Análisis formal de complejidad para counting_sort_volumen

Sea:

- n = número de elementos del arreglo arr
- $k = \text{valor m\'aximo entero de volumen_total} * 100 (guardado como max_val)$

1. Planteamiento y desarrollo de T(n,k)

Analicemos cada sección del algoritmo:

- Asignación y verificación inicial: t_0 (constante)
- Búsqueda de max_val : ciclo de i=1 a n-1 (t_1 por iteración)

$$T_1(n) = \sum_{i=1}^{n-1} t_1 = (n-1)t_1$$

• Inicialización del arreglo count[0..k]: ciclo de i=0 a k (t_2 por iteración)

$$T_2(k) = \sum_{i=0}^{k} t_2 = (k+1)t_2$$

• Conteo de frecuencias: ciclo de i = 0 a n - 1 (t_3 por iteración)

$$T_3(n) = \sum_{i=0}^{n-1} t_3 = nt_3$$

• Suma acumulada de frecuencias: ciclo de i=1 a k (t_4 por iteración)

$$T_4(k) = \sum_{i=1}^k t_4 = kt_4$$

• Reordenamiento: ciclo de i=n-1 a 0 $(t_5$ por iteración)

$$T_5(n) = \sum_{i=0}^{n-1} t_5 = nt_5$$

• Copia del arreglo ordenado: ciclo de i=0 a n-1 (t_6 por iteración)

$$T_6(n) = \sum_{i=0}^{n-1} t_6 = nt_6$$

Sumando todos los términos:

$$T(n,k) = t_0 + (n-1)t_1 + (k+1)t_2 + nt_3 + kt_4 + nt_5 + nt_6$$

Agrupando términos:

$$T(n,k) = c_1 n + c_2 k + c_3$$

donde
$$c_1 = t_1 + t_3 + t_5 + t_6$$
, $c_2 = t_2 + t_4$, $c_3 = t_0 - t_1 + t_2$

$$T(n,k) = c_1 n + c_2 k + c_3$$

2. Calculando los casos

Mejor caso: Si $k \ll n$ (rango de valores pequeño), domina n:

$$T_m(n,k) \approx c_1 n + c_3$$

$$T_m(n,k) \in \Theta(n)$$

Peor caso: Si $k \gg n$ (rango de valores grande), domina k:

$$T_p(n,k) \approx c_2 k + c_3$$

$$T_p(n,k) \in \Theta(k)$$

Caso promedio: En general, el algoritmo tiene costo proporcional a n + k:

$$T_{pr}(n,k) = c_1 n + c_2 k + c_3$$

$$T_{pr}(n,k) \in \Theta(n+k)$$

3. Comprobación de cotas por límites

$$\lim_{n \to \infty} \frac{T(n,k)}{n} = c_1 \qquad \text{(si } k \text{ es fijo)}$$

$$\lim_{k \to \infty} \frac{T(n,k)}{k} = c_2 \qquad \text{(si } n \text{ es fijo)}$$

$$\lim_{n,k\to\infty}\frac{T(n,k)}{n+k}=\text{constante}$$

Por lo tanto:

$$T(n,k) \in \mathcal{O}(n+k)$$

$$T(n,k) \in \Omega(n+k)$$

$$T(n,k) \in \Theta(n+k)$$

4. Resumen Final:

• Mejor caso: $\Theta(n)$

• Peor caso: $\Theta(k)$

• Caso promedio: $\Theta(n+k)$

Cada cota ha sido verificada con límites y se han desarrollado las sumatorias con los nombres reales del código.