Amendments To the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	Claim 1 (currently amended): A switching network comprising:		
2	a) a first stage of switches having input lines and output lines and		
3	comprising m (n x k) switches, wherein m is an integer number, n is		
4	an integer number representing the number of input lines and k is an		
5	integer number representing the number of output lines;		
6	b) a second stage of switches comprising of m (k' x k') switches, k' is an		
7	integer number representing the number of inputs and outputs; and		
8	c) a third stage of switches comprising of m (k x n) switches.		
9	wherein k' is selected such that $m*Q(k'/m) \ge k$ (where $Q(x/y)$ denotes the		
10	quotient of dividing x by y) to allow using m switches in the second stage.		
1	Claim 2 (currently amended): A switching network comprising:		
2	m identical modules, said module further comprising		
3	a) an input stage comprising of a (n x k) switch wherein n is an		
4	integer number representing the number of input lines and k is		
5	an integer number representing the number of output lines;		
6	b) a middle stage comprising of a (k' x k') switch, k' is an integer		
7	number representing the number of inputs and outputs; and		
8	c) an output stage comprising of a (k x n) switch		
9	wherein k, k', and m satisfy $m*Q(k'/m) \ge k$.		
1	Claim 3 (currently amended): A method of constructing a switching network comprising:		
2	a) using m identical modules[,];		
3	b) constructing said module from an input stage comprising of a (n x k)		
4	switch, a middle stage comprising of a (k' x k') switch, an output stage		
5	comprising of a (k x n) switch; and		
6	c) selecting k' such that $m*Q(k'/m) \ge k$.		

Application No. 09/648,076 Amendment dated August 6, 2004 Reply to Office Action of May 6, 2004

1	Claim 4 (currently amended): A module comprising:		
2	a)	an input stage comprising of a (n x k) switch wherein n is an integer	
3		number representing the number of input lines and k is an integer	
4		number representing the number of output lines;	
5	b)	a middle stage comprising of a (k' x k') switch, k' is an integer	
6		number representing the number of inputs and outputs;	
7	c)	an output stage comprising of a (k x n) switch; and	
8	wherein a switching network can be constructed using m of said modules, when		
9	k, k', and	k, k', and m satisfy $m*Q(k'/m) \ge k$	
1	Claim 5 (current	ly amended): A method of constructing a v(k, n, m) switching network	
2	for values of m belor	ues of m belonging to a non-empty set Mcomprising:	
3	a) using m i	dentical modules[,];	
4	b) construct	ing said module from an input stage comprising of a (n x k) switch, a	
5	middle st	age comprising of a (k' x k') switch, an output stage comprising of a (k	
6	x n) switc	ch <u>; and</u>	
7	c) selecting	k' such that $m*Q(k'/m) \ge k$ for all values of m belonging to set M_2	