ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Fakulta jaderná a fyzikálně inženýrská Katedra matematiky

VÝZKUMNÝ ÚKOL

Konstrukce algoritmů pro paralelní sčítání

Construction of algorithms for parallel addition

Vypracoval: Jan Legerský

Školitel: Ing. Štěpán Starosta, Ph.D.

Akademický rok: 2014/2015

Čestné prohlášení	
Prohlašuji na tomto místě, že jsem předloženou práci vypraco uvedl veškerou použitou literaturu.	val samostatně a že jsem
V Praze dne 2. 9. 2015	
	Jan Legerský

Název práce: Konstrukce algoritmů pro paralelní sčítání

Autor: Jan Legerský

Obor: Inženýrská informatika

Zaměření: Matematická informatika

Druh práce: Výzkumný úkol

Vedoucí práce: Ing. Štěpán Starosta, Ph.D., KAM FIT, ČVUT v Praze

Konzultant: —

Abstrakt: Práce je věnována konstrukci algoritmů pro paralelní sčítání v různých

numeračních soustavách. Zaměřuje se hlavně na nestandardní numerační systémy s neceločíselnou, obecně komplexní, bází $\beta \in \mathbb{Z}[\omega]$ a obecně neceločíselnou abecedou $\mathcal{A} \subset \mathbb{Z}[\omega]$ pro nějaké algebraické celé číslo ω . Navrhujeme takzvanou extending window method s použitím základního přepisovacího pravidla $x-\beta$, která pro danou bázi β a abecedu \mathcal{A} hledá algoritmus pro paralelní sčítání. Metoda se skládá ze dvou fází. Pro první z nich uvádíme postačující podmínku konvergence, pro druhou máme algoritmus, který kontroluje nutnou podmínku konvergence. Tuto metodu implementujeme v programovacím jazyce SageMath a uvádíme množství otestovaných numeračních systémů.

Klíčová slova: Paralelní sčítání, nestandardní numerační systémy, extending window

method.

Title: Construction of algorithms for parallel addition

Author: Jan Legerský

Abstract: We focus on the construction of algorithms for parallel addition in

different numeration systems, especially non-standard ones. The base β is an element of $\mathbb{Z}[\omega]$ and the alphabet, in general non-integer, is a subset of $\mathbb{Z}[\omega]$ for some algebraic integer ω . We design so-called extending window method with the basic rewriting rule $x - \beta$. The method searches for a parallel addition algorithm for a given base β and alphabet \mathcal{A} . It consists of two phases. We have the sufficient condition of convergence of Phase 1. We introduce the algorithm which verifies the necessary condition of convergence of Phase 2. The method is implemented in SageMath and we provide several tested examples.

Key words: Parallel addition, non-standard numeration systems, extending window

method.

Contents

Introduction				
1	Pre 1.1 1.2	liminaries Numeration systems		
	1.3	Isomorphism of $\mathbb{Z}[\omega]$ and \mathbb{Z}^d		
2	Des	sign of extending window method		
	2.1	Extending window method		
	2.2	Phase 1 – Weight coefficients set		
	2.3	Phase 2 – Weight function		
3	Cor	nvergence		
	3.1	Convergence of Phase 1		
	3.2	Convergence of Phase 2		
	3.3	Alphabet		
4	Des	sign and implementation		
	4.1	Class AlgorithmForParallelAddition		
	4.2	Class WeightCoefficientsSetSearch		
	4.3	Class WeightFunctionSearch		
	4.4	Class WeightFunction		
	4.5	User interfaces		
5	Tes	ting		
	5.1	Eisenstein base $\beta = -\frac{3}{2} + \frac{i\sqrt{3}}{2}$		
	5.2	Penney base $\beta = -1 + i$		
	5.3	Base $\beta = 1 + i$		
	5.4	Base $\beta = -2 + i$		
	5.5	Base $\beta = -\frac{3}{2} + \frac{i\sqrt{11}}{2}$		
	5.6	Base $\beta = \frac{5}{2} + \frac{i\sqrt{13}}{2}$		
	5.7	Base $\beta = \frac{5}{2} + \frac{\sqrt{5}}{2}$		
	5.8	Integer bases		
	5.9	Cubic bases		
Sι	ımm	ary		
R	efere	nces		
$\mathbf{A}_{]}$	ppen	dices		
	A	Illustration of Phase 1		
	В	Illustration of Phase 2		
	\mathbf{C}	Sample of input file for shell		
	D	GIII in SageMath Cloud		

List of symbols

Symbol	Description
\mathbb{N}	set of nonnegative integers $\{0, 1, 2, 3, \dots\}$
$\mathbb Z$	set of integers $\{, -2, -1, 0, 1, 2,\}$
\mathbb{R}	set of real numbers
\mathbb{C}	set of complex numbers
$\mathbb{Q}(eta)$	the smallest field containing the set of rational numbers $\mathbb Q$ and β
#S	number of elements of the finite set S
(eta,\mathcal{A})	numeration system with the base β and the alphabet \mathcal{A}
$(x)_{eta,\mathcal{A}}$	(β, \mathcal{A}) -representation of the number x
$\operatorname{Fin}_{\mathcal{A}}(\beta)$	set of all complex numbers with a finite (β, \mathcal{A}) -representation
$\mathcal{A}^{\mathbb{Z}}$	set of all bi-infinite sequences of digits in \mathcal{A}
$\mathbb{Z}[\omega]$	set of values of all polynomials with integer coefficients evaluated in ω
π	isomorphism from $\mathbb{Z}[\omega]$ to \mathbb{Z}^d
\mathcal{B}	alphabet of input digita
	alphabet of input digits
$egin{array}{c} q_j \ \mathcal{Q} \end{array}$	weight coefficient for the j-th position
9	weight coefficients set
$\mathcal{Q}_{[w_j,\dots,w_{j-m+1}]}$	set of possible weight coefficients for the input digits w_j, \ldots, w_{j-m+1}
x	floor function of the number x
$\operatorname{Re} x$	real part of the complex number x
$\operatorname{Im} x$	imaginary part of the complex number x

Introduction

Algorithms for parallel addition have been studied to improve performance of computer processing units as well as for the theoretical reasons. Addition is an important part of algorithms for multiplication and division. Thus the linear time of the standard addition algorithms is a serious drawback. A parallel algorithm to compute the sum of $x_n x_{n-1} \cdots x_1 x_0 \bullet$ and $y_n y_{n-1} \cdots y_1 y_0 \bullet$ determines the j-th digit of the sum just from the knowledge of fixed number of digits around x_j and y_j . Thus it avoids a carry propagation and all output digits can be determined at the same time. In contrast, the carry propagation in the standard algorithms requires to compute digits one by one.

A parallel addition algorithm for an integer base $\beta \geq 3$ was introduced by A. Avizienis in [1] in 1961. The algorithm works on the alphabet $\{-a, \ldots, 0, \ldots a\}$ where $a \in \mathbb{N}$ is such that $\beta/2 < a \leq \beta - 1$. Later, C. Y. Chow and J. E. Robertson presented a parallel addition algorithm for the base 2 and the alphabet $\{-1, 0, 1\}$ in [2].

So-called non-standard numeration systems, where the base β is not a positive integer, have been extensively studied. The reason of this interest is for instance precise arithmetic in $\mathbb{Q}(\beta)$. Also, complex bases allow to represent any complex number without separating the real and imaginary part. The example of such system is the Penny numeration system with the base i-1 and the alphabet $\{0,1\}$.

Some redundancy of the numeration system is required in order to construct a parallel addition algorithm. It means that numbers may have more than one representation. P. Kornerup studied the necessary amount of redundancy in [7].

C. Frougny, E. Pelantová and M. Svobodová provide parallel algorithms for all bases β such that $|\beta| > 1$ and no conjugate of β equals 1 in modulus, see [4]. Nevertheless, the integer alphabet is not minimal in general. The parallel addition algorithms for several bases (negative integer, complex numbers -1 + i, 2i and $\sqrt{2}i$, quadratic Pisot unit and the non-integer rational base) with minimal integer alphabet are given in [5].

We focus on the construction of parallel addition algorithm for a given base β , $|\beta| > 1$, being an algebraic integer and alphabet A containing 0. The alphabet A may be non-integer.

First, we recall the definitions and few previous results in Chapter 1. We include Theorem 1.7 which is an important tool used for the implementation.

The general concept of the construction of parallel addition algorithms is introduced in Chapter 2. We develop so-called extending window method for the construction of parallel addition algorithm for a given base β and alphabet \mathcal{A} . The method consists of two phases. We discuss the convergence of both of them in Chapter 3.

We design the implementation of the method in SageMath in Chapter 4. The implementation and provided user interfaces are described. The summary of all tested examples can be found in Chapter 5. See Appendices for images of the iterations of the extending window method for the Eisenstein base.

Chapter 1

Preliminaries

In this chapter, we recall few definitions and results connected to numeration systems and parallelism. We define the set $\mathbb{Z}[\omega]$ for an algebraic integer ω and we prove that $\mathbb{Z}[\omega]$ is isomorphic to \mathbb{Z}^d . This property is used in Theorem 1.7 which is an important tool for divisibility in $\mathbb{Z}[\omega]$. Division in $\mathbb{Z}[\omega]$ is necessary for the extending window method described in Chapter 2.

1.1 Numeration systems

Firstly, we give a general definition of numeration system.

Definition 1.1. Let $\beta \in \mathbb{C}$, $|\beta| > 1$ and $A \subset \mathbb{C}$ be a finite set containing 0. A pair (β, A) is called a *positional numeration system* with *base* β and *digit set* A, usually called *alphabet*.

So-called standard numeration systems have an integer base β and an alphabet \mathcal{A} which is a set of contiguous integers. We restrict ourselves to the base β which is an algebraic integer and possibly non-integer alphabet \mathcal{A} .

Definition 1.2. Let (β, \mathcal{A}) be a positional numeration system. We say that a complex number x has a (β, \mathcal{A}) -representation if there exist digits $x_n, x_{n-1}, x_{n-2}, \dots \in \mathcal{A}, n \geq 0$ such that $x = \sum_{j=-\infty}^n x_j \beta^j$.

We write briefly a representation instead of a (β, \mathcal{A}) -representation if the base β and the alphabet \mathcal{A} follow from context.

Definition 1.3. Let (β, \mathcal{A}) be a positional numeration system. The set of all complex numbers with a finite (β, \mathcal{A}) -representation is defined by

$$\operatorname{Fin}_{\mathcal{A}}(\beta) := \left\{ \sum_{j=-m}^{n} x_j \beta^j \colon n, m \in \mathbb{N}, x_j \in \mathcal{A} \right\}.$$

For $x \in \operatorname{Fin}_{\mathcal{A}}(\beta)$, we write

$$(x)_{\beta,\mathcal{A}} = 0^{\omega} x_n x_{n-1} \cdots x_1 x_0 \bullet x_{-1} x_{-2} \cdots x_{-m} 0^{\omega},$$

where 0^{ω} denotes right, respectively left-infinite sequence of zeros. Notice that indices are decreasing from left to right as it is usual to write the most significant digits first. In what follows, we omit the starting and ending 0^{ω} when we work with numbers in $\operatorname{Fin}_{\mathcal{A}}(\beta)$. We remark

1.2. Parallel addition 4

that existence of an algorithm (standard or parallel) producing a finite (β, \mathcal{A}) -representation of x + y where $x, y \in \operatorname{Fin}_{\mathcal{A}}(\beta)$ implies that the set $\operatorname{Fin}_{\mathcal{A}}(\beta)$ is closed under addition, i.e.,

$$\operatorname{Fin}_{\mathcal{A}}(\beta) + \operatorname{Fin}_{\mathcal{A}}(\beta) \subset \operatorname{Fin}_{\mathcal{A}}(\beta)$$
.

Designing an algorithm for parallel addition requires some redundancy in numeration system. According to [9], a numeration system (β, A) is called *redundant* if there exists $x \in \operatorname{Fin}_{\mathcal{A}}(\beta)$ which has two different (β, A) -representations. For instance, the number 1 has $(2, \{-1, 0, 1\})$ -representations 1• and 1(-1)•. Redundant numeration system can enable us to avoid carry propagation in addition. On the other hand, there are some disadvantages. For example, comparison is problematic.

1.2 Parallel addition

A local function, which is also often called a sliding block code, is used to mathematically formalize parallelism.

Definition 1.4. Let \mathcal{A} and \mathcal{B} be alphabets. A function $\varphi : \mathcal{B}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ is said to be *p-local* if there exist $r, t \in \mathbb{N}$ satisfying p = r + t + 1 and a function $\varphi : \mathcal{B}^p \to \mathcal{A}$ such that, for any $w = (w_j)_{j \in \mathbb{Z}} \in \mathcal{B}^{\mathbb{Z}}$ and its image $z = \varphi(w) = (z_j)_{j \in \mathbb{Z}} \in \mathcal{A}^{\mathbb{Z}}$, we have $z_j = \varphi(w_{j+t}, \dots, w_{j-r})$ for every $j \in \mathbb{Z}$. The parameter t, resp. r, is called *anticipation*, resp. memory.

This means that each digit of the image $\varphi(w)$ is computed from p digits of w in a sliding window. Suppose that there is a processor on each position with access to t input digits on the left and r input digits on the right. Then computation of $\varphi(w)$, where w is a finite sequence, can be done in constant time independent on the length of w.

Definition 1.5. Let β be a base and \mathcal{A} and \mathcal{B} two alphabets containing 0. A function $\varphi: \mathcal{B}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ such that

- 1. for any $w = (w_j)_{j \in \mathbb{Z}} \in \mathcal{B}^{\mathbb{Z}}$ with finitely many non-zero digits, $z = \varphi(w) = (z_j)_{j \in \mathbb{Z}} \in \mathcal{A}^{\mathbb{Z}}$ has only finite number of non-zero digits, and
- 2. $\sum_{j\in\mathbb{Z}} w_j \beta^j = \sum_{j\in\mathbb{Z}} z_j \beta^j$

is called *digit set conversion* in base β from \mathcal{B} to \mathcal{A} . Such a conversion φ is said to be *computable in parallel* if φ is a p-local function for some $p \in \mathbb{N}$.

In fact, addition on $\operatorname{Fin}_{\mathcal{A}}(\beta)$ can be performed in parallel if there is a digit set conversion from $\mathcal{A} + \mathcal{A}$ to \mathcal{A} computable in parallel as we can easily output digitwise sum of two (β, \mathcal{A}) -representations in parallel.

We recall few results about parallel addition in a numeration system with an integer alphabet. C. Frougny, E. Pelantová and M. Svobodová proved the following sufficient condition of existence of an algorithm for parallel addition in [4].

Theorem 1.1. Let $\beta \in \mathbb{C}$ be an algebraic number such that $|\beta| > 1$ and all its conjugates in modulus differ from 1. There exists an alphabet A of contiguous integers containing 0 such that addition on $Fin_{A}(\beta)$ can be performed in parallel.

The proof of the theorem provides the algorithm for the alphabet of the form $\{-a, -a + 1, \dots, 0, \dots, a - 1, a\}$. But in general, a is not minimal.

