Combinatorial Optimization CSE 301

All Pairs of Shortest Path

All-Pairs Shortest Paths

Given:

- Directed graph G = (V, E)
- Weight function $w : E \rightarrow R$

Compute:

- The shortest paths between all pairs of vertices in a graph
- Representation of the result: an n × n matrix of shortest-path distances δ(u, v)

Dijkstra (G, w, s)

- 1. INITIALIZE-SINGLE-SOURCE(V, s) $\leftarrow \Theta(V)$
- 2. S ← Ø
- 3. $Q \leftarrow V[G] \leftarrow O(V)$ build min-heap
- 4. while $Q \neq \emptyset \leftarrow$ Executed O(V) times
- 5. do $u \leftarrow EXTRACT-MIN(Q) \leftarrow O(IgV)$
- 6. $S \leftarrow S \cup \{u\}$
- 7. for each vertex $v \in Adj[u]$
- 8. do RELAX(u, v, w) \leftarrow O(E) times; O(IgV)

Running time: O(VlgV + ElgV) = O(ElgV)

BELLMAN-FORD(V, E, w, s)

```
INITIALIZE-SINGLE-SOURCE(V, s) \leftarrow \Theta(V)
                                              ─ O(V)─ O(E)
2. for i \leftarrow 1 to |V| - 1
        do for each edge (u, v) ∈ E
                do RELAX(u, v, w)
4.
    for each edge (u, v) \in E
                                               \leftarrow O(E)
        do if d[v] > d[u] + w(u, v)
6.
              then return FALSE
    return TRUE
```

Running time: O(VE)

All-Pairs Shortest Paths - Solutions

- Run BELLMAN-FORD once from each vertex:
 - $O(V^2E)$, which is $O(V^4)$ if the graph is dense $(E = \Theta(V^2))$
- If no negative-weight edges, could run
 Dijkstra's algorithm once from each vertex:
 - O(VElgV) with binary heap, O(V³lgV) if the graph is dense
- We can solve the problem in O(V³), with no elaborate data structures

All-Pairs Shortest Paths

- Assume the graph (G) is given as adjacency matrix of weights
 - $W = (w_{i,i})$, $n \times n$ matrix, |V| = n
 - Vertices numbered 1 to n

$$w_{ij} = \begin{cases} 0 & \text{if } i = j \\ \text{weight of (i, j) if } i \neq j, (i, j) \in E \\ \infty & \text{if } i \neq j, (i, j) \notin E \end{cases}$$

- Output the result in an n x n matrix
 - D = (d_{ij}) , where $d_{ij} = \delta(i, j)$
- Solve the problem using dynamic programming

8

Optimal Substructure of a Shortest Path

- All subpaths of a shortest path are shortest paths
- Let p: a shortest path p
 from vertex i to j that
 contains at most m edges
- If i = j
 - w(p) = 0 and p has no edges

If
$$i \neq j$$
: $p = i \stackrel{p}{\leadsto} k \rightarrow j$

- p' has at most m-1 edges
- p' is a shortest path

$$\delta(i, j) = \delta(i, k) + w_{kj}$$

Recursive Solution

 I_{ij}^(m) = weight of shortest path i →j that contains at most m edges
 at most m edges

•
$$\mathbf{m} = 0$$
: $I_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$

•
$$m \ge 1$$
: $I_{ij}^{(m)} = \min \{I_{ij}^{(m-1)}, \min_{1 \le k \le n} \{I_{ik}^{(m-1)} + w_{kj}\}\}$
= $\min_{1 \le k \le n} \{I_{ik}^{(m-1)} + w_{kj}\}$

- Shortest path from i to j with at most m 1 edges
- Shortest path from i to j containing at most m edges,
 considering all possible predecessors (k) of j

Computing the Shortest Paths

- $m = 1: I_{ij}^{(1)} = w_{ij}$ $L^{(1)} = W$
 - The path between i and j is restricted to 1 edge
- Given W = (w_{ij}) , compute: $L^{(1)}$, $L^{(2)}$, ..., $L^{(n-1)}$, where $L^{(m)} = (I_{ij}^{(m)})$
- $L^{(n-1)}$ contains the actual shortest-path weights Given $L^{(m-1)}$ and $W \Rightarrow$ compute $L^{(m)}$
 - Extend the shortest paths computed so far by one more edge
- If the graph has no negative cycles: all simple shortest paths contain at most n - 1 edges

$$\delta(i, j) = I_{ij}^{(n-1)}$$
 and $I_{ij}^{(n)} = I_{ij}^{(n+1)}$. . .= $I_{ij}^{(n-1)}$

Extending the Shortest Path

Replace:
$$\min \rightarrow +$$

 $+ \rightarrow \bullet$

Computing L^(m) looks like matrix multiplication

EXTEND(L, W, n)

- 1. create L', an n x n matrix
- 2. for $i \leftarrow 1$ to n

3. do for
$$j \leftarrow 1$$
 to n

5. for
$$k \leftarrow 1$$
 to n

6.
$$do l_{ij}' \leftarrow min(l_{ij}', l_{ik} + w_{kj})$$

7. return L'

4.

