Parameter Estimation

Sunita Sarawagi

CS 215. Fall 2024

So far...

- Computing probabilities of outcomes given a fixed distribution.
- Distributions were given to us as a function..
- Functions had parameters with fixed values

What are Parameters?

Consider some probability distributions:

- Ber(p)

- Normal(μ , σ^2)
- $Y = \overline{MX + b} \quad \chi \sim \mathcal{N}(0, 1)$
- etc...

$$\theta = p$$

$$\theta = \lambda$$

$$\theta = (\alpha, \beta)$$

$$\theta = (\mu, \sigma^2)$$

$$\theta$$
 = (m, b)

Call these "parametric models"

Non parametare model histogra

Given model, parameters yield actual distribution

- Usually refer to parameters of distribution as θ
- Note that θ that can be a vector of parameters

Today's class

How to determine the values of the parameters.

Parameters differ based on the task and application. These are not fixed like the speed of light.

The setup for parameter estimation in real-life

- Step 1: A real-life problem:
 - Estimating the probability that at least two out of four servers will be alive next day
 - The probability that stock price will rise by 10% in the next week
 - 3. The expected number of clicks on an advertisement in the next 3 hours
- Step 2: Model the problem: Choose a functional form of the uncertainty.
 - Assume that servers fack independenty

 X = # of factions in a day X ~ Bon C

 ussian?

 X = change from onday to the next 1. Binomial?
 - 2. Gaussian?
 - X = # at deeles on the ad per hour 3. Poisson?

The setup for parameter estimation in real-life

Step 3: Collect a training sample by observing over several days.

Step 4: Estimate the unknown parameters using the training sample

The overall setup in parameter estimation density of Given: a density or distribution function with parameters $f(x, \theta)$

- Given: sample: $D = \{x_1, x_2, ..., x_N\}$
 - The i-th sample is a random variable X_i assumed to be independently identically distributed as per the unknown $f(x, \theta)$
- Find/ θ .

- Since D is a finite sample, we cannot really know the actual θ . Best we can do is obtain an estimate of θ
- We will denote the estimate as $\hat{\theta}$
- Goodness of estimate will be discussed later.

Types of estimators

• Maximum likelihood: sample D is all you got.

point eshimator

• Bayesian estimation: in addition to sample, we got prior beliefs.

Maximum Likelihood Estimation

If \(\theta \) were known we could have calculated the probability of getting the N

outcomes in
$$D = \{x, x_2, ..., x_N\}$$
 from the distribution as
$$P(D|\theta) = P(x_1, ..., x_N|\theta) = \prod_i P(x_i|\theta) = \prod_i f(x_i;\theta)$$

- Likelihood refers to the above function. Often denoted as $L(\theta)$
- Maximum likelihood estimator:
 - Choose the parameter θ for which the above likelihood is maximized

the parameter
$$\theta$$
 for which the above likelihood is
$$\begin{array}{ccc}
\Theta & & & & & & & & & \\
\Theta & & & & & & & \\
\Theta & & & & & & & \\
\end{array}$$

Finding heta that maximizes likelihood

Use log-likelihood instead of likelihood to convert products into sums

•
$$LL(\theta) = \underset{\text{sum over observations}}{\operatorname{Maximum likelihood estimator}} \log f(x_i, \theta)$$

• Maximum likelihood estimator

$$\hat{\theta} = \underset{\text{argmax}_{\theta}}{\operatorname{Maximum likelihood}} \log f(x_i | \theta)$$

Solved using numerical optimization methods applying calculus.

MLE for Bernoulli

$$X \sim Bern(p) \qquad X \leftarrow \{0, 1\}$$

$$f(x; p) = p^{x}(1-p)^{1-x}$$

Data sample: D N = 10

$$x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_6$$
 $0 1 1 0 0 0 0 0 1 1$

men LL $(\theta = [p]) = LL_0(p) = may \sum_{i=1}^{N} log p (i-p)$
 $= max \sum_{i=1}^{N} x_i log p + (N - \sum_{i=1}^{N} x_i) log (i-p)$
 $= max \sum_{i=1}^{N} x_i log p + (N - \sum_{i=1}^{N} x_i) log (i-p)$

Lot -
$$\frac{N}{2\pi i} = N_{\perp}$$

man $N_{\perp} \log P + (N - N_{\perp}) \log (1 - P)$
 $\frac{\partial LL}{\partial P} = \frac{N_{\perp}}{P} - \frac{N - N_{\perp}}{1 - P} = 0$
 $\Rightarrow P = \frac{N_{\perp}}{N}$

concare in Pareina star De

Examples: MLE for Poisson

$$x \sim \exp(x)$$

 $f(x, x) = e^{x}$

$$D = \{\chi_1, \chi_2 - \chi_1\}^{\chi_0}$$

$$LL(\chi) = \sum_{i=1}^{N} leq(e_i)^{\chi_0}$$

$$\frac{1}{\lambda} = \arg\max\left(\frac{N}{2\pi e}\right) \lg \lambda - \lambda N$$

$$\left(\frac{\lambda}{2}x_{i}\right)$$
 leg $\lambda - \frac{\lambda}{2}$ leg χ !

