

1 Moore'sches Gesetz

- alle 18-24 Monate verdoppelt sich die Anzahl der Transistoren auf gleicher Fläche
- Exponentielles Wachstum der Transistorzahl, exponentieller Rückgange des Preises pro Tran-
- Herstellungskosten (Fixkosten, Variable Kosten, Technologiefaktor), Entwicklerproduktivität, Verlustleistungsdichte

2 Einheiten

Potenz	Vorsatz	Potenz	Vorsatz	Hz	s^{-1}
10 ¹²	Т	10 ⁻¹	d	N	$kgms^{-2}$
10^{9}	G	10^{-2}	с	J	Nm = VAs
10^{6}	М	10^{-3}	m	W	$VA = Js^{-1}$
10^{3}	k	10^{-6}	μ	C	As
10^{2}	h	10^{-9}	n	V	JC^{-1}
10^{1}	da	10^{-12}	р	F	CV^{-1}
	!	10^{-15}	f	Ω	VA^{-1}
			1	H	VsA^{-1}

 $Bit \xrightarrow{\cdot 8} Bute \xrightarrow{\cdot 1024} kBute \xrightarrow{\cdot 1024} MBute$

3 Polyadische Zahlensysteme

$$Z = \sum_{i=-n}^{p-1} r^i \cdot d_i = d_{p-1}...d_1d_0.d_{-1}...d_n$$

$$Z: \mathsf{Zahl}, \quad r: \mathsf{Basis}, \quad d_i: \mathsf{Ziffer}, \quad p: \#\mathsf{Ziffern} \text{ vorne} \quad n: \#\mathsf{Nachkommastellen}$$

Binäres Zahlensystem:

$$\begin{array}{lll} d_{i2} \in 0,1 & B = \sum\limits_{i=-n}^{p-1} 2^i \cdot d_i & d_{-n} : LSB; & d_{p-1} : MSB \\ & & & \\ \text{Octalsystem:} & & & \\ d_{i8} \in 0,1,2,3,4,5,6,7 & & d_{i16} \in 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F \\ \end{array}$$

Benötigte Bits: N:n Bit. M:m Bit $N+M: \max\{n,m\}+1$ Bit $N \cdot M : n + m$ Bit

3.1 Umrechnung

	=	
	$Z \ge 1$	Z < 1
$r \rightarrow 10$	$Z_{10} = \sum_{i=1}^{\infty} r^i \cdot d_i$ $101_2 \to 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1$	$Z_{10} = \sum_{i=0}^{\infty} r^{-i} \cdot d_{-i}$ 0.11 ₂ \to 1 \cdot 0.5 + 1 \cdot 0.25
$10 \rightarrow r$	$d_i = Z_{10} \% r^i \ (d_i = Z_{10} \bmod r^i)$	-
	$ d_i = Z_{10} \% r^i \ (d_i = Z_{10} \bmod r^i) $ $58/8 = 7 \text{ Rest } 2(LSB) $	$0.4 \cdot 2 = 0.8$ Übertrag $0(MSB)$
	7/8 = 0 Rest 7(MSB)	$0.8 \cdot 2 = 1.6$ Übertrag 1
	(Ende wenn 0 erreicht)	(Wiederholen bis 1 oder Periodizität)
	Auf Ende achten $1r3\%5 \rightarrow 0r1$	

Wertebereich: $-2^{n-1} \le Z \le 2^{n-1} - 1$ 3.2 Zweierkomplement

 $Z \rightarrow -Z$ (Umkehrung gleich)

1. Invertieren aller Bits

2. Addition von 1 3. Ignoriere Überträge beim MSB

Bsp: Wandle 2 in -2 um $0010 \implies 1101$ 1101 + 1 = 1110 \Rightarrow $-2_{10} = 1110_2$

3.3 Gleitkommadarstellung nach IEEE 754

Bitverteilung(single/double):

s(1)	e(8/11)	f(23/52)

s: Vorzeichen, e: Exponent, f: Mantisse (Nachkommastellen! $2^{-1}2^{-2}...$)

Spezialwerte: $Z=0 \Leftrightarrow e=0$ $Z=+(-)\infty \Leftrightarrow e=255, s=0(1)$

