	第 12 章	独立子	系统的统	计热力]学	
基本概念						
1. 何谓独立子系统						0
何谓相倚子系统						
何谓定域子系统						
何谓离域子系统						
理想气体是什么系统						
理想溶液是什么系统					o	
2. 对分子运动形式的	力分析表明,一	个分子的能量	量可近似地看	作它的	各种运动形式的能	
运动形式包括				。	一般来说,属于分	分子热运动的是
谓分子的外部运动是指						
3. 对分子热运动的经						
组成。一个由 n 个原子组	成的非线型多属	原子分子相当	于由		组	成。
4. 一个 H ₂ O 分子有几	一个平动自由度_	, , ,	L个转动自由	度	,几个振动自	由度
5. 试写出由量子力学	导得的三维平	动子、线型刚]体转子和单	维简谐排	_辰 子的能级表示式	
\mathcal{E}_{t} =	'r=	, ${\cal E}_{ m V} =$	0	并由下	表比较之	
能级	能级的简并度 g	冲完能级的	决定能级的间隔大小的因子		其太能级 c	7
	他级时间 // /文 g	八尺形纵门	[1] [1] [1] [1] [1]	1	圣心比级60	-
平动能级 \mathcal{E}_{t}						4
转动能级 \mathcal{E}_{r}						_
振动能级 $oldsymbol{arepsilon}_{ m V}$						
6. 何谓能量分布				。若	有 5 个独立的定均	或子,按下列方
式分布在子的三个能级中:						
子的能级	$\mathcal{E}_{\scriptscriptstyle{0}}$)	\mathcal{E}_{l}	\mathcal{E}_2		
能级的简并度	1		3			
子的能级分布数 2			2			
试问该分布所拥有的微观料	状态数是多少_			0		
7. 若有一子数为 N 的	的独立的定域子	系统,其中某	其能量分布 (以 x 表	示)为	
子的能级	$\mathcal{E}_{ ext{o}}$	\mathcal{E}_1	\mathcal{E}_{j}			
能级的简并度	g_{\circ}	<i>g</i> ₁	<i>g</i> j	••••		
子的能级分布数						
试写出该分布所拥有的微观	观状态数的通式	$\omega_x = \underline{\hspace{1cm}}$		_		
8. 倘若题7中的系统	乏是一个子数为	N 的离域子系	系统,试写出	$\omega_x = \underline{\hspace{1cm}}$	。但	1它必须满足怎
样的条件	o					
9. 对于一个 N、E、V	/ 指定的平衡的	独立子系统可	可有很多种可	丁能的能:	量分布,它们中亚	公有一个分布排
有的微观状态数最多,这个	个分布称为		。对于	含有大量	量子的热力学平衡	断系统,这个 分
布亦即平衡分布,这是因为	为			0		
10. 平衡态统计力学的						。
表述之						
11. 何谓撷取最大项流	去, 试简洁表达	之		。		

12. 试写出麦克斯韦-玻尔兹曼能量分布公式_____。并指出这个公式的适用条件

3、独立的离域子系统的熵与配分函数的关系为:

$$S = nRT \left(\frac{\partial \ln q}{\partial T} \right)_{V} + nR \ln q + nR - nR \ln nL$$

之比。

试计算 1 mol Xe(氙)气体在 101325 Pa 和 165.1 K 时的热熵。已知 Xe 的摩尔质量为131.3 g · mol $^{-1}$, $h=0.66262\times 10^{-33}$ J · s , $k=13.807\times 10^{-24}$ J · K $^{-1}$, $L=6.022\times 10^{23}$ mol $^{-1}$ 。