ОБЗОРНИ ЛЕКЦИИ ПО МАТЕМАТИКА – ГЕОМЕТРИЯ

за специалност Математика и информатика

1. Линейни действия със свободни вектори

Линейните действия със свободни вектори са събиране на свободни вектори и умножение на свободен вектор с (реално) число.

Правила за събиране на свободни вектори:

• правило на тритетлника (релация на Шал) – събиране на вектори, за които краят на първия съвпада с началото на втория (фиг. 1)

$$\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB} \Leftrightarrow \overrightarrow{AB} - \overrightarrow{AO} = \overrightarrow{OB};$$

• правило на успоредника – събиране на вектори с общо начало (фиг. 2)

$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC} \quad \Leftrightarrow \quad ABCD$$
 е успоредник;

Два свободни вектора \vec{a} и \vec{b} са колинеарни, точно когато са линейно зависими, т.е. $\vec{b} = \lambda \vec{a}$, $\lambda \in \mathbb{R}$. При $\lambda > 0$ \vec{a} и \vec{b} са еднопосочно колинеарни (означаваме $\vec{a} \uparrow \uparrow \vec{b}$), а при $\lambda < 0$ те са разнопосочно колинеарни (означаваме $\vec{a} \uparrow \downarrow \vec{b}$).

Три свободни вектора в пространството са компланарни, точно когато са линейно зависими, т.е. поне един от тях може да се представи като линейна комбинация на останалите два.

Всеки четири свободни вектора в геометричното векторно пространство са линейно зависими.

2. Координатни системи

Ако относно произволна координатна система в тримерното пространство точките A, B и C са зададени съответно със следните координати $A(x_1,y_1,z_1), B(x_2,y_2,z_2), C(x_3,y_3,z_3),$ то

ullet насочената отсечка \overrightarrow{AB} има координати

$$\overrightarrow{AB}(x_2 - x_1, y_2 - y_1, z_2 - z_1);$$
 (1)

ullet средата M на отсечката AB има координати

$$M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right);$$
 (2)

 \bullet ако A, B и C са неколинеарни, медицентърът G на \triangle ABC има координати

$$G\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}, \frac{z_1+z_2+z_3}{3}\right). \tag{3}$$

3. Метрични действия със свободни вектори

Cкаларното произведение $\vec{a}\vec{b}$ на свободните вектори \vec{a} и \vec{b} се дефинира като реалното число

$$\vec{a}\vec{b} = |\vec{a}||\vec{b}|\cos \triangleleft (\vec{a}, \vec{b}). \tag{4}$$

Следователно за *скаларния квадрат* на вектора \vec{a} е изпълнено $\vec{a}^2 = |\vec{a}|^2$. *Евклидовата дължина* на вектора \vec{a} се определя от $|\vec{a}| = \sqrt{\vec{a}^2}$. Скаларното произведение притежава следните свойства:

- $\vec{a}\vec{b} = \vec{b}\vec{a}$ (комутативност);
- $\left(\vec{a} + \vec{b}\right)\vec{c} = \vec{a}\vec{c} + \vec{b}\vec{c}$ (дистрибутивност);
- $(\lambda \vec{a}) \vec{b} = \lambda \left(\vec{a} \vec{b} \right)$ (хомогенност);
- $\vec{a}^{\,2} > 0$, $\vec{a}^{\,2} = 0 \Leftrightarrow \vec{a} = \vec{o}$ (неотрицателност).

Ъгъл между два вектора

$$\cos \sphericalangle(\vec{a}, \vec{b}) = \frac{\vec{a}\vec{b}}{|\vec{a}||\vec{b}|}.$$
 (5)

 $Векторното произведение на ненулевите свободни вектори <math display="inline">\vec{a}$ и \vec{b} е векторът $\vec{a}\times\vec{b},$ притежаващ свойствата:

- (a) $|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}| \sin \sphericalangle (\vec{a}, \vec{b});$
- (b) $(\vec{a} \times \vec{b}) \perp \vec{a}$, $(\vec{a} \times \vec{b}) \perp \vec{b}$;
- (c) ако \vec{a} и \vec{b} са линейно независими, то \vec{a} , \vec{b} и $\vec{a} \times \vec{b}$ образуват дясно ориентирана база в тримерното пространство.

