1.

Method	Vector.cs	Mecrosoft .Net framework
Count()	O(1)	O(1)
Capacity()	O(1)	O(1)
Add()	O(1) if count< capacity	O(1) if count< capacity
	O(n) if count>= capacity	O(n) if count>= capacity
IndexOf()	O(n)	O(n)
Insert()	O(n)	O(n)
Clear()	O(n)	O(n)
Contains()	O(n)	O(n)
Remove()	O(n)	O(n)
RemoveAt()	O(n)	O(n)

2

The below function is $O(n \log(n))$ and $\Omega(n \log(n))$, therefore, it's $\theta(n \log n)$

The name of this function is Merge Sort.

3 a.
$$f=x^1/2$$
 $g=\log(n)$
$$\lim_{n\to\infty}\frac{n^{\frac{1}{2}}}{\log n}=\infty$$
 f grows faster than g $f\in\Omega(g)$

g = 2

$$\lim_{n\to\infty}\frac{1500}{2}=750$$

f is 750 times bigger than g, they grow at the same rate (f = 750g)

 $f \in \theta(g)$

c.
$$f = 800*2^n$$

 $g = 3^n$

$$\lim_{n\to\infty} \frac{800*2^n}{3^n} = 0$$

f grows slower than g

 $f \in O(g)$

d.
$$f = 4^{n+13}$$

 $g = 2^{(2n+2)}$

$$\lim_{n \to \infty} \frac{4^{n+13}}{2^{2n+2}} = 16777216$$

f is 16777216 bigger than g, they grows at the same rate (f(n) = 16777216 * g(n))

 $f \in \theta(g)$

e. $f = 9n \log(n)$

 $g = n \log(9n)$

$$\lim_{n \to \infty} \frac{9n * log(n)}{n * log(9n)} = 9$$

f is 9 time bigger than g, they grows at the same rate (f(n) = 9 * g(n))

 $f \in \theta(g)$

$$f. f = O(g)$$

f = n!

g = (n+1)!

$$\lim_{n \to \infty} \frac{n!}{(n+1)!} = 0$$

f grows slower than g

 $f \in O(g)$