# Obyčejné diferenciální rovnice

# 1 Úvod

Obyčejnou diferenciální rovnici N-tého řádu

$$f(x, y, y', y'', \dots, y^{(N)}) = g(x)$$

převádíme na soustavu N diferenciálních rovnic 1. řádu. Provedeme substituce

$$y' \equiv z_1$$
  $y'' \equiv z_2$  ...  $y^{(N-1)} \equiv z_{N-1}$ 

a dostaneme soustavu

$$y' = z_1$$
  $z'_1 = z_2$  ...  $z'_{N-2} = z_{N-1}$   
 $f(x, y, z_1, ..., z_{N-1}, z'_{N-1}) = g(x)$ 

Poslední rovnici lze obvykle rozřešit vzhledem k  $z_{N-1}^{\prime}$ , pak ji lze psát ve tvaru

$$z'_{N-1} = \tilde{g}(x, y, z_1, \dots, z_{N-1}).$$

K jednoznačnosti řešení musí N rovnic prvního řádu (1 rovnice N-tého řádu) splňovat N podmínek.

Podle zadání podmínek rozlišujeme 2 základní úlohy

- Počáteční problém ∀ podmínky jsou zadány v jednom bodu (mohu přímo sledovat řešení vycházející z tohoto bodu)
- Okrajový problém ∀ podmínky nejsou zadány v jednom bodu nejčastěji jsou podmínky zadány ve 2 bodech na okrajích, ale mohou být i jiné, např. integrální podmínky

# 2 Runge-Kuttovy metody pro řešení počátečního problému

#### 2.1 Eulerova metoda

Systém rovnic vektorově

$$\frac{\mathrm{d}\,\vec{y}}{\mathrm{d}\,x} = \vec{f}(x,\,\vec{y})$$

Počáteční podmínky zadávají řešení v bodu  $x_0$ , řešení budeme hledat postupně v bodech  $x_1,\,x_2,\ldots,x_n$ . Přibližnou hodnotu řešení v bodě  $x_{k+1}$  nalezneme s pomocí 2 členů Taylorova rozvoje v bodě  $x_k$ . Označme  $h_k=x_{k+1}-x_k$ . Pak

$$|\vec{y}_{k+1} \approx \vec{y}_k + h_k \cdot \frac{\mathrm{d} \vec{y}}{\mathrm{d} x}|_{x_k} = \vec{y}_k + h_k \cdot \vec{f}(x_k, \vec{y}_k)$$

Nejnižší zanedbaný člen určuje odhad chyby k-tého kroku Eulerovy metody

$$\vec{\varepsilon}_k = \vec{y}(x_{k+1}) - \vec{y}_{k+1} \approx \frac{h_k^2}{2} \left. \frac{\mathrm{d}^2 \vec{y}}{\mathrm{d} x^2} \right|_{x_k} = \frac{h_k^2}{2} \left. \frac{\mathrm{d} \vec{f}(x, \vec{y})}{\mathrm{d} x} \right|_{x_k} = \frac{h_k^2}{2} \left( \frac{\partial \vec{f}}{\partial x} + \sum_j f_j \left. \frac{\partial \vec{f}}{\partial y_j} \right) \right|_{x_k}$$

Chyba 1 kroku je tedy úměrná  $h^2$ , počet kroků v daném intervalu  $x \in \langle a,b \rangle$  je N=(b-a)/h a tedy celková chyba je úměrná

$$\|\vec{\varepsilon}\| \sim N \cdot h^2 \sim h$$

Eulerova metody je metoda 1. řádu (přesnosti). Je tedy málo přesná, vyžaduje velmi krátký krok, a proto se v praxi používá jen zřídka.

 $\underline{Pozn.}$  Protože  $\forall$  vzorce pro systém rovnic jsou jen jednoduchým vektorovým zobecněním vzorců pro 1 rovnici, budeme dále studovat řešení 1 diferenciální rovnice 1. řádu.

### Konvergence Eulerovy metody

Nechť je diferenciální rovnice y'=f(x,y) s počáteční podmínkou  $y(x_0)=y_0$ . Nechť v oblasti  $D=\{(x,y),\ x_0\leq x\leq X,\ |y-y_0|\leq b\}$  je funkce f(x,y) spojitá a ohraničená |f(x,y)|< A. Nechť dále  $X-x_0\leq b/A$  a nechť na množině D  $\exists L>0$  takové, že platí **Lipschitzova podmínka** 

$$|f(x,z) - f(x,y)| \le L|z - y| .$$

Potom pro  $h \to 0$  platí

- 1. posloupnost  $y_n(x)$  konverguje k  $\varphi(x)$ ,
- 2.  $\varphi(x) \in \mathcal{C}^1$  je řešení diferenciální rovnice na  $x_0 \leq x \leq X$ ,
- 3. neexistuje na  $x_0 \le x \le X$  žádné jiné řešení vyhovující počáteční podmínce.

 $\underline{Pozn.}$  Ke splnění Lipschitzovy podmínky stačí, aby funkce f měla v dané oblasti omezenou parciální derivaci podle y.

### 2.2 Metody Taylorova typu

Metody vyššího řádu, které by využívaly Taylorova rozvoje, se v praxi nepoužívají. Potřebují vyšší derivace y a tedy parciální derivace funkce f podle x a y. Např. Taylorova metoda 2. řádu by byla

$$y_{k+1} = y_k + h_k f(x_k, y_k) + \frac{h_k^2}{2} \frac{d^2 y}{d x^2} =$$

$$= y_k + h_k f(x_k, y_k) + \frac{h_k^2}{2} \left( \frac{\partial f}{\partial x} \Big|_{(x_k, y_k)} + f(x_k, y_k) \cdot \frac{\partial f}{\partial y} \Big|_{(x_k, y_k)} \right)$$

<u>Pozn.</u> Taylorův rozvoj je ale důležitý pro odvození jiných metod, stanovení jejich řádu apod.

