Robust Reinforcement Learning Differential Game Guidance in Low-Thrust, Multi-Body Dynamical Environments

A Zero-Sum Reinforcement Learning Approach in Three-Body Dynamics

Ali Baniasad Supervisor: Dr. Nobahari

Department of Aerospace Engineering Sharif University of Technology

vironment Reinforcement Learning RI

Outline

Introduction & Motivation

- Introduction & Motivation
- Environment
- **3** Reinforcement Learning
- 4 RL Algorithms
- **6** Multi-Agent RL
- 6 Results

Results

Multi-Agent RL

Research Motivation

- **Space missions** increasingly require on-board autonomous guidance systems
- **Low-thrust spacecraft** operate in complex gravitational environments
- **Three-body dynamics** (Earth-Moon CRTBP) present inherent instabilities
- **Classical control methods** struggle with:
 - Model uncertainties
 - Environmental disturbances
 - Fuel efficiency requirements
- Need for robust, adaptive guidance without precise dynamic models

Central Ouestion

How can we achieve robust spacecraft guidance in uncertain environments?

Problem Statement

Introduction & Motivation

Research Objective

Design a robust guidance framework for low-thrust spacecraft operating in Earth-Moon three-body dynamics under uncertainties.

System Characteristics:

- State: $\mathbf{x} = [x, y, \dot{x}, \dot{y}]^T$
- Control: $|\mathbf{u}| \leq u_{\text{max}}$
- Dynamics: $\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$

Mission Environment:

- Earth-Moon CRTBP
- Lyapunov orbit transfer
- Low-thrust propulsion

CRTBP Model and Lagrangian Points

Agent Simulation in CRTBP Model

State Representation:

Introduction & Motivation

- Position and velocity: $s_t = (\delta x, \delta y, \delta \dot{x}, \delta \dot{y})$
- Relative to target orbit/Lagrangian point

Action Space:

- Continuous control: $a_t = (u_x, u_y)$
- Bounded thrust: $u_x, u_y \in [a_{Low}, a_{High}]$

Reward Function:

$$r(s, a) = r_{\text{thrust}}(a) + r_{\text{reference}}(s) + r_{\text{terminal}}(s)$$

$$r_{\text{thrust}}(a) = -k_1 \cdot |a|$$

$$r_{\text{reference}}(s) = -k_2 \cdot d(s, s_{\text{reference}})$$

$$r_{\text{terminal}}(s) = \begin{cases} +R_{\text{goal}} & \text{if } s \in S_{\text{goal}} \\ -R_{\text{fail}} & \text{if } d(s, s_{\text{ref}}) > \epsilon \\ 0 & \text{otherwise} \end{cases}$$

Table: Nondimensionalized spacecraft thrust capabilities

Abbrv.	Spacecraft	$f_{\mathbf{max}}$, nondim	F _{max}
DS1	Deep Space 1	$6.94 \cdot 10^{-2}$	92.0 mN
Psyche	Psyche	$4.16 \cdot 10^{-2}$	279.3 mN
Dawn	Dawn	$2.74 \cdot 10^{-2}$	91.0 mN
LIC	Lunar IceCube	$3.28 \cdot 10^{-2}$	1.25 mN
H1	Hayabusa 1	$1.64 \cdot 10^{-2}$	22.8 mN
H2	Hayabusa 2	$1.63 \cdot 10^{-2}$	27.0 mN
s/c	Sample spacecraft	$4 \cdot 10^{-2}$	n/a

Introduction & Motivation OO Reinforcement Learning OO RL Algorithms OOO Multi-Agent RL Results OOOOOO

Reinforcement Learning Overview

• **Definition:** A type of machine learning where an agent learns to make decisions by taking actions in an environment to maximize cumulative reward.

• Key Components:

- Agent: The learner or decision maker.
- **Environment:** The external system with which the agent interacts.
- **Actions:** Choices made by the agent to influence the environment.
- **Rewards:** Feedback from the environment based on the agent's actions.

