#1 Исследование ангорийна решение задачи линейного програм-F(x) = 3x, +6x2 -> max F2(x)=3x, +6x2 -> min 16X, + 6X2 < 36 3X, +7 X2 521 5x, +2x >10 x, >0, x270 6x, +6x2 =36 => (0,6) u (6,0) => (0,3) u(7,0) 3x, +7X2 = 21 => (0,5) u (2,0) 5x, +2x2 =10 $\frac{\partial f}{\partial x} = c, \quad \frac{\partial f}{\partial x} = c_2 = > (3.6)$ 16x, +6x2=36 (3x, +7x2=21 X1 = 6-X2 F(max) = 20,25 13x,+7x2=21 20 18-3×2+7×2=21 X2:0 >> x,=2, x2=0 -> F(min)=6 4x2 =3 5X, +2X, 210 X2=0.75 , X,= 5.25

#2. Исследование ангорийма решение задани линейного програнниро-вание табличным симплекс-негодом

f(x)= 3x, +6x2 -> max

$$\begin{cases}
6x_1 + 6x_2 \le 36 \\
3x_1 + 7x_2 \le 21
\end{cases}$$

$$= > \begin{cases}
6x_1 + 6x_2 + 4x_3 + 0x_4 + 0x_5 = 36 \\
3x_1 + 7x_2 + 0x_2 + 1x_4 + 0x_5 = 21
\end{cases}$$

$$= > \begin{cases}
5x_1 + 2x_2 \le 10
\end{cases}$$

X, 70, X2 70 & KAN MANAGERINA

A = 6 3 5	70	017		даглоные	nepe	нечние	: X3, X4,	×s
		cj	3	6	٥	0	b	
Sazue	Cs	A.	A,	A ₂	A,	A	As	+
A ₃	0	36	6	6	1	0	0	
A	0	21	3	7	0	1	0	
As	٥	10	5	2	0	0		
	8.	0	-3	-67	0	0	0	

8 = 36 .0 +21.0+10.0=0

8, = 6.0+3.0+5.0-3=-3

8 = 6.0+7.0+2.0-6=-6

8, = 1.0+0.0+0.0-0.0

8 = 0.0 + 1.0+0.0 - 0 = 0

8, : 0.0 + 0.0 + 2.0 -0 = 0

MUMCHARGHUN DA-T ciponu & =-6

b Suzue blogum Az

0=min { ais 30 }=i 0-min { 36; 21, 10 }=min { 6; 3; 5}=3 Hanpabasowae cipoua: Ay; Hanpabasousuu 71-7=7 Ao A, Az As Au As Luzuc CG 36-21.66-3.66-3.6 1-3.60-1.60-3.6 As 21/2 3/4 7/4 0/4 1/4 0/4 Az $0-\frac{21}{3}\cdot 2$ $5-\frac{3}{2}\cdot 2$ $2-\frac{7}{3}\cdot 2$ $0-\frac{9}{3}\cdot 2$ $0-\frac{1}{3}\cdot 2$ $1-\frac{9}{3}\cdot 2$ As Si 0-21.(6) -3-3(6) -6-3(6) 0-3(6) 0-1(-6) 0-3(6) 6 Sague Ao A2 As A5 CE A. 24/7 Az 18 3/2 1/4 0 Az 6 4 23/1 0 As 0 -2/2 -3/21 8: 6/2 0 0 18 0 E = 18.0+3.6+4.0=18 S, = - 3 · 0+ 글· 6+ 글 · 0 · B=-34 8,:0.0+1.6+0.0-6=0 8,=1.0+0.6+0.0-0=0 Мининаньный эп-Т строми By = -6/4 . 0 + 1/4 . 6 + (3) . 0 - 0 : 5 8: = 3/4 δς: 0.0+0.6+1.0-0 · 0 6 Suya Blogum A,

Θ=min & 18/(24); 3/(3/3); 4/(24) }=min & 63; 7; 28 μαμγα βλειο αρα ε ετρονα: Ας, μεμγα βλειο αμα ολ-7 = 29/4

