Agenda

【鈴木様 13回目レッスンの実施内容】

- ・コードレビュー
- ・次回までの宿題
- · Docker インストール, コーディング進める
- ・次回レッスン1/13(月) 21:30-

(2回目レッスン以降 基本的に 土曜日 21:30-)

前回の宿題

・通信ツール画面作成

UART通信の電気的特性

	TTL(0-5V)	RS232C	RS422
回路	マイコン側 TXD RXD 汎用バッファIC	PC側	PEED Thu F PE
H/L 認識電圧	H: +2.5V以上 L: +1.5V以下	H: +4 ~ +15 V L: −4 ~ -15 V	+ とーとの差(A/Y と B/Zの差) H:+0.2~+5V L:-0.2~-0.5V
価格	安い <u></u> 高い		→
通信距離	短い 長い		•
耐ノイズ性	低い高い		

ここまで H か L かを認識する電圧の違い (1ビットの認識)

UART通信の1バイトデータの認識

通信データとしてとしての最小単位:1バイト = 7 or 8 ビット

 $(2^{7}-1 : 0 \sim 127 / 2^{8}-1 : 0 \sim 255)$

1バイト送信時の データビット構成

デフォルト通信ボーレート

ここまで1バイトを認識するための通信書式

1バイトデータ: バイナリとASCIIの違い

・例:文字 A を送る時実際には何を送信しているか

データビットが 8 ビットの時、 $0 \sim 255$ の数値 として認識できる。

『文字Aを意味する数値を全世界で共通にすれば、その数値が

文字であると認識できる。アメリカ人が考えた

 $A \sim Z$, $a \sim z$, $0 \sim 9$ (文字としての) 及び 制御文字(改行等)を アメリカ人が標準化した

ASCII文字コード

文字	10 進	16 進	文字	10 進	16 進	文字	10 進	16 進			16 進	文字		16 進	文字	10 進	16 進	文字	10 進	16 進	文字	10 進	16 進
NUL	0	00	DLE	16	10	SP	32	20	0	48	30	@	64	40	P	80	50	`	96	60	р	112	70
SOH	1	01	DC1	17	11	!	33	21	1	49	31	Α	65	41	Q	81	51	a	97	61	q	113	71
STX	2	02	DC2	18	12	"	34	22	2	50	32	В	66	42	R	82	52	b	98	62	r	114	72
ETX	3	03	DC3	19	13	#	35	23	3	51	33	С	67	43	S	83	53	С	99	63	s	115	73
EOT	4	04	DC4	20	14	\$	36	24	4	52	34	D	68	44	Т	84	54	d	100	64	t	116	74
ENQ	5	05	NAK	21	15	%	37	25	5	53	35	Е	69	45	U	85	55	е	101	65	u	117	75
ACK	6	06	SYN	22	16	&	38	26	6	54	36	F	70	46	٧	86	56	f	102	66	٧	118	76
BEL	7	07	ETB	23	17	•	39	27	7	55	37	G	71	47	W	87	57	g	103	67	w	119	77
BS	8	80	CAN	24	18	(40	28	8	56	38	Н	72	48	X	88	58	h	104	68	X	120	78
HT	9	09	EM	25	19)	41	29	9	57	39	I	73	49	Υ	89	59	i	105	69	у	121	79
LF*	10	0a	SUB	26	1a	*	42	2a	:	58	3a	J	74	4a	Z	90	5a	j	106	6a	Z	122	7a
VT	11	0b	ESC	27	1b	+	43	2b	;	59	3b	K	75	4b	[91	5b	k	107	6b	{	123	7b
FF*	12	0c	FS	28	1c	,	44	2c	<	60	3c	L	76	4c	\¥	92	5c	1	108	6c		124	7c
CR	13	0d	GS	29	1d	-	45	2d	=	61	3d	М	77	4d]	93	5d	m	109	6d	}	125	7d
SO	14	0e	RS	30	1e		46	2e	>	62	3е	N	78	4e	^	94	5e	n	110	6e	~	126	7e
SI	15	Of	US	31	1 f	/	47	2f	?	63	3f	0	79	4f	_	95	5f	0	111	6f	DEL	127	7f

