CLAIMS:

1	1.	A communication system comprising:	
2	a radio	module operable to generate an RF signal at a predetermined frequency;	
3		and	
4	a direc	tional coupler operably connected to said radio module to measure the	
5		power of said RF signal, said directional coupler further comprising:	
6	an env	elope detector; and	
7	distort	ion minimization circuitry operable to minimize distortion generated by	
8		said envelope detector at frequencies corresponding to said predetermined	
9		frequency and harmonics thereof.	
1	2.	The communication system of claim 1 wherein said envelope detector	
2	comprises a detector diode and a capacitor.		
1	· 3.	The communication system of claim 2, wherein said distortion	
2	minimization	circuitry comprises a first capacitor connected to said diode, said first	
3	capacitor having a capacitance value for minimizing distortion in the frequency band		
4	corresponding	to the fundamental frequency of said RF signal.	
1	4.	The communication system of claim 3, wherein said distortion	

- 5. The communication system of claim 4, wherein said distortion minimization circuitry further comprises a third capacitor connected to said diode, said
- 3 third capacitor having a capacitance value for minimizing distortion in the frequency

minimization circuitry further comprises a second capacitor connected to said diode, said

second capacitor having a capacitance value for minimizing distortion in the frequency

band corresponding to the second harmonic of said fundamental frequency of said RF

- 4 band corresponding to the third harmonic of said fundamental frequency of said RF
- 5 signal.

2

3

4

5

1

2

signal.

1	6. The	communication system of claim 5, wherein said first RF signal has a			
2	fundamental frequency in the 2.4 GHz band.				
1	7. A method	d of measuring the transmitted power of an RF signal, comprising:			
2	generating an RF signal at a predetermined frequency;				
3	measuring the transmitted power of said RF signal using a directional coupler				
4	havi	ng an envelope detector and			
5	minimizing distortion generated by said envelope detector at frequencies				
6	corre	esponding to said predetermined frequency and harmonics thereof.			
1	8. The	method of claim 7 wherein said envelope detector comprises a			
2	detector diode and a capacitor.				
1	9. The	method of claim 8, wherein said distortion is minimized by			
2	connecting a first capacitor connected to said diode, said first capacitor having a				
3	capacitance value for minimizing distortion in the frequency band corresponding to the				
4	fundamental frequency of said RF signal.				
1	10. The	method of claim 9, wherein said distortion is minimized by			
2	connecting a second	d capacitor to said diode, said second capacitor having a capacitance			
3	value for minimizing distortion in the frequency band corresponding to the second				
4	harmonic of said fu	ndamental frequency of said RF signal.			
1	11. The	method of claim 10, wherein said distortion is minimized by			
2	connecting a third c	apacitor to said diode, said third capacitor having a capacitance value			
3	for minimizing distortion in the frequency band corresponding to the third harmonic of				
4	said fundamental fr	equency of said RF signal.			
1	12. The	method of claim 11, wherein said first RF signal has a fundamental			

2

frequency in the 2.4 GHz band.

1	13. An integrated circuit for enabling data communication between a host device		
2	and at least one wirelessly enabled external device, comprising:		
3	a host interface;		
4	a radio module operably connected to said host interface, wherein said radio		
5	module is operable to generate an RF signal at a predetermined frequency;		
6	and		
7	a directional coupler operably connected to said radio module to measure the		
8	power of said RF signal, said directional coupler further comprising:		
9	an envelope detector; and		
10	distortion minimization circuitry operable to minimize distortion generated by		
11	said envelope detector at frequencies corresponding to said predetermined		
12	frequency and harmonics thereof.		
1	14. The communication system of claim 13 wherein said envelope detector		
2	comprises a detector diode and a capacitor.		
_			
1	15. The communication system of claim 14, wherein said distortion		
2	minimization circuitry comprises a first capacitor connected to said diode, said first		
3	capacitor having a capacitance value for minimizing distortion in the frequency band		
4	corresponding to the fundamental frequency of said RF signal.		
1	16. The communication system of claim 15, wherein said distortion		
2	minimization circuitry further comprises a second capacitor connected to said diode, said		
3			
	second capacitor having a capacitance value for minimizing distortion in the frequency		
4	band corresponding to the second harmonic of said fundamental frequency of said RF		
5	signal.		

- 1 17. The communication system of claim 16, wherein said distortion
- 2 minimization circuitry further comprises a third capacitor connected to said diode, said
- 3 third capacitor having a capacitance value for minimizing distortion in the frequency
- 4 band corresponding to the third harmonic of said fundamental frequency of said RF
- 5 signal.
- 1 18. The communication system of claim 17, wherein said first RF signal has a
- 2 fundamental frequency in the 2.4 GHz band.