PCT

WOBLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(31) International Putent Classification ⁶ : C07H 21/00, C12N 15/12, 15/62, 15/63	Al	(11) International Publication Number: (43) International Publication Date:	WO 99/10364 4 March 1999 (04.03.99)
(21) International Application Number: PCTUS (22) International Filting Date: 27 August 1998 ((30) Priority Duta: 50056,248 29 August 1997 (29.08.97) (71) Applicant for all designated Sause energy USE-GENGME SCIENCES, INC. (USCUS): 9440 it Avenue, Rockville, MD 20330 (US). (72) Inventors', and (75) Inventors', and (76) Inventors', and (77) Inventors', and (78) Inventors', and (79) In	HUMA Key Wi Even, 1 ID 238 ski Res	87. CA, CH, CN, CY, CZ, DS 89. GH, GM, HR, HU, B, H, S, LC, LK, LK, LS, LT, LU, LY, MX, NO, NZ, PJ, PT, RO, RI TJ, TM, TR, TT, LJA, LG, US, patent (GH, GM, KE, LS, MW, patent (AM, AZ, BY, KG, KZ, potent (AT, BE, CL, CY, DE, BE, TJ, LU, MC, NL, PT, SB, CG, CL, CM, GA, GN, GW, M Published With international search report dd, 89.	E, DK, BE, ES, PJ, GB, GF, JP, KE, KG, KP, KR, KZ, MD, MG, MK, MN, MW, JS, DS, ES, GS, GS, SS, CL, Z, WJ, EW, JC, WJ, LW, JC, WJ, LW, MJ, LW, JC, WJ, LW, MJ, MJ, RJ, TJ, TMJ, EUTOPEA DK, ES, FI, FR, GH, GR, OAPI patens (BF, BJ, CF, L, MR, NE, SN, TD, TG).
(\$4) Title: FOLLISTATIN-3			

(57) Abstract

The present invention relates to a novel follistative-3 protein which is a number of the family of inhibito-related growins, to parientar, its instant markets each misched sea provided entaging the human follistative-3 protein. Pollistative-3 protein seat related as a revenue of the provided in sevention and the provided in the received provided in sevention. Both seat related to account provided in sevention and the provided in the provided in the provided in sevention and discordance of the regulation of cell growth and differentiation.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphiets publishing international applications under the PCT.

A1.	Albarco	376	Specie	1.5	8.490690	SE	Sicretais
434	Austenis	8%	Finland	2.3	Littuanis	SK	Slovakta
3.7	Asstr	31.15	Plance	E.E!	Sassantious;	55%	Sincegat
40	Assemble	GA	Gahon	V.3	Latvis	82	Swammed
32	Azesbeijas	GB	United Kingdom	55C	Macano	TD	Chad
BA	Bosnia and Herangovitta	GE	Georgia	MD	Republic of Molfova	TG	Tigo
4938	Asrhados	KG88	Olsana	86G	Madegaster	13	Yalla lotan
98	Belgssm	GN	Gainea	3686	The former Yaponlar	T%8	Torkmenistan
108	Berkina Faso	GR	Cheore		Stepoblic of Mandonia	THE	Tiekey
860	Beligaria	338	Hongary	365.	Madi	2.5.	Travided and Totago
20.2	Boxes	282	Beland	hsN	Mangaila	6.4	Ukosine
253	Bran B	28.	Issuel	3616	Mauritoris	MC	Descrits
63	Belses	88	Registed	8599	Malowi	636	United States of Asterios
CA.	Conside	830	Study	25%	Mexico	\$0X	Unbekissas.
CF	Costal African Republic	15.	Japan	NE	Niesr	VN	Viet Ster.
CG.	Oxigo	KX.	Kneye	242	Pictarizady	YU	Yagashria
OH	Swirmerland	KO	Kyngyantan	NO	Marwey	25%	Zimbabwe
€3	Calen d'Sossion	E39	Democratic People's	N.E	New Zealand		
C34	Consurven		Republic of Kaura	84.	Proband		
ON	Chins	KR	Republic of Kusta	FT	Pongai		

RO Romania RI Russian Federation SD Sadan SE Sweden

SC Shqapore

KE LC LI

LK

Kandatas

Salat Lecia

E.Sechesserhrie

Sei Lessiva

E.Beria

CU

DE Demmerk

BE Econosia

C)60+ CZ

Cermany \$5E

Carch Republic

WO 99/10364 PCT/US98/17710

Follistatin-3

Field of the Invention

3

10

15

20

25

The present invention relates to a novel turnan gene encoding a polypeptide which is a member of the family of inhibin-related proteins. More specifically, isolated nucleic acid molecules are provided encoding a human polypeptide named follistatin-3. Follistatin-3 polypeptides are also provided, as are vectors, host cells and recombinant methods for producing the same. Also provided are diagnostic methods for detecting disorders related to the reproductive system, and therapeutic methods for treating such disorders. The invention further relates to screening methods for identifying agonists and antaronists of follistatin-3 activure.

Background of the Invention

The family of inhibin-related proteins currently consists of at least four groups of members: inhibins, activins, and two splice variants of follistatin-1 (315 and 288 amino acids). Inhibins and activins are members of the transforming growth factor (TGF)-8 superfamily and function with opposing actions in a variety of capacities in paracrine and autocrine regulation of both reproductive and nonreproductive organs including the liver. kidney, adrenal glands, bone marrow, placenta, americs pituitary, and brain (Ying, S. Y., et al., Proc. Soc. Exp. Biol. Med. 214:114-122 (1997); Mather, J. P., et al., Proc. Soc. Exp. Biol. Med. 215:209-222 (1997)). Although the follistatins are not closely related to the TGF-B family, they still play a major role in the follocal stimulating hormone (FSH) synthetic pathway by increasing estradiol production and by functioning directly as high affinity activin-binding proteins. Inhibins, activins, and follistatin-1 were all initially identified as regulators of pituitary FSH secretion, but have more recently been further characterized to function as growth factors, embryo modulators, and immune factors (Petraglia, F. Piacenta 18:3-8 (1997)). In addition, each of these factors is involved with the regulation of gonadotropin biosynthesis and secretion, ovarian and placental steroidogenesis, and occyte and spermatogonial maturation (Halvorson, L. M. and DeCherney, A. H. Fertil. Steril, 65:459-469 (1996);

FSH is a vital component of the regulatory cascade governing development of human oocytes. Primary oocytes in newborns are arrested in the prophase stage of Meiosis I and are surrounded by a 1-2 cell thick layer of follicle cells constituting a structure termed the primordial follicle. In concert with other factors, stimulation of the primordial follicle with FSH initiates its progression to the more complex structures designated the developing and animal follicles (Ueno, N., et al., Proc. Natl. Acad. Sci. USA 84:8282-8286 (1987); Robertson, D. M., et al., Biochem, Biophys, Res. Comm. 149:744-749 (1987)). The antral follicle consists of an enlarged occyte surrounded by an increased sumber of follicle cells, a zona pellucida, cortical granules, and a fluid-filled cavity termed the antrum. It is in this state that thousands of developing occytes are maintained until puberty. Each month following this point, a surge in the local concentration of several additional hormones and other factors, primarily leuteinizing bormone (LH), stimulates accelerates the growth of roughly 15-20 of the developing follicles in the overy. Only one of these structures will ultimately complete the developmental progression of its enclosed oocyte to the metaphase stage of Meiosis II. The single stimulated follicle will then continue to enlarge until it bursts at the surface of the overy and releases the oocyte, still surrounded with a coating of follicle cells, for potential fertilization (Bornslaeger, E. A., et al., Dev. Biol. 114:453-462 (1986); Masui, Y. and Clarke, H. J. Int. Rev. Cytol. 57:185-282 (1979); Richards, J. S. Recent Prog. Horm. Res. 35:343-373 (1979)).

Follistatin also plays a central role in the above-described process of follicle development. Follistatin binds stoichiometrically to activing and, as a result, inhibits the activin-induced augmentation of FSH-release from cultured pituitary cells (Kogawa, K., et al., Endocrinology 128:1434-1440 (1991)). Further evidencing a feedback mechanism, cultured granulosa cells produce and secrete folisistatin in response to treatment with FSH (Saito, S., et al., Biochem. Biophys. Res. Comm. 176:413-422. (1991); Klein, R., et al., Endocrinology 128:1048-1056 (1991)). Furthermore, it has been determined by synthesizing the results of a number of sindies, that follistatin, activin. FSH, LH, and other factors function in concert in a variety of interrelated mechanisms to regulate many developmental processes, including the development of follicles. For example, in the presence of FSH, activin can augment both LH receptor expression and progesterone production by rat granulosa cells (Sugino, H., et al., Biochem. Biophys. Res. Comm. 153;281-288 (1988)). In addition, activin can significantly enhance the ability of granulosa cells to express FSH receptor and produce inhibin even in the absence of PSH (Nakamara, T., et al., Biochim, Biophys, Acia 1135:103-109 (1992); Sugiso, H., et al., supra: Hasegawa, Y., et al., Biochem. Biophys. Res. Comm. 156:668-674 (1988)). These and other studies provide support

28

35

WO 99/10364 PCT/US98/17710

3

for the idea that follistatin and activin play important roles in the regulation of granulosa cellular differentiation.

In addition to the many well-characterized effects which follistatin, activin, and inhibin elicit on the regulation of various developmental processes in the reproductive system, a large number of studies have more recently begun to define regulatory roles for these molecules in a variety of other tissues and systems. For example, during early embryonic development in Xenopus laevis, the action of activin A in developing targets of ciliary ganglion neurons is regulated by localized expression of follistatin (Hemmati-Brivanion, A. and Melton, D. A. Nature 359:609-614 (1992): Herrmati-Brivaniou, A. and Melton, D. A. Cell 77:273-281 (1994)). In addition, overexpression of follistatin leads to induction of neural tissue (Hemmati-Brivaniou, A., et al., Cell 77:283-295 (1994)). In the mouse, follistotic mRNA is first detected on embryonic day 5.5 in the deciduum, and, subsequently, in the developing hindbrain, somites, vibrissae, teeth, epidermis, and muscle (van den Eihnden-van Raaii, A. J. M., et al., Dev. Biol. 154:356-365 (1992); Albano, R. M., et al., Development 120:803-813 (1994); Feijen, A., et al., Development 120:3621-3637 (1994)). Evidence of the relative importance of such a varied expression of follistatin is provided by Matzuk and colleagues (Nature 374:360-363 (1995)) who demonstrate that follistatin-deficient mice are retarded in their growth, have decreased mass of the disphragm and intercostal muscles, shiny taut skin, skeletal defects of the hard pulate and the thirteenth pair of fibs, their whisker and tooth development is abnormal, they fail to breathe, and die within hours of birth. Since the defects in mice deficient in follistatin are far more widespread than in mice deficient in activin, Matzuk and coworkers (suora) suggest that foilistatin may modulate the cell growth and differentiation regulatory actions of additional members of the TOF-B superfamily.

30

20

25

35

Thus, there is a need for polypeptides that function as regulators of reproductive development, embryonic development, and cell growth and differentiation since disturbances of such regulation may be involved in disorders relating to reproduction and the regulation of cell growth and differentiation. Therefore, there is a need for identification and characterization of such human polypeptides which can play a role in detecting, preventing, ameliorating or correcting such disorders.

Summary of the Invention

The present invention provides isolated madeic acid molecules comprising a polynucleotide encoding at least a portion of the follistain:3 polypeptide having the complete amino acid sequence shown in SEQ ID NO:2 or the complete amino acid sequence encoded by the cDNA clone deposited as plasmid DNA as ATCC Deposit WO 99/18364 PCT/US98/17710

4

Number 209199 on August 8, 1997. The nucleotide sequence determined by sequencing the deposited follistatin-3 clone, which is shown in Figures 1A, 1B, and 1C (SEQ ID NO:1), contains an open reading frame encoding a complete polypeptide of 263 amino acid residues, including an initiation codon encoding an N-terminal methionine at nucleotide positions 19-21, and a predicted molecular weight of about 27.7 kDa. Nucleic acid molecules of the invention include those encoding the complete amino acid sequence excepting the N-terminal methionine shown in SEQ ID NO:2, or the complete amino acid sequence excepting the N-terminal methionine encoded by the cDNA clone in ATCC Deposit Number 209199, which molecules also can encode additional amino acids fused to the N-terminus of the follistatin-3 amino acid sequence.

The encoded polypeptide has a predicted leader sequence of 26 amino acids underlined in Figure 1A; and the amino acid sequence of the predicted mature follistatin-3 protein is also shown in Figures 1A, 1B, and 1C, as amino acid residues 27-263 and as residues 1-237 in SEO ID NO-2.

15

26

30

Thus, one aspect of the invention provides an isolated nucleic acid molecule comprising a polynucleotide comprising a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence encoding the follistatin-3 polypeptide having the complete amino acid sequence in SEQ ID NO:2 (i.e., positions -26 to 237 of SEQ ID NO:2); (b) a nucleotide sequence encoding the follistatin-3 polypeptide having the complete amino acid sequence in SEQ ID NO:2 excepting the N-terminal methionine (i.e., positions -25 to 237 of SEQ ID NO:2); (c) a nucleotide sequence encoding the predicted mature foilistatin-3 polypeptide having the amino acid sequence at positions 1 to 237 in SEQ ID NO:2; (d) a nucleotide sequence encoding the follistatin-3 polypeptide having the complete amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209199; (e) a nucleotide sequence encoding the follistatin-3 polypeptide having the complete amino acid sequence excepting the N-terminal methionine encoded by the cDNA clone contained in ATCC Deposit No. 209199; (f) a aucleotide sequence encoding the mature follistatin-3 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209199; and (g) a nucleotide sequence complementary to any of the nucleotide sequences in (a), (b), (c), (d), (e) or (f) above.

Further embodiments of the invention include isolated nucleic acid molecules that comprise a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical, to any of the aucicotide sequences in (a), (b), (c), (d), (e), (f) or (g), above, or a polynucleotide which hybridizes under stringent hybridization conditions to a polynucleotide in (a), (b), (c), (d), (e), (f) or (g), above. This polynucleotide which hybridizes does not hybridize

Ę

under stringent hybridization conditions to a polymerleotide having a nucleotide sequence consisting of only A residues or of only T residues.

An additional nucleic acid embodiment of the invention relates to an isolated nucleic acid molecule comprising a polynucleotide which encodes the amino acid sequence of an epitope-bearing portion of a follistatin-3 polypeptide having an amino acid sequence in (a), (b), (c), (d), (e) or (f), above. A further embodiment of the invention relates to an isolated nucleic acid molecule comprising a polynucleotide which encodes the amino acid sequence of a follistatin-3 polypeptide baving an amino acid sequence which contains at least one amino acid substitution, but not more than 50 amino acid substitutions, even more preferably, not more than 40 amino acid substitutions, still more preferably, not more than 30 amino acid substitutions. Of course, in order of ever-increasing preference, it is highly preferable for a polynucleotide which encodes the amino acid sequence of a follistatin-3 polypeptide to have an amino acid sequence which contains not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid substitutions. Conservative substitutions are preferable.

10

15

20

25

35

The present invention also relates to recombinant vectors, which include the isolated nucleic acid molecules of the present invention, and to host cells containing the recombinant vectors, as well as to methods of making such vectors and host cells and for using them for production of follistatin-3 polypeptides or peptides by recombinant techniques.

In accordance with a further aspect of the present invention, there is provided a process for producing such polypeptide by recombinant techniques comprising culturing recombinant prokaryotic and/or eukaryotic host cells, contaming a follistatin-3 nucleic acid sequence, under conditions promoting expression of said protein and subsequent recovery of said protein.

The invention further provides an isolated follistatin-3 polypeptide comprising an amino acid sequence selected from the group consisting of: (a) the amino acid sequence of the full-length follistatin-3 polypeptide having the complete amino acid sequence shown in SEQ ID NO:2 (i.e., positions -26 to 237 of SEQ ID NO:2); (b) the amino acid sequence of the full-length follistatin-3 polypeptide having the complete amino acid sequence shown in SEQ ID NO:2); (c) the amino acid sequence of the predicted mature follistatin-3 polypeptide having the amino acid sequence at positions 1 to 237 in SEQ ID NO:2); (c) the amino acid sequence at positions 1 to 237 in SEQ ID NO:2; (d) the amino acid sequence of the full-length follistatin-3 polypeptide having the complete amino acid sequence of the full-length follistatin-3 polypeptide having the complete amino acid sequence of the full-length follistatin-3 polypeptide having the complete amino acid sequence of the full-length follistatin-3 polypeptide

having the complete amino acid sequence excepting the N-terminal methionine encoded by the cDNA clone contained in ATCC Deposit No. 209199; and (f) the amino acid sequence of the mature follistatin-3 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209199. The polypeptides of the present invention also include polypeptides having an amino acid sequence at least 80% identical, more preferably at least 90% identical, and still more preferably 95%, 96%, 97%, 98% or 99% identical to those described in (a), (b), (c), (d), (e) or (f) above, as well as polypeptides having an amino acid sequence with at least 90% similarity, and more preferably at least 95% similarity, to those above.

