Name: Date: 10/05/2017

M20550 Calculus III Tutorial Worksheet 5

- 1. Let $f(x, y, z) = x^2 yz$. If $\mathbf{v} = \langle 1, 1, 0 \rangle$, find the directional derivative of f in the direction of \mathbf{v} at the point (1, 2, 3). At what rate is f changing at the given point as we move in the direction of \mathbf{v} ? Is f increasing or decreasing in this instance?
- 2. Find the tangent plane and the normal line to the surface $x^2y + xz^2 = 2y^2z$ at the point P = (1, 1, 1).
- 3. Write an equation of the tangent line to the curve of intersection between the two surfaces defined by $z = x^2 + y^2$ and $x^2 + 2y^2 + z^2 = 7$ at the point (-1, 1, 2).

Hint: Think about the geometry of the gradient vectors. You don't have to parametrize the curve to do this problem.

- 4. Find the local maximum and the local minimum value(s) and saddle point(s) of the function $z = x^3 + y^3 3xy + 1$.
- 5. Identify the absolute maximum and absolute minimum values attained by $g(x,y) = x^2y 2x^2$ within the triangle T bounded by the points P(0,0), Q(2,0), and R(0,4).
- 6. Identify the absolute maximum and absolute minimum values attained by $z = 4x^2 y^2 + 1$ on the region $R = \{(x, y) \mid 4x^2 + y^2 \le 16\}$.
- 7. Find the absolute maximum of f(x, y, z) = xyz subject to the constraint $x^2 + 2y^2 + 3z^2 = 9$, assuming that x, y, and z are nonnegative.

Name: Date: 10/05/2017

Optional/Review Problems:

8. (Chain Rule) Find $\frac{dz}{dt}$ when t=2, where $z=x^2+y^2-2xy$, $x=\ln(t-1)$ and $y=e^{-t}$.

9. (Chain Rule) Let
$$r = r(x, y)$$
, $x = x(s, t)$, and $y = y(t)$. Find $\frac{\partial r}{\partial t}$ at $(s, t) = (1, 0)$, given

$$x(1,0) = 2,$$
 $x_s(1,0) = -1,$ $x_t(1,0) = 7,$
 $y(0) = 3,$ $y(1) = 0$ $y'(0) = 4,$
 $r(2,3) = -1,$ $r_x(2,3) = 3,$ $r_y(2,3) = 5,$
 $r_x(1,0) = 6,$ $r_y(1,0) = -2,$

- 10. (Chain Rule) If $h = x^2 + y^2 + z^2$ and $y \cos z + z \cos x = 0$, find $\frac{\partial h}{\partial x}$ assuming that x and y are the independent variables.
- 11. (Chain Rule) A cylinder containing an incompressible fluid is being squeezed from both ends. If the length of the cylinder is *decreasing* at a rate of 3m/s, calculate the rate at which the radius is changing when the radius is 2m and the length is 1m. (Note: An incompressible fluid is a fluid whose volume does not change.)
- 12. (Gradient) Let $f(x,y) = \ln(xy)$. Find the maximum rate of change of f at (1,2) and the direction in which it occurs.
- 13. (Gradient) Find all points on the surface $z = x^2 y^3$ where the tangent plane is parallel to the plane x + 3y + z = 0.
- 14. (Gradient) Find all the critical points of $f(x,y) = y^3 + 3x^2y 6x^2 6y^2 + 2$.
- 15. (Gradient) Find <u>all</u> points at which the direction of fastest change of the function $f(x,y) = x^2 + y^2 2x 4y$ is $\mathbf{i} + \mathbf{j}$.