

Simulation of life histories with MicSim

Sabine Zinn (DIW / SOEP)

Women in Statistics: Microsimulation Workshop

Statistische Woche, 9. September 2019

Material available under

https://github.com/bieneSchwarze/MicSimCourse

MicSim Package:

https://cran.r-project.org/web/packages/MicSim/index.html

Trier, 9.9.2019

Continuous-Time Microsimulation

- Illustration 1: Transition to First Child
- Illustration 2: Changing Marital Status, Educational Attainment, Fertility Status
- Some Additional Advices

Extensions

Continuous-Time Microsimulation

• Illustration 1: Transition to First Child

- Illustration 2: Changing Marital Status, Educational Attainment, Fertility Status
- Some Additional Advices

Extensions

Continuous-Time Microsimulation: Basics

Key idea: Individuals `live' their lives according to some (stochastic model)

- Continuous-time multi-state model: standard approach to describe individual life-courses
- Multi-state model: stochastic process that at any point in time occupies one out of a set of discrete states
- Each life-course: trajectory of a stochastic process
- Discrete states: summarize relevant categories an individual can belong to (→ state space)
- State space: set of all possible states
- Virtual population: all individuals that are considered during simulation
 (=longitudinal sample from a synthetically constructed population that resembles a real one)

Output: Any conceivable implication of the processes that drive individual lives/population development

Simulation Model

Non-homogeneous continuous-time Markov chain:

life-course considered along age and calendar time

Non-homogeneous semi-Markov processes:

additionally along 'time that has elapsed since the last event'

Data Requirements

Base population

• Number of individuals in the different states at starting time of simulation, according to birth date

Transition rates

- only for feasible transitions
- depend on: individual age, calendar time, current state and next state, & optional also on time elapsed
- have to be provided for complete calendar time and age range considered in simulation

Optional

- immigrants, according to birth date, immigration date, & state at immigration
- for newborns: states-at-birth & occurrence probabilities

Simulation

Transition rates → distribution function of waiting times in distinct states of state space

$$F\left(w_{S_{j},S_{k}},c,a\right)=1-\exp\left\{-\Lambda_{S_{j},S_{k}}\left(w_{S_{j},S_{k}},c,a\right)\right\},\,$$

where

$$\Lambda_{S_j,S_k}\left(w_{S_j,S_k},c,a\right) = \int_0^{w_{S_j,S_k}} \lambda_{S_j,S_k}(c+\nu,a+\nu)d\nu \tag{Markov}$$

$$\Lambda_{S_j,S_k}\left(w_{S_j,S_k},c,a\right) = \int_0^{w_{S_j,S_k}} \lambda_{S_j,S_k}(\nu,c+\nu,a+\nu)d\nu \qquad \text{(semi-Markov)}$$

Simulation (cont'd)

Construction of life-courses: generation of sequences of random waiting times

Waiting time variates to all possible destination states s_k :

$$w_{S_j,S_k} = \Lambda_{S_j,S_k}^{-1} \left(w_{S_j,S_k}, c, a \right) [-\ln(1-u)], u \sim U_{[0,1]}$$

- Of all generated random waiting times: realize the shortest one
- Computation of 'shortest' waiting times repeated for each individual

Event Queue: Along Calendar time ...

Individual: 35

Current state: fem, married, one child

Transition time: 12.6.2019

Next state: fem, divorced, one child

Individual: 147

Current state: *male, single, childless*

Transition time: 14.6.2019

Next state: dead

Individual: 965

Current state: fem, single, one child

Transition time: 2.1.2020

Next state: fem, single, two children

• • •

- 1. De-queue of *head* of event-queue
- 2. Determine next transition time and next new state
- 3. If the new state is an absorbing state do not enqueue again; otherwise enqueue at the right position in the event queue
- 4. Pick new head of event-queue and continue until
 - ending time is reached
 - event-queue is empty (all individuals died/ emigrated)

