Concentration inequality and high dimensional probability

Du Junye, Li Zhenghao Department of Statistics and Actuarial Science The University of Hong Kong (HKU)

February 20, 2025

Abstract

Concentration inequalities and high-dimensional probability are foundational tools in modern probability theory and statistical learning. These concepts provide rigorous frameworks to quantify how a random variable deviates from its expected value. In this note, we are going to present the definitions of Sub-Gaussian and Sub-Exponential variables, together with common concentration inequalities. **Note:** All the contents come from Vershynin's High Dimensional Probability[Ver18] and HKU reading group of 2025.02.13.

1 Classical Inequalities

Lemma 1 (Jensen's inequality). For any random variable X and a convex function $\psi : \mathbb{R} \to \mathbb{R}$, we have:

$$\psi(\mathbb{E}X) \leq \mathbb{E}\psi(X)$$

The simple consequence of the Jensen's inequality is that, $||X||_{L_p}$ is an increasing function in p, which is:

$$||X||_{L_p} \leq ||X||_{L_q}$$
 for any $0 \leq p \leq q \leq \infty$

Lemma 2 (Minkowski's Inequality). For any $p \in [1, \infty]$ and any random variables $X, Y \in L^p$, we have:

$$||X + Y||_{L^p} \le ||X||_{L^p} + ||X||_{L^p}$$

This can be viewed as the triangle inequality, which implies that the $\|\cdot\|_{L^p}$ is a norm when $p \in [1, \infty]$.

Lemma 3 (Hölder's Inequality). If $p, q \in [1, \infty]$ are conjugate exponents, that is, 1/p + 1/q = 1, then the random variable $X \in L^p$ and $Y \in L^q$ satisfy:

$$|\mathbb{E}XY| \le ||X||_{L^p} ||Y||_{L^q}$$

This inequality is the generalized form of the Cauchy-Schwarz inequality, which is:

$$|\mathbb{E}XY| \le ||X||_{L^2} ||Y||_{L^2}$$

Lemma 4 (Markov Inequality). For any non-negative random variable X and t > 0, we have:

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}X}{t}$$

Lemma 5 (Chebyshev's Inequality). Let X be a random variable with mean μ and variance σ^2 . Then, for any t > 0, we have:

$$\mathbb{P}\{|X-\mu| \geq t\} \leq \frac{\sigma^2}{t^2}$$

2 Concentration of sums of independent random variables

Concentration inequalities quantify how a random variable X deviates around its mean μ . They usually take the form of two-sided bounds for the tails of $X - \mu$, such as:

$$\mathbb{P}\{|X - \mu| > t\} \le \text{something small}$$

Proposition 1 (Tails of the normal distribution). Let $g \sim N(0,1)$. Then for all t > 0, we have

$$\left(\frac{1}{t}-\frac{1}{t^3}\right)\cdot\frac{1}{\sqrt{2\pi}}e^{-t^2/2}\leq \mathbb{P}\left\{g\geq t\right\}\leq \frac{1}{t}\cdot\frac{1}{\sqrt{2\pi}}e^{-t^2/2}$$

In particular, for $t \geq 1$ the tail is bounded by the density:

$$\mathbb{P}\left\{g \ge t\right\} \le \frac{1}{\sqrt{2\pi}} e^{-t^2/2}.$$

Lemma 6 (Hoeffding's inequality). Let X_1, \ldots, X_N be independent symmetric Bernoulli random variables, and $a = (a_1, \ldots, a_N) \in \mathbb{R}^N$. Then, for any $t \geq 0$, we have:

$$\mathbb{P}\left\{\sum_{i=1}^{N} a_i X_i \ge t\right\} \le \exp\left(-\frac{t^2}{2||a||_2^2}\right).$$

Lemma 7 (Hoeffding's inequality for general bounded random variables). Let X_1, \ldots, X_N be independent random variables. Assume that $X_i \in [m_i, M_i]$ for every i. Then, for any t > 0, we have:

$$\mathbb{P}\left\{\sum_{i=1}^{N} (X_i - \mathbb{E}X_i) \ge t\right\} \le \exp\left(-\frac{2t^2}{\sum_{i=1}^{N} (M_i - m_i)^2}\right).$$

