

AD A108273

**DNA 5382H** 

# HANDBOOK FOR THE ANALYSIS OF ENGAGEMENTS WITH MOBILE TARGETS

RDA Staff

R & D Associates

P.O. Box 9695

Marina del Rey, California 90291

1 June 1980

**Handbook** 



CONTRACT No. DNA 001-80-C-0079

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE B380080464 V99QAXNL12913 H2590D.

Prepared for

Director
DEFENSE NUCLEAR AGENCY
Washington, D. C. 20305

81 12 08 224

Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: STTI, WASHINGTON, D.C. 20305, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH TO BE DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.

### UNCLASSIFIED

RECURITY CLASSIFICATION OF THIS PAGE

| REPORT DOCUMENTATION PAGE                                                                                                                          |                              | HEAD INSTRUCTIONS<br>SEFORE COMPLETING FORM                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------|
| 1. REPORT NUMBER DNA 5382H                                                                                                                         | AD-ALOR 2                    | 3. ASCIPIENT'S CATALOG NUMBER                                                      |
| 4. TITLE (and Subtitio)  HANDBOOK FOR THE ANALYSIS OF  ENGAGEMENTS WITH MOBILE TARGETS                                                             |                              | Handbook                                                                           |
|                                                                                                                                                    |                              | 6. PERFORMING ORG. REPORT NUMBER(s) RDA-TR-112920-003                              |
| RDA Staff                                                                                                                                          |                              | DNA 001-80-C-0079                                                                  |
| <ul> <li>Performing organization name and address</li> <li>R &amp; D Associates</li> <li>P.O. Box 9895</li> <li>Marina del Rey, Califor</li> </ul> |                              | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Subtask V99QAXNL129-13 |
| 11. CONTROLLING OFFICE NAME AND ADDRESS Director                                                                                                   |                              | 12. REPORT DATE 1 June 1980                                                        |
| Defense Nuclear Agency Washington, D.C. 20305                                                                                                      | 5                            | 13. NUMBER OF PAGES                                                                |
| 14. MONITORING AGENCY NAME & ADDRESS (If differe                                                                                                   | int from Controlling Office) | UNCLASSIFIED                                                                       |
|                                                                                                                                                    |                              | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A                                     |
| Approved for public relationship                                                                                                                   | ease; distribut              | ion unlimited.                                                                     |

17. DISTRIBUTION STATEMENT (of the abstract entered in block 20, if different from report)

18. SUPPLEMENTARY NOTES

This work sponsored by the Defense Nuclean Agency under RDT&E RMSS Code B380080464 V990AXNL12913 H2590D.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Mobile targets Dwell time Residence time

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This document presents a methodology and data for estimating the probability of a mobile target being present as a function of the time after observation. Handbook data are presented for specific cases and in a generalized form. Coding for performing the calculations on a TI-59 calculator is also included.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

### TABLE OF CONTENTS

| Section |                                                       | Page |
|---------|-------------------------------------------------------|------|
|         | LIST OF ILLUSTRATIONS                                 | 2    |
|         | LIST OF TABLES                                        | 3    |
| 1       | INTRODUCTION AND SUMMARY                              | 5    |
| II      | METHODOLOGY                                           | 8    |
| III     | TABULAR DATA FOR TARGET ANALYSIS                      | 15   |
| IV      | GENERALIZED DATA FOR TARGET ANALYSIS                  | 38   |
| v       | SAMPLE CASES                                          | 40   |
|         | APPENDIX A. EQUATIONS FOR TARGET PERMANENCE           | 43   |
|         | APPENDIX B. TI-59 CODE FOR MOBILE TARGET CALCULATIONS | 49   |

| Accession       | For                                   |
|-----------------|---------------------------------------|
| 15-18 084x      |                                       |
| 11 1 743        | Ō                                     |
| Section Section | 1 🗇                                   |
| Contraction 1   | lan                                   |
|                 | · · · · · · · · · · · · · · · · · · · |
| . 3.            |                                       |
| . to wibatio    | on/                                   |
| de Profilment   | ty Codes                              |
| Avail           | and/or                                |
| office of Spe   | e1a <b>l</b>                          |
|                 |                                       |
|                 | †                                     |
|                 | 1                                     |
| <del></del>     | 1                                     |

### LIST OF ILLUSTRATIONS

| Figure |                                                             | Page |
|--------|-------------------------------------------------------------|------|
| 1      | Probability of target presence                              | 6    |
| 2      | Target dwell time distribution model                        | 9    |
| 3      | Probability target is still present                         | 11   |
| 4      | Effect of target movement on expected coverage              | 13   |
| 5      | Generalized curve for estimating                            |      |
|        | <pre>probability target is still at observed location</pre> | 39   |

## LIST OF TABLES

| Table |                                                                   | Page |
|-------|-------------------------------------------------------------------|------|
| 1     | Specific values of $\tau$ and $\sigma$ for which tables generated | 15   |
| 2     | Probability of target presence, Case 1A                           | 16   |
| 3     | Probability of target presence, Case 1B                           | 17   |
| 4     | Probability of target presence, Case 2A                           | 18   |
| 5     | Probability of target presence, Case 2B                           | 19   |
| 6     | Probability of target presence, Case 3A                           | 20   |
| 7     | Probability of target presence, Case 3B                           | 21   |
| 8     | Probability of target presence, Case 4A                           | 22   |
| 9     | Probability of target presence, Case 4B                           | 23   |
| 10    | Probability of target presence, Case 5A                           | 24   |
| 11    | Probability of target presence, Case 5B                           | 25   |
| 12    | Probability of target presence, Case 6A                           | 26   |
| 13    | Probability of target presence, Case 6B                           | 27   |
| 14    | Probability of target presence, Case 7A                           | 28   |
| 15    | Probability of target presence, Case 7B                           | 29   |
| 16    | Probability of target presence, Case 8A                           | 30   |
| 17    | Probability of target presence, Case 8B                           | 31   |
| 18    | Probability of target presence, Case 9A                           | 32   |
| 19    | Probability of target presence, Case 9B                           | 33   |
| 20    | Probability of target presence, Case 10A                          | 34   |
| 21    | Probability of target presence, Case 10B                          | 35   |
| 22    | Probability of target presence, Case 11A                          | 36   |
| 23    | Probability of target presence, Case 11B                          | 37   |

#### I. INTRODUCTION AND SUMMARY

Current targeting manuals such as the <u>Staff Officer's</u>
Field Manual, Nuclear Weapons Employment Doctrine and Procedures, FM-101-31-1 (Ref. 1), do not include a means of analyzing the engagement of targets that move. This is reflected by the fact that no parameters which represent motion (for instance, speed or dwell time) are used in the manual's methodology. By implication, all targets are fixed targets.

This document describes a methodology and provides the data required for a realistic analysis of a mobile target engagement. For this report a mobile target is defined both as a target that moves nearly continuously (such as a tank company) and as one that moves only occasionally (such as an artillery battery or command post). Specifically, this manual provides a means of estimating the probability that a target is still present at an observed location as a function of time from the observation where the time the target stopped is unknown. With this methodology targets can then be evaluated not only on the basis of expected fractional coverage as in the manuals, but also on the basis of whether there is an adequate likelihood that they will still be present when a weapon arrives. R

Results are summarized in Figure 1. This chart shows the probability of a target being present at an observed location as a function of the expected target dwell time  $(\tau)$  and the acquisition/engagement time (t). Its use is best illustrated by an example. Let us assume an expected target dwell time  $(\tau)$  of 12 hours and that the time (t) necessary to acquire and process the target information, to communicate it to required elements, to make decisions, to plan and prepare weapon use,

<sup>1.</sup> Staff Officer's Field Manual, Nuclear Weapons Employment Doctrine and Procedures, Department of the Army, FM-101-31-1, March 1977.



Figure 1. Probability of target presence.

and to employ the weapon is 6 hours. The ratio of t to r is therefore 0.5. The resultant expected probability is about 0.53. Thus, there is slightly better than a 50/50 chance of the target still being present when the weapon actually arrives for the example.

Figure 1 is based upon a particular assumption concerning the dwell time statistics, but it is a representative curve with general applicability. The remainder of this report describes the methodology in detail and presents results for other cases in greater detail.

Specifically, the sections of this report present a brief description of the methodology (with a detailed development of the equations in an appendix); tabular data for target analysis of specific cases; an expanded generalized curve; and sample cases. Appendix A presents the derivation of the equations while Appendix B details a TI-59 calculator code for calculating target presence probabilities.

<sup>&</sup>quot;The standard deviation of the expected dwell time is assumed to be one-half of the expected dwell time. Section IV of this report presents generalized data that permit evaluation of other values for standard deviation of the dwell time.

#### II. METHODOLOGY

In this section the hasic methodology for the evaluation of mobile targets is described. Appendix A presents a detailed development of the equations. The problem addressed by the methodology is:

What is the probability of a target being at an observed location at some time (At) later? Factors to be considered include how long the target can be expected to stay fixed, when did it stop relative to the observation, and how much time is required to respond (i.e., to place a weapon on the target).

The methodology begins with the assumption that any target can be modeled as having a characteristic average dwell time ( $\tau$ ) at a given location. The value of  $\tau$  is, of course, strongly dependent upon the particular scenario and situation but, in any case, the value can be estimated. The dwell time has some expected deviation ( $\sigma$ ) about  $\tau$ ; i.e., not all targets of the given type in that situation would move precisely at time  $\tau$ .

A reasonable assumption is that the actual distribution of dwell times for a given target type and situation will be Gaussian, i.e., the bell-shaped curve as shown in Figure 2.\* The curve is symmetrical about the mean dwell time  $\tau$  with the degree of spread of the curve determined by the standard deviation  $\sigma$ . The physical meaning of the curve is that the most probable move time is  $\tau$ ; however, some units move earlier and some move later. If the spread  $(\sigma)$  is large, then fewer units move at  $\tau$  and more move earlier and later than  $\tau$ .

<sup>\*</sup>It does not appear that the actual mathematical form of the dwell time distribution is a critical assumption. The results are most sensitive to the parameter  $\tau$  regardless of the distribution model.



Figure 2. Target dwell time distribution model.

Selection of a dwell time model ( $\tau$  and  $\sigma$ ) permits calculation of the probability of a target being present as a function of time. The probability that a target moves before a given time is equal to the area under the dwell time distribution curve up to that time. This probably is expressed mathematically as

$$P_{M} = \int_{0}^{t} f(t)dt$$

where  $f(t) \equiv Gaussian distribution function.$ 

The probability of a target being present  $(P_p)$  at a given time is one minus the probability that it has moved before that time:

$$P_p = 1 - P_M$$

These manipulations result in a curve as illustrated in Figure 3.

Not knowing at what time the detection occurred relative to the time the target actually stopped complicates the problem. The mathematics of this complication are addressed in detail in Appendix A. The final result, i.e., the probability that the target will still be present at its original position at a time t after it was detected, is

$$P(t) = \frac{-\sqrt{\frac{2}{\pi}} e^{-(t-\tau)^{2}/2\sigma^{2}} - (t-\tau) \left[1 - erf\left[\frac{(t-\tau)}{\sigma\sqrt{2}}\right]\right]}{\sigma\sqrt{\frac{2}{\pi}} e^{-\tau^{2}/2\sigma^{2}} + \tau\left[1 + erf\left(\frac{\tau}{\sigma\sqrt{2}}\right)\right]}$$

This equation, when normalized to present the probability in terms of the ratio  $t/\tau$  and with the assumption that  $\sigma = \tau/2$ , results in the curve presented in Figure 1. Note the difference between Figures 1 (stop time not known) and Figure 3



Figure 3. Probability target is still present with the time the target stops known.

