

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2006-518956

(P2006-518956A)

(43) 公表日 平成18年8月17日(2006.8.17)

(51) Int.CI.

HO4R	1/40	(2006.01)
HO4R	3/00	(2006.01)
HO4R	3/12	(2006.01)

F 1

HO4R	1/40	310
HO4R	3/00	310
HO4R	3/12	Z

テーマコード(参考)

5D018
5D020

審査請求 未請求 予備審査請求 未請求 (全 41 頁)

(21) 出願番号 特願2006-502322 (P2006-502322)
 (86) (22) 出願日 平成16年2月24日 (2004.2.24)
 (85) 翻訳文提出日 平成17年8月23日 (2005.8.23)
 (86) 國際出願番号 PCT/GB2004/000750
 (87) 國際公開番号 WO2004/075601
 (87) 國際公開日 平成16年9月2日 (2004.9.2)
 (31) 優先権主張番号 0304126.6
 (32) 優先日 平成15年2月24日 (2003.2.24)
 (33) 優先権主張国 英国(GB)

(71) 出願人 502113699
 1...リミテッド
 イギリス国、ケンブリッジ、カウリィロード、セントジョーンズイノベーションセンター
 (74) 代理人 100066692
 弁理士 浅村皓
 (74) 代理人 100072040
 弁理士 浅村肇
 (74) 代理人 100091339
 弁理士 清水邦明
 (74) 代理人 100094673
 弁理士 林鉢三

最終頁に続く

(54) 【発明の名称】サウンドビームスピーカーシステム

(57) 【要約】

方向操作の可能な音のビームを生成できる電気音響トランステューサのアレイと、前記アレイの周囲に置かれ、低周波数音を再生するよう適合されて加えられているトランステューサとが含まれているスピーカーシステムを記述している。

【特許請求の範囲】**【請求項 1】**

少なくとも 2 つの音のビームを同時に生成することが可能で、前記ビームのうち少なくとも 1 つの方向操作が可能な第一の電気音響トランスデューサを備えるアレイと、前記アレイの周囲近くに位置する低周波数音を再生するよう構成されている低周波数トランスデューサとが含まれているスピーカーシステム。

【請求項 2】

第一のトランスデューサによって発せられるべき信号から低周波数コンテンツを濾波し、前記低周波数コンテンツを低周波数トランスデューサによって発せられるべき信号に加えるフィルターシステムをさらに備える請求項 1 に記載のシステム。 10

【請求項 3】

低周波数トランスデューサが、第一のトランスデューサの周波数範囲を実質的に含む周波数範囲で信号を発するよう構成されている広帯域トランスデューサであって、かつビームを方向操作するアレイの一部である請求項 1 または 2 に記載のシステム。

【請求項 4】

アレイの左右の側の近くに、単独で、または第一のトランスデューサと密接に隣り合って置かれる低周波数トランスデューサが、左右のチャンネルをそれぞれ出力するように、システムが配置されている請求項 1、2 または 3 に記載のシステム。

【請求項 5】

低周波数トランスデューサが、第一のトランスデューサの周波数範囲を実質的に含む周波数範囲で信号を発するよう構成されている広帯域トランスデューサであり、かつアレイの左右の側の近くに単独で置かれる低周波数トランスデューサが、左右のチャンネルをそれぞれ出力するようにシステムが配置されている前記請求項のいずれかに記載のシステム。 20

【請求項 6】

少なくとも 2 つのビームが、サラウンド音信号のチャンネルである前記請求項のいずれかに記載のシステム。

【請求項 7】

少なくとも 2 つのビームが、2 つ以上の異なるオーディオ信号であって、アレイに対して異なる位置にいるリスナーが、前記異なるオーディオ信号の 1 つだけをそれぞれ支配的に受け取る前記請求項のいずれかに記載のシステム。 30

【請求項 8】

隣接する第一のトランスデューサの間の間取りが不均一である前記請求項のいずれかに記載のシステム。

【請求項 9】

第一のトランスデューサの間の平均の間取りがアレイの周囲に向けて増大している請求項 8 に記載のシステム。

【請求項 10】

各トランスデューサについての出力信号の振幅がウインドウ関数に従って変調される前記請求項のいずれかに記載のシステム。 40

【請求項 11】

ウインドウ関数がアレイの周囲に向けて次第に先細りする請求項 10 に記載のシステム。

【請求項 12】

低周波数トランスデューサの数が 1 と 20 の間の範囲にある前記請求項のいずれかに記載のシステム。

【請求項 13】

低周波数トランスデューサの数が 1 と 10 の間の範囲にある請求項 12 に記載のシステム。

【請求項 14】

低周波数トランスデューサの数が 1 から 4 の範囲にある請求項 1 3 に記載のシステム。

【請求項 1 5】

低周波数トランスデューサの数が 1 から 2 の範囲にある請求項 1 4 に記載のシステム。

【請求項 1 6】

密接に隣り合う第一のトランスデューサの中間点の間取りが、第一のトランスデューサの最も低い音響共振周波数に対応する波長の半分に等しいかそれよりも小さい前記請求項のいずれかに記載のシステム。

【請求項 1 7】

第一のトランスデューサのアレイが、低周波数トランスデューサ間の領域に密に詰められている請求項 1 6 に記載のシステム。 10

【請求項 1 8】

トランスデューサにおいて発生する移相を補償する移相回路または補償回路がさらに含まれている前記請求項のいずれかに記載のシステム。

【請求項 1 9】

アレイには、第一のトランスデューサの、水平に向けられた 1 列、2 列または 3 列のラインが含まれている前記請求項のいずれかに記載のシステム。

【請求項 2 0】

低周波数トランスデューサが、前記水平に向けられたラインの端またはその近くに置かれている請求項 1 9 に記載のシステム。

【請求項 2 1】

アレイには、第一のトランスデューサが垂直方向で互い違いに配置される中央区域が含まれている前記請求項のいずれかに記載のシステム。 20

【請求項 2 2】

アレイが概して橢円形を有する前記請求項のいずれかに記載のシステム。

【請求項 2 3】

低周波数トランスデューサが、橢円形のアレイに外接する長方形のコーナーまたはその近くに位置付けられている請求項 2 2 に記載のシステム。

【請求項 2 4】

第一のトランスデューサの数が 200 未満である前記請求項のいずれかに記載のシステム。 30

【請求項 2 5】

第一のトランスデューサの数が 50 未満である請求項 2 4 に記載のシステム。

【請求項 2 6】

第一のトランスデューサの数が 5 より大きい前記請求項のいずれかに記載のシステム。

【請求項 2 7】

第一のトランスデューサの数が低周波数トランスデューサの数の 2 倍より大きい前記請求項のいずれかに記載のシステム。

【請求項 2 8】

第一のトランスデューサの数が低周波数トランスデューサの数の 4 倍より大きい前記請求項のいずれかに記載のシステム。 40

【請求項 2 9】

第一のトランスデューサの数が低周波数トランスデューサの数の 10 倍より大きい前記請求項のいずれかに記載のシステム。

【請求項 3 0】

音の複製信号を遅延させ、かつ前記アレイの、少なくとも前記第一のトランスデューサを用いて遅延された複製信号を出力することによって、前記少なくとも 1 つのビームの方向操作が可能である前記請求項のいずれかに記載のシステム。

【請求項 3 1】

ビデオ情報を表示するシステムおよび前記請求項のいずれかによるオーディオシステムが含まれているメディアシステム。 50

【請求項 3 2】

ビデオ情報を表示するシステムがテレビシステムである請求項 3 1 に記載のメディアシステム。

【請求項 3 3】

ビデオおよびオーディオ信号の入力を提供するメディアプレーヤーと、前記ビデオ情報を表示するモニターと、独立して方向操作の可能な少なくとも 2 つの音のビームを再生する請求項 1 に記載のスピーカーシステムとを備える請求項 3 1 に記載のメディアシステム。

【請求項 3 4】

少なくとも 2 つの音のビームを同時に生成することが可能で、前記ビームのうち少なくとも 1 つが方向操作の可能である電気音響トランスデューサのアレイを含んでいるスピーカーシステムであって、前記トランスデューサの第一の組は、低周波数音を出すことが実質的に不可能である高周波数トランスデューサであり、前記トランスデューサの第二の組は、低周波数音を出すことが可能な低周波数または広帯域トランスデューサであり、前記システムは、高周波数トランスデューサによって発せられるように前もって定めている信号から低周波数コンテンツを濾波し、かつ前記低周波数コンテンツを、低周波数トランスデューサによって発せられるように前もって定めている信号に加えるフィルターシステムを含んでいるスピーカーシステム。

【請求項 3 5】

前記アレイは、ラインアレイである請求項 3 4 に記載のシステム。

【請求項 3 6】

前記トランスデューサの第二の組は、ラインアレイの両端に置かれている請求項 3 5 に記載のシステム。

【請求項 3 7】

ラインアレイ形状に配置される複数のトランスデューサを備え、トランスデューサ間の平均の間取りがアレイの両端に向かって増大しているスピーカーシステム。

【請求項 3 8】

前記トランスデューサが、低周波数音を発することが実質的に不可能な高周波数トランスデューサである請求項 3 7 に記載のシステム。

【請求項 3 9】

低周波数または広帯域トランスデューサをアレイの両端にさらに備える請求項 3 7 または 3 8 に記載のシステム。

【請求項 4 0】

アレイが、水平に向けられた 1 列、2 列または 3 列のトランスデューサのラインからなる請求項 3 4 乃至 3 9 のいずれかに記載のシステム。

【請求項 4 1】

アレイの幅が、アレイの高さの少なくとも 2 倍である前記請求項のいずれかに記載のシステム。

【請求項 4 2】

アレイの幅が、アレイの高さの少なくとも 4 倍である前記請求項のいずれかに記載のシステム。

【請求項 4 3】

アレイの幅が、アレイの高さの少なくとも 8 倍である前記請求項のいずれかに記載のシステム。

【請求項 4 4】

電気音響トランスデューサのアレイを用いて音のビームを生成する方法であって、高周波数トランスデューサに向かう信号を濾波して低周波数コンテンツを取り除き、前記低周波数コンテンツを、低周波数トランスデューサに向かう信号に加えるステップを備える方法。

【請求項 4 5】

10

20

30

40

50

アレイを用いて2つの音のビームを2人のリスナーにそれぞれ生成する方法であって、第一のオーディオプログラムのビームを第一の聞き取り位置に送り、第二のオーディオプログラムのビームを第二の、異なる聞き取り位置に送るステップを備える方法。

【請求項46】

前記アレイが水平に配列されているラインアレイである請求項45に記載の方法。

【請求項47】

前記ラインアレイが、アレイの両端に向かって増大する平均の間取りを有しているトランステューサを備える請求項46に記載の方法。

【請求項48】

さらなるオーディオプログラムをさらなる聞き取り位置にそれぞれ送るステップをさらに備える請求項47に記載の方法。

【請求項49】

前記第一のまたは高周波数トランステューサは50mm未満の直径を有する前記請求項のいずれかに記載のシステムまたは方法。

【請求項50】

前記低周波数トランステューサは50mmより大きな直径を有する前記請求項のいずれかに記載のシステムまたは方法。

【請求項51】

前記低周波数トランステューサは100mmより大きな直径を有する前記請求項のいずれかに記載のシステムまたは方法。

【請求項52】

前記低周波数トランステューサは、前記第一のまたは高周波数トランステューサの直径の少なくとも2倍大きな直径を有する前記請求項のいずれかに記載のシステムまたは方法。

【請求項53】

アレイの中心またはその近くに置かれている前記第一のまたは高周波数トランステューサの1つ以上が、低周波数を実質的に再生することが可能な広帯域トランステューサと置き換えられている前記請求項のいずれかに記載のシステムまたは方法。

【発明の詳細な説明】

30

【技術分野】

【0001】

(発明の分野)

この発明は、可聴音のビームを生成することの可能な電気音響トランステューサのアレイが含まれている装置に関する。より詳しくは、そのようなアレイ装置であって、多重オーディオまたは多重チャンネルオーディオ入力信号を受信することが可能で、かつホームエンターテイメントまたはプロフェッショナル音声再生アプリケーションに適するレベルで、独立して方向操作の可能なかつ焦点合わせ可能な可聴音のビームを生成するための装置に関する。

【背景技術】

40

【0002】

(発明の背景)

近年、オーディオ／ビジュアルシステムにおいて多重チャンネルのステレオ音が普及して用いられているのを目にする。技術上の動向は、従来のステレオ音再生システムから離れ、音場が動的に（かつ意図的に）リスナーの側方および後方に移行する「サラウンド音」技法へと向かっている。

【0003】

リスナー認識特性を向上させるために、左右（かつ最適には、中央）の音チャンネルに加えて一つ以上のサラウンド音チャンネル（過去にはしばしば「効果音」または「特殊効果」チャンネルと称された）が含まれている多重チャンネル音再生システムが知られてい

50

る。今日これらのシステムは、映画館で比較的普及しており、消費者の家庭でもより一般的になりつつある。消費者の家庭において、そのようなシステムが激増する背後にある推進力は、サラウンド音ホームビデオソフトウェア、主には、劇場公開用に作られて、その後ホームビデオメディア（例えば、デジタルビデオディスク（DVD）、ビデオカセット、ビデオディスクおよび、放送またはケーブルテレビ）に移行するサラウンド音映画（ムービー）が、広く利用可能となっていることである。

【0004】

リスナーの背後に拡張する音場を提供するか、リスナーの後方に音のイメージを集中させるように、音が再生される場合には、左右のチャンネル再生用に、2つの（フロント）スピーカーがリスナーの左右の前方に配置され、かつサラウンドまたは後方のチャンネル再生用に、リスナーの後方に少なくとも1つか2つのリアスピーカーが追加して配置される。加えて、最新のサラウンド音システムには、左前方スピーカーと右前方スピーカーの間にリスナーの前方に配置されるセンタースピーカーが含まれている。音質を向上させるために、オーディオ信号の低周波数部分は追加のサブウーファに向けられる。リスナーに対するサブウーファの正確な位置は、サラウンド音システム全体の性能にとって重要ではない。

10

【0005】

しかしながら、一般の家庭では、部屋に5つから6つものスピーカーを配置するのは困難である。新しいサラウンド音システムは、しばしば現存するステレオシステムとの互換性が無いので、ユーザーには、1つの部屋に2つの共存するシステムを有するか（スピーカーの数が7つまたは8つまでにもなる）、古いシステムを廃棄するかの選択が残される。これは、明らかに満足のできるものではないので、近年、スピーカーの数を減らしてサラウンド音を生成するか、少なくとも新しいサラウンド音システムと年代もののステレオ装置との間により良い統合を提供する試みがなされている。

