

Avaliação dos modelos

Dr. Thadeu Sobral de Souza

Laboratório de Ecologia Espacial e Conservação Unesp – Rio Claro

Rio Claro - 2017

Ajuste dos modelos

- 1. Como podemos saber se as predições são boas? Estabelecer a relação entre precisão (*overfitting*), generalização (*underfitting*) e realismo (acurácia);
- 2. Qual o erro associado a cada modelo?
- 3. Como eles erram (em qual direção: pres/abs)?

Começamos com um modelo experimental...

Imagine um alvo cujo ponto central é o valor real que os modelos deveriam estimar.

Adaptado de: Marinez Siqueira – *CRIA*Francisco Barreto – *UFV*

Generalidade vs. Realismo vs. Precisão

Modelo estima uma alta variância de valores, dentre eles o "real".

Baixa variância estimada, "no alvo".

(ideal)

Baixa variância estimada, mas "fora do alvo".

Adaptado de: Marinez Siqueira – *CRIA* Francisco Barreto – *UFV*

No contexto dos ENMs, os dados de teste estabelecem o valor real que os modelos devem estimar

Sobre "overfitting" e "underfitting"

"OVERFITTING": caso em que o modelo se especializa nos dados utilizados em seu treinamento, apresentando uma baixa taxa de acerto quando confrontado com novos dados/teste (modelo muito preciso).

"UNDERFITTING": caso em que o modelo apresenta uma baixa taxa de acerto, mesmo no subconjunto de treinamento (modelo muito generalista).

Como estabelecer os dados de TREINO e TESTE?

Algumas considerações iniciais:

- 1. Os dados de TREINO e TESTE devem ser independentes;
- 2. Quanto mais dados de TREINO, melhor será o modelo (i.e. excluir dados de TREINO para obter dados de TESTE, por si só, não é a melhor solução teórica);
- 3. Sem dados de TESTE não podemos avaliar os modelos.

Soluções teóricas...

Avalia coes Biologicas

1. Aplicar o modelo de volta ao campo;

...é o teste mais robusto que se pode fazer com os resultados de modelagem. Avaliar a capacidade do modelo em acertar a presença da espécie em áreas de alta probabilidade de ocorrência e sua ausência em áreas não previstas.

2. Avaliação por especialistas das espécies estudadas.

...inspeção visual, dependente da complacência/opinião do pesquisador, portanto menos robusta que a anterior. Entretanto, ainda é eficiente como uma avaliação biológica (i.e. Um modelo pode ser estatisticamente bem avaliado, mas biologicamente "ruim").

SOLUÇÕES NADA

1. Aplicar o modelo de volta ao campo; Le oteste las subusta de sepode fazer com os resultados de modelagem. Avaliar a capacidade do modelo em acertar a presença da espécie em áreas de alta probabilidade de ocorrência e sua zusência em áreas não previstas.

Impossiveis em áreas não previstas.

2. Avaliação por especialistas das espécies estudadas.

C...inspeção visua a el gel Lid no Sacé Cia a i Scop Squisador, uma avaliação biológica (i.e. Um modelo pode ser estatisticamente bem

(e.g. predição pro futuro).

Soluções teóricas...dividir as

- 1. Aplicar o modelo de volta ao campo;

 O corresponde de volta ao campo; presença da espécie em áreas de alta probabilidade de

disponivels em áreas não previstas.

2. Avaliação por especialistas das espécies estudadas.

C...inspeção vilua, lependent complicância/ppilião do pesquisador,

portanto menos robusta que a anterior. Entretanto, ainda é eficiente como uma avaliação biológica (i.e. Um modelo pode ser estatisticamente bem avaliado, mas biologicamente "ruim").

Environmental Conservation 24 (1): 38–49 © 1997

A review of methods for the assessment of prediction errors in conservation presence/absence models

ALAN H. FIELDING1* AND JOHN F. BELL2

¹Department of Biological Sciences, the Manchester Metropolitan University, Manchester M1 5GD, UK and ²University of Cambridge Local Examinations Syndicate, University of Cambridge, Cambridge, UK

Date submitted: 18 December 1996 Date accepted: 1 March 1997

Table 1 Data partitioning methods for the allocation of cases to training and testing data sets.