(stop time known). For  $t = \tau$ , the former gives a probability of the target still being present of less than 20 percent while the latter, as expected, yields a probability of 50 percent. Alternatively, for a desired probability (e.g., 50 percent) t must be about 50 percent of  $\tau$  with the stop time unknown or about equal to  $\tau$  with the stop time known.

The remainder of this report will treat only the case where the stop time is unknown. This is probably the most realistic assumption when the demands on the target acquisition system in wartime are considered, especially with limited resources and degraded capabilities due to enemy actions.

In summary, the aforementioned methodology provides a means of estimating the probability of target presence as a function of time. The presence probability alone could be used as a criterion for selecting targets or it could be combined with the expected fractional coverage for a given weapon calculated from the field manuals as follows:

$$F^* = F \times P(t)$$

where F' = revised expected coverage

F = expected coverage using weapon W assuming static target (FM-101-31 or AP 550)

P(t) = probability target at observed location.

Figure 4 shows an example result using this approach. The target is assumed to remain in one place an average time ( $\tau$ ) of 4 hours with  $\sigma=1$  hour. The static fraction coverages are 0.29 and 0.83 for 600 m and 200-m target location errors, respectively. The figure illustrates that if the desired expected coverage is 0.30, then it is unachievable with a target location error of 600 m. If the target were acquired with a system providing 200-m accuracy, then up to 2.6 hours can elapse between the observation and the attack execution while maintaining an expected coverage of 0.30. Note that in any



Figure 4. Effect of target movement on expected coverage (target stop time unknown).

individual case, a target will receive either 0.83 coverage or zero. Over a large number of targets the coverage to the targets considered together will be 0.30.

### III. TABULAR DATA FOR TARGET ANALYSIS

Data are presented in this section for the estimation of target presence probabilities for selected values of the dwell time  $(\tau)$  and standard deviation of the dwell time  $(\sigma)$  as noted in Table 1. Results for these cases are presented in Tables 2 through 23. All results assume the time the target stopped is unknown. See Section IV if other values of  $\sigma$  are desired.

TABLE 1. SPECIFIC VALUES OF  $\tau$  AND  $\sigma$  FOR WHICH TABLES GENERATED

|      | Average dwell | 1 Standard deviation, $\sigma$ (h) |                         |
|------|---------------|------------------------------------|-------------------------|
| Case | time, τ(h)    | Set A ( $\sigma = \tau/3$ )        | Set B $(\sigma = \tau)$ |
| 1    | 0.1           | 0.033                              | 0.1                     |
| 2    | 0.2           | 0.067                              | 0.2                     |
| 3    | 0.5           | 0.167                              | 0.5                     |
| 4    | 1             | 0.333                              | 1                       |
| 5    | 2             | 0.667                              | 2                       |
| 6    | 4             | 1.333                              | 4                       |
| 7    | 6             | 2                                  | 6                       |
| 8    | 12            | 4                                  | 12                      |
| 9    | 24            | 8                                  | 24                      |
| 10   | 48            | 12                                 | 48                      |
| 11   | 96            | 32                                 | 96                      |
|      | <u> </u>      | <u> </u>                           |                         |

### TABLE 2. PROBABILITY OF TARGET PRESENCE, CASE 1A

AVERAGE RESIDENCE TIME(HOURS) = .1
DEVIATION OF AVERAGE RESIDENCE TIME(HOURS)= .03333

| TIME (HOURS) | TIME(MIN) | PROB TARGET PRESENT |
|--------------|-----------|---------------------|
| 0.000        | 0.0       | 1.000               |
| . 005        | . 3       | 0.950               |
| . 010        | . 6       | 0.900               |
| .015         | . 9       | 0.850               |
| . 020        | 1.2       | ŭ. <b>86</b> 1      |
| .025         | 1.5       | 0.751               |
| . 030        | 1.8       | 0.702               |
| . 035        | 2.1       | 0.653               |
| . 040        | 2.4       | 0.605               |
| . 045        | 2.7       | 0.557               |
| .050         | 3.0       | 0.510               |
| . 055        | 3.3       | 0.464               |
| . 060        | 3.6       | 0.419               |
| . 065        | 3.9       | 0.375               |
| .070         | 4.2       | <b>0.</b> 333       |
| .075         | 4.5       | 0.294               |
| .030         | 4.8       | 0.256               |
| . 085        | 5.1       | 0.221               |
| .090         | 5.4       | 0.139               |
| . 095        | 5.7       | 0.159               |
| . 100        | 6.8       | 0.133               |
| . 105        | 6.3       | 0.109               |
| .110         | 6.6       | 0.089               |
| . 115        | 6.9       | 0.071               |
| . 120        | 7.2       | <b>0.0</b> 56       |
| .125         | 7.5       | 8.044               |
| . 130        | 7.8       | <b>0.03</b> 3       |

# TABLE 3. PROBABILITY OF TARGET PRESENCE, CASE 1B

AMERAGE RESIDENCE TIME (MOURS) = .1 DEVIATION OF AVERAGE RESIDENCE TIME (MOURS  $\sim$  .1

| I IME HOURS | TIME MIN   | PPOB THRGET PPESENT |
|-------------|------------|---------------------|
| 0.000       | 0.0        | 1.000               |
| . 005       | . 3        | 0.961               |
| . 010       | .6         | 0.923               |
| .015        | . 9        | 0,886               |
| .020        | 1.2        | 0.849               |
| .025        | 1.5        | U. 81 3             |
| .030        | 1.8        | 0.778               |
| .035        | 2.1        | 0.743               |
| .040        | 2.4        | 0.710               |
| .045        | 2.7        | 0.6.6               |
| . 050       | 3.0        | 0.644               |
| . 055       | 3.3        | 0.613               |
| .060        | 3.6        | 0.582               |
| .065        | 3.9        | 0.552               |
| .070        | 4.1        | 0.523               |
| ,075        | 4.5        | 0.495               |
| .080        | 4.8        | 0.468               |
| .085        | 5.1        | 0.442               |
| .040        | 5.4        | 0.416               |
| .095        | 5.7        | 0.392               |
| .100        | 6.0        |                     |
| .105        | 6.3        | 0.368               |
| .110        | 6. š       | 0.346               |
| .115        |            | 0.324               |
| .120        | 6.9        | 0.303               |
| .125        | 7.2<br>7.5 | 0.283               |
|             |            | 0.264               |
| . 130       | 7.8        | 0.246               |
| . 135       | 8.1        | 0.229               |
| . 140       | 8.4        | 0.213               |
| . 145       | 8.7        | 0.197               |
| . 150       | 9.0        | 0.183               |
| . 155       | 9.3        | 0.169               |
| . 160       | 9.6        | 0.156               |
| . 165       | 9.9        | 0.143               |
| . 170       | 10.2       | 0.132               |
| . 175       | 10.5       | 0.121               |
| . 180       | 10.8       | 0.111               |
| . 185       | 11.1       | 0.102               |
| . 190       | 11.4       | 0.093               |
| . 195       | 11.7       | 0.085               |
| . 200       | 12.0       | 0.077               |
| . 205       | 12.3       | 0.070               |
| .210        | 12.6       | 0.060               |
| .215        | 12.9       | 0.057               |
| .220        | 13.2       | 0.052               |
| .225        | 13.5       | 0.047               |
| .230        | 13.8       | 0.042               |
| . 235       | 14.1       | 0.038               |
| . 240       | 14.4       | 0.034               |
| .245        | 14.7       | 0.030               |
|             | * :        |                     |

### TABLE 4. PROBABILITY OF TARGET PRESENCE, CASE 2A

AMERAGE RESIDENCE TIME HOURS) = .2
DEVIATION OF AMERAGE RESIDENCE TIME (HOURS) = .06667

| TIME(HOURS)        | TIME (MIN) | PROB TARGET PRESENT |
|--------------------|------------|---------------------|
| 0.000              | 0.0        | 1.000               |
| .010               | . 6        | 9.950               |
| .020               | 1.2        | 0.900               |
| . ŭ 3 <del>0</del> | 1.8        | P. 850              |
| . 040              | 2.4        | 0.901               |
| . 959              | 3.0        | 0.751               |
| . 060              | 3.6        | 0.702               |
| . 878              | 4.2        | 0.653               |
| . 980              | 4.8        | 0.605               |
| . 090              | 5.4        | 0.357               |
| . 100              | 6.0        | 0.510               |
| .110               | 6.6        | 9.464               |
| .120               | 7.2        | 0.419               |
| . 130              | 7.8        | 0.375               |
| .140               | 8.4        | 0.333               |
| . 150              | 9.0        | 0.294               |
| . 160              | 9.6        | 0.256               |
| .170               | 10.2       | 0.221               |
| .190               | 10.8       | 0.139               |
| . 190              | 11.4       | 0.159               |
| . 200              | 12.0       | 0.133               |
| .210               | 12.6       | 0.109               |
| . 228              | 13.2       | 0.089               |
| . 230              | 13.8       | 0.071               |
| . 240              | 14.4       | 0.056               |
| .250               | 15.0       | 0.844               |
| . 260              | 15.6       | 0.033               |

## TABLE 5. PROBABILITY OF TARGET PRESENCE, CASE 28

AVERAGE PESIDENCE TIME (MOURS) = .2 15 VINTION OF AVERAGE PESIDENCE TIME (MOURS = .2

|       |              | FROR TARGET PRESENT |
|-------|--------------|---------------------|
| 0.000 | e. o         | 1.000               |
| .010  | . 6          | 9.961               |
| . 020 | 1.2          | 0.923               |
| . 030 | 1.6          | 0.886               |
| .040  | 2.4          | 0.849               |
| . 650 | 3.0          | 0.813               |
| .060  | 3.6          | ●.778               |
| . 070 | 4.2          | 0.743               |
| . 000 | 4.8          | 9.710               |
| . 990 | 5.4          | 0.676               |
| . 100 | 6.0          | 0.644               |
| .110  | <b>6</b> . ¢ | 0.613               |
| . 120 | 7.2          | 0.582               |
| . 130 | 7.8          | 0.552               |
| . 140 | 8.4          | 0.523               |
| . 130 | 9.0          | 0.495               |
| . 160 | *. 6         | 0.468               |
| . 170 | 10.2         | 0.442               |
| . 180 | 10.6         | 0.416               |
| . 190 | 11.4         | 0.392               |
| . 200 | 12.0         | 0.368               |
| .210  | 14.6         | 0.346               |
| . 220 | : 3.2        | 0.324               |
| . 230 | 13.3         | 0.303               |
| . 248 | 14.4         | 0.283               |
| .250  | 15.0         | 9.264               |
| . 260 | 15.€         | 0.246               |
| . 270 | 16.2         | 0.229               |
| . 280 | 16.8         | 0.213               |
| . 290 | 17.4         | 0.197               |
| . 300 | 18.0         | 0.183               |
| . 310 | 18.6         | 0.169               |
| . 320 | 19.2         | 9.156               |
| . 330 | 19.3         | 0.143               |
| . 340 | 20.4         | 0.132               |
| . 350 | 21.0         | 0.121               |
| . 360 | 21.6         | 0.111               |
| . 370 | 22.2         | 0.102               |
| . 360 | 22.8         | 0.093               |
| . 390 | 23.4         | 0.085               |
| . 400 | 14.0         | 0.077               |
| .410  | 24.6         | 0.070               |
| . 420 | 25.2         | 0.063               |
| . 430 | 25.6         | 8.857               |
| .440  | 26.4         | 0.052               |
| . 450 | 27.0         | 0.047               |
| . 460 | 27.6         | 0.042               |
| .470  | 28.2         | 0.038               |
| . 480 | 28.8         | 0.034               |
| . 490 | 29.4         | 0.030               |

