

FCC 47 CFR PART 15 SUBPART C

CERTIFICATION TEST REPORT

FOR

GROUND BASED UNIT

MODEL NUMBER: RRH

FCC ID: 2AJN8-GS1

REPORT NUMBER: R11150849-E1V3

ISSUE DATE: 2016-09-28

Prepared for
HARRIS CORP.
2400 PALM BAY ROAD NE
PALM BAY
FLORIDA, 32905, USA

Prepared by
UL LLC
12 LABORATORY DR.
RESEARCH TRIANGLE PARK, NC 27709 USA
TEL: (919) 549-1400

NVLAP Lab code: 200246-0

Revision History

Ver.	Issue Date	Revisions	Revised By
1	2016-09-08	Initial Issue	M. Heckrotte
2	2016-09-23	Removed photo from section 5.7, Revised citation for power limit.	M. Heckrotte
3	2016-09-28	·	

TABLE OF CONTENTS

1. <i>A</i>	ATTESTATION OF TEST RESULTS	5
2. 1	TEST METHODOLOGY	6
3. F	FACILITIES AND ACCREDITATION	6
4. (CALIBRATION AND UNCERTAINTY	6
4.1	. MEASURING INSTRUMENT CALIBRATION	6
4.2	SAMPLE CALCULATION	6
4.3	MEASUREMENT UNCERTAINTY	7
5. E	EQUIPMENT UNDER TEST	8
5.1	. DESCRIPTION OF EUT	8
5.2	. MAXIMUM OUTPUT POWER	8
5.3	DESCRIPTION OF AVAILABLE ANTENNAS	8
5.4	SOFTWARE AND FIRMWARE	8
5.5		
5.6		
5.7		
6. 1	TEST AND MEASUREMENT EQUIPMENT	
	MEASUREMENT METHODS	
	ANTENNA PORT TEST RESULTS – AUTHORIZED BAND	
0. <i>F</i>		
8 1		
8.1 8.2	ON TIME AND DUTY CYCLE	20
8.2	ON TIME AND DUTY CYCLE	20 30
8.2 8	ON TIME AND DUTY CYCLE	20 30 30
8.2 8 8	ON TIME AND DUTY CYCLE	20 30 30 43
8.2 8 8 8	ON TIME AND DUTY CYCLE 540 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.2.1. 6 dB BANDWIDTH 3.2.2. AVERAGE POWER 3.2.3. OUTPUT POWER	20 30 43 44
8.2 8 8 8 8 8.3	ON TIME AND DUTY CYCLE 540 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.2.1. 6 dB BANDWIDTH 3.2.2. AVERAGE POWER 3.2.3. OUTPUT POWER 3.2.4. POWER SPECTRUM DENSITY 3.2.5. OUT-OF-BAND EMISSIONS 900 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND	20 30 43 44 46 59
8.2 8 8 8 8 8.3	ON TIME AND DUTY CYCLE 540 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.2.1. 6 dB BANDWIDTH 3.2.2. AVERAGE POWER 3.2.3. OUTPUT POWER 3.2.4. POWER SPECTRUM DENSITY 3.2.5. OUT-OF-BAND EMISSIONS 4. 900 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.3.1. 6 dB BANDWIDTH	20 30 43 44 46 59 87
8.2 8 8 8 8 8 8.3	ON TIME AND DUTY CYCLE 540 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.2.1. 6 dB BANDWIDTH 3.2.2. AVERAGE POWER 3.2.3. OUTPUT POWER 3.2.4. POWER SPECTRUM DENSITY 3.2.5. OUT-OF-BAND EMISSIONS 4. 900 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.3.1. 6 dB BANDWIDTH 3.3.2. AVERAGE POWER 3.3.3. OUTPUT POWER	20 30 43 44 46 59 87 88 93
8.2 8 8 8 8 8.3 8	ON TIME AND DUTY CYCLE 540 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.2.1. 6 dB BANDWIDTH 3.2.2. AVERAGE POWER 3.2.3. OUTPUT POWER 3.2.4. POWER SPECTRUM DENSITY 3.2.5. OUT-OF-BAND EMISSIONS 4. 900 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.3.1. 6 dB BANDWIDTH 3.3.2. AVERAGE POWER 3.3.3. OUTPUT POWER 3.3.4. POWER SPECTRUM DENSITY	20304344465987889394
8.2 8 8 8 8.3 8 8	ON TIME AND DUTY CYCLE 540 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.2.1. 6 dB BANDWIDTH 3.2.2. AVERAGE POWER 3.2.3. OUTPUT POWER 3.2.4. POWER SPECTRUM DENSITY 3.2.5. OUT-OF-BAND EMISSIONS 4. 900 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.3.1. 6 dB BANDWIDTH 3.3.2. AVERAGE POWER 3.3.3. OUTPUT POWER 3.3.4. POWER SPECTRUM DENSITY 3.3.5. OUT-OF-BAND EMISSIONS	203030434446598788939496
8.2 8 8 8 8 8 8 8 8 8 8	ON TIME AND DUTY CYCLE 540 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.2.1. 6 dB BANDWIDTH 3.2.2. AVERAGE POWER 3.2.3. OUTPUT POWER 3.2.4. POWER SPECTRUM DENSITY 3.2.5. OUT-OF-BAND EMISSIONS 4.900 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.3.1. 6 dB BANDWIDTH 3.3.2. AVERAGE POWER 3.3.3. OUTPUT POWER 3.3.4. POWER SPECTRUM DENSITY 3.3.5. OUT-OF-BAND EMISSIONS 4.5 MHz MODE IN THE 2.4 GHz AUTHORIZED BAND	2030434446598788939496101
8.2 8 8 8 8 8 8 8 8 8 8 8 8	ON TIME AND DUTY CYCLE 540 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.2.1. 6 dB BANDWIDTH 3.2.2. AVERAGE POWER 3.2.3. OUTPUT POWER 3.2.4. POWER SPECTRUM DENSITY 3.2.5. OUT-OF-BAND EMISSIONS 4.900 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.3.1. 6 dB BANDWIDTH 3.3.2. AVERAGE POWER 3.3.3. OUTPUT POWER 3.3.4. POWER SPECTRUM DENSITY 3.3.5. OUT-OF-BAND EMISSIONS 4.5 MHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.4.1. AVERAGE POWER 3.4.1. AVERAGE POWER	20304344465987889394101120120
8.2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ON TIME AND DUTY CYCLE 540 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.2.1. 6 dB BANDWIDTH 3.2.2. AVERAGE POWER 3.2.3. OUTPUT POWER 3.2.4. POWER SPECTRUM DENSITY 3.2.5. OUT-OF-BAND EMISSIONS 4. 900 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.3.1. 6 dB BANDWIDTH 3.3.2. AVERAGE POWER 3.3.3. OUTPUT POWER 3.3.4. POWER SPECTRUM DENSITY 3.3.5. OUT-OF-BAND EMISSIONS 4.5 MHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.4.1. AVERAGE POWER	20304344465987889394101120120
8.2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ON TIME AND DUTY CYCLE 540 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.2.1. 6 dB BANDWIDTH 3.2.2. AVERAGE POWER 3.2.3. OUTPUT POWER 3.2.4. POWER SPECTRUM DENSITY 3.2.5. OUT-OF-BAND EMISSIONS 4.900 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.3.1. 6 dB BANDWIDTH 3.3.2. AVERAGE POWER 3.3.3. OUTPUT POWER 3.3.4. POWER SPECTRUM DENSITY 3.3.5. OUT-OF-BAND EMISSIONS 4.5 MHz MODE IN THE 2.4 GHz AUTHORIZED BAND 3.4.1. AVERAGE POWER 3.4.1. AVERAGE POWER	203043444659889394101120121123

