Examination of the teaching unit Représentations des signaux - TSIA201

Roland Badeau

Friday, November 10th, 2023

Duration: 1:30

All documents are permitted. However electronic devices (including calculators) are forbidden.

1 Simple CQF filter bank

A two-channel filter bank is defined by the diagram in Figure 1.

Figure 1: General diagram of a two-channel filter bank.

We remind that the two aliasing cancellation conditions of this filter bank are $F_0(z) = H_1(-z)$ and $F_1(z) = -H_0(-z)$ and that its transfer function is $T(z) = \frac{1}{2}(H_0(z)F_0(z) + H_1(z)F_1(z))$. We also remind the *conjugate quadrature filters* (CQF) constraint: $H_1(z) = -z^{-(N-1)}\widetilde{H}_0(-z)$ where $\widetilde{H}_0(z) = \overline{H_0(\frac{1}{z^*})}$ and N is even.

We now consider the very simple case of a FIR filter $H_0(z)$ of length N=2: $H_0(z)=a+b\,z^{-1}$, where $a,b\in\mathbb{R}$.

- 1. Give the expressions of the transfer functions $H_1(z)$, $F_0(z)$ and $F_1(z)$ involving the coefficients a and b.
- 2. Prove that this CQF filter bank guarantees perfect reconstruction $\forall a, b \in \mathbb{R}$.

2 Recursive short-time Fourier transform

The aim of this problem is to establish recursive versions of the Short-Time Fourier Transform (STFT) based on the temporal recursivity of the windows. In general, a recursive formulation of the STFT is useful when an efficient real-time implementation is desired, or when an evaluation of the STFT at each sample is required.

The short-time Fourier transform of a signal s, analyzed with a window w, is defined as:

$$S_w(n,\nu) = \sum_{m \in \mathbb{Z}} w(n-m)s(m)e^{-2\pi j\nu m}$$
(1)

Exercise 1 Recursive STFT with exponential forgetting causal window

First, we develop a recursive STFT based on a causal window of infinite duration, which is recursive of order 1. The exponential forgetting causal window g_{β} with $\beta \geq 0$ is defined as:

$$\begin{cases}
g_{\beta}(n) = \beta^n & \text{for } n \geqslant 0 \\
g_{\beta}(n) = 0 & \text{for } n < 0
\end{cases}$$
(2)

- 1. In which interval β must lie, so that g_{β} is the impulse response of a stable filter G_{β} ?
- 2. Write the STFT $S_g(n,\nu)$, taking into account the expression of the window g_β in equation (2).
- 3. Deduce the recursive formulation of the STFT $S_g(n,\nu)$ as a function of $S_g(n-1,\nu)$, β and s(n).
- 4. Give the expression of the transfer function $G_{\beta}(z)$ of the filter defined by the impulse response g_{β} .
- 5. Deduce the temporal relationship between an input signal x(n) and an output signal y(n) of the filter G_{β} .
- 6. By using equation (1), describe the STFT $S_g(n,\nu)$ as a convolution product between g_{β} and a signal x deduced from the signal s.
- 7. From the answers to the two previous questions, retrieve the recursive formulation of the $STFT\ S_g(n,\nu)$ already established in question 3.

Exercise 2 Recursive STFT with rectangle window

The recursive formulation based on the exponential forgetting causal window is simple and effective. But it relies on a window of infinite duration, which is also non-symmetrical. In this second part, we study a recursive formulation based on the simplest symmetrical window of finite duration. Let r_M be the rectangular window of duration M defined as:

$$\begin{cases}
r_M(n) = 1 & for & 0 \leq n \leq M - 1 \\
r_M(n) = 0 & otherwise
\end{cases}$$
(3)

- 1. Write the STFT $S_r(n,\nu)$, taking into account the expression of the window r_M in equation (3).
- 2. Derive the recursive formulation of $S_r(n,\nu)$ as a function of $S_r(n-1,\nu)$ and the signal s.
- 3. Give the expression of the transfer function $R_M(z)$ of the filter defined by its impulse response r_M .
- 4. Deduce the temporal relationship between an input signal x(n) and an output signal y(n) of the filter R_M .
- 5. Using equation (1), interpret the STFT $S_r(n, \nu)$ as a convolution product between r_M and a signal x deduced from s.
- 6. From the answers to the two previous questions, find the recursive formulation of $S_r(n,\nu)$ already established in question 2.

