Московский государственный технический университет им. Н.Э. Баумана

ого

1. Задание лабораторной работы

- Выбрать набор данных (датасет) для решения задачи прогнозирования временного ряда.
- Визуализировать временной ряд и его основные характеристики.
- Разделить временной ряд на обучающую и тестовую выборку.
- Произвести прогнозирование временного ряда с использованием как минимум двух методов.
- Визуализировать тестовую выборку и каждый из прогнозов.
- Оценить качество прогноза в каждом случае с помощью метрик.

2. Ячейки Jupyter-ноутбука

2.1. Выбор и загрузка данных

2.1.1. Текстовое описание

В качестве датасета для решения задачи прогнозирования временного ряда будем использовать набор данных, содержащий ежедневные климатические данные в городе Дели с 2013 по 2017 год. Данный набор доступен по адресу: https://www.kaggle.com/datasets/sumanthvrao/daily-climate-time-series-data

Набор данных имеет следующие атрибуты:

- date Дата метка времени
- meantemp Средняя температура средняя температура, расчитанная по нескольким 3часовым интервалам в день
- humidity Влажность показатель влажности в граммах воды на кубический метр воздуха
- wind speed Скорость ветра скорость ветра в километрах в час
- meanpressure Среднее давление среднее давление в атмосферах

2.1.2. Импорт библиотек

Импортируем библиотеки с помощью команды import:

```
[1]: import numpy as np
import pandas as pd
from matplotlib import pyplot
import matplotlib.pyplot as plt
```

Уберем предупреждения:

```
[2]: import warnings warnings.filterwarnings('ignore')
```

2.1.3. Загрузка данных

Выборка уже разделена. Для первичного анализа объединим тестовую и обучающую выборку:

```
[3]: data_test = pd.read_csv('DailyDelhiClimateTest.csv', header=0, ☐

→parse_dates=['date'], index_col='date', squeeze=True)

data_train = pd.read_csv('DailyDelhiClimateTrain.csv', header=0, ☐

→parse_dates=['date'], index_col='date', squeeze=True)

data = pd.concat([data_train, data_test], axis=0)
```

2.2. Первичная обработка данных и визуализация

2.2.1. Первичный анализ

Выведем первые 5 строк датасета:

```
[4]: data.head()
[4]:
                            humidity wind_speed meanpressure
                 meantemp
    date
    2013-01-01
                10.000000 84.500000
                                        0.000000
                                                   1015.666667
                                        2.980000
    2013-01-02
                7.400000 92.000000
                                                   1017.800000
    2013-01-03
                 7.166667
                           87.000000
                                        4.633333
                                                   1018.666667
    2013-01-04
                 8.666667 71.333333
                                                   1017.166667
                                        1.233333
    2013-01-05
                 6.000000 86.833333
                                        3.700000
                                                  1016.500000
```

Определим размер датасета:

```
[5]: data.shape
```

[5]: (1576, 4)

Определим типы данных:

```
[6]: data.dtypes
```

```
[6]: meantemp float64
humidity float64
wind_speed float64
meanpressure float64
```

dtype: object

2.2.2. Обработка данных

Оставим только столбец влажности для временного ряда:

```
[7]: data = data.drop(columns=['meantemp'], axis=1)
data = data.drop(columns=['wind_speed'], axis=1)
data = data.drop(columns=['meanpressure'], axis=1)
```

```
[8]: data.head()
```

```
[8]: humidity date 2013-01-01 84.500000 2013-01-02 92.000000 2013-01-03 87.000000 2013-01-04 71.333333 2013-01-05 86.833333
```

2.2.3. Основные статистические характеристки

Определим основные статистические характеристки временного ряда:

```
[9]: data.describe()
```

```
[9]:
               humidity
            1576.000000
     count
              60.445229
     mean
              16.979994
     std
              13.428571
     min
              49.750000
     25%
     50%
              62.440476
     75%
              72.125000
             100.000000
     max
```

2.2.4. Визуализация исходного временного ряда

В виде графика:

```
fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
fig.suptitle('Временной ряд в виде графика')
data.plot(ax=ax, legend=False)
pyplot.show()
```

Временной ряд в виде графика


```
fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
fig.suptitle('Первые 30 точек ряда')
data[:30].plot(ax=ax, legend=False)
pyplot.show()
```

