Problem 1

Let X be a real-valued random variable with finite $\mathbb{E}[X]$ and finite $\mathbb{E}\left[e^{\lambda X}\right]$ for all $\lambda \geqslant 0$. We define the *log-moment-generating function* as

$$\Psi_{\mathbf{X}}(\lambda) := \ln \mathbb{E}[e^{\lambda X}] \quad \text{ for all } \lambda \geqslant 0,$$

and its dual function:

$$\Psi_X^*(t) := \sup_{\lambda > 0} (\lambda t - \Psi_X(\lambda)).$$

Assume that X is NOT almost surely constant. Then due to the convexity of $e^{\lambda X}$ with respect to λ , the function $\Psi_X(\lambda)$ is *strictly* convex over $\lambda \ge 0$.

(a) Prove the following Chernoff bound:

$$Pr[X \geqslant t] \leqslant exp(-\Psi_X^*(t)).$$

In particular if $\Psi_X(\lambda)$ is continuously differentiable, prove that the supreme in $\Psi_X^*(t)$ is achieved at the unique $\lambda \geqslant 0$ satisfying

$$\Psi_{\mathbf{x}}'(\lambda) = \mathbf{t}$$

where $\Psi'_{X}(\lambda)$ denotes the derivative of $\Psi_{X}(\lambda)$ with respect to λ .

- (b) **Normal random variables.** Let $X \sim N(\mu, \sigma)$ be a Gaussian random variable with mean μ and standard deviation σ . What are the $\Psi_X(\lambda)$ and $\Psi_X^*(t)$? And give a tail inequality to upper bound the probability $\Pr[X \geqslant t]$.
- (c) **Poisson random variables.** Let $X \sim \text{Pois}(\nu)$ be a Poisson random variable with parameter ν , that is, $\Pr[X = k] = e^{-\nu} \nu^k / k!$ for all $k = 0, 1, 2, \ldots$ What are the $\Psi_X(\lambda)$ and $\Psi_X^*(t)$? And give a tail inequality to upper bound the probability $\Pr[X \geqslant t]$.
- (d) **Bernoulli random variables.** Let $X \in \{0,1\}$ be a single Bernoulli trial with probability of success p, that is, $\Pr[X=1]=1-\Pr[X=0]=p$. Show that for any $t \in (p,1)$, we have $\Psi_X^*(t)=D(Y\|X)$ where $Y \in \{0,1\}$ is a Bernoulli random variable with parameter t and $D(Y\|X)=(1-t)\ln\frac{1-t}{1-p}+t\ln\frac{t}{p}$ is the *Kullback-Leibler divergence* between Y and X.
- (e) Sum of independent random variables. Let $X = \sum_{i=1}^n X_i$ be the sum of $\mathfrak n$ independently and identically distributed random variables X_1, X_2, \ldots, X_n . Show that $\Psi_X(\lambda) = \sum_{i=1}^n \Psi_{X_i}(\lambda)$ and $\Psi_X^*(\mathfrak t) = \mathfrak n \Psi_{X_i}^*(\frac{\mathfrak t}{\mathfrak n})$. Also for binomial random variable $X \sim \text{Bin}(\mathfrak n, \mathfrak p)$, give an upper bound to the tail inequality $\Pr[X \geqslant \mathfrak t]$ in terms of KL-divergence.

Give an upper bound to $Pr[X \ge t]$ when every X_i follows the geometric distribution with a probability p of success.

Problem 2

Let X be a random variable with expectation 0 such that moment generating function $E[e^{(t|X|)}]$ is finite for some t > 0. We can use the following two kinds of tail inequalities for X.

Chernoff Bound:

$$\text{Pr}[|X|\geqslant \delta]\leqslant \text{min}_{t\geqslant 0}\,\frac{\text{E}[e^{t|X|}]}{e^{t\delta}}$$

kth-Moment Bound:

$$Pr[|X|\geqslant \delta]\leqslant \frac{E[|X|^k]}{\delta^k}$$

- (a) Show that for each δ , there exists a choice of k such that the kth-moment bound is stronger than the Chernoff bound. (Hint: the probabilistic method might help you)
- (b) Why would we still prefer the Chernoff bound to the (seemingly) stronger kth-moment bound?

Problem 3

(Due to D.R. Karger and R. Motwani)

- (a) Let S, T be two disjoint subsets of a universe U such that |S| = |T| = n. Suppose we select a random set $R \subseteq U$ by independently sampling each element of U with probability p. We say that the random sample R is *good* if the following two conditions hold: $R \cap S = \emptyset$ and $R \cap T \neq \emptyset$. Show that for p = 1/n, the probability that R is good is larger than some positive constant.
- (b) Suppose now that random set R is chosen by sampling the elements of U with only *pairwise* independent. Show that for a suitable choice of the value of p, the probability that R is good is larger than some positive constant.

Problem 4

The *set-cover* problem is the following: given sets S_1, \ldots, S_n over a universe U, find the smallest set $T \subseteq U$ such that for $1 \le i \le n, T \cap S_i \ne \emptyset$. An alternative formulation of this problem is the following: given a 0-1 matrix M, find a 0-1 column vector c such that the dot product of each row of M with c is positive while minimizing $\|c\|_1$. The matrix M has n rows, and the ith row is the incidence vector of the set S_i .

Given a matrix M, let C(M) denote the size of the smallest set-cover for M. Let n be the number of rows in M. Show that we can adapt the technique of linear programming followed by randomized rounding to find a set-cover of size $O(\log n)$ times C(M).

Problem 5

Given a binary string, define a run as a maximal sequence of contiguous 1s; for example, the following string

$$\underbrace{111}_{3}00\underbrace{11}_{2}00\underbrace{111111}_{6}0\underbrace{1}_{1}\underbrace{0\underbrace{11}_{2}}$$

contains 5 runs, of length 3, 2, 6, 1, 2.

Let S be a binary string of length n, generated uniformly at random. Let X_k be the number of runs in S of length k or more.

- Compute the exact value of $\mathbb{E}[X_k]$ as a function of n and k.
- Give the best concentration bound you can obtain for $|X_k \mathbb{E}[X_k]|$.

Problem 6

For any two points $x, y \in \{0, 1\}^n$, the *Hamming distance* $d_H(x, y)$ is defined as

$$d_{H}(x, y) := \sum_{i=1}^{n} |x_{i} - y_{i}|.$$

And the Hamming distance between a point $x \in \{0,1\}^n$ and a set $A \subseteq \{0,1\}^n$ is defined as $d_H(x,A) := \min_{y \in A} d_H(x,y)$. Given any subset $A \subseteq \{0,1\}^n$, t > 0, let

$$A_t := \left\{x \in \left\{0,1\right\}^n \mid \exists y \in A, d_H(x,y) \leqslant t\right\}.$$

Let $X = (X_1, ..., X_n) \in \{0, 1\}^n$ be sampled such that $X_1, ..., X_n$ are mutually independent. Let $A \subseteq \{0, 1\}^n$ be arbitrary. We denote that $\mu(A) := \Pr[X \in A]$.

(a) Show that

$$\mathbb{E}\left[d_{H}(X,A)\right] \leqslant \sqrt{2n\ln\frac{1}{\mu(A)}}.$$

(b) Prove a weaker version of Harper's Isoperimetric Inequality: For any constant $\varepsilon>0, \exists \delta>0,$ such that for $t=\varepsilon n$, either $\mu(A)<2^{-\delta n}$ or $\mu(A_t)>1-2^{-\delta n}$.