Contents

1	Boolean functions and the Fourier expansions	2
	Summary	2
	Solutions	3

1 Boolean functions and the Fourier expansions

Summary

Definition 1.1. Let n be a positive integer. A **Boolean function** on n variables is a function $f: \{0,1\}^n \to \{0,1\}$ or $f: \{\pm 1\}^n \to \{\pm 1\}$.

List of some Boolean functions

- \min_n , \max_n : minimum and maximum function
- Maj_n : majority function

•

For each point $a = \{a_1, \dots, a_n\} \in \{\pm 1\}^n$, the indicator polynomial

$$1_{\{a\}}(x) = \prod_{i} \left(\frac{1 + a_i x_i}{2} \right)$$

takes value 1 when x = a and value 0 otherwise.

Definition 1.2. Let $f: \{\pm 1\}^n \to \{\pm 1\}$ be a Boolean function. The **Fourier expansion** of f is the following expression:

$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S)x^S$$

where $\hat{f}(S)$ are real numbers called the **Fourier coefficients** of f.

For $S \subseteq [n]$, we define $\chi_S : \mathbb{F}_2^n \to \mathbb{R}$ by

$$\chi_S(x) = (-1)^{\langle x, S \rangle}$$

where $\langle x, S \rangle = \sum_{i \in S} x_i$. We call χ_S the **character** of S. Further, χ_S satisfies $\chi_S(x+y) = \chi_S(x)\chi_S(y)$.

Definition 1.3. Let $f, g : \{\pm 1\}^n \to \{\pm 1\}$ be Boolean functions. The **inner product** of f and g is defined by

$$\langle f, g \rangle = \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} f(x)g(x)$$

Theorem 1.4. Let $f: \{\pm 1\}^n \to \{\pm 1\}$ be a Boolean function. Then

$$\hat{f}(S) = \langle f, \chi_S \rangle$$

Proposition 1.5. Let $f: \{\pm 1\}^n \to \{\pm 1\}$ be a Boolean function. Then

$$\hat{f}(S) = \langle f, \chi_S \rangle = \mathbb{E}_{\boldsymbol{x}} \ \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} f(x) \chi_S(x)$$

Solutions

- 1.1 (a) $\min_2(x_1, x_2) = \begin{cases} 1 & \text{if } (x_1, x_2) = (1, 1) \\ -1 & \text{otherwise} \end{cases}$ which means $\min_2(x_1, x_2) = -1 + 2 \times \mathbb{1}_{\{(1,1)\}}(x)$ with $\mathbb{1}_{\{(1,1)\}}(x) = \prod_{i=1}^2 \frac{1+x_i}{2}$.
 Therefore $\min_2(x_1, x_2) = -1 + 2 \times \prod_{i=1}^2 \frac{1+x_i}{2} = -\frac{1}{2} + \frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3$.
 - (b) Similar to (a), $\min_{3}(x_{1}, x_{2}, x_{3}) = -1 + 2 \times \prod_{i=1}^{3} \frac{1+x_{i}}{2} = -\frac{1}{4} + \frac{1}{4} \sum_{i} x_{i} + \frac{1}{4} \sum_{i,j} x_{i} x_{j} + x_{1} x_{2} x_{3}$
 - (c) In $\{0,1\}$ setting, $\chi_S(x) = (-1)^{\sum_{i \in S} x_i}$. The inner product is

$$\begin{split} \langle \mathbb{1}_{\{a\}}, \chi_S \rangle &= \mathbb{E}_{x \sim \{0,1\}^n} \left[\mathbb{1}_{\{a\}}(x) \chi_S(x) \right] \\ &= \frac{1}{2^n} \chi_S(x) \\ &= \frac{1}{2^n} (-1)^{\sum_{i \in S} x_i} \end{split}$$

Hence, the Fourier expansion of $\mathbb{1}_{\{a\}}$ is

$$\mathbb{1}_{\{a\}}(x) = \sum_{S \subseteq [n]} \frac{1}{2^n} \chi_S(a) \chi_S(x)
= \frac{1}{2^n} \sum_{S \subseteq [n]} \chi_S(a+x)
= \frac{1}{2^n} \sum_{S \subseteq [n]} (-1)^{\sum_{i \in S} (a_i + x_i)}$$

(d)
$$\phi_{\{a\}}(x) = \mathbb{1}_{\{a\}}(x) = \frac{1}{2^n} \sum_{S \subseteq [n]} (-1)^{\sum_{i \in S} (a_i + x_i)}$$

(e)

$$\begin{split} \phi_{\{a,a+e_i\}} &= \frac{1}{2} \left(\mathbb{1}_{\{a\}} + \mathbb{1}_{\{a+e_i\}} \right) \\ &= \frac{1}{2} \cdot \frac{1}{2^n} \sum_{S \subset [n]} \left((-1)^{\sum_{j \in S} a_j} + (-1)^{\sum_{j \in S} a_j + \delta_{ij}} \right) \chi_S(x) \end{split}$$

The term $(-1)^{\sum_{j\in S} a_j} + (-1)^{\sum_{j\in S} a_j + \delta_{ij}}$ is 0 if $i\in S$ and $2(-1)^{\sum_{j\in S} a_j}$ otherwise. Therefore,

$$\phi_{\{a,a+e_i\}} = \frac{1}{2} \cdot \frac{1}{2^n} \sum_{S \subseteq [n] \setminus \{i\}} (-1)^{\sum_{j \in S} a_j} \chi_S(x)$$
$$= \frac{1}{2^n} \sum_{S \subseteq [n] \setminus \{i\}} (-1)^{\sum_{j \in S} (a_j + x_j)}$$

(f) Let ϕ be the probability density function of each x_i , respectively. Then f =

 $\prod_{i=1}^{n} \phi(x_i)$ and the fourier coefficient is

$$\hat{f}(S) = \langle f, \chi_S \rangle$$

$$= \mathbb{E}_{x \sim \{\pm 1\}^n} \left[f(x) \chi_S(x) \right]$$

$$= \mathbb{E}_{x \sim \{\pm 1\}^n} \left[\prod_{i=1}^n \phi(x_i) \chi_S(x) \right]$$

1.2 ghi

References