

Intégration

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile **** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1 ****

Soient f et g deux fonctions continues et strictement positives sur [a,b]. Pour n entier naturel non nul donné, on pose $u_n = \left(\int_a^b (f(x))^n g(x) \, dx\right)^{1/n}$.

Montrer que la suite (u_n) converge et déterminer sa limite (commencer par le cas g=1).

Correction ▼ [005444]

Exercice 2 **I

Soit f une application de classe C¹ sur [0,1] telle que f(1) ≠ 0.
 Pour n∈ N, on pose u_n = ∫₀¹ tⁿ f(t) dt. Montrer que lim_{n→+∞} u_n = 0 puis déterminer un équivalent simple de u_n quand n tend vers +∞ (étudier lim_{n→+∞} nu_n).

2. Mêmes questions en supposant que f est de classe C^2 sur [0,1] et que f(1)=0 et $f'(1)\neq 0$.

Correction ▼ [005445]

Exercice 3 ***IT

Limites de

1)
$$\frac{1}{n^3} \sum_{k=1}^n k^2 \sin \frac{k\pi}{n}$$
 2) $(\frac{1}{n!} \prod_{k=1}^n (a+k))^{1/n}$ $(a > 0 \text{ donn\'e})$ 3) $\sum_{k=1}^n \frac{n+k}{n^2+k}$ 4) $\sum_{k=1}^n \frac{1}{\sqrt{n^2-k^2}}$ 5) $\frac{1}{n\sqrt{n}} \sum_{k=1}^n E(\sqrt{k})$ 6) $\sum_{k=1}^n \frac{k^2}{8k^3+n^3}$ 7) $\sum_{k=n}^{2n-1} \frac{1}{2k+1}$ 8) $n \sum_{k=1}^n \frac{e^{-n/k}}{k^2}$

Correction ▼ [005446]

Exercice 4 ***I

Soit f une fonction de classe C^2 sur [0,1]. Déterminer le réel a tel que :

$$\int_0^1 f(t) dt - \frac{1}{n} \sum_{k=1}^{n-1} f(\frac{k}{n}) \underset{n \to +\infty}{=} \frac{a}{n} + o(\frac{1}{n}).$$

Correction ▼ [005447]

Exercice 5 **I Le lemme de LEBESGUE

- 1. On suppose que f est une fonction de classe C^1 sur [a,b]. Montrer que $\lim_{\lambda \to +\infty} \int_a^b \sin(\lambda t) f(t) dt = 0$.
- 2. (***) Redémontrer le même résultat en supposant simplement que f est continue par morceaux sur [a,b] (commencer par le cas des fonctions en escaliers).

Correction ▼ [005448]

Exercice 6 ***T

Soit E l'ensemble des fonctions continues strictement positives sur [a,b].

Soit
$$\varphi : E \to \mathbb{R}$$

 $f \mapsto \left(\int_a^b f(t) \, dt \right) \left(\int_a^b \frac{1}{f(t)} \, dt \right)$

- 1. Montrer que $\varphi(E)$ n'est pas majoré.
- 2. Montrer que $\varphi(E)$ est minoré. Trouver $m = \inf{\{\varphi(f), f \in E\}}$. Montrer que cette borne infèrieure est atteinte et trouver toutes les f de E telles que $\varphi(f) = m$.

Correction ▼ [005449]

Exercice 7 ***

Etude complète de la fonction $f(x) = \frac{1}{x-1} \int_1^x \frac{t^2}{\sqrt{1+t^8}} dt$.

Correction ▼ [005450]

Exercice 8 ***

Pour x réel, on pose $f(x) = e^{-x^2} \int_0^x e^{t^2} dt$.

- 1. Montrer que f est impaire et de classe C^{∞} sur \mathbb{R} .
- 2. Montrer que f est solution de l'équation différentielle y' + 2xy = 1.
- 3. Montrer que $\lim_{x\to +\infty} 2x f(x) = 1$.
- 4. Soit $g(x) = \frac{e^{x^2}}{2x}f'(x)$. Montrer que g est strictement décroissante sur $]0, +\infty[$ et que g admet sur $]0, +\infty[$ un unique zéro noté x_0 vérifiant de plus $0 < x_0 < 1$.
- 5. Dresser le tableau de variations de f.

Correction ▼ [005451]

Exercice 9 ***

Soit f une fonction de classe C^1 sur [0,1] telle que f(0)=0. Montrer que $2\int_0^1 f^2(t) \ dt \le \int_0^1 f'^2(t) \ dt$.

Correction ▼ [005452]

Exercice 10 ****

Soit f une fonction continue sur [a,b]. Pour x réel, on pose $F(x) = \int_a^b |t-x| f(t) \, dt$. Etudier la dérivabilité de F sur \mathbb{R} .

Correction ▼ [005453]

Exercice 11 ***

Soit a un réel strictement positif et f une application de classe C^1 et strictement croissante sur [0,a] telle que f(0) = 0. Montrer que $\forall x \in [0,a], \ \forall y \in [0,f(a)], \ xy \le \int_0^x f(t) \ dt + \int_0^y f^{-1}(t) \ dt$.

Correction ▼ [005454]

Exercice 12 **

Soit f continue sur [0,1] telle que $\int_0^1 f(t) dt = \frac{1}{2}$. Montrer que f admet un point fixe.

Correction ▼ [005455]

Exercice 13 **

Soient f et g deux fonctions continues par morceaux et positives sur [0,1] telles que $\forall x \in [0,1], f(x)g(x) \ge 1$. Montrer que $(\int_0^1 f(t) dt)(\int_0^1 g(t) dt) \ge 1$.

Correction ▼ [005456]

Exercice 14 ***

Partie principale quand *n* tend vers $+\infty$ de $u_n = \sum_{k=1}^n \sin \frac{1}{(n+k)^2}$.

Correction ▼ [005457]

Exercice 15 **

Montrer que $\sum_{k=1}^{n} \sin \frac{k}{n} = \frac{1}{2} + \frac{1}{2n} + o(\frac{1}{n})$.

Correction ▼ [005458]

Exercice 16 **

Déterminer les limites quand n tend vers $+\infty$ de

1)
$$u_n = \frac{1}{n!} \int_0^1 \operatorname{Arcsin}^n x \, dx$$
 2) $\int_0^1 \frac{x^n}{1+x} \, dx$ 3) $\int_0^{\pi} \frac{n \sin x}{x+n} \, dx$.

Correction ▼ [005459]

Exercice 17 ***

Etude complète de $F(x) = \int_x^{2x} \frac{dt}{\sqrt{t^4 + t^2 + 1}}$.

[005460]

Exercice 18 ***

Trouver toutes les applications continues sur \mathbb{R} vérifiant : $\forall (x,y) \in \mathbb{R}^2$, $f(x)f(y) = \int_{x-y}^{x+y} f(t) dt$.

Correction ▼ [005461]

Exercice 19 ***

Soit f une fonction de classe C^1 sur [a,b] telle que f(a)=f(b)=0 et soit $M=\sup\{|f'(x)|,\,x\in[a,b]\}$. Montrer $\operatorname{que}\left|\int_a^b f(x)\;dx\right| \leq M\frac{(b-a)^2}{4}.$ Correction \blacktriangledown

[005462]

Exercice 20 **

Déterminer les fonctions f continues sur [0,1] vérifiant $\left| \int_0^1 f(t) \, dt \right| = \int_0^1 |f(t)| \, dt$.

Correction ▼ [005463]

Exercice 21 ***I

- Déterminer $\lim_{x\to 1} \int_x^{x^2} \frac{dt}{\ln t}$.
- Etude complète de $F(x) = \int_{x}^{x^2} \frac{dt}{\ln t}$

Correction ▼ [005464]

Exercice 22 ****

Soit $f(t) = \frac{t^2}{e^t - 1}$ si $t \neq 0$ et 0 si t = 0.

- 1. Vérifier que f est continue sur \mathbb{R} .
- 2. Soit $F(x) = \int_0^x f(t) dt$. Montrer que F a une limite réelle ℓ quand x tend vers $+\infty$ puis que $\ell = 2 \lim_{n \to +\infty} \sum_{k=1}^n \frac{1}{k^2}$.

Correction ▼

Correction de l'exercice 1 A

f est continue sur le segment [a,b] et admet donc un maximum M sur ce segment. Puisque f est strictement positive sur [a,b], ce maximum est strictement positif.

Pour $n \in \mathbb{N}^*$, posons $u_n = \left(\int_a^b (f(x))^n dx \right)^{1/n}$. Par croissance de l'intégrale, on a déjà

$$u_n \le \left(\int_a^b M^n \, dx\right)^{1/n} = M(b-a)^{1/n},$$

(car $\forall x \in [a,b], \ 0 \le f(x) \le M \Rightarrow \forall x \in [a,b], \ (f(x))^n \le M^n$ par croissance de la fonction $t \mapsto t^n$ sur $[0,+\infty[)$. D'autre part, par continuité de f en x_0 tel que $f(x_0) = M$, pour $\varepsilon \in]0,2M[$ donné, $\exists [\alpha,\beta] \subset [a,b]/\ \alpha < \beta$ et $\forall x \in [\alpha,\beta], \ f(x) \ge M - \frac{\varepsilon}{2}$.

