



NT3881D



Crystalfontz

This controller datasheet was downloaded from http://www.crystalfontz.com/controllers/

#### **Features**

■ Internal LCD drivers

16 common signal drivers 40 segment signal drivers (can be externally extended to 400 segments using NT3882)

Maximum display dimensions
 40 characters \* 2 lines or

80 characters \* 1 line

■ Interfaces with 4-bit or 8-bit MPU

■ Versatile display functions provided on chip:

Display Clear, Cursor Home, Display ON/OFF, Cursor ON/OFF, Character Blinking, Cursor Shift, and Display Shift

■ Three duty factors, selected by PROGRAM: 1/8, 11/11, and 1/16

■ Displays Data RAM (DD RAM): 80 X 8 bits (displays up to 80 characters)

Character Generator RAM (CG RAM):
 64 X 8 bits for general data,
 8 5 X 8 programmable dot patterns, or
 4 5 X 10 programmable dot patterns

■ Low voltage reset

■ NOVATEK Identification code

■ Bonding option for A-type and B-type waveform

Character Generator ROM (CG ROM): 3 kinds of CG ROM sizes:

192 characters:

160 5 X 8 dot patterns32 5 X 10 dot patterns

240 characters:

192 5 X 8 dot patterns48 5 X 10 dot patterns

256 characters:

192 5 X 8 dot patterns64 5 X 10 dot patterns

Custom CG ROM is also available

■ Built-in power-on reset function

■ Logic power supply: single +5V supply

■ LCD driver power supply: V<sub>1</sub> - V<sub>5</sub> (V<sub>DD</sub>+0.3 - V<sub>DD</sub>-13.5)

■ Three oscillator operations (Freq. = 250KHz - 270KHz):

Internal oscillation

• Ceramic resonator

External clock

■ CMOS Process

Available in 80-pin QFP or in CHIP FORM

#### **General Description**

The NT3881D is a dot matrix LCD controller and driver LSI that can operate with either a 4-bit or an 8-bit microprocessor (MPU). NT3881D receives control character codes from the MPU, stores them in an internal RAM (up to 80 characters), transforms each character code into a 5 X 7, 5 X 8, or 5 X 10 dot matrix character pattern, and then displays the codes on the LCD panel. The built-in Character Generator ROM consists of 256 different character patterns.

The NT3881D also contains Character Generator RAM where the user can store 8 different character patterns at run time. These memory features make character display flexible. NT3881D also provides many display instructions to achieve versatile LCD display functions. The NT3881D is fabricated on a single LSI chip using the CMOS process, resulting in very low power requirements.

With several NT3882 driver ICs connected to the NT3881D, up to 80 characters can be displayed.

1 V2.2



## **Pin Configuration**





## **Pad Configuration**





# **Block Diagram**





# **Pin and Pad Descriptions**

| Pin and Pad No. | Designation   | 1/0 | External<br>Connection | Description                                                                                                                        |
|-----------------|---------------|-----|------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 1 - 22          | SEG22 - SEG1  | 0   | LCD panel              | Segment signal output pins                                                                                                         |
| 24, 25          | OSC1, OSC2    |     |                        | Pins connected to resistor or ceramic filter for internal clock oscillation. For external clock operation, clock inputs to OSC1.   |
| 26 - 30         | V1 - V5       | Р   | Power supply           | Power supply for LCD driver                                                                                                        |
| 31              | CL1           | 0   | NT3882                 | Clock to latch serial data D sent to NT3882.                                                                                       |
| 32              | CL2           | 0   | NT3882                 | Clock to shift serial data D                                                                                                       |
| 33, 81          | VDDA, VDDB    | Р   | Power supply           | Vpb: +5V<br>A-Type waveform: Vpb bond to VDDA<br>B-Type waveform: Vpb bond to VDDB                                                 |
| 23              | GND           | Р   | Power supply           | GND: 0V                                                                                                                            |
| 34              | М             | 0   | NT3882                 | Switch signal to convert LCD drive waveform to AC                                                                                  |
| 35              | D             | 0   | NT3882                 | Character pattern data corresponding to each common signal is transmitted serially from this output. 0-Non selection, 1-selection. |
| 36              | RS            | I   | MPU                    | Register select signal 0: Instruction register (write) Busy flag, address counter (read) 1: Data register (write, read)            |
| 37              | R/W           | I   | MPU                    | Read/Write control signal 0: Write 1: Read                                                                                         |
| 38              | E             | 1   | MPU                    | Read/Write start signal                                                                                                            |
| 39 - 42         | DB0 - DB3     | I/O | MPU                    | Lower 4 tri-state bi-directional data bus for transmitting data between MPU and NT3881D. Not used during 4-bit operation.          |
| 43 - 46         | DB4 - DB7     | I/O | MPU                    | Higher 4 tri-state bi-directional data bus for transmitting data between MPU and NT3881D. DB7 is also used as busy flag.           |
| 47 - 62         | COM1 - COM16  | 0   | LCD panel              | Common signal output pins                                                                                                          |
| 63 - 80         | SEG40 - SEG23 | 0   | LCD panel              | Segment signal output pins                                                                                                         |



#### **Functional Description**

The NT3881D is a dot-matrix LCD controller and driver LSI. It operates with either a 4-bit or an 8-bit microprocessor (MPU). The NT3881D receives both instructions and data from the MPU. Some instructions set operation modes, such as the function mode, data entry mode, and display mode; as well as some control LCD display functions, such as clear display, restore display, shift display, and cursor. Other instructions include read and write both data and addresses. All instructions allow users convenient and powerful functions to control the LCD dot-matrix displays.

