Cake-Cutting-Algorithms or What you can learn from an Ass

Prof. J. Rothe

12. Mai 2010

Die Spieler: \not Die S

<u>Das Ziel:</u> Gerechte Aufteilung

1 Einführung in gerechte Kuchenaufteilung

Fairness: "persönlich", "gefühlt" \rightarrow nötig: (formale) Axiomatisierung

Kuchen: inhomogene Ressource

Spieler: Jeder hat individuelle Bewertung der einzelnen Stücke, die privat ist

Die Spieler

Claudia

Doro

Edith

Gábor

Holger

Die Lemberger Schule

(1887 - 1972)

Hugo Steinhaus Stefan Banach (1892-1945)

Bronisław Knaster (1893 - 1990)

"It may be stated incidentally that if there are two (or more) partners with different estimations, there exists a division giving to everybody more than his due part; the fact disproves the common opinion that differences in estimations make fair division difficult."

- Hugo Steinhaus

3

Vier Methoden für zwei Spieler

Szenario:

möchte den Kuchen gerecht aufteilen zwischen:

Claudia

Felix

und

Vier Methoden für zwei Spieler

Methode 1: Mutti schneidet den Kuchen in zwei Stücke, die sie für gleich hält, und gibt Claudia und Felix je ein Stück.

Methode 2: Mutti schneidet den Kuchen in zwei Stücke, Claudia und Felix werfen eine Münze, um zu entscheiden, wer zuerst wählen darf.

Methode 3: Claudia schneidet den Kuchen in zwei Stücke und Claudia darf zuerst wählen.

Methode 4: Claudia schneidet den Kuchen in zwei Stücke und Felix darf zuerst wählen.

1.1 Methoden für zwei Spieler

 $v_M(1) = 50\%$ $v_M(2) = 50\%$

 $v_C(1) = 80\%$ $v_F(1) = 40\%$ $v_C(2) = 20\%$ $v_F(2) = 60\%$ Methode 1:

 $\underline{\text{Methode 2:}}\ \underline{\text{garantiert}} (\text{in jeder Bewertung der Spieler})$ keinem Spieler $\geq 50\%, \, \geq 10\%$

Methode 3: unfair, da C das Stück von F bestimmen kann

Methode 4: Cut & Choose:

Cutter: genau 50%

Chooser: $\geq 50\%$ (> 50% bei verschiedenen Bewertungen)

Cut and Choose

Doro

und

Edith

Schritt 1: Eine der Spielerinnen schneidet den Kuchen in zwei Stücke, die nach ihrer Bewertung gleich sind.

Schritt 2: Die andere Spielerin wählt eines der beiden Stücke; das andere geht an die Schneiderin.

Doesn't Cut It Method

zwischen

Claudia

Doro

Edith

Schritt 1: Claudia schneidet den Kuchen X in zwei Stücke, X_1 und X_2 mit $X = X_1 \cup X_2$, so dass

$$v_{\mathbf{C}}(X_1) = \frac{1}{3}$$

 $v_{\mathbf{C}}(X_2) = \frac{2}{3}$

Schritt 2: Doro schneidet das Stück X_2 in zwei Stücke, X_{21} und X_{22} mit $X_2 = X_{21} \cup X_{22}$, so dass

$$\boldsymbol{v}_{\mathbf{D}}(X_{21}) = (1/2) \cdot \boldsymbol{v}_{\mathbf{D}}(X_2)$$

 $\boldsymbol{v}_{\mathbf{D}}(X_{22}) = (1/2) \cdot \boldsymbol{v}_{\mathbf{D}}(X_2)$

Schritt 3: Die drei Spielerinnen wählen jeweils ein Stück in der folgenden Reihenfolge:

- 1. Edith (wählt aus X_1 , X_{21} und X_{22});
- 2. Claudia (wählt aus den beiden übrigen Stücken);
- 3. **D**oro (nimmt das letzte Stück).

1.2 Drei Spieler: Ein falscher Start

<u>Ziel:</u> Jeder Spieler soll einen proportionalen Anteil (hier: $\frac{1}{2}$) bekommen Wer ist zufrieden?

- Edith bestimmt, da sie zuerst wählt und eines von $X_1, X_{2,1}, X_{2,2}$ hat den Wert
- Claudia ist auch zufrieden, denn ihr Schnitt ist so, dass $v_C(X_1) = \frac{1}{3} \Rightarrow$ egal wie Doro schneidet, gilt für mindestens eins von $X_{2,1}$ und $X_{2,2}:v_C(\cdot)\geq \frac{1}{2}\cdot v_C(X_2)=$ $\frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}$ und sie wählt als Zweite

Bemerkung. $v_C(X_1) < \frac{1}{3} \Rightarrow X_1$ nicht akzeptabel und wenn eines von $X_{2,1}$ und $X_{2,2}$ nicht erfüllt: $v_C(\cdot) \geq \frac{1}{3}$ dann ist nur ein Stück akzeptabel für C. Da sie als Zweite wählt, ist ihr dieses Stück nicht sicher. $v_C(X_1) > \frac{1}{3} \Rightarrow v_C(X_2) < \frac{2}{3}$ und wenn D so schneidet, dass $v_C(X_{2,1}) = v_C(X_{2,2}) < \frac{1}{3}$ Wieder ist nur ein Stück für C akzeptabel, aber nicht sicher

• Doro ist nicht garantiert zufrieden, sondern nur, wenn sie mit C's Schnitt übereinstimmt: $v_C(X_1) = v_D(X_1) = \frac{1}{3}$

Weil D X_2 selbst schneidet wären für sie drei Stücke akzeptabel. Aber wenn $v_D(X_1) \neq \frac{1}{3}$, sind nur zwei Stücke für sie ok. $v_D(X_1) < \frac{1}{3} : X_{2,1}, X_{2,2}$ ok, X_1 nicht $v_D(X_1) > \frac{1}{3} : X_1$ ok, aber höchstens eins von $X_{2,1}, X_{2,2}$

(Bsp.: $v_D(X_1) = 70\% \Rightarrow v_D(X_2) = 30\%$, so ist weder $X_{2,1}$ noch $X_{2,2}$ ok)

1.3 proportionale Aufteilung für n Spieler

Kuchen: X = [0, 1] reelles Einheitsintervall

Stück: $[x, y] \subseteq [0, 1]$

Spieler: p_1, p_2, \dots, p_n bewerten alle Stücke, wobei i.A. "Wert" \neq "Größe" (Kuchen inho-

Jeder Spieler p_i hat ein Maß (Bewertungsfunktion)

$$v_i: X'|X' \subseteq X \to [0,1] \subset \mathbb{R}$$

das $v_i(\emptyset) = 0$ und $v_i(X) = 1$ und einige weitere Axiome (kommen später) erfüllt.

Definition. Eine Aufteilung des Kuchens $X = \bigcup_{i=1}^{n} X_i$, wobei X_i die Portion von Spieler p_i ist, heißt proportional, falls für alle i, $1 \le i \le n$,

$$v_i(X_i) \ge \frac{1}{n}$$

gilt und heißt überproportional, falls für alle $i,\ 1\leq i\leq n$

$$v_i(X_i) > \frac{1}{n}$$

gilt.

Ein Cake-Cutting-Protokoll(CCP) heißt proportional (bzw. überproportional), falls es unabhängig von den Maßen der Spieler eine proportionale (bzw. überproportionale) Aufteilung garantiert, sofern sich alle Spieler an die Regeln und die Strategien des Protokolls halten.

 $\textbf{Fakt.} \ \textit{Das Cut \& Choose Protokoll ist proportional}$

Ein Cake-cutting-Protokoll hat ...

Regeln sind Anweisungen, die ohne Kenntnis der Maße der Spieler erzwungen werden können (deren Befolgung man also kontrollieren kann).

Beispiel

- "Felix, schneide den Kuchen in zwei Stücke und gib eines davon Holger!"
- "Holger, iss es auf!"

Strategien

sind Empfehlungen an die Spieler, nach ihren Maßen Entscheidungen so zu treffen, dass ihnen ein fairer Anteil am Kuchen garantiert wird.

Beispiel

- "Felix, schneide den Kuchen in zwei nach deinem Maß gleichwertige Stücke!"
- "Holger, bewerte beide Stücke nach deinem Maß und wähle dann eines von größtem Wert!"

Dubins & Spanier: Moving-Knife-Protokoll (proportionale Aufteilung unter *n* Spielern)

Definition 1 Eine Aufteilung des Kuchens $X = \bigcup_{i=1}^{n} X_i$, wobei X_i die Portion des i-ten Spielers ist, heißt proportional, falls für alle $i, 1 \le i \le n$, gilt:

$$\boldsymbol{v}_i(X_i) \geq \frac{1}{n}.$$

Schritt 1: • Ein Messer wird kontinuierlich von links nach rechts über den Kuchen geschwenkt.

- Der erste Spieler, der denkt, das Stück links vom Messer ist ¹/_n wert, ruft "Halt!"
- Das Stück wird geschnitten und dem Rufer gegeben.
 Dieser scheidet damit aus.

Schritt 2, 3, ..., n-1: Wiederhole Schritt 1 mit den übrigen Spielern und dem restlichen Kuchen.

Schritt *n***:** Es ist noch ein Spieler übrig. Dieser erhält das restliche Stück.

Beispiel. Moving-Knife-Protokoll für C,D,E

Angenommen D schreit zuerst "Halt!" und erhält X_1 $\Rightarrow v_D(X_1) = \frac{1}{3}$, also ist für $X_2 = X - X_1$ $v_C(X_2) \geq \frac{2}{3}$ und $v_E(X_2) \geq \frac{2}{3}$, weil sie noch nicht gerufen haben

Jetzt schreit E "Halt!" \Rightarrow E erhält $X_{2,1}$ mit

$$v_E(X_{2,1}) = \frac{1}{2}v_E(X_1) \ge \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}$$

Da C noch nicht gerufen hat, ist für $X_{2,2} = X - (X_1 \bigcup X_{2,1})$

$$v_C(X_{2,2}) \ge \frac{1}{3}$$

Fakt. Das Moving-Knife-Protokoll ist proportional

Bemerkung. • Tie-Breaking-Rule: Rufen mehrere Spieler gleichzeitig "Halt!", so kann das Stück beliebig zugewiesen werden

- Wenn ein Spieler "strategisch" spielt, also nicht bei $\frac{1}{n}$, sondern erst bei $\frac{1}{n-\varepsilon}$, $0 < \varepsilon \le n-1$, ruft (z.B. nicht bei $\frac{1}{3}$, sondern bei $\frac{1}{2}$) dann riskiert er seinen proportionalen Anteil (z.B. wenn jemand anders bei 0,4 ruft)
- Die letzten beiden Spieler könnten gefahrlos nach $\frac{1}{2}$ des Restkuchens abwarten, bis beide Reststücke gleichwertig sind

Wesentlicher Nachteil des Moving-Knife-Protokolls:

Es müssen von jedem Spieler überabzählbar viele Entscheidungen getroffen werden: jede für eine Messerposition, in einem Kontinuum von Positionen

Banach & Knaster: Last-Diminisher-Protokoll (proportionale Aufteilung unter *n* Spielern)

Gegeben: Kuchen X = [0, 1], Spieler p_1, p_2, \ldots, p_n , wobei $\boldsymbol{v}_i, 1 \leq i \leq n$, das Maß von p_i mit $\boldsymbol{v}_i(X) = 1$ sei. Setze N := n.

Schritt 1: p_1 schneidet vom Kuchen ein Stück S_1 mit $\boldsymbol{v}_1(S_1) = 1/N$.

Schritt 2: p_2, p_3, \ldots, p_n geben dieses Stück von einem zum nächsten, wobei sie es ggf. beschneiden. Dabei sei $S_{i-1}, 2 \le i \le n$, das Stück, das p_i von p_{i-1} bekommt.

