

GRADO EN INGENIERÍA DE ROBÓTICA SOFTWARE

Escuela de Ingeniería de Fuenlabrada

Curso académico 2024-2025

Trabajo Fin de Grado

Diseño de controladores gamificados para rotot de rehabilitación

Tutor: Julio Salvador Lora Millán **Cotutor**: Juan Alejandro Castaño Peña

Autor: Sofía Perales Díez

Este trabajo se distribuye bajo los términos de la licencia internacional CC BY-SA International License (Creative Commons Attribution-ShareAlike 4.0). Usted es libre de (a) compartir: copiar y redistribuir el material en cualquier medio o formato para cualquier propósito, incluso comercialmente; y (b) adaptar: remezclar, transformar y construir a partir del material para cualquier propósito, incluso comercialmente. La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia:

- Atribución. Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- Compartir igual. Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la misma licencia del original.
 No hay restricciones adicionales No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido

por la licencia.

Agradecimientos

En primer lugar, me gustaría agradecer a la Universidad Rey Juan Carlos por brindarme la oportunidad de formar parte de esta institución. A todo el equipo docente que me ha formado académicamente, y en especial, a mis tutores Julio Salvador Lora y Juan Alejandro Castaño por la confianza y el apoyo depositado en mi para llevar a cabo este proyecto.

Agradecer a mis padres por todo lo que me han dado y por estar siempre a mi lado apoyándome e impulsándome a superarme y convertirme en la mejor versión de mí misma. A mi hermana, de la que aprendo todos los días y que me motiva a ser alguien en quien pueda inspirarse y confiar. Y a mi abuela, que es un referente para mí y me ha defendido siempre.

También agradecer a mis amigos, aquellos que se alegran por mis logros como si fuesen los suyos propios. Por la paciencia que tienen conmigo y por estar en las buenas y en las malas. A Nuria de la Fuente, por ser mi alma gemela desde el primer momento que nos conocimos. A Lucía Álvarez, por convertirse en mi hermana, doy gracias por habernos encontrado en la otra punta del mundo. A mis amigas del cole, quienes me han visto crecer y con las que he compartido la mayor parte de mi vida. Y a mis amigos de la universidad, gracias por las risas, los desayunos en la cafetería y sobre todo por el apoyo en momentos de estrés. Porque los ratitos con vosotros han hecho que el camino sea más fácil y ameno.

Y por último, gracias a Hispamast y todos sus empleados por darme la oportunidad de hacer las prácticas de empresa y formarme laboralmente. En especial a mis jefes y amigos Javier Trabalón y Alejandro Caballero, por cuidarme y tomarme como vuestra aprendiz. Gracias a vosotros he disfrutado de cada minuto durante las prácticas y ojalá sigamos compartiendo momentos juntos.

Todos vosotros me habeis hecho ser quien soy, gracias desde el corazón.

Madrid, xx de xxxxxx de 2025 $Sofia\ Perales\ Diez$

Resumen

Abstract

Acrónimos

API Interfaz de Programación de Aplicaciones

GUI Interfaz Gráfica de Usuario

ROS Sistema Operativo Robótico

Índice general

1.	Intr	oducción
2.	Obj	etivos
	2.1.	Descripción del problema
		2.1.1. Objetivo general
		2.1.2. Objetivos específicos
	2.2.	Requisitos
	2.3.	Competencias
		2.3.1. Competencias generales
		2.3.2. Competencias específicas
	2.4.	Metodología
	2.5.	Plan de trabajo
3.	Plat	taforma de desarrollo
	3.1.	Sistema operativo
	3.2.	Entorno de desarrollo
		3.2.1. Python
		3.2.2. ROS 2
	3.3.	Componentes físicos
4.	Dise	eño 11
	4.1.	Interfaz de registro de un paciente
	4.2.	Interfaz de control
	4.3.	Interfaz de visualización
	4.4.	Juego flappy
5.	Con	aclusiones 19
	5.1.	Conclusiones
	5.2.	Corrector ortográfico

