Tuesday, March 22, 2022 10:54 AM

(1) Given the world defined by the following transition function $f_{MT}(5,\alpha)$, the reward function $f_{R}(5,\alpha,s_{f}) = f_{R}(s_{f})$ and Y=0.9:

$$f_{M_T}(s,a) = \begin{cases} s_1 & s_2 \\ s_1 & s_2 \\ s_1 & s_3 \\ s_3 & s_1 \\ s_4 & s_1 \\ s_4 & s_4 \end{cases} \qquad f_R(s_f) = \begin{cases} s_1 & 2 \\ s_2 & 1 \\ s_3 & -1 \\ s_4 & 10 \end{cases}$$

© Calculate the accumulated reward function $f_{AB}(T_1)$ for the trajectory: $T_1=s_1,s_2,s_3,s_1,s_2,s_1$

$$A = \left\{ \begin{array}{l} a_{1} \quad a_{2} \\ \end{array} \right\} \qquad S = \left\{ \begin{array}{l} s_{1} \quad s_{2} \quad s_{3} \quad s_{4} \\ \end{array} \right\}$$

$$T_{1} \rightarrow \begin{array}{l} \begin{array}{l} 1 \\ 0 \\ 0 \\ \end{array} \right\} \xrightarrow{\left\{ \begin{array}{l} 0 \\ 0 \\ \end{array} \right\}} \xrightarrow{\left\{ \begin{array}{l} 0 \\ 0 \end{array} \right\}} \xrightarrow{\left\{ \begin{array}{l} 0 \end{array} \right\}} \xrightarrow{\left\{ \begin{array}{l} 0 \\ 0 \end{array} \right\}} \xrightarrow{\left\{ \begin{array}{l} 0 \\ 0 \end{array} \right\}} \xrightarrow{\left\{ \begin{array}{l} 0$$

b Calculate the accumulated reward function $f_{AR}(T_1)$ for the trajectory:

@Calculate the accumulated reward function far (T1) for the trayectory:

 $\begin{array}{c}
T_3 = S_1 S_1 S_2 \\
2 & 1 \\
S_2 \longrightarrow S_1
\end{array}$ $\begin{array}{c}
S_1 \longrightarrow S_2
\end{array}$ $\begin{array}{c}
F_{AB} \left(T_3\right) = 2 + \gamma(1) \\
= 2 + 0.9(1) \\
\vdots \\
F_{BB} \left(T_3\right) = 2.9
\end{array}$

Given the world defined by the transition function $P_{MT}(S_f|s,\alpha)$, the reward function $f_R(S_f,s,\alpha)=f_R(S_f)$ and $\gamma=0.6$:

(a) Calculate the accumulated reward function $f_{AB}(T_1)$ for the trajectory: $T_1=S_1,\,S_2,\,S_3,\,S_1,\,S_2,\,S_1$ Solution

$$S = \left\{ S_{1} S_{2} S_{3} \right\} \qquad A = \left\{ \alpha_{1} \alpha_{1} \right\}$$

$$T_{1} = \left\{ S_{2} \right\} \longrightarrow \left\{ S_{3} \right\} \longrightarrow \left\{ S_{3}$$

$$f_{AR}(\tau_{i}) = 1 + \gamma(-1) + \gamma^{2}(2) + \gamma^{3}(1) + \gamma^{4}(2)$$

$$= 1 + (0.6)(-1) + (0.6)^{2}(2) + (0.6)^{3}(1) + (0.6)^{4}(2)$$

$$f_{AR}(\tau_{i}) = 1.59$$

b Calculate the accumulated reward function $f_{AB}(T_2)$ for the trajectory: $T_2=S_3, S_1, S_2, S_3$

Solution

© Calculate the accumulated reward function $f_{AR}(T_3)$ for the trayectory: $T_3=s_3,\,s_1,\,s_2$

Solution

(3) Given the world defined by the following graph, the reward function $f_R(s_f, s, a)$ and $\gamma = 0.8$

© Calculate the accumulated reward function $f_{AR}(T_i)$ for the trajectory: $T_1 = S_{11}, S_{21}, S_{32}, S_{53}, S_{41}, S_{33}, S_{5}$

Solution

(b) Calculate the accumulated reward function $f_{AR}(T_2)$ for the trajectory: T_2 = s, , s3, s5, s4

Solution

© Calculate the accumulated reward function $f_{AR}(T_3)$ for the trajectory: $T_3 = s_{4_1} s_{5_2}, s_{5_3}$

with
$$V=0.8$$

$$f_{AR}(T_3) = -1 + V(6)$$

$$= -1 + (0.8)(6)$$

$$= -1 + V.8$$

$$f_{AR}(T_3) = 3.8$$

4 Given the world defined by the following graph where 0.84, means a, with probability 0.8, and so on, and with the following reward function and 400.7