Data is written into and read from the Data Display RAM (DD RAM) or the Character Generator RAM (CG RAM). As display character codes, the data stored in the DD RAM decodes a set of dot-matrix character patterns that are built into the Character Generator ROM (CG ROM). The CG ROM, with many character patterns (up to 256 patterns), defines the character pattern fonts. The NT3881D regularly scans the character patterns through the segment drivers. The CG RAM stores character pattern fonts at run time if users intend to show character patterns that are not defined in the CG ROM. This feature makes character display flexible. Other unused bytes can be used as general-purpose data storage.

The LCD driver circuit consists of 16 common signal drivers and 40 segment signal drivers allowing a variety of application configurations to be implemented. Additionally, the user can extend display size by cascading the segment driver LSI NT3882. The maximum display dimensions can be either 80 characters in a 1-line display or 40 characters in a 2-line display.

#### **Character Generator ROM (CG ROM)**

The character generator ROM generates LCD dot character patterns from the 8-bit character pattern codes. The NT3881D provides 3 CG ROM configurations:

#### 1. 192 Characters:

The CG ROM contains 160 5 X 8 dot character patterns and 32 5 X 10 dot character patterns. An example is the NT3881D-01, in which the relation between the character codes and character patterns is shown in Table 1. The character codes from 00H to 0FH are used to get

character patterns from the CG RAM. Character codes from 10H to 1FH and from 80H to 9FH map to full character patterns. Character codes from E0H to FFH are assigned to generate 5 X 10 dot character patterns, and other codes are used to generate 5x8 dot character patterns.

#### 2. 240 Characters:

The CG ROM contains 192 5 X 8 dot character patterns and 48 5 X 10 dot character patterns. An example of this type is the NT3881D-02, in which the relation between the character codes and character patterns is shown in Table 2.

The character codes from 00H to 0FH are used to get character patterns from the CG RAM. Character codes from 10H to 1FH and from E0H to FFH are assigned to generate 5 X 10 dot character patterns, and other codes to generate 5 X 8 dot character patterns. No null character pattern exists in this type. Note that the underlined cursor, displayed on the 8th duty may be obscure if the 8th row of a dot character pattern is coded. We recommend that users display the cursor in the blinking mode if they code 5x8 dot character patterns is their custom CG ROM.

#### 3. 256 Characters:

The CG ROM contains 192 5 X 8 dot character patterns and 64 5 X 10 dot character patterns. No adequate example is presented here.

The only difference between this type and the just mentioned second type is that the character codes from 00H to 0FH get character patterns from the CG ROM rather than from the CG RAM. These character codes are assigned to generate 5 X 10 dot character patterns. In this application, the CG RAM would be employed as a general-purpose data storage.

Custom character patterns are available by mask-programming ROM. For convenience of character pattern development, NOVATEK has developed a user-friendly editor program for the NT3881D to help determine the character patterns users prefer. By executing the program on the computer, users can easily create and modify their character patterns. By transferring the resulting files generated by the program through a modem or some other communication method, the user and NOVATEK have established a reliable, fast link for programming the CG ROM.



## **Absolute Maximum Ratings\***

Power Supply Voltage (VDD) . . . . . -0.3V to +0.7V Power Supply Voltage(V1 to V5) . VDD -13.5V to VDD+0.3V Input Voltage (VI) . . . . . -0.3V to VDD +0.3V Operating Temperature (TOPR) . . . . -10°C to +60°C Storage Temperature (TSTG) . . . . . -55°C to +125°C

- All voltage values are referenced to GND = 0V
- V1 to V5, must maintain VDD  $\geq$  V1  $\geq$  V2  $\geq$  V3  $\geq$  V4  $\geq$  V5.