Свойства на векторното произведение:

- $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ (антикомутативност);
- $(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$ (дистрибутивност);

- $(\lambda \vec{a}) \times \vec{b} = \lambda \left(\vec{a} \times \vec{b} \right)$ (хомогенност);
- $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a}\vec{c}.\vec{b} \vec{b}\vec{c}.\vec{a}$ (двойно векторно произведение).

Тъждество на Лагранж

$$\left(\vec{a} \times \vec{b}\right)^2 = \vec{a}^2 \vec{b}^2 - (\vec{a}\vec{b})^2. \tag{6}$$

Cмесеното произведение на свободните вектори \vec{a} , \vec{b} и \vec{c} се дефинира чрез

$$\vec{a}\vec{b}\vec{c} = \left(\vec{a} \times \vec{b}\right)\vec{c} = \vec{a}\left(\vec{b} \times \vec{c}\right). \tag{7}$$

Ако относно *ортонормирана* координатна система са дадени векторите $\vec{a}(x_1, y_1, z_1)$, $\vec{b}(x_2, y_2, z_2)$ и $\vec{c}(x_3, y_3, z_3)$, то:

$$\vec{a}\vec{b} = x_1x_2 + y_1y_2 + z_1z_2, \qquad \vec{a}^2 = x_1^2 + y_1^2 + z_1^2, \qquad |\vec{a}| = \sqrt{x_1^2 + y_1^2 + z_1^2}$$

$$\vec{a} \times \vec{b} = \left(\begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix}, \begin{vmatrix} z_1 & x_1 \\ z_2 & x_2 \end{vmatrix}, \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \right),$$

$$\vec{a}\vec{b}\vec{c} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$
(8)

Формули за пресмятане на:

 \bullet лицето на успоредника и лицето на триъгълника, определени от неколинеарните вектори \vec{a} и \vec{b}

$$S_{\text{усп}} = |\vec{a} \times \vec{b}|, \qquad S_{\Delta} = \frac{1}{2} |\vec{a} \times \vec{b}|;$$
 (9)

• обема на паралелепипеда и обема на триъгълната пирамида (тетраедъра), определени от некомпланарните вектори $\vec{a},\,\vec{b},\,\vec{c}$

$$V_{\text{nap}} = |\vec{a}\vec{b}\vec{c}|, \qquad V_{\text{TeT}} = \frac{1}{6}|\vec{a}\vec{b}\vec{c}|. \tag{10}$$

4. Уравнение на права в равнина

Уравнения на права в равнина:

• скаларно параметрично уравнение на правата l през точката $M(x_0, y_0)$ с направляващ вектор $\vec{v}(a, b) \neq (0, 0)$

$$l: \begin{vmatrix} x = x_0 + \lambda a \\ y = y_0 + \lambda b \end{vmatrix}; \tag{11}$$

• канонично уравнение на правата l през точката $M(x_0, y_0)$ с направляващ вектор $\vec{v}(a, b)$

$$l: \frac{x - x_0}{a} = \frac{y - y_0}{b}; \tag{12}$$

• канонично уравнение на правата l през точките $M_1(x_1,y_1)$ и $M_2(x_2,y_2)$

$$l: \frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_2};\tag{13}$$

• уравнение на правата l през точката $M(x_0, y_0)$ с нормален вектор $\overrightarrow{N}(A, B) \neq (0, 0)$ (относно ортонормирана координатна система)

$$l: A(x - x_0) + B(y - y_0) = 0; (14)$$

• общо уравнение на правата l с нормален вектор $\overrightarrow{N}(A,B)$ (относно ортонормирана координатна система)

$$l: Ax + By + C = 0; (15)$$

• *отрезово уравнение* на правата l през точките A(a,0), B(0,b)

