Package 'rfVarImpOOB'

October 14, 2022

Title Unbiased Variable Importance for Random Forests

Version 1.0.3
Date 2022-06-30
Depends R (>= 3.2.2), stats, randomForest
Imports ggplot2, ggpubr, dplyr,titanic,magrittr,ranger
Suggests knitr,rmarkdown
Author Markus Loecher <markus.loecher@gmail.com></markus.loecher@gmail.com>
Maintainer Markus Loecher < Markus Loecher@gmail.com>
Description Computes a novel variable importance for random forests: Impurity reduction importance scores for out-of-bag (OOB) data complementing the existing inbag Gini importance, see also <doi:10.1080 03610926.2020.1764042="">. The Gini impurities for inbag and OOB data are combined in three different ways, after which the information gain is computed at each split. This gain is aggregated for each split variable in a tree and averaged across trees.</doi:10.1080>
License GPL (>= 2)
Repository CRAN
LazyData true
VignetteBuilder knitr
NeedsCompilation no
Date/Publication 2022-07-01 14:40:02 UTC
R topics documented: Accuracy
arabidopsis
GiniImportanceForest 4 GiniImportanceTree 5
gini_index
gini_process
InOutBags
lpnorm

2 Accuracy

	mlogloss Mode plotVI plotVI2 preorder2 . rfTitanic splitBag titanic_train	 	 	 	 . ,	 	 	 	 	 	 	 	· · · · · ·	 	 	 	 15 16 17 19 20 21
Index																	23

Accuracy

computes accuracy of a vector

Description

Accuracy is defined as the proportion of correct labels

Usage

```
Accuracy(y, yHat, dig = 8)
```

Arguments

y vector of categorical/nominal values

yHat prediction/estimate dig number of digits

Value

Accuracy defined as proportion of values equal to majority

Author(s)

Markus Loecher < Markus.Loecher@gmail.com>

arabidopsis 3

Accuracy(c(rep(0,9),1), 0)

arabidopsis

Arabidopsis thaliana

Description

RNA editing is the process whereby RNA is modified from the sequence of the corresponding DNA template [1]. For instance, cytidine-to-uridine conversion (abbreviated C-to-U conversion) is common in plant mitochondria. The mechanisms of this conversion remain largely unknown, although the role of neighboring nucleotides is emphasized. Cummings and Myers [1] suggest to use information from sequence regions flanking the sites of interest to predict editing in Arabidopsis thaliana, Brassicanapus and Oryza sativa based on random forests. The Arabidopsis thaliana data of [1] can be loaded from the journal Web site.

For each of the 876 observations, the data set gives

the response at the site of interest (binary: edited/not edited) and as potential predictor variables the 40 nucleotides at positions -20 to 20, relative to the edited site (4 categories), cp: the codon position (4 categories), fe: the estimated folding energy (continuous) and dfe: the difference in estimated folding energy between pre- edited and edited sequences (continuous).

Usage

arabidopsis

Format

Data frame with columns

edit binary: the response at the site of interest

X.k nucleotides at positions -k, relative to the edited site (4 categories)

Xk nucleotides at positions k, relative to the edited site (4 categories)

cp the codon position (4 categories),

fe the estimated folding energy (continuous)

dfe the difference in estimated folding energy between pre- edited and edited sequences (continuous)

Source

[1] Cummings, Michael P, and Daniel S Myers. Simple Statistical Models Predict C-to-U Edited Sites in Plant Mitochondrial RNA. BMC Bioinformatics, 2004, 7.

Examples

arabidopsis

 $\begin{array}{ll} {\tt GiniImportanceForest} & \textit{computes inbag and OOB Gini importance averaged over all trees in} \\ & \textit{a forest} \end{array}$

Description

workhorse function of this package

Usage

```
GiniImportanceForest(RF, data, ylabel = "Survived", zeroLeaf = TRUE,
    agg = c("mean", "median", "none")[1], score = c("PMDI21",
        "MDI", "MDA", "MIA")[1], Predictor = Mode, verbose = 0)
```

Arguments

RF	object returned by call to randomForest()
data	data which was used to train the RF. NOTE: assumes setting of inbag=TRUE while training
ylabel	name of dependent variable
zeroLeaf	if TRUE discard the information gain due to splits resulting in n=1
agg	method of aggregating importance scores across trees. If "none" return the raw arrays (for debugging)
score	scoring method:MDI=mean decrease impurity (Gini),MDA=mean decrease accuracy (permutation),MIA=mean increase accuracy
Predictor	function to estimate node prediction, such as Mode or mean or median. Alternatively, pass an array of numbers as replacement for the yHat column of tree
verbose	level of verbosity

Value

matrix with variable importance scores and their stdevs

Author(s)

Markus Loecher < Markus.Loecher@gmail.com>

GiniImportanceTree 5

Examples

GiniImportanceTree

computes Gini information gain for one tree from randomForest

Description

computes importance scores for an individual tree.

