We claim:-

1.	A biodegradable	polyester	mixture	comprising
----	-----------------	-----------	---------	------------

- from 5% to 80% by weight, based on the total weight of components i to ii, of at least one polyester based on aliphatic and aromatic dicarboxylic acids and an aliphatic dihydroxy compound (component i) and
- from 20% to 95% by weight, based on the total weight of components i to ii, of at least one renewable raw material (component ii) and

from 0.1% to 15% by weight, based on the total weight of components i to ii, of a component iii which is capable of forming covalent bonds with both component i and component ii.

15

- 2. The biodegradable polyester mixture according to claim 1 wherein said component i is polymerized from:
 - A) an acid component comprising

20

- a1) from 30 to 99 mol% of at least one aliphatic or at least one cycloaliphatic dicarboxylic acid or its ester-forming derivatives or mixtures thereof
- 25 a2
- a2) from 1 to 70 mol% of at least one aromatic dicarboxylic acid or its ester-forming derivative or mixtures thereof and
 - a3) from 0 to 5 mol% of a sulfonated compound,

30

- the mole percentages of said components a1) to a3) adding up to 100% and
- B) a diol component comprising at least one C_{2^-} to C_{12^-} alkanediol or a C_{5^-} to C_{10^-} cycloalkanediol or mixtures thereof

35

- and if desired additionally one or more components selected from
- C) a component selected from

c1) at least one dihydroxy compound which comprises ether functions and has the formula I

$$HO-[(CH_2)_n-O]_m-H$$
 (1)

5

where n is 2, 3 or 4 and m is an integer from 2 to 250,

c2) at least one hydroxy carboxylic acid of the formula lla or llb

$$HO - [-C(O)-G-O-]_{\overline{p}}H$$

(IIa)

(IIb)

10

where p is an integer from 1 to 1500, r is an integer from 1 to 4 and G is a radical selected from the group consisting of phenylene, $-(CH_2)_{q}$, where q is an integer from 1 to 5, -C(R)H- and $-C(R)HCH_2$, where R is methyl or ethyl,

15

c3) at least one amino- C_2 - to C_{12} -alkanol or at least one amino- C_5 - to C_{10} cycloalkanol or mixtures thereof

20

- c4) at least one diamino-C₁- to C₈-alkane
- c5) at least one 2,2'-bisoxazoline of the general formula III

$$\begin{bmatrix} N \\ C - R^{1} - C \\ O \end{bmatrix}$$
 (III)

25

where R^1 is a single bond, a $(CH_2)_z$ -alkylene group, where z = 2, 3 or 4, or a phenylene group

30

of the natural amino acids, polyamides obtainable by polycondensation of a dicarboxylic acid having from 4 to 6 carbon atoms and a diamine having from 4 to 10 carbon atoms, compounds of the formulae IV a and IVb

$$HO - \left[-C(O) - T - N(H) - \right]_{S} H - \left[-C(O) - T - N(H) - \right]_{t}$$
(IVa)
(IVb)

where s is an integer from 1 to 1500, t is an integer from 1 to 4 and T is a radical selected from the group consisting of phenylene, - $(CH_2)_u$ -, where u is an integer from 1 to 12, - $C(R^2)H$ - and - $C(R^2)HCH_2$, where R^2 is methyl or ethyl,

and polyoxazolines containing the repeat unit V

10

5

where R^3 is hydrogen, C_1 - C_6 -alkyl, C_5 - C_8 -cycloalkyl, unsubstituted or C_1 - C_4 -alkyl-monosubstituted, -disubstituted or -trisubstituted phenyl or is tetrahydrofuryl,

15

or mixtures of c1) to c6)

and

20

- D) a component selected from
 - d1) at least one compound having at least three groups capable of ester formation,

25

- d2) at least one isocyanate
- d3) at least one divinyl ether

or mixtures of d1) to d3).

30

3. The biodegradable polyester mixture according to claim 1 or 2 wherein said component ii is one or more selected from the group consisting of starch, cellulose, lignin, wood and cereals.

20°

- 1. The biodegradable polyester mixture according to any of claims 1 to 3 wherein said component iii is an unsaturated carboxylic acid or a derivative thereof.
- 5. The biodegradable polyester mixture according to any of claims 1 to 4 wherein said component iii is maleic anhydride.
- 6. The biodegradable polyester mixture according to any of claims 1 to 3 wherein said component iii is an organic carboxylic acid which is capable of forming unsaturated carboxylic acids by elimination of water.
- 7. The biodegradable polyester mixture according to any of claims 1 to 3 wherein said component iii is a compound comprising two or more epoxy groups in the molecule.
- The biodegradable polyester mixture according to any of claims 1 to 4 wherein said component iii is glycidyl acrylate and/or glycidyl methacrylate.
 - 9. The biodegradable polyester mixture according to any of claims 1 to 8 which comprises

from 10% to 70% by weight of said component i and from 30% to 90% by weight of said component ii, each percentage being based on the total weight of said components i to ii.

