Properties of Functions:

Let $f: A \to B$ be a function.

• f is injective if for any $x_1, x_2 \in A$, $x_1 \neq x_2$ implies that $f(x_1) \neq f(x_2)$.

f is surjective if f(A) = B.

• f is bijective if it is both injective and surjective.

Inverse Function:

Given a bijective function $f:A\to B$, define the *inverse function* of f, denoted by $f^{-1}:B\to A$, as follows:

$$f^{-1}(b) = a$$
 if $f(a) = b$.

Composition Function:

Given $f: A \to B$ and $g: B \to C$, define the *composi* tion function $g \circ f : A \to C$ as follows:

$$(g \circ f)(a) = g(f(a)).$$

Well-ordering Principle of \mathbb{N} :

For any nonempty subset $S\subseteq \mathbb{N},$ S has a minimal element, that is, there exists $m \in S$ such that for any $s \in S, m \leq s$.

Principle of Induction:

Suppose that $S\subset \mathbb{N}$ satisfies the following:

 $1. \ 1 \in S.$

2. For any $k \in S$, $k + 1 \in S$.

Then, $S = \mathbb{N}$.

Principle of Induction (in Practice):

Suppose we want to prove a statement P(n) for any $n \in \mathbb{N}$. It suffices to prove the following:

1. P(1) holds; 2. If P(k) holds, then P(k+1) holds. Principle of Strong Induction:

Suppose we want to prove a statement P(n) for any $n \in \mathbb{N}$. It suffices to prove the following:

1. P(1) holds; 2. If for any $k' \leq k$, P(k') holds, then P(k+1) holds

Finite and Infinite Sets: Ø has 0 elements and is finite.

A nonempty set S is finite if there exists a maximal

 $n \in \mathbb{N}$, called the *cardinality* of S, denoted by |S|, such that S has n elements. Otherwise, S is infinite. Cardinality Inequality: For $n \in \mathbb{N}$, suppose there exist n finite sets

 S_1, S_2, \ldots, S_n . Then the union $S = \bigcup_{i=1}^n S_i$ is also

finite, and

Equality holds if and only if $S_i \cap S_j = \emptyset$ for any

$$|S| \ge \sum_{i=1}^{|S_i|} |S_i|$$
 $S_i = 1$

 $1 \leq i, j \leq n \text{ with } i \neq j.$ Countability:

A set S is countable if there exists a bijective map Any infinite subset of \mathbb{N} , \mathbb{Z} , and \mathbb{Q} are countable. The

set of real numbers \mathbb{R} is uncountable. Countable Union of Countable Sets:

For any $j \in \mathbb{N}$, suppose S_i is countable. Then

$$S = \bigcup_{j=1}^{\infty} S_j$$

is also countable

If $\{a_n\}$ has two subsequences with different limits, then $\{a_n\}$ is divergent. If $\{a_n\}$ is convergent, then

 $\lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} a_n.$ Monotonic Sequences:

A sequence $\{a_n : n \in \mathbb{N}\}$ is increasing (or decreasing) if

$$a_n \le a_{n+1}$$
, (or $a_n \ge a_{n+1}$).

Monotone Convergence Theorem: Suppose sequence $\{a_n\}$ is increasing (decreasing) and bounded from above (below). Then $\{a_n\}$ is convergent.

Monotone Subsequence Theorem:

Any sequence $\{a_n\}$ admits a monotone subsequence

Bolzano-Weierstrass Theorem:

Any bounded sequence $\{a_n\}$ admits a convergent subsequence $\{a_{n_k}\}$.

Cauchy Sequences: $\{a_n\}$ is a Cauchy sequence if

 $\forall \epsilon>0, \ \exists N\in\mathbb{N} \ \text{ s.t. } \forall m,n\geq N,$

$$|a_m - a_n| < \epsilon.$$

Cauchy Convergence Criterion:

A sequence is convergent if and only if it is a Cauchy sequence.

Contractive Sequences:

A sequence $\{a_n\}$ is *contractive* if there exists a constant C, 0 < C < 1, such that

$|x_{n+2} - x_{n+1}| \le C|x_{n+1} - x_n| \quad \forall n \in \mathbb{N}.$

any contractive sequence is a Cauchy sequence Stolz-Cesàro Theorem:

 $\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}=A\ \Rightarrow\ \lim_{n\to\infty}\frac{a_n}{b_n}=A.$

$$\lim_{n\to\infty}a_n=A\ \Rightarrow\ \lim_{n\to\infty}\frac{a_1+\dots+a_n}{n}=A.$$
 Limits to Infinity:

A sequence $\{a_n\}$ tends to $+\infty$ if

 $\forall C \in \mathbb{R}, \exists N \in \mathbb{N} \text{ s.t. } \forall n > N, \ a_n > C.$

A sequence
$$\{a_n\}$$
 tends to $-\infty$ if
$$\forall C \in \mathbb{R}, \ \exists N \in \mathbb{N} \ \text{ s.t. } \forall n \geq N, \ a_n < C.$$

A sequence $\{a_n\}$ tends to ∞ if $\{|a_n|\}$ tends to $+\infty$.

Squeeze Theorem:

Let sequences $\{a_n\}$, $\{b_n\}$, satisfy $a_n \leq b_n$

Suppose
$$\lim_{n\to\infty} a_n = +\infty$$
, then $\lim_{n\to\infty} b_n = +\infty$;
Suppose $\lim_{n\to\infty} b_n = -\infty$, then $\lim_{n\to\infty} a_n = -\infty$.

• Suppose $\lim_{n\to\infty} b_n = -\infty$, then $\lim_{n\to\infty} a_n = -\infty$ Limits of Reciprocals:

Suppose $a_n \neq 0$ and $\lim_{n \to \infty} a_n = \infty$. Then $\lim_{n \to \infty} \frac{1}{a_n} = 0$.

Suppose $a_n \neq 0$ and $\lim_{n\to\infty} a_n = 0$. Then $\lim_{n\to\infty} \frac{1}{a_n} = \infty$.

Limit Superior and Limit Inferior: Suppose $\{a_n\}$ is bounded.

The *limit superior* of $\{a_n\}$ is defined as

 $\limsup a_n := \lim_{n \to \infty} \sup \{a_k : k \ge n\}.$

The limit inferior of
$$\{a_n\}$$
 is defined as
$$\liminf_{n\to\infty} a_n := \lim_{n\to\infty} \inf\{a_k : k \ge n\}.$$

Algebraic Properties of a Field:

1. $\forall a, b \in \mathbb{F}, a + b = b + a \in \mathbb{F};$

 \mathbb{Q} is a field, \mathbb{N} and \mathbb{Z} are not fields.

Order Property of \mathbb{Q} :

• a = b if a - b = 0.

the following holds:

then ab < 0, $\frac{a}{b} < 0$.