Pour n élément de \mathbb{N}^* , on a alors

$$u_n \ge \left(\int_{\alpha}^{\beta} (f(x))^n dx\right)^{1/n} \ge \left(\int_{\alpha}^{\beta} (M - \frac{\varepsilon}{2})^n dx\right)^{1/n} = (M - \frac{\varepsilon}{2})(\beta - \alpha)^{1/n}.$$

En résumé,

$$\forall \varepsilon \in]0,2M[,\ \exists (\alpha,\beta) \in [a,b]^2/\ \alpha < \beta \text{ et } \forall n \in \mathbb{N}^*,\ (M-\frac{\varepsilon}{2})(\beta-\alpha)^{1/n} \leq u_n \leq M(b-a)^{1/n}.$$

Mais, $\lim_{n \to +\infty} M(b-a)^{1/n} = M$ et $\lim_{n \to +\infty} (M - \frac{\varepsilon}{2})(\beta - \alpha)^{1/n} = (M - \frac{\varepsilon}{2})(\beta - \alpha)^{1/n}$. Par suite, $\exists n_1 \in \mathbb{N}^* / \forall n \ge n_1$, $M(b-a)^{1/n} < M + \varepsilon$ et $\exists n_2 \in \mathbb{N}^* / \forall n \ge n_2$, $(M - \frac{\varepsilon}{2})(\beta - \alpha)^{1/n} > M - \varepsilon$. Soit $n_0 = \max\{n_1, n_2\}$. Pour $n \ge n_0$, on a $M - \varepsilon < u_n < M + \varepsilon$. On a montré que

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}^* / \ \forall n \in \mathbb{N}, \ (n \ge n_0 \Rightarrow |u_n - M| < \varepsilon),$$

et donc que $\lim_{n\to+\infty} u_n = M$.

Plus généralement, si g continue sur [a,b], g admet un minimum m_1 et un maximum M_1 sur cet intervalle, tous deux strictement positifs puisque g est strictement positive. Pour n dans \mathbb{N}^* , on a

$$m_1^{1/n} \left(\int_a^b (f(x))^n dx \right)^{1/n} \le \left(\int_a^b (f(x))^n g(x) dx \right)^{1/n} \le M_1^{1/n} \left(\int_a^b (f(x))^n dx \right),$$

et comme d'après l'étude du cas g=1, on a $\lim_{n\to+\infty} m_1^{1/n} \left(\int_a^b (f(x))^n\ dx\right)^{1/n} = \lim_{n\to+\infty} M_1^{1/n} \left(\int_a^b (f(x))^n\ dx\right)^{1/n} =$

M, le théorème de la limite par encadrements permet d'affirmer que $\lim_{n\to+\infty} \left(\int_a^b (f(x))^n g(x) \ dx \right)^{1/n} = M$. On a montré que

$$\lim_{n\to+\infty} \left(\int_a^b (f(x))^n g(x) \ dx \right)^{1/n} = \operatorname{Max}\{f(x), \ x\in [a,b]\}.$$

Correction de l'exercice 2 A

1. f est continue sur le segment [0,1] et est donc bornée sur ce segment. Soit M un majorant de |f| sur [0,1]. Pour $n \in \mathbb{N}$,

$$|u_n| \le \int_0^1 t^n |f(t)| dt \le M \int_0^1 t^n dt = \frac{M}{n+1},$$

et comme $\lim_{n\to +\infty} \frac{M}{n+1} = 0$, on a montré que $\lim_{n\to +\infty} u_n = 0$.

Soit $n \in \mathbb{N}$. Puisque f est de classe C^1 sur [0,1], on peut effectuer une intégration par parties qui fournit

$$u_n = \left[\frac{t^{n+1}}{n+1}f(t)\right]_0^1 - \frac{1}{n+1} \int_0^1 t^{n+1}f'(t) dt = \frac{f(1)}{n+1} - \frac{1}{n+1} \int_0^1 t^{n+1}f'(t) dt.$$

Puisque f' est continue sur [0,1], $\lim_{n\to+\infty}\int_0^1 t^{n+1}f'(t)\ dt=0$ ou encore $-\frac{1}{n+1}\int_0^1 t^{n+1}f'(t)\ dt=o(\frac{1}{n})$. D'autre part, puisque $f(1)\neq 0$, $\frac{f(1)}{n+1}\sim \frac{f(1)}{n}$ ou encore $\frac{f(1)}{n+1}=\frac{f(1)}{n}+o(\frac{1}{n})$. Finalement, $u_n=\frac{f(1)}{n}+o(\frac{1}{n})$, ou encore

$$u_n \sim \frac{f(1)}{n}$$
.

2. Puisque f est de classe C^1 sur [0,1] et que f(1)=0, une intégration par parties fournit $u_n=-\frac{1}{n+1}\int_0^1 t^{n+1}f'(t)\ dt$. Puisque f' est de classe C^1 sur [0,1] et que $f'(1)\neq 0$, le 1) appliqué à f' fournit

$$u_n = -\frac{1}{n+1} \int_0^1 t^{n+1} f'(t) dt \sim -\frac{1}{n} \frac{f'(1)}{n} = -\frac{f'(1)}{n^2}.$$

Par exemple, $\int_0^1 t^n \sin \frac{\pi t}{2} dt \sim \frac{1}{n}$ et $\int_0^1 t^n \cos \frac{\pi t}{2} dt \sim \frac{\pi}{2n^2}$

Correction de l'exercice 3

1. Pour $n \ge 1$,

$$u_n = \frac{1}{n^3} \sum_{k=1}^n k^2 \sin \frac{k\pi}{n} = \frac{1}{n} \sum_{k=1}^n (\frac{k}{n})^2 \sin \frac{k\pi}{n} = \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n}),$$

où $f(x) = x^2 \sin(\pi x)$. u_n est donc une somme de RIEMANN à pas constant associée à la fonction continue $f \sin [0,1]$. Quand n tend vers $+\infty$, le pas $\frac{1}{n}$ tend vers 0 et on sait que u_n tend vers

$$\int_0^1 x^2 \sin(\pi x) \, dx = \left[-\frac{1}{\pi} x^2 \cos(\pi x) \right]_0^1 + \frac{2}{\pi} \int_0^1 x \cos(\pi x) \, dx = \frac{1}{\pi} + \frac{2}{\pi} \left(\left[\frac{1}{\pi} x \sin(\pi x) \right]_0^1 - \frac{1}{\pi} \int_0^1 \sin(\pi x) \, dx \right)$$

$$= \frac{1}{\pi} - \frac{2}{\pi^2} \left[-\frac{1}{\pi} \cos(\pi x) \right]_0^1 = \frac{1}{\pi} - \frac{2}{\pi^2} \left(\frac{1}{\pi} + \frac{1}{\pi} \right)$$

$$= \frac{1}{\pi} - \frac{4}{\pi^3}.$$

2. On peut avoir envie d'écrire :

$$\ln(u_n) = \frac{1}{n} \left(\sum_{k=1}^n (\ln(a+k) - \ln k) \right) = \frac{1}{n} \sum_{k=1}^n \ln(1 + \frac{a}{k}).$$

La suite de nombres $a, \frac{a}{2}, ..., \frac{a}{n}$ « est une subdivision (à pas non constant) de [0, a] » mais malheureusement son pas $a - \frac{a}{2} = \frac{a}{2}$ ne tend pas vers 0 quand n tend vers $+\infty$. On n'est pas dans le même type de problèmes. Rappel. (exo classique) Soit v une suite strictement positive telle que la suite $(\frac{v_{n+1}}{v_n})$ tend vers un réel positif ℓ , alors la suite $(\sqrt[n]{v_n})$ tend encore vers ℓ .

Posons $v_n = \frac{1}{n!} \prod_{k=1}^n (a+k)$ puis $u_n = \sqrt[n]{v_n}$.

$$\frac{v_{n+1}}{v_n} = \frac{a+n+1}{n+1} \to 1,$$

et donc $\lim_{n\to+\infty}u_n=1$.

3. Encore une fois, ce n'est pas une somme de RIEMANN. On tente un encadrement assez large : pour $1 \le k \le n$,

$$\frac{n+k}{n^2+n} \le \frac{n+k}{n^2+k} \le \frac{n+k}{n^2}.$$

En sommant ces inégalités, il vient

$$\frac{1}{n^2+n}\sum_{k=1}^n(n+k)\leq \sum_{k=1}^n\frac{n+k}{n^2+k}\leq \frac{1}{n^2}\sum_{k=1}^n(n+k),$$

et donc ((premier terme + dernier terme)×nombre de termes/2),

$$\frac{1}{n^2+n}\frac{((n+1)+2n)n}{2} \le u_n \le \frac{1}{n^2}\frac{((n+1)+2n)n}{2},$$

et finalement, $\frac{3n+1}{2(n+1)} \le u_n \le \frac{3n+1}{2n}$. Or, $\frac{3n+1}{2(n+1)}$ et $\frac{3n+1}{2n}$ tendent tous deux vers $\frac{3}{2}$. Donc, u_n tend vers $\frac{3}{2}$.

4. Tout d'abord

$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 - k^2}} = \frac{1}{n} \sum_{k=1}^n \frac{1}{\sqrt{1 - (\frac{k}{n})^2}} = \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n}),$$

où $f(x) = \frac{1}{\sqrt{1-x^2}}$ pour $x \in [0,1[$. u_n est donc effectivement une somme de RIEMANN à pas constant associée à la fonction f mais malheureusement, cette fonction n'est pas continue sur [0,1], ou même prolongeable par continuité en 1. On s'en sort néanmoins en profitant du fait que f est croissante sur [0,1[.

