Stephen Makonin, PhD, PEng, smIEEE

Address: 307 - 8850 University Crescent *Mobile:* +1 604-725-7838

Burnaby, BC, Canada *Email:* smakonin@sfu.ca V5A oC8 *Twitter:* @SMakonin

Citizenship: Canadian Website: http://www.sfu.ca/~smakonin/

CompSust Lab: http://compsust.fas.sfu.ca

Education

2010 – 2014 **Doctor of Philosophy (PhD)**, Simon Fraser University, Computing Science (Canada)

Thesis: Real-Time Embedded Low-Frequency Load Disaggregation

Advisor: Fred Popowich

2007 – 2009 Bachelor of Technology (BTech), British Columbia Institute of Technology (Canada)

Major: Computer Systems with a Data Communications Specialization

1993 – 1996 **Diploma in Computer Technology**, Selkirk College (Canada)

2018 Instructor Certificate, Software Carpentry Foundation (Canada)

2009 Certificate, Electronics Technician, George Brown College (Canada)

Professional Affiliation

2018 – now Professional Engineer (PEng), Engineers and Geoscientists BC (EGBC)

2013 – now Senior Member (smlEEE), Institute of Electrical and Electronics Engineers (IEEE)

Student Member and Member since 2008.

Research Experience

2017 - now Adjunct Professor

Simon Fraser University, School of Engineering Science (Canada)
PI of the Computational Sustainability Lab: http://compsust.fas.sfu.ca

2019 - now Senior Research Software Engineer & Head Instructor

Simon Fraser University, Big Data Hub (Canada)

2018 Visiting Professor

Indraprastha Institute of Information Technology, Delhi (IIIT-Delhi, India)

2016 - 2017 Postdoctoral Fellow

University of British Columbia, Electrical and Computer Engineering (Canada)

Advisor: Z. Jane Wang

2014 - 2017 Postdoctoral Fellow & Sessional Instructor

Simon Fraser University, Engineering Science & Computing Science (Canada)

2015 – 2017 Advisor: Ivan V. Bajić (postdoc)

2014 – 2015 Advisors: Wolfgang Stuerzlinger (postdoc) & Anthony Dixon (instructor)

2008 – 2015 Research Associate

British Columbia Institute of Technology, Applied Research (Canada)

HQP Supervision

POSTDOCTORAL FELLOWS

2017 – 2021 Senior Supervisor of Md. Zulfiquar Ali Bhotto — Postdoctoral Fellow Simon Fraser University, School of Engineering Science (Canada) Research Areas: NILM, smart grid optimization

DOCTORAL STUDENTS

2018 - now Senior Supervisor of Alejandro Rodriguez-Silva — PhD Thesis (on going)

Simon Fraser University, School of Engineering Science (Canada)

Thesis: tbd

MASTERS STUDENTS

2021 - now Senior Supervisor of Maria Tu — MASc Thesis (Starting Jan 2021)

Simon Fraser University, School of Engineering Science (Canada)

Thesis: tbd

2019 - 2020 Senior Supervisor of Richard Jones — MASc Thesis (defended Dec 18,2020)

Simon Fraser University, School of Engineering Science (Canada)

Awards/Scholarships: Graduate Dean's Entrance Scholarship (GDES), NSERC CGS-M

Thesis: Non-Parametric Modeling in Non-Intrusive Load Monitoring

2018 - 2020 Co-Supervisor of Alon Harell — MASc Thesis (defended Aug 19, 2020)

Simon Fraser University, School of Engineering Science (Canada)

Awards/Scholarships: NSERC CGS-M

Thesis: Deep Learning Applications in Non-Intrusive Load Monitoring

2014 - 2015 Co-Supervisor of Bradley Ellert — MSc Thesis (defended Aug 17, 2015)

Simon Fraser University, School of Computing Science (Canada)

Thesis: Leveraging Submetered Electricity Loads to Disaggregate Household Water-Use

UNDERGRADUATE RA/CO-OP

2020 – 2021 Daisy Chen — CompSust RA (on going, 6 months), Sustainable Energy Engineering Xing Chen Cao — CompSust RA (on going, 6 months), Engineering Science Zachary Fletcher — CompSust RA (on going, 6 months), Cognitive Science Project: NILM Toolkit - develop a testing and training toolset

2020 **Ramy ElMallah** — **Big Data RA (on going, 5 months)**, Mechatronic Systems Engineering Project: Marine acoustic classification (deep learning, federated learning, Raspberry Pi)

VISITING SCHOLARS

- 2019 David Murray PhD, University of Strathclyde, UK (2 months)
- 2019 Bundit Buddhahai PhD, KMUTT, Thailand (6 months)
- 2019 Christoph Klemenjak PhD, University of Klagenfurt, Austria (6 months)
- 2018 Shikha Singh PhD, IIIT-Delhi, India (1/2 month)
- 2017 2018 Megha Gaur PhD, IIIT-Delhi, India (6 months)

External Examiner (Viva)

2019 **Georgia Elafoudi (PhD Electronic and Electrical Eng.)**, University of Strathclyde, UK Thesis: Meaningful Information Extraction from IoT Measurements using Signal Information Processing

Teaching Experience

Feb, Apr, Jun, Al Essentials: Data Fellowship Workshop

Aug 2021 Simon Fraser University, Big Data Hub

Week-long workshops for non-computing students, faculty, and industry professionals. Course is delivered over Zoom using Google Colab.