Method	Examples	Notes
Resubstitution	Stockwell (1992) Osborne & Tigar (1992)	Sem particionamento é realizada, os mesmos dados usados para treinamento e testes. Esta tendência para fornecer medidas otimistas de sucesso previsão.
Bootstrapping	Buckland & Elston (1993) Verbyla & Litaitis (1989)	Bootstraps (amostragem com reposição) são usados para avaliar o sucesso da predição. A precisão é geralmente expressa como uma média e confiança limites.
Randomization	Capen et al. (1986)	Amostras aleatórias são obtidos por amostragem, sem reposição. A precisão é geralmente expressa como uma média e confiança limites.
Prospective sampling	Capen <i>et al.</i> (1986) Fielding & Haworth (1995) Morrison <i>et al.</i> (1987)	Um novo exemplo de casos é obtido após o modelo ter sido desenvolvido. Estas podem ser a partir de uma região ou de tempo diferente.
k-fold partitioning	Stockwell (1992)	Os dados estão divididos em k (k> 2) subgrupos, apenas um deles é usado para a fazer a predição do modelo. Os restantes k-1 conjuntos são agrupados para fins de teste. Acuracia é usualmente reportado coo a média e os limites do intervalo de confiança.
Special cases of k-fold partitioning	•	
Leave-One-Out (L-O-O)	Capen <i>et al.</i> (1986) Osborne & Tigar (1992)	n amostras de 1 caso são testados sequencialmente, os restantes. Leave- one-out
<i>K</i> = 2	Smith (1994)	Dados treinos e testes.

Environmental Conservation 24 (1): 38–49 © 1997

A review of methods for the assessment of prediction errors in conservation presence/absence models

ALAN H. FIELDING1* AND JOHN F. BELL2

¹Department of Biological Sciences, the Manchester Metropolitan University, Manchester M1 5GD, UK and ²University of Cambridge Local Examinations Syndicate, University of Cambridge, Cambridge, UK

Dados treinos e testes.

Date submitted: 18 December 1996 Date accepted: 1 March 1997

Table 1 Data partitioning methods for the allocation of cases to training and testing data sets.

Smith (1994)

Method	Examples	Notes
Resubstitution	Stockwell (1992) Osborne & Tigar (1992)	Sem particionamento é realizada, os mesmos dados usados para treinamento e testes. Esta tendência para fornecer medidas otimistas de sucesso previsão.
Bootstrapping	Buckland & Elston (1993) Verbyla & Litaitis (1989)	Bootstraps (amostragem com reposição) são usados para avaliar o sucesso da predição. A precisão é geralmente expressa como uma média e confiança limites
Randomization	Capen <i>et al.</i> (1986)	Amostras aleatórias são obtidos por amostragem, sem reposição. A precisão é geralmente expressa como uma média e confiança limites.
Prospective sampling	Capen <i>et al.</i> (1986) Fielding & Haworth (1995)	Um novo exemplo de casos é obtido após o modelo ter sido desenvolvido. Estas podem ser a partir de uma região ou de tempo diferente.
Uma combii é muito utili		Uas técnicas k>2) subgrupos, apenas um deles é usado para a fazer a predição do modelo. Os restantes k-1 conjuntos são agrupados para fins de teste. Acuracia é usualmente reportado coo a média e os limites do intervalo
e maito atm	Zauu.	de confiança.
Special cases of k-fold partitioning Leave-One-Out (L-O-O)	g Capen <i>et al.</i> (1986) Osborne & Tigar (1992)	n amostras de 1 caso são testados sequencialmente, os restantes. Leave- one-out

Avaliando os ENMs

Mapa resultado do proceso de modelagem!!

Matriz de Confusão

P	Presença	
Presença	a	b
Ausência	C	d

Erro nos 0s: o modelo substima a distribuição sa espécie.

Predição correta (0)

Medindo o ajuste do modelo:

Sensitividade: <u>presenças corretas</u> Total de presenças

Sensitivity $\frac{a}{a+c}$ Specificity $\frac{d}{b+d}$

Medindo o ajuste do modelo:

Especificidade: ausências corretas

Total de ausências

Sensitivity $\frac{a}{a+c}$ Specificity $\frac{d}{b+d}$

slide by Sara Varela Charles University – Czech Republic

Medindo o ajuste do modelo:

Sensitividade: porcentagem de predições de presenças corretas

Especificidade: porcentagem de predições de ausências corretas

Sensitivity
$$\frac{a}{a+c}$$
Specificity $\frac{d}{b+d}$

Validation data set

		Presence	Absence
Model	Presence Absence	а с	$\frac{b}{d}$

slide by Sara Varela Charles University – Czech Republic

AUSÊNCIAS

Predição do modelo

Medindo erros (failure):

