Foundations of Machine Learning

Module 5: Support Vector Machine Part D: SVM – Maximum Margin with Noise

Sudeshna Sarkar IIT Kharagpur

Linear SVM formulation

Find w and b such that

$$\frac{2}{\|w\|}$$
 is maximized

And for each of the m training points (x_i, y_i) , $y_i(w.x_i + b) \ge 1$

Find w and b such that

$$||w||^2 = w.w$$
 is minimized

And for each of the m training points (x_i, y_i) ,

$$y_i(w.x_i + b) \ge 1$$

Limitations of previous SVM formulation

- What if the data is not linearly separable?
- Or noisy data points?

Extend the definition of maximum margin to allow non-separating planes.

How to formulate?

• Minimize $||w||^2 = w.w$ and number of misclassifications, i.e., minimize w.w + #(training errors)

No longer QP formulation

Objective to be minimized

Minimize

w.w +

C (distance of error points to their correct zones)

• Add slack variables ξ_i

Maximum Margin with Noise

C controls the relative importance of maximizing the margin and fitting the training data.

Controls overfitting.

Minimize
$$w.w + C\sum_{k=1}^{m} \xi_k$$
 m constraints
$$w.x_k + b \ge 1 - \xi_k \text{ if } y_k = 1$$

$$w.x_k + b \le -1 + \xi_k \text{ if } y_k = -1$$

$$\equiv y_k(w.x_k + b) \ge 1 - \xi_k, \text{ k} = 1,...,m$$

$$\xi_k \ge 0, \text{ k} = 1,...,m$$

Lagrangian

$$L(w,b,\xi,\alpha,\beta) = \frac{1}{2}w.w + C\sum_{i=1}^{m} \xi_i + \sum_{i=1}^{m} \alpha_i [y_i(x.w+b) - 1 + \xi_i] - \sum_{i=1}^{m} \beta_i \xi_i$$

 α_i 's and β_i 's are Lagrange multipliers (≥ 0).

Dual Formulation

Find $\alpha_1, \alpha_2, ..., \alpha_m$ s.t.

$$\max_{\alpha} J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

Linear SVM

Noise Accounted

s.t.
$$\alpha_i \ge 0$$
, $i = 1,..., m$

$$\sum_{i=1}^m \alpha_i y_i = 0.$$

s.t.
$$0 \le \alpha_i \le C$$
, $i = 1,...,m$
$$\sum_{i=1}^{m} \alpha_i y_i = 0.$$

Solution to Soft Margin Classification

- x_i with non-zero α_i will be support vectors.
- Solution to the dual problem is:

$$w = \sum_{i=1}^{m} \alpha_i y_i x_i$$

$$b = y_k (1 - \xi_k) - \sum_{i=1}^{m} \alpha_i y_i x_i x_k$$
for any k s.t. $\alpha_k > 0$
For classification,
$$f(x) = \sum_{i=1}^{m} \alpha_i y_i x_i x + b$$
(no need to compute w explicitly)

Thank You