Processor

Thumrongsak Kosiyatrakul tkosiyat@cs.pitt.edu

Draft

Processor

Learning Objective

How to build a Central Processing Unit (CPU)

Major Questions to Answer

How do we design

- Arithmetic Logic Unit (ALU)
- Oatapath
- Control Signals

Do we have any plan?

Our Plan

Using Instructions and their machine languages as a specification:

Example: Add

• Name: Add

• Mnemonic: add

• Format: R

• Operation: R[rd] = R[rs] + R[rt]

• Note: (1) May cause overflow exception

• **Opcode/Funct**: $0/20_{hex}$

op	rs	rt	rd	shamt	funct
0	rs	rt	rd	0	20 _{hex}
31 26	25 21	20 16	15 11	10 6	5 0

Example: Add Immediate

Name: Add Immediate

• Mnemonic: addi

Format: 1

• Operation: R[rt] = R[rs] + SignExtImm

• Note: (1) May cause overflow exception

• Note: (2) SignExtImm = $\{16\{\text{immediate}[15]\}, \text{ immediate}\}$

Opcode/Funct: 8_{hex}

op	rs	rt	immediate
8 _{hex}	rs	rt	immediate
31 26	25 21	20 16	15 0

Outline for This Series

Using instructions and their machine languages as a specification:

- Arithmetic Logic Unit (ALU)
 - Supports basic arithmetic and logic operations
- OPU Datapath
 - Incorporating register file and memories
- Immediate/Address Field
 - How immediate/address field are used
- Jump/Branch Addressing
 - How jump and branch addresses are calculated
- Control Unit
 - Control signals of basic instructions

Processor

1. Arithmetic Logic Unit (ALU)

1. Arithmetic Logic Unit (ALU)

Arithmetic Logic Unit (ALU)

Need to support the following operations:

- Arithmetic Operations:
 - Add (add and addi)
 - Subtract (sub)
- Logical Operations:
 - AND (and and andi)
 - OR (or and ori)
 - NOR (nor)
- Comparison Operations:
 - Less than (slt and slti)
 - Equal (beq and bne)
- Memory References
 - Load word (lw)
 - Store word (sw)

Logic Gates

NOT Gate

Desired input/output

Input (a)	Output
0	1
1	0

Can be constructed using MOSFET

AND Gates

AND Gate

Input (a)	Input (b)	Output
0	0	0
0	1	0
1	0	0
1	1	1

OR Gates

OR Gate

Input (a)	Input (b)	Output
0	0	0
0	1	1
1	0	1
1	1	1

NAND Gate

NAND Gate

Input (a)	Input (b)	Output
0	0	1
0	1	1
1	0	1
1	1	0

Logic Gates

Name	Symbol	Function
1-input NOT Gate	a → output	output = !a
2-input AND Gate	a output	output = a && b
2-input OR Gate	a output	$output = a \mid\mid b$
2-input NAND Gate	a output	$output = !(a \And b)$

- We know how these gates work
- How to build a CPU using a combination of these gates?

Multiplexer

- Desired input/output
 - If sel is 0, output is equal to input a
 - If sel is 1, output is equal to input b
- A multiplexer can be built using AND, OR, and NOT gates

AND and OR Operations (1 Bit)

```
and $t0, $t1, $t2
or $t3, $v0, $t4
```

- Use AND gate to produce output for AND operation
- Use OR gate to produce output for OR operation
- Use a multiplexer to select which operation

a and b are 1-bit inputs

Addition

- Recall the instruction add add \$t0, \$t1, \$t2
- We tell CPU to add two numbers (from \$t1 and \$t2)
- Clearly, our CPU must be able to perform addition
- How can we build a circuit that can add two 32-bit numbers?
- From gates that can only perform NOT, AND, OR, NOR, NAND, and XOR?
- Let's think about how we add in both decimal and binary.