Supremum Property:

• If a > b > 0, then $\frac{1}{b} > \frac{1}{a} > 0$.

• a > b if a - b is positive; • a < b if a - b is negative;

For $a, b \in \mathbb{Q}$,

 $0 \in \mathbb{F}$ satisfies that for any $a \in \mathbb{F}$, a + 0 = 0 + a = a; 4. $\forall a \in \mathbb{F}, \exists -a \in \mathbb{F} \text{ such that } a + (-a) = (-a) + a = 0;$ 5. $\forall a, \bar{b} \in \mathbb{F}, a \times b = b \times a \in \mathbb{F};$

7. $1 \in \mathbb{F}$ satisfies that for any $a \in \mathbb{F}$, $a \times 1 = 1 \times a = a$; 8. $\forall a \in \mathbb{F} \setminus \{0\}$, $\exists \frac{1}{a} \in \mathbb{F} \setminus \{0\}$ such that $a \times \frac{1}{a} = \frac{1}{a} \times a = 1$; 9. $\forall a, b, c \in \mathbb{F}$, $a \times (b + c) = a \times b + a \times c$.

any nonempty set \mathbb{F} with operators $(+, \times)$ satisfying

The order in $\mathbb Q$ is a total order, that is, exactly one of

(a > b); (a < b); (a = b).

If a ≥ b, and c ≥ d, then a + c ≥ b + d, with equality holding if and only if a = b and c = d.
If both a and b are positive (or negative), then ab > 0,

 $\frac{a}{b} > 0$.
• If one of a and b is positive and the other is negative

• If $a > (\geq) b$, and $b > (\geq) c$, then $a > (\geq) c$.

• If $a > (\geq) b$, and c > 0, then $ac > (\geq) bc$.

• If $a > (\ge) b$, and c < 0, then $ac < (\le) bc$. • If $a \ge b > 0$, $c \ge d > 0$, then $ac \ge bd > 0$.

 $\forall a, b, c \in \mathbb{F}, (a+b)+c=a+(b+c) \in \mathbb{F};$

 $\forall a, b, c \in \mathbb{F}, (a \times b) \times c = a \times (b \times c) \in \mathbb{F};$

1. β is an upper bound of E; 2. For any $\beta' < \beta$, β' is not an upper bound of E; then β is the supremum of E, denoted by

Given an ordered set S, a subset $E\subseteq S$ is bounded from above if there exists a unique $\beta\in S$ such that

 $e \leq \beta$ for all $e \in E$.

The element β is an upper bound of E. If $\beta \in S$ satisfies:

$$\beta = \sup E$$
.

An ordered set S has the supremum property if for any subset $E \subseteq S$, if E is bounded from above, then $\sup E$ exists.

 $\mathbb Q$ does not have the supremum property. The infimum of E, denoted by $\inf E$, is defined analo-

For any $x,y\in\mathbb{F}$ with x,y>0, there exists $n\in\mathbb{N}$ such

 $\mathbb Q$ has the Archimedean property.

Dedekind Cuts: A pair (A, A') is a *Dedekind cut* if it satisfies:

• $A, A' \neq \emptyset$; • $A \cap A' = \emptyset$ and $\mathbb{Q} = A \cup A'$;

For any a ∈ A and a' ∈ A', a < a';
For any a ∈ A, there exists b ∈ A such that b > a.

Real Number System, \mathbb{R} : $\mathbb{R} := \{(A, A') \mid (A, A') \text{ is a Dedekind cut}\}.$

Order Property of \mathbb{R} :

For $A, B \in \mathbb{R}$,

• A < B if $A \subset B$;

• A > B if $B \subset A$. The order in \mathbb{R} is a total order.

 \mathbb{R} has the supremum property.

Limit Point: A number A is a limit point of a sequence $\{a_n\}$ if there

exists a subsequence $\{b_k = a_{n_k}\}$ such that

$$\lim_{k \to \infty} b_k = A.$$

Let $\{a_n\}$ be a bounded sequence and let E denote the set of limit points of $\{a_n\}$. Then both the limit superior and the limit inferior of $\{a_n\}$ are contained in E, and $\limsup a_n = \sup E, \quad \liminf_{n \to \infty} a_n = \inf E.$

$$n \to \infty$$
 $n \to \infty$

$$\inf_{n} a_n \le \liminf_{n \to \infty} a_n \le \limsup_{n \to \infty} a_n \le \sup_{n} a_n.$$

Equality holds if and only if the sequence is convergent nth-Term Test: Suppose $\sum_{i=1}^{\infty} a_i$ is convergent. Then

 $\lim_{n\to\infty} a_n = 0.$

Cauchy Criterion for Series: $\sum_{i=1}^{\infty} a_i$ is convergent if

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N} \ \text{ s.t. } \forall m > n \geq N,$$

$$\left|\sum_{k=n+1}^m a_k\right| < \epsilon.$$
 Monotone Convergence Theorem:

Suppose $a_i \geq 0$ for any $i \in \mathbb{N}$, and

$$\exists C>0,\ \sum_{i=1}^n a_i\leq C\ \forall n\in N.$$
 Then $\sum_{i=1}^\infty a_i$ is convergent. Suppose $a_i\geq 0$, and $\sum_{i=1}^\infty a_i$ is divergent. Then

 $\sum_{i=1}^{n} a_i = +\infty.$

Absolute Convergence:

If $\sum_{n=1}^{\infty} a_n$ is convergent but not absolutely convergent, it is conditionally convergent. Comparison Test:

 $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ is convergent.

Suppose $\{a_n\}$ and $\{b_n\}$ satisfy that

 $\exists K \in \mathbb{N}, \lambda > 0, \text{ s.t. } \forall n \geq K,$

$$0 \le a_n \le \lambda b_n.$$

• if $\sum_{n=1}^{\infty} b_n$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.

• if $\sum_{n=1}^{\infty} a_n$ is divergent, then $\sum_{n=1}^{\infty} b_n$ is divergent.

Limit Comparison Test: Suppose $\{a_n\}$ and $\{b_n\}$ are both positive sequences and

$$\lim_{n o \infty} rac{a_n}{b_n} = \lambda.$$

• If $\lambda > 0$, then $\sum_{n=1}^{\infty} a_n$ is convergent if and only if $\sum_{n=1}^{\infty} b_n$ is convergent. • If $\lambda = 0$, then $\sum_{n=1}^{\infty} b_n$ convergent implies $\sum_{n=1}^{\infty} a_n$ is convergent. $\sum_{n=1}^{\infty} a_n$ divergent implies $\sum_{n=1}^{\infty} b_n$ is divergent.