20

【0006】

ハードウェアのコンポーネントの数を減らすことを目的とする最も進んだシステムが、同一の出願人による、公開された国際特許出願WO01/23104、WO02/078388およびWO03/034780に記述されている。WO01/23104において、トランスデューサのアレイが、独立して方向操作の可能なサウンドビームを複数生成する。動作中、そのサウンドビームは、リスナーの左右の反射面または壁の適当な場所に、およびリスナーの背後の壁の左右のコーナーへと向けられる。反射された音は、これらの位置にあるスピーカーから発せられると全く同じように、リスニングポジション、いわゆる「スイートスポット」に向かって集まってくる。したがって、そのシステムによって、部屋の1つ以上の場所にスピーカーを有すべき必要性がなくなる。

30

【発明の開示】

【発明が解決しようとする課題】

【0007】

多くのアプリケーションについて満足のいくものではあるが、音再生の質を適切に保ったまま、アレイのトランスデューサの数と、それらの音響特性に関する要求条件（requirements）を減らす必要性が認められている。また、より小さな部屋への設置を容易にするためには、そのようなシステムの全体の大きさを低減することが望ましい。

40

【0008】

したがって、発明の目的は、WO01/23104の装置を改良して、サイズとトランスデューサの数が低減された単一のエンクロージャからサラウンド音を生成することができるシステムを作り出すことである。

【課題を解決するための手段】

【0009】

（発明の概要）

発明は、添付した特許請求の範囲に記述されている。

発明の第一の観点によると、サラウンド音入力信号を受信するよう構成されているアン

50

システムと、フェーズドアレイとして配置されており、かつ前記サラウンド音入力信号に基づいてサラウンド音を発するよう構成されている電気音響トランスデューサとを備え、前記アレイは、複数の高周波数トランスデューサと前記アレイの周囲に配置されている1つまたは2つまたはそれより多い数の低周波数トランスデューサとを備える、オーディオ入力信号に応答して複数のサラウンド音チャンネルを生成するオーディオシステムが提供される。

【0010】

アレイは、トランスデューサを空間的に配置し、トランスデューサ間に所定の間隔または距離を保ち、通常は、全てのトランスデューサが、そのアレイの平面に背を向けているものであると理解される。この発明のアレイは、例えば、上で参照された特許出願W001/23104およびW002/078388に記述されているような单一またはグループのトランスデューサの駆動信号を遅延させることによって位相化されている（*phased*）。アレイのトランスデューサは、单一のハウジングまたは搭載フレーム（*mounting frame*）の前面板（*front panel*：前面パネル）上に全てのトランスデューサを設けることで、平面アレイに最善に配置される。

10

【0011】

低周波数トランスデューサは、アレイの大半を占める他のアレイトランスデューサの高周波数の能力に比べて、低周波数を再生する能力が向上しているのが特徴である。より良い低周波数再生は、低周波域においてより高い音響出力パワーレベル（SPL）を有するものとして、またはより低いカットオフ周波数を有することで一般に定義できる。また、一般的な規則として、より低い周波数のトランスデューサ、または「ウーファ」は、動作において、アレイの他のトランスデューサに比べてより多くの量の空気を動かし、そして振動板の直径がより大きいか、トランスデューサの行程がより大きいかまたは双方である。

20

【0012】

低周波数トランスデューサの数は、アレイの大半を占める高周波数トランスデューサの数よりも、好ましくは、5分の1または、10分の1あるいは50分の1も小さい。高周波またはアレイトランスデューサの絶対数は、好ましくは200未満であり、より好ましくは、150未満またはさらに120未満である。とりわけ、垂直の方向操作が必要とされないか望まれない場合には、アレイトランスデューサの数は、50、30またはさらに20未満であり得る。方向操作の可能なサウンドビームを生成する最小限は、好ましくは5より多く、より好ましくは8より、さらには12より多い。低周波数トランスデューサの数は、好ましくは20未満であり、より好ましくは10未満、さらには7未満である。

30

【0013】

好ましい変形例において、高周波数トランスデューサは、密接に間取りされ（*closely spaced*：近接して離間され）、一方、2つの低周波数トランスデューサ間の最も近い距離の方がそれより大きい。隣同士の高周波数トランスデューサの中心点間の平均距離は、好ましくは50mm以下であり、一方、隣同士の低周波数トランスデューサの中心点間の距離は、好ましくは100mmより大きく、さらには400mmより大きい。

40

【0014】

トランスデューサのグループは2つだけを用いるのが好ましいが、ミッドレンジの周波数を再生するために、第三のまたはそれ以上のトランスデューサのグループを用いて発明の変形例を想定することも可能である。また、それ自体はアレイの一部ではない通常のサブウーファとともにアレイを用いてもよい。そのような変形例について、前述の特長は、アレイの大半を占めるこれらのトランスデューサ、および低周波数のコンテンツを再生するのに最善に適合されているアレイのこれらのトランスデューサにも当てはまる。

【0015】

低周波数トランスデューサを最適に使用するため、好ましくは、発明には、入力信号を濾波して、低周波数トランスデューサに1つ以上の駆動信号を提供するローパスフィルタ

50

システム（L P F）が含まれている。L P Fは、好ましくは、高周波数トランスデューサから発せられるべき信号から低周波数コンテンツを低減し、かつ主として低周波数トランスデューサによる再生のために低周波数コンテンツを向かわせる周波数クロスオーバーシステムとして実現される。

【0016】

したがって、アレイのトランスデューサの大半は、低周波数コンテンツのパワーの大半を再生するのには用いられず、それらの仕様は、高周波数の再生に最適化されるように変更できる。クロスオーバー周波数は、広い周波数範囲内で選ぶことができる。

【0017】

アレイトランスデューサをほぼ橜円形のアレイに配置し、かつそのアレイの大半を占めるトランスデューサに比べてより良く低周波数を再生するトランスデューサを加え、そのような低周波数トランスデューサを前記アレイの周囲に置くことによって、方向操作の可能な可聴音のビームを生成するのに必要とされるトランスデューサの数を低減するのが可能であることが見出された。10

【0018】

ほぼ橜円形というのには、行および列双方のトランスデューサの数がアレイの真ん中に向かって増える離散的な卵型（d e s c r e t e o v a l s h a p e s）および六角形または八角形のような多角形による橜円形の近似物が含まれている。

【0019】

卵型または擬似的な卵型アレイの好ましいアスペクト比は、およそ7：4であり、別の好ましいアスペクト比は、およそ16：9である。双方の場合とも、長軸の好ましい方向は水平である。20

【0020】

しかしながら、トランスデューサの数が小さいと、橜円形は、アレイトランスデューサの水平な1本、2本、または3本線の、本質的にはラインアレイであるアレイへと退化する。それらのラインは、トランスデューサ間の距離をさらに低減するために、三角形の格子を形成するように互い違いに置く（s t a g g e r e d）ことができる。

【0021】

さらなる変形例において、橜円形には、水平な1本、2本、または3本線の、本質的にはラインアレイであって、さらにアレイの両側または両翼に沿って計るとアレイの高さが公称高を超える中央区域、領域または間隔を含むアレイが含まれている。換言すると、アレイはそのアレイの他の部分よりも広い二次元的な集合体を中央に有し得る。30

【0022】

低周波数トランスデューサは、様々に、例えばアレイの下または上あるいは左右の列として配置できるが、それらは好ましくは、卵型アレイに外接する長方形のコーナーの内側に置かれる。橜円形または卵型アレイの長方形の囲み（e n v e l o p e）のコーナーに低周波数トランスデューサを配置することには、単一の前面パネルの利用可能な領域を最適に使用するという利点がある。

【0023】

発明の別の好ましい変形例においては、低周波数トランスデューサは、サラウンド音入力の中央チャンネルを再生するのに用いられてもよい。低周波数トランスデューサを通して中央チャンネルを再生するのは排他的である（e x c l u s i v e）。この場合または他の場合でも、低周波数トランスデューサは好ましくはまた、広帯域トランスデューサであって、オーディオスペクトルのほとんど、または全てをカバーする。40

【0024】

2つ、3つまたは4つ以上の低周波数トランスデューサが用いられるならば、それらはサブアレイを構成するものと見なすことができ、また、低周波数トランスデューサがシステムの端部やコーナーの近くにあるならば、それらは、相対的に大きな物理的広がりを有し、そうであるので低周波数のビームを形成することが可能である。

【0025】

10

20

30

40

50

低周波数トランスデューサがアレイの4つのコーナーに位置する、すなわち、各コーナー位置に1つ以上トランスデューサがあって、低周波数エネルギーの全てまたはほとんどがこれらのウーファから放射される変形例においては、アレイの開口全体を横切って均一の分布を有する主トランスデューサアレイからの放射（適用されるウインドウ関数をさし当たって無視する）と違って、この低周波数サブアレイは、エネルギーの全てまたはほとんどを端部に集中させていることが分かる。この効果は、充分に分離され、コーナーに位置するトランスデューササブアレイからの放射ビームを、物理的に同じ広さの均一に照射される開口からのものよりも著しく狭くすることである。そして、コーナーにトランスデューサを備えるこの構成によって、均一のアレイ構造よりも、利用できる低周波数ビームの締り（tightness）を高めて達成可能としており、また非常に著しい費用上の利益を有している。同様の利益は、低周波数トランスデューサをラインの各端部に備えるラインアレイにおいて達成される。

10

【0026】

この利点がいったん認識されると、低周波数ビームの方向操作および／または焦点合わせすることが、種々の低周波数トランスデューサへの低周波数信号を適当な相対時間だけ遅延させることによって、主高周波数トランスデューサアレイがその他の周波数を方向操作し、および／または焦点合わせするのと丁度同じようにできる（しかし、おそらくは締りを同程度にはできない）ことが明らかになる。

20

【0027】

この、サブアレイの方向操作、焦点合わせおよびビームの締めは、前述の中央チャンネルの再生と、および主トランスデューサアレイのビームの方向操作の双方とも関連して行うことができる。各低周波数チャンネルへの信号経路において適切に整形成される（shaped）ローパス（LP）フィルター機能を用いることによって、低周波数トランスデューサに送られる任意の周波数の信号レベルの、アレイにおける高周波数トランスデューサに送られるレベルに対する割合は、主アレイと関連させて低周波数トランスデューサを駆動するビーム締め効果を最大限化し、かつ低周波数・高周波数トランスデューサの間取り（spacing）（これは、低周波数トランスデューサの直径がより大きいために、隣接し合う高周波数トランスデューサ同士の間取りよりも必然的に大きい）によって引き起こされる格子サイドロープのレベル（level of grating sidelobes）を最小限化するよう変えることができる。

30

【0028】

とりわけ利点のある発明の変形例においては、低周波数トランスデューサの能動的な振動板領域の外側周囲まで含めたアレイの境界は、低周波数クロスオーバーによって決定される。この変形例において、アレイのサイズ（長さ、幅、または直径）は、クロスオーバー周波数の波長の半分に等しいかそれより小さい。

【0029】

代わりに、とりわけクロスオーバーがより広い周波数範囲に広がっている場合は、クロスオーバー周波数は、オーディオ帯域における高周波数トランスデューサの第一共振 F_0 によって技術的に定義することができる。ウーファ間の距離は、 $0.5c/F_0$ （cは音速である）以下に設定される。実用上はたいがい、 F_0 は、この計算で高周波数トランスデューサの F_c （カットオフ周波数）に置き換えることができる。

40

【0030】

このように置かれている低周波数トランスデューサの間の空間または領域を、高周波数トランスデューサで均一に満たすことによって、サイドロープをさらに低減することができる。

【0031】

発明の別の実施例において、 F_0 または F_c 未満の周波数の範囲で高周波数トランスデューサのほぼ等しいまたは「平坦」な応答を維持し、同時にウーファ出力信号と高周波数トランスデューサの出力信号との間の位相シフトを補償するために、増幅する（または等化ステージを用いる）ことによって潜在的なサイドロープが低減される。好ましくは、こ

50

の変形例には、ウーファへの信号経路において移相フィルターが含まれていて、ウーファの放射を、確実に、高周波数トランスデューサと同じ位相シフトに従わせている。

【0032】

発明の別の実施例において、ウーファの最大の分離が $\leq 0.5 c/F_0$ でなければならぬという制約は、強い格子サイドローブを引き起こすことなく、以下のように緩和される。アレイの中心およびその周りに位置する主アレイを備えるトランスデューサの小さなセクションが、より低い共振周波数、例えば F_0' を備えるより広い帯域のトランスデューサと置き換えられて、この主アレイの中央セクションが、 F_0 未満で少なくとも F_0' かそれよりも低いところ（例えば、 F_L ）まで下がる周波数で、大きな音響パワー出力に貢献でき、かつ補償等化フィルターが用いられるならば、ウーファは、 $c/F_0' >> 0.5 c/F_0$ ほどまで大きい距離で分離されてもよい。明らかに、主アレイのこの部分集合（subset）のためのクロスオーバー周波数は、 F_0 未満であって、 F_0' まで低くあるいは F_L までにさえ低減されるべきである。格子サイドローブを低減する、このアプローチは、代わりに、広帯域アレイトランスデューサのパッチを1つより多く挿入することによって拡大され、これらのパッチは、好ましくは、いくつのパッチが用いられるのかに依存して、主アレイの幅および高さにわたってほぼ等しく間取りされている。そしてウーファの分離は、なおさらに増やされる。10

【0033】

好ましくは、アレイの周囲に向かってより広い間取りを行って、アレイトランスデューサを、アレイを横切って不均一に位置付けるとなおさらに利点がある。これには、望ましくないサイドローブを低減する効果がある。20

【0034】

アレイによって生成されるサウンドビームのビーム質は、アレイの端部を滑らかにするウインドウ関数を用いることによってさらに向上される。中央領域から離れると先細りする適当なウインドウ関数は、例えばコサインウインドウ、ハニングウインドウ、その他同様のウインドウ関数である。

【0035】

ウインドウ関数は、好ましくは、トランスデューサの出力振幅をアレイ内のトランスデューサの位置に依存する因子で重み付けを行うことによって実現される。

【0036】

このように、リスナーの位置に、通常のテレビのサイズの筐体から真のサラウンド音環境を生成することが可能で、高周波数でそのために相対的に低価なトランスデューサのアレイを利用し、かつ低周波でそのために相対的に高価なトランスデューサを限られた数しか使わないで、それら全てをシステムの前面に位置付けた、コンパクトなサラウンド音システムに、発明を用いることができる。テレビモニタを、システムの上または下に搭載して、ビデオおよびオーディオデータを同時に再生可能なユニットを形成することができ、またはトランスデューサアレイと直接結合させて、電源ユニットおよび外枠（case ork）を共有し、外部配線および接続を低減することによってさらに費用を低減することができる。30

