Teste INDIVIDUAL de regressão e correlação - 01 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski Matrícula: CBP 2015 2057 Name:

Matrícula: GRR20152057 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	183	198
2	155	68
3	172	93
4	152	70
5	185	151

- 1. () O coeficiente de inclinação (angular) da regressão é 0.8872
- 2. () O valor do intercepto da regressão é 169.42
- 3. () O valor do coeficiente de correlação é 0.7871
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.7871

Teste INDIVIDUAL de regressão e correlação - 02 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20152082 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	185	151
2	170	98
3	172	93
4	163	93
5	185	144

- 1. () O coeficiente de inclinação (angular) da regressão é 0.9447
- 2. () O valor do intercepto da regressão é -361.55
- 3. () O valor do coeficiente de correlação é 0.8925
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 4.5407
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.9447

Teste INDIVIDUAL de regressão e correlação - 03 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20130332 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	153	55
2	156	71
3	155	68
4	169	70
5	172	93

- 1. () O coeficiente de inclinação (angular) da regressão é 0.7802
- 2. () O valor do intercepto da regressão é -125.09
- 3. () O valor do coeficiente de correlação é 0.7802
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.7802

Teste INDIVIDUAL de regressão e correlação - 04 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20158954 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	158	113
2	172	156
3	155	60
4	183	198
5	169	66

- 1. () O coeficiente de inclinação (angular) da regressão é 4.09
- 2. () O valor do intercepto da regressão é 167.14
- 3. () O valor do coeficiente de correlação é 0.6161
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.6161

Teste INDIVIDUAL de regressão e correlação - 05 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski Matrícula: GRR20151704 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	160	64
2	170	98
3	185	144
4	183	198
5	178	100

- 1. () O coeficiente de inclinação (angular) da regressão é 0.822
- 2. () O valor do intercepto da regressão é 175.26
- 3. () O valor do coeficiente de correlação é 0.6757
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.6757

Teste INDIVIDUAL de regressão e correlação - 06 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20141513 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	190	159
2	190	233
3	183	198
4	152	83
5	169	66

- 1. () O coeficiente de inclinação (angular) da regressão é 0.8182
- 2. () O valor do intercepto da regressão é 177.04
- 3. () O valor do coeficiente de correlação é 0.6695
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- $5.\ (\quad)$ O percentual da variabilidade de Peso explicada por Altura é 0.6695

Teste INDIVIDUAL de regressão e correlação - 07 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20155858 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	158	71
2	163	162
3	187	119
4	183	158
5	170	82

- 1. () O coeficiente de inclinação (angular) da regressão é 0.3725
- 2. () O valor do intercepto da regressão é -94.94
- 3. () O valor do coeficiente de correlação é 0.1388
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 4.5407
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.1388

Teste INDIVIDUAL de regressão e correlação - 08 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski Matrícula: GRR20157882 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	160	92
2	160	64
3	211	180
4	190	159
5	160	100

- 1. () O coeficiente de inclinação (angular) da regressão é 0.9497
- 2. () O valor do intercepto da regressão é -229.36
- 3. () O valor do coeficiente de correlação é 0.9019
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.9497

Teste INDIVIDUAL de regressão e correlação - 09 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20151584 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	170	82
2	183	189
3	185	151
4	160	64
5	165	144

- 1. () O coeficiente de inclinação (angular) da regressão é 3.52
- 2. () O valor do intercepto da regressão é -481.77
- 3. () O valor do coeficiente de correlação é 0.7521
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.7521

Teste INDIVIDUAL de regressão e correlação - 10 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20158408 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	194	202
2	160	100
3	165	144
4	163	82
5	158	75

- 1. () O coeficiente de inclinação (angular) da regressão é 3.25
- 2. () O valor do intercepto da regressão é -425.37
- 3. () O valor do coeficiente de correlação é 0.9229
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- $5.\,$ ($\,$) O percentual da variabilidade de Peso explicada por Altura é 0.8517

Teste INDIVIDUAL de regressão e correlação - 11 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski Matrícula: GRR20152917 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	155	60
2	172	156
3	194	202
4	155	104
5	183	158

- 1. () O coeficiente de inclinação (angular) da regressão é 0.9324
- 2. () O valor do intercepto da regressão é -372.1
- 3. () O valor do coeficiente de correlação é 0.9324
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.8694

Teste INDIVIDUAL de regressão e correlação - 12 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20145231 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	183	158
2	175	158
3	155	72
4	183	198
5	163	93

- 1. () O coeficiente de inclinação (angular) da regressão é 3.97
- 2. () O valor do intercepto da regressão é -545.38
- 3. () O valor do coeficiente de correlação é 0.9145
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 4.5407
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.9145

Teste INDIVIDUAL de regressão e correlação - 13 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20137411 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	178	146
2	163	93
3	155	68
4	158	75
5	155	72

- 1. () O coeficiente de inclinação (angular) da regressão é 3.36
- 2. () O valor do intercepto da regressão é 161.54
- 3. () O valor do coeficiente de correlação é 0.9958
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- $5.\ (\quad)$ O percentual da variabilidade de Peso explicada por Altura é 0.9958

Teste INDIVIDUAL de regressão e correlação - 14 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20140726 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	163	93
2	160	90
3	190	233
4	156	107
5	172	89

- 1. () O coeficiente de inclinação (angular) da regressão é 0.8709
- 2. () O valor do intercepto da regressão é 168.16
- 3. () O valor do coeficiente de correlação é 0.8709
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 4.5407
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.7585

Teste INDIVIDUAL de regressão e correlação - 15 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20151260 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	190	159
2	185	151
3	187	147
4	158	71
5	154	53

- 1. () O coeficiente de inclinação (angular) da regressão é 0.9971
- 2. () O valor do intercepto da regressão é 174.76
- 3. () O valor do coeficiente de correlação é 0.9971
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.9971

Teste INDIVIDUAL de regressão e correlação - 16 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20151297 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	170	98
2	163	93
3	183	123
4	160	64
5	175	158

- 1. () O coeficiente de inclinação (angular) da regressão é 2.89
- 2. () O valor do intercepto da regressão é -385.6
- 3. () O valor do coeficiente de correlação é 0.5831
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.5831

Teste INDIVIDUAL de regressão e correlação - 17 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20152670 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	163	93
2	172	89
3	165	92
4	160	70
5	155	68

- 1. () O coeficiente de inclinação (angular) da regressão é 0.7493
- 2. () O valor do intercepto da regressão é -159.66
- 3. () O valor do coeficiente de correlação é 0.7493
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.5615

Teste INDIVIDUAL de regressão e correlação - 18 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20152787 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	202	167
2	180	137
3	187	147
4	158	75
5	196	196

- 1. () O coeficiente de inclinação (angular) da regressão é 0.9341
- 2. () O valor do intercepto da regressão é -304.7
- 3. () O valor do coeficiente de correlação é 0.8725
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 4.5407
- $5. \ (\ \)$ O percentual da variabilidade de Peso explicada por Altura é 0.8725

Teste INDIVIDUAL de regressão e correlação - 19 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20142738 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	187	119
2	179	166
3	160	90
4	183	158
5	154	53

- 1. () O coeficiente de inclinação (angular) da regressão é 2.69
- 2. () O valor do intercepto da regressão é -347.09
- 3. () O valor do coeficiente de correlação é 0.7002
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- $5. \ (\ \)$ O percentual da variabilidade de Peso explicada por Altura é 0.8368

Teste INDIVIDUAL de regressão e correlação - 20 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20142928 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	185	144
2	169	66
3	183	198
4	194	202
5	155	72

- 1. () O coeficiente de inclinação (angular) da regressão é 0.8752
- 2. () O valor do intercepto da regressão é -522.9
- 3. () O valor do coeficiente de correlação é 0.8752
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 4.5407
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.766

Teste INDIVIDUAL de regressão e correlação - 21 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20157822 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	156	71
2	163	93
3	170	98
4	153	55
5	185	144

- 1. () O coeficiente de inclinação (angular) da regressão é 0.9851
- 2. () O valor do intercepto da regressão é -331.29
- 3. () O valor do coeficiente de correlação é 0.9851
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- $5. \ (\ \)$ O percentual da variabilidade de Peso explicada por Altura é 0.9851

Teste INDIVIDUAL de regressão e correlação - 22 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20142936 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	160	100
2	160	92
3	172	89
4	194	202
5	156	71

