Effects of angular anisotropies on the cosmic shear covariance

Maximilian von Wietersheim-Kramsta

Euclid IST:NL - 20/10/2023

Kilo-Degree Survey: KiDS-1000

Variable observational depth

Variable observational depth

With increasing depth, ...

1. Galaxy density increases.

2. The mean of the redshift distribution increases.

3. Intrinsic galaxy shape dispersion varies.

Numerical covariance

Simulations:

- Lognormal-random galaxy fields (using GLASS)
- Galaxy position and shape sampling according to survey characteristics
- 5,000 realisations at a fixed cosmology per variation

Variations:

- 1. **Buceros**: 777.4 deg² square footprint w/o variable depth
- 2. **Cygnus**: 777.4 deg² realistic KiDS-1000 footprint w/o variable depth

+ Realism

3. **Egretta**: 777.4 deg² realistic KiDS-1000 footprint <u>w/ variable depth</u>

Analytical covariance

Based on Joachimi et al. (2021): Consider realistic KiDS-1000 footprint $Cov(\hat{\xi}_{\pm},\hat{\xi}'_{\pm}) = Cov_{SN} + Cov_{mixed} + Cov_{SVA} + Cov_{NG} + Cov_{SSC}$ Only consider survey area

Consistent with the OneCovariance code.

Comparison in the diagonals

Comparison of the correlation coefficients

Analytical vs.
Cygnus

Comparison of the correlation coefficients

Analytical vs.
Buceros

Comparison of the correlation coefficients

Analytical vs.
Egretta

Comparison in the diagonals

Cygnus vs.
Egretta

Effect of V.D. on shape noise in KiDS-1000

