

دانشكده مهندسي كامپيوتر

تشخیص ناهنجاری با استفاده از شبکههای عمیق

گزارش سمینار کارشناسی ارشد در رشته مهندسی کامپیوتر-گرایش هوش مصنوعی و رباتیک

> نام دانشجو: علی نادری پاریزی

استاد راهنما: دکتر محسن سریانی

اردیبهشت ماه ۱۴۰۱

چکیده

تشخیص ناهنجاری مسئله مهمی است که در زمینههای تحقیقاتی گوناگون مورد مطالعه قرار می گیرد و کاربردهای بسیار زیادی دارد. یک نیاز مرسوم در حوزه تجزیه و تحلیل دادههای دنیای واقعی، پی بردن به این است که بدانیم کدام نمونهها از نقطه نظر تشابه رفتار و ظاهر با اکثریت نمونههای موجود بسیار متفاوت هستند. این تفاوت می تواند به دلیل خطای اندازه گیری در هنگام جمع آوری دادهها باشد. گاهی اوقات این تفاوت می توانند نشان دهنده وجود پدیدهای ناشناخته باشد که در پشت پرده جامعه آماری مورد مطاالعه در حال رخ دادن است و ما از آن بی خبر هستیم.

در علم داده اصطلاح ناهنجاری به دادهای تعلق می گیرد از نقطهنظر یک معیار تشابه تعریف شده، میزان تشابه آن با سایر دادگان موجود بسیار کم باشد. برای مثال اگر عکس رادیولوژی فردی که بیماری ریوی دارد را با عکسهای رادیولوژی گرفته شده از ریه افراد سالم مقایسه کنیم متوجه تفاوت این عکس با سایر عکسها خواهیم شد. این عدم تشابه در دادگان، مشخص می کند که فرد دچار بیماری ریوی است. درواقع پزشکان با مشاهده این عدم شباهتها به وجود بیماری پی می برند. عمل مقایسه دادگان می تواند به وسیله کامپیوتر نیز انجام شود که موضوع این سمینار است.

در این سمینار تلاش شده روشهای مبتنی بر یادگیری عمیق برای تشخیص ناهنجاری را برسی کنیم. از آنجا که کاربرد این موضوع در حوزههای گوناگون بسیار وسیع است و مقالات بسیار متعددی در رابطه با کاربردیهای مختلف به چاپ رسیده، سعی کردیم حوزه سمینار را محدود کرده و ضمن معرفی انواع کاربردهای مسئله تشخیص ناهنجاری، به بررسی روشهایی بپردازیم که در رابطه با کاربرد پردازش تصویر و بینایی کامپیوتر هستند. با توجه به تعدد مقالات در سالهای اخیر و وجود مقالات جدید که در سالهای ۲۰۱۹ میلادی و بعد از آن منتشر شدهاند را بررسی کنیم و برای باقی روشها به ارجاع دهی به مقالات دیگر اکتفا کنیم.

واژههای کلیدی: تشخیص ناهنجاری، پردازش تصویر، شبکههای عمیق

فهرست مطالب

١		مقدمه	١
۲	شرح مسئله	1.1	
۲	معرفی حوزه سمینار	۲.۱	
۲	اهمیت موضوع	٣.١	
۲	ساختار گزارش	4.1	
۴	، بر روشهای سنتی	مروری	۲
۴	روشهای سنتی	1.7	
۴	۱.۱.۲ ساختار کلی روشهای تشخیص ناهنجاری		
۶	۲.۱.۲ روشهای مبتنی بر ردهبندی		
٧	۳.۱.۲ روشهای مبتنی بر معیار فاصله		
٧	۴.۱.۲ روشهای مبتنی بر مدل آماری		
٨	روشهای مبتنی بر یادگیری عمیق	۲.۲	
٨		٣.٢	
٨	مقایسه و نتیجه گیری	4.7	
٩	گیری و کارهای آینده	نتيجه	٣
٩	نتیجه گیری	1.4	
٩	مسائل باز و کارهای قابل انجام	۲.۳	
٩	موضوع پیشنهادی برای پایان نامه	٣.٣	

