PREGUNTAS

a) Si L1 y L2 son regulares, ¿Es L1 \(\Omega\) L2 regular?

Si es

b) Si L1 y L2 son regulares, ¿Es L1 ⊕ L2 regular?

Si es

c) Si L es finito ¿Es L regular?

Si es

d) Si L es infinito, ¿Es L regular?

No es

e) Si L es regular, ¿Es L^C regular? ¿Cómo deberá ser esa cadena? a) $Lc = \Sigma$

*-1

EJERCICIOS CAPÍTULO 2

- 1. Obtener una expresión regular para cada uno de los siguientes casos:
 - a) El lenguaje formado por todas las cadenas de unos y ceros que inician con dos ceros consecutivos.

00(1 U 0)*

b) El lenguaje formado por todas las cadenas de unos y ceros que tenga un número de ceros divisible entre tres.

1*(01*01*01*)*

c) El lenguaje formado por todas las cadenas de unos y ceros que tienen al menos dos unos consecutivos.

(140)* 11(140)*

d) El lenguaje formado por todas las cadenas de unos y ceros que contengan cuando mucho dos ceros.

1*01*01* U 1*01* U 1*

- e) El lenguaje formado por todas las cadenas de unos y ceros que **solamente** tenga una ocurrencia de tres ceros consecutivos. 1*(01+ U 001+)* 000 (1+0 U 1+00)*1*
- f) El lenguaje formado por todas las cadenas de dígitos que representen un número entero positivo (base diez) correctamente escrito.

0 U (1 U 2 U 3 U 4 U 5 U 6 U 7 U 8 U 9)*

- g) El lenguaje formado por todas las cadenas de unos y ceros que tengan longitud menor o igual a 5. $(0 \ U \ 1)^5$
- h) El lenguaje formado por todas las cadenas de unos y ceros que no finalicen en **01**.

(1 U 0)* (11 U 0) U 1

i) El lenguaje formado por todas las cadenas de unos y ceros que terminen en **1** y no contengan a la subcadena **00**.

(01 U 1)+

j) El lenguaje formado por todas las cadenas de unos y ceros cuya longitud es múltiplo de 5.

$((0 \cup 1)^*)^5$

k) El lenguaje formado por todas las cadenas de unos y ceros que inicien o terminen en **00** o en **11**.

(1 U 0)* (11 U 00)+

2. Interprete en palabras el significado de cada una de las siguientes expresiones regulares:

1(0 U 1)* = a) lenguaje formado por todas las combinaciones de 0 y 1 que empieza con 1
(0 U 1)*00 = lenguaje de todas las combinaciones de 0 y 1 y terminan con 00
(0 U 1)*10(0 U 1)* = lenguaje con combinaciones de 0 y 1 que contienen la subcadena 10
1*01*0(0 U 1)* = lenguaje formado por las combinaciones de 0 y 1 que contiene por lo menos un par de 0

3. Dada la expresión regular (ab)+ U (cb)*. Indicar si las siguientes cadenas pertenecen o no al lenguaje que representa:

w1 = abcb = no pertenece w2 = ε = si pertenece w3 = cbcbb = no pertenece w4 = ab = si pertenece a) w5 = **abcbcbcb** = no pertenece

4. Determinar las cadenas que pertenecen al lenguaje descrito por la expresión regular siguiente: c*a U (bc)* U b*.

 $L = \{\varepsilon, a, ca, cca, ccca, ccca, bc, bcbc, bcbcbc, bcbcbcbc, b, bb, bbb, bbbb, bbbbb, ...\}$

Dada la expresión regular **a** (**b** U **c**) **a** (**a** U **b** U **c**)* **a**, ¿Cuántas cadenas de longitud 6 representa? 18 cadenas de longitud 6

6 Simplificar las siguientes expresiones:

- a) $(\epsilon \cup ab)^*$
- c) $(a \cup \epsilon) a*b$
- e) $(\epsilon \cup aa)(\epsilon \cup aa)^*$
- g) $(a \cup b)^* a (a \cup b)^*$
- i) $\emptyset^* \cup a^* \cup b^* \cup (a^* \cup b^*)^{\dagger}$
- k) (a*b)* ∪ (b*a)*
- m) $\mathbf{y}(\ \epsilon \cup \mathbf{x}^{+}) \cup (\ \mathbf{y}\mathbf{y}^{+}(\ \epsilon \cup \mathbf{x}\)^{*})$
- o) $(ba^*)^* \cup \epsilon \cup (a \cup b)^*$
- q) **a*b** ((**a** ∪ **b**) **a*b**)* ∪ **a*b**
- s) $(abc^*)^* \cup ab \cup ab(c \cup ab)^*$
- a) T10 (ab)*
- b) T10 a(aa)*a U e T12 (aa)*aa U e T15 (aa)* U e T10 (aa)*
- c) T10 a*b
- d) T15 a⁺b U b T9 (a⁺ U e)b T10 a^{*}b
- e) T10 (ε U aa)(aa)* T10 (aa)*
- f) T8 (aa)*(a u ε)
 - g) $(a \cup b)^* a (a \cup b)^*$

