

Praxissemesterbericht

Autor Rebekka Hahn

Matrikelnummer 1921861

Semester 11. Semester

Studiengang Medizintechnik

Beginn Praxissemester 02.09.2024 **Ende Praxissemester** 28.02.2025

Firma Löwenstein medical

Betreuer Patrick von Poblotzki, Christoph Elsner

Selbständigkeitserklärung

Ich versichere, dass ich diesen PS-Bericht selbständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel angefertigt habe. Die Stellen, an denen Inhalte aus den Quellen verwendet wurden, sind als solche eindeutig gekennzeichnet. Die Arbeit hat in gleicher oder ähnlicher Form bei keinem anderen Prüfungsverfahren vorgelegen.

Datum, Ort und Unterschrift

Abkürzungsverzeichnis

Abkürzung	Ausgeschrieben
APAP	automatic positive airway pressure
CPAP	continuous positive airway pressure
OSA	obstruktive Schlafapnoe
SBAS	schlafbezogenen Atmungsstörungen
PAP	positive airway pressure
TE	Tonsillektomie
UPPP	Uvulopalatopharyngoplastik

Abstract

sudo make abstract

INHALTSVERZEICHNIS

Inhaltsverzeichnis

1	Einl	linleitung				
2	Löwenstein Medical					
	2.1	Geschi	ichte und Entwicklung		6	
	2.2	2.2 Produkte			7	
	2.3 Beispielgerät				8	
		2.3.1	Pathophysiologie Schlafapnoe		8	
		2.3.2	Therapie Schlafapnoe		9	
		2.3.3	prisma Smart		10	
	2.4 Qualitätsmanagement		ätsmanagement		11	
	2.5	2.5 Meetings				
3	Aufg	gaben			12	
3.1		Dokun	nentationsautomatisierung		12	
		3.1.1	Polarion		12	
		3.1.2	Regular Expression		12	
	3.2	Librar	y Adapter		13	
		3.2.1	MsgPack		13	
4	Erge	ebnisse			14	
5	Fazi	t			15	

1 EINLEITUNG 5

1 Einleitung

Dieser Bericht fasst die Erfahrungen und Tätigkeiten zusammen, die ich während meines Praxissemesters bei Löwenstein Medical am Standort Karlsruhe sammeln konnte. Als Familienunternehmen im Bereich der Medizintechnik entwickelt und vertreibt Löwenstein Medical spezialisierte Beatmungsprodukte. Der Standort Karlsruhe hat bei der Entwicklung den Schwerpunkt Schlaftherapie, digitale Therapiebegleitung und Telehealth. Während meines Semesters war ich in der Firmware-Abteilung tätig und habe an einem Projekt zur Entwicklung eines Medizingerätes mitgearbeitet.

Ziel dieses Berichts ist es, Einblicke in die Arbeitsweise und die speziellen Anforderungen der Firmware-Entwicklung in der Medizintechnik zu geben und die praktischen Erfahrungen zusammenzufassen, die ich in diesem professionellen Umfeld sammeln konnte.

2 Löwenstein Medical

Dieses Kapitel gibt einen umfassenden Überblick über die Entwicklung des Unternehmens, präsentiert ein Beispielgerät aus dem Bereich der Heim-Schlafatemtherapie und beleuchtet den wissenschaftlichen Hintergrund der obstruktiven Schlafapnoe. Dabei wird sowohl auf technische Innovationen als auch auf therapeutische Ansätze und regulatorische Aspekte eingegangen.

2.1 Geschichte und Entwicklung

Löwenstein Medical wurde 1986 in Bad Ems gegründet. Nach dem Einstieg von Reinhard Löwenstein bei der Firma Heinen entstand das Unternehmen Heinen + Löwenstein, das sich zunächst auf die Neonatologie (Lehre der Pathologie und Physiologie Neugeborener) spezialisierte. Im Jahre 1992 folgte die Erweiterung um den Bereich Schlafmedizin. Zwei Jahre später, 1994, wurde die Heinen + Löwenstein Medizinelektronik gegründet, mit einem Fokus auf Schlafdiagnostiksystemen.

