Capture-Recapture with Bayesian statistics

Loreleï Guéry July 2020

Slides, codes and data

- All material prepared with R.
- R Markdown used to write reproducible material.
- Material available via Github here.

Credits

- Workshops material shared by Andy Royle and the Biometrics Working Group there or there
- Materials shared by Olivier Gimenez, Murray Efford and Andy Royle here and there

The Bibles

The Bibles

Spatial Capture-Recapture

J. Andrew Royle • Richard B. Chandler • Rahel Sollmann • Beth Gardner

Spotial Capture-Recapture provides a revolutionary extension of traditional capture recapture methods for studying animal populations using data from live trapping, camera trapping. DNA sampling, acoustic sampling, and related field methods. This book is a conceptual and methodological synthesis of spatial capture-recepture modeling. As a comprehensive how-to manual, this reference contains detailed examples of a wide range of relevant spatial capture-recupture models for inference about population size and spatial and temporal variation in demographic parameters. Practicing field biologists studying animal populations will find this book to be a useful resource, as will graduate students and professionals in ecology conservation biology and fisheries and wildlife management.

Key features:

- . Offers comprehensive coverage of municitionary new methods in ecology . Includes detailed worked examples with R and RUCS
- code for each methodological element along with software instructions and a companion R package so you can implement analyses and learn by doing · Presents a practical approach, embracing Bayesian and
- classical inference strategies in order to provide a variety of actions to best set the job done

Outline

- Bayesian Capture-Recapture models in closed population
 - Example 1: Fit Model M0 to the bear data using JAGS and data augmentation
 - Example 2: Fit Model M0 to the bear data using MLE

Outline

- Bayesian Capture-Recapture models in closed population
 - Example 1: Fit Model M0 to the bear data using JAGS and data augmentation
 - Example 2: Fit Model M0 to the bear data using MLE
- Spatially Explicit Capture Recapture (SECR) models in closed population
 - Example 3: Fit a basic SECR model in closed population with data augmentation
 - Example 4: Imagine an application of SECR to tuna fisheries

JAGS R Packages

Many different packages can be used to run JAGS from R such as:

- rjags
- jagsUI
- R2jags

SECR R Packages

Different packages can be used to run SECR models from R such as:

 scrbook from the Spatial Capture-Recapture book by Andy Royle, Richard Chandler, Rahel Sollmann and Beth Gardner

SECR R Packages

Different packages can be used to run SECR models from R such as:

- scrbook from the Spatial Capture-Recapture book by Andy Royle, Richard Chandler, Rahel Sollmann and Beth Gardner
- secr developped by Murray Efford using MLE

SECR R Packages

Different packages can be used to run SECR models from R such as:

- scrbook from the Spatial Capture-Recapture book by Andy Royle, Richard Chandler, Rahel Sollmann and Beth Gardner
- secr developped by Murray Efford using MLE
- oSCR developed by Chris Sutherland, Andy Royle, and Dan Linden

Bayesian Capture-Recapture models

in closed population

• Information on N or density D is the main interest.

- Information on *N* or density *D* is the main interest.
- Only a sample of individuals n is observed due to an encounter or detection probability p.

- Information on *N* or density *D* is the main interest.
- Only a sample of individuals n is observed due to an encounter or detection probability p.
- To estimate or model p, studies to generate encounter history information are conducted.

- Information on N or density D is the main interest.
- Only a sample of individuals n is observed due to an encounter or detection probability p.
- To estimate or model p, studies to generate encounter history information are conducted.
- The statisitcal models to describe these encounter histories are capture-recapture (CR) models.

Individual encounter probability

	Occasion				
individual	1	2	3	4	5
1	1	0	1	0	1
2	0	1	0	0	0
3	0	1	1	1	0
4	0	0	1	0	1
5	0	1	0	0	0

Random sampling of individuals: detection is a Bernoulli trial (binomial distribution).

$$Pr(y_{ik} = 1) \sim Bernoulli(p_{ik})$$

```
# Simulating Bernoulli trials
# Simulate random encounter events with p = 0.25 for an individual
# Outcome y = 1 means "captured" and y=0 means "not captured"
p <- 0.25
K <- 4 # sample occasions
# one encounter history
set.seed(1987)
rbinom(n=K, size=1, prob=p)
#> [1] 0 1 0 0
```

• If p is the probability of ever being encountered during the study

- If p is the probability of ever being encountered during the study
- The heuristic or canonical estimator of *N* can be described as:

$$\hat{N} = \frac{n}{\hat{p}}$$

- If p is the probability of ever being encountered during the study
- The heuristic or canonical estimator of *N* can be described as:

$$\hat{N} = \frac{n}{\hat{p}}$$

Random sampling of individuals: detection is a Bernoulli trial (binomial distribution).

