Curvas y Superficies

	Curvas	Superficies
DEF	<u>Curva C</u> : Sea C conjunto $\subset \mathbb{R}^3$, C es curva si \exists funciones $x(t)$, $y(t)$, $z(t)$ definidas en $[a,b] / (x,y,z) \in C \Leftrightarrow \exists t \in [a,b] / x = x(t)$, $y = y(t)$, $z = z(t)$	Superficie S: Sea S conjunto $\subset \mathbb{R}^3$, S es superficie si \exists funciones $x(u,v)$, $y(u,v)$, $z(u,v)$ definidas en dominio elemental $D \subset \mathbb{R}^2 / (x,y,z) \in$ S $\Leftrightarrow \exists (u,v) \in D / x = x(u,v), y = y(u,v), z = z(u,v)$
DEF	<u>Parametrización</u> : γ :[a,b] $\rightarrow \mathbb{R}^3$, $\sigma(t)$ =(x(t), y(t), z(t)) parametriza C	$T:D \to \mathbb{R}^3$, $T(u,v) = (x(u,v), y(u,v), z(u,v))$ parametriza S
DEF	<u>Curva Simple</u> : No se corta a sí misma = admite param. inyectiva. <u>Abierta Simple</u> : No se cruza. <u>Cerrada Simple</u> : Se une en 1 punto	<u>Superficie Orientable</u> : Superficie S es <i>orientable</i> si $\forall P \in S$ hay una forma de elegir un único versor normal $v(P)$ continuo en S (sólo si tiene 2 caras diferentes). Ej. cinta de Moebius no es orientable
DEF	<u>Parametrización Regular</u> : Es una parametrización γ :[a , b]→ \mathbb{R}^3 , biyectiva, \mathbb{Z} con $\gamma'(t) \neq 0 \ \forall \ t \in [a,b]$. Si C cerrada, requiere inyectiva en [a , b) y que $\gamma(a)$ = $\gamma(b)$ y $\gamma'(a)$ = $\gamma'(b)$	Parametrización Regular: Es una parametrización $T: D \subset \mathbb{R}^2 \to \mathbb{R}^3$, inyectiva, ② \square con $T_u \times T_v \neq 0 \ \forall \ (u,v) \in D$
DEF	<u>Recta Tangente L</u> : Sea C curva, $P_0 \in C$, L recta tangente a C en P_0 si pasa por P_0 y es el límite de las rectas secantes a C por P_0 . Recta secante: recta que pasa por P y P_0 ($P \in C$). Límite: Ángulo entre L y secante por P y $P_0 \to 0$ cuando $P \to P_0$	Plano Tangente Π_0 : Sea S superficie, $P_0 \in S$, Π_0 un plano que pasa por P_0 y v_0 vector \bot a Π_0 de norma 1. Π_0 es plano tangente a S en P_0 si \forall recta que pasa por P y P_0 con $P \in S$ tiende a ser \bot a v_0 cuando $P \to P_0$, o si $\frac{P - P_0}{\ P - P_0\ } \cdot v_0 \to 0$ cuando $P \to P_0$, con $P \in S$.
DEF	Ecuación Recta Tangente: L= $\gamma(t_0) + t \gamma'(t_0)$	Ecuación Plano Tangente.: Si $v_0 = (a,b,c)$, y $P_0 = (x_0, y_0, z_0)$, Π_0 : $a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$
PROP	<u>Dirección de Recta Tangente es $\gamma'(t)$</u> : Si C curva que admite parametrización regular $\gamma:[a,b] \to \mathbb{R}^3 \Rightarrow C$ tiene recta tangente L en $P_0 = \gamma(t_0)$ y L tiene dirección del vector $\gamma'(t_0)$	Dirección ⊥ a Plano Tangente es $T_u \times T_v$: Sea S superficie. Si ∃ parametrización regular $T:D \subset \mathbb{R}^2 \to \mathbb{R}^3$, el plano Π_θ que pasa por $P_\theta = T(u_\theta, v_\theta)$ determinado por T_u y T_v es tangente a S en P_θ . Dirección del normal: $v_0 = \frac{T_u(u_0, v_0) \times T_v(u_0, v_0)}{\ T_u(u_0, v_0) \times T_v(u_0, v_0)\ }$
	<u>Curva Suave</u> : Sea C una curva, C es <u>suave</u> si tiene recta tangente en todos sus puntos que varía con continuidad, $L_P \to L_{P0}$ cuando $P \to P_0$. Si C tiene parametrización regular $\Rightarrow C$ es una curva suave.	<u>Superficie Suave S</u> : Sea S una superficie, S es suave si tiene plano tangente en todos sus puntos y la recta $L(P) \perp$ al plano tangente varía continuamente con P.
PROP	Si C suave, tiene recta tangente en todos sus puntos.	Si S tiene parametrización regular $\Rightarrow S$ es una superficie suave.
DEF	<i>Reparametrización</i> : Sea <i>C</i> curva abierta, simple, suave, γ :[a , b]→ \mathbb{R}^3 parametrización regular de <i>C</i> , h :[a , b]→[c , d] una biyección \square Ccon h' (t) $\neq 0 \ \forall \ t \in [a$, b]. Sea σ :[c , d]→ $\mathbb{R}^3 = \sigma(r) = \gamma \ (h^{-1}(r)) \Rightarrow \sigma$ es una parametrización regular de <i>C</i> y una <i>reparametrización</i> de γ .	Sea S superficie suave, y $T: D \subset \mathbb{R}^2 \to \mathbb{R}^3$ param. regular de S . Sea $D_I \subset \mathbb{R}^2$ dominio elemental y $G: D_I \to D$ una biyección, $\mathbb{Z}[G]$ con Jacobiano no nulo. Sea $T_I: D_I \to \mathbb{R}^3$, $T_I(r,t) = T(G(r,t)) \Rightarrow T_I$ es una parametrización regular de S , y es una <i>reparametrización</i> de T .
PROP	<u>Si σ y γ parametrizan C, γ reparametrización de σ</u>	Si T_1 y T_2 parametrizan C , T_2 reparametrización de T_1
PROP	<u>Long. de curva igual a integral de γ'</u> : C curva abierta, simple, suave. γ : $[a,b] \to \mathbb{R}^3$ parametrización regular de $C \Rightarrow$ Long $(C) = \int_a^b \gamma'(t) dt$	<u>Área de superficie igual a integral de $T_u \times T_v$</u> : S superficie suave, T : $D \subset \mathbb{R}^2 \to \mathbb{R}^3$ param. regular de $S \Rightarrow$ Área $(S) = \iint_D T_u \times T_v du dv$
DEF	Integral de longitud de arco: Sea C curva abierta, simple, suave, γ : $[a,b] \to \mathbb{R}^3$ parametrización regular de C . f función continua sobre $C \Rightarrow \exists \lim_{n \to \infty} \sum_{k=0}^{n-1} f(\tilde{P}_k) \Delta I$ para cualquier elección de \tilde{P}_k en el arco de curva entre P_k y $P_{k+1} = \int_C f ds = \int_a^b f(\gamma(t)) \ \gamma'(t)\ dt$.	Integral de Superficie: Sea S superficie suave que admite parametrización regular $T: D \subset \mathbb{R}^2 \to \mathbb{R}^3$, $f: S \to \mathbb{R}$ función continua. Integral de superficie de f en S es $\iint_S f dS = \iint_D f(T_{(u,v)}) (T_u \times T_v)_{(u,v)} du dv$
PROP	Integral de longitud de arco es independiente de la parametrización	Integral de superficie es independiente de la parametrización
DEF	Circulación o Integral Curvilínea: Sea C curva abierta, simple, suave, $\gamma:[a,b] \to \mathbb{R}^3$ parametrización regular de C que la orienta. Sea F campo vectorial continuo sobre C . Integral curvilínea del campo F sobre la curva C es $\int_C F \cdot ds = \int_a^b F(\gamma(t)) \cdot \gamma'(t) dt$.	Flujo: Sea S superficie suave, orientada por el campo de versores normales $v(P)$, F un campo vectorial ② Sobre S , $T:D \subset \mathbb{R}^2 \to \mathbb{R}^3$ parametrización regular de S . Flujo de F a través de S es $\iint_S F \cdot dS = \iint_S (F \cdot v) dS = \iint_D F(T_{(u,v)}) \cdot (T_u \times T_v)_{(u,v)} du dv$
	Notación: $ds = \gamma'(t) dt = dx \hat{x} + dy \hat{y} + dz \hat{z}$. Forma diferencial: Si $F = (P, Q, R)$, $\int_{C} \mathbf{F} \cdot d\mathbf{s} = \int_{C} P dx + Q dy + R dz = \int_{a}^{b} \left(P \frac{dx}{dt} + Q \frac{dy}{dt} + R \frac{dz}{dt} \right) dt$	es simplificación de $\iint_D (\mathbf{F} \cdot \mathbf{v}) (T(u,v)) \ (T_u \times T_v)(u,v) \ du dv$. Notación: $d\mathbf{S} = \mathbf{v} dS$