【0037】

代わりに、2つ以上の異なるソースのオーディオチャンネルを2つの異なる方向に発する「二重モノラル（dual mono）」モードに、ビーム方向操作能力を用いることもできる。この代替実施例は、各ウインドウと関連するオーディオ信号を、例えば、異なる聞き手に向けて異なる方向に発することのできる分割画面または多重ウインドウテレビと組み合わせて有用である。40

【0038】

高周波数トランスデューサは、性能および（低い）費用に対して選択される。好ましくは、トランスデューサの有効放射半径は、10乃至50mmの範囲にあり、より好ましくは、20乃至40mmの範囲にある。そのようなトランスデューサのアレイは、家庭内またはその他屋内（例えばオフィス）の設定におけるサラウンドシステムに適切である。サ50

ウンドプロジェクタ (Sound Projector) がより大きな場所で、例えば劇場で、またはパブリックアドレスシステム (Public Address system) として用いられるように設計されると、より大きなアレイトランスデューサ、例えば直径 50 mm 以上、さらには直径 100 mm 以上のものさえも使用される。

【0039】

本発明のアレイは、好ましくは、平面（すなわち、全てのトランスデューサが同じ平面上に配置される）または擬似平面（すなわち、トランスデューサが実質的には同じ平面上に配置されるか、または実用のために平面と考えられる構成に配置される）である。各トランスデューサは、好ましくは、アレイの平面上に垂直でかつアレイにおける他のトランスデューサの各々の法線軸に平行である法線軸を有する。

10

【0040】

発明はまた、少なくとも 2 つの音のビームを同時に生成することが可能で、前記ビームの少なくとも 1 つの方向操作が可能である、電気音響トランスデューサのアレイを含むスピーカーシステムを備え、前記トランスデューサの第一の集合は、低周波数音を発することが実質的に不可能である高周波数トランスデューサであり、前記トランスデューサの第二の集合は、低周波数音を発することの可能な低周波数または広帯域トランスデューサであり、前記システムには、高周波数トランスデューサによって発せられるように前もって定めている信号から低周波数コンテンツを濾波して、前記低周波数コンテンツを、低周波数トランスデューサによって発せられるように前もって定めている信号に加えるフィルターシステムが含まれている。

20

【0041】

この構成によって、より低価格の高周波数トランスデューサがアレイの大部分を形成し、かつ低周波数または広帯域トランスデューサのより小さな集合を用いて低周波数信号の全てを出力することが可能となる。これらのトランスデューサは、好ましくは、アレイの周囲にあって、低周波数ビームの指向性を最大限にすることが可能である。

【0042】

とりわけ低費用の変形例においては、アレイは、1 本、2 本または 3 本の水平線を有するラインアレイである。これによって、垂直方向に可能な指向性がほとんど無い水平平面上においてビームを指向させることができとなる。

30

【0043】

発明はまた、ラインアレイ形状に配置される複数のトランスデューサを備えるスピーカーシステムからなり、トランスデューサ間の平均の間取り (spacing) はアレイの端に向かって増大する。

【0044】

トランスデューサの不均一の間取りによってサイドローブパワーを効果的に低減することができ、それはとりわけ、二重モノラルのアプリケーションに有用である。

【0045】

発明はまた、電気音響トランスデューサのアレイを用いて音のビームを生成する方法からなり、この方法は、高周波数トランスデューサのために前もって定めている信号を濾波して低周波数コンテンツを取り除き、前記低周波数コンテンツを低周波数トランスデューサのために前もって定めている信号に加えるステップを備える。

40

【0046】

さらには、発明は、水平に配列されたラインアレイを用いて 2 人のリスナーの各々に 2 つの音のビームを生成する方法からなり、前記方法は、第一のオーディオプログラムを第一のリスニング位置に向け、第二のオーディオプログラムを第二の、異なるリスニング位置に向かせるステップを備える。

【0047】

これらの、およびその他の発明の観点は、以下の概略図を参照して、制限的ではない例についての以下の詳細な説明から明らかとなる。

【実施例】

50

【0048】

(詳細な説明)

図1を参照して、周知のトランスデューサアレイスピーカーシステムの正面100が示されている。以下において、このシステムおよび本発明の変形例による新しいシステムは、一般に「サウンドプロジェクタ」と言及される。

【0049】

図1の周知のサウンドプロジェクタシステムには、各々が35mmの直径を有する25個のトランスデューサ111のアレイ110が含まれている。トランスデューサは、長方形の囲みまたは縁を備える三角形ピッチの格子に配置されている。アレイ110自体は、長方形の基板101上に配置される。基板の全体の大きさは、長さ900mmおよび高さ552mmである。トランスデューサ111は、通常等しくて、ほとんどの可聴スペクトルにわたって良好な音再生を行う。それらの振動板のサイズは小さいので、可動コイルシステムの行程(travel)を大きくして充分なパワーを達成する必要があり、それ故に、周知の設計において用いられるトランスデューサ111は、相対的に製造が困難で比較的高価である。

10

【0050】

従来技術によって提供されるのは、均一に間取りされた広帯域トランスデューサの2Dアレイであって、それを用いて、方向操作の可能な1つ以上の音のビームを生成し、続いてそれは、1つ以上のチャンネルオーディオ信号、例えばステレオまたはサラウンド音の1つ以上のチャンネルを再生する。ビームは、アレイを横切ってトランスデューサごとの時間遅延を挿入することによって方向操作され、そして所定のアレイからの多重の同時ビームが、線形的な重ね合わせによって生成される。しかしながら、そのような方向操作の可能な装置を技術的および商業的に成功して実施するには、以下に記述するようないくつかの問題を克服しなければならない。

20

【0051】

定義：

DSP デジタルサウンドプロジェクタ、すなわち、多重ビーム、方向操作の可能な音フェーズドアレイスピーカーの特定の実施例。

HF 高周波 [例えば、> 2乃至4kHz]

30

LF 低周波 [例えば、< 300乃至500Hz]

MF 中間周波 [LFとHFとの間]

【0052】

解決すべき問題には、以下のものがある。

- 低費用で簡素に良好な指向性を達成する。
- 少数のトランスデューサで低サイドローブレベルを達成する。
- 低費用で良好なLF性能を達成する。
- テレビ画面の外枠内に収まるほど充分に小さい有用なDSPを作れる。
- 低費用で同時二重モノラルオーディオ性能を可能とする。

【0053】

(トランスデューサの数と配置)

40

アレイを形成するトランスデューサの数は、アレイの面積に比例し、トランスデューサ間分離の二乗に反比例する。望ましくないビームのサイドローブ(格子サイドローブ)は、臨界周波数F_cを超える周波数でアレイによって生成され、ここでF_cは、波長がトランスデューサ間分離と同じオーダーの音波の周波数である。これらの格子サイドローブは、望ましい主ビームと同じか同様の強度のものであって、同様の(細い)ビーム幅のものであり、そうであるので簡単には無視できない。これらの格子サイドローブの有害な効果を最小限化するために、トランスデューサ間分離をできる限り小さくしてF_cをできる限り高くする必要がある。理想的にはF_cは>= ~20kHzであり、すなわち可聴性を超えるが、しかしこれによって、およそ17mm以下のトランスデューサ分離が必要となり、ここでその分離は、空気中の20kHzの音の波長のオーダーである。

50

【0054】

平面または曲面の2Dアレイについて、トランステューサ分離のこの上限によって、トランステューサの直径の上限が決定されるが、それはトランステューサが大きくなると単純に物理的にアレイに合わなくなるからである。所定の性能（例えば、1mでのdB/Wの感度、最大パワー能力および帯域幅）を備えるトランステューサの費用および複雑さは、その物理的な大きさが低減されると非常に急峻に増大するが、その一因は、低周波数感度が振動板の面積の二乗に比例し、かつ小さな振動板からの大きなLF出力には非常に大きな可動域が必要であって、それによって今度は、非常に長い磁気間隙かまたは非常に長く重く非効率なコイルが必要となることである。

【0055】

所定のトランステューサのタイプに対して、アレイとその駆動電子回路Cの費用および複雑さは、必要とされるトランステューサの数とほぼ線形に増大する。分析的な形では、特徴的な囲みの大きさ、幅Wと高さH（実際に長方形であろうがあるまいが）の2Dアレイについて、面積Aは、

$$A = k W H$$

（ここで、長方形のアレイについて $k = 1$ 、楕円形アレイのような他の形について $k < 1$ ）である。cが、空気中の音速（~340m/s）であり、 F_h が、望ましくないサイドロープを備えないアレイによって方向操作されるべき最も高い周波数であるなら、トランステューサ分離Sが従うべきは、

$$S \leq c / F_h$$

（ここで、 c / F_h は、周波数 F_h の音の空気中の波長）である。この結果は、ビームがアレイに垂直にアレイ軸に沿って方向操作される場合について成り立つことに注意する。ビームが軸からある角度bだけずれて方向操作されると、アレイ軸に対して~90度で最初にサイドロープが現れ、そしてSをさらに低減してサイドロープを消去しなければならない。ビームが軸から90度ずれて方向操作されるならば、Sは、格子サイドロープを防ぐために $S \leq c / 2 F_h$ を満たさなければならない。以下において $b = 0$ で、ビームが軸上にある場合のみを考慮するが、上記と同様の考察はなおも当てはまる。

【0056】

そうすると、アレイNにおけるトランステューサの概数は、下式によって与えられる。

$$N = k (W/S) (H/S)$$

そして、各大きさにおいて最も近い完全なトランステューサに切り上げて、

$$N = \text{Round}(W/S) \text{ Round}(H/S)$$

（ここで、Round(x)は、その独立変数を近辺の整数に変えるある適当な切り上げ関数である）。

【0057】

最後に、費用Cがトランステューサの数Nに比例するという上の記述を思い起こすと、

$$C = j N$$

ここで、jはある近似の比例定数である。そして、必要とされるトランステューサの数Nは、近似的にk、W、Hおよび F_h^2 に比例する（なぜなら、 $S \leq c / F_h$ ）。

【0058】

一方、アレイのビーム方向操作性能はその広がりに比例し、すなわち、Wの値が大きいほど可能な水平のビーム幅は狭くなり、Hの値が大きいほど可能な垂直のビーム幅が狭くなる。また、Sの値が小さいほど（かつ結果として F_h の値が大きいほど）、望ましくないサイドロープを備えない最大方向操作可能周波数が高くなる。このように、費用/性能の利益は、これらの値をより小さくすることとより大きくすることとの間の折衷事項である。「最適の」解は無く、高いか低いかの費用に対して高いか低いかの性能を提供する解の組のみがある。

【0059】

表現（のみ）を簡単にするために、前述においては、トランステューサが水平および垂直の長方形（かつ実際には正方形）の格子に配置されたものと仮定したことに注意する。

10

20

30

40

50

実用上より良好な均一のトランスデューサ配置が可能であり、それには三角形格子の配置も含まれていて、その格子の方向は、生成されるサイドロープの望ましくない効果を最小限化するように選択されている。そのような各格子配置において、異なってはいるが同様の式が適用され、それら全てがこの発明に含まれる。明快さのために、正方形の格子配置のみが記述されている。

【0060】

例示のみを目的として、いくつかの例となる図が与えられる。サンプルの長方形、正方形格子アレイは、およその大きさ $W = 800 \text{ mm}$ 、 $H = 600 \text{ mm}$ を有し、 F_h は $\sim 8 \text{ kHz}$ となるように選択される（フルレンジの方向操作性能 - 対 - 適切な非常に直径の小さいトランスデューサの利用可能性の折衷）。そうすると、

10

$$S \leq c / F_h$$

であるので、

$$S \leq 340 / 800 \sim 42.5 \text{ mm}$$

実用性を配慮して、 $S = 40 \text{ mm}$ が選択される。そうして、正方形格子アレイについて $k = 1$ であるので、

$$\begin{aligned} N &= k \text{Round}(W/S) \text{Round}(H/S) \\ &= \text{Round}(800/40) \text{Round}(600/40) \\ &= 20 \times 15 = 300 \end{aligned}$$

そうすると、そのようなアレイは、およそ 300 のトランスデューサ、各トランスデューサを駆動する別々の増幅器（合計 300 個）および 300 個の増幅器のアレイを駆動するための非常に多数の信号処理チャンネル（入力オーディオ源チャンネルの数に依存する）を必要とする。これは明らかに複雑で、おそらくは高価なシステムである。

20

【0061】

ステレオのみの信号、またはステレオ信号プラス中央チャンネルのみの再生については、水平の大きさが狭いサウンドビームが良好に作用する（左右のチャンネルサウンドビームが、左右の壁またはリスニング領域の他の反射体で跳ね返るとき）こと、さらには、垂直のビーム幅が再生を成功させる上で相対的に重要でないということも、モデル化、分析および実験から見出されている。そうして、オーディオの性能に低い影響しかないアレイの費用および複雑さを低減するために、H アレイの大きさ（高さ）を W の大きさ（幅）に対して大きく低減させ、そうして、ほぼ正比例して、アレイとその電子駆動回路の費用および複雑さを低減することができる。限界において、H は、以下の値までは低減されるが、それよりは低減されず、

$$\text{Round}(H/S) = 1$$

30

それは、H の大きさが、少なくとも、用いられるアレイトランスデューサの垂直の広がりと同じ大きさでなければならないからであり、そうして、垂直アレイビーム幅は、個々のトランスデューサビーム幅とほぼ同じだけの広さとされ、本質的には 1 つの「行」のトランスデューサがある。

【0062】

用いられるアレイ格子パターンによっては、これらは必ずしも直線上にあるわけではなく、例えば三角形の格子が用いられるときもある。この限られた場合において、費用 C は

40

$$C = jN = jk \text{Round}(W/S) \text{Round}(H/S) = jk \text{Round}(W/S)$$

【0063】

さらには、完全サラウンド音もまた、そのような高さの低減されたアレイまたは R H A で、しばしば成功のうちに再生されるということも、モデル化、分析および実験によって見出されている。これらのアレイは、 $H \ll W$ 、例えば $H < W/4$ または $H < W/8$ 以下、さらには垂直の大きさが水平のトランスデューサの間取りにほぼ等しい $H \sim S$ さえをも有する。そのようなアレイは、広い垂直ビームではなく、細い水平ビームを生成し、そして、リスニング領域のいずれかの側にリスナーを過ぎる垂直の扇ビーム（すなわち、水平

50

に狭く垂直に広い) を向け、リスニング領域の後方の側壁または後方の壁にそれらが向かう途中でリスナーがそれを聞くことはなく、そしてそれが側壁および/または後方の壁で跳ね返ってリスナーの背後からリスナーへと戻ることで、サラウンド音に必要とされる効果を生成するようなリスニング環境である場合に、サラウンド音を成功のうちに生成する。

【0064】

このように、1つの観点において、発明によって、相対的に低い費用で受け入れ可能な性能が提供される。

【0065】

(トランスデューサのサイズおよび選択)