,	
ÍNDICE GENERAL	IX

iografía	21
iografía	

Índice de figuras

3.1.	Distribución de ROS 2 utilizada	9
3.2.	Actuador T-Series	10
4.1.	Interfaz de registro de un paciente	13
4.2.	Interfaz de configuración de los límites del brazo robótico	15
4.3.	Interfaz de control	16
4.4.	Interfaz de visualización	18

Listado de códigos

			-	-	-	-		_								_
41	Función	nara.	guardar	los	datos	de	11n	naciente							- 1	-2

Listado de ecuaciones

4.1.	Cálculo del error de trayectoria en el tiempo	17
4.2.	Cálculo del error de trayectoria por posición	17

Índice de cuadros

Capítulo 1

Introducción

Quizás algún fragmento de libro inspirador...

Autor, Título

Hablar del ictus como enfermedad, presencia de casos en España.

Hablar de la rehabilitación, aspectos positivos, actividades que se realizan.

Hablar de la inclusión de sistemas robóticos como herramienta terapéutica, mejoras en las sesiones.

Capítulo 2

Objetivos

Un objetivo bien definido es el punto de partida de todo logro.

W. Clement Stone, Success Through a Positive Mental Attitude, 1959

Después de haber establecido el marco contextual de este proyecto, continuo con la descripción del problema, los requisitos, las competencias, la metodología y el plan de trabajo empleado para su desempeño.

2.1. Descripción del problema

La recuperación motora tras un ictus requiere de terapias personalizadas y motivadoras que promuevan la participación activa del paciente. Tal como señalan [Clark et al., 2019], la ausencia de interfaces gráficas intuitivas y retroalimentación visual puede provocar una menor implicación del paciente durante el tratamiento, afectando de forma negativa los resultados terapéuticos.

En este contexto, el presente proyecto aborda dicha limitación mediante el diseño y desarrollo de un sistema de interacción gráfica que combina, por un lado, una plataforma de gamificación centrada en el paciente, con el objetivo de fomentar su participación y motivación, y por otro, una interfaz de visualización clínica centrada en el médico, que registre las métricas de desempeño y facilite el seguimiento de la evolución terapéutica.

2.1.1. Objetivo general

Diseñar un sistema que registre y almacene los datos clínicos más relevantes e implementar interfaces gráficas interactivas y entornos gamificados que mejoren la experiencia del usuario en terapias robóticas post-ictus.

2.1.2. Objetivos específicos

Con el fin de alcanzar esta meta, se han definido los siguientes objetivos específicos:

- O1. Desarrollar entornos gráficos gamificados que incluyan estimulos visuales, niveles de dificultad y misiones particulares que se adapten al perfil del usuario.
- O2. Diseñar una interfaz gráfica intuitiva para la plataforma robótica, que permita al médico visualizar el progreso del paciente y ajustar los parámetros del juego en base a su rendimiento.
- O3. Establecer sistemas de interacción visual conectados con los sensores y actuadores del robot para reflejar los movimientos del paciente y su desempeño.
- O4. Crear una interfaz gráfica para definir los datos personales y el progreso del usuario después de cada sesión.
- O5. Integrar perturbaciones controladas en el entorno de juego terapéutico, con el fin de introducir obstáculos que desafíen el control motor y la capacidad de adaptación del paciente, promoviendo así una mayor atención, planificación motora y activación neuromuscular.

2.2. Requisitos

A continuación, se enumeran los requisitos que se deben satisfacer:

- Compatibilidad con la arquitectura del sistema robótico y su software de control.
- Interfaz intuitiva y adaptable en base a las necesidades de cada usuario.
- Incorporación de elementos de gamificación como niveles o feedback visual.
- Conectividad con un actuador para adaptar la asistencia del robot según el esfuerzo del paciente.
- Posibilidad de registro y análisis de los datos terapéuticos para su posterior uso e investigación.
- Validación de uso mediante la valoración de los resultados obtenidos por los usuarios.

