\mathcal{P} ráctica \mathcal{G} eneral Espacios Vectoriales (Parte II)

- 1. Sea $(\mathcal{V}, +, \cdot \mathbb{R})$ un espacio vectorial y sea $\mathcal{B} = \{v_1, v_2, v_3\}$ una base de \mathcal{V} . Si $w_1 = v_1, w_2 = v_1 + v_2$ y $w_3 = v_1 + v_2 + v_3$, demuestre que $\{w_1, w_2, w_3\}$ es una base de \mathcal{V}
- 2. Sea $\{x,y\}$ una base de \mathbb{R}^2 y sean u=2x-y,v=2x-3y. Demuestre que $\{u,v\}$ es, también, una base
- 3. Considere el conjunto $\mathcal{B} = \{(k-2,1,-1),(2,-k,4),(8,-11,1+k)\}$; Para qué valor o valores de k se cumple que \mathcal{B} es una base de \mathbb{R}^3 ?
- 4. Determine si el conjunto de vectores que se enuncia es una base de $\mathcal{M}_{3\times 1}(\mathbb{R})$ o no lo es. Justifique.

$$\left\{ \left(\begin{array}{c} 0\\2\\-2 \end{array} \right), \left(\begin{array}{c} 6\\-8\\6 \end{array} \right), \left(\begin{array}{c} 3\\-1\\0 \end{array} \right) \right\}$$

- 5. Sea $\mathcal{H} = \left\{ (x, y, z) \in \mathbb{R}^3 / 3x y + 5z = 0 \right\}$ un subespacio de \mathbb{R}^3
 - (a) Si $\mathcal{B} = \{(1, -2, -1), (0, 5, 1)\}$, verifique que $\mathcal{B} \subseteq \mathcal{H}$ y, además, una base de \mathcal{H}
 - (b) Verifique que el vector u = (3, -1, -2) pertenece a \mathcal{H} y, además, expréselo como una combinación lineal de los vectores de \mathcal{B}
- 6. En $\mathcal{P}_2(\mathbb{R})$ considere las bases ordenadas $\mathcal{B}_1 = \{1, x, x^2\}$ y $\mathcal{B}_2 = \{1+x, 1+x^2, x+x^2\}$. Si $p(x) = 2-x+x^2$, determine el vector de coordenadas de p(x) respecto de las bases \mathcal{B}_1 y \mathcal{B}_2 , respectivamente.
- 7. Considere las bases ordenadas $\mathcal{B}_{1} = \left\{-1, x(x+1), x\right\}$ y $\mathcal{B}_{2} = \left\{2x, -3, 2x(1-x)\right\}$ de $\mathcal{P}_{2}(\mathbb{R})$
 - (a) Determine la matriz de transición de la base \mathcal{B}_1 a la base \mathcal{B}_2
 - (b) Determine $\left[a + bx + cx^2\right]_{\mathcal{B}_1}$
 - (c) Usando los resultados obtenidos anteriormente, determine $\left[a + bx + cx^2\right]_{B_2}$
- 8. Sean $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ y $S = \left\{ x \in \mathcal{M}_{n \times 1}(\mathbb{R}) \middle/ Ax = \mathcal{O}_{m \times 1} \right\}$
 - (a) Demuestre que S es subespacio de $\mathcal{M}_{n\times 1}(\mathbb{R})$ Note que S es el conjunto solución del sistema homogéneo de m ecuaciones lineales con nincógnitas $Ax = \mathcal{O}$

 - (b) Encuentre la dimensión del espacio solución del sistema homogéneo $\begin{cases} x-y-z=0\\ 2x-y+z=0 \end{cases}$ (c) Encuentre la dimensión del espacio solución del sistema homogéneo $\begin{cases} x-y-z=0\\ 2x-y+z=0\\ 3x-9y+3z=0 \end{cases}$
- 9. Si se sabe que $\mathcal{V} = \left\{ A \in \mathcal{M}_2(\mathbb{R}) \middle/ \left(\begin{array}{cc} 1 & -1 \\ 2 & 0 \end{array} \right) A = A \left(\begin{array}{cc} 1 & -1 \\ 2 & 0 \end{array} \right) \right\}$ es subespacio de $\mathcal{M}_2(\mathbb{R})$,