One-Bit Adder

Truth table of the one-bit adder

Input			Output	
Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- Outputs that are ones are highlighted
- Example: if A=0, B=0, and Cin=1, we want output S to be 1

- We want S to be 1 **ONLY** when A = 0, B = 0, and Cin = 1.
- Think about an AND gate
 - Output of an AND gate will be 1 if and only if both input a and b are 1s.
- Let's use a 3-input AND gate to produce this output s
 - 3-input AND gate can be built from two 2-input AND gates
- We need all three inputs to be 1 to produce output 1
 - We want output to be 1 when A = 0, so invert it using a NOT gate (!A)
 - We want output to be 1 when B = 0, so invert it using a NOT gate (!B)
 - We want output to be 1 when Cin = 1, we do not have to do anything
- We obtain output s = (!A && !B) && Cin

- Now we know that s = (!A && !B) && Cin
- We can but a partial circuit as follows:

- For simplicity, we use a' to denote !a and product to denote AND operator
- Thus, we get S = A'B'Cin
- ullet But this is not the only input that produces output ${\sf S}=1$
- Output S should be 1 when:
 - A = 0, B = 0, and $Cin = 1 \Rightarrow A'B'Cin$
 - A = 0, B = 1, and $Cin = 0 \Rightarrow A'BCin'$
 - A = 1, B = 0, and $Cin = 0 \Rightarrow AB'Cin'$
 - A = 1, B = 1, and Cin = $1 \Rightarrow ABCin$

- We need output S to be 1 when one of those set of inputs occurs (from previous slide)
- Recall our OR gate
 - Output of an OR gate will be one if one of its input is one
- Thus we can simply OR them together
- \bullet S = A'B'Cin || A'BCin' || AB'Cin' || ABCin
- For simplicity, we use + to denote OR operation
 - S = A'B'Cin + A'BCin' + AB'Cin' + ABCin
- This is called Sum of Products

• Circuit for producing sum (S) of a one-bit adder

- Doing the same process for Cout and we get
 - Cout = A'BCin + AB'Cin + ABCin' + ABCin

 Now, we can build a one-bit adder using a bunch of NOT, AND, and OR gates

Boolean Algebra

- Boolean algebra consists of:
 - Binary Value: 0 and 1
 - Two binary operators: AND $(\times \text{ or } \cdot)$ and OR (+)
 - One unary operator: NOT (\neg)
- Some Properties:
 - Idempotent:
 - \bullet $a \cdot a = a$
 - a + a = a
 - Commutative
 - $a \cdot b = b \cdot a$
 - a + b = b + a
 - Associative
 - $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - a + (b + c) = (a + b) + c

Boolean Algebra

- Properties:
 - Distributive

•
$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

• $a + (b \cdot c) = (a+b) \cdot (a+c)$

- De Morgan's law
 - $\neg (a \cdot b) = \neg a + \neg b$
- Identities
 - $a + (a \cdot b) = a$
 - $a \cdot (a + b) = a$
 - ¬¬a = a
 - $a + \neg a = 1$
 - $a \cdot \neg a = 0$
- With AND, OR, and NOT gates, we can express any function in Boolean algebra

Using NAND Only

- What if we have only NAND gates, can we express all functions in Boolean algebra?
- In other words, can we build AND, OR, and NOT operations, using only NAND gates?
- Note that NAND is NOT AND (a nand $b = \neg(a \cdot b)$)
- NOT using NAND