- If p is the probability of ever being encountered during the study
- The heuristic or canonical estimator of *N* can be described as:

$$\hat{N} = \frac{n}{\hat{p}}$$

- Random sampling of individuals: detection is a Bernoulli trial (binomial distribution).
- CR models are, one way or another, logistic regression models or GLMs where N is unknown.

 Status of individuals is not known. You don't observe "all zero encounter histories".

- Status of individuals is not known. You don't observe "all zero encounter histories".
- Initial CR models developed for geographically closed populations.

- Status of individuals is not known. You don't observe "all zero encounter histories".
- Initial CR models developed for geographically closed populations.
- Heterogeneity in p is important (bias in N) and CR models are all about modeling variation in p (Otis et al. 1978)

Classical closed population

Demographic closure (no births, no deaths) and geographical closure (no entry, no exit)

Classical closed population

- Demographic closure (no births, no deaths) and geographical closure (no entry, no exit)
- Closed models characterization (Otis et al. 1978):
 - M0 = "the null model", p is constant in all dimensions
 - Mt = p is a function of sample occasion , p(t)
 - Mb = behavioral response model. Trap happiness or shyness
 - Mh = individual heterogeneity
 - Mbt = time + behavior, or time*behavior
 - Mbh, Mth, Mbth

Classical closed population

- Demographic closure (no births, no deaths) and geographical closure (no entry, no exit)
- Closed models characterization (Otis et al. 1978):
 - M0 = "the null model", p is constant in all dimensions
 - Mt = p is a function of sample occasion , p(t)
 - Mb = behavioral response model. Trap happiness or shyness
 - Mh = individual heterogeneity
 - Mbt = time + behavior, or time*behavior
 - Mbh, Mth, Mbth
- See Kery and Schaub (2012) Chapter 6 to go further

Model M0 can be considered as the null model

- Model M0 can be considered as the null model
- The main assumptions are:
 - p is constant for all sample occasions and all individuals
 - Encounters are independent among and within individuals

- Model M0 can be considered as the null model
- The main assumptions are:
 - p is constant for all sample occasions and all individuals
 - Encounters are independent among and within individuals
- Encounter observations are Bernoulli random variables

- Model M0 can be considered as the null model
- The main assumptions are:
 - p is constant for all sample occasions and all individuals
 - Encounters are independent among and within individuals
- Encounter observations are Bernoulli random variables
- Close to a binomial GLM or logistic regression but where N, size of some ideal data set, is unknown

Inference in closed population models

- Likelihood inference:
 - R: write custom likelihood function use nlm() or optim()
 - $\blacksquare \quad \text{black box programs: e.g., Program MARK/RMark/ESURGE}$

Inference in closed population models

- Likelihood inference:
 - R: write custom likelihood function use nlm() or optim()
 - $\blacksquare \quad \text{black box programs: e.g., Program MARK/RMark/ESURGE}$
- Bayesian inference:
 - R: write a custom sampler
 - BUGS/JAGS
 - Stan, etc.

N unknown, so what?

• If *N* is known, Model M0 is a logistic regression.

```
model{
   p ~ dunif(0,1)
   for (i in 1:N){
     y[i] ~ dbin(p,K)
   }
}
```

N unknown, so what?

• If *N* is known, Model M0 is a logistic regression.

```
model{
   p ~ dunif(0,1)
   for (i in 1:N){
     y[i] ~ dbin(p,K)
   }
}
```

■ But N is not known. Why couldn't we put a prior on N** (e.g. $N \sim \text{dunif}(0, 1000)$) and analyze the model using standard methods of MCMC?

N unknown, so what?

• If *N* is known, Model M0 is a logistic regression.

```
model{
  p ~ dunif(0,1)
  for (i in 1:N){
    y[i] ~ dbin(p,K)
  }
}
```

- But N is not known. Why couldn't we put a prior on N** (e.g. $N \sim \text{dunif}(0, 1000)$) and analyze the model using standard methods of MCMC?
- Because N would be a parameter of the model and would be updated in the MCMC algorithm. The size of the data set would have to change, which is not possible with JAGS.

