## UNIT-5

Network and Internet security.

- (1) Internet Mail Architectivie (components, protocols)
- (2) Email Format
- (3) Email Threats and comprehensive Email security
- (4) SIMIME

PART-B.

- (1) IP seavaity overview
- (2) Ip security policy
- (3) Encapsulating security payload.
- (4) Internet key Exchange

of the first of spring and skil audi - yelli

They will be the state of the state of

or or state but in his - the allowance The consequences with the state of the state

sich saulisi is miz"

thing to the to bovery. The openionness to me wentered need

1. Internet mail Architecture (components, protocols)

he - May the street by many

(1) The internet mail architecture is awardly defined in RFC 5598 (Internet mail Architecture, July 2009) to Marient

Email Components: At its most fundamental level, the internet mail architecture consists of a user world in the form of Message user Agents (MUA), and the Transfer world, in the form of the Message Handling service (MHS), which is composed of Message Transfer Agents (MTA).

The key components of the Internet mail Architecture u the following.

(1) Message user Agent (MUA):

Mexage user Agent operates on behalf of user actors and is their representative within the email service

| user applications. It is the             | in representative                                                           |
|------------------------------------------|-----------------------------------------------------------------------------|
| Message Transfor Agent SMTP              | message Transfer Transfer Agent (mTA)                                       |
| mail submission<br>Agent (MSA)           | Message (ocal)  Handling  System (MHS)  Message  Mail Delivery  Ngent (MDA) |
| (submission)                             | (Submission)  Message, store (MS)                                           |
| Message user Agent (MUA)  Message Author | Message user Agent (muA)  Message Recipient                                 |

(2) mail submission Agent (MSA) 11/11/19 Mail submission ogent accepts the message submitted by an MUA and enforces the policies, of the hosting domain and the requirements of Internal standards.

(3) Message Transfer Agent (MTA):

· Message Transfer Agent Relays mail from one application - level hop. It is like a packet switch or Ip router inthat its job is to make routing assessments and to move the message closer to the recipients.

(4) mail delivery Agent (MDA)

mail delivery agent is responsible for transferring the message from the MHS to the Ms.

(5) Mensage store (Ms):

An MUA can employ a long-term ms. An ms can be : ( n : n excated on a remote server or on the same machine as the MUA.

-> The Domain Name system (DNS) is a directory Look up service that provides a mapping between the name of a host on the

Internet and its numerical address.

Email protocols:

Two types of protocols are used for transferring email. The first type is used to move messages through the infernet from source to destination. The protocol used for this purpose is smith

The second type consists of protocols used to transfer merrages between mail servers, of which IMAP and pop are the most commonly used. Mark the species

simple mail Transfer protocof (SMTP) (1) SMTP encapsulates an email message in an envelope and is used to relay the encapsulated messages from source to destination through multiple MTR's. (2) SMTP is a text-based client server protocol where the client (email sender) contacts the server (next-hop recipient) and issues a set of commands to tell the server about the message to be sent, then sending the message itself. (3) The transfer of a message from the source to its ultimate destination can occur over a single smTP client [server Conversation over a single TCP connection. (4) The operation of smorp conjusts of a series of commands and responses exchanged between the smith sender and receiver. The initiative is with the smith sender, who establishes the TCP connection. once the connection is established the smitp Sender Sands commands over the connection to the receiver. There are two types of E-mail Formats. They are,

(1) RFC 5322 in the same spull about it can (2) MIME. (1) RFC 5322 : It is burbles plan ut cooking -> RFC 5322 defines a format for text messages that are sent wing electronic mail: or a message that conforms to RFC 5322 is very simple.

-> A message consists of some number of header lines

(the header) followed by unrestricted text (the body).

Date: December-11, 2023 1:21:25 PM EDT

From: "William stallings" zws@shore.net >

Header Subject: The syntax in RFO 53225.

To: smith aother-host com

CC: Tones@yet-Another-Host.com

Hello. This section begins the actual message Body body, which is delimited from the message heading by a blank line in the property months.

