Machine Learning Algorithmen

DATA SCIENCE

MACH	MACHINE LEARNING							
Tag		Beschreibung		Beispiel				
	CRISP-DM (immer im Kreislauf von den Arbeitsschritten vo 1 8.) cross-industry- standard-processfor data-minding	•	Struktur von Data Science Projekten:	2. E 3. I 4. / 5. I 6. I 7. E	Fragestellung erkennen Business Understanding (Recherche in den Bereichen/Branchen): einzelne Problemstellungen Data Understanding (Daten beziehen von) Austausch: Business Understanding - Data Understanding Data Preparation (Daten vorbereiten, bei Defiziten z.B. Mittelwerte) Modelling (auch in Rücksprache mit Data Preparation) Evaluation (Daten werden ausgewertet, hohe Wahrscheinlichkeit für die Aussagekraft des Modells, z.B. 99%) auch in Rücksprache mit Business Understanding Deployment (Einsatz/Ausführen des Modells) auch in Rücksprache mit Business Understanding			
•	Datensatz mit: Features(Spalten, 1-3 oder mehr) 1 Label (z.B. Spezies bei Tieren) viele Samples (Zeilen, z.B. 1000)	•	Wie Algorithmen lernen Bsp.: Welche Spezies ist der Pinguin? Wichtig: gute Verteillung von Daten, z.b. gleichviele Daten von den verschiedenen	• (d	Man geht von einem Datensatz aus (.csv Datei) ca. 70 – 98% davon wird als Trainingsdatensatz -Training Data- verwendet:>Struktur finden, trainiertes Modell entwickelt aus den Features (Train_Test_Split (Datensatz splitten),Fitting(Datensatz um zu trainieren)) ca. 30 – 2% Testdatensatz (=Rest vom Trainingsdatensatz) -Validation Data-:>Struktur testen (Validierungs- Datensatz) nach und nach Samples (Features ohne Labels) aus dem			

	Labels, um eine gute Vorhersage zu generieren	Testdatensatz werden im trainierten Modell eingesetzt> Prediction (Vorhersage), also eines der Labels nach und nach Samples (Labels) aus dem Testdatensatz wird im trainierten Modell -Test Data- eingesetzt> korrektes Label > Fehler/Treffer Tabelle: Prediction = korrektes Label (Ja/Nein)
• Accuracy • Confusion-Matrix	• Evaluieren •	 Trefferquote über richtige Vorhersage trefferanzahl / Gesamtanzahl (=accuracy) Abgleichen mit realen Werten (actual values) Möglichkeiten: richtig (true) als Wert/Kategorie (Value/Klasse) und falsch(false) als Wert/Kategorie
Zyklus zwischen Daten-Produkt- Kunden-Daten	Selbst lernendes Produkt wenn alle 3 Elemente steigen (Produkt-Kunden-Daten) profitieren alle untereinander	 Auto: selbstfahrend Daten (wenn nicht vorhanden, dann manuelle verwenden oder z.B captcha[als Nutzer die Ampel in 9 Bildern finden, Text erkennen]) Kunden (bezahlen für deren Daten zu sammeln) Produkt (wenn nicht vorhanden, dann als gegeben betrachten, aber manuell bedienen)
Fundamentale Arbeit in der Data Science	Fragestellungen	 3 Typen: 1. Descriptive (klare, beschreibende Fragen) 2. Exploratory (offene, untersuchende Fragen) 3. Prediction (Vorhersagen, klar, aber auch offen)
Algorithmen werden mit Labels trainiert	Supervised Learning Voraussetzung: historische Daten mit hohen Warscheinlichkeiten für Zukunftsvorhersage	 Input, bei dem der Output klar ist (Output ist das Label, z.B. Hund oder Katze als Vorhersage, Spam: Ja/Nein) Algorithmus lernt, indem er das Ergebnis mit dem Label vergleicht>Fehler wird minimiert, Modell wird modifiziert

	RegressionKlassifizierung	 Vorhersage von kontinuierlichen Werten Aussage JA / NEIN (Treffer oder nicht Treffer)
	Unsupervised Learning	 Keine vorhandenen Labels exploratory data analysis z.B. Geschäfte einer Stadt ohne Kenntnis über die Kategorie - Bar,Cafe,Friseur,etc. Markt segmentation (innerhalb eines business,z.B. Versicherungsbereiche) social network clustering businesses in a given area
 Overfitting:(zu viele passende Traingsdaten vorhanden) Underfitting (zu wenig passende Traingsdaten vorhanden) 	Typissche Probleme bei Machine Learning	 Nahezu perfekte Vorhersage (100%), Fehler bei Trainingsdaten nach validierung immer gering und bei einsatz in Testdaten groß > für Vorhersage eher z.B. eher über eine Gerade im einem Diagramm die Trainingsdaten interpretieren als über jeden einzelnen vorhandenenen Datenpunkt (Sample)