### 2.3 Princip Runge-Kuttových metod

Jsou to v praxi velmi často používané metody. K nalezení řešení  $y_{n+1} = y(x_{n+1})$  se využívá pouze předchozího bodu  $(x_n, y_n)$ , nevyužívá bodů s indexem k < n. Takové metody nazýváme jednokrokové.

Metody Runge-Kutta jsou založeny na postupném zpřesňování hodnot derivace v bodech mezi  $x_n$  a  $x_{n+1}$  včetně (obvykle se využívá bodu  $x_n+h_n/2$ ). Výpočetní vzorec Runge-Kuttovy metody má tvar

$$y_{n+1} = y_n + h\Phi_{RK}(x_n, y_n, h)$$
,

kde

$$\Phi_{RK}(x_n, y_n, h) = p_{r1}k_1 + p_{r2}k_2(h) + \ldots + p_{rr}k_r(h) ,$$

a dále

$$k_{1} = f(x_{n}, y_{n})$$

$$k_{2}(h) = f(x_{n} + \alpha_{2}h, y_{n} + h\beta_{21}k_{1})$$

$$\vdots$$

$$k_{r}(h) = f[x_{n} + \alpha_{r}h, y_{n} + h(\beta_{r1}k_{1} + \beta_{r2}k_{2} + \dots + \beta_{r,r-1}k_{r-1})]$$

Pokud zvolíme r=1, dostaneme Eulerovu metodu. Pro  $r\leq 4$  se řád metody může rovnat r (chyba 1 kroku  $\sim h^{r+1}$ ). Pro konstrukci metody 5. řádu je však zapotřebí alespoň r=6.

# 2.4 Ukázka konstrukce – Runge–Kuttovy metody 2. řádu

Zvolíme tedy r=2 a můžeme odvodit

$$\Phi_{RK}(x_n, y_n, h) = p_{21}f(x_n, y_n) + p_{22}f(x_n + \alpha_2 h, y_n + \beta_{21}hf(x_n, y_n)) = 
= \Phi_{RK}(x_n, y_n, 0) + h\Phi'_{RK}(x_n, y_n, 0) + O(h^2) = 
= p_{21}f(x_n, y_n) + p_{22}f(x_n, y_n) + hp_{22}[f_x(x_n, y_n)\alpha_2 + 
+ f_y(x_n, y_n)\beta_{21}f(x_n, y_n)] + O(h^2) ,$$

kde  $f_x \equiv \partial f/\partial x$ ,  $f_y \equiv \partial f/\partial y$  a  $\Phi'$  je derivace  $\Phi$  podle h.

Porovnáme výrazy u nulté a první mocniny h funkce  $\Phi_{RK}$  s přírůstkem  $\Phi_T$   $(y(x_n+h)=y(x_n)+h\Phi_T)$  vyjádřeným z Taylorova rozvoje

$$\Phi_T = f(x_n, y_n) + \frac{h}{2} \frac{\mathrm{d} f}{\mathrm{d} x} + O(h^2) = f(x_n, y_n) + \frac{h}{2} (f_x + f \cdot f_y) + O(h^2)$$

a dostaneme

$$h^0$$
:  $p_{21} + p_{22} = 1$   
 $hf_x$ :  $p_{22}\alpha_2 = \frac{1}{2}$   
 $hf_y$ :  $p_{22}\beta_{21} = \frac{1}{2}$ 

Tato soustava má nekonečně mnoho řešení, ale logice Runge-Kuttových metod odpovídají následující 2 řešení řešení.

1. Řešení  $\alpha_2=1$ ,  $\beta_{21}=1$  a  $p_{21}=p_{22}=1/2$  dává metodu analogickou lichoběžníkové metodě integrace. Zde je

$$k_2 = f(x_n + h, y_n + hf(x_n, y_n))$$
 a  $y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2)$ .

2. Řešení  $\alpha_2=\beta_{21}=1/2$ ,  $p_{21}=0$  a  $p_{22}=1$  dává metodu analogickou obdélníkové metodě integrace. Zde je

$$k_2 = f\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}f(x_n, y_n)\right)$$
 a  $y_{n+1} = y_n + hk_2$ .

### 2.5 Klasická Runge-Kuttova metoda čtvrtého řádu

Klasická Runge–Kuttova metoda čtvrtého řádu je jednou z nejpoužívanějších metod tohoto typu. K výpočtu jednoho kroku se používají tyto vztahy

$$k_{1} = f(x_{n}, y_{n})$$

$$k_{2} = f(x_{n} + \frac{h}{2}, y_{n} + \frac{h}{2}k_{1})$$

$$k_{3} = f(x_{n} + \frac{h}{2}, y_{n} + \frac{h}{2}k_{2})$$

$$k_{4} = f(x_{n} + h, y_{n} + h k_{3})$$

$$y_{n+1} = y_{n} + \frac{h}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

Chyba jednoho kroku metody je  $\varepsilon_1 \sim h^5$ , chyba metody v zadaném intervalu se zvětšuje lineárně s počtem kroků  $N \sim h^{-1}$  a tedy  $\varepsilon \sim h^4$ .

#### 2.6 Odhad chyby a automatická volba kroku

Existují 2 metody odhadu chyby pro automatickou volbu kroku

- 1. Srovnání výsledku 2 kroků o délce h s výsledkem 1 kroku o délce 2h
- 2. Srovnání výsledku 2 Runge–Kuttových metod různého řádu  $\rightarrow$  vnořené RK metody (viz následující odstavec)

Srovnáme výsledky získané se dvěma kroky h a s jedním krokem 2h. V následujících vztazích je  $\Delta$  odhad chyby.

$$y(x+2h) = y_h + 2C h^5 + O(h^6) + \dots$$
  

$$y(x+2h) = y_{2h} + C (2h)^5 + O(h^6) + \dots$$
  

$$\Delta \equiv \frac{y_h - y_{2h}}{15} = 2C h^5 + O(h^6)$$

Veličina  $\Delta$  je tedy odhadem chyby  $y_h$ .