Collaboration offerings delivered with:

- Jun 2021: Digital Democracies Institute (DDI), SFU
- Aug 2021: Texas Advanced Computing Center (TACC), University of Texas at Austin

Self-Directed Study Courses for Graduate and Undergraduate Students

- *Fall 2021* ENSC 891: Data Engineering for Intelligent Systems
- *Spring 2021* MSE 489: Data Engineering for Intelligent Systems
 - Fall 2019 ENSC 891: Survey of Machine-Learning Techniques for Disaggregating Complex Signals
 - Fall 2018 ENSC 891: Advanced Adaptive Filtering for Power Signal Disaggregation
 - *Fall 2014,* Introduction to the Internet and the World Wide Web (CMPT 165)
- Spring 2015 Simon Fraser University, School of Computing Science Students each semester: in-class section 200 (90% ESL Mandarin), dist. ed. section 225 TAs/TMs: in-class section 3, dist. ed. section 3

Grants & Funding (PI = Principal Investigator)

- 2020 now **PI** Mitacs Accelerate (\$70,000, 3 Installments)
 Title: Intelligent Systems Data Ingestion and Analytics
 Computing MSc Students: Peshotan Irani, Kyoun Huh
 - 2020 PI NSERC COVID19 Top-Up Supplement Award (\$8,480)
 - 2020 Canadian Pl EUREKA Grant (€1,120,000, 2 years, Canada/South Korea)
 Title: Development of integrated NILM algorithms considering multiple resolutions and designing service scenarios
 - 2020 **Co-Pl** SSHRC Knowledge Synthesis Grant (\$50,000, I year) Title: Tackling the Carbon Footprint of Streaming Media
 - 2019 **PI** NSERC Engage Grant (\$25,000, 6 months)

 Title: Inferring power grid transformer to meter association using inconsistent geospatial data
 - 2019 **Investigator** European Commission Horizon2020 Grant (2 years)
 Title: SENSors and Intelligence in BuLt Environment (SENSIBLE) project
 [indirect moneys to allow for international grad student visits]
 - 2019 PI NSERC Discovery Launch Supplement Award (\$12,500)
 - 2018 **PI** NSERC Discovery Grant (\$140,000, 5 years) Title: Non-Intrusive Load Monitoring (NILM)
 - 2016 **Postdoc** IC-IMPACTS NCE Project Grant (\$133,000, 2 years, 11.2% success rate)
 Title: Energy and Water Disaggregation for Non-Intrusive Load Monitoring in Buildings
 [I was a main author and organizer of grant but could not be co-PI due to funding rules]
 - 2012, 14 PhD Candidate SFU GSS Professional Development Grant (2 at \$500 each)
 - 2013 **PI** BCIT School of Energy Research Seed Funding (\$10,000, 4 months)
 Title: Branch Circuit Ammeter and Data Logger for Smart Grid/Home Application

Publications (see citation report at end of CV)

BOOKS

- Pacheco-Torgal, F., Rasmussen, E., Granqvist, C.-G., Ivanov, V., Kaklauskas, H. A., and **Makonin, S.**, editors (2016). *Start-Up Creation: The Smart Eco-Efficient Built Environment, 1st Edition.* (2020). *Start-Up Creation: The Smart Eco-Efficient Built Environment, 2nd Edition.* Woodhead Publishing/Elsevier, ISBN: 9780128199466 / eBook 9780128199473.
- Bennett, D., **Makonin, S.**, Mayfield, V. W., Neustaedter, T., and Wrenn, M. R. (1996). *Visual C++ 5.0 Developer's Guide*. Sams Publishing, ISBN: 978-0-672-31031-7.

IOURNAL ARTICLES (PEER REVIEWED)