- Ist $v_i(S_{i-1}) > 1/N$, so schneidet p_i etwas ab und gibt S_i mit $v_i(S_i) = 1/N$ weiter.
- Ist $v_i(S_{i-1}) \leq 1/N$, so gibt p_i das Stück $S_i = S_{i-1}$ weiter.
- Der letzte Spieler, der etwas davon abgeschnitten hatte, erhält S_n und scheidet aus.

Schritt 3: Setze die Reste zusammen zum neuen Kuchen $X := X - S_n$, benenne ggf. die im Spiel verbliebenen Spieler um in p_1, p_2, \dots, p_{n-1} und setze n := n - 1.

Schritt 4: Wiederhole die Schritte 1 bis 3, bis n = 2 gilt. Diese beiden, p_1 und p_2 , spielen "Cut and Choose".

Fakt. Das Last-Diminisher-Protokoll ist proportional

Beweis. In jeder Runde erhält ein Spieler seine Portion (in der letzten Runde: 2) und scheidet aus.

Sei $\bar{p}_1, \bar{p}_2, \dots, \bar{p}_n$ die Reihenfolge in der die Spieler ausscheiden. In Runde $i \leq n-1$ sind noch $\bar{p}_i, \bar{p}_{i+1}, \dots, \bar{p}_n$ und der Rest $R_i = X - \bigcup_{j < i} X_i$ im Spiel, wobei X_i die Portion

von \bar{p}_i und \bar{v}_i das Maß von \bar{p}_i ist.

Runde 1: \bar{p}_i erhält offenbar X_1 mit $\bar{v}_i(X_1) = \frac{1}{n}$

Runde 2: Für alle j, $2 \le j \le n$, gilt:

$$\bar{v}_j(X_1) \le \frac{1}{n} \Rightarrow \bar{v}_i(R_2) \ge 1 - 1\frac{1}{n} = \frac{n-1}{n}$$

Spieler \bar{p}_2 kann X_2 mit $\bar{v}_2(X_2) = \frac{1}{n}$ erhalten

Allgemein in Runde i<n-1 Für alle $j, i \leq j \leq n$, gilt:

$$\bar{v}_j(\bigcup_{k < i} X_i) \le \frac{i-1}{n}$$

denn \bar{p}_j hat keines der Stücke X_1,\ldots,X_{i-1} bekommen, also mit $\leq \frac{1}{n}$ bewertet. Somit gilt für den Rest: $\bar{v}_j(R_i) \geq 1 - \frac{i-1}{n} = \frac{n-i+1}{n}$. Das garantiert, dass jeder Spieler \bar{p}_j eine Portion vom Wert $\geq \frac{1}{n}$ erhalten kann $\Rightarrow \bar{p}_i$ erhält X_i mit $\bar{v}_i(X_i) = \frac{1}{n}$

Runde n-1: \bar{p}_{n-1} und \bar{p}_n spielen "Cut & Choose" um R_{n-1} mit $\bar{v}_{n-1}(R_{n-1}) \geq \frac{2}{n}$ und $\bar{v}_n(R_{n-1}) \geq \frac{2}{n}$. Cut & Choose garantiert

dem Cutter
$$\frac{1}{2}\bar{v}_{n-1}(R_{n-1}) \Rightarrow \bar{v}_{n-1}(X_{n-1}) \geq \frac{1}{n}$$

dem Chooser $\frac{1}{2}\bar{v}_n(R_{n-1}) \Rightarrow \bar{v}_n(X_n) \geq \frac{1}{n}$

Definition. Ein CCP heißt <u>endlich</u> ("finite"), falls es stets (d.h. unabhängig von den Maßen der Spieler) nach einer endlichen Anzahl von Entscheidungen (Bewertungen, Markierungen, ...) terminiert. Andernfalls heißt es <u>unendlich</u> ("infinite").

• Ein endliches CCP heißt endlich beschränkt ("finite bounded"), falls die Anzahl der Entscheidungen um worst case vorab angegeben werden kann (ggf. abhängig von der Zahl der Spieler).

Fakt. Das Last-Diminisher-Protokoll ist endlich beschränkt.

Beweis. Es gibt n-1 Runden. In Runde i trifft jeder der verbliebenden n-i+1 Spieler genau eine Entscheidung/Bewertung.

$$\Rightarrow \sum_{i=1}^{n-1} (n-i+1) = n + (n-1) + \ldots + 2 \stackrel{Gauss}{=} \frac{n(n+1)}{2} - 1$$

<u>Fink: Lone-Chooser-Protokoll</u> (proportionale Aufteilung unter *n* Spielern)

Gegeben: Kuchen X = [0, 1], Spieler p_1, p_2, \dots, p_n , wobei $v_i, 1 \le i \le n$, das Maß von p_i mit $v_i(X) = 1$ sei.

Runde 1: p_1 und p_2 spielen "Cut and Choose", wobei p_1 beginnt und das Stück S_1 und p_2 das Stück S_2 erhält, $X = S_1 \cup S_2$, so dass $\mathbf{v}_1(S_1) = 1/2$ und $\mathbf{v}_2(S_2) \ge 1/2$.

Runde 2: p_3 teilt S_1 mit p_1 und S_2 mit p_2 so:

- p_1 schneidet S_1 in S_{11} , S_{12} und S_{13} , so dass $\mathbf{v}_1(S_{11}) = \mathbf{v}_1(S_{12}) = \mathbf{v}_1(S_{13}) = 1/6$.
- p_2 schneidet S_2 in S_{21} , S_{22} und S_{23} , so dass $\boldsymbol{v}_2(S_{21}) = \boldsymbol{v}_2(S_{22}) = \boldsymbol{v}_2(S_{23}) \geq 1/6$.
- p_3 wählt ein bestes Stück aus $\{S_{11}, S_{12}, S_{13}\}$ und ein bestes Stück aus $\{S_{21}, S_{22}, S_{23}\}$.

:

Runde n-1: Für $i, 1 \leq i \leq n-1$, hat p_i ein Stück X_i mit $\mathbf{v}_i(X_i) \geq 1/(n-1)$ und schneidet X_i in n Stücke $X_{i1}, X_{i2}, \ldots, X_{in}$ mit $\mathbf{v}_i(X_{ij}) \geq 1/n(n-1)$.

Spieler p_n wählt für jedes i, $1 \le i \le n-1$, eines dieser Stücke von größtem Wert nach seinem Maß v_n .

Fakt. Das Lone-Chooser-Protokoll ist proportional.

Beweis. Betrachte die letzte Runde. Jeder Spieler $p_i, 1 \leq i \leq n-1$, behält von den n Teilstücken $X_{ij}, 1 \leq j \leq n, n-1$ viele mit $v_i(X_{ij}) \geq \frac{1}{n(n-1)} \Rightarrow$ die Portion von p_i hat den Wert $\geq \frac{1}{n}$. Für p_n gilt: Ist $\alpha_i = v_n(X_i)$ für $1 \leq i \leq n-1$, so ist $\alpha_1 + \alpha_2 + \ldots + \alpha_{n-1} = 1 \Rightarrow p_n$ erhält $\geq \frac{1}{n}(\alpha_1, + \ldots + \alpha_{n-1}) = \frac{1}{n}$.

Fakt. Das Lone-Chooser-Protokoll ist endlich beschränkt.

Beweis. Es gibt n-1 Runden. In Runde i bewertet jeder von p_1,\ldots,p_i i+1 Stücke und p_{i+1} bewertet i(i+1) Stücke \Rightarrow Insgesamt sind $\sum_{i=1}^{n-1} 2i(i+1) = 2\left[\sum_{i=1}^{n-1} i^2 + \sum_{i=1}^{n-1} i\right]$

Entscheidungen zu treffen. Mit $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ und $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ ergibt sich:

$$2\left(\frac{(n-1)n(2n-1)}{6} + \frac{n(n-1)}{2}\right)$$

$$= \frac{(n-1)n(2n-1)+3n(n-1)}{3}$$

$$= \frac{n(n-1)(2n+2)}{3}$$

n	2	3	4	5	6	7	
Last Diminisher	2	5	~		20	27	
Lone-Chooser	4	16	40	80	140	224	
(erste Zählweise)							
Lone-Chooser	2	10	28	60	110	182	
(zweite Zählweise)							

- **n=2:** p_1 schneidet S_1 mit $v_1(S_1) = \frac{1}{2}$ (und weiß $v_1(S_2) = \frac{1}{2}$)
 - p_2 misst eines von S_1 und S_2 z.B. S_1 . Ist $v_2(S_1) < \frac{1}{2}$, wählt er S_2 , sonst S_1

n=3: •
$$p_1$$
 schneidet S_{11}, S_{12}, S_{13} mit $v_1(S_{11}) = v_1(S_{12}) = \frac{1}{6}$ (und weiß $v_1(S_{13}) = \frac{1}{6}$)

- p_2 schneidet S_{21}, S_{22}, S_{23} dito
- p_3 ...

Allgemein für n Spieler: p_1,\ldots,p_{n-1} machen n-1 Messungen um X_{ij} zu erhalten mit $v_i(X_{ij}) \geq \frac{1}{n(n-1)}$, $1 \leq i \leq n-1$, $1 \leq j \leq n$ p_n nach $(n-1)^2$ Messungen

$$\Rightarrow \sum_{i=1}^{n-1} 2i^2 = 2\sum_{i=1}^{n-1} i^2 = 2\frac{(n-1)n(2n-1)}{6} = \frac{(n-1)n(2n-1)}{3}$$

1. Zählung

$$\sum_{i=1}^{n-1} 2i(i+1) = 2 \left[\sum_{i=1}^{n-1} i^2 + \sum_{i=1}^{n-1} i \right]$$

2. Zählung

$$\sum_{i=1}^{n-1} 2i^2 = 2\sum_{i=1}^{n-1} i^2 = 2\frac{(n-1)n(2n-1)}{6} = \frac{(n-1)n(2n-1)}{3}$$

3. Zählung

$$\left(\sum_{i=1}^{n-1} i^2\right) + \left(\sum_{i=1}^{n-1} i(i+1) - 1\right) = \frac{(n-1)n(2n-1)}{3} + \sum_{i=1}^{n-1} (i-1)$$

Beispiel. Runde 2 (n=3 Spieler)

$$v_3(S_{11}) = \frac{1}{12} = v_3(S_{12})$$
 $v_3(S_{13}) = 0$
 $v_3(S_{21}) = \frac{1}{6} = v_3(S_{23})$ $v_3(S_{23}) = \frac{1}{2}$

1.4 Neidfreies Protokoll für 3 Spieler

Frage: Ist proportional fair genug?

Beispiel: Maße in der Boxendarstellung

Beispiel. $\Box = \frac{1}{18}$

1. Felix schneidet
$$S_1 = \begin{bmatrix} \Box & \Box & \Box \\ \Box & \Box & \Box \end{bmatrix}$$
 mit $v_F(S_1) = \frac{1}{3}$
1 2 3

2. Für Gabor ist
$$S_1=$$
 $\begin{bmatrix} \square & \square & \square & \square \\ \square & \square & \square & \square \\ 1 & 2 & 3 \end{bmatrix}$, er schneidet $S_2=$ $\begin{bmatrix} \square & \square & \square \\ \square & \square & \square \\ 1 & 2 & 3 \end{bmatrix}$ und $R=$ $\begin{bmatrix} \square & \square & \square \\ \square & \square & \square \\ 1 & 2 & 3 \end{bmatrix}$

- 3. Für Holger ist $v_H(S_2) = \frac{1}{3}$, also ist $S_3 = S_2$. Gabor erhält S_3 und scheidet aus.
- 4. Cut & Choose zwischen Felix und Holger

Holger nimmt T_2 mit $v_H(T_2) = \frac{7}{18}$, während $v_H(T_1) = \frac{5}{18} \Rightarrow Gabor$ beneidet Holger um $T_2: v_G(S_3) = \frac{6}{18} < \frac{7}{18} = v_G(T_2)$

Definition. Seien v_1, \ldots, v_n die Maße der Spieler p_1, \ldots, p_n . Eine Aufteilung $X = \bigcup_{i=1}^n X_i$ (X_i ist p_i 's Portion) heißt <u>neidfrei</u> ("envy-free"), falls für alle $i, j, 1 \leq i, j \leq n$:

$$v_i(X_i) \ge v_i(X_i)$$

gilt. Ein CCP heißt <u>neidfrei</u>, falls jede von ihm erzeugte Aufteilung (d.h. unabhängig von den Maßen der <u>Spieler</u>) neidfrei ist, sofern sich alle Spieler an die Regeln und Strategien des Protokolls halten.

