VL-15: NP-vollständige Graphprobleme

(Berechenbarkeit und Komplexität, WS 2018)

Gerhard Woeginger

WS 2018, RWTH

Organisatorisches

- Nächste Vorlesung: Freitag, Januar 11, 16:30–18:00 Uhr, Audimax
- Webseite:

```
http://algo.rwth-aachen.de/Lehre/WS1819/BuK.php
```

- (→ Arbeitsheft zur Berechenbarkeit)
- (Arbeitsheft zur NP-Vollständigkeit)

Wiederholung

Wdh.: NP-schwer & NP-Vollständig

Definition

- Ein Problem L heisst NP-schwer, falls $\forall L' \in NP : L' \leq_p L$
- Ein Problem L heisst NP-vollständig, falls $L \in NP$ und L NP-schwer.

Satz

Wenn L NP-vollständig ist, dann gilt: $L \in P \Rightarrow P = NP$

Unter der Annahme $P \neq NP$ (Standardannahme) besitzt also kein NP-vollständiges Problem einen polynomiellen Algorithmus.

Wdh.: Der Satz von Cook & Levin

Problem: Satisfiability (SAT)

Eingabe: Boole'sche Formel φ in CNF über der Variablenmenge X

Frage: Existiert eine Wahrheitsbelegung von X, die φ erfüllt?

Satz (Cook & Levin)

SAT ist NP-vollständig.

- Arbeitsphase A: Für jeden Zeitpunkt t beschreiben die Variablen Q(t, q), H(t, j) und B(t, j, a) eine legale Konfiguration.
- Arbeitsphase B: Die Konfiguration zum Zeitpunkt t+1 entsteht legal aus der Konfiguration zum Zeitpunkt t.
- Arbeitsphase C: Startkonfiguration und Endkonfiguration sind legal.

Wdh.: Die Komplexitätslandschaft

Warnung: Dieser Abbildung liegt die Annahme $P \neq NP$ zu Grunde.

Wdh.: Landkarte mit Karp's 20 Reduktionen

Wdh.: Kochrezept für NP-Vollständigkeitsbeweise

Kochrezept:

- **1.** Man zeige $L \in NP$.
- 2. Man wähle eine NP-vollständige Sprache L*.
- **3.** (Reduktionsabbildung): Man konstruiere eine Funktion f, die Instanzen von L^* auf Instanzen von L abbildet.
- **4.** (Polynomielle Zeit): Man zeige, dass *f* in polynomieller Zeit berechnet werden kann.
- **5.** (Korrektheit): Man beweise, dass f tatsächlich eine Reduktion ist. Für $x \in \{0, 1\}^*$ gilt $x \in L^*$ genau dann, wenn $f(x) \in L$.

Vorlesung VL-15 Einige NP-vollständige Graphprobleme

- NP-Vollständigkeit von CLIQUE
- NP-Vollständigkeit von INDEP-SET
- NP-Vollständigkeit von Vertex Cover
- NP-Vollständigkeit von Ham-Cycle (gerichtet)
- NP-Vollständigkeit von Ham-Cycle (ungerichtet)
- NP-Vollständigkeit des TSP

NP-Vollständigkeit von CLIQUE

CLIQUE (1): Definition

Problem: CLIQUE

Eingabe: Ein ungerichteter Graph G = (V, E); eine Zahl k

Frage: Enthält G eine Clique mit $\geq k$ Knoten?

$$k = 4$$

Dieser Graph hat keine Clique der Grösse 4.

Satz

CLIQUE ist NP-vollständig.

CLIQUE (2): Nach unserem Kochrezept

- 1. Wir wissen bereits (aus VL-12), dass CLIQUE in NP liegt.
- **2.** Wir wählen die NP-vollständige Sprache $L^* = SAT$ und wir werden SAT \leq_p CLIQUE zeigen.
- 3. (Reduktionsabbildung):

Wir konstruieren eine Funktion f, die eine CNF-Formel φ in einen Graphen G = (V, E) und eine Zahl $k \in \mathbb{N}$ transformiert, sodass gilt:

 φ ist erfüllbar \Leftrightarrow G besitzt k-Clique

(Die Punkte 4 und 5 des Kochrezeptes werden später erledigt.)