- 1. () O coeficiente de inclinação (angular) da regressão é 0.9341
- 2. () O valor do intercepto da regressão é 168.4
- 3. () O valor do coeficiente de correlação é 0.8725
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 4.5407
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.8725

Teste INDIVIDUAL de regressão e correlação - 23 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20153767 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	201	182
2	170	82
3	169	70
4	163	82
5	169	66

- 1. () O coeficiente de inclinação (angular) da regressão é 3.07
- 2. () O valor do intercepto da regressão é 174.26
- 3. () O valor do coeficiente de correlação é 0.9189
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.9586

Teste INDIVIDUAL de regressão e correlação - 24 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20113106 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	160	100
2	170	82
3	170	98
4	179	166
5	190	159

- 1. () O coeficiente de inclinação (angular) da regressão é 0.7852
- 2. () O valor do intercepto da regressão é -339.83
- 3. () O valor do coeficiente de correlação é 0.6165
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.6165

Teste INDIVIDUAL de regressão e correlação - 25 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20127314 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	165	144
2	170	98
3	174	163
4	169	73
5	187	119

- 1. () O coeficiente de inclinação (angular) da regressão é 0.0824
- 2. () O valor do intercepto da regressão é 172.98
- 3. () O valor do coeficiente de correlação é 0.0824
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 4.5407
- $5.\ (\quad)$ O percentual da variabilidade de Peso explicada por Altura é 0.0068

Teste INDIVIDUAL de regressão e correlação - 26 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20132857 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	172	156
2	155	60
3	169	73
4	169	66
5	155	104

- 1. () O coeficiente de inclinação (angular) da regressão é 1.63
- 2. () O valor do intercepto da regressão é 163.82
- 3. () O valor do coeficiente de correlação é 0.113
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 4.5407
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.3361

Teste INDIVIDUAL de regressão e correlação - 27

Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20141348 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	155	104
2	158	75
3	169	73
4	169	70
5	160	64

- 1. () O coeficiente de inclinação (angular) da regressão é -1.41
- 2. () O valor do intercepto da regressão é 306.04
- 3. () O valor do coeficiente de correlação é -0.5814
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 4.5407
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.338

Teste INDIVIDUAL de regressão e correlação - 28 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20132932 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	183	189
2	158	75
3	160	92
4	169	73
5	155	104

- 1. () O coeficiente de inclinação (angular) da regressão é 0.768
- 2. () O valor do intercepto da regressão é -424.47
- 3. () O valor do coeficiente de correlação é 0.5898
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.768

Teste INDIVIDUAL de regressão e correlação - 29

Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20135918 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	178	100
2	163	93
3	158	71
4	160	100
5	161	96

- 1. () O coeficiente de inclinação (angular) da regressão é 0.79
- 2. () O valor do intercepto da regressão é 163.84
- 3. () O valor do coeficiente de correlação é 0.2698
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 4.5407
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.2698

Teste INDIVIDUAL de regressão e correlação - 30 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20146982 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	178	100
2	179	166
3	152	83
4	163	162
5	155	60

- 1. () O coeficiente de inclinação (angular) da regressão é 2.19
- 2. () O valor do intercepto da regressão é 165.36
- 3. () O valor do coeficiente de correlação é 0.5771
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.333

Teste INDIVIDUAL de regressão e correlação - 31 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20154108 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	156	107
2	187	147
3	165	144
4	172	89
5	185	144

- 1. () O coeficiente de inclinação (angular) da regressão é 1.08
- 2. () O valor do intercepto da regressão é 172.98
- 3. () O valor do coeficiente de correlação é 0.5352
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.2864

Teste INDIVIDUAL de regressão e correlação - 32 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20153807 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	194	202
2	158	113
3	211	180
4	170	98
5	174	163

- 1. () O coeficiente de inclinação (angular) da regressão é 0.7804
- 2. () O valor do intercepto da regressão é 181.36
- 3. () O valor do coeficiente de correlação é 0.609
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.609

Teste INDIVIDUAL de regressão e correlação - 33

Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20143886 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	165	92
2	163	162
3	160	92
4	152	70
5	156	71

