MAD-CB

Machine Learning – 2

Machine Learning

- Inteligência artificial ("AI")
- Modelo orientado a dados
- Algoritmos aprendem por treinamento com dados observados
- E prever casos desconhecidos
- Computadores de hoje capazes de tratar essas bases de dados
 - Mesmo laptops

Machine Learning – 2

Supervisionada – Classificação vs. Regressão

Features – Covariáveis

- Variáveis para treinar o modelo
- Selecionar as variáveis certas crucial
- Mais features não necessariamente bom
 - Perigo de "overfitting"

Overfitting

Image Source: Wikipedia

Treinamento, Testes & Cross Validation

Treinamento e Testes

NUNCA, JAMAIS, USE OS MESMOS DADOS PARA TESTES QUE VOCÊ USOU PARA TREINAMENTO

Cross-Validation (k-fold)

- Uma de uma serie de técnicas usadas para fortalecer a capacidade do modelo para prever resultados
 - ► Bootstrap reamostragem
- Com os dados de treinamento só
- Divide os dados em k grupos ("folds") aleatórios de tamanho igual
- Construir o seu modelo usando todos fora de um grupo
- Testar o modelo nos dados no grupo que você reservou
 - ▶ Calcular o erro entre as previsões com o modelo e os valores observados
- Repetir e fazer a média dos erros
- O modelo (entre os k que você construiu) com a média menor é o modelo melhor

Dados

- Vêm de Wisconsin dados sobre câncer de mama
- Características dos tumores de mama
- Variável dependente: diagnose (diag)

Dados

```
glimpse(bc_data)
```

```
## Observations: 699
## Variables: 10
## $ diag
                                 <fctr> benign, benign, benign, benign, b...
## $ clump thickness
                                 <dbl> 5, 5, 3, 6, 4, 8, 1, 2, 2, 4, 1, 2...
## $ uniformity of cell size
                                 <dbl> 1, 4, 1, 8, 1, 10, 1, 1, 1, 2, 1, ...
## $ uniformity_of_cell_shape
                                 <dbl> 1, 4, 1, 8, 1, 10, 1, 2, 1, 1, 1, ...
## $ marginal adhesion
                                 <dbl> 1, 5, 1, 1, 3, 8, 1, 1, 1, 1, 1, 1...
## $ single_epithelial_cell_size <dbl> 2, 7, 2, 3, 2, 7, 2, 2, 2, 2, 1, 2...
## $ bare_nuclei
                                 <dbl> 1, 10, 2, 4, 1, 10, 10, 1, 1, 1, 1, 1...
## $ bland chromatin
                                 <dbl> 3, 3, 3, 3, 3, 9, 3, 3, 1, 2, 3, 2...
## $ normal nucleoli
                                 <dbl> 1, 2, 1, 7, 1, 7, 1, 1, 1, 1, 1, 1, 1...
## $ mitosis
                                 <dbl> 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1...
```

Gráfico das Diagnoses

```
brgr1 <- ggplot(bc_data, aes(x = diag, fill = diag)) + geom_bar()
brgr1</pre>
```


13 / 83

Gráfico das Covariáveis com a Diagnose

Pacote caret

- Funções para apoiar machine learning
- Pode conduzir todo a análise dentro de caret
- No grupos dos pacotes iniciais

Separar Treinamento e Testes

- Utilizar função caret::createDataPartition() para criar bases separadas
 - ▶ 1 para treinamento do modelo
 - 1 para testes
- Especificar (p) porcentagem de dados colocado na base de treinamento
 - ► Entre 0.5 (50%) e 0.7 (70%)
- createDataPartition() estratifica os dados baseada nas proporções da variável y

Criar as Bases Treinamento e Testes

```
set.seed(42)
indice <- createDataPartition(bc_data$diag, p = 0.7, list = FALSE)
train_data <- bc_data[indice, ] # use os indices para o treinamento
test_data <- bc_data[-indice, ] # use os outros para testes</pre>
```

Controle de Treinamento

- Antes de iniciar o passo de treinar o modelos, precisamos decidir qual tipo de validação queremos usar
 - bootstrap, k-fold cross validation
- Especificar através da função caret::trainControl()
- Queremos usar 10-fold cross validation
- Se pudermos repetir o processo de cross validation, faz a seleção do modelo ainda mais forte
 - Repetiremos 10 vezes

trainControl()

