Quiz 1 - ILI286 Primavera 2017 - Mi 13.09.17

Nombre:	Rol:	

Responda las siguientes preguntas de forma personal. Tiempo Máximo: 25 minutos.

1. [30 puntos] Considere la matriz A, con valores propios $\lambda_1 = 3$ y $\lambda_2 = -1$:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

- (a) [10 puntos] ¿Qué valor/es propio/s obtendrá si utiliza Power Iteration sobre la matriz A?
- (b) [10 puntos] Considere I, la matriz identidad de 2×2 . ¿Qué valor/es propio/s obtendrá si utiliza Power Iteration sobre la matriz A 5I?
- (c) [10 puntos] Considere I, la matriz identidad de 2×2 . ¿Qué valor/es propio/s obtendrá si utiliza *Power Iteration* sobre la matriz $(A^{-1} + 5I)^{-1}$?
- 2. [70 puntos] Considere A una matriz de $n \times n$, con entradas reales, simétrica y con ceros en la diagonal principal. Los valores propios de esta matriz no se repiten y satisfacen $\lambda_1 > \lambda_2 > \ldots > \lambda_n$.

Obtener numéricamente el valor propio λ_1 de A con Power Iteration no es factible, debido a que este valor no es necesariamente el valor propio dominante. Tal vez, si se usa Power Iteration sobre la matriz A desplazada en un shift conventiente sea más efectivo, ya que los valores propios quedarán ordenados por magnitud al ser todos positivos o todos negativos, pero el valor propio dominante de esta nueva matriz no será exactamente el valor propio λ_1 que se requiere determinar.

Construya un algoritmo que haga uso del *Teorema del Círculo de Gerschgorin* para encontrar un *shift* conveniente sobre la matriz A y que obtenga numéricamente el valor propio λ_1 .

Hint: **Teorema:** Sea A una matriz de $n \times n$ con entradas $a_{ij}, 1 \le i \le n, 1 \le j \le n$. Cada valor propio λ de A pertenece por lo menos a uno de los discos $|\lambda - a_{ii}| \le \sum_{j \ne i} |a_{ij}|$.