# TABLE 6. PROBABILITY OF TARGET PRESENCE, CASE JA

| TIME HOURS | TIMERMINA    | PROB TARGET PRESENT |
|------------|--------------|---------------------|
| 9.000      | 0.0          | 1.000               |
| . 025      | 1.5          | 0,950               |
| . 050      | 3.0          | 0.900               |
| . 975      | 4.5          | 0.350               |
| . 100      | 6.0          | 0.801               |
| .125       | 7.5          | 0.751               |
| .150       | 9.0          | 0.702               |
| .175       | 10.5         | 0.653               |
| . 200      | 12.0         | 0.605               |
| . 225      | 13.5         | 0.557               |
| . 250      | 15.0         | 0.510               |
| . 275      | 16.5         | 0.464               |
| . 300      | 18.0         | 0.419               |
| . 325      | 19.5         | 9.375               |
| . 350      | 21.0         | 0.333               |
| . 375      | 22.5         | 0.294               |
| . 400      | 24.0         | 0.256               |
| .425       | 25.5         | 0.221               |
| . 450      | 27.0         | 0.189               |
| .475       | 28.5         | 0.159               |
| . 500      | 30.0         | 0.133               |
| .525       | 31.5         | 0.109               |
| . 550      | 33. <b>0</b> | 0.089               |
| .575       | 34.5         | 9.971               |
| . 600      | 36.0         | 0.056               |
| . 625      | 37.5         | 0.044               |
| . 650      | 3 <b>9.6</b> | 0.033               |

## TABLE 7. PROBABILITY OF TARGET PRESENCE, CASE 3B

AMERAGE RESIDENCE TIME MOURS - # .5 DEVIATION OF AMERAGE PESIDENCE TIME MOURS - .T

| TINE HOURS | TIME MIN | PROB TARGET FRESENT |
|------------|----------|---------------------|
| 0.090      | 0.       | 1.000               |
| .025       | 2.       | 0.961               |
| . 058      | 3.       | 0.923               |
| . 075      | 5.       | 0.886               |
| . 100      | €.       | 0. 249              |
| . 125      | ¥.       | 0.813               |
| . 150      | ٧.       | 0.778               |
| .175       | 11.      | 0.743               |
| . 200      | 12.      | 0.710               |
| . 225      | 14.      | 0.676               |
| . 250      | .5.      | v. 644              |
| .275       | 17.      | 0.613               |
| . 300      | 18.      | 0.582               |
| . 345      | 20.      | 0.552               |
| . 350      | -1.      | 0.523               |
| . 375      | . 3.     | 0.495               |
| . 400      | 24.      | u. 468              |
| .425       | 16.      | 0.442               |
| . 450      | ±0.      | 0.416               |
|            |          | 0.39                |
| .475       | 30.      | U. 368              |
| . 500      | 30.      | 0.346               |
| .525       | 33.      | 0.324               |
| . 550      |          | 0.324               |
| .575       | 35.      |                     |
| . 600      | )6.      | 0.283<br>0.264      |
| . 625      | 36.      |                     |
| . 650      | 39.      | 0.246               |
| . 675      | 41.      | 0.229               |
| . 760      | 42.      | 0.21                |
| .725       | 44.      | 0.197               |
| . 750      | 45.      | 0.183               |
| . : 75     | 47.      | 0.169               |
| . 300      | 49.      | 0.156               |
| .825       | 50.      | 0.143               |
| . 858      | 51.      | 0.132               |
| . 975      | 53.      | 0.121               |
| . 900      | 54.      | 0.111               |
| . 925      | 56.      | 0.10.               |
| . 990      | 57.      | 0.093               |
| . 975      | 59.      | 0.085               |
| 1.000      | 60.      | 0.077               |
| 1.025      | 62.      | 0.070               |
| 1.050      | 63.      | 0.063               |
| 1.075      | 65.      | 0.057               |
| 1.100      | 66.      | 0.052               |
| 1.125      | 68.      | 0.047               |
| 1.150      | 69.      | 0.042               |
| 1.175      | 71.      | 0.036               |
| 1.200      | 72.      | 0.034               |
| 1.225      | 74.      | 0.030               |

### TABLE 8. PROBABILITY OF TARGET PRESENCE, CASE 4A

AVERAGE RESIDENCE TIME (HOURS) = 1 DEVIATION OF AVERAGE PESIDENCE TIME HOURS) = .30333

| TIME (HOURS) | TIME (MIN) | PROR TARGET PRESENT |
|--------------|------------|---------------------|
| 0.900        | ė.         | 1.000               |
| . 959        | з.         | e. 95 <b>0</b>      |
| . 100        | 6.         | 0.900               |
| . 150        | <b>9.</b>  | 0.350               |
| . 200        | 12.        | 0.801               |
| .250         | 15.        | 0.751               |
| . 300        | 18.        | 0.702               |
| . 350        | 21.        | 0.653               |
| . 400        | 24.        | 9.605               |
| . 450        | 27.        | e.557               |
| . 500        | 30.        | 0.510               |
| . 556        | 33.        | 0.464               |
| . 600        | 36.        | 0.419               |
| .650         | 39.        | 0.375               |
| . 700        | 42.        | 0.353               |
| .750         | 45.        | 0.294               |
| . 800        | 48.        | 0.256               |
| . 850        | 51.        | 0.221               |
| . 900        | 54.        | 0.189               |
| . 950        | 57.        | 0.159               |
| 1.000        | 60.        | 0.133               |
| 1.050        | 63.        | 0.109               |
| 1.100        | 66.        | 9. ن. 9             |
| 1.150        | 69.        | 0.071               |
| 1.200        | 72.        | 0.056               |
| 1.250        | 75.        | 0.044               |
| 1.300        | 78.        | 0.033               |

### TABLE 9. PROBABILITY OF TARGET PRESENCE, CASE 4B

AVERAGE RESIDENCE TIME HOURS : = 1 DEVIATION OF AVERAGE RESIDENCE TIME HOURS := 1

| TIME HOUPS            | TIMESMIN                                | PROB TAPGET PRESENT |
|-----------------------|-----------------------------------------|---------------------|
| 0.300                 | ●.                                      | 1.000               |
| . 030                 | <b>3.</b>                               | 0.961               |
| . 100                 | <b>6.</b>                               | 0.923               |
| . 150                 | * • • • • • • • • • • • • • • • • • • • | <b>0.38</b> 6       |
| . 200                 | 12.                                     | 0.849               |
| . 250                 | 15.                                     | 0.813               |
| . 300                 | 18.                                     | 0.778               |
| . 350                 | 21.                                     | 0.743               |
| . 400                 | 24.                                     | 0.710               |
| . 450                 | 27.                                     | 6.636               |
| . 500                 | 30.                                     | 9.644               |
| . 550                 | 33.                                     | 0.613               |
| . 600                 | . 36.                                   | 0.582               |
| . 650                 | 39.                                     | 0.552               |
| . 700                 | 42.                                     | 0.523               |
| . 750                 | 45.                                     | 0.495               |
| . 800                 | 48.                                     | 0.466               |
| . 856                 | 51.<br>54.                              | 0.442<br>0.416      |
| . 900                 | 54.<br>57.                              | 0.392               |
| .950<br>1.00 <b>0</b> | 60.                                     | 0.368               |
| 1.050                 | €3.                                     | 0.346               |
| 1.050                 | 50.                                     | 0.324               |
| 1.150                 | ₹0.                                     | 0.303               |
| 1.200                 | 72.                                     | 0.283               |
| 1.250                 | 75.                                     | 0.264               |
| 1.300                 | 78.                                     | 0.246               |
| 1.350                 | 81.                                     | 0.229               |
| 1.400                 | 84.                                     | 0.213               |
| 1.450                 | 87.                                     | 0.197               |
| 1.500                 | 90.                                     | 0.183               |
| 1.550                 | 93.                                     | 0.169               |
| 1.600                 | 96.                                     | 0.156               |
| 1.650                 | 99.                                     | 0.143               |
| i . 700               | 102.                                    | 0.132               |
| 1.750                 | 105.                                    | 0.121               |
| 1.800                 | 108.                                    | 0.111               |
| 1.950                 | 111.                                    | 0.102               |
| 1.900                 | 114.                                    | 0.093               |
| 1.950                 | 117.                                    | 0.065               |
| 2.000                 | 120.                                    | 0.077               |
| 2.050                 | 123.                                    | 0.070               |
| 2.100                 | 126.                                    | 0.863               |
| 2.150                 | 129.                                    | 0.057               |
| 2.200                 | 132.                                    | 0.052               |
| 2.250                 | 135.                                    | 9.047               |
| 2.300                 | 138.                                    | 0.042               |
| 2.350                 | 141.                                    | 0.038               |
| 2.400                 | 144.                                    | 0.034               |
| 2.450                 | 147.                                    | 0.030               |

TABLE 10. PROBABILITY OF TARGET PRESENCE, CASE 5A

AVERAGE RESIDENCE TIME(HOURS) \$\infty 2\$
DEVIATION OF AVERAGE RESIDENCE TIME(HOURS) = .66667

| TIME(HOURS) | TIME(MIN)   | PROB TARGET PRESENT |
|-------------|-------------|---------------------|
| 0.000       | 0.          | 1.000               |
| . 100       | 6.          | 0.950               |
| .200        | 12.         | 0.9 <b>00</b>       |
| .300        | 18.         | 0.850               |
| .400        | 24.         | 0.801               |
| . 500       | 3 <b>0.</b> | 0.751               |
| . 600       | 3 <b>6.</b> | 0.702               |
| .700        | 42.         | 0.653               |
| .800        | 48.         | 0.605               |
| .900        | 54.         | 0.557               |
| 1.000       | 60.         | 0.510               |
| 1.100       | 66.         | 0.464               |
| 1.200       | 72.         | 0.419               |
| 1.300       | 78.         | 0.375               |
| 1.400       | 84.         | 0.333               |
| 1.500       | 90.         | 0.294               |
| 1.600       | 96.         | 0.256               |
| 1.700       | 102.        | 0.221               |
| 1.800       | 108.        | 0.189               |
| 1.900       | 114.        | 0.159               |
| 2.000       | 120.        | 0.133               |
| 2.100       | 126.        | 0.109               |
| 2.200       | 132.        | 0.089               |
| 2.300       | 138.        | 0.071               |
| 2.400       | 144.        | 0.056               |
| 2.500       | 150.        | 0.044               |
| ର. ତେଥ      | 156.        | 0.033               |

