НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ» ФАКУЛЬТЕТ ІНФОРМАТИКИ ТА ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ

Кафедра обчислювальної техніки

KYPCOBA POBOTA

з дисципліни "Комп'ютерна логіка"

Виконав: Долинний Олександр Ва	лерійович
Факультет 10 Т	
Γρупα 10-31	
Залікова книжка № 10-3110	
Допущений до захисту	_
Номер технічного завдання — 11000010	0110
	(підпис керівника)

Опис альбому

№ рядка	формат	П	Іозначе.	<i>ННЯ</i>		Наūменування		Кількість	Примітка
1									
2						Документація загаль	<u>ьна</u>		
3									
4						розроблена заново	?		
5									
6	A4	ІАЛЦ.	463626.	001 (JA	Опис альбому		1	
7									
8	A4	ІАЛЦ.	4 <i>63626</i>	002	<i>T3</i>	Технічне завдання	,	4	
9									
10	A2	ІАЛЦ.	4 <i>63626</i>	003	<i>32</i>	Керуючий автомат).		
11						Схема електрична	!	1	
12						функціональна			
13									
14	A4	ІАЛЦ.	4 <i>63626</i> .	004	П3	Пояснювальна запис	κα	23	
15									
16									
17									
18									
19									
20									
21									
22									
23									
24									
25									
						IAЛЦ.463626.001	ΠΔ		
	<i>Арк</i> .		Підпис	Дата		<i>т</i> лтц. 4 03020.00Т	Ī.	_	
	зроб. ревір.	Долинний О.В. Поспішний О.С.				Опис альбому	/lim.	A _f 1	окуш Аркушів 1
	КОНТР.					··=·· 3			"ΚΠΙ" ΦΙΟΤ
3ai	,	Жабін В.І.						Груг	na 10-31

Технічне завдання

Эміст

1. Призначення розроблюваного об'єкта	2
2. Вхідні дані для розробки	2
3. Склад пристроїв	4
4. Етапи і терміни проектування	4
5 Пепелік текстової і графічної докиментації	i. L

					<i>IAЛЦ.463626.002</i>	73		
Зм.	Арк.	№ докум.	Підпис	Дата		_		
Po	зроб.	Долинний О.В.				Лiт.	Аркуш	Аркушів
		Поспішний О.С			Технічне завдання		1	4
Н. контр.							יד <i>ו</i> ש "אחו"	
Затв. Жабін В.І.							Γρупа ΙΟ	'- <i>31</i>

1 Призначення розроблюваного об'єкта

В курсовій роботі необхідно виконати синтез автомата Мілі. Керуючий автомат – це електрична схема, що виконує відображення вхідного сигналу у вихідний по заданому алгоритму. Практичне застосування даного автомата можливе в області обчислювальної техніки.

2 Вхідні дані

Варіант завдання визначається дев'ятьма молодшими розрядами залікової книжки, представлений у двійковій системі числення(3110 $_{10}$ =110000100110 $_2$):

$$h_9 = 0$$
, $h_8 = 0$, $h_7 = 0$, $h_6 = 1$, $h_5 = 0$, $h_4 = 0$, $h_3 = 1$, $h_7 = 1$

Порядок з'єднання фрагментів ($h_8h_4h_2 = 001$):

1, 2, 4

Логічні умови $(h_8h_7h_3 = 001)$:

$$X2, \overline{X2}, X1$$

Послідовність керуючих сигналів $(h_9h_4h_1 = 000)$:

Сигнал тривалістю $2t(h_6h_2 = 11)$:

Y4

 $Tpuzep(h_6h_5 = 10)$:

ЈК — тригер

Логічні елементи($h_3h_2h_1 = 110$):

3A50-HE, 31

Тип автомату($h_4 = 0$):

Мілі

Зм.	Арк.	№ докум.	Підп.	Дата

Система з чотирьох перемикальних функцій задана таблицею 2.1:

Таблиця 2.1. Система перемикальних функцій

X ₄	X ₃	X ₂	<i>X</i> ₁	f_1	f_2	f_3	f_4
0	0	0	0	1	1	1	0
0	0	0	1	1	1	0	1
0	0	1	0	1	1	1	1
0	0	1	1	0	0	0	0
0	1	0	0	_	0	1	0
0	1	0	1	0	0	0	0
0	1	1	0	1			0
0	1	1	1	_	_	1	1
1	0	0	0	1	0	0	0
1	0	0	1	0	0	0	1
1	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1
1	1	0	0	1		1	1
1	1	0	1	1	0	0	0
1	1	1	0	1	1	0	0
1	1	1	1	1	1	1	1

Необхідно виконати сумісну мінімізацію функцій f1, f2, f3. Отримати операторні представлення для реалізації системи функцій на програмувальних логічних матрицях.

Функцію f4 необхідно представити в канонічних формах алгебр Буля, Жегалкіна, Пірса та Шефера. Визначити належність даної функції до п'яти передповних класів. Виконати мінімізацію функції методами:

- невизначених коефіцієнтів;
- Квайна (Квайна-Мак-Класкі);
- діаграм Вейча.

Зм.	Арк.	№ докум.	Підп.	Дата

3 Склад пристроїв

Керуючий автомат.

Керуючий автомат складається з комбінаційної схеми і пам'яті на тригерах. Тип тригерів і елементний базис задані в технічному завданні.