είς 3 6 0 0 0

δωζιε (6 Αο Α, Α2 Α3 Αα Α5

Ας ο 18 είκος) 24 (24) (27) ο - γ(28) · 1 - γ(17) · 2 (17) (17) ο - γ(28) · 24/3

Ας ο 3-4/(17) 2 (17) (17) · 24/3 · 24

A $\frac{3}{4}$ $\frac{$

Az 6 $\frac{75}{23}$ 0 1 0 $\frac{5}{23}$ $\frac{7}{23}$ A, 3 $\frac{29}{23}$ 1 0 0 $\frac{-2}{23}$ $\frac{7}{23}$

85 534 0 0 0 24/29 3/29

T.K. (pegu & vei oipus. 31-106 => Haugeho oniunanonce permenue

 $X_1 = \frac{28}{29}$, $X_2 = \frac{75}{29}$ $X_1 = 0.57$, $X_2 = 2.59$

$$F(x) = 3 \cdot \frac{28}{29} + 6 \cdot \frac{75}{29} = \frac{534}{25}$$

FCX) = 18.41

#3. Noch	zyobanue zcorbenn	antopui	ma pewe	HUR Zago	ичи линей	ного прог	pannupol	banne net	ogon
F(x) = 3x								100	
(ex, +6)			ante I					- 0 3	
) 3x, +7	X2 521	7 - LJ P		l let in				¢ - 0 1	
5x, +2	X2 7 10			(5X,+	2×2-×	بال ال	ofe	1+610	- 16
(x, >0,	×230	Great Agest	Kanasa		- 1/3 =	141	WI O	+100	3 5-
bbegën u				go'			9.	149.0	
(ex + ex	2 +×3 =	36						1017	
3×, +7>	(₂ +×4 =	2)	F	(x) = 3	X,+6X,-	ux -	> max	1017 mm	
$\int 5x, +2x$			1.6 10	477 1938 (S.	14 JULY 1	A Sa	For (2)		ngear'
Bupazun			to hepe	менчую					7
X6=10-						M(10-5	x,-2x2+	-×5) =	
			La la		F-14	F 124		(UCI-)+	->max
A = \begin{bmatrix} 6 & 6 \\ 3 & 7 \\ 5 & 2 \end{bmatrix}	10	0 0		y 3			×3, X4,		
L5 2	200	7 1 1 cj	3	0	0	2 0	0	-Ju	
Suzue	Ce	A.	A,	A ₂	A ₃	Au	A ₅	As	
A3	0	36	6	6	1	0	0	0	
Aq	0	21	3	7	0	1	0	0	
- A ₆	-/4	10	(5)	2	0	0	-1		
	8;	-10/4	-5µ-3	-24-6	0	0	μ	0	

$$\delta_{0} = 36.0 + 21.0 + 10.(-\mu) = -10\mu$$

$$\delta_{1} = 6.0 + 3.0 + 5.(-\mu) - 3 = -5\mu - 3$$

$$\delta_{2} = 6.0 + 7.0 + 2.(-\mu) - 6 = -2\mu - 6$$

$$\delta_{3} = 1.0 + 0.0 + 0.(-6\mu) - 0 = 0$$

$$\delta_{4} = 0.0 + 1.0 + 0.(-6\mu) - 0 = 0$$

$$\delta_{5} = 0.0 + 0.0 + (-1)(-\mu) - 0 = +\mu$$

$$\delta_{6} = 0.0 + 0.0 + 1 (-\mu) - (-\mu) = 0$$

Мининальный дл-7 строки б; =-5/4-3

le Suzur Chogum A.

