10

15

20

CLAIMS:

- 1. A method of producing a library of mutant nucleic acid molecules comprising:
 - (a) obtaining a template nucleic acid;
- (b) preparing a first oligonucleotide corresponding to a first desiredmutation within said template nucleic acid;
 - (c) preparing a second oligonucleotide corresponding to a second desired mutation within said template nucleic acid;
 - (d) mixing the oligonudeotides prepared in said steps (b) and (c) so as to hybridize said oligonudeotides to said template nucleic acid;
 - (e) subjecting the mixture of step (d) to the linear cyclic amplification reaction to produce a library of mutant template nucleic acids.
 - 2. The method according to claim 1, wherein said oligonucleotides in said steps (b) and (c) are discontiguous.
 - 3. The method according to claim 1, wherein said step first and second oligonudeotides are present in less than saturation concentration.
 - 4. The method according to claim 1, wherein the mixture of said step (d) further comprises non-mutagenic oligonucleotides corresponding to either or both of said first and second oligonucleotides.
 - 5. The method according to claim 1, wherein said template nucleic acid corresponds to a desired protein product.
 - 6. The method according to claim 4, wherein said protein product comprises an enzyme, hormone, vaccine, peptide therapeutic or antibody.
 - 7. The method according to claim 4, further comprising the steps of:
- (f) transforming said mutant template nucleic acids from said library intoa competent host cell;
 - (g) expressing protein corresponding to said mutant nucleic acids in said host cell;
 - (h) screening said expressed proteins for desired characteristics.

15

20

- 8. A method for producing a library of mutant nucleic acid molecules comprising the steps of:
 - (a) obtaining a template nucleic acid;
- (b) preparing two or more primers corresponding to the template nucleic acid,
 wherein at least one primer is in opposite orientation to the remaining primers and at least one primer is a mutagenic primer corresponding to a desired mutation;
 - (c) mixing the primers in said step (b) so as to hybridize said primers to said template nucleic acid; and
- (d) subjecting the mixture of step (c) to the linear cyclic amplification reaction to produce a library of mutant template nucleic acids.
 - 9. The method of claim 8, wherein said two or more primers comprises 3 to 15 primers or 4 to 7 primers.
 - 10. The method of claim 8, wherein said primers in said step (b) are discontiguous.
 - 11. The method according to claim 8, wherein said primers in step (b) are present in less than saturation concentration.
 - 12. The method of claim 8, wherein all said primers in step(b) are mutagenic primers.
 - 13. The method of claim 8, wherein said at least one mutagenic primer comprises 1 to 12 nucleotide mutations.
 - 14. The method of claim 8, wherein said at least one mutagenic primer encodes 1 to 4 amino acid mutations.
 - 15. The method according to claim 8, wherein said template nucleic acid corresponds to a desired protein product.
- 25 16. The method according to claim 15, wherein said protein product comprises an enzyme, hormone, vaccine, peptide therapeutic or antibody.
 - 17. The method according to claim 8, further comprising the steps of:
 - (e) transforming said mutant template nucleic acids from said library into a competent host cell;

- (f) expressing protein corresponding to said mutant nucleic acids in said host cell; and
 - (g) screening said expressed proteins for desired characteristics.

5