<u>Програмувальна логічна матриця.</u>

ПЛМ складається із двох (кон'юктивної і диз'юнктивної) матриць, де виходи першої приєднуються на входи другої і дозволяють реалізувати комбінаційні схеми в базисі {I/AБО, I/AБО-HE}.

4 Етапи проектування і терміни їх виконання

- 1) Розмітка станів автомата
- 2) Формування вхідного та вихідного алфавітів
- 3) Побудова графа автомата
- 4) Побудова таблиці переходів
- 5) Побудова структурної таблиці автомата
- 6) Синтез комбінаційних схем для функцій збудження тригерів і вихідних сигналів
 - 7) Побудова схеми автомата в заданому базисі. Курсова робота проектувалась протягом листопада— грудня 2013 року.

5 Перелік текстової і графічної документації

- 1) Титульний лист
- 2) Аркуш з написом «Опис альбому»
- 3) Опис альбому
- 4) Аркуш з написом «Технічне завдання»
- 5) Аркуш з написом «Керуючий автомат. Схема електрична функціональна»
- 6) Керуючий автомат. Схема електрична функціональна
- 7) Аркуш з написом «Пояснювальна записка»
- 8) Пояснювальна записка

Зм.	Арк.	№ докум.	Підп.	Дата

Автомат керуючий Схема електрична функціональна

3. Синтез комбінаційних схем

3.1 Bcmyn

На основі «Технічного завдання ІАЛЦ.463626.002 ТЗ» виконуємо синтез комбінаційних схем.

Умова курсової роботи вимагає представлення функції f_4 в канонічних формах алгебр Буля, Жегалкіна, Пірса і Шефера.

3.2 Представлення функцій f4 в канонічній формі алгебри Буля.

В даній алгебрі визначені функції {І, АБО, НЕ}.

$$\begin{split} &\mathsf{F}_{\mathtt{Д}\mathtt{Д}\mathsf{H}\Phi} \mathtt{=} \overline{\mathsf{X}}_{\mathtt{4}} \overline{\mathsf{X}}_{\mathtt{3}} \overline{\mathsf{X}}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \vee \overline{\mathsf{X}}_{\mathtt{4}} \overline{\mathsf{X}}_{\mathtt{3}} \mathsf{X}_{\mathtt{2}} \overline{\mathsf{X}}_{\mathtt{1}} \vee \overline{\mathsf{X}}_{\mathtt{4}} \mathsf{X}_{\mathtt{3}} \mathsf{X}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \vee \mathsf{X}_{\mathtt{4}} \overline{\mathsf{X}}_{\mathtt{3}} \overline{\mathsf{X}}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \vee \mathsf{X}_{\mathtt{4}} \overline{\mathsf{X}}_{\mathtt{3}} \overline{\mathsf{X}}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \vee \mathsf{X}_{\mathtt{4}} \mathsf{X}_{\mathtt{3}} \overline{\mathsf{X}}_{\mathtt{2}} \overline{\mathsf{X}}_{\mathtt{1}} \vee \mathsf{X}_{\mathtt{4}} \mathsf{X}_{\mathtt{3}} \overline{\mathsf{X}}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \vee \mathsf{X}_{\mathtt{4}} \mathsf{X}_{\mathtt{3}} \mathsf{X}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \mathsf{X}_{\mathtt{3}} \mathsf{X}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \mathsf{X}_{\mathtt{1}} \mathsf{X}_{\mathtt{3}} \mathsf{X}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \mathsf{X}_{\mathtt{1}} \mathsf{X}_{\mathtt{3}} \mathsf{X}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \mathsf{X}_{\mathtt{1}} \mathsf{X}_{\mathtt{3}} \mathsf{X}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \mathsf{X}_{\mathtt$$

$$\begin{split} F_{\text{ДКН}\Phi} = & (X_4 \vee X_3 \vee X_2 \vee X_1) \ (X_4 \vee X_3 \vee \overline{X_2} \vee \overline{X_1}) \ (X_4 \vee \overline{X_3} \vee X_2 \vee X_1) \ (X_4 \vee \overline{X_3} \vee X_2 \vee \overline{X_1}) \\ & (X_4 \vee \overline{X_3} \vee \overline{X_2} \vee X_1) \ (\overline{X_4} \vee X_3 \vee X_2 \vee X_1) \ (\overline{X_4} \vee X_3 \vee \overline{X_2} \vee X_1) \ (\overline{X_4} \vee \overline{X_3} \vee X_2 \vee \overline{X_1}) \ (\overline{X_4} \vee \overline{X_3} \vee \overline{X_2} \vee X_1) \end{split}$$

3.3 Представлення функцій f4 в канонічній формі алгебри Жегалкіна.

