Module 5.2:Lecture notes:Triple Integration

By Dr. Keya Doshi

TRIPLE INTEGRATION

$Three\ Dimensional\ coordinate\ system$

To locate the point in a space we consider three mutually perpendicular coordinate axis as shown in a figure.

ullet The Cartesian coordinates (x,y,z) of a point P in space are the numbers at which the planes through P perpendic-

ular to the axes cut the axes.

- Cartesian coordinates for spaceare also called rectangular coordinates because the axes that define them meet at right angles.
- Points on the x-axis have y- and z-coordinates equal to zero. That is, they have coordinates of the form (x, 0, 0). Similarly, points on the y-axis have coordinates of the form (0, y, 0), and points on the z-axis have coordinates of the form (0, 0, z).
- The planes determined by the coordinates axes are the xy-plane, whose standard equation is z = 0, the yz-plane, whose standard equation is x = 0 and the xz-plane, whose standard equation is y = 0. They meet at the origin (0,0,0)
- The origin is also identified by simply 0 or sometimes the letter O.
- The three coordinate planes x = 0, y = 0 and z = 0 divide the space into eight cells called **octants**. The octant in

which the point coordinates are all positive is called the **first octant or Positive octant**; there is no conventional numbering for the other seven octants.

$\underline{Some\ standard\ solids}$

1. Right circular cylinder parallel to z axis, x axis and y axis respectively

2. Paraboloids

3. Ellipsoid

4. Hyperboloid of one sheet

- 5. cone
- 6. intersection of cylinder $x^2 + y^2 = 2$ and plane x + z = 4

Triple Integration Concept

Let F(x,y,z) be a continuous function defined over a closeed and bounded surface surface D

Then dividing a surface D into small surfaces or rectangular boxes by the planes parallel to coordinate axes we get rectagular boxes or surfaces of volume $\Delta v_i = \Delta x_i * \Delta y_i * \Delta z_i$ and considering a function value at point (x_i, y_i, z_i) along with the

volume Δv_i , we consider a sum S_n

$$S_n = \sum_{i=0}^n f(x_i, y_i, z_i) \Delta v_i$$

As $n \to \infty$ or $\Delta v_i \to 0$ the Double Integration over a given rectangular region is defined as

$$S = \lim_{n \to \infty} \sum_{i=0}^{n} f(x_i, y_i, z_i) \Delta v_i$$
$$= \iiint_D f(x, y, z) dv$$

Consider a solid region D along with its vertical projection on xy plane given by region R as shown in the figure.

A solid region D in the space bounded below by two surfaces $z = f_1(x, y)$ and above by $z = f_2(x, y)$

To consider limits, consider an imaginary strip from a point (x, y) in a vertical Projection R parallel to z axis entering the solid D at $z = f_1(x, y)$ and leaving the surface at $z = f_2(x, y)$. These are z limits of integration.

Simultaneously in xy plane from the point (x, y) consider a strip parallel to y axis entering a region R at $y = g_1(x)$ and leaving at $y = g_2(x)$ these are y limits of integration and on x axis strip varies from x = a to x = b. these are x limits of integration

Then for a given solid region triple integral is defined as

$$S = \int_{x=a}^{x=b} \int_{y=g_1(x)}^{y=g_2(x)} \int_{z=f_1(x,y)}^{z=f_2(x,y)} F(x,y,z) dz dy dx$$

EXAMPLES(Evaluation)

