الاختبار المشترك الأول العام الدراسي: 2018/2019	باسمه تعالى إمتحانات الثانوية العامة فرع العلوم العامة (فرنسي)	مؤسسات أمل التربوية الدائرة التربوية الدائرة التربوية
الاسم:	مسابقة في مادة الرياضيات	ثانوية :
الرقم:	المدة: أربع ساعات	عدد المسائل: ستة

ملحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I - (6 points)

Dans le tableau suivant, une seule réponse à chaque question est correcte.

Donner, en **justifiant**, la réponse correspondante à chaque question.

		Réponses		
Nº	Questions	a	b	C
1	La dérivée nième de la fonction f définie par $f(x) = \cos^2 x$ est	$2^{n-1}\cos\left(2x+n\frac{\pi}{2}\right)$	$\cos\left(2x+n\frac{\pi}{2}\right)$	$2^{2n-1}\cos\left(2x+n\frac{\pi}{2}\right)$
2	Soit a un réel positif non nul. $\arcsin\left(\frac{2x}{a}-1\right) + \arcsin\left(1-\frac{2x}{a}\right) =$	0	-1	π
3	La solution de l'inéquation $(3-x)\ln(x-1) \ge 0$ est	[2,3]]1,2]∪[3,+∞[{2,3}
4	Soient $F(x) = \int_{1}^{x^2} \ln^2 t dt$ et $g(x) = \ln x$ alors $(F \circ g)'(e) =$	e	8e	0
5	La courbe ci – contre représente celle d'une ellipse (E) du foyer $F(2,0)$ et du centre S tel que $MF = \frac{1}{\sqrt{2}}$.	$\frac{(x-1)^2}{2} + y^2 = 1$	$\frac{(x-1)^2}{9} + y^2 = 1$	$\frac{x^2}{2} + y^2 = 1$
6	$\int_{0}^{1} \frac{dx}{2x^2 - 2x + 1} =$	0	π	$\frac{\pi}{2}$
7	Si $2 \arctan x - \arccos x = \frac{\pi}{2}$ alors l'ensemble des solutions est	{-1;0;1}	{-1;+1}	{0;-1}
8	Soit z est un nombre complexe donné. Si $\overline{z} = \left z - \frac{1}{2} - \frac{i\sqrt{3}}{2} \right $ alors $z =$	1+i	-1	1

II - (6 points).

Dans l'espace rapporté à un repère orthonormé direct (O, j, j, k) On considère les points : A(1;1;3), B(4;-2;2); les deux plans (P):x+y-2z+2=0; (Q):-3x+y-z-6=0 et la droite (d):x=t-2; y=7t; z=4t.

- 1) Montrer que (P) et (Q) sont perpendiculaires et vérifier que (d) est l'intersection de (P) et (Q).
- 2) Montrer que $E\left(\frac{4}{3}, \frac{4}{3}, \frac{7}{3}\right)$ est le projeté orthogonal de A sur (P).
- 3) Calculer la distance de A à (Q). Déduire la distance de A à (d).
- 4) Montrer que H(-2,0,0) est le projeté orthogonal de I(1,-1,1) sur (d).
- 5) Soit (C) un cercle dans le plan (P) de centre I, de rayon R et tangent à (d).
 - a) Montrer que B est un point de (C).
 - b) Ecrire un système d'équations paramétriques de la tangente (T) à (C) en B.
 - c) Soit F un point de (d) d'ordonnée positif tel que HF=R $\sqrt{6}$. Calculer les coordonnées de F.

III - (6 points)

Dans le plan complexe rapporté au repère orthonormé direct $(0; \neg, u, \neg, v)$. On considère les points A,B, M et M' d'affixes respectives : i, -i, z et z' tel que z'= $\left(\frac{z-i}{z+i}\right)^n$ avec $z \neq -i$.

Partie A: Dans cette partie, on suppose que n = 1.

- 1) Résoudre l'équation : z' = i.
- 2) Déterminer l'ensemble des points M lorsque M' varie sur le cercle de centre O et rayon 1.
- 3) Soit (d) une droite d'équation y=-1. Déterminer l'ensemble des points M' quand M vasur (d) $-\{B\}$.

Partie B:

rie

1) Vérifier que
$$1 + e^{i\theta} = 2\cos\frac{\theta}{2}e^{\frac{i\theta}{2}}$$
 et $1 - e^{i\theta} = -2i\sin\frac{\theta}{2}e^{\frac{i\theta}{2}}$.

- 2) Calculer z si z'=1 et montrer que la réponse obtenue de z est un réel à déterminer.
- 3) Comment peut on prévoir le résultat précédent sans faire de calcul.

Partie C: Dans cette partie, on suppose que $z = -i - \frac{2}{\sqrt{3}}$.

- 1) Pour quelles valeurs de n , le nombre complexe z' est un réel ?
- 2) Le nombre complexe z' peut être imaginaire pur ? Justifier.

IV - (6 points)

On considère la suite (u_n) définie par : $u_{n+1} = 2\sqrt{u_n}$ et $u_0 = 8$, pour tout entier n de **N**.