2.3. Competencias

Durante la realización de este proyecto, se han puesto en práctica diversas competencias generales del grado y específicas del desarrollo de interfaces y sistemas dinámicos.

2.3.1. Competencias generales

- CG1: Diseño software. Conocimiento de materias básicas y tecnologías, que le capacite para el aprendizaje de nuevos métodos y tecnologías, así como que le dote de una gran versatilidad para adaptarse a nuevas situaciones.
- CE15: Arquitectura software para robots. Capacidad de diseñar y programar aplicaciones robóticas y sistemas inteligentes en red usando middlewares, mecanismos de comunicación y estándares propios del ámbito de la Ingeniería Robótica.
- CB2: Planificación y sistemas cognitivos. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.
- CB4: Trabajo de Fin de Grado. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.

2.3.2. Competencias específicas

- CE1. Diseño e implementación de interfaces gráficas de usuario (GUI) con herramientas como Tkinter.
- CE2. Desarrollo de aplicaciones interactivas con elementos de gamificación, aplicando principios de diseño centrado en el usuario.
- CE3. Integración de interfaces con dispositivos físicos mediante comunicación en tiempo real basada en el Sistema Operativo Robótico (ROS¹).
- CE4. Evaluación de la usabilidad y experiencia de usuario con métricas objetivas y percepciones.

¹https://www.ros.org/

2.4. Metodología

Para llevar a cabo este proyecto, se ha optado por seguir el paradigma iterativo centrado en el usuario (User-Centered Design). Previamente, se ha realizado una fase de análisis e investigación sobre el estado del arte y necesidades específicas para comprobar la viabilidad de su desarrollo. Posteriormente, se procedió con el diseño del prototipo para validar el diseño gráfico y la navegación. Más adelante, la realización de pruebas contínuas favoreció la incorporación de mejoras en el diseño visual, la lógica de juego y la retroalimentación. Una vez se desarrolló una primera versión fiable, las interfaces se conectaron con el sistema de control del robot permitiendo crear un entorno cambiante y adaptable. Por último, se llevó a cabo una evaluación de conformidad a los usuarios para comprobar la efectividad de la plataforma.

2.5. Plan de trabajo

El trabajo se ha organizado de forma progresiva y coordinada con el resto del equipo técnico. Para ello, el proyecto se ha divido en las siguientes etapas:

- 1. Investigación. En esta fase inicial, se llevó a cabo un análisis detallado de plataformas robóticas existentes en el ámbito de la rehabilitación, como el dispositivo Armeo Spring², entre otros. El fin de este estudio fue identificar funcionalidades relevantes y enfoques innovadores que pudieran servir de inspiración para el diseño y desarrollo de la nueva plataforma.
- 2. Planteamiento del software. Una vez se establecieron los objetivos y requisitos del proyecto, se procedió con el diseño de un esquema de nodos y topics que permitió estructurar de forma organizada la arquitectura de la plataforma.
- 3. Desarrollo de la parte gráfica. Después de definir la arquitectura del sistema, se inició el desarrollo de las interfaces gráficas. A través de continuas pruebas se fueron optimizando tanto su aplicación como su uso.
- 4. Conexión entre el software y hardware. Una vez consolidada una primera versión fiable del software, se continuó con la integración de las interfaces con el sistema de sensonorización del robot.
- 5. Evaluación y conclusiones. En esta etapa final, se evaluó la usabilidad y se validaron los controles de forma técnica.

²https://www.comunidad.madrid/noticias/2019/04/16/comunidad-incorpora-robot-rehabilitacion-hospital-guadarrama

Paralelamente, se ha ido completando la presente memoria a lo largo de este proceso. Asimismo, se han realizado reuniones mensuales con el equipo para compartir los progresos de cada área, proponer mejoras y resolver cuestiones, trabajando de manera coordinada hacia un objetivo común.

A continuación, se procede a tratar las plataformas de desarrollo empleadas en este proyecto.

Capítulo 3

Plataforma de desarrollo

Lo simple es mejor que lo complejo.