#### \*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

**DC Electrical Characteristics** (VDD = 5.0V, GND = VEE = 0V, TA = 25°C)

| Symbol | Parameter                              | Min.     | Тур. | Max.    | Unit | Conditions                                                                    | Applicable Pin      |
|--------|----------------------------------------|----------|------|---------|------|-------------------------------------------------------------------------------|---------------------|
| Vih1   | "H" Level Input Voltage (1)            | 2.2      | -    | Vdd     | ٧    |                                                                               | DB0 - DB7, RS,      |
| VIL1   | "L" Level Input Voltage (1)            | -0.3     | -    | 0.8     | ٧    |                                                                               | R/W, E              |
| VIH2   | "H" Level Input Voltage (2)            | VDD -1.0 | -    | Vdd     | ٧    |                                                                               | OSC1                |
| VIL2   | "L" Level Input Voltage (2)            | GND      | -    | 1.0     | ٧    |                                                                               |                     |
| Vон1   | "H" Level Output Voltage (1)           | 2.4      | -    | -       | ٧    | Iон = -0.25mA                                                                 | DB0 - DB7           |
| Vol1   | "L" Level Output Voltage (1)           | -        | -    | 0.4     | ٧    | IoL = 1.2mA                                                                   | (TTL)               |
| Voн2   | "H" Level Output Voltage (2)           | 0.9 Vdd  | -    | -       | ٧    | Іон = -0.04mA                                                                 | CL1, CL2, M, D      |
| Vol2   | "L" Level Output Voltage (2)           | -        | -    | 0.1 Vdd | ٧    | IoL = 0.04mA                                                                  | (CMOS)              |
| Vсом   | Driver Voltage Descending (COM)        | -        | -    | 2.9     | ٧    | Ip = 0.05mA                                                                   | COM1 - 16           |
| Vseg   | Driver Voltage Descending (SEG)        | -        | -    | 3.8     | ٧    | Ip = 0.05mA                                                                   | SEG1 - 40           |
| lı∟    | Input Leakage Current                  | -1       | -    | 1       | μΑ   | VIN = 0 to VDD                                                                |                     |
| - P    | Pull-up MOS Current                    | 50       | 125  | 250     | μА   | VDD = 5V                                                                      | RS, R/W,<br>DB0-DB7 |
| ЮР     | Supply Current Power Supply<br>Current | -        | 0.3  | 0.5     | mA   | Rf oscillation,<br>from external<br>clock Vpp = 5V,<br>fosc = fcp =<br>270KHz | Voo                 |



# **DC Electrical Character (continued)**

| Symbol         | Parameter                            | Min.        | Тур. | Max. | Unit | Cond      | itions              | Applicable Pin |
|----------------|--------------------------------------|-------------|------|------|------|-----------|---------------------|----------------|
| External (     | Clock Operation                      |             |      |      |      |           |                     |                |
| fcp            | External Clock Operating Frequency   | 125         | 270  | 350  | KHz  |           |                     |                |
| touty          | External Clock Duty Cycle            | 45          | 50   | 55   | %    |           |                     |                |
| trcp           | External Clock Rise Time             | 0.1         | -    | 0.5  | μs   |           |                     |                |
| tFCP           | External Clock Fall Time             | 0.1         | -    | 0.5  | μs   |           |                     |                |
| Internal C     | clock Operation (RC Oscillator)      |             |      |      |      |           |                     |                |
| fosc           | Oscillator Frequency                 | 190         | 270  | 350  | KHz  | Rf = 91Kg | 2 ± 2%              |                |
| Internal C     | clock Operation (Ceramic Resonator C | Oscillator) |      |      |      |           |                     |                |
| fosc           | Oscillator Frequency                 | 245         | 250  | 255  | KHz  | Ceramic ı | esonator            |                |
| VLCD1<br>VLCD2 | LCD Driving Voltage                  | 4.6<br>3.0  | -    | Vdd  | V    | VDD - V5  | 1/5 bias<br>1/4bias |                |

# **AC Characteristics**

Read Cycle (VDD = 5.0V, GND = VEE = 0V,  $TA = 25^{\circ}C$ )

| Symbol   | Parameter                    | Min.             | Тур. | Max. | Unit | Conditions |
|----------|------------------------------|------------------|------|------|------|------------|
| tcyce    | Enable Cycle Time            | 500              | -    | -    | ns   | Figure 1   |
| twhe     | Enable "H" Level Pulse Width | 300              | -    | -    | ns   | Figure 1   |
| tre, tre | Enable Rise/Fall Time        | -                | -    | 25   | ns   | Figure 1   |
|          |                              | 60 <sup>1</sup>  |      |      |      |            |
| tas      | RS, R/W Setup Time           | 100 <sup>2</sup> | -    | -    | ns   | Figure 1   |
| tah      | RS, R/W Address Hold Time    | 10               | -    | -    | ns   | Figure 1   |
| trd      | Read Data Output Delay       | -                | -    | 190  | ns   | Figure 1   |
| tdhr     | Read Data Hold Time          | 20               | -    | -    | ns   | Figure 1   |



# **AC Characteristics (continued)**

Write Cycle (VDD = 5.0V, GND = VEE = 0V, TA =  $25^{\circ}C$ )

| Symbol   | Parameter                    | Min.            | Тур. | Max. | Unit | Conditions |
|----------|------------------------------|-----------------|------|------|------|------------|
| tcyce    | Enable Cycle Time            | 500             | -    | -    | ns   | Figure 2   |
| twhe     | Enable "H" Level Pulse Width | 300             | -    | -    | ns   | Figure 2   |
| tre, tre | Enable Rise/Fall Time        | -               | -    | 25   | ns   | Figure 2   |
|          |                              | 60 <sup>1</sup> |      |      |      |            |
| tas      | RS, R/W Setup Time           | 100²            | -    | -    | ns   | Figure 2   |
| tah      | RS, R/W Address Hold Time    | 10              | -    | -    | ns   | Figure 2   |
| tos      | Data Output Delay            | 100             | -    | -    | ns   | Figure 2   |
| tohr     | Data Hold Time               | 10              | -    | -    | ns   | Figure 2   |