10

前述のように、直徑の小さい広帯域アレイトランスデューサ(すなわち、LFからHFに至るまでをカバーする)は、作るのに、とりわけLF端をカバーするのに、費用がかかって困難であり、それは、それらが非常に大きな可動域を必要とするからであって、そしてアレイ全体としては、費用がかかって広く消費者が使うものとはならない。

【0066】

この問題を解決するには、全てのLFオーディオ成分を再生する1つ以上のLFトランスデューサを加えればよい。そして残りのアレイトランスデューサは、中および高周波数のみしか再生する必要がなく、簡単な、低費用のトランスデューサで充分である。好ましくは、LFトランスデューサ(「ウーファ」)は、丁度アレイの境界内かまたは周囲に置かれる。これらは、再生すべきオーディオチャンネルの全てから、LF信号成分(この文脈で、LFはおよそ300乃至400Hz未満を意味する)の全てを再生するのに用いられる。

20

【0067】

良好なLF再生のために、ウーファは、一般にアレイトランスデューサよりも大きな直徑を有する。ウーファをアレイの周囲に置くことで、アレイトランスデューサの密接な均一の間取りが乱れることを回避し、そして、ウーファがアレイの本体内に置かれていたならば生じたであろう好ましくない格子サイドロープが加わって生じるのを回避する。

【0068】

LF成分の分配は、幾通りかのやり方で行うことができる。最も簡単な場合には、LF成分は、各オーディオ入力チャンネルから濾波して取り出され、1つ以上のウーファへと分配される。洗練されると、LFオーディオ成分を、左前および左後のチャンネルからアレイの左に位置する1つ以上のウーファに分配し、右前および右後のチャンネルからアレイの右に位置するウーファに分配する。これによって、オーディオ信号の左右への分離が高められる。そのような装置において、中央チャンネルのLFオーディオ成分は、アレイの左右に位置するウーファに都合良くほぼ等しく分配される。さらに洗練されると、中央チャンネルのLF成分は、むしろ、アレイの中央またはその近くの広帯域LF可能アレイトランスデューサの小さなグループに全体的または部分的に分配できる。しかしながら、そのような中央LFアレイトランスデューサは、必要とされるアレイトランスデューサの間取りを乱さないとすれば、必然的に直徑の小さなものとなり、したがって、残りのアレイトランスデューサよりも費用がかさみ、および/または複雑なものになりそうである。

30

【0069】

(真正面チャンネル)

40

アレイがリスニングルームの(壁の1つの真ん中に対比して)コーナーまたはその近くに置かれるとき、左前および右前(ステレオまたはサラウンド音)チャンネルを表すサウンドビームに適切な跳ね返りポイントを見出して、正しい方向から(すなわち左前および右前位置から)リスナーに到達するビーム軌道が含まれるようにするのはより困難であり得る。

【0070】

この問題を解決するには、少なくとも2つより大きなLFトランスデューサを、丁度アレイの境界内かまたは周囲であるが、アレイの左右の側に支配的に位置付けて、追加し

50

、これらのトランスデューサのみを用いて（すなわち、アレイの他のものは用いず）左前および右前チャンネルの全スペクトルを（それぞれ）再生すればよい。

【0071】

これらのL Fトランスデューサもまたフルレンジ（すなわち、L FからH Fまで、ここで、H Fは、15 kHzから20 kHzまでを意味する）の応答が可能であるなら、好都合である。好ましくは、この目的でのL Fトランスデューサは、「ホイザ（w h i z z e r）」コーンの備わるウーファのような広帯域トランスデューサである。

【0072】

代わりに、より大きなL Fトランスデューサが左前および右前のオーディオチャンネル帯域幅を再生することが不可能であるならば、それらは、L Fトランスデューサの各々に最も近いアレイトランスデューサの1つ以上と関係して用いられて良く、帯域分割フィルターは、左右のチャンネルのL F成分を左右のL Fトランスデューサにそれぞれ向け、かつL Fより上の成分を隣接する／最も近い1つ以上のアレイトランスデューサの各々に向ける。このようにして、左前のチャンネルは、アレイの左端から支配的に発し、右前のチャンネルは、アレイの右端から支配的に発し、2または多数のチャンネル源の通常のLおよびRステレオ成分の受け入れ可能なレンダリングを与える。

10

【0073】

このアプローチは、L Fトランスデューサの物理的な分離が広ければ広いほど、とりわけ画像と一緒に音を再生するのに用いられるとき、最新の28"乃至40+"のビジュアルディスプレイ画面（T V）と連結して、より良く作用する。しかしながら、それはL Fトランスデューサの分離がより小さくてもまた適用可能である。リスナーによって認識される左右の音ステージの空間的な分離は、通常かつ周知のワイドステレオ信号処理アルゴリズムのいずれかを用いることでさらに高められる。

20

【0074】

（不均一なアレイ）

サラウンド音用高さ低減アレイの費用および複雑さは、テレビ受信機のような非常に容量の大きい一般消費者用の装置にとってはなおも高すぎる。そのような装置が実行可能であるためには、トランスデューサ、駆動増幅器および信号処理チャンネルの数をできる限り減らして費用を最小限化し、一方、左前、中央、右前、左後および右後のチャンネルの分離ができる限り高く維持することが必要である。アプリケーションが、例えば、ワイド画面T V（例えば、42"のプラズマ画面）であれば、ほぼその画面と同じぐらい広いアレイを有していて、全ての前面チャンネルの音が、画面幅をほぼ完全に横切って分配されるようにすることが望ましい。許容可能なトランスデューサの最大の間取りS（前述されており、望ましくない格子サイドロープを防止する）が与えられると、これによってトランスデューサの最小限の数N>=Round(W/S)が暗示されており、それでは、商業化するにはあまりにも合計費用C (=j N) が大きくなってしまう。実際の例：42"の対角線、16:9のアスペクト比のディスプレイ画面であってW=930 mmとなるようなものを想定する。音響上のおよびトランスデューサの選択の理由からS=40 mmであるならば、画面と同じ高さH、すなわちH=523 mmの完全2D正方形格子アレイには、

30

$$\begin{aligned} N &= \text{Round}(W/S) \text{ Round}(H/S) \\ &= 1 \times \text{Round}(930/40) \text{ Round}(523/40) \\ &= 23 \times 13 \\ &= 299 \text{ トランスデューサ} \end{aligned}$$

40

が必要となる。

【0075】

2Dアレイの高さHが（この正方形格子の例において）1つのトランスデューサの高さに低減されているような限定のある場合においてでさえ、なおもこれには、

$$N_{\min} = \text{Round}(930/40) = 23 \text{ トランスデューサ}$$

が、23の駆動増幅器および多くの信号処理チャンネル（例えば、5段階に方向操作され

50

るサウンドビームシステムでは、最小で $5 \times 23 = 115$ の信号処理チャネル）と一緒に必要となる。

【0076】

この費用／複雑さ問題の潜在的な解法をここに記述する。第一に、前述のアプローチを用いて、アレイトランスデューサを、LF無しの低価格装置および、LFオーディオ成分と、可能ならば（ステレオおよび／またはサラウンド音用の）完全な左前および右前チャネルとを再生するのにアレイの左右端で用いられる、少なくとも一対の、より大きな直径、LFまたは広帯域トランスデューサで実現できる。しかしながら、高さを限定する場合（アレイは1トランスデューサの高さ）においてさえ、これらの技法にはなおも、多数のアレイトランスデューサおよび、丁度示された例についてさらには最小21（またはそれぐらい）のアレイトランスデューサが、LFトランスデューサの間に必要である。アレイトランスデューサの間取りSを増大させると、費用および複雑さを低減できるが、設計上の目標である40mmを超えてトランスデューサの間取りSを増大させると、意図したビームの方向が意図的にリスナーの一人以上または全員を外すようにする（例えば、左後または右後のチャンネルビームが一回以上壁または天井で跳ね返った後でのみ聞こえるように意図される）とき、しばしば直接リスナーに向けられる、受け入れることのできない、およそ8kHz以上の完全振幅のサイドロープが生成される。

10

【0077】

その解法は、トランスデューサの数を、経済的に受け入れることのできる数、例えば、 $N_{red} < N_{min}$ に低減することであるが、通常のように均一なトランスデューサ間の間取りを用いずに、トランスデューサ間の間取りを不均一として、とりわけ隣接するトランスデューサの対の間の間取りを、アレイの中央からその対が離れるにつれて増大させる。その効果は、格子サイドロープを「不鮮明とする」ことであり、それらの最大限の振幅を低減し、そしてそれによって、それらの抑制的効果（nuisance value）が低減される。

20

【0078】

この効果を達成するのに多くの方法があり、それらのいくつかは、この点について有益であり、すなわち、それらによって、トランスデューサの全体数がより小さくとも、所定の長さ（または高さ）またはアレイの全体サイズにわたっての配列を可能とし、一方、望ましくない全振幅の格子サイドロープビームの生成を回避するものである。1つのとりわけ有益な構成を以下に記述するが、ここでそのプロセスでは、アレイの主要な寸法の1つ（例えば、正方形／長方形のアレイについては幅または高さ、あるいは三角形のアレイの3つの主要な方向の1つ）を記述している。

30

i) 最初に、アレイのこの寸法において用いるトランスデューサの数を偶数とするか奇数とするかを決定する。

ii) 偶数であるならば、第一の（中央の）対のトランスデューサがアレイの（この寸法における）中央ラインについて均等に間取りされ、奇数であるならば第一のトランスデューサが、この寸法において、アレイの中央に置かれる。

iii) 次に、奇数の場合は残りのトランスデューサを、偶数の場合は全てのトランスデューサを、この寸法に沿っての平均アレイ振幅密度が、均一に駆動されるトランスデューサを用いて、有用な開口照射関数（aperture illumination function）、例えば、直交、コサイン、ハニング、ハミング、ガウスなどに近似するように分配する。そのような間取り構成を決定する1つの方法を以下に記述する。

40

【0079】

丁度記述された構成の変形例では、トランスデューサの1つ以上に供給される異なるパワー・レベルを用いており（なぜなら、おそらくは、例えば、そのようなアレイの端またはその近くのトランスデューサの1つがウーファ、可能ならば広帯域ウーファであるときのように、より大きなまたは小さなパワー取り扱い能力を備える異なるトランスデューサがあるからである）、この変形例の構成において、同じ目標が掲げられており、すなわち、これらの他の理由で選ばれる個々のトランスデューサへの特別なパワーまたは振幅の分配

50

を行って、アレイの平均局部振幅密度が、トランステューサの適切な間取りによって、望ましい開口照射関数に密接に従うものとされ、そして一般には、より高い振幅を備えるトランステューサが、そうでないものよりも、それらに隣接するものからより大きく間取りされるものとなり、かつ振幅が低減されるトランステューサが、それらに隣接するものにより近く（すなわち、最初の変形例でない構成におけるよりは）間取りされるものとなる。

【0080】

そのように分配される間取り構成の主要な利点は、それによって、規則的なアレイによって生成される狭い全振幅の規則的に間取りされた格子サイドローブ（その臨界間取り周波数を超える）が、広い低振幅の分配された間取りのサイドローブへと変えられ、したがってそれは、どの1つの方向をも特定して「指す（point）」ことはなく、そうして、サイドローブ「内で（within）」リスナーに認識される効果をより小さなものとする。

10

【0081】

前述の構成による不均一なアレイトランステューサの間取りを選択する1つの有益な方法をここに記述する。簡素化のために、均一なトランステューサの振幅を備える一次元のアレイ構造を記述するが、その方法は、不均一のトランステューサ振幅を備えて二次元またはそれ以上で容易に一般化され、それらの構成もまた、この発明の一部である。

【0082】

この構成の本質は、線形のソース振幅密度（1-Dアレイについて）または局所ソース振幅密度（2-Dについて）アレイの局部（隣接する）トランステューサでの平均を、有用なウインドウまたはアボディゼーション機能（apodisation function）であって、その通常の例には、コサイン、ハニングおよびガウスが含まれるものに従わせることである。一般に、均一に駆動されるトランステューサについて、それらの分離は、アボディゼーション関数がより低いこれらのアレイ開口の部分においてより大きい（そして一般に、これらの関数はアレイの中央からアレイの端に向かってなだらかに減少する）。

20

【0083】

1つの特定の実施例をここに記述する。（以下の表記 $y = \text{integral}(x) \text{ from } a \text{ to } b$ を、 y が x を極限 $x = a$ と $x = b$ の間で x を限定的に積分したものであることを示すものとして使う。）

30

A) アレイ長 L [長さ単位] を選び、拡大縮小係数 $S = 1 / L$ を定義する。拡大縮小された距離単位 x をアレイ長が1になるように定義する。

B) 開口重み付け関数、例えば $W(x) = \cos(pi * x / 2)$ を選ぶ。

C) アレイにおけるトランステューサの数 N を選ぶ。

D) 0, 1, 2, ..., $N - 1$ と番号付けられたトランステューサを、 $x = X_0, X_1, X_2, \dots, X_{N-1}$ [拡大縮小された距離単位におけるNB] に位置付ける。

E) $A = \text{integral}(W(x)) \text{ from } x = X_0 \text{ to } x = X_{N-1}$ とし、すなわち、ウインドウ振幅の合計で必要とされるのは、隣接する X_i と X_{i+1} のトランステューサの ($N - 1$) 対の各々の間の開口が、平均で合計開口に等しく貢献 $y(i) = A / (N - 1)$ する。

40

F) そして $X_0 = -1 / 2$ と設定し、第一のトランステューサは定義によって $x = -1 / 2$ にある。

G) $y(0) = A / (N - 1) = \text{integral}(W(x)) \text{ from } x = X_0 \text{ to } x = X_1$ となるように X_1 を求める [積分可能なウインドウ関数 $W(x)$ について、これは分析して簡単に解けることに注意する。より複雑なウインドウ関数については計算して解くほうがより容易である]

H) 同様の計算によって $i = 2$ から $N - 1$ まで連続して残りの X_i を求め、すなわち $y(i - 1) = A / (N - 1) = \text{integral}(W(x)) \text{ from } x = X_{i-1} \text{ to } x = X_i$ である。

50

I) 適切に近似して $X_{N-1} = +1/2$ であることが求められ、すなわち N 番目のトランステューサは単位長アレイの端にある。そしてアレイにおけるトランステューサの [長さ単位] における位置が、 $X_0, X_1, X_2, \dots, X_{N-1}$ を S で割ることによって求められる。

【0084】

実際には、追加の、有用なトランステューサの間取りの分配は、線形性パラメータ R、 $0 <= R <= 1$ を定義することによって生成され、ここで、 $R = 0$ は、均一な間取りを作り出し、また $R = 1$ は、前記方法によって計算されるような完全に不均一な間取りを作り出すものであることが見出される。第一に、重み付け関数 $W(x)$ は、次のように正規化されたバージョンの $W'(x)$ で置き換えられる。

