Exam subject outline - Nicklas Jacobsen qmr656

De fire generale step i konstruktionen af en dynamisk programerings algoritme er:

- 1. Karakterisere strukturen i en optimal løsning
- 2. Rekursivt finde de optimale løsninger til delproblemerne
- 3. Beregne den optimale værdi for det overordnede problem
- 4. Konstruerer en optimal løsning til fra den beregnede information

De tre krav til dynamistisk programerings algoritmer:

- 1. For at man kan bruge dynamisk programering, skal de optimale løsninger til sub-problemerne være en delmængde af den optimale løsning til det oprindelige problem.
- 2. To sub-problemer til det samme problem skal være uafhænige af hinanden.
- 3. Sub-problemerne skal overlappe hinanden, dvs. mængden af forskellige sub-problemer skal være relativ lille (modsat f. eks. divide and conquer hvor man generer nye sub-problemer ved hvert step.)

LCS eksempel

LCS er den længste fælles del-sekvens af to stringe. Hvis vi har to stringe $X = \{x_1, x_2..., x_m\}$ og $Y = \{y_1, y_2..., y_n\}$ og deres LCS $Z = \{z_1, z_2...z_k\}$, så gælder det at:

Optimal sub-struktur

- 1. Hvis $x_m = y_n$, så $z_k = x_m = y_n$ og $Z_k 1$ er en LCS af X_{m-1} og Y_{n-1}
- 2. Hvis $x_m \neq y_n$, så $z_k \neq x_m$ som indikerer at Z er en LCS af X_{m-1} og Y
- 3. Hvis $x_m \neq y_n$, så $z_k \neq y_n$ som indikerer at Z er en LCS af Y_{n-1} og X

Bevis 1 Første del:

Hvis $x_m = y_n$ og $x_m \neq z_k$ så kunne vi tilføje $x_m = y_n$ til Z og få en LCS af X og Y på længden k+1, hvilket ville være i modstrid med at Z er en LCS af X og Y. Det må derfor være at hvis $x_m = y_n$ så $z_k = x_m = y_n$.

Anden del: Vi ønsker at bevise at hvis $x_m = y_n$ så er Z_{k-1} en LCS af X_{m-1} og Y_{n-1} . Med formål for modstrid antager vi, at der eksisterer en fælles sekvens W for X_{m-1} og Y_{n-1} som har en længde større end k-1. Hvis vi tilføjer $x_m = y_n$ til W resulterer det i en fælles sekvens for X og Y, med en længde større end k, hvilket er i modstrid med at Z er en LCS.

Bevis 2 og vice versa for 3 Hvis $x_m \neq z_k$ så er Z en LCS af X_{m-1} og Y, for hvis der eksisterer en fælles sekvens W for X_{m-1} og Y med længde større end k, så vil W også være en LCS af X og Y, hvilket ville være i modstrid med at Z er en LCS af X og Y.

Overstående viser at LCS problemet har en optimal-substruktur.

Overlappende sub-problemer

Ved at kigge på de tre punkter under "Optimal sub-struktur", kan man se at for at finde LCS af X og Y skal vi håndtere en ud af to situationer:

1: Hvis $x_m = y_n$ så skal vi finde LCS for X_{m-1} og Y_{n-1} , og ved at tilføje $x_m = y_n$ til denne får vi LCS af X og Y.

2: I tilfældet af at $x_m \neq y_n$, skal vi løse to problemer. Vi skal finde LCS af X_{m-1} og Y, og vi skal finde LCS af X og Y_{n-1} , og retunerer den LCS der er længst.

Det tydeligt at se at vi kommer til at løse de samme sub-problemer flere gange.

Resultat

	j	0	1	2	3
i			A	D	С
0		0	0	0	0
1	A	0	_ 1	←1	←1
2	С	0	† 1	←1	$\sqrt{2}$
3	D	0	† 1	$\sqrt{2}$	←2
4	Α	0	<u>_1</u>	†2	←2
5	\mathbf{C}	0	↑1	$\uparrow 2$	\(\sqrt{3} \)

Tabellen ovenfor viser resultatet af en dynamisk programmerings algortime til at beregne LCS af to stringe i og j. For at aflæse tabellen, starter man nede i nederste højre hjørne og følger pilene. Hver gang man møder \(^{\scale}\) tilføjer man det pågældende bogstav til sin LCS.