- (1) Consider the function $f(x) = x \sin(\frac{1}{x})$.
- (2) *Proof.* By continuity of f at c, there then exists $\delta > 0$ such that if $|x c| < \delta$, then $|f(x) f(c)| < \frac{f(c)}{2}$. Then

$$|f(x) - f(c)| < \frac{f(c)}{2} \implies -\frac{f(c)}{2} < f(x) - f(c) < \frac{f(c)}{2} \implies \frac{f(c)}{2} < f(x) < \frac{3f(c)}{2}$$

Since f(c) > 0, the conclusion follows.

(3) Proof. It follows that

$$\lim_{x \to c} h(x) = \lim_{x \to c} \frac{g(x) - g(c)}{x - c} = g'(c) = h(c)$$

Then *h* is continuous at *c*.

(4) *Proof.* Recall that a function with domain A has a local minimum at a point x = c if there exists some $\delta > 0$ such that for all $x \in V_{\delta}(c) \cap A \implies f(x) \ge f(c)$.

Let $\varepsilon > 0$ be given. Consider the function as follows:

$$g(x) = \begin{cases} \frac{f'(x) - f'(c)}{x - c} & x \neq c \\ f''(c) & x = c \end{cases}$$

By (3), g is continuous at c. By definition, g(c) = f''(c) > 0. By (2), there exists $\delta > 0$ such that for all $x \in V_{\delta}(c)$, then g(x) > 0. We now consider two cases:

- (a) Suppose $x \in (c \delta, c)$. Then x c < 0. If g(x) > 0, then f'(x) < 0. Then f is decreasing on this interval, and $f(x) \ge f(c)$.
- (b) Suppose $x \in (c, c + \delta)$. Then x c > 0. If g(x) > 0,, then f'(x) > 0. Then f is increasing on this interval, and $f(x) \ge f(c)$.

By definition, there is then a local min at *c*.

- (5) *Proof.* To prove that $f_n \stackrel{p}{\to} f$, consider some $c \in [0,1]$. We now discuss two cases:
 - (a) Suppose $c \in \mathbb{R} \setminus \mathbb{Q}$. Then for any $n \in \mathbb{N}$, we have that $f_n(c) = 0$. Then $(f_n(c)) = (0)$, which obviously converges to 0. Then f(c) = 0.
 - (b) Suppose $c \in \mathbb{Q}$. Then c = p/q for some $p, q \in \mathbb{N}$ such that $p \le q$. Observe that for n!c to be an integer, then n!p/q = k for some $k \in \mathbb{N}$. Then n!p = kq. Choosing n > q, then $q \mid n! \implies n!c \in \mathbb{N}$. Then $(f_n(c)) = (1)$, which obviously converges to 1. Then f(c) = 1.

Hence $f_n \xrightarrow{p} f$.