An additional embodiment of this aspect of the invention relates to a peptide or polypeptide which comprises the amino acid sequence of an epitope-hearing portion of a follistatin-3 polypeptide having an amino acid sequence described in (a), (b), (e), (d), (e) or (f) above. Peptides or polypeptides having the amino acid sequence of an epitope-bearing portion of a follistatin-3 polypeptide of the invention include portuous such polypeptides with at least six or seven, preferably at least nine, and more preferably at least about 30 amino acids to about 50 amino acids, although epitope-bearing polypeptides of any length up to and including the entire amino acid sequence of a polypeptide of the invention described above also are included in the invention.

868

25

30

35

A further embodiment of the invention relates to a polypeptide which comprises the amino acid sequence of a follistatin-3 polypeptide having an amino acid sequence which contains at least one amino acid substitution, but not more than 50 amino acid substitutions, even more preferably, not more than 40 amino acid substitutions, still more preferably, not more than 30 amino acid substitutions, and still even more preferably, not more than 20 amino acid substitutions. Of course, in order of ever-increasing preference, it is highly preferable for a peptide or polypeptide to have an amino acid sequence which comprises the amino acid sequence of a follistatin-3 polypeptide, which contains at least one, but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid substitutions. In specific embodiments, the number of additions, substitutions, and/or deletions in the amino acid sequence of Figures 1A, 1B, and 4C, or fragments thereof (e.g., the mature form and/or other fragments described herein), is 1-5, 5-10, 5-25, 5-50, 10-50 or 50-150, conservative amino acid substitutions are preferable.

In another embodiment, the invention provides an isolated antibody that binds specifically to a follistatin-3 polypeptide having an amino acid sequence described in (a), (b), (c), (d), (e) or (f) above. The invention further provides methods for isolating antibodies that bind specifically to a follistatin-3 polypeptide having an amino acid sequence as described herein. Such antibodies are useful diagnostically or the approximately as described below.

WO 99/18364 PCT/I/S98/17710

7

The invention also provides for pharmaceutical compositions comprising follistatin-3 polypeptides, particularly human follistatin-3 polypeptides, which may be employed, for instance, to treat cancers and other cellular growth and differentiation disorders, as well as disorders of the reproductive system. Methods of treating individuals in need of follistatin-3 polypeptides are also provided.

The invention further provides compositions comprising a follistatin-3 polynucleotide or a follistatin-3 polypeptide for administration to cells in vitro, to cells ex vivo and to cells in vitro, or to a multicellular organism. In certain particularly preferred embodiments of this aspect of the invention, the compositions comprise a follistatin-3 polypucleotide for expression of a follistatin-3 polypeptide in a host organism for treatment of disease. Particularly preferred in this regard is expression in a human patient for treatment of a dysfunction associated with aberrant endogenous activity of follistatin-3.

The present invention also provides a screening trethod for identifying compounds capable of enhancing or inhibiting a biological activity of the follistatin-3 polypeptide, which involves contacting a ligand which is inhibited by the follistatin-3 polypeptide with the candidate compound in the presence of a follistatin-3 polypeptide compound and of follistatin-3 polypeptide, and comparing the ligand activity to a standard level of activity, the standard being assayed when contact is made between the ligand itself in the presence of the follistatin-3 polypeptide and the absence of the candidate compound. In this assay, an increase in ligand activity over the standard indicates that the candidate compound is an agonist of follistatin-3 activity and a decrease in ligand activity compared to the standard indicates that the compound is an antagonist of follistatin-3 activity.

20

25

30

In another aspect, a screening assay for agonists and antagonists is provided which involves determining the effect a candidate compound has on follistatin-3 binding to activin or an activin-like molecule. In particular, the method involves contacting the activin or an activin-like molecule with a follistatin-3 polypeptide and a candidate compound and determining whether follistatin-3 polypeptide binding to the activin or an activin-like molecule is increased or decreased due to the presence of the candidate compound. In this assay, an increase in binding of follistatin-3 over the standard binding indicates that the candidate compound is an agonist of follistatin-3 binding activity and a decrease in follistatin-3 binding compared to the standard indicates that the compound is an antagonist of follistatin-3 binding compared to

It has been discovered that follistatin-3 is expressed not only in Hodgkin's Lymphoma but also in synovial fibroblasts, gall bledder, resting and serum-induced WO 99/18364 PCT/US98/17710

8

smooth muscle, testes, Merkel cells, HEL cells, hippocampus, TNF-a- and IFN-induced epithelial cells, keratinocyte, amygdala depression, HL-60 cells, hepatoma, progesterone-treated epidermal cells, endothelial cells, HSC172 cells, conhelioki sarcoma, activated T-cells, breast lymph node, pancreatic carcinoma, fetal dura mater, fetal lung, epididymis, placenta, dendritic cells, rejected kidney, and sterine cancer, Therefore, nucleic acids of the invention are useful as hybridization probes for differential identification of the tissue(s) or cell type(s) present in a biological sample. Similarly, polypeptides and antibodies directed to those polypeptides are useful to provide immunological probes for differential identification of the tissue(s) or cell type(s). In addition, for a number of disorders of the above tissues or cells, particularly of the reproductive system, or disorders of the regulation of cell growth and differentiation, significantly higher or lower levels of follistatio-3 gene expression may be detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) taken from an individual having such a disorder, relative to a "standard" follistatin-3 gene expression level, i.e., the foilistatin-3 expression level in healthy tissue from an individual not having the reproductive system or regulation of cell growth and differentiation disorder. Thus, the invention provides a diagnostic method useful during diagnosis of such a disorder. which involves: (a) assaying follistatin-3 gene expression level in cells or body fluid of an individual; (b) comparing the follistatin-3 gene expression level with a standard follistatin-3 gene expression level, whereby an increase or decrease in the assayed follistatin-3 gene expression level compared to the standard expression level is indicative of disorder in the reproductive system or of a disorder of the regulation of cell growth and differentiation.

An additional aspect of the invention is related to a method for treating an individual in need of an increased level of follistatin-3 activity in the body comprising administering to such an individual a composition comprising a therapeutically effective amount of an isolated follistatin-3 polypeptide of the invention or an agonist thereof.

25

35

A still further aspect of the invention is related to a method for treating an individual in need of a decreased level of follistatin-3 activity in the hody comprising, administering to such an individual a composition comprising a therapeutically effective amount of an follistatin-3 antagonist. Preferred antagonists for use in the present invention are follistatin-3-specific antibodies.

Brief Description of the Figures

Figures 1A, 1B, and 1C show the nucleotide sequence (SEQ ID NO:1) and deduced antino acid sequence (SEQ ID NO:2) of follistatin-3.

The predicted leader sequence of about 26 amino acids is underlined. Note that the methionine residue at the beginning of the leader sequence in Figure 1A is shown in position number (positive) 1, whereas the leader positions in the corresponding sequence of SEQ ID NO:2 are designated with negative position numbers. Thus, the leader sequence positions 1 to 26 in Figure 1A correspond to positions -26 to -1 in SEQ ID NO:2

Two potential asparagine-linked glycosylation sites are marked in the amino acid sequence of follistatin-3. The sites are asparagine-73 and asparagine-215 in Figure 1A (asparagine-47 and asparagine-179 in SEQ ID NO:2), and are with the bold pound symbol (#) above the nucleotide sequence coupled with a bolded one letter abbreviation for the asparagine (N) in the amino acid sequence in Figure 1A; that is, the actual asparagine residues which are potentially glycosylated is bolded in Figure 1A. The potential N-linked glycosylation sequences are found at the following locations in the follistatin-3 amino acid sequence: N-73 through H-76 (N-73, L-74, T-75, H-76) and N-215 through Y-218 (N-215, V-216, T-217, Y-218). A potential Protein Kinase C (PKC) phosphorylation site is also marked in Figure 1A with a bolded tyrosine symbol (T) in the follistatin-3 amino acid sequence and an asterisk (*) above the first nucleotide encoding that tyrosine residue in the foilistatin-3 nucleotide sequence. The potential PKC phosphorylation sequence is found in the follistatin-3 amino acid sequence from residue T-141 through residue R-143 (T-141, Y-142, R-143). Potential Casein Kinase II (CK2) phosphorylation sites are also marked in Figure 1A with a boided tyrosine or serine symbol (T or S) in the follistatin-3 amino acid aequence and an asterisk (*) above the first nucleotide encoding the appropriate tyrosine or serine residue in the follistatin-3 nucleotide sequence. Potential CK2 phosphorylation sequences are found at the following locations in the follissatin-3 amino acid sequence: T-57 through E-60 (T-57, R-58, A-59, E-60); T-141 through D-144 (T-141, Y-142, R-143, D-144); T-246 through E-249 (T-246, P-247, E-248, E-249); and S-255 through E-258 (S-255, A-256, E-257, E-258). Ten potential myristylation sites are found in the follistatin-3 amino acid sequence shown in Figure 1A. Potential myristylation sites are marked in Figure 1A with a double underline delineating the amino acid residues representing each potential myristolation site in the follistatin-3 amino acid sequence. The potential myristolation sites are located in the following postions in the follostatin-3 amino acid sequence: G-43 through C-48 (G-43, O-44, E-45, A-46, T-47, C-48); G-65 through A-70 (G-65, N-66, L-67, D-68, T-69, A-70); G-78 through L-83 (G-78, N-79, K-80, I-81, N-82, L-83); G-88 through L-93 (G-88, L-89, V-90, H-91, C-92, L-93); G-136 through T-141 (G-136, S-137, D-138, G-139, A-140, T-141); G-188 through V-193 (G-188, S-189, A-190, H-191, C-192, V-193); G-207 through G-212 (G-267, Q-208, E-209, L-210,

30

C-211. G-212); G-236 through G-241 (G-236, V-237, R-238, H-239, A-240, G-241); G-241 through T-246 (G-241, S-242, C-243, A-244, G-245, T-246); and G-252 through E-257 (G-252, G-253, E-254, S-255, A-256, E-257).

Figure 2 shows the regions of identity between the amino acid sequences of the follistatin-3 protein and translation product of the human mRNA for follistatin-1 (SEQ ID NO:3), determined by the computer program Bestfit (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, W1 5371) using the default parameters.

Figure 3 shows an analysis of the follistatin-3 amino acid sequence (SEQ ID NO:2). Alpha, beta, turn and coil regions; hydrophilicisy and hydrophobicity; amphipathic regions; flexible regions; antigenic index and surface probability, as predicted using default parameters of the recited computer programs, are shown.

In the "Antigenic Index or Jameson-Wolf" graph, the positive peaks indicate locations of the highly antigenic regions of the follistatin-3 protein, i.e., regions from which epitope-bearing peptides of the invention can be obtained. Non-limiting examples of antigenic polypeptides or peptides that can be used to generate follistatin-3-specific antibodies include: a polypeptide comprising amino acid residues Lys-54 to Asp-62, Val-91 to Lœu-99, Lys-100 to Gln-108, Cys-116 to Pro-124, Gln-140 to Lœu-148, Trp-156 to Ser-164. Arg-170 to Gin-181, Cys-212 to Phe-224, Tyr-239 to Thr-247. Pro-251 to Met-259, and Asp-263, to His-271 of SEO ID NO-2.

The data presented in Figure 3 are also represented in tabular form in Table I. The columns are labeled with the headings "Res", "Position", and Roman Numerals I-XIV. The column headings refer to the following features of the amino acid sequence presented in Figure 3 and Table I: "Res": amino acid residue of SEQ ID NO:2 or Figure IA (which is the identical sequence shown in SEQ ID NO:2, with the exception that the residues are numbered 1-263 in Figure 1A and -18 through 348 in SEQ ID NO:4); "Position": position of the corresponding residue within SEO ID NO:2 or Figures 2A and 2B (which is the identical sequence shown in SEQ ID NO:4, with the exception that the residues are numbered 1-366 in Figures 2A and 2B and -18 through 348 in SEQ ID NO.4); I. Alpha, Regions - Garnier-Robson; II: Alpha, Regions - Chou-Fasman; III: Beta, Regions - Garnier-Robson; IV: Beta, Regions - Chou-Pasman; V: Turn, Regions -Garnier-Robson; VI: Turn, Regions - Chou-Fasman; VII: Coil, Regions - Garnier-Robson; VIII: Hydrophilicity Plot - Kyte-Doolitrle; IX: Hydrophobicity Plot -Hopp-Woods, X: Alpha, Amphipathic Regions - Eisenberg; XI: Beta, Amphipathic Regions - Eisenberg: XII: Flexible Regions - Karplus-Schulz; XIII: Antigenic Index -Jameson-Wolf; and XIV: Surface Probability Plot - Emini.

WO 99/18364 PCT/0598/17710

13

Detailed Description

The present invention provides isolated nacteic acid molecules comprising a polynucleotide encoding a follistatin-3 polypeptide having the amino acid sequence shown in SEQ ID NO:2, which was determined by sequencing a cloned cDNA. The nucleotide sequence shown in Figures 1A, 1B, and 1C (SEQ ID NO:1) was obtained by sequencing the HDTAH85 clone, which was deposited on August 8, 1997 at the American Type Culture Collection, 10801 University Boulevard, Manassas, Virginia 20110-2209, and given accession number ATCC 209199. The deposited clone is contained in the pBluescript SK(-) plasmid Gutatarene, La Jolla, CA).

The follistatin-3 protein of the present invention shares sequence homology with the translation product of the human mRNA for follistatin-1 (Figure 2: SEQ ID NO.3). Follistatin-1 is thought to be an important factor in the regulation of follicle development and spermatogenesis in the reproductive systems. Follistatin-1 acts as an antagonist of activin by stoichiometrically binding to activin and preventing interaction with the activin receptor. It is thought that, in addition to activin, follistatin-1 may act in a similar manner by targeting additional members of the TGF-9 superfamily.

10

20

25

Nucleic Acid Molecules

Unless otherwise indicated, all nucleotide sequences determined by sequencing a DNA molecule herein were determined using an automated DNA sequencer (such as the Model 373 from Applied Biosystems, Inc., Foster City, CA), and all amino acid sequences of polypeptides encoded by DNA molecules determined herein were predicted by translation of a DNA sequence determined as above. Therefore, as is known in the art for any DNA sequence determined by this automated approach, any nucleotide sequence determined herein may contain some errors. Nucleotide sequences determined by automation are typically at least about 90% identical, more typically at least about 95% to at least about 99.9% identical to the actual nucleotide sequence of the sequenced DNA molecule. The actual sequence can be more precisely determined by other approaches including manual DNA sequencing methods well known in the art. As is also known in the art, a single insertion or deletion in a determined micleotide sequence compared to the actual sequence will cause a frame shift in translation of the nucleotide sequence such that the predicted amino acid sequence encoded by a determined nucleotide sequence will be completely different from the amino acid sequence actually encoded by the sequenced DNA molecule, beginning at the point of such an insertion or deletion.

By "nucleotide sequence" of a nucleic acid molecule or polynucleotide is intended, for a DNA molecule or polynucleotide, a sequence of deoxyribonucleotides,

20

30

WO 99/10364 PCT/ES98/17710 12

and for an RNA molecule or polynucleotide, the corresponding acquence of ribonucleotides (A, G, C and U), where each thymidine deoxyribonucleotide (T) in the specified deoxyribonucleotide sequence is replaced by the ribonucleotide uridine (U).

Using the information provided herein, such as the nucleotide sequence in Figures 1A, 1B, and 1C (SEQ ID NO:1), a nucleic acid molecule of the present invention encoding a follistatin-3 polypeptide may be obtained using standard cloning and screening procedures, such as those for cloning cDNAs using mRNA as starting material. Illustrative of the invention, the nucleic acid molecule described in Figures 1A, 1B, and 1C (SEQ ID NO:1) was discovered in a cDNA library derived from Hodgkin's Lymphoma.

