

它是一个学科,不只是一门课程

教学安排:

有机化学(上):48课时

章	内容	学时
_	绪论	4
_	波谱分析	6
Ξ	烷烃	4
四	立体化学	4
五	卤代烃	4
六	烯烃	4
七	炔烃	2
$/\setminus$	芳烃	4
九	醇酚醚	6

有机化学 (下): 32课时

章	内容	学时
+	型型面	2
+-	羧酸及衍生物	8
+=	含氮化合物	4
十三	杂环化合物	4
十四	周环反应	4
十五	合成化学基础	6

它是一个学科,不只是一门课程

教材:

它是一个学科,不只是一门课程

参考教材:

它是一个学科,不只是一门课程

课程助理: 钟康宝

联系电话: 185-7116-2568

电子邮件: zhongkb@cqu.edu.cn

QQ群 (有机化学1): 694669903

有机化学特有的思维方式:

考核方式:

课堂表现: 10%

作业成绩: 10%

期中考试: 10%

期末考试: 70%

第一章 绪论

有机化合物和有机化学

有机化合物结构

有机化合物分类

有机化学反应

有机化合物表示方法

有机化合物命名

研究有机化合物的组成、结构、性质、制备方法与应用的科学

什么是有机化合物?

有机化学有着悠久的历史(钻木取火?)

研究有机化合物的组成、结构、性质、制备方法与应用的科学

什么是有机化合物?

萌芽期:生命力学说 (Jons Jakob Berzelius) "有机化合物只能由生物制造"

 $NH_4^+ + OCN^- \longrightarrow$

1828年, Friedrich Wöhler从无机到有机

从19世纪初到1858年提出价键概念之前:在这个时期,已经分离出许多有机化合物,制备了一些衍生物,并对它们作了定性描述,认识了一些有机化合物的性质。

研究有机化合物的组成、结构、性质、制备方法与应用的科学

什么是有机化合物?

发展期: 1865年, Friedrich A. Kekule提出四价碳

Jacobus Henricus van't Hoff碳的四面体结构

J. H. van't Hoff (1852-1911)

研究有机化合物的组成、结构、性质、制备方法与应用的科学

什么是有机化合物?

元素分析: 含碳的化合物, 基本都含有氢, 很多含有氮和氧, 但是。。。。。。

结构分析:碳氢化合物及其衍生物,但是。。。。。。

研究有机化合物的组成、结构、性质、制备方法与应用的科学

什么是有机化合物?

有机化合物没有明确的边界

有机化学是一门研究碳氢化合物及其衍生物的学科。。。。。。

有机化学没有精确的定义,是一门归纳性学科,靠总结和归纳来确定研究范围。

但是, 有机化学、有机化合物有它自身的特点

有机化合物的特点

结构特点

- 共价键主导的复杂结构
- 自身成键能力很强
- 同分异构现象很常见

物理性质

- 熔沸点较低,挥发性强
- 比重小
- 难溶于水,易溶于有机溶剂

化学性质

- 稳定性差, 易燃烧
- 反应速度慢
- 副反应多

有机化合物的结构特点

- 碳碳结合能力强,成键稳定
- 碳可以与很多其他元素成键,都有一定的稳定性
- 很多碳碳键或者碳杂原子键可以 形成链状、环状结构
- 碳的四价四面体结构使得有机化 合物有很多同分异构体

 H_3C — CH_3 BDE = 83.3 kcal/mol

$$H_3C$$
 H_3C
 CH_3
 C
 CH_3
 C
 CH_3
 C

- ◆ 有机化合物同分异构现象常见
- ◆ 无法使用化学式来描述分子
- ◆ 要使用结构式来描述

 $C_5H_{13}N$

有机化合物的反应

无机化学反应

$$AgNO_3 + NaCl = NaNO_3 + AgCl \downarrow$$

有机化学反应

$$CH_4 + Br_2 \longrightarrow CH_3Br + CH_2Br_2 + CHBr_3 + CBr_4$$

有机化学领域

有机化学事关国计民生

有机化学科学研究

事机化等

有机化合物分离、鉴定

有机化合物全合成

有机合成方法学

有机化学反应机理研究

理论有机化学和有机化学理论

金属有机化学和过渡金属催化

交叉学科:生物有机化学、材料有机化学、化学生物学、制药化学、环境化学、绿色化学

有机化学家

Robert B. Woodward (1917-1979) 现代有机化学之父

维生素B12全合成 1965年Nobel奖

Fukui Kenichi

Woodward-Hoffmann规则 1981年Nobel奖(可惜)

