Homework Set 1

In a matter-dominated universe with spatial curvature k, the comoving distance r and angular diameter distance d_A to an object with redshift z are given by

$$r(z) = \frac{c}{H_0} \int_0^z \frac{dz'}{(1 + \Omega_{m0}z')^{1/2}(1 + z')},$$

$$d_A(z) = \frac{S_k(r)}{(1+z)},$$
(2)

$$d_{\mathcal{A}}(z) = \frac{S_k(r)}{(1+z)},\tag{2}$$

where Ω_{m0} is the present-day density parameter for matter, and

$$S_k(r) = \begin{cases} \sin(\sqrt{k}\,r)/\sqrt{k} & \text{if } (k>0) \\ r & \text{if } (k=0). \\ \sinh(\sqrt{-k}\,r)/\sqrt{-k} & \text{if } (k<0) \end{cases}$$

(i) Show, using the Friedmann equation, that

$$-kc^2 = H_0^2 (1 - \Omega_{m0}).$$

[2 marks]

(ii) Using Eq. (1), find an expression for the comoving separation of two galaxies along the same line of sight with slightly different redshifts z_1 and $z_2 = z_1 + \Delta z$ (you can use the assumption that $\Delta z \ll 1$ to get an analytic formula; please do not try to evaluate the integration numerically). [1 mark]

Assuming $\Omega_{m0} = 1$, determine the comoving separation of two galaxies along the same line of sight with redshifts $z_1 = 0.200$ and $z_2 = z_1 + \Delta z$, where $\Delta z = 0.03$. [2 marks]

(iii) Show that the comoving separation of two galaxies both at redshift z_1 , but separated on the sky by an angle of θ , is

$$\Delta r = \theta S_k(r)$$

[1 mark]

If z_1 = 0.200 and θ = 10 degrees, what is the transverse co-moving separation of the galaxies if Ω_{m0} = 1? [2 marks]

(iv) The galaxy correlation function, $\xi(r)$, measures the probability of finding two galaxies separated by a comoving distance r and is predicted to have a peak at a characteristic separation. Analysis of a survey of galaxies around z=0.2 finds this peak to occur at a line-of-sight separation corresponding to $\Delta z=0.03$ and transverse angular separation (for galaxies with the same redshift) of $\theta=10$ degrees. Explain how this information can be used to constrain Ω_{m0} and explain why it suggests that $\Omega_{m0} \neq 1$. Numerical estimate of Ω_{m0} is **not** required. Assume the Hubble parameter $H_0=75~{\rm km~s^{-1}~Mpc^{-1}}$. [2 marks]

[Hint: the Universe is to a good approximation isotropic, so that $\xi(r)$ should not depend on the relative orientation of galaxy pairs.]

Optional question: try to derive Eq. (1) yourself.