Math 171 Homework 8

Due Friday May 27, 2016 by 4 pm

Please remember to write down your name and Stanford ID number, and to staple your solutions. Solutions are due to the Course Assistant, Alex Zamorzaev, in his office, 380-380M (either hand your solutions directly to him or leave the solutions under his door).

For problems 1 and 2 below, you may use the following facts about *measure zero sets* without justification:

- Fact 1 If $A \subset \mathbb{R}^n$ is a set of measure zero, and $B \subset A$ is any subset, then B has measure zero too. The proof of this is very straightforward, following from the fact that if $A \subset \bigcup_{i \in \mathbb{N}} I_i$, then $B \subset A \subset \bigcup_{i \in \mathbb{N}} I_i$.
- Fact 2 If U is any non-empty open set in \mathbb{R}^n (or in an interval R with non-empty interior), then U does not have measure zero. Some remarks about the proof: by applying Fact 1, since any open set contains a small open interval, it suffices to show that a small non-empty open interval in \mathbb{R}^n is not of measure zero. In turn, any small open interval contains a smaller closed interval with non-zero volume, so it suffices to show that a closed interval I with volume V := |I| > 0 has non-zero measure. On problem 6 below, you will prove such a statement for a closed interval in \mathbb{R} , and the proof for a closed interval in \mathbb{R}^n is similar, though somewhat more tedious.

A corollary of Fact 1 and Fact 2 is this: If A is a measure zero subset \mathbb{R}^n and $U \subset \mathbb{R}^n$ is a non-empty open set, then $U \cap A \neq U$, meaning $U \setminus (U \cap A)$ is non-empty.

Non-book problems:

- **1.** Let R be a closed and bounded interval in \mathbb{R}^n , and let $f: R \to \mathbb{R}$ be a continuous function such that f(x) = 0 at almost every $x \in R$. Prove that f(x) = 0 for all $x \in R$. Note/Hint: Making use of the above Facts 1 and 2 will likely be very helpful.
- **2.** Let R be a closed and bounded interval in \mathbb{R}^n , and let $f,g:R\to\mathbb{R}$ be two Riemann integrable functions on R. Suppose that f(x)=g(x) almost everywhere in $x\in R$. Prove that $\int_R f=\int_R g$.

Detailed hint: Here is a sketch of one approach to prove this:

- (a) First, since f and g are Riemann integrable, so is h := f g; (why?) Hence, show that it suffices to establish that if h is a Riemann integrable function on R which is zero almost everywhere, then $\int_{R} h = 0$.
- (b) Suppose now that h is Riemann integrable and equal to zero almost everywhere. Then, show that the lower integral $\underline{\int}_R h \leq 0$. Similarly, show that the upper integral

1

¹A sharper statement is that if I is closed interval with volume V, then it has outer measure V, meaning that $\inf\{\sum_{i\in\mathbb{N}}|J_i||\{J_i\}\}$ a countable collection of open intervals whose union contains $I\}=V$. The notion of outer measure is often developed in Math 172, as part of a systematic study of measure theory and Lebesgue integration.

 $\overline{\int}_R h \geq 0$; since h is integrable it would follow that $\int_R h = 0$. The following observation is crucial to showing, for instance that $\underline{\int}_R h \leq 0$ (and may require Facts 1 or 2 above): If φ is a step function on R adapted to some partition $\mathcal P$ with $\varphi \leq h$ everywhere, then for every $I \in \mathcal P$, $\varphi|_{\mathring{I}} \leq 0$ and hence $\int_R \varphi \leq 0$ (why?). Conclude the argument.

- **3.** (i) Let R be a closed and bounded interval in \mathbb{R}^n , and let φ and ψ be two step functions on R; that is, $\varphi, \psi \in \mathcal{S}(R)$. Prove a statement we asserted in class, that $\min(\varphi, \psi)$ is again a step function on R.
 - (ii) Deduce another statement we asserted in class: that if $f, g \in \mathcal{L}_+(R)$, then $\min(f, g) \in \mathcal{L}_+(R)$.
- **4.** Let f be an *increasing* function on the closed interval $[a,b] \in \mathbb{R}$. Prove that f is Riemann integrable.
- **5.** Define the Cantor set $C \subset [0,1]$ to be the set of real numbers in [0,1] whose base-3 expansions do not contain a 1. That is,

$$C := \{x \in [0,1] | x = \sum_{i=1}^{\infty} \frac{a_i}{3^i} \text{ with each } a_i \in \{0,2\}\}.$$

- (i) Show that C is uncountable.
- (ii) Show that C has Lebesgue measure zero. **Hint**: One can write $C := \bigcap_n C_n$, where C_n is the set of real numbers $x \in [0, 1]$ such that the first n digits of base-3 expansion of x does not contain a 1. This leads to another way of thinking about the Cantor set, as being formed from [0, 1] by successively removing intervals...
- **6.** Show that if $\{I_j\}_{j\in\mathbb{N}}$ is a collection of open intervals in \mathbb{R} which covers [0,1], meaning that $[0,1]\in \bigcup_{j=1}^{\infty}I_j$ then $\sum_{j=1}^{\infty}|I_j|\geq 1$. Deduce that [0,1] does *not* have Lebesgue measure zero. **Hint:** use compactness.