• Concept underlying DA is adding "observations" to create a dataset composed of a known number of individuals.

- Concept underlying DA is adding "observations" to create a dataset composed of a known number of individuals.
- For CR models, addition of a set of "all zero" encounter histories which are not observable in practice.

- Concept underlying DA is adding "observations" to create a dataset composed of a known number of individuals.
- For CR models, addition of a set of "all zero" encounter histories which are not observable in practice.
- The model of the augmented dataset is a zero-inflated version of either a binomial or a multinomial base model.

- Concept underlying DA is adding "observations" to create a dataset composed of a known number of individuals.
- For CR models, addition of a set of "all zero" encounter histories which are not observable in practice.
- The model of the augmented dataset is a zero-inflated version of either a binomial or a multinomial base model.
- Their use of DA provides a general approach for analyzing both closed and open population models of all types.

DA and dataset

	Occasion				
individual	1	2	3	4	5
1	1	0	1	0	1
2	0	1	0	0	0
3	0	1	1	1	0
4	0	0	1	0	1
5	0	1	0	0	0

Example 1: Fit Model M0 to the bear data using JAGS and data

augmentation

Instructions

 Material extracted from the day 1 of the SCR workshop in Athens in 2016 available here

Instructions

- Material extracted from the day 1 of the SCR workshop in Athens in 2016 available here
- Install the package scrbook there and get the bear data

```
library(scrbook)
data(beardata)
```

Analysis of the Fort Drum bear data

- Hair snare study
 - J = 38 hair snares
 - K = 8 weeks of sampling
 - n = 47 individuals captured

Step 1: Create a text file with the model description, written in the BUGS language

```
cat("
model {
psi ~ dunif(0, 1)
p \sim dunif(0,1)
for (i in 1:M){
   z[i] ~ dbern(psi)
   for(k in 1:K){
     tmp[i,k] <- p*z[i]</pre>
     y[i,k] ~ dbin(tmp[i,k],1)
N \leftarrow sum(z[1:M])
".file="code/modelMO.txt")
```

Step 1: Create a text file with the model description, written in the BUGS language

```
cat("
model {
psi ~ dunif(0, 1) # DA parameter
p ~ dunif(0,1) # prior distribution
for (i in 1:M){
   z[i] ~ dbern(psi) # binary DA latent variables which indicates if individual i is
                     # a member of the population - Abundance is just the sum of
                     # these binary latent variables
   for(k in 1:K){
    tmp[i,k] <- p*z[i]
     v[i,k] ~ dbin(tmp[i,k],1) # likelihood
N \leftarrow sum(z[1:M])
" file="code/modelMO txt")
```

Step 2: Store the different values of interest

```
M = 175 # number of all individuals (encountered and DA)
nind <- dim(beardata$bearArray)[1] # number of encounter histories (individuals)
ntraps <- dim(beardata$bearArray)[2] # number of traps
K <- dim(beardata$bearArray)[3] # number of occasions

# How many "all zero" encounter histories are there?
nz <- M-nind

nz
#> [1] 128
```

Step 3: Set up the data augmentation and create the 2-d matrix "individual x occasions"

```
# Fill up an array with zeros
Yaug <- array(0, dim=c(M,ntraps,K))</pre>
# Store the real data into the first nind slots
Yaug[1:nind,,] <- beardata$bearArray</pre>
# Because traditional CR models ignore space create a 2-d matrix
# "individuals x occasions" of O/1 data where 1 = "captured" 0 = "not captured"
y <- apply(Yaug,c(1,3),sum) # summarize by ind * occ
y[y>1] <- 1
                            # make sure that multiple encounters do not occur
```

Step 4: Set input and output

Format your data in R as a named list

```
set.seed(2020)
data <- list(y=y,M=M,K=K)</pre>
```

Make an object containing the names of the parameters that you are interested in

```
params <- c("psi","p","N")
```

Step 5: Initial values

Create a function to generate random initial values

```
zst = c(rep(1,nind),rbinom(M-nind, 1, .5))
inits = function(){list(z=zst, psi=runif(1), p=runif(1))}
```

Step 6: Run

Compile the model and obtain posterior samples

Results: summary

```
Iterations = 1001:2000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 1000
1. Empirical mean and standard deviation for each variable,
   plus standard error of the mean:
           SD Naive SE Time-series SE
      Mean
    50.0347 2.04586 0.0373520 0.0511018
    0.3017 0.02620 0.0004783 0.0007502
psi 0.1015 0.01425 0.0002602 0.0002971
2. Quantiles for each variable:
       2.5%
                 25%
                        50%
                                75%
                                      97.5%
   47.00000 49.00000 50.0000 51.0000 55.0000
    0.25171 0.28413 0.3014 0.3192 0.3533
    0.07499 0.09157 0.1011
                             0.1105 0.1318
```

Results: plot

Your turn

• Try different values of M: 50 and 400.