Fakt. 1. "Cut & Choose" ist neidfrei.

2. Jedes neidfreie CCP ist proportional.

Beweis. 1. Erhält p_i die Portion X_i , so gilt:

$$v_1(X_1) = v_1(X_2) = \frac{1}{2}$$
$$v_2(X_2) \ge v_2(X_1)$$

2. neidfrei \Rightarrow proportional

Zeigen die Kontraposition: nicht proportional \Rightarrow nicht neidfrei Angenommen, es gibt einen Spieler p_i mit $v_i(X_i) < \frac{1}{n} \Rightarrow$ es gibt Spieler p_j mit

$$v_j(X_j)>\frac{1}{n}$$
, denn sonst würde nicht gelten: $v_i(X)=v_i\left(\bigcup_{i=1}^n X_i\right)=1\Rightarrow p_i$ beneidet $p_j:v_i(X_i)<\frac{1}{n}< v_i(X_j)$

Beispiel. (von neulich:)

Banach-Kanster ist nicht neidfrei

Fink ebenso

Zitierungsarten von Selfridge-Conway

Stromquist(1980): Conway, Guy, Selfridge

Woodall(1988): Selfridge

<u>Selfridge-Conway-Protokoll</u> (neidfreie Aufteilung unter drei Spielern)

Gegeben: Kuchen X, Spieler Felix, Gábor und Holger.

Schritt 1: Felix schneidet X in drei gleiche Stücke (nach seinem Maß). Gábor sortiert diese als X_1, X_2, X_3 mit:

$$v_{\mathbf{F}}(X_1) = v_{\mathbf{F}}(X_2) = v_{\mathbf{F}}(X_3) = \frac{1}{3}
 v_{\mathbf{G}}(X_1) \ge v_{\mathbf{G}}(X_2) \ge v_{\mathbf{G}}(X_3)$$

Schritt 2: Ist $v_G(X_1) > v_G(X_2)$, so schneidet Gábor von X_1 etwas ab, so dass er $X_1' = X_1 - R$ erhält mit

$$\boldsymbol{v}_{\mathbf{G}}(X_1') = \boldsymbol{v}_{\mathbf{G}}(X_2).$$

Ist $v_{\mathbf{G}}(X_1) = v_{\mathbf{G}}(X_2)$, so sei $X'_1 = X_1$.

Schritt 3: Aus $\{X'_1, X_2, X_3\}$ wählen

Holger, Gábor und Felix

(in dieser Reihenfolge) je ein Stück. Wenn **H**olger es nicht schon genommen hat, muss **G**ábor X'_1 nehmen.

Schritt 4 (nur falls es $R \neq \emptyset$ gibt): Entweder Gábor oder

Holger hat X'_1 . Nenne diesen Spieler **P**, den anderen **Q**.

 \mathbf{Q} schneidet den Rest R in drei Stücke R_1, R_2, R_3 mit

$$v_{\mathbf{O}}(R_1) = v_{\mathbf{O}}(R_2) = v_{\mathbf{O}}(R_3) = (1/3) \cdot v_{\mathbf{O}}(R),$$

die von den Spielern P, Felix und Q (in dieser Reihenfolge) gewählt werden.

Selfridge-Conway-Protokoll: Beispiel

1 2 3 4 5 6

Beispiel. 1. F schneidet X in drei Stücke

(bereits aus G's Sicht sortiert)

 $v_G(X_1) \ge v_G(X_2) > v_G(X_3)$, denn für Gabor:

2. G schneidet
$$X_1$$
 in $X_1' = \begin{bmatrix} \Box & \Box & \Box \\ \Box & \Box & \Box \\ 1 & 2 & 3 \end{bmatrix}$ und Rest $R = \begin{bmatrix} \Box \\ \Box \\ 3 \end{bmatrix}$, $da \ v_G(X_1) > v_G(X_2)$

Natürlich nimmt H das Stück X_3 .

G muss nun $X_1^{'}$ nehmen. Für F ist X_2 übrig.

4.
$$G$$
 hat X_1' , also ist $G = P$ und $H = Q \Rightarrow H$ teilt $R = \begin{bmatrix} \Box \\ \Box \\ 3 \end{bmatrix}$, $R_1 = \begin{bmatrix} \Box \\ 3 \end{bmatrix}$, $R_2 = \begin{bmatrix} \Box \\ 3 \end{bmatrix}$,

 \Rightarrow Kuchenaufteilung:

Gibt es Neid?

	$X_1^{'} \cup R_1$	$X_2 \cup R_2$	$X_3 \cup R_3$
F	$\frac{4}{18}$	$\frac{7}{18}$	$\frac{7}{18}$
G	$\frac{7}{18}$	$\frac{7}{18}$	$\frac{4}{18}$
Н	$\frac{3}{18}$	$\frac{7}{18}$	$\frac{8}{18}$

 \Rightarrow neidfrei! Gilt dies allgemein?

Satz. Das Selfridge-Conway-Protokoll ist neidfrei.

Beweis.

Für F gilt:
$$v_F(X_1')$$
 Additivität(später in §2)
 $v_F(X_1) = v_F(X_2) = v_F(X_3)$

ris. • Zeigen zunächst: $X-R=X_1^{'}\cup X_2\cup X_3$ wird neidfrei verteilt. Für F gilt: $v_F(X_1^{'})\overset{\text{Additivität(später in }\S 2)}{\leq} v_F(X_1)=v_F(X_2)=v_F(X_3)$ Da F das Stück $X_1^{'}$ nicht bekomme kann (denn wenn H en nicht nimmt, muss G es nehmen!) erhält er X_2 oder X_3 und beneidet weder G noch H bzgl. X-R.

H beneidet weder F noch G bzgl. X-R, denn er wählt zuerst. G beneidet weder F noch H bzgl. X-R, denn er wählt als Zweiter und es gilt

$$v_G(X_1') = v_G(X_2) \ge v_G(X_3)$$

 \Rightarrow Selfridge-Conway ist bzgl. X-R neidfrei

First key idea: Trimming!

• Zeigen nun: Selfridge-Conway ist bzgl. R neidfrei

Bemerkung. Würden wir die Schritte 1,2,3 auf R anwenden

- \Rightarrow es bleibt wieder ein Rest R_1'
- \Rightarrow unendliches Verfahren

ABER: Wesentlicher Unterschied zwischen X und R:

Da $v_F(X_1) = v_F(X_2) = v_F(X_3)$ und da F entweder X_2 oder X_3 bekommt und da $R \subseteq X_1$, kann F den Spieler, der X_1' bekommt, nicht beneiden, selbst wenn der ganz R bekommt.

Second key idea: irrevocable advantage for F

Seien P,Q $\in G, H$: P erhält X_1' , Q nicht

P beneidet weder F noch Q bzgl. R, da er zuerst wählt.

F beneidet weder P noch Q: P nicht wegen des Frosches, Q nicht, da F vor Q wählt.

Q beneidet weder F noch P, da er so teilt: $v_Q(R_1) = v_Q(R_2) = v_Q(R_3) = \frac{1}{3}v_Q(R) \Rightarrow$ Selfridge-Conway ist neidfrei bzgl. R und X - R.

Additivität Selfridge-Conway ist neidfrei bzgl. R und X

1.5 Der Grad der garantierten Neidfreiheit

Motivation Für $n \ge 4$ ist es offen, ob es ein neidfreies, endlich beschränktes CCP gibt!

⇒ Abschwächen des Ideals der Neidfreiheit.

Definition. Sei eine Aufteilung des Kuchens $X = \bigcup_{i=1}^{n} X_i$ für die Menge $P = \{p_1, \dots, p_n\}$ der Spieler gegeben, wobei v_i das Maß von p_i und X_i die Portion von p_i ist.

- Eine <u>Neidrelation</u>("envy relation") \Vdash ist eine Binärrelation auf $P(\Vdash, PxP) : p_i$ beneidet p_j ($p_i \vdash p_j$), $1 \le i, j \le n$, $i \ne j$, falls $v_i(X_i) < v_i(X_j)$.
- Eine Neidfrei-Relation ("envy-free relation") \mathbb{K} ist eine Binärrelation auf $P: p_i$ benei \overline{det} nicht p_j ($p_j \not \Vdash p_j$) $1 \le i, j \le n$, $i \ne j$, falls $v_i(X_i) \ge v_i(X_j)$.

Eigenschaften von \Vdash und \nvDash :

- \Vdash ist irreflexiv, denn $v_i(X_i) < v_i(X_i)$ gilt nie
- $\mathbb{1}$ ist reflexiv, denn $v_i(X_i) \geq v_i(X_i)$ gilt immer Die triviale Beziehung $p_i \mathbb{1}$ p_i zählt in der Regel nicht mit.
- \Vdash und \nvDash sind nicht transitiv. Gilt z.B. $p_i \Vdash p_j$ und $p_j \Vdash p_k$, so kann man daraus nichts über $v_i(X_k)$ schließen: $p_i \nvDash p_k$ ist möglich
- \Rightarrow Es gibt die folgenden Möglichkeiten:
 - 1. Zwei-Wege-Neid: $p_i \Vdash p_j$ und $p_j \Vdash p_i$ (Tausch der Portionen macht beide glücklich.)
 - 2. Zwei-Wege-Neidfreiheit: $p_i \nvDash p_j$ und $p_j \nvDash p_i$ (Alles ist gut.)
 - 3. Ein-Weg-Neid: $p_i \Vdash p_j$ und $p_j \nvDash p_i$ Ein-Weg-Neidfreiheit: $p_j \Vdash p_i$ und $p_i \nvDash p_j$

Fallerzwungene Neid- bzw. Neidfrei-Relationen: hängen ab von einem Fall geeigneter Maße.

Garantierte Neid- bzw. Neidfrei-Relationen: gelten in jeden Fall (auch im worst case), also unabhängig von den Maßen der Spieler.

 $\label{eq:Anzahl garantierter Neidfrei-Relationen} \\ = \min_{alleFaelle} \\ \text{Anzahl der fallerzwungenen Neidfrei-} \\ \\$ Relationen.

Beispiel. Aufteilung $X = X_F \cup X_G \cup X_H$ des Kuchens mit

Es gibt:

Ein-Weg-Neid von
$$G$$
 zu F :
 $G \Vdash F$ wegen $v_G(X_G) = \frac{1}{6} < v_G(X_F) = \frac{1}{2}$
Gleichzeitig ist dies
 $F \nVdash G$ wegen $v_F(X_G) = \frac{1}{3} = v_F(X_F)$

Ein-Weg-Neidfreiheit von F zu G

Zwei-Wege-Neidfreiheit zwischen
$$F$$
 und H $F \nVdash H$, da $v_F(X_F) = \frac{1}{3} = v_F(X_H)$ $H \nVdash F$, da $v_H(X_H = \frac{6}{18} > \frac{5}{18} = v_H(X_F)$

$$\begin{array}{l} \textit{Zwei-Wege-Neid zwischen } G \textit{ und } H \\ G \Vdash H, \textit{ da } v_g(X_G) = \frac{1}{6} < \frac{1}{3} = v_G(X_H) \\ H \Vdash G, \textit{ da } v_H(X_H) = \frac{1}{3} < \frac{7}{18} = v_H(X_G) \end{array}$$

Der Grad der garantierten Neidfreiheit

Definition 2 Für $n \geq 1$ Spieler ist der Grad der garantierten Neidfreiheit ("degree of guaranteed envy-freeness", kurz: DGEF) eines proportionalen Cake-cutting-Protokolls definiert als die maximale Zahl der Neidfrei-Relationen, die in jeder durch dieses Protokoll erzeugten Aufteilung existieren (sofern sich die Spieler an die Regeln und Strategien des Protokolls halten).