TABLE 11. PROBABILITY OF TARGET PRESENCE, CASE 5B

AMERAGE RESIDENCE TIME(HOURS) = 2 DEVIATION OF AMERACE RESIDENCE TIME(HOURS)= 2

| 1 IME (HOURS) | TIMECMIN | PROB TARGET PHESENT |
|---------------|----------|---------------------|
| 0.000         | 0.       | 1.000               |
| .100          | 6.       | 0.961               |
| .200          | 12.      | <b>0.</b> 923       |
| . 300         | 18.      | 0.88€               |
| . 400         | 24.      | 0.849               |
| . 500         | 30.      | 0.813               |
| .600          | 36.      | 0.778               |
| .700          | 42.      | 0.743               |
| .800          | 48.      | 0.710               |
| .900          | 54.      | 0.676               |
| 1.000         | 60.      | 0.644               |
| 1.100         | 66.      | 0.613               |
| 1.200         | 72.      | 0.582               |
| 1.300         | 78.      | 0.552               |
| 1.400         | 84.      | 0.523               |
| 1.500         | 90.      | 0.495               |
| 1.600         | 96.      | 6 469               |
| 1.700         | 102.     | 0.442               |
| 1.300         | 102.     | 0.416               |
| 1.900         | 114.     | 0,392               |
| 2.000         | 120.     | 0.37£<br>0.368      |
|               |          |                     |
| 2.100         | 126.     | 0.346               |
| 2.200         | 132.     | 0.324               |
| 2.300         | 138.     | 0.303               |
| 2.400         | 144.     | 0.283               |
| 2.500         | 150.     | 0.264               |
| 2.600         | 156.     | 0.246               |
| 2.700         | 162.     | 0.229               |
| 2.800         | 168.     | 0.213               |
| 2.900         | 174.     | 0.197               |
| 3.000         | 180.     | 0.183               |
| 3.100         | 186.     | 0.169               |
| 3.200         | 192.     | 0.156               |
| 3.300         | 198.     | 0.143               |
| 3.400         | 204.     | 0.132               |
| 3.500         | 210.     | 0.121               |
| 3.600         | 216.     | 0.111               |
| 3.700         | 222.     | 0.102               |
| 3.800         | 228.     | 0.093               |
| 3.900         | 234.     | 0.085               |
| 4.000         | 240.     | 0.077               |
| 4.100         | 246.     | 0.070               |
| 4.200         | 252.     | 0.063               |
| 4.300         | 258.     | 0.057               |
| 4.400         | 264.     | a. <b>05</b> 2      |
| 4.500         | 270.     | 0.047               |
| 4.600         | 276.     | 0.042               |
| 4.700         | 282.     | 0.038               |
| 4.800         | 288.     | 0.034               |
| 4.900         | 294.     | 0.030               |
| · · · · · · · |          |                     |

TABLE 12. PROBABILITY OF TARGET PRESENCE, CASE 6A

AVERAGE RESIDENCE TIME(HOURS) = 4
DEVIATION OF AVERAGE RESIDENCE TIME(HOURS) = 1.333

| TIME(HOURS) | TIME (MIN) | PROB TARGET PRESENT |
|-------------|------------|---------------------|
| 0.000       | ٥.         | 1.000               |
| .200        | 12.        | 9.950               |
| .400        | 24.        | 0.900               |
| .600        | 36.        | 0.850               |
| .800        | 48.        | 0.801               |
| 1.000       | 60.        | 0.751               |
| 1.200       | 72.        | 0.702               |
| 1.400       | 84.        | 0.653               |
| 1.600       | 96.        | a.605               |
| 1.800       | 108.       | 0.557               |
| 2.000       | 120.       | 0.510               |
| 2.200       | 132.       | 0.464               |
| 2.400       | 144.       | 0.419               |
| 2.600       | 156.       | 0.375               |
| 2.800       | 168.       | <b>0.3</b> 33       |
| 3.000       | 180.       | 0.294               |
| 3.200       | 192.       | 0.256               |
| 3.400       | 204.       | 0.221               |
| 3.600       | 216.       | 0.189               |
| 3.800       | 228.       | 0.159               |
| 4.000       | 240.       | 0.133               |
| 4.200       | 252.       | 0.109               |
| 4.400       | 264.       | 0.089               |
| 4.600       | 276.       | 0.071               |
| 4.800       | 288.       | 0.056               |
| 5.000       | 300.       | 0.044               |
| 5.200       | 312.       | 0.033               |

TABLE 13. PROBABILITY OF TARGET PRESENCE, CASE 6B

AVERHUE RESIDENCE TIME (HOURS) = 4
DEVIATION OF AVERAGE RESIDENCE TIME (HOURS) = 4

| TIME HOURS                     | TIME (MIH) | PROB TARGET PRESENT |
|--------------------------------|------------|---------------------|
| 0.000                          | ٥.         | 1.000               |
| . 200                          | 12.        | 0.961               |
| .400                           | 24.        | 0.923               |
| . 600                          | 36.        | 0.886               |
| . 800                          | 48.        | 0.849               |
| 1.000                          | 60.        | 0.813               |
| 1.200                          | 72.        | 0.778               |
| 1.400                          | 84.        | 0.743               |
| 1.600                          | 96.        | 0.710               |
| 1.800                          | 108.       | 0.676               |
| 2.000                          | 120.       | 0.644               |
| 2.200                          | 132.       | 0.613               |
| 2.400                          | 144.       | 0.582               |
| 2.600                          | 156.       | 0.552               |
| 2.800                          | 168.       | 0.523               |
| 3.000                          | 180.       | 0.495               |
| 3.200                          | 192.       | 0.468               |
| 3.400                          | 204.       | 0.442               |
| 3.600                          | 216.       | 0.416               |
| 3.800                          | 228.       | 0.392               |
| 4.000                          | 240.       | 0.368               |
| 4.200                          | 252.       | 0.346               |
| 4.400                          | 264.       | 0.324               |
| 4.600                          | 276.       | 0.303               |
| 4.800                          | 288.       | 0.283               |
| 5.000                          | 300.       | 0.264               |
| 5.200                          | 312.       | 0.246               |
| 5.400                          | 324.       | 8.229               |
| 5.600                          | 336.       | 0.213               |
| 5.800                          | 348.       | 0.197               |
| 6.000                          | 360.       | ŭ. 183              |
| 6.200                          | 372.       | 0.169               |
| 6.400                          | 384.       | 0.156               |
| 6.600                          | 396.       | 0.143               |
| 6.800                          | 408.       | 0.132               |
| 7.000                          | 420.       | 0.121               |
| 7.200                          | 432.       | 0.121               |
| 7.400                          | 494.       | 0.102               |
| 7.600                          | 456.       | 0.093               |
| 7.800                          | 468.       | 0. <b>0</b> 95      |
| 8.000                          | 480.       | 0. <b>0</b> 07      |
| 8.200                          | 492.       | 9.070               |
| 8.400                          | 504.       | 0.063               |
| 8.690                          | 516.       | 0.057               |
| 8.800                          | 528.       | 0.052               |
| 9.000                          | 540.       |                     |
| 9.200                          | 552.       | 0.047               |
| 9.400                          | 564.       | 0.042               |
| 9.600                          | 576.       | 0.038               |
| 7.6 <b>00</b><br>9.8 <b>00</b> | 588.       | 0.034               |
| 7.000                          | 300.       | 0.030               |

TABLE 14. PROBABILITY OF TARGET PRESENCE, CASE 7A

AVERAGE RESIDENCE TIME(HOURS) = 6 DEVIATION OF AVERAGE RESIDENCE TIME(HOURS) = 2

| TIME(HOURS)    | TIME (MIN)   | PROB | TARGET PRESENT |
|----------------|--------------|------|----------------|
| 0.000          | 0.           |      | 1.000          |
| .200           | 12.          |      | 0.967          |
| .400           | 24.          |      | 0.933          |
| .600           | 36.          |      | 0.900          |
| . 800          | 48.          |      | 0.867          |
| 1.000          | 60.          |      | 0.834          |
| 1.200          | 72.          |      | 0.801          |
| 1.400          | ୫4.          |      | 0.768          |
| 1.600          | 96.          |      | 0.735          |
| 1.800          | 108.         |      | 0.702          |
| 2.000          | 120.         |      | 0.669          |
| 2.200          | 132.         |      | 0.637          |
| 2.400          | 144.         |      | 0.605          |
| 2.600          | 156.         |      | 0.573          |
| 2.800          | 168.         |      | 0.541          |
| 3 <b>.000</b>  | 180.         |      | 0.510          |
| 3 <b>.20</b> 0 | 192.         |      | 0.479          |
| 3.400          | 204.         |      | 0.448          |
| 3.600          | 216.         |      | 0.419          |
| 3.800          | 228.         |      | 0.389          |
| 4.000          | 240.         |      | 0.361          |
| 4.200          | 252.         |      | 0.333          |
| 4.400          | 264.         |      | 0.307          |
| 4.600          | 276.         |      | 0.281          |
| 4.800          | 288.         |      | 0.256          |
| 5.000          | 300.         |      | 0.233          |
| 5.200          | 312.         |      | 0.210          |
| 5.400          | 324.         |      | 0.189          |
| 5.600          | 33 <b>6.</b> |      | 0.169          |
| 5.800          | 348.         |      | 0.150          |
| 6.000          | 360.         |      | 0.133          |
| 6.200          | 372.         |      | 0.117          |
| 6.400          | 384.         |      | 0.102          |
| 6.600          | 396.         |      | 0.089          |
| 6.800          | 408.         |      | 0.077          |
| 7.000          | 420.         |      | 0.066          |
| 7.200          | 432.         |      | 0.056          |
| 7.400          | 444.         |      | 0.048          |
| 7.600          | 456.         |      | 0.040          |
| 7.800          | 468.         |      | 0.033          |

TABLE 15. PROBABILITY OF TARGET PRESENCE, CASE 7B

AVERAGE RESIDENCE TIME HOURS: # 6
DEVIATION OF AVERAGE RESIDENCE TIME (HOURS : 6

| TIME HOURS    | TIME MIN | PROB TARGET PRESENT |
|---------------|----------|---------------------|
| 0.000         | 0.       | 1.000               |
| .200          | 12.      | 0.974               |
| . 400         | 24.      | 0.949               |
| . 600         | 36.      | 0.923               |
| .800          | 48.      | 0.899               |
| 1.000         | 60.      | 0.874               |
| 1.200         | 72.      | 0.849               |
| 1.400         | 84.      | 0.825               |
| 1.600         | 96.      | 0.802               |
| 1.800         | 108.     | 0.778               |
| 2.000         | 120.     | 0.755               |
| 2.200         | 132.     | 0.732               |
| 2.400         | 144.     | 0.710               |
| 2.600         | 156.     | 0.637               |
| 2.800         | 168.     | 0.666               |
| 3.000         | 180.     | 0.644               |
| 3.200         | 192.     | 0.623               |
| 3.400         | 204.     | 0.602               |
| 3.600         | 216.     | 0.582               |
| 3.800         | 228.     | 0.562               |
| 4.000         | 240.     | 0.542               |
| 4.200         | 252.     | 0.523               |
| 4.400         | 264.     | 0.504               |
| 4.600         | 276.     | 0.486               |
| 4.800         | 288.     | 0.469               |
| 5.000         | 200.     | 0.450               |
| 5.200         | 312.     | 0.433               |
| 5.400         | 324.     | 0.416               |
| 5.600         | 336.     | ů.400               |
| 5.800         | 348.     | ŭ.384               |
| 6.000         | 360.     | 0.368               |
| 6.200         | 372.     | 0.353               |
| 5.400         | 394.     | 0.338               |
| 6.600         | 396.     | 0.324               |
| 6.800         | 408.     | 0.310               |
| 7.060         | 420.     | 0.296               |
| 7.200         | 432.     | 0.283               |
| 7.400         | 444.     | 0.271               |
| 7.600         | 456.     | 0.258               |
| 7.800         | 468.     | 0.246               |
| 8.000         | 480.     | 0.235               |
| 8.200         | 492.     | 0.224               |
| 8.40 <b>0</b> | 504.     | 0.213               |
| 8.6 <b>00</b> | 516.     | 0,202               |
| 8.800         | 528.     | 0.192               |
| 9.800         | 540.     | 0.183               |
| 9.200         | 552.     | 0.173               |
| 9.400         | 564.     | 0.164<br>0.156      |
| 9.600         | 576.     | 0.156               |
| 9.800         | 588.     | U. 141              |