0 = min { 36 , 21 . 10} = min { 6 , 7 ; 23 = 2

Hanpalaciousae cipona: As Hanpalaciousai 21-7=5

		c;	3	6	0	O	O	-u
Sazae	CG	A.	Α,	A	As	Au	As	A
As	1 3						0-(5).6	
Ay		21-10.3						
Α,	3	10/5	5/5	2/5	0/5	0/5	-1/5	1/5
	8s	-64-13.	-54-3-	-2,4 -6- -2 (-5,4-5)	(-5/4-5)	(-5/1-7)	μ-(-1/3). (-5/4->)	0-1/5. (-5/1-5)

	Marin.		C;	3	- 6	0	0	0	*
	Euzue	Ce	A.	A,	A ₂	A ₃	Au	A,	A.
	A,	0	24	0	18/5		0	6/5	-6/5
	Au	0	15	٥	29/5	0		3/5	-3/5
1	Α,	3	2	-1-	2/5	0	0	- 1/5	1/5
		8;	6	0	-24/5	0	0	-3/5	3/5+/4

Нининальний эл-т строми б; =-24/5 => в багус вводит Аг В min 24/(18/6); 15/(29/5); 2/(2/5) 3=min 20. 75; 53=75 направляющае строма: Ац направляющий эл-т = 29/5

			- 65	3	6	0	9	0	<u>-/u</u>	
	Sague	Cb	A.	Δ,	A ₂	A3	Au	A ₅	AL	
	A ₃	0	24-15/(27/5)	0-3/(13/5)	18/-	1-2/(19/5)	3-1/(19/5) .18/5	5-(8/5)kg	1.18/	2
	A ₂	6	15/(20%)	0/(14/3)	(19/6)/(19/6)	7(2%)	1/(7%)	(3/5)/(13/5)	(->k)/(2~%)	
	Α,	3	2-15/(17/5)	1-9(17/4)	3-(e/2)/(%)	5-9/(19/5) -2/5	0-1/2/5)	3-(3/5)/19	3-(45)(173))
		۶۶.	6-15/(13/5)	0-1(1/4)	(-"/s)	0-1(7)	0-1(2/5)	-3 (3/5)/ -3 (3/6)/ -3 (3/6)/	(3 1/h) - (-x)	(0%)
			cj	3	6	0	0	0	*	
	Sague	Ce	Ao	A,	Az	As	Au	A ₅	A	. A
	A,	0	426/24	0	ь	i i	-18/29	24/29	-24/29	
	A	6	75/29	0	5 20 =	0	5/29	3/29	-3/29	, i
-	A,	3	-28/23	1 N 1 2 2 2 2	0	0	-2/29	-7/29	7/29	+1

24/20 -3/20 3/20 1/4

Минимальний дл-ї сірони $\delta_0 = -\frac{3}{29} \Rightarrow 6$ базис вводим A_5 $\Theta = \min \left\{ \frac{(426)}{29} / (\frac{24}{29}) ; (\frac{75}{29}) / (\frac{3}{29}) ; (\frac{75}{29}) / (\frac{7}{29}) / (\frac{7}{29}) \right\} = \min \left\{ \frac{213}{12} ; 253 \right\} = \frac{213}{12} = \frac{71}{4}$ Направляющае сірока A_3 , направляющий $2n-5 = \frac{24}{29}$

	4 10	cs	3	6	0	0	0	-4
Suzue	Cc	A	Δ,	A	A ₃	Au	As	A.
As	0	and the same and the same and the same and	2/(24/25)	O/(24/25)	1/(24/25)	(24/29)	(14/2)/(14/2)	(24/2)
A	6	15 (476) 145 (476)	3/19	1- (14)	0-1(24/25)	13/19	3/29	-3/29
A,	3	25 - 24/19 - (-7/29)	1-0/1/s)	0-9/1/19)	(7/24/19)	·(-7/23)	7 - 24/17	23 - 24/17 (-4/24)
	83	534 474/55 24 24/19 0(-7/24)	0-24/24	0 - 24/19	·(3/24)	24 -14/29 29 -24/29 (-1/29)	2 24/29 24/29	$(\frac{3}{29} + \mu) - \frac{29/19}{29/29}$ $\cdot (-\frac{3}{29})$
		cj	3	6	0	0	0	-м
Eugre	Ce	A.	A,	Az	Az	A _u	As	Ac
As	0	71/4	0	0	29/24	-3/4	1	-1
Az	6	3/4	0		-1/8	1/4	0	0
Α,	3	21/4		0	7/24	-1/4	0	0
	۶:	81/4	0	0	1/8	3/4	0	m