Je-li známa požadovaná maximální lokální chyba  $\Delta_0$  a při kroku h je odhadovaná chyba  $\Delta$ , postupujeme takto:

• Je-li  $|\Delta| \leq |\Delta_0|$ , krok přijmeme a zvětšíme velikost následujícího kroku. Protože  $h \sim \sqrt[5]{\Delta}$ , zvětšíme krok na

$$h' = S \ h \sqrt[5]{\left|\frac{\Delta_0}{\Delta}\right|} \ ,$$

kde  $S \simeq 0.9$  je bezpečnostní faktor. Obvykle při zvětšování kroku omezujeme maximální velikost poměru h'/h (typicky  $h'/h \leq 4$ ).

• Je-li  $|\Delta| > |\Delta_0|$ , krok nelze přijmout, výpočet provedeme znovu. Při zmenšování kroku vezmeme v úvahu, že chyba kroku je násobena počtem kroků  $N \sim h^{-1}$ . Jde tedy o metodu 4-tého řádu a krok zmenšíme na

$$h' = S h \sqrt[4]{\left|\frac{\Delta_0}{\Delta}\right|} .$$

Obvykle požadujeme lokální relativní chybu řešení  $\leq \varepsilon$ . Požadované relativní přesnosti zřejmě nelze dosáhnout pro y=0. Při odhadu chyby proto přidáme odhad změny v 1 kroku a navíc přidáme malou povolenou absolutní chybu  $\delta$ , protože nelze apriori vyloučit případ y=y'=0. Pak vypočteme

$$\Delta_0 = \varepsilon \left( |y| + h \left| \frac{\mathrm{d} y}{\mathrm{d} x} \right| \right) + \delta = \varepsilon \left( |y| + h \left| f(x, y) \right| \right) + \delta$$

Pro soustavu rovnic jde vektor  $\vec{\Delta}_0$ , jeho složky  $\Delta_{0i}$  určujeme stejným způsobem. Krok vybíráme tak, aby podmínka  $\Delta_i < \Delta_{0i}$  platila pro  $\forall$  složky řešení.

**Zpřesnění výsledku** Výsledek vypočtený RK metodou 4. řádu můžeme zpřesnit použitím vztahu

$$y(x+2h) = \frac{16}{15}y_h - \frac{1}{15}y_{2h} + O(h^6) = y_h + \Delta + O(h^6) .$$

Tím získáme metodu 5. řádu přesnosti.

### 2.7 Vnořené (embedded) Runge–Kutta metody

Těmto metodám se říká i Runge–Kutta–Fehlbergovy, jde o modernější přístup k adaptivní volbě integračního kroku.

Pro metody více než 4 řádu, musíme použít více přibližných vyjádření derivace než je řád metody. Například pro metodu 5. řádu je nutno sestavit kombinaci

$$y_{n+1} = y_n + c_1 k_1 + c_2 k_2 + \ldots + c_6 k_6 + O(h^6)$$

Lze ale zvolit taková  $k_1$ ,  $k_2$ , ...,  $k_6$ , že z nich lze vytvořit i kombinaci, která dává metodu 4. řádu

$$y_{n+1}^* = y_n + c_1^* k_1 + c_2^* k_2 + \ldots + c_6^* k_6 + O(h^5)$$

Tato formule se nazývá vnořená. Chybu metody můžeme odhadnout vztahem

$$\Delta \equiv y_{n+1} - y_{n+1}^* = \sum_{i=1}^6 (c_i - c_i^*) k_i$$
.

Použití vnořené formule podstatně zmenšuje počet nutných vyčíslení funkce f(x,y).

## Spojité Runge-Kuttovy metody (dense output)

Aby byla Runge–Kuttova metoda efektivní, používáme velká h. Z různých důvodů, například pro vykreslení grafu, potřebujeme často znát hodnoty v mezilehlých bodech. Do čtvrtého řádu metody včetně lze hodnoty v mezilehlých bodech spočítat Hermiteovou interpolací z hodnot  $y_i$ ,  $y_i' = f(x_i, y_i)$ ,  $y_{i+1}$  a  $y_{i+1}' = f(x_{i+1}, y_{i+1})$ .

Pro metody vyššího řádu používáme speciální metody pro spojité RK. Obvykle jsou k s v metodě použitým  $k_i$  přidány ještě další  $k_i$ , kde  $i=s+1,\ldots,s^*$ , a rozdíl  $s^*-s$  je roven dvěma nebo třem. Ty pak umožní, aby přesnost interpolace nebyla horší než přesnost integrace systému ODE.

#### 2.8 Lokální a globální chyba Runge-Kuttových metod

<u>Věta o lokální chybě</u> Nechť je dána rovnice y' = f(x, y), kde funkce f v okolí bodu  $(x_0, y_0)$  má  $\forall$  spojité parciální derivace řádu  $k \leq p$ . Nechť

$$y_1 = y(x_0) + h\Phi(x_0, y_0, h) = y(x_0) + h\sum_{i=1}^r p_{ri}k_i(x_0, y_0, h)$$

je krok RK metody p-tého řádu. Index  $^{(p)}$  značí p-tou derivaci. Pak

$$|y_1 - y(x_0 + h)| \le h^{p+1} \left( \frac{1}{(p+1)!} \max_{t \in (0,1)} |y^{(p+1)}(x_0 + t.h)| + \frac{1}{p!} \sum_{i=1}^{r} |p_{ri}| \max_{t \in (0,1)} |k_i^{(p)}(t.h)| \right)$$

Věta o globální chybě Nechť pro lokální chybu RK metody platí

$$|y(x+h) - y(x) - h \Phi_{RK}[x, y(x), h]| \le Ch^{p+1}$$

a nechť  $\exists \Lambda > 0$  takové, že v nějakém okolí řešení platí

$$|\Phi_{RK}(x,z,h) - \Phi_{RK}(x,y,h)| \leq \Lambda |z-y|$$
.

