

Cyber-Physical Systems (Bachelor) Safety-Critical Systems (Master)

Rico Amslinger, Martin Frieb, Florian Haas, Christoph Kühbacher, Christian Mellwig, Christian Piatka, <u>Alexander Stegmeier</u>, Prof. Dr. Theo Ungerer

Lehrstuhl für Systemnahe Informatik und Kommunikationssysteme Institut für Informatik Universität Augsburg

Ziele des Seminars

- Selbstständiges Arbeiten
 - ▶ Literaturrecherche
 - ► Finarbeiten in die Materie
- ► Ausarbeitung nach wissenschaftlichen Maßstäben
- ► Erarbeitung eines Vortrags zur Seminararbeit
- Vortrag und Diskussion der Themen im Blockseminar

19 10 2018

Umfang und Vortragsdauer

- Bachelor
 - ► Ausarbeitung: 12–15 Seiten
 - ► Vortragsdauer: 25 Minuten, plus 5 Minuten Diskussion
- ▶ Master
 - ► Ausarbeitung: 15–20 Seiten
 - ► Vortragsdauer: 35 Minuten, plus 10 Minuten Diskussion

► LATEX-Vorlagen für Ausarbeitung und Vortragsfolien in Digicampus

- I. Einarbeitung:
 - ► Betreuer meldet sich per E-Mail für erstes Treffen
 - ▶ Überblick über das Thema bekommen, Literaturrecherche

- I. Einarbeitung:
 - ► Betreuer meldet sich per E-Mail für erstes Treffen
 - ▶ Überblick über das Thema bekommen, Literaturrecherche
- II. Literaturrecherche:
 - ► Literatur lesen, ordnen und zusammenfassen

I. Einarbeitung:

- ► Betreuer meldet sich per E-Mail für erstes Treffen
- ▶ Überblick über das Thema bekommen, Literaturrecherche

II. Literaturrecherche:

► Literatur lesen, ordnen und zusammenfassen

III. Einleitung & Gliederung:

- ► Einleitung und Motivation für Thema erstellen
- ► Struktur der Ausarbeitung festlegen
- ▶ Inhalte stichpunktartig definieren, mit Quellenangabe

IV. Ausarbeitung:

- ► Kapitel ausarbeiten
- ► Zusammenfassung und Fazit erstellen
- ► Vorgegebenen Umfang beachten
- ► Auf Sprache und Rechtschreibung achten

IV. Ausarbeitung:

- ► Kapitel ausarbeiten
- ► Zusammenfassung und Fazit erstellen
- ► Vorgegebenen Umfang beachten
- ► Auf Sprache und Rechtschreibung achten

V. Vortrag:

- Inhalt der Ausarbeitung verständlich und anschaulich zusammenfassen
- ► Vorgegebene Zeiten einhalten

- ► Zum jeweiligen Termin bis 08:00 Uhr
- ► Aus LATEX erstellte PDFs
- ► Per E-Mail an Betreuer und CC an alexander.stegmeier@informatik.uni-augsburg.de
- ► Alle Termine sind einzuhalten!

- Zwischenstand bzw. Vorabversion von Ausarbeitung und Vortrag an Betreuer schicken (empfohlen)
- ► Anmerkungen und Hinweise einarbeiten

► Themenvergabe:	heute, 19.10.2018
► Termin mit Betreuer vereinbaren:	Fr. 26.10.2018
► Literatur abgeben:	Mo. 12.11.2018
► Gliederung & Einleitung abgeben:	Mo. 26.11.2018
► Ausarbeitung abgeben:	Mo. 14.01.2019
► Folien abgeben:	Mi. 23.01.2019
► Blockseminar (Anwesenheitspflicht!):	Fr. 25.01.2019 Fr. 01.02.2019 Fr. 08.02.2019

Ursachen für Abbruch bzw. schlechte Ergebnisse sind meist:

- ► Probleme nicht rechtzeitig mit dem Betreuer besprochen
- ► Unterschätzung des Zeitaufwands:
 - 4 LP \Rightarrow 4 · 30 h = 120 Stunden Zeitaufwand
- ► Zu spät mit den einzelnen Abschnitten begonnen
- ► Zu wenig Rücksprache mit dem Betreuer

Lesen Sie die Vorlage für Seminararbeiten und verwenden Sie die bereitgestellten Vorlagen für Ihre Ausarbeitung und Präsentation!

Verteilung der Themen

- ▶ 9 Bachelorstudenten, 7 Bachelorthemen
- ▶ 11 Masterstudenten, 7 Masterthemen

Verteilung der Themen

- ▶ 9 Bachelorstudenten, 7 Bachelorthemen
- ▶ 11 Masterstudenten, 7 Masterthemen

Faire Verteilung der Themen:

- ▶ Jeder erstellt seine persönliche, priorisierte Themenliste
- ► Jede(r) Student(in) zieht eine Zahl
- ► Zuteilung nach absteigender Semesterzahl
- ► Student(inn)en wählen in aufsteigender Reihenfolge der gezogenen Zahl aus den noch freien Themen

Seminarthemen Bachelor

- 1. Cyber-Physical Systems in der Medizin
- 2. Wear Core for Wearable Workloads
- 3. Timing-Analyse für parallele Echtzeit-Anwendungen mit P-SOCRATES
- 4. Visual SLAM / Visual Odometry
- 5. Al accelerators
- 6. Security Considerations for Cyber Physical Systems
- 7. Vergleich AUTOSAR und AUTOSAR Adaptive
- Scheduling in Eingebetteten Systemen am Beispiel des Nvidia Jetson TX2
- 9. Verwendung von Nvidia CUDA in Echtzeit-Systemen

Seminarthemen Master

- 1. Systemweite Response-Time Analysis für Echtzeitsysteme
- 2. Edge-TM: Exploiting Transactional Memory for Error Tolerance and Energy Efficiency
- 3. Speicherkonsistenzmodelle für GPUs
- 4. Snapshot-Isolation Transactions
- 5. Echtzeitfähige Timer-Isolation im Linux-Kernel
- 6. Echtzeitfähige Cache-Kohärenz für Multicore-Prozessoren
- 7. Echtzeitfähige Hardware-Transaktionsspeicher