Treinamento do Modelo – Regressão Logistica

Objeto de Modelo

model_glm

Large train (23 elements, 1.1 Mb)

- R preserva todas as iterações do modelo
- Objeto grande (1MB)

Modelo

```
model_glm
```

Generalized Linear Model

```
##
## 490 samples
##
     9 predictor
##
    2 classes: 'benign', 'malignant'
##
## Pre-processing: scaled (9), centered (9)
## Resampling: Cross-Validated (10 fold, repeated 10 times)
## Summary of sample sizes: 442, 441, 441, 441, 441, 441, ...
## Resampling results:
##
##
     Accuracy Kappa
##
     0.9594223 0.9098052
##
##
```

Resumo dos Resultados do Modelo

```
summary(model glm)
## Call.
## NIII.I.
## Deviance Residuals:
      Min
                10
                   Median
                                 30
                                        Max
## -3.2868 -0.1322 -0.0726 0.0261
                                     2.4633
## Coefficients:
                             Estimate Std. Error z value Pr(>|z|)
##
                             -1.1531
                                         0.3491 -3.303 0.000956 ***
## (Intercept)
                              1.3582
## clump thickness
                                         0.4264 3.185 0.001446 **
## uniformity_of_cell_size
                               0.1379 0.6639 0.208 0.835447
## uniformity_of_cell_shape
                              0.9876 0.7211 1.370 0.170811
## marginal adhesion
                               0.9881 0.3693 2.675 0.007462 **
## single_epithelial_cell_size 0.2005 0.3693 0.543 0.587175
## bare_nuclei
                               1.2000 0.3578 3.354 0.000797 ***
## bland_chromatin
                               1.1885
                                         0.4730 2.513 0.011978 *
## normal nucleoli
                               0.3475
                                         0.3661 0.949 0.342520
## mitosis
                               0.8155
                                         0.5808 1.404 0.160293
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 631.346 on 489 degrees of freedom
## Residual deviance: 85.857 on 480 degrees of freedom
## ATC: 105.86
##
## Number of Fisher Scoring iterations: 8
```

O Modelo Pode Predizer os Resultados de Treinamento e de Teste?

- Função predict()
 - com modelo e valores para ser usados para previsão
- Aplicado a base de train como exemplo
- Mais interessante base de test
 - Modelo nunca viu esses dados antes
- Teste ácido

Previsões

0.6510204 0.3489796

```
predtr <- predict(model_glm, train_data)
predtestglm <- predict(model_glm, test_data)
prop.table(table(predtestglm))

## predtestglm
## benign malignant
## 0.6507177 0.3492823

prop.table(table(predtr))

## predtr
## benign malignant</pre>
```

Quais Variáveis Têm Importância para o Modelo

plot(caret::varImp(model glm))

Previsões com os Dados de Teste - Matriz de Confusão

confusionMatrix(predtestglm, test_data\$diag)

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction benign malignant
     benign
                  133
     malignant
                             69
                  Accuracy: 0.9665
##
                    95% CI: (0.9322, 0.9864)
##
      No Information Rate: 0.6555
      P-Value [Acc > NTR] : <2e-16
##
##
                     Карра: 0.9261
    Mcnemar's Test P-Value : 1
##
##
##
               Sensitivity: 0.9708
##
               Specificity: 0.9583
            Pos Pred Value: 0.9779
##
##
            Neg Pred Value: 0.9452
                Prevalence: 0.6555
##
            Detection Rate: 0.6364
##
##
      Detection Prevalence : 0.6507
##
         Balanced Accuracy: 0.9646
##
          'Positive' Class : benign
##
```

Previsões com os Dados de Treinamento – Matriz de Confusão

confusionMatrix(predtr, train_data\$diag)