Ein bedeutender Entwicklungsschritt erfolgte im Jahr 1999, als Löwenstein Medical seine Position als führender Anbieter für respiratorische Heimversorgung in Deutschland etablierte und die exklusiven Vertriebsrechte für Produkte von Respironics sicherte. Die strategische Partnerschaft mit Hamilton Medical im Jahr 2002 trug zur Erweiterung des Kompetenzbereichs in der Beatmungstechnologien bei.

In den folgenden Jahren baute das Unternehmen kontinuierlich seine Produktpalette und internationale Präsenz aus. Zwischen 2005 und 2006 erfolgte die Markteinführung der Anästhesiegeräte Leon plus und Leon sowie der Beatmungsgeräte Leoni 2 und Leoni plus, speziell für Früh- und Neugeborene. Die Einführung der Flüssigsauerstoff-Versorgungslogistik im Jahr 2008 und die Integration von SALVIA medical waren weitere Punkte für die Weiterentwicklung des Unternehmens.

Die internationale Expansion begann 2009 mit der Gründung von Löwenstein Medical Austria. In den folgenden Jahren entstanden Tochtergesellschaften in zahlreichen Ländern, darunter Belgien, Frankreich, China, Australien und den USA. 2013 wurde Weinmann Homecare Teil der Gruppe, die ab 2017 unter dem Namen Löwenstein Medical firmiert.

2014 wurde die High-End-Intensivbeatmungsserie elisa 800 und elisa 600 auf den Markt gebracht, gefolgt von den Turbinenbeatmungsgeräten elisa 300 und elisa 500 im Jahr 2019. Der Launch des außerklinischen Beatmungsgeräts LUISA im Jahr 2020 und des Neonatologiegeräts LEONIE 4 im Jahr 2023 erweitern das Produktsortiment. [1]

2.2 Produkte

Löwenstein Medical bietet eine breite Palette an Produkten, die auf die Bedürfnisse der Patienten in den Bereichen Beatmung, Schlafatemtherapie und Sauerstoffversorgung ausgerichtet sind.

Intensivbeatmungsgeräte: Im Bereich der Intensivbeatmung gibt es die Geräte der elisa-Reihe. Besonders das elisa 800 wird aufgrund seiner fortschrittlichen Visualisierungsfunktionen und der hohen Präzision bei der Beatmung von Intensivpatienten geschätzt. Diese Geräte bieten nicht nur eine zuverlässige Versorgung, sondern auch eine benutzerfreundliche Handhabung für medizinisches Personal. Weitere Modelle wie das elisa 600 und elisa 300 bieten bewährte Technologien für den klinischen Einsatz.

Außerklinische Beatmung: Für die außerklinische Beatmung bietet Löwenstein Medical das LUISA-Beatmungsgerät, das für die Heimbeatmung von Patienten konzipiert wurde. LUISA zeichnet sich durch seine kompakte Bauweise und einfache Handhabung aus, wodurch es besonders für den häuslichen Gebrauch geeignet ist. Auch die Geräte der prisma VENT-Serie, wie das prisma VENT30-C und prisma VENT50-C, bieten flexible Einsatzmöglichkeiten für die häusliche Beatmung und werden durch eine Vielzahl an Zubehör wie den AITcon Gen2 Atemgasbefeuchter ergänzt.

Schlaftherapie: Ein weiteres Highlight im Portfolio von Löwenstein Medical sind die prisma SMART-Geräte für die Schlafapnoe-Therapie. Das prisma SMART ermöglicht eine flexible Anpassung der Druckeinstellungen im APAP-Modus, was eine komfortable und effektive Therapie bei obstruktiver Schlafapnoe gewährleistet. In dem folgenden Unterkapitel wird näher auf den prisma SMART und was mit diesem behandelt wird eingegangen.

Schlafdiagnostik und Monitoring: Für die Diagnose von Schlafapnoe und anderen Schlafstörungen bietet Löwenstein Medical Polysomnographiesysteme wie das Samoa, das eine präzise Analyse des Schlafverhaltens ermöglicht. Für den Heimgebrauch oder eine vereinfachte Diagnose stehen auch Polygraphiegeräte wie Scala zur Verfügung, die eine effektive Überwachung der Schlafparameter ermöglichen.

