

Logistique Industrielle

3^{ÈME} ANNÉE

H.ELHADAF

Chapitre II

Organisation et configuration

des ateliers

Organisation des ateliers de production

- minimiser les distances parcourues par les matières, les moyens de transport et de manutention
 - faciliter les communications et des échanges d'informations
 - 3 Standardisation de cheminement des produits
 - Eliminer un déplacement deux fois sans apport de valeur ajoutée

Types d'implantation

Implantation en lignes de fabrication

Implantation en cellules de fabrication

Implantation en sections homogènes

Types d'implantation

	AVANTAGES	INCONVINIENTS
Implantation en sections homogènes	 la flexibilité(l'implantation est indépendante des gammes de fabrication) Regroupement du personnel travaillant dans un même secteur. 	flux complexes, les en-cours et délais de production importants.
Implantation en lignes de fabrication	les flux sont faciles à identifier	la flexibilité quasiment nulle.
Implantation en cellules de fabrication	Réduction notable de stocks et de délais	_

Îlot de production

îlot de production: un regroupement de postes de travail traversé par des flux de matières utilisant ces postes dans un ordre variable d'une gamme à

l'autre.

6

Les méthodes d'implantation

- Méthodes d'implantation d'atelier (méthodes des chaînons) qui ne sont pas liées à un type de production mais cherchent à minimiser les déplacements et à éviter les croisements des flux.
- Méthodes de séparation en îlots indépendants (Kuziack, King...) qui permettent en fonction de la gamme des produits de définir des îlots de productions indépendants qui utilisent le même groupement de machines.

Séparation des îlots:

Algorithme de Kuziack

Méthodologie:

- 1. Cocher une Ligne au hasard, soit la première.
- 2. Cocher les colonnes qui contiennent au moins 50% des produits.
- 3. de même pour les lignes et ainsi de suite jusqu'à ce qu'on peut plus coché ni ligne ni colonne.

Algorithme de Kuziack

Exemple:

Etape 1: On sélectionne la première ligne et les colonnes attachées à cette ligne

Etape 2: On sélectionne les lignes attachées aux colonnes sélectionnées.

Ainsi, on intègre la pièce P7 (1 machine sur 2), mais pas la pièce P3 (1 machine sur 3)

Machines	M1	M2	М3	M4	M5	M6	М7
Pièces							
P1		1			2		
P2		į		2		1	
P3			2	3	1		
P4	1				į		2
P5 — -		1			2		
P6				2	I	1	
P7		2	1				

Etape 3: on recommence l'étape 1 en sélectionnant les colonnes attachées à l'îlot.

Etape 4: on arrête lorsque la ligne (ou la colonne) ne comporte plus d'éléments.

Le premier regroupement est alors réalisé (M2, M3, M5) pour la réalisation de l'ensemble de pièces (P1,P3, P5, P7)

Etape 5: En réitérant le même processus que précédemment, on identifie deux nouveaux îlots indépendants.

Machines	M1	M2	М3	M4	M5	М6	М7
Pièces							
P2				2		1	
P4	1						2
D6							
P6							

- Le deuxième regroupement est alors réalisé (M4, M6) pour la réalisation de l'ensemble de pièces (P2, P6)
- Le troisième et dernier regroupement est (M1, M7) pour la réalisation de la pièce (P4)

Machines Pièces	M2	М3	M5	M4	M6	M1	M7
P1	1		2				
P5	1		2				
P7	2	1					
P3		2	1	3			
P2				2	1		
P6				2	1		
P4							2

Le premier regroupement est alors réalisé (M2, M3, M5) pour la réalisation de l'ensemble de pièces (P1, P5, P7, P3)

Le deuxième regroupement est alors réalisé (M4, M6) pour la réalisation de l'ensemble de pièces (P2, P6)

Le troisième et dernier regroupement est (M1, M7) pour la réalisation de la pièce (P4)

Machines Pièces	M2	М3	M5	M4	M6	M1	M7
P1	1		2				
P5	1		2				
P7	2	1					
P3		2	1	3			
P2				2	1		
P6				2	1		
P4						1	2

Le premier regroupement est alors réalisé (M2, M3, M5) pour la réalisation de l'ensemble de pièces (P1, P5, P7, P3)

Le deuxième regroupement est al de pièces (P2, P6)

Le troisième et dernier regrouper

Comment rendre le premier îlot indépendant du deuxième?

le l'ensemble

a pièce (P4)

Solution: La machine M4 doit être dédoublée si on veut rendre indépendants les îlots

Machines Pièces	M2	М3	M5	M4	<u>M4</u>	M6	M1	М7
P1	1		2					
P5	1		2					
P7	2	1						
P3		2	1	3				
P2					2	1		
P6					2	1		
P4							12	2

Séparation des îlots:

Algorithme de King

Etape 1 — Opérations sur colonnes :

- On traduit la matrice en écriture binaire;
- On traduit la matrice en écriture binaire en affectant un poids en puissance de 2 à chaque pièce (2^{n-j});
- L'équivalent décimal est alors calculé en sommant les poids des pièces utilisant la machine.

