# FIFA 21

DATA ANALYSIS FINDINGS

Group 2: Carlos Ruiz / Maria Bollain / Ying Wang



#### Content

- 1. Executive summary
- 2. Problem definition
- 3. Data reading
- 4. Data cleaning
- 5. Exploratory data analysis
- 6. Data processing
- 7. Data modeling
- 8. Machine learning
- 9. Conclusions
- 10. Methodology



#### 1. Executive summary

In this project, we perform an analysis of the FIFA 21 dataset that we have been provided with; more specifically, we work with different scenarios where we use both with "release clause" and "wage" to compare the market value across players in different selections.

Here we provide a summary of the key findings that we provide further information over the presentation.

#### 1. Executive summary

- The <u>players with higher value are not necessarily the ones with higher wages</u> (that cost more money to the club).
- If we keep the "<u>release clause</u>" and the outliers, we have a higher r2 coefficient, compared where we get rid of the "release clause" and remove the outliers.
- Overall scores and potential scores resemble more a "normal distribution", whereas "wage" behaves more like a left-skewed and "total stats" like a right-skewed distribution
- From the <u>multicollinearity graph</u>, we find that market value of the player is highly correlated to wage (0.82) and release clause (0.98).

#### 2. Problem definition

With this dataset, we have focused on providing the answer to these two questions:

- Rank players by market value and compare with wages.
- Predict the market value using linear regression.

#### 3. Data reading

- We get a total of 107 columns and we spent some time doing research on the abbreviations:
  - OVA = overall scores
  - BOV = best overall
  - POT = potential scores
  - GK = goalkeeping
  - O W/F = weak foot
  - SM = skilled moves
  - IR = international reputation
  - CF = center forward

```
"attacking" = sum ("crossing","finishing","heading_accuracy","short_passing","volleys")
"skill" = sum ("dribbling", "curve", "fk_accuracy", "long_passing", "ball_control")
"movement" = sum ("acceleration", "sprint_speed", "agility", "reactions", "balance")
"power" = sum ("shot_power","jumping","stamina","strength","long_shots")
"mentality" = sum ("aggression", "interceptions", "positioning", "vision", "penalties", "composure")
"defending" = sum ("marking", "standing tackle", "sliding tackle")
"goalkeeping" = sum ("gk_diving","gk_handling","gk_kicking","gk_positioning","gk_reflexes")
"total_stats" = sum ("attacking","skill","movement","power","mentality","defending","goalkeeping")
"base_stats" = sum ("pac", "sho", "pas", "dri", "def", "phy")
```

```
drop_columns = ["position","player_photo","club_logo","flag_photo","team_&_contract","joined","contract",
          "crossing", "finishing", "heading_accuracy", "short_passing", "volleys",
         "dribbling","curve","fk_accuracy","long_passing","ball_control",
         "acceleration", "sprint_speed", "agility", "reactions", "balance",
          "shot_power","jumping","stamina","strength","long_shots",
          "aggression", "interceptions", "positioning", "vision", "penalties", "composure",
          "marking", "standing_tackle", "sliding_tackle",
          "gk_diving","gk_handling","gk_kicking","gk_positioning","gk_reflexes",
          "base_stats","w/f","sm","pac","sho","pas","dri","def","phy","hits",
         "ls","st","rs","lw","lf","cf","rf","rw","lam","cam","ram","lm","lcm",
         "cm","rcm","rm","lwb","ldm","cdm","rdm","rwb","lb","lcb","cb","rcb","rb","gk","gender"]
```

#### NaN values:

club 23 -> fill with "unknown"

loan\_date\_end 16215 -> drop column

attacking\_work\_rate 89 -> drop rows

defensive\_work\_rate 89 -> drop rows

#### Columns that are objects and should be numerical:

height, weight, value, wage, release\_clause, weak\_foot, skilled\_moves, international\_reputation, hits

```
def clean_value(x):
    x = x.replace("€","")
    if "M" in x:
        x = float(x.replace("M","")) * 1000000
    elif "K" in x:
        x = float(x.replace("K","")) * 1000
    else:
        x = float(x)
    x = int(x)
    return x
data["value"] = list(map(clean_value, data["value"]))
```