Sekretmanagement: Im Bereich des Sekretmanagements bietet Löwenstein Medical Geräte wie den Cough Assist E70, der Patienten dabei unterstützt, überschüssiges Sekret effektiv zu mobilisieren und zu entfernen. Dies ist besonders für Patienten mit neurologischen Erkrankungen von Bedeutung.

Zusätzlich umfasst das Produktportfolio von Löwenstein Medical verschiedene Atemmasken, Sauerstoffkonzentratoren, Pulsoximeter und Softwarelösungen wie prisma CLOUD, die eine einfache Verwaltung von Patienteninformationen ermöglichen.

2.3 Beispielgerät der Schlafatemtherapie

Eine genauere Analyse des Schlafherapiegerätes prisma SMART

2.3.1 Pathophysiologie Schlafapnoe

Die obstruktive Schlafapnoe (OSA) gehört zu den schlafbezogenen Atmungsstörungen (SBAS) und ist eine Erkrankung die durch wiederholte Atempausen während des Schlafens gekennzeichnet ist. Es gibt vier verschiedene Phänotypen die eine OSA verursachen können:

5.1 Obstruktive Schlafapnoe Entsprechend der ICSD-3 [10] wird eine obstruktive Schlafapnoe (OSA) dann diagnostiziert, wenn die Atmungsstörung durch keine andere Schlafstörung oder medizinische Erkrankung oder durch Medikamente oder andere Substanzen erklärbar ist und entweder ein AHI > 15/h (Ereignis jeweils größergleich 10 s) Schlafzeit oder ein AHI größergleich 5/h Schlafzeit in Kombination mit einer typischen klinischen Symptomatik oder relevanten Komorbidität vorliegt. Tagesschläfrigkeit bis hin zum unfreiwilligen Einschlafen ist das führende klinische Symptom der obstruktiven Schlafapnoe –Hauptbefund Nächtliches Aufschrecken mit kurzzeitiger Atemnot, Schnarchen (bei 95prozent der Betroffenen), Isoliert betrachtet, weisen die Symptome jedoch nur eine geringe Spezifität auf –Nebenbefund –> Definition OSA

• Anatomische Einschränkungen der oberen Atemwege:

Hierbei handelt es sich um strukturelle Faktoren, wie eine Verengung der Atemwege durch vergrößerte Mandeln, Fettansammlungen oder andere anatomische Besonderheiten. Diese Phänotypen sind häufig bei übergewichtigen oder älteren Menschen zu beobachten.

• niedrige respiratorische Erregungsschwelle (Arousals):

Eine niedrige Erregungsschwelle bedeutet, dass Personen während des Schlafs leichter durch Atemprobleme geweckt werden. Dies führt zu fragmentiertem Schlaf und verhindert eine kontinuierliche Atmung. Umgekehrt kann eine zu hohe Schwelle die Sauerstoffsättigung gefährlich abfallen lassen.

• Instabilität des Atemantriebs ("Loop Gain"):

Diese Phänotypen beschreiben Menschen, deren Atmungssystem zu Überreaktionen neigt, was zu wechselnden Phasen von Hyperventilation und Hypoventilation führt. Dies verstärkt das Auftreten von Atempausen und Sauerstoffmangel.

• schlechte Funktion der oberen Atemwegsmuskulatur:

Hier liegt das Problem in einer unzureichenden Aktivierung oder Kontrolle der

Muskeln, die die Atemwege während des Schlafs offenhalten sollten. Besonders während des REM-Schlafs, in dem der Muskeltonus generell abnimmt, kann dies zu Atemwegsblockaden führen.

Diese Phänotypen sind nicht immer isoliert, sondern treten oft in Kombination auf. Ein besseres Verständnis der individuellen Merkmale ermöglicht eine gezieltere Diagnostik und Therapie der OSA. So können gezielte Therapielösungen für die spezifischen Pathomechanismen entwickelt werden. [2] [3]

2.3.2 Therapie Schlafapnoe

Die Behandlung der obstruktiven Schlafapnoe (OSA) richtet sich nach dem individuellen Beschwerdebild, den Begleiterkrankungen sowie den persönlichen Bedürfnissen und dem Therapiewillen des Patienten. Ziel ist es, die schlafbezogenen Atmungsstörungen zu beseitigen, die Schlafqualität zu verbessern und das Risiko für kardiovaskuläre und andere Komplikationen zu senken. Abhängig von der Schwere der Erkrankung stehen verschiedene Therapieansätze zur Verfügung, die von konservativen Maßnahmen über apparative Unterstützung bis hin zu chirurgischen Eingriffen reichen. [4] [5]

