February 5, 2024 10:18 PM

 $x \in \{a,b,c\}^*, x \text{ does not have}$ any a in it ζ

Patterns are redundant. We actually don't need all of the atomic patterns or compound patterns.

* We can replace # with

a +b+c (for z={a,b,g})

* & with p*

* anp with ~(~a+~p)

* anp with ~(~a+~p)

* and with .? (more difficult)

* Nd with ... (must where $Z = \{a,b\}$)

* find equivalent β without α ?

a * ba * + a *

Regular Expressions

A regular expression is a pattern that
only uses the following:

* Atomic: p, a, E

* Compound: + , , , *

* concat

The order of precedence for

* The order of precedence for compound operations: *> > +

 $ac^*b+a^*b^* \equiv (a(c^*)b)+((a^*)(b^*))$

* Regular expression define equivalency classes. $A \equiv \beta$ iff $L(\alpha) = L(\beta)$

* Reflexive X = X

* Transitive: $d = \beta$ $\beta = \delta$ $\beta = \delta$ $A = \delta$

 \star $\alpha \leq \beta$ if $L(\alpha) \leq L(\beta)$ partial order

Theorem. The following statements are equivalent for every set $A \subseteq Z^*$:

(i) A is regular (has a DFA)

(ii) 3 NFA N, s.t. L(N)=A

(iii) = ~ N with &-transitions s,t L(N)=A

(iv) 3 pattern & s.t. L(a)=A

(v) 3 regular expression & s.t. L(B)=A