Datu statiskā apstrāde konspekts

Jānis Erdmanis

2013. gada 22. janvāris

Varbūtība

- Novērtējums notikumam notikt pie atbiltošiem apstākliem
- Raksturo skaitlis robežās [0,1]
- Simetriskiem notikumiem jeb A un \bar{A} , ja abi ir izslēdzoši varbūtība novērtējama kā 0.5
- Tiek novērtēta ar frekvences definīciju $P(A) = \lim \frac{n}{N}$
 - Nevar nodrošināt bezg. skaitu eksperimentu
- Varbūtības aksiomas
 - -P(A) >= 0
 - Notikt jebkuram notikumam P(E) = 1
 - Ja notikumi ir savstarpēji izslēdzoši P(A+B) = P(A) + P(B)
- Nosacījuma varbūtība P(A|B) = P(A)P(B|A)
- Varbūtība notikt notikumam A ar īpašību B jeb varbūtību summa zinot varbūtības notikt A_i notikumam un katram A_i notikumam varbūtību uzrādīt īpašību B:

$$P(B) = \sum P(A_i) P(B|A_i)$$

• Neatkarīgi notikumi - P(A|B) = P(A)

Sadalījuma kumultatīvā un blīvuma funkcija

- $F(x) = P(\xi \le x)$
- $f(x) = P(x \le \xi \le x + dx)$
- $P(a \le \xi \le b) = \int_a^b f(x)dx$

Raksturojošie parametri

- Matemātiskā cerība $E(\xi) = \sum x_i P(\xi = x)$
- Momenti vispārīgi $\mu_l = E\{(\xi \hat{x})^l\}$
- Ja l=2, tad tā ir dispersija. Var interpretēt kā inerces momentu
- Reducētais mainīgais $u = \frac{\xi \hat{x}}{\sigma(\xi)}$
- Visvarbūtīgākā vērtība
- Mediāna $F(x_{0.5}) = P(\xi < x_{0.5}) = 0.5$
- Kvantila $x_q \rightarrow q$, ja $F(x_q) = q$

Vairāku mainīgo sadalījumu, momenti.

- $H(\xi, v) = (\xi a)^l (v b)^m$
- Ja $l \ vai \ m = 2$, tad dispersija
- Ja l, m = 1, tad kovariācija
- Kovariācijas matrica $C = E\{(\vec{\xi} \hat{\vec{x}})(\vec{\xi} \hat{\vec{x}})^T\}$, kur $E\{\}$ iedarbojās kā lineārs operators!
- Korelācijas koeficients $\rho(x,y) = \frac{cov(x,y)}{\sigma_x \sigma_y}$
- Korelācijas koeficienta nozīmība parādās, ja izsaka $\sigma^2(u\pm v)=2(1\pm \rho(u,v))$

Mainīgo transformācija

- Ja abi sadalījumi raksturo vienu notikumu g(y)dy = f(x)dx
- Analogi $g(y,...) = \left| \frac{\partial(y,...)}{\partial(u,...)} \right| f(u,...)$
- Lineāra transformācija $\vec{v} = T\vec{\xi} + \vec{a}$
- $\bullet \ \ C_y = E\{(\vec{y} \hat{\vec{y}})(\vec{y} \hat{\vec{y}})^T\} = E\{(T\vec{x} + T\vec{a} T\hat{\vec{x}} T\vec{a})(T\vec{x} + \vec{a} T\hat{\vec{x}} T\vec{a})^T\} = E\{T(\vec{x} \hat{\vec{x}})(T(\vec{x} \hat{\vec{x}}))^T\} = TC_xT^T = TC$
- Ja nepieciešams iegūt transformētā mainīga \vec{y} kovariācijas matricu, tad izvirza $\vec{y} = \vec{f}(\vec{x})$ Teilora rindā:

$$\vec{y} = \vec{f}(\vec{x}_0) + \left. \frac{\partial(\vec{f})}{\partial(\vec{x})} \right|_{\vec{x} = \vec{x}_0} (\vec{x} - \vec{x}_0) = \vec{f}(\vec{x}_0) + \nabla \vec{f}|_{\vec{x} = \vec{x}_0} (\vec{x} - \vec{x}_0)$$

