Задание 10-2. Годограф

Годографом вектора называется кривая, представляющая собой множество концов

переменного со временем вектора $\vec{r}(t)$, начало которого (Рис. 1) для всех t есть фиксированная точка O («Математический энциклопедический словарь»). Иными словами годограф вектора представляет собой множество точек, по которым «движется» конец данного вектора со временем, если положение его начала зафиксировать в некоторой точке O.

Справедливости ради отметим, что школьники косвенно знакомы с данным понятием, поскольку годографом радиус-вектора $\vec{r}_i(t)$ $(1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6)$ движущейся материальной точки является ... её траектория, отмеченная на рисунке 1 пунктирной линией. Годограф вектора наглядно представляет его эволюцию с течением времени, а также используется при различных расчетах.

Часть 1. Вычисление полного ускорения

1.1 Небольшой массивный шарик, подвешенный на легкой нерастяжимой нити, отклонили так, что нить стала горизонтальна и аккуратно отпустили без натяжения нити (рис. 2). При движении шарик будет приобретать как центростермительное (нормальное) ускорение \vec{a}_n , направленное

вдоль нити, так и касательное (тангенциальное) \vec{a}_{τ} ускорение, направленное перпендикулярно нити (см. рис. 2). Сумма $\vec{a} = \vec{a}_n + \vec{a}_{\tau}$ называется *полным* ускорением тела. Найдите зависимости модулей ускорений \vec{a}_n и \vec{a}_{τ} от угла α , образованного нитью с вертикалью. Сопротивлением воздуха пренебречь. Ускорение свободного падения \vec{g} .

1.3 Поскольку вектор полного ускорения шарика поворачивается со временем, то в некоторый момент он будет горизонтален. Найдите полное ускорение шарика a_1 и угол α_1 между нитью и вертикалью в этот момент времени.

Часть 2. Построение годографа полного ускорения шарика

- **2.1** Найдите зависимости проекций a_x и a_y полного ускорения шарика от угла α в стандартной (декартовой) системе координат. Выразите их в безразмерных единицах $a_x^* = a_x/g$ и $a_y^* = a_y/g$.
- **2.2** Чему равен модуль максимального горизонтального ускорения $a_{x \max}$ шарика в процессе движения до низшей точки траектории? Максимального вертикального ускорения $a_{y \max}$?

- **2.3** Разбейте прямой угол α на интервалы по $\Delta \alpha = 5^{\circ}$ градусов и вычислите проекции ускорений a_x^* и a_y^* для точек в диапазоне $0^{\circ} \le \alpha \le 90^{\circ}$. Результаты вычислений занесите в Таблицу 1 (см. ниже).
- **2.4** Пользуясь Таблицей 1, постройте на выданном бланке годограф полного ускорения шарика при его движении до нижней точки траектории.
- **2.5** Проанализируйте построенный годограф, отметьте его существенные особенности и попытайтесь описать их математически (например, получить уравнение, описывающее полученную кривую).

Лист ответов. Задание 10-2. Годограф

Таблица 1. Вычисление a_x^* и a_y^* . Бланк для построения годографа ускорения шарика по Таблице 1.

Угол	a_x^*	a_y^*
90°		
85°		
80°		
75°		
70°		
65°		
60°		
55°		
50°		
45 °		
40°		
35°		
30°		
25 °		
20°		
15 °		
10°		
5°		
0 °		

