Problem Definition

Credit default risk is the risk that a lender takes the chance that a borrower fails to make required payments of the loan.

Dataset

The training dataset used is from kaggle which is being used to train the models used in this project.

https://www.kaggle.com/laotse/credit-risk-dataset (https://www.kaggle.com/laotse/credit-risk-dataset)

##Python packages

Numpy

NumPy, which stands for Numerical Python, is a library consisting of multidimensional array objects and a collection of routines for processing those arrays. Using NumPy, mathematical and logical operations on arrays can be performed.

Pandas

Pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.

Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. It provides an object-oriented API for embedding plots into applications using general-purpose GUI toolkits like wxPython, Qt, Tkinter.

Seaborn

Seaborn is a Python data visualization library based on matplotlib. Gives more attractive graphs than matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics.

Scikit-Learn

Scikit-Learn (Sklearn) is the most useful and robust library for machine learning in Python. It provides a selection of efficient tools for machine learning and statistical modeling including classification, regression, clustering and dimensionality reduction via a consistence interface in Python. This library, which is largely written in Python, is built upon NumPy, SciPy and Matplotlib.

Data Loading

```
In [2]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from matplotlib import style
        style.use("ggplot")
        import os
        import sys
        %matplotlib inline
        import warnings
        warnings.filterwarnings('ignore')
In [3]: | from numpy import mean
        from numpy import std
        from sklearn.model_selection import cross_val_score
        from sklearn.model selection import train test split
        from sklearn.model selection import StratifiedKFold
        from sklearn.metrics import accuracy_score, f1_score, precision_sco
        from sklearn.metrics import confusion_matrix
        from mlxtend.plotting import plot confusion matrix
        from sklearn import model selection
        from sklearn import metrics
        from sklearn.svm import SVC
        from sklearn.linear model import LogisticRegression
        from sklearn.linear_model import SGDClassifier
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.naive_bayes import GaussianNB
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.metrics import classification report
        from sklearn.metrics import roc_curve
        from sklearn.datasets import make classification
        from sklearn.model selection import KFold
In [4]: # read data into a DataFrame
        credit_df = pd.read_csv("credit_risk_dataset.csv")
In [5]: # check the data size
        credit df.shape
```

Out[5]: (32581, 12)

```
In [6]: Nan_per = credit_df.isnull().sum()/credit_df.shape[0]*100
        Nan per round(2)
Out[6]: person_age
                                         0.00
                                         0.00
        person_income
        person_home_ownership
                                         0.00
        person_emp_length
                                         2.75
        loan_intent
                                         0.00
        loan_grade
                                         0.00
        loan_amnt
                                         0.00
        loan_int_rate
                                         9.56
        loan status
                                         0.00
        loan_percent_income
                                         0.00
        cb_person_default_on_file
                                         0.00
        cb_person_cred_hist_length
                                         0.00
        dtype: float64
In [7]: # check the mode, median for the two features
        print('person_emp_length mode {}'.format(credit_df['person_emp_leng')
        print('person_emp_length median {}'.format(credit_df['person_emp_length))
        print('loan_int_rate mode {}'.format(credit_df['loan_int_rate'].mode
        print('loan_int_rate median {}'.format(credit_df['loan_int_rate'].median_int_rate'].median_int_rate'].median_int_rate
        person_emp_length mode 0.0
        person_emp_length median 4.0
        loan_int_rate mode 7.51
        loan_int_rate median 10.99
        # fill NaN with the mode
In [8]:
        credit_df['person_emp_length'].fillna(credit_df['person_emp_length'
        credit df['loan int rate'].fillna(credit df['loan int rate'].median
In [9]: # check the nans are replaced
        credit df.isnull().sum()
Out[9]: person_age
                                         0
        person income
                                         0
        person_home_ownership
                                         0
        person_emp_length
                                         0
        loan_intent
                                         0
        loan_grade
                                         0
        loan_amnt
                                         0
        loan_int_rate
                                         0
        loan status
                                         0
        loan percent income
                                         0
        cb_person_default_on_file
                                         0
        cb_person_cred_hist_length
                                         0
        dtype: int64
```

```
In [10]: # numerical variebles
                             num cols = pd.DataFrame(credit df[credit df.select dtypes(include=[
                             # print the numerical variebles
                             num_cols.columns
Out[10]: Index(['person_age', 'person_income', 'person_emp_length', 'loan_a
                             mnt',
                                                     'loan_int_rate', 'loan_status', 'loan_percent_income',
                                                    'cb_person_cred_hist_length'],
                                                dtype='object')
In [11]: |# clean the dataset and drop outliers
                             cleaned_credit_df = credit_df[credit_df['person_age']<=100]</pre>
                              cleaned credit df = cleaned credit df[cleaned credit df['person emp
                              cleaned credit df = cleaned credit df[cleaned credit df['person inc
In [12]: # get the cleaned numberical variebles
                             cleaned_num_cols = pd.DataFrame(cleaned_credit_df[cleaned_credit_df
In [13]: # get the categorical variebles
                             cat cols = pd.DataFrame(cleaned credit df[cleaned credit df.select df.select
                             cat_cols.columns
Out[13]: Index(['person_home_ownership', 'loan_intent', 'loan_grade',
                                                     'cb_person_default_on_file'],
                                                dtvpe='object')
```

