Análisis numérico de elementos finitos

Dr. Stefan Frei Department of Mathematics University College London

Curso compacto, Parte IV Universidad Nacional Agraria La Molina Agosto 2-8, 2017

Norma de energía

Problema de Poisson

$$(\nabla u, \nabla \phi)_{\Omega} = (f, \phi)_{\Omega} \quad \forall \phi \in V$$

Error en la norma de energía

• Elementos P₁

$$\|\nabla(u-u_h)\|_{\Omega} \leq \|\nabla(u-I_h u)\|_{\Omega} \leq Ch\|u\|_{H^2(\Omega)}$$

• Elementos P2

$$\|\nabla(u-u_h)\|_{\Omega}\leq \|\nabla(u-I_hu)\|_{\Omega}\leq Ch^2\|u\|_{H^3(\Omega)}$$

Orden de convergencia

Comparación de convergencia en la norma $\|\cdot\|_{H^1(\Omega)}$ para elementos P_1 y P_2 Elegimos el lado derecho f de tal manera que la solución u está conocida:

$$u = \sin(\pi x)\sin(\pi y)$$

Error $||u - u_h||_{H^1(\Omega)}$ sobre h

Error $||u-u_h||_{H^1(\Omega)}$ sobre N

Overview

lacktriangle Error en la norma L^2

Ecuaciones de Stokes: Teoría

Stokes: Discretización

Estimación del error L²

Problema de Poisson: Hallar $u \in V$ tal que

$$a(u,\phi)=(f,\phi)\quad \forall \phi\in V.$$

ullet "Convergencia de las derivadas" para elementos P_m

$$\|\nabla(u-u_h)\|_{\Omega}\leq Ch^{m-1}\|u\|_{H^m(\Omega)}$$

• Convergencia de la función u en la norma $L^2(\Omega)$

$$||u-u_h||_{\Omega}\leq Ch^{?}||u||_{H^m(\Omega)}$$

Método de Aubin-Nitsche

Introducimos el **problema dual**: Hallar $z \in V$ tal que

$$a(\phi, z) = \left(\frac{u - u_h}{\|u - u_h\|_{\Omega}}, \phi\right)_{\Omega} \quad \forall \phi \in V$$

- El problema está bien-definido por el lema de Lax-Milgram
- ullet En un dominio convexo la solución tiene regularidad $z\in H^2(\Omega)$ y

$$||z||_{H^2(\Omega)} \leq C \left|\left|\frac{u-u_h}{\|u-u_h\|_{\Omega}}\right|\right| = C.$$

Con $\phi = u - u_h$ tenemos

$$||u-u_h||_{\Omega}=a(u-u_h,z)$$

Utilizando la ortogonalidad de Galerkir

$$||u - u_h||_{\Omega} = a(u - u_h, z - I_h z) \le ||\nabla (u - u_h)||_{\Omega} ||\nabla (z - I_h z)||_{\Omega}$$

$$\le ch^{m-1} ||u||_{H^m(\Omega)} ch ||z||_{H^2(\Omega)}$$

$$\le ch^m ||u||_{H^m(\Omega)}.$$

Método de Aubin-Nitsche

Introducimos el **problema dual**: Hallar $z \in V$ tal que

$$a(\phi, z) = \left(\frac{u - u_h}{\|u - u_h\|_{\Omega}}, \phi\right)_{\Omega} \quad \forall \phi \in V$$

- El problema está bien-definido por el lema de Lax-Milgram
- ullet En un dominio convexo la solución tiene regularidad $z\in H^2(\Omega)$ y

$$||z||_{H^2(\Omega)} \leq C \left|\left|\frac{u-u_h}{\|u-u_h\|_{\Omega}}\right|\right| = C.$$

Con $\phi = u - u_h$ tenemos

$$||u-u_h||_{\Omega}=a(u-u_h,z)$$

Utilizando la ortogonalidad de Galerkin

$$||u - u_h||_{\Omega} = a(u - u_h, z - I_h z) \le ||\nabla (u - u_h)||_{\Omega} ||\nabla (z - I_h z)||_{\Omega}$$

$$\le ch^{m-1} ||u||_{H^m(\Omega)} ch ||z||_{H^2(\Omega)}$$

$$\le ch^m ||u||_{H^m(\Omega)}.$$

Orden de convergencia $L^2(\Omega)$

Comparación de convergencia en la norma $\|\cdot\|_{L^2(\Omega)}$ para elementos P_1 y P_2 : Elegimos el lado derecho f de tal manera que la solución u está conocida:

$$u = \sin(\pi x)\sin(\pi y)$$

Error $||u - u_h||_{L^2(\Omega)}$ sobre h

Error $||u - u_h||_{L^2(\Omega)}$ sobre N

Error sobre tiempo computacional

Comparación de convergencia en la norma $\|\cdot\|_{L^2(\Omega)}$ para elementos P_1 y P_2 :