Nepārtraukti sadalījumi

- Sadalījuma raksturīgā funkcija $\phi(t)=E\{e^{itx}\}$, kurai īpašība $\frac{\partial^n\phi}{\partial t^n}=i^n\lambda_n$
- Standarta normālais sadalījums(paredzēts reducētajam mainīgajam!):

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

- Var izmantot formā $gausa_sad = \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)$
- Standarta eksponenciālais sadalījums $f(x) = e^{-x}$
- Košī sadalījums apraksta kā daļiņas izkārtojās uz ekrāna, ja tās izšautas no punktveida avota ar vienmērīgi sadalītu varbūtību

Diskrētie sadalījumi

- Binomiālais apraksta varbūtību notikt notikumam A n
 reizes no k mēģinājumiem, ja $P(A) + P(\bar{A}) = 1$
 - Izvēlās n unikālas neatklātas monētas no k
 - Nosaka varbūtību izlasei, kurai visas n
 monētas ir ar notikumiem A, bet (k-n) monētas ar notikumiem \hat{A}
 - Ja p apraksta varbūtību notikt pozitīvam notikumam jeb A, novērtējot no mērijuma $s^2\{S(p)\} = \frac{\kappa}{n^2} \left(1 \frac{\kappa}{n}\right)$ ir iespējams novērtēt novērtēto pozitīvo notikumu skaitu κ , kā:

$$\Delta \kappa = \sqrt{s^2 \{ S(p) \} n^2} \approx^{n \gg \kappa} \sqrt{\kappa}$$

• Puasona tiek iegūts $\lambda = np$ tiek saglabāts konstants, bet $n \to \infty$:

$$f(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

- Hiperģeometriskais varbūtība, ka no n izvilktām bumbiņām k ir baltas, bet (n-k) melnas, pastāvot galīgam skaitam izvelkamo bumbiņu.
 - Ja $n \ll N$, tad iegūst Binomiālo

Izlases

- Eksperimentā tiek iegūta gadījuma rakstura mainīgo kopa, ko sauc par *izlasi*. To pieņemts apzīmēt ar $\vec{\xi} = (\xi_1, \dots, \xi_n)$
- Ģenerālkopa visas iespējamās izlases
- Izlasei definē arī varbūtības blīvumu, kas raksturo varbūtību no ģenerālkopas *izvilkt* šādus mērijumus $g(\vec{x})$
- Ja mērijumi ir savstarpēji neatkarīgi $g(\vec{x}) = \prod g_i(x_i)$
- Izlases sadalījuma funkcija $W_n(x) = \frac{n[x > x_i]}{n}$

Novērtējumi

- Parametri, kuri iegūti no izlases bet kuri raksturo ģenerālkopu tiek saukti par novērtējumiem
- Novērtējums \hat{a} ir labs:
 - ja ir konverģējošs:

$$\lim_{N \to \infty} \hat{a} = a$$

- nenovirzīts $E\{\hat{a}\} = a$
- Matemātiskā cerība:
 - $-\bar{\xi} = \frac{1}{n} \sum \xi_i$
 - $-\sigma^2(\bar{\xi}) = \frac{1}{n}\sigma^2(\xi)$, kas saista vidējās vērtības novērtējuma dispersiju ar sadalījuma mainīgā ξ dispersiju!
- Sadalījuma $g_1(\xi_1) = \ldots = g_n(\xi_n) = f(\xi)$ dispersijas novērtējums:

$$-s^2 = \frac{1}{n-1} \sum (\xi_i - \bar{\xi})^2$$

$$-\Delta s^2 = s^2 \sqrt{\frac{2}{n-1}}$$

kovariāciju novērtē analogi dispersijai

Maksimālās ticamības metode

- Izlases varbūtības funkcija:
 - Zināms sadalījums, kuram pakļauļās ξ_i
 - Zināmi parametri $\vec{\lambda}$, kuri definē sadalījumu
 - Tad var definēt varbūtību mazā apkārtnē iegūt tieši šādu izlasi:

$$L(\vec{\xi}|\vec{\lambda}) = \prod f(\xi_i|\vec{\lambda})$$

• Mērkis noskaidrot $\vec{\lambda}$, lai varbūtība šādai *izlasei* no $\acute{q}ener\bar{a}lkopas$ būtu maksimāla!

