Apply quantum algorithms to protein structure prediction

Qcourse570

QWorld

April 2022

What is a Protein?

- ▶ **Protein**: macromolecules consisting of **amino acids**
- ▶ **Peptide**: a linear chain of amino acid residues

Amino Acids

- Amino acids consist of:
 - \square amino (NH_3^+)
 - □ carboxylate (COOH)
 - □ R group (C, H)
- ▶ 20 amino acids
- https://www.rcsb.org/3d-view/1GWD

$$\begin{bmatrix} & H & O & H & O \\ I & II & I & I \\ -N - C - C - N - C & C - I & C - C - I \\ I & I^{\alpha} & I & I^{\alpha} & I \\ H & R_1 & H & R_2 & H & R_3 \end{bmatrix}$$

#	Amini acid	3-letter symbols	1-letter symbols
1	Alanine	Ala	Α
2	Arginine	Arg	R
3	Asparagine	Asn	N
4	Aspartate	Asp	D
5	Cysteine	Cys	С
6	Glutamine	Gln	Q
7	Glutamate	Glu	E
8	Glycine	Gly	G
9	Histidine	His	Н
10	Isoleucine	lle	1
11	Leucine	Leu	L
12	Lysine	Lys	K
13	Methionine	Met	М
14	Phenylalanine	Phe	F
15	Proline	Pro	P
16	Serine	Ser	S
17	Threonine	Thr	Т
18	Tryptophan	Trp	W
19	Tyrosine	Tyr	Υ
20	Valine	Val	٧

Quantum algorithms for protein problems

- Protein Folding (Quantum Annealing / QAOA / VQE)
- Protein Ligand Docking (VQE)
- Protein Design (Grover)

Protein Folding Problem

- ▶ Definition: The protein folding problem is finding the lowest energy conformations of a protein given its primary sequence of amino acids.
- ► large-scale problem
- **Lattice Models**
 - □ self-avoiding walk (SAW)
- ► Coarse-grained representation
 - □ Points: amino acids

Previous works

- ▶ There are several lattice models, but only two of them are used in quantum computing [2].
 - □ Hydrophobic-polar model (HP) [1]
 - ☐ Miyazawa-Jernigan model [3]

Table 3. Contact energies in RT units; eij for upper half and diagonal and eij for lower half

