Case Study Bayes and Big Data: The Consensus Monte Carlo Algorithm (Scott et al. 2013)

Artur Begyan, Hans Hanley, Parley R Yang

3 Dec 2019 Oxford, UK

Overview

- Background
 - Parallel Computing
 - Monte Carlo Sampling
 - Monte-Carlo Algorithm with Multiple Machines
- Consensus Monte-Carlo Methods
- Consensus Monte-Carlo Examples
 - Bernoulli-Beta Experiments
 - Application to Data with Hierarchical Models
- Conclusion

What is Parallel Computing?

What is Parallel Computing?

- Parallel computing is a form of computation in which many calculations are carried simultaneously.
- How is Parallel Computing Accomplished
 - A problem is broken into discrete parts
 - The discrete parts are handled by:
 - Multiple CPU Cores
 - Multiple CPUs/GPUs
 - Multiple Machines

Parallel Computing

Benefits of Parallel Computing

- Benefits in all types of parallel computing
 - Save time/memory
 - Provide concurrency (use of unused resources)
- Benefits in multi-machine computing
 - Solve larger problems (can handle 'Big' data; for large data then, multi-machine parallel computing is a must!)
 - Use of non-local resources, (i.e. machines in cloud or rented servers)

Issues with Parallel Computing

- Issues with multi-core or multi CPU/GPU parallel computing
 - Cannot alleviate bottlenecks of memory and disk access
 - Difficult programming- (GPU computing is notoriously difficult to debug; race conditions)
- Issues with multi-machine parallel computing
 - Efficiency is lower significantly
 - Communication is inherently slower. Passing messages among machines is expensive.

Communication in Parallel Computing

Communication in Parallel Computing

Monte-Carlo Sampling

- Often we want to compute expectation of a posterior distribution.
- For expectations $\Phi = g(\theta)$, we use the following:

$$\int_{g(\Theta)} \phi p(\Phi|Y) d\Phi = \int_{\Theta} g(\phi) p(\Phi|Y) d\Theta$$

- Sometimes we do not know how to compute the integral!
- We use Markov Chain Monte Carlo sampling!

Simulations from Distributions

• We take a sample of S values from the posterior distribution of θ for large S:

$$\theta^{(1)}, ..., \theta^{(S)} \sim p(\theta|Y)$$

By the Law of Large Numbers

$$\begin{split} & \frac{1}{S} \Sigma \theta^{(i)} \to E[\theta|Y] \\ & \frac{1}{S} \Sigma g(\theta^{(i)}) \to E[g(\theta)|Y] \end{split}$$

Monte-Carlo

Monte-Carlo Full Algorithm

```
Data: Y, p(\theta), S
Use Baye's Theorem for the Posterior p(\theta|Y)
for i < S do
| Take Sample(p(\theta|Y))
end
```

Result: Estimated expectation of posterior $\mathsf{E}[\theta|Y]$ Algorithm 1: How to estimate Θ from posterior distribution

Parallel Computing In Practice!

What if we want to use Parallel Computing to compute a posterior distribution?

Multiple Machine Monte-Carlo

- Attacks 'Big Data' problems by dividing the data across multiple machines.
- The Monte-Carlo algorithm is then performed on each machine
- Posterior draws from each machine are then combined to beliefs about the model.

Example of MCMC on multi-machines

Example on a single layer hierarchical logistic regression model.

$$y_{ij} \sim Binomial(n_{ij}, p_{ij})$$

$$\log it(p_{ij}) = (x)_{ij}^T \beta_i$$

$$\beta \sim \mathbb{N}(\mu, \Sigma)$$

$$\mu | \Sigma \sim \mathbb{N}(0, \Sigma/\kappa)$$

$$\Sigma^{-1} \sim W(I, \nu)$$

where $W(I, \nu)$ is the Wishart distribution with sum of squares I and scale parameter ν .

Example of MCMC on multi-machines

- Partition the data by domain
- Assign one worker to be the master node responsible for the full prior
- Draw each β_i given the current values of μ and Σ on each machine
- Draw μ and Σ based on the current β_i on the master machine.
- Repeat until convergence

Example of MCMC on multi-machines

- Partition the data by domain
- Assign one worker to be the master node responsible for the full prior
- Draw each β_i given the current values of μ and Σ on each machine
- Draw μ and Σ based on the current β_i on the master machine.
- Repeat until convergence

Conclusions of Example

- The 50 machine run completed in 5 hours
- The 500 machine run completed in 2.75 hours (1 iteration per second)
- There is a 5x inefficiency at play
- From the graph, we see that job failures were not enough to cause the discrepancy
- Communication was the problem!
 - ullet For the 50 machine run: (μ,Σ) step takes 100ms
 - \bullet For the 500 machine run: (μ,Σ) step takes 250ms
 - Logging in the code shows that the inefficiency comes form communication.
- It takes time for the machines to communicate!

Step Times for the MCMC algorithm

Consensus Monte Carlo

- Break the data into groups (called "shards")
- Give each shard to a worker machine which does a full Monte Carlo simulation from a posterior distribution given its own data
- Combine simulations from each worker to produce a set of global draws representing the consensus belief among the workers
 - 1. Divide \mathbf{y} into shards $\mathbf{y}_1, \dots, \mathbf{y}_S$.
 - 2. Run S separate Monte Carlo algorithms to sample $\theta_{sg} \sim p(\theta|\mathbf{y}_s)$ for g = 1, ..., G, with each shard using the fractionated prior $p(\theta)^{1/S}$.
 - 3. Combine the draws across shards using weighted averages: $\theta_g = (\sum_s W_s)^{-1} (\sum_s W_s \theta_{sg})$.