```
## Confusion Matrix and Statistics
##
              Reference
## Prediction benign malignant
     benign
                  313
                            163
     malignant
##
##
                  Accuracy: 0.9714
                    95% CI: (0.9525, 0.9843)
       No Information Rate: 0.6551
##
       P-Value [Acc > NIR] : <2e-16
##
##
                     Kappa: 0.9369
##
   Moneman's Test P-Value : 0.7893
##
               Sensitivity: 0.9751
               Specificity: 0.9645
##
            Pos Pred Value: 0.9812
##
            Neg Pred Value: 0.9532
##
                Prevalence: 0.6551
##
##
            Detection Rate: 0.6388
##
      Detection Prevalence : 0.6510
         Balanced Accuracy: 0.9698
##
##
          'Positive' Class : benign
##
```

"Receiver Operating Characteristic" (ROC) Validação do Modelo

- Desenvolvido ao início da WWII para determinar o que foi o sinal recebido pela nova tecnologia, radar
 - Avião ou pássaro
- Mede sensibilidade vs. especificidade de um modelo
- Sensibilidade = % do resultado positivo correto
 - ► Teste mede % dos resultados positivos das pessoas com uma doença
 - ► Taxa de previsões positivas certas ("True positive rate", TPR)
- Especificidade = % do resultado negativo correto
 - ► Teste mede % dos resultados negativos das pessoas sem uma doença
 - ► Taxa de previsões positivas erradas ("False positive rate", FPR)
 - Visualização da troca entre alta sensibilidade do modelo vs. alta especificidade
 - Não pode ter os 2 juntos

AUC (Área abaixo da Curva)

- AUC mede quanto porcentagem da área do gráfico a curva do modelo cobre
- 100% quer dizer que o modelo é perfeitamente sensível e especifico
- 50% quer dizer que o resultado é puramente aleatório
- Modelos com AUC maiores prevêm melhor que eles com AUC menores
- Pergunta:
 - Como calcular área abaixo de uma curva qualquer em matemática?

ROC em R

- 2 Pacotes
 - ▶ pROC
 - ROCR
- Iguais (basicamente)
- Começamos com pROC
 - ► Comando principal roc

pROC::roc()

- Compara as previsões contra as observações
- Previsões precisam ser numéricas (não factor)
- Use as opções seguintes:
 - ▶ plot = TRUE, percent = TRUE, ci = TRUE, grid = TRUE
- Produz um gráfico e dados sobre o AUC

Chamada e Estatísticas

Area under the curve: 96.46% ## 95% CI: 93.74%-99.18% (DeLong)

##

colocar predtest na faixa de 0:1 (atualmente 1:2)

Data: predtestroc in 137 controls (test_data\$diag benign) < 72 cases (test_data\$

Gráfico

Outra Curva ROC com Dados Mais Variáveis

Procedimento com ROCR

- ROCR quer os dados num formato específico
- Precisa refazer a previsão utilizando a função deste pacote
- Função usará uma versão numérica das previsões predtest
- Depois calcular os valores da curva e fazer o gráfico
- ROCR utiliza a terminologia "tpr" e "fpr" para gráfico ROC
- Pode imprimir sensibilidade e especificidade com sens, spec

```
## Fazer previsão do modelo com ROCR
ROCRpred <- prediction(as.numeric(predtestroc), test_data$diag)
ROCRperf <- performance(ROCRpred, "tpr", "fpr")</pre>
```

Gráfico

Gráfico com Cores

Limites da Decisão sobre diag

- Onde no gráfico fica a troca ótima?
 - No ponto mais para cima e para esquerda
- pROC::coords() pode calcular este ponto
- Precisa dar as seguintes informações a função:
 - nome de objeto de ROC
 - Palavra "best"
 - Coordenados para retornar a você ("threshold")

Limites de Nosso Modelo

```
coords(rocteste, "best", ret = "threshold")
## [1] 0.5
```

Gráfico com Cores

Novo Modelo – Modelos de Arvore – rpart

- Modelos que constroem arvores de decisão
- Excelentes para problemas de classificação
- Pacote rpart
- Gráficos mostra como escolha das classes está sendo feita
 - Gráfico vem do pacote rpart.plot

Como Funciona uma Arvore

- Cf. Kuhn & Johnson, Applied Predictive Modeling (2013)
- Feita de nodos e ramos
- Ramos conectam nodos até que chegar num nodo terminal
- Algoritmo cria uma serie de partilhas (divisões) baseado em testes lógicos aninhados
- Os testes lógicos definem a previsão que o modelo faria com novos dados

Exemplo de uma Regra de uma Arvore

