Betriebssysteme

11. Tutorium - Storage

Peter Bohner

23. Januar 2024

ITEC - Operating Systems Group

ÜB 9

- \cdot Lief gut von meiner Seite aus kein Besprechungsbedarf
- Fragen euerseits?

 $\boldsymbol{\cdot}$ Was ist ein Long und ein Short-Term scheduler?

 Was ist ein Long und ein Short-Term scheduler? LTS: Was kommt in die Run-Queue, STS: Was läuft auf der CPU?

- Was ist ein Long und ein Short-Term scheduler? LTS: Was kommt in die Run-Queue, STS: Was läuft auf der CPU?
- Unterschied mechanism policy? Wieso wichtig?

- Was ist ein Long und ein Short-Term scheduler? LTS: Was kommt in die Run-Queue, STS: Was läuft auf der CPU?
- · Unterschied mechanism policy? Wieso wichtig?
- Was ist thrashing?

- Was ist ein Long und ein Short-Term scheduler? LTS: Was kommt in die Run-Queue, STS: Was läuft auf der CPU?
- Unterschied mechanism policy? Wieso wichtig?
- Was ist thrashing?
- · Welche threading Modelle kennt ihr? Vor- / Nachteile?

- Was ist ein Long und ein Short-Term scheduler? LTS: Was kommt in die Run-Queue, STS: Was läuft auf der CPU?
- Unterschied mechanism policy? Wieso wichtig?
- Was ist thrashing?
- Welche threading Modelle kennt ihr? Vor- / Nachteile? One-to-One (Langsam, Kernel Support, einfach), Many-to-one (kein Kernel support, kein SMP), Many-to-Many (upcalls, komplexität)
- Unterschied KLT, KMT?

Wiederholung - Klausuraufgaben

- Speicher Segmentation: WS21 final1 T3
- · Caching: WS1617 final1 T4 c,d

What kind of I/O Devices do you find in a typical system?

What kind of I/O Devices do you find in a typical system?

· Block devices

What kind of I/O Devices do you find in a typical system?

- · Block devices
- Character devices

What kind of I/O Devices do you find in a typical system?

- Block devices
- Character devices
- Network devices

What kind of I/O Devices do you find in a typical system?

- Block devices
- Character devices
- Network devices

Block Devices

- Offer random access to fixed-size blocks
- Applications typically deal with a file system on top of the device
- Examples?

What kind of I/O Devices do you find in a typical system?

- Block devices
- Character devices
- Network devices

Block Devices

- Offer random access to fixed-size blocks
- Applications typically deal with a file system on top of the device
- Examples? SSD, HDD, ...

What kind of I/O Devices do you find in a typical system?

- Block devices
- Character devices
- · Network devices

Block Devices

- Offer random access to fixed-size blocks
- Applications typically deal with a file system on top of the device
- Examples? SSD, HDD, ...

Character Devices

- Provide a stream of characters
- Examples?

What kind of I/O Devices do you find in a typical system?

- Block devices
- Character devices
- Network devices

Block Devices

- Offer random access to fixed-size blocks
- Applications typically deal with a file system on top of the device
- Examples? SSD, HDD, ...

Character Devices

- Provide a stream of characters
- Examples? Mice, Keyboard, (classic) text terminals

Port Based I/O

Port Based I/O

Separate address space with dedicated instructions for reading/writing

- + Clear distinction in code ⇒ Optimizing easier (reordering, caching, ...)
- Less flexible, often lower performance

Port Based I/O

Separate address space with dedicated instructions for reading/writing

- + Clear distinction in code ⇒ Optimizing easier (reordering, caching, ...)
- Less flexible, often lower performance

Memory-mapped I/O

Device registers are mapped into the physical address space. How do you access that?

Port Based I/O

Separate address space with dedicated instructions for reading/writing

- + Clear distinction in code ⇒ Optimizing easier (reordering, caching, ...)
- Less flexible, often lower performance

Memory-mapped I/O

Device registers are mapped into the physical address space. How do you access that? Normal instructions!

- + Higher flexibility: Virtual memory, larger instruction set, mostly transparent
- Some special rules apply to I/O regions software needs to be aware of

DMA		

DMA

Direct Memory Access

DMA

Direct Memory Access

· Devices can access the physical memory without involving the CPU

DMA

Direct Memory Access

- · Devices can access the physical memory without involving the CPU
- Needs special setup from the OS to know how and what to read/write

Memory Mapped Files

DMA

Direct Memory Access

- · Devices can access the physical memory without involving the CPU
- Needs special setup from the OS to know how and what to read/write

Memory Mapped Files

· OS abstraction: Treat a file like a normal range of virtual memory

DMA

Direct Memory Access

- · Devices can access the physical memory without involving the CPU
- Needs special setup from the OS to know how and what to read/write

Memory Mapped Files

- · OS abstraction: Treat a file like a normal range of virtual memory
- No real relation to DMA, though the OS might use it to synchronize Memory Mapped Files with the underlying device

How does the OS know an I/O operation is finished?