Figure: Agent-Environment Interaction Loop

State, Observations, and Actions

- State (s): Complete description of the environment at a given time
 - Encodes all variables needed to predict future dynamics
 - Typically hidden from the agent in real-world problems
- **Observation** (*o*): Information perceived by the agent
 - May be noisy or incomplete (partial observability)
 - In fully observable environments: s = o
 - In partially observable settings: agent must infer hidden aspects of s
- Action Space (\mathcal{A}) : Set of all possible actions an agent can take
 - **Discrete:** Finite set of actions (e.g., up, down, left, right)
 - Continuous: Actions represented by real values (e.g., steering angle, force applied)

Trajectory and Reward

Definitions:

- Trajectory: sequence of states and actions the agent experiences over time.
- Reward: scalar feedback provided by the environment after taking an action.
- Return: accumulated reward over a trajectory (finite or discounted horizon).

Equations:

$$\tau = (s_0, a_0, s_1, a_1, ...)$$

 $r_t = R(s_t, a_t, s_{t+1})$ or $r_t = R(s_t, a_t)$

$$R(\tau) = r_1 + r_2 + \dots + r_T = \sum_{t=0}^{T} r_t$$
 (finite horizon)

$$R(\tau) = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots = \sum_{t=0}^{\infty} \gamma^t r_t$$
 (discounted)

Policy

• Policy: Rules that an agent uses to decide which actions to take

- Types:
 - **Deterministic:** $a_t = \mu(s_t) \rightarrow \text{DDPG}$, TD3
 - Stochastic: $a_t \sim \pi(\cdot|s_t) \rightarrow PPO$, SAC
- **Parameterized Policy:** Output is a function of policy parameters (neural network weights)
 - $a_t = \mu_{\theta}(s_t)$ or $a_t \sim \pi_{\theta}(\cdot|s_t)$
 - Parameters θ are optimized during learning

Figure: Policy Neural Network Structure

Value and Action-Value Functions

Value Function: Expected return when following a policy

Value Function:

Introduction & Motivation

$$V^{\pi}(s) = \mathop{\mathbb{E}}_{\tau \sim \pi} \left[R(\tau) | s_0 = s \right]$$

Action-Value Function:

$$Q^{\pi}(s, a) = \mathbb{E}_{\substack{\tau \sim \pi \\ \tau = a}} [R(\tau) | s_0 = s, a_0 = a]$$

Advantage Function:

$$A^{\pi}(s,a) = O^{\pi}(s,a) - V^{\pi}(s)$$

Figure: Action-Value Function Neural Network

Value Computation and Bellman Equations

Value Computation

Introduction & Motivation

How can we calculate the value of a state V(s) and a state-action pair O(s,a)?

For Policy Value Functions:

$$V^{\pi}(s) = \underset{\substack{a \sim \pi \\ s' \sim P}}{\mathbb{E}} \left[r(s, a) + \gamma V^{\pi}(s') \right]$$
$$Q^{\pi}(s, a) = r(s, a) + \gamma \underset{\substack{s' \sim P}}{\mathbb{E}} \left[\underset{\substack{a' \sim \pi}}{\mathbb{E}} \left[Q^{\pi}(s', a') \right] \right]$$

For Optimal Value Functions:

$$V^{*}(s) = \max_{\pi} V^{\pi}(s) \to V^{*}(s) = \max_{a} \mathop{\mathbb{E}}_{s' \sim P} \left[r(s, a) + \gamma V^{*}(s') \right]$$

$$Q^{*}(s, a) = \max_{\pi} Q^{\pi}(s, a) \to Q^{*}(s, a) = r(s, a) + \gamma \mathop{\mathbb{E}}_{s' \sim P} \left[\max_{a'} Q^{*}(s', a') \right]$$

