МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА»

(Самарский университет)

Институт информатики и кибернетики Кафедра лазерных и биотехнических систем

Пояснительная записка к курсовому проекту "МОНИТОР АКТИВНОСТИ И ОТСЛЕЖИВАНИЯ ПАДЕНИЯ"

Выполнил студент группы 6364-120304D:	 Краснов Д.Г.
Руководитель проекта:	 Корнилин Д.В.
Работа защищена с оценкой:	

ЗАДАНИЕ

Разработать монитор активности и отслеживания падений со следующими параметрами:

- Датчик падений/движения/активности
- Диапазон регистрируемых ускорений от 2g до 8g;
- Частота обновления показаний 400 Гц;
- Передача данных по интерфейсу Bluetooth;
- Питание батарейное.

РЕФЕРАТ

Пояснительная записка: 19 страниц, 10 рисунков, источников, 1 приложение.

МОНИТОР АКТИВНОСТИ И ОТСЛЕЖИВАНИЯ ПАДЕНИЙ, МИКРО-КОНТРОЛЛЕР, BLUETOOTH, AKCEЛЕРОМЕТР, STM32WB, АЛГОРИТМ

В курсовом проекте разработаны структурная и принципиальная схемы монитора активности и отслеживания падений с датчиком на базе акселерометра, осуществлен выбор микроконтроллера с интегрированным блоком Bluetooth. Разработан алгоритм анализа данных и программа на языке Си, реализующая его.

СОДЕРЖАНИЕ

1	РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА	6
2	РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ СХЕМЫ УСТРОЙСТВА	7
2.1	Выбор акселерометра	7
2.2	2 Выбор микроконтроллера	11
2.3	В Блок питания	14
3	РАЗРАБОТКА ПРОГРАММЫ	16
4	РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА	17

ВВЕДЕНИЕ

Падения являются достаточно распространенной проблемой среди людей, в особенности пожилых, которая наносит существенный вред здоровью.

Падения являются серьезной проблемой общественного здравоохранения для пожилых людей во всем мире. Отчеты Всемирной организации здравоохранения показывают, что примерно 28-35% пожилых людей старше 65 лет страдают по крайней мере от одного падения в год, что приводит к травмам мышц или связок, переломам костей и травмам головы. Решением данной проблемы являются носимые детекторы падения. Носимые устройства позволяют осуществлять непрерывный мониторинг независимо от датчиков окружающей среды, что делает их повсеместными системами, которые собирают только пользовательские данные, способствуя расширению возможных сценариев использования. Кроме того, они используют простые датчики (акселерометры и гироскопы) с низким энергопотреблением.

В данном курсовом проекте рассматривается способ создания устройства на базе микроконтроллера, который сможет отслеживать активность и падения человека. В процессе были подобраны необходимые в задании микроконтроллер с интегрированным модулем Bluetooth, акселерометр, а также написана управляющая программа на языке Си.

1. РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА

Структурная схема устройства представлена на рисунке 1.

Рисунок 1 – Структурная схема устройства

Принцип работы устройства заключается в следующем. Трёхосевой акселерометр фиксирует ускорение по каждой из осей движения. Эти данные поступают в микроконтроллер, где проходят первичную обработку, и с помощью алгоритма на языке Си анализируются. В результате анализа можно выяснить характер движения человека, и то, происходит ли падение.

Так же, данные передаются по модулю Bluetooth, интегрированному в микроконтроллер. На устройстве есть LED-индикатор, который сигнализирует о передаче пакета данных.

Все элементы схемы питаются от блока питания, который представляет собой литиевый аккумулятор, имеющий номинальное напряжение 3.7 В, и DC-DC преобразователя, который необходим для стабилизации напряжения на уровне 3.3 В, необходимого всем элементам устройства.

2. РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ СХЕМЫ УСТРОЙСТВА

Электрическая принципиальная схема представлена в приложении.

2.1. Выбор акселерометра

Стоит выяснить, как работают и устроены акселерометры. [2] Это датчики движения, входным сигналом которых является скорость и ускорение объекта. Отличительной особенностью данных устройств является их компактность и стоимость за счет налаженного производства микроэлектромеханических систем (МЭМС).

Основное применение датчики движения нашли в промышленности, а именно в авиации для определения положения летающего аппарата в пространстве и в строительстве. В медицине датчики движения используются редко, однако некоторые методики включают использование акселерометров.