Pak pro přesnost numerického řešení  $y_N$  v bodě  $x_N$  platí

$$\delta = |y_N - y(x_N)| \le h^p \frac{C}{\Lambda} \left\{ \exp[\Lambda(x_N - x_0)] - 1 \right\}$$

### 2.9 Vlastnosti Runge-Kuttových metod

Runge–Kuttovy metody jsou velmi robustní – fungují téměř vždy, jsou velmi odolné k vlastnostem funkce f (absence derivace, příp. skoky). Jsou to samostartující metody (není třeba na začátku použít jiné metody). Jsou jednoduché a dostupné v numerických knihovnách. Hodí se zvlášť, pokud není vyžadována vysoká přesnost.

Nevýhodou je relativně vysoký počet výpočtů funkce f na jeden krok (při složitém výpočtu f je metoda pomalá). Nehodí se pro řešení tzv. stiff rovnic (rovnic se "silným tlumením").

## Nespojitost funkce f

Funkce f je často nespojitá nebo má nespojité derivace. Například

$$y' = \begin{cases} f_I(x,y) & \text{pro } g(x,y) \ge 0\\ f_{II}(x,y) & \text{pro } g(x,y) < 0 \end{cases}$$

Možné strategie řešení tohoto problému:

- 1. Ignorujeme nespojitost a doufáme, že si nastavení kroku poradí samo.
- 2. Použijeme tzv. singularity detecting codes.
- 3. Hledáme bod nespojitosti a restartujeme výpočet od tohoto bodu. Postup obvykle zmenší chybu i počet kroků.

# Některé obecnější pojmy

O libovolné jednokrokové metodě, pro kterou platí vztah  $y_{i+1} = y_i + h\Phi(x_i, y_i, h)$ , říkáme, že je konzistentní, pokud

$$\lim_{h\to 0} \Phi(x,y,h) = f(x,y) \quad \text{ pro } \quad \forall (x,y) \ \ .$$

Metoda je  $\underline{\mathbf{regul\acute{a}rn\acute{l}}}$ , pokud existuje konstanta L taková, že  $\forall (x,y) \in G$ ,  $\forall (x,\tilde{y}) \in G$  a  $\forall h \in \langle 0,H \rangle$  platí

$$|\Phi(x, y, h) - \Phi(x, \tilde{y}, h)| \le L|y - \tilde{y}|$$
.

<u>Věta</u> Každá jednokroková regulární a konzistentní metoda je konvergentní.

### Vliv zaokrouhlovacích chyb

<u>Katastrofické případy</u> – Příliš malý krok  $x_i + h = x_i$  v x. Příliš malý krok se může projevit i v y, které zůstane  $y_i + (y_{i+1} - y_i) = y_i$  konstantní po mnoha krocích, ač bez zaokrouhlování může být změna y nezanedbatelná.

 $\underline{Kumulace\ chyb}$  – Označme  $\tilde{\alpha}$  chybu výpočtu  $\Phi$  a chybu při přičtení změny y(x,y) označme  $\tilde{\beta}$ . Pak tedy

$$y_{i+1} = y_i + h(\Phi(x_i, y_i, h) + \tilde{\alpha}) + \tilde{\beta} .$$

Pokud provedeme N kroků o velikosti  $N\sim\frac{1}{h}$ , dosáhneme nejvýše (pokud mají všechny chyby stejné znaménko) celkové chyby

$$|E| \simeq N \left( h |\tilde{\alpha}| + |\tilde{\beta}| \right) \sim |\tilde{\alpha}| + \frac{|\tilde{\beta}|}{|h|}$$
.

Zaokrouhlovací chyby tedy rostou při zmenšování kroku h. Na druhé straně chyba metody roste při zvětšování h. Existuje tedy optimální krok h z hlediska přesnosti.

#### 3 Bulirsch-Stoerova metoda

Je to moderní jednokroková metoda založená na Richardsonově extrapolaci na h=0. Tím je podobná Rombergově integraci. Tato metoda se nehodí, pokud

- funkce f nejsou dostatečně hladké (např. pokud jsou zadané, tabulkou)
- má zadaná rovnice singulární bod.

#### Postupujeme takto:

- 1. Výpočet provedeme pro několik h, z nichž žádné není dost malé pro zadanou přesnost. Předpokládáme, že výsledek je analytickou funkcí h.
- 2. Pro výpočet jednotlivých kroků použijeme sudou metodu, kde chyba metody  $\Delta_h \sim h^2$ .
- 3. Výsledek extrapolujeme na h=0 racionální lomenou funkcí  $h^2$ .



Obrázek 1: Bulirsch-Stoerova metoda

Výpočet provádíme s posloupností počtu kroků  $n=2,4,6,8,12,16,24,\ldots$ , tedy s posloupností, pro kterou platí  $n_0=2$ ,  $n_1=4$ ,  $n_2=6$  a  $n_j=2n_{j-2}$  pro  $j=3,4,\ldots$  Nejvyšší počet kroků se obvykle stanovuje jako j=10, tedy  $n_{10}=96$ . Extrapolaci provádíme z menšího počtu prvků, maximálně ze sedmi.