The same authors showed in [3] that the condition on the conjugates of the base β is also necessary:

Theorem 1.2. Let the base $\beta \in \mathbb{C}$, $|\beta| > 1$, be an algebraic number with a conjugate β' such that $|\beta'| = 1$. Let $A \subset \mathbb{Z}$ be an alphabet of contiguous integers containing 0. Then addition on $Fin_A(\beta)$ cannot be computable in parallel.

The question of minimality of the alphabet is studied in [5]. The following lower bound for the size of the alphabet is provided:

Theorem 1.3. Let $\beta \in \mathbb{C}$, $|\beta| > 1$, be an algebraic integer with the minimal polynomial p. Let $A \subset \mathbb{Z}$ be an alphabet of contiguous integers containing 0 and 1. If addition on $Fin_A(\beta)$ is computable in parallel, then $\#A \ge |p(1)|$. Moreover, if β is a positive real number, $\beta > 1$, then $\#A \ge |p(1)| + 2$.

In this thesis, we work in a more general concept as we consider also non-integer alphabets. First, we recall the following definition.

Definition 1.6. Let ω be a complex number. The set of values of all polynomials with integer coefficients evaluated in ω is denoted by

$$\mathbb{Z}[\omega] = \left\{ \sum_{i=0}^{n} a_i \omega^i \colon n \in \mathbb{N}, a_i \in \mathbb{Z} \right\} \subset \mathbb{Q}(\omega) \,.$$

Notice that $\mathbb{Z}[\omega]$ is a commutative ring (for our purposes, a ring is associative under multiplication and there is a multiplicative identity).

From now on, let ω be an algebraic integer which generates the set $\mathbb{Z}[\omega]$ and let the base $\beta \in \mathbb{Z}[\omega]$ be such that $|\beta| > 1$. We remark that β is also an algebraic integer as all elements of $\mathbb{Z}[\omega]$ are algebraic integers. Finally, let the alphabet \mathcal{A} be a finite subset of $\mathbb{Z}[\omega]$ such that $0 \in \mathcal{A}$.

Few parallel addition algorithms for such numeration system with a non-integer alphabet were found ad hoc. We introduce the method for construction of the parallel addition algorithm for a given numeration system (β, \mathcal{A}) in Chapter 2.

1.3 Isomorphism of $\mathbb{Z}[\omega]$ and \mathbb{Z}^d

The goal of this section is to show a connection between the ring $\mathbb{Z}[\omega]$ and the set \mathbb{Z}^d . Using Theorem 1.7, division in $\mathbb{Z}[\omega]$ can be replaced by searching for an integer solution of a linear system. This is used for the implementation of the extending window method.

First we recall the notion of companion matrix which we use to define multiplication in \mathbb{Z}^d . By the minimal polynomial of an algebraic integer, we always mean the monic minimal polynomial.

Definition 1.7. Let ω be an algebraic integer of degree $d \geq 1$ with the minimal polynomial

 $p(x) = x^d + p_{d-1}x^{d-1} + \dots + p_1x + p_0 \in \mathbb{Z}[x]$. The matrix

$$S := \begin{pmatrix} 0 & 0 & \cdots & 0 & -p_0 \\ 1 & 0 & \cdots & 0 & -p_1 \\ 0 & 1 & \cdots & 0 & -p_2 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \cdots & 1 & -p_{d-1} \end{pmatrix} \in \mathbb{Z}^{d \times d}$$

is called *companion matrix* of the minimal polynomial of ω .

In what follows, the standard basis vectors of \mathbb{Z}^d are denoted by

$$e_{0} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_{1} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_{d-1} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Definition 1.8. Let ω be an algebraic integer of degree $d \geq 1$, let p be its minimal polynomial and let S be its companion matrix. We define the mapping $\odot_{\omega} : \mathbb{Z}^d \times \mathbb{Z}^d \to \mathbb{Z}^d$ by

$$u \odot_{\omega} v := \left(\sum_{i=0}^{d-1} u_i S^i\right) \cdot \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{d-1} \end{pmatrix} \quad \text{for all } u = \begin{pmatrix} u_0 \\ u_1 \\ \vdots \\ u_{d-1} \end{pmatrix}, v = \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{d-1} \end{pmatrix} \in \mathbb{Z}^d.$$

and we define powers of $u \in \mathbb{Z}^d$ by

$$u^0 = e_0,$$

$$u^i = u^{i-1} \odot_{\omega} u \text{ for } i \in \mathbb{N}.$$

We will see later that \mathbb{Z}^d equipped with elementwise addition and multiplication \odot_{ω} builds a commutative ring. Let us first recall an important property of a companion matrix – it is a root of its defining polynomial.

Lemma 1.4. Let ω be an algebraic integer with a minimal polynomial p and let S be its companion matrix. Then

$$p(S) = 0.$$

Proof. Following the proof in [6], we have

$$e_0 = S^0 e_0 ,$$

$$Se_0 = e_1 = S^1 e_0 ,$$

$$Se_1 = e_2 = S^2 e_0 ,$$

$$Se_2 = e_3 = S^3 e_0 ,$$

$$\vdots$$

$$Se_{d-2} = e_{d-1} = S^{d-1} e_0 ,$$

$$Se_{d-1} = S^d e_0 ,$$

where the middle column is obtained by multiplication and the right one by using the previous row. Also by multiplying and substituting

$$S^{d}e_{0} = Se_{d-1} = -p_{0}e_{0} - p_{1}e_{1} - \dots - p_{d-1}e_{d-1}$$

$$= -p_{0}S^{0}e_{0} - p_{1}S^{1}e_{0} - \dots - p_{d-1}S^{d-1}e_{0}$$

$$= (-p_{0}S^{0} - p_{1}S^{1} - \dots - p_{d-1}S^{d-1})e_{0}$$

$$= (S^{d} - p(S))e_{0}.$$

Hence

$$p(S)e_0 = 0$$
.

Moreover,

$$p(S)e_k = p(S)S^k e_0 = S^k p(S)e_0 = 0$$

for $k = \{0, 1, \dots, d-1\}$ which implies the statement.

The following lemma summarizes basic properties of the mapping \odot_{ω} – multiplication by an integer scalar, the identity element, the distributive law and a weaker form of associativity.

Lemma 1.5. Let ω be an algebraic integer of degree d. The following statements hold for every $u, v, w \in \mathbb{Z}^d$ and $m \in \mathbb{Z}$:

- (i) $(mu) \odot_{\omega} v = u \odot_{\omega} (mv) = m(u \odot_{\omega} v),$
- (ii) $e_0 \odot_{\omega} v = v \odot_{\omega} e_0 = v$,
- (iii) $(u \odot_{\omega} e_1^k) \odot_{\omega} v = u \odot_{\omega} (e_1^k \odot_{\omega} v) \text{ for } k \in \mathbb{N},$
- (iv) $(u+v) \odot_{\omega} w = u \odot_{\omega} w + v \odot_{\omega} w$ and $u \odot_{\omega} (v+w) = u \odot_{\omega} v + u \odot_{\omega} w$.

Proof. It is easy to see (i) as multiplication of a matrix by a scalar commutes and a scalar can be factored out of a sum.

The first equality of (ii) follows from definition and

$$v \odot_{\omega} e_0 = \sum_{i=0}^{d-1} v_i S^i \cdot e_0 = \sum_{i=0}^{d-1} v_i e_i = v.$$

For (iii), we use Lemma 1.4 and its proof. Assume k = 1:

$$(u \odot_{\omega} e_{1}) \odot_{\omega} v = \left(\sum_{i=0}^{d-1} u_{i} S^{i} \cdot e_{1}\right) \odot_{\omega} v = \left(\sum_{i=0}^{d-1} u_{i} S^{i} \cdot S e_{0}\right) \odot_{\omega} v$$

$$= \left(\sum_{i=0}^{d-2} u_{i} e_{i+1} + u_{d-1} S^{d} e_{0}\right) \odot_{\omega} v = \left(\sum_{i=1}^{d-1} u_{i-1} e_{i} - u_{d-1} \sum_{i=0}^{d-1} p_{i} e_{i}\right) \odot_{\omega} v$$

$$= \left(\sum_{i=1}^{d-1} u_{i-1} S^{i} - u_{d-1} \sum_{i=0}^{d-1} p_{i} S^{i}\right) \cdot v$$

$$= \left(\sum_{i=1}^{d-1} u_{i-1} S^{i} + u_{d-1} S^{d}\right) \cdot v = \sum_{i=0}^{d-1} u_{i} S^{i} \cdot S \cdot v$$

$$= u \odot_{\omega} (S \cdot v) = u \odot_{\omega} (e_{1} \odot_{\omega} v).$$

Now we proceed by induction:

The statement (iv) follows easily from distributivity of matrix multiplication with respect to addition. \Box

Now we can prove that there is a correspondence between elements of $\mathbb{Z}[\omega]$ and \mathbb{Z}^d .

Theorem 1.6. Let ω be an algebraic integer of degree d. Then

$$\mathbb{Z}[\omega] = \left\{ \sum_{i=0}^{d-1} a_i \omega^i \colon a_i \in \mathbb{Z} \right\},\,$$

 $(\mathbb{Z}^d, +, \odot_{\omega})$ is a commutative ring and the mapping $\pi : \mathbb{Z}[\omega] \to \mathbb{Z}^d$ defined by

$$\pi(u) = \begin{pmatrix} u_0 \\ u_1 \\ \vdots \\ u_{d-1} \end{pmatrix} \quad \text{for every } u = \sum_{i=0}^{d-1} u_i \omega^i \in \mathbb{Z}[\omega]$$

is a ring isomorphism.

Proof. Obviously, $\left\{\sum_{i=0}^n a_i \omega^i : n \in \mathbb{N}, a_i \in \mathbb{Z}\right\} = \mathbb{Z}[\omega] \supset \left\{\sum_{i=0}^{d-1} a_i \omega^i : a_i \in \mathbb{Z}\right\}$. We prove the opposite direction by induction with respect to n. Assume $u \in \mathbb{Z}[\omega]$, $u = \sum_{i=0}^n u_i \omega^i$ for some $n \in \mathbb{N}$. We see that $u \in \left\{\sum_{i=0}^{d-1} a_i \omega^i : a_i \in \mathbb{Z}\right\}$ for all n < d.

Suppose now that the claim holds for n-1 and consider $n \geq d$. Let $p(x) = x^d + p_{d-1}x^{d-1} + \dots p_1x + p_0$ be the minimal polynomial of ω . By $p(\omega) = 0$, we have the equation $\omega^d = -p_{d-1}\omega^{d-1} - \dots - p_1\omega - p_0$ which enables us to write

$$u = u_n \omega^n + \sum_{i=0}^{n-1} u_i \omega^i = u_n \omega^{n-d} \underbrace{\left(-p_{d-1} \omega^{d-1} - \dots - p_1 \omega - p_0 \right)}_{\omega^d} + \sum_{i=0}^{n-1} u_i \omega^i$$
$$= \sum_{i=0}^{n-d-1} u_i \omega^i + \sum_{i=n-d}^{n-1} (u_i - u_n \cdot p_{i-n+d}) \omega^i = \sum_{i=0}^{n-1} u_i' \omega^i.$$

Thus $u \in \left\{ \sum_{i=0}^{d-1} a_i \omega^i \colon a_i \in \mathbb{Z} \right\}$ by the induction assumption.

Let us check now that the mapping π is well-defined. Assume on contrary that there exists $v \in \mathbb{Z}[\omega]$ and $i_0 \in \{0, 1, \dots, d-1\}$ such that $v = \sum_{i=0}^{d-1} v_i \omega^i = \sum_{i=0}^{d-1} v_i' \omega^i$ and $v_{i_0} \neq v_{i_0}'$. Then

$$\sum_{i=0}^{d-1} (v_i' - v_i)\omega^i = 0$$

and $\sum_{i=0}^{d-1} (v_i' - v_i) x^i \in \mathbb{Z}[x]$ is a non-zero polynomial of the degree smaller than the degree d of the minimal polynomial p, a contradiction.

Clearly, π is bijection.

Let $v = \sum_{i=0}^{d-1} v_i \omega^i$ be an element of $\mathbb{Z}[\omega]$. We prove by induction that

$$\pi(\omega^i v) = (\pi(\omega))^i \odot_\omega \pi(v) .$$

For i = 1, consider

$$\omega v = \omega \sum_{i=0}^{d-1} v_i \omega^i = \sum_{i=0}^{d-2} v_i \omega^{i+1} + v_{d-1} (\underbrace{-p_{d-1} \omega^{d-1} - \dots - p_1 \omega - p_0}_{=\omega^d})$$
$$= -p_0 v_{d-1} + \sum_{i=1}^{d-1} (v_{i-1} - v_{d-1} p_i) \omega^i.$$

Hence

$$\pi(\omega v) = -p_0 v_{d-1} e_0 + \sum_{i=1}^{d-1} (v_{i-1} - v_{d-1} p_i) e_i = S \cdot \pi(v)$$
$$= e_1 \odot_{\omega} \pi(v) = \pi(\omega) \odot_{\omega} \pi(v).$$

Suppose now that

$$\pi(\omega^{i-1}v) = (\pi(\omega))^{i-1} \odot_{\omega} \pi(v).$$

Then

$$\pi(\omega^{i}v) = \pi(\omega(\omega^{i-1}v)) = \pi(\omega) \odot_{\omega} \pi(\omega^{i-1}v) = \pi(\omega) \odot_{\omega} \left((\pi(\omega))^{i-1} \odot_{\omega} \pi(v) \right) = (\pi(\omega))^{i} \odot_{\omega} \pi(v),$$

where we use (iii) of Lemma 1.5 for the last equality.

Now we multiply v by $m \in \mathbb{Z} \subset \mathbb{Z}[\omega]$:

$$\pi(mv) = \pi\left(m\sum_{i=0}^{d-1} v_i\omega^i\right) = \pi\left(\sum_{i=0}^{d-1} mv_i\omega^i\right) = m\pi(v) = (me_0) \odot_{\omega} \pi(v) = \pi(m) \odot_{\omega} \pi(v).$$

Let $u = \sum_{i=0}^{d-1} u_i \omega^i \in \mathbb{Z}[\omega]$. Since π is obviously additive, we conclude:

$$\pi(uv) = \pi \left(\sum_{i=0}^{d-1} u_i \omega^i v \right) = \sum_{i=0}^{d-1} \pi(\omega^i u_i v) = \sum_{i=0}^{d-1} \pi(\omega)^i \odot_\omega (\pi(u_i) \odot_\omega \pi(v))$$
$$= \sum_{i=0}^{d-1} \pi(\omega^i u_i) \odot_\omega \pi(v) = \pi \left(\sum_{i=0}^{d-1} u_i \omega^i \right) \odot_\omega \pi(v) = \pi(u) \odot_\omega \pi(v).$$

Now we can show that the operation \odot_{ω} is associative and commutative. Let $f, g, h \in \mathbb{Z}^d$ and $u, v, w \in \mathbb{Z}[\omega]$ be such that $f = \pi(u), g = \pi(v)$ and $h = \pi(w)$. Then

$$f\odot_{\omega}(g\odot_{\omega}h)=f\odot_{\omega}\pi(vw)=\pi(u(vw))=\pi((uv)w)=\pi(uv)\odot_{\omega}h=(f\odot_{\omega}g)\odot_{\omega}h$$

and

$$g \odot_{\omega} h = \pi(vw) = \pi(wv) = h \odot_{\omega} g$$
.