Algunos Teoremas de Curvas y Superficies

<u>Dirección de Recta Tangente es $\gamma'(t)$ </u>: **Demo:** Sea $P_n \rightarrow P_0$ con $P_n \in \mathbb{C} \ \forall n$. Llamo $S_{P_n P_0}$ a la recta secante que pasa por P_n y P_0 . Para cada $n \exists ! t_n \in [a,b] / P_n = \gamma(t_n)$. Análogamente, $t_0 \in [a,b]$ es el único punto $t \in [a,b] / P_0 = \gamma(t_0)$. $S_{P_n P_0}$ tiene dirección $\gamma(t_n) - \gamma(t_0)$, que es igual a la del vector $\frac{1}{t_n - t_0} \gamma(t_n) - \gamma(t_0)$, que a su vez converge a $\gamma'(t_0)$.

Propiedades de long. de curva: $\gamma \in \mathbb{Z}$ inyect. Llamo $\Lambda(a,b)$ longitud de la curva $C = \gamma([a,b]) \Rightarrow i)$ $\Lambda(a,b) > 0$ si a < b y ii) Si $a < c < b \Rightarrow \Lambda(a,b) = \Lambda(a,c) + \Lambda(c,b)$ Longitud de curva es igual a integral de $||\gamma'||$: **Demo**: Quiero ver que $\Lambda(a,b) = \int_a^b ||\gamma'(t)|| dt$. Por prop. de long de curva, $\Lambda(a,t+h) - \Lambda(a,t) = \Lambda(t,t+h)$.

 $\textcircled{1}_{Long. rectaentrey(t+h)yy(t)} \leq \Lambda(t,t+h) \leq \int_{t}^{t+h} \|\gamma'(t)\| \ \textcircled{2}. \text{ Divido por } h \text{ y } h \to 0, \ \textcircled{1} = \textcircled{2} \Rightarrow \lim_{h \to 0} \frac{\Lambda(a,t+h)-\Lambda(a,t)}{h} = \|\gamma'(t)\| \Rightarrow \text{ la función } \Lambda(a,t) \text{ es una primitiva de } \|\gamma'(t)\|. \text{ Como } \Lambda(a,a) = 0, \ \Lambda(a,t) = \int_{t}^{t} \|\gamma'(s)\| ds$

Integral de Superficie Independiente de Parametrización. Sea S superficie suave que admite dos parametrizaciones regulares $T:D \subset \mathbb{R}^2 \to \mathbb{R}^3$ y $T_i:D_i \subset \mathbb{R}^2 \to \mathbb{R}^3$, $f:S \to \mathbb{R}$ continua ⇒ $\iint_D f\left(T(r,s)\right) \| \left(T_r \times T_s\right) \| dr ds = \iint_{D_1} f\left(T_1(u,v)\right) \| \left(T_{1u} \times T_{1v}\right) \| du dv$.

Demo: Sea T(r,s)=(x(r,s),y(r,s),z(r,s)). Sabemos que ∃ biyección $G:D_i \to D \in \mathbb{Z}$ con Jacobiano no nulo $G(u,v)=(r(u,v),s(u,v))/T_i$ ($u,v)=T(G(u,v)) \forall (u,v)\in D_i$. Por regla de la cadena, $DT_i(u,v)=DT(G(u,v))DG(u,v) \Rightarrow \overline{T}_{iu}=\overline{T}_r r_u + \overline{T}_s s_u y \ \overline{T}_{2u}=\overline{T}_r r_v + \overline{T}_s s_v \Rightarrow T_{iu} \times T_{iv} = (T_r \times T_s)$ ($x_r x_s \in T_i(u,v)$) det $T_i(u,v)=T_i(u,v)=T_i(u,v)=T_i(u,v)$ ($T_i(u,v)=T_i(u,v)=T_i(u,v)=T_i(u,v)=T_i(u,v)=T_i(u,v)$) $T_i(u,v)=T_i(u,v)=T_i(u,v)=T_i(u,v)$ $T_i(u,v)=T_i(u,v)=T_i(u,v)$ $T_i(u,v)=T_i(u,v)=T_i(u,v)$ $T_i(u,v)=T_i(u,v)=T_i(u,v)$ $T_i(u,v)=T_i(u,v)=T_i(u,v)$ $T_i(u,v)=T_i(u,v)=T_i(u,v)$ $T_i(u,v)=T_i(u,v)=T_i(u,v)$ $T_i(u,v)=T_i(u,v)$ $T_i(u,v)=T_i(u,v)$ T

 $\begin{aligned}
DT_I &= \\
\begin{bmatrix}
DT(G(u,v)) & DG(u,v) \\
X_r & X_s \\
y_r & y_s \\
z_r & z_s
\end{bmatrix}
\begin{bmatrix}
DG(u,v) & r_v \\
r_u & r_v \\
S_u & S_v
\end{bmatrix}$

 $\underline{\textit{Teorema del Valor Medio en Superficies}} : Sea \textit{S} \text{ superficie suave con parametrización regular}, \textit{f} : \textit{S} \rightarrow \mathbb{R} \text{ continua} \Rightarrow \exists \textit{P}_{\textit{0}} \in \textit{S} \textit{/} \iint_{\textit{S}} \textit{f} \textit{dS} = \textit{f} \textit{(P}_{\textit{0}}) \textit{Area} \textit{(S)}$