Better position column: a lot of abbreviations.

```
defense_positions = ["CB", "RB", "LB", "LWB", "RWB"]
midfield positions = ["CDM", "CM", "RM", "LM", "CAM"]
attack positions = ["LW", "RW", "CF", "ST"]
def clean position(x):
    if x in defense positions:
        x = "Defense"
    elif x in midfield positions:
        x = "Midfield"
    elif x in attack positions:
        x = "Attack"
    elif x == "GK":
        x = "Goalkeeper"
    return x
data["better position"] = list(map(clean position, data["better position"]))
data["better position"].value counts()
Midfield
              6672
Defense
              5550
Attack
              3247
Goalkeeper
              1567
Name: better position, dtype: int64
```

## 5. EDA: Key findings - Golden players

#### Top 10 players ordered by value



## 5. EDA: Key findings - Golden players

Top 10 players ordered by wages



## 5. EDA: Key findings - Golden players

The players with higher value are not necessarily the ones with higher wages (that cost more money to the club).



#### 5. EDA: Key findings - value distribution

Mean: 1,450,565

Min: 0

25%: 350,000

50%: 725,000

75%: 1,500,000

Max: 27,000,000

Huge number of outliers!!!

Also a lot of outliers in wage and release clause



## 5. EDA: Density graphs



+- normal distribution

## 5. EDA: Density graphs



Highly left skewed

#### 5. EDA: Correlation between variables: multicollinearity

We find that the features that are most correlated with the target are "release\_clause" (0.98) and "wage" (0.82).

Total stats are the sum of "Attacking", "Skill", "Movement", "Power", "Mentality", "Defending" and "Goalkeeping", so we decide to get rid of them as they are variables that show high multicollinearity themselves.

"Best overall" and "overall" scores also show a really high correlation, 0.99.

### 6. Data processing

• Here is the initial multicollinearity analysis that we get...



"Best overall" ""Attacking" "Movement" "Mentality" "Defending" "Goalkeeping"

### 6. Data processing

• And this is the new one that we get...

#### Multicollinearity

From the graph, we find that market value of the player is highly correlated to wage (0.82) and release clause (0.98).



international\_reputation

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

#### 7. Modeling - Linear Regression

- X-y split
- Separate numerical and categorical data and more processing
- Concat into final dataset
- Train-test split
- Apply linear regression
- Model validation
- Try different models
- Final decision with model

#### Machine Learning: transformations - numericals

Based on the distribution plots, we used log transformation to 'wage' and 'release\_clause'

VS



Before log transformation



After log transformation

#### Machine Learning: Standardization - numericals

```
# Normalize (numerical)
X_scaled = StandardScaler().fit_transform(X_num)

def normalize(X):
    X_mean = X.mean(axis=0)
    X_std = X.std(axis=0)
    X_std = X.std(axis=0)
    X_std[X_std==0] = 1.0
    X = (X-X_mean)/X_std
    return X

X_num = normalize(X_num)
X_num.head()
```

|    | age      | overall_scores | potential_scores         | height    | weight    | wage      | release_clause | total_stats | international_reputation |
|----|----------|----------------|--------------------------|-----------|-----------|-----------|----------------|-------------|--------------------------|
| id |          |                |                          |           |           |           |                |             |                          |
| 2  | 1.575619 | 0.299917       | -0.603693                | 0.241231  | 0.972601  | -0.169349 | -0.443850      | 1.141676    | 1.912181                 |
| 16 | 2.388466 | 0.592291       | -0.255018                | -0.496382 | -1.432582 | -0.169349 | -0.337674      | 1.053208    | -0.326867                |
| 27 | 1.575619 | 0.592291       | -0.25 <mark>501</mark> 8 | -0.865189 | -0.292771 | 0.208245  | -0.443850      | 0.530091    | 1.912181                 |
| 41 | 2.185254 | 2.054161       | 1.488356                 | -1.602802 | -0.988935 | 0.066647  | 0.251122       | 1.468624    | 6.390278                 |
| 61 | 0.356348 | -0.138644      | -0.429355                | -1.233995 | -0.165815 | -0.263747 | -0.443850      | 0.064671    | 1.912181                 |