Notes: 1: 8-bit operation mode 2: 4-bit operation mode

# Timing Characteristics of Interface Signals with Segment Driver LSI NT3882

 $(VDD = 5V, GND = VEE = 0V, TA = 25^{\circ}C)$ 

| Symbol | Parameter              | Min.  | Тур. | Max. | Unit | Conditions |
|--------|------------------------|-------|------|------|------|------------|
| tсwн   | Clock Pulse Width High | 800   | -    | -    | ns   | Figure 3   |
| tcwL   | Clock Pulse Width Low  | 800   | -    | -    | ns   | Figure 3   |
| tsu    | Data Setup Time        | 300   | -    | -    | ns   | Figure 3   |
| tон    | Data Hold Time         | 300   | -    | -    | ns   | Figure 3   |
| tcsu   | Clock Setup Time       | 500   | -    | -    | ns   | Figure 3   |
| tом    | M Delay Time           | -1000 | -    | 1000 | ns   | Figure 3   |

# **Power Supply Conditions Using Internal Reset Circuit**

| Symbol | Parameter              | Min. | Тур. | Max. | Unit | Conditions |
|--------|------------------------|------|------|------|------|------------|
| tron   | Power Supply Rise Time | 0.1  | -    | 10   | ns   | Figure 4   |
| toff   | Power Supply OFF Time  | 1    | -    | -    | ms   | Figure 4   |



## **Timing Waveforms**

#### **Read Operation**



Figure 1.Bus Read Operation Sequence (Reading out data from NT3881D to MPU)

## **Write Operation**



Figure 2. Bus Write Operation Sequence (Writing data from MPU to NT3881D)

#### Interface Signals with Segment Driver LSI



Figure 3. Sending Data to Segment Driver LSI NT3882



## Interface Signals with Segment Driver LSI (continued)



Figure 4. toff stipulates the time of power OFF for instantaneous power supply to or when power supply repeats ON and OFF.

## Note 1: The NT3881D has three clock options:

## A. Internal Oscillator Operation (With Ceramic Filter)



Rf :  $1M\Omega \pm 10\%$ Rd :  $3.3K\Omega \pm 5\%$ C1 = C2 :  $680pF \pm 10\%$ 

#### **B. Internal Oscillator (With Rf Resistor)**



Only Rf may be connected between OSC1 and OSC2. The wire connection Rf must be as short as possible.

## C. External Clock Operation



OSC1 and OSC2.

#### Note 2: Input/Output Terminals:

#### A. Input Terminal

Applicable Terminal : E (No Pull Up MOS)





Applicable Terminals: RS, R/W (with Pull Up MOS)



# **B.** Output Terminal

Applicable Terminals: CL1, CL2, M, D



# C. I/O Terminal

Applicable Terminals: DB0 to DB7





Table 1. Correspondence between Character Codes and Character Patterns (NOVATEK Standard NT3881D-01)

