Constructive Proofs of Heterogeneous Equalities in Cubical Type Theory

Abstract

Cubical Base Library

We demonstrate the usage of part of base library by showing how to build a constructive proof of heterogeneous equality, the simple and elegant formulation of the equality problem, that was impossible to achieve in pure Martin-Lo¨f Type Theory (MLTT). The machinery used in this article unveils the internal aspect of path equalities and isomorphism, used e.g. for proving univalence axiom, that became possible only in CTT.

Structure of Presentation

From proving to Extraction, Linking and Running

- 1) Type Theory
- Pi Type
- Sigma Type
- Equ Type

- 2) Equality Problem
- Definitional Equality
- Propositional Equality
- Heterogeneous and Globular Equality
- 3) Computational Semantics Cubical Type Theory 2017
- CCHM Fibrations
- Homotopy Path Type as Equality with de Morgan Algebra
- Composition, Gluening, Filling
- Cubical Base Library and further work

Programs as Proofs

in Extended Lambda Cube

Model Verification Process

From proving to Extraction, Linking and Running

- 1) Models
- Real Analysis
- Albstract Algebra
- Homotopy Theory
- 3) Extraction
- LLVM
- Interpreters
- Detyping
- Optimization
- Linking

- 2) Core Infinity Language
- Model Verification
- Normalization
- Bidirectional Checking
- 4) Runtimes
- \bigcirc
- Erlang
- V8
- JVM

- Pure Type System (Om)
- Identity
- Induction
- Homotopy Interval [0,1]

Prover Structure

Models, Languages, Libraries, Applications

Higher Languages

[3,4] cover the presented work, [1,2,5,6] cover the future works.

MLTT 1984

Equalities

Type Theory as new Foundations of Mathematics

```
U_0: U_1: U_2: U_3: ... \infty — universes
```

$$x:A-x$$
 is a point in space A

y = [x : A] - x and y are definitionally equal objects of type A

Equalities

- 2. Introduction Rules
- 3. Elimination Rules
- 4. Computational Rules

$$x:A -> B(x)$$
 $x:A * B(x)$ $x:A = y:A$
\(\(x:A\) -> B(x) \((x,B(x))\) refl A x
\(f a = B(a)\) pr1, pr2

Equalities

Pi Type

```
Pi (A:U)(P:A->U):U=(x:A)->P(x)
lambda (A:U) (B:A->U) (a:A) (b:Ba):A->Ba=\(x:A)->b
app (A:U) (B:A->U) (a:A) (f:A->Ba):Ba=fa
```

Sigma Type

Inductive Type, AST, Logical Framework

```
data exists = sigma \text{ (n: name) (a b: lang)} \qquad \qquad \mathbf{O} := \mathbf{\Sigma} \text{ (x: O), O | (O,O) | O.1 | O.2} \\ | \text{ pair (a b: lang)} \\ | \text{ fst (p: lang)} \\ | \text{ snd (p: lang)}
```

```
Sigma (A: U) (B: A -> U): U = (x: A) * B x
pair (A: U) (B: A -> U) (a: A) (b: B a): Sigma A B = (a,b)
pr1 (A: U) (B: A -> U) (x: Sigma A B): A = x.1
pr2 (A: U) (B: A -> U) (x: Sigma A B): B (pr1 A B x) = x.2
```

Sigma Types in Pi

Typing and Introduction Rules

```
-- Sigma/@ -- Sigma/Intro
\(A: *) \(A: *)
-> \(P: A -> *) \ -> \(P: A -> *)
-> \(n: A) \ -> \(x: A)
-> \(Exists: *) \ -> \(Exists: *)
-> Exists \ -> \(Intro: \forall (x: A) -> P x -> Exists)
-> Intro x y
```

Sigma Types in Pi

Dependent Eliminators

```
-- Sigma/fst -- Sigma/snd
\(A: *) \(A: *)
-> \(B: A -> *) \\
-> \(n: A) \\
-> \(S: #Sigma/@ A B n) \\
-> S A (\(x: A) -> \(y: B n) -> x) \\
-> S (B n) (\(x: A) -> \(y: B n) -> y \()
```

```
-- Equ/@
\setminus (A: *)
-> \setminus (x: A)
-> \setminus (y: A)
-> \ (Equ: A -> A -> *)
-> \/ (Refl: \/ (z: A) -> Equ z z) -> Equ x y
-- Equ/Refl \ (A: *)
-> \setminus (x: A)
-> \setminus (Equ: A -> A -> *)
-> \ (Refl: \ // (z: A) -> Equ z z)
-> Refl x
```

Equ Types in Any?