В даній алгебрі визначені функції {I, виключне AБD, const 1}. $f_{\downarrow} = ((X_{\downarrow} \oplus 1)(X_{3} \oplus 1)(X_{2} \oplus 1)X_{1}) \ \oplus ((X_{\downarrow} \oplus 1)(X_{3} \oplus 1)X_{2}(X_{1} \oplus 1)) \ \oplus ((X_{\downarrow} \oplus 1)(X_{3} X_{2} X_{1}) \oplus (X_{\downarrow} (X_{3} \oplus 1)(X_{2} \oplus 1)X_{1}) \ \oplus (X_{\downarrow} (X_{3} \oplus 1)(X_{2} \oplus 1)X_{2} X_{1}) \oplus (X_{\downarrow} X_{3} (X_{2} \oplus 1)(X_{1} \oplus 1)) \ \oplus X_{\downarrow} X_{3} X_{2} X_{1} = \\ = ((X_{\downarrow} X_{3} \oplus X_{\downarrow} \oplus X_{3} \oplus 1)(X_{2} \oplus X_{1})) \ \oplus ((X_{\downarrow} X_{3} \oplus X_{\downarrow} \oplus X_{3} \oplus 1)(X_{2} X_{1} \oplus X_{2})) \ \oplus X_{\downarrow} X_{3} X_{2} X_{1} \ \oplus X_{\downarrow} X_{3} X_{2} X_{1} \oplus X_{\downarrow} X_{2} X_{1} \oplus (X_{\downarrow} X_{3} (X_{2} X_{1} \oplus X_{2} \oplus X_{1} \oplus 1))) \ \oplus X_{\downarrow} X_{3} X_{2} X_{1} \\ = ((X_{\downarrow} X_{3} \oplus X_{\downarrow})(X_{2} X_{1} \oplus X_{1})) \ \oplus X_{\downarrow} X_{3} X_{2} X_{1} \oplus X_{\downarrow} X_{2} X_{1} \oplus (X_{\downarrow} X_{3} (X_{2} X_{1} \oplus X_{2} \oplus X_{1} \oplus 1)) \ \oplus X_{\downarrow} X_{3} X_{2} X_{1} \\ = ((X_{\downarrow} X_{3} \oplus X_{\downarrow})(X_{2} X_{1} \oplus X_{1})) \ \oplus X_{\downarrow} X_{3} X_{2} \oplus X_{\downarrow} X_{3} X_{2} \oplus X_{\downarrow} X_{3} X_{2} \oplus X_{1} \oplus (X_{\downarrow} X_{3} (X_{2} X_{1} \oplus X_{2} \oplus X_{1} \oplus 1))) \ \oplus X_{\downarrow} X_{3} X_{2} X_{1} \\ = ((X_{\downarrow} X_{3} \oplus X_{\downarrow})(X_{2} X_{1} \oplus X_{\downarrow} X_{3} X_{2} \oplus X_{\downarrow} X_{2} \oplus X_{\downarrow} X_{\downarrow} X_{2} \oplus X_{\downarrow} X$

Зм.	Арк.	№ докум.	Підп.	Дата

3.4 Представлення функцій f4 в канонічній формі алгебри Пірса.

В даній алгебрі визначені функції {АБО-НЕ}.

$$\begin{split} f_{\downarrow} &= & (X_{\downarrow} \vee X_{3} \vee X_{2} \vee X_{1}) \quad (X_{\downarrow} \vee X_{3} \vee \overline{X_{2}} \vee \overline{X_{1}}) \quad (X_{\downarrow} \vee \overline{X_{3}} \vee X_{2} \vee X_{1}) \quad (X_{\downarrow} \vee \overline{X_{3}} \vee X_{2} \vee \overline{X_{1}}) \\ & (X_{\downarrow} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee X_{1}) \quad (\overline{X_{\downarrow}} \vee X_{3} \vee X_{2} \vee X_{1}) \quad (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee X_{2} \vee \overline{X_{1}}) \quad (X_{\downarrow} \vee \overline{X_{3}} \vee X_{2} \vee \overline{X_{1}}) \quad (X_{\downarrow} \vee \overline{X_{3}} \vee X_{2} \vee \overline{X_{1}}) \quad (X_{\downarrow} \vee \overline{X_{3}} \vee X_{2} \vee \overline{X_{1}}) \quad (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \\ & (\overline{X_{\downarrow}} \vee X_{3} \vee X_{2} \vee X_{1}) \quad (\overline{X_{\downarrow}} \vee X_{3} \vee \overline{X_{2}} \vee X_{1}) \quad (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee X_{2} \vee \overline{X_{1}}) \quad (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \\ & = \quad (\overline{X_{\downarrow}} \vee X_{3} \vee X_{2} \vee X_{1}) \vee (\overline{X_{\downarrow}} \vee X_{3} \vee \overline{X_{2}} \vee \overline{X_{1}}) \vee (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee X_{2} \vee \overline{X_{1}}) \vee (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \\ & \vee (\overline{X_{\downarrow}} \vee X_{3} \vee X_{2} \vee X_{1}) \vee (\overline{X_{\downarrow}} \vee X_{3} \vee \overline{X_{2}} \vee \overline{X_{1}}) \vee (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee X_{2} \vee \overline{X_{1}}) \vee (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \\ & \vee (\overline{X_{\downarrow}} \vee X_{3} \vee X_{2} \vee X_{1}) \vee (\overline{X_{\downarrow}} \vee X_{3} \vee \overline{X_{2}} \vee \overline{X_{1}}) \vee (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \vee (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \\ & \vee (\overline{X_{\downarrow}} \vee X_{3} \vee X_{2} \vee X_{1}) \vee (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \vee (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \vee (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \\ & \vee (\overline{X_{\downarrow}} \vee X_{3} \vee X_{2} \vee X_{1}) \vee (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \vee (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \vee (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \\ & \vee (\overline{X_{\downarrow}} \vee X_{3} \vee X_{2} \vee X_{1}) \vee (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \vee (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \vee (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \\ & \vee (\overline{X_{\downarrow}} \vee X_{3} \vee X_{2} \vee \overline{X_{1}}) \vee (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \vee (\overline{X_{\downarrow}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \vee (\overline{X$$