Teoremas del Cálculo Vectorial

<u>Divergencia</u>: div \mathbf{F} o $\nabla \cdot \mathbf{F}$. Si $\mathbf{F} = (P,Q,R)$, $\nabla \cdot \mathbf{F} = P_x + Q_y + R_z$. Es el flujo por unidad de volumen <u>Rotor</u>: rot \mathbf{F} o $\nabla \times \mathbf{F}$. Si $\mathbf{F} = (P,Q,R)$, $\nabla \times \mathbf{F} = (R_y - Q_z) \hat{\mathbf{x}} + (P_z - R_x) \hat{\mathbf{y}} + (Q_x - P_y) \hat{\mathbf{z}}$. Es la circulación por unidad de área

Teorema de Green. Sea $D \in \mathbb{R}^2$ región de tipo III (I y II al mismo tiempo). $F:D \to \mathbb{R}^2$ campo vectorial $\mathbb{Z} = \mathbb{R}^2$ $\mathbb{R} = \mathbb{R}^2$ región de tipo III (I y II al mismo tiempo). $F:D \to \mathbb{R}^2$ campo vectorial $\mathbb{Z} = \mathbb{R} = \mathbb{R}^2$ región de tipo III (I y II al mismo tiempo). $F:D \to \mathbb{R}^2$ campo vectorial $\mathbb{Z} = \mathbb{R} = \mathbb{R}^2$ región de tipo III (I y II al mismo tiempo). $F:D \to \mathbb{R}^2$ campo vectorial $\mathbb{Z} = \mathbb{R}^2$ región de tipo III (I y II al mismo tiempo). $F:D \to \mathbb{R}^2$ campo vectorial $\mathbb{Z} = \mathbb{R}^2$ región de tipo III (I y II al mismo tiempo). $F:D \to \mathbb{R}^2$ campo vectorial $\mathbb{Z} = \mathbb{R}^2$ región de tipo III (I y II al mismo tiempo). $F:D \to \mathbb{R}^2$ campo vectorial $\mathbb{Z} = \mathbb{R}^2$ región de tipo III (I y II al mismo tiempo). $F:D \to \mathbb{R}^2$ campo vectorial $\mathbb{Z} = \mathbb{R}^2$ región de tipo III (I y II al mismo tiempo). $F:D \to \mathbb{R}^2$ campo vectorial $\mathbb{Z} = \mathbb{R}^2$ región de tipo III (I y II al mismo tiempo). $F:D \to \mathbb{R}^2$ campo vectorial $\mathbb{Z} = \mathbb{R}^2$ región de tipo III (I y II al mismo tiempo). $F:D \to \mathbb{R}^2$ campo vectorial $\mathbb{Z} = \mathbb{R}^2$ región de tipo III (I y II al mismo tiempo). $F:D \to \mathbb{R}^2$ campo vectorial $\mathbb{Z} = \mathbb{R}^2$ región \mathbb{R}^2 región de tipo III (I y II al mismo tiempo). $F:D \to \mathbb{R}^2$ campo vectorial $\mathbb{Z} = \mathbb{R}^2$ región \mathbb{R}^2 región \mathbb{R}^2 región de tipo III (I y II al mismo tiempo). \mathbb{R}^2 región \mathbb{R}^2 región

Demo: Si D: $\{(x,y) \mid x \in [a,b], g_l(x) \le y \le g_2(x)\}$, región de tipo I, y $P = (P(x,y),0), C^+ = C_l^+ + B_l^+ + C_2^- + B_2^-$. $\int_{Bl^+} P \cdot ds = \int_{Bl^+} P \cdot ds = \int_a^b P(x,g_1(x)) - P(x,g_1(x)) - P(x,g_2(x)) dx. \text{ Por otro lado, } \iint_D P_y dx dy = \int_a^b \int_{g_l(x)}^{g_2(x)} P_y(x,y) dy dx. \text{ Por TFCI, } = \int_a^b [P(x,g_2(x)) - P(x,g_1(x))] dx. \Rightarrow \int_{C^+} P \cdot ds = \iint_D - P_y dx dy. \text{ De modo similar, usando que } D \text{ es región de tipo II, con } Q = (0,Q(x,y)) \text{ pruebo que } \int_{C^+} Q \cdot ds = \iint_D Q_x dx dy. \text{ Defino } F = P + Q.$

Teorema de Stokes. Sea $D \in \mathbb{R}^2$ región de tipo III, S superficie suave orientada por $T:D \to \mathbb{R}^3$ param. regular biyectiva en D (*Teorema de Stokes para gráficas*: S definida por $f:D \to \mathbb{R}$ /z=f(x,y) ⊂ \mathbb{R}^3). Sea ∂S frontera orientada de S y $F:S \to \mathbb{R}^3$ campo \mathbb{R}^3 campo \mathbb{R}^3 \mathbb{R}^3 campo \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3 campo \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3 campo \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3 campo \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3 campo \mathbb{R}^3 \mathbb{R}^3 campo \mathbb{R}^3 \mathbb{R}^3

Demo: Para S gráfica de f: F = (P,Q,R), $T(x,y) = (x, y, f(x,y)) \Rightarrow T_x \times T_y = (-f_x, -f_y, 1)$. Parametrizo ∂D con $\gamma:[a,b] \to \mathbb{R}^2/\gamma(t) = (x(t), y(t))$, $y \in S$ con $\sigma:[a,b] \to \mathbb{R}^3/\sigma(t) = (x(t), y(t), f(x(t), y(t)))$. Expando rotor: $\iint_S (\nabla \times F(x, y, f(x, y))) \cdot (-f_x, -f_y, 1) dS = (-f_x, -f_y, 1) dS$

 $\iint_{D} \left(-(R_{y} - Q_{z}) f_{x} - (P_{z} - R_{x}) f_{y} + (Q_{x} - P_{y}) \right) dA \oplus . \text{ Por otro lado,} \oint_{\partial S} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} P(\mathbf{x}(t), \mathbf{y}(t), f(\mathbf{x}(t), \mathbf{y}(t))) \underbrace{\mathbf{x}'(t)}_{d\mathbf{x}} + Q \underbrace{\mathbf{y}' + R}_{d\mathbf{y}} \underbrace{(f_{x}\mathbf{x}' + f_{y}\mathbf{y}')}_{d\mathbf{z}} dt$ $= \int_{a}^{b} \left[(P + R f_{x}) \mathbf{x}' + (Q + R f_{y}) \mathbf{y}' \right] dt. \text{ Defino } \tilde{P} = P + R f_{x} \text{ y } \tilde{Q} = Q + R f_{y}. \text{ Por Green,} = \mathbf{a} \iint_{D} \left[\frac{\partial}{\partial \mathbf{x}} (Q + R f_{y}) - \frac{\partial}{\partial \mathbf{y}} (P + R f_{x}) \right] dA.$

Teorema de Gauss. Sea V una región elemental simétrica, $\partial V = S$ superficie cerrada orientada, $F: V \to \mathbb{R}^3$ campo vectorial $\mathbb{Z}[n]$ normal exterior de S $\Rightarrow \left| \iiint_V (\nabla \cdot F) dV = \oiint_{\partial V = S} F \cdot \hat{n} dS \right|$