Additional clones of the same gene were also identified in cDNA libraries from the following cells and tissues: synovial fibroblasts, gall bladder, resting and serum-induced smooth muscle, testes, Merkel cells, HEL cells, hippocampus, TNF-trand IFN-induced epithelial cells, keratinocyte, amygdala depression, HL-60 cells, hepatoma, progesterone-treated epidermal cells, endothelial cells, HSC172 cells, epithelioid sarcoma, activased T-cells, breast lymph node, pancreatic carcinoma, fetal dura mater, fetal lung, epididymis, placenta, dendritic cells, rejected kidney, and merine cancer.

The determined nucleotide sequence of the follistatio-3 cDNA of Figures 1A, 1B. and IC (SEQ ID NO:1) contains an open reading frame encoding a protein of 263 amino acid residues, with an initiation codon at nucleotide positions 19-21 of the nucleotide sequence in Figure 1A (SEQ ID NO:1), and a deduced molecular weight of about 27.7 kDa. The amino acid sequence of the follistatin-3 protein shown in SEO ID NO:2 is about 43.2% identical to human mRNA for follistatin-1 (Figure 2; Shimasaki, S., et al., Proc. Natl. Acad. Sci. U.S.A. 85:4218-4222 (1988); GenBank Accession No. J03771).

The open reading frame of the follistatin-3 gene shares sequence homology with the translation product of the human mRNA for follistatin-1 (Figure 2; SEQ ID NO:3). The homology between follistatin-1 and follistatin-3 indicates that follistatin-3 may also be involved in a physiological regulation of cell growth and differentiation, particularly with regard to cells of the reproductive system.

As one of ordinary skill would appreciate, due to the possibilities of sequencing errors discussed above, the actual complete follistatin-3 polypeptide encoded by the deposited cDNA, which comprises about 263 amino acids, may be somewhat longer or shorter. More generally, the actual open reaching frame may be anywhere in the range of ±20 amino acids, more likely in the range of ±10 amino acids, of that predicted from either the methionine codon from the N-terminus shown in Figure 1A (SEQ ID NO:1). It

10

15

20

25

35

will further be appreciated that, depending on the analytical criteria used for identifying various functional domains, the exact "address" of the mature form of the follistatin-3 polypeptide may differ slightly from the predicted positions above. For example, the exact location of the cleavage site of the precursor form of the mature follistatin-3 molecule shown in SEQ ID NO:2 may vary slightly (e.g., the address may "shift" by about 6 residues, depending on the criteria used to define the cleavage site. In this case, the ends of the signal peptide and the beginning of the mature follistatin-3 molecule were predicted using the HGS1 SignalP computer algorithm. One of skill in the art will realize that another widely accepted computer algorithm used to predict potential sites of polypeptide cleavage, PSORT, will predict the cleavage of an N-terminal signal peptide from the follistatin-3 polypeptide at a point slightly different from that predicted by the HGS1 SignalP algorithm. In either case, as discussed further below, the invention further provides polypeptides having various residues deleted from the N-terminus of the complete polypeptide, including polypeptides corresponding to either of the predicted mature follistatin-3 polypeptides described herein.

The aniso acid sequence of the complete follistatin-3 protein includes a leader sequence and a mature protein, as shown in SEQ ID NO:2. More in particular, the present invention provides nucleic acid molecules encoding a mature form of the follistatin-3 protein. Thus, according to the signal hypothesis, once export of the growing protein chain across the rough endoplasmic reticulum has been initiated. proteins secreted by mammalian cells have a signal or secretory leader sequence which is cleaved from the complete polypeptide to produce a secreted "mature" form of the protein. Most mammalian cells and even insect cells cleave secreted proteins with the same specificity. However, in some cases, cleavage of a secreted protein is not entirely uniform, which results in two or more mature species of the protein. Further, it has long been known that the cleavage specificity of a secreted protein is ultimately determined by the primary structure of the complete protein, that is, it is inherent in the amino acid sequence of the polypeptide. Therefore, the present invention provides a nucleotide sequence encoding the mature follocatin-3 polyperside having the amino acid sequence encoded by the cDNA clone contained in the host identified as ATCC Deposit No. 209199. By the "mature follistatin-3 polypeptide having the amino acid sequence encoded by the cDNA clone in ATCC Deposit No. 209199" is meant the mature form(s) of the follistatin-3 protein produced by expression in a mammalian cell (e.g., COS cells, as described below) of the complete open reading frame encoded by the human DNA sequence of the clone contained in the vector in the deposited host.

In addition, methods for predicting whether a protein has a secretary leader as well as the cleavage point for that leader sequence are available. For instance, the method

20

36

35

of McGeoch (Virus Res. 3:271-286 (1985)) uses the information from a short Nterminal charged region and a subsequent uncharged region of the complete (uncleaved) protein. The method of von Heinje (Nucleic Acids Res. 14:4683-4690 (1986)) uses the information from the residues surrounding the cleavage site, typically residues -13 to +2 where +1 indicates the amino terminas of the mature protein. The accuracy of predicting the cleavage points of known mammatian secretory proteins for each of these methods is in the range of 75-80% (von Heinje, supra). However, the two methods do not always produce the same predicted cleavage point(s) for a given protein.

In the present case, the deduced amino acid sequence of the complete follistatin-3 polypeptide was analyzed by the HGSI SignalP algorithm, which is an expert system for predicting the cellular location of a protein based on the amino acid sequence. As part of this computational prediction of localization, the methods of McGeoch and von Heinje are incorporated. Thus, the computation analysis above predicted a single cleavage site within the complete amino acid sequence shown in SEQ ID NO:2 (see above discussion).

As indicated, nucleic acid molecules of the present invention may be in the form of RNA, such as mRNA, or in the form of DNA, including, for instance, cDNA and genomic DNA obtained by cloning or produced synthetically. The DNA may be double-stranded or single-stranded. Single-stranded DNA or RNA may be the coding strand, also known as the sense strand, or it may be the non-coding strand, also referred to as the anti-sense strand.

By "isolated" modecia acid molecule(s) is intended a nucleic acid molecule. DNA or RNA, which has been removed from its native environment. For example, recombinant DNA molecules contained in a vector are considered isolated for the purposes of the present invention. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include in vivo or in vitro RNA transcripts of the DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.

Isolated nucleic acid molecules of the present invention include DNA molecules comprising an open reading frame (ORF) with an initiation codon at positions 19-21 of the nucleotide sequence shown in Figure 1A (SEQ ID NO:1).

Also included are DNA molecules comprising the coding sequence for the predicted mature follistatin-3 protein shown at positions 1-237 of SEQ ID NO:2.

In addition, isolated nucleic acid molecules of the invention include DNA molecules which comprise a sequence substantially different from those described above but which, due to the degeneracy of the genetic code, still encode the follistatin-3 protein.

Of course, the genetic code and species-specific codon preferences are well known in the art. Thus, it would be routine for one skilled in the art to generate the degenerate variants described above, for instance, to optimize codon expression for a particular host (e.g., change codons in the human mRNA to those preferred by a bacterial bost such as E, colification in the human mRNA to those preferred by a bacterial bost such as <math>E.

In another aspect, the invention provides isolated nucleic acid molecules encoding the follistatin-3 polypeptide having an amino acid sequence encoded by the cDNA cione contained in the plasmid deposited as ATCC Deposit No. 209199 on August 8, 1997.

Preferably, this nucleic acid molecule will encode the mature polypeptide encoded 10 by the above-described deposited cDNA clone.

The invention further provides an isolated nucleic acid molecule having the nucleotide sequence shown in Figures 1A, 1B, and 1C (SEQ ID NO:1) or the nucleotide sequence of the follistatin-3 cDNA contained in the above-described deposited clone, or a nucleic acid molecule having a sequence complementary to one of the above sequences. Such isolated molecules, particularly DNA molecules, are useful as probes for gene mapping, by in situ hybridization with chromosomes, and for detecting expression of the follistatin-3 gene in human tissue, for instance, by Northern blot analysis.

The present invention is further directed to nucleic acid molecules encoding portions of the nucleotide sequences described herein as well as to fragments of the isolated nucleic acid molecules described herein. In particular, the invention provides a polynucleotide having a nucleotide sequence representing the portion of SEQ ID NO:1 which consists of positions 1-810 of SEQ ID NO:1.

26)

25

35

In addition, the invention provides nucleic acid molecules having nucleotide sequences related to extensive portions of SEQ ID NO.1 which have been determined from the following related cDNA clones: HHPDX66R (SEQ ID NO.4), HDTAH61R (SEQ ID NO.5), HSBAV55R (SEQ ID NO.6), HUKFS32R (SEQ ID NO.7), HOOAD78R (SEQ ID NO.8), HAQAG52R (SEQ ID NO.9), HTLEJ56R (SEQ ID NO.10), HLMMN90R (SEQ ID NO.11).

Forther, the invention includes a polyaucleotide coroprising any portion of at least about 30 nucleotides, preferably at least about 50 nucleotides, of SEQ ID NO:1 from residue 1 to 500. More preferably, the invention includes a polyaucleotide comprising nucleotide residues 100-500, 200-500, 300-500, 400-500, 100-400, 200-400, 300-400, 100-300, 200-300, 100-200, 100-2495, 250-2495, 100-2495, 1500-2495, 1500-2495, 1500-2495, 1500-2495, 1500-2500, 100-1500, 100-1500, 100-1500, 300-1500, 100-1500, 100-1500, 100-1500, and 500-1600.

More generally, by a fragment of an isolated nucleic acid molecule having the nucleotide sequence of the deposited cDNA or the nucleotide sequence shown in Figures

30

35

1A. 1B, and 1C (SEQ ID NO:1) is intended fragments at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length which have uses that include, but are not finited to, as diagnostic probes and primers as discussed herein. Of course, larger fragments 50-300 nt in length are also useful according to the present invention as are fragments corresponding to most, if not all, of the nucleotide sequence of the deposited cDNA or as shown in Figures 1A. 1B, and 1C (SEQ ID NO:1). By a fragment at least 20 nt in length, for example, is intended fragments which include 20 or more contiguous bases from the nucleotide sequence of the deposited cDNA or the nucleotide sequence of the deposited regression of the present invention include nucleic acid molecules encoding epitope-bearing portions of the follistatin-3 polypeptide as identified in Figure 3 and described in more detail below.

In specific embodiments, the polynucleotide fragments of the invention encode a polypeptide which demonstrates a follistatin-3 functional activity. By a polypeptide demonstrating follistatin-3 "functional activity" is meant, a polypeptide capable of displaying one or more known functional activities associated with a complete, macure or active form of the follistatin-3 polypeptide. Such functional activities include, but are not limited to, biological activity ((e.g., modulating the follicle stimulating hormone (FSH) synthetic pathway, increasing estradiol production, binding activin, stimulating of gonadotropin biosynthesis and secretion, regulating ovarian and placental steroidogenesis, and occyte and spermatogonial maturation factory), antigenicity [ability to bind (or compete with a follistatin-3 polypeptide for binding) to an anti-follistatin-3 autibody], irunamogenicity (ability to generate antibody which binds to a follistatin-3 polypeptide), the ability to form polymers with other follistatin-3 or inhibin or TGF-4 polypeptides, and ability to bind to a receptor or ligand (e.g., an inhibin) for a follistatin-3 polypeptides, and ability to bind to a receptor or ligand (e.g., an inhibin) for a follistatin-3 polypeptide.

Preferred nucleic acid fragments of the present invention also include nucleic acid molecules encoding one or more of the following domains of follistatin-3; arriino acid residues 7-16, 34-45, 78-86, 91-100, 108-122, 131-145, 156-169, 184-192, and 196-210 of SEQ ID NO-2.

In specific embodiments, the polynucleotide fragments of the invention encode antigenic regions. Non-limiting examples of antigenic polypeptides or peptides that can be used to generate follistatin-3-specific antibodies include: a polypeptide comprising amino acid residues: Leu-14 to Ala-20, Ser-46 to Ile-55, Gly-88 to Pro-97, Gly-113 to Leu-133, Arg-138 to Glst-146. Pro-177 to Thr-191, and Gly-219 to Val-237 of SEQ ID NO:2.

30

In additional embodiments, the polynucleotides of the invention encode functional attributes of follistatin-3. Preferred embodiments of the invention in this regard include fragments that comprise alpha-helix and alpha-helix forming regions ("alpha-regions"), beta-sheet and beta-sheet forming regions ("beta-regions"), turn and turn-forming regions ("turn-regions"), coil and coil-forming regions ("coil-regions"), bydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions of follistatin-3.

17

PCT/US98/17710

The data representing the structural or functional attributes of follistatin-3 set forth in Figure 3 and/or Table I, as described above, was generated using the various modules and algorithms of the DNA*STAR set on default parameters. In a preferred embodiment, the data presented in columns VIII, IX, XIII, and XIV of Table I can be used to determine regions of follistatir-3 which exhibit a high degree of potential for antigenicity. Regions of high antigenicity are determined from the data presented in columns VIII, IX, XIII, and/or IV by choosing values which represent regions of the polypeptide which are likely to be exposed on the surface of the polypeptide in an environment in which antigen recognition may occur in the process of initiation of an immune response.

Certain preferred regions in these regards are set out in Figure 3, but may, as shown in Table I, be represented or identified by using tabular representations of the data presented in Figure 3. The DNA*STAR computer algorithm used to generate Figure 3 (set on the original default parameters) was used to present the data in Figure 3 in a tabular format (See Table I). The tabular format of the data in Figure 3 may be used to easily determine specific boundaries of a preferred region.

The above-mentioned preferred regions set out in Figure 3 and in Table 1 include, but are not limited to, regions of the aforementioned types identified by analysis of the amino acid sequence set out in Figures 1A, 1B, and 1C. As set out in Figure 3 and in Table 1, such preferred regions include Garnier-Robson alpha-regions, beta-regions, and coil-regions, Chou-Fasman alpha-regions, beta-regions, and coil-regions, Kyte-Doolittle hydrophilic regions and hydrophobic regions, Eisenberg alpha— and beta-amphipathic regions. Karplus-Schutz flexible regions. Emaini surface-forming regions and Jameson-Wolf regions of high antigenic index.

Among highly preferred fragments in this regard are those that comprise reigons of follistatin-3 that combine several structural features, such as two, three, four, five or more of the features set out above and in Table 1.

