Using Categorical Data to Facilitate Learning for Financial Disclosures Applications of the Attribution Dictionary

Chenhui (Lucy) Li Said Business School University of Oxford

<mark>Date</mark>

Abstract

Few research in the past focused on the relationship between strategic disclosures in corporate filings and firm performance. The primary contribution of this paper is to bridge this gap, leveraging content in corporate reports (80,000+ MD&A sections in 10-Ks) to develop a workflow of content analysis to predict firm performance. In doing so, I leverage a combination of machine learning methods and financial dictionaries to capture aspects of the organization's strategies (eg. actions, competencies), and its external environment (eg. Competitors, economic environment). The analysis is firmly grounded upon theories in strategic management. I show that how firms have disclosed their strategies have a strong correlation with performance returns during the financial crisis and the Dot-Com-Bubble. Additionally, I find that, during the Dot-Com-Bubble, aspects of strategic disclosures have different precedent causal effect on firms that are performing well and firms performing badly. Overall, I hope to use the paper as a mean to elicit future research in the area of topic modelling within finance.

TABLE OF CONTENTS

1 Introduction	#
2 THEORETICAL BACKGROUND	#
2.1 MACHINE LEARNING METHODS 2.11 SUPERVISED SENTIMENT ANALYSIS IN STOCK PRICE PREDICTION 2.12 LATENT DIRICHLET ALLOCATION IN TOPIC MODELLING 2.2 DICTIONARY METHODS	# # # #
3 INITIAL VOCABULARY MODELLING	#
3.1 SAMPLE SELECTION AND CONSTRUCTION	#
3.2 Topic Modelling 3.21 Topic Length Evolution	#
3.22 EMERGENCE OF NEW TOPICS	#
4 A Model For Document Information	#
4.1 DOCUMENT INFORMATION PROXIES	# #
5 QUANTIFYING TOPICS	#
5.1 THE INTERNAL/EXTERNAL AND PERFORMANCE DICTIONARIES 3.21 THE PERFORMANCE DICTIONARIES	#
3.22 THE INTERNAL AND EXTERNAL DICTIONARIES	#
6 SEARCH ALGORITHM DESIGN	#
7 EMPIRICAL RESULTS	#
7.1 ECONOMETRICS MODEL 7.2 BASELINE RESULTS	#
7.3 TIME SERIES REGRESSIONS 7.4 COMBINING LDA WITH ATTRIBUTION	#
7.4 COMBINING LDA WITH ATTRIBUTION 7.5 EXAMINING THE IMPLICATIONS OF NEWLY EMERGING TOPICS	#
7.5 TESTING THE CAUSALITY OF ATTRIBUTION	#
8 CONCLUSION	#

1 Introduction

Advances in computing have made the analysis of textual data increasingly tractable. In finance, recent studies have addressed how financial markets respond to the language in newspaper articles (Tetlock, 2007; Tetlock, Saar-Tsechansky & Macskassy, 2008), earnings reports (Loughran & McDonald, 2011), and various types of regulatory disclosures (Hanley & Hoberg, 2012). However, the NLP technology used in firm performance/stock price prediction is nascent. The most influential studies in this area are Tetlock (2007) and Loughran and McDonald (2011). They evaluate sentiment by weighting terms based on a pre-specified sentiment dictionary and summing sentiment scores. A smaller volume of research also uses textual data to infer information on strategic management or organizational behaviour perspective and observe the relation between current disclosure and future firm performance. The textual data used for these studies were often obtained through manually encoded texts.

Nevertheless, there are various issues associated with each of these methods. Existing sentiment dictionaries capture polarity (for instance, how positive/negative a firm's filing is, by counting the number of positive/negative words in the document) but not context (the subject matter the firm is feeling optimistic/pessimistic about). Manual labelling has the downside of human errors and sample size restriction, papers using this method usually cover less than 100 companies and across a maximum of five years, as researchers must manually search through the texts. No research thus far has looked into creating a standard workflow that can be replicated in future studies.

There are multiple problems in past literature's estimation strategies. On a high level, the common issue lies in the fact that each fails to account for different unobserved features of financial text. I argue that caveats of previous analysis methods lies in the following:

NLP toolkits focus on predictions of stock returns, but they do not provide means to understand
the underlying company fundamental value drivers reflected in stock price reactions. This is
because current techniques do not easily measure discussions of firm decision making, firm
actions and thought process at the same as an evaluation of firm performance.

2. Past research controlled for insufficient characteristics within firm's textual disclosures. For example, only the sector of the firm may be accounted for, but not characteristics of the economy or the institution in which the firm is situated.

This paper serves to bridge this gap by combining financial dictionaries and unsupervised machine learning to create an automated text analysis workflow that future researchers can replicate to form a predictive model for future firm performance. I account for the following factors to arrive at a predictive model:

- 1. Disclosure on features internal or external to the firm, understanding the implications of specific organizational efforts (eg. "strategic acquisition", "superior management") on financial performance. Most literature relating to this analysis involved manual encoding. There is currently no academic literature that works on quantifying these features. I make this possible by leveraging a relational dictionary.
- 2. In addition to counting sentiment words (eg. "poor", "positive) in the reports, I developed a system to identify financial performance vocabulary (eg. "increase in revenue") which are more likely correlated with actual superior performance for a firm and predictive of how the firm will perform in the future.
- 3. I study high level textual characteristics composition of (eg. if the regulatory/compliance discussion, investments, securities and derivatives)
- 4. To instrument the above discussion by controlling for the sector/industry of the business, and the macroeconomic events surrounding the business.

Figure 1. Proposed Prediction Model

The textual data used in this paper comes from 80,000 MD&A (management discussion and analysis) sections of firms' disclosure. Located in companies' 10-Ks, the MD&A gives the investor an opportunity to look at the company through the eyes of management by providing both a short and long-term analysis of the business of the company. Yet, given that the very purpose of the MD&A is focused on justifying performance with strategy/actions taken by the firm, it is important for a researcher to associate rationales behind performance with the firm's actual performance.

This paper begins by evaluating current methods of NLP in the industry and related background research. The empirical part of this paper is divided into two sections. First, I deploy topic modelling techniques to study the evolution of MD&A disclosure content overtime and the reasons behind this. Similar to Dyer et al. (2016), I make the observation that readily observable firm characteristics or non-textual characteristics do not sufficiently explain the trends in MD&A vocabulary, thereby supporting my construction of the prediction model. I subsequently explain how I arrive at the prediction model. I explain the strategic management literature that inspired the web of dictionaries used to proxy for financial performance and organizational factors. Then, I proceed on to explain document topic modelling.

2 Theoretical background

Research on predicting firm operating performance is rather limited compared to research on predicting stock returns. Past NLP research utilized pre-determined dictionaries, or supervised machine learning to assess disclosure characteristics (e.g., uncertainty, positive/negative tone) based on human defined classification themes. Others studies used unsupervised learning methods to associate measures of readability, similarity, deception, or length with firm fundamentals.

In this section I introduce tools for textual analysis and their applications to modern NLP financial applications. I describe the use of machine learning methods and dictionary methods deployed in past literature to perform sentiment analysis on financial text.

Figure 2. Common NLP methods at present

2.1 Machine Learning Methods

Machine learning methods in the financial NLP field can be grossly categorized into two categories: supervised and unsupervised approaches. In the context of financial NLP, supervised learning requires a labeled dataset, whilst unsupervised machine learning looks for previously undetected patterns in data with no existing labels. Supervised machine learning is used for text classification (ie. deciphering whether a sentence/document conveys positive/negative sentiment), whereas unsupervised machine learning is used for topic modelling, categorizing documents with respect to the topics discussed within them or extracting (latent) topics from texts.

2.1.1 Supervised Sentiment Analysis in stock price prediction

The efficient market hypothesis stipulates that investors consider all available information in their decision making process (Fama, Fisher, Jensen & Roll,1969; Fama 1970). Market efficiency implies that any news, once released into the market, will be immediately assimilated into prices. Yet, empirical evidence from natural language processing (NLP) uncontroversially supports the contrary argument that information contained in financial market events is predictive of future asset price paths. The application of NLP in stock price prediction is still nascent compared to other fields, and remains predominantly focused on analyzing sentiments in financial disclosures at the word-level.

Supervised sentiment analysis uses a set of training documents, classified into a set of predefined categories, to generate a statistical model that can be used to classify any number of new unclassified document. Sentiment scores are then used in a secondary statistical model for investigating phenomena such as stock returns in financial markets (Tetlock, 2005). Nevertheless, a critical issue in this field is the lack of classified textual data. A few research agendas seek to bridge this gap: Malo et al. (2014) trained classifiers to conduct sentence-level semantic analysis for financial news and provided a Financial Phrase Bank consisting of a set of 5,000 sentences, manually annotated by 16 subject experts. This resource was updated by Sinha et al. (2019), who also released an entity-annotated news dataset containing over 12,000 headlines and their related financial sentiment. Oliveira et al. (2016) produced a stock market sentiment lexicon, which includes 20,551 items extracted automatically from microblogs (StockTwits and Twitter).

However, building a model based solely on these existing data sets is inadequate for two reasons. First, all existing labelled datasets are classified based on polarity, this makes supervised sentiment analysis more applicable to stock price forecasting than to predicting operating performance. Stock prices are highly sensitive to public sentiment but firm performance is down to miscellaneous factors (eg. management). Polarity of news/financial filings may be an effective proxy of public sentiment but less so

of the components leading to firm performance because it is more about how decision making of the firm leads to long run impact. Second, in the process of producing a labeled dataset, annotators reviewing financial text would assign a positive/negative tag to isolated sentences. Yet, in an actual news event, some positive/negative textual description may already assimilated into prices and others might not, thus amplifying the problem of ambiguous causality. For example, prices of stock X may already reflect the fact that numerous articles hypothesize that stock X might fall. The ambiguity in the textual context reduces the predictive ability of the model. As a means of disambiguation, it would be preferable if documents are labelled based on multiple features instead (eg. certainty, financial content, etc). Gathering labelled data for the task is strenuous and requires the expertise of financial analysts. At present, there is no available tagged dataset for feature engineering.

Additionally, machine learning approaches to sentiment analysis are subject to criticism due to their lack of transparency: Most supervised machine learning utilizes methods such as Naïve Bayes (Antweiler and Frank, 2004), LSTM networks (Maia et al, 2018) and neural networks (Kraus and Feuerriegel, 2017). All of these methods use unpublished rules and filters to measure the context of documents, and hence are opaque and difficult to replicate.

An alternative solution researchers developed is to use stock returns to screen for sentiment charged words, and use those sentiment words as the labelled dataset. Ke et al (2019) designed a workflow that could screen for sentiment charged words based on their cooccurrences with stocks of high/low returns, assigning sentiment weights to these words and scoring documents with a multinomial mixture model based on the frequency of sentiment charged words. However, this method would still fail to capture the nuance of the financial language, as it is still a "bag of words" model that does not take into account the importance of syntax. It does not account for negation, hence unable to distinguish between "decrease in debt" and "increase in debt". Additionally, the classification algorithm would not pick up phrases, as it only uses single word tokens.