Thus, $(\mathbb{Z}^d, +, \odot_{\omega})$ is a commutative ring.

Due to this theorem we may work with integer vectors instead of elements of $\mathbb{Z}[\omega]$ and multiplication in $\mathbb{Z}[\omega]$ is replaced by multiplying by an appropriate matrix.

The last theorem of this section is a practical tool for divisibility in $\mathbb{Z}[\omega]$. To check whether an element of $\mathbb{Z}[\omega]$ is divisible by another element, we look for an integer solution of a linear system. Moreover, this solution provides the result of division in the positive case.

Theorem 1.7. Let ω be an algebraic integer of degree d and let S be the companion matrix of its minimal polynomial. Let $\beta = \sum_{i=0}^{d-1} b_i \omega^i$ be a nonzero element of $\mathbb{Z}[\omega]$. Then for every $u \in \mathbb{Z}[\omega]$

$$u \in \beta \mathbb{Z}[\omega] \iff S_{\beta}^{-1} \cdot \pi(u) \in \mathbb{Z}^d$$
,

where $S_{\beta} = \sum_{i=0}^{d-1} b_i S^i$.

Proof. Observe first that S_{β} is nonsingular. Otherwise, there exists $y = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{d-1} \end{pmatrix} \in \mathbb{Z}^d, y \neq 0$

such that $S_{\beta} \cdot y = 0$. Thus

$$\pi(\beta) \odot_{\omega} y = 0 \iff \beta \pi^{-1}(y) = 0.$$

Since $\beta \neq 0$, we have

$$0 = \pi^{-1}(y) = \sum_{i=0}^{d-1} y_i \omega^i \,,$$

which contradict that the degree of ω is d.

Now

$$u \in \beta \mathbb{Z}[\omega] \iff (\exists v \in \mathbb{Z}[\omega])(u = \beta v)$$

$$\iff (\exists v \in \mathbb{Z}[\omega])(\pi(u) = \pi(\beta) \odot_{\omega} \pi(v) = S_{\beta} \cdot \pi(v))$$

$$\iff \pi(v) = S_{\beta}^{-1} \cdot \pi(u) \in \mathbb{Z}^{d}.$$

Clearly, if u is divisible by β , then $v = u/\beta = \pi^{-1}(S_{\beta}^{-1} \cdot \pi(u)) \in \mathbb{Z}[\omega].$

Chapter 2

Design of extending window method

We recall the general concept of addition at the beginning of this chapter and then we describe a so-called *extending window method* which is due to M. Svobodová [11].

From now on, let ω be an algebraic integer and (β, \mathcal{A}) be a numeration system such that the base $\beta \in \mathbb{Z}[\omega]$ and the alphabet $\mathcal{A} \ni 0$ is a finite subset of $\mathbb{Z}[\omega]$.

The general concept of addition (standard or parallel) in any numeration system (β, \mathcal{A}) , such that $\operatorname{Fin}_{\mathcal{A}}(\beta)$ is closed under addition, is the following: we add numbers digitwise and then we convert the result into the alphabet \mathcal{A} . Obviously, digitwise addition is computable in parallel, thus the crucial point is the digit set conversion of the obtained result. It can be easily done in a standard way but a parallel digit set conversion is nontrivial. However, formulas are basically the same but the choice of coefficients differs.

Now we go step by step more precisely. Let $x = \sum_{-m'}^{n'} x_i \beta^i$, $y = \sum_{-m'}^{n'} y_i \beta^i \in \operatorname{Fin}_{\mathcal{A}}(\beta)$ with (β, \mathcal{A}) -representations padded by zeros to have the same length. We set

$$w = x + y = \sum_{-m'}^{n'} x_i \beta^i + \sum_{-m'}^{n'} y_i \beta^i = \sum_{-m'}^{n'} (x_i + y_i) \beta^i$$
$$= \sum_{-m'}^{n'} w_i \beta^i,$$

where $w_j = x_j + y_j \in \mathcal{A} + \mathcal{A}$. Thus, $w_{n'}w_{n'-1} \cdots w_1w_0 \bullet w_{-1}w_{-2} \cdots w_{-m'}$ is a $(\beta, \mathcal{A} + \mathcal{A})$ -representation of $w \in \operatorname{Fin}_{\mathcal{A}+\mathcal{A}}(\beta)$.

We also use column notation of addition in what follows, e.g.,

$$x_{n'} x_{n'-1} \cdots x_1 x_0 \bullet x_{-1} x_{-2} \cdots x_{-m'}$$

$$y_{n'} y_{n'-1} \cdots y_1 y_0 \bullet y_{-1} y_{-2} \cdots y_{-m'}$$

$$w_{n'} w_{n'-1} \cdots w_1 w_0 \bullet w_{-1} w_{-2} \cdots w_{-m'}.$$

As we want to obtain a (β, \mathcal{A}) -representation of w, we search for a sequence

$$z_n z_{n-1} \cdots z_1 z_0 z_{-1} z_{-2} \cdots z_{-m}$$

such that $z_i \in \mathcal{A}$ and

$$z_n z_{n-1} \cdots z_1 z_0 \bullet z_{-1} z_{-2} \cdots z_{-m} = (w)_{\beta, \mathcal{A}}.$$

From now on, we consider without lost of generality only β -integers since modification for representations with rational part is obvious:

$$\beta^m \cdot z_n z_{n-1} \cdots z_1 z_0 \bullet z_{-1} z_{-2} \cdots z_{-m} = z_n z_{n-1} \cdots z_1 z_0 z_{-1} z_{-2} \cdots z_{-m} \bullet$$

Particularly, let $(w)_{\beta,\mathcal{A}+\mathcal{A}} = w_{n'}w_{n'-1}\cdots w_1w_0$. We search for a number $n \in \mathbb{N}$ and $z_n, z_{n-1}, \ldots, z_1, z_0 \in \mathcal{A}$ such that $(w)_{\beta,\mathcal{A}} = z_n z_{n-1} \cdots z_1 z_0$.

We use a suitable representation of zero to convert digits w_j into the alphabet \mathcal{A} . For our purpose, we use the simplest possible representation deduced from the polynomial

$$x - \beta \in (\mathbb{Z}[\omega])[x]$$
.

We remark that any polynomial $R(x) = r_s x^s + r_{s-1} x^{s-1} + \cdots + r_1 x + r_0$ with coefficients $r_i \in \mathbb{Z}[\omega]$, such that $R(\beta) = 0$ gives us a possible representation of zero. The polynomial R is called a *rewriting rule*.

Within a digit set conversion with an arbitrary rewriting rule R, one of the coefficients of R which is greatest in modulus (so-called *core coefficient*) is used for the conversion of a digit w_j . But using of an arbitrary rewriting rule R is out of scope of this thesis, so we focus on the simplest possible rewriting rule $R(x) = x - \beta$.

As $0 = \beta^j \cdot R(\beta) = 1 \cdot \beta^{j+1} - \beta \cdot \beta^j$, we have a representation of zero

$$1(-\beta)\underbrace{0\cdots 0}_{j} \bullet = (0)_{\beta}.$$

for all $j \in \mathbb{N}$. We multiply this representation by $q_j \in \mathbb{Z}[\omega]$, which is called a weight coefficient, to obtain another representation of zero

$$q_j(-q_j\beta)\underbrace{0\cdots 0}_{j} \bullet = (0)_{\beta}.$$

This is digitwise added to $w_n w_{n-1} \cdots w_1 w_0 \bullet$ to convert the digit w_j into the alphabet \mathcal{A} . The conversion of j-th digit causes a carry q_j on the (j+1)-th position. The digit set conversion runs from the right (j=0) to the left until all digits and carries are converted into the alphabet \mathcal{A} :

$$w_{n}w_{n-1} \cdots w_{j+1} \qquad w_{j} \qquad w_{j-1} \cdots w_{1}w_{0} \bullet$$

$$q_{j-2} \cdots$$

$$q_{j-1} -\beta q_{j-1}$$

$$q_{j} -\beta q_{j}$$

$$\vdots -\beta q_{j+1}$$

$$z_{n+s} \cdots z_{n}z_{n-1} \cdots z_{j+1} \qquad z_{j} \qquad z_{j-1} \cdots z_{1} z_{0} \bullet$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$(2.1)$$

Hence, the desired formula for conversion on the j-th position is

$$z_i = w_i + q_{i-1} - q_i \beta$$

for $j \in \mathbb{N}$. We set $q_{-1} = 0$ as there is no carry from the right on the 0-th position.

Clearly, the value of w is preserved:

$$\sum_{j\geq 0} z_{j}\beta^{j} = w_{0} - \beta q_{0} + \sum_{j>0} (w_{j} + q_{j-1} - q_{j}\beta)\beta^{j}$$

$$= \sum_{j\geq 0} w_{j}\beta^{j} + \sum_{j>0} q_{j-1}\beta^{j} - \sum_{j\geq 0} q_{j} \cdot \beta^{j+1}$$

$$= \sum_{j\geq 0} w_{j}\beta^{j} + \sum_{j>0} q_{j-1}\beta^{j} - \sum_{j>0} q_{j-1} \cdot \beta^{j}$$

$$= \sum_{j\geq 0} w_{j}\beta^{j} = w.$$
(2.2)

The weight coefficient q_j must be chosen so that the converted digit is in the alphabet \mathcal{A} , i.e.,

$$z_j = w_j + q_{j-1} - q_j \beta \in \mathcal{A}. \tag{2.3}$$

The choice of weight coefficients is a crucial part of construction of addition algorithms which are computable in parallel. The extending window method determining weight coefficients for a given input is described in Section 2.1.

On the other hand, the following example shows that determining weight coefficients is trivial for standard numeration systems.

Example 2.1. Assume now a standard numeration system (β, A) , where

$$\beta \in \mathbb{N}, \beta \ge 2, \mathcal{A} = \{0, 1, 2, \dots, \beta - 1\}.$$

Notice that

$$z_i \equiv w_i + q_{i-1} \mod \beta$$
.

There is only one representative of each class modulo β in the standard numeration system (β, \mathcal{A}) . Therefore, the digit z_j is uniquely determined for a given digit $w_j \in \mathcal{A} + \mathcal{A}$ and carry q_{j-1} and thus so is the weight coefficient q_j . This means that $q_j = q_j(w_j, q_{j-1})$ for all $j \geq 0$. Generally,

$$q_i = q_i(w_i, q_{i-1}(w_{i-1}, q_{i-2})) = \dots = q_i(w_i, \dots, w_1, w_0)$$

and

$$z_j = z_j(w_j, \dots, w_1, w_0),$$

which implies that addition runs in linear time.

We require that the digit set conversion from A + A into A is computable in parallel, i.e., there exist constants $r, t \in \mathbb{N}_0$ such that for all $j \geq 0$ is $z_j = z_j(w_{j+r}, \dots, w_{j-t})$. To avoid the dependency on all less, respectively more, significant digits, we need variety in the choice of weight coefficient q_j . This implies that the used numeration system must be redundant.

2.1 Extending window method

In order to construct a digit set conversion in numeration system (β, \mathcal{A}) which is computable in parallel, we consider a more general case of digit set conversion from an *input alphabet* \mathcal{B}

such that $A \subseteq B \subset A + A$ instead of the alphabet A + A. As mentioned above, the key problem is to find for every $j \ge 0$ a weight coefficient q_j such that

$$z_j = \underbrace{w_j}_{\in \mathcal{R}} + q_{j-1} - q_j \beta \in \mathcal{A}$$

for any input $w_{n'}w_{n'-1}\dots w_1w_0 = (w)_{\beta,\mathcal{B}}, w \in \operatorname{Fin}_{\mathcal{B}}(\beta)$. We remark that the weight coefficient q_{j-1} is determined by the input w. For a digit set conversion to be computable in parallel the digit z_j is required to satisfy $z_j = z_j(w_{j+r}, \dots, w_{j-t})$ for a fixed anticipation r and memory t in \mathbb{N} .

We introduce following definitions.

Definition 2.1. Let \mathcal{B} be a set such that $\mathcal{A} \subsetneq \mathcal{B} \subset \mathcal{A} + \mathcal{A}$. Then any finite set $\mathcal{Q} \subset \mathbb{Z}[\omega]$ containing 0 such that

$$\mathcal{B} + \mathcal{Q} \subset \mathcal{A} + \beta \mathcal{Q}$$

is called a weight coefficients set.

We see that if Q is a weight coefficients set, then

$$(\forall w_i \in \mathcal{B})(\forall q_{i-1} \in \mathcal{Q})(\exists q_i \in \mathcal{Q})(w_i + q_{i-1} - q_i\beta \in \mathcal{A}).$$

In other words, there is a weight coefficient $q_j \in \mathcal{Q}$ for a carry from the right $q_{j-1} \in \mathcal{Q}$ and digit w_j in the input alphabet \mathcal{B} . I.e., we satisfy the basic digit set conversion formula (2.3). Notice that $q_{-1} = 0$ is in \mathcal{Q} by the definition. Thus, all weight coefficients may be chosen from \mathcal{Q} .

Definition 2.2. Let M be an integer and $q: \mathcal{B}^M \to \mathcal{Q}$ be a mapping such that

$$w_{i} + q(w_{i-1}, \dots, w_{i-M}) - \beta q(w_{i}, \dots, w_{i-M+1}) \in \mathcal{A}$$

for all $w_j, w_{j-1}, \ldots, w_{j-M} \in \mathcal{B}$, and $q(0, 0, \ldots, 0) = 0$. Then q is called a weight function and M is called a length of window.

Having a weight function q, we define a function $\phi: \mathcal{B}^{M+1} \to \mathcal{A}$ by

$$\phi(w_j, \dots, w_{j-M}) = w_j + \underbrace{q(w_{j-1}, \dots, w_{j-M})}_{=q_{j-1}} - \beta \underbrace{q(w_j, \dots, w_{j-M+1})}_{=q_j} =: z_j, \qquad (2.4)$$

which verifies that the digit set conversion is indeed a (M+1)-local function with anticipation r=0 and memory t=M. The requirement of zero output of the weight function q for the input of M zeros guarantees that $\phi(0,0,\ldots,0)=0$. Thus the first condition of Definition 1.5 is satisfied. The second one follows from the equation (2.2).

Let us summarize the construction of the digit set conversion by the rewriting rule $x - \beta$. We need to find weight coefficients for all possible combinations of digits of the input alphabet \mathcal{B} . Their multiples of the rewriting rules are digitwise added to the input sequence. In fact, it means that the equation (2.3) is applied on each position. If the digit set conversion is computable in parallel, the weight coefficients are determined as the outputs of the weight function q with some fixed length of window M.