```
if Predictor A >= 1.7 then
| if Predictor B >= 202.1 then Outcome = 1.3
| else Outcome = 5.6
else Outcome 2.5
```

Arvores São uma Técnica de Machine Learning Popular

- Interpretação fácil
- Podem lidar com muitas convariáveis de vários tipos
- Não precisa descrever exatamente a relação entre
 - Variável dependente
 - Variáveis independentes
- NA's não criam problemas
- Mas, tem desvantagens também
 - São instáveis (pequena mudança numa variável pode cause grande mudança no resultado)
 - Exatidão de previsões não tão boa que outros tipos de modelos

Funcionamento do Modelo de Arvore

- Algoritmo divide os dados em grupos menores que são mais homogêneos com a dependente
- 3 Critérios para divisão
 - Qual variável de previsão para usar para o "split"
 - Profundidade da arvore
 - A equação de previsão nos nodos terminais
- Metodologia de rpart vem de Breiman et. al (1984)
 - Classification and regression tree (CART)

Paramétros Chaves para rpart

- method
 - ► Para classificação: "class"
 - ▶ Para regressão: "anova"
- control
 - Vai chamar rpart.control explicito
 - xval: número de cross-validations
 - minbucket: número mínimo de observações em um nodo terminal
- parms parâmetros para dividindo os casos
 - Só usado para classificação
 - ▶ information

Vamos Construir Um Modelo de Câncer de Mama

Arvore

Resumo do Modelo de rpart

```
summary(fitree1, cp = 1)
## Call:
## rpart(formula = diag ~ .. data = train data, method = "class".
      parms = list(split = "information"), control = rpart.control(xval = 10,
          minbucket = 2, cp = 0))
##
##
     n = 490
##
              CP nsplit rel error
                                                   xstd
                                      xerror
## 1 0.822485207
                     0 1.00000000 1.0000000 0.06226029
## 2 0 038461538
                    1 0 17751479 0 1775148 0 03140182
                 3 0.10059172 0.1360947 0.02770369
## 3 0.009861933
## 4 0.005917160
                    6 0.07100592 0.1597633 0.02988737
## 5 0 000000000
                 11 0 04142012 0 1360947 0 02770369
##
## Variable importance
##
      uniformity of cell size
                                 uniformity_of_cell_shape
##
                                                        17
##
                   bare_nuclei
                                           bland_chromatin
##
                            17
                                                        14
               normal_nucleoli single_epithelial_cell_size
##
                                                        13
##
               clump_thickness
                                                   mitosis
##
##
            marginal adhesion
##
                             1
##
## Node number 1: 490 observations
##
     predicted class=benign expected loss=0.344898 P(node) =1
##
      class counts: 321
                           169
##
     probabilities: 0.655 0.345
```

Splits com cp = 0.1

```
Node number 1: 490 observations, complexity param=0.8224852
 predicted class=benign
                           expected loss=0.344898 P(node) =1
    class counts: 321 169
  probabilities: 0.655 0.345
 left son=2 (333 obs) right son=3 (157 obs)
 Primary splits:
     uniformity_of_cell_size < 3.5 to the left, improve=202.8455, (0 missing)
     uniformity of cell shape < 2.5 to the left, improve=189.0331, (0 missing)
     bare nuclei
                               < 2.5 to the left, improve=164.8588, (0 missing)
     bland chromatin
                               < 3.5 to the left, improve=156.3825, (0 missing)
     single epithelial cell size < 2.5 to the left, improve=152.2275, (0 missing)
 Surrogate splits:
     uniformity of cell shape < 3.5 to the left, agree=0.939, adi=0.809, (0 split)
     single_epithelial_cell_size < 3.5 to the left, agree=0.894, adj=0.669, (0 split)
     normal nucleoli
                      < 2.5 to the left, agree=0.890, adj=0.656, (0 split)
     bland chromatin
                          < 3.5 to the left, agree=0.888, adj=0.650, (0 split)
     bare nuclei
                               < 3.5 to the left, agree=0.880, adj=0.624, (0 split)
Node number 2: 333 observations
 predicted class=benign
                           expected loss=0.06306306 P(node) =0.6795918
    class counts: 312
                         21
  probabilities: 0.937 0.063
Node number 3: 157 observations
 predicted class=malignant expected loss=0.05732484 P(node) =0.3204082
   class counts:
                     9 148
  probabilities: 0.057 0.943
```

Previsões com a Arvore

