Задача 06.

Да се докаже, че за произволни множества A,B,C е изпълнено: $A\times (B\setminus C)=(A\times B)\setminus (A\times C)$.

Док-во:

- (\subseteq) Нека $x \in A \times (B \setminus C)$. Следователно $\exists a \in A$ и $b \in (B \setminus C)$, т.ч. x = (a,b). Тогава $b \in B$ и $b \notin C \Rightarrow x = (a,b) \in A \times B$. Да сопуснем, че $x \in A \times C$. Тогава $\exists a' \in A$ и $c \in C$, т.ч. x = (a',c). Но x = (a,b) и следователно $x = (a,b) = (a',c) \Rightarrow a = a'$ и b = c, но $c \in C$, от където $b \in C$, което е противоречие с допускането, че $x \in A \times C \Rightarrow x \notin A \times C$. Така $x \in (A \times B) \setminus (A \times C)$.
- (\supseteq) Нека $x \in (A \times B) \setminus (A \times C)$. Следователно $x \in A \times B$ и $x \notin A \times C$. От $x \in A \times B$ следва, че $\exists a \in A$ и $b \in B$, т.ч. $x \in (a,b)$ Да допуснем че $b \in C$. Тогава понеже $a \in A$ имаме, че $x = (a,b) \in A \times C$, което е противоречие.

Следователно $b \notin C$ и т.к. $b \in B$, то $b \in B \setminus C$. Така $x = (a,b) \in A \times (B \setminus C)$.

github.com/andy489