

GILLES KRATZER, PHD

PROF. REINHARD FURRER

USER! CONFERENCE, ONLINE 07.07.2021

http://r-bayesian-networks.org/ gilles.kratzer@gmail.com reinhard.furrer@math.uzh.ch

ADVANCED BAYESIAN NETWORK MODELLING

ADVANCED METHODS WITH BN MODELING

Outline of the talk

- Mixed models correction for grouped data
- Heuristic search
- MCMC over structures

- Other advanced methods/features:
 - Scoring system
 - Tunable parameter prior
 - Structural prior
 - Data separation
 - Covariate adjustment
 - Likelihood contribution

CORRECTION FOR CLUSTERING

Correction for grouped data

- ▶ The way the data were collected has a clear **grouping aspect**
- ▶ Then potential for **non-independence** between data points
- Lead to analyses which "are" over-optimistic
- As the true level of variation in the data is under-estimated
- Could impact study result ... or not!
- Good practice to check!

In practice:

- ▶ Random effect
- ▶ GLM -> GLMM for each node
- Fit the DAG and check the posterior distribution (widening)
- If needed one can incorporate random effect in the scoring scheme

Pitfalls:

Hugh computational complexity!

ADVANCED METHODS WITH BN MODELING

Find maximum a posteriori score

- ✓ Exact search
- Heuristic search
- MCMC over structures

HEURISTIC SEARCH

Heuristic search: Greedy Hill-Climbing

- Simplest heuristic local search
 - Start with a given network
 - empty network
 - best tree
 - a random network
 - At each iteration
 - Evaluate all possible changes
 - Apply change that leads to best improvement in score
 - Reiterate
 - Stop when no modification improves score
- Pitfalls:
 - Local Maxima
 - Plateaus
- ▶ Solution:
 - Tabu
 - Random restart
 - Simulated annealing

Kratzer and al. (2020) in Front. Vet. Sci.

MCMC OVER STRUCTURE - POSTERIOR DISTRIBUTION

Best Unique Bayesian Network

MCMC OVER STRUCTURES

MCMC over structures

- Selecting the most probable structure
- Controlling for overfitting
- Sampling the landscape of high scoring structures
 - In applied perspective avoid reducing the richness of BN modelling to only **one** structure
 - Quantify the marginal impact of relationships by marginalising out over structures

MCMC OVER STRUCTURES

MCMC over structures

- Selecting the most probable structure
- Controlling for overfitting
- Sampling the landscape of high scoring structures
 - In applied perspective avoid reducing the richness of BN modelling to only **one** structure
 - Quantify the marginal impact of relationships by marginalising out over structures

Question?

Why in a typical regression analysis (GLM) based on observational data we usually present only the best fitting model?

HA

HANDS-ON EXERCICES

HEURISTIC SEARCH

Number of Steps

Index of heuristic search