- 1. () O coeficiente de inclinação (angular) da regressão é 0.5881
- 2. () O valor do intercepto da regressão é -599.16
- 3. () O valor do coeficiente de correlação é 0.5881
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 4.5407
- $5.\ (\quad)$ O percentual da variabilidade de Peso explicada por Altura é 0.3459

Teste INDIVIDUAL de regressão e correlação - 34 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20159607 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	165	92
2	155	104
3	169	73
4	170	82
5	160	64

- 1. () O coeficiente de inclinação (angular) da regressão é -0.4099
- 2. () O valor do intercepto da regressão é 251.12
- 3. () O valor do coeficiente de correlação é 0.168
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 4.5407
- $5.\ (\quad)$ O percentual da variabilidade de Peso explicada por Altura é 0.4099

Teste INDIVIDUAL de regressão e correlação - 35 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20159933 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	152	70
2	172	156
3	161	96
4	155	72
5	165	92

- 1. () O coeficiente de inclinação (angular) da regressão é 4.14
- 2. () O valor do intercepto da regressão é -569.82
- 3. () O valor do coeficiente de correlação é 0.8328
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.9126

Teste INDIVIDUAL de regressão e correlação - 36 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20133825 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	160	90
2	163	82
3	211	180
4	163	93
5	180	137

- 1. () O coeficiente de inclinação (angular) da regressão é 1.9
- 2. () O valor do intercepto da regressão é 175.26
- 3. () O valor do coeficiente de correlação é 0.981
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 4.5407
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.9624

Teste INDIVIDUAL de regressão e correlação - 37

Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20144018 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	172	93
2	158	75
3	160	90
4	160	92
5	163	82

- 1. () O coeficiente de inclinação (angular) da regressão é 0.5444
- 2. () O valor do intercepto da regressão é -34.72
- 3. () O valor do coeficiente de correlação é 0.5444
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 4.5407
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.2964

Teste INDIVIDUAL de regressão e correlação - 38 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20157747 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	163	162
2	183	189
3	174	163
4	152	83
5	180	137

- 1. () O coeficiente de inclinação (angular) da regressão é 0.7442
- 2. () O valor do intercepto da regressão é 170.44
- 3. () O valor do coeficiente de correlação é 0.7442
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 4.5407
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.7442

Teste INDIVIDUAL de regressão e correlação - 39 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20140076 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	183	123
2	160	64
3	178	100
4	158	75
5	169	70

- 1. () O coeficiente de inclinação (angular) da regressão é 0.8865
- 2. () O valor do intercepto da regressão é -248.89
- 3. () O valor do coeficiente de correlação é 0.8865
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.7859

Teste INDIVIDUAL de regressão e correlação - 40 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20150593 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	170	98
2	152	70
3	163	82
4	187	119
5	153	55

- 1. () O coeficiente de inclinação (angular) da regressão é 1.69
- 2. () O valor do intercepto da regressão é -193.34
- 3. () O valor do coeficiente de correlação é 0.9351
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 4.5407
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.9351

Teste INDIVIDUAL de regressão e correlação - 41 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20144489 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	160	64
2	172	89
3	172	93
4	174	163
5	211	180

- 1. () O coeficiente de inclinação (angular) da regressão é 0.8076
- 2. () O valor do intercepto da regressão é 177.56
- 3. () O valor do coeficiente de correlação é 0.6522
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- $5. \ (\ \)$ O percentual da variabilidade de Peso explicada por Altura é 0.8076

Teste INDIVIDUAL de regressão e correlação - 42 Disciplina CE001-Bioestatística, Prof. Elias T. Krainski

Matrícula: GRR20155146 - Nome:

Numa pesquisa foram coletados dados de Altura e Peso de uma amostra de 5 ursos marrons. Esses dados são mostrados na tabela abaixo.

	Altura	Peso
1	190	233
2	158	71
3	155	60
4	156	71
5	158	113

- 1. () O coeficiente de inclinação (angular) da regressão é 0.971
- 2. () O valor do intercepto da regressão é 163.32
- 3. () O valor do coeficiente de correlação é 0.971
- 4. () Ao nível de 1% de significância, rejeita-se que não há correlação, em favor da hipótese de que há correlação positiva, caso o valor de $r\sqrt{\frac{n-2}{1-r^2}}$ seja maior que 3.4819
- 5. () O percentual da variabilidade de Peso explicada por Altura é 0.971