- 1) Montrer que $u_n > 4$ pour tout entier n de N.
- 2) a) Montrer que la suite (u_n) est décroissante.
 - b) Déduire que la suite (u_n) est convergente et calculer sa limite .
- 3) On considère la suite (v_n) définie par $v_n = \ln(u_n) \ln 4$.

Montrer que (v_n) est une suite géométrique de raison $\frac{1}{2}$ dont on donnera le premier terme.

- **4)** Exprimer v_n en fonction de n. En déduire que $u_n = 2^{2 + \left(\frac{1}{2}\right)^n}$
- **5**) Pour quelle valeur de l'entier naturel non nul n a-t-on $u_n > 5,6$?
- 6) On donne la suite (I_n) définie par $I_n = \int_{u_0}^{u_n} \frac{dx}{x \ln \left(\frac{x}{t}\right)}$.
 - a) Montrer que $I_n = -n\ln 2$.
 - **b)** Calculer $S = I_1 + I_2 + \dots + I_n$.
 - c) Calculer limS.

V - (6 points)

Dans la figure ci-contre :

- [AB] est un segment de longueur 2 cm.
- I est le milieu de [AB].
- La droite (d) est perpendiculaire à (AB) en K tel que IK=4 cm. Soit (E) l'ellipse de centre I, de foyer A et de directrice (d).

Partie A

- 1) Préciser le second foyer de (E) et déterminer son excentricité.
- 2) Construire (E) en détaillant les étapes de construction.

Partie B

Le plan est rapporté à un repère orthonormé direct (I; i, j) tel que $\overrightarrow{i} = \overrightarrow{IA}$.

- 1) Montrer qu'une équation de (E) est $\frac{x^2}{4} + \frac{y^2}{3} = 1$.
- 2) Soit $M(x_0, y_0)$ un point de (E) tels que $x_0 \neq 0$ et $y_0 \neq 0$. M' est le symétrique de M par rapport à l'axe focal de (E). La normale (n) à (E) en M coupe la droite (OM') en P.
 - a) Démontrer que les coordonnées du point P sont $x_P = \frac{x_0}{7}$ et $y_P = \frac{-y_0}{7}$.
 - b) Déduire que lorsque M varie sur (E), alors le point P décrit une ellipse (E') dont on déterminera l'équation.
- 3) a) Démontrer que l'ensemble des points N(x,y) tel que $NI^2 = NA \times NB$ est une courbe

(H) d'équation
$$x^2 - y^2 = \frac{1}{2}$$
.

- b) Déterminer la nature, les asymptotes et les directrices de (H).
- c) Démontrer que (H) admet les mêmes foyers que (E). Tracer (H).
- 4) a) Montrer que $Q(\sqrt{2}, \frac{\sqrt{6}}{2})$ est un point commun de (H) et (E).
 - b) Démontrer que les tangentes (T) et (T') en Q à (E) et (H) respectivement sont perpendiculaires.
- 5) Soit (D) le domaine limité par (H), la tangente (T') et la droite $x = \frac{\sqrt{2}}{2}$.

Calculer le volume du solide engendré par la rotation de (D) autour de l'axe des abscisses.

VI – (10 points)

Partie A

La courbe (C') ci-contre est celle de la fonction dérivée f' de f définie sur $]0;+\infty[$ par $f(x) = aln^2x + blnx$. La courbe (C') coupe l'axe des abscisses en un point d'abscisse e^{-1} .

- 1) Montrer que a = 1 et b = 2.
- 2) Résoudre l'équation f(x) = 0.
- 3) Dresser le tableau des variations de f.
- 4) Déduire le signe de f(x).

Partie B

On donne la fonction g définie sur]0;+ ∞ [par g(x) = xln²x .

Soit (C) la courbe représentative de g dans un repère orthonormé.

- 1) a Calculer les limites de g en 0^+ et en $+\infty$.
 - b Vérifier que g'(x) = f(x).
 - c- Tracer le tableau de variations de g.
- 2) Montrer que la droite (d) : y = x coupe (C) en deux points A et B que l'on déterminera.
- 3) Etudier la position relative de (d) et (C).
- 4) Montrer que g a un point d'inflexion I que l'on déterminera.
- **5**) Tracer (C) et (d).
- 6) Trouver l'équation de la tangente (T) à (C) perpendiculaire à (d).
- 7) a) Montrer que g admet sur $[1; +\infty[$ une fonction réciproque g^{-1} de domaine de définition à déterminer .
 - b) Tracer (C^{-1}) la courbe de g^{-1} dans le même repère que (C).
 - c) Soit la droite (Δ): $y = e^2$. (Δ) coupe (C^{-1}) au point N. Déterminer les coordonnées de N.

Partie C

Pour tout entier n de N, on considère l'intégrale : $I_n = \int_1^e x(\ln x)^n dx$.

- 1) Calculer à l'aide d'une intégration par parties I_1 .
- 2) a) Démontrer que $\forall n \in \mathbb{N}$, $2I_{n+1} = e^2 (n+1)I_n$.
 - b) Déduire la valeur exacte de I₂.
 - c) Calculer l'aire du domaine (D) limité par (C), (C-1), x'x et y'y.