CO 432 Spring 2025:

Lecture Notes

1 Introduction									2
1.1 E	${ m Cntropy}$. . .		2
1.	.1.1 Axiomatic view of entropy								2
1.	.1.2 Entropy as optimal lossless data	compression							3
	otes taken, unless otherwise specified, at by Vijay Bhattiprolu.	by myself du	ring the S _I	oring 2	025 c	offer	ing	of C	Ю
Lecture	es	Lecture 2	May 8 .						2
Lecture 1	May 6								

Chapter 1

Introduction

1.1 Entropy

TODO

Lecture 1 May 6

Definition 1.1.1 (entropy)

For a random variable X which is equal to i with probability p_i , the entropy $H(\mathsf{X}) := \sum_i p_i \log \frac{1}{p_i}$.

1.1.1 Axiomatic view of entropy

We want $S:[0,1] \to [0,\infty)$ to capture how "surprised" we are S(p) that an event with probability p happens. We want to show that under some natural assumptions, this is the only function we could have defined as entropy. In particular:

Lecture 2 May 8

- 1. S(1) = 0, a certainty should not be surprising
- 2. S(q) > S(p) if p > q, less probable should be more surprising
- 3. S(p) is continuous in p
- 4. S(pq) = S(p) + S(q), surprise should add for independent events. That is, if I see something twice, I should be twice as surprised.

Proposition 1.1.2

If S(p) satisfies these 4 axioms, then $S(p) = c \cdot \log_2(1/p)$ for some c > 0.

Proof. Suppose a function $S:[0,1]\to[0,\infty)$ exists satisfying the axioms. Let $c:=S(\frac{1}{2})>0$.

By axiom 4 (addition), $S(\frac{1}{2^k}) = kS(\frac{1}{2})$. Likewise, $S(\frac{1}{2^{1/k}} \cdots \frac{1}{2^{1/k}}) = S(\frac{1}{2^{1/k}}) + \cdots + S(\frac{1}{2^{1/k}}) = kS(\frac{1}{2^{1/k}})$.

Then, $S(\frac{1}{2^{m/n}}) = \frac{m}{n}S(\frac{1}{2}) = \frac{m}{n} \cdot c$ for any rational m/n.

By axiom 3 (continuity), $S(\frac{1}{2^z}) = c \cdot z$ for all $z \in [0, \infty)$ because the rationals are dense in the reals. In particular, for any $p \in [0, 1]$, we can write $p = \frac{1}{2^z}$ for $z = \log_2(1/p)$ and we get

$$S(p) = S\left(\frac{1}{2^z}\right) = c \cdot z = c \cdot \log_2(1/p)$$

as desired. \Box

We can now view entropy as expected surprise. In particular,

$$\sum_i p_i \log_2 \frac{1}{p_i} = \mathop{\mathbb{E}}_{x \sim \mathsf{X}}[S(p_x)]$$

for a random variable X = i with probability p_i .

1.1.2 Entropy as optimal lossless data compression

Suppose we are trying to compress a string consisting of n symbols drawn from some distribution.

Problem 1.1.3

What is the expected number of bits you need to store the results of n independent samples of a random variable X?

We will show this is nH(X).

Notice that we assume that the symbols we are drawn <u>independently</u>, which is violated by almost all data we actually care about.

Definition 1.1.4

Let $C: \Sigma \to (\Sigma')^*$ be a code. We say C is <u>uniquely decodable</u> if there does not exist a collision $x, y \in \Sigma^*$, with identical encoding $C(x_1)C(x_2)\cdots C(x_k) = C(y_1)C(y_2)\cdots C(y_{k'})$.

Also, C is <u>prefix-free</u> (sometimes called <u>instantaneous</u>) if for any distinct $x, y \in \Sigma$, C(x) is not a prefix of C(y).

Proposition 1.1.5

Prefix-freeness is sufficient for unique decodability.

Example 1.1.6. Let $C : \{A, B, C, D\} \to \{0, 1\}^*$ where C(A) = 11, C(B) = 101, C(C) = 100, and C(D) = 00. Then, C is prefix-free and uniquely decodable.

We can easily parse 1011100001100 unambiguously as 101.11.00.00.11.00 (BADDAD).

Recall from CS 240 that a prefix-free code is equivalent to a trie, and we can decode it by traversing the trie in linear time.

Theorem 1.1.7 (Kraft's inequality)

A prefix-free binary code $C:\{1,\dots,n\}\to\{0,1\}^*$ with codeword lengths $\ell_i=|C(i)|$ exists if and only if

$$\sum_{i=1}^{n} \frac{1}{2^{\ell_i}} \le 1.$$

Proof. Suppose $C:\{1,\ldots,n\}\to\{0,1\}^*$ is prefix-free with codeword lengths ℓ_i . Let T be its associated binary tree and let W be a random walk on T where 0 and 1 have equal weight (stopping at either a leaf or undefined branch).

Define E_i as the event where W reaches i and E_{\emptyset} where W falls off. Then,

$$\begin{split} 1 &= \Pr(E_{\varnothing}) + \sum_{i} \Pr(E_{i}) \\ &= \Pr(E_{\varnothing}) + \sum_{i} \frac{1}{2^{\ell_{i}}} & \text{(by independence)} \\ &\geq \sum_{i} \frac{1}{2^{\ell_{i}}} & \text{(probabilities are non-negative)} \end{split}$$

Conversely, suppose the inequality holds for some ℓ_i . Wlog, suppose $\ell_1 < \ell_2 < \dots < \ell_n$.

Start with a complete binary tree T of depth ℓ_n . For each i = 1, ..., n, find any unassigned node in T of depth ℓ_i , delete its children, and assign it a symbol.

Now, it remains to show that this process will not fail. That is, for any loop step i, there is still some unassigned node at depth ℓ_i .

Let $P \leftarrow 2^{\ell_n}$ be the number of leaves of the complete binary tree of depth ℓ_n . After the i^{th} step, we decrease P by $2^{\ell_n - \ell_i}$. That is, after n steps,

$$P = 2^{\ell_n} - \sum_{i=1}^n \frac{2^{\ell_n}}{2^{\ell_i}}$$

$$= 2^{\ell_n} - 2^{\ell_n} \sum_{i=1}^n \frac{1}{2^{\ell_i}}$$

$$\geq 0$$

by the inequality.