移动端

导读

移动端适配,是我们在开发中经常会遇到的,这里面可能会遇到非常多的问题:

- 1px 问题
- UI 图完美适配方案
- iPhoneX 适配方案
- 高清屏图片模糊问题
- ..

接下来我们从移动端适配的基础概念出发,探究移动端适配各种问题的解决方案和实现原理

一、英寸

一般用英寸描述屏幕的物理大小,如电脑的 13、16,手机显示器的 4.8、5.7 等使用的单位都是英寸。

需要注意,上面的尺寸都是屏幕对角线的长度:

英寸(inch,缩写为in)在荷兰语中的本意是大拇指,一英寸就是指甲底部普通人拇指的宽度。

英寸和厘米的换算: 1英寸 = 2.54厘米

二、分辨率

2.1 像素

像素即一个小方块,它具有特定的位置和颜色。

图片、电子屏幕(手机、电脑)就是由无数个具有特定颜色和特定位置的小方块拼接而成。

像素可以作为图片或电子屏幕的最小组成单位。

下面我们使用 sketch 打开一张图片:

将这些图片放大即可看到这些像素点:

通常我们所说的分辨率有两种,屏幕分辨率和图像分辨率。

2.2 屏幕分辨率

屏幕分辨率指一个屏幕具体由多少个像素点组成。

下面是 apple 的官网上对手机分辨率的描述:

显示屏

上面分辨率表示手机分别在垂直和水平上所具有的像素点数。

当然分辨率高不代表屏幕就清晰,屏幕的清晰程度还与尺寸有关。

2.3 图像分辨率

我们通常说的 图片分辨率 其实是指图片含有的像素数,比如一张图片的分辨率为 800 x 400。这表示图片分别在垂直和水平上所具有的像素点数为 800 和 400。

同一尺寸的图片,分辨率越高,图片越清晰。

2.4 PPI

PPI(Pixel Per Inch): 每英寸包括的像素数。

PPI 可以用于描述屏幕的清晰度以及一张图片的质量。

使用 PPI 描述图片时,PPI 越高,图片质量越高,使用 PPI 描述屏幕时,PPI 越高,屏幕越清晰。

在上面描述手机分辨率的图片中,我们可以看到: iPhone 11 Pro 和 iPhone 11 的 PPI 分别为 458 和 326,这足以证明前者的屏幕更清晰。

由于手机尺寸为手机对角线的长度, 我们通常使用如下的方法计算 PPI:

$$\sqrt{$$
水平像素点数 2 + 垂直像素点数 2

尺寸

iPhone 6 的 PPI 为
$$\frac{\sqrt{1334^2+750^2}}{4.7}=325.6$$
,那它每英寸约含有 326 个物理像素点。

苹果曾经给出个一个标准: 手机屏幕达到 300PPI、平板屏幕达到 220PPI、笔记本电脑屏幕达到 200PPI 即可认为是 Retina 屏幕。

三、像素

3.1 物理像素

物理像素又称设备像素, 是显示器中最小的物理单元, 设备能控制显示的最小单位。每个像素根据操作系统的指示设置自己的颜色和亮度。 上面所说的像素都是物理像素。

任何设备的物理像素数量都是固定的。

3.2 设备独立像素

由程序使用并控制的虚拟像素,比如 web 编程中的 CSS 像素(px)、安卓(dp)、ios 系统(pt)中的设备独立像素.

下面我们来看看 设备独立像素 究竟是如何产生的:

智能手机发展非常之快,在几年之前,我们还用着分辨率非常低的手机,比如下面左侧的白色手机,它的分辨率是 320x480,我们可以在上面浏览正常的文字、图片等等。

但是,随着科技的发展,低分辨率的手机已经不能满足我们的需求了。很快,更高分辨率的屏幕诞生了,比如下面的黑色手机,它的分辨率是 640x940,正好是白色手机的两倍。

理论上来讲,在白色手机上相同大小的图片和文字,在黑色手机上会被缩放一倍,因为它的分辨率提高了一倍。这样,岂不是后面出现更高分辨率的手机,页面元素会变得越来越小吗?

