Intercepts of the Quadratic

Case1: △>0 $t_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \, ac}}{2a}$ computes the t-intercepts of multiplicity 1. n(0) = c computes the single n-intercept.

Given a quadratic $n(t) = at^2 + bt + c$ compute its discriminant \triangle :

Example 1.

$n(t) = 2t^2 - 13t - 7$ compute its discriminant \triangle : ∆=**225**>**0**

Case2: △=0

Example 2.

n(0) = 108 n-intercept.

no t-intercepts.

Example 3.

However there is a n-intercept.

 $\triangle = \sqrt{b^2 - 4ac}$

 $t_{1,2} = -\frac{1}{2},7$ n(0) = -7 n-intercept.

 $n(t) = 3t^2 - 36t + 108$ compute its discriminant \triangle : ∆=0 t_{1,2=}6,6

 $t_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \, ac}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single t-intercept of multiplicity 2.

1000 800 600 400 200 intercept 1,2 Case3: △<0 $\sqrt{\,\mathsf{b}^2\,_-\,\mathsf{4}\,\mathsf{ac}}$ has no value in Real Numbers. Therefore there are

$n(t) = 9t^2 - 126t + 490$ compute its discriminant \triangle : $\triangle = -1764 < 0$ n(0) = 490 n-intercept.

3000 2500 2000 1500 1000 n-intercept -10 10