- (2) MIME (multipurpose Internet mail Extension)
- (1) multipurpose internet mail Extension (mime) is an
- extension to the RFC 5322" (2) The Five header Fields defined in mine are as follows.

(a) MIME - Version

Must have the parameter value 1.0. This Field Indicates that the message conforms to the RFC's 2045 and 2046. (b) content - type:

Describes the data contained in the Body with sufficient detail that the receiving user agent can pick an appropriate agent or mechanism to represent the data to the user or otherwise deal with the data in an The state of the s appropriate manner. a serior to a spirit and a source of

(c) Content - Transfer - Encoding : 11 min 1 1 1 Indicates the type of Transformation that has been used to represent the body of the message in a way that is acceptable for mail Transport. (d) content - To: used to identify MIME entities uniquely in multiple. contexto " " to the or philas : string their or - pring the ... (e) content - Description: Justino Lione of anitority A: Text - Description of the object with the body. This is useful when the object is not readable (eg. audio data) MIME content types: him it will reprise the (1) Text: unformatted Text; may be ASCII or 150 8859. (2) Message: The Body is itself an encapsulated message that conforms to REC 822 (3) Image: The image is in JPEG Format, JFIF encoding.

(4) Video: MPEG Format. conforms to REC 822 (5) Audio: single-channel 8-bit (6) Application: Adobe postsoupt-firmat. MIME Transfer Encodings: (1) 8-bit: The lines are short, but there may be non- may (2) Binary: Not only may non-AscII characters be present but the lines are not necessarily short enough for smith (3) Base 64: Encodes data by mapping 6-bit blocks of input to 8-bits blocks of output , all of which are

Printable ASCII characters: 3. Email Threats and comprehensive Email Security Email Threats: (1) Authenticity related Threats: could result in unauthorized saccess to an enterprise's email system: (2) Integrity - related Threats: could result in unauthorized modification of email content. rolly and trading (3) Confidentiality - related Threats?: could result in unauthorized disclosure of sensitive information. (4) Availability-realted Threats: could prevent end users from being able to send or receive Email. held in the security: (1) STARTILS: An SMITP security extension that provides authentication, integrity, non-repudiation (via digital signatures) and confidentiality (via encryption) for the entire smite message by running smTP over TLS. (2) SMIME: provides authentication, integrity, non repudiation "(via digital signatures) and confidentiality (via encryption) of the message body carried in SMTP messages. (3) DNS Security Extensions (DNSSEC): provides authentication and integrity protection of DNS data, and is an underlying tool used by various email. Emilian Er delled ashoris ; gli sissis security protocols.

(4) DNS-based Authentication of Named Entities (DANE) :
97 is designed to overcome problems in the certificate authority (CA) system by providing an alternative channel for authenticating public keys based on prissec, with the result that the same trust relationships used to certify if addresses are used to certify ex servers operating on those addresses Interesting topic in plumpt of him is rising

uses the Domain Name system (DNS) to allow domain (5) sender policy Framework (SPF) owners to create records that associate the domain name with a specific ip address range of authorized message 3 N Min Emiliaries a sa souden - String SIMIME

secure | multipurpose Internet mail Extension (smimt) is a security enhancement to the MIME Internet email format Standard based on Technology from PRSA.

The most important documents relevant to simile include the following.

(1) RFC 5750, S[mime version 3.2 Certificate Handling: specifies conventions for x. 509 certificate usage by : mi josh de whoge

(s[mime ) v 3.2

(2) RFC 5751, SIMIME version 3.2 Message specification: The principal defining document for s|mime musage creation and processing. Whitehall the

(3) RFC 4134, Examples of simile messages: Gives examples of message bodies formatted using