IEEE → Wert Z $Z = (-1)^s \cdot (1 + 0.f) \cdot 2^{e-127}$	Bsp: $s = 1$, $e = 126$, $f = 01_2$ $Z = -1 \cdot 2^{-1} \cdot 1.01_2 = -0.101_2 = -0.625$
	-0.023
Wert $Z o IEEE$ (Binärdarstellung)	Bsp: $Z = 11.25$
s = 0(positiv), $s = 1$ (negativ)	s = 0
$Z ightarrow Z_2$ (beim Komma teilen)	$Z = 1011.01_2$
Z_2 n-mal shiften $ ightarrow 1.xxx\dots$	$Z = 1.01101_2 \cdot 2^3$
Exponent $e=n+127 \rightarrow e_2$	$e = 3 + 127 = 130 = 10000010_2$
Mantisse $f_2 = xxx\dots$	f = 011010002

Mantisse $f_2 = xxx\dots$	f = 011010002
Wert $Z o$ IEEE (Formel)	Bsp: $Z = 11.25$
s = 0(positiv), $s = 1$ (negativ)	s = 0
$E = \lfloor \log_2 Z \rfloor$	$E = \lfloor \log_2 11.25 \rfloor = \lfloor 3, 49 \dots \rfloor = 3$
$e = E + 127 \rightarrow e_2$	$e = 3 + 127 = 130 = 10000010_2$
$f = \left(\frac{ Z }{2E} - 1\right) \cdot 2^{23} \to f_2$	$f = \left(\frac{ 11.25 }{2^3} - 1\right) \cdot 2^{23} = 3407872 = 01101000 \dots 2$

0x00 - 0x7F

4.1 ASCII

4.2 UTF-8

American Standard Code for Information Exchange Fixe Codewortlänge (7 Bit, 128 Zeichen)

4 Zeichenkodierung

Universal Character Set Transformation Format Variable Codewortlänge (1-4 Byte) \rightarrow Effizient

Schema

- MSB = 0 → 8 Bit (restliche Bit nach ASCII)
- MSB = $1 \rightarrow 16$, 24 oder 32 Bit
 - Byte 1: Die ersten 3, 4, 5 Bit geben die Länge des Codewortes an (110, 1110, 11110)
 - Byte 2-4: Beginnen mit Bitfolge 10

3.4 Zahlenoperationen

Zahlensystem	Add	Sub	Mul
Vorzeichenlos	Normal	Normal	Normal
Einser Kom- plement	Vorzeichen Verglei- chen		
Zweier Kom- plement	Normal	Normal	n + mbit Vorde- re Bits mit Multipli- kant MSB auffüllen
Float	'	'	'

- Festkomma (Vorzeichenlos)
 - Erweiterung: Null vorne anhängen
 - Addition: Bitweise
 - Subtraktion: Bitweise
 - Multiplikation: Add-Shift (Add für jede 1 im Multiplikant) (Resultat eins rechts Shiften)
 - Division:
- Festkomma (Einser Komplement)
 - Erweiterung: Null an Stelle 2 einfügen.
 - Addition:
 - 1. Prüfe Beide Vorzeichen
 - 2. Gleiches Vorzeichen → reguläre Addition
 - 3. Verschieden → Subtraktion kleiner Operator von großem Operator. Übernahme Vorzeichen des großen Operators.

• Festkomma (Zweier Komplement)

- Erweiterung: 1 vorne anhängen
- Addition: Regulär (Gleiche Parameterlänge) (Overflow ignorieren)
- Subtraktion: Addition mit komplementiertem Subtraktor (Gleiche Parameterlänge)(Overflow ignorieren)
- Multiplikation:
 - 1. Zahlen auf Produktlänge erweitern.
- 2. Zahlen mittels Add-Shift multiplizieren (Überflüssige Bits nach links rausschieben

• Gleitkomma (IEEE Float)

- Addition: Exponenten auf größeren angleichen, Mantissen addieren. Vorzeichen inspizieren
- Subtraktion
- Multiplikation: Exponenten auf größeren angleichen, Mantissen multiplizieren. Vorzeichen multiplizieren
- Division:

Normal 4.3 Zahlensysteme

Base 10	Base 2	Base 8	Base 16
00	0000	0 000	0 x0
01	0001	0o 01	0x1
02	0010	0o 02	0x2
03	0011	0o 03	0 x3
04	0100	0o 04	0x4
05	0101	0o 05	0x5
06	0110	0o 06	0 x6
07	0111	0o 07	0x7
80	1000	0o 10	0 x8
09	1001	0o11	0 x9
10	1010	0o 12	0xA
11	1011	0o 13	0xB
12	1100	0o14	0xC
13	1101	0o 15	0xD
14	1110	0o 16	0xE
15	1111	0o17	0xF