In this paper, I choose not to adopt a pre labelled dataset and to utilize the aforementioned forms of supervised machine learning. It would not be possible to rectify the problems inherent to the technique and the datasets. I also recognize that new patterns would emerge in future texts that lessen the predictability of currently available pre labelled texts.

2.1.2 Latent Dirichlet Allocation in Topic Modelling

Topic modelling can be described as a method for finding a group of words from a collection of documents that best represent the information in the collection. It is an indispensable toolkit to arrive at contextual information from text documents. Before the advent of topic modelling in machine learning, researchers relied on manual classifications to control for the differences between documents. Boudoukh et al. (2013) use an ex ante list of 14 predefined categories (such as "acquisition, deal, legal or award") to differentiate between relevant news for companies to study the impact of news on abnormal stock return. This is similar to the method adopted by Neuhierl et al. (2013), who manually classify press releases into major news categories and their subcategories based on content, 10 major news categories, further subdivided into 60 subcategories. Gooding and Briscoe (2019) used paid data from All Street Research, containing 3097 instances, with categories defined by analysts which they narrowed down to 1824 examples and 11 categories. This study suffered from a small sample size: several categories containing less than 100 examples which meant that they were not enough to train and test.

Later research shows further integration of topic modelling with machine learning methods, especially Latent Dirichlet Allocation (LDA), an unsupervised machine learning algorithm aiding researchers to extract a number of predefined topics from a collection of financial text. Researchers define the number of topics they seek to extract, and the algorithm finds the most likely choices for these topics and output them in terms of word vectors. Past research has focused on using LDA to distill core properties of disclosure. Studies have focused on using LDA to predict currency fluctuations, equity returns and examining validity and truthfulness of corporate disclosures. LDA also allowed topic modelling to be scaled to large samples.

Author	Text studied	Purpose
Jin et al (2013)	Bloomberg news articles	Currency fluctuations
Bao and Datta (2014)	10-K risk disclosure section (section 1A)	Summarize risk-related topics
Hoberg, and Maksimovic (2014)	10-K MD&As	Corporate disclosure quality assessment
Dyer, Lang and Lawrence (2016)	10-K	Financial text evolution with respect to new FASB and SEC requirements
Feuerriegel et al (2016)	German ad-hoc press releases	Abnormal returns of stocks
Hanley and Hoberg (2016)	Bank 10-Ks	Potential systematic risk identification
Huang, Lehavy, Zang & Zheng (2014)	Analyst reports and the text narrative of conference calls	Thematic Content Comparison

Figure 3. Summary of LDA literature and their contributions at present

One of the downsides to LDA is the occasional lack of human interpretability and spurious results, often due to the complex nature of financial language. Computationally distinguishing between topics referring to "firm inherent competencies" and "changes enabled by management" using a statistical model is far more difficult than distinguishing between documents referring to "music" and "animals", because, in the case of the former, there are far more words that co-occur in both contexts. Hence, LDA would fail to precisely account for all existing topics. However, this problem would be rectified if these potential topics are further categorized with human efforts. This is what I will attempt to do in the empirical analysis of this paper: I describe how using a relational dictionary may be used to capture this information.

2.2 Dictionary Methods

As opposed to machine learning methods, dictionary based methods have the benefits of being friendly to the exercise of human backtesting. Dictionaries are word lists grouped into categories, with each category defined by its associated attributes, used to assign tags to financial texts, as a result of the tagged textual document predictions on stock returns can be made.

Figure 4.

Past dictionaries were created to classify the tone of the documents. The studies pre-dating the paper have almost exclusively relied on generic dictionaries. Tetlock (2007) was among the first to demonstrate the benefits of using the Harvard General Inquirer, a less sophisticated sentiment analysis dictionary developed for use in more general contexts, in a financial context. There are also other variants which use a combination of heuristics, WORDS (e.g. Frazier et al., 1984), Diction or Wordstat to perform dictionary-based searches for sentiment cues (Demers & Vega, 2008; Davis, Piger, & Sedor, 2007).

The most widely used finance specific sentiment dictionary to date is created by Loughran and McDonald (2011). Their main contribution is to point out that many words that have a negative connotation in other contexts, like tax, cost, crude (oil) or cancer, may have a positive connotation in earning reports. For example, a healthcare company may mention cancer often and oil companies are likely to discuss crude extensively. Loughran and McDonald (2011) conclude that as much as 73.8 percent of Harvard General Enquirer's negative words do not have a negative sense in financial documents. To this date, Loughran and McDonald dictionary is the most popular dictionary used in a financial context due to its simplicity and clarity. The dictionary consists of words grouped into multiple categories, such as 'neg', 'pos',

'uncertain', 'litigious' and 'constraining'. Entries under each category are in the form of a single word and their possible inflections (eg. loss, losses, lossed).

However, the LM dictionary may still yield biased results. Firstly, it covers only unigrams (single-word dictionary entries) and ignores the subject described. I seek to build on the LM dictionary by developing a more sophisticated lexicon consisting of both unigrams and bigrams (single-word and two-word phrases). For instance, using the LM dictionary, we would classify an improvement in economic condition or refinement of company strategy as positive factors. The former is entirely out of the control of the firm whereas the latter is the result of actions taken deliberately by the firm. It may well be that the improvement in economic condition is well known and priced in whereas opinions on actions taken by the firm is not. Hence, only the latter may be of material use to analysts. The LM dictionary also fails to capture descriptions of performance outcomes such as "increased revenue" (positive) and "decreased cost" (negative) because "increased" and "decreased" are classified as neutral.

3 Initial Vocabulary Modelling

Before formulating the research hypothesis, I seek to examine trends underlying textual MD&As using LDA and create interpretable results of the broad topics discussed, in an objective manner. LDA permits insight into the causes of the underlying content.

3.1 Sample Selection and Construction

The management discussion and analysis section (MD&A) in corporate 10-Ks is one of the most read and important components of the financial statements. Most literature find a significant correlation between current fundamentals and market reactions and textual disclosures.

In 1995, safe harbour provisions of the private securities and litigation reform act encouraged more forward looking information and should make MD&A more informative. On the other hand, the MD&A may not present accurate information because it is not required to be audited. (Hufner, 2007).

I webscrape 10-K filings filed electronically from SEC EDGAR from 1993 to 2018. This yields 149,139 10-K and 10-K405 filings from which I was able to parse the Management's Discussion and Analysis. Management's Discussion and Analysis comprises Item 7, which usually describes the results of operations, internal and external factors relevant to the business' performance, and Item 7A, Qualitative and Quantitative disclosures about Market Risks. I have excluded 10-K-A from our sample and

eliminated disclosures that contain fewer than 1000 characters, which are disclosures without material information or disclosures that have MD&A section incorporated by reference to the annual report (usually incorporated into exhibit 13, which is kept as a separate file to the main 10-K filing on SEC Edgar). In the latter case, similar to Loughran and McDonald (2011), I find that the beginning and ending positions of the MD&A document when filed in an exhibit are not demarcated in a manner that facilitates accurate parsing. Aside from the MD&A section, exhibit 13 often contains financial statements, notes, as well as the auditor's report, all of which is irrelevant for the purpose of my exercise.

The matching algorithm is designed to capture the position of "item 7. management's discussion and analysis" and "item 8. consolidated /audited financial statements" and extract the text in between when it satisfies certain heuristics. I remove all numbers and numerical tables, keeping only the text. I identified 87,834 MD&A sections that fulfill this requirement.

I subsequently perform several text preprocessing steps that are common in text mining (Manning and Schütze, 1999). I transform the running text into a matrix notation that would allow for further calculations with the "Scikit learn" package in Python . First of all, I remove stop words that frequently occur in the English language. I use the default list of English stop words in Python's NLTK package which consists of common, short function words that do not add additional meaning to our text examples of these are conjunctions and pronouns such as "ourselves", "her", and "between".

3.2 Topic Modelling

First, I would like to extract high level features and interpret what these statistical results mean in a managerial context with unsupervised machine learning. I analyze the evolution of topics using LDA (Blei, 2011). LDA is a robust method that relies on statistical correlations among words in a large set of documents, it is a dimensionality-reduction technique, similar to principal components analysis, which transforms high dimensional textual data to low dimensional data. The fundamental challenge with any NLP procedure is that raw text suffers from the curse of dimensionality, which makes it computationally intractable. LDA would allow me to explicitly identify and empirically quantify the low-dimensional representation so that it retains meaningful properties of the texts. More information on the statistical definition of the method and the code can be found in the appendix.

3.2.1 Topic length evolution

The first set of empirical results I show aims to study the changes in topic distributions over time. Dyer (2017) studied the evolution of the changes in length of topics on whole 10-Ks. However, no up to date

research has been done on the MD&A section. Given that the content in the MD&A confers the most amount of information on a company's strategy and operations, I hypothesize that results from running LDA over the MD&A will differ meaningfully from Dyer (2017). I replicate Dyer (2017) to study the evolution of length of disclosure for MD&As instead.

I first used LDA to output 25 clusters from the set of MD&A documents. I then assigned each document to their most probable cluster and collected the length of MD&A documents for each topic across the time frame of 1993-2018. For each topic, I compute the median length of all of its associated documents in each year and plot the observations graphically (see figure 6.). I show in a tabular form the broad clusters in which I group the computer generated clusters from LDA (see table 1). In general, clusters fall under two major categories: sector-specific (upper table) and business/operations specific (lower table). For sector-specific clusters, only the most prominent sectors by US GDP (eg. finance, real estate, oil and gas, healthcare) having the most distinctive vocabulary (eg. "futures", "mortgage", "oil", "drug") are clearly demarcated by the algorithm. For business/operations specific clusters, the output of LDA insufficiently distinguishes between the aforementioned strategies dimensions I previously mentioned. The boundaries between several clusters appear murky (eg. Operations Financials) with many clusters having the same vocabulary.

Cluster title	Corresponding Description	Examples of highly ranked words
22	Oil and Gas Production; Power and Energy	"gas", "oil", "natural", "power", "production", "prices"
21	R&D Drug development	"product", "development", "research", "regulatory", "drug"
6,8	Real Estates	"loans", "bank", "mortgage", "rate", "assets", "estate"
20	Derivatives; Trading	"energy", "trading", "price", "futures"
5	Retail; Warehouse	"warehouse", "rental", "retail"
Cluster title	Corresponding Description	Examples of highly ranked words
0,7,9,11,12,14,	Operations financials (Revenue, Cash, etc)	"million", "increase", "revenue", "cash", "income"
16	Valuation	"rate", "futures", "operations", "value", "revenue"
18, 23	Products; Services; Customers	"products", "financial", "sales", "customers", "market"
2	Securities	"stock", "credit", "securities", "rate"
17	Management	"financial", "income", "cash", "management", "operating"
13	Decision making; Evaluation	"may", "could", "ability", "subject"
10	Environmental	"environmental", "may", "products", "costs"
1,24	Supply Chain	"partnership", "distributions", "net", "development"
15	Insurance	"insurance", "loss", "costs", "year"
3,4,19	Corporate Borrowing	"interest", "expenses", "tax"

Table 1.