-- Equ/J ???

Definitional Equality

Definitional, built into Type Checker

```
eq (:star,N) (:star,N)
                                  → true
   (:var,N,I) (:var,(N,I)) \rightarrow true
   (:remote,N) (:remote,N)
                                   → true
   (:pi,N1,0,I1,O1) (:pi,N2,0,I2,O2) \rightarrow let :true = eq I1 I2
                                        in eq O1 (subst (shift O2 N1 0) N2 (:var,N1,0) 0)
   (:fn,N1,O,I1,O1) (:fn,N2,O,I2,O2) \rightarrow let :true = eq I1 I2
                                        in eq O1 (subst (shift O2 N1 0) N2 (:var,N1,0) 0)
   (:app,F1,A1) (:app,F2,A2)
                                    → let :true = eq F1 F2 in eq A1 A2
                                     \rightarrow (:error,(:eq,A,B))
```

Propositional Logic

According to Brouwer–Heyting–Kolmogorov interpretation

Bishop's Constructive Analysis

Reflexivity, Transitivity, Symmetry

```
Setoid (A: U): U
= (Carrier: A)
```

- * (Equ: (a b: A) -> Path A a b)
- * (Refl: $(x: A) \rightarrow Equ \times x$)
- * (Trans: $(x_1,x_2,x_3: A) -> Equ x_1 x_2 -> Equ x_2 x_3 -> Equ x_1 x_3)$
- * (Sym: $(x_1,x_2: A) \rightarrow Equ x_1 x_2 \rightarrow Equ x_2 x_1)$

$$a = A b$$

$$a \longrightarrow b$$

$$Refl$$

Globular Theory

Multidimentional Equality

$$a = A b$$

$$((a = A b) = (= A) (a = A b))$$

$$a = Ab$$

$$((a = A b) = (=A) (a = A b)) = (=A) ((a = A b) = (=A) (a = A b))$$

$$a = A b$$

Equ Type a la Martin-Löf

```
Path (A: U) (a b: A): U = axiom
HeteroEqu (A B: U) (a: A) (b: B) (P: Path U A B) : U = axiom — PathP P a b
Equ (A: U) (x y: A): U = HeteroEqu A A x y (<i>A)
reflect (A: U) (a: A): Equ A a a = \langle i \rangle a
       (A: U): U = (x y: A) -> Equ A x y -> U
singl (A: U) (a: A): U = (x : A) * Equ A a x
       (A: U) (a: A): singl A a = (a,reflect A a)
eta
       (A B: U) (f: A->B) (a b: A) (p: Equ A a b): Equ B (f a) (f b)
cong
       (A: U) (P: A->U) (a b: A) (p: Equ A a b) (e: P a): P b
subst
J (A: U) (a: A) (C: (x: A) -> Path A a x -> U)
  (d: C a (refl A a)) (x: A) (p: Path A a x): C x p
```

Path Types as Cubes

Syntax and Model

```
data hts
  = path (a b: lang)
   path_lam (n: name) (a b: lang)
   path_app (f: name) (a b: lang)
   comp_ (a b: lang)
  fill_ (a b c: lang)
  glue_ (a b c: lang)
  glue_elem (a b: lang)
  unglue_elem (a b: lang)
```

piExt (A: U) (B: A -> U) (f g: (x:A) -> B x)
(p: (x:A) -> Path (B x) (f x) (g x))
: Path ((y:A) -> B y) f g
=
$$\langle i \rangle \setminus (a: A) -> (p a) @ i$$