CLIQUE (3): Beschreibung der Funktion f

- Es seien c_1, \ldots, c_m die Klauseln der Formel φ . Es sei k_i die Anzahl an Literalen in Klausel c_i . Es seien $\ell_{i,1}, \ldots, \ell_{i,k_i}$ die Literale in Klausel c_i .
- Für jedes Literal in jeder Klausel erzeugen wir einen entsprechenden Knoten: $V = \{\ell_{i,j} \mid 1 \le i \le m, \ 1 \le j \le k_i\}$
- Zwei Knoten werden mit einer Kante verbunden, wenn sie aus verschiedenen Klauseln stammen und wenn ihre Literale nicht Negationen voneinander sind.
- Wir setzen k = m.

4. (Polynomielle Zeit):

Die Funktion f ist in Polynomialzeit berechenbar.

CLIQUE (4): Beispiel

$$\varphi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_2 \vee x_3)$$

Erfüllende Belegung: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$

CLIQUE (5a): Korrektheit

Lemma A: Formel φ erfüllbar \Rightarrow G hat m-Clique

- ullet Betrachte beliebige erfüllende Belegung von arphi
- ullet Bilde Menge U mit einem erfüllten Literal von jeder Klausel
- Behauptung: *U* bildet *m*-Clique

Begründung:

- Laut Definition ist |U| = m
- Es seien ℓ und ℓ' zwei verschiedene Literale aus U
- ullet Nach Konstruktion kommen ℓ und ℓ' aus verschiedenen Klauseln
- Da ℓ und ℓ' erfüllt sind, sind sie nicht Negationen voneinander.
- Also gibt es eine Kante zwischen ℓ und ℓ'

CLIQUE (5b): Korrektheit

Lemma B: G hat m-Clique \Rightarrow Formel φ erfüllbar

- Betrachte *m*-Clique *U* in *G*
- ullet Dann gehören die Literale in U zu lauter verschiedenen Klauseln
- U enthält somit genau ein Literal pro Klausel
- Kein Literal tritt sowohl positiv als auch negiert auf
- Ergo: Alle diese Literale können gleichzeitig erfüllt werden
- Also ist φ erfüllbar

5. (Korrektheit):

f ist Reduktion: $x \in L^* \Leftrightarrow f(x) \in L$

 $\varphi \in \mathsf{SAT} \iff f(\varphi) = \langle G; m \rangle \in \mathsf{CLIQUE}$

NP-Vollständigkeit von INDEP-SET und Vertex Cover

Independent Set

Unabhängige Menge (independent set):
Teilmenge der Knoten, die keine Kanten induziert

Problem: INDEP-SET

Eingabe: Ein ungerichteter Graph G' = (V', E'); eine Zahl k' Frage: Enthält G' eine unabhängige Menge mit $\geq k'$ Knoten?

Satz

INDEP-SET ist NP-vollständig.

Beweisskizze: im Tutorium

- Wir zeigen CLIQUE \leq_p INDEP-SET
- Setze V' = V und $E' = V \times V E$ und k' = k

Vertex Cover (1)

Vertex Cover: Teilmenge der Knoten, die alle Kanten berührt

Problem: Vertex Cover (VC)

Eingabe: Ein ungerichteter Graph G'' = (V'', E''); eine Zahl k''

Frage: Enthält G'' ein Vertex Cover mit $\leq k''$ Knoten?

Satz

Vertex Cover ist NP-vollständig.

Beweisskizze:

- Wir zeigen INDEP-SET \leq_p Vertex Cover
- Setze V'' = V' und E'' = E' und k'' = |V'| k'

Vertex Cover (2)

Beobachtung

In einem ungerichteten Graphen G = (V, E) gilt für alle $S \subseteq V$:

- S ist unabhängige Menge $\Leftrightarrow V S$ ist Vertex Cover
- S ist Vertex Cover $\Leftrightarrow V S$ ist unabhängige Menge

NP-Vollständigkeit von Ham-Cycle (gerichtet)

D-Ham-Cycle (1): Definition

Problem: Gerichteter Hamiltonkreis (D-Ham-Cycle)

Eingabe: Ein gerichteter Graph G = (V, A)

Frage: Besitzt *G* einen gerichteten Hamiltonkreis?

Satz

D-Ham-Cycle ist NP-vollständig.

D-Ham-Cycle (2): Nach unserem Kochrezept

- 1. D-Ham-Cycle liegt in NP
- 2. Wir wählen die NP-vollständige Sprache $L^* = SAT$ und wir werden SAT \leq_p D-Ham-Cycle zeigen.
- 3. (Reduktionsabbildung):

Wir konstruieren eine Funktion f, die eine CNF-Formel φ in einen gerichteten Graphen G = (V, A) transformiert, sodass gilt:

 φ ist erfüllbar \Leftrightarrow G hat gerichteten Hamiltonkreis

Die CNF-Formel φ besteht aus Klauseln c_1, \ldots, c_m mit Boole'schen Variablen x_1, \ldots, x_n .