Table I

18

	266 h	rairim	X	XX	111	W	¥	VI	911	VILI	EX.	S	22	211	XIII	VIX
S	Mot	8	,		8			,		0.31	-0.24	*	*		1.07	1.11
	Agry	2			8					0.49	-0.27		*		1.23	0.88
	Priva	3					y.			0.53	-0.17	*			1.89	1.06
	Gly	4					7			6.73	-0.27	A	>		2,30	1.06
	Als	5	•	- 1		-		2	c	0.29	~0.36			ÿ	1.89	0.84
10	P3:0	6	,					17	è	0.60	0.33	,		F	1.08	0.45
	Glv	7						Ť	č	9.28	0.81	40		92	0.57	0.48
	Paro	8		•	8		-	2		-0.32	0.81			F	0.16	0.73
	Less	9	•		15		•			~0.39	1.00			2	-0.25	0.35
	Trop	36			8		,	•		6.13	1.09		-	2	-0.40	0.61
15	Pro	3.1	•	-	B	-	-	-			1.45					
1.5	Less	12	*	*	10			ż		-0.02 -0.27		•	~		-0.40	0.41
	Pac	23	,		82		Ť	T	•		1.49	*	٠		-6.20	0.49
				**		•			,	~0.87	1.30	4			0.20	0.48
	TXP	24	,	*	*	~	T	T		-5.64	1.67	*	*		9.20	0.25
20	Cly	35 36	*	-	*	-	*	3	C	~0.64	1,14	*	*		0.00	0.31
2.0	Ala		*	A					0	-1.02	1.37	*			-0.40	0.23
	Leeks	37		â	è	*		*	*	~1.07	1.44				-G.60	0.20
	ALA	\$8	911	A	19.	8	•			-1.20	1.17		*		-0.60	8.15
	MAN.	3.9		A	13	33	•		**	-1,63	1.17	•	*	1	-0.60	9.15
	Ala	26	*	ä.	8:	35	4		*	~2.12	1.49	*			-0.60	0.16
2.5	Val	21	*	A	33	8				-1.83	1.41				~0.60	9.11
	Gly	22		A	.83	33		*		~1.32	1.30	8			-0.60	0.15
	Pho	23	,		8	8	*			-1.33	0.77				-0.60	0.19
	Val	24			13	8		*		~1.39	0.09				-0.60	0.26
	Ser	25			8		~	5		-1.10	0.67	*			-0.40	0.25
30	Sec	54			8		•	,		-0.59	0.63			F	-0.25	0.40
	Ment.	27					Ži,			~6.24	0.27			30	0.45	0.53
	Gly	26		p.			2	100		0.24	0.03			*	0.82	0.64
	Ser	29	4				T	2		0.51	9.07	4		5	0.99	9.74
	Giv	30						121	£	0.60	0.19		-	3"	0.96	9.76
35	Aso	31	-				,	3.	200	0.55	~0.00	,		F	1.98	1.18
	er o	32			<				C	9.81	-0.90	4		3"	1.75	9.97
	Ala	3.3		4				res	0	0.30	0.04	4.	91	3.	1.13	0.87
	220	34	,			~	3	9	5	-0.07	0.26			F	1.16	0.00
	GAY	35					3.	7		-0.03	0.43	*		3	0.63	6.14
40	Gly	36	4	-	8			25		~0.93	0.92	*		3"	0.13	0.15
	val	33		A	23	-				-6,68	1.10	r			-0.60	0.08
	Cyn	26	2	A	8		4			-0.92	1.07	+			-0,50	0.14
	TTD	39		A	13	~				-0.16	2.04	*			-0.60	0.24
	Lens	40		A.	18		,			0.19	1.04				-0.32	0.32
4.5	Gln	43	v		18		,	5		8.53	0.90	*		7	0.65	2.92
	Gin	42					27	107		9.80	0.23			3"	1.64	1.68
	Civ	4.3					7	7		1.18	-0.19	٧	1	8	2.92	2,08
	G3n	44					197	91		0.78	-0.39	÷		2	2.80	3.72
	Glu	45					2			1.29	-0.21	*		¥	2.17	0.53
50	Ala	46					4	4		5.49	-0.23	p		8	2.09	0.72
	2300	47			8			191		-0.38	0.03				0.65	0.34
	Cys	48	ν.		29			T		-0.84	0.27				6.38	0.39
	Sleen.	49		-	88			20		-5.84	0.96				-0.20	0.12
	Less	50			38.	20	-			~1.16	0.36				-0.60	0.14
55	Val	91		- 1	33	33	•			-5.57	0.86				-0.60	0.33
	Les	92	,	•	2	8	•			~1.11	0.39	•	*		-0.36	0.48
	Gla	53	-		8	33				·9.76	0.23		*	5	-0.45	0.43
	The	54			35	35				-0.34	0.34			0	-0.15	0.45
		55			2	20	4		*	-0.12						
	Ago										-6.30	*		F	0.60	2.01

Table I (continued)

	Hes	Position	X	11	111	W	¥	VX	VIL	Attr	IX.	X	XX	XII	xiii	XIV
5	Val	56		À	8	23				0.33	-6.49	. *	,	*	0.60	1.17
	3337	8.5	,	A	26	38				0.88	-0.99			9	9,90	1.41
	Arm	58	,	ă.	8	20				0.25	~0.80		*	*	0.75	0.45
	Ala	59		A	23	23				+0.07	-0.23				0.30	0.33
	Glu	60		Ä	8	28				-0.37	-0.37		*	•	9.39	5.23
10	Cha	63		À	8	-				0.14	.0.43		*		0.65	0.15
	CV8	63			~		20	Ť		9.46	~0.04			,	1.60	0.15
	Ala	53				•	T	3		-9.54	-0.16		*		3.85	0.14
	Sor	64			•	•	200	ż	•	0.04	0.54			į.	1.33	0.19
	G3y	65				,	÷	7		v0.27	-0.03			F	2.30	0.58
15	Aso	86				`	· ·	r	,	-0.19	-0.11		*	*	2.25	0.83
	2.3m	67		•	88			7		0,19	-0.11			22	1.60	0.63
	ASD	66			8			3	-	0.48	9.41			*	0.45	0.65
	The	63			3	,		r		0.38	0.37				0.50	0.95
	Ala	70			33				-	0.31	0.37			5	0.05	1.28
20	Trp	73			3	•		ŕ		-0.00	0.37				0.10	0.62
Acres .	Ser	72	*	-	33			r		0.86	0.86				-0.20	0.62
	Age	73		,	8			*	<	ö. 6d	0.87	*			-0.20	0.84
	Len	74	,	,	6	,		3.	ć	0.51	0.80				0.43	1.24
	Tra	75	*	•		,			č	1.20	0.31		*		0.66	0.91
25	Ris	76	,			*	-	Ŷ	E	1.53	0.31	×		20'	1.29	0.91
Acres .	Pro	27		,				3.	0	9.99	-9.07		*	8.	2.32	2.22
	Gly	76	,	,	+	,		2	<u>_</u>	8.94	-8.87			20	2.85	1.09
	Amer	79	,				W.	T		0.94	~0.07			2	2.90	1.27
	Lys	90	•		23	,		3.	,	0.44	0.53			2	0.83	0.68
30	Lle	81			25				*	0.13	0.03			F	0.61	0.57
347	Asm	82			8	•	*	^	,	-0.36	0.29			5	0.18	0.35
	Len	83			8	8			*						~6.5D	0.19
	Len	84						•		-9.82	0.67			,		
	Giy	85			8	8		۰		-1.17	2.36				-0.60	0.18
35	Pine	86	*		20	25 25			*	-2.02	1.10				-0.60 -0.60	
22		87	,					*	,	~1.99	1.39					0.11
	Gly	88	*	<	B B	9				-2.02	1.34	·	•		-0.50	0.10
			*			9	1	*	4	-1.8%	1.16	•	8		~0.60	0.13
	Lattic	99			33	26				-1.88	3.39				-5 56	0.08
40	Val				35	₽		*		-1.74	1,20				~0.50	0.08
-eU	Has	92	*		28	B		-		~1.75	0.96				-0.60	0.13
	CAR	92			33	*		٧	,	^0,86	1.09	*	*		~0.50	6.08
	Lens	93 94	4		35	3	-		*	-0.53	0.40		,		0.01	0,23
	920		*	*		8	Ţ			-0,00	-0.24			*	1.32	0.28
45	Cyn	95	*				201	2		0.19	-0.38		•		2.03	0.76
43	Lyz	96			1		T	T		0.22	~0.36			8	2.49	0.46
	Asp	97					121	3,	,	9.54	-1.00			ž	3.30	0.49
	Serr	98				91	7	×		0.30	-1.04			1.	2.79	0.91
	Cha	99		-			721-	Ţ		\$.71	~9.97		*	9	2.48	0.34
40	Ann	100	4		B			20		3.71	-0.97			ž.	1.77	0.35
50	COA	101	*	~	B			*		6.32	~0.40			F	1.47	0.14
	10%	102			.8			3.		9.11	-0.36				1.32	0.26
	Glu	103		~	₽	*			>	5.07	-0.50				1.73	0.24
	CAS	164				^	20			9.78	#9.07		*	8	2.29	0.24
	My	105					7	3.		5.19	-0.50			8.	3.10	0.64
55	Pro			-		^	Sign	3		-5.23	-9.54		*	۶	2.79	0.38
	Gly						3	120		0.83	-0.07			8	2.19	0.38
	Lys	108					120	T		0.23	AQ. 64			8	2.17	0.74
	Ais	209		A	8					0.09	-0.46				0.6%	0.48
	Cys	110		8,	20		- 2			0.09	-0.20		2		0.30	0.49
60																

60

Table I (continued)

	Res	Position	1	22	111	37	v	¥%	VII	vily	xx	×	XX	XII	XXII	XXV
5	Ary	111		X.	28					-0.04	-0.20	*		,	0.30	0.20
	1500	112		A	83					0.41	0.23	N.			~Q.30	0.39
	i.esa	113		X			2			8,15	-0.29	+	4	,	3.54	0,70
	Gly	114		A			T			5.86	-0.41		*	3.	1.53	0.55
	Gly	115					360			0.86	·9.43			9	2.22	1.10
10	Arg	116		-		•	-	77	0	8,74	-0.46		+	*	2.41	0.71
***	200	117		,			Ŷ	40		8.58	-1.14			30	3.40	1.25
	Arg	110		•			2	Ť	,	0.50	-1.00			2,	2.91	0.68
	C/8	119	^		8			2		1.03	-0.93				2.02	0.35
	Glu	120			8			2.		1.38	×0.50				3.73	0.35
15	Cys	121	*		20			*		0.60	-0.93				1.64	0.30
12	Ala	122	*		8	*	*	ź		0.61	-0.36			,	1.46	0.30
			*		335	,	ege T	4						2		
	Pro	123 124					T	7		0.06	-0.54		•		2.85	0.23
	Asp		*		•			77		~0.09	~0.11		*		2.50	0.43
20	Cyst	1.25				2	Ţ			-9.30	-0.00		*	27	2.25	0.38
01	Sex	1.26	-				2			~0.22	~Q.80			F	1.80	0.35
	Siy	127				>	Ţ	~		0.48	-0.00		•	\$	1.95	5.21
	Zen	1.28			25		~	*	*	-0.12	~0.00	*	*		0.79	0.27
	Ppp	129			*		*		*	~0.3.2	9.11	4	*		-0.10	0.43
	ais	130			8		,			-6.31	0.13				-0.10	0.87
25	Arg	131			35	13		>		~0.68	0.34		*	8.	-0.30	0.74
	Lesso	132		~	*	35	*			-0.68	9.23	4	*		-0.30	0.26
	Gir	133			25	33				·\$.17	0.23	*	3		-0.30	0.25
	842	134			85	В	*			0.94	0.13	+	*		-0.30	0.17
	CASS	135			28	19				0.29	0.11	*	*		-0.02	8.35
30	Gly	136			28			3		~9.43	~0.14	+	*	P	2.43	0.20
	Sex	137					*	20		0.09	-0.04			8	2.09	0.27
	Asp	138					*	*		-0.16	-9.20			20	2.37	6.73
	Gly	339	,		,		2	2		8.81	-0.61			8	2.80	1.16
	Ala	140					*			3.48	-0.44			8	2.32	1.70
35	The	141			33					1.92	-0.83				3.39	1.70
	Tyr	142			ži			424		1.45	-0.93				2.33	2.97
	Arr	\$43			- 33			125		1.46	-0.63				2.38	1.57
	3.80	244			28			4		8.99	-1.19		*	87	2.30	1.89
	Glu	145			18			20		1.65	-0.39				2.00	0.99
4()	CVS	146		À	19					1.41	-1.74		*		1.40	0.99
	Glu	147	Ä	ä			•			1.07	-1.26		*		1.20	0.60
	Sec	148	A	Ã	,			,	*	1.07	-0.74				1.00	6.35
	Arg	149	å	8			•			8.49	-0.74		*		0.95	1.28
	Ala	190	ă	å						8.53.	-0.74				0.60	8.40
45	Als	151	24	A			7	-		0.83	-0.74			-	1.00	0.94
40	Ary	152		A	*		7			0.80	-1.80				1.00	0.48
	Cys	193		, A			*			1.40	-0.50				1.27	0.64
						*			-				*	*		
	Att	154		8			7			1.29	-0.57				1.54	0.98
200	Gly	195		Α		^	2			1.07	-1.07			2"	1.96	0.84
50	Nis	156						I.	¢	1,36	-0.29		×	F	2.28	1.29
	PXO	3.57	*	~	*	•		Ť	Ċ	5,39	-0.57		*	40	2.70	\$.88
	Asses	158					7:	T		8.45	0.07	*	*	E.	1.73	0.66
	Suecu	1.59			熟			Ť		5.18	0.26	*	*		0.93	0.48
	Dec	160			83	3				8.58	0.51	*	*		-0.06	0.49
55	Vai	161			8	33	è			5.24	0.09	,	•		-0.93	0.57
	550st.	162			8	25				0.57	3.51				-0.26	0.59
	Tyr	163		14	8			727		-0.10	~0.17		*		1.53	100
	Axg	164			23			T.		0.82	0.01		>		1.12	0.32
	Gly	\$65					T	Ŧ		2.35	~0.63		8	F	3.06	1.43

Table I (continued)

	Nes :	Position	Ţ	T.I	111	IV.	V	27	All	AIII	IX	Х	X.	XXX	XIII	XIV
5	Assa	166					7	3		1.73	-1.24		*	ş	3,40	1.83
-22	Cys.	167					3	3		1.60	-1.61		v	80	2.86	1.25
	Arn	168					7	75		1.90	~1.04			£.	2.57	0.58
	Lys	169	,	•	*		2	20.	,	1.76	-1.47			8	2.23	0.60
	Ser	170			-		2	Ť		1.24	-6.97		y	22	2.04	1.52
10	Cys	271		•			20	266		0.28	-0.90				1.40	0.58
111	Glas	172			33					0.28	-0.26				0.30	0.21
	32.8	173			8	8	`	4		-9.04	0.31				-0.30	0.09
	Ved	374			3	20				0,02	0,36	•			-0.02	0.25
	Val	175		,	В	8				9.11	-0.21		~		0.86	0.28
15	Cys	176			26	45				0.78	0.21				0.94	0.32
1-2	Stro	177		*	24	-	ď	3		0.48	0.11	,		ř	1.77	0.74
	Arp	178	,			•	7	4		-0.16	-0.16	,		P	2.80	1.34
	200	179	•			*	3	ŷ		-9.16	-0.21			P	2.52	1.34
	Gin	190		4	-	23	-31	*	,	-0.16	-0.16		,	*	1.69	0.64
20	Ser	181			85	23				0.51	0.02			7	0.41	0.34
20	Cys	192			8	3				0.72	0.07			,	-0.92	0.28
	Val.	183	•		8	8				9.30	0.84	*			~0.30	0.26
	Ser.	186			8	33				0.37	0.13				-0.00	0.78
	Aego	185			8	25		4		+0.13	9.17			*	0.41	0.52
25	erra.	186			8			Ţ		-0.42	-9.01			8	1.69	0.99
dent	Tim.	187	,		82	2	r	2		0.21	-0.16		•	F	2.52	1.28
	sily	188			•		T	Ŧ		0.40	-0.30			F	2.80	1.04
	ger.	189	,	*		,	2	- No.		0.40	0.27			F	1.77	0.32
	Ala	190		*	*	16	T	7.		~8.46	0.51	•			9.64	0.17
36	Ris	193	0		8	В				-1.12	0.87	:			-0.86	0.12
~14.7	Cys	192		•	26	33			•	-0.75	0.81			,	-0.32	0.05
	Val.	193			8	15		,		-0.94	9.43	*			-0.60	0.10
	Val	194			8	10			,	-1.23	6.43		,		~0.69	0.07
	Cyn	195		•	8	10			-	~0.86	0.43			,	-0.60	0.14
35	Agro	196			8	8				-1.49	0.23		,	•	-9.30	0.29
4040	Ala	197			8	8			-	-1.03	0.21			4	~0.30	0.20
	Ala	198	•		ži.	0		Ť		-1.03	-6.88		•	•	0.30	6.59
	Pate	199		,	33	,		72	-	~0.39	0.07				0.10	0.22
	Cys	200			23			4		-0.02	6.50				-0.20	0.34
40	P20	201			8			7	•	-0.00	0.39				0.10	0.49
70	Val	202	*		23	,				-0.06	6.27			87	0.05	9.33
	P2*0	203			.63	•	3.			0.19	0.27			37	0.88	1.13
	Sex	204	,		•	,	9	*	•	9.40	0.13		-	y	1.01	9.72
	Ser	205				^	4	7	c	1.67	0.10		*	5	1.44	1.69
45	Pro	206				,	Ť	3	Sec.	9.47	-0.56			F	2.82	1.89
400	Gly	207	,	•			7	3		0.65	-0.29		4	2	2.80	1.16
	Gin	208	,		8		8	2		0.52	-0.10		•	24	1.97	0.47
	Clu	209			8					0.62	~0.DE		-	8.	1.49	0.30
	Leu	210	*		E			5			~0.09		•	35.	1.37	0.48
50						*				1.12			-			
.50	Class	213	*		В.			- T		1.33	-0.11		2	8°	1.45	9.45
	SLY						3			9,82	F0.13				1.73	0.42
	Asset	213					127	2		0.53	0.53			2	0.99	6.38
					-	0	3	\$		0.27			•	5.		1.61
55	Aggra	215	V			84	4			0.29	5.51		*	ê	0.74	1,46
33	Val.	316		-	8	8		-		9.56	0.33				~0.12	0.70
	Time:	217			2	25		*		0.50	5.76		*		-6.28	0.58
	2,42	218			8	3				-6.97	0.74				-0.49	0.48
	Ile	219		•	25	8				-0.36	9.91	- 1	-		-0.60	0.35
00	362	220			30	*		7		-0.29	0.77		,		-0.28	6.33