Your turn

- Try different values of M: 50 and 400.
- Compare estimates (with summary function)

Your turn

- Try different values of M: 50 and 400.
- Compare estimates (with summary function)
- Make a plot of the posterior distribution of N for both of them

Solution M = 50

```
Iterations = 1001:2000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 1000

    Empirical mean and standard deviation for each variable.

   plus standard error of the mean:
           SD Naive SE Time-series SE
      Mean
   48.7943 1.00018 0.0182608 0.0281167
    0.3075 0.02418 0.0004414 0.0005999
psi 0.9572 0.03389 0.0006188 0.0008712
2. Quantiles for each variable:
      2.5%
               25%
                      50%
                              75%
                                    97.5%
   47.0000 48.0000 49.0000 50.0000 50.0000
    0.2614 0.2914 0.3070 0.3232 0.3567
    0.8738 0.9391 0.9651 0.9837
                                   0.9986
```

Solution M = 400

```
Iterations = 1001:2000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 1000

    Empirical mean and standard deviation for each variable.

   plus standard error of the mean:
           SD Naive SE Time-series SE
      Mean
   49.9753 2.02009 0.0368816 0.0463588
    0.3019 0.02570 0.0004692 0.0007004
psi 0.1268 0.01746 0.0003187 0.0003484
2. Quantiles for each variable:
       2.5%
                25%
                       50%
                               75%
                                     97.5%
   47.00000 48.0000 50.0000 51.0000 55.0000
    0.25192 0.2837 0.3017 0.3195 0.3521
    0.09523 0.1148 0.1257 0.1378 0.1632
```

Example 2: Fit Model M0 to the

bear data using MLE

Define a log-likelihood function for model M0

```
MO.lik <-function(parameters){</pre>
  p <- plogis(parameters[1])</pre>
  n0 <- exp(parameters[2])</pre>
  N < - n + n0
  loglik.part1 <- lgamma(N+1) - lgamma(n0+1)</pre>
  loglik.part2 <- matrix(NA, n, K)</pre>
  for(i in 1:n){
    for(k in 1:K){
      loglik.part2[i,k] <- sum(Y[i,k]*log(p) + (1-Y[i,k])*log(1-p))
  loglik.part3 <- n0 * sum(rep(log(1-p),K))</pre>
  -1 * (loglik.part1 + sum(loglik.part2) + loglik.part3)
```

Find the MLEs for the bear data

```
# Set up the data
Y <- apply(beardata$bearArray,c(1,3),max)
n \leftarrow nrow(Y)
K \leftarrow ncol(Y)
# fit the model
fm.MO <- nlm(MO.lik,rep(0,2),hessian=TRUE)</pre>
# estimated p
(phat <- plogis(fm.MO$est[1]))</pre>
#> [1] 0.3049265
# estimated N
(Nhat <- n+exp(fm.M0\$est[2]))
#> [1] 49.19216
```

Spatially Explicit Capture Recapture

(SECR) models in closed population

New technologies producing vast quantities of encounter history data

- New technologies producing vast quantities of encounter history data
- Camera traps

- New technologies producing vast quantities of encounter history data
- Camera traps
- DNA sampling (Scat picked up by searching space, Urine on scent sticks or in snow, Tissue samples from treed individuals, Hair snares...)

