

Semester 2 Examinations 2015/2016

Exam Code(s) Exam(s)	4BCT, 1SD, 1MF, 4BS 4th Year B.Sc. (CS&IT) Higher Diploma in Applied Science (Software Design & Development) Masters in Software Design & Development 4th Year B.Sc.	
Module Code(s) Module(s)	CT404, CT336 Graphics and Image Processing	
Paper No. Repeat Paper		
External Examiner(s)	Prof. L. Maguire	
Internal Examiner(s)	Dr. J. Power Prof. G. Lyons Dr. J. Duggan * Dr. S. Redfern	
	nswer any three questions. I questions carry equal marks.	
Duration	2 hours	
No. of Pages Discipline(s) Course Co-ordinator	5 Information Technology r(s)	
Requirements: MCQ Handout Statistical/ Log Tables Cambridge Tables Graph Paper Log Graph Paper Other Materials	Release to Library: Yes X No	
Graphic material in colour	Yes No	
	<u>PTO</u>	

Q.1. (Graphics)

- (i) Explain the concept <u>Nested Coordinate System</u> as it applies to computer graphics. Why are nested coordinate systems useful? [6]
- (ii) Provide short sections of code illustrating the use of nested coordinate systems in both Canvas/Javascript, and in X3D [8]
- (iii) <u>Antialiasing</u> is an approach in 2D raster graphics, which uses colour (depth) as a means to simulate an increase in resolution. With reference to the 'G' figures illustrated below, discuss the antialiasing technique, and in particular the concept of <u>sub-pixel accuracy</u>. [6]

Q.2. (Graphics)

- (i) Describe the use of <u>extrusion</u> in X3D, referring to each of the seven fields used by the Extrusion node. Note that extrusion and other useful nodes from the X3D language are summarised on the final page of this exam paper. [5]
- (ii) Write X3D code to make the 3D model of a glass-topped table as illustrated. Note the tapering shape of the legs, and the circular buffers between the legs and the table-top.

Include a diagram of your model showing its measurements, and make the model as geometrically accurate as possible

[10]

Define Materials for the model: the legs are a diffuse brown colour, and the top is semi-transparent [5]

Q.3. (Graphics)

- (i) What are <u>surface normals</u>? Why are they essential to surface shading algorithms? Refer to <u>Lambert Shading</u> and <u>Gourard Shading</u>. Use diagrams to illustrate your answer.
- (ii) Two powerful techniques for rendering shadows in realtime 3D environments are <u>radiosity</u>, and <u>ambient occlusion</u>. Explain these techniques in simple terms, drawing attention to their suitability for pre-runtime computation. [6]
- (iii) With respect to 3D graphics rendering, define the terms: specular colour, diffuse colour, ambient lighting. Illustrate each term with a diagram. [6]

Q.4. (Image Processing)

- (i) With respect to morphological image processing, outline the following operations: <u>erosion</u>, <u>dilation</u>, <u>opening</u>, and <u>closing</u>, as applied to binary images. [8]
- (ii) The image below depicts a number of circular buttons on a table. Outline a suitable series of image processing operations for automatically counting the number of buttons. Explain why your solution is appropriate, and briefly explain the details of each proposed step. You will need to deal with: noise, varying background brightness, the fact that some buttons are touching or overlapping, and the fact that many of the buttons have dark patterns on them. [12]

Q.5. (Image Processing)

- (i) <u>Camera decalibration</u> is a technique for geometric correction of images which is often employed when sources of geometric error are poorly understood. With regard to camera decalibration:
 - Outline the use of reference images such as grids of dots to construct and apply geometric corrections to images captured with a wide-angle lens (e.g. the image below). Use the terms 'control points', 'pixel filling', and 'bilinear interpolation' in your answer.
 - Explain why would you expect a reference image to be constructed with black markings on a white background (or white markings on a black background)

[3]

(ii) In many cases, it may not be possible to robustly segment an image based on detected edges. One solution is to apply template matching approaches such as the <u>Hough Transform</u>. Explain in simple terms the operation of the Hough Transform as it applies to circles, indicating why it might be a good choice for automatic extraction of circle-like shapes such as those depicted in this noisy image. [10]

Some useful X3D nodes:

Node	Important Fields and Nested Nodes		
Shape	Nested Nodes: Appearance, Geometry Nodes (Box,		
	Sphere, Cone, Cylinder, Text, Extrusion, etc.)		
Appearance	Nested Nodes: Material, ImageTexture		
Material	Fields: diffuseColor, specularColor, emissiveColor,		
	ambientIntensity, transparency, shininess		
ImageTexture	<u>Fields</u> : url		
Transform	<u>Fields</u> : translation, rotation, scale, center.		
	Nested Nodes: Other Transforms, Shapes, Sensors		
TimeSensor	Fields: enabled, startTime, stopTime, cycleInterval,		
	loop		
PositionInterpolator	<u>Fields</u> : key, keyValue		
OrientationInterpolator	<u>Fields</u> : key, keyValue		
Extrusion	<u>Fields</u> : crossSection, spine, scale, orientation,		
	beginCap, endCap, creaseAngle		
Box	<u>Fields</u> : size		
Sphere	Fields: radius		
Cylinder	Fields: radius, height, side, top, bottom		
Cone	Fields: height, bottomRadius, side, bottom		
PointLight Fields: on, location, radius, intensity,			
	ambientIntensity, color, attenuation		
ROUTE	Fields: fromNode, fromField, toNode, toField		

Some useful methods/properties of the Canvas 2D Context object:

Method/Property	Arguments/Values	Notes
fillRect	(Left, Top, Width, Height)	Draw a filled rectangle
beginPath	None	Start a stroked path
moveTo	(X, Y)	Move the graphics cursor
lineTo	(X, Y)	Draw a line from graphics
		cursor
stroke	None	End a stroked path
fillStyle	="rgb(R,G,B)"	Set fill colour
strokeStyle	="rgb(R,G,B)"	Set line colour
save	None	Save the current coordinate
		system
restore	None	Restore the last saved coord
		system
translate	(X,Y)	Translate the coordinate system
rotate	(angle)	Rotate the coordinate system
		clockwise, with angle in
		radians
scale	(X,Y)	Scale the coordinate system
		independently on the X and Y
		axes