En premier lieu, refaites donc les exercices du chapitre « Calculs de primitives et d'intégrales »!

CALCULS DE PRIMITIVES ET D'INTÉGRALES

- Calculer les intégrales suivantes : 1
 - 1) $\int_{0}^{1} \max \{e^{t}, 2\} dt.$ 2) $\int_{0}^{1} |3t 1| dt.$ 3) $\int_{0}^{n} e^{\lfloor t \rfloor} dt \quad (n \in \mathbb{N}).$
 - 4) $\int_0^4 \sin \frac{\lfloor x \rfloor \pi}{4} \, \mathrm{d}x.$ 5) $\int_0^2 x |x| \, \mathrm{d}x.$
- Déterminer une primitive des fonctions suivantes : $x \longmapsto e^{2x} \sin x$. 2) $x \mapsto \operatorname{ch} x \cos x$.
- $2) \qquad \int_{0}^{\frac{\pi}{2}} \cos^2 x \sin(3x) \, \mathrm{d}x.$
- Calculer: 1) \bigcirc $\int_0^1 \operatorname{Arctan} x \, dx$. 2) $\bigcirc \bigcirc \bigcirc$ $\int_{-1}^{1} x(\operatorname{Arctan} x)^{2} dx.$
- (2) (2) Déterminer une primitive des fonctions suivantes en commençant par y effectuer un changement de va-
 - 1) $x \mapsto \frac{1}{(1+x^2)^3}$ en posant : $x = \tan t$. 2) $x \mapsto \frac{1}{x\sqrt{x+1}}$ en posant : $t = \sqrt{x+1}$.
- \bigcirc \bigcirc Soit $f \in \mathscr{C}(I,\mathbb{R})$ bijective de I sur J = f(I). On note F une primitive de f sur I. Déterminer une expression explicite d'une primitive de f^{-1} sur J.
- et: $J = \int_0^{\frac{\pi}{6}} \frac{\sin^2 t}{\cos(2t)} dt.$ 1) Calculer I + J en posant : $x = \tan t$.
 - **2)** En déduire I et J.

- 9
 - 1) Justifier, pour tous $p \in \mathbb{N}$ et $q \in [0, p]$, l'existence de l'intégrale : $I_{p,q} = \int_0^1 x^p (\ln x)^q dx$.
 - **2)** Exprimer $I_{p,q}$ en fonction de $I_{p,q-1}$ pour tous $p \in \mathbb{N}^*$
 - **3)** En déduire que pour tout $n \in \mathbb{N}$:

$$I_{n,n} = (-1)^n \frac{n!}{(n+1)^{n+1}}.$$

 \bigcirc \bigcirc On pose pour tout $n \in \mathbb{N}$:

$$u_n = \int_0^{\frac{\pi}{4}} \tan^{2n+2} t \, dt$$
 et $S_n = \sum_{k=0}^n \frac{(-1)^k}{2k+1}$.

- 1) a) Calculer u_0 et simplifier $u_n + u_{n+1}$ pour tout
 - **b)** Montrer que pour tout $n \in \mathbb{N}$:

$$S_n = \frac{\pi}{4} + (-1)^n u_n.$$

- 2) a) Étudier la monotonie de $(u_n)_{n\in\mathbb{N}}$.
 - **b)** En déduire un équivalent simple de u_n lorsque *n* tend vers $+\infty$, puis la valeur de : $\lim_{n\to+\infty} S_n$.
- 11 1) (b) Justifier qu'on peut poser :

$$I(x) = \int_0^{2\pi} \ln\left(x^2 - 2x\cos\theta + 1\right) d\theta$$

pour tout $x \in \mathbb{R} \setminus \{-1, 1\}$.

- paire.
- 3) 🖰 🖰
 - a) Pour tout $\theta \in \mathbb{R}$, décomposer le polynôme $X^4 - 2X^2 \cos \theta + 1$ en produit de polynômes irréductibles dans $\mathbb{R}[X]$.
 - **b)** Soit $x \in \mathbb{R} \setminus \{-1, 1\}$. Calculer $I(x^2)$ en fonction de I(x), puis $I(x^{2^n})$ en fonction de I(x)pour tout $n \in \mathbb{N}$.
- 4) 🕑 🕑
 - a) Calculer I(x) pour tout $x \in]-1,1[$.
 - **b)** Après avoir calculé $I\left(\frac{1}{x}\right)$, calculer I(x) pour tout $x \in \mathbb{R} \setminus [-1, 1]$

EXERCICES ABSTRAITS DIVERS

 $\bigcirc \bigcirc \bigcirc \bigcirc$ Soit $f \in \mathscr{C}([0,1],\mathbb{R})$. Montrer que f possède une et une seule primitive F sur [0,1] pour laquelle :

$$\int_0^1 F(t) \, \mathrm{d}t = 0.$$

13

1) \bigcirc Soient $f, g \in \mathscr{C}([a, b], \mathbb{R})$. Montrer l'inégalité de Cauchy-Schwarz:

$$\left| \int_a^b f(t)g(t) \, \mathrm{d}t \right| \leq \sqrt{\int_a^b f(t)^2 \, \mathrm{d}t} \, \sqrt{\int_a^b g(t)^2 \, \mathrm{d}t}.$$

On pourra observer que $\lambda \longmapsto \int_a^b (f + \lambda g)^2$ est polynomiale et positive ou nulle sur \mathbb{R} .