(Calculate the accumulated reward function far([1) for the trayectory:

Solution

(b) Calculate the accumulated reward function $f_{AR}(C_2)$ for the trayectory:

Solution

 $f_{AR} = 0 + (0.7)(-1) + (0.7)^2(-1)$ $f_{RR} = -1.19$ with 0.24 of probability

Calculate the accumulated reward function far ([2) for the trajectory: T3= 59,51,53

Solution

$$\begin{cases} 0.1 & -3 & 0.4 \\ 0.2 & -3 & 0.3 \\ 0.3 & 0.3 \end{cases} = \begin{cases} -3 & +(0.7)(-1) = -3.7 \\ 0.7 & 0.08 \end{cases}$$
with 0.08 probability

(5) El mundo tiene el siguiente conjunto de estados S={s1, s2, s3, sF1, sF2} donde s1=estado inicial y, sF1 y sF2 son estados terminales:

El mundo tiene el siguiente conjunto de acciones $A=\{\rightarrow,\leftarrow\}$ donde:

- →=Agente se mueve a la derecha una sola celda
- ←=Agente se mueve a la izquierda una sola celda

La función de recompensa $f_R(s, a, s_f) = f_R(s_f)$ solo depende del estado al que el Agente llega y esta definida como:

		-		
-10	0	-0.4	-0.4	10

Es decir, si el agente transiciona de s1 a s2 entonces recibe la recompensa -0.4 que esta definide en el estado s2. El agente tiene la siguiente función de acción $f_{\pi}(s)$:

$$f_{\pi}(s) = \begin{cases} s_1 \\ s_2 \\ \rightarrow \\ s_3 \\ \rightarrow \\ s_{F1} \\ \leftarrow \\ s_{F2} \\ \rightarrow \end{cases}$$

a Build the graph of the world

(s,a) Write the transition function fnt (s,a)

$$f_{MT}(S_{10}) = \begin{cases} S_{1} \\ S_{2} \\ S_{3} \\ S_{4} \\ S_{5} \\ S_{5} \\ S_{7} \\ S$$

© Build all the possible trajectories from the initial state s, given the action function $f_{\pi}(s)$ that go to a final state, either SF, or SF2

Build all the possible trajectories from the state S_2 , given the action function $f_\pi(s)$ that go to a final state, either sF_1 or sF_2

$$T_1 = S_{2,1} S_{3,1} SF_{2}$$

 $T_2 = S_{1,1} S_{3,1} SF_{1,1} S_{3,1} SF_{2}$

© Build all the possible trajectories from the state s_3 , given the action function $f_{\pi}(s)$ that go to a final state, either sF_1 or sF_2

$$T_1 = S_{3_1} SF_{1_1}$$
 $T_2 = S_{3_1} SF_{1_1} S_{3_1} SF_{1_1}$

For Calculate the accumulated reward of every possible trayectory in c, d, e using Y = 0.7. SF_1 S_2 S_3 SF_2 S_4 S_5 S_6 S_6 S

$$T_{2}=S_{2,1}S_{3,2}SF_{2,3}SF_{2} \qquad f_{RA}=-0.4+(0.7)(10)+(0.7)^{2}(0.4)+(0.7)^{3}(10)=9.83$$

$$S(0)=S_{3}$$

$$T_{1}=S_{3,3}SF_{2} \qquad f_{RA}=10$$

$$T_{2}=S_{3,3}SF_{2,3}SF_{2,3}SF_{3,3}SF_{2,4}$$

$$T_{1}=S_{3,5}SF_{2,5}SF_{3,5}S$$

El mundo tiene el siguiente conjunto de estados S={s1, s2, s3, sF1, sF2} donde s1=estado inicial y, sF1 y sF2 son estados terminales:

El mundo tiene el siguiente conjunto de acciones $A=\{\rightarrow,\leftarrow\}$ donde:

- →=Agente se mueve a la derecha una sola celda con probabilidad 0.8 y se mueve una sola celda a la izquierda con probabilidad 0.2
- ←=Agente se mueve a la izquierda una sola celda con probabilidad 0.8 y se mueve una sola celda a la derecha con probabilidad 0.2

La función de recompensa $f_R(s, a, s_f) = f_R(s_f)$ solo depende del estado al que el Agente llega y esta definida como:

Es decir, si el agente transiciona de s1 a s2 entonces recibe la recompensa -0.4 que esta definide en el estado s2.

