BASIC (ABSTRACT) ALGEBRA II CONSTRUCTIBLE NUMBERS

THERON BOERNER

Contents

- 1. Introduction
- 2. Constructible Numbers
- 3. Some Negative Results

References

1. Introduction

We assume a modern compass that can copy distances, equivalent to a collapsing compass as shown:

In general, we follow the outline of [Cox04].

2. Constructible Numbers

We borrow our axioms from [Cox04, p.255]. Two constructions can be performed with our compass and straightedge.

- (C1) Given two points $\alpha \neq \beta$ we can draw the line both α and β .
- (C2) Given two points $\alpha \neq \beta$ and a point γ we can draw a circle of radius $\alpha\beta$ centered at γ .

These allow for the creation of new points:

- (P1) The intersection of two lines.
- (P2) The intersection of a line and a circle.
- (P3) The intersection of two circles.

Date: March 9, 2022.

We start with only two points: 0 and 1.

Definition 2.1. We say a number is **constructible** if it can be made by finite applications of (C1), (C2), (P1), (P2), and (P3), starting from 0 and 1.

- 3 **Example 2.2.** The integers are constructible.
- 5 Thus the horizontal axis is constructible.

Proof. We proceed by induction. Let P(n) be the statement that $n \in \mathcal{C}$. We proceed by induction. Base case. 0 and 1 exist. Inductive Step. Suppose P(n) for some n. (C1) line through 0 and n; (C2) r=1 at n; (P2) n+1 exists. Thus we've shown P(n) implies P(n+1). Thus we've proven P(n) for $n \geq 0$. Similarly, P(n) is true for n < 0. The complete proof is graphically represented in Fig. 1.

FIGURE 1. Construction of \mathbb{Z} using straightedge and compass, starting from 0 and 1.

Example 2.3. $i\mathbb{Z} \subset \mathcal{C}$. Thus, the vertical axis is constructible.

Proof. We start with $-1,0,1 \in \mathbb{C}$ by the previous example. It suffices to show that if we can construct i then we are done because the argument to construct $i\mathbb{Z}$ is symmetric to the previous proof. Fig. 2 shows our strategy. (C2) r=1 at 0; (C2) r=1 at 1; (P3) two points u and d; (C1) u to d; (P1) $0.5 \in \mathbb{C}$; (C3) r=1.5 at 1; (C3) r=1.5 at −1; (P3) two points u and d; (P1) u to d; (P2) $i \in \mathbb{C}$. □

FIGURE 2. Construction of $i\mathbb{Z}$.

FIGURE 3. Construction of $ab \in \mathbb{R} \cap \mathcal{C}$ from $ab \in \mathbb{R} \cap \mathcal{C}$.

FIGURE 4. (a) Addition of two non-colinear vectors. Drawing the circle of radius |a| around b and vice versa gives the point a+b. (b) Addition of two co-linear vectors. A parallel line can be constructed |a| away from b. This gives a+b by extension of the line and a circle.

Proposition 2.4. $\mathcal{C} \cap \mathbb{R}$ is a subfield of \mathbb{R} .

Proof. By construction, $0, 1 \in \mathbb{C}$. Additive closure is shown by Fig. 4. Multiplicative closure is shown by Fig. 3. Multiplicative inverses are shown by Fig. 5. The additive inverse for $a \in \mathbb{C}$ is constructed by the intersection of the line through 0 and a and the circle of radius |a| around the origin. Thus, we have shown \mathbb{C} is a subfield of \mathbb{C} .

Proposition 2.5. If $a, b \in \mathbb{R}$ then $\alpha = a+bi \in \mathcal{C}$ iff $a, b \in \mathcal{C}$.

Proof. In the forward direction the perpendiculars are dropped to get a and bi and the circle is constructed of radius |bi| around the origin

to construct b. Likewise in the reverse direction we use b and the circle to construct bi and then then add together a and bi by the formation of perpendiculars against the two axes at a and bi. (See Fig. 6 for a graphical proof.)

Proposition 2.6. $\alpha \in \mathcal{C} \implies \sqrt{\alpha} \in \mathcal{C}$.

Proof. Since 1 is constructible, and r is constructible so also is 1+r. Then we can bisect this line and draw the circle from this middle point to 0 around this middle point. At 1 we form a line perpendicular to the x-axis. The length from 1 to either of the two points intersecting the circle is \sqrt{r} . (See Fig. 7 for a graphical proof.)

FIGURE 5. Diagram of construction of $1/a \in \mathbb{R} \cap \mathcal{C}$ from $a \in \mathbb{R} \cap \mathcal{C}$.

Proposition 2.7. \mathbb{C} is a subfield of \mathbb{C} .

