- 1. Dado el conjunto de números naturales
 - a) Realizar en pseudo-código la solución al problema de encontrar la suma de todos los múltiplos de 2, menores a 100.
 - b) ¿Cómo generalizaría el problema para pasar de 2 a X y de 100 a N?
- 2. Diseñe en pseudo-código una secuencia de instrucciones que pida una temperatura en grados Fahrenheit y la convierta a grados Celsius.
- 3. Dado un conjunto A de números enteros distintos, en donde A_i identifica al i-ésimo elemento de A.
 - a) Realice en pseudo-código la solución de encontrar un valor j tal que A_j sea el mayor elemento de A.
 - b) Idem anterior para encontrar el valor del mayor elemento. Trate de reutilizar el algoritmo diseñado para el punto a).
- 4. Dado un conjunto A como el del problema 3.
 - a) Realice en pseudo-código una función que recibiendo el conjunto A y un valor X, termine retornando el índice j tal que A_j vale X o termine indicando que no hay ningún elemento con valor X dentro de A (retornando por ejemplo el índice inválido -1)
 - b) Si ahora tiene la información adicional de que A es un conjunto ordenado (A_{i+1} > A_i para todo i), ¿cómo haría más eficiente su algoritmo?
- 5. Suponiendo que cuenta con la operación RESTO(X,Y) que devuelve el resto de la división entera entre X e Y (módulo) (ejemplos: RESTO(10,3) -> 1; RESTO(3,7) -> 3; RESTO(22,10)->2)
 - a) Escriba el pseudo-código de un programa que solicite un número entero e imprima su último dígito.
 - b) Escriba el pseudo-código de un programa que solicite un tiempo expresado en segundos y lo convierta en una representación HORAS:MINUTOS:SEGUNDOS.
- 6. Suponga que se tienen dos conjuntos A y B que contienen dígitos (0-9) que son la representación de 2 números enteros a y b. (por ejemplo el número a = 127, estaría representado por el conjunto A = { A₀, A₁, A₂} = {7, 2, 1 }.
 - a) Implemente un algoritmo que realice la suma de a y b en base a sus representaciones.
 - b) Implemente un algoritmo que realice la multiplicación de a y b en base a sus representaciones.
- 7. Realice el pseudocódigo para encontrar el factorial de un número. Plantee la solución como una función.
- 8. Realice el pseudocódigo para encontrar si un cierto número es primo. Plantee la solución como una función.
- 9. Dados dos enteros W y n
 - a) ¿Qué se obtiene de hacer W >> n?
 - b) ¿Qué se obtiene de hacer (W >> n) << n?
 - Si definimos Mask = (1 << n) 1,
 - c) ¿Qué se obtiene de hacer W & Mask?
 - d) ¿Qué se obtiene de hacer W & ~Mask?
 - e) ¿Qué se obtiene de hacer W | Mask?
 - f) ¿Qué máscara usaría en la expresión W & Mask para averiguar la paridad del entero W?

10. Suponga que tiene que resolver el problema de encontrar, sobre un tablero de ajedrez, una secuencia de movimientos de un caballo de forma de cubrir completamente el tablero sin pasar a veces por la misma casilla. ¿Cómo descompondría el problema en subproblemas y cómo resolvería cada uno de ellos?