Tim Peters, The Zen of Python

A continuación, se explican las plataformas de desarrollo utilizadas a nivel de software y hardware, que han permitido alcanzar los objetivos descritos en el capítulo anterior.

3.1. Sistema operativo

Un sistema operativo puede definirse como el conjunto de programas que gestionan el hardware de un ordenador o dispositivo y permiten el funcionamiento de otros programas. Como describen [Soriano-Salvador and Guardiola Múzquiz, 2022], una distribución es una colección concreta de software de área de usuario y un núcleo del sistema operativo.

Para la realización de este proyecto se ha utilizado el sistema operativo de tipo GNU/Linux² y su distribuición Ubuntu³, en concreto la versión Ubuntu 22.04. La razón de usar esta versión de Ubuntu se debe a su compatibilidad con la distribuición $Humble^4$ de ROS 2, ya que el sistema ha sido diseñado específicamente para funcionar con dicha distribuición.

²https://www.debian.org/releases/stable/i386/ch01s02.es.html

³https://ubuntu.com/

⁴https://docs.ros.org/en/humble/index.html

3.2. Entorno de desarrollo

3.2.1. Python

Python⁵ es el lenguaje de programación utilizado para el desarrollo de este proyecto. Se trata de un lenguaje de alto nivel creado por Gido van Rossum y publicado por primera vez en 1991. Según [Stack Overflow,] es ampliamente reconocido por su simplicidad y flexibilidad, lo que hace que sea ideal tanto para principiantes como para desarrolladores expertos. Cuenta con un sistema de tipos dinámico y gestión automática de la memoria y soporta múltiples paradigmas de programación, incluyendo orientación a objetos, programación funcional y estilos procedimentales. Además, dispone de una amplia y completa biblioteca estándar, que facilita el desarrollo de aplicaciones de propósito general.

La versión de Python utilizada para el desarrollo de la GUI es Python 3.10.13. En particular, se emplearon las siguientes librerías:

- matplotlib: Matplotlib⁶ es una biblioteca completa para crear visualizaciones estáticas, animadas e interactivas en Python. Se ha empleado para la graficación de las señales de trayectoria y perturbación, la posición del paciente en los entornos gamificados y de visualización del médico, y los datos clínicos recogidos durante la terapia.
- numpy: NumPy⁷ es una biblioteca de Python que proporciona un objeto matriz multidimensional, varios objetos derivados como matrices y matrices enmascaradas y una serie de rutinas para realizar operaciones rápidas con matrices, incluidas operaciones matemáticas, lógicas, manipulación de formas, ordenación, selección, entrada/salida, transformadas discretas de Fourier, álgebra lineal básica, operaciones estadísticas simples, simulación aleatoria, entre otros. En especial se ha implementado dentro de los entornos gamificados para crear las señales límites, de trayectoría y perturbación para su posterior representación.
- tkinter: Tkinter⁸ es la interfaz por defecto de Python para el kit de herramientas de GUI Tk. En concreto, se han utilizado los módulos Tk y Ttk para el diseño de la interfaz de control del médico y la interfaz de registro de pacientes.

⁵https://www.python.org/

⁶https://matplotlib.org/

⁷https://numpy.org/

⁸https://docs.python.org/es/3.13/library/tkinter.html

3.2.2. ROS 2

Como explica [Martín Rico, 2023], ROS es un middleware que aumenta las capacidades del sistema para crear aplicaciones robóticas. El número dos indica que se trata de la segunda generación de este middleware. Los paquetes de ROS 2 están organizados en distribuciones, las cuales están formadas por múltiples paquetes que aseguran su interoperabilidad. Esta arquitectura modular permite estructurar el sistema como un grafo de computación, compuesto por nodos de ROS 2 que se comunican entre sí, permitiendo así que un robot realice una serie de tareas.

Se destacan las siguientes librerías:

- rclpy: rclpy⁹ proporciona la Interfaz de Programación de Aplicaciones (API) canónica de Python para interactuar con ROS 2.
- std_msgs: std_msgs¹⁰ define tipos de mensajes básicos y estandarizados para la publicación y suscripción entre nodos.

La distribución utilizada se refleja en la Imagen 3.1.

Figura 3.1: Distribución de ROS 2 utilizada

3.3. Componentes físicos

Una vez definido el software, se especifica el hardware encargado de ejecutar las acciones en un entorno físico.

⁹https://docs.ros.org/en/iron/p/rclpy/

 $^{^{10} {\}tt https://docs.ros2.org/foxy/api/std_msgs/index-msg.html}$

Para el movimiento del brazo robótico se utiliza un actuador de HEBI Robotics¹¹, más concretamente el modelo T-Series como puede observarse en la Imagen 3.2. Este actuador está diseñado para funcionar como un componente robótico con todas las funciones. La salida gira continuamente, no requiere calibración ni referencia alguna de arranque. Diseñado para funcionar en brazos robóticos con múltiples grados de libertad. Integra varios sensores facilmente accessibles a través de varias APIs.

La selección de este modelo se debe a la incorporación de un sensor de posición, lo que permite registrar el movimiento del brazo del paciente. Esto resulta fundamental para la validación de los entornos gamificados, los cuales proponen una serie de actividades donde la posición del paciente se toma como referencia para el desarrollo de actividades interactivas y dinámicas dentro de un contexto terapéutico.

Figura 3.2: Actuador T-Series

¹¹https://www.hebirobotics.com/actuators

Capítulo 4

Diseño

El diseño no es solo lo que se ve y lo que se siente. El diseño es cómo funciona

Steve Jobs, conferencia de lanzamiento del Apple iPod, 2001

Después de definir la plataforma de desarrollo, se procede a explicar el diseño de la aplicación.

El proyecto se divide en cuatro scripts, el primero se utiliza para crear o registrar un paciente, el segundo lanza la GUI y controla los parámetros del juego, el tercero permite visualizar el comportamiento del paciente durante la terapia, y el cuarto es el propio juego.

4.1. Interfaz de registro de un paciente

Este script permite gestionar un conjunto de datos, que identifican a un paciente, mediante una GUI.

En primer lugar, se importan las bibliotecas estádar, mencionadas en el capítulo anterior, como tkinter, que se utiliza para crear la interfaz gráfica, csv para guardar los datos en un archivo CSV para su posterior uso, y os para interactuar con el sistema de archivos.

Se obtiene el directorio de inicio del usuario y se crea un directorio dentro de este, si no existe, bajo el nombre *database*, donde se almacenan los ficheros con los datos de registro y análisis terapéuticos de cada paciente.

Se definen tres funciones principales que gestionan las operaciones de la GUI. La función exit() cierra la ventana pincipal de Tkinter, clear() limpia los campos de entrada y texto, y savedata() guarda los valores de los campos, valida que el ID sea un número y crea un subdirectorio bajo el nombre del ID, si no existe, donde guarda los datos en un archivo CSV llamado ID.csv. Si el archivo no existe, se

escribe el encabezado utilizando writer.writeheader(). Los datos se escriben con csv.DictWriter y son guardados como strings. Cada campo es un Entry enlazado a una variable de tipo StringVar y hacen referencia al nombre, apellido e ID del paciente, frecuencia, amplitud y perturbación de la señal que generará el brazo robótico, nivel y progreso del juego y un espacio para que el doctor incluya observaciones.

Se crea una ventana principal con un título y tamaño fijo de 600x500 píxeles.

Los estilos visuales se configuran con ttk. Style y se definen dos frames distintas, main_frame se utiliza como contenedor de los campos de entrada y texto y button_frame agrupa la lógica de los botones.

Se crean dos botones, Save llama a savedata() para guardar los datos, que a su vez llama a clear() para limpiar los campos una vez que estos se han almacenado, y el botón Exit llama a exit() que cierra la aplicación.

root.mainloop() inicia el bucle de eventos de Tkinter y la interfaz está activa hasta que se cierra la ventana.

En el Código 4.1, escrito en Python, se muestra cómo se gestionan los directorios y la escritura del archivo CSV.

```
def savedata():
    ID_DIR = os.path.join(DATABASE_DIR, id)
    os.makedirs(ID_DIR, exist_ok=True)
    file_name = f"{id}{ext}"
    file_path = os.path.join(ID_DIR, file_name)

# [...]

file_exists = os.path.isfile(file_path)
    with open(file_path, mode="a", newline="") as file:
        writer = csv.DictWriter(file, fieldnames=patient_data.keys())
        if not file_exists:
            writer.writeheader()
        writer.writerow(patient_data)
```

Código 4.1: Función para guardar los datos de un paciente

En la Imagen 4.1 puede observarse el estilo de la interfaz.

4.2. Interfaz de control

Este script combina ROS 2 y Tkinter para crear una GUI que gestiona límites físicos (mínimo, máximo y offset) del robot, configura y publica parámetros para crear una señal de control y perturbación para un sistema robótico, parámetros de asistencia y

Figura 4.1: Interfaz de registro de un paciente

nivel de dificultad para un videojuego terapéutico y almacena dichas configuraciones por paciente.

Al inicio del script se importan las librerías rclpy, que es la API cliente de Python para ROS 2, tkinter para crear la interfaz gráfica, std_msgs.msg para gestionar los mensajes estándar de ROS 2, csv para el manejo de archivos CSV, os para interactuar con el sistema y datetime para gestionar la fecha de creación de los archivos.

Se crea un directorio en el directorio de inicio del usuario, si no existe, bajo el nombre *database*, donde se almacenan los ficheros con los datos de configuración de cada paciente.

Se definen dos clases, ScrollPublisherNode es una clase de ROS 2 que publica los parámetros de una señal (frecuencia, amplitud, offset y tipo) y de una perturbación (amplitud, duración, periodo y tipo) en el topic /SliderParameters y los datos de asistencia y nivel de juego en /GameParameters. Los mensajes son de tipo Float32MultiArray y Int32MultiArray, y se publican cada 0.1 segundos y únicamente cuando se actualiza el valor de los datos, respectivamente. El tipo de señal hace referencia al modo de juego y se codifica como 1.0 (hold) y 2.0 (follow), y la perturbación como 1.0 (sinusoidal) y 2.0 (escalón). ScrollGUI es la clase que crea la interfaz gráfica y permite ajustar los parámetros del juego en tiempo real y publicarlos

a través de un nodo de ROS. Los datos se guardan en un archivo CSV bajo el nombre ID-year-month-day-config_<index>.csv en un subdirectorio llamado config dentro del directorio home/user/database/ID/. index hace referencia al número de archivo de la sesión diaria. Si el archivo no existe, se escribe el encabezado.

Se crean deslizadores, utilizando ttk.Scale, para ajustar la frecuencia, amplitud, offset, duración, periodo y asistencia del robot. Se utiliza Combox para permitir la selección entre los distintos tipos de señal y perturbación (sinusoidal o escalón) y niveles de asistencia (del 0 al 5, donde 0 es asistencia nula y 5 asistencia máxima) y de juego (del 1 al 10). Los botones *Update Signal* y *Update levels* se utilizan para actualizar los datos en el topic correspondiente, y el botón *Exit* para salir.

La función saveconfig() guarda la configuración actual de la GUI en el archivo CSV. Las funciones update*() convierten el valor del deslizador de str a float. Entre ellas se destacan updatesignal(), que actualiza los atributos del nodo y llama a saveconfig(), que añade al final del archivo la nueva configuración, y updatelevel(), que publica un mensaje con los datos de asistencia y nivel de dificultad del juego. La función close() finaliza el nodo y cirra la GUI y el método run() inicia el bucle de eventos de Tkinter junto con spin_once().loadcsv() lee el último registro del archivo del paciente que se pasa como parámetro y devuelve los valores de frecuencia, amplitud, perturbación, duración, periodo y nivel del juego. Todos son float excepto el último que es un int.

main() es la función principal y se encarga de extraer el ID del paciente desde la ruta al archivo de registro, cargar los datos de las señales y el juego desde el CSV, crear el nodo ScrollPublisherNode con dichos parámetros e iniciar la GUI. startgui() es la primera interfaz que se lanza y gestiona la configuración del brazo que se va a rehabilitar y de los límites físicos del robot a través de la publicación de un Int32MultiArray que actúa como un booleano indicando el botón que se ha pulsado (resetear, mínimo, máximo u offset). Además, comprueba que los límites mínimo y máximon se han definido correctamente antes de permitir establecer el offset o continuar a la siguiente ventana.

En la Imagen 4.2 se muestra la ventana de inicio y en la Imagen 4.3 la ventana principal.

4.3. Interfaz de visualización

Este script permite observar y registrar la ejecución de un paciente en una tarea de seguimiento de trayectoria como parte de una sesión de rehabilitación motora.

Figura 4.2: Interfaz de configuración de los límites del brazo robótico

Además de incluir las bibliotecas mencionadas en la Sección 4.2, se utilizan matplotlib para visualizar los datos del rendimiento del jugador en tiempo real, numpy para manejar los datos de las señales que cambian con el tiempo y sys para gestionar la ruta al archivo CSV con los datos de registro del paciente.

Se utiliza el modo interactivo de matplotlib, plt.ion(), que permite actualizar dinámicamente los gráficos sin bloquear el hilo principal. Las ventanas son deslizantes, no obstante debemos mantener un tamaño fijo para que la señal no se desplace hacia la izquierda, por ello se implementa np.roll().

Se define la clase FlappyBirdViewerNode que actúa como nodo de ROS 2 y se suscribe a los topics /CleanSignal, donde se publica la señal de referencia que se toma como trayectoria deseada que el jugador debe seguir, /Disturbance, que contiene la señal de perturbación, /ActuatorPosition, que publica la posición del jugador en el eje Y, y /MotorParameters, para obtener el tiempo del juego, la posición del jugador en el eje X y el nivel de asistencia del robot. Los mensajes de los primeros tres topics son de tipo Float32 y el último es un Float32MultiArray. signalcallback() se activa cada vez que se recibe un valor de la señal, si el jugador está activo se actualizan

Figura 4.3: Interfaz de control

los datos (tiempo, límites, posición, error de trayectoria y detección de colisiones) y se grafican. Para la detección de colisiones se implementa una lógica simple basada en la comparación de la posición del jugador con los límites de la señal. playercallback() actualiza la posición del jugador, el offset que separa la señal de los límites y el tiempo total y marca que el jugador está activo.

En la Imagen 4.4, se muestran dos gráficos, el que está en la parte superior permite visualizar la señal principal, la perturbación, los límites superior e inferior y la posición actual del jugador. Y, la parte inferior grafica el error de posición con respecto a la trayectoria deseada en función del tiempo, lo que permite detectar fallos de control, fatiga o pérdida de atención.

En un principio, el error se calculaba en función del tiempo como se muestra en la Ecuación 4.1, pero, más adelante, se optó por calcular la interpolación (o selección por índice más cercano) del valor de la trayectoria de referencia (x, y) evaluando la posición del jugador en el eje X, x_p, como se muestra en la Ecuación 4.2.

Al finalizar la ejecución, los datos más relevantes como el tiempo, la señal, los límites mínimo y máximo, la posición del jugador, el offset, el error, las

$$error_t = |y_{player}(t) - y_{reference}(t)|$$
 (4.1)

Ecuación 4.1: Cálculo del error de trayectoria en el tiempo

$$error(x_p, y_p) = |y_p - f(x_p)| \tag{4.2}$$

Ecuación 4.2: Cálculo del error de trayectoria por posición

colisiones y el nivel de asistencia se almacenan en un archivo CSV bajo el nombre ID-year-month-day-metrics_<index>.csv en un subdirectorio llamado metrics dentro del directorio home/user/database/ID/. index hace referencia al número de archivo de la sesión diaria. Esto facilita un análisis posterior de la terapia.

La función principal main() verifica que se ha pasado como único argumento un archivo CSV con los datos de registro del paciente, extrae el ID desde la ruta, crea el nodo FlappyBirdViewerNode y escucha de los topics.

4.4. Juego flappy

Figura 4.4: Interfaz de visualización

Capítulo 5

Conclusiones

Quizás algún fragmento de libro inspirador...

Autor, Título

Escribe aquí un párrafo explicando brevemente lo que vas a contar en este capítulo, que básicamente será una recapitulación de los problemas que has abordado, las soluciones que has prouesto, así como los experimentos llevados a cabo para validarlos. Y con esto, cierras la memoria.

5.1. Conclusiones

Enumera los objetivos y cómo los has cumplido.

Enumera también los requisitos implícitos en la consecución de esos objetivos, y cómo se han satisfecho.

No olvides dedicar un par de párrafos para hacer un balance global de qué has conseguido, y por qué es un avance respecto a lo que tenías inicialmente. Haz mención expresa de alguna limitación o peculiaridad de tu sistema y por qué es así. Y también, qué has aprendido desarrollando este trabajo.

Por último, añade otro par de párrafos de líneas futuras; esto es, cómo se puede continuar tu trabajo para abarcar una solución más amplia, o qué otras ramas de la investigación podrían seguirse partiendo de este trabajo, o cómo se podría mejorar para conseguir una aplicación real de este desarrollo (si es que no se ha llegado a conseguir).

5.2. Corrector ortográfico

Una vez tengas todo, no olvides pasar el corrector ortográfico de LATEXa todos tus ficheros .tex. En Windows, el propio editor TeXworks incluye el corrector. En Linux, usa aspell ejecutando el siguiente comando en tu terminal:

aspell --lang=es --mode=tex check capitulo1.tex

Bibliografía

- [Clark et al., 2019] Clark, W. E., Manoj, S., and O'Connor, R. J. (2019). Evaluating the use of robotic and virtual reality rehabilitation technologies to improve function in stroke survivors: A narrative review. *Rehabilitation and Assistive Technologies Engineering*, 6:3–5.
- [Martín Rico, 2023] Martín Rico, F. (2023). A concise introduction to robot programming with ros2. pages 1–5. Este libro se ha preparado a partir de una copia camera-ready proporcionada por los autores.
- [Soriano-Salvador and Guardiola Múzquiz, 2022] Soriano-Salvador, E. and Guardiola Múzquiz, G. (2022). Fundamentos de sistemas operativos: una aproximación práctica usando linux. pages 21–23. Para obtener la versión más reciente de este documento: https://honecomp.github.io.
- [Stack Overflow,] Stack Overflow, D. Python notes for professionals. page 2. This is an unofficial free book created for educational purposes and is not affiliated with official Python® group(s) or company(s).
- [Vega, 2008] Vega, J. (2008). Navegación y autolocalización de un robot guía de visitantes. Master thesis on computer science, Rey Juan Carlos University.
- [Vega, 2015] Vega, J. (2015). De la tiza al robot. Technical report.
- [Vega, 2018a] Vega, J. (2018a). Educational framework using robots with vision for constructivist teaching Robotics to pre-university students. Doctoral thesis on computer science and artificial intelligence, University of Alicante.
- [Vega, 2018b] Vega, J. (2018b). JdeRobot-Kids framework for teaching robotics and vision algorithms. In *II jornada de investigación doctoral*. University of Alicante.
- [Vega, 2019] Vega, J. (2019). El profesor Julio Vega, finalista del concurso 'Ciencia en Acción 2019'. URJC, on-line newspaper interview.

BIBLIOGRAFÍA 22

[Vega and Cañas, 2019] Vega, J. and Cañas, J. (2019). PyBoKids: An innovative python-based educational framework using real and simulated Arduino robots. *Electronics*, 8:899–915.

[Vega et al., 2012] Vega, J., Perdices, E., and Cañas, J. (2012). Attentive visual memory for robot localization, pages 408–438. IGI Global, USA. Text not available. This book is protected by copyright.