$$\neg A = \neg (A \cdot A)$$
$$= A \text{ nand } A$$

Using NAND Only

AND using NAND

$$A \cdot B = \neg(\neg(A \cdot B))$$

$$= \neg(A \text{ nand } B)$$

$$= \neg((A \text{ nand } B) \cdot (A \text{ nand } B))$$

$$= (A \text{ nand } B) \text{ nand } (A \text{ nand } B)$$

Using NAND Only

OR using NAND

$$A + B = \neg(\neg(A + B))$$

$$= \neg(\neg A \cdot \neg B)$$

$$= \neg A \text{ nand } \neg B$$

$$= (\neg(A \cdot A)) \text{ nand } (\neg(B \cdot B))$$

$$= (A \text{ nand } A) \text{ nand } (B \text{ nand } B)$$

Using NOR Only

- Recall that A nor B is $\neg(A+B)$
- NOT using NOR

$$\neg A = \neg (A + A)$$
$$= A \text{ nor } A$$

Using NOR Only

AND using NOR

$$A \cdot B = \neg(\neg A) \cdot \neg(\neg B)$$

$$= \neg((\neg A) + (\neg B))$$

$$= (\neg A) \text{ nor } (\neg B)$$

$$= (\neg(A + A)) \text{ nor } (\neg(B + B))$$

$$= (A \text{ nor } A) \text{ nor } (B \text{ nor } B)$$

Using NOR Only

OR using NOR

$$A + B = (A + B) \cdot (A + B)$$

$$= \neg(\neg((A + B) \cdot (A + B)))$$

$$= \neg(\neg(A + B) + \neg(A + B))$$

$$= \neg(A + B) \text{ nor } \neg(A + B)$$

$$= (A \text{ nor } B) \text{ nor } (A \text{ nor } B)$$

XOR Gate

XOR Gate

Input (a)	Input (b)	Output
0	0	0
0	1	1
1	0	1
1	1	0

• Output = a'b + ab'

XOR Gate

• Output = a'b + ab'

$$(\neg a \cdot b) + (a \cdot \neg b) = \neg(\neg((\neg a \cdot b) + (a \cdot \neg b)))$$

$$= \neg(\neg(a \cdot b) \cdot \neg(a \cdot \neg b))$$

$$= \neg(\neg a \cdot b) \text{ nand } \neg(a \cdot \neg b), \text{ but}$$

$$\neg(\neg a \cdot b) = \neg((\neg a \cdot b) + 0)$$

$$= \neg((\neg a \cdot b) + (\neg b \cdot b))$$

$$= \neg((\neg a + \neg b) \cdot b)$$

$$= (\neg a + \neg b) \text{ nand } b$$

$$= (\neg a + \neg b) \text{ nand } b$$

$$= (a \text{ nand } b) \text{ nand } b, \text{ and}$$

$$\neg(a \cdot \neg b) = \neg(0 + (a \cdot \neg b))$$

$$= \neg(a \cdot (\neg a + \neg b))$$

$$= a \text{ nand } (\neg a + \neg b)$$

$$= a \text{ nand } \neg(a \cdot b)$$

$$= a \text{ nand } (a \text{ nand } b)$$

Simplifying Expressions

- Recall our one-bit full-adder
 - S = A'B'Cin + A'BCin' + AB'Cin' + ABCin
 - Cout = A'BCin + AB'Cin + ABCin' + ABCin
- Look at the last two terms:
 - ABCin' + ABCin
- From the boolean algegra
 - ABCin' + ABCin = AB(Cin' + Cin') = AB
- Similar to
 - A'BCin + ABCin = BCin(A' + A) = BCin
 - AB'Cin + ABCin = ACin(B' + B) = ACin
- Thus, the algebraic expression of Cout can be reduced to
 - Cout = BCin + ACin + AB
- In doing so, we reduce the complexity of the circuit which will be smaller use less power

Karnaugh Map

- Karnaugh Map is a tool to help simplify boolean expression
- Create a table using Gray Codes
 - A binary code where each subsequent value only differs in out bit from the previous code
- For example:

2-bit	3-bit
00	000
01	001
11	011
10	010
	110
	111
	101
	100

• Gray codes can be used for both column and row headings

• Recall that Cout = A'BCin + AB'Cin + ABCin' + ABCin

A BCin	0	1
00	0	0
01	0	1
11	1	1
10	0	1

- Fill in the table using Cout's boolean expression
- For example, the highlighted cell corresponds to AB'Cin

- Looking for adjacent maximum rectangular groups of 1s with power of 2 elements (can be horizontal, vertical, both, or wrap around edges)
- For example:

A BCin	0	1	A BCin	0	1	A BCin	0	1
00	0	0	00	0	0	00	0	0
01	0	1	01	0	1	01	0	1
11	1	1	11	1	1	11	1	1
10	0	1	10	0	1	10	0	1
ACin			BCin		AB			

- First table, A and Cin are 1s, B can be either 1 or 0
- Second table, B and Cin are 1s, A can be either 1 or 0
- Thrid table, A and B are 1s, Cin can be either 1 or 0

New circuit for producing Cout

Compare to

- What about sum (S)?
 - S = A'B'Cin + A'BCin' + AB'Cin' + ABCin

A Bcin	0	1
00	0	1
01	1	0
11	0	1
10	1	0

- We cannot group 1s together. Thus, we cannot simply the expression of sum.
- Notice that S will be 1 if the number of ones among A, B, and Cin is an odd number (one or three)
- Recall the two-input XOR gate
 - If A is 0 and B is 1, the output is 1
 - If A is 1 and B is 0, the output is 1
 - Otherwise, the output is 0.

Simplify the Expression of Sum

We can use XOR to produce the output S as follows:

• We can verify using boolean algebra where $A \oplus B = A'B + AB'$

$$(A \oplus B) \oplus Cin = (A'B + AB') \oplus Cin$$

$$= (A'B + AB')'Cin + (A'B + AB')Cin'$$

$$= ((A'B)'(AB')')Cin + (A'B + AB')Cin'$$

$$= ((A'' + B')(A' + B''))Cin + (A'B + AB')Cin'$$

$$= ((A + B')(A' + B))Cin + (A'B + AB')Cin'$$

$$= ((AA' + A'B') + (AB + BB'))Cin + (A'B + AB')Cin'$$

$$= (A'B' + AB)Cin + (A'B + AB')Cin'$$

$$= A'B'Cin + ABCin + A'BCin' + AB'Cin'$$

Karnaugh Map (Four Variables)

- We can use Karnaugh Map with more than three variables.
- For example, four variables:

AB CD	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	1	1	0
10	0	1	1	0

- From the above table, the output is 1 when D and A are ones.
- Thus, we have Output = AD

Karnaugh Map (Four Variables)

• For example, four variables:

CD AB	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	1	1	1	1
10	0	0	0	0

- From the above table, the output is 1 when B is one.
- Thus, we have Output = B

Karnaugh Map (Four Variables)

• For example, four variables:

AB CD	00	01	11	10
00	1	0	0	1
01	0	0	0	0
11	0	0	0	0
10	1	0	0	1

- From the above table, the output is 1 when B and D are zeros.
- Thus, we have Output = B'D'

Addition (1 Bit)

```
add $t0, $t1, $t2
```

- Two inputs for the operands (a and b)
- One input for taking carry from previous adder (CarryIn)
- One output for sum (Result)
- One output to pass the carry on to the next adder (CarryOut)
- Can be constructed as follows:

Addition (1 Bit)

- From the circuit in previous slide:
 - ullet Sum (Result) = (A \oplus B) \oplus Cin We already discussed this
 - Cout (CarryOut) = $(A \oplus B)Cin + AB???$
- From the boolean algebra:

$$(A \oplus B)Cin + AB = (A'B + AB')Cin + AB$$

= $A'BCin + AB'Cin + AB$
= $A'BCin + AB'Cin + AB(Cin + Cin')$
= $A'BCin + AB'Cin + ABCin + ABCin'$

Which is the same as out Cout analysed from the truth table

Addition with AND and OR

- Need to incorporate with AND and OR operations
- Need to expand multiplexer to select among AND, OR, and addition operations

Can be considered as 1-bit ALU

32-Bit ALU

- Construct 32-bit-wide ALU using a chain of 32 1-bit-wide ALU
- Let xi mean the ith bit of x

• How about operand(s) with negative value in two's complement (e.g., 6 + (-5), (-1) + 3, or (-2) + (-3))

Subtraction Operation

- x y = x + (-y)
- We can use existing addition operation to perform subtraction
- Need a logic to negate an operand
- MIPS uses two's complement for signed number representation
- How to negate a two's complement number?