• apparative Therapie

Die Standardtherapie der obstruktiven Schlafapnoe ist die nächtliche Überdruckbeatmung ("positive airway pressure", PAP), als die konkrete Referenzmethode im kontinuierlichen PAP-Modus (CPAP, "continuous positive airway pressure"). Die Indikationsstellung zur CPAP-Therapie erfolgt anhand einer Kombination aus klinischer Anamnese, polysomnographischem Befund und Begleiterkrankungen. Besonders wenn ohne Therapie eine Verschlechterung dieser Erkrankungen zu erwarten ist, wird eine CPAP-Therapie empfohlen. Der Therapiewille des Patienten sowie dessen individuelle Situation spielen ebenfalls eine entscheidende Rolle.

Neben CPAP kommt auch der APAP-Modus (automatisch titrierendes PAP) zum Einsatz, der den Atemwegsdruck flexibel an die Bedürfnisse des Patienten anpasst. Beide Ansätze zielen darauf ab, den Kollaps der oberen Atemwege zu verhindern und die Atmung während des Schlafes zu stabilisieren. Kontraindikation der APAP sind zentrale Atmungsstörungen, kardio- pulmonale Erkrankungen und nächtliche Hypoventilationen. Die APAP kommt vorallem zum Einsatz bei Patienten, die den kontinuierlichen Druck der CPAP nicht mehr ertragen, bei komplexen Apnoen oder mangelnder Compliance.

konservative Therapie

Konservative Maßnahmen umfassen Lebensstiländerungen wie Gewichtsreduktion,

die Vermeidung von Alkohol und Sedativa sowie das Einhalten einer guten Schlafhygiene. Bei lageabhängiger OSA kann Lagetraining, das eine Rückenlage vermeidet, ebenfalls hilfreich sein.

• medikamentöse Therapie

Medikamentöse Ansätze spielen bei der Behandlung der OSA nur eine untergeordnete Rolle, da bisher keine Substanzen eine ausreichende Wirksamkeit gezeigt haben.

• chirurgische Therapie

Operative Eingriffe werden nur bei spezifischen anatomischen Ursachen wie Tonsillenhyperplasie oder kraniofazialen Fehlbildungen in Betracht gezogen. Zu den Methoden zählen beispielsweise die Uvulopalatopharyngoplastik oder Kieferrekonstruktionen.

Die Uvulopalatopharyngoplastik mit Tonsillektomie nach Fujita, die TE-UPPP, ist ein chirurgisches Verfahren bei welchem die Atemwege durch Entfernung von überschüssigem Gewebe erweitert werden. Das Ziel des Eingriffs ist eine Verringerung der Kollapsneigung der oberen Atemwege während des Schlafens. Im Rahmen eines Case Reports war eine Indikation der OSA einen verengten oropharyngealen Raum mit vergleichsweise großer Uvula (Gaumenzäpfchen) und überschüssiger Mucosa (Schleimhaut) des umgebenden Gewebes. Die Tonsillektomie ist die vollständige chirurgische Entfernung der Tonsilla Palatina (Gaumenmandel). Anschließend wird redundante Mucosa entfernt und das Uvula korrigiert. [6]

2.3.3 prisma Smart

NOCH SAMMELSURIUM AN TEXTFETZEN: technisches, patienten ui, etc SMART MACHT APAP Therapie

Tiefschlafindikator (prisma RECOVER), Zwei Dynamik-Optionen im APAP-Modus druck-kontrollierte, nicht-invasive, nichtlebenserhaltende Therapiegeräte zur Behandlung schlafbezogener Atmungsstörungen (SBAS) mittels Maske. Funktionsbeschreibung Eine Turbine saugt Umgebungsluft über einen Filter an und befördert sie mit dem Therapiedruck über das Schlauchsystem und dem Beatmungszugang zum Patienten. Im autoCPAP-Modus (prisma SMART) wird der Druck kontinuierlich innerhalb einstellbarer Grenzen angepasst und der jeweils erforderliche Druck abgegeben, der die oberen Atemwege offenhält.

