## 第 2 章: PIC 单片机存储器

井艳军

沈阳工业大学电气工程学院

## 主要内容

程序存储器构架

数据存储器构架

失电保护数据存储器构架

## PIC 单片机存储器

存储器是单片机中一个非常重要的部件,专门用于存放指令、数据和运算结果。分析 F877 单片机存储器构架,可以从其配置的三大模块着手进行,它们是:

- 8k x 14 位 FLASH 程序存储器
- 512 x 8 位数据存储器 RAM
- 256 × 8 位可掉电保护数据的 EEPROM 存储器模块。

## 存储器分类

存储器从使用功能上来分,可分为随机存储器 RAM(Random Access Memory)和只读存储器 ROM(Read Only Memory)两类。

# 程序存储器构架

## 程序存储器构架

F877 程序存储器具有 13 位宽的程序计数器 PC。PC 指针所产生的 13 位地址最大可寻址的程序存储器空间为 8K,相应的地址编码范围为  $0000H\sim1$ FFFH。

F877 归属于中档单片机,其指令字节宽度为 14 位,内部构架配置了  $8k \times 14$  位的闪烁 FLASH 程序存储器。

## 程序存储器构架

一般将整个程序存储器以 2KB 为单位进行分页 (PAGE), 如图 2-1 所示 F877 单片机, 8KB 程序存储器共分作 4 页,分别称为 "页 0"、"页 1"、"页 2" 和 "页 3"。程序计数器高 8 位 PCLATH 的 Bit4-Bit3 位构成程序存储器分页的选择位,对应的地址空间:

| Bit4 | Bit3 | 页域  | 程序存储器地址     |
|------|------|-----|-------------|
| 0    | 0    | 页 0 | 0000H~07FFH |
| 0    | 1    | 页 1 | 0800H∼0FFFH |
| 1    | 0    | 页 2 | 1000H∼17FFH |
| 1    | 1    | 页 3 | 1800H∼1FFFH |



## 复位矢量中断矢量

程序存储器中有 2 个单元地址比较特殊,除了具备同其他单元地址一样的普通用途外,还具有专门用途:

0000H:用作单片机系统的复位矢量;

0004H:用作系统特殊模块的中断矢量。

#### 堆栈

堆栈(Stack) 是计算机技术中一种十分重要的数据结构, 堆栈从物理意义上也是一种存储器件。如果对数据结构不了解的话,可以把堆栈的看作一维数组,只是堆栈对数据的操作和一维数组是不一样的,有特殊的操作规则。

对一维数组进行元素的插入、删除操作时,可以在任何位置(即 下标) 进行;但是对于堆栈来说,所有的插入、删除等操作都只 能固定在某一端进行的,我们把这一端称为"栈顶(top)",而另 一端则称为 "栈底 (bottom)"。 向栈中插入数据的操作称为 "压 入或进栈 (Push)",从栈中删除数据称为"弹出或出栈 (Pop)"。 堆栈中数据的操作法则是:"后进先出(Last In First Out, 简称 LIFO)"的原则进行的,即最后压入的元素最先弹出。

PIC16F877 的堆栈具有 8 个单元,每个单元 13 位,因此堆栈具有 8×13 位的空间,不占用程序存储器和数据存储器空间。

16F877 单片机的堆栈没有进栈 (push) 和出栈 (pop) 之类的操作指令,即它的进栈和出栈操作是由单片机系统自动控制的。当执行程序员使用子程序调用指令 CALL 或者 CPU 响应中断时,单片机会把当前 PC 的值自动压入堆栈;当执行返回指令RETURN、RETFIE 或 RETLW 时,会从堆栈中自动弹出并恢复 PC 的原值。

# 数据存储器构架

## 数据存储器构架

F877 用于存储数据的 RAM 单元比一般单片机 RAM 的功能要强大得多,它除了具备普通 RAM 的功能之外,每一个单元都能实现移位、置位、复位和位测试等通常由寄存器才能完成的功能操作。

