

RECURSOS EDUCATIVOS DE #YSTP 100 derivadas resueltas

yosoytuprofe.com

Cuaderno elaborado por Miguel Ángel Ruiz Domínguez

Con esta primera tabla lo que te ofrecemos son las reglas básicas para derivar. De este modo podemos realizar más fácilmente nuestros ejercicios.

Función	Derivada
Derivada de	una constante
f(x) = k	f'(x)= 0
Ejem	pplos:
f(x) = 5	f(x) = 0
f(x) = -3	f(x) = 0
Deriva	da de x
f(x) = x	f'(x)= 1
Derivadas funci	ones potenciales
$f(x) = u^{k}$	$f'(x) = k. u^{k-1}.u'$
Ejen	nplos
$f(x) = x^2$	f'(x) = 2.x
$f(x) = x^5$	$f'(x) = 5.x^4$
$f(x) = 1/x^5 = x^{-5}$	$f'(x) = -5x^{-6} = -5/x^6$
$f(x) = \sqrt{x} = x^{\frac{1}{2}}$	$f'(x) = \frac{1}{2} \cdot x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$
$f(x) = (2.x^2 + 3)^2$	$f'(x) = 2.(2.x^2 + 3).4x$
Derivadas de funci	ones exponenciales
$f(x) = e^{u}$	$f'(x) = u'. e^{u}$
$f(x) = a^{u}$	$f'(x) = u'. a^u. Ln a$

Table de Derivedae #VCTD

Ejemplos

$f(x) = e^x$	$f'(x) = e^x$
$f(x)=2^x$	$f'(x) = .2^{x} . Ln 2$
Derivadas de fun	ciones logarítmicas
f(x) = Ln u	f'(x) = u'/u
$f(x) = \log_a u$	$f'(x) = \frac{u'}{u} \log_a e$
Eje	mplos
f(x) = Ln x	f'(x) = 1/x
$f(x) = \log_2 x$	$f'(x) = \frac{1}{x} \log_2 e$
Derivadas de funci	ones trigonométricas
f(x)= sen u	f'(x)= u'. cos u
f(x)= cos u	f '(x)= - u' . sen u
f(x)=tg u	$f'(x)=u'$. $sec^2 u$
f(x) = cotg u	$f'(x) = -u' \cdot \csc^2 u$
$f(x) = \sec u$	f'(x)=u'. sec u . tg u
f(x) = cosec u	f'(x) = -u'. cosec u . cotg u
f(x) = arcsen u	$f'(x) = \frac{u'}{\sqrt{1 - u^2}}$
$f(x) = \arccos u$	$f'(x) = \frac{-u'}{\sqrt{1 - u^2}}$
f(x) = arctg u	$f'(x) = \frac{u'}{1 + u^2}$

Ejemplos

$f'(y) = \cos y$
$f'(x) = \cos x$
$f'(x) = - \operatorname{sen} x$
$f'(x) = \sec^2 x$
$f'(x) = -\csc^2 x$
$f'(x) = \sec x \cdot tg x$
$f'(x) = -\csc x \cdot \cot x$
$f'(x) = \frac{1}{\sqrt{1 - x^2}}$
$f'(x) = \frac{-1}{\sqrt{1 - x^2}}$
$f'(x) = \frac{1}{1 + x^2}$

Derivadas de sumas, restas, productos y cocientes de funciones

f(x) = K.u	f'(x) = K.u'
f(x) = u + v - w	f'(x) = u' + v' - w'
$f(x) = u \cdot v$	f'(x) = u'. v + v'. u
$f(x) = \frac{u}{v}$	$f'(x) = \frac{u'.v - v'.u}{v^2}$
E	Ejemplos
$f(x) = 3x^2$	f'(x) = 3.2.x = 6x
$f(x) = x^4 + x^3 - 2x$	$f'(x) = 3x^3 + 3x^2 - 2$
$f(x) = x^3 \cdot \text{sen } x$	$f'(x) = 3x^2 \cdot \text{sen } x + x^3 \cdot \text{cosx}$

$$\mathbf{f}(\mathbf{x}) = \frac{sex}{x^2}$$

$$\mathbf{f}'(\mathbf{x}) = \frac{\cos x \cdot x^2 - \sin x \cdot 2x}{x^4}$$

A continuación encontrarás una lista con **100 funciones listas para derivar.** No olvides tener en cuenta las reglas vistas anteriormente. Intenta, en la medida de lo posible, simplificar.

Table de Derivedae #VCTD

1	$\mathbf{f}(\mathbf{x}) = 0$
	f(x) = -7
2	f(x) = -7x
3	
4	f(x) = -5x + 2
5	$f(x) = x^5 - x^3 + 3$
	$\mathbf{f}(\mathbf{x}) = 2\mathbf{x}^7 - 3\mathbf{x}^6 + 3\ \mathbf{x}^3 - 4\mathbf{x}^2 - 7$
7	$f(x) = \frac{x-3}{2}$
8	$\mathbf{f}(\mathbf{x}) = -\frac{x^3 + x - 1}{2}$
9	$\mathbf{f}(\mathbf{x}) = -\frac{3}{2}x^3 + \frac{2}{5}x^2 - 4$
10	$\mathbf{f}(\mathbf{x}) = \frac{3}{x^2}$
11	$\mathbf{f}(\mathbf{x}) = -\frac{2}{x^3} + \frac{3}{x^2} - 4x$
12	$f(x) = \frac{x^2 - 1}{(x+1)^2}$
	$\mathbf{f}(\mathbf{x}) = \frac{5x^4 - 3x^3}{x5}$
14	$\mathbf{f}(\mathbf{x}) = \sqrt{\mathbf{x}^3}$
15	$\mathbf{f}(\mathbf{x}) = \frac{1}{\sqrt{x^3}}$
16	$\mathbf{f}(\mathbf{x}) = \sqrt{\mathbf{x}^3} - \sqrt[3]{\mathbf{x}^5}$
17	$\mathbf{f}(\mathbf{x}) = -3\sqrt{x} - 2\sqrt[3]{x^2}$
18	$f(x) = -\frac{2}{3}\sqrt{x^3} - \sqrt{15x} - \sqrt[3]{x^5}$
19	$\mathbf{f}(\mathbf{x}) = -\frac{3}{2}\sqrt{x^3} - 2x^5 - 5x^2$
20	$\mathbf{f}(\mathbf{x}) = \frac{\sqrt{x}\sqrt[3]{x}}{\sqrt[2]{x}}$

