Basi di Dati

Linguaggi di interrogazione

Basi di Dati – Dove ci troviamo?

Classificazione

- Linguaggi formali
 - Algebra relazionale
 - Calcolo relazionale
 - Programmazione logica
- Linguaggi programmativi
 - ► SQL: Structured Query Language
 - QBE: Query By Example

Algebra relazionale

- Definita da Codd (1970)
- Molto utile per imparare a formulare query
- Insieme minimo di 5 operatori che danno l'intero potere espressivo del linguaggio

Una visione d'insieme

Esempio: gestione degli esami universitari

studente

MATR	NOME	CITTA'	C-DIP
123	Carlo	Bologna	Inf
415	Paola	Torino	Inf
702	Antonio	Roma	Log

esame

MATR	COD- CORSO	DATA	VOTO
123	1	7-9-14	30
123	2	8-1-15	28
702	2	7-9-14	20

corso

COD- CORSO	TITOLO	DOCENTE
1	matematica	Barozzi
2	informatica	Meo

Selezione (σ)

σ [PredSel] TABELLA

È una tabella (priva di nome) con

- schema:
 - lo stesso schema di 'TABELLA'
- istanza:
 - le tuple di 'TABELLA' che soddisfano il predicato di selezione 'PredSel'

Esempio di Selezione:

σ [NOME='Paola'] **STUDENTE**

È una tabella (priva di nome) con

- schema:
 - lo stesso schema di STUDENTE
- istanza:
 - le tuple di STUDENTE che soddisfano il predicato di selezione [NOME='Paola']

MATR	NOME	CITTA'	C-DIP
415	Paola	Torino	Inf

Sintassi del PREDICATO di SELEZIONE

Espressione booleana di predicati semplici

operazioni booleane:

- AND (P1 AND P2)
- OR (P1 OR P2)
- NOT (NOT P1)

predicati semplici:

- TRUE, FALSE
- termine comparatore termine

comparatore:

• =, !=, <, <=, >, >=

termine:

- costante, attributo
- espressione aritmetica di costanti e attributi

Esempio di selezione

σ [(CITTA'='Torino') OR ((CITTA'='Roma')
AND NOT (C-DIP='log'))] STUDENTE

MATR	NOME	CITTA'	C-DIP	
123	Carlo	Bologna	Inf	
415	Paola	Torino	Inf	
702	Antonio	Roma	Log	

Proiezione (π)

π [attributiProiez] TABELLA

È una tabella (priva di nome) con

- schema:
 - gli attributi 'attributiProiez'
- istanza :
 - ▶ la restrizione delle tuple sugli attributi 'attributiProiez'

Esempio di Proiezione:

π [NOME, C-DIP] **STUDENTE**

È una tabella (priva di nome) con

- schema:
 - gli attributi NOME e C-DIP
- istanza:
 - ▶ la restrizione delle tuple sugli attributi NOME e C-DIP

NOME	C-DIP
Carlo	Inf
Paola	Inf
Antonio	Log

Proiezione e duplicati

- Nel modello formale la proiezione elimina i duplicati
- Nel modello informale (e nei sistemi) la eliminazione dei duplicati va richiesta esplicitamente

Es.

π [C-DIP] STUDENTE

Assegnamento (=)

Serve per dare un nome al risultato di una espressione algebrica

Non fa parte delle operazioni algebriche

```
INFORMATICI = \sigma [C-DIP='Inf'] STUDENTI

TORINESI = \sigma [CITTA'='Torino'] STUDENTI
```

Unione (U)

TABELLA1 U TABELLA2

 Si può fare se TABELLA1 e TABELLA2 sono compatibili (con domini ordinatamente dello stesso tipo)

È una tabella (priva di nome) con

- schema:
 - lo schema di TABELLA1
- istanza :
 - ▶ l'unione delle tuple di TABELLA1 e TABELLA2

L'unione è commutativa, associativa

Esempio di Unione:

INFORMATICI U TORINESI

È una tabella (priva di nome) con

- schema:
 - lo schema di INFORMATICI
- istanza:
 - la unione delle tuple di INFORMATICI e TORINESI

MATR	NOME	CITTA'	C-DIP
123	Carlo	Bologna	Inf
415	Paola	Torino	Inf

Differenza (-)

TABELLA1 - TABELLA2

Si può fare se TABELLA1 e TABELLA2 sono compatibili

È una tabella (priva di nome) con

- schema:
 - lo schema di TABELLA1
- istanza:
 - ▶ la differenza delle tuple di TABELLA1 e TABELLA2

ATTENZIONE: no commutativa, no associativa!