`1 = integral(W'(x)) from x=X_0 = -1/2 to x=X_N-1 = +1/2`

同様に、正規化された均一のまたは方形の重み付け関数 $U'(x) = 1$ は、次の特性を有することが分かる。

`1 = integral(U'(x)) from x=X_0 = -1/2 to x=X_N-1 = +1/2`

そして、上のステップ G) および H) では、代わりに以下を用いる。

G) 以下のように X_i を求める。

`y(0) = 1 / (N-1) = (1-R) integral(U'(x)) + R integral(W'(x))`

ここで、前のように双方の `integral` は、`from x=X_0 to x=X_1` についてである。

J) 残りの X_i を、順次 $i = 2$ から $N-1$ まで同様の計算で求め、すなわち、

`Y(i-1) = 1 / (N-1) = (1-R) integral(U'(x)) + R integral(W'(x))`

ただし、再度 $x = X_{i-1}$ から $x = X_i$ まで積分する。

【0085】

そうして、そのようなトランステューサの間取りの分配の無限の集合を、 $0 <= R <= 1$ のように R の値を選ぶことによって、各全ての開口重み付け関数 $W(x)$ について計算することができる。R の特定の値によって、この明細書の他のところで説明しているような種類のアプリケーションについてとりわけ有用なアレイ構造が作り出される。例えば、 $W(x) = \cos(pi * x / 2)$ で $R \sim 0.8$ とすると、2 人（またはそれ以上）のリスナーの各々に同時に異なるプログラムを提供するのに適切な、最大ピークサイドロープ振幅の低いサイドロープエネルギーの空間的な分配が、非常に広くなるが、しかし、R の多くの他の値も有用な効果を有していて、それらは、コンピュータで前述のアルゴリズムを実行し、そしてそのようなアレイによって生成されるビームの形をモデリングする別のプログラム（または同じプログラムの別の部分）への、トランステューサの入力位置についての X_i の出力値を用いることによって選択される。

【0086】

わずかに異なる特性を有するトランステューサの不均一な間取り構成の異なる集合は、アレイの中央から始まって連続するトランステューサ対の間取りの幾何学的数列に基づく。 j が中央またはその右の第一のトランステューサの番号（すなわち、 $j = N/2$ または $(N+1)/2$ ）であり、かつ j 未満の番号が付されるトランステューサが、アレイの中央について鏡面対称に位置付けられる、純粹な幾何学的数列（ここで、 $(X_{i+1} - X_i)$ の $(X_i - X_{i-1})$ に対する比が $j <= i <= -1$ について定数である）で良好な結果が得られ、最初のビームの裾の振幅ならびに格子サイドロープの振幅を大きく低減するという特定の特性を有する。やはり、純粹に均一なアレイの間取り ($R = 0$) と不均一な間取りの幾何学的数列の間取り ($R = 1$) との間で滑らかな混合を作り出すパラメータ R は、前述のものと機能的に同様の方法で定義され、間にある R の全ての値によって、ビームおよびサイドロープのいかなる特長でも、所定のアプリケーションにおいて最も問題と

なるものを最適化するように選択することのできる、別の間取りの無数の集合が生じる。不均一の指數関数的なトランスデューサの間取りは、幾何学的数列の間取りに等しいことを示すことができる。

【0087】

アレイ中央からの連続するトランスデューサの距離の幾何学的数列で、やはりアレイの中央について対称であるものが、トランスデューサの不均一な間取りの構成のさらに異なる集合において用いられる。 j が中央またはその右の最初のトランスデューサの番号であり、かつ j 未満の番号が付けられたトランスデューサがアレイの中央について鏡面対称に位置付けられている純粋な幾何学的数列（ここで、 (X_{i+1}/X_i) の (X_i/X_{i-1}) ）に対する比が $j \leq i \leq N-1$ について定数である）がまた有用であり得る。やはり、均一なアレイの間取り ($R=0$) と中央から距離のあるそのような幾何級数的数列 ($R=1$) との間の滑らかな混合を生み出すパラメータ R を、前述したのと機能的に同様の方法で定義することができ、間にある R の全ての値によって別の間取りの無限の集合が生じる。

10

【0088】

同様に、なおも別の間取り構成では、以下の形の間取りが用いられ、ここで、 p および q は定数である。

$$(X_{i+1} - X_i) = p \log (1/q)$$

やはり、そのような間取り構成は、特定の環境において有用であるビーム形およびサイドロープ形の特性の範囲を有する。

20

【0089】

アレイトランスデューサを適切に不均一に間取りするように、これらの選択をする効果は、格子サイドロープがもはや完全な振幅（すなわち、望ましい主ビームと同様の強度）ではないというものであり、それらは、最大サイドロープピーク振幅が、信号ビーム振幅よりも少なくとも 5 dB、一般には 10 dB 低く低減されるように、振幅が低減され得るというものである。そうして、そのようなアレイにおける最小限受け入れ可能なトランスデューサの数はもはや、アレイの囲みの大きさの許容できる最大の間取りに対する比（すなわち、 $\sim W/S \times H/S$ ）によってではなく、非常に少数のトランスデューサと受け入れ可能な信号対ノイズ比との間で選択可能な折衷（この場合の信号は、望ましい方向からの可聴なレベルの音であり、ノイズが不鮮明とされたビームのサイドロープからの可聴なレベルの音である）によって制御される。これによって、アレイの設計者には、性能に対して費用を釣り合わせるのにさらなる自由度が加えられる。

30

【0090】

アレイ性能におけるこれらの改良は、追加の信号処理を用いることなく達成されており、すなわち、これらの利点を達成するために、周波数から独立した信号の遅延のみを適用する必要がある、各トランスデューサ駆動チャネルに特別な余分のフィルターを加える必要は（おそらく、場合によりけりの、最低限の追加計算または電子回路で行うことのできる単純な振幅重み付け関数以外に）無く、そうして追加の費用を負うことも無いということに注意する。これは、異なる音を、お互いにかなり近くにいる異なるリスナーに向けるのにアレイが使われている場合にとりわけ価値があり、それは、同一出願人による特許番号 WO 01/23104 に記述されている性能の特別な場合である。

40

【0091】

例えば、まず、均一に間取りされているアレイが、ソファの一端にいる一人のリスナー L 1 にオーディオプログラム A P 1（おそらくはそのソファから見えるところにある画面に表示されるビデオプログラム V P 1 と関連している）を、かつおそらくは同じソファの他端にいる第二のリスナー L 2 にオーディオプログラム A P 2（おそらくは見えるところにある同じかまたは別の画面に表示されるビデオプログラム V P 2 と関係している）を第二のサウンドビームによって、提供することが望まれているときの場合を想定する。その二人のリスナーは、水平な平面（あって、通常はほぼ同じ水平の高さであるが、可能性として一人のリスナーが例えば床に座っているならば異なる高さにある）においてアレイ

50

の中心にある角度 A を定める。

【0092】

L 1 に向けられるビームが F_x。より高い周波数 F_x を含み、F_x のサイドローブが L 2 に向けられるように同じ角度 A だけ主ビームから分離されているとき、L 2 には、最大パワーでその周波数 F_x の L 1 のプログラムオーディオが聞こえ、L 1 のオーディオプログラムの F_x に隣接する周波数は、周波数が F_x とより異なるにつれ、大きいけれどもより低減されたレベルで聞こえる。この干渉は非常に騒々しいものであり得る。特定のアレイについての F_x の値およびリスナーの分離角度によって、このことが同時に起こるいくつかの周波数 F_{x 1}、F_{x 2}、、、があり得る。この場合を、全体として同じ大きさのアレイが、良好に設計された不均一なトランスデューサの間取りを用いているときに起こることと対比する。

10

【0093】

ここで、意図せずして L 2 のプログラムが L 1 に最大レベルで聞こえる周波数 F_x が無いとき - 実際不均一のアレイにおいてトランスデューサの数が大きく減らされていて（同じようなサイズの均一なアレイにおける数と比較して）でさえ、意図していないリスナーに到達する不要のサイドローブレベルは、意図したリスナーに認識されるレベルより 5 dB かまたはそれ以上低く設計することができる。そうすると、この性能の改良は、より費用がかかつて複雑で均一なアレイでは、非常に価値がある。

【0094】

リスナーに到達する方向をよりよく分離して、多重ビームサラウンド音性能のために不均一アレイを用いるとき、サイドローブの干渉を低減するという同様の利点が得られる。

20

【0095】

（不均一アレイの変形例）

不均一アレイのさらに 2 つの有益な変形例、トランスデューサのサイズを不均一としたものおよびトランスデューサの位置が非対称であるものを、ここに記述する。

【0096】

前述の不均一アレイにおいて、アレイトランスデューサは中央でより近く間取りされ、アレイの端に向けてより広く間取りされている。したがって、直径のより大きなトランスデューサを、中心から離した位置に備え付けることが可能である。実際、端に向けて間取りが徐々に増大するにつれ、端に向けてトランスデューサの直径を徐々に大きくできる。利点は、直径のより大きなトランスデューサが直径の小さなトランスデューサに比べてより大きな感度およびより向上した効率を有し、かつ一般には費用をほぼ同じにできるということである。そして、費用をほとんどまたは全く増大させずに全体の性能を向上できる。

30

【0097】

これまで記述された不均一ラインアレイにおいて、トランスデューサの一般的な配置は、隣接するトランスデューサの対がアレイの中央からより離れるにつれ、そのトランスデューサの対が、より大きな分離を有するというものである。これは、垂直な中央線について対称なアレイに見られる傾向にある。

【0098】

アレイの中央のいずれかの側に位置するトランスデューサの間取りの不均一性が中央について対称的でないならば、すなわち、トランスデューサの位置が中央について鏡面像でないならば、最大サイドローブ値のさらなる低減が達成できる（すなわち、サイドローブは非対称性によってなおさらには「不明瞭にされる」）。

40

【0099】

間取りの幾何学的級数を $0 <= R <= 1$ である非線形パラメータ R で生成する、先に記述した方法を用いると、その方法で、中央線のいずれかの側に対称的なトランスデューサ位置が作られる。中央線のいずれかの側のトランスデューサ位置についてパラメータ R の異なる値を用いることで、非対称な不均一パターンを作り出すことができる。この場合、中央の両側での間取りはなおも幾何学的に関係しているが、中央のそれぞれの側で実際の

50

間取り値は異なっている。

【0100】

これを実施する例を以下に示す。これは、記述を明確にするために用意される1Dの例であるが、そのアプローチは、2Dおよび3Dにおいても等しく良好に作用する。

【0101】

21個のトランスデューサを備える1m長のアレイを考える。19.75KHzでは、ビームは真っ直ぐに前方に（アレイに垂直に）導かれ、-90度から+90度の最小の最大サイドローブ値が達成されて、R=0.98で、垂直な中央線について幾何学的に対称的なトランスデューサの間取りでは、最大のサイドローブレベルが-7.73dBである。R（左）=1.0かつR（右）=0.41（図2Iを参照）での非対称で不均一な間取りとすることによって、最大サイドローブレベルは-9.33dBに低下し、余分な部品、アレイのサイズもしくは信号処理無しで、価値ある1.6dBの向上が得られる。
10

【0102】

前述の解法を実行することの可能な複数の配置が図2A乃至図2Hに示されており、ここで、小さな円は、高周波数トランスデューサ（特許請求の範囲では第一のトランスデューサと称される）を表し、また大きな円は、低周波数または広帯域トランスデューサを表す。高周波数トランスデューサは、低周波数オーディオ信号を適切に出力するのは不可能である。

【0103】

ここで、図2Aを参照すると、本発明による第一のトランスデューサアレイのスピーカーシステムの正面200が示されている。
20

【0104】

その新規のサウンドプロジェクタには、40mmの正三角形ピッチで搭載された38mの直径を有する132個の小さな高周波数（HF）トランスデューサ211のアレイ210が含まれており、その三角形のピッチは、三角形の底辺または頂辺がアレイの幅と平行となるように方向付けられている。ほぼ橿円形のアレイは、17個のトランスデューサの中央の水平な行を備え、そして残りのトランスデューサのレイアウトは、三角形の格子におけるこの水平な中央線について概ね対称的であり、17個の行の上下に、連続して隣り合う16個、15個、12個、9個／10個および4個／6個のトランスデューサの行を備え、トランスデューサは全体で132個となっている。
30

【0105】

そうして、トランスデューサは、1つのトランスデューサの中心が、上または下の行の、あるいは同等にその右または左の列の2つのトランスデューサ間の中央ライン上に置かれる、密度の高い（三角形の）アレイとして配置されている。1行または1列あたりのトランスデューサの数は、アレイの中央に向かって増大していて、アレイは卵型になっている。

【0106】

アレイ210は、長方形の基板201に載置され、コーナーは、サイズの等しい4個の低周波数（LF）トランスデューサまたはウーファ212を載置するために残されている。低周波数トランスデューサは、約105mmの直径を有する。LFトランスデューサの中心から中心までの間取りは、200mmを超える。LFトランスデューサとHFトランスデューサとの間の中心から中心までの距離は、85mmから240mmの範囲にある。
40

【0107】

基板の全体の寸法は、長さ734mmかつ高さ434mmで、そうして、ある部類の商業的に入手可能なテレビ受信機のサイズにほぼ整合している。

【0108】

直径38mmの高周波数トランスデューサの-3dBのカットオフ周波数は、 $c/F_c = 0.86\text{m}$ のカットオフ周波数に対応して約400Hzである。したがって、サイドローブを低減するために最も近い低周波数トランスデューサ間の中間点の間取りは約0.43mに設定するのが最も良く、かつ低周波数トランスデューサ間の領域は、高周波数トラ
50

ンスデューサで密に満たされている。

【0109】

ウーファの間取りについてこの制約は、Fc未満への高周波数トランスデューサの応答曲線における低下を補償するよう適合される信号増幅を通して、カットオフ周波数を有効に低減することによって緩和される。しかしながら、この処理を通して望ましくない移相が導入され、それは「オーバードライビング」と称することができる。移相にも関わらず、全てのトランスデューサの位相は、高および低周波数トランスデューサの双方から発せられる音を方向操作するよう正確な遅延を導入するという目的で依然として制御可能なままであるべきである。したがって、以下に記述する信号処理には、例えばウーファ信号の信号経路に導入される移相または補償フィルターを含むことができる。図2Bの変形例においては、低周波数トランスデューサ212が、主アレイ210の下端に位置する線に沿って載置されている。この場合、低周波数トランスデューサは、図2Aに示されている場合よりも高い周波数（トランスデューサの間取りに関して）に音を導くようサブアレイを形成することができる。
10

