Shankara K. Anand

shankara.k.anand@gmail.com • github.com/shankara-a • 979.595.3324

Updated September 6, 2023

ABOUT

I am a fourth year medical student at Boston University School of Medicine excited about oncology/critical care medicine and applying ML/AI to clinical practice. I have a masters from Stanford where I completed coursework in machine & deep learning and 4+ years of experience as a computational biologist at the Broad Institute of MIT & Harvard. My expertise includes single-cell genomics, multi-omic integration, and structural proteomics with an emphasis on algorithmic development.

EDUCATION

M.D. Candidate, Boston University, *Boston, MA* (exp.) 2024
M.S. Biomedical Informatics, Stanford University, *Stanford, CA* 2019
B.S. Chemical Engineering, Stanford University, *Stanford, CA* 2017

LICENSURE

 USMLE Step 1 - Pass
 04/06/2022

 USMLE Step 2CK - 268 (95th percentile)
 05/26/2023

RESEARCH

Associate Computational Biologist, Broad Institute of MIT & Harvard Aug. 2018 - Present Supervised by Dr. Gad Getz & the Genotype Tissue Expression Experiment (GTEx)

- Led computational direction of pan-cancer, proteogenomic study (CPTAC)
- Mapped a single-nucleus, cross-tissue, transcriptome atlas of the human body (GTEx)
- Risk stratified Smoldering Multiple Myeloma patients with genomics (advised by Dr. Irene Ghobrial)

Researcher, Stanford Dept. of Bioengineering

Jan. - June 2018

Supervised by Dr. Possu Huang

- Designed de novo, end-to-end (computational to wet-lab) proteins using Rosetta software
- Predicted ligand binding sites of proteins using deep learning frameworks (GitHub)

Scientific Intern, Novartis

Summer 2017

Computer Aided Drug Discovery Team

- Developed machine learning framework for detecting pKa of in-house compounds
- Published work in Journal of Chemical Information & Modeling

Research Intern, Genentech

Summer 2016

Early Stage Pharmaceutical Development

• Built computational pipeline for running large molecular dynamics simulations to investigate surfactant structure and antibody degradation

LEADERSHIP

Internal Medicine Student Chief, BUSM Internal Medicine Clerkship	June 2023 - Present	
Student Leader, BUSM Genetics Interest Group	April 2021 - March 2022	
Student Leader, BUSM in. Vision Tech x Medicine Group	April 2021 - March 2022	
STEM Tutor, Stanford Academic Resource Center	Summer 2017	
Dance Captain, Stanford Basmati Raas (Indian Dance)	Sept. 2013 - June 2018	
Resident Assistant, 2x years at Stanford Residential Education	Sept. 2015 - June 2017	
Program Coordinator, Stanford LGBT Community Resource Center	Sept. 2015 - June 2017	

VOLUNTEER

Child Life Volunteer , Boston Children's Hospital Oncology (150 hrs)	Oct. 2018 - Feb. 2020
Fundraising Coordinator & Volunteer, Stanford Camp Kesem (650 hrs)	April 2016 - July 2018
Reading Tutor, Stanford Ravenswood Reads (120 hrs)	Spring 2016

Awards	Eli Shapiro Academy, BUSM Internal Medicine Honors	2023
	Scholar in Training Award, American Association of Cancer Research	2023
	Abstract Achievement Award, American Society of Hematology	2021
	Stanford Achievement Award, awarded to 10% of graduating class	2017
	Genentech Outstanding Student Award, selected Junior in Chemical Engineering	2016

SKILLS Advanced: Python, R, PyTorch, TensorFlow, git

Basic: Matlab, LATEX

SOFTWARE

Signature Analyzer: a fast, GPU enabled implementation of bayesian non-negative matrix factorization for extracting mutational and genomic expression signatures (GitHub).

CLUMPS-PTM: an algorithm for identifying 3D clusters of post-translational modifications (GitHub).

CLUMPS-2: an algorithm for identifying 3D clusters of somatic mutations (GitHub).

Mudi: python utilities for single-cell RNA-sequencing analyses (GitHub).

SITEFINDER: using deep learning to identify ligand site binding in proteins (Stanford CS231n) (GitHub).