## 数据存储器分区

RAM 数据存储器和 FLASH 程序存储器一样在空间构架上,进行类似方式进行分区。按横向排列,分为 4 个 "体"(BANK),从左到右分别记为 "体 0"、"体 1"、"体 2" 和 "体 3",每个体为 128 个 8 位宽的存储器单元。位 RP1 和 RP0(状态寄存器 STATUS 的 Bit6、Bit5)构成数据存储器分体的选择位。

| RP1 | RP0 | 体域  | 数据存储器地址   |
|-----|-----|-----|-----------|
| 0   | 0   | 体 0 | 000H∼07FH |
| 0   | 1   | 体 1 | 080H∼0FFH |
| 1   | 0   | 体 2 | 100H∼17FH |
| 1   | 1   | 体 3 | 180H∼1FFH |

| 间接寻址 <sup>(1)</sup>                                                                                                                                                                                           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| TMR0         01H         OPTION_REG         81H         TMR0         101H         OPTION_REG         181H           PCL         02H         PCL         82H         PCL         102H         PCL         182H |  |
|                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                               |  |
| STATUS 03H STATUS 83H STATUS 103H STATUS 183H                                                                                                                                                                 |  |
| FSR 04H FSR 84H FSR 104H FSR 184H                                                                                                                                                                             |  |
| PORTA 05H TRISA 85H 105H 185H                                                                                                                                                                                 |  |
| PORTB 06H TRISB 86H PORTB 106H TRISB 186H                                                                                                                                                                     |  |
| PORTC 07H TRISC 87H 107H 187H                                                                                                                                                                                 |  |
| PORTD 08H TRISD 88H 108H 188H                                                                                                                                                                                 |  |
| PORTE 09H TRISE 89H 109H 189H                                                                                                                                                                                 |  |
| PCLATH 0AH PCLATH 8AH PCLATH 10AH PCLATH 18AH                                                                                                                                                                 |  |
| INTCON 0BH INTCON 8BH INTCON 10BH INTCON 18BH                                                                                                                                                                 |  |
| PIR1 0CH PIE1 8CH EEDATA 10CH EECON1 18CH                                                                                                                                                                     |  |
| PIR2 0DH PIE2 8DH EEADR 10DH EECON2 18DH                                                                                                                                                                      |  |
| TMRIL 0EH PCON 8EH EEDATH 10EH Reserved <sup>(2)</sup> 18EH                                                                                                                                                   |  |
| TMR1H 0FH 8FH EEADRH 10FH Reserved <sup>(2)</sup> 18FH                                                                                                                                                        |  |
| TICON 10H 90H 110H 190H                                                                                                                                                                                       |  |
| TMR2 11H SSPCON2 91H 111H 191H                                                                                                                                                                                |  |
| T2CON 12H PR2 92H 112H 192H                                                                                                                                                                                   |  |
| SSPBUF         13H         SSPADD         93H         113H         193H                                                                                                                                       |  |
| SSPCON         14H         SSPSTAT         94H         114H         194H                                                                                                                                      |  |
| CCPRIL 15H 95H 115H 195H                                                                                                                                                                                      |  |
| <u>CCPR1H</u> 16H 96H 116H 196H                                                                                                                                                                               |  |
| CCP1CON         17H         97H         通用寄存器         117H         通用寄存器         197H                                                                                                                         |  |
| RCSTA                                                                                                                                                                                                         |  |
| TXREG 19H SPBRG 99H 119H 199H                                                                                                                                                                                 |  |
| RCREG   1AH   9AH   11AH   19AH                                                                                                                                                                               |  |
| CCPR2L         1BH         9BH         11BH         19BH                                                                                                                                                      |  |
| CCPR2H         1CH         9CH         11CH         19CH                                                                                                                                                      |  |
| CCP2CON 1DH 9DH 11DH 19DH                                                                                                                                                                                     |  |
| ADRESH 1EH ADRESL 9EH 11EH 19EH                                                                                                                                                                               |  |
| ADCON0 1FH ADCON1 9FH 11FH 19FH                                                                                                                                                                               |  |
| 20H A0H 120H 1A0H                                                                                                                                                                                             |  |
| 通用寄存器 通用寄存器 通用寄存器                                                                                                                                                                                             |  |
| 通用寄存器 80字节 80字节 80字节                                                                                                                                                                                          |  |
| 06学世                                                                                                                                                                                                          |  |
| 96子节                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                               |  |
| 7FH 7FH 7FH 17FH 17FH 1FFH                                                                                                                                                                                    |  |
| 体0 体1 体2 体3                                                                                                                                                                                                   |  |

## 互相映射

有些寄存器单元在 4 个体上是互相映射的,如状态寄存器STATUS、间接寻址寄存器 INDF、程序计数器低 8 位 PCL、文件选择寄存器 FSR、程序计数器高 8 位 PCLATH 和中断控制寄存器 INTCON。

所谓互为映射就是说,在4个体内的相同位置,物理上对应同一个寄存器单元,所以该单元具备4个不同的地址。

## 通用寄存器

F877 单片机的通用寄存器 GPR (General Purpose Registers),可由用户自行支配存放随机数据。

地址区域:F0H  $\sim$  FFH、170H  $\sim$  17FH 和 1F0H  $\sim$  1FFH , 都可以索引(或映射)到体 0 的 16 个 RAM 单元。

这样安排是为了便于中断服务程序的设计和数据处理,就可以在程序设计中能够有效突破体的限制而定义通用的变量函数。

## 特殊功能寄存器

特殊功能寄存器 SFR (Special Function Registers) 是用于专用目的的寄存器,每个寄存器单元,甚至其中的每一位,都有它自己特定的名称和用途。

主要涉及 PIC 内核结构、外围功能模块的配置和数据通信方式的定义,是单片机赖于正常运行的工作平台。所以,特殊功能寄存器又称为专用寄存器。

可以依据它们不同的用途分为两类:一类是与 CPU 内核相关的寄存器;另一类是与外围模块相关的寄存器。

## 特殊功能寄存器

SFR 数量很多,十分难以记忆和掌握。因此,下面首先介绍几个 非常重要和常用的寄存器。为了看的更清楚,可以把 RAM 的分 布图进一步的简化,见下图。

简化图中左边是 4 个 RAM 体的地址分配表,右边是 4 个 RAM 体的功能分配表,两者由——对应的关系,图中阴影部分无效,不能使用。从简化图上可以看出:

特殊功能寄存器 SFR 占据着 RAM 低地址部分,而通用寄存器 占据着 RAM 的高地址部分。

| 体0  | 体1     | 体2            | 体3       | 体0    | 体1        | 体2                                      | 体3                                      |   |
|-----|--------|---------------|----------|-------|-----------|-----------------------------------------|-----------------------------------------|---|
| 00H | 80H    | 100H          | 180H     |       | IN        | IDF                                     |                                         | _ |
| 01H | 81H    | 101H          | 181H     | TMR0  | OPTION_RE | G TMR 0                                 | OPTION_REG                              |   |
| 02H | 82H    | 102H          | 182H     |       | F         | ·CL                                     |                                         |   |
| 03H | 83H    | 103H          | 183H     |       | ST        | ATUS                                    |                                         |   |
| 04H | 84H    | 104H          | 184H     |       | F         | SR                                      |                                         |   |
| 05H | 85H    | 105H          | 185H     | PORTA | TRISA     | 100000000000000000000000000000000000000 | 100000000000000000000000000000000000000 |   |
| 06H | 86H    | 106H          | 186H     | PORTB | TRISB     | PORTB                                   | TRISB                                   |   |
| 07H | 87H    | 107H          | 187H     | PORTC | TRISC     |                                         |                                         |   |
| 08H | 88H    | 108H          | 188H     | PORTD | TRISD     | 1000                                    |                                         |   |
| 09H | 89H    | 109H          | 189H     | PORTE | TRISE     | 100.000.00                              | 10 (0) 526 (0) (0)                      |   |
| 0AH | 8AH    | 10AH          | 18AH     |       | PCI       | ATH                                     |                                         |   |
| 0BH | 8BH    | 10BH          | 18BH     |       | INT       | CON                                     |                                         |   |
| 0СН | 8CH    | 10CH          | 18CH     |       |           | 1                                       |                                         |   |
| :   | :      | :             | :        |       |           |                                         |                                         |   |
| 1FH | 9FH    | 11 <b>F</b> H | 19FH     |       |           |                                         |                                         |   |
| 20H | АОН    | 120H          | 1A0H     |       |           |                                         |                                         |   |
| ÷   | i      | :             | :        | 通用寄存器 | 通用寄存器     | 通用寄存器                                   | 通用寄存器                                   |   |
| 7FH | FFH    | 17FH          | 1FFH     |       |           |                                         |                                         |   |
| 77  | (徐 单 元 | ###           | <b>1</b> |       | ± 14 44   | ===+At /\ ==                            |                                         |   |

存储单元地址分配

存储单元功能分配

## 规范术语

主动参数:需要设置定义后才起作用的位参数

**被动参数**:根据指令执行结果,由系统自动返回状态信息的位参数

对某单元或位赋值 0 用"清零"表示,赋值 1 用"置位"表示模块中断功能的设定,通常可以用"允许"、"使能"和"开放"等术语,本书同意用"使能"表示

STATUS 用来记录算术运算器 ALU 的运算状态和算术特征、 CPU 的运行状态、以及 RAM 体的选择等信息。

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|------|------|------|------|------|------|------|------|
| IRP  | RP1  | RP0  | TO   | PD   | Z    | DC   | С    |

其中某些位  $(\overline{TO}$  和  $\overline{PD})$  ,只能读不能写;某些位的值会随运算结果而变化。各位的含义如下:

Bit0 / C:进位/借位标志,被动参数。

#### 清零 0

执行加法(或减法)指令时,如果最高位无进位(或有借位);

#### 置位 1

执行加法(或减法)指令时,如果最高位有进位(或无借位)。

Bit1 / DC:辅助进位/借位标志,被动参数。

#### 清零 0

执行加法(或减法)指令时,如果低4位向高4位无进位(或有借位);

#### 置位 1

执行加法(或减法)指令时,如果低4位向高4位有进位(或 无借位)。

Bit2 / Z:零标志,被动参数。

#### 清零 0

算术或逻辑运算结果不为 0;

## 置位 1

算术或逻辑运算结果为全 0。

Bit3 / PD:降耗标志,被动参数。

#### 清零 0

睡眠指令执行后;

## 置位 1

上电或看门狗清零指令执行后。

Bit4 / 70:超时标志,被动参数。

## 清零 0

看门狗发生超时;

### 置位 1

上电或看门狗清零指令或睡眠指令执行后。

Bit6-Bit5 / RP1-RP0: RAM 数据存储器体选位,仅用于直接寻址。

两位复合选择 RAM 数据存储器 4 个体,具体关系如下:

| RP1 | RP0 | 选中体   |
|-----|-----|-------|
| 0   | 0   | 选中体 0 |
| 0   | 1   | 选中体 1 |
| 1   | 0   | 选中体 2 |
| 1   | 1   | 选中体 3 |

Bit7 / IRP: RAM 数据存储器体选位,仅用于间接寻址。

#### 清零 0

选择数据存储器低位体:

即体 0 (FSR 的 Bit7=0)或体 1 (FSR 的 Bit7=1);

#### 置位 1

选择数据存储器高位体:

即体 2 (FSR 的 Bit7=0)或体 3 (FSR 的 Bit7=1)。

## 2、间接寻址的寄存器 INDF 和文件选择寄存器 FSR

在 RAM 数据存储器中,有一个非常特别的寄存器 INDF 它的专有功能是与 FSR 寄存器配合,实现间接寻址。

当访问地址 INDF 时,实际上是访问以 FSR 内容为地址的数据存储器 RAM 单元。

## 直接寻址/间接寻址方式的示意图

在直接寻址中,体选码来自状态寄存器 STATUS 的 RP1 和 RPO 位,体内的单元地址直接来自指令机器码。而在间接寻址中,体 选码由 STATUS 的 IRP 位和 FSR 寄存器的 BIT7 组成。



## 3、与 PC 相关的寄存器 PCL 和 PCLATH

程序计数器 PC 指针宽 13 位,它的内容指向 CPU 将要执行的下一条指令所在程序存储器单元的地址。

低 8 位 PCL 有自己的地址,可读可写;而高 5 位 PCH 和其它单片机不一样,即没有自己的地址,不能用软件访问,也就不能直接写人,只能用寄存器 PCLATH 装载的方式进行间接写人。

## 两种情况下 PC 值的装入过程

PCLATH 对于高 5 位 PCH 的装载分两种情况:

一种情况是当执行以 PCL 为目标的写操作指令时, PC 的低 8 位来自算术逻辑单元 ALU, PC 的高 5 位来自 PCLATH 的低 5 位;

另一种情况是当执行跳转指令 GOTO 或调用子程序指令 CALL 时, PC 的低 11 位来自指令码中直接携带的 11 位地址,高 2 位由 PCLATH3-4 提供。





主要用于设置定时/计数器 TMR0、前后分频器、外部 INT 中断以及 B 端口的弱上拉功能等各种控制位。

| Bit7 | Bit6   | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|------|--------|------|------|------|------|------|------|
| RBPU | INTEDG | T0CS | T0SE | PSA  | PS2  | PS1  | PS0  |