How does the OS know an I/O operation is finished?

Polling

How does the OS know an I/O operation is finished?

Polling ⇒ Periodically check device registers

How does the OS know an I/O operation is finished?

- Polling ⇒ Periodically check device registers
- Interrupts

How does the OS know an I/O operation is finished?

- Polling ⇒ Periodically check device registers
- Interrupts \Rightarrow I/O devices send an interrupt signal

Hard Disks

Hard Disk Layout

What parts can you find in a hard disk?

What parts can you find in a hard disk?

• Heads

What parts can you find in a hard disk?

- Heads
- Arms

What parts can you find in a hard disk?

- Heads
- Arms
- Platters

What parts can you find in a hard disk?

- Heads
- Arms
- Platters
- Spindle

What do they do?

What do they do?

· Spindle: Spin connected platters!

What do they do?

- · Spindle: Spin connected platters!
- · Head: Read/Write

What do they do?

· Spindle: Spin connected platters!

· Head: Read/Write

· Arm: Move heads

9

How can you address data (512 byte blocks typically) on the disk?

How can you address data (512 byte blocks typically) on the disk?

 Cylinder - Head - Sector (CHS). Limited to "small" disks (< 8GB), rarely used these days

How can you address data (512 byte blocks typically) on the disk?

- Cylinder Head Sector (CHS). Limited to "small" disks (< 8GB), rarely used these days
- · Logical Block Addressing (LBA). Each data block has its own unique number.

Qing

How could you optimize the OS ⇔ Disk interface?

Native-Command-Queuing. OS sends reads and writes in batches and (the disk | the OS) reorders them based on internal geometry.

Qing

How could you optimize the OS ⇔ Disk interface?

Native-Command-Queuing. OS sends reads and writes in batches and *the disk* reorders them based on internal geometry.

Wear and Tear

What do you do when a sector is damaged?

Wear and Tear

What do you do when a sector is damaged?

Disk marks it as such and never uses it again \Rightarrow Sector sparing. What adverse effect might this have?

Wear and Tear

What do you do when a sector is damaged?

Disk marks it as such and never uses it again \Rightarrow Sector sparing. What adverse effect might this have? OS disk scheduler is unaware and optimizes for wrong geometry.

Shingled Magnet Recording

Shingled Magnet Recording

Shingled Magnet Recording

What happens when you write to this track? You overwrite the adjacent ones!

⇒ Append only and group shingled tracks

Shingled Magnet Recording

What happens when you write to this track? You overwrite the adjacent ones!

- ⇒ Append only and group shingled tracks
- \Rightarrow Can rewrite the whole group at once

How can such a device interface with the OS?

- Pretend you are a normal disk. Buffer writes in a normal zone and flush them once they fill up a group.
 - ⇒ Device Managed

How can such a device interface with the OS?

- Pretend you are a normal disk. Buffer writes in a normal zone and flush them once they fill up a group.
 - ⇒ Device Managed
- Tell the OS where your shingled zones are. The OS needs to write carefully to not destroy data
 - ⇒ Host Managed

How can such a device interface with the OS?

- Pretend you are a normal disk. Buffer writes in a normal zone and flush them once they fill up a group.
 - ⇒ Device Managed
- Tell the OS where your shingled zones are. The OS needs to write carefully to not destroy data
 - ⇒ Host Managed
- Compromise. Tell the OS where your singled zones are and expose their tail. If the OS writes to the tail, directly commit it else buffer.
 - \Rightarrow Host Aware

Solid-State Drives

Rejoice, TI might be useful once

How long do writes/reads take normally?

Rejoice, TI might be useful once

How long do writes/reads take normally?

• Reading a page: 25µs

Rejoice, TI might be useful once

How long do writes/reads take normally?

• Reading a page: 25µs

• Writing a page: 250µs

Rejoice, TI might be useful once

How long do writes/reads take normally?

• Reading a page: 25µs

• Writing a page: 250µs

• Erasing a block:

Rejoice, TI might be useful once

How long do writes/reads take normally?

• Reading a page: 25µs

• Writing a page: 250µs

• Erasing a block: 2ms

What happens when you just write to a random page?

Rejoice, TI might be useful once

How long do writes/reads take normally?

