# Propositional



## Propositional Logic

### Homework 1

Proposition, Propositional Variable

Conjunction, Disjunction, Negation



A Proposition/Statement is something which is either true or false, but not both simultaneously.

- Note: A sentence Can NOT be called a Proposition/Statement if
- (i) It is an exclamation or imperative sentence
- (ii) It is an order or request or advice or command
- (iii) It is a question
- (iv) It is a paradox(self-contradictory)
- (v) It involves some variable and the truth value depends on this variable.





### Example of propositions:

Example of propositions:

John loves CSE 191.

2+3=5.

2+3=8.

Sun rises from West.

Example of non-propositions:

Does John love CSE 191?

2 + 3.

Solve the equation 2 + x = 3.

2 + x > 8.



### NOTE:

This much understanding of "what is a proposition" is enough as the definition of "proposition" in English/Natural languages is vague and in mathematical world, it is simply a True or False Fact.

Some authors will consider "Today is Monday" as a proposition, whereas, other authors will consider same sentence as Non-proposition.

So, we will not worry about it too much and we just need to know that every proposition is either true or false but not both.



### + +

### **Discrete Mathematics**

### Question 1: UGCNET-DEC2018-II: 1





In mathematical logic, which of the following are statements?

2.3k views

- i. There will be snow in January.
- ii. What is the time now?
- iii. Today is Sunday.
- iv. You must study Discrete mathematics

Choose the correct answer from the code given below:

- A. i and iii
- B. i and ii
- C. ii and iv
- D. iii and iv

Source: https://gateoverflow.in/288376/ugcnet-dec2018-ii-1



# Solution 1: <a href="https://gateoverflow.in/288376/Ugcnet-dec2018-ii-1?show=372580#c372580">https://gateoverflow.in/288376/Ugcnet-dec2018-ii-1?show=372580#c372580</a>

### "Today is Sunday" is a Proposition ??

Some authors would consider it as a proposition (by fixing certain time, date, place etc), Other authors would not consider it as a proposition.

I suggest NOT to waste too much time on "which sentence is proposition?" type of question.

A Good exam will not ask such questions. If you find such questions in some test series, leave such test series.

In the (good)question, propositions will be given, not asked.



### **Example 1.** Let p denote "Henry eats halibut" and q denote "Catherine eats kippers."

- The proposition  $\neg p$  is read "Henry does not eat halibut."
- The proposition  $p \wedge q$  is read "Henry eats halibut, and Catherine eats kippers."
- The proposition  $p \rightarrow q$  is read "If Henry eats halibut, then Catherine eats kippers."
- The proposition  $p \leftrightarrow q$  is read "Henry eats halibut if and only if Catherine eats kippers."
- (e) The proposition  $(\neg p) \lor (\neg q)$  is read "Henry does not eat halibut, or Catherine does not eat kippers."
- The proposition  $p \leftrightarrow (\neg q)$  is read "Henry eats halibut if and only if Catherine does not eat kippers."



### **NOTES:**

The negation of a statement p in symbolic form is written as " $\sim$  p".

### Example:

Write the negation of the statement p :

p: New Delhi is a city.

### Solution:

The negation of p is given by

~ p : New Delhi is not a city

Or ~ p : It is not the case that New Delhi is a city.

Or ~ p : It is false that New Delhi is a city.

Or ~ p: It is not true that New Delhi is a city.



### Question 2:

We have seen that for two propositional variables, we have 4 rows in truth table(because with two propositional variables, total 4 combinations of truth values are possible).

- For three propositional variables, in the truth table, how many rows we have ?
- For Four propositional variables, in the truth table, how many rows we have ?
- For n propositional variables, in the truth table, how many rows we have?



- We have seen that for two propositional variables, we have 4 rows in truth table.
- For three propositional variables, in the truth table, how many rows we have?
- For Four propositional variables, in the truth table, how many rows we have?
- For n propositional variables, in the truth table, how many rows we have?

Ce! for 3 Variables, In Town Table, We have 2 rows as every variable has Choices, True or faze. for n variables, nor of Rows in Truth Table = 2"



### Question 3:

It is known that  $p \land q$  is false, also p is true.

- A. True
- B. False.
- C. Nothing can be said
- D. Multiple Values



It is known that  $p \land q$  is false, also p is true.

- A. True
- B. False.
- C. Nothing can be said





### Question 4:

It is known that p v q is false, also p is false.

- A. True
- B. False.
- C. Nothing can be said
- D. Multiple Values

It is known that p v q is false, also p is false.

- A. True
- B. False.
- C. Nothing can be said







### Question 5:

- It is known that  $p \land q$  is true, also p is true.
- What can we say about q?
- A. True
- B. False.
- C. Nothing can be said
- D. Multiple Values



### matics

### Question:

It is known that  $p \land q$  is true, also p is true.

What can we say about q?

- A. True
- B. False.
- C. Nothing can be said

True A false = false ( True A True = True





### Question 6:

It is known that p v q is true, also p is true.

- A. True
- B. False.
- C. Nothing can be said
- D. Multiple Values



It is known that p v q is true, also p is true.

What can we say about q?

- A. True
- B. False.
- C. Nothing can be said

True V false = True
True V True = True



**GO Classes** 

### **Discrete Mathematics**

# By the definition of a Proposition (or Propositional Variable), a proposition can NEVER have multiple truth values.

A proposition is Either True or False But Not Both.

For the previous question, answer will be "Truth Value can't be determined".. "Multiple Values" is a Wrong Answer.



### Question 7:

- It is known that p is true.
- What can we say about  $p \land q$ ?
- A. True
- B. False.
- C. Nothing can be said
- D. Multiple Values

### e Mathematics

### Question:

It is known that p is true.

What can we say about  $p \land q$ ?

- A. True
- B. False.
- C. Nothing can be said



### Question 8:

It is known that p is true.

What can we say about  $(\neg p) \land q$ ?

- A. True
- B. False.
- C. Nothing can be said
- D. Multiple Values

It is known that p is true.

What can we say about  $(\neg p) \land q$ ?

- A. True
- B. False.
- C. Nothing can be said

PETre planse

(P)/1 2

### Question 9:

It is known that p is true.

What can we say about  $\neg (p \land q)$ ?

- A. True
- B. False.
- C. Nothing can be said
- D. Multiple Values



It is known that p is true.

What can we say about  $\neg$  (p  $\land$  q)?

- True
- B. False.
- C. Nothing can be said





### Question 10:

- It is known that p is true.
- What can we say about p v q?
- A. True
- B. False.
- C. Nothing can be said
- D. Multiple Values

It is known that p is true.

- True
- False.
- C. Nothing can be said



### Question 11:

- It is known that p is true.
- What can we say about  $(\neg p) v q$ ?
- A. True
- B. False.
- C. Nothing can be said
- D. Multiple Values

It is known that p is true.

What can we say about  $(\neg p) v q$ ?

- A. True
- B. False.
- C. Nothing can be said



### Question 12:

It is known that p is true.

What can we say about  $(p) v (\neg q)$ ?

- A. True
- B. False.
- C. Nothing can be said
- D. Multiple Values

It is known that p is true.

What can we say about  $(p) v (\neg q)$ ?

- A. True
- B. False.
- C. Nothing can be said



True v 21 = True



### NOTE:

Complete Discrete Mathematics & Engineering Mathematics Courses, by

GO Classes, are FREE for ALL learners.

Click here to watch: <a href="https://www.goclasses.in/s/store/">https://www.goclasses.in/s/store/</a>

SignUp/Login on Goclasses website and start learning.