- 2) S Soient $f, g \in \mathscr{C}([0,1], \mathbb{R})$ deux fonctions positives pour lesquelles : $fg \ge 1$. Montrer que: $\int_0^{\infty} f(t) dt \times \int_0^{\infty} g(t) dt \ge 1.$
- 3) 9 9 Soit $f \in \mathscr{C}^1([0,a],\mathbb{R})$ une fonction pour laquelle : f(0) = 0. On note F l'unique primitive de |f'| qui s'annule en 0.
 - a) Montrer l'inégalité:

$$\int_0^a |f(t)f'(t)| dt \le \int_0^a F(t)F'(t) dt.$$

b) En déduire l'inégalité d'Opial:

$$\int_0^a |f(t)f'(t)| dt \leq \frac{a}{2} \int_0^a f'(t)^2 dt.$$

- D Soit $f \in \mathscr{C}(\mathbb{R}, \mathbb{R})$. On pose, pour tout $x \in \mathbb{R}$:
 - 1) $\varphi(x) = \int_{-\infty}^{2\pi} f(x-t) \cos t \, dt.$
 - $\varphi(x) = \int_{-\infty}^{\infty} f(t+x) \, \mathrm{d}t.$

Montrer que $\varphi \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$ et calculer φ' .

15

On pose pour tout $x \in \mathbb{R}^*$:

$$\varphi(x) = \frac{1}{x} \int_{-x}^{x} \cos(t^2 + t) dt.$$

- 1) P Montrer que φ est dérivable sur \mathbb{R}^* et calculer sa dérivée.
- **2)** \bigcirc \bigcirc Montrer que φ est prolongeable par continuité en 0.

- P P Déterminer les fonctions $f \in \mathscr{C}(\mathbb{R}, \mathbb{R})$ telles que pour tout $x \in \mathbb{R}$:
 - 1) $f(x) + \int_{-\infty}^{\infty} (x-t)f(t) dt = 1.$
 - 2) $f(x) = 1 + 2 \int_{0}^{x} f(t) \cos(x t) dt$.

 \bigcirc \bigcirc Soient $f \in \mathscr{C}^1(I,\mathbb{C})$ ne s'annulant pas sur I et

- 1) On pose pour tous $x \in I$: $g(x) = \int_{-\infty}^{\infty} \frac{f'(t)}{f(t)} dt$. Vérifier l'égalité : $f = f(a)e^g$.
- 2) Montrer que si : f(a) = f(b), alors le nombre complexe $\frac{1}{2i\pi} \int_{0}^{\pi} \frac{f'(t)}{f(t)} dt$ est un entier relatif.
- $\bigcirc \bigcirc \bigcirc \bigcirc$ Soient $f, g \in \mathscr{CM}([a, b], \mathbb{R})$ monotones de mêmes sens de variation.
 - 1) Montrer que pour tous $x, y \in [a, b]$:

$$(f(y)-f(x))(g(y)-g(x)) \ge 0.$$

- **2)** En déduire que : $\int_{a}^{b} f \int_{a}^{b} g \leq (b-a) \int_{a}^{b} f g.$
- \mathfrak{G} Soit $f \in \mathscr{C}([a,b],\mathbb{R})$. À quelle condition nécessaire et suffisante l'inégalité triangulaire :

$$\left| \int_{a}^{b} f \right| \leqslant \int_{a}^{b} |f|$$

est-elle une égalité?

- \bigcirc \bigcirc Soit $f \in \mathscr{C}([a,b],\mathbb{R})$. Montrer que la fonction $x \mapsto \int_{-\infty}^{\infty} f(t)\sin(xt) dt$ est lipschitzienne sur \mathbb{R} .
- \bigcirc \bigcirc Soit $f \in \mathscr{C}([0,1],\mathbb{R})$ une fonction pour laquelle : $\int_{-\infty}^{\infty} f(t) dt = \frac{1}{2}.$ Montrer que f possède un point fixe.
- $\boxed{22} \quad \textcircled{P} \quad \text{Soit } P = \sum_{k=0}^{+\infty} a_k X^k \in \mathbb{C}[X].$
 - 1) Calculer: $\frac{1}{2\pi} \int_{0}^{2\pi} P(e^{it})e^{-ikt} dt$ pour tout
 - **2)** Montrer qu pour tout $k \in \mathbb{N}$: $|a_k| \leq \sup_{x \in \mathbb{R}} |P|$.
- Soient $f \in \mathscr{C}([a,b],\mathbb{R})$ et $n \in \mathbb{N}$. On suppose que pour tout $k \in \llbracket 0, n \rrbracket$: $\int_0^{\infty} t^k f(t) dt = 0$.
 - 1) \bigcirc Montrer que pour tout $P \in \mathbb{R}_n[X]$:

$$\int_a^b P(t)f(t) dt = 0.$$

- n+1 fois sur [a,b].

$$\sum_{0 \le i, j \le n} \frac{a_i a_j}{i + j + 1} \ge 0.$$

3 LIMITES D'INTÉGRALES

Pour tout $n \in \mathbb{N}^*$, on note f_n la fonction continue par morceaux sur [0,1] définie par :

$$f_n(x) = \begin{cases} 0 & \text{si } x = 0\\ 2n(1 - nx) & \text{si } 0 < x < \frac{1}{n}\\ 0 & \text{si } x \ge \frac{1}{n}. \end{cases}$$

Représenter graphiquement f_n pour tout $n \in \mathbb{N}^*$, puis comparer : $\lim_{n \to +\infty} \int_0^1 f_n$ et $\int_0^1 \lim_{n \to +\infty} f_n$.

- $\begin{array}{c|c} \textbf{26} & \text{\'Etudier les limites suivantes}: \\ \textbf{1)} & \lim_{n \to +\infty} \int_0^1 \frac{t^n}{\mathrm{e}^t + 1} \, \mathrm{d}t. & \textbf{2)} & \lim_{x \to 0^+} \int_x^{3x} \frac{\cos t}{t} \, \mathrm{d}t. \end{array}$

puis faire tendre n vers $+\infty$.

Soit $f \in \mathcal{C}([0,1], \mathbb{R})$. Calculer: $\lim_{x \to 0} \frac{1}{x} \int_0^x f(t) dt$, puis interpréter géométriquement.

2) En déduire $\lim_{x \to +\infty} \int_0^x \sin \frac{\pi}{t+x} dt$.

31 © © On pose: $f(x) = \begin{cases} \int_{x}^{x^{2}} \frac{dt}{\ln t} & \text{si } x \in \mathbb{R}_{+}^{*} \setminus \{1\} \\ 0 & \text{si } x = 0 \\ \ln 2 & \text{si } x = 1. \end{cases}$

1) a) Calculer l'intégrale : $\int_{x}^{x^{2}} \frac{dt}{t \ln t}$ pour tout $x \in \mathbb{R}_{+}^{*} \setminus \{1\}.$

b) En déduire que pour tout $x \in [0, 1]$:

 $x^2 \ln 2 \le f(x) \le x \ln 2$

et que pour tout $x \in]1, +\infty[$:

 $x \ln 2 \le f(x) \le x^2 \ln 2.$

c) Montrer alors que f est continue en 0 et en 1 et calculer : $\lim_{t\to\infty} f$.

2) a) Montrer que f est de classe \mathscr{C}^1 sur]0,1[et sur $]1,+\infty[$ et y calculer f'.

b) En déduire enfin que f est de classe \mathscr{C}^1 sur \mathbb{R}_+ tout entier.

3) Justifier l'existence de : $\int_0^1 \frac{t-1}{\ln t} dt$ et déterminer la valeur de cette intégrale.

32 $\bigcirc \bigcirc \bigcirc \bigcirc$ Soit $f \in \mathscr{C}^1([a,b],\mathbb{C})$. Montrer le lemme de Riemann-Lebesgue : $\lim_{x \to +\infty} \int_a^b f(t) \sin(xt) dt = 0$.

Soit $f \in \mathcal{C}([0,1],\mathbb{R})$. Montrer que :

$$\lim_{n\to+\infty}\int_0^1 f(t^n)\,\mathrm{d}t = f(0).$$

34 On suppose que : f(x) = 0 Montrer que : $\lim_{x \to +\infty} \int_{x}^{2x} f(t) dt = 0$.

Soient $f \in \mathscr{C}([a,b],\mathbb{R})$ positive ou nulle.

1) Montrer que pour tout $n \in \mathbb{N}^*$:

$$\sqrt[n]{\int_a^b f(t)^n dt} \leqslant \sqrt[n]{b-a} \|f\|_{\infty}.$$

2) (B) (B) (Montrer que :

$$\lim_{n\to+\infty} \sqrt{\int_a^b f(t)^n dt} = ||f||_{\infty}.$$

4 FORMULES DE TAYLOR-LAGRANGE

Soient $f \in \mathcal{C}(I,\mathbb{C})$ et $a \in I$. Montrer que la fonction $x \longmapsto \int_a^x \frac{(x-t)^{n-1}}{(n-1)!} f(t) dt$ est une primitive $n^{\text{ème}}$ de f sur I.

et: $\cos x = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{(-1)^k x^{2k}}{(2k)!}$ pour tout $x \in \mathbb{R}$.

 \bigcirc \bigcirc Montrer que pour tous $k \in \mathbb{N}$ et $x \in]-1,1[$:

 $\lim_{p \to +\infty} \sum_{k=1}^{\infty} {n \choose k} x^{n-k} = \frac{1}{(1-x)^{k+1}}$ (formule du binôme négatif).

 $\bigcirc \bigcirc \bigcirc$ Soit $f \in \mathscr{C}^2(\mathbb{R}, \mathbb{R})$. On suppose f et f'' bornées sur \mathbb{R} .

1) Montrer que pour tous $x, h \in \mathbb{R}$:

$$|f(x+h)-f(x)-hf'(x)| \le \frac{h^2}{2} ||f''||_{\infty}$$

et: $|f(x-h)-f(x)+hf'(x)| \le \frac{h^2}{2} ||f''||_{\infty}$. 2) En déduire que pour tous $x \in \mathbb{R}$ et $h \in \mathbb{R}_+^*$:

- $|f'(x)| \le \frac{\|f\|_{\infty}}{h} + \frac{h}{2} \|f''\|_{\infty}$, puis que f' est
- 3) En déduire l'inégalité : $||f'||_{\infty} \le \sqrt{2||f||_{\infty}||f''||_{\infty}}$.

Soient $\lambda > 0$ et $f \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$. On suppose que pour tout $n \in \mathbb{N}$: $f^{(n)}(0) = 0$ et:

$$\forall t \in \mathbb{R}, \quad \left| f^{(n)}(t) \right| \leq \lambda^n n!.$$

- 1) \bigcirc Montrer qu'alors f est nulle sur $\left| -\frac{1}{\lambda}, \frac{1}{\lambda} \right|$
- **2)** $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Montrer que f est même nulle sur \mathbb{R} tout entier.

5 SOMMES DE RIEMANN

 \bigcirc \bigcirc Déterminer un équivalent lorsque n tend vers

 $+\infty$ de: 1) $\sum_{k=1}^{n} \frac{1}{n^2 + k^2}$. 2) $\sum_{k=n+1}^{2n} \frac{1}{k^2}$.

- 3) $\sum_{k=1}^{n} \frac{k^2}{n^2 + k^2}$. 4) $\sum_{k=1}^{n} k^{\alpha} \quad (\alpha \in \mathbb{R}_+)$. 5) $\sum_{k=1}^{n} \cos^2 \frac{k\pi}{n}$. 6) $\sum_{k=1}^{n} \sqrt{k(n-k)}$.

1) Montrer que pour tout $x \ge -\frac{1}{2}$:

$$x - x^2 \le \ln(1 + x) \le x.$$

 $\lim_{n \to +\infty} \prod_{k=1}^{n} \left(1 + \frac{1}{n} f\left(\frac{k}{n}\right) \right) \quad \text{pour toute}$ fonction $f \in \mathscr{C}([0,1],\mathbb{R})$.

3) En déduire : $\lim_{n \to +\infty} \prod_{i=1}^{n} \left(1 + \frac{k}{n^2}\right)$.

44

1) Soient $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$.

a) Montrer que :

$$\sum_{1 \leq i \leq j \leq n} (a_j - a_i)(b_j - b_i) = n \sum_{k=1}^n a_k b_k - \left(\sum_{i=1}^n a_i\right) \left(\sum_{j=1}^n b_j\right).$$

b) On suppose à présent : $a_1 \le ... \le a_n$ $b_1 \leq \ldots \leq b_n$. Montrer l'inégalité :

$$\left(\frac{1}{n}\sum_{i=1}^n a_i\right)\left(\frac{1}{n}\sum_{j=1}^n b_j\right) \leqslant \frac{1}{n}\sum_{k=1}^n a_k b_k.$$

2) Soient $f, g \in \mathscr{CM}([a, b], \mathbb{R})$ croissantes. Montrer que: $\int_a^b f \int_a^b g \le (b-a) \int_a^b f g.$

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Soit $x \in \mathbb{R} \setminus \{-1,1\}$. Après en avoir justifié l'existence, calculer : $\int_0^{2\pi} \ln(x^2 - 2x \cos \theta + 1) d\theta$ grâce à des sommes de Riemann.