#### **STA732**

#### **Statistical Inference**

Lecture 23: Large-Sample Theory for Likelihood Ratio Tests

Yuansi Chen

Spring 2023

**Duke University** 

https://www2.stat.duke.edu/courses/Spring23/sta732.01/



#### **Recap from Lecture 22**

1. Canonical linear model

$$Z = \begin{pmatrix} Z_0 \\ Z_1 \\ Z_r \end{pmatrix} \sim \mathcal{N} \left( \begin{pmatrix} \mu_0 \\ \mu_1 \\ 0 \end{pmatrix}, \sigma \mathbb{I}_n \right)$$

- $\sigma^2$  known,  $d_1=1$ , Z-test:  $\frac{Z_1}{\sigma}$
- $\sigma^2$  unknown,  $d_1=1$ , t-test:  $\frac{Z_1}{\hat{\sigma}}$
- $\sigma^2$  known,  $d_1 \geq 1$ ,  $\chi^2$ -test:  $\frac{\|Z_1\|_2^2}{\sigma^2}$
- +  $\sigma^2$  unknown,  $d_1 \geq 1$ , F-test:  $\frac{\|Z_1\|_2^2/d_1}{\hat{\sigma}^2}$
- 2. General linear model: find an orthonormal matrix Q such that  $Q^{\top}Y$  follows the canonical linear model

#### **Goal of Lecture 22**

- 1. Wald test
- 2. Score test
- 3. Generalized likelihood ratio test

Chap. 17.1-3 of Keener or 12.4 in Lehmann and Romano

Review the asymptotics of MLE

#### Setup

 $X_1,\dots,X_n\stackrel{\text{i.i.d.}}{\sim} p_\theta(x)$  ,  $p_\theta(\cdot)$  is "regular" enough (check the conditions in Thm 9.14 of Keener)

## Consistency of MLE on compact $\Omega$

Define

$$\begin{split} W_i(\theta) &= \ell_1(\theta; X_i) - \ell_1(\theta_0; X_i) \\ \bar{W}_n &= \frac{1}{n} \sum_{i=1}^n W_i \end{split}$$

We know that

$$\mathbb{E}W_i(\theta) = -\mathcal{D}_{\mathsf{KL}}(\theta_0 \parallel \theta) \leq 0$$

and it becomes =0 iff  $P_{\theta}=P_{\theta_0}$  .

#### **Consistency result**

If model is identifiable,  $W_i$  continuous random function, then

- $\|\bar{W}_n \mathbb{E}\bar{W}_n\|_{\infty} \stackrel{p}{\to} 0$  on compact  $\Omega$ .
- Then  $\hat{\theta}_n \stackrel{p}{\to} \theta_0$  (convergence of argmax requires uniform convergence result in Thm 9.4 Keener)

## **Asymptotic distribution of MLE**

MLE satisfies

$$0 = \nabla \ell_n(\hat{\theta}_n) = \nabla \ell_n(\theta_0) + \nabla^2 \ell_n(\tilde{\theta}_n)(\hat{\theta}_n - \theta_0).$$

Then

$$\sqrt{n}(\hat{\theta}_n - \theta_0) = \left(-\frac{1}{n}\nabla^2\ell_n(\tilde{\theta}_n)\right)^{-1} \left(\frac{1}{\sqrt{n}}\nabla\ell_n(\theta_0)\right)$$

- $\left(-\frac{1}{n}\nabla^2\ell_n(\tilde{\theta}_n)\right)^{-1}\stackrel{p}{\to}I_1(\theta_0)^{-1}$  (convergence of a random function evaluated on a random point requires uniform convergence result in Thm 9.4 Keener!)
- $\frac{1}{\sqrt{n}}\nabla\ell_n(\theta_0)\Rightarrow\mathcal{N}(0,I_1(\theta_0))$  (CLT)

By Slutsky's thm, 
$$\sqrt{n}(\hat{\theta}_n - \theta_0) \Rightarrow \mathcal{N}(0, I_1(\theta_0)^{-1})$$

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \Rightarrow \mathcal{N}(0, I_1(\theta_0)^{-1})$$

We can use the asymptotic distribution to compute confidence regions!