کتابنامه کتابنامه

فهرست تصاوير

١	مثالی از تفاوت دادگان ناهنجار و نوین	1.1
۲	مثالهایی از ناهنجاری در تصاویر [۳]	۲.۱
۶	ماشین بردار پشتیبان یک کلاسه	1.7
٧	بردار پشتیبان توصیفگر داده عمیق [۵]	۲.۲
٨	نمایش کلی روش عامل پرت محلی [۱]	٣.٢

,	۹	جدا	ست	فهر
\cup	フ	•		八

Α .		دستەبندى روشھاى سنتى	\ \
ω	 	 دستهبندی رون های سنت	1.1
		(5 G(5-7) G,	1.50

مقدمه

تشخیص ناهنجاری است که در زمینههای تحقیقاتی گوناگون مورد مطالعه قرار می گیرد و کاربردهای بسیار زیادی دارد. یک نیاز مرسوم در حوزه تجزیه و تحلیل دادههای دنیای واقعی، پی بردن این است که بدانیم کدام نمونهها از نقطه نظر تشابه رفتار و ظاهر با اکثریت نمونههای موجود بسیار متفاوت هستند. این تفاوت می تواند به دلیل خطای اندازه گیری در هنگام جمع آوری دادهها باشد. گاهی اوقات این تفاوت می توانند نشان دهنده وجود پدیدهای ناشناخته باشد که در پشت پرده جامعه آماری مورد مطاالعه در حال رخ دادن است و ما از آن بی خبر هستیم.

شکل ۱.۱: مثالی از تفاوت دادگان ناهنجار و نوین

در کنار ناهنجاریها، دادگان دیگری نیز وجود دارند که با دادگان عادی متفاوتاند امّا این تفاوت به اندازی کافی زیاد نیست. به این دادگان اصطلاحا دادگان نوین ^۲ گفته می شود. دادگان نوین درواقع دادگانی هستند که در دسته دادگان عادی قرار می گیرند اما چون هنوز کشف نشده اند به نظر می رسد که با دادگان عادی تفاوت داشته باشند. برای مثال، اکثر ببرهای دیده شده و شناخته شده به رنگ نارنجی و با خطوط راه راه سیاه هستند و دیدن بربر سفید برای ما تعجب آور خواهد بود. امّا همه به خوبی می دانیم که ببر سفید درواقع یک ببر است که فقط رنگ آن غیرعادی است و نباید آن را در دسته جدایی

¹Anomaly detection

²Novelties

در ادامه این فصل پس از تعریف ناهنجاری در دادگان، به بیان کاربردهای این بحث در حوزههای مختلف میپردازیم. سپس یک تعریف معیار که مرتبط با حوزه مورد نظر ما که همان پردازش تصویر است ارائه میدهیم. پس از تعریف حوزه مورد مطالعه و بررسی اهمیت موضوع، به توضیح ساختار کلی گزارش این سمینار خواهیم پرداخت.

۱.۱ شرح مسئله

تشخیص ناهنجاری که با عنوان تشخیص دادگان خارج از محدوده تنیز شناخته می شود، به عملیاتی گفته می شود که طی آن به آشکارسازی نمونههایی از مجموعه دادگان می پردازد که تفاوت زیادی با اکثریت دادگان موجود دارد. در واقع، اینجا تفاوت به معنی متفاوت بودن مشخصات و ویژگیهای این نمونهها با الگوی معمول موجود در مجموعه دادگان است. این مسئله یک موضوع فعال تحقیق در دهههای اخیر بوده که تقریبان از سال ۱۹۶۰ میلادی تا کنون مورد مطالعه قرار گرفته است [*]. با توجه به نیاز روز افزون کاربرهای

به ترتیب از سمت چپ، توده سرطان سینه، مین زیردریایی، نقص رنگ آمیزی کاشی تولید شده در کارخانه،نمونه نقص موجود در چرخ خودرو.

