Лекция "Функциональный анализ" по учебнику А.Н.Колмогоров С.В.Фомин

составил П.М.Ахметьев

18.05.2020

Интеграл Лебега

Простые функции

Опредление 1. Измеримая функция $f: X \to \mathbb{R}$ называется простой, если она принимает не более, чем счетное число значений $\{x_1, \ldots, x_n, \ldots\}$. В этом случае условие измеримости функции эквивалентно условию измеримости каждого множества

$$A_n = \{x : f(x) = y_n\}.$$

Theorem 1. Функция $f: X \to \mathbb{R}$ измерима, тогда и только тогда, когда эта функция является пределом равномерносходящейся последовательности простых функций.

Доказательство Теоремы 1

Достаточность. Доказательство см. гл. V, параграф 4, Теорема 4.

Необходимость. Для измеримой f(x), $n \in \mathbb{N}$, определим $f_n(x) = \frac{m}{n}$, если $\frac{m}{n} \leq f(x) < \frac{(m+1)}{n}$. Функция $f_n(x)$ -простая (почему?). Последовательность $f_n(x)$ равномерно сходится к f(x), поскольку

$$|f(x) - f_n(x)| \leq \frac{1}{n}$$
. \square

Интеграл лебега для простых функций

Пусть f-простая функция, $\{y_1, \ldots, y_n, \ldots\}$ -все ее различные значения. Пусть $A \subset X$ -измеримое подмножество. Определим

$$\int_{A} f(x)d\mu = \sum_{n} y_{n}\mu(A_{n}), \quad A_{n} = \{x : x \in A, f(x) = y_{n}\},\$$

если этот ряд абсолютно сходится.

Мы предположили, что все значения различны. Удобно от этого условия отказаться.

Lemma 2. Пусть $A = \bigcup_k B_k$, $B_i \cap B_j = \emptyset$, $i \neq j$, пусть на B_k функция f принимает значение c_k . Тогда

$$\int_{A} f(x)d\mu = \sum_{k} c_{k}\mu(B_{k}).$$

 Φ ункция f интегрируема на A, тогда и только тогда, когда ряд в правой части абсолютно сходится.

Доказательство Леммы 2

Каждое A_n является объединением тех B_k , для которых $c_k = y_n$. Поэтому

$$\sum_{n} y_{n} \mu(A_{n}) = \sum_{n} y_{n} \sum_{c_{k} = y_{n}} \mu(B_{k}) = \sum_{k} c_{k} \mu(B_{k}).$$

Ряды в правой и левой частях равенства абсолютно сходятся или расходятся одновременно.

Свойства интеграла Лебега от простых функций

1. Аддитивность: $\int_A [f(x)+g(x)]d\mu = \int_A f(x)d\mu + \int_A g(x)d\mu$, из существования интегралов в правой части вытекает существование интеграла в левой части.

Доказательство. Пусть f принимает значение f_i на $F_i \subset A$, g принимает значение g_j на $G_j \subset A$. При этом:

$$J_1 = \int_A f(x)d\mu = \sum_i f_i \mu(F_i),$$

$$J_2 = \int_A g(x)d\mu = \sum_j g_j \mu(F_j).$$

Тогда

$$J = \int_{A} [f(x) + g(x)] d\mu = \sum_{i} \sum_{j} (f_i + g_j) \mu(F_i \cap G_j).$$

Из абсолютной сходимости рядов J_1 , J_2 следует абсолютная сходимость ряда J и

$$J_1 + J_2 = J$$
. \square

- 2. $\int_A k f(x) d\mu = k \int_A f(x) d\mu$, причем оба интеграла существуют одновременно.
- 3. Пусть $|f(x)| \le M, x \in A$. Тогда:

$$\left| \int_{A} f(x)d\mu \right| \le M\mu(A).$$

Интеграл Лебега от измеримых функций на множестве конечной меры

Пусть $\{f_n(x)\}$ измеримые и равномерно сходятся к f на A. Тогда

- 1. $I = \lim_{n \to +\infty} \int_A f_n(x) d\mu$ существует (почему?).
- 2. Этот предел I не зависит от выбора $\{f_n(x)\}$ (почему?).
- 3. Если f(x)-простая, то предел I интегралов для f(x) совпадает с интегралом от простой функции f(x) (почему?).

