- 37. (2008ko ekaina) bikoitia(x) eta trukabik(C(1..r), (c_1 , c_2 , ..., c_r), D(1..r), (d_1 , d_2 , ..., d_r), pos) predikatuak eta 1 eta n-ren arteko posizio batean bai A(1..n) bektorean eta bai B(1..n) bektorean elementu bikoitiak badaude, bektorez trukatzen dituen programa
 - a) **bikoitia(x)** \equiv {x mod 2 = 0}
 - b) trukabik(C(1..r), $(c_1, c_2, ..., c_r)$, D(1..r), $(d_1, d_2, ..., d_r)$, pos) \equiv

$$\forall k \ (1 \le k \le pos \land bikoitia(c_k) \land bikoitia(d_k) \rightarrow (C(k) = d_k \land D(k) = c_k)) \land$$

 $\forall k \ (1 \le k \le pos \land (\neg bikoitia(c_k) \lor \neg bikoitia(d_k)) \rightarrow (C(k) = c_k \land D(k) = d_k))$

c)

(1) {Hasierako baldintza}
$$\equiv$$
 { $n \ge 1 \land \forall k \ (1 \le k \le n \rightarrow (A(k) = a_k \land B(k) = b_k))$ }

Hasierako baldintzaren bidez A eta B bektoreek gutxienez elementu bana izango dutela eta A eta B bektoreetako hasierako balioak *a* eta b minuskulen bidez eta dagozkien azpiindezeak erabiliz adieraziko ditugula esaten da.

- (2) {Tarteko asertzioa} \equiv {(1) \land i = 1}
- (9) {Bukaerako baldintza} = {trukabik(A(1..n), $(a_1, a_2, ..., a_n)$, B(1..n), $(b_1, b_2, ..., b_n)$, \mathbf{n})}

Bukaerako baldintzaren bidez bektore osoan, hau da, n posizioraino egin beharreko aldaketa denak eginda daudela esaten da.

(3) {Inbariantea}
$$\equiv$$
 { $(1 \le i \le n + 1) \land trukabik(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), i-1)$ }

Inbariantearen bidez i -1 posizioraino (posizio hori ere barne) egin beharreko aldaketa denak eginda daudela adierazten da. Beraz i posizioan gaude eta aurreko posizioraino egin beharreko aldaketak eginda daude eta berriz while-an sartzen bagara i posizioa aztertuko da orduan.

(4) {Tarteko asertzioa}
$$\equiv$$
 { $(1 \le i \le n) \land trukabik(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), i - 1)}$

while-ean sartu garenez badakigu while-aren baldintza bete egin dela eta i ez dela n + 1.

(5) {Tarteko asertzioa} = {(1 \le i \le n) \wedge} trukabik(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), i - 1) \wedge} bikoitia(A(i)) \wedge bikoitia(B(i)) \wedge A(i) = a_i \wedge B(i) = b_i}

if aginduaren then aukeratik sartu garenez, badakigu A(i) eta B(i) elementuak bikoitiak direla eta gainera badakigu A eta B tauletako i posizioan oraindik hasierako balioak daudela, hau da, a_i balioa eta b_i .

- (5) era laburragoan honela adieraz daiteke:
- (5) {Tarteko asertzioa} = {(4) \land bikoitia(A(i)) \land bikoitia(B(i)) \land A(i) = $a_i \land$ B(i) = b_i }
- (6) {Tarteko asertzioa} = {(1 \le i \le n) \wedge trukabik(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), i 1) \wedge bikoitia(A(i)) \wedge bikoitia(B(i)) \wedge A(i) = a_i \wedge B(i) = b_i \wedge lag = A(i)}

lag := A(i); esleipena burutu ondoren lag aldagaiaren balioa A(i)-ren berdina da. Esleipen hori egin arren aldaketa osoak i -1 posizioraino bakarrik daude eginda, i posizioan erdizka gaude eta horregatik trukabik predikatuan i -1 ipini behar da. Bestalde A eta B bektoreek i posizioan oraindik hasierako balioak dituzte a_i eta b_i hurrenez hurren.