- The biodegradable polyester mixture according to any of claims 1 to 9 which comprises from 0.5% to 10% by weight of said component iii, based on the total weight of said components i to ii.
- 11. A process for producing biodegradable polyester mixtures according to claims 1 to 10, which comprises said components i, ii and iii being in one step mixed and, in the presence or absence of a free-radical initiator, reacted.
- 12. A process for producing biodegradable polyester mixtures according to claims 1 to 10, which comprises a first step of said component iii being mixed with and, in the presence or absence of a free-radical initiator, reacted with one of said components i or ii and a second step of the hitherto unused component ii or i being mixed in and reacted.
- 13. The use of the biodegradable polyester mixtures according to claims 1 to 10 for producing blends, moldings, films, sheets or fibers.

5

10

15

20

25

30

c1) at least one dihydroxy compound which comprises ether functions and has the formula I

$$HO-[(CH_2)_n-O]_m-H$$
 (1)

where n is 2, 3 or 4 and m is an integer from 2 to 250,

c2) at least one hydroxy carboxylic acid of the formula lla or llb

$$HO - C(O) - G - O - DH - C(O) - DH -$$

where p is an integer from 1 to 1500, r is an integer from 1 to 4 and G is a radical selected from the group consisting of phenylene, $-(CH_2)_q$, where q is an integer from 1 to 5, -C(R)H- and $-C(R)HCH_2$, where R is methyl or ethyl,

- c3) at least one amino- C_2 to C_{12} -alkanol or at least one amino- C_5 to C_{10} cycloalkanol or mixtures thereof
- c4) at least one diamino-C₁- to C₈-alkane
- c5) at least one 2,2'-bisoxazoline of the general formula III

$$\begin{bmatrix} N \\ C \end{bmatrix} = \begin{bmatrix} N \\ C \end{bmatrix}$$
 (III)

where R^1 is a single bond, a $(CH_2)_z$ -alkylene group, where z=2,3 or 4, or a phenylene group

of the natural amino acids, polyamides obtainable by polycondensation of a dicarboxylic acid having from 4 to 6 carbon atoms and a diamine having from 4 to 10 carbon atoms, compounds of the formulae IV a and IVb

5

10

15

25

30

where s is an integer from 1 to 1500, t is an integer from 1 to 4 and T is a radical selected from the group consisting of phenylene, - $(CH_2)_u$ -, where u is an integer from 1 to 12, - $C(R^2)H$ - and - $C(R^2)HCH_2$, where R^2 is methyl or ethyl,

and polyoxazolines containing the repeat unit V

$$\begin{array}{c|c}
\hline
 N-CH_2-CH_2
\end{array}$$

$$\begin{array}{c|c}
(V) \\
O=C-R^3
\end{array}$$

o= $^{\rm l}$ -R³ where R³ is hydrogen, C₁-C₆-alkyl, C₅-C₈-cycloalkyl, unsubstituted or

 $C_1\text{-}C_4\text{-}alkyl\text{-}monosubstituted$, -disubstituted or -trisubstituted phenyl or is tetrahydrofuryl,

or mixtures of c1) to c6)

and

- D) a component selected from
 - d1) at least one compound having at least three groups capable of ester formation,
 - d2) at least one isocyanate
 - d3) at least one divinyl ether or mixtures of d1) to d3).

3. The biodegradable polyester mixture according to claim 1 or 2 wherein said component ii is one or more selected from the group consisting of starch, cellulose, lignin, wood and cereals.

- 4. The biodegradable polyester mixture according to any of claims 1 to 3 wherein said component iii is an unsaturated carboxylic acid or a derivative thereof.
- The biodegradable polyester mixture according to any of claims 1 to 4 wherein
 said component iii is maleic anhydride.
 - 6. The biodegradable polyester mixture according to any of claims 1 to 3 wherein said component iii is an organic carboxylic acid which is capable of forming unsaturated carboxylic acids by elimination of water.

10

- 7. The biodegradable polyester mixture according to any of claims 1 to 3 wherein said component iii is a compound comprising two or more epoxy groups in the molecule.
- 15 8. The biodegradable polyester mixture according to any of claims 1 to 4 wherein said component iii is glycidyl acrylate and/or glycidyl methacrylate.
 - 9. The biodegradable polyester mixture according to any of claims 1 to 8 which comprises

20

- from 10% to 70% by weight of said component i and from 30% to 90% by weight of said component ii, each percentage being based on the total weight of said components i to ii.
- 10. The biodegradable polyester mixture according to any of claims 1 to 9 which comprises from 0.5% to 10% by weight of said component iii, based on the total weight of said components i to ii.
- 11. A process for producing biodegradable polyester mixtures according to claims 1 to 10, which comprises said components i, ii and iii being in one step mixed and, in the presence or absence of a free-radical initiator, reacted.
- 12. A process for producing biodegradable polyester mixtures according to claims 1 to 10, which comprises a first step of said component iii being mixed with and, in the presence or absence of a free-radical initiator, reacted with one of said components i or ii and a second step of the hitherto unused component ii or i being mixed in and reacted.
- 13. The use of the biodegradable polyester mixtures according to claims 1 to 10 for producing blends, moldings, films, sheets or fibers.

14. Blends, moldings, films, sheets or fibers comprising biodegradable polyester mixtures according to claims 1 to 10.