅延が生じてしまい、フェージング変動が激しいときに は送信電力の制御精度が劣化してしまい、フェージング 変動の速さによって好適なSIR算出方法が異なってし まうと言う問題点があった。即ち、これはは、信号電力 の算出を現在のスロットの受信電力により行おうとする ことから必然的に起こるトレードオフに起因して発生す る問題点である。

【0006】このようなことから、フェージング変動の 速さに依存せずに、より好適な送信電力制御を行うのに 適したSIR推進方法の開発が望まれていた。

[0007]

【課題を解決するための手段】本発明に係るSIR推定 方法は、移動局から所定の周期間隔で既知の信号を含ん だ信号が送信され、その受信信号に含まれる所望の信号 成分の電力とそれ以外の干渉雑音信号との比を求めるS IR推定方法において、所定の周期内の所望の信号成分 の平均受信電力を求める際に、所定の周期内の既知の信 号とそれ以前の既知信号とで1つの時系列信号を形成 し、この時間系列信号を線形予測分析して所定の周期内 の信号の平均電力を算出し、その平均電力を所望の信号 成分の平均受信電力とするものである。このため、所望 の信号成分の平均受信電力を算出するための演算遅延が 無くなり、その所定の周期における信号電力の制御が遅 延を伴わず実行できることになる。

[0008]

【発明の実施の形態】図1は本発明の一実施形態に係る SIR推定方法が適用された基地局の機能ブロック図で ある。受信アンテナ21により受信された受信信号は、 高周波部22により拡散帯域の信号に変換されて、逆拡 散部31~33によりベースバンド信号として復号され る。逆拡散部31~33からの復号出力は、伝搬路予測 部41~43及びスロット内干渉雑音電力算出部60~ それぞれ入力される。信号電力算出部50は、伝搬路予 測部41~43からそれぞれ出力される伝搬路予測値を 用いて信号電力推定値を演算する。スロット内干渉雑音 電力算出60はスロット内の干渉雑音電力を算出し、そ の出力は、スロット間平均干渉雑音電力算出部70に入 力されて、最終的な干渉雑音電力推定値が算出される。 【0009】次に、本実施形態の詳細を説明する。逆拡 散部31~33は、伝搬路で生じる複数の遅延波の持つ 遅延に応じた遅延で拡散符号を遅らせて逆拡散する機能 をもつものであり、本実施形態においては遅延波が3つ ある場合を示している (k=1, 2, 3)。 逆拡散部 3

第i番目の復号信号を表わし、kは第k番目の逆拡散部 を表わすものとする。

【0010】伝搬路予測部41~43は、各遅延波が無 線伝搬路で受ける振幅変化と位相変化を推定するもので ある。本実施形態においては、予め定められた既知の符 号 (パイロット信号) が送信信号の中に挿入されている 場合を想定する。既知符号の挿入間隔をTslot とし、こ の周期間隔内の最初に挿入されているとする。送信符号*

$$a(0,k) = \sum_{i=1}^{n} d(i,k)$$

*長をTdとして、Tslot =M・Tdとし、M個の内、最 初のm個が既知の符号であるとする(ここでは、m=1 とする)。そして、現在の送信電力制御周期(スロッ ト)を第0番目の制御周期とする。まず、この制御周期 内の最初のm個の符号の複素包絡の平均値 a (0,k) を次 式により算出する。

[0011]

【数1】

... (1)

【0012】もし、次の制御周期(スロット)に対して 同様な値がえられたとすると、第0番目の平均複素包絡※

 $A(0, k) = (1/2) \{a(0, k) + a(1, k)\}$

実際にこの a (1,k) を算出してしまうと、制御遅延をも たらしてしまう。そこで、a(0,k)の算出と同様の処理 がこれまでの制御周期で行うことが出来るので、これら の過去の制御周期内の複素包絡 a(i,k) を用いて、a (1,k) を以下のようにして予測する (予測値をa'(1, k) と記す。)。この予測には線形予測分析に基づく手 ★20

※A(0,k) に対しては次式のような近似が考えられる。 【数2】

★法を用いる。線形予測は、過去のデータが隣接するデー タとどのような関連をもっていたかを分析し、その関係 を将来の値の適用するものである。その算出を次式に示

... (2)

[0013]

【数3】

$$\mathbf{a}'(1,k) = \sum_{j=1}^{p} w(j,k) \cdot \mathbf{a}(1-j,k)$$

... (3)

... (4)