For p > 1, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent.

p-series Test:

Algebraic Operators in \mathbb{R} : Let $m_1 = (M_1, M'_1)$ and $m_2 = (M_2, M'_2)$ be elements of \mathbb{R} . The sum of m_1 and m_2 is defined as

$$m_1 + m_2 = (M_3, M_3'),$$

where

$$M_3 := \{ a_1 + a_2 \mid a_1 \in M_1, a_2 \in M_2 \}.$$

For m = (M, M'), the additive inverse of m is defined

If m ∈ □, then −m is defined as in □;

If $m \notin \mathbb{Q}$, then

$$-m = (-M', -M), \label{eq:mass}$$
 where

$$-M' := \{ -m' \mid m' \in M' \}.$$

The product of m_1 and m_2 is defined as

$$m_1 \cdot m_2 = m_3 = (M_3, M_3'),$$

where the set M_3 is given by: - If either $m_1=0$ or $m_2=0$, then $m_3=0$; - If both $m_1>0$ and $m_2>0$, then

$$M_3 = \{ xy \mid x, y \ge 0, x \in M_1, y \in M_2 \}$$

 $\cup \{x \mid x < 0\}.$ - If $m_1 > 0$ and $m_2 < 0$, then

$$m_1 > 0$$
 and $m_2 < 0$, then $m_2 = -(m_1 \cdot (-m_2))$:

 $m_3 = -(m_1 \cdot (-m_2));$ If $m_1 < 0$ and $m_2 > 0$, then

$$m_3 = -((-m_1) \cdot m_2);$$

If $m_1 < 0$ and $m_2 < 0$, then

$$m_3 = (-m_1) \cdot (-m_2).$$

For $m = (M, M') \neq 0$, the reciprocal of m is defined as

$$\frac{1}{m} = (B, B').$$
s given by:

where the set B is given by:

If $m \in \mathbb{Q}$, then $\frac{1}{m}$ is defined as in \mathbb{Q} ;

- If
$$m \notin \mathbb{Q}$$
 and $m > 0$, then

$$B = \left\{ \frac{1}{x} \mid x > 0, x \in M' \right\} \cup \{x \mid x \le 0\}.$$
 $m < 0$, then

 $(\mathbb{R}, +, \cdot)$ forms a field.

 $\lfloor c \rfloor \in \mathbb{Z}$, such that

 $\mathbb R$ has the Archimedean property. For any $c \in \mathbb{R}$, there exists a unique integer, denoted by

Archimedean Property of \mathbb{R} :

 $\lfloor c \rfloor \le c < \lfloor c \rfloor + 1.$ For any x > 0, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < x$.

Density of $\mathbb Q$ in $\mathbb R$: For any a < b, there exists $r \in \mathbb{Q}$ such that a < r < b.

Nested Interval Property: Let
$$\{I_n = [a_n, b_n] : n \in \mathbb{N}\}$$
 be

Let $\{I_n=[a_n,b_n]:n\in\mathbb{N}\}$ be a sequence of closed intervals such that for any $n\in\mathbb{N},\ I_{n+1}\subseteq I_n,$ then there exists $x \in \mathbb{R}$ such that

$$x \in \bigcap_{n=1}^{\infty} I_n.$$

 $(1+x)^n \ge 1 + nx.$

Bernoulli's Inequality: For x > -1 and $n \in \mathbb{N}$,

Cauchy Condensation Test:

Let $\{a_n\}$ be a positive decreasing sequence. Define $b_k := 2^k a_{2^k}$. rangement of $\{a_n\}$ if Then $\sum_{n=1}^{\infty} a_n$ is convergent if and only if $\sum_{k=1}^{\infty} b_k$ is convergent.

Let $\{a_n\}$ be a positive decreasing sequence and $\lim_{n\to\infty} a_n = 0$. Then $\sum (-1)^{n-1} a_n$ is convergent.

Root Test:

Leibniz Test:

Let $\{a_n\}$ be a sequence. $\bullet \ \ \text{If} \ \exists \ 0 \leq r < 1, \ K \in \mathbb{N} \ \text{s.t.}$

 $|a_n|^{1/n} \le r \quad \forall n \ge K,$

$$\sum_{n=1}^{\infty} a_n \text{ is absolutely convergent.}$$

$$|a_n|^{1/n} \ge 1 \quad \forall n \ge K,$$

• If $\exists K \in \mathbb{N} \text{ s.t.}$

$$\sum_{n=1}^{\infty} a_n \text{ is divergent.}$$

Ratio Test: Let $\{a_n\}$ be a sequence with non-zero terms. • If $\exists 0 < r < 1, K \in \mathbb{N}$ s.t.

 $\left| \frac{a_{n+1}}{r} \right| \le r \quad \forall n \ge K,$

• If $\exists K \in \mathbb{N}$ s

$$\left| \frac{a_{n+1}}{a_n} \right| \ge 1 \quad \forall n \ge K,$$
$$\sum_{n=0}^{\infty} a_n \text{ is divergent.}$$

 $\sum a_n$ is absolutely convergent.

Euler's Number, e:

$$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$$

$$\sum_{n=0}^{\infty}\frac{1}{n!}=e,\quad e\notin\mathbb{Q}$$
 Abel's Summation Formula:

Let $A_n = \sum_{k=1}^n a_k$, $r_k = \sum_{n=k}^\infty a_n$. For any $q > p, \sum_{n=p}^q a_n b_n$ can be expressed as 1. $A_q b_q - A_{p-1} b_p + \sum_{n=p}^{q-1} A_n (b_n - b_{n+1})$ 2. $r_p b_{p-1} - r_{q+1} b_{q+1} + \sum_{k=p}^{q+1} r_k (b_k - b_{k-1})$

Suppose
$$\sum_{i=1}^{\infty}a_i$$
 is convergent. Let $\{b_n\}$ be a positive decreasing sequence and $\lim_{n\to\infty}b_n=0$, then

Abel's Test:

Dirichlet's Test:

Abel's Test: Suppose
$$\sum_{i=1}^{\infty}a_i$$
 is convergent. Let $\{b_n\}$ be a monotone and bounded sequence, then

 $\sum a_n b_n$ is convergent.

 $\sum a_n b_n$ is convergent.

QM-AM-GM-HM Inequality:

For $x_i > 0$ $(i = 1, \dots, n)$, the quadratic mean (QM), arithmetic mean (AM), geometric mean (GM), and har-

$$\underbrace{\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}}}_{\text{QM}} \ge \underbrace{\frac{1}{n}\sum_{i=1}^{n}x_{i}}_{\text{AM}} \ge \underbrace{\left(\prod_{i=1}^{n}x_{i}\right)^{1/n}}_{\text{GM}} \ge \underbrace{\frac{n}{\sum_{i=1}^{n}\frac{1}{x_{i}}}}_{\text{HM}}$$

Triangle Inequality:

For $a, b \in \mathbb{R}$,

Cauchy-Schwarz Inequality:

$$\left(\sum_{n=0}^{n} a_n b_1\right)^2 < \left(\sum_{n=0}^{n} a_n^2\right) \left(\sum_{n=0}^{n} b_n^2\right)$$

Equality holds if and only if there exists $k \in \mathbb{R}$ such

A sequence is a function $a: \mathbb{N} \to \mathbb{R}$

Uniqueness of Limits:

Boundedness of Limits:

Suppose $\{a_n\}$, $\{b_n\}$ are convergent sequences, and

Limit Laws:

Suppose $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$. Then: 1. $\lim_{n \to \infty} (a_n \pm b_n) = a \pm b;$

Then,

Subsequences:

and $n_k < n_{k+1}$.

such that

Subsequence Limit Theorem:

3. If $b_n \neq 0$ and $b \neq 0$, then $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$. Squeeze Theorem:

 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = A.$

subsequence of $\{a_n\}$ if for any $k \in \mathbb{N}$, $b_k = a_{n_k},$ where $\{n_k : k \in \mathbb{N}\}$ satisfies that for any $k \in \mathbb{N}$, $n_k \in \mathbb{N}$

Let $\{a_n\}$ be a sequence. A sequence $\{b_n\}$ is a rear

 $b_n = a_{f(n)},$

where $f: \mathbb{N} \to \mathbb{N}$ is a bijective map.

se
$$\sum_{i=1}^{\infty} a_i$$
 is absolutely convergent. Le rangement of $\{a_n\}$. Then

$$\sum_{n=1}^{\infty} b_n$$
 is absolutely convergent, and

Suppose $\sum_{i=1}^{\infty} a_i$ is conditionally convergent. Then for any $A \in \mathbb{R}$, there exists a rearrangement $\{b_n\}$ of $\{a_n\}$

 $V_{\epsilon}(x) := (x - \epsilon, x + \epsilon).$

sequence $\{a_n\}$ such that $a_n \in A$, $a_n \neq x$, and

 $\lim_{n \to \infty} a_n = x.$

of A. Suppose $L \in \mathbb{R}$ satisfies that $\forall \epsilon > 0, \ \exists \delta > 0 \ \text{s.t.}$

limits of sequences. The following theorems apply: 1. Uniqueness of Limits;

4. Limit Laws;

 $f(x) \le C$, $\forall x \in A \cap (V_{\delta}(c) \setminus \{c\})$.

$$\underbrace{\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}}}_{\text{QM}} \geq \underbrace{\frac{1}{n}\sum_{i=1}^{n}x_{i}}_{\text{AM}} \geq \underbrace{\left(\prod_{i=1}^{n}x_{i}\right)^{1/n}}_{\text{GM}} \geq \underbrace{\frac{n}{\sum_{i=1}^{n}\frac{1}{x}}}_{\text{HM}}$$

 $||a| - |b|| \le |a + b| \le |a| + |b|.$

For $a_1, a_2, ..., a_n, b_1, b_2, ..., b_n \in \mathbb{R}$,

that $a_i = kb_i$ for all $i = 1, \ldots, n$.

A sequence $\{a_n:n\in\mathbb{N}\}$ converges to $A\in\mathbb{R}$, or that A is the limit of $\{a_n:n\in\mathbb{N}\}$ as $n\to\infty$, if

Otherwise, it is divergent.

A convergent sequence is bounded, that is, there exists

 $a_n \geq b_n$ for all n. Then, $\lim_{n\to\infty} a_n \ge \lim_{n\to\infty} b_n.$

 $2. \lim_{n \to \infty} (a_n b_n) = ab;$

 $a_n \leq b_n \leq c_n$.

Rearrangements:

Suppose $\sum_{i=1}^{\infty} a_i$ is absolutely convergent. Let $\{b_n\}$ be a rearrangement of $\{a_n\}$. Then

Riemann Rearrangement Theorem:

Limit Points: For $x \in \mathbb{R}$ and $\epsilon > 0$, denote

 $\forall \epsilon > 0, \quad A \cap (V_{\epsilon}(x) \setminus \{x\}) \neq \emptyset.$ $x \in \mathbb{R}$ is a limit point of A if and only if there exists a

Sequential Criterion of Limits:

 $\left(\sum_{i=1}^n a_i b_i\right)^2 \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right).$

Limits of Sequences:

$$kb_i$$
 for all $i=1,\ldots,n$.

Sequences:

 $\forall \epsilon>0, \ \exists N\in\mathbb{N} \ \text{ s.t. } \forall n\geq N, \ |a_n-A|<\epsilon.$

If a sequence has a limit, the sequence is convergent.

If a sequence is convergent, then its limit is unique

C > 0 such that $|a_n| \leq C$ for all $n \in \mathbb{N}$. Order Preserving Theorem:

Squeeze Theorem:
Let sequences
$$\{a_n\}$$
, $\{b_n\}$, $\{c_n\}$ satisfy

Given a sequence $\{a_n:n\in\mathbb{N}\},\ \{b_k:k\in\mathbb{N}\}$ is a

Let $\{b_k = a_{n_k}\}$ be a subsequence of $\{a_n\}$. Suppose $\lim_{n \to \infty} a_n = A$. Then $\lim_{k \to \infty} b_k = A$.

Absolute Convergence:
Suppose
$$\sum_{i=1}^{\infty} a_i$$
 is absolutely convergent. Let a rearrangement of $\{a_n\}$. Then

 $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n.$

 $\sum_{n=1}^{\infty} b_n = A.$

Let $A \subset \mathbb{R}$ be a nonempty subset of \mathbb{R} . A point $x \in \mathbb{R}$ is a limit point of A if

$$\forall \epsilon > 0, \ \exists \delta > 0 \ \text{s.t.}$$

Let $f: A \to \mathbb{R}$ be a function and let c be a limit point

3. Order Preserving Theorem; 5. Squeeze Theorem.

• Suppose $\lim_{x \to c} f(x) = L > 0$. Then

2. Boundedness in a Neighbourhood;

Sign Preserving Theorem:

 $\lim_{n\to\infty} a_n = c$, then $\lim_{n\to\infty} f(a_n) = L$.

 $\exists \delta > 0, C > 0 \text{ s.t.}$

 $f(x) \ge C$, $\forall x \in A \cap (V_{\delta}(c) \setminus \{c\})$.

 $\lim_{x \to c} f(x) = L.$ If f does not have a limit at a limit point c of A, then

 $|f(x) - L| < \epsilon, \quad \forall x \in A \cap (V_{\delta}(c) \setminus \{c\}).$ Then L is the limit of f at c, and denote

1. $\lim_{x \to c} f(x) = L;$ 2. For any sequence $\{a_n\} \subset A \setminus \{c\}$ such that

of A. The following statements are equivalent:

f is divergent at c. The limits of functions are defined analogously to the

Let $f:A\to\mathbb{R}$ be a function and let c be a limit point

• Suppose $\lim_{x\to c} f(x) = L < 0$. Then

 $\exists \delta>0,\ C<0\ \text{ s.t.}$

Limit of Functions: Let $f:A \to \mathbb{R}$ be a function and let c be a limit point

One-sided Limtis:

Let $f:A \to \mathbb{R}$ be a function, and let c be a limit point of $A \cap (-\infty, c)$. If $L \in \mathbb{R}$ satisfies that

$$\forall \epsilon > 0, \ \exists \delta > 0 \ \text{s.t.}$$

 $|f(x) - L| < \epsilon, \quad \forall x \in A \cap (c - \delta, c),$

then
$$L$$
 is the $left\ limit$ of f at c , and denote

 $\lim f(x) = L.$

of
$$A \cap (c, +\infty)$$
. If $L \in \mathbb{R}$ satisfies that $\forall \epsilon > 0, \ \exists \delta > 0 \ \text{s.t.}$

Let $f: A \to \mathbb{R}$ be a function, and let c be a limit point

 $|f(x) - L| < \epsilon, \quad \forall x \in A \cap (c, c + \delta),$ then L is the $right\ limit$ of f at c, and denote

$$\lim_{x \to 0} f(x) = L.$$

 $\lim_{x \to 0} f(x) = L.$

$$\lim_{x \to c^+} f(x) = L.$$

The one-sided limits of functions are defined analogously to the limits of sequences. The following theorems ap-

- Uniqueness of Limits;
 Boundedness in a Neighbourhood;
- 3. Order Preserving Theorem;
- Limit Laws;
 Squeeze Theorem;
- Sequential Criterion;
- Sign-Preserving Theorem.
- Two-sided Limits Theorem:

The following statements are equivalent:

1. $\lim_{x \to c} f(x) = L;$

2. $\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = L$.

Infinite Limits: Let $f:A\to\mathbb{R}$ and let c be a limit point of A.

$\bullet \ \ \text{If} \ \forall L>0, \ \exists \delta>0 \ \ \text{s.t.}$

f(x) > L, $\forall x \in A \cap (V_{\delta}(c) \setminus \{c\})$,

$$\lim_{x\to c} f(x) = +\infty$$
• If $\forall L>0, \ \exists \delta>0 \ \text{ s.t.}$

 $f(x) < -L, \quad \forall x \in A \cap (V_{\delta}(c) \setminus \{c\}),$

then

$$\lim_{x\to c} f(x) = -\infty$$
 • $\forall L>0, \; \exists \delta>0 \; \text{ s.t.}$

$$|f(x)| > L, \quad \forall x \in A \cap (V_{\delta}(c) \setminus \{c\}).$$

$$\lim_{x \to c} f(x) = \infty$$

The infinite limits (and one-sided infinite limits) are defined analogously to the limits of sequences. following theorems apply:

- 1. Uniqueness of Limits;
- Boundedness of Limits;
 Order Preserving Theorem;
- Limit Laws;
- 5. Squeeze Theorem;6. Sequential Criterion;
- . Sign-Preserving Theorem. Pointwise Continuity:

Define the closure of E as

Characterization of Open Sets:

 $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ is an open cover of K.

subset, then $Y\cap K$ is compact.

Theorems of Compact Set:

Let X be a topological space.

Heine-Borel Theorem:

Define the diameter of K as

n-dimensional NIP: Let $K \subset \mathbb{R}^n$ be an n-cube if

for all $i \in \mathbb{N}$, then

subsequence.

union of countably many open intervals.

then \overline{E} is closed.

Compactness:

of X is closed.

bounded.

Let $f: A \to \mathbb{R}$ be a function and let $c \in A$. If

 $\forall \epsilon > 0, \ \exists \delta > 0 \ \text{s.t.}$

$$|f(x) - f(c)| < \epsilon, \quad \forall x \in A \cap V_{\delta}(c),$$

then f is continuous at c.

Otherwise, f is discontinuous at c. Let $B \subseteq A$. If f is continuous at any point of B, f is

 $\overline{E} := E \cup E',$

A subset $U \subset \mathbb{R}$ is open if and only if it is a disjoint

Let X be a topological space and $K\subseteq X.$ If $K\subseteq$ $\bigcup_{\alpha\in\mathcal{A}}U_{\alpha}$ and U_{α} is open for any $\alpha\in\mathcal{A}$, then C=

K is compact if for any open cover of K, there exists a

• Let $K \subset Y \subset X$, then K is compact in Y (w.r.t. the

• Let $K \subset X$ be compact and $Y \subset X$ be a closed

Let (X, d) be a metric space, then any compact subset

 $K \subset \mathbb{R}^n$ is compact if and only if K is closed and

 $K = [a_1, b_1] \times \cdots \times [a_n, b_n].$

 $diam(K) = max\{|b_{\ell} - a_{\ell}| : \ell = 1, \dots, n\}.$

Let $\{K_i\}$ be a sequence of *n*-cubes such that $K_{i+1} \subset K_i$

 $\bigcap^{\infty} K_i \neq \emptyset.$

If $diam(K_i) \to 0$, then the intersection is a singleton.

any bounded sequence $\{x_n\}$ in \mathbb{R}^n admits a convergent

Let $\{K_{\alpha} : \alpha \in \mathcal{A}\}$ be a collection of compact subsets

of a metric space X such that the intersection of any

 $\bigcap K_{\alpha} \neq \emptyset.$

Let $\{K_n:n\in\mathbb{N}\}$ be a sequence of nonempty compact subsets of a metric space X satisfying $K_{n+1}\subseteq$

 $\bigcap_{n=1}^{\infty} K_n \neq \emptyset.$

Let (X,d) be a metric space. A subset $K\subseteq X$ is $sequentially\ compact$ if any infinite subset $E\subseteq K$ has a

 $K\subseteq X$ is sequentially compact if and only if K is

A topological space X is separable if it admits a count-

n-dimensional Weierstrass Theorem:

Finite Intersection Theorem:

 K_n for any $n \in \mathbb{N}$, then

Sequential Compactness:

Separable Space:

able, dense subset.

finite subcollection is nonempty, then

induced topology) if and only if K is compact in X.

finite subcover $\{U_{\alpha_i}\}_{i=1}^n$ such that $K \subseteq \bigcup_{i=1}^n U_{\alpha_i}$.

Characterization of Closed Sets: Let (X,d) be a metric space and $E\subset X.$ Then E is closed if and only if $E'\subseteq E.$ • If c is not a limit point of A, then f is always contin- Intermediate Value Theorem: uous at c.

and only if

- Let $f:A\to\mathbb{R}$ be a function and let $c\in A$. The
- f is continuous at c;
- $\lim_{n\to\infty} a_n = c$, then $\lim_{n\to\infty} f(a_n) = f(c)$.

Compositions of Continuity:

Suppose f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c. Limit of Composite Functions:

Let $f:A\to\mathbb{R}$ and $g:B\to\mathbb{R}$ be functions such that $f(A)\subseteq B$. Let c be a limit point of A and $\lim_{x\to c}f(x)=L$.

$$\lim_{x \to c} g(f(x)) = g(L).$$

Suppose further that $f(x) \neq L$ for $x \in A \cap (V_{\delta}(c) \setminus \{c\})$ If L is a limit point of B and $\lim_{y \to L} g(y) = M$, then

$$\lim_{x \to c} g(f(x)) = M$$

Composition at Infinity:

Let $f:A\to\mathbb{R}$ and $g:B\to\mathbb{R}$ be functions such that

 $\lim_{x\to+\infty} f(x) = L$ and g is continuous at \overline{L} , then

$$\lim_{x \to +\infty} g(f(x)) = g(L).$$

 $\lim_{x \to -\infty} g(f(x)) = g(L).$

 $\lim_{x \to x_0} g(f(x)) = L.$

 $\lim_{x \to x_0} g(f(x)) = L.$

A function $f:A\to\mathbb{R}$ is bounded if there exists a constant C>0 such that

Suppose $f:[a,b]\to\mathbb{R}$ is a continuous function on the closed interval [a, b]. Then f is bounded.

 $f(x) \le (\ge) f(x^*), \quad \forall x \in A.$ Suppose $f:[a,b] \to \mathbb{R}$ is a continuous function on the closed interval [a, b], then there exist points $c, d \in [a, b]$ such that

Let I be an interval. Suppose $f:I\to\mathbb{R}$ is a continuous function on I, then the range f(I) is an interval.

$$|x-x'| < \delta \implies |f(x)-f(x')| < \epsilon$$

then f is uniformly continuous on [a, b]. Lipschitz Continuity Theorem:

$$|J(\omega)-J(g)| \ge 11|\omega-g|, \quad \forall \omega, g \in \mathbb{R}$$

K is the Lipschitz constant for f. If $f:A\to\mathbb{R}$ is a Lipschitz function on A, then f is

uniformly continuous on A.

is $\alpha\text{-}H\ddot{o}lder\ continuous$ on D if there exists a constant C > 0 such that

 α is the Hölder exponent and C is the Hölder constant.

Uniformly Continuous Functions:

Continuous Extension Theorem:

• For any collection of open sets O', $\bigcup_{O \in O'} O$ is open. formly continuous on (a, b) if and only if f can be ex-Induced Topology: tended to a continuous function on [a,b]; that is, both $\lim_{x\to a^+} f(x)$ and $\lim_{x\to b^-} f(x)$ exist. Given a topological space X and a subset $Y\subset X,$ a subset $U \subset Y$ is open relative to Y if there exists an Properties of Monotone Functions: open set $U_0 \subset X$ such that

1. f is continuous at c: 2. $\lim_{x \to c^-} f(x) = f(c) = \lim_{x \to c^+} f(x);$ 3. $\sup\{f(x) : x < c\} = f(c) = \inf\{f(x) : x > c\}.$

The *jump* of f at c, denoted by $j_f(c)$, is defined as:

Let $I \subset \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be a mono-

tone function on I, then the set of discontinuities of fis countable.

continuous function defined on I, then f^{-1} is also a

The set of limit points of E is denoted by E'. A point x is a limit point of E if and only if

 $\forall \delta > 0, \ \exists x' \in E \text{ s.t. } x' \in V_{\delta}(x) \setminus \{x\}$

strictly increasing (decreasing) and continuous function

Let $S \subseteq \mathbb{R}$ contain at least two elements and satisfy the

condition that for any $x < y \in S$, the interval $[x, y] \subseteq S$.

Then S is an interval, where the endpoints can be $\pm \infty$

 $O \in \mathcal{O};$

 $\bigcup O \in \mathcal{O}$.

In a topological space (X, \mathcal{O}) , a subset $E \subseteq X$ is closed

if $X \setminus E$ is open. Closed sets have the following proper-

 \bigcap E is closed.

A $metric\ space$ is a nonempty set X with a distance

 $d: X \times X \to \mathbb{R}_{\geq 0}$.

A metric d on X induces a topology on X where $O \subset X$

 $\forall x \in O, \exists \epsilon > 0 \text{ s.t. } V_{\epsilon}(x) \subseteq O$

 $U=U_0\cap Y$.

Let (X,d) be a metric space and $Y \subset X$. A subset

 $U \subset Y$ is open relative to Y if and only if for any $x \in U$

 $V_{\delta}(x) \cap Y \subseteq U$.

Given a metric space (X, d), a sequence $\{x_n\} \subset X$

 $\lim d(x_n, x) = 0.$

Let $E \subset X$. A point $x \in X$ is a *limit point* of E if there

exists a sequence $\{x_n\} \subset E$ such that $x_n \neq x$ for all n

0∈0′

0∈0′

 \bullet For any finite collection ${\mathcal E}$ of closed sets,

For any collection E of closed sets,

with the following conditions:

• $d(x,z) \leq d(x,y) + d(y,z)$

there exists $\delta > 0$ such that

approaches $x \in X$ if

Limit Points in Metric Space:

is open if and only if

• $d(x_1, x_2) = d(x_2, x_1)$ • d(x, y) = 0 if and only if x = y

where $V_{\epsilon}(x) := \{x' \in X : d(x', x) < \epsilon\}.$

• $\emptyset, X \in \mathcal{O}$; • For any finite subset $\mathcal{O}' \subseteq \mathcal{O}$,

• For any subset $\mathcal{O}' \subseteq \mathcal{O}$,

Ø and X are closed;

Metric Space:

function

on f(I).

If the series $\sum_{n=1}^{\infty} \|f_n\|_{\sup}$ is convergent, then the par-

uniformly converges to
$$\sum_{n=0}^{\infty} f_{n}(n)$$

Radius of Convergence

Let $L=\limsup_{n\to\infty}|a_n|^{1/n}$

If L = +∞, ∑_{n=1}ⁿ a_nxⁿ diverges for any x ∈ ℝ.
If L < +∞, ∑_{n=1}ⁿ a_nxⁿ absolutely converges for |x| < ½, and diverges for |x| > ½.

 $R = \frac{1}{L}$ is the radius of convergence of the power series

 $\sum_{n=1}^{\infty} a_n x^n.$ Let R > 0 be the radius of convergence of the power series $S(x) := \sum_{n=1}^{\infty} a_n x^n$, then S(x) is continuous on (-R,R).