MLE for Gaussian

Gaussian

$$X \sim N(M, \sigma^2)$$
 $f(x, \theta = [M, \sigma^2]) = L = \frac{(x-M)^2}{2\sigma^2}$

$$f(x_1, \dots, x_n | \mu, \sigma) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left[\frac{-(x_i - \mu)^2}{2\sigma^2}\right]$$
$$= \left(\frac{1}{2\pi}\right)^{n/2} \frac{1}{\sigma^n} \exp\left[\frac{-\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right]$$

The logarithm of the likelihood is thus given by

$$\log f(x_1, ..., x_n | \mu, \sigma) = -\frac{n}{2} \log(2\pi) - n \log \sigma - \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma^2}$$

In order to find the value of μ and σ maximizing the foregoing, we compute

$$\frac{\partial}{\partial \mu} \log f(x_1, \dots, x_n | \mu, \sigma) = \frac{\sum_{i=1}^n (x_i - \mu)}{\sigma^2}$$

$$\frac{\partial}{\partial \sigma} \log f(x_1, \dots, x_n | \mu, \sigma) = \left(-\frac{n}{\sigma} + \frac{\sum_{i=1}^n (x_i - \mu)^2}{\sigma^3}\right)$$

Equating these equations to zero yields that

$$\hat{\mu} = \sum_{i=1}^{n} x_i / n$$

and

$$\hat{\sigma} = \left[\sum_{i=1}^{n} (x_i - \hat{\mu})^2 / n \right]^{1/2}$$

Example 7.2.d. The number of traffic accidents in Berkeley, California, in 10 randomly chosen nonrainy days in 1998 is as follows:

4, 0, 6, 5, 2, 1, 2, 0, 4, 3

Homund

Use these data to estimate the proportion of nonrainy days that had 2 or fewer accidents that year.

- Most difficult question: what distribution to use to model accidents in a city?
 - Binomial? Will need to know total number of drivers
 - Gaussian?
 - Poisson?

soluhon in hutbook

MLE for a new distribution: Gamma distribution

A random variable is said to have a gamma distribution with parameters (α, λ) , $\lambda > 0$, $\alpha > 0$, if its density function is given by

$$f(x) = \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{\alpha - 1}}{\Gamma(\alpha)} & x \ge 0\\ 0 & x < 0 \end{cases}$$
for what α is $f(x) \sim \inf(\lambda)$

$$\alpha = 1$$

- Can look like Gaussian for positive random variables.
- Reduces to exponential when $\alpha = 1$
- More flexible than exponential since mode is not at 0.
- Useful to model one-sided long tails e.g. blue curve here.

What is $\Gamma(\alpha)$? Gamma function

$$\underline{\Gamma(\alpha)} = \int_0^\infty \lambda e^{-\lambda x} (\lambda x)^{\alpha - 1} dx$$

$$= \int_0^\infty e^{-y} y^{\alpha - 1} dy \quad \text{(by letting } y = \lambda x\text{)}$$

The integration by parts formula
$$\int u \, dv = uv - \int v \, du$$
 yields, with $u = y^{\alpha - 1}$, $dv = e^{-y} dy$, $v = -e^{-y}$, that for $\alpha > 1$,
$$\int_0^\infty e^{-y} y^{\alpha - 1} \, dy = -e^{-y} y^{\alpha - 1} \left| \begin{array}{c} y = \infty \\ y = 0 \end{array} \right| + \int_0^\infty e^{-y} (\alpha - 1) y^{\alpha - 2} \, dy$$

$$= (\alpha - 1) \int_0^\infty e^{-y} y^{\alpha - 2} \, dy$$

or

$$\frac{\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)}{\alpha + i \text{the ger}} \text{ then}$$

$$\Gamma(\alpha) = (\alpha - 1)$$

$$\Gamma(1) = 1 \tag{5.7.1}$$

Estimate MIE of parameter 7 of banna distribution $D = \{ \chi_1, \chi_2, -, -, \chi_N \}$ $\theta = \lambda = \operatorname{argman} \sum_{i=1}^{N} \log \frac{(\lambda x_i) \lambda}{(\lambda x_i)}$ $= \lambda = \operatorname{argman} \sum_{i=1}^{N} \log \frac{(\lambda x_i) \lambda}{(\lambda x_i)}$ $= \operatorname{arg max} \sum_{i=1}^{N} \left[-\lambda x_i + (\alpha - 1) \log \lambda + \log \lambda \right]$ $\frac{\partial F}{\partial x} = -\frac{2}{2}xi + (\alpha - 1)N + \frac{N}{2} = 0$

 $(\alpha-1)$ $(\alpha-1$ $\frac{N}{2 \log x_i} - \frac{N}{r(a)} \frac{2}{2a} \frac{\pi(a)}{2} + \frac{N \log x}{2}$ Not eary to solve in dosed from. But ear he estimated numerically.