【0110】

発明のさらなる変形例が図2C乃至図2Jに示されている。図2C、図2Dおよび図2Eは、発明の高さが低減されたアレイ200を示す。それれにおいて、高周波数トランスデューサ211のアレイ210は、水平方向に伸びており、アレイの高さは、幅よりもずっと小さい。各アレイは、低周波数のみのまたは広帯域（低、中および高周波数）の伝送が可能である大きな直径のトランスデューサ212によってそれぞれ水平端で終端されている。図2Cおよび2Dにおいて、それぞれ3列および2列のトランスデューサがあり、一方、図2Eは1列のトランスデューサを示す。そのような高さの低減されたアレイは、複雑ではなく、そうして図2Aおよび図2Bに示される、より大きなアレイよりも費用がかからず、かつそれらのコンパクトな形状によって、テレビ画面またはその隣（好ましくは下または上）に良好に据え置かれるものとなる。
20

【0111】

発明の不均一アレイの例が、図2F乃至図2Jに示されている。高周波数トランスデューサ211の水平な間取りは、アレイ210の長さに沿って変化し、その間取りは、アレイの両端に向けて大きくなっている。図2Fには、全て同じサイズのトランスデューサ211のアレイ210が示されており、一方、図2Gには、直径のより大きなトランスデューサ212で、端のトランスデューサが置き換えられているものが示されている。図2Hには、やはり同じサイズのトランスデューサ211が示されているが、この場合には、トランスデューサの直径が大き過ぎてそれらは直線状に配置されていない。この場合に、アレイの中心の5個のトランスデューサ213が互い違いとされていて、すなわち、それらは垂直に変位されていて、一方、それらの水平の間取りは、図2Fおよび図2Gにおけるのと同じままである。図2F乃至図2Gの配置によると、望ましくないサイドロープを生じさせることなく、高い指向性のあるサウンドビームの生成が可能であり、したがって、二重モノラルまたはサラウンド音のようなアプリケーションにおいて、とりわけ利点がある。
30

【0112】

図2Iには、不均一でありかつ垂直中央線について非対称であるトランスデューサの分離の例が示されている。この構成によると、サイドロープの低減に関して有用な普通以上の性能を達成することが見出されている。
40

【0113】

図2Jには、アレイの両端に向けてトランスデューサのサイズが増大する不均一なアレイが示されており、トランスデューサは、間取りが変化しているけれども全体を通して密に間取りされている。大きなトランスデューサは、小さなトランスデューサよりも感度が高く、効率が良いので、そのような配列によって性能は向上しそうである。図2Jに示されているトランスデューサは、図2F乃至図2Hのものと同じトランスデューサ間の間取りを有する。
50

【0114】

以下において、新規のサウンドプロジェクタの様々な部品を記述する。たいていの部品は、周知のシステムにおいて用いられているものと類似または同一であって、新規の配置に適合させることのみが必要である。

【0115】

図3Aを参照すると、入力301で、コンパクトディスク(CD)、デジタルビデオディスク(DVD)などの装置から、オーディオ源の材料が、S/PDIFフォーマットかまたは他の産業標準フォーマットの、光または同軸電気デジタルデータストリームとして、サウンドプロジェクタによって受け取られる。この入力データは、単純な2チャンネルのステレオ対か、ドルビーデジタル(登録商標)5.1またはDTS(登録商標)のような圧縮され、符号化された多チャンネルのサウンドトラックか、オーディオ情報の多重の別々のデジタルチャンネルかを収容する。10

【0116】

符号化され、および/または圧縮された多チャンネル入力はまず、標準オーディオおよびビデオフォーマットに利用可能な装置およびファームウェアを用いて、デコーダー302で復号および/または解凍される。アナログデジタル変換器(図示されない)もまた内蔵されていて、アナログ入力源への接続(AUX)が可能であり、それは、直ちに適切にサンプルされたデジタルフォーマットへと変換される。結果として得られる出力は、典型的には、3対、4対またはそれ以上の対のチャンネルを備える。サラウンド音の分野においては、これらのチャンネルはしばしば、左、右、中央、サラウンド(または後方)左およびサラウンド(または後方)右チャンネルと言及される。低周波数効果チャンネル(LFE)のような他のチャンネルも、信号中に存在してよい。20

【0117】

これらのチャンネルまたはチャンネル対は、それぞれサンプルレートコンバータ(SRC)305に送られ、それは、信号を、内部システムクロック304のクロック信号によって同期された48.8KHzおよび24ビットの量子化の内部データフローへと変換する。

【0118】

そして信号ストリームは、デジタル信号処理(DSP)ステージ306へと入り、それは、トランスデューサの特性または性能を補償し、補間し、かつ96KHzの信号ストリームへとアップサンプリングする。このDSPステージ内でまた、以下の図4を参照してより詳細に記述しているように、信号ストリームから低周波数コンテンツを取り除く整合フィルターが実現されている。30

【0119】

さらなるDSPステージ307は、全ての入力オーディオチャンネル(典型的には8つ)にアンチエイリアスおよび音質制御滤波を行い、そして全体として8倍にオーバーサンプルされたデータレートへとオーバーサンプリングおよび補間を行って、390KHzで8チャンネルの24ビットワード出力サンプルを作り出す。このDSPステージにおいてもまた、信号制限とデジタルボリューム制御が行われる。

【0120】

DSPステージには、1つ以上のデジタル信号プロセッサユニットが含まれている。これらは、商業的に入手可能なDSPを用いて実現することができる。代わりに、信号処理の一部または全ては、特定用途向けIC(ASSIC)の形で注文に応じてシリコンで実現されてもよい。

【0121】

典型的にはARM(RTM)コアに基づいて、制御ユーザーインターフェースユニット303のマイクロプロセッサーが、アレイのトランスデューサのためのタイミング遅延データを、ユーザーからリモコンまたはインターフェースとなるコンピュータ装置を介してデジタルサウンドプロジェクタに送られたリアルタイムビーム方向操作設定から計算する。代わりに、このタイミングの計算は、よりパワフルなDSPへと転送することもできる4050

。サウンドプロジェクタが、出力チャンネルの各々を独立して方向操作できる（各オーディオ入力チャンネル、典型的には4つから6つ、について1つの方向操作された出力チャンネル）とすると、別々の遅延計算が多数行われる。この数は、方向操作される出力チャンネルの数にトランスデューサの数を掛けたものに等しい。デジタルサウンドプロジェクタが、各ビームをリアルタイムで動的に方向操作することもまた可能であるならば、著しい遅延なく計算を行うことも必要となる。一旦計算が行われると、遅延要件または時間は、利用者書き込み可能ゲートアレイ（FPGA）308に配達され、ここで遅延が、高速静的バッファRAMバッファ309を用いて実際に加えられて、8つのチャンネルの各々のデジタルオーディオデータサンプルに加えられる必要な遅延を生成し、各チャンネルの別々に遅延されているバージョンが、出力トランスデューサの各々（図2Aの実施例においては132個）について生成されている。代わりに、この遅延機能は、ASIC内により費用効果的に実行することもできる。制御ユーザーインターフェース303におけるARMコアもまた、全てのシステム初期化および外部との通信を取り扱う。

10

【0122】

信号ストリームが、高速静的バッファRAM装置309を制御するFPGAロジックに入る。

【0123】

そして、周知の装置において、24ビット幅かつ390KHzの132個の信号が各々、DSPステージのFPGA308においてもまた実現されている量子化／ノイズシェーピング回路を通され、データサンプルワード長を390KHzで8ビットに低減し、一方で、ノイズシェーピング技法を用いて、可聴帯（すなわち～20Hzから～20KHzまでの信号周波数帯）内の高い信号対ノイズ比（SNR）を維持する。このステージで、所望のウインドウ関数によってトランスデューサ出力の各々に重みを加えることがさらに可能である。

20

【0124】

サンプルワード幅の低減されたデータストリームが、各々31.25Mb/sで、追加のボリュームレベルデータを収容する13の直列データストリームに分配される。各データストリームは、13のドライバ基板の1つに割り当てられる。さらに4つの信号ストリームが、低周波数トランスデューサのドライバに割り当てられる。

30

【0125】

図3Bに示されるように、ドライバ回路基板は、好ましくは、それらが駆動するトランスデューサ313に物理的に近く、それらが制御するトランスデューサの各々に、パルス幅変調クラスB D出力ドライバ回路を提供する。他のパワー増幅器もまた適用可能である。

【0126】

ドライバ回路への供給源圧は、クラスDパワースイッチとして同じ印刷回路基板（PCB）に載置される低損失スイッチングレギュレータ311によって変えられる。パワー供給線相互変調を最小限にするために、各クラスDスイッチについて1つのスイッチングレギュレータがある。費用を低減するために、各スイッチングレギュレータを、2つ、3つ、4つまたはその他の整数倍のクラスDパワースイッチへの供給に用いることができる。

40

【0127】

いずれの低周波数または広帯域トランスデューサも、それを多数のトランスデューサ313の中に含め、それに遅延信号を提供することによって方向操作の可能なアレイの一部とすることができます。遅延は、FPGA308のいずれかのアレイトランスデューサで行うのと同じように計算される。そのように変更すると、LFトランスデューサを、方向操作される音のビームに貢献させるか、主アレイから独立するサブアレイとして制御できるかする。

【0128】

低周波数コンテンツは、全ての入力チャンネルから濾波されて、4つの低周波数トランスデューサによって発せられるべき信号ストリームを形成するように加えられる。図4の

50

基本的な図には、サウンドプロジェクト内の交差する、もしくは整合するフィルター部品が示されている。多チャンネルオーディオ信号は、左L、右Rおよび中央Cチャンネル、サラウンドチャンネルSC（サラウンドまたは左後、サラウンドまたは右後等）および低周波数効果チャンネルLFEを含む様々なオーディオチャンネル信号に分離される、符号化されたデジタルビットストリームとして到着することが想定されている。

【0129】

そして、復号された信号が、交差システム410への入力を形成する。図3に示されるように、n個のサラウンドチャンネルおよびL、R、Cチャンネルは、適切な利得調整411の後、双方ともハイパスおよびローパスフィルタ412、413を用いて帯域分割され、それらの低周波数コンテントは、LFE信号と一緒に低周波数チャンネルに加えられて、究極的には、低周波数ウーファの出力が左および右にそれぞれ組み合わせられる左および右低周波数またはウーファチャンネルWL、WRを通して発せられる。
10

【0130】

図4に示される整合フィルターまたは交差システム410は、前述のサウンドプロジェクトのデジタル信号処理ユニットの小区分として好都合に実現される。

【0131】

全てのオーディオ周波数（例えば、70Hzから20KHzまで）が、高周波数トランステューサと同様にウーファにも供給されるならば、結果として望ましくない格子サイドロープが幾分加わって生じてしまい、（ウーファと高周波数トランステューサとの間の中心から中心までの240mmの最長のギャップにより）～1.3KHzの周波数で現れ始め、ギャップのサイズの範囲のために、～1.3KHzと～3.8KHzとの間の周波数で振幅がより広くかつより強くなる。
20

【0132】

ローパス整合フィルターをウーファと直列に設定して、それが、およそ1.3KHzで振幅を低減し始め、およそ3.8KHzでほぼ完全にカットオフする（すなわち～20dBまたはそれ以上減衰させる）ようにすることで、アレイのサイズを幾分有益で効果的に増大でき（ウーファを加えた度合いによる）、それと相まって、同じ理由で放射されたビーム幅が関連して低減することおよび、追加して生成される格子ロープを振幅の小さなものに保つことができる（例えば、主ビームよりも～～20dB）ということがモデリングおよび経験によって見出されている。
30

【0133】

低周波数トランステューサまたはウーファに送られる信号の絶対振幅値は、各高周波数トランステューサに送られる信号レベルよりも、対応して大きく、放射された局所の音響パワー密度（パネル201の平面において）は、主トランステューサアレイの局所的な広がりとしてウーファが用いられているオーディオ帯域の部分においてほぼ一定であり、それは、この例において[～300から400Hz]から[1KHzから1.3KHz]の範囲であり、HFトランステューサよりも大きな放射領域を有するウーファは、結果として、HFトランステューサの各々よりも大きな音響パワーを放射することが必要で、その2つのタイプのトランステューサの相対的な感度は、この条件を満足するときに考慮する必要がある、かつそれらのパワー取り扱い能力をもまた観察する必要がある。
40

【0134】

やはり、この例においては、[～300から400Hz]未満のオーディオ帯域において、低周波数パワーの実質的に全てがウーファへと送られる（かつMF/HFトランステューサにはほとんどまたは全く送られない）。～1KHzと～4KHzとの間の移行領域においては、LPフィルターは、連続して弱くなっていくパワーで、アレイの格子サイドロープ性能にほとんど影響を与えないその帯域で、ビームの縮り（ビーム幅の減少）を有益に向上する周波数をますます増やして混ぜ合わせる。

【0135】

図4のフィルターはまた、入力信号からの左前および右前のチャンネルを濾波して、それを低周波数または広帯域トランステューサに排他的または非排他的に向けるのにも用い
50

ることができる。

【0136】

前述のシステムは、例えば上で参照した国際特許出願WO01/23104およびWO02/078388に記述されているような、周知のより大きなアレイによって生成されるものを、ある観点においては凌ぐ質の、音のビームを発することが可能である。図5には、図1に示されるように配列される周知の256個のトランスデューサアレイによって生成されるサウンドビームの強度プロフィールを、図2Aに例示されるような発明のアレイによって生成されるビームと比べるシミュレーションされた輪郭図が示されている。ビームは300Hzの周波数を有しており、アレイの前方に真っ直ぐに向けられ、そしてビームの中心の方向は図の中心である。図の軸は、水平および垂直に角度をなしている（すなわち、-90度から+90度まであって中央で0度である）。

10

【0137】

図5Aの輪郭図には、音エネルギーを低下（例えば、-3dB）させる第一の輪郭線51が示されている。ビーム幅は、輪郭線51の2つの部分の間の距離に比例する。図5Bにおいて、4つの低周波数トランスデューサを利用して、図2Aに示されるようなアレイによってビームが生成される。第一の輪郭線51は、目に見えるものではなく、図5Aに示されているよりも広いビームを示している。図5Cにおいて、コーナーの4つの低周波数トランスデューサは、主アレイのトランスデューサの駆動信号に対して、強度／振幅10の信号によって駆動される。輪郭線51の2つの枝がここで再度目に見えるものとなり、ビームを狭める上で、低周波数トランスデューサを追加するのに有益な効果があることを例示している。

20

【0138】

二頭矢印52は、図5Cの輪郭線51の間の距離を示し、他の図においても同じ長さの矢印が示されていて、例示される場合の間で比較できるようになっている。図5Dにおいて、コーナーの4つの低周波数トランスデューサは、主アレイのトランスデューサの駆動信号に対して、強度32の信号で駆動され、アレイの双方の部分の出力をほぼ同じにしている。輪郭線51の双方の枝は再度一緒に近づき合い、より低い次の輪郭線もまた現れて、さらにビームが狭くなっていくことを示す。図5Eにおいて、コーナーの4つの低周波数トランスデューサは、主アレイのトランスデューサの駆動信号に対して、強度100の信号によって駆動される。追加の輪郭線によって示されるように、ビームの鮮明さはさらに向上している。