Abel's Theorem:

If $S(R) = \sum_{n=1}^{\infty} a_n R^n$ converges, then $\lim_{x \to R^{-}} S(x) = S(R).$

$$x \rightarrow R^-$$

Infinite Product:

Given a positive sequence $\{a_n\}$, let $P_n = \prod_{k=1}^n a_k$. If $\lim_{n\to\infty} P_n = P$ exists and $P\neq 0$, the infinite product

$$\prod_{k=1}^{n} a_k$$
 is convergent and denote $\prod_{k=1}^{\infty} a_k = P$.

Cauchy Criterion for Infinite Product: Let $\{a_n\}$ be a positive sequence. $\prod_{k=1}^{\infty} a_k$ is convergent

$$|a| > 0, \ \exists N \in \mathbb{N} \ \text{ s.t. } \ \forall m > n \geq N,$$

$$\left| \prod_{k=n+1}^m a_k - 1 \right| < \varepsilon.$$

Divergence Test: Let $\{a_n\}$ be a positive sequence. If $\prod_{k=1}^{\infty} a_k$ is convergent, then

Let $\{x_n\}$ be a positive sequence, then the following

Let $\mathfrak{P} = \{p_1 < p_2 < \cdots < p_k < \cdots\}$ be the set of prime numbers, then for s > 1,

 $\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e, \quad \lim_{x \to 0} \frac{\log (1+x)}{x} = 1,$ $\lim_{x \to 0} \frac{e^x - 1}{x} = 1, \quad \lim_{x \to 0} \frac{(1+x)^a - 1}{x} = a,$ $\lim_{x \to 0} \frac{\sin x}{x} = 1, \quad \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}.$

Sequential Criterion of Continuity:

 $\lim_{x \to c} f(x) = f(c).$

ullet If c is a limit point of A, then f is continuous at c if

Let $f:A\to\mathbb{R}$ and $g:B\to\mathbb{R}$ be functions such that $f(A)\subseteq B.$

Suppose $L \in B$ and g is continuous at L, then

$$\lim_{x \to c} g(f(x)) = M.$$

• Suppose there exists c such that $(c, +\infty) \subseteq A$. If

• Suppose there exists c such that $(-\infty, c) \subseteq A$. If $\lim_{x\to-\infty} f(x) = L$ and g is continuous at L, then

• Suppose there exists c such that $(c, +\infty) \subseteq B$. If $\lim_{x\to x_0} f(x) = +\infty$ and $\lim_{y\to +\infty} g(y) = L$, then

Boundedness Theorem:

Extreme Value Theorem: A function $f:A\to\mathbb{R}$ has an absolute maximum (ab-

Let X be a topological space. A collection of open subsets of X, $\{U_{\alpha}: \alpha \in A\}$, is a base if for any $x \in X$ and any open subset U containing x, there exists $\alpha \in A$

any open set
$$U$$
 can be written as

δ -Separated Sets:

Second-Countable Space:

such that

A subset $M\subseteq X$ is $\delta\text{-}separated$ if for any two distinct

Sequentially Compact Metric Space:

is finite;

• $S \subseteq A \cup B$; • $S \cap A \neq \emptyset$ and $S \cap B \neq \emptyset$;

Theorems of Continuous Map:

This theorem applied to $f:[a,b]\to\mathbb{R}$ implies Boundedness Theorem and Extreme Value Theorem. For any connected subset $C\subseteq X,$ f(C) is connected. This theorem applied to $f:[a,b]\to\mathbb{R}$ implies Inter-

$n \in \mathbb{N}\}$, is Cauchy if

Diameter: Let (X,d) be a metric space and E be a nonempty

following statements are equivalent: • For any sequence $\{a_n\} \subset A \setminus \{c\}$ such that

• Suppose there exists c such that $(-\infty,c)\subseteq B$. If $\lim_{x\to x_0}f(x)=-\infty$ and $\lim_{y\to -\infty}g(y)=L$, then

 $|f(x)| \le C, \quad \forall x \in A.$

solute minimum) on A if there exists $x^* \in A$ such

 $f(c) \ge f(x) \ge f(d), \quad \forall x \in [a, b].$

$x \in U_{\alpha} \subset U$.

A topological space X is $second\ countable$ if it admits a countable base. If X is second countable with base $\{U_n : n \in \mathbb{N}\}$, then

 $U = \bigcup_{k=1}^{\infty} U_{n_k}.$

 $d(x_1, x_2) \ge \delta.$

following statements hold: • For any $\delta > 0$ and any δ -separated subset $E \subseteq X$, E

Let X be a topological space. A subset $S\subseteq X$ is disconnected if there exist open sets $A,\ B$ in X such that:

• $S \cap A \cap B = \emptyset$. Otherwise, S is connected.

Let X and Y be topological spaces. A map $f: X \to Y$ is *continuous* if for any open set $U \subseteq Y$, the preimage

Let $f:A\to\mathbb{R}$ be a function. The following statements are equivalent:

Let $f: X \to Y$ be a continuous map and $U \subseteq X$ be open (closed), then f(U) is not necessarily open (closed).

Cauchy Property: Let (X,d) be a metric space. A sequence in X, $\{x_n$

Define the diameter of E as $diam(E) = \sup S.$

points $x_1, x_2 \in M$,

Let (X, d) be a sequentially compact metric space. The

 \bullet X is second countable; • Any open cover of X admits a countable subcover. Connectedness:

 $S \subseteq \mathbb{R}$ is connected if and only if S is an interval. Topological Continuity:

 $f^{-1}(U) := \{x \in X : f(x) \in U\}$ is open in X.

f is continuous at any c ∈ A;
 For any open (closed) set U ⊆ ℝ, f⁻¹(U) is open (closed) in A (w.r.t. the induced topology).

Let $f: X \to Y$ be a continuous map. • For any compact subset $K \subseteq X$, f(K) is compact

mediate Value Theorem.

 $\forall \epsilon>0, \ \exists N\in\mathbb{N} \ \text{ s.t. } \forall m,n\geq N,$ $d(x_m, x_n) < \epsilon.$

subset of X. Define $S:=\{\,d(p,q):p\in E,\ q\in E\,\}.$

Completeness:

$$\forall x, y \in D, \qquad |f(x) - f(y)| \le C ||x - y||^{\alpha}.$$

Let $f: A \to \mathbb{R}$ be a uniformly continuous function, then Given a metric space (X, d) and open sets, for any Cauchy sequence $\{a_n\}$ from A, the sequence • \emptyset and X are open. • For any finite collection of open sets O', $\bigcap_{O \in O'} O$ is

Let $f:(a,b)\to\mathbb{R}$ be a function. Then, f is uni-

Let $I \subset \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be a monotone function on I. Let $c \in I$ such that c is not an endpoint of I, then $\lim_{x\to c^-}f(x)$ and $\lim_{x\to c^+}f(x)$ both exist. The following statements are equivalent:

 $j_f(c) := \lim_{x \to c^+} f(x) - \lim_{x \to c^-} f(x).$

Continuous Inverse Theorem: Let $f:I\to\mathbb{R}$ be a strictly increasing (decreasing) and

$$\lim_{x \to \infty} d(x, x_n) = 0.$$

Completion of (X, d): • $X^* := \{P = \{p_n\} : \{p_n\} \subseteq X\}$, where $\{p_n\}$ is Cauchy in (X, d);

 (X^*, D) is a complete metric space.

