Problem Set 2

Suggested Solutions

- 1. The joint distribution of two binary random variables X and Y is p(X = 0, Y = 0) = p(X = 0, Y = 1) = p(X = 1, Y = 1) = 1/3, p(X = 1, Y = 0) = 0. Compute
 - a) H(X, Y);
 - b) H(X), H(Y);
 - c) H(Y | X), H(Y | X = 0), H(Y | X = 1);
 - d) H(X | Y), H(X | Y = 1), H(X | Y = 1);
 - e) I(X; Y).
- **Sol.** a) $H(X, Y) = \log_2 3$

b)
$$p(X = 0) = p(X = 0, Y = 0) + P(X = 0, Y = 1) = 2/3, p(X = 1) = 1/3;$$

 $p(Y = 0) = p(X = 0, Y = 0) + P(X = 1, Y = 0) = 1/3, p(Y = 1) = 2/3;$
so $H(X) = H(Y) = 2/3*log_2(3/2) + 1/3*log_23 = log_23 - 2/3$

- c) $H(Y \mid X) = H(X, Y) H(X) = 2/3$, the distribution of Y given X = 0 is $p_{Y\mid X=0} = (1/2, 1/2)$, so $H(Y \mid X=0) = 1$, the distribution of Y given X = 1 is $p_{Y\mid X=1} = (0, 1)$, so $H(Y \mid X=1) = 0$.
- d) $H(X \mid Y) = H(X, Y) H(Y) = 2/3$, the distribution of X given Y = 0 is $p_{X\mid Y=0} = (1, 0)$, so $H(X \mid Y=0) = 0$, the distribution of X given Y = 1 is $p_{X\mid Y=1} = (1/2, 1/2)$, so $H(X \mid Y=1) = 1$.
- e) $I(X; Y) = H(X) H(X \mid Y) = \log_2 3 4/3$
- 2. Consider the same random variables X and Y as in Problem 1. Define a new binary random variable Z as $Z = X \oplus Y$. Compute
 - a) H(Z);
 - b) $H(Z \mid X, Y)$, H(X, Y, Z) (Hint: Since $Z = X \oplus Y$, Z is deterministic given X and Y);
 - c) $H(Y \mid X, Z)$, $H(X \mid Y, Z)$, H(Y, Z), H(X, Z) (Hint: $Y = Z \oplus X$, $X = Y \oplus Z$, and use the results you get in a) and b));
 - d) $H(Y \mid Z)$, $H(X \mid Z)$, $H(X, Y \mid Z)$ (Hint: instead of calculating by definition,

make use of the results you get in a)-c));

e) I(X; Z), I(X; Y | Z) (Hint: instead of calculating by definition, make use of the results you get in a)-d)).

Sol. a)
$$p(Z = 0) = p(X = 0, Y = 0) + p(X = 1, Y = 1) = 2/3, p(Z = 1) = 1/3,$$

 $H(Z) = log_2 3 - 2/3$

b)
$$H(Z \mid X, Y) = 0$$
, $H(X, Y, Z) = H(X, Y) + H(Z \mid X, Y) = log_23$

c) As Y is deterministic on X and Z, and X is deterministic on Y and Z,

$$H(Y | X, Z) = H(X | Y, Z) = 0$$

$$\begin{split} &H(X,\,Z) = H(X,\,Y,\,Z) - H(Y\mid X,\,Z) = H(X,\,Y,\,Z) = log_2 3 \\ &H(Y,\,Z) = H(X,\,Y,\,Z) - H(X\mid Y,\,Z) = H(X,\,Y,\,Z) = log_2 3 \end{split}$$

d)
$$H(Y \mid Z) = H(Y, Z) - H(Z) = 2/3$$
, $H(X \mid Z) = H(X, Z) - H(Z) = 2/3$
 $H(X, Y \mid Z) = H(X, Y, Z) - H(Z) = 2/3$.

e)
$$I(X; Z) = H(X) - H(X \mid Z) = \log_2 3 - 4/3,$$

$$I(X; Y \mid Z) = H(X \mid Z) + H(Y \mid Z) - H(X, Y \mid Z) = 2/3$$
 (alternatively, $I(X; Y \mid Z) = H(X \mid Z) - H(X \mid Y, Z) = 2/3)$