Dyer (2016) faced the same lack of clarity between clusters: he observed that numerous topics could be classified into the same category. He resorted to grouping topics from LDA into further categories. He makes the observation that the disaggregation of the overall trend in length into the portions attributable to individual types of disclosure. However, Dyer (2016)'s paper has several caveats: first, because the paper relies on only using LDA to study the content of 10-Ks, which suffers from boundary ambiguity, it insufficiently captures a complete picture of disclosure. Second, it does not test the informativeness of the textual attributes measured. I will proceed to suggest solutions in the second part of the empirical section of the paper.

Some of the categories constructed with LDA relate to the sector/industry of the business. This may seem to overlap with categories under the Fama French industry portfolios. However, GIC sectors/ Fama French industries do not capture all information delivered by textual description. Whilst GIC sectors ascribe information about the firm, topics drawn from LDA reveals further characteristics about the discussion. For example, consider two firms operating in the pharmaceutical industry. It thus may lead to further analysis into the direction of sentiment attribution in these individual segments.

Looking at the first stage results obtained, a general trend is evident: disclosures have become longer overtime across all topics (though not necessarily increasing across all years). This observation is different from that of Dyer et al (2016), who, after conducting the same analysis on the whole sample of 10-Ks, found that only documents pertaining to compliance with SEC & accounting standards increased in length markedly in the sample period. The finding aligns with Dechow et al.(2010), who observed that with increasing MD&A length, managers increasingly use boilerplate disclosure (ie. standard disclosure

that uses many words with little firm-specific content). As the lack of concision of MD&A may reduce the value of the information MD&As provide, the need to arrive at an automated way to identify essential information becomes much more essential.

Additionally, most of the clusters that experience slow growth in length overtime (eg. cluster 0, cluster 11, cluster 14) relate to revenue, cash, and operating financials (although cluster 9 is an outlier). These clusters are less analytical and focus on describing material performance. On the contrary, cluster 18 (products, services, customers) and cluster 13 (decision making, evaluation) experience more fluctuations. This tells us that much of the increase in overall MD&A length can be explained by the addition of more strategic content, rather than descriptive content.

Thirdly, amongst all 25 clusters, the cluster relating to environmental concerns experienced the most dramatic increase. This reflects that ESG has become a quintessential part of corporate disclosure overtime. The Sustainability Accounting Standard Board (SASB) was established in 2011 to develop standards for companies to make comparable, consistent, comparable and reliable disclosure about sustainability or ESG matters. The increase in disclosure length on environmental concerns certainly demonstrates progress in a regulatory sense. Nevertheless, it is unclear if firms simply expressed "boilerplate" ESG concerns or have acted upon them: thus, information from LDA is insufficient to tell us if firms that disclose more ESG content are likely to witness improved performance. In parallel with the O'Donovan (2002), firms may be using specific micro-tactics dependent on whether the purpose of the response is designed to gain, maintain or repair a firm's environmental legitimacy (that is, to act within the bounds of what society identifies as socially acceptable behaviour). In the subsequent part of this paper, I discuss the correlation between more environmental disclosure and firms' performance.

Lastly, discussion clusters exhibit different degrees of cyclicality. In the event of a financial crisis, the length of topics relating to the external economy and debt increases whilst those relating to internal operations decline. For example, cluster 2 (securities), 3 (corporate borrowing), 6 (real estate), 20 (derivatives, trading) have seen the most increase in length post financial crisis (2018-2019). On the other hand, cluster 9 (operations financials) and 16 (valuations) have seen the most significant decline in length. An explanation can be made on the basis of the attribution theory: firms tend to attribute good news to own superior management and bad news to external reasons. Given that the financial crisis is a systems wide event, firms would likely shorten the discussion of poor operational performance and describe the crisis in great detail.

3.2.2 Emergence of New Topics

The study on topic length evolution reveals interesting cross sectional characteristics of MD&A texts. Subsequently, I analyze the emergence of new topics over time. Previously, I have computed LDA by selecting 25 topics over the whole duration of 25 years, in this part of the analysis, I instead use LDA to select the most prominent 25 topics in each year, and compute the topic that has the most different content with respect to the 25 topics in previous year. In doing so I iteratively find the topic that is an "outlier" with respect to the content of the other topics in the previous years.

As the topics calculated by the LDA model are a vectorised representation of words, it is possible to calculate how similar they are with the use of cosine similarities, defined as the degree of similarity between two sparse vectors. The algorithm first extracts the top 1000 words that are most probably assigned to the respective topic, outputs these words in vector form. Subsequently, the sum of the dot products of these vectors is computed and the result is normalized by the multiple of the magnitudes of these vectors (see Figure 7). For each year, I compute a rolling set of cosine similarity calculations by comparing each topic with every topic in the previous year. I take the mean of the former and find the topic with the smallest mean (least similar to all the topics in the previous year).

$$\begin{aligned} & argmin \ _{a} \sum_{b=0}^{25} cosinesim(C_{at}, C_{bt-1}) \\ & = argmin \ _{a} \sum_{b=0}^{25} \frac{C_{at}C_{bt-1}}{|C_{at}| \ |C_{bt-1}|} \\ & = argmin \ _{a} \sum_{b=0}^{25} \frac{\sum_{i=0}^{1000} C_{ati}C_{b(t-1)i}}{\sqrt{\sum_{i=0}^{1000} C_{ati}^{2}} \sqrt{\sum_{i=0}^{1000} C_{b(t-1)i}^{2}}} \end{aligned}$$

Figure 7.

Figure 8.

For a pictorial illustration of cosine similarities (see Figure 8), for each $t \in [1993 - 2018]$, I choose the *Cat* to minimize $\cos \theta$ in the diagram (or similarly, to maximize θ given its bounds: $0 < \theta < 180$), with 'item 1' and 'item 2' being word vectors respectively of 1000 length, from year t-1 and year 1 respectively.

Table 2. shows the resulting topics each year from the analysis with the lowest cosine similarity with all previous years. I broadly categorized topics into the following categories:

• Orange: global macroeconomic event

• Yellow: regional macroeconomic event

• Green: macroeconomic trend

• Blue: management related

199	1996	1997	1998	1999	2000	200
"mexico"	"gas"	"electric"	"medicare"	"software"	"media"	"fuel"
"peso"	"oil"	"power"	"patients"	"computers"	"ventures"	"plant"
"fiscal"	"depletion"	"energy"	"therapy"	"merchandise"	"cable"	"nuclear"
"bankruptcy"	"agreement"	"new"	"occupancy"	"hardware"	"operating"	"generation"
200	2 2003	2004	2005	2006	2007	200
"gas"	"PCs"	"yankee"	"sales"	"management"	"prices"	"fund"
"power"	"network"	"nuclear"	"products"	"credit"	"trading"	"credit"
"electric"	"telephone"	"environmental"	"income"	"growth"	"energy"	"futures"
"energy"	"ended"	"decommissioning"	"tax"	"advertising"	"long"	"markets"
2009	2010	2011	2012	2013	2014	201
"value"	"futures"	"debt"	"store"	"power"	"etfs"	"oil"
"ended"	"dollar"	"capital"	"credit"	"energy"	"assets"	"gas"
"fell"	"lower"	"management"	"flows"	"idaho"	"nav"	"reserves"
"global"	"investments"	"accounting"	"retail"	"environmental"	"commodity"	"development"
2016	2017	2018				
"acquisitions"	"recovery"	"regulatory"				
"legacy"	"offset"	"changes"				
"fell"	"variance"	"credit"				
"global"	"coal"	"federal"				

Table 2.

First, it is apparent that the time series study captures mostly macroeconomic clusters. The 1995 reference to "peso" and "bankruptcy" relates to the Mexican peso crisis where the Mexican government was forced to devalue the peso against the US dollar. The period 2007-2010 see financial descriptions that relate to the global financial crisis, with trading ideas being prominent in 2007 and sentiment becoming increasingly bleak in 2009. The clusters also capture macroeconomic factors that were not as internationally known: the reduction of supply and peak in oil price in 1996, Enron's collapse in 2001, as well as the decommissioning of the Yankee power station in 2004. Several of the clusters also exhibit the emergence of new macroeconomic trends: advancement of new energy in 1997, the dot com bubble in the early 2000s, and the advent of environmentalism in the early 2010s.

Comparatively few topics relate to changes in management practice, highlighted in blue. It is difficult to provide reasons for why these topics emerged during the time when they did. Whilst LDA adequately captures system wide shock and the sectors that experience the most dramatic change overtime (eg. software, new energy), it is rather difficult use LDA to capture changes relating to management related disclosure (eg. strategy-relevant content). Furthermore, results from LDA may be difficult to interpret: in the mid 2010-late 2010s, there are few major macroeconomic events, and results from LDA are difficult to interpret subjectively.

4 A model for document information

Despite that the use of LDA provided insightful results into the content and evolution of MD&A disclosures, it is subject to important caveats. First, clusters produced require interpretation by the researcher, interpretations of clusters are made ex-post based on human intuition, hence may not be scientifically or statistically reasonable. Second, information from LDA would still be unable to capture a complete picture of textual disclosure to sufficiently explain corporate performance. LDA can characterize external factors that are clearly demarcated from the others (eg. macroeconomic factors, sector specific discussion), but it is largely insufficient in capturing corporate discussion that relates to strategy. Following an initial examination of document topics with LDA, I want to come up with a proxy for the information that disclosures contain and arrive at a way to measure these proxies.

4.1 Document information proxies

I want a proxy for all the information that can be inferred from textual data and how this might have implications on corporate performance. I incorporate the following variables into the prediction model and use a best subset regression to estimate the best variables to the prediction problem.

Firstly, I need to account for a firms' current performance, as it may be correlated with future performance. It may be that some form of mean reverting behaviour exists and firms having filings with positive performance may experience a decline in performance in the longer run.

Second, I find multiple dimensions of the firm's strategies that are critical to a firm's building of competitive advantage. In prominent strategic management literature, there are three complementary views: positional, resource based and value system.

The positional view

Porter (1979)'s theories are at the forefront of the positional approach, he described strategy as "building defenses against competitive forces or finding positions in the industry where the forces are the weakest". The prescriptive value in understanding and applying the "Five Forces Analysis" lies in positioning a

firm in a way such that it is less vulnerable to attack within the industry. The technique Porter designed identifies the potential for a firm in making profit in the industry and determining competitive intensity or industry attractiveness.

Figure 5.

• The resource based view

The resource based view has a much stronger focus on the internal resources of the firm, which can be defined as the "tangible and intangible assets a firm uses to choose and implement its strategies" (Barney, 2001). These assets come together to shape the key capabilities of a company, through which the company archives a sustained, competitive advantage by leveraging unique firm resources that highly impact its strategy. Companies hold resources that differ across four parameters: value, rareness, imitability, and substitutability, and if a company "discovers" a particular set of unique resources that directly impact its strategy, it is capable of realizing competitive advantage that cannot be replicated by competitors.

• Value system

Porter's value chain focuses on systems, and how inputs are changed into outputs purchased by consumers. He describes a value chain common to all businesses, that he divides into primary (relating to the primary, sale and support of a service) and supporting activities. Primary activities relate directly to the physical creation, sale, maintenance and support of a product or service (eg. inbound/outbound logistics, operations, marketing/sales). Support activities relate to technological development, infrastructure, human resource management and procurement. Understanding of the value chain could be used by firms to find opportunities to increase value.