Тк. в опіннальном решении отсутовуют испуственные переменные (равны 0), то данное решение явл. допустимым

$$x_1 = \frac{21}{4}$$
, $x_2 = \frac{34}{4}$ $F(x) = 3 \cdot \frac{21}{4} + 6 \cdot \frac{3}{4} = \frac{81}{4}$

X, = 5.25 , X, = 0.75 F(x) = 20.25

решение верное и совыщает с графическим нетодом

#4.	Mccneg	obanue opunupol	амгориг ванным п	na peu	uethur za e-Metogov	gara N	นหะนันอะเ	> mpospa	mmupo bai	nua
		-	->max							
P6>	<, +6>	< 36			γ 6x,	+6X2	+×3 = 3(•		
13	×, +7×	(2 8 21		- ->	>) 3×,	47X2	+X4 =21			
15	x, +2>	4710			L 5x,	+2×2	-X5 =10	, , ,		
Lx	,70,5	×270 *	THE CONTRACTOR	beneary.						
Ble	ojèm u	cuyccibe	иную не	рененную	0.000		0 - 0 -	1016	100	1
(6	X, +6	×2 +×3	-36	Setticius		150		197		
1 3	×, +7)	X ₂ +X ₄	=21	1	r(x)=3x,	+6×2+	/4x	man	0 0 1	
15	x, +2>	(₂ - × ₅	+ X6 =10			, Ad		4	0 61	7 7 6
			دي:	3	6	0	0	010	Ж	
,	Sasuc	Ce	Ao	A,	Az	A _s	Ay	As	A	4 , E
	As	0	36	6	6		0	0	0	
	Ay	0	21	3	7	0	0 101	0	0	
	AG	+,11	10	5	2	0	0	*1	1	
	ALIMIN.	4.	10 ju	34-2	2/4-6	0	0	- <u>M</u>	0	
٨.	-Σc;	eis	5H 6 W	уганыку		NTA; -		D== N-	= 10/4	
1.	=0.36	+21.5+	10/4 = 10	4	Δ, = [00)	13.3	-3:5	μ-2	
٨,	1.0 :	+0.0+	µ.0 = 0]. د	00)	17.[6]	-6=3	W-6	
Az:	0.0	+ 0.0 +	M.1 :M				[a]	, o		

8	usuc	CG	وے	e,	٥,	e3	A	0
	As	0	36		0	6	6	6
	Au	Ó	21	0	1	0	3	7
+	AG	M	10	0	0		5	2,
1/2	ler,	٨	lou	0	0	м	My	Ula

Cundù Sonomoù nono xuienemañ 31.7 60. Comonoratenemoù tabange 0, =54.2

le dague blogum bentop A,

$$A^* = A_{\times}^{-1} \cdot A_{\delta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 6 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ 5 \end{bmatrix}$$

мининальный эп-7 2 => выводим венгор Аб

T.M. As coorbetcibyer uschyccibennoù nepenennoù, to As b gunshriumen parchotpenun ne yeartbyet

