

Αναφορά 6ης Εργαστηριακής Άσκησης

«ΤΑΛΑΝΤΩΤΕΣ ΗΜΙΤΟΝΟΕΙΔΟΥΣ ΣΗΜΑΤΟΣ»

LAB31138249

- **Α** Μπεχτσούδης Χρήστος 2016030005
 - **Δ** Γάκης Κωσταντίνος 2011030066
 - **Δ** Γαλάνης Μιχάλης 2016030036

ПЕРІЕХОМЕНА

Οι παρακάτω σύνδεσμοι είναι διαδραστικοί. Πατήστε σε κάποιο από αυτούς για τη μετάβαση στο κατάλληλο τμήμα της αναφοράς.

ΕΙΣΑΓΩΓΗ
[(6.1) ΤΑΛΑΝΤΩΤΗΣ ΜΕΤΑΤΟΠΙΣΗΣ ΦΑΣΗΣ
Θεωρητική Ανάλυση2
ξΞ Πειραματική Διαδικασία5
Προσομοίωση5
Διαγράμματα6
[(6.2) ΤΑΛΑΝΤΩΤΗΣ ΓΕΦΥΡΑΣ WIEN
Θεωρητική Ανάλυση7
ΕΞ Πειραματική Διαδικασία9
🧓 Προσομοίωση9
ΙΙΙ. Διαγράμματα10

Σε αυτή την εργαστηριακή άσκηση ασχοληθήκαμε με ταλαντωτές ημιτονοειδούς σήματος. Πιο συγκεκριμένα θα μελετήσουμε δύο ειδών αυτών:

- Ταλαντωτής μετατόπισης φάσης (6.1)
- Ταλαντωτής γέφυρας Wien (6.2)

🖹 (6.1) ΤΑΛΑΝΤΩΤΗΣ ΜΕΤΑΤΟΠΙΣΗΣ ΦΑΣΗΣ

Παρακάτω παρουσιάζεται το κύκλωμα του ταλαντωτή μετατόπισης φάσης με $R_f=430k\Omega$, $R_i=15k\Omega$, $C=1\mu F$ και $R=150k\Omega$ και τάσεις τροφοδοσίας $+V_{CC}=+15V$ και $-V_{CC}=-15V$.

[Θεωρητική Ανάλυση

1(s)= A(s)-Q(s)
A(S) = - (K+ +1) (B(S) = Lin
R: Go
\rightarrow \rightarrow \rightarrow
(10 1 11 12 48 C Is Uin
1 10 10 10
- T T T
I4
$I = I_1 + I_2 \qquad ()$
79=13+14 (2)
I = (40 - 41)/2c (3) I = 41/R (4)
12= (u,-u2)/Ze (5)
I4 = 42/2 6)
18 = (U8-Uin)/Zc 3
13- 4in/2 8
A x0 0, (8) U2-4; 4i to 2.50 (42-4i)=4: 20
Ze - R
42 = Gin. (RSC+1) (9)
RSC RSC
12 20 1 112-141 1. 11
A to 0, 0, 9 \$ 1 = 1, +29 1 = 20 = 20 = 20 = 20 = 20 = 20 = 20 =
ED (40-41)5(= 41 + (4,-42)5(=0
R
(U2+49) RSC >
U, = (U0 + 48) RSC (10)
1 + CK3C

- /	A *0 (1) (10)
	U,= RSC-U0 + Uin (RSC+1)0
	1+8250
	0 0, 6, 3
1	2c = I3 + I4 0=0 (1, - 48 _ 48 - 41n + 48 00 }
5.	((U1-U2)=5c(U2-U1)+ 42 8c.U,+ RSCUIN = U2 (1+2RSC)
	(- (RSCU0 + 4in (RSC+1)) + RSC (Lin =
(23	3(+1). Uin (1+8 RK) Éinn RSC=X
3	X. ((((x + (in (x+1)) + x. ((in (1+2x)))) / x
(=0	Clin - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

Aro Barhunsen			
	1601=1		
	apa (Rx+P1) 1 -1	(=)	
	R; 29		
	(-		
	(Pr + P1) - 99 H 29	Ri = Rx + Pi	
	71 -		

Apu	$\Theta(s) = \frac{1}{s}$
	$\frac{1+\frac{6}{6}+\frac{1}{5}}{R^{5}c}+\frac{1}{R^{3}s^{3}c^{3}}$
	1+6 + 5 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1
	1 + 6 - 5 1 - 5 + J(1 - 6) July 2 21/2 July 23/23 (WRC)2 + J((WRC)3 WRC)
	Ano Baynhunsen (L(s)=0 => L(s)=A(s)-B(s) =
	- (Rr + P1) . 8(5) (70 A/5) Reaffurisés Ri upitépés étan en mator stupitéran com con
	$\int_{0}^{\infty} e^{-\frac{1}{2}(\omega Rt)^{3}} \frac{1}{\omega Rt} = \frac{1}{2c \sqrt{6}}$
	f= -1 2π·ρι√6
	1
P	$pa 8 = \frac{1}{1 - \frac{5}{1}} = \frac{29}{29}$
	$\frac{1 - \frac{1}{1} R^{2} \alpha}{R^{2} e^{2} \beta}$ $\frac{1}{2^{2} e^{2} \beta} \frac{1}{2^{2} \alpha} \frac{1}{2^{2}$
	20 - 29 Ri

Αρχικά, ρυθμίστηκε το ποτενσιόμετρο P_1 έτσι ώστε η τάση εξόδου V_o να είναι καθαρή ημιτονοειδής κυματομορφή (χωρίς παραμόρφωση).