- Jones, R., and **Makonin, S.** (2021). A Non-Parametric Modelling Method for Unsupervised Non-Intrusive Load Monitoring. *IEEE Trans. on Smart Grid*. [in submission]
- Buddhahai, B., and **Makonin, S.** (2021). A Nonintrusive Load Monitoring Based on Multi-Target Regression Approach. *IEEE Access*. [in submission]
- Bhotto, Md. Z. A., **Makonin, S.**, and Bajić, I. V. (2021). Optimal Battery Usage for Dynamic Nanogrid Energy Management. *IEEE Access*. [in submission]
- Harell, A., Jones, R., **Makonin, S.**, and Bajić, I. V. (2021). TraceGAN: Synthesizing Appliance Power Signatures Using Generative Adversarial Networks. *IEEE Trans. on Smart Grid*, 12(5): 4553–4563.
- Bhotto, Md. Z. A., Jones, R., **Makonin, S.**, and Bajić, I. V. (2021). Short-Term Microgrid Demand Prediction Using an Ensemble of Linearly-Constrained Estimators. *IEEE Trans. on Power Systems*, 36(4): 3163–3175.
- Klemenjak, C., **Makonin, S.**, and Elmenreich, W. (2021). Investigating the Performance Gap between Testing on Real and Denoised Aggregates in Non-Intrusive Load Monitoring. *Energy Informatics*, 4(3):1–15.
- Dinesh, C., **Makonin, S.**, and Bajić, I. V. (2020). Residential Power Forecasting Based on Affinity Aggregation Spectral Clustering. *IEEE Access*, 8:99431–99444.
- Dinesh, C., **Makonin, S.**, and Bajić, I. V. (2019). Residential Power Forecasting Using Load Identification and Graph Spectral Clustering. *IEEE Trans. on Circuits and Systems II: Express Briefs*, 66(11):1900–1904.
- Gaur, M., **Makonin, S.**, Bajić, I. V., and Majumdar, A. (2019). Performance evaluation of techniques for identifying abnormal energy consumption in buildings. *IEEE Access*, 7:62721–62733.
- **Makonin, S.** (2019). HUE: The Hourly Usage of Energy Dataset for Buildings in British Columbia. *Data in Brief*, 23(103744):1–4.
- **Makonin, S.**, Wang, Z. J., and Tumpach, C. (2018). RAE: The Rainforest Automation Energy Dataset for Smart Grid Meter Data Analysis. *Data*, 3(1):1-9.
- Bhotto, Md. Z. A., **Makonin, S.**, and Bajić, I. V. (2016). Load Disaggregation Based on Aided Linear Integer Programming. *IEEE Trans. on Circuits and Systems II: Express Briefs*, 64(7):792–796.
- **Makonin, S.**, Ellert, B., Bajić, I. V., and Popowich, F. (2016). Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014. *Scientific Data*, 3(160037):1–12.
- **Makonin, S.**, Popowich, F., Bajić, I. V., Gill, B., and Bartram, L. (2016). Exploiting HMM Sparsity to Perform Online Real-Time Nonintrusive Load Monitoring. *IEEE Trans. on Smart Grid*, 7(6):2575–2585.
- **Makonin, S.** and Popowich, F. (2015). Nonintrusive Load Monitoring (NILM) Performance Evaluation. *Energy Efficiency*, 8(4):809–814.
- **Makonin, S.**, Bartram, L., and Popowich, F. (2013). A Smarter Smart Home: Case Studies of Ambient Intelligence. *IEEE Pervasive Computing*, 12(1):58–66.

Makonin, S. and Popowich, F. (2012). Home Occupancy Agent: Occupancy and Sleep Detection. *GSTF Journal on Computing*, 2(1):182–186.

CONFERENCE PROCEEDINGS (PEER REVIEWED)

- Jones, R., Klemenjak, C., **Makonin, S.**, and Bajić, I. V. (2020). Stop! Exploring Bayesian Surprise to Better Train NILM. In *Proceedings of the 5th International Workshop on Non- Intrusive Load Monitoring*.
- Singh, S., Majumdar, A., and **Makonin, S.** (2020). Compressive Non-Intrusive Load Monitoring. In *Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Built Environments, Cities, and Transportation (BuildSys).*
- Jones, R., Rodriguez-Silva, A., and **Makonin, S.** (2020). Increasing the Accuracy and Speed of Universal Non-Intrusive Load Monitoring (UNILM) Using a Novel Real-Time Steady-State Block Filter. In *Proceedings of the 11th Conference on Innovative Smart Grid Technologies (ISGT)*.
- Klemenjak, C., **Makonin, S.**, and Elmenreich, W. (2020). Towards Comparability in Non-Intrusive Load Monitoring: On Data and Performance Evaluation. In *Proceedings of the 11th Conference on Innovative Smart Grid Technologies (ISGT)*.
- Rodriguez-Silva, A., and **Makonin, S.** (2019). Universal Non-Intrusive Load Monitoring (UNILM) Using Filter Pipelines, Probabilistic Knapsack, and Labelled Partition Maps. In *Proceedings of the 11th IEEE PES Asia-Pacific Power and Energy Engineering Conference 2019 (APPEEC)*.
- Klemenjak, C., Reinhardt, A., Pereira, L., **Makonin, S.**, Bergés, M., and Elmenreich, W. (2019). Electricity Consumption Data Sets: Pitfalls and Opportunities. In *Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Built Environments, Cities, and Transportation (BuildSys*).
- Harell, A., **Makonin, S.**, and Bajić, I. V. (2019). WaveNILM: A Causal Neural Network for Power Disaggregation from the Complex Power Signal. In *Proceedings of the 44th International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*.
- Guzman, L., **Makonin, S.**, and Clapp, R. A. (2019). CarbonKit: Designing A Personal Carbon Tracking Platform. In *Proceedings of SocialSense '19: Fourth International Workshop on Social Sensing*.
- Dinesh, C., **Makonin, S.**, and Bajić, I. V. (2017). Incorporating Time-Of-Day Usage Patterns Into Non-Intrusive Load Monitoring. In *Proceedings of the 5th IEEE Global Conference on Signal and Information Processing (GlobalSIP)*.
- **Makonin, S.** (2016). Investigating the Switch Continuity Principle Assumed in Non-Intrusive Load Monitoring (NILM). In *Proceedings of the 29th Annual IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)*.
- **Makonin, S.**, McVeigh, D., Stuerzlinger, W., Tran, K., and Popowich, F. (2016). Mixed-Initiative for Big Data: The Intersection of Human + Visual Analytics + Prediction. In *Proceedings of the 49th Hawaii International Conference on System Sciences (HICSS)*, pp. 1427-1436.
- Ellert, B., **Makonin, S.**, and Popowich, F. (2015). Appliance Water Disaggregation via Non-Intrusive Load Monitoring (NILM). In *Proceedings of the EAI International Conference on Big Data and Analytics for Smart Cities (BigDASC*).
- Wallace, J., Richardson, K., Gill, B., and **Makonin, S.** (2015). Cognitive Radio Technology: System Evolution. In *Proceedings of the 4th International Conference On Wireless Networks and Embedded Systems* (WECON).
- **Makonin, S.**, Bajić, I. V., and Popowich, F. (2014). Efficient Sparse Matrix Processing for Nonintrusive Load Monitoring (NILM). In *Proceedings of the 2nd International Workshop on Non- Intrusive Load Monitoring*.