8.5.1.	6 dB BANDWIDTH	
8.5.2.	AVERAGE POWER	
8.5.3.	OUTPUT POWER	
8.5.4.	POWER SPECTRUM DENSITY	
8.5.5.	OUT-OF-BAND EMISSIONS	100
9. ANTE	NNA PORT RESTRICTED BAND LIMITS AND PROCEDURE	191
9.1. 54	40 kHz MODE IN THE RESTRICTED BAND	
9.1.1.	TX ABOVE 1 GHz IN THE 2.4 GHz BAND: 1-4 GHz	
9.1.2.		
9.1.3.		
9.1.4.	TX BELOW 1 GHz IN THE 2.4 GHz BAND: 30-1000 MHz	267
9.2. 90	00 kHz MODE IN THE RESTRICTED BAND	272
9.2.1.	TX ABOVE 1 GHz IN THE 2.4 GHz BAND: 1-4 GHz	
9.2.2.	TX ABOVE 1 GHz IN THE 2.4 GHz BAND: 4-18 GHz	285
9.2.3.	TX ABOVE 1 GHz IN THE 2.4 GHz BAND: 18-26 GHz	292
9.2.4.	TX BELOW 1 GHz IN THE 2.4 GHz BAND: 30-1000 MHz	299
9.3. 9	MHz MODE IN THE RESTRICTED BAND	304
9.3.1.	TX ABOVE 1 GHz IN THE 2.4 GHz BAND: 1-4 GHz	
9.3.2.	TX ABOVE 1 GHz IN THE 2.4 GHz BAND: 4-18 GHz	
9.3.3.	TX ABOVE 1 GHz IN THE 2.4 GHz BAND: 18-26 GHz	
9.3.4.	TX BELOW 1 GHz IN THE 2.4 GHz BAND: 30-1000 MHz	361
10. RAD	DIATED TEST RESULTS	366
10.1.	LIMITS AND PROCEDURE	366
10.2.	TRANSMITTER ABOVE 1 GHz	367
10.2.1		
10.2.2	. TX ABOVE 1 GHz 900 kHz MODE IN THE 2.4 GHz BAND	375
10.2.3	. TX ABOVE 1 GHz 9 MHz MODE IN THE 2.4 GHz BAND	378
10.3	WORST-CASE BELOW 1 GHz	386
10.3.1		
10.3.2	· · · · · · · · · · · · · · · · · · ·	
11. AC	POWER LINE CONDUCTED EMISSIONS	388
12. SET	TUP PHOTOS	393

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: HARRIS

2400 PALM BAY ROAD NE

PALM BAY, FLORIDA, 32905, USA

EUT DESCRIPTION: GROUND BASED UNIT

MODEL: RRH, P/N 1523K0007

SERIAL NUMBER: Non-serialized

DATE TESTED: 2016-02-02 – 2016-03-03

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Prepared By:

MICHAEL HECKROTTE PRINCIPAL ENGINEER

MH

UL Verification Services Inc.

JEFF MOSER

EMC PROGRAM MANAGER

UL Verification Services Inc.