5 Boolsche Algebra

5.1 Boolesche Operatoren (Wahrheitstabelle WT)

		A D out	Aout	A B — out	Aout	A Do-out	A Do—out
		n − − γ	n → → → ×	А	Р — У В — От	n P	n → → → → →
		A — & B — Y	A 21 -Y	A =1 =1 =1	А — & D—Y	A 21 D-Y	A ==1 D-Y
×	у	AND	OR	XOR	NAND	NOR	EQV
		$x \cdot y$	x + y	$x \oplus y$	$\overline{x \cdot y}$	$\overline{x+y}$	$x \oplus y$
0	0	0	0	0	1	1	1
0	1	0	1	1	1	0	0
1	0	0	1	1	1	0	0
1	1	1	1	0	0	0	1
				(e) (•

5.2 Gesetze der booleschen Algebra

	G		()	
	Boolesche Algebra	Mengenalgebra	KNF (KNF)	ein Produkt von
	$(0,1;\cdot,+,\overline{x})$	$(P(G); \cap, \cup, \overline{A}; G, \emptyset)$	KDNF (KDNF)	Summe aller Mi
Kommutativ		$A \cap B = B \cap A$	- KKNF (KKNF)	Menge aller Ma
	x + y = y + x	$A \cup B = B \cup A$	VollSOP (nur 1)	Menge aller Prin
Assoziativ	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$	$(A \cap B) \cap C = A \cap (B \cap C)$	M:-COD (: 1)	Minimals Comm
	x + (y+z) = (x+y) + z	$(A \cup B) \cup C = A \cap (B \cup C)$	MinSOP (min. 1)	Minimale Summ
Distributiv	$x \cdot (y+z) = x \cdot y + x \cdot z$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	FPGA: Field Program	mable Gate Array
	$x + (y \cdot z) = (x + y) \cdot (x + z)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	LUT: Look Up Table	
Idempotenz	$x \cdot x = x$	$A \cap A = A$		
	x + x = x	$A \cup A = A$		_
Absorption	$x \cdot (x+y) = x$	$A \cap (A \cup B) = A$	6 Beschreibun	igstormen
	$x + (x \cdot y) = x$	$A \cup (A \cap B) = A$	6.1 Distructative N	/C
Neutral	$x \cdot 1 = x$	$A \cap G = A$	6.1 Disjunktive No	ormanorm/Sum
	x + 0 = x	$A \cup \emptyset = A$	Eins-Zeilen als Implik	
Dominant	$x \cdot 0 = 0$	$A \cap \emptyset = \emptyset$	$Z = \overline{A} \cdot \overline{B} + \overline{C} \cdot D$)
	x + 1 = 1	$A \cup G = G$		
Komplement	$x \cdot \overline{x} = 0$	$A \cap \overline{A} = \emptyset$	6.2 Konjunktive N	lormalform/Pro
	$x + \overline{x} = 1$	$A \cup \overline{A} = G$	Null-Zeilen negiert al	s Implikat (ODER)
	$\overline{\overline{x}} = x$	$\overline{\overline{A}} = A$	$Z = (\overline{A} + \overline{C}) \cdot (\overline{A} + $	$+\overline{D})\cdot(\overline{B}+\overline{C})$
De Morgan	$\overline{x \cdot y} = \overline{x} + \overline{y}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$		
	$\overline{x+y} = \overline{x} \cdot \overline{y}$	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	6.3 Umwandlung i	in jeweils ander

5.3 Boolesche Funktionen

$$f: \{0,1\}^n \to \{0,1\}$$
 $f(\underline{x}) = f(x_1, x_2, \dots, x_n)$

Einsmenge F von f: $F = \{\underline{\boldsymbol{x}} \in \{0,1\}^n | f(\underline{\boldsymbol{x}}) = 1\}$ Nullmenge \overline{F} von $f: \overline{F} = \{\underline{x} \in \{0,1\}^n | f(\underline{x}) = 0\}$

Kofaktor bezüglich

- $x_i: f_{x_i} = f|_{x_i=1} = f(x_1, \dots, 1, \dots, x_n)$
- $\bullet \ \overline{x}_i: f_{\overline{x}_i} = f|_{x_i=0} = f(x_1, \dots, 0, \dots, x_n)$

Eigenschaften von f(x)

- tautologisch $\Leftrightarrow f(x) = 1 \quad \forall x \in \{0, 1\}^n$
- kontradiktorisch $\Leftrightarrow f(\underline{x}) = 0 \qquad \forall \underline{x} \in \{0, 1\}^n$
- ullet unabhängig von $x_i \Leftrightarrow f_{x_i} = f_{\overline{x}_i}$
- abhängig von $x_i \Leftrightarrow f_{x_i} \neq f_{\overline{x}_i}$

5.4 Multiplexer

 $f = x \cdot a + \overline{x} \cdot b$ (2 Eingänge a, b und 1 Steuereingang x) $f = \overline{x_1} \overline{x_2} a + \overline{x_1} x_2 b + x_1 \overline{x_2} c + x_1 x_2 d$ (Eingänge: a, b, c, d Steuerung: x_1, x_2)

5.5 Wichtige Begriffe

Wichtige Begriffe:	Definition	Bemerkung
Signalvariable	x	$\hat{x} \in \{0, 1\}$
Literal	$l_i = x_i$ oder $\overline{x_i}$	$i \in I_0 = \{1,, n\}$
Minterme,0-Kuben	$MOC i m_j = \prod_{i \in I_0} l_i$	$ MOC = 2^n$
d-Kuben	$MC i c_j = \prod_{i\in I_j\subseteq I_0} l_i$	$ MC = 3^n$
Distanz	$\delta(c_i, c_j) = \left \left\{ l \mid l \in c_i \land \overline{l} \in c_j \right\} \right $	$\delta_{ij} = \delta(c_i, c_j)$
Implikanten	$MI = \{c \in MC \mid c \subseteq f\}$	
	Terme, dessen Erfüllbarkeit identisch mit	
	die der Formel sind	
Primimplikanten	$MPI = \{ p \in MI \mid p \not\subset c \ \forall c \in MI \}$	$MPI \subseteq MI \subseteq MC$
	Implikanten, die maximal freie Variablen	
	besitzen	
Kernprimimplikanten	Primimplikanten die für Überdeckung zwin- gend notwendig sind	Spalten mit 1 Eintrag in Überdeckungstabelle

DNF (DNF) KNF (KNF) KDNF (KDNF) KKNF (KKNF)

eine Summe von Produkttermen ein Produkt von Summentermen Summe aller Minterme Menge aller Maxterme Menge aller Primimplikanten

Minimale Summe v. Primimplikanten

Terme sind ODER-verknüpft Terme sind UND-verknüpft WT: 1-Zeilen sind Minterme WT: 0-Zeilen negiert sind Maxterme Bestimmung siehe Quine Methode oder Schichtenalgorithmus durch Überdeckungstabelle

1. KDNF/KDNF bestimmen (z.B. $f(x, y, z) = xy = xyz + xy\overline{z}$)

- 2. Alle Minterme in Tabelle eintragen (Index von m ist (binär)Wert des Minterms)
- 3. 1-Kubus; Minterme die sich um eine Negation unterscheiden, zu einem Term verschmolzen (Resolutionsgesetz)
- 4. Der 1-Kubus muss zusammenhängend sein! (d.h. alle 1-Kubus Minterme müssen zusam-
- 5. Wenn möglich 2-Kubus bilden.
- 6. Wenn keine Kubenbildung mehr möglich → Primimplikanten

Beispiel (Quine Methode):

	0-Kubus	Α	1-Kubus	R	A	2-Kubus	Α	
m_1	$\overline{x}_1\overline{x}_2x_3$	\checkmark	\overline{x}_2x_3	$m_1 \& m_5$	p_1			
m_4	$x_1\overline{x}_2\overline{x}_3$	\checkmark	$x_1\overline{x}_2$	$m_4 \& m_5$	√	x_1	p_2	
m_5	$x_1\overline{x}_2x_3$	\checkmark	$x_1\overline{x}_3$	$m_4 \& m_6$	√			
m_6	$x_1x_2\overline{x}_3$	\checkmark	$x_{1}x_{3}$	$m_5 \& m_7$	√			
m_7	$x_1x_2x_3$	\checkmark	x_1x_2	$m_6 \& m_7$	√			

 $\Rightarrow f(x_1, x_2, x_3) = p_1 + p_2 = \overline{x}_2 x_3 + x_1$

7.4 Resolventenmethode Ziel: alle Primimplikanten

Wende folgende Gesetze an: Absorptionsgesetz: a + ab = a

allgemeines Resolutionsgesetz: $x \cdot a + \overline{x} \cdot b = x \cdot a + \overline{x} \cdot b + ab$

