Name: PARMESH YADAV

Roll No: 2020319

SCIENTIFIC COMPUTING (MTH373)

HOMEWORK – 3

$\underline{Problem - 1}$

AI) To prioue: aigenvolus of a ctrion quier motrin AER an enoutry its diagon
Person : Consider AERMXM du au apper strangues motorine.
Thought, A us of the form, and
Columpting than parymonist, $A - AI = \begin{bmatrix} a_{11} - A & a_{12} & \cdots & a_{1m} \\ 0 & o_{22} - A & \cdots & o_{2m} \\ 0 & 0 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & o_{mm} - A \end{bmatrix}$
$p_m(A) = deb(A-A=) = (a_{11}-A)(a_{22}-A)(a_{mm}-A)$ unice, determinant of triangular matrix is the foreduct of diagonal elements
Hence, the eigenvolus on of all, ass,, among i.e. emously is diggord elements.
Thurson, it can be unitary formed for down triongeror of well.

$\underline{Problem-2}$

A2)	To prove : Rour of a mon-defective motivie AER" us eaped the no. of mon-zone
	Person : We enow that, A is man-dejutive A is man-dejutive
	A is mon-deputive A is mon-deputive A is disgonous gobia A is disgonous gobia A is mon-deputive A is disgonous gobia A is mon-deputive A is disgonous gobia A is mon-deputive A
	By ronk-mulity theorem, Ronk (A) + Numity (A) = m,
	Number (A) = dm [Kin (A)]
	we know that emments of somel of A our union consinctions of its eigenvalue consinctions of its the O eigenvalue.
	This impriso, Rome (A) = m- numity (A) Thurston, Numity (A) = Total mo. of zono engenious.
	Thousan, Numity (A) = Total mo. of zono engentatus. In Numity (A) = : : : mon. zono engentatus. Rank (A) = Total mo. of mon-zono engentatus.

A3)	We Rmons, ut v = 1 and u, v ERM
	す ルブ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	$u^{T} = v^{-1}$ $\Rightarrow u = (v^{-1})^{T}$
	Now, our at the question, $A = u.v^T$
	$\Rightarrow A = (v)^{T} v^{T}$
	= []
	$\Rightarrow A = \mathbf{I}$
	Thougare, we senow that the identity matrin has one engenous =) with algebraic municity = m.
	Power method work convoge to the dominant enformation enformation poin druster ob every utep, the water will orinain the home.

	To peroul: Show all eigenvolus of a and ryunmetric positive definitive motions on all and out out out out out
	Poreson: Euro, we have the promethod an eigenvolves of a symmetric motor
	Therefore Let (2, m) un on eigenblue, eigenvuter pair for A:
	Let us compate, < Au, u> = < Au, u>, mow ossuming u & cm.
	we how, $u^{+}A.u = u^{+}.a.u$
	$\Rightarrow (u^{H} \rho u)^{H} = (\lambda u^{H} u)^{H}$ $u^{H} A^{H} u = u^{H} u A^{H}$ $u^{H} A u = \lambda^{*} u^{H} u 2 [: A^{H} = A]$
	$m^{\prime} A m = A m^{\prime} m_{2} [A = A]$
	by (1) and (2) am m
	By \bigcirc and \bigcirc author = A^*u^+u $\Rightarrow A = A^*$ $\Rightarrow A = a \Rightarrow a$
	Now, my definition of paritive definitive modern.
	Now, my definition of positive definitive modern,
	Now, my definition of positive definitive modrin, $\forall n \in \mathbb{R}^m, n^T \wedge n > 0$ 3
	Now, my definition of positive definitive modrin, $\forall n \in \mathbb{R}^m, n^T \wedge n > 0$ (3)
	Now, my definition of positive definitive modern, $\forall n \in \mathbb{R}^m, n^T \rho n > 0$ Les (2, m) un on eigenvolve, eigenvutor pair for ρ :
	Now, any definition of positive definitive modern, $\forall n \in \mathbb{R}^m$, $n^T \wedge n > 0$ — (3) Let $(\partial_1 u)$ an on eigenvalue, eigenvalue point for \wedge : $\Rightarrow \wedge u = \wedge u$
	Now, my definition of paritive definitive moderin, $\forall n \in \mathbb{R}^m$, $n^T \wedge n > 0$ — 3 Let (A,m) un on eigenvolve, eigenvolve pair for \wedge : $\Rightarrow \wedge n = \wedge m$ $\Rightarrow \wedge n = m^T \wedge m$
	Now, my definition of paritive definitive moderin, $\forall n \in \mathbb{R}^m$, $n^T \wedge n > 0$ — (3) Let (2,m) un on eigenvolve, eigenvolve pair for \wedge : $\Rightarrow \wedge n = \wedge m$
	Now, my definition of positive definitive moderin, It will be the matrix of positive definitive moderin, Let (A,m) and on eigenvalue, eigenvalue point for A: If m = Am If m = Am If m = m T Am If
	Now, my definition of positive definitive moderin, It will be the matrix of positive definitive moderin, The feath of the feath
	Now, my definition of paritive definitive moderin, $\forall n \in \mathbb{R}^m$, $n^T \wedge n > 0$ — 3 Let (A,m) un on eigenvolve, eigenvolve pair for \wedge : $\Rightarrow \wedge n = \wedge m$ $\Rightarrow \wedge n = m^T \wedge m$

