CS 5600/6600: Intelligent Systems Assignment 7

Vladimir Kulyukin
Department of Computer Science
Utah State University

October 12, 2019

Learning Objectives

- 1. Decision Trees
- 2. Random Forests
- 3. Convolutional Networks

Introduction

In this assignment, we'll compare decision trees and random forests with convolutional networks on MNIST. You'll need to install sklearn. Go to https://scikit-learn.org/stable/install.html to install it. When I was writing this assignment, I discovered that sklearn now requires Python 3.5 or newer. Python 2 doesn't seem to be supported any longer. All good things come to an end.

Problem 1 (2 pts)

The file mnist_digits_random_forest.py contains several functions for loading and reshaping the MNIST data for sklearn. You don't have to modify them. To get MNIST loaded and reshaped, you need to run prepare_mnist_data() and prepare_mnist_targets(). Save your definition in mnist_digits_random_forest.py.

Write a function test_dt() that creates a decision tree, trains and tests this tree on the MNIST training and testing data, i.e., the arrays mnist_train_data_dc and mnist_train_target_dc. Then the function evaluates the trained random forest on the MNIST validation data (i.e., the array mnist_valid_data_dc) and prints the classification report and the confusion matrix. Here's a sample run.

>>> test_dt()

	precision	recall	f1-score	support	
0	0.92	0.94	0.93	980	
1	0.94	0.96	0.95	1135	
2	0.89	0.84	0.86	1032	
3	0.83	0.85	0.84	1010	
4	0.87	0.87	0.87	982	
5	0.81	0.82	0.82	892	
6	0.89	0.89	0.89	958	

7		0.8	0.89		0.91		0.90			
8			0.8	2	0.7	9	0.8	1	974	
		9		0.8	3	0.8	5	0.8	4	1009
micro avg			0.8	0.87		0.87		0.87		
macro avg			0.8	0.87		0.87		0.87		
weighted avg			0.8	0.87 0.87		7	0.87		10000	
]]	918	2	5	2	6	18	13	4	5	7]
[1	1087	6	8	1	6	4	7	13	2]
[13	13	862	39	11	14	18	25	26	11]
[6	5	21	856	5	45	1	14	28	29]
[10	6	14	8	852	4	21	11	15	41]
[10	9	9	40	10	730	23	13	23	25]
[15	6	12	7	18	24	855	2	15	4]
[2	12	15	16	15	3	1	932	10	22]
[13	13	20	39	21	36	18	15	767	32]
[11	3	7	19	38	19	4	23	28	857]]

Write a function test_rf(num_trees) that takes an integer that specifies the number of trees in a random forest, trains and tests this random forest on the MNIST training and testing data, i.e., the arrays mnist_train_data_dc and mnist_train_target_dc. Then the function evaluates the trained random forest on the MNIST validation data (i.e., the array mnist_valid_data_dc) and prints the classification report and the confusion matrix. Here's a sample run for testing a random forest with 5 trees.

>>> test_rf(5)

		precision		n	recall f1-score			e s	upport	
		0		0.9	1	0.9	8	0.9	4	980
		1		0.9	6	0.9	9	0.9	7	1135
		2		0.8	9	0.9	2	0.9	1	1032
		3		0.8	9	0.8	39	0.8	9	1010
		4		0.9	1	0.9	2	0.9	2	982
		5		0.8	9	0.8	19	0.8	9	892
		6		0.9	5	0.9	3	0.9	4	958
		7		0.9	6	0.9	3	0.9	5	1028
		8		0.9	1	0.8	86	0.8	8	974
		9		0.9	2	0.8	37	0.9	0	1009
	mic	ro avg		0.9	2	0.9	2	0.9	2	10000
	macı	ro avg		0.9	2	0.9	2	0.9	2	10000
weighted avg			0.92		0.92		0.92		10000	
		_								
[[963	0	2	2	1	4	4	0	3	1]
[1	1121	2	4	1	1	2	0	2	1]
[16	6	949	12	5	6	7	11	16	4]
[13	8	26	903	0	28	1	7	19	5]
[10	3	7	5	908	1	7	3	9	29]
[17	6	7	40	9	791	9	1	7	5]
[18	4	8	1	9	19	891	1	7	0]
[2	8	33	8	5	1	3	957	2	9]
-										_

```
10
          7
               14
                     27
                           19
                                  28
                                        13
                                               3
                                                  836
                                                          17]
10
          8
               14
                     18
                           37
                                  9
                                         3
                                              13
                                                    22
                                                        875]]
```

Use the function test_rf() to implement the function test_rf_range(low_nt, high_nt) that specifies a range for numbers of trees in random forests and calls test_rf() on each number in the range [low_nt, high_nt]. For example, a call test_rf_range(5, 10) calls test_rf on 5, 6, 7, 8, 9, and 10. Save both definitions mnist_digits_random_forest.py.

Use this function to train, test, and validate random forests with the number of trees in [5, 200]. Write a multi-line comment at the beginning of mnist_digits_random_forest.py that gives the top 3 random forests with their reports and confusion matrices. Write down how much time it took you to train, test, and validate all your random forests. Recall Problem 1 from the previous assignment where you designed, trained, and evaluated several ConvNets on MNIST. In your comments, compare the performance of your random forests with your ConvNets and the time it took you to train the random forests and the ConvNets.

Problem 1 (1 pt)

Write a one-page analysis of "Neural Architecture Search with Reinforcement Learning" by Zoph and Le. Save your writeup in paper_report.pdf.

What to Submit

```
    mnist_digits_random_forest.py;
```

2. paper_report.pdf;

Happy Hacking, Reading, and Writing!