		Cys	Met	Phe	Ile	Leu	Vál	Trp	Tyr	Ala	Gly	Thr	Ser	Asn	Gln	Asp	Glu	His	Arg	Lys	Pro	
	Cys	-5.44	-4.99	-5.80	-5.50	-5.83	-4.96	-4.95	-4.16	-3.57	-3.16	-3.11	-2.86	-2.59	-2.85	-2.41	-2.27	-3.60	-2.57	-1.95	-3.07	Cys
	Met	0.46	-5.46	-6.56	-6.02	-6.41	-5.32	-5.55	-4.91	-3.94	-3.39	-3.51	-3.03	-2.95	-3.30	-2.57	-2.89	-3.98	-3.12	-2.48	-3.45	Met
	Phe	0.54	-0.20	-7.26	-6.84	-7.28	-6.29	-6.16	-5.66	-4.81	-4.13	-4.28	-4.02	-3.75	-4.10	-3.48	-3.56	-4.77	-3.98	-3.36	-4.25	Phe
	Ile	0.49	-0.01	0.06	-6.54	-7.04	-6.05	-5.78	-5.25	-4.58	-3.78	-4.03	-3.52	-3.24	-3.67	-3.17	-3.27	-4.14	-3.63	-3.01	-3.76	\mathbf{Ile}
	Leu	0.57	0.01	0.03	-0.08	-7.37	-6.48	-6.14	-5.67	-4.91	-4.16	-4.34	-3.92	-3.74	-4.04	-3.40	-3.59	-4.54	-4.03	-3.37	-4.20	Leu
	Val	0.52	0.18	0.10	-0.01	-0.04	-5.52	-5.18	-4.62	-4.04	-3.38	-3.46	-3.05	-2.83	-3.07	-2.48	-2.67	-3.58	-3.07	-2.49	-3.32	Val
	Trp	0.30	-0.29	0.00	0.02	0.08	0.11	-5.06	-4.66	-3.82	-3.42	-3.22	-2.99	-3.07	-3.11	-2.84	-2.99	-3.98	-3.41	-2.69	-3.73	Trp
	Tyr	0.64	-0.10	0.05	0.11	0.10	0.23	-0.04	-4.17	-3.36	-3.01	-3.01	-2.78	-2.76	-2.97	-2.76	-2.79	-3.52	-3.16	-2.60	-3.19	Туг
	Ala	0.51	0.15	0.17	0.05	0.13	0.08	0.07	0.09	-2.72	-2.31	-2.32	-2.01	-1.84	-1.89	-1.70	-1.51	-2.41	-1.83	-1.31	-2.03	Ala
	Gly	0.68	0.46	0.62	0.62	0.65	0.51	0.24	0.20	0.18	-2.24	-2.08	-1.82	-1.74	-1.66	-1.59	-1.22	-2.15	-1.72	-1.15	-1.87	Gly
	Thr	0.67	0.28	0.41	0.30	0.40	0.36	0.37	0.13	0.10	0.10	-2.12	-1.96	-1.88	-1.90	-1.80	-1.74	-2.42	-1.90	-1.31	-1.90	Thr
	Ser	0.69	0.53	0.44	0.59	0.60	0.55	0.38	0.14	0.18	0.14	-0.06	<u>-1.67</u>	-1.58	-1.49	-1.63	-1.48	-2.11	-1.62	-1.05	-1.57	Ser
	Asn	0.97	0.62	0.72	0.87	0.79	0.77	0.30	0.17	0.36	0.22	0.02	0.10	-1.68	-1.71	-1.68	-1.51	-2.08	-1.64	-1.21	-1.53	Asn
	Gln	0.64	0.20	0.30	0.37	0.42	0.46	0.19	-0.12	0.24	0.24	-0.08	0.11	-0.10	-1.54	-1.46	-1.42	-1.98	-1.80	-1.29	-1.73	Gln
	Asp	0.91	0.77	0.75	0.71	0.89	0.89	0.30	-0.07	0.26	0.13	-0.14	-0.19	-0.24	-0.09	<u>-1.21</u>	-1.02	-2.32	-2.29	-1.68	-1.33	Asp
	Glu	0.91	0.30	0.52	0.46	0.55	0.55	0.00	-0.25	0.30	0.36	-0.22	-0.19	-0.21	-0.19	0.05	-0.91	-2.15	-2.27	-1.80	-1.26	Glu
	His	0.65	0.28	0.39	0.66	0.67	0.70	0.08	0.09	0.47	0.50	0.16	0.26	0.29	0.31	-0.19	-0.16	<u>-3.05</u>	-2.16	-1.35	-2.25	His
	Arg	0.93	0.38	0.42	0.41	0.43	0.47	-0.11	-0.30	0.30	0.18	-0.07	-0.01	-0.02	-0.26	-0.91	-1.04	0.14	$\frac{-1.55}{0.04}$	-0.59	-1.70	Arg
	Lys	0.83	0.31	0.33	0.32	0.37	0.33	-0.10	-0.46	0.11	0.03	-0.19	-0.15	-0.30	-0.46	-1.01	-1.28	0.23	0.24	-0.12	-0.97	Lys
	Pro	0.53	0.16	0.25	0.39	0.35	0.31	-0.33	-0.23	0.20	0.13	0.04	0.14	0.18	-0.08	0.14	0.07	0.15	-0.05	-0.04	<u>-1.75</u>	Pro
- 2.55	e _{ir}	-3.57	-3.92	-4.76	-4.42	-4.81	-3.89	-3.81	-3.41	-2.57	-2.19	-2.29	-1.98	-1.92	-2.00	-1.84	-1.79	-2.56	-2.11	-1.52	-2.09	
- 3.60	6	-4.29	-4.73	-5.57	-5.29	-5.71	-4.72	-4.41	-3.87	-3.17	-2.53	-2.63	-2.27	-2.14	-2.35	-2.02	-2.07	-2.94	-2.43	-1.82	-2.53	
-3.60	f_{i}	-5.58	-6.14	-7.39	-7.09	-7.88	-6.15	-5.34	-4.60	-3.24	-2.22	-2.48	-1.92	-1.74	-1.93	-1.54	-1.49	-2.91	-2.07	-1.17	-1.97	
lir/Ni	2.096	2.723	2.722	2.780	2.811	2.893	2.728	2.537	2.493	2.143	1.840	1.973	1.771	1.699	1.720	1.598	1.508	2.075	1.787	1.343	1.629	
7.162	6.281	6.646	6.137	5.870	6.042	6.087	6.155	5.793	6.037	6.334	6.284	6.486	6.582	6.574	6.469	6.487	6.235	6.241	6.318	6.569	5.858	

Quantum Computing

- ▶ Richard Fineman: "Nature isn't classical, and if you want to make a simulation of nature, you'd better make it quantum mechanical"
- Quantum computing models:
 - Adiabatic Quantum Computing (Quantum Annealing) [6-9]
 - □ Digital Quantum Computing (Gate-based model) [10-11]