DDPG Algorithm

- 1: Initialize: policy θ , Q-function ϕ , targets θ_{targ} , ϕ_{targ} , replay buffer \mathcal{D}
- 2: repeat
- Collect experience: $a = \text{clip}(\mu_{\theta}(s) + \text{noise})$, observe (s', r, d), store in \mathcal{D} 3:
- Sample batch B from \mathcal{D} 4:
- Compute targets: $y = r + \gamma (1 d) Q_{\phi_{\text{targ}}}(s', \mu_{\theta_{\text{targ}}}(s'))$ 5:
- Update critic: minimize $(Q_{\phi}(s, a) y)^2$ 6:
- Update actor: maximize $Q_{\phi}(s, \mu_{\theta}(s))$
- Update targets: $\phi_{\text{targ}} \leftarrow \rho \phi_{\text{targ}} + (1 \rho) \phi$, same for θ 8:
 - until convergence

Twin Delayed DDPG (TD3) Algorithm

- 1: Initialize: policy θ , Q-functions ϕ_1 , ϕ_2 , targets θ_{targ} , $\phi_{\text{targ},1}$, $\phi_{\text{targ},2}$, buffer \mathcal{D}
- 2: repeat

- 3: Collect experience: $a = \text{clip}(\mu_{\theta}(s) + \text{noise}, a_{Low}, a_{High})$
- Store transition (s, a, r, s', d) in \mathcal{D} 4:
- if time to update then 5:
- Sample batch B from \mathcal{D} 6:
- Compute target actions with noise: $a'(s') = \text{clip}(\mu_{\theta_{\text{targ}}}(s') + \text{noise}, a_{Low}, a_{High})$ 7:
- Compute targets: $y = r + \gamma(1 d) \min_{i=1,2} Q_{\phi_{targ},i}(s', a'(s'))$ 8:
- Update Q-functions: minimize $(Q_{\phi_i}(s, a) y)^2$ for i = 1, 29:
- Update policy: maximize $Q_{\phi_1}(s, \mu_{\theta}(s))$ 10:
- Update targets: $\phi_{\text{targ},i} \leftarrow \rho \phi_{\text{targ},i} + (1-\rho)\phi_i$ for i=1,211:
- Update target policy: $\theta_{targ} \leftarrow \rho \theta_{targ} + (1 \rho)\theta$ 12:
- 13: end if
- 14: **until** convergence

Soft Actor-Critic (SAC) Algorithm

- 1: Initialize: policy θ , Q-functions ϕ_1 , ϕ_2 , targets $\phi_{\text{targ},1}$, $\phi_{\text{targ},2}$, buffer \mathcal{D}
- 2: repeat

- Collect experience: $a \sim \pi_{\theta}(\cdot|s)$, observe (s', r, d), store in \mathcal{D} 3:
- 4: if time to update then
- Sample batch B from \mathcal{D} 5:
- Sample actions from policy: $\tilde{a}' \sim \pi_{\theta}(\cdot|s')$ 6:
- Compute targets: $y = r + \gamma(1 d) \left(\min_{i=1,2} Q_{\phi_{\text{targ},i}}(s', \tilde{a}') \alpha \log \pi_{\theta}(\tilde{a}'|s') \right)$ 7:
- Update Q-functions: minimize $(Q_{i\phi_i}(s, a) y)^2$ for i = 1, 28:
- Sample actions using reparameterization trick: $\tilde{a}_{\theta}(s) \sim \pi_{\theta}(\cdot|s)$ 9.
- Update policy: maximize $\min_{i=1,2} Q_{\phi_i}(s, \tilde{a}_{\theta}(s)) \alpha \log \pi_{\theta}(\tilde{a}_{\theta}(s)|s)$ 10:
- 11: Update targets: $\phi_{\text{targ},i} \leftarrow \rho \phi_{\text{targ},i} + (1-\rho)\phi_i$ for i = 1, 2
- end if 12:
- until convergence

Proximal Policy Optimization (PPO) Algorithm

- 1: Initialize: policy θ_0 , value function ϕ_0
- 2: **for** k = 0, 1, 2, ... **do**