- 3. Assume that $X \rightarrow Y \rightarrow Z$ forms a Markov Chain. What is
 - a) I(X; Z | Y)?
 - b) H(X | Y, Z) H(X | Y)?
- **Sol.** a) As X and Z are independent given Z (i.e., $X \perp Z \mid Y$), $I(X; Z \mid Y) = 0$;
- b) Since $X \to Y \to Z$ forms a Markov Chain, $Z \to Y \to X$ forms a Markov Chain too. We have $p(X = x_i \mid Y = y_j, Z = z_k) = p(X = x_i \mid Y = y_j)$ for all possible i, j, k. Thus $H(X \mid Y, Z) = H(X \mid Y)$ and $H(X \mid Y, Z) H(X \mid Y) = 0$.
- 4. Give an example to show that I(X; Y) = 0 and I(X; Y | Z) = 0 does not imply each other.

(Hint: Use the random variables which are pairwise independent but not mutually independent to show I(X; Y) = 0 does not imply $I(X; Y \mid Z) \neq 0$. Conversely, design three binary random variables X, Y, Z as follows: X, Y are the respective input and output of a Binary Symmetric Channel with p(X = 0) = 1/2, $p(Y = 1 \mid X)$

= 0) = 1/4, Z = Y. Show $I(X; Y \mid Z) = 0$ but $I(X; Y) \neq 0$ for these X, Y, Z) **Sol**. Let $X = \{0, 1\}$, $Y = \{0, 1\}$, p(X = 0) = p(X = 1) = p(Y = 0) = p(Y = 1) = 1/2, $X \perp Y$, $Z = X \oplus Y$. In this case, $X \perp Z$. Then, I(X; Y) = 0, $I(X; Y \mid Z) = H(X \mid Z) - H(X \mid Y, Z) = H(X) - 0 = 1$.

Next consider binary random variables X, Y, Z with p(X = 0) = p(X = 1) = 1/2, $p(Y = 1 \mid X = 0) = p(Y = 0 \mid Y = 1) = 1/4$, $p(Y = 0 \mid X = 0) = p(Y = 1 \mid Y = 1) = 3/4$. Then, $p(X = 0, Y = 0) = p(Y = 0 \mid X = 0)p(X = 0) = 3/8$, and similarly p(X = 0, Y = 1) = p(X = 1, Y = 0) = 1/8, p(X = 1, Y = 1) = 1/8. Moreover, $p(Y = 0) = p(Y = 0 \mid X = 0)p(X = 0) + p(Y = 0 \mid X = 1)p(X = 1) = 1/2$. Consequently,

H(X) = H(Y) = 1, $H(X, Y) = 2 \times 1/8 \times \log_2 8 + 2 \times 3/8 \times \log_2 (8/3) = 3 - 3/4 \times \log_2 3 = 1.8133$, $I(X; Y) = H(X) + H(Y) - H(X, Y) = 0.1867 \neq 0$.

On the other hand, as Z = Y, we have H(Y | Z) = 0, H(Y | X, Z) = 0. Thus, I(X; Y | Z) = H(Y | Z) - H(Y | X, Z) = 0 - 0 = 0.

- 5. Let X be a function of Y. Prove that $H(X) \le H(Y)$. (Hint: as X is a function of Y, X is deterministic given Y).
- **Sol**. As X is a function of Y, H(X | Y) = 0. Thus,

$$H(X) \le H(X, Y) = H(X \mid Y) + H(Y) = H(Y)$$

- 6. Based on the basic inequalities, prove the following inequalities on random variables X, Y, Z, and state the condition where equality holds:
 - a) $H(X, Y | Z) \ge H(Y | X, Z)$
 - b) $I(X, Y; Z) \ge I(X; Z)$
 - c) $H(X, Y, Z) H(X, Y) \le H(X, Z) H(X)$
 - d) $I(X; Z | Y) \ge I(Z; Y | X) I(Z; Y) + I(X; Z)$

(Hint: the basic inequalities we know about information measures are: $H(X) \ge 0$, $H(X, Y) \ge 0$, $H(Y \mid X) \ge 0$, $I(X; Y) \ge 0$, $I(X; Y \mid Z) \ge 0$, $I(Y \mid X)$.)