FORM NO: 03-EM-F00858

Mores

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, KDB 558074 D01 v03r05.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 12 Laboratory Dr., Research Triangle Park, NC 27709, USA and 2800 Suite B, Perimeter Park Drive, Morrisville, NC 27560.

12 Laboratory Dr., RTP, NC 27709				
☐ Chamber A				
☐ Chamber C				
2800 Suite B Perimeter Park Dr.,				
2800 Suite B Perimeter Park Dr., Morrisville, NC 27560				
· · · · · · · · · · · · · · · · · · ·				

UL LLC (RTP) is accredited by NVLAP, Laboratory Code 200246-0. The full scope of accreditation can be viewed at http://www.nist.gov/nvlap/

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB)

36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

FORM NO: 03-EM-F00858

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.

PARAMETER		UNCERTAINTY
Total RF power, conducted	+/-	0.45
RF power density, conducted	+/-	1.50
Spurious emissions, conducted	+/-	2.94
All emissions, radiated up to 18 GHz	+/-	5.36
Temperature	+/-	0.07
Humidity	+/-	2.26
DC and low frequency voltages	+/-	1.27
Conducted Disturbance, 0.15 to 30 MHz	+/-	2.37

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a ground-based 2.4 GHz transceiver intended to communicate with airborne stations.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power	
(MHz)		(dBm)	(mW)	
2446.46-2474.56	540 kHz	21.94	156.31	
2446.46-2474.74	900 kHz	21.75	149.62	
2448.35-2472.85	4.5 MHz	22.19	165.58	
2450.70-2470.70	9 MHz	21.22	132.43	

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The Ground Station antenna consists of eight columns of elements with individual feeds forming a phased array antenna system. The system has a maximum gain of 28.98 dBi. By applying different phases and amplitudes to the inputs, a beam may be steered in azimuth over a 30 degree range. Control channel information is sent over a 30 degree wide beam.

5.4. SOFTWARE AND FIRMWARE

The software/firmware is as follows:

Version: 0.0.3 Revision: 6002 Build ID: 203 Package ID: 2

FORM NO: 03-EM-F00858 TEL: (919) 549-1400

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The manufacturer configured the system to provide the maximum throughput based on the highest output power. The manufacturer deemed that QPSK modulation yields highest power and yields worst-case results. Therefore, QPSK modulation was used for all testing.

FORM NO: 03-EM-F00858

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description Manufacturer Model Serial Number FCC ID						
Power Supply	Newmar	D/C 1639	N/A	N/A		

I/O CABLES

	I/O Cable List							
Cable	Cable Port # of identical Connector Cable Type Cable Remarks							
No		ports	Туре		Length (m)			
1	DC	1	_	_	4.5			
2	CPRI	1	Fiber	Fiber	23			
3	Ethernet	1	RJ45	CAT5e	7.5			
4	Craft	1	RJ45	CAT5e	7.5			
5	Antenna Port	8	SMA	Coax	4.5			

TEST SETUP

Conducted and Restricted Band Spurious Emissions Test Setup

The Ground system was setup to emulate the installed system in the field. The BBU was connected to the RRH and an internet connection (EPC). A GPS antenna was connected to the BBU chassis (SCM). A PC was connected to the RRH and the BBU to enable system testing. The RRH was connected to the Spectrum Analyzer to enable FCC required measurements. The RRH was tested at each of the 8 staves.

Radiated Test Setup

The Ground system was setup to emulate the installed system in the field. The BBU was connected to the RRH and an internet connection (EPC). A GPS antenna was connected to the BBU chassis (SCM). A PC was connected to the RRH and the BBU to enable system testing. The RRH was located in the EMI chamber, and the SCM and BBU were located outside the chamber.

Line Conducted Emissions Test Setup

The Ground system was setup to emulate the installed system in the field. The BBU was connected to the RRH and an internet connection (EPC). A GPS antenna was connected to the BBU chassis (SCM). The line conducted emissions were tested on the power lines that fed the Ground system.

SETUP DIAGRAM FOR TESTS

5.7. MODIFICATIONS REQUIRED FOR COMPLIANCE

MODIFICATION FOR LINE CONDUCTED REQUIREMENTS

As shown in the Line Conducted Emissions Setup drawing above, a CORCOM 30VK6 power-line filter was installed at the AC Mains input of the -48 VDC power supply to meet the FCC 15.207 power-line conducted limits.

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment Used - Wireless Conducted Measurement Equipment

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	Conducted Room 1				
SA0019	Spectrum Analyzer	Agilent Technologies	E4446A	2015-09-02	2016-09-30
SA0026	Spectrum Analyzer	Agilent	N9030A	2015-03-27	2016-03-31
PWM004	RF Power Meter	Keysight Technologies	N1911A	2015-06-08	2016-06-30
PWS004	Peak and Avg Power Sensor, 50MHz to 6GHz	Keysight Technologies	E9323A	2015-06-05	2016-06-30
HI0079	Temp/Humid/Pressure Meter	Springfield	PreciseTemp	2015-07-1	2016-07-31
MM0167	True RMS Multimeter	Agilent	U1232A	2015-08-17	2016-08-31
76022	DC Regulated Power Supply	CircuitSpeciali sts.Com	CSI3005X5	NA	NA
T1023	EMPower USB RF Power Sensor, 10MHz to 6GHz	ETS Lindgren	7002-006	2015-10-01	2016-10-01

Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville - South Chamber)

