## Лабораторная работа 5

Модель эпидемии (SIR)

Туем Гислен

## Содержание

| 1 | Цель работы                                                                         | 5                     |
|---|-------------------------------------------------------------------------------------|-----------------------|
| 2 | Задание                                                                             | 6                     |
| 3 | Выполнение лабораторной работы                                                      | 7                     |
| 4 | Реализация модели в xcos                                                            | 8                     |
| 5 | Реализация модели с помощью блока Modelica в xcos         5.1 Код на языке Modelica | <b>12</b><br>14<br>15 |
| 6 | Упражнение                                                                          | 16                    |
| 7 | Задание для самостоятельного выполнения                                             | 18                    |
| 8 | Выводы                                                                              | 24                    |

## Список иллюстраций

| 4.1 | задать переменные окружения в xcos                | 8  |
|-----|---------------------------------------------------|----|
| 4.2 | Модель SIR в xcos                                 | 9  |
| 4.3 | Задать начальные значения в блоках интегрирования | 9  |
| 4.4 | Задать начальные значения в блоках интегрирования | 10 |
| 4.5 | Задать конечное время интегрирования в xcos       | 10 |
| 4.6 | Эпидемический порог модели SIR                    | 11 |
| 5.1 | Модель SIR в xcos с применением блока Modelica    | 12 |
| 5.2 | Параметры блока Modelica для модели               | 13 |
| 5.3 | Параметры блока Modelica для модели               | 14 |
| 5.4 | Результат моделирования                           | 15 |
| 6.1 | Результат модель SIR в OpenModelica               | 17 |

## Список таблиц

## 1 Цель работы

построить модель SIR в xcos и в OpenModelicaв xcos.

#### 2 Задание

- 1. Реализовать модель SIR в в хсоз;
- 2. Реализовать модель SIR с помощью блока Modelica в в xcos;
- 3. Реализовать модель SIR в OpenModelica;
- 4. Реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica;
- Построить графики эпидемического порога при различных значениях параметров модели(в частности изменяя параметр μ); Сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

### 3 Выполнение лабораторной работы

Задача о распространении эпидемии описывается системой дифференциальных уравнений:

 $s'=-\beta s(t)i(t); i'=\beta s(t)i(t)-\nu i(t); r'=\nu i(t),$ 

где β- скорость заражения, ν- скорость выздоровления.

### **4** Реализация модели в хсоѕ

Зафиксируем начальные данные:  $\beta$  = 1,  $\nu$  = 0, 3, s(0) = 0, 999, i(0) = 0, 001, r(0) = 0.(puc. 4.1).



Рис. 4.1: задать переменные окружения в хсоѕ

Для реализации модели потребуются следующие блоки хсоs: – CLOCK\_c — запуск часов модельного времени; – CSCOPE — регистрирующее устройство для построения графика; – TEXT\_f — задаёт текст примечаний; – MUX — мультиплексер, позволяющий в данном случае вывести на графике сразу несколько кривых; – INTEGRAL\_m — блок интегрирования – GAINBLK\_f — в данном случае позволяет задать значения коэффициентов  $\beta$  и  $\nu$ ; – SUMMATION — блок суммирования; – PROD\_f — поэлементное произведение двух векторов на входе блока.(рис. 4.2).



Рис. 4.2: Модель SIR в хсоѕ

В параметрах верхнего и среднего блока интегрирования необходимо задать начальные значения s(0) = 0, 999 и i(0) = 0, 001 (рис. 4.3,4.4).



Рис. 4.3: Задать начальные значения в блоках интегрирования



Рис. 4.4: Задать начальные значения в блоках интегрирования

В меню Моделирование, Установка необходимо задать конечное время интегрирования (рис. 4.5).



Рис. 4.5: Задать конечное время интегрирования в хсоз

Результат моделирования представлен на (рис. 4.6)



Рис. 4.6: Эпидемический порог модели SIR

## 5 Реализация модели с помощью блока Modelica в xcos

Готовая модель SIR представлена на (рис. 5.1). Для реализации модели с помощью языка Modelica помимо блоков CLOCK\_c, CSCOPE, TEXT\_f и MUX требуются блоки CONST\_m — задаёт константу; MBLOCK (Modelica generic) — блок реализации кода на языке Modelica.