- (a) Halle tres elementos de \mathcal{V}
- (b) Determine una base de \mathcal{V}
- (c) Obtenga $\dim(\mathcal{V})$
- 10. En \mathbb{R}^3 considere las bases \mathcal{B}_1 y \mathcal{B}_2 , definidas por:

$$\mathcal{B}_{1} = \left\{ (1,0,0), (0,1,0), (0,0,1) \right\}$$
y $\mathcal{B}_{2} = \left\{ (1,1,1), (1,1,0), (1,0,0) \right\}$

- (a) Determine la matriz de transición de la base \mathcal{B}_1 a la base \mathcal{B}_2
- (b) Determine la matriz de transición de la base \mathcal{B}_2 a la base \mathcal{B}_1
- (c) Usando el resultado obtenido en (a) calcule $\left[(1,3,-2) \right]_{\mathcal{B}_2}$
- 11. Considere las bases ordenadas $\mathcal{B} = \{2 x^2, 4x, 3x^2 + x\}$ y $\mathcal{B}' = \{x, 2, x^2\}$ de $\mathcal{P}_2(\mathbb{R})$,
 - (a) Determine la matriz de transición de la base \mathcal{B} a la base \mathcal{B}'
 - (b) Con base en la matriz anterior, determine la matriz de transición de \mathcal{B}' a \mathcal{B}
 - (c) Determine $[-5+3x-8x^2]_{\mathcal{B}'}$
 - (d) Determine $[-5 + 3x 8x^2]_{\mathcal{B}}$ utilizando los resultados de los incisos b y c.
- 12. En $\mathcal{P}_{2}(\mathbb{R})$ considere las bases ordenadas $\mathcal{B}_{1}=\{1,x,x^{2}\}$ y $\mathcal{B}_{2}=\{x^{2}-x,x-1,2\}$
 - (a) Determine la matriz de transición de la base \mathcal{B}_1 a la base \mathcal{B}_2
 - (b) Determine la matriz de transición de la base \mathcal{B}_2 a la base \mathcal{B}_1
 - (c) Usando el resultado obtenido en (a) calcule $\left[\left(x^2+5x-2\right)\right]_{\mathcal{B}_2}$
- 13. En $\mathcal{P}_1(\mathbb{R})$ considere las bases ordenadas $\mathcal{B}_1 = \{3x+6, 2x+10\}$ y $\mathcal{B}_2 = \{2, 2x+3\}$
 - (a) Determine la matriz de transición de la base \mathcal{B}_1 a la base \mathcal{B}_2
 - (b) Determine la matriz de transición de la base \mathcal{B}_2 a la base \mathcal{B}_1
 - (c) Usando los resultados obtenidos en (a) y en (b), según corresponda, calcule $\left[x-4\right]_{\mathcal{B}_1}$ y $\left[x-4\right]_{\mathcal{B}_2}$
- 14. En \mathbb{R}^2 considere las bases ordenadas $\mathcal{B}_1 = \{(1,1),(2,3)\}$ y $\mathcal{B}_2 = \{(0,3),(5,-1)\}$. Sea $x \in \mathbb{R}^2$ tal que $\begin{bmatrix} x \end{bmatrix}_{\mathcal{B}_1} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$, calcule $\begin{bmatrix} x \end{bmatrix}_{\mathcal{B}_2}$
- 15. Considere los vectores siguientes: $p(x) = 2 3x + x^2$, $q(x) = 1 + 37x 17x^2$, $r(x) = 1 + 4x 2x^2$, $s(x) = -8 + 12x 4x^2$ y $t(x) = -3 5x + 8x^2$ de $\mathcal{P}_2(\mathbb{R})$. Si se define el conjunto \mathcal{B} como $\mathcal{B} = \{p(x), q(x), r(x), s(x), t(x)\}$, verifique que $\mathcal{G}en(\mathcal{B}) = \mathcal{P}_2(\mathbb{R})$ y determine, a partir de \mathcal{B} , un subconjunto que sea una base de $\mathcal{P}_2(\mathbb{R})$
- 16. Sean $(\mathcal{V}, +, \cdot \mathbb{R})$ algún espacio vectorial, u y v vectores de \mathcal{V} . Demuestre que si $\{u, v\}$ es una base de \mathcal{V} y α y β son escalares distintos de cero, entonces los conjuntos $\{u + v, \alpha u\}$ y $\{\alpha u, \beta v\}$ son, también, bases de \mathcal{V}
- 17. Si se sabe que $W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \middle/ a d = 0, 2b c = 0 \right\}$ es subespacio de $\mathcal{M}_2(\mathbb{R})$, determine:
 - (a) Una base de \mathcal{W}