- Continuous-Time Microsimulation
- Illustration 1: Transition to First Child

- Illustration 2: Changing Marital Status, Educational Attainment, Fertility Status
- Some Additional Advices

Extensions

Illustration 1: Set up

Study topic

Pathways of women to transition to first child with respect to living arrangement

Model of individual behavior

Non-homogeneous continuous-time Markov chains

Simulation horizon

• 01.01.2010 – 31.12.2030

Data

- Empirical rates: SHARELife (retrospective survey carried out in 2010, part of the 3rd wave of the SHARE project)
- Synthetic cohorts: females aged from 20 to 25, in each age group N = 100

State Space & Transitions

State variables:

- *Gender*: female (f), male (m)
- Living Arrangement: living at parental home (H), living alone (A), living in cohabitation (C), being married (M)
- Fertility: childless (0), being parent (1)

State space:
$$\{f,m\} \times \{H,A,C,M\} \times \{0,1\}$$

Possible transitions:

Transition Rates

Transition Rates (cont'd)

Using MicSim ...

Continuous-Time Microsimulation

• Illustration 1: Transition to First Child

- Illustration 2: Changing Marital Status, Educational Attainment, Fertility Status
- Some Additional Advices

Extensions

Illustration 2: Set up

Study topic

Changes in marital status, educational attainment, fertility status over the life-course

Model of individual behavior

Non-homogeneous continuous-time Markov chains & semi-Markov processes

Simulation horizon

01.01.2014 - 31.12.2024

Data

- Hypothetical rates (e.g., Hadwiger model, Gompertz distribution)
- Synthetic base population (N=1000)
- Migrants (M=200)

State Space & Transitions

State variables:

- Gender: female (f), male (m)
- Marital Status: never married (NM), married (M), divorced (D), widowed (W)
- Fertility: 0, 1, 2, 3+
- Educational Attainment: no, primary (low), lower secondary (med), upper secondary & tertiary (high)

Possible transitions:

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3$$

$$H \rightarrow M$$

$$1 \rightarrow M$$

$$2 \rightarrow M$$

Parametric Models For Transition Rates

- Fertility rates: Hadwiger mixture model
- (Re)Marriage rates: log-logistic model
- Divorce rates: normal density
- Widowhood rates: gamma cdf
- Change in educational attainment: deterministic age & time or normal density
- Mortality rates: Gompertz model

Transition Rates

Transition Rates (cont'd)

Using MicSim ...

Continuous-Time Microsimulation

• Illustration 1: Transition to First Child

- Illustration 2: Changing Marital Status, Educational Attainment, Fertility Status
- Some Additional Advices

Extensions

Pseudo Random Number Generator (PRNG) & Seed

PRNG

- Starting from a pre-specified seed same sequence of pseudo random
- The period is the maximum length PRNG begins to repeat numbers
- MicSim uses R default: Mersenne Twister (based on a matrix linear recurrence over a finite binary field) \rightarrow one of the best PRNG currently available

Seed

- The repeatability of simulation results is inevitable for their reliability
- Identical seeds result in identical simulation results
- Others should be able to redo what you have done
- However: Interpretation of results should never depend on seed
- Therefore: Run more than one experiment, with different seeds (Zero is never a good choice!)

Parallel Computing & Fast Version of MicSim

Parallel Computing

... look at an example

(Code available in help function of the MicSim package.)

Fast Version of MicSim (requires installing JVM 64bit)

... look at an example

(Code & documentation available under https://github.com/bieneSchwarze/fastMicSim)

Continuous-Time Microsimulation

• Illustration 1: Transition to First Child

- Illustration 2: Changing Marital Status, Educational Attainment, Fertility Status
- Some Additional Advices
- Extensions

Extensions

... it can get pretty complicted, once you add

- Linked lives
- Networks
- Behavioral components
- and etc.

- ... for simple applications use NetLogo or R
- ... for complex applications program it by yourself (it is worth learning a general purpose programming language such as Python, C#, Java)