0(ゼロ)を数値0として送信する:バイナリ送信

0(ゼロ)を文字'0'(数値48)として送信する:ASCII送信

1バイトデータ: バイナリとASCIIの違い(メリット デメリット)

バイナリ送信のメリット : 転送効率が良い

(例:数値の100を送信するときは1バイトデータの100を送信

すればよい)

ASCII送信のメリット : 数値と文字が混在して送信できる。

制御文字(改行, STX(通信開始), ETX(通信終了)等) が送信

できる。

ASCII送信のデメリット : 転送効率が悪い

(例:数値の100を送信したい場合は、文字 '6', '4')

(10進数の100は16進数で0x64)の2バイト送信必要)

通信ができるためには

- ① 電気的特性(TTL / RS232C / RS422)が一致している必要がある
- ② 通信書式 (1 バイトのデータ構成:ボーレート, データビット数,ストップビット数, パリティ)が一致している必要がある
- ③ 通信手順(データの始まり、終わりの認識方法(STX,ETX)、データ整合性のチェック方法(BCC),その位置)が
 - 一致している必要がある
- ④ 通信コマンドの認識が一致している必要がある
- ⑤ 引数、データの意味合いの認識が一致している必要がある

(4)(5)	05	SI参照	賀モデル	
	ii.	階層	名称	役割
		第7層	アプリケーション層	ユーザーが直接操作するアプリケーション・ソフトに関する取り決め
3	上位	第6層	プレゼンテーション層	通信のためのデータ形式とアプリケーション層でユーザーが取り扱うデータ形式(文字コード,圧縮方式,暗号化方式など)を相互に変換するための取り決め
	層	第5層	セッション層	アプリケーションごとに、送信者と受信者が互いの存在を確認してからデータを送り合う(セッションの確立)するための取り決め
		第4層	トランスポート層	ネットワーク層以下の層で伝送されるデータが確実に受信者に届いて いることを保証するための取り決め
	下位	第3層	ネットワーク層	中継装置(ルーター)を経由して、データを最終的に目的地まで伝送するための取り決め
	層	第2層	データリンク層	同じ種類の通信媒体(電線,光ケーブル,無線など)で直接つながっているコンピュータ同士でデータを伝送する際の取り決め
(1)(2) ———	15-	第1層	- 物理層	通信媒体に応じた信号の種類・内容やデータの伝送方法に関する取り決め

学習項目と順序

▼やりたいこと

C#を優先的に

外部ライブラリを使用しない シリアル通信から

- **0, C言語の復習、C++/-C#言語の学習 1, C# WINDOWS**ネイティブアプリケーションの開発
- 2, UART(RS232C, RS422等)でPCに接続した機器をWINDOWSネイティブアプリケーションから制御
- 3, 計測器ライブラリ: VISAの使い方
- 4, LANでPCに接続した計測器(電源、オシロスコープ、ロガー、電子負荷等)をWINDOWSネイティブアプリケーションから自動測定(VISAライブラリを使って)
- 5, それぞれ別々のインターフェースから測定したデータをデータベース(influxDB)に保存し、Grafanaで表示する
- 6, Git/Git labでのversion管理方法

0. C#

▼やりたいこと

- 0, C言語の復習、C++/ C#言語の学習
- 1, C# WINDOWSネイティブアプリケーションの開発
- 2, UART(RS232C, RS422等)でPCに接続した機器をWINDOWSネイティブアプリケーションから制御
- 3,計測器ライブラリ: VISAの使い方
- 4, LANでPCに接続した計測器(電源、オシロスコープ、ロガー、電子負荷等)をWINDOWSネイティブアプリケーションから自動測定(VISAライブラリを使って)
- 5, それぞれ別々のインターフェースから測定したデータをデータベース(influxDB)に保存し、Grafanaで表示する
- 6, Git/Git labでのversion管理方法