Με το κανάλι παλμογράφου στη σύζευξη ΑC, η τάση εξόδου V_o είχε ως peak to peak τιμή:

$$V_o = 3.6 div \cdot 5^{v}/_{div} = 18V$$

Η συχνότητα του σήματος εξόδου του ταλαντωτή βρέθηκε ίση με:

$$f_{V_o} = \frac{1}{T_{V_o}} = \frac{1}{4.8 \cdot 500 \mu s/div} = \frac{1}{2.4ms} = 416.7 Hz$$

Ύστερα αυξήσαμε την τιμή της αντίστασης του ποτενσιόμετρου και παρατηρήσαμε ότι το σήμα αρχιζει να παρουσιάζει ψαλιδισμό.

Απ΄την άλλη, μειώνοντας την τιμή της αντίστασης του ποτενσιόμετρου παρατηρήσαμε ότι το σήμα μηδενίστηκε (μια ευθεία γραμμη).

🐧 Προσομοίωση

Συναρμολογήσαμε στο κύκλωμα το κύκλωμα του ταλαντωτή στο LT Spice και παράχθηκε το παρακάτω αποτέλεσμα:

Διαγράμματα

Τα διαγράμματα της προσωμοίωσης παρουσιάζονται παρακάτω:

🗎 (6.2) ΤΑΛΑΝΤΩΤΗΣ ΓΕΦΥΡΑΣ WIEN

Στο δεύτερο μέρος της άσκησης θα ασχοληθούμε με τον ταλαντωτή γέφυρας Wien, του οποίου το κύκλωμα φαίνεται στο παρακάτω σχήμα:

📔 Θεωρητική Ανάλυση

Το κέρδος κλειστού βρόγχου είναι ίσο με:

$$A = 1 + \frac{R_3 + R_{P_2}}{R_4}$$

Εφαρμόζοντας διαιρέτη τάσης στον μη αναστρέφοντα ακροδέκτη του ενισχυτή προκύπτει ότι:

$$V_{+}(s) = \frac{Z_{p}}{Z_{p} + Z_{S}} V_{out}(s) \Leftrightarrow$$

$$\frac{V_{+}(s)}{V_{out}(s)} = \frac{Z_{p}}{Z_{p} + Z_{S}}$$

Επομένος για τον κέρδο βρόγχου ισχύει:

$$L(s) = A(s)\beta(s) \Rightarrow L(s) = \left[1 + \frac{R_3 + R_{P_2}}{R_4}\right] \frac{Z_p}{Z_p + Z_S}$$

Για τις ισοδύναμες αντιστάσεις Z_p , $Z_{\mathcal{S}}$ ισχύουν (με $\mathcal{C}_1=\mathcal{C}_2=\mathcal{C}$):

$$Z_p = \frac{R_2 \frac{1}{sC}}{R_2 + \frac{1}{sC}} \Rightarrow Z_p = \frac{R_2}{1 + sCR_2}$$
$$Z_S = R_2 + \frac{1}{sC}$$

Σύμφωνα με τις παραπάνω σχέσεις έχουμε:

$$L(s) = \left[1 + \frac{R_3 + R_{P_2}}{R_4}\right] \frac{Z_p}{Z_p + Z_S} \Rightarrow$$

$$L(s) = \left[1 + \frac{R_3 + R_{P_2}}{R_4}\right] \frac{\frac{R_2}{1 + sCR_2}}{\frac{R_2}{1 + sCR_2} + R_2 + \frac{1}{sC}} \Rightarrow$$

$$\vdots$$

$$L(s) = \left[1 + \frac{R_3 + R_{P_2}}{R_4}\right] \frac{1}{3 + sCR_2 + \frac{1}{sCR_2}}$$

Αν αντικαταστήσουμε το s με $j\omega$ τότε τελικά έχουμε:

$$L(j\omega) = \frac{1 + \frac{R_3 + R_{P_2}}{R_4}}{3 + j(\omega C R_2 - \frac{1}{\omega C R_2})}$$

Εφαρμόζουμε το κριτήριο **Barkhausen** για να βρούμε τις συνθήκες ταλάντωσης. Πρέπει να ισχύουν:

- 1. $|L(j\omega)| = 1$
- $\overline{2.} \ \langle L(j\omega) = 0$

Άρα:

$$\omega_{osc} = \frac{1}{CR_2} = 19.608 \, rad/_S$$

Οπότε η συχνότητα των ταλαντώσεων είναι:

$$f_{osc} = \frac{\omega_{osc}}{2\pi} = 3.12kHZ$$

Πειραματική Διαδικασία

Για άλλη μια φορά, όταν έχουμε καθαρή ημιτονοειδή μορφή σήματος στη τάση εξόδου, τότε (p-p):

$$V_o = 5.5 div \cdot 5 v/_{div} = 27.5 V$$

Ενώ η συχνότητα των ταλαντώσεων βρέθηκε ίση με:

$$f_{V_o} = \frac{1}{T_{V_o}} = \frac{1}{3.3 \cdot 100 \mu s/div} = \frac{1}{0.33 ms} = 3.03 kHz$$

Όταν αυξήσαμε την τιμή της αντίστασης του ποτενσιόμετρου, παρατηρήσαμε ότι το σήμα αρχιζει να παρουσιάζει ψαλιδισμό, ενώ μειώνοντας την τιμή της αντίστασης του, το σήμα μηδενίστηκε (μια ευθεία γραμμη).

Σύγκριση

Παρατηρούμε ότι τα πειραματικά αποτελέσματα δεν αποκλείουν από τα θεωρητικά.

🚺 Προσομοίωση

Ο ταλαντωτής γέφυγας Wien στο SPICE φαίνεται πρακάτω:

Διαγράμματα

Τα διαγράμματα της προσωμοίωσης παραθέτονται παρακάτω:

