Model	NonOOV	oov	Overall
Word NMT + UNK replacement	27.61	21.57	26.17
Hybrid model	29.36	25.92	28.49
Nested Attention Hybrid Model	29.00	27.39	28.61

Table 5: $F_{0.5}$ results on the CoNLL-13 set of main model architectures, on different segments of the set according to whether the input contains OOVs.

source	This greatly violets the rights of people .		
gold	This greatly violates the rights of people .		
word NMT + UNK replacement	This greatly violets the rights of people .		
Nested Attention Hybrid Model	This greatly violates the rights of people .		

Table 6: An example sentence from the OOV segment where the nested attention hybrid model improves performance.

Table 6 shows an example where the nested attention hybrid model successfully corrects a misspelling resulting in an OOV word on the source, whereas the baseline word-level system simply copies the source word without fixing the error (since this particular error is not observed in the parallel training set).

5.2 Impact of Nested Attention on Different Error Types

To analyze more precisely the impact of the additional character-level attention introduced by our design, we continue to investigate the OOV segment in more detail.

The concept of *edit*, which is also used by the official M2 score metric, is defined as a minimal pair of corresponding sub-strings in a source sentence and a correction. For example, in the sentence fragment pair: "Even though there is a risk of causing **harms** to someone, people still **are prefers** to keep their pets without a leash." \rightarrow "Even though there is a risk of causing **harm** to someone, people still **prefer** to keep their pets without a leash.", the minimal edits are "harms \rightarrow harm" and "are prefers \rightarrow prefer". The $F_{0.5}$ score is computed using weighted precision and recall of the set of a system's edits against one or more sets of reference edits.

For our in-depth analysis, we classify edits in the OOV segment into two types: *small changes* and *large changes*, based on whether the source and target phrase of the edit are orthographically similar or not. More specifically, we say that the target and

Model	Performance		
	P	R	$F_{0.5}$
Small Changes F	Portion		
Hybrid model	43.86	16.29	32.77
Nested Attention Hybrid Model	48.25	17.92	36.04
Large Changes I	Portion		
Hybrid model	32.52	8.32	20.56
Nested Attention Hybrid Model	33.05	8.11	20.46

Table 7: Precision, Recall and $F_{0.5}$ results on CoNLL-13,on the "small changes" and "large changes" portions of the OOV segment.

source phrases are orthographically similar, iff: the character edit distance is at most 2 and the source or target is at most 8 characters long, or $edit_ratio < 0.25$, where $edit_ratio = \frac{character_edit_distance}{\min(len(src),len(tar))+0.1}, len(*)$ denotes number of characters in *, and src and tgt denote the pairs in the edit. There are 307 gold edits in the "small changes" portion of the CoNLL-13 OOV segment, and 481 gold edits in the "large changes" portion.

Our hypothesis is that the additional character-level attention layer is particularly useful to model edits among orthographically similar words. Table 7 contrasts the impact of character-level attention on the two portions of the data. We can see that the gains in the "small changes" portion are indeed quite large, indicating that the fine-grained character-level attention empowers the model to more accurately correct confusions among phrases with high character-level similarity. The impact in the "large changes" portion is slightly positive in precision and slightly negative in recall. Thus most of the benefit of the additional character-level attention stems from improvements in the "small changes" portion.

Table 8 shows an example input which illustrates the precision gain of the nested attention hybrid model. The input sentence has a source OOV word which is correct. The hybrid model introduces an error in this word, because it uses only a single source context vector, aggregating the character-level embedding of the source OOV word together with other source words. The additional character-level attention layer in the nested hybrid model enables the correct copying of this long source OOV word, without employing the heuristic mechanism of the word-level NMT system.