3.5 Представлення функцій f4 в канонічній формі алгебри Шефера

В даній алгебрі визначені функції {І-НЕ}.

$$f4 = \overline{X_{4}} \overline{X_{3}} \overline{X_{2}} X_{1} \vee \overline{X_{4}} \overline{X_{3}} X_{2} \overline{X_{1}} \vee \overline{X_{4}} X_{3} X_{2} X_{1} \vee X_{4} \overline{X_{3}} \overline{X_{2}} X_{1} \vee X_{4} \overline{X_{3}} \overline{X_{2}} X_{1} \vee X_{4} \overline{X_{3}} \overline{X_{2}} \overline{X_{1}} \vee X_{4} X_{3} X_{2} X_{1} = \\ = \overline{\overline{X_{4}}} \overline{X_{3}} \overline{X_{2}} \overline{X_{1}} \vee \overline{X_{4}} \overline{X_{3}} \overline{X_{2}} \overline{X_{1}} \vee \overline{X_{4}} \overline{X_{3}} \overline{X_{2}} \overline{X_{1}} \vee X_{4} \overline{X_{3}} \overline{X_{2}} \overline{X_{1}} = \\ = ((X_{4} / X_{4}) / ((X_{3} / X_{3}) / ((X_{2} / X_{2}) / (X_{1}) / ((X_{4} / X_{4}) / ((X_{3} / X_{3}) / (X_{2} / X_{2}) / (X_{1}) / ((X_{4} / X_{4}) / (X_{3} / X_{3}) / (X_{2} / X_{2}) / (X_{1}) / ((X_{4} / X_{3}) / (X_{2} / X_{2}) / (X_{1}) / ((X_{4} / X_{3}) / (X_{2} / X_{2}) / (X_{1}) / ((X_{4} / X_{3}) / (X_{2} / X_{2}) / (X_{1}) / ((X_{4} / X_{3}) / (X_{2} / X_{2}) / (X_{1} / X_{3$$

3.6 Визначення належності функції f4 до п'яти передповних класів

- 1. Дана функція зберігає нуль, так як F(0000)=0.
- 2. Дана функція зберігає одиницю, так як F(1111)=1.
- 3. Дана функція не самодвоїсна, так як F(0101)=0, F(1010)=0.
- 4. Дана функція не монотонна, так як F(1100)=1 < F(1101)=0.

Зм.	Арк.	№ докум.	Підп.	Дата

5. Дана форма нелінійна, так як канонічна форма алгебри Жегалкіна, що отримана у підрозділі 3.3 є нелінійним поліномом.

На основі вищесказаного робимо висновок, що функція f4 належить першим двом i не належить останнім трьом передповним класам.

3.7 Мінімізація функції f4 методом невизначених коефіцієнтів

Ідея цього методу полягає у відшуканні ненульових коефіцієнтів при Рівняння для знаходження кожній імпліканті. коефіцієнтів представимо таблицею (таблиця 4.1). Виконаємо викреслення тих рядків на яких функція приймає нульові значення. Викреслимо вже знайдені нульові коефіцієнти в тих рядках таблиці, ðiū; ЩО залишилися після виконання попередніх поглинають ті імпліканти, що розташовані з права від них.

Далі таблицю коефіцієнтів використовуємо як таблицю покриття функції.

Таблиця 4.1- таблиця невизначених коефіцієнтів

	Таолоця 4.1- шаолоця неоизничених коефіцієнийо														
F	X ₄	X ₃	X ₂	X ₁	X ₄ X ₃	X ₄ X ₂	X ₄ X ₁	X_3X_2	X_3X_1	X_2X_1	$X_4X_3X_2$	$X_4X_3X_1$	$X_4X_2X_1$	$X_3X_2X_1$	$X_4X_3X_2X_1$
0	Ð	0	0	Đ	90	90	90	90	90	90	000	000	000	000	0000
1	Ð	Đ	0	4	00	90	01	00	01	01	000	001	001	001	0001
1	Ð	Ð	4	0	00	01	00	01	90	10	001	000	010	010	0010
0	Ð	Ð	4	4	00	01	01	01	01	11	001	001	011	011	0011
0	Đ	4	Đ	Đ	01	90	00	10	10	90	010	010	000	100	0100
0	0	1	0	1	01	01	01	10	11	01	010	011	001	101	0101
0	Ð	4	4	Ð	01	01	90	11	10	10	011	010	010	110	0110
1	0	4	1	1	01	01	01	11	11	11	011	011	011	111	0111
0	4	0	0	0	10	10	10	00	99	90	100	100	100	000	1000
1	4	0	0	1	10	10	11	00	01	01	100	101	101	001	1001
0	4	Đ	4	Đ	10	11	10	01	99	10	101	100	110	010	1010
1	4	Đ	4	4	10	11	11	01	01	11	101	101	111	011	1011
1	4	4	0	Ð	11	10	10	10	10	90	110	110	100	100	1100
0	4	4	0	1	11	10	11	10	11	01	110	111	101	101	1101
0	4	4	1	0	11	11	10	11	10	10	111	110	110	110	1110
1	4	4	4	4	11	11	11	11	11	11	111	111	111	111	1111

$$f_{\text{MJH}\Phi} = \overline{X}_4 \overline{X}_3 X_2 \overline{X}_1 \vee X_4 X_3 \overline{X}_2 \overline{X}_1 \vee \overline{X}_3 \overline{X}_2 X_1 \vee X_4 X_2 X_1 \vee X_3 X_2 X_1$$