Первые 30 точек ряда

В виде гистограммы:

```
[12]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
fig.suptitle('Гистограмма')
data.hist(ax=ax, legend=False)
pyplot.show()
```


Вероятностная плотность распределения данных:

```
[13]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
fig.suptitle('Плотность вероятности распределения данных')
data.plot(ax=ax, kind='kde', legend=False)
pyplot.show()
```

Плотность вероятности распределения данных

С помощью Lag Plot:

```
for i in range(1, 5):
    fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(5,5))
    fig.suptitle(f'Лаг порядка {i}')
    pd.plotting.lag_plot(data, lag=i, ax=ax)
    pyplot.show()
```

Лаг порядка 1

Лаг порядка 3

Лаг порядка 4

Наблюдается достаточно сильная положительная корреляция. Автокорреляционная диаграмма:

```
[15]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
fig.suptitle('Автокорреляционная диаграмма')
pd.plotting.autocorrelation_plot(data, ax=ax)
pyplot.show()
```

Автокорреляционная диаграмма

Автокорреляционная функция:

```
[16]: from statsmodels.graphics.tsaplots import plot_acf
    plot_acf(data, lags=30)
    plt.tight_layout()
```


Частичная автокорреляционная функция:

```
[17]: from statsmodels.graphics.tsaplots import plot_pacf
    plot_pacf(data, lags=30)
    plt.tight_layout()
```


Временной ряд со скользящими средними:

```
[20]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
fig.suptitle('Временной ряд со скользящими средними')
data2[:100].plot(ax=ax, legend=True)
pyplot.show()
```

Временной ряд со скользящими средними

2.3. Прогнозирование временного ряда с использованием авторегрессионного метода

Будем использовать авторегриссионный метод ARIMA:

```
[21]: from statsmodels.tsa.arima.model import ARIMA
```

2.3.1. Разделение выборки на обучающую и тестовую

```
[22]: xnum = list(range(data2.shape[0]))
Y = data2['humidity'].values
train_size = int(len(Y) * 0.7)
xnum_train, xnum_test = xnum[0:train_size], xnum[train_size:]
train, test = Y[0:train_size], Y[train_size:]
history_arima = [x for x in train]
```

2.3.2. Прогноз ARIMA

```
[23]: arima_order = (6, 1, 0)
    predictions_arima = list()
    for t in range(len(test)):
        model_arima = ARIMA(history_arima, order=arima_order)
        model_arima_fit = model_arima.fit()
```

```
yhat_arima = model_arima_fit.forecast()[0]
predictions_arima.append(yhat_arima)
history_arima.append(test[t])
```

```
[24]: data2['predictions_ARIMA'] = (train_size * [np.NAN]) + list(predictions_arima)
```

2.3.3. Визуализация

```
fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(20,10))
fig.suptitle('Предсказания временного ряда')
data2.plot(ax=ax, legend=True)
pyplot.show()
```

Предсказания временного ряда


```
[26]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(20,10))
fig.suptitle('Предсказания временного ряда (тестовая выборка)')
data2[train_size:].plot(ax=ax, legend=True)
pyplot.show()
```


Предсказания ARIMA точны, близки к исходному, далеки от среднего скользящего.

2.3.4. Метрики

```
MAE и MSE:
```

```
[27]: from sklearn.metrics import mean_absolute_error, mean_squared_error
[28]: mean_squared_error(test, predictions_arima, squared=False)
[28]: 7.277480320087945
```

[29]: 5.499332563097871

2.4. Прогнозирование временного ряда с использованием метода символьной регрессии

Будем использовать библиотеку gplearn:

[29]: mean_absolute_error(test, predictions_arima)

```
[30]: from gplearn.genetic import SymbolicRegressor
```

2.4.1. Прогноз

[32]: est_gp.fit(np.array(xnum_train).reshape(-1, 1), train.reshape(-1, 1))