$$l: \frac{x}{a} + \frac{y}{b} = 1; \tag{16}$$

• декартово уравнение на правата l с ъглов коефициент $k = \operatorname{tg} \alpha$ (α е ъгълът, който l сключва с положителната посока на оста Ox) и с отрез n от оста Oy (относно ортонормирана координатна система)

$$l: y = kx + n. (17)$$

Ако относно ортонормирана координатна система правата l има направляващ вектор $\vec{v}(a,b)$, то векторът (b,-a) е неин нормален вектор. Обратно, ако $\vec{N}(A,B)$ е нормален вектор за l, то векторът (B,-A) е колинеарен на l.

Разстоянието d(M,l) от точката $M(x_0,y_0)$ до правата l: Ax + By + C = 0 (относно ортонормирана координатна система)

$$d(M,l) = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}. (18)$$

5. Уравнение на окръжност в равнина

Общото уравнение на окръжност с център точката C(a,b) и радиус r>0 има вида

$$(x-a)^2 + (y-b)^2 = r^2. (19)$$

След разписване, това уравнение добива вида

$$x^2 + y^2 + mx + ny + l = 0. (20)$$

6. Уравнение на права и равнина в тримерното пространство

Уравнения на равнина в тримерното пространство:

• скаларно параметрично уравнение на равнината α през точката $M(x_0,y_0,z_0)$, с компланарни вектори $v_1(a_1,b_1,c_1)$ и $v_2(a_2,b_2,c_2)$

$$\begin{vmatrix}
x = x_0 + \lambda a_1 + \mu a_2 \\
y = y_0 + \lambda b_1 + \mu b_2 \\
z = z_0 + \lambda c_1 + \mu c_2
\end{vmatrix} ; \tag{21}$$

• уравнение на равнината α през точката $M_0(x_0,y_0,z_0)$, с компланарни вектори $v_1(a_1,b_1,c_1)$ и $v_2(a_2,b_2,c_2)$

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0; \tag{22}$$

• уравнение на равнината α през точката $M(x_0, y_0, z_0)$, с нормален вектор $\overrightarrow{N}(A, B, C) \neq (0, 0, 0)$ (относно ортонормирана координатна система)

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0; (23)$$

• общо уравнение на равнината α с нормален вектор $\overrightarrow{N}(A,B,C)$ (относно ортонормирана координатна система)

$$Ax + By + Cz + D = 0. (24)$$

Разстоянието $d(M, \alpha)$ от точката $M(x_0, y_0, z_0)$ до равнината $\alpha : Ax + By + Cz + D = 0$ (относно ортонормирана координатна система)

$$d(M,\alpha) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$
 (25)

Уравнения на права в тримерното пространство:

• скаларно параметрично уравнение на правата l през точката $M(x_0, y_0, z_0)$ с направляващ вектор $\vec{v}(a, b, c) \neq (0, 0, 0)$

$$l: \begin{vmatrix} x = x_0 + \lambda a \\ y = y_0 + \lambda b \\ z = z_0 + \lambda c \end{vmatrix}$$
 (26)

ullet канонично уравнение на правата l през точката $M(x_0,y_0,z_0)$ с направляващ вектор $\vec{v}(a,b,c)$

$$l: \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}; \tag{27}$$

 \bullet правата l, зададена като пресечница на две равнини

$$l: \begin{vmatrix} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0. \end{vmatrix}$$
 (28)

Примерни задачи

Задача 1. Относно ортонормирана координатна система в равнината е даден триъгълникът \triangle *ABC* с върхове A(2,5), B(-1,2) и C(0,4). Намерете:

- а) уравнението на правата през точките A и B;
- б) уравнението на медианата m през върха C;
- в) уравнението на височината h през върха A;
- Γ) уравнението на описаната около \triangle ABC окръжност;
- д) лицето на $\triangle ABC$;
- e) косинуса на $\angle ACB$.

Решение.

