Листок 8 8 (2.4). Характеры. Суммы Гаусса

Упражнения и задачи

- 1. Пусть G конечная абелева группа, H собственная подгруппа, $g \in G$, $g \notin H$. Докажите, что существует характер χ группы G такой что $\chi(g) \neq 1$ и $\forall h \in H$ $\chi(h) = 1$.
- 2. Пусть G конечная абелева группа, \widehat{G} группа характеров, H < G подгруппа, $A < \widehat{G}$ аннигилятор $H \colon A = \{\chi \in \widehat{G} : \forall h \in H \ \chi(h) = 1\}$. Докажите, что $A \cong G/H$ и что $H \cong \widehat{G}/A$.
- 3. Пусть $G = G_1 \times \cdots \times G_k$ прямое произведение конечных абелевых групп (множество k-кортежей с операцией $(g_1, \dots, g_k)(h_1, \dots, h_k) = (g_1h_1, \dots, g_kh_k)$). Докажите, что $\widehat{G} \cong \widehat{G_1} \times \cdots \times \widehat{G_k}$.
- 4. Основная теорема о стуктуре конечных абелевых групп утверждает, что каждая такая группа изоморфна прямому произведению конечного числа циклических групп. Выведете из этой теоремы, что если G конечная абелева группа, то $\widehat{G}\cong G$.
- 5. Пусть G конечная абелева группа, m > 0 целое. Докажите, что $g \in G$ является m-ой степенью в $G \iff \forall$ характера порядка m выполняется $\chi(g) = 1$.
- 6. Покажите, что для аддитивных характеров ψ_a , ψ_b поля \mathbb{F}_q выполняется $\psi_a\psi_b=\psi_{a+b}$, и что из этого следует изоморфизм аддитивной группы \mathbb{F}_q группе аддитивных характеров поля.
- 7. Докажите, что для аддитивного характера $\psi = \psi_1$ поля $\mathbb{F}_q/\mathbb{F}_p$ для всех $\alpha \in \mathbb{F}_q$, $j \in \mathbb{Z}_+$ справедливо $\psi_1(\alpha^{p^j}) = \psi_1(\alpha)$.
- 8. Пусть χ' мультипликативный характер \mathbb{F}_{q^s} порядка m, χ ограничение χ' на \mathbb{F}_q . Докажите, что χ мультипликативный характер \mathbb{F}_q порядка $m/(m,(q^s-1)/(q-1))$.
- 9. Пусть χ мультипликативный характер \mathbb{F}_q порядка, χ' продолжение χ на \mathbb{F}_{q^s} . Докажите, что $\chi'(a)=\chi(q)^s$ $\forall a\in\mathbb{F}_q^*$.
- 10. Пусть $p \neq 2, \, ab \not\equiv 0 \, (p), \, \chi$ квадратичный характер \mathbb{F}_p^* . Докажите, что
 - $G(\chi, \psi_a)G(\chi, \psi_b) = \left(\frac{-ab}{p}\right)p;$
 - $\sum_a G(\chi, \psi_a) = 0.$
- 11. Пусть $p>2,~G=\sum_{x=0}^{p-1}e^{2\pi ix^2/p}$ сумма Гаусса для квадратичного характера, $A=(a_{st})_{0\leqslant s,t\leqslant p-1}$ $p\times p$ матрица с элементами $a_{st}=e^{2\pi ist/p}$. Докажите, что:
 - если $\lambda_0, \dots, \lambda_{p-1}$ характеристические числа матрицы A, то $\sum_{k=0}^{p-1} \lambda_k = G$;
 - $\bullet\,$ характеристический многочлен матрицы A^2 имеет вид: $(t-p)^{(p+1)/2}(t+p)^{(p-1)/2};$
 - для определителя матрицы A справедливо $\det A = i^{p(p-1)/2} p^{p/2}$.
- 12. Пусть $q=p^n, p>2$. Определим аналог символа Лежандра для \mathbb{F}_q : $\left(\frac{\alpha}{q}\right)=1$, если α квадрат в \mathbb{F}_q ; $\left(\frac{\alpha}{q}\right)=1$, если α не является квадратом в \mathbb{F}_q ; $\left(\frac{0}{q}\right)=0$. Докажите следующие свойства этого символа:
 - $\left(\frac{\alpha\beta}{q}\right) = \left(\frac{\alpha}{q}\right)\left(\frac{\beta}{q}\right), \ \alpha, \beta \in \mathbb{F}_q;$

- $\sum_{\alpha \in \mathbb{F}_q} \left(\frac{\alpha}{q}\right) = 0;$
- ullet $\left(rac{lpha}{q}
 ight)=\left(rac{\mathrm{N}_{\mathbb{F}_q/\mathbb{F}_p}(lpha)}{p}
 ight)$ обычный символ Лежандра $\pmod{p}.$
- 13. Докажите свойства обобщенных сумм Гаусса для конечного подя $\mathbb{F}_q/\mathbb{F}_p$:
 - $G(\chi, \psi_{ab}) = \chi(a)G(\chi, \psi_b), \ a \in \mathbb{F}_q^*, \ b \in \mathbb{F}_q;$
 - $G(\chi, \bar{\psi}) = \chi(-1)G(\chi, \psi);$
 - $G(\bar{\chi}, \psi) = \chi(-1)\overline{G(\chi, \psi)};$
 - $G(\chi, \psi)G(\bar{\chi}, \psi) = \chi(-1)q, \ \chi \neq \chi_0, \ \psi \neq \psi_0;$
 - $G(\chi^p,\psi_b)=G(\chi,\psi_{\sigma(b)}),\,b\in\mathbb{F}_q,\,\sigma$ автоморфизм Фробениуса.
- 14. Пусть $f: \mathbb{F}_q \to \mathbb{C}, \ \hat{f} = \frac{1}{q} \sum_{t \in \mathbb{F}_q} f(t) \overline{\psi(st)}$ конечное преобрахование Фурье. Докажите, что $f(t) = \sum_{s \in \mathbb{F}_q} \hat{f}(s) \psi(st)$.

SageMath

- Исследуйте основные функции SageMath связанные с группой характеров конечных абелевых групп:
 - character_table().

Темы для самостоятельного изучения

• Докажательство квадратичного закон взаимности через суммы Гаусса. [IR], §7.3; [LN], §5.2.