Discrete Mathematics with Applications I COMPSCI&SFWRENG 2DM3

McMaster University, Fall 2019

Wolfram Kahl

2019-11-22

Limitations of Conditional Rewriting Implementation of with2

ThmA with ThmB and $ThmB_2 \dots$

- If *ThmA* gives rise to an implication $A_1 \Rightarrow A_2 \Rightarrow \dots (L = R)$:
 - ullet Find substitution σ such that $L\sigma$ matches goal
 - Resolve $A_1\sigma$, $A_2\sigma$, ... using ThmB and $ThmB_2$...
 - Rewrite goal applying $L\sigma \mapsto R\sigma$ rigidly.
- E.g.: "Transitivity of \subseteq " with Assumptions $Q \cap S \subseteq Q$ and $Q \subseteq R$ when trying to prove $Q \cap S \subseteq R$
 - "Transitivity of \subseteq " is: $Q \subseteq R \Rightarrow R \subseteq S \Rightarrow Q \subseteq S$
 - For application, a fresh renaming is used: $q \subseteq r \Rightarrow r \subseteq s \Rightarrow q \subseteq s$
 - We try to use: $q \subseteq s \mapsto true$, so L is: $q \subseteq s$
 - Matching *L* against goal produces $\sigma = [q, s := Q \cap S, R]$
 - $(q \subseteq r)\sigma$ is $(Q \cap R \subseteq r) \neq 0$
 - which cannot be proven by "Assumption $Q \cap S \subseteq Q'$ "
 - $(r \subseteq s)\sigma$ is $r \subseteq R$ which cannot be proven by "Assumption $Q \subseteq R$ ""
 - "Narrowing" or unification would be needed for such cases not yet implemented
 - Adding an explicit substitution should help:
 - "Transitivity of \subseteq " with `R := Q` and assumption ` $Q \cap S \subseteq Q$ ` and assumption ` $Q \subseteq R$ `

Plan for Today

- Properties of Heterogeneous Relations: Univalence, injectivity, inverse, ...
- Graph Concepts via Relations, Closures
- Some Ex10.1 proofs

Properties of Heterogeneous Relations

A relation $R : B \leftrightarrow C$ is called:

univalent determinate	$R \tilde{g} R \subseteq Id$	$\forall b, c_1, c_2 \bullet b (R) c_1 \wedge b (R) c_2 \Rightarrow c_1 = c_2$	
total	$\begin{array}{ccc} Dom R &=& \lfloor B \rfloor \\ Id &\subseteq& R {}_{9}^{\circ} R^{\circ} \end{array}$	$\forall b: B \bullet (\exists c: C \bullet b (R) c)$	
injective	$R \stackrel{\circ}{,} R^{\sim} \subseteq \operatorname{Id}$	$\forall b_1, b_2, c \bullet b_1 (R) c \wedge b_2 (R) c \Rightarrow b_1 = b_2$	
surjective	Ran R =	$\forall c: C \bullet (\exists b: B \bullet b (R) c)$	
a mapping	iff it is univalent and total		
bijective	iff it is injective and surjective		

Univalent relations are also called **(partial) functions**.

Mappings are also called **total functions**.

	Properties of Heterogeneous Relations — Examples 1				
univalent	$R \check{} $	⊆	Id	$\forall b, c_1, c_2 \bullet b (R) c_1 \land b (R) c_2 \Rightarrow c_1 = c_2$	
total	Dom R Id	=	$\begin{bmatrix} B \end{bmatrix}$ $R \stackrel{\circ}{\circ} R^{\sim}$	$\forall b: B \bullet (\exists c: C \bullet b(R)c)$	
a mapping	iff it is univalent and total				

Properties of Heterogeneous Relations — Examples 2				
injective	$R \stackrel{\circ}{,} R^{\sim}$	⊆	$\mathbb{I}B$	$\forall b_1, b_2, c \bullet b_1 (R) c \wedge b_2 (R) c \Rightarrow b_1 = b_2$
surjective	Ran R	=	С	$\forall c : C \bullet (\exists h : R \bullet h(R)c)$
	$\mathbb{I} C$	⊆	$R \check{} $	$\forall c: C \bullet (\exists b: B \bullet b (R) c)$
bijective	iff it is injective and surjective			

Recall: Composing Univalent Relations with Intersection

If $F : A \leftrightarrow B$ is univalent, then $F \circ (R \cap S) = (F \circ R) \cap (F \circ S)$

Proof: From sub-distributivity we have \subseteq ; because of antisymmetry of \subseteq (11.57) we only need to show \supseteq :

Assume that *F* is univalent, that is, $F \ \S F \subseteq Id$

```
(F ; R) \cap (F ; S)

\subseteq \langle Modal rule \rangle

F ; (R \cap (F ; F ; S))

\subseteq \langle Mon. ; W. Mon. | W. Mon.
```

Exercises...

univalent determinate	$R \widetilde{g} R$	⊆	$\mathbb{I} C$	$\forall b, c_1, c_2 \bullet b (R) c_1 \land b (R) c_2 \Rightarrow c_1 = c_2$
total	Dom R		B R ; R~	$\forall b: B \bullet (\exists c: C \bullet b (R) c)$

- For $R : B \leftrightarrow C$, prove that the two formulations of univalence are equivalent.
- For $R : B \leftrightarrow C$, prove that the three formulations of totality are equivalent.
- Let $F, G : B \leftrightarrow C$ be two relations.

Prove: If *F* is total, *G* is univalent, and $F \subseteq G$, then $G \subseteq F$.

Hint: If you use quantifiers, you can, for any b : B, use instantiation for \forall (9.13) on the predicate-logic definition of totality of F.

Properties of Heterogeneous Relations — Notes

univalent	$R \widetilde{g} R$	⊆	Id	$\forall b, c_1, c_2 \bullet b (R) c_1 \land b (R) c_2 \Rightarrow c_1 = c_2$
surjective	Id	\subseteq	$R \ \ \ \ \ \ \ R$	$\forall c: C \bullet (\exists b: B \bullet b (R) c)$
total	Id	⊆	$R {}^\circ_{\!$	$\forall b: B \bullet (\exists c: C \bullet b (R) c)$
injective	$R \stackrel{\circ}{,} R^{\sim}$	⊆	Id	$\forall b_1, b_2, c \bullet b_1 (R) c \wedge b_2 (R) c \Rightarrow b_1 = b_2$

All these properties are defined for arbitrary relations! (Not only for functions!)

• *R* is univalent and surjective

iff $R \sim R = Id$

iff R is a left-inverse of R

• *R* is total and injective

iff $R \circ R = Id$

iff R is a right-inverse of R

Inverses of Total Functions

We write " $f: B \longrightarrow C$ " for " $f \in B \leftrightarrow C$ and f is a mapping".

- (14.43) **Definition:** Let $f: B \leftrightarrow C$ be a **mapping**. An **inverse of** f is a mapping $g: C \leftrightarrow B$ such that $f \circ g = \mathbb{I} \setminus B$, and $g \circ f = \mathbb{I} \setminus C$.
 - *f* has an inverse iff *f* is a bijective mapping.
 - The inverse of a bijective mapping f is its converse f.
 - A homogeneous bijective mapping is also called a **permutation**.

Inverses of Total Functions (ctd.)

(14.43) **Definition:** Let $f: B \leftrightarrow C$ be a **mapping**. An **inverse of** f is a mapping $g: C \leftrightarrow B$ such that $f \circ g = \mathbb{I} \cup B$, and $g \circ f = \mathbb{I} \cup C$.

Theorem: If *g* is an inverse of $f: B \to C$, then $g = f^{\sim}$.

Proof: (Using antisymmetry of ⊆)

$$f^{\circ} = \langle \text{ Identity of } \hat{\beta} \rangle$$

$$f \circ g \operatorname{Id}$$

= $\langle g \operatorname{is} \operatorname{an inverse of} f \rangle$

$$f \ \S f \ \S g$$

$$\subseteq \langle f \text{ is univalent, that is, } f \circ f \subseteq \text{Id} \rangle$$

$$\subseteq$$
 (Identity of \S ; f is total, that is, $\operatorname{Id} \subseteq f \S f^{\sim}$)

$$g\, \S f\, \S f\check{}\,$$

=
$$\langle g \text{ is an inverse of } f; \text{ Identity of } \mathring{\S} \rangle$$

Inverses of Total Functions (ctd.)

(14.43) **Definition:** Let $f : B \leftrightarrow C$ be a mapping.

An **inverse of** f is a mapping $g: C \leftrightarrow B$ such that $f \circ g = \mathbb{I} \setminus B$, and $g \circ f = \mathbb{I} \setminus C$.

Theorem: A mapping $f: B \leftrightarrow C$ has an inverse iff f is bijective.

Proof: " \Rightarrow ": If f has an inverse, then f is that inverse;

therefore f^{\sim} is univalent and total,

which means that *f* is injective and surjective.

" \Leftarrow ": We know that f is total and injective,

that is, $f \circ f^{\sim} = \mathbb{I} \setminus B$, by antisymmetry of \subseteq .

We also know that *f* is univalent and surjective,

that is, $f \circ f = \mathbb{I} \setminus C$, by antisymmetry of \subseteq .

Therefore f^{\sim} is an inverse of f.

Recall: (Graphs), Simple Graphs

A **graph** consists of:

- a set of "nodes" or "vertices"
- a set of "edges" or "arrows"
- "incidence" information specifying how edges connect nodes

— more details another day.

A **simple graph** consists of:

- a set of "nodes", and
- a set of "edges", which are pairs of nodes.

(A simple graph has no "parallel edges".)

Formally: A simple graph (N, E) is a pair consisting of

- a set N, the elements of which are called "nodes", and
- a relation $E \subseteq N \times N$, the element pairs of which are called "edges".

Recall: Simple Graphs: Example

Formally: A **simple graph** (N, E) is a pair consisting of

- a set *N*, the elements of which are called "nodes", and
- a relation $E \subseteq N \times N$, the element pairs of which are called "edges".

Example:

$$G_1 = (\{2,0,1,9\}, \{\langle 2,0\rangle, \langle 9,0\rangle, \langle 2,2\rangle\})$$

Graphs are normally visualised via graph drawings:

Directed versus Undirected Graphs

- Edges in undirected graphs can be considered as "unordered pairs" (two-element sets, or one-to-two-element sets)
- The **associated relation** of an undirected graph relates two nodes if there is an edge between them
- The associated relation of an undirected graph is always symmetric
- Relations directly represent simple graphs.
- Our **definition**: An **undirected graph** is a simple graph (V, E) where E is symmetric.

Symmetric Closure

Relation $Q: B \leftrightarrow B$ is the **symmetric closure** of $R: B \leftrightarrow B$ iff Q is the smallest symmetric relation containing R,

or, equivalently, iff

- $R \subseteq Q$
- Q = Q
- $(\forall P : B \leftrightarrow B \mid R \subseteq P = P^{\sim} \bullet Q \subseteq P)$

Theorem: The symmetric closure of $R : B \leftrightarrow B$ is $R \cup R^{\sim}$.

Fact: If *R* represents a simple directed graph, then the symmetric closure of *R* is the associated relation of the corresponding simple undirected graph.

Reflexive Closure

Relation $Q: B \leftrightarrow B$ is the **reflexive closure** of $R: B \leftrightarrow B$ iff Q is the smallest reflexive relation containing R,

or, equivalently, iff

- $R \subseteq Q$
- Id ⊆ Q
- $(\forall P : B \leftrightarrow B \mid R \subseteq P \land \text{Id} \subseteq P \bullet Q \subseteq P)$

Theorem: The reflexive closure of $R : B \leftrightarrow B$ is $R \cup Id$.

Fact: If *R* represents a graph, then the reflexive closure of *R* "ensures that each node has a loop edge".

Transitive and Reflexive Transitive Closure via Powers

Powers of a homogeneous relation $R : B \leftrightarrow B$:

- $R^0 = Id$
- $R^1 = R$
- $R^{n+1} = R^n \, {}_{\circ}^n \, R$

- $R^2 = R \, {}_9^\circ R$
- $R^3 = R \circ R \circ R$
- $R^4 = R \circ R \circ R \circ R$
- R^i is reachability via exactly i many R-steps

- $R^+ = (\cup i : \mathbb{N} \mid i > 0 \bullet R^i)$
- $R^+ = R \cup R^2 \cup R^3 \cup R^4 \cup \dots$
- Transitive closure R^+ is reachability via at least one R-step
- $R^* = (\cup i : \mathbb{N} \bullet R^i)$
- $R^* = \operatorname{Id} \cup R \cup R^2 \cup R^3 \cup R^4 \cup \dots$
- Reflexive transitive closure R^* is reachability via any number of R-steps

Transitive Closure

Relation $Q: B \leftrightarrow B$ is the **transitive closure** of $R: B \leftrightarrow B$ iff Q is the smallest transitive relation containing R,

or, equivalently, iff

- $R \subseteq Q$
- $Q;Q\subseteq Q$
- $(\forall P : B \leftrightarrow B \mid R \subseteq P \land P \circ P \subseteq P \bullet Q \subseteq P)$

Definition: The transitive closure of $R : B \leftrightarrow B$ is written R^+ .

Theorem: $R^+ = (\cap P \mid R \subseteq P \land P : P \subseteq P \bullet P).$

Theorem: $R^+ = (\cup i : \mathbb{N} \mid i > 0 \bullet R^i)$

Powers of a homogeneous relation $R : B \leftrightarrow B$:

- $R^0 = Id$
- $R^1 = R$
- $R^{n+1} = R^n \, {}_{\circ}^{\circ} R$

Reflexive Transitive Closure

 $Q: B \leftrightarrow B$ is the **reflexive transitive closure** of $R: B \leftrightarrow B$ iff *Q* is the smallest reflexive transitive relation containing *R*,

or, equivalently, iff

- $R \subseteq Q$
- $Id \subseteq Q \land Q : Q \subseteq Q$
- $(\forall P : B \leftrightarrow B \mid R \subseteq P \land Id \subseteq P \land P \circ P \subseteq P \bullet Q \subseteq P)$

Definition: The reflexive transitive closure of R is written R^* .

Theorem: $R^* = (\cap P \mid R \subseteq P \land \operatorname{Id} \subseteq P \land P \circ P \subseteq P \bullet P).$

Theorem: $R^* = (\cup i : \mathbb{N} \bullet R^i)$

- Transitive closure R^+ is reachability via at least one R-step
- Reflexive transitive closure R^* is reachability via any number of R-steps
- Variants of the Warshall algorithm calculate these closures in cubic time.

Reachability in graph G = (V, E) — 1 (ctd.)

• No edge ends at node s

s ∉ Ran E

 $s \in \sim (Ran E)$

— *s* is called a **source** of *G*

• No edge starts at node *s*

 $s \notin Dom E$

 $s \in \sim (Dom E)$

— *s* is called a **sink** of *G*

• Node n_2 is reachable from node n_1 via a three-edge path n_1 ($E \$ $E \$ $E \$ $E \$ $E \$) n_2

 n_1 (E^3) n_2

or

• Every node is reachable from node *r*

 $\{r\} \times \mathbf{U} \subseteq E^*$


```
Ex10.1
Theorem "Distributivity of; over u": Q; (R U S) = Q; R U Q; S
Proof:
    Using "Relation extensionality":
    Subproof for `∀ a • ∀ c • a (Q; (R U S)) c ≡ a (Q; R U Q; S) c`:
    For any `a`, `c`:
        a (Q; (R U S)) c
        ≡( "Relation composition" )
        ∃ b • a (Q) b Λ b (R U S) c
        ≡( "Relation union" )
        ∃ b • a (Q) b Λ (b (R) c v b (S) c)
        ≡( "Distributivity of Λ over v", "Distributivity of ∃ over v" )
        (∃ b • a (Q) b Λ b (R) c) v (∃ b • a (Q) b Λ b (S) c)
        ≡( "Relation composition")
        a (Q; R) c v a (Q; S) c
        ≡( "Relation union" )
        a (Q; R U Q; S) c
```

```
Theorem "Monotonicity of ;": Q \subseteq R \rightarrow Q; S \subseteq R; S Proof:
    Assuming `Q \subseteq R`:
    Using "Relation inclusion":
    Subproof for `\forall a • \forall c • a ( Q; S ) c \Rightarrow a ( R; S ) c`:
    For any `a`, `c`:
        a ( Q; S ) c
    \equiv ( "Relation composition" )
        \exists b • a ( Q ) b \land b ( S ) c
    \Rightarrow ("Body monotonicity of \exists" with "Monotonicity of \land"
        with assumption `Q \subseteq R` with "Relation inclusion" )
    \exists b • a ( R ) b \land b ( S ) c
    \equiv ("Relation composition" )
    a ( R; S ) c
```

```
Ex10.1
Theorem "Modal rule":
                                                                                                                            (Q; R) \cap S \subseteq (Q \cap S; R); R
Proof:
          Using "Relation inclusion":
                    Subproof for `\forall a • \forall c • a ( (Q; R) n S ) c \Rightarrow a ( (Q n S; R \check{} ); R ) c`:
                              For any `a`, `c`:
                                                 a ( (Q n S; R ); R ) c
                                        ≡⟨ "Relation composition" ⟩
                                                  ∃ b • a ( Q n S ; R ~ ) b л b ( R ) с
                                       ≡( "Relation intersection", "Relation composition", "Relation converse" )
∃ b • a ( Q ) b Λ (∃ c₂ • a ( S ) c₂ Λ b ( R ) c₂ ) Λ b ( R ) c
≡( "Distributivity of Λ over ∃" )
                                                 \bar{A} 
                                        ←⟨ "Consequence",
                                       \exists b • (a (Q) b \land a (S) c_2 \land b (R) c_2 \land b (R) c)[c_2 = c] \equiv (Substitution, "Idempotency of \land")
                                                 ∃ b<sub>2</sub> • a ( Q ) b<sub>2</sub> ∧ b<sub>2</sub> ( R ) с ∧ a ( S ) с
                                        ≡( "Distributivity of ∧ over ∃" )
                                       (∃ b₂ • a ( Q ) b₂ \Lambda b₂ ( R ) c) \Lambda a ( S ) c ≡ ( "Relation intersection", "Relation composition" )
                                                 a ( (Q; R) n S) c
```