MATH 570, Homework 9

Colin Roberts
October 26, 2017

Solutions

Problem 1. Describe the homomorphism $f_* \colon \pi_1(S^1, 1) \to \pi_1(S^1, f(1))$, i.e., $f_* \colon \mathbb{Z} \to \mathbb{Z}$, induced by the following maps $f \colon S^1 \to S^1$, where we're thinking of the circle in complex coordinates $(S^1 = \{e^{i\theta} \in \mathbb{C} \mid 0 \le \theta < 2\pi\})$. Your answer should be a definition of of $f_*(m) \in \mathbb{Z}$ for each input $m \in \mathbb{Z}$. You do not need to justify your answer.

- (a) $f(e^{i\theta}) = e^{i\theta}$.
- (b) $f(e^{i\theta}) = e^{-i\theta}$.

(c)
$$f(e^{i\theta}) = \begin{cases} e^{i\theta} & \text{if } 0 \le \theta \le \pi, \\ e^{i(2\pi - \theta)} & \text{if } \pi \le \theta \le 2\pi. \end{cases}$$

- (d) $f(e^{i\theta}) = e^{in\theta}$, for some fixed $n \in \mathbb{Z}$.
- (e) $f(e^{i\theta}) = e^{i(\theta+\pi)}$.
- (a) This induces $f_*(m) = m$.
- (b) This induces $f_*(m) = -m$.
- (c) This induces $f_*(m) = 0$.
- (d) This induces $f_*(m) = nm$.
- (e) This induces $f_*(m) = m$.

	oblem 2. Draw or define an abstract simplicial complex whose geometric realization is homeomo c to
(a)	a torus,
(b)	a Klein bottle, and
(c)	a projective plane.
(a)	Torus
(b)	Klein Bottle
(c)	Projective Plane (\mathbb{RP}^2)

Problem 3. Construct a connected graph X (i.e. a connected 1-dimensional CW complex X) and continuous maps $f, g: X \to X$ such that $f \circ g = \operatorname{Id}_X$ but f and g do not induce isomorphisms on $pi_1(X)$.

:

Proof. Let X be a topological space and define X by picking $p \in S^1$ and taking $X = \coprod_{i \in \mathbb{N}} S^1/\{p\}$, so X is a countable wedge sum of circles (identified at a single vertex p). Then consider $f \colon X \to X$ that maps the ith loop to the (i-1)th loop. We have that $\pi_1(X,p) = \langle a_1,a_2,\ldots \rangle$ is the free group with \mathbb{N} amount of generators (i.e., a_i for $i \in \mathbb{N}$). Then define $f \colon X \to X$ that maps the ith loop to the (i-1)th loop and the first loop to the point p and $g \colon X \to X$ that maps the ith loop to the (i+1)th loop. Then $f_*(a_i) = (a_{i+1})$ and $g_*(a_i) = (a_{i-1})$ if $i \geq 2$ and $g(a_1) = p$. Then we have that niether f or g induce isomorphisms on $\pi_1(X,p)$ since f is not surjective and g is not injective. Yet, $f \circ g$ induces the identity on $\pi_1(X,p)$.

Problem 4. Let $f: X \to Y$ be a continuous injective function with X compact and Y Hausdorff. Prove that X and f(X) are homeomorphic.

Here are two proofs. The second is shorter and clearer. (Thanks to: Brenden and Tanner) $\dot{}$

Proof. Since f is injective we have that f is a bijection between X and f(X). Thus, we just need to show that f^{-1} is continuous. So, let $U \in X$ be open and then consider $f(U) \in Y$. Since f is injective, any $x \in U$ is mapped to a unique point $f(x) = y \in f(X)$. Since Y Hausdorff, we have that there exist disjoint neighborhoods about y and any $p \in f(X) \setminus f(U)$. Note that X compact and f continuous implies that f(X) is also compact. Let $N_p(y)$ be an open set containing y such that it is disjoint from the open set $V_p \in f(X) \setminus f(U)$ containing the point p. Note then that this collection $\{V_p\}_{p \in f(X) \setminus f(U)}$ with the subspace topology (meaning each $V_p = O_p \cap f(X) \setminus f(U)$ for some O_p open in X) is a cover of $f(X) \setminus f(U)$ and has a finite subcover given by the collection $\{V_{p_i}\}_{i=1,\dots,n}$ since f(X) is compact. Finally we have that $\bigcap_{i=1}^n N_{p_i}$ is an open set containing y in f(U) disjoint from $f(X) \setminus f(U)$ and this implies that f(U) is open in f(X). Thus, X and f(X) are homeomorphic.

Proof. Since f maps onto f(X) it suffices to show that f is a closed map. Let $C \subseteq X$ be closed. Then since X is compact, C is compact. By continuity, $f(C) \subseteq f(X)$ is compact. Since Y is Hausdorff, f(X) is Hausdorff. Since compact subsets of Hausdorff spaces are closed, it follows that f(C) is closed in f(X). Therefore f is a closed map, which shows that $X \cong f(X)$.