Lérione 10 - Interval Estimation

det sassume a random sample $X_1, ..., X_n = f(-, \theta)$, where θ is an unknown parameter, and let us assume the observed sample $x_1, ..., x_n \in \mathbb{R}^n$

Our goal is to estimate the scalar parameter, θ , with a pair of estimators in order to identify a real interval that is an estimate of passible values of θ .

We have so for only introduced the estimator T which even in best case scenario where $E(T)=\theta$, $\forall \theta$, if T is absolutely continuous is such that T = 0, who insect $P(T=\theta)=0$

Therefore instead of only using one estimator, we will use a internal estimator which estimates an internal from the sample, within which θ possibly lies.

Replacing the random sample with observed sample, we will have a real interval that is an interval estimate of to, that is an interval within which we expect the find the true value of the parameter to.

Confidence Intervals

Let X1, ..., Xn be a random sample with olewrity function Fo and $\theta \in \Theta \subset \mathbb{R}^k$

We define a two-sided confidence interval (CI) for O with confidence level I-x as a random interval oletermined by two statistics, $L(x_1,...,x_n)$ and $V(x_1,...,x_n)$ such that:

 $P_{\theta}(L(X_1,...,X_n) < \theta < U(X_1,...,X_n)) = 1-\alpha$

Where a is a small umber, e.g. 1%, 2,5%, 5% or 10%.

The cubornal estimate will be (ℓ, u) where ℓ, u are the doserred values: $\ell = L(x, ..., x_n)$ and $u = U(x, ..., x_n)$

Confidence Jesterrals for Gaussian population with UNOWN vonance

Fixing a confidence level a (e.g 5%, 10%, 1%)

Let our vandom sample be $X_1, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma_o^2)$, where σ_o^2 is hunra but μ is not.

We define a two-sided confidence internal for pr with confidence 1- a as:

$$\left(\overline{\chi}_{n} - \frac{\sigma_{o}}{\sqrt{n}} Z_{1-\frac{\kappa}{2}}, \overline{\chi} + \frac{\sigma_{o}}{\sqrt{n}} Z_{1-\frac{\kappa}{2}}\right)$$

Where In is the observed value of Xu.

This internal har been derived from the pivot (a statistic whose distribution does NOT depend on the parameter of interest):

Where:

$$P\left(-\frac{1}{2}, \frac{\alpha}{2} < \frac{\overline{X}_{n} - \mu}{\sigma_{0}/\sqrt{n}} < \frac{2}{2} - \frac{\alpha}{2}\right) = 1 - \alpha$$

We there fore solve the inequality (K) to obtain of interval.

The length of the confidence interval
$$(\bar{x}_n - \frac{\sigma_0}{\sqrt{n}} z_{1-\frac{\alpha}{2}}, \bar{x}_n + \frac{\sigma_0}{\sqrt{n}} z_{1-\frac{\alpha}{2}})$$

is:
$$L = 2 \frac{2}{2} \sqrt{\frac{\sigma^2}{n}}$$

The storer the internal the more precise the estimate, therefore if α is fixed:

$$2z_{1-\frac{\alpha}{2}}\sqrt{\frac{\sigma_0^2}{n}} \longrightarrow 0 \quad \text{if} \quad n \longrightarrow +\infty$$

If n is fixed, but the confidence level $(1-\alpha)$ increase $(\Rightarrow \alpha \text{ elecreases})$ then:

$$1-\frac{\alpha}{2} \longrightarrow 1 \Leftrightarrow 2_{1-\frac{\alpha}{2}} \longrightarrow \infty$$

Hence the length increases, consequently the CI is less precise.

It is therefore necessary to balance considence level and

length. Note: If 1-01, the precision decreases, wherear if in 1, the precision increases.