##Summarization

Out[14]:		person_age	person_income	person_emp_length	loan_amnt	loan_int_rate	loa
	count	32581.000000	3.258100e+04	32581.000000	32581.000000	32581.000000	3258
	mean	27.734600	6.607485e+04	4.658114	9589.371106	11.009620	
	std	6.348078	6.198312e+04	4.159669	6322.086646	3.081611	
	min	20.000000	4.000000e+03	0.000000	500.000000	5.420000	
	25%	23.000000	3.850000e+04	2.000000	5000.000000	8.490000	
	50%	26.000000	5.500000e+04	4.000000	8000.00000	10.990000	
	75%	30.000000	7.920000e+04	7.000000	12200.000000	13.110000	
	max	144.000000	6.000000e+06	123.000000	35000.000000	23.220000	

```
In [15]: encoded_cat_cols = pd.get_dummies(cat_cols)
    cat_cols_corr = pd.concat([encoded_cat_cols, cleaned_credit_df['loan_corr = cat_cols_corr.corr().sort_values('loan_status', axis=1, ascencerr = corr.sort_values('loan_status', axis=0, ascending=True)
    mask = np.zeros_like(corr)
    mask[np.triu_indices_from(mask, k=1)] = True
```

In [16]: # concat the numerical and one-hot encoded categorical variebles
 cleaned_credit_df = pd.concat([cleaned_num_cols, encoded_cat_cols],
 cleaned_credit_df.head()

Out[16]:

	person_age	person_income	person_emp_length	loan_amnt	loan_int_rate	loan_status l
1	21	9600	5.0	1000	11.14	0
2	25	9600	1.0	5500	12.87	1
3	23	65500	4.0	35000	15.23	1
4	24	54400	8.0	35000	14.27	1
5	21	9900	2.0	2500	7.14	1

##Visualization

```
In [17]:
         # drop the label column 'loan status' before visualization
         num_cols_hist = num_cols.drop(['loan_status'], axis=1)
         # visualize the distribution for each varieble
         plt.figure(figsize=(12,16))
         for i, col in enumerate(num_cols_hist.columns):
             idx = int('42' + str(i+1))
             plt.subplot(idx)
             sns.distplot(num_cols_hist[col], color='forestgreen',
                          kde_kws={'color': 'indianred', 'lw': 2, 'label': '
             plt.title(col+' distribution', fontsize=14)
             plt.ylabel('Probablity', fontsize=12)
             plt.xlabel(col, fontsize=12)
             plt.xticks(fontsize=12)
             plt.vticks(fontsize=12)
             plt.legend(['KDE'], prop={"size":12})
         plt.subplots adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, h
                             wspace=0.35)
         plt.show()
```


Observation: All of the distributions are positive skewed.