Running time: $\Theta(n^3)$

 $I_{ij}^{(m)} = \min_{1 \le k \le n} \{I_{ik}^{(m-1)} + w_{kj}\}$

SLOW-ALL-PAIRS-SHORTEST-PATHS(W, n)

- 1. $L^{(1)} \leftarrow W$
- 2. for $m \leftarrow 2$ to n 1
- 3. do $L^{(m)} \leftarrow EXTEND (L^{(m-1)}, W, n)$
- 4. **return** L^(n 1)

Running time: $\Theta(n^4)$

Example

$$I_{ij}^{(m)} = \min_{1 \le k \le n} \{I_{ik}^{(m-1)} + w_{kj}\}$$

W

$$L^{(m-1)} = L^{(1)}$$
0 3 8 ∞ -4
$$\infty$$
 0 ∞ 1 7
$$\infty$$
 4 0 ∞ ∞
2 ∞ -5 0 ∞

$$\infty$$
 ∞ ∞ 6 0

0	3	8	∞	-4
8	0	8	1	7
8	4	0	8	8
2	8	-5	0	8
∞	∞	∞	6	0

$$L^{(m)} = L^{(2)}$$

0	3	8	2	-4
3	0	-4	1	7
∞	4	0	5	11
2	-1	-5	0	-2
8	∞	1	6	0

... and so on until $L^{(4)}$

Improving Running Time

- No need to compute all L^(m) matrices
- If no negative-weight cycles exist:

$$L^{(m)} = L^{(n-1)}$$
 for all $m \ge n-1$

We can compute L⁽ⁿ⁻¹⁾ by computing the sequence:

$$L^{(1)} = W$$
 $L^{(2)} = W^2 = W \cdot W$ $L^{(4)} = W^4 = W^2 \cdot W^2$ $L^{(8)} = W^8 = W^4 \cdot W^4 \dots$

$$\Rightarrow 2^{x} = n - 1$$

$$L^{(n-1)} = W^{2^{\lceil \lg(n-1) \rceil}}$$

FASTER-APSP(W, n)

L⁽¹⁾ ← W
 m ← 1
 while m < n - 1
 do L^(2m) ← EXTEND(L^(m), L^(m), n)
 m ← 2*m
 return L^(m)

- OK to overshoot: products don't change after L⁽ⁿ⁻¹⁾
- Running Time: ⊕(n³lq n)

The Floyd-Warshall Algorithm

Given:

- Directed, weighted graph G = (V, E)
- Negative-weight edges may be present

No negative-weight cycles could be present in the graph

Compute:

The shortest paths between all pairs of vertices in a graph

The Structure of a Shortest Path

Vertices in G are given by

$$V = \{1, 2, ..., n\}$$

- Consider a path p = (v₁, v₂, ..., v_I)
 - An intermediate vertex of p is any
 vertex in the set {v₂, v₃, ..., v_{l-1}}
 - E.g.: $p = \langle 1, 2, 4, 5 \rangle$: $\{2, 4\}$ $p = \langle 2, 4, 5 \rangle$: $\{4\}$

The Structure of a Shortest Path

- For any pair of vertices i, $j \in V$, consider all paths from i to j whose intermediate vertices are all drawn from a subset $\{1, 2, ..., k\}$
 - Find p, a minimum-weight path from these paths

No vertex on these paths has index > k

Example

 $d_{ij}^{(k)}$ = the weight of a shortest path from vertex i to vertex j with all intermediary vertices drawn from $\{1, 2, ..., k\}$

•
$$d_{13}^{(0)} = 6$$

•
$$d_{13}^{(1)} = 6$$

•
$$d_{13}^{(2)} = 5$$

•
$$d_{13}^{(3)} = 5$$

•
$$d_{13}^{(4)} = 4.5$$

The Structure of a Shortest Path

- k is not an intermediate vertex of path p
 - Shortest path from i to j with intermediate vertices from {1, 2, ..., k} is a shortest path from i to j with intermediate vertices from {1, 2, ..., k 1}

- k is an intermediate vertex of path p
 - p₁ is a shortest path from i to k
 - p₂ is a shortest path from k to j
 - k is not intermediary vertex of p₁, p₂
 - p₁ and p₂ are shortest paths from i to k with vertices from {1, 2, ..., k 1}

A Recursive Solution (cont.)

d_{ij}^(k) = the weight of a shortest path from vertex i to vertex j with all intermediary vertices drawn from {1, 2, ..., k}

- k = 0
- $d_{ij}^{(k)} = w_{ij}$

A Recursive Solution (cont.)