شکل ۲.۱: مثالهایی از ناهنجاری در تصاویر [۳]

۲.۱ معرفی حوزه سمینار

در این سمینار ابتدا یک دسته بندی کلی از روشهای مختلف شبکههای عمیق ارائه کرده و سپس به بررسی روشهای جدید که در این دستهبندی می گنجند می پردازیم. در بررسی روشها به کاربرد روش و مسائل قابل حل،پیچیدگی، قابلیت پیاده سازی صنعتی،نحوه آموزش و دادگان مورد نیاز خواهیم پرداخت.

۳.۱ اهمیت موضوع

۴.۱ ساختار گزارش

در فصل اوّل این سمینار به معرفی حوزه سمینار و تعریف مسئله پرداخته شد و در فصل دوّم به تعریف مفاهیم و اصطلاحات استفاده شده در این حوزه خواهیم پرداخت. فصل سوّم نیز در رابطه با بررسی کارهای مرتبط با این سمینار و معرفی و بررسی

³Outlier detection

جزئی از روشها و مقالات موجود چاپ شده در سالهای اخیر خواهد پرداخت. در ابتدای فصل سوّم پس از معرفی کارهای مرتبط یک دستهبندی از روشهای موجود ارائه میگردد و در ادامه، ترتیب معرفی و بررسی روشهای موجود بر طبق این دستهبندی خواهد بود. در نهایت یک جمع بندی و نتیجه گیری کلی از روشهای موجود در هر دسته انجام میدهیم و پیشنهاداتمان را در رابطه با استفاده از این روشها بسته به کاربرد مورد نظر ارائه میکنیم. در فصل آخر گزارش پیشنهادات خود را درباره کارهای آینده این حوزه ارائه کرده و در نهایت پیشنهاد انجام پروژه کارشناسی ارشد را که در راستای همین سمینار است معرفی میکنیم.

مروری بر روشهای سنتی

اگر بهیاد داشته باشید، در ابتدای فصل یک به این نکته اشاره شد که مسئله تشخیص ناهنجاری، یک موضوع فعال تحقیق در چند دهه اخیر است که یکی از مقالات معتبر چاپ شده آن مربوط به دهه ۱۹۶۰ میلادی می شود. از این رو، در طی این مدت بسیاری از روشها برای یافتن دادگان خارج از محدوده معرفی و توسعه داده شدهاند که از یادگیری عمیق استفاده نمی کنند. این روشها به صورت عمده دادگان را مجموعهای از نقاط در یک فضای چند بعدی فرض می کنند و تلاش آنها برای این است که نقاط خارج از محدوده را در این فضا با توجه به ویژگیها و مشخصات دیگر نقاط آشکار کنند. عمدتاً این اینگونه روشها را می توان از نقطه نظر ایده اصلی به سه دسته کلی استفاده از رده بندی، معیار فاصله و مدلهای آماری تقسیم کرد در ادامه به مرور کلی این روشها خواهیم پرداخت. با توجه به اینکه تمرکز ما بر بررسی کامل این روشها نیست پیشنهاد می شود برای آشنایی بیشتر با این گونه روشها به مقاله چاندولا و همکاران مراجعه کنید [۲].

دستهبندی روشهای سنتی در تشخیص ناهنجاری			
روشهای شناخته شده	انواع		مبتنی بر
One-class SVM	یک کلاسه	یادگیری یک مرز تفکیک	ردەبندى
SVDD		میان دادگان عادی و ناهنجار	
_	چند کلاسه		
LOC^2	فاصله تا نزدیک ترین همسایه	اقدام به تعریف یک معیار	معيار فاصله
COF		فاصله می کند تا دادگان عادی	
		را از دادگان ناهنجار جدا کند	
K-means	خوشه بندی و سنجش فاصله		
CBLOF	تا نزدیک ترین خوشه		
PCA	استفاده از تصویر سازی نقاط		
Isolation Forest	در فضایی با ابعاد کمتر		
Gausian Mixture	روشهای پارامتری	دادگان عادی در نواحی پر	مدل آماری
Model		احتمال مدل آماری قرار	
		میگیرند	
Kernel destiny esti-	روشهای غیر پارامتری		
mator			