- person_age: Most people are 20 to 60 years old. In the following analysis, to be more general, people age > 100 will be droped.
- person_emp_length : Most people have less than 40 years of employment.
 People with employment > 60 years will be droped.
- person_income: It seems that there are outliers which has to be removed (> 4 million).
- For all other variables, the distribution is more uniform across the whole range, thus they will be kept.

Observation:

- person_income, person_emp_length, and person_age: has negative effect on loan_status being default, which means the larger these variebles, the less likely the person is risky.
- loan_percent_income, loan_int_rate, and loan_amnt: has postive effect on loan_status being default, which means the larger these variebles, the more likely the person is risky.

The cleaned dataset has 32574 rows and 27 columns
The cleaned dataset has 7 numerical features and 19 categorical features

In [21]: pd.read_csv("credit_risk_dataset.csv")

0+	· [つ 1	11.
υuι	. [Z J	LJ:

	person_age	person_income	person_home_ownership	person_emp_length	
0	22	59000	RENT	123.0	
1	21	9600	OWN	5.0	1
2	25	9600	MORTGAGE	1.0	
3	23	65500	RENT	4.0	
4	24	54400	RENT	8.0	
32576	57	53000	MORTGAGE	1.0	
32577	54	120000	MORTGAGE	4.0	
32578	65	76000	RENT	3.0	HOMEIMP
32579	56	150000	MORTGAGE	5.0	
32580	66	42000	RENT	2.0	

32581 rows × 12 columns

##Generation of clean CSV

```
In [22]: #Generating new csv for cleaned df
    cleaned_credit_df.to_csv('Cleaned.csv')
```

The train dataset has 22801 data The test dataset has 9773 data

##Algorithms Implementation

Logistic Regression

```
In [24]: #Logistic Regression
lg = LogisticRegression(random_state=42)
lg.fit(x_train, y_train)
preds_lg = lg.predict(x_test)
preds_lg_proba = lg.predict_proba(x_test)
print('\n',classification_report(y_test, preds_lg))
print("Accuracy score = ",accuracy_score(y_test, preds_lg))
cm = confusion_matrix(y_test, preds_lg)
fig, ax = plot_confusion_matrix(conf_mat=cm, figsize=(6, 6), cmap="oplt.xlabel('Predictions', fontsize=15)
plt.ylabel('Actuals', fontsize=15)
plt.title('Confusion Matrix', fontsize=18)
plt.show()
```

	precision	recall	f1-score	support
0 1	0.81 0.74	0.99 0.15	0.89 0.25	7631 2142
accuracy macro avg weighted avg	0.77 0.79	0.57 0.80	0.80 0.57 0.75	9773 9773 9773


```
In [25]: cmlr = confusion_matrix(y_test,preds_lg)
    roclr =roc_auc_score(y_test, preds_lg)
    acclr = accuracy_score(y_test,preds_lg)
    preclr = precision_score(y_test, preds_lg)
    reclr = recall_score(y_test, preds_lg)
    f1lr = f1_score(y_test, preds_lg)
    resultslr = pd.DataFrame([['Logistic Regression', acclr,preclr,recl columns = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score',
    resultslr
```

Out [25]:

	Model	Accuracy	Precision	Recall	F1 Score	ROC_AUC
0	Logistic Regression	0.80221	0.73913	0.150794	0.250485	0.567927

K-Nearest Neighbour

```
In [26]: #KNN
knn = KNeighborsClassifier(n_neighbors=150)
knn.fit(x_train, y_train)
preds_knn = knn.predict(x_test)
preds_knn_proba = knn.predict_proba(x_test)
print('\n', classification_report(y_test, preds_knn))
print("Accuracy score = ",accuracy_score(y_test, preds_knn))
cm = confusion_matrix(y_test, preds_knn)
fig, ax = plot_confusion_matrix(conf_mat=cm, figsize=(6, 6), cmap="oplt.xlabel('Predictions', fontsize=15)
plt.ylabel('Actuals', fontsize=15)
plt.title('Confusion Matrix', fontsize=18)
plt.show()
```

