### Lecture 1.3

- Normalization and Standardization
- Overfitting and Underfitting

### Normalization and Standardization

- Both Normalization and Standardization are techniques used to adjust the scale of features in a dataset
- They are crucial in machine learning to ensure that all features contribute equally to the model and prevent any feature from dominating due to its scale

### Normalization

- Normalization (also called Min-Max Scaling) is the process of transforming features such that they lie within a specific range, typically [0, 1] or [-1, 1]
- This is done by scaling the data to a fixed range based on the minimum and maximum values of the feature
- Formula:

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

where x is the original value, min(x)is the minimum value, and max(x) is the maximum value in the dataset

 Usage: Algorithms like k-Nearest Neighbors (k-NN), and Neural Networks, which are sensitive to the scale of features.

# **Normalization Example**

| SL | Values | $\overline{x} = \frac{x - \min(x)}{\max(x) - \min(x)}$ | Normalized<br>Values |
|----|--------|--------------------------------------------------------|----------------------|
| 1  | 10     | $\frac{10-10}{50-10}$                                  | 0                    |
| 2  | 20     | $\frac{20-10}{50-10}$                                  | 0.25                 |
| 3  | 30     | $\frac{30-10}{50-10}$                                  | 0.50                 |
| 4  | 40     | $\frac{40-10}{50-10}$                                  | 0.75                 |
| 5  | 50     | $\frac{50-10}{50-10}$                                  | 1.00                 |

### Standardization

- Standardization: Transforming data to have a mean of 0 and a standard deviation of 1 (also known as Z-Score Scaling)
- It centers the data and scales it based on standard deviation
- Formula:

$$x' = \frac{x - \mu}{\sigma}$$

where  $\mu$  is the mean and  $\sigma$  is the standard deviation of the dataset

 Usage: Algorithms like Support Vector Machines (SVM), Logistic Regression, and Principal Component Analysis (PCA) which assume a normal distribution or work better with data centered around 0.

## **Z** Scores

#### Problem solving

A Z score or a "standardised score" is a numerical measure of how far an individual score is away from the mean score, within a normal distribution.



# Standardization Example

| SL | Values | Mean<br>(μ)               | Standard Deviation $(\sigma)$                                                | $x' = \frac{x - \mu}{\sigma}$ | Standardize<br>d Values |
|----|--------|---------------------------|------------------------------------------------------------------------------|-------------------------------|-------------------------|
| 1  | 10     | (10<br>+                  | $(10-30)^2 +$                                                                | $\frac{10 - 30}{14.14}$       | -1.41                   |
| 2  | 20     | 20<br>+<br>30             | $(20-30)^2 + (30-30)^2$                                                      | $\frac{20 - 30}{14.14}$       | -0.71                   |
| 3  | 30     | +<br>40<br>+<br>50)<br>/5 | $(30-30)^{2} + (40-30)^{2} + (50-30)^{2} + (50-30)^{2} = \sqrt{200} = 14.14$ | $\frac{30-30}{14.14}$         | 0.00                    |
| 4  | 40     |                           |                                                                              | $\frac{40 - 30}{14.14}$       | 0.71                    |
| 5  | 50     | = 30                      |                                                                              | $\frac{50 - 30}{14.14}$       | 1.41                    |

## Overfitting and Underfitting

- Overfitting and Underfitting are concepts in machine learning that describe how well a model generalizes to new data
- They are often indicators of how effectively a model has learned patterns from the training data

## Overfitting

- Overfitting occurs when a model learns not only the underlying patterns in the training data but also the noise and details that do not generalize to unseen data
- Symptoms
  - High accuracy on training data
  - Poor performance on validation or test data
- Causes
  - Model is too complex (e.g., too many parameters or layers)
  - Insufficient training data
  - Training for too many epochs without regularization
- Prevention
  - Use regularization techniques
  - Reduce the model's complexity
  - Use more training data or data augmentation

## Underfitting

- Underfitting occurs when a model is too simple to capture the underlying patterns in the data
- Symptoms
  - Poor performance on both training and validation/test data
  - Model fails to capture the complexity of the data
- Causes
  - Model is too simple
  - Insufficient training time
  - Features used in the model are not relevant or sufficient
- Prevention
  - Use a more complex model
  - Train the model for more epochs
  - Provide better or more features to the model

### **Differences**

| Aspect                       | Overfitting   | Underfitting |
|------------------------------|---------------|--------------|
| Performance on Training Data | High accuracy | Low accuracy |
| Performance on Test Data     | Poor          | Poor         |
| <b>Model Complexity</b>      | Too complex   | Too simple   |
| Generalization               | Poor          | Poor         |