1. Let
$$u = -2x^5 - 2$$
, so $y = u^3$.
Now $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$.

$$\frac{dy}{du} = 3 \times u^{3-1} = 3u^2$$

$$\frac{du}{dx} = -2 \times 5 \times x^{5-1} = -10x^4$$

So,
$$\frac{dy}{dx} = 3u^2 \times (-10x^4) = 3(-2x^5 - 2)^2 \times (-10x^4) = -30x^4(-2x^5 - 2)^2$$
.

Hence
$$\frac{dy}{dx} = -30x^4 (-2x^5 - 2)^2$$
.

2. Let
$$u = -8x^4 + 7$$
, so $y = u^7$.
Now $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$.

$$\frac{dy}{du} = 7 \times u^{7-1} = 7u^6$$

$$\frac{du}{dx} = -8 \times 4 \times x^{4-1} = -32x^3$$

So,
$$\frac{dy}{dx} = 7u^6 \times (-32x^3) = 7(-8x^4 + 7)^6 \times (-32x^3) = -224x^3(-8x^4 + 7)^6$$
.

Hence
$$\frac{dy}{dx} = -224x^3 \left(-8x^4 + 7\right)^6$$
.

3. Let $u = 4x^6 - 2$, so $y = \frac{1}{u^2} = u^{-2}$.

Now
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$
.

$$\frac{dy}{du} = -2 \times u^{-2-1} = -2u^{-3}$$

$$\frac{du}{dx} = 4 \times 6 \times x^{6-1} = 24x^5$$

So,
$$\frac{dy}{dx} = -2u^{-3} \times 24x^5 = -2(4x^6 - 2)^{-3} \times 24x^5 = -48x^5(4x^6 - 2)^{-3} = -\frac{48x^5}{(4x^6 - 2)^3}$$
.

Hence
$$\frac{dy}{dx} = -\frac{48x^5}{(4x^6 - 2)^3}$$
.