北京林业大学

2019-2020 学年第二学期物理 D 期末试题

班级	学号		姓名	分数
1.大气压、27°C时,	一立方米体积	积中理想气体的	的分子数n = _	,分子热
运动的平均平动动能	ក្ត=	。(波尔兹曼	常量 $k = 1.38 \times$	$10^{-23} J \cdot K^{-1}$)
	个分子的平均			全自由度数为 <i>i</i> ,则当 医尔氧气分子的转动
3.一简谐振动用余弦	函数表示,	其振动曲线如图	图所示,则此简	
量为A=;	ω =	, φ =	. 0	
10 x(cm) 5 1 10 13 0 4 7	t(s)			

4.如图所示,一长为l的导体棒 OA,导体棒的 O 端与一载流导线相接触(如图),且在同一平面内,接触点绝缘。导线中通有电流l,方向如图所示水平向右。导体棒 OA 绕 O 以角速度 ω 顺时针旋转,求 OA 之间的动生电势。

5. 一半径为R的绝缘实心球体,非均匀带电,电荷体密度为 $\rho = \rho_0 r(r$ 为离球心的距离, ρ_0 为常量)。设无限远处为电势零点。求电场强度和电势分布。

6.一束自然光自空气入射到折射率为1.40的液体表面上,若反射光是线偏振的, 计算折射光的折射角。

7.用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是: (1)_____; (2)____。

8.使光强为 I_0 的自然光依次垂直通过三块偏振片 P_1 , P_2 和 P_3 。 P_1 与 P_2 的偏振化方向成45°角, P_2 与 P_3 的偏振化方向成45°角。求透过三块偏振片的光强I。

9.图示为磁场中的通电薄金属板,当磁感强度 B沿 和负向,电流 P沿 轴正向,则金属板中对应于霍尔电势差的电场强度 En 的方向沿

10.可见光的波长范围是 400 nm-760nm。用平行的白光垂直入射在平面透射光栅,此光栅上1cm 刻了 500 条刻痕。试分析能看到几级清晰的可见光光谱。 $(1nm = 10^{-9} m)$

11.用物镜直径D = 127 cm 的望远镜观察双星,双星所发光的波长按 $\lambda = 540$ nm(1 nm= 10^{-9} m)计算,计算能够分辨的双星对观察者的最小张角。

12. 如图所示,波长为 λ 的平行单色光斜入射到距离为d的双缝上,入射角为 θ 。 在图中的屏中央O处($\overline{S_1O} = \overline{S_2O}$),写出干涉条件并讨论 O 点处的干涉情况(明纹或者暗纹满足的条件)?

13.一简谐波沿x轴负方向传播,波速为 1 m/s,在x轴上某质点的振动频率为 1 Hz、振幅为 0.01 m。 t=0时该质点恰好在正向最大位移处。若以该质点的平衡位置为x轴的原点。求此一维简谐波的表达式。

14.一定量理想气体,从A状态($2p_1$, V_1)经历如图所示的直线过程变到B状态($2p_1$, V_2),计算AB过程中系统作功 W 和内能改变 Δ E。

15. 1 mol理想气体在气缸中进行无限缓慢的膨胀,其体积由 V_1 变到 V_2 。(1)当气缸处于绝热情况下时,计算理想气体熵的增量 Δ S。(2)当气缸处于等温情况下时,计算理想气体熵的增量 Δ S。