Современные МЭМ акселерометры разделяют по физическому принципу детектирования ускорений, однако широкое распространение получили только 3 вида:

- Пьезоэлектрические, основой которых является пъезокристалл. Деформации кристалл приводят к появлению на нем разности потенциалов. Такие акселерометры имеют широкий диапазон частот и выдерживают значительные нагрузки. Однако пьезоэффект возникает только в момент деформации, что не позволяет измерять статические ускорения наподобие гравитационного. Также пьезоэлектрические акселерометры из-за значительного сопротивления пьезокристалла и малой разности потенциалов при деформации требуют высокоомного соединения со схемой.
- Пьезорезистивные своими характеристиками не сильно отличаются от ПЭА, имея столь же малую термостабильность и стабильность смещения. Однако получение полезного электрического сигнала происходит на

мостовой схеме с пьезорезистивными элементами, при этом нет необходимости использования высокоомного подключения. Также присутствует возможность самотестирования акселерометров и измерения статических нагрузок

— Емкостные — самый распространенный вид МЭМ акселерометров. Принцип действия заключается в измерении реакции измерительной ячейки, состоящей из сложного конденсатора с переменной емкостью на зондирующий сигнал. При измерении ускорения инерционная масса двигает нестатичную обкладку конденсатора, вследствие чего меняется емкость. При этом емкостные конденсаторы не имеют проблем, связанных с природой пьезоэффекта, а именно имеют конструкторскую легкость при подключении в цепь и возможность самотестирования. Также основными преимуществами является высокая термостабильность. Недостатком можно назвать сложность конструкции, однако при налаженном производстве это фактор не оказывает значительного влияния.

Таким образом, современные малогабаритные измерительные модули целесообразно конструировать с емкостными акселерометрами, за счет их стабильности отсутствия требований в схемах высокоомного подключения.

Согласно техническому заданию нам необходим акселерометр с диапазоном регистрируемых ускорений от 2g до 8g и возможностью выдачи показаний с частотой 400 Гц. Данным требованиям соответствует 3-осевой акселерометр ADXL345 [1], его основные характеристики представлены ниже.

- Тип датчика: цифровой, емкостной;
- Диапазон регистрируемых ускорений $\pm 2g$, $\pm 4g$, $\pm 8g$, $\pm 16g$;
- Частота обновления показаний: задается пользователем в диапазоне 0.1-3200 Гц;

- Сверхнизкое потребление: 23 мкА в режиме преобразования и 0.1 мкА в режиме ожидания;
- напряжение питания: 2-3.6B;
- Интерфейс цифрового вывода: I^2 C, SPI;
- − Разрядность: настраиваемая пользователем 10 бит в диапазоне ±2g, 13 бит в остальных диапазонах.

Структурная схема акселерометра из даташита ADXL345 приведена на рисунке 2.

Рисунок 2 – Структурная схема акселерометра

Видно, что устройство состоит из 3-осевого "сенсора", представляющего собой несколько конденсаторов с нестатичными обкладками, "чувствительной электроники", аналого-цифрового преобразователя, цифрового фильтра, буфера FIFO для временного хранения результатов преобразования, контроллера питания и логического устройства, контролирующего работу акселерометра и логику прерываний. Устройство содержит выводы данных, соответствующие интерфейсам I^2 С и SPI. Для связи с акселерометром мы будем использовать I^2 С. Схема подключения представлена на рисунке 3.

I²C Connection Diagram (Address 0x53)

Рисунок 3 — Схема подключения акселерометра к микроконтроллеру по I^2 С

Как видно из рисунка 3, для активации интерфейса $I^2{\bf C}$ необходимо подтянуть вывод \overline{CS} к питанию.

Так же, в даташите приведена рекомендованная для минимизации шумов схема включения акселерометра(рисунок 4).

POWER SUPPLY DECOUPLING

A 1 μF tantalum capacitor (C_s) at V_s and a 0.1 μF ceramic capacitor ($C_{I/O}$) at $V_{\rm DD\,I/O}$ placed close to the ADXL345 supply pins is recommended to adequately decouple the accelerometer from noise on the power supply. If additional decoupling is necessary, a resistor or ferrite bead, no larger than 100 Ω , in series with V_s may be helpful. Additionally, increasing the bypass capacitance on V_s to a 10 μF tantalum capacitor in parallel with a 0.1 μF ceramic capacitor may also improve noise.

Рисунок 4 – Типовая схема включения акселерометра

Нумерация и назначение выводов ADXL345 приведено ниже (рисунки 5, 6).

Figure 3. Pin Configuration (Top View)

Рисунок 5 – Нумерация выводов

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	V _{DD I/O}	Digital Interface Supply Voltage.
2	GND	This pin must be connected to ground.
3	RESERVED	Reserved. This pin must be connected to V_s or left open.
4	GND	This pin must be connected to ground.
5	GND	This pin must be connected to ground.
6	Vs	Supply Voltage.
7	CS	Chip Select.
8	INT1	Interrupt 1 Output.
9	INT2	Interrupt 2 Output.
10	NC	Not Internally Connected.
11	RESERVED	Reserved. This pin must be connected to ground or left open.
12	SDO/ALT ADDRESS	Serial Data Output (SPI 4-Wire)/Alternate I ² C Address Select (I ² C).
13	SDA/SDI/SDIO	Serial Data (I ² C)/Serial Data Input (SPI 4-Wire)/Serial Data Input and Output (SPI 3-Wire).
14	SCL/SCLK	Serial Communications Clock. SCL is the clock for I ² C, and SCLK is the clock for SPI.