- (6) era laburragoan honela adieraz daiteke:
- (6) {Tarteko asertzioa} \equiv {(5) \land lag = A(i)}
- (7) {Tarteko asertzioa} = {(1 \le i \le n) \wedge \text{trukabik}(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), i 1) \wedge \text{bikoitia}(a_i) \wedge \text{bikoitia}(B(i)) \wedge \text{A(i)} = B(i) \wedge \text{B(i)} \wedge \text{B(i)} = b_i \wedge \text{lag} = a_i}

A(i) := B(i); esleipena burutu ostean, A(i) eta B(i) berdinak dira. B taulako i posizioan oraindik hasierako balioa daukagu b_i baina A taulako i posizioan ez dago a_i . Orain a_i balioa lag aldagaian dago. Esleipen hori egin arren aldaketa osoak i-1 posizioraino bakarrik daude eginda, i posizioan erdizka gaude eta horregatik trukabik predikatuan i-1 ipini behar da. Bestalde badakigu a_i .balioa bikoitia dela eta baita B(i) ere.

(7) era laburragoan honela adieraz daiteke:

(7) {Tarteko asertzioa}
$$\equiv$$
 {(4) \land bikoitia(a_i) \land bikoitia(B(i)) \land A(i) $=$ B(i) \land B(i) $=$ b_i \land lag $=$ a_i }

Kasu honetan (7) era laburrean ematerakoan ez (5) eta ez (6) ezin dira erabili.

```
(11) {Tarteko asertzioa} = 
{(1 \le i \le n) \land trukabik(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), i - 1) \land bikoitia(a_i) \land bikoitia(b_i) \land A(i) = b_i \land B(i) = a_i \land lag = a_i}
```

B(i): = lag; esleipena burutu ostean, B(i)-ren balioa $\frac{a_i}{b_i}$ da eta aurretik A(i)-ren balioa $\frac{b_i}{b_i}$ zela bagenekienez, orain i posizioko trukaketa ere eginda dagoela esan dezakegu. Beraz (11) puntuko asertzioa honela ere eman daiteke:

```
(11) {Tarteko asertzioa} = {(1 \le i \le n) \land trukabik(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), i) \land bikoitia(a_i) \land bikoitia(b_i) \land lag = a_i}
```

Bertsio honetan trukabik predikatuan bertan i ipiniz, i-ra arteko trukaketak eginda daudela adierazten da eta horregatik ez dago $A(i) = b_i \wedge B(i) = a_i$ ipini beharrik, hori predikatuaren bidez esanda baitago.

```
(8) {Tarteko asertzioa} \equiv {(1 \le i \le n) \land trukabik(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), i)}
```

Zein da (11) eta (8) puntuen arteko desberdintasuna? (11) puntuan badakigu **if** aginduko **then** aukeratik joan garela eta horregatik **bikoitia**(a_i) \land bikoitia(b_i) \land lag = a_i betetzen dela ziurta dezakegu. Baina (8) puntuan ez dakigu if aginduaren **then** aukeratik joan al garen ala **if** aginduaren baldintza ez betetzeagatik zuzenean **if** agindua bukatu egin al den eta horregatik ezin dugu ziurtatu bikoitia(a_i) \land bikoitia(b_i) \land lag = a_i betetzen denik, izan ere if aginduaren baldintza ez bada bete, bikoitia(a_i) \land bikoitia(b_i) \land lag = a_i ez da egia izango.

(12) {Tarteko asertzioa}
$$\equiv$$
 {($2 \le i \le n + 1$) \land trukabik(A(1..n), ($a_1, a_2, ..., a_n$), B(1..n), ($b_1, b_2, ..., b_n$), $i - 1$)}

Zein da (8) eta (12) puntuen arteko desberdintasuna? (8) puntuan badakigu i posiziora arteko kalkuluak (i posiziokoa barne) eginda daudela, baina orain i : = i + 1; esleipena burutu denez, i aldagaiak aurrera egin du baina kalkuluek ez eta horregatik kalkuluak i -1 posiziora arte daudela eginda esan beharko da.

(10)
$$E = n + 1 - i$$

Inbariantea betetzen den lekuan gauden bakoitzean E espresioak while agindua bukatzeko zenbat buelta falta diren adierazi behar du. Taula ezkerretik eskuinera zeharkatzen denean E espresioa "i aldagaiak hartuko duen azkeneko balioa" ken "i" izango da. Azken batean E espresioa n + 1 eta i-ren arteko distantzia da. Horrela i-ren balioa handitzen denean, n + 1 eta i-ren arteko distantzia txikiagoa izango da eta eman beharreko buelta-kopurua ere txikiagoa izango da.

Koloreen bidez asertzio batetik bestera dauden aldaketak nabarmendu dira.