Real Analysis - P1

Learning Theory and Applications Group

Academic Year 2024-2025

Contents

Ι	Lebesgue Intergration	1
1	The Real Number: Sets, Sequences, and Functions	1
	1.1 The Field, Positivity, and Completeness Axioms	. 1
	1.1.1 Excercise	
	1.2 The Natural and Rational Numbers	. 4
	1.2.1 Excercise	. 4
	1.2.2 Excercise	. 4
	1.3 The Countable and Uncountable Sets	. 4
	1.3.1 Excercise	. 6
	1.4 Open Sets, Closed Sets, and Borel Sets of Real Numbers	. 6
	1.4.1 Excercise	
	1.5 Sequences of Real Numbers	
	1.5.1 Summary	
	1.5.2 Excercise	
	1.6 Continuous Real-Valued Functions of Real Variable	
	1.6.1 Evereise	19

Part I

Lebesgue Intergration

Key definitions here:

1 The Real Number: Sets, Sequences, and Functions

1.1 The Field, Positivity, and Completeness Axioms

1.1.1 Excercise

Ex 1. For $a \neq 0$ and $b \neq 0$, show that $(ab)^{-1} = a^{-1}b^{-1}$

$$(a^{-1}b^{-1})(ab) = a^{-1}b^{-1}ba = a^{-1}1a = 1$$

As a result, $a^{-1}b^{-1} = (ab^{-1})$

Ex 2. Verify the following:

• For each real number $a \neq 0$, $a^2 > 0$. In particular, 1 > 0 since $1 \neq 0$ and $1 = 1^2$

- For each positive number a, its multiplicative inverse a^{-1} also is positive
- If a > b, then

$$ac > bc$$
 if $c > 0$ and $ac < bc$ if $c < 0$

For the first point, we first need to prove that, for any a, then -a = (-1)a,

$$a + (-a) = 0 = (1 + (-1))a = a + (-1)a$$

Next, for each $a \neq 0$, if a is positive, then a^2 is positive by definition of positiveness. On the other hand, if a < 0, then let a = -b with b > 0,

$$a^{2} = (-b)^{2} = (-1)b(-1)b = (-1)(-b)b = (-1)^{2}b^{2} > 0$$
(1)

For the second point, assuming by contradiction that $a^{-1} < 0$ for any a > 0, then let $a^{-1} = -b$ with b > 0. then

$$1 = a(a^{-1}) = a(-b) = (-1)ab < 0$$

Here ab > 0 since both a and b are positive, and we know from previous point that 0 > -(ab) = (-1)abThe last point is straighforward from the definition of >.

$$ac - bc = \underbrace{(a - b)}_{>0} \underbrace{c}_{>0} > 0$$

$$ac - bc = \underbrace{(a-b)}_{>0} \underbrace{c}_{<0} = (-1) \underbrace{(a-b)}_{>0} \underbrace{d}_{>0} < 0 \text{ with } d = -c$$

Ex 3. For a nonempty set of real numbers E, show that inf $E = \sup E$ if and only if E consists of a single point.

If the set E has a single element, then the least upper bound equal to that single element. This similarly applies to lowerbound. In other word, its sup and inf coincides.

On the other direction, if a set E has its sup and inf equal, and assuming by contradiction that E has at least 2 distinct elements, then the gap between these two points $\neq 0$. The difference between sup and inf is lowerbounded by this gap, so they cannot equal.

Ex 4. Let a and b be real numbers.

- i Show that if ab = 0, then a = 0 or b = 0
- ii Verify that $a^2 b^2 = (a b)(a + b)$ and conclude from part (i) that if $a^2 = b^2$, then a = b or a = -b.
- iii Let c be a positive real number. Define $E = \{x \in \mathbb{R} | x^2 < c\}$ verify that E is nonempty and bounded above. Define $x_0 = \sup E$. Show that $x_0^2 = c$. Use part (ii) to show that there is a unique x > 0 for which $x^2 = c$. It is denoted by \sqrt{c}

For the first point, suppose that ab = 0 and both a and b are not 0, then there exists a^{-1} and b^{-1} , then we have

$$abb^{-1}a^{-1} = 1$$

which means that $b^{-1}a^{-1}=(ab)^{-1}$, but since ab=0, no such number exists.

The second point is a straighforward application of distributive property,

$$(a-b)(a+b) = a(a+b) + (-b)(a+b) = a^2 + ab - ba - b^2 = a^2 - b^2$$

Then from part (i), since (a - b)(a + b) = 0, one of the two terms must be 0.

In part (iii), we see that $0^2 = 0 < c$ for all c > 0, so E is nonempty. By contradiction, suppose E is not bounded from above, that is, for every b>0, we can always choose some $x\in E$ such that x>b, letting b>c lead to a contradiction with the definition of E.

Next, since E is bounded from above, then it has a supremum by completeness axiom. Denote $x_0 = \sup E$. We

will show that $x_0^2 \ge c$ and $x_0^2 \le c$ to conclude that $x_0^2 = c$. Since $x^2 < c, \forall x \in E$, c is an upperbound of E^2 , and because $\sup E$ is the smallest/least upperbound, then $\sup(E)^2 \le c$. On the other and, $x_0 \ge x, \forall x \in E$ and E contains all real numbers whose square less than c, so $x_0^2 \ge c$.

Finally, we need to show that x_0 is a unique positive real number such that $x_0^2 = c$. By contradiction, suppose there is some x > 0 such that $x \ne x_0$ and $x^2 = c$, then by part (ii), since $x_0^2 = x^2$, we have either $x = x_0$ or $x = -x_0$, but x is positive and $-x_0$ is negetive, so $x = x_0$.

Ex 5. Let a, b, c be real bumbers such that $a \neq 0$ and consider the quadratic equation

$$ax^2 + bx + c = 0, x \in \mathbb{R}$$

i Suppose $b^2 - 4ac > 0$, use the Field Axiom and the preceding problem to complete the square and thereby show that this equation has exactly two solutions given by

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

ii Now suppose $b^2 - 4ac < 0$. Show that the quadratic equation fails to have any solution.

Suppose that $b^2 - 4ac > 0$, then from previous problem, there exists a unique positive number $\sqrt{b^2 - 4ac}$. we can verify that

$$\left(x - \frac{-b + \sqrt{b^2 - 4ac}}{2a}\right) \left(x - \frac{-b - \sqrt{b^2 - 4ac}}{2a}\right) = x^2 - x \frac{-b - \sqrt{b^2 - 4ac}}{2a} - x \frac{-b + \sqrt{b^2 - 4ac}}{2a} + \frac{b^2 - b^2 + 4ac}{4a^2}$$
$$= x^2 + x \frac{b}{a} + \frac{c}{a} = 0.$$

Then also from the previous problem, either one of the two terms equal 0. As a result, the equation has exactly two solutions.

On the other hand, if $b^2 - 4ac < 0$, then the equation can be rewritten as

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right) = a\left(x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}} + \frac{4ac - b^{2}}{4a}\right) = a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4} > 0,$$

which does not have any solution.

Ex 6. Use the Completeness Axiom to show that every nonempty set of real numbers that is bounded below has an infimum and that

$$\inf E = -\sup\{-x | x \in E\}.$$

The set E is bounded below, which means that the set $E' = \{-x | x \in E\}$ is bounded from above, then its supremum exists by completeness axiom. Denote $x_0 = \sup E'$, then $x_0 \ge -x, \forall x \in E \rightleftarrows -x_0 \le x, \forall x \in E$. As a result, $-x_0 \le \inf E$.

Suppose that there exists some x' such that $x' > -x_0$ and $x' \le x, \forall x \in E$; i.e. x' is a "greater" lowerbound of E than x_0 . Then we can show that -x' is a "smaller" upperbound of E', which contradicts with the definition of supremum. As a result, no such x' exists, and $-x_0$ is the infimum of E

Ex 7. For real bumbers a and b, verify the following:

- |ab| = |a||b|
- ii $|a+b| \le |a| + |b|$
- iii For $\epsilon > 0$,

$$|x-a| < \epsilon$$
 if and only if $a-\epsilon < x < a+\epsilon$

First we define the sign operator as $sg(x) \in \{1, -1\}, x \neq 0$. The absolute value can be written as the product with the sign operator

$$|a| = a\operatorname{sg}(a)$$

Then the first claim can be verified as

$$|ab| = ab\operatorname{sg}(ab) = a\operatorname{sg}(a)b\operatorname{sg}(b) = |a||b|$$

by noting sg(ab) = sg(a)sg(b), and

$$|a + b| = (a + b)\operatorname{sg}(a + b) = a\operatorname{sg}(a + b) + b\operatorname{sg}(a + b) \le a\operatorname{sg}(a) + b\operatorname{sg}(b) = |a| + |b|$$

by noting $asg(a) = max(a, -a) > asg(c), \forall c$

Final point: if x - a > 0, then |x - a| = x - a and $|x - a| < \epsilon \rightleftharpoons a < x < a + \epsilon$

Similar, if x-a < 0, then $|x-a| < \epsilon \rightleftharpoons a > x > a - \epsilon$, combining the both cases and with the zero case yield the desired claim.

1.2 The Natural and Rational Numbers

1.2.1 Excercise

1.2.2 Excercise

Exercise 9:

a) We need to prove that If n > 1 is a natural number, then n - 1 is also a natural number.

Let P(n) be the assertion that $n \in \mathbb{N}$ and $n > 1 => n - 1 \in \mathbb{N}$

Base Case: Let n=2. Then:

$$n-1=2-1=1 \in \mathbb{N}$$
.

Thus, the base case holds.

Inductive Step: Assume that P(k) is true for some natural number $k \geq 2$, i.e., assume that:

$$k-1 \in \mathbb{N}$$
.

We need to show that P(k+1) is also true, meaning:

$$(k+1)-1 \in \mathbb{N}$$
.

Since:

$$(k+1) - 1 = k$$
,

and by our inductive hypothesis, $k \in \mathbb{N}$, it follows that P(k+1) is true.

By the principle of mathematical induction, for all n > 1, we conclude that n - 1 is a natural number.

b) We prove that the given statement is true for a fixed n.

Let P(m) be the assertion that for a given natural number n and m < n, then n - m is a natural number.

Base case: P(1) is true since n-1 is a natural number, according to part a).

Inductive step: Assume that P(k) is true for some natural number $k \geq 2$ and k < n, i.e $n - k \in \mathbb{N}$. We need to show that P(k+1) is also true, meaning that

$$n - (k+1) \in \mathbb{N}$$

Since

$$n - (k + 1) = n - k - 1 = (n - k) - 1$$

and given our assumption, $n-k \in \mathbb{N}$, it follows that $(n-k)-1 \in \mathbb{N}$ i.e. P(k+1) is true.

By the principle of mathematical induction, for a fixed $n \in \mathbb{N}$ and m < n, n - m is a natural number. The same can be proven given a fixed m instead of n.

Ex 13. Show that each real number is the supremum of a set of rational numbers and also supremum of a set of irrational numbers.

Let x be any real number. We want to show that x is the supremum of both a set of rational numbers and a set of irrational numbers.