Subtraction Examples (4-bit representation)

• Example: 5 − 4

• Example: -5+4

$$\begin{array}{c} 1011 \\ 0100 \\ \hline 1111 \\ \hline \end{array} +$$

• Example: -1-2

ALU with Subtraction

- For ALU0 (least significant bit ALU)
 - CarryIn must be 1 for subtraction
 - CarryIn must be 0 for addition

NOR Operation

Recall the definition of nor:

a NOR
$$b = \neg(a \lor b) = \neg a \land \neg b$$

- We already have inverse of b and the AND operation
- We need an inverter in every ALU to invert a input
- Need a multiplexer to select between a or ¬a

ALU Operations

Operation	Ainvert	Binvert	CarryIn (first ALU)	Operation
AND	0	0	N/A	002
OR	0	0	N/A	012
Addition	0	0	0	102
Subtraction	0	1	1	102
NOR	1	1	N/A	002

- Binvert and CarryIn of the first ALU are always the same
- Put them together and call it Bnegate

```
slt $t0, $s0, $s1
```

- Sets register \$t0 to 1 if \$s0 < \$s1. Otherwise set \$t0 to 0.
- Set all but the least significant bit of the ALU to 0
- Need to expand the output multiplexer to select the new input called Less
- Less is always 0 for ALU1 to ALU31

• How to compare whether a is less than b?

$$a < b \equiv (a-b) < (b-b) \equiv (a-b) < 0$$

- If (a b) < 0, then a < b
- We can use subtract to compare a and b.
- How do we know that the result of a b is less than 0?
- If sign bit of a two's complement number is 1, the number is a negative number
- Examples (4-bit representation)
 - Check whether 2₁₀ is less than 5₁₀

$$2_{10} - 5_{10} = 2_{10} + (-5_{10}) = 0010_2 + 1011_2 = 1101_2$$

The sign bit is 1. 2_{10} is less than 5_{10} .

- Check whether -3_{10} is less than -1_{10}

$$-3_{10} - (-1_{10}) = -3_{10} + 1_{10} = 1101_2 + 0001_2 = 1110_2$$

The sign bit is 1. -3_{10} is less than -1_{10}

- We need to know the sign bit of the result of subtraction operation
- We cannot simply use the output of ALU31

• The output of the ALU31 is 0 for set on less than operation

- Need to extract the output of the adder of ALU31 called Set signal
- Connect Set signal to the Less input of the least significant bit ALU (ALU0)

Problem with Set on Less Than

- Unfortunately, an overflow can occur
- Consider the following 4-bit representation examples:
 - Check whether -7_{10} is less than 6_{10}

$$-7_{10} - 6_{10} = -7_{10} + (-6_{10}) = 1001_2 + 1010_2 = 0011_2$$

The sign bit is 0. Thus -7_{10} is not less than 6_{10}

- Check whether 7_{10} is less than -1_{10}

$$7_{10} - (-1_{10}) = 7_{10} + 1_{10} = 0111_2 + 0001_2 = 1000_2$$

The sign bit is 1. Thus 7_{10} is less than -1_{10}

- Check whether 6_{10} is less that -3_{10}

$$6_{10} - (-3_{10}) = 6_{10} + 3_{10} = 0110_2 + 0011_2 = 1001_2$$

The sign bit is 1. Thus 6_{10} is less than -3_{10}

Need to check whether an overflow occurs

Overflow

- In addition, no overflow if two operands have different signs
- In addition, overflow occurs in the following situations:
 - Adding two positive numbers results in a negative number

