Dimostrazioni di ${\bf NP\text{-}}{\bf Completezza}$

Zbirciog Ionut Georgian ${\rm May}\ 25,\, 2024$

Indice

1 3SAT è NP-Completo

 $\mathbf{2}$

1 3SAT è NP-Completo

Dimostrazione: Partiamo con formalizzare la tripla $(I_{SAT}, S_{SAT}, \pi_{SAT})$ del problema SAT:

 $I_{SAT} = \{f : \{vero, falso\}^n \to \{vero, falso\} \text{ tale che f è in forma congiuntiva normale (CNF)}\}$ $S_{SAT}(f) = \{(b_1, b_2, \dots, b_n) \in \{vero, falso\}^n\}$

$$\pi_{SAT}(f,S_{SAT}(f)) = \exists (b_1,b_2,\ldots,b_n) \in S_{SAT}(f): f(b_1,b_2,\ldots,b_n) = \text{vero},$$
 ossia, sostituendo in f ogni occorrenza della variabile x_i con il valore b_i (ed ogni occorrenza di $\neg x_i$ con $\neg b_i$) per ogni $i=1,\ldots,n,$ la funzione f assume il valore vero.

Adesso, formalizziamo la tripla $(I_{3SAT}, S_{3SAT}, \pi_{3SAT})$ del problema 3SAT:

 $I_{3SAT} = \{f : \{vero, falso\}^n \to \{vero, falso\} \text{ tale che f è in forma 3-congiuntiva normale (3CNF)}\}$ $S_{3SAT}(f) = \{(b_1, b_2, \dots, b_n) \in \{vero, falso\}^n\}$

 $\pi_{3SAT}(f, S_{3SAT}(f)) = \exists (b_1, b_2, \dots, b_n) \in S_{3SAT}(f) : f(b_1, b_2, \dots, b_n) = \text{vero},$ ossia, sostituendo in f ogni occorrenza della variabile x_i con il valore b_i (ed ogni occorrenza di $\neg x_i$ con $\neg b_i$) per ogni $i = 1, \dots, n$, la funzione f assume il valore vero.

Sia
$$f(x) \in I_{3SAT} = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$
, $\forall i = 1, \dots, m$, $|C_i| = 3$.
Sia $g(y) \in I_{SAT} = D_1 \wedge D_2 \wedge \cdots \wedge D_v$.

Per dimostrare che 3SAT è **NPC**, dobbiamo fare la riduzione $SAT \leq 3SAT$. Ovvero $g \in SAT \Leftrightarrow f \in 3SAT$. $\forall i = 1, ..., m$, vediamo costruire C_i a partire da D_i : Chiamiamo letterale, una varibaile $l \in \{x_i, \neg x_i\}$

1. D_i contiene un solo letterale l.

$$C_i = (l \lor z_{i1} \lor z_{i2}) \land (l \lor \neg z_{i1} \lor z_{i2}) \land (l \lor z_{i1} \lor \neg z_{i2}) \land (l \lor \neg z_{i1} \lor \neg z_{i2})$$

2. D_i contiene 2 letterali $l_{i1} \vee l_{i2}$.

$$C_i = (l_{i1} \lor l_{i2} \lor z_{i1}) \land (\neg z_{i1} \lor l_{i1} \lor l_{i2})$$

- 3. D_i contiene 3 letterali $l_{i1} \vee l_{i2} \vee l_{i3}$, allora $C_i = D_i$.
- 4. D_i contiene 4 letterali $l_{i1} \vee l_{i2} \vee l_{i3} \vee l_{i4}$. In questo caso si raggruppano i primi 2 e gli ultimi 2.

$$C_i = (l_{i1} \lor l_{i2} \lor z_{i1}) \land (\neg z_{i1} \lor l_{i3} \lor l_{i4})$$

5. D_i contiene $k \ge 4$ letterali $\underbrace{l_{i1} \lor l_{i2}} \lor \cdots \lor \underbrace{l_{i(k-1)} \lor l_{ik}}$. In questo caso si raggruppano i primi 2 e gli ultimi 2.

$$C_i = (l_{i1} \lor l_{i2} \lor z_{i1}) \land (\neg z_{i1} \lor l_{i3} \lor z_{i2}) \land (\neg z_{i2} \lor l_{i4} \lor z_{i3}) \land \cdots \land (\neg z_{i(k-3)} \lor l_{i(k-1)} \lor l_{ik})$$

Possiamo costruire f a partire da g in tempo $O(|f|^2)$ che è polinomiale. Sapendo già che 3SAT è **NP** e avendo trovato una riduzione da SAT a 3SAT, possiamo concludere che 3SAT è **NPC**.