然而,事实并不是这样的,我们现在使用的智能手机,不管分辨率多高,他们所展示的界面比例都是基本类似的。 乔布斯在 iPhone4 的发布会上首次提出了 Retina Display(视网膜屏幕)的概念,它正是解决了上面的问题,这也使 它成为一款跨时代的手机。

在 iPhone4 使用的视网膜屏幕中,把 2x2 个像素当 1 个像素使用,这样让屏幕看起来更精致,但是元素的大小却不会改变。

如果黑色手机使用了视网膜屏幕的技术,那么显示结果应该是下面的情况,比如列表的宽度为 300 个像素,那么在一条水平线上,白色手机会用 300 个物理像素去渲染它,而黑色手机实际上会用 600 个物理像素去渲染它。

我们必须用一种单位来同时告诉不同分辨率的手机,它们在界面上显示元素的大小是多少,这个单位就是设备独立像素(Device Independent Pixels)简称 DIP 或 DP。上面我们说,列表的宽度为 300 个像素,实际上我们可以说:列表的宽度为 300 个设备独立像素。

打开 chrome 的开发者工具,我们可以模拟各个手机型号的显示情况,每种型号上面会显示一个尺寸,比如 iPhone X 显示的尺寸是 375x812,实际 iPhone X 的分辨率会比这高很多,这里显示的就是设备独立像素。

3.3 物理像素与设备独立像素

物理像素与设备独立像素有一定的对应关系,我们编程时控制的是设备独立像素(比如 css 像素),然后由相关系统转换为物理像素。

3.4 设备像素比

设备像素比 device pixel ratio 简称 dpr, 即物理像素和设备独立像素的比值。

在 js 中可以通过 window.devicePixelRatio 获取,也可以重写 window.devicePixelRatio 来更改 dpr 在 css 中可以使用媒体查询 device-pixel-ratio:

```
@media (-webkit-min-device-pixel-ratio: 2), (min-device-pixel-ratio: 2) {
}
```

常见的设备像素比:

设备名称	物理像素	设备独立像素	dpr
iPhone 2G, 3G, 3GS	320 * 480	320 * 480	1
iPhone 4, 4S	640 * 960	320 * 480	2
iPhone 5, 5S	640 * 1136	320 * 568	2
iPhone 6, 7, 8	750 * 1334	375 * 667	2
iPhone 6 Plus, 7 Plus, 8Plus	1080 * 1920(2208x1242)	414 * 736	3
iPhone X	1125 * 2436	375 * 812	3

Andriod 设备像素比非常混乱,有 1、1.5、1.75 等,所以可以看做 1 设备设备像素比网址: https://uiiiuiii.com/screen/

3.5 位图像素

位图像素是基于栅格的图像(JPG、PNG、GIF)中最小的单位,每个像素都包含屏幕上的显示信息,如位置、颜色等,有的图像信息还包含不透明度(Alpha Channel)。

位图像素也是一个长度单位。位图像素是栅格图像(如: png, jpg, gif等)最小的数据单元。

1 个位图像素对应 1 个物理像素,否则图片就会模糊

思考题:

普通屏下(设备像素比为 1), 要显示 200x200 像素(这是 css 像素)的元素,设置 css 像素 200x200,实际物理像素 200x200

retina 屏下(设备像素比为 2), 要显示 200x200 (这是 css 像素) 大小的元素, 设置 CSS 像素 200x200, 实际物理像素 400x400

现在假设有一个场景:要展示 200 x 200 像素的图像 (这是 css 像素)

普通屏下(设备像素比为 1), 要显示 200x200 大小的元素, 设置 css 像素 200x200

retina 屏下(设备像素比为 2), 要显示 200x200 大小的元素, 设置 CSS 像素 200x200,图片像素应为 400x400, 才能高清

四、视口

视口(viewport)代表当前可见的计算机图形区域。在 Web 浏览器术语中,通常与浏览器窗口相同,但不包括浏览器的 UI,菜单栏等——即指你正在浏览的文档的那一部分。

一般我们所说的视口共包括三种:布局视口、视觉视口和理想视口,它们在屏幕适配中起着非常重要的作用。

4.1 布局视口

布局视口(layout viewport): 当我们以百分比来指定一个元素的大小时,它的计算值是由这个元素的包含块计算而来的。当这个元素是最顶级的元素时,它就是基于布局视口来计算的。 所以,布局视口是网页布局的基准窗口,在PC 浏览器上,布局视口就等于当前浏览器的窗口大小(不包括 borders 、margins、滚动条)。

在移动端,布局视口被赋予一个默认值,大部分为 980px,这保证 PC 的网页可以在手机浏览器上呈现,但是非常小,用户可以手动对网页进行放大。

我们可以通过调用 document.documentElement.clientWidth / clientHeight 来获取布局视口大小。

4.2 视觉视口

视觉视口(visual viewport): 用户通过屏幕真实看到的区域。 视觉视口默认等于当前浏览器的窗口大小(包括滚动条宽度)。

当用户对浏览器进行缩放时,不会改变布局视口的大小,所以页面布局是不变的,但是缩放会改变视觉视口的大小。

例如:用户将浏览器窗口放大了 200%,这时浏览器窗口中的 CSS 像素会随着视觉视口的放大而放大,这时一个 CSS 像素会跨越更多的物理像素。所以,布局视口会限制你的 CSS 布局而视觉视口决定用户具体能看到什么。

