Modelling Host-Pathogen Dynamics

Taylor Dunn Andrew Rutenberg

Bioblast June 5, 2015

A simple invasion model

Cooperative invasion via ruffles

Misselwitz et al. (2012)

6 minutes post infection
Salmonella inside
Salmonella outside
HeLa cell actin
Scale bar: 10 µm

Cooperative invasion via ruffles

Removing log-scale reveals linear scaling at low multiplicities of infection (MOI).

 α = probability of a bacterium landing and causing a ruffle to form.

Cooperative invasion via ruffles

Removing log-scale reveals linear relationship between MOI and bacteria capture.

 β = probability of bacteria capture onto ruffle.

p = probability of captured bacteria entering the cell.

Vacuolar escape

 $q \approx 0.2$ = probability of vacuolar escape (fixed fraction).

Quantitative model of invasion

Ruffles per cell:

$$n_{\rm ruf} \sim {\rm Poisson}(\alpha m)$$

Bacteria captured per ruffle:

$$n_{\rm cap} \sim 1 + {\rm Poisson}(\beta m)$$

Bacteria entering the cell:

$$n_{\rm in} \sim {\rm Binomial}(n_{\rm cap}, p)$$

Bacteria escaping the vacuole:

$$n_{\rm cyt} \sim {\rm Binomial}(n_{\rm in}, q)$$

$$n_{\rm vac} = n_{\rm in} - n_{\rm cyt}$$

Bimodal growth:

$$n_{\text{cyt}}(t) = n_{\text{cyt}}(0) e^{\gamma_1 t}$$

 $n_{\text{vac}}(t) = n_{\text{vac}}(0) e^{\gamma_2 t}$

$$n_{\text{vac}}(t) = n_{\text{vac}}(0) e^{\gamma_2 t}$$

Stochastic simulations

10,000 cells at 25, 50 and 100 MOI with parameters from the literature (α , β , p, q) and average growth rates γ_1 = 0.7 h⁻¹ (cytosolic HR) and γ_2 = 0.1 h⁻¹ (vacuolar).

Image analysis software

- 1. Input modules: choose images, extract metadata, assign names and groups.
- 2. Pipeline:
 a set of sequential
 analysis modules to
 segment images,
 take measurements
 and output data

Image segmentation

Image segmentation

Area vs intensity of bacteria

Intensity I(t) the superior proxy for number of bacteria n(t) because it captures the height of large bacterial clumps

From analyzing intensity growth in ~50 HR cells at MOI 10, 25 and 50:

$$\gamma_1 \approx 0.78 \pm 0.15$$

Slow vacuolar growth was too slow to get an accurate over the time period of 5.5 hours:

$$\gamma_2 << \gamma_1$$

Bacterial load distribution P(n, t)

How to estimate HR fraction (fraction of infected cells that contain hyper-replicating Salmonella)?

<u>Simulation parameters</u> 10,000 cells

m= 50

 $\alpha = 0.0053$

 $\beta = 0.026$

p = 0.6

q = 0.2

 $\gamma_I = 0.78$

 $\gamma_{2} = 0.01$

Bacterial load distribution P(I, t)

How to estimate HR fraction (fraction of infected cells that contain hyper-replicating Salmonella)?

10

1

100

n

1000

tion, but a later timepoint (e.g. 8 HPI) would be better.

Bacterial load distribution P(I, t)

Using the cutoff method and wild type bacteria as a control, we can estimate HR fraction for different genetic conditions.

In absence of the SopB effector protein, *Salmonella* HR fraction decreaes from 11.4% to 2.1%, and 17.0% to 4.7% for MOI 25 and 50, respectively.

Future work

New images from Pasteur soon:

- Higher resolution (20X → 40X magnification).
- Z-stack images (multiple planes).
- Earlier and later (6.5 HPI) times points.

Current data:

- Fit P(I,t) distributions to extract model parameters.
- Improve single-cell tracking to get distributions of growth parameters $P(\gamma_l)$ and $P(\gamma_l)$.
- Incorporate autophagy into model.

Pages:

- 1: A simple invasion model
- 2-4: Cooperative invasion via ruffles
- 5: Vacuolar escape
- 6: Quantitative model of invasion
- 7: Stochastic simulations
- 8: Image analysis software
- 9-10: Image segmentation
- 11: Area vs intensity of bacteria
- 12: Bacterial load distribution P(n, t)
- 13-14: Bacterial load distribution *P(I, t)*