Solutions of the exercises on Propositional and Predicate Logic

Olena Gryn olg@itu.dk

November, 2006

Exercises on slide 20

Exercise 1

Show $[p \land (p \rightarrow q)] \rightarrow q$ is a tautology.

Solution

Let us make a truth table for this proposition:

p	q	$p \rightarrow q$	$p \wedge (p \to q)$	$[p \land (p \to q)] \to q$
T	T	T	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

All truth values of $[p \land (p \to q)] \to q$ in the truth table are true no matter what the truth values of its simple components. So this proposition is a tautology by definition.

Exercise 2

Show $(p \to q) \leftrightarrow (\bar{q} \to \bar{p})$ is a tautology.

Solution

Let us make a truth table for this proposition:

p	q	\bar{q}	\bar{p}	$p \rightarrow q$	$\bar{q} \rightarrow \bar{p}$	$(p \to q) \leftrightarrow (\bar{q} \to \bar{p})$		
T	T	F	F	T	T	T		
Т	F	T	F	F	F	T		
F	T	F	T	T	T	T		
F	F	T	T	T	T	T		

All truth values of $(p \to q) \leftrightarrow (\bar{q} \to \bar{p})$ in the truth table are true no matter what the truth values of its simple components. So this proposition is a tautology by definition.

Exercise 3

Show $[\bar{q} \wedge (p \rightarrow q)] \rightarrow \bar{p}$ is a tautology.

Solution

Let us make a truth table for this proposition:

p	q	\bar{q}	\bar{p}	$p \rightarrow q$	$\bar{q} \wedge (p \to q)$	$[\bar{q} \land (p \to q)] \to \bar{p}$
T	T	F	F	T	F	T
T	F	T	F	F	F	T
F	T	F	T	T	F	T
F	F	T	T	T	T	T

All truth values of $[\bar{q} \land (p \to q)] \to \bar{p}$ in the truth table are true no matter what the truth values of its simple components. So this proposition is a tautology by definition.

Exercise 4

Why can no simple proposition be a tautology?

Solution

It is because a simple proposition is a declarative statement which is either true or false by definition, so it is not necessarily always true. For example a simple proposition *Sun is shining* is not always true.

Exercise on slide 25

What about the correctness of the argument $(p \to q) \land (r \to \bar{p}) \land r \vdash \bar{q}$?

Solution

Let us try to use inference rules:

- 1. r (premise)
- 2. $r \rightarrow \bar{p}$ (premise)
- 3. \bar{p} (from 1 and 2 using Modus Ponens)
- 4. ?

Further application of the inference rules will not prove the correctness of the argument. So let us make a truth table for $((p \to q) \land (r \to \bar{p}) \land r) \to \bar{q}$

p	q	r	$p \rightarrow q$	\bar{p}	$r \to \bar{p}$	$(p \to q) \land (r \to \bar{p}) \land r$	\bar{q}	$((p \to r) \land (r \to \bar{p}) \land r) \to \bar{q}$
T	T	T	T	F	F	F	F	T
T	T	F	T	F	T	F	F	T
T	F	T	F	F	F	F	T	T
T	F	F	F	F	T	F	T	T
F	T	T	T	T	T	T	F	F
F	T	F	T	T	T	F	F	T
F	F	T	T	T	T	T	T	T
F	F	F	T	T	T	F	T	T

As it follows from the truth table, $((p \to q) \land (r \to \bar{p}) \land r) \to \bar{q}$ is not a tautology, so the argument $(p \to q) \land (r \to \bar{p}) \land r \vdash \bar{q}$ is not valid. In particular a counter example for it is when p, q and r are false, true and true correspondently.

Exercises on slide 34

Exercise 1

Translate the following into symbolic form:

- (i) Everybody likes him
- (ii) Somebody cried out for help and called the police
- (iii) Nobody can ignore her

Solution

- (i) $(\forall x)L(x)$, where L(x) x likes him.
- (ii) $(\exists x)[H(x) \land P(x)]$, where H(x) x cried out for help and P(x) x called the police
- (iii) $\sim (\exists x) I(x)$ or $(\forall x) [\sim I(x)]$, where I(x) x can ignore her

UoD for these examples are all human beings.

Exercise 2

Find an UoD and two unary predicates P(x) and Q(x) such that $(\forall x)[P(x) \to Q(x)]$.

Solution

UoB - all human beings.

P(x) - x is a student and Q(x) - x is intelligent. Whenever a human being is a student, he is intelligent.

Exercise 3

Find an UoD and two unary predicates P(x) and Q(x) such that $(\exists x)[P(x) \land Q(x)]$ is false but $(\exists x)P(x) \land (\exists x)Q(x)$ is true.

Solutions proposed by students

a) UoB - all human beings.

P(x) - x has blue eyes and Q(x) - x has black eyes.

There exist people with blue eyes and with black eyes, but one cannot have blue and black eyes at the same time.

b) UoB - all cars.

P(x) - x has 4 wheels and Q(x) - x has 6 wheels.

c) UoB - all integers. P(x) - x > 5 and Q(x) - x < 3.

Exercise 4

Show that $(\forall x)P(x) \vdash (\exists x)P(x)$

Solution

- 1. $(\forall x)P(x)$ (premise)
- 2. P(a) for some a from UoD (from 1 using Universal Specification)
- 3. $(\exists x)P(x)$ (from 2 using Existential Generalisation)

Exercise 5

Given the premises $(\exists x)P(x)$ and $(\forall x)[P(x) \to Q(x)]$ give a series of steps concluding that $(\exists x)Q(x)$

Solution

- 1. $(\exists x)P(x)$ (premise)
- 2. P(a) for some a from UoD (from 1 using Existential Specification)
- 3. $(\forall x)[P(x) \rightarrow Q(x)]$ (premise)
- 4. $P(a) \rightarrow Q(a)$ for some a from UoD (from 3 using Universal Specification)
- 5. Q(a) for some a from UoD (from 2 and 4 using Modus Ponens)
- 6. $(\exists x)Q(x)$ (from 5 using Existential Generalisation).

Exercise on slide 37

Show $\sim (\forall x)(\exists y)P(x,y) \equiv (\exists x)(\forall y)[\sim P(x,y)]$ using the logical equivalence above and using the fact that logically equivalent propositions can be interchanged in a compound proposition

Solution

 $\sim (\forall x)(\exists y)P(x,y) \equiv (\exists x)(\forall y)[\sim P(x,y)] \text{ if and only if } \sim (\forall x)(\exists y)P(x,y) \leftrightarrow (\exists x)(\forall y)[\sim P(x,y)] \text{ is a tautology.} \text{ And } \sim (\forall x)(\exists y)P(x,y) \leftrightarrow (\exists x)(\forall y)[\sim P(x,y)] \text{ is a tautology if and only if } \sim (\forall x)(\exists y)P(x,y) \rightarrow (\exists x)(\forall y)[\sim P(x,y)] \text{ and } (\exists x)(\forall y)[\sim P(x,y)] \rightarrow [\sim (\forall x)(\exists y)P(x,y)] \text{ are tautologies.}$

We will use the facts that $\sim (\forall x) F(x) \equiv (\exists x) [\sim F(x)]$ and $\sim (\exists x) F(x) \equiv (\forall x) [\sim F(x)]$ for any F(x).

Let us show that whenever $\sim (\forall x)(\exists y)P(x,y)$ is true then $(\exists x)(\forall y)[\sim P(x,y)]$ is true.

Let $\sim (\forall x)(\exists y)P(x,y)$ is true, and let $Q(x) = (\exists y)P(x,y)$ then $\sim (\forall x)Q(x)$ is true and $\sim (\forall x)Q(x) \equiv \exists x[\sim Q(x)]$, so $\exists x[\sim Q(x)]$ is true.

Using Existential Specification if $\exists x [\sim Q(x)]$ is true, then $\sim Q(a)$ is true for some a in UoD.

But $\sim Q(a) = \sim (\exists y) P(a,y)$ and $\sim (\exists y) P(a,y) \equiv (\forall y) [\sim P(a,y)]$, so $(\forall y) [\sim P(a,y)]$ is true for some a in UoD. Using Existential Generalisation $(\exists x) (\forall y) [\sim P(x,y)]$ is true.

So $\sim (\forall x)(\exists y)P(x,y) \rightarrow (\exists x)(\forall y)[\sim P(x,y)]$ is a tautology.

And let us show that whenever $(\exists x)(\forall y)[\sim P(x,y)]$ is true then $\sim (\forall x)(\exists y)P(x,y)$ is true.

Let $(\exists x)(\forall y)[\sim P(x,y)]$ is true, and let $Q(x)=(\forall y)[\sim P(x,y)]$, so $(\exists x)Q(x)$ is true. Then using Existential Specification Q(a) is true for some a in UoD.

 $Q(a) = (\forall y)[\sim P(a,y)]$ and $(\forall y)[\sim P(a,y)] \equiv \sim (\exists y)P(a,y)$, so $\sim (\exists y)P(a,y)$ is true for some a in UoD.

Let $L(a)=(\exists y)P(a,y)$, then $\sim L(a)$ is true for some a in UoD. Using Existential Generalisation $(\exists x)[\sim L(x)]$ is true. But $(\exists x)[\sim L(x)] \equiv \sim (\forall x)L(x)$, and so $\sim (\forall x)L(x)$ is true. Hence $\sim (\forall x)(\exists y)[P(x,y)]$ is true.

So $(\exists x)(\forall y)[\sim P(x,y)] \rightarrow [\sim (\forall x)(\exists y)P(x,y)]$ is a tautology.

By this we have proved that $\sim (\forall x)(\exists y)P(x,y) \leftrightarrow (\exists x)(\forall y)[\sim P(x,y)]$ is a tautology. Therefore $\sim (\forall x)(\exists y)P(x,y) \equiv (\exists x)(\forall y)[\sim P(x,y)]$.

Exercise 1.1.8 page 13

Given the tree propositions p, q and r, construct truth tables for:

- (i) $(p \land q) \rightarrow \bar{r}$
- (ii) $(p\underline{\vee}r) \wedge \bar{q}$
- (iii) $p \wedge (\bar{q} \vee r)$
- (iv) $p \to (\bar{q} \vee \bar{r})$
- (v) $(\overline{p \lor q}) \leftrightarrow (r \lor p)$.

Solution

					(i)			(ii)		(iii)		(iv)
p	q	r	\bar{r}	$p \wedge q$	$(p \wedge q) \to \bar{r}$	$p\underline{\vee}r$	\bar{q}	$(p\underline{\vee}r)\wedge \bar{q}$	$\bar{q} \vee r$	$p \wedge (\bar{q} \vee r)$	$\bar{q} \vee \bar{r}$	$p \to (\bar{q} \vee \bar{r})$
T	T	T	F	T	F	F	F	F	T	T	F	F
T	T	F	T	T	T	T	F	F	F	F	T	T
T	F	T	F	F	T	F	T	F	T	T	T	T
T	F	F	T	F	T	T	T	T	T	T	T	T
F	T	T	F	F	T	T	F	F	T	F	F	T
F	T	F	T	F	T	F	F	F	F	F	T	T
F	F	T	F	F	T	T	T	T	T	F	T	T
F	F	F	T	F	T	F	T	F	T	F	T	T

						(v)
p	q	r	$p \lor q$	$\overline{p \lor q}$	$r \lor p$	$(\overline{p \vee q}) \leftrightarrow (r \vee p)$
T	T	T	T	F	T	F
T	T	F	T	F	T	F
T	F	T	T	F	T	F
T	F	F	T	F	T	F
F	T	T	T	F	T	F
F	T	F	T	F	F	T
F	F	T	F	T	T	T
F	F	F	F	T	F	F

Exercise 1.2 page 15

Determine whether each of the following is a tautology, a contradiction or neither:

- 1. $p \rightarrow (p \lor q)$
- 2. $(p \rightarrow q) \land (\bar{p} \lor q)$
- 3. $(p \lor q) \leftrightarrow (q \lor p)$
- 4. $(p \land q) \rightarrow p$
- 5. $(p \land q) \land (\overline{p \lor q})$
- 6. $(p \rightarrow q) \rightarrow (p \land q)$
- 7. $(\bar{p} \wedge q) \wedge (p \vee \bar{q})$
- 8. $(p \rightarrow \bar{q}) \lor (\bar{r} \rightarrow p)$

Solution

						1	2	3	4
p	q	$p \lor q$	$p \rightarrow q$	$\bar{p} \lor q$	$p \wedge q$	$p \to (p \lor q)$	$(p \to q) \land (\bar{p} \lor q)$	$(p \lor q) \leftrightarrow (q \lor p)$	$(p \land q) \to p$
T	T	T	T	T	T	T	T	T	T
T	F	T	F	F	F	T	F	T	T
F	T	T	T	T	F	T	T	T	T
F	F	F	T	T	F	T	T	T	T
						tautology	neither	tautology	tautology

				5			7		6
p	q	$p \wedge q$	$\overline{p \lor q}$	$(p \land q) \land (\overline{p \lor q})$	$\bar{p} \wedge q$	$p \vee \bar{q}$	$(\bar{p} \wedge q) \wedge (p \vee \bar{q})$	$p \rightarrow q$	$(p \to q) \to (p \land q)$
T	T	T	F	F	F	T	F	T	T
T	F	F	F	F	F	T	F	F	T
F	T	F	F	F	T	F	F	T	F
F	F	F	T	F	F	T	F	T	F
				contradiction			contradiction		neither

					8
p	q	r	$p \to \bar{q}$	$\bar{r} \rightarrow p$	$(p \to \bar{q}) \lor (\bar{r} \to p)$
T	T	T	F	T	T
T	T	F	F	T	T
T	F	T	T	T	T
T	F	F	T	T	T
F	T	T	T	T	T
F	T	F	T	F	T
F	F	T	T	T	T
F	F	F	T	F	T
					tautology

Exercise 1.3 page 19

- 1. Prove that $(p \to q) \equiv (\bar{p} \lor q)$ 2. Prove that $(p \land q)$ and $(\overline{p} \to \overline{q})$ are logically equivalent propositions.
- 3. Prove that $(\overline{p}\underline{\vee}q) \equiv (p\underline{\vee}\bar{q})$

Solution

To prove task 1,2 and 3 we must show that $(p \to q) \leftrightarrow (\bar{p} \lor q)$, $(p \land q) \leftrightarrow (\overline{p} \to \overline{q})$ and $(\overline{p}\underline{\lor}\overline{q}) \leftrightarrow (p\underline{\lor}\overline{q})$ are tautologies.

				1				2
p	q	$p \rightarrow q$	$\bar{p} \vee q$	$(p \to q) \leftrightarrow (\bar{p} \lor q)$	$p \wedge q$	$p \to \bar{q}$	$\overline{p \to \bar{q}}$	$(p \land q) \leftrightarrow (\overline{p \to \overline{q}})$
T	T	T	T	T	T	F	T	T
T	F	F	F	T	F	T	F	T
F	T	T	T	T	F	T	F	T
F	F	T	T	T	F	T	F	T

					3
p	q	$p\underline{\vee}q$	$p\underline{\lor}q$	$p\underline{\vee}\bar{q}$	$\overline{p\underline{\vee}q} \leftrightarrow (p\underline{\vee}\bar{q})$
T	T	F	T	T	T
T	F	T	F	F	T
F	T	T	F	F	T
F	F	F	T	T	T

As it follows from the truth tables above, $(p \to q) \leftrightarrow (\bar{p} \lor q), (p \land q) \leftrightarrow (\overline{p \to \bar{q}})$ and $(\overline{p} \underline{\lor} q) \leftrightarrow (\bar{p} \underline{\lor} q)$ $(p\underline{\vee}\bar{q})$ are tautologies.

Exercise 1.4.3 page 27

Test the validity of the following arguments.

3. James is either a policeman or a footballer. If he is a policeman, then he has big feet. James has not got big feet so he is a footballer.

Solution

Let p, q and r be:

p: James is a policeman

q: James is a footballer

r: James has big feet.

Then the argument will be: $(p\underline{\lor}q) \land (p \to r) \land \bar{r} \vdash q$, where $(p\underline{\lor}q)$, $(p \to r)$ and \bar{r} are premises and q is a conclusion.

An alternative argument will be $(p\underline{\lor}q) \land (p \to r) \vdash (\bar{r} \to q)$, where $(p\underline{\lor}q)$ and $(p \to r)$ are premises and $(\bar{r} \to q)$ is a conclusion. It is because $((a \land b) \to c) \equiv (a \to (b \to c))$ for any a, b and c. Let us check the validity of the first argument by building a truth table for $(p\underline{\lor}q) \land (p \to r) \land \bar{r} \to q$

p	q	r	$p\underline{\vee}q$	$p \rightarrow r$	\bar{r}	$(p\underline{\vee}q)\wedge(p\to r)\wedge\bar{r}$	$(p\underline{\vee}q)\wedge(p\to r)\wedge\bar{r}\to q$
T	T	T	F	T	F	F	T
T	T	F	F	F	T	F	Т
T	F	T	T	T	F	F	T
T	F	F	T	F	T	F	Т
F	T	T	T	T	F	F	Т
F	T	F	T	T	T	T	T
F	F	T	F	T	F	F	Т
F	F	F	F	T	T	F	T

As it follows from the truth table above, $(p \underline{\vee} q) \wedge (p \to r) \wedge \bar{r} \to q$ is a tautology, so the argument $(p \underline{\vee} q) \wedge (p \to r) \wedge \bar{r} \vdash q$ is valid.

Exercise 1.5.4 page 36

Consider the following predicates:

P(x,y): x > y

 $Q(x,y): x \le y$

R(x): x - 7 = 2

S(x): x > 9

If the universe of discourse is the real numbers, give the truth value of each of the following propositions:

 $(i)(\exists x)R(x)$

 $\mathrm{(ii)}(\forall y)[\sim S(y)]$

 $(\mathrm{iii})(\forall x)(\exists y)P(x,y)$

 $(iv)(\exists y)(\forall x)Q(x,y)$

```
 \begin{split} & (\mathbf{v})(\forall x)(\forall y)[P(x,y) \vee Q(x,y)] \\ & (\mathbf{v}\mathbf{i})(\exists x)S(x) \wedge \sim (\forall x)R(x) \\ & (\mathbf{v}\mathbf{i}\mathbf{i})(\exists y)(\forall x)[S(y) \wedge Q(x,y)] \\ & (\mathbf{v}\mathbf{i}\mathbf{i})(\forall x)(\forall y)[\{R(x) \wedge S(y)\} \rightarrow Q(x,y)] \end{split}
```

Solution

- (i) T, $\exists x, x = 9$, that R(x) is true
- (ii) F, counter example y = 10
- (iii) T, for any real number always exists another real number that is less then it.
- (iv) F, there is no such real number that is grater or equal to all other real numbers.
- (v) T, any two real numbers x and y are either x > y or $x \le y$.
- (vi) T, there exist real numbers that are grater than 9, and not all real numbers are equal to 9
- (vii) F, there is no such real number that is grater or equal to all other real numbers, even if this number is grater than 9.
- (viii) T, this follows from the fact that $(\forall x)R(x)$ is false. Therefore $(\forall x)(\forall y)[R(x) \land S(y)]$ is also false, so $(\forall x)(\forall y)[\{R(x) \land S(y)\} \rightarrow Q(x,y)]$ is true.