1.
$$\int_{0}^{1} \int_{-1}^{2} \int_{1}^{3} x + y^{3} + z^{3} dx dy dz$$

Solution:

$$I = \int_{0}^{1} \int_{-1}^{2} \int_{1}^{3} x + y^{3} + z^{3} dx dy dz$$

$$= \int_{0}^{1} \int_{-1}^{2} \left[\frac{x^{2}}{2} + x y^{3} + x z^{3} \right]_{1}^{3} dy dz$$

$$= \int_{0}^{1} \int_{-1}^{2} \left[4 + 2 y^{3} + 2 z^{3} \right] dy dz$$

$$= \int_{0}^{1} \left[4y + \frac{y^{4}}{2} + 2y z^{3} \right]_{-1}^{2} dz$$

$$= \int_{0}^{1} \left[12 + \frac{15}{2} + 6z^{3} \right] dz$$

$$= \left[12z + \frac{15}{2}z + \frac{3z^{4}}{2} \right]_{0}^{1}$$

$$= \frac{42}{2}$$

$$= 21 \dots Ans$$

$$2. \int_{1}^{e} \int_{1}^{e} \int_{1}^{e} \frac{dx \, dy \, dz}{xyz}$$

Ans:1

3.
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{dz \, dy \, dx}{\sqrt{1-x^2-y^2-z^2}}$$
$$Ans: \frac{\pi^2}{8}$$

4.
$$\int_{1}^{e} \int_{1}^{\log y} \int_{1}^{e^{x}} \log z \, dz \, dx \, dy$$
$$\operatorname{Ans:} \frac{1}{4} \left[e^{2} - 8e + 13 \right]$$

5.
$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} xyz \ dz \ dy \ dx$$
$$Ans: \frac{a^{6}}{48}$$

6.
$$\int_{0}^{2} \int_{0}^{z} \int_{0}^{y} xyz \, dx \, dy \, dz$$
$$Ans: \frac{4}{3}$$

EXAMPLES(Sketch the region and Evaluation)

1. Evaluate $\iiint_D \frac{dz \ dy \ dx}{(1+x+y+z)^3}$ where D is a solid region bounded by the lines $x=0, \ y=0, \ z=0$ and x+y+z=1.

Solution:

Here region is bounded by coordinate axes and a plane x + y + z = 1. These planes intersect oneanother in three slanted planes x + y = 1, y + z = 1 and x + z = 1 respectively. \therefore region is shown by shadded portion in the figure as follows

Considering imaginary strip parallel to z axis in the solid and correspondingly a strip parallel to y axis in the region in xy plane, limits of integration are $0 \le x \le 1$, $0 \le y \le 1-x$ and $0 \le z \le 1-x-y$

∴ required Integral is

$$I = \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} \frac{dz \, dy \, dx}{(1+x+y+z)^{3}}$$

$$= \int_{0}^{1} \int_{0}^{1-x} \left[\frac{-1}{2(1+x+y+z)^{2}} \right]_{0}^{1-x-y} \, dy \, dx$$

$$= \int_{0}^{1} \int_{0}^{1-x} \frac{-1}{2} \left[\frac{1}{4} - \frac{-1}{(1+x+y)^{2}} \right] \, dy \, dx$$

$$= \int_{0}^{1} \frac{-1}{2} \left[\frac{y}{4} + \frac{1}{(1+x+y)} \right]_{1}^{1-x} \, dx$$

$$= \int_{0}^{1} \frac{-1}{2} \left[\frac{1}{4} (1-x) + \left(1 - \frac{1}{1+x} \right) \right] \, dx$$

$$= \int_{0}^{1} \frac{-1}{2} \left[\frac{5}{4} - \frac{x}{4} - \frac{1}{1+x} \right] \, dx$$

$$= \frac{-1}{2} \left[\frac{5}{4} x - \frac{x^{2}}{8} - \log(1+x) \right]_{0}^{1}$$

$$= \frac{-1}{2} \log(2) - \frac{9}{16} \dots Ans$$

2. Evaluate $\iiint\limits_D dz\ dy\ dx$ where D is enclosed by surfaces $z=x^2+3y^2$ and $z=8-x^2-y^2$

Solution:

Here to evaluate the integral we first find the intersecting curve of two surfaces whose verical projection will give our region in xy palne.