These can be based on Gini impurity or Accuracy or logloss

6 GiniImportanceTree

Usage

```
GiniImportanceTree(bag, RF, k, ylabel = "Survived", returnTree = FALSE,
    zeroLeaf = TRUE, score = c("PMDI21", "MDI", "MDA", "MIA")[1],
    Predictor = Mode, verbose = 0)
```

Arguments

bag data to compute the Gini gain for

RF object returned by call to randomForest()

k which tree

ylabel name of dependent variable

returnTree if TRUE returns the tree data frame otherwise the aggregated Gini importance

grouped by split variables

zeroLeaf if TRUE discard the information gain due to splits resulting in n=1

score scoring method:PMDI=mean decrease penalized Gini impurity (note:the last

digit is the exponent of the penalty!),

MDI=mean decrease impurity (Gini), MDA=mean decrease accuracy (permuta-

tion),

MIA=mean increase accuracy

Predictor function to estimate node prediction, such as Mode or mean or median. Alter-

natively, pass an array of numbers as replacement for the yHat column of tree

verbose level of verbosity

Value

if returnTree==TRUE returns the tree data frame otherwise the aggregated Gini importance grouped by split variables

Author(s)

Markus Loecher < Markus.Loecher@gmail.com>

```
rfTit = rfTitanic(nRows = 500,nodesize=10)
rfTit$data$Survived = as.numeric(rfTit$data$Survived)-1
```

gini_index 7

```
k=1

tmp <- InOutBags(rfTit$RF, rfTit$data, k)

IndivTree =getTree(rfTit$RF,k)

#plot(as.party(tmp))#does not work

InTree = GiniImportanceTree(tmp$inbag,rfTit$RF,k,returnTree=TRUE)

OutTree = GiniImportanceTree(tmp$outbag,rfTit$RF,k,returnTree=TRUE)</pre>
```

gini_index

compute Gini impurity for binary values only

Description

simple function to compute simple or penalized Gini impurity

The "penalty" compares the class probabilities pHat with a reference estimate pEst which would typically serve as a prediction (e.g. in a tree node).

Usage

```
gini_index(pHat, pEst = NULL, k = 2, kind = 1, w = 2)
```

Arguments

pHat	probabilities from the current data,
pEst	estimated class probabilities (typically from an earlier inbag estimation). Only pass if you intend to compute the "validation-penalized Gini"
k	exponent of penalty term: abs(pHat-pEst)^k
kind	kind of penalty
W	weights, default is 2 if you pass just a single probability instead of the vector $(p,1-p)$

gini_index

Value

simple or penalized Gini impurity

Author(s)

Markus Loecher < Markus.Loecher@gmail.com>

Examples

```
#Test binary case:
gini_index(0.5,0.5,kind=1)
gini_index(0.9,0.1,kind=1)
gini_index(0.1,0.9,kind=1)
gini_index(0.5,0.5,kind=2)
gini_index(0.9,0.1,kind=2)
gini_index(0.1,0.9,kind=2)
gini_index(0.5,0.5,kind=3)
gini_index(0.9,0.1,kind=3)
```

gini_index(0.1,0.9,kind=3)

gini_process 9

gini_process

computes Gini index

Description

computes Gini index

Usage

```
gini_process(classes, splitvar = NULL)
```

Arguments

classes

vector of factors/categorical vars

splitvar

split variable

Value

Gini index

Author(s)

Markus Loecher < Markus.Loecher@gmail.com>

```
#Test binary case:

#50/50split

gini_process(c(rep(0,10),rep(1,10)))#0.5 CORRECT !

#10/90split

gini_process(c(rep(0,1),rep(1,9)))#0.18= CORRECT !
```

