14 Quaternions et groupe spécial orthogonal

Leçons 106, 160, 161(, 101, 108, 154, 191)

Ref: [Perrin] VII.2

On note dans la suite \mathbb{H} le corps (non commutatif) des quaternions, i.e. le \mathbb{R} -espace vectoriel de dimension 4 dont une base est (1, i, j, k), avec les relations

$$i^2 = j^2 = k^2 = ijk = -1.$$

Pour $q=a+ib+jc+kd\in\mathbb{H}$, on appelle $\overline{q}=a-ib-jc-kd$ le conjugué de q. L'application $q\longmapsto\sqrt{q}\overline{q}$ est une norme multiplicative (appelée norme quaternionique), et correspond en fait à la norme euclidienne sur \mathbb{H} dans la base donnée précédemment.

On définit également le groupe des quaternions G comme l'ensemble des quaternions de norme 1, muni du produit. L'inverse d'un élément q est alors son conjugué.

Théorème 1 Il existe un isomorphisme de groupes entre $G/\{\pm 1\}$ et $SO_3(\mathbb{R})$.

Démonstration. Étape 1. Action de G sur \mathbb{H} .

On considère l'action de G sur \mathbb{H} par conjugaison : pour $q \in G$, on définit l'application

$$S_q: \left| \begin{array}{ccc} \mathbb{H} & \longrightarrow & \mathbb{H} \\ q' & \longmapsto & qq'\overline{q} \end{array} \right|$$

Tout d'abord, cette application est linéaire (car \mathbb{R} est central dans \mathbb{H}) et bijective, puisque $S_{\overline{q}}$ fournit un inverse à S_q (cela découle du fait que l'action par conjugaison est bien une action de groupes). On en déduit que le morphisme de l'action $S: G \longrightarrow \mathfrak{S}(\mathbb{H})$ est à valeurs dans le groupe des automorphismes de \mathbb{R} -espace vectoriel de \mathbb{R}^4 , qui est isomorphe à $GL_4(\mathbb{R})$. On a donc un morphisme de groupe

$$S: G \longrightarrow GL_4(\mathbb{R}).$$

De plus, son noyau est par définition la trace dans G du centre de \mathbb{H} , c'est à dire $\mathbb{R} \cap G = \{\pm 1\}$.

Étape 2. Restriction de l'action à l'espace des quaternions purs.

Pour un élément $q \in G$ donné, S_q préserve la norme quaternionique, et donc la norme euclidienne sur \mathbb{R}^4 : c'est dire que S_q est un élément de $O_4(\mathbb{R})$. De plus, G agit trivialement sur \mathbb{R} (puisque $\mathbb{R} = Z(\mathbb{H})$), et donc laisse également stable son orthogonal, qui est l'ensemble $P := \mathbb{R}i \oplus \mathbb{R}j \oplus \mathbb{R}k$ des quaternions purs. Ainsi, $s_q := S_{q|P}$ est un élément de $O_3(\mathbb{R})$, et on construit ainsi un nouveau morphisme

$$s: G \longrightarrow O_3(\mathbb{R})$$

de noyau $\{\pm 1\}$. De plus, cette application est continue (pour la topologie naturelle sur $O_3(\mathbb{R})$, vu comme un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R}) \simeq \mathbb{R}^9$). En effet, le calcul de la matrice de s_q dans la base (i,j,k) de P montre que ses coefficients sont des polynômes homogènes de degré 2 en les coefficients de q: si q = a + ib + jc + kd, on a par exemple

$$s_a(i) = (ia - b - kc + jd)(a - ib - jc - kd) = (a^2 + b^2 - c^2 - d^2)i + 2(ad + bc)j + 2(bd - ac)k,$$

et les trois coefficients sont bien polynomiaux. Donc, en composant avec le déterminant, qui est aussi continu, on obtient une application det $\circ s: G \longrightarrow \{\pm 1\}$ continue. Or G est connexe (car isomorphe à la sphère $\mathbb{S}^3 = \{(a,b,c,d) \in \mathbb{R}^4, \ a^2 + b^2 + c^2 + d^2 = 1\}$) donc cette application est constante. Comme G contient l'élément 1, son image contient l'identité, et donc elle est inclue dans $SO_3(\mathbb{R})^1$.

Étape 3. Surjectivité de l'action obtenue.

On va maintenant montrer que l'image de s est $SO_3(\mathbb{R})$. Tout d'abord, si q est un élément de $G \cap P$, $s_q(q) = qq\overline{q} = q$, donc s_q fixe la droite vectorielle $\mathbb{R}q$. De plus, comme $q^2 = -q\overline{q} = -1$ (puisque q est un quaternion pur, donc $\overline{q} = -q$), $s_q^2 = s_{-1} = \mathrm{Id}$. Donc s_q est une involution. Mais alors nécessairement, puisqu'elle est de déterminant 1, c'est un renversement (car $s_q \neq \mathrm{Id}$ comme $q \notin \{\pm 1\}$). Comme on connaît la droite fixée par s_q , on en conclut que s_q est justement le renversement d'axe $\mathbb{R}q$. Finalement, comme

^{1.} Si on manque de temps, on peut directement invoquer le fait que la composante connexe de l'identité dans $O_3(\mathbb{R})$ est $SO_3(\mathbb{R})$.

toutes les droites vectorielles de P contiennent un élément de $G \cap P$, s(G) contient tous les renversements. Mais comme ceux-ci engendrent $SO_3(\mathbb{R})$, on a bien $s(G) = SO_3(\mathbb{R})$. D'après le théorème d'isomorphisme, on en déduit que s induit un isomorphisme

$$\overline{s}: G/\{\pm 1\} \longrightarrow SO_3(\mathbb{R}).$$

Remarque.

- L'isomorphisme obtenu est explicite, mais son inverse est difficile à exprimer puisqu'il faut résoudre les équations polynomiales de degré 2 associées aux coefficients d'une matrice de $SO_3(\mathbb{R})$.
- Malgré tout, on peut à l'oral évoquer le fait que les calculs de rotations faits par les ordinateurs (dans les jeux vidéos par exemple) se font souvent à partir de cet isomorphisme, en calculant dans G.