Gate-based model

- ► Variational Quantum Algorithms (VQA):
 - □ Quantum Approximate Optimization Algorithm (QAOA) [10]
 - □ Variational Quantum Eigensolver (VQE) [11]
- Ground State Problem (finding eigenvalue):
 - Quantum Phase Estimation (QPE)
 - Variational Quantum Eigensolver (VQE)
- Noisy Intermediate-Scale Quantum (NISQ) era

Qiskit Nature

VQE algorithm

- ▶ VQE algorithm can solve the Schrödinger equation:
- $H|\psi(\overrightarrow{\theta})\rangle = E|\psi(\overrightarrow{\theta})\rangle$ where:
 - ullet E is energy / a number
 - ullet E_0 is the lowest energy / eigenvalue of H / a number
 - $\psi(\overrightarrow{\theta})$ is the eigenstate of H / a vector
 - H is the Hamiltonian / an operator / a matrix
 - $\overrightarrow{\theta}$ is a vector of independent parameters and $\overrightarrow{\theta} = \{(\theta_1, \dots, \theta_n)\}^T$.

The lowest answer for this equation is the ground state (E_0).

$$E_0 \leq \langle \psi(\overrightarrow{ heta})|H|\psi(\overrightarrow{ heta})
angle$$

VQE algorithm

- ▶ VQE algorithm consists of two important parts:
 - □ A quantum circuit (ansatz)
 - ☐ An optimization method (classical computers)

Hamiltonian

- ► They defined two kinds of qubits:
 - 1. q_{cf} : Configuration qubits that are used for configurations and the relative position of the amino acids
 - 2. q_{in} : Interaction qubits that encode interactions between the amino acids
- ► The Hamiltonian consists of some parts:

$$H=H_{gc}(q_{cf})+H_{ch}(q_{cf})+H_{in}(q_{cf},q_{in})$$
 where:

- ullet $H_{\it gc}$ is the geometrical constraint term
- ullet $H_{\it ch}$ is the chirality constraint
- H_{in} is the interaction energy terms of the system.

References

- ▶ [1] Dill KA (1985). "Theory for the folding and stability of globular proteins". Biochemistry. 24 (6): 1501–9.
- ▶ [2] Outeiral, C., Strahm, M., Shi, J., Morris, G. M., Benjamin, S. C., & Deane, C. M. (2020). "The prospects of quantum computing in computational molecular biology". Wiley Interdisciplinary Reviews: Computational Molecular Science, 11(1), e1481.
- ▶ [3] Miyazawa, S., & Jernigan, R. L. (1985). "Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation". Macromolecules, 18(3), 534-552.
- ▶ [4] Berger B, Leighton T (1998). "Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete". Journal of Computational Biology. 5 (1): 27–40.
- ▶ [5] Feynman, R. (1982). "Simulating physics with computers". Int. J. Theor. Phys. 21, 467–488.
- ▶ [6] Perdomo, A., Truncik, C., Tubert-Brohman, I., Rose, G., & Aspuru-Guzik, A. (2008). "Construction of model Hamiltonians for adiabatic quantum computation and its application to finding low-energy conformations of lattice protein models". Physical Review A, 78(1), 012320.
- ▶ [7] Babbush, R., Perdomo-Ortiz, A., O'Gorman, B., Macready, W., & Aspuru-Guzik, A. (2012). "Construction of energy functions for lattice heteropolymer models: a case study in constraint satisfaction programming and adiabatic quantum optimization."
- ▶ [8] Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G., & Aspuru-Guzik, A. (2012). "Finding low-energy conformations of lattice protein models by quantum annealing". Scientific reports, 2(1), 1-7.
- ▶ [9] Babej, T., & Fingerhuth, M. (2018). "Coarse-grained lattice protein folding on a quantum annealer".
- ▶ [10] Fingerhuth, M., & Babej, T. (2018). "A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding".
- ▶ [11] Robert, A., Barkoutsos, P. K., Woerner, S., & Tavernelli, I. (2021). Resource-efficient quantum algorithm for protein folding. npj Quantum Information, 7(1), 1-5.
- ▶ [12] Bharti, K., Cervera-Lierta, A., Kyaw, T. H., Haug, T., Alperin-Lea, S., Anand, A., ... & Aspuru-Guzik, A. (2022). "Noisy intermediate-scale quantum algorithms". Reviews of Modern Physics, 94(1), 015004.
- ▶ [13] Aleksandrowicz, G., and Alexander T., Amy, M., ... & Mantas. (2021). "Qiskit: An Open-source Framework for Quantum Computing".

Thanks For Attention