Proof. We know that $0,1\in \mathcal{C}$. Multiplicative closure can be shown algebraically. Consider $a+bi,c+di\in \mathcal{C}$. By Proposition 2.5 we know that $a,b,c,d\in \mathcal{C}$. Now consider the expanded product:

$$(a+bi)(c+di) = ac - bd + i(ad+bc)$$

Notice that ac - bd, $ad + bc \in \mathbb{R} \cap \mathbb{C}$ since $\mathbb{R} \cap \mathbb{C}$ is a subfield of \mathbb{C} . Then by Proposition 2.4 we know that $ac - bd + i(ad + bc) \in \mathbb{C}$. Thus we've shown multiplicative closure.

To show $(a+bi)^{-1} \in \mathcal{C}$ consider the following

$$\frac{1}{a+bi} \cdot \frac{a-bi}{a-bi} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} - i\frac{b}{a_2+b_2}.$$

We can construct both $a/(a^2+b^2)$ and $-b/(a^2+b^2)$ because the constructible reals form a subfield. Therefore by Proposition 2.5 we know that $(a+bi)^{-1}$ is constructible.

Hence, \mathcal{C} is a subfield of \mathbb{C} .

3. Some Negative Results

We now turn our attention to three problems of straightedge and compass constructions faced by the ancient Greeks: trisecting an angle, doubling the volume of a cube, and squaring the circle. We will show that these results do not hold in the general case by providing counterexamples

First, we need the following theorem found in Cox [Cox 04, Thm. 10.1.6].

Theorem 3.1. Let $\alpha \in \mathbb{C}$. Then $\alpha \in \mathcal{C}$ iff there are subfields

$$\mathbb{Q} = F_0 \subset F_1 \subset \cdots \subset F_{n-1} \subset F_n \subset \mathbb{C}$$

such that $\alpha \in F_n$ and $[F_i : F_{i-1}] = 2$ for $1 \le i \le n$.

FIGURE 6. $a+bi \in \mathcal{C} \iff a,b \in \mathcal{C}$.

FIGURE 7. Square root is constructible.

Proof. \subseteq We have $\mathbb{Q} = F_0 \subset F_1 \cdots \subset F_{n-1} \subset F_n \subset \mathbb{C}$. We can then prove by induction that $F_i \subset \mathbb{C}$.

Base case: n = 0. We know that \mathbb{C} is a subfield of \mathbb{C} so that $\mathbb{Q} = F_0 \subseteq \mathbb{C}$.

Inductive step: Suppose that $F_{i-1} \subseteq \mathcal{C}$. We claim that $F_i = F_{i-1}(\sqrt{\alpha_i})$ for some $\alpha_i \in F_i$. We follow Exercise 7.1.12 to prove this claim.

Let $\beta \in F_i \setminus F_{i-1}$. Then Since $[\mathbb{F}_i : \mathbb{F}_{i-1}] = 2$, there exists a, b, c not all zero such that

$$a\beta^2 + b\beta + c = 0$$

Now suppose a=0. If $b\beta+c=0$ then b=c=0, a contradiction. So $b\neq 0$.

¹I also used this link to help with the proof https://math.stackexchange.com/a/2494366.

Then $\beta = -\frac{c}{b} \in F$, also gives a contradiction so that $a \neq 0$. Thus, β is a root of

$$f(x) := ax^2 + bx + c = 0.$$

Now we turn f(x) into a monic polynomial:

$$q(x) := x^2 + a^{-1}bx + a^{-1}c = 0$$

giving us the following identity: $x^2 + a^{-1}bx = -a^{-1}c$ and then we complete the square:

$$(x+b/2a)^{2} + a^{-1}c - \frac{b^{2}}{4a^{2}}$$

$$= x^{2} + \frac{bx}{a} + \frac{b^{2}}{4a^{2}} + a^{-1}c - \frac{b^{2}}{4a^{2}}$$

$$= -\frac{c}{a} + \frac{b^{2}}{4a^{2}} + a^{-1}c - \frac{b^{2}}{4a^{2}}$$

$$= 0.$$

Letting $\alpha = \beta + b/2a$ we can see that $\alpha^2 \in F_{i-1}$ because $\alpha^2 = -\frac{c}{a} + \frac{b^2}{4a^2}$. We also know that $\alpha \notin F_{i-1}$ and so $[F_{i-1}(\alpha):F_i]=2$ implies $F_i=F_{i-1}(\alpha)$. Thus we have proven the claim that $F_i=F_{i-1}(\sqrt{\alpha_i})$ for some $\alpha_i \in F_i$.

Then take $a \in F_i$ we know that $a = f(\sqrt{\alpha_i})$ for some $f(x) \in F_{i-1}[x]$. Since $\sqrt{\alpha_i}$ is constructible by Proposition 2.6 and the constructible numbers form a subfield we therefore know that a is constructible. So $F_i \subseteq \mathcal{C}$.

Thus, by mathematical induction we've proven the reverse direction.