我们可以通过调用 window.innerWidth / innerHeight 来获取视觉视口大小。

4.3 理想视口

布局视口在移动端展示的效果并不是一个理想的效果,所以理想视口(ideal viewport)就诞生了: 网站页面在移动端展示的理想大小。如上图,我们在描述设备独立像素时曾使用过这张图,在浏览器调试移动端时页面上给定的像素大小就是理想视口大小,它的单位正是设备独立像素。 上面在介绍 CSS 像素时曾经提到页面的缩放系数 = CSS 像素/设备独立像素,实际上说页面的缩放系数 = 理想视口宽度/视觉视口宽度更为准确。

所以, 当页面缩放比例为 100%时, CSS 像素 = 设备独立像素, 理想视口 = 视觉视口。

我们可以通过调用 screen.width / height 来获取理想视口大小。

4.4 Meta viewport

元素表示那些不能由其它HTML元相关元素之一表示的任何元数据信息,它可以告诉浏览器如何解析页面。 我们可以借助元素的 viewport 来帮助我们设置视口、缩放等,从而让移动端得到更好的展示效果。

```
<meta
    name="viewport"
    content="width=device-width; initial-scale=1; maximum-scale=1; minimum-scale=1;
user-scalable=no;"
/>
```

上面是 viewport 的一个配置,我们来看看它们的具体含义:

Value	可能值	描述	
width	正整数或 device-width	以 pixels (像素) 为单位,定义布局视口的宽度。	
height	正整数或 device-height	以 pixels (像素) 为单位,定义布局视口的高度。	
initial-scale	0.0 - 10.0	定义页面初始缩放比率。	
minimum-scale	0.0 - 10.0	定义缩放的最小值;必须小于或等于 maximum-scale 的值。	
maximum-scale	0.0 - 10.0	定义缩放的最大值;必须大于或等于 minimum-scale 的值。	
user-scalable	一个布尔值(yes 或者 no)	如果设置为 no ,用户将不能放大或缩小网页。默认值 为 yes。	

4.5 移动端适配

为了在移动端让页面获得更好的显示效果,我们必须让布局视口、视觉视口都尽可能等于理想视口。

device-width 就等于理想视口的宽度,所以设置 width=device-width 就相当于让布局视口等于理想视口。

由于 initial-scale = 理想视口宽度 / 视觉视口宽度,所以我们设置 initial-scale=1;就相当于让视觉视口等于理想视口。

这时, 1 个 CSS 像素就等于 1 个设备独立像素,而且我们也是基于理想视口来进行布局的,所以呈现出来的页面布局在各种设备上都能大致相似。

五、移动端事件

5.1 事件类型

移动端事件列表

- touchstart 元素上触摸开始时触发
- touchmove 元素上触摸移动时触发
- touchend 手指从元素上离开时触发
- touchcancel 触摸被打断时触发

这几个事件最早出现于 IOS safari 中,为了向开发人员转达一些特殊的信息。

5.2 应用场景

touchstart 事件可用于元素触摸的交互, 比如页面跳转, 标签页切换

touchmove 事件可用于页面的滑动特效,网页游戏,画板

touchend 事件主要跟 touchmove 事件结合使用

touchcancel 使用率不高

注意:

- touchmove 事件触发后,即使手指离开了元素,touchmove 事件也会持续触发
- 触发 touchmove 与 touchend 事件,一定要先触发 touchstart
- 事件的作用在于实现移动端的界面交互

5.3 事件绑定

方式一

```
box.ontouchstart = function () {
   console.log('touch start')
}
```

方式二

```
box.addEventListener('touchstart', function () {
   console.log('touch start')
})
```

这里推荐使用第二种,第一种有时会失灵。

5.4 点击穿透

touch 事件结束后会默认触发元素的 click 事件,如没有设置完美视口,则事件触发的时间间隔为 300ms 左右,如设置完美视口则时间间隔为 50ms 左右。

如果 touch 事件隐藏了元素,则 click 动作将作用到新的元素上,触发新元素的 click 事件或页面跳转,此现象称为点击穿透

5.4.1 解决方法

1. 阻止当前元素事件的默认行为。

```
cls.addEventListener('touchstart', function (e) {
    e = e || event
    e.preventDefault()
})
```