- (b) $\dim (\mathcal{W})$
- (c) Una base de $\mathcal{M}_{2}\left(\mathbb{R}\right)$ a partir de la base de \mathcal{W}

18. Si se sabe que $W = \left\{ \left(x, y, 0, x - y \right) \middle/ x, y \in \mathbb{R} \right\}$ es subespacio de \mathbb{R}^4 , determine:

- (a) Una base de W
- (b) $\dim (\mathcal{W})$
- (c) Una base de \mathbb{R}^4 a partir de la base de \mathcal{W}
- 19. Determine la dimensión de cada uno de los subespacios siguientes (debe justificar su respuesta):

(a)
$$\mathcal{V} = \left\{ \begin{pmatrix} 0 & a \\ -a & b \end{pmatrix} \middle/ a, b \in \mathbb{R} \right\}$$

(b)
$$V = \{(a, b, c) \in \mathbb{R}^3 / a - 4b - c = 0\}$$

(c)
$$\mathcal{V} = \left\{ (a, b, 0) \middle/ a, b \in \mathbb{R} \right\}$$

(d)
$$V = \left\{ (a, b, c) \in \mathbb{R}^3 / 2a - 7b + c = 0 \right\}$$

(e)
$$V = \{(a, 0, a + b, b, a - b) / a, b \in \mathbb{R} \}$$

(f)
$$\mathcal{V} = \left\{ \begin{pmatrix} -b & a \\ a & b \end{pmatrix} \middle/ a, b \in \mathbb{R} \right\}$$

(g)
$$\mathcal{V} = \left\{ (a, b, c, d) \in \mathbb{R}^4 \middle/ a + b - c = 0, -2a - b + 3c = 0 \right\}$$

(h)
$$\mathcal{V} = \left\{ \begin{pmatrix} a & b \\ c & a \end{pmatrix} \middle/ a, b, c \in \mathbb{R} \right\}$$

(i)
$$\mathcal{V} = \left\{ (a, 2a, 3a) \middle/ a \in \mathbb{R} \right\}$$

Definición 1 (suma)

Si W_1 y W_2 son subconjuntos no vacíos de algún espacio vectorial $(\mathcal{V}, +, \cdot \mathbb{R})$, la suma de W_1 y W_2 , denotada por $W_1 + W_2$, está definida como: $W_1 + W_2 = \left\{v_1 + v_2 \middle/ v_1 \in W_1, v_2 \in W_2\right\}$

20. Demuestre que si W_1 y W_2 son subespacios de dimensión finita de algún espacio vectorial real V, entonces el subespacio $W_1 + W_2$ (ver definición 1) es de dimensión finita y, además,

$$\dim (\mathcal{W}_1 + \mathcal{W}_2) = \dim (\mathcal{W}_1) + \dim (\mathcal{W}_2) - \dim (\mathcal{W}_1 \cap \mathcal{W}_2)$$

Sugerencia: inicie con una base $\mathcal{B} = \{u_1, u_2, \dots, u_k\}$ para $\mathcal{W}_1 \cap \mathcal{W}_2$ y extienda este conjunto a bases $\mathcal{B}_1 = \{u_1, u_2, \dots, u_k, w_1, w_2, \dots, w_n\}$ y $\mathcal{B}_2 = \{u_1, u_2, \dots, u_k, v_1, v_2, \dots, v_m\}$ de \mathcal{W}_1 y \mathcal{W}_2 , respectivamente.

Definición 2 (suma directa)

Un espacio vectorial \mathcal{V} es llamado la suma directa de \mathcal{W}_1 y \mathcal{W}_2 , si \mathcal{W}_1 y \mathcal{W}_2 son subespacios de \mathcal{V} , tales que $\mathcal{W}_1 \cap \mathcal{W}_2 = \{0\}$ y $\mathcal{W}_1 + \mathcal{W}_2 = \mathcal{V}$; en este caso, se escribe $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$.

21. Si W_1 y W_2 son subespacios de dimensión finita de algún espacio vectorial real V y $V = W_1 + W_2$, demuestre que V es la suma directa de W_1 y W_2 (ver definición 2) si, y sólo si, dim $(V) = \dim(W_1) + \dim(W_2)$

3