Define a set of rational numbers as: $S = \{q \in \mathbb{Q} : q < x\}$. According to Theorem 2, rational numbers are dense in \mathbb{R} , therefore there are rational numbers arbitrarily close to x, meaning S is nonempty. The upper bound of S is x, since every rational number $q \in S$ must satisfies q < r. To prove x is the least upper bound of S, we use The density of the rational (and irrational) numbers in R, which guarantees that between any number s that is less than a given real number s, there exists a rational number. This means there is a number s that satisfies s < q < x. Thus, no number smaller than s can be an upper bound of s, which confirms that s suppose the least upper bound.

Similarly, for irrational numbers, we define a set $T = \{t \in \mathbb{R}/\mathbb{Q} : t < x\}$. We have to prove T is dense in \mathbb{R} , and the proof for rational numbers can be applied for irrational numbers. We can prove T is dense in \mathbb{R} through irrational numbers are dense in \mathbb{R} . Since Q are dense in R, therefore $Q + \sqrt{2}$ are dense in $R + \sqrt{2}$. We know that $Q + \sqrt{2}$ is a subset in of the irrational numbers, therefore irrational numbers are dense in R. From this, we can prove there exists an irrational number t satisfies s < t < x. This mean $x = \sup(T)$ is indeed the least upper bound.

1.3 The Countable and Uncountable Sets

Hoang Anh

Exercise 16: Consider the mapping from N to Z defined by

$$f(n) = \begin{cases} 0 & \text{if } n = 1\\ \frac{n}{2} & \text{if } n \text{ is even}\\ -\frac{n+1}{2} & \text{if } n \text{ is odd and } n > 1 \end{cases}$$

If n is a natural number, then f(2n) = n and f(2n-1) = -n. We also have f(1) = 0. Therefore f is onto.

Now suppose f(n) = f(n'). If f(n) equals 0, then n = n' = 1. If f(n) is positive, then $\frac{n}{2} = \frac{n'}{2} \implies n = n'$. If f(n) is negative, then $-\frac{n+1}{2} = -\frac{n'+1}{2} \implies n = n'$. Therefore f is one-to-one.

Exercise 18:As a preliminary result, I rst show that every nite set of numbers contains a maximal element. S(n): Let $S \subset \mathbb{R}$ be a non-empty set. If there exists a one-to-one correspondence between $\{1, \dots, n\}$ and S, then Scontains a maximal element.

Suppose there exists a one-to-one correspondence f between $\{1\}$ and S. Then $S = \{f(1)\}$, so $s \leq f(1)$ for all $s \in S$. Thus S(1) is true.

Now assume S(k) is true and suppose there exists a one-to-one correspondence between $\{1, \dots, k+1\}$ and S. Then $S = \{f(i) | 1 \le i \le k\} \cup \{f(k+1)\}$. By the induction hypothesis, $\{f(i) | 1 \le i \le k\}$ has a maximal element \hat{s} . If $\hat{s} \geq f(k+1)$, then \hat{s} is a maximal element of S. If $\hat{s} < f(k+1)$, then f(k+1) is a maximal element of S. We conclude that S(k+1) must be true.

S(n): The Cartesian product $\underbrace{\mathbb{N} \times \cdots \times \mathbb{N}}_{n \text{ times}}$ is countably infinite.

The identity function establishes a one-to-one correspondence between $\mathbb N$ and $\mathbb N$, so $\mathbb N$ is countable. Now suppose N were finite. Then by the preliminary result, there would exist a maximal element m of N. But m+1 would then be a natural number larger than m, a contradiction. We conclude that $\mathbb N$ is countably infinite, so S(1) is true.

Suppose S(k) is true. Then there exists a one-to-one mapping f of \mathbb{N} onto $\underbrace{\mathbb{N} \times \cdots \times \mathbb{N}}$. Consider the mapping

from $\underbrace{\mathbb{N} \times \cdots \times \mathbb{N}}_{k+1 \text{ times}}$ to \mathbb{N} defined by

$$g(n_1, \dots, n_k, n_{k+1}) = (f^{-1}(n_1, \dots, n_k) + n_{k+1})^2 + n_{k+1}$$

It is straightforward to check that g is one-to-one using the argument in the text. Thus $\underbrace{\mathbb{N} \times \cdots \times \mathbb{N}}_{k+1 \text{ times}}$ is equipotent to $g(\underbrace{\mathbb{N} \times \cdots \times \mathbb{N}}_{k+1 \text{ times}})$, a subset of the countable set \mathbb{N} . We infer from Theorem 3 that $\underbrace{\mathbb{N} \times \cdots \times \mathbb{N}}_{k+1 \text{ times}}$ is countable.

Now suppose $\underbrace{\mathbb{N} \times \cdots \times \mathbb{N}}_{k+1 \text{ times}}$ is finite. Then there exists a one-to-one mapping f from $\{1, \cdots, n\}$ onto $\underbrace{\mathbb{N} \times \cdots \times \mathbb{N}}_{k+1 \text{ times}}$ for some $g \in \mathbb{N}$. Consider the mapping from $\mathbb{N} \times \cdots \times \mathbb{N}$ is $\{1, \dots, n\}$ defined by

for some $n \in \mathbb{N}$. Consider the mapping from $\underbrace{\mathbb{N} \times \cdots \times \mathbb{N}}_{k \text{ times}}$ to $\{1, \dots, n\}$ defined by

$$g(n_1, \cdots, n_k) = f^{-1}(n_1, \cdots, n_k, 1)$$

This establishes a one-to-one correspondence between $\underbrace{\mathbb{N} \times \cdots \times \mathbb{N}}_{k \text{ times}}$ and a subset of $\{1, \cdots, n\}$, implying that $\underbrace{\mathbb{N} \times \cdots \times \mathbb{N}}_{k \text{ times}}$ is finite. This contradicts the assumption that $\underbrace{\mathbb{N} \times \cdots \times \mathbb{N}}_{k \text{ times}}$ is countably infinite. We conclude that