We search for the weight function q for a given base β and input alphabet \mathcal{B} by the extending window method. It consists of two phases. First, we find a minimal possible weight

coefficients set \mathcal{Q} . We know that it is possible to convert an input sequence by choosing the weight coefficients from the set \mathcal{Q} . The set \mathcal{Q} serves as the starting point for the second phase in which we increment the expected length of the window M until the weight function q is uniquely defined for each $(w_j, w_{j-1}, \ldots, w_{j-M+1}) \in \mathcal{B}^M$. Then, the local conversion is determined – we use the weight function outputs as weight coefficients in the formula (2.3).

Note that the convergence of both phases is discussed separately in Chapter 3.

2.2 Phase 1 – Weight coefficients set

The goal of the first phase is to compute a weight coefficients set Q, i.e., to find a set $Q \ni 0$ such that

$$\mathcal{B} + \mathcal{Q} \subset \mathcal{A} + \beta \mathcal{Q}$$
.

We build the sequence Q_0, Q_1, Q_2, \ldots iteratively so that we extend Q_k to Q_{k+1} in a way to cover all elements of the set $\mathcal{B} + Q_k$ by elements of the extended set Q_{k+1} , i.e.,

$$\mathcal{B} + \mathcal{Q}_k \subset \mathcal{A} + \beta \mathcal{Q}_{k+1}$$
.

This procedure is repeated until the extended weight coefficients set Q_{k+1} is the same as the original set Q_k . We remark that the expression "a weight coefficient q covers an element x" means that there is $a \in A$ such that $x = a + \beta q$.

In other words, we start with $Q_0 = \{0\}$ meaning that we search all weight coefficients q_j necessary for digit set conversion for the case where there is no carry from the right, i.e., $q_{j-1} = 0$. We add them to the weight coefficients set Q_0 to obtain the set Q_1 . Assume now that we have the set Q_k for some $k \geq 1$. The weight coefficients in Q_k now may appear as a carry q_{j-1} . If there are no suitable weight coefficients q_j in the weight coefficients set Q_k to cover all sums of added coefficients and digits of the input alphabet \mathcal{B} , we extend Q_k to Q_{k+1} by suitable coefficients using Algorithm 2. And so on until there is no need to add more elements, i.e., the extended set Q_{k+1} equals Q_k . Then the weight coefficients set $Q := Q_{k+1}$ satisfies Definition 2.1.

The precise description of the algorithm in a pseudocode is in Algorithm 1. For better understanding, see Figures 1–13 in Appendix A which illustrate the construction of the weight coefficients set Q for the Eisenstein base and a complex alphabet (see Example 5.1 for its description).

Section 3.2 discusses the convergence of Phase 1, i.e. whether it happens that $Q_{k+1} = Q_k$ for some k.

There may be more possible weight coefficients which cover some element of the set $\mathcal{B}+\mathcal{Q}_k$. Let us suppose that we have the list which contains the lists of these candidates for each element of the set $\mathcal{B}+\mathcal{Q}_k$. This list of lists is saved in the variable candidates in Algorithm 2. Now, for each element, we check the list of candidates which cover this element and if there is none of them contained in the set \mathcal{Q}_k , the smallest (in absolute value) weight coefficient from the list of candidates is added to the set \mathcal{Q}_k . If there are more elements with the same absolute value, we deterministically choose one of them. The extension \mathcal{Q}_{k+1} of the set \mathcal{Q}_k is obtained in this manner.

We may slightly improve this procedure: for example we may first extend Q_k by all single-element lists of candidates. These elements may be enough to cover also other elements of $\mathcal{B} + Q_k$. It implies that the resulting Q is dependent on the way of selection from candidates.

Algorithm 1 Search for weight coefficients set (Phase 1)

```
1: k := 0

2: Q_0 := \{0\}

3: repeat

4: By Algorithm 2, extend Q_k to Q_{k+1} in a minimal possible way so that \mathcal{B} + Q_k \subset \mathcal{A} + \beta Q_{k+1}
5: k := k+1

6: until Q_k = Q_{k+1}

7: Q := Q_k

8: return Q
```

Algorithm 2 Extending intermediate weight coefficients set

```
Input: candidates from Algorithm 3, previous weight coefficients set \mathcal{Q}_k

1: \mathcal{Q}_{k+1} := \mathcal{Q}_k

2: for all cand_for_x in candidates do

3: if no element of cand_for_x in \mathcal{Q}_k then

4: Add the smallest element (in absolute value) of cand_for_x to \mathcal{Q}_{k+1}

5: end if

6: end for

7: return \mathcal{Q}_{k+1}
```

Algorithm 3 describes the search for the list of lists of candidates. For each element $x \in \mathcal{B} + \mathcal{Q}_k$ we build the list of candidates (in the variable cand_for_x) so that we test the divisibility of x-a by the base β for all letters $a \in \mathcal{A}$. In the positive case, the result of division is appended to cand_for_x as a possible weight coefficient. We remark that Theorem 1.7 is used to check the divisibility.

Algorithm 3 Search for candidates

```
Input: the previous weight coefficients set \mathcal{Q}_k, alternatively also the set \mathcal{Q}_{k-1}
 1: candidates:= empty list of lists
 2: for all x \in \mathcal{B} + \mathcal{Q}_k do {Alternatively, x \in (\mathcal{B} + \mathcal{Q}_k) \setminus (\mathcal{B} + \mathcal{Q}_{k-1})}
 3:
           cand_for_x:= empty list
           for all a \in \mathcal{A} do
 4:
                 if (x-a) is divisible by \beta in \mathbb{Z}[\omega] (using Theorem 1.7) then
 5:
                       Append \frac{x-a}{\beta} to cand_for_x
 6:
 7:
                 end if
           end for
 8:
           Append cand_for_x to candidates
10: end for
11: return candidates
```

We can improve the performance of Algorithm 3 by substituting the set $\mathcal{B} + \mathcal{Q}_k$ by $(\mathcal{B} + \mathcal{Q}_k) \setminus (\mathcal{B} + \mathcal{Q}_{k-1})$ on the line 2 because

$$\mathcal{B} + \mathcal{Q}_{k-1} \subset \mathcal{A} + \beta \mathcal{Q}_k \subset \mathcal{A} + \beta \mathcal{Q}_{k+1}$$

for any $Q_{k+1} \supset Q_k$. Thus there is no need to check whether the elements of $\mathcal{B} + Q_{k-1}$ are covered by some weight coefficient from Q_k in Algorithm 2.

2.3 Phase 2 – Weight function

We want to find a length of the window M and a weight function $q: \mathcal{B}^M \to \mathcal{Q}$. We start with the weight coefficients set \mathcal{Q} obtained in Phase 1. The idea is to reduce necessary weight coefficients for the conversion of a given digit up to single value. This is done by enlarging the number of considered input digits (extending the length of window) – there might be less possible carries from the right if we know which digits on the right are converted.

We introduce the following notation. Let Q be a weight coefficients set and $w_j \in \mathcal{B}$. Denote by $Q_{[w_j]}$ any set such that

$$(\forall q_{j-1} \in \mathcal{Q})(\exists q_j \in \mathcal{Q}_{[w_j]})(w_j + q_{j-1} - q_j\beta \in \mathcal{A}).$$

By induction with respect to $m \in \mathbb{N}, m > 1$, for all $(w_j, \dots, w_{j-m+1}) \in \mathcal{B}^m$ denote by $\mathcal{Q}_{[w_j, \dots, w_{j-m+1}]}$ any subset of $\mathcal{Q}_{[w_j, \dots, w_{j-m+2}]}$ such that

$$(\forall q_{j-1} \in \mathcal{Q}_{[w_{j-1},\dots,w_{j-m+1}]})(\exists q_j \in \mathcal{Q}_{[w_j,\dots,w_{j-m+1}]})(w_j + q_{j-1} - q_j\beta \in \mathcal{A}).$$

Recall the scheme (2.1) of the digit set conversion for better understanding of the notation and method:

The idea is to check all possible right carries $q_{j-1} \in \mathcal{Q}$ and determine values $q_j \in \mathcal{Q}$ such that

$$z_i = w_i + q_{i-1} - q_i \beta \in \mathcal{A}.$$

So we obtain a set $\mathcal{Q}_{[w_j]} \subset \mathcal{Q}$ of weight coefficients which are necessary to convert the digit w_j with any carry $q_{j-1} \in \mathcal{Q}$. Assuming that we know the input digit w_{j-1} , the set of possible carries from the right is also reduced to $\mathcal{Q}_{[w_{j-1}]}$. Thus we may reduce the set $\mathcal{Q}_{[w_j]}$ to a set $\mathcal{Q}_{[w_j,w_{j-1}]} \subset \mathcal{Q}_{[w_j]}$ which is necessary to cover all elements of $w_j + \mathcal{Q}_{[w_{j-1}]}$. Prolonging the length of window in this manner may lead to a unique weight coefficient q_j for enough given input digits.

Accordingly, the weight function q is found if there is $M \in \mathbb{N}$ such that

$$\#\mathcal{Q}_{[w_j,...,w_{j-M+1}]} = 1$$

for all $w_j, \ldots, w_{j-M+1} \in \mathcal{B}^M$. The precise description of the construction of the weight function is in Algorithm 4. Figures 14–20 in Appendix B illustrate the construction of the set $\mathcal{Q}_{[\omega,1,2]}$ for the Eisenstein numeration system.

Algorithm 4 Search for weight function (Phase 2)

```
Input: weight coefficients set Q
 1: m := 1
 2: for all w_i \in \mathcal{B} do
             By Algorithm 5, find set \mathcal{Q}_{[w_i]} \subset \mathcal{Q} such that
                                                              w_i + \mathcal{Q} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_i]}
 4: end for
 5: while \max\{\#\mathcal{Q}_{[w_j,...,w_{j-m+1}]}: (w_j,...,w_{j-m+1}) \in \mathcal{B}^m\} > 1 do
             m := m + 1
             for all (w_i, \ldots, w_{i-m+1}) \in \mathcal{B}^m do
 7:
 8:
                    By Algorithm 5, find set \mathcal{Q}_{[w_j,...,w_{j-m+1}]} \subset \mathcal{Q}_{[w_j,...,w_{j-m+2}]} such that
                                              w_j + \mathcal{Q}_{[w_{j-1},\dots,w_{j-m+1}]} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j,\dots,w_{j-m+1}]}
             end for
 9:
10: end while
11: M := m
12: for all (w_j, ..., w_{j-M+1}) \in \mathcal{B}^M do
             q(w_j, \ldots, w_{j-M+1}) := \text{only element of } \mathcal{Q}_{[w_j, \ldots, w_{j-M+1}]}
14: end for
```

Algorithm 5 Search for set $Q_{[w_j,...,w_{j-m+1}]}$

15: \mathbf{return} q

```
Input: Input digit w_j, set of possible carries \mathcal{Q}_{[w_{i-1},...,w_{i-m+1}]}, previous set of possible weight
 coefficients Q_{[w_j,...,w_{j-m+2}]}
1: list_of_coverings:=empty list of lists
 2: for all x \in w_j + Q_{[w_{j-1},...,w_{j-m+1}]} do
         Build a list x_covered_by of weight coefficients q_j \in \mathcal{Q}_{[w_j,...,w_{j-m+2}]} such that
                                        x = a + \beta q_i
                                                           for some a \in \mathcal{A}.
          Append x_covered_by to list_of_coverings
 5: end for
 6: Q_{[w_j,...,w_{j-m+1}]}:= empty set
    while list_of_coverings is nonempty do
          Pick an element q of one of the shortest lists of list_of_coverings
 8:
          Add the element q to Q_{[w_j,...,w_{j-m+1}]}
 9:
                                   list_of_coverings
10:
                      lists of
                                                             containing
                                                                             _{
m the}
                                                                                    element
                                                                                                        from
          list_of_coverings
11: end while
12: return Q_{[w_j,...,w_{j-m+1}]}
```

For construction of the set $\mathcal{Q}_{[w_j,\dots,w_{j-m+1}]}$ we first choose such elements of $\mathcal{Q}_{[w_j,\dots,w_{j-m+2}]}$ which are the only possible to cover some value $x \in w_0 + \mathcal{Q}_{[w_{j-1},\dots,w_{j-m+1}]}$. Other elements from $\mathcal{Q}_{[w_j,\dots,w_{j-m+2}]}$ which cover an uncovered value are added one by one to $\mathcal{Q}_{[w_j,\dots,w_{j-m+1}]}$ until each x equals $a + \beta q_j$ for some q_j in $\mathcal{Q}_{[w_j,\dots,w_{j-m+1}]}$ and $a \in \mathcal{A}$. The pseudocode is in Algorithm 5.

Notice that the result of Algorithm 5 is influenced by the way how we pick an element on line 8. It can be done deterministically or non-deterministically. We use the following deterministic choice – suppose that we want to choose from elements $x_1 = \sum_{i=0}^{d-1} x_{1,i}\omega^i, x_2 = \sum_{i=0}^{d-1} x_{2,i}\omega^i, \ldots, x_n = \sum_{i=0}^{d-1} x_{n,i}\omega^i \in \mathbb{Z}[\omega]$, where d is the degree of ω . Let $a_0, \ldots, a_{d-1} \in \mathbb{Z}$ be such that

$$\sum_{i=0}^{d-1} a_i \omega^i = \sum_{j=1}^n x_j \, .$$

Set $c := \sum_{i=0}^{d-1} c_i \omega^i \in \mathbb{Z}[\omega]$ with $c_i = \left[\frac{a_i}{n}\right]$ where $[\cdot]$ denotes rounding to the nearest integer. Let the index set $I_0 \subset \{1, \ldots, n\}$ be such that

$$|x_{j,0}-c_0|=\min\{|x_{k,0}-c_0|:k\in 1,\ldots,n\}$$

for all $j \in I_0$. For all $i \in \{1, ..., d-1\}$, let the index set $I_i \subset I_{i-1}$ be such that

$$|x_{j,i} - c_i| = \min\{|x_{k,i} - c_i| : k \in I_{i-1}\}$$

for all $j \in I_i$. If there is only one element in the index set $I_{d-1} = \{j_0\}$, choose the element x_{j_0} . Otherwise choose $j_0 \in I_{d-1}$ such that $x_{j_0,0}$ is the smallest from all $x_{j,0}$ such that $j \in I_{d-1}$. If there are more such elements, then choose from them according to the value $x_{j,1}$ etc.

In other words, we take the elements which are the "closest" ones to the rounded center of gravity c of the values x_1, \ldots, x_n where "closest" is measured by absolute value of the first coordinate of $\pi(x_j) - \pi(c)$. In case of equality, according to the second coordinate etc. If there is more than one such element, we choose the element x_{j_0} with the smallest first, resp. second, etc. coordinate of $\pi(x_{j_0})$.

There is space to improve Phase 2 by a modification of Algorithm 5. It is possible that the effort to reduce the size of $\mathcal{Q}_{[w_j,...,w_{j-m+1}]}$ as much as possible is not the best for convergence of Phase 2.

Unfortunately, we do not know when Phase 2 converges. But we may reveal the nonconvergence of Phase 2 with deterministic Algorithm 5 for some numeration systems by Algorithm 6, which is described in Section 3.2.