1	-	•		Best Individual		
Gen Left	Length	Fitness	Length	Fitness	00B Fitness	Time
0 6.89m	263.65	1.91324e+67	26	3366.8	N/A	
1	161.42	1.73488e+15	3	771.22	N/A	
	62.67	3.99717e+14	3	771.22	N/A	
1.78m 3	39.15	3.51722e+10	3	285.6	N/A	
1.41m 4	24.00	3.38638e+11	3	285.6	N/A	
1.24m 5	26.05	6.84991e+09	34	280.86	N/A	
1.24m 6	11.13	1.4874e+10	35	280.438	N/A	
1.02m 7	19.15	4.04141e+06	33	280.136	N/A	
1.19m 8	33.94	2.44637e+10	62	279.776	N/A	
1.37m 9		2.2103e+06	42	279.19	N/A	
1.45m						
10 1.60m		1.61747e+09		279.026	N/A	
11 1.72m	50.83	1.24868e+06	60	278.728	N/A	
12 1.65m		1.20327e+06	72	278.686	N/A	
13 1.59m	46.53	5.97296e+08	64	278.507	N/A	
14 1.74m	59.07	988142	67	278.056	N/A	
15 1.95m	80.40	1.4714e+06	70	277.651	N/A	
16	91.46	4.15928e+06	58	274.954	N/A	
2.14m 17	94.69	1.16678e+06	58	274.954	N/A	
2.24m 18	131.75	3.04158e+06	113	274.223	N/A	
2.68m 19	154.79	599428	70	267.841	N/A	
3.01m 20	129.60	5.39217e+06	128	267.662	N/A	
2.65m 21	100.25	4.61995e+06	67	263.942	N/A	
2.26m 22 2.13m	92.04	274173	103	263.402	N/A	

23	107.35	193345	183	258.85	N/A
2.34m 24	108.87	140414	183	258.017	N/A
2.35m					
25 2.52m	123.21	185654	212	240.913	N/A
26	180.34	297662	210	240.84	N/A
3.19m 27	208.77	143690	211	239.988	N/A
3.55m	012.25	220404	000	020 607	DT / A
28 3.60m	213.35	338481	299	238.607	N/A
29	222.05	231000	476	238.538	N/A
3.85m 30	267.90	200555	303	238.41	N/A
4.21m	200 05	110005	FFC	020 102	NT / A
31 4.54m	298.85	110925	556	238.103	N/A
32	309.06	185395	556	238.07	N/A
4.76m 33	340.90	132016	354	238.051	N/A
5.06m	206 E1	120422	220	227 020	N/A
34 4.87m	326.51	129423	332	237.828	N/A
35	314.32	939493	344	237.792	N/A
4.77m 36	327.52	129602	303	230.187	N/A
4.94m 37	210 10	7.70537e+07	340	220.34	N/A
4.71m	310.10	7.70557e+07	340	220.34	N/A
38 4.92m	329.86	157729	366	220.279	N/A
	330.05	310550	329	219.403	N/A
5.46m 40	342.88	184113	348	218.34	N/A
5.47m	042.00	104113	040	210.04	N/ A
41 5.27m	349.80	1.90276e+09	329	217.718	N/A
42	360.93	303619	327	217.701	N/A
5.24m 43	344.29	226896	320	210.026	N/A
4.91m					
44 4.91m	337.52	231055	398	206.541	N/A
45	340.60	294015	398	206.541	N/A
4.94m 46	359.81	256564	407	195.67	N/A
5.08m					
47 5.65m	407.65	152362	493	193.514	N/A
48	424.48	5.85872e+06	450	190.798	N/A
5.74m 49	464.99	356433	450	190.793	N/A
		222200		2001.00	/

6.15m					
50	479.00	2.61636e+06	469	189.585	N/A
6.23m					,
51	463.20	97706.7	574	181.247	N/A
5.96m					
52	486.36	314938	641	180.519	N/A
6.18m					
53	533.12	319413	582	180.251	N/A
6.65m					
54	599.20	154258	580	179.739	N/A
7.33m					
55	605.87	115203	780	179.665	N/A
7.32m					4-
56	607.26	1.10202e+06	580	161.751	N/A
7.30m	E00 0E	205042	207	457 407	27 / 4
57	590.25	325810	607	157.107	N/A
7.11m 58	599.51	175627	498	154.816	N/A
7.55m	599.51	175027	490	154.610	IV/ A
7.55m 59	615.73	2.05937e+07	585	147.345	N/A
7.40m	010.70	2.003010.01	000	147.040	N/ A
60	572.38	381544	597	146.883	N/A
6.80m	012.00	001011	001	110.000	11, 11
61	576.44	289927	509	145.037	N/A
6.85m					
62	557.31	243327	651	144.194	N/A
6.49m					
63	574.89	2.80685e+06	579	142.065	N/A
6.70m					
64	595.33	217064	582	140.262	N/A
6.93m					
65	592.78	112236	578	139.268	N/A
7.19m					/ -
66	601.12	214792	687	139.167	N/A
6.90m	F0C 07	404050	F00	100 77	NT / A
67 6.64m	596.97	401058	580	138.77	N/A
68	596.88	183980	731	138.407	N/A
6.66m	550.00	103300	731	130.407	IV/ A
69	605.00	196923	645	138.124	N/A
6.63m	000.00	100020	010	100.121	11/ 11
70	624.28	120101	702	134.96	N/A
6.68m					,
71	613.74	65220.9	700	134.95	N/A
6.54m					
72	662.45	219994	706	134.663	N/A
6.93m					
73	713.11	84137	720	134.383	N/A
8.34m					
74	706.18	145495	708	134.371	N/A
8.62m					
75	691.32	164370	734	133.882	N/A
7.93m					