Определим интеграл Лебега по формуле:

$$\int_{A} f(x)d\mu = I.$$

Свойства интеграла Лебега

- 1. $\int_A 1 d\mu = \mu(A)$ (почему?).
- 2. $\int_A k f(x) d\mu = k \int_A f(x) d\mu$, причем оба интеграла существуют одновременно.
- 3. Аддитивность: $\int_A [f(x)+g(x)] d\mu = \int_A f(x) d\mu + \int_A g(x) d\mu$, из существования интегралов в правой части вытекает существование интеграла в левой части.
- 4. Ограниченность. Пусть $f: X \to \mathbb{R}$ измерима и ограничена по абсолютной величине на $A \subset X$ неотрицательной константой C. Тогда f-интегрируема и $|\int_A f(x) d\mu| < \mu(A)C$.
- 5. Монотонность. Если $f(x) \ge 0$, то $\int_A f(x) d\mu \ge 0$.

Доказательство. Если f(x) – простая, то это очевидно. Если f(x) –измеримая, то найдется последовательность неотрицательных простых функций $\{f_n(x)\}$, равномерно аппроксимирующих f(x) на A (почему?).

Следствие. Если $f(x) \geq g(x)$, то $\int_A f(x) d\mu \geq \int_A g(x) d\mu$. В частности, если $m \leq f(x) \leq M$, то $m\mu(A) \leq \int_A f(x) d\mu \leq M\mu(A)$.

- 6. Если $\mu(A) = 0$, то $\int_A f(x) d\mu = 0$.
- 7. Если почти всюду (т.е. за исключением точек из множества нулевой меры) f(x)=g(x), то $\int_A f(x)d\mu=\int_A g(x)d\mu,$ причем

оба интеграла существуют или не существуют одновременно.

8. Если $\varphi(x)$ интегрируема на A и почти всюду $|f(x)| \leq \varphi(x)$, то f(x) также интегрируема на A.

Доказательство. Предположим, что $\varphi(x)$, f(x)-простые функции. Тогда A (м.б. после удаления множества меры нуль, из условия) представлено в виде конечного или счетного объединения измеримых множеств, на которых f(x), $\varphi(x)$ постоянны,

$$A = \bigcup_i A_i, \quad f(x) = a_i, \varphi(x) = b_i, \quad x \in A_i, \quad |a_i| \le b_i.$$

Из интегрируемости $\varphi(x)$ следует, что

$$\sum_{n} |a_n| \mu(A_n) \le \sum_{n} b_n \mu(A_n) = \int_A \varphi(x) d\mu.$$

Поэтому f(x) интегрируема и

$$\left| \int_{A} f(x)d\mu \right| = \left| \sum_{n} a_{n}\mu(A_{n}) \right| \le$$

$$\sum |a_n|\mu(A_n) = \int_A |f(x)| d\mu \le \int_A \varphi(x) d\mu.$$

В общем случае требуется провести предельный переход по равномерно-сходящейся последовательности простых измеримых функций.

9. Интегралы

$$I_1 \int_A f(x)d\mu$$
, $I_2 = \int_A |f(x)|d\mu$

существуют или не существуют одновременно (в предположении, что f(x) измерима).

Доказательство. Из существования I_2 вытекает существование I_1 по свойству 8. Обратное для простой функции проверяется непосредственно, а для измеримый требуется предельный переход.

Неравенство Чебышева

Если $\varphi(x) \ge 0$ на A, c > 0, то

$$\mu\{x|x\in A, \varphi(x)\geq c\}\leq \frac{1}{c}\int_A \varphi(x)d\mu.$$

Действительно, пусть

$$A'(c) = \{x | x \in A, \varphi(x) \ge c\}.$$

Тогда

$$\int_{A} \varphi(x) d\mu = \int_{A} \varphi(x) d\mu + \int_{A \setminus A'(c)} \varphi(x) d\mu \ge$$

$$\int_{A'(c)} \varphi(x) d\mu \ge c\mu(A'(c)). \quad \Box$$

Следствие. Если

$$\int_{A} |f(x)| d\mu = 0,$$

то f(x) = 0 почти всюду.

Доказательство. Из неравенства Чебышева:

$$\mu\{x|x \in A, |f(x)| \ge \frac{1}{n}\} \le n \int_A |f(x)| d\mu = 0,$$

для всех n. Поэтому

$$\mu\{x|x \in A, f(x) \neq 0\} \le \sum_{n=1}^{\infty} \mu\{x|x \in A, |f(x)| \ge \frac{1}{n}\} = 0.$$

