Examen de l'UE Représentations des signaux TSIA201

Roland Badeau, Marco Cagnazzo

Mercredi 31 octobre 2018

Durée: 1h30

Tous les documents sont autorisés. En revanche les appareils électroniques (dont les calculatrices) sont interdits.

Avant propos

Le correcteur accordera le plus grand prix à la qualité de la rédaction, que ce soit la présentation matérielle ou le raisonnement.

Rappels et notations

Formulaire

Dans tout ce qui suit, nous utiliserons les notations et définitions suivantes :

— Transformée de Fourier à Temps Continu (TFTC) d'un signal analogique $x_a(t)$:

$$X_a(f) = \int_{\mathbb{D}} x_a(t)e^{-2i\pi ft}dt$$

- TFTC inverse : $x_a(t) = \int_{\mathbb{R}} X_a(f) e^{+2i\pi ft} df$ Transformée de Fourier à Temps Discret (TFTD) d'un signal discret x(n) :

$$X(e^{2i\pi\nu}) = \sum_{n\in\mathbb{Z}} x(n)e^{-2i\pi\nu n}$$

- TFTD inverse : $x(n) = \int_{-1/2}^{1/2} X(e^{2i\pi\nu}) e^{+2i\pi\nu n} d\nu$ Transformée de Fourier Discrète (TFD) d'ordre M d'un signal discret fini $x_M(n)$:

$$X_M(k) = \sum_{n=0}^{M-1} x_M(n) e^{-2i\pi \frac{k}{M}n}$$

- TFD inverse : $x_M(n) = \frac{1}{M} \sum_{k=0}^{M-1} X_M[k] e^{+2i\pi \frac{k}{M}n}$ Transformée en Z d'un signal discret x(n) :

$$X(z) = \sum_{n \in \mathbb{Z}} x(n)z^{-n}$$

— Formule d'échantillonnage : si $\forall n \in \mathbb{Z}, x_e(n) = x_a(nT)$ où $T \in \mathbb{R}_+^*$, alors

$$X_e(e^{2i\pi\nu}) = \frac{1}{T} \sum_{k \in \mathbb{Z}} X_a \left(\frac{\nu + k}{T}\right) \tag{1}$$

Bancs de filtres à deux voies

Les conditions de reconstruction parfaite pour un BDF à 2 voies sont :

$$F_0(z)H_0(z) + F_1(z)H_1(z) = 2z^{-\ell}$$
 Condition de non distorsion (CND)
 $F_0(z)H_0(-z) + F_1(z)H_1(-z) = 0$ Condition de non repliement (CNR)

On considère le cas de Conjugate Quadrature Filters / Alternating Flip (CQF/AF) :

$$H_1(z) = -z^{-(N-1)}H_0(-z^{-1})$$

$$F_0(z) = H_1(-z)$$

$$F_1(z) = -H_0(-z)$$

Pour les CQF/AF, nous avons vu que le filtre à demi-bande P(z) peut s'écrire comme $P(z) = H_0(z)H_0(z^{-1})$. Nous savons également que p(n) = p(-n) et que $p(2n) = \delta(n)$.

Exercice 1 (Synthèse de filtres : filtre dérivateur) On considère un signal x(t) à temps continu à l'entrée d'un filtre de fonction de transfert H(f) (où f est la fréquence exprimée en Hz). On note y(t) le signal en sortie. Connaissant H(f), on se propose de déterminer un filtre à temps discret de fonction de transfert $H_e(e^{i2\pi\nu})$ (où ν est la fréquence réduite) qui, ayant en entrée les échantillons $x_e(n) = x(nT)$, aurait pour sortie les échantillons $y_e(n) = y(nT)$ (voir la figure 1).

FIGURE 1 – Comparaison des sorties aux instants d'échantillonnage

- 1. En utilisant la formule (1) page 1, exprimer les TFTD $Y_e(e^{i2\pi\nu})$ et $\widetilde{Y}_e(e^{i2\pi\nu})$ des signaux à temps discret $y_e(n)$ et $\widetilde{y}_e(n)$.
- 2. Démontrer que le filtre discret, défini par la relation $H_e(e^{i2\pi\nu}) = H\left(\frac{\nu}{T}\right)$ pour tout $\nu \in \left[-\frac{1}{2}, +\frac{1}{2}\right]$, est tel que pour tout signal x(t) à bande limitée $\left[-\frac{1}{2T}, \frac{1}{2T}\right]$, $\widetilde{y}_e(n) = y_e(n)$ $\forall n \in \mathbb{Z}$.
- 3. On souhaite à présent synthétiser un filtre dérivateur. On suppose que x(t) est une fonction sommable $(x \in L^1(\mathbb{R}))$ de classe C^1 , dont la dérivée x'(t) est également sommable. Prouver que $\lim_{t \to \pm \infty} x(t) = 0$, et calculer la transformée de Fourier de x'(t).
- 4. En déduire que la dérivation peut être vue comme un filtre de réponse en fréquence $H(f) = i2\pi f$, et exprimer le gain complexe $H_e(e^{i2\pi\nu})$ du filtre linéaire à temps discret correspondant.
- 5. En déduire, par la méthode de la fenêtre, les coefficients d'un filtre RIF à phase linéaire de type III qui réalise l'approximation d'un filtre dérivateur.