Image Classification

Special thanks to Janine Tiefenbruck and Marina Langlois

Motivation

Task: assign an input image one label from a fixed set of categories

Why do you think it might be an important problem to solve?

Image classification example

Ignore the lines for now.

- image classification model takes an image and assigns probabilities to 4 labels {cat, dog, hat, mug}
- image is represented as one large 2dimensional array of numbers + information about the colors
- image is 248 pixels wide, 400 pixels tall, and has three color channels
 Red, Green, Blue

Image classification example

Image is 248 pixels wide, 400 pixels tall, and has three color channels **Red**, **Green**, **Blue**

The image consists of:

A: 248 + 400 + 3 numbers

B: 248 * 400 * 3 numbers

C: (248 * 400) ** 3 numbers

D: (248 + 400) ** 3 numbers

Image Classification Example

Challenges

Can you think of any challenges in classifying images?

(from a computer's perspective)

Challenges

- Viewpoint variation.
- Scale variation.
- Deformation.
- **Occlusion.** The object of interest can be hidden. Sometimes only a small portion of an object (as little as few pixels) could be visible.
- Illumination conditions.
- **Background clutter**. The objects of interest may blend into their environment, making them hard to identify.
- **Intra-class variation.** The classes of interest can often be relatively broad.

- Viewpoint variation.
- Scale variation.
- Deformation.
- Occlusion.
- Illumination conditions.
- Background clutter.
- Intra-class variation.

- Viewpoint variation.
- Scale variation.
- Deformation.
- Occlusion.
- Illumination conditions.
- Background clutter.
- Intra-class variation.

- Viewpoint variation.
- Scale variation.
- Deformation.
- Occlusion.
- Illumination conditions.
- Background clutter.
- Intra-class variation.

- Viewpoint variation.
- Scale variation.
- Deformation.
- Occlusion.
- Illumination conditions.
- Background clutter.
- Intra-class variation.

Another related problem: recognizing handwritten digits

• Easy, right? How did you do it? Could you describe a "9" to me?

• But not for a computer.

Application: sorting mail

Segmentation

- Convert 504/92
- Then recognize an individual digit.

- It is worth solving the second problem first: recognizing individual digits.
- Once solved, segmentation problem can be solved as well:
 - \circ One approach: try many ways to segment an image and score each trial
 - A trial segmentation gets a high score if the individual digit classifier is confident of its classification in all segments

Approach to classify individual digits

- take a large number of handwritten digits with labels. (Someone labeled them already).
- This is a training set:

Approach to solve it

- Develop a system which can learn from those training examples.
- By increasing the number of training examples, the network can learn more about handwriting, and so improve its accuracy.
 - Thousands, millions..

We have an image with a number. What is next?

• We need to convert an image to digits. How?

Let's say we have just black and white image.

Now how about greyscale?

We have an image with a number. What's next?

MNIST Example (Predict the Number in the Image)

Training and Testing Sets

- MNIST (Modified National Institute of Standards and Technology) database
- Contains 60,000 training images and 10,000 testing images

Not every image can be placed in the database.

- Each image is 28 pixels by 28 pixels (total 784 numbers)
- Associated with a digit between 0-9.
- Anti aliased (minimizing blocky patterns, when representing a high-resolution signal at a lower resolution, <u>link to see an example</u>)

https://en.wikipedia.org/wiki/MNIST_database

Artificial Neural Networks

As a model of human brain

Neural networks can

- identify faces,
- recognize speech,
- read your handwriting,
- translate texts,
- play games (typically board games or card games)
- control autonomous vehicles and robots

Today's Exercise

Implement an algorithm that gives some evidence about whether an image has been photoshopped.

Details in Jupyter notebook in GitHub.