Lemma 8 (Chernoff's inequality). Let X_i be independent Bernoulli random variables with parameters p_i . Consider their sum $S_N = \sum_{i=1}^N X_i$ and denote its mean by $\mu = \mathbb{E}S_N$. Then, for any $t > \mu$, we have:

$$\mathbb{P}\left\{S_N \ge t\right\} \le e^{-\mu} \left(\frac{e\mu}{t}\right)^t.$$

3 Sub-Gaussian Properties

Let X be a random variable. Then the following properties are equivalent; the parameters $K_i > 0$ appearing in these properties differ from each other by at most an absolute constant factor.

1. There exists $K_1 > 0$ such that the tails of X satisfy

$$P\{|X| \ge t\} \le 2\exp(-t^2/K_1^2)$$
 for all $t \ge 0$.

2. There exists $K_2 > 0$ such that the moments of X satisfy

$$||X||_{L^p} = (\mathbb{E}|X|^p)^{1/p} \le K_2 \sqrt{p}$$
 for all $p \ge 1$.

3. There exists $K_3 > 0$ such that the MGF of X^2 satisfies

$$\mathbb{E}\exp(\lambda^2 X^2) \leq \exp(K_3^2 \lambda^2) \quad \text{for all λ such that $|\lambda| \leq \frac{1}{K_2}$.}$$

4. There exists $K_4 > 0$ such that the MGF of X^2 is bounded at some point, namely

$$\mathbb{E}\exp(X^2/K_4^2) \le 2.$$

Moreover, if $\mathbb{E}X = 0$ then properties 1-4 are also equivalent to the following one.

5. There exists $K_5 > 0$ such that the MGF of X satisfies

$$\mathbb{E}\exp(\lambda X) \le \exp(K_5^2 \lambda^2)$$
 for all $\lambda \in \mathbb{R}$.

Definition 1 (Sub-Gaussian Norm). The Sub-Gaussian norm of a random variable X, denoted $||X||_{\psi_2}$, is defined by:

$$||X||_{\psi_2} := \sup_{p \ge 1} \frac{1}{\sqrt{p}} (\mathbb{E}|X|^p)^{1/p}$$

Lemma 9 (Centering). If X is a Sub-Gaussian random variable then $X - \mathbb{E}X$ is Sub-Gaussian too and:

$$||X - \mathbb{E}X||_{\psi_2} \le 2||X||_{\psi_2}$$

Note: Due to the different definitions of the Sub-Gaussian norm, the 2 here in the lemma could be a constant C.

Lemma 10 (General Hoeffding's inequality for Sub-Gaussian Random Variable). Let X_1, \ldots, X_N be independent, mean zero, sub-gaussian random variables, and $a = (a_1, \ldots, a_N) \in \mathbb{R}^N$. Then, for every $t \geq 0$, we have

$$\mathbb{P}\left\{ \left| \sum_{i=1}^{N} a_i X_i \right| \ge t \right\} \le 2 \exp\left(-\frac{ct^2}{K^2 \|a\|_2^2} \right)$$

where $K = \max_i ||X_i||_{\psi_2}$.

3.1 Sub-Gaussian Vectors's Properties

Lemma 11 (Sub-Gaussian Vector). $\mathbf{X} \in \mathbb{R}^p$ is Sub-Gaussian random vector if and only if for any $\mathbf{a} \in \mathbb{R}^p$ s.t $\|\mathbf{a}\|_2 = 1$ such that $\sum_i a_i X_i$ is Sub-Gaussian random variable and $\|\mathbf{X}\|_{\psi_2} = \max_{\|\mathbf{a}\|_2 = 1} \|\sum_i a_i X_i\|_{\psi_2}$.

