

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Title: Implement Kruskal's Algorithm

ALGORITHMS LAB
CSE 206

GREEN UNIVERSITY OF BANGLADESH

1 Objective(s)

• To learn Kruskal's algorithm to find Minimum Spanning Tree (MST) of a graph.

2 Problem Analysis

2.1 Kruskal's Algorithm

Kruskal's algorithm is a minimum spanning tree algorithm that takes a graph as input and finds the subset of the edges of that graph which

- form a tree that includes every vertex.
- has the minimum sum of weights among all the trees that can be formed from the graph.

2.2 How Kruskal's algorithm works

It falls under a class of algorithms called greedy algorithms that find the local optimum in the hopes of finding a global optimum. We start from the edges with the lowest weight and keep adding edges until we reach our goal. The steps for implementing Kruskal's algorithm are as follows:

- Sort all the edges from low weight to high.
- Take the edge with the lowest weight and add it to the spanning tree. If adding the edge created a cycle, then reject this edge.
- Keep adding edges until we reach all vertices.

2.3 Kruskal's Algorithm Complexity

The time complexity Of Kruskal's Algorithm is: O(E log E).

2.4 Example of Kruskal's algorithm

Figure 1: Start with a weighted graph

- (a) Choose the edge with the least weight, if there are more than 1, choose anyone
- (b) Choose the next shortest edge and add it

Figure 2: Step 2 and 3

(a) Choose the next shortest edge that doesn't create a cycle (b) Choose the next shortest edge that doesn't create a cycle and add it

Figure 3: Step 4 and 5

Figure 4: Repeat until you have a spanning tree

3 Algorithm

Algorithm 1: Kruskal Algorithm

```
1 KRUSKAL(G):
2 A = \emptyset
3 for each vertex v \in G.V: do
4 | MAKE-SET(v)
5 end
6 for each edge (u, v) \in G.E ordered by increasing order by weight(u, v): do
7 | if FIND-SET(u) \neq FIND-SET(v): then
8 | A = A \cup (u, v)
9 | UNION(u, v)
10 | end
11 end
12 return A
```