Error $\|u-u_h\|_{L^2(\Omega)}$ sobre tiempo computacional (segundos)

Gascoigne 3d

Biblioteca de elementos finitos Gascoigne 3D

- Desarrollada en los grupos de investigación de
 - Malte Braack (Universidad de Kiel, Alemania),
 - Thomas Richter (Universidad de Magdeburg, Alemania)
 - Boris Vexler (Technical University Munich, Alemania)
- Implementación completamente en C/C++
- Sistemas de EDP arbitrarios (bien-puestos)
- "Black-box character"
- "Equal-order" elementos finitos
- Métodos de solución muy eficientes (Método multi-malla)
- Control del error a posteriori
- Utilizado para problemas en la mecánica de fluidos (Navier-Stokes, combustión, simulaciones cardio-vasculares,...), y de solidos (ecuación de la placa,...), interacción fluido-estructura, optimización con EDP, simulaciones ambientales (hielo marino,...), sistemas biologicos, etc.

Gascoigne 3d

Biblioteca de elementos finitos Gascoigne 3D

- Desarrollada en los grupos de investigación de
 - Malte Braack (Universidad de Kiel, Alemania),
 - Thomas Richter (Universidad de Magdeburg, Alemania)
 - Boris Vexler (Technical University Munich, Alemania)
- Implementación completamente en C/C++
- Sistemas de EDP arbitrarios (bien-puestos)
- "Black-box character"
- "Equal-order" elementos finitos
- Métodos de solución muy eficientes (Método multi-malla)
- Control del error a posteriori
- Utilizado para problemas en la mecánica de fluidos (Navier-Stokes, combustión, simulaciones cardio-vasculares,...), y de solidos (ecuación de la placa,...), interacción fluido-estructura, optimización con EDP, simulaciones ambientales (hielo marino,...), sistemas biologicos, etc.

Overview

1 Error en la norma L^2

Ecuaciones de Stokes: Teoría

3 Stokes: Discretización

Ecuaciones de Navier-Stokes

Ecuaciones non-estacionales de Navier-Stokes:

$$\partial_t v + v \cdot \nabla v - \nu \Delta v - \nabla p = f \text{ en } \Omega,$$

 $\operatorname{div} v = 0 \text{ en } \Omega.$

- Velocidad $v: \Omega \to \mathbb{R}^d$, presión $p: \Omega \to \mathbb{R}$
- Buen modelo para una gran clase de fluidos y gases
- Teoría es complicada, parcialmente non-resuelto ("Problema del milenio")
- Incompresibilidad: Teorema de Stokes

$$\int_{\Omega} \operatorname{div} v \, dx = \int_{\partial \Omega} v \cdot n \, ds = 0$$

Lo que entra, tiene que salir

Ecuaciones de Navier-Stokes

Ecuaciones non-estacionales de Navier-Stokes:

$$\partial_t v + v \cdot \nabla v - \nu \Delta v - \nabla p = f \text{ en } \Omega,$$

 $\operatorname{div} v = 0 \text{ en } \Omega.$

- Velocidad $v: \Omega \to \mathbb{R}^d$, presión $p: \Omega \to \mathbb{R}$
- Buen modelo para una gran clase de fluidos y gases
- Teoría es complicada, parcialmente non-resuelto ("Problema del milenio")
- Incompresibilidad: Teorema de Stokes

$$\int_{\Omega} \operatorname{div} v \, dx = \int_{\partial \Omega} v \cdot n \, ds = 0$$

Lo que entra, tiene que salir!

