Introduction

Access to clean and functional water sources is a fundamental necessity, yet many regions in Tanzania struggle to provide reliable water points for their population of over 67 million. Despite numerous water points being established across the country, a significant number are either non-functional or in need of repair. This situation hampers access to clean water, leading to health challenges, time lost in fetching water, and increased burdens on communities, particularly women and children.

This project seeks to address this issue by building a machine learning model to classify the operational status of water points. By analyzing data related to water point features such as pump type, installation details, and geographic characteristics, the project aims to predict whether a water point is functional, functional but requiring repair, or non-functional. Such insights can empower stakeholders to take targeted and proactive actions to improve water access.

Problem Statement

In Tanzania, many water points fail to provide reliable access to clean water, impacting millions of people and burdening rural communities. As a data scientist, my goal is to develop a machine learning model to predict the operational status of water points—functional, in need of repair, or non-functional. This will enable stakeholders to prioritize maintenance, allocate resources effectively, and address systemic issues, ensuring sustainable access to clean water for the population.

Objectives

General Objectives

To create a predictive model that identifies the operational status of water points in Tanzania to enhance water access and support efficient resource allocation.

Specific Objectives

Predict Water Point Functionality: Develop a machine learning models to classify water points as functional, functional but in need of repair, or non-functional.

Evaluate Model Performance: Assess the accuracy, precision, recall, and overall effectiveness of the models to ensure reliable predictions.

Identify Failure Patterns: Analyze the data to uncover factors and trends contributing to water point failures.

Optimize Resource Allocation: Provide actionable insights for stakeholders to prioritize maintenance and repair efforts effectively.

Data Understanding and Loading

The dataset originates from Taarifa and the Tanzanian Ministry of Water and was downloaded from DrivenData https://www.drivendata.org/competitions/7/pump-it-up-data-mining-the-water-table/page/23/. The following are set of information about the waterpoints:

amount_tsh - Total static head (amount water available to waterpoint)

date_recorded - The date the row was entered

funder - Who funded the well

gps_height - Altitude of the well

installer - Organization that installed the well

longitude - GPS coordinate

latitude - GPS coordinate

wpt_name - Name of the waterpoint if there is one

basin - Geographic water basin

subvillage - Geographic location

region - Geographic location

region_code - Geographic location (coded)

district_code - Geographic location (coded)

Iga - Geographic location

ward - Geographic location

population - Population around the well

public_meeting - True/False

recorded_by - Group entering this row of data

scheme_management - Who operates the waterpoint

scheme_name - Who operates the waterpoint

permit - If the waterpoint is permitted construction_year - Year the waterpoint was constructed extraction_type - The kind of extraction the waterpoint uses extraction_type_group - The kind of extraction the waterpoint uses extraction_type_class - The kind of extraction the waterpoint uses management - How the waterpoint is managed management_group - How the waterpoint is managed payment - What the water costs payment_type - What the water costs water_quality - The quality of the water quality_group - The quality of the water quantity - The quantity of water quantity_group - The quantity of water source - The source of the water source_type - The source of the water source class - The source of the water waterpoint_type - The kind of waterpoint waterpoint_type_group - The kind of waterpoint

```
#Important Libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.api as sm
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import FunctionTransformer
from sklearn.model selection import train test split
from sklearn.preprocessing import MinMaxScaler, PolynomialFeatures
from sklearn.linear model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, classification_report
train_values = pd.read_csv("Train_values.csv")
train values.head()
```

-		_
_	4	_
_	7	~
- 1	_	_

	id	amount_tsh	date_recorded	funder	gps_height	installer	longitude	latitud
0	69572	6000.0	3/14/2011	Roman	1390	Roman	34.938093	-9.856322
1	8776	0.0	3/6/2013	Grumeti	1399	GRUMETI	34.698766	-2.147466
2	34310	25.0	2/25/2013	Lottery Club	686	World vision	37.460664	-3.821329
3	67743	0.0	1/28/2013	Unicef	263	UNICEF	38.486161	-11.15529{
4	19728	0.0	7/13/2011	Action In A	0	Artisan	31.130847	-1.825359
5 rows × 40 columns								
•								•

train_labels = pd.read_csv("Train_labels.csv")
train_labels.head()

	id	status_group
0	69572	functional
1	8776	functional
2	34310	functional
3	67743	non functional
4	19728	functional

test_values = pd.read_csv("Test_values.csv")
test_values.head()

		_
_	4	_
-	7	~
- %		_

•		id	amount_tsh	date_recorded	funder	gps_height	installer	longitude	lati
	0	50785	0.0	2013-02-04	Dmdd	1996	DMDD	35.290799	-4.05
	1	51630	0.0	2013-02-04	Government Of Tanzania	1569	DWE	36.656709	-3.30
	2	17168	0.0	2013-02-01	NaN	1567	NaN	34.767863	-5.00
	3	45559	0.0	2013-01-22	Finn Water	267	FINN WATER	38.058046	-9.41
	4	49871	500.0	2013-03-27	Bruder	1260	BRUDER	35.006123	-10.95
5 rows × 40 columns									
	•								•

train_df = train_values.merge(train_labels, on= 'id')
train_df.head(10)

è	_	_
÷	4	÷
7	-	×

	id	amount_tsh	date_recorded	funder	gps_height	installer	longitude	latituc
0	69572	6000.0	3/14/2011	Roman	1390	Roman	34.938093	-9.85632
1	8776	0.0	3/6/2013	Grumeti	1399	GRUMETI	34.698766	-2.14746
2	34310	25.0	2/25/2013	Lottery Club	686	World vision	37.460664	-3.82132
3	67743	0.0	1/28/2013	Unicef	263	UNICEF	38.486161	-11.15529
4	19728	0.0	7/13/2011	Action In A	0	Artisan	31.130847	-1.82535
5	9944	20.0	3/13/2011	Mkinga Distric Coun	0	DWE	39.172796	-4.76558
6	19816	0.0	10/1/2012	Dwsp	0	DWSP	33.362410	-3.76636
7	54551	0.0	10/9/2012	Rwssp	0	DWE	32.620617	-4.22619
8	53934	0.0	11/3/2012	Wateraid	0	Water Aid	32.711100	-5.14671
9	46144	0.0	8/3/2011	Isingiro Ho	0	Artisan	30.626991	-1.25705
10	rows × 4	1 columns						
4								•

id, wpt_name, recorded_by and num_private

train df.columns

train_df.shape

→ (59400, 41)

train_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 59400 entries, 0 to 59399

Data columns (total 41 columns):

Data #	columns (total 41 column Column		Dtypo
		Non-Null Count	Dtype
0	id	59400 non-null	int64
1	amount_tsh	59400 non-null	float64
2	date_recorded	59400 non-null	object
3	funder	55763 non-null	object
4	gps_height	59400 non-null	int64
5	installer	55745 non-null	object
6	longitude	59400 non-null	float64
7	latitude	59400 non-null	float64
8	wpt_name	59398 non-null	object
9	num_private	59400 non-null	int64
10	basin	59400 non-null	object
11	subvillage	59029 non-null	object
12	region	59400 non-null	object
13	region_code	59400 non-null	int64
14	district_code	59400 non-null	int64
15	lga	59400 non-null	object
16	ward	59400 non-null	object
17	population	59400 non-null	int64
18	<pre>public_meeting</pre>	56066 non-null	object
19	recorded_by	59400 non-null	object
20	scheme_management	55522 non-null	object
21	scheme_name	30590 non-null	object
22	permit	56344 non-null	object
23	construction_year	59400 non-null	int64
24	extraction_type	59400 non-null	object
25	extraction_type_group	59400 non-null	object
26	extraction_type_class	59400 non-null	object
27	management	59400 non-null	object
28	management_group	59400 non-null	object
29	payment	59400 non-null	object
30	payment_type	59400 non-null	object
31	water_quality	59400 non-null	object
32	quality_group	59400 non-null	object
33	quantity	59400 non-null	object
34	quantity_group	59400 non-null	object
35	source	59400 non-null	object
36	source_type	59400 non-null	object
37	source_class	59400 non-null	object
38	waterpoint_type	59400 non-null	object
39	waterpoint_type_group	59400 non-null	object
40	status_group	59400 non-null	object
dtype	es: float64(3), int64(7), object(31)	

 $https://colab.research.google.com/github/ibnudiyat/Project_Phase 3/blob/main/index.ipynb\#scrollTo=TI9AxOq70kuE\&printMode=true$

memory usage: 18.6+ MB

train_df.describe().T

		_
	4	
-		$\overline{}$
-	*	

	count	mean	std	min	25%	50
id	59400.0	37115.131768	21453.128371	0.00000	18519.750000	37061.50000
amount_tsh	59400.0	317.650385	2997.574558	0.00000	0.000000	0.00000
gps_height	59400.0	668.297239	693.116350	-90.00000	0.000000	369.00000
longitude	59400.0	34.077427	6.567432	0.00000	33.090347	34.90874
latitude	59400.0	-5.706033	2.946019	-11.64944	-8.540621	-5.02159
num_private	59400.0	0.474141	12.236230	0.00000	0.000000	0.00000
region_code	59400.0	15.297003	17.587406	1.00000	5.000000	12.00000
district_code	59400.0	5.629747	9.633649	0.00000	2.000000	3.00000
population	59400.0	179.909983	471.482176	0.00000	0.000000	25.00000
4						•

Preprocessing

```
#### Feature Importance analysis
feature_importances = model_rfc.feature_importances_
feature_names = X_train_df.columns
# Create a DataFrame for feature importance
importance_df = pd.DataFrame({
    'Feature': feature_names,
    'Importance': feature_importances
}).sort_values(by='Importance', ascending=False)
# Display the top 10 features
top_features = importance_df.head(10)
#print("Top 10 Features Contributing to Water Point Failures:")
#print(top_features)
# Plot the top 10 features
plt.figure(figsize=(10, 6))
plt.barh(top_features['Feature'], top_features['Importance'], color='skyblue')
plt.xlabel('Features importance')
plt.ylabel('Feature')
plt.title('Top 10 Features Contributing to Water Point Failures')
plt.gca().invert_yaxis()
plt.show()
```

 $\overline{2}$

Insights

dry:This appears to be the most influential feature in predicting water point failures. It could indicate whether the water source has dried up. Prioritize investigating and restoring water points marked as "dry."

construction_year: Older water points might be more prone to failure. Focus maintenance on older water points or consider replacement for very old installations.

user-group: This might reflect how the water point is managed or shared among users. Assess the impact of user-group dynamics on functionality and repair needs.

```
needs_repair = train_df[train_df['status_group'] == 'functional needs repair']
sns.countplot(data=non_functional, y='management', order=non_functional['management'].value_
plt.title('Non-Functional Water Points by Management')
plt.xlabel('Count')
```

non_functional = train_df[train_df['status_group'] == 'non functional']

plt.ylabel('Management Entity')
plt.show()

Observations

VWC (Village Water Committees): This entity accounts for the majority of non-functional water points, indicating potential challenges in maintenance or resource allocation. Investigate the capacity, training, and resources available to VWC. Provide targeted training or support to improve their management effectiveness.

WUG (Water User Groups): The second-highest number of non-functional water points is managed by WUG. Evaluate their management processes and identify gaps that lead to failure.

✓ Data cleaning

train_df_copied = train_df.copy()
train_df.duplicated().sum()
\$\iftsize \text{\text{\$\sigma}}\$ 0

```
# Encode the target variable
label_encoder = LabelEncoder()
y_encoded = label_encoder.fit_transform(train_df['status_group'])
# Define Features (X) and Target (y)
X = train_df.drop(columns=['status_group', 'id']) # Drop target and ID columns
y = y_encoded # Target variable
# Train-Test Split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
X_train.duplicated().sum()
→ 26
X_train = X_train[~X_train.duplicated()].reset_index(drop=True)
y_train = y_train[X_train.index.to_numpy()] # Align y_train with the updated X_train indice
X_train.duplicated().sum()
→▼ 0
X_test.duplicated().sum()
→ 1
X_test = X_test[~X_test.duplicated()].reset_index(drop=True)
y_test = y_test[X_test.index.to_numpy()] # Align y_test with the updated X_test indices
X_test.duplicated().sum()
```

X Train Data

X_train.info()

PM			ir	ndex.ipynb - C
3	gps_height	47494	non-null	int64
4	installer	44605	non-null	object
5	longitude	47494	non-null	float64
6	latitude	47494	non-null	float64
7	wpt_name	47493	non-null	object
8	num_private	47494	non-null	int64
9	basin	47494	non-null	object
10	subvillage	47198	non-null	object
11	region	47494	non-null	object
12	region_code	47494	non-null	int64
13	district_code	47494	non-null	int64
14	lga	47494	non-null	object
15	ward	47494	non-null	object
16	population	47494	non-null	int64
17	<pre>public_meeting</pre>	44819	non-null	object
18	recorded_by	47494	non-null	object
19	scheme_management	44391	non-null	object
20	scheme_name	24480	non-null	object
21	permit	45055	non-null	object
22	construction_year	47494	non-null	int64
23	extraction_type	47494	non-null	object
24	extraction_type_group	47494	non-null	object
25	extraction_type_class	47494	non-null	object
26	management	47494	non-null	object
27	management_group	47494	non-null	object
28	payment	47494	non-null	object
29	payment_type	47494	non-null	object
30	water_quality	47494	non-null	object
31	quality_group	47494	non-null	object
32	quantity	47494	non-null	object
33	quantity_group	47494	non-null	object
34	source	47494	non-null	object
35	source_type	47494	non-null	object
36	source_class	47494	non-null	object
37	waterpoint_type	47494	non-null	object
38	waterpoint_type_group		non-null	object
dtype	es: float64(3), int64(6)), obje	ect(30)	
memoi	rv usage: 14.1+ MR			

memory usage: 14.1+ MB

X_train.isna().sum()

→ *	amount_tsh	0
	date_recorded	0
	funder	2877
	gps_height	0
	installer	2889
	longitude	0
	latitude	0
	wpt_name	1
	num_private	0
	basin	0
	subvillage	296
	region	0
	region_code	0
	district code	0

```
lga
                               0
ward
                               0
population
                               0
public meeting
                           2675
recorded_by
                               0
scheme management
                           3103
scheme name
                          23014
permit
                           2439
construction year
                               0
extraction_type
                               0
extraction_type_group
                               0
extraction_type_class
                               0
management
                               0
                               0
management group
payment
                               0
                               0
payment_type
water_quality
                               0
quality_group
                               0
quantity
                               0
quantity_group
source
                               0
                               0
source_type
                               0
source class
waterpoint_type
                               0
waterpoint type group
                               0
dtype: int64
```

#Checking the percentage of missing values in each column
missing_percentage = X_train.isnull().mean() * 100
missing_percentage[missing_percentage > 0]

```
funder
                       6.057607
 installer
                       6.082874
 wpt name
                       0.002106
 subvillage
                       0.623237
 public_meeting
                       5.632290
 scheme management
                       6.533457
 scheme_name
                      48.456647
 permit
                       5.135386
 dtype: float64
```

dropping column Scheme_name , missing data is almost 50%
X_train = X_train.drop(columns= ['scheme_name'])

#filling all non-numerical columns values having null values with mode
X_train[X_train.select_dtypes(include=[object]).columns] = X_train.select_dtypes(include=[object])

C:\Users\Hp\AppData\Local\Temp\ipykernel_10552\765570030.py:2: FutureWarning: Downcastir X_train[X_train.select_dtypes(include=[object]).columns] = X_train.select_dtypes(include=[object]).

→

```
X_train.duplicated().sum()
X train.isna().sum().sum()
X_train.shape
→ (47494, 38)
X_train.columns
→ Index(['amount_tsh', 'date_recorded', 'funder', 'gps_height', 'installer',
            'longitude', 'latitude', 'wpt_name', 'num_private', 'basin',
            'subvillage', 'region', 'region_code', 'district_code', 'lga', 'ward',
            'population', 'public_meeting', 'recorded_by', 'scheme_management',
            'permit', 'construction_year', 'extraction_type',
            'extraction_type_group', 'extraction_type_class', 'management',
            'management_group', 'payment', 'payment_type', 'water_quality',
            'quality_group', 'quantity', 'quantity_group', 'source', 'source_type',
            'source_class', 'waterpoint_type', 'waterpoint_type_group'],
           dtype='object')
# dropping columns which are not necessary in our model prediction
X_train = X_train.drop(columns= ['wpt_name', 'num_private', 'recorded_by', 'date_recorded', '
X_train.shape
→→ (47494, 31)
X train.info()
→▼ <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 47494 entries, 0 to 47493
     Data columns (total 31 columns):
      #
         Column
                                 Non-Null Count Dtype
         -----
                                 -----
                                 47494 non-null float64
      0
          amount_tsh
      1
         funder
                                47494 non-null object
      2
         gps_height
                                47494 non-null int64
                                47494 non-null object
         installer
         longitude
                                47494 non-null float64
      5
         latitude
                                47494 non-null float64
         basin
                                47494 non-null object
      7
          region
                                47494 non-null object
                                47494 non-null int64
          region_code
      9
          district code
                                47494 non-null int64
                                47494 non-null int64
      10
         population
```

```
11 public meeting
                          47494 non-null
                                          bool
 12 scheme_management
                          47494 non-null
                                          object
 13 permit
                          47494 non-null bool
 14 construction year
                          47494 non-null int64
 15 extraction_type
                          47494 non-null object
 16 extraction_type_group 47494 non-null object
 17 extraction_type_class 47494 non-null object
                          47494 non-null object
 18 management
19 management group
                          47494 non-null
                                         object
20 payment
                          47494 non-null object
                          47494 non-null object
21 payment_type
 22 water_quality
                          47494 non-null object
23 quality_group
                          47494 non-null object
24 quantity
                          47494 non-null object
25 quantity_group
                          47494 non-null object
26 source
                          47494 non-null object
27 source_type
                          47494 non-null object
28 source class
                         47494 non-null object
                      47494 non-null
29 waterpoint_type
                                          object
30 waterpoint_type_group 47494 non-null
                                          obiect
dtypes: bool(2), float64(3), int64(5), object(21)
memory usage: 10.6+ MB
```

X_train.select_dtypes(exclude=["int64", "float64"]).columns

Onehotencoding

```
X_train_categorical = X_train.select_dtypes(exclude=["int64", "float64"])
ohe = OneHotEncoder(handle_unknown="ignore", sparse_output=False)

X_train_ohe = pd.DataFrame(
    ohe.fit_transform(X_train_categorical),
    #index is important to ensure we can concatenate with other columns
    index=X_train_categorical.index,
    # we are dummying multiple columns at once, so stack the names
    columns=np.hstack(ohe.categories_)
)
X_train_ohe
```


	0	A/co Germany	Aar	Abasia	Abc-ihushi Development Cent	Abd	Abdul	Abood	Abs	Aco/germany	•••
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
47489	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
47490	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
47491	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
47492	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
47493	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
47494 rd	ows ×	3791 colur	nns								
4											

Normalization

```
X_train_numerical = X_train.select_dtypes(include=["int64", "float64"])
scaler = MinMaxScaler()

X_train_scaled = pd.DataFrame(
    scaler.fit_transform(X_train_numerical),
    # index is important to ensure we can concatenate with other columns index=X_train_numerical.index,
    columns=X_train_numerical.columns
)
X_train_scaled
```


	amount_tsh	gps_height	longitude	latitude	region_code	<pre>district_code</pre>	populati
0	0.000143	0.760678	0.878073	0.637112	0.204082	0.0125	0.0052
1	0.000000	0.022238	0.880156	0.508598	0.000000	0.0750	0.0000
2	0.000000	0.022238	0.805545	0.220458	0.112245	0.0750	0.0000
3	0.000000	0.022238	0.844227	0.242006	0.112245	0.0875	0.0000
4	0.000857	0.383339	0.917896	0.481453	0.040816	0.0125	0.0039
47489	0.002857	0.137663	0.901399	0.246765	0.040816	0.0500	0.0083
47490	0.002857	0.637487	0.855902	0.161367	0.102041	0.0625	0.0011
47491	0.000000	0.017649	0.966024	0.534671	0.030612	0.0625	0.0327
47492	0.000000	0.022238	0.850574	0.733278	0.163265	0.0750	0.0000
47493	0.000000	0.477586	0.932612	0.724325	0.020408	0.0125	0.0000
47404 re	owa v 0 golumn	20					>

Concatenation

X_train_df = pd.concat([X_train_scaled, X_train_ohe], axis=1)
X_train_df

	amount_tsh	gps_height	longitude	latitude	region_code	district_code	populati
0	0.000143	0.760678	0.878073	0.637112	0.204082	0.0125	0.0052
1	0.000000	0.022238	0.880156	0.508598	0.000000	0.0750	0.0000
2	0.000000	0.022238	0.805545	0.220458	0.112245	0.0750	0.0000
3	0.000000	0.022238	0.844227	0.242006	0.112245	0.0875	0.0000
4	0.000857	0.383339	0.917896	0.481453	0.040816	0.0125	0.0039
47489	0.002857	0.137663	0.901399	0.246765	0.040816	0.0500	0.0083
47490	0.002857	0.637487	0.855902	0.161367	0.102041	0.0625	0.0011
47491	0.000000	0.017649	0.966024	0.534671	0.030612	0.0625	0.0327
47492	0.000000	0.022238	0.850574	0.733278	0.163265	0.0750	0.0000
47493	0.000000	0.477586	0.932612	0.724325	0.020408	0.0125	0.0000
47494 rd	ows × 3799 col	umns					
4							•

X_train_df.duplicated().sum()

₹ 855

▼ LOGISTIC REGRESSION MODEL

```
y_train.shape

→ (47494,)

print(y_train.dtype) # Should be numeric or categorical (e.g., int, float)
print(pd.Series(y_train).isnull().sum()) # Check for null values

→ int32
0

print(pd.Series(y_train).unique())

→ [0 2 1]
```

```
print(X_train_df.shape) # Should be (47520, n_features)
print(y_train.shape)
                         # Should be (47520,)
     (47494, 3799)
     (47494,)
X_train_df.columns = X_train_df.columns.astype(str)
print(X_train_df.dtypes.value_counts())
    float64
                3799
     Name: count, dtype: int64
logreg = LogisticRegression(fit_intercept=False, C=1e12, solver='liblinear')
model_log = logreg.fit(X_train_df, y_train)
model log
C:\Users\Hp\anaconda3\Lib\site-packages\sklearn\svm\_base.py:1237: ConvergenceWarning: L
       warnings.warn(
                                   LogisticRegression
     LogisticRegression(C=1000000000000.0, fit_intercept=False, solver='liblinear')
```

Model Evaluation

```
y_hat_train = logreg.predict(X_train_df)
train_residuals = np.abs(y_train - y_hat_train)
print(pd.Series(train_residuals, name="Residuals (counts)").value_counts())
print()
print(pd.Series(train_residuals, name="Residuals (proportions)").value_counts(normalize=True
     Residuals (counts)
     0
          28097
     2
          16044
           3353
     Name: count, dtype: int64
     Residuals (proportions)
     0
          0.591591
     2
          0.337811
          0.070598
     Name: proportion, dtype: float64
```

X_Test Data

```
# dropping columns which are not necessary in our model prediction or has missing values abc
X_test = X_test.drop(columns= ['wpt_name', 'num_private', 'recorded_by', 'date_recorded', 'su
#filling all non-numerical columns values having null values with mode
X test[X test.select dtypes(include=[object]).columns] = X test.select dtypes(include=[object])
#onehotencoding for categorical columns
X_test_categorical = X_test.select_dtypes(exclude=["int64", "float64"])
X test ohe = pd.DataFrame(
    ohe.transform(X_test_categorical),
    #index is important to ensure we can concatenate with other columns
    index=X_test_categorical.index,
    # we are dummying multiple columns at once, so stack the names
    columns=np.hstack(ohe.categories_)
)
#Normalization
X_test_numerical = X_test.select_dtypes(include=["int64", "float64"])
scaler = MinMaxScaler()
X_test_scaled = pd.DataFrame(
    scaler.fit_transform(X_test_numerical),
    # index is important to ensure we can concatenate with other columns
    index=X test numerical.index,
    columns=X_test_numerical.columns
)
#concatenation
X_test_df = pd.concat([X_test_scaled, X_test_ohe], axis=1)
X test df
```

C:\Users\Hp\AppData\Local\Temp\ipykernel_10552\1391562617.py:4: FutureWarning: Downcasti
 X_test[X_test.select_dtypes(include=[object]).columns] = X_test.select_dtypes(include=

	amount_tsh	gps_height	longitude	latitude	region_code	district_code	populati
0	0.000000	0.033174	0.793240	0.688925	0.163265	0.0625	0.00
1	0.000000	0.033174	0.814249	0.572276	0.132653	0.0750	0.00
2	0.000072	0.650571	0.880105	0.633074	0.204082	0.0125	0.01
3	0.000000	0.033174	0.821888	0.216387	0.112245	0.0750	0.00
4	0.000362	0.441946	0.848579	0.616771	0.122449	0.0125	0.02
11874	0.001449	0.687431	0.857796	0.153262	0.102041	0.0625	0.05
11875	0.003623	0.715076	0.908797	0.718680	0.010204	0.0250	0.01
11876	0.000000	0.033174	0.757487	0.784715	0.173469	0.3750	0.00
11877	0.000000	0.269812	0.932341	0.475600	0.040816	0.0750	0.00
11878	0.000000	0.560265	0.949343	0.583469	0.030612	0.0125	0.00
11879 rows × 3799 columns							
4							•

```
X_test_df.columns = X_test_df.columns.astype(str)
print(X_train_df.shape) # Should be (n_samples_train, n_features)
print(X_test_df.shape) # Should be (n_samples_test, n_features)
→ (47494, 3799)
     (11879, 3799)
y_hat_test = logreg.predict(X_test_df)
test_residuals = np.abs(y_test - y_hat_test)
print(pd.Series(test_residuals, name="Residuals (counts)").value_counts())
print(pd.Series(test_residuals, name="Residuals (proportions)").value_counts(normalize=True)
→ Residuals (counts)
     0
          7214
     2
          3789
           876
     Name: count, dtype: int64
     Residuals (proportions)
          0.607290
```

2 0.318966 0.073744

Name: proportion, dtype: float64

→ Evaluation Matrics

```
y_test.shape
→ (11879,)
y_hat_test.shape
→ (11879,)
# classification report
from sklearn.metrics import classification_report
report = classification_report(y_true=y_test,y_pred=y_hat_test)
print(report)
nrecision recall f1-score sunnort
```

		precision	recall	T1-Score	Support
	0	0.60	0.87	0.71	6456
	1	0.10	0.00	0.01	851
	2	0.63	0.35	0.45	4572
	accuracy			0.61	11879
	macro avg	0.44	0.41	0.39	11879
	weighted avg	0.58	0.61	0.56	11879

SMOTE

```
y_train= pd.Series(y_train)
y_train.value_counts()
    0
          25783
     2
          18247
           3464
     Name: count, dtype: int64
```

import matplotlib.pyplot as plt from collections import Counter

```
# Assuming y_train is your target variable before SMOTE
# Calculate class distribution
class_distribution_before = Counter(y_train)

# Display the class distribution
print("Class distribution before SMOTE:", class_distribution_before)

# Visualize the class distribution
plt.bar(class_distribution_before.keys(), class_distribution_before.values())
plt.xlabel('Classes')
plt.ylabel('Count')
plt.title('Class Distribution Before SMOTE')
plt.show()
```

Class distribution before SMOTE: Counter({0: 25783, 2: 18247, 1: 3464})

from imblearn.over_sampling import SMOTE

```
y_train = pd.Series(y_train)

print("X_train_df type:", type(X_train_df))
print("y_train type:", type(y_train))
print("X_train_df shape:", X_train_df.shape)
print("y_train shape:", y_train.shape)
```

```
→ X_train_df type: <class 'pandas.core.frame.DataFrame'>
     y_train type: <class 'pandas.core.series.Series'>
     X_train_df shape: (47494, 3799)
     y_train shape: (47494,)
print(y_train.unique())
→ [0 2 1]
y_train = y_train.astype(str) # Convert to strings
print("X_train_df type:", type(X_train_df))
print("X_train_df shape:", X_train_df.shape)
print("y_train type:", type(y_train))
print("y_train shape:", y_train.shape)
print("y_train unique values:", y_train.unique())
→ X_train_df type: <class 'pandas.core.frame.DataFrame'>
     X_train_df shape: (47494, 3799)
     y_train type: <class 'pandas.core.series.Series'>
     y_train shape: (47494,)
     y_train unique values: ['0' '2' '1']
# Convert y_train to integers
y_train = y_train.astype(int)
y_train.name
# Initialize SMOTE
smote = SMOTE(random_state=42)
# Apply SMOTE
X_train_smote, y_train_smote = smote.fit_resample(X_train_df, y_train)
from collections import Counter
import matplotlib.pyplot as plt
class_distribution = Counter(y_train_smote)
plt.bar(class_distribution.keys(), class_distribution.values())
plt.title("Class Distribution After SMOTE")
plt.xlabel("Classes")
```

plt.ylabel("Count")
plt.show()

→

model = LogisticRegression(max_iter=500)

Start coding or generate with AI.

model_smote = model.fit(X_train_smote,y_train_smote)

C:\Users\Hp\anaconda3\Lib\site-packages\sklearn\linear_model_logistic.py:469: Converger
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression

n_iter_i = _check_optimize_result(

y_train_smote.value_counts()

9 25783 2 25783 1 25783

Name: count, dtype: int64

Start coding or generate with AI.

✓ AUC

```
from sklearn.metrics import roc_auc_score
from sklearn.preprocessing import label_binarize

# Binarize the output (One-vs-Rest format)
classes = sorted(set(y_test))
y_test_bin = label_binarize(y_test, classes=classes)

# Get decision scores
y_score = model.decision_function(X_test_df)

# Calculate AUC for micro and macro averages
micro_auc = roc_auc_score(y_test_bin, y_score, average="micro")
macro_auc = roc_auc_score(y_test_bin, y_score, average="macro")

print(f"Micro-Averaged AUC: {micro_auc:.2f}")
print(f"Macro-Averaged AUC: {macro_auc:.2f}")

Micro-Averaged AUC: 0.64
Macro-Averaged AUC: 0.64
Macro-Averaged AUC: 0.61
```

Random Forest

```
from sklearn.ensemble import RandomForestClassifier
model_rfc = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=1)
model_rfc.fit(X_train_smote, y_train_smote)
predictions_rfc = model_rfc.predict(X_test_df)
```

report_rfc = classification_report(y_true=y_test,y_pred=predictions_rfc)
print(report_rfc)

→		precision	recall	f1-score	support
	0	0.66	0.45	0.54	6456
	1	0.11	0.44	0.17	851
	2	0.57	0.49	0.52	4572
	accuracy			0.46	11879
	macro avg	0.44	0.46	0.41	11879

```
weighted avg
```

0.58

0.46

0.51

11879

```
# Get predicted probabilities for the test set
probabilities_rfc = model_rfc.predict_proba(X_test_df)

# Binarize the target variable for AUC calculation
classes = sorted(set(y_test))
y_test_rfc = label_binarize(y_test, classes=classes)

# Calculate micro- and macro-averaged AUC
micro_auc = roc_auc_score(y_test_rfc, probabilities_rfc, average="micro", multi_class="ovr")
macro_auc = roc_auc_score(y_test_rfc, probabilities_rfc, average="macro", multi_class="ovr")
print(f"Micro-Averaged AUC (rfc): {micro_auc:.2f}")
print(f"Macro-Averaged AUC (rfc): {macro_auc:.2f}")

Micro-Averaged AUC (rfc): 0.66
Macro-Averaged AUC (rfc): 0.63
```

Decision Trees

```
# Initialize the Decision Tree Classifier
model_dt = DecisionTreeClassifier(criterion="gini", max_depth=5, random_state=42)

# Fit the model
model_dt.fit(X_train_smote, y_train_smote)

# Make predictions
y_pred_train_dt = model_dt.predict(X_train_smote)
y_pred_test_dt = model_dt.predict(X_test_df)

# Evaluate the model
print("Train Accuracy:", accuracy_score(y_train_smote, y_pred_train_dt))
print("Test Accuracy:", accuracy_score(y_test, y_pred_test_dt))

Train Accuracy: 0.42668942067770754
Test Accuracy: 0.5693240171731627
```