

WHAT IS CLAIMED IS:

1. 1. A laser apparatus comprising:
2 a Neodymium-doped lasing material, wherein the lasing material includes a first-
3 surface that is substantially transparent to a pump radiation and substantially
4 reflective to laser radiation generated by an interaction between the pump radiation
5 and the Neodymium-doped lasing material, wherein the laser radiation is
6 characterized by a vacuum wavelength corresponding to an atomic transition from the
7 $^4F_{3/2}$ level to the $^4I_{9/2}$ level of Neodymium in the lasing material, the lasing material
8 further having a second surface that transmits at least a portion of the laser radiation;
9 and
10 a passive Q-switch optically coupled to the second surface of the lasing material;
11 wherein lasing material and Q-switch are configured to produce pulses of the laser
12 radiation;
13 wherein the pulses are characterized by a pulse length of greater than zero and less
14 than about 1.5 nanoseconds and a pulse repetition rate greater than about 100 kHz.
1. 2. The apparatus of claim 1 wherein the lasing material is Nd:YVO₄, Nd:GdVO₄,
2 Nd:YLF or Nd:YAG.
1. 3. The apparatus of claim 4 wherein the lasing material is Nd:YVO₄.
1. 4. The apparatus of claim 3, wherein the Neodymium concentration in the lasing
2 material is greater than about 1% and less than about 3%.
1. 5. The apparatus of claim 4 wherein the Neodymium concentration in the lasing
2 material is about 2%.
1. 6. The apparatus of claim 3 wherein the lasing material is between about 50 microns
2 thick and about 100 microns thick.
1. 7. The apparatus of claim 3 wherein the first surface of the lasing material is
2 configured to transmit between about 0.5% and about 2% of the laser radiation
3 incident upon it from within the lasing material.

1 8. The apparatus of claim 7 wherein the first surface of the lasing material is
2 configured to transmit about 1% of the laser radiation incident upon it from within
3 the lasing material.

1 9. The apparatus of claim 8 wherein the first surface is configured to transmit about
2 0.94% of laser radiation of the ordinary polarization and about 0.98% of laser
3 radiation of the extraordinary polarization.

1 10. The apparatus of claim 1 wherein the Q-switch includes a saturable Bragg
2 reflector (SBR).

1 11. The apparatus of claim 10 wherein the SBR includes a substrate, semiconductor
2 mirror stack having alternating high and low refractive index layers, a quantum
3 well stack having between about 3 and about 15 quantum wells, and a dielectric
4 overcoat,
5 wherein the semiconductor mirror stack is disposed between the substrate and the
6 quantum wells, and
7 wherein the quantum well stack is disposed between the semiconductor mirror
8 stack and the dielectric overcoat.

1 12. The apparatus of claim 11 further comprising a buffer layer disposed between the
2 substrate and the semiconductor mirror stack.

1 13. The apparatus of claim 11 wherein the alternating high and low refractive index
2 layers are greater than 99.5% reflecting at the wavelength of the laser radiation
3 from the Neodymium-doped lasing material.

1 14. The apparatus of claim 13 wherein the alternating high and low refractive index
2 layers include alternating layers of $\text{Al}_x\text{Ga}_{1-x}\text{As}$ and $\text{Al}_y\text{Ga}_{1-y}\text{As}$, where x is
3 between 0 and about 0.1 and y is between about 0.9 and 1..

1 15. The apparatus of claim 14 wherein the optical thickness of the quantum well stack
2 is an odd multiple of one-quarter wavelength ($\lambda/4$) of the laser radiation from the
3 Neodymium-doped lasing material.

- 1 16. The apparatus of claim 15 wherein the thickness of each layer of $\text{Al}_x\text{Ga}_{1-x}\text{As}$ and
2 each layer of $\text{Al}_y\text{Ga}_{1-y}\text{As}$ has an optical thickness of $\frac{1}{4}$ wave at the wavelength of
3 the laser radiation from the Neodymium-doped lasing material.
- 1 17. The apparatus of claim 11 wherein the quantum well stack includes alternating
2 layers of GaAsP and InGaAs.
- 1 18. The apparatus of claim 17 wherein the thickness of the InGaAs layers is chosen to
2 create photoluminescence at $930 \text{ nm} \pm 15 \text{ nm}$, and the thickness of the GaAsP is
3 chosen to balance the strain created by the InGaAs.
- 1 19. The apparatus of claim 17 wherein the quantum well stack includes between nine
2 and twelve quantum wells.
- 1 20. The apparatus of claim 17 wherein the quantum well stack includes one or more
2 spacer layers of GaAs or InGaP that place the optical thickness of the quantum
3 well stack at an odd number of one-quarter wavelengths of the laser radiation
4 from the Neodymium-doped lasing material.
- 1 21. The apparatus of claim 11 wherein the dielectric overcoat includes alternating
2 layers of SiO_2 and HfO_2 .
- 1 22. The apparatus of claim 21 wherein the dielectric overcoat has a reflectivity of
2 between about 87% and about 96% at the wavelength of the laser radiation from
3 the Neodymium-doped lasing material.
- 1 23. The apparatus of claim 22 wherein the dielectric overcoat has a reflectivity of
2 greater than about 90% at the wavelength of the pump radiation.
- 1 24. The apparatus of claim 3 wherein the source of pump radiation is capable of
2 providing greater than about 400 watts/ mm^2 of pump radiation to the lasing
3 material.
- 1 25. A passively Q-switched laser (PQSL), comprising:
2 a source of pump radiation;
3 a Neodymium-doped lasing material, wherein the lasing material includes a first-
4 surface that is substantially transparent to the pump radiation and substantially