Izlases informācija

- Vispārīgi novērtējums S ir nobīdīts: $B(\lambda) = E(S) \lambda$
- Lai novērtējums būtu labs, novērtētā parametra $\sigma^2(S)$ jābūt pēc iespējas mazākai, bet šie abi lielumi ir savstarpēji saistītīti ar $inform\bar{a}cijas\ nevien\bar{a}d\bar{b}u$:

$$I(\lambda) = E\left\{ \left(\sum_{i=1}^{N} \frac{f'(x_i|\lambda)}{f(x_i|\lambda)} \right)^2 \right\} = N E\left\{ \left(\frac{f'(x|\lambda)}{f(x|\lambda)} \right)^2 \right\} = E(\ell_{\lambda}^{'2}) = -E(\ell^{''})$$

$$\sigma^2(S) \ge \frac{1 + B_{\lambda}'(\lambda)}{I(\lambda)}$$

$$\ell'_{\lambda} = A(\lambda)(S - E(S))$$

— Var parādīt, ka mazākā dispersija novērtētājam S ir tad, ja izlases varbūtība ir formā - $L=d\,e^{B(\lambda)S+C(\lambda)}$

Mazākā kvadrātu metode

- Tiek uzskatīts, ka mērijums \vec{y} ir formā $\vec{y} = T\vec{\lambda} + \vec{a_0} + \vec{\varepsilon}$
 - Kur katrs ε_i ir pēc Centrālās robežteorēmas ir ar Gausa sadalījumu
 - -T ir transformācijas matrica jeb Teilora rindas otrais loceklis, kas aprēķināts pie \vec{t} :

$$y_i = \nabla_{\lambda} f(t_i | \vec{\lambda}) \vec{\lambda} + a_i + \varepsilon_i$$

- $-\vec{\lambda}$ ir novērtējums parametriem no izlases $-\{(t_1,y_1,\sigma_1),\ldots,(t_n,y_n,\sigma_n)\}$
- Tiek meklēti tadi parametri λ , lai varbūtība šādai izlasei būtu vislielākā. Zinot $\vec{\varepsilon}$ sadalījumu problēma uzrakstāma kā:

$$L = \prod f(\varepsilon_i, \sigma_i | \vec{\lambda}) = \prod \frac{1}{\sqrt{2\pi}\sigma_i} e^{-\frac{\varepsilon_i^2}{2\sigma_i^2}}$$

- No iepriekšējās izteiksmes iegūst, ka jāmeklē minimums $\chi^2(\vec{\lambda})=\sum rac{arepsilon_i^2}{\sigma_i^2}$
 - Summu, ja $\vec{\lambda} \nrightarrow T$, var minimizēt pēc šadas shēmas:
 - * Pārrakstam problēmu, ja $C_{\varepsilon}^{-1} = H^T H$, $H \vec{y} = \vec{c}'$, T' = H T, formā:

$$\chi^2(\vec{\lambda}) = \sum_{i} \frac{\varepsilon_i^2}{\sigma_i^2} = \vec{\varepsilon_j}^T C_{\varepsilon}^{-1} \vec{\varepsilon} = [H(\vec{y} - T\vec{x})]^T H(\vec{y} - T\vec{x}) = \|H(\vec{y} - T\vec{x})\|^2 = \|\vec{c}' - T'\vec{x}\|^2$$

- * Ja mērijumi ir 3, tad izteiksme ir attālums telpā starp diviem punktiem. Ar brīvajām \vec{x} koordinātēm tiek definēta telpa, kurā konkrētie mērijumi attēlojās kā punkts. Šajā telpā ir definējams \vec{c}' , kas veido tajā apakštelpu, kas 3. mērijumiem varētu būt plakne vai taisne. Mazākais attēlums starp šādiem objektiem būs tad, ja mērijumu punkts projicēsies uz \vec{c}' apakštelpu. Varam $\vec{c}' = \vec{c}' T'\vec{x} + \vec{c}'$, tad redzams, ja attālums līdz apakštelpai ir minimāls, tad $\vec{c}' T'\vec{x}$ ir ortognāls visiem vektoriem, ko veido $T'\vec{x}$.
- * No iepriekšējā sprieduma risinām $T'\vec{x} \cdot (\vec{c}' T'\vec{x}) = 0$
- * Piereizinot ar $T^{'T}$ un atrisinot LNHVS iegūst:

$$\vec{x} = (T^T C_{\varepsilon}^{-1} T)^{-1} C_{\varepsilon}^{-1} \vec{y}$$

* Dispersijas varam novērtēt, ja pieņemam $(T^T C_{\varepsilon} T)^{-1} C_{\varepsilon}^{-1}$ par transformācijas matricu no mainīgā $\vec{\varepsilon}$ uz \vec{x} :

$$C_x = (T^T C_{\varepsilon}^{-1} T)^{-1}$$

Slīdošais vidējais

- Ja $t_i t_{i-1} = \Delta t = const$, tad par laikrindu sauc $v_i = y_i(t_i) + \varepsilon$
- Vienkāršākais veids kā aprakstīt tendenci ir kā nesvērto vidējo vērtību, kas apraksta tendenci tad, ja $y = \alpha + \beta t$
- Vispārīgā gadījumā veic regresiju ar polinomu ap izvēlētu apkārtni. Lai procesu atvieglotu tiek izmantots, ka argumenta ass vērtības var uzskatīt par veseliem skaitļiem.

Statistikas testi

- Testa procedūra:
 - Formulē noliedzamo hipotēzi H_0
 - Izvēlās nozīmības kritēriju
 - Atkarībā no H_0 tiek izvēlēts statistikas tests
 - Aprēķina testa statistiku
 - Nosaka varbūtību šādai statistikai attiecībā pret nozīmības kritēriju
- Testa statistikas:

$$-X^2 = \sum u_i^2$$
, kur $u_i = \frac{y_i - f(x_i)}{\sigma_i}$

– Fišera -
$$\frac{s_1^2}{s_2^2} < F_{1-\alpha/2}(df_1, df_2)$$

– Stjudenta(vidējai vērtība) - $u < t_{1-\alpha/2}$

- Stjudenta(divām izlasēm):

* Konstruē lielumu - $\Delta = \bar{x} - \bar{y}$

* Nosaka šī lieluma dispersiju - $\sigma^2(\Delta) = \sigma^2(\bar{x}) + \sigma^2(\bar{y})$

* Pieņem, ka \bar{x} un \bar{y} nāk no viena sadalījuma un iegūst - $s^2=\frac{(N_1-1)s_x^2+(N_2-1)s_y^2}{(N_1-1)+(N_2-1)}$ * Novērtē dispersiju zinot to ģenerālkopai - $s_\Delta^2=s_{\bar{x}}^2+s_{\bar{y}}^2=\frac{N_1+N_2}{N_1\,N_2}s^2$

* Konstruē statistiku - $\frac{|\bar{x}-\bar{y}|}{s_{\Delta}} > t_{1-\alpha/2}$

χ^2 sadalījums

- Ja pieņem, ka kļūdu novirzes pakļauļās Gausa sadalījumam, tad katram $u_i = \frac{y_i f(x_i)}{\sigma_i}$ varbūtība uz savas ass $f(u_i) = \frac{y_i f(x_i)}{\sigma_i}$
- Varbūtības blīvums atrasties kādā telpas apgabalā $du_1 \dots du_N$:

$$f(u_1, \dots, u_N) = \prod_{i=1}^N e^{-u_i^2/2} = exp(\sum \frac{-u_i^2}{2}) = exp(-\frac{1}{2}\chi^2)$$

- Varbūtība, ka χ būs robežās $[\chi, \chi + d\chi]$ ir proporcionāla sfēras čaulas tilpumam $\chi^{N-1} d\chi$, selko $P(\chi) = \chi^{N-1} e^{-\frac{1}{2}\chi^2} d\chi$
- Lai iegūtu χ^2 sadalījumu veic transformāciju $P(\chi^2) d\chi^2 = P(\chi) d\chi$ un iegūto sadalījumu normē:

$$P(\chi^2) \propto \chi^{N-2} e^{-\chi^2/2}$$

• Sadalījuma īpašības:

$$- E(\chi^2) = df$$

$$- \sigma^2(\chi^2) = 2df$$

- Ja $df \to \infty,$ tad tas tiecās uz normālo sadalījumu