Now

 $x^2 + 3y^2 = 8 - x^2 - y^2 \implies x^2 + 2y^2 = 4$ which is an elliptic cylinder.

 \therefore our region in xy plane will be an ellipse with same equation $x^2+2y^2=4$

The solid region is shown as follows:

for z limits of integration consider imaginary strip parallel to z axis in the solid , strip enters at $z=x^2+3y^2$ and leaves at $z=8-x^2-y^2$ For y limits of integrationncorrespondingly consider a strip parallel to y axis in the ellipse $x^2+2y^2=4$ in xy plane enters at $y=-\sqrt{\frac{4-x^2}{2}}$ and leaves at $y=\sqrt{\frac{4-x^2}{2}}$ and correspondingly x limits varies from x=-2 to x=2 hence limits of integration are

$$-2 < x < 2$$

$$-\sqrt{\frac{4-x^2}{2}} \le y \le \sqrt{\frac{4-x^2}{2}}$$

and
$$x^2 + 3y^2 \le z \le 8 - x^2 - y^2$$

∴ required Integral is

$$I = \int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{x^{2}+3y^{2}}^{8-x^{2}-y^{2}} dz \, dy \, dx$$

$$= \int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} (8-2x^{2}-4y^{2}) \, dy \, dx$$

$$= \int_{-2}^{2} \left[(8-2x^{2})y - \frac{4y^{3}}{3} \right]_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} dx$$

$$= \int_{-2}^{2} \left[2(8-2x^{2}) \left(\frac{4-x^{2}}{2} \right) - \frac{8}{3} \left(\frac{4-x^{2}}{2} \right)^{\frac{3}{2}} \right] dx$$

$$= \int_{-2}^{2} \left[8 \left(\frac{4-x^{2}}{2} \right)^{\frac{3}{2}} - \frac{8}{3} \left(\frac{4-x^{2}}{2} \right)^{\frac{3}{2}} \right] dx$$

$$= \frac{4\sqrt{2}}{3} \int_{-2}^{2} (4-x^{2})^{\frac{3}{2}} dx$$

$$= \frac{4\sqrt{2}}{3} \int_{-2}^{\frac{\pi}{2}} (4-4\sin^{2}u)^{\frac{3}{2}} 2 \cos u \, du$$

$$= \frac{64\sqrt{2}}{3} \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos^4 u \ du$$

$$= \frac{64\sqrt{2}}{3} \beta \left(\frac{5}{2}, \frac{1}{2}\right)$$

$$. = \frac{64\sqrt{2}}{3} \frac{\Gamma_2^{\frac{5}{2}} \Gamma_2^{\frac{1}{2}}}{\Gamma_3}$$

$$= 8\sqrt{2}\pi....Ans$$

3. Evaluate $\iiint_D dz dy dx$ where D is a solid region bounded by the cylinder $z=y^2$ and in xy plane by the planes x=0, x=1, y=1, y=-1 Ans: $\frac{2}{3}$

4. Evaluate $\iiint_D dz\ dy\ dx$ where D is a solid region in first octant bounded by coordinate plane, the plane y+z=2 and a cylinder $x=4-y^2$ Ans: $\frac{20}{3}$

5. Evaluate $\iiint\limits_D dz\,dy\,dx$ where D is a wedge cut from the cylinder $x^2+y^2=1$ by the planes z=-y and z=1 Ans: $\frac{2}{3}$

6. Evaluate $\iiint\limits_D dz\ dy\ dx$ where D is the region common to the interior of the cylinders $x^2+y^2=1$ and $x^2+z^2=1$ Ans: $\frac{16}{3}$

7. Evaluate $\iiint\limits_D dz\ dy\ dx$ where D is the region cut from the cylinder $x^2+y^2=4$ planes z=0 and x+z=3 Ans: 12π

Triple Integrals in cylindrical and spherical polar coordinates

When calculation involves a solid region in the shape of cylinder, cone or spere we can often simplify our work by using cylindrical or spherical polar coordinates.