问题:将来有很多元素要一个一个写,代码太多了

2. 阻止所有元素事件的默认行为。

```
document.addEventListener('touchstart', function (e) {
   e = e || event
   e.preventDefault()
})
```

问题: 因为禁止了所有元素默认行为, 导致 a 标签不能跳转链接了

3. 给 a 标签添加跳转链接的方式

```
var allA = document.querySelectorAll('a')

for (let i = 0; i < allA.length; i++) {
   const a = allA[i]
   a.addEventListener('touchend', function () {
      window.location.href = this.href
   })
}</pre>
```

问题: a 标签有误触

4. 解决误触

```
var allA = document.querySelectorAll('a')

for (let i = 0; i < allA.length; i++) {
    const a = allA[i]
    a.addEventListener('touchmove', function () {
        this.isMove = true
    })
    a.addEventListener('touchend', function () {
        if (this.isMove) return
        window.location.href = this.href
    })
}</pre>
```

5.4.2 fastclick

一个专门用于解决事件点透的库 仓库地址: https://github.com/ftlabs/fastclick

六、单位

6.1 px

px 是像素值,是一个固定的长度

6.2 rem

是一个相对长度,相对于 html 标签的字体大小 比如: html 标签的 font-size = 16px 1rem = 16px

6.3 em

是一个相对长度,相对于离它最近,包裹它标签的字体大小比如: 默认情况下,浏览器字体大小为 16px 1em = 16px 如果它父级元素设置 font-size = 18px 1em = 18px 如果它本身设置 font-size = 20px 1em = 20px

6.4 vw/vh

是一个相对长度,相对于整个屏幕。 整个屏幕平均分为 100 等分,横向(x 轴)分为 100vm,纵向(y 轴)分为 100vh 所以: 50vm 就是整个屏幕宽度的一半

七、移动端常见问题

7.1 1px 像素问题

高清屏幕下 1px 对应更多的物理像素,所以 1 像素边框看起来比较粗,解决方法如下

1. 边框使用伪类选择器,或者单独的元素实现。例如底部边框

```
.box2::after {
   content: '';
   height: 1px;
   width: 100%;
   position: absolute;
   left: 0;
   bottom: 0;
   background: #000;
}
```

2. 在高清屏幕下设置

```
@media screen and (-webkit-min-device-pixel-ratio: 2) {
    .box2::after {
        transform: scaleY(0.5);
    }
}

@media screen and (-webkit-min-device-pixel-ratio: 3) {
    .box2::after {
        transform: scaleY(0.33333);
    }
}
```

7.2 iPhone X 刘海屏问题

iPhoneX 的出现将手机的颜值带上了一个新的高度,它取消了物理按键,改成了底部的小黑条,但是这样的改动给 开发者适配移动端又增加了难度。

这些手机和普通手机在外观上无外乎做了三个改动:圆角(corners)、刘海(sensor housing)和小黑条(Home Indicator)。为了适配这些手机,安全区域这个概念变诞生了:安全区域就是一个不受上面三个效果的可视窗口范围。

为了保证页面的显示效果,我们必须把页面限制在安全范围内,但是不影响整体效果。

1. viewport-fit viewport-fit 是专门为了适配 iPhoneX 而诞生的一个属性,它用于限制网页如何在安全区域内进行展示。

contain: 可视窗口完全包含网页内容

cover: 网页内容完全覆盖可视窗口

默认情况下或者设置为 auto 和 contain 效果相同。

7.3 高清图

```
.avatar {
    background-image: url(sample.png);
    width: 300px;
    height: 200px;
}
@media only screen and (-webkit-min-device-pixel-ratio: 2) {
    .avatar {
        background-image: url(sample@2x.png);
    }
}
@media only screen and (-webkit-min-device-pixel-ratio: 3) {
    .avatar {
        background-image: url(sample@3x.png);
    }
}
```

7.4 适配

- 1. rem 适配
- 2. viewport 适配
- 3. flex
- 4. 百分比
- 5. 混合方案

7.5 真机测试

- 1. 通过 VSCODE liveServer 插件启动代码,得到访问地址: [http://127.0.0.1:5500/xxx.html]
- 2. 打开 cmd 窗口,输入 ipconfig 得到当前电脑的 ip 地址: 192.168.1.15
- 3. 让电脑和手机处于同一个 wifi 下 比如: 手机开热点,电脑连上热点。或者电脑开热点,手机连上电脑的热点。
- 4. 打开草料二维码网址: https://cli.im/url
- 5. 输入要转换的网址,**注意,要将 127.0.0.1 替换成真正的 ip 地址**,点击生成二维码 http://192.168.1.15:5500/xxx.html
- 6. 打开手机浏览器,扫二维码访问