Sol. a) $H(X, Y \mid Z) = H(X \mid Z) + H(Y \mid X, Z) \ge H(Y \mid X, Z)$. When X is deterministic

on Z, the equality holds.

- b) $I(X, Y; Z) = I(X; Z) + I(Y; Z \mid X) \ge I(X; Z)$. When $Y \perp Z \mid X$, the equality holds.
- c) $H(X, Y, Z) H(X, Y) = H(Z \mid X, Y) = H(Z \mid X) I(Y; Z \mid X) \le H(Z \mid X) = H(X, Z) H(X)$. When $Y \perp Z \mid X$, the equality holds.
- d) The left-hand side can be expressed as $H(Z \mid Y) H(Z \mid X, Y) = H(Y, Z) H(Y) (H(X, Y, Z) H(X, Y))$. The right-hand side can be expressed as $H(Z \mid X) + H(Y \mid X) H(Y, Z \mid X) (H(Y) + H(Z) H(Y, Z)) + (H(X) + H(Z) H(X, Z)) = (H(X, Z) H(X)) + (H(X, Y) H(X)) (H(X, Y, Z) H(X)) (H(Y) + H(Z) H(Y, Z)) + (H(X) + H(Z) H(X, Z)) = H(X, Y) H(X, Y, Z) H(Y) + H(Y, Z)$. Thus, this inequality is actually equality.
- 7. A random memoryless source $X \in \{0, 1, 2\}$ with probability distribution $\{1/4, 1/4, 1/2\}$. Two experiments are designed to observe this source, with respective outcome random variables $Y_1 \in \{0, 1\}$, $Y_2 \in \{0, 1\}$. The respective conditional probability matrix of Y_1 and Y_2 given X is provided by the transition matrix

$$\mathbf{P}_{\mathbf{Y}_1|\mathbf{X}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1/2 & 1/2 \end{bmatrix}, \, \mathbf{P}_{\mathbf{Y}_2|\mathbf{X}} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- a) Compute $I(X; Y_1)$ and $I(X; Y_2)$. Which experiments is better?
- b) Compute I(X; Y₁, Y₂). How much additional information on X you can obtain by doing both experiments compared with doing only experiment Y₁ or only experiment Y₂?
- c) Compute $I(X; Y_1 \mid Y_2)$ and $I(X; Y_2 \mid Y_1)$. How to interpret these two information measures?

Sol.
$$p(Y_1 = 0) = 1/4*1 + 1/4*0 + 1/2*1/2 = 1/2$$
, $p(Y_1 = 1) = 1/2$, $H(Y_1) = 1$
 $p(Y_2 = 0) = 1/4*1 + 1/4*1 + 1/2*0 = 1/2$, $p(Y_2 = 1) = 1/2$, $H(Y_2) = 1$
 $p(Y_1 = 0, Y_2 = 0) = p(X = 0) = 1/4$, $p(Y_1 = 1, Y_2 = 0) = p(X = 1) = 1/4$
 $p(Y_1 = 0, Y_2 = 1) = p(X = 2)p(Y_1 = 0, Y_2 = 1 \mid X = 2) = 1/4$,
 $p(Y_1 = 1, Y_2 = 1) = p(X = 2)p(Y_1 = 1, Y_2 = 1 \mid X = 2) = 1/4$,
 $H(Y_1, Y_2) = 2$, $H(X, Y_1, Y_2) = H(1/4, 1/4, 1/4, 1/4) = 2$,