	precision	recall	f1-score	support
0 1	0.85 0.74	0.96 0.39	0.90 0.51	7631 2142
accuracy macro avg weighted avg	0.79 0.82	0.67 0.84	0.84 0.70 0.82	9773 9773 9773


```
In [27]: cmKNN = confusion_matrix(y_test,preds_knn)
    rocKNN =roc_auc_score(y_test, preds_knn)
    accKNN = accuracy_score(y_test,preds_knn)
    precKNN = precision_score(y_test, preds_knn)
    recKNN = recall_score(y_test, preds_knn)
    f1KNN = f1_score(y_test, preds_knn)
    resultsKNN = pd.DataFrame([['KNN', accKNN,precKNN,recKNN, f1KNN,rocl columns = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score',
    resultsKNN
```

Out[27]:

	Model	Accuracy	Precision	Recall	F1 Score	ROC_AUC
0	KNN	0.835465	0.736283	0.388422	0.508557	0.674685

Decision trees

```
In [28]: # Decision trees
    dt = DecisionTreeClassifier(max_depth=10, min_samples_split=2, min_dt.fit(x_train, y_train)
    preds_dt = dt.predict(x_test)
    preds_dt_proba = dt.predict_proba(x_test)
    print('\n', classification_report(y_test, preds_dt))
    print("Accuracy score = ",accuracy_score(y_test, preds_dt))
    cm = confusion_matrix(y_test, preds_dt)
    fig, ax = plot_confusion_matrix(conf_mat=cm, figsize=(6, 6), cmap="opt.xlabel('Predictions', fontsize=15)
    plt.ylabel('Actuals', fontsize=15)
    plt.title('Confusion Matrix', fontsize=18)
    plt.show()
```

	precision	recall	f1-score	support
0 1	0.93 0.96	0.99 0.73	0.96 0.83	7631 2142
accuracy macro avg weighted avg	0.94 0.93	0.86 0.93	0.93 0.89 0.93	9773 9773 9773


```
In [29]: cmdt = confusion_matrix(y_test,preds_dt)
    rocdt =roc_auc_score(y_test, preds_dt)
    accdt = accuracy_score(y_test,preds_dt)
    precdt = precision_score(y_test, preds_dt)
    recdt = recall_score(y_test, preds_dt)
    f1dt = f1_score(y_test, preds_dt)
    resultsdt = pd.DataFrame([['decision trees', accdt,precdt,recdt, f1ccolumns = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score',
    resultsdt
```

Out [29]:

	Model	Accuracy	Precision	necali	r i Score	HUC_AUC
0	decision trees	0.932979	0.956976	0.726891	0.826214	0.858859

Gaussian Naive Bayes

```
In [30]: naive_bayes = GaussianNB()
         naive bayes.fit(x train,y train)
         y_pred_nb =naive_bayes.predict(x_test)
          roc=roc_auc_score(y_test, y_pred_nb)
          acc = accuracy_score(y_test, y_pred_nb)
          prec = precision_score(y_test, y_pred_nb)
          rec = recall_score(y_test, y_pred_nb)
          f1 = f1_score(y_test, y_pred_nb)
         model= pd.DataFrame([['Gaussian Naive Bayes', acc,prec,rec, f1,roc]
          columns = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score','
          cm = confusion_matrix(y_test, y_pred_nb)
          fig, ax = plot_confusion_matrix(conf_mat=cm, figsize=(6, 6), cmap="
          print('\n',classification_report(y_test, y_pred_nb))
         print("Accuracy score = ",accuracy_score(y_test, y_pred_nb))
plt.xlabel('Predictions', fontsize=15)
         plt.ylabel('Actuals', fontsize=15)
          plt.title('Confusion Matrix', fontsize=18)
          plt.show()
```

	precision	recall	f1-score	support
0 1	0.83 0.71	0.97 0.27	0.89 0.39	7631 2142
accuracy macro avg weighted avg	0.77 0.80	0.62 0.82	0.82 0.64 0.78	9773 9773 9773


```
In [31]: cmnb = confusion_matrix(y_test,y_pred_nb)
    rocnb =roc_auc_score(y_test, y_pred_nb)
    accnb = accuracy_score(y_test,y_pred_nb)
    precnb = precision_score(y_test, y_pred_nb)
    recnb = recall_score(y_test, y_pred_nb)
    f1nb = f1_score(y_test, y_pred_nb)
    resultsnb = pd.DataFrame([['Naive Bayes', accnb,precnb,recnb, f1nb, columns = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score',
    resultsnb
```