	$\mathbf{f}(\mathbf{x}) = \frac{2\sqrt{x} + \sqrt[3]{x}}{\sqrt[2]{x}}$	
21	$I(X) = \frac{1}{\sqrt{x}}$	
22	$f(x) = (x^5 - x^3 + 3)^4$	
23	$f(x) = (x^2 - 2)^2$	
24	$f(x) = (x - 1).(x + 1)^2$	
25	$f(x) = (x^5 - x^3 + 3)^4$	
26	$f(x) = \sqrt{((x^5 - x^3 + 3))}$	
27	$f(x) = \sqrt[5]{x^5 - x^3 + 3}$	
28	$f(x) = \frac{1}{\sqrt[5]{x5-x3+3}}$	
29	$f(x) = \sqrt[3]{\frac{x5 - x3 + 3}{x^2}}$	
30	$f(x) = \sqrt[5]{\frac{x^2 + x}{x + 1}}$	
31	$f(x) = \sqrt{\frac{x^2 + 2x + 1}{x^2 - 1}}$	
32	$f(x) = \sqrt{\frac{x^2 - 1}{x^2 - 2x + 1}}$	
33	$\mathbf{f}(\mathbf{x}) = e^{x+1}$	
34	$f(x) = -3. e^{x+1}$	
35	$f(x) = 7. e^{x^2 + 1}$	
36	$f(x) = -3. e^{x^2 + x - 1}$	
37	$f(x) = \sqrt{e^x}$	
38	$f(x) = \sqrt{3e^{x+1}}$	

39	$\mathbf{f}(\mathbf{x}) = -\frac{2}{\sqrt{e^x}}$
40	$f(x) = e^{x+1} - 3e^x + 2e^{x^3}$
41	$f(x) = 3^{2x+1}$
42	$f(x) = 7^{x-1}$
43	$f(x) = 7^{x^2 - 1}$
44	$f(x) = -\frac{1}{\sqrt{2^x}}$
45	$f(x) = 2^{x+1} - 3.5^x$
46	$f(x) = (2^{x+1} - 3.5^x)^3$
47	$f(x) = \sqrt{3^{x+1}}$
48	$f(x) = 7^{\sqrt{x+1}}$
49	$\mathbf{f}(\mathbf{x}) = \frac{e^{3x} + e^{x^2}}{3}$
50	$f(x) = \frac{7^{x^2}}{x^3}$
51	$\mathbf{f}(\mathbf{x}) = \frac{e^{x^2}}{x^3}$
52	$\mathbf{f}(\mathbf{x}) = \sqrt{\frac{7^{x^2}}{x^3}}$
53	$f(x) = \ln(x+3)$
54	$f(x) = 7x + \ln(x - 3)$
55	$f(x) = \ln(x^2 - 3x + 2)$
56	$f(x) = \frac{1}{\ln(x-1)}$
57	$f(x) = \ln \sqrt{\frac{x^2 - 1}{x^2 - 2x + 1}}$

58	$f(x)=\ln\left(\sqrt{\left((x^5-x^3+3)\right)}\right)$
	$f(x) = \ln\left(\frac{e^x - 1}{e^x + 1}\right)$
59	$\mathbf{I}(\mathbf{X}) = \mathbf{I}\mathbf{n} \left(\frac{1}{e^x + 1} \right)$
60	$f(x) = \log_3(x+2)$
61	$f(x) = \log(x-3)^2$
62	f(x) = sen(x+1)
63	$f(x) = sen(2x^3 + 2x^2)^2$
64	f(x) = sen(x+1) + 5x
65	$f(x) = \sqrt{(sen(x+1))}$
66	$f(x) = \cos(3x + 3)$
67	$f(x) = \cos(3x^2 + 3x)$
68	$f(x) = \frac{1}{\operatorname{sen}(x+1)}$
69	$f(x) = \frac{1}{\cos x} + \frac{1}{\sin(x+1)}$
70	$f(x) = \frac{1}{\sin x} - \frac{1}{\cos(x-1)}$
71	$f(x) = \sqrt[3]{\cos(3x+3)}$
72	$f(x) = \frac{1}{\sin(x+1)} + (x^5 - x^3 + 3)^4$
73	$f(x) = \ln(x-1) + e^{x+1}$
74	$f(x) = e^{x-3} + \cos(x+1) - x^2$
75	$f(x) = \tan(x - 5)$
76	$f(x) = \tan(x^3 + 3)$