Figure 2: General diagram of an M-channel filterbank

3 M-channel filterbank

The M-channel filter bank is represented in Figure 2.

- 1. Give the expression of the Z-transform $\hat{X}(z)$ of the output signal as a function of the Z-transform X(z) of the input signal, in the form $\hat{X}(z) = \sum_{l=0}^{M-1} A_l(z) X(zW_M^l)$ where $W_M = e^{-\frac{2i\pi}{M}}$. The terms $A_l(z)$ will be expressed as functions of the transfer functions $H_k(z)$ and $F_k(z)$ of the analysis and synthesis filters.
- 2. What are the required conditions for aliasing cancellation and perfect reconstruction?
- 3. We note $\mathbf{h}^{\top}(z) = [H_0(z) \dots H_{M-1}(z)]$ and $\mathbf{f}^{\top}(z) = [F_0(z) \dots F_{M-1}(z)]$. Express in terms of $\mathbf{h}(z)$ and $\mathbf{f}(z)$ the relationship between $\hat{X}(z)$ and X(z) when the aliasing cancellation conditions are fulfilled.
- 4. Let $\boldsymbol{E}(z)$ be the matrix of type I polyphase components of the analysis filterbank, and $\boldsymbol{R}(z)$ be the matrix of type II polyphase components of the synthesis filterbank. We can write $\boldsymbol{h}(z) = \boldsymbol{E}(z^M)\boldsymbol{e}(z)$, where $\boldsymbol{e}(z) = [1, z^{-1}, \dots, z^{-(M-1)}]^{\top}$, and $\boldsymbol{f}^{\top}(z) = \widetilde{\boldsymbol{e}}(z)^{\top}\boldsymbol{R}(z^M)$, where $\widetilde{\boldsymbol{e}}(z) = [z^{-(M-1)}, z^{-(M-2)}, \dots, 1]^{\top}$. Deduce a new diagram for the implementation of the filter bank involving the matrix $\boldsymbol{P}(z) = \boldsymbol{R}(z)\boldsymbol{E}(z)$.
- 5. Express $\hat{x}(n)$ as a function of x(n) when $P(z) = I_M$ and when $P(z) = Cz^{-n_0}I_M$ (I_M is the $M \times M$ identity matrix).
- 6. Construction of a solution: we assume that E(z) is factorized in the form $E(z) = E_0\Lambda(z)E_1\Lambda(z)\dots\Lambda(z)E_{J-1}$ where the E_i are $M\times M$ non-singular constant matrices and $\Lambda(z) = \begin{bmatrix} I_{M-1} & 0 \\ 0 & z^{-1} \end{bmatrix}$. We also assume that R(z) is factorized in the form $R(z) = R_{J-1}\Gamma(z)R_{J-2}\Gamma(z)\dots\Gamma(z)R_0$ where the R_i are $M\times M$ non-singular constant matrices and $\Gamma(z) = \begin{bmatrix} z^{-1}I_{M-1} & 0 \\ 0 & 1 \end{bmatrix}$. Express the matrices R_i as functions of E_i , such that the product P(z) = R(z)E(z) yields $P(z) = z^{-J}I_M$.
- 7. Application: we choose M=2, J=2, and $\mathbf{E}_0=\mathbf{E}_1^{\top}=\begin{bmatrix}1&0\\2&1\end{bmatrix}$. Deduce the transfer functions $H_0(z)$, $H_1(z)$, $F_0(z)$ and $F_1(z)$ which lead to perfect reconstruction.