## Tarea 6 Optimización de flujo en redes

Victor Aram Dominguez Ramirez

21 de Mayo de 2018

## 1. Introducción

En esta práctica calcularemos el flujo máximo de un grafo con cierta cantidad de nodos. Anteriormente en prácticas pasadas se calculo el flujo máximo mediante el algoritmo de Ford-Fulkerson. En está ocasión lo haremos percolando nodos y aristas a tal grado de dejar 2 nodos conectados mediante una arista que tendrá su flujo máximo. En dicha percolación se harán uniones de nodos haciendo este nuevo nodo en una fución de nodos.

## 2. Flujo máximo

Teniendo los n nodos del grafo ya conectados con otros nodos, ubicaremos estas aristas de nodo a nodo con su peso y al obtener el peso más pequeño de las aristas, dichos nodos que están conectados se unirán en un nuevo nodo que se ubicara en su punto medio.

```
\begin{array}{cccc} & \text{for } (x1\,,y1) & \text{in } \text{self.nodos:} \\ & \text{for } (x2\,,y2) & \text{in } \text{self.nodos:} \\ & \text{q=} (x1\,,y1\,,x2\,,y2) \\ & \text{in } \text{self.doc} \\ & \text{if } \text{q} = \text{True:} \\ & \text{gh=self.doc} [(x1\,,y1\,,x2\,,y2\,)] \\ & \text{if } \text{gh}{<} \text{h:} \\ & \text{h=gh} \\ & \text{A1=x1} \\ & \text{B1=y1} \\ & \text{A2=x2} \\ & \text{B2=y2} \end{array}
```

Ubicaremos las coordenadas de los puntos a unir para la fusión del nuevo nodo, con el objetivo de borrar la coordenada que las unía y encontrar las aristas que unían a esos dos nodos con el restante de nodos. Al tener las coordenadas que se unían a estos dos nodos, se borraran y crearan una solo una arista por cada nodo, sumando los pesos que estos tenían hacia cierto nodo. En pocas palabras, si el nodo A se unirá con el nodo B creando la fusión de un nuevo nodo AB, si la arista del nodo A con el nodo C tiene un peso de 3 y de B a C es de 5, entonces ahora habrá un nodo AB que conectara con C con una sola arista donde se sumaran dichos pesos de las aristas siendo igual a 8. Este proceso se hará periódicamente hasta que solo existan dos nodos en el grafo con una conexión y esta tendrá el flujo máximo.

```
\begin{array}{cccc} & \text{for } (x3\,,y3) & \text{in self.nodos:} \\ & & \text{f1}\!=\!(\text{A1}\!+\!\text{A2})/2 \\ & & \text{f2}\!=\!(\text{B1}\!+\!\text{B2})/2 \\ & & \text{k1}\!=\!(\text{A1}\,,\text{B1}\,,x3\,,y3\,) \, \text{in self.doc} \\ & & \text{k2}\!=\!(x3\,,y3\,,\text{A1}\,,\text{B1}) \, \text{in self.doc} \\ & & \text{if } \text{k1}\!=\!\!=\!\!\text{True:} \end{array}
```

```
r1 = self.doc[(A1, B1, x3, y3)]
             del self.doc[(A1,B1,x3,y3)]
         else:
             r\,1{=}0
         if k2=True:
             r3 = self.doc[(x3, y3, A1, B1)]
             del self.doc[(x3,y3,A1,B1)]
         else:
             r3 = 0
        R = r1 + r3
         v1=(A2,B2,x3,y3) in self.doc
         v2=(x3, y3, A2, B2) in self.doc
         if v1=True:
             c1 = self.doc[(A2, B2, x3, y3)]
             del self.doc[(A2,B2,x3,y3)]
         else:
             c1 = 0
         if v2=True:
             c2 = self.doc[(x3, y3, A2, B2)]
             del self.doc[(x3,y3,A2,B2)]
         else:
             c2=0
        C = c1 + c2
        Q=R+C
         if Q! = 0:
             self.doc.setdefault((f1,f2,x3,y3),Q)
self.nodos.remove((A1,B1))
self.nodos.remove((A2,B2))
```

Podemos decir que al eliminar siempre la arista con menos peso, vamos a ir dejando los flujos mayores para así obtener el máximo flujo como resultado como se muestra en la figura 1. Se obtuvo un flujo



Figura 1: Flujo máximo.

máximo de 21 unidades de una red de 7 nodos.

## 3. Resultados

Con forme aumentamos los nodos el flujo va a ir creciendo como se muestra en la figura 2. Se puede considerar que a comparación del algoritmo de Ford-Fulkerson este método es mucho más rápido, pero menos eficiente. 1.



Figura 2: Crecimiento.