 $\begin{array}{l} \textbf{\textit{Demo}} \colon \textbf{\textit{F}} = (P,Q,R) \Rightarrow \nabla \cdot \textbf{\textit{F}} = P_x + Q_y + R_z. \quad \iiint_V (\nabla \cdot \textbf{\textit{F}}) \, dV = \iiint_V (P_x + Q_y + R_z) \, dV. \quad \oiint_{\partial V} \textbf{\textit{F}} \cdot \hat{\textbf{\textit{n}}} \, dS = \oiint_{\partial V} (P \cdot \hat{\textbf{\textit{n}}} + Q \cdot \hat{\textbf{\textit{y}}} \cdot \hat{\textbf{\textit{n}}} + R \cdot \hat{\textbf{\textit{z}}} \cdot \hat{\textbf{\textit{n}}}) \, dS. \\ \text{Pruebo que} \quad \iiint_V R_z \, dV = \oiint_{\partial V} R \cdot \hat{\textbf{\textit{z}}} \cdot \hat{\textbf{\textit{n}}} \, dS, \text{ las otras dos por analogía. } V \text{ región elemental} \Rightarrow \exists f_1 \ y \ f_2 \ / V: f_l(x,y) \leq z \leq f_2(x,y) \text{ con} \\ (x,y) \in D \Rightarrow \iiint_V R_z \, dV = \iint_D \left(\int_{f_1(x,y)}^{f_2(x,y)} R_z \, dz \right) \, dx \, dy. \text{ Por TFCI} = \iint_D \left[R(x,y,f_2(x,y)) - R(x,y,f_1(x,y)) \right] \, dx \, dy \oplus \partial V \otimes \partial V = S_l + S_2 + S_3. \\ S_3 \perp \hat{\textbf{\textit{z}}} \Rightarrow \hat{\textbf{\textit{n}}}_3 \cdot \hat{\textbf{\textit{z}}} = 0 \Rightarrow \oiint_{\partial V} R \cdot \hat{\textbf{\textit{z}}} \cdot \hat{\textbf{\textit{n}}} \, dS = \iint_{S_1} R \cdot \hat{\textbf{\textit{z}}} \cdot \hat{\textbf{\textit{n}}}_1 \, dS + \iint_{S_2} R \cdot \hat{\textbf{\textit{z}}} \cdot \hat{\textbf{\textit{n}}}_2 \, dS. \text{ Parametrizo } S_l \text{ con } T_l: D \to \mathbb{R}^3 \ / T_l(x,y) = (x,y,f_l(x,y)) \Rightarrow \iint_{S_1} R \cdot \hat{\textbf{\textit{z}}} \cdot \hat{\textbf{\textit{n}}} \, dS = \iint_D R(x,y,f_1(x,y)) \cdot \hat{\textbf{\textit{z}}} \cdot \underbrace{\left(\int_{T_1} x \times f_1 y \cdot \hat{\textbf{\textit{y}}} \cdot \hat{\textbf{\textit{z}}} \right)}_{-(T_1 \times T_1 y) \text{ (apunta en -2)}} \, dA = \iint_D - R(x,y,f_1(x,y)) \, dx \, dy, \text{ idem con } S_2 \text{ (normal apunta } +z) \text{ y llego a} \oplus. \end{aligned}$

Teoremas de Campos Conservativos. Sea *F* campo vectorial ②②(salvo en un número finito de puntos). Son equivalentes:

i) Para cualquier curva orientada cerrada y simple C, $\oint_C \mathbf{F} \cdot d\mathbf{s} = 0$ ii) Para 2 curvas con los mismos extremos C_I y $C_2 \int_{C_I} \mathbf{F} \cdot d\mathbf{s} = \int_{C_2} \mathbf{F} \cdot d\mathbf{s}$ iii) \mathbf{F} es el gradiente de alguna función $f \subset \mathbb{Z} = \nabla f$ iv) $\nabla \times \mathbf{F} = 0$

Demo: i) \Rightarrow ii). Sean γ_1 y γ_2 parametrizaciones de C_1 y C_2 . Construyo curva cerrada C recorriendo C_1 y $-C_2$. Si C es simple, se verifica i). ii) \Rightarrow iii) Sea C curva que une 2 puntos cualesquiera, por ej. **0** con (x,y,z), F = (P, Q, R). Defino $f(x,y,z) = \int_C F \cdot d S$, independiente de C. Elegimos C trayectoria de la figura. $f(x,y,z) = \int_0^x P(t,0,0) dt + \int_0^y Q(x,t,0) dt + \int_0^z R(x,y,t) dt$. Por TFCI, $f_z = R$. Utilizando trayectorias \neq , llego a $f_x = P$ y $f_y = Q$. iii) \Rightarrow iv) Por propiedades del rotor, $\nabla \times F = \nabla \times (\nabla f) = 0$. iv) \Rightarrow i) Por Stokes, $\oint_C F \cdot d I = \iint_S (\nabla \times F) \cdot dS = 0$.

Ecuaciones Diferenciales Ordinarias

Teorema de existencia y unicidad: Sea F(t,X): $I \times \Omega \rightarrow \mathbb{R}$, con $I \in \mathbb{R}$ intervalo abierto y $\Omega \in \mathbb{R}^n$ conjunto abierto, F continua en t y localmente Lipschitz en variable X en $I \times \Omega \Rightarrow$ el sistema $\{X'=F(t,X) \text{ y } X(t_0)=X_0\}$ con $t_0 \in I$ y $X_0 \in \Omega$, admite siempre una solución ②② única en $[t_0-\delta, t_0+\delta]$ *Función localmente Lipschitz*: Continua en t y en X y \exists cte. $L \mid |F(t,X)-F(t,Y)|| \leq L ||X-Y|| \forall t \in I, X, Y \in \Omega$

Ecuaciones de 1 Variable de 1er Orden

Forma Estándar: x' = f(t,x), x = x(t) (o y' = f(x,y), y = y(x))

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($f(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($f(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dx = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dt = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dt = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dt = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Forma Diferencial: P(t,x) dt + Q(t,x) dt = 0 ($P(t,x) = -\frac{P(t,x)}{Q(t,x)}$)

Form

<u>De Bernoulli</u>: y'+P(x) y=Q(x) y^n . Uso $z=y^{1-n} \Rightarrow \frac{z'}{1-n} + P(x)z=Q(x)$

Sistemas Lineales de 1er Orden y Ecuaciones de Orden n

Sistemas Lineales de Ecuaciones de 1er Orden.

<u>Lineales</u>: x'+a(t) = q(t). Uso $\mu(t) = e^{\int a(t)dt}$

Forma general: X' = A(t) X + F(t) con $X(t_0) = X_0$, $X, F:I \to \mathbb{R}^n$, I intervalo abierto ∈ \mathbb{R} , $a_{ij}(t)$ funciones continuas en $I Y A(t) = (a_{ij}(t))$ matriz ∈ $\mathbb{R}^{n \times n}$. Si F(t) = 0 se llama homogéneo, caso contrario no homogéneo. Si A(t) es cte, se llama de coeficientes constantes, si no de coeficientes variables.

<u>Soluciones de un sistema lineal homogéneo son E.V.</u>: El conj. \square Tel coluciones de un sistema lineal homogéneo de $n \times n$: X = A(t)X es un E.V. de dim n. **Demo:** (1) Es un subespacio: i) Cerrado en la suma: Si X_1 y X_2 son dos soluciones y $X = X_1 + X_2$ ($X : I \rightarrow \mathbb{R}^n / X = X_1 + X_2$) $\Rightarrow X' = X_1' + X_2' = A X_1 + A X_2 = X_1 + X_2$ $A(X_1 + X_2) = A X$. ii) Cerrado en mult. por escalar: Si $X = cX_1$, $c \in \mathbb{R} \Rightarrow X' = cX_1' = cAX_1 = A(cX_1) = AX$. (2) Tiene dimensión n y genera. i) Dim n: Construyo un conj. $C = \{X_1, \dots X_n\} / X_i(t_0) = e_i(\{e_1, \dots e_n\})$ base canónica). Las funciones X_i son l.i. porque hay un punto (t_0) en las que son l.i. $\Rightarrow C$ es l.i.. <u>ii) Genera</u>: Sea $X \in \mathbb{Z}$ na solución cualquiera con $X(t_0) = \xi \in \mathbb{R}^n$. ξ se puede escribir como combinación de vectores canónicos: $\xi = \sum_{i=1}^n \alpha_i e_i$. Propongo $W(t) = \sum_{i=1}^{n} \alpha_i X_i(t)$ con $X_i \in C$. $W(t) \in \mathbb{Z}[D]$ como $W(t_0) = X(t_0)$, por unicidad $W(t) = X(t) \forall t \in I \Rightarrow C$ genera $\mathbb{Z}[D]$

<u>Soluciones de un sistema homogéneo son funciones l.i.</u>: Sea X' = A(t)X sistema de ecs. de $n \times n$, $t_0 \in I$ cualquiera, $C = \{X_1(t), X_2(t), ..., X_n(t)\}$ un conjunto de *n* soluciones del sistema \Rightarrow Funciones de *C* son l.i. \Leftrightarrow vectores $\{X_1(t_0), X_2(t_0), ..., X_n(t_0)\}$ son l.i. **Demo:** (=) Por definición de indep. lineal de funciones, si son l.i. en un punto, son l.i.. Detalle: quiero ver que $c_1X_1(t) + ... + c_nX_n(t) = 0$ implica $c_1 = ... = 0$ $c_n = 0$. Evalúo en $t = t_0$ y planteo $c_1 X_1(t_0) + ... + c_n X_n(t_0) = 0$, como por hipótesis estos vectores son $\bar{l}.\bar{l}.\bar{l}.c_n = 0 \Rightarrow C$ es $\bar{l}.\bar{l}.c_n = 0$. Planteo $c_1 X_1(t_0) + ... + c_n X_n(t_0) = 0$, como por hipótesis estos vectores son $\bar{l}.\bar{l}.\bar{l}.c_n = 0 \Rightarrow C$ es $\bar{l}.\bar{l}.c_n = 0$. $c_n X_n(t_0) = \mathbf{0}$ quiero ver que $c_1 = \dots = c_n = 0$. Sea $W(t) = c_1 X_1(t) + \dots + c_n X_n(t)$, W(t) es una solución para datos iniciales $W(t_0) = \mathbf{0} \Rightarrow W'(t_0) = A(t_0) W(t_0) = \mathbf{0}$ $W(t) = 0 \ \forall t \text{ y es ! por teorema unicidad. Esto es, } c_1 X_1(t) + ... + c_n X_n(t) = 0 \ \forall t \text{. Como por hipótesis las funciones } X_i \text{ son l.i., } c_1 = ... = c_n = 0 \Rightarrow \text{vectores l.i.}$

<u>Matriz fundamental O(t)</u>: Tomo n soluciones del sistema de $n \times n$ X'=A(t)X: $\{X_1(t), X_2(t), \dots, X_n(t)\}$ y armo matriz $Q(t) \in \mathbb{R}^{n \times n}$ con $X_i(t)$ como columnas de Q. Si det $(Q(t_0)) \neq 0$ para algún $t_0 \in I \Rightarrow \det(Q(t)) \neq 0 \ \forall t \in I$ (esto no necesariamente vale siempre, sí con soluciones de un sist. homogéneo por teorema de $\exists y !$). Si det (Q(t)) = 0, las soluciones son l.i. y Q(t) se llama una matriz fundamental del sistema. Se cumple Q'(t) = A(t) Q(t)

Método de reducción del orden. Sirve para encontrar una solución homogénea a una ecuación lineal de 2do orden con coeficientes variables si ya tengo una solución. Ej. x''+p(t)x'+q(t)x=0, con $x_l(t)$ solución. Propongo $x_2(t)=z(t)$ $x_l(t)$ y reemplazo: $(z''x_l+2\ z'x_l'+z\ x_l'')+p(t)$ $(z'x_l+z\ x_l')+q(t)$ $(z'x_l+z\ x_l')$

<u>La solución general de un sistema no homogéneo es $X(t) = X_H(t) + X_P(t)$ </u>: Sea X' = A(t)X + F(t), si X es solución \Rightarrow se puede escribir como $X = X_H + X_P$, con X_H es la solución general del sistema lineal homogéneo asociado y X_P una solución particular.

Demo: Sea X_P una solución particular y sea X otra solución. Sea $Y = X - X_P \Rightarrow Y' = X' - X_P' = A(t)X + F(t) - (A(t)X_P + F(t)) = A(t)(X + X_P) = A(t)Y \Rightarrow Y$ es solución del sistema homogéneo asociado. Sea Y una solución del sistema homogéneo asociado, y sea $X=X_P+Y \Rightarrow X'=X_P'+Y'=A(t)X_P+F(t)+A(t)Y=$ $A(t)(X_P+Y)+F(t)=A(t)X+F(t) \Rightarrow X$ es solución del sistema no homogéneo.

Métodos de obtención de Soluciones Particulares

1. Variación de las constantes o de los parámetros: Sirve para sistemas lineales con coeficientes variables tipo X = A(t)X + F(t). Sea $\{X_{H1}, X_{H2}, \dots, X_{Hn}\}$ base de soluciones homogéneas y Q matriz fundamental. Propongo $X_P = Q(t) C(t) = c_1(t) X_{H1} + c_2(t) X_{H2} + ... + c_n(t) X_{Hn}$ con $C(t) = (c_1(t), ..., c_n(t)) \in \mathbb{R}^n$. Quiero $X_P = AX_P + F \Rightarrow Q'C + QC' = AQC + F$. Pero $Q = AQ \Rightarrow Q'C + QC' = Q'C + F \Rightarrow QC' = F$. Basta elegir $C/C' = Q^TF \rightarrow \text{integro } C'(t)$ (ignoro constantes de integración porque busco una sola solución particular) y $X_P = QC$

Constantes de integración porque busco una sola solución particular) $y A_P = QC$ $\underbrace{Ej.\ 1.}_{x''+x=} \sin t \quad \text{Paso a sistema y obtengo} \quad \begin{cases} x_1' \\ x_2' \end{cases} = \begin{cases} 0 & 1 \\ -1 & 0 \end{cases} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{cases} 0 & 1 \\ \sin t & 0 \end{cases} \begin{pmatrix} x_{HI} = (\cos t, -\sin t) \\ x_{HI} = (\cos t, -\sin t) \end{pmatrix} \Rightarrow Q = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} C = Q^T F = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \begin{pmatrix} 0 \\ \sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t & \cos t \\ \cos t & \cos t \end{pmatrix} \begin{pmatrix} \cos t$

luego integro c_1 ' y c_2 ' y reemplazo en $x_P = c_1 x_{H1} + c_2 x_{H2}$.