FunExt

Syntax and Model

f: (x:A) -> B(x)

(x:A)
$$\Rightarrow$$
 B(x)

g: (x:A) -> B(x)

$$f = (A->B) g$$

$$f : A->B \bigcirc g : A-> B$$

$$\langle i \rangle \setminus (a:A) -> p a @ i$$

```
data N = Z \mid S(n; N)
n_{grpd}(A: U)(n: N): U = (a b: A) -> rec A a b n where
 rec (A: U) (a b: A) : (k: N) -> U
   = split { Z -> Path A a b ; S n -> n_grpd (Path A a b) n }
inf_grpd (A: U): U = (carrier: A) * (eq: (a b: A) -> Path A a b)
                                 * ((a b: A) -> inf_grpd (Path A a b))
isContr (A: U): U = (x: A) * ((y: A) -> Path A x y)
isProp(A: U): U = n_grpd A Z
isSet (A: U): U = n \operatorname{grpd} A (S Z)
isGroupoid (A: U): U = n_g pd A (S (S Z))
PROP: U = (X:U) * isProp X
SET : U = (X:U) * isSet X
GROUPOID : U = (X:U) * isGroupoid X
INF\_GROUPOID: U = (X:U) * isInfinityGroupoid X
```

h-Types

Weak Equivalence

```
fiber (A B: U) (f: A -> B) (y: B): U = (x: A) * Path B y (f x) isEquiv (A B: U) (f: A -> B): U = (y: B) -> isContr (fiber A B f y) equiv (A B: U): U = (f: A -> B) * isEquiv A B f
```


Fiber Bundle: F -> E -> B

Moebius $E = S^1 * [0,1] = total$

Trivial: E = B * F

p:total -> B

fiber: B -> total

total = (y: B) * fiber(y)

Fiber=Pi (B: U) (F: B -> U) (y: B)

: Path U (fiber (total B F) B (trivial B F) y) (F y)

```
islso (A B: U): U
 = (f: A -> B)
 * (g: B -> A)
 * (s: section A B f g)
 * (t: retract A B f g)
 * unit
iso: U
 = (A: U)
 * (B: U)
 * islso A B
```

Isomorphism

```
section (A B: U) (f: A -> B) (g: B -> A): U = (b: B) -> Path B (f (g b)) b retract (A B: U) (f: A -> B) (g: B -> A): U = (a: A) -> Path A (g (f a)) a
```

Univalence Axiom

All Equalities Should Be Equal


```
lemIso (A B: U) (f: A -> B) (g: B -> A) (s: section A B f g) (t: retract A B f g)
     (y: B) (x0 x1: A) (p0: Path B y (f x0)) (p1: Path B y (f x1))
   : Path (fiber A B f y) (x0,p0) (x1,p1) = \langle i \rangle (p @ i,sq1 @ i) where
 rem0: Path A (g y) x0 = <i> comp (<k> A) (g (p0 @ i)) [ (i = 1) -> t x0, (i = 0) -> <k> g y ]
 rem1: Path A (g y) x1 = <i>comp (<k>A) (g (p1 @ i)) [ (i = 1) -> t x1, (i = 0) -> <k>g y ]
 p: Path A x0 x1 = \langle i \rangle comp (\langle k \rangle A) (g y) [ (i = 0) -> rem0, (i = 1) -> rem1]
 fillO: Square A (g y)(g (f x0)) (g y) x0 (<i> g (p0 @ i)) rem0 (<i> g y) (t x0) =
       \langle i \rangle = (k \times A) (g (p0@i)) [(i = 1) -> \langle k \times t \times 0@i] / k
                                (i = 0) -> < k > q y,
                                (j = 0) -> < k > q (p0 @ i) ]
 fill1: Square A(g y)(g(f x1))(g y) x1 (<i>g (p1@i)) rem1 (<i>g y) (t x1) =
       \langle i j \rangle comp (\langle k \rangle A) (g (p1 @ i)) [ (i = 1) -> \langle k \rangle t x1 @ j / k,
                                (i = 0) -> < k > g y
                                (j = 0) -> < k > g (p1 @ i) ]
 fill2: Square A (g y) (g y) \times 0 \times 1 (< k > g y) p rem0 rem1 =
            < i j > comp (< k > A) (g y) [ (i = 0) -> < k > rem0 @ j / k,
                                (i = 1) \rightarrow \langle k \rangle \text{ rem } 1 @ i / k
                                (j = 0) -> < k > q y
 sq: Square A(g y)(g y)(g(f x0))(g(f x1))(<i>g y) (<i>g (f(p@i)))(<j>g(p0@j))(<j>g(p1@j)) = g(p1@j)
    \langle i j \rangle  comp \langle k \rangle A \rangle  (fill 2 \otimes i \otimes j \rangle  [ (i = 0) - \rangle \langle k \rangle  fill 0 \otimes j \otimes - k,
                                (i = 1) \rightarrow \langle k \rangle fill (a) (a) (a) (b)
                                (j = 0) -> < k > g y,
                                (j = 1) -> < k > t (p @ i) @ -k ]
 sq1: Square B y y (f x0) (f x1) (<k>y) (<i> f (p @ i)) p0 p1 =
    \langle i j \rangle  comp \langle k \rangle  B) \langle f (sq @ i @ j) \rangle [ (i = 0) -> s (p0 @ j), ]
                                (i = 1) -> s (p1 @ j),
                                (j = 1) -> s (f (p @ i)),
                                (j = 0) -> sy
```

