

# Gender-Based Risk Assessment of Cardiovascular Diseases

Team: Panda

Karen Natalie (U2220586J) Liu Yuheng (U2222313G) Nichani Namya Ashok (U2223732C) Su Rui (U2221036D)



#### **Contents**



1 & Problem
Statement

**Data**Visualisation

**3** Data Manipulation

4 Analysing Data

**5** Conclusion



# 1

# Introduction & Problem Statement



#### **Problem Statement**

How can we predict Cardiovascular Diseases based on gender?

**Dataset: Cardiovascular Disease** 



# 2

# Data Visualisation



Before visualising the data, we cleaned the data by removing unrealistic values.

#### **These included:**

- ap\_hi and ap\_lo < 1</li>
- ap\_hi and ap\_lo > 370
- ap\_hi > ap\_lo

```
In [175]: # Filter
condition = ((cvd_df["ap_hi"]<370 )&(cvd_df["ap_hi"]>1) & (cvd_df["ap_lo"]<370)&(cvd_df["ap_lo"]>1) & (cvd_df["ap_hi"]>cvd_df["ap
unrealistic = cvd_df[<condition]["age"].count()
print(ff"(unrealistic) unrealistic data removed")

cvd df = cvd df[condition]</pre>
```

cvd\_df.describe().round(2)

4

1292 unrealistic data removed



- 1. Age
- 2. Height
- 3. Weight
- 4. Ap\_hi (Systolic blood pressure)
- 5. Ap\_lo (Diastolic blood pressure)





Generally, the graphs showed that there were many outliers far from the mean for each variable. The trained model is expected to have better performance once the outliers are filtered out.



#### From the correlation plot:

Moderate positive correlation (0.3, 0.5] - ap\_hi

Low positive correlation (0.1-0.3] - weight, age, ap\_lo

No correlation (near zero) - height

# **Categorical Data Visualisation**



- 1. Gender
- 2. Cholesterol
- 3. Glucose
- 4. Smoke
- 5. Alcohol
- 6. Active

## **Categorical Data Visualisation**

**Subplot** 





Heatmap

Data is balanced with regards to whether one has cardiovascular disease or not, but it is skewed towards the female gender.

Cholesterol has the highest correlation of 0.22 with cardiovascular disease. However, it is still a low positive correlation. The remaining variables have near zero correlation.



# 3

# Data Manipulation

# **Body Mass Index (BMI)**

```
# Calculate and include BMI for all rows
cvd_df["bmi"] = round((cvd_df["weight"] / (cvd_df['height']/100)**2), 1)
cvd_df.head(3)
```

|   | age  | gender | height | weight | ap_hi | ap_lo | cholesterol | gluc | smoke | alco | active | cardio | bmi  |
|---|------|--------|--------|--------|-------|-------|-------------|------|-------|------|--------|--------|------|
| 0 | 50.4 | 2      | 168    | 62.0   | 110   | 80    | 1           | 1    | 0     | 0    | 1      | 0      | 22.0 |
| 1 | 55.4 | 1      | 156    | 85.0   | 140   | 90    | 3           | 1    | 0     | 0    | 1      | 1      | 34.9 |
| 2 | 51.7 | 1      | 165    | 64.0   | 130   | 70    | 3           | 1    | 0     | 0    | 0      | 1      | 23.5 |

We calculated and added BMI into the dataset as it makes use of both height and weight for further analysis. This helps us to account for differences in body composition based on gender, and could be a potential predictor for cardiovascular disease.

## **BMI against Cardio**



However, the boxplot visualisations of both variables did not yield any obvious relationships, as it appears that BMI seems to be similar for both cardiovascular patients and non-patients.

#### **BMI across Genders**



The boxplot visualisations of BMI and gender showed that males tend to have a lower BMI overall, while females have a much larger spread of BMI (likely due to greater number of data values) and a slightly higher mean.