Séparation des îlots:

Algorithme de King

1. Ordonner les COLONNES dans l'ordre décroissant de leurs valeurs décimales:

Dans le cas d'égalité, les ordonner dans l'ordre d'apparition dans la matrice d'incidence

2. L'ordre de colonnes est-il le même que lors de l'itération précédente?

Si oui, aller à 6. Sinon, aller à 3

3. Ordonner les LIGNES dans l'ordre décroissant de leurs valeurs décimales:

Dans le cas d'égalité, les ordonner dans l'ordre d'apparition dans la matrice d'incidence

- 4. L'ordre des lignes est-il le même que lors de l'itération précédente? Si oui, aller à 6, Sinon aller à 5
- 5. Répéter la procédure (en réordonnant à chaque fois les lignes et les colonnes), tant que l'ordre change à chaque itération

6. STOP

Matrice [postes de travail (i=1 à m) x pièces (j= 1 à n)]

Machines	M1	M2	М3	M4	M5	М6	M7
Pièces							
P1		1			2		
P2				2		1	
Р3			2	3	1		
P4	1						2
P5		1			2		
P6				2		1	
P7		2	1				

Etape 1 — Opérations sur colonnes On traduit la matrice en écriture binaire

Machines	M1	M2	М3	M4	M5	М6	M7
Pièces							
P1		1			2		
P2				2		1	
Р3			2	3	1		
P4	1						2
P5		1			2		
Р6				2		1	
P7		2	1				

Etape 1 — Opérations sur colonnes On traduit la matrice en écriture binaire

Machines	M1	M2	М3	M4	M5	M6	M7
Pièces							
P1	0	1	0	0	1	0	0
P2	0	0	0	1	0	1	0
Р3	0	0	1	1	1	0	0
P4	1	0	0	0	0	0	1
P5	0	1	0	0	1	0	0
P6	0	0	0	1	0	1	0
P7	0	1	1	0	0	0	0

Etape 1 – Opérations sur colonnes On traduit la matrice en écriture binaire en affectant un poids en puissance de 2 à chaque pièce (2^{n-j}).

Poids	Pièces	M1	M2	М3	M4	M5	М6	M7
2 ⁶	P1	0	1	0	0	1	0	0
2 ⁵	P2	0	0	0	1	0	1	0
2 ⁴	Р3	0	0	1	1	1	0	0
2 ³	P4	1	0	0	0	0	0	1
2 ²	P5	0	1	0	0	1	0	0
2 ¹	P6	0	0	0	1	0	1	0
2 ⁰	P7	0	1	1	0	0	0	0

Matrice [postes de travail (i=1 à m) x pièces (j= 1 à n)]

Etape 1 — Opérations sur colonnes On traduit la matrice en écriture binaire en affectant un poids en puissance de 2 à chaque pièce (2^{n-j}).

L'équivalent décimal est alors calculé en sommant les poids des pièces utilisant la machine.

Ainsi l'équivalent décimal de $M4 = 2^5 + 2^4 + 2^1 = 32 + 16 + 2 = 50$

Poids	Pièces	M1	M2	М3	M4	M5	M6	M7
2 ⁶	P1	0	1	0	0	1	0	0
2 ⁵	P2	0	0	0	1	0	1	0
2 ⁴	Р3	0	0	1	1	1	0	0
2 ³	P4	1	0	0	0	0	0	1
2 ²	P5	0	1	0	0	1	0	0
2 ¹	P6	0	0	0	1	0	1	0
20	P7	0	1	1	0	0	0	0
Eq décin	nal	8	69	17	50	84	34	8

Ordre décroissant

On ordonne les colonnes dans l'ordre décroissant de l'équivalent décimal. En cas d'égalité, on respecte l'ordre des machines.

Pièces	M5	M2	M4	M6	M3	M1	M7
P1	1	1	0	0	0	0	0
P2	0	0	1	1	0	0	0
Р3	1	0	1	0	1	0	0
P4	0	0	0	0	0	1	1
P5	1	1	0	0	0	0	0
P6	0	0	1	1	0	0	0
P7	0	1	0	0	1	0	0

Etape 2 – Opérations sur lignes

On refait alors le même processus, mais sur les lignes.

