Aufgabe 1 (7 Punkte)

Sei X eine Zufallsvariable mit $P(X \in [0, 1]) = 1$.

	Richtig	Falsch	
(a)	×		X sei absolut stetig und gleichverteilt. Dann gilt $P(X = x_1) = P(X = x_2)$ für alle $x_1, x_2 \in [0, 1]$.
(b)		×	X sei absolut stetig, aber nicht gleichverteilt. Dann gilt $P(X = x_1) \neq P(X = x_2)$ für alle $x_1, x_2 \in [0, 1]$ mit $x_1 \neq x_2$.
(c)	X		X sei absolut stetig und gleichverteilt. Dann gilt $P(X - 0.5 \ge 0.1) \le 1/0.12$.
(d)			X ist keine diskrete Zufallsvariable.
(e)			Sei Y eine Zufallsvariable mit $P(Y \notin [0, 1]) = 1$. Dann sind X und Y unabhängig.
(f)			X besitze einen Erwartungswert. Dann gilt $E(X) \in [0, 1]$.
(g)		×	X besitze eine Varianz. Dann gilt $Var(X) \le 0.1$.

Aufgabe 2 (7 Punkte)

	Richtig	Falsch	
(a)			Das Ereignis A sei Element einer Algebra. Dann ist auch das Gegenereignis Element der Algebra.
(b)	X		Die abzählbare Vereinigung von Ereignissen aus einer Algebra ist wieder Element der Algebra.
(c)	×		Die Borel-σ-Algebra auf den reellen Zahlen enthält alle abge- schlossenen Teilmengen der Grundgesamtheit
(d)	\boxtimes		Die Borel- σ -Algebra auf den reellen Zahlen enthält alle offenen Teilmengen der Grundgesamtheit.
(e)		×	Paarweise disjunkte Ereignisse sind unabhängig.
(f)	×		Ereignis und Gegenereignis sind disjunkt.
(g)	×	□ `	Für zwei Ereignisse A und B sei das Gegenereignis von $A \cap B$ die Grundgesamtheit. Dann gilt $P(A \cup B) = P(A) + P(B)$.

Aufgabe 3 (5 Punkte)

Sei X binomialverteilt mit Parametern n und p,d.h., $X \sim Bin(n, p), q := 1 - p \in (0, 1)$.

	Richtig	Falsch	
(a)			X beschreibt die Anzahl weisser Kugeln, wenn man aus einer Urne mit n Kugeln ohne Zurücklegen zieht, wobei w Kugeln weiss sind und $p = w/n$.
(b)		X	X ist näherungsweise normalverteilt, wenn p klein ist.
(c)	\boxtimes		E(X) = np.
(d)		\boxtimes	X besitzt keine Varianz.
(e)	M		X ist näherungsweise Poisson-verteilt, wenn n und q gross sind.

Aufgabe 4 (6 Punkte)

Wir betrachten den Laplaceschen Wahrscheinlichkeitsraum $(\Omega, \mathcal{P}(\Omega), P)$. Alle in dieser Aufgabe betrachteten bedingten Wahrscheinlichkeiten mögen wohl definiert sein.

	Richtig	Falsch	
(a)	\boxtimes		P ist die Gleichverteilung auf Ω .
(b)			Es gelte $P(A) = P(A B)P(B) + P(A C)P(C)$ Dann sind B und C unabhängig.
(c)	X		Die bedingte Wahrscheinlichkeit $P(A B)$ lässt sich berechnen, wenn $P(B A)$, $P(B \bar{A})$, $P(A)$ bekannt sind.
(d)	×		Man kenne die Wahrscheinlichkeiten eines Symptoms bedingt auf das Vorliegen bzw. auf das Nicht-Vorliegen einer Krankheit.
			Ferner sei die unbedingte Symptomwahrscheinlichkeit bekannt. Dann lässt sich die Wahrscheinlichkeiten der Erkrankung bedingt auf das Vorliegen des Symptoms berechnen.
(e)			X und Y seien diskrete Zufallsvariablen. Dann gilt
			$P(X = x_i Y = y_j) = \frac{P(Y = y_j X = x_i) P(X = x_i)}{\sum_k P(Y = y_j X = x_k) P(X = x_k)},$
			wobei im Nenner x_k den gesamten Wertebereich von X durch-läuft.
(f)		×	X sei eine auf Ω definierte Zufallsvariable. Dann ist die Verteilungsfunktion von X linksstetig.

Aufgabe 5 (4 Punkte)

X sei eine diskrete Zufallsvariable. Sind die für die genannten Anwendungen vorgeschlagenen Verteilungen von X ein vernünftiges Modell?