PUBLICATIONS Pre-Prints

[1] Rouhana, J. M., Wang, J., Eraslan, G., **Anand, S.**, Hamel, A. R., Cole, B. et al. ECLIPSER: identifying causal cell types and genes for complex traits through single cell enrichment of e/sQTL-mapped genes in GWAS loci. bioRxiv (2021). doi: 10.1101/2021.11.24.469720

Peer-Reviewed Publications

- [1] Geffen, Y.[†], **Anand**, S.[†], Akiyama, Y.[†], Yaron, T.[†], Song, Y.[†], et al. Pan-Cancer Analysis of Post-Translational Modifications Reveals Shared Patterns of Protein Regulation. **Cell**, 186, 1-24 (2023). doi: 10.1016/j.cell.2023.07.013
- [2] Li, Y., Porta-Pardo, E., Tokheim, C., Bailey, M.H., Yaron, T.M., Stathias, V., Geffen, Y., Imbach, K.J., Cao, S., Anand, S., Akiyama, Y., et al. Pan-cancer proteogenomics connects oncogenic drivers to functional states. Cell, 186, 1–24 (2023). doi: 10.1016/j.cell.2023.07.014
- [3] Li, Y., Dou, Y., Leprevost, F. D. V., Geffen, Y., Calinawan, A. P., Aguet, F., Akiyama, Y., **Anand, S.**, et al. Proteogenomic data and resources for pan-cancer analysis. **Cancer Cell**, 41(8), 1397-1406 (2023). doi: 10.1016/j.ccell.2023.06.009
- [4] Boiarsky, R., Haradhvala, N. J., Alberge, J. B., Sklavenitis-Pistofidis, R., Mouhieddine, T. H., Zavidij, O. et al. Single Cell Characterization of Myeloma and its Precursor Conditions Reveals Transcriptional Signatures of Early Tumorigenesis. Nature Communications, 13, 7040 (2022). doi: 10.1038/s41467-022-33944-z
- [5] Sklavenitis-Pistofidis, R., Aranha, M. P., Redd, R. A., Baginska, J., Haradhvala, N. J., Hallisey, M., et al. Immune biomarkers of response to immunotherapy in patients with high-risk smoldering myeloma. **Cancer Cell**, 40(11), 1358-1373 (2022). doi: 10.1016/j.ccell.2022.10.017
- [6] Yaron, T. M., Heaton, B. E., Levy, T. M., Johnson, J. L., Jordan, T. X., Cohen, B. M. et al. Host protein kinases required for SARS-CoV-2 nucleocapsid phosphorylation and viral replication. Science Signaling, 15(757) (2022). doi: 10.1126/scisignal.abm0808
- [7] Roh, W., Geffen, Y., Cha, H., Miller, M., **Anand, S.**, Kim, J. et al. High-resolution profiling of lung adenocarcinoma identifies expression subtypes with specific biomarkers and clinically relevant vulnerabilities. **Cancer Research** (2022). doi: 10.1158/0008-5472.CAN-22-0432
- [8] Knisbacher, B. A., Lin, Z., Hahn, C. K., Nadeu, F., Duran-Ferrer, M., Stevenson, K. E. et al. The