Notice that for a given length of window M, the number of calls of Algorithm 5 within Algorithm 4 is

$$\sum_{m=1}^{M} \# \mathcal{B}^{m} = \# \mathcal{B} \sum_{m=0}^{M-1} \# \mathcal{B}^{m} = \# \mathcal{B} \frac{\# \mathcal{B}^{M} - 1}{\# \mathcal{B} - 1}.$$

It implies that the time complexity grows exponentially as about $\#\mathcal{B}^M$. The required memory is also exponential because we have to store sets $\mathcal{Q}_{[w_j,\dots,w_{j-m+1}]}$ at least for $m \in \{M-1,M\}$ for all $w_j,\dots,w_{j-m+1} \in \mathcal{B}$.

We may reduce the number of the combinations of the input digits so that if for some $(w_j, \ldots, w_{j-m+1}) \in \mathcal{B}^m, m < M$ we have $\#\mathcal{Q}_{[w_j, \ldots, w_{j-m+1}]} = 1$, we do not extend the window for these digits but we set the outut of $q(w_j, \ldots, w_{j-m+1}, w_{j-m}, \ldots w_{j-M+1})$ to the single element of $\mathcal{Q}_{[w_j, \ldots, w_{j-m+1}]}$ for all $(w_{j-m}, \ldots w_{j-M+1}) \in \mathcal{B}^{M-m}$.

Chapter 3

Convergence

Unfortunately, the extending window method does not always converge. The algorithm may lead to an infinite loop in both phases. In this chapter, we introduce a sufficient condition for convergence of Phase 1 in Theorem 3.2 and we categorize the algebraic numbers ω according to this condition. Theorem 3.5 enables us to construct an algorithm which checks a necessary condition for convergence of Phase 2. At the end, we recall conditions on the alphabet \mathcal{A} .

3.1 Convergence of Phase 1

The following lemma is necessary for the proof of Theorem 3.2 which gives a sufficient condition of convergence of Phase 1.

Lemma 3.1. Let ω be an algebraic integer. Let \mathcal{A} and \mathcal{B} be finite subsets of $\mathbb{Z}[\omega]$ such that \mathcal{A} contains at least one representative of each congruence class modulo β in $\mathbb{Z}[\omega]$. Then there exists a set $\mathcal{Q} \subset \mathbb{Z}[\omega]$ and positive constant $R \in \mathbb{R}$ such that $\mathcal{B} + \mathcal{Q} \subset \mathcal{A} + \beta \mathcal{Q}$ and all elements of \mathcal{Q} are limited by the constant R in modulus.

Moreover, if ω is such that any complex circle centered at 0 contains only finitely many elements of $\mathbb{Z}[\omega]$, the set \mathcal{Q} is finite.

Proof. Denote $A := \max\{|a|: a \in \mathcal{A}\}$ and $B := \max\{|b|: b \in \mathcal{B}\}$. Consequently, set $R := \frac{A+B}{|\beta|-1}$ and $\mathcal{Q} := \{q \in \mathbb{Z}[\omega]: |q| \leq R\}$. Since A > 0 and $|\beta| > 1$, the set \mathcal{Q} is not empty. Any element $x = b + q \in \mathbb{Z}[\omega]$ with $b \in \mathcal{B}$ and $q \in \mathcal{Q}$ can be written as $x = a + \beta q'$ for some $a \in \mathcal{A}$ and $q' \in \mathbb{Z}[\omega]$ due to existence of a representative of each congruence class in \mathcal{A} . We prove that $|q'| \leq R$:

$$|q'| = \frac{|b+q-a|}{|\beta|} \le \frac{B+R+A}{|\beta|} \le \frac{1}{|\beta|} \left(A+B+\frac{A+B}{|\beta|-1}\right) = \frac{A+B}{|\beta|} \left(\frac{|\beta|}{|\beta|-1}\right) = R.$$

Hence $q' \in \mathcal{Q}$ and thus $x = b + q \in \mathcal{A} + \beta \mathcal{Q}$.

Obviously, the set \mathcal{Q} is finite if there are only finitely many elements of $\mathbb{Z}[\omega]$ bounded by the constant R.

Theorem 3.2. Let ω be an algebraic integer. Let the alphabet $\mathcal{A} \subset \mathbb{Z}[\omega]$ be such that \mathcal{A} contains at least one representative of each congruence class modulo β in $\mathbb{Z}[\omega]$. Let $\mathcal{B} \subset \mathbb{Z}[\omega]$ be the input alphabet.

If ω is such that any complex circle centered at 0 contains only finitely many elements of $\mathbb{Z}[\omega]$, Phase 1 of the extending window method converges.

Proof. We have the constant R and finite set Q from Lemma 3.1 for the alphabet A and input alphabet B. We prove by induction that all intermediate weight coefficient sets Q_k in Algorithm 1 are subsets of the finite set Q.

We start with $Q_0 = \{0\}$ which is bounded by any positive constant. Suppose that the intermediate weight coefficients set Q_k has elements bounded by the constant R. We see from the previous proof that the candidates obtained by Algorithm 3 for the set Q_k are also bounded by R. Thus, the next intermediate weight coefficients set Q_{k+1} has elements bounded by the constant R, i.e., $Q_{k+1} \subset Q$.

Since #Q is finite and $Q_0 \subset Q_1 \subset Q_2 \subset \cdots$, Phase 1 successfully ends.

The following two lemmas characterize algebraic integers ω according to the number of elements of $\mathbb{Z}[\omega]$ in a complex circle centered around 0. The first lemma deals with real numbers and the second with non-real.

Lemma 3.3. Let $\omega \in \mathbb{R}$ be an algebraic integer and R be a positive constant. There are only finitely many elements in the set $\{x \in \mathbb{Z}[\omega] : |x| < R\}$ if and only if $\omega \in \mathbb{Z}$.

Proof. If $\omega \in \mathbb{Z}$, then $\mathbb{Z}[\omega] = \mathbb{Z}$. Trivially, there are only finitely many integers bounded by any constant R.

Suppose now that $\omega \notin \mathbb{Z}$. We show that

$$(\forall R > 0)(\exists_{\infty} x \in \mathbb{Z}[\omega])(|x| < R)$$

The degree of ω is at least two as the only algebraic integers of degree one are integers, i.e. $\omega \in \mathbb{R} \setminus \mathbb{Q}$. Set $x := \omega - \lfloor \omega \rfloor$. We see that 0 < x < 1 as $\omega \notin \mathbb{Z}$ and $x \in \mathbb{Z}[\omega]$ as $\omega \in \mathbb{Z}[\omega]$, $\lfloor \omega \rfloor \in \mathbb{Z} \subset \mathbb{Z}[\omega]$ and $\mathbb{Z}[\omega]$ is a ring. Hence, the sequence $(x^n)_{n \in \mathbb{N}}$ is strictly decreasing and its limit is 0 which implies the claim.

Lemma 3.4. Let $\omega \in \mathbb{C} \setminus \mathbb{R}$ be an algebraic integer and R be a positive constant. There are only finitely many elements in the set $\{x \in \mathbb{Z}[\omega] : |x| < R\}$ if and only if the degree of ω is two.

Proof. If the degree of ω is two, the set $\mathbb{Z}[\omega]$ is generated by integer combinations of 1 and ω , i.e. it is a lattice in \mathbb{C} . Thus the number of elements of the set $\{x \in \mathbb{Z}[\omega] : |x| < R\}$ is finite.

Suppose now that the degree of ω is at least three as there are no complex algebraic integers of degree one.

We recall that for all $r, s \in \mathbb{R} \setminus \{0\}$, $|r| \le |s|$, there exists $k \in \mathbb{Z} \setminus \{0\}$ such that $|k \cdot r - s| \le |r|/2$. It follows from the fact that $|l| \le |s| < (l+1)|r|$ for some $l \in \mathbb{Z} \setminus \{0\}$. We choose k from $\{\pm l, \pm (l+1)\}$ accordingly.

Now, if $|\operatorname{Im} \omega| \leq |\operatorname{Im} \omega^2|$, set $z_0 := \omega$ and $w := \omega^2$. Otherwise, set $z_0 := \omega^2$ and $w := \omega$. We build the sequence $(z_i)_{i \in \mathbb{N}}$ recurrently:

$$z_{i+1} := k_{i+1} \cdot z_i - w$$

where $k_{i+1} \in \mathbb{Z}$ is such that

$$|\operatorname{Im} z_{i+1}| = |k_{i+1} \cdot \operatorname{Im} z_i - \operatorname{Im} w| \le \frac{|\operatorname{Im} z_i|}{2}.$$

First, suppose that Im $z_i \neq 0$ for all $i \in \mathbb{N}$. Therefore, we can build the whole sequence $(z_i)_{i \in \mathbb{N}}$.

We prove by induction that $|\operatorname{Im} z_i| \leq |\operatorname{Im} z_0|/2^i$. Clearly, it holds for i = 0. Assume now that it holds for i. Then

$$|\operatorname{Im} z_{i+1}| = |k_{i+1} \cdot \operatorname{Im} z_i - \operatorname{Im} w| \le \frac{1}{2} |\operatorname{Im} z_i| \le \frac{|\operatorname{Im} z_0|}{2^{i+1}}.$$

Hence, $k_i \neq 0$ for all $i \in \mathbb{N}$ as $|\operatorname{Im} z_i| \leq |\operatorname{Im} z_0|/2^i \leq |\operatorname{Im} w|$.

Next, we show that

$$z_i = z_0 \cdot \prod_{j=1}^i k_j - l_i \cdot w$$

for some $l_i \in \mathbb{Z}$.

Obviously, $z_0 = z_0 \prod_{j=1}^0 k_j - 0 \cdot w$. Assume now that it holds for i and consider

$$z_{i+1} = k_{i+1} \cdot z_i - w = k_{i+1} \left(z_0 \cdot \prod_{j=1}^i k_j - l_i \cdot w \right) - w = z_0 \cdot \prod_{j=1}^{i+1} k_j - (\underbrace{k_{i+1} \cdot l_i + 1}_{=:l_{i+1} \in \mathbb{Z}}) w.$$

Thus, $z_i \in \mathbb{Z}[\omega]$. Moreover, $z_i \notin \mathbb{Z}$. Assume in contrary that

$$z_0 \cdot \prod_{j=1}^i \underbrace{k_j}_{\neq 0} - \underbrace{l_i}_{\in \mathbb{Z}} \cdot w = z_i \in \mathbb{Z}.$$

Since $z_0, w \in \{\omega, \omega^2\}, z_0 \neq w$, we have an integer polynomial of degree 2 having ω as a root. It contradicts that the degree of ω is at least three.

Suppose $i_0 \in \mathbb{N}$ such that $|\operatorname{Im} z_0|/2^{i_0} < 1/2$. Let $k \in \mathbb{Z}$ be such that $|\operatorname{Re} z_{i_0} - k| \le 1/2$. Set $x := z_{i_0} - k$. Then

$$|x| \le |\operatorname{Re} x| + |\operatorname{Im} x| \le |\operatorname{Re} z_{i_0} - k| + |\operatorname{Im} z_{i_0}| \le \frac{1}{2} + \frac{|\operatorname{Im} z_0|}{2^{i_0}} < \frac{1}{2} + \frac{1}{2} = 1.$$

We know that $\operatorname{Im} z_{i_0} \neq 0$ and thus 0 < |x| < 1.

Consider now the case that there is i_1 such that $\operatorname{Im} z_{i_1} = 0$, i.e. $z_{i_1} \in \mathbb{R}$, and i_1 is the least number with this property. Thus, we cannot produce z_{i_1+1} in the sequence $(z_i)_{i \in \mathbb{N}}$. In the same manner as before, we may prove that $z_{i_1} \in \mathbb{Z}[\omega] \setminus \mathbb{Z}$. Set $x := z_{i_1} - \lfloor z_{i_1} \rfloor$. Obviously, 0 < |x| < 1 and $x \in \mathbb{Z}[\omega]$.

For both cases, the sequence $(x^n)_{n\in\mathbb{N}}$ has the limit 0 and $0 \neq x^n \in \mathbb{Z}[\omega]$ for all $n \in \mathbb{N}$. Thus there are infinitely many elements of $\mathbb{Z}[\omega]$ bounded by any positive constant R.

Using Theorem 3.2 and Lemma 3.3 and 3.4, we categorize an algebraic integer ω which generates $\mathbb{Z}[\omega] \ni \beta$ as follows:

- $\omega \in \mathbb{Z} \implies$ Phase 1 converges.
- $\omega \in \mathbb{R} \setminus \mathbb{Z} \implies$ the sufficient condition of Theorem 3.2 does not hold and there is Example 5.14 for which Phase 1 does not converge. Example 5.15 proves that the condition is not necessary.
- $\omega \in \mathbb{C} \setminus \mathbb{R}$, ω being quadratic algebraic integer \Longrightarrow Phase 1 converges.

• $\omega \in \mathbb{C} \setminus \mathbb{R}$, ω being algebraic integer of degree $\geq 3 \implies$ the sufficient condition of Theorem 3.2 does not hold and there is Example 5.19 for which Phase 1 does not converge. Example 5.18 proves that the condition is not necessary.

We see that if the sufficient condition does not hold, convergence and non-convergence are both possible.

3.2 Convergence of Phase 2

For shorter notation, set

$$\mathcal{Q}_{[b^m]} := \mathcal{Q}_{[\underbrace{b,\dots,b}]}$$

for $m \in \mathbb{N}$ and $b \in \mathcal{B}$.

Obviously, finiteness of Phase 2 implies that there exists a length of window M such that the set $\mathcal{Q}_{[b^m]}$ contains only one element for all $b \in \mathcal{B}$. The following theorem is used for the construction of Algorithm 6 which checks this necessary condition.

Theorem 3.5. Let $m_0 \in \mathbb{N}$ and $b \in \mathcal{B}$ be such that sets $\mathcal{Q}_{[b^{m_0}]}$ and $\mathcal{Q}_{[b^{m_0-1}]}$ produced by deterministic Algorithm 5 within Phase 2 have the same size. Then

$$\#\mathcal{Q}_{[b^m]} = \#\mathcal{Q}_{[b^{m_0}]} \qquad \forall m \ge m_0 - 1.$$

Particularly, if $\#Q_{[b^{m_0}]} \geq 2$, Phase 2 does not converge.

Proof. We prove the base case of induction with respect to m. For $m = m_0 + 1$, the set $\mathcal{Q}_{[b^{m_0+1}]}$ is found by Algorithm 5 such that

$$b + \mathcal{Q}_{\lceil b^{m_0} \rceil} \subset \mathcal{A} + \beta \mathcal{Q}_{\lceil b^{m_0+1} \rceil}$$

and set $\mathcal{Q}_{[b^{m_0}]}$ is found by the same algorithm such that

$$b + \mathcal{Q}_{[b^{m_0-1}]} \subset \mathcal{A} + \beta \mathcal{Q}_{[b^{m_0}]}$$
.