Рис. 5.1: Модель SIR в xcos с применением блока Modelica

Параметры блока Modelica представлены на (рис. 5.2,5.3). Переменные на входе ("beta", "nu") и выходе ("s", "i", "r") блока заданы как внешние ("E").



Рис. 5.2: Параметры блока Modelica для модели



Рис. 5.3: Параметры блока Modelica для модели

#### 5.1 Код на языке Modelica

```
class generic

////automatically generated ///

//input variables

Real beta,nu;

//output variables (комментируем, т.к.

// начальные значения задаем в самом блоке):

// Real s,i,r;

////do not modif above this line ///

// Начальные значения:

Real s(start=.999), i(start=.001), r(start=.0);

// модель SIR:
```

```
equation
    der(s)=-beta*s*i;
    der(i)=beta*s*i-nu*i;
    der(r)=nu*i;
end generic;
```

#### 5.2 Результат моделирования (рис. 5.4)



Рис. 5.4: Результат моделирования

### 6 Упражнение

В качестве упражнения нам надо построить модель SIR на OpenModelica. Синтаксис почти такой же как и на Modelica. Нужно задать параметры, начальные значения и систему дифференциальных уравнений.

```
model lab
```

```
parameter Real I_0 = 0.001;
parameter Real R_0 = 0;
parameter Real S_0 = 0.999;
parameter Real beta = 1;
parameter Real nu = 0.3;

Real s(start=S_0);
Real i(start=I_0);
Real r(start=R_0);

equation
  der(s)=-beta*s*i;
  der(i)=beta*s*i-nu*i;
  der(r)=nu*i;
```

#### end lab;

Результат модель SIR в OpenModelica(рис. 6.1).



Рис. 6.1: Результат модель SIR в OpenModelica

# 7 Задание для самостоятельного выполнения

Предположим, что учитываются демографические процессы, в частности, что смертность в популяции полностью уравновешивает рождаемость, а все рожденные индивидуу- мы появляются на свет абсолютно здоровыми. Тогда получим следующую систему уравнений:

```
s' = -\beta s(t)i(t) + \mu(N - s(t)); i' = \beta s(t)i(t) - \nu i(t) - \mu i(t); r' = \nu i(t) - \mu r(t),
```

где  $\mu$  — константа, которая равна коэффициенту смертности и рождаемости.

Реализуем эту модель в хсоs. Тут нам понадобятся три блока суммирования и 4 блока констант (добавляется константа  $\nu$ )







Теперь реализуем модель SIR с учетом демографических процессов в хсоз с помощью блоков Modelica (рис. ??).



Результат модель (рис. ??).



Реализуем модель SIR с учетом демографических процессов на OpenModelica.

```
parameter Real I_0 = 0.001;
parameter Real R_0 = 0;
parameter Real S_0 = 0.999;
parameter Real N = 1;
parameter Real beta = 1;
parameter Real nu = 0.3;
parameter Real mu = 0.5;
Real s(start=S_0);
```

```
Real i(start=I_0);
Real r(start=R_0);
equation
```

der(s)=-beta\*s\*i + mu\*i + mu\*r;
der(i)=beta\*s\*i-nu\*i - mu\*i;
der(r)=nu\*i - mu\*r;

Выполнив симуляцию, получим следующий график (рис. ??).



Теперь построим графики при разных значениях параметров.

1.  $\beta$ =1,  $\nu$ =0.3, $\mu$ =0.2(рис. ??)



2.  $\beta$ =1,  $\nu$ =0.3, $\mu$ =0.3(рис. **??**)



3.  $\beta$ =1,  $\nu$ =0.3, $\mu$ =0.8(рис. **??**)



4.  $\beta$ =1,  $\nu$ =0.1, $\mu$ =0.1(рис. **??**)



Исходя из анализа графиков, можно сделать вывод, что чем выше значение любого из параметров, тем быстрее система достигает стационарного состояния. При высоком коэффициенте заражения β система быстро проходит через пик развития эпидемии и достигает стационарного состояния.

## 8 Выводы

В процессе выполнения данной лабораторной работы была построена модель SIR в xcos и OpenModelica.