5 reflective to laser radiation characterized by an electronic transition from the $^4F_{3/2}$
6 level to the $^4I_{9/2}$ level of Neodymium in the lasing material, the lasing material further
7 having a second surface that transmits at least a portion of the laser radiation; and
8 a passive Q-switch optically coupled to the second surface of the lasing material;
9 wherein the source of pump radiation, lasing material and Q-switch are configured to
10 produce pulses of laser radiation characterized by a wavelength corresponding to an
11 electronic transition from the $^4F_{3/2}$ level to the $^4I_{9/2}$ level;
12 wherein the pulses are characterized by a pulse length of greater than zero and less
13 than about 1.5 nanoseconds and a pulse repetition rate greater than about 100 kHz.

1 26. The PQSL of claim 25 wherein the source of pump radiation is a laser diode.

1 27. The PQSL of claim 26, further comprising a first, second and third lens,
2 wherein the first lens reduces the divergence of the pump radiation from the laser
3 diode along a fast axis,
4 wherein the second lens collimates the pump radiation from the first lens, and
5 wherein the third lens focuses the pump radiation from the second lens into the
6 Neodymium-doped lasing material and collimates laser radiation from the
7 Neodymium-doped lasing material.

1 28. The PQSL of claim 27 wherein the laser diode, first, second, and third, lenses are
2 configured to provide an intensity of greater than about 400 Watts/mm² of the
3 pump radiation in the Neodymium-doped lasing material.

1 29. The PQSL of claim 27, further comprising a beamsplitter disposed between the
2 second and third lenses, wherein the beamsplitter is configured to transmit pump
3 radiation from the laser diode and reflect laser radiation from the Neodymium-
4 doped lasing material.

1 30. The PQSL of claim 25 wherein the lasing material is Nd:YVO₄, Nd:GdVO₄,
2 Nd:YLF or Nd:YAG.

1 31. The PQSL of claim 30 wherein the lasing material is Nd:YVO₄.

1 32. The PQSL of claim 31, wherein the Neodymium concentration in the lasing
2 material is greater than about 1% and less than about 3%.

- 1 33. The PQSL of claim 32 wherein the Neodymium concentration in the lasing
- 2 material is about 2%.
- 1 34. The PQSL of claim 31 wherein the lasing material is between about 50 microns
- 2 thick and about 100 microns thick.
- 1 35. The PQSL of claim 31 wherein the first surface of the lasing material is
- 2 configured to transmit between about 0.5% and about 2% of the laser radiation
- 3 incident upon it from within the lasing material.
- 1 36. The PQSL of claim 35 wherein the first surface of the lasing material is
- 2 configured to transmit about 1% of the laser radiation incident upon it from within
- 3 the lasing material.
- 1 37. The PQSL of claim 36 wherein the first surface is configured to transmit about
- 2 0.94% of laser radiation of the ordinary polarization and about 0.98% of laser
- 3 radiation of the extraordinary polarization.
- 1 38. The PQSL of claim 25 wherein the Q-switch includes a saturable Bragg reflector
- 2 (SBR).
- 1 39. The PQSL of claim 38 wherein the SBR includes a substrate, a semiconductor
- 2 mirror stack having alternating high and low refractive index layers, a quantum
- 3 well stack having between about 3 and about 15 quantum wells, and a dielectric
- 4 overcoat,
- 5 wherein the semiconductor mirror stack is disposed between the substrate and the
- 6 quantum well stack, and
- 7 wherein the quantum well stack is disposed between the semiconductor mirror
- 8 stack and the dielectric overcoat.
- 1 40. An apparatus for producing blue light comprising:
2 a neodymium-doped cladding-pumped fiber device for amplifying laser radiation;
3 an optical harmonic generator optically coupled to the fiber device for increasing a
4 frequency of the laser radiation to produce a blue output radiation; and
5 a passively Q-switched laser (PQSL) optically coupled to the neodymium-doped
6 cladding-pumped fiber device, wherein the PQSL is configured to produce the laser

7 radiation, the laser radiation having a harmonic that is blue, whereby the harmonic
8 generator interacts with the laser radiation to produce blue light,
9 wherein the PQSL includes:
10 a source of pump radiation;
11 a Neodymium-doped lasing material, wherein the lasing material includes a first-
12 surface that is substantially transparent to the pump radiation and substantially
13 reflective to laser radiation characterized by a by an electronic transition from the $^4F_{3/2}$
14 level to the $^4I_{9/2}$ level of Neodymium in the lasing material, the lasing material further
15 having a second surface that transmits at least a portion of the laser radiation; and
16 a passive Q-switch optically coupled to the second surface of the lasing material;
17 wherein the source of pump radiation, lasing material and Q-switch are configured to
18 produce pulses of the laser radiation characterized by a wavelength corresponding to
19 an electronic transition from the $^4F_{3/2}$ level to the $^4I_{9/2}$ level;
20 wherein the pulses are characterized by a pulse length of greater than zero and less
21 than about 1.5 nanoseconds and a pulse repetition rate greater than about 100 kHz.

