Геодезическая гравиметрия 2018

Домашнее задание № 6

Крайний срок сдачи: 1 декабря 2018 г.

1. Пусть потенциал притяжения представлен в видя ряда по шаровым функциям

$$V\left(r,\varphi,\lambda\right) = \frac{GM}{r} \sum_{n=0}^{\infty} \left(\frac{a}{r}\right)^{n} \sum_{k=0}^{n} \left(\bar{C}_{nk}\cos k\lambda + \bar{S}_{nk}\sin k\lambda\right) \bar{P}_{nk}\left(\sin\varphi\right),\,$$

где r, φ, λ — сферические координаты, n и k — степень и порядок, $\bar{C}_{nk}, \bar{S}_{nk}$ — полностью нормированные стоксовы постоянные, $\bar{P}_{nk} \left(\sin \varphi \right)$ — полностью нормированные присоединённые функции Лежандра, GM — планетоцентрическая гравитационная постоянная.

- (a) Написать в общем виде выражение для частной производной $\frac{\partial V}{\partial r}$.
- (b) Написать в явном виде разложение силы тяжести в ряд по шаровым функциям до 4-го порядка в радиальном приближении $(|\vec{g}| = |\nabla W| \approx |\partial W/\partial r|)$.
- (c) Вычислить значение потенциала притяжения, потенциала силы тяжести и силы тяжести (в радиальном приближении) по глобальной модели гравитационного поля Земли, ограничившись первыми четырьмя степенями разложения $(n_{max}=4)$, для точки на территории МИИГАиК с координатами (эллипсоид WGS84):

$$B = 55,764058^{\circ}, \quad L = 37,661425^{\circ}, \quad H = 158,064 \,\mathrm{M}.$$

Получение модели

Глобальные модели гравитационного поля можно получить с сайта Международного центра для глобальных моделей (ICGEM). Для этого необходимо сделать следующее.

- 1. Зайти в раздел Static Models (статические модели) по адресу: http://icgem.gfz-potsdam.de/tom_longtime.
- 2. Из списка найти модель с номером Nr = 167 i, где i номер варианта.
- 3. Скачать файл модели с расширением *.gfc.
- 4. В заголовке файла:
 earth_gravity_constant геоцентрическая гравитационная постоянная,
 radius значение a, которое использовалось для получения безразмерных коэффициентов,
 norm норма коэффициентов (необходимо убедиться, что здесь стоит fully_normalized —
 полностью нормированные).