• Reading a page: 25µs

• Writing a page: 250µs

· Erasing a block: 2ms

What happens when you just write to a random page?

Speeding things up

What could you change so writing pages is faster?

Rejoice, TI might be useful once

How long do writes/reads take normally?

• Reading a page: 25µs

• Writing a page: 250µs

• Erasing a block: 2ms

What happens when you just write to a random page?

Speeding things up

What could you change so writing pages is faster?

- · Keep around spare erased pages
- \Rightarrow You do not pay the erase penalty!
 - When do you create / reserve / erase those spare pages?

Rejoice, TI might be useful once

How long do writes/reads take normally?

• Reading a page: 25µs

• Writing a page: 250µs

• Erasing a block: 2ms

What happens when you just write to a random page?

Speeding things up

What could you change so writing pages is faster?

- · Keep around spare erased pages
- \Rightarrow You do not pay the erase penalty!
 - When do you create / reserve / erase those spare pages? Probably in the background. Any problems?

Rejoice, TI might be useful once

How long do writes/reads take normally?

• Reading a page: 25µs

• Writing a page: 250µs

• Erasing a block: 2ms

What happens when you just write to a random page?

Speeding things up

What could you change so writing pages is faster?

- · Keep around spare erased pages
- \Rightarrow You do not pay the erase penalty!
 - When do you create / reserve / erase those spare pages? Probably in the background. Any problems? Might get exhausted if you write too much data in a short timeframe or the disk is full!

Deleting files

What happens when you delete a file? What effect does that have on the SSD performance?

Deleting files

What happens when you delete a file? What effect does that have on the SSD performance? The block is not freed \Rightarrow Can't be used as an erased empty page

What can the OS do to combat that?

Deleting files

What happens when you delete a file? What effect does that have on the SSD performance? The block is not freed \Rightarrow Can't be used as an erased empty page

What can the OS do to combat that?

The trim command

Can be issued by the OS to tell the SSD firmware what pages can be safely erased.

RAID

RAID

What is that?

A Redundant Array of Independent/Inexpensive Disks

RAID

What is that?

A Redundant Array of Independent/Inexpensive Disks

Why would you use that?

A Redundant Array of Independent/Inexpensive Disks

Why would you use that?

· Probably cheaper than a SLED (Single Large Expensive Disk)

A Redundant Array of Independent/Inexpensive Disks

Why would you use that?

- · Probably cheaper than a SLED (Single Large Expensive Disk)
- · Might be more resilient

A Redundant Array of Independent/Inexpensive Disks

Why would you use that?

- · Probably cheaper than a SLED (Single Large Expensive Disk)
- · Might be more resilient
- · Might be faster

RAID - And now?

Great, you now have multiple disks. How do you store your files on them?

- · "I like to live dangerously" RAID Level 0
- · Mirroring: RAID Level 1
- · Historic variants: RAID Level 2 and 3
- Block striping and parity: RAID Level 4
- · Block striping and distributed parity: RAID Level 5

+ Extremely fast (parallel reads and writes)

- + Extremely fast (parallel reads and writes)
- + Can use full capacity

- + Extremely fast (parallel reads and writes)
- + Can use full capacity
- If a single disk fails your files are toast

+ You can lose all but one disk without losing data

- + You can lose all but one disk without losing data
- + Parallel reads possible

- + You can lose all but one disk without losing data
- + Parallel reads possible
- Writes slower as they need to write to all disks

- + You can lose all but one disk without losing data
- + Parallel reads possible
- Writes slower as they need to write to all disks
- Size equals the size of a single disk

• Have $log_2(N)$ parity disk

- Have $log_2(N)$ parity disk
- Stripe data at the bit level

- Have $log_2(N)$ parity disk
- Stripe data at the bit level
- Use a hamming code of proper size

- Have $log_2(N)$ parity disk
- Stripe data at the bit level
- Use a hamming code of proper size
- · Spin the disks in lockstep (so you read all bits of your word at once)

+ External error checking

- + External error checking
- Really slow

- + External error checking
- Really slow
- Not that useful as disks have internal error checking by now

- + External error checking
- Really slow
- Not that useful as disks have internal error checking by now
- Spins in lockstep ⇒ Can only service one request at a time

Have a dedicated parity disk

- Have a dedicated parity disk
- Stripe data at the byte level

- Have a dedicated parity disk
- Stripe data at the byte level
- · Spin the disks in lockstep (so you read all bytes of your word at once)

+ You can lose a disk and restore it using the parity

- + You can lose a disk and restore it using the parity
- Slow when reading/writing small files at random locations

- + You can lose a disk and restore it using the parity
- Slow when reading/writing small files at random locations
- Spins in lockstep \Rightarrow Can only service one request at a time

- + You can lose a disk and restore it using the parity
- Slow when reading/writing small files at random locations
- Spins in lockstep ⇒ Can only service one request at a time
- Every write and read hits the same single parity disk

What is that?