Bit2-Bit0 / PS2-PS0:分频器倍率选择位,主动参数。

| 分频器位值 | TMR0 倍率 | WDT 倍率 |
|-------|---------|--------|
| 0 0 0 | 1:2     | 1:1    |
| 0 0 1 | 1:4     | 1:2    |
| 0 1 0 | 1:8     | 1:4    |
| 0 1 1 | 1:16    | 1:8    |
| 100   | 1:32    | 1:16   |
| 1 0 1 | 1:64    | 1:32   |
| 1 1 0 | 1:128   | 1:64   |
| 111   | 1:256   | 1:128  |

Bit3 / PSA:前后分频器分配位,主动参数。

### 清零 0

分配给 TMR0,作为 TMR0的前分频器;

### 置位 1

分配给 WDT,作为 WDT 的后分频器。

Bit4 / TOSE: TMR0 用于计数器, 计数脉冲信号边沿选择位, 主动参数。

### 清零 0

RA4/T0CKI 引脚上的上升沿增量;

#### 置位 1

RA4/T0CKI 引脚上的下降沿增量。

Bit5 / TOCS:定时/计数器 TMR0 时钟源选择位,主动参数。

#### 清零 0

用内部指令周期时钟(CLKOUT)作为 TMR0 的触发脉冲;

### 置位 1

用 TOCKI 引脚上的外部时钟作为 TMRO 的触发脉冲。

Bit6 / INTEDG: INT中断信号触发边沿选择位,主动参数。

### 清零 0

BRO/INT 引脚上的上升沿触发;

### 置位 1

BRO/INT 引脚上的下降沿触发。

Bit7 / RBPU: B端口弱上拉使能位,主动参数。

### 清零 0

RB4-RB7 引脚弱上拉使能;

### 置位 1

RB4-RB7 引脚弱上拉不使能。

### 5、电源控制寄存器 PCON

电源控制 (PCON) 寄存器包含两个有效标志位: 上电复位  $(\overline{POR})$ 、欠压复位  $(\overline{BOR})$ 。

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|------|------|------|------|------|------|------|------|
| _    | _    | _    | _    | _    | _    | POR  | BOR  |

### 5、电源控制寄存器 PCON

Bit1 / POR:上电复位状态位,主动参数。

### 清零 0

已发生上电复位 (必须在发生上电复位后用软件置 1)

#### 置位 1

未发生上电复位

### 5、电源控制寄存器 PCON

Bit0 / BOR:欠压复位状态位,主动参数。

### 清零 0

已发生欠压复位 (必须在发生欠压复位后用软件置 1)

#### 置位 1

未发生欠压复位

# 失电保护数据存储器构架

# 失电保护数据存储器构架

失电保护 EEPROM 最大的优点就是在失电后能够保护原有的数据。

EEPROM 数据存储器单元  $256\times8$ ,它的地址空间是  $00H\sim FFH$ ,只能通过特殊功能寄存器间接寻址来访问。

EEPROM 共涉及 4 个特殊功能寄存器:EEDATA、EEADR、EECON1、EECON2。

# 失电保护数据存储器构架

#### **EEDATA**

是一个专用数据读/写寄存器,用于临时存放对 EEPROM 数据存储器进行读/写操作的数据。

#### **EEADR**

是一个专用地址读/写寄存器,用于临时存放对 EEPROM 数据存储器进行读/写访问的单元地址。

#### **EECON1**

EEPROM 数据存储器读/写控制第一寄存器,主要用于读/写方式的设定和初始化寻址控制。

| Bit7  | Bit6 | Bit5 | Bit4 | Bit3  | Bit2 | Bit1 | Bit0 |
|-------|------|------|------|-------|------|------|------|
| EEPGD | -    | -    | -    | WRERR | WREN | WR   | RD   |

Bit0 / RD:EEPROM 数据存储器数据读出方式控制位,复合参数。

### 清零 0

不处于 EEPROM 读操作过程,或在一个读操作周期后由硬件自动清零;

#### 置位 1

启动 EEPROM 读操作,软件主动置位。

Bit1 / WR:写操作控制位,复合参数。

### 清零 0

不处于 EEPROM 写操作过程,或在一个写操作周期后由硬件自动清零;

