

UNIVERSIDAD AUTÓNOMA DE NUEVO LEON

Facultad de Ingeniería Mecánica Y Eléctrica

TECNOLOGÍAS EMERGENTES

Docente: Lilia Lizeth Santos López

Grupo: 007 Equipo: #1

	Nombre	Matricula	Carrera
1	Flor Estrella Marcial Joaquín	1950922	IAS
2	Héctor Martínez Flores	1962471	IAS
3	Shaggy Rodrigo Ortiz Morales	1969007	IAS
4	Rocío Guadalupe Sánchez Medrano	1959446	IAS
5	Fernando de Jesús Cortez Sáenz	1825197	IAS
6	Ricardo Eliseo Méndez Montes	1960857	IAS
7	Cesar Alejandro Medina García	1731153	IAS
8	Jonathan Moisés Adame Gámez	1991847	IAS
9	Andrea Alexandra Hernández Rodríguez	1952737	IAS
10	Luis Ángel Acevedo Silva	1899982	IAS

Fecha: 04-07-2025

Propuesta de proyecto

Nuestra propuesta es desarrollar un museo virtual interactivo en donde se podrá recorrer un espacio 3D que contiene información sobre las distintas mascotas de la UANL.

Detalles del proyecto:

- **Plataforma:** Unity
- Nombre tentativo: Museo Virtual de mascotas UANL
- Funcionamiento: Se simulara estar en primera persona (recorrido virtual)
- Objetivo: El usuario podrá caminar por el museo y acercarse a distintas exposiciones (una por cada mascota), donde aparecerá su nombre, imagen y datos relevantes.
- Extras (si el tiempo lo permite):
 - Música ambiental
 - o Iluminación ambiental para realismo
 - o Contador de visitas (cada ves que alguien visita el museo)
 - Botón de regreso al inicio del recorrido

Este proyecto nos permitirá explorar las capacidades de Unity de una forma practica y a su vez sencilla, agregando las mascotas de la UANL para relacionarlo con la identidad universitaria.

Representación conceptual

FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA

Análisis del Proyecto: Museo Virtual de Mascotas UANL

En esta fase inicial del desarrollo del proyecto, establecimos los fundamentos esenciales para garantizar su viabilidad y éxito. Partiendo de la idea principal, el **Museo Virtual de Mascotas UANL**, se definió el objetivo de crear un museo virtual donde los usuarios puedan explorar estatuas de las mascotas

de la UANL, además de evaluar las capacidades de Unity 6 (HDRP, Ray Tracing). Este objetivo es con intención de combinar entretenimiento y aprendizaje, orientado al público estudiantil y entusiasta de las plataformas digitales.

Las **mecánicas básicas** del proyecto incluyen la posibilidad de recorrer el museo, interactuar con las exposiciones y visualizar datos informativos sobre cada una. Esto requiere una integración precisa de elementos interactivos como áreas activas y animaciones que permitan a los usuarios interactuar de manera intuitiva con el entorno virtual. La plataforma de destino principal es el PC, aunque también se considera la posibilidad de adaptarlo a dispositivos ARM y Mac.

Respecto a las **herramientas necesarias**, se estableció el uso de Unity 6 como motor de desarrollo, aprovechando sus capacidades para crear entornos tridimensionales interactivos. Unity proporciona un entorno flexible y potente para el diseño y programación del museo virtual, utilizando C# como lenguaje principal para desarrollar las interacciones y mecánicas requeridas. Asimismo, se analizaron los requerimientos gráficos, como los assets tridimensionales para el diseño de las salas del museo, las exposiciones y los elementos decorativos. También se consideraron paquetes adicionales que podrían optimizar el desarrollo, como herramientas para texturización avanzada y bibliotecas de animación.

Diseño y prototipos.

Mockup representativo

Se elaboraron prototipos iniciales en Unity para probar las mecánicas básicas como el movimiento del personaje y detección de colisiones.

Se realizaron pruebas de cámara y movimiento dentro del motor, así como la visualización de escenarios y se realizaron bosquejos de estos para lograr tener una vista previa a cómo sería el tentativo resultado final.

Algunos modelos se trabajaron directamente en Blender para trabajar los modelos mesh y mejorar las colisiones.

Aquí podemos observar un escenario que aún no es definitivo y fue usado para prueba y visualización.

Modelado y vistas de objetos: En este apartado podemos observar los prototipos de estatuas que se usarían posteriormente para el acomodo del museo virtual.