جدول ۱.۲: دستهبندی روشهای سنتی

۱.۲ جدول ۱.۲

۱.۲ ساختار کلی روشهای تشخیص ناهنجاری

اگر بخواهیم روشهای تشخیص ناهنجاری را به صورت عمومی توصیف کنیم، میتوانیم بگوییم که این روشها از سه بخش اصلی تشکیل شدهاند. بخش اوّل یادگیری بازنمایی دادهها است. در این مرحله نگاشتی از دادگان ورودی به فضایی معیین آموخته می شود. این نگاشت را می توان به صورت تابعی مانند زیر تعریف کرد.

$$f(.;\theta): x \to y \tag{1.7}$$

در بخش دوّم به تعریف یک معیار سنجش پرداخته می شود که برای ارزیابی خروجی مرحله قبل استفاده می شود. این معیار با دریافت خروجی مرحله اوّل یک امتیاز برای سنجش میزان تعلق داده ورودی به دسته ناهنجار اختصاص می دهد که به آن امتیاز ناهنجاری ۲ گوییم.

$$d(f(x); \eta) : f(x) \to d, \ d \in \mathbb{R}$$
 (Y.Y)

در آخر نیز با درنظر گرفتن یک مقدار آستانه δ ، به تصمیم گیری در مورد داده ورودی با توجه به امتیاز اختصاص داده شده در مرحله دوّم پرداخته می شود.

$$\begin{cases} anomaly & d \ge \delta \\ not \ anomaly & d < \delta \end{cases}$$

با توجه به این تعریف، رویکردهای موجود میتوانند انواع زیر را داشته باشند:

- . غیر پارامتری: نیازی به یادگیری θ و η و δ نیست.
- ۲. یک مرحلهای: تنها یکی از مجموعه پارامترهای موجود heta یا η یادگرفته میشوند.
- ۳. دو مرحلهای: هر دو مجموعه پارامتر heta و η به صورت مستقل و جداگانه یادگرفته می شوند.
 - ۴. ادغامی 4 : هر دو مجموعه پارامتر θ و η باهم یادگرفته میشوند.

درصورت عدم وجود برچسبهای دادگان موجود، ناچار به استفاده از روش بدون ناظر هستیم که در آن از هیچ گونه اطلاعاتی در مورد ماهیت دادگان استفاده نمی شود. در این گونه مواقع معمولا δ از پیش تعریف شده است و یا همراه با ویادگرفته می شود. در حالتی که تنها بخشی از دادگان برچسب خورده باشند و باقی برچسب نخورده، می توانیم از رویکرد یادگیری با نظارت ضعیف استفاده کرد. در این مورد نیز مقدار آستانه می تواند با استفاده از تنظیم دقیق مدل بدست آید.

۲.۲ روشهای مبتنی بر ردهبندی

همانطور که در ابتدای این بخش گفته شد، یکی از ایدههای کلی در روشهای مورد استفاده برای تشخیص ناهنجاری استفاده از ایده ردهبندی است. در اینگونه روشها تلاش میشود یک مرز تفکیک میان دادگان عادی و دادگان ناهنجار رسم شود. اگر چنین مرزی وجود داشته باشد، می توانیم با استفاده از الگوریتمهای ردهبند موجود اقدام به یافتن این مرز کرد و سپس

³Data representation

⁴Anomaly score

⁵Integrated

با استفاده از مدل آموزش دیده اقدام به آشکارسازی دادههای ناهنجار کرد. همانطور که مشخص است در این گونه روشها تنها یک دسته برای دادگان تعریف میشود که آن دسته دادگان عادی است. دیگر دادگانی که در این دسته قرار نمی گیرند به عنوان دادگان عادی در نظر گرفته میشوند. البته استفاده از رویکرد ردهبندی چند کلاسه نیز در صورت وجود برچسب برای تمامی دادگان امکان پذیر است امّا استفاده از این روش کمتر مرسوم است. یکی از معروف ترین روشهای مورد استفاده دسته بند بردار پشتیبان یک کلاسه گراست.