Equip. ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
AT0074	Hybrid Broadband Antenna, 30-1000MHz	Sunol Sciences Corp.	JB3	2015-06-10	2016-06-30
AT0069	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2015-02-17	2016-02-29
AT0067 (02/28- 03/17/2016)	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2015-03-12	2016-03-31
AT0069 (As of 03/18/2016)	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2016-03-07	2017-03-31
AT0076	Horn Antenna, 18- 26.5GHz	ARA	MWH-1826/B	2015-08-27	2016-08-31
S-SAC02	Gain-loss string: 30- 1000MHz	Various	Various	2015-06-09	2016-06-30
S-SAC03	Gain-loss string: 1- 18GHz	Various	Various	2015-08-22	2016-08-31
S-SAC04	Gain-loss string: 18- 40GHz	Various	Various	2016-02-29	2017-02-28
SA0018	Spectrum Analyzer	Agilent	N9030A	2015-11-07	2016-11-30
SA0027	Spectrum Analyzer	Agilent	N9030A	2016-01-21	2017-01-31
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA
HI0050	Temp/Humid/Pressure Meter	Cole-Parmer	99760-00	2015-07-01	2016-07-31

Test Equipment Used - Conducted Disturbance Emissions - Voltage (Morrisville - Conducted 1)

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
CBL076	Coax cable, RG223, N-male to BNC-male, 20-ft.	Pasternack	PE3476-240	2015-10-29	2016-10-31
HI0079	Temp/Humid/Pressure Meter	Springfield Precision	PreciseTemp	2015-07-01	2016-07-31
LISN002	LISN, 50-ohm/50-uH, 2- conductor, 25A	Fischer Custom Com.	FCC-LISN-50-25-2- 01-550V	2015-08-24	2016-08-31
LISN008	LISN, 50-ohm/50-uH, 2- conductor, 25A (For support gear only.)	Solar Electronics	8012-50-R-24-BNC	2015-09-03	2016-09-30
MM0167	Multi-meter	Agilent	U1232A	2015-08-17	2016-08-31
PRE0101521 (75141)	EMI Test Receiver 9kHz-7GHz	Rohde & Schwarz	ESCI 7	2015-08-26	2016-08-31
TL001	Transient Limiter, 0.009-30MHz	Com-Power	LIT-930A	2015-05-22	2016-05-31
PS215	AC Power Source	Elgar	CW2501M (s/n 1523A02397)	NA	NA
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA

7. MEASUREMENT METHODS

Duty Cycle: KDB 558074 D01 v03r05 Section 6.0

6 dB BW: KDB 558074 D01 v03r05, Section 8.1.

Output Power: KDB 558074 D01 v03r05, Section 9.2.3.1.

Power Spectral Density: KDB 558074 D01 v03r05, Section 10.2.

Power Spectral Density: KDB 558074 D01 v03r05, Section 10.3 & 10.5.

Out-of-band emissions in non-restricted bands: KDB 558074 D01 v03r05, Section 11.0.

Out-of-band emissions in restricted bands: KDB 558074 D01 v03r05, Section 12.1. Out-of-band emissions in restricted bands: KDB 558074 D01 v03r05, Section 12.2.

General Radiated Emissions – ANSI C63.10 Sections 6.3-6.6

<u>Line Conducted Emissions</u> – ANSI C63.10 Section 6.2

FORM NO: 03-EM-F00858

8. ANTENNA PORT TEST RESULTS - AUTHORIZED BAND

8.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
2.4GHz Band (540 kHz) - Covers 900 kHz and 4.			nd 4.5 MHz			
Chain 1	0.856	1.000	0.856	85.60%	0.68	1.168
Chain 2	8.224	8.224	1.000	100.00%	0.00	0.010
Chain 3	8.224	8.224	1.000	100.00%	0.00	0.010
Chain 4	8.224	8.224	1.000	100.00%	0.00	0.010
Chain 5	0.856	1.000	0.856	85.60%	0.68	1.168
Chain 6	0.858	1.001	0.857	85.71%	0.67	1.166
Chain 7	0.845	1.005	0.841	84.08%	0.75	1.183
Chain 8	0.853	1.009	0.845	84.54%	0.73	1.172
2.4GHz Band (9 MHz)						
Chain 1	0.855	1.001	0.854	85.41%	0.68	1.170
Chain 2	32.890	32.890	1.000	100.00%	0.00	0.010
Chain 3	32.890	32.890	1.000	100.00%	0.00	0.010
Chain 4	4.112	4.112	1.000	100.00%	0.00	0.010
Chain 5	0.855	0.998	0.857	85.67%	0.67	1.170
Chain 6	0.858	1.001	0.857	85.71%	0.67	1.166
Chain 7	0.856	1.000	0.856	85.60%	0.68	1.168
Chain 8	0.855	1.001	0.854	85.41%	0.68	1.170

DUTY CYCLE PLOTS

2.4 GHz BAND (540 kHz)

2.4 GHz BAND (9 MHz)

8.2. 540 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND

8.2.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency	6 dB BW	6 dB BW	6 dB BW	6 dB BW	Minimum
		Chain 1	Chain 2	Chain 3	Chain 4	Limit
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
Low	2446.463	0.547	0.549	0.546	0.555	0.5
Mid	2459.163	0.562	0.556	0.570	0.572	0.5
High	2474.563	0.568	0.554	0.565	0.555	0.5

Cl	hannel	Frequency	6 dB BW	6 dB BW	6 dB BW	6 dB BW	Minimum
			Chain 5	Chain 6	Chain 7	Chain 8	Limit
		(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
	Low	2446.463	0.544	0.559	0.553	0.556	0.5
	Mid	2459.163	0.559	0.563	0.547	0.553	0.5
	High	2474.563	0.551	0.557	0.550	0.562	0.5

8.2.2. AVERAGE POWER

LIMITS

None; for reporting purposes only.