### 3.1 Výpočet jednotlivých kroků

Používáme modifikovanou metodu středního bodu. Máme rovnice

$$z_0 \equiv y(x)$$
 $z_1 = z_0 + hf(x, z_0)$ 
 $\vdots$ 
 $z_{m+1} = z_{m-1} + 2hf(x + mh, z_m), \quad \text{kde} \quad m = 1, 2, \dots, n-1$ 

Potom

$$y(x+H) \approx y_n = \frac{1}{2}[z_n + z_{n-1} + hf(x+H, z_n)]$$

Chyba metody je dána vztahem

$$\Delta = y_n - y(x+H) = \sum \alpha_i h^{2i} ,$$

Jde tedy o metodu 2. řádu, rozvoj chyby obsahuje pouze sudé mocniny h. Pokud extrapolujeme ze 2 výsledků pro  $n_k$  a  $n_{k-1}$  dostaneme metodu čtvrtého řádu přesnosti  $(O(h^4))$ . Při extrapolaci ze 7 výsledků získáme čtrnáctý řád přesnosti.

Bullirsch-Stoerova metoda je metoda vysokého řádu. Hodí se, pokud je požadována vysoká přesnost řešení a funkce  $\vec{f}$  je hladká. Nehodí se pro stiff rovnice.

# 4 Vícekrokové metody

Vícekrokové metody vyžívají k výpočtu y v bodu  $x_{n+1}$  nejen hodnoty a derivace v  $x_n$ , ale i v bodech předchozích. Takové metody tedy nejsou samostartující, ale snižují počet nutných vyčíslení funkce f.

Obecně můžeme vyjádřit vícekrokovou metodu ve tvaru

$$y_{i+1} = \sum_{j=1}^{k} a_j y_{i+1-j} + h \sum_{j=0}^{k} b_j f_{i+1-j}$$
.

Pokud je  $b_0 = 0$ , metodu nazýváme **explicitní**. V případě  $b_0 \neq 0$  se jedná o metodu **implicitní**, musíme tedy řešit v obecnosti nelineární rovnici pro  $y_{i+1}$  (systém nelineárních rovnic pro  $\vec{y}_{i+1}$ ).

### 4.1 Adamsovy metody

Velmi známé jsou Adamsovy metody založené na integraci Lagrangeova extrapolačního (nebo interpolačního) polynomu. Jediný nenulový koeficient a je koeficient  $a_1=1$ . Interpolována je tedy jen derivace a tedy je použito více koeficientů  $b_j$ .

### Adams-Bashforthovy metody

Jsou to explicitní metody  $b_0=0$ . Jako příklad uvedeme metodu 4. řádu

$$y_{i+1} = y_i + \frac{h}{24} (55y'_i - 59y'_{i-1} + 37y'_{i-2} - 9y'_{i-3}) + O(h^5)$$
,

 $\mathsf{kde}\ y_k' = f(x_k, y_k).$ 

# Adams-Moultonovy metody

Jsou to implicitní metody. Metoda 4. řádu má tvar

$$y_{i+1} = y_i + \frac{h}{24} (9y'_{i+1} + 19y'_i - 5y'_{i-1} + y'_{i-2}) + O(h^5)$$
.

Máme tedy  $y'_{i+1} = f(x_{i+1}, y_{i+1})$ , tedy  $y_{i+1}$  je dáno rovnicí (systém rovnic). Výhodou implicitní metody je lepší stabilita (možnost delšího kroku), ale přímo ji většinou nelze použít.

### 4.2 Metoda prediktor-korektor

Postup má tyto kroky:

- 1. **Prediktor** (P) odhadneme  $\tilde{y}_{i+1}$  explicitní metodou (Adams–Bashforthovou).
- 2. Evaluace (E) vypočteme  $\tilde{y}'_{i+1} = f(x_{i+1}, \tilde{y}_{i+1})$ .
- 3. Korektor (K) implicitní metodou s  $\tilde{y}'_{i+1}$  určíme  $y_{i+1}$ .
- 4. Evaluace (E') vypočteme  $y'_{i+1} = f(x_{i+1}, y_{i+1})$ .

Obecně lze postupovat podle schématu  $P(EK)^mE'$ , ale obvykle pokládáme m=1. Automatická změna kroku je zde složitější, ale v knihovnách je implementována. Výhodou této metody je především její rychlost, funkční hodnotu vyčíslujeme jen dvakrát (ne čtyřikrát). Její nevýhody jsou především to, že není samostartující, je citlivější na vlastnosti funkce f a není vhodná pro stiff-rovnice.

### 4.3 Konvergence vícekrokových metod

**Konzistence** - Vícekroková metoda je konzistentní, pokud je alespoň 1. řádu přesnosti.

Metoda je konzistentní právě tehdy, jestliže

$$\sum_{j=1}^{k} a_j = 1 \qquad \land \qquad \sum_{j=0}^{k} b_j = \sum_{j=1}^{k} j \, a_j$$

Vícekroková metoda

$$y_{i+1} = \sum_{j=1}^{k} a_j y_{i+1-j} + h \sum_{j=0}^{k} b_j f_{i+1-j}$$
.

má charakteristický polynom

$$\lambda^k - a_1 \lambda^{k-1} - \ldots - a_k = 0 .$$

Pokud je metoda konzistentní, pak je alespoň jeden kořen  $\lambda_i = 1$ .

**<u>D-stabilní metoda</u>** (stabilní v limitě kroku  $h \to 0$ ), má  $\forall i = 1, ..., m$  vlastní čísla (kořeny charakteristického polynomu)  $|\lambda_i| \le 1$  a ty, pro které je  $|\lambda_i| = 1$ , jsou jednoduché kořeny.

<u>Věta</u> Pokud je vícekroková metoda konzistentní a D-stabilní, pak je konvergentní.

 $\underline{Pozn.}$  Adamsovy metody jsou D-stabilní, mají charakteristický polynom  $\lambda^k-\lambda^{k-1}=0$ , tedy  $\lambda_1=1$  a  $\lambda_2=\ldots=\lambda_m=0$ .

