

HIGH POWER SWITCHING USE 2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

INSULATED TYPE

APPLICATION

Inverters, Converters, DC choppers, Induction heating, DC to DC converters.

HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules)

HIGH POWER SWITCHING USE INSULATED TYPE

2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

MAXIMUM RATINGS (Tj = 25°C)

Symbol	Item	Conditions	Ratings	Unit
VCES	Collector-emitter voltage	VGE = 0V	3300	V
VGES	Gate-emitter voltage	VCE = 0V	±20	V
Ic	Collector current	Tc = 25°C	800	Α
Ісм	Collector current	Pulse (Note	e 1) 1600	Α
IE (Note 2)	Emitter current	Tc = 25°C	800	Α
IEM(Note 2)	Emilier current	Pulse (Note	2 1) 1600	Α
PC (Note 3)	Maximum collector dissipation	Tc = 25°C, IGBT part	10400	W
Tj	Junction temperature	_	-40 ~ +150	°C
Tstg	Storage temperature	_	-40 ~ +125	°C
Viso	Isolation voltage	Charged part to base plate, rms, sinusoidal, AC 60Hz 1n	nin. 6000	V
_	Mounting torque	Main terminals screw M8	6.67 ~ 13.00	N⋅m
		Mounting screw M6	2.84 ~ 6.00	N⋅m
		Auxiliary terminals screw M4	0.88 ~ 2.00	N⋅m
_	Mass	Typical value	1.5	kg

ELECTRICAL CHARACTERISTICS (Tj = 25°C)

Symbol	Item	O and distance		Limits		
		Conditions		Тур	Max	Unit
ICES	Collector cutoff current	VCE = VCES, VGE = 0V	_	_	10	mA
VGE(th)	Gate-emitter threshold voltage	IC = 80mA, VCE = 10V	4.5	6.0	7.5	V
IGES	Gate-leakage current	VGE = VGES, VCE = 0V	_	_	0.5	μΑ
VCE(sat)	Collector-emitter	Tj = 25°C	_	3.80	4.94	V
	saturation voltage	$T_j = 125$ °C IC = 800A, VGE = 15V (Note 4)	_	4.00	_	
Cies	Input capacitance	VCE = 10V - VGE = 0V	T -	120	_	nF
Coes	Output capacitance		_	12.0	_	nF
Cres	Reverse transfer capacitance	VGE = UV		3.6	_	nF
QG	Total gate charge	VCC = 1650V, IC = 800A, VGE = 15V	_	5.7	_	μС
td (on)	Turn-on delay time	Vcc = 1650V, Ic = 800A	_	_	1.60	μs
tr	Turn-on rise time	VGE1 = VGE2 = 15V	_	_	2.00	μs
td (off)	Turn-off delay time	$RG = 2.5\Omega$	_	_	2.50	μs
tf	Turn-off fall time	Resistive load switching operation	_	_	1.00	μs
VEC(Note 2)	Emitter-collector voltage	IE = 800A, VGE = 0V	I –	2.80	3.64	V
trr (Note 2)	Reverse recovery time	IE = 800A,	_	_	1.40	μs
Qrr (Note 2)	Reverse recovery charge	die / dt = $-1600A / \mu s$ (Note 1)	_	270	_	μC
Rth(j-c)Q	Thermal resistance	Junction to case, IGBT part		_	0.012	K/W
Rth(j-c)R		Junction to case, FWDi part	_	_	0.024	K/W
Rth(c-f)	Contact thermal resistance	Case to fin, conductive grease applied		0.008	_	K/W

Note 1. Pulse width and repetition rate should be such that the device junction temp. (Tj) does not exceed T_{jmax} rating.

2. IE, VEC, trr, Qrr & die/dt represent characteristics of the anti-parallel, emitter to collector free-wheel diode.

3. Junction temperature (Tj) should not increase beyond 150°C.

^{4.} Pulse width and repetition rate should be such as to cause negligible temperature rise.

HIGH POWER SWITCHING USE INSULATED TYPE

2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

PERFORMANCE CURVES

COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V)

GATE-EMITTER VOLTAGE VGE (V)

COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

COLLECTOR CURRENT IC (A)

COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

GATE-EMITTER VOLTAGE VGE (V)

FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL)

CAPACITANCE VS. VCE (TYPICAL)

COLLECTOR-EMITTER VOLTAGE VCE (V)

HIGH POWER SWITCHING USE INSULATED TYPE

2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) 3 2 SWITCHING TIMES (us) td(off) 100 5 _tr 3 2 $VCC = 1650V, VGE = \pm 15V$ $Rg = 2.5\Omega$, $T_j = 125^{\circ}C$ Inductive load 5 5 7 10² 2 3 5 7 10³ 3 5

TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT part)

COLLECTOR CURRENT IC (A)

VGE - GATE CHARGE

REVERSE RECOVERY CHARACTERISTICS OF FREE-WHEEL DIODE (TYPICAL)

TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS

