Estruturas de Dados II (DEIN0083) 2015.2 Curso de Ciência da Computação 1^a avaliação

	Prof. João Dallyson Sousa de Almeida		Data : 23/12/2015	
	Aluno:	_ Matrícula:		
	Regras durante a prova:			
	• É vetada: a consulta a material de apoio, conversa com colega e a utilização de dispositivos eletrônicos. não observância de algum dos itens acima acarretará a anulação da prova.			
I.	(1.0pt) Marque V para verdadeiro e F para falso nas seguint () O QuickSort é uma algoritmo algoritmo de ordenação não O(nlogn). () O CountSort é um algoritmo de ordenação linear estável () Os algoritmos do HeapSort, SelectionSort e MergeSort rea () É correto afirmar que $3^{2n} = O(3^n)$ () Uma função f(n) domina assintoticamente g(n), se existe para $n \geq m$, temos que $ g(n) \leq c f(n) $. () O seguinte vetor [14, 3, 5, 1, 8, 2] é um MaxHeap? () O RadixSort não produzirá saída correta se utilizar o Inser	estável que possui ten que realiza n compar lizam as comparações m duas constantes po	rações para ordenar. de ordenação in-place. ositivas c e m, tais que	
	(2.0pt) Responda as questões a seguir sobre ordem de cresci	mento de algoritmos:		

- - (a) Verifique se $n = \theta(n^2)$
 - (b) Encontre o limite θ para $f(n) = \frac{n^2}{2} \frac{n}{2}$ (c) Verifique se $3n^2 100n + 6 \notin \Omega(n^3)$

 - (d) Encontre o limite superior para a função $3n^3 3n^2$
- III. (2.0pt) Utilize o teorema Mestre para analisar assintoticamente as recorrências a seguir:

a)
$$T(n) = T(n/2) + 2^n$$
 | b) $T(n) = 4T(n/4) + n - 2$

- IV. (2.0pt) Utilize o algoritmo de ordenação HeapSort para ordenar o vetor [6, 2, 4, 7, 1, 3, 8, 5]. Apresente a estrutura da Heap (MaxHeap) após a construção. Apresente a solução da ordenação passo a passo (ilustrando a árvore e o vetor em cada iteração).
- V. (2.0pt) Ordene os caracteres da string E D I I 2 0 1 5 apresentando o conteúdo do vetor a cada passo intermediário. Obs: Na tabela ASCII os digitos numericos (0-9) possuem valores hexadecimais menores que das letras do alfabeto (Aa-Zz). Utilize os seguintes algoritmos de ordenação:
 - a) Seleção: liste o vetor para cada elemento que atinja sua posição definitiva.
 - a) Inserção: liste o vetor para cada elemento incluído na ordenação parcial até o momento.
 - b) MergeSort: Liste o vetor para cada partição ordenada.
 - c) Shellsort. Use 1,3,5,7,13 como a sequência de valores para h. Liste o vetor para cada novo valor de h, enquanto h > 1. Quando h=1, liste o vetor para cada elemento inserido na ordem parcial.
- VI. (2.0pt) Explique o funcionamento do algoritmo QuickSort e escreva em linguagem C o método particiona do QuickSort, considerando o elemento da direita como pivô.