Introduction & Motivation

- Collect trajectories $\mathcal{D}_k = \{\tau_i\}$ by running policy $\pi_k = \pi(\theta_k)$ in environment 3:
- Compute rewards-to-go \hat{R}_t 4:
- Compute advantage estimates \hat{A}_t based on current value function V_{ϕ_t} 5:
- Update policy by maximizing the PPO-Clip objective: 6:

$$\theta_{k+1} = \arg \max_{\theta} \frac{1}{|\mathcal{D}_k|} \sum_{\tau,t} \min \left(r_t(\theta) \hat{A}_t, \operatorname{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right)$$

where $r_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_t}(a_t|s_t)}$ is the probability ratio

Fit value function by minimizing:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|} \sum_{\tau,t} (V_{\phi}(s_t) - \hat{R}_t)^2$$

8: end for

Key Components & Definitions

Introduction & Motivation

Agents: Independent decision makers sharing an environment.

Policy $\pi_i(a_i|s)$: Action distribution of agent i.

Utility / Return: $V_i^{\pi}(s) = \mathbb{E}_{\pi}[\sum_t \gamma^t r_i].$

- Single-agent RL is a special case (n = 1)
- Interaction types: cooperative, competitive, mixed
- Game-theoretic view clarifies stability / equilibria
- Shared state, distinct rewards and policies
- Centralized training, decentralized execution (CTDE)

Zero-Sum Games

Player 1 reward:

Introduction & Motivation

$$r_1(s, a_1, a_2) = -k_1|a_1| - k_2|a_2| - k_3 d_1(s, s_{\text{ref}, 1}) + r_{\text{terminal}, 1}(s)$$

$$r_{\text{terminal},1}(s) = \begin{cases} +R_{\text{goal},1}, & s \in S_{\text{goal},1} \\ -R_{\text{fail},1}, & d_1(s, s_{\text{ref},1}) > \epsilon_1 \\ 0, & \text{otherwise} \end{cases}$$

Zero-sum property:

$$r_2(s, a_1, a_2) = -r_1(s, a_1, a_2), \qquad V_1^{(\pi_1, \pi_2)} = -V_2^{(\pi_1, \pi_2)}, \quad Q_1 = -Q_2$$

Minimax optimality:

$$V_1^*(s) = \max_{\pi_1} \min_{\pi_2} V_1^{(\pi_1, \pi_2)}(s) = \min_{\pi_2} \max_{\pi_1} V_1^{(\pi_1, \pi_2)}(s)$$

From Single-Agent to Zero-Sum Robustness

- Lift environment: $(s, a) \rightarrow (s, a_1, a_2)$
- Critic learns $Q_1(s, a_1, a_2)$; $Q_2 = -Q_1$
- Policy updates:

$$\max_{\theta_1} \mathbb{E}[Q_1], \quad \max_{\theta_2} \mathbb{E}[-Q_1]$$

- Stabilization: target networks, entropy (SAC), delay (TD3), clipping (PPO)
- Outcome: robust guidance via adversarial curriculum

Single-Agent vs. Zero-Sum MARL

Comparison:

- Both single-agent RL and zero-sum MARL achieve the task.
- Single-agent remains effective but less robust to disturbances.
- With or without an adversary, policies remain robust.

Multi-Agent RL for Spacecraft Guidance

Robustness Scenario Specification

- **Random Init:** $x_0 \leftarrow x_0 + \mathcal{N}(0, 0.1^2)$
- **Actuator Disturbance:** $u_t \leftarrow u_t + \mathcal{N}(0, 0.05^2)$; (sensor additive) $v_t \leftarrow v_t + \mathcal{N}(0, 0.02^2)$
- **Model Mismatch:** $\theta \leftarrow \theta + \mathcal{N}(0, 0.05^2)$
- **Partial Observability:** mask $50\% \rightarrow m_{\star}^{(i)} \sim \text{Bern}(0.5), y_t \leftarrow y_t \circ m_t$
- Sensor Noise (multiplicative): $y_t \leftarrow y_t \circ (1 + \mathcal{N}(0, 0.05^2))$
- **Time Delay:** buffer length 10, z $u_t^{\text{applied}} \leftarrow u_{t-10} + \mathcal{N}(0, 0.05^2)$
- Notes:

- All scenarios evaluated independently.
- Zero-sum agents trained jointly once.