Puisque f est croissante sur [0,1[, pour $1 \le k \le n-2$, on a $\frac{1}{n} \frac{1}{\sqrt{1-(\frac{k}{n})^2}} \le \int_{k/n}^{(k+1)/n} \frac{1}{\sqrt{1-x^2}} dx$, et pour $1 \le k \le n-1$, $\frac{1}{n} \frac{1}{\sqrt{1-(\frac{k}{n})^2}} \ge \int_{(k-1)/n}^{k/n} \frac{1}{\sqrt{1-x^2}} dx$. En sommant ces inégalités, on obtient

$$u_n = \frac{1}{n} \sum_{k=1}^{n-1} \frac{1}{\sqrt{1 - (\frac{k}{n})^2}} \ge \sum_{k=1}^{n-1} \int_{(k-1)/n}^{k/n} \frac{1}{\sqrt{1 - x^2}} dx = \int_0^{1 - \frac{1}{n}} \frac{1}{\sqrt{1 - x^2}} dx = \operatorname{Arcsin}(1 - \frac{1}{n}),$$

et

$$u_n = \frac{1}{n} \sum_{k=1}^{n-2} \frac{1}{\sqrt{1 - (\frac{k}{n})^2}} + \frac{1}{\sqrt{n^2 - (n-1)^2}} \le \int_{\frac{1}{n}}^{1 - \frac{1}{n}} \frac{1}{\sqrt{1 - x^2}} dx + \frac{1}{\sqrt{2n - 1}}$$

$$= \operatorname{Arcsin}(1 - \frac{1}{n}) - \operatorname{Arcsin}\frac{1}{n} + \frac{1}{\sqrt{2n - 1}}.$$

Quand *n* tend vers $+\infty$, les deux membres de cet encadrement tendent vers Arcsin $1 = \frac{\pi}{2}$, et donc u_n tend vers $\frac{\pi}{2}$.

5. Pour $1 \le k \le n$, $\sqrt{k} - 1 \le E(\sqrt{k}) \le \sqrt{k}$, et en sommant,

$$\frac{1}{n\sqrt{n}}\sum_{k=1}^n \sqrt{k} - \frac{1}{\sqrt{n}} \le u_n \le \frac{1}{n\sqrt{n}}\sum_{k=1}^n \sqrt{k}.$$

Quand n tend vers $+\infty$, $\frac{1}{\sqrt{n}}$ tend vers 0 et la somme de RIEMANN $\frac{1}{n\sqrt{n}}\sum_{k=1}^n \sqrt{k} = \frac{1}{n}\sum_{k=1}^n \sqrt{\frac{k}{n}}$ tend vers $\int_0^1 \sqrt{x} \, dx = \frac{3}{2}$. Donc, u_n tend vers $\frac{3}{2}$.

6. $u_n = \frac{1}{n} \sum_{k=1}^n \frac{(k/n)^2}{1+8(k/n)^3}$ tend vers $\int_0^1 \frac{x^2}{8x^3+1} dx = \left[\frac{1}{24} \ln |8x^3+1|\right]_0^1 = \frac{\ln 3}{12}$.

7. $u_n = \sum_{k=0}^{n-1} \frac{1}{2(k+n)+1} = \frac{1}{2} \frac{2}{n} \sum_{k=0}^{n-1} \frac{1}{2+\frac{2k+1}{2}}$ tend vers $\frac{1}{2} \int_0^2 \frac{1}{2+x} dx = \frac{1}{2} (\ln 4 - \ln 2) = \ln 2$.

8. Soit $f(x) = \frac{1}{x^2}e^{-1/x}$ si x > 0 et 0 si x = 0. f est continue sur [0,1] (théorèmes de croissances comparées). Donc, $u_n = \frac{1}{n}\sum_{k=1}^n f(\frac{k}{n})$ tend vers $\int_0^1 f(x) \ dx$. Pour $x \in [0,1]$, posons $F(x) = \int_x^1 f(t) \ dt$. Puisque f est continue sur [0,1], F l'est et

$$\int_0^1 f(x) \, dx = F(0) = \lim_{x \to 0, \, x > 0} F(x) = \lim_{x \to 0, \, x > 0} \left[e^{-1/t} \right]_x^1 = \lim_{x \to 0, \, x > 0} (e^{-1} - e^{-1/x}) = \frac{1}{e}.$$

Donc, u_n tend vers $\frac{1}{e}$ quand n tend vers $+\infty$.

Correction de l'exercice 4

Supposons f de classe C^2 sur [0,1]. Soit F une primitive de f sur [0,1]. Soit n un entier naturel non nul.

$$u_n = \int_0^1 f(t) dt - \frac{1}{n} \sum_{k=0}^{n-1} f(\frac{k}{n}) = \sum_{k=0}^{n-1} \left(\int_{k/n}^{(k+1)/n} f(t) dt - \frac{1}{n} f(\frac{k}{n}) \right) = \sum_{k=0}^{n-1} \left(F(\frac{k+1}{n}) - F(\frac{k}{n}) - \frac{1}{n} F'(\frac{k}{n}) \right).$$

f est de classe C^2 sur le segment [0,1]. Par suite, $F^{(3)}=f''$ est définie et bornée sur ce segment. En notant M_2 la borne supérieure de |f''| sur [0,1], l'inégalité de TAYLOR-LAGRANGE à l'ordre 3 appliquée à F sur le segment [0,1] fournit

$$\left| F(\frac{k+1}{n}) - F(\frac{k}{n}) - \frac{1}{n} F'(\frac{k}{n}) - \frac{1}{2n^2} F''(\frac{k}{n}) \right| \le \frac{(1/n)^3 M_2}{6},$$

et donc,

$$\begin{split} \left| \sum_{k=0}^{n-1} [F(\frac{k+1}{n}) - F(\frac{k}{n}) - \frac{1}{n} F'(\frac{k}{n}) - \frac{1}{2n^2} F''(\frac{k}{n})] \right| &\leq \sum_{k=0}^{n-1} |F(\frac{k+1}{n}) - F(\frac{k}{n}) - \frac{1}{n} F'(\frac{k}{n}) - \frac{1}{2n^2} F''(\frac{k}{n})| \\ &\leq \sum_{k=0}^{n-1} \frac{(1/n)^3 M_2}{6} = \frac{M_2}{6n^2}. \end{split}$$

Ainsi, $\sum_{k=0}^{n-1} [F(\frac{k+1}{n}) - F(\frac{k}{n}) - \frac{1}{n}F'(\frac{k}{n}) - \frac{1}{2n^2}F''(\frac{k}{n})] = O(\frac{1}{n^2})$, ou encore $\sum_{k=0}^{n-1} [F(\frac{k+1}{n}) - F(\frac{k}{n}) - \frac{1}{n}F'(\frac{k}{n}) - \frac{1}{2n^2}F''(\frac{k}{n})] = O(\frac{1}{n^2})$, ou enfin,

$$u_n = \sum_{k=0}^{n-1} \frac{1}{2n^2} F''(\frac{k}{n}) + o(\frac{1}{n}).$$

Maintenant,

$$\sum_{k=0}^{n-1} \frac{1}{2n^2} F''(\frac{k}{n}) = \frac{1}{2n} \cdot \frac{1}{n} \sum_{k=0}^{n-1} f'(\frac{k}{n}).$$

Or, la fonction f' est continue sur le segment [0,1]. Par suite, la somme de RIEMANN $\frac{1}{n}\sum_{k=0}^{n-1}f'(\frac{k}{n})$ tend vers $\int_0^1 f'(t) dt = f(1) - f(0)$ et donc

$$\frac{1}{2n} \frac{1}{n} \sum_{k=0}^{n-1} f'(\frac{k}{n}) = \frac{1}{2n} (f(1) - f(0) + o(1)) = \frac{f(1) - f(0)}{2n} + o(\frac{1}{n}).$$

Finalement,

$$\int_0^1 f(t) dt - \frac{1}{n} \sum_{k=0}^{n-1} f(\frac{k}{n}) = \frac{f(1) - f(0)}{2n} + o(\frac{1}{n}).$$

Correction de l'exercice 5

1. Puisque f est de classe C^1 sur [a,b], on peut effectuer une intégration par parties qui fournit pour $\lambda > 0$:

$$\left| \int_a^b f(t) \sin(\lambda t) \, dt \right| = \left| \frac{1}{\lambda} \left(-\left[\cos(\lambda t) f(t) \right]_a^b + \int_a^b f'(t) \cos(\lambda t) \, dt \right) \right| \le \frac{1}{\lambda} \left(|f(a)| + |f(b)| + \int_a^b |f'(t)| \, dt \right).$$

Cette dernière expression tend vers 0 quand λ tend vers $+\infty$, et donc $\int_a^b f(t) \sin(\lambda t) dt$ tend vers 0 quand λ tend vers $+\infty$.

2. Si f est simplement supposée continue par morceaux, on ne peut donc plus effectuer une intégration par parties.

Le résultat est clair si f = 1, car pour $\lambda > 0$, $\left| \int_a^b \sin(\lambda t) dt \right| = \dots \le \frac{2}{\lambda}$.

Le résultat s'étend aux fonctions constantes par linéarité de l'intégrale puis aux fonctions constantes par morceaux par additivité par rapport à l'intervalle d'intégration, c'est-à-dire aux fonctions en escaliers.

Soit alors f une fonction continue par morceaux sur [a,b].

Soit $\varepsilon > 0$. On sait qu'il existe une fonction en escaliers g sur [a,b] telle que $\forall x \in [a,b], |f(x) - g(x)| < \frac{\varepsilon}{2(b-a)}$.

