This is a 15 point problem

a) What type of state machine is this?

Moore Machine?

Mealy Machine?

b) Determine the expression for the flip-flop inputs, which are the outputs of the ROM, in compact *m*-notation. The minterms in the decoder are in wxyz order (e.g. m_2 is for wxyz = 0010).

$$D_A(I,A,B,C) = 3.5, 6.7, 10, 12, 13, 14$$
 $D_B(I,A,B,C) = 1, 2, 4, 5, 7, 11, 12, 13, 14$ $D_C(I,A,B,C) = 0, 2, 3, 4, 5, 6, 9, 11, 14$

Continued next page

c) Complete these Next-State Maps for the flip-flops. Do not change any of the labels on the maps.

d) Complete this Transition Table for the state machine. Do not change any headings or values typed into the table. Note that the left column is not in "truth table order."

i				
	Present	Next State		Present
	State	I = 0	I = 1	Output
	ABC	$A^+ B^+ C^+$	$A^+ B^+ C^+$	F
08	000	001	000	1
1 9	0 0 1	0 / 0	001	0
2 11	0 1 1	101	D 1 1	0
3 10	010	0	100	_
4 12	100	0	110	-
5 13	101	111	110	0
6 15	1 1 1	1	0	0
7 14	110	101	111	٥

Continued next page

e) Using the following state definitions, complete the State Table. Note the different row order! Do not change any headings or values typed into the table.

$$S_0 (ABC = 000),$$
 $S_1 (ABC = 001),$ $S_2 (ABC = 010),$ $S_3 (ABC = 011)$

$$S_4 \ (ABC = 100), \qquad S_5 \ (ABC = 101), \qquad S_6 \ (ABC = 110), \qquad S_7 \ (ABC = 111)$$

Descent	Next State		Present
Present State	I = 0	I=1	Output
State	1 – 0	I = 1	F
S_0	S	Sp	1
S_1	Sz	Si	0
S_2	Ss	52	0
S_3	53	S4	-
S_4	53	56	I
S_5	ST	56	0
S_6	56	So	0
S_7	Ss	ST	0