### TABLE 16. PROBABILITY OF TARGET PRESENCE, CASE 8A

AVERAGE RESIDENCE TIME(HOURS) = 12 DEVIATION OF AVERAGE RESIDENCE TIME(HOURS)= 4

| TIME (HOURS)  | TIME(MIN)    | PROB TARGET PRESENT |
|---------------|--------------|---------------------|
| 0.000         | θ.           | 1.000               |
| . 500         | 3 <b>0.</b>  | <b>0.</b> 958       |
| 1.000         | 60.          | 0.917               |
| 1.500         | 90.          | 0.875               |
| 2.000         | 120.         | 0.834               |
| 2.500         | 150.         | 0.793               |
| 3. <b>000</b> | 180.         | 0.751               |
| 3.500         | 210.         | 0.710               |
| 4.000         | 240.         | 9.669               |
| 4.500         | 270.         | 0.629               |
| 5.000         | 3 <b>00.</b> | 0.589               |
| 5.500         | 33 <b>0.</b> | 0.549               |
| €.000         | 36 <b>0.</b> | 0.519               |
| 6.500         | 3 <b>90.</b> | 0.471               |
| 7.000         | 420.         | 0.433               |
| 7.5 <b>00</b> | 450.         | 0.397               |
| 8.000         | 480.         | 0.361               |
| 8.500         | 510.         | 0.327               |
| 9.000         | 540.         | 0.294               |
| 9.500         | 570.         | 0.262               |
| 10.000        | 600.         | 0.233               |
| 10.500        | 630.         | 0.205               |
| 11.000        | 660.         | 0.179               |
| 11.500        | 690.         | 0.155               |
| 12.000        | 720.         | 0.133               |
| 12.500        | 750.         | 0.113               |
| 13.006        | 789.         | 0.095               |
| 13.500        | 810.         | 0.080               |
| 14.000        | 840.         | 0.066               |
| 14.500        | 87 <b>0.</b> | 0.054               |
| 15.000        | 900.         | 0.044               |
| 15.500        | 930.         | 0.035               |
|               |              |                     |

TABLE 17. PROBABILITY OF TARGET PRESENCE, CASE 8B

AMERIGE RESIDENCE TIME (HOURS) = 12 DEVIATION OF AMERIGE RESIDENCE TIME (HOURS) = 12

| TIME HOURS | TIME: MIN | PROB TARGET PRESENT |
|------------|-----------|---------------------|
| 0.000      | 0.        | 1.000               |
| .500       | 00.       | 6.968               |
| 1.000      | .0.       | 0.936               |
| 1.500      | ٩٥.       | 0 905               |
| 2.000      | 120.      | 0.874               |
| 2.500      | 150.      | 0.843               |
| 0.000      | 180.      | 0.813               |
| 3.500      | 210.      | 0.784               |
| 4.000      | 240.      | 0.755               |
| 4.300      | 270.      | 0.726               |
| 5.000      | 300.      | 0.698               |
| 5.500      | 330.      | 0.671               |
| 6.000      | 360.      | 0.644               |
| 6.500      | 390.      | 0.618               |
| 7.000      | 420.      | 0.592               |
| . 500      | 450.      | 0.567               |
| 8.000      | 480.      | 0.542               |
| 8.500      | 510.      | 0.518               |
| 9.000      | 540.      | 0.495               |
| 9.500      | 570.      | 0.472               |
| 10.000     | 500.      | 0.450               |
| 10.500     | 630.      | 0.429               |
| 11.000     | 660.      | 0.408               |
| 11.500     | 600.      | 0.388               |
| 12.000     | 720.      | 0.368               |
| 12.500     | 750.      | 0.349               |
| 13.000     | 780.      | 0.331               |
| 13.500     | 810.      | 0.313               |
| 14.000     | 840.      | 0.296               |
| 14.500     | 870.      | 0.280               |
| 15.000     | 900.      | 0.264               |
| 15.500     | 330.      | 0.249               |
| 16.000     | 960.      | 0.235               |
| 16.500     | 900.      | 0.221               |
| 17.000     | 1020.     |                     |
| 17.500     | 1050.     | 0.207<br>0.195      |
| 18.000     | 1090.     | 0.193<br>0.183      |
| 18.500     | 1110.     | 0.163               |
| 19.000     | 1140.     |                     |
| 19.500     | 1170.     | 0.160               |
| 20.000     |           | 0.149               |
|            | 1200.     | 0.139               |
| 20.500     | 1230.     | 9.130               |
| 21.000     | 1260.     | 0.121               |
| 21.500     | 1290.     | 0.113               |
| 22.000     | 1920.     | 0.105               |
| 22.500     | 1350.     | 0.097               |
| 23.600     | 1380.     | 0.000               |
| 23.500     | 1410.     | 0.083               |
| 24.000     | 1440.     | 0.077               |
| 24.500     | 1470.     | 0.071               |

TABLE 18. PROBABILITY OF TARGET PRESENCE, CASE 9A

AVERAGE RESIDENCE TIME(HOURS) = 24
DEVIATION OF AVERAGE RESIDENCE TIME(HOURS) = 8

| TIME (HOURS)   | TIME(MIN) | PROB TARGET PRESENT |
|----------------|-----------|---------------------|
| 9. 030         | θ.        | 1.000               |
| 1.000          | 60.       | 0.958               |
| 2.000          | 120.      | 0.917               |
| 3.000          | 180.      | 0.875               |
| 4.000          | 240.      | 0.834               |
| 5.030          | 300.      | 0.793               |
| 6.000          | 360.      | 0.751               |
| 7.000          | 420.      | 0.710               |
| 8. <b>000</b>  | 480.      | 0.669               |
| 9.000          | 540.      | 0.629               |
| 10.000         | 600.      | 0.589               |
| 11.000         | 660.      | 0.549               |
| 12.000         | 720.      | 0.510               |
| 13.0 <b>00</b> | 780.      | 0.471               |
| 14.000         | 840.      | 0.433               |
| 15.000         | 900.      | 0.397               |
| 16.000         | 960.      | 0.361               |
| 17.200         | 1020.     | 0.327               |
| 18.000         | 1030.     | 0.294               |
| 19.000         | 1140.     | 0.262               |
| 20.060         | 1200.     | 0.233               |
| 21.000         | 1260.     | 0.205               |
| 22.000         | 1320.     | 0.179               |
| 23 <b>.000</b> | 1380.     | 0.155               |
| 24.000         | 1440.     | 0.13?               |
| 25.000         | 1500.     | 0.113               |
| 26.0 <b>00</b> | 1564.     | 0.095               |
| 27.000         | 1620.     | 0.080               |
| 29.060         | 1680.     | 0.066               |
| 29.8 <b>00</b> | 1740.     | 0.054               |
| 30.000         | 1800      | 0.044               |
| 31.300         | 1866.     | 0.035               |

TAPLE 19. PROBABILITY OF TARGET PRESENCE, CASE 9B

AVERAGE RESIDENCE TIME HOURS: = 24 DECIATION OF AVERAGE RESIDEN E TIME HOURS = 24

| TIME HOURS |              |         |
|------------|--------------|---------|
| 0.000      | ٥.           | 1.000   |
| 1.000      | ₹₩.          | 0.968   |
| 2.000      | 100.         | 0.236   |
| 3.000      | 180.         | 9.905   |
| 4.000      | 240.         | 0.874   |
| 5.000      | 3 <b>00.</b> | 0.943   |
| 6.000      | 360.         | 0.813   |
| 7.000      | 420.         | 0.784   |
| 3.000      | 480.         | 0.755   |
| 9.000      | 540.         | 0.726   |
| 10.000     | 600.         | 0.698   |
| 11.000     | 660.         | 0.671   |
| 11.000     | 720.         | 0.644   |
| 13.000     | 780.         | 0.618   |
| 14.000     | <b>340.</b>  | 0 - 592 |
| 15.000     | 900.         | 0.56;   |
| 16.000     | 960.         | 0.542   |
| 17.000     | 1020.        | 0.518   |
| 19.000     | 1090.        | 9.495   |
| 19.000     | 1140.        | 0.472   |
| 20.000     | 1200.        | 0.450   |
| 21.000     | 1260         | 0.429   |
| 22.000     | 1320.        | 0.408   |
| 23.000     | 1380.        | 0.388   |
| 24.000     | 1440.        | 0.368   |
| 25.000     | 1500.        | 0.349   |
| 26.000     | 1560.        | 0.331   |
| 27.000     | 1610.        | 0.313   |
| ∂€.000     | 1680.        | 0.296   |
| 29.000     | 1740.        | 0.280   |
| 30.000     | 1800.        | 0.264   |
| 31.000     | 1860.        | 0.249   |
| 32.000     | 1920.        | 0.235   |
| 33.000     | 1380.        | 0.221   |
| 34.000     | 2040.        | 0.207   |
| 35.000     | 2100.        | 0.195   |
| 36.000     | 2100.        | 0.183   |
| 37.000     | 2220.        | 0.171   |
| 38.000     | 2280.        | 0.160   |
| 39.000     | 2340.        | 0.149   |
| 40.000     | 2400.        | 0.139   |
| 41.000     | 2460.        | 0.130   |
| 42.000     | 2520.        | 0.121   |
| 43.000     | 2780.        | 0.113   |
| 44.000     | 2640.        | 0.105   |
| 45.008     | 2700.        | 0.097   |
| 46.000     | 2760.        | 0.890   |
| 47.000     | 2820.        | 0.083   |
| 48.000     | 2880.        | 0.077   |
| 49.000     | 2940.        | 0.071   |

# TABLE 20. PROBABILITY OF TARGET PRESENCE, CASE 10A

AVERAGE RESIDENCE TIME HOURS : # 48
DEVIATION OF AVERAGE RESIDENCE TIME (HOURS ) # 12

| TIME HOURS | TIMERMIN      | PPOB TARGET PRESENT |
|------------|---------------|---------------------|
| 0.000      | θ.            | 1.000               |
| 2.000      | 126.          | 0.958               |
| 4.000      | 240.          | 0.917               |
| 6.000      | 36 <b>0</b> . | 0.875               |
| 8.000      | 480.          | 0.833               |
| 10.000     | 600.          | 0.792               |
| 12.000     | 720.          | 0.750               |
| 14.000     | 840.          | 0.709               |
| 16.000     | 960.          | 0.667               |
| 18.000     | 1080.         | 0.625               |
| 20.800     | 1200.         | 0.584               |
| 22.000     | 1320.         | 0.543               |
| 24.000     | 1440.         | 0.502               |
| 26.000     | 1560.         | 0.462               |
| 29.000     | 1680.         | 0.422               |
| 30.000     | 1888.         | 0.382               |
| 32.000     | 1920.         | 0.344               |
| 34.000     | 2040.         | 0.307               |
| 36.000     | 2160.         | 0.271               |
| 38.000     | 2280.         | 0.237               |
| 40.000     | 2490.         | 0.204               |
| 42.000     | 2520.         | 0.174               |
| 44.000     | 2640.         | 0.147               |
| 46.000     | 2760.         | 9.122               |
| 48.000     | 2000.         | 0.100               |
| 50.000     | 3000.         | 0.080               |
| 52.000     | 3126.         | 0.064               |
| 54.000     | 3240.         | 0.049               |
| 56.000     | 3360.         | 0.038               |
|            |               |                     |