- Der Begriff DGEF ist auf proportionale Protokolle eingeschränkt, da sonst die erreichte Fairness übertrieben werden könnte.
- Geeignete Regeln/Strategien eines Protokolls können die Fairness im Sinn des DGEF erhöhen, wohingegen ihr Fehlen riskiert, dass der DGEF eines proportionalen Cake-cutting-Protokolls auf die untere Schranke n fällt.
- "Geeignet" heißt: Die Spieler sollten nach Möglichkeit die noch zuzuweisenden Stücke/Portionen bewerten, um Neidrelationen zu verhindern, bevor sie entstehen.

DGEF = Anzahl der Neidfrei-Relationen im worst case

Protokoll. Jörg erhält den Kuchen.

DGEF:
$$n-1+(n-1)(n-2) = n-1-n^2-3n+2 = n^2-2n-1$$

1. Jedes neidfreie CCP für $n \ge 1$ Spieler hat einen **DGEF** von n(n-1). Satz.

- 2. Sei d(n) der **DGEF** eines proportionalen CCPs mit $n \geq 2$ Spielern. Dann gilt: $n \le d(n) \le n(n-1)$.
- 1. Da wir $p_i \not\Vdash p_i$ für alle $i, 1 \le i \le n$, außer 8 lassen, hat jeder der n Spieler Beweis. zu jedem anderen Spieler eine Neidfreie-Relation, insgesamt also n(n-1).
 - 2. n=2 Offenbar gilt: d(2)=2, denn da das CCP proportional ist, gilt: $v_1(X_1)\geq \frac{1}{2}$ und $v_2(X_2) \ge \frac{1}{2} \Rightarrow v_1(X_1) \ge v_1(X_2)$ und $v_2(X_2) \ge v_2(X_1)$
 - $n \geq 3$ Da $p_i \not\Vdash p_i$ für alle *i* ignoriert wird, gilt $d(n) \leq n(n-1)$.

In einer proportionalen Aufteilung gilt:

$$v_i(X_i) \ge \frac{1}{n}$$
 für $1 \le i \le n$.

 \Rightarrow Keiner der n Spieler kann gleichzeitig alle anderen Spieler bendeidenl,

Angenommen, das wäre nicht so. Konkret: $p_1 \not\Vdash p_2$

$$\Rightarrow v_1(X_2) > v_1(X_1) \ge \frac{1}{n}$$

$$\Rightarrow v_1((X-X_1)-X_2) < \frac{n-2}{n}$$

- $\begin{array}{l} \Rightarrow \ v_1(X_2) > v_1(X_1) \geq \frac{1}{n} \\ \Rightarrow \ v_1((X-X_1)-X_2) < \frac{n-2}{n} \\ \Rightarrow \ (X-X_1) X_2 \text{ kann nicht so in } n-2 \text{ Portionen aufgeteilt werden, dass} \end{array}$
- $v_i(X_j) \ge \frac{1}{n}$ für alle $j, 3 \le j \le n$, gilt. \Rightarrow es gibt ein $j, 3 \le j \le n$, so dass $v_i(X_j) < \frac{1}{n}$, gilt.
- $\Rightarrow p_i \nVdash p_i$

Also hat jeder der n Spieler mindestens eine garantierte Neidfrei-Relation zu einem anderen Spieler: $n \leq d(n)$

Lemma. Verlangen die Regeln/Strategien eines proportionalen CCPs für n > 2 Spielern von keinem Spieler, die Portionen der anderen Spieler zu bewerten, dann ist der DGEF = n.

Beweis. n=2 Proportionalität \Rightarrow Neidfreiheit

$$best case = worst case$$

und wie vorher:
$$\mathbf{DGEF} = 2 = n$$

 $n \geq 3\,$ Betrachte das folgende Szenario: Für eine gegebene Aufteilung $X = \stackrel{\sim}{\bigcup} \, X_i,$ die proportional ist, aber sonst keinerlei Einschränkungen unterliegt, setzen wir die Maße der Spieler so:

Für jedes $i, 1 \le i \le n$, bewertet p_i :

- die eigene Portion X_i mit $v_i(X_i) = \frac{1}{n} = \frac{n}{n^2} \Rightarrow$ proportional!
- die Portion X_j eines Spielers $p_j, j \neq i : v_i(X_j) = \frac{2}{n} < \frac{1}{n}$

 \bullet jede der n-2übrigen Portionen X_k der Spieler $p_k, |i,j,k|=3, v_i=(X_k)=\frac{n+1}{n^2}>\frac{1}{n}$

Insgesamt gilt dann für jedes $i, 1 \le i \le n$:

- 1. $v_i(X) = v_i(\bigcup_{j=1}^n X_j) \stackrel{\text{Additivität}}{=} \sum_{j=1}^n v_i(X_j) = \frac{1}{n^2}(n+2+(n-2)(n+1)) = \frac{1}{n^2}(n+2+n^2+n-2n-2) = 1$
- 2. p_i hat n − 2 Neidrelationen und nur eine Neidfrei-Relation
 ⇒ Insgesamt gibt es n garantierte Neidfrei-Relationen, eine für jeden Spieler.

Einige Aussagen zum DGEF

- **Satz 3** 1. Jedes neidfreie Cake-cutting-Protokoll für $n \ge 1$ Spieler hat einen DGEF von n(n-1).
 - 2. Sei d(n) der DGEF eines proportionalen Cake-cutting-Protokolls für $n \geq 2$ Spieler. Es gilt:

$$n \le d(n) \le n(n-1).$$

Lemma 4 Verlangen die Regeln/Strategien eines proportionalen Cake-cutting-Protokolls für $n \geq 2$ Spieler von keinem Spieler, die Portion irgendeines anderen Spielers zu bewerten, so ist sein DGEF gleich n.

Satz 5 Das Last-Diminisher-Protokoll hat einen DGEF von

$$\frac{n(n-1)}{2} + 2.$$

Satz 6 Das Lone-Chooser-Protokoll hat einen DGEF von n.

Bemerkung 7 Das Protokoll von Lindner und Rothe (2009), eine "parallele" Variante des Last-Diminisher-Protokolls, hat einen DGEF von

$$\left\lceil \frac{n^2}{2} \right\rceil + 1$$

und damit den besten bekannten DGEF unter allen endlich beschränkten Cake-cutting-Protokollen.

Außerdem ist es proportional und "strategiesicher".

Satz. Das Last-Diminisher-Protokoll hat einen \mathbf{DGEF} von $\frac{n(n-1)}{2} + 2$

Beweis. Runde 1 Sei \bar{p}_1 der Spieler, der die erste Portion erhält. Jeder andere Spieler bewertet diese mit $\leq \frac{1}{n}$, beneidet also \bar{p}_1 nicht $\Rightarrow n-1$ garantierte Neidfrei-Relationen

Runde i, 1 < i < n Analog zu Runde 1 können n - i Neidfrei-Relationen garantiert werden. \bar{p}_i , der die ite Portion erhält, wird von den verbleibenden Spielern nicht

$$\Rightarrow$$
mindestens $\sum\limits_{i=1}^{n}i=\frac{n-1}{2}$ garantierte Neidfrei-Relationen

Letzte Runde 1. Cut & Choose zwischen \bar{p}_{n-1} und \bar{p}_n . Keiner dieser beiden beneidet den anderen.

⇒ eine zusätzliche garantierte Neidfrei-Relation.

2. Da Last-Diminisher proportional ist, gibt es eine weitere garantierte Neidfrei-

Relation für
$$\bar{p}_1$$

 \Rightarrow **DGEF** = $\frac{(n-1)n}{2} + 2$

Satz. Das Lone-Chooser-Protokoll hat einen DGEF von n.

Beweis. Kein Spieler bewertet die Portion irgendeines anderen Spielers.

$$\stackrel{\text{Lemma}}{\Longrightarrow} \mathbf{DGEF} = n \qquad \Box$$

2 Gerechte Aufteilung mit einer minimalen Anzahl von Schnitten

Motivation

- Effizienz $\hat{=}$ Faulheit
- Ästhetik

z.B. Moving-Knife. Protokoll: n-1 Schnitte. Besser geht's nicht!

 \Rightarrow Hier werden keine Moving-Knife-Protokolle, sondern nur endliche Algorithmen betrachtet.

Grundlegende Annahmen

- Der Kuchen $X = [0,1] \subseteq \mathbb{R}$ ist ein inhomogenes, unendlich teilbares Gut (oder eine solche Ressource).
- Jeder Spieler p_i hat ein individuelles, privates Maß (eine solche Bewertungsgfunktion)

$$\boldsymbol{v}_i: \{X' \mid X' \subseteq X\} \rightarrow [0,1],$$

das die folgenden Axiome erfüllt:

- 1. Normalisierung: $v_i(\emptyset) = 0$ und $v_i(X) = 1$.
- 2. **Positivität:** Für alle Stücke X', $\emptyset \neq X' \subseteq X$, gilt:

$$v_i(X') > 0.$$

Alternativ: **Nicht-Negativität:** Für alle Stücke X', $\emptyset \neq X' \subseteq X$, gilt:

$$\boldsymbol{v}_i(X') \geq 0.$$

3. **(Endliche) Additivität:** Für alle $A, B \subseteq X, A \cap B = \emptyset$, gilt:

$$\boldsymbol{v}_i(A \cup B) = \boldsymbol{v}_i(A) + \boldsymbol{v}_i(B).$$

4. **Teilbarkeit:** Für alle $B \subseteq X$ und alle α , $0 \le \alpha \le 1$, existiert ein $A \subseteq B$, so dass gilt:

$$\mathbf{v}_i(A) = \alpha \cdot \mathbf{v}_i(B).$$

Weitere Annahmen

- Wir betrachten hier nur endliche Cake-cutting-Protokolle, keine Moving-Knife-Protokolle.
- Schnitte macht ein Spieler ausschließlich anhand seines Maßes, ohne andere Spieler zu konsultieren.
- Hält sich ein Spieler nicht an die vorgeschlagene Strategie des Protokolls, so riskiert er dadurch seinen gerechten Anteil, nicht aber den anderer Spieler.
- Als *Schnitte* gezählt werden:
 - Schnitte und Markierungen,
 - nicht aber sonstige Entscheidungen/Bewertungen.

2.1 Grundlegende Annahmen

Bemerkung. 1-3 gelten auch für Wahrscheinlichkeitsmaße

Faltbarkeit (+Additivität): Jedes Stück kann ohne Wertverlust beliebig oft (endlich!) geteilt werden. (Auch: unendliche Additivität)

D.h., wenn $v_i(A) = a > 0$ und $a_i + a_2 = a$, wobei $a_1 > 0$ und $a_2 > 0$ beliebig sind, so kann A geteilt werden in $A = A_1 \cup A_2$ mit $v_i(A_1) = a_1, v_i(A_2) = a_2$.

2.2 Das "Ein-Schnitt-Genügt"-Protokoll

Betrachte das Last-Diminsher-Protokoll für 3 Spieler: C, D, E

Beispiel. C schneidet S_1 mit $v_C(S_1) = \frac{1}{N} = \frac{1}{3}$ $v_D(S_1) > \frac{1}{3} \Rightarrow$ schneidet was ab und gibt S_2 mit $v_D(S_2) = \frac{1}{3}$. $v_E(S_2) < \frac{1}{3} \Rightarrow S_3 = S_2$ geht an DC und E spielen Cut & Choose mit

$$A = X - S_1 \ und \ B = S_1 - S_3$$

Müssen diese seperat geteilt werden mit 2 Schnitten ?