Triple Integrals in cylindrical polar coordinates

For a solid region in space, we obtain its cylindrical polar coordinates by combinding polar coordinates in xy plane with usual z axis. This assigns to every point in the space one or more coordinate triples of the form (r, θ, z) as shown in the figure.

Cylindrical coordinates represent a point P in a space by ordered triplets (r, θ, z) in which r and θ are the polar coordinates of vertical projection of P in xy plane and z is the rectangular vertical coordinate. The rectangular coordinates (x, y, z) and cylindrical coordinates (r, θ, z) are related by usual equations

$$x = r\cos\theta$$

$$y = rsin \theta$$

$$z = z$$

$$\therefore x^2 + y^2 = r^2 \text{ and } tan \theta = \frac{y}{x}$$

In cylindrical coordinates the equation $x^2 + y^2 = r^2$ not just describe the circle in xy plane but a cylinder about z axis whose base is in xy plane. In the following figure the equation of z axis is r = 0; the equation $\theta = \theta_0$ represents a plane which contains z axis and makes an angle θ_0 with positive x axis and in rectangular coordinates plane $z = z_0$ describes a plane perpendicular to z axis.

Using above cylindrical coordinates we have

 $dx dy dz = dz J\left(\frac{x,y,z}{r,\theta,z}\right) dr d\theta$ where Jacobian of (x,y,z) with respect to (r,θ,z) is given by

$$J\left(\frac{x,y,z}{r,\theta,z}\right) = \begin{vmatrix} x_r & x_\theta & x_z \\ y_r & y_\theta & y_z \\ z_r & z_\theta & z_z \end{vmatrix} = \begin{vmatrix} \cos\theta & -r\sin\theta & 0 \\ \sin\theta & r\cos\theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = r$$

 \therefore In cylindrical polar coordinates triple integral over a region D for a function f is defined as

$$I = \iiint_D f \ dv$$
$$= \iiint_D f \ dz \ r \ dr \ d\theta$$

Or we can also define triple integral in cylindrical polar coordinates over a solid region D for a function f by partitioning D into small cylindrical wedges of volume $\Delta v = \Delta z \ r \ \Delta r \ \Delta \theta$ in the same manner as in cartesian.

Limits in Cylindrical Polar Coordinates

To evaluate $\iiint_D f(r, \theta, z) dv$ in cylindrical coordinates

First sketch the region D along with its projection R in xy plane. label the surfaces and curves that bounds D and R

for z limits draw a line through typical point (r, θ) in region R parallel to z axis enteres the region D at $z = g_1(r, \theta)$ and leaves the region D at $z = g_2(r, \theta)$

For r limits a ray through (r, θ) in R from the origin enters the region R at $r = h_1(\theta)$ and leaves at $r = h_2(\theta)$

For θ limits the ray through (r,θ) making an angle with positive x axis runs from $\theta=\alpha$ to $\theta=\beta$

∴ required integral is

$$I = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} \int_{g_1(r,\theta)}^{g_2(r,\theta)} f(r,\theta,z) dz \ r \ dr \ d\theta$$

EXAMPLES:(Type I)

1.
$$\int_{0}^{2\pi} \int_{0}^{1} \int_{r}^{\sqrt{2-r^2}} dz \ r \ dr \ d\theta$$

2.
$$\int_{0}^{2\pi} \int_{0}^{1} \int_{-\frac{1}{2}}^{\frac{1}{2}} \left[r^2 sin^2(\theta) d + z^2 \right] dz \ r \ dr \ d\theta$$

EXAMPLES:(Type II)

1. Find limits in cylindrical coordinates for integration a function $f(r, \theta, z)$ over a region D bounded below by plane z = 0 laterally by circular cylinder $x^2 + (y - 1)^2 = 1$ and above by paraboloid $z = x^2 + y^2$

Solution:

Here base of the circular cylinder is a region in xy plane which is also a vertical projection of solid in xy plane.