Esempio di Differenza:

INFORMATICI - TORINESI

È una tabella (priva di nome) con

- schema:
 - lo schema di INFORMATICI
- istanza:
 - ▶ la differenza delle tuple di INFORMATICI e TORINESI

MATR	NOME	CITTA'	C-DIP
123	Carlo	Bologna	Inf

ATTENZIONE: non e' commutativa!

Join (⋈)

TABELLA1 → [PredJoin] **TABELLA2**

È una tabella (priva di nome) con

- schema:
 - ▶ la concatenazione degli schemi di TABELLA1 e TABELLA2
- istanza:
 - ▶ le tuple ottenute concatenando quelle tuple di TABELLA1 e di TABELLA2 che soddisfano il predicato 'PredJoin'

Esempio di Join

STUDENTE ► [MATR=MATR] ESAME

È una tabella (priva di nome) con

- schema:
 - la concatenazione degli schemi di STUDENTE e ESAME
- istanza:
 - le tuple ottenute concatenando le tuple di STUDENTE e di ESAME che soddisfano [MATR=MATR]

STUDENTE. MATR	NOME	CITTA'	C-DIP	ESAME. MATR	COD- CORSO	DATA	VOTO
123	Carlo	Bologna	Inf	123	1	7-9-14	30
123	Carlo	Bologna	Inf	123	2	8-1-15	28
702	Antonio	Roma	Log	702	2	7-9-14	20

Sintassi del predicato di join

Espressione congiuntiva di predicati semplici:

ATTR1 comp ATTR2

Dove

- ATTR1 appartiene a TAB1
- ATTR2 appartiene a TAB2
- comp: =, !=, <, <=, >, >=
- Attributi omonimi sono resi non ambigui usando la notazione "puntata"
 - es: ESAME.MATR, STUDENTE.MATR

Equi-join e Join naturale

- **EQUI-JOIN:**
 - soli confronti di uguaglianza
- JOIN NATURALE :
 - equi-join di tutti gli attributi omonimi
- ▶ Es: STUDENTE ► ESAME

MATR	NOME	CITTA'	C-DIP	COD- CORSO	DATA	VOTO
123	Carlo	Bologna	Inf	1	7-9-14	30
123	Carlo	Bologna	Inf	2	8-1-15	28
702	Antonio	Roma	Log	2	7-9-14	20

Join naturale di tre tabelle

▶ Es. STUDENTE ► ESAME ► CORSO

MATR	NOME	CITTA'	C-DIP	COD- CORSO	DATA	VOTO	TITOLO	DOCENTE
123	Carlo	Bologna	Inf	1	7-9-14	30	matem	barozzi
123	Carlo	Bologna	Inf	2	8-1-15	28	infor	meo
702	Antonio	Roma	Log	2	7-9-14	20	infor	meo

Proprietà del join

- Il Join è commutativo e associativo
 - $ightharpoonup R1 \bowtie R2 \equiv R2 \bowtie R1$
 - ▶ R1 \bowtie (R2 \bowtie R3) \equiv (R1 \bowtie R2) \bowtie R3

- Join naturale senza attributi omonimi: se le due relazioni non hanno attributi omonimi (R1∩R2= Ø), il Join naturale si riduce ad essere un semplice prodotto cartesiano. Cioè, concatenazione di tutte le tuple in R1 e con tutte le tuple in R2:
 - $R1 \bowtie R2 \equiv R1 \times R2$

Priorità degli operatori

- E' sempre bene, specie in caso di dubbio, utilizzare le parentesi per specificare in esplicito la priorità desiderata tra gli operatori di un'espressione algebrica
- Ad ogni modo, in assenza di parentesi, valgono le seguenti regole di priorità:
 - SELEZIONE, PROIEZIONE (massima priorità)
 - 2. JOIN
 - 3. UNIONE, DIFFERENZA

Espressioni algebriche

- Concatenazione di più operazioni algebriche
- Esprimono interrogazioni in modo formale
- Consentono di estrarre informazioni dai dati

Selezione e proiezione

MATR	NOME	CITTA'	C-DIP
123	Carlo	Bologna	Inf
415	Paola	Torino	Inf
702	Antonio	Roma	Log

Quali studenti (nome) sono iscritti al diploma di informatica?

$$π$$
 [NOME] $σ$ [C-DIP='Inf'] STUDENTE

NOME Carlo Paola

Selezione e proiezione

MATR	NOME	CITTA'	C-DIP
123	Carlo	Bologna	Inf
415	Paola	Torino	Inf
702	Antonio	Roma	Log

Quali studenti (nome) di Logistica non sono di Milano?