TABLE 21. PROBABILITY OF TARGET PRESENCE, CASE 10B

MUEHAGE RESIDENCE TIME (HOURS) = 48 TEMISTION OF AMERAGE RESIDENCE TIME (HOURS) = 48

| TIME HOURS       | TINE HIN       | PROE TARGET PRESENT |
|------------------|----------------|---------------------|
| 0.000            | ٥.             | 1.000               |
| 2.000            | 120.           | 0, 963              |
| 4.000            | 240.           | 0.936               |
| 6.000            | .60.           | 0.905               |
| 8.000            | 450.           | 0.974               |
| 10.000           | 600.           | 0.843               |
| 12.000           | 720.           | 0.613               |
| 14.000           | 840.           | 0.784               |
| 16.000           | 960.           | 0.755               |
| 18.000           | 1080.          | 0.726               |
| 20.000           | 1200.          | 0.698               |
| 22.000           | 1320.          | 0.671               |
| 24.000           | 1440.          | 0.644               |
| 26.000           | 1560.          | 0.618               |
| 28.000           | 1680.          | 0.592               |
| 30.000           | 1800.          | 0.567               |
| 32.000           | 1920.          | 0.542               |
| 34.000           | 2040.          | 0.516               |
| 36.000           | 2160.          | 0.495               |
| 38.000           | 1280.          | 0.472               |
| 40.000           | 2400.          | 0.450               |
| 42.000           | 1910.          | 0.429               |
| 44.000           | 2640.          | 0.408               |
| 46.000           | 2760.          | 0.386               |
| 48.000           | 1880.          | 0.368               |
| 50.000           | 3000.          | 0.349               |
| 52.000           | 3140.          | 0.331               |
| 54.000           | 3140.          | 0.331               |
| 56.000           | 3360.          | 0.296               |
| 58.000           | 3480.          | 0.280               |
| 60.000           | 3400.<br>3600. | 0.264               |
| 62.000           | 3710.          | 0.249               |
| 64.000           | 3840.          |                     |
| 66.000           | 3960.          | 0.235               |
| 68.000           | 4080.          | 0.221<br>0.207      |
| 70.000           | 4200.          | _                   |
| 72.000           | 4320.          | 0.195               |
| 74.000           | 4440.          | 0.163               |
| 76.000           | 4560.          | 0.171               |
|                  | 4580.          | 0.160               |
| 78.000<br>83.000 | 4800.          | 0.149<br>0.139      |
| 82.000           | 4920.          |                     |
|                  |                | 0.130               |
| 94.000<br>95.000 | 5040.          | 0.121               |
| 96.000<br>88.000 | 5160.<br>5280. | 0.113               |
| 90.000           |                | 0.105               |
| 92.000           | 5400.          | 0.097               |
| 94.000           | 5520.<br>5540  | 0.898               |
| 96.000           | 5640.<br>5760. | 0.083               |
| 38.00U           |                | 0.077               |
| 70.000           | 5880.          | 0.071               |

## TABLE 22. PROBABILITY OF TARGET PRESENCE, JASE 11A

AVERAGE RESIDENCE TIME HOURS : # 96
DEVIATION OF AVERAGE RESIDENCE TIME HOURS := 32

| TIME HOURS | TIME(MIN) | PROB TARGET PRESENT |
|------------|-----------|---------------------|
| 0.000      | 0.        | 1.000               |
| 5.000      | 300.      | 0.948               |
| 10.000     | 600.      | 0.896               |
| 15.000     | 900.      | 0.844               |
| 20.000     | 1200.     | 0.793               |
| 25.000     | 1500.     | 9.741               |
| 30.000     | 1800.     | 9.690               |
| 35.000     | 2100.     | 0.639               |
| 40.000     | 2400.     | 6.589               |
| 45.000     | 2700.     | 0.539               |
| 50.000     | 3000.     | 0.490               |
| 55.000     | 3300.     | 0.443               |
| 60.000     | 3600.     | 0, 397              |
| 65.000     | 3900.     | a.352               |
| 70.000     | 4200.     | 0.310               |
| 75.000     | 4500.     | 0.270               |
| 80.880     | 4800.     | 0.233               |
| 85.000     | 5100.     | 8.198               |
| 90.888     | 5400.     | 0.167               |
| 95.000     | 5700.     | 0.138               |
| 100.000    | 6000.     | 0.113               |
| 185.000    | 6300.     | 0.091               |
| 110.000    | 6600.     | 0.073               |
| 115.000    | 6900.     | 0.057               |
| 120.000    | 7200.     | 9.044               |
| 125.000    | 7500.     | 0.833               |
|            |           | ~ . ~ .             |

## TABLE 23. PROBABILITY OF TARGET PRESENCE, CASE 11B

AVERAGE RESIDENCE TIME-HOURS:  $\approx 96$  DEVIATION OF AVERAGE RESIDENCE TIME-HOURS: 96

| TIME HOURS | TINE MIN | 1099    | TARGET PRESENT |
|------------|----------|---------|----------------|
| 0.000      | 0.       | 1 1 0 6 | 1.000          |
| 5.000      | 300.     |         | 0.960          |
| 10.000     | 600.     |         | 0.920          |
| 15.000     | 900.     |         | 0.882          |
| 20.000     | 1200.    |         | 0.843          |
| 25.000     | 1500.    |         | 0.806          |
| 30.000     | 1800.    |         | 0.769          |
| 35.000     | 2100.    |         | 0.733          |
| 40.000     | 2400.    |         | 0.698          |
| 45.300     | 2700.    |         | 0.664          |
| 50.000     | 3000.    |         | 0.631          |
| 55.000     | 3300.    |         | 0.598          |
| 60.000     | 3660.    |         | 0.567          |
| 65.000     |          |         |                |
| 70.000     | 3900.    |         | 0.536          |
| 75.000     | 4200.    |         | 0.507          |
|            | 4500.    |         | 0.478          |
| 80.000     | 4300.    |         | 0.450          |
| 85.000     | 5100.    |         | 0.424          |
| 90.000     | 5400.    |         | 0.398          |
| 95.000     | 5700.    |         | 0.373          |
| 100.000    | 6000.    |         | 0,349          |
| 105.000    | 6300.    |         | 0.327          |
| 110.000    | 6600.    |         | 0.305          |
| 115.000    | 6300.    |         | 0.184          |
| 120.000    | 7200.    |         | 0.264          |
| 125.000    | 7500.    |         | 0.246          |
| 130.000    | 7800.    |         | 0.223          |
| 135.000    | \$100.   |         | 0.211          |
| 140.000    | 8400.    |         | 0.195          |
| 145.000    | e700.    |         | 0.180          |
| 150.000    | 9000.    |         | 0.165          |
| 155.000    | 9300.    |         | 0.152          |
| 160.000    | 9600.    |         | 0.139          |
| 165.000    | 9900.    |         | 0.118          |
| 170.000    | 10200.   |         | 0.117          |
| 175.000    | 10500.   |         | 0.107          |
| 180.000    | 10800.   |         | 0.097          |
| 185.000    | 11100.   |         | 0.083          |
| 190.000    | 11400.   |         | 0.080          |
| 195.000    | 11700.   |         | 0.072          |
| 200.000    | 12000.   |         | 0.065          |
| 205.000    | 12300.   |         | 0.059          |
| 110.000    | 12600.   |         | 0.053          |
| 213.000    | 12900.   |         | 0.048          |
| 220.000    | 13200.   |         | 0.043          |
| 225.000    | 13500.   |         | 0.038          |
| 230.000    | 13800.   |         | 0.034          |
| 235.000    | 14100.   |         | 0.030          |
|            |          |         |                |

### IV. GENERALIZED DATA FOR TARGET ANALYSIS

Figure 5 presents the generalized curve for the probability of a target being present as a function of time from detection. The probability is presented as a function of two parameters,  $\tau/\sigma$  and  $t/\tau$ , where

- $\tau$  = average target dwell time
- $\sigma$  = standard deviation of the dwell time
- t = time.

This curve is applicable to all values of  $\tau$  and  $\sigma$  and may be used for those cases for which the tabular data in Section III are inadequate. Examples illustrating its use are presented in Section V. Coding for calculating these data on the TI-59 is presented in Appendix B.



Figure 5. Generalized curve for estimating probability target is still at observed location.

### V. SAMPLE CASES

### Case 1

Compute the probability that a target is still at an observed position 3 hours after the observation if the target is assumed to have an average dwell time  $(\tau)$  of 4 hours with a deviation  $(\sigma)$  of 1.33 hours.

Solution: Table 12, p. 26 applicable. Answer is P = 0.294.

### Case 2

For the above case, what is the revised expected fractional coverage with a 1-KT weapon with a CEP of 140 m, a 200-m target location error, and a 200-m target radius?

Solution: The damage radius is about 660 m with a criterion of latent lethality. FM-101-31 estimates the static fractional coverage to be 0.98. The revised expected fractional coverage is 0.95 x 0.294 = 0.29.

### Case 3

For a target represented by a dwell time  $(\tau)$  of 6 hours and a standard deviation  $(\sigma)$  of 6 hours, what is the allowable esponse time for a desired probability of target presence of 0.30?

Solution: Table 15, p. 29 is applicable.

By interpolation, T = 6.9 hours.

### Case 4

What is the probability that a target is present after 3 hours if it is represented by the parameters  $\tau$  = 3.2 hours and  $\sigma$  = 1.5?

Solution: Generalized curve, p. 31.

$$\frac{\tau}{\sigma} = \frac{3.2}{1.5} = 2.13$$

$$\frac{t}{\tau} = \frac{3.0}{3.2} = 0.94$$

By interpolation, P = 0.22.

## Case 5

For the values of  $\tau$  and  $\sigma$  assumed in Case 4, what is the allowable response time if the desired expected coverage is 0.50?

Solution: From the generalized curve with:

$$\frac{\tau}{\sigma}$$
 = 2.13, P = 0.5

$$\frac{t}{\tau} = 0.54$$

t = (0.54)(3.2) = 1.73 hours.

### APPENDIX A. EQUATIONS FOR TARGET PERMANENCE

We begin by assuming that the probability of the target leaving (i.e., beginning to move from) its original position between t and t + dt is

$$P_1(t)dt = \frac{1}{C\sigma\sqrt{2\pi}} e^{-(t-\tau)^2/2\sigma^2} dt$$

where t = 0 is the time at which the target originally settled into the given position,  $\tau$  is the average time that the target remains in place,  $\sigma^2$  is the variance in the distribution, and the normalization constant

$$C = \frac{1}{2} + \frac{1}{2} \quad \text{erf} \left( \frac{\tau}{c\sqrt{2}} \right)$$

is chosen such that

$$\int_{0}^{\infty} P_{1}(t) dt = 1$$

Sixty-eight percent of the targets will leave between  $\tau - \sigma$  and  $\tau + \sigma$ . Ninety-five percent of the targets will leave between  $\tau - 2\sigma$  and  $\tau + 2\sigma$ .

We now assume that the target is detected at some arbitrary time  $t=t_1>0$  which is completely uncorrelated to the movements of the target, and we wish to know the probability density  $P_2(t_2)$  of the time  $t_2$  between detection and the departure of the target.