а) Построяваме каноничното уравнение на правата AB, съгласно (12), като права през точката A (или през B) с направляващ вектор $\overrightarrow{AB}(-3,-3) \parallel (1,1)$, както следва

$$AB: \frac{x-2}{1} = \frac{y-5}{1}.$$

От горното следва, че общото уравнение на тази права е AB: x-y+3=0.

- б) Първо намираме координатите на средата M на отсечката AB, съгласно (2), $M(\frac{1}{2},\frac{7}{2})$. Тогава за направляващия вектор \overrightarrow{CM} на медианата m пресмятаме $\overrightarrow{CM}(\frac{1}{2},-\frac{1}{2}) \parallel (1,-1)$. Аналогично на подточка а), получаваме каноничното уравнение на търсената права $m:\frac{x-0}{1}=\frac{y-4}{-1}$, откъдето за общото ѝ уравнение имаме m:x+y-4=0.
- в) Височината през A е перпендикулярна на страната BC, следователно $\overrightarrow{BC}(1,2)$ е нормален вектор за тази права. Тогава общото ѝ уравнение, съгласно (15), има вида

$$h: x + 2y + a = 0, (29)$$

където a е неизвестна константа. Нейната стойност определяме от условието, че точката A е от правата h. Заместваме координатите на A в уравнението (29) и получаваме 2+2.5+a=0. Следователно a=-12 и уравнението на височината е h:x+2y-12=0.

г) За да намерим уравнението на описаната около триъгълника окръжност, можем да намерим координатите на центъра и радиуса ѝ и да ги заместим в уравнението (19). Намираме уравненията на две прави, съдържащи диаметри на окръжността, т.е. прави през средите на две от хордите AB, AC или BC, перпендикулярни на съответните хорди. Построяваме правата d_1 през средата $M(\frac{1}{2},\frac{7}{2})$ на AB с нормален вектор $\overrightarrow{AB}(-3,-3)$. Тази права има уравнението $d_1: x+y-4=0$. Аналогично, построяваме правата d_2 през средата $N(-\frac{1}{2},3)$ на BC с нормален вектор $\overrightarrow{BC}(1,2)$. Така получаваме $d_2: 2x+4y-11=0$. Тогава пресечната точка P на d_1 и d_2 е центърът на окръжността. Решавайки системата от уравненията на двете прави, намираме координатите на тази точка $P(\frac{5}{2},\frac{3}{2})$. Дължината на всеки от векторите $\overrightarrow{AP}(\frac{1}{2},-\frac{7}{2})$, $\overrightarrow{BP}(\frac{7}{2},-\frac{1}{2})$ или $\overrightarrow{CP}(\frac{5}{2},-\frac{5}{2})$ е равна на радиуса на окръжността. Пресмятаме $r=\frac{5}{\sqrt{2}}$.

Като заместим получените данни в уравнението (19), намираме уравнението на описаната около \triangle ABC окръжност, както следва

$$\left(x - \frac{5}{2}\right)^2 + \left(y - \frac{3}{2}\right)^2 = \frac{25}{2}.$$

След разписване, горното уравнение приема вида

$$x^2 + y^2 - 5x - 3y - 4 = 0.$$

Горното уравнение може да бъде получено и по алгебричен път чрез (20), като неизвестните коефициенти m, n и l се намерят от условията, че точките A, B и C лежат върху търсената окръжност, т.е. удовлетворяват уравнението (20). След заместване на координатите на трите точки в (20), получаваме определената система

$$2m + 5n + l = -29$$

$$-m + 2n + l = -5$$

$$4n + l = -16,$$

чието решение е m = -5, n = -3, l = -4.

