Fashion MNIST Classification Using Deep Neural Networks

Introduction

This project aims to classify images from the Fashion MNIST dataset using a deep neural network. The dataset consists of 70,000 grayscale images (28x28 pixels) categorized into 10 classes representing different clothing items such as T-shirts, trousers, sneakers, and coats. The model is trained to recognize these categories using a multi-layer neural network.

Dataset and Preprocessing

- The dataset is loaded and split into training (60,000 images) and testing (10,000 images) sets.
- Images are normalized by scaling pixel values to the range [0,1] to improve model performance.
- Labels are converted to one-hot encoded format for categorical classification.

Model Architecture

The neural network consists of the following layers:

- 1. Flatten Layer: Converts 28x28 images into a 1D array.
- 2. Dense Layer (512 neurons, ReLU activation): First hidden layer for feature extraction.
- 3. Dense Layer (256 neurons, ReLU activation): Second hidden layer to refine extracted features.
- 4. Dense Layer (128 neurons, ReLU activation): Third hidden layer for deeper learning.
- 5. Dense Layer (10 neurons, Softmax activation): Output layer for classification into 10 categories.

Training and Optimization

- The model is compiled using the Adam optimizer and categorical crossentropy loss function.
- The dataset is trained for 15 epochs with a batch size of 32.
- TensorBoard logging is implemented to monitor training progress.

Evaluation and Results

- The model achieved high accuracy on the test dataset, indicating good generalization.
- The final model is saved for future predictions and reusability.
- A plot of training and validation accuracy over epochs is generated to visualize performance trends.

Model Validation and Consistency Check

 The saved model is reloaded, and its structure and parameters are compared with the original model. Model weights are verified for consistency, ensuring no data corruption during saving and loading.

Prediction on New Images

- A function is implemented to predict and visualize classifications on test images.
- The model accurately predicts the class of a given image, validating its effectiveness.

Conclusion

This project successfully classifies Fashion MNIST images using a deep neural network. The model demonstrates high accuracy and consistency in recognizing different clothing categories. The implementation includes data preprocessing, model training, validation, and prediction functions, making it a comprehensive approach to image classification using deep learning.