Anwendung mit Schichtenalgorithmus

- 1. schreibe die Funktion f in die 0. Schicht
- 2. bilde alle möglichen Resolventen aus der 0. Schicht und schreibe sie in die nächste Schicht als ODER Verknüpfungen (Resolventen zu f "hinzufügen")
- 3. überprüfe ob Resolventen aus der 1. Schicht Kuben aus Schicht 0 überdecken(Absorption) und streiche diese Kuben aus Schicht 0
- 4. Schicht i besteht aus den möglichen Resolventen von Schicht 0 bis (i-1). Abgestrichene Kuben aus vorherigen Schichten brauchen nicht mehr beachtet werden
- 5. Sobald in der i-ten Schicht +1 steht oder keine weiteren Resolventen gebildet werden können. ist man fertig. \Rightarrow alle nicht ausgestrichenen Terme bilden die VollSOP

$f(x_1,\ldots,x_n)$	Schicht
$\overline{x\cdot w + \overline{x}\cdot w + x\cdot y\cdot w\cdot \overline{z} + \overline{x}\cdot y\cdot w\cdot \overline{z} + \overline{y}\cdot w\cdot \overline{z}}$	0
$+w+y\cdot w\cdot \overline{z}$	1
$+w\cdot \overline{z}$	2
+w	3

7.5 Überlagerung Bestimmung der MinSOP

Geg: KDNF/KDNF $(\sum m_i)$ und VollSOP $(\sum p_i)$ Ges: MinSOP (Minimalform)

Alternativ: Mit Überdeckungstabelle bestimmen Bsn

Auternative time oberacemangstabene bestimment bap.					
	Minterme				
Primterme	m_1	m_2		m_N	$L(p_i)$
p_1	√				$L(p_1)$
p_2	√			√	$L(p_2)$
:					
p_K		√			$L(p_K)$

Algorithmus:

- 1. Suche Spalten mit nur einem Minterm.
- 2. Streiche andere Spalten des zugehörigen Primterms.
- 3. Streiche Primterme, dessen Minterme alle gestrichen sind
- K: Anzahl der Primterme
- N: Anzahl der Minterme
- $L(p_i)$: Kosten/Länge der Primimplikanten

6 Beschreibungsformen

6.1 Disjunktive Normalform/Sum of products (DNF/DNF)

Eins-Zeilen als Implikanten (UND) schreiben und alle Implikanten mit ODER verknüpfen $Z = \overline{A} \cdot \overline{B} + \overline{C} \cdot D$

6.2 Konjunktive Normalform/Product of sums (KNF/KNF)

Null-Zeilen negiert als Implikat (ODER) schreiben und alle Implikaten UND verknüpfen: $Z = (\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{D}) \cdot (\overline{B} + \overline{C}) \cdot (\overline{B} + D)$

6.3 Umwandlung in jeweils andere Form

- 1. Doppeltes Negieren der Funktion: $Z = \overline{\overline{\overline{A} \cdot \overline{B} + \overline{C} \cdot D}}$
- 2. Umformung "untere" Negation (DeMorgan) : $Z = \overline{\overline{A \cdot \overline{B} \cdot \overline{C} \cdot D}} = \overline{(A+B) \cdot (C+\overline{D})}$ 3. Ausmultiplizieren: $Z = \overline{(A+B) \cdot (C+\overline{D})} = \overline{A \cdot C + A \cdot \overline{D} + B \cdot C + B \cdot \overline{D}}$
- 4. Umformung "obere" Negation (DeMorgan) :

 $Z = \overline{AC} \cdot \overline{AD} \cdot \overline{BC} \cdot \overline{BD} = (\overline{A} + \overline{C}) \cdot (\overline{A} + D) \cdot (\overline{B} + \overline{C}) \cdot (\overline{B} + D)$

Analog von KNF (KNF) nach DNF (DNF).

6.4 Shannon Entwicklung

 $f = x_i \cdot f_{x_i} + \overline{x}_i \cdot f_{\overline{x}_i} = (x_i + f_{\overline{x}_i}) \cdot (\overline{x}_i + f_{x_i}) = (f_{x_i} \oplus f_{\overline{x}_i}) \cdot x_i \oplus f_{\overline{x}_i}$ $\overline{f} = x_i \cdot \overline{f}_{x_i} + \overline{x}_i \cdot \overline{f}_{\overline{x}_i}$