RESULTS

	Included	d in Calc	ulations	of Corr'd	Power			
Duty Cycle CF (dB)	0.68	0	0	0	0.68	0.67	0.75	0.73

Channel	Frequency	Chain 1	Chain 2	Chain 3	Chain 4	Chain 5	Chain 6	Chain 7	Chain 8	Total
		Power	Power							
	(MHz)	(dBm)	(dBm)							
Low	2446.463	9.74	12.81	13.92	12.96	13.97	13.07	10.75	8.99	21.79
Mid	2459.163	9.99	12.85	15.23	13.64	13.03	12.76	10.87	8.73	21.94
High	2474.563	10.12	12.32	14.01	12.64	14.03	12.27	10.91	8.69	21.62

DATE: 2016-09-28

8.2.3. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3)

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§15.247 (c) (2) In addition to the provisions in paragraphs (b)(1), (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

- (i) Different information must be transmitted to each receiver.
- (ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:
- (A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.
- (B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.
- (iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.

FORM NO: 03-EM-F00858

DIRECTIONAL ANTENNA GAIN

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Chain 3	Chain 4	Chain 5	Chain 6	Chain 7	Correlated
Antenna	Directional							
Gain								
(dBi)								
19.7	19.9	20	20.2	20.2	20.1	19.9	19.6	28.98

RESULTS

Limits

Channel	Frequency	Directional	FCC
		Gain	Power
			Limit
	(MHz)	(dBi)	(dBm)
Low	2446.463	28.98	23.00
Mid	2459.163	28.98	23.00
High	2474.563	28.98	23.00

	Included in C	ncluded in Calculations of Corr'd Power						
Duty Cycle CF (dB)	0.68	0	0	0				
	0.68	0.67	0.75	0.73				

Results

Channel	Frequency	Chain 1	Chain 2	Chain 3	Chain 4
		Meas	Meas	Meas	Meas
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2446.463	9.74	12.81	13.92	12.96
Mid	2459.163	9.99	12.85	15.23	13.64
High	2474.563	10.12	12.32	14.01	12.64

Channel	Frequency	Chain 5	Chain 6	Chain 7	Chain 8	Total	Power	Margin
		Meas	Meas	Meas	Meas	Corr'd	Limit	
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2446.463	13.97	13.07	10.75	8.99	21.79	23.00	-1.21
Mid	2459.163	13.03	12.76	10.87	8.73	21.94	23.00	-1.06
High	2474.563	14.03	12.27	10.91	8.69	21.62	23.00	-1.38

8.2.4. POWER SPECTRUM DENSITY

LIMITS

FCC §15.247 (e)

RESULTS

	Included	in Calcula	tions of C	orr'd PSD
Duty Cycle CF (dB)	0.68	0	0	0
	0.68	0.67	0.75	0.73

PSD Results

Channel	Frequency	Chain 1	Chain 2	Chain 3	Chain 4	
		Meas	Meas	Meas	Meas	
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	
Low	2446.463	-9.75	-7.73	-6.87	-6.39	
Mid	2459.163	-9.38	-7.16	-4.91	-5.54	
High	2474.563	-9.35	-7.77	-6.24	-6.13	

Channel	Frequency	Chain 5	Chain 6	Chain 7	Chain 8	Total	Limit	Margin
		Meas	Meas	Meas	Meas	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2446.463	-5.25	-6.19	-7.68	-10.33	2.23	8.0	-5.8
Mid	2459.163	-4.88	-6.04	-7.16	-10.03	2.89	8.0	-5.1
High	2474.563	-5.23	-6.73	-9.11	-10.93	2.11	8.0	-5.9

FORM NO: 03-EM-F00858

8.2.5. OUT-OF-BAND EMISSIONS

LIMITS

FCC §15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

FORM NO: 03-EM-F00858

DATE: 2016-09-28

RESULTS

IN-BAND REFERENCE LEVEL, Chain 1

LOW CHANNEL BANDEDGE, Chain 1

HIGH CHANNEL BANDEDGE, Chain 1

OUT-OF-BAND EMISSIONS, Chain 1

Page 61 of 399

IN-BAND REFERENCE LEVEL, Chain 2

LOW CHANNEL BANDEDGE, Chain 2

Page 63 of 399

HIGH CHANNEL BANDEDGE, Chain 2

Note – The worst-case limit line is -15.2 dBm. The mid channel reference was remeasured the day this plot was taken and set at -14.9 dBm. The emissions measurements meet both -15.2 and -14.9 dBm.

OUT-OF-BAND EMISSIONS, Chain 2

Note – The worst-case limit line is -15.2 dBm. The mid channel reference was remeasured the day this plot was taken and set at -14.9 dBm. The emissions measurements meet both -15.2 and -14.9 dBm.

IN-BAND REFERENCE LEVEL, Chain 3

LOW CHANNEL BANDEDGE, Chain 3

HIGH CHANNEL BANDEDGE, Chain 3

OUT-OF-BAND EMISSIONS, Chain 3

Note – The limit line was incorrectly set for 0 dBm. The limit line should be -13.7 dBm. This plot demonstrates that the emissions measured were below -13.7 dBm.