En este caso $x_{HI} = e^t$, $x_{H2} = e^{-t}$ y $f(t) = t^2$. Propongo $\begin{cases} c_1' e^t + c_2' e^{-t} = 0 \\ c_1' e^t + c_2' e^{-t} = t^2 \end{cases}$. Integrando queda $c_1 = -(t^2/2 + t + 1)e^{-t}$ y $x_P = -t^2 - 2$. La solución general: $x = x_H + x_P = t^2 - 2$. La solución general: $x = x_H + x_P = t^2 - 2$. La solución general: $x = x_H + x_P = t^2 - 2$.

2. Coeficientes Indeterminados: Sirve para sistemas lineales con coeficientes constantes tipo X'=AX+F(t), cuando F(t) es un polinomio, exponencial, seno, coseno ó alguna combinación lineal de éstos. Puedo analizar cada término separadamente. \odot Si F no contiene términos de X_H (base de soluciones homogéneas), propongo X_P combinación lineal de los términos de F y sus derivadas l.i.. ② Si F contiene un término que es t^n veces algún término de X_H (ignorando constantes), propongo X_P combinación lineal de t^{n+1} veces ese término y sus derivadas l.i.. ③ Si el pol. caract. de A tiene una raíz r-múltiple y F contiene un término que es t^n veces un término de X_H obtenido de esa raíz, propongo X_P combinación lineal de t^{n+r} veces ese término y sus derivadas l.i.. En los tres casos, incorporo X_P propuesto en la ec. diferencial, derivo y resuelvo los coeficientes.

① $x''+4x'+4x=4t^2+6e'$. $x_H=(c_1+c_2t)e^{-2t}$. Propongo $x_P=A$ t^2+B t+C+D e'. Incorporo en ecuación, derivo y resuelvo: A=1, B=-2, C=3/2, D=2/3

② $x''-3x'+2x=2t^2+3e^{2t}$. $x_H=c_1e^t+c_2e^{2t}$. e^{2t} en x_H y en F. Propongo $x_P=At^2+Bt+C+Dt$ e^{2t} . Resuelvo: A=1, B=3, C=7/2, D=3③ $x''+4x'+4x=3te^{-2t}$. $x_H=c_1e^{-2t}+c_2te^{-2t}$. te^{2t} surge de la raíz doble y está en F. Propongo $x_P=At^3e^{-2t}+Bt^2e^{-2t}$. Ignoro te^{-2t} y e^{-2t} que ya están en x_H . A=1/2, B=0

Resolución de sistemas lineales homogéneos de coeficientes constantes de 2×2

Sea X'=AX, con $A \in \mathbb{R}^{2\times 2}$. Existen 3 casos posibles de solución, dependiendo de los autovalores de A:

Autovalores reales diferentes. Diagonalizo A: A=C.D.C- 1 , con D matriz diagonal de autovalores λ_1 y λ_2 , y C matriz de cambio de base $\{V_1, V_2\}$ (vectores como columnas). V_1 = (v_{11}, v_{12}) y V_2 = (v_{21}, v_{22}) autovectores de A de autovalores λ_1 y λ_2 respectivamente.

1 $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}, C = \begin{bmatrix} v_{11} & v_{21} \\ v_{12} & v_{22} \end{bmatrix}. \text{ Defino } Y = C^1 X \Rightarrow Y' = D.Y \circ \begin{bmatrix} y_1' = \lambda_1 y_1 \\ y_2' = \lambda_2 y_2 \end{bmatrix}$ Solución $y_1 = c_1 e^{\lambda I t}$ Solución X=C.Y ó para Y para $X [X] = c_1 e^{\lambda_1 t} [V_1] + c_2 e^{\lambda_2 t} [V_2]$

<u>Único autovalor (doble)</u>: Paso A a forma de Jordan: $A=C.J.C^{-1}$, con J matriz de Jordan de autovalor λ , C matriz de cambio de base $\{W, V\}$ (vectores como columnas), V autovector de A, W autovector generalizado de A: cumple $(A-\lambda I)W=V$ (para encontrar componentes de W resuelvo este sistema).

 $J = \begin{bmatrix} \lambda & 0 \\ 1 & \lambda \end{bmatrix}, C = \begin{bmatrix} w_1 & v_1 \\ w_2 & v_2 \end{bmatrix}. \text{ Defino } Y = C^1 X \Rightarrow Y' = J.Y \text{ o} \begin{cases} y_1' = \lambda y_1 \\ y_2' = y_1 + \lambda y_2 \end{cases}$ Solución $\begin{cases} y_1 = c_1 e^{\lambda t} \\ y_2 = c_1 t e^{\lambda t} \end{cases}$ $\begin{array}{ll} \textit{Solución} & \textit{X=C.Y} \'o \\ \textit{para X:} & [\textit{X}] = c_1 e^{\lambda t} ([\textit{W}] + t[\textit{V}]) + c_2 e^{\lambda t} [\textit{V}] \end{array}$ $\begin{cases} y_2 = c_1 t e^{\lambda t} + c_2 e^{\lambda t} \\ Sol Part & Sol Homog \end{cases}$

<u>Autovalores complejos diferentes</u>. $\lambda_1 = a + ib = \lambda$, $\lambda_2 = \overline{\lambda}$. Tomo $\lambda = \lambda_I$. Paso A a forma matricial del número complejo λ : $A = C.M.C^{-1}$ con M forma matricial de λ , y C matriz de cambio de base {Im[V],Re[V]} (vectores como columnas), $V = (v_l, v_2)$ autovector de λ .

$$M = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}, C = \begin{bmatrix} \operatorname{Im}(v_1) & \operatorname{Re}(v_1) \\ \operatorname{Im}(v_2) & \operatorname{Re}(v_2) \end{bmatrix}. \text{ Defino } Y = C^1 X \Rightarrow Y' = M.Y \text{ of } \begin{cases} y_1' = a y_1 - b y_2 \\ y_2' = b y_1 + a y_2 \end{cases} \text{ Solución para } Y: \begin{cases} y_1 = e^{at} [c_1 \cos(bt) - c_2 \sin(bt)] = e^{at} \rho_0 \cos(bt + \theta_0) \\ y_2 = e^{at} [c_1 \sin(bt) + c_2 \cos(bt)] = e^{at} \rho_0 \sin(bt + \theta_0) \end{cases}$$

$$Solución para X: X = C.Y \text{ o } [X] = c_1 \operatorname{Re}[X_C] + c_2 \operatorname{Im}[X_C] \cos[X_C] = e^{\lambda t} [V]. \text{ Expando } e^{\lambda t} = e^{(a+ib)t} \operatorname{como } e^{a} [\cos(bt) + i \sin(bt)]$$

Ecuaciones lineales de orden n

<u>Forma general de ecuación de orden n</u>: $x^{(n)} + a_{n-1}(t)x^{(n-1)} + a_{n-2}(t)x^{(n-2)} + ... + a_1(t)x' + a_0(t)x = f(t)$.