Reinforcement Learning RL Algorithms Multi-Agent RL

Robustness Evaluation: DDPG vs. MA-DDPG

Scenario	Cumula	ative Reward	Path Error Sum		
	DDPG	MA-DDPG	DDPG	MA-DDPG	
Random Initial Conditions	-4.17	-3.63	0.40	0.63	
Actuator Disturbance	-1.93	-1.96	7.56	7.94	
Model Mismatch	-3.24	-2.70	0.70	0.76	
Partial Observation	-3.28	-2.89	0.68	0.75	
Sensor Noise	-1.07	-0.47	0.10	0.15	
Time Delay	-3.20	-1.91	1.74	2.43	

Scenario	Contro	l Effort Sum	Failure Probability		
Secimito	DDPG	MA-DDPG	DDPG	MA-DDP0	
Random Initial Conditions	5.52	5.60	1.00	1.00	
Actuator Disturbance	5.60	5.59	0.90	0.30	
Model Mismatch	5.29	5.57	1.00	1.00	
Partial Observation	5.57	5.57	0.60	0.80	
Sensor Noise	5.51	5.54	0.00	0.00	
Time Delay	5.61	5.61	0.70	0.70	

Reculte 00000000

Robustness Evaluation: TD3 vs. MA-TD3

Scenario	Cumul	ative Reward	Path Error Sum		
	TD3	MA-TD3	TD3	MA-TD3	
Random Initial Conditions	-2.95	-0.26	0.39	0.14	
Actuator Disturbance	0.56	0.73	0.02	0.00	
Model Mismatch	-4.73	-3.30	0.47	0.73	
Partial Observation	0.21	0.71	0.02	0.01	
Sensor Noise	-0.08	-2.93	0.11	3.19	
Time Delay	0.55	0.67	0.01	0.01	

Scenario Random Initial Conditions Actuator Disturbance	Contro	ol Effort Sum	Failure Probability		
	TD3	MA-TD3	TD3	MA-TD3	
Random Initial Conditions	5.05	4.57	1.00	0.30	
Actuator Disturbance	3.06	2.66	0.00	0.00	
Model Mismatch	5.53	5.41	1.00	1.00	
Partial Observation	4.09	3.18	0.00	0.00	
Sensor Noise	5.46	5.50	0.00	1.00	
Time Delay	4.57	4.57	0.00	0.00	

Reinforcement Learning

Robustness Evaluation: PPO vs. MA-PPO

(e) Sensor Noise

Scenario	Cumul	ative Reward	Path Error Sum		
	PPO	MA-PPO	PPO	MA-PPC	
Random Initial Conditions	-1.85	0.46	0.22	0.14	
Actuator Disturbance	-1.97	-1.91	8.33	7.50	
Model Mismatch	0.46	0.30	0.07	0.08	
Partial Observation	-3.60	-1.81	2.34	2.06	
Sensor Noise	0.52	0.48	0.13	0.15	
Time Delay	0.58	-2.44	0.03	2.49	

Scenario	Contro	ol Effort Sum	Failure Probability		
	PPO	MA-PPO	PPO	MA-PPO	
Random Initial Conditions	1.55	1.98	0.70	0.00	
Actuator Disturbance	2.59	3.42	1.00	1.00	
Model Mismatch	0.90	1.13	0.00	0.00	
Partial Observation	1.06	2.15	1.00	1.00	
Sensor Noise	1.22	2.08	0.00	0.00	
Time Delay	2.43	2.56	0.00	1.00	