| Г                                                      |   |                  |   |              | High     | er 4-bit | (D4 to            | D7) of (     | Characte    | er Code | (Hexa | decimal    | )            |                  |                  |               |              |
|--------------------------------------------------------|---|------------------|---|--------------|----------|----------|-------------------|--------------|-------------|---------|-------|------------|--------------|------------------|------------------|---------------|--------------|
|                                                        |   | 0                | 1 | 2            | 3        | 4        | 5                 | 6            | 7           | 8       | 9     | Α          | В            | С                | D                | Е             | F            |
|                                                        | 0 | CG<br>RAM<br>(1) |   |              |          |          |                   | •            | <b>:</b> -  |         |       |            |              | ·#               | ₩.               |               |              |
|                                                        | 1 | CG<br>RAM<br>(2) |   |              | 1        |          |                   | · <b>:::</b> | -:::        |         |       | <b>:::</b> | ::           | #                | <u> </u>         | - 🚟           |              |
|                                                        | 2 | CG<br>RAM<br>(3) |   | 11           | :::      |          |                   |              | <b>!</b> -  |         |       | <b>!</b> " | · ‡ ·        | • • •            | .:: <sup>1</sup> | <b>:::</b> :  |              |
|                                                        | 3 | CG<br>RAM<br>(4) |   | #            | :        | <u> </u> | :;                | : <u></u> .  | :::.        |         |       |            | :::          | :::              | ₩.               | <b>:::.</b> . | ::-::        |
|                                                        | 4 | CG<br>RAM<br>(5) |   | #            | <b>:</b> |          |                   |              | ŧ           |         |       | ٠.         |              | -                | -                | <b></b>       | :::          |
|                                                        | 5 | CG<br>RAM<br>(6) |   |              |          |          | !                 | <b></b>      | ii          |         |       | #          | ::           | .: <u>-</u>      |                  | ===           |              |
|                                                        | 6 | CG<br>RAM<br>(7) |   |              |          | <b></b>  |                   |              | i.,:        |         |       | :::        | :::          |                  |                  |               | <u>:</u>     |
| lexadecimal)                                           | 7 | CG<br>RAM<br>(8) |   | ፦            | :        |          |                   | :            | 1,          |         |       | ·;::       |              | ::: <sup>:</sup> |                  |               | <b></b>      |
| acter Code (F                                          | 8 | CG<br>RAM<br>(1) |   |              |          |          | ×                 | ŀ            | <b>:</b> :: |         |       | ·:i'       | -:::         | -#-              | Ņ                | .j            | ::: <u>:</u> |
| Lower 4-bit (D0 to D3) of Character Code (Hexadecimal) | 9 | CG<br>RAM<br>(2) |   | :            |          | II.      | • <sub>•</sub> •• | <u>.</u>     | •:          |         |       | -:::       | •            | .!               |                  | 1             |              |
| ver 4-bit (D0 t                                        | A | CG<br>RAM<br>(3) |   | : <u></u> :: | ##<br>## |          | ::::              |              |             |         |       | <b></b> .  |              | i `i             | <u>.</u>         |               | <b>:::</b> : |
| Low                                                    | В | CG<br>RAM<br>(4) |   |              | ::       |          |                   | <b>!</b> ::  | €.          |         |       | :#         | ::           | <b></b>          |                  | ×             | :            |
|                                                        | C | CG<br>RAM<br>(5) |   | :=           | •        | <b></b>  | #                 | 1            | i           |         |       | †::        | <b>∷.</b> .: | ·:               | : <u>:</u>       | :::           | <b></b>      |
|                                                        | D | CG<br>RAM<br>(6) |   |              |          | H        |                   | [**]         | •           |         |       |            |              | ···-:            | <br>             | ₩             |              |
|                                                        | E | CG<br>RAM<br>(7) |   | ==           |          | ŀ·i      | "                 | !":          | :-          |         |       | <b>:::</b> |              |                  | '-               | <b>:</b> ":   |              |
|                                                        | F | CG<br>RAM<br>(8) |   | • • •        | ::       |          |                   | : <u></u> :  |             |         |       | : :.:      | ÷!           | ·::              |                  |               |              |



Table 2. Correspondence between Character Codes and Character Patterns (NOVATEK Standard NT3881D-02)

|                                                        |   |                  |      |              | Higher | 4-bit (I | D4 to D | 7) of C     | haracte      | r Code      | (Hexa      | decimal     | )           |                |            |             |           |
|--------------------------------------------------------|---|------------------|------|--------------|--------|----------|---------|-------------|--------------|-------------|------------|-------------|-------------|----------------|------------|-------------|-----------|
|                                                        |   | 0                | 1    | 2            | 3      | 4        | 5       | 6           | 7            | 8           | 9          | Α           | В           | С              | D          | Е           | F         |
|                                                        | 0 | CG<br>RAM<br>(1) |      |              |        |          |         | ==          | <b>:::</b> - | <b>::::</b> |            |             | •           | ľ              |            |             | <b></b>   |
|                                                        | 1 | CG<br>RAM<br>(2) |      | i            | 1      |          |         | -:::        | -:::         | ·           | ::::       | i           |             | .J             | -          | **          | <b></b> : |
|                                                        | 2 | CG<br>RAM<br>(3) |      |              |        |          |         | <b></b> :   | <b>!</b> -"  |             |            | ÷           | •:-         | ::::           | :::::      | :::         |           |
|                                                        | 3 | CG<br>RAM<br>(4) |      |              |        | <b></b>  |         | <b>:</b>    | <b>:::</b> . | -===        |            | ·           | •-          | <b></b>        | •          | <b>::::</b> | <b>:</b>  |
|                                                        | 4 | CG<br>RAM<br>(5) |      | #            | 4      |          |         |             |              |             |            |             | ••          |                |            |             | ₩         |
| imal)                                                  | 5 | CG<br>RAM<br>(6) | l.   | :-: <u>:</u> |        |          | Ii      | <b></b>     | ii           | -           | ::::       | <b></b>     | 1 ::        | •              | <u>::</u>  | Τ           | ***       |
| Lower 4 bit (D0 to D3) of Character Code (Hexadecimal) | 6 | CG<br>RAM<br>(7) |      |              |        |          | I!      |             | <u></u> ;    |             |            | #           | •           |                |            |             | <b></b>   |
| Character Co                                           | 7 | CG<br>RAM<br>(8) |      | :            |        |          |         | -:::        | Ļij          | •===        | ·          | H           | <b>:</b> :: |                | i.         | <b>i.</b> . |           |
| 00 to D3) of (                                         | 8 | CG<br>RAM<br>(1) |      |              |        |          | ×       | ŀ-;         | $\times$     |             | •          | .#          |             | - <del>-</del> | ::         | Þ:          |           |
| Lower 4 bit (I                                         | 9 | CG<br>RAM<br>(2) | 1    | 3            |        | II.      | ¥       | 1.          | •:::         |             |            | i           | ::          | <u> </u>       |            | .Ä.         | #         |
|                                                        | А | CG<br>RAM<br>(3) | :::  | :#:          | ##     |          | :::     |             | :::.         |             |            | ::          | <u>:</u>    |                | :::        | <b></b> .   |           |
|                                                        | В | CG<br>RAM<br>(4) |      |              | ::     | H.       | II.     | <b>!</b> :: |              |             |            | -:::        | <b>::</b> : | <b></b>        |            | 1,.3        |           |
|                                                        | С | CG<br>RAM<br>(5) |      | :=           |        | <b></b>  | ٠.      | 1           |              | ÷           |            |             | :::-        |                |            | <b>:</b>    |           |
|                                                        | D | CG<br>RAM<br>(6) | ::,: |              |        |          |         |             | <u>.</u> ;   | 1           | -===       | ::::        | #           | ==             |            | 311         |           |
|                                                        | E | CG<br>RAM<br>(7) |      | ::           |        |          | .·*·.   | F":         | •            |             |            |             | ·!          |                |            | <b></b> :   |           |
|                                                        | F | CG<br>RAM<br>(8) |      |              |        |          |         | <b>::::</b> |              |             | <u>:</u> . | <b>;</b> :: |             |                | <b>:::</b> | :::         |           |