- **Makonin, S.**, Guzman Flores, L., Gill, R., Clapp, R. A., Bartram, L., and Gill, B. (2014). A Consumer Bill of Rights for Energy Conservation. In *Proceedings of the 2014 IEEE Canada International Humanitarian Technology Conference (IHTC)*.
- Filsoof, R., Bodine, A., Gill, B., **Makonin, S.**, and Nicholson, R. (2014). Transmitting Patient Vitals Over a Reliable ZigBee Mesh Network. In *Proceedings of the 2014 IEEE Canada International Humanitarian Technology Conference (IHTC)*.
- **Makonin, S.**, Sung, W., Dela Cruz, R., Yarrow, B., Gill, B., Popowich, F., and Bajić, I. V. (2013). Inspiring Energy Conservation Through Open Source Metering Hardware and Embedded Real-Time Load Disaggregation. In *Proceedings of the 5th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC*).
- **Makonin, S.**, Popowich, F., Bartram, L., Gill, B., and Bajić, I. V. (2013). AMPds: A Public Dataset for Load Disaggregation and Eco-Feedback Research. In *Proceedings of the 2013 IEEE Electrical Power and Energy Conference (EPEC)*.
- **Makonin, S.**, Popowich, F., Moon, T., and Gill, B. (2013). Inspiring Energy Conservation Through Open Source Power Monitoring and In-Home Display. In *Proceedings of the 2013 IEEE Power and Energy Society General Meeting*.
- **Makonin, S.**, Popowich, F., and Gill, B. (2013). The Cognitive Power Meter: Looking Beyond the Smart Meter. In *Proceedings of the 2013 26th Annual IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)*.
- **Makonin, S.**, Kashani, M., and Bartram, L. (2012). The Affect of Lifestyle Factors on Eco-Visualization Design. In *Proceedings of Computer Graphics International (CGI)*.
- **Makonin, S.**, Pasquier, P., and Bartram, L. (2011). Elements of Consumption: An abstract visualization of household consumption. In *Smart Graphics*, LNCS, 6815:194–198. Springer Berlin Heidelberg.
- **Makonin, S.** and Popowich, F. (2011). An intelligent agent for determining home occupancy using power monitors and light sensors. In *Toward Useful Services for Elderly and People with Disabilities*, LNCS, 6719:236–240. Springer Berlin Heidelberg.

POSTER & DEMO SESSIONS

Harell, A., **Makonin, S.**, and Bajić, I. V. (2018). A Recurrent Neural Network for Multisensory Non-Intrusive Load Monitoring on a Raspberry Pi. In *Proceedings of the EEE 20th International Workshop on Multimedia Signal Processing (MMSP)*.

TECHNICAL REPORTS

Makonin, S. (2012). *Approaches to Non-Intrusive Load Monitoring (NILM) in the Home*. PhD Depth Report, Simon Fraser University, School of Computing Science.

Service To Profession

ADVISORY BOARDS/COMMITTEES

2021 – now **Faculty Advisory Member**, SFU Sustainability Advisory Council (S-AC)

2020 - now Advisory Board Member, IEEE DataPort

JOURNAL EDITORSHIPS

2021 - now Guest Editorial Board Member, IEEE Open Access Journal of Power and Energy

2020 - now Editor in Chief, IEEE DataPort Metadata Review Board

2019 – now Editorial Board Member, Scientific Data, Nature

STANDARDS ASSOCIATIONS

2021 – now **Voting Member**, Big Data Governance and Metadata Management (2957) **Chiar** of the Implementation Testbed Subgroup of IEEE P2957 BDGMMWG IEEE Standards Association (IEEE SA) & NIST (USA)