C6	e.	е,	0			1/2	
0	1		6,	23	A*	0	17 172
	36-10.6	1-3.6	0-0.6	0-7-6	100		
0	21-10.3	U-3,3	1-3.3	0-1.3	4		
3	10/5	9/5	0/5	1/5			1
٨				1	(= -(
1		1	1	3			4
Cs	0.	٧,	6,	e,	A*) (O	at homit
0	24	1	0	-6/5			April 1 - Special Street
0	15	0		-3/5		2-3 6	
3	2	0	0	1/5			
٨	6	•	0	3/5			
1 + 0 .1 5 + 0 6) + 0 6) + 0 6) + 0	0+3.0= .1+3.0 .1+3.0 .(-3/2)+3 .1+3.0 .10000000000000000000000000000000000	1 : 3/5 WHUNG ON OTEGTETS UCHGC- H 43	262	Δ ₁ = [6 Δ ₂ = [6 Δ ₃ = [6 Δ ₄ = [[] [] [] [] [] [] [] [] [] []	-6 = 6/5-6 = - 2 6
	3 1 Cs 0 3 1 1 1 1 1 1 1 1 1 1 1 1 1	3 10/5 N Cs Po O 24 O 15 3 2 N 6 1+0.0+3.0= 0+0.1+3.0 0+0.1+3.0 0+0.1+3.0 0+0.1+3.0 0+0.1+3.0 0+0.1+3.0 0+0.1+3.0 0+0.1+3.0 0+0.1+3.0 0+0.1+3.0 0+0.1+3.0	3 /3 /5 10/5 /5 10/	3 19/5 9/5 9/5 N Co e. e. e. e. O 24 1 0 O 15 0 1 3 2 0 0 N 6 0 O 14 + 0 · 15 + 3 · 2 = 6 1 + 0 · 0 + 3 · 0 = 0 O + 0 · 1 + 3 · 0 = 0 Solve (-3/5) + 3 · 1/5 : 3/5	3 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5	3 10/5 1/5 1/5 1/5 1/5 Co e e e e e e e e e e e e e e e e e e e	3 19/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1

		C,	3	6	0	0	0	μ
Sague	(6	A.	Δ,	Az	As	Au	As	A
As	0	36	6	6	-1	0	0	O
Ay	0	21	3	7	0	S 1: 3	0	0
A.	μ	10	5	2	0	0	-1	1
Ú.	Δ.	12/4	5,4-3	214-6	0	0	-Ju	0
44.	Δ,	6	0	24/5	0	0	-3/5	

#5. Исследование алгорична решения задачи линейного - програнмирование авой егвенным симплене-методом F(x) = 3x, +6x2 -max 16 x,+6x2 €36 6x, +6x2 &36 3x,+7x2 521 3X, +7X2 521 <=> -5x, -2x, 5-10 5x, 12x, 7,10 X,30, X,30 X, 30, X, 70 Сформулируем двой етвенную задачу: 164 + 342 - 543 23 Fly) = 364, +2142 -1043 -min 2 6 9, +792 -293 ≥6 (4, 30, 9230, 4530 Приведём преную задачу к каноническому виду: (6x, +6x2 +x3 +0x4 +0x5 = 36 93x, +7x2+0x2+x4+0x5=21 (-5x, -2x2 +0x3 +0x4 + x5 = -10 Bozoněm b navecibe Sazuca bevispoi (A. As, As) u npobepun: 64, +342-542=3 (A) 4 20 4,20 (43.0 (A₅)

			· c;	3	6	0	0	0	
	Suzue	Ce	A.	Δ,	A2	As	Au	As	
	Α.	3	21/4	1	0	7/24	-3/12	0	
	Az	6	3/4	0	• 1	-1/8	1/4	0	
A. Janes	As	0	71/4	0	0	29/24	-9/12	1	
-		8	81/4	0	0	1/8	3/4	a	
8, 82	1 . 2	3+1· 3+(-;)·3+	6 +0.0 6 +0.0 6 +0.0 18).6 + 2 14.6 + (-3= (-6=0 -9:0- (3):0-	$0 = \frac{1}{8}$ $0 - 0 = \frac{1}{8}$	34			
T.w	. bce	9N-14 (Seviopa A	o nono	de de la	4 => ONIC	u mandho e	pemenue	gociuzunto
Tlon	nygen o	MUHUM	6.0.75	н : <u>Х</u> о	pt = (5.				
	-								
	1946Ans	перане	иных 2:	3,=	8,4	= 3/4, 4	3=0		
	१६५९४५६	неране					y, =0		