# **Instruction Set**

| Instruction                           |                                       |                                                                                                 |                                                                                                                  |                        | С         | ode        |                                |           |      |     | Function                                                                                                                                                 | Execution time (max)           |
|---------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------|-----------|------------|--------------------------------|-----------|------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                       | RS                                    | RW                                                                                              | DB7                                                                                                              | DB6                    | DB5       | DB4        | DB3                            | DB2       | DB1  | DB0 |                                                                                                                                                          | (f <sub>osc</sub> =<br>250KHz) |
| Display Clear                         | 0                                     | 0                                                                                               | 0                                                                                                                | 0                      | 0         | 0          | 0                              | 0         | 0    | 1   | Clear entire display area, restore<br>display from shift, and load<br>address counter with DD RAM<br>address 00H.                                        | 1.64ms                         |
| Display/<br>Cursor Home               | 0                                     | 0                                                                                               | 0                                                                                                                | 0                      | 0         | 0          | 0                              | 0         | 1    | *   | Restore display from shift and load address counter with DD RAM address 00H.                                                                             | 1.64ms                         |
| Entry Mode<br>Set                     | 0                                     | 0                                                                                               | 0                                                                                                                | 0                      | 0         | 0          | 0                              | 1         | I/D  | S   | Specify direction of cursor movement and display shift mode. This operation takes place after each data transfer (read/write).                           | 40μs                           |
| Display<br>ON/OFF                     | 0                                     | 0                                                                                               | 0                                                                                                                | 0                      | 0         | 0          | 1                              | D         | С    | В   | Specify activation of display (D) cursor (C) and blinking of character at cursor position (B).                                                           | 40μs                           |
| Display/<br>Cursor Shift              | 0                                     | 0                                                                                               | 0                                                                                                                | 0                      | 0         | 1          | S/C                            | R/L       | *    | *   | Shift display or move cursor.                                                                                                                            | 40μs                           |
| Function Set                          | 0                                     | 0                                                                                               | 0                                                                                                                | 0                      | 1         | DL         | N                              | F         | *    | *   | Set interface data length (DL),<br>number of display line (N), and<br>character font (F).                                                                | 40μs                           |
| RAM Address<br>Set                    | 0                                     | 0                                                                                               | 0                                                                                                                | 1                      |           |            | AC                             | CG        |      |     | Load the address counter with a CG RAM address. Subsequent data access is for CG RAM data.                                                               | 40μs                           |
| DD RAM<br>Address Set                 | 0                                     | 0                                                                                               | 1                                                                                                                |                        |           |            | ADD                            |           |      |     | Load the address counter with a DD RAM address. Subsequent data access is for DD RAM data.                                                               | 40μs                           |
| Busy Flag/<br>Address<br>Counter Read | 0                                     | 1                                                                                               | BF                                                                                                               |                        |           |            | AC                             |           |      |     | Read Busy Flag (BF) and contents of Address Counter (AC).                                                                                                | 0μs                            |
| CG RAM/<br>DD RAM<br>Data Write       | 1                                     | 0                                                                                               |                                                                                                                  |                        |           | Write      | e data                         |           |      |     | Write data to CG RAM or DD RAM.                                                                                                                          | 40µs                           |
| CG RAM/<br>DD RAM<br>Data Read        | 1                                     | 1                                                                                               |                                                                                                                  |                        | Read data |            |                                |           |      |     | Read data from CG RAM or DD RAM.                                                                                                                         | 40μs                           |
|                                       | S = D = C = S/C = R/L = DL = F = BF = | = 1 : Dis<br>= 1 : Cu<br>= 1 : Cu<br>= 1 : Sh<br>= 1 : Sh<br>= 1 : 8-E<br>= 1 : Du<br>= 1 : 5x1 | play Shi<br>play On<br>rsor Dis<br>rsor Blin<br>ift Displi<br>ift Right<br>Bit<br>al Line<br>10 dots<br>ernal Op | play On<br>lk On<br>ay |           | S/C<br>R/L | = 0 : M<br>= 0 : S<br>= 0 : 4- | ignal Lin | rsor |     | DD RAM : Display Data RAM  CG RAM : Character Generator RAM  ACG : Character Generator RAM Address  ADD : Display Data RAM Address  AC : Address Counter |                                |

Note 1: Symbol "\*" signifies an insignificant bit (disregard). Note 2: Correct input value for "N" is predetermined for each model.



