research project data

October 27, 2024

load libraries

[27]: !pip install folium

```
Requirement already satisfied: folium in c:\users\rhous\anaconda3\lib\site-
     packages (0.18.0)
     Requirement already satisfied: xyzservices in c:\users\rhous\anaconda3\lib\site-
     packages (from folium) (2024.9.0)
     Requirement already satisfied: branca>=0.6.0 in
     c:\users\rhous\anaconda3\lib\site-packages (from folium) (0.8.0)
     Requirement already satisfied: numpy in c:\users\rhous\anaconda3\lib\site-
     packages (from folium) (1.20.1)
     Requirement already satisfied: jinja2>=2.9 in c:\users\rhous\anaconda3\lib\site-
     packages (from folium) (3.1.4)
     Requirement already satisfied: requests in c:\users\rhous\anaconda3\lib\site-
     packages (from folium) (2.25.1)
     Requirement already satisfied: MarkupSafe>=2.0 in
     c:\users\rhous\anaconda3\lib\site-packages (from jinja2>=2.9->folium) (2.1.5)
     Requirement already satisfied: idna<3,>=2.5 in
     c:\users\rhous\anaconda3\lib\site-packages (from requests->folium) (2.10)
     Requirement already satisfied: certifi>=2017.4.17 in
     c:\users\rhous\anaconda3\lib\site-packages (from requests->folium) (2020.12.5)
     Requirement already satisfied: urllib3<1.27,>=1.21.1 in
     c:\users\rhous\anaconda3\lib\site-packages (from requests->folium) (1.26.4)
     Requirement already satisfied: chardet<5,>=3.0.2 in
     c:\users\rhous\anaconda3\lib\site-packages (from requests->folium) (4.0.0)
[41]: import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import folium
      from datetime import datetime
      from folium.plugins import HeatMap
      from IPython.display import display
      from sklearn.model_selection import train_test_split
      from sklearn.linear model import LogisticRegression
      from sklearn.metrics import classification_report, confusion_matrix
      from sklearn.ensemble import RandomForestClassifier
```

```
from sklearn.preprocessing import LabelEncoder
```

