Examen (22 juin 2015)

QUESTION DE COURS. — Soient Ω un ouvert de $\mathbb{R}^p \times R^q$ $(p, q \in \mathbb{N})$ et $(a, b) \in \Omega$. Théorème des fonctions implicites pour une application $f: \Omega \to \mathbb{R}^r$ $(r \in \mathbb{N})$.

Exercice 1. — Justifier soigneusement.

- (A) Le sous-ensemble [0,1[de \mathbb{R} est-il ouvert dans \mathbb{R} ? Est-il fermé dans \mathbb{R} ?
- (B) Le sous-ensemble $[0,1] \times \{0\}$ de \mathbb{R}^2 est-il ouvert dans \mathbb{R}^2 ? Est-il fermé dans \mathbb{R}^2 ?

EXERCICE 2. — Soit $E=C([0,1],\mathbb{R})$ le \mathbb{R} -espace vectoriel formé des fonctions continues de [0,1] dans \mathbb{R} .

- (A) Pour tout $f \in E$, on pose $||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|$ et $||f||_1 = \int_0^1 |f(t)| dt$. Rappeler brièvement pourquoi $|| ||_{\infty}$ et $|| ||_1$ déterminent des normes sur E (indiquer les conditions satisfaites, sans rentrer dans les calculs).
- (B) On considère $A = \{ f \in E \mid f(0) = 0 \text{ et } \int_0^1 f(t) \, \mathrm{d}t \geqslant 1 \}.$ Montrer que A est une partie fermée de E muni de $\| \cdot \|_{\infty}$.
- (C) Montrer que la partie A de la question précédente n'est pas une partie fermée de E muni de $\| \ \|_1$ (on pourra, par exemple, vérifier que la fonction constante 1 appartient à l'adhérence de A pour $\| \ \|_1$).
- (D) En déduire que les normes $\|\ \|_1$ et $\|\ \|_{\infty}$ ne sont pas équivalentes.

EXERCICE 3. — On considère l'espace $F = M_n(\mathbb{R})$ muni d'une norme $\| \|$ vérifiant $\|AB\| \leq \|A\| \|B\|$ pour tous $A, B \in F$. On définit $g \colon F \to F$ par $g(M) = M^3 + M^2$. On note B la boule ouverte de centre 0 et de rayon 1/4 dans F.

- (A) Montrer que g est différentiable sur F et calculer sa différentielle.
- (B) Montrer que pour tout $M \in F$ et pour tout $H \in F$, on a :

$$||Dg(M)(H)|| \le (3||M||^2 + 2||M||) ||H||.$$

(C) En déduire que la restriction de q à B est contractante.

EXERCICE 4. — On considère la fonction $h: \mathbb{R}^2 \to \mathbb{R}$ de classe C^{∞} définie par :

$$\forall (x,y) \in \mathbb{R}^2$$
 $h(x,y) = 3x^4 + 4x^3 - 12x^2 + y^2 - 2y$.

(A) Montrer que

$$\forall y \in \mathbb{R} \quad y^2 - 2y \geqslant y^2/2 - 3$$

et qu'il existe $C \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R} \quad 3x^4 + 4x^3 - 12x^2 \geqslant x^2/2 + C.$$

- (B) On pose : $K = \{(x, y) \in \mathbb{R}^2 \mid h(x, y) \leq 1\}$. Démontrer que K est un compact non-vide de \mathbb{R}^2 .
- (C) En déduire que h a un minimum global.
- (D) Donner les points critiques de h. Déterminer si ces points critiques sont des extrema locaux pour h.
- (E) En déduire la valeur minimale prise par h.

EXERCICE 5. — On pose $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Montrer que S^1 est une sous-variété de classe C^1 de \mathbb{R}^2 .