12 Specialist Mathematics Summarised Notes (Unofficial) Work in Progress

Last updated: 7 July 2022

Functions

Composite Functions

Given $f: x \mapsto f(x)$ and $g: x \mapsto g(x)$, the composite function of f and g is:

$$(f \circ g)(x) = f(g(x))$$
 or
$$f \circ g : x \mapsto f(g(x))$$

In general, $(f \circ g)(x) \neq (g \circ f)(x)$.

Inverse Functions

An inverse function returns the original value from the output of a function. f(x) has an inverse if it is injective (one-to-one), if f(a) = f(b) only when a = b, \therefore passes the horizontal line test.

For $f^{-1}(x)$, the inverse of f(x):

- Is a reflection of y = f(x) over y = x.
- $\bullet \ (f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x$
- Domain of f^{-1} = range of f.
- Range of $f^{-1} = \text{domain of } f$.

Self-Inverse Functions

An invertible function which is symmetrical about y = x.

$$f^{-1}(x) = f(x)$$

Reciprocal Functions

A function of the form $f(x) = \frac{k}{x}$, where $k \neq 0$ is a constant.

Reciprocal of Other Functions

The reciprocal of a function f(x) is $\frac{1}{f(x)}$. Graphing $y = \frac{1}{f(x)}$ from y = f(x):

- Zero $f(x) \to \text{vertical asymp } \frac{1}{f(x)}$
- Vertical asymp $f(x) \to \text{zero } \frac{1}{f(x)}$
- Local max $f(x) \to \text{local min } \frac{1}{f(x)}$
- Local min $f(x) \to \text{local max } \frac{1}{f(x)}$
- When f(x) > 0, $\frac{1}{f(x)} > 0$
- When f(x) < 0, $\frac{1}{f(x)} < 0$
- When $f(x) \to 0$, $\frac{1}{f(x)} \to \pm \infty$
- When $f(x) \to \pm \infty$, $\frac{1}{f(x)} \to 0$

Invariant Points:

Points which do not move under a transformation occurring at $y=\pm 1$.

Rational Functions

Results from the division of one polynomial by another.

Vertical asymptote occurs when denominator is zero.

Horizontal asymptote ascertained from behaviour of graph as $|x| \to \infty$.

- If the degree of denominator > numerator, horizontal asymptote at y = 0.
- If the degree of denominator < numerator, function has slanted asymptote found through polynomial division.
- If the degree of denominator = numerator horizontal asymptote at $y = \frac{a}{b}$ where a and b are the leading coefficients.

Absolute Value Functions

The absolute value or modulus |x| of a real number x is its distance from 0 on the number line.

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

Alternatively,

$$|x| = \sqrt{x^2}$$

Properties:

- |x| > 0
- $|x|^2 = x^2$
- $\bullet \left| \frac{x}{y} \right| = \frac{|x|}{|y|}$
- |-x| = |x|
- |xy| = |x||y|
- $\bullet ||x y| = |y x|$

If |x| = a where a > 0, then $x = \pm a$. If |x| = |b| then $x = \pm b$.

Graphs Involving the Absolute Value Function

Graphing y = f(|x|) from y = f(x):

- Discard the graph for x < 0
- Reflect the graph for $x \ge 0$ in the y-axis
- Points on the y-axis are invariant

Graphing y = |f(x)| from y = f(x):

- Keep the graph for $f(x) \ge 0$
- Reflect the graph for f(x) < 0 in the x-axis
- Points on the x-axis are invariant

Trigonometric Identities

Angle Relationships

$$\sin(-\theta) = -\sin\theta \qquad \cos(-\theta) = \cos\theta$$

$$\sin(\pi - \theta) = \sin\theta \qquad \cos(\pi - \theta) = -\cos\theta$$

$$\sin(\frac{\pi}{2} - \theta) = \cos\theta \qquad \cos(\frac{\pi}{2} - \theta) = \sin\theta$$