7 Logikminimierung

7.1 Nomenklatur

- \bullet m_i Minterm: UND-Term in dem alle Variablen vorkommen (aus KDNF)
- \bullet M_i Maxterm: ODER-Term in dem alle Variablen vorkommen (aus KKNF)
- ullet c_i Implikant: UND-Term in dem freie Variablen vorkommen können
- C_i Implikat: ODER-Term in dem freie Variablen vorkommen können
- p_i Primimplikant: UND-Term mit maximal freien Variablen
- ullet P_i Primimplikat: ODER-Term mit maximal freien Variablen

7.2 Karnaugh-Diagramm

Zyklische Gray-Codierung: 2-dim 3-dim 000 001 011 010 110 111 101 100 z^{xy} | 00 | 01 | 11 | 10 Gleiche Zellen zusammenfassen: z.B. $\overline{xy} + y \cdot z$ 1 0 0 X 1 1 Don't Care Werte ausnutzen!

Achtung: Auf eventuelle Unterdefiniertheit überprüfen (Redundante Zeilen) (Kreiert Don't Cares) Immer vollständig mit Nullen und Einsen ausfüllen

7.3 Quine Methode

geg.: DNF/DNF oder Wertetabelle von f(x)ges.: alle Primimplikanten p_i (VolISOP)

Spezielles Resoltutionsgesetz: $x \cdot a + \overline{x} \cdot a = a$ Absorptionsgesetz: $a + a \cdot b = a$

8 Halbleiter

	Isolator	Metall	undotiert	N-Typ	P-Typ
Ladungsträger	Keine	e ⁻	e^-/e^+	e^-	e^+
Leitfähigkeit	Keine	Sehr hoch	$\propto T$	Hoch	Mittel

9 MOS-FET's

Metal Oxide Semiconductor Field Effekt Transistor

9.1 Bauteilparameter

- große Kanalweite ⇒ große Drain-Störme \Rightarrow schnelle Schaltgeschwindigkeit (da $i_d \propto \beta \propto \frac{W}{L}$) Aber: große Fläche.
- nMos schaltet schneller als pMOS

9.2 Drainstrom

nMos (p-dotiertes Substrat, n-dotierte Drain/Source), schlechter pull up (Pegeldegenerierung)

$$I_d = \begin{cases} 0, & \text{für } U_{gs} - U_{th} \leq 0 & \text{(Sperrber.)} \\ \beta[(u_{gs} - U_{th}) \cdot u_{ds} - \frac{1}{2}u_{ds}^2], & \text{für } 0 \leq U_{gs} - U_{th} \geq u_{ds} & \text{(linearer Ber.)} \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \leq U_{gs} - U_{th} \leq u_{ds} & \text{(S\"{attigungsber.)}} \end{cases}$$

pMos (n-dotiertes Substrat, p-dotierte Drain/Source), schlechter pull down (Pegeldegenerierung)

$$I_d = \begin{cases} 0, & \text{für } U_{gs} - U_{th} \geq 0 & \text{(Sperrber.)} \\ -\beta[(u_{gs} - U_{th}) \cdot u_{ds} - \frac{1}{2}u_{ds}^2], & \text{für } 0 \geq U_{gs} - U_{th} \leq u_{ds} & \text{(linearer Ber.)} \\ -\frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_{ds} & \text{(S\"{a}ttigungsber.)} \end{cases}$$

9.3 pMos und nMos

9.4 Kondensatoraufgaben

9.4.1 Laden

Kondensator C lädt, solange $I_D\,>\,0$ $\rightarrow C$ lädt, solange $u_{gs} - U_{th} \geq 0$ und $u_{ds} \geq 0$

9.4.2 Entladen

Source und Drain werden vertauscht. Auf Gatespannung achten.

9.5 Gatterschwellspannungsaufgaben

10 CMOS - Logik

Vorteil: (Fast) nur bei Schaltvorgängen Verlustleistung - wenig statische Verluste Drei Grundgatter der CMOS-Technologie:

Falls GND und V_{DD} vertauscht würden, dann $NAND \rightarrow AND$ und $NOR \rightarrow OR$ Allerdings schlechte Pegelgenerierung.

10.1 Gatterdesign

Netzwerk	Pull-Down	Pull-U p
Transistoren	nMos	pMos
AND	Serienschaltung	Parallelschaltung
OR	Parallelschaltung	Serienschaltung

- 1. Möglichkeit: Direkt; ggf. Inverter vor die Eingänge und Ausgänge schalten.
- 2. Möglichkeit: Mit boolesche Algebra die Funktion nur mit NAND und NOR darstellen.