[†] indicates co-first authorship

[‡] indicates co-second authorship

- CLL-1100 project: towards complete genomic characterization and improved prognostics for CLL. **Nature Genetics**, 1-11 (2022). doi: 10.1038/s41588-022-01140-w
- [9] Bustoros, M.[†], **Anand, S.[†]**, Sklavenitis-Pistofidis, R. et al. Genetic subtypes of smoldering multiple myeloma are associated with distinct pathogenic phenotypes and clinical outcomes. **Nature Communications**, 13, 3449 (2022). doi: 10.1038/s41467-022-30694-w (GitHub)
- [10] Eraslan, G.[†], Drokhlyansky, E.[†], **Anand, S.[‡]**, Fiskin, E.[‡], Subramanian, A.[‡], Sylper, M.[‡], Wang, J.[‡] et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. **Science**, 376(6594) (2022). doi: 10.1126/science.abl4290
- [11] Beauchamp, E. M., Leventhal, M., Bernard, E., Hoppe, E. R., Todisco, G., Creignou, M. et al. ZBTB33 is mutated in clonal hematopoiesis and myelodysplastic syndromes and impacts RNA splicing. **Blood Cancer Discovery**, 2(5), 500-517 (2021). doi: 10.1158/2643-3230.BCD-20-0224
- [12] Satpathy, S., Krug, K., Beltran, P. M. J., Savage, S. R., Petralia, F., Kumar-Sinha, C. et al. A proteogenomic portrait of lung squamous cell carcinoma. **Cell**, 184(16), 4348-4371 (2021). doi: 10.1016/j.cell.2021.07.016
- [13] de Goede, O. M., Nachun, D. C., Ferraro, N. M., Gloudemans, M. J., Rao, A. S., Smail, C. et al. Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease. **Cell**, 184(10), 2633-2648 (2021). doi: 10.1016/j.cell.2021.03.050
- [14] Jiang, L., Wang, M., Lin, S., Jian, R., Li, X., Chan, J. et al. A quantitative proteome map of the human body. **Cell**, 183(1), 269-283 (2020). doi: 10.1016/j.cell.2020.08.036
- [15] Ferraro, N. M., Strober, B. J., Einson, J., Abell, N. S., Aguet, F., Barbeira, A. N. et al. Transcriptomic signatures across human tissues identify functional rare genetic variation. **Science**, 369(6509) (2020). doi: 10.1126/science.aaz5900
- [16] GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. **Science**, 369(6509), 1318-1330 (2020). doi: 10.1126/science.aaz1776
- [17] Bustoros, M., Sklavenitis-Pistofidis, R., Park, J., Redd, R., Zhitomirsky, B., Dunford, A. J. et al. Genomic profiling of smoldering multiple myeloma identifies patients at a high risk of disease progression. **Journal of Clinical Oncology**, 38(21), 2380 (2020). doi: 10.1200/JCO.20.00437
- [18] Taylor-Weiner, A., Aguet, F., Haradhvala, N. J., Gosai, S., Anand, S., Kim, J. et al. Scaling computational genomics to millions of individuals with GPUs. **Genome Biology**, 20(1), 1-5 (2019). doi: 10.1186/s13059-019-1836-7
- [19] Lu, Y., **Anand, S.**, Shirley, W., Gedeck, P., Kelley, B. P., Skolnik, S. et al. Prediction of p K a using machine learning methods with rooted topological torsion fingerprints: application to aliphatic amines. **Journal of Chemical Information and Modeling**, 59(11), 4706-4719 (2019). doi: 10.1021/acs.jcim.9b00498
- [20] Anand, S., Kalesinskas, L., Smail, C., & Tanigawa, Y. SNPs2ChIP: Latent Factors of ChIP-seq to infer functions of non-coding SNPs. Proceedings of the Pacific Symposium (pp. 184-195) (2018). doi: 10.1142/9789813279827_0017

Peer-Reviewed Book Chapters

[1] **Anand, S.**, Verma, A. (2023). *Artificial Intelligence in Nephrology*. In C. Krittanawong (Ed.), Artificial Intelligence in Clinical Practice: How AI Technologies Impact Medical Research and Clinics (First Edition). New York City: Elsevier.

PRESENTATION Talks

- [1] Roh, W., Geffen, Y., Miller, M., Anand, S., Kim, J., Heiman, D. et al. Identification and proteogenomic characterization of novel lung adenocarcinoma subtypes with therapeutic relevance. American Association of Cancer Research (AACR), 82(12_Supplement), 2151-2151 (2022). doi: 10.1158/1538-7445.AM2022-2151
- [2] Kubler, K., Nardone, A., Anand, S., Gorvich, D., Droog, M., Hermida-Prado, F. et al. Abstract

