1.6 弧度制

在 LuaSTG 中,我们使用角度制衡量角的大小。角度制将周角等分为 360~%,每一份的大小定义为 1° 。角度制由于其发展早、容易理解、便于测量计算而得到广泛使用。然而在弧长相关的公式中,角度制将显得烦琐。所以我们引入另一种度量角的体系:弧度制。

1.6.1 弧度制的定义

弧度制从对弧长的研究中诞生。如图,圆 O 的半径为 R,圆心角 α 对应弧 AB,弧长为 L。在角度制下,弧长与半径有关系 $L=\frac{\pi}{180^{\circ}}\alpha R$,即

$$rac{L}{R} = rac{\pi}{180^{\circ}} lpha$$

弧度制直接将角 α 的大小定义为 $\dfrac{L}{R}$, 称为 α 的弧度值。于是在弧度制下,弧长公式可以简单地表示为 $L=\alpha R$ 。这种简化是我们使用弧度制的重要原因。

举两个例子。周角 360° 对应的圆弧为整个圆周,而我们知道圆的周长 L 与半径 R 满足 $L=2\pi R$,所以周角的弧度值为 2π ;直角 90° 对应 $\frac{1}{4}$ 圆周,弧长 $L=\frac{2\pi R}{4}=\frac{\pi}{2}R$,所以直角的弧度值为 $\frac{\pi}{2}$ 。

角度制的单位 度 ($^\circ$) 是不能省略的,但弧度制可以省略单位。不过有时为了强调它表示一个角的大小,可以附上单位 rad。比如 1 和 1 rad 都可以表示弧度值为 1 的角 (相当于大约 57.3 $^\circ$)。

1.6.2 弧度制与角度制的转换

周角的角度值为 360° ,而弧度值为 2π ,我们说 $360^{\circ}=2\pi$ 。其他角度的转换都可以由该式得到。

比如要把
$$30\degree$$
 转换为弧度值,那么有 $30\degree=30^\circ\cdot\frac{2\pi}{360^\circ}=\frac{\pi}{6}$.

lua 提供了角度值与弧度值的转换函数。math.deg(x) 将弧度 $x\ rad$ 转换为对应角度,math.rad(x) 将角度 x° 转换为对应弧度。