- New technologies producing vast quantities of encounter history data
- Camera traps
- DNA sampling (Scat picked up by searching space, Urine on scent sticks or in snow, Tissue samples from treed individuals, Hair snares...)
- Acoustic sampling (whales, birds, bats)

Main Goals

 Extension of CR (Improvement of Mx) to make use of encounter location data in order to study spatial aspects of animal populations

Main Goals

- Extension of CR (Improvement of Mx) to make use of encounter location data in order to study spatial aspects of animal populations
- Examples of applications: spatial variation in animal density, resource selection or animal movement

Main Goals

- Extension of CR (Improvement of Mx) to make use of encounter location data in order to study spatial aspects of animal populations
- Examples of applications: spatial variation in animal density, resource selection or animal movement
- Models developed to deal explicitly with 2 main problems associated with density estimation in trapping studies
 - Unknown sample area varies with trap layout home range size
 - Heterogeneity in capture probability associated with spatial location of individuals (heterogeneity in p) relative to traps

Spatial point process model

Spatial distribution of organisms is naturally described by point process models

Spatial point process model

- Spatial distribution of organisms is naturally described by point process models
- In the CR context, Efford (2004, Oikos) described two concepts:
 - Concept 1: the biological or state process
 - Concept 2: the observation process

Describe how individuals are distributed in space = a point process model for "activity centers" or home range centers:

• $s_i = \text{coordinates of the activity center or home range center for individual i}$

Describe how individuals are distributed in space = a point process model for "activity centers" or home range centers:

- ullet $s_i = {\sf coordinates}$ of the activity center or home range center for individual i
- $s_1, s_2, ..., s_N$ = realization of a point process

Describe how individuals are distributed in space = a point process model for "activity centers" or home range centers:

- $s_i = \text{coordinates of the activity center or home range center for individual i}$
- $s_1, s_2, ..., s_N$ = realization of a point process
- s_i ~ Uniform(S); S = state-space of point process, i.e. the spatial region where the N activity centers occur (the frequentist literature tends to call it a "mask").
 Activity centers are distributed independent of one another and uniformly in the plane = homogeneous point process

Describe p(encounter in trap) conditional on where an individual lives (s_i)

• $y_{i,j}|s_i \sim Bern(p(x_j,s_i))$

Describe p(encounter in trap) conditional on where an individual lives (s_i)

- $y_{i,j}|s_i \sim Bern(p(x_j,s_i))$
- $x_j = traplocation$

Describe p(encounter in trap) conditional on where an individual lives (s_i)

- $y_{i,j}|s_i \sim Bern(p(x_j,s_i))$
- $x_j = traplocation$
- $p(x_j, s_i) = p_0 * exp(-d_{ij}^2(x_j, s_i)/\sigma^2)$

Describe p(encounter in trap) conditional on where an individual lives (s_i)

- $y_{i,j}|s_i \sim Bern(p(x_j,s_i))$
- $x_j = traplocation$
- $p(x_j, s_i) = p_0 * exp(-d_{ij}^2(x_j, s_i)/\sigma^2)$
- $d_{ij} = ||s_i \check{x}_j|| = \sqrt{(s_{1i} \check{x}_{1i})^2 + (s_{2i} \check{x}_{2i})^2}$

Distributions for observation model

 Binomiale (hare snare): The individual can be encountered maximum once in each trap but in different traps in the same occasion

Distributions for observation model

- Binomiale (hare snare): The individual can be encountered maximum once in each trap but in different traps in the same occasion
- Multinomiale (physical capture): The individual can be encountered maximum once in one trap in each occasion

Distributions for observation model

- Binomiale (hare snare): The individual can be encountered maximum once in each trap but in different traps in the same occasion
- Multinomiale (physical capture): The individual can be encountered maximum once in one trap in each occasion
- Poisson (camera trap): The individual can be encountered several times by trap in each occasion occasion

• SCR models are GLMMs where N is unknown

- SCR models are GLMMs where N is unknown
- Efford (2004): initial idea, ad hoc simulation based approach

- SCR models are GLMMs where N is unknown
- Efford (2004): initial idea, ad hoc simulation based approach
- Paper on MLE based on marginal likelihood: Borchers, D.L. and M.G. Efford.
 2008. Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics 64:377-385 -> R package secr (M.G. Efford)

- SCR models are GLMMs where N is unknown
- Efford (2004): initial idea, ad hoc simulation based approach
- Paper on MLE based on marginal likelihood: Borchers, D.L. and M.G. Efford.
 2008. Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics 64:377-385 -> R package secr (M.G. Efford)
- Paper on Bayesian Analysis by MCMC (data augmentation): Royle, J.A. and K.Y. Young. 2008. A hierarchical model for spatial capture-recapture data. Ecology 89:2281-2289.

