Степеневі ряди

доц. І.В. Орловський

1. Означення

Розглянемо послідовність $\{a_n, n \geq 0\} \subset \mathbb{R}$ та $x_0 \in \mathbb{R}$.

Означення 1

Степеневим рядом називають функціональний ряд вигляду

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + \dots + a_n (x - x_0)^n + \dots,$$

де сталі a_n , $n \geq 0$, називають коефіцієнтами степеневого ряду.

Степеневий ряд $\sum\limits_{n=0}^{\infty}a_{n}\left(x-x_{0}
ight) ^{n}$ заміною $x-x_{0}=t$ зводиться до ряду

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + \dots + a_n x^n + \dots,$$

з центром в точці $x_0 = 0$.

2. Теорема Абеля

Теорема 1 (перша теорема Абеля)

Якщо степеневий ряд $\sum\limits_{n=0}^{\infty}a_nx^n$ збігається в точці $x_0\neq 0$, тоді він збігається абсолютно у всіх точках x, які задовольняють нерівність

$$|x|<|x_0|.$$

Якщо ряд розбігається в деякій точці x_1 , то він розбігається і у всіх точках x, що задовольняють нерівність

$$|x|>|x_1|.$$

Доведення

За умовою теореми числовий ряд $\sum\limits_{n=0}^{\infty} a_n x_0^n$ збігається. Тоді за необхідною ознакою збіжності ряду $\lim\limits_{n\to\infty} a_n x_0^n = 0.$

Отже, послідовність $\{a_n x_0^n\}$ обмежена, тобто

$$\exists M > 0 : |a_n x_0^n| \le M, \ \forall n \ge 0.$$

Розглянемо ряд з абсолютних величин членів степеневого ряду $\sum_{n=0}^{\infty} |a_n x^n|$, де $|x| < |x_0|$, та оцінимо його загальний член. Маємо

$$|a_n x^n| = |a_n x_0^n| \left| \frac{x}{x_0} \right|^n \le Mq^n,$$

де
$$q = \left| \frac{x}{x_0} \right| < 1.$$

Геометричний ряд $\sum\limits_{n=0}^{\infty}\,Mq^n\;(q<1)$ збігається. Тому за першою ознакою порівняння збігається ряд

$$\sum_{n=0}^{\infty} |a_n x^n|,$$

а, отже, степеневий ряд збігається абсолютно, якщо $|x| < |x_0|$.

Нехай тепер степеневий ряд розбігається в точці x_1 . Припустимо, що в деякій точці x_2 , такій, що $|x_2|>|x_1|$, ряд збігається. Тоді за доведеним він повинен збігатись в області $|x|<|x_2|$, зокрема, в точці x_1 , що суперечить умові.

Отже, для всіх x, таких, що $|x|>|x_1|$, степеневий ряд розбігається.

3. Область збіжності степеневого ряду

Теорема Абеля характеризує множини точок збіжності та розбіжності степеневого ряду. Дійсно, якщо x_0 — точка збіжності ряду $\sum\limits_{n=0}^{\infty}a_nx^n$, тоді він збігається абсолютно в інтервалі $(-\left|x_0\right|;\left|x_0\right|)$ з центром в точці 0. Якщо x_1 — точка розбіжності ряду $\sum\limits_{n=0}^{\infty}a_nx^n$, тоді ряд розбігається в області $(-\infty;-\left|x_1\right|)\cup(\left|x_1\right|;+\infty)$.

Отже, для області збіжності степеневого ряду можливі лише три випадки:

ullet ряд збігається лише в точці x=0. Наприклад, ряд

$$\sum_{n=1}^{\infty} n^n x^n = 1 \cdot x + 2^2 x^2 + \dots + n^n x^n + \dots$$

збігається лише в точці x=0, оскільки при $x\neq 0$ для достатньо великих значень n: $|nx|>1, \lim_{n\to\infty} (nx)^n \neq 0$;

ullet ряд збігається при всіх $x\in (-\infty; +\infty)$. Наприклад, ряд

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots,$$

збігається $\forall x \in \mathbb{R}$.

ullet існує таке скінченне число R>0, що при |x|< R степеневий ряд абсолютно збігається, а при |x|>R — розбігається.

Означення 2

Невід'ємне число R, таке, що степеневий ряд $\sum\limits_{n=0}^{\infty}a_nx^n$ збігається в інтервалі $(-R;\ R)$ й розбігається при |x|>R, називають радіусом збіжності степеневого ряду, а інтервал $(-R;\ R)$ — інтервалом збіжності степеневого ряду.