Now considering cylindrical coordinates $x = rcos \theta$, $y = rsin \theta$ and z = z equation of cylinder in polar coordinates is

$$x^{2} + (y - 1)^{2} = 1$$

$$\implies x^{2} + y^{2} - 2y + 1 = 1$$

$$\implies r^{2} = 2r\sin \theta$$

$$\implies r = 2\sin \theta$$

To find limits of integration

for z limits a line through typical point (r, θ) in region R parallel to z axis enteres the region D at z=0 and leaves the region D at $z=x^2+y^2=r^2$

For r limits a ray through (r, θ) from the origin enters the region r at r = 0 and leaves at $r = 2\sin \theta$

For θ limits the ray through (r, θ) making an angle with positive x axis runs from $\theta = 0$ to $\theta = \pi$

∴ required integral is

$$I = \int_{0}^{\pi} \int_{0}^{2\sin \theta} \int_{0}^{r^{2}} f(r, \theta, z) dz \ r \ dr \ d\theta$$

2. Evaluate $\iiint_D dv$ over a region D enclosed by cylinder $x^2+y^2=4$, bounded above by paraboloid $z=x^2+y^2$ and below by the xy plane.

Solution:

The solid region D along with its projection R is shown in the figure.

Now considering cylindrical coordinates $x = rcos \theta$, $y = rsin \theta$ and z = z equation of cylinder in polar coordinates is

$$x^{2} + y^{2} = 4$$

$$\implies x^{2} + y^{2} = 4$$

$$\implies r^{2} = 4$$

$$\implies r = 2$$

and equation of the paraboloid $z = x^2 + y^2$ is $z = r^2$

- \therefore Limits of integration are
- $0 \le \theta \le 2\pi$; $0 \le r \le 2$ and $0 \le z \le r^2$
- ∴ required integral is

$$I = \int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{r^{2}} dz \, r \, dr \, d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{2} [z]_{0}^{r^{2}} \, r \, dr \, d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{2} r^{3} \, dr \, d\theta$$

$$= \int_{0}^{2\pi} \left[\frac{r^{4}}{4} \right]_{0}^{2} d\theta$$

$$= \int_{0}^{2\pi} 4d\theta$$

$$= 4(2\pi - 0)$$

$$= 8\pi \dots Ans$$

3. Evaluate $\iiint_D dv$ over a region D bounded above by the sphere $x^2+y^2+z^2=4$, on the sides by the cylinder $x^2+y^2=1$, bounded below by xy plane.

4. Evaluate $\iiint_D dv$ over a region D bounded above by the paraboloid $z=2-x^2-y^2$ and bounded below by the cone $z^2=x^2+y^2$

- 5. Evaluate $\iiint_D xyz \ dv$ over a region D bounded by planes x=0, y=0, z=0, z=1 and a cylinder $x^2+y^2=1$
- 6. Evaluate $\iiint_D z^2 dv$ where d is the surface common to sphere $x^2 + y^2 + z^2 = a^2$ and a cylinder $x^2 + y^2 = ax$
- 7. Evaluate $\iiint_D x^2 dv$ over a region D bounded above by by the cone $z^2 = 4x^2 + 4y^2$, on the sides by the cylinder $x^2 + y^2 = 1$ and below by the plane z = 0

Triple Integrals in Spherical polar coordinates

For a solid region in space, spherical coordinates locate the point in space with two angles and one distance as shown in the figure.

Spherical coordinates represents a point P in space by ordered triplets (ρ, ϕ, θ) where ρ , is a distance of point P from the origin $(\rho \geq 0)$, ϕ , is the angle that ray OP makes with positive z axis $(0 \leq \phi \leq \pi)$ and θ is the angle from cylindrical coordinates.