IN-BAND REFERENCE LEVEL, Chain 4

LOW CHANNEL BANDEDGE, Chain 4

Page 71 of 399

HIGH CHANNEL BANDEDGE, Chain 4

OUT-OF-BAND EMISSIONS, Chain 4

Page 75 of 399

OUT-OF-BAND EMISSIONS, Chain 5

Page 78 of 399

OUT-OF-BAND EMISSIONS, Chain 6

Page 79 of 399

Page 81 of 399

OUT-OF-BAND EMISSIONS, Chain 7

OUT-OF-BAND EMISSIONS, Chain 8

Page 85 of 399

DATE: 2016-09-28

8.3. 900 kHz MODE IN THE 2.4 GHz AUTHORIZED BAND

Note - 540 kHz data represents 900 kHz data for low and middle channels. The 900 kHz high channel was tested in addition to 540 kHz because the 900 kHz high channel is closer to the high band edge. The 540 kHz low and mid channels are considered worst-case when compared to the 900 kHz bandwidths.

FORM NO: 03-EM-F00858

8.3.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency	6 dB BW	6 dB BW	6 dB BW	6 dB BW	Minimum
		Chain 1	Chain 2	Chain 3	Chain 4	Limit
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
High	2474.743	0.916	0.908	1.072	0.932	0.5

Channel	Frequency	6 dB BW	6 dB BW	6 dB BW	6 dB BW	Minimum
		Chain 5	Chain 6	Chain 7	Chain 8	Limit
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
High	2474.743	0.924	0.934	0.908	0.934	0.5

DATE: 2016-09-28

8.3.2. AVERAGE POWER

LIMITS

None; for reporting purposes only.

RESULTS

	Included	d in Calc	ulations	of Corr'd	Power			
Duty Cycle CF (dB)	0.68	0	0	0	0.68	0.67	0.75	0.73

Channel	Frequency	Chain 1	Chain 2	Chain 3	Chain 4	Chain 5	Chain 6	Chain 7	Chain 8	Total
		Power	Power							
	(MHz)	(dBm)	(dBm)							
High	2474.743	9.58	11.83	14.76	12.95	13.76	12.54	11.16	9.14	21.67

8.3.3. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3)

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§15.247 (c) (2) In addition to the provisions in paragraphs (b)(1), (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

- (i) Different information must be transmitted to each receiver.
- (ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:
- (A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.
- (B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.
- (iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.

FORM NO: 03-EM-F00858

DIRECTIONAL ANTENNA GAIN

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

ſ	Chain 0	Chain 1	Chain 2	Chain 3	Chain 4	Chain 5	Chain 6	Chain 7	Correlated
١	Antenna	Directional							
١	Gain								
١	(dBi)								
ľ	19.70	19.90	20.00	20.20	20.20	20.10	19.90	19.60	28.98

RESULTS

Limits

Channel	Frequency	Directional	FCC
		Gain	Power
			Limit
	(MHz)	(dBi)	(dBm)
High	2474.743	28.98	23.00

Included in Calculations of Corr'd Power

Duty Cycle CF (dB)	0.68	0	0	0
	0.68	0.67	0.75	0.73

Results

Channel	Frequency	Chain 1	Chain 2	Chain 3	Chain 4
		Meas	Meas	Meas	Meas
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
High	2474.743	9.58	11.83	14.76	12.95

Channel	Frequency	Chain 5	Chain 6	Chain 7	Chain 8	Total	Power	Margin
		Meas	Meas	Meas	Meas	Corr'd	Limit	
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
High	2474.743	13.76	12.54	11.16	9.14	21.75	23.00	-1.25

8.3.4. POWER SPECTRUM DENSITY

LIMITS

FCC §15.247 (e)

RESULTS

	Included	in Calcula	tions of C	orr'd PSD
Duty Cycle CF (dB)	0.68	0	0	0
	0.68	0.67	0.75	0.73

PSD Results

Channel	Frequency	Chain 1	Chain 2	Chain 3	Chain 4
		Meas	Meas	Meas	Meas
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
	` ,	()	(' /	(' /	` ,

Channel	Frequency	Chain 5	Chain 6	Chain 7	Chain 8	Total	Limit	Margin
		Meas	Meas	Meas	Meas	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)

8.3.5. OUT-OF-BAND EMISSIONS

....

LIMITS

FCC §15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

FORM NO: 03-EM-F00858

DATE: 2016-09-28

RESULTS

IN-BAND REFERENCE LEVEL, Chain 1

LOW CHANNEL BANDEDGE, Chain 1

HIGH CHANNEL BANDEDGE, Chain 1

OUT-OF-BAND EMISSIONS, Chain 1

Page 105 of 399

OUT-OF-BAND EMISSIONS, Chain 2

Page 106 of 399

LOW CHANNEL BANDEDGE, Chain 3

HIGH CHANNEL BANDEDGE, Chain 3

OUT-OF-BAND EMISSIONS, Chain 3

IN-BAND REFERENCE LEVEL, Chain 4

LOW CHANNEL BANDEDGE, Chain 4

Page 110 of 399

HIGH CHANNEL BANDEDGE, Chain 4

OUT-OF-BAND EMISSIONS, Chain 4

Page 111 of 399

IN-BAND REFERENCE LEVEL, Chain 5

LOW CHANNEL BANDEDGE, Chain 5

Page 112 of 399

HIGH CHANNEL BANDEDGE, Chain 5

OUT-OF-BAND EMISSIONS, Chain 5

Page 113 of 399

IN-BAND REFERENCE LEVEL, Chain 6

LOW CHANNEL BANDEDGE, Chain 6

Page 114 of 399

HIGH CHANNEL BANDEDGE, Chain 6

OUT-OF-BAND EMISSIONS, Chain 6

Page 115 of 399

This report shall not be reproduced except in full, without the written approval of UL LLC.