Nein! Ein Schnitt genügt.

im Beispiel: Angenommen, $v_C(A) = \frac{2}{3}$ und $v_C(B) = \frac{1}{12}$. C soll ein Stück im Wert von $\frac{\overline{\frac{1}{2}(\frac{2}{3} + \frac{1}{12})} = \frac{9}{24}}{C \ schneidet \ A \ in \ A_1 \ und \ A_2, \ so \ dass}$

$$v_C(A_1) = \frac{9}{24} \text{ und } v_C(A_2) = \frac{2}{3} - \frac{9}{24} = \frac{7}{24}$$
 (2)

Es gilt: $v_C(B \cup A_2) = \frac{1}{12} + \frac{7}{24} = \frac{9}{24}$

Satz. (Ein-Schnitt-genügt-Prinzip - ESG-Prinzip)

Mit einem Schnitt kann ein Spieler S, der X_1, \ldots, X_n bewertet mit $v_S(X_i) = a_i$, diese im Verhältnis b:c teilen, wobei $b+c=a_1+a_2+\cdots+a_n$

Beweis. Finde das j mit $a_1 + a_2 + \cdots + a_j \le b < a_{j+1} + \cdots + a_n$ und schneide X_{j+1} (mit Wert a_{j+1} in X'_{j+1} und X''_{j+1} mit

$$v_S(X'_{j+1}) = b - (a_1 + \dots + a_j)$$
$$v_S(X''_{j+1}) = a_{j+1} - v_S(X'_{j+1})$$

Dann gilt für $A=X_1\cup X_2\cup \cdots \cup X_j\cup X'_{j+1}$ und für $B=X''_{j+1}\cup X_{j+2}\cup \cdots \cup X_n$:

$$v_S(A) = a_1 + a_2 + \dots + a_j + b - (a_1 + \dots + a_j) = b$$
$$v_S(B) = a_{j+1} - b + a_1 + \dots + a_j + a_{j+2} + \dots + a_n = a_1 + a_2 + \dots + a_n - b = c$$

(1)

Beispiel. ESG-Prinzip

Angenommen, für Spieler S haben die Stücke X_1, X_2, \dots, X_5 die Werte:

$$v_S(X_1) = 0.15, v_S(X_2) = 0.2, v_S(X_3) = 0.1, v_S(X_4) = 0.25, v_S(X_5) = 0.1, insgesamt \ 0.8$$

und S soll sie im Verhältnis 3:5 teilen, soll also A und B finden mit

$$\begin{aligned} v_S(A) &= 0.3 \ und \ v_S(B) = 0.5 \\ \Rightarrow j &= 1: 0.15 \leq 0.3 < 0.15 + 0.2 = 0.35 \\ \Rightarrow S \ schneidet \ X_2 \ in \ X_2' \ und \ X_2'' \ mit \ v_S(X_2') = 0.15 \ und \ v_S(X_2'') = 0.05 \\ \Rightarrow A &= X_1 \cup X_2' \ hat \ Wert \ 0.3, B &= X_2'' \cup X_3 \cup X_4 \cup X_5 \ hat \ Wert \ 0.5 \end{aligned}$$

2.3 Erforderliche Anzahl von Schnitten für einige CCPs

Aussage: "Protokoll Π erfordert k Schnitte" heißt:

- 1. Π kann mit $\leq k$ Schnitten ausgeführt werden
- 2. Π benötigt im worst case $\geq k$ Schnitte

Fakt. Das Last-Diminisher-Protokoll erfordert für $n \ge 2$ Spieler

$$\frac{n^2+n-4}{2} \ Schnitte$$

Beweis. Es gibt n-1 Runden

In Runde $i, 1 \leq i \leq n-2$, schneidet (oder markiert) jeder der n-i+1 beteiligten Spieler.

In Runde
$$n-1$$
 genügt nach dem ESG 1 Schnitt
$$\Rightarrow \text{insgesamt } (\sum_{i=1}^{n-2} n-i+1)+1=n+(n-1)+\cdots+3+1=\frac{n(n+1)}{2}-2=\frac{n^2+n-4}{2} \quad \Box$$

Modified Last-Diminisher-Protokoll

Gegeben: Kuchen X=[0,1], Spieler p_1,p_2,\ldots,p_n , wobei $\boldsymbol{v}_i, 1 \leq i \leq n$, das Maß von p_i mit $\boldsymbol{v}_i(X)=1$ sei. Setze N:=n.

Schritt 1: p_1 schneidet vom Kuchen ein Stück S_1 mit $\boldsymbol{v}_1(S_1) = 1/N$.

Schritt 2: $p_2, p_3, \ldots, p_{n-1}$ geben dieses Stück von einem zum nächsten, wobei sie es ggf. beschneiden. S_{i-1} , $2 \le i \le n-1$, sei das Stück, das p_i von p_{i-1} bekommt.

- Ist $\mathbf{v}_i(S_{i-1}) > 1/N$, $2 \le i \le n-1$, so schneidet p_i etwas ab und gibt S_i mit $\mathbf{v}_i(S_i) = 1/N$ weiter.
- Ist $v_i(S_{i-1}) \leq 1/N$, $2 \leq i \leq n-1$, so gibt p_i das Stück $S_i = S_{i-1}$ weiter.
- Ist $v_n(S_{n-1}) \ge 1/N$, so scheidet p_n mit S_{n-1} aus.
- Ist $v_n(S_{n-1}) < 1/N$, so scheidet der letzte Spieler, der etwas davon abgeschnitten hatte, mit S_{n-1} aus.

Schritt 3: Setze die Reste zusammen zum neuen Kuchen $X := X - S_n$, benenne ggf. die im Spiel verbliebenen Spieler um in p_1, p_2, \dots, p_{n-1} und setze n := n - 1.

Schritt 4: Wiederhole die Schritte 1 bis 3, bis n = 1 gilt.

 ${\bf Fakt.}\ Das\ Modified\ Last-Dimisher-Protokoll\ erfordert$

$$\frac{n(n-1)}{2}$$
 Schnitte

Beweis. Wie oben, aber 1 Schnitt pro Runde $i \leq n-2$ weniger:

$$\sum_{i=1}^{n-1} n - i = (n-1) + (n-2) + \dots + 1 = \frac{n(n-1)}{2}$$

33

Beispiel. n = 100:4950 Schnitte

$\frac{ \textbf{Anzahl der Schnitte in verschiedenen}}{ \textbf{Protokollen für } n \textbf{ Spieler}}$

Protokoll	2	3	4	5	6	• • •	n
Last Diminisher	1	4	8	13	19		$\frac{n^2+n-4}{2}$
Modified Last Diminisher	1	3	6	10	15		$\frac{n^2-n}{2}$
Lone Chooser (ohne ESG)	1	5	23	119	719		n! - 1
Lone Chooser (mit ESG)	1	5	14	30	55	• • •	$\frac{(n-1)n(2n-1)}{6}$

2.3.1 Analyse vom Lone-Chooser-Protokoll ohne ESG-Prinzip

Wenn in der (n-1)-ten Runde p_n hinzukommt:

- hat jeder von p_1, \ldots, p_{n-1} bereits (n-2)! Stücke
- ullet teilt diese in n Teilstücke

$$\Rightarrow \qquad (n-2)! \qquad \cdot \qquad (n-1) \qquad \cdot \qquad n \qquad = n!$$
 #Stücke zu Beginn #bisheriger Spieler #der Teilstücke, die jeder bisherige Spieler für jedes bisherige Stück erzeugt

Stücke erfordern n! - 1 Schnitte.

2.3.2 Analyse vom Lone-Chooser-Protokoll mit ESG-Prinzip

n=2 1 Schnitt

 $n=3\,$ 2 Cutter teilen ihr Stück mit je 2 Schnitten $\Rightarrow 1+2\cdot 2=5 \text{ Schnitte insgesamt}$

 $n=4\,$ 3 Cutter teilen je 2 Stücke und sollen 4 Stücke erzeugen. Statt $3\cdot 2$ Schnitte pro Cutter (insgesamt 18) genügen nach dem ESG 3 Schnitte pro Cutter

n=5 analog zu $4\cdot 4$ Schnitten $\Rightarrow \sum_{i=1}^{n-1} i^2 = \frac{(n-1)n(2n-1)}{6} \in \mathcal{O}(n^3) \text{ immer noch schneller als } \mathcal{O}(n^2)$

Can we do better?

2.4 Der Divide & Conquer Algorithmus

Last-Diminisher: nach dem n-ten Schnitt ist 1 Spieler happy und n-1 Spieler can be made happy.

Idee. Aufteilung in 2 Spielergruppen von etwa gleicher Größe $\sim \frac{n}{2}$, die jeweils einen Teil des Kuchens unter sich aufteilen.

Protokoll. Divide & Conquer (Even & Paz, 1984) Hilfreich sind die einfachen Fälle:

n=1 kein Schnitt nötig

n=2 Nach ESG genügt 1 Schnitt

n=3 Modified Last-Diminisher-Protokoll: 3 Schnitte

Nicht einfache Fälle:

n=4 p_1,p_2,p_3 halbieren den Kuchen jeweils nach ihrem Maß mit parallelen Schnitten.

 $p_4(Non\text{-}Cutter)$ bewertet die durch den Mittelschnitt definierten Stücke A und X-A.

Sei $v_4(A) \ge v_4(X - A)$. Dann teilen jeweils mit Cut & Choose

- $p_3(der\ Spieler\ mit\ dem\ "linkesten"\ Schnitt)\ und\ p_4\ das\ Stück\ A$
- p_1 und p_2 (die beiden übrigen Spieler) teilen sich den Rest X A

Bemerkung. $v_2(A) = v_2(X - A)$, also ist es $p_2(der\ den\ Mittelschnitt\ tat)$ egal, ob er $A\ oder\ X - A\ teilt$

 \Rightarrow Insgesamt: 3+1+1=5 Schnitte

n=5 p_1,p_2,p_3,p_4 machen parallele Schnitte im Verhältnis 2:3 nach ihrem Maß

 $p_5(Non\text{-}Cutter)$ bewertet A und X-A.

- Ist $v_5(A) \geq \frac{2}{5}$, so teilen $p_4 \& p_5 A$ mit Cut & Choose und $p_1, p_2, p_3 X A$ mit Modified Last-Diminisher.
- Ist $v_5(X-A) \geq \frac{3}{5}$, so teilen p_2, p_3, p_5 das Stück X-A mit Modified Last-Diminisher $p_1 \& p_4$ das Stück A mit Cut & Choose

Bemerkung. 1. Gilt $v_5(A) = \frac{2}{5}$ und $v_5(X - A) = \frac{3}{5}$, so ist p_5 egal, ob er A oder X - A teilt

2. Genauso für den Spieler mit dem Mittelschnitt(p₁)

Insgesamt: 4+3+1=8 Schnitte

Even & Paz: Divide-and-Conquer-Protokoll

Gegeben: Kuchen X = [0, 1], Spieler p_1, p_2, \dots, p_n , wobei $\mathbf{v}_i, 1 \le i \le n$, das Maß von p_i mit $\mathbf{v}_i(X) = 1$ sei.

Schritt 1: Ist n = 1, so erhält p_1 den ganzen Kuchen.

Schritt 2: Ist n = 2k für ein $k \ge 1$, so:

2(a): teilen p_1, p_2, \dots, p_{n-1} den Kuchen mit parallelen Schnitten im Verhältnis k : k nach ihrem Maß:

2(b): p_n wählt:

- entweder das Stück A links vom k-ten Schnitt (falls $v_n(A) \ge k/n = 1/2$ von X)
- \bullet oder andernfalls das Stück X-A.

2(c): Mittels Divide & Conquer für *k* Spieler:

- teilt p_n das gewählte Stück mit den k-1 Spielern, deren Schnitt echt in dieses hineinfällt;
- teilen die k übrigen Spieler das andere Stück.

Fortsetzung: nächste Folie

Even & Paz: Divide-and-Conquer-Protokoll Fortsetzung

Schritt 3: Ist n = 2k + 1 für ein $k \ge 1$, so:

3(a): teilen p_1, p_2, \dots, p_{n-1} den Kuchen mit parallelen Schnitten im Verhältnis k : k + 1 nach ihrem Maß:

- **3(b):** p_n wählt entweder das Stück A links vom k-ten Schnitt (falls $v_n(A) \ge k/n = k/(2k+1)$ von X)
 - \bullet oder andernfalls das Stück X-A.
- **3(c):** Hat p_n das Stück A gewählt, so teilt er es mittels Divide & Conquer für k Spieler mit den k-1 Spielern, deren Schnitt echt in A fällt;
 - ullet Hat p_n das Stück X-A gewählt, so teilt er es mittels Divide & Conquer für k+1 Spieler mit den k Spielern, deren Schnitt echt in X-A fällt.
 - In beiden Fällen teilen die k+1 bzw. k übrigen Spieler das jeweils andere Stück mittels Divide & Conquer für k+1 bzw. k Spieler.