76 7.28m	714.10	112927	859	133.105	N/A
77	741.06	81064	920	132.395	N/A
7.66m 78	804.12	234355	1049	132.429	N/A
7.90m 79	822.98	90264.5	869	131.907	N/A
8.02m 80	832.85	205834	942	131.6	N/A
8.21m 81	860.39	295080	983	131.305	N/A
9.52m 82	891.89	244599	891	130.529	N/A
8.71m 83	941.01	236574	1051	130.064	N/A
8.72m 84	945.35	5.90819e+08	1051	129.819	N/A
8.33m 85	942.77	93379.8	1049	129.519	N/A
8.01m 86	983.41	235777	995	126.097	N/A
8.39m 87	1043.72	581588	999	125.898	N/A
	1142.51	286982	1005	124.618	N/A
	1031.67	108799	989	123.27	N/A
	1074.67	128401	981	123.027	N/A
	1026.87	5.90862e+08	987	121.965	N/A
	1003.39	2.34917e+09	1274	121.202	N/A
	1012.57	201797	982	120.63	N/A
	1065.47	128891	974	120.402	N/A
	1066.71	251783	1023	120.04	N/A
	1003.03	202755	1037	119.958	N/A
8.05m 97	981.58	159988	1001	119.906	N/A
8.11m 98	993.94	322564	989	119.464	N/A
7.99m 99	991.74	187031	946	119.374	N/A
7.32m 100	993.97	105857	1142	119.102	N/A
7.14m 101	976.85	79860.2	1144	119.079	N/A
7.14m 102		221920	951	118.929	N/A

7.40m					
103	938.70	90457.6	950	118.854	N/A
6.86m		2015.10			,
104	937.47	314656	939	118.68	N/A
6.62m					
105	936.34	149304	919	118.526	N/A
6.47m					
106	937.20	2.00517e+07	923	118.466	N/A
6.38m	044 05	0.01000.100	4044	447 750	27 / 4
107	941.85	8.91926e+09	1041	117.759	N/A
6.61m 108	943.66	159067	1041	117.646	N/A
6.67m		103001	1041	117.040	N/ A
109	968.74	94109	1041	117.582	N/A
6.73m					
110	1048.24	75924.5	1136	117.307	N/A
7.16m					
111	1057.97	1.13477e+06	1180	117.163	N/A
7.35m					
112	1076.84	236939	1182	116.834	N/A
7.29m	1100 41	72022 4	1100	110 000	NT / A
113 7.36m	1128.41	73033.1	1188	116.809	N/A
114	1120.40	256617	1178	116.745	N/A
7.28m	1120.40	200017	1170	110.140	N/ A
115	1142.22	139713	1205	116.588	N/A
7.34m					
116	1161.78	119681	1389	116.536	N/A
7.36m					
117	1177.39	163665	1523	116.336	N/A
7.38m					
118	1174.59	1.49591e+06	1210	116.279	N/A
7.19m		16/120	1010	116 071	NT / A
7.12m	1171.17	164129	1212	116.271	N/A
	1158.92	37142.5	1389	116.147	N/A
7.51m		01112.0	1000	110.111	14/ 11
	1197.40	46742.8	1217	116.097	N/A
7.93m					
122	1216.58	332484	1343	116.026	N/A
7.59m					
	1203.00	63012.6	1215	115.981	N/A
7.06m	1005.00	0.474.40	4000	445.040	27 / 4
	1205.20	217140	1208	115.942	N/A
7.12m	1200.88	195967	1361	115.919	N/A
6.74m		190901	1501	113.919	IV/ A
	1201.62	36773.3	1213	115.845	N/A
6.31m		22515			,
	1192.41	175546	1436	115.636	N/A
6.46m					
	1178.73	118886	1436	115.632	N/A
6.20m					