- д) Намираме координатите на две насочени отсечки по две от страните на триъгълника, например $\overrightarrow{AB}(-3,-3)$ и $\overrightarrow{AC}(-2,-1)$. Съгласно (8), пресмятаме векторното произведение $\overrightarrow{AB} \times \overrightarrow{AC}(0,0,-3)$. Тогава, като вземем предвид втората формула от (9), получаваме, че $S_{ABC} = \frac{|\overrightarrow{AB} \times \overrightarrow{AC}|}{2} = \frac{3}{2}$.
- е) Насочените отсечки $\overrightarrow{CA}(2,1)$ и $\overrightarrow{CB}(-1,-2)$ определят ъгъла $\angle ACB$. Съгласно (8), пресмятаме

$$\overrightarrow{CA}.\overrightarrow{CB} = 2.(-1) + 1.(-2) = -4,$$

$$|\overrightarrow{CA}| = \sqrt{2^2 + 1^2} = \sqrt{5}, \quad |\overrightarrow{CB}| = \sqrt{(-1)^2 + (-2)^2} = \sqrt{5}.$$

Тогава, съгласно (5), имаме

$$\cos \angle ACB = \cos \angle (\overrightarrow{CA}, \overrightarrow{CB}) = \frac{\overrightarrow{CA}.\overrightarrow{CB}}{|\overrightarrow{CA}|.|\overrightarrow{CB}|} = \frac{-4}{\sqrt{5}.\sqrt{5}} = -\frac{4}{5}.$$

Задача 2. Относно ортонормирана координатна система в равнината са дадени точките $A(2,-1),\ B(3,2),\ C(-2,-3).$ Докажете, че трите точки са върхове на триъгълник и намерете:

- а) уравнението на правата AB;
- б) координатите на точката C' ортогонално симетрична на C относно правата AB;
- B) $\angle BAC$;
- Γ) лицето на $\triangle ABC$.

Решение. За да бъдат точките A, B и C върхове на триъгълник, те не трябва да бъдат колинеарни. Следователно никои две насочени отсечки, образувани от тези точки, също не бива да бъдат колинеарни. Намираме $\overrightarrow{AB}(1,3)$ и $\overrightarrow{AC}(-4,-2)$, откъдето се вижда, че не съществува $\lambda \in \mathbb{R}$ така, че $\overrightarrow{AB} = \lambda \overrightarrow{AC}$. Следователно точките A, B и C са неколинеарни. Друг начин да достигнем до същия резултат, е да установим, че векторното им произведение е ненулев вектор. Пресмятаме $\overrightarrow{AB} \times \overrightarrow{AC}(0,0,10) \neq \overrightarrow{o}$.

- а) Решава се аналогично на зад. 1 а). Отг. AB:3x-y-7=0.
- б) Задачата може да се реши чрез алгоритъм от три стъпки. Първо построяваме правата p през C, която е перпендикулярна на правата AB, т. е. с нормален вектор $\overrightarrow{AB}(1,3)$. Аналогично на зад. 1 в) тази права ще има уравнението p: x+3y+11=0. След това намираме координатите на пресечната точка M на правите AB и p, решавайки системата

$$\begin{vmatrix} 3x - y - 7 = 0 \\ x + 3y + 11 = 0. \end{vmatrix}$$

Единственото решение на горната система е M(1,-4). Накрая, като отчетем, че M е среда на отсечката CC', т. е. че $M=\frac{C+C'}{2}$, намираме координатите на C' съгласно формулата C'=2M-C=2(1,-4)-(-2,-3)=(4,-5).

в) Решава се като зад. 1 д): $\overrightarrow{AB}(1,3), \overrightarrow{AC}(-4,-2), \overrightarrow{AB}.\overrightarrow{AC}=-10 \ |\overrightarrow{AB}|=\sqrt{10}, \ |\overrightarrow{AC}|=2\sqrt{5}.$ Тогава

$$\cos \angle BAC = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|} = \frac{-10}{2\sqrt{5}\sqrt{10}} = -\frac{\sqrt{2}}{2}.$$

Следователно $\angle BAC = 135^{\circ}$.

г) Решава се като зад. 1 г): $\overrightarrow{AB} \times \overrightarrow{AC}(0,0,10)$, откъдето $S_{ABC}=5$.

Задача 3. Относно ортонормирана координатна система в тримерното пространство са дадени точките A(1,-1,2), B(2,3,-1), C(4,3,-1), D(2,5,5).