D-Ham-Cycle (3a): Reduktion / Diamantengadgets

Für jede Variable x_i enthält der Graph G das Diamantengadget G_i :

D-Ham-Cycle (3b): Reduktion / Diamantengadgets

Diese n Diamantengadgets werden miteinander verbunden, indem wir die Knoten t_i und s_{i+1} (für $1 \le i \le n-1$) sowie t_n und s_1 miteinander identifizieren:

D-Ham-Cycle (3c): Reduktion / Diamantengadgets

In dem resultierenden Graphen besucht jede Rundreise, die im Knoten s_1 startet, die Diamantengadgets in der Reihenfolge G_1, G_2, \ldots, G_n .

Die Rundreise hat dabei für jedes Gadget G_i die Freiheit, das Gadget

- entweder von links nach rechts (also: von l_i bis r_i)
- oder von rechts nach links (also: von r_i bis l_i) zu durchlaufen.

Die LR Variante interpretieren wir als Variablenbelegung $x_i = 0$, und die RL Variante als Variablenbelegung $x_i = 1$.

D-Ham-Cycle (4a): Reduktion / Klauselknoten

Jetzt fügen wir für jede Klausel c_i einen weiteren Knoten ein.

(a) Falls das Literal x_i in Klausel c_j enthalten ist, so verbinden wir Gadget G_i wie folgt mit dem Klauselknoten c_j :

D-Ham-Cycle (4b): Reduktion / Klauselknoten

(b) Falls das Literal \bar{x}_i in Klausel c_j enthalten ist, so verbinden wir Gadget G_i wie folgt mit dem Klauselknoten c_i :

D-Ham-Cycle (4c): Reduktion / Klauselknoten

Frage

Ist es nach Hinzufügen der Klauselknoten möglich, dass eine Rundreise zwischen den Diamantengadgets hin- und herspringt, anstatt sie in der vorgesehenen Reihenfolge zu besuchen?

Antwort

Nein. (Warum??)

D-Ham-Cycle (5): Illustration

$$\varphi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_2 \vee x_3)$$

D-Ham-Cycle (6a): Korrektheit

Lemma A: G hat gerichteten Hamiltonkreis $\Rightarrow \varphi$ erfüllbar

- Wenn ein Klauselknoten c_j aus einem Gadget G_i heraus von links nach rechts durchlaufen wird, so muss nach unserer Konstruktion die Klausel c_i das Literal \bar{x}_i enthalten.
- Also wird diese Klausel durch die mit der Laufrichtung von links nach rechts assoziierten Belegung $x_i = 0$ erfüllt.
- Wenn ein Klauselknoten c_j aus einem Gadget G_i heraus von rechts nach links durchlaufen wird, so muss nach unserer Konstruktion die Klausel c_j das Literal x_i enthalten.
- Also wird diese Klausel c_j durch die mit der Laufrichtung von rechts nach links assoziierten Belegung $x_i = 1$ erfüllt.
- Also erfüllt die mit der Rundreise assoziierte Wahrheitsbelegung der Variablen die Formel φ .

D-Ham-Cycle (6b): Korrektheit

Lemma B: φ erfüllbar \Rightarrow G hat gerichteten Hamiltonkreis

- Eine erfüllende Wahrheitsbelegung der Variablen legt für jedes Diamantengadget G_1, \ldots, G_n fest, ob es von rechts nach links oder von links nach rechts durchlaufen wird.
- Klauselknoten c_j können wir in die Rundreise einbauen, indem wir eine Variable x_i auswählen, die c_j erfüllt, und c_j durch einen kleinen Abstecher vom Diamantengadget G_i aus besuchen.

D-Ham-Cycle (6c): Korrektheit

- Wenn c_j für $x_i = 1$ erfüllt ist, so ist x_i positiv in c_j enthalten. Ein Besuch von c_j beim Durchlaufen des Diamantengadgets G_i von rechts nach links ist möglich.
- Wenn c_j für $x_i = 0$ erfüllt ist, so ist x_i in negierter Form in c_j enthalten. Ein Besuch von c_j beim Durchlaufen des Diamantengadgets G_i von links nach rechts ist möglich.
- Also können alle Klauselknoten in die Rundreise eingebunden werden.

D-Ham-Cycle (7): Schluss

4. (Polynomielle Zeit):

Die Funktion f ist in Polynomialzeit berechenbar.