Интеграл Лебега по множеству бесконечной меры

Определение. Измеримая функция $f: X \to \mathbb{R}, \ \mu(X) = +\infty$, называется суммируемой, если для любого $A \subset X, \ \mu(A) < \infty$, f суммируема и для возрастающей фильтрации

$$X_1 \subset X_2 \subset \ldots = X$$

измеримыми подмножествами существует предел

$$\lim_{n \to +\infty} \int_{X_n} f(x) d\mu,$$

который, предполагается, не зависит от выбора фильтрации. Этот предел обозначается через

$$\int_X f(x)d\mu.$$

Сравнение интеграла Римана и Лебега

Теорема. Если существует интеграл Римана

$$I = \int_{a}^{b} f(x)dx,$$

то f(x) интегрируема по Лебегу на [a,b] и

$$\int_{[a,b]} f(x)d\mu = I.$$

Доказательство. Мы опустим технические детали (несложные) и докажем теорему для непрерывных функций. Рассмотрим равномерное разбиение отрезка [a,b] на 2^n равных отезков. Рассмотрим нижнюю и верхнюю интегральные суммы Дарбу:

$$\omega_n = \frac{b-a}{2^n} \sum_{n=1}^{2^n} m_{n,k},$$

$$\Omega_n = \frac{b-a}{2^n} \sum_{n=1}^{2^n} M_{n,k},$$

где $M_{n,k}$ -верхняя грань f(x) на $[x_{k-1} \le x \le x_k, m_{n,k}$ -нижняя грань f(x) на том же отрезке.

Понятно, что верхняя $\bar{f}_n(x)$ и нижняя $\underline{f}_n(x)$ мажоранты Дарбу являются простыми функциями и

$$\int_{[a,b]} \bar{f}_n(x) d\mu = \Omega_n,$$

$$\int_{[a,b]} \underline{f}_n(x) d\mu = \omega_n.$$

При этом $\bar{f}_n(x) \mapsto f(x), \, \underline{f}_n(x) \mapsto f(x).$

Замечание 1. Функция Дирихле на [0,1] (что это?) интегрируема по Лебегу, но не интегрируема по Риману. Любая функция $f(x) \geq 0$, для которой несобственный интеграл Римана 1 рода

$$I = \lim_{\varepsilon \to 0+} \int_{a+\varepsilon}^{b} f(x) dx$$

существует, интегрируема по Лебегу и

$$I = \int_{a,b]} f(x)d\mu = I.$$

Замечание 2. Несобственный интеграл

$$I = \lim_{\varepsilon \to 0+} \int_{a+\varepsilon}^{b} f(x)dx,$$

который не являетя абсолютно сходящимся,

$$+\infty = \lim_{\varepsilon \to 0+} \int_{a+\varepsilon}^{b} |f(x)| dx,$$

не существует как интегра Лебега.

Например,

$$\int \frac{1}{x} sin(\frac{1}{x}) dx$$

существует как интеграл Римана, но не существует как интеграл Лебега.

Если рассматривается несобственный интеграл второго рода (по всей прямой), то если интеграл Римана абсолютно сходится, то совпадает с интегралом Лебега. Если Римана интеграл 2 рода сходится условно, например,

$$\int_{-\infty}^{+\infty} \frac{\sin(x)}{x} dx = \pi,$$

то интеграл Лебега не существует.

Приложения гл. VII

Пространство L_1

Пусть X-пространство с лебеговой мерой μ (для простоты формулировок, считаем, что X-отрезок или квадрат), $L_1(X,\mu)$ -нормированное линейное пространство классов эквивалентности измеримых интегрируемых по Лебегу функций с нормой

$$||f|| = \int |f(x)| d\mu.$$

Функции f(x), g(x) эквивалентны друг другу, если функция f(x)-g(x) имеет нулевую норму.

Theorem 3. 1. Пространство $L_1(X,\mu)$ полно.

- 2. Множество непрерывных функций плотно в $L_1(X,\mu)$.
- 3. Пространство $L_1(X,\mu)$ сепарабельно, в нем существует счетное всюду плотное множество.

Пространство L_2

Пространство $L_1(X,\mu)$ -евклидово линейное пространство классов эквивалентности измеримых функций с интегрируемым квадратом:

 $||f||^2 = \int |f^2(x)| d\mu.$

Функции f(x), g(x) эквивалентны друг другу, если функция f(x) - g(x) имеет нулевую норму.

Theorem 4. 1. Пространство $L_2(X, \mu)$ -полно.

- 2. Пространство $L_2(X,\mu)$ вложено в $L_1(X,\mu)$ (по неравенству Коши-Буняковского).
- 3. Множество непрерывных функций плотно в $L_1(X,\mu)$.
- 4. Пространство $L_1(X,\mu)$ сепарабельно, в нем существует счетное всюду плотное множество.

В пространстве $L_1(X,\mu)$ применяется эргодическая теория и строятся инварианты динамических систем. В пространстве $L_2(X,\mu)$ применяется разложение по ортогональным системам (если X-отрезок или квадрат) или разложения в интеграл Фурье. Для случая $X=[-\pi,+\pi]$ применяются тригонометрические ряды, для X=[-1,+1]-многочлены Лежандра, Чебышева; для $X=(-\infty,+\infty)$ многочлены Эрмита, для $X=(0,+\infty)$ -многочлены Лагерра.