$P\check{r}iklad$ (3.)

The goal is to show that maximal regularity cannot hold in Lipschitz domains or when changing the type of boundary conditions. Let $\varphi_0 \in (0, 2\pi)$ be arbitrary and consider $\Omega \subset \mathbb{R}^2$ given by

$$\Omega := \{ (r, \varphi) | r \in (0, 1), \varphi \in (0, \varphi_0) \}.$$

Denote $\Gamma_i \subset \partial\Omega$ in the following way $\Gamma_1 := \{(r,0)|r \in (0,1)\}, \ \Gamma_2 := \{(r,\varphi_0)|r \in (0,1)\}$ a $\Gamma_3 := \{(1,\varphi)|\varphi \in (0,\varphi_0)\}.$

Consider two functions

$$u_1(r,\varphi) := r^{\alpha_1} \sin\left(\frac{\varphi\pi}{\varphi_0}\right), \qquad u_2(r,\varphi) := r^{\alpha_2} \sin\left(\frac{\varphi\pi}{2\varphi_0}\right).$$

• Find the condition on α_i so that $u_i \in W^{1,2}(\Omega)$ – find an explicit formula for ∇u_i – and prove that it is really the weak derivative.

Řešení

Běžné derivace těchto funkcí jsou:

$$\nabla u_i = \begin{pmatrix} \frac{\partial u_i}{\partial r} \\ \frac{1}{r} \frac{\partial u_i}{\partial \varphi} \end{pmatrix} = \begin{pmatrix} \alpha_i r^{\alpha_i - 1} \sin\left(\frac{\varphi \pi}{i \cdot \varphi_0}\right) \\ \frac{\pi}{i \cdot \varphi_0} r^{\alpha_i - 1} \cos\left(\frac{\varphi \pi}{i \cdot \varphi_0}\right) \end{pmatrix}$$

Jelikož tyto derivace jsou spojité, tak pro ně platí per-partes (používám jen supp ψ , abych se vyhnul $r=0,\,\psi$ i ψ' jsou na doplňku nulové, tedy i integrovaná funkce):

$$\int_{\Omega} u_i \partial_j \psi = \int_{\text{supp } \psi} u_i \partial_j \psi + 0 \stackrel{\text{p-p}}{=} - \int_{\text{supp } \psi} \psi \partial_j u_i + \int_{\partial \left(\overline{\text{supp } \psi}\right)} \psi u_i dS_j = - \int \dots + \int 0 = 0$$

$$= - \int_{\text{supp } \psi} \psi \partial_j u_i = - \int_{\Omega} \psi \partial_j u_i + 0.$$

Tedy jsou to slabé derivace. Že $u_i \in W^{1,2}(\Omega)$ platí, pokud jsou integrály druhých mocnin derivací konečné:

$$\int_{\Omega} \left(\alpha_i r^{\alpha_i - 1} \sin \left(\frac{\varphi \pi}{i \cdot \varphi_0} \right) \right)^2 = \int_{\Omega} \alpha_i^2 r^{2\alpha_i - 2} \left(\sin \left(\frac{\varphi \pi}{i \cdot \varphi_0} \right) \right)^2 < \infty,$$

$$\int_{\Omega} \left(\frac{\pi}{i \cdot \varphi_0} r^{\alpha_i - 1} \cos \left(\frac{\varphi \pi}{i \cdot \varphi_0} \right) \right)^2 = \int_{\Omega} \left(\frac{\pi}{i \cdot \varphi_0} \right)^2 r^{2\alpha_i - 2} \left(\cos \left(\frac{\varphi \pi}{i \cdot \varphi_0} \right) \right)^2 < \infty.$$
To bude zřejmě tehdy, když $\alpha_i > 0$.

1

• Find the proper condition on α_i so that u_i solves the problem

a)
$$-\Delta u_1 = 0$$
 in Ω , b) $u_1 = 0$ on $\Gamma_1 \cup \Gamma_2$, c) $u_1 = \sin\left(\frac{\varphi\pi}{\varphi_0}\right)$ on Γ_3 ,

$$d$$
) $-\Delta u_2 = 0$ in Ω , e) $u_2 = 0$ on Γ_1 , f) $u_2 = \sin\left(\frac{\varphi\pi}{2\varphi_0}\right)$ on Γ_3 ,

g)
$$\nabla u_2 \cdot n = 0$$
 on Γ_2 .

Řešení

Rovnice b, c, e, f) splňují funkce z definice (když dosadíme r=1, tak nám zbude pouze sin, když dosadíme $\varphi=0$ nebo $\varphi=\varphi_0$, tak bude sin nulový).

Norma n je v Γ_2 kolmá na poloměr, tedy

$$\nabla u_2 \cdot n = \frac{\pi}{2\varphi_0} r^{\alpha_2 - 1} \cos\left(\frac{\varphi\pi}{2\varphi_0}\right) = \frac{\pi}{2\varphi_0} r^{\alpha_2 - 1} \cos\left(\frac{\varphi_0\pi}{2\varphi_0}\right) = \dots \cdot \cos\left(\frac{\pi}{2}\right) = \dots \cdot 0 = 0.$$

V polárních souřadnicích $\Delta f = \frac{\partial^2 f}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{1}{r} \frac{\partial f}{\partial r}$. Tedy

$$\Delta u_i = \alpha_i \cdot (\alpha_i - 1) r^{\alpha_i - 2} \sin\left(\frac{\varphi \pi}{i \cdot \varphi_0}\right) + r^{-2} \left(\frac{\pi}{i \cdot \varphi_0}\right)^2 r^{\alpha_i} \sin\left(\frac{\varphi \pi}{i \cdot \varphi_0}\right) +$$

$$+r^{-1}\alpha_i r^{\alpha_i-1} \sin\left(\frac{\varphi\pi}{i\cdot\varphi_0}\right) = r^{\alpha_i-2}\cdot\sin\left(\frac{\varphi\pi}{i\cdot\varphi_0}\right)\cdot\left(\alpha_i\cdot(\alpha_i-1) + \left(\frac{\pi}{i\cdot\varphi_0}\right)^2 + \alpha_i\right).$$

Výraz před závorkou je na vnitřku Ω nenulový, tedy musí být nulová závorka:

$$0 = \alpha_i \cdot (\alpha_i - 1) + \left(\frac{\pi}{i \cdot \varphi_0}\right)^2 + \alpha_i = \alpha_i^2 - \left(\frac{\pi}{\varphi_0}\right)^2 \implies \alpha_i = \pm \frac{\pi}{\varphi_0}.$$

• Find all p's for which $u_i \in W^{2,p}(\Omega)$. What is the criterium on α_i so that $u_i \in W^{2,2}(\Omega)$.

Řešení

Je to podobné jako v prvním bodě, jen chceme druhé derivace, tedy r bude v mocnině $p \cdot (\alpha_i - 2)$, tedy chceme, aby $p \cdot (\alpha_i - 2) > -1$. Tedy kritérium pro α_i je $\alpha_i > 1.5$.

• With the help of the above computation, find $f_i \in L^2(\Omega)$ such that the problems with homogeneous boundary conditions, i.e.,

$$-\Delta v_1 = f_1 \text{ in } \Omega, \qquad v_1 = 0 \text{ on } \partial \Omega,$$
$$-\Delta v_2 = f_2 \text{ in } \Omega, \qquad v_2 = 0 \text{ on } \Gamma_1 \cup \Gamma_3, \qquad \nabla v_2 \cdot n = 0 \text{ on } \Gamma_2$$

poses unique weak solutions $v_i \in W^{1,2}(\Omega)$ but $v_1 \notin W^{2,2}(\Omega)$ if $\varphi_0 > \pi$ and $v_2 \notin W^{2,2}(\Omega)$ for $\varphi_0 > \frac{\pi}{2}$.

Řešení

 \Box

Když zadefinujeme $v_i = u_i - \sin\left(\frac{\varphi\pi}{i\cdot\varphi_0}\right)$, dostaneme splněné okrajové podmínky tohoto problému, neboť v Γ_3 jsme odečetli přesně hodnotu, v Γ_1 jsou právě tyto siny nulové a v Γ_2 je v prvním případě také nulový a v druhém chceme, aby byla druhá část gradientu, což je ale příslušný kosinus, který je přesně v $\nabla u_2 \cdot n$ a je též nulový.

Zbývají f_1 a f_2 :

$$f_i = -\Delta v_i = -\Delta u_i + \Delta \sin\left(\frac{\varphi \pi}{i \cdot \varphi_0}\right) =$$

$$= 0 + \left(0 + \frac{1}{r^2} \cdot \left(\frac{\pi}{i \cdot \varphi_0}\right)^2 \cdot \sin\left(\frac{\varphi \pi}{i \cdot \varphi_0}\right) + \frac{1}{r} \cdot 0\right) = \left(\frac{\pi}{r \cdot i \cdot \varphi_0}\right)^2$$