Рисунок 6 – Назначение выводов

2.2. Выбор микроконтроллера

С учетом технического задания микроконтроллер должен обладать следующими свойствами:

- Интерфейс для работы с микросхемой акселерометра: SPI или I^2 C;
- Для передачи данных по Bluetooth: встроенный стек протокола Bluetooth;
- Малое энергопотребление;

 Свободные выводы для подключения индикатора и выводов прерываний от акселерометра;

Для решения задачи был выбран микроконтроллер STM32WB35CCU6A фирмы ST Microelectronics [3].STM32WB35 содержит два производительных ядра ARM-Cortex:

- ядро ARM® -Cortex® M4 (прикладное), работающее на частотах до 64 МГц, для пользовательских задач имеется модуль управления памятью, модуль плавающей точки, инструкции ЦОС (цифровой обработки сигналов), графический ускоритель (ART accelerator);
- ядро ARM®-Cortex® M0+ (радиоконтроллер) с тактовой частотой 32 МГц, управляющее радиотрактом и реализующее низкоуровневые функции сетевых протоколов;

Данный микроконтроллер включает в себя все необходимые периферийные устройства, такие как интерфейсы передачи данных I^2 С,необходимый для подключения к акселерометру, и радиомодуль с поддержкой Bluetooth, диапазон питающего напряжения от 2 до 3,6 В. Основные характеристики:

- типовое энергопотребление 50 мкА/МГц (при напряжении питания 3 В);
- потребление в режиме останова 1,8 мкА (радиочасть в режиме ожидания (standby));
- потребление в выключенном состоянии (Shutdown) менее 50 нА;
- диапазон допустимых напряжений питания 1,7...3,6 В (встроенный DC-DC-преобразователь и LDO-стабилизатор);
- рабочий температурный диапазон -40...105°C.

Структурная схема микроконтроллера приведена на рисунке 7, а назначение выводов портов корпуса на рисунке 8

Figure 2. STM32WB35xx block diagram

Рисунок 7 – Структурная схема

Figure 10. STM32WB55Cx and STM32WB35Cx UFQFPN48 pinout(1)(2)

Рисунок 8 – Назначение выводов

Подключение будет осуществляться согласно типовой схеме из Application note [4](рисунок 9)

Рисунок 9 – Типовая схема подключения STM32WB35

2.3. Блок питания

Блок питания будет состоять из аккумулятора LP-130-232635 [5] и DC-DC преобразователя LM3671 [6]. Аккумулятор литий-полимерный LP-130-232635 имеет номинальную емкость 130 мАч, номинальное напряжение 3,7 В, вес 3г. Длина: 35±1 мм. Ширина: 26±1 мм. Толщина: 2,3±1 мм.

DC-DC преобразователь LM3671MF с фиксированным выходным напряжением 3,3 В. Типичный ток покоя 16 мкА, типичный ток в выключенном

состоянии - 0.01 мкА, максимальная нагрузка по току 600 мА.

Подключение DC-DC преобразователя будет будет осуществляться согласно типовой схеме из Data Sheet [6] (рисунок 10)

Рисунок 10 – Типовая схема включения DC-DC-преобразователя

3. РАЗРАБОТКА ПРОГРАММЫ

Для работы программы необходимо для начала разработать алгоритм. Алгоритм нашего устройства представлен на

		•	J
1			
4	PASPANDIKA	СТРУКТУРНОЙ СХЕ	JOINE VE EPOMETRA
٠.			midi y c ii c iic i di

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Data Sheet на акселерометр ADXL345 [Электронный ресурс]. URL:https://static.chipdip.ru/lib/876/DOC011876534.pdf (Дата обращения: 15.05.2023)
- 2 Токарчук, Т. С. Особенности регистрации медико-биологических данных с применением акселерометрических датчиков / Т. С. Токарчук, Ю. О. Боброва // СПбНТОРЭС: труды ежегодной НТК. 2019. № 1(74). С. 367-369.
- 3 Data Sheet на микроконтроллер STM32WB35CCU6 [Электронный ресурс]. URL:https://www.st.com/resource/en/datasheet/stm32wb35cc.pdf (Дата обращения: 16.05.2023)
- 4 Application note на микроконтроллеры серии STM32WB [Электронный ресурс]. URL:https://www.st.com/resource/en/application_note/an5165-development-of-rf-hardware-using-stm32wb-microcontrollers-stmicroelectronics.pdf (Дата обращения: 16.05.2023)
- 5 Спецификация на Li-pol аккумулятор LP-130-232635 [Электронный ресурс]. URL:https://static.chipdip.ru/lib/412/DOC005412824.pdf (Дата обращения: 16.05.2023)
- 6 Data Sheet на DC-DC преобразователь LM3671/-Q1 [Электронный ресурс]. URL:https://static.chipdip.ru/lib/091/DOC001091994.pdf (Дата обращения: 16.05.2023)