	S(-) has (F? 7)
77	$f(x) = -\tan(-5x^2 - 7)$
78	$f(x) = \frac{1}{\tan(x-5)}$
79	$\mathbf{f}(\mathbf{x}) = -\frac{3}{\tan(x+2)}$
80	$f(x) = \sqrt{(\tan(x-5))}$
81	$f(x) = \arcsin(x^2 - 3)$
82	$f(x)=3x+arcsen(3x^3+3x-7)$
83	$f(x) = \arcsin\sqrt{(x^2 - 3)}$
84	$f(x) = \arcsin\left(\frac{x+1}{x-1}\right)$
85	$f(x) = \sqrt[3]{\operatorname{sen}(x^2 + 3)}$
86	$f(x) = \sqrt[3]{\tan e^x}$
87	$f(x)=x^2$. $\tan \sqrt{x}$
88	$\mathbf{f}(\mathbf{x}) = \frac{1 + sen^2 x}{x}$
89	$f(x)=\ln(\sin x)$
90	$f(x) = arctg (x^2 - 3)$
91	$f(x)=e^{x^2}-3 \ln (\sin x)$
92	$f(x)=e^{x+3}+ln(x-5)-$
	cot (x)
93	$f(x)=arctg(\ln x)$
94	$f(x)=\ln(\ln x)$
95	$f(x) = \ln(\ln x) + arctg(x^3 - 1)$
96	$f(x) = \cot(x^3 - 1)$

	$f(x) = \sec x - e^x$	
97		
98	$f(x) = \csc x + \frac{x^3}{3}$	
99	$f(x) = \cot(x+1)$	
100	$f(x) = e^{x^2} - \cot(x^3 - 1)$	

Encuentra todas las derivadas resueltas a continuación:

1	f(x) = 0	f'(x) = 0
2	f(x) = -7	f'(x) = 0
3	f(x) = -7x	f'(x) =-7
4	f(x) = -5x + 2	f'(x) = -5
5	$f(x) = x^5 - x^3 + 3$	$f'(x) = 5x^4 - 3x^2$
6	$f(x) = 2x^7 - 3x^6 + 3x^3 - 4x^2 - 7$	$f'(x) = 14x^6 - 18x^{5+}9x^2 - 8x$
	e(_) x−3	$f(x) = \frac{x}{2} - \frac{3}{2}$
7	$f(x) = \frac{x-3}{2}$	$f'(x) = \frac{1}{2}$
	r ³ +r-1	$f(x) = -\frac{x^3}{2} - \frac{x}{2} + \frac{1}{2}$
8	$\mathbf{f}(\mathbf{x}) = -\frac{x^3 + x - 1}{2}$	$\mathbf{f}'(\mathbf{x}) = -\frac{3x^2}{2} - \frac{1}{2}$
9	$f(x) = -\frac{3}{2}x^3 + \frac{2}{5}x^2 - 4$	$f'(x) = -\frac{9}{2}x^2 + \frac{4}{5}x$
	$f(\mathbf{x}) = \frac{3}{3}$	$f(x) = 3.x^{-2}$
10	$f(x) = \frac{3}{x^2}$	$f'(x) = -6x^{-3} = \frac{-6}{x^3}$
		$f(x) = -2.x^{-3} + 3.x^{-2} - 4x$
11	$f(x) = -\frac{2}{x^3} + \frac{3}{x^2} - 4x$	$f'(x) = +6.x^{-4}-6.x^{-3}-4$
11		$f(x) = -2. x^{-3} + 3. x^{-2} - 4x$ $f'(x) = +6. x^{-4} - 6. x^{-3} - 4$ $f'(x) = \frac{6}{x^4} - \frac{6}{x^3} - 4$

		$f(x) = \frac{(x+1) . (x-1)}{(x+1) . (x+1)}$
		$f(x) = \frac{(x-1)}{(x+1)}$
12	$f(x) = \frac{x^2 - 1}{(x+1)^2}$	$f'(x) = \frac{(x-1)^{'} \cdot .(x+1) - (x-1) \cdot .(x+1)^{'}}{(x+1)^{2}}$
		$f'(x) = \frac{(x+1) - (x-1)}{(x+1)^2} = \frac{x+1-x+1}{(x+1)^2} = \frac{2}{(x+1)^2}$
		$f(x) = \frac{(x+1) \cdot .(x-1)}{(x+1) \cdot .(x+1)}$ $f(x) = \frac{(x-1)}{(x+1)}$ $f'(x) = \frac{(x-1)' \cdot .(x+1) \cdot -(x-1) \cdot .(x+1)'}{(x+1)^2}$ $f'(x) = \frac{(x+1) \cdot -(x-1)}{(x+1)^2} = \frac{x+1-x+1}{(x+1)^2} = \frac{2}{(x+1)^2}$ $f''(x) = \frac{2}{(x+1)^2}$
		$f(x) = +5\frac{x^4}{x^5} - 3\frac{x^3}{x^5}$ $f'(x) = +5x^{4-5} - 3x^{3-5}$ $f(x) = +5x^{-1} - 3x^{-2}$ $f'(x) = -5x^{-2} + 6x^{-3}$ $f'(x) = -\frac{5}{x^2} + \frac{6}{x^3}$
	$\mathbf{f}(\mathbf{x}) = \frac{5x^4 - 3x^3}{x5}$	$f'(x) = +5x^{4-5} - 3x^{3-5}$
13		$f(x) = +5x^{-1} - 3x^{-2}$
		$f'(x) = -5x^{-2} + 6x^{-3}$
		$f'(x) = -\frac{5}{x^2} + \frac{6}{x^3}$
		$f(x) = x^{\frac{3}{2}}$
	$\mathbf{f}(\mathbf{x}) = \sqrt{x^3}$	$f'(x) = \frac{3}{2}x^{\frac{3}{2}} - \frac{2}{2}$
14		$f'(x) = \frac{3}{2} x^{\frac{3}{2}} - \frac{2}{2}$ $f'(x) = \frac{3}{2} x^{\frac{1}{2}}$ $f'(x) = \frac{3}{2} \sqrt[2]{x}$
		$f'(x) = \frac{3}{2} \sqrt[2]{x}$