$$H(Y_1 \mid X) = 1/4*H(1) + 1/4*H(1) + 1/2*H(1/2) = 1/2,$$

 $H(Y_2 \mid X) = 1/4*H(1) + 1/4*H(1) + 1/2*H(1) = 0.$ Then we can obtain

- a) $I(X; Y_1) = H(Y_1) H(Y_1 \mid X) = 1/2$, $I(X; Y_2) = H(Y_2) H(Y_2 \mid X) = 1$, Experiment 2 is better than experiment 1 because $I(X; Y_2) > I(X; Y_1)$, i.e., the (weighted) information of X is revealed more by Y_2 compared with by Y_1 .
- b) $I(X; Y_1, Y_2) = H(X) + H(Y_1, Y_2) H(X, Y_1, Y_2) = H(X) = 3/2$, 1 bit and 1/2 bit additional information of X can be obtained by doing both experiments compared with doing only experiment Y_1 and only experiment Y_2 , respectively.
- c) $I(X; Y_1 \mid Y_2) = I(X; Y_1, Y_2) I(X; Y_2) = 1/2$, $I(X; Y_2 \mid Y_1) = I(X; Y_1, Y_2) I(X; Y_1)$ = 1. $I(X; Y_1 \mid Y_2)$ represents the additional information of X obtained by doing experiment Y_1 after experiment Y_2 .
- 8. Let X₁, X₂ ∈ {0, 1} be two independent binary random variables with identical probability distribution {1/2, 1/2}. Define a new random variable Y ∈ {0, 1, 2} to be the sum of X₁ and X₂. Define another random variable as follows. If Y is even, then Z = 0; if Y is odd, then Z = 1. Obviously, (X₁, X₂) → Y → Z forms a Markov chain. Respectively calculate I(X₁, X₂; Y), I(Y; Z) and I(X₁, X₂; Z). Compare their values in terms of the data processing theorem.

$$\begin{aligned} &\textbf{Sol.} \ p_Y = \{1/4, \ 1/2, \ 1/4\}. \ p_Z = \{1/2, \ 1/2\}. \\ &I(X_1, X_2; \ Y) = H(Y) - H(Y \mid X_1, X_2) = H(Y) = 3/2 \\ &I(Y; \ Z) = H(Z) - H(Z \mid Y) = H(Z) = 1 \\ &I(X_1, X_2; \ Z) = H(Z) - H(Z \mid X_1, X_2) = H(Z) = 1 \\ &This \ result \ is \ in \ line \ with \ the \ data \ processing \ theorem \ as \ I(X_1, X_2; \ Z) \leq I(Y; \ Z) \ and \\ &I(X_1, X_2; \ Z) \leq I(X_1, X_2; \ Y) \end{aligned}$$

9. Consider a stationary Markov source $X_1, X_2, ... X_j, ...$ (Markov source means $p(X_{j+1} \mid X_j, ..., X_2, X_1) = p(X_{j+1} \mid X_j)$ for all $j \ge 1$). Every random variable X_j in the stationary source has an identical probability distribution (1/3, 1/4, 1/4, 1/6). The conditional probability distribution of X_{j+1} given X_j is known via the transition

matrix

$$P_{X_{j+1}|X_j} = \begin{bmatrix} 1/4 & 1/4 & 1/4 & 1/4 \\ 1/3 & 1/3 & 1/3 & 0 \\ 1/3 & 1/3 & 0 & 1/3 \\ 1/2 & 0 & 1/2 & 0 \end{bmatrix}$$

Calculate $H(X_j)$, $H(X_j, X_{j+1})/2$ and entropy rate H_X of this source. Compare these values and what conclusion you can make?

Sol. $H(X_j) = H(1/3, 1/4, 1/4, 1/6) = 7/6 + 0.5log3$. Assume the sample space of X_j is $\{0, 1, 2, 3\}$. Then,

$$H(X_{i+1} \mid X_i)$$

$$= 1/3*H(X_{j+1} \mid X_j = 0) + 1/4*H(X_{j+1} \mid X_j = 1) + 1/4*H(X_{j+1} \mid X_j = 2) + 1/6*H(X_{j+1} \mid X_j = 0)$$

$$= 1/3*H(1/4, 1/4, 1/4, 1/4) + 1/4*H(1/3, 1/3, 1/3, 0) + 1/4*H(1/3, 1/3, 0, 1/3) + 1/6*H(1/2, 0, 1/2, 0) = 1/3*log4 + 1/4*log3 + 1/4*log3 + 1/6*log2 = 5/6 + 0.5log3$$

We now have $H(X_j, X_{j+1})/2 = (H(X_j) + H(X_{j+1} \mid X_j))/2 = 1 + 0.5\log 3$, and the entropy rate $H_X = \lim_{j\to\infty} H(X_{j+1} \mid X_j, X_{j-1}, ..., X_1) = H(X_{j+1} \mid X_j) = 5/6 + 0.5\log 3$, where the second last equality holds due to the (1^{st} order) Markovian property of the source.

Among these values, $H(X_j) > H(X_j, X_{j+1})/2 > H_X$, i.e., the more random variables considered together, the average entropy will be nonincreasing and approach to the entropy rate.