Lemma 12 (DNN transformation of Sub-Gaussian vector). Suppose that $\mathbf{X} \in \mathbb{R}^p$ is a sub-gaussian random vector, let $g(\mathbf{x}) = \mathbf{W}_L \sigma_L (\mathbf{W}_{L-1} \cdots \sigma_2 (\mathbf{W}_2 \sigma_1 (\mathbf{W}_1 \mathbf{x})))$ be a ReLU deep neural network. Then $g(\mathbf{X})$ is a sub-gaussian random variable.

Lemma 13 (β -hölder smooth trasformation of Sub-Gaussian vector). Suppose that $\mathbf{X} \in \mathbb{R}^p$ is a sub-gaussian random vector, let f be a β -hölder smooth function with $0 < \beta \le 1$. Then $f(\mathbf{X})$ is a sub-gaussian random variable.

4 Sub-Exponential Properties

Let X be a random variable. Then the following properties are equivalent; the parameters $K_i > 0$ appearing in these properties differ from each other by at most an absolute constant factor.

1. The tails of X satisfy

$$\mathbb{P}\{|X| \ge t\} \le 2\exp(-t/K_1)$$
 for all $t \ge 0$.

2. The moments of X satisfy

$$||X||_{L^p} = (\mathbb{E}|X|^p)^{1/p} \le K_2 p$$
 for all $p \ge 1$.

3. The MGF of |X| satisfies

$$\mathbb{E}\exp(\lambda|X|) \le \exp(K_3\lambda)$$
 for all λ such that $0 \le \lambda \le \frac{1}{K_3}$.

4. The MGF of |X| is bounded at some point, namely

$$\mathbb{E}\exp(|X|/K_4) \le 2.$$

Moreover, if $\mathbb{E}X = 0$ then properties 1-4 are also equivalent to the following one.

5. The MGF of X satisfies

$$\mathbb{E}\exp(\lambda X) \le \exp(K_5^2 \lambda^2)$$
 for all λ such that $|\lambda| \le \frac{1}{K_5}$.

Definition 2 (Sub-Exponential Norm). The Sub-Exponential norm of a random variable X, denoted $||X||_{\psi_1}$, is defined by:

$$||X||_{\psi_2} := \sup_{p>1} \frac{1}{p} (\mathbb{E}|X|^p)^{1/p}$$

Lemma 14. Suppose that x is a sub-gaussian random variable, then x^2 is a sub-exponential random variable and:

$$||x||_{\psi_2}^2 \le ||x^2||_{\psi_1} \le 2 ||x||_{\psi_2}^2$$

Lemma 15 (Product of sub-gaussians is sub-exponential). Let X and Y be sub-gaussian random variables. Then XY is sub-exponential. Moreover,

$$||XY||_{\psi_1} \le 2||X||_{\psi_2}||Y||_{\psi_2}.$$

5 Berstein's Inequality

Lemma 16 (Bernstein's inequality). Let X_1, \ldots, X_N be independent, mean zero, sub-exponential random variables, and $\mathbf{a} = (a_1, \ldots, a_N) \in \mathbb{R}^N$. Then, for every $t \geq 0$, we have

$$\mathbb{P}\left\{\left|\sum_{i=1}^N a_i X_i\right| \geq t\right\} \leq 2 \exp\left[-c \min\left(\frac{t^2}{K^2 \|\boldsymbol{a}\|_2^2}, \frac{t}{K \|\boldsymbol{a}\|_\infty}\right)\right]$$

where $K = \max_i ||X_i||_{\psi_1}$.

A special case is that when $a_i = 1/N$, we could obtain a form of Berstein's inequality for averages:

Corollary 1 (Bernstein's inequality). Let X_1, \ldots, X_N be independent, mean zero, sub-exponential random variables. Then, for every $t \geq 0$, we have

$$\mathbb{P}\left\{\left|\frac{1}{N}\sum_{i=1}^{N}X_{i}\right|\geq t\right\}\leq 2\exp\left[-c\min\left(\frac{t^{2}}{K^{2}},\frac{t}{K}\right)N\right]$$

where $K = \max_i ||X_i||_{\psi_1}$.

Note: A common trick is to let $\frac{t}{K} < 1$ so that $\min\left(\frac{t^2}{K^2}, \frac{t}{K}\right) = \frac{t^2}{K^2}$.

For an integer d > 0, let P_d be the set of partitions of [d] into nonempty, pairwise disjoint sets. For a partition $\mathcal{J} = \{J_1, \dots, J_k\}$, and a d-indexed tensor $\mathbf{A} = (a_i)_{i \in [n]^d}$, define:

$$\|\mathbf{A}\|_{\mathcal{J}} = \sup \left\{ \sum_{\mathbf{i} \in [n]^d} a_{\mathbf{i}} \prod_{l=1}^k \mathbf{x}_{\mathbf{i}_{J_l}}^{(l)} : \|\mathbf{x}^{(l)}\|_2 \le 1, \mathbf{x}^{(l)} \in \mathbb{R}^{n^{|J_l|}}, 1 \le l \le k \right\}$$
 (1)

Lemma 17 (Theorem 1.4 of [Ada15]). Let $X = (X_1, \dots, X_n)$ be a random vector with independent components, such that for all $i \in [n]$, $||X_i||_{\psi_2} \leq \gamma$. Then for every polynomial $f : \mathbb{R}^n \to \mathbb{R}$ of degree D and any t > 0,

$$\mathbb{P}\left(|f(X) - \mathbb{E}f(X)| \ge t\right) \le 2\exp\left\{-\frac{1}{C_D}\eta_f(t)\right\} \tag{2}$$

where $\eta_f(t) = \min_{1 \leq d \leq D} \min_{\mathcal{J} \in \mathcal{P}_d} \left(\frac{t}{\gamma^d \|\mathbb{E} \mathcal{D}^d f(X)\|_{\mathcal{J}}} \right)^{2/|\mathcal{J}|}$, $\mathcal{D}^d f$ denotes the d-th derivative of f and C_D is some positive constant depending on D.

Let $f(X) = \sum_{i=1}^{N} a_i X_i^d$, we have the following Bernstein-type inequality.

Lemma 18 (Bernstein-type inequality in high order case). Let X_1, \dots, X_N be independent subgaussian random variables, and $\mathbf{a} = (a_1, \dots, a_N) \in \mathbb{R}^N$. Then, for every d > 1, there exists some constants $c, m_1, m_2 > 0$ such that for $0 < t < m_1 K^d \|\mathbf{a}\|_{\infty}$,

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} a_{i} X_{i}^{d} - a_{i} \mathbb{E} X_{i}^{d}\right| \geq t\right) \leq 2 \exp\left\{-c \min\left[\left(\frac{t}{K^{d} \|\boldsymbol{a}\|_{2}}\right)^{2}, \frac{t}{K^{d} \|\boldsymbol{a}\|_{\infty}}\right]\right\}$$
(3)

and for $t \geq m_2 K^d \|\boldsymbol{a}\|_{\infty}$,

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} a_{i} X_{i}^{d} - a_{i} \mathbb{E} X_{i}^{d}\right| \geq t\right) \leq 2 \exp\left\{-c \min\left[\left(\frac{t}{K^{d} \|\boldsymbol{a}\|_{2}}\right)^{2}, \left(\frac{t}{K^{d} \|\boldsymbol{a}\|_{\infty}}\right)^{2/d}\right]\right\} \tag{4}$$

where $K = \max_i ||X_i||_{\psi_2}$.

6 Summary

In this note, we have introduced the concepts of Sub-Gaussian and Sub-Exponential random variables, together with common concentration inequalities. These concepts are foundational tools in modern probability theory and statistical learning, which provide rigorous frameworks to quantify how a random variable deviates from its expected value.

References

[Ada15] Wolff P. Adamczak, R. Concentration inequalities for non-lipschitz functions with bounded derivatives of higher order. *Probability Theory and Related Fields*, 2015.

[Ver18] Roman Vershynin. High-dimensional probability. 2018.