컴퓨터 그래픽스 3. 2차원 그래픽스의 변환

2020년 2학기

학습 내용

- 2차원 그래픽스 변환
 - 기본 변환: 이동, 회전, 신축
 - 그 외, 반사, 밀림

기본 기하 변환

- 기본 기하 변환
 - 이동 (Translation)
 - 회전 (Rotation)
 - 신축 (크기 변환, Scale)
 - 동차좌표계를 이용하여 변환 적용 (2차원 → 3x3 행렬 사용)

기본 기하 변환: 이동

- Translation (이동)
 - 좌표계의 한 곳에서 다른 곳으로 직선 경로를 따라 객체의 위치를 바꾸는 것
 - 객체의 크기나 모양, 방향 등은 바뀌지 않는다.
 - $P(x, y) \rightarrow P'(x', y')$ $x' = x + t_x \quad y' = y + t_y$ (t_x, t_y) : 이동 벡터 (translation vector)

행렬을 사용하면

기본 기하 변환: 신축

- Scaling (신축, 확대/축소)
 - 객체의 크기를 확대/축소 시킨다.
 - 객체의 크기뿐 아니라 <u>기준점 (원점)으로부터의 위치도 배율에 따라 변한다</u>.
 - $P(x, y) \rightarrow P'(x', y')$

$$\chi' = S_{\chi} \bullet \chi$$

$$y' = s_y \bullet y$$

(s_x, s_y): 신축률 (scaling factor)

행렬을 사용하면

P' =

- s > 1:
- s = 1:
- 0 < s < 1:
- s < 0:

기본 기하 변환: 신축

- 임의의 점 (x_0, y_0) 에 대하여 신축률 (s_x, s_y) 만큼 신축
 - 신축 기준점을 원점이 되도록 객체를 이동: T(-x₀, -y₀)
 - 원점에 대하여 신축: S(s_x, s_y)
 - 제자리로 이동: T(x₀, y₀)

기본 기하 변환: 회전

- Rotation (회전)
 - xy평면에서 원 경로를 따라 객체를 재배치
 - 객체의 모양 변화는 없이 객체가 놓여있는 방향이 변한다.
 - $P(x, y) \rightarrow P'(x', y')$
 - $x' = r\cos(\Phi + \theta) = \frac{r\cos\Phi}{\cos\theta} \frac{r\sin\Phi}{\sin\theta} = x\cos\theta y\sin\theta$
 - y' = rsin(Φ+θ) = <u>rcosΦ</u>sinθ + <u>rsinΦ</u>cosθ = xsinθ + ycosθ 회전각 : θ, 회전점 (Pivot Point): (x_r, y_r)
 - 행렬을 사용하면

P' =

기본 기하 변환: 회전

- 임의의 점 (x_0, y_0) 에 대하여 θ만큼 회전
 - 회전 중심점이 원점이 되도록 객체를 이동: T (-x₀, -y₀)
 - 원점을 중심으로 θ만큼 회전: R(θ)
 - 반대 방향으로 이동: T (x₀, y₀)

기본 기하 변환

• 기하 변환 예)

- 시계반대방향으로 90도, 2배 스케일
- 삼각형 좌표값 (5, 7) (10, 5) (8, 10) → 변환 좌표값은?

기타 기하 변환: 반사

- Reflection (반사): 거울 영상
 - 고정점에 대하여 객체가 반대방향으로 변환되는 것
 - y=0 (x축)에 대하여 반사
 - y 좌표값 부호 변경

- x=0 (y축)에 대하여 반사
 - x 좌표값 부호 변경

- 원점 (0,0)에 대하여 반사
 - 모두 변경

기타 기하 변환: 반사

- y = x에 대한 반사
 - 시계방향으로 45' 회전
 - X축에 대하여 반사
 - 시계 반대 방향으로 45' 회전
- y = -x에 대한 반사

기타 기하 변환: 반사

• y = mx + b에 대하여 반사

• 예) y = 1.732x + 2 직선에 대하여 선분 (0, 5) (8, 2) 반사 (1.732= 3√3)

기타 기하 변환: 밀림

- 밀림 (Shearing)
 - 2차원 평면상에서 객체의 한 부분을 고정시키고 다른 부분을 밀어서 생기는 변환
 - 고정된 지점에서 멀수록 밀리는 거리가 커진다. (고정된 지점과의 거리에 비례하여 밀리는 경우가 결정된다)
 - x축에 대한 밀림:

• y축에 대한 밀림:

- 행렬을 사용하면,

변환 유형

- 강체 변환 (Rigid-body Transformation): 크기와 각도 보전
 - 이동, 회전 변환
- 유사 변환 (Similarity Transformation): 모양이 유사한 변환
 - 이동, 회전, 신축
- 선형 변환 (Linear Transformation): 선형성을 보존하는 변환
 - 선형성: 벡터 공간에서 다음의 연산성질을 보존하며 사상하는 변환
 - T(u+v) = T(u) + T(v)
 - T(cu) = cT(u)
 - 회전, 신축, 반사, 밀림
 - 이동 변화은 선형 변환이 아님
- 어파인 변환(Affine Transformation): 직선, 길이의 비, 평행성을 보존하는 변환
 - 이동, 회전, 신축, 반사, 밀림
- 원근 변환 (Projective Transformation): 원근감을 표시하는 변환
 - 투영 변환

변환 유형

이번 주에는

- 컴퓨터 그래픽스 개요
 - 그래픽스 발전
 - 컴퓨터 그래픽스 시스템
- 2차원 그래픽스 기본 요소
 - 점, 선, 원 그리기
 - 영역 채우기
 - 앨리어싱
- 2차원 그래픽스 변환
 - 기본 변환: 이동, 회전, 신축
 - 기타 변환: 반사, 밀림
- 다음 주에는
 - 윈도우와 뷰포트
 - 클리핑
 - 3차원 그래픽스 변환, 투영