 $\mathbb{N} \times \cdots \times \mathbb{N}$ is countably infinite, so S(k+1) is true. **Exercise 20:**

Suppose g(f(a)) = g(f(a')). Since g is one-to-one, we must have f(a) = f(a'). Since f is one-to-one, we must also have a = a'. But this means $g \circ f$ is one-to-one. Now fix $c \in C$. Since g is onto, there exists $b \in B$ such that

g(b)=c. Since f is onto, there also exists $a\in A$ such that f(a)=b. But this means g(f(a))=c, so $g\circ f$ is onto. Suppose $f^{-1}(b)=f^{-1}(b')$. Then $b=f(f^{-1}(b))=f(f^{-1}(b'))=b'$, so f^{-1} must be one-to-one. Now suppose $a \in A$. Then $a = f^{-1}(f(a))$, so f^{-1} is onto.

Exercise 22: Suppose $2^{\mathbb{N}}$ is countable. Let $\{X_n|n\in\mathbb{N}\}$ denote an enumeration of $2^{\mathbb{N}}$ and define

$$D = \{ n \in \mathbb{N} | n \text{ is not in } X_n \}$$

Then $D \in 2^{\mathbb{N}}$, so $D = X_d$ for some $d \in \mathbb{N}$. If d is not in D, then we would have a contradiction because d would have to be in D by construction. Likewise if d is in D, then we have a contradiction because d could not be in D

by construction. We can conclude that no enumeration can exist, so $2^{\mathbb{N}}$ is uncountable. **Exercise 26:** Let G denote the set of irrational numbers in (0,1) and let $\{q_n|n\in\mathbb{N}\}$ denote an enumeration of the rationals in (0,1). Define

$$i_n = \frac{\sqrt{2}}{2^n}$$

and construct the mapping $f:(0,1)\to G$ as

$$f(x) = \begin{cases} i_{2n} & \text{if } x = q_n \\ i_{2n-1} & \text{if } x = i_n \\ x & \text{otherwise} \end{cases}$$

f defines a one-to-one correspondence between (0,1) and G, so |(0,1)|=|G|.

In Problem 25 we showed that $|\mathbb{R}| = |(0,1)|$, so the above result implies $|\mathbb{R}| = |G|$. This means we can find a one-to-one mapping g from \mathbb{R} onto G. Now consider the mapping $h : \mathbb{R} \times \mathbb{R} \to G \times G$ defined by

$$h(x,y) = (g(x), g(y))$$

h defines a one-to-one mapping from $\mathbb{R} \times \mathbb{R}$ onto $G \times G$, so $|\mathbb{R} \times \mathbb{R}| = |G \times G|$. Recall that if x is an irrational number in (0,1), it can be uniquely written as

$$x = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}} = [a_1, a_2, a_3, \dots]$$

where a_1, a_2, a_3, \cdots is an infinite sequence of natural numbers. (This representation is called the continued fraction expansion of x.) Let $x = [a_1, a_2, \cdots]$ and $y = [b_1, b_2, \cdots]$ denote two elements of G and consider the mapping $m: G \times G \to G$ defined by

$$m(x,y) = [a_1, b_1, a_2, b_2, \cdots]$$

Then m defines a one-to-one correspondence between $G \times G$ and G, so $|G \times G| = |G|$. Combining the above results, we have $|\mathbb{R} \times \mathbb{R}| = |G \times G| = |G| = |\mathbb{R}|$.

1.3.1 Excercise

1.4 Open Sets, Closed Sets, and Borel Sets of Real Numbers

Exercise 28:Suppose A is a non-empty, proper subset of **R** that is both open and closed. Then there exists $x \in A$ and $y \in \mathbf{R} \setminus A$. Suppose without loss of generality that x < y and define

$$E = \{ x \in A : x < y \}$$

Then E is non-empty $(x \in E)$ and bounded above (by y). The completeness axiom implies that there exists a least upper bound of E. Let $x^* = \sup E$ and suppose $x^* \in A$. Since $y \notin A$ and y is an upper bound of E, we must have $x^* < y$. Therefore there exists r > 0 such that $x^* + r < y$. But since A is open, we can also find $r^* \in (0, r)$ such that $(x^* - r^*, x^* + r^*) \subset A$. But this implies $x^* + \frac{r}{2} \in E$, so x^* is not an upper bound for E. This contradicts the definition of x^* . Now suppose $x^* \in \mathbf{R} \setminus A$. Since A is closed, $\mathbf{R} \setminus A$ is open. Therefore there exists r > 0 such that $(x^* - r, x^* + r) \subset \mathbf{R} \setminus A$. Thus if $x \in A$, $x \le x^* - r$. But this means $x^* - r$ is an upper bound of E, contradicting the assumption that x^* is the least upper bound.

The above argument shows that E cannot have a least upper bound, a contradiction of the completeness axiom. We conclude that no non-empty, proper subset of $\mathbf R$ that is both open and closed can exist. **Exercise 31:** Suppose E is a set containing only isolated points. For each $x \in E$, define f(x) = (p,q) where p and q are rational numbers such that p < x < q and $(p,q) \cap E = \{x\}$. f defines a one-to-one mapping from E to $\mathbf Q \times \mathbf Q$. By Corollary 4 and Problem 23, $\mathbf Q \times \mathbf Q$ is a countable set. This means there exists a one-to-one mapping g from $\mathbf Q \times \mathbf Q$ onto $\mathbf N$. The composition $g \circ f$ defines a one-to-one mapping from E to $\mathbf N$ (see Problem 20), which implies E is countable (see Problem 17). **Exercise 32:** (i) Suppose E is open and $x \in E$. Then there exists an F > 0 such that the interval (x - r, x + r) is contained in E. But this means $x \in \text{int } E$, so $E \subseteq \text{int } E$. Since int $E \subseteq E$ by definition, E = int E.