Bezeichnet man mit D(n) die Zahl der Schnitte, die Divide & Conquer für eine faire (prop.) Aufteilung für n Spieler erfordert, so gilt:

$$\begin{array}{rcl} D(2k) & = & 2k-1+2D(k), k \geq 2 \\ D(2k+1) & = & 2k+D(k)+D(k+1), k \geq 2 \\ D(1) & = & 0 \\ D(2) & = & 1 \\ D(3) & = & 3 \\ D(n) & = & (n-1)+D(\left\lfloor \frac{n}{2} \right\rfloor)+D(\left\lceil \frac{n}{2} \right\rceil) \end{array}$$

Satz. $D(n) \stackrel{\textcircled{o}}{=} n \cdot k - 2^k + 1$, wobei $k = \lceil \log n \rceil$ Grob gesprochen: $\mathcal{O}(n \log n)$ Schnitte reichen.

Beweis. Induktion über n:

IA
$$n = 1$$
 $n \cdot k - 2^k + 1 = 1 \cdot 0 - 2^0 + 1 = 0 - 1 + 1 = 0 = D(1)\checkmark$
 $n = 2$ $D(2) = 1 + 2D(1) = 1 + 2 \cdot 0 = 1\checkmark$

$${\sf IV}\,$$
 Sei $n>2$ und Beh. seit richtig für $1,2,\cdots,n-1.$ Für $k=\lceil\log n\rceil$ sei $n=2^{k-1}+r$ mit $1\leq r\leq 2^{k-1}$ Da $n>2$ und $r\leq 2^{k-1},$ gilt $2^{k-1}>1,$ also $k>1$

IS Fall 1 $r=2\cdot s$ (also gerade) für ein s, $1\leq s\leq 2^{k-2}$

$$\begin{array}{ll} \Rightarrow D(n) & \stackrel{\textcircled{\textcircled{\otimes}}}{=} & (n-1)+2D\left(\frac{n}{2}\right), \, \text{denn} \,\, n=2^{k-1}+r \,\, \text{ist gerade wegen} \,\, k>1 \\ & \stackrel{IV}{=} & (2^{k-1}+2s-1)+2[(2^{k-2}+s)\lceil\log(2^{k-1}+s)\rceil-2^{\lceil\log(2^{k-2})+s\rceil}+1] \\ & = & (2^{k-1}+2s-1)+2[(2^{k-2}+s)(k-1)-2^{k-1}+1] \\ & = & 2^{k-1}(k-2)+2sk+1 \\ & = & (2^{k-1}+2s)k-2^k+1=nk+2^k+1 \checkmark \end{array}$$

mit

$$2^{k} < 2^{k-2} + s \le 2 \cdot 2^{k-2} = 2^{k-1}$$
$$\Rightarrow \lceil \log(2^{k-2} + s) \rceil = k - 1$$

Fall 2 r=2s+1 (also ungerade) für ein $s,0 \le s \le 2^{k-2}-1$

Sei $s \neq 0$

$$\begin{split} D(n) &\stackrel{\textcircled{\odot}}{=} \quad (2^{k-1}+2s) + D(2^{k-2}+s+1) + D(2^{k-2}+s) \\ &\stackrel{IV}{=} \quad (2^{k-1}+2s+\left[(2^{k-2}+s+1)\lceil\log(2^{k-2}+s+1)\rceil - 2^{\lceil\log(2^{k-2}+s+1)\rceil} + 1\right] \\ &\quad + \left[(2^{k-2}+s)\lceil\log(2^{k-2}+s)\rceil - 2^{\lceil\log(2^{k-2}+s)\rceil} + 1\right] \\ &= \quad (2^{k-1}+2s) + \left[(2^{k-2}+s+1)(k-1) - 2^{k-1} + 1\right] \\ &\quad + \left[(2^{k-2}+s+1)(k-1) - 2^{k-1} + 1\right] \\ &\quad + \left[(2^{k-2}+s+1)(k-1) - 2^{k-1} + 1\right] - (k-1) \\ &= \quad (2^{k-1}+2s) + 2\left[(2^{k-2}+s+1)(k-1) - 2^{k-1} + 1\right] - (k-1) \\ &= \quad (2^{k-1}+2s+1) + (2^{k-1}+2s+2)(k1) - 2^k + 1 - (k-1) \\ &= \quad (2^{k-1}+2s+1)k - 2^k + 1 = n \cdot k - 2^k + 1 \checkmark \end{split}$$

 $_{
m mit}$

$$2^{k-2} + 1 \stackrel{s \neq 0}{<} 2^{k-2} + s + 1 \stackrel{s \leq 2^{k-2} - 1}{\leq} 2 \cdot 2^{k-2} = 2^{k-1}$$
$$\Rightarrow \lceil \log(2^{k-2} + s + 1) \rceil = \lceil \log(2^{k-2} + s) \rceil = k - 1$$

Ist s=0, so ergibt sich oben: $\lceil \log(2^{k-2}+s) \rceil = k\cdot 2$ und man erhält: $D(n)=(2^{k-1}+1)k+2^k+1=n\cdot k-2^k+1\checkmark$

Bemerkung. Divide & Conquer ist proportional und endlich beschränkt.

n	Methode	D(n)
1	Kein Schnitt nötig	0
2	Cut & Choose	1
3	2 Schnitte reduzieren auf Fälle 2 & 1	3
4	3 Schnitte reduzieren auf Fälle 2 & 2	3+1+1=5
5	4 Schnitte reduzieren auf Fälle 2 & 3	4+1+3=8
6	5 Schnitte reduzieren auf Fälle 3 & 3	5 + 3 + 3 = 11
7	6 Schnitte reduzieren auf Fälle 3 & 4	6 + 3 + 5 = 14
8	7 Schnitte reduzieren auf Fälle 4 & 4	7 + 5 + 5 = 17
9	8 Schnitte reduzieren auf Fälle 4 & 5	8 + 5 + 8 = 21
10	9 Schnitte reduzieren auf Fälle 5 & 5	9 + 8 + 8 = 25
:	:	:
\overline{n}	n-1 Schnitte reduzieren	$nk - 2^k + 1$
	auf Fälle $\lceil \frac{n}{2} \rceil$ & $\lfloor \frac{n}{2} \rfloor$	$ \left \min k = \lceil \log n \rceil \right $

Das Viertel-Protokoll für Drei

Gegeben: Kuchen X = [0, 1], Spielerinnen Claudia, Doro und Edith mit den Maßen v_C , v_D und v_E .

Schritt 1: Claudia schneidet $X = X_1 \cup X_2$, so dass gilt:

$$v_{\mathbf{D}}(X_1) = 1/3$$
 und $v_{\mathbf{D}}(X_2) = 2/3$.

Schritt 2: (a) Gilt $v_D(X_2) \ge 1/2$ und $v_E(X_1) \ge 1/4$, dann

- geht X_1 an **E**dith, und
- Claudia und **D**oro teilen sich X_2 mit Cut & Choose.

Analog wird der symmetrische Fall behandelt:

$$v_{\mathbf{E}}(X_2) \ge 1/2$$
 und $v_{\mathbf{D}}(X_1) \ge 1/4$.

- **(b)** Gilt $\boldsymbol{v}_{\mathbf{D}}(X_2) \geq 1/2$ und $\boldsymbol{v}_{\mathbf{E}}(X_1) < 1/4$, dann
 - geht X_1 an Claudia, und
 - **D**oro und **E**dith teilen sich X_2 mit Cut & Choose.

Analog wird der symmetrische Fall behandelt:

$$v_{\mathbf{E}}(X_2) \ge 1/2$$
 und $v_{\mathbf{D}}(X_1) < 1/4$.

Bemerkung: Gilt also $v_{\mathbf{D}}(X_2) \ge 1/2$ oder $v_{\mathbf{E}}(X_2) \ge 1/2$, so ist unser Ziel erreicht.

- (c) Gilt $v_{\mathbf{D}}(X_2) < 1/2$ und $v_{\mathbf{E}}(X_2) < 1/2$, dann
 - geht X_2 an Claudia, und
 - **D**oro und **E**dith teilen sich X_1 mit Cut & Choose.

2.5 Zwei Schnitte reichen nicht für drei Spieler

Moving Knife: 2 Schnitte!

Fakt. Das Viertel-Protokoll für Drei garantiert jedem der 3 Spieler mit 2 Schnitten $\geq \frac{1}{4}$ des Kuchens. \square

Satz. Kein endliches CCP kann 3 Spielern mit 2 Schnitten einen proportionalen Anteil garantieren, sondern höchstens $\frac{1}{4}$ des Kuchens.

Beweis. Sei p_1 der Spieler, der den ersten Schnitt macht:

$$X = X_1 \cup X_2$$

Da p_2,p_3 keine Kontrolle über den Schnitt haben, ist es möglich, dass $v_2(X_1)=v_3(X_1)=\frac12=v_2(X_2)=v_3(X_2)$ O.B.d.A. sei $v_1(X_1)\geq\frac12$

Fall 1 p_1 schneidet X_1 oder X_2 in 2 Stücke.

Egal welches, kann wegen $v_2(X_2) = v_3(X_2) = \frac{1}{2}$ passieren, dass sowohl p_2 als auch p_3 , die neuen Stücke jeweils mit $\frac{1}{4}$ bewerten.

 \Rightarrow wenigstens einer von p_2 oder p_3 muss ein solches Stück nehmen, also nur $\frac{1}{4}$ des Kuchens erhalten.

Fall 2 p_2 oder p_3 (sagen wir: p_2) macht den 2. Schnitt.

Wegen $v_2(X_1) = v_2(X_2) = \frac{1}{2}$

 $\Rightarrow p_2$ bewertet eines der neuen Stücke mit $\leq \frac{1}{4}$

Da $p_1 \& p_3$ haben keine Kontrolle über den 2. Schnitt

 \Rightarrow möglich: sie bewerten dieses Stück ebenfalls mit $\leq \frac{1}{4}$

Rightarrow einer von p_1, p_2, p_3 muss es nehmen

2.6 Vier Schnitte für vier Spieler

Idee. Angenommen, $X = A \cup B \cup C \cup D$ und

$$v_1(A) \ge v_1(B) \text{ und } v_1(C) \ge v_1(D)$$

$$\Rightarrow v_1(A \cup C) \ge \frac{1}{2}$$

 p_1 wäre also bereit, $A \cup C$ mit irgendwem mit Cut & Choose zu teilen. Sprechweise: Für Spieler p_i und Stücke A und B sagen wir:

- p_i bevorzugt A über B, falls $v_i(A) \geq v_i(B)$
- p_i bevorzugt A echt über B, falls $v_i(A) > v_i(B)$
- für p_i ist A akzeptabel, falls $v_i(A) \geq \frac{1}{n}$, wobei n die Anzahl der Spieler ist.

Viertel-Protokoll für Vier

(Even & Paz, 1984)

Gegeben: Spieler p_1, p_2, p_3, p_4 Kuchen X

$$\overline{p_1 \text{ teilt } X} = Y \cup Z \text{ mit } v_1(Y) = v_1(Z) = \frac{1}{2}$$

Fall 1 p_2, p_3, p_4 bevorzugen nicht alle dasselbe Stück (über das andere).

Wir dürfen annehmen: $v_2(Y) \ge \frac{1}{2}, v_3(Y) \ge \frac{1}{2}, v_4(Z) \ge \frac{1}{2}$.