Erro tipo I = falso positivo (FP)= **Comissão**

Medindo erros(failure):

Medindo erros (failure):

Erro tipo I = falso positivo = comissão

Erro tipo II= falso negativo= omissão

Va	ıda	tion	da	ta	set

		Presence	Absence
Model	Presence Absence	a c	$\frac{b}{d}$

		vandation data set	
		Presence	Absence
Model	Presence	а	b
	Absence	c	d

- Sensitivity = a/(a+c) = success in the 1s
- Omission= c/(a+c) = error in the 1s
- Specificity = d/(b+d) = success in the Os
- Commission = b/(b+d) = error in the 0s
- Omission = 1 sensitivity
- Commission = 1- specificity

		Presence	Absence
Model	Presence Absence	а с	d

Measure	Formula
Overall accuracy	$\frac{a+d}{n}$
Sensitivity	$\frac{a}{a+c}$
Specificity	$\frac{d}{b+d}$

		Presence	Absence
Model	Presence	a	b
	Absence	c	d

Measure	Formula		
Overall accuracy	$\frac{a+d}{n}$		
Sensitivity	$\frac{a}{a+c}$		
Specificity	$\frac{d}{b+d}$	Presenças	Ausências
Kappa statistic	$\frac{\left(\frac{a+d}{n}\right)-}{1-\frac{(a-1)^n}{n}}$	$\frac{(a+b)(a+c)}{n} + b)(a+c) + (c)$	$\frac{(c+d)(d+b)}{a^2} + d)(d+b)$

Kappa

Corrige o nível de sucesso do modelo em comparação com aleatório (Existe um nível de sucesso esperado simplesmente por acaso).

Kappa varia de -1 a 1

1 significa que o modelo é perfeito.
0 significa que o modelo não difere de modelos aleatórios

		Presence	Absence
Model	Presence	a	b
	Absence	c	d

Measure	Formula
Overall accuracy	$\frac{a+d}{n}$
Sensitivity	$\frac{a}{a+c}$
Specificity	$\frac{d}{b+d}$
Kappa statistic	$\frac{\left(\frac{a+d}{n}\right) - \frac{(a+b)(a+c) + (c+d)(d+b)}{n^2}}{1 - \frac{(a+b)(a+c) + (c+d)(d+b)}{n^2}}$
TSS	sensitivity + specificity - 1

True skill statistic (TSS)

Numero de sucesos menos o número de sucesos aleatórios

Varia de -1 to 1. Valores próximos a 0 modelos não diferentes do aleatórios.

TSS= sensitivity + specificity -1

Todos os índices são baseados em sucessos e erros das predições.

		Validation data set	
		Presence	Absence
Model	Presence Absence	a c	$\frac{b}{d}$

Entretanto...

os outputs dos modelos são contínuos....

Assim, precisamos converter mapas contínuos em binários....

Para isso.....threshold

Slide by Sara Varela Charles University – Czech Republic

Qual o threshold apropriado??

Qual desses criterios de threshols É o melhor?

Minha recomendação.....

- Aumentando o erro de comissão, diminui-se o erro de omissão e viceversa;
- O threshold escolhido deve balancear os erros de omissão e comissão de acordo com o objetivo do estudo;

- Aumentando o erro de comissão, diminui-se o erro de omissão e viceversa;
- O threshold escolhido deve balancear, então, os erros de omissão e comissão de acordo com o objetivo do estudo;

- Aumentando o erro de comissão, diminui-se o erro de omissão e viceversa;
- O threshold escolhido deve balancear, então, os erros de omissão e comissão de acordo com o objetivo do estudo;

- Aumentando o erro de comissão, diminui-se o erro de omissão e viceversa;
- O *threshold* escolhido deve balancear, então, os erros de omissão e comissão de acordo com o objetivo do estudo;
- Para montar a matriz de confusão, necessita-se de dados de ausência das espécies, os quais nem sempre são possíveis (e.g. espécies extintas);
- Dados de pseudo-ausência geram problema quanto ao tamanho da área background;
- A matriz de confusão não utiliza toda a informação gerada pelos modelos (apenas a classificação binária), varia com o threshold escolhido e muitas vezes sua escolha é subjetiva.

Mas existem métricas independentes de thresholds...