The rectangular coordinates (x, y, z) and spherical coordinates (ρ, ϕ, θ) are related by usual equations

$$x = \rho \sin \phi \cos \theta$$

$$y = \rho \sin \phi \sin \theta$$

$$z = \rho \cos \phi$$

... Using above spherical coordinates we have

 $dx dy dz = J\left(\frac{x,y,z}{\rho,\phi,\theta}\right) d\rho d\phi d\theta$ where Jacobian of (x,y,z) with respect to (ρ,ϕ,θ) is given by

$$J\left(\frac{x,y,z}{\rho,\phi,\theta}\right) = \begin{vmatrix} x_{\rho} & x_{\phi} & x_{\theta} \\ y_{\rho} & y_{\phi} & y_{\theta} \\ z_{\rho} & z_{\phi} & z_{\theta} \end{vmatrix} = \begin{vmatrix} \sin\phi \cos\theta & -r\sin\phi \sin\theta & \rho\cos\phi \cos\theta \\ \sin\phi \sin\theta & r\sin\phi\cos\theta & \rho\cos\phi\cos\theta \\ \cos\phi & 0 & -\rho\sin\phi \end{vmatrix} = \rho^{2}\sin\phi$$

 \therefore In spherical polar coordinates triple integral over a region D for a function f is defined as

$$I = \iiint_D f \ dv$$
$$= \iiint_D f \ \rho^2 sin\phi \ d\rho \ d\phi \ d\theta$$

Or we can also define triple integral in spherical polar coordinates over a solid region D for a function f by partitioning D into small spherical wedges of volume $\Delta v = \rho^2 sin\phi \ \Delta \rho \ \Delta \phi \ \Delta \theta$ in the same manner as in cartesian.

Limits in Spherical coordinates

To evaluate $\iiint_{d} f(\rho, \phi, \theta) dv$ in spherical coordinates

First sketch the region D along with its projection in xy plane. label the surfaces that bound D

for ρ limits draw a ray through D from the origin making an angle ϕ with positive z axis and also a ray in the Projection in xy plane making an agle θ with positive x axis. The ray through D enters at $\rho = g_1(\phi, \theta)$ and leaves at $\rho = g_2(\phi, \theta)$

For ϕ limits , for any θ , an angle ϕ that ray through D makes with z axis runs from $\phi=\phi_{min}$ to $\phi=\phi_{max}$

For θ limits the ray in projection in xy runs from $\theta=\alpha$ to $\theta=\beta$ \therefore required integral is

$$I = \int_{\alpha}^{\beta} \int_{\phi_{min}}^{\phi_{max}} \int_{g_1(\phi,\theta)}^{g_2(\phi,\theta)} f(\rho,\phi,\theta) \rho^2 sin\phi \, d\rho \, d\phi \, d\theta$$

EXAMPLES:(Type I)

- 1. Find spherical coordinate equation for
 - 1) $x^2 + y^2 + (z 1)^2 = 1$ 2) $z = \sqrt{x^2 + y^2}$

Solution:

- 1) Considering spherical polar coordinates
- $x = \rho \sin \phi \cos \theta$
- $y = \rho \sin \phi \sin \theta$
- $z = \rho \cos \phi$

the equation of sphere is given by

$$x^{2} + y^{2} + (z - 1)^{2} = 1$$

$$\Rightarrow \rho^{2} sin^{2} \phi \cos^{2} \theta + \rho^{2} sin^{2} \phi \sin^{2} \theta + (\rho \cos \phi - 1)^{2} = 1$$

$$\Rightarrow \rho^{2} sin^{2} \phi \left(\cos^{2} \theta + sin^{2} \theta\right) + \rho^{2} cos^{2} \phi - 2\rho \cos \phi + 1 = 1$$

$$\Rightarrow \rho^{2} sin^{2} \phi + \rho^{2} cos^{2} \phi - 2\rho \cos \phi + 1 = 1$$