Figure 6.

Nevertheless, on a textual basis, it may be difficult to differentiate between the strategy dimensions (especially between the resource based view and Porter's value system) at a high level just because there are multiple areas of overlap in terms of vocabulary. For example, superior technology may be discussed as a resource in RBV and as part of the support activities in Porter's value chain. Additionally, it is rather difficult to distinguish between activities in similar categories (eg. between inbound logistics and outbound logistics). In order to incorporate all characteristics of the aforementioned, but at the same time sufficiently differentiate between distinct categories, I choose to regroup strategic discussions into the following categories:

Figure 7.

The internal category consists of textual measures that account for firm competency (in alignment with the resource-based-view), and various stages at a firm's strategic management process (Barney, 2011): from decision making to actions to results realization. Each of the steps in the process would correspond to certain firm activities in Porter's value system. The external category consists of Porter's Five Forces and economic, institutional forces that firms discuss.

Aside from strategic discussions, I would also like to collect data on the associated qualifications in terms of sentiment or performance results as a consequence of these strategies. I measure the degree of firms' responsibility taking (if any). Firms may wish to attribute performance to internal/external reasons. In past literature, firms tend to attribute positive results to internal causes while attributing negative performance to the external environment to take credit for successes and avoid blame for failures (Miller and Ross, 1975; Schlenker, 1980). The directionality of attribution is indicative of future performance. It is widely posited that attributions are likely to be "self-serving". Previous finance research used textual data in corporate reports to analyse the relationship between textual attribution and performance. Staw et al. (1983) and Salancik and Meindl (1984) find that positive sentiment expressed in corporate annual reports is usually correlated with poor future performance. Bowman (1976) finds that more successful firms place emphasis on their own strategies and less successful firms blame on external excuses (ie. weather) in their annual reports. Firms that tend to be more optimistic in their disclosure (disclosure of positive revenue increase, etc), may experience worse performance in the future.

5 Quantifying Topics

My research question then focuses on how internal and external disclosure may be determined. Instead of relying solely on LDA, I propose to use an ex-ante method of financial dictionaries to classify the content of filings which outputs a document metric with respect to the categories detailed in Figure 7.

5.1 The Internal/External and Performance Dictionaries

To account for both performance polarity and internal/external attributes, the dictionary needs to be classified into 2 sections.

First, I require a means to quantify textual disclosure of corporate performance. All previous dictionaries focused on quantifying sentiment (eg. identifies cues such as "bad" or "positive" and they are also unigram dictionaries (contains single word tokens). As in this study, I am only interested in corporate performance (ie. textual disclosure on financials), existing dictionaries would not be effective in accomplishing this task.

Second, I need a method of quantifying strategic factors, according to the categories defined in the econometrics model. Past research has relied almost exclusively on using LDA to do so. This is hardly satisfactory as I have shown that LDA does not sufficiently capture several dimensions of strategic content. I instead utilize a set of dictionaries to compute this.

I utilize dictionaries that I jointly created with other authors to complete these two classification tasks. The dictionaries contain unigrams and bigrams and they are respectively used to classify performance outcome and internal/external features. The dictionaries are constructed with both manual and statistical methods. First, the vocabulary of the available sample is tokenized with each unigram (single word token) and bigram (two words token). The tokenized vocabulary reflects all possible one word, or two-words combinations that can occur in the sample. The tokenized vocabulary is subsequently narrowed down using term weighting with TFIDF. This removes word combinations that appear infrequently across documents and frequently in single documents. Further labelling is conducted by research assistants to classify the remaining vocabulary further into categories in Figure 8.

The performance dictionary consists of 6 sub dictionaries, which are divided into amplifiers/negators/bads/goods (eg. "increase") and performance financial words (eg. "revenue", "income") (see Figure 8 and 9). Amplifiers are defined as words which enhance the meaning of a performance outcome (e.g. increase) and negators are those which reverse the sentiment attached (e.g. decrease). Let "income" to be of polarity 1, whilst "debt" to be of polarity -1. Consider "increase income" (polarity +1), and "increase debt" (polarity -1), "decrease income" (polarity -1), and "decrease debt" (polarity +1). Whilst the polarity of "income" or "debt" is unchanged in the case of the former, it is reversed in the case of the latter because increase is of polarity +1 and decrease polarity -1. The polarities of the performance phrases are multiplied by the polarity of the amplifiers/negators to obtain the resulting polarity for the overall phrase. Aside from amplifiers and negators, the performance dictionary also consists of "goods" and "bads". A "good" converts any performance phrase associated with it to a positive performance vocabulary; conversely a "bad" converts any performance phrase associated with it to a negative performance vocabulary

The internal and external dictionary consists of unigrams and bigrams that refer to factors affecting performance which are either internal to the firm or, conversely, a product of the firm's external environment. Such internal factors include strategic decisions made by the firm, operational improvements, or performance enhancing organisational strengths such as proprietary technologies or strong management; external causes of performance largely consist of environmental threats over which management has little control, such as industry competition, legislation, lawsuits, or wider macroeconomic conditions.

Figure 8 . Dictionary Composition

Fig 9: Relationship between individual dictionaries

Consider the following paragraph for an example of how our system of classification differs from that of the Loughran and McDonald dictionary.

A number of factors may decrease the income generated by the centres including the national economic climate, the regional and local economy which may be negatively impacted by rising unemployment, industry slowdowns, adverse weather conditions, natural disasters and other factors, local real estate conditions such as an oversupply of or a reduction in demand for retail space or retail goods, availability and creditworthiness of current and prospective tenants, decreased levels of consumer spending consumer confidence and seasonal spending, especially during the holiday season when many retailers generate a disproportionate amount of their annual sales, negative perceptions by retailers or shoppers of the safety convenience and attractiveness of a center, acts of violence including terrorist activities and increased costs of maintenance insurance and operations including real estate taxes.

Fig 10: Phrases Identified

Whilst the Loughran and McDonald dictionary identifies the blue tokens that either connote positive or negative meaning, our dictionary, in addition, identifies tokens that fall under the performance vocabulary categories (in red) and internal/external categories (in green).

There may be overlaps between the Loughran and McDonald dictionary and our dictionaries. For instance, a sentiment word in the LM dictionary can be referring to a performance token (eg. "negatively affecting revenue"). This will be taken into account as a part of our performance dictionary, however, sentiments that are not associated with the company's own performance (eg. negative perceptions of retailers and shoppers) is not assessed by the output of our performance dictionary.

5.11 The Performance Dictionaries

Further to the general description of the relevant dictionaries, I give definitions to the respective categories in the dictionaries.

- An "amplifier" enhances the polarity of the finance specific vocabulary that it is attached to (eg. increased, enhanced, booms, surges, acquire, retain, etc).
- A "negator" negates the polarity of the finance specific vocabulary that it is attached to (eg. decreased, reduces, etc).

- Words in the "bad" category directly makes the polarity of the finance specific vocabulary negative (eg. adverse, constrains, etc).
- Words in the "good" category directly makes the polarity of the finance specific vocabulary positive (eg. positive, amazing, etc).

The positive performance dictionary consists of financial performance tokens and business activities that when amplified, benefits the business (eg. revenue, sales, income, acquisition asset) Conversely, the negative performance dictionary consists of financial performance tokens and business activities that when amplified, negatively affects the business (eg. costs, risks)

Tokens in the dictionaries are used to conduct lookup in the text, so phrases are assigned heavier weights if they are longer (see algorithm design). To ensure the relevance of each entry in the dictionary, only tokens that have a unique meaning are incorporated. For instance, "accounting cost" is not incorporated as "costs" is in our dictionary and "accounting" does not add an additional layer of meaning to "cost". For the same reasons, keeping amortization certain is not meaningful because "certain does not add to "amortization". "Advertising budget" is not included as "advertising" does not add to the polarity of "budget". However, "Debt maturities" is relevant because both debt and maturity are significant to the polarity of the phrase "Expense reimbursements" is relevant because reimbursement alters the meaning of expense.

5. 12 The Internal and External Dictionaries

Further to the initial round of classification, I classify tokens in the "internal" and "external" dictionaries to subcategories as illustrated in Figure 7. Phrases in the internal dictionary are defined to fall under any one or more of the following categories, in the below description, I clarify the relationship between the respective dictionaries and how I constructed the empirical model in part 4.

Category I: Firm decision making:

Tokens under this category relate to maintaining, evaluating, altering management decisions and discussion about opportunities. Tokens under this category proxy for two things. First, they are proxies for the underlying design behind strategic decision making of firms, second, they measure commitment with firms' strategic communication.

Porter (1996) states that the role of strategy is to define position, determine trade-offs and forge fit among activities. "Designing" strategy is a prevalent school of thought in the field of strategic management. Mintzberg (1990)'s design school of strategy describes strategy as a process of design to achieve an essential fit between external threat, opportunities and internal distinctive competence.

I hypothesise that firms disclose more of this type of content are likely to foresee future growth in performance. Yet, the converse may also be argued: a company's choice to enter a new position makes sense only if it has the ability to turn a system of complementary activities into a sustainable advantage.

Table 1. Example Tokens and Associated Bigrams identifying phrases in the "Firm decision making" segment of the dictionaries.

Key Unigram Token and Associated Bigrams	Dictionary Unigram/Bigram Frequency
Competitive (eg. Competitive Strength)	252
Achieve (eg. Transaction Achieved)	287
Solution (eg. Solutions Provided)	631
Discover (eg. Product Discovery)	44

Category II: Firm competencies:

Tokens under this category may include physical capital resources, human capital resources, organizational capital resources, production/maintenance resources, administrative resources, or organizational learning resources and strategic vision resources, examples being innovations, innovative skills, technology, license, intellectual property, rights, rights to patents, copyrights, trademarks, brands, hallmarks, service marks, technical competence, other forms of abilities, etc.

This category serves as a proxy for firms resources, aligning with the resource based view (RBV), profits for firms within one industry differs from profits from another due to differing internal capabilities and barriers to resource acquisition and imitation. Peteraf (1993) posits that profits for firms within one industry differs from another due to heterogeneity and isolating mechanisms. Tokens under this category either fall under innovation or unique resources as innovation allows firms to be equipped with resources that are non-imitable or non-substitutable.

Table 2. Key Tokens and Associated Bigrams identifying phrases in the "Firm decision making" segment of the dictionaries.

Key Unigram Token and Associated Bigrams	Dictionary Token Frequency
Software (eg. Software Developed)	736
License (eg. User Licenced)	3120
Property (eg. Security Properties)	767
Develop (eg. Innovation Developed)	2850

Category III: Firm actions:

Tokens under this category relate to M&A activities, partnerships, and investment undertaken. They are a proxy for how organizations take actions to improve their value chain or utilize their resources.

There has been related research examining the implications of M&A news announcements on share prices. Eckbo (2014) shows that merger announcements typically involve a large premium over existing price of the acquired company (between 30%-40% on average), and lead to a large and rapid change in market prices, suggesting that the announcement is news to the market. Routledge et al. (2013) uses a large sample and a regularized logistics regression model to predict merger targets and acquirers from MD&As. Yet few studies looked into the implications of M&A on long run performance.