SMIME . COM I ENTER I WAS TO THE HEAR IN THE MEDICAL DE (4) RFC 2634, Enhanced security services for s/mimE: Describes four optional security service extension for Similar the stand of the stand of the salary professions (5) RFC 5652, Cryptographic Message syntax (cms): Describes the Coyptographic message syntax (cms). This Syntax is used to digitally sign, digest, authenticate, or Crypt arbitrary message content. (6) RFC 3370 cms Algorithms: Describes the conventions for using several Cryptographic algorithms with the cms. (7) RFC 5752 multiple signatures in cms: message. The use of multiple, parallel signatures for a (8) RFC 1847, security multiparts for MIME - multipart Signed and multipart / Encrypted: Defines a Framework within which security services may be applied to nime Body parts. The use of a digital signature is relevant to simme, as explained subsequently. operational description: s/mime provides for four message-related services. They are (1) Authentication with him on all (2) confidentiality ובת לישוע בריי בל ויון בנגואים. (3) compression. REC HISH DEXIMENTS (4) Email compatibility.

(1) Authentication: > Authentication uses the Digital signatures Function and uses \_ the algorithm called RSA | SHA - 256.

-> The action done by Authentication is a hash code of a. merrage is created using SHA-256! This merrage digest is enoughted using SHA-256 with the sender's private key and included with the Message.

(2) confidentiality

-> confidentiality uses the message encryption function and uses the algorithm called 'AES-128' with CBC

-> The action done by confidentiality is a message is encrypted using AES-128 with CBC with a one-time session. Key generated by the sender. The session key is energyfed using RSA with the recipients public key and included with the musage.

(3) compression: 910000 to Warren will will to grand -> compression itself used the compression function with an unspecified Algorithm.

message may be -> The action performed by compression is compressed for storage or Transmission.

· Plantin

(4) Email compatibility:

> Email compatibility itself used the email compatibility and uses the algorithm called Radix-64 conversion.

> The action performed by the Frail compatibility to provide transparency for email applications, an encrypted message May be converted to an ASCII string using radix-64

Conversion. -> S/mime provides confidentiality by encrypting messages. Most Commonly AES with a 128-bit key, is used, with the cipher Block chaining (CBC) mode. The key itself is also encrypted typically with RSA; how a grow S/mimE content types: SIMIME Message content types! SIMIME uses the following musage content types, which are defined in RFC 5652, Cryptographic message syntax. (1) Data: Refers to the inner MIME - encoded message content, which may then be encapsulated in a signed Data, Enveloped data or compressed data content type. (2) signed Data: used to apply a digital signature to a message (3) Enveloped Data: This consists of encryptled content of any type and encrypted content encryption keys for one or Find a pill bary more recipients. (4) Compressed data: used to apply data compression to a hosping in a market or there is possess musage. made to vi d'off to a philipping in the standard of the philippe of - Treathorno pe-vilous ballies inthingula off & which of the property of the travel in affilially to preside a we halfe and mr. small alleger that early fine and the more The converted I am Decent Spine I may be in the

PART-B: IP security (1) Ip security overview. IP security overview consists of to Au (1) Applications of Ipsec

(2) Benefits of Ipsec relationships of contra on 1

(3) Iplsec documents would be willed.

(4) Ip sec services in mind days will be deliver

(5) Transport and Tunnel modes : 37791 1 21/11/2011

(1) Applications of Ipsec : 1997 to Alfansii all to since

Ip sec provides the capability to secure communications actross a LAN, across private and public WAN'S and across the Internet Examples of its use include

(i) Secure Branch office connectivity over the Internet:

A company can build a secure virtual private network over the Internet or over a public MAN. This enables a business to rely heavily on the internet and reduce its need for private networks. Save costs and network management overhead.

(ii) Secure remote access over the internet: An end user whose system is equipped with Ip security protocols can make a local call to an internet service provider (ISP) and gain secure access to a company network. This reduces the cost of toll changes for travelling employees and Telecommuters.

(111) Establishing extranet and intranet connectivity with partners: Ipsec can be used to secure communication with other organizations, ensuring authentication and confidentiality and providing a key exchange mechanism. is no dispersed

(iv) Enhancing electronic Commerce security:

Even through some web and electronic commerce applications have built in security protocols, the use of Ipsec enhances that security. Ip sec guarentees that all traffic designated by the network administrator is both enoughed and authenti-cated, adding an additional layer of security to whatever is provided at the application layer.

(2) Benefits of Ipsec: I for with the Benefits of Ipsec: 10 for will got

- (1) When speec is implemented in a firewall or router, it provides strong security that can be applied to all traffic crossing the perimeter. Traffic within a company or workgroup does not incur the overhead of security-related processing.
- (2) Ipsec in a firewall is resistant to bypass if all traffic from the outside must use Ip and the frewall is the only means of entrance from the Internet into the organization
- (3) To sec is below the Transport layer (TCP; UDP) and so is transparent to applications. There is no need to change software on a user or server system when Ip sec is implemented in the firewall or router. Even if Ipsec is implemented in end systems, upper -layer software, including applications, is not affected.
- (4) Ipsec, can be transparent to end users. There is no need to train users on security mechanisms, issue keying material on a per-user basis, or revoke keying material

when users leave the organization

(5) Ipsec can' provide security for individual users if needed. This is useful for off-site workers and for setting up a Secure virtual subnetwork within an organization for sensitive Applications.

(3) Sp sec Documents:

The documents can be categorized into the following groups.

(i) Architecture: covers the general concepts, security requirements, definitions and mechanisms defining Ipsec Technology. The current-specification is RFC 4301, security Architecture for the internet protocol.

· (11) Authentication Header (AH):

AH is an extension header to provide message authentication. The current specification in RFC 4302, IP authentication, Header. Because merrage authentication is provided by ESP. the use of AH is deprecated. It is included in Ipsecv3 for backward Compatibility but should not be used in new applications. (iii) Encapsulating security payload (ESP):

Esp consists of an encapsulating header and trailer used to provide encryption or combined encryption authentication. The current specification is RFC 4303, IP Encapsulating security payload (ESP)

(iv) Internet key Exchange (IKE) into in

This is a collection of documents describing the key management Schemus for use with Ipsec. The main specification is RFC 7296, Internet key Exchange (IKE) vi protocol, but there are a number of related RFC's - " white to a distribution"

(V) cryptographic Algorithms in the line of the line o This category encompasses a large set of documents that define and describe cryptographic algorithms for encryption and message authentication, pseudorandom functions (PRF's) and cryptographic they exchange. 2 witer 4) Ip sec Services:

→ Access control

→ connectionless integrity

(4) Ipsec services:

-> Deta origin authentication

- Rejection of replayed packets (a.form of partial Sequence integrity) or it may prove a conchinal
  - -> Confidentiality (encryption)
  - -> Limited Traffic flow confidentiality

(5) Transport and Tunnel modes:

Both AH and Esp. support two modes of use:

Transport and Tunnel mode.

Transport mode: Transport mode provides protection

primarily for upper-layer protocols.

Tunnel mode: Tunnel mode provides protection to the entire, IP packet with the state post of the state post of

(2) Ip security policy:

Ip security policy consists of

- (1) Security Associations
- Burney Jan 1801 Marchell Letter 1811 (2) security Association DataBase
- (3) Security policy Database.

-> security policy applied to each Ip packet that transits from a source to a destination.

-> Ip sec policy is determined primarily by the interaction of two databases, The security association database (SAD) and the security policy database (SPD). 30 11 11 11 11

(1) Security Associations :

A security association is uniquely identified by Three parameters.

(i) Security parameters Index! (Spi)

A 32-bit unsigned integer assigned to this SA and having Local significance only. The spi is carried in AH and ESP headers to enable the receiving system to select the SA under which a received packet will be processed: Isalisate will be processed:

(ii) Ip Destination Address:

This is the address of the distination endpoint of the SA, which may be an end-user system or a network system such as a firewall or router.

(iii) Security protocol Identifier: 10 10 100 100 100 This Field from the outer Ip header indicates whether the association Thus Held from Esp security association with a translated by the security association with an armine the contract of the contr



Ip sec Architecture.

