Arch: Multi-Cycle Processor

Alex Chi

Update: April 7, 2020

Contents

1	Clocking Methodology	1
2	Instruction Critical Path	1
3	Multi-cycle Approach	2
4	Five Stage	2
1	Clocking Methodology	
	• Cycle Time = CLK-to-Q + Longest Delay Path + Setup + Clock Skew	

2 Instruction Critical Path

- instruction and memory access
- ALU and adders
- register file access
- different inst has different critical path, which is a waste
- functional units has to be duplicated

3 Multi-cycle Approach

- balance amount of work in each step
- use every major unit per cycle
- store values
 - IR
 - MDR
 - A and B
 - ALUout
 - program visible state
- therefore
 - multiplexer before functional unit
 - read from register file
 - r/w to register happens at the beginning of clock cycle
 - all stage in parallel
 - one ALU op, one memory access, one register file, one OP

4 Five Stage

- instruction fetch
- instruction decode / register fetch
- ALU (execute)
- memory access
- write back
- refer to RTL in slides
- key idea: control unit is a state machine, which produces signals state by state