10 gini_process

```
#0/100split
gini\_process(factor(c(rep(0,0),rep(1,10)), levels=c(0,1)))#0
#Test binary case:
#25/25/25/25 split
gini\_process(factor(c(rep(0,5),rep(1,5),rep(2,5),
                       rep(3,5)), levels=c(0:3))#0.75 = 4*0.25*0.75 CORRECT!
#10/10/10/70 split
gini_process(factor(c(rep(0,1),rep(1,1),rep(2,1),
                       rep(3,7)), levels=c(0:3)))#0.48 = 3*0.1*0.9+0.7*0.3 CORRECT!
#0/0/0/100 split
\label{eq:gini_process} gini\_process(factor(c(rep(0,0),rep(1,0),rep(2,0),
                       rep(3,20)), levels=c(0:3)))#0. CORRECT !
```

InOutBags 11

InOutBags	separates data into inbag and outbag	
-----------	--------------------------------------	--

Description

convenience function to mitigate risk of improperly disentangling train/test

NOTE: the original row names (too dangerous for repeated rows) are not kept but instead recorded in a separate column

Usage

```
InOutBags(RF, data, k, inclRowNames = TRUE, NullRowNames = TRUE,
    verbose = 0)
```

Arguments

RF object returned by call to randomForest()

data which was used to train the RF. NOTE: assumes setting of inbag=TRUE

while training

k tree number

inclRowNames create extra column of original row names

NullRowNames if TRUE set row names to NULL

verbose level of verbosity

Value

inbag and outbag subsets of the original data

Author(s)

Markus Loecher < Markus.Loecher@gmail.com>

```
rfTit = rfTitanic(nRows = 200, nodesize=10, ntree = 5)
```

12 lpnorm

```
tmp <- InOutBags(rfTit$RF, rfTit$data, k)</pre>
```

1pnorm

Compute the Lp norm of a vector.

Description

Compute the Lp norm of a vector.

Usage

```
lpnorm(x, p = 2)
```

Arguments

x vector to compute the Lp norm of

p parameter of p norm

Value

Lp norm of a vector or NA

Author(s)

Markus Loecher < Markus.Loecher@gmail.com>

```
lpnorm(1:10)
lpnorm(matrix(1:25, 5, 5))
lpnorm(split(1:25, rep(1:5, each = 5)))
lpnorm(1:10, 1)
```

mlogloss 13

```
lpnorm(matrix(1:25, 5, 5), 1)
lpnorm(split(1:25, rep(1:5, each = 5)), 1)

lpnorm(rnorm(10), 0)

lpnorm(matrix(rnorm(25), 5, 5), 0)

lpnorm(split(rnorm(25), rep(1:5, each = 5)), 0)

lpnorm(-5:5, Inf)

lpnorm(matrix(-25:-1, 5, 5), Inf)

lpnorm(split(-25:-1, rep(1:5, each = 5)), Inf)
```

mlogloss

computes log loss for multiclass problem

Description

computes log loss for multiclass problem

Usage

```
mlogloss(actual, pred_m, eps = 0.001)
```

Arguments

actual	integer vector with truth labels, values range from 0 to n - 1 classes
pred_m	predicted probs: column 1 => label 0, column 2 => label 1 and so on
eps	numerical cutoff taken very high

14 mlogloss

Author(s)

Markus Loecher Markus Loecher@gmail.com

```
# require(nnet)
# set.seed(1)
# actual = as.integer(iris$Species) - 1
# fit = nnet(Species ~ ., data = iris, size = 2)
# pred = predict(fit, iris)#note this is a 3-column prediction matrix!
#
# mlogloss(actual, pred) # 0.03967
#library(titanic)
#baseline prediction
#data(titanic_train, package="titanic")
yHat = mean(titanic_train$Survived)#0.383838
mlogloss(titanic_train$Survived,yHat)
#try factors
```

Mode 15

```
titanic_train$Survived = as.factor(titanic_train$Survived)
mlogloss(titanic_train$Survived,yHat)
```

Mode

computes the mode of an array

Description

returns the mode of a vector

Usage

Mode(x)

Arguments

х

vector to find mode of

Author(s)

Markus Loecher < Markus.Loecher@gmail.com>

```
Mode(rep(letters[1:3],1:3))
Mode(c(TRUE,TRUE,FALSE))
Mode(c(TRUE,TRUE,FALSE,FALSE))
```

16 plotVI

plotVI

creates barplots for variable importances

Description

creates barplots for variable importances

Usage

```
plotVI(VIbench, order_by = "Gini_00B", decreasing = TRUE)
```

Arguments

VIbench matrix with importance scores as returned by GiniImportanceForest

order_by how to order

decreasing which direction to sort

Author(s)