IN-BAND REFERENCE LEVEL, Chain 7

LOW CHANNEL BANDEDGE, Chain 7

Page 116 of 399

HIGH CHANNEL BANDEDGE, Chain 7

OUT-OF-BAND EMISSIONS, Chain 7

IN-BAND REFERENCE LEVEL, Chain 8

LOW CHANNEL BANDEDGE, Chain 8

Page 118 of 399

HIGH CHANNEL BANDEDGE, Chain 8

OUT-OF-BAND EMISSIONS, Chain 8

8.4. 4.5 MHz MODE IN THE 2.4 GHz AUTHORIZED BAND

8.4.1. AVERAGE POWER

LIMITS

None; for reporting purposes only.

RESULTS

Included in Calculations of Corr'd Power									
Duty Cycle CF (dB)	0.68	0	0	0	0.68	0.67	0.75	0.73	

Channel	Frequency	Chain 1	Chain 2	Chain 3	Chain 4	Chain 5	Chain 6	Chain 7	Chain 8	Total
		Power	Power							
	(MHz)	(dBm)	(dBm)							
Low	2448.353	10.68	12.40	13.80	12.20	13.70	12.80	11.30	8.90	21.65
Mid	2460.700	9.90	12.60	15.70	13.80	13.90	13.00	10.90	8.40	22.18
High	2472.853	8.87	11.97	13.58	12.13	13.10	12.08	10.41	8.40	21.06

FORM NO: 03-EM-F00858

DATE: 2016-09-28

8.4.2. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3)

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§15.247 (c) (2) In addition to the provisions in paragraphs (b)(1), (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

- (i) Different information must be transmitted to each receiver.
- (ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:
- (A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.
- (B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.
- (iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.

FORM NO: 03-EM-F00858

DIRECTIONAL ANTENNA GAIN

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Chain 3	Chain 4	Chain 5	Chain 6	Chain 7	Correlated
Antenna	Directional							
Gain								
(dBi)								
19.70	19.90	20.00	20.20	20.20	20.10	19.90	19.60	28.98

RESULTS

Limits

Channel	Frequency	Directional	FCC	
		Gain	Power	
			Limit	
	(MHz)	(dBi)	(dBm)	
Low	2448.352	28.98	23.00	
Mid	2460.513	28.98	23.00	
High	2472.853	28.98	23.00	

	Included in	Calculati	ons of Co	rr'd Powe
Duty Cycle CF (dB)	0.68	0	0	0
	0.68	0.67	0.75	0.73

Results

Channel	Frequency	Chain 1	Chain 2	Chain 3	Chain 4
		Meas	Meas	Meas	Meas
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2448.352	10.68	12.40	13.80	12.20
Mid	2460.513	9.90	12.60	15.70	13.80
High	2472.853	8.87	11.97	13.58	12.13

Channel	Frequency	Chain 5	Chain 6	Chain 7	Chain 8	Total	Power	Margin
		Meas	Meas	Meas	Meas	Corr'd	Limit	
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2448.352	13.70	12.80	11.30	8.90	21.66	23.00	-1.34
Mid	2460.513	13.90	13.00	10.90	8.40	22.19	23.00	-0.81
High	2472.853	13.10	12.08	10.41	8.40	21.07	23.00	-1.93

8.4.3. POWER SPECTRUM DENSITY

LIMITS

FCC §15.247 (e)

RESULTS

	Included in Calculations of Corr'd PSD							
Duty Cycle CF (dB)	0.68 0 0 0							
	0.68	0.67	0.75	0.73				

PSD Results

Channel	Frequency	Chain 1	Chain 2	Chain 3	Chain 4
		Meas	Meas	Meas	Meas
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2448.352	-13.93	-15.67	-15.09	-11.87
Mid	2460.513	-15.86	-15.73	-13.10	-11.63
High	2472.853	-14.68	-16.12	-14.96	-11.57

Channel	Frequency	Chain 5	Chain 6	Chain 7	Chain 8	Total	Limit	Margin
		Meas	Meas	Meas	Meas	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2448.352	-13.80	-10.82	-8.98	-11.07	-2.53	8.0	-10.5
Mid	2460.513	-12.92	-11.10	-9.46	-13.23	-2.87	8.0	-10.9
High	2472.853	-14.98	-11.38	-10.00	-13.02	-3.32	8.0	-11.3

8.5. 9 MHz MODE IN THE 2.4 GHz AUTHORIZED BAND

8.5.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency	6 dB BW	6 dB BW	6 dB BW	6 dB BW	Minimum
		Chain 1	Chain 2	Chain 3	Chain 4	Limit
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
Low	2450.7	9.016	8.988	8.946	9.016	0.5
Mid	2460.7	8.960	9.044	8.722	8.988	0.5
High	2470.7	9.030	8.988	8.806	9.030	0.5

Channel	Frequency	6 dB BW	6 dB BW	6 dB BW	6 dB BW	Minimum
		Chain 5	Chain 6	Chain 7	Chain 8	Limit
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
Low	2450.7	9.044	8.932	8.974	9.044	0.5
Mid	2460.7	8.946	9.030	9.016	8.960	0.5
High	2470.7	9.044	8.904	9.016	8.960	0.5

6 dB BANDWIDTH, Chain 7

This report shall not be reproduced except in full, without the written approval of UL LLC.