15		$f(x) = \frac{1}{x^{\frac{3}{2}}}$ $f(x) = x^{-\frac{3}{2}}$ $f'(x) = -\frac{3}{2}x^{-\frac{3}{2}} - \frac{2}{2}$ $f'(x) = -\frac{3}{2}x^{-\frac{5}{2}}$ $f'(x) = -\frac{3}{2}\frac{1}{2\sqrt{x^5}}$ $f'(x) = -\frac{3}{2}\frac{1}{x^2\sqrt[3]{x}}$
16	$\mathbf{f}(\mathbf{x}) = \sqrt{x^3} - \sqrt[3]{x^5}$	$f(x) = x^{\frac{3}{2}} - x^{\frac{5}{3}}$ $f'(x) = \frac{3}{2} \cdot x^{\frac{3}{2} - \frac{2}{2}} - \frac{5}{3} x^{\frac{5}{3} - \frac{3}{3}}$ $f'(x) = \frac{3}{2} \cdot x^{\frac{1}{2}} - \frac{5}{3} x^{\frac{2}{3}}$ $f'(x) = \frac{3}{2} \cdot \sqrt{x} - \frac{5}{3} \sqrt[3]{x^2}$
17	$\mathbf{f}(\mathbf{x}) = -3\sqrt{x} - 2\sqrt[3]{x^2}$	$f(x) = -3x^{\frac{1}{2}} - 2x^{\frac{2}{3}}$ $f'(x) = -\frac{3}{2}x^{\frac{1}{2}-\frac{2}{2}} - \frac{4}{3}x^{\frac{2}{3}-\frac{3}{3}}$ $f'(x) = -\frac{3}{2}x^{-\frac{1}{2}} - \frac{4}{3}x^{-\frac{1}{3}}$ $f'(x) = \frac{-3}{2\sqrt{x}} - \frac{4}{3\sqrt[3]{x}}$

			$f(x) = -\frac{2}{3}x^{\frac{3}{2}} - 15^{\frac{1}{2}}x^{\frac{1}{2}} - x^{\frac{5}{3}}$
		$\mathbf{f}(\mathbf{x}) = -\frac{2}{3}\sqrt{x^3} - \sqrt{15x} - $	$f'(x) = -\frac{2}{3} \cdot \frac{3}{2} x^{\frac{3}{2} - \frac{2}{2}} - \sqrt{15} \frac{1}{2} x^{\frac{1}{2} - \frac{2}{2}} - \frac{5}{3} x^{\frac{5}{3} - \frac{3}{3}}$
	18	$\sqrt[3]{x^5}$	$f'(x) = -x^{2} - \sqrt{15} \frac{5}{3} x^{-2} - x^{3}$
			$f'(x) = -\sqrt{x} - \frac{\sqrt{15}}{2\sqrt{x}} - \frac{5}{3}\sqrt[3]{x^2}$
_			$f(x) = -\frac{3}{2}x^{\frac{3}{2}} - 2x^5 - 5x^2$
	19	$f(x) = -\frac{3}{2}\sqrt{x^3} - 2x^5 - 5x^2$	
			$f'(x) = -\frac{9}{4}\sqrt{x}-10x^4 - 10x$
_			$\mathbf{f}(\mathbf{x}) = \frac{\sqrt{x}\sqrt[3]{x}}{\sqrt[2]{x}} = \frac{x^{\frac{1}{2}} \cdot x^{\frac{1}{3}}}{x^{\frac{1}{2}}} = \frac{x^{\frac{1}{2} + \frac{1}{3}}}{x^{\frac{1}{2}}} = \frac{x^{\frac{5}{6}}}{x^{\frac{1}{2}}}$
		$\mathbf{f}(\mathbf{x}) = \frac{\sqrt{x}\sqrt[3]{x}}{\sqrt[2]{x}}$	$f(x) = x^{\frac{5}{6} - \frac{1}{2}} = x^{\frac{2}{6}}$
	20	<i>√x</i>	$f'(x) = \frac{2}{6} \cdot x^{-\frac{4}{6}} = \frac{2}{6} \cdot x^{-\frac{2}{3}}$
			$f'(x) = \frac{1}{3\sqrt[3]{x^2}}$
_			

