QF Group Theory CC2022 By Zaiku Group

Lecture 20 (PART A)

Delivered by Bambordé Baldé

Friday, 09/12/2022

Learning Journey Timeline

quantumformalism.com

Group Representation Intuition

Group representation is essentially a way of getting elements of an abstract group G represented as matrices! Why would we want to do this?

- During the crash course we've come across groups such as permutation groups where it becomes a hassle to do computations on them e.g computing with cycles!
- Matrices are much easier and less abstract to perform computations with e.g. multiplying two matrices is less hassle than multiplying two cycles?

Linear Representations

Definition 1.0

Let G be a group. An n- dimension linear presentation of G is a pair (V, ρ) satisfying the following conditions:

- **①** V is an n- dimensional vector space over a field \mathbb{F} .
- $\mathbf{Q} \quad \rho: G \longrightarrow GL(V) \text{ is a group homomorphism.}$
- For practical applications, the field $\mathbb F$ is usually either be the field of the reals $\mathbb R$ or complex numbers $\mathbb C$. We'll mostly stick with $\mathbb C!$
- Since $GL(V) \simeq GL(n, \mathbb{F})$, then we can instead consider $\rho : G \longrightarrow GL(n, \mathbb{F})!$
- We can use the group homomorphism $\rho: G \longrightarrow GL(V)$ to construct a left action of G on V via $(g, v) \in G \times V \longrightarrow \rho(g)v \in V!$

Definition 1.1

A representation (V, ρ) of G is said to be faithful if ρ is injective i.e. if $\rho(g_1) = \rho(g_2)$ iff $g_1 = g_2$ for all $g_1, g_2 \in G$.

• If (V, ρ) is faithful then $\rho(g) = I_n$ iff $g = 1_G$ i.e. $Ker(\rho) = \{1_G\}$?

Notation awareness:

• Some authors use the notation π for the homomorphism instead of ρ !

 Also, very often a representation (V, ρ) is referred to by its homomorphism ρ whenever the vector space V is understood from the context i.e. V is often not mentioned which may give an impression that a representation is just the homomorphism ρ!

Example (Complex Representations)

- Let G be any group. Then we can construct an n- dimensional representation (\mathbb{C}^n, ρ) with $\rho: G \longrightarrow GL(n, \mathbb{C})$ defined as $\rho(g) = I_n$ for all $g \in G$.
- ② Consider the permutation group $G = \{(1), (123), (132)\} \subset S_3$. We can construct a 3- dimensional representation (\mathbb{C}^3, ρ) of G with $\rho: G \longrightarrow GL(3,\mathbb{C})$ defined as follows:

$$ho((1)) = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} \;\;,\;\;\;
ho((123)) = egin{pmatrix} 0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{pmatrix} \;\;,\;\;
ho((132)) = \; egin{pmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 0 \end{pmatrix}.$$

• Is the representation faithful?

Challenge 1

Let $G = S_3$. You're encouraged to try construct the following:

- **1** A faithful 3—dimensional representation (\mathbb{C}^3, ρ) of G.
- ② A non-faithful 3-dimensional representation (\mathbb{C}^3 , ρ).

Subgroup Representations

Proposition 1.0

Let G be a group and H a subgroup of G. If (V, ρ) is a representation of G then $(V, \rho_{|H})$ is a representation of H where $\rho_{|H}: H \longrightarrow GL(V)$ is the restriction of ρ to H.

Proof: Homework challenge (almost trivial)!

 Hence, if we have a representation of a group G, then we can use it used to construct representations of any subgroup of G by using the restriction!

Proposition 1.1

Let G_1 , G_2 be groups and $\phi: G_2 \longrightarrow G_1$ be a homomorphism. If (V, ρ) is a representation of G_1 then $(V, \rho \circ \phi)$ is a representation of G_2 i.e. $\rho \circ \phi: G_2 \longrightarrow GL(V)$ is a group homomorphism.

Proof: Homework challenge (trivial)!

Equivalent Representations

Definition 1.2

Two representations (V_1, ρ_1) and (V_2, ρ_2) of G are equivalent if there is an isomomorphism $T: V_1 \longrightarrow V_2$ such that $\rho_1(g) \circ T = T \circ \rho_2(g)$ for all $g \in G$.

 An equivalent way to state the above is to say the following diagram commutes:

• We write $(V_1, \rho_1) \sim (V_2, \rho_2)$ or alternatively just $\rho_1 \sim \rho_2!$

Challenge 2

Is \sim as defined above an equivalence relationship?

Example (Equivalent Representations)

• Consider the additive group \mathbb{Z}_n (often also written as $\mathbb{Z}/n\mathbb{Z}$). Then we can construct two equivalent 2- dimensional representations of \mathbb{Z}_n , (\mathbb{Z}_n, ρ_1) and (\mathbb{Z}_n, ρ_2) as follows:

① We define the map
$$\rho_1: \mathbb{Z}_n \longrightarrow GL(2,\mathbb{C})$$
 as $\rho_1(x) = \begin{pmatrix} \cos(\frac{2\pi x}{n}) & -\sin(\frac{2\pi x}{n}) \\ \sin(\frac{2\pi x}{n}) & \cos(\frac{2\pi x}{n}) \end{pmatrix}$ for all $x \in \mathbb{Z}_n$.

② We define the map
$$\rho_2: \mathbb{Z}_n \longrightarrow GL(2,\mathbb{C})$$
 as $\rho_2(x) = \begin{pmatrix} e^{\frac{2\pi x i}{n}} & 0 \\ 0 & e^{\frac{-2\pi x i}{n}} \end{pmatrix}$ for all $x \in \mathbb{Z}_n$.

Homomorphism of Representations

Definition 1.3

Let (V_1, ρ_1) and (V_2, ρ_2) be representations of a group G. A linear map $L: V_1 \longrightarrow V_2$ is a homomorphism of the two representations if $L \circ \rho_1(g) = \rho_2(g) \circ L$ for all G.

 The definition is equivalent to the commutative of the following diagram:

- L is also known as a G- linear map in the literature!
- L happens to be an isomorphism as well, we say the two representations are isomorphic and write $(V_1, \rho_1) \simeq (V_2, \rho_2)$.

Proposition 1.2

Let (V_1,ρ_1) and (V_2,ρ_2) be representations of a group G. If a G- linear map $L:V_1\longrightarrow V_2$ is an isomorphism, then its inverse $L^{-1}:V_2\longrightarrow V_1$ is also G- linear.

Proof: Homework challenge!

Group Subrepresentations

Definition 1.4

Let (V, ρ) be a representation of G and $W \subseteq V$ be a linear subspace. Then we say W is G— invariant if $\rho(g)w \in W$ for all $g \in G$ and $w \in W$.

- Another way to state the above is to say W is G— invariant under the underlying group action.
- Trivially, V and the zero space $\{0_V\}$ are G— invariant right?

Definition 1.5

Let (V, ρ) be a representation of G and $W \subseteq V$ be G-invariant subspace. Then we call the representation $(W, \rho_{|W})$ a subrepresentation of (V, ρ) .

• It's clear that $\rho_{|W}: G \longrightarrow GL(W)$ is a homomorphism right?

Irreducible Representations

Definition 1.6

A representation (V, ρ) of G is said to be irreducible if the only G-invariant subspaces are V and the zero subspace $\{0_V\}$.

• If the representation admits a nontrivial G— invariant subspace, then we say it is reducible.

Proposition 1.3

Any 1— dimensional representation (V, ρ) of a group G is irreducible.

Proof: Homework (trivial)!

• A hint to see the above is to recall that being 1-dimensional representation means $V\simeq \mathbb{C}!$

Curiosity: Given an n- dimensional representation (V, ρ) of a group G, is there a trick to verify if (V, ρ) is irreducible?

Theorem 1.0 (Eigenvector trick)

Let (V, ρ) be a 2- dimensional representation of a group G. Then (V, ρ) is irreducible iff there is no eigenvector $\psi \in V$ common to all $\rho(g)$ with $g \in G$.

 There is a similar trick for 3— dimensional representations, but this requires extra condition such as G being finite!

Challenge 3

Consider the additive group \mathbb{Z}_n (often also written as $\mathbb{Z}/n\mathbb{Z}$). Are the following 2— dimensional representations of \mathbb{Z}_n , (\mathbb{Z}_n, ρ_1) and (\mathbb{Z}_n, ρ_2) defined below irreducible?

① We define the map $\rho_1: \mathbb{Z}_n \longrightarrow GL(2,\mathbb{C})$ as $\rho_1(x) = \begin{pmatrix} \cos(\frac{2\pi x}{n}) & -\sin(\frac{2\pi x}{n}) \\ \sin(\frac{2\pi x}{n}) & \cos(\frac{2\pi x}{n}) \end{pmatrix}$ for all $x \in \mathbb{Z}_n$.

② We define the map $\rho_2: \mathbb{Z}_n \longrightarrow \mathit{GL}(2,\mathbb{C})$ as $\rho_2(x) = \begin{pmatrix} e^{\frac{2\pi x i}{n}} & 0 \\ 0 & e^{\frac{-2\pi x i}{n}} \end{pmatrix}$ for all $x \in \mathbb{Z}_n$.

Challenge 4

Can you build a 2— dimensional complex representation of the permutation group S_3 ?

GitHub: github.com/quantumformalism

YouTube: youtube.com/ZaikuGroup

Discord: discord.gg/SPcmcsXMD2

Linkedin: linkedin.com/showcase/quantum-formalism

Twitter: twitter.com/ZaikuGroup