Pour $\lambda > 0$, on a alors

$$\left| \int_{a}^{b} f(t) \sin(\lambda t) dt \right| = \left| \int_{a}^{b} (f(t) - g(t)) \sin(\lambda t) dt + \int_{a}^{b} g(t) \sin(\lambda t) dt \right|$$

$$\leq \int_{a}^{b} |f(t) - g(t)| dt + \left| \int_{a}^{b} g(t) \sin(\lambda t) dt \right| \leq (b - a) \frac{\varepsilon}{2(b - a)} + \left| \int_{a}^{b} g(t) \sin(\lambda t) dt \right|$$

$$= \frac{\varepsilon}{2} + \left| \int_{a}^{b} g(t) \sin(\lambda t) dt \right|.$$

Maintenant, le résultat étant établi pour les fonctions en esacliers,

$$\exists A > 0 / \ \forall \lambda \in \mathbb{R}, \ (\lambda > A \Rightarrow \left| \int_a^b g(t) \sin(\lambda t) \ dt \right| < \frac{\varepsilon}{2}).$$

Pour $\lambda > A$, on a alors $\left| \int_a^b f(t) \sin(\lambda t) \, dt \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. On a montré que

$$\forall \varepsilon > 0, \exists A > 0 / \ \forall \lambda \in \mathbb{R}, \ (\lambda > A \Rightarrow \left| \int_a^b f(t) \sin(\lambda t) \ dt \right| < \varepsilon),$$

et donc que $\int_a^b f(t) \sin(\lambda t) dt$ tend vers 0 quand λ tend vers $+\infty$.

Correction de l'exercice 6 ▲

1. Soient m un réel strictement positif et, pour $t \in \mathbb{R}$, $f_m(t) = e^{mt}$. f_m est bien un élément de E et de plus,

$$\varphi(f_m) = \frac{1}{m^2} (e^{mb} - e^{ma}) (e^{-ma} - e^{-mb})
= \frac{1}{m^2} e^{m(a+b)/2} (e^{m(b-a)/2} + e^{-m(b-a)/2}) e^{-m(a+b)/2} (e^{m(b-a)/2} + e^{-m(b-a)/2})
= \frac{4 \operatorname{sh}^2(m(b-a)/2)}{m^2}.$$

Cette expression tend vers $+\infty$ quand m tend vers $+\infty$ et $\varphi(E)$ n'est pas majoré.

2. Soit f continue et strictement positive sur [a,b]. L'inégalité de CAUCHY-SCHWARZ montre que :

$$\varphi(f) = \int_a^b \left(\sqrt{f(t)}\right)^2 \, dt \int_a^b \left(\frac{1}{\sqrt{f(t)}}\right)^2 \, dt \geq \left(\int_a^b \sqrt{f(t)} \frac{1}{\sqrt{f(t)}} \, dt\right)^2 = (b-a)^2,$$

avec égalité si et seulement si la famille de fonctions $(\sqrt{f(t)},\frac{1}{\sqrt{f(t)}})$ est liée ou encore si et seulement si $\exists \lambda \in \mathbb{R}_+^*/ \ \forall t \in [a,b], \ \sqrt{f(t)} = \lambda \frac{1}{\sqrt{f(t)}}$ ou enfin si et seulement si $\exists \lambda \in \mathbb{R}_+^*/ \ \forall t \in [a,b], \ f(t) = \lambda$, c'est-à-dire que f est une constante strictement positive.

Tout ceci montre que $\varphi(E)$ admet un minimum égal à $(b-a)^2$ et obtenu pour toute fonction f qui est une constante strictement positive.

Correction de l'exercice 7 ▲

Pour t réel, posons $g(t) = \frac{t^2}{\sqrt{1+t^8}}$ puis, pour x réel, $G(x) = \int_1^x g(t) dt$. Puisque g est définie et continue sur \mathbb{R} , $G(t) = \int_1^x g(t) dt$. est définie sur \mathbb{R} et de classe C^1 et G' = g (G est la primitive de g sur \mathbb{R} qui s'annule en 1). Plus précisément, gest de classe C^{∞} sur \mathbb{R} et donc G est de classe C^{∞} sur \mathbb{R} .

Finalement, f est définie et de classe C^{∞} sur $]-\infty,1[\cup]1,+\infty[$.

Etude en 1.

Pour $x \neq 1$,

$$f(x) = \frac{G(x)}{x-1} = \frac{G(1) + G'(1)(x-1) + \frac{G''(1)}{2}(x-1)^2 + o((x-1)^2)}{x-1} = g(1) + g'(1)(x-1) + o((x-1)).$$

Donc, f admet en 1 un développement limité d'ordre 1. Par suite, f se prolonge par continuité en 1 en posant $f(1) = g(1) = \frac{1}{\sqrt{2}}$ puis le prolongement est dérivable en 1 et $f'(1) = \frac{1}{2}g'(1)$. Or, pour tout réel x, $g'(x) = 2x\frac{1}{\sqrt{1+x^8}} + x2.(-\frac{4x^7}{(1+x^8)\sqrt{1+x^8}}) = 2x\frac{1-x^8}{(1+x^8)\sqrt{1+x^8}}$ et g'(1) = 0. Donc, f'(1) = 0.

Dérivée. VariationsPour $x \neq 1$, $f'(x) = \frac{G'(x)(x-1)-G(x)}{(x-1)^2}$. f'(x) est du signe de h(x) = G'(x)(x-1) - G(x) dont la dérivée est $h'(x) = G''(x)(x-1) + G'(x) - G'(x) = \frac{G''(x)(x-1)-G'(x)}{(x-1)^2}$. (x-1)g'(x). h' est du signe de $2x(1-x^8)(x-1)$ ou encore du signe de -2x(1+x). h est donc décroissante sur $]-\infty,-1]$ et sur $[0,+\infty[$ et croissante sur [-1,0].

Maintenant, quand x tend vers $+\infty$ (ou $-\infty$), $G'(x)(x-1) = g(x)(x-1) \sim x \frac{1}{x^2} = \frac{1}{x}$ et donc G'(x)(x-1) tend vers 0. Ensuite, pour $x \ge 1$

$$0 \le G(x) \le \int_1^x \frac{t^2}{\sqrt{t^8}} dt = 1 - \frac{1}{x} \le 1,$$

et G est bornée au voisinage de $+\infty$ (ou de $-\infty$). Comme G est croissante sur \mathbb{R} , G a une limite réelle en $+\infty$ et en $-\infty$. Cette limite est strictement positive en $+\infty$ et strictement négative en $-\infty$. Par suite, h a une limite strictement positive en $-\infty$ et une limite strictement négative en $+\infty$. Sur $[0, +\infty[$, h est décroissante et s'annule en 1. Donc, h est positive sur [0,1] et négative sur $[1,+\infty[$. Ensuite,

$$h(-1) = \int_{-1}^{1} \frac{t^2}{\sqrt{1+t^8}} dt - \sqrt{2} = 2 \int_{0}^{1} \frac{t^2}{\sqrt{1+t^8}} dt - \sqrt{2} < 2 \int_{0}^{1} \frac{1}{\sqrt{2}} dt - \sqrt{2} = 0,$$

et h(-1) < 0. h s'annule donc, une et une seule fois sur $]-\infty,-1[$ en un certain réel α et une et une seule fois sur] – 1,0[en un certain réel β . De plus, h est strictement positive sur] – ∞ , α [, strictement négative sur] α , β [, strictement positive sur $]\beta, 1[$ et strictement négative sur $]1, +\infty[$.

f est strictement croissante sur $]-\infty,\alpha]$, strictement décroissante sur $[\alpha,\beta]$, strictement croissante sur $[\beta,1]$ et strictement décroissante sur $[1, +\infty[$.

Etude en l'infini.

En $+\infty$ ou $-\infty$, G a une limite réelle et donc f tend vers 0.

Correction de l'exercice 8 A

- 1. La fonction $t \mapsto e^{t^2}$ est de classe C^{∞} sur \mathbb{R} . Donc, la fonction $x \mapsto \int_0^x e^{t^2} dt$ est de classe C^{∞} sur \mathbb{R} et il en est de même de f.
 - La fonction $t \mapsto e^{t^2}$ est paire et donc la fonction $x \mapsto \int_0^x e^{t^2} dt$ est impaire. Comme la fonction $x \mapsto e^{-x^2}$ est paire, f est impaire.
- 2. Pour x réel, $f'(x) = -2xe^{-x^2} \int_0^x e^{t^2} dt + e^{-x^2} e^{x^2} = -2xf(x) + 1$.