Par exemple pour P1,
$$2^6 + 2^5 = 64 + 32 = 96$$

Pièces	M5	M2	M4	M6	M3	M1	M7	Eq décimal
P1	1	1	0	0	0	0	0	96
P2	0	0	1	1	0	0	0	24
Р3	1	0	1	0	1	0	0	84
P4	0	0	0	0	0	1	1	3
P5	1	1	0	0	0	0	0	96
P6	0	0	1	1	0	0	0	24
P7	0	1	0	0	1	0	0	36
poids	26	25	24	23	22	21	20	

Ordre décroissant

On ordonne les lignes dans l'ordre décroissant de l'équivalent décimal. En cas d'égalité, on respecte l'ordre des pièces.

Pièces	M5	M2	M4	M6	M3	M1	M7
P1	1	1	0	0	0	0	0
P5	1	1	0	0	0	0	0
P3	1	0	1	0	1	0	0
P7	0	1	0	0	1	0	0
P2	0	0	1	1	0	0	0
P6	0	0	1	1	0	0	0
P4	0	0	0	0	0	1	1

Etape 3:

On recommence le même processus sur les colonnes.

	Pièces	M5	M2	M4	M6	M3	M1	M7
2 ⁶	P1	1	1	0	0	0	0	0
2 ⁵	P5	1	1	0	0	0	0	0
24	Р3	1	0	1	0	1	0	0
2 ³	P7	0	1	0	0	1	0	0
2 ²	P2	0	0	1	1	0	0	0
2 ¹	P6	0	0	1	1	0	0	0
20	P4	0	0	0	0	0	1	1
Eq de	écimal	112	104	22	6	24	1	1

Etape 3 :Ordre de colonnes: M5, M2, M3, M4, M6, M1, M7, ce qui donne le tableau suivant:

Pièces	M5	M2	М3	M4	М6	M1	M7	Eq. décimal
P1	1	1	0	0	0	0	0	96
P5	1	1	0	0	0	0	0	96
Р3	1	0	1	1	0	0	0	88
P7	0	1	1	0	0	0	0	48
P2	0	0	0	1	1	0	0	12
P6	0	0	0	1	1	0	0	12
P4	0	0	0	0	0	1	1	3
Poids	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20	

On arrête le processus lorsqu'il n'y a plus d'inversion à faire.

Pièces	M5	M2	М3	M4	М6	M1	M7
P1	1	1	0	0	0	0	0
P5	1	1	0	0	0	0	0
Р3	1	0	1	1	0	0	0
P7	0	1	1	0	0	0	0
P2	0	0	0	1	1	0	0
P6	0	0	0	1	1	0	0
P4	0	0	0	0	0	1	1

On retrouve ici le même regroupement que celui donné par la méthode de Kuziack. Cependant, les regroupements occasionnés par les deux méthodes ne sont pas toujours identiques.

Exemple: Appliquer la méthode de Kuziack et la méthode de King pour déterminer les îlots de production:

Machines	M1	M2	М3	M4	M5	M6	M7
Pièces							
Α	1				1		
В				1			1
С			1			1	
D	1						
E		1	1				
F				1			1
G							1
Н	1				1		
I		1	1			1	

Chaînon

Chaînon Couple de poste avec une relation

Liaison C'est la relation entre les deux poste (c'est à dire le flux)

Les objectifs :

- ☐Gain sur le temps de fabrication
- ☐ Réduire les temps de transfert entre les postes

Indice de trafic (i.t.) ou (It)

Nombre de déplacements pour acheminer un « en-cours »d'un poste à un autre

Indice de manutention (IM)

It x distance moyenne entre 2 poste

Première étape: Inventorier les postes de travail

- Lister les postes concernés
- Lister les produits concernés

Première étape: Inventorier les postes de travail

Tableau de gammes

Exemple:

Produits	Gammes	It
A	2;3;5	7
В	1;3;5	3
С	1;5	2
D	1; 4; 3; 5	6

Le produit A devra passer dans les postes de travail 2, 3 et 5.

Les **It** sont identiques entre les postes puisqu'ils sont indiqués de manière globale.

Première étape: Inventorier les postes de travail

Graphique des gammes

amı	emmes Postes						
		1	2	3	4	5	Total It
aits	A		7	•	7	-	14
Produits	В	•	3	•	3	•	6
	С	•		2		—•	2
	D		6		6	•	18

