

Multiscale method for simulating KPFM

Juha Ritala

September 2, 2016

KPFM measurement setup

- The interesting quantity: $F_{probe}(x, y, z, V)$
- Effective bias voltage: $V = V_b V_{CPD}$
- Sample is thick, considered as bulk material

Two length scales

Macroscopic model

- Axisymmetric model of the probe
- Classical electrostatic boundary value problem
- Solve electrostatic potential $\Phi(\mathbf{r})$ from generalized Poisson equation $\nabla \cdot [\epsilon(\mathbf{r}) \nabla \Phi(\mathbf{r})] = 0$
- Boundary values:

$$\Phi_{probe} = V$$
, $\Phi_{backplate} = 0$

Solving electrostatic potential using FEM

0.95

0.90

0.85

Atomic model

- Solve the electron density distribution using density functional theory (DFT)
- Leads to many quantities of the system, including total energy → force on tip

DFT with external potential

- The electrostatic potential is applied to the atomic scale DFT calculation
- The axisymmetric solution is interpolated to a 3D grid that fills the DFT unit cell
- No uniform electric field approximation

Summary of the method

Microscopic force:

$$F_{\mu}(x,y,z,V)=a(x,y,z)V+b \qquad F_{M}(s,V)=rac{1}{2}C'(s)V^{2}$$

Macroscopic force:

$$F_M(s,V) = \frac{1}{2}C'(s)V^2$$