### 置位 1

启动 EEPROM 写操作,软件主动置位。

Bit2 / WREN: EEPROM 写使能位, 主动参数。

### 清零 0

禁止对 EEPROM 写操作。

#### 置位 1

使能对 EEPROM 写操作;

Bit3 / WRERR: EEPROM 错误标志位,被动参数。

### 清零 0

已完成 EEPROM 写操作, 硬件自动清零;

### 置位 1

未完成 EEPROM 写操作。

Bit7 / EEPGD: FLASH 程序存储器/ EEPROM 数据存储器选择位,主动参数。

### 清零 0

选通 EEPROM 数据存储器;

### 置位 1

选通 FLASH 程序存储器。

#### EECON2

EEPROM 数据存储器读/写控制第二寄存器,是一个虚拟寄存器,专门用于 EEPROM 数据存储器写操作的次序控制。

### 向 EEPROM 数据存储器写数据

向 EEPROM 数据存储器写数据操作比较复杂,占用较长的时间 (一般为  $3\sim8ms$ ),涉及到两个控制位 WR、WREN 和两个状态 位 EEIF、WRERR。

向 EEPROM 数据存储器写数据必须插入一串特殊的指令序列, 连续将特定的通用参数 55H 和 0AAH 写入 EECON2。

# 向 EEPROM 数据存储器写数据

#### 例 2-1

将数据 00H~0FFH 分别写入数据存储器 EEPROM 地址范围 00H~0FFH 存储单元。

```
INCLUDE "P16F877.INC"
COUNTER
          EQU
                  70H
          ORG
                   0000H
                                               MOVLW
                                                       55H
          NOP
                                               MOVWF
                                                        EECON2
          CLRF
                   COUNTER
                                               MOVLW
                                                       0AAH
          BSF
                   STATUS, RP1
                                               MOVWF
                                                        FFCON2
I 00P1
          BSF
                   STATUS, RP0
                                               BSF
                                                        EECON1, WR
LO<sub>O</sub>P
          BTFSC
                   EECON1, WR
                                               BSF
                                                        INTCON, GIE
          GOTO
                   LO<sub>O</sub>P
                                               BCF
                                                        EECON1, WREN
          BCF
                   STATUS, RP0
                                               TNCF
                                                        COUNTER
          MOVF
                   COUNTER, W
                                               MOVF
                                                       COUNTER, W
          MOVWF
                   FFADR
                                               BTFSS
                                                       STATUS, Z
          MOVWE
                   FFDATA
                                               GOTO
                                                        LOOP1
          BSF
                   STATUS, RP0
                                               END
          BCF
                   EECON1, EEPGD
          BSF
                   EECON1, WREN
```

### 从 EEPROM 数据存储器读数据

读操作相对来说比较简单,只使用一个状态位 RD,用于初始化 EEPROM 指定地址的读操作。对 EEPROM 数据存储器进行读操作时,RD 位置位后,数据在下一个指令周期就被存入到 EEDATA 寄存器中,因此完全可以由下一条指令来读取数据。

## 从 EEPROM 数据存储器读数据

#### 例 2-2

在例题 2-1 的基础上,读出 EEPROM 数据存储器地址范围  $20H\sim5FH$  内的数据,并存放到数据存储器对应单元  $30H\sim6FH$  中(64 个单元)。

| INCLUDE | "P16F87 | 7.INC"        |       |             |
|---------|---------|---------------|-------|-------------|
| COUNTER | EQU     | 70H           |       |             |
|         | ORG     | 0000H         |       |             |
|         | NOP     |               | BCF   | STATUS, RP0 |
|         | MOVLW   | 20H           | MOVF  | EEDATA,W    |
|         | MOVWF   | COUNTER       | MOVWF | INDF        |
|         | MOVLW   | 30H           | INCF  | FSR         |
|         | MOVWF   | FSR           | INCF  | COUNTER     |
|         | BSF     | STATUS, RP1   | MOVF  | FSR,W       |
|         | BCF     | STATUS, RP0   | SUBLW | 70H         |
| LOOP    | MOVF    | COUNTER,W     | BTFSS | STATUS,Z    |
|         | MOVWF   | EEADR         | GOTO  | LOOP        |
|         | BSF     | STATUS, RP0   | END   |             |
|         | BCF     | EECON1, EEPGD |       |             |
|         | BSF     | EECON1,RD     |       |             |

TNCLLIDE "D16E977 TNC"