Зм.	Апк	№ докум.	Підп.	Лата

3.8 Мінімізація функції f4 методом Квайна-Мак-Класкі

Виходячи з таблиці істинності функції, запишемо стовнчик ДДНФ (K_0).

- 1) Розіб'ємо К_і на групи по наявності аргументів.
- 2) Розіб'ємо кожну групу по наявності аргументів на групи по кількості одиниць у групі.
- 3) Проводимо попарне склеювання між групами, які входять до однієї групи по аргументам та у яких кількість одиниць відрізняється на 1.
 - 4) Робимо поглинання. Результати подаємо на рисунку 4.1.
- 5) Повторюємо пункти 1-4 поки можливо, після цього будуємо таблицю покриття (таблиця 4.2), отримуємо ТДНФ і вибираємо МДНФ як ТДНФ з найменшою ціною.

Рисунок 4.1 - поглинання термів

3.9 Мінімізація функції f4 методом діаграм Вейча

Виконаємо мінімізацію функції методом Вейча (рисунок 4.2). Цей метод дуже зручний при мінімізації функції з кількістю аргументів до чотирьох включно.

Зм.	Арк.	№ докум.	Підп.	Дата

Ταδλυμя 4.2 — παδλυμя покриття

	0001	0010	0111	1001	1011	1100	1111
0010		\Diamond					
1100	\Diamond					\Diamond	
X001				V			
X111			\Diamond				\Diamond
10X1				V	V		
1X11					V		V

Кожна клітинка відповідає конституенті, а прямокутник з 2ⁿ клітинок — імпліканті.

	X	, •3			
X ₄	12	13	9	8	
74	14	15	11	10	X ₂
	6	7	3	2	7.2
	4	5	1	0	
		×	(₁		

Рисунок 4.2 - мінімізація функції методом Вейча

Отримаємо МДНФ функції:

$$f_{\text{MДH}\Phi} = \overline{X_4} \overline{X_3} X_2 \overline{X_1} \vee X_4 X_3 \overline{X_2} \overline{X_1} \vee \overline{X_3} \overline{X_2} X_1 \vee X_4 X_2 X_1 \vee X_3 X_2 X_1$$

3.10 Спільна мінімізація функцій f1, f2, f3

Щоб одержати схеми з мінімальними параметрами необхідно виконати сумісну мінімізацію системи функцій та їх заперечень.

Виконаємо мінімізацію системи функцій f_1 , f_2 , f_3 , заданих таблицею істинності (технічного завдання ІАЛЦ.463626.002 ТЗ) методом Квайна-Мак-Класкі (рисунок 4.3).

Зм.	Арк.	№ докум.	Підп.	Дата

K^{0}	K ¹	K ²
0000 {1,2,3}	X000 {1}	XX00 {1}
0001 {1,2}	0X00 {1,3}	0XX0 {1,3}
0010 {1,2,3}	00X0 {1,2,3}	XX00 {1}
0100 {1,3}	000X {1,2}	0XX0 {1,3}
1000 {1}	X100 {1,3}	X1X0 {1}
0110 {1,2,3}	0X10 {1,2,3}	X1X0 {1}
1100 {1,2,3}	1X00 {1}	X11X {1,2}
0111 {1,2,3}	01X0 {1,3}	11XX {1}
1101 {1}	X110 {1,2}	X11X {1,2}
1110 {1,2}	11X0 {1,2}	11XX {1}
1111 {1,2,3}	011X {1,2,3}	
	110X {1}	
	X111 {1,2,3}	
	11X1 {1}	
	111X {1,2}	

Рисунок 4.3 – склеювання та поглинання імплікант

Подальше склеювання не можливе, тому переходимо до побудови таблиці покриття (таблиця 4.3).

Терми, що не поглинулись, внесемо у стовпчик, а у рядок внесемо конституенти одиниці для кожної функції. Виконаєм перекриття конституент Отримаємо МДНФ:

$$\begin{cases} f_1 = \overline{X_4} \overline{X_3} \overline{X_2} \vee \overline{X_2} \overline{X_1} \vee \overline{X_4} \overline{X_1} \vee X_4 X_3 \\ f_2 = \overline{X_4} \overline{X_3} \overline{X_2} \vee \overline{X_4} X_2 \overline{X_1} \vee X_3 X_2 \\ f_3 = \overline{X_3} \overline{X_2} X_1 \vee X_3 X_2 X_1 \vee \overline{X_4} \overline{X_1} \end{cases}$$

3.11 Спільна мінімізація заперечень функцій f1, f2, f3

Виконаємо мінімізацію заперечень невизначених систем функцій f_1 , f_2 , f_3 , заданих таблицею істинності (технічного завдання ІАЛЦ.463626.002 ТЗ) методом методом Квайна-Мак-Класкі.