در ماشین بردار پشتیبان ما به دنبال یافتن یک ابر صفحه جدا کننده میان دو دسته داده موجود هستیم. در الگوریتم بردار پشتیبان یک کلاسه ما درواقع به دنبال یافتن صفحه ای هستیم که دادگان معمول در یک طرف این صفحه قرار بگیرند. در این روش تلاش میشود صفحه مورد نظر تا حد امکان به نقاد داده نزدیک باشند. پس از رسم این صفحه، دادگانی که به مبدا مختصات نزدیک تر هستند در دسته ناهنجاریها قرار می گیرند [۶].

در اینجا تابع نگاشتی که باید یاد کرفته شود همان تابع کرنل در ماشین بردار پشتیبان است و تابع امتیاز ناهنجاری نیز به صورت اندازه فاصله از مبدا مختصات تعریف میشود. شکل ۱.۲ این روش را به تصویر کشیده است. توجه داشته باشید که در اینجا تنها یک دسته برای ردهبندی تعریف میشود که آن دسته دادگان عادی است، پس نیازی به وجود برچسب برای تمامی دادگان نیست و رویکرد ما در اینجا به صورت کاملا بدون ناظر خواهد بود.

شکل ۱.۲: ماشین بردار پشتیبان یک کلاسه

نمونه دیگری از روشهای مورد استفاده برای آشکارسازی ناهنجاری که از رویکرد ردهبندی استفاده می کند، بردار پتیبان توصیفگر داده $^{\vee}$ است. در این روش سعی می شود کره ای با کوچک ترین اندازه ممکن حول دادگان موجور رسم شود. پس از رسم این کره، دادگانی که در خارج از آن قرار می گیرند به عنوان داده ناهنجار شناخته خواهند شد [۵] .

ازجمله مزیتهای این رویکرد،آموزش سریع، و دقت بهتر آن در مواقعی است که دادگان برچسب خورده در اختیار هستند. و از معایب این روش در هنگام استفاده از ردهبندی چند کلاسه میتوان به نیاز برای چندین دسته داده عادی یاد کرد. همچنین این این رویکردها نیاز به تعیین ابر پارامتر برای مدل یادگیری دارند.

⁶One-class SVM

⁷Support Vector Data Description (SVDD)

شکل ۲.۲: بردار پشتیبان توصیفگر داده عمیق [۵]

۳.۲ روشهای مبتنی بر معیار فاصله

اگر به دادگان موجود را به صورت نقاطی بازنمایی شده بر روی صفحه مختصات نگاه کنیم، می توانیم از معیار فاصله نقاط از یکدیگر به تصمیم گیری در مورد دادگان بپردازیم. در اینگونه رویکردها معمولا اقدام به تعریف یک معیار فاصله می کنند تا دادگان عادی را از دادگان ناهنجار جدا کنند. یک نمونه روش معروف که در این دسته می گنجد روش معروف عامل پرت محلی ^۸ است. در این روش میانگین فاصله هر نقطه از همسایگان محلی محاسبه شده و اگر این میانگین از یک مقدار آستانه بیشتر باشد،داده به عنوان داده ناهنجار شناخته می شود. برای سادگی کار، میانگین فاصله نقطه تا تمام همسایگان را بر میانگین فاصله میان همسایگان نقطه محاسبه شده و مقدار آستان برابر با عدد یک درنظر گرفته می شود [۱]. در استفاده از این روش نیز نیازی به وجود برچسب دادگان نیست همچنین این روش پارامتری برای یادگیری ندارد و در دسته روشهای بدون پارامتر نیز قرار می گیرد. در واقع این گونه روشها معمولا به صورت بدون ناظر هستند.