 \Longrightarrow For the forward direction we have $\alpha in\mathbb{C}$ and we wish to construct telescoping field extensions starting from \mathbb{Q} such that $\alpha = a + bi \in F_n$ and $[F_i: F_{i-1}] = 2$ for $1 \le i \le n$.

We proceed by induction on the number of times, N, we use (P1)—(P3) in constructing α .

Base case: Let $F_n = F_0 = \mathbb{Q}$ since we only have 1 and 0.

Inductive Step: Suppose $\alpha = a + bi$ is constructed in N > 0 steps so we have $\mathbb{Q} = F_0 \subset \cdots \subset F_n \subset \mathbb{C}$ with successive extensions of degree 2. We have three cases on to consider: one for each of the P's. If the last construction was (P1)

then we know that we have the intersection of two lines. We can show through a lot of symbol shuffling that this gives us a system of linear equations with coefficients in F_n which has a unique solution by linear algebra. We must have $a, b \in F_n$ so then $\alpha \in F_n(i)$, which is a degree two extension.

If the last step was (P2) then we know that. [Soz I'm way too sleep deprived Trevor this is all I can do.]

Having proven both direction we are finished. $\hfill\Box$

Corollary 3.2 (Cox, Cor. 10.1.8). If $\alpha \in \mathbb{C}$ then $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 2^m$ for some $m \geq 0$. Thus every constructible number is algebraic over \mathbb{Q} , and the degree of its minimal polynomial over \mathbb{Q} is a power of 2.

Proof. Apply the tower theorem to the telescoping fields given by the previous Theorem to obtain the result. \Box

Example 3.3. The angle of 40 degrees cannot be constructed and therefore the angle of 120 degrees can not be trisected with a straightedge and compass.²

To prove this we first need some theory provided in Cox [Cox 04, Ch. 9]. Recall that

$$\zeta_n = e^{2i\pi/n},$$

and

$$x^n - 1 = \prod_{0 \le i < n} (x - \zeta_n^i).$$

Definition 3.4. The nth cyclotomic polynomial is defined as

$$\Phi_n(x) := \prod_{\substack{0 \le i < n \\ \gcd(i,n)=1}} (x - \zeta_n^i)$$

Proposition 3.5 (Cox, Prop. 9.1.5). $\Phi_n(x)$ is a monic polynomial with integer coefficients and has degree $\varphi(n)$, where $\varphi(n)$ is the Euler totient function. Furthermore, these polynomials satisfy the identity

$$x^n - 1 = \prod_{d|n} \Phi_d(x).$$

 $^{^2}$ In AutoCAD this can be performed by constructing a temporary arc using ARC then DIVIDE into 3 pieces.

Theorem 3.6 (Cox, Thm. 9.1.9). The cyclotomic polynomial $\Phi_n(x)$ is irreduible over \mathbb{Q} .

Now we can prove Example 3.3.

Proof of Example 3.3. If the angle of 40 degrees can be constructed then $\zeta_9 = e^{2\pi i/9}$, the 9th root of unity, is constructible since this is just the vector of distance 1 an angle 40 degrees. The minimal polynomial of ζ_9 is $\Phi_9(x)$ because it is irreducible by Theorem 3.6 and it is monic. We could expand the product in the definition of $\Phi_9(x)$ but this has too many terms to deal with. Instead we use Proposition 3.5 to obtain the factorization:

$$x^9 - 1 = \Phi_1(x)\Phi_3(x)\Phi_9(x) = (x-1)(x^2-1)\Phi_9(x).$$

Then we divide to obtain

$$\Phi_9(x) = x^6 + x^3 + 1.$$

But $deg(\Phi_9) = 6$ which is not a power of two. So by Corollary 3.2 the angle 40 degrees is not

References

[Cox04] David A. Cox. Galois Theory. Pure and Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs, and Tracts. Hoboken, N.J.: Wiley-Interscience, 2004. 559 pp. ISBN: 978-0-471-43419-1.

constructible and thus the angle of 120 degrees cannot be trisected. $\hfill\Box$

Example 3.7. The number $\sqrt[3]{2}$ cannot be constructed and therefore the unit cube cannot be doubled by straightedge and compass.

Proof. The minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} is x^3-2 . If this number were constructible then by Corollary 3.2 the minimal polynomial has degree of a power of 2. But 3 is not a power of 2. So $\sqrt[3]{2} \notin \mathbb{C}$.

Example 3.8. The number $\sqrt{\pi}$ is not constructible and therefore not every circle can be squared as the unit circle has area π .

Proof. Suppose that $\sqrt{\pi}$ is constructible. Then $\sqrt{\pi^2} = \pi$ is constructible because $\mathfrak C$ is a field. Then by Corollary 3.2 π is algebraic over $\mathbb Q$, a contradiction.