Markus Loecher < Markus.Loecher@gmail.com>

plotVI2

plotVI(VI_Titanic,decreasing = TRUE)

plotVI2

creates barplots for variable importances

Description

creates barplots for variable importances including permutation scores

Usage

```
plotVI2(VIbench, decreasing = TRUE, with_MDA = TRUE, ordered_by = "inbag",
    score = "Gini Importance", horizontal = TRUE, fill = "order",
    labelSize = 10, nrow = 3)
```

Arguments

VIbench	matrix with importance scores as returned by GiniImportanceForest
decreasing	which direction to sort
with_MDA	also visualize mean decrease in accuracy (permutation importance)
ordered_by	how to order
score	type of importance score: Gini, MIA,
horizontal	horizontal barplot instead of vertical ?
fill	fill style for barplots; use e.g. shQuote("blue") to pass color strings
labelSize	size of axis labels
nrow	number of rows of ploztz arrangement

plotVI2

Author(s)

Markus Loecher < Markus.Loecher@gmail.com>

```
data("titanic_train", package = "rfVarImp00B", envir = environment())
set.seed(123)
ranRows=sample(nrow(titanic_train), 300)
data=titanic_train[ranRows,]
RF = randomForest::randomForest(formula = Survived ~ Sex + Pclass + PassengerId,
                         data=data,
                    ntree=5,importance=TRUE,
                    mtry=3,keep.inbag=TRUE,
                    nodesize = 20)
data$Survived = as.numeric(data$Survived)-1
VI_Titanic = GiniImportanceForest(RF, data,ylab="Survived")
plotVI2(VI_Titanic,decreasing = TRUE)
```

preorder2

preorder2	recursive traversal of tree assigning row numbers of data for each
	node and leaf

Description

Recursive calling stops at leaf after which the function propagates back up the tree

Usage

```
preorder2(treeRow, bag, tree, verbose = 0)
```

Arguments

treeRow current row of tree dataframe to be

bag The data for the current row

tree tree (from randomForest::getTree to be traversed

verbose level of verbosity

Value

tree with rownames in column node

Author(s)

Markus Loecher < Markus.Loecher@gmail.com>

20 rfTitanic

```
nodesize = 1)
k=2
tree = randomForest::getTree(RF, k, labelVar = TRUE)
tree$node=NA
attr(tree, "rflib") = "randomForest"
inbag = rep(rownames(RF$inbag),time=RF$inbag[,k])
#trainBag=titanic_train[inbag,]
trainBag=titanic_train[ranRows,][inbag,]
tree=preorder2(1,trainBag,tree)
```

rfTitanic

fit a random forest model on the titanic data

Description

convenience function to reduce overhead of repeatedly fitting RF to titanic data

Usage

```
rfTitanic(formel = Survived ~ Sex + Pclass + PassengerId, nRows = 500,
    ntree = 10, mtry = 3, nodesize = 1)
```

Arguments

formel	formula
nRows	subsample size
ntree	number of trees
mtry	mtry
nodesize	nodesize

Author(s)

Markus Loecher < Markus.Loecher@gmail.com>

splitBag 21

Examples

```
rfTit = rfTitanic(nRows = 500,nodesize=10)
```

splitBag

splits the data from parent node into left and right children

Description

The function properly splits on factor levels

Usage

```
splitBag(treeRow, bag, tree)
```

Arguments

treeRow current row of tree dataframe to be

bag The data for the current row

tree (from randomForest::getTree)

Value

list with elements left_daughter, right_daughter

Author(s)

Markus Loecher < Markus.Loecher@gmail.com>

titanic_train

Titanic train data.

Description

Titanic train data.

Usage

titanic_train

22 titanic_train

Format

Data frame with columns

PassengerId Passenger ID

Survived Passenger Survival Indicator

Pclass Passenger Class

Name Name

Sex Sex

Age Age

SibSp Number of Siblings/Spouses Aboard

Parch Number of Parents/Children Aboard

Ticket Ticket Number

Fare Passenger Fare

Cabin Cabin

Embarked Port of Embarkation

Source

https://www.kaggle.com/c/titanic/data

Examples

titanic_train

Index

```
\ast datasets
     arabidopsis, 3
     titanic_train, 21
Accuracy, 2
arabidopsis, 3
gini_index, 7
{\tt gini\_process}, \textcolor{red}{9}
{\tt GiniImportanceForest, 4}
GiniImportanceTree, 5
InOutBags, 11
1pnorm, 12
mlogloss, 13
Mode, 15
plotVI, 16
plotVI2, 17
preorder2, 19
\texttt{rfTitanic}, \textcolor{red}{20}
splitBag, 21
\texttt{titanic\_train}, \textcolor{red}{21}
```