Chapter 6

Initial Value Problems for ODEs: Multistep Methods

Songting Luo

Department of Mathematics lowa State University

MATH 561 Numerical Analysis

Numerical Methods for ODEs

IVP for ODE:

$$\frac{d\mathbf{y}}{dx} = \mathbf{f}(x, \mathbf{y}), \ a \leqslant x \leqslant b; \ \mathbf{y}(a) = \mathbf{y}_0.$$

• Approximation $\{\mathbf u_n \approx \mathbf y(x_n)\}$ at discrete points $\{x_n\}$: grid function $\{\mathbf u_n\}$ on a grid

$$a = x_0 < x_1 < \dots < x_{N-1} < x_N = b$$

- One-step method: Chap 5.
- Multistep method: in a k-step method, \mathbf{u}_{n+k} is determined with information from previous k points, $\mathbf{u}_{n+k-1}, \mathbf{u}_{n+k-2}, \ldots, \mathbf{u}_n$. k is called the step number (index) of the method.

Linear Multistep Methods

- Assume uniform grid legnth h.
- Example: start with the ODE, integration from x_n to x_{n+k} ,

$$\mathbf{y}(x_{n+k}) - \mathbf{y}(x_n) = \int_{x_n}^{x_{n+k}} \mathbf{f}(x, \mathbf{y}) dx.$$

With appropriate numerical quadrature rules for the integral \Rightarrow linear multstep methods.

• Examples: $\mathbf{y}_{n+1} \approx \mathbf{y}_n + \frac{h}{2}(f_{n+1} + f_n)$.

$$\begin{split} &\mathbf{y}_{n+1} \approx \mathbf{y}_{n-1} + \frac{h}{3} (\mathbf{f}_{n-1} + 4\mathbf{f}_n + \mathbf{f}_{n+1}). \\ &\mathbf{y}_{n+4} \approx \mathbf{y}_{n+3} + \frac{h}{24} \big[55\mathbf{f}_{n+3} - 59\mathbf{f}_{n+2} + 37\mathbf{f}_{n+1} - 9\mathbf{f}_n \big]. \\ &\mathbf{y}_{n+4} \approx \mathbf{y}_{n+3} + \frac{h}{24} \big[9\mathbf{f}_{n+4} + 19\mathbf{f}_{n+3} - 5\mathbf{f}_{n+2} - 9\mathbf{f}_{n+1} \big]. \end{split}$$

Linear Multistep Methods

- Assume uniform grid legnth h.
- General k-step method: for $n = 0, 1, 2, \dots, N k$,

$$\mathbf{u}_{n+k} + \alpha_{k-1}\mathbf{u}_{n+k-1} + \dots + \alpha_0\mathbf{u}_n$$

= $h[\beta_k\mathbf{f}_{n+k} + \beta_{k-1}\mathbf{f}_{n+k-1} + \dots + \beta_0\mathbf{f}_n],$

with $\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_{k-1}$ provided.

If $\beta_k = 0$: explicit methods.

If $\beta_k \neq 0$: implicit methods.

ullet For implicit methods: $oldsymbol{u}_{n+k}$ obtained as solution of nonlinear equation

$$\mathbf{u}_{n+k} = \beta_k \mathbf{f}(x_{n+k}, \mathbf{u}_{n+k}) + \mathbf{g}_n,$$

$$\mathbf{g}_n = h \sum_{s=0}^{k-1} \beta_s \mathbf{f}_{n+s} - \sum_{s=0}^{k-1} \alpha_s \mathbf{u}_{n+s}.$$