有机化学家

E. J. Corey (1928-) 逆合成分析法-1990年Nobel奖

有机化学家

怎么学习有机化学?

怎么学习有机化学?

归纳性学科,使用之前的数据总结规律,使用之前的规律解决问题。

有机化学是"碳化学"碳原子结构:

第二周期,第四主族 (IVA)

1s²

碳的电负性 (Electro negativity)

Cs C F

0.7 2.5 4.0

第二周期,第四主族 (IVA)

H 2.1																	He
Li 1.0	Be 1.6											B 2.0	C 2.5	N 3.0	0 3.5	F 4.0	Ne
\longrightarrow	Mg 1.2											AI 1.5	Si 1.8	P 2.1	S 2.5	CI 3.0	Ar
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	Kr
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5	Xe
Cs 0.7	Ba 0.9	La 1.0	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	TI 1.8	Pb 1.9	Bi 1.9	Po 2.0	At 2.1	Rn

八隅体规则:碳

化学键

化驴罐

离子键 (ion bond): 无方向性、无饱和性

金属键 (metallic bond): 无方向性、无饱和性

共价键 (covalent bond): 方向性、饱和性

配位键 (coordination bond): 方向性、饱和性

化学键理论

价键理论 (valence-bond theory)

分子轨道理论 (molecular-orbital theory)

价键理论

两个原子各用一个自旋反平行电子配对形成共价键

共价键具有饱和性,配对后无法容纳第三个原子的电子

共价键具有方向性,电子云重叠程度越大,共价键越强

能量相近的轨道可以进行杂化,提高成键能力

价键理论: 自旋反平行配对形成共价键

价键理论: 共价键具有饱和性, 已经配对成键后, 无法容纳第三个原子的电子

共价键具有方向性: 重叠越大键越强

两种重叠模式: σ和π

$$\sigma$$
 (S-S)

$$\sigma$$
 (s-p)

$$\sigma$$
 (p-p)

$$\pi$$
 (p-p)

轨道的杂化: sp³杂化轨道

sp³杂化轨道: 1/4 s轨道成分; 3/4 p轨道成份 四面体形, 夹角109°28'

轨道的杂化: sp²杂化轨道

sp²杂化轨道: 1/3 s轨道成分; 2/3 p轨道成份 三角形, 夹角120°

轨道的杂化: sp杂化轨道

sp杂化轨道: 1/2 s轨道成分; 1/2 p轨道成份 直线形, 夹角180°

不同杂化方式碳原子电负性的差别

$$C(sp) > C(sp^2) > C(sp^3)$$

杂化方式	s轨道成份	p轨道成份
sp	1/2	1/2
sp^2	1/3	2/3
sp^3	1/4	3/4

价电子对互斥理论

价电子对之间相互排斥, 电子对之间呈现最大夹角和最小干扰

分子轨道理论:

分子由原子组成,电子都是离域的,即所有电子都不限于某个原子,而是被整个分子共享。通过量子化学方法求解薛定谔方程,可以获知分子轨道波函数,也就是电子在分子中的状态。电子按一定规则填充在分子轨道中。

原子轨道线性组合法 (linear combination of atomic orbitals):

分子轨道由原子轨道线性组合而成。化学键由重叠的原子轨道组成。轨道数目守恒。分子轨道数目与组成分子原子的轨道数目总 和相同。

定域键和离域键:

取决于成键原子轨道数目。

分子轨道理论: 原子轨道的组合

分子轨道理论:

原子轨道的组合

分子轨道的电子云密度分布

分子轨道理论:

原子轨道的组合

AO1 MO AO2

分子轨道理论:

原子轨道的组合

AO1 MO AO2

分子轨道理论:

 σ 键和 π 键的分子轨道

键的性质:

键能:

$$BDE_1$$
 = 104 kcal/mol
 BDE_2 = 106 kcal/mol
 BDE_3 = 106 kcal/mol
 BDE_4 = 81 kcal/mol

 $BE = (BDE_1 + BDE_2 + BDE_3 + BDE_4)/4 = 99 \text{ kcal/mol}$

键长:

特例:

键角:

键的极性和分子极性:

电负性

H 2.1																	Не
Li 1.0	Be 1.6											B 2.0	C 2.5	N 3.0	O 3.5	F 4.0	Ne
Na 0.9	Mg 1.2											AI 1.5	Si 1.8	P 2.1	S 2.5	CI 3.0	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.9	1.9	1.9	1.6	1.6	1.8	2.0	2.4	2.8	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0.7	0.9	1.0	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.9	1.9	2.0	2.1	

键的极性和分子极性:

偶极和偶极矩

分子间作用力

偶极-偶极作用力

诱导力

色散力

有机化学反应

共价键的断裂

有机化学反应

反应类型

自由基型反应(均裂)

离子型反应(异裂): 亲电反应 亲核反应

协同反应

有机反应中的酸碱反应概念

酸碱的质子理论(Brönsted-Lowry 质子理论)

有机反应中的酸碱反应概念

酸碱的电子理论(Lewis 酸碱理论)

Lewis 酸:

BF₃ AlCl₃ H⁺
Ag⁺ NH₄ R₃C⁺

有空的价电子轨道

Lewis 硕:

NH3 H2O RNH₂
ROH ROR CH2=CHR

有机化合物分类

按碳架分类

有机化合物分类

按官能团分类

分类	官能团	官能团名称
烯烃	c=c/	碳碳双键
炔烃	—C≡C—	碳碳叁键
卤代烃	—X (X = F, Cl, Br, or I)	卤原子
雪	—ОН	羟基
酚	—ОН	羟基
硫醇	—SH	巯基
硫酚	—SH	巯基

分类	官能团	官能团名称
醚	-o'	醚基
过氧化物	_o_ _o	过氧基
醛	О -с́,	醛基
酮	0= C	羰基
磺酸	O I O S OH	磺酸基
刮 风	0 S S	磺酰基
<u>III</u> 6/XI,	O = S	亚磺酰基

有机化合物分类

按官能团分类

分类	官能团	官能团名称
羧酸	O C OH	羧基
酰卤	O C X	酰卤基
酸酐	0 0 0	酸酐基
酯	0=C	酯基
酰胺	O	酰胺基
胺	_N_	氨基
亚胺	C=N	亚氨基

分类	官能团	官能团名称
硝基化合物	-NO ₂	硝基
亚硝基化合物	O –Ń	亚硝基
腈	—C≡N	氰基
偶氮化物	N=N	偶氮基

有机化合物表示方法

Lewis结构式

有机化合物表示方法

构造式:

蛛网式

普通构造式

CH₃CH(CH₂CH₃)CH₂CH₂CH₂CH₂CH₂CH=CH₂

构造式简式

CH₃CH(CH₂CH₃)(CH₂)₅CH=CH₂

有机化合物表示方法

键线式:

构造式省略掉碳和氢

$$H_3C-CH_3$$
 $H_2C=CH_2$

$$H_2C=CH_2$$

- 与命名有关的词
- 命名的步骤
- 命名的原则

与命名有关的词

甲,乙,丙,丁,戊,己,庚,辛,壬,癸 Meth-, Eth-, Prop-, But-, Pent-, Hex-, Hept-, Oct-•••

伯(1°),仲(2°),叔(3°),季(4°)