Якщо ряд $\sum\limits_{n=0}^{\infty}a_nx^n$ збігається лише в точці x=0, тоді вважають R=0. Якщо ж ряд збігається на всій дійсній осі, то $R=+\infty$.

Радіус збіжності степеневого ряду можна знаходити за формулою Коші — Адамара (ДЗ. Вивести самостійно (оптимістам)):

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}.$$

Зауваження

Питання про збіжність ряду на кінцях інтервалу збіжності, тобто в точках x=-R та x=R розглядається для кожного ряду окремо. Таким чином, областю збіжності степеневого ряду $\sum\limits_{n=0}^{\infty}a_{n}x^{n}$ є інтервал $(-R;\ R)$, до якого може додаватись одна або обидві граничні точки інтервалу.

Приклад 1

Знайдіть область збіжності ряду

$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$$

Зауваження

Якщо степеневий ряд містить не всі степені x, тоді інтервал збіжності ряду знаходять, безпосередньо застосовуючи ознаку Д'Аламбера або радикальну ознаку Коші для ряду, складеного з модулів членів заданого степеневого ряду.

Приклад 2

Знайдіть область збіжності ряду

$$\sum_{n=1}^{\infty} \frac{x^{2n-1}}{n}.$$

3. Властивості степеневих рядів

I (друга теорема Абеля)

Степеневий ряд $\sum_{n=0}^{\infty} a_n x^n$ збігається рівномірно на довільному проміжку [a;b], який цілком міститься всередині інтервалу збіжності ряду.

Доведення

Нехай R — радіус збіжності ряду $\sum\limits_{n=0}^{\infty}a_nx^n$, a та b — дві внутрішні точки інтервалу збіжності. Позначимо через r найбільше з чисел |a| та |b|. Розглянемо три проміжки: $[a;\;b]\subset [-r;\;r]\subset (-R;\;R)\,.$

Точка x=r є внутрішньою точкою проміжку $(-R;\ R)$. В цій точці за першою теоремою Абеля ряд збігається абсолютно, тобто збігається ряд $\sum\limits_{n=0}^{\infty}|a_n|\ r^n$, який є мажорантою ряду $\sum\limits_{n=0}^{\infty}a_nx^n$ на відрізку $[-r;\ r]$, оскільки $|a_nx^n|\leq |a_n|\ r^n$. Отже, за ознакою Веєрштраса ряд $\sum\limits_{n=0}^{\infty}a_nx^n$ збігається рівномірно на [a;b].

II (Неперервність суми степеневого ряду)

Сума степеневого ряду $\sum\limits_{n=0}^{\infty} a_n x^n$ неперервна в кожній точці x його інтервалу збіжності $(-R;\,R),\,R>0.$

III (Інтегрування степеневих рядів)

Степеневий ряд $\sum\limits_{n=0}^{\infty} a_n x^n$ на проміжку $[0;\,x]$, де |x| < R, можна почленно інтегрувати, так що

$$\int_{0}^{x} \sum_{n=0}^{\infty} a_n t^n dt = \sum_{n=0}^{\infty} a_n \int_{0}^{x} t^n dt = \sum_{n=0}^{\infty} a_n \frac{x^{n+1}}{n+1}.$$

Приклад 3

Знайдіть суму ряду $\sum_{n=1}^{\infty} nx^{n-1}$.

IV (Диференціювання степеневих рядів)

Степеневий ряд $\sum\limits_{n=0}^{\infty} a_n x^n$ можна почленно диференціювати в довільній точці x інтервалу збіжності $(-R;\ R)$, R>0, при цьому має місце рівність

$$\left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=1}^{\infty} n a_n x^{n-1}.$$

Приклад 4

Знайдіть суму ряду

$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$

Література

- [1] Ряди. Функції комплексної змінної. Операційне числення. Конспект лекцій / Уклад.: В.О. Гайдей, Л.Б. Федорова, І.В. Алєксєєва, О.О. Диховичний. К: НТУУ «КПІ», 2013. 108 с.
- [2] Дубовик В.П., Юрик І.І. *Вища математика,* К.: Вища школа, 1998.
- [3] Письменный Д.Т. Конспект лекций по высшей математике, 2 часть. М.: Рольф, 2000.