Numerische Mathematik

Name: Maurice Wenig

3. Übungsserie

Aufgabe 3.1:

(a)
$$f(4) = -1$$
, $f(4.5) = 2^{4.5} - 18 - 1 = \sqrt{2^9} - \sqrt{361} > 0$
 $\implies f$ hat mindestens eine Nullstelle in [4, 4.5]

$$f'(x) = 2^x \ln 2 - 4$$
 ist streng monoton steigend,

$$f'(4) = 16 \ln 2 - 4 > 16 \log_4 2 - 4 > 0$$

 $\implies f$ ist streng monoton steigend in [4, 4.5]

 $\implies f$ hat genau eine Nullstelle in [4, 4.5]

(b) $\epsilon = 4 \cdot 10^{-2}$, nach Vorschrift muss $|a_n - b_n| = \frac{|a_n - b_n|}{2^n} < 2\epsilon \iff \frac{1}{2^{n+2}} < 4 \cdot 10^{-2} \iff 2^{n+4} > 10^2$ Das wird erfüllt mit n = 3. Berechnung:

$$a_0 = 4$$
 $b_0 = 4.5$ $M = 4.25$ $f(M) \approx 1.02731384$ $a_1 = 4$ $b_1 = 4.25$ $M = 4.125$ $f(M) \approx -0.05187628$ $a_2 = 4.125$ $b_2 = 4.25$ $M = 4.1875$ $f(M) \approx 0.47061816$ $a_3 = 4.125$ $b_3 = 4.1875$ $M = 4.15625$

Aufgabe 3.2:

(a) $N_f(x) = x - \frac{f(x)}{f'(x)}$, potentielle Extremstellen von N_f gibt es bei $x = a, x = b, N'_f(x) = 0$. Da $f'(x) = 3x^2 - 6x = 3x(x-2)$, ist $f'(x) \neq 0$ in [a,b], wodurch $x = a, x = b, N'_f(x) = 0$ alle potentiellen Extremstellen von N_f in sind.

$$N'_f = 1 - \frac{f'^2 - f \cdot f''}{f'^2} = \frac{f \cdot f''}{f'^2}$$
$$N'_f(x) = 0 \implies f(x) = 0 \lor f''(x) = 0$$

Fall
$$f(x) = 0$$
: $N_f(x) = x - \underbrace{\frac{0}{f'(x)}}_{=0} = x \in [a, b]$

Fall
$$f''(x) = 0$$
: $f''(x) = 6x - 6$, $f''(b) = 0$

Außerdem:
$$N_f(a) = \frac{1}{2} - \frac{1 + \frac{1}{8} - \frac{3}{4}}{\frac{3}{4} - 3} = \frac{1}{2} + \frac{1}{3} \in [a, b], N_f(b) = 1 - \frac{1 + 1 - 3}{3 - 6} = \frac{2}{3} \in [a, b]$$

Alle potentiellen Extremwerte von N_f liegen in [a,b] und N_f ist stetig (da $f'(x) \neq 0$ in [a,b] und f stetig). $\implies N_f : [a,b] \rightarrow [a,b]$

(b)
$$N'_f = \frac{f \cdot f''}{f'^2}$$

 $f'(x) = 3x^2 - 6x = 3x(x-2)$ ist eine Parabel mit Scheitelpunkt bei x = 1 und Nullstellen $x_1 = 0, x_2 = 2$ und somit monoton fallend in [a, b]. Also ist |f'(x)| ist monoton steigend in [a, b].

f(x) ist monoton fallend in [a,b], da f'(x) < 0 in [a,b]. wird auch nicht mehr gemacht, bin müde

not done yet!

Aufgabe 3.3:

(a)
$$\phi'(x) = -2xe^{-x^2}$$
, $\phi''(x) = -2e^{-x^2} + 4x^2e^{-x^2} = (\underbrace{4x^2 - 2}_{\text{Nullstellen und Vorzeichenwechsel bei } \pm \sqrt{2}}) \cdot \underbrace{e^{-x^2}}_{>0}$

$$\implies |\phi(x)| \le \phi(\sqrt{2}) = \frac{\sqrt{2}}{e^2} \le 0.2 = L$$

(b) A-priori-Abschätzung:
$$|x_{\nu} - x^*| \le \frac{L^{\nu}}{1-L} |x_0 - x_1| = \frac{5}{4} \cdot 2^{\nu} \cdot 10^{-\nu} = 2^{\nu-3} \cdot 10^{-\nu+1} < 10^{-5}$$
 erfüllt mit $\nu = 7$

(c)
$$N_f(x) = x - \frac{e^{-x^2} - x}{-2xe^{-x^2} - 1}$$

$x_1 = 1.000000$	$y_1 = 0.333333$
$x_2 = 0.367879$	$y_2 = 0.534613$
$x_3 = 0.873423$	$y_3 = 0.621232$
$x_4 = 0.466327$	$y_4 = 0.646061$