

Pontificia Universidad Católica de Chile Facultad de Física Estática y Dinámica

Profesor: Ulrich Volkmann

Ayudante: Claudio Hernández (cghernandez@uc.cl)

Ayudantía 9

1.	Jugando al P001 Considere dos bolitas de radio R y masas m y $2m$ respectivamente reposando sobre una
	mesa sin fricción. La bolita de masa m se mueve hacia la derecha con rapidez v_0 y la de masa $2m$ a la izquierda
	con rapidez $\frac{v_0}{2}$. Al momento de colisionar, los centros de ambas bolitas están separados una distancia b en el
	eje vertical. Bajo estas condiciones, y considerando una colisión elástica, determine el (vector) velocidad final
	de ambas bolitas.

2. Cohete Alocado Considere un móvil en forma de recipiente, de masa M_R que almacena en su interior un líquido de densidad constante ρ . El móvil tiene una apertura por la cual puede eyectar este líquido con una rapidez relativa u. Si el recipiente se desliza sobre una superficie rugosa, tal que entre el suelo y el móvil existe un coeficiente de roce dinámico μ , determine cómo debe eyectarse el volumen en función del tiempo para que el móvil lleve una rapidez constante v_0 mientras expele su contenido. Determine la distancia recorrida total una vez que el recipiente se haya detenido.

3. Disparando al Péndulo Una bolita de masa m_1 que viaja con una velocidad v_0 hacia la derecha impacta inelásticamente a otra bola, de masa m_2 y que se encuentra en reposo al momento del impacto. m_2 se encuentra suspendida mediante una cuerda ideal de largo ℓ a un punto fijo. Si el coeficiente de restitución para la colisión entre m_1 y m_2 es e, determine desviación angular máxima que alcanzará el péndulo.