(2) Security Association Outabase: he would be to the

(i) Security parameter Indix:

A 32-bit value selected by the receiving end of an SA to uniquely identify the SA. In an SAD Entry for an outbound SA, the spi is used to construct the packets AH and Esp header. In an SAD Entry for an imbound SA, the SPI is used to map traffic to the appropriate say in the house

(ii) Sequence Number counter : 10 11 11 11 11 2000 A 32-bit value used to generate the sequence Number Field in AH or Esp headers, described in section 20.3 (required for all (jii) sequence counter overflow: implementations?

A flag indicating whether overflow of the sequence Number Counter should generate an auditable event and prevent further transmission of packets on this SA Crequired for all implementations

(iv) Anti-Replay Window: used to determine whether an inbound AH Or ESP packet is a replay, distributed in section 20.3 (required for all implementation) (V) AH Information:

Authentication algorithm, keys, key lifetimes and related parameters being used with AH (required for AH implementations)

(Vi) ESP Information:

Encryption and authentication algorithms, keys, initializations values, key lifetimes and related parameters being used with Esp Crequired for ESP implementations)

(vii) Life time of this security Association:

A time interval or byte count after which an SA must be replaced with a new SA (and new SPI) or terminated plus an

indication of which of these actions should occur crequired for all implementations) its state of very of town or or of the

(3) security policy outabase:
The following selectors determine an spe spo entry.

(1)-Remote Ip address: This may be a single Ip address, an enumerated list or range of addresses , or a wildcard (mask) address. The latter two are required to support more than one destination system shaving the same SA (e.g. behind a firewall)

(ii) local 🖛 🕶 IP address:

This may be a single Ip address, an enumerated list or range of addresses, or a wildcard (mask) address. The latter two are required to support more than one source system shorring the same SA (eg. behind a firewall)

(iii) Next layer protocol:

The Ip protocol header (IPV4, IPV6 or IPV6 Extension) includes a Field (protocol for Ipv4, Next header for Ipv6 or Ipv6 extension) that designates the protocol operating over Ip. This is an individual protocal number, ANY or for IPV6 only, OPAQUE. If AH or ESP is used then this Ip protocol header immediately precedes the AH or ESP header in the packet. an ideal ideal

(iv) Name:

A user identifier from the operating system. This is not a field in the IP or upper-layer headers but is available if Ipsec is running on the same operating system as the user.

(v) local and Remote ports:

These may be individual TCP or UDP ports values. an enumerated list of ports, or a wildcard part.

## 3. Encapsulating security payload (ESP)

(1) ESP can be used to provide confidentiality, data origin authentication, Connectionless integrity, an anti-replay service (a form of partial Sequence integrity) and (limited) traffic flow confidentiality.

(2) The set of services provided depends on options selected at the time of security association (SA) establishment and on the location

of the implementation in a network topology

(3) Esp can work with a variety of encryption and authentication algorithms, including authenticated encryption algorithms such as 32 hite Gcm.

| O(C.)               | 32 bits of the state of the sta | WHT.      |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| e all of            | · Security parameters Index (SPI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| (1) (2)             | Sequence Number!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| cal                 | 1 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ( CANALOS |
| 2 3                 | the state of the s | r (1/1)   |
| TCY                 | padding (0-255 bytes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 11      |
| $\omega$ $\uparrow$ | pad length Next header was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9) 42-    |
| Aller Charles       | Integrity check value - Icv (variable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | w ·       |
| 11                  | Top-level format of an Esp packet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000      |

Top-level format of an ESP packet.

ESP Format:

(i) security parameters Index (32 bits): Identifies a security association.

(ii) sequence Number (32 bits): A monotonically increasing counter value; this provides

an anti-replay function, as discussed for AH.