Pythagorean Theorem

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\tan^2 \theta + 1 = \sec^2 \theta$$
$$\cot^2 \theta + 1 = \csc^2 \theta$$

Double Angle Identities

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\cos 2\theta = \cos^2\theta - \sin^2\theta$$

$$= 1 - 2\sin^2\theta$$

$$= 2\cos^2\theta - 1$$

$$\tan 2\theta = \frac{2\tan\theta}{1 - \tan^2\theta}$$

Angle Sum and Difference

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

Sum to Product

$$\sin A \pm \sin B = 2 \sin \left(\frac{A \pm B}{2}\right) \cos \left(\frac{A \mp B}{2}\right)$$
$$\cos A + \cos B = 2 \cos \left(\frac{A + B}{2}\right) \cos \left(\frac{A - B}{2}\right)$$
$$\cos A - \cos B = -2 \sin \left(\frac{A + B}{2}\right) \sin \left(\frac{A - B}{2}\right)$$

Product to Sum

$$2 \sin A \cos B = \sin (A+B) + \sin (A-B)$$
$$2 \sin A \sin B = \cos (A-B) - \cos (A+B)$$
$$2 \cos A \cos B = \cos (A+B) + \cos (A-B)$$

Mathematical Induction

The Principle of Mathematical Induction

Suppose P_n is a proposition which is defined for every integer $n \geq a$, $a \in \mathbb{Z}$. If P_a is true, and if P_{k+1} is true whenever P_k is true, then P_n is true for all $n \geq a$.

Complex Numbers

Imaginary Numbers

A number which cannot be placed on a real number line in the form ai where $a \in \mathbb{R}$ and $i = \sqrt{-1}$.

.....

Complex Numbers

Any number in the form a + bi where $a, b \in \mathbb{R}$ and $i = \sqrt{-1}$.

If z = a + bi

$$\mathfrak{Re}(z) = a$$
 $\mathfrak{Im}(z) = b$

.....

The Complex Plane

Complex numbers can be plotted on the complex plane or Argand plane as a vector where the x-axis is the real axis and the y-axis is the imaginary axis.

$$\overrightarrow{OP} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 represents $x + yi$

Complex Conjugates

The complex conjugate of

$$z = a + bi$$
 is $z^* = a - bi$

In the complex plane, z^* is the reflection of z in the real axis.

Modulus and Argument

The modulus of the complex number z = a + bi is the length of the vector $\begin{pmatrix} a \\ b \end{pmatrix}$, which is the real number:

$$|z| = \sqrt{a^2 + b^2}$$

The argument of z, $\arg(z)$ is the angle θ between the positive real axis and $\binom{a}{b}$. Real numbers have an argument of 0 or π .

Purely imaginary numbers have argument of $\frac{\pi}{2}$ or $-\frac{\pi}{2}$.

Properties of Modulus:

$$\bullet ||z^*| = |z|$$

•
$$|z^*|^2 = zz^*$$

•
$$|z_1 z_2| = |z_1||z_2|$$

•
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}, \ z_2 \neq 0$$

•
$$|z_1 z_2 z_3 \dots z_n| = |z_1||z_2||z_3|\dots|z_n|$$

•
$$|z^n| = |z|^n$$
, $n \in \mathbb{Z}^+$

Polar Form

$$cis \theta = cos \theta + i sin \theta$$

A complex number z has polar form

$$z = |z| \operatorname{cis} \theta$$

where $\theta = \arg(z)$. The conjugate of z is:

$$z^* = |z| \operatorname{cis} (-\theta)$$

Properties of $\operatorname{cis} \theta$:

- $\operatorname{cis} \theta \times \operatorname{cis} \phi = \operatorname{cis} (\theta + \phi)$
- $\frac{\operatorname{cis}\theta}{\operatorname{cis}\phi} = \operatorname{cis}(\theta \phi)$
- $\operatorname{cis}(\theta 2k\pi) = \operatorname{cis}\theta, \ k \in \mathbb{Z}$

De Moivre's Theorem

$$(|z|\operatorname{cis}\theta)^n = |z|^n\operatorname{cis} n\theta$$
, for all $n \in \mathbb{Q}$

Roots of Complex Numbers

The n^{th} roots of the complex number c are the solutions of $z^n = c$.