分類		
入門	ビルド環境, クラス基本, メソッド, 条件分岐, 繰り返しコレクション, スコープ, 名前空間, 例外処理	
基礎	DLL分割, 継承, インターフェース, LINQ, ラムダ式, 非同期処理	

0. C#, 1. C# WINDOWSネイティブアプリケーションの開発

分類		備考
入門	ビルド環境, クラス基本, メソッド, 条件分岐, 繰り返しコレクション, スコープ, 名前空間, 例外処理	
基礎	DLL分割, 継承, インターフェース, LINQ, ラムダ式, 非同期処理	

https://www.amazon.co.jp/dp/4798068330/ref=sspa_dk_detail_4?psc=1&pd_rd_i=4798068330&pd_rd_w=ImyoR&content-id=amzn1.sym.f293be60-50b7-49bc-95e8-931faf86ed1e&pf_rd_p=f293be60-50b7-49bc-95e8-

931faf86ed1e&pf_rd_r=M4E58164FK419A1HWX07&pd_rd_wg=Voomt&pd_rd_r=407ab2f4-2efc-429e-822b-54b79e44e096&s=books&sp_csd=d2lkZ2V0TmFtZT1zcF9kZXRhaWw

https://www.amazon.co.jp/%E7%8B%AC%E7%BF%92C-%E7%AC%AC5%E7%89%88-%E5%B1%B1%E7%94%B0-

 $\%E7\%A5\%A5\%E5\%AF\%9B/dp/4798175560/ref=sr_1_1?_mk_ja_lP=\%E3\%82\%AB\%E3\%82\%BF\%E3\%82\%AB\%E3\%83\%8A\&crid=14SDVRZ44VTI1\&dib=eyJ2ljoiMSJ9.KLbcJQ5w4wKhlLB0rzBvvtrszgirFMhCQFwsUVfkqq2q27Cnl86VQLzdjSvJJUboTUNApn87RRsDeNs9hLegTrvLp1UlnRv-$

XkhawVatQcojKTuk4Bpt3nnFbKFP16gGhKqW22PNdCaho03szgHJI5GkSGrb8kCsPeoUjVJ2vGjE_8i5fmHH7 M69V4TVztXH_VmZbv00KeiNdFtOL-

tejti5X8VIVAS_YupsmX_Y8bSRdJ_80leDSFUHpwaFTlfvvhihDRHuVuNhs5O0chSLwh07v8lysch4pF65BYVKzKU.cra0fsCfNRZJPuzvPtvRHIO3S8-

BZyqkvzl6UlyMgXs&dib_tag=se&keywords=C%23+%E7%8B%AC%E7%BF%92&qid=1726448554&sprefix=c+%E7%8B%AC%E7%BF%92%2Caps%2C212&sr=8-1

2. UART

▼やりたいこと

- 0, C言語の復習、C++/C#言語の学習
- 1, C# WINDOWSネイティブアプリケーションの開発
- 2, UART(RS232C, RS422等)でPCに接続した機器をWINDOWSネイティブアプリケーションから制御
- 3,計測器ライブラリ: VISAの使い方
- 4, LANでPCに接続した計測器(電源、オシロスコープ、ロガー、電子負荷等)をWINDOWSネイティブアプリケーションから自動測定(VISAライブラリを使って)
- 5, それぞれ別々のインターフェースから測定したデータをデータベース(influxDB)に保存し、Grafanaで表示する
- 6, Git/Git labでのversion管理方法

3. 4. VISA

▼やりたいこと

- 0, C言語の復習、C++/C#言語の学習
- 1, C# WINDOWSネイティブアプリケーションの開発
- 2, UART(RS232C, RS422等)でPCに接続した機器をWINDOWSネイティブアプリケーションから制御
- 3, 計測器ライブラリ: VISAの使い方
- 4, LANでPCに接続した計測器(電源、オシロスコープ、ロガー、電子負荷等)をWINDOWSネイティブアプリケーションから自動測定(VISAライブラリを使って)
- 5, それぞれ別々のインターフェースから測定したデータをデータベース(influxDB)に保存し、Grafanaで表示する
- 6, Git/Git labでのversion管理方法

VISAドライバ

LAN接続

レッスンはどう行う?