$$\Rightarrow \rho^{2} \left(\sin^{2} \phi + \cos^{2} \phi\right) = 2\rho \cos \phi$$

$$\Rightarrow \rho^{2} = 2\rho \cos \phi$$

$$\Rightarrow \rho = 2 \cos \phi$$

- 2) Considering spherical polar coordinates
- $x = \rho \sin \phi \cos \theta$
- $y = \rho \sin \phi \sin \theta$
- $z = \rho \cos \phi$

the equation of cone is given by

$$z = \sqrt{x^2 + y^2}$$

$$\implies \rho \cos\phi = \sqrt{\rho^2 \sin^2\phi \cos^2\theta + \rho^2 \sin^2\phi \sin^2\theta}$$

$$\implies \rho \cos\phi = \sqrt{\rho^2 \sin^2\phi (\cos^2\theta + \sin^2\theta)}$$

$$\implies \rho \cos\phi = \sqrt{\rho^2 \sin^2\phi}$$

$$\implies \rho \cos\phi = \rho \sin\phi$$

$$\implies \tan\phi = 1$$

$$\implies \phi = \frac{\pi}{4}$$

EXAMPLES:(Type II)

1.
$$\int_{0}^{2\pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{2} \left[\rho^{2} \cos \phi \ \rho^{2} \sin(\phi)\right] d\rho d\phi d\theta$$

2.
$$\int_{0}^{2\pi} \int_{0}^{\frac{\pi}{3}} \int_{sec\phi}^{2} \left[3 \rho^{2} \sin(\phi) d \right] d\rho d\phi d\theta$$

EXAMPLES:(Type III)

1. Using spherical polar coordinates evaluate $\iiint xyz \ (x^2 + y^2 + z^2) \ dx \ dy \ dz$ over a first octant of the sphere $x^2 + y^2 + z^2 = a^2$

Solution:

Considering spherical polar coordinates

$$x = \rho \sin \phi \cos \theta$$

$$y = \rho \sin \phi \sin \theta$$

$$z = \rho \cos \phi$$

the equation of sphere is given by

$$x^{2} + y^{2} + z^{2} = a^{2}$$

$$\Rightarrow \rho^{2} sin^{2} \phi \cos^{2} \theta + \rho^{2} sin^{2} \phi \sin^{2} \theta + \rho^{2} cos \phi = a^{2}$$

$$\Rightarrow \rho^{2} sin^{2} \phi \left(cos^{2} \theta + sin^{2} \theta \right) + \rho^{2} cos^{2} \phi = a^{2}$$

$$\Rightarrow \rho^{2} sin^{2} \phi + \rho^{2} cos^{2} \phi = a^{2}$$

$$\Rightarrow \rho^{2} \left(sin^{2} \phi + cos^{2} \phi \right) = a^{2}$$

$$\Rightarrow \rho^{2} = a^{2}$$

$$\Rightarrow \rho = a$$

Given region of integration is first octant only. limits of integration are

- $0 \le \rho \le a$
- $\begin{array}{ccc}
 & & \\
 & 0 & \leq \phi & \leq \frac{\pi}{2} \\
 & 0 & \leq \theta & \leq \frac{\pi}{2}
 \end{array}$

... required integral is

$$I = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} (\rho^{3} \sin^{2}\phi \cos \phi \cos \theta \sin \theta)(\rho^{2}) \rho^{2} \sin \phi d\rho d\phi d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} (\rho^{7} \sin^{3}\phi \cos \phi \cos \theta \sin \theta) d\rho d\phi d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \left[\frac{\rho^{8}}{8} \right]_{0}^{a} \sin^{3}\phi \cos \phi \cos \theta \sin \theta d\phi d\theta$$

$$= \frac{a^{8}}{8} \int_{0}^{\frac{\pi}{2}} \cos \theta \sin \theta d\theta \int_{0}^{\frac{\pi}{2}} \sin^{3}\phi \cos \phi d\phi$$