This turns out to be one of the main problems of a branch of probability theory called renewal theory. The random variable t<sub>2</sub> is called the residual waiting time or the excess lifetime. Using the results of renewal theory (Ref. Al) it can be shown that the probability that the target will leave at a time t<sub>2</sub> after it is detected is

$$P_2(t_2)dt_2 = \frac{1 - F_1(t_2)}{\mu} dt_2$$

where

$$F_1(t_2) = \int_0^{t_2} P_1(t) dt$$

and

$$\mu = \int_0^\infty t P_1(t) dt$$

or, integrating by parts and using  $F_1(\infty) = 1$ ,

$$\mu = \int_0^\infty [1 - F_1(t)] dt$$

so that

$$P_2(t_2)dt_2 = \frac{[1 - F_1(t_2)]dt_2}{\int_0^\infty [1 - F_1(t)]dt}$$

Using the original expression for  $P_1(t)$  we now have

1 - 
$$F_1(t_2) = \int_{t_2}^{\infty} P_1(t) dt$$

$$= \frac{1}{C \sigma \sqrt{2\pi}} \int_{t_2}^{\infty} e^{-(t-\tau)^2/2\sigma^2} dt$$

Setting  $t-\tau = \sqrt{2}x$ , this becomes

1 - 
$$F_1(t_2) = \frac{1}{C\sqrt{\pi}} \int_{\frac{t_2-\tau}{\sigma\sqrt{2}}}^{\infty} e^{-x^2} dx$$

which gives (Ref. A2)

$$1 - F_1(t_2) = \frac{1}{2C} \left\{ 1 - \operatorname{erf} \left[ \frac{(t_2 - \tau)}{\sigma \sqrt{2}} \right] \right\}$$

where erf(x) is the error function, so that the expression for  $P_2(t_2)dt_2$  becomes

$$P_{2}(t_{2})dt_{2} = \frac{\left|1 - erf\left[\frac{(t_{2} - \tau)}{\sigma\sqrt{2}}\right]\right|dt_{2}}{\int_{0}^{\infty} \left|1 - erf\left[\frac{(t - \tau)}{\sigma\sqrt{2}}\right]\right|dt}$$

This can be further simplified. Using the formulas (Ref. A3)

$$\int \operatorname{erf}(ax) dx = x \operatorname{erf}(ax) + \frac{e^{-a^2 x^2}}{a\sqrt{\pi}}$$

and

$$\int_{0}^{\infty} [1 - erf(ax)] dx = \frac{1}{a\sqrt{\pi}}$$

we obtain

$$\int_{v}^{\infty} [1 - \text{erf (ax)}] dx = \frac{e^{-a^{2}y^{2}}}{a\sqrt{\pi}} - y[1 - \text{erf(ay)}]$$

tions chies have

$$\left\{ 1 - \operatorname{erf} \left[ \frac{(t-\tau)}{\sigma \sqrt{2}} \right] \right\} dt = \sigma \sqrt{\frac{2}{\pi}} e^{-\tau^{2}/2\sigma^{2}}$$

$$+ \tau \left[ 1 + \operatorname{erf} \left( \frac{\tau}{\sigma \sqrt{2}} \right) \right]$$

so that the final result for  $P_2(t_2)dt_2$  is

$$P_{2}(t_{2})dt_{2} = \frac{\left[1 - \operatorname{erf}\left[\frac{(t_{2} - \tau)}{\sigma\sqrt{2}}\right]\right] dt_{2}}{\sigma\sqrt{\frac{2}{\pi}} e^{-\tau^{2}/2\sigma^{2}} + \tau \left[1 + \operatorname{erf}\left(\frac{\tau}{\sigma\sqrt{2}}\right)\right]}$$

The probability that the target will still be present at a time  $\mathbf{t}_3$  after it was detected is now given by

$$P_3(t_3) = 1 - \int_0^{t_3} P_2(t_2) dt_2$$

or, since 
$$\int_{0}^{\infty} P_{2}(t_{2})dt_{2} = 1,$$

$$P_3(t_3) = \int_{t_3}^{\infty} P_2(t_2) dt_2$$

Using the expression for  $P_2(t_2)$ , we obtain after integrating

$$P_{3}(t_{3}) = \frac{\sqrt{\frac{2}{\pi}} e^{-(t_{3}-\tau)^{2}/2\sigma^{2}} - (t_{3}-\tau)\left[1 - \operatorname{erf}\left[\frac{(t_{3}-\tau)}{\sigma\sqrt{2}}\right]\right]}{\sqrt{\frac{2}{\pi}} e^{-\tau^{2}/2\sigma^{2}} + \tau\left[1 + \operatorname{erf}\left(\frac{\tau}{\sigma\sqrt{2}}\right)\right]}$$

## REFERENCES TO APPENDIX A

- Al. Feller, W., An Introduction to Probability Theory and Its Applications, Vol. 2, Second Edition, John Wiley & Sons, New York, 1971, p. 370.
- A2. Abramowitz, M., and Stegun, I. A., Handbook of Mathematical Functions, Dover Publications, Inc., New York, 1965, p. 297.
- A3. Gradshteyn, I. W., and Ryzhik, I. M., Table of Integrals, Series, and Products, Academic Prass, New York, 1965, pp. 633 and 648.

- 45 1 2 2 2

# APPENDIX B. TI-59 CODE FOR MOBILE TARGET CALCULATIONS

The equation for the probability of a target being present at an observed location as a function of time where it is not known when the observation took place relative to the time the target stopped is

$$P(t) = \frac{\sigma\sqrt{\frac{2}{\pi}} e^{-\frac{(t-\tau)^2}{2\sigma^2} - (t-\tau) \left[1-erf\left(\frac{t-\tau}{\sigma\sqrt{2}}\right)\right]}}{\sigma\sqrt{\frac{2}{\pi}} e^{-\frac{\tau^2}{2\sigma^2} + \tau\left[1 + erf\left(\frac{\tau}{\sigma\sqrt{2}}\right)\right]}}$$

where erf = error function

 $\tau$  = mean dwell time

 $\sigma$  = standard deviation in dwell time.

The derivation of this equation is presented in Appendix A. An approximation to the error function suitable for use in the TI-59 is

If 
$$|x| < 1.18$$
: erf(x) =  $\frac{2}{\sqrt{\pi}} \left( x - \frac{x^3}{3} + \frac{x^5}{10} - \frac{x^7}{42} \right)$   
If  $|x| \ge 1.18$ : erf(x) =  $1 - \frac{1}{\sqrt{\pi}} \frac{e}{x}$ 

With this approximation the maximum error in the error function (about 5 percent) occurs at X = 1.18. The resultant error in the calculated probability of target presence is less than 1 percent for cases resulting in probabilities greater than 5 percent.

The following pages present TI-59 coding of the above equations and directions for running the program.

### INSTRUCTIONS

The program uses standard partioning (479/59) and will fit on two magnetic cards (four "sides"). After entering the program, the procedures are as follows:

| Step | Instruction              | Data | Keys        |
|------|--------------------------|------|-------------|
| 1    | Set initial time         | 0.   | STO 5       |
| 2    | Set stop criteria**      | .001 | STO 16      |
| 3    | Initialize               |      | INV 2nd FIX |
| 4    | Enter average dwell time | 6    | ST0 3       |
| 5    | Enter standard deviation | 2    | STO 2       |
| 6    | Enter time increment     | 1    | ST0 1       |
| 7    | Begin run                |      | A           |

<sup>\*</sup>Data for sample case illustrated.

The output from the printer is illustrated on the next page. The quantities are:

ADP = average dwell time (input)

DEV = standard deviation of the dwell time (input)

TIME = time

PROB = probability of target being present at given time.

<sup>\*\*</sup>Program stops when the probability of a target being present is less than this value.

## RESULTS FOR SAMPLE CASE

| ADT<br>DEV   | 6.<br>2.       |      |               |
|--------------|----------------|------|---------------|
| TIME         | 0.000          | TIME | <b>6.0</b> 00 |
| PRUB         | 1.000          | PROB | 0.133         |
| TIME         | 1.000          | TIME | 7.000         |
| PROB         | 0.833          |      | 0.066         |
| TIME         | 2.000          | TIME | 8.000         |
| PROB         | 0.667          | PROB | 0.028         |
| TIME         | 3.000          | TIME | 9.000         |
| PROB         | 0.508          | PROB | 0.008         |
| TIME         | 4.000          | TIME | 10.000        |
| PROB         | 0.361          | PROB |               |
| TIME<br>PROB | 5.000<br>0.233 |      |               |

## PROGRAM CODING

| 000<br>001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76<br>11                                                                                                                                                                   | LBL<br>A                                      |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------|
| 002<br>003<br>004<br>005<br>006<br>007<br>008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0450051536                                                                                                                                                                 | LA3XX00=T06                                   | σ√2                       |
| 010<br>011<br>012<br>013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9 + 9 F                                                                                                                                                                    | 1<br>1<br>3<br>1<br>0<br>1                    | √₹                        |
| 014<br>015<br>016<br>017<br>018<br>020<br>021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | និស្សិនក្សិនស<br>មេប្រធាន<br>មេប្រធាន                                                                                                                                      | ROL<br>06<br>07<br>27<br>27<br>28<br>08       | Α, (π                     |
| 023 + 5<br>023 + 5<br>023 + 5<br>023 + 3<br>023 + 3<br>024 + | 303511530<br>40380945                                                                                                                                                      |                                               | 2o <sup>2</sup>           |
| 001234557 83<br>000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \bullet \bullet$ | 0 = 0 2 L 3 L 3 L 3 L 3 L 3 L 3 L 3 L 3 L 3 L | x = 1/A                   |
| 040<br>041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01<br>03<br>03<br>03<br>40<br>40<br>40                                                                                                                                     | 1<br>1<br>3<br>5 T D<br>0 4                   | 1.18                      |
| 044567<br>04444444444<br>00553<br>0053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00000000000000000000000000000000000000                                                                                                                                     | 03<br>43<br>47<br>03<br>68<br>FIX<br>03       | Print $\tau$ and $\sigma$ |