Зм.	Арк.	№ докум.	Підп.	Дата

Користуючись таблицею істинності випишемо куб K^0 , після склеювання отримуємо куби K^1 та K^2 , виконуємо поглинання (рисунок 4.4).

	/ ¬		_			. · -
Ιπληιιια	/, ~	_	тадлина	покриття	CIICMPM	ϕ
rubnuun	マ. ン		maomagn	ποκραππιπ	CUCIIICI	$\varphi g m u u$

			f_1								f ₂				f ₃						
		0000	0001	0010	0110	1000	1100	1101	1110	1111	0000	0001	0010	1110	1111	0000	0010	0100	0111	1100	1111
1100	{1,2,3}						٧													٧	
00X0	{1,2,3}	٧)	٧							٧		٧			٧	٧				
000X	{1,2}	\bigcirc	\otimes								\bigcirc	\otimes									
X100	{1,3}						٧											٧		<	
0X10	{1,2,3}			٧	٧								٧				٧				
11X0	{1,2}						٧		٧					٧							
011X	{1,2,3}				٧														٧		
X111	{1,2,3}	(,)			/					٧				\otimes		$\langle \rangle$
XX00	{1}	\otimes				$ \leqslant $	$\langle \langle \rangle$														
0XX0	{1,3}	>		V	<											>	>	>			
X1X0	{1}				٧																
X11X	{1,2}				٧				> (> (>	٧						
11XX	{1}						\bigcirc	\bigcirc	\bigcirc	\bigcirc											

Подальше склеювання не можливе, тому переходимо до побудови таблиці покриття (таблиця 4.4).

Терми, що не поглинулись, запишемо у стовнчик, а у рядок запишемо конституенти нуля для кожної функції. Виконаємо перекриття конституент.

Отримаємо МДНФ:

$$\begin{cases} f_1 = \overline{X_4} X_3 \overline{X_2} \vee \overline{X_3} X_2 X_1 \vee X_4 \overline{X_3} X_1 \vee X_4 \overline{X_3} X_2 \\ f_2 = \overline{X_3} X_2 X_1 \vee X_3 \overline{X_2} \vee X_4 \overline{X_3} \\ f_3 = \overline{X_3} X_2 X_1 \vee X_3 X_2 \overline{X_1} \vee \overline{X_2} X_1 \vee X_4 \overline{X_3} \end{cases}$$

3.12 Одержання операторних форм для комбінаційних схем

Для переходу до інших елементних базисів використовуємо правило де Моргана.

$$X \vee Y = \overline{\overline{X} \cdot \overline{Y}};$$

$$\overline{X \cdot Y} = \overline{X} \vee \overline{Y}.$$

Зм.	ADK.	№ докум.	Підп.	Дата

	12.1	?
K ⁰	K ¹	K ²
0001 {3}	X001 {3}	X0X1 {3}
0100 {1,2}	X100 {2}	X10X {2}
1000 {2,3}	0X01 {3}	XX01 {3}
0011 {1,2,3}	1X00 {2,3}	1X0X {2}
0101 {1,2,3}	00X1 {3}	1XX0 {3}
0110 {2,3}	01X0 {2}	X0X1 {3}
1001 {1,2,3}	10X0 {2,3}	01XX {2}
1010 {1,2,3}	010X {1,2}	10XX {2,3}
1100 {2,3}	100X {2,3}	1XX0 {3}
1011 {1,2,3}	X011 {1,2,3}	01XX {2}
0111 {1,2}	X101 {2,3}	10XX {2,3}
1101 {2,3}	X110 {3}	X10X {2}
1110 {3}	0X11 {1,2}	1X0X {2,3}
	1X01 {2,3}	
	1X10 {3}	
	01X1 {1,2}	
	10X1 {1,2,3}	
	11X0 {3}	
	101X {1,2,3}	
	110X {2,3}	

Рисунок 4.4. Склеювання і поглинання імплікант

$$\begin{cases} f_1 = \overline{\overline{X_4}} X_3 \overline{X_2} \vee \overline{X_3} X_2 X_1 \vee X_4 \overline{X_3} X_1 \vee X_4 \overline{X_3} X_2 \\ f_2 = \overline{\overline{X_3}} X_2 X_1 \vee X_3 \overline{X_2} \vee X_4 \overline{X_3} \\ f_3 = \overline{\overline{X_3}} X_2 X_1 \vee X_3 X_2 \overline{X_1} \vee \overline{X_2} X_1 \vee X_4 \overline{X_3} \\ f_4 = \overline{\overline{X_4}} X_3 \overline{X_2} \cdot \overline{X_3} X_2 X_1 \cdot \overline{X_4} \overline{X_3} X_1 \cdot \overline{X_4} \overline{X_3} X_2 \\ f_2 = \overline{\overline{X_3}} X_2 X_1 \cdot \overline{X_3} \overline{X_2} \cdot \overline{X_4} \overline{X_3} \\ f_3 = \overline{\overline{X_3}} X_2 X_1 \cdot \overline{X_3} \overline{X_2} \cdot \overline{X_4} \overline{X_3} \\ \end{cases}$$

$$[I - HE / I]$$

Зм.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.4 таблиця покриття систем заперечень функцій

