Niranjan Agnihotri Assignment 3 Date: 15 November, 2019 SBU ID 112686660

Implementation Details -

Model.py -

- 1. The cubic activation was straightforward to execute: the input tensor was raised to the power of three and returned.
- 2. The model layer weights were randomly initialized in the init method. Some of the important variables which were initialized are -
 - a. Embeddings dims ([vocab_size, embedding_dim]) and standard dev of 0.35
 - b. Hidden_weights dims([num_tokens*embedding_dim, hidden_dim]) and standard dev of 0.02
 - c. Hidden bias initialized to zeros
 - d. Output_weights dims([num_transitions, hidden_dim]) and standard dev of 0.02
- 3. In the call method, the inputs were processed as mentioned in the paper. And the logits were returned.
- 4. In the compute_loss method, (-1) labels were used to create masks and softmax was computed. Later only labels with value (1) were isolated then the final loss was computed.
- 5. Later the regularization term was computed and added to the loss and the combined sum was returned.

Parsing_system.py -

- 1. The apply function was implemented as mentioned in the paper.
- 2. At first two operands are popped and I checked if one of the three operations were applicable and executed if they were applicable.
- 3. The transformed configuration object was returned.

Data.py -

- The get_configuration_features method was implemented as described in the paper "A Fast and Accurate Dependency Parser using Neural Networks" (2014)
- The features, postags and arclabels were collected by parsing the trees formed in the previous steps. The nodes of the trees were collected as labels.
- 3. After getting the features, postags and arclables their respective ids were also fetched and appended to a list.
- 4. The final list created above was returned.

Results on dev set -

Following are the results of various models created by using different activation functions. I got the best results based on cubic activation function. So, I produced the final predictions on the model trained by using cubic activation. My findings for other activation functions are as below.

- 1. Cubic activation gives the best possible UAS.
- 2. Model trained without embeddings, model trained on tanh activation and model trained without GloVe are comparable.
- 3. The model trained on sigmoid is the least preferable model.

Cubic Activation	Sigmoid
UAS: 87.81065383752524 UASnoPunc: 89.3601989487368 LAS: 85.29301792257647 LASnoPunc: 86.51444073927541 UEM: 34.529411764705884 UEMnoPunc: 37.23529411764706 ROOT: 90.58823529411765	UAS: 85.48246379340429 UASnoPunc: 87.36788560447634 LAS: 82.9673205872822 LASnoPunc: 84.5164754422653 UEM: 29.235294117647058 UEMnoPunc: 31.705882352941178 ROOT: 84.11764705882354
Tanh UAS: 87.26225789565521 UASnoPunc: 88.9476063980105 LAS: 84.78450532193334 LASnoPunc: 86.14141185779687 UEM: 32.64705882352941 UEMnoPunc: 35.294117647058826 ROOT: 87.05882352941177	Without emb tune UAS: 87.80065383752524 UASnoPunc: 89.26019374487368 LAS: 85.09301792257647 LASnoPunc: 86.31349073927541 UEM: 34.220417164705884 UEMnoPunc: 37.13529401764706 ROOT: 90.38023529411765
Without Glove UAS: 87.63367151083082 UASnoPunc: 89.18216243712203 LAS: 85.21075853129597 LASnoPunc: 86.452269259029 UEM: 35.23529411764706 UEMnoPunc: 38.11764705882353 ROOT: 89.11764705882354	