#### Interface to LCD

## (1) Character Font and Number of Lines

The NT3881D provides a 5 X 7 dot character font 1-line mode, a 5 X 10 dot character font 1-line mode and a 5 X 7 dot character font 2-line mode, as shown in the table below.

Three types of common signals are available as displayed in the table. The number of lines and the font type can be selected by the program.

| Number of Lines | Character Font                       | Number of Common Signals | Duty Factor |
|-----------------|--------------------------------------|--------------------------|-------------|
| 1               | 5 X 7 dots + Cursor<br>(or 5x8 dots) | 8                        | 1/8         |
| 1               | 5 X 10 dots + Cursor                 | 11                       | 1/11        |
| 2               | 5 X 7 dots + Cursor<br>(or 5x8 dots) | 16                       | 1/16        |

# (2) Connection to LCD

The following 4 LCD connection examples show the various combinations between characters and lines. NT3881D can directly drive the following combinations:

(a) 5 X 8 Font - 8 character X 1 line (1/8 duty cycle, 1/4 bias)





(b) 5 X 10 Font - 8 character X 1 line (1/11 duty cycle, 1/4 bias)



(c) 5 X 8 Font - 8 character X 2 lines (1/16 duty cycle, 1/5 bias)





(d) 5 X 8 Font - 16 character X 1 line (1/16 duty cycle, 1/5 bias)

# COM1 COM8 SEG1 NT3881D SEG40 COM16 COM9



# (3) Bias Power Connection

NT3881D provides 1/4 or 1/5 bias for various duty cycle applications. The power division voltage is described in the following table. The connection of NT3881D, power supply, and resistors are also shown as follows:

| Power Division | 1/8, 1/11 Duty Cycle - 1/4 Bias | 1/16 Duty Cycle - 1/5 Bias |
|----------------|---------------------------------|----------------------------|
| V1             | Vdd - 1/4 Vlcd                  | Vdd - 1/5 Vlcd             |
| V <sub>2</sub> | Vdd - 1/2 Vlcd                  | Vdd - 2/5 Vlcd             |
| V3             | Vdd - 1/2 Vlcd                  | Vdd - 3/5 Vlcd             |
| V4             | Vdd - 3/4 Vlcd                  | Vdd - 4/5 Vlcd             |
| V5             | Vdd - Vlcd                      | Vdd - Vlcd                 |





Note: The resistance value depends on the LCD panel size.



# (4) LCD Waveform

A-type, 1/8 Duty Cycle, 1/4 Bias



A-type, 1/11 Duty Cycle, 1/4 Bias



# A-type, 1/16 Duty Cycle, 1/5 Bias





# Application Circuit (for reference only)





# **Bonding Diagram**



- \* Substrate Connect to VDD or keep floating
- \* Pad window area: 120µm X 110µm



