Let A be an $n \times n$ matrix.

The eigenvalues of A are the roots of the characteristic polynomial $\det(A - \lambda \operatorname{Id}_{n \times n})$. If an eigenvalue λ_0 corresponds to a root with multiplicity r in this polynomial, meaning that $(\lambda - \lambda_0)^r$ is a factor of the polynomial, then we say that the eigenvalue λ_0 has algebraic multiplicity r. Since the characteristic polynomial is degree n, there are n eigenvalues, counted according to algebraic multiplicity.

If λ_0 is an eigenvalue, then $\operatorname{null}(A - \lambda_0 \operatorname{Id}_{n \times n}) > 0$, i.e. there exists a nonzero vector v such that $Av = \lambda_0 v$. We say that v is an eigenvector for the eigenvalue λ_0 , and $\operatorname{null}(A - \lambda_0 \operatorname{Id}_{n \times n})$ is the eigenspace for eigenvalue λ_0 . The dimension of $\operatorname{null}(A - \lambda_0 \operatorname{Id}_{n \times n})$ is called the geometric multiplicity, and we have

$$1 \leq (\text{geometric multiplicity of } \lambda_0) \leq (\text{algebraic multiplicity of } \lambda_0).$$

The matrix A is diagonalizable if we can write $A = VDV^{-1}$ where V is invertible and D is diagonal. If d_1, \ldots, d_n are the diagonal entries of D, and v_1, \ldots, v_n are the columns of V, this equation is equivalent to asserting that $Av_i = d_iv_i$ for all $i \in \{1, \ldots, n\}$. In other words, this equation says that the v_1, \ldots, v_n are eigenvectors, and v_i has eigenvector d_i . A matrix is diagonalizable if and only if, for each eigenvalue λ_0 , its geometric multiplicity equals its algebraic multiplicity. In particular, a matrix is diagonalizable if it has n distinct eigenvalues, because then the algebraic multiplicities are all equal to 1.

PROBLEMS

(1) Find the eigenvalues, their geometric and algebraic multiplicities, and eigenvectors for the matrix

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

(2) If the eigenvalues, their geometric and algebraic multiplicities, and eigenvectors for A are known, what are the corresponding data for $A + t \operatorname{Id}_{n \times n}$, where t is a given scalar?

(3) Find the eigenvalues, their geometric and algebraic multiplicities, and eigenvectors for the matrix

$$A = \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

(4) Show that the eigenvalues of A^2 are the squares of the eigenvalues of A, and that this correspondence respects algebraic multiplicity. Does it always respect geometric multiplicity? What about for higher powers of A?

(5) Diagonalize the matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Write down a closed-form expression for A^n . Does there exist B such that $B^2 = A$ and B has real eigenvalues?

(6) Suppose all eigenvalues of A are equal to r, and A is diagonalizable. Show that $A = r \operatorname{Id}_{n \times n}$.

(7) Does there exist a 2×2 matrix A such that $(A^n)_{12} = n$ for all $n \ge 1$, and A is diagonalizable?

(8) Let v_1, v_2 be linearly independent eigenvectors of A. If $v_1 + v_2$ is an eigenvector, what can you conclude about the eigenvalues of v_1, v_2 , and $v_1 + v_2$?