Linear Multistep Methods

• Successive iteration (fixed-point iteration) for the nonlinear equation:

$$\mathbf{u}_{n+k}^{[v]} = h\beta_k \mathbf{f}(x_{n+k}, \mathbf{u}_{n+k}^{[v-1]}) + \mathbf{g}_n, \ v = 1, 2, \dots$$

$$\mathbf{u}_{n+k}^{[v]} \to \mathbf{u}_{n+k}, \text{ as } v \to \infty.$$

Theorem

Assume **f** is Lipschitz continuous for variable **y** with Lipschitz constant L, and $\lambda \equiv h|\beta_k|L < 1$, then the above nonlinear equation has a unique solution $\mathbf{u}_{n+k} = \lim_{v \to \infty} \mathbf{u}_{n+k}^{[v]}$, and

$$\|\mathbf{u}_{n+k}^{[v]} - \mathbf{u}_{n+k}\| \leqslant \frac{\lambda^v}{1-\lambda} \|\mathbf{u}_{n+k}^{[1]} - \mathbf{u}_{n+k}^{[0]}\|, \ v = 1, 2, \dots$$

◆ロト ◆問ト ◆意ト ◆意ト · 意 · からぐ

Truncation Error; Consistency

Residual Operator:

$$\begin{split} &(R\mathbf{y})(x) \equiv \mathbf{y}'(x) - \mathbf{f}(x,\mathbf{y}), \ \mathbf{y} \in C^1[a,b] \\ &(R_h\mathbf{u})_n \equiv \frac{1}{h} \sum_{s=0}^k \alpha_s \mathbf{u}_{n+s} - \sum_{s=0}^k \beta_s \mathbf{f}(x_{n+s},\mathbf{u}_{n+s}), \ \mathbf{u} = \{\mathbf{u}_n\} \in \Gamma_h[a,b], \end{split}$$

- Truncation error: $(\mathbf{T}_h)_n = (R_n \mathbf{y})_n, \ n = 0, 1, \dots, N.$
- Consistency: $\|\mathbf{T}_h\|_{\infty} \to \mathbf{0}$, as $h \to 0$.
- Order $p: \|\mathbf{T}_h\|_{\infty} = O(h^p)$, as $h \to 0$.
- Principal error function τ : $(\mathbf{T}_h)_n = \tau(x_n)h^p + O(h^{p+1})$, as $h \to 0$.

Truncation Error

Truncation error:

$$(\mathbf{T}_h)_n = \frac{1}{h} \sum_{s=0}^k \alpha_s \mathbf{y}_{n+s} - \sum_{s=0}^k \beta_s \mathbf{y}'_{n+s}, \ n = 0, 1, \dots, N$$

With Taylor series expansion:

$$\mathbf{y}(x_{n+s}) = \mathbf{y}(x_n) + sh\mathbf{y}'(x_n) + \frac{1}{2}(sh)^2\mathbf{y}''(x_n) + \cdots$$

$$\mathbf{y}'(x_{n+s}) = \mathbf{y}(x_n) + sh\mathbf{y}''(x_n) + \frac{1}{2}(sh)^2\mathbf{y}'''(x_n) + \cdots$$

Then we have

$$(\mathbf{T}_h)_n = \frac{1}{h} (\sum_{s=0}^k \alpha_s) \mathbf{y}(x_n) + (\sum_{s=0}^k (s\alpha_s - \beta_s)) \mathbf{y}'(x_n) + O(h)$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ めのの

Truncation Error; Consistency; Characteristic Polynomials

• Consistency $(\mathbf{T}_h)_n \to 0$ as $h \to 0$ implies consistency conditions

$$\sum_{s=0}^{k} \alpha_s = 0, \quad \sum_{s=0}^{k} s \alpha_s = \sum_{s=0}^{k} \beta_s.$$

Introduce characteristic polynomials

$$\alpha(t) = \sum_{s=0}^{k} \alpha_s t^s, \quad \beta(t) = \sum_{s=0}^{k} \beta_s t^s.$$

Consistency conditions ⇒

$$\alpha(1) = 0, \quad \alpha'(1) = \beta(1).$$

• MORE Results using characteristic polynomials (later).