As $\mathcal{Q}_{[b^{m_0}]} \subset \mathcal{Q}_{[b^{m_0-1}]}$, the assumption of the same size implies

$$Q_{[b^{m_0}]} = Q_{[b^{m_0-1}]}$$
.

It means that Algorithm 5 runs with the same input and hence

$$Q_{[b^{m_0+1}]} = Q_{[b^{m_0}]}$$
.

The inductive step of the proof for m+1 is analogous to the base case.

Phase 2 ends when there is only one element in $\mathcal{Q}_{[w_j,\dots,w_{j-m+1}]}$ for all $(w_j,\dots,w_{j-m+1}) \in \mathcal{B}^m$ for some fixed length of window m. But if $\#\mathcal{Q}_{[b^{m_0}]} \geq 2$, size of $\mathcal{Q}_{[b,\dots,b]}$ does not decrease despite of extending the length of window.

Now we describe Algorithm 6 which checks whether Phase 2 stops when it processes input digits $bb \dots b$. For arbitrary m, sets $\mathcal{Q}_{[b^m]}$ can be easily constructed separately for each $b \in \mathcal{B}$.

3.3. Alphabet

We build the set $\mathcal{Q}_{[b^m]}$ for input digits $bb \dots b$ in the same way as in Phase 2. This means that we first search for $\mathcal{Q}_{[b]}$ such that

$$b + Q \subset A + \beta Q_{[b]}$$
.

Until the set $\mathcal{Q}_{[b^m]}$ contains only one element, we increment the length of window m and, using Algorithm 5, we build the subset $\mathcal{Q}_{[b^{m+1}]}$ of the set $\mathcal{Q}_{[b^m]}$ such that

$$b + \mathcal{Q}_{[b^m]} \subset \mathcal{A} + \beta \mathcal{Q}_{[b^{m+1}]}$$
.

In addition, we check whether the set $\mathcal{Q}_{[b^{m+1}]}$ is strictly smaller than the set $\mathcal{Q}_{[b^m]}$. If not, we know by Theorem 3.5 that Phase 2 does not converge because of the input digits $bb \dots b$.

Thus, running of Algorithm 6 for each input digit $b \in \mathcal{B}$ can reveal non-finiteness of Phase 2.

Algorithm 6 Check input $bb \dots b$

```
Input: Weight coefficient set \mathcal{Q}, digit b \in \mathcal{B}
```

- 1: m := 1
- 2: Find minimal set $\mathcal{Q}_{[b^1]} \subset \mathcal{Q}$ such that

$$b + \mathcal{Q} \subset \mathcal{A} + \beta \mathcal{Q}_{[b^1]}$$
.

- 3: while $\#Q_{[b^m]} > 1$ do
- 4: m := m + 1
- 5: By Algorithm 5, find minimal set $\mathcal{Q}_{[b^m]} \subset \mathcal{Q}_{[b^{m-1}]}$ such that

$$b + \mathcal{Q}_{[b^{m-1}]} \subset \mathcal{A} + \beta \mathcal{Q}_{[b^m]}$$
.

- 6: if $\#Q_{[b^m]} = \#Q_{[b^{m-1}]}$ then
- 7: **return** Phase 2 does not converge for input $bb \dots b$.
- 8: end if
- 9: end while
- 10: **return** Weight coefficient for input $bb \dots b$ is the only element of $\mathcal{Q}_{[b^m]}$.

3.3 Alphabet

We see from Algorithm 3 that there have to be all representatives modulo β to ensure that we always find all needed candidates. It can be seen also from the proof of Theorem 3.2.

We divide the elements of the alphabet \mathcal{A} into the congruence classes mod β . The number of congruence classes mod β is given by $|\det S_{\beta}|$ where S_{β} is the companion matrix of the minimal polynomial of β , see for instance the paper of A. Kovács [8]. Therefore, it can be checked whether we have representative from all congruence classes.

The existence of a parallel digit set conversion implies also the following condition on the alphabet A.

Theorem 3.6. Let ω be an algebraic integer. Let the base $\beta \in \mathbb{Z}[\omega]$ be such that $|\beta| > 1$ and the alphabet $A \subset \mathbb{Z}[\omega]$ be such that $0 \in A$. If there exists a p-local digit set conversion defined by the function $\phi \colon (A + A)^p \to A$, the number $\phi(b, \ldots, b) - b$ belongs to the set $(\beta - 1)\mathbb{Z}[\omega]$ for any $b \in A + A$.

3.3. Alphabet 25

The proof can be found in [5]. Nevertheless, it is easy to prove for the digit set conversion which is constructed by the rewriting rule $x - \beta$. Take the formula (2.4) with the input b, \ldots, b :

$$\phi(b,\ldots,b) = b + \underbrace{q(b,\ldots,b)}_{=:q'} -\beta q(b,\ldots,b).$$

Hence

$$\phi(b,\ldots,b) - b = -q'(\beta - 1)$$

for $q' \in \mathbb{Z}[\omega]$.

Thus, the representatives mod $\beta-1$ of all elements of the input alphabet $\mathcal{B}\subset\mathcal{A}+\mathcal{A}$ must be contained in the alphabet \mathcal{A} .

To verify this for $b \in \mathcal{B}$, we iterate through the alphabet \mathcal{A} and search for $a \in \mathcal{A}$ such that b-a is divisible by $\beta-1$.

Chapter 4

Design and implementation

The designed method requires to compute arithmetic operations in $\mathbb{Z}[\omega]$. Therefore, we have chosen Python-based programming language SageMath for the implementation of the extending window method as it contains many ready-to-use mathematical structure. Using SageMath is very convenient as it also offers easily usable data structures or tools for plotting. Thus the code is more readable and we may focus on the algorithmic part of problem. On the other hand, SageMath is considerably slower than for example C++ or other low-level languages. Nevertheless, it is sufficient for our purpose.

The implementation is object-oriented. It consists of four classes. Class Algorithm-ForParallelAddition contains structures for computations in $\mathbb{Z}[\omega]$. Specifically, we use the provided class PolynomialQuotientRing to represent elements of $\mathbb{Z}[\omega]$ and NumberField for obtaining numerical complex value of them. The class also links necessary instances and functions to construct algorithm for parallel addition by the extending window method for an algebraic integer ω given by its minimal polynomial p and approximate complex value, a base $\beta \in \mathbb{Z}[\omega]$, an alphabet $\mathcal{A} \subset \mathbb{Z}[\omega]$ and input alphabet \mathcal{B} . Phase 1 of the extending window method is implemented in class WeightCoefficientsSetSearch and Phase 2 in WeightFunction-Search. Class WeightFunction holds the weight function q computed in Phase 2. All classes are described in the following sections including lists of the important methods with a short description. Sometimes, the notation from Chapter 2 is used for better understanding. For all implemented methods, see commented source code.

Basically, weight function can be found just by creating an instance of *AlgorithmFor-ParallelAddition* and calling **findWeightFunction()**. For more comfortable usage, our implementation includes two interfaces – a shell version and graphic user interface using interact in SageMath Cloud. The whole implementation is on the attached DVD or it can be downloaded from https://github.com/Legersky/ParallelAddition.

4.1 Class AlgorithmForParallelAddition

This class constructs necessary structures for computation in $\mathbb{Z}[\omega]$. It is PolynomialQuotient-Ring obtained as a PolynomialRing over integers factored by polynomial p. This is used for representation of elements of $\mathbb{Z}[\omega]$ and arithmetic. We remark that it is independent on the choice of root of the minimal polynomial p. But as we need also comparisons of numbers in $\mathbb{Z}[\omega]$ in modulus, we specify ω by its approximate complex value and we form a factor ring of rational polynomials by using class NumberField. This enables us to get absolute values of

elements of $\mathbb{Z}[\omega]$ which can be then compared.

Method find Weight Function() links together both phases of the extending window method to find the weight function q. That is used in the methods for addition and digit set conversion to process them as local functions. There are also verification methods.

Moreover, many methods for printing, plotting and saving outputs are implemented.

The constructor of class AlgorithmForParallelAddition is

Take $minPol_str$ which is a string of symbolic expression in the variable x of an irreducible polynomial p. The closest root of $minPol_str$ to embd is used as the ring generator ω (see more in documentation of NumberField in SageMath [10]). The structures for $\mathbb{Z}[\omega]$ are constructed as described above. Setters $\mathbf{setAlphabet}(alphabet)$, $\mathbf{setInputAlphabet}(inputAlphabet)$ and $\mathbf{setBase}(base)$ are called. Messages saved to logfile during existence of an instance are printed (using IATEX) on standard output depending on printLog and printLogLatex. The level of messages for a development is set by verbose.

Methods for the construction of an addition algorithm which is computable in parallel by the designed extending window method are the following:

_findWeightCoefSet(max_iterations, method_number)

Create an instance of $WeightCoefficientsSetSearch(method_number)$ and call its method $findWeightCoefficientsSet(max_iterations)$ to obtain a weight coefficients set Q.

_findWeightFunction(max_input_length, method_number)

Create an instance of $WeightFunctionSearch(method_number)$ and call its methods $\mathbf{check_one_letter_inputs}(max_input_length)$ and

 $findWeightFunction(max_input_length)$ to obtain a weight function q.

 $\label{lem:max_input_length} \textbf{findWeightFunction}(\ \textit{max_iterations},\ \textit{max_input_length},\ \textit{method_weightCoefSet=None}, \\ \textit{method_weightFunSearch=None})$

It is verified that there are all representatives mod β in the alphabet and that all elements of the input alphabet have their representatives mod $\beta-1$ in the alphabet, see Section 3.3. Return the weight function q obtained by calling _findWeightCoefSet (max_iterations, method_weightCoefSet) and _findWeightFunction(max_input_length, method_weightFunSearch).

The important function for the searching for possible weight coefficients is divideByBase(divided_number)

Using Theorem 1.7, check if $divided_number$ is divisible by the base β . If it is so, return the result of division, else return None.

Methods for the addition and the digit set conversion computable in parallel are following: addParallel(a,b)

Sum up numbers represented by the lists of digits a and b digitwise and convert the result by **parallelConversion**().

 $parallelConversion(_w)$

Return (β, \mathcal{A}) -representation of the number represented by the list w of digits in the input alphabet \mathcal{B} . According to the equation (2.3), it is computed locally by using the weight function q.

localConversion(w)

Return converted digit according to the equation (2.3) for the list of input digits w.

The correctness of the implementation of the extending window for a given numeration system can be verified by

sanityCheck_conversion(num_digits)

Check whether the values of all possible numbers of the length num_digits with digits in the input alphabet \mathcal{B} are the same as their (β, \mathcal{A}) -representation obtained by **parallelConversion**().

4.2 Class WeightCoefficientsSetSearch

Class WeightCoefficientsSetSearch implements Phase 1 of the extending window method described in Section 2.2. The most important method is **findWeightCoefficientsSet**() which returns the weight coefficients set Q.

The constructor of the class is

 $_$ **init** $_$ (algForParallelAdd, method)

Initialize the ring generator ω , base β , alphabet \mathcal{A} and input alphabet \mathcal{B} by values obtained from algForParallelAdd. The parameter method characterizes the way of the choice from the possible candidates for the weight coefficients set, None is the default way – according to absolute values.

Methods implementing Phase 1 are the following:

_findCandidates(C)

Following Algorithm 3, return the list of lists candidates such that each element in C is covered by any value of the appropriate list in candidates.

$_{\mathbf{chooseQk_FromCandidates}(candidates)}$

Take the previous intermediate weight coefficients set Q_k as the class attribute and choose from *candidates* the intermediate weight coefficients set Q_{k+1} by Algorithm 2.

$_{\mathbf{getQk}}(C)$

Links together methods $_{\text{findCandidates}}(C)$ and $_{\text{chooseQk_FromCandidates}}(C)$ to return itermediate weight coefficients set \mathcal{Q}_k .

findWeightCoefficientsSet(maxIterations)

According to Algorithm 1, return the weight coefficients set Q which is build iteratively by using $_\mathbf{get}\mathbf{Qk}()$. The computation is aborted if the number of iterations exceeds maxIterations.

4.3 Class WeightFunctionSearch

Phase 2 of the extending window method from Section 2.3 is implemented in this class. The weight function q is returned by method **findWeightFunction**(). The constructor of the class is

__init__(algForParallelAdd, weightCoefSet, method)

The ring generator ω , base β , alphabet \mathcal{A} and input alphabet \mathcal{B} are initialized by the values obtained from algForParallelAdd. The weight coefficients set \mathcal{Q} is set to weight-CoefSet. The parameter method characterizes the way of the choice of the possible weight coefficients set from the previous one for given input digits, None is the default way described in Section 2.3. The attribute $_{-}Qw_{-}w$ is set to an empty dictionary. It serves for saving possible weight coefficients for possible tuples of input digits.

The following methods are used for search for weight function q:

_find_weightCoef_for_comb_B(combinations)

Take all unsolved inputs $w_j, \ldots, w_{j-m+1} \in \mathcal{B}^m$ in *combinations*, extend them by all letters $w_{j-m} \in \mathcal{B}$ and find possible weight coefficients set $\mathcal{Q}_{[w_j, \ldots, w_{j-m}]}$ by the method $_$ **findQw** $((w_j, \ldots, w_{j-m}))$. If there is only one element in $\mathcal{Q}_{[w_j, \ldots, w_{j-m}]}$, it is saved as a solved input of weight function q. Otherwise, the input combination w_j, \ldots, w_{j-m} is saved as an unsolved input which requires extending of the window. The unsolved combinations are returned.

$_$ findQw(w_tuple)

Return the set $\mathcal{Q}_{[\text{w_tuple}]}$ obtained by Algorithm 5. The set of possible carries for w_tuple without the first digit and the previous set of possible weight coefficients, which are neccessary for computation, are taken from the attribute $_Qw_w$ of the class.

findWeightFunction(max_input_length)

Return the weight function q unless the length of window exceeds max_input_length . Then an exception is raised. It implements Algorithm 4 by repetetive calling of the method _find_weightCoef_for_comb_B() which extends length of window. This is done until all possible combinations of input digits are solved for some length of window m, i.e. $\max\{\#\mathcal{Q}_{[w_j,\dots,w_{j-m+1}]}: (w_j,\dots,w_{j-m+1}) \in \mathcal{B}^m\} = 1$.

check_one_letter_inputs(max_input_length)

The method checks by Algorithm 6 if there is a unique weight coefficient for inputs $(b, b, \ldots, b) \in \mathcal{B}^m$ for some length of window m. Using Theorem 3.2, an exception is raised in the case of an infinite loop. Otherwise the list of inputs (b, b, \ldots, b) which have the largest length of the window is returned.

4.4 Class WeightFunction

This class serves for saving the weight function q. The constructor is $__init__(B)$

Set the input alphabet to B and the maximum length of window to 1. Initialize the attribute $_mapping$ to an empty dictionary for saving the weight function g.

4.5. User interfaces 30

The methods for saving and calling are following:

addWeightCoefToInput(_input, coef)

Save the weight coefficient *coef* for *_input* to the class attribute *_mapping*. The digits of *_input* must be in the input alphabet.

getWeightCoef(w)

The digits of the list w are taken from the left until the weight coefficient in the dictionary $_mapping$ is found.