Out[31]:

	Model	Accuracy	Precision	Recail	F1 Score	RUC_AUC
0	Naive Bayes	0.815921	0.713574	0.267507	0.389134	0.618683

Random Forest Classification

```
In [32]: rf = RandomForestClassifier(n_estimators = 100,criterion = 'entropy
         rf.fit(x_train,y_train)
         y_pred_rf = rf.predict(x_test)
          roc=roc_auc_score(y_test, y_pred_rf)
         acc = accuracy_score(y_test, y_pred_rf)
         prec = precision_score(y_test, y_pred_rf)
          rec = recall_score(y_test, y_pred_rf)
          f1 = f1_score(y_test, y_pred_rf)
         model = pd.DataFrame([['Random Forest Classifier', acc,prec,rec, f1
          columns = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score','
          cm = confusion_matrix(y_test, y_pred_rf)
          fig, ax = plot_confusion_matrix(conf_mat=cm, figsize=(6, 6), cmap="
          print('\n',classification_report(y_test, y_pred_rf))
         print("Accuracy score = ",accuracy_score(y_test, y_pred_rf))
plt.xlabel('Predictions', fontsize=15)
         plt.ylabel('Actuals', fontsize=15)
          plt.title('Confusion Matrix', fontsize=18)
         plt.show()
```

	precision	recall	f1-score	support
0 1	0.93 0.96	0.99 0.74	0.96 0.84	7631 2142
accuracy macro avg weighted avg	0.95 0.94	0.87 0.94	0.94 0.90 0.93	9773 9773 9773


```
In [33]: cmrf = confusion_matrix(y_test,y_pred_rf)
    rocrf =roc_auc_score(y_test, y_pred_rf)
    accrf = accuracy_score(y_test,y_pred_rf)
    precrf = precision_score(y_test, y_pred_rf)
    recrf = recall_score(y_test, y_pred_rf)
    f1rf = f1_score(y_test, y_pred_rf)
    resultsrf = pd.DataFrame([['Random Forest', accrf,precrf,recrf, f1rcolumns = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score',
    resultsrf
```

Out[33]:

	Model	Accuracy	Precision	Recall	F1 Score	ROC_AUC
0	Random Forest	0.936765	0.964634	0.738562	0.836594	0.865481

##User Defined Implementation (Scratch Implementation)

```
In [34]: # Logistic regression User Defined
         class logistic_regression:
             def init (self,x,y):
                 self.intercept = np.ones((x.shape[0], 1))
                 self.x = np.concatenate((self.intercept, x), axis=1)
                 self.weight = np.zeros(self.x.shape[1])
                 self_y = y
             def sigmoid(self, x, weight):
                 z = np.dot(x, weight)
                 return 1 / (1 + np.exp(-z))
             def loss(self, h, y):
                 return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()
             def gradient_descent(self, X, h, y):
                 return np.dot(X.T, (h - y)) / y.shape[0]
             def fit(self, lr , iterations):
                 for i in range(iterations):
                     sigma = self.sigmoid(self.x, self.weight)
                     loss = self.loss(sigma, self.y)
                     dW = self.gradient descent(self.x , sigma, self.y)
                     #Updating the weights
                     self.weight -= lr * dW
                 return print('Working successfully')
             def predict(self, x new , treshold):
                 x new = np.concatenate((self.intercept, x new), axis=1)
                 result = self.sigmoid(x_new, self.weight)
                 result = result >= treshold
                 y_pred = np.zeros(result.shape[0])
                 for i in range(len(y_pred)):
                     if result[i].any() == True:
                         y_pred[i] = 1
                     else:
                         continue
                 return y_pred
```

```
In [35]: regressor = logistic_regression(features, label)
    regressor.fit(0.1 , 5000)
    pred_lr = regressor.predict(features, 0.5)
```