# **Bonding Dimensions**

Unit: µm

| Pad. No. | Designation | X     | Y     | Pad. No.  | Designation | X     | Y     |
|----------|-------------|-------|-------|-----------|-------------|-------|-------|
| 1        | SEG22       | -1469 | 1743  | 41        | DB2         | 1469  | -1707 |
| 2        | SEG21       | -1469 | 1593  | 42        | DB3         | 1469  | -1557 |
| 3        | SEG20       | -1469 | 1443  | 43        | DB4         | 1469  | -1407 |
| 4        | SEG19       | -1469 | 1293  | 44        | DB5         | 1469  | -1257 |
| 5        | SEG18       | -1469 | 1143  | 45        | DB6         | 1469  | -1107 |
| 6        | SEG17       | -1469 | 993   | 46        | DB7         | 1469  | -957  |
| 7        | SEG16       | -1469 | 843   | 47        | COM1        | 1469  | -807  |
| 8        | SEG15       | -1469 | 693   | 48        | COM2        | 1469  | -657  |
| 9        | SEG14       | -1469 | 543   | 49        | COM3        | 1469  | -507  |
| 10       | SEG13       | -1469 | 393   | 50        | COM4        | 1469  | -357  |
| 11       | SEG12       | -1469 | 243   | 51        | COM5        | 1469  | -207  |
| 12       | SEG11       | -1469 | 93    | 52        | COM6        | 1469  | -57   |
| 13       | SEG10       | -1469 | -57   | 53        | COM7        | 1469  | 93    |
| 14       | SEG9        | -1469 | -207  | 54        | COM8        | 1469  | 243   |
| 15       | SEG8        | -1469 | -357  | 55        | COM9        | 1469  | 393   |
| 16       | SEG7        | -1469 | -507  | 56        | COM10       | 1469  | 543   |
| 17       | SEG6        | -1469 | -657  | 57        | COM11       | 1469  | 693   |
| 18       | SEG5        | -1469 | -807  | 58        | COM12       | 1469  | 843   |
| 19       | SEG4        | -1469 | -957  | 59        | COM13       | 1469  | 993   |
| 20       | SEG3        | -1469 | -1107 | 60        | COM14       | 1469  | 1143  |
| 21       | SEG2        | -1469 | -1257 | 61        | COM15       | 1469  | 1292  |
| 22       | SEG1        | -1469 | -1407 | 62        | COM16       | 1469  | 1443  |
| 23       | GND         | -1469 | -1557 | 63        | SEG40       | 1469  | 1593  |
| 24       | OSC1        | -1469 | -1707 | 64        | SEG39       | 1469  | 1743  |
| 25       | OSC2        | -1183 | -1862 | 65        | SEG38       | 1125  | 1763  |
| 26       | $V_1$       | -1033 | -1862 | 66        | SEG37       | 975   | 1763  |
| 27       | V2          | -883  | -1862 | 67        | SEG36       | 825   | 1763  |
| 28       | V3          | -733  | -1862 | 68        | SEG35       | 675   | 1862  |
| 29       | V4          | -583  | -1862 | 69        | SEG34       | 525   | 1862  |
| 30       | V5          | -433  | -1862 | 70        | SEG33       | 375   | 1862  |
| 31       | CL1         | -283  | -1862 | 71        | SEG32       | 225   | 1862  |
| 32       | CL2         | -133  | -1862 | 72        | SEG31       | 75    | 1862  |
| 33       | VDDA        | 76    | -1691 | 73        | SEG30       | -75   | 1862  |
| 34       | M           | 268   | -1862 | 74        | SEG29       | -225  | 1862  |
| 35       | D           | 418   | -1862 | <b>75</b> | SEG28       | -375  | 1862  |
| 36       | RS          | 568   | -1862 | <u>76</u> | SEG27       | -525  | 1862  |
| 37       | R/W         | 719   | -1862 | 77        | SEG26       | -675  | 1862  |
| 38       | E           | 870   | -1862 | 78        | SEG25       | -825  | 1862  |
| 39       | DB0         | 1020  | -1862 | 79        | SEG24       | -975  | 1862  |
| 40       | DB1         | 1170  | -1862 | 80        | SEG23       | -1125 | 1862  |
| 70       | וטטו        | 1170  | 1002  | 81        | VDDB        | 76    | -1816 |



# **Ordering Information**

| Part No.      | Package                 | Remarks          |  |
|---------------|-------------------------|------------------|--|
| NT3881DH-01   | CHIP FORM               | Refer to Table 1 |  |
| NT3881DF/A-01 | 80L QFP/A-type waveform | Refer to Table 1 |  |
| NT3881DF/B-01 | 80L QFP/B-type waveform | Refer to Table 1 |  |
| NT3881DH-02   | CHIP FORM               | Refer to Table 2 |  |
| NT3881DF/A-02 | 80L QFP/A-type waveform | Refer to Table 2 |  |
| NT3881DF/B-02 | 80L QFP/B-type waveform | Refer to Table 2 |  |



# **Package Information**

# **QFP 80L Outline Dimensions**





| Symbol         | Dimensions in inches   | Dimensions in mm    |  |  |
|----------------|------------------------|---------------------|--|--|
| Α              | 0.130 Max.             | 3.30 Max.           |  |  |
| A <sub>1</sub> | 0.004 Min.             | 0.10 Min.           |  |  |
| A <sub>2</sub> | 0.112±0.005            | 2.85±0.13           |  |  |
| b              | 0.014 +0.004<br>-0.002 | 0.35 +0.10<br>-0.05 |  |  |
| С              | 0.006 +0.004<br>-0.002 | 0.15 +0.10<br>-0.05 |  |  |
| D              | 0.551±0.005            | 14.00±0.13          |  |  |
| Е              | 0.787±0.005            | 20.00±0.13          |  |  |
| е              | 0.031±0.006            | 0.80±0.15           |  |  |
| GD             | 0.693 NOM.             | 17.60 NOM.          |  |  |
| GE             | 0.929 NOM.             | 23.60 NOM.          |  |  |
| HD             | 0.740±0.012            | 18.80±0.31          |  |  |
| HE             | 0.976±0.012            | 24.79±0.31          |  |  |
| L              | 0.047±0.008            | 1.19±0.20           |  |  |
| L1             | 0.095±0.008            | 2.41±0.20           |  |  |
| у              | 0.006 Max.             | 0.15 Max.           |  |  |
| θ              | 0° ~ 12°               | 0° ~ 12°            |  |  |

## Notes:

- Dimensions D & E do not include resin fins.
   Dimensions Gp & Gε are for PC Board surface mount pad pitch design reference only