Assignment 1 (20% of the total course mark)

Implement a nearest-neighbor CMKF tracker for the following scenario:

1. Target:

- Generate a single target that moves with a nearly constant velocity model.
 - O Note that the process noise in the x and y axis is independent and not zero.

2. Sensor:

- Parameters:
 - o Position: [1000 500], Stationary (i.e., velocity = [0 0])
 - o Sensor Measurements: range and azimuth
 - \circ Error standard deviation: range = 10 m, azimuth = 0.01 rad
 - \circ Sampling time = 2 s
 - \circ Pd = 0.9, generate measurements with a probability of Pd.
 - o False alarm density = 1e-4
 - O Coverage: range [0 to 10000]m, azimuth [$-\pi$ to π]
- > Generate measurements from targets with given Pd and measurement noise.
- \triangleright Generate false alarms: the number of false alarms follows a Poisson distribution with the mean number of events λ :
 - $\lambda = false \ alarm \ rate \times range \ coverage \times azimuth \ coverage$ The values of false alarms follow a uniform distribution.
- You may need to change the parameter values while performing the testing.

3. Tracker:

- Assume the track is already initialized.
 - o In each Monte-Carlo run, you need to reinitialize the target state vector \mathbf{x}_0 and the target state covariance P_0 .
 - o Pick a P₀ and select a random x₀ based on the actual initial target location and the assumed covariance.
- Use simple nearest-neighbor data association.
 - Pick the measurement corresponding to the smallest normalized distance in the gate.
- Use CMKF filtering.
 - O Convert the range and azimuth measurements into x and y measurements, then apply the Kalman filter with these converted measurements.

4. Performance Evaluation:

- Evaluate RMSE
 - o Plot position and speed RMSEs separately
- Evaluate the performance for different target trajectories and sensor parameters

In the report, please include the following:

- Problem description
- Implementation details
- Plots showing the truth and estimated trajectories
- Plots showing the RMSE for different test cases by changing the target and sensor parameters (e.g., target process noise level, target initial state, sensor measurement covariance, etc.)
- Discussion of the results

Upload the Matlab code as a zip file to Avenue to Learn.

Due date:

Task	Due Date
Final code	February 20
Presentation	February 20
Updated code (if modified after the presentation) and report	February 24

Suggested intermediate deadlines:

Task	Due Date
Target generation & parameter file	January 23
Measurement generation	January 30
Track initialization, Monte-Carlo and time step loops & Data	February 6
association	
Filtering	February 13
Remaining	February 19