			$f(x) = \frac{2\sqrt{x} + \sqrt[3]{x}}{\sqrt[2]{x}} = \frac{2\sqrt{x}}{\sqrt[2]{x}} + \frac{\sqrt[3]{x}}{\sqrt[2]{x}}$
			$f(x) = \frac{2 \cdot x^{\frac{1}{2}}}{x^{\frac{1}{2}}} + \frac{x^{\frac{1}{3}}}{x^{\frac{1}{2}}}$
	21	$f(x) = \frac{2\sqrt{x} + \sqrt[3]{x}}{\sqrt[2]{x}}$	$f(x) = 2 + x^{-\frac{1}{6}}$
			$f'(x) = -\frac{1}{6}x^{-\frac{7}{6}}$
			$f'(x) = -\frac{1}{6x\sqrt[6]{x}}$
-	22	$f(x) = \left(x^5 - x^3 + 3\right)^4$	f'(x) =4. $(x^5 - x^3 + 3)^3$. $(5x^4 - 3x^2)$
_			$f'(x) = 2.(x^2 - 2).(2x)$
	23	$f(x) = (x^2 - 2)^2$	$f'(x) = 4x. (x^2-2)$
			$f'(x) = 4x^3 - 8x$
_			$f'(x) = (x + 1)^2 + (x-1) \cdot 2 \cdot (x + 1)$
	24	$f(x) = (x - 1).(x + 1)^2$	$f'(x) = x^2 + 2x + 1 + 2x^2 - 2$
			$f'(x) = 3x^2 + 2x - 1$
_			$f(x) = \left(x^5 - x^3 + 3\right)^4$
	25	$f(x) = \left(x^5 - x^3 + 3\right)^4$	$f'(x) = 4.(x^5 - x^3 + 3)^3.(5x^4 - 3x^2)$
		· ·	

26	$f(x) = \sqrt{\left((x^5 - x^3 + 3)\right)}$	$f(x) = ((x^5 - x^3 + 3))^{\frac{1}{2}}$ $f'(x) = \frac{1}{2} ((x^5 - x^3 + 3))^{\frac{1}{2}} \cdot (5x^4 - 3x^2)$ $f'(x) = \frac{(5x^4 - 3x^2)}{2 \cdot \sqrt{x^5 - x^3 + 3}}$
27	$f(x) = \sqrt[5]{x^5 - x^3 + 3}$	$f(x) = \left(\left(x^5 - x^3 + 3 \right) \right)^{\frac{1}{5}}$ $f'(x) = \frac{1}{5} \left(\left(x^5 - x^3 + 3 \right) \right)^{-\frac{4}{5}} \cdot (5x^4 - 3x^2)$ $f'(x) = \frac{(5x^4 - 3x^2)}{5 \cdot \sqrt[5]{(x^5 - x^3 + 3)^4}}$
28	$f(x) = \frac{1}{\sqrt[5]{x5 - x3 + 3}}$	$f(x) = \left(\left(x^5 - x^3 + 3 \right) \right)^{-\frac{1}{5}}$ $f'(x) = -\frac{1}{5} \left(\left(x^5 - x^3 + 3 \right) \right)^{-\frac{6}{5}} \cdot (5x^4 - 3x^2)$ $f'(x)$ $= -\frac{(5x^4 - 3x^2)}{5 \cdot \sqrt[5]{(x^5 - x^3 + 3)^6}} = -\frac{(5x^4 - 3x^2)}{5 \cdot (x^5 - x^3 + 3)^5 \sqrt{(x^5 - x^3 + 3)^5}}$

29	$f(x) = \sqrt[3]{\frac{x5 - x3 + 3}{x^2}}$	$f(x) = \left(\left(\frac{x5 - x3 + 3}{x^2}\right)\right)^{\frac{1}{3}}$ $f'(x)$ $= \frac{1}{3\sqrt[3]{\left(\frac{x5 - x3 + 3}{x^2}\right)^2}} \cdot \frac{(5 \cdot x^4 - 3x^2) \cdot x^2 - (x5 - x3 + 3) \cdot 2x}{x^4}$ $= \frac{1}{3\sqrt[3]{\left(\frac{x5 - x3 + 3}{x^2}\right)^2}} \cdot \frac{(3 \cdot x^5 - x^3 - 6)}{x^3}$
30	$\mathbf{f}(\mathbf{x}) = \sqrt[5]{\frac{x^2 + x}{x + 1}}$	$f(x) = \sqrt[5]{\frac{x^2 + x}{x + 1}} = \sqrt[5]{\frac{x \cdot (x + 1)}{x + 1}} = \sqrt[5]{x}$ $f'(x) = \frac{1}{5\sqrt[5]{x^4}}$
31	$f(x) = \sqrt{\frac{x^2 + 2x + 1}{x^2 - 1}}$	$f(x) = \sqrt{\frac{x^2 + 2x + 1}{x^2 - 1}} = \sqrt{\frac{(x+1).(x+1)}{(x+1).(x-1)}} = \sqrt{\frac{(x+1)}{(x-1)}}$ $f'(x) = \frac{1}{2\sqrt{\frac{(x+1)}{(x-1)}}} \frac{x - 1 - x - 1}{(x-1)^2} - \frac{1}{\sqrt{\frac{(x+1)}{(x-1)}}} \frac{1}{(x-1)^2} - \frac{1}{\sqrt{x^2 - 1}}$ $\frac{1}{(x-1)}$ $f'(x) = \frac{-1}{\sqrt{x^2 - 1}.(x-1)}$