```
predtesttr <- predict(fitree1, newdata = test_data, type = "class")
prop.table(table(predtesttr))</pre>
```

```
## predtesttr
## benign malignant
## 0.6698565 0.3301435
```

Confusion Matrix - Arvore

confusionMatrix(predtesttr, test_data\$diag)

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction benign malignant
    benign
                133
                            65
    malignant
                  Accuracy: 0.9474
##
##
                   95% CI: (0.9078, 0.9734)
      No Information Rate: 0.6555
      P-Value [Acc > NTR] : <2e-16
##
##
                    Kappa: 0.8823
   Mcnemar's Test P-Value: 0.5465
##
##
              Sensitivity: 0.9708
              Specificity: 0.9028
           Pos Pred Value: 0.9500
##
           Neg Pred Value: 0.9420
##
               Prevalence: 0.6555
           Detection Rate: 0.6364
##
##
     Detection Prevalence: 0.6699
##
         Balanced Accuracy: 0.9368
##
          'Positive' Class : benign
##
```

ROC Dados

[1] 0.5

```
## colocar predtest na faixa de 0:1 (atualmente 1:2)
predtesttrroc <- as.numeric(predtesttr) -1</pre>
rocteste <- roc(response = test_data$diag,
                predictor = predtesttrroc,
                levels = c("benign", "malignant"),
                plot = FALSE, percent = TRUE,
                ci = TRUE, grid = TRUE)
rocteste
##
## Call:
## roc.default(response = test data$diag, predictor = predtesttrroc, levels = c
##
## Data: predtesttrroc in 137 controls (test_data$diag benign) < 72 cases (test_dat
## Area under the curve: 93.68%
## 95% CI: 89.95%-97.4% (DeLong)
suppressMessages(coords(rocteste, "best", ret = "threshold"))
```

54 / 83

Gráfico

Arvores Mais Robustas – Random Forests

- Random Forests elaborado como algoritmo por Breiman em 2000
- Ideia básica: Combinando resultados de muitas arvores vai produzir uma arvore final melhor

Grow many deep regression trees to randomized versions of the training data, and average them. Efron & Hastie, 2016

 "Randomized versions" – pode ser bootstrapping ou outras técnicas de re-amostragem

Algoritmo de Random Forests

```
1 Select the number of models to build, m
 2 for i = 1 to m do
 3
      Generate a bootstrap sample of the original data
      Train a tree model on this sample
 4
      for each split do
 5
          Randomly select k \ (< P) of the original predictors
 6
 7
          Select the best predictor among the k predictors and
          partition the data
      end
 8
      Use typical tree model stopping criteria to determine when a
 9
      tree is complete (but do not prune)
10 end
```

Algorithm 8.2: Basic Random Forests

Kuhn & Johnson (2013)

Random Forests em R

- Pacote randomForest
- Formato:

- y deve ser expressa como factor para classificação
- Argumentos chaves:
 - ntrees: número de arvores para a calcular; deve ser muito maior que o número das covariáveis
 - importance = TRUE: para calcular os valores para importância dos variáveis

Random Forests Aplicado ao Câncer de Mama

Confusion Matrix aqui é dos dados de treinamento

OOB Error????

- "Out of Bag"
 - Para todos as arvores, os erros associados com os valores não utilizados no treinamento do modelo
 - ► Como fizemos com cross-validation

Previsões com a Random Forest

```
predtestrf <- predict(rffit, newdata = test_data, type = "class")
prop.table(table(predtestrf))</pre>
```

```
## predtestrf
## benign malignant
## 0.645933 0.354067
```

Desempenho de Random Forest

confusionMatrix(predtestrf, test_data\$diag)