Ecuaciones de Stokes

Aproximación en el caso de **fluidos muy viscosos** (por ejemplo miel): Ecuaciones non-estacionales de **Stokes**

$$\partial_t v - \nu \Delta v + \nabla p = f \text{ in } \Omega,$$

 $\operatorname{div} v = 0 \text{ in } \Omega.$

Si converge a un limite estacional

$$-\nu\Delta v - \nabla p = f \text{ in } \Omega,$$
$$\operatorname{div} v = 0 \text{ in } \Omega.$$

Formulación variacional

Hallar $v \in \mathcal{V}, p \in \mathcal{L}$ tal que

$$\nu(\nabla v, \nabla \phi)_{\Omega} - (p, \operatorname{div}\phi)_{\Omega} = (f, \phi)_{\Omega} \quad \forall \phi \in \mathcal{V},$$
$$(\operatorname{div} v, \xi)_{\Omega} = 0 \quad \forall \xi \in \mathcal{L}.$$

Existencia de una velocidad

Formulación reducida: Espacio de la funciones de divergencia zero:

$$\mathcal{V}^0 = \{ v \in \mathcal{V}, (\operatorname{div} v, \xi) = 0 \mid \forall \xi \in \mathcal{L} \}$$

Hallar $v \in \mathcal{V}^0$ tal que

$$\nu(\nabla v, \nabla \phi)_{\Omega} = (f, \phi)_{\Omega} \quad \forall \phi \in \mathcal{V}^0$$

Formulación variacional

Hallar $v \in \mathcal{V}, p \in \mathcal{L}$ tal que

$$\nu(\nabla v, \nabla \phi)_{\Omega} - (p, \operatorname{div}\phi)_{\Omega} = (f, \phi)_{\Omega} \quad \forall \phi \in \mathcal{V},$$
$$(\operatorname{div} v, \xi)_{\Omega} = 0 \quad \forall \xi \in \mathcal{L}.$$

Existencia de una velocidad

Formulación reducida: Espacio de la funciones de divergencia zero:

$$\mathcal{V}^0 = \{ v \in \mathcal{V}, (\operatorname{div} v, \xi) = 0 \quad \forall \xi \in \mathcal{L} \}$$

Hallar $v \in \mathcal{V}^0$ tal que

$$\nu(\nabla v, \nabla \phi)_{\Omega} = (f, \phi)_{\Omega} \quad \forall \phi \in \mathcal{V}^0.$$

Existencia de una velocidad v

Formulación reducida: Hallar $v \in \mathcal{V}^0$ tal que

$$\nu(\nabla v, \nabla \phi)_{\Omega} = (f, \phi)_{\Omega} \quad \forall \phi \in \mathcal{V}^0.$$

Sea $\mathcal{V} = H_0^1(\Omega)$. El espacio

$$\mathcal{V}^0 = \{ v \in H_0^1(\Omega)^2, (\operatorname{div} v, \phi) = 0 \mid \forall \phi \in \mathcal{L} \}$$

es un sub-espacio de $H_0^1(\Omega)$, por eso un espacio Hilbert.

El lema de Lax-Milgram asegura la **existencia y unicidad** de una solución $v \in \mathcal{V}^0.$

Existencia de una presión p

La **existencia de una presión** p es más complicada: $\mathit{Hallar}\ p \in \mathcal{L}\ \mathit{tal}\ \mathit{que}$

$$(p, \operatorname{div}\phi)_{\Omega} = \nu(\nabla v, \nabla \phi)_{\Omega} - (f, \phi)_{\Omega} \quad \forall \phi \in \mathcal{V}.$$

- Espacio natural: $\mathcal{L} \subset L^2(\Omega)$, cómo $v \in \mathcal{V} \subset H^1_0(\Omega)^2$
- p no es única en $L^2(\Omega)$: Integración por partes

$$(\nabla p, \phi)_{\Omega} = \nu(\nabla v, \nabla \phi)_{\Omega} - (f, \phi)_{\Omega} \quad \forall \phi \in \mathcal{V}.$$

Si p es solución, p+const es otra

Solución:
$$\mathcal{L} = L_0^2(\Omega) := \{ v \in L^2(\Omega), \int_{\Omega} v \, dx = 0 \}$$

• La forma bilineal $b(p,\phi):=(p,{
m div}\phi)_\Omega$ no es coerciva

Existencia de una presión p

La **existencia de una presión** p es más complicada: Hallar $p \in \mathcal{L}$ tal que

$$(p, \operatorname{div}\phi)_{\Omega} = \nu(\nabla v, \nabla \phi)_{\Omega} - (f, \phi)_{\Omega} \quad \forall \phi \in \mathcal{V}.$$

- Espacio natural: $\mathcal{L} \subset L^2(\Omega)$, cómo $v \in \mathcal{V} \subset H^1_0(\Omega)^2$
- p no es única en $L^2(\Omega)$: Integración por partes

$$(\nabla p, \phi)_{\Omega} = \nu(\nabla v, \nabla \phi)_{\Omega} - (f, \phi)_{\Omega} \quad \forall \phi \in \mathcal{V}.$$

Si p es solución, p+const es otra.

