Lecture 1 - Statistics
Random Samples and Statistics
Defn: Random Sample
If X,,, X, are mytually inclependent rus
all w/ marginal distribution of
If XI,, XN are mytually inclependent rvs "sample size all w/ marginal distribution f marginal then we say X, XN are a pmf/pdf random sample from f.
Penoted! Xp iid f independent identically distributed
Notation!
Notation! X = (X, ,, XN) (random vector)
$\chi = (\chi_1, \chi_N) \in \mathbb{R}^h$ (a real vector)
Note: joint distribution _ note: all marinule
- note: all margrals

Note: Joint bution $f(x) = f(x_1, x_2, ..., x_N)$ $= f(x_1) f(x_2) - f(x_N)$ $= f(x_1) f(x_2) - f(x_N)$

margned =
$$+(x_1)f(x_2)\cdots f(x_N)$$
 Lby incuperance $\int_{N=1}^{N} f(x_n) f(x_2)\cdots f(x_N)$ Lby incuperance $\int_{N=1}^{N} f(x_n) f(x_n) f(x_n) f(x_n)$ Similar notation to $\int_{N=1}^{N} \chi_i = \chi_i + \chi_i + \chi_i$

Ex. If $\chi_i = \int_{N=1}^{N} \chi_i = \chi_i + \chi_i + \chi_i$

whats the joint? If $\chi_i = \chi_i = \chi_i$

$$f(\chi) = \int_{N=1}^{N} f(\chi_i) f(\chi_i)$$

Defn: Statistic

Given (a random Sample) X, iid f a

Statistic is a function $T: R_n^N \to R^d$.

Statistic is a function T:RN->Ra sample size Typically d«N, offen d=1. input N numbers >>> sommay in loner dimension. Ex. Arithmetic mean (d=1) $T(X) = \frac{1}{N} \sum_{n=1}^{N} X_n = \overline{X}_N$ Sample Variance $S_{N-1}^{2} = \frac{1}{N-1} \sum_{n=1}^{N} (X_{n} - X_{N})^{2}$ Sample SD: $S_{N-1} = \sqrt{S_{N-1}^2}$ Minimum: Xa Maximum: X(N) Range! X(N) - X(1).

Defn: Sampling Distribution
A sampling distribution of a Statistic T is the distribution of $T(X)$.
Sampling did
Theorem:
Theorem: Sampling dist. If $X_n \stackrel{\text{iid}}{\sim} N(\mu, 6^2)$ then $X_N \sim N(\mu, 6^2)$.
Theorem: Sums of RVs.
Theorem: Sums of RVs. Let 9: R and Xn lidf
P(A+B) = E(A) + E(B) $P(A+B) = E(A) + E(B)$
Hen $\mathbb{E}[g(X_1)] = \mathbb{E}[g(X_2)] = \cdots$
$E\left(\sum_{n=1}^{N}g(X_{n})\right)=\sum_{n=1}^{N}E\left[g\left(X_{n}\right)\right]$
$= N E[g(X_i)].$
To Clj CM(1).
$\left(2\right) Var\left(\sum_{n=1}^{N} g(X_n)\right) = N Var\left(g(X_1)\right)$
proof? Similar to above Using fact that Van (A+B) - Var(A)

Var(B)
If A II B.
(works if uncorrelated)

Theorem: If $X_n \stackrel{iid}{\sim} f$ and $E[X_n] = M$ and $Var(X_n) = 6$?

Then The second of X_N is M and M is M.