- \bullet $p_2 \& p_3$ teilen Y mit Cut & Choose und erhalten akzeptable Stücke
- $p_1 \& p_4$ teilen Z mit Cut & Choose und erhalten akzeptable Stücke

3 Schnitte waren genug.

Fall 2 p_2, p_3, p_4 bevorzugen echt dasselbe Stück.

Wir nehmen an: $v_i(Z) > \frac{1}{2}$ für alle $i \in 2, 3, 4$

• p_1 teilt $Y = Y_1 \cup Y_2$, so dass $v_1(Y_1) = v_1(Y_2) = \frac{1}{4}$.

Fall 2.1 Auch wenn $v_i(Y) < \frac{1}{2}$ für $i \in 2, 3, 4$ könnte einer von p_2, p_3, p_4 ein Y_i akzeptabel finden sagen wir: p_2

Dann sind wir wieder mit 3 Schnitten fertig:

- $-p_2$ erhält Y_i
- $-p_1$ erhält das ander Y_j
- $-p_3 \& p_4$ teilen Z mit Cut & Choose und erhalten $> \frac{1}{4}$

Fall 2.2 Keiner von p_2, p_3, p_4 hält Y_1 oder Y_2 für akzeptabel. Trotzdem bevorzugt jeder eines dieser Stücke.

 \Rightarrow Zwei von p_2, p_3, p_4 müssen dasselbe Stück bevorzugen.

Annahme: p_2, p_3 bevorzugen Y_2 .

$$\Rightarrow v_i(Y_2) \ge v_i(Y_1)$$
 für $i \in 2, 3$

(Welches Y-Stück p_4 bevorzugt ist egal.)

 $-p_1$ erhält Y_1 und scheidet aus.

Bemerkung. p_2, p_3, p_4 teilen $X - Y_1 = Y_2 \cup Z$.

Erfordert das nicht 3 Schnitte, insgesamt also 5? Nein!

$$-p_2 \text{ teilt } Z = Z_1 \cup Z_2 \text{ mit } v_2(Z_1) = v_2(Z_2) > \frac{1}{4}$$

- Wir wissen bereits:

A A 11	WIDDO	11 001	CIUS.			
	Y_1	Y_2	Z_1	Z_2	Legende:	+ akzeptabel
$\overline{p_2}$	-	*_	*+	*+		- inakzeptabel
p_3	-	*_				* bevorzugt
p_4	-	-				$(Y_1 \text{ vs. } Y_2 - Z_1 \text{ vs. } Z_2)$

Und die anderen 4 Einträge?

Wenn p_3 oder p_4 ein Z-Stück bevorzugt, dann ist es für ihn akzeptabel, wegen $v_i(Z)>\frac12$ für $i\in 3,4.$

Wir dürfen annehmen: p_3 bevorzugt Z_1 .

a) p_4 findet Z_2 akzeptabel. Dann gilt:

- Dann erhält p_4 das Stück \mathbb{Z}_2
- $p_2\&p_3$ teilen $Y_2\cup Z_1$ mit Cut & Choose, denn nach Herrn Schulenbergs Idee ist

$$v_i(Y_2 \cup Z_1) \ge \frac{1}{2} \text{ für } i \in 2, 3$$

 \Rightarrow alle Spieler sind zufrieden nach 4 Schnitten.

b) Z_2 ist für p_4 inakzeptabel. Dann gilt:

 $-p_2$ erhält Z_2

- $p_3 \& p_4$ teilen $Y_2 \cup Z_1$ mit Cut & Choose. Da p_3 beide Stücke $(Y_2 \& Z_1)$ bevorzugt, gilt

$$v_3(Y_2 \cup Z_1) \ge \frac{1}{2}$$

Da p_4 bereits zwei inakzeptable Stücke $(Y_1\&Z_2)$ abgelehnt hat, gilt $v_4(Y_2\cup Z_1)\geq \frac{1}{2}$

⇒ alle sind zufrieden nach 4 Schnitten

Satz. Das Viertel-Protokoll für Vier garantiert jedem der 4 Spieler einen proportionalen Anteil. (Even & Paz, 1984)

Das ist optimal.

Satz. Kein endliches CCP kann 4 Spielern mit 3 Schnitten einen Anteil von mehr als $\frac{1}{6}$ garantieren (insbesondere nicht $\frac{1}{4}$). \square

2.7 Verallgemeinerungen

2.7.1 Minimale Schnittzahl, um einen proprtionalen Anteil zu garantieren

Erinnerung: Nur endliche Protokolle!

$$F(1) = 0, F(2) = 1, F(3) = 2, F(4) = 4$$

Da $F(n) \leq D(n)$ für alle n und $D(n) \in \mathcal{O}(n \log n)$, folgt $F(n) \in \mathcal{O}(n \log n)$

Da F(4) = 4 < 5 = D(4), geht's für kleine n besser.

Divide & Conquer teilt Spieler in 2 \approx gleichgroße Gruppen

 $\Rightarrow \odot D(n) = (n-1) + D(\lfloor \frac{n}{2} \rfloor) + D(\lceil \frac{n}{2} \rceil)$

Minimale Anzahl von Schnitten, die jedem Spieler einen proportionalen Anteil garantiert

Definition 8 Sei F(n) die minimale Anzahl von Schnitten, für die ein endliches Cake-cutting-Protokoll jedem der n Spieler einen proportionalen Anteil garantiert.

Zahl n der Spieler	1	2	3	4	5	6	7	8
D(n) in Divide & Conquer	0	1	3	5	8	11	14	17
Obere Schranke für $F(n)$	0	1	3	4	6	8	13	15

Zahl n der Spieler	9	10	11	12	13	14	15	16
D(n) in Divide & Conquer	21	25	29	33	37	41	45	49
Obere Schranke für $F(n)$	18	21	24	27	33	36	40	44

ullet Für fettgedruckte Einträge ist der angegebene Wert von F(n) optimal.

Neuer Ansatz (Robertson & Webb):

Statt im Verhältnis k:k für n=2k

bzw. k: k+1 für n=2k+1

teilen wir im Verhältnis t: n-t mit n-1 Schnitten.

 \Rightarrow neue Rekurrenz für obere Schranke E von F (d.h. $F(n) \leq E(n)$ für alle n):

$$E(n) = (n-1) + E(t) + E(n-t)$$

Man kann zeigen: $E(n) \le n \log n - 1.12n$, für $n \ge 8$:

- $\bullet\,$ Durch Ausrechnen für $8 \le n \le 15$
- Mit Induktion: Gilt $E(n) \le n \log n - c \cdot n$ für festes c und alle n mit $t \le n \le 2t - 1$, dann gilt obige Umgleichung für alle $n \ge 8$

Welche unteren Schranken gelten?

Satz. (Edmonds & Pruhs, 2006): $F(n) \in \Omega(n \log n)$.

Dies verbessert die $\Omega(n \log n)$ -Scranke von Woeginger & Sgall, die nur für "zusammenhängende" proportionale CCPs gilt.

Satz. (Procaccia, 2009): Jedes neidfreie endliche CCP erfordert $\Omega(n^2)$ Schnitte

Offen: obere Schranke für $n \geq 4$.

2.7.2 Was kann n Spielern mit k Schnitten garantiert werden?

Satz.

- 1. $M(n, n-1) = \frac{1}{2n-2}$, für alle $n \ge 2$.
- 2. $M(n,n) = \frac{1}{2n-4}$ für alle $n \ge 4$ und $M(3,3) = \frac{1}{3}$.
- 3. $M(n, n+1) \le \frac{1}{2n-5}$ für alle $n \ge 5$.

Welcher Anteil am Kuchen kann jedem Spieler mit k Schnitten garantiert werden?

Definition 9 Sei M(n,k) der größte Anteil am Kuchen, der jedem der n Spieler mit k Schnitten in einem endlichen Cakecutting-Protokoll garantiert werden kann.

Anzahl					Sp	ieler			
Schnitte	2	3	4	5	6	7	8		n
n-1	1/2	1/4	1/6	1/8	1/10	1/12	1/14		1/(2n-2)
n		1/3	1/4	1/6	1/8	1/10	1/12	• • •	1/(2n-4)
n+1				1/5	1/7	1/9	1/11		1/(2n-5)
n+2					1/6	1/8	1/10	• • •	?

ullet Für fettgedruckte Einträge ist der angegebene Wert von M(n,k) optimal.

• <u>Leere Felder</u>:

Kann jedem von n Spielern mit k Schnitten ein Anteil von 1/n garantiert werden, so auch mit mehr als k Schnitten.

2.7.3 Ungleiche Anteile

Angenommen, C & D wollen den Kuchen im Verhälntnis 7:4 teilen.

Idee.

1. Klone C in 7 Spielerinnen und D in 4 Spielerinnen und wende ein bekanntes Protokoll für gleiche Anteile (z.B. Divide & Conquer) auf diese 11 Spielerinnen an. C und D erhalten alle Anteile ihrer Klone.

Bemerkung. Klappte für Verhältnisse r:s mit rationalen r und s. Schwieriger für irrationale Werte, $z.B.:\pi:13$

Nachteil Klonen treibt die Schnittzahl hoch. Im Bsp: D(11) = 10 + D(5) + D(6) = 10 + 8 + (5 + 2D(3)) = 18 + 11 = 29

- 2. Cut-Ones-Algorithmus
 - C teilt X in 11 Stücke gleichen Werts, also im Verhältnis 1:1:...:1
 - D wählt die, nach ihrem Maß, 4 besten Stücke aus
 - C erhält die übrigen 7 Stücke, also $\frac{7}{11}$ des Kuchens

Klar: D erhält $\geq \frac{4}{11}$, selbst wenn einzelne ihrer 4 Stücke $< \frac{1}{11}$ wert sind. Nur 10 Schnitte nötig (deutlich besser als Divide & Conquer). Verbesserungen sind möglich: "Ramsey-Theorie"!

3 Das Lone-Divider-Protokoll

3.1 Steinhaus' Lone-Divider-Methode für 3 Spieler

Seien C, D, E die Spieler.

- 1. C teilt $X = X_1 \cup X_2 \cup X_3$ mit $v_C(X_1) = v_C(X_2) = v_C(X_3) = \frac{1}{3}$
- 2. D & E markieren die für sie akzeptablen Stücke. X_i ist für D akzeptable, falls $v_D(X_i) \geq \frac{1}{3}$.

Bemerkung. Für beide ist mindestens ein X_i akzeptabel.

- 3. Fall 1 Für D oder E (sagen wir: D) sind sogar 2 der X_i akzeptabel. Dann wählen sie in der Reihenfolge: E, D, C und erhalten alle akzeptable Stücke.
 - **Fall 2** D und E finden höchstens eins (genau eins) der Stücke X_1 , X_2 , X_3 akzetabel.
 - **2.1** Sind dies verschiedene Stücke, so erhalten D & E jeweils ihr akzeptables Stück, C das letzte.
 - **2.2** Ist dies dasselbe Stück (sagen wir: X_1), dann sind $X_2 \& X_3$ inakzeptabel für D & E.

C erhält X_3 .

 $\Rightarrow X' = X - X_3 = X_1 \cup X_2$ ist dann für $D \& E > \frac{2}{3}$ wert, sie teilen es mit Cut & Choose und erhalten $> \frac{2}{3} \cdot \frac{1}{2} = \frac{1}{3}$ von X.

3.2 Custers Lone-Divider-Methode für 4 Spieler

Seien C, D, E und F die Spieler.

- 1. C teilt $X = X_1 \cup X_2 \cup X_3 \cup X_4$ mit $v_C(X_1) = v_C(X_2) = v_C(X_3) = v_C(X_4) = \frac{1}{4}$
- 2. D, E und F markieren ihre akzeptablen Stücke (im Wert von $\geq \frac{1}{4}$)
- 3. Betrachte 3 Fälle
 - **Fall 1** Mindestens eines der X_i ist nur für C akzeptabel.
 - \bullet C erhält dieses.
 - D, E, F teilen den Rest (im Wert von $> \frac{3}{4}$) mit Steinhaus' Lone-Divider für 3 Spieler und erhalten alle $> \frac{3}{4} \cdot \frac{1}{3} = \frac{1}{4}$
 - **Fall 2** Mindestens ein X_i (sagen wir: X_1) ist $\underline{\text{nur}}$ für C und eine weitere Spielerin (sagen wir: D) akzeptabel.
 - D erhält X_1
 - C, E, F teilen den Rest $X' = X_2 \cup X_3 \cup X_4$ mit Steinhaus' Lone-Divider-Methode für 3 Spieler und erhalten wegen $v_C(X') = \frac{3}{4}$ und $v_E(X') > \frac{3}{4}$ und $v_F(X') > \frac{3}{4}$ alle eine akzeptable Portion.