Working successfully

```
In [36]: arr=np.asarray(label)
    print(accuracy_score(arr, pred_lr))
    cm = confusion_matrix(label, pred_lr)
    fig, ax = plot_confusion_matrix(conf_mat=cm, figsize=(6, 6), cmap="optint('\n', classification_report(label, pred_lr))
    print("Accuracy score = ",accuracy_score(label, pred_lr))
    plt.xlabel('Predictions', fontsize=15)
    plt.ylabel('Actuals', fontsize=15)
    plt.title('Confusion Matrix', fontsize=18)
    plt.show()
```

0.7715969791858538

	precision	recall	f1-score	support	
0	0.86	0.85	0.85	25467	
1	0.48	0.50	0.49	7107	
accuracy			0.77	32574	
macro avg	0.67	0.67	0.67	32574	
weighted avg	0.78	0.77	0.77	32574	

Accuracy score = 0.7715969791858538


```
In [37]: cmlg = confusion_matrix(label,pred_lr)
    roclg =roc_auc_score(label, pred_lr)
    acclg = accuracy_score(label,pred_lr)
    preclg = precision_score(label, pred_lr)
    reclg = recall_score(label, pred_lr)
    fllg = f1_score(label, pred_lr)
    resultslg = pd.DataFrame([['Logistic Regression Manual', acclg,prec columns = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score',
    resultslg
```

Out[37]:

 Model
 Accuracy
 Precision
 Recall
 F1 Score
 ROC_AUC

 0
 Logistic Regression Manual
 0.771597
 0.477636
 0.500352
 0.48873
 0.673822

In [42]:

log_fpr, log_tpr, log_threshold = roc_curve(y_test, preds_lg)
dt_fpr, rfc_tpr, rfc_threshold = roc_curve(y_test, preds_dt)
knn_fpr, knn_tpr, knn_threshold = roc_curve(y_test, preds_knn)
rf_fpr, rf_tpr, rf_threshold = roc_curve(y_test, y_pred_rf)
nb_fpr, nb_tpr, nb_threshold = roc_curve(y_test, y_pred_nb)

```
In [44]: fig = plt.figure(figsize=(10,6))
plt.title('ROC Curve \n Comparison of Classifiers')
plt.plot(log_fpr, log_tpr, label ='Logistic Regression AUC: {:.2f}'
plt.plot(dt_fpr, rfc_tpr, label ='Decision Tree¶ AUC: {:.2f}'.format
plt.plot(knn_fpr, knn_tpr, label ='KNN AUC: {:.2f}'.format(roc_auc_
plt.plot(rf_fpr, rf_tpr, label ='Random Forest: {:.2f}'.format(roc_auc_
plt.plot(nb_fpr, nb_tpr, label ='Random Forest: {:.2f}'.format(roc_auc_
plt.plot([0, 1], ls="--")
plt.plot([0, 0], [1, 0], c=".7"), plt.plot([1, 1], c=".7")
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.legend()
plt.show()
```


Out[45]:		Model	Accuracy	Precision	Recall	F1 Score	ROC_AUC
	0	Logistic Regression	0.802210	0.739130	0.150794	0.250485	0.567927
	0	KNN	0.835465	0.736283	0.388422	0.508557	0.674685
	0	Random Forest	0.936765	0.964634	0.738562	0.836594	0.865481
	0	decision trees	0.932979	0.956976	0.726891	0.826214	0.858859
	0	Logistic Regression Manual	0.771597	0.477636	0.500352	0.488730	0.673822
	0	Naive Baves	0.815921	0.713574	0.267507	0.389134	0.618683

Hence, we found that Random Forest is having the best accuracy.

Accuracy of the Random Forest is 93.6% which is the best accuracy when compared to the other 4 algorithms Logistic Regression, KNN, Decision Trees, Naive Bayes.