【0014】Pは予測次数、w(j,k) は予測係数であ る。予測係数の算出はPeを予測誤差として以下の式か☆

【数4】 $W = R^{-1} \cdot E$

☆ら求められる。

ここで、W= (1, w(1), w(2), …, w(p)), E = (Pe, 0, 0, …0), Rは行列で、そのm行n列

の値 r (m, n) は、

◆ [0015] 【数5】

$$r(m,n) = \sum_{i=0}^{L-1} a(-i+m,k) \cdot a(-i+n,k)^{\bullet}$$
 ... (5)

【0016】で算出される(*は複素共役を示す)。こ こでLは分析に用いるa(i,k) の数である。(4) 式の 求解は既に知られている方法(レビンソンーダービン法 や最大エントロピー法など)で効率的に算出できる。 * *【0017】以上のようにしてa'(1,k)が求められる と、第0番目の平均複素包絡A(0,k) が算出可能とな る。

【数 6】

$$A(0,k) = (1/2) \{a(0,k) + a'(1,k)\}$$
 ... (6)

受信電力算出部50では、A(0,k) を用いて現在の制御 **%**[0018] 周期 (スロット) の信号電力推定値 p (0) を次式によ 【数7】 り算出する。

$$\mathbf{p}(0) = \sum_{k=1}^{3} A(0,k) \cdot A(0,k)^{*} \qquad \cdots (7)$$

【0019】スロット内干渉雑音電力算出部60では、 まず、現在の制御周期(スロット)内のm個の既知の符 号の合成値 d sum(i)を算出し、その合成値の分散 P n

(0) を計算する。

[0020]

【数8】

$$P n(0) = \sum_{i=1}^{n} (d sum (i) - D sum)^{i}$$

$$D sum = \sum_{i=1}^{m} d sum(i)$$

$$d sum(i) = \sum_{k=1}^{3} d(i,k)$$

... (8)

【0021】スロット間平均干渉雑音電力算出部70は 10 Pn(0) を過去の値と平均することで、干渉雑音電力推 定値として出力する。そして、SIR算出部80は、受 信電力算出部50により算出された信号電力推定値を所 望の信号成分の平均電力Sとし、この平均電力Sとスロット間平均干渉雑音電力算出部70により算出された干 渉雑音電力推定値Iとの比(SIR)を求めて出力す る。

【0022】本実施形態においては、上記のようにして 所望の信号成分の平均電力Sを求めていることから、現 在の制御周期(スロット)内の全データを用いずとも、 現在の制御周期(スロット)内の所望の信号成分の平均 受信電力を算出でき、遅延を伴わなくしかもフェージン グの変動を考慮したSIRの測定が可能となっている。

【0023】なお、SIR算出部80により求められた SIRは、図示は省略したが図1の後段において、基準 値と比較され、その比較結果に応じて、移動局の送信電 力を或る一定の割合だけ下げ或いは上げるような指示情報 (送信電力制御ビット)が一定の周期で下り回線 (基 地局から移動局への通信)の通話チャネルに挿入されて 移動局に通知される。移動局は基地局からのその指示情 30 報を受け取るたびに一定の割合ずつ送信電力を減少又は 増加させることで、基地局におけるSIRが一定の値に なるように制御している。

[0024]

【発明の効果】以上のように本発明によれば、所定の周期内の所望の信号成分の平均受信電力を求める際に、所定の周期内の既知の信号とそれ以前の既知信号とで1つ

) の時系列信号を形成し、この時間系列信号を線形予測分析して所定の周期内の信号の平均電力を算出し、その平均電力を所望の信号成分の平均受信電力とするようにしたので、SIRの測定のための演算遅延を伴わず、このため、フェージング変動の速さや移動局の移動速度に依存せずに、より好適な送信電力制御を行うのに適したSIR測定方法が実現されている。

【図面の簡単な説明】

【図1】本発明の一実施形態に係るSIR推定方法が適用され基地局の機能ブロック図である。

20 【図2】従来のSIR推定方法が適用され基地局の機能 ブロック図である。

【符号の説明】

- 10 送受信アンテナ
- 11 高周波部
- 12 RAKE受信部
- 13 スロット内信号電力算出部
- 14 スロット内干渉雑音電力算出部
- 15 スロット間平均干渉雑音電力算出部
- 21 送受信アンテナ
- 30 22 高周波部
 - 31~33 逆拡散部
 - 41~43 伝搬路予測部
 - 50 信号電力算出部
 - 60 スロット内干渉雑音電力算出部
 - 70 スロット間平均干渉雑音電力算出部
 - 80 SIR算出部

本実施形態のSIR推定方法が適用された基地局のプロック図

従来のSIR権定方法が適用された基地局のプロック図