Iso = Equiv = (=)

Trivial Fiber = Pi

```
lem2 (B: U) (F: B -> U) (y: B) (x: F y)
    : Path (F y) (comp (<i>F (refl B y @ i)) x []) x
    = <j> comp (<i>F ((refl B y) @ j/\i)) x [(j=1) -> <k>x]

FiberPi (B: U) (F: B -> U) (y: B)
    : Path U (fiber (total B F) B (trivial B F) y) (F y)
    = isoPath T A f g s t where
    T: U = fiber (total B F) B (trivial B F) y
    A: U = F y
    f: T -> A = encode B F y
    g: A -> T = decode B F y
    s (x: A): Path A (f (g x)) x = lem2 B F y x
    t (x: T): Path T (g (f x)) x = lem3 B F y x
```

```
natToMaybe: nat -> fix maybe = split
 zero -> Fix nothing
 succ n -> Fix (just (natToMaybe n))
maybeToNat: fix maybe -> nat = split
 Fix m -> go m where go: maybe (fix maybe) -> nat = split
      nothing -> zero
      just f -> succ (maybeToNat f)
natMaybelso: (a: nat) -> Path nat (maybeToNat (natToMaybe a)) a = split
 zero -> <i> zero
 succ n -> <i> succ (natMaybelso n @ i)
maybeNatIso : (a : fix maybe) -> Path (fix maybe) (natToMaybe (maybeToNat a)) a = split
 Fix m -> go m where go: (a: maybe (fix maybe)) -> Path (fix maybe) (natToMaybe (maybeToNat (Fix a))) (Fix a) = split
      nothing -> <i> Fix nothing
      just f -> <i> Fix (just (maybeNatIso f @ i))
maybenat: Path U (fix maybe) nat = isoPath (fix maybe) nat maybeToNat natToMaybe natMaybeIso maybeNatIso
HeteroEqu (A B:U)(a:A)(b:B)(P:Path U A B):U = PathP P a b
> HeteroEqu (fix maybe) nat (Fix nothing) zero maybenat
> transNeg (fix maybe) (nat) maybenat (succ (succ zero))
EVAL: Fix (just (Fix (just (Fix nothing))))
> trans (fix maybe) (nat) maybenat (Fix nothing)
EVAL: zero
```

Fix Maybe = Nat

```
data maybe (A: U) = nothing | just (a: A)
data fix (F:U->U) = Fix (point: F (fix F))
data nat = zero | succ (n: nat)
```

Thank You!

https://groupoid.space