Table 3. Key Tokens and Associated Bigrams identifying phrases in the "Firm actions" segment of the dictionaries.

Key Unigram Token and Associated Bigrams	Dictionary Token Frequency
Partner (Trading Partnership)	4932
Merge (Acquisition Merger)	56
Consolidate (Subsidiaries Consolidated)	601
Investment (Value Investment)	8164

Category IV: Results/Inference from firm actions:

Some actions/strategic elements of firms may manifest implicitly, such as fees/costs revenue originating from firms' actions (eg. distribution fees, margin ratios). Tokens in this category are proxies for specific changes made to improve components in firms' value chain.

There may be overlaps between tokens that fall under this category and tokens in the performance dictionary: "advertising budget" is an example that is both internal and falls under our positive performance dictionary.

Table 4. Key Tokens and Associated Bigrams identifying phrases in the "Firm decision making" segment of the dictionaries.

Key Unigram Token and Associated Bigrams	Dictionary Token Frequency
Repayment (eg. Service Repayment)	1271
Collaboration (eg. Collaboration Agreement)	32
Operate (eg. Suspended Operations)	2951
Expand (eg. Successful Implementation)	369

Phrases in our external dictionary are defined to fall under any one or more of the following categories.

Category I: Porters' 5 Forces:

Analysis of the competition faced by the business, such as competitive rivalry, supplier power, buyer power, threat of substitution and threat of new entry, etc.

Key Unigram Token and Associated Bigrams	Dictionary Token Frequency
Supplier (eg. Supplier Interruptions)	3587
Competition (eg. Aggressive Competition)	2105

Demand (eg. Customer Demand)	2409
Aggressive (eg. Aggressive Advertising)	39

Category II: Institutional or Regulatory Factors and Economic factors:

Geopolitical tensions in recent elections, governmental legislations, lawsuits, exchange rates, taxes, risk, foreign currency, fluctuations, interest rates, foreign currency, forward, option, forward position, option position, other shocks such as natural disasters, adverse weather conditions, cyber security threats, terrorism, etc.

Key Unigram Token and Associated Bigrams	Dictionary Token Frequency
Fiscal (eg. Fiscal Debt)	79
Treasury (eg. Treasury Yields)	361
Legislations (eg. Abilities Legislations)	727
Catastrophe (eg. Weather Catastrophe)	27

6 Search Algorithm Design

I provide a simple search algorithm example and associated empirical results to show how our dictionary can be used in a bag of words manner. Similar to Loughran and McDonald (2011), our dictionary can be used to compute a performance word count. For our performance words count, we take into account the length of the phrase captured and the length of the document. We also compute a sentence level attribution metric. Each sentence in our corpus will be classified according to whether it contains a positive/negative performance token and an internal/external token.

Baseline model

A positive/negative performance token is formed by:

- 1. An amplifier/negator
- 2. A unigram or a bigram in either of the pos/neg category in our performance dictionaries

We may have as a resulting performance phrase from aggregating a positive/negative performance token and a performance token. We also include other permutations of the phrase in our dictionary match for all possible inflections of the 2 words in the phrase. For example, consider the resulting performance phrase from variations of the forms of the word "increase" and the performance token "property amortisation".

Fig 11

Consider the arrangements of these permutations in the form of a nested hashmap: which enables us to compare word by word.

Fig 12

As "property amortisation" is a bigram, we show an example of how a unigram may be stored. The combination of "increase revenue" may be stored in the following way:

Fig 13

The word identification process works in the following manner. We first tokenize the document by sentence, and convert the tokenized sentence into type list. We loop through the token entries in our sentence, if the token appears in the keys (layer 1), we check if the restricted window of the next 1 to 3 words contains a word in keys (layer 2), if so, we check if the restricted window of the next 1 to 3 words contains a word in keys (layer 3). If all layers are matched or there is a blank string in the final key layer, we terminate search and return the full length of the words list matched.

The following texts will be identified by our algorithm

Example matched phrase	Word Count produced
As a result, property amortisation increased	3
There is an increase in property amortisation	4
An increase in our property amortisation	5

Fig 14

Optimisation

To reduce the space complexity of our algorithm, we instead store amplifiers, negators and bads as 3 separate sets, and tokens under our performance phrase list in a hashmap. Key phrases we are trying to match all take the form "amplifier/negator" + "performance token" or "performance token"+ "amplifier/negator".

Fig 15

Let the length of the sentence be w. We initiate an index at position 0 and increment the index procedurally. For each index we check whether it is in the set of amplifiers/negators/bads or in the layer 1 of the positive or negative performance dictionaries, then we proceed to examine whether any tokens in the next nested layer of the dictionary appears within the subsequent 1 to 3 words in the sentence, until we finish checking all 3 layers. We ensure that every relevant phrase matches within index position in range [0, w) is considered.

In the case of computing the performance word count, if we were to identify the whole phrase, we move to the next word. For each sentence, we record down the number of positive/negative performance phrases. If the number of positive phrases exceeds the number of negative phrases, we record the sentence as a positive sentence, else we record the sentence as a negative sentence.

Occasionally there are times that tokens in our performance dictionary and our amplifier/negators set overlap. For example, "tax benefit" is a special case, as both "tax" and "tax benefit" are included as a negative, and a positive performance token respectively. However,

We want to additionally note that our search algorithm follows the greedy method.

Otherwise, in the case of outputting the attribution sentence count, we terminate search and move onto the next sentence. Our internal/external dictionary consists of mainly bigrams and unigrams, and whilst iterating through every word in the sentence, lookup is conducted with reference to the internal/external dictionary as well.

We use a nested hashmap to store the dictionary phrases, and our token consists of either 1 or 2 words. We add an element to the hashmap as follows: hashmap[word1].append(word2), where hashmap[word1] is type list. The pseudocode below is modified and implemented for each category in our amplifier/negator/bad, pos/neg performance and int/ext dictionaries (For each word, we conduct lookup in a maximum of 7 dictionaries).

Algorithm 1 Pseudocode for polarity prediction

Input: inputText, financial text sentence in type list

Dictionaries

Output: Document count

- 1. increment_layer_1=0
- 2. increment layer 2=0
- 3. index=0
- 4. WHILE increment layer 1+increment layer 2<length of inputText:
- 5. **FOR** increment layer 1 in range(1,4):
- 6. **FOR** increment layer 2 in range(1,4):
- 7. **IF** increment+index<length of inputText:
- 8. **IF** word at index position in inputText is in dictionaries:
- 9. **IF** word at (index+increment_layer_1) position in inputText is in the next nested layer of dictionaries:
- 10. **IF** word at (index+increment_layer_1+increment_layer_2) position in inputText is in the next nested layer of dictionaries:
- 11. **DO** accumulate the score for each class in result, conditionally terminate search
- 12. **ELIF** the next nested layer of dictionaries is empty:
- 13. **DO** accumulate the score for each class in result, conditionally terminate search
- 14. **ELIF** the next nested layer of dictionaries is empty:
- 15. **DO** line 11-12, conditionally terminate search

7 Empirical Results

7.1 Econometrics model

My overall econometrics specification estimates the overall effect of disclosure measures on the financial performance, which I proxy with ROA. I use a pooled model where data from different units of our independent variables are pooled together with no assumption on individual differences. (Test First)

The empirical model may be formulated in the following form:

$$\begin{split} & \Delta \, ROAit = \alpha + \beta \,_{m \, for \, m \in \{1,2,3,4\}} \, int \,_{mit \, for \, m \in \{1,2,3,4\}} + \gamma \,_{n \, for \, n \in \{1,2\}} \, ext \,_{nit \, for \, n \in \{1,2\}} \\ & + \, \eta \,_{p \, for \, p \in \{1,2,3,4\}} \, int attri_{pit \, for \, p \in \{1,2,3,4\}} + \lambda \,_{m \, for \, m \in \{1,2\}} \, ext attri_{nit \, for \, n \in \{1,2\}} \\ & + \, \delta \,_{1} \, ROA_{it-1} \, + \delta \,_{2} \, log(numseg)_{it} \, + \, \delta \,_{3} \, length_{it} \, + \delta \,_{4} \, lev_{it} \, + \delta \,_{5} \, mcap_{it} \, + \, u_{it} \end{split}$$

Where change in ROA is calculated as $\frac{ROAt+5-ROAt}{ROAt}$. A time lag of 5 years is taken to capture the full effect of changes made external or internal to the firm on the business. In the empirical model, int, ext, intattri and extattri are independent variables that describe the characteristics of the textual disclosures and the rest are control variables that describe the characteristics of the firm.

Variable	Variable Description
----------	----------------------

int	Metric accounts for texts that convey strategic content classified as "internal" in <i>fig.</i> 7, without any attribution to performance. It intends to measure the quantity of discussion, and not the favorability.		
	Example sentence:		
	"We pursue a strategy of supplementing internal growth by acquiring other financial companies or their assets and liabilities."		
	Sentence falls under the "firm action" category, and illustrates the means by which the firm seeks to achieve its strategy.		
ext	Metric accounts for texts that convey strategic content classified as "external" in <i>fig.</i> 7, without any attribution to performance. It intends to measure the quantity of discussion, and not the favorability.		
	Example sentence: "Under the authority of eesa, treasury instituted the tarp capital purchase program to encourage u.s. financial institutions to build capital to increase the flow of financing to u.s. businesses and consumers and to support the u.s. economy."		
	Sentence falls under the "economic, institutional reasons" category, as it is an example of how the firm reacts to external forces in its environment.		
ntattri	Metric accounts for texts that convey strategic content classified as "internal" in <i>fig.</i> 7, with some to performance. It intends to measure the polarity/favorability of the discussion (whether a positive, or negative performance outcome is attributed to strategic discussion).		
	Example sentence: "The decrease in gross profit as a percentage of sales for 2014 as compared with 2013 and for 2013 as compared with 2012 was primarily due to increases in promotional activity and product cost increases, some of which were not passed on to customers."		
	Sentence falls under the "firm action" category and attributes negative performance "a decrease in gross profit" to firm action.		
extattri	Metric accounts for texts that convey strategic content classified as "external" in <i>fig.</i> 7, with some to performance. It intends to measure the polarity/favorability of the discussion (whether a positive, or negative performance outcome is attributed to strategic discussion).		
	Example sentence in sample: "These loans may therefore be more adversely affected by conditions in real estate markets or in the economy in general."		

