2017-09-14

- Function: for every $x \in X$, there is exactly one $y \in Y$ such that $(x, y) \in R$.
 - Injective (one-to-one; $|X| \le |Y|$): for every $y \in Y$, there is at most one $x \in X$ such that f(x) = y.
 - Surjective (onto; $|X| \ge |Y|$): for every $y \in Y$, there is at least one $x \in X$ such that f(x) = y.
 - **Bijective** (one-to-one and onto; |X| = |Y|): both injective and surjective.
- Countable: there is an injective function from X to \mathbb{N} .
 - Examples of countably infinite sets: \mathbb{Q} , \mathbb{Z} , \mathbb{N} .
 - Examples of uncountably infinite sets: \mathbb{C} , \mathbb{R} , $2^{\mathbb{N}}$.
 - Proof of uncountability: Cantor's diagonalization.
- Alphabet (Σ): a finite set of symbols.
- Word (w): a finite sequence of symbols over Σ .
 - ϵ (empty word): the word of length 0.
 - Σ^n : the set of all words of length *n* over Σ .
 - $\Sigma^* = \bigcup_{n \ge 0} \Sigma^n$: the set of all finite words over Σ .
 - $\circ \quad \Sigma^+ = \cup_{n \ge 1} \Sigma^n = \Sigma^* \setminus \{\epsilon\}$
- Language (L): a subset of Σ^* , i.e. $L \subseteq \Sigma^*$.
 - Given two languages L_1 and L_2 over Σ , $L_1L_2 = \{w_1w_2 | w_1 \in L_1, w_2 \in L_2\}$ (similar to Cartesian product).
- Other examples of countably infinite sets:
 - The set of all finite sequences over Σ , i.e. Σ^* .
 - The set of all computer programs. ∵ computer programs have (1) finite symbols, and (2) finite length.
- Other examples of uncountably infinite sets:
 - The set of all languages over Σ , i.e. 2^{Σ^*} .
- Question: For every language, we can write a computer program to detect it. (False)