- а) Докажете, че точките A, B, C и D не лежат в една равнина;
- б) Намерете обема на тетраедъра ABCD;
- в) Намерете уравнението на равнината β , съдържаща точките $A,\,B$ и C;
- г) Намерете разстоянието от точката D до равнината $\beta.$

Решение.

а) За да установим, че четирите точки не лежат в една равнина (не са компланарни), е достатъчно да покажем, че смесеното произведение на три насочени отсечки, образувани от тези точки, е различно от нула. Нека това са например насочените отсечки $\overrightarrow{AB}(1,4,-3)$, $\overrightarrow{AC}(3,4,-3)$ и $\overrightarrow{AD}(1,6,3)$. Взимайки предвид последната формула от (8), пресмятаме

$$\overrightarrow{ABACAD} = \begin{vmatrix} 1 & 4 & -3 \\ 3 & 4 & -3 \\ 1 & 6 & 3 \end{vmatrix} = -60 \neq 0.$$

- б) Съгласно втората формула от (10), обемът на тетраедъра ABCD пресмятаме, както следва $V_{ABCD} = \frac{1}{6} |\overrightarrow{ABACAD}| = 10$.
- в) За намирането на уравнението на равнината β използваме (22). Избираме една от трите дадени точки за фиксираната точка, която ще използваме за уравнението на равнината,

например точката A. Освен това за съставянето на уравнението на β са ни необходими и два вектора, компланарни с равнината, например \overrightarrow{AB} и \overrightarrow{AC} . Тогава имаме

$$\beta: \left| \begin{array}{ccc} x-1 & y+1 & z-2 \\ 1 & 4 & -3 \\ 3 & 4 & -3 \end{array} \right| = 0,$$

откъдето след развиване на детерминантата следва общото уравнение на търсената равнина $\beta: 3y+4z-5=0.$

г) Можем да приложим формулата (25), съгласно която търсеното разстояние $d(D,\beta)$ се получава по следния начин

$$d(D,\beta) = \frac{|3.5 + 4.5 - 5|}{\sqrt{0^2 + 3^2 + 4^2}} = \frac{30}{5} = 6.$$

Задача 4. Относно ортонормирана координатна система в тримерното пространство са дадени точката A(1,1,-2), равнината $\alpha:x-2y+z-9=0$ и правата $l:\frac{x-1}{2}=\frac{y+2}{3}=\frac{z}{1}$. Намерете:

- а) ортогонално симетричната точка B на A относно равнината α ;
- б) ортогонално симетричната точка C на A относно правата l;
- в) уравнението на сферата с център точката A, допираща се до равнината α . Pewenue.
- а) Построяваме правата p през точката A, перпендикулярна на α . Следователно направляващият вектор на тази права е колинеарен с нормалния вектор на равнината $\vec{N}_{\alpha}(1,-2,1)$. Така получаваме

$$p: \left| \begin{array}{l} x = 1 + s \\ y = 1 - 2s \\ z = -2 + s. \end{array} \right|$$

Намираме координатите на пресечната точка (пробода) M на правата p и равнината α , решавайки системата от уравненията им

$$1 + s - 2(1 - 2s) - 2 + s - 9 = 0,$$

откъдето s=2 и следователно M(3,-3,0).

Отчитаме, че точката M е средата на отсечката AB. Тогава $M = \frac{1}{2}(A+B)$, откъдето B = 2M - A. Окончателно намираме B(5, -7, 2).

- б) Построяваме равнината β през точката A, перпендикулярна на правата l, както следва $\beta:2x+3y+z-3=0$. Намираме координатите на пресечната точка $N(2,-\frac{1}{2},\frac{1}{2})$ на l и β (за целта е удобно да използваме скаларно параметрично уравнение на правата, както в предната подточка). Отчитаме, че N е средата на отсечката AC и следователно C=2N-A, т.е. C(3,-2,3).
- в) Тъй като търсената сфера се допира до равнината α , за нейния радиус R е изпълнено $R = d(A, \alpha) = |\overrightarrow{AM}| = 2\sqrt{6}$. Тогава уравнението на тази сфера е

$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 24.$$