Primary, Secondary, Tertiary, Quaternary

基, 亚基, 次基

-yl, -ylene,-ylidyne

正, 异, 新, 伯, 仲, 叔, 季

n-, iso-, neo-, sec-, tert-

用来描述碳原子的数量

甲,乙,丙,丁,戊,己,庚,辛,壬,癸 Meth-, Eth-, Prop-, But-, Pent-, Hex-, Hept-, Oct-•••

甲乙丙丁辛癸烷烷烷烷

•••••

用来描述碳及其相连氢的连接情况

伯(1°), 仲(2°), 叔(3°), 季(4°) Primary, Secondary, Tertiary, Quaternary

连接情况	碳	与之相连的氢	结构举例
与一个碳相连	伯碳 (1°碳)	伯氢 (1°氢)	H C-H R-C-H
与两个碳相连	仲碳 (2°碳)	仲氢 (2°氢)	R C H R H
与三个碳相连	叔碳 (3°碳)	叔氢 (3°氢)	R C-R R-C-H
与四个碳相连	季碳 (4°碳)		R C R R

普通命名法

用来描述碳及其相连氢的连接情况

伯(1°), 仲(2°), 叔(3°), 季(4°) Primary, Secondary, Tertiary, Quaternary

用来描述碳及其相连氢的连接情况

伯(1°), 仲(2°), 叔(3°), 季(4°) Primary, Secondary, Tertiary, Quaternary

取代基:一个化合物形式上去掉单价的结构

基, 亚基, 次基
-yl, -ylene, -ylidyne

用来描述化合物或者基团

正, 异, 新

n-, iso-, neo-

正:直链化合物

异:有且只有一个2位甲基

新:有且只有两个2位甲基

用来描述化合物或者基团

正, 异, 新

n-, iso-, neo-

正:直链化合物

异:有且只有一个2位甲基

新:有且只有两个2位甲基

用来描述碳、氢、基

失去仲氢叫"仲基";失去叔氢叫"叔基"

系统命名法 (一名对一物)

1979年, IUPAC命名 (the International Union of Pure and Applied Chemistry)

1980年,中国化学会命名 (the Chinese Chemical Society)

命名步骤:

- 找母体 (parent name)
- 编号 (numbering)
- 书写 (nomenclature)

找母体

- ◆ 确定类别
 - 单官能团
 - 多官能团:排主次

$$-\text{COOH} > -\text{SO}_3\text{H} > -\text{COOR} > -\text{COX} > -\text{CONH}_2$$

- > -CN > -CO- > -CHO > -OH > -SH
- > -NH₂ > -OR > -R > -X > -NO₂
 - ◆ 确定主链 最长的链,如果 一样长就找取代 基最多的链

COOH

找母体

◆ 确定主链 最长的链,如果 一样长就找取代 基最多的链

◆ 确定主链 取代基位次最小

编号:

◆ 母体官能团位次最小

◆ 兼顾取代基

$$\begin{array}{c|c}
1 & OH \\
HOOC & 5 \\
\hline
2 & 4 & 6
\end{array}$$

◆ 尽量让双键和叁键编号更小 (实在不 行双键优先)

编号:

```
基团排序(Cohn-Ingold-Prelog定序规则)
原子序数原则:
      原子序数大者优先
      同位素质量大者优先
\overline{I > Br > C1 > S > P > F > O > N > C > D > H}
第一个原子相同,比较第二个
-CH_2CH_3 > -CH_3 \qquad -CH(CH_3)_2 > -CH_2CH_2CH_3
-CH(CH_3)_2 > -CH_2CH(CH_3)_2
-CH_2C1 > -CH_2F \qquad -CH_2OCH_3 > -CH_2OH
-CH=CH_2 > -CH(CH_3)_2
```

编号:

基团排序 (Cohn-Ingold-Prelog定序规则)

从顺序最小原子开始编号

2,8-二甲基-3,4-二乙基癸烷 3,4-diethyl-2,8-dimethyldecane

书写:

取代基位号-取代基名称母体名称

3-甲基-4-羟基戊酸

书写:

取代基位号-取代基名称母体名称 小基团写在前,不管位号是多少

正确: 4-甲基-3-乙基庚烷

3-ethyl-4-methylheptane

错误: 3-乙基-4-甲基庚烷

书写:

取代基位号-取代基名称母体名称

横线的用法:

正确: 4-甲基-3-乙基庚烷

3-ethyl-4-methylheptane

错误: 4-甲基-3-乙基-庚烷

3-ethyl-4-methyl-heptane

书写:

多个基团合并

取代基位号,取代基位号-取代基个数取代基名称母体名称

2, 4, 6-三甲基庚烷 2, 4, 6-trimethylheptane

英文词头: mono, di, tri, tetra, penta, hexa.....