Table I (continued)

	Resi	Position	1	14	211	1V	V	92	All	VIII	X	×	3.2	XII	riix	XIV
5	Ser	221			8			-gx		8.27	0.50				-0.20	9,21
	CAS	322			8			7		0.58	0.14	×			0.10	0.58
	His	223			55.			4		9.23	-0.1		,		0.70	0.75
	Met	224					7	,		6.81	-0.0				0.90	0.57
	Ary	223	*	,	8	33	Ä.			0.44	9.07			-	-0.15	1,53
10	200	226	*		8	20		•	*	0.04	6.07	*		*	-0.10	0.50
10	Alle:	227						*		-0.18	9.36		*		-0.30	
		229		*	8	8						ì				0.53
	Spr		•			\$3				~D.41	0.40				-0.60	0.22
	Oye	229	- 4		8	25			*	0.30	5.86		*		-0.60	0.13
	Pho	230		•	85	38				-6.11	0.46	×			~0.50	0.25
15	Seri	231	19		8	B			*	-1.00	9.34	*		40.	-0.30	0.23
	Oly	232			-		2.	120	-	~0.76	9.54	*		~	6.20	0.30
	Arg	233			W	4	2	3		-1.30	0,48		*	2"	0.6%	9.34
	Ser	234					3,	*		-0.52	0.26			67	0.65	0.31
	The	235		5	3	2		4.		2.14	-9.43				5.70	0.51
28)	Gly	236			88	23				8.37	-0.38	š .		-	0.30	0.42
	Cal	237			8	8				0.37	0.14				-0.36	6 32
	Xxg	238			23	33				-0.04	0.19		*		-0.30	0.49
	Him	239			28			30		-0.41	~8.13	*	×		0.70	0.61
	SIA	240	,			,	101	2		-0.11	0.03	*	*		0.50	0.44
25	Gly	243					166	2		-0.31	-9.13				1.10	0.23
	Ser	242	,	,			7	75		0.43	0.31	*			0.89	0.16
	Cyn	243				,	100	2	-	0.11	0.30				1.30	0.24
	Alm	244					T	2		0.14	0.23				1.40	0.37
	Giy	245			,			1%	c	\$.73	-0.23	١.		29	2.25	0.47
30	The	246						7	c	0.87	-9.55			87	3.00	3.53
	280	247							37"	9,56	~8.73	3		37	2.50	2.35
	GLS	248							c	1.28	-8.88			8	2.50	8.67
	Glu	249							ē	1.52	-0.8			2	2,50	2.52
	Peo	250						100	0	1.87	~8.89		-	8	2.70	1.61
35	Pro	251							c	1,98	~1.25			y	2.70	2.61
	GLV		,		,	-		9	č	1.50	-0.9		•	8	3.00	2.25
	Gly	253		•	•	*		*	0	1.80	-0.46				2.25	0.81
	Glu	254		A	,	•			ě	1.50	-9.83			2	1.85	0.93
	Ser	255		8					c	1,71	~1.26			7	1.70	3.60
4()	Als	256				•	4"							r p	1.20	
00(3			λ	A	>	31	*			1.90	-1.69					2.79
	Glu	257	s,	Α		-		-		2.27	-2.13			77	0.90	3.79
	Glu		A	A		`			3	1.5%	-1.7			2	0.90	3.35
	Glu	259	2	2					<	1.06	-1.33			₹	0.90	2.37
	G2 u		8	A	*					0.57	-1.1			8	0.90	1.23
4.9	Agn		A	A						1.27	-5.74				0.60	0.93
	Phe		A	A						9.78	~0.33				0.30	0.67
	Va.	263	8	X						6.39	0.23				~D.30	0.49

In another aspect, the invention provides an isolated nucleic acid molecule comprising a polynucleotide which hybridizes under stringent hybridization conditions to a portion of the polynucleotide in a nucleic acid molecule of the invention described above, for instance, the cDNA clone contained in ATCC Deposit No. 209199, a polynucleotide sequence encoding the follistatin-3 polypeptide having the amino acid sequence depicted in Figures 1A. 1B, and 1C (SEQ ID NO:2), or fragments (i.e., portions) thereof (as described herein). By "stringent hybridization conditions" is intended overnight incubation at 42° C in a solution comprising: 50% formamide, 5x SSC (750 mM NaCl, 75 mM risodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 µg/ml denatured, sheared salmon sportm DNA, followed by washing the filters in 0.1x SSC at about 65° C.

By a polymucleotide which hybridizes to a "portion" of a polymucleotide is intended a polyaucleotide (either DNA or RNA) hybridizing to at least about 15 nucleotides (nt), and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably about 30-70 (e.g., 50) nt of the reference polynucleotide. These are useful as diagnostic probes and primers as discussed above and in more detail below.

By a portion of a polynucleotide of "at least 20 nt in length," for example, is intended 20 or more contiguous nucleotides from the nucleotide sequence of the reference polynucleotide (e.g., the deposited cDNA or the nucleotide sequence as shown in Figures 1A, 1B, and 1C (SEQ ID NO:1)). Of course, a polynucleotide which hybridizes only to a poly A sequence (such as the 3' terminal poly(A) tract of the follistatin-3 cDNA shown in Figures 1A, 1B, and 1C (SEQ ID NO:1)), or to a complementary stretch of T (or U) residues, would not be included in a polynucleotide of the invention used to bybridize to a portion of a nucleic acid of the invention, since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).

In preferred embodiments, polynucleotides which hybridize to the reference polynucleotides disclosed herein encode polypeptides which either retain substantially the same functional or biological activity as the matter form of the follistatin-3 polypeptide encoded by the polynucleotide sequence depicted in Figures 1A, 1B, and 1C (SEQ ID NO:1) or the clone contained in the deposit (HDTAHS).

Alternative embodiments are directed to polynucleotides which hybridize to the reference polynucleotide (i.e., a polynucleotide sequence disclosed herein), but do not retain biological activity. While these polynucleotides do not retain biological activity.

38

10

261

25

30

they have uses, such as, for example, as probes for the polynucleotides of SEQ ID NO:1, for recovery of the polynucleotides, as diagnostic probes, and as PCR primers.

PCT/IIS98/17719

As indicated, nucleic acid molecules of the present invention which encode a follistatin-3 polypeptide may include, but are not limited to, those encoding the amino acid sequence of the mature polypeptide, by itself, and the coding sequence for the mature polypeptide and additional sequences, such as those encoding the about 26 amino acid leader or secretory sequence, such as a pre-, or pro- or prepro- protein sequence; the coding sequence of the mature polypeptide, with or without the aforementioned additional coding sequences.

Also encoded by nucleic acids of the invention are the above protein sequences together with additional, non-coding sequences, including for example, but not limited to introns and non-coding 5' and 3' sequences, such as the transcribed, non-translated sequences that play a role in transcription, mRNA processing, including splicing and polyadenylation signals, for example - ribosome binding and stability of mRNA; an additional coding sequence which codes for additional amino acids, such as those which provide additional functionalities.

Thus, the sequence encoding the polypeptide may be fused to a marker sequence, such as a sequence encoding a peptide which facilitates purification of the fused polypeptide. In certain preferred embodiments of this aspect of the invention, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenne, Chatsworth, CA, 91311), among others, many of which are commercially available. As described by Gentz and colleagues (Proc. Natl. Acad. Sci. USA 86:821-824 (1989)), for instance, hexa-histidine provides for convenient purification of the fusion protein. The "HA" tag is another peptide useful for purification which corresponds to an epitope derived from the influenza hemagglutinin protein, which has been described by Wilson and coworkers (Cell 37:767 (1984)). As discussed below, other such fusion proteins include the follistatin-3 fused to Fc at the N- or C-terminus.

The present invention further relates to variants of the nucleic acid molecules of the present invention, which encode portions, analogs or derivatives of the follistatin-3 polypepitde. Variants may occur naturally, such as a natural allelic variant. By an "allelic variant" is intended one of several alternate forms of a gene occupying a given locus on a chromosome of an organism (Genes II., Lewin, B., ed., John Wiley & Sons, New York (1985)). Non-naturally occurring variants may be produced using art-known mutagenesis techniques.

Such variants include those produced by nucleotide substitutions, deletions or additions. The substitutions, deletions or additions may involve one or more

15

20

25

35

nucleotides. The variants may be altered in coding regions, non-coding regions, or both. Alterations in the coding regions may produce conservative or non-conservative amino acid substitutions, deletions or additions. Especially preferred among these are silent substitutions, additions and deletions, which do not alter the properties and activities of the follistatin-3 polypepide or portions thereof. Also especially preferred in this regard are conservative substitutions.

Most highly preferred are nucleic acid molecules encoding the mature protein having the amino acid sequence shown in SEQ ID NO:2 or the mature follistatin-3 amino acid sequence encoded by the deposited eDNA clone.

Further embodiments include an isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical to a polypurjectide selected from the group consisting of: (a) a nucleotide sequence encoding the follistatin-3 polypertide having the complete amiso acid sequence in SEO ID NO:2 (i.e., positions -26 to 237 of SEO ID NO(2): (b) a nucleotide sequence encoding the follistatin-3 polypentide having the complete amino acid sequence in SEQ ID NO:2 excepting the N-terminal methionine (i.e., positions -25 to 237 of SEO ID NO:2); (c) a nucleotide sequence encoding the predicted mature follistatin-3 polypeptide having the amino acid sequence at positions 1 to 237 in SEQ ID NO:2; (d) a nucleotide sequence encoding the follistatin-3 polypeptide having the complete amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209199; (e) a nucleotide sequence encoding the follistatin-3 polypeptide having the complete amino acid sequence excepting the N-terminal methionine encoded by the cDNA clone contained in ATCC Deposit No. 209199; (f) a nucleotide sequence encoding the mature follistatin-3 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209199; and (g) a nucleotide sequence complementary to any of the nucleotide sequences in (a), (b), (c), (d), (e) or (f) above.

Further embodiments of the invention include isolated nucleic acid molecules that comprise a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical, to any of the nucleotide sequences in (a), (b), (c), (d), (e), (f) or (g), above, or a polynucleotide which hybridizes under stringent hybridization conditions to a polynucleotide in (a), (b), (c), (d), (e), (f) or (g), above. This polynucleotide which hybridizes does not hybridize under stringent hybridization conditions to a polynucleotide having a nucleotide sequence consisting of only A residues or of only T residues. An additional nucleic acid embodiment of the invention relates to an isolated nucleic acid molecule comprising a polynucleotode which encodes the amuno acid sequence of an

3.5

epitope-bearing portion of a follistatin-3 polypeptide having an amino acid sequence in (a), (b), (c), (d), (e) or (f), above. A further nucleic acid embodiment of the invention relates to an isolated nucleic acid molecule comprising a polynucleotide which encodes the amino acid sequence of a follistatin-3 polypeptide having an amino acid sequence 5 which contains at least one conservative amino acid substitution, but not more than 50 conservative amino acid substitutions, even more preferably, not more than 40 conservative anaino acid substitutions, still more preferably not more than 30 conservative amino acid substitutions, and still even more preferably not more than 20 conservative amino acid substitutions. Of course, in order of ever-increasing preference, it is highly preferable for a polynucleotide which encodes the amino acid sequence of a follistatin-3 polypeptide to have an amino acid sequence which contains not more than 7-10, 5-10, 3-7, 3-5, 2-5, 1-5, 1-3, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 conservative amino acid substitutions.

The present invention also relates to recombinant vectors, which include the isolated nucleic acid molecules of the present invention, and to host cells containing the recombinant vectors, as well as to methods of making such vectors and host cells and for using them for production of follistatin-3 polypeptides or peptides by recombinant techniques.

By a polynocleotide having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence encoding a follistatin-3 polypeptide is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequences encoding the follistatin-3 polypeptides. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference pucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular nucleic acid molecule is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the nucleotide sequence shown in Figures 1A, 1B, and 1C, or to the nucleotides sequence of the deposited cDNA close can be determined conventionally using known computer programs such as the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix. Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711). Bestfit uses the local homology algorithm of Smith and Witerman to find the best segment of homology between two sequences (Advances in Applied Mathematics 2:482-489 (1981)). When using Bestfit or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference nacleotide sequence and that gaps in homology of up to 5% of the total number of nucleotides in the reference sequence are allowed. A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag and colleagues (Comp. App. Biosci. 6:237-245 (1990)). In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are: Matrix=Unitary, k-tuple=4. Mismatch Penalty=1. Joining Penalty=30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the lenght of the subject nucleotide sequence, whichever is shorter.

10

15

35

If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5' and 3' bases of the subject sequence, as diaplayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.

For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5° end of the subject

sequence and therefore, the FASTDB alignment does not show a matched/alignement of the first 10 bases at 5' end. The 10 unpaired bases represent 10% of the sequence (mamber of bases at the 5' and 3' ends not matched/total number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. In another example, a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5° or 3° of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5' and 3' of the subject sequence which are not matched/aligned with the query segunce are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

28

PCT/US98/17710

The present application is directed to nucleic acid molecules at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequence shown in Figures 1A. 1B, and IC (SEO ID NO:1) or to the nucleic acid sequence of the deposited cDNA. isrespective of whether they encode a polypeptide having follistatin-3 activity. This is because even where a particular nucleic acid molecule does not encode a polypeptide having follistatin-3 activity, one of skill in the art would still know how to use the nucleic acid molecule, for instance, as a hybridization probe or a polymerase chain reaction (PCR) primer. Uses of the nucleic acid molecules of the present invention that do not encode a polypeptide having follistatin-3 activity include, inter alia, (1) isolating the follistatis-3 gene or allelic variants thereof in a cDNA library; (2) in situ hybridization (e.g., "FISH") to metaphase chromosomal spreads to provide precise chromosomal location of the follistatin-3 gene, as described by Verma and colleagues (Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York (1988)); and Northern Blot analysis for detecting follostatin-3 mRNA expression in specific tissues.

Preferred, however, are nucleic acid molecules having sequences at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequence shown in Figures 1A, 1B, and 1C (SEQ ID NO:1) or to the nucleic acid sequence of the deposited cDNA which do, in fact, encode a polypeptide having follistatin-3 activity. By "a polypeptide having follistatin-3 activity" is intended polypeptides exhibiting activity similar, but not necessarily identical, to an activity of the mature follostatin-3 polypepitde of the invention, as measured in a particular biological assay. For example, the follistatin-3 polypeitde of the present invention inhibits the binding of activin to the activin receptor. An activin recentor-binding inhibition assay is described by Hashimoto and colleagues (J. Biol. Chem. 272:13835-13842 (1997)). Briefly, the assay involves culturing rat

30

35

383

35

WO 99/10364 PCT/US98/17710 29

pituitary cells (5 x 105 cells) in 24-well plates in the presence of [128]-activin A (40 og/ml.; activin A is labeled using the chloramine-T method as described by Hasegawa and coworkers (Endocrinol. Japan 33:645-654 (1986)) and follistatin-3 or a matein thereof (200ng/mL). A baseline of activin-binding is determined by affinity cross-linking [178] activin A so the pinggary cells using the bifunctional chemical cross-linker disuccinimidyl suberate (DSS) in the absence of follistatin-3. Cross-linking is achieved by washing cells once with binding buffer (DMEM containing 25 mM HEPES (pH 7.4) and 0.2% bovine serum albumen) and incubating on ice for 2 h with 40 ng/mL [125]-activin A in the binding buffer. Following incubation, cells are washed 3 times with ice-cold PBS and incubated in PBS containing 1 mM DSS for 20 min on ice. The reaction is then quenched with PBS. The cells are removed from the culture dish by scraping, rinsed with a Tris solution (20) mM Tris-HCl (nH 7.2) containing 2 mM EDTA, 5 mM benzamidine, 2 mM phenylmethylsulfonyl fluoride (PMSF), 2 mM N-ethylaleimide, and 2 mM diisopropyl fluorophosphate), centrifuged, and resuspended in solubilization buffer (50 mM Tris-HCl (pH 7.2) containing 150 mM NaCl, 2 mM EDTA, 5 mM benzamidine, 2 mM PMSF, 2 mM N-ethylaleimide, 2 mM diisopropyl fluorophosphate, 1% Triton X-100, and 10% glycerol), and stirred gently on ice for I h.The cell lysates are introduced into 2% SDS and boiled at 100°C for 10 min. The resulting affinity-labeled lysates are then subject to SDS-PAGE (7.5 or 8% gels). Following SDS-PAGE, gels are fixed, stained with 0.25% Coomassie Brilliant Blue R-250, destained, air-dried, and then visualized by autoradiography. Inhibition of activin binding of the activin receptor is analyzed in samples with which follistatin-3 or a mutein thereof (200ng/ml.) are incubated with labeled activin in the binding buffer incubation described above. The degree to which the formation of affinity cross-linked activis/activin receptor complexes is decreased correlates with the ability of foliistatin-3 or a matein thereof to bind to labeled activin protein. As such, the relative binding affinity of activin for its receptor versus follistatin-3 or a mutein thereof can be quantitated. Such activity is useful for regulating the effective amount of activin present in a given system.

