Lecture 18

ACF of AR, MA, and ARMA models

Arnab Hazra

ACF of an MA(q) process

▶ Consider the ACF of an MA(q) process, $X_t = \theta(B)W_t$, where

$$\theta(B) = 1 + \theta_1 B + \ldots + \theta_q B^q.$$

- $ightharpoonup E(X_t) = 0$
- $\operatorname{Var}(X_t) = \sigma_W^2(1 + \theta_1^2 + \ldots + \theta_q^2)$
- $\rho(h) = \gamma(h)/\gamma(0)$

Difference equation: General result for order *p* (Recap)

▶ These results generalize to the homogeneous difference equation of order *p*:

$$u_n - \alpha_1 u_{n-1} - \ldots - \alpha_p u_{n-p} = 0, \quad \alpha_p \neq 0, \quad n = p, p + 1, \ldots$$

- ▶ The associated polynomial is $\alpha(z) = 1 \alpha_1 z \ldots \alpha_p z^p$.
- Suppose $\alpha(z)$ has r distinct roots, z_i with multiplicity m_i for i = 1, ..., r, such that $\sum_{i=1}^{r} m_i = p$.
- ► The general solution is

$$u_n = z_1^{-n} P_1(n) + z_2^{-n} P_2(n) + \ldots + z_r^{-n} P_r(n),$$

where $P_i(n)$, for j = 1, 2, ..., r, is a polynomial in n, of degree $m_i - 1$.

ACF of an AR(p) process

- ▶ Suppose $X_t = \phi_1 X_{t-1} + ... + \phi_p X_{t-p} + W_t$ is a causal AR(p) process.
- ▶ Multiply each side of the model by X_{t-h} for $h \ge p$, and take expectation:

$$E(X_t X_{t-h}) = \phi_1 E(X_{t-1} X_{t-h}) + \ldots + \phi_p E(X_{t-p} X_{t-h}) + E(W_t X_{t-h}).$$

- ► The result is $\gamma(h) = \phi_1 \gamma(h-1) + \ldots + \phi_p \gamma(h-p), h = p, p+1, \ldots$
- ▶ Dividing by $\gamma(0)$, we have $\rho(h) = \phi_1 \rho(h-1) + \ldots + \phi_p \rho(h-p)$.
- Suppose $\phi(z) = 1 \phi_1 z \ldots \phi_p z^p$ has r distinct roots, z_i with multiplicity m_i for $i = 1, \ldots, r$, such that $\sum_{i=1}^r m_i = p$.
- The general solution is

$$\rho(h) = z_1^{-h} P_1(h) + z_2^{-h} P_2(h) + \ldots + z_r^{-h} P_r(h), \quad h = p, p + 1, \ldots$$

where $P_i(h)$, for j = 1, 2, ..., r, is a polynomial in h, of degree $m_i - 1$.

ACF of an ARMA(p, q) process

- A causal ARMA(p,q) model $\{X_t; t=0,\pm 1,\pm 2,\ldots\}$ can be written as a one-sided linear process $X_t = \sum_{j=0}^{\infty} \psi_j W_{t-j} = \psi(B) W_t$.
- Show that

$$\gamma(h) = \operatorname{Cov}(X_{t+h}, X_t) = \sum_{j=1}^{p} \phi_j \gamma(h-j) + \sigma_w^2 \sum_{j=h}^{q} \theta_j \psi_{j-h}, \quad h \geq 0.$$

► From there, we can write $\gamma(h) - \sum_{j=1}^{p} \phi_j \gamma(h-j) = 0$, $h \ge \max\{p, q+1\}$, with initial conditions

$$\gamma(h) - \sum_{i=1}^{p} \phi_{j} \gamma(h-j) - \sigma_{w}^{2} \sum_{i=h}^{q} \theta_{j} \psi_{j-h} = 0, \ \ 0 \leq h < \max\{p, q+1\}.$$

Example: ACF of an ARMA(1, 1) process

- ▶ Consider the model: $X_t = \phi X_{t-1} + \theta W_{t-1} + W_t$, where $|\phi| < 1$.
- ▶ We can obtain $\gamma(h) \phi \gamma(h-1) = 0$, $h \ge 2$, which implies $\gamma(h) = c\phi^h$, $h \ge 2$.
- Initial conditions can be solved as: $\gamma(0) = \phi \gamma(1) + \sigma_W^2 [1 + \theta \phi + \theta^2]$ and $\gamma(1) = \phi \gamma(0) + \sigma_W^2 \theta$.
- ► The final solution is $\rho(h) = \frac{(1 + \theta\phi)(\phi + \theta)}{1 + 2\theta\phi + \theta^2}\phi^{h-1}$, $h \ge 1$.
- ► Thus, the dominating terms in $\rho(h)$ for AR(1) and ARMA(1,1) are the exponentially decaying terms ϕ^h .
- As a result, it is not possible to distinguish between them based on ACF.
- We need a tool to solve this issue and PACF will be the savior!

Thank you!