

Prédiction du Churn Client -Projet 3 AIA

Rabearivony Tsanta Loïc

Formation: AIA01

Septembre 2025

Objectifs du projet

- Comprendre les facteurs qui influencent le churn
- Construire et comparer plusieurs modèles de classification
- Optimiser les hyperparamètres (GridSearchCV)
- Fournir des **améliorations business** exploitables

Données utilisées

- Source : Kaggle Telco Customer Churn
- Nombre de clients : ~7 000
- Variables : caractéristiques clients, services souscrits, facturation, churn (Oui/Non)
- Données nettoyées, encodées et normalisées

Analyse exploratoire (EDA)

- Les clients récents (tenure faible) churnent davantage
- Les frais mensuels élevés augmentent le risque de churn
- Contrats longs (1–2 ans)
 réduisent fortement le churn
 - Paiement par Electronic check → plus de churn
- Services OnlineSecurity & TechSupport → réduisent le churn

	Colonne	Type de données	Nombre de valeurs non nulles	Nombre de valeurs nulles
0	gender	int64	7032	0
1	SeniorCitizen	int64	7032	0
2	Partner	int64	7032	0
3	Dependents	int64	7032	0
4	tenure	float64	7032	0
5	PhoneService	int64	7032	0
6	MultipleLines	int64	7032	0
7	OnlineSecurity	int64	7032	0
8	OnlineBackup	int64	7032	0
9	DeviceProtection	int64	7032	0

Piechart de la repartion du churn

73.5 pourcent des clients sont restés (Churn = 0) 26.6 pourcent des clients ont churné (Churn = 1)=> soit 1 client sur 3,8

- Contrat Two Years
- InternetService_fiber_Optic
- PaymentMethod_Electronic_check
- tenure (plus élevé)

Ancienneté (tenure) selon le Churn

Ancienneté moyenne : Churn No 0.213019 > 0 Yes -0.588451 < 0

Les clients récents (tenure faible) churnent beaucoup plus que les anciens. Ils quittent l'entreprise tôt dans le cycle client.

Frais mensuels (MonthlyCharges) selon le churn

MonthlyCharges moyen: Churn

No -0.116036 < 0

Yes 0.320542 > 0

Les clients avec des frais mensuels élevés sont plus enclins à churner.

Type de contrat et churn

Taux de churn selon Contract_One year :

Contract_One year 0 30.629496 1 11.277174

Taux de churn selon Contract_Two year:

Contract_Two year 0 34.056480 1 2.848665

- Les clients en contrat 1 an → leur taux de churn chute à 11%.
- Les clients en contrat 2 ans → ils sont presque captifs, avec un churn ultra faible à 2,8%.
- Les clients en month-to-month sont ceux qui churnent le plus ≈ 40%,

Les contrats longs (1–2 ans) réduisent fortement le churn comparé aux contrats mensuels.

- Payment method electronic check (CHURN élevé) => 45,3% => cheque éléctronique => méthode a risque
- Payment method credit card (CHURN faible) => 15,3% => carte bancaire => paiement automoatisé =
 meilleure fidélité = moins de churn
- Payment method electronic check (CHURN moyen) => 19,2% => chéque postal => méthode
 intermediaire

Les clients payant par Electronic check sont les plus à risque de churn.

OnlineSecurity et Churn

- Les clients qui n'ont pas activé OnlineSecurity sont beaucoup plus susceptibles de churner.
- Les clients protégés par OnlineSecurity restent plus fidèles.

Churn avec OnlineSecurity=1:14.6% vs sans OnlineSecurity=0:31.4%.

Résultats des modèles de Machine Learning

Les Modèles

	Modèle	Principe
0	Régression Logistique	Modèle linéaire qui estime la probabilité de churn en fonction des variables.
1	Arbre de Décision	Applique des règles successives (si/alors) pour classer un client.
2	Random Forest	Ensemble d'arbres de décision, combine leurs prédictions pour être plus robuste.

Métriques de performance

	Métrique	Définition
0	Accuracy	Proportion de prédictions correctes (globalement).
1	Recall	Capacité à détecter les churners (clients partis).
2	F1-score	Moyenne harmonique entre précision et rappel (équilibre).
3	AUC	Mesure globale de séparation entre churn et non-churn (0.5 = hasard, 1 = parfait).

Comparaison des modèles

	Modèle	Accuracy	Recall	F1-score	AUC
0	Régression Logistique	0.73	0.8	0.61	0.84
1	Random Forest (Optimisé)	0.8	0.52	0.57	0.83
2	Arbre de Décision	0.71	0.78	0.59	0.82
3	Random Forest (Défaut)	0.79	0.51	0.56	0.82

Matrices de confusion

La matrice de confusion permet de comprendre comment un modèle se trompe :

- Trop de FP → trop d'alertes inutiles → risque d'agacer les clients.
- Trop de FN → beaucoup de churners ratés → perte de revenus.

on privilégie la réduction des FN (augmenter le Recall) car l'objectif est de détecter un maximum de churners.

	Туре	Définition
0	Vrais Négatifs (TN)	Clients non churn correctement prédits comme non churn.
1	Faux Positifs (FP)	Clients non churn prédits à tort comme churn (fausse alerte).
2	Faux Négatifs (FN)	Clients churn prédits à tort comme non churn (churn ratés).
3	Vrais Positifs (TP)	Clients churn correctement prédits comme churn.

Conclusion et modèle retenu

- <u>Régression Logistique</u>: meilleur Recall (0.80) et meilleur AUC (0.84) → excellent pour détecter les churners
- Random Forest optimisé: meilleure Accuracy (0.80), mais Recall limité (0.52) → plus précis mais moins sensible
- Arbre de Décision : rappel élevé (0.78) mais performance globale plus faible
- Random Forest défaut : similaire à la version optimisée mais un peu moins stable

<u>Modèle retenu</u>: Régression Logistique, car l'objectif principal est de maximiser la détection des churners.