30

【0139】

ビームの質（締りと望ましくないサイドロープの低減）は、トランスデューサ間の不規則な間取りを用い、そして隣り合うトランスデューサの間の距離を変えるか、発せられる信号の周波数に依存してアレイサイズを（そしてそれによって音を発しているトランスデューサの数も）限定する信号経路にウインドウ関数を導入するかして、さらに向上される。

【0140】

不均一な間取りおよびウインドウ化の効果が、図6A乃至図6Gに示されており、それら全ては、25個のトランスデューサを備える1m長のラインアレイに関する。各図の上には、1列の中実円が示されており、トランスデューサのレイアウトと間取り（円のサイズは正しく縮尺されていない）を示している。各図の下にあるのは、角度に対してdBで計算される音圧レベル(SPL)の図であって、零度がサウンドプロジェクタ平面に垂直な順方向である。

40

【0141】

図6Aおよび図6Bには、アポディゼーション（ウインドウ化）を備えていない、および備えている、均一なアレイがそれぞれ示されている。10kHzのサウンドビームは、右55度に方向操作され、結果として右側にピーク61を生じている。この周波数では、完全な振幅のサイドロープ62、63が0度および-50度で発生する。ウインドウ化がなければ、図6Aにおいて、主ビームは多重の開口ロープ64の「裾」を有する。図6B

50

においては、発明によるコサインウインドウアポディゼーションが適用されていて、「裾」は消失している。これはビームの締りを向上させている。

【0142】

図6Cおよび図6Dには、均一および不均一なトランスデューサの間取りを備えるアレイがそれぞれ示されている。4.5kHzのビームが、ハニングウインドウアポディゼーションで右55度に方向操作されている。均一なアレイにおいて、図6Cでは、55度の主ビーム61は、-70度に充分なパワーのサイドローブ62を有する。発明による不均一なトランスデューサの間取りでは、図6Dにおいて、完全パワーのサイドローブが不明瞭となっていて、振幅がずっと低減されている一連のサイドローブ65を生成している。これらは、メインビームよりも17dBを超えるだけ低いところ全てにある。そのようなサイドローブは、リスナーがほとんど検知できないので、この配置によって、より向上した音場が、例えば、ステレオ、サラウンド音または「二重のモノラル」のアプリケーションにおいて生成される。10

【0143】

図6Eおよび図6Fにはさらに、「二重モノラル」アプリケーションについて不均一なアレイの利点が示されており、ここで二人のリスナーが二つの異なるオーディオプログラムを聞いている。前述のように、主ビーム(7.8kHz、ハニングウインドウ)が、この場合は30度で、右に方向操作され、ここにおそらく第一のリスナーが座っている。均一なトランスデューサの間取りがある、図6Eでは、主ビーム61に加えて完全パワーのサイドローブ62がある。サイドローブ62は30度左の方向にあって、それは第二のリスナーが座っていそうなところである。第二のリスナーが第二の、異なるオーディオプログラム(それは、30度左に方向操作される第二のサウンドビームとしてサウンドプロジェクタが生成することのできる)を聞いているならば、それらは第一のリスナーのプログラムからの大きなサイドローブによって大いにかき乱されるであろう。反対に、不均一なアレイでは、図6Fにおいて、充分なパワー(0dB)のサイドローブが無く、30度左の第二のリスナーの位置で、サイドローブ66は主ビームと比べて17dB低下している。これは、とりわけ第二のリスナーが自分のオーディオプログラムを聞いているならば、ほとんど聞こえない。20

【0144】

図6Gには、20Hzから20kHzまでの全ての周波数にわたって別々に積分された信号67(実線)とノイズ68(点線)とが示されている。アレイは、 $R = 0.73$ の幾何学的に間取りされた不均一アレイである。主ビーム61は30度右に方向操作される。ノイズレベル68は、主ビームにおいて(図6Gにおいて0dBで示される)ピーク信号レベルよりも13dBを超えるだけ低ければ至るところにある。したがって、このトランスデューサの配置によって、可聴スペクトル全体を通して良好に音が局地化される。30

【0145】

ここで図7を参照すると、サラウンド音システムとして用いられるときのサウンドプロジェクタ70が示されている。それには、小さな、大多数のトランスデューサ711と、より大きな、4つの低周波数トランスデューサ712とを備えるトランスデューサのアレイまたはスピーカー71が含まれている。そのシステムは、オーディオ入力信号が音のビーム72-1、72-2として発せられるように制御される。40

【0146】

音のビーム72-1、72-2は、アレイの前方における半分の空間内で任意の方向に - 制限内で - 向けることができる。注意深く選択された反射経路を用いることで、リスナー73は、アレイによって発せられるサウンドビームを、あたかもその最後の反射の場所から、またはより詳しくは、壁によって反射されるような、ミラー映像と似ていなくもないアレイの映像から生じているかのように認識する。

【0147】

図7において、2つのサウンドビーム72-1および72-2が示されている。第一のビーム72-1は、部屋の一部である側壁761に向かられて、リスナー73の方向に反50

射される。リスナーは、このビームを、反射スポット77の後方か前方に位置するアレイのイメージから、そうすると右から、生じているかのように認識する。第二のビーム72-2は、点線で示されていて、リスナー73に到達する前に2回反射を行う。しかしながら、最後の反射が後方のコーナーで起こると、リスナーはその音があたかも自分の後方にある源から発せられているかのように認識する。

【0148】

ここで図8を参照すると、二重モノラルモードで用いられているときの発明のサウンドプロジェクタ80が示されている。サウンドプロジェクタ80は、垂直に載置された（明快にするため図8に斜視図で示されている）テレビ受信機81、例えば、フラット画面LCDテレビの下に置かれている。テレビ81は、多重ウインドウモードで動作しており、第一のプログラム、ビデオ1（V1）を画面の左半分82に、そして第二のプログラムV2を画面の右半分83に示している。プログラムは、テレビ81の前に位置しているソファ86に着席していることが示されている二人の人84および85が見ている。プログラムV1に対応するオーディオトラックA1がサウンドプロジェクタによって再生され、結果として得られるサウンドビーム87が、ソファ86の左端に座っている人84の方向に操作される。実線871は、ビーム87の限界を描写している。同様に、プログラムV2に対応するオーディオトラックA2が、ソファ86の右端に座っている第二の人85に向けられるサウンドビーム88として再生される。点線881は、ビーム88の限界を描写している。双方のビーム87、88は、リスナーの位置84、85の近くに焦点を合わせていることが示されている。ソファ86の位置で2つのサウンドビームは重ならない。そうすると、左の人84には、左の画像V1に対応する左のオーディオトラックA1のみが聞こえ、同様に右の人85には右の画像V2に対応する右のオーディオトラックA2のみが聞こえる。

【0149】

図示されているサウンドプロジェクタ80は、横一列の、不均一に間取りされたHFトランスデューサ90と、各端のLFウーファ91とを備える発明の実施例である。この配置では、充分なパワーのサイドロープが形成されず、いずれのリスナー84、85も、他方のリスナーのプログラムからの高振幅音によって邪魔されることはない。本質的に、リスナー84、85にそれぞれ向けられた主オーディオビーム87および88で伝播される、自分たちが見ているプログラムからのオーディオコンテンツしか、各リスナーには聞こえない。

【0150】

発明の範囲内で他の配置が可能であることは明らかである。例えば、リスナーは別々に座っているかもしれない、一人は他方よりもよりテレビに近いとか、両者が異なる高さにいて、例えば一人が座っていて他方が床に寝ていたり立ったりしているかもしれない。前述において、各リスナーは、1つのオーディオビームまたは「モノラル」音しか受け取らない。2つのオーディオビームを、各リスナーが見ているプログラムのステレオ左およびステレオ右信号に対応して、それぞれに向けることも等しく可能である。この場合、ステレオ左ビームはリスナーの位置の左のみに向けられており、ステレオ右ビームはその右にのみ向けられている。同様に、各リスナーは、自分たちが見ているプログラムに対応する後方サウンドビームを受け取ることができる。さらには、上では二人のリスナーの配置が記述されているが、サウンドプロジェクタがリスニング領域のまわりに位置している三人以上のリスナーに対して独立したオーディオビームを提供することも直ちに可能となる。最後に、図8においては、サウンドプロジェクタ80がテレビ81とは別に示されている。そうではなく、それをテレビ81内に内蔵して結合オーディオ・ビジュアルディスプレイユニットを形成することもできる。

【0151】

サウンドプロジェクタを置くことのできる用法が多々ある一方で、別々のスピーカーをリスナー位置の周りの異なる場所にいくつか置いて使用する通常のサラウンド音システムと置き換えられることが、特に好都合である。デジタルサウンドプロジェクタは、サラウ

10

20

30

40

50

ンド音オーディオ信号の各チャンネルについてビームを生成し、かつこれらのビームを適切な方向に操作することによって、さらにスピーカーを設けることなく、または配線を追加することもなくリスナーの位置に真のサラウンド音を作り出す。

【図面の簡単な説明】

【0 1 5 2】

【図 1】周知のトランスデューサアレイシステムの正面を示す。

【図 2 A】本発明の変形例によるトランスデューサアレイシステムの正面を示す。

【図 2 B】本発明の変形例によるトランスデューサアレイシステムの正面を示す。

【図 2 C】本発明の変形例によるトランスデューサアレイシステムの正面を示す。

【図 2 D】本発明の変形例によるトランスデューサアレイシステムの正面を示す。

【図 2 E】本発明の変形例によるトランスデューサアレイシステムの正面を示す。

【図 2 F】本発明の変形例によるトランスデューサアレイシステムの正面を示す。

【図 2 G】本発明の変形例によるトランスデューサアレイシステムの正面を示す。

【図 2 H】本発明の変形例によるトランスデューサアレイシステムの正面を示す。

【図 2 I】本発明の変形例によるトランスデューサアレイシステムの正面を示す。

【図 2 J】本発明の変形例によるトランスデューサアレイシステムの正面を示す。

【図 3 A】トランスデューサアレイシステムの主機能素子のブロック図である。

【図 3 B】トランスデューサアレイシステムの駆動セクション素子のブロック図である。

【図 4】トランスデューサアレイシステムのクロスオーバーシステムである。

【図 5】図 1 の周知のサウンドビームスピーカーシステムと図 2 A の新規のサウンドビームシステムとの、シミュレーションしたビーム質の比較である。

【図 6 A】ウインドウ関数と不均一なトランスデューサの間取りとを用いて達成可能な効果を示すグラフである。

【図 6 B】ウインドウ関数と不均一なトランスデューサの間取りとを用いて達成可能な効果を示すグラフである。

【図 6 C】ウインドウ関数と不均一なトランスデューサの間取りとを用いて達成可能な効果を示すグラフである。

【図 6 D】ウインドウ関数と不均一なトランスデューサの間取りとを用いて達成可能な効果を示すグラフである。

【図 6 E】ウインドウ関数と不均一なトランスデューサの間取りとを用いて達成可能な効果を示すグラフである。

【図 6 F】ウインドウ関数と不均一なトランスデューサの間取りとを用いて達成可能な効果を示すグラフである。

【図 6 G】ウインドウ関数と不均一なトランスデューサの間取りとを用いて達成可能な効果を示すグラフである。

【図 7】本発明によるシステムの使用を例示する。

【図 8】異なるオーディオ信号を異なるユーザーに提供するサウンドプロジェクタの上面図である。

【図1】

Fig.2B.

Fig.2A.

Fig.2G.

Fig.2D.

Fig.2H.

Fig.2E.

Fig.2I.

Fig.2F.

Fig.2J.

【図3A】

【図3B】

【図4】

Fig.6A.

Fig.6B.

Fig.6E.

Fig.6F.

Fig.6C.

Fig.6D

Fig.6G.

【図7】

Fig.7.

【図8】

Fig.8.

【国際調査報告】

INTERNATIONAL SEARCH REPORT

Int'l Application No.
PCT/GB2004/000750

A. CLASSIFICATION OF SUBJECT MATTER			
IPC 7 H04R1/40 H04R3/12 H04R5/02 H04N5/64			
According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED			
Minimum documentation searched (classification system followed by classification symbols) IPC 7 H04R H04N			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
Electronic data base consulted during the International search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
X	WO 02/078388 A (BIENEK IRVING ALEXANDER; RYAN DAMON THOMAS (GB); TROUGHTON PAUL TH) 3 October 2002 (2002-10-03) cited in the application the whole document	1, 3-6, 10-15, 18-21, 24-26, 30-33, 41-43, 49-52	
A	TROUGHTON, PAUL: "Convenient Multi-Channel Sound In the Home" 17TH AUDIO ENGINEERING SOCIETY UK CONFERENCE, 2002, pages 102-105, XP009031251 page 102, left-hand column page 104, left-hand column - page 105, left-hand column ----- -/-	1, 2, 34-36, 44	
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C.		<input checked="" type="checkbox"/> Patent family members are listed in annex.	
<p>* Special categories of cited documents :</p> <p>"A" document defining the general state of the art which is not considered to be of particular relevance</p> <p>"E" earlier document but published on or after the International filing date</p> <p>"L" document which may throw doubt on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</p> <p>"O" document referring to an oral disclosure, use, exhibition or other means</p> <p>"P" document published prior to the International filing date but later than the priority date claimed</p> <p>"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</p> <p>"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</p> <p>"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art</p> <p>"Z" document member of the same patent family</p>			
Date of the actual completion of the International search	Date of mailing of the International search report		
15 July 2004	22.07.2004		
Name and mailing address of the ISA European Patent Office, P.O. 5818 Patentzaan 2 NL - 2280 HV Rijswijk Tel: (+31-70) 340-2040, Tx: 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Gerken, S		

INTERNATIONAL SEARCH REPORT

Int'l	Application No
PCT/GB2004/000750	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 4 984 273 A (AYLWARD J RICHARD ET AL) 8 January 1991 (1991-01-08) abstract column 3, line 61 - column 4, line 29; figure 3	1,2, 34-36,44
P,X	WO 03/034780 A (1 LTD ;HOOLEY ANTHONY (GB); GOUDIE ANGUS GAVIN (GB); THROUGHTON PA) 24 April 2003 (2003-04-24) cited in the application abstract page 17, line 1 - page 18, line 28 page 20, line 24 - page 22, line 24; figures 88,9A,9B,10	1,10,11
P,X	WO 03/071827 A (BIENEK IRVING ALEXANDER ; SHEPHERD MARK RICHARD (GB); TROUGHTON PAUL T) 28 August 2003 (2003-08-28) abstract page 4, line 11 - page 6, line 8 page 7, line 15 - line 16; figure 1	27-29
A	US 5 751 821 A (SMITH DAVID L) 12 May 1998 (1998-05-12) column 3, line 38 - line 50 column 7, line 1 - line 21; figures 7,8	27

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/GB2004/000750**Box II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)**

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

1-6, 10-15, 18-21, 24-36, 41-44, 49-52

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
- No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 1-6,10-15,18-21,24-26,30-36,41-44,49-52

A loudspeaker system including an array for generating beams of sound comprises first transducers and low-frequency transducers, wherein the low-frequency content of signals to be emitted by the first transducers is added to signals to be emitted by the low frequency transducers. Problem: To allow optimisation of the first transducers for high frequency reproduction and costs, cf. page 4, 3rd and 4th para. and page 9, 3rd para.