read data

```
[29]: # Load datasets
     crashes_df = pd.read_csv('Z:\\Documents\\College\\Data 698 - Master\'s_\
      →Thesis\\data\\Motor_Vehicle_Collisions_-_Crashes_20241019.csv')
     persons_df = pd.read_csv('Z:\\Documents\\College\\Data 698 - Master\'s_\
      →Thesis\\data\\Motor Vehicle Collisions - Person 20241019.csv')
     vehicles_df= pd.read_csv('Z:\\Documents\\College\\Data 698 - Master\'s_
      →Thesis\\data\\Motor_Vehicle_Collisions_-_Vehicles.csv')
     # Convert 'CRASH DATE' to datetime
     crashes_df['CRASH DATE'] = pd.to_datetime(crashes_df['CRASH DATE'],__
      →errors='coerce')
     persons df['CRASH DATE'] = pd.to datetime(persons df['CRASH DATE'],
      ⇔errors='coerce')
     vehicles_df['CRASH_DATE'] = pd.to_datetime(vehicles_df['CRASH_DATE'],_
      ⇔errors='coerce')
[26]: # Define the date range for filtering
     start_date = datetime(2017, 1, 1)
     end_date = datetime.now()
     # Filter datasets to only include records from 2017 to present
     crashes_df = crashes_df[(crashes_df['CRASH_DATE'] >= start_date) &__
      persons_df = persons_df[(persons_df['CRASH_DATE'] >= start_date) &__
      vehicles_df = vehicles_df[(vehicles_df['CRASH_DATE'] >= start_date) \&
      # Merge the datasets on 'COLLISION ID'
     merged df = crashes df.merge(persons df, how='left', on='COLLISION ID')
     merged_df = merged_df.merge(vehicles_df, how='left', on='COLLISION_ID')
[30]: #get info
     # List of columns to drop
     drop columns = [
         'ON STREET NAME', 'CROSS STREET NAME', 'OFF STREET NAME',
         'DRIVER_LICENSE_STATUS', 'DRIVER_LICENSE_JURISDICTION',
         'VEHICLE_DAMAGE', 'VEHICLE_DAMAGE_1', 'VEHICLE_DAMAGE_2',
      'EMOTIONAL STATUS', 'EJECTION', 'POSITION IN VEHICLE', 'SAFETY EQUIPMENT',
         'PUBLIC_PROPERTY_DAMAGE', 'PUBLIC_PROPERTY_DAMAGE_TYPE',
         'COMPLAINT', 'PED_ROLE', 'PED_LOCATION', 'PED_ACTION',
         'VEHICLE_MAKE', 'VEHICLE_MODEL', 'VEHICLE_YEAR'
```

```
# Drop the columns from the merged DataFrame
merged_df.drop(columns=drop_columns, inplace=True)
merged_df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 9651082 entries, 0 to 9651081
Data columns (total 51 columns):

#	Column	Dtype
0	CRASH DATE	datetime64[ns]
1	CRASH TIME	object
2	BOROUGH	object
3	ZIP CODE	object
4	LATITUDE	float64
5	LONGITUDE	float64
6	LOCATION	object
7	NUMBER OF PERSONS INJURED	float64
8	NUMBER OF PERSONS KILLED	float64
9	NUMBER OF PEDESTRIANS INJURED	
10	NUMBER OF PEDESTRIANS KILLED	int64
11	NUMBER OF CYCLIST INJURED	int64
12	NUMBER OF CYCLIST KILLED	int64
13	NUMBER OF MOTORIST INJURED	int64
14	NUMBER OF MOTORIST KILLED	int64
15	CONTRIBUTING FACTOR VEHICLE 1	object
16	CONTRIBUTING FACTOR VEHICLE 2	object
17	CONTRIBUTING FACTOR VEHICLE 3	object
18	CONTRIBUTING FACTOR VEHICLE 4	object
19	CONTRIBUTING FACTOR VEHICLE 5	object
20	COLLISION_ID	int64
21	VEHICLE TYPE CODE 1	object
22	VEHICLE TYPE CODE 2	object
23	VEHICLE TYPE CODE 3	object
24	VEHICLE TYPE CODE 4	object
25	VEHICLE TYPE CODE 5	object
26	UNIQUE_ID_x	float64
27	CRASH_DATE_x	datetime64[ns]
28	CRASH_TIME_x	object
29	PERSON_ID	object
30	PERSON_TYPE	object
31	PERSON_INJURY	object
32	VEHICLE_ID_x	float64
33	PERSON_AGE	float64
34	BODILY_INJURY	object
35	CONTRIBUTING_FACTOR_1_x	object

```
36 CONTRIBUTING_FACTOR_2_x
                                         object
      37 PERSON_SEX
                                         object
                                         float64
      38 UNIQUE_ID_y
      39 CRASH_DATE_y
                                         datetime64[ns]
      40 CRASH TIME y
                                         object
      41 VEHICLE ID y
                                         object
      42 STATE REGISTRATION
                                         object
      43 VEHICLE TYPE
                                         object
      44 TRAVEL DIRECTION
                                         object
      45 VEHICLE_OCCUPANTS
                                         float64
      46 DRIVER_SEX
                                         object
      47 PRE_CRASH
                                         object
      48 POINT_OF_IMPACT
                                         object
      49 CONTRIBUTING_FACTOR_1_y
                                         object
      50 CONTRIBUTING_FACTOR_2_y
                                         object
     dtypes: datetime64[ns](3), float64(9), int64(7), object(32)
     memory usage: 3.7+ GB
[32]: #save dataframe
      merged_df.to_csv("Z:\\Documents\\College\\Data 698 - Master\'s_
      →Thesis\\data\\MergedData.csv")
```

visualize crash trends over time

```
[31]: # Group by year and calculate the total number of crashes
merged_df['CRASH DATE'] = pd.to_datetime(merged_df['CRASH DATE'])
merged_df['Year'] = merged_df['CRASH DATE'].dt.year

# Yearly trend of total crashes
yearly_crash_trend = merged_df.groupby('Year')['COLLISION_ID'].nunique()

# Plotting the yearly trend
plt.figure(figsize=(10, 6))
plt.plot(yearly_crash_trend.index, yearly_crash_trend.values, marker='o')
plt.title('Yearly Trend of Total Crashes in NYC')
plt.xlabel('Year')
plt.ylabel('Number of Crashes')
plt.grid(True)
plt.show()
```


Analyze crash severity by borough

