

Duality and Post-Optimal Analysis

Partially based on: Taha, H. A. 2017. Operations Research: An Introduction. 10th Edition. Boston, MA: Pearson Gurobi Documentation

Andrés D. González

Assistant Professor School of Industrial and Systems Engineering, The University of Oklahoma

ISE 4623/5023: Deterministic Systems Models / Systems Optimization
The University of Oklahoma, Norman, OK, USA

Sensitivity analysis

Suppose you have the problem

Maximize
$$z = c^T x$$

subject to $Ax = b$
 $x \ge 0$

- There are some sensitivity analyses of interest:
 - Changes/perturbations in c: vector of costs
 - Changes/perturbations in A: matrix of coefficients
 - Changes/perturbations in b: right-hand side vector

 Consider the following LP with two variables

Maximize
$$z = 2x_1 + 3x_2$$

subject to
$$2x_1 + x_2 \le 4$$
$$x_1 + 2x_2 \le 5$$
$$x_1, x_2 \ge 0$$

 Imagine that the right-hand side coefficients represent limited resources. How much "should I pay" for "one extra unit" of each resource?

The gradient is: (2,3)

The optimum solution is: $\{x_1 \rightarrow 1, x_2 \rightarrow 2\}$

Maximize
$$z = 2x_1 + 3x_2$$

subject to
$$2x_1 + x_2 \le 4 + 1$$
$$x_1 + 2x_2 \le 5$$
$$x_1, x_2 \ge 0$$

- If we increase in one unit (i.e., from 4 to 5) the "first resource" (right-hand side of the first constraint) our optimal objective value from 8 to 25/3
 - Then, the associated rate of revenue change is:

$$\frac{\left(\frac{25}{3} - 8\right)}{5 - 4} = \frac{\left(\frac{1}{3}\right)}{1} = 1/3$$

This mean that you "should not pay" more than 1/3 for an additional unit of "resource 1"

 This value is often called the dual (or shadow) price associated with that resource/constraint

The gradient is: (2,3)

The optimum solution is: $\{x_1 \to \frac{5}{3}, x_2 \to \frac{5}{3}\}$

The optimal value of the objective function is: $\frac{25}{3}$

Maximize
$$z = 2x_1 + 3x_2$$
 subject to

$$2x_1 + x_2 \le 4$$

$$x_1 + 2x_2 \le 5 + 1$$

$$x_1, x_2 \ge 0$$

- If we increase in one unit (i.e., from 5 to 6) the "first resource" (right-hand side of the first constraint) our optimal objective value from 8 to 28/3
 - Then, the associated rate of revenue change is:

$$\frac{\left(\frac{28}{3} - 8\right)}{6 - 5} = \frac{\left(\frac{4}{3}\right)}{1} = 4/3$$

This mean that you "should not pay" more than 4/3 for an additional unit of "resource 2"

 This value is often called the dual (or shadow) price associated with that resource/constraint

The gradient is: (2,3)

The optimum solution is: $\{x_1 \to \frac{2}{3}, x_2 \to \frac{8}{3}\}$

The optimal value of the objective function is: $\frac{28}{3}$

 We can make it general by adding a "dual" variable to each constraint

Maximize
$$z = 2x_1 + 3x_2 + f(w_1, w_2)$$

subject to

$$2x_1 + x_2 \le 4 + w_1$$

$$x_1 + 2x_2 \le 5 + w_2$$

$$x_1, x_2, w_1, w_2 \ge 0$$

 How did we determine the "nature" (e.g., non-negativity, non-positivity) of the dual variables?

The gradient is: (2,3)

The optimum solution is: $\{x_1 \rightarrow 1, x_2 \rightarrow 2\}$

Adding the dual variables...

Basic	Z	x_1	x_2	s_1	s_2	Solution
Z	1	-2	-3	0	0	0
s_1	0	2	1	1	0	4
s_2	0	1	2	0	1	5

Basic	Z	x_1	x_2	s_1	s_2	Solution	w_1	w_2
Z	1	-2	-3	0	0	0	0	0
s_1	0	2	1	1	0	4	1	0
s_2	0	1	2	0	1	5	0	1

Adding the dual variables...

