Лабораторная работа

«Эффект Холла»

Оборудование: Экспериментальная установка, включающая в себя блоки питания, реостат, миллиамперметры, вольтметр. В качестве образца используется германий марки ГЭС 40

Цель работы: Изучить эффект холла и определить его основные количественные характеристики для данного образца

Экспериментальная часть

Были выполнены необходимые электрические соединения, представленные на рис. 1

После включения тока, с помощью вольтметра была определено положение переключателя, при котором направление электрического тока в образце совпадает с выбранным направлением X.

Рисунок 1 Схема подключение электрических приборов в установке

После этого, была снята зависимость разности потенциалов U56 между контактами 5-6 при отсутствии внешнего магнитного поля. Результаты измерений представлены в следующей таблице:

J MA	1	2	3	4	5	6	7	8
U56, B J+	0,91	1,78	2,63	3,40	4,18	5,02	5,60	6,38
U56, B J-	0,86	1,75	2,59	3,45	4,38	5,06	5,88	6,67

По полученным данным были построены графики зависимости U56 от силы тока. По закону Ома:

 $R = \frac{I}{U}$, тогда угловой коэффициент прямой линейной аппроксимации будет равен значению сопротивления участка 5-6

Зависимость разности потенциалов U56 от величины тока I в отсутсвии магнитного поля

Для значений I+ получаем R = 790 Ом, для значений I- R = 830 Ом

Для дальнейших расчётов будем использовать среднее между полученными величинами т.е. R = 810 Ом.

Вычислим удельную электрическую проводимость полупроводника, используя следующие соотношения: $\sigma=\frac{1}{\rho};\; \rho=R*\frac{S}{I},\;$ где S — площадь полупроводника, I — расстояние между контактами 5-6

Получим $\sigma = 0.023 \, \mathrm{Om}^{-1} * \mathrm{cm}^{-1}$

Далее был включён ток в обмотках электромагнита. С помощью компаса определено положение переключателя, при котором направление вектора магнитной индукции в образце совпадает с выбранным направлением Z

Установим значение тока в образце I+ = 5 мА. Измерим разность потенциалов между контактами 3-4 при выключенном магнитном поле и при B+ = 2000 Гс, получим

U34(B = 20000) = 0,19 B

 $U34(B=0 \Gamma c) = 0.086 B$

Тогда холловская разность потенциалов Uh = (0.19 - 0.086) B = 0.104 B > 0.104 B >

Отсюда следует, что используемый полупроводник является дырочным.

Далее была снята зависимость разности потенциалов U34 между контактами 3-4 от величины поля В. Результаты представлены в таблице ниже:

В+, Гс	0,0	400,0	700,0	1050,0	1380,0	1680,0	2000,0	2300,0	2600,0	2900,0	3200,0
U34(J+=2 MA), B	0,040	0,050	0,053	0,060	0,067	0,074	0,080	0,087	0,093	0,098	0,100
U34(J+=5 MA), B	0,090	0,108	0,127	0,143	0,160	0,174	0,190	0,206	0,218	0,230	0,240
U34(J+=8 MA), B	0,135	0,160	0,183	0,205	0,228	0,251	0,272	0,290	0,310	0,323	0,339

В-, Гс	0,0	400,0	700,0	1050,0	1380,0	1680,0	2000,0	2300,0	2600,0	2900,0	3200,0
U34(J+= 2 MA), B	0,038	0,030	0,023	0,016	0,010	0,004	-0,002	-0,008	-0,013	-0,017	-0,021
U34(J+=5 mA), B	0,084	0,069	0,054	0,040	0,024	0,010	-0,006	-0,020	-0,032	-0,044	-0,052
U34(J+=8 mA), B	0,128	0,104	0,080	0,058	0,036	0,013	-0,010	-0,028	-0,047	-0,063	-0,077

По полученным величинам были построены следующий графики:

Зависимость напряжения на контактах 3-4 от величины индукции магнитного поля В

Далее определяем коэффициент Холла R по следующей формуле,

$$R = \frac{U34(B) - U34}{Bz} * \frac{c}{I}$$

Где с — размер образца вдоль оси Z, а значение первой дроби определяется как тангенс угла наклона линейной аппроксимации графика зависимости U34(B), получим следующие значения:

R, см ³ 97569 95851	81464	-93627	-88480	-82345
--------------------------------	-------	--------	--------	--------

Беря среднее и учитывая знак получаем R = $89889 \frac{\text{см}^3}{\text{кл}}$

Далее была снята зависимость Uh(I), при выключенном магнитном поле и при трёх его значениях. Результаты представлены в следующей таблице:

J(MA)	0	1	2	3	4	5	6	7	8	9
U34 (B=0)	0	0,020	0,039	0,056	0,072	0,090	0,106	0,120	0,135	0,144
	0	-0,020	-0,043	-0,066	-0,087	-0,110	-0,140	-0,160	-0,187	-0,213
U34	0	0,027	0,052	0,076	0,100	0,120	0,144	0,166	0,184	0,201
(B=650)	0	-0,028	-0,056	-0,085	-0,120	-0,146	-0,177	-0,210	-0,236	-0,266
Uh	0	0,007	0,013	0,020	0,028	0,030	0,038	0,046	0,049	0,057
	0	-0,008	-0,013	-0,019	-0,033	-0,036	-0,037	-0,050	-0,049	-0,053
U34	0	0,035	0,068	0,100	0,133	0,165	0,192	0,219	0,242	0,263
(B=1500)	0	-0,036	-0,072	-0,110	-0,149	-0,189	-0,224	-0,259	-0,295	-0,330
Uh	0	0,015	0,029	0,044	0,061	0,075	0,086	0,099	0,107	0,119
	0	-0,016	-0,029	-0,044	-0,062	-0,079	-0,084	-0,099	-0,108	-0,117
U34	0	0,047	0,080	0,130	0,170	0,210	0,240	0,270	0,310	0,340
(B=2400)	0	-0,048	-0,090	-0,138	-0,180	-0,230	-0,280	-0,320	-0,370	-0,400
Uh	0	0,027	0,041	0,074	0,098	0,120	0,134	0,150	0,175	0,196
	0	-0,028	-0,047	-0,072	-0,093	-0,120	-0,140	-0,160	-0,183	-0,187

Построены графики зависимостей Uh(I) и U34(I):

По приведённым выше графикам определим коэффициент Холла К и сопротивления R34

R CM3	95851	-93800	89091	-88242	89571	-90000
к л						

Беря среднее и учитывая знак, получаем R = $91092 \frac{\text{см}^3}{\text{кл}}$

Для дальнейших расчётов берём среднее из полученных значений R, т.е. R = 90490,5 $\frac{\text{см}^3}{\text{к}_{\text{п}}}$

Аналогично получаем R34 = 20 Ом

Вычислим смещение Δx контактов Холла в исследуемом образце по формуле:

$$\Delta x = \sigma * R34 * b * c$$
, получим $\Delta x = 0.024$ см

Теперь определим холловскую подвижность µh:

$$\gamma \approx 1,18$$

$$\mu h = \gamma * \sigma * R \approx 0.25 \frac{\text{M}^2}{\text{KJI OM}}$$

Проверим выполнение в ходе эксперимента условия слабого магнитного поля:

$$\mu h * Bz \ll 1$$

$$0.25 \frac{M^2}{KJ OM} * 0.3 Tл = 0.075 \ll 1 - Условие выполнено$$

Вычислим угол Холла при В+ = 2000 Гс:

$$\theta \approx -\mu h * Bz = -0.025 * 0.2 = -0.05$$

Оценим концентрацию основных носителей заряда в образце:

$$n = \frac{\gamma}{Rq} = \frac{1.18}{904 \cdot .5 * 1.6 * 10^{-19}} \approx 8 * 10^{13}$$

Вывод: В ходе данной лабораторной работы были получены удельная электрическая проводимость образца, коэффициент Холла, сопротивление между стенками образца, установлены зависимости холловской разности потенциалов от силы тока и индукции магнитного поля. Проверено выполнение условие слабого магнитного поля и вычислен угол Холла для конкретного значения индукции магнитного поля. Получена оценка концентрации носителей заряда в образце.