书写:

含支链的取代基

主链取代基位号-(支链取代基位号-支链取代基名称取代基名称)母体名称

4-(1-甲基乙基) 庚烷 4-(1-methylethyl) heptane

环状骨架化合物的命名

环状骨架化合物命名

▶ 母体:环作为母体名称以"环"开头,环外基团作为取代基

▶ 编号:只编环上碳,取代基位次原则

▶ 书写:

$$H_3C$$
 CH_3 H_3C CH_3 CH_3

1,3-二甲基环戊烷 1,3-dimethylcyclopentane 1-甲基-4-异丙基环己烷 1-isopropyl-4-methylcyclohexane

环状骨架化合物命名

> 多个取代基存在顺反异构

顺-1, 3-二甲基环戊烷 cis-1,3-dimethylcyclopentane

环状骨架化合物命名

- > 环状结构可以作为取代基
- ▶ 最大环原则
- ▶ 相同环直接相连:可以用词头"联"

环丙基环己烷 cylcopropylcyclohexane

3-甲基-4-环丁基**庚烷** 4-cyclobutyl-3-methylheptane

联环己烷 bicyclohexane

桥环命名

- ▶ 桥头碳原子: 几个环共用的碳
- > 母体: 碳的总数
- >环的数目: 断裂几个C-C键就成为链状结构
- ▶ 环上碳的数目:不包括桥头碳,加方括号[],用"."隔开
- ▶编号:从桥头碳1开始,先长链后短链

二环[2.2.1] 庚烷 bicyclo[2.2.1] heptane

二环[3.3.0]辛烷 bicyclo[3.3.0]octane

桥环命名

- ▶ 桥头碳原子: 几个环共用的碳
- ▶ 母体:碳的总数
- ➤ 环的数目:断裂几个C-C键就成为链状结构
- ▶ 环上碳的数目:不包括桥头碳,加方括号[],用 "."隔开
- ▶ 编号: 从桥头碳1开始, 先长链后短链

2,7,7-三甲基二环[2.2.1] 庚烷 2,7,7-trimethylbicyclo[2.2.1]heptane

8-甲基二环[4.3.0]壬烷 8-methylbicyclo[4.3.0]nonane

桥环命名

- ▶ 桥头碳原子:几个环共用的碳
- ▶ 母体:碳的总数
- ➤ 环的数目:断裂几个C-C键就成为链状结构
- ▶ 环上碳的数目:不包括桥头碳,加方括号[],用"."隔开
- ▶编号:从桥头碳1开始,先长链后短链
- ▶ 更多的环:断开的连接位置作为上标用","隔开

三环[2. 2. 1. 0^{2, 6}] 庚烷 tricyclo[2. 2. 1. 0^{2, 6}] heptane 三环[6. 3. 0. 0^{4, 7}]十一烷 tricyclo[6. 3. 0. 0^{4, 7}]undecane

螺环命名

- ▶ 单环之间公用一个碳原子: 词头 "螺" (spiro)
- ▶ 母体:碳的总数
- ➤ 环上碳的数目: 不包括螺碳, 加方括号[], 用 "." 隔开
- ▶ 编号:从小环开始,取代基数目最小

螺[4.5]癸烷 spiro[4.5]decane

4-甲基螺[2.4]庚烷 4-methylspiro[2.4]heptane

绪论

本章要求

- > 了解什么是"有机化学"以及有机化学的研究对象
- > 了解有机化学的学习方法
- 理解有机化合物的结构,能够以分子轨道理论和价键 理论的方式描述和分析有机分子的结构
- > 了解有机化合物普通命名法和习惯命名法
- > 掌握简单有机化合物系统命名法