(d) Partial Observation

Introduction & Motivation

(f) Time Delay

(f) Time Delay

Robustness Evaluation: SAC vs. MA-SAC

(e) Sensor Noise

Scenario Random Initial Conditions Actuates Distribute areas	Cumul	ative Reward	Path Error Sum		
	SAC	MA-SAC	SAC	MA-SAC	
Random Initial Conditions	-4.69	-2.98	0.29	0.26	
Actuator Disturbance	-1.95	-1.93	8.02	7.72	
Model Mismatch	-4.89	-4.35	0.38	0.26	
Partial Observation	-3.63	-0.44	1.95	0.07	
Sensor Noise	-0.89	0.12	0.12	0.12	
Time Delay	-4.14	-0.05	1.87	0.01	

Scenario Random Initial Conditions Actuator Disturbance Model Mismotoh	Contro	ol Effort Sum	Failure Probability		
	SAC	MA-SAC	SAC	MA-SAC	
Random Initial Conditions	2.15	1.37	1.00	1.00	
Actuator Disturbance	3.26	3.09	1.00	1.00	
Model Mismatch	1.99	1.16	1.00	1.00	
Partial Observation	2.32	1.99	1.00	0.00	
Sensor Noise	2.10	1.86	0.00	0.00	
Time Delay	2.22	1.25	1.00	0.00	

(d) Partial Observation

RL Algorithms Multi-Agent RL Reinforcement Learning

Multi-Agent RL for Spacecraft Guidance

Single-Agent RL: Return and Error Distributions

Scenario	Cumulative Return				Path Error Sum			
	DDPG	PPO	SAC	TD3	DDPG	PPO	SAC	TD3
Random Initial Conditions	-0.27	0.61	-0.76	0.56	3.30	2.56	8.06	0.72
Actuator Disturbance	-0.38	0.61	-0.72	0.55	3.74	2.58	7.91	0.77
Model Mismatch	-0.84	0.58	-2.98	0.51	10.87	3.06	17.12	1.09
Partial Observation	-0.88	0.36	-3.65	0.23	8.18	3.34	15.47	1.77
Sensor Noise	-0.85	0.58	-2.90	0.52	11.04	3.08	16.81	1.02
Time Delay	-0.76	0.61	-2.98	0.48	8.95	2.27	15.70	0.81

Scenario	Control Effort Sum				Failure Probability			
	DDPG	PPO	SAC	TD3	DDPG	PPO	SAC	TD3
Random Initial Conditions	5.11	0.77	1.76	3.31	0.00	0.00	0.00	0.00
Actuator Disturbance	4.89	0.77	1.71	3.07	0.00	0.00	0.00	0.00
Model Mismatch	5.48	0.86	2.37	4.32	0.00	0.00	1.00	0.00
Partial Observation	5.37	1.03	2.33	4.10	0.00	0.00	1.00	0.00
Sensor Noise	5.48	0.86	2.37	4.30	0.00	0.00	1.00	0.00
Time Delay	5.51	0.76	2.11	5.12	0.00	0.00	1.00	0.00

Introduction & Motivation

Results 000000000 Reinforcement Learning RL Algorithms Multi-Agent RL

Zero-Sum MARL: Return and Error Distributions

Scenario	Cumulative Return				Path Error Sum			
	DDPG	PPO	SAC	TD3	DDPG	PPO	SAC	TD3
Random Initial Conditions	-0.41	0.34	-0.02	0.74	4.42	4.30	4.02	1.22
Actuator Disturbance	-0.44	0.35	-0.02	0.73	4.39	4.38	4.01	1.26
Model Mismatch	-0.63	0.38	-0.13	0.75	8.85	3.57	4.78	1.25
Partial Observation	-1.52	0.40	-0.44	0.71	9.65	2.44	5.17	1.09
Sensor Noise	-0.60	0.37	-0.12	0.75	9.12	3.58	4.66	1.25
Time Delay	-1.19	0.17	-0.05	0.67	6.73	4.53	4.12	1.21

