Thermodynamique formelle

T1 – Chapitre 1

I. Principes de la thermodynamique

1. Premier et deuxième principes

$$\bullet \qquad \Delta U = Q + \sum W_i$$

$$\delta W = A_{ext}^i dX^i$$

A: var intensive X: var extensive

$$\Delta S = \int_{1}^{2} \frac{\delta Q}{T_{ext}} + \underbrace{\mathcal{S}_{e0: rev}^{p}}_{>0: irrev}$$

- $\rightarrow S(U,X^i)$ est fct. caractéristique
- $\rightarrow U(S,X^i)$ est fct. caractéristique

$$dU = TdS + \sum A^i dX_i$$

2. Variables conjuguées

Phénomène	Chaleur	Pression	Traction
Variable intensive	T	− <i>P</i>	f
Variable extensive	S	V	ℓ

II. Fonctions thermodynamiques

1. Transformation de Legendre

$$Y=Y\left(X^{0},\ldots,X^{i},\ldots,X^{n}\right)$$
 fct carac. $\psi=\psi\left(X^{0},\ldots,A^{i},\ldots,X^{n}\right)$ fct carac. si $\boxed{\psi=Y-A^{i}X_{i}}$

2. Théorème de Schwarz

$$\frac{\partial A^j}{\partial X^i} = \frac{\partial A^i}{\partial X^j}$$

3. Fonctions thermodynamiques

Fonction		Pression		Traction	Maxwell
Energie interne	U				
Enthalpie	Н =	U + PV	=	$U - f\ell$	
Energie libre	F =	U-TS			$\rightarrow \left(\frac{\partial S}{\partial V}\right) = \left(\frac{\partial P}{\partial T}\right)$
Energie de Gibbs	G =	F + PV	=	$F - f\ell$	$\rightarrow \left(\frac{\partial S}{\partial T}\right) = \left(\frac{\partial V}{\partial P}\right)$

III. Transferts d'énergie et capacités thermiques

$X^i = cst$ $(V cst)$	$A_{ext}^i = cst$ $(P cst)$	$T_{ext} = cst$
	$Q = \Delta H$	$W = \Delta F + T_{ext} S^p$
$Q = \Delta U$	$W^u = W - W^{pression}$	$Rev: W^u = \Delta G$
	$W^u = \Delta G + T_{ext} \cdot S^p$	Irrev : $W^u > \Delta G$
$C_X = \left(\frac{\partial U}{\partial T}\right)_X = T \left(\frac{\partial S}{\partial T}\right)_X$	$C_A = \left(\frac{\partial H}{\partial T}\right)_A = T \left(\frac{\partial S}{\partial T}\right)_A$	

IV. Potentiel thermodynamique et travail récupérable

	Potentiel thermo.	Travail récupérable
$A_{ext}^i = cst$	F^*	$W \leq \Delta F^* $
A_{ext}^{i} et $T_{ext} = cst$	G*	$W^u \leq \Delta G^* $

Le potentiel thermodynamique est minimal à l'équilibre.