## **Removing Outliers**

```
2901 outliers removed
<class 'pandas.core.frame.DataFrame'>
Index: 65807 entries, 0 to 69999
Data columns (total 13 columns):
    Column
                 Non-Null Count
                                Dtype
                 65807 non-null float64
    age
             65807 non-null int64
    gender
    height
                 65807 non-null int64
    weight
                 65807 non-null float64
                 65807 non-null int64
    ap hi
    ap lo
                 65807 non-null int64
    cholesterol 65807 non-null
                                int64
                 65807 non-null int64
    gluc
    smoke
                 65807 non-null int64
    alco
                 65807 non-null int64
    active
                 65807 non-null int64
    cardio
                 65807 non-null int64
12
    bmi
                 65807 non-null float64
dtypes: float64(3), int64(10)
memory usage: 7.0 MB
```

To further balance the dataset, Z-Score method was used to remove outliers.

Only columns with numerical data (age, height, weight, ap\_hi, ap\_lo, bmi) were considered in this process.

#### **Bar Plot for Correlation**



#### From the correlation plot:

Moderate positive correlation (0.3, 0.5] - ap\_hi, ap\_lo

Low positive correlation (0.1-0.3] - weight, bmi, cholesterol, age

No correlation (near zero) - active, smoke, height, alcohol, gender, glucose

#### **Bar Plot for Correlation**



As such, we can tell which variables have a higher positive correlation with the 'cardio' variable. It helps us select influential variables for further exploration of cardiovascular disease prediction.

# **Splitting the Dataset**

# Split into train and test # Import train\_test\_split from sklearn from sklearn.model\_selection import train\_test\_split For data with outliers: # Split the Dataset into Train and Test model\_train, model\_test = train\_test\_split(cvd\_df, test\_size = 0.25) # Save test dataset model\_test.to\_csv('model\_with\_outliers\_test.csv', sep = ',', index = False) For data without outliers: # Split the Dataset into Train and Test model2\_train, model2\_test = train\_test\_split(cvd\_df\_no\_outliers, test\_size = 0.25) # Save test dataset model2\_test.to\_csv('model\_without\_outliers\_test.csv', sep = ',', index = False)

The dataset was split into train and test sets with 0.25 ratio, then each set was split further based on gender.

This process was repeated for the dataset with and without outliers to analyse whether the removal of outliers is effective.

# **Splitting the Dataset**

#### Split according to gender

in dataset, male is represented by 1, female is 2, dtype int64

For data with outliers:

```
# Split model training dataset with outliers
female_df = model_train[model_train['gender'] == 1]
male_df = model_train[model_train['gender'] == 2]
```

```
# Save datasets
female_df.to_csv('female_with_outliers.csv', sep = ',', index = False)
male_df.to_csv('male_with_outliers.csv', sep = ',', index = False)
```

For data without outliers:

```
# Split model training dataset without outliers
female_df_no_outliers = model2_train[model2_train['gender'] == 1]
male_df_no_outliers = model2_train[model2_train['gender'] == 2]
```

```
# Save datasets
female_df_no_outliers.to_csv('female_without_outliers.csv', sep = ',', index = False)
male_df_no_outliers.to_csv('male_without_outliers.csv', sep = ',', index = False)
```

### Classification

female\_without\_outliers = pd.read\_csv('female\_without\_outliers.csv')
female\_without\_outliers.head()

|   | age  | gender | height | weight | ap_hi | ap_lo | cholesterol | gluc | smoke | alco | active | cardio | bmi  |
|---|------|--------|--------|--------|-------|-------|-------------|------|-------|------|--------|--------|------|
| 0 | 56.2 | 1      | 165    | 72.0   | 100   | 80    | 1           | 2    | 0     | 0    | 1      | 0      | 26.4 |
| 1 | 53.6 | 1      | 155    | 72.0   | 120   | 80    | 1           | 1    | 0     | 0    | 1      | 0      | 30.0 |
| 2 | 47.8 | 1      | 150    | 59.0   | 140   | 90    | 2           | 3    | 0     | 0    | 1      | 1      | 26.2 |
| 3 | 64.2 | 1      | 169    | 67.0   | 120   | 80    | 1           | 1    | 0     | 0    | 0      | 0      | 23.5 |
| 4 | 63.6 | 1      | 156    | 83.0   | 150   | 100   | 3           | 3    | 0     | 0    | 1      | 1      | 34.1 |

female\_with\_outliers = pd.read\_csv('female\_with\_outliers.csv')
female\_with\_outliers.head()

|   | age  | gender | height | weight | ap_hi | ap_lo | cholesterol | gluc | smoke | alco | active | cardio | bmi  |
|---|------|--------|--------|--------|-------|-------|-------------|------|-------|------|--------|--------|------|
| 0 | 55.3 | 1      | 160    | 70.0   | 140   | 100   | 3           | 1    | 0     | 1    | 1      | 1      | 27.3 |
| 1 | 44.5 | 1      | 150    | 56.0   | 110   | 80    | 1           | 1    | 0     | 0    | 1      | 0      | 24.9 |
| 2 | 58.0 | 1      | 158    | 82.0   | 120   | 80    | 3           | 3    | 0     | 0    | 1      | 1      | 32.8 |
| 3 | 60.3 | 1      | 161    | 79.0   | 140   | 80    | 3           | 1    | 0     | 0    | 1      | 0      | 30.5 |
| 4 | 60.0 | 1      | 175    | 120.0  | 130   | 90    | 3           | 1    | 0     | 0    | 1      | 1      | 39.2 |

**Female - with and without outliers** 

### Classification

```
male_without_outliers = pd.read_csv('male_without_outliers.csv')
male_without_outliers.head()
```

|   | age  | gender | height | weight | ap_hi | ap_lo | cholesterol | gluc | smoke | alco | active | cardio | bmi  |
|---|------|--------|--------|--------|-------|-------|-------------|------|-------|------|--------|--------|------|
| 0 | 46.2 | 2      | 164    | 72.0   | 80    | 60    | 1           | 1    | 1     | 0    | 0      | 0      | 26.8 |
| 1 | 64.4 | 2      | 163    | 50.0   | 140   | 90    | 2           | 1    | 0     | 0    | 1      | 1      | 18.8 |
| 2 | 60.1 | 2      | 170    | 85.0   | 120   | 60    | 1           | 1    | 0     | 0    | 1      | 0      | 29.4 |
| 3 | 53.9 | 2      | 168    | 83.0   | 130   | 80    | 1           | 1    | 0     | 0    | 1      | 0      | 29.4 |
| 4 | 54.7 | 2      | 170    | 75.0   | 120   | 80    | 1           | 1    | 1     | 0    | 1      | 0      | 26.0 |

male\_with\_outliers = pd.read\_csv('male\_with\_outliers.csv')
male\_with\_outliers.head()

|   | age  | gender | height | weight | ap_hi | ap_lo | cholesterol | gluc | smoke | alco | active | cardio | bmi  |
|---|------|--------|--------|--------|-------|-------|-------------|------|-------|------|--------|--------|------|
| 0 | 64.0 | 2      | 169    | 77.0   | 120   | 80    | 1           | 1    | 0     | 0    | 1      | 1      | 27.0 |
| 1 | 53.8 | 2      | 172    | 78.0   | 150   | 100   | 1           | 1    | 1     | 1    | 1      | 1      | 26.4 |
| 2 | 42.2 | 2      | 168    | 70.0   | 120   | 80    | 1           | 1    | 0     | 0    | 1      | 0      | 24.8 |
| 3 | 48.2 | 2      | 169    | 68.0   | 120   | 80    | 1           | 1    | 0     | 0    | 1      | 1      | 23.8 |
| 4 | 63.3 | 2      | 165    | 66.0   | 120   | 80    | 1           | 1    | 0     | 0    | 1      | 1      | 24.2 |

**Male - with and without outliers** 



# 4

# **Analysing**Data

## **Analysis**

Female without Outliers (fwo)

**2** Female with Outliers (fo)

Male without
Outliers
(mwo)

Male with Outliers (mo)

# **Analysis**

We have performed the following on both male and female datasets, with and without outliers:

**Simple Decision Tree Multi-Variate Classification Tree Chi Square Test of Independence** 

#### **Model selection**

Why **Decision Tree**?

**Decision trees are easy to interpret and visualize.** 

It can easily capture non-linear patterns.

It requires fewer data preprocessing for example, there is no need to normalize columns.

The decision tree has no assumptions about distribution because of the non-parametric nature of the algorithm.

#### **Model selection**

What's the **trade offs**?

Sensitive to noisy data. It can overfit noisy data.

Decision trees are biased with imbalance dataset.

How we **minimise** it?

We cleaned the unrealistic data points and the outliers and trained separate models using data with and without outliers.



Analysis was done on each gender set separately, ensuring that gender did not imbalance the dataset as it was skewed towards females.



## **Basic Exploration: Count Plot**



The count plot for cardio\_fwo
Train presents the distribution
of the variable and shows a
balanced dataset.

## **Basic Exploration: Distributions**



Box plot, histogram plot and violin plot were utilised to visualise the spread of data for ap\_hi.

# Basic Exploration: Cardio against Ap\_hi



Since ap\_hi has the highest correlation for predicting cardiovascular disease, both variables were visualised in box plots.

## **Simple Decision Tree**



Ap\_hi was also similarly selected for the simple decision tree to predict the risk of cardiovascular disease in patients within certain ranges of ap\_hi.

### **Goodness of Fit of the Model**

#### **Confusion matrix**



Accuracy = 
$$\frac{TP + TN}{TP + FP + TN + FN} = 0.715$$

TP: Correct prediction on one having cvd
TN: Correct prediction on one not having cvd
FP: One with no cvd but predicted to have
FN: One with cvd but predicted to not have

It is important to not miss any potential cvd patient. Thus we calculate the False Negative Rate (FNR) and the Recall (True Positive Rate - TPR).

$$TPR = \frac{TP}{TP + FN} = \frac{2256}{2256 + 1592} = 0.586$$

# **Chi Square Test of Independence**



The Chi Square Test was chosen as another means to investigate the relationship between the categorical variables and the risk of cardiovascular disease, by analysing the difference between expected values and observed values.

Firstly, researchpy was installed and a crosstab of the categorical variable was created.

# **Chi Square Test of Independence**

| results   | Chi-square test             |   |
|-----------|-----------------------------|---|
| 1755.1172 | Pearson Chi-square ( 2.0) = | 0 |
| 0.0000    | p-value =                   | 1 |
| 0.2334    | Cramer's V =                | 2 |

| results  | Chi-square test             |   |
|----------|-----------------------------|---|
| 324.5630 | Pearson Chi-square ( 2.0) = | 0 |
| 0.0000   | p-value =                   | 1 |
| 0.1004   | Cramer's V =                | 2 |

**Cholesterol** 

Glucose

The Chi Square Test was run using researchpy and results were tabulated containing the test statistic and p-value.

## **Chi Square Test of Independence**

|   | Chi-square test             | results |
|---|-----------------------------|---------|
| 0 | Pearson Chi-square ( 1.0) = | 0.3103  |
| 1 | p-value =                   | 0.5775  |
| 2 | Cramer's phi =              | 0.0031  |

|   | Chi-square test            | results |
|---|----------------------------|---------|
| 0 | Pearson Chi-square (1.0) = | 29.2962 |
| 1 | p-value =                  | 0.0000  |
| 2 | Cramer's phi =             | 0.0302  |

|   | Chi-square test             | results |
|---|-----------------------------|---------|
| 0 | Pearson Chi-square ( 1.0) = | 0.0090  |
| 1 | p-value =                   | 0.9245  |
| 2 | Cramer's phi =              | 0.0005  |

**Smoke** 

**Active** 

**Alcohol** 

Each categorical variable was investigated individually and results are as shown.

## **Chi Square Test of Independence**

| Variable    | p-value |
|-------------|---------|
| Cholesterol | 0.0000  |
| Glucose     | 0.0000  |
| Smoke       | 0.5775  |
| Active      | 0.0000  |
| Alcohol     | 0.9245  |

At 5% significance level, the significant variables were cholesterol, glucose and active as their p-values were <0.05.

## **Chi Square Test of Independence**

| Phi and Cramer's V | Interpretation  |
|--------------------|-----------------|
| >0.25              | Very strong     |
| >0.15              | Strong          |
| >0.10              | Moderate        |
| >0.05              | Weak            |
| >0                 | No or very weak |
|                    |                 |

| Variable    | Cramer's V |
|-------------|------------|
| Cholesterol | 0.2334     |
| Glucose     | 0.1004     |
| Active      | 0.0302     |

Cramer's V was also calculated to investigate the strength of the relationship with cardiovascular disease. From our results, cholesterol had a strong relationship, glucose had a moderately strong relationship, active had a very weak relationship. These significant variables were subsequently used in the multi-variate decision tree.

#### **Multi-Variate Classification Tree**



The most important variables are Ap\_hi, Age and Cholesterol.

#### **Goodness of Fit of the Model**

#### **Confusion matrix**



Accuracy = 
$$\frac{TP + TN}{TP + FP + TN + FN} = 0.726$$

It is important to not miss any potential cardiovascular disease patient. Thus we calculate the FNR and Recall (TPR).

$$FNR = \frac{FN}{TP + FN} = \frac{1347}{2489 + 1347} = 0.351$$

$$TPR = \frac{TP}{TP + FN} = \frac{2489}{2489 + 1347} = 0.649$$

Multivariate model has both greater Accuracy and Recall, and lower FNR.



By repeating the same steps above, we found that the significant factors related to CVD in males are: Ap\_hi, Age, Ap\_lo, cholesterol



We analysed FWO and MWO test sets using chi square test and multivariate decision tree. We found the results of the significant variables consistent with the train set results.



# 5

# Conclusion

## **Train Set: Comparison between**

|        |                                 |                          | _mo      | dels            |
|--------|---------------------------------|--------------------------|----------|-----------------|
| Gender | Variables used in Decision Tree | With/without<br>Outliers | Accuracy | Recall<br>(TPR) |
| Female | Uni: Ap_hi                      | Without                  | 0.715    | 0.687           |
| Female | Multi: All significant          | Without                  | 0.726    | 0.649           |
| Female | Uni: Ap_hi                      | With                     | 0.710    | 0.606           |
| Female | Multi: All significant          | With                     | 0.722    | 0.659           |
| Male   | Uni: Ap_hi                      | Without                  | 0.712    | 0.619           |
| Male   | Multi: All significant          | Without                  | 0.711    | 0.526           |
| Male   | Uni: Ap_hi                      | With                     | 0.709    | 0.641           |
| Male   | Multi: All significant          | With                     | 0.715    | 0.646           |

- Removal of outliers increases the consistency of model (results of significant variables were more consistent after repeated runs), while accuracy and tpr/fnr are similar
- Female model is slightly more accurate than male in general
- Multi-variate Decision Tree is more accurate than Uni-variate as it considers more than one feature

# Test Set: Chi Square Test of Independence

|   | Chi-square test             | results   |
|---|-----------------------------|-----------|
| 0 | Pearson Chi-square ( 2.0) = | 1755.1172 |
| 1 | p-value =                   | 0.0000    |
| 2 | Cramer's V =                | 0.2334    |

|   | Chi-square test             | results  |
|---|-----------------------------|----------|
| 0 | Pearson Chi-square ( 2.0) = | 682.0624 |
| 1 | p-value =                   | 0.0000   |
| 2 | Cramer's V =                | 0.1995   |

# Comparing the chi-square tests for both genders, at 5% significance level:

- Females: Cholesterol, Glucose, Active
- 2. Males: Cholesterol, Active, Smoke, Alcohol

### Test Set: Comparison Between Genders



From the analysis of Female and Male multi-variate decision trees, the major factors that affect CVD in different genders are:

- Females: Age, Ap\_hi, Cholesterol
- 2. Males: Age, Ap\_hi and Ap\_lo, Cholesterol

Conclusion: We proved our assumption that gender causes a difference in cardiovascular disease prediction.

#### **Additional Research**



- 1. Modify or add criteria to improve classification accuracy
- 2. Since there are more female than male data, future research should include more balanced data between the 2 genders for more accuracy



# 

#### **Contributions**

Karen Natalie (U2220586J) - Code: Analysis on Test Set, Conclusion, Troubleshooting & Editing of other sections; Slides: Section 1, 2, 5

Liu Yuheng (U2222313G) - Code: Data Preparation, Numerical and Categorical Data Visualization, Data Manipulation; Slides: Section 1, 4, 5

Nichani Namya Ashok (U2223732C) - Code: Female with and without outliers, Male with and without outliers; Slides: Section 3 & 4, and editing of all sections

Su Rui (U2221036D) - Code: Female with and without outliers, Male with and without outliers, Editing of other sections; Slides: Section 2, 3, 4