CS F364: Design & Analysis of Algorithm

Master Method and Integer Multiplication

Dr. Kamlesh Tiwari

Assistant Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

Jan 20, 2021

(Campus @ BITS-Pilani Jan-May 2021)

http://ktiwari.in/algo

Asymptotic Notation O

 $\Theta(g(n)) = \{f(n) : \text{there exists positive constants } c_1, c_2 \text{ and } n_0 \text{ such } \}$ that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$

 $O(g(n)) = \{f(n) : \text{there exists positive constants } c \text{ and } n_0 \text{ such that } c \text{ and } n_0 \text{ such that } c \text{ and } c \text{$ $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

• $O(x) = \{3x, 5x + 4, 3\sqrt{x} + 4, 3\sqrt{x} + 4 \log x, 7, ...\}$

Asymptotic Notation Ω

 $\Theta(g(n)) = \{f(n) : \text{there exists positive constants } c_1, c_2 \text{ and } n_0 \text{ such } \}$ that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$

 $\Omega(g(n)) = \{f(n) : \text{there exists positive constants } c \text{ and } n_0 \text{ such that } c \text{ and } n_0 \text{ such that } c \text{ and } n_0 \text{ such that } c \text{ and } c \text{ and$ $0 \le cg(n) \le f(n)$ for all $n \ge n_0$

 $\Omega(x) = \{3x, 5x + 4, 3x\sqrt{x} + 4, 3x\sqrt{x} + 4\log x, 5x^6 + 3x^4 + 5, ... \}$

Asymptotic Notation Θ , O, o, ω , Ω ; zoo

 $\Theta(g(n)) = \{f(n) : \text{there exists positive constants } c_1, c_2 \text{ and } n_0 \text{ such } \}$ that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$

- $\Theta(x) = \{3x, 5x + 4, ...\}$
- $\Theta(\log x) = \{4 \log x, 5 \log(x^3), 5 \log(x^3) + 2, ...\}$
- We write $5x + 4 = \Theta(x)$ to mean $5x + 4 \in \Theta(x)$

Machine Learning (BITS F464) M W F (10-11AM) online@BITS-Pilani

Asymptotic Notation o

0

 $O(g(n)) = \{f(n) : \text{there exists positive constants } c \text{ and } n_0 \text{ such that } c \text{ and } n_0 \text{ such that } c \text{ and } c \text{$ $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

0

 $o(g(n)) = \{f(n) : \text{ for any positive constants } c, \text{ there exists a constant } c \}$ $n_0 > 0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$

- $O(x) = \{3x, 5x + 4, 3\sqrt{x} + 4, 3\sqrt{x} + 4 \log x, 7, ...\}$
- $o(x) = \{3\sqrt{x} + 4, 3\sqrt{x} + 4 \log x, 7, ...\}$

 $\lim_{n\to\infty} f(n)/g(n)=0$

Asymptotic Notation ω

Ω

 $\Omega(g(n)) = \{f(n) : \text{there exists positive constants } c \text{ and } n_0 \text{ such that } c \text{ and } n_0 \text{ such that } c \text{ and } n_0 \text{ such that } c \text{ and } c \text{ and$ $0 \le cg(n) \le f(n)$ for all $n \ge n_0$

 $\omega(g(n)) = \{f(n) : \text{ for any positive constants } c, \text{ there exists a constant } c \}$ $n_0 > 0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$

- $\Omega(x) = \{3x, 5x + 4, 3x\sqrt{x} + 4, 3x\sqrt{x} + 4\log x, 5x^6 + 3x^4 + 5, ...\}$
- $\omega(x) = \{3x\sqrt{x} + 4, 3x\sqrt{x} + 4\log x, 5x^6 + 3x^4 + 5, ...\}$

 $\lim_{n\to\infty} f(n)/g(n) = \infty$

Recurrence Relation

Equations of the form

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{if } x \leq c \ aT(n/b) + f(n) & ext{otherwise} \end{array}
ight.$$

How to solve?