GRANT REVIEWER

- 2014, 17, 19-21 External Grant Reviewer, Mitacs Accelerate Grant Proposal, Canada
 - 2018 External Grant Reviewer, EPSRC Grant Proposal, UK

GENERAL CHAIR & ORGANIZER

- 2020 5th International Workshop on Non-Intrusive Load Monitoring (NILM) Yokohama, Japan [virtual/online]. November 18 20
- 2019 Advanced Signal Processing for Non-intrusive Load Monitoring Special Session 44th International Conference on Acoustics, Speech, and Signal Processing (ICASSP) Brighton, UK. May 12
- 2018 4th International Workshop on Non-Intrusive Load Monitoring (NILM) Auston, TX, USA. March 7 8
- 2017 The Plenty of Fish (POF) 24hr Hackathon Burnaby, Canada. October 13 – 14, 24-hours
- 2016 3rd International Workshop on Non-Intrusive Load Monitoring (NILM) Vancouver, Canada. May 14 15
- 2015 IEEE Vancouver Windows 10 Hackathon Burnaby, Canada. May 16 – 17, 28-hours
- 2014 IEEE Vancouver Kinect and Structure Sensor Hackathon Burnaby, Canada. November 8 – 9, 28-hours

WEBSITE & SOCIAL MEDIA CHAIR

- 2016 14th IEEE International NEW Circuits And Systems (NEWCAS) Conference Vancouver, Canada. June 26 29
- 2016 29th Annual IEEE Canadian Conf. on Electrical and Computer Engineering (CCECE) Vancouver, Canada. May 15 18
- 2014 IEEE 15th Int. Conf. on High Performance Switching and Routing (HPSR) Vancouver, Canada. July 1 4

Technical Program Committee (TPC) MembeR

- 2021 IEEE Day-Ahead Electricity Demand Forecasting: Post-COVID Paradigm Competition
- 2020 eSim 2020, International Building Performance Simulation Association (IBPSA-Canada)
- 2019 11th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)
- 2017 5th IFIP Conference on Sustainable Internet and ICT for Sustainability (SustainIT)
- 2015 2017 IEEE Workshop on Pervasive Energy Services (PerEnergy)
 - 2016 Int. Workshop on Computational Energy Management in Smart Grids (CEMiSG)
 - 2015 Int. Conf. on Big Data and Analytics for Smart Cities (BigDASC)
- 2011 2015 Int. Conf. on Ubiquitous Computing and Ambient Intelligence (UCAml)
 - 2012 IEEE Int. Conf. on Power and Energy (PECON)

Keynotes, Invited Talks & News/Media Interviews

- 2020 Laura Marks and Stephen Makonin: Streaming video is overheating the planet The Vancouver Sun (Vancouver, BC, Canada), Op-Ed, August 15.
- News Talk Show Interview/Discussion on CarbonKit and Personal Carbon Tracking The Danielle Smith Show (Calgary, AB, Canada), 22 min, October 2.
- 2018 Data, Datasets, and Data EngineeringThe 5th EU Nonintrusive Load Monitoring Workshop (Duisburg, Germany), October 1.
- 2018 NILM Real-World Testing: An Emulator for NILM and Smart Home Research 4th International Workshop on Non-Intrusive Load Monitoring (Austin, USA), March 8.
- The Expectations of Non-Intrusive Load Monitoring (NILM)
 The International Conference on Application of Demand-Side Management (DSM) and Data Driven Technology in Energy Saving (Taipei, Taiwan), November 22.
- 2017 NILM Real-World Testing: The Case for an Emulator
 The 4th EU Nonintrusive Load Monitoring Workshop (London, UK), November 7.
- From Socioeconomic Concerns to Standardizing Accuracy to Water NILM The 2nd EU Nonintrusive Load Monitoring Workshop (London, UK), July 8.

Scholarships & Awards

- 2017 IEEE Signal Processing Society Appreciation Certificate Leadership & Support
- 2015 IEEE Vancouver Section Leadership and Contribution Award Initiative
- 2014 SFU Faculty of Applied Science (FAS) Graduate Fellowship (PhD)
- 2012, 14 Ebco/Eppich Graduate Scholarships in Intelligent Systems
 - 2013 SFU Travel & Minor Research Award (2 awards won that year)
 - 2013 SFU President's PhD Scholarship
- 2012, 13 SFU Graduate Fellowship (PhD)
 - 2010 BCIT Vancouver 2010 Olympic Winter Games Legacy Fund Scholarship

Industry Experience (Software Engineering Brief Summary)

- 2014 now Co-Founder & Senior Research Scientist SweetLightning (Calgary, Canada)
- 1996 now Senior Software Developer Consultant

Oponix Systems Inc. formerly Makonin Consulting Corp. (1996-2010, Canada) Clients incl. Telus Mobility, Vancouver Costal Health, Sierra Wireless, Safeway Canada, and Quartech Systems. Recent clients incl. Green Running (UK), and Itron (USA)