Follistatin-3 binds to activin in a dose-dependent manner in the above-described assay. While polypeptides of the invention need not demonstrate dose-dependent follistatin-3 activity in a bioassay, it is preferred that, by "a polypeptide having follistatin-3 activity" is meant a polypeptide that also exhibits any of the same binding activities in the above-described assays in a dose-dependent manner. Thus, although the degree of dose-dependent activity need not be identical to that of the follistatin-3. most preferably, "a polypeptide having folistatin-3 activity" will exhibit substantially similar dose-dependence is a given activity as compared to the follistatin-3 (i.e., the

candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity relative to the reference follistatin-33.

Like follistatin-1, follistatin-3 inhibits the secretion of FSH. An assay for measuring the suppression of spontaneous FSH release from primary cultured rat pituitary cells is well known in the art (Hasegawa, Y., et al., Endocrinol. Jpn. 33:645-654 (1986)). Briefly, freshly isolated pituitary cells are suspended in DMEM containing gentamicin (35 µg/mL), fungizone (1 gg/mL), 0.05% glutamine, 0.1% sodium bicarbonate, 10% horse serum, and 2.5% fetal bovine serum at a density of 3 x 10° cells/mL, and plated in 96-well culture plates (6 x 10° cells/0.2 mL/well). Various amounts (0.1-100 ng/mL) of follistatin-3 are then added to the culture medium. After culturing for 3 days at 37°C (5% CO₂), cultured media are assayed for quantity of secreted FSH by a double antibody RIA method using an RIA kit and plotted as FSH Secreted (ng/mL/72 b) versus Protein Added (ng/mL).

Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the nucleic acid molecules having a sequence at least 90%, 95%, 96%, 97%, 98%, or 99% identical to the nucleic acid sequence of the deposited cDNA or the nucleic acid sequence shown in Figures 1A.

1B, and 1C (SEQ ID NO:1) will encode a polypeptide "having follistatin-3 activity." In fact, since degenerate variants of these nucleotide sequences all encode the same polypeptide, this will be clear to the skilled actisan even without performing the above described comparison assay. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a polypeptide having follistatin-3 activity. This is because the skilled artisan is fully aware of armino acid substitutions that are either less likely or not likely to significantly effect protein function (e.g., replacing one aliphatic amino acid) as further described below.

Vectors and Host Cells

15

20

2.5

While the follistatin-3 polypeptides (including fragments, variants derivatives, and analogs) of the invention can be chemically synthesized (e.g., see Creighton, 1983, Proteins: Structures and Molecular Principles, W.H. Freeman & Co., N.Y.), follistatin-3 polypeptides may advantageously be produced by recombinant DNA technology using techniques well known in the art for expressing gene sequences and/or nucleic acid coding sequences. Such methods can be used to construct expression vectors containing the polynucleotides of the invention and appropriate transcriptional and translational control signals. These methods include, for example,

20

25

35

in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. See, for example, the techniques described in Sambrook et al., 1989, supra; Ausubel et al., 1989, supra; Caruthers et al., 1980, Nuc. Acids Res. Symp. Ser. 7:215-233; Crea and Horn. 1980, Nuc. Acids Res. 9(10):2331; Matteucci and 5 Caruthers, 1980, Tetrahedron Letters 21:719; and Chow and Kempe, 1981, Nuc. Acids Res. 9(12):2807-2817. Alternatively, RNA capable of producing follistatin-3 sequences may be chemically synthesized using, for example, synthesizers. See, for example, the techniques described in "Oligonucleotide Synthesis", 1984, Gait, M.J. ed., IRL. Press, Oxford, which is incorporated by reference herein in its entirety.

Thus, in one embodiment, the present invention relates to vectors which include the isolated DNA molecules (i.e., polynucleotides) of the present invention, bost cells which are genetically engineered with the recombinant vectors, and the production of follistatin-3 polypeptides or fragments thereof by recombinant techniques using these host cells or host cells that have otherwise been genetically engineered using techniques known in art to express a polypeptide of the invention. The vector may be, for example, a phage, plasmid, viral or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.

In one embodiment, the polynucleotide of the invention is operatively associated with an appropriate heterologous regulatory element (e.g., a promoter or enhancer or both), such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan.

In embodiments in which vectors contain expression constructs, these constructs will further contain sites for transcription initiation, termination and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance

genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli. Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera S9 cells; animal cells such as CHO, COS, 293 and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

32

PCT/US98/17710

Vectors preferred for use in bacteria include pHE4-5, pQE70, pQE60 and pQE-9 (QIAGEN, Inc., supra): pBS vectors, Phagescript vectors, Bhieseript vectors, pNH8A, pNH16A, pNH16A, pNH46A (Stratagene): and ptrc99a. pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1, and pSO (Stratagene): and pSVK3, pBPV, pMSG and pSVL (Pharmacia). Other suitable vectors will be readily apparent to the stilled artisus.

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection or other methods. Such methods are described in many standard laboratory manuals (for example, Davis, et al., Basic Methods In Molecular Biology (1986)).

In addition to encompassing host cells containing the vector constructs discussed herein, the invention also encompasses primary, secondary, and immortalized host cells of vertebrate origin, particularly those of mammalian origin, that have been engineered to delete or replace endogenous genetic material (e.g., follistatin-3 coding sequence), and/or to include genetic material (e.g., heterologous polynucleotides equences) that is operably associated with follistatin-3 polynucleotides of the invention, and which activates, alters, and/or amplifies endogenous follistatin-3 polynucleotides. For example, techniques known in the art may be used to operably associate heterologous control regions (e.g., promoter and/or enhancer) and endogenous follistatin-3 polynucleotide sequences via homologous recombination (see, e.g., U.S., Patent No. 5,641,670, issued June 24, 1997; International Publication No. WO 94/12650, published August 4, 1994; Koller et al., Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); and Zijlstra, et al., Nature 342:435-438 (1989), the disclosures of each of which are bereby incorporated by reference in their entireties).

The polypeptide may be expressed in a modified form, such as a fusion protein, and may include not only secretion signals, but also additional heterologous functional regions. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and

persistence in the host cell, during purification, or during subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to polypeptides to engender secretion or excretion, to improve stability and to facilitate purification, among others, are familiar and routine techniques in the art. A preferred fusion protein comprises a heterologous region from immunoglobulin that is useful to stabilize and purify proteins. For example, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together wish another human protein or part thereof. In many cases, the Fc part in a fusion protein is thoroughly advantageous for use in therapy and diagnosis and thus results. for example, in improved pharmacokinetic properties (EP-A 0232 262). On the other hand, for some uses it would be desirable to be able to delete the Fe part after the fusion protein has been expressed, detected and partified in the advantageous manner described. This is the case when Fc portion proves to be a hindrance to use in therapy and diagnosis, for example when the fusion protein is to be used as antipen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5 (Bennett, D., et al., J. Molecular Recognition 8:52-58 20 (1995); Johanson, K., et al., J. Biol. Chem. 270:9459-9471 (1995)).

10

25

30

The follistatis-3 polypeptides can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulface or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification. Polypeptides of the present invention include: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or coloured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeotides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes. Thus, it is well known in the art that the N-terminal methionine encoded by the translation initiation coden generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the

N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.

Included within the scope of the invention are follistatin-3 polypeptides (including fragments, variants, derivatives and analogs) which are differentially modified during or after translation, e.g., by glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to, specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH4: acetylation, formylation, oxidation, reduction; metabolic synthesis in the presence of tunicamycin; etc. In a specific embodiment, the compositions of the invention are conjugated to other molecules to increase their water-solubility (e.g., polyethylene glycol), half-life, or ability to bind targeted tissue.

10)

26

25

35

Polypeptides and Fragments

The invention further provides an isolated follistatin-3 polypeptide having the amino acid sequence encoded by the deposited cDNA, or the amino acid sequence in SEQ ID NO:2, or a peptide or polypeptide comprising fragment (i.e., a portion) of the above polypeptides.

The polypeptides and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to a point within the range of near complete (e.g., >90% pure) to complete (e.g., >99% plane) homogeneity. The term "isolated" means that the material is removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Also intended as an "isolated polypeptide" are polypeptides that have been purified partially or substantially from a recombinant host cell. For example, a recombinantly produced version of a follistatin-3 polypeptide can be substantially purified by the one-step method described by Smith and Johnson (Gene 67:31-46 (1988)). Such polypucleotides could be part of a composition, and still be isolated in that such vector or composition is not part of its natural environment. Isolated

polypeptides and polynucleotides according to the present invention also include such molecules produced naturally or synthetically. Polypeptides and polynucleotides of the invention also can be purified from natural or recombinant sources using anti-follistating antibodies of the invention which may routinely be generated and utilized using methods known in the art.

The present invention also encompasses fragments of the above-described follistatin-3 polypeptides. Polypeptide fragments of the present invention include polypeptides comprising an amino acid sequence contained in SEQ ID NO:2, encoded by the cDNA contained in the deposited clone, or encoded by nucleic acids which hybridize (e.g., under stringent hybridization conditions) to the nucleotide sequence contained in the deposited clones, that shown in Figures 1A, 1B, and 1C (SEQ ID NO:1), or the complementary strand thereto.

10

15

20

35

36

The polymicleotide fragments of the invention encode a polypeptide which demonstrates a functional activity. By a polypeptide demonstrating "functional activity is ineant, a polypeptide capable of displaying one or more known functional activities associated with a complete, mature or active form of the follistatin-3 polypeptide. Such functional activities include, but are not limited to, biological activity ((e.g., modulating the follicle stimulating hormone (FSH) synthetic pathway, increasing estradiol production, binding activin, stimulating gonadotropin biosynthesis and secretion, regulating of ovarian and placental steroidogenesis, and oocyte and spermatogonial maturation factory), antigenicity (ability to bind (or compete with a follistatin-3 polypeptide for binding) to an anti-follistatin-3 antibody), immunogenicity (ability to generate antibody which binds to a follistatin-3 polypeptide), the ability to form polymers with other follistatin-3 or inhibin or TGF-b polypeptides, and ability to bind to a receptor or ligand for a follistatin-3 polypeptide (e.g., an activin).

Polypeptide fragments may be "free-standing" or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, included, for example, fragments that comprise or alternatively, consist of, from about matino acid residues. 1 to 20, 21 to 40, 41 to 60, 61 to 83, 84 to 100, 101 to 120, 121 to 140, 141 to 160, 161 to 180, 181 to 200, 201 to 220, 201 to 224, 210 to 231, 221 to 240, or 241 to 263 of SEQ ID NO:2. Moreover, polypeptide fragments can be at least about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260 amino acids in length. In this context "about" includes the particularly recited ranges, larger or smaller by several (i.e. 5, 4, 3, 2 or 1) amino acids, at either extreme or at both extremes.

In other embodiments, the fragments or polypeptides of the invention (i.e., those described herein) are not larger than 250, 225, 200, 185, 175, 170, 165, 160, 155, 150, 145, 140, 135, 130, 125, 120, 115, 110, 105, 100, 90, 80, 75, 60, 50, 40, 30 or 25 amino acids residues in length.

Additional embodiments encompass polypeptide fragments comprising one, two, three, four, five, or more functional attributes of follistatin-3 polypeptides of the invention, such as, one or more Garnier-Robson alpha-regions, beta-regions, turn-regions, and coil-regions, Chou-Fasman alpha-regions, beta-regions, and coil-regions. Kyte-Doolittle hydrophilic regions and hydrophobic regions. Essenberg alpha- and beta-amphipathic regions, Karplus-Schulz flexible regions. Emini surface-forming regions and Jameson-Wolf regions of high antigenic index, or any combination thereof, as disclosed in Figure 3 and in Table I as described herein.

Preferred polypeptides of the invention comprise, or alternatively, consist of amino acid residues 7-16, 34-45, 78-86, 91-100, 108-122, 131-145, 156-169, 184-192, and/or 196-210 of SEQ ID NO:2. Polypucleotides encoding these polypeptides are also encompassed by the invention, as are polypucleotides that hybridize to the complementary strand of these encoding polypucleotides under high stringency conditions (e.g., as described herein) and polypeptides encoded by these hybridizing polypucleotides.

In specific embodiments, polypeptide fragments of the invention comprise, or alternatively, consist of, amino acid residues Lev-14 to Ala-20, Ser-46 to Ile-55, Gly-88 to Pro-97, Gly-113 to Leu-133, Arg-138 to Glu-146, Pro-177 to Thr-191, and/or Gly-219 to Val-237 of SEQ ID NO.2. These polypeptide fragments have been determined to bear antigenic epitopes of the follistatin-3 by the analysis of the Jameson-Wolf antigenic index, as shown in Figure 3 and Table I, above. Polynucleotides encoding these polypeptides are also encompassed by the invention, as are polynucleotides that hybridize to the complementary strand of these encoding polynucleotides under high stringency conditions (e.g., as described herein) and polypeptides encoded by these hybridizing polynucleotides.

As described in detail below, the polypeptides of the present invention can also be used to raise polyelonal and monoclonal antibodies, which are useful in assays for detecting follistatin-3 expression as described below or as agonists and antagonists capable of enhancing or inhibiting follistatin-3 function. Further, such polypeptides can be used in the yeast two-hybrid system to "capture" follistatin-3 binding proteins which are also candidate agonists and antagonists according to the present invention. The yeast two hybrid system is described by Fields and Song (Nature 340:245-246 (1989)).

30

In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention. The epitope of this polypeptide portion is an immunogenic or antigenic epitope of a polypeptide of the invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein is the immunogen. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope". The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes (see, for instance, Geysen, et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983)).

10

20

25

30

35

As to the selection of peptides or polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are toutinely capable of eliciting an antiserum that reacts with the partially mimicked protein (see, for instance, Sutcliffe, J. G., et al., Science 219:660-666 (1983)). Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention (see, for instance, Wilson, et al., Cell 37:767-778 (1984)).

Antigenic epitope-bearing peptides and polypeptides of the invention preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 15 to about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention. Non-limiting examples of antigenic polypeptides or peptides that can be used to generate follistatin-3-specific antibodies include: a polypeptide comprising amino acid residues: Leu-14 to Ala-20, Ser-46 to Ile-55, Gly-88 to Pro-97, Gly-113 to Leu-133, Arg-138 to Glu-146, Pro-177 to Thr-191, and/or Gly-219 to Val-237 of SEQ ID NO:2. These polypeptide fragments have been determined to bear antigenic epitopes of the follistatin-3 by the analysis of the Jameson-Wolf antigenic index, as shown in Figure 3 and Table I, above.

The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means (see, for example, Houghen, R. A., et al., Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985); and U.S. Patent No. 4.631.211 to Houghten, et al. (1986)).

Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art (see, for instance, Sutcliffe, or

15

20

25

33

al., supra; Wilson, et al., supra; Chow, M., et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. I., et al., J. Gen. Virol. 66:2347-2354 (1985)). Immunogenic epitope-bearing peptides of the invention, i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art (see, for instance, Geysen, et al., supra). Further still, U.S. Patent No. 5,194,392, issued to Geysen, describes a general method of detecting or determining the sequence of monomers famino acids or other compounds) which is a topological equivalent of the epitope (i.e., a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092, issued to Geysen, describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a ligand which is complementary to the ligand hinding site of a particular receptor of interest. Similarly, U.S. Patent No. 5.480,971, issued to Houghten and colleagues, on Peralkylated Oligopeptide Mixtures discloses linear C1-C7-aikyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods.