## Wald test

## Intuition for Wald-type confidence regions (1)

Assume we have an estimator  $\hat{I}_n \succeq 0$  such that

$$\frac{1}{n}\hat{I}_n \stackrel{p}{\to} I_1(\theta_0)$$

Then we can use it as plug-in estimate for  $I_1(\theta_0)$  in asymptotic distribution

Since 
$$\sqrt{n}(\hat{\theta}_n - \theta_0) \Rightarrow \mathcal{N}(0, I_1(\theta_0)^{-1})$$
, then  $(I_1(\theta_0))^{1/2} \sqrt{n}(\hat{\theta}_n - \theta_0) \Rightarrow \mathcal{N}(0, \mathbb{I}_d)$ , by Slutsky's thm,

$$\hat{I}_n^{1/2}(\hat{\theta}_n - \theta_0) \Rightarrow \mathcal{N}(0, \mathbb{I}_d)$$

## Intuition for Wald-type confidence regions (2)

Under the null hypothesis  $H_0: \theta = \theta_0$ , we have

$$\left\| \hat{I}_n^{1/2} (\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \right\|_2^2 \Rightarrow \chi_d^2$$

We can construct a test that rejects for large value of

$$\left\|\hat{I}_n^{1/2}(\hat{\theta}_n-\theta_0)\right\|_2^2:$$

$$\phi = \mathbf{1}_{\left\|\hat{I}_n^{1/2}(\hat{\theta}_n - \theta_0)\right\|_2^2 > \chi_d^2(\alpha)}$$

#### Remark

- The test might not have the correct level. It only has asymptotic level  $\alpha$
- · The confidence region is an ellipsoid

$$\hat{\theta}_n + \hat{I}_n^{-1/2} \mathbb{B}(0, \chi_d^2(\alpha))$$

## Two options for $\hat{I}_n$

1.  $I_n(\hat{\theta}_n)$  obtained by plugging in the MLE

$$\begin{split} \hat{I}_n &= I_n(\hat{\theta}_n) \\ &= \operatorname{Var}_{\theta}(\nabla \ell_n(\theta; X)) \mid_{\theta = \hat{\theta}_n} \end{split}$$

2. Observed Fisher information

$$\hat{I}_n = -\nabla^2 \ell_n(\hat{\theta}_n;X)$$

#### Remark:

Both should have  $\frac{1}{n}\hat{I}_n\stackrel{p}{\to}I_1(\theta_0)$  in "regular" model i.i.d. setting

## Wald interval for $\theta_j$

Since  $\sqrt{n}(\hat{\theta}_n - \theta_0) \Rightarrow \mathcal{N}(0, I_1(\theta_0)^{-1})$ , then by multiplying  $(1, 0, \dots, 0)^{\top}$ , we obtain

$$\sqrt{n}(\hat{\theta}_{n,j} - \theta_{0,j}) \Rightarrow \mathcal{N}(0, \left(I_1(\theta_0)^{-1}\right)_{jj})$$

Using  $\frac{1}{n}\hat{I}_n$  as plug-in estimate for  $I_1(\theta_0)$  , we obtain univariate interval

$$C_j = \hat{\theta}_{n,j} \pm \sqrt{\left(\hat{I}_n^{-1}\right)_{jj}} \cdot z_{\alpha/2}$$

## Wald interval for $\theta_j$

Since  $\sqrt{n}(\hat{\theta}_n - \theta_0) \Rightarrow \mathcal{N}(0, I_1(\theta_0)^{-1})$ , then by multiplying  $(1, 0, \dots, 0)^{\top}$ , we obtain

$$\sqrt{n}(\hat{\theta}_{n,j} - \theta_{0,j}) \Rightarrow \mathcal{N}(0, \left(I_1(\theta_0)^{-1}\right)_{jj})$$

Using  $\frac{1}{n}\hat{I}_n$  as plug-in estimate for  $I_1(\theta_0)$  , we obtain univariate interval

$$C_j = \hat{\theta}_{n,j} \pm \sqrt{\left(\hat{I}_n^{-1}\right)_{jj}} \cdot z_{\alpha/2}$$

glm function in R uses the above intervals:

with 
$$\hat{I}_n = -\nabla^2 \ell_n(\hat{\theta}_n)$$

## Confidence ellipsoid for $heta_{0,S}$

Want to provide confidence ellipsoid for  $\theta_{0,S}=(\theta_{0,j})_{j\in S}, |S|=k$  We have

$$\sqrt{n}\left(\hat{\theta}_{n,S} - \theta_{0,S}\right) \Rightarrow \mathcal{N}(0, \left(I_1(\theta_0)^{-1}\right)_{SS})$$