	OLLI		ž :	\$ 3	2 2	. 9	7		8:	6	(S - E	\$ 19	9		8 :	8 -	3 8	5 5	7
	1011		80 -	\$ 3		_	- 3			65 - 3	35 8	F 9		7	7	S :	8 8	7	1 3
	1101		*		7		- 2			_	7	7	- 2		\$		Z		- %
	01.01		*	5			- %			Ø 9	7		- X		\$				7
fz	1001		*				- 2			_		_	- 2		_			7	
	0001						-								_		_		
	1010	7		3		_				0									
	1100				7	, ii	- ii		Š.		0	7	ő				0	- 1	×
	1000						Ĩ				0 0	_		7	Ö.		0	- 10	, i
	1011					_							Z		_			7	
	1101				7					_	_						7		
	01.01						Î				_						<u></u>		
2	1001									_					_		7	1	
f_2	0001	Г													_		7		
	1010	7		_		_			7							_			
	0010			_									7			7			Î
	1100				_			_											
	1101				7					9	(2)								
	01.01								0		9								
f_I	1001		80 -	8 3		: X	- 9			9			- 0		8 :	S	3 8		: 9
	1010	7	è:	_		: %	- 9		_		3 - 3		9		8 .	5	(0 - 0)		: 3
	1100		8: 1	8 8	7		- 9	_	8	8 3	8 3		3		0 1	8 -	8 8	2	9
		(1,2,3)	{2,3}	11,23	11,2,3}	12,33	(3)	11,23	11,23	(1,2,3)	(1,2,3)	(3)	{2}	(3)	(2)	<i>{2}</i>	{2,3}	{5,3}	(3)
		1010	0110	XOLO	110X	X101	X110	0X11	1X10	1XO1	X101	1X0X	XOLX	(E) 10XX	XOXI	XXIO	XXOL	1X01	01X1

Зм.	Арк.	№ докум.	Підп.	Дата

ІАЛЦ.463626.004 ПЗ

Арк.

$$\begin{cases} f_1 = (X_4 \sqrt{X}_3 \vee X_2) \cdot (X_3 \sqrt{X}_2 \sqrt{X}_1) \cdot (\overline{X}_4 \vee X_3 \sqrt{X}_1) \cdot (\overline{X}_4 \vee X_3 \sqrt{X}_2) \\ f_2 = (X_3 \sqrt{X}_2 \sqrt{X}_1) \cdot (\overline{X}_3 \vee X_2) \cdot (\overline{X}_4 \vee X_3) \\ f_3 = (X_3 \sqrt{X}_2 \sqrt{X}_1) \cdot (\overline{X}_3 \sqrt{X}_2 \vee X_1) \cdot (X_2 \sqrt{X}_1) \cdot (\overline{X}_4 \vee X_3) \end{cases}$$
 [ABO/I]

$$\begin{cases} f_1 = \overline{(\overline{X_4 \vee \overline{X_3} \vee X_2}) \vee (\overline{X_3 \vee \overline{X_2} \vee \overline{X_1}}) \vee (\overline{\overline{X_4} \vee X_3 \vee \overline{X_1}}) \vee (\overline{\overline{X_4} \vee X_3 \vee \overline{X_2}})} \\ f_2 = \overline{(\overline{X_3 \vee \overline{X_2} \vee \overline{X_1}}) \vee (\overline{\overline{X_3} \vee X_2}) \vee (\overline{\overline{X_4} \vee \overline{X_3}})} \end{cases}$$
 [Abo-He]
$$f_3 = \overline{(\overline{X_3 \vee \overline{X_2} \vee \overline{X_1}}) \vee (\overline{\overline{X_3} \vee \overline{X_2} \vee \overline{X_1}}) \vee (\overline{\overline{X_4} \vee \overline{X_3}})}$$

На основі операторної форми заданого елементного базису [I/ABO-HE] будуємо схему 1 системи перемикальних функцій f_1 , f_2 , f_3 (рисунок 4.5).

$$\begin{cases}
f_1 = \overline{(\overline{X_4} X_3 \overline{X_2} \vee \overline{X_3} X_2 X_1 \vee X_4 \overline{X_3} X_1)} \vee X_4 \overline{X_3} X_2 \\
f_2 = \overline{\overline{X_3} X_2 X_1 \vee X_3 \overline{X_2} \vee X_4 \overline{X_3}} \\
f_3 = \overline{(\overline{X_3} X_2 X_1 \vee X_3 \overline{X_2} \vee X_4 \overline{X_3})} \vee X_4 \overline{X_3}
\end{cases} [I/ABO-HE]$$

На основі операторної форми заданого елементного базису [I/AБO-HE] будуємо схему 2 системи перемикальних функцій f_1 , f_2 , f_3 (рисунок 4.6).

$$\begin{cases} f_1 = \overline{(\overline{(X_4 \vee \overline{X}_3 \vee X_2) \vee (X_3 \vee \overline{X}_2 \vee \overline{X}_1) \vee (\overline{X}_4 \vee X_3 \vee \overline{X}_1)}) \vee (\overline{X}_4 \vee X_3 \vee \overline{X}_2)} \\ f_2 = \overline{(\overline{X_3 \vee \overline{X}_2 \vee \overline{X}_1}) \vee (\overline{\overline{X}_3 \vee X_2}) \vee (\overline{\overline{X}_4 \vee X_3})} \end{cases} [ABO-HE/ABO-HE]$$

$$f_3 = \overline{(\overline{(X_3 \vee \overline{X}_2 \vee \overline{X}_1)} \vee (\overline{\overline{X}_3 \vee \overline{X}_2 \vee X_1}) \vee (\overline{\overline{X}_4 \vee X_3})}$$

3.13 Одержання операторних форм для реалізації на ПЛМ

Для програмування на ПЛМ використовують нормальні форми {I/A60 та I/A60-HE}.