◆ロト ◆卸 ト ◆ 重 ト ◆ 重 ・ り へ (

Local Description; Ω -degree

From local truncation error:

$$\sum_{s=0}^k \alpha_s \mathbf{y}(x_{n+s}) - h \sum_{s=0}^k \beta_s \mathbf{y}'(x_{n+s}) = h(\mathbf{T}_h)_n.$$

• Define linear operator $L_h:C^1[\mathbf{R}]\to C^1[\mathbf{R}]$,

$$(L_h z)(x) = \sum_{s=0}^k \alpha_s z(x+sh) - h \sum_{s=0}^k \beta_s z'(x+sh), \ z \in C^1[\mathbf{R}].$$

- Given a set of linearly independent "gauge functions" $\{\omega_r(x)\}_{r=0}^\infty$, and define $\Omega_p=\mathrm{Span}\{\omega_0,\omega_1,\ldots,\omega_p\}$
- Ω -degree p of the method:

$$L_h\omega = 0, \ \forall \omega \in \Omega_p, \forall h > 0.$$

Local Description

- Ω_p closed under translation if $\omega(x) \in \Omega_p$ implies $\omega(x+c) \in \Omega_p$
- Ω_p closed under scaling if $\omega(x) \in \Omega_p$ implies $\omega(cx) \in \Omega_p$

Theorem

• If Ω_p closed under translation, then the method has Ω -degree p iff

$$(L_h\omega)(0) = 0, \ \forall \omega \in \Omega_p, \forall h > 0.$$

• if Ω_p closed under translation and scaling, then the method has Ω -degree p iff

$$(L_1\omega)(0) = 0, \ \forall \omega \in \Omega_p.$$

Local Description

• Linear functional $L: C^1[\mathbf{R}] \to \mathbf{R}$:

$$Lu = \sum_{s=0}^{k} [\alpha_s u(s) - \beta_s u'(s)], \ u \in C^1[\mathbf{R}].$$

- For $\Omega_m = \mathbf{P}_m$, Ω -degree referred as algebraic (or polynomial) degree.
- The method has algebraic degree p if $Lu=0, \ \forall u \in \mathbf{P}_p$, equivalently,

$$Lt^r = 0, \ r = 0, 1, \dots, p.$$

• Examples: Explicit two-step methods: what α 's, β 's? what polynomial degree p? $\mathbf{u}_{n+2} + \alpha_1 \mathbf{u}_{n+1} + \alpha_0 \mathbf{u}_n = h(\beta_1 \mathbf{f}_{n+1} + \beta_0 \mathbf{f}_n)$.

Peano Kernel of Linear Functionals

• Denote local solution $\mathbf{v}(t) \equiv \mathbf{y}(x_n + th), \ 0 \leqslant t \leqslant k$, then

$$L\mathbf{v} = \sum_{s=0}^{k} [\alpha_s \mathbf{v}(s) - \beta_s \mathbf{v}'(s)] = h(\mathbf{T}_h)_n.$$

For the linear functional L, Define p-th Peano kernel

$$\lambda_p(\sigma) = L_{(t)}(t - \sigma)_+^p = \sum_{s=0}^k \left[\alpha_s (s - \sigma)_+^p - \beta_s p(s - \sigma)_+^{p-1} \right], \ p \geqslant 1,$$

Peano representation of the function L,

$$L\mathbf{v} = \frac{1}{p!} \int_0^k \lambda_p(\sigma) \mathbf{v}^{(p+1)}(\sigma) d\sigma.$$

• L is definite of order p if λ_p is of the same sign.

Peano Kernel of Linear Functionals

• L is definite of order p, then

$$L\mathbf{v} = l_{p+1}\mathbf{v}^{(p+1)}(\bar{\sigma}), \ 0 < \bar{\sigma} < k; \ l_{p+1} = L\frac{t^{p+1}}{(p+1)!}$$

Theorem

A multistep method of polynomial degree p has order p whenever the exact solution $\mathbf{y}(x)$ is in the smoothness class $C^{p+1}[a,b]$. If the associated functional L is definite, then

$$(\mathbf{T}_h)_n = l_{p+1} \mathbf{y}^{(p+1)}(\bar{x}_n) h^p, \ x_n < \bar{x}_n < x_{n+k}.$$

Moreover, for the principal error function au of the method, whenever definite or not, we have if $\mathbf{y} \in C^{p+2}[a,b]$,

$$\boldsymbol{\tau}(x) = l_{p+1} \mathbf{y}^{(p+1)}(x).$$

Songting Luo (Department of Mathematics