```
[34]: # Calculate total crashes, injuries, and fatalities by borough
     severity_by_borough = merged_df.groupby('BOROUGH').agg(
         total_crashes=('COLLISION_ID', 'nunique'),
         total_injuries=('NUMBER OF PERSONS INJURED', 'sum'),
         total_fatalities=('NUMBER OF PERSONS KILLED', 'sum')
     ).reset_index()
     # Calculate average severity per crash by borough
     severity_by_borough['avg_injuries_per_crash'] =__
      severity_by_borough['avg_fatalities_per_crash'] =__
      ⇔severity_by_borough['total_fatalities'] /

      ⇔severity_by_borough['total_crashes']
     # Plotting the results
     fig, ax = plt.subplots(1, 2, figsize=(15, 6))
     # Plot total injuries and fatalities by borough
     ax[0].bar(severity_by_borough['BOROUGH'],__
      ⇒severity_by_borough['total_injuries'], label='Total Injuries', alpha=0.7)
     ax[0].bar(severity_by_borough['BOROUGH'],__

→severity_by_borough['total_fatalities'], label='Total Fatalities', alpha=0.7)
     ax[0].set_title('Total Injuries and Fatalities by Borough')
```

```
ax[0].set_xlabel('Borough')
ax[0].set_ylabel('Count')
ax[0].legend()
# Plot average injuries and fatalities per crash by borough
ax[1].bar(severity_by_borough['BOROUGH'],__
→severity_by_borough['avg_injuries_per_crash'], label='Avg Injuries/Crash',
\rightarrowalpha=0.7)
ax[1].bar(severity_by_borough['BOROUGH'],__

¬severity_by_borough['avg_fatalities_per_crash'], label='Avg_Fatalities/
ax[1].set title('Average Injuries and Fatalities per Crash by Borough')
ax[1].set xlabel('Borough')
ax[1].set_ylabel('Average Count')
ax[1].legend()
plt.tight_layout()
plt.show()
```


analyze pre and post pandemic data

```
pre_pandemic_trend = pre_pandemic_df.groupby(pre_pandemic_df['CRASH_DATE'].dt.
→year).agg(
   total_crashes=('COLLISION_ID', 'nunique'),
   total injuries=('NUMBER OF PERSONS INJURED', 'sum'),
   total_fatalities=('NUMBER OF PERSONS KILLED', 'sum')
).reset index()
post_pandemic_trend = post_pandemic_df.groupby(post_pandemic_df['CRASH DATE'].
→dt.year).agg(
   total_crashes=('COLLISION_ID', 'nunique'),
   total_injuries=('NUMBER OF PERSONS INJURED', 'sum'),
   total fatalities=('NUMBER OF PERSONS KILLED', 'sum')
).reset_index()
# Plotting the results
fig, ax = plt.subplots(1, 3, figsize=(18, 6), sharex=True)
# Total crashes
ax[0].plot(pre_pandemic_trend['CRASH_DATE'],__
→pre_pandemic_trend['total_crashes'], label='Pre-Pandemic', marker='o')
ax[0].plot(post_pandemic_trend['CRASH DATE'],__
→post_pandemic_trend['total_crashes'], label='Post-Pandemic', marker='o')
ax[0].set title('Total Crashes: Pre vs. Post-Pandemic')
ax[0].set_xlabel('Year')
ax[0].set_ylabel('Number of Crashes')
ax[0].legend()
# Total injuries
ax[1].plot(pre_pandemic_trend['CRASH_DATE'],__
→pre_pandemic_trend['total_injuries'], label='Pre-Pandemic', marker='o')
ax[1].plot(post pandemic trend['CRASH DATE'],__
→post_pandemic_trend['total_injuries'], label='Post-Pandemic', marker='o')
ax[1].set_title('Total Injuries: Pre vs. Post-Pandemic')
ax[1].set_xlabel('Year')
ax[1].set_ylabel('Number of Injuries')
ax[1].legend()
# Total fatalities
ax[2].plot(pre_pandemic_trend['CRASH DATE'],__
→pre_pandemic_trend['total_fatalities'], label='Pre-Pandemic', marker='o')
ax[2].plot(post_pandemic_trend['CRASH_DATE'],__
→post_pandemic_trend['total_fatalities'], label='Post-Pandemic', marker='o')
ax[2].set title('Total Fatalities: Pre vs. Post-Pandemic')
ax[2].set_xlabel('Year')
ax[2].set_ylabel('Number of Fatalities')
ax[2].legend()
```