- Die Konstruktion verwendet n Diamantengadgets mit je O(m) Knoten
- Die Konstruktion verwendet *m* Klauselknoten

5. (Korrektheit):

f ist Reduktion: $x \in L^* \Leftrightarrow f(x) \in L$

$$\varphi \in \mathsf{SAT} \iff f(\varphi) = \langle G \rangle \in \mathsf{D}\text{-Ham-Cycle}$$

NP-Vollständigkeit von Ham-Cycle (ungerichtet)

Ham-Cycle (1): Definition

Problem: Hamiltonkreis (Ham-Cycle)

Eingabe: Ein ungerichteter Graph G = (V, E)

Frage: Besitzt *G* einen Hamiltonkreis?

Satz

Ham-Cycle ist NP-vollständig.

Beweis:

- Wir zeigen D-Ham-Cycle \leq_p Ham-Cycle
- Es sei G' = (V', A') eine Instanz von D-Ham-Cycle
- Wir konstruieren in polynomieller Zeit einen ungerichteten Graphen G = (V, E), sodass gilt: $G' \in D$ -Ham-Cycle $\Leftrightarrow G \in Ham$ -Cycle

Ham-Cycle (2): Reduktion

- Es sei G' = (V', A') eine Instanz von D-Ham-Cycle
- Der ungerichtete Graph *G* ensteht aus *G'* durch lokale Ersetzung:

Interpretation:

- v_{in} ist der Eingangsknoten für v_{mid}
- v_{out} ist der Ausgangsknoten für v_{mid}

Ham-Cycle (3): Korrektheit

G' hat gerichteten Hamiltonkreis $\Leftrightarrow G$ hat Hamiltonkreis

- (A) Jeder Hamiltonkreis in G' kann offensichtlich in einen Hamiltonkreis in G transformiert werden
- (B) Wie sieht es mit der Umkehrrichtung aus?
 - Jeder Hamiltonkreis in G besucht den Knoten v_{mid} zwischen den beiden Knoten v_{in} und v_{out}
 - Entweder: $v_{in} v_{mid} v_{out}$ Oder: $v_{out} v_{mid} v_{in}$
 - Von v_{out} aus kann man nur Knoten vom Typ u_{in} erreichen (und dazu muss der gerichtete Graph die entsprechende gerichtete Kante von v nach u enthalten)
 - Daher kann jeder Hamiltonkreis in *G* in einen gerichteten Hamiltonkreis in *G'* übersetzt werden.

Ham-Cycle (4): Übung

Übung

Zeigen Sie: Ham-Cycle \leq_p D-Ham-Cycle

Hinweis: Verwenden Sie lokale Ersetzungen

NP-Vollständigkeit des TSP

TSP (1): Definitionen

Problem: Travelling Salesman Problem (TSP)

Eingabe: Städte $1, \ldots, n$; Distanzen d(i, j); eine Zahl γ

Frage: Gibt es eine Rundreise (TSP-Tour) mit Länge höchstens γ ?

Zwei Spezialfälle:

Problem: Δ-TSP

Eingabe: Städte $1, \ldots, n$; symmetrische Distanzen d(i,j) mit Dreiecksungleichung $d(i,j) \le d(i,k) + d(k,j)$; eine Zahl γ

Frage: Gibt es eine Rundreise (TSP-Tour) mit Länge höchstens γ ?

Problem: {1,2}-TSP

Eingabe: Städte 1, . . . , n; symmetrische Distanzen $d(i, j) \in \{1, 2\}$; eine Zahl γ

Frage: Gibt es eine Rundreise (TSP-Tour) mit Länge höchstens γ ?

TSP (2): Beweis der NP-Schwere

Satz

TSP und Δ -TSP und $\{1,2\}$ -TSP sind NP-schwer.

- Es genügt zu zeigen, dass {1,2}-TSP NP-schwer ist.
- Wir zeigen: Ham-Cycle $\leq_p \{1, 2\}$ -TSP
- Aus einem ungerichteten Graphen G = (V, E) für Ham-Cycle konstruieren wir eine TSP Instanz.
- Jeder Knoten $v \in V$ wird zu einer Stadt
- Der Abstand zwischen Stadt u und Stadt v beträgt

$$d(u, v) = \begin{cases} 1 & \text{falls } \{u, v\} \in E \\ 2 & \text{falls } \{u, v\} \notin E \end{cases}$$

- Wir setzen $\gamma := |V|$
- Der Graph G hat genau dann einen Hamiltonkreis, wenn die konstruierte TSP Instanz eine Tour mit Länge $\leq \gamma$ hat.

Landkarte mit Karp's 20 Reduktionen