Esempio: gestione degli esami universitari

studente

MATR	NOME	CITTA'	C-DIP
123	Carlo	Bologna	Inf
415	Paola	Torino	Inf
702	Antonio	Roma	Log

esame

MATR	COD- CORSO	DATA	VOTO
123	1	7-9-14	30
123	2	8-1-15	28
702	2	7-9-14	20

corso

COD- CORSO	TITOLO	DOCENTE
1	matematica	Barozzi
2	informatica	Meo

Selezione, proiezione e join

Quali studenti (nome) hanno preso 30 in matematica?

MATR	NOME	CITTA'	C-DIP	COD- CORSO	DATA	VOTO	TITOLO	DOCENTE
123	Carlo	Bologna	Inf	1	7-9-14	30	matem	barozzi
123	Carlo	Bologna	Inf	2	8-1-15	28	infor	meo
702	Antonio	Roma	Log	3	7-9-14	20	infor	meo

Selezione, proiezione e join

Quali studenti (nome) hanno preso 30 in matematica?

NOME

Carlo

Equivalenza di espressioni

Quali studenti (nome) hanno preso 30 in matematica?

```
π [NOME] σ [VOTO=30 AND TITOLO='matematica'] (STUDENTE \bowtie ESAME \bowtie CORSO)
```

```
π [NOME]

(STUDENTE 

(σ [VOTO=30] ESAME) 

(σ [TITOLO='matematica'] CORSO))
```

Selezione, proiezione e join

Quali professori hanno esaminato Antonio?

$$\pi$$
 [DOCENTE] σ [NOME = 'Antonio'] (STUDENTE \bowtie ESAME \bowtie CORSO)

DOCENTE

Meo

Equivalenza di espressioni

```
\pi [DOCENTE] \sigma [NOME = 'Antonio'] (STUDENTE \bowtie ESAME \bowtie CORSO)
```

```
π [DOCENTE]

(CORSO ⋈

(ESAME ⋈ σ [NOME = 'Antonio'] STUDENTE))
```

Estrarre la matricola degli studenti romani oppure degli studenti che hanno sostenuto un esame il giorno 8-1-15

Estrarre la matricola degli studenti che hanno preso almeno un voto superiore a 28 e non sono mai scesi sotto il 25

La seconda soluzione è equivalente alla prima?

$$\pi$$
 [MATR] (σ [VOTO>28] ESAME - σ [VOTO<25] ESAME)

- No! La seconda soluzione è errata
- Ad esempio, in questa situazione...

esame

MATR	COD- CORSO	DATA	VOTO
123	1	7-9-14	30
702	2	8-1-15	28
123	2	7-9-16	20

 … il risultato corretto è chiaramente la relazione vuota (prodotta dalla prima soluzione)

La seconda soluzione (non corretta, in quanto realizza una differenza tra esami e non tra matricole) produrrebbe:

MATR	COD- CORSO	DATA	VOTO
123	1	7-9-14	30

MINUS

MATR	COD- CORSO	DATA	VOTO
123	2	7-9-16	20

MATR	COD- CORSO	DATA	VOTO
123	1	7-9-14	30

123

Esercizi

- Riprendere le basi di dati per la gestione del personale e degli ordini e esprimere in forma algebrica le interrogazioni:
 - in quali tipi di progetti lavora Giovanni?
 - chi e' il manager di Piero?
 - quale impiegato e' stato assunto per primo?
 - quali ordini ha emesso Paolo?
 - quali prodotti sono ordinati da un cliente di Milano?
 - quali prodotti hanno prezzo inferiore a 10 € e non sono presenti in nessun ordine?

Esempio: gestione personale

impiegato

MATR	NOME	DATA-ASS	SALARIO	MATR-MGR
1	Piero	1-1-12	1500 €	2
2	Giorgio	1-1-14	2000 €	null
3	Giovanni	1-7-13	1000 €	2

assegnamento

MATR	NUM-PROG	PERC
1	3	50
1	4	50
2	3	100
3	4	100

progetto

NUM-PROG	TITOLO	TIPO
3	Idea	Esprit
4	Wide	Esprit

Esempio: gestione ordini