```
plt.tight_layout()
plt.show()
```


crash factor analysis

```
[36]: # Add a column to categorize crash severity
      merged_df['SEVERE_CRASH'] = merged_df['NUMBER OF PERSONS INJURED'] +__
      →merged_df['NUMBER OF PERSONS KILLED']
      merged_df['SEVERE_CRASH'] = merged_df['SEVERE_CRASH'].apply(lambda x: 1 if x >__
       \rightarrow 0 else 0)
      # Show the distribution of severe vs. non-severe crashes
      severity_counts = merged_df['SEVERE_CRASH'].value_counts()
      print(severity_counts)
      \# Calculate the frequency of contributing factors for severe vs. non-severe
       \rightarrow crashes
      contributing factors = [
          'CONTRIBUTING FACTOR VEHICLE 1', 'CONTRIBUTING FACTOR VEHICLE 2',
          'CONTRIBUTING FACTOR VEHICLE 3', 'CONTRIBUTING FACTOR VEHICLE 4',
          'CONTRIBUTING FACTOR VEHICLE 5'
      ]
      # Melt the contributing factor columns for easier analysis
      factors_df = merged_df.melt(
          id_vars=['SEVERE_CRASH'],
          value_vars=contributing_factors,
          var name='CONTRIBUTING FACTOR TYPE',
          value_name='CONTRIBUTING_FACTOR'
      # Filter out missing or unknown factors
```

```
factors_df = factors_df[factors_df['CONTRIBUTING_FACTOR'].notna() &__
      # Calculate the distribution of contributing factors by crash severity
     severity_factors = factors_df.groupby(['CONTRIBUTING_FACTOR', 'SEVERE_CRASH']).
      ⇒size().unstack(fill value=0)
     # Normalize to get proportions
     severity_factors = severity_factors.div(severity_factors.sum(axis=1), axis=0)
     # Display the top contributing factors for severe crashes
     severity factors.sort values(by=1, ascending=False).head(10)
          6668079
     0
     1
          2983003
     Name: SEVERE CRASH, dtype: int64
[36]: SEVERE_CRASH
                                                               0
                                                                        1
     CONTRIBUTING_FACTOR
     Reaction to Other Uninvolved Vehicle
                                                        0.000000 1.000000
     Lost Consciousness
                                                        0.162373 0.837627
                                                        0.263009 0.736991
     Illnes
     Pedestrian/Bicyclist/Other Pedestrian Error/Con... 0.271230 0.728770
     Listening/Using Headphones
                                                        0.284553 0.715447
     Physical Disability
                                                        0.398547 0.601453
     Drugs (illegal)
                                                        0.410354 0.589646
     Traffic Control Disregarded
                                                        0.441334 0.558666
     Unsafe Speed
                                                        0.450932 0.549068
     Headlights Defective
                                                        0.461303 0.538697
[44]: # Select a smaller set of features
     selected_features = [
         'NUMBER OF PERSONS INJURED', 'NUMBER OF PEDESTRIANS INJURED',
         'NUMBER OF CYCLIST INJURED', 'NUMBER OF MOTORIST INJURED',
         'CONTRIBUTING FACTOR VEHICLE 1', 'VEHICLE TYPE CODE 1', 'CRASH TIME'
     ]
     # Filter the dataset
     model_features = merged_df[selected_features].copy()
     # Downcast numeric columns to reduce memory usage
     numeric_cols = ['NUMBER OF PERSONS INJURED', 'NUMBER OF PEDESTRIANS INJURED',
                     'NUMBER OF CYCLIST INJURED', 'NUMBER OF MOTORIST INJURED']
     model_features[numeric_cols] = model_features[numeric_cols].apply(pd.
      →to_numeric, downcast='float')
     # Fill missing values in numeric columns with O
```