- 2017 2018 Senior Software Engineer Knowledge Network (Canada) iOS/Swift, tvOS/TVML, Drupal RESTful API, and video streaming development Reporting staff: I Software Developer
- 2006 2008 **Co-Founder & CTO** Vvvroom.com (Canada) Newsfeed socialmedia service/app (RSS/ATOM aggregator)
 - 2006 **Director of Software Development, Vancouver** AbsolutePoker (Vancouver, Canada) Reporting staff: 3 Software Developers, 1 QA Manager, 3 QA Testers Department budget: \$600,000/year

Volunteer Work

- 2020 now Strata Council Executive, The Peak (EPS5447) at Simon Fraser University
- 2017 now Yearly Scholarship for Aboriginal Undergraduates (Donor of), Simon Fraser University
- 2016 now Executive Member, IEEE Vancouver Section

Vice-Chair, Signal Processing Chapter: 2016 – now

Chair, IEEE Vancouver Joint Computing Chapter: 2014 - 2016

Membership Development Chair, IEEE Vancouver Section: 2012 - 2014

- 2018 2020 Director of Communication, Burnaby Mountain Mantas Swim Club
- 2012 2019 Executive Member, Westside Montessori Academy PAC

Co-Chair: 2014/15 school year

Treasurer: 2014/15, 2015/16, 2016/17, and 2017/18 school years

Executive-at-Large: 2012/13 and 2018/19 school years

Diversity Statement

I am a diverse candidate. I fall under three diversity categories: persons with disabilities, racialized people, and people in the LGBTQ+ community.

Citation Counts Report

This report was generated by https://github.com/smakonin/ScholarHacks and reports Google Scholar results.