	Sentence falls under the "economic, institutional reasons" category, and attributes worse performance as a result of "loans" to the economic conditions.			
ROA	Return on assets (Net Income/Revenue) x (Revenue/Average Total Asset used as a common indicator of firm performance, commonly used as a pri for for evaluating firm performance (Edward et al., 1976; Aerts, 2001)			
log(numseg)	Number of business segments, used as a proxy for the size of the firm. Empirical evidence suggests different evidence on how firm size affects growth in firms' financial performance: Gibrat's Law states that the expected increase in firm growth is proportional to its size, Bentzen et al. (2011) finds that firm's growth rates are more likely to be positively related to firm size.			
length it	Disclosure length of the MD&A section, controlled for as it may influence the proportion of internal/external discussion.			

ev _{it}	
	Leverage (total debt to total asset ratio) is indicative of a firm's ability to meet its financial obligations. The majority of conducted empirical studies find a negative relationship between company returns and leverage. Baker (1973) examined the effects of financial leverage on industry profitability and concluded that firms who earned systematically higher returns had a relatively low degree of leverage.
	There are numerous different theories on the optimisation of firms' capital structure. Modigliani and Miller (1958) presented a proposition that highlights the irrelevance of capital structure. Another well known theory is the pecking-order theory (Myers & Majluf, 1984), which states that firms prefer internal financing to fund their operations. The trade-off theory, in contrast to the pecking-order theory, suggests that firms can reach an optimal level of leverage, in which the benefits of tax shields are directly offset by costs from financing distress (Kraus & Litzenberger, 1973; Myers, 1984). The theories mentioned also imply that certain relationships between leverage and profitability are expected, endorsing a non-zero coefficient on leverage.
псар	Market capitalization is an important market indicator of the value of shares, otherwise the value of companies in general (Toramane et al., 2009; Dias 2013). Empirically, Donaldson (2015) finds a significant positive correlation between firms' ROA and market capitalisation.

Based on the nature of the variables included in the regression, and from my previous hypothesis, I posit the following about the parameters.

- $\eta_{pforp\in\{1,2,3,4\}} < 0$: as attributing negative performance to internal reasons likely correlate with improved future performance
- $\beta_{mfor m \in \{1,2,3,4\}} > 0$: as a display of more strategic awareness focusing on the internal of the organization likely correlate with with improved future performance
- $\gamma_1 > 0$: wherein γ_1 as a display of more (positioning) strategic awareness (Porter's 5 Forces) likely correlate with with improved future performance
- $\lambda_{mfor m \in \{1,2\}} < 0$: as attributing negative performance to external reasons likely correlate with improved future performance
- $\delta_4 \le 0$: by Modigliani and Miller (1958) and Myers & Majluf (1984), higher leverage likely affects future performance in a neutral or negative way.
- $\delta_5 > 0$: by empirical evidence, market capitalization is positively correlated with ROA.

7.2 Baseline Results

We first apply the regression model specified in part 3.2 in its exact form to the full sample from 1993-2018. Standard errors are clustered at the gic industry level to allow for correlation of errors within each group (Hansen, 2017). The results are shown below in the table below.

Table . Future ΔROA . This table shows the results of OLS regressions of Future ΔROA (dependent variable) on disclosure and firm characteristics. The regressions use industry (Ken French's 48 industry classification) and fiscal year fixed effects. Errors are clustered by industry. Variables are defined in Table 2, and Section 3 of the text. t -statistics are shown in brackets. ***, **, and * denote significance at the 1%, 5% and 10% levels respectively.

Regression results: *** stands for 1 percent significance level, ** stands for 5 percents significance level and * stands for 10 percent significance level (t-statistics in brackets)

	(1)	
Decision Making	0.3422 **	
	(0.1722)	
Firm Competencies	0.2319	
	(0.3052)	

(0.5956) Results from Actions 0.7272 * (0.4276) Porter's Five Forces -0.3204	
(0.4276)	
Porter's Five Forces -0.3204	
(0.9007)	
Institutional/Economic -0.1600	
(0.8875)	
Attribution Decision Making -0.5251	
(0.6783)	
Attribution Firm Competencies -0.4132	
(2.279)	
Attribution Firm Actions 3.293	
(6.866)	
Attribution Results from Actions -2.894	
(6.497)	
Attribution Porter's Five Forces -19.75 *	
(11.31)	
Attribution Institutional/Economic 26.23 **	
(10.85)	
log (sentcount) -3.788e-08	
(4.950e-07)	
ROA_{t-1} 5.532e-05	
(1.269e-03)	
log (marketcap) -0.003198 *	
(0.001866)	
leverage -0.031773 ***	
(0.01248)	
log (Segments) 9.0291e-03	
(4.8910e-03)	
N 39670	
Multiple R-squared: 0.01809	

Adjusted R-squared: 0.01386

Fixed Effect Year and industry

Error clustering Industry

First, I find that disclosure on decision making and results from actions to be positively correlated with \triangle *ROA*. One basis point increase in decision making disclosure (no. of decision making associated vocabulary divided by total length of disclosure) is correlated with 0.34 basis points higher \triangle *ROA*. Correspondingly, one basis point increase in results from actions (no. of firm action related vocabulary divided by total length of disclosure) is correlated with 0.72 basis points higher. This coincides with our hypothesis that strategic awareness and its communication has a strong degree of influence on firm's financial performance. It is also reasonable that the coefficient associated with results from actions is more significant than decision making or actions. Given that firms can selectively disclose information and are rewarded for the amount of information that leads to tangible improvements, firms would prefer to disclose more positive results from actions than the other categories, as it embodies more certainty. In contrast, decision making and firm actions embody more risk than tangible outcomes, and yield less expected growth in performance. To summarize, results show that firms may have a tendency to disclose information that they have more certainty to lead to a positive performance improvement.

Second, I observe that the coefficients on Porter's Five forces and Institutional/Economic factors are correlated with performance change into the future. One basis point increase in net positive performance attributed to Porter's Five forces is correlated with 19.75 basis points of lower \triangle *ROA*. A reasonable interpretation of this result is that Porters' Five forces is more focused on identifying threats to performance, firms are to be daring to attribute negative performance to Porter's Five Forces are willing to reflect upon their vulnerabilities and seek ways to circumvent them. It is interesting to note that the corresponding coefficient on Porter's Five Forces without attribution is not statistically significant. This tells us that reflecting on strategies is insufficient to yield a positive performance outcome, successful firms not only discuss Porter's Five Forces on a strategic level, they also dare to pinpoint operational weaknesses (leverage, capital structure, profitability, etc) that relate to these forces of competition. Our result also shows an interesting dichotomy: whilst both Porter's Five Forces and Institutional/Economic are categories that relate to the external environment of the firm, their relationship with future \triangle *ROA* are polar opposites. One basis point increase in net positive performance attributed to

Institutional/Economic discussion is correlated with 26.23 basis points of higher \triangle *ROA*. Compared with discussion on Porter's Five Forces, of which is proactive, discussion on Institutional/Economic forces are reactive. Firms are more likely to cast the blame of poor performance on Institutional/Economic forces, and in doing so conceal internal weaknesses (eg. blaming poor revenue on a lack of economic demand instead of management). In contrast, firms attributing poor performance to Porter's Five Forces are conscious of where their internal weaknesses are in relation to the industrial landscape.

However, the observations did not coincide with our hypotheses for "firm competencies" and "firm actions", as the coefficients on both variables with and without attribution are not statistically significant. This could be due to our dictionaries insufficiently proxying for textual measures, misspecifications in the statistical model, or that small changes in performance due to small changes in textual attributes may be too hard to statistically capture. Given the possibility of the first and second case, there is room for improving the model. First, there is the possibility that counts produced from our dictionary method introduces multicollinearity, for instance firms in the medical or pharmaceutical industry would disproportionately use "patent", and firms in the technology industry would disproportionately use "develop", violating assumptions of independence of x variables.

To test for robustness, I calculate variance inflation factors (VIF) that detects multicollinearity in regressions. Mathematically, the VIF of a regression model variable is equivalent to the ratio of the overall model variance to the variance of a model that includes only the single independent variable. A highly VIF indicates that the associated independent variable is highly collinear. However, as can be observed from the table below, all VIF quantities fall within the desired range (<5), invalidating the concerns for multicollinearity.

|--|

as.double(cat1neutral) 1.351274
as.double(cat2neutral) 1.234637
as.double(cat3neutral) 1.376913
as.double(cat4neutral) 1.228152
as.double(cat5neutral) 1.178656
as.double(cat6neutral) 1.232957

```
      as.double(cat1p - cat1n)
      1.741510

      as.double(cat2p - cat2n)
      2.448715

      as.double(cat3p - cat3n)
      1.741776

      as.double(cat4p - cat4n)
      1.564963

      as.double(cat5p - cat5n)
      1.380680

      as.double(cat6p - cat6n)
      1.476128

      log(as.double(marketval)1.268695
      1.297984

      as.double('roat-1')
      1.012223

      gic
      3.404887

      year
      1.745910
```

Second, I suspect that the relationship between $\triangle ROA$ and the textual measures are more intricate than one regression can capture. It may be highly likely that the coefficients on the textual variables differ with respect to year. This leads me to conduct regression on an annual basis, collect and plot the coefficients.

7.3 Time Series Regression

In total, I run 21 separate regressions and below plot the coefficients over the years. I decided to split the 6 attribution categories into positive and negative attribution, as I believe that they have different degrees of impact on $\triangle ROA$.

Scattered dots with **dark borders** and **coloured centers** are statistically significant. Dots with no asterisk are significant at the 5% level, dots with * are significant at the 1% level and dots with ** are significant at the 0.1% level, and dots with *** are significant at the <0.01% level.

Fig 16. Neutral

Fig 17. Positive Attribution

It is indeed the case that coefficients differ wildly across years. Following these sets of regressions, we are able to make more interesting conclusions.

First, examining Figure 18, I find 2003 to be of special significance, as multiple coefficients have high magnitudes and are statistically significant at the <0.01% level. Because I chose to model the change in ROA as the % change in ROA from the present years to five years into the future, the coefficient on 2003 reflects the % change in ROA from 2003 to 2008. My findings are as follows::

- 1. Companies which attributed negative performance to *Porter's Five Forces* (the competitive landscape) in 2003 experienced <u>a stark increase</u> in ROA from 2003 to 2008, significant at the <0.01% level.
- 2. Companies that attributed negative performance to *institutional/economic* forces in 2003 experienced <u>a stark decrease</u> in ROA from 2003 to 2008, significant at the <0.01% level.
- 3. Companies that attributed negative performance to *firm actions* in 2003 experienced an increase in ROA from 2003 to 2008, significant at the 0.1% level.

The coefficients on both "Porter's Five Forces" and "institutional/economic" are extremely statistically significant and are scaled up by 10 folds as compared to the previous years. It is particularly interesting that the statistical relationship between attribution and performance is only pronounced in the event of the financial crisis. A plausible explanation of the findings is that firms attributing negative performance to Porter's Five Forces and demonstrate active management showcase awareness for their competitive landscape in advance of economic crisis, and thus are more effective at crisis management than their peers. Contrary to the aforementioned, firms that attribute negative performance to external economic or institutional factors in 2003 are the most emergent with their strategies (as their strategies likely adjust to the constantly changing economic or institutional factors), thus compared to their peers they were poor at preempting crisis and experiencing inferior results.

Likewise, the coefficient on decision making is also significant and positive. Firms that attribute negative performance to their concrete actions show a strong degree of responsibility taking and audacity to take risks (when faced with blames from stakeholders). Compared to attributing negative performance to "competencies", "actions" and "results from actions", management assumes more responsibility in attributing poor performance to decision making (because decision making comes directly from the

managers themselves). The ability of management to trace the root cause to decision making also demonstrates more thorough problem analysis.