# 5 Špatně podmíněné úlohy

Máme-li diferenciální rovnici y''=y s počátečními podmínkami y(0)=1 a y'(0)=-1, dostaneme analytické řešení  $y=e^{-x}$ . Úloha s počátečními podmínkami  $y(0)=1+\varepsilon$  a  $y'(0)=-1+\varepsilon$  má ovšem řešení  $y=e^{-x}+\varepsilon e^x$ . Při libovolně malém nenulovém  $\varepsilon$ , existuje takové x, od kterého převažuje rostoucí "parazitní" složka. Protože se při numerickém řešení úlohy nevyhnutelně dopouštíme nepřesností, objeví se v něm rostoucí složka a po určité době převáží.

# 6 Stiff rovnice (rovnice se silným tlumením)

Jsou to rovnice, které v sobě obsahují útlum s charakteristickým časem  $\tau_1 \ll \tau_{i\neq 1}$  – jiné charakteristické časy úlohy. I když pro  $\tau \gg \tau_1$  je rychle se tlumící složka zanedbatelně malá, přesto je u dosud popsaných metod nutno užívat krok  $h \lesssim \tau_1$ . Takové rovnice nazýváme <u>stiff</u> (rovnice se silným tlumením).

Nejjednodušší stiff rovnice jsou druhého řádu, například

$$y'' + 101y' + 100y = 0 \quad ,$$

která má řešení ve tvaru

$$y = c_1 \exp(-100 x) + c_2 \exp(-x)$$
.

kde  $\tau_1 = 0.01 \ll \tau_2 = 1$ . Pro obvyklé metody musí být krok  $h \stackrel{<}{\sim} 0.01$ .

Příčinu potíží si ukážeme na ještě jednodušší rovnici

$$y' = -100y + 100$$
 s podm.  $y(0) = y_0$ ,

která má analytické řešení  $y=(y_0-1)\cdot \exp(-100\,x)+1$ . Řešíme-li ji numericky Eulerovou metodou, máme řešení

$$y_{n+1} = y_n + h(-100y_n + 100)$$
, tedy  $y_n = (y_0 - 1)(1 - 100h)^n + 1$ 

Je-li h>0.02, první člen v absolutní hodnotě roste a řešení je zcela chybné. Obvyklá Eulerova metoda je metoda explicitní. Implicitní metody zde dovolují podstatně prodloužit krok.

### Implicitní Eulerova metoda

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$$

má pro danou rovnici tvar

$$y_{n+1} = y_n + h(-100y_{n+1} + 100)$$
  $\Rightarrow$   $y_n = 1 + \frac{y_0 - 1}{(1 + 100h)^n}$ 

Zde řešení konverguje k 1 pro libovolně velké h.

Metody, které dovolují prodloužit krok pro stiff rovnice se nazývají stiff stabilní. Průkopníkem těchto metod byl C. W. Gear (1971).

### 6.1 Stabilita pro konečný krok

Uvažujeme pro jednoduchost jen jednu rovnici y'=f(x,y), která má hladké řešení  $\varphi(x)$ . Spočítáme numericky řešení  $y_i$  v bodech  $x_i$ . Chceme, aby pro  $\forall \ i \in \mathcal{N}$  byla chyba  $\Delta$  numerického řešení omezená

$$|\Delta_i| = |y_i - \varphi(x_i)| < K$$
.

Dosadíme do diferenciální rovnice

$$y'(x) = f(x,y) = f(x,\varphi(x)) + \frac{\partial f}{\partial y}\Big|_{(x,\varphi(x))} (y(x) - \varphi(x)) + \dots$$

Odtud pro derivaci chyby platí

$$\Delta'(x) = \frac{\partial f}{\partial y}\Big|_{(x,\varphi(x))} \cdot \Delta + \ldots \approx J(x) \,\Delta(x)$$
.

Přibližně můžeme brát J jako konstantní a pak

$$\Delta' = J\Delta$$
 a  $\Delta_{m+1} = R(hJ)\Delta_m$ ,

kde R(hJ)=R(z) je dáno metodou numerického řešení diferenciální rovnice. Pro Eulerovu metodu je R(z)=1+z. Aby bylo  $|\Delta_m|< K$  pro  $\forall\, m\in\mathcal{N}$ , musí být |R(z)|<1. Pro Eulerovu metodu musí být |z-(-1)|<1.

Pro systém rovnic je chyba vektor  $\vec{\Delta}$  a jeho derivace je dána maticí  ${f J}$ . Je tedy

$$\vec{\Delta}' = \mathbf{J}\vec{\Delta}$$
 .

Nechť  ${\bf J}$  není defektní a existuje tedy pro  $\forall \, \lambda_i, \, i=1,2,\ldots,n$  vlastní vektor  $\vec{\nu}_i$ . Potom lze vyjádřit

$$\vec{\Delta}_0 = \sum_{i=1}^n \alpha_i \vec{\nu}_i$$

Pak lze chybu v m-tém kroku zapsat ve tvaru

$$\vec{\Delta}_m = \sum_{i=1}^n \left[ R(h\lambda_i) \right]^m \alpha_i \vec{\nu}_i .$$

Pak chyba je omezená v limitě  $\lim_{m \to \infty} \|\vec{\Delta}_m\| < k$  právě tehdy, když pro  $\forall \, i=1,2,\dots,n$  je, že

$$\forall z_i = h\lambda_i \in \mathcal{S} \quad ; \quad S \equiv \{z; |R(z)| \le 1\} \quad .$$

Z této podmínky mohu najít maximální krok h takový, že absolutní chyba metody nebude postupně narůstat (metoda je stabilní pro daný krok).

 $\underline{Pozn.}$  Pro Eulerovu metodu je  $\mathcal{S} = \{z \in \mathcal{C}; |z - (-1)| \leq 1\}.$ 

<u>Def.</u> Metoda je <u>A-stabilní</u>, jestliže je

$$S \supset C^- = \{ z \in C ; \operatorname{Re}(z) \le 0 \}$$

 $\underline{Pozn.}$  A-stabilní metoda je stabilní pro  $\forall$  délky kroku h.