計測器

5 influxDB, Grafana

▼やりたいこと

- 0, C言語の復習、C++/C#言語の学習
- 1, C# WINDOWSネイティブアプリケーションの開発
- 2, UART(RS232C, RS422等)でPCに接続した機器をWINDOWSネイティブアプリケーションから制御
- 3,計測器ライブラリ: VISAの使い方
- 4, LANでPCに接続した計測器(電源、オシロスコープ、ロガー、電子負荷等)をWINDOWSネイティブアプリケーションから自動測定(VISAライブラリを使って)
- 5, それぞれ別々のインターフェースから測定したデータをデータベース(influxDB)に保存し、Grafanaで表示する
- 6, Git/Git labでのversion管理方法

Grafana

- ・Windowsローカルにdockerで構築
- ・InfluxDBには.NETドライバ有り

6. Git

▼やりたいこと

- 0, C言語の復習、C++/ **C#言語の学習**
- 1, C# WINDOWSネイティブアプリケーションの開発
- 2, UART(RS232C, RS422等)でPCに接続した機器をWINDOWSネイティブアプリケーションから制御
- 3,計測器ライブラリ: VISAの使い方
- 4, LANでPCに接続した計測器(電源、オシロスコープ、ロガー、電子負荷等)をWINDOWSネイティブアプリケーションから自動測定(VISAライブラリを使って)
- 5, それぞれ別々のインターフェースから測定したデータをデータベース(influxDB)に保存し、Grafanaで表示する
- 6, Git/Git labでのversion管理方法

・『gitによるソースコード管理』手法を学習したいか 『ソフトウェア開発フロー』を学びたいかでGitLab である必要であるかが変わる。

前者であればGitLabは単なるリモートリポジトリなのでSAMURAI教材ベースのGitHubでよいのでは?

期間

▼やりたいこと

- 0, C言語の復習、C++/ **C#言語の学習**
- 1, C# WINDOWSネイティブアプリケーションの開発
- 2, UART(RS232C, RS422等)でPCに接続した機器をWINDOWSネイティブアプリケーションから制御
- 3,計測器ライブラリ: VISAの使い方
- 4, LANでPCに接続した計測器(電源、オシロスコープ、ロガー、電子負荷等)をWINDOWSネイティブアプリケーションから自動測定(VISAライブラリを使って)
- 5, それぞれ別々のインターフェースから測定したデータをデータベース(influxDB)に保存し、Grafanaで表示する
- 6, Git/Git labでのversion管理方法
- ・必要な学習期間は現在の知識、ポテンシャル、どこまで深く学習するかで変わってくる
- ・1~2時間/日 => 約10時間/週 でプログラミング経験が少ない場合、一般論として3~4ヶ月で終わらせるのは困難。

項目	推定学習時間
C#	100H
UARTとそのアプリ	50H
VISAとそのアプリ	50H
influxDB, Grafana	50H
Git	20H

約270H:270/40=6.7ヶ月

https://terakoya.sejuku.net/programs/37/chapters/441

git push

git init git未管理 ディレクトリ

gitの追加設定

【ターミナルにブランチ名表示, コマンド補間】

·参考:

https://qiita.com/mikan3rd/items/d41a8ca26523f950ea9d

【log一覧 表示項目追加 (git tree エイリアス)】

git config --global alias.tree "log --graph -pretty=format:'%x09%C(auto) %h %Cgreen %ad %Creset%x09%C(cyan)%an%Creset %x09%C(auto) %s %d' --date=format-local:'%Y/%m/%d %H:%M:%S'''