3. Pour $x \ge 1$, une intégration par parties fournit :

$$\int_{1}^{x} e^{t^{2}} dt = \int_{1}^{x} \frac{1}{2t} \cdot 2t e^{t^{2}} dt = \left[\frac{1}{2t} e^{t^{2}} \right]_{1}^{x} + \frac{1}{2} \int_{1}^{x} \frac{e^{t^{2}}}{t^{2}} dt = \frac{e^{x^{2}}}{2x} - \frac{e}{2} + \frac{1}{2} \int_{1}^{x} \frac{e^{t^{2}}}{t^{2}} dt,$$

et donc,

$$|1 - 2xf(x)| = \left| 1 - 2xe^{-x^2} \int_1^x e^{t^2} dt - 2xe^{-x^2} \int_0^1 e^{t^2} dt \right|$$

$$\leq xe^{-x^2} \int_1^x \frac{e^{t^2}}{t^2} dt + exe^{-x^2} + 2xe^{-x^2} \int_0^1 e^{t^2} dt.$$

Les deux derniers termes tendent vers 0 quand x tend vers $+\infty$. Il reste le premier. Pour $x \ge 2$,

$$\begin{split} 0 &\leq x e^{-x^2} \int_1^x \frac{e^{t^2}}{t^2} \, dt = x e^{-x^2} \int_1^{x-1} \frac{e^{t^2}}{t^2} \, dt + x e^{-x^2} \int_{x-1}^x \frac{e^{t^2}}{t^2} \, dt \\ &\leq x (x-1) e^{-x^2} \frac{e^{(x-1)^2}}{1^2} + x e^{-x^2} e^{x^2} \int_{x-1}^x \frac{1}{t^2} \, dt \\ &= x (x-1) e^{-2x+1} + x \left(\frac{1}{x-1} - \frac{1}{x} \right) = x (x-1) e^{-2x+1} + \frac{1}{x-1}. \end{split}$$

Cette dernière expression tend vers 0 quand x tend vers $+\infty$. On en déduit que $xe^{-x^2}\int_1^x \frac{e^{t^2}}{t^2} dt$ tend vers 0 quand x tend vers $+\infty$, ou encore, $f(x) \sim \frac{1}{2x}$.

4. Pour x > 0, $g(x) = \frac{e^{x^2}}{2x}(1 - 2xf(x)) = \frac{e^{x^2}}{2x} - \int_0^x e^{t^2} dt$ puis,

$$g'(x) = e^{x^2} - \frac{e^{x^2}}{2x^2} - e^{x^2} = -\frac{e^{x^2}}{2x^2} < 0.$$

g est donc strictement décroissante sur $]0,+\infty[$ et donc, g s'annule au plus une fois sur $]0,+\infty[$. Ensuite, $f'(1)=1-2f(1)=1-2e^{-1}\int_0^1 e^{t^2} dt$. Or, la méthode des rectangles fournit $\int_0^1 e^{t^2} dt = 1,44... > 1,35... = \frac{e}{2}$, et donc f'(1) < 0 puis g(1) < 0. Enfin, comme en 0^+ , $g(x) \sim \frac{1}{2x}f'(0) = \frac{1}{2x}$, $g(0^+) = +\infty$. Donc, g s'annule exactement une fois sur $]0,+\infty[$ en un certain réel x_0 de]0,1[.

5. g est strictement positive sur $]0,x_0[$ et strictement négative sur $]x_0,+\infty[$. Il en de même de f'. f est ainsi strictement croissante sur $[0,x_0]$ et strictement décroissante sur $[x_0,+\infty[$.

Correction de l'exercice 9

Pour $t \in [0, 1]$,

$$f^{2}(t) = \left(\int_{0}^{t} f'(u) \, du\right)^{2} \le \left(\int_{0}^{t} f'^{2}(u) \, du\right) \left(\int_{0}^{t} 1 \, du\right) \quad (CAUCHY - SCHWARZ)$$
$$= t \int_{0}^{t} f'^{2}(u) \, du \le t \int_{0}^{1} f'^{2}(u) \, du,$$

et donc, par croissance de l'intégrale,

$$\int_0^1 f^2(t) dt \le \int_0^1 t \left(\int_0^1 f'^2(u) du \right) dt = \left(\int_0^1 f'^2(u) du \right) \int_0^1 t dt = \frac{1}{2} \int_0^1 f'^2(u) du.$$

Correction de l'exercice 10

Pour x réel donné, la fonction $t \mapsto |t-x|f(t)$ est continue sur [a,b] et donc F(x) existe. Pour $x \le a$, $F(x) = \int_a^b (t-x)f(t) \, dt = -x \int_a^b f(t) \, dt + \int_a^b t f(t) \, dt$. F est donc de classe C^1 sur $]-\infty,a]$ en tant que fonction affine et, pour x < a, $F'(x) = -\int_a^b f(t) \, dt$ (en particulier $F'_g(a) = -\int_a^b f(t) \, dt$).

De même, pour $x \ge b$, $F(x) = x \int_a^b f(t) dt - \int_a^b t f(t) dt$. F est donc de classe C^1 sur $[b, +\infty[$ en tant que fonction affine et, pour $x \ge b$, $F'(x) = \int_a^b f(t) dt$ (en particulier $F'_d(b) = \int_a^b f(t) dt$). Enfin, si a < x < b,

$$F(x) = \int_{a}^{x} (x - t)f(t) dt + \int_{x}^{b} (t - x)f(t) dt = x(\int_{a}^{x} f(t) dt - \int_{x}^{b} f(t) dt) - \int_{a}^{x} tf(t) dt + \int_{x}^{b} tf(t) dt.$$

F est donc de classe C^1 sur [a,b] et, pour $a \le x \le b$,

$$F'(x) = \int_{a}^{x} f(t) dt - \int_{x}^{b} f(t) dt + x(f(x) - (-f(x))) - xf(x) - xf(x)$$
$$= \int_{a}^{x} f(t) dt - \int_{x}^{b} f(t) dt.$$

(et en particulier, $F_d'(a) = -\int_a^b f(t) \ dt = F_g'(a)$ et $F_g'(b) = \int_a^b f(t) \ dt = F_d'(b)$). F est continue $]-\infty,a]$, [a,b] et $[b,+\infty[$ et donc sur \mathbb{R} . F est de classe C^1 sur $]-\infty,a]$, [a,b] et $[b,+\infty[$. De plus, $F_g'(a) = F_d'(a)$ et $F_g'(b) = F_d'(b)$. F est donc de classe C^1 sur \mathbb{R} .

Correction de l'exercice 11 ▲

Puisque f est continue et strictement croissante sur [0,a], f réalise une bijection de [0,a] sur f([0,a]) = [0,f(a)]. Soit $x \in [0,a]$. Pour $y \in [0,f(a)]$, posons $g(y) = \int_0^x f(t) \, dt + \int_0^y f^{-1}(t) \, dt - xy$. Puisque f est continue sur [0,a], on sait que f^{-1} est continue sur [0,f(a)] et donc la fonction $y \mapsto \int_0^y f^{-1}(t) \, dt$ est définie et de classe C^1 sur [0,f(a)]. Donc g est de classe C^1 sur [0,f(a)] et pour $y \in [0,f(a)]$, $g'(y) = f^{-1}(y) - x$.

Or, f étant strictement croissante sur [0,a], $g'(y) > 0 \Leftrightarrow f^{-1}(y) > x \Leftrightarrow y > f(x)$. Par suite, g' est strictement négative sur [0,f(x)[et strictement positive sur]f(x),f(a)[, et g est strictement décroissante sur [0,f(x)] et strictement croissante sur [f(x),f(a)]. g admet en g=f(x) un minimum global égal à $g(f(x))=\int_0^x f(t) dt + \int_0^x f(t) dt - xf(x)$. Notons h(x) cette expression.

 $\int_0^{f(x)} f^{-1}(t) \ dt - x f(x). \text{ Notons } h(x) \text{ cette expression.}$ $f \text{ est continue sur } [0,a]. \text{ Donc, } x \mapsto \int_0^x f(t) \ dt \text{ est de classe } C^1 \text{ sur } [0,a]. \text{ Ensuite } f \text{ est de classe } C^1 \text{ sur } [0,a] \text{ à valeurs dans } [0,f(a)] \text{ et } y \mapsto \int_0^y f^{-1}(t) \ dt \text{ est de classe } C^1 \text{ sur } [0,f(a)] \text{ (puisque } f^{-1} \text{ est continue sur } [0,f(a)]).$ On en déduit que $x \mapsto \int_0^{f(x)} f^{-1}(t) \ dt \text{ est de classe } C^1 \text{ sur } [0,a].$ Il en est de même de h et pour $x \in [0,a]$,

$$h'(x) = f(x) + f'(x)f^{-1}(f(x)) - f(x) - xf'(x) = 0.$$

h est donc constante sur [0,a] et pour $x \in [0,a]$, h(x) = h(0) = 0. On a montré que

$$\forall (x,y) \in [0,a] \times [0,f(a)], \ \int_0^x f(t) \ dt + \int_0^y f^{-1}(t) \ dt - xy \ge \int_0^x f(t) \ dt + \int_0^{f(x)} f^{-1}(t) \ dt - xf(x) = 0.$$

Correction de l'exercice 12

Soit, pour $x \in [0,1]$, g(x) = f(x) - x. g est continue sur [0,1] et

$$\int_0^1 g(x) \, dx = \int_0^1 f(x) \, dx - \int_0^1 x \, dx = \frac{1}{2} - \frac{1}{2} = 0.$$

Si g est de signe constant, g étant de plus continue sur [0,1] et d'intégrale nulle sur [0,1], on sait que g est nulle. Sinon, g change de signe sur [0,1] et le théorème des valeurs intermédiaires montre que g s'annule au moins

une fois. Dans tous les cas, g s'annule au moins une fois sur [0,1] ou encore, f admet au moins un point fixe dans [0, 1].

Correction de l'exercice 13

D'après l'inégalité de CAUCHY-SCHWARZ,

$$\left(\int_0^1 f(t) \, dt\right) \left(\int_0^1 g(t) \, dt\right) = \left(\int_0^1 (\sqrt{f(t)})^2 \, dt\right) \left(\int_0^1 (\sqrt{g(t)})^2 \, dt\right) \ge \left(\int_0^1 \sqrt{f(t)} \sqrt{g(t)} \, dt\right)^2 \ge \left(\int_0^1 1 \, dt\right)^2 = 1.$$

Correction de l'exercice 14 ▲

Soit $x \in [0,1] \subset [0,\frac{\pi}{2}]$.