10.2 CMOS Verlustleistung

Achtung: Logikpegel sind über die Steigung der $|VTC| \leq 1$ des Inverters definiert. Zusammensetzung I_{short} :

Transistor	$(0, V_{tn})$	$(V_{tn}, V_{DD}/2)$	Um $V_{DD}/2$	$(V_{DD}/2, V_{DD} - V_{tp})$	$(V_{DD} - V_{tp}, V_{DD})$
n-MOS	Sperrt	Sättigung	Sättigung	Linear	Linear
p-MOS	Linear	Linear	Sättigung	Sättigung	Sperrt

 $P_{dyn} = P_{cap} + P_{short}$ Dynamische Verlustleistung $P_{cap} = \alpha_{01} f C_L V_{DD}^2$ Kapazitive Verluste

 $P_{short} = \alpha_{01} f \beta_n \tau (V_{DD} - 2V_{tn})^3$ Kurzschlussstrom

 $\alpha_{0 o 1} = rac{ ext{Schaltvorgänge(pos. Flanke)}}{\# ext{Betrachtete Takte}} \; (ext{max 0.5})$ Schalthäufigkeit

Schalthäufigkeit (periodisch)

Abhängig von den Signalflanken, mit Schaltfunktionen verknüpft

 $\approx V_{DD}1/\propto \text{Schaltzeit: } \frac{V_{DD2}}{V_{DD1}} = \frac{t_{D1}}{t_{D2}} \text{ (bei Schaltnetzen } t_{log} \text{)}$ $\text{Verzögerungszeit } t_{pd} \propto \frac{C_L t_{ox} L_p}{W_p \mu_p \varepsilon (V_{DD} - V_{th})}$

 t_{nd} ist Zeit zwischen crossover 50% von Eingang zu crossover 50% am Ausgang.

Steigend mit: Kapazitiver Last, Oxiddicke, Kanallänge, Schwellspannung

Sinkend mit: Kanalweite, Ladungsträger Beweglichkeit, Oxyd Dielektrizität, Versorgungsspannung

Statische Verlustleistung P_{stat} : Sub-Schwellströme, Leckströme, Gate-Ströme Abhängigkeit: $V_{DD} \uparrow: P_{stat} \uparrow V_{th} \uparrow: P_{stat} \downarrow \text{ (aber nicht proportional)}$

11 Volladdierer (VA)/Ripple-C(u)arry-Adder

Generate $g_n = a_n \cdot b_n$ Propagate $p_n = a_n \oplus b_n$

Summerbit $S_n = c_n \oplus p_n = a_n \oplus b_n \oplus c_n$

 $S_n = a_n \overline{b_n} \overline{c_n} + \overline{a_n} b_n \overline{c_n} + \overline{a_n} \overline{b_n} c_n +$ (Ungerade Anzahl von Eingängen 1) $a_n b_n c_n$

alle Eingänge high

genau ein Eingang high Carry-out $c_{n+1} = c_n \cdot p_n + g_n$

$$c_{n+1} = \underbrace{a_nb_n\overline{c_n} + a_n\overline{b_n}c_n + \overline{a_n}b_nc_n}_{\text{zwei Eingänge 1}} + \underbrace{a_nb_nc_n}_{\text{drei Eingänge 1}} \text{ (Mindesten zwei Eingänge 1)}$$

Laufzeiten

$$t_{sn} = \begin{cases} t_{cn} + t_{xor} & t_{cn} > t_{xor} \\ 2t_{xor} & sonst \end{cases}$$

$$t_{cn+1} = \begin{cases} t_{and} + t_{or} & a_n = b_n = 1 \\ t_{xor} + t_{and} + t_{or} & a_n = b_n = 0 \\ t_{xor} + t_{and} + t_{or} & a_n = b_n \end{cases} \qquad (p_n = 0, g_n = 0)$$

12 Sequentielle Logik

Logik mit Gedächtnis (Speicher).

12.1 Begriffe/Bedingungen

t_{Setup}	Stabilitätszeit vor der aktiven Taktflanke
t_{hold}	Stabilitätszeit nach der aktiven Taktflanke
t_{c2q}	Eingang wird spätestens nach t_{c2q} am Ausgang verfügbar
Min. Taktperiode	$t_{clk} \ge t_{1,c2q} + t_{logic,max} + t_{2,setup}$
Max. Taktfrequenz	$f_{max} = \left[\frac{1}{t_{clk}}\right]$ (Nicht aufrunden)
Holdzeitbedingung	$t_{hold} \leq t_{c2q} + t_{logic,min} ightarrow Dummy$ Gatter einbauen
Durchsatz	$\frac{1Sample}{t_{clk,pipe}} = f$
Latenz	$t_{clk}\cdot \#$ Pipelinestufen (das zwischen den FFs)

12.2 Pipelining

Nur bei synchronen(taktgesteuerten) Schaltungen möglich!