The result of the method **getWeightCoef**() is used to make this class callable, i.e., if $_{-}q$ is an instance of WeightFunction, then $_{-}q.\mathbf{getWeightCoef}(w)$ is the same as $_{-}q(w)$.

4.5 User interfaces

We provide two interfaces for running of the implemented extending window method – the shell version and graphic user interface.

4.5.1 Shell

SageMath must be installed. The implementation of the extending window method is launched in a shell by typing sage extending_window_method.sage <input_sample.sage>. The parameters of the numeration system and setting of outputs and computation is given by the SageMath file input_sample.sage. See Appendix C for an example of such a file.

The name of the numeration system, minimal polynomial of generator ω , an approximate value of ω , the base β , alphabet \mathcal{A} and input alphabet \mathcal{B} are set in the part INPUTS. The maximum number of iterations in Phase 1, maximal length of the window in Phase 2 and the launching of the sanity check are set in SETTING.

The boolean values in the part SAVING determines which formats of the outputs are saved. All outputs are saved in the folder ./outputs/<name>/. General information about the computation can be saved in the TeX format, the computed weight function and local digit set conversion in the CSV file format. An inputs setting saved as a dictionary can be loaded by the interact interface. The log of the whole computation can be saved as a text file. There is also an option to save unsolved combinations in Phase 2 in the CSV file format in the case of the interruption of the program.

According to the boolean values in the part IMAGES, figures of the alphabet, input alphabet, weight coefficients set or part of the set $\mathbb{Z}[\omega]$ with marked alphabet shifted into points which are divisible by the base β are saved in the PNG format to the folder ./outputs/<name>/img/. Optionally, the weight coefficients set is plotted with the bound given by the proof of Theorem 3.2. Images of individual steps of both phases of the extending window method can be saved, too. For Phase 2, the search for the weight coefficient is plotted for the digits given by phase2_input.

The program prints out all inputs and then it computes the weight function q by calling **findWeightFunction**($max_iterations$, max_input_length). The increments of the weight coefficients set in each iteration of Phase 1 are printed and then also the obtained weight coefficients set \mathcal{Q} . The longest tested combinations given by repetition of one letter are printed after the computation of **check_one_letter_inputs**(max_input_length). During computing of

4.5. User interfaces 31

Phase 2, the current length of window and the number of saved combinations are printed. At the end, the final length of window, elapsed time and info about saved outputs are printed.

It is possible to batch process all input files in one folder by executing the bash script ewm_batch <folder_name>.

4.5.2 Interact in SageMath Cloud

The graphic user interface is implemented using an interact in SageMath Cloud. The parts of the interact are on Figure 21, 22 and 23 in Appendix D. The functionality is basically the same as the shell version. An account on the website https://cloud.sagemath.com is needed to use the interact. Create a new project and load files extending_window_method_GUI.sagews and interact_ewm.sage. After executing of the cell by Shift+Enter in the first one, the parameters of the numeration system are filled in the corresponding spaces or one of the previous settings is loaded by typing its name. By default, the last inputs are shown in the form. The inputs are submitted by pressing the button Update. Using check-boxes, the formats for saving of the output are chosen and the search for the weight function is launched by pressing second button Update.

The printed output is similar to the shell output. In addition, it contains figures and it is formatted using LATEX. Moreover, the sanity check can be run for a given length, the weight coefficient for a tuple of input digits is returned or images of individual steps of both phases are shown and saved.

Chapter 5

Testing

We have tested several bases with different alphabets. The bases are chosen such they have no conjugates of modulo 1 according to Theorem 1.1. The sizes of the integer alphabets are given by the lower bound from Theorem 1.3. Since this theorem assumes only an integer alphabet, we have tested also non-integer alphabets of smaller size. The input alphabet \mathcal{B} is always $\mathcal{A} + \mathcal{A}$.

Table 5.1 summarizes the tested numeration systems which are described in the sections below. It is marked in the first column of the table whether the alphabet satisfies the necessary conditions described in Section 3.3. The second column says if the sufficient condition given by Theorem 3.2 holds. The third one shows whether Phase 1 was successful (\checkmark) or not (\checkmark) for the given numeration system. By not successful we mean that the size of the intermediate weight coefficients sets was steeply increasing and then the computation was interrupted because of hardware limits. The fourth column is the control of the necessary condition for the convergence of Phase 2 by Algorithm 6, i.e. if there is an output of the weight function q for input digits b, b, \ldots, b for all $b \in \mathcal{B}$. The results of Phase 2 are in the last column. Again, (\checkmark) means that the computation was stopped because of hardware limits. Notice, that the next step of the extending window method is not processed without the previous one (–).

We see that Phase 1 was successful in all cases when the sufficient condition holds, as we expected. Moreover, we have examples when it converges without the sufficient condition. We remark that the absolute values of all conjugates of the base are greater than 1 in Examples 5.15 and 5.18, whereas there is a conjugate which is smaller than 1 in modulus in Examples 5.14 and 5.19.

In Phase 2, the way how to pick elements in Algorithm 5 influences for instance the length of window in Example 5.1, number of saved combinations shorter than the length of window in Example 5.9 and success or failure of the control of the necessary condition in Example 5.13.

A possible reasoning of non-convergence of Phase 2 for the quadratic bases with integer alphabets is that the coefficients of the rewriting rule $x - \beta$ are not integers. Nevertheless, different digits of the input alphabet are problematic in the control of the necessary condition for different modifications of Algorithm 5.

The complete results including log files, images and weight functions in the CSV file format (for the systems with the length of window shorter than 5) can be found on the attached DVD or https://github.com/Legersky/ParallelAddition.

Name	Ex.	Alph.	Suff. c.	Phase 1	Necess. c.	Phase 2
Eisenstein_1-block_complex	5.1	yes	yes	✓	✓	√
Eisenstein_1-block_integer	5.3	yes	yes	✓	X	_
$Eisenstein_1-block_small_complex$	5.2	no	_	_	_	_
Eisenstein_2-block	5.4	no	_	_	_	_
Eisenstein_2-block_4elements	5.5	yes	yes	✓	×	_
Penney_1-block_complex	5.6	yes	yes	✓	✓	✓
Penney_1-block_small_complex	5.7	no	_	_	_	_
Penney_1-block_integer	5.8	yes	yes	✓	X	_
Penney_2-block_integer	5.9	yes	yes	✓	\checkmark	\checkmark
Quadratic+1-2+2_1-block_complex	5.10	yes	yes	✓	✓	√
$Quadratic + 1 - 2 + 2 - 1 - block_integer$	5.11	yes	yes	✓	X	_
Quadratic+1+4+5_1-block_complex	5.12	yes	yes	✓	✓	✓
Quadratic+1+3+5_1-block_complex	5.13	yes	yes	✓	✓	Х
Quadratic+1-5+3_1-block_integer	5.14	yes	no	Х	_	
Quadratic+1-5+5_1-block_real	5.15	yes	no	✓	Х	
base_2	5.16	yes	yes	✓	1	✓
base_4	5.17	yes	yes	✓	\checkmark	✓
Cubic+1+1-1+1_complex	5.19	yes	no	Х	_	_
$Cubic+1+1-5+5$ _complex	5.18	yes	no	✓	×	_

Table 5.1: The results of the extending window method.

5.1 Eisenstein base $\beta = -\frac{3}{2} + \frac{i\sqrt{3}}{2}$

The Eisenstein base β equals $\omega - 1$ with $\omega = -\frac{1}{2} + \frac{i\sqrt{3}}{2}$. The minimal polynomial of the generator ω is $x^2 + x + 1$ and the minimal polynomial of the base β is $x^2 + 3x + 3$. Thus, the lower bound for the size of an integer alphabet given by Theorem 1.3 is 7. We have tested the base with three alphabets – two complex and one integer.

Example 5.1. Eisenstein_1-block_complex

The alphabet $\mathcal{A} = \{0, 1, -1, \omega, -\omega, -\omega - 1, \omega + 1\}.$

The result of the extending window method is:

- 1. Phase 1 was successful. The number of elements in the weight coefficient set Q is 19.
- 2. There is a unique weight coefficient for input b, b, \ldots, b for all $b \in \mathcal{B}$.
- 3. Phase 2 was successful. The length of window m of the weight function q is 3.

Both phases of the extending window method are illustrated in Appendices A and B.

Example 5.2. Eisenstein_1-block_small_complex

The alphabet $\mathcal{A} = \{0, 1, \omega, \omega + 1\}.$

The elements $\omega + 2, 2\omega, 2\omega + 1, 2\omega + 2 \in \mathcal{B}$ have no representative modulo $\beta - 1$ in the alphabet \mathcal{A} .

Example 5.3. Eisenstein_1-block_integer

The alphabet $\mathcal{A} = \{0, 1, -1, 2, -2, 3, -3\}.$

The result of the extending window method is:

- 1. Phase 1 was successful. The number of elements in the weight coefficient set Q is 53.
- 2. There is not a unique weight coefficient for input b, b, \ldots, b for $b \in \{1, 2, 3, 5, 6, -6, -4, -3\}$ for some fixed length of window. Thus Phase 2 does not converge.

We may also study so-called 2-block parallel addition. Roughly speaking, we consider two digits after each other in a (β, \mathcal{A}) -representation as one digit of a $(\beta^2, \mathcal{A} + \beta \mathcal{A})$ -representation of the same number. So we shift from the base β to $\beta^2 = -3 - 3\beta = -3\omega$ which has the minimal polynomial $x^2 - 3x + 9$. We have tested the shifted alphabets $\{0, \pm 1\} + \beta\{0, \pm 1\}$ and $\{0, 1, \omega, \omega + 1\} + \beta\{0, 1, \omega, \omega + 1\}$.

Example 5.4. Eisenstein_2-block

The alphabet $\mathcal{A} = \{0, 1, -1, \omega, -\omega, \omega - 1, -\omega + 1, \omega - 2, -\omega + 2\}.$

The elements $2\omega - 1, 2\omega, \omega + 1, -\omega - 1, -2\omega, -2\omega + 1 \in \mathcal{B}$ have no representative modulo $\beta - 1$ in the alphabet \mathcal{A} .

Example 5.5. Eisenstein_2-block_4elements

The alphabet $\mathcal{A} = \{0, 1, -1, \omega, -\omega, \omega+1, -\omega-1, \omega-1, 2\omega-1, 2\omega, -2\omega, -2\omega-1, -2, -\omega-2\}$. The result of the extending window method is:

- 1. Phase 1 was successful. The number of elements in the weight coefficient set Q is 17.
- 2. There is not a unique weight coefficient for input b, b, \ldots, b for $b \in \{2\omega 1, \omega + 1, -2\omega, -\omega 2, -4\}$ for some fixed length of window. Thus Phase 2 does not converge.

5.2 Penney base $\beta = -1 + i$

The Penney base $\beta = -1 + \omega$ where $\omega = i$. The minimal polynomial of the base β is $x^2 + 2x + 2$. We have tested the base with three alphabets – two complex and one integer. The lower bound for the size of the integer alphabet is 5.

Example 5.6. Penney_1-block_complex

The alphabet $\mathcal{A} = \{0, 1, -1, \omega, -\omega\}.$

The result of the extending window method is:

- 1. Phase 1 was successful. The number of elements in the weight coefficient set Q is 45.
- 2. There is a unique weight coefficient for input b, b, \ldots, b for all $b \in \mathcal{B}$.
- 3. Phase 2 was successful. The length of window m of the weight function q is 6.

Example 5.7. Penney_1-block_small_complex

The alphabet $\mathcal{A} = \{0, 1, \omega\}.$

The elements $\omega + 1, 2\omega \in \mathcal{B}$ have no representative modulo $\beta - 1$ in the alphabet \mathcal{A} .

Example 5.8. Penney_1-block_integer

The alphabet $A = \{0, 1, -1, 2, -2\}.$

The result of the extending window method is:

- 1. Phase 1 was successful. The number of elements in the weight coefficient set Q is 47.
- 2. There is not a unique weight coefficient for input b, b, \ldots, b for $b \in \{2, 3, 4, -4, -3, -2\}$ for some fixed length of window. Thus Phase 2 does not converge.

For 2-block parallel addition, we shift from the base β to $\beta^2 = -2 - 2\beta = -2\omega$ which has the minimal polynomial $x^2 + 4$. We have tested the shifted alphabet $\{0, \pm 1\} + \beta\{0, \pm 1\}$.

Example 5.9. Penney_2-block_integer

The alphabet $A = \{0, 1, -1, \omega, -\omega, \omega - 1, -\omega + 1, \omega - 2, -\omega + 2\}.$

The result of the extending window method is:

- 1. Phase 1 was successful. The number of elements in the weight coefficient set Q is 27.
- 2. There is a unique weight coefficient for input b, b, \ldots, b for all $b \in \mathcal{B}$.
- 3. Phase 2 was successful. The length of window m of the weight function q is 5.

5.3 Base $\beta = 1 + i$

The following numeration systems have the base $\beta = 1 + i$ with the minimal polynomial $x^2 - 2x + 2$. We have tested a complex and an integer alphabet.

Example 5.10. Quadratic+1-2+2_1-block_complex

The alphabet $A = \{0, 1, -1, \omega - 1, -\omega + 1\}.$

The result of the extending window method is:

- 1. Phase 1 was successful. The number of elements in the weight coefficient set Q is 45.
- 2. There is a unique weight coefficient for input b, b, \ldots, b for all $b \in \mathcal{B}$.
- 3. Phase 2 was successful. The length of window m of the weight function q is 6.

Example 5.11. Quadratic+1-2+2_1-block_integer

The alphabet $A = \{0, 1, -1, 2, -2\}.$

The result of the extending window method is:

- 1. Phase 1 was successful. The number of elements in the weight coefficient set Q is 46.
- 2. There is not a unique weight coefficient for input b, b, \ldots, b for $b \in \{2, -1, -2\}$ for some fixed length of window. Thus Phase 2 does not converge.

36

5.4 Base $\beta = -2 + i$

The base $\beta = -2 + i$ has the minimal polynomial $x^2 + 4x + 5$.

Example 5.12. Quadratic+1+4+5_1-block_complex

The alphabet $A = \{0, 1, -1, \omega, -\omega, \omega + 1, -\omega - 1, \omega - 1, -\omega - 2, -2\}.$

The result of the extending window method is:

- 1. Phase 1 was successful. The number of elements in the weight coefficient set Q is 17.
- 2. There is a unique weight coefficient for input b, b, \ldots, b for all $b \in \mathcal{B}$.
- 3. Phase 2 was successful. The length of window m of the weight function q is 3.

5.5 Base
$$\beta = -\frac{3}{2} + \frac{i\sqrt{11}}{2}$$

The base $\beta = -\frac{3}{2} + \frac{i\sqrt{11}}{2}$ has the minimal polynomial $x^2 + 3x + 5$.