The n^{th} Roots of Unity

The n^{th} roots of unity are the solutions of $z^n = 1$.

Distances in the Complex Plane

If $z_1 \equiv \overrightarrow{OP_1}$ and $z_2 \equiv \overrightarrow{OP_2}$ then $|z_1 - z_2|$ is the distance between points P_1 and P_2 .

Real Polynomials

Zeros and Roots

A zero of a polynomial is a value of the variable which makes the polynomial equal to zero.

 α is a zero of polynomial

$$P(x) \iff P(\alpha) = 0$$

The roots of a polynomial equation are the solutions to the equation. α is a root (or solution) of

$$P(x) \iff P(\alpha) = 0$$

The roots of P(x) = 0 are the zeros of P(x) and the x-intercepts of the graph y = P(x)

Factors

 $(x - \alpha)$ is a factor of the polynomial $P(x) \iff$ there exists a polynomial Q(x) such that $P(x) = (x - \alpha)Q(x)$.

.....

Polynomial Equality

Two polynomials are equal if and only if they have the same degree (order) and corresponding terms have equal coefficients.

Polynomial Division by Linears

If P(x) is divided by D(x) = ax + b until a quotient Q(x) and constant remainder R is obtained, then

$$\frac{P(x)}{ax+b} = Q(x) + \frac{R}{ax+b}$$

Notice that $P(x) = Q(x) \times (ax + b) + R$.

Polynomial Division by Quadratics

If P(x) is divided by $D(x) = ax^2 + bx + c$, then

$$\frac{P(x)}{ax^2 + bx + c} = Q(x) + \frac{ex + f}{ax^2 + bx + c}$$

where ex + f is the remainder.

The Remainder Theorem

When a polynomial P(x) is divided by x - k until a constant remainder R is obtained, then R = P(k).

The Factor Theorem

For any polynomial P(x), k is a zero of $P(x) \iff (x-k)$ is a factor of P(x).

The Fundamental Theorem of Algebra

If P(x) is a polynomial of degree n, then P(x) has n zeros, each in the form a+bi where $a,b \in \mathbb{R}$, some of which may be repeated.

Vectors

Vectors in Space

Any point P in space can be specified (x, y, z) corresponding to steps in the X, Y and Z direction from the origin O. The position vector of P is

$$\overrightarrow{OP} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

where $\mathbf{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\mathbf{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, and $\mathbf{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, the base unit vectors.

.....

The Magnitude of a Vector

The magnitude or length of the vector $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

......

Operations with Vectors

If
$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ then:

$$-\mathbf{a} = \begin{pmatrix} -a_1 \\ -a_2 \\ -a_3 \end{pmatrix} \qquad \mathbf{a} + \mathbf{b} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix}$$
$$\mathbf{a} - \mathbf{b} = \begin{pmatrix} a_1 - b_1 \\ a_2 - b_2 \\ a_3 - b_3 \end{pmatrix} \qquad k\mathbf{a} = \begin{pmatrix} ka_1 \\ ka_2 \\ ka_3 \end{pmatrix}$$

Vector Algebra

- $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$
- $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$
- a + 0 = 0 + a
- $\mathbf{a} + (-\mathbf{a}) = (-\mathbf{a}) + \mathbf{a} = \mathbf{0}$
- $k(\mathbf{a} + \mathbf{b}) = k\mathbf{a} + k\mathbf{b}$
- $|k\mathbf{a}| = |k||\mathbf{a}|$
- If $\mathbf{c} + \mathbf{a} = \mathbf{b}$ then $\mathbf{c} = \mathbf{b} \mathbf{a}$
- If $k\mathbf{b} = \mathbf{a}$, $k \neq 0$, then $\mathbf{b} = \frac{1}{k}\mathbf{a}$