Report generated on: 2021-10-29 07:39:05.656326

Citations = 1,617 h-index = 19 i10-index = 30

Paper Title AMPds: A public dataset for load disaggregation and eco-feedback re Exploiting HMM Sparsity to Perform Online Real-Time Nonintrusive Lo Electricity, water, and natural gas consumption of a residential ho Nonintrusive load monitoring (NILM) performance evaluation A Smarter Smart Home: Case Studies of Ambient Intelligence Load Disaggregation Based on Aided Linear Integer Programming WaveNILM: A Causal Neural Network for Power Disaggregation from the RAE: The Rainforest Automation Energy Dataset for Smart Grid Meter The cognitive power meter: Looking beyond the smart meter Visual C++ 5.0 Developer's Guide Real-time embedded low-frequency load disaggregation Efficient Sparse Matrix Processing for Nonintrusive Load Monitoring Residential power forecasting using load identification and graph s Mixed-Initiative for Big Data: The Intersection of Human + Visual A Investigating the Switch Continuity Principle Assumed in Non-Intrus Towards Comparability in Non-Intrusive Load Monitoring: On Data and Electricity consumption data sets: Pitfalls and opportunities Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con Incorporating Time-Of-Day Usage Patterns Into Non-Intrusive Load Mo	ions 313 250	Journal IF
Exploiting HMM Sparsity to Perform Online Real-Time Nonintrusive Lo Electricity, water, and natural gas consumption of a residential ho Nonintrusive load monitoring (NILM) performance evaluation A Smarter Smart Home: Case Studies of Ambient Intelligence Load Disaggregation Based on Aided Linear Integer Programming WaveNILM: A Causal Neural Network for Power Disaggregation from the RAE: The Rainforest Automation Energy Dataset for Smart Grid Meter The cognitive power meter: Looking beyond the smart meter Visual C++ 5.0 Developer's Guide Real-time embedded low-frequency load disaggregation Efficient Sparse Matrix Processing for Nonintrusive Load Monitoring Residential power forecasting using load identification and graph s Mixed-Initiative for Big Data: The Intersection of Human + Visual A Investigating the Switch Continuity Principle Assumed in Non-Intrus Towards Comparability in Non-Intrusive Load Monitoring: On Data and Electricity consumption data sets: Pitfalls and opportunities Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con		
Exploiting HMM Sparsity to Perform Online Real-Time Nonintrusive Lo Electricity, water, and natural gas consumption of a residential ho Nonintrusive load monitoring (NILM) performance evaluation A Smarter Smart Home: Case Studies of Ambient Intelligence Load Disaggregation Based on Aided Linear Integer Programming WaveNILM: A Causal Neural Network for Power Disaggregation from the RAE: The Rainforest Automation Energy Dataset for Smart Grid Meter The cognitive power meter: Looking beyond the smart meter Visual C++ 5.0 Developer's Guide Real-time embedded low-frequency load disaggregation Efficient Sparse Matrix Processing for Nonintrusive Load Monitoring Residential power forecasting using load identification and graph s Mixed-Initiative for Big Data: The Intersection of Human + Visual A Investigating the Switch Continuity Principle Assumed in Non-Intrus Towards Comparability in Non-Intrusive Load Monitoring: On Data and Electricity consumption data sets: Pitfalls and opportunities Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con		
Electricity, water, and natural gas consumption of a residential ho Nonintrusive load monitoring (NILM) performance evaluation A Smarter Smart Home: Case Studies of Ambient Intelligence Load Disaggregation Based on Aided Linear Integer Programming WaveNILM: A Causal Neural Network for Power Disaggregation from the RAE: The Rainforest Automation Energy Dataset for Smart Grid Meter The cognitive power meter: Looking beyond the smart meter Visual C++ 5.0 Developer's Guide Real-time embedded low-frequency load disaggregation Efficient Sparse Matrix Processing for Nonintrusive Load Monitoring Residential power forecasting using load identification and graph s Mixed-Initiative for Big Data: The Intersection of Human + Visual A Investigating the Switch Continuity Principle Assumed in Non-Intrus Towards Comparability in Non-Intrusive Load Monitoring: On Data and Electricity consumption data sets: Pitfalls and opportunities Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con		10.486
Nonintrusive load monitoring (NILM) performance evaluation A Smarter Smart Home: Case Studies of Ambient Intelligence Load Disaggregation Based on Aided Linear Integer Programming WaveNILM: A Causal Neural Network for Power Disaggregation from the RAE: The Rainforest Automation Energy Dataset for Smart Grid Meter The cognitive power meter: Looking beyond the smart meter Visual C++ 5.0 Developer's Guide Real-time embedded low-frequency load disaggregation Efficient Sparse Matrix Processing for Nonintrusive Load Monitoring Residential power forecasting using load identification and graph s Mixed-Initiative for Big Data: The Intersection of Human + Visual A Investigating the Switch Continuity Principle Assumed in Non-Intrus Towards Comparability in Non-Intrusive Load Monitoring: On Data and Electricity consumption data sets: Pitfalls and opportunities Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con	170	6.776
A Smarter Smart Home: Case Studies of Ambient Intelligence Load Disaggregation Based on Aided Linear Integer Programming WaveNILM: A Causal Neural Network for Power Disaggregation from the RAE: The Rainforest Automation Energy Dataset for Smart Grid Meter The cognitive power meter: Looking beyond the smart meter Visual C++ 5.0 Developer's Guide Real-time embedded low-frequency load disaggregation Efficient Sparse Matrix Processing for Nonintrusive Load Monitoring Residential power forecasting using load identification and graph s Mixed-Initiative for Big Data: The Intersection of Human + Visual A Investigating the Switch Continuity Principle Assumed in Non-Intrus Towards Comparability in Non-Intrusive Load Monitoring: On Data and Electricity consumption data sets: Pitfalls and opportunities Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con	151	
Load Disaggregation Based on Aided Linear Integer Programming WaveNILM: A Causal Neural Network for Power Disaggregation from the RAE: The Rainforest Automation Energy Dataset for Smart Grid Meter The cognitive power meter: Looking beyond the smart meter Visual C++ 5.0 Developer's Guide Real-time embedded low-frequency load disaggregation Efficient Sparse Matrix Processing for Nonintrusive Load Monitoring Residential power forecasting using load identification and graph s Mixed-Initiative for Big Data: The Intersection of Human + Visual A Investigating the Switch Continuity Principle Assumed in Non-Intrus Towards Comparability in Non-Intrusive Load Monitoring: On Data and Electricity consumption data sets: Pitfalls and opportunities Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con	71	
WaveNILM: A Causal Neural Network for Power Disaggregation from the RAE: The Rainforest Automation Energy Dataset for Smart Grid Meter The cognitive power meter: Looking beyond the smart meter Visual C++ 5.0 Developer's Guide Real-time embedded low-frequency load disaggregation Efficient Sparse Matrix Processing for Nonintrusive Load Monitoring Residential power forecasting using load identification and graph s Mixed-Initiative for Big Data: The Intersection of Human + Visual A Investigating the Switch Continuity Principle Assumed in Non-Intrus Towards Comparability in Non-Intrusive Load Monitoring: On Data and Electricity consumption data sets: Pitfalls and opportunities Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con	62	3.250
RAE: The Rainforest Automation Energy Dataset for Smart Grid Meter The cognitive power meter: Looking beyond the smart meter Visual C++ 5.0 Developer's Guide Real-time embedded low-frequency load disaggregation Efficient Sparse Matrix Processing for Nonintrusive Load Monitoring Residential power forecasting using load identification and graph s Mixed-Initiative for Big Data: The Intersection of Human + Visual A Investigating the Switch Continuity Principle Assumed in Non-Intrus Towards Comparability in Non-Intrusive Load Monitoring: On Data and Electricity consumption data sets: Pitfalls and opportunities Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con	53	3.230
The cognitive power meter: Looking beyond the smart meter Visual C++ 5.0 Developer's Guide Real-time embedded low-frequency load disaggregation Efficient Sparse Matrix Processing for Nonintrusive Load Monitoring Residential power forecasting using load identification and graph s Mixed-Initiative for Big Data: The Intersection of Human + Visual A Investigating the Switch Continuity Principle Assumed in Non-Intrus Towards Comparability in Non-Intrusive Load Monitoring: On Data and Electricity consumption data sets: Pitfalls and opportunities Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con	45	tbd
Visual C++ 5.0 Developer's Guide Real-time embedded low-frequency load disaggregation Efficient Sparse Matrix Processing for Nonintrusive Load Monitoring Residential power forecasting using load identification and graph s Mixed-Initiative for Big Data: The Intersection of Human + Visual A Investigating the Switch Continuity Principle Assumed in Non-Intrus Towards Comparability in Non-Intrusive Load Monitoring: On Data and Electricity consumption data sets: Pitfalls and opportunities Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con	36	tba
Real-time embedded low-frequency load disaggregation Efficient Sparse Matrix Processing for Nonintrusive Load Monitoring Residential power forecasting using load identification and graph s Mixed-Initiative for Big Data: The Intersection of Human + Visual A Investigating the Switch Continuity Principle Assumed in Non-Intrus Towards Comparability in Non-Intrusive Load Monitoring: On Data and Electricity consumption data sets: Pitfalls and opportunities Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con	35	
Efficient Sparse Matrix Processing for Nonintrusive Load Monitoring Residential power forecasting using load identification and graph s Mixed-Initiative for Big Data: The Intersection of Human + Visual A Investigating the Switch Continuity Principle Assumed in Non-Intrus Towards Comparability in Non-Intrusive Load Monitoring: On Data and Electricity consumption data sets: Pitfalls and opportunities Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con	34	
Residential power forecasting using load identification and graph s Mixed-Initiative for Big Data: The Intersection of Human + Visual A Investigating the Switch Continuity Principle Assumed in Non-Intrus Towards Comparability in Non-Intrusive Load Monitoring: On Data and Electricity consumption data sets: Pitfalls and opportunities Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con	32	
Mixed-Initiative for Big Data: The Intersection of Human + Visual A Investigating the Switch Continuity Principle Assumed in Non-Intrus Towards Comparability in Non-Intrusive Load Monitoring: On Data and Electricity consumption data sets: Pitfalls and opportunities Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con		2 250
Investigating the Switch Continuity Principle Assumed in Non-Intrus Towards Comparability in Non-Intrusive Load Monitoring: On Data and Electricity consumption data sets: Pitfalls and opportunities Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con	28	3.250
Towards Comparability in Non-Intrusive Load Monitoring: On Data and Electricity consumption data sets: Pitfalls and opportunities Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con	27	
Electricity consumption data sets: Pitfalls and opportunities Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con	25	
Appliance Water Disaggregation via Non-Intrusive Load Monitoring (N The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con	23	
The Affect of Lifestyle Factors on Eco-Visualization Design Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con	22	
Approaches to Non-Intrusive Load Monitoring (NILM) in the Home Elements of consumption: an abstract visualization of household con	21	
Elements of consumption: an abstract visualization of household con	19	
	16	
Incorporating "ime-Ot-Day Usage Patterns Into Non-Intrusive Load Mo	16	
	15	
A consumer bill of rights for energy conservation	14	
Inspiring energy conservation through open source metering hardware	14	
An intelligent agent for determining home occupancy using power mon	14	
Inspiring energy conservation through open source power monitoring	13	1 420
HUE: The Hourly Usage of Energy Dataset for Buildings in British Co	12	1.430
HUE: The Hourly Usage of Energy Dataset for Buildings in British Co	12	
Start-Up Creation: The Smart Eco-efficient Built Environment	12	4 000
Performance evaluation of techniques for identifying abnormal energ	11 11	4.098
Home Occupancy Agent: Occupancy and Sleep Detection		tbd
AMPds2: Almanac of Minutely Power dataset (Version 2)	10	
Universal Non-Intrusive Load Monitoring (UNILM) Using Filter Pipeli	9 5	
Cognitive Radio Technology: System Evolution	5	
Transmitting Patient Vitals Over a Reliable ZigBee Mesh Network	4	4.098
Residential Power Forecasting Based on Affinity Aggregation Spectra Increasing the Accuracy and Speed of Universal Non-Intrusive Load M	4	4.090
On metrics to assess the transferability of machine learning models	4	
A Recurrent Neural Network for Multisensory Non-Intrusive Load Moni	4	
AMPd's: Almanac of Minutely Power dataset (R2013)	4	
Stop! Exploring Bayesian Surprise to Better Train NILM	3	
TraceGAN: Synthesizing Appliance Power Signatures Using Generative	2	10.486
Compressive Non-Intrusive Load Monitoring	2	10.400
CarbonKit: Designing A Personal Carbon Tracking Platform	2	
RAE: The Rainforest Automation Energy Dataset	2	
Investigating the performance gap between testing on real and denoi	1	tbd
Exploring Bayesian Surprise to Prevent Overfitting and to Predict M	1	CDG
Short-Term Demand Prediction Using an Ensemble of Linearly-Constrai	0	6.047
Peer-Reviewed Conferences: 36 papers	77/	
Peer-Reviewed Conferences: 36 papers Peer-Reviewed Journals: 14 papers	774 818	5/ 00/
Books Co-authored/Co-edited: 14 papers 2 books	47	54.904
2 DOOKS		
Grand Totals: 52 papers 3	,639	

^{***} Papers with [in submission] status: 3 journal manuscript(s), 0 conference paper(s)

Note: Papers without a citation count are not listed above unless they are a journal paper.

Download the latest version of this CV at: http://makonin.com/doc/SMakonin_CV.pdf