6 dB BANDWIDTH, Chain 8

DATE: 2016-09-28

8.5.2. AVERAGE POWER

LIMITS

None; for reporting purposes only.

RESULTS

Included in Calculations of Corr'd Power								
Duty Cycle CF (dB)	0.68	0	0	0	0.67	0.67	0.68	0.68

Channel	Frequency	Chain 1	Chain 2	Chain 3	Chain 4	Chain 5	Chain 6	Chain 7	Chain 8	Total
		Power	Power							
	(MHz)	(dBm)	(dBm)							
Low	2450.7	9.14	11.87	13.83	12.63	12.65	12.27	10.92	8.90	21.21
Mid	2460.7	9.07	11.64	14.77	12.81	12.35	11.29	10.96	8.47	21.20
High	2470.7	8.94	10.62	14.32	12.71	12.65	11.08	10.95	8.87	21.02

8.5.3. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3)

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§15.247 (c) (2) In addition to the provisions in paragraphs (b)(1), (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

- (i) Different information must be transmitted to each receiver.
- (ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:
- (A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.
- (B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.
- (iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.

TEL: (919) 549-1400

FORM NO: 03-EM-F00858

DATE: 2016-09-28

DIRECTIONAL ANTENNA GAIN

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Chain 3	Chain 4	Chain 5	Chain 6	Chain 7	Correlated Chains
Antenna	Directional							
Gain								
(dBi)								
19.7	19.9	20	20.2	20.2	20.1	19.9	19.6	28.98

RESULTS

Limits

Channel	Frequency	Directional	FCC	
		Gain	Power	
			Limit	
	(MHz)	(dBi)	(dBm)	
Low	2450.7	28.98	23.00	
Mid	2460.7	28.98	23.00	
High	2470.7	28.98	23.00	

Included in	Calculations of	of Corr'd Power

Duty Cycle CF (dB)	0.68	0	0	0
	0.68	0.67	0.75	0.73

Results

Channel	Frequency	Chain 1	Chain 2	Chain 3	Chain 4
		Meas	Meas	Meas	Meas
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2450.7	9.14	11.87	13.83	12.63
Mid	2460.7	9.07	11.64	14.77	12.81
High	2470.7	8.94	10.62	14.32	12.71

Channel	Frequency	Chain 5	Chain 6	Chain 7	Chain 8	Total	Power	Margin
		Meas	Meas	Meas	Meas	Corr'd	Limit	
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2450.7	12.65	12.27	10.92	8.90	21.22	23.00	-1.78
Mid	2460.7	12.35	11.29	10.96	8.47	21.21	23.00	-1.79
High	2470.7	12.65	11.08	10.95	8.87	21.03	23.00	-1.97

8.5.4. POWER SPECTRUM DENSITY

LIMITS

FCC §15.247 (e)

RESULTS

Note – The Pk method was used. Therefore, no Duty Cycle correction was required.

	Included in Calculations of Corr'd PSD							
Duty Cycle CF (dB)	0.00	0	0	0				
	0.00	0	0	0				

PSD Results

Channel	Frequency	Chain 1	Chain 2	Chain 3	Chain 4
		Meas	Meas	Meas	Meas
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2450.700	-8.94	-13.23	-7.56	-11.32
Mid	2460.700	-12.07	-12.67	-7.26	-10.51
High	2470.700	-12.32	-13.40	-5.54	-10.44

Channel	Frequency	Chain 5	Chain 6	Chain 7	Chain 8	Total	Limit	Margin
		Meas	Meas	Meas	Meas	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2450.700	-11.44	-10.11	-8.53	-9.28	-0.70	8.0	-8.7
Mid	2460.700	-12.32	-10.15	-8.56	-9.37	-0.95	8.0	-9.0
High	2470.700	-11.94	-11.11	-7.31	-8.07	-0.19	8.0	-8.2

This report shall not be reproduced except in full, without the written approval of UL LLC.

8.5.5. OUT-OF-BAND EMISSIONS

LIMITS

FCC §15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

FORM NO: 03-EM-F00858

RESULTS

IN-BAND REFERENCE LEVEL, Chain 1

LOW CHANNEL BANDEDGE, Chain 1

This report shall not be reproduced except in full, without the written approval of UL LLC.

OUT-OF-BAND EMISSIONS, Chain 1

Page 167 of 399

Page 169 of 399

OUT-OF-BAND EMISSIONS, Chain 2

OUT-OF-BAND EMISSIONS, Chain 3

Page 173 of 399

Page 175 of 399

OUT-OF-BAND EMISSIONS, Chain 4

This report shall not be reproduced except in full, without the written approval of UL LLC.

OUT-OF-BAND EMISSIONS, Chain 5

This report shall not be reproduced except in full, without the written approval of UL LLC.

OUT-OF-BAND EMISSIONS, Chain 6

Page 183 of 399

Page 185 of 399

OUT-OF-BAND EMISSIONS, Chain 7

This report shall not be reproduced except in full, without the written approval of UL LLC.

OUT-OF-BAND EMISSIONS, Chain 8

Page 189 of 399