As)	Acc to the question, emponential of the motion, $e^{A} = \sum_{K=0}^{\infty} \frac{1}{K!} A^{K}, \text{ till convergence}$
	V Company
	Des quin that this um do unconditionally convergent.
	We com write, $e^{A} = I + A + \frac{A^{2}}{2} + \cdots + \frac{A^{m}}{m!} + \cdots + \cdots + \cdots + \cdots$
	We snow that A us symmetric and positive definitive,
	A us diagonolizable Do com be written as XXX we X is mon- uniques and A us a diagond matrin when each diagon- of elimens us an eigenvalue corresponding to lock column of X (vigenunter).
	$\Rightarrow \bigwedge^{n} \times \bigwedge^{n} \times^{-1} $ $\Rightarrow \bigwedge^{m} \times \bigwedge^{m} \times^{-1}$
	flug @ in (D), $e^{A} = I + x_{A}x^{-1} + x_{A}^{2}x^{-1} + \dots$
	$e^{A} = \pm + \times \left[n + \frac{n^2}{2} + \cdots \right] \times^{-1}$
	$e^{A} = \times e^{\Lambda} \times^{-1}$
	Now, us v are on eigenunties of A , $e^{A} \cdot v = \left[I + A + \frac{A^{2}}{2} + \cdots \right] v$
	$= \left(\text{IV} + \text{AV} + \frac{\text{A}^2\text{V}}{2} + \dots \right)$
	$= \left[v + \lambda v + \frac{\lambda^2 v}{2} + \dots \right] \left[\begin{array}{c} \cdot \cdot \cdot \wedge w = \lambda^m v = \lambda^m v \\ \end{array} \right]$ $= \left[\left[x + \lambda + \frac{\lambda^2}{2} + \dots \right] v \left[\begin{array}{c} \cdot \cdot \cdot \wedge w = \lambda^m v \\ \end{array} \right]$
	$e^{A} \sigma = e^{A} \sigma$

```
[Running] python -u "d:\College\sem 5\Scientific Computing\HomeWork\HomeWork 3\problem_6.py"
The matrix is:
 [[2 3 2]
 [10 3 4]
[3 6 1]]
The starting vector is:
 [[0]]
 [0]
 [1]]
The normalized power iteration is:
The largest eigenvalue is:
 11.0000000000000000
The largest eigenvector is:
 [[0.37139068]
 [0.74278135]
 [0.55708601]]
The inverse iteration is:
The smallest eigenvalue is:
0.50000000000000001
The smallest eigenvector is:
[[ 0.18257419]
 [ 0.36514837]
 [-0.91287093]]
Using real eigensystem library routine:
(array([11., -2., -3.]), array([[ 3.71390676e-01, 1.82574186e-01, -4.13692033e-16],
       [ 7.42781353e-01, 3.65148372e-01, -5.54700196e-01],
       [ 5.57086015e-01, -9.12870929e-01, 8.32050294e-01]]))
```

As we can clearly see in the output that the result for largest magnitude eigenvalue-eigenvector pair is same using normalized power iteration and using a general real eigenvalue library routine.

In the inverse iteration, values may differ from the library routine output because the inverse iteration that we implemented gives the smallest magnitude eigenvalue but the library gives smallest eigenvalue w.r.t sign i.e. – [Negative]

```
[Running] python -u "d:\College\sem 5\Scientific Computing\HomeWork\HomeWork 3\problem_7.py"
The matrix is:
[[6 2 1]
[2 3 1]
[1 1 1]]
The starting vector is:
 [[0]]
 [0]
[1]]
The shifted inverse iteration is:
The smallest eigenvalue is:
0.43706443871540673
The smallest eigenvector is:
[[0.86643225]
 [0.45305757]
[0.20984279]]
Using real eigensystem library routine:
(array([0.57893339, 2.13307448, 7.28799214]), array([[-0.0431682 , -0.49742503, -0.86643225],
       [-0.35073145, 0.8195891, -0.45305757],
       [ 0.9354806 , 0.28432735, -0.20984279]]))
```

As we can clearly see in the output that the result for smallest magnitude eigenvalue-eigenvector pair using shifted inverse iteration with sigma = 5 and is close to the result generated using a general real eigenvalue library routine.

If we increase/decrease the value of sigma, the closeness of eigenvalue increases and eigenvector decreases and viceversa.

The value may also be off due to the library routine handling error/edge cases and also handling rounding off errors which will occur in our implementation of shifted inverse.

```
The rate of convergence is:
 [[0.6437782]]
The rate of convergence is:
[[0.6437782]]
The rate of convergence is:
[[0.6437782]]
The rate of convergence is:
[[0.6437782]]
The closest eigenvalue to the rayleigh quotient is:
 4878899596318037.0
The closest eigenvector to the rayleigh quotient is:
 [[-0.37139068]
 [-0.74278135]
 [-0.55708601]]
Using real eigensystem library routine:
(array([-8.05778972, -1.34550956, 15.40329928]), array([[-0.63829307, -0.47912245, 0.60251443],
       [ 0.72204791, -0.1012749 , 0.6843904 ],
       [-0.26688721, 0.87188593, 0.41059243]]))
[Done] exited with code=0 in 0.277 seconds
```

As we can see in the output that the result of our own coded Rayleigh Quotient Iteration of the eigenvalue-eigenvector pair is not equal to the one calculated by the real eigensystem library.

This is because that the library routine handled error/edge cases and also handles rounding off errors which will occur in our implementation of the same.

The rate of convergence is also calculated at every step.

```
[Running] python -u "d:\College\sem 5\Scientific Computing\HomeWork\HomeWork 3\problem_9.py
Problem 6 matrix
The matrix is:
[[2 3 2]
 [10 3 4]
 [3 6 1]]
The starting vector is:
[[0]]
 [0]
 [1]]
The modified QR iteration is:
The eigenvalues are:
[11. -3. -2.]
The eigenvectors are:
[[-1.00000000e+000 -1.02348309e-108 0.00000000e+000]
 [-1.02348309e-108 1.00000000e+000 0.00000000e+000]
 [-0.00000000e+000 0.00000000e+000 1.00000000e+000]]
Using real eigensystem library routine:
(array([11., -2., -3.]), array([[ 3.71390676e-01, 1.82574186e-01, -4.13692033e-16],
       [ 7.42781353e-01, 3.65148372e-01, -5.54700196e-01],
       [ 5.57086015e-01, -9.12870929e-01, 8.32050294e-01]]))
Problem 7 matrix
The matrix is:
 [[6 2 1]
[2 3 1]
 [1 1 1]]
The starting vector is:
 [[0]]
 [0]
 [1]]
The modified OR iteration is:
The eigenvalues are:
[7.28799214 2.13307448 0.57893339]
The eigenvectors are:
[[-1.00000000e+00 4.45619872e-64 0.00000000e+00]
 [ 4.45619872e-64 1.00000000e+00 0.00000000e+00]
 [-0.00000000e+00 0.00000000e+00 1.00000000e+00]]
Using real eigensystem library routine:
(array([0.57893339, 2.13307448, 7.28799214]), array([[-0.0431682 , -0.49742503, -0.86643225],
       [-0.35073145, 0.8195891, -0.45305757],
       [ 0.9354806 , 0.28432735, -0.20984279]]))
[Done] exited with code=0 in 0.682 seconds
```

As we can clearly see in the output, the eigenvalue-eigenvector pair generated by modified QR iteration is exactly the same as the one given by the real eigensystem library routine.

This proves that modified QR iteration converges the fastest amongst all the methods and gives the most accurate result. The order of values may be different, but they are same.