Basic	Z	x_1	x_2	s_1	s_2	Solution
Z	1	-2	-3	0	0	0
s_1	0	2	1	1	0	4
s_2	0	1	2	0	1	5

Basic	Z	x_1	x_2	s_1	s_2	Solution	w_1	w_2
Z	1	-2	-3	0	0	0	0	0
s_1	0	2	1	1	0	4	1	0
s_2	0	1	2	0	1	5	0	1

How about other Simplex iterations?

Basic	Z	x_1	x_2	s_1	s_2	Solution
Z	1	0	0	1/3	4/3	8
x_1	0	1	0	2/3	-1/3	1
x_2	0	0	1	-1/3	2/3	2

Basic	Z	x_1	x_2	s_1	s_2	Solution	w_1	w_2
Z	1	0	0	1/3	4/3	8	1/3	4/3
x_1	0	1	0	2/3	-1/3	1	2/3	-1/3
x_2	0	0	1	-1/3	2/3	2	-1/3	2/3

How about other Simplex iterations?

Basic	Z	x_1	x_2	s_1	s_2	Solution
Z	1	0	0	1/3	4/3	8
x_1	0	1	0	2/3	-1/3	1
x_2	0	0	1	-1/3	2/3	2

Basic	Z	x_1	x_2	s_1	s_2	Solution	w_1	w_2
Z	1	0	0	1/3	4/3	8	1/3	4/3
x_1	0	1	0	2/3	-1/3	1	2/3	-1/3
x_2	0	0	1	-1/3	2/3	2	-1/3	2/3

Duality

Primal problem

Maximize $c^T x$

s.t.

$$Ax \le b$$
$$x \ge 0$$

Dual problem

Minimize

 $\boldsymbol{b}^T \boldsymbol{x}$

s.t.

$$A^T w \ge c$$
$$w \ge 0$$

Maximize
$$c^T x$$
 s.t.

$$Ax = b$$

 $x \ge 0$

Minimize

 $\boldsymbol{b}^T \boldsymbol{x}$

s.t.

$$A^T w \le c$$
 w is unrestricted

Duality

Primal problem

Maximize $c^T x$ subject to $Ax \le b$ $x \ge 0$

Dual problem

Minimize $b^T x$ subject to $A^T w \ge c$ $w \ge 0$

General rules for constructing the dual problem

1 1				No. of Contract of	. 1	lenerge an ico
Max	rim	1721	1011	pro	hI	em
TITLUZ	71111	LLUI	1011	PIU	0,1	CIII

Minimization problem

Constraints

$$\geq$$

Variables

 ≥ 0

 ≤ 0

Unrestricted

 \Leftrightarrow

Variables

 ≤ 0

Unrestricted

Constraints

 \Leftrightarrow

Example

 Consider the following LP with two variables

Maximize
$$z = 2x_1 + 3x_2$$

subject to
$$2x_1 + x_2 \le 4$$
$$x_1 + 2x_2 \le 5$$
$$x_1, x_2 \ge 0$$

 What is the corresponding Dual Problem?

The gradient is: (2,3)

The optimum solution is: $\{x_1 \rightarrow 1, x_2 \rightarrow 2\}$

Solution

Maximize
$$z = 2x_1 + 3x_2$$
 subject to

$$2x_1 + x_2 \le 4$$

$$x_1 + 2x_2 \le 5$$

$$x_1, x_2 \ge 0$$

Minimize $4w_1 + 5w_2$ subject to

$$2w_1 + w_2 \ge 2$$

 $w_1 + 2w_2 \ge 3$
 $w_1, w_2 \ge 0$

The gradient is: (4,5)

The optimum solution is: $\{w_1 \rightarrow 1/3 \ w_2 \rightarrow 4/3\}$

Post-Optimal Analysis

- Some of the considerations if there are changes to the model after it has been solved:
 - Changes affecting feasibility
 - Changes in the right-hand side
 - Addition of a new constraint
 - Changes affecting optimality
 - Changes in the objective function coefficients
 - Addition of a new activity

In-class Exercise

Find the Dual problem associated with the "Reddy Mikks" paint production problem (Example 2.1-1) and solve it. What was the solution? How does it connect with the primal problem?

Maximize
$$z = 5x_1 + 4x_2$$

subject to
 $6x_1 + 4x_2 \le 24$
 $x_1 + 2x_2 \le 6$
 $-x_1 + x_2 \le 1$
 $x_2 \le 2$
 $x_1, x_2 \ge 0$