129 6.29m	1228.00	92349.2	1435	115.615	N/A
130	1219.99	177369	1435	115.615	N/A
6.44m					
131 6.30m	1219.26	581658	1435	115.581	N/A
	1241.64	5.95807e+08	1338	115.248	N/A
6.27m					
	1238.89	278341	1361	115.15	N/A
6.16m 134	1248 58	1.60758e+11	1383	115.108	N/A
6.11m		1.007000111	1000	110.100	N/ A
	1302.84	142129	1362	115.062	N/A
6.43m	1207 00	00000	1.000	110 406	N / A
136 6.47m	1327.08	80862	1628	110.496	N/A
	1368.02	119268	1745	110.206	N/A
6.30m					
138 6.74m	1492.48	37613.6	1747	109.06	N/A
	1678.08	26897.3	1753	108.847	N/A
7.39m					
	1722.07	122838	1936	107.952	N/A
7.45m 141		83720.5	2025	107.852	N/A
7.60m	1701.41	00120.0	2020	101.002	N/ A
142	1842.02	48335.6	1971	107.611	N/A
7.75m		00601 7	1064	107 510	N / A
7.94m	1947.55	82681.7	1964	107.512	N/A
	1933.71	6.0061e+08	1970	107.395	N/A
7.95m	1050 51	74000	4070	400.000	27./4
145 8.15m	1972.54	74686.6	1970	106.999	N/A
146	1954.03	64469.6	2011	106.981	N/A
6.84m					
147 7.37m	1951.31	8795.11	1942	106.773	N/A
	1955.85	975.374	1941	106.647	N/A
7.33m					
149		3.42713e+06	2020	106.646	N/A
7.20m 150	1947.16	78761.9	2019	106.512	N/A
7.08m					·
	1933.35	58093.1	2018	106.506	N/A
6.79m 152	1964.62	57360.7	2004	106.35	N/A
7.04m		37000.1	2001	100.00	W/ A
153	1970.03	69364.7	1881	106.234	N/A
6.61m		5 05007a100	1000	106 110	RT / A
6.41m		5.95297e+08	1882	106.112	N/A
	1939.50	123477	1878	106.099	N/A