To improve or alter the characteristics of follistatin-3 polypeptides, protein engineering may be employed. Recombinant DNA technology known to those skilled in the art can be used to create novel mutant proteins or muteins including single or multiple amino acid substitutions, deletions, additions or fusion proteins. Such modified polypeptides can show, e.g., enhanced activity or increased stability. In addition, they may be purified in higher yields and show better solubility than the corresponding natural polypeptide, at least under certain purification and storage conditions.

For instance, for many proteins, including the extracellular domain of a membrane associated protein or the mature form(s) of a secreted protein, it is known in the art that one or more amino acids may be deleted from the N-terminus or C-terminus without substantial loss of biological function. For instance, Ron and colleagues (J. Biol. Chem., 268:2984-2988 (1993)) reported modified KGF proteins that had beparin binding activity even if 3, 8, or 27 N-terminal amino acid residues were missing. In the present case, since the protein of the invention is a member of the inhibin-related polypeptide family, deletions of N-terminal amino acids up to the cysteine at position 12 of SEQ ID NO:2 may retain some biological activity such as binding activin or an activin-like molecule. Polypeptides having further N-terminal

deletions including the cysteine-12 residue in SEQ ID NO.2 would not be expected to retain such biological activities because it is known that this residue is likely required for forming a disulfide bridge to provide structural stability which is needed for protein-protein interaction and is in the beginning of the conserved domain required for biological activities.

However, even if deletion of one or more amino acids from the N-terminus of a protein results in modification of loss of one or more biological functions of the protein, other functional or biological activities may still be retained. Thus, the ability of the shortened protein to induce and/or bind to antibodies which recognize the complete or mature of the protein generally will be retained when less than the majority of the residues of the complete or mature protein are removed from the N-terminus. Whether a particular polypeptide lacking N-terminal residues of a complete protein retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art.

Accordingly, the present invention further provides polypeptides having one or more residues deleted from the amino terminus of the amino acid sequence of the follistatin-3 shown in SEQ ID NO.2, up to the cysteine residue at position number 12, and polymericotides encoding such polypeptides. In particular, the present invention provides polypeptides comprising the amino acid sequence of residues n¹-237 of SEQ ID NO.2, where n¹ is an integer in the range of -26-12, and 12 is the position of the first residue from the N-terminus of the complete follistatin-3 polypeptide (Shown in SEQ ID NO.2) believed to be required for activin-binding or activin-like protein-binding activity of the follistatin-3.

18

20

More in particular, the invention provides polynucleotides encoding polypeptides having the amino acid sequence of residues of -26-237, -25-237, -24-237, -23-237, -22-237, -21-237, -19-237, -18-237, -17-237, -16-237, -15-237, -14-237, -13-237, -12-237, -10-237, -9-237, -8-237, -7-237, -6-237, -5-237, -4-237, -3-237, 1-237, 1-237, 1-237, 1-237, 2-237,

Similarly, many examples of biologically functional C-terminal deletion muteins are known. For instance, Interferon gamma shows up to ten times higher activities by deleting 8-10 amino acid residues from the carboxy terminas of the protein (Dobeli. et al., J. Biotechnology 7:199-216 (1988)). In the present case, since the protein of the invention is a member of the activin-related polypeptide family, deletions of C-terminal amino acids up to the cysteine at position 217 of SEQ ID NO:2 may retain some biological activity such as binding activin or an activin-like molecule. Polypeptides

\$5

36

having further C-terminal deletions including the cysteine residue at position 217 of SEQ ID NO:2 would not be expected to retain such biological activities because it is known that this residue is likely required for forming a disulfide bridge to provide structural stability which is needed for protein-protein interactions and is the beginning of the conserved domain required for biological activities.

However, even if deletion of one or more amino acids from the C-terminus of a protein results in modification of loss of one or more biological functions of the protein, other functional or biological activities may still be retained. Thus, the ability of the shortened protein to induce and/or bind to antibodies which recognize the complete or mature forth of the protein generally will be retained when less than the majority of the residues of the complete or mature form of the protein are removed from the C-terminus. Whether a particular polypeptide lacking C-terminal residues of a complete protein retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art.

Accordingly, the present invention further provides polypeptides having one or more residues from the carboxy terminus of the amino acid sequence of the follistatin-3, shown in SEQ ID NO:2, up to the cysteine residue at position 217 of SEQ ID NO:2, and polypucieotides encoding such polypeptides. In particular, the present invention provides polypeptides having the amino acid sequence of residues -26-m² of the amino acid sequence in SEQ ID NO:2, where m² is any integer in the range of 217 to 237, and residue 217 is the position of the first residue from the C- terminus of the complete follistatin-3 polypeptide (shown in SEQ ID NO:2) believed to be required for the activin-binding or activin-binding of the follistatin-3.

More in particular, the invention provides polynacleotides encoding polypeptides having the amino acid sequence of residues -26-217, -26-218, -26-219, -26-220, -26-221, -26-223, -26-224, -26-225, -26-226, -26-227, -26-228, -26-230, -26-230, -26-231, -26-232, -26-233, -26-234, -26-235, -26-236, and -26-237 of SEQ ID NO:2. Polynacleotides encoding these polypeptides also are provided.

The invention also provides polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini, which may be described generally as having residues n¹-m¹ of SEQ ID NO:2, where n¹ and m¹ are integers as described above

Also included are a nucleotide sequence encoding a polypeptide consisting of a portion of the complete follistatin-3 amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209199, where this portion excludes from 1 to about 37 amino acids from the amino terminus of the complete amino acid sequence encoded

by the cDNA clone contained in ATCC Deposit No. 209199, or from 1 to about 20 amino acids from the carboxy terminus, or any combination of the above amino terminal and carboxy terminal deletions, of the complete amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209199. Polymelectides encoding all of the above deletion mutant polypeptide forms also are provided.

As mentioned above, even if deletion of one or more amino acids from the N-terminus of a protein results in modification of loss of one or more functions of the protein, other functional or biological activities may still be retained. Thus, the ability of the shortened follistatin-3 mutein to induce and/or bind to antibodies which recognize the complete or mature of the protein generally will be retained when less than the majority of the residues of the complete or mature protein are removed from the N-terminus. Whether a particular polypeptide lacking N-terminal residues of a complete protein retains such mumunologic activities can readily be determined by routine methods described herein and otherwise known in the art. It is not unlikely that a follistatin-3 mutein with a large number of deleted N-terminal amino acid residues may retain some biological or immungenic activities. In fact, peptides composed of as few as six follistatin-3 amino acid residues may often evoke an immune response.

Accordingly, the present invention further provides polypeptides having one or more residues deleted from the amino terminus of the follistatin-3 amino acid sequence shown in SEQ ID NO:2, up to the glutamic acid residue at position number 258 and polynucleotides encoding such polypeptides. In particular, the present invention provides polypeptides comprising the amino acid sequence of residues n°-263 of Figures 1A, 1B, and IC (SEQ ID NO:2), where n° is an integer in the range of 2 to 258, and 259 is the position of the first residue from the N-terminus of the complete follistatin-3 polypeptide believed to be required for at least immunogenic activity of the follistatin-3.

20

25

More in particular, the invention provides polynucleotides encoding polypeptides comprising, or alternatively consisting of, the amino acid sequence of residues of R-2 to V-263; P-3 to V-263; G-4 to V-263; A-5 to V-263; P-6 to V-263; G-7 to V-263; P-8 to V-263; L-9 to V-263; W-10 to V-263; P-11 to V-263; L-12 to V-263; P-13 to V-263; W-14 to V-263; G-15 to V-263; P-11 to V-263; L-12 to V-263; P-13 to V-263; W-19 to V-263; G-16 to V-263; V-21 to V-263; C-22 to V-263; F-23 to V-263; V-24 to V-263; S-25 to V-263; S-26 to V-263; M-27 to V-263; G-36 to V-263; P-34 to V-263; G-35 to V-263; G-36 to V-263; G-36 to V-263; G-36 to V-263; G-37 to V-263; G-36 to V-263;

35

V-51 to V-263; L-52 to V-263; O-53 to V-263; T-54 to V-263; D-55 to V-263; V-56 to V-263: T-57 to V-263: R-58 to V-263: A-59 to V-263: E-60 to V-263: C-61 so V-263: C-62 to V-263; A-63 to V-263; S-64 to V-263; G-65 to V-263; N-66 to V-263; L-67 to V-263: D-68 to V-263; T-69 to V-263; A-70 to V-263; W-71 to V-263; S-72 to V-263; 3 N-73 to V-263; L-74 to V-263; T-75 to V-263; H-76 to V-263; P-77 to V-263; G-78 to V-263; N-79 to V-263; K-80 to V-263; I-81 to V-263; N-82 to V-263; I-83 to V-263; L-84 to V-263; G-85 to V-263; F-86 to V-263; L-87 to V-263; G-88 to V-263; L-89 to V-263; V-90 to V-263; H-91 to V-263; C-92 to V-263; L-93 to V-263; P-94 to V-263; C-95 to V-263; K-96 to V-263; D-97 to V-263; S-98 to V-263; C-99 to V-263; D-100 to V-263; G-101 to V-263; V-102 to V-263; E-103 to V-263; C-104 to V-263; G-105 to V-263; P-106 to V-263; G-107 to V-263; K-108 to V-263; A-109 to V-263; C-110 to V-263; R-111 to V-263; M-112 to V-263; L-113 to V-263; G-114 to V-263; G-115 to V-263; R-116 to V-263; P-117 to V-263; R-118 to V-263; C-119 to V-263; E-120 to V-263; C-121 to V-263; A-122 to V-263; P-123 to V-263; D-124 to V-263; C-125 to V-263; S-126 to V-263; G-127 to V-263; L-128 to V-263; P-129 to V-263; A-130 to V-263; R-131 to V-263; L-132 to V-263; O-133 to V-263; V-134 to V-263; C-135 to V-263; G-136 to V-263; S-137 to V-263; D-138 to V-263; G-139 to V-263; A-140 to V-263; T-141 to V-263; Y-142 to V-263; R-143 to V-263; D-144 to V-263; E-145 to V-263; C-146 to V-263; E-147 to V-263; L-148 to V-263; R-149 to V-263; A-150 to V-263; A-151 to V-263; R-152 to V-263; C-153 to V-263; R-154 to V-263; G-155 to V-263; H-156 to V-263; P-157 to V-263; D-158 to V-263; L-159 to V-263; S-160 to V-263; V-161 to V-263; M-162 to V-263; Y-163 to V-263; R-164 to V-263; G-165 to V-263; R-166 to V-263; C-167 to V-263; R-168 to V-263; K-169 to V-263; S-170 to V-263; C-171 to V-263; E-172 to V-263; H-173 to V-263; V-174 to V-263; V-175 to V-263; C-176 to V-263; P-177 to V-263; R-178 to V-263; P-179 so V-263; O-180 to V-263; S-181 to V-263; C-182 to V-263; V-183 to V-263; V-184 to V-263; D-185 to V-263; Q-186 to V-263; T-187 to V-263; G-188 to V-263; S-189 to V-263; A-190 to V-263; H-191 to V-263; C-192 to V-263; V-193 to V-263; V-194 to V-263; C-195 to V-263; R-196 to V-263; A-197 to V-263; A-198 to V-263; P-199 to V-263; C-200 to V-263; P-201 to V-263; V-202 to V-263; P-203 to V-263; S-204 to V-263; S-205 to V-263; P-206 to V-263; G-207 to V-263; O-208 to V-263; E-209 to V-263; L-210 to V-263; C-211 to V-263; G-212 to V-263; N-213 to V-263; N-214 to V-263; N-215 to V-263; V-216 to V-263; T-217 to V-263; Y-218 to V-263; I-219 to V-263; S-220 to V-263; S-221 to V-263; C-222 to V-263; H-223 to V-263; M-224 to V-263; R-225 to V-263; O-226 to V-263; A-227 to V-263; T-228 to V-263; C-229 to V-263; F-230 to V-263; L-231 to V-263; G-232 to V-263; R-233 to V-263; S-234 to V-263; I-235 to V-263; G-236 to V-263; V-237 to V-263; R-238 to V-263; H-239 to V-263; A-240 to

47

PCT/US98/17710

15

20

25

30

35

WO 99/10364 PCT/US98/17710 43

V-263; G-241 to V-263; S-242 to V-263; C-243 to V-263; A-244 to V-263; G-245 to V-263; T-246 to V-263; P-247 to V-263; E-248 to V-263; E-249 to V-263; P-250 to V-263; P-251 to V-263; G-252 to V-263; G-253 to V-263; E-254 to V-263; S-255 to V-263; A-256 to V-263; E-257 to V-263; and E-258 to V-263 of the follistatio-3 amino acid sequence shown in Figures 1A, 1B, and 1C (which is identical to the sequence shown as SEO ID NO:2, with the exception that the amino acid residues in Figures 1A. 1B, and 1C are numbered consecutively from 1 through 263 from the N-terminus to the C-terminus, while the amino acid residues in SEO ID NO:2 are numbered consecutively from -26 through 237 to reflect the position of the predicted signal peptide). Polynucleotides encoding these polypeptides are also encompassed by the invention.

Also as mentioned above, even if deletion of one or more amino acids from the C-terminus of a protein results in modification of loss of one or more biological functions of the protein, other functional or biological activities may still be retained. Thus, the ability of the shortened follistatin-3 musein to induce and/or bind to antibodies which recognize the complete or mature of the protein generally will be retained when less than the majority of the residues of the complete or mature protein are removed from the C-terminus. Whether a particular polypeptide lacking C-terminal residues of a complete protein retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art. It is not unlikely that a follistatin-3 mutein with a large number of deleted C-terminal amino acid residues may retain some biological or immungenic activities. In fact, peptides composed of as few as six foliastatin-3 amino acid residues may often evoke an immune response.

Accordingly, the present invention further provides polypeptides having one or more residues deleted from the carboxy terminus of the amino acid sequence of the foilistatin-3 shown in SEQ ID NO:2, up to the proline residue at position number 6, and polynucleotides encoding such polypeptides. In particular, the present invention provides polypertides comprising the amino acid sequence of residues 1-ro of SEO ID NO:2, where m2 is an integer in the range of 6 to 262, and 6 is the position of the first residue from the C-terminus of the complete follistatin-3 polypeptide believed to be required for at least immunogenic activity of the follistatin-3.