Conversely, suppose E = int E. If x is a point in E, then $x \in \text{int } E$. But this means there exists an r > 0 such that the interval (x - r, x + r) is contained in E, so E is open.

(ii) Let E be dense in \mathbf{R} and suppose $x \in \operatorname{int}(\mathbf{R} \setminus E)$. Then there exists r > 0 such that $(x - r, x + r) \subseteq \mathbf{R} \setminus E$. But this means there does not exist an element of E between any two numbers in (x - r, x + r), contradicting the assumption that E is a dense set. We conclude that no such x can be found, so $\operatorname{int}(\mathbf{R} \setminus E) = \emptyset$.

Conversely, suppose $\operatorname{int}(\mathbf{R} \setminus E) = \emptyset$. Let x and y be two real numbers satisfying x < y and suppose $(x,y) \subset \mathbf{R} \setminus E$. Let $z \in (x,y)$ and choose $r \in (0,\min(z-x,y-z))$. Then $(z-r,z+r) \subset (x,y)$, so $(z-r,z+r) \subset \mathbf{R} \setminus E$. But this means $z \in \operatorname{int}(\mathbf{R} \setminus E)$, contradicting the assumption that $\operatorname{int}(\mathbf{R} \setminus E) = \emptyset$. Therefore $(x,y) \not\subset \mathbf{R} \setminus E$, which means there must be an element of E between E and E and E suppose E and E are a satisfying E and

1.4.1 Excercise

1.5 Sequences of Real Numbers

1.5.1 Summary

A sequence is a function $f: \mathbb{N} \to \mathbb{R}$ with customary notation $\{a_n\}$ where n is called the index, the number a_n is the nth term.

A sequence $\{a_n\}$ is said to be

- bounded if $\exists c \geq 0$ s.t. $|a_n| \leq c \forall n$
- increasing if $a_n < a_{n+1} \forall n$
- decreasing if the sequence $\{-a_n\}$ is increasing
- monotone if it's either increasing or decreasing

For any sequence $\{a_n\}$ and a strictly increase sequence $\{n_k\} \in \mathbb{N}$, call the sequence $\{a_{n_k}\}$ a subsequence of $\{a_n\}$.

Definition 1. A sequence $\{a_n\}$ converges to it's limit a (write $\lim_{n\to\infty} a_n = a$ or $\{a_n\}\to a$) if $\forall \epsilon > 0, \exists N \in \mathbb{N}$ s.t.

$$n \ge N \implies |a - a_n| < \epsilon.$$

Proposition 1. If $\{a_n\} \to a$, then the limit is unique, the sequence is bounded, and, $\forall c \in \mathbb{R}$,

$$a_n < c \forall n \implies a < c.$$

Proof Ex Extra.

Theorem 1. A monotone sequence of real numbers converges if and only if it is bounded.

Theorem 2 (Bolzano-Weierstrass). Every bounded sequence of real numbers has a convergent subsequence.

Definition 2. A sequence of real numbers $\{a_n\}$ is Cauchy if $\forall \epsilon > 0, \exists N \in \mathbb{N} \ s.t.$

$$n, m \ge N \implies |a_m - a_n| < \epsilon.$$

Theorem 3. A sequence of real numbers converges if and only if it is Cauchy.

Theorem 4. Convergent real sequences are linear and monotonic.

Definition 3. A sequence $\{a_n\}$ converges to infinity (write $\lim_{n\to\infty} a_n = \infty$ or $\{a_n\}\to\infty$) if $\forall c\in\mathbb{R}, \exists N\in\mathbb{N} \text{ s.t.}$

$$n \ge N \implies a_n \ge c$$
.

Similar definitions are made at $-\infty$.

Definition 4. The limit superior and limit inferior of a sequence $\{a_n\}$ is defined as,

$$\lim \sup \{a_n\} = \lim_{n \to \infty} \left[\sup \{a_k | k \ge n\} \right]$$

$$\lim\inf\left\{a_n\right\} = \lim_{n \to \infty} \left[\inf\left\{a_k | k \ge n\right\}\right]$$

Proposition 2. Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers

(i) $\limsup \{a_n\} = \ell \in \mathbb{R}$ if and only if for each $\epsilon > 0$, there are infinitely many indices n for which $a_n > \ell - \epsilon$ and only finitely many indices n for which $a_n > \ell + \epsilon$.

- (ii) $\limsup \{a_n\} = \infty$ if and only if $\{a_n\}$ is not bounded above.
- (iii) $\limsup \{a_n\} = -\liminf \{-a_n\}.$
- (iv) A sequence of real numbers $\{a_n\}$ converges to $a \in \mathbb{R}$ if and only if $\liminf \{a_n\} = \limsup \{a_n\} = a$.
- (v) $a_n \le b_n \forall n \implies \limsup \{a_n\} \le \liminf \{b_n\}.$

Proof Ex 39.

Definition 5. For every sequence $\{a_k\}$ of real numbers, define a sequence of partial sums $\{s_n\}$ where $s_n = \sum_{k=1}^n s_k$. The series $\sum_{k=1}^\infty a_k$ is summable to $s \in \mathbb{R}$ when $\{s_n\} \to s$.

Proposition 3. Let $\{a_n\}$ be a sequence of real numbers.