Ecuaciones de orden n son equivalentes a sistemas de $n \times n$: Puedo transformar ecuación de orden n a sistema de $n \times n$ definiendo:

 $\frac{x_1(t) = x(t), x_2 = x'(t) = x_1'(t), x_3 = x''(t) = x_2'(t), \dots, x_n(t) = x^{(n-1)}(t)}{x_1(t) = x_1'(t), x_2 = x'(t) = x_1'(t), \dots, x_n(t) = x^{(n-1)}(t)} \Rightarrow x_n' = -a_{n-1}(t)x_n - a_{n-2}(t)x_{n-1} - \dots - a_1(t)x_2 - a_0(t)x_1 + f(t).$ Ej. $x'' + a \ x' + b \ x = f(t).$ Para pasar a sistema defino: $X(t) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} x_1 = x(t) \quad \text{y reescribo la ecuación} \quad \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -a & -b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ f(t) \end{bmatrix}$ Así pruebo ∃ y! Resolución de ecuaciones lineales homogéneas de coeficientes constantes de grado 2

$\ddot{x} + 2b\dot{x} + \omega_0^2 x = F(t), x_h(t) = Ae^{\lambda_1 t} + Be^{\lambda_2 t}$	$b>\omega_0$	Sobreamortiguado	$x_h(t) = e^{-bt} \left(A e^{\alpha t} + B e^{-\alpha t} \right)$	Antioscilador
	$b < \omega_0$	Subamortiguado	$x_h(t) = e^{-bt} \left(A e^{i \omega t} + B e^{-i \omega t} \right) = A_l e^{-bt} \cos \left(\omega t + \varphi_0 \right)$	$\ddot{x} - \omega_0^2 x = F(t)$
$\lambda_{1,2} = -b \pm \sqrt{b^2 - \omega_0^2}$, $\omega = \sqrt{\omega_0^2 - b^2}$	$b=\omega_0$	Amortig. Crítico	$x_h(t) = e^{-bt} (A + B t)$	
$\alpha(discriminante)$	b=0		$x_h(t) = A e^{i \omega_0 t} + B e^{-i \omega_0 t} = A_1 \cos(\omega_0 t + \varphi_0)$	$x_h(t) = Ae^{\omega_0 t} + Be^{\omega_0 t}$

Diagramas de Fase

Caso ②: Uso base
$$\{W, V\}$$
 $\begin{cases} x' = \lambda x \\ y' = x + \lambda y \end{cases} \Rightarrow \text{solución} \begin{cases} x(t) = c_1 e^{\lambda t} \\ y(t) = c_1 t e^{\lambda t} + c_2 e^{\lambda t} \end{cases} \Rightarrow y = x \left(\frac{1}{\lambda} \ln(x/c_1) + \frac{c_2}{c_1}\right) \text{Solución real } [X] = x(t) [W] + y(t) [V]$

Puntos de equilibrio y linearización de sistemas no lineales

<u>Punto de equilibrio</u>: Sea X'=F(X) con $X(t_0)=X_0$, un punto de equilibrio es un cero de F(X).

<u>Teorema de estabilidad lineal</u>: Sea F un campo $\square \square$ en \mathbb{R}^2 , y X_0 un cero de F. Si $Y=X-X_0$, $DF(X_0)$ no tiene autovalores con parte real 0, el diagrama de fases del sistema X'=F(X) en un entorno de X_0 es "localmente igual" al del sistema $Y'=DF(X_0)$ Y cerca de $Y_0=0$. Si todos los autovalores de $DF(X_0)$ tienen parte real ≤ 0 , las trayectorias que pasan cerca de X_0 tienden a X_0 con $t \to +\infty$. Si todos tienen parte real ≥ 0 , se alejan de X_0 . Si tiene un autovalor > 0 y otro < 0, por algunas trayectorias se acerca, y por otras se aleja.

Resumen Tipos de Ecuaciones Diferenciales Ordinarias

Apédice Fórmulas

- F						
Integrales	De función escalar $f(\bar{r})$	De campo vectorial $ar{m{F}}(ar{m{r}})$				
G• 1	Integral simple = escalar	Integral simple sobre un campo - vector por dt = vector				
Simple	$\int f(t)dt = k$	$\int \bar{F}(t)dt = \int F_1(t)dt \hat{x} + \int F_2(t)dt \hat{y} + \int F_3(t)dt \hat{z}$				
	Integral de línea = escalar	Circulación de un campo – vector dot dl = escalar				
Curva	$\int_{C} f(\overline{r}) dl = \int_{a}^{b} f(\overline{y}(t)) \ \overline{y}'(t)\ dt$	$\int_{C} \bar{F}(\bar{r}) \cdot d\bar{l} = \int_{a}^{b} \bar{F}(\bar{\gamma}(t)) \cdot \bar{\gamma}'(t) dt = \int_{C} F_{x} dx + F_{y} dy + F_{z} dz$				
Cuiva	$\gamma(t):[a,b] \rightarrow \mathbb{R}^3$ parametrización regular de C	Integral de curva sobre un campo - vector por dl = vector				
	Si $f(\bar{r}) \ge 0$ se puede interpretar como el "área de una valla"	$\int_{C} \bar{F}(\bar{r}) dl = \int_{C} F_{1}(\bar{r}) dl \ \hat{x} + \int_{C} F_{2}(\bar{r}) dl \ \hat{y} + \int_{C} F_{3}(\bar{r}) dl \ \hat{z}$				
	Integral doble / de área = escalar	Integral doble sobre un campo = vector por dA = vector				
Doble	$\iint_{D} f(x,y) dA = \iint_{D} f(x,y) dx dy$	$\iint_D \bar{\boldsymbol{F}}(x,y) dA = \iint_D F_1(x,y) dx dy \hat{\boldsymbol{x}} + \iint_D F_2(x,y) dx dy \hat{\boldsymbol{y}}$				
	Integral de superficie = escalar	Flujo de un campo – vector dot \overline{dS} = escalar				
Superficie	$\iiint_{S} f(\bar{r}) dS = \iint_{D} f(\bar{r}(u,v)) \bar{r}_{u} \times \bar{r}_{v} du dv$	$\iint_{S} \bar{\boldsymbol{F}} \cdot d\bar{\boldsymbol{S}} = \iint_{S} \bar{\boldsymbol{F}} (\bar{\boldsymbol{r}}) \cdot \hat{\boldsymbol{n}} dS = \iint_{S} F_{n} dA$				
Superficie		Integral de superficie sobre un campo - vector por dS = vector				
		$\iint_{S} \overline{F}(\overline{r}) dS = \iint_{S} F_{1}(\overline{r}) dS \ \hat{x} + \iint_{S} F_{2}(\overline{r}) dS \ \hat{y} + \iint_{S} F_{3}(\overline{r}) dS \ \hat{z}$				
	Integral triple / de volumen = escalar	Integral de volumen sobre un campo = vector				
Volumen	$\iiint_{V} f(\bar{r}) dV = \iiint_{V} f(x, y, z) dx dy dz$	$\iiint_{V} \overline{F}(\overline{r}) dt = \iiint_{V} F_{1}(\overline{r}) dV \ \hat{x} + \iiint_{V} F_{2}(\overline{r}) dV \ \hat{y} + \iiint_{V} F_{3}(\overline{r}) dV \ \hat{z}$				

Cambio de Variable: $T: \mathbb{R}^2 \to \mathbb{R}^2$ invec. y C^1 . $D^* \subset \mathbb{R}^2$ acotado y $f: D = T(D^*) \to \mathbb{R}$ integrable. Si D T inversible en $D^* \to \int_D f = \int_{D^*} (f \circ t) |det(DT)|$. Ej. polares, **D** círculo r = R, $D^* r \times \theta$: [0,R] x [0,2 π], $T(r,\theta) = \{x = r \cos \theta, y = r \sin \theta\}$