D'après la formule de TAYLOR-LAPLACE à l'ordre 1 fournit

$$\sin x = x - \int_0^x (x - t) \sin t \, dt \le x,$$

car pour $t \in [0,x]$, $(x-t) \ge 0$ et pour $t \in [0,x] \subset [0,\frac{\pi}{2}]$, $\sin t \ge 0$.

De même, la formule de TAYLOR-LAPLACE à l'ordre 3 fournit

$$\sin x = x - \frac{x^3}{6} + \int_0^x \frac{(x-t)^3}{6} \sin t \, dt \ge x - \frac{x^3}{6}.$$

Donc, $\forall x \in [0,1], x - \frac{x^3}{6} \le \sin x \le x$. Soient alors $n \ge 1$ et $k \in \{1,...,n\}$. On a $0 \le \frac{1}{(n+k)^2} \le 1$ et donc

$$\frac{1}{(n+k)^2} - \frac{1}{6(n+k)^6} \le \sin \frac{1}{(n+k)^2} \le \frac{1}{(n+k)^2},$$

puis en sommant

$$\sum_{k=1}^{n} \frac{1}{(n+k)^2} - \sum_{k=1}^{n} \frac{1}{6(n+k)^6} \le \sum_{k=1}^{n} \sin \frac{1}{(n+k)^2} \le \sum_{k=1}^{n} \frac{1}{(n+k)^2}.$$

Maintenant, quand n tend vers $+\infty$.

$$\sum_{k=1}^{n} \frac{1}{(n+k)^2} = \frac{1}{n} \cdot \frac{1}{n} \sum_{k=1}^{n} \frac{1}{(1+\frac{k}{n})^2} = \frac{1}{n} \left(\int_0^1 \frac{1}{(1+x)^2} \, dx + o(1) \right) = \frac{1}{2n} + o(\frac{1}{n}).$$

D'autre part,

$$0 \le \sum_{k=1}^{n} \frac{1}{6(n+k)^6} \le n \cdot \frac{1}{6n^6} = \frac{1}{6n^5},$$

et donc, $\sum_{k=1}^{n} \frac{1}{6(n+k)^6} = o(\frac{1}{n})$.

On en déduit que $2n(\frac{1}{(n+k)^2} - \frac{1}{6(n+k)^6}) = 2n(\frac{1}{2n} + o(\frac{1}{n})) = 1 + o(1)$ et que $2n\frac{1}{(n+k)^2} = 1 + o(1)$. Mais alors, d'après le théorème des gendarmes, $2n\sum_{k=1}^n\sin\frac{1}{(n+k)^2}$ tend vers 1 quand n tend vers $+\infty$, ou encore

$$\sum_{k=1}^{n} \sin \frac{1}{(n+k)^2} \underset{n \to +\infty}{\sim} \frac{1}{2n}.$$

Correction de l'exercice 15

Soit $n \in \mathbb{N}^*$.

$$\begin{split} \sum_{k=1}^n \sin\frac{k}{n^2} &= \operatorname{Im}(\sum_{k=1}^n e^{ik/n^2}) = \operatorname{Im}\left(e^{i/n^2}\frac{1-e^{ni/n^2}}{1-e^{i/n^2}}\right) = \operatorname{Im}\left(e^{i(1+\frac{n}{2}-\frac{1}{2})/n^2}\frac{\sin\frac{1}{2n}}{\sin\frac{1}{2n^2}}\right) = \frac{\sin\frac{n+1}{2n^2}\sin\frac{1}{2n}}{\sin\frac{1}{2n^2}} \\ &= \underbrace{\left(\frac{1}{2n} + \frac{1}{2n^2} + o(\frac{1}{n^2})\right)\left(\frac{1}{2n} + o(\frac{1}{n^2})\right)\left(\frac{1}{2n^2} + o(\frac{1}{n^3})\right)^{-1}}_{= \left(1 + \frac{1}{n} + o(\frac{1}{n})\right)\left(\frac{1}{2} + o(\frac{1}{n})\right)(1+o(\frac{1}{n}))^{-1} = \frac{1}{2} + \frac{1}{2n} + o(\frac{1}{n}), \end{split}$$

(on peut aussi partir de l'encadrement $\frac{k}{n^2} - \frac{k^3}{6n^6} \le \sin \frac{k}{n^2} \le \frac{k}{n^2}$).

Correction de l'exercice 16

1. Soit $n \in \mathbb{N}$. Pour $x \in [0, \frac{\pi}{2}]$, $0 \le \operatorname{Arcsin}^x \le (\frac{\pi}{2})^n$ et donc, par croissance de l'intégrale,

$$0 \le u_n \le \frac{1}{n!} \int_0^1 (\frac{\pi}{2})^n dx = \frac{1}{n!} (\frac{\pi}{2})^n.$$

D'après un théorème de croissances comparées, $\frac{1}{n!}(\frac{\pi}{2})^n$ tend vers 0 quand n tend vers $+\infty$. D'après le théorème des gendarmes, u_n tend vers 0 quand n tend vers $+\infty$.

- 2. $0 \le \int_0^1 \frac{x^n}{1+x} dx \le \int_0^1 \frac{x^n}{1+0} dx = \frac{1}{n+1}$. Comme $\frac{1}{n+1}$ tend vers 0 quand n tend vers $+\infty$, $\int_0^1 \frac{x^n}{1+x} dx$ tend vers 0 quand n tend vers $+\infty$.
- 3. Soit $n \in \mathbb{N}^*$.

$$\left| \int_0^\pi \frac{n \sin x}{x+n} \, dx - \int_0^\pi \sin x \, dx \right| = \left| \int_0^\pi \frac{-x \sin x}{x+n} \, dx \right| \le \int_0^\pi \left| \frac{-x \sin x}{x+n} \, dx \right| \le \int_0^\pi \frac{\pi}{0+n} \, dx = \frac{\pi^2}{n}.$$

Or, $\frac{\pi^2}{n}$ tend vers 0 quand n tend vers $+\infty$, et donc $\int_0^{\pi} \frac{n \sin x}{x+n} dx$ tend vers $\int_0^{\pi} \sin x dx = 2$ quand n tend vers

Correction de l'exercice 17 \blacktriangle Pour $t \in \mathbb{R}$, posons $g(t) = \frac{1}{\sqrt{t^4 + t^2 + 1}}$. g est continue sur \mathbb{R} et admet donc des primitives sur \mathbb{R} . Soit G une primitive de g sur \mathbb{R} .

Définition, dérivabilté, dérivée.

Puisque g est continue sur \mathbb{R} , F est définie sur \mathbb{R} et pour tout réel x, F(x) = G(2x) - G(x). G est de classe C^1 sur \mathbb{R} et donc F est de classe C^1 sur \mathbb{R} et pour tout réel x,

$$F'(x) = 2G'(2x) - G'(x) = 2g(2x) - g(x) = \frac{2}{\sqrt{16x^4 - 4x^2 + 1}} - \frac{1}{\sqrt{x^4 + x^2 + 1}}.$$

Parité.

Soit $x \in \mathbb{R}$. En posant t = -u et donc dt = -du, on obtient, en notant que g est paire

$$F(-x) = \int_{-x}^{-2x} g(t) dt = \int_{x}^{2x} g(-u) \cdot -du = -\int_{x}^{2x} g(u) du = -F(x).$$

F est donc impaire.

Variations.

Pour x réel,

$$\begin{split} \operatorname{sgn}(F'(x)) &= \operatorname{sgn}(\frac{2}{\sqrt{16x^4 - 4x^2 + 1}} - \frac{1}{\sqrt{x^4 + x^2 + 1}}) = \operatorname{sgn}(2\sqrt{x^4 + x^2 + 1} - \sqrt{16x^4 - 4x^2 + 1}) \\ &= \operatorname{sgn}(4(x^4 + x^2 + 1) - (16x^4 + 4x^2 + 1)) \text{ (par croissance de } t \mapsto t^2 \operatorname{sur} \mathbb{R}^+) \\ &= \operatorname{sgn}(-12x^4 + 3) = \operatorname{sgn}(1 - 4x^4) = \operatorname{sgn}(1 - 2x^2). \end{split}$$

F est donc strictement croissante sur $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$ et strictement décroissante sur $\left[-\infty, -\frac{1}{\sqrt{2}}\right]$ et sur $\left[\frac{1}{\sqrt{2}}, +\infty\right[$. **Etude en** $+\infty$.

Pour x > 0, $0 \le F(x) \le \int_x^{2x} \frac{1}{\sqrt{x^4}} dt = \frac{2x-x}{x^2} = \frac{1}{x}$. Comme $\frac{1}{x}$ tend vers 0 quand x tend vers $+\infty$, le théorème des gendarmes permet d'affirmer que $\lim_{x \to +\infty} F(x) = 0$.

Graphe.

Correction de l'exercice 18 ▲

f est continue sur $\mathbb R$ et admet donc des primitives sur $\mathbb R$. Soit F une primitive donnée de f sur $\mathbb R$. Notons (*) la relation :

$$\forall (x, y) \in \mathbb{R}^2$$
, $f(x) f(y) = F(x+y) - F(x-y)$.