$$= \frac{a^{8}}{8} \frac{1}{2} \beta(1,1) \frac{1}{2} \beta(2,1)$$

$$= \frac{a^{8}}{8} \frac{1}{2} \frac{\Gamma 1}{\Gamma 2} \frac{\Gamma 1}{1} \frac{\Gamma 2}{\Gamma 3} \frac{1}{\Gamma 3} \frac{\Gamma 2}{\Gamma 3} \frac{\Gamma 1}{\Gamma 3}$$

$$= \frac{a^{8}}{64} \dots Ans$$

- 2. Using spherical polar coordinates evaluate $\iiint \frac{dx \ dy \ dz}{(x^2+y^2+z^2)^{\frac{1}{2}}}$ over a solid bounded by spheres $x^2+y^2+z^2=a^2$ and $x^2+y^2+z^2=b^2$ where b>a>0
- 3. Using spherical polar coordinates evaluate $\iiint dx \ dy \ dz$ over a

region D which is a sphere $x^2 + y^2 + z^2 = a^2$

- 4. Evaluate $\iiint_D dx dy dz$ where D is region in first octant bounded by coordinate planes, a plane y + z = 2 and a cylinder $x = 4 y^2$
- 5. Evaluate $\iiint_D dx dy dz$ where D is region of a sphere $x^2+y^2+z^2=a^2$ cut by the cone $z^2=x^2+y^2$
- 6. Evaluate $\iiint_D dx dy dz$ where D is region enclosed by the cone $z^2 = x^2 + y^2$ and parabola $z = x^2 + y^2$
- 7. Evaluate $\iiint_D dv$ where D is region bounded above by the cone $z^2=x^2+y^2$ and below by the sphere $\rho=2$ \cos ϕ
- 8. Evaluate $\iiint_D dv$ where D is region bounded above by the cone $\phi = \frac{\pi}{3}$, on the sides by the sphere $\rho = 2$ and below by xy plane

SUMMERY

(1) Conversion from Cartesian to polar using double integration

Steps:

- 1. Draw the region in cartesian plane (For morethan two curves find intersections points to sketch the region).
- 2. Find equation of each bounded curve of the region in polar plane using polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$ and substitute $dx dy = r dr d\theta$
- 3. Consider a ray from the pole(origin)entering and leaving the region, to decide r limits of integration
- 4. Move the ray in counterclockwise rotation in the region to decide θ limits of integration.

(2) Conversion from Cartesian to Cylindrical polar using Triple integration

Steps:

- 1. Draw the solid region in space along with its vertical projection in opposite plane. (Find intersecting points to trace the region)
- 2. Find equation of each bounded curve of the region using cylindrical polar coordinates $x = r \cos \theta$, $y = r \sin \theta$ and z = z and

substitute $dx dy dz = dz r dr d\theta$

- 3. Consider a line from the point in the region in opposite plane, parallel to z axis entering and leaving the solid Region to decide z limits of integration
- 4. Consider a ray from the pole(origin)entering and leaving the region in opposite plane, to decide r limits of integration
- 5. Move the ray in counterclockwise rotation in the region to decide θ limits of integration.

(3) Conversion from Cartesian to Spherical polar using Triple integration

Steps:

- 1. Draw the solid region in space along with its vertical projection in opposite plane. (Find intersecting points to trace the region)
- 2. Find equation of each bounded curve of the region using spherical polar coordinates $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$ and $z = \rho \cos \phi$ and substitute $dx dy dz = \rho^2 \sin \phi d\rho d\phi d\theta$
- 3. Consider a ray from the the origin in the region making an angle ϕ with positive z axis entering and leaving the solid Region to decide ρ limits of integration

- 4. Above ray from the pole(origin) making and angle ϕ with positive z axis runs from ϕ_{min} to ϕ_{max}
- 5. Move the ray in counterclockwise rotation in the region in xy plane to decide θ limits of integration.