El agente tiene la siguiente función de acción $f_{\pi}(s)$:

$$f_{\pi}(s) = \begin{cases} s_1 \\ s_2 \\ \rightarrow \\ S_{F1} \\ \downarrow \\ S_{F2} \end{cases} \xrightarrow{s_1} \leftarrow \xrightarrow{s_1} \leftarrow \xrightarrow{s_1} \rightarrow \xrightarrow{s_1} \leftarrow \xrightarrow{s_1} \rightarrow \xrightarrow{s_1} \leftarrow \xrightarrow{s_1} \rightarrow \xrightarrow{s_2} \rightarrow \xrightarrow{s_1} \rightarrow \xrightarrow{s_2} \rightarrow \xrightarrow{s_1} \rightarrow \xrightarrow{s_1} \rightarrow \xrightarrow{s_2} \rightarrow \xrightarrow{s_2} \rightarrow \xrightarrow{s_1} \rightarrow \xrightarrow{s_2} \rightarrow \xrightarrow{s_1} \rightarrow \xrightarrow{s_2} \rightarrow \xrightarrow{s_1} \rightarrow \xrightarrow{s_2} \rightarrow \xrightarrow{s_2} \rightarrow \xrightarrow{s_2} \rightarrow \xrightarrow{s_2} \rightarrow \xrightarrow{s_1} \rightarrow \xrightarrow{s_2} \rightarrow \xrightarrow{s_2} \rightarrow \xrightarrow{s_1} \rightarrow \xrightarrow{s_2} \rightarrow \xrightarrow{s_2} \rightarrow \xrightarrow{s_2} \rightarrow \xrightarrow{s_1} \rightarrow \xrightarrow{s_2} \rightarrow \xrightarrow{s_$$

c. Construya todas las trayectorias posibles a partir del estado inicial s1 dada la función de acción $f_{\pi}(s)$ que lleven a un estado final ya sea sF1 o sF2

(NOTA: Dado que es un número infinito de trayectorias solo escriba 10)

$$f_{\pi}(s) = \begin{cases} s_{1} \\ s_{2} \\ \vdots \\ s_{F_{1}} \\ \vdots \\ s_{F_{2}} \\ \vdots \\ s_{F_{2}} \end{cases} \xrightarrow{0.1 \xrightarrow{\circ}} \begin{cases} 0.1 \xrightarrow{\circ} \\ 0.1 \xrightarrow{$$

d. Construya todas las trayectorias posibles a partir del estado s2 dada la función de acción $f_\pi(s)$ que lleven a un estado final ya sea sF1 o sF2

(NOTA: Dado que es un número infinito de trayectorias solo escriba 10)

$$\begin{array}{lll} T_1 = & S_1, S_3, SF_2 & T_6 = & S_1, S_1, SF_1, S_1 \\ T_2 = & S_2, S_3, SF_1 & T_4 = & S_2, S_3, SF_{2}, S_{3}, SF_{2} \\ T_3 = & S_2, S_3, S_{2}, S_3, SF_2 & T_6 = & S_2, S_3, S_{2}, S_3, SF_2 \\ T_4 = & S_2, S_3, S_{1}, S_{2}, S_{3}, SF_2 & T_6 = & S_{2}, S_{1}, S_{2}, S_{1}, S_{2}, S_{3}, SF_2 \\ T_5 = & S_2, S_{1}, S_{1}, S_{2}, S_{3}, S_{1}, S_{1}, SF_1 & T_{16} = & S_{2}, S_{1}, S_{1}, S_{1}, SF_1 \end{array}$$

e. Construya todas las trayectorias posibles a partir del estado s3 dada la función de acción $f_{\pi}(s)$ que lleven a un estado final ya sea sF1 o sF2

(NOTA: Dado que es un número infinito de trayectorias solo escriba 10)

d. Calcule la recompensa acumulada de cada posible trayectoria en los incisos c, d, e usando γ =0.7.

```
→ s(o)=s,
                        \Rightarrow s(0) = S_1
t 5 = 1.39
                        tis = -2.29 [20 = -3.7]
          て<sub>の</sub>- - 2
→ s(o)=s3
                         All these numbers
 T 21 = 10
            T16= 9.72
 T21 = -5.3
            <sub>11</sub> - - 5.3
                        were calculated using:
t_{13} = 4.22 t_{18} = 1.39
                             r: r, + y[far(t)]
 Tz4 = 1.67
            T295 - 2.99
                          Programmed in python
 [15 = -3.28
            T10= 2.20
```

the code

```
r = [-10,0,-0.4,-0.4,10]
g = 0.7

for t in ts:
    acc = 0
    for i in range(1,len(t)):
        s = t[i]
        acc += (g**(i-1))*(r[s])
    print(f"T{ts.index(t)+1}:{acc}")
```