Pour x = y = 0, on obtient $forall x \in \mathbb{R}$, f(0) = 0. Puis x = 0 fournit $\forall y \in \mathbb{R}$, F(y) - F(-y) = 0. F est donc nécessairement paire et sa dérivée f est nécessairement impaire.

La fonction nulle est solution du problème. Soit f une éventuelle solution non nulle. Il existe alors un réel y_0 tel que $f(y_0) \neq 0$. Pour tout réel x, on a alors

$$f(x) = \frac{1}{f(y_0)} \int_{x-y_0}^{x+y_0} f(t) dt = \frac{1}{f(y_0)} (F(x+y_0) - F(x-y_0)).$$

f est continue sur $\mathbb R$ et donc F est de classe C^1 sur $\mathbb R$. Il en est de même de la fonction $x \mapsto \frac{1}{f(y_0)}(F(x+y_0)-F(x-y_0))$ et donc de f. Mais alors, F est de classe C^2 sur $\mathbb R$ et donc f l'est aussi (f est en fait de classe C^∞ par récurrence).

En dérivant (*) à y fixé, on obtient f'(x)f(y) = f(x+y) - f(x-y) (**), mais en dérivant à x fixé, on obtient aussi f(x)f'(y) = f(x+y) + f(x-y) (***). En redérivant (**) à y fixé, on obtient f''(x)f(y) = f'(x+y) - f'(x-y) et en dérivant (***) à x fixé, on obtient f(x)f''(y) = f'(x+y) - f'(x-y). Mais alors,

$$\forall (x,y) \in \mathbb{R}^2, f''(x)f(y) = f(x)f''(y),$$

et en particulier,

$$\forall x \in \mathbb{R}, \ f''(x) - \frac{f''(y_0)}{f(y_0)} f(x) = 0.$$

On a montré que si f est solution du problème, il existe un réel λ tel que f est solution de l'équation différentielle $y'' - \lambda y = 0$ (E).

- si $\lambda > 0$, en posant $k = \sqrt{\lambda}$, (E) s'écrit $y'' - k^2y = 0$. Les solutions de (E) sont les fonctions de la forme $x \mapsto A \operatorname{sh}(kx) + B \operatorname{ch}(kx)$, $(A,B) \in \mathbb{R}^2$ et les solutions impaires de (E) sont les fonctions de la forme $x \mapsto A \operatorname{sh}(kx)$, $A \in \mathbb{R}$.

Réciproquement, soit k un réel strictement positif. Pour $A \in \mathbb{R}^*$ (on sait que la fonction nulle est solution) et $x \in \mathbb{R}$, posons $f(x) = A \operatorname{sh}(kx)$. Alors

$$\int_{x-y}^{x+y} f(t) dt = \frac{A}{k} (\operatorname{ch}(k(x+y)) - \operatorname{ch}(k(x-y))) \frac{2A}{k} \operatorname{sh}(kx) \operatorname{sh}(ky) = \frac{2}{kA} f(x) f(y).$$

f est solution si et seulement si $\frac{2}{kA} = 1$ ou encore $A = \frac{2}{k}$.

- si $\lambda < 0$, en posant $k = \sqrt{-\lambda}$, (E) s'écrit $y'' + k^2y = 0$. Les solutions de (E) sont les fonctions de la forme $x \mapsto A\sin(kx) + B\cos(kx)$, $(A,B) \in \mathbb{R}^2$ et les solutions impaires de (E) sont les fonctions de la forme $x \mapsto A\sin(kx)$, $A \in \mathbb{R}$.

Réciproquement, soit k un réel strictement positif. Pour $A \in \mathbb{R}^*$ et $x \in \mathbb{R}$, posons $f(x) = A\sin(kx)$. Alors

$$\int_{x-y}^{x+y} f(t) dt = \frac{A}{k} (\cos(k(x-y)) - \cos(k(x+y))) = \frac{2A}{k} \sin(kx) \sin(ky) = \frac{2}{kA} f(x) f(y).$$

f est solution si et seulement si $\frac{2}{kA} = 1$ ou encore $A = \frac{2}{k}$.

- si $\lambda = 0$, (E) s'écrit y'' = 0. Les solutions de (E) sont les fonctions affines et les solutions impaires de (E) sont les fonctions de la forme $x \mapsto Ax$, $A \in \mathbb{R}$.

Réciproquement, si f(x) = Ax

$$\int_{x-y}^{x+y} f(t) dt = \frac{A}{2} ((x+y)^2 - (x-y)^2) = 2Axy = \frac{2}{A} f(x) f(y),$$

et f est solution si et seulement si A = 2.

Les solutions sont la fonction nulle, la fonction $x \mapsto 2x$, les fonctions $x \mapsto \frac{2}{k}\sin(kx)$, k > 0 et les fonctions $x \mapsto \frac{2}{k}\sin(kx)$, k > 0.

Correction de l'exercice 19 ▲

Soit F une primitive de f sur [a,b]. F est de classe C^2 sur le segment [a,b] et l'inégalité de TAYLOR-LAGRANGE permet d'écrire

$$|F(\frac{a+b}{2}) - F(a) - \frac{b-a}{2}F'(a)| \le \frac{1}{2}\frac{(b-a)^2}{4}\sup\{|F''(x)|, x \in [a,b]\}.$$

Mais F'(a) = f(a) = 0 et F'' = f'. Donc,

$$|F(\frac{a+b}{2}) - F(a)| \le \frac{1}{2}M\frac{(b-a)^2}{4}.$$

De même, puisque F'(b) = f(b) = 0,

$$|F(\frac{a+b}{2}) - F(b)| \le \frac{1}{2}M\frac{(b-a)^2}{4}.$$

Mais alors,

$$\left| \int_a^b f(t) \ dt \right| = |F(b) - F(a)| \le |F(b) - F(\frac{a+b}{2})| + |F(\frac{a+b}{2}) - F(a)| \le \frac{1}{2}M\frac{(b-a)^2}{4} + \frac{1}{2}M\frac{(b-a)^2}{4} = M\frac{(b-a)^2}{4}.$$

Correction de l'exercice 20 ▲

Si $\int_0^1 f(t) dt \ge 0$,

$$\left| \int_0^1 f(t) \, dt \right| = \int_0^1 |f(t)| \, dt \Leftrightarrow \int_0^1 f(t) \, dt = \int_0^1 |f(t)| \, dt \Leftrightarrow \int_0^1 (|f(t)| - f(t)) \, dt = 0$$

$$\Leftrightarrow |f| - f = 0 \text{ (fonction continue positive d'intégrale nulle)}$$

$$\Leftrightarrow f = |f| \Leftrightarrow f \ge 0.$$

Si $\int_0^1 f(t) dt \le 0$, alors $\int_0^1 -f(t) dt \ge 0$ et d'après ce qui précède, f est solution si et seulement si -f = |-f| ou encore $f \le 0$.

En résumé, f est solution si et seulement si f est de signe constant sur [0,1].

Correction de l'exercice 21 A

1. Si x > 1, $[x, x^2] \subset]1, +\infty[$ et $t \mapsto \frac{1}{\ln t}$ est continue sur $]1, +\infty[$. Par suite, $\int_x^{x^2} \frac{dt}{\ln t}$ existe. De plus,

$$x \int_{x}^{x^{2}} \frac{1}{t \ln t} dt \le \int_{x}^{x^{2}} \le \int_{x}^{x^{2}} \frac{dt}{\ln t} = \int_{x}^{x^{2}} t \frac{1}{t \ln t} dt \le x^{2} \int_{x}^{x^{2}} \frac{1}{t \ln t} dt.$$

Mais,

$$\int_{x}^{x^{2}} \frac{1}{t \ln t} dt = \left[\ln |\ln t| \right]_{x}^{x^{2}} = \ln |\ln (x^{2})| - \ln |\ln (x)| = \ln \left| \frac{2 \ln x}{\ln x} \right| = \ln 2.$$

Donc, $\forall x > 1$, $x \ln 2 \le F(x) \le x^2 \ln 2$. On en déduit que $\lim_{x \to 1, x > 1} F(x) = \ln 2$.

Si 0 < x < 1, on a $x^2 < x$ puis $[x^2, x] \subset]0, 1[$. Donc, $t \mapsto \frac{1}{\ln t}$ est continue sur $[x^2, x]$ et $F(x) = -\int_{x^2}^{x} \frac{1}{\ln t} dt$ existe.

Pour $t \in [x^2, x]$, on a $t \ln t < 0$ et $x^2 \le t \le x$. Par suite,

$$x\frac{1}{t \ln t} \le t\frac{1}{t \ln t} = \frac{1}{\ln t} \le x^2 \frac{1}{t \ln t},$$

puis, $\int_{x^2}^x x \frac{1}{t \ln t} dt \le \int_{x^2}^x \frac{1}{\ln t} dt \le \int_{x^2}^x x^2 \frac{1}{t \ln t} dt$, et finalement,

$$x^{2} \ln 2 = \int_{x}^{x^{2}} x^{2} \frac{1}{t \ln t} dt \le F(x) = \int_{x}^{x^{2}} \frac{1}{\ln t} dt \le \int_{x}^{x^{2}} x \frac{1}{t \ln t} dt = x \ln 2.$$

On obtient alors $\lim_{x\to 1, x<1} F(x) = \ln 2$ et finalement, $\lim_{x\to 1} F(x) = \ln 2$. On en déduit que F se prolonge par continuité en 1 en posant $F(1) = \ln 2$ (on note encore F le prolongement obtenu).

2. On a déjà vu que F est définie (au moins) sur $]0,+\infty[$ (F désignant le prolongement). Il ne parait pas encore possible de donner un sens à F(0) et encore moins à F(x) quand x < 0, car alors [x,0] est un intervalle de longueur non nulle contenu dans $[x,x^2]$, sur lequel la fonction $t\mapsto \frac{1}{\ln t}$ n'est même pas définie.

$$D_F =]0, +\infty[.$$

Pour $t \in]0,1[\cup]1,+\infty[$, posons $g(t)=\frac{1}{\ln t}$ et notons G une primitive de g sur cet ensemble. Alors, pour x dans $]0,1[\cup]1,+\infty[$, $F(x)=G(x^2)-G(x)$. On en déduit que F est dérivable (et même de classe C^1) sur $]0,1[\cup]1,+\infty[$ et que pour x dans $]0,1[\cup]1,+\infty[$,

$$F'(x) = 2xg(x^2) - g(x) = \frac{2x}{\ln(x^2)} - \frac{1}{\ln x} = \frac{x - 1}{\ln x}.$$

Maintenant, quand x tend vers 1, $\frac{x-1}{\ln x}$ tend vers 1. Ainsi, F est continue sur $]0,+\infty[$, de classe C^1 sur $]0,1[\cup]1,+\infty[$ et F' a une limite réelle en 1. Un théorème classique d'analyse permet d'affirmer que F est de classe C^1 sur D_F et en particulier, dérivable en 1 avec F'(1)=1.

$$\forall x \in]0, +\infty[, F'(x) = \begin{cases} \frac{x-1}{\ln x} & \text{si } x \neq 1\\ 1 & \text{si } x = 1. \end{cases}.$$

Si x > 1, x - 1 > 0 et $\ln x > 0$ et si 0 < x < 1, x - 1 < 0 et $\ln x < 0$. Dans tous les cas (0 < x < 1, x = 1, x > 1) F'(x) > 0. F est strictement croissante sur $]0, +\infty[$.

On a vu que $\forall x > 1$, $F(x) > x \ln 2$ et donc $\lim_{x \to +\infty} F(x) = +\infty$. Plus précisément, pour x > 1,

$$\frac{F(x)}{x} = \frac{1}{x} \int_{x}^{x^{2}} \frac{1}{\ln t} dt \ge \frac{x^{2} - x}{x \ln x} = \frac{x - 1}{\ln x}.$$

Comme $\frac{x-1}{\ln x}$ tend vers $+\infty$ quand x tend vers $+\infty$, on en déduit que $\frac{F(x)}{x}$ tend vers $+\infty$ quand x tend vers $+\infty$ et donc que la courbe représentative de F admet en $+\infty$ une branche parabolique de direction (Oy). Pour $x \in]0,1[$ et $t \in [x^2,x]$, on a $2\ln x = \ln(x^2) \le \ln t \le \ln x < 0$ et donc $\frac{1}{\ln x} \le \frac{1}{\ln t} \le \frac{1}{2\ln x}$, puis $(x-x^2)\frac{1}{\ln x} \le \int_{x^2}^x \frac{1}{\ln t} \, dt \le (x-x^2)\frac{1}{2\ln x}$ et finalement,

$$\forall x \in]0,1[, \frac{x-x^2}{-2\ln x} \le F(x) \le \frac{x-x^2}{-\ln x}.$$

On obtient déjà $\lim_{x\to 0} F(x) = 0$. On peut prolonger F par continuité en 0 en posant F(0) = 0. Ensuite, $\frac{F(x)-F(0)}{x-0} = \frac{F(x)}{x}$ est compris entre $\frac{1-x}{-2\ln x}$ et $\frac{1-x}{-\ln x}$. Comme ces deux expressions tendent vers 0 quand x tend vers 0, on en déduit que $\frac{F(x)-F(0)}{x-0}$ tend vers 0 quand x tend vers 0. F est donc dérivable en 0 et F'(0) = 0.

Correction de l'exercice 22

- 1. f est continue sur \mathbb{R}^* en tant que quotient de fonctions continues sur \mathbb{R}^* dont le dénominateur ne s'annule pas sur \mathbb{R}^* . D'autre part, quand t tend vers 0, $f(t) \sim \frac{t^2}{t} = t$ et $\lim_{t \to 0, t \neq 0} f(t) = 0 = f(0)$. Ainsi, f est continue en 0 et donc sur \mathbb{R} .
- 2. f est continue sur \mathbb{R} et donc F est définie et de classe C^1 sur \mathbb{R} . De plus, F' = f est positive sur $[0, +\infty[$, de sorte que F est croissante sur $[0, +\infty[$. On en déduit que F admet en $+\infty$ une limite dans $]-\infty, +\infty[$. Vérifions alors que F est majorée sur \mathbb{R} . On contate que $t^2 \cdot \frac{t^2}{e^t-1}$ tend vers 0 quand t tend vers $+\infty$, d'après un théorème de croissances comparées. Par suite, il existe un réel A tel que pour $t \geq A$, $0 \leq t^2 \cdot \frac{t^2}{e^t-1} \leq 1$ ou encore $0 \leq f(t) \leq \frac{1}{t^2}$. Pour $x \geq A$, on a alors

$$F(x) = \int_0^A f(t) dt + \int_A^x \frac{t^2}{e^t - 1} dt \le \int_0^A f(t) dt + \int_A^x \frac{1}{t^2} dt$$
$$= \int_0^A f(t) dt + \frac{1}{A} - \frac{1}{x} \le \int_0^A f(t) dt + \frac{1}{A}.$$

F est croissante et majorée et donc a une limite réelle ℓ quand n tend vers $+\infty$. Soit $n \in \mathbb{N}^*$. Pour $t \in]0, +\infty[$,

$$f(t) = t^{2}e^{-t}\frac{1}{1 - e^{-t}} = t^{2}e^{-t}(\sum_{k=0}^{n-1} (e^{-t})^{k} + \frac{(e^{-t})^{n}}{1 - e^{-t}})$$

$$= \sum_{k=0}^{n-1} t^{2}e^{-(k+1)t} + \frac{t^{2}e^{-t}}{1 - e^{-t}}e^{-nt} = \sum_{k=1}^{n} t^{2}e^{-kt} + f_{n}(t) \ (*),$$

où $f_n(t) = \frac{t^2 e^{-t}}{1 - e^{-t}} e^{-nt}$ pour t > 0. En posant de plus $f_n(0) = 0$, d'une part, f_n est continue sur $[0, +\infty[$ et d'autre part, l'égalité (*) reste vraie quand t = 0. En intégrant, on obtient

$$\forall x \in [0, +\infty[, \forall n \in \mathbb{N}^*, F(x) = \sum_{k=1}^n \int_0^x t^2 e^{-kt} dt + \int_0^x f_n(t) dt \ (**).$$

Soient alors $k \in \mathbb{N}^*$ et $x \in [0, +\infty[$. Deux intégrations par parties fournissent :

$$\int_0^x t^2 e^{-kt} dt = \left[-\frac{1}{k} t^2 e^{-kt} \right]_0^x + \frac{2}{k} \int_0^x t e^{-kt} dt = -\frac{1}{k} x^2 e^{-kx} + \frac{2}{k} \left(\left[-\frac{1}{k} t e^{-kt} \right]_0^x + \frac{1}{k} \int_0^x e^{-kt} dt \right)$$
$$= -\frac{1}{k} x^2 e^{-kx} - \frac{2}{k^2} x e^{-kx} - \frac{2}{k^3} e^{-kx} + \frac{2}{k^3}.$$

Puisque k > 0, quand x tend vers $+\infty$, on obtient $\lim_{x \to +\infty} \int_0^x t^2 e^{-kt} dt = \frac{2}{k^3}$. On fait alors tendre x vers $+\infty$ dans (**) et on obtient

$$\forall n \in \mathbb{N}^*, \ \ell - 2 \sum_{k=1}^n \frac{1}{k^3} = \lim_{x \to +\infty} \int_0^x f_n(t) \ dt \ (***).$$

Vérifions enfin que $\lim_{n\to+\infty} (\lim_{x\to+\infty} \int_0^x f_n(t) dt) = 0$. La fonction $t\mapsto \frac{t^2e^{-t}}{1-e^{-t}}$ est continue sur $]0,+\infty[$, se prolonge par continuité en 0 et a une limite réelle en $+\infty$. On en déduit que cette fonction est bornée sur $]0,+\infty[$. Soit M un majorant de cette fonction sur $]0,+\infty[$. Pour $x\in[0,+\infty[$ et $n\in\mathbb{N}^*$, on a alors

$$0 \le \int_0^x f_n(t) dt \le M \int_0^x e^{-nt} dt = \frac{M}{n} (1 - e^{-nx}).$$

A $n \in \mathbb{N}^*$ fixé, on passe à la limite quand n tend vers $+\infty$ et on obtient

$$0 \le \lim_{x \to +\infty} \int_0^x f_n(t) \ dt \le \frac{M}{n},$$

puis on passe à la limite quand n tend vers $+\infty$ et on obtient

$$\lim_{n \to +\infty} \left(\lim_{x \to +\infty} \int_0^x f_n(t) \ dt \right) = 0.$$

Par passage à la limite quand x tend vers $+\infty$ puis quand n tend vers $+\infty$ dans (***), on obtient enfin

$$\lim_{x \to +\infty} \int_0^x \frac{t^2}{e^t - 1} dt = 2 \lim_{n \to +\infty} \sum_{k=1}^n \frac{1}{k^3}.$$