DS 670 - LAB 10

Aakash Parwani April 06, 2017

Comparison between competitor's algorithm and my algorithm

Competitor	My Algorithm
 This paper emphasizes importance of the average daily air temperature's long-range forecast. Further, daily values may be used as very good basis for week, month, and season forecasts. 	 My algorithm is using multi linear regression model to better understand the relationship between the independent and the dependent variables.
 In this paper, long-range forecasting average daily air temperature using inductive method was proposed. 	 Important thing in the proposed weather analysis is first considering error free prediction of wind speed and then performs forecasting of daily air temperature. This operation took less than 3 seconds using zeppelin.
 Data from 1 January 1973 to 20 April 2013 represent air temperature adequately because 35-year period is within this interval. 	 Loading and cleaning the data. This operation took less than 1 minute. This operation was run on Zeppelin.
 The principle of high-impact weather events substantiates the different places interaction by atmosphere, hydrosphere, landmass, biosphere, etc. 	 Used pandas, numpy, scipy to ensure optimized data transformation and analysis on big weather dataset to get a clear picture of relationship between variables. This operation took less than 1 minute in zeppelin.
The forecasting method used has significant errors at long-range period (more than 20% in the mean).	 My algorithm has used short range forecasting method. That has error less than 10% in the mean.
 With the algorithm average waiting time is approximately 15 minutes. 	 With Spark interpreter on Zeppelin IDE. Process time is approximately 4 minutes.
 The algorithm considers precipitation has close relation to air temperature and vice versa. 	 Performed pearson correlation using zeppelin and found p-value for temperature and wind speed is than less than 0.05. That is a strong evidence for good relation.
Pearson product-moment correlation coefficient is greater than 0.8 and less than 0.85 in absolute value.	 Pearson product-moment correlation coefficient calculated using Zeppelin IDE is greater than 0.85 (chances for improvement).
 The model designed is combination of air temperature time series analysis 	 Here, multi linear regression analysis is performed. That considers relations

DS 670 - LAB 10

for different places. So the accuracy depends on the number of places into consideration.	between variables like: Temperature, Wind speed, Wind direction, precipitation etc. That improves the accuracy of model to 85 percent.
 Only air temperature and precipitation is used in the long range forecasting that reduces the reliability level. 	 All the variables (air temperature, precipitation, windspeed, pressure, dew point etc.) are considered for short range forecasting that set's reliability level of this model to 85 percent.
 Recent research based on the inductive methods showed possibility of the long-range (half-year lead-time) forecast with mean absolute error (MAE) up to 8° F. 	 Mean absolute error (MAE) of my algorithm is 5.7° F. And there are chances of improvement.

References

Dmytro, Z. (2012). Improving Long-Term Weather Global Using Cloud Computing. *Developing Cloud Computing's Novel Computational Methods*, 17.

Pedersen, L. (2007). NETWORK ARCHITECTURE FOR SMALL X-BAND WEATHER RADARS. *TEST BED FOR AUTOMATIC INTER-CALIBRATION AND NOWCASTING*, 7.

Zubov, D. (2013). Average Daily Air Temperature's Long-Range Forecast. *Average Daily Air Temperature's Using Sattelite Data*, 7.