More in particular, the invention provides polynucleosides encoding polypeptides comprising, or alternatively consisting of, the amino acid sequence of residues M-1 to F-262; M-1 to N-261; M-1 to E-260; M-1 to E-259; M-1 to E-258; M-1 to E-257; M-1 to A-256; M-1 to S-255; M-1 to E-254; M-1 to G-253; M-1 to G-252; M-1 to P-251; M-1 to P-250; M-1 to E-249; M-1 to E-248; M-1 to P-247; M-1 to T-246; M-1 to G-245; M-1 to A-244; M-1 to C-243; M-1 to S-242; M-1 to G-241; M-1 to A-240; M-1 to H-239; M-1 to R-238; M-1 to V-237; M-1 to G-236; M-1 to L-235;

M-1 to \$-234; M-1 to R-233; M-1 to G-232; M-1 to L-231; M-1 to F-230; M-1 to C-229; M-1 to T-228; M-1 to A-227; M-1 to O-226; M-1 to R-225; M-1 to M-224; M-1 to H-223; M-1 to C-222; M-1 to S-221; M-1 to S-220; M-1 to I-219; M-1 to Y-218; M-1 to T-217: M-1 to V-216: M-1 to N-215: M-1 to N-214: M-1 to N-213: M-1 to G-212; M-1 to C-211; M-1 to L-210; M-1 to E-209; M-1 to O-208; M-1 to G-207; M-1 to P-206; M-1 to S-205; M-1 to S-204; M-1 to P-203; M-1 to V-202; M-1 to P-201; M-1 to C-200; M-1 to P-199; M-1 to A-198; M-1 to A-197; M-1 to R-196; M-1 to C-195; M-1 to V-194; M-1 to V-193; M-1 to C-192; M-1 to H-191; M-1 to A-190; M-1 to S-189; M-1 to G-188; M-1 to T-187; M-1 to O-186; M-1 to D-185; M-1 to V-184; M-1 to V-183; M-1 to C-182; M-1 to S-181; M-1 to O-180; M-1 to P-179; M-1 to R-178; M-1 to P-177; M-1 to C-176; M-1 to V-175; M-1 to V-174; M-1 to H-173; M-1 to E-172; M-1 to C-171; M-1 to S-170; M-1 to K-169; M-1 to R-168; M-1 to C-167; M-1 to R-166; M-1 to G-165; M-1 to R-164; M-1 to Y-163; M-1 to M-162; M-1 to V-161; M-1 to S-160; M-1 to L-159; M-1 to D-158; M-1 to P-157; M-1 to H-156; M-1 15 to G-155; M-1 to R-154; M-1 to C-153; M-1 to R-152; M-1 to A-151; M-1 to A-150; Moi to R-149; Moi to L-148; Mol to E-147; Moi to C-146; Moi to E-145; Mol to D-144; M-1 to R-143; M-1 to Y-142; M-1 to T-141; M-1 to A-140; M-1 to G-139; M-1 to D-138; M-1 to S-137; M-1 to G-136; M-1 to C-135; M-1 to V-134; M-1 to O-133; M-1 to L-132; M-1 to R-131; M-1 to A-130; M-1 to P-129; M-1 to L-128; M-1 to G-127; M-1 to S-126; M-1 to C-125; M-1 to D-124; M-1 to P-123; M-1 to A-122; M-1 to C-121; M-1 to E-120; M-1 to C-119; M-1 to R-118; M-1 to P-117; M-1 to R-116; Mol to G-115; Mol to G-114; Mol to Lo113; Mol to Mol12; Mol to Ro111; Mol to C-110: M-1 to A-109: M-1 to K-108; M-1 to G-107; M-1 to P-106; M-1 to G-105: M-1 to C-104; M-1 to E-103; M-1 to V-102; M-1 to G-101; M-1 to D-100; M-1 to C-99; M-1 to S-98; M-1 to D-97; M-1 to K-96; M-1 to C-95; M-1 to P-94; M-1 to L-93; M-1 to C-92; M-1 to H-91; M-1 to V-90; M-1 to L-89; M-1 to G-88; M-1 to L-87; M-1 to F-86; M-1 to G-85; M-1 to L-84; M-1 to L-83; M-1 to N-82; M-1 to I-81; M-1 to K-80; M-1 to N-79; M-1 to G-78; M-1 to P-77; M-1 to H-76; M-1 to T-75; M-1 to L-74; M-1 to N-73; M-1 to S-72; M-1 to W-71; M-1 to A-70; M-1 to T-69; M-1 to D-68; M-1 to I-67; M-1 to N-66; M-1 to G-65; M-1 to S-64; M-1 to A-63; M-1 to C-62; M-1 to C-61; M-1 to E-60; M-1 to A-59; M-1 to R-58; M-1 to T-57; M-1 to V-56; M-1 to D-55; M-1 to T-S4; M-1 to O-S3; M-1 to L-S2; M-1 to V-S1; M-1 to L-S0; M-1 to S-49; M-1 to C-48; M-1 to T-47; M-1 to A-46; M-1 to E-45; M-1 to O-44; M-1 to G-43; M-1 to O-42: M-1 to O-41: M-1 to L-40: M-1 to W-39: M-1 to C-38: M-1 to V-37: M-1 to 35 G-36; M-1 to G-35; M-1 to P-34; M-1 to A-33; M-1 to P-32; M-1 to N-31; M-1 to G-30; M-1 to S-29; M-1 to G-28; M-1 to M-27; M-1 to S-26; M-1 to S-25; M-1 to V-24; M-1 to F-23; M-1 to G-22; M-1 to V-21; M-1 to A-20; M-1 to W-19; M-1 to

20

30

A-18; M-1 to L-17; M-1 to A-16; M-1 to G-15; M-1 to W-14; M-1 to P-13; M-1 to L-12; M-1 to P-11; M-1 to W-10; M-1 to L-9; M-1 to P-8; M-1 to G-7; M-1 to P-6 of the sequence of the follistatin-3 sequence shown in Figures 1A, 1B, and 1C (which is identical to the sequence shown as SEQ ID NO:2, with the exception that the amino acid residues in Figures 1A, 1B, and 1C are numbered consecutively from 1 through 263 from the N-terminus to the C-terminus, while the amino acid residues in SEQ ID NO:2 are numbered consecutively from -26 through 237 to reflect the position of the predicted signal poptide). Polyaucteotides encoding these polypeptides also are provided.

The invention also provides polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini of a follistatin-3 polyneptide. which may be described generally as having residues n2-m2 of Figures 1A, 1B, and 1C (SEQ ID NO:2), where n2 and m2 are integers as described above.

In addition to terminal deletion forms of the protein discussed above, it also will be recognized by one of ordinary skill in the art that some ammo acid sequences of the follistatin-3 polypeptide can be varied without significant effect of the structure or function of the protein. If such differences in sequence are contemplated, it should be remembered that there will be critical areas on the protein which determine activity.

Thus, the invention further includes variations of the follistatin-3 polypeptide which show substantial follistatin-3 polypeptide activity or which include regions of follistatin-3 such as the protein portions discussed below. Such mutants include deletions, insertions, inversions, repeats, and type substitutions selected according to general rules known in the art so as have little effect on activity. For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided wherein the authors indicate that there are two main approaches for studying the tolerance of an amino acid sequence to change (Bowie, J. U., et al., Science 247:1306-1310 (1990)). The first method relies on the process of evolution, in which mutations are either accepted or rejected by natural selection. The second approach uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene and selections or screens to identify sequences that maintain functionality.

As the authors state, these studies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive as a certain position of the protein. For example, most buried amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Other such phenotypically silent substitutions are described by Bowie and coworkers (supra) and the references cited therein. Typically seen as conservative substitutions are the replacements, one for another, among the atiphatic amino acids Ala, Val. Leu and Be; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asn and Gln, exchange of the basic residues Lys and Arg and replacements among the aromatic residues Phe, Tyr.

Thus, the fragment, derivative or analog of the polypeptide of SEQ ID NO.2, or that encoded by the deposited cDNA, may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the above form of the polypeptide, such as an IgG Fc fusion region peptide or leader or secretory sequence or a sequence which is employed for purification of the above form of the polypeptide or a proprotein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.

10

15

Thus, the follistatin-3 of the present invention may include one or more amino acid substitutions, deletions or additions, either from natural mutations or human manipulation. As indicated, changes are preferably of a minor nature, such as conservative amino acid substitutions that do not significantly affect the folding or activity of the protein (see Table II).

TABLE II. Conservative Amino Acid Substitutions.

15

Phenylalanine Tryptophan Tyrosine	
Leucine	
Isoleucine	
Valine	
Glutamine	
Asparagine	
Arginine	
Histidine	
Aspartic Acid	
Glaramic Acid	
Alamine	
Serine	
	Leucine Isoleucine Valine Glutamine Asparagine Arginine Lysine Histidine Aspartic Acid Glutamic Acid

Embodiments of the invention are directed to polypeptides which comprise the amino acid sequence of a follistatin-3 polypeptide described herein, but having an amino acid sequence which contains at least one conservative amino acid substitutions, even more preferably, not more than 40 conservative amino acid substitutions, still more preferably, not more than 30 conservative amino acid substitutions, and still even more preferably, not more than 20 conservative amino acid substitutions, when compared with the follistatin-3 polypucleotide sequence described herein. Of course, in order of ever-increasing preference, it is highly preferable for a peptide or polypeptide to have an amino acid sequence which comprises the amino acid sequence of a follistatin-3 polypeptide, which contains at least one, but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 conservative amino acid substitutions.

In further specific embodiments, the number of substitutions, additions or deletions in the amino acid sequence of Figures 1A, 1B, and 1C (SEQ ID NO:2), a polypeptide sequence encoded by the deposited clones, and/or any of the polypeptide fragments described herein is 75, 70, 60, 50, 40, 35, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 or 150-50, 100-50, 50-20, 30-20, 20-15, 20-10, 15-10, 10-1, 5-10, 1-5, 1-3 or 1-2.

3.5

WO 99/10364 PCT/US98/17710 48

To improve or after the characteristics of follistatin-3 polypeotides, protein engineering may be employed. Recombinant DNA technology known to those skilled in the art can be used to crease novel mutant proteins or muteins including single or multiple amiso acid substitutions, deletions, additions or fusion proteins. Such modified polypeptides can show, e.g., enhanced activity or increased stability. In addition, they may be purified in higher yields and show better solubility than the corresponding natural polypeptide, at least under certain purification and storage conditions.

Thus, the invention also encompasses follistatin-3 derivatives and analogs that have one or more amino acid residues deleted, added, or substituted to generate follistatin-3 polypeptides that are better suited for expression, scale up, etc., in the host cells chosen. For example, cysteine residues can be deleted or substituted with another amino acid residue in order to climinate disulfide bridges; N-linked glycosylation sites can be altered or eliminated to acheive, for example, expression of a homogeneous product that is more easily recovered and purified from yeast hosts which are known to hyperglycosylate N-linked sites. To this end, a variety of amino acid substitutions at one or both of the first or third amino acid positions on any one or more of the glycosylation recognitions sequences in the follistatin-3 polypeptides of the invention, and/or an amino acid deletion at the second position of any one or more such recognition sequences will prevent glycosylation of the follistatin-3 polypeptide at the modified tripeptide sequence (see, e.g., Miyajima, A., et al., EMBO J. 5(6):1193-1197 (1986)).

Amino acids in the follistatin-3 polypeptides of the present invention that are essential for function can be identified by methods known in the art, such as sitedirected mutagenesis or alanine-scanning mutagenesis (Curningham and Wells, Sciency 244:1081-1085 (1989)). The latter procedure introduces single alarine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as receptor binding or in vitro proliferative activity.

Of special interest are substitutions of charged amino acids with other charged or neutral amino acids which may produce proteins with highly desirable improved characteristics, such as less aggregation. Aggregation may not only reduce activity but also be problematic when preparing pharmaceutical formulations, because aggregates can be immunogenic (Pinckard, et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins, et al., Diabetes 36:838-845 (1987); Cleland, et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993)).

A mutational analysis of the two N-linked glycosylation sites (Asn-95 and Asp-259) of follistatin-1 was conducted by Inouve and colleagues (Biochem, Biophys.

(0)

£5

20

25

35

Res. Comm. 179:352-358 (1991)). As described in the analysis, disruption of either or both of the N-linked glycosylation sites (by mutation of Thr-97 and Thr-261 to alanine) had no discernable effect on activis-binding and FSH secretion. However, results of the same study suggest that insertion of two artino acid residues (lysine and leucine) between residues Asn-2 and Cys-3 of follistatin-1 completely abolishes its inhibitory activity on FSH secretion from the pituitary, as well as its ability to bind activin. The asparagine and surrounding residues described in this analysis are weakly conserved between follistatin-1 and follistatin-3. There are however, two potential N-linked glycosylation sites in the sequence of follistatin-3 (N-73 and N-215; see Figure IA). In addition, 4 out of 5 amino acids making up the sequence near the amino terminus, at which point Inouye and coworkers made their two amino acid insertion (supra), are conserved. Consequently, the extreme amino terminal region of the predicted mature follistatin-3 polypeptide may have a high potential for exhibiting a deleterious effect through mutation.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of the follistatis-3 polypeptide can be substantially purified by the one-step method described by Smith and Johnson (*Gene* 67:31-40 (1988)). Polypeptides of the invention also can be purified from natural or recombinant sources using anti-Follistatin-3 antibodies of the invention in methods which are well known in the art of protein purification.

The invention further provides an isolated follistatin-3 polypeptide comprising an amino acid sequence selected from the group consisting of: (a) the amino acid sequence of the full-length follistatin-3 polypeptide having the complete amino acid sequence shown in SEQ ID NO:2 (i.e., positions -26 to 237 of SEQ ID NO:2); (b) the amino acid sequence of the full-length follistatin-3 polypeptide having the complete amino acid sequence shown in SEO ID NO:2 excepting the N-terminal methionine (i.e., positions -25 to 237 of SEQ ID NO:2); (c) the amino acid sequence of the predicted mature follistatin-3 polypeptide having the amino acid sequence at positions 1 to 237 in SEO ID NO:2; (d) the amino acid sequence of the full-length follistatin-3 polypeptide having the complete amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209199; (e) the amino acid sequence of the full-length follistatin-3 polypeptide having the complete amino acid sequence excepting the N-terminal methionine encoded by the cDNA clone contained in ATCC Deposit No. 209199; and (f) the arristo acid sequence of the mature follistatin-3 polypeptide having the arristo acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 209199. The polypeptides of the present invention also include polypeptides having an amino acid

WO 99/18364

9

15

20

50

sequence at least 80% identical, more preferably at least 90% identical, and still more preferably 95%. 96%, 97%, 98% or 99% identical to those described in (a), (b), (c), (d), (e) or (f) above, as well as polypeptides having an amino acid sequence with at least 90% similarity, and more preferably at least 95% similarity, to those above.

Further polypeptides of the present invention include polypeptides which have at least 90% similarity, more preferably at least 95% similarity, and still more preferably at least 96%, 97%, 98% or 99% similarity to those described above. The polypeptides of the invention also comprise those which are at least 80% identical, more preferably at least 90% or 95% identical, still more preferably at least 96%, 97%, 98% or 99% identical to the polypeptide encoded by the deposited cDNA or to the polypeptide of SEQ ID NO:2, and also include portions of such polypeptides with at least 30 amino acids and more preferably at least 50 amino acids.

By "% similarity" for two polypeptides is intended a similarity score produced by comparing the amino acid sequences of the two polypeptides using the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711) and the default settings for determining similarity. Bestfit uses the local homology algorithm of Smith and Waterman (Advances in Applied Mathematics 2:482-489, 1981) to find the best segment of similarity between two sequences.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a reference amino acid sequence of a follistatin-3 polypeptide is intended that the amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid adplerations per each 100 amino acids of the reference amino acid of the follistatin-3 polypeptide. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequence shown in Figures 1A, 1B, and 1C (SEQ ID NO.2), the amino acid sequence encoded by deposited cDNA clone HDTAH85, or fragments thereof, can be determined

18

20

25

30

35

conventionally using known computer programs such the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711: When using Bestfit or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference amino acid sequence and that gaps in homology of up to 5% of the total number of amino acid residues in the reference sequence are allowed.

In a specific embodiment, the identity between a reference (query) sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, is determined using the FASTDB commuter program based on the algorithm of Brutlag et al. (Comp. App. Biosci. 6:237-245 (1990)). parameters used in a FASTDB amino acid alignment are: Matrix=PAM 6. k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05. Window Size=500 or the length of the subject amino acid sequence, whichever is shorter. According to this embodiment, if the subject sequence is shorter than the query sequence due to N- or C-terminal deletions, not because of internal deletions, a manual correction is made to the results to take into consideration the fact that the FASTDB program does not account for N- and C-terminal transcations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. A determination of whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of this embodiment. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C-terminal residues of the subject sequence. For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the N-terminus of the subject sequence and therefore, the FASTDB alignment does not show a matching/alignment of

the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal deletions so there are no residues at the N- or C-termini of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are made for the purposes of this embodiment.

The invention also encompasses fusion proteins in which the full-length follistatin-3 polypeptide or fragment, variant, derivative, or analog thereof is fused to an unrelated protein. These fusion proteins can be routinely designed on the basis of the follistatin-3 nucleotide and polypoptide sequences disclosed herein. For example, as one of skill in the art will appreciate, follistatin-3 polypeptides and fragments (including epitope-bearing fragments) thereof described herein can be combined with parts of the constant domain of immunoglobulins (IgCi), resulting in chimeric (fusion) polypeptides. These fusion proteins facilitate parification and show an increased halflife in vivo. This has been shown, e.g., for chameric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins (EP A 394,827; Traunecker, et al., Nature 331:84-86 (1988)). Fusion proteins that have a disulfidelinked dimeric structure due to the IgG part can also be more efficient in binding and neutralizing other molecules than the monomeric follistatin-3 polypeptide or polypeptide fragments alone (Fountoulakis, et al., J. Biochem. 270:3958-3964 (1995)). Examples of follistatin-3 fusion proteins that are encompassed by the invention include, but are not limited to, fusion of the follistatin-3 polypeptide sequences to any amino acid sequence that allows the fusion proteins to be displayed on the cell surface (e.g. the IgG Fc domain); or fusions to an enzyme, fluorescent protein, or luminescent protein which provides a marker function.

The polypeptides of the present invention have uses which include, but are not limited to, a molecular weight marker on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Additionally, as described in detail herein, the polypeptides of the present invention can also be used