Implicitní Eulerova metoda je A-stabilní.

$$\overline{\text{Zde }R(z)=1/(1-z)\text{ a tedy }}|R(z)\leq 1|\text{ na množině (vnějšek kruhu)}|z-1|\geq 1\Rightarrow \mathcal{S}\supset \mathcal{C}^-.$$

Pozn. V praxi se obvykle užívají implicitní metody vyššího řádu.

### 6.2 Semiimplicitní Eulerova metoda

Implicitní metody jsou vhodné pro lineární diferenciální rovnice, kde pro výpočet  $\vec{y}_{i+1}$  je nutno řešit systém lineárních rovnic. Řešit systém nelineárních rovnic je ale obtížné, proto rovnice pro  $\vec{y}_{i+1}$  linearizujeme. Takové metody nazýváme semiimplicitní.

Linearizujeme implicitní Eulerovu metodu  $\vec{y}_{n+1} = \vec{y}_n + h\vec{f}(x_{n+1}, \vec{y}_{n+1})$  a dostaneme

$$\vec{f}(x_{n+1}, \vec{y}_{n+1}) = \vec{f}(x_{n+1}, \vec{y}_n) + \frac{\partial \vec{f}}{\partial \vec{y}}\Big|_{x_{n+1}, \vec{y}_n} (\vec{y}_{n+1} - \vec{y}_n)$$
,

kde parciální derivace vektoru je matice  $\partial f_i/\partial y_j$ . Odtud potom

$$\vec{y}_{n+1} = \vec{y}_n + h \left[ \mathbf{I} - h \frac{\partial \vec{f}}{\partial \vec{y}} \Big|_{x_{n+1}, \vec{y}_n} \right]^{-1} \cdot \vec{f}(x_{n+1}, \vec{y}_n) .$$

Mocnina -1 znamená inverzní matici. V každém kroku tedy řešíme systém lineárních rovnic.

<u>Pozn.</u> Semiimplicitní metody nejsou A-stabilní, ale dovolují podstatně delší krok než explicitní metody.

## 6.3 Řešení stiff problémů

- 1. Rosenbrockovy metody jsou semiimplicitním zobecněním Runge–Kuttových metod.
- 2. Semiimplicitní zobecnění Bulirsch-Stoerovy metody.
- 3. **Vícekrokové** Gearovy metody jsou semiimplicitním zobecněním metod prediktor–korektor.

# 7 Okrajová úloha

Podmínky nejsou zadány v 1. bodu, jsou obvykle zadány ve 2 bodech, i když i jiná formulace podmínky (např. integrální) je možná.

Nechť jsou podmínky zadány ve 2 bodech (rovnice alespoň 2. řádu nebo nejméně 2 rovnice 1. řádu). Máme-li rovnici N-tého řádu,  $n_1$  podmínek je zadáno v bodě a a  $n_2$  podmínek v bodě b, kde  $n_1+n_2=N$ . Nejčastější jsou podmínky s tvarem  $y(a)=\alpha_0$ ,  $y'(a)=\alpha_1$  nebo  $c_1y(a)+c_2y'(a)=\alpha_2$ .

Základní metody řešení okrajových úloh jsou

- metoda střelby
- metoda sítí (konečných diferencí)
- variační metody

### 7.1 Metoda střelby

Máme  $n_1$  podmínek v bodu a,  $n_2$  podmínek v bodu b. Zkusmo zvolíme  $n_2$  dodatečných podmínek v bodu a a řešíme počáteční úlohu. Řešení v bodu b dosadíme do  $n_2$  původních podmínek, a podle výsledku měníme dodatečné podmínky v bodu a tak, abychom se trefili do podmínek v bodu b. Musíme tedy řešit  $n_2$  obecně nelineárních rovnic. Pokud je  $n_2 = 1$ , jde jen o 1 rovnici a úloha je podstatně snažší.

Název je vlastně od střelby na cíl, která je popsána 4 diferenciálními rovnicemi

$$\frac{\mathrm{d} x}{\mathrm{d} t} = v \cos \theta \qquad \frac{\mathrm{d} v}{\mathrm{d} t} = -\frac{1}{2m} c \varrho s \ v^2 - g \sin \theta$$
$$\frac{\mathrm{d} y}{\mathrm{d} t} = v \sin \theta \qquad \frac{\mathrm{d} \theta}{\mathrm{d} t} = -\frac{g}{v} \cos \theta$$

a okrajovými podmínkami

$$x(0) = y(0) = 0$$
  $v(0) = v_0$   $y(x_c) = 0$ 

Střelec volí náměr – úhel  $\theta(0)$ , tak aby zasáhl cíl. Pokud cíl mine opraví odhad  $\theta(0)$  a zkouší to znovu. Musíme tedy řešit jednu nelineární rovnici pro  $\theta_0 = \theta(0)$ 

$$y(x_c, \theta_0) = 0$$

Výpočet funkční hodnoty pro  $\forall \theta_0$  vyžaduje řešení počátečního problému pro obyčejné diferenciální rovnice.

<u>Pozn.</u> Pokud je nutno řešit více nelineárních rovnic, používá se Newton–Raphsonova metoda, kde se parciální derivace počítají numericky.