Hence, to briefly summarize the results from the discussion above, I arrived at three insights:

- Unlike past literature on attribution theory, which shows that attributing performance to internal/external causes is correlated with good/bad future performance, I find that the predictability of attributing negative performance is most pronounced before systemic macroeconomic events. The attribution of negative performance may be used as a proxy for firms' crisis management skills.
- 2. A history of disclosing root cause analysis or competitive positioning analysis has a positive impact on performance outcome relative to simply. Management responsibility taking also has a positive impact on performance outcome (managers that are more daring to disclose bad decision making are associated with improved future firm performance)
- 3. Firms that cast blame of poor performance on the external economies experience poorer returns at times of economic crisis.

Again, we can see other evidence that supports our insights from above. Consider 1996 in Figure 18. The coefficients correspond to the % change in ROA from 1996 to 2001 (capturing the duration of the Dot-Com-Bubble). It is clear that the insights deduced from the financial crisis holds true for the burst of the internet bubble in 2001. In 1996, the coefficients on Porter's Five Forces, Institutional, Economic Factors, as well as decision making are in the same direction as during the financial crisis, as the magnitude of the stock market shock is smaller in 2001 compared to 2008, so the coefficients are not statistically significant. If we compare the magnitude of the coefficients between the financial crisis and the Dot-Com-Bubble in figure 18 with the magnitude of their shock to the economy and duration in figure 19, we find close alignments.

Figure 19. S&P index across time

Now, looking at Figure 17. on the attribution of positive performance, I arrive additionally at the following finding:

- Most of the significant coefficients on the internal categories are negative across the years. This
 aligns with most attribution theory literature, attributing positive performance to internal
 competencies is correlated with worse performance, associated with firms trying to
 over-glorifying their results.
- 2. However, the relationship between positive performance attribution and future change in ROA is not as consistent with negative performance attribution,
 - a. First, the coefficient on attributing positive performance to *results to actions* is negative in 1994 and 1995, at the 5% and 1% levels respectively. This means that firms that attribute positive performance to results in 1994 and 1995 experience a <u>decline</u> in ROA from 1995-2000 and 1996-2001, respectively.
 - b. Second, the coefficient on attributing positive performance to *actions* was negative in 1994, at the 1% level, hence, firms that attribute positive performance to results to actions experienced a <u>decline</u> in ROA from 1995-2000.
 - c. The coefficient on attributing positive performance to *Porter's Five Forces* is negative in 1995, at the 5% level, firms that attribute positive performance to results to actions experience a <u>stark decline</u> in ROA from 1995-2000.

It is evident that 2000-2001 sees the evolution and bursting of the Dot-Com-Bubble. However, surprisingly, in contrast to observations prior to the dot com bubble recession, no insightful correlation

can be found between future performance and textual disclosure for the time frame relevant to the financial crisis. All of the coefficients in 2003 (which correspond to ROA change from 2003 to 2008), are not significant. Thus, it is possible that the relationship between means of attributing positive results and future returns depends more on the reason and nature of the recession, and less on the recession magnitude.

To arrive at possible reasons behind this observation, I would want to study the differing causes behind the Dot-Com-Bubble and the financial crisis. First, the Dot-Com-Bubble stemmed from the firms acting themselves, due to irrational decisions made by a category of firms, the financial crisis is caused by excessive risk taking by banks and the bursting of the housing bubble, which is discussed to a lesser extent before it manifested. Second, the Dot-Com-Bubble is led by stakeholders-wide fads and decisions made within organizations (internal), the latter is led by information asymmetry and regulatory failure (external). Actions in the lead up to the Dot-Com-Bubble were publicly disclosed: many internet companies needed justifications for their actions as they incurred immense net operating losses by aggressively spending on advertising and promotions. Greed and excessive optimism are openly revealed: from the significant coefficients on *Porter's Five Forces, actions*, and *results to actions*, we understand that attributing positive performance to the favorable industrial landscape and fads and fashions is negatively correlated with future performance.

However, as compared to the Dot-Com-Bubble, events in the build up to the financial crisis were less to do with the firms than they have to do with the financial system. Firms' eventual bankruptcy and decline in performance are caused by the surge in real interest rates. As compared to the dot-com bubble, the financial crisis is more related to the behaviours of financial institutions, which are not featured in comparable length as strategic disclosure amongst firms in the lead up to the Dot-Com-Bubble.

A less explainable relationship can be found between neutral (unattributed discussion) and future performance. This shows that, again, strategic justifications should be evidenced to be able to lead to material impact on future performance.

I briefly summarize the results obtained on attributions of positive performance and how this compares with results obtained for attributions of negative performance. (It is important to note that correlation does not imply causation and the interpretations offered are speculative):

1. Attribution of negative performance to decision making and the industrial landscape tells us about the firm's degree of responsibility taking and strategic reflection and relates

- positively with future performance during economic recessions. However, attribution of positive performance to actions and industrial competition may be interpreted as excessive optimism and a "red flag" that is causal of a crisis.
- 2. Unlike what is suggested by all previous authors, it would be worth studying attribution from an events study perspective. Analysis over the attribution of negative performance would aid researchers to predict how a firm would perform during a time of crisis, whereas the attribution of positive performance may be used to study the unfolding of bubbles and excessive optimism.

7.4 Combining LDA with Attribution

Subsequently, I want to make cross sectional observations on how the correlation between measures of textual disclosure vary together with disclosure content. Hence, I have conducted separate regressions with respect to the LDA sectors specified in section 3.

If one were to define information in disclosure that has tangible impact on performance as relevant, the econometrics model is subject to underlying imperfections. This is primarily because identical information in documents may not need to have the same impact on performance, even controlling for observable firm characteristics. In previous procedures, we have controlled for firm characteristics, yet, we did not account for disclosure characteristics. Disclosure characteristics proxy for firm priorities and industry positions that we cannot otherwise observe. For example, consider firm A and B of identical size, leverage and in the same industry, firm A is an innovator and firm B an incumbent. Firm A will disclose more information on R&D and product development whilst firm B would not. Thus, the textual measures will be proxies for different subjects, for instance, the resource based view variable will proxy for different organizational resources and perspectives (eg. superior technologies for firm A and superior management in firm B). Hence, it is highly likely that the disclosure content of Firm A and B are correlated with performance in different ways. Additionally, as a result of the nature of their business, some firms tend to disclose more material and relevant information about their decision making.

To investigate this issue further, I conduct a set of regressions for every category for negative attribution, as the magnitudes of coefficients obtained in this category are largest out of the three categories examined. The diagrams below show results for categories relating to negative attributions. It is apparent that disclosure content that is more exposed to financial market cyclicality are further dispersed. For

instance, clusters are more dispersed for real estate, products/services/customers, insurance, supply chain and corporate borrowing. The impact of textual disclosure on performance is more variational because there is less certainty to organizational actions. The categories where coefficients vary the least across time are securities and valuation. Both categories are less relevant to strategy. It would seem that as disclosure on any strategic content is more minimal, it would be harder to find a statistically significant relationship between them and performance.

7.5 Examining the implication of newly emerging topics

An additional research agenda is to look into how corporate performance is affected by disclosures relating to the emergence of new topics as suggested in section 3.22. One would expect some trends to have permanent impact on firms' performance (eg. global event) whereby others less so (eg. regional events). I select one representative topic across each category of "global macroeconomic event, regional macroeconomic event and macroeconomic trend". These are topic categories "mexico peso crisis" (global macroeconomic event), "decommissioning of the Yankee power plant" (regional macroeconomic event), and "dot-com bubble" (global macroeconomic trend). I account for all companies that have disclosed related topics in the associated years (those companies would fall into the respective clusters, and extract the ROA evolution of those companies in the coming years.

To enable direct comparison between firms' performance, I used time-series clustering to group the time series into ones that exhibit similar patterns of evolution, using the k-means algorithm, For each of the 3 data sets, I adopt the k-means algorithm to partition the time series into 3 clusters in which each observation belongs to the cluster with the nearest mean (minimizes within cluster variances). The metric used to measure the distance between time series is chosen to be the dynamic time warping (DTW) distance metric. Given series:

$$X = (X_0, X_1, ..., X_n)$$
 and $Y = (Y_0, Y_1, ..., Y_n),$
$$DTW(X, Y) = \min_{\pi} \sqrt{\sum_{(i,j) \in \pi} d(X_i, Y_j)^2},$$

where π is the path of index pairs of elements in each time series. The DTW metric is calculated as the squared root of the sum of the squared distances between each element in X and its nearest point in Y. The DTW metric is more suitable than the standard Euclidean metric, as it is more sensitive to time shifts between series. Additionally, the DTW metric is better for comparing two series that may not be precisely aligned in time or length, as was the case with our datasets.

In figures 20, 21 and 22, I provide visualizations of my result that consists of a coloured figure with all ROA time series and results post clustering with time series assigned to their most likely clusters.

Figure 20 (Above). Mexico Pesos Crisis (Global Macroeconomic Event)

Figure 21 (Above). Yankee Power Station Abandonment (Regional Macroeconomic Event)

Figure 22 (Above). The Dot Com Bubble (Global Macroeconomic Trend)

First, it is observed that the firms that have disclosed content in relation to the Dot-Com-Bubble experienced more drastic ROA fluctuations than both firms that have disclosed content on the Mexico Pesos Crisis and Yankee Power Station abandonment. Compared to the other two cases, firms involved in Yankee Power Station abandonment experienced the least degree of ROA fluctuations (notice all graphs are plotted on the same scale). A potential explanation to this is that the evolutionary patterns of ROA

are reflective of the severity and systemic impact of the economic events, that is, the more systemic and widely penetrating the subject disclosed, the more influence the subject will have on the performance of the firms. Similarly, it may be reasonable to hypothesize that macroeconomic trends tend to have more persistent impact on ROA evolutions than one-off macroeconomic events.

Second, looking closely at Figure 22, it is apparent that firms that were related to the Dot Com Bubble can be roughly categorized into those experiencing (1) mild ROA fluctuations/slight increase, (2) moderate ROA decrease and (3) severe ROA decrease, with the exception of one firm (see orange colour line) which has its ROA surge up drastically. Amongst the firms that experienced a decline in ROA, the shock is rather persistent, and rarely do firms experience a positive ROA in years following experiencing negative ROA. The result raises a plausible hypothesis, that is, amongst firms that are affected by fads and fashions, most firms that blindly follow the trends fail. Viewed together with the revealing results section 7.2., I believe that it would be beneficial to particularly study the causal effect of strategy (using information provided in corporate disclosures as a proxy) on performance of the specific set of firms which were at the core of the Dot-Com-Bubble.

7.6 Testing the Causality of Attribution (A Case Study on the Dot-Com Bubble)

Previously, I had arrived at conjectures of using attribution disclosure to predict performance, by examining correlation. A logical step that follows the above analysis is to examine which (if any) of the textual measures have a causal effect on the Dot-Com-Bubble.

I believe it will be uninformative to study the causal impact of attribution disclosure on the mean value of all ROA time series. This is likely that the causal effect of attribution disclosure may not be homogenous across all firms. First, firms may be inclined to disclose information differently when they experience different performance, poor performing firms may have a tendency to cast blame on the economy and successful firms to praise their own accomplishments. Second, if there truly exists variations as such, results obtained would be skewed to reflect the poor performing firms. As seen in Figure 22, there are very few firms that reaped benefits from the Dot-Com-Bubble and significantly more firms that suffered.