Productos Escalar y Vectorial

 $\bar{A} \cdot \bar{B} = A_x B_x + A_y B_y + A_z + B_z = |A||B|\cos\theta$

 $\bar{\boldsymbol{A}} \times \bar{\boldsymbol{B}} = \begin{vmatrix} \hat{\boldsymbol{x}} & \hat{\boldsymbol{y}} & \hat{\boldsymbol{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = -\bar{\boldsymbol{B}} \times \bar{\boldsymbol{A}} = |\boldsymbol{A}| |\boldsymbol{B}| \sin \theta \ \hat{\boldsymbol{e}} \ , \ \hat{\boldsymbol{e}} \perp (\bar{\boldsymbol{A}}, \bar{\boldsymbol{B}})$

Regla de la mano derecha: Pulgar \overline{A} , Índice \overline{B} , del Medio $\overline{A} \times \overline{B}$ Esféricas $(\hat{\pmb{r}}, \hat{\pmb{\phi}}, \hat{\pmb{\theta}}) \phi$ cenital, θ azimutal Coords. Cartesianas $(\hat{x}, \hat{y}, \hat{z})$ Polares / Cilíndricas $(\hat{r}, \hat{\theta}, \hat{z})$ $\bar{F} = F_{x} \hat{r} + F_{\theta} \hat{\theta} + F_{z} \hat{z}$ $\mathbf{F} = F_{r} \hat{\mathbf{r}} + F_{d} \hat{\boldsymbol{\phi}} + F_{\theta} \hat{\boldsymbol{\theta}}$ $\mathbf{F} = F_{x} \hat{\mathbf{x}} + F_{y} \hat{\mathbf{y}} + F_{z} \hat{\mathbf{z}}$ Vectores Cart.: $\hat{x} \times \hat{y} = \hat{z} \quad \hat{y} \times \hat{z} = \hat{x} \quad \overline{\hat{z} \times \hat{x} = \hat{y}}$ $r = \sqrt{x^2 + y^2 + z^2} : [0, +\infty)$ $r = \sqrt{x^2 + y^2}$: $[0, +\infty)$ $x = r \cos(\theta)$ $x = r \cos(\theta) \sin(\phi)$ Cilíndricas: Notación alter: $(\rho, \theta \circ \varphi, z)$ $\hat{r} \times \hat{\theta} = \hat{z} \quad \hat{\theta} \times \hat{z} = \hat{r} \quad \hat{z} \times \hat{r} = \hat{\theta}$ $\theta = \tan^{-1}(y/x): [0,2\pi]$ $z = z(-\infty, +\infty)$ $y = r \sin(\theta) \sin(\phi)$ $y = r \sin(\theta)$ $\phi = \cos^{-1}(z/r):[0,\pi]$ nadas $z = r \cos(\phi)$ $\theta = \tan^{-1}(y/x):[0,2\pi]$ $\hat{r} = \sin \phi \cos \theta \hat{x} + \sin \phi \sin \theta \hat{y} + \cos \phi \hat{z}$ Esféricas: Notación alternativa: $(r, \theta, \varphi o)$ $\hat{r} = x/r \hat{x} + y/r \hat{y}$ $\hat{x} = \cos\theta \hat{r} - \sin\theta \hat{\theta}$ $|\phi\rangle$ (radial, cenital, azimutal) $\hat{\phi} = \cos \phi \cos \theta \, \hat{x} + \cos \phi \sin \theta \, \hat{y} - \sin \phi \, \hat{z} \quad \hat{\theta} = -\sin \theta \, \hat{x} + \cos \theta \, \hat{y}$ $\begin{vmatrix} \hat{\boldsymbol{\theta}} = -y/r \, \hat{\boldsymbol{x}} + x/r \, \hat{\boldsymbol{y}} \\ \hat{\boldsymbol{z}} = \hat{\boldsymbol{z}} \end{vmatrix} \begin{vmatrix} \hat{\boldsymbol{y}} = \sin \theta \, \hat{\boldsymbol{r}} + \cos \theta \, \hat{\boldsymbol{\theta}} \\ \hat{\boldsymbol{z}} = \hat{\boldsymbol{z}} \end{vmatrix}$ Versores $\hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{z}} \quad \hat{\boldsymbol{\theta}} \times \hat{\boldsymbol{z}} = \hat{\boldsymbol{r}} \quad \hat{\boldsymbol{z}} \times \hat{\boldsymbol{r}} = \hat{\boldsymbol{\theta}}$ $\hat{x} = \sin \phi \cos \theta \hat{r} + \cos \phi \cos \theta \hat{\phi} - \sin \theta \hat{\theta}$ $\hat{y} = \sin \phi \sin \theta \, \hat{r} + \cos \phi \sin \theta \, \hat{\phi} + \cos \theta \, \hat{\theta} \quad \hat{z} = \cos \phi \, \hat{r} - \sin \phi \, \hat{\phi}$ $r^2 \sin \phi$ Jacob. $dr \hat{r} + r d\theta \hat{\theta} + dz \hat{z}$ $dr \hat{\mathbf{r}} + r d\phi \hat{\boldsymbol{\phi}} + r \sin\phi d\theta \hat{\boldsymbol{\theta}}$ $dx \hat{x} + dy \hat{y} + dz \hat{z}$ $d\bar{l}$ $d^{\bar{S}}$ $dy dz \hat{x}$ $r d\theta dz \hat{r}$ $r^2 \sin(\phi) d\phi d\theta \hat{r}$ $r \sin(\phi) dr d\theta \hat{\phi}$ $dr\,dz\,\hat{oldsymbol{ heta}}$ $r dr d\theta \hat{z}$ $r dr d\phi \hat{\theta}$ $dx dz \hat{y}$ $dx dy \hat{z}$ dV $\frac{\partial}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial}{\partial \phi} \hat{\phi} + \frac{1}{r \sin(\phi)} \frac{\partial}{\partial \theta} \hat{\theta}$ $\bar{\nabla} f$ $\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\boldsymbol{F}_r) + \frac{1}{r\sin\phi}\frac{\partial}{\partial\phi}(\sin\phi\;\boldsymbol{F}_\phi) + \frac{1}{r\sin\phi}\frac{\partial\boldsymbol{F}_\theta}{\partial\theta}$ $ar{
abla} \cdot ar{F}$ $\frac{1}{r\sin\phi} \left[\frac{\partial}{\partial\phi} (\sin\phi F_{\theta}) - \frac{\partial F_{\phi}}{\partial\theta} \right] \hat{r} +$ $\nabla \times \bar{F}$ $+\frac{1}{r}\bigg[\frac{1}{\sin\phi}\frac{\partial F_r}{\partial\theta} - \frac{\partial}{\partial r}(rF_\theta)\bigg]\hat{\pmb{\phi}} + \frac{1}{r}\bigg[\frac{\partial}{\partial r}(rF_\phi) - \frac{\partial F_r}{\partial\phi}\bigg]\hat{\pmb{\phi}}$ $abla imes ar{F}$ Det. $\nabla^2 f$

Este resumen no es oficial de la materia, puede haber temas que no estén incluídos. Si querés los archivos originales, tenés sugerencias o encontrás errores por favor escribime a alejandro.frenkel@yahoo.com. Realizado en LibreOffice (www.libreoffice.org). Ciertos gráficos de Wolfram Math World.