ROC-AUC

- Calcula o ajuste do modelo independente do threshold.
- ROC = Receiver Operating Characteristic
 - Curva definido pelos valores de sucesso do modelo em todos os threshold.
- AUC = Area Under Curve
 - Integral da curva ROC (values from 0 to 1)

 $\begin{tabular}{c|cccc} \hline & Validation data set \\ \hline \hline Presence & Absence \\ \hline \hline Model & Presence & a & b \\ Absence & c & d \\ \hline \end{tabular}$

Sensitivity $\frac{a}{a+c}$ Specificity $\frac{d}{b+d}$

PPV: acertos em 1s = a/(c+a)

		Presence	Absence	
Model	Presence	a	b	
	Absence	c	a	

Sensitivity	$\frac{a}{a+c}$
Specificity	$\frac{d}{b+d}$

Validation data set

PPV: acertos em 1s = a/(c+a)

Sensibilidade

Escolhe-se diferentes thresholds ao longo do gradiente de adequabilidade e calcula-se Especificidade/Sensibilidade e plota seus pontos no gráfico ao lado.

Sensibilidade

	Presence	Absence
Presence	a	b
	Presence Absence	Presence a

Sensitivity $\frac{a}{a+c}$ Specificity $\frac{d}{b+d}$

Validation data set

			Λ	1 1	
K	U	C -	A	U	

		Validation data set	
		Presence	Absence
Model	Presence	а	b
	Absence	c	d

		ΛΙ	
KL)C-	·Al	JC

		Validation data set	
		Presence	Absence
Model	Presence	а	b
	Absence	c	d

Sensibilidade

		ΛΙ	
KL)C-	·Al	JC

		Validation data set	
		Presence	Absence
Model	Presence	а	b
	Absence	c	d

		ΛΙ	
KL)C-	·Al	JC

		Validation data set	
		Presence	Absence
Model	Presence	а	b
	Absence	c	d

		Presence	Absence
Model	Presence Absence	a c	b d

Validation data set

PPV: acertos em 1s = a/(c+a)

		ΛΙ	
KL.)C-	Al	

		Validation data set	
		Presence	Absence
Model	Presence	а	b
	Absence	c	d

Sensibilidade

0.4

suitability

0.6

8.0

1.0

0.0

0.2

		Presence	Absence
Model	Presence	a	b
	Absence	c	d

Validation data set

PPV: acertos em 1s = a/(c+a)

Commissão (PFP): Erros em Os

= b/(b+d)

D			Λ	U	
\boldsymbol{ert}	U		/ \		
		\	-		.
			, ,		

		Validation data set	
		Presence	Absence
Model	Presence	а	b
	Absence	c	d

AUC é uma medida de performance do classificador (modelos);

Um AUC = 0.7 indica que o modelo acerta a classificação de presenças e ausências das espécies em 70% dos casos (do dados de treino);

Por exemplo, inúmeros pares de presenças e ausências a partir dos dados de teste, o modelo acertaria maior valor de adequabilidade para as presenças (em relação às suas respectivas ausências) para 70% dos pares.

PPV: acertos em 1s = a/(c+a)

PPV: acertos em 1s = a/(c+a)

Articles

Measuring the Accuracy of Diagnostic Systems

JOHN A. SWETS

AUC > 0.9 – bom desempenho

4

Quantitative Methods for Modeling Species Habitat: Comparative Performance and an Application to Australian Plants

Jane Elith

AUC > 0.7 – modelos úteis

predição			Distribuição binomial cumulativa
registro	7	área	binomial cumulativa
Lagoa Santa	1	0,87	Taxa de sucesso = 3/4
Taima-Taima	1	0,76	\ ' I
Cueva Tixi	1	0,58	p-valor = 0.58 predição = predição modelo = aleatória
Furna Estrago	0	0,39	predição = predição modelo = aleatoria

Jacknife:

um método de avaliação para poucos pontos de ocorrência.

Journal of Biogeography (J. Biogeogr.) (2007) 34, 102-117

Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar

Richard G. Pearson¹*, Christopher J. Raxworthy², Miguel Nakamura³ and A. Townsend Peterson⁴

Avaliação vs. Validação

uma questão conceitual

Dados **não-independentes**:

- Partição treino/teste dos dados disponíveis;
- Dados de teste contemporâneos aos de treino;
- avalia-se o modelo com dados teste do mesmo período/região que os dados treino.

Dados independentes:

- avalia-se o modelo com dados teste de outro período/região que os dados treino;
- dados fósseis, regiões invadidas, outro indicador (proxy);

OBRIGADO!

Thadeu Sobral-Souza Unesp – Rio Claro

thadeusobral@gmail.com