(i) The series $\sum_{k=1}^{\infty} a_k$ is summable if and only if for each $\epsilon > 0, \exists N \in \mathbb{N}$ s.t.

$$\sum_{k=n}^{n+m} a_k < \epsilon \forall n \ge N, m \in \mathbb{N}.$$

- (ii) If the series $\sum_{k=1}^{\infty} |a_k|$ is summable, then $\sum_{k=1}^{\infty} a_k$ also is summable.
- (iii) If each term a_k is nonnegative, then the series $\sum_{k=1}^{\infty} a_k$ is summable if and only if the sequence of partial sums is bounded.

Proof Ex 45.

1.5.2 Excercise

Problems done: 38, 39, 40, 41, 45. and proved the first Proposition (i.e. Ex Extra.).

Ex 38.

Lemma 1. For any set $X \subseteq \mathbb{R}$, $\forall d > 0 \in \mathbb{R}$, $\exists x \in X \text{ s.t. } x < \inf X + d$.

Proof We prove by contradiction. Assume there exists $d > 0 \in \mathbb{R}$ s.t. $\forall x \in X, \inf X + d \leq x$. There is now a greater lower bound $\inf X + d$, which contradicts the definition of infimum.

We use the above lemma to solve this excercise. Let $\liminf \{a_n\} = L$.

• $\liminf \{a_n\}$ is a cluster point.

By the above lemma, for every n, we can pick the smallest index $k_n \ge n$ satisfying $a_{k_n} \le \inf \{a_k | k \ge n\} + \frac{1}{n}$ Now, $\forall \epsilon > 0, \exists N \in \mathbb{N}, N \ge 1/\epsilon$ s.t. $n \ge N \implies a_{k_n} - L < 1/N \le \epsilon$. The subsequence $\{a_{k_n}\}$ converges to L by defintion.

• There does not exist a cluster point M satisfying $M < \liminf \{a_n\}$.

We argue by contradiction. Assume there exists such a cluster point, this means there also exists a subsequence $\{a_{m_j}\}$ that converges to M.

Let $\epsilon = \frac{M-L}{2}$, by definition, $\exists J \in \mathbb{N}$ s.t.

$$j \ge J \implies a_{m_j} - M < \epsilon \iff a_{m_j} < M + \epsilon = \frac{L + M}{2}.$$

Also, by definition, $L = \liminf \{a_n\} = \lim_{n \to \infty} \{\inf \{a_k | k \ge n\}\}$, as such $\exists N \in \mathbb{N}, N > J$ s.t.

$$n \ge N \implies L - \inf\{a_k | k \ge n\} < \epsilon \iff \inf\{a_k | k \ge n\} > L - \epsilon = \frac{L + M}{2}.$$

This is a contradiction, as there exists $N \in \mathbb{N}$ satisfying

$$n \ge N \implies \begin{cases} a_{m_n} < \frac{L+M}{2} \\ \inf \{a_k | k > n\} \ge \frac{L+M}{2} \end{cases}$$

Proof is similar for $\limsup \{a_n\}$

Ex 39. Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers

(i) $\limsup \{a_n\} = \ell \in \mathbb{R}$ if and only if for each $\epsilon > 0$, there are infinitely many indices n for which $a_n > \ell - \epsilon$ and only finitely many indices n for which $a_n > \ell + \epsilon$.

Trivial. Use definition of suprimum and the fact that the collection of sequences $\{\{a_k|k\geq n\}\}_{n=1}^{\infty}$ is decending.

(ii) $\limsup \{a_n\} = \infty$ if and only if $\{a_n\}$ is not bounded above.

We prove the above through showing that $\limsup \{a_n\} < \infty$ if and only if $\{a_n\}$ is bounded above. Note that the limit superior of a sequence always exists.

- If $\{a_n\}$ is bounded above, then $\exists M < \infty \in \mathbb{R} \text{ s.t. } a_n \leq M \forall n$. As a result, $\sup \{a_k | k \geq n\} \leq M$.
- If $\limsup \{a_n\} < \infty$, then $\sup \{a_k \ k \ge n\}$ is bounded. And because there exists c > 0 satisfying $a_n \le \sup \{a_k | k \ge 1\} \le c$ for all n, the sequence $\{a_n\}$ is also bounded above.
- (iii) $\limsup \{a_n\} = -\liminf \{-a_n\}.$

$$\limsup \{a_n\} = \lim_{n \to \infty} \sup \{a_k | k \ge n\} = -\lim_{n \to \infty} \inf \{-a_k | k \ge n\} = -\liminf \{-a_n\}.$$

(I ommitted the proof to $\lim_{n\to\infty} \{a_n\} = -\lim_{n\to\infty} \{-a_n\}$. It is trivial and uses the definition.)

- (iv) A sequence of real numbers $\{a_n\}$ converges to $a \in \mathbb{R}$ if and only if $\liminf \{a_n\} = \limsup \{a_n\} = a$.
 - $\liminf \{a_n\} = \limsup \{a_n\} = a \implies \{a_n\} \to a$ For any $\epsilon > 0$, there exists $N, M \in \mathbb{N}$ s.t.

$$\begin{cases} n \ge N \implies -\epsilon < a - \sup\{a_k | k \ge n\} \le a - a_n \\ n \ge M \implies a - a_n \le a - \inf\{a_k | k \ge n\} < \epsilon \end{cases}$$

So $\exists L = \max(N, M) \in \mathbb{N}$ s.t.

$$n \ge L \implies \begin{cases} -\epsilon < a - a_n \\ a - a_n < \epsilon \end{cases} \implies |a - a_n| < \epsilon.$$

By definition, $\{a_n\} \to a$

• $\{a_n\} \to a \implies \liminf \{a_n\} = \limsup \{a_n\} = a$ For any $\epsilon > 0$, there exists $N \in \mathbb{N}$ s.t.

$$\forall n \ge N, \begin{cases} -\epsilon < a - a_n \\ a - a_n < \epsilon \end{cases} \implies \forall n \ge N, \begin{cases} \inf \{a_k | k \ge n\} \le a_n < a + \epsilon \\ a - \epsilon < a_n \implies a - \epsilon < \inf \{a_k | k \ge n\} \end{cases}$$

which is equivalent to $|a - \inf \{a_k | k \ge n\}| < \epsilon$ for all $n \ge N$ and so $\liminf \{a_n\} = a$ by definition. Similar proof is done for $\limsup \{a_n\} = a$.