 $d_{ij}^{(k)}$ = the weight of a shortest path from vertex i to vertex j with all intermediary vertices drawn from $\{1, 2, ..., k\}$

- k ≥ 1
- Case 1: k is not an intermediate
 vertex of path p
- $d_{ij}^{(k)} = d_{ij}^{(k-1)}$

A Recursive Solution (cont.)

 $d_{ij}^{(k)}$ = the weight of a shortest path from vertex i to vertex j with all intermediary vertices drawn from $\{1, 2, ..., k\}$

- k ≥ 1
- Case 2: k is an intermediate
 vertex of path p
- $d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$

Computing the Shortest Path Weights

•
$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \\ \min \{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\} & \text{if } k \ge 1 \end{cases}$$

• The final solution: $D^{(n)} = (d_{ij}^{(n)})$:

$$d_{ij}^{(n)} = \delta(i, j) \forall i, j \in V$$

The Floyd-Warshall algorithm

```
Floyd-Warshall (W[1..n][1..n])

01 D ← W // D<sup>(0)</sup>

02 for k ← 1 to n do // compute D<sup>(k)</sup>

03 for i ←1 to n do

04 for j ←1 to n do

05 if D[i][k] + D[k][j] < D[i][j] then

06 D[i][j] ← D[i][k] + D[k][j]

07 return D
```

Running Time: O(n3)

Computing predecessor matrix

How do we compute the predecessor matrix? Initialization: $p^{(0)}(i,j) = \begin{cases} nil & \text{if } i = j \text{ or } w_{ij} = \infty \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty \end{cases}$ - Updating: $p^{(k)}(i,j) = p^{(k-1)}(i,j)$ if $(d^{(k-1)}(i,j) < = d^{(k-1)}(i,k) + (d^{(k-1)}(k,j))$ $p^{(k-1)}(k,j)$ if $(d^{(k-1)}(i,j) > d^{(k-1)}(i,k) + (d^{(k-1)}(k,i))$ Floyd-Warshall (W[1..n][1..n]) 01 ... 02 for $k \leftarrow 1$ to n do // compute $D^{(k)}$ 0.3 for $i \leftarrow 1$ to n do for $i \leftarrow 1$ to n do 0.4 0.5 **if** D[i][k] + D[k][j] < D[i][j] **then** 06 $D[i][j] \leftarrow D[i][k] + D[k][j]$

 $P[i][j] \leftarrow P[k][j]$

07

08 return D

Example

$$d_{ij}^{(k)} = \min \{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}$$

Example
$$d_{ij}^{(k)} = \min \{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}$$

Source: 5, Destination: 1

Shortest path: 8

Path: 5 ...1 : 5...4...1: 5->4...1: 5->4->1

Source: 1, Destination: 3

Shortest path: -3

Path: 1 ...3 : 1...4...3: 1...5...4...3: 1->5->4->3

PrintPath for Warshall's Algorithm

```
PrintPath(s, t)
  if(P[s][t]==nil) {print("No path"); return;}
  else if (P[s][t]==s) {
      print(s);
  else{
      print path(s,P[s][t]);
      print path(P[s][t], t);
Print (t) at the end of the PrintPath(s,t)
```

29

Question

- Why should we use D[i, j] instead of D^(k)[i, j]?
- Exercise:
 - 25.2-4: Memory O(n²)
 - 25.2-6: Negative weight cycle
 - Find the shortest positive cycle

Transitive closure of the graph

Input:

- Un-weighted graph G: W[i][j] = 1, if $(i,j) \in E, W[i][j] = 0$ otherwise.

Output:

- T[i][j] = 1, if there is a path from i to j in G, T[i][j] = 0 otherwise.

• Algorithm:

- Just run Floyd-Warshall with weights 1, and make T[i][j] = 1, whenever D[i][j] < ∞.
- More efficient: use only Boolean operators

Transitive closure algorithm

```
Transitive-Closure(W[1..n][1..n])
01 T ← W // T<sup>(0)</sup>
02 for k ← 1 to n do // compute T<sup>(k)</sup>
03     for i ←1 to n do
04     for i ←1 to n do
05         T[i][j] ← T[i][j] ∨ (T[i][k] ∧ T[k][j])
06 return T
```

Readings

• Chapters 25