Vector Between Two Points

If $A(a_1, a_2, a_3)$ and $B(b_1, b_2, b_3)$ then the position vector of B relative to A is

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \\ b_3 - a_3 \end{pmatrix}$$

The distance from A to B is

$$|\overrightarrow{AB}| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + (b_3 - a_3)^2}$$

Unit Vector

For a vector **u**, the unit vector would be:

$$\hat{\mathbf{u}} = \frac{\mathbf{u}}{|\mathbf{u}|}$$

.....

Dot Product (Scalar Product)

The algebraic definition of the dot product is defined as thus:

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i$$

The geometric definition is as follows:

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

.....

Properties of the Dot Product

- $\bullet \ \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$
- $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$
- $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$
- $\lambda(\mathbf{a} \cdot \mathbf{b}) = (\lambda \mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (\lambda \mathbf{b}), \ \lambda \in \mathbb{R}$

Integration

Indefinite Integrals

$$\int k \, dx = kx + c$$

$$\int x^n \, dx = \frac{1}{n+1}x^{n+1} + c, \ n \neq -1$$

$$\int e^x \, dx = e^x + c$$

$$\int \frac{1}{x} \, dx = \ln|x| + c$$

$$\int \cos x \, dx = \sin x + c$$

$$\int \sin x \, dx = -\cos x + c$$

Integrating f(ax + b)

$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + c,$$

$$n \neq -1$$

$$\int e^{ax+b} dx = \frac{1}{a}e^{ax+b} + c$$

$$\int \frac{1}{ax+b} dx = \frac{1}{a}\ln|ax+b| + c$$

$$\int \cos(ax+b) dx$$

$$\frac{1}{a}\sin(ax+b) + c$$

$$\int \sin(ax+b) dx$$

$$= -\frac{1}{a}\cos(ax+b) + c$$

Inverse Trigonomentric Functions

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$$

$$\int -\frac{1}{\sqrt{1-x^2}} dx = \arccos x + c$$

$$\int \frac{1}{1+x^2} dx = \arctan x + c$$

$$\int \frac{1}{\sqrt{a^2-x^2}} dx = \arcsin\left(\frac{x}{a}\right) + c$$

$$\int -\frac{1}{\sqrt{a^2-x^2}} dx = \arccos\left(\frac{x}{a}\right) + c$$

$$\int \frac{a}{a^2-x^2} dx = \arctan\left(\frac{x}{a}\right) + c$$

Integrating $\sin^2 x$ and $\cos^2 x$

Use double angle identities when integrating.

$$\sin^2 x = \frac{1}{2} - \frac{1}{2}\cos 2x$$
$$\cos^2 x = \frac{1}{2} + \frac{1}{2}\cos 2x$$

Definite Integrals

If F(x) is the antiderivative of f(x) where f(x) is continuous over $a \leq x \leq b$, the definite integral is:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a)$$

$y = f(x) \text{ or } y = y_U$ a $y = g(x) \text{ or } y = y_L$

Properties of Definite Integrals

$$\int_{a}^{a} f(x) dx = 0$$

$$\int_{a}^{b} k dx = k(b - a)$$

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

$$= \int_{a}^{c} f(x) dx$$

$$= \int_{a}^{b} [f(x) \pm g(x)] dx$$

$$= \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$
...

Area Under a Curve

If f(x) is positive and continuous for $a \le x \le b$, the area bound by y = f(x), the x-axis, x = a and x = b is:

$$A = \int_a^b f(x) dx$$
 or $A = \int_a^b y dx$

Area Between Two Curves

Upper function: f(x) or y_U Lower function: g(x) or y_L

$$A = \int_{a}^{b} [f(x) - g(x)] dx$$
or

$$A = \int_a^b \left[y_U - y_L \right] \, \mathrm{d}x$$