- Substitution: guess the solution and test
- 2 Iteration: convert into summation and apply bounds
- Master method

	4	□ >	← ← E ← E ← E E → E → E → E → E → → E → → E → <p< th=""><th>990</th></p<>	990
Machine Learning (BITS F464)	M W F (10-11AM) online@BITS-Pilani		Lecture-02(Jan 20, 2021)	7/13

Iteration

Consider equation

$$T(n) = 3T(\lfloor n/4 \rfloor) + n$$

$$T(n) = n + 3T(\lfloor n/4 \rfloor)$$
 (6)

$$= n + 3(\lfloor n/4 \rfloor + 3T(\lfloor n/16 \rfloor)) \tag{7}$$

$$= n + 3(\lfloor n/4 \rfloor + 3(\lfloor n/16 \rfloor + 3T(\lfloor n/64 \rfloor))$$
 (8)

$$= n \sum_{i=0}^{\infty} (3/4)^{i} + \Theta(3^{\log_4 n})$$
 (9)

$$= 4n + o(n) \tag{10}$$

$$= O(n) \tag{11}$$

(12)

Iteration stops when $\lfloor n/4^i \rfloor = 1$ that is $i = \log_4 n$

Machine Learning (BITS F464) M W F (10-11AM) online@BITS-Pilani Lecture-02(Jan 20, 2021) 9/13

Integer Multiplication

- How do you multiply integers? How much time it takes?
- If $x = x_1 \times 10^{n/2} + x_0$
- Then $xy = x_1y_1.10^n + (x_1y_0 + x_0y_1).10^{n/2} + x_0y_0$

$$T(n) \leq 4T(n/2) + c.n$$

Substitution

Consider equation

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

Let we guess the solution to be $T(n) = O(n \log n)$

$$T(n) \leq 2(c\lfloor n/2\rfloor \log(\lfloor n/2\rfloor)) + n$$
 (1)

$$\leq cn\log(n/2) + n$$

$$= cn\log(n) - cn\log 2 + n \tag{3}$$

(2)

$$= cn\log(n) - cn + n \tag{4}$$

$$\leq cn\log(n)$$
 (5)

As long as c > 1

Machine Learning (BITS F464) M W F (10-11AM) online@BITS-Pilani Lecture-02(Jan 20, 2021) 8/13

Master method

When T(n) = aT(n/b) + f(n) $a \ge 1, b > 1$ n is positive

Let $\epsilon > 0$ be a constant

- If $f(n) = O(n^{\log_b a \epsilon})$ then $T(n) = \Theta(n^{\log_b a})$
- If $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log n)$
- If $f(n) = \Omega(n^{\log_b a + \epsilon})$ then $T(n) = \Theta(f(n))$ provided if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n. Regularity condition must be checked in case-3.

Machine Learning (BITS F464) MWF (10-11AM) online@BITS-Pilani Lecture-02(Jan 20, 2021) 10/13

Integer Multiplication

Recursive Multiply parts

Algorithm 1: Rec-Mul (x,y)

- 1 $p = \text{Rec-Mul}(x_1 + x_0, y_1 + y_0)$
- 2 $x_1y_1 = \text{Rec-Mul}(x_1, y_1)$
- 3 $x_0y_0 = \text{Rec-Mul}(x_0, y_0)$
- 4 return $x_1y_1 \times 10^n + (p x_1y_1 x_0y_0) \times 10^{n/2} + x_0y_0$

Time complexity

$$T(n) \leq 3T(n/2) + c.n$$

$$O(n^{\log_2 3}) = O(n^{1.59})$$

Thank You!

Thank you very much for your attention! (Reference¹)

Queries ?

1 [1] Book - Algorithm Design, Kleinberg Tardos

Machine Learning (BITS F464) M W F (10-11AM) online@BITS-Pilani Lecture-02(Jan 20, 2021) 13/13