Scenario	Control Effort Sum			Failure Probability				
	DDPG	PPO	SAC	TD3	DDPG	PPO	SAC	TD3
Random Initial Conditions	5.40	1.15	1.34	2.76	0.00	0.00	0.00	0.00
Actuator Disturbance	5.08	1.11	1.23	2.66	0.00	0.00	0.00	0.00
Model Mismatch	5.55	1.51	2.09	3.38	0.00	0.00	1.00	0.00
Partial Observation	5.46	1.50	2.00	3.20	0.00	0.00	1.00	0.00
Sensor Noise	5.54	1.52	2.08	3.38	0.00	0.00	1.00	0.00
Time Delay	5.48	1.25	1.25	4.57	0.00	0.00	1.00	0.00

Introduction & Motivation

Results 00000000

Summary of Principal Findings

- Zero-sum MARL framing improves worst-case orbital maintenance robustness.
- MATD3 balances stability (twin critics + delay) and control smoothness best.
- Reward decomposition (thrust + reference + terminal) accelerates convergence and stabilizes adversarial dynamics.
- Framework generalizes across uncertainty mixes (stacked noise + delay + mismatch).

Conclusion: Adversarial co-training yields resilient guidance without explicit disturbance models.

Thanks for your attention

DDPG Parameters

Steps / epoch	30k	Epochs	100
Buffer size	10 ⁶	Discount γ	0.99
Polyak $ au$	0.995	Actor LR	1×10^{-3}
Critic LR	1×10^{-3}	Batch size	1024
Start policy steps	5k	Update start	1k
Update interval	2k	Action noise	0.1
Max episode len	6k	Device	CUDA
Nets (A/C)	(32,32)	Activation	ReLU

Table: DDPG hyperparameters

TD3 Parameters

Steps / epoch	30k	Epochs	100
Buffer size	10 ⁶	Discount γ	0.99
Polyak τ	0.995	Actor LR	1×10^{-3}
Critic LR	1×10^{-3}	Batch size	1024
Start policy steps	5k	Update start	1k
Update interval	2k	Target noise	0.2
Noise clip	0.5	Policy delay	2
Max episode len	30k	Nets (A/C)	(32,32)

Table: TD3 hyperparameters

SAC Parameters

Steps / epoch	30k	Epochs	100
Buffer size	10^{6}	Discount γ	0.99
Polyak τ	0.995	LR (all)	1×10^{-3}
Alpha init	0.2	Batch size	1024
Start policy steps	5k	Update start	1k
Updates / step	10	Update interval	2k
Test episodes	10	Max episode len	30k
Nets (A/C)	(32,32)	Activation	ReLU

Table: SAC hyperparameters

PPO Parameters

Steps / epoch	30k	Epochs	100
Discount γ	0.99	Clip ratio	0.2
Policy LR	3×10^{-4}	Value LR	1×10^{-3}
Policy iters	80	Value iters	80
Nets (Actor)	(32,32)	Nets (Critic)	(32,32)
Activation	ReLU	Batch (mini)	(derived)

Table: PPO hyperparameters

A/C = Actor/Critic; LR = learning rate; len = length.

Training Procedure (Summary)

- Collect initial random experience (fill replay / buffer).
- 2 Loop: act, store (s, a, r, s', d), update (per algo rules).
- **3** Target networks: Polyak averaging (τ) .
- 4 TD3: twin critics + delayed policy + target smoothing.
- **SAC:** entropy term, adaptive temperature (if enabled).
- 6 PPO: clipped surrogate objective, on-policy batches.
- **7** Stability: normalization, gradient clipping (if needed), fixed seeds.

Nash Equilibrium

A policy profile $\pi^* = (\pi_1^*, \dots, \pi_n^*)$ is Nash if:

$$V_{i}^{(\pi_{i}^{*},\pi_{-i}^{*})}(s) \geq V_{i}^{(\pi_{i},\pi_{-i}^{*})}(s) \quad \forall \pi_{i}, \ \forall i$$

Implications:

- No unilateral profitable deviation
- In zero-sum 2-player games value is unique
- Solution concepts guide stable MARL training