- Aufteilen langer kombinatorischer Pfade durch Einfügen zusätzlicher Registerstufen → Möglichst Halbierung des längsten Pfades
- Zeitverhalten beachten (evtl. Dummy-Gatter einfügen)
- Durchsatz erhöht sich entsprechend der Steigerung der Taktfrequenz
- Gesamtlatenz wird eher größer
- Taktfrequenz erhöht sich

12.3 Parallel Processing

$$\mbox{Durchsatz} = \frac{\#\mbox{Modul}}{t_{cl\,k\,,Modul}} = f \qquad \qquad \mbox{Latenz} = t_{cl\,k}$$

- Paralleles, gleichzeitiges Verwenden mehrere identischer Schaltnetze
- Zusätzliche Kontrolllogik nötig (Multiplexer)
- Taktfrequenz und Latenz bleiben konstant
- Durchsatz steigt mit der Zahl der Verarbeitungseinheiten ABER: deutlich höherer Ressourcenverbrauch

13 Speicherelemente

Flüchtig Speicherinhalt gehen verloren, wenn Versorgungsspannung V_{DD} wegfällt - Bsp: *RAM Nicht Flüchtig Speicherinhalt bleibt auch ohne V_{DD} erhalten - Bsp: Flash

Asynchron Daten werden sofort geschrieben/gelesen.

Synchron Daten werden erst mit $clk_{0\rightarrow 1}$ geschrieben.

 ${\bf Dynamisch} \ {\bf Ohne} \ {\bf Refreshzyklen} \ {\bf gehen} \ {\bf auch} \ {\bf bei} \ {\bf angelegter} \ V_{DD} \ {\bf Daten} \ {\bf verloren} \ {\bf -} \ {\bf Bsp:} \ {\bf DRAM}$ Statisch Behält den Zustand bei solange V_{DD} anliegt (keine Refreshzyklen nötig) - Bsp: SRAM Bandbreite: Bitanzahl, die gleichzeitig gelesen/geschrieben werden kann.

Latenz: Zeitverzögerung zwischen Anforderung und Ausgabe von Daten.

Zykluszeit: Minimale Zeitdifferenz zweier Schreib/Lesezugriffe.

$${\sf Speicherkapazit\"at} = {\sf Wortbreite} \cdot 2^{{\sf Adressbreite}}$$

13.1 Speicherzelle/Register

Ring aus zwei Invertern. Logikpegel kann nur mit öffnen des Inverter-Rings gesetzt werden.

13.2 Latch

Set-Reset Latch:

Zwei gegenseitig rückgekoppelte NAND-Gatter.

Enable-Latch: ändert Speicherzustand auf D nur wenn e=1Level-Controlled ⇔ Latch.

Level-Contro			
е	Q		
0	Q		
1	D		

13.3 Flip-Flop

Besteht aus zwei enable-Latches Flip-Flop: Ändert Zustand bei steigender/(fallender) Taktflanke

14 Automaten

DFA 6-Tupel $\{I, O, S, R, f, g\}$

I	Eingabealphabet
0	Ausgabealphabet
S	Menge von Zuständen
$R \subseteq S$	Menge der Anfangszustände
$f:S\times I\to S$	Übergangsrelation
g	Ausgaberelation

Mealy Automat

Zustandsnummerierung immer einfügen.

Moore Mealy

Ouput hängt nur vom Zustand ab Kein direkter kombinatorischer Pfad Eingang⇒Ausgang

s' = f(s, i), o = g(s, i) $g: S \times I \rightarrow O$

Output hängt von Zustand und Eingabe

Generell weniger Zustände als Moore

s' = f(s, i), o = g(s) $g: S \rightarrow O$

14.1 Wahrheitstabelle einer FSM

i	$S = S_0 S_n$	o	$S' = S_1' S_n'$
0	00	00,00	$S'_{0,00}$
:	:	:	:
			•
1	11	$o_{1,11}$	$S'_{1,11}$

Moore: o ist f(S), nächster Zustand S'=f(i,S)Mealy: o ist f(i,S), nächster Zustand S'=f(i,S)