## Machine Learning: transformations - categoricals

| COLUMN              | UNIQUE VALUES | ACTION                                                |  |  |
|---------------------|---------------|-------------------------------------------------------|--|--|
| name                | 16092         | Drop column                                           |  |  |
| nationality         | 167           | Keep the top nationalities, group the rest into other |  |  |
| club                | 907           | Drop column                                           |  |  |
| position            | 4             | Keep                                                  |  |  |
| foot                | 2             | Keep                                                  |  |  |
| attacking_work_rate | 3             | Drop column                                           |  |  |
| defensive_work_rate | 3             | Drop column                                           |  |  |

#### Machine Learning: transformations - categoricals

```
top countries = ["England", "Germany", "Spain", "France", "Brazil", "Argentina"]
def clean nation(x):
    if x not in top_countries:
        x = "Other"
    else: x
    return x
X_cat["nationality"] = list(map(clean_nation, X_cat["nationality"]))
X cat["nationality"].value counts()
Other
             10461
England
              1704
Germany
              1150
Spain
              1120
France
               983
Brazil.
               843
Argentina
               775
Name: nationality, dtype: int64
```

+ Apply get dummies

#### Different models - metrics

| Description                                                | Scenario | r2           | adjusted r2  | mse                  | rmse         | mae          |
|------------------------------------------------------------|----------|--------------|--------------|----------------------|--------------|--------------|
| With wage and release_clause and no removing outliers      | A        | 0.9725337218 | 0.9725030531 | 805836061008         | 897683.7199  | 447639.9012  |
| With release_clause, without wage and no removing outliers | В        | 0.9716063963 | 0.9715763625 | 833042963945         | 912711.8735  | 465650.1525  |
| With wage, without release_clause and no removing outliers | С        | 0.7400586937 | 0.7397837367 | 7626445670117        | 2,761,602.01 | 1,444,970.17 |
| With wage and release_clause and removing outliers         | D        | 0.623302951  | 0.6227224771 | 261289735368         | 511,165.08   | 265,334.22   |
| With release_clause, without wage and removing outliers    | E        | 0.6184826613 | 0.6179869339 | 674,059,705,433.26   | 821,011.39   | 413,704.37   |
| With wage, without release_clause and removing outliers    | F        | 0.6045195049 | 0.6040182975 | 1,606,708,888,227.77 | 1,267,560.21 | 829,364.98   |

# R2 coefficient, release clause and outliers

From our findings, we see that if we keep the "release clause" the outliers, we have a higher r2 coefficient (r2 = 0.9725), compared where we get rid of the "release clause" and keep the outliers (r2 = 0.7400).



#### Interpretation for model results



Intercept: 2.906.693

#### Coefficients:

age: -333.696

overall\_scores : 532.967 potential\_scores : -144.272

height: -21.010 weight: 8.866 wage: 529.293

release\_clause: 4.531.966

total\_stats: 35.330

international\_reputation: 184.612

nationality\_Brazil: -305.620 nationality\_England: -377.411 nationality\_France: -510.246 nationality\_Germany: -190.868 nationality\_Other: -287.273 nationality\_Spain: -489.241

better\_position\_Defense: -78.842 better\_position\_Goalkeeper: 111.112

better\_position\_Midfield: -26.354

foot Right: 7.606

#### Conclusions and limitations

Takeovers for future FIFA data analysis:

- Highlight the top players for their outstanding performances over a discrete season.
- Build a top football team with conditions as such budget, location, etc.

Due to time boundaries, we did not enter into these two applications:

- Decide when to transfer a player.
- Decide the best replacement for a transferred player.

Had to spend some time finding out the meaning of some abbreviations and finding that total stats were already a sum of variables like "attacking", "skills", and "power", as well as finding out the meaningful variables to our model.

Also, we encountered very high errors and model overfitting issues.

#### Methodology

Sample size: 17.125 observations

Source: Kaggle

Link to the data source:

https://www.kaggle.com/datasets/ekrembayar/fifa-21-complete-player-dataset?select=fifa21\_male2.csv

Link to the github repository

https://github.com/Yinguin/data\_mid\_bootcamp\_project\_FIFA\_MoneyBall/blob/master/ FIFA.ipynb