(2) $Var(\overline{X}_N) = 6^2 / N$ (more data is Seffer)

(3) E[S_{N-1}] = 6² (on overage correctly estimates 6²)

low N higher N var samply dist

proof. () E[XN] = M

 $\mathbb{E}\left[\frac{1}{N}\sum_{n=1}^{N}X_{n}\right] = \frac{1}{N}\sum_{n=1}^{N}\mathbb{E}\left[X_{n}\right] = \frac{1}{N}\sum_{n=1}^{N}M = \frac{1}{N}NM = M$

(2)
$$Var(\bar{X}_{N}) = Var(\frac{1}{N}\sum_{N=1}^{N}K_{N}) = \frac{1}{N^{2}}Var(\frac{N}{E_{N}}K_{N})$$

$$= Ny \text{ prev. Heaven}$$

$$= \frac{1}{N}C^{2}$$
($K_{N} - \bar{X}_{N}$)
$$= \frac{1}{N}C^{2}$$
($K_{N} - \bar{X}_{N}$)
$$= \frac{1}{N}C^{2}$$
($K_{N} - \bar{X}_{N}$)
$$= \frac{1}{N}(K_{N} - \bar{X}_{N})^{2}$$

$$= \frac{1}{N-1}E(\frac{N}{N}^{2} - N\bar{X}_{N}^{2})$$
(recall: $Var(Y) = E(Y^{2}) - E(Y^{2})$

$$= \frac{1}{N-1}\sum_{N=1}^{N}E(K_{N}^{2}) - \frac{N}{N-1}E(\bar{X}_{N}^{2})$$
Fact: $E(Y^{2}) = Var(Y)$

$$= \frac{1}{N-1}\sum_{N=1}^{N}E(K_{N}^{2}) - \frac{N}{N-1}E(\bar{X}_{N}^{2})$$
recall $E(X_{N}) = M$

$$Var(X_{N}) = 6^{2} Var(\bar{X}_{N}) = 6^{2}N$$

$$= \frac{1}{N-1}N(6^{2} + \mu^{2}) - \frac{N}{N-1}(6^{2}N + \mu^{2})$$

$$= algebra$$

$$= 6^{2}$$

Saw: $E[X_N] = M$ X_N is unbiased for M $E[S_{N-1}] = 6^2$ S_{N-1} is unbiased for 6^2

Defn! Un biased

We say a stertistic T is unbiascel for a quantity Θ if $E[T(X)] = \Theta$.

Theorem: MGFs of X_N .

(et $X_n \stackrel{iid}{\sim} f$ then $M_{\overline{X}_N}(t) = (M_{X_i}(t_N))^N$

proof. $M_{X}(t) = E[e^{tX}] = E[e^{t\frac{1}{N}\sum_{n=1}^{N}X_{n}}]$ $= E[\prod_{n=1}^{N} e^{t\frac{1}{N}X_{n}}] (property of explicitly eath = e^{aeh})$ $= \prod_{n=1}^{N} E[e^{t}NX_{n}] (by independence)$ $= \prod_{n=1}^{N} M_{X_{n}}(t_{N})$ $= \prod_{n=1}^{N} M_{X_{n}}(t_{N})$

	$= M_{X_1}(t/N) M_{X_1}(t/N) - \cdots M_{X_n}(t/N)$
	$= \left(M_{\chi_{i}}(\forall_{\mathcal{N}}) \right)^{N}$
1	reason (id N(u, 62) then $X_N \sim N(u, 6_N^2)$.
	proof $M_{\overline{X}}(t) = \left(M_{X_{1}}(t/N)\right)^{N} \text{for } X_{1} \sim N(u_{1}6^{2})$ $= \left(\exp(ut/N + \frac{6^{2}}{2N^{2}})\right)^{N} \left(e^{a}\right) = e^{ah}$ $= \left(e^{x}p(ut/N + \frac{6^{2}}{2N^{2}})\right)^{N} \left(e^{a}\right) = e^{ah}$
	$= \left(\exp\left(\mu t/N + \frac{6^2 t^2}{2N^2} \right) \right)^N \left(e^{a} \right)^2 = e^{ab}$
	$= exp\left(\mu t + \frac{\sigma^2}{N} t^2\right)$
	Notice Hut Is the MEF of a N(u, 5%)
	So $X \sim N(\mu, 6^2)$.