Implantation: Méthode de chaînons

Deuxième étape: Matrice à double entrée

Implantation: Méthode de chaînons

Deuxième étape: Matrice à double entrée

Le poste reçoit

Postes ** 7

Le poste envoie

* Pour le produit A : le poste 2 envoie au poste 3 ; 7 fois

Pour le produit A : le poste 3 envoie au poste 5 ; 7 fois

Le poste envoie

Le poste reçoit

Postes	1	2	3	4	5
1			* 3		
2			7		
3					7 * 3
4					
5					

❖ Pour le produit B : le poste 1 envoie au poste 3 ; 3 fois

❖ Pour le produit B : le poste 3 envoie au poste 5 ; 3 fois

Le poste envoie

Deuxième étape: Matrice à double entrée

Le poste reçoit

Postes	1	2	3	4	5
1			3		≻ 2
2			7		
3					7 3
4					
5					

➤ Pour le produit C : le poste 1 envoie au poste 5 ; 2 fois

Le poste reçoit

Postes	1	2	3	4	5
1			3	■ 6	2
2			7		
3					7 3 • 6
4			• 6		
5					

Le poste envoie

■Pour le produit D : le poste 1 envoie au poste 4 ; 6 fois

■Pour le produit D : le poste 4 envoie au poste 3 ; 6 fois

■Pour le produit D : le poste 3 envoie au poste 5 ; 6 fois

Le poste reçoit

Postes	1	2	3	4	5
1	3		3	- 6	2
2			7		
3					7 3 • 6
4			• 6		
5					

Le poste er

On calcule le nb de cases par poste (ligne et colonne)

Le poste reçoit

Postes	1	2	3	4	5
1	3		3	- 6	2
2		1	7		
3					7 3 • 6
4			• 6		
5					

Le poste envoie

On calcule le nb de cases par poste (ligne et colonne)

Le poste reçoit

Postes	1	2	3	4	5
1	3		3	- 6	2
2		1	7		
3			4		7 3 • 6
4			• 6		
5					

Le poste envoie

On calcule le nb de cases par poste (ligne et colonne)

Le poste reçoit

Postes 3 **-**6 3 **-**6 **•**6

Le poste envoie

Le poste reçoit

 Postes
 1
 2
 3
 4
 5

 1
 3
 3
 6
 2

 2
 1
 7
 3
 6

 3
 4
 7
 3
 6

 4
 6
 2

 5
 2

Le poste envoie

Le poste reçoit

Postes	1	2	3	4	5
1	11 3		3	- 6	2
2		1	7		
3			4		7 3 • 6
4			• 6	2	
5					2

On calcule le trafic total ligne et colonne

Le poste reçoit

Postes	1	2	3	4	5
1	11 3		3	• 6	2
2		7	7		
3			4		7 3 ■ 6
4			• 6	2	
5					2

Le poste envoie

Le poste reçoit

Postes	1	2	3	4	5
1	11 3		3	• 6	2
2		7 1	7		
3			32 4		7 3 • 6
4			• 6	2	
5					2

Le poste envoie

Le poste reçoit

Postes 1 2 3 4 5

1 11 3 3 • 6 2

2 7 1 7

3 3 • 6 4

4 6 12 2

5 1 12 2

2 2 2 4 5 6 12 2

Le poste envoie

Le poste reçoit

Postes	1	2	3	4	5
1	11 3		3	- 6	2
2		7 1	7		
3			32 4		7 3 • 6
4			• 6	12 2	
5					18 2

Le poste envoie

Le poste reçoit

	Postes	1	2	3	4	5
	1	3 11 2		3	- 6	2
	2		7 5	7		
	3			32 4		7 3 • 6
	4			• 6	12 2 4	
•	5					18 3

Classement:

Le poste

- * le poste 3 est le premier, on l'appelle poste directeur
- * si deux postes sont ex-aequo, on compare l'indice de trafic

Troisième étape: Implantation théorique

Canevas triangulaire permet de réaliser l'implantation théorique

- 1) On place sur un nœud, au centre du canevas, le poste présentant le plus grand nombre de liaisons et si plusieurs postes ont le même nombre de liaisons le poste présentant le plus grand indice de trafic.
- 2) Aussitôt après, on place autour de lui les postes avec lesquels il forme une liaison, dans l'ordre décroissant du trafic total par liaison. On indique le sens du flux par une flèche.
- 3) Quand toutes les liaisons sont reportées pour le premier poste, considérer le deuxième poste :
- => S'il est déjà placé, reporter les autres liaisons le concernant, toujours dans l'ordre décroissant du trafic total par liaison ;
- =>Sinon, le placer à côté d'un poste déjà implanté avec lequel il a une liaison et compléter avec les autres liaisons...

Ainsi de suite jusqu'à épuisement des postes et des liaisons.

- 4) Améliorez le graphe obtenu par approches successives :
 - => en éliminant au maximum les liaisons hors module,
- => en regroupant l'ensemble du graphe par pivotements ou glissements partiels.
- 5) Identifiez précisément les liaisons sur le canevas triangulaire ;
- => repérer sur le canevas triangulaire les liaisons à fort trafic -trait plus ou moins épais),
- => pour l'implantation réelle, porter tous ses efforts pour réduire en priorité ces liaisons.

Cette méthode permet d'avoir un aperçu de l'implantation idéale des postes de travail dans l'entrepôt (ou l'usine).