

南周大學

电磁学

(Electromagnetism)

2017/4/11

本章目录(15-18)

- △ 8.15 导体的静电平衡条件
 - 8.16 静电平衡时导体上的电荷分布规律
- △ 8.17 有导体时静电场的分析与计算
 - 8.18静电屏蔽

2017/4/11

导体 绝缘体

- 1. 导体 存在大量的可自由移动的电荷 conductor (电子数密度很大,约为10²²个/cm³)
- 2. 绝缘体 理论上认为一个自由移动的电荷也没有。也称 电介质 dielectric
- 本部分讨论金属导体和电介质对场的影响

2017/4/11

4/11

3. 导体的电势

导体静电平衡时,导体各点电势相等, 即导体是等势体,表面是等势面。

U = c

证: 在导体上任取两点 a 和 b

$$U_a - U_b = \int_{(a)}^{(b)} \vec{E} \cdot d\vec{l} = 0 \qquad \boxed{U_a = U_b}$$

导体等势是导体体内电场强 度处处为零的必然结果

静电平衡条件 的另一种表述

8.16 静电平衡时导体上电荷分布规律

一. 导体静电平衡时电荷分布在表面

1. 实心导体: σ 可不为 0,但 ρ _内 必为 0。

$$\vec{E}_{\mathsf{P}_{\mathsf{P}}} = \mathbf{0} ,$$

$$\therefore \oint_{S} \vec{E}_{\mathsf{P}_{\mathsf{P}}} \cdot \mathbf{d}\vec{s} = \frac{1}{\varepsilon_{0}} \int_{V} \rho_{\mathsf{P}_{\mathsf{P}}} \, \mathbf{d}V = \mathbf{0} ,$$

$$S \text{ 是任意的} .$$

令S→ 0,则必有 ρ _内 = 0。

2. 导体壳: σ_{h} 可不为零,但 σ_{h} 和 E_{h} 必为零。

在导体中包围空腔选取 高斯面S,则:

$$\oint_{S} \vec{E}_{\varphi h} \cdot \mathbf{d} \, \vec{s} = \mathbf{0} \longrightarrow$$

 $\sigma_{h} = 0$, 若 $\sigma_{h} \neq 0$,则 σ_{h} 必有正负 \longrightarrow

B线从正电荷到负电荷 → 与导体静电平衡矛盾 $_{\overline{\sigma}_{0}}$ 早能 $\sigma_{\rm p}=0$,且腔内无正线 \rightarrow 只能 $E_{\rm p}=0$ 0。

3. 导体壳内有电荷:

 $\sigma_{\rm M}$ 可不为0,但必有 $\sigma_{\rm M} \neq 0$,

理由: 在导体中包围空腔做高斯 面S,则:

$$\oint_{S} \vec{E}_{\,\text{sph}} \cdot \mathbf{d} \, \vec{s} = \frac{1}{\varepsilon_{0}} (q + q_{\text{h\bar{\chi}}}) = 0$$

∴ $q_{h, -1} = -q$

二. 表面场强与面电荷密度的关系

 $\oint \vec{E} \cdot d\vec{s} = E_{\frac{1}{8}} \cdot \Delta S$ $=\frac{\sigma \quad \Delta S}{\varepsilon_0}$

 $\stackrel{\int}{...}E_{\frac{1}{8}}=\frac{\sigma}{\varepsilon_0}, \ \vec{E}_{\frac{1}{8}}=\frac{\sigma}{\varepsilon_0}\vec{e}_n$

 \bar{E}_{*} 是小柱体内电荷的贡献还是导体表 面全部电荷的贡献? 从推导中的哪一步可看出?

方法二: 等效:在真空中三个均匀

带电的球面。利用叠加原理:

求其电势:
$$U_{A} = \frac{q}{4\pi\varepsilon_{0}R_{0}} + \frac{-q}{4\pi\varepsilon_{0}R_{1}} + \frac{Q+q}{4\pi\varepsilon_{0}R_{2}}$$

$$U_{B} = \frac{Q+q}{4\pi\varepsilon_{0}R_{2}}$$