32	$\mathbf{f}(\mathbf{x}) = \sqrt{\frac{x^2 - 1}{x^2 - 2x + 1}}$	$f(x) = \sqrt{\frac{x^2 - 1}{x^2 - 2x + 1}} = \sqrt{\frac{(x+1) \cdot (x-1)}{(x-1) \cdot (x-1)}} = \sqrt{\frac{(x+1)}{(x-1)}}$ $f'(x) = \frac{1}{2\sqrt{\frac{(x+1)}{(x-1)}}} \frac{x - 1 - x - 1}{(x-1)^2} = \frac{1}{\sqrt{\frac{(x+1)}{(x-1)}}} \frac{1}{(x-1)^2} = \frac{1}{\sqrt{x^2 - 1}}$ $\frac{1}{(x-1)}$ $f'(x) = \frac{-1}{\sqrt{x^2 - 1} \cdot (x-1)}$
33	$\mathbf{f}(\mathbf{x}) = e^{x+1}$	$\mathbf{f}'(\mathbf{x}) = \mathbf{e}^{x+1}$
34	$f(x) = -3. e^{x+1}$	$f'(x) = -3.e^{x+1}$
35	$\mathbf{f}(\mathbf{x}) = 7. e^{x^2 + 1}$	$f'(x) = 7. e^{x^2+1}. 2x = 14x.e^{x^2}$
36	$f(x) = -3. e^{x^2 + x - 1}$	$f'(x) = -3.(2x+1)e^{x^2+x-1}$
37	$\mathbf{f}(\mathbf{x}) = \sqrt{e^x}$	$\mathbf{f}'(\mathbf{x}) = \frac{e^x}{2\sqrt{e^x}}$
38	$f(x) = \sqrt{3e^{x+1}}$	$f'(x) = \frac{3e^{x+1}}{2\sqrt{3}e^{x+1}}$
39	$\mathbf{f}(\mathbf{x}) = -\frac{2}{\sqrt{e^x}}$	$f(x) = -2 \cdot (e^{x})^{-\frac{1}{2}}$ $f'(x) = \frac{+2}{2} \cdot (e^{x})^{-\frac{3}{2}} \cdot e^{x}$ $f'(x) = \frac{1}{\sqrt{e^{x}}}$
40	$f(x) = e^{x+1} - 3e^x + 2e^{x^3}$	$f'(x) = e^{x+1} - 3e^x + 6x^2e^{x^3}$
41	$f(x) = 3^{2x+1}$	$f'(x) = 3^{2x+1} \cdot \ln 3 \cdot 2$
42	$f(x) = 7^{x-1}$	$f'(x) = 7^{x-1} \cdot \ln 7$

43	$f(x) = 7^{x^2 - 1}$	$f'(x) = 7^{x^2-1} \cdot \ln 7 \cdot 2x$
44	$\mathbf{f}(\mathbf{x}) = -\frac{1}{\sqrt{2^x}}$	$f(x) = -(2^{x})^{-\frac{1}{2}}$ $f'(x) = \frac{1}{2}(2^{x})^{-\frac{3}{2}} \ln 2 2^{x}$ $f'(x) = \frac{\ln 2}{2\sqrt{2^{x}}}$
45	$f(x) = 2^{x+1} - 3.5^x$	$f'(x) = 2^{x+1} \cdot \ln 2 - 3 \cdot (5^x \cdot \ln 5)$
46	$f(x) = (2^{x+1} - 3.5^x)^3$	f'(x) =3. $(2^{x+1} - 3.5^x)^2$. $(2^{x+1} \cdot \ln 2 - 3.(5^x \cdot \ln 5))$
47	$f(x) = \sqrt{3^{x+1}}$	$f(x) = (3^{x+1})^{\frac{1}{2}}$ $f'(x) = \frac{1}{2} \cdot (3^{x+1})^{\frac{1}{2}} \cdot 3^{x+1} \cdot \ln 3$ $f'(x) = \frac{3^{x+1} \ln 3}{2\sqrt{3^{x+1}}}$
48	$f(x) = 7^{\sqrt{x+1}}$	$f'(x) = 7^{\sqrt{x+1}} \cdot \ln 7 \cdot \frac{1}{2\sqrt{x+1}}$
49	$\mathbf{f}(\mathbf{x}) = \frac{e^{3x} + e^{x^2}}{3}$	$f'(x) = \frac{e^{3x}.3}{3} + \frac{e^{x^2}.2x}{3}$ $f'(x) = e^{3x} + \frac{e^{x^2}.2x}{3}$

50		$f'(x) = \frac{7^{x^2} \cdot \ln 7 \cdot 2x \cdot x^3 - 7^{x^2} \cdot 3x^2}{x^6}$ $f'(x) = \frac{7^{x^2} \cdot (\ln 7 \cdot 2 \cdot x^2 - 3)}{x^4}$
51	$\mathbf{f}(\mathbf{x}) = \frac{e^{x^2}}{x^3}$	$f'(x) = \frac{e^{x^2 \cdot 2x \cdot x^3 - e^{x^2 \cdot 3} x^2}}{x^6} = \frac{x^2 (e^{x^2 \cdot 2 \cdot x^2 - e^{x^2 \cdot 3}})}{x^6} = \frac{(e^{x^2 \cdot 2 \cdot x^2 - e^{x^2 \cdot 3}})}{x^4}$ $f'(x) = \frac{e^{x^2 \cdot (2 \cdot x^2 - 3)}}{x^4}$
52	$\mathbf{f}(\mathbf{x}) = \sqrt{\frac{7^{x^2}}{x^3}}$	$\mathbf{f}'(\mathbf{x}) = \frac{1}{2 \cdot \sqrt{\frac{7^{x^2}}{x^3}}} \cdot \frac{7^{x^2} \cdot \ln 7 \cdot 2x \cdot x^3 - 7^{x^2} \cdot 3x^2}{x^6}$
53	$f(x) = \ln(x+3)$	$f'(x) = \frac{1}{x+3}$
54	$f(x) = 7x + \ln(x - 3)$	$f'(x)=7+\frac{1}{x-3}$
55	$f(x) = \ln(x^2 - 3x + 2)$	$f'(x) = \frac{1}{x^2 - 3x + 2} \cdot (2x - 3)$
56	$f(x) = \frac{1}{\ln(x-1)}$	$f'(x) = \frac{-\frac{1}{(x-1)}}{(\ln(x-1))^2} = -\frac{1}{(x-1)((\ln(x-1))^2)}$