• $D(P,Q) := \lim_{n \to \infty} d(p_n, q_n);$ • P = Q if and only if D(P,Q) = 0.

 $x \in X$ such that

 $X = C[a,b] := \{f: [a,b] \to \mathbb{R}\},$ where f is continuous on [a,b].

A sequence of functions
$$\{f_n(x) : n \in pointwise \text{ to } f(x) \text{ if for any } x \in [a, b],$$

$$\lim_{n \to \infty} f_n(x) = f(x).$$

 ${\cal C}[a,b]$ is not closed in the pointwise topology (not closed under pointwise convergence). Product Topology:

spaces $\{X_{\alpha} : \alpha \in \mathcal{A}\}$, the product topology on

is defined by the following bases:
$$\left\{ \prod U_{\alpha} \right\}$$

where $U_{\alpha} \subseteq X_{\alpha}$ is open and $U_{\alpha} = X_{\alpha}$ for all but finitely

 $||f||_{\sup} := \sup\{|f(x)| : x \in [a, b]\}.$

 $d(f,g) := \|f - g\|_{\sup}.$

Dini's Theorem:

sequence of continuous functions on K which converges pointwise to f and $\{f_n(u)\}$ is increasing, then $\{f_n\}$ converges uniformly to f on K. Baire Category Theorem:

 $\forall L \in [m,M], \ \exists c \in [a,b] \ \text{ s.t. } f(c) = L.$

Suppose $f:[a,b]\to\mathbb{R}$ is a continuous function on [a,b]. Let $m=\min\{f(a),f(b)\}$ and M= $\max\{f(a), f(b)\}\$, then

Topological Space: Also, the range f([a, b]) is a closed interval. A topological space is a nonempty set X with a collection of subsets $\mathcal{O} = \{O \subseteq X\}$, called *open sets*, with Suppose further that $m \leq 0$ and $M \geq 0$, then there the following properties:

exists $c \in [a, b]$ such that

f(c) = 0.

Preservation of Intervals Theorem: Let $S\subseteq\mathbb{R}$ contain at least two elements and satisfy the condition that for any $x < y \in S$, the interval $[x,y] \subseteq S$, then S is an interval, where the endpoints can be $\pm \infty$.

Uniform Continuity Theorem:

A function $f: A \to \mathbb{R}$ is uniformly continuous on A if $\forall \epsilon > 0, \ \exists \delta > 0 \ \text{s.t.} \ \forall x, x' \in I,$

$$|x-x'|<\delta \implies |f(x)-f(x')|<\epsilon.$$
 Let $f:[a,b]\to\mathbb{R}$ be a continuous function on $[a,b],$

Let $f:A\to\mathbb{R}$ be a function. f is a Lipschitz function if there exists a constant K>0 such that

 $|f(x) - f(y)| \le K|x - y|, \quad \forall x, y \in A.$

Hölder Continuity: Let $D \subseteq \mathbb{R}^n$ and let $0 < \alpha \le 1$. A function $f: D \to \mathbb{R}$

 $\forall x, y \in D$, $|f(x) - f(y)| \le C ||x - y||^{\alpha}$

 $\{f(a_n)\}\$ is also Cauchy.

f is continuous at c if and only if $j_f(c) = 0$. Darboux-Froda Theorem:

Let (X,d) be a metric space. (X,d) is *complete* if for any Cauchy sequence $\{x_n:n\in\mathbb{N}\}$ in X, there exists

$$n \to \infty$$

The completion of $(\mathbb{Q}, |\cdot|)$ is $(\mathbb{R}, |\cdot|)$. Space of Continuous Functions:

Pointwise Topology: A sequence of functions
$$\{f_n(x) : n \in \mathbb{N}\}$$
 converges pointwise to $f(x)$ if for any $x \in [a, b]$.

Given an index set A and a collection of topological

 $Y = \prod X_{\alpha}$

$$\left\{ \prod_{\alpha \in A} U_{\alpha} \right\}$$

The product topology is the coarsest topology ensuring the continuity of every projection $\pi_{\alpha}: Y \to X_{\alpha}$, which maps a point in Y to its α -coordinate.

A sequence of functions
$$\{f_n(x): n \in \mathbb{N}\}$$
 uniformly converges to $f(x)$ if

C[a,b] is closed in the uniform topology (closed under uniform convergence).

Let K be a compact metric space, and let $f: K \to \mathbb{R}$ be a continuous function. Suppose that $\{f_n : n \in \mathbb{N}\}$ is a

Let X be a non-empty complete metric space. Let $\{G_n\}$ be a countable collection of dense open subsets of X. Then, $\bigcap_{n=1}^{\infty} G_n$ is non-empty.

Weierstrass M-test:

 $\prod_{x \in X} Y$. Uniform Topology: Define the uniform norm of a function f as

A map $f: X \to Y$ can be considered as an element in

$$\lim_{n\to\infty}\|f_n-f\|_{\sup}=0.$$
 The *uniform topology* is induced from the metric defined as follows:

 $(X, \|\cdot\|_{\sup})$ is complete.

Let $\{F_n\}$ be a countable collection of closed subsets of X such that $X = \bigcup_{n=1}^{\infty} F_n$. Then, there exists some open set $U \subseteq X$ with $U \subseteq F_n$ for some $n \in \mathbb{N}$.

y if
$$\forall \epsilon > 0, \ \exists N \in \mathbb{N} \ \text{ s.t. } \forall m > n \geq N,$$

Convergence Criterion:

 $\sum_{k=1}^{\infty} x_k$ is convergent. Euler's Product:

Important Limits:

 $\prod_{k=1}^{\infty} \frac{1}{1 - p_k^{-s}} = \sum_{n=1}^{\infty} \frac{1}{n^s}.$ Also,

 $\sum_{k=1}^{\infty} \frac{1}{p_k} \text{ is divergent.}$

statements are equivalent: 1. $\prod_{k=1}^{\infty} (1+x_k)$ is convergent;
2. $\sum_{k=1}^{\infty} (1+x_k)$ is convergent