Solución:
$$\mathcal{L} = L_0^2(\Omega) := \{ v \in L^2(\Omega), \int_{\Omega} v \, dx = 0 \}$$

• La forma bilineal $b(p,\phi):=(p,{
m div}\phi)_\Omega$ no es coerciva

Existencia de una presión p

La **existencia de una presión** p es más complicada: Hallar $p \in \mathcal{L}$ tal que

$$(p, \operatorname{div}\phi)_{\Omega} = \nu(\nabla v, \nabla \phi)_{\Omega} - (f, \phi)_{\Omega} \quad \forall \phi \in \mathcal{V}.$$

- Espacio natural: $\mathcal{L} \subset L^2(\Omega)$, cómo $v \in \mathcal{V} \subset H^1_0(\Omega)^2$
- p no es única en $L^2(\Omega)$: Integración por partes

$$(\nabla p, \phi)_{\Omega} = \nu(\nabla v, \nabla \phi)_{\Omega} - (f, \phi)_{\Omega} \quad \forall \phi \in \mathcal{V}.$$

Si p es solución, p+const es otra.

Solución:
$$\mathcal{L} = L_0^2(\Omega) := \{ v \in L^2(\Omega), \int_{\Omega} v \, dx = 0 \}$$

• La forma bilineal $b(p,\phi):=(p,{
m div}\phi)_\Omega$ no es coerciva

Sistemas de puntos de silla

Consideramos el problema general con espacios Hilbert $\mathcal V$ y $\mathcal L$: Hallar $v\in \mathcal V, p\in \mathcal L$ tal que

$$a(v,\phi) + b(p,\phi) = (f,\phi) \quad \forall \phi \in \mathcal{V},$$

$$b(v,\xi) = (g,\xi) \quad \forall \xi \in \mathcal{L}.$$
 (1)

Condiciones:

• $a(\cdot, \cdot)$ es \mathcal{V} -coercivo: Existe $\alpha > 0$ tal que

$$a(v, v) \ge \alpha ||v||_V^2 \quad \forall v \in \mathcal{V}.$$

• La forma $b(\cdot,\cdot)$ cumple una condición inf-sup (Babuška-Brezzi): Existe $\beta>0$ tal que

$$\sup_{\phi \in \mathcal{V}} \frac{b(p,\phi)}{\|\phi\|_{\mathcal{V}}} \geq \beta \|p\|_{\mathcal{L}} \quad \forall \phi \in \mathcal{L}.$$

Teorema (Babuška, Brezzi)

Bajo estas dos condiciones existe una solución única (v, p) de (1) para cada $f \in \mathcal{V}^*, g \in \mathcal{L}^*$ y se cumple

$$||v||_{\mathcal{V}} + ||p||_{\mathcal{L}} \le C\{||f||_{\mathcal{V}^*} + ||g||_{\mathcal{L}^*}\}.$$

Condición inf-sup

Coercividad

$$\mathsf{a}(\mathsf{v},\mathsf{v}) = \nu(\nabla \mathsf{v},\nabla \mathsf{v}) = \nu \|\nabla \mathsf{v}\|_{\Omega}^2 \geq \frac{\nu}{1+c_P^2} \|\mathsf{v}\|_{H^1(\Omega)}^2$$

• Para los espacios $\mathcal{V}=H^1_0(\Omega)^2, \mathcal{L}=L^2_0(\Omega)$ se cumple la condición

$$\sup_{\phi \in \mathcal{V}} \frac{(p, \operatorname{div} \phi)}{\|\phi\|_{\mathcal{V}}} \ge \beta \|p\|_{\mathcal{L}}$$

Prueba: Complicada, literatura: Temam, The Navier-Stokes equations

Las ecuaciones de Stokes tienen una solución (v, p) única que cumple

$$||v||_{H^1(\Omega)} + ||p||_{\Omega} \le C||f||_{H^{-1}(\Omega)}$$

(Dependencia continua de los datos f)

Condiciones de frontera

En vez de $\mathcal{V}=H^1_0(\Omega)^2$, podemos poner condiciones de Dirichlet solo en partes $\Gamma\subset\partial\Omega$

$$\mathcal{V} = H_0^1(\Omega; \Gamma)^2$$

- Necesitamos $|\Gamma| > 0$ para la \mathcal{V} -coercividad de $a(\cdot, \cdot)$
- En $\Gamma_N := \partial \Omega \setminus \Gamma$, la ecuación

$$u(
abla v,
abla \phi)_{\Omega} - (p, \mathrm{div}\phi)_{\Omega} = (f, \phi)_{\Omega}$$

contiene la condición implicita (do-nothing condition)

$$\nu \partial_n v - pn = 0$$
 en Γ_N

Esta condición se utiliza frecuentemente cuando el dominio **continua** depues de Γ_N

• Si $|\Gamma_N| > 0$, podemos elegir $\mathcal{L} = L^2(\Omega)$

Condiciones de frontera

En vez de $\mathcal{V}=H^1_0(\Omega)^2$, podemos poner condiciones de Dirichlet solo en partes $\Gamma\subset\partial\Omega$

$$\mathcal{V} = H_0^1(\Omega; \Gamma)^2$$

- Necesitamos $|\Gamma| > 0$ para la \mathcal{V} -coercividad de $a(\cdot, \cdot)$
- En $\Gamma_N := \partial \Omega \setminus \Gamma$, la ecuación

$$\nu(\nabla v, \nabla \phi)_{\Omega} - (p, \operatorname{div}\phi)_{\Omega} = (f, \phi)_{\Omega}$$

contiene la condición implicita (do-nothing condition)

$$\nu \partial_n v - pn = 0$$
 en Γ_N .

Esta condición se utiliza frecuentemente cuando el dominio **continua** depues de Γ_N

• Si $|\Gamma_N| > 0$, podemos elegir $\mathcal{L} = L^2(\Omega)$

Condiciones de frontera (cont.)

La condición

$$\nu(\nabla v + \nabla v^T)n - pn = 0$$
 en Γ_N

tiene significado físico cuando el dominio **termina** después de Γ_N (Ejemplo: agua saliendo del caño)

Formulación variacional

$$\nu(\nabla v, \nabla \phi)_{\Omega} - (p, \operatorname{div}\phi)_{\Omega} + \nu \left((\nabla v^{\mathsf{T}}) n, \phi \right)_{\Gamma_{N}} = (f, \phi)_{\Omega} \quad \forall \phi \in \mathcal{V}$$
$$(\operatorname{div} v, \xi)_{\Omega} = 0 \quad \forall \xi \in \mathcal{L}.$$

Condiciones de frontera (cont.)

La condición

$$\nu(\nabla v + \nabla v^T)n - pn = 0$$
 en Γ_N

tiene significado físico cuando el dominio **termina** después de Γ_N (Ejemplo: agua saliendo del caño)

Formulación variacional

$$\nu(\nabla v, \nabla \phi)_{\Omega} - (p, \operatorname{div}\phi)_{\Omega} + \nu \left((\nabla v^{\mathsf{T}}) n, \phi \right)_{\Gamma_{N}} = (f, \phi)_{\Omega} \quad \forall \phi \in \mathcal{V},$$
$$(\operatorname{div} v, \xi)_{\Omega} = 0 \quad \forall \xi \in \mathcal{L}.$$

Overview

1 Error en la norma L^2

Ecuaciones de Stokes: Teoría

Stokes: Discretización

Discretización

Espacios conformes $V_h \subset V$, $\mathcal{L}_h \subset \mathcal{L}$:

- ullet La **coercividad** de $a(\cdot,\cdot)$ se hereda automaticamente para $\mathcal{V}_h\subset\mathcal{V}$
- La condición inf-sup es una relación entre los espacios $\mathcal{V}_h, \mathcal{L}_h$ que tiene que ser probado

Si se cumple la condición inf-sup

$$\sup_{p_h \in \mathcal{V}_h} \frac{(p_h, \operatorname{div} \phi_h)}{\|\phi_h\|_{H^1(\Omega)}} \ge \beta \|p_h\|_{\Omega} \quad \forall \phi_h \in \mathcal{L}_h$$

el teorema de Babuška-Brezzi implica **existencia y unicidad** para la formulación variacional

Hallar $v_h \in \mathcal{V}_h, p_h \in \mathcal{L}_h$ tal que

$$\nu(\nabla v_h, \nabla \phi_h)_{\Omega} - (p_h, \operatorname{div}\phi_h)_{\Omega} = (f, \phi_h)_{\Omega} \quad \forall \phi_h \in \mathcal{V}_h$$
$$(\operatorname{div}v_h, \xi_h)_{\Omega} = 0 \quad \forall \xi_h \in \mathcal{L}_h.$$

Discretización

Espacios conformes $V_h \subset V$, $\mathcal{L}_h \subset \mathcal{L}$:

- ullet La **coercividad** de $a(\cdot,\cdot)$ se hereda automaticamente para $\mathcal{V}_h\subset\mathcal{V}$
- La condición inf-sup es una relación entre los espacios $\mathcal{V}_h, \mathcal{L}_h$ que tiene que ser probado

Si se cumple la condición inf-sup

$$\sup_{\phi_h \in \mathcal{V}_h} \frac{\left(p_h, \mathrm{div} \phi_h \right)}{\|\phi_h\|_{H^1(\Omega)}} \ge \beta \|p_h\|_{\Omega} \quad \forall \phi_h \in \mathcal{L}_h$$

el teorema de Babuška-Brezzi implica **existencia y unicidad** para la formulación variacional

Hallar $v_h \in \mathcal{V}_h, p_h \in \mathcal{L}_h$ tal que

$$\nu(\nabla v_h, \nabla \phi_h)_{\Omega} - (p_h, \operatorname{div}\phi_h)_{\Omega} = (f, \phi_h)_{\Omega} \quad \forall \phi_h \in \mathcal{V}_h,$$
$$(\operatorname{div}v_h, \xi_h)_{\Omega} = 0 \quad \forall \xi_h \in \mathcal{L}_h.$$

Elementos simples

Los elementos conformes más simples no son inf-sup estables $(\mathcal{V}_h - \mathcal{L}_h)$

• Elementos $P_1 - P_0$ sobre triángulos y $Q_1 - Q_0$ sobre quadriláteros Pruebe en triangulaciones en quadriláteros uniformes:

$$\sup_{\phi_h \in \mathcal{V}_h} \frac{\left(\xi_h, \mathrm{div} \phi_h\right)}{\|\phi_h\|_{H^1(\Omega)}} = 0$$

para la función $\xi\in\mathcal{L}_h$ definido por $\xi_h=\pm 1$ alternantamente ("checkerboard instability")

Prueba: Mostrar con $v = (\alpha, \beta)\phi_i$

• Elementos $P_k - P_k$ en triángulos y $Q_k - Q_k$ en quadriláteros

Criterio de Fortin

Teorema (Fortin)

Sea $\mathcal{V}_h \subset \mathcal{V}$ y $\mathcal{L}_h \subset \mathcal{L}$. Si existe una proyección $\pi_h : \mathcal{V} \to \mathcal{V}_h$ con las siguentes propiedades:

$$\begin{split} \|\nabla \pi_h \phi\| &\leq c_\pi \|\nabla \phi\| \quad \forall \phi \in \mathcal{V} \quad \text{ estabilidad } H^1 \\ (\nabla \cdot (\phi - \pi_h \phi), \xi_h) &= 0 \quad \forall \phi \in \mathcal{V}, \, \xi_h \in \mathcal{L}_h \quad \text{ ortogonalidad discreta} \end{split}$$

Entonces, se cumple la condición inf-sup discreta

$$\left\| \frac{\gamma}{c_{\pi}} \| p_h \| \leq \sup_{\phi_h \in \mathcal{V}_h} \frac{\left(p_h,
abla \cdot \phi_h
ight)}{\|
abla \phi_h \|}$$

Criterio de Fortin (Prueba)

Prueba: Utilizamos la condición inf-sup continuo $(p_h \in \mathcal{L}_h \subset \mathcal{L})$

$$\gamma \| p_h \| \le \sup_{\phi \in V} \frac{(p_h,
abla \cdot \phi)}{\|
abla \phi \|}$$

Introducimos $\pm \pi_h \phi \in V_h$ y utilizamos las dos condiciones:

$$egin{aligned} \gamma \| p_h \| & \leq \sup_{\phi \in V} \left(\overbrace{ \left(p_h,
abla \cdot (\phi - \pi_h \phi)
ight)}^{=0} + \frac{\left(p_h,
abla \cdot (\pi_h \phi)
ight)}{\|
abla \phi \|} + \frac{\left(p_h,
abla \cdot (\pi_h \phi)
ight)}{\|
abla \phi \|} \right) \end{aligned}$$
 $= \sup_{\phi \in V} \frac{\left(p_h,
abla \cdot (\pi_h \phi) \|
abla \pi_h \phi \|}{\|
abla \pi_h \phi \|} + \frac{\left(p_h,
abla \cdot (\pi_h \phi)
ight)}{\|
abla \phi \|}$
 $\leq c_\pi \sup_{\phi \in V} \frac{\left(p_h,
abla \cdot \pi_h \phi
ight)}{\|
abla \pi_h \phi \|} \leq c_\pi \sup_{\phi_h \in V_h} \frac{\left(p_h,
abla \cdot \phi_h
ight)}{\|
abla \phi_h \|}$

Criterio de Fortin (Prueba)

Prueba: Utilizamos la condición inf-sup continuo $(p_h \in \mathcal{L}_h \subset \mathcal{L})$

$$\gamma \|p_h\| \leq \sup_{\phi \in V} \frac{(p_h,
abla \cdot \phi)}{\|
abla \phi\|}$$

Introducimos $\pm \pi_h \phi \in V_h$ y utilizamos las dos condiciones:

$$\gamma \| p_h \| \leq \sup_{\phi \in V} \left(\frac{\overbrace{(p_h, \nabla \cdot (\phi - \pi_h \phi))}^{=0}}{\| \nabla \phi \|} + \frac{(p_h, \nabla \cdot (\pi_h \phi))}{\| \nabla \phi \|} \right) \\
= \sup_{\phi \in V} \frac{(p_h, \nabla \cdot (\pi_h \phi) \| \nabla \pi_h \phi \|}{\| \nabla \pi_h \phi \|} \\
\leq c_{\pi} \sup_{\phi \in V} \frac{(p_h, \nabla \cdot \pi_h \phi)}{\| \nabla \pi_h \phi \|} \leq c_{\pi} \sup_{\phi_h \in V_h} \frac{(p_h, \nabla \cdot \phi_h)}{\| \nabla \phi_h \|}$$

Elementos inf-sup estables

Con el criterio de Fortin podemos mostrar que los siguientes elementos son inf-sup estables

ullet Elemento P_2-P_0 en triángulos, Q_2-P_0 en quadriláteros

• Elementos **Taylor-Hood** $P_2 - P_1$ y $Q_2 - Q_1$

Más general: $Q^k - Q^{k-1}$ en quadriláteros $(k \ge 2)$, pero solo $P^k - P^{k-2}$ en triángulos $(k \ge 3)$

Elementos con funciones "bulbos"

 El elemento estable con menos grados de libertad por elemento es el elemento "MINI" P₁^b - P₁, donde

$$P_1^b = P_1 \bigoplus \operatorname{span}(xy(h-x-y))$$

• Los elementos $P_k^b - P_{k-1}$, donde

$$P_k^b = P_k \bigoplus \operatorname{span}(xy(h-x-y))$$

• Elementos con **presión discontinua** $Q_k - P_{k-1}^{dc}$, $Q_k - Q_{k-1}^{dc}$, $P_k^b - P_{k-1}^{dc}$

Elementos con funciones "bulbos"

 El elemento estable con menos grados de libertad por elemento es el elemento "MINI" P₁^b - P₁, donde

$$P_1^b = P_1 \bigoplus \operatorname{span}(xy(h-x-y))$$

• Los elementos $P_k^b - P_{k-1}$, donde

$$P_k^b = P_k \bigoplus \operatorname{span}(xy(h-x-y))$$

• Elementos con **presión discontinua** $Q_k - P_{k-1}^{dc}$, $Q_k - Q_{k-1}^{dc}$, $P_k^b - P_{k-1}^{dc}$

Elementos con presión discontinua

Si el espacio de la presión es discontinua

$$\mathcal{L}_h = \{ v \in \mathcal{L}, v_{|T} \in P_k(T) \, \forall \, T \in \mathcal{T}_h \},$$

tenemos conservación de masa local en cada elemento T

Prueba: Podemos elegir

$$\xi_h = \left\{ egin{array}{ll} 1 \ ext{en} \ T, \ 0 \ ext{en} \ \Omega \setminus T. \end{array}
ight.$$

cómo función test:

$$0 = \int_{\Omega} \operatorname{div} \, v_h \, \xi_h \, dx = \int_{T} \operatorname{div} \, v_h \, dx = \int_{\partial T} v_h \cdot n \, dx$$

Ortogonalidad de Galerkin

Problema continuo: Hallar $v \in \mathcal{V}, p \in \mathcal{L}$ tal que

$$\nu(\nabla v, \nabla \phi)_{\Omega} - (p, \operatorname{div}\phi)_{\Omega} = (f, \phi)_{\Omega} \quad \forall \phi \in \mathcal{V},$$
$$(\operatorname{div}v, \xi)_{\Omega} = 0 \quad \forall \xi \in \mathcal{L}.$$

Problema discreto: Hallar $v_h \in \mathcal{V}_h$, $p_h \in \mathcal{L}_h$ tal que

$$\nu(\nabla v_h, \nabla \phi_h)_{\Omega} - (p_h, \operatorname{div}\phi_h)_{\Omega} = (f, \phi_h)_{\Omega} \quad \forall \phi_h \in \mathcal{V}_h,$$
$$(\operatorname{div}v_h, \xi_h)_{\Omega} = 0 \quad \forall \xi_h \in \mathcal{L}_h.$$

Ortogonalidad de Galerkin

$$\begin{split} \nu(\nabla(v-v_h),\nabla\phi_h)_{\Omega} - ((p-p_h),\mathrm{div}\phi_h)_{\Omega} \\ + (\mathrm{div}(v-v_h),\xi_h)_{\Omega} = 0 \quad \forall \phi_h \in \mathcal{V}_h,\xi_h \in \mathcal{L}_h. \end{split}$$

Conclusión

Ecuaciones de Stokes/Navier-Stokes:

$$\partial_t v + v \cdot \nabla v - \nu \Delta v - \nabla p = f \text{ en } \Omega,$$

 $\operatorname{div} v = 0 \text{ en } \Omega.$

- Buena aproximación para la mayoría de fluidos y gases
- La condición inf-sup es esenciál para la teoría de las ecuaciones

$$\sup_{\phi \in \mathcal{V}} \frac{(\mathrm{div}\phi, p)}{\|\phi\|_{\mathcal{V}}} \ge \beta \|p\|_{\mathcal{L}} \quad \forall \phi \in \mathcal{L}.$$

• Condición natural para partes $\Gamma_N \subset \partial \Omega$, donde no se impone condiciones de Dirichlet (*do-nothing condition*)

$$\nu \partial_n v - pn = 0$$
 en Γ_N .

- Dos posibilidades para obtener un sistema discreto bien-puesto
 - **1** Espacios $V_h \mathcal{L}_h$ que cumplen una **condición** *inf-sup* **discreta**
 - 2 Agregar terminos de estabilización a la formulación variacional (mañana)

Conclusión (cont.)

Espacios $V_h - \mathcal{L}_h$ que cumplen una condición inf-sup discreta

$$\sup_{\phi_h \in \mathcal{V}_h} \frac{\left(\mathrm{div}\phi_h, p_h\right)}{\|\phi_h\|_{\mathcal{V}}} \geq \beta_h \|p_h\|_{\mathcal{L}} \quad \forall \phi_h \in \mathcal{L}_h.$$

- V_h tiene que ser **suficientemente grande** en relación a \mathcal{L}_h
- Criterio de Fortin para probar que elementos son inf-sup estables
- Elementos de **Taylor-Hood** son populares: $P_2 P_1$ y $Q_k Q_{k-1}$
- Agregando funciones con "bulbos": $P_k^b P_{k-1}$, MINI-element $P_1^b P_1$
- Estimación del error (mañana)

$$\nu \|\nabla (v - v_h)\|_{\Omega} + \|p - p_h\|_{\Omega} \le ch^{m_v} \|\nabla^{m_v+1}v\|_{\Omega} + ch^{m_p+1} \|\nabla^{m_p+1}p\|_{\Omega}$$

favorece elementos $P_m - P_{m-1}$ o $Q_m - Q_{m-1}$