		$f(x) = \ln \sqrt{\frac{x^2 - 1}{x^2 - 2x + 1}} =$
		$\ln \sqrt{\frac{(x-1).(x+1)}{(x-1).(x-1)}} = \ln \sqrt{\frac{(x+1)}{(x-1)}}$
57	$f(x) = \ln \sqrt{\frac{x^2 - 1}{x^2 - 2x + 1}}$	$f'(x) = \frac{1}{\sqrt{\frac{(x+1)}{(x-1)}}} \cdot \frac{1}{2\sqrt{\frac{(x+1)}{(x-1)}}} \frac{x-1-x-1}{(x-1)^2} = \dots$
		$\frac{-2}{\frac{(x+1)}{(x-1)} \cdot 2 \cdot (x-1)^2} = -\frac{1}{x^2 - 1}$
		$\mathbf{f}'(\mathbf{x}) = -\frac{1}{x^2 - 1}$
		$f'(x) = \frac{1}{\sqrt{(x^5 - x^3 + 3)}} \cdot \frac{1}{2\sqrt{(x^5 - x^3 + 3)}} (5x^4 - 3x^2)$
58	$f(x)=\ln\left(\sqrt{\left((x^5-x^3+3)\right)}\right)$	$\mathbf{f}'(\mathbf{x}) = \frac{5x^4 - 3x^2}{(x^5 - x^3 + 3)}$
	$\mathbf{f}(\mathbf{x}) = \ln\left(\frac{e^x - 1}{e^x + 1}\right)$	$f'(x) = \frac{1}{\frac{e^{x}-1}{e^{x}+1}} \cdot \frac{e^{x} \cdot (e^{x}+1) \cdot e^{x} \cdot (e^{x}-1)}{(e^{x}+1)^{2}}$
59	(e^x+1)	$f'(x) = \frac{+2e^x}{e^{2x}-1}$
		$f'(x) = \frac{u'}{u} \log_a e$
60	$f(x) = \log_3(x+2)$	$f'(x) = \frac{1}{x+2} \log_3 e$
61	$f(x) = \log(x-3)^2$	$f'(x) = \frac{2.(x-3)}{(x-3)^2.Ln10}$
62	f(x) = sen(x+1)	$f'(x) = \cos(x+1)$

	$f(x) = aan(2x^3 + 2x^2)^2$	$f'(x) = 2. \sin(2x^3 + 2x^2). \cos(2x^3 +$
63	$f(x) = sen(2x^3 + 2x^2)^2$	$2x^2)\left(6x^2+4x\right)$
64	$f(x) = \operatorname{sen}(x+1) + 5x$	$f'(x) = \cos(x+1) + 5$
		$f(x) = \sin(x+1)^{\frac{1}{2}}$
65	$f(x) = \sqrt{(\operatorname{sen}(x+1))}$	$f'(x) = \frac{1}{2}\sin(x+1)^{-\frac{1}{2}}.\cos(x+1)$
		$f'(x) = \frac{\cos(x+1)}{2.\sqrt{\sin(x+1)}}$
	$f(x) = \cos(3x + 3)$	$f'(x) = -\sin(3x + 3).3$
66	$1(x) - \cos(3x + 3)$	$f'(x) = -3\sin(3x + 3)$
	$f(x) = \cos(3x^2 + 3x)$	$f'(x) = -\sin(3x^2 + 3x) \cdot (6x + 3)$
67		$f'(x) = -3. \sin(3x^2 + 3x) \cdot (3x + 1)$
68	$f(x) = \frac{1}{\operatorname{sen}(x+1)}$	$f'(x) = -\frac{\cos(x+1)}{(\sin(x+1))^2}$
69	$f(x) = \frac{1}{\cos x} + \frac{1}{\sin(x+1)}$	$f'(x) = \frac{\sin x}{(\cos x)^2} - \frac{\cos(x+1)}{(\sin(x+1))^2}$
70	$f(x) = \frac{1}{\sin x} - \frac{1}{\cos(x-1)}$	$f'(x) = \frac{-\cos x}{(\sin x)^2} - \frac{\sin(x+1)}{(\cos(x-1))^2}$
		$f'(x) = \frac{1}{3\sqrt{(\cos(3x+3))^2}} \sin(3x+3).3$
71	$f(x) = \sqrt[3]{\cos(3x+3)}$	$f'(x) = -\frac{\sin(3x+3)}{\sqrt[3]{(\cos(3x+3))^2}}$
	I	I