### 7.2 Metoda sítí (konečných diferencí)

Položme  $x_0\equiv a$  a  $x_{N+1}\equiv b$ . Vložíme mezi a a b body  $x_1,\ldots,x_N$ . Budeme hledat aproximaci řešení v uvedených bodech. Nejjednodušší je ekvidistantní krok  $\Delta x_k=x_{k+1}-x_k=(b-a)/(N+1)=h$ . Derivace lze nahradit konečnými diferencemi různě. Například

$$v'(x) \approx \frac{v(x+h) - v(x)}{h}$$

a protože platí

$$v'(x) - \left[\frac{v(x+h) - v(x)}{h}\right] = -\frac{1}{2}v''(x)h + O(h^2),$$

máme metodu prvního řádu přesnosti. Pokud ovšem nahradíme derivaci vztahem

$$v'(x) \approx \frac{v(x+h) - v(x-h)}{2h}$$

dostaneme metodu druhého řádu, protože platí

$$v'(x) - \left[\frac{v(x+h) - v(x-h)}{2h}\right] = -\frac{h^2}{3!}v'''(x) + O(h^4).$$

Pro druhou derivaci platí vztah druhého řádu přesnosti

$$v''(x) = \frac{v(x+h) - 2v(x) + v(x-h)}{h^2} - \frac{h^2}{12}v^{(4)}(x) + O(h^4).$$

Ukázka pro lineární diferenciální rovnici

$$a(x)v'' + b(x)v' + c(x)v = d(x) \qquad x \in \langle 0, 1 \rangle \qquad v(0) = \alpha \quad v(1) = \beta$$

Tuto rovnici lze pro všechna  $i=1,\ldots,N$  aproximovat diferenční rovnicí

$$a_i \frac{v_{i+1} - 2v_i + v_{i-1}}{h^2} + b_i \frac{v_{i+1} - v_{i-1}}{2h} + c_i v_i = d_i.$$

Tuto rovnici můžeme pro i = 1, ..., N upravit na tvar

$$\underbrace{(-a_i + b_i \frac{h}{2})}_{r_i} v_{i-1} + \underbrace{(2a_i - c_i h^2)}_{p_i} v_i + \underbrace{(-a_i - b_i \frac{h}{2})}_{q_i} v_{i+1} = -h^2 d_i.$$

Potom řešíme soustavu lineárních rovnic pro  $v_i$ 

$$\begin{bmatrix} p_1 & q_1 & 0 & & \dots & & 0 \\ r_2 & p_2 & q_2 & & & & 0 \\ \vdots & & & \ddots & & & \vdots \\ 0 & & & r_{N-1} & p_{N-1} & q_{N-1} \\ 0 & & \dots & & 0 & r_N & p_N \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_{N-1} \\ v_N \end{bmatrix} = -h^2 \begin{bmatrix} d_1 + r_1 \frac{\alpha}{h^2} \\ d_2 \\ \dots \\ d_{N-1} \\ d_N + q_N \frac{\beta}{h^2} \end{bmatrix}.$$

Lze dokázat, že pokud h o 0, pak pro  $\forall \ i=1,\dots,N$  platí  $|v_i-v(x_i)| o 0$ .

 $\underline{Pozn.}$  Pokud okrajové podmínky obsahují derivace, musíme je též aproximovat. Ke zvýšení řádu této aproximace často užíváme virtuálních bodů  $x_{-1}$  a  $x_{N+2}$ .

<u>Pozn.</u> Při řešení okrajových úloh pro obyčejné diferenciální rovnice metodou sítí je nutno řešit systémy lineárních rovnic s pásovou maticí.

### 7.3 Variační metody

Místo hledání řešení v určitých bodech, hledají variační metody řešení v jisté třídě funkcí, pokud je  $\varphi_k(x)$  úplný systém funkcí, lze řešení napsat

$$y(x) = \sum_{k=1}^{\infty} a_k \varphi_k(x)$$

a zbývá najít neznáme koeficienty  $a_k$ . Samozřejmě se pak omezíme na konečný počet funkcí.

Převedeme okrajové podmínky na homogenní a obyčejnou diferenciální rovnici napíšeme ve tvaru

$$A y(x) = f(x)$$
  $L_m^{(a)} y = 0$   $L_m^{(b)} y = 0$ 

kde A je diferenciální operátor. Zvolíme bázové funkce  $\varphi_k(x)$  takové, že  $\forall$  splňují okrajové podmínky. V prostoru funkcí zavedeme skalární součin, často  $(u,v)=\int\limits_a^b u(x)\,v(x)\;\mathrm{d}x.$ 

 $\underline{Pozn.}$  Většina metod je určena pro lineární operátory A, ale např. Galerkinovu metodu lze užít i pro nelineární operátory.

#### Galerkinova metoda

$$A y = f$$
  $\Rightarrow (Ay - f, \varphi_j) = 0$   $\forall j = 1, ..., n$ 

Uvažujeme přibližné řešení ve tvaru

$$y_n = \sum_{k=1}^n a_k \varphi_k$$

Po dosazení získáme systém rovnic pro koeficienty  $a_k$ 

$$(Ay_n - f, \varphi_j) = \int_a^b (Ay_n - f)\varphi_j \, dx = \int_a^b \left( A\left[\sum_{k=1}^n a_k \varphi_k\right] - f \right) \varphi_j \, dx = 0$$

Metoda konečných prvků (finite element method) je variační metoda, která užívá speciální bázové funkce, z nichž každá je nenulová jen v určitém krátkém intervalu. Bázové funkce pro metodu konečných prvků mohou být například:

$$\begin{array}{cccc} \varphi_i = 0 & \text{pro} & x \leq x_{i-1} \\ \varphi_i = 1 - \frac{x_i - x}{x_i - x_{i-1}} & \text{pro} & x_{i-1} \leq x \leq x_i \\ \varphi_i = 1 - \frac{x - x_i}{x_{i+1} - x_i} & \text{pro} & x_i \leq x \leq x_{i+1} \\ \varphi_i = 0 & \text{pro} & x_{i+1} \leq x \end{array}$$

Uvedený tvar bázových funkcí lze použít, pokud diferenciální rovnice obsahují maximálně 2. derivaci, jinak je třeba volit hladší bázové funkce (např. zvonové spliny).