Побудуймо, мнемонічну схему (рисунок 4.7) та карту програмування, використовуючи нормальні форми I/AБO.

$$\int_{f_1=\overline{X_4}\overline{X_3}\overline{X_2}\sqrt{X_2}\overline{X_1}\sqrt{X_4}\overline{X_1}\sqrt{X_4}X_3}$$

$$f_2=\overline{X_4}\overline{X_3}\overline{X_2}\sqrt{X_4}X_2\overline{X_1}\sqrt{X_3}X_2$$

$$f_3=\overline{X_3}\overline{X_2}X_1\sqrt{X_3}X_2X_1\sqrt{X_4}\overline{X_1}$$

Зм.	Арк.	№ докум.	Підп.	Дата

Рисунок 4.5. Схема 1 системи функцій f_1 , f_2 , f_3

Рисунок 4.6. Схема 2 системи функцій f_1 , f_2 , f_3

ı					
ı					
ı	Зм.	Арк.	№ докум.	Підп.	Дата

Всього 4 змінні, 3 функції, 8 термів. Оберемо ПЛМ(4,3,8).

Позначимо терми системи перемикальних функцій.

$$P_1 = \overline{X}_4 \overline{X}_3 \overline{X}_2$$

$$P_2 = \overline{X}_2 \overline{X}_1$$

$$P_3 = \overline{X_4} \overline{X_1}$$
 $P_4 = X_4 X_3$

$$P_{\lambda} = X_{\lambda} X_{3}$$

$$P_5 = \overline{X}_4 X_2 \overline{X}_1$$

$$P_6 = X_3 X_2$$

$$P_2 = X_2 X_1$$
 $P_3 = X_4 X_1$ $P_4 = X_4 X_3$ $P_6 = X_3 X_2$ $P_7 = X_3 \overline{X_2} \overline{X_1}$ $P_8 = X_3 X_2 X_1$

$$P_8 = X_3 X_2 X_1$$

Побудуємо мнемонічну схему (рисунок 4.7) та таблицю програмування Π /M (та δ лиця 4.5).

Рисунок 4.7. Мнемонічна схема ПЛМ

Таблиця 4.5. Карта програмування

Входи				№ шини	Виходи		
X ₄	X_3	X_2	X_1	P_{i}	Y ₁	Y ₂	Y ₃
0	0	0		P_1	1	1	0
		0	0	P ₂	1	0	0
0			0	P_3	1	0	1
1	1			P ₄	1	0	0
0		1	0	P_5	0	1	0
_	1	1		P_6	0	1	0
	1	0	0	P ₇	0	0	1
	1	1	1	P ₈	0	0	1

Зм.	Арк.	№ докум.	Підп.	Дата

4 Висновок

Під час виконання курсової роботи були узагальнені та систематизовані знання за курс комп'ютерної логіки, а саме складання комбінаційних та послідовністних схем.

У ході роботи був виконаний синтез логічних схем на елементарному базисі ЗАБО-НЕ, ЗІ. У цифровому автоматі використовувалися тригери типу ЈК.

У даній курсовій роботі було виконано структурний та абстрактний синтез автомата по заданій графічній схемі алгоритму. Було зроблено подання функції у канонічних формах алгебр Буля, Пірса, Шефера та Жегалкіна, був зроблений аналіз функції на приналежність до п'яти перед повних класів.

У ході проектування курсової роботи були покращені навички мінімізації функцій методами Квайна-Макласкі, методом невизначених коефіцієнтів та методом діаграм Вейча, було зроблено спільну мінімізацію функцій для зменшення складності логічних схем за Квайном.

Операторні форми функцій були побудовані у симуляторі моделювання логічних схем AFDK 3.08. Програмний комплекс дав очікувані позитивні результати.

финкціональної схеми Внаслідок креслення автомату δцли покращені знання з інженерної графіки та навички роботи векторними графічними редакторами. Кресленик схеми автомату поданий розділі «Керцючий автомат. Схема Ч електрична функціональна».

Зм.	Арк.	№ докум.	Підп.	Дата

Покращилися навички роботи з текстовим редактором, роботи з діючими державними стандартами та конструкторською документацією.

Отриманий цифровий автомат може бути використаний у галузі обчислюваної техніки.

Зм.	Арк.	№ докум.	Підп.	Дата

5 Список літератури

- 1) Жабін В.І., Жуков І.А., Клименко І.А., Ткаченко В.В. Прикладна теорія цифрових автоматів: Навч. Посібник.-К.:Книжкове вид-во НАУ, 2007.-364с.
- 2) Конспект лекцій з комп'ютерної логіки.

Зм.	Арк.	№ докум.	Підп.	Дата