Consensus Monte Carlo

- Let ${\bf y}$ represent the full data, let ${\bf y}_s$ denote shard s, and let θ denote the model parameters
- For models with the appropriate independence structure, the system can be written

$$p(\theta|\mathbf{y}) \propto \prod_{s=1}^{S} p(\mathbf{y_s}|\theta) p(\theta)^{\frac{1}{S}}$$

• The prior distribution $p(\theta) = \prod_{s=1}^S p(\theta)^{\frac{1}{S}}$ is split into S components to preserve the total amount of prior information in the system

Combining draws by weighted averages

- Suppose worker s generates draws $\theta_{\rm s1},...,\theta_{\rm sG}$ from $p(\theta|{\bf y_s}) \propto p({\bf y_s}|\theta)p(\theta)^{\frac{1}{S}}.$
- ullet Suppose each worker is assigned a weight represented by a matrix W_s . The consensus posterior for draw g is

$$\theta_{\mathrm{g}} = (\sum_{s} W_{\mathrm{s}})^{-1} \sum_{s} W_{\mathrm{s}} \theta_{\mathrm{sg}}$$

• When each $p(\theta|\mathbf{y_s})$ is Gaussian, the joint posterior $p(\theta|\mathbf{y})$ is also Gaussian, hence the above equation can be made to yield exact draws from $p(\theta|\mathbf{y})$

Choosing Weights

- The weight $W_{\rm s}=\Sigma_s^{-1}$ is optimal (for Gaussian models), where $\Sigma_{\rm s}=Var(\theta|{\bf y}_{\rm s})$
- An obvious Monte Carlo estimate of Σ_s is sample variance of $\theta_{s1},...,\theta_{sG}$
- Sub-optimal but computationally efficient weighting
 - Ignore the covariances in Σ_{s}
 - Apply equal weighs
- In practice, information-based weighting will usually be necessary

Nested Hierarchical models

- If the data has nested structure, where $y_{\rm ij}\sim f(y|\phi_{\rm j})$ and $\phi_{\rm j}\sim p(\phi|\theta)$ then Consensus Monte Carlo (CMC) can be applied in a straightforward way
- For CMC to work, data needs to be partitioned so that no group is split across multiple shards
- Run CMS, store the θ draws and discard ϕ_j draws. Combining the draws of θ_{sg} produces a set of draws $\theta_1,...,\theta_G$ approximating $p(\theta|\mathbf{y})$.
- Conditional on the simulated draws of θ , sampling $\phi_{\mathbf{j}} \sim p(\phi_{\mathbf{j}}|\mathbf{y}) = p(\phi_{\mathbf{j}}|\mathbf{y}_{\mathbf{j}},\theta)$ is an embarrassingly parallel problem.

Binomial data with a beta prior: basic case

- Data from 1000 Bernoulli with one head.
- 100 machines with equal weights each with prior $\theta \sim Beta(0.01, 0.01)$
- In 1 machine case, we start with $\theta \sim Beta(1,1)$ thus expect to see posterior Beta(2,1000)

Binomial data with a beta prior: basic case

Figure 4: (a) Posterior draws from binomial data. (b) A qq plot showing that the tails of the consensus Monte Carlo distribution in panel (a) are slightly too light.

Binomial data with a uniform prior

Binomial data with a beta prior: deeper insight — 1 Machine

Binomial data with a beta prior: deeper insight — 20 Machines summary

density.default(x = Final collection) 20 40 Density 30 20 10 0 0.09 0.03 0.04 0.05 0.06 0.07 0.08 N = 100000 Bandwidth = 0.0006688

Binomial data with a beta prior: deeper insight — Some individual cases

Binomial data with a beta prior: different weights

- Data from 1000 Bernoulli with p=0.01
- Weights assigned differently: 20,20,70,100,500; each of the 5 machines start with prior Beta(0.2,0.2)
- The 1 machine case starts with Beta(1,1)

Binomial data with a beta prior: different weights

Hierarchical models

•

0

• Main job: fitting a hierarchical model.

$$y_{ij} \sim Poisson(N_{ij}\lambda_{ij})$$

where y_{ij} is the number of times advertisement i from advertiser j was clicked, N_{ij} is the number of times it was shwon.

$$\log(\lambda_{ij}) = \beta_j^T \mathbf{x}_{ij}$$

where \mathbf{x}_{ij} is a small set of explanatory variables, β follows the distribution

$$\beta_j \sim N(\mu, \Sigma)$$

while μ follows normal distribution and Σ^{-1} follows Wishart distribution.

Hierarchical models

- Data has 24 million observations, split into 867 shards.
- 10k MCMC interations
- One machine with 5+ cores work on 5 shards of data in parallel (CMC) vs. one machine with 1 core work on the same amount of data in sequential order (MC).

Figure 10: Time required to complete 10,000 MCMC draws with different numbers of shards under the single machine and consensus Monte Carlo algorithm.

Hierarchical models: overall results

Hierarchical models: individual results

Conclusion

- For 'Big Data' due the size often multiple machines are required in order to preform computations
- Communication issues can often inhibit the efficiency of 'Big Data' algorithms
- Consensus Monte-Carlo is a way of minimizing communication costs in parallel computing while calculating statistics on a posterior
- We have shown here, two examples (one binomial, the other hierarchical) that illustrate the benefits of this approach