To provide a remedying solution, I run the Causality test on three different time series representing the means of the three clusters obtained from the k-means analysis. As seen in Figure 23, taking the mean of the time series result in the following three clusters. The method I use to test for causality is the Granger

Causality test. The Granger Causality test is used to determining whether one time series is useful in forecasting another. Regressions test correlations, but Granger (1969) argued that causality could be examined by measuring the ability to predict the future values of a time series using prior values of another time series - that is, the Granger Causality test measures predictive causality, or precedence causality.

Figure 23 (Above). Means of time series in clusters 1 to 3 (from left to right, respectively)

The general form of the Granger Causality test is as follows:

$$x_{t} = c_{1} + \sum_{i=1}^{p} a_{i}x_{t-i} + \sum_{j=1}^{p} b_{j}ROA_{t-j} + u_{t}$$

$$x_{t} = c_{1} + \sum_{i=1}^{p} a_{i}x_{t} + u_{t}$$

 $H_0: b_1 = b_2 = b_3 = \dots = b_p = 0$

 H_1 : at least one of the coefficients b_i is non-0

I first estimate the regression, based on the first expression given, and subsequently the second expression, calculating RSS in both cases. The F-test statistic is obtained from the RSS in the first and second regressions, such that:

$$F = [\{(n-k)/p\}, \{(RSSrestricted-RSSfull)/RSSfull\}]$$

Let x represent the respective attribution metric variable obtained from the texts (we have 6 categories (see legends of Fig 16, 17 and 18), and binary negative/positive performance classifications associated with each category. Hence, in total there are 12 options for x. We also have 3 sets of ROA time series to choose from. Hence I run 36 sets of the Granger Causality test.

Polarity on performance	Attribution Topic	Cluster Number	Pearson Correlation Coefficient	F-Score	p-Value	LAG
Positive	Porter's Five Forces	1 (well/average performing firms)	0.437649	8.02839	0.01062**	1
Negative	Decision Making	1 (well/average performing firms)	-0.624924	7.500814	0.013049**	1
Negative	Institutional/Economic	1 (well/average performing firms)	0.47543	4.578218	0.045574**	1
Positive	Actions	2 (negatively performing firms)	-0.234482	5.233959	0.033787**	1
Negative	Actions	2 (negatively performing firms)	0.505132	2.283736	0.04719**	1
Negative	Competencies	2 (negatively performing firms)	-0.427385	4.637141	0.034616**	5
Negative	Porter's Five Forces	2 (negatively performing firms)	-0.40133	5.095697	0.035951**	1
Negative	Institutional/Economic	2 (negatively performing firms)	-0.465766	4.866507	0.039894**	1

Figure 24 (Above). Results to the Granger Causality Test on Dot-Com-Bubble data

For ease of interpretation, I only included the test results that were statistically significant at the 5% level. I discuss the following results and how they compare with the results in section 7.2:

- 1. In this section, it is seen that for firms involved in the Dot-Com-Bubble, the attribution of positive performance to Porter's Five Forces yields even better returns for the average performing firms, and negative attribution yield even worse performance for the badly performing firms.
 - The results tell us that firms entrenched in the fads and fashions of the bubble would experience gradually diverging performance upon studying how their performance depends on competitive positioning (strategizing about industrial competition induce firms that experienced positive performance continue to

perform strongly, and firms that experienced negative performance perform negatively). Firms with good returns continue to build on their competitive advantage, whereas firms with poor returns blame their luck on the already unfavourable industrial landscape, and thus perform even more poorly.

- 2. The attribution of negative performance to institutional/economic reasons yields even better returns for the average performing firms, and yields even worse performance for the badly performing firms.
 - This observation is rather unorthodox, as most past researchers who investigated the topic found that attribution of negative performance to institutional/economic reasons yield poorer results to all firms alike. However, I find that the tendency is only pronounced when firms suffer poor returns. It may well be that well-performing firms discuss institutional/economic events for strategic reasons.
- 3. The attribution of positive performance to actions yields worse results and the attribution of negative performance to actions yields better results for badly performing firms.
 - As suggested in section 7.2, firms that dare to admit mistakes and take responsibilities tend to have stronger future performance, the result in this section reinforces this idea.

8 Conclusion

In this paper, I investigate the predictability of firm's performance using information in textual disclosure. Whilst previous publications relied on manual labelling, I seek to engineer a workflow to perform this analysis.

First, I studied the content composition of 10-K MD&A disclosures. Contrary to Dyer (2016), who performed the same analysis on the whole sample of 10-Ks and who found that only documents pertaining to compliance with SEC & accounting standards which increased markedly in the sample period. I find that most of the clusters that experience slow growth in length overtime relate to revenue, cash, and financials, they focus on describing material performance. Topics that experience high growth are strategic. Discussion topics also exhibit different degrees of cyclicality, and those relating to financial

markets experiencing the most fluctuation in length overtime. Secondly, I investigated the emergence of new topics over time using pooled cosine similarities. I find that topics reflect global and regional macroeconomic events, such as the financial crisis, and evolving fads and trends, such as the technology boom in the early 2000s.

Using the information provided by topic modelling and referring to strategic management literature, I create an econometrics model to proxy for performance. I leverage a set of dictionaries and design a search algorithm to quantify strategic information in corporate disclosures. Through the empirical results, I find that the development of strategy and its communication are key to favourable future firm performance. Disclosure on decision making and results from firm actions are positively correlated with future performance. Furthermore, the attribution of net positive performance outcome to Porter's Five Forces is negatively correlated with future performance, whilst the attribution of net positive performance outcome to Institutional/Economic forces is positively correlated with future performance. This shows that assuming responsibility for decision making is important and the concealment of internal weaknesses is negatively correlated with operational results.

Furthermore, I conduct time series regression to observe the variations of the coefficients on attribution with respect to time. Importantly, I arrive at findings that firms that take responsibilities after their decision making are better at crisis management. First, I find that firms which are aware of their competitive landscape experience and show evidence of active decision-making experience positive returns and firms that attribute negative performance to external events experience negative returns. This observation holds across both the financial crisis in 2008 and the dot com bubble in the early 2000s. Whilst past literature has found that there is a negative correlation between future performance and attribution of negative performance to external events, no study thus far has focused on time series differences of attribution and sought to provide explanation with respect to crisis management. Second, I find that the relationship between attribution and performance relates to the nature of the economic crisis. When the nature of the crisis stems from firms' irrationality, studying overconfidence and organizational greed may help to preempt the crisis, conversely, when the crisis stems from the external economy, studying strategic disclosure and firm responsibility taking helps to predict which firms can sustain the pressure of the crisis. In the last section of the paper, I provide a case study of the Dot-Com-Bubble from an event-study perspective. I additionally find that firms that experience negative returns continue performing worse if they cast blame on the external environment and firms that experience positive returns are able to better their performance, however, by publicly disclosing their weaknesses.

9 Appendix

• Statistical Document Model

First consider a document model of the following form:

- Words are represented using unit-based vectors that have a single component equal to 1 and all other components equal to 0. As a result, the vth word in the vocabulary is represented by $w^{\nu} = 1$ and $w^{\mu} = 0$ for $u \neq \nu$.
- A document is a sequence of N words denoted by $w = (w_1, w_2, ..., w_N)$
- A corpus is formed by a collection of M documents: $D = \{w_1, w_2, ..., w_M\}$

Latent Dirichlet Allocation

LDA is a generative probabilistic model (Blei, 2012). The underlying assumption of LDA is that it assumes that every document contains a mixture of hidden (latent) topics. Over a distribution of topics, we can infer a topic (and assign a document to it) by choosing the topic that has the highest probability given by a set of words (Blei, Ng, & Jordan, 2003; Blei, 2012).

(i) High Level Summary

LDA assumes that every document will share the same set of topics but exhibit topics in different proportions. A document consists of N word positions, we first populate the word positions with the topic from which the word will come from. We then examine the probability mass function from which the word is drawn, and select a word from the topic we picked.

(ii) Model of LDA

Fig. Description of each stage of the sampling process

• α is the proportion parameter.

- w_{nd} is the observed variable of words
- π_d is the per-document topic proportions
- z_d is the per word topic assignment
- β_k is topics
- Gamma is topic distribution

A topic, k, denoted by β_k , is a probability mass function over the entire vocabulary. A topic proportion for document d, denoted by π_d is a probability function (mixture) over topics for document d.

 π is a k-dimensional dirichlet variable (where the dimensionality is the predefined number of topics we extract from the documents). π lies in the (k-1)-simplex, if π i \geq 0, $\sum_{i=1}^{k} \pi i = 1$.

We say that the density function of $\pi \sim \text{Dir}(\alpha)$. The Dirichlet distribution is given by:

$$Dir(\boldsymbol{\pi}|\alpha_1,\ldots,\alpha_m) = \frac{\Gamma(\sum_{i=1}^m \alpha_i)}{\prod_{i=1}^m \Gamma(\alpha_i)} \prod_{i=1}^m \pi_i^{\alpha_i-1} = \frac{1}{B(\boldsymbol{\alpha})} \prod_{i=1}^m \pi_i^{\alpha_i-1}$$

The dirichlet distribution is used because it is conjugate to the multinomial distribution and has finite dimensional sufficient statistics.

For each topic $k \in \{1,...,K\}$, we draw a topic proportion β_k from a Dirichlet Distribution $Dir(\alpha)$. π , the K-th dimensional probability vector the dirichlet distribution yields, goes into a multinomial distribution. $P(\pi|\alpha)$ varies with alpha, when alpha is 1, the probability of each outcome is equally likely. As we vary the parameter alpha, we arrive at different points where the multinomial will land.

Fig. Dirichlet distribution visualization on a 3-Simplex versus multinomial distributions

The multinomial distribution is a generalization of the binomial function. That is, for n independent trials, each trial is placed into exactly 1 of k categories. The multinomial distribution models the probability of n independent trials each of which leads to a success for exactly one of k categories.

$$p(\mathbf{k}|\boldsymbol{\pi},n) \; = \; p(k_1,\ldots,k_m|\pi_1,\ldots,\pi_m,n) \; = \; \frac{n!}{k_1!k_2!\ldots k_m!} \prod_{i=1}^{k_i} \pi_i^{k_i}$$

Then, for each document $d \in \{1,...,M\}$, we draw a multinomial distribution from a dirichlet distribution with parameter α .

Subsequently, for each word position, $n \in \{1,...,N\}$, we select a hidden topic zn from the topic proportion for the document using the multinomial distribution from the previous step.

Then, for the word position n, we select a word from the corresponding topic β_{zn} , using the topic selected in the previous step.

Hence, the joint likelihood expression is given by:

$$P(\theta, \beta, w, z) = \prod_{d=1}^{D} P(\theta_d \mid \alpha) \prod_{k=1}^{K} P(\beta_k \mid \eta) \prod_{n=1}^{N} P(z_{d,n} \mid \theta_d) P(w_{d,n} \mid z_{d,n}).$$