(iii) payload pata (variable):

This is a Transport-level segment (transport mode)

or Ip packet (tunnel mode) that is protected by enoughtion: (iv) padding (0-255 bytes): The purpose of this field is discussed later. (V) pad length (8 bits): Indicates the number of pad bytes immediately preceding this field. (vi) Next header (8 bits): . Identifies the type of data contained in the payload data field by identifying the first header in that payload (eg. an extension header in Ipv6. or an upper-layer protocol such as TCP) (vii) Integrity check value (variable): A variable-length Field (must be an integral number of 32-bit words) that contains the integrity check value computed Over the ESP packet minus the Authentication Data Field. · Internet key Exchange (IKE) (1) The Key management portion of Ipsec involves the determination and distribution of secret (keys) in morte with (2) A Typical requirement is four keys for communication between two applications: Transmit and receive pairs for both integrity and confidentiality. (3) The Ipsec Architecture document mandales support for two types of key management: Manual: A system administrator manually configures each system with its own keys and with the keys of other communicating Systems. This is practical for small, relatively static Environments. Automated; An automated system enables the on-demand creation of keys for sh's and facilitates the use of keys in a large distributed system with an evolving configuration;

The default automated key management protocol for Ipsec is referred to as ISAKMPloakley and consists of the following elements.

-> oakley key petermination protocol:

oakley is a key exchange protocol based on the Diffie-Hellman algorithm but providing added security. cakley is gentric in that it does not dictate specific formats.

Therivet Security Association and key management protocol:

Isakmp provides a framework for internet key management and provides the specific protocol support, including formats, for negotiation of security attributes.

Key Determination protocol:

- The key determination is a refinement of the Diffie-Hellman Key exchange algorithm.
- → The Diffie Hellman algorithm has two altractive features.
- (1) Secret keys are created only when needed. There is no need to store secret keys for a long period of time, exposing them to increased vulnerability.
- to increased vulnerability.

  (2) The exchange requirements no pre-existing infrastructure other than an agreement on the global parameters.

Features of IKE key Determination:

The IKE key determination algorithm is characterized by five important features.

(1) If employs a mechanism known as cookies to thwark dogging attacks.

| (2) If enables the two parties to negotiate a group, This, in-             |
|----------------------------------------------------------------------------|
| essence, specifies the global parameters of the Diffie-Hellman.            |
| key exchange.                                                              |
| (3) If uses nonces to ensure against replay attacks.                       |
| onables the exchange of little neuman passes                               |
| (5) It authenticates the Diffie-Hellman exchange to thwart man-            |
| in-the-middle attacks; and some some some                                  |
| Header and payload formats:                                                |
| Bit: 0 8 16 24 3                                                           |
| Initiator's Security parameter Index (SPI)                                 |
| - Responders Security parameters Index (SPI)                               |
| Next payload Miver Mnver Exchange Type Flags                               |
| har John to Message ID words down                                          |
| Ike header                                                                 |
| Bit: 0 8 16 (11) (13) (3)                                                  |
| Bit: 0 8 16  Next payload C RESERVED Payload length  Generic Revent beader |
|                                                                            |
| IKE formats:                                                               |
| - Litel A Valle Chancen by the muticul 10                                  |
| Committee Association (SA)                                                 |
| (ii) Responder SPI (64 bits): A value choosen by the responder             |
| to identify a unique! The SAME Who will a middle themselve                 |
| (lii) Next payload (8-bits): Indicates the type of a first                 |
| payload in the message, payloads are discussed in next.                    |

e about you to will impound all yours after subsection: (iv) Major Version (4-bits): Indicates major Version of IKE in use. (V) minor version (4 bits): Indicates minor version in use. (vi) Exchange Type (8-bits): Indicates the type of exchange (vii) Flags (8 bits): Indicates specific options set for this IKE exchange. Three bits are defined sofart. The initiator bit indicates whether this packet is sent by the SA initiator. The Version bit Indicates whether the Transmitter is capable of using a higher major version number than the one Currently indicated. The response bit indicates whether this is a response to a missage containing the same message ID. Viii) Message ID (32 bits): used to control retransmission of Lost packets and matching of requests and responses. (ix) length (32 bits): length of total message (header plus all payloads) in octets. IKE payload types: -> (1) security Association: proposals -> (2) Key exchange: DH Group #, Key exchange Data -> (3) Identification: ID type. ID Data -> (4) certificate: cert Encoding, certificate data -> (5) Authentication: Auth method, Authentication Data. -> (6) Nonce: Nonce data College & A Bridge of transfell -> (7) Encrypted: IV, Encrypted IKE payloads, padding, ICV,