	Richtig	Falsch	
(a)	M		Einmaliges Ziehen aus einer Urne mit weissen und schwarzen Kugeln, $X \in \{0, 1\}$ die Anzahl der weissen Kugeln: Bernoulliverteilung
(b)			Anzahl Würfe Wappen beim vierfachen Werfen einer nicht fairen Münze; die Würfe mögen unabhängig sein: Binomialverteilung
(c)			Von N Fischen seien M markiert worden. Nun fängt man k Fische. X die Anzahl der markierten, gefangenen Fische: Hypergeometrische Verteilung
(d)			X sei die Anzahl von Todesfällen in Folge einer COVID-19 Impfung: Exponentialverteilung

Aufgabe 6 (5 Punkte)

X sei eine absolut stetige Zufallsvariable. Sind die für die genannten Anwendungen vorgeschlagenen Verteilungen von X ein vernünftiges Modell?

_	Richtig	Falsch	
(a)		×	Dauer X eines Telefongesprächs, das im Mittel zehn Minuten dauert $(E(X) = 10)$: Cauchy-Verteilung
(b)			Fehler X beim Messen der Körpergröße eines Menschen mit dem Zollstock: Normalverteilung
(¢)	×		Lebensdauer X einer Glühbirne: Exponentialverteilung
(d)			Bruchfestigkeit X keramischer Werkstoffe: Geometrische Verteilung
(e)		Ø	Gehalt X (als kontinuierliche Größe betrachtet) einer zufällig ausgewählten, werktätigen Person: Gleichverteilung

Aufgabe 7 (4 Punkte)

Sei F die Verteilungsfunktion einer Zufallsvariablen X:

	Richtig	Falsch	
(a)	×		X sei absolut stetig mit stetiger Dichtefunktion. Dann ist F differenzierbar.
(b)		×	F ist streng monoton wachsend.
(c)			Sei $g:(-\infty,\infty)\to(-\infty,\infty)$ eine streng monoton wachsend Funktion mit Umkehrfunktion g^{-1} . Sei H die Verteilungsfunktion von $g(X)$. Dann gilt $H(x)=F(g^{-1}(x))$.
(d)		×	Sei $X \sim N(0, 1)$. Dann gilt $1 - F(x) = F(x)$ für $x > 0$.

Aufgabe 8 (9 Punkte)

Seien X und Y diskrete Zufallsvariablen mit existierender Erwartung, Varianz und Kovarianz.

	Richtig	Falsch	
(a)		×	Sei $E(X) \ge 0$. Dann gilt $P(X \ge 0) = 1$.
(b)	×		Sei $X \le 0$ und $E(X) \ge 0$. Dann gilt $P(X = 0) = 1$.
(c)		×	Scien X und Y unkorreliert. Dann gilt $E(XY) = E(X) \cdot E(Y)$
(d)		×	Sei $X \ge 1$. Dann gilt $E(X) \le Var(X)$.
(e)	⊠		X sei gleichverteilt mit endlichem Wertebereich $\{x_1, \ldots, x_n\}$, $ \{x_1, \ldots, x_n\} = n$. Dann ist $E(X)$ das arithmetische Mittel über x_1, \ldots, x_n .
(f)		×	Man findet abhängige X und Y, so dass $E(X+Y) \neq E(X)+E(Y)$.
(g)			Seien X und Y beide Poisson-verteilt mit Parameter $\lambda > 0$. Der Erwartungswert des arithmetischen Mittels von X und Y ist λ .
(h)			Es gilt $E(X - E(X)) = Var(X)$.
(i)			Sei $P(X = x) = P(X = -x)$ für jedes x und $Y = X^2$. Dann haben X und Y Kovarianz gleich Null.

Aufgabe 9 (4 Punkte)

	Richtig	Falsch	
(a)			$(X_n - X) \stackrel{P}{\to} 0$ bedeutet, $\operatorname{dass} P(\{\omega \in \Omega : (X_n(\omega) - X(\omega)) \to 0\}) = 1$
(b)			Der Zentrale Grenzwertsatz macht eine Aussage über die Konvergenz von Verteilungsfunktionen.
(c)			Die Zufallsvariablen X_1, X_2, X_3, \ldots mögen die Voraussetzungen des Zentralen Grenzwertsatzes erfüllen. Sei $S_n = \sum_{i=1}^n X_i$. Dann ist $\frac{S_n - nE(X_1)}{\sqrt{nVar(X1)}}$ eine standardisierte Zufallsvariable.
(d)			Konvergenz einer Folge von Zufallsvariablen X_1, X_2, X_3, \ldots in Wahrscheinlichkeit oder fast sichere Konvergenz dieser Folge implizieren beide, dass X_n näherungsweise normalverteilt ist für n groß.