6.23m					
156	1909.67	217390	1824	105.998	N/A
5.97m					·
157	1879.78	48951.3	1841	105.954	N/A
6.11m					
158	1852.92	2.00151e+07	1828	105.831	N/A
5.57m					
159	1834.71	41082	1828	105.831	N/A
5.37m					
160	1817.06	74661.6	1832	105.797	N/A
5.10m					
	1814.77	3860.34	1832	105.783	N/A
5.00m		2222	4040	405 004	27./4
	1808.57	62680.3	1842	105.664	N/A
4.96m	1750 15	000500	1710	405 445	27 / 4
	1758.15	203506	1712	105.417	N/A
4.69m	1600 96	00060	1710	10E 204	NT / A
164		92262	1712	105.394	N/A
4.39m 165	1692.49	116450	1741	105.261	N/A
4.28m	1032.43	110430	1141	103.201	IV/ A
	1727.47	66436.9	1739	105.171	N/A
4.22m		00430.9	1109	105.171	IV/ A
	1716.24	3.89336e+11	1741	105.141	N/A
4.23m	1,10,11	0.00000011	1.11	100.111	11, 11
168	1730.61	1.00493e+07	1750	105.092	N/A
4.06m					,
	1741.79	571328	1742	104.97	N/A
3.93m					
170	1733.52	1.78267e+07	1741	104.953	N/A
3.72m					
171	1730.60	502739	1954	104.847	N/A
3.58m					
172	1753.23	196115	1954	104.847	N/A
3.48m					
173	1755.67	5.67425e+08	2047	104.254	N/A
3.44m					
174	1757.01	82979	2047	104.254	N/A
3.40m					/ -
	1806.70	93743.3	2049	103.817	N/A
3.14m	1054 00	25550 4	0000	100 700	NT / A
	1954.89	35559.4	2022	103.736	N/A
3.22m		72004	2026	102 506	N / A
3.38m	2026.45	73924	2036	103.596	N/A
	2044.62	87278.4	2048	103.544	N/A
3.16m	2077.02	01210.4	2040	100.044	IV/ A
	2045.47	124714	2047	103.372	N/A
3.02m		121,14	2011	100.012	и, п
	2031.76	130210	2134	103.226	N/A
2.83m					,
181	2055.03	35068.6	2631	102.926	N/A
2.78m					

```
182 2066.12
                      72599.6
                                   2633
                                                 102.919
                                                                      N/A
2.62m
183 2030.26
                        161098
                                   2032
                                                  103.01
                                                                      N/A
2.28m
184 2020.91
                        136310
                                   2076
                                                 102.829
                                                                      N/A
2.29m
185 2018.65
                       30982.9
                                   2009
                                                 102.519
                                                                      N/A
2.00m
186 2003.83
                   6.01768e+08
                                   2012
                                                 102.519
                                                                      N/A
1.86m
                       79395.3
                                                 102.476
                                                                      N/A
187 2022.74
                                   2527
1.78m
188 2005.91
                       56386.1
                                                                      N/A
                                   2100
                                                 102.348
1.61m
189 2016.43
                       115070
                                   2184
                                                 102.345
                                                                      N/A
1.44m
190 2016.36
                       94111.4
                                   2147
                                                 102.316
                                                                      N/A
1.32m
191 2018.53
                        173633
                                                                      N/A
                                   2083
                                                 102.054
1.21m
192 2020.19
                                   2085
                                                 102.036
                                                                      N/A
                        116259
1.05m
193 2036.41
                                                                      N/A
                        134852
                                   2081
                                                 101.931
53.90s
194 2064.99
                       63033.3
                                   2077
                                                 101.905
                                                                      N/A
45.34s
195 2083.19
                       33114.6
                                   2082
                                                 101.271
                                                                      N/A
36.69s
196 2076.44
                        242556
                                                 101.259
                                   2082
                                                                      N/A
27.56s
197 2075.79
                        192377
                                                 101.247
                                                                      N/A
                                   2082
18.45s
198 2089.56
                   5.95726e+08
                                   2101
                                                 101.067
                                                                      N/A
9.32s
199 2086.89
                       58925.5
                                   2051
                                                 101.046
                                                                      N/A
0.00s
                  function_set=['add', 'sub', 'mul', 'div', 'sin'],
                  generations=200, init_depth=(4, 10), metric='mse',
```

```
[32]: SymbolicRegressor(const_range=(-10, 10),
                        population_size=500, random_state=0, stopping_criteria=0.01,
                        verbose=1)
```

```
[33]: |y_gp = est_gp.predict(np.array(xnum_test).reshape(-1, 1))
      y_gp[:10]
```

```
[33]: array([73.80469798, 74.62276246, 74.81765215, 74.88961676, 74.91224874,
            74.90617581, 74.87934757, 74.83554142, 74.77687615, 74.70473071])
```

```
[34]: data2['predictions_GPLEARN'] = (train_size * [np.NAN]) + list(y_gp)
```

2.4.2. Визуализация

Построим график по тестовой выборке:

```
[37]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(20,10))
fig.suptitle('Предсказания временного ряда (тестовая выборка)')
data2[train_size:].plot(ax=ax, legend=True)
pyplot.show()
```

Предсказания временного ряда (тестовая выборка)

Визуально предсказания по методу сивольной регрессии менее точны, чем предсказания по ARIMA. Для повышения точности требуется настройка параметров метода, в частности увеличенное количество итераций цикла. Однако при этом сильно возрастут затраты времени.

2.4.3. Метрики

MAE и MSE:

```
[38]: mean_squared_error(test, y_gp, squared=False)
```

[38]: 13.52324614284193

```
[39]: mean_absolute_error(test, y_gp)
```

[39]: 10.607119049073066

2.5. Сранение качества моделей

Чем ближе значение MAE и MSE к нулю, тем лучше качество модели.

MAE для авторегрессионного метода ARIMA = 5.5, а для метода символьной регрессии = 10.6.

MSE для авторегрессионного метода ARIMA = 7.3, а для метода символьной регрессии = 13.5.

Качество модели для авторегрессионного метода ARIMA выше. Для выполенения ARIMA также требуется меньше времени.