4 Implementation in Java

```
// Java program for Kruskal's algorithm to
2
   // find Minimum Spanning Tree of a given
   //connected, undirected and weighted graph
3
   import java.util.*;
   import java.lang.*;
5
   import java.io.*;
6
7
8
   class Graph {
9
        // A class to represent a graph edge
       class Edge implements Comparable<Edge>
10
11
        {
           int src, dest, weight;
12
13
            // Comparator function used for
14
            // sorting edgesbased on their weight
15
16
           public int compareTo(Edge compareEdge)
17
                return this.weight - compareEdge.weight;
18
19
            }
20
       };
21
22
        // A class to represent a subset for
        // union-find
23
24
       class subset
25
        {
26
            int parent, rank;
27
        };
28
29
       int V, E; // V-> no. of vertices & E->no.of edges
       Edge edge[]; // collection of all edges
30
31
        // Creates a graph with V vertices and E edges
32
33
       Graph(int v, int e)
34
35
           V = V;
36
           E = e;
37
            edge = new Edge[E];
            for (int i = 0; i < e; ++i)</pre>
38
```

```
39
                edge[i] = new Edge();
40
41
        // A utility function to find set of an
42
43
        // element i (uses path compression technique)
       int find(subset subsets[], int i)
44
45
        {
            // find root and make root as parent of i
46
            // (path compression)
47
           if (subsets[i].parent != i)
48
49
                subsets[i].parent
                    = find(subsets, subsets[i].parent);
50
51
52
           return subsets[i].parent;
53
       }
54
        // A function that does union of two sets
55
56
        // of x and y (uses union by rank)
       void Union(subset subsets[], int x, int y)
57
58
        {
            int xroot = find(subsets, x);
59
60
           int yroot = find(subsets, y);
61
62
            // Attach smaller rank tree under root
            // of high rank tree (Union by Rank)
63
           if (subsets[xroot].rank
64
                < subsets[yroot].rank)
65
                subsets[xroot].parent = yroot;
66
67
           else if (subsets[xroot].rank
68
                     > subsets[yroot].rank)
69
                subsets[yroot].parent = xroot;
70
71
           // If ranks are same, then make one as
            // root and increment its rank by one
72
73
            else {
                subsets[yroot].parent = xroot;
74
75
                subsets[xroot].rank++;
76
           }
77
        }
78
79
       // The main function to construct MST using Kruskal's
        // algorithm
80
81
       void KruskalMST()
82
83
            // Tnis will store the resultant MST
           Edge result[] = new Edge[V];
84
85
            // An index variable, used for result[]
86
87
           int e = 0;
88
89
            // An index variable, used for sorted edges
90
            int i = 0;
           for (i = 0; i < V; ++i)</pre>
91
                result[i] = new Edge();
92
93
94
            // Step 1: Sort all the edges in non-decreasing
            // order of their weight. If we are not allowed to
95
            // change the given graph, we can create a copy of
96
```

```
97
            // array of edges
98
            Arrays.sort(edge);
99
            // Allocate memory for creating V ssubsets
100
101
            subset subsets[] = new subset[V];
            for (i = 0; i < V; ++i)</pre>
102
103
                 subsets[i] = new subset();
104
            // Create V subsets with single elements
105
            for (int v = 0; v < V; ++v)
106
107
108
                 subsets[v].parent = v;
109
                 subsets[v].rank = 0;
110
             }
111
            i = 0; // Index used to pick next edge
112
113
114
             // Number of edges to be taken is equal to V-1
            while (e < V - 1)
115
116
             {
                 // Step 2: Pick the smallest edge. And increment
117
118
                 // the index for next iteration
119
                 Edge next_edge = edge[i++];
120
121
                 int x = find(subsets, next_edge.src);
                 int y = find(subsets, next_edge.dest);
122
123
124
                 // If including this edge does't cause cycle,
125
                 // include it in result and increment the index
126
                 // of result for next edge
127
                 if (x != y) {
128
                     result[e++] = next_edge;
129
                     Union(subsets, x, y);
130
                 // Else discard the next_edge
131
132
            }
133
134
            // print the contents of result[] to display
135
             // the built MST
136
            System.out.println("Following are the edges in "
137
                                 + "the constructed MST");
138
            int minimumCost = 0;
139
            for (i = 0; i < e; ++i)
140
             {
141
                 System.out.println(result[i].src + " -- "
142
                                     + result[i].dest
                                     + " == " + result[i].weight);
143
                 minimumCost += result[i].weight;
144
145
146
            System.out.println("Minimum Cost Spanning Tree "
147
                                 + minimumCost);
148
        }
149
150
        // Driver Code
151
        public static void main(String[] args)
152
153
            /* Let us create following weighted graph
154
```

```
155
                      10
156
157
                 / \
                     5\
                          /15
158
                     \ /
159
                 2----3
160
                     4
161
                              */
             int V = 4; // Number of vertices in graph
162
             int E = 5; // Number of edges in graph
163
164
             Graph graph = new Graph(V, E);
165
             // add edge 0-1
166
167
             graph.edge[0].src = 0;
168
             graph.edge[0].dest = 1;
             graph.edge[0].weight = 10;
169
170
             // add edge 0-2
171
172
             graph.edge[1].src = 0;
             graph.edge[1].dest = 2;
173
             graph.edge[1].weight = 6;
174
175
176
             // add edge 0-3
             graph.edge[2].src = 0;
177
178
             graph.edge[2].dest = 3;
             graph.edge[2].weight = 5;
179
180
             // add edge 1-3
181
182
             graph.edge[3].src = 1;
183
             graph.edge[3].dest = 3;
             graph.edge[3].weight = 15;
184
185
186
             // add edge 2-3
187
             graph.edge[4].src = 2;
             graph.edge[4].dest = 3;
188
             graph.edge[4].weight = 4;
189
190
191
             // Function call
             graph.KruskalMST();
192
193
        }
194
```

5 Sample Input/Output (Compilation, Debugging & Testing)

Following are the edges in the constructed MST

```
2-3 == 4
0-3 == 5
0-1 == 10
```

Minimum Cost Spanning Tree: 19

6 Discussion & Conclusion

Based on the focused objective(s) to understand about the MST algorithms, the additional lab exercise made me more confident towards the fulfilment of the objectives(s).

7 Lab Task (Please implement yourself and show the output to the instructor)

1. Write a Program in java to find the Second Best Minimum Spanning Tree using Kruskal Algorithm.

7.1 Problem analysis

A Minimum Spanning Tree T is a tree for the given graph G which spans over all vertices of the given graph and has the minimum weight sum of all the edges, from all the possible spanning trees. A second best MST T' is a spanning tree, that has the second minimum weight sum of all the edges, from all the possible spanning trees of the graph G.

7.2 Using Kruskal's Algorithm

We can use Kruskal's algorithm to find the MST first, and then just try to remove a single edge from it and replace it with another.

- 1. Sort the edges in O(ElogE), then find a MST using Kruskal in O(E).
- 2. For each edge in the MST (we will have V-1 edges in it) temporarily exclude it from the edge list so that it cannot be chosen.
- 3. Then, again try to find a MST in O(E) using the remaining edges.
- 4. Do this for all the edges in MST, and take the best of all. Note: we don't need to sort the edges again in for Step 3.

Figure 5: In this figure left is the MST and right is the second best MST

8 Lab Exercise (Submit as a report)

• Find the number of distinct minimum spanning trees for a given weighted graph.

9 Policy

Copying from internet, classmate, seniors, or from any other source is strongly prohibited. 100% marks will be deducted if any such copying is detected.