Example 5.13. Quadratic+1+3+5_1-block_complex

The alphabet $A = \{0, 1, -1, \omega + 1, -\omega - 1, \omega + 2, -\omega - 2, \omega + 3, -\omega - 3\}.$

The result of the extending window method is:

- 1. Phase 1 was successful. The number of elements in the weight coefficient set Q is 11.
- 2. There is a unique weight coefficient for input b, b, \ldots, b for all $b \in \mathcal{B}$.
- 3. Phase 2 was not successful. The maximal tested length of window was 10.

5.6 Base
$$\beta = \frac{5}{2} + \frac{i\sqrt{13}}{2}$$

The minimal polynomial of the base $\beta = \frac{5}{2} + \frac{i\sqrt{13}}{2}$ is $x^2 - 5x + 3$.

Example 5.14. Quadratic+1-5+3_1-block_integer

The alphabet $A = \{0, 1, 2, 3, 4, 5, 6\}.$

The result of the extending window method is:

1. Phase 1 was not successful. The size of the last intermediate weight coefficients set was 17 674 when stopped.

5.7 Base
$$\beta = \frac{5}{2} + \frac{\sqrt{5}}{2}$$

The minimal polynomial of the base $\beta = \frac{5}{2} + \frac{\sqrt{5}}{2}$ is $x^2 - 5x + 5$.

Example 5.15. Quadratic+1-5+5_1-block_real

The alphabet $\mathcal{A} = \{0, \omega + 1, -\omega - 1, \omega + 2, -\omega - 2\}.$

The result of the extending window method is:

- 1. Phase 1 was successful. The number of elements in the weight coefficient set Q is 127.
- 2. There is not a unique weight coefficient for input b, b, ..., b for $b \in \{0, 1, \omega + 1, \omega + 2\}$ for some fixed length of window. Thus Phase 2 does not converge.

5.8. Integer bases 37

5.8 Integer bases

We have also tested the integer bases 2, resp. 4 with the alphabets $\{0, \pm 1\}$, resp. $\{0, \pm 1, \pm 2\}$. Since the minimal polynomial is x - 2, resp. x - 4, the minimal size of the integer alphabet given by Theorem 1.3 is |1 - 2| + 2 = 3, resp. 4.

Example 5.16. base_2

The alphabet $\mathcal{A} = \{0, 1, -1\}.$

The result of the extending window method is:

- 1. Phase 1 was successful. The number of elements in the weight coefficient set Q is 3.
- 2. There is a unique weight coefficient for input b, b, \ldots, b for all $b \in \mathcal{B}$.
- 3. Phase 2 was successful. The length of window m of the weight function q is 2.

Example 5.17. base_4

The alphabet $A = \{0, 1, -1, 2, -2\}.$

The result of the extending window method is:

- 1. Phase 1 was successful. The number of elements in the weight coefficient set Q is 3.
- 2. There is a unique weight coefficient for input b, b, \ldots, b for all $b \in \mathcal{B}$.
- 3. Phase 2 was successful. The length of window m of the weight function q is 2.

5.9 Cubic bases

The base is chosen as the zero of cubic polynomial $x^3 + x - 5x + 5$, resp. $x^3 + x - x + 1$, which is the greatest one in modulus.

Example 5.18. Cubic+1+1-5+5_complex

The alphabet $\mathcal{A} = \{0, \omega + 1, \omega + 2, -\omega - 1, -\omega - 2\}.$

The result of the extending window method is:

- 1. Phase 1 was successful. The number of elements in the weight coefficient set Q is 345.
- 2. There is not a unique weight coefficient for input b, b, \ldots, b for $b \in \{0, 1, \omega + 1, \omega + 2, -2\omega 4, -2\omega 3, -\omega 1, -\omega 2, 2\omega + 2, 2\omega + 3, 2\omega + 4, -2\omega 2, -1\}$ for some fixed length of window. Thus Phase 2 does not converge.

Example 5.19. $Cubic+1+1-1+1_complex$

The alphabet $\mathcal{A} = \{0, \omega + 1, \omega + 2, -\omega - 1, -\omega - 2\}.$

The result of the extending window method is:

1. Phase 1 was not successful. The size of the last intermediate weight coefficients set was 30 636 when stopped.

Summary

The main goal of this thesis was to design and implement the extending window method. In order to do that, we have recalled the definitions and previous results in the field of parallel addition algorithms. We have proved Theorem 1.7 which is necessary tool for computation in $\mathbb{Z}[\omega]$.

From the general concept of construction of parallel addition algorithm, we have designed both phases of the extending window method for the rewriting rule $x - \beta$. The sufficient condition for the convergence of Phase 1, i.e., the search for the weight coefficients set \mathcal{Q} , have been introduced in Theorem 3.2. Algebraic integers ω have been categorized according to this sufficient condition. Next, we have developed Algorithm 6 which checks the necessary condition for the convergence of Phase 2, i.e. the search for the weight function q. This algorithm is based on Theorem 3.5 which we have proved.

Both phases were implemented in SageMath. The provided graphic user interface is to be used in SageMath Cloud and the shell interface enables us to compute the weight function for more demanding numeration systems.

We have tested several examples of numeration systems. Our program found the weight function successfully for many of them. We have also examples for which Phase 1 converges, although the sufficient condition given by Theorem 3.2 does not hold. We think that it caused by the fact that there is a claim similar to Lemma 3.1 which guarantees the convergence for bases with all conjugates greater then 1 in modulus by using a different norm than the absolute value.

We have tried many ways to pick elements in Algorithm 5 in Phase 2 to obtain convergence of the given examples with the possibly smallest window. We have observed that the chosen way influences results a lot. For example, reducing size of sets of possible weight coefficients as much as possible in each iteration does not lead to a positive control of the necessary condition for some numeration system whereas a less strict choice does. There is still space for further improvements.

Many questions remain open:

- Can we characterize all bases and alphabets for which Phase 1 converges?
- How can we improve Phase 2 to converge for more numeration systems? Can the mentioned different norm for Phase 1 help also in Phase 2?
- How can be revealed that there is an infinite loop during the computation of Phase 2?
- May any non-deterministic choice of elements work?
- Is there any sufficient condition for the convergence of any modification of Phase 2?

Bibliography

- [1] A. Avizienis, Signed-digit number representations for fast parallel arithmetic, IEEE Trans. Comput. 10 (1961), 389–400.
- [2] C.Y. Chow and J.E. Robertson, Logical design of a redundant binary adder, Proc. IEEE 4th Symposium on Computer Arithmetic (1978), 109–115.
- [3] C. Frougny, P. Heller, E. Pelantová, and M. Svobodová, k-block parallel addition versus 1-block parallel addition in non-standard numeration systems, Theoret. Comput. Sci. **543** (2014), 52–67.
- [4] C. Frougny, E. Pelantová, and M. Svobodová, *Parallel addition in non-standard numeration systems*, Theoret. Comput. Sci. **412** (2011), 5714–5727.
- [5] C. Frougny, E. Pelantová, and M. Svobodová, Minimal digit sets for parallel addition in non-standard numeration systems, J. Integer Seq. 16 (2013), 36.
- [6] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, 1990.
- [7] P. Kornerup, Necessary and sufficient conditions for parallel, constant time conversion and addition, Proc. 14th IEEE Symposium on Computer Arithmetic (1999), 152–155.
- [8] A. Kovács, On number expansions in lattices, Math. Comput. Model. 38 (2003), 909–915.
- [9] A. M. Nielsen and P. Kornerup, Redundant radix representations of rings, IEEE Trans. Comput. 48 (1999), 1153–1165.
- [10] SageMath reference manual, http://doc.sagemath.org/html/en/reference/index.html, Accessed: 2015-08-31.
- [11] M. Svobodová, Private communication, 2014–2015.

Appendices

A Illustration of Phase 1

Figures 1 – 13 illustrates the construction of the weight coefficients set \mathcal{Q} for the Eisenstein base $\beta = -\frac{3}{2} + \frac{\imath\sqrt{3}}{2}$ with the complex alphabet $\mathcal{A} = \{0, 1, -1, \omega, -\omega, -\omega - 1, \omega + 1\}$ and input alphabet $\mathcal{B} = \mathcal{A} + \mathcal{A}$. See also Example 5.1.

Figure 1: The starting set $Q_0 = \{0\}$.

Figure 2: The set $\mathcal{B} + \mathcal{Q}_0$ need to be covered.

Figure 3: The set Q_0 does not cover the set $\mathcal{B} + Q_0$, i.e., the set $\mathcal{A} + \beta \cdot Q_0$ is not superset of $\mathcal{B} + Q_0$.

$$egin{aligned} \mathcal{Q}_0 \ \mathcal{B} + \mathcal{Q}_0 \end{aligned}$$

$$\begin{array}{c} \mathcal{A} + \beta \cdot (-\omega) \\ \mathcal{Q}_1 \backslash \mathcal{Q}_0 \end{array}$$

Figure 4: The set Q_0 is extended to Q_1 to cover all elements of $\mathcal{B} + Q_0$.

Figure 5: The set $\mathcal{B} + \mathcal{Q}_1$ need to be covered.

Figure 6: The set Q_1 does not cover the set $\mathcal{B} + Q_1$, i.e., the set $\mathcal{A} + \beta \cdot Q_1$ is not superset of $\mathcal{B} + Q_1$.

$$\begin{array}{l}
\mathcal{Q}_1 \\
\mathcal{B} + \mathcal{Q}_1
\end{array}$$

$$\begin{array}{l}
\mathcal{A} + \beta \cdot (-\omega - 2) \\
\mathcal{Q}_2 \setminus \mathcal{Q}_1
\end{array}$$

Figure 7: The set Q_1 is extended to Q_2 to cover all elements of $\mathcal{B} + Q_1$.

Figure 8: The set $\mathcal{B} + \mathcal{Q}_2$ need to be covered.

Figure 9: The set Q_2 does not cover the set $\mathcal{B} + Q_2$, i.e., the set $\mathcal{A} + \beta \cdot Q_2$ is not superset of $\mathcal{B} + Q_2$.

$$rac{\mathcal{Q}_2}{\mathcal{B}+\mathcal{Q}_2}$$

$$\begin{array}{c} \mathcal{A} + \beta \cdot (2\omega) \\ \mathcal{Q}_3 \backslash \mathcal{Q}_2 \end{array}$$

Figure 10: The set Q_2 is extended to Q_3 to cover all elements of $\mathcal{B} + Q_2$.

Figure 11: The set $\mathcal{B} + \mathcal{Q}_3$ need to be covered.

Figure 12: The set Q_3 covers the set $\mathcal{B} + Q_3$, i.e., the set $\mathcal{A} + \beta \cdot Q_3$ is superset of $\mathcal{B} + Q_2$.

Figure 13: The final weight coefficients $Q=Q_3$.

B Illustration of Phase 2

The construction of set $\mathcal{Q}_{[\omega,1,2]}$ for the Eisenstein base $\beta = -\frac{3}{2} + \frac{i\sqrt{3}}{2}$ with the complex alphabet $\mathcal{A} = \{0,1,-1,\omega,-\omega,-\omega-1,\omega+1\}$ and input alphabet $\mathcal{B} = \mathcal{A} + \mathcal{A}$ is illustrated on Figures 14 – 20. See also Example 5.1.

Figure 14: Phase 2 starts with the weight coefficients set Q from Phase 1.

Figure 15: The set $\omega + Q$ need to be covered.

Figure 16: The elements of $\omega + Q$ are covered by the set $Q_{[\omega]} \subset Q$.

Figure 17: The set $\omega + \mathcal{Q}_{[1]}$ need to be covered.

 $\begin{array}{ll} \mathcal{A} + \beta \cdot \mathcal{Q}_{[\omega,1]} & \text{Figure 18: The elements of } \omega + \mathcal{Q}_{[1]} \\ \mathcal{Q}_{[\omega,1]} & \text{are covered by the set } \mathcal{Q}_{[\omega,1]} \subset \\ \mathcal{Q}_{[\omega]}. \end{array}$

Figure 19: The set $\omega + \mathcal{Q}_{[1,2]}$ need to be covered.

Figure 20: The elements of ω + $\mathcal{Q}_{[1]}$ are covered by the set $\mathcal{Q}_{[\omega,1,2]} \subset \mathcal{Q}_{[\omega,1]}$ which has only one element. This element is the output of the weight function $q(\omega,1,2)$.

C Sample of input file for shell

```
File input_sample.sage:
#----INPUTS-----
#Name of the numeration system:
name = 'Eisenstein_1-block_complex'
#Minimal polynomial of ring generator (use variable x):
minPol = 'x^2 + x + 1'
#Embedding (the closest root of the minimal polynomial to this
  value is taken as ring generator):
omegaCC = -0.5 + 0.8*I
#Alphabet (use 'omega' as ring generator):
alphabet = '[0, 1, -1, omega, -omega, -omega - 1, omega + 1]'
#Input alphabet (if empty, A + A is used):
inputAlphabet = ''
#Base (use 'omega' as ring generator):
base = 'omega - 1'
#-----SETTING-----
max_iterations = 20
                       #maximum of iterations in the search
  for the weight coefficient set
max_input_length = 10  #maximal length of the input of the
  weight function
sanityCheck=True
                       #run sanity check
#-----SAVING------
info=True
                       #save general info to .tex file
WFcsv=True
                       #save weight function to .csv file
localConversionCsv=True #save local conversion to .csv file
saveSetting=False
                       #save inputs setting as a dictionary
saveLog=True
                       #save log file
                       #save unsolved combinations after
saveUnsolved=False
  interruption
#----IMAGES-----
                       #save image of alphabet and input
alphabet_img=True
  alphabet
lattice_img=True
                       #save image of Z[omega]
phase1_images=True
                      #save images of steps of phase 1
weightCoefSet_img=True #save image of the weight coefficient
  set with the estimation given by lemma 3.1:
estimation=True
phase2_images=True
                       #save images of steps of phase 2 for
  the input:
phase2_input='(omega,1,omega,1,omega,1)'
```

D GUI in SageMath Cloud

Figure 21: The graphic user interface after loading inputs.

Figure 22: The output of the extending window method in the graphic user interface.

	Sanity check:			
Number of digits for sanity check:	4			
Save log file after sanity check:	€			
Sanity check of 4 digits Tested: 130321 Number of errors: 0 Log saved to ./outputs/eisenstein/eisen	stein_log.txt			
Update				
	Weight function:			
<pre>Input tuple of weight function (use 'omega' as ring generator, zeros are appended if necessary):</pre>	(omega, 1, 2)			
Weight	coefficient for input tuple $(x_j,\ldots,x_{j-2})=(\omega,1,2)$ is: 1			
Update				
	Construction of the weight coefficients set:			
Save to folder:	img			
Update				
	Construction of the weight function:			
Tuple of digits from the input alphabet (use 'omega' as ring generator):	Construction of the weight function: (omega,1,2)			
alphabet (use 'omega' as ring generator):	(omega,1,2)			
alphabet (use 'omega' as ring generator): Save to folder:	(omega,1,2)			
alphabet (use 'omega' as ring generator): Save to folder: Legend x-shift:	(omega,1,2) img 4			

Figure 23: The part of the graphic user interface for the sanity check, calling of the weight function and plotting of images of steps of both phases.