- SCR models are GLMMs where N is unknown
- Efford (2004): initial idea, ad hoc simulation based approach
- Paper on MLE based on marginal likelihood: Borchers, D.L. and M.G. Efford. 2008. Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics 64:377-385 -> R package secr (M.G. Efford)
- Paper on Bayesian Analysis by MCMC (data augmentation): Royle, J.A. and K.Y. Young. 2008. A hierarchical model for spatial capture-recapture data. Ecology 89:2281-2289.
- Other references on hierarchical MCMC approach: Gardner et al. (2009, 2010)

Ingredients

SCR is a model of 3-dimensional encounter histories (i, j, k):

• Encounter data: Available individual IDs

		Occa	sion		
ID	1	2	3	4	5
1	A9				
2	A12	A12			
3			C6	B5	
4			G3		F3
etc.					

Ingredients

SCR is a model of 3-dimensional encounter histories (i, j, k):

• Trap data: Network of fixed detectors in 2D with known localisations

Detector								
Interval	A5	E5	F6	F7	G6	All other		
1	0	0	0	0	1	0		
2	0	0	1	0	1	0		
3	0	0	0	0	0	0		
4	1	0	0	0	0	0		
5	0	1	0	0	0	0		
6	0	1	1	1	0	0		
Single sample								
Binary	1	1	1	1	1	0		
Count	1	2	2	1	2	0		

Example 3: Fit a basic SECR model in closed population with data

augmentation

Instructions

Import the encounter history data

Instructions

Import the encounter history data

Import trap coordinates

```
#> x1 x2
#> t1 0.3 0.3
#> t2 0.3 0.4
#> t3 0.3 0.5
#> t4 0.3 0.6
```

Step 0: Create 3D capture history array using the table function

Add missing traps and occasions in the levels to have a complete 3D array and order

```
nocapTraps <- setdiff(rownames(traps), encounters$trapID)</pre>
nocapTraps
#> [1] "t5" "t9" "t13" "t14" "t15" "t17" "t19" "t24"
levels(encounters$trapID) <- c(levels(encounters$trapID), nocapTraps)</pre>
levels(encounters$trapID) # All trapIDs should be here now
#> \[ \int 1 \] "t1" "t10" "t11" "t12" "t16" "t18" "t2" "t20" "t21" "t22" "t23" "t25"
#> [13] "t3" "t4" "t6" "t7" "t8" "t5" "t9" "t13" "t14" "t15" "t17" "t19"
#> [25] "t24"
y3D <- table(encounters\strapID, encounters\strapID,
             encounters (occasion)
```

Step 0: Create 3D capture history array using the table function

```
v3D[1:4,1:10,1] ## Data on first 4 ind at first 10 trap on k=1
#>
        t1 t10 t11 t12 t16 t18 t2 t20 t21 t22
#>
#>
#>
    a10 0 0 1 0 0 0 0 0
    a11 0 0 0 0 0 0 0 0 0
#>
                   0
all(rownames(traps) == colnames(y3D)) ## Not good
#> Γ17 FALSE
v3D <- v3D[,rownames(traps),] ## Re-order</pre>
all(rownames(traps) == colnames(v3D)) ## Good
#> [1] TRUE
```

Step 1: Create a text file with the model description

```
cat("
model {
p0 ~ dunif(0, 1) # baseline encounter probability
sigma ~ dunif(0, 2) # scale parameter of encounter function
psi ~ dunif(0, 1) # DA parameter: E(N) = M*psi
for(i in 1:M) {
z[i] ~ dbern(psi) # Is individual real?
s[i,1] ~ dunif(xlim[1], xlim[2]) # x-coordinate of activity center
s[i,2] ~ dunif(ylim[1], ylim[2]) # y-coordinate
for(i in 1:J) {
# dist between activity center and trap
d[i,j] \leftarrow sqrt((s[i,1] - x[j,1])^2 + (s[i,2] - x[j,2])^2)
p[i,j] \leftarrow p0*exp(-d[i,j]^2/(2*sigma^2)) # capture prob at trap j
. . .
```

Step 1: Create a text file with the model description

```
cat("
for(k in 1:K) {
v[i,j,k] ~ dbern(p[i,j]*z[i]) # model for data
N <- sum(z) # realized abundance
EN <- M*psi # expected abundance
A \leftarrow (x\lim[2]-x\lim[1])*(y\lim[2]-y\lim[1]) # area of state-space
D <- N/A # realized density
ED <- EN/A # expected density
",file="code/SECRO.txt")
```

Step 2: Store the different values of interest

```
M <- 50 # number of all individuals (encountered and DA)

J <- dim(y3D)[2] # number of traps

K <- dim(y3D)[3] # number of occasions

n0 <- nrow(y3D) # number of encounter histories, i.e. encountered individuals
```