Se utilizo un asset con movilidad avanzada y se hicieron pruebas de entorno. También se hicieron pruebas de colisión con el modelo del personaje.

Prototipos iniciales de escenario y de iluminación: Después de trabajar algunos modelos en blender y de conseguir assests en la unity store, se hicieron pruebas de escenario e iluminación avanzada.

Prototipos finales v 1.0

Flujos y desarrollo:

El equipo se organizó en tres grupos funcionales según las áreas clave del proyecto:

- 1. Programación (3 personas):
 - a. Cesar Alejandro Medina García
 - b. Jonathan Moisés Adame Gámez
 - c. Luis Ángel Acevedo Silva
 - i. Responsables de implementar el museo virtual utilizando Unity y C#.
 - ii. Creación de las mecánicas principales, como la navegación en el museo, interacciones con las exposiciones y visualización de descripciones.
 - iii. Optimización del entorno 3D, diseño de las salas del museo y la integración de assets gráficos.
 - iv. Implementación de las funcionalidades para que el sistema sea compatible con PC y potencialmente con VR.
- 2. Documentación (3 personas):
 - a. Héctor Martinez Flores
 - b. Shaggy Rodrigo Ortiz Morales
 - c. Ricardo Eliseo Méndez Montes
 - i. Redacción de los manuales técnicos y guías de usuario del museo.
 - ii. Creación de documentación detallada que describa el diseño, las funcionalidades y los requerimientos del sistema.
 - iii. Seguimiento de las decisiones tomadas durante cada sprint, incluyendo bitácoras de avances y ajustes.
 - iv. Elaboración del informe de especificaciones técnicas del proyecto.
- 3. Pruebas (4 personas):
 - a. Flor Estrella Marcial Joaquín
 - b. Rocío Guadalupe Sánchez Medrano
 - c. Fernando de Jesús Cortez Sáenz
 - d. Andrea Alexandra Hernández Rodríguez

- i. Realización de pruebas funcionales e integrales para garantizar que las mecánicas del museo funcionen correctamente.
- ii. Identificación de errores o inconsistencias en la navegación, las interacciones y el contenido gráfico.
- iii. Evaluación de la experiencia del usuario para asegurar que sea intuitiva y satisfactoria.
- iv. Recopilación y análisis de feedback para proponer mejoras.

Flujo de Trabajo

1. Análisis y Preparación del Sprint 1

- o Revisión del objetivo (exploración del museo + evaluación técnica de Unity 6).
- o Confirmación de HDRP, RayTracing, PC como plataforma base, límites de optimización.
- o Equipo de programación enfocado en: movimiento, cámara FP, ambientación básica.
- o Equipo de QA (pruebas) define casos de prueba de movimiento, navegación libre y desempeño mínimo aceptable.

2. Desarrollo e Iteración:

- o Programación activa
 - Implementación de sistemas de movimiento, cámara, colocación de estatuas.
 - ii. Integración de materiales HDRP y control de calidad visual.
- o Colaboración diaria
 - Revisión de avances técnicos, comparativa visual contra mockups e imágenes de referencia.
 - ii. Microreuniones de ajuste si surgen problemas
 - 1. Corrección de bugs visuales visuales y de movimientos

3. Cierre del Sprint:

- o Entrega de los resultados incrementales.
- o Revisión conjunta para validar las funcionalidades completadas y planificar el próximo sprint.

Implementación

Desarrollo del Entorno 3D:

- Construcción del museo virtual, incluyendo las salas y su distribución espacial.
- Integración de assets gráficos, como modelos 3D de las exposiciones y elementos decorativos.

Programación de Interacciones:

- Implementación del código en C# para que los usuarios puedan navegar por el museo.
- Desarrollo de las mecánicas de interacción, como hacer clic en una exposición para leer su descripción.

Integración de Contenido Informativo:

- Incorporación de las descripciones e historias de las mascotas en un formato interactivo y accesible.
- Asignación de contenido multimedia adicional, como imágenes o animaciones, si aplica.

Pruebas y Optimización:

- Verificación de que el museo sea funcional y libre de errores.
- Optimización del rendimiento gráfico y la experiencia del usuario.

Compatibilidad con Plataformas:

• Asegurar que el proyecto funcione correctamente en PC y, si se decide, explorar compatibilidad con dispositivos de realidad virtual.

FIME

FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA