Лекция 1: Использование графических процессоров для ускорения вычислений. Введение

Н.Д. Смирнова

Санкт-Петербургский государственный Политехнический университет

15.09.2011

Содержание

- 1 Лекции
 - Что?
 - Почему?
 - Зачем?
- Дабораторные
 - Что используем
 - Что делаем

Содержание

- 🕕 Лекции
 - Что?
 - Почему?
 - Зачем?
- 2 Лабораторные
 - Что используем
 - Что делаем

Название

GPGPU - General-purpose computing on graphics processor units ¹

- решение различных вычислительно сложных распараллеливаемых задач
 - от обработки изображений
 - до решения уравнения Навье-Стокса
- на графических процессорах (GPU)
 - "без" использования обычных процессоров (CPU)

¹http://en.wikipedia.org/wiki/GPGPU

Название

GPGPU - General-purpose computing on graphics processor units ¹

- решение различных вычислительно сложных распараллеливаемых задач
 - от обработки изображений
 - до решения уравнения Навье-Стокса
- на графических процессорах (GPU)
 - "без" использования обычных процессоров (CPU)

¹http://en.wikipedia.org/wiki/GPGPU

Название

GPGPU - General-purpose computing on graphics processor units ¹

- решение различных вычислительно сложных распараллеливаемых задач
 - от обработки изображений
 - до решения уравнения Навье-Стокса
- на графических процессорах (GPU)
 - "без" использования обычных процессоров (CPU)

¹http://en.wikipedia.org/wiki/GPGPU

Почему GPU?

- быстрее, дешевле
- требует узко специальных знаний

Почему GPU?

- быстрее, дешевле
- требует узко специальных знаний

Почему так произошло?

Почему так произошло?

 от специализированных ядер с арифметикой низкой точности к унифицированным ядрам с арифметикой "высокой" точности

- GPU все-таки ориентирован на графику
- Архитектура GPU
 - параллельная обработка данных
 - очень быстро меняется
 - секретна
 - сильно отличается у разных производителей
- нельзя просто взять и портировать СРU-код, надо менять алгоритмы
- решение новой задачи крайне сложный уникальный процесс с трудно предсказуемым результатом

- GPU все-таки ориентирован на графику
- Архитектура GPU
 - параллельная обработка данных
 - очень быстро меняется
 - секретна
 - сильно отличается у разных производителей
- нельзя просто взять и портировать СРU-код, надо менять алгоритмы
- решение новой задачи крайне сложный уникальный процесс с трудно предсказуемым результатом

- GPU все-таки ориентирован на графику
- Архитектура GPU
 - параллельная обработка данных
 - очень быстро меняется
 - секретна
 - сильно отличается у разных производителей
- нельзя просто взять и портировать СРU-код, надо менять алгоритмы
- решение новой задачи крайне сложный уникальный процесс с трудно предсказуемым результатом

- GPU все-таки ориентирован на графику
- Архитектура GPU
 - параллельная обработка данных
 - очень быстро меняется
 - секретна
 - сильно отличается у разных производителей
- нельзя просто взять и портировать CPU-код, надо менять алгоритмы
- решение новой задачи крайне сложный уникальный процесс с трудно предсказуемым результатом

- GPU все-таки ориентирован на графику
- Архитектура GPU
 - параллельная обработка данных
 - очень быстро меняется
 - секретна
 - сильно отличается у разных производителей
- нельзя просто взять и портировать CPU-код, надо менять алгоритмы
- решение новой задачи крайне сложный уникальный процесс с трудно предсказуемым результатом

- Графические процессоры: архитектура, возможности
 - обзор текущей ситуации на рынке
- API: DirectX, HLSL, Cg, специализированные GPGPU языки (OpenCL, DirectCompute, ...)
 - обзор текущей ситуации на рынке
- Алгоритмы и структуры данных
 - хранение разреженных матриц
 - перемножение матриц
 - сортировки
 - моделирования взаимодействия система тверых тел

- Графические процессоры: архитектура, возможности
 - обзор текущей ситуации на рынке
- API: DirectX, HLSL, Cg, специализированные GPGPU языки (OpenCL, DirectCompute, ...)
 - обзор текущей ситуации на рынке
- Алгоритмы и структуры данных
 - хранение разреженных матриц
 - перемножение матриц
 - сортировки
 - моделирования взаимодействия система тверых тел

- Графические процессоры: архитектура, возможности
 - обзор текущей ситуации на рынке
- API: DirectX, HLSL, Cg, специализированные GPGPU языки (OpenCL, DirectCompute, ...)
 - обзор текущей ситуации на рынке
- Алгоритмы и структуры данных
 - хранение разреженных матриц
 - перемножение матриц
 - сортировки
 - моделирования взаимодействия система тверых тел

- Графические процессоры: архитектура, возможности
 - обзор текущей ситуации на рынке
- API: DirectX, HLSL, Cg, специализированные GPGPU языки (OpenCL, DirectCompute, ...)
 - обзор текущей ситуации на рынке
- Алгоритмы и структуры данных
 - хранение разреженных матриц
 - перемножение матриц
 - сортировки
 - моделирования взаимодействия система тверых тел

Содержание

- Лекции
 - Что?
 - Почему?
 - Зачем?
- 2 Лабораторные
 - Что используем
 - Что делаем

- Вы специалисты по численным методам
- Вас применяют в моделирования сложных процессов
- Многие ваши задачи хорошо подходят для распараллеливания
- Исторически кафедра питает любовь к GPU, накоплены знания
- Вам также читается курс GPU-ориентированной "быстрой" компьютерной графики
- Вы идеальная кандидатура!!!

- Вы специалисты по численным методам
- Вас применяют в моделирования сложных процессов
- Многие ваши задачи хорошо подходят для распараллеливания
- Исторически кафедра питает любовь к GPU, накоплены знания
- Вам также читается курс GPU-ориентированной "быстрой" компьютерной графики
- Вы идеальная кандидатура!!!

- Вы специалисты по численным методам
- Вас применяют в моделирования сложных процессов
- Многие ваши задачи хорошо подходят для распараллеливания
- Исторически кафедра питает любовь к GPU, накоплены знания
- Вам также читается курс GPU-ориентированной "быстрой" компьютерной графики
- Вы идеальная кандидатура!!!

- Вы специалисты по численным методам
- Вас применяют в моделирования сложных процессов
- Многие ваши задачи хорошо подходят для распараллеливания
- Исторически кафедра питает любовь к GPU, накоплены знания
- Вам также читается курс GPU-ориентированной "быстрой" компьютерной графики
- Вы идеальная кандидатура!!!

- Вы специалисты по численным методам
- Вас применяют в моделирования сложных процессов
- Многие ваши задачи хорошо подходят для распараллеливания
- Исторически кафедра питает любовь к GPU, накоплены знания
- Вам также читается курс GPU-ориентированной "быстрой" компьютерной графики
- Вы идеальная кандидатура!!!

- Вы специалисты по численным методам
- Вас применяют в моделирования сложных процессов
- Многие ваши задачи хорошо подходят для распараллеливания
- Исторически кафедра питает любовь к GPU, накоплены знания
- Вам также читается курс GPU-ориентированной "быстрой" компьютерной графики
- Вы идеальная кандидатура!!!

- Вы специалисты по численным методам
- Вас применяют в моделирования сложных процессов
- Многие ваши задачи хорошо подходят для распараллеливания
- Исторически кафедра питает любовь к GPU, накоплены знания
- Вам также читается курс GPU-ориентированной "быстрой" компьютерной графики
- Вы идеальная кандидатура!!!

Содержание

- 1 Лекции
 - Что?
 - Почему?
 - Зачем?
- 2 Лабораторные
 - Что используем
 - Что делаем

- GPGPU это современная мировая тенденция
- до сих пор (c 2006) CPU нечем ответить
 - Cell (Sony, Toshiba, IBM)², Larabee (Intel)³
- математики-программисты-GPU уникальны
- широкий спектр задач вашей специальности подходит для GPGPU
 - уравнение теплопроводности
 - уравнение Навье-Стокса
 - метод конечных элементов
 - вообще матричные вычисления

²http://en.wikipedia.org/wiki/Cell (microprocessor)

³http://en.wikipedia.org/wiki/Larrabee (microarchitecture

- GPGPU это современная мировая тенденция
- до сих пор (с 2006) CPU нечем ответить
 - Cell (Sony, Toshiba, IBM)², Larabee (Intel)³
- математики-программисты-GPU уникальны
- широкий спектр задач вашей специальности подходит для GPGPU
 - уравнение теплопроводности
 - уравнение Навье-Стокса
 - метод конечных элементов
 - вообще матричные вычисления

²http://en.wikipedia.org/wiki/Cell (microprocessor

³http://en.wikipedia.org/wiki/Larrabee (microarchitecture)

- GPGPU это современная мировая тенденция
- до сих пор (с 2006) CPU нечем ответить
 - Cell (Sony, Toshiba, IBM)², Larabee (Intel)³
- математики-программисты-GPU уникальны
- широкий спектр задач вашей специальности подходит для GPGPU
 - уравнение теплопроводности
 - уравнение Навье-Стокса
 - метод конечных элементов
 - вообще матричные вычисления

²http://en.wikipedia.org/wiki/Cell (microprocessor)

³http://en.wikipedia.org/wiki/Larrabee_(microarchitecture)

- GPGPU это современная мировая тенденция
- до сих пор (с 2006) CPU нечем ответить
 - Cell (Sony, Toshiba, IBM)², Larabee (Intel)³
- математики-программисты-GPU уникальны
- широкий спектр задач вашей специальности подходит для GPGPU
 - уравнение теплопроводности
 - уравнение Навье-Стокса
 - метод конечных элементов
 - вообще матричные вычисления

²http://en.wikipedia.org/wiki/Cell (microprocessor)

³http://en.wikipedia.org/wiki/Larrabee_(microarchitecture)

- GPGPU это современная мировая тенденция
- до сих пор (с 2006) CPU нечем ответить
 - Cell (Sony, Toshiba, IBM)², Larabee (Intel)³
- математики-программисты-GPU уникальны
- широкий спектр задач вашей специальности подходит для GPGPU
 - уравнение теплопроводности
 - уравнение Навье-Стокса
 - метод конечных элементов
 - вообще матричные вычисления

²http://en.wikipedia.org/wiki/Cell (microprocessor)

³http://en.wikipedia.org/wiki/Larrabee (microarchitecture)

Содержание

- 1 Лекции
 - Что?
 - Почему?
 - Зачем?
- Дабораторные
 - Что используем
 - Что делаем

Что используем

Содержание

- 1 Лекции
 - Что?
 - Почему?
 - Зачем?
- Дабораторные
 - Что используем
 - Что делаем

- среда программирования: Visual Studio (Express) ²
- язык программирования: С/С++
- API: OpenCL ^{5 6}
 - библиотека для разработки приложений для параллельных вычислений на GPU
 - имеет специальный язык для написания kernel
 - имеет API для управления GPU
 - поддержана NVidia, ATI(AMD), Intel, ARM

⁴http://www.microsoft.com/visualstudio/en-us/products/2010 editions/express

⁵http://www.khronos.org/

⁶http://en.wikipedia.org/wiki/OpenCl

- среда программирования: Visual Studio (Express) 4

⁴ http://www.microsoft.com/visualstudio/en-us/products/2010editions/express

- среда программирования: Visual Studio (Express) 4
- язык программирования: С/С++
- API: OpenCL ^{5 6}
 - библиотека для разработки приложений для параллельных вычислений на GPU
 - имеет специальный язык для написания kernel
 - имеет API для управления GPU
 - поддержана NVidia, ATI(AMD), Intel, ARM

⁴http://www.microsoft.com/visualstudio/en-us/products/2010-editions/express

⁵http://www.khronos.org/

⁶http://en.wikipedia.org/wiki/OpenCl

- среда программирования: Visual Studio (Express) ⁴
- язык программирования: C/C++
- API: OpenCL 5 6
 - библиотека для разработки приложений для параллельных вычислений на GPU
 - имеет специальный язык для написания kernel
 - имеет API для управления GPU
 - поддержана NVidia, ATI(AMD), Intel, ARM

⁴http://www.microsoft.com/visualstudio/en-us/products/2010-editions/express

⁵http://www.khronos.org/

⁶http://en.wikipedia.org/wiki/OpenCL

Содержание

- 1 Лекции
 - Что?
 - Почему?
 - Зачем?
- 2 Лабораторные
 - Что используем
 - Что делаем

- установить соответствующую вашей платформе реализацию OpenCL, позапускать примеры.
- Выбрать наиболее симпатичный, поиграть с ним и написать отчет:
 - постановка задачи
 - организация данных, реализация алгоритма
 - график зависимости скорости вычислений от объема данных
- решить задачу на нахождение пар пересекающихся объектов ⁷
 - пересекающиеся отрезки
 - пересекающиеся окружности

⁷детали обсудим позже

- установить соответствующую вашей платформе реализацию OpenCL, позапускать примеры.
- Выбрать наиболее симпатичный, поиграть с ним и написать отчет:
 - постановка задачи
 - организация данных, реализация алгоритма
 - график зависимости скорости вычислений от объема данных
- решить задачу на нахождение пар пересекающихся объектов ⁷
 - пересекающиеся отрезки
 - пересекающиеся окружности

⁷детали обсудим позже

- установить соответствующую вашей платформе реализацию OpenCL, позапускать примеры.
- выбрать наиболее симпатичный, поиграть с ним и написать отчет:
 - постановка задачи
 - организация данных, реализация алгоритма
 - график зависимости скорости вычислений от объема данных
- решить задачу на нахождение пар пересекающихся объектов
 - пересекающиеся отрезки
 - пересекающиеся окружности

⁷детали обсудим позже

- установить соответствующую вашей платформе реализацию OpenCL, позапускать примеры.
- выбрать наиболее симпатичный, поиграть с ним и написать отчет:
 - постановка задачи
 - организация данных, реализация алгоритма
 - график зависимости скорости вычислений от объема данных
- решить задачу на нахождение пар пересекающихся объектов ⁷
 - пересекающиеся отрезки
 - пересекающиеся окружности

⁷детали обсудим позже

продолжение следует...