Then the confidence ellipsoid is

$$\hat{\theta}_{n,S} + \left( (\hat{I}_n^{-1})_{SS} \right)^{1/2} \mathbb{B}(0, \chi_k(\alpha))$$

## Example: generalized linear model with fixed design

Suppose  $x_1,\dots,x_n\in\mathbb{R}^d$  fixed

$$Y_i \overset{\mathrm{ind.}}{\sim} p_{\eta_i}(y_i) = e^{\eta_i y_i - A(\eta_i)} h(y_i)$$

where  $\eta_i = \beta^\top x_i$ 

#### **Link function**

Let  $\mu_i(\beta) = \mathbb{E}_{\beta}Y_i$ . If  $f(\mu_i) = \beta^{\top}x_i$ , then f is called link function.

#### **Common examples**

- $\bullet \ \ \text{Logistic regression:} \ Y_i \overset{\text{ind.}}{\sim} \ \text{Bernoulli} \left( \frac{e^{x_i^\top \beta}}{1 + e^{x_i^\top \beta}} \right)$
- Poisson log-linear model:  $Y_i \overset{\text{ind.}}{\sim} \operatorname{Poisson}(e^{x_i^{\intercal}\beta})$

## Confidence interval in generalized linear model

$$\begin{split} \ell_n(\beta;Y) &= \sum_{i=1}^n (x_i^\top \beta) y_i - A(x_i^\top \beta) - \log h(y_i) \\ \nabla \ell_n(\beta;Y) &= \sum_{i=1}^n y_i x_i - A'(x_i^\top \beta) x_i \\ &= \sum_{i=1}^n \left( y_i - \mu_i(\beta) \right) x_i \\ - \nabla^2 \ell_n(\beta;Y) &= \sum_{i=1}^n A''(x_i^\top \beta) x_i x_i^\top \\ &= \sum_{i=1}^n \operatorname{Var}_\beta(y_i) x_i x_i^\top \\ &= \operatorname{Var}_\beta(\nabla \ell_n(\beta;Y)) \end{split}$$

in GLM,  $-\nabla^2 \ell_n(\beta;Y)$  is not random

Can estimate  $\hat{I}_n$  by plug-in MLE Apply our asymptotic directly (or do Taylor expansion from scracth)

$$\hat{I}_n^{1/2}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \Rightarrow \mathcal{N}(0, \mathbb{I}_d)$$

#### Pros and cons of Wald test

#### **Advantages**

- Easy to invert, simple confidence regions
- Asympotically correct level

#### Disadvantages

- Have to compute MLE
- Depends on parameterization
- Relies on second order Taylor expansion of  $\ell_n$
- Need MLE to be consistent
- Confidence region might go outside of  $\Omega$

# Score test

#### Intuition for score test

Testing  $H_0:\theta=\theta_0$  vs.  $H_1:\theta\neq\theta_0$ 

We can bypass quadratic approximation by using the score as test statistics

$$\frac{1}{\sqrt{n}}\nabla \ell_n(\theta_0) \Rightarrow \mathcal{N}(0, I_1(\theta_0))$$

#### **Score test**

Reject 
$$H_0: \theta = \theta_0$$
 if

$$\left\|I_n(\theta_0)^{-1/2}\nabla\ell_n(\theta_0)\right\|_2^2\geq \chi_d^2(\alpha)$$

if d=1, we just use Z-test instead

#### Score test

Reject 
$$H_0: \theta = \theta_0$$
 if

$$\left\|I_n(\theta_0)^{-1/2}\nabla\ell_n(\theta_0)\right\|_2^2 \geq \chi_d^2(\alpha)$$

if d = 1, we just use Z-test instead

#### Advantages of score test

- · No quadratic approximation
- No MLE

Disadvantage is that it might not be easy to invert the test

## Also, score test is invariant to reparameterization

Assume 
$$d=1$$
,  $\theta=g(\xi)$  with  $g'(\xi)>0$ ,

$$q_{\xi}(x) = p_{g(\xi)}(x),$$

show that the two test statistics are the same a.s.

Generalized likelihood ratio test

## GLRT in simple vs composite two-sided testing

Testing  $H_0: \theta=\theta_0$  vs.  $H_1: \theta\neq\theta_0$  Taylor expansion around  $\hat{\theta}_n$  gives

$$\begin{split} \ell_n(\theta_0) - \ell_n(\hat{\theta}_n) &= \nabla \ell(\hat{\theta}_n) + \frac{1}{2}(\theta_0 - \hat{\theta}_n)^\top \nabla^2 \ell_n(\tilde{\theta}_n)(\theta_0 - \hat{\theta}_n) \\ &= 0 - \frac{1}{2} \left\| \left( -\frac{1}{n} \nabla^2 \ell_n(\tilde{\theta}_n) \right)^{1/2} \left( \sqrt{n}(\theta_0 - \hat{\theta}_n) \right) \right\|_2^2 \\ &\Rightarrow -\frac{1}{2} \chi_d^2 \end{split}$$

why?