$$7_{10} + 1_{10} = 0111_2 + 0001_2 = 1000_2 = -8_{10}$$

Adding two negative numbers results in a positive number

$$-8_{10} + (-1_{10}) = 1000_2 + 1111_2 = 0111_2 = 7_{10}$$

- In subtraction, no overflow if two operands have the same signs
- In subtraction, overflow occurs in the following situations:
 - Subtracting a negative number from a positive number results in a negative number
 - Subtracting a positive number from a negative number results in a positive number

Overflow

- To detect overflow, we need the following:
 - The sign bit of the first operand
 - The sign bit of the second operand
 - The sign bit of the result

Fixing the Set Output

- We need to invert the original Set output if the overflow occur (Overflow = 1)
- Can be easily done by adding an XOR gate

ALU with Set on Less Than

Branches (beq and bne)

```
beq $t0, $t1, L1
bne $s0, $s1, L2
```

- Need the ability to check whether a is equal to b
- If a = b, (a b) = 0
- Use subtraction and check whether the result is equal to 0
- Need a new output called Zero
- Zero will be 1 if a = b. Otherwise, 0.
- Simply OR all ALU outputs and inverse the result

ALU

ALU

Operation	ALU operation			
Operation	Ainvert	Bnegate	Operation	
AND	0	0	002	
OR	0	0	012	
Addition	0	0	102	
Subtraction	0	1	102	
NOR	1	1	002	
Set on Less Than	0	1	112	
Branch	0	1	N/A	

Combinational Logic

- An Output of a combinational logic depends solely on its inputs
- Given a set of inputs, it always produces the same output.
- Examples: gates, adder, and ALU

Sequential Logic

- An output of a sequential logic depends on its inputs and the content of its internal state
- Contains at least one state element to store its state
 - A state element has at least two inputs
 - Data to be written to the element, and
 - Clock to determines when the data value is written
- Examples: registers and memory

State Elements

- A state element need to hold a value
- When its output is changed, the output stays the same
 - If the output was 1, maintains output 1 until a specific input is detected
 - If the output was 0, maintains output 0 until a specific input is detected
- This type of circuit can be built using gates with feedback(s)
- With feedback(s), we need to assume the initial state
 - Initial state is its output when the power is just turn on

S-R Latch

- ullet \overline{Q} is the complement (negate/invert) of Q
- Assume that its initial state is Q=0 and $\overline{Q}=1$
- The value of Q and \overline{Q} when S and R are zeros depend on previous values of S and R.

D Latch

- Constructed from S-R Latch
 - Recall that both S and R cannot be 1 at the same time
 - Can outputs of two AND gates be 1 at the same time?
- D Latch
 - When C is 1 (asserted), the latch is open. Output Q becomes the value of input D.
 - When C is 0 (deasserted), the latch is closed. Output Q is whatever value was stored the last time the latch is open.

D Flip Flop

A 32-Bit Register

- Use one D flip flop to store 1 bit
- We need 32 D flip flops

Register File

- Our MIPS has 32 general purpose registers, we need 5 bits to indentify which register
- R-type instructions such as add, sub, and and, require two source registers and one destination register
 - The first source operand goes to Read register 1 and its output is Read data 1
 - The second source operand goes to Read register 2 and its output is Read data 2
 - The destination register goes to Write register and the value to be written goes to Write data

Output of A Register File

• Each multiplexer has 32 32-bit inputs and one 32-bit output

Write Port of A Register File

Summary

- A circuit that behaves like a function can be built
 - Using logic gates
 - Truth table (sum of products)
 - Simplify using boolean algebra or Karnaugh Map
- Our ALU supports add, sub, and, or, nor, slt, beq, and bne
- A register/memory for storing data can be built
 - Using logic gates with feedback(s)
 - Use clock to determine when to read/write a state element