شکل ۳.۲: نمایش کلی روش عامل پرت محلی [۱]

⁸Local Outlier Factor

۴.۲ روشهای مبتنی بر مدل آماری

ایده اصلی در این دسته از رویکردها بدین صورت است که، دادگان عادی همواره احتمال رخدادن بالایی دارند، در نتیجه در نواحی از مدل مدل آماری قرار می گیرند که احتمال وقوع آنها بیشتر است. برای مثال در روش مدل خطی پویا^۹ ابتدا دادگان را از فضای ورودی به یک فضای از پیش تعیین شده نگاشت می کنیم. سپس با استفاده از مدل بدست آمده سعی در پیشبینی مقدار مقدار ورودی با توجه به دیگر دادگان موجود می کنیم. در اینجا امتیاز ناهنجاری میزان تفاوت مقدار پیشبینی شده و مقدار حقیقی داده است. اگر مقدار اختلاف از یک مقدار آستانه از پیش تعیین شده، که با استفاده از آزمایش با دادگان برچسب خورده بدست آمده، بیشتر باشد، به دسته دادگان ناهنجار تعلق می گیرد.

 $^{^9\}mathrm{Dynamic\ liner\ model}$

روشهای مبتنی بر یادگیری عمیق

قبل از معرفی روشهایی که از یادگیری عمیق استفاده میکنند، ابتدا به معرفی مدلهای پایهای یادگیری عمیق خواهیم پرداخت که در تشخیص ناهنجاری مورد استفاده قرار میگیرند.

1.4

۲.۳ مقایسه و نتیجه گیری

نتیجه گیری و کارهای آینده

- ۱.۴ نتیجه گیری
- ۲.۴ مسائل باز و کارهای قابل انجام
- ۳.۴ موضوع پیشنهادی برای پایان نامه

كتابنامه

- [1] Breunig, Markus M., Kriegel, Hans-Peter, Ng, Raymond T., and Sander, Jörg. Lof: Identifying density-based local outliers. In *Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data*, SIGMOD '00, pages 93–104, New York, NY, USA, 2000. Association for Computing Machinery.
- [2] Chandola, Varun, Banerjee, Arindam, and Kumar, Vipin. Anomaly detection: A survey. *ACM Comput. Surv.*, 41(3), jul 2009.
- [3] Ehret, Thibaud, Davy, Axel, Morel, Jean-Michel, and Delbracio, Mauricio. Image anomalies: A review and synthesis of detection methods. *Journal of Mathematical Imaging and Vision*, 61(5):710–743, 2019.
- [4] Grubbs, Frank E. Procedures for detecting outlying observations in samples. *Technometrics*, 11:1–21, 1969.
- [5] Ruff, Lukas, Vandermeulen, Robert, Goernitz, Nico, Deecke, Lucas, Siddiqui, Shoaib Ahmed, Binder, Alexander, Müller, Emmanuel, and Kloft, Marius. Deep one-class classification. In Dy, Jennifer and Krause, Andreas, editors, *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pages 4393–4402. PMLR, 10–15 Jul 2018.
- [6] Schölkopf, Bernhard, Williamson, Robert, Smola, Alex, Shawe-Taylor, John, and Platt, John. Support vector method for novelty detection. In *Proceedings of the 12th Interna*tional Conference on Neural Information Processing Systems, NIPS'99, pages 582–588, Cambridge, MA, USA, 1999. MIT Press.

Abstract

Anomaly detection is a well studied problem in varios fileds of sciance.

Department of computer engineering

Deep learning for anomaly detection

Master seminar report
Computer engineering - Artificial intelligence and robotics

Student name: Ali Naderi Parizi

Professor: Dr. Mohsen Soryani

April 2022