#### Test statistic in GLRT

$$2\log(\lambda) = 2\left(\ell_n(\hat{\theta}_n) - \ell_n(\theta_0)\right) \Rightarrow \chi_d^2$$

## **GLRT** in composite vs composite

Testing  $H_0: \theta \in \Omega_0$  vs.  $H_1: \theta \in \Omega \backslash \Omega_0$ 

The generalized likelihood ratio is

$$\lambda = \frac{\sup_{\Omega_1} L(\theta)}{\sup_{\Omega_0} L(\theta)}$$

The test statistic is

$$2\log(\lambda) = 2\left(\ell_n(\hat{\theta}_n) - \ell_n(\hat{\theta}_0)\right)$$

where  $\hat{\theta}_0 = \arg \max_{\theta \in \Omega_0} \ell_n(\theta)$ 

## Asympotitic distribution of $2\log(\lambda)$

#### Asymptotic distribution of $2\log(\lambda)$ , see 17.2 Keener

Assume  $\Omega=\mathbb{R}^d$ ,  $\Omega_0\,d_0$ -dim subspace.  $\theta_0$  in interior of  $\Omega_0$ ,  $\hat{\theta}_n$  is consistent,  $p_{\theta}(\cdot)$  is "regular" (as in the asymptotic of MLE), then

$$2\log(\lambda) = 2\left(\ell_n(\hat{\theta}_n) - \ell_n(\hat{\theta}_0)\right) \Rightarrow \chi_{d-d_0}^2$$

where  $\hat{\theta}_0 = \arg\max_{\theta \in \Omega_0} \ell_n(\theta)$ 

### Intuition for the asymptotic distribution

(See rigorous derivation in 17.2 Keener)

Assume  $\theta_0=0$  ,  $I_0(0)=\mathbb{I}_d$  (after reparameterization), then

- $\hat{\theta}_n \approx \mathcal{N}(\theta_0, \frac{1}{n}\mathbb{I}_d)$
- locally,  $\nabla^2 \ell_n(\theta) \approx n \mathbb{I}_d \operatorname{near} \theta_0$

• 
$$\ell_n(\theta) - \ell_n(\hat{\theta}_n) \approx \frac{n}{2} \left\| \theta - \hat{\theta}_n \right\|_2^2$$

$$\bullet \ \hat{\theta}_0 \approx \arg\min_{\theta \in \Omega_0} \left\| \theta - \hat{\theta} \right\|_2^2 = \mathrm{Proj}_{\Omega_0}(\hat{\theta}_n)$$

$$\begin{split} 2\left(\ell_n(\hat{\theta}_n) - \ell_n(\hat{\theta}_0)\right) &\approx n \left\|\hat{\theta}_n - \operatorname{Proj}_{\Omega_0}(\hat{\theta}_n)\right\|_2^2 \\ &\Rightarrow \chi_{d-d_0}^2 \end{split}$$

## Asymptotic equivalence of the three tests

How close are the three tests asymptotically?

- Wald test:  $\left\| \hat{I}_n^{1/2} (\hat{\theta}_n \theta_0) \right\|_2^2$
- Score test:  $\left\|I_n(\theta_0)^{-1/2}\nabla\ell_n(\theta_0)\right\|_2^2$
- GLRT:  $\ell_n(\hat{\theta}_n) \ell_n(\theta_0)$

all are related to (for large n)

$$\left\|I_n(\theta_0)^{1/2}(\widehat{\theta}_n-\theta_0)\right\|_2^2$$

#### Summary

- Wald test: test statistic based on quadratic approx
- Score test: test statistic using score
- Generalized likelihood ratio test:  $2\log(\lambda)$  We intuitively derived its asympotitic distribution

Read Page 362 of Keener for strengths and weaknesses

#### What is next?

- Final exam on Monday, May 1
- · Office hours in the week of April 24
  - Yuansi: usual lecture hours in Old Chem 223B
  - Christine: Tuesday 1:00-2:00, Friday 2:20-3:20 in Old Chem 203B

# Thank you