Have a dedicated parity disk

What is that?

- Have a dedicated parity disk
- Stripe data at the block level

+ You can lose a disk and restore it using the parity

- + You can lose a disk and restore it using the parity
- + Good read performance

- + You can lose a disk and restore it using the parity
- + Good read performance
- Every write and read hits the same single parity disk ⇒ Bottleneck, prone to failure

- + You can lose a disk and restore it using the parity
- + Good read performance
- Every write and read hits the same single parity disk ⇒ Bottleneck, prone to failure
- Slow writes (write to same parity disk)

What is that?

Stripe data at the block level

What is that?

- Stripe data at the block level
- · Distribute parity across your disks

+ You can lose a disk and restore it using the parity

- + You can lose a disk and restore it using the parity
- + Good read performance

- + You can lose a disk and restore it using the parity
- + Good read performance
- + Okay write performance

- + You can lose a disk and restore it using the parity
- + Good read performance
- + Okay write performance
- Still slower than RAID 0 or a SLED

Compare SLED and RAID (Level 0, 1, 4, 5)

Each RAID uses 4 disks for actual data storage.

How many disks do you need?

• SLED: 1

Compare SLED and RAID (Level 0, 1, 4, 5)

Each RAID uses 4 disks for actual data storage.

- SLED: 1
- RAID 0: 4

Compare SLED and RAID (Level 0, 1, 4, 5)

Each RAID uses 4 disks for actual data storage.

- SLED: 1
- RAID 0: 4
- RAID 1: 8

Compare SLED and RAID (Level 0, 1, 4, 5)

Each RAID uses 4 disks for actual data storage.

- SLED: 1
- RAID 0: 4
- RAID 1: 8
- RAID 4: 5

Compare SLED and RAID (Level 0, 1, 4, 5)

Each RAID uses 4 disks for actual data storage.

- SLED: 1
- · RAID 0: 4
- RAID 1: 8
- RAID 4: 5
- RAID 5: **5**

You want to modify one byte of data. How many blocks do you need to read/write?

• SLED: 1 read + 1 write

- SLED: 1 read + 1 write
- RAID 0: 1 read + 1 write

- · SLED: 1 read + 1 write
- · RAID 0: 1 read + 1 write
- RAID 1: 1 read + 2 write (1 data + 1 mirror)

- · SLED: 1 read + 1 write
- · RAID 0: 1 read + 1 write
- RAID 1: 1 read + 2 write (1 data + 1 mirror)
- · RAID 4: 2 read (data + old parity) + 2 write (data + new parity)

- SLED: 1 read + 1 write
- · RAID 0: 1 read + 1 write
- RAID 1: 1 read + 2 write (1 data + 1 mirror)
- RAID 4: 2 read (data + old parity) + 2 write (data + new parity)
- · RAID 5: 2 read (data + old parity) + 2 write (data + new parity)

You are using RAID

• You accidentally delete a file.

- · You accidentally delete a file. GONE
- · You accidentally overwrite a file.

- · You accidentally delete a file. GONE
- · You accidentally overwrite a file. GONE
- · Some data gets corrupted on one disk.

- · You accidentally delete a file. GONE
- · You accidentally overwrite a file. GONE
- · Some data gets corrupted on one disk. GONE (probably)
- The poor intern connects to the production database. (Or here)

- · You accidentally delete a file. GONE
- · You accidentally overwrite a file. GONE
- · Some data gets corrupted on one disk. GONE (probably)
- The poor intern connects to the production database. (Or here) **GONE**
- · A crypto-locker takes out your computer.

- · You accidentally delete a file. GONE
- · You accidentally overwrite a file. GONE
- · Some data gets corrupted on one disk. GONE (probably)
- The poor intern connects to the production database. (Or here) GONE
- · A crypto-locker takes out your computer. Believe it or not, *JAIL GONE*

You are using RAID

- · You accidentally delete a file. GONE
- · You accidentally overwrite a file. GONE
- · Some data gets corrupted on one disk. GONE (probably)
- The poor intern connects to the production database. (Or here) GONE
- · A crypto-locker takes out your computer. Believe it or not, *JAIL GONE*

So what do we learn?

RAID IS NO SUBSTITUTE FOR A BACKUP

XKCD 1360 - Old Files

FRAGEN?

https://forms.gle/9CwJSKidKibubran9

Bis nächste Woche