(v) $a_n \le b_n \forall n \implies \limsup \{a_n\} \le \liminf \{b_n\}$. (similar to book)

Consider the sequence $\{c_n\}$, where $c_n = \inf\{b_k | k \ge n\} - \sup\{a_k | k \ge n\}$ for all n.

By linearity of convergent sequences, $\{c_n\} \to c = \liminf \{b_n\} - \limsup \{a_n\}$. This means, $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t.}$

$$n \ge N \implies -\epsilon < c - c_n < \epsilon.$$

In particular, $0 \le c_N < c + \epsilon$. Since $c \ge -\epsilon$ for any positive number $\epsilon, c \ge 0$.

Ex 40.

Proven above in $\underline{\underline{\mathbf{Ex. 38}}}$, $\liminf \{a_n\}$ and $\limsup \{a_n\}$ are the smallest and largest cluster points of $\{a_n\}$.

Shown above in **Ex. 39**, $\{a_n\} \to a \iff \liminf \{a_n\} = \limsup \{a_n\} = a$.

The proof is now trivial.

The sequence $\{a_n\}$ has only one cluster point if and only if $\liminf \{a_n\} = \limsup \{a_n\} = a$, which is equivalent to $\{a_n\} \to a$.

Ex 41. At every index n,

$$\inf \{a_k | k \ge n\} \le \sup \{a_k | k \ge n\}$$

And so, by the linearity property of convergent sequences, $\lim_{n\to\infty}\inf\{a_k|k\geq n\}\leq \lim_{n\to\infty}\sup\{a_k|k\geq n\}$ or $\lim\inf\{a_n\}\leq \lim\sup\{a_n\}$.

Ex 43. Show that every real sequence has a monotone subsequence. Use this to provide another proof of the Bolzano-Weierstrass Theorem.

By contradiction, we assume that there exists a sequence $\{x_i\}_i$ such that it has no monotone subsequence. We devide the proof into two parts: a squence that has no increasing subsequence has a decreasing subsequence and vice versa. We only prove the first part since the other part are identical.

Note that we use the terminology similar to what is defined in the textbook: an increasing sequence has $a_n \leq a_{n+1}$. This is a bit misleading as a more correct term would be "non-decreasing" sequence.

First, assuming that the sequence $\{x_i\}$ has no increasing subsequence; that is: every construction of such subsequences stops at some finite steps. More specifically,

- Starting at x_0 , we construct the longest increasing subsequence $x_0, \ldots x_m$. This sequence is finite due to our assumption that $\{x_i\}$ has no increasing subsequence.
- We then have $x_m > x_j, \forall j > m$ or otherwise we can concatenate x_j to the subsequence found in the previous step to make a longer sequence.
- Let $a_m = x_m$, repeat this process with the rest of sequence $\{x_i\}_{i>m}$, the sequence $\{a_m\}$ is a decreasing sequence.

Ex 45. Let $\{a_n\}$ be a sequence of real numbers.

(i) The series $\sum_{k=1}^{\infty} a_k$ is summable if and only if for each $\epsilon > 0, \exists N \in \mathbb{N}$ s.t.

$$\left| \sum_{k=n}^{n+m} a_k \right| < \epsilon \forall n \ge N, m \in \mathbb{N}.$$

The series $\sum_{k=1}^{\infty} a_k$ is summable if and only if $\{s_n\}$ converges.

As such, for each $\epsilon > 0, \exists N \in \mathbb{N} \text{ s.t.}$

$$j > i - 1 \ge N \implies \epsilon > \left| \sum_{k=i}^{j} a_k \right|$$

$$\iff n \ge N, m \in \mathbb{N} \implies \epsilon > \left| \sum_{k=n}^{n+m} a_k \right| \quad (i - 1 = n, j = n + m)$$

(ii) If the series $\sum_{k=1}^{\infty} |a_k|$ is summable, then $\sum_{k=1}^{\infty} a_k$ also is summable.

If the series $\sum_{k=1}^{\infty} |a_k|$ is summable, then the partial sum sequence $\{\sum_{k=1}^{n} |a_k|\}$ converges.

As such, $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t.}$

$$n, m \ge N \implies \epsilon > \left| \sum_{k=\min(m,n)}^{\max(m,n)} |a_k| \right| \ge \left| \sum_{k=\min(m,n)}^{\max(m,n)} a_k \right|.$$

The partial sum sequence $\{\sum_{k=1}^{n} a_k\}$ converges because it is Cauchy. As a result, the series $\sum_{k=1}^{\infty} a_k$ also is summable.

(iii) If each term a_k is nonnegative, then the series $\sum_{k=1}^{\infty} a_k$ is summable if and only if the sequence of partial sums is bounded.

Since $a_k > 0 \forall k \in \mathbb{N}$, $s_n = \sum_{k=1}^n a_k \leq \sum_{k=1}^{n+1} a_k = s_{n+1}$ for all n. In other words, the partial sum sequence is nondecreasing.

The series $\sum_{k=1}^{\infty} a_k$ is summable if and only if $\{s_n\}$ converges.