2. claims: 7,45-48

A first audio program is beamed to a first listener position and a second audio program is beamed to a second listener position. Problem: To allow to listen to distinct sound channels corresponding to distinct TV programs which are visible on a split-screen or a multiple window TV set, cf. page 8 5th para.

3. claims: 8,9,37-40

A loudspeaker comprises a plurality of transducers arranged in an array formation wherein the spacing between adjacent transducers increases towards the ends of the array. Problem: To allow reduction in side-lobe power, cf. page 9, 6th para.

4. claims: 16,17

The mid-point spacing of closest neighbouring first transducers is equal to or smaller than half the wavelength corresponding to the lowest acoustic resonance frequency of the first transducers. Problem: To reduce sidelobes, cf. page 7, 1st para. and p.26, 4th para.

5. claims: 22,23

The array has a generally elliptical shape. Problem: To allow reduction of the number of transducers required to generate steerable beams, cf. page 4, para. 5.

6. claims: 27-29

FURTHER INFORMATION CONTINUED FROM PCT/SA/ 210

The number of first transducers is more than two times the number of low-frequency transducers. Problem: To optimise costs while maintaining a satisfactory coverage of the whole audible frequency range, cf. page 15, 4th para.

7. claim: 53

One or more high frequency transducers located at or close to the centre of the array are replaced by wideband transducers capable of substantially reproducing low frequencies. Problem: To allow reproduction of a center channel of a surround sound signal in a simple manner, cf. page 5th para.

INTERNATIONAL SEARCH REPORT

Int'l Application No PCT/US2004/000750	Patent family member(s)	Publication date
Patent document cited in search report	Publication date	
WO 02078388 A 03-10-2002	GB 2373956 A EP 1402755 A2 WO 02078388 A2 GB 2376595 A , B WO 03059005 A2	02-10-2002 31-03-2004 03-10-2002 18-12-2002 17-07-2003
US 4984273 A 08-01-1991	AT 130723 T CA 2023838 A1 DE 69023722 D1 DE 69023722 T2 EP 0415779 A2 JP 2894812 B2 JP 3093400 A CA 1301074 C EP 0370619 A2 JP 2200100 A US 5027403 A	15-12-1995 01-03-1991 04-01-1996 18-04-1996 06-03-1991 24-05-1999 18-04-1991 19-05-1992 30-05-1990 08-08-1990 25-06-1991
WO 03034780 A 24-04-2003	EP 1437028 A2 WO 03034780 A2	14-07-2004 24-04-2003
WO 03071827 A 28-08-2003	WO 03071827 A2	28-08-2003
US 5751821 A 12-05-1998	NONE	

フロントページの続き

(81)指定国 AP(BW,GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HU,IE,IT,LU,MC,NL,PT,RO,SE,SI,SK,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BW,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,NA,NI,NO,NZ,OM,PG,PH,PL,PT,RO,RU,SC,SD,SE,SG,SK,SL,SY,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VC,VN,YU,ZA,ZM,ZW

(72)発明者 フーリー、アンソニー

イギリス国、ケンブリッジ、 デ フレヴィル アベニュー 79

(72)発明者 レネル、アースラ、ルース

イギリス国、ケンブリッジ、 ヴィクトリア パーク 52

(72)発明者 ゴーディー、アンガス、ガヴィン

イギリス国、ケンブリッジ、 カンタベリー クロース 2

(72)発明者 シェパード、マーク、リチャード

イギリス国、ハーツ、ロイストン、メルドレス、 ハイ ストリート 124、クレア ハウス

(72)発明者 ビーネク、アーヴィング、アレクサンダー

イギリス国、ケンブリッジ、バドミントン クロース 26

F ターム(参考) 5D018 AC01 AF22

5D020 AC07 AD01

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第7部門第3区分

【発行日】平成19年3月1日(2007.3.1)

【公表番号】特表2006-518956(P2006-518956A)

【公表日】平成18年8月17日(2006.8.17)

【年通号数】公開・登録公報2006-032

【出願番号】特願2006-502322(P2006-502322)

【国際特許分類】

H 04 R 1/40 (2006.01)

H 04 R 3/00 (2006.01)

H 04 R 3/12 (2006.01)

【F I】

H 04 R 1/40 3 1 0

H 04 R 3/00 3 1 0

H 04 R 3/12 Z

【手続補正書】

【提出日】平成19年1月10日(2007.1.10)

【手続補正1】

【補正対象書類名】特許請求の範囲

【補正対象項目名】全文

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】

少なくとも2つの音のビームを同時に生成することが可能で、前記ビームのうち少なくとも1つの方向操作が可能な第一の電気音響トランスデューサを備えるアレイと、

前記アレイの周囲近くに位置する低周波数音を再生するよう構成されている低周波数トランスデューサと、

第一のトランスデューサによって発せられるべき信号から低周波数コンテンツを濾波し、前記低周波数コンテンツを低周波数トランスデューサによって発せられるべき信号に加えるフィルターシステムと、を具備するスピーカーシステム。

【請求項2】

低周波数トランスデューサが、第一のトランスデューサの周波数範囲を実質的に含む周波数範囲で信号を発するよう構成されている広帯域トランスデューサであって、かつビームを方向操作するアレイの一部である請求項1に記載のシステム。

【請求項3】

アレイの左右の側の近くに、単独で、または第一のトランスデューサと密接に隣り合って置かれる低周波数トランスデューサが、左右のチャンネルをそれぞれ出力するように、システムが配置されている請求項1または2に記載のシステム。

【請求項4】

低周波数トランスデューサが、第一のトランスデューサの周波数範囲を実質的に含む周波数範囲で信号を発するよう構成されている広帯域トランスデューサであり、かつアレイの左右の側の近くに単独で置かれる低周波数トランスデューサが、左右のチャンネルをそれぞれ出力するようにシステムが配置されている前記請求項のいずれかに記載のシステム。

【請求項5】

少なくとも2つのビームが、サラウンド音信号のチャンネルである前記請求項のいずれかに記載のシステム。

【請求項 6】

少なくとも 2 つのビームが、2 つ以上の異なるオーディオ信号であって、アレイに対し異なる位置にいるリスナーが、前記異なるオーディオ信号の 1 つだけをそれぞれ支配的に受け取る前記請求項のいずれかに記載のシステム。

【請求項 7】

隣接する第一のトランスデューサの間の間取りが不均一である前記請求項のいずれかに記載のシステム。

【請求項 8】

第一のトランスデューサの間の平均スペーシングがアレイの周囲に向けて増大している請求項7に記載のシステム。

【請求項 9】

各トランスデューサについての出力信号の振幅がウインドウ関数に従って変調される前記請求項のいずれかに記載のシステム。

【請求項 10】

ウインドウ関数がアレイの周囲に向けて次第に先細りする請求項9に記載のシステム。

【請求項 11】

低周波数トランスデューサの数が 1 と 20 の間の範囲にある前記請求項のいずれかに記載のシステム。

【請求項 12】

低周波数トランスデューサの数が 1 と 10 の間の範囲にある請求項11に記載のシステム。

【請求項 13】

低周波数トランスデューサの数が 1 から 4 の範囲にある請求項12に記載のシステム。

【請求項 14】

低周波数トランスデューサの数が 1 から 2 の範囲にある請求項13に記載のシステム。

【請求項 15】

密接に隣り合う第一のトランスデューサの中間点の間取りが、第一のトランスデューサの最も低い音響共振周波数に対応する波長の半分に等しいかそれよりも小さい前記請求項のいずれかに記載のシステム。

【請求項 16】

第一のトランスデューサのアレイが、低周波数トランスデューサ間の領域に密に詰められている請求項15に記載のシステム。

【請求項 17】

トランスデューサにおいて発生する移相を補償する移相回路または補償回路がさらに含まれている前記請求項のいずれかに記載のシステム。

【請求項 18】

アレイには、第一のトランスデューサの、水平に向けられた 1 列、2 列または 3 列のラインが含まれている前記請求項のいずれかに記載のシステム。

【請求項 19】

低周波数トランスデューサが、前記水平に向けられたラインの端またはその近くに置かれている請求項18に記載のシステム。

【請求項 20】

アレイには、第一のトランスデューサが垂直方向で互い違いに配置される中央区域が含まれている前記請求項のいずれかに記載のシステム。

【請求項 21】

アレイが概して橢円形を有する前記請求項のいずれかに記載のシステム。

【請求項 22】

低周波数トランスデューサが、橢円形のアレイに外接する長方形のコーナーまたはその近くに位置付けられている請求項21に記載のシステム。

【請求項 23】

第一のトランスデューサの数が 200 未満である前記請求項のいずれかに記載のシステム。

【請求項 24】

第一のトランスデューサの数が 50 未満である請求項 23 に記載のシステム。

【請求項 25】

第一のトランスデューサの数が 5 より大きい前記請求項のいずれかに記載のシステム。

【請求項 26】

第一のトランスデューサの数が低周波数トランスデューサの数の 2 倍より大きい前記請求項のいずれかに記載のシステム。

【請求項 27】

第一のトランスデューサの数が低周波数トランスデューサの数の 4 倍より大きい前記請求項のいずれかに記載のシステム。

【請求項 28】

第一のトランスデューサの数が低周波数トランスデューサの数の 10 倍より大きい前記請求項のいずれかに記載のシステム。

【請求項 29】

音の複製信号を遅延させ、かつ前記アレイの、少なくとも前記第一のトランスデューサを用いて遅延された複製信号を出力することによって、前記少なくとも 1 つのビームの方向操作が可能である前記請求項のいずれかに記載のシステム。

【請求項 30】

ビデオ情報を表示するシステムおよび前記請求項のいずれかによるオーディオシステムが含まれているメディアシステム。

【請求項 31】

ビデオ情報を表示するシステムがテレビシステムである請求項 30 に記載のメディアシステム。

【請求項 32】

ビデオおよびオーディオ信号の入力を提供するメディアプレーヤーと、前記ビデオ情報を表示するモニターと、独立して方向操作の可能な少なくとも 2 つの音のビームを再生する請求項 1 に記載のスピーカーシステムとを備える請求項 30 に記載のメディアシステム。

【請求項 33】

少なくとも 2 つの音のビームを同時に生成することが可能で、前記ビームのうち少なくとも 1 つが方向操作の可能である電気音響トランスデューサのアレイを含んでいるスピーカーシステムであって、前記トランスデューサの第一の組は、低周波数音を出すことが実質的に不可能である高周波数トランスデューサであり、前記トランスデューサの第二の組は、低周波数音を出すことが可能な低周波数または広帯域トランスデューサであり、前記システムは、高周波数トランスデューサによって発せられるように前もって定めている信号から低周波数コンテンツを濾波し、かつ前記低周波数コンテンツを、低周波数トランスデューサによって発せられるように前もって定めている信号に加えるフィルターシステムを含んでいるスピーカーシステム。

【請求項 34】

前記アレイは、ラインアレイである請求項 33 に記載のシステム。

【請求項 35】

前記トランスデューサの第二の組は、ラインアレイの両端に置かれている請求項 34 に記載のシステム。

【請求項 36】

ラインアレイ形状に配置される複数のトランスデューサを備え、トランスデューサ間の平均 スペーシング がアレイの両端に向かって増大しているスピーカーシステム。

【請求項 37】

前記トランスデューサが、低周波数音を発することが実質的に不可能な高周波数トラン

ステューサである請求項3_6に記載のシステム。

【請求項 3_8】

低周波数または広帯域トランスデューサをアレイの両端にさらに備える請求項3_6または3_7に記載のシステム。

【請求項 3_9】

アレイが、水平に向けられた1列、2列または3列のトランスデューサのラインからなる請求項3_3乃至3_8のいずれかに記載のシステム。

【請求項 4_0】

アレイの幅が、アレイの高さの少なくとも2倍である前記請求項のいずれかに記載のシステム。

【請求項 4_1】

アレイの幅が、アレイの高さの少なくとも4倍である前記請求項のいずれかに記載のシステム。

【請求項 4_2】

アレイの幅が、アレイの高さの少なくとも8倍である前記請求項のいずれかに記載のシステム。

【請求項 4_3】

電気音響トランスデューサのアレイを用いて音のビームを生成する方法であって、
高周波数トランスデューサに向かう信号を濾波して低周波数コンテンツを取り除き、
前記低周波数コンテンツを、低周波数トランスデューサに向かう信号に加える
ステップを備える方法。

【請求項 4_4】

アレイを用いて2つの音のビームを2人のリスナーにそれぞれ生成する方法であって、
第一のオーディオプログラムのビームを第一の聞き取り位置に送り、
第二のオーディオプログラムのビームを第二の、異なる聞き取り位置に送る
ステップを備える方法。

【請求項 4_5】

前記アレイが水平に配列されているラインアレイである請求項4_4に記載の方法。

【請求項 4_6】

前記ラインアレイが、アレイの両端に向かって増大する平均スペーシングを有している
トランスデューサを備える請求項4_5に記載の方法。

【請求項 4_7】

さらなるオーディオプログラムをさらなる聞き取り位置にそれぞれ送る
ステップをさらに備える請求項4_6に記載の方法。

【請求項 4_8】

前記第一のまたは高周波数トランスデューサは50mm未満の直径を有する前記請求項
のいずれかに記載のシステムまたは方法。

【請求項 4_9】

前記低周波数トランスデューサは50mmより大きな直径を有する前記請求項のいずれ
かに記載のシステムまたは方法。

【請求項 5_0】

前記低周波数トランスデューサは100mmより大きな直径を有する前記請求項のいず
れかに記載のシステムまたは方法。

【請求項 5_1】

前記低周波数トランスデューサは、前記第一のまたは高周波数トランスデューサの直径
の少なくとも2倍大きな直径を有する前記請求項のいずれかに記載のシステムまたは方法
。

【請求項 5_2】

アレイの中心またはその近くに置かれている前記第一のまたは高周波数トランスデュ
ーサの1つ以上が、低周波数を実質的に再生することが可能な広帯域トランスデューサと置

き換えられている前記請求項のいずれかに記載のシステムまたは方法。