Step 3: Set up the data augmentation

```
# Fill up an array with zeros
yz <- array(0, c(M, J, K))

# Store the real data into the first nind slots
yz[1:n0,,] <- y3D</pre>
```

Step 4: Set input and output

Format your data in R as a named list

```
set.seed(2020)
jd <- list(y=yz, J=J, K=K, M=M, x=traps, xlim=c(0,1), ylim=c(0,1))</pre>
```

Step 4: Set input and output

Format your data in R as a named list

```
set.seed(2020)
jd <- list(y=yz, J=J, K=K, M=M, x=traps, xlim=c(0,1), ylim=c(0,1))</pre>
```

Make an object containing the names of the parameters that you are interested in

```
jp <- c("N", "p0", "sigma")</pre>
```

Step 5: Initial values

• Create a function to generate random initial values

```
ji <- function() list(z=rep(1,M), p0=runif(1), sigma=runif(1))</pre>
```

Step 6: Run

Compile the model and obtain posterior samples

```
# Package rjags
library(rjags)
jm <- jags.model("code/SECRO.txt", jd, ji, n.chains=1, n.adapt=1000)</pre>
#> Compiling model graph
#>
      Resolving undeclared variables
     Allocating nodes
#>
#> Graph information:
     Observed stochastic nodes: 5000
#>
#>
     Unobserved stochastic nodes: 153
#>
     Total graph size: 32475
#>
#> Initializing model
jc <- coda.samples(jm, jp, 1000)</pre>
```

Results: summary

```
Iterations = 1001:2000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 1000
1. Empirical mean and standard deviation for each variable.
  plus standard error of the mean:
                  SD Naive SE Time-series SE
         Mean
     24.18200 6.05091 0.1913465 0.663743
      0.43581 0.10340 0.0032697 0.007888
р0
sigma 0.08308 0.01112 0.0003516
                                    0.001256
2. Quantiles for each variable:
         2.5%
                  25%
                           50%
                                   75%
                                         97.5%
     15.00000 20.00000 23.00000 28.00000 39.0000
рØ
      0.25688 0.36190 0.42724 0.49724 0.6695
siama
      0.06489 0.07491 0.08207 0.08925 0.1084
```

Results: plot

Example 4: Imagine an application

of SECR to tuna fisheries

Your turn

- Story: Purse senners fishing tropical tunas under drifting Fish Aggregating Devices (dFAD)
- Goal: Imagine how to use SECR to estimate dFADs density

Your turn

- Hint on available data:
 - Fishing activities (grid with activities locations)
 - dFADs IDs
 - Boats trajectories

```
vessel_code dba_date
                          Date latitude
                                          longitude
                                                       ID
                                                          dba_date2
        324
                <NA> 2010-01-03 4.816805 -4.466806 23509 2010/01/25
        324
                <NA> 2010-01-03 4.050139
                                          -4.166805 23509 2010/01/25
        324
                <NA> 2010-01-20 1.916806 -10.383472 23507 2010/01/25
        324
                <NA> 2010-01-20 2.166806 -10.816806 23516 2010/01/25
        324
                <NA> 2010-01-21 2.483472 -9.383472 23512 2010/01/25
        324
                <NA> 2010-01-22 1.533472 -5.233472 23518 2010/01/25
```

Solution

- Transfer the method to estimate non-tracked buoys density considering:
 - dFADs as animals
 - Traps = square/cell of 1*1 degree
 - Detectors = vessels with activities on dFADs
 - Occasion = Day

What you could obtain

• Open population ouverte (survival, recruitment...)

- Open population ouverte (survival, recruitment...)
- Time and/or sex effect

- Open population ouverte (survival, recruitment...)
- Time and/or sex effect
- Variation in effort, e.g. duration of trap activity

- Open population ouverte (survival, recruitment...)
- Time and/or sex effect
- Variation in effort, e.g. duration of trap activity
- Habitat mask

- Open population ouverte (survival, recruitment...)
- Time and/or sex effect
- Variation in effort, e.g. duration of trap activity
- Habitat mask
- Mobile activity centers

- Open population ouverte (survival, recruitment...)
- Time and/or sex effect
- Variation in effort, e.g. duration of trap activity
- Habitat mask
- Mobile activity centers
- Mixing count data with SECR data