- If $\{s_n\}$ converges then it is bounded.
- If $\{s_n\}$ is bounded, then it converges to $s = \sup\{s_n | n \in \mathbb{N}\}$ (note that the suprimum exists thanks to the Completeness Axiom)

For any $\epsilon > 0$, we have:

- +) $s_n \le s < s + \epsilon$ for all n.
- +) Because $s \epsilon$ is not an upperbound of $\{s_n | n \in \mathbb{N}\}$, $\exists N \in \mathbb{N} \text{ s.t } s_N > s \epsilon$. And since the sequence $\{s_n\}$ is nondecreasing, $n \geq N \implies s_n > s - \epsilon$.

By definition, $\{s_n\}$ converges to s.

Ex Extra. If $\{a_n\} \to a$, then:

• The limit is unique.

We prove by contradiction. Assume $\{a_n\} \to a, \{a_n\} \to b$ and $a \neq b$.

Let d = |a - b| and $\epsilon = \frac{d}{2}$. By definition, there exists $N, M \in \mathbb{N}$ s.t.

$$\begin{cases} n \ge N \implies |a - a_n| < \epsilon \\ n \ge M \implies |b - a_n| < \epsilon \end{cases}$$

So $\exists L = \max(N, M) \in \mathbb{N}$ s.t. $n \geq L$ implies both $|a - a_n|$ and $|b - a_n|$ are less than ϵ .

By the triangle inequality, $d = |a - b| \le |a - a_n| + |b - a_n| < 2\epsilon = 2 \times \frac{d}{2} = d$. In other words, d < d, which is a contradiction.

• The sequence is bounded.

Choose any $\epsilon > 0$.

By definition, $\exists N \in \mathbb{N} \text{ s.t.}$

$$n \ge N \implies -\epsilon < a - a_n < \epsilon \iff a - \epsilon < a_n < a + \epsilon \implies |a_n| < |a| + \epsilon$$

Denote $M_1 = \max[\{a_n | n \in \mathbb{N}, n < N\}]$, note that we can always find M_1 because this sequence is finite.

We conclude that $\{a_n\}$ is bounded by $\max(|a| + \epsilon, M_1)$.

• $\forall c \in \mathbb{R}$, if $a_n \leq c \forall n$ then $a \leq c$.

Approach 1) Using only the definition.

For any $\epsilon > 0, \exists N \in \mathbb{N} \text{ s.t}$

$$n \ge N \implies |a - a_n| < \epsilon \implies a - \epsilon < a_n \le c$$

Since $a - \epsilon < c$ is true for all $\epsilon > 0$, we conclude that $a \le c$.

Approach 2) Using only the definition.

Prove by contradiction. Assume a > c, then set $\epsilon = a - c > 0$...

Approach 3) Consider the sequence $\{c_n\}$, where $c_n = c \forall n$ and use the monotonic property of convergent sequences. (Trivial)

1.6 Continuous Real-Valued Functions of Real Variable

1.6.1 Excercise

Ex 50. Show that a Lipschitz function is uniformly continuous but there are uniformly continuous functions that are not Lipschitz

We can prove that not all functions that are uniformly continuous are a Lipschitz function by using contradiction. Suppose we have function $f = \sqrt{x}$ uniformly continuous on $\{0,1\}$ and is a Lipschitz function. Based on definition, there is a c > 0 for which

$$|\sqrt{x'} - \sqrt{x}| \le c|x' - x|. \tag{2}$$

If we take x = 0, the equation become $|\sqrt{x'}| \le c|x'|$. We can rewrite this as $|\sqrt{x'}|/|x'| \le c$. However, if $x' \to 0$, we have $|\sqrt{x'}|/|x'| \to \infty$ which contradicts the inequality. Hence, $f = \sqrt{x}$ is not a Lipschitz function.

Ex 53. Show that a set E of real numbers is closed and bounded if and only if every open cover of E has a finite subcover.

- (i) (⇒) According to Heine-Borel theorem, if a set E of real numbers is closed and bounded, every open cover of E has a finite subcover.
- (ii) (\Leftarrow) We first prove that if every open cover of E has a finite subcover, then E is bounded. We form an open cover of E by defining a set $O_x = (x 1, x + 1)$ for every $x \in E$. The collection $\{O_x : x \in E\}$ is an open cover for E. This collection must have a finite subcover $\{O_{x_1}, O_{x_2}, \ldots, O_{x_n}\}$. Since E is contained in a finite union of bounded sets, E must be bounded.

We now prove that E must be closed. Suppose E is not closed. Let $y \notin E$ be a point of closure of E. We form an open cover of E by defining a set $O_x = (x - r_x, x + r_x)$ where $r_x = |y - x|/2$ for every $x \in E$. The collection $\{O_x : x \in E\}$ must have a finite subcover $\{O_{x_1}, O_{x_2}, \ldots, O_{x_n}\}$. Let $r_{\min} = \min\{r_{x_1}, r_{x_2}, \ldots, r_{x_n}\}$. Since y is a point of closure of E, the open interval $(y - r_{\min}, y + r_{\min})$ must contain a point $x' \in E$. This means $|x' - y| < r_{\min}$. We now show that x' is not in the subcover.

$$\forall i: 1 \le i \le n, |x_i - x'| > |x_i - y| - |x' - y| > |x_i - y| - r_{\min} > 2r_{x_i} - r_{\min} > r_{x_i}$$

 $\forall i: |x_i - x'| > r_{x_i} \Rightarrow \forall i: x' \notin O_{x_i} \Rightarrow x' \notin \bigcup_{1 \leq i \leq n} O_{x_i}$. This means the finite subcover fails to cover E. This contradiction implies that E is closed.