T1 (b u a)* a (b U a)*
T11 (b*a)*b* a(b*a)*b*
T15 (b*a)*(b*a)*b*
T15 (b*a)+b*

- b) \mathbf{a} ($\epsilon \cup \mathbf{aa}$)* $\mathbf{a} \cup \epsilon$
- d) (((**a*****a**) **b**) ∪ **b**)
- f) (aa)* a∪(aa)*
- h) a ($\varepsilon \cup$ aa)* ($\varepsilon \cup$ aa) \cup a
- j) ((a*b*)* · (b*a*)*)*
- I) $(\epsilon \cup \mathbf{a}^{+}) \mathbf{bb}^{+} (\epsilon \cup \mathbf{c})^{*}$
- n) $(\varepsilon \cup \mathbf{x})(\varepsilon \cup \mathbf{x})^{\dagger} \cup (\varepsilon \cup \mathbf{x}) \cup \varnothing^{*}$
- p) ($\mathbf{a} \cup \mathbf{b}$)($\epsilon \cup \mathbf{aa}$)*($\epsilon \cup \mathbf{aa}$) \cup ($\mathbf{a} \cup \mathbf{b}$
- r) $(b^*a)^* \cup (a \cup b)^*a$

```
h) T15 a(ε U aa)+ U a
          T8 a((\varepsilon U aa)^+ U \varepsilon)
          T10 a(ε U aa)*
T10 a(aa)*
      i) \varnothing^* \cup a^* \cup b^* \cup (a^* \cup b^*)^{\dagger}
          T10 a* U b* U(e U (a* U b*)+)
          T10 (a* U b*) U (a* U b*)*
            (a U b)*
       j) ((a*b*)* \cdot (b*a*)*)*
          T11 ((a U b)* (b U a)*)*
          T10 ((a U b)*)*
          T10 (a U b)*
          k) (a*b)* ∪ (b*a)*
          T3 εU (a U b)*b U (b U a)*a
          T1 \varepsilon U ((a U b)*b U (a U b)*a)
          T8 \varepsilon U (a U b)*(a U b)
          T15 ε U (a U b)+
T10 (a U b)*
    I) (\varepsilon \cup \mathbf{a}^{+}) bb<sup>+</sup> (\varepsilon \cup \mathbf{c})^{*}
           T10a*bb+c*
       m) \mathbf{y}(\ \epsilon \cup \mathbf{x}^{+}) \cup (\ \mathbf{y}\mathbf{y}^{+}(\ \epsilon \cup \mathbf{x}\ )^{*})
           T10 yx* U yy+x*
          T9 (y U yy+)x*
          T8 y (e U y+)x*
T10 yy+x*
         n) (\epsilon \cup \mathbf{x})(\epsilon \cup \mathbf{x})^{+} \cup (\epsilon \cup \mathbf{x}) \cup \varnothing^{*}
          T15 y+x*
          T15 (e U x)+ U (e U x) U Ø
           T2 (e U x)^{+} U (e U x)
```

T10 x* U (e U x) T10 x*

o) $(\mathbf{ba}^*)^* \cup \varepsilon \cup (\mathbf{a} \cup \mathbf{b})^*$ T11 $(ba^*)^* \cup a^*(ba^*)^*$ T8 $(\varepsilon \cup a^*)(ba^*)^*$ T10 $a^*(ba^*)^*$ T11 $(a \cup b)^*$

T10 (a U b) aa* (e U aa) U (a U b) T10 (a U b) aa* U (a u b) T9 (a U b)((aa)* u e) T10

p) $(\mathbf{a} \cup \mathbf{b})(\varepsilon \cup \mathbf{aa})^*(\varepsilon \cup \mathbf{aa}) \cup (\mathbf{a} \cup \mathbf{b})$ $(\mathbf{a} \cup \mathbf{b})(\mathbf{aa})^*$

q) $a*b ((a \cup b) a*b)* \cup a*b$

T8 a*b(((a U b)a*b)* u e)
T10 a*b((a U b) a*b)*
T12 (a*b (a U b))* a*b
T8, T1 (a*b² U a*b)* a*b
T9 ((a*)(ba U b²))* a*b
T11 (a
U ba U b²)*b

r) $(b^*a)^* \cup (a \cup b)^*a$

T13 e U (b U a)*a U (a U b)*a
T8 e U ((b U a)* U (a U b)*)a
T10 (b U a)*a
T13 (b*a)*

s) $(abc^*)^* \cup ab \cup ab(c \cup ab)^*$

T8 (abc*)* U a T10 (abc*)* U (ab)(c U ab)*
T10 (abc*)* U (ab)(ab U c)*
T14 e U ab(ab U c)* U (ab)(ab u c)
T10 e U ab(ab U c)*
T14 (abc*)*