1 41. The apparatus of claim 40 wherein the lasing material is Nd:YVO₄, Nd:GdVO₄,
2 Nd:YLF or Nd:YAG.

1 42. The apparatus of claim 41 wherein the lasing material is Nd:YVO₄.

1 43. The apparatus of claim 42, wherein the Neodymium concentration in the lasing
2 material is greater than about 1% and less than about 3%.

1 44. The apparatus of claim 43 wherein the Neodymium concentration in the lasing
2 material is about 2%.

1 45. The apparatus of claim 42 wherein the lasing material is between about 50
2 microns thick and about 100 microns thick.

1 46. The apparatus of claim 42 wherein the first surface of the lasing material is
2 configured to transmit between about 0.5% and about 2% of the laser radiation
3 incident upon it from within the lasing material.

1 47. The apparatus of claim 46 wherein the first surface of the lasing material is
2 configured to transmit about 1% of the laser radiation incident upon it from within
3 the lasing material.

1 48. The apparatus of claim 47 wherein the first surface is configured to transmit about
2 0.94% of laser radiation of the ordinary polarization and about 0.98% of laser
3 radiation of the extraordinary polarization.

1 49. The apparatus of claim 40 wherein the Q-switch includes a saturable Bragg
2 reflector (SBR).

1 50. The apparatus of claim 49 wherein the SBR includes a substrate, a semiconductor
2 mirror stack having alternating high and low refractive index layers, a quantum
3 well stack having between about 3 and about 15 quantum wells, and a dielectric
4 overcoat,
5 wherein the semiconductor mirror stack is disposed between the substrate and the
6 quantum well stack, and
7 wherein the quantum well stack is disposed between the semiconductor mirror
8 stack and the dielectric overcoat.

1 51. The apparatus of claim 40 wherein the source of pump radiation is a laser diode.

1 52. The apparatus of claim 51, further comprising a first, second and third lens,
2 wherein the first lens reduces a divergence of the pump radiation from the laser
3 diode along a fast axis,
4 wherein the second lens collimates the pump radiation from the first lens, and
5 wherein the third lens focuses the pump radiation from the second lens into the
6 Neodymium-doped lasing material and collimates laser radiation from the
7 Neodymium-doped lasing material.

1 53. The apparatus of claim 52 wherein the laser diode, first, second, and third, lenses
2 are configured to provide an intensity of greater than about 400 Watts/mm² of the
3 pump radiation in the Neodymium-doped lasing material.

1 54. The apparatus of claim 52, further comprising a beamsplitter disposed between the
2 second and third lenses, wherein the beamsplitter is configured to transmit pump

3 radiation from the laser diode and reflect laser radiation from the Neodymium-
4 doped lasing material.

1 55. A display system, comprising:

2 a light source that produces two or more different colors of light including blue light;
3 a modulating means optically coupled to the light source for modulating an intensity
4 of the two or more different colors of light to form a modulated output beam;
5 a scanning means optically coupled to the modulating means for forming an image
6 from the modulated output beam,
7 wherein the light source includes .
8 a neodymium-doped cladding-pumped fiber device for amplifying laser radiation;
9 an optical harmonic generator optically coupled to the fiber device for increasing a
10 frequency of the laser radiation to produce a blue output radiation; and
11 a passively Q-switched laser (PQSL) optically coupled to the neodymium-doped
12 cladding-pumped fiber device, wherein the PQSL is configured to produce the laser
13 radiation, wherein the laser radiation has a harmonic that is blue, whereby the
14 harmonic generator interacts with the laser radiation to produce blue light,
15 wherein the PQSL includes:
16 a source of pump radiation;
17 a Neodymium-doped lasing material, wherein the lasing material includes a first-
18 surface that is substantially transparent to the pump radiation and substantially
19 reflective to laser radiation characterized by an electronic transition from the $^4F_{3/2}$
20 level to the $^4I_{9/2}$ level of Neodymium in the lasing material, the lasing material further
21 having a second surface that transmits at least a portion of the laser radiation; and
22 a passive Q-switch optically coupled to the second surface of the lasing material;
23 wherein the source of pump radiation, lasing material and Q-switch are configured to
24 produce pulses of laser radiation characterized by a wavelength corresponding to an
25 electronic transition from the $^4F_{3/2}$ level to the $^4I_{9/2}$ level;
26 wherein the pulses are characterized by a pulse length of greater than zero and less
27 than about 1.5 nanoseconds and a pulse repetition rate greater than about 100 kHz.

1