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction benign malignant
     benign
                 133
     malignant
                 4
                            70
                  Accuracy: 0.9713
##
                    95% CI: (0.9386, 0.9894)
##
      No Information Rate: 0.6555
      P-Value [Acc > NTR] : <2e-16
##
##
                    Kappa: 0.9369
   Mcnemar's Test P-Value : 0.6831
##
##
               Sensitivity: 0.9708
##
               Specificity: 0.9722
           Pos Pred Value: 0.9852
##
           Neg Pred Value: 0.9459
##
               Prevalence: 0.6555
##
           Detection Rate: 0.6364
##
##
     Detection Prevalence: 0.6459
##
         Balanced Accuracy: 0.9715
##
          'Positive' Class : benign
##
```

Importância das Variáveis

```
randomForest::varImpPlot(rffit, type = 1) ## NB, função dentro de randomForest
```

rffit

bare_nuclei
uniformity_of_ce||_size
uniformity_of_ce||_size
uniformity_of_ce||_shape
bland_chromatin
clump_thickness
marginal_adhesion
normal_nucleoli
single_epithelial_cell_size
mitosis

MeanDecreaseAccuracy

O Que Quer Dizer "Mean Decrease Accuracy"

- Através de todos as arvores
 - A variável causa uma perda de precisão no modelo
- Variáveis que podem causar perda de precisõ são mais importantes
- Exemplos:
 - ▶ "bare nuclei" é a mais importante porque pode causar mais perda
 - "mitosis" é o menos importante, porque qualquer valor que assuma não vai afetar o resultado do modelo, diag

Controle de Erros

• Gráfico de redução de MSE com o número de arvores calculadas

```
plot(rffit, log = 'y')
```

rffit

Curva ROC e AUC para Random Forests

```
## colocar predtest na faixa de 0:1 (atualmente 1:2)
predtestrfroc <- as.numeric(predtestrf) -1</pre>
rocteste <- roc(response = test_data$diag,
                predictor = predtestrfroc,
                levels = c("benign", "malignant"),
                plot = FALSE, percent = TRUE,
                ci = TRUE, grid = TRUE)
rocteste
##
## Call:
## roc.default(response = test data$diag, predictor = predtestrfroc, levels = c
##
## Data: predtestrfroc in 137 controls (test_data$diag benign) < 72 cases (test_dat
## Area under the curve: 97.15%
## 95% CI: 94.77%-99.53% (DeLong)
suppressMessages(coords(rocteste, "best", ret = "threshold"))
```

```
## [1] 0.5
```


Fazer Random Forests com caret

- Só precisa mudar o a especificação de train
- method = "rf"
- caret chama randomForest para fazer os calculos
 - wrapper função
- Aqui vamos fazer set.seed(42) para ser consistente com os outros métodos

Calcular os Random Forests

Resultados Básicos - RF - caret

```
model_rf
```

```
## Random Forest
##
## 490 samples
    9 predictor
##
##
    2 classes: 'benign', 'malignant'
##
## Pre-processing: scaled (9), centered (9)
## Resampling: Cross-Validated (10 fold, repeated 10 times)
## Summary of sample sizes: 442, 441, 441, 441, 441, 441, ...
## Resampling results across tuning parameters:
##
    mtry Accuracy Kappa
##
##
          0.9712481 0.9367575
    2
    5 0.9651085 0.9229284
##
    9 0.9626636 0.9170857
##
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 2.
```

Calcular as Variáveis Importantes

```
imp <- model_rf$finalModel$importance # Guarda em unidades originais
importance <- varImp(model_rf, scale = TRUE) # Scale coloca em escala de 100 -> 0
```

Variáveis Importantes – Escala Original

• % das arvores em que a variável aparece (eu acho??)

```
imp[order(imp, decreasing = TRUE), ]
```

```
##
       uniformity_of_cell_size
                                    uniformity_of_cell_shape
##
                      45.048757
                                                    41.551030
##
                    bare nuclei
                                             bland chromatin
                      35,116162
                                                    26.027902
##
   single epithelial cell size
                                             normal nucleoli
##
                      22.800586
                                                    19.321654
##
               clump_thickness
                                           marginal_adhesion
                                                    13.450213
##
                      13.647374
##
                        mitosis
##
                       2.834417
```

Variáveis Importantes - Escala 100 -> 0

importance