```
model_features[numeric_cols] = model_features[numeric_cols].fillna(0)
# Apply Label Encoding to categorical columns, handling NaNs by filling with
→ 'Unknown'
label enc = LabelEncoder()
for col in ['CONTRIBUTING FACTOR VEHICLE 1', 'VEHICLE TYPE CODE 1', 'CRASH,'
   model_features[col] = model_features[col].fillna('Unknown')
   model_features[col] = label_enc.fit_transform(model_features[col].
→astype(str))
# Check for and replace infinities
model_features.replace([np.inf, -np.inf], np.nan, inplace=True)
model_features.dropna(inplace=True)
# Define the target variable
y = merged_df['SEVERE_CRASH'].fillna(0)
# Sample 5% of the data to further reduce memory usage
X_sample, _, y_sample, _ = train_test_split(model_features, y, test_size=0.95,__
→random_state=42)
# Split the 5% sample into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X_sample, y_sample, u
→test_size=0.3, random_state=42)
# Initialize and fit the Logistic Regression model
logreg = LogisticRegression(max iter=1000, solver='saga')
logreg.fit(X_train, y_train)
# Calculate feature importance (coefficients) for logistic regression
importance = pd.Series(logreg.coef_[0], index=X_train.columns).
→sort values(ascending=False)
# Plot the top predictors
plt.figure(figsize=(10, 6))
importance.head(10).plot(kind='bar')
plt.title('Top 10 Most Significant Predictors of Crash Severity (Logistic
→Regression, 5% Sample)')
plt.xlabel('Features')
plt.ylabel('Coefficient')
plt.show()
# Print the classification report for model performance
y_pred = logreg.predict(X_test)
print(classification_report(y_test, y_pred))
```

C:\Users\rhous\anaconda3\lib\site-packages\sklearn\linear_model_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge

warnings.warn("The max_iter was reached which means "

precision recall f1-score support 0 1.00 1.00 1.00 100221 1 1.00 1.00 1.00 44546 1.00 144767 accuracy macro avg 1.00 1.00 1.00 144767 1.00 weighted avg 1.00 1.00 144767

changes in contributing factors after covid

```
[45]: # Analyze the top contributing factors pre- and post-pandemic
      top_factors_pre = pre_pandemic_df['CONTRIBUTING FACTOR VEHICLE 1'].
      →value_counts().head(10)
      top_factors_post = post_pandemic_df['CONTRIBUTING FACTOR VEHICLE 1'].
       →value counts().head(10)
      # Plot the top contributing factors
      fig, ax = plt.subplots(1, 2, figsize=(16, 6))
      top_factors_pre.plot(kind='bar', ax=ax[0], color='b')
      ax[0].set_title('Top 10 Contributing Factors (Pre-Pandemic)')
      ax[0].set_xlabel('Contributing Factor')
      ax[0].set_ylabel('Frequency')
      top factors post.plot(kind='bar', ax=ax[1], color='r')
      ax[1].set_title('Top 10 Contributing Factors (Post-Pandemic)')
      ax[1].set_xlabel('Contributing Factor')
      ax[1].set_ylabel('Frequency')
      plt.tight_layout()
      plt.show()
```



```
[46]: # Pre-pandemic crash locations
pre_pandemic_map = folium.Map(location=[40.7128, -74.0060], zoom_start=11)
pre_heat_data = pre_pandemic_df[['LATITUDE', 'LONGITUDE']].dropna()
HeatMap(data=pre_heat_data.values, radius=10).add_to(pre_pandemic_map)

# Post-pandemic crash locations
post_pandemic_map = folium.Map(location=[40.7128, -74.0060], zoom_start=11)
post_heat_data = post_pandemic_df[['LATITUDE', 'LONGITUDE']].dropna()
HeatMap(data=post_heat_data.values, radius=10).add_to(post_pandemic_map)
```

```
# Display the maps (for Jupyter Notebook)
pre_pandemic_map
post_pandemic_map
```

[46]: <folium.folium.Map at 0x1bcaa41c340>

[]: