

Niels Henrik Abels matematikkonkurranse 2015–2016. *Løsninger*

Første runde 5. november 2015

rørste runde 3. november 2013
Oppgave 1. Summen av de tre oppgitte beløpene er 250 kr. I den summen er alles penger regnet med to ganger, så summen må deles med 2
Oppgave 2. Det skyggelagte området er satt sammen av fire halvsirkler og fire kvartsirkler, alle med radius 1. Arealet blir $4 \cdot \frac{1}{2} \cdot \pi + 4 \cdot \frac{1}{4} \cdot \pi = 3\pi$
Oppgave 3. $4^7 \cdot 2^4 = 2^{14} \cdot 2^4 = 2^{18} = (2^3)^6 = 8^6$
Oppgave 4. Sannsynligheten for at et hvilket som helst tall a_k er odde er $\frac{1}{2}$. Sann synligheten for at a_1 og a_4 begge er odde, er derfor $\frac{1}{4}$. Så a_1a_4 er odde med sannsynlighet $\frac{1}{4}$, og et partall med sannsynlighet $\frac{3}{4}$. Det samme gjelder a_2a_3 . Differanser er et partall hvis og bare hvis a_1a_4 og a_2a_3 har samme paritet, og det skjer med sannsynlighet $\frac{1}{4} \cdot \frac{1}{4} + \frac{3}{4} \cdot \frac{3}{4} = \frac{10}{16} = \frac{5}{8}$. Oppgave 5. Identiteten $a^2 - b^2 = (a - b)(a + b)$ brukt først med $a = 2016^2$ og $b = 2015^2$ og så med $a = 2016$ og $b = 2015$ gir at brøken har verdien $a_1 = 2016^2 - 2015^2 = 2016 + 2015 = 4031$.
Oppgave 6.
Trekk diagonalene til den indre sekskanten gjennom sentrum som vist. Nå er den ytre sekskanten delt i 18 småtrekanter, hvorav 6 utgjør den indre sekskanten. Tolv av småtrekantene er likesidete og like store. Hver av de gjenværende seks småtrekantene, langs sidene til den store sekskanten, har samme grunnlinje og høyde

som de likesidete trekantene ved siden av. Derfor har alle småtrekantene samme areal, og forholdet mellom

Skriv for enkelhets skyld alle tall fra 0 til 999 med tre siffer, med Oppgave 8. ledende nuller for små tall.

De to første sifrene i et tresifret tall velges vilkårlig blant 0, 1, ..., 8. Det kan gjøres $på 9^2 = 81 \text{ måter.}$

Av tallene som fremkommer ved at det siste sifferet velges fritt blant $0, 1, \dots, 8$, er presist ett delbart med 9, siden disse er ni tall i rekkefølge. Så åtte av dem er ikke delelig med 9, og vi ender opp med $81 \cdot 8 = 648$ tall som oppfyller betingelsene i

Skriv a og b for Annes og Berits nåværende alder. Det er a-b år siden Anne var b år. Den gangen var Berit b-(a-b)=2b-a år. Altså er a=3(2b-a), det vil si 4a = 6b, som vi forkorter til 2a = 3b. Vi har også fått oppgitt at a + b = 60, så 3a + 3b = 180. Det vil si 3a + 2a = 180, så a = 180/5 = 36.

Oppgave 10.

Legg til punktet D = (4,6), og noter at trekanten ADB er likebent og rettvinklet. (AD^2 = $BD^2 = 4^2 + 2^2 = 20$, og $AB^2 = 6^2 + 2^2 =$ 40. Bruk omvendingen av Pytagoras.) Derfor er $\angle ABD = 45^{\circ}$. Vinkelen $\angle CBD$ er også rett, så $\angle ABC = 45^{\circ} + 90^{\circ} = 135^{\circ}$. (Alternativt kan denne løses med cosinussetningen eller bruk av

Oppgave 11. Ethvert heltall $n \ge 2$ har i hvert fall divisorene 1 og n. Dersom p er en divisor forskjellig fra disse to, er også n/p en divisor. Hvis det ikke finnes flere, er p = n/p, så $n = p^2$. Enhver divisor til p er også en divisor til n, så p må være et primtall, ellers har n flere divisorer. De fire mulighetene er $n = 2^2$, $n = 3^2$, $n = 5^2$

Oppgave 12. Uansett hvilket kort du trekker fra den første kortstokken er det fire mulige kort i den andre som gir et par med det første. Siden den andre kortstokken

Oppgave 13. Først er $A = (2015 - 1)(2015 + 1) = 2015^2 - 1^2 < E$.

Så er $E = (2000 + 15)^2 = 2000^2 + 15^2 + 2 \cdot 2000 \cdot 15 > C$.

Videre er
$$D = ((45-3.5)(45+3.5))^2 = (45^2 - (\frac{7}{2})^2) = (2025 - \frac{49}{4})^2 < 2015^2 = E.$$

Til slutt er $B = 1970 \cdot 2060 + 2060 = (2015 - 45)(2015 + 45) + 2060 = (2015)^2 - 45(2015 + 2060) = (2015)^2 - 45(2015$ $45^2 + 2060 = (2015^2) + 35 > E$

Oppgave 14.

Oppgave 15. Ligningen $m^2 + 2015 = n^2$ kan skrives på formen $(n - m)(n + m) = 5 \cdot 13 \cdot 31$. Hver måte å skrive høyresiden som et produkt av to faktorer gir en løsning, der n - m er den minste og n + m som den største av de to faktorene. Dette gir alltid heltallige løsninger fordi begge faktorene må være oddetall. Én faktor kan velges på $2^3 = 8$ måter, siden den lages ved å ta produktet av tallene i en delmengde av $\{5, 13, 31\}$. (Produktet av tallene i den tomme mengden regnes lik 1.) Det gir 8/2 = 4 muligheter, siden hver faktorisering involverer to forskjellige faktorer. B

Oppgave 16. Dette kan gjøres på $\frac{2015 \cdot 2014 \cdots 2001}{15!}$ måter. For heltall n = 1, 2, ..., 15 gjelder at dersom 2^k går opp i 2000 + n, så går 2^k også opp i n, fordi k < 4 og 2^4 går opp i 2000. Det følger at om vi forkorter brøken $\frac{2015 \cdot 2014 \cdots 2001}{15!}$ maksimalt, finnes det ikke igjen en faktor 2 i telleren, så brøken blir et oddetall.

Oppgave 17. Det viser seg at $n^4 + 6n^3 + 11n^2 + 6n = n(n+1)(n+2)(n+3)$. Dette er alltid delelig på 4, så vi trenger bare å sjekke om det er delelig på 7 og på 25 (fordi $700 = 2^2 \cdot 5^2 \cdot 7 = 4 \cdot 25 \cdot 7$). Høyst én av de fire faktorene n, n+1, n+2 og n+3 kan være delelig med 5, så den faktoren må da være delelig med 25. Om vi bare sjekker delelighet med 25 blir de første kandidatene n=22, 23, 24, 25. Den første av disse som også gir delelighet med 7 er n=25. Det gir $n+3=28=4 \cdot 7$.

Oppgave 18.

Dersom D er fotpunktet til normalen fra C til forlengelsen av AB, er $\angle DAC = 45^{\circ}$. Så trekanten DAC er likesidet. Pytagoras gir at $AD = CD = \frac{1}{2}\sqrt{2}$, og en ny anvendelse av Pytagoras, denne gang på trekanten DBC, gir $BC^2 = CD^2 + DB^2 =$

 $\frac{1}{2} + \left(\frac{1}{2}\sqrt{2} + 1\right)^2 = 2 + \sqrt{2}$. (Alternativt kan man finne BC^2 ved cosinussetningen.) Radien i sirkelen med sentrum i A og som tangerer BC er r = AE, der E er fotpunktet til normalen fra A til BC. E er midtpunktet på BC, så $BE^2 = \frac{1}{2} + \frac{1}{4}\sqrt{2}$. Pytagoras på trekanten ABE gir nå $r^2 = 1 - \left(\frac{1}{2} + \frac{1}{4}\sqrt{2}\right)$, og radien til sirkelen er $\pi r^2 = \pi \left(\frac{1}{2} - \frac{1}{4}\sqrt{2}\right)$.

Oppgave 20. For hvert positivt heltall k er

$$\frac{1}{k^2} < \frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}.$$

Summert fra k = 2016 til k = 4030 gir dette

$$\frac{1}{x} < \frac{1}{2015} - \frac{1}{4030} = \frac{1}{4030},$$

så x > 4030.