```
## rf variable importance
##
##
                                Overall
## uniformity_of_cell_size
                                 100.00
                                  91.71
## uniformity_of_cell_shape
## bare_nuclei
                                  76.47
## bland chromatin
                                  54.94
  single_epithelial_cell_size
                                  47.30
## normal_nucleoli
                                  39.06
## clump_thickness
                                  25,61
## marginal_adhesion
                                  25.15
## mitosis
                                   0.00
```

Variáveis Importantes – Gráfico

plot(importance)

Previsões do Modelo de RF de caret

##

Detection Rate: 0.6364 Detection Prevalence: 0.6459

```
predrfx <- predict(model_rf, test_data)</pre>
prop.table(table(predrfx))
## predrfx
     benign malignant
  0.645933 0.354067
confusionMatrix(predrfx, test_data$diag)
## Confusion Matrix and Statistics
             Reference
## Prediction benign malignant
    benign
               133
    malignant
                 4 70
##
##
                 Accuracy: 0.9713
                   95% CI: (0.9386, 0.9894)
##
##
      No Information Rate: 0.6555
      P-Value [Acc > NIR] : <2e-16
##
##
                    Kappa: 0.9369
##
   Monemar's Test P-Value : 0.6831
##
              Sensitivity: 0.9708
              Specificity: 0.9722
           Pos Pred Value : 0.9852
##
           Neg Pred Value: 0.9459
                Prevalence: 0.6555
##
```

Matriz de Confusão - Random Forest - caret

confusionMatrix(predrfx, test_data\$diag)

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction benign malignant
     benign
                 133
     malignant
                             70
                  Accuracy: 0.9713
##
                    95% CI: (0.9386, 0.9894)
##
      No Information Rate: 0.6555
      P-Value [Acc > NIR] : <2e-16
##
##
                     Kappa: 0.9369
   Mcnemar's Test P-Value : 0.6831
##
##
##
               Sensitivity: 0.9708
##
               Specificity: 0.9722
            Pos Pred Value: 0.9852
##
##
            Neg Pred Value: 0.9459
                Prevalence: 0.6555
##
            Detection Rate: 0.6364
##
##
      Detection Prevalence : 0.6459
##
         Balanced Accuracy: 0.9715
##
          'Positive' Class : benign
##
```

Previsões no Formato de Probabilidades

- type = "prob" de 'predict() põe os valores em probabilidades
- Deixa você decidir qual seria o limite para diferenciar entre "benign" e "malignant"
 - Até agora, sempre foi 0.5

	actual	benign	malignant	prediction
3	benign	1.000	0.000	benign
8	benign	1.000	0.000	benign
9	benign	0.966	0.034	benign
12	benign	1.000	0.000	benign
13	malignant	0.556	0.444	benign
17	benign	1.000	0.000	benign
19	malignant	0.044	0.956	malignant
21	malignant	0.188	0.812	malignant

Acertamos com o Novo Modelo?

```
results$correct <- ifelse(results$actual == results$prediction, TRUE, FALSE)
prop.table(table(results$correct))</pre>
```

```
##
## FALSE TRUE
## 0.02870813 0.97129187
```

Gráfico dos Resultados

Este Gráfico Mostra

- Erros de "benign"
 - ▶ Os 2 são perto a 0.50
- Erros de "malignant"
 - Mais espalhadas
 - ► Alguns com probabilidades bem perto a verdadeiro "malignant" (0.0)
- Mais confiança nas previsões de "benign"
- Parece que 0.5 é um bom "threshold" entre determinação de "benign" ou "malignant"
 - Discrimina bem

Curva ROC e AUC para RF com caret

colocar predtest na faixa de 0:1 (atualmente 1:2)

95% CI: 94.77%-99.53% (DeLong)

```
predtestroc <- as.numeric(predrfx) -1</pre>
rocteste <- roc(response = test data$diag,
                predictor = predtestroc,
                levels = c("benign", "malignant"),
                plot = FALSE, percent = TRUE,
                ci = TRUE, grid = TRUE)
rocteste
##
## Call:
## roc.default(response = test_data$diag, predictor = predtestroc, levels = c("
##
## Data: predtestroc in 137 controls (test_data$diag benign) < 72 cases (test_data$
## Area under the curve: 97.15%
```

Gráfico

Tópicos para Semana que Vem

- Machine Learning Não-Superivisionado
 - Cluster Analysis