

planetmath.org

Math for the people, by the people.

power of an object

Canonical name PowerOfAnObject
Date of creation 2013-03-22 18:31:32
Last modified on 2013-03-22 18:31:32

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 5

Author CWoo (3771)
Entry type Definition
Classification msc 18A30
Defines power
Defines copower

Let \mathcal{C} be a category and A an object in \mathcal{C} . Suppose n is a non-negative integer. The n-th power of A is defined as the direct product of A with itself n times. In other words, the n-th power of A is an object P in \mathcal{C} , together with n parallel morphisms $\pi_1, \ldots, \pi_n \in \text{hom}(P, A)$, such that if there are n parallel morphisms $p_1, \ldots, p_n \in \text{hom}(B, A)$, then there is a unique morphism $h: B \to P$ such that $\pi_i \circ h = p_i$, where $i = 1, \ldots, n$. The commutative diagram below illustrates the situation:

The n-th power of A is denoted by A^n . Below are some properties of the power of an object in a category:

- Each of the projection morphisms π_i is a split epimorphism.
- \bullet $A^1 \cong A$.
- A^0 is a terminal object in C.
- $A^{m+n} \cong A^n \times A^m$, if the product exists.

For example, in the category of sets, the n-th power of a set A is the set of n-tuples where each entry is an element of A.

Remark. The *copower* of an object is defined dually. All of the properties above can be dualized. For example, the 0-th copower of an object is an initial object. The n-th copower of an object A in **Set** is the disjoint union of n-copies of A.