| E <sub>1</sub> = erf (x)               | RCL<br>12<br>SBR<br>B<br>STD<br>20                           | 43<br>12<br>71<br>12<br>42<br>20              | 054<br>055<br>056<br>057<br>058<br>059                             |  |
|----------------------------------------|--------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|--|
| Initialize time                        | ADV<br>RCL<br>05<br>STO<br>15                                | 98<br>43<br>05<br>42<br>15                    | 060<br>061<br>062<br>063<br>064                                    |  |
| $x^1 = \frac{t-\tau}{\sigma\sqrt{2}}$  | RCL<br>06<br>=<br>STD<br>10                                  | 941553355536530<br>94174095546530             | 065<br>0667<br>0668<br>0670<br>0772<br>0773<br>0776<br>077         |  |
| E <sub>2</sub> = erf (x <sup>1</sup> ) | $I \times I$                                                 | 50<br>42<br>171<br>122<br>421                 | 078<br>079<br>080<br>081<br>082<br>083<br>084                      |  |
| E <sub>2</sub> sign check              | SBR<br>C                                                     | 71<br>13                                      | 085<br>086                                                         |  |
| t/τ                                    | RCL<br>15<br>+<br>CL<br>03<br>=<br>NOP                       | 43<br>15<br>55<br>43<br>95<br>68              | 087<br>088<br>089<br>090<br>091<br>092                             |  |
| Print time                             | GTO<br>03<br>87                                              | 61<br>03<br>87                                | 093<br>094<br>095<br>096                                           |  |
| τ[1+E <sub>1</sub> ] = d <sub>1</sub>  | 1<br>+<br>RCL<br>20<br>=<br>X<br>RCL<br>03<br>=<br>STO<br>23 | 01<br>85<br>43<br>20<br>95<br>43<br>95<br>423 | 097<br>098<br>099<br>100<br>101<br>102<br>103<br>104<br>105<br>106 |  |

```
108
       43 RCL
109
       03
           03
110
       33 %2
       55
111
112
113
        43 ROL
                    \sigma\sqrt{2/\pi} \ e^{-\tau^2/2\sigma^2} = d_2
       09
            09
       95 =
71 SBR
114
115
116
       14
             \mathbf{D}
117
       65
113
       43 RCL
119
       08
             08
120
       95
       85
121
              +
122
       43 RCL
123
       23
             23
                   d_1 + d_2
124
       95
125
126
127
123
       42 STD
       23
             23
       43 RCL
       15
            15
129
       75
130
       43 FIGL
1313345
       03
            03
       95
             =
       33 NB
                             -(t-\tau)^2
       5.5
       43 F.CL
                    \sigma\sqrt{2/\pi} e 2\sigma^2
                                      = n<sub>1</sub>
106
       09
            09
137
       95
            =
:39
       71 SBR
139
       14
             D
140
       65
            \times
       43 ROL
141
143
       08
            -08
143
       95
144
       42 STO
       24
.46
       01
             1
147
       75
143
       43 RCL
149
       21
             21
       95
150
151
       65
             \times
152
153
       53
       43 RCL
                   (t-\tau)(1-E_2) = n_2
154
             15
       15
155
156
157
       75
       43 F.CL
       03
            03
158
       54
       95
159
             =
       94 +/-
160
161
       42 STD
       25
162
             25
```

```
43 RCL 24
163
      24
164
165
      85
      43 RCL
166
          25
167
      25
168
      95
169
      43 RCL
170
171
      23
           23
      95 =
42 STD
173
      61
          GTO
           04
176
      04
177
      08
           08
      32 X:T
178
      43 RCL
179
                  Stop check
      \frac{16}{77}
180
           16
181
           GE
182
      01
           01
           97
      98 ADV
184
185
      68 NOP
      43 RCL
186
187
      15
          15
      85 +
43 RCL
188
189
           01
190
      01
                  Increment time
191
      95
      42 STD
192
193
      15
          15
194
      61 GTO
          00
195
      00
196
      66
           66
197
      91 R/S
```



```
03 3
32 X:T
43 RCL
259
260
261
                    x>3?
        12
77
02
262
             12
              GE
02
263
264
265
266
267
268
              88
        43
            ROL
        12 12
       33 %2
269
270
271
272
274
274
       94 +/-
27 INV
23 LNX
        55
        43 ROL
                                            x > 1.18
       12
95
             12
                    erf (x) = 1 - \frac{e^{-x^2}}{}
275
             =
276789
27789
27722
        55
            ÷
        43 ROL
       07
             07
        95
             =
       42 STO
280
281
       13
             13
282
       01
              1
283
        75
       43 RCL
284
285
       13
            13
286
287
288
289
290
       95 =
92 RTN
       01
             1
       <u> ਅਧੌਤ ਛੁੰਦੇ</u>
            Ü
       ÜÜ
291
        76 LDL
292
       13
            0
293
       00
            0
294
295
296
297
298
                   x = 0?
       32 X:T
       43 ROL
12 12
67 EQ
       03
            03
299
300
301
       12
            12
       55 ÷
43 RCL
302
303
304
       10
            10
305
       95
            =
306
307
                    Sign check for E
       65
            Υ.
       43 RCL
308
       21
            21
309
       95
       42 STD
310
311
             21
       21
312
       43 PCL
       21
313
             21
314
       92 RTN
```

```
315
      76 LBL
316
317
           D
      14
          STO
      42
318
      26
           26
319
      50
          I \times I
      42
27
          STO
320
                 Limit exponent to 99
321
322
           27
      09
323
      09
      32 X:T
324
325
      43 ROL
      27
77
326
327
           GE
      03
328
           03
      3ь
329
            36
330
      43 RCL
331
      26
            26
      -
332
      22 INV
333
      23 LNX
334
335
      92 RTN
336
      43
          ROL
337
            27
      55
338
      43 RCL
339
                  e<sup>Y</sup>, Y<99
340
      26
           26
341
      95
      65
342
           \times
      ű9
            9
343
            ģ
      09
344
345
      95
      éi GT□
346
347
      03
            03
348
      25
          CLR
349
350
      69 DP
351
      00
            00
352
      01
            1
353
      03
            3
354
      01
            1
355
      06
            6
356
357
358
            37
      03
      07
      69 OF
                  Label "ADT"
359
      01
           01
          DΡ
      69
360
      05
361
           05
      43 RCL
362
      03
           03
363
      99 PRT
364
365
      61 GTO
366
      ŨŨ
            00
      49
367
            49
```

### PROGRAM CODING (CONCLUDED)

```
Label "DEV"
Label "Time"
     a }}
a }}
 413
               Label "Prob"
      Ç.4
 419 69 DP
 421
422
423
423
      03 01
60 DF
         00
      05
     43 FOL
29 29
99 FRT
61 GTD
 425
 426
426
423
      0:
78
          01
78
```

### DISTRIBUTION LIST

#### DEPARTMENT OF DEFENSE

U.S. Documents Officer **AFSOUTH** 

ATTN: U.S. Documents Officer

Armed Forces Staff College
ATTN: Ref & Tech Svcs Br
ATTN: Coordinator for Studies & Rsch Lib

Assistant Secretary of Defense Program Analysis & Evaluation 2 cy ATTN: Regional Programs

Assistant to the Secretary of Defense Atomic Energy
ATTN: Executive Asst
ATTN: Nuc Policy Planning

Commander-ir-Chief, Atlantic ATTN: J-5/J-3 ATTN: N-22

Commander-in-Chief, Pacific

ATTN: J-3 ATTN: IPAC/I-3 ATTN: C3SRD ATTN: J-22

Defense Intelligence Agency

ATTN: DT ATTN: D8-4

Defense Nuclear Agency

ATTN: NATD ATTN: NAFD ATTN: STNA ATTN: NATA 4 cy ATTN: TITL

Defense Technical Info Ctr

12 CY ATTN: DD

Field Command Defense Nuclear Agency 2 cy ATTN: FCP

Field Command Defense Nuclear Agency Livermore Br ATTN: FCPRL

Interservice Nuclear Weapons Sch ATTN: TTV

Joint Chiefs of Staff

ATTN: SAGA ATTN: J-3, Strategic Ops Div 2 cy ATTN: J-5, Nuc Div/Strategy Div

National Defense University ATTN: NMCLB-CR

National Security Agency ATTN: D. Siwars ATTN: F. Newton

### DEPARTMENT OF DEFENSE (Continued)

Director HET Assessment Office of the Secretary of Defense ATTN: Dir, A. Marshall ATTN: F. Giessler ATTN: C. Pease

U.S. European Command

ATTN: J-5 ATTN: ECJ2-T ATTN: ECJ5-N ATYN: J-3

U.S. National Military Rep

2 cy ATTN: U.S. Doc Off for LTC Kann

Under Secretary of Defense for Poidcy Plng ATTN: DUSP/P ATTN: USD/P

### DEPARTMENT OF THE ARMY

Deputy Chief of Staff for Ops & Plans Department of the Army
ATTN: DAMO-ROS
ATTN: DAMO-SSP, COL Sewall
ATTN: DAMO-NCN

Eighth U.S. Army ATTN: CJ-JP-NS

Harry Diamond Labs Department of the Army ATTN: DELHD-N-P ATTN: DELHD-I-TL

U.S. Army Ballistic Rsch Labs

ATTN: DRDAR-BLB ATTN: DRDAR-TSB-S ATTN: DRDAR-BL

U.S. Army Comb Arms Combat Dev Acty AYTH: ATZL-CAD-LN

U.S. Army Comd & Gen Staff College ATTN: ATSN-TA-D

U.S. Army Concepts Analysis Agency ATTN: CSSA-ADL

Commander-in-Chief

U.S. Army Europe and Seventh Army ATTN: AEAGE ATTN: AEAGC

U.S. Army FA Msl Sys Eval Gp ATTN: ATSF-CD ATTN: ATZR-MG

U.S. Army Intell & Sec Cmd ATTN: DCSOPS



### DEPARTMENT OF THE ARMY (Continued)

U.S. Army Materiel Sys Analysis Actvy ATTN: DRXSY-S ATTN: DRXSY-DS

U.S. Army Nuclear & Chemical Agency ATTN: Lib

U.S. Army TRADOC Sys Analysis Actvy ATTN: AlAA-TAC

U.S. Army Training and Doctrine Cmd ATTN: ATCD-CF ATTN: ATOO-NCO AYTN: ATCD-AO ATTN: ATCC-N

U.S. Army War College ATTN: Lib

Y Corps Department of the Army 2 cy ATTN: G-3

Department of the Army 2 cy ATTN: G-3

#### DEPARTMENT OF THE NAVY

Cruiser Destrayer Group One ATTN: N321

Fleet Intelligence Ctr, Pacific Department of the Navy ATTN: FICPAC, Code 21

Fleet Intelligence Ctr, Europe & Atlantic Department of the Navy ATTN: Code 222

Marine Corps Dev & Ed Cmd Department of the Navy ATTN: Commander

Naval Intelligence Cmd ATTN: NIC-01

Naval Intelligence Support Ctr ATTN: NISC-30

Naval Postgraduate Sch ATTN: Code 1424, Lib

Naval War College ATTN: Code E-11, Tech Svc

Naval Weapons Center ATTN: Code 32607

Naval Field Op Intell Ofc ATTN: Commanding Officer

Nuclear Weapons Ing Group, Pacific Department of the Navy ATTN: Code 32

Nuclear Meapons Tng Group, Atlantic Department of the Navy ATTN: Code 222

### DEPARTMENT OF THE NAVY (Continued)

Office of the Chief of Naval Ops ATTN: OP-OOK

Commander-in-Chief U.S. Atlantic Fleet Department of the Navy ATTN: Code N-2 ATTN: Code N-3

Commander-in-Chief U.S. Naval Forces, Europe ATTN: NS4, Nuc Warfare Off

### DEPARTMENT OF THE AIR FORCE

Air University Library Department of the Air Force ATTN: AUL/LSE

Assistant Chief of Staff Intelligence Department of the Air Force ATTN: INA

Assistant Chief of Staff Studies & Analyses Department of the Air Force tment of the Air Force
ATTN: AF/SAG, H. Zwemer
ATTN: AF/SASB, R. Mathis
ATTN: AF/SASF
ATTN: AF/SASM
ATTN: AF/SAMI
ATTN: AF/SAMI, N. Adams

Headquarters Space Div Air Force Systems Command ATTN: YKD

Commander-in-Chief U.S. Air Forces in Europe ATTN: USAFE/INA

Commander-in-Chief U.S. Air Forces in Europe ATTN: USAFE/XPX

### OTHER SOVERNMENT AGENCY

Central Intelligence Agency ATTN: QSWR/NED

### DEPARTMENT OF ENERGY CONTRACTORS

Sandia Labs Livermore Lab ATTN: L. Hostetler ATTN: A. Kernstein ATTN: T. Gold

### DEPARTMENT OF DEFENSE CONTRACTORS

BOM Corp ATTN: J. Braddock ATTN: F. Conant

Boeing Co ATTN: J. Russel

### DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

66th MI Group 4 cy ATTN: D. Welch

General Research Corp ATTN: Tac Warfare Ops

Hudson Institute, Inc ATTN: C. Gray ATTN: H. Kahn

IRT Corp
ATTN: J. Hengle
ATTN: W. Hacklin

JAYCOR

ATTN: R. Sullivan

kaman Sciences Corp ATTN: F. Shelton

Kaman Sciences Corp ATTN: E. Daugs

Kaman Tempo ATTN: DASIAC

Martin Marietta Corp ATTN: F. Marion

Martin Marietta Corp ATTN: J. Donathan

Pacific-Sierra Research Corp ATTN: H. Brode ATTN: G. Lang

R & D Associates ATTN: P. Haas 2 cy ATTN: J. Hurley

### DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Rand Corp

ATTN: V. Jackson

Santa Fe Corp ATTN: D. Paolucci

Science Applications, inc ATTN: C. Whittenbury/W. Yengs& ATTN: M. Drake ATTN: J. Martin

Science Applications, Inc ATTN: R. Craver ATTN: W. Layson ATTN: J. Shannon

SRI International

ATTN: J. Scholz ATTN: J. Sloss

System Planning Corp ATTN: J. Douglas

Systems, Science & Joftware, Inc. ATTN: K. Pyatt

Tetra Tech, Inc ATTN: F. Bothwell

TRW Defense & Space Sys Group

ATTN: N. Lipner ATTN: D. Scally ATTN: R. Burnett

TRN Defense & Space 5ys Group ATTN: P. Dai