2.4 Qualitätsmanagement

MDR, IVDR, AIMDD, etc

2.5 Meetings

SCRUM - Erklären

SCRUM

Scrum ist ein systematischer Ansatz um Projekte strukturiert durchzuführen. Es soll die Teams bei der Lösung komplexer Probleme unterstützen indem Rollen, Regeln und Ereignisse definiert werden. Die zugrundeliegenden Prinzipien sind Empirie und Lean Thinking. "Empirie, die Erfahrung selbst und die auf Erfahrung beruhende Erkenntnis. [8]" something something [9]

3 AUFGABEN 12

3 Aufgaben

In diesem Abschnitt werden die Aufgaben während des Praxissemesters grob geschildert. Aufgrund der wirtschaftlichen Relevanz der zugrundeliegenden Daten kann nur eingeschränkt auf spezifische Inhalte eingegangen werden.

3.1 Dokumentationsautomatisierung

python woop woop

3.1.1 Polarion

Polarion Software ist ein Teil der Siemens Company und begann 2004

3.1.2 Regular Expression

Die re-Bibliothek in Python ermöglicht die Anwendung regulärer Ausdrücke (regular expression - regex) zur flexiblen und effizienten Textverarbeitung. Regex sind Muster, die gezielt nach Zeichenfolgen in Textdaten suchen und so vielfältige Datenoperationen ermöglichen. Mit der re-library können Funktionen wie search, match, findall und sub genutzt werden, um beispielsweise Texte zu durchsuchen, Muster zu ersetzen und Daten zu validieren.

Die re-Syntax bietet eine Vielzahl von Operatoren: . steht für ein beliebiges Zeichen, * und + geben Wiederholungen an, und durch [] sowie () können Gruppen und Sets definiert werden.

Listing 1: Beispiel für Python-Code

```
import re

txt = "Das ist ein string mit 123 Zahlen"
pattern = r"\d+" # alle Ziffern

# in txt wird das pattern mit "00" ersetzt
new_txt = re.sub(pattern, "00", txt)
# new_txt: Das ist ein string mit 00 Zahlen
```

3 AUFGABEN 13

3.2 Library Adapter

Eine Library durch eine aktuellere austauschen in C++

3.2.1 MsgPack

library MsgPack msgpack VS json - Vorteile joa, hat dann die Ansprüche doch nicht erfüllt *sad trumpet*

4 ERGEBNISSE 14

4 Ergebnisse

Präsentiere und diskutiere hier die Ergebnisse deines Berichts.

5 FAZIT

5 Fazit

Im Fazit fasst du alles zusammen und gibst einen Ausblick.

LITERATUR 16

Literatur

- [1] Löwenstein Medical. Zugriff am: 05.11.2024.
- [2] D. Eckert C.Heiser. Pathophysiologie der obstruktiven schlafapnoe. *HNO*, 67:654–662, August 2019.
- [3] Deutsche Gesellschaft für Schlafforschung und Schlafmedizin. S3-Leitlinie Nicht erholsamer Schlaf/Schlafstörung: Kapitel "Schlafbezogene Atmungsstörungen bei Erwachsenen". AWMF, 2.0 edition, August 2017. Zugriff am: 25.11.2024.
- [4] Thomas Verse and Karl Hörmann. Operative therapie der obstruktion bei schlafbezogenen atmungsstörungen. *Deutsches Aerzteblatt*, 108(13):216–221, 2011.
- [5] Doccheck flexikon. Zugriff am: 27.11.2024.
- [6] Dr Frank Zorick MD Dr Thomas Roth PhD Dr Shiro Fujita MD, Dr William Conway MD. Surgical correction of anatomic abnormalities in obstructive sleep apnea syndrome: Uvulopalatopharyngoplasty. *Otolaryngology–Head and Neck Surgery*, 89:889–1054, November 1981.
- [7] Löwenstein Medical Technology. Gebrauchsanweisung prisma SMART.
- [8] Hogrefe. Dorsch lexikon der psychologie, 2024. Zugriff am: 30.10.2024.
- [9] Jeff Sutherland Ken Schwaber. The scrum guide, 2020. Zugriff am: 29. Oktober 2024.