Fall 3 Weder Fall 1 noch Fall 2.

D.h. für jedes $i, 1 \le i \le 4$, ist X_i für C und mindestens zwei weitere Spieler akzeptabel.

Wenn keiner von D, E, F mindestens drei der X_i akzeptabel findet, dann könnten wir höchstens 2+2+2=6 der ? ersetzen. $\frac{1}{2}$

 \Rightarrow mindestens einer von D, E, F, findet mindestens drei der X_i akzeptabel (sagen wir: D).

Selbst wenn D alle vier X_i akzeptabel findet, muss E oder F mindestens zwei der X_i akzeptabel finden, denn sonst könnten wir nur höchstens 4 + 1 + 1 = 6 der ? ersetzen. Sagen wir, dieser Spieler ist E.

Lassen wir nun die in der Reihenfolge

$$F$$
 E D C

> 1 > 2 > 3 = 4 akzeptable Stücke zur Auswahl

wählen, erhält jeder Spieler ein akzeptables Stück.

Kuhn á la Dawson: Lone-Divider-Protokoll

Gegeben: • Kuchen X = [0,1], Spieler p_1, p_2, \ldots, p_n , wobei $v_i, 1 \le i \le n$, das Maß von p_i sei.

- Je weiter links ein Spieler in dieser Reihenfolge steht, desto höher sein Rang.
- Der Spieler mit Rang *n* heißt der *Divider* (seine Identität ist bekannt), die anderen sind die *Choosers* (ihr Rang wird erst nach Schritt 2 enthüllt).

Schritt 1: Der *Divider* teilt X in n Stücke vom Wert 1/n.

Schritt 2: Die *Choosers* markieren akzeptable Stücke (vom Wert $\geq 1/n$), jeder mindestens eines. Dabei kennt kein *Chooser* die Markierungen der anderen *Choosers*.

Schritt 3: (a) Ist die Menge \mathcal{D} aller *Choosers* entscheidbar, so führe die Entscheidbare Allokationsprozedur aus.

(b) Ist $\mathcal D$ nicht entscheidbar, so bestimme (Tafel!):

- ullet die Menge $\mathcal{C}\subseteq\mathcal{D}$ aller *Conflicting Choosers* und
- die Menge $\mathcal{D} := \mathcal{D} \mathcal{C}$ der *Decidable Choosers*.

Fall 1: Ist $\mathcal{D} = \emptyset$, so führe die

Maximale Neuaufteilungsprozedur aus.

Fall 2: Ist $\mathcal{D} \neq \emptyset$, so führe die

Partielle Neuaufteilungsprozedur aus.

Fortsetzung: nächste Folie

28

Kuhn á la Dawson: Lone-Divider-Protokoll Entscheidbare Allokationsprozedur

Schritt 1: Hat ein $p_i \in \mathcal{D}$ genau ein Stück als akzeptabel markiert oder ist nur noch ein solches Stück für $p_i \in \mathcal{D}$ übrig, so erhält p_i dieses Stück. Setze $\mathcal{D} := \mathcal{D} - \{p_i\}$. Wiederhole diesen Schritt, solange dies möglich ist.

Schritt 2: Ist $\mathcal{D} \neq \emptyset$, so wählt der Spieler p_i von höchstem Rang in \mathcal{D} ein für ihn akzeptables Stück, so dass

$$\mathcal{D} := \mathcal{D} - \{p_i\}$$

bzgl. der noch übrigen Stücke immer noch entscheidbar ist. Gehe zu Schritt 1.

Schritt 3: Das letzte noch übrige Stück erhält der Divider.

Fortsetzung: nächste Folie

29

Kuhn á la Dawson: Lone-Divider-Protokoll Maximale Neuaufteilungsprozedur

- Es gibt mindestens zwei Stücke, die kein Spieler als akzeptabel markiert hat. Diese heißen *freie Stücke*.
- Schritt 1: (a) Der *Chooser* von höchstem Rang, der der *Selector* sein möchte, tauscht Platz und Rang mit dem *Chooser* von niedrigstem Rang.
 - **(b)** Möchte kein *Chooser* der *Selector* sein, so wird der *Chooser* von niedrigstem Rang zum *Selector* erklärt.
- **Schritt 2:** Der *Selector* wählt eines der freien Stücke aus, nennt es X_n und gibt es dem *Divider*, der mit X_n ausscheidet.
- **Schritt 3:** (a) Setze die übrigen Stücke zum neuen Kuchen $X := X X_n$ zusammen,
 - **(b)** setze n := n 1 und
 - (c) führe das Lone-Divider-Protokoll mit den verbliebenen Spielern von Beginn an aus.

Dabei hat der *Selector* nun den niedrigsten Rang und ist somit der neue *Divider*.

Fortsetzung: nächste Folie

Kuhn á la Dawson: Lone-Divider-Protokoll Partielle Neuaufteilungsprozedur

- Stücke, die für keinen *Conflicting Chooser* in *C* akzeptabel sind, heißen *freie Stücke*.
- Stücke, die für einen *Conflicting Chooser* in *C* akzeptabel sind, heißen *Konfliktstücke*.
- **Schritt 1:** (a) Der *Chooser* in C von höchstem Rang, der der *Selector* sein möchte, tauscht Platz und Rang mit dem *Chooser* von niedrigstem Rang in C.
 - **(b)** Möchte kein *Chooser* in \mathcal{C} der *Selector* sein, so sei der *Chooser* von niedrigstem Rang in \mathcal{C} der *Selector*.
- Schritt 2: Seien k, ℓ und m die Parameter für $\mathcal C$ (Tafel!).

Der Selector wählt $\ell \leq \|\mathcal{C}\| - 1$ freie Stücke aus, so dass \mathcal{D} auch dann noch entscheidbar ist, wenn weder diese ℓ Stücke noch Konfliktstücke gewählt werden dürfen.

- Schritt 3: Setze diese ℓ Stücke und die Konfliktstücke zum neuen Kuchen zusammen und teile ihn mit Lone-Divider unter den Spielern in \mathcal{C} (selber Rang!) auf. Der *Selector* ist mit niedrigstem Rang der neue *Divider*.
- Schritt 4: Teile die übrigen freien Stücke unter den Spielern aus \mathcal{D} und dem ursprünglichen Divider mit der Entscheidbaren Allokationsprozedur auf.

30

3.3 Dawsons Lone-Divider-Methode für n Spieler

ist eine "algorithmische" Variante der Kuhn-Methode. Kuhn ist eher "existenziell" als algorithmisch, verwendet das Frobenius-König-Theorem.

Definition. Eine Menge von Choosers heißt entscheidbar, falls sie keine Teilmenge von k Choosers enthält, die insgesamt weniger als k Stücke als akzeptabel markiert haben.

Im Schritt 3(b) von Dawsons Lone-Divider-Protokoll:

 \mathcal{D} ist $\overline{\text{nicht entsch}}$ eidbar.

Sei l die größte Zahl, so dass es eine Menge von k Choosers in \mathcal{D} gibt, die k-l Stücke akzeptabel finden.

Sei m das kleinste k für dieses größte l, so dass es eine Menge von m Choosers in \mathcal{D} gibt, die m-l Stücke akzeptabel finden.

Unter alle Gruppen von Choosern mit größtem Defizit wählen wir die kleinste. Das ist \mathcal{C} .

Satz. (Dawson): Zunächst einige Beobachtungen

Da $l \le k-1$ (da jeder Chooser ≥ 1 akz. Stück markiert) und k < n, ist die Wahl des $gr\ddot{o}\beta ten\ l\ gerechtfertigt.$

Da die Menge \mathcal{D} aller Choosers nicht entscheidbar ist, gilt $l \geq 1$.

 $Au\beta erdem\ m-l\geq 1,\ also\ m\geq l+1.$

Angenommen, es gibt zwei Mengen l_1 und l_2 , $l_1 \neq l_2$, von Choosers, die jeweils m-lStücke akzeptabel finden, wobei m und l optimal.

Wären l_1 und l_2 disjunkt ($l_1 \cap l_2 = \emptyset$), dann wäre $l_1 \cup l_2$ eine Menge von 2m Choosers, $die\ insgesamt \leq 2m-2l\ St\"ucke\ akzeptabel\ finden.$

 $\Rightarrow l_1 \cap l_2 \neq \emptyset$. Sei $K = |l_1 \cap l_2| > 0$ Und K < n, da $l_1 \neq l_2$. Nach Wahl von m sind für die K Choosers in $l_1 \cap l_2$ K – (l-s) Stücke akzeptabel für ein $s \ge 1$.

$$|l_2 - l_1| = m - K$$

Finden diese m-K Choosers weniger als m-K Stücke akzeptabel, die nicht für die in l_1 akzeptabel sind, dann finden die 2m-k Choosers in $l_1 \cup (l_2-l_1)$ weniger als m-l+m-K=(2m-K)-l) $\ \ zur\ Wahl\ von\ l.$

 \Rightarrow Für die m-K Choosers in l_2-l_1 sind $\geq m-K$ Stücke akzeptabel, die nicht für die in l_1 akzeptabel sind, also auch nicht für die K in $l_1 \cap l_2$.

 \Rightarrow die m Choosers in l_2 finden insgesamt

$$\Rightarrow$$
 are m Choosers in l_2 finden insgesamt $K-(l-s)+m-K>m-l$ in $\c zur$ Wahl von l_2 .

Bemerkung. Das Lone-Divider-Protokoll ist proportional und endlich beschränkt.

4 Das Cut-Your-Own-Piece-Protokoll

von Steinhaus (1969).

Die Lemberger Schule

(1892 - 1945)

Bronisław Knaster (1893 - 1990)

"It may be stated incidentally that if there are two (or more) partners with different estimations, there exists a division giving to everybody more than his due part; the fact disproves the common opinion that differences in estimations make fair division difficult."

- Hugo Steinhaus

Wie kann Uneinigkeit nützlich sein ? Angenommen, in Cut & Choose haben F und G unterschiedliche Bewertungen.

 $v_F(A)=\frac{1}{2},v_G(B)=\frac{1}{2},$ F und G sein beide Cutter und F erhält A und G erhält B. Übrig bleibt: der Rest C, den sie auch aufteilen können. (Bei Cut & Choose geht C an den Chooser.)

Nun wollen $F,\,G$ und H ein Seegrundstück aufteilen.

<u>Steinhaus: Cut-Your-Own-Piece-Protokoll</u> Felix' Markierungen

Felix

32

Steinhaus: Cut-Your-Own-Piece-Protokoll Gábors Markierungen

Gábor

33

Steinhaus: Cut-Your-Own-Piece-Protokoll Holgers Markierungen

H H

Holger

<u>Steinhaus: Cut-Your-Own-Piece-Protokoll</u> Alle Markierungen von Felix, Gábor und Holger

35

Felix Gábor

Holger

Steinhaus: Cut-Your-Own-Piece-Protokoll

Gegeben: Kuchen/Seegrundstück X = [0, 1], n Spieler.

- Schritt 1: Jeder Spieler macht n-1 Markierungen, um den Kuchen in n Stücke vom Wert jeweils 1/n nach seinem Maß aufzuteilen.
 - Diese n(n-1) Markierungen seien alle parallel.
 - Kein Spieler kennt die Markierungen der anderen Spieler.
- Schritt 2: (a) Das Stück zwischen linkem Rand und der am weitesten links liegenden Markierung geht an einen (beliebigen) Spieler, der dort markiert hat.

Dieser Spieler scheidet damit aus