Análise Matemática I 2° Exame - 31 de Janeiro de 2002 LEC, LEIC e LET

Resolução

1.

a) $\lim_{n\to\infty} \arctan n = \frac{\pi}{2}$. b) $\lim_{n\to\infty} \frac{(3n^2+4)^2(3n+5)^3}{(n+6)^7} = \lim_{n\to\infty} \frac{(3+4/n^2)^2(3+5/n)^3}{(1+6/n)^7} = 3^5 = 243$. c) $\lim_{n\to\infty} \frac{n^n}{n!} = +\infty$. d) $\lim_{x\to0} \frac{\arctan(\pi x)}{x} = \lim_{x\to0} \frac{\pi}{1+\pi^2 x^2} = \pi$. e) $\lim_{x\to+\infty} \frac{\ln x}{x} = \lim_{x\to+\infty} \frac{1}{x} = 0$. f) $\frac{d}{dx} \sqrt[3]{x} = \frac{1}{3\sqrt[3]{x^2}}$. g) $\frac{d}{dx} e^{\sin x} = e^{\sin x} \cos x$. h) $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1$, série de Mengoli. i) $\sum_{n=0}^{\infty} \frac{e^{n\pi}}{n!} = \sum_{n=0}^{\infty} \frac{(e^{\pi})^n}{n!} = e^{e^{\pi}}$.

2.

- a) O raio de convergência é $r=\frac{1}{\limsup \sqrt[n]{1}}=1$. A série diverge para $x=\pm 1$, porque o seu termo geral não tende para zero. Para |x|<1 a soma da série é $x^2/(1-x)$.
- b) O raio de convergência é $r = \frac{1}{\limsup(1/\sqrt[n]{n})^{3/2}} = 1$. A série é absolutamente convergente para $x = \pm 1$, porque a série de Dirichlet $\sum \frac{1}{n^{3/2}}$ converge.

3.

- a) Como $|f| \le 1$, -1 é minorante e 1 é majorante de f.
- b) Como a sucessão $(f(x_n))$ é limitada, o Teorema de Bolzano-Weierstrass garante esta sucessão tem uma subsucessão, $(f(x_{n_k}))$, convergente. A sucessão pretendida é a sucessão (x_{n_k}) .
- c) Como f é majorada, o Axioma do Supremo garante que f tem supremo real. Como -fé majorada, visto ser f minorada, f tem ínfimo.
- **d)** $\lim_{|x|\to\infty} f(x) = 0$, porque $\lim_{|x|\to\infty} e^{-x^4} = 0$ e a função seno é limitada.
- e) $f(-x) = e^{-x^4} \sin(\sin(\sin(-x))) = e^{-x^4} \sin(\sin(-\sin x))$ = $e^{-x^4} \sin(-\sin(\sin x)) = -e^{-x^4} \sin(\sin(\sin x)) = -f(x)$ pelo que f é ímpar.

- f) Como f não é identicamente nula e é ímpar, existe um x_0 tal que $f(x_0) > 0$. Como $\lim_{|x| \to \infty} f(x) = 0$, existe um L > 0 tal que $f(x) < f(x_0)$ para |x| > L. Como f é contínua, o Teorema de Weierstrass garante que f tem máximo M em [-L, L]. O valor M é o máximo de f em \mathbb{R} e, como f é ímpar, o valor -M é o mínimo de f em \mathbb{R} .
- **4.** Seja P(n) a proposição a fórmula dada no enunciado é válida para o natural n-1 e o natural n. Verifiquemos P(1). $u_0 = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^0 \left(\frac{1-\sqrt{5}}{2} \right)^0 \right] = 0$ e $u_1 = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^1 \left(\frac{1-\sqrt{5}}{2} \right)^1 \right] = 1$. Verifiquemos agora que, para todo o $n \in \mathbb{N}_1$, $P(n) \Rightarrow P(n+1)$. Se a fórmula do enunciado é válida para o natural n-1 e o natural n, então

$$\begin{array}{rcl} u_{n+1} & = & u_n + u_{n-1} \\ & = & \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right] + \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n-1} \right] \\ & = & \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-1} \left(\frac{1+\sqrt{5}}{2} + 1 \right) - \left(\frac{1-\sqrt{5}}{2} \right)^{n-1} \left(\frac{1-\sqrt{5}}{2} + 1 \right) \right] \\ & = & \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-1} \left(\frac{1+\sqrt{5}}{2} \right)^2 - \left(\frac{1-\sqrt{5}}{2} \right)^{n-1} \left(\frac{1-\sqrt{5}}{2} \right)^2 \right] \\ & = & \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right]. \end{array}$$

Portanto, a fórmula do enunciado é válida (por hipótese para o natural n e) para o natural n+1, o que estabelece P(n+1).

5.

a) Seja $x \in]a, \infty[$. Apliquemos o Teorema de Lagrange a f no intervalo [a,x]. Existe $c \in]a,x[$ tal que

$$\frac{f(x) - f(a)}{x - a} = f'(c) \ge m.$$

Logo, $f(x) \ge m(x-a) + f(a)$.

- **b)** Seja $f: \mathbb{R}^+ \to \mathbb{R}$ definida por $f(x) = \frac{\sin(x^2)}{x}$. Esta função é diferenciável e $\lim_{x\to\infty} f(x) = 0$. Como $f'(x) = -\frac{\sin(x^2)}{x^2} + 2\cos(x^2)$, f' não tem limite em ∞ .
- c) Se $\lim_{x\to\infty} f'(x) > 0$, então existem $\epsilon > 0$ e a > 0 tal que $f' \geq \epsilon$ em $]a, \infty[$. Pela alínea a), $f(x) \geq \epsilon(x-a) + f(a)$ para x em $[a, \infty[$, o que implica que $\lim_{x\to\infty} f(x) = +\infty$. O mesmo argumento permite provar que se $\lim_{x\to\infty} f'(x) < 0$, então $\lim_{x\to\infty} f(x) = -\infty$. Logo $\lim_{x\to\infty} f'(x) = 0$.

- d) O argumento na prova da alínea a) mostra que se $\lim_{x\to\infty} f''(x) > 0$, então $\lim_{x\to\infty} f'(x) = +\infty$. Do resultado da alínea a) conclui-se então que $\lim_{x\to\infty} f(x) = +\infty$. Isto contradiz $\lim_{x\to\infty} f(x) = 0$. De modo análogo, $\lim_{x\to\infty} f''(x) < 0$ implica $\lim_{x\to\infty} f(x) = -\infty$. Logo, $\lim_{x\to\infty} f''(x) = 0$.
- e) Como $\lim_{x\to\infty} f(x) = 0$, existe b > a tal que f(b) < f(a). Pelo Teorema de Lagrange, existe $c \in]a, b[$ tal que f'(c) < 0. Se, por contradição, fosse $f''(x) \le 0$ para todo o x > a, então, para x > c, $f'(x) \le f'(c) < 0$. A prova da alínea a) garantiria que $f(x) \to -\infty$ quando $x \to \infty$, o que é impossível porque, por hipótese, $\lim_{x\to\infty} f(x) = 0$.