- GS2-09: Tamoxifen instigates uterine cancer development by activating PI3K signaling and supersedes PIK3CA driver mutations. **San Antonio Breast Cancer Symposium (SABCS)**, 82(4_Supplement) (2021). doi: 10.1158/1538-7445.SABCS21-GS2-09
- [3] Sklavenitis-Pistofidis, R., Dutta, A. K., Ujwary, S., Redd, R. A., Savell, A., Fléchon, L. et al. Single-Cell RNA-Sequencing Identifies Immune Biomarkers of Response to Immunotherapy in Patients with High-Risk Smoldering Myeloma. **American Society of Hematology (ASH)**, 138, 330 (2021). doi: 10.1182/blood-2021-147623
- [4] **Anand, S.**[†], Bustoros, M.[†], Sklavenitis-Pistofidis, R., Redd, R. A., Boyle, E. M., Tai, Y. T. et al. Genomic Profiling of Smoldering Multiple Myeloma Classifies Molecular Groups with Distinct Pathogenic Phenotypes and Clinical Outcomes. **American Society of Hematology (ASH)**, 138, 723 (2021).
- [5] **Anand, S.** "Genomic profiling of smoldering myeloma identifies high- and low- risk patients | ASH 2021." **The Video Journal of Hematological Oncology**, Dec. 12, 2021. Interviews: Part 1. Part 2.
- [6] Geffen, Y.[†], **Anand, S.[†]**, Akiyama, Y.[†], Yaron, T. M., Kerelsky, A., Johnson, J. L., ... & Oncogenic Drivers and Pathways Group, Clinical Proteomic Tumor Analysis Consortium (CPTAC). Patterns and regulation of post translational modifications in cancer. **American Association of Cancer Research (AACR)**, 81(13_Supplement), 16-16. doi: 10.1158/1538-7445.AM2021-16

Posters & Abstracts

- [1] **Anand, S.**, Geffen, Y., Akiyama, Y., Aguet, F., Getz, G. *CLUMPS-PTM*: Spatial Clustering of Post-Translational Modifications Across Cancer Types. **American Association of Cancer Research** (**AACR**), 83(7_Supplement), 3132-3132 (2023). doi: 10.1158/1538-7445.AM2023-3132
- [2] Li, G. X., Hsiao, Y., Chen, L., Mannan, R., Zhang, Y., Petralia, F., et al. Comprehensive proteogenomic characterization of rare kidney tumors. **American Association of Cancer Research** (AACR), 83(7_Supplement), 3127-3127 (2023). doi: 10.1158/1538-7445.AM2023-3127
- [3] Boiarsky, R., Haradhvala, N., Sklavenitis-Pistofidis, R., Mouhieddine, T. H., Alberge, J. B., Zavidij, O. et al. Single Cell Characterization of Myeloma and its Precursor Conditions Reveals Transcriptional Signatures of Early Tumorigenesis. American Society of Hematology (ASH), 138, 2219 (2021). doi: 10.1182/blood-2021-150889
- [4] Akiyama, Y., Geffen, Y., Anand, S., Yaron, T., Johnson, J. L., Huntsman, E. et al. Pan-cancer proteogenomic analysis reveals functional mechanisms underlying DNA repair deficiencies. American Association of Cancer Research (AACR), 82(12_Supplement), 794-794 (2022). doi: 10.1158/1538-7445.AM2022-794
- [5] Anand, S., Bustoros, M., Aguet, F., Sklavenitis-Pistofidis, R., Redd, R., Zhitomirsky, B. et al. Genomic profiling of smoldering multiple myeloma classifies distinct molecular groups. American Association of Cancer Research (AACR), 81(13_Supplement), 2240-2240 (2021). doi: 10.1158/1538-7445.AM2021-2240
- [6] **Anand, S.**, Aguet, F., Taylor-Weiner, A., et al. Signature Analyzer: scaling Bayesian NMF to millions of individuals with GPUs. **Broad Institute of MIT & Harvard Retreat**, (2019). GitHub.

INTERESTS

Rass/Garba (Indian) dance: 5+ years of dancing and choreographing at cultural events (ex. Stanford Holi), national competitions, and family weddings.

Music: 15+ years of classical violin training, performed with Stanford Symphony Orchestra, chamber music groups, and musical theater pit orchestras; also enjoy guitar & ukulele.

Dogs: my wife and I have a 3 year old Mudi dog, Hazel, that we do trick training, frisbee catching, and agility with. She comes with us back-country skiing and watches over us when we climb outdoors.

Ski Mountaineering: ask me about the glacier we climbed up and skied down in the Selkirk Mountains of British Columbia!

Rock Climbing: we love indoor & outdoor lead climbing + finding new routes along the Pacific Coast.