

Unsupervised State Represenatation Learning in Atari

Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Cote, R Devon Hjelm

*Equal Contribution. {anandank, racaheva, ozairs}∂mila.quebec

Overview

State representation learning, or the ability to capture **latent generative factors** of an environment, is crucial for building intelligent agents that can perform a wide variety of tasks.

- ★ We introduce **SpatioTemporal DeepInfoMax (ST-DIM)** which maximizes predictive mutual-information to learn high-level concepts in a scene:
 - √ without labels or rewards;
 - √ without modelling pixels directly.
- ★ We also introduce the **Atari Annotated RAM Interface** (**AtariARI**), which exposes the ground truth semantic informtion present in the RAM state. We use AtariARI to **evaluate** state representations based on how well they capture the ground truth state variables.

Atari Annotated Ram Interface

Figure 1: Identified RAM states for Montezuma's Revenge (left) and MsPacman (right).

- ★ We identify important state variables from source code of 22 games. State variables include location of player, location of items of interest (keys, doors, ..), enemies, score etc.
- ★ Representations are evaluated using **linear probing**, i.e. the accuracy of linear classifiers trained to predict each latent generative factor from the learned representations.
- ★ Gradients are **not backpropagated** through the encoder network during evaluation

Spatio-Temporal Deep Infomax

ST-DIM learns representations by maximizing mutual information of representations across spatial and temporal axes.

Insights

- ★ Contrastive methods (ST-DIM and CPC) perform better than generative methods (VAE and PIXEL-PRED) across all semantic categories. Overall, ST-DIM largely outperforms other methods in terms of probe F1 score.
- ★ ST-DIM excels at captuting small objects, and is able to learn multiple generative factors by leveraging local losses.
- ★ The AtariARI benchmark can be used to systematically evaluate different state representation learning techniques.

Results

We consider two different modes for collecting the data:

- random agent (actions are picked uniformly at random)
- pretrained PPO agent (NB: results are in the paper).;

Table 1: Probe F1 scores for data collected by random agents $\,$

GAME	MAJ-CLF	RANDOM-CNN	VAE	PIXEL-PRED	$^{\mathrm{CPC}}$	ST-DIM	SUPERVISED
ASTEROIDS	0.28	0.34	0.36	0.34	0.42	0.49	0.52
BERZERK	0.18	0.43	0.45	0.55	0.56	0.53	0.68
BOWLING	0.33	0.48	0.50	0.81	0.90	0.96	0.95
BOXING	0.01	0.19	0.20	0.44	0.29	0.58	0.83
BREAKOUT	0.17	0.51	0.57	0.70	0.74	0.88	0.94
DEMONATTACK	0.16	0.26	0.25	0.32	0.57	0.69	0.83
FREEWAY	0.01	0.50	0.26	0.81	0.47	0.81	0.98
FROSTBITE	0.08	0.57	0.01	0.72	0.76	0.75	0.85
HERO	0.22	0.75	0.51	0.74	0.90	0.93	0.98
MONTEZUMA	0.08	0.68	0.69	0.74	0.75	0.78	0.87
MSPACMAN	0.10	0.48	0.38	0.74	0.65	0.70	0.87
PITFALL	0.07	0.34	0.56	0.44	0.46	0.60	0.83
PONG	0.10	0.17	0.09	0.70	0.71	0.81	0.87
PRIVATEEYE	0.23	0.70	0.71	0.83	0.81	0.91	0.97
QBERT	0.29	0.49	0.49	0.52	0.65	0.73	0.76
RIVERRAID	0.04	0.34	0.26	0.41	0.40	0.36	0.57
SEAQUEST	0.29	0.57	0.56	0.62	0.66	0.67	0.85
SPACEINVADERS	0.14	0.41	0.52	0.57	0.54	0.57	0.75
TENNIS	0.09	0.41	0.29	0.57	0.60	0.60	0.81
VENTURE	0.09	0.36	0.38	0.46	0.51	0.58	0.68
VIDEOPINBALL	0.09	0.37	0.45	0.57	0.58	0.61	0.82
YARSREVENGE	0.01	0.22	0.08	0.19	0.39	0.42	0.74
MEAN	0.14	0.44	0.39	0.58	0.60	0.68	0.83

Average Probe F1 scores for data collected by random agents

Category	MAJ-CLF	CNN	VAE	PIXEL-PRED	$^{\mathrm{CPC}}$	ST-DIM	SUPERVISED
SMALL LOC.	0.14	0.19	0.17	0.31	0.42	0.51	0.69
Agent Loc.	0.12	0.31	0.30	0.48	0.43	0.58	0.83
Other Loc.	0.14	0.50	0.36	0.61	0.66	0.69	0.81
Score/Clock/Lives	0.13	0.58	0.53	0.76	0.83	0.86	0.93
Misc.	0.26	0.59	0.65	0.70	0.71	0.74	0.86

Different Ablations for the ST-DIM model

Effect of Spatial Loss

InfoNCE vs JSD