	$f(x) = \frac{1}{\sin(x+1)} + (x^5 - x^3 +$	$f'(x) = -\frac{\cos(x+1)}{(\sin(x+1))^2} + 4 \cdot (x^5 - x^3 + x^3)$
72	3)4	$(5x^4 - 3x^2)$
73	$f(x) = \ln(x-1) + e^{x+1}$	$f'(x) = \frac{1}{x-1} + e^{x+1}$
74	$f(x) = e^{x-3} + \cos(x+1)-x^2$	$f'(x) = e^{x-3} - \sin(x+1) - 2x$
75	$f(x) = \tan(x-5)$	$f'(x) = \sec^2(x-5)$
76	$f(x) = \tan(x^3 + 3)$	$f'(x) = \sec^2(x^3 + 3).3x^2$
77	$f(x) = -\tan(-5x^2 - 7)$	$f'(x) = -\sec^2(-5x^2-7)10x$ $f'(x) = \sec^2(-5x^2-7).10x$
78	$f(x) = \frac{1}{\tan(x-5)}$	$f'(x) = \frac{-\sec^2(x-5)}{(\tan(x-5))^2}$
79	$f(x) = -\frac{3}{\tan(x+2)}$	$f'(x) = \frac{3.\sec 2 (x-5)}{(\tan(x+2))^2}$
80	$f(x) = \sqrt{(\tan(x-5))}$	$f'(x) = \frac{sec^2 (x-5)}{2.\sqrt{\tan(x-5)}}$
81	$f(x) = \arcsin(x^2 - 3)$	$f'(x) = \frac{2x}{\sqrt{1-(x^2-3)^2}}$
	$f(x)=3x+arcsen(3x^3+$	$f'(x) = 3 + \frac{9 \cdot x^2 + 3}{\sqrt{1 - (3x^3 + 3x - 7)^2}}$
82	3x-7)	$\sqrt{1-(3x^3+3x-7)^2}$

83	$f(x)=arcsen\sqrt{(x^2-3)}$	$f'(x) = \frac{\frac{1}{2\sqrt{x^2 - 3}} \cdot 2x}{\sqrt{1 - (x^2 - 3)}}$ $= \frac{x}{\sqrt{(-x^2 + 4) \cdot (x^2 - 3)}}$
84	$f(x) = \arcsin\left(\frac{x+1}{x-1}\right)$	$f'(x)$ $= \frac{1}{\sqrt{1 - \left(\frac{x+1}{x-1}\right)^2}} \cdot \frac{x - 1 - (x+1)}{(x-1)^2}$ $f'(x)$ $= \frac{1}{\frac{\sqrt{x^2 - 2x + 1 - x^2 - 2x - 1}}{(x-1)}} \cdot \frac{-2}{(x-1)^2}$ $f'(x) = \frac{-2}{2 \cdot (x-1) \cdot \sqrt{-x}}$ $f'(x) = \frac{-1}{(x-1) \cdot \sqrt{-x}}$
85	$f(x) = \sqrt[3]{\operatorname{sen}(x^2 + 3)}$	$f(x) = \sqrt[3]{\sin(x^2 + 3)} = (\sin(x^2 + 3))^{\frac{1}{3}}$ $f'(x) = \frac{\cos(x^2 + 3) \cdot 2x}{3 \cdot \sqrt[3]{(\sin(x^2 + 3))^2}}$
86	$f(x) = \sqrt[3]{\tan e^x}$	$f'(x) = \frac{sec^2(e^x) \cdot e^x}{3 \cdot \sqrt[3]{(\tan(e^x))^2}}$
87	$f(x)=x^2$. $\tan \sqrt{x}$	$f'(x) = 2x. \tan \sqrt{x} + x^2. \sec^2 \sqrt{x}. \frac{1}{2\sqrt{x}}$

88	$\mathbf{f}(\mathbf{x}) = \frac{1 + sen^2 x}{x}$	$f'(x) = \frac{-2.senx.cosx}{x^2}$
89	$f(x)=\ln\left(\operatorname{sen}x\right)$	$f'(x) = \frac{1}{\sin x} \cdot \cos x$
90	$f(x) = arctg(x^2-3)$	$f'(x) = \frac{1}{1 + (x^2 - 3)^2}.2x$
91	$f(x)=e^{x^2}-3 \ln (\sin x)$	$f'(x) = e^{x^2} \cdot 2x - 3\frac{1}{(\sin x)} \cdot \cos x$
92	$f(x)=e^{x+3} + $ $ln(x-5)-cot(x)$	$f'(x) = e^{x+3} + \frac{1}{x-5} + \csc^2(x)$
93	$f(x)=arctg(\ln x)$	$f'(x) = \frac{1}{1 + (\ln x))^2} \cdot \frac{1}{x}$
94	$f(x)=\ln(\ln x)$	$f'(x) = \frac{1}{\ln x} \cdot \frac{1}{x}$
95	$f(x) = \ln(\ln x) +$ $arctg(x^3-1)$	$f'(x) = \frac{1}{\ln x} \cdot \frac{1}{x} + \frac{1}{1 + (x^3 - 1)^2} \cdot 3x^2$
96	$f(x) = \cot(x^3-1)$	$f'(x) = -3.x^2 \cdot \csc^2(x^3-1)$
97	$f(x) = \sec x - e^x$	$f'(x) = \sec x \cdot tg x - e^x$
98	$f(x) = \csc x + \frac{x^3}{3}$	f'(x)=-cosecx.tg $x+x^2$
99	$f(x) = \cot(x+1)$	$f'(x) = -\csc^2(x+1)$
100	$f(x) = e^{x^2} - \cot(x^3 - 1)$	$f'(x) = e^{x^2} \cdot 2x + 3 \cdot x^2 \cdot \csc^2(x^3 - 1)$

Si tienes cualquier duda y quieres ponerte en contacto conmigo, puedes hacerlo escribiéndome a yosoytuprofe.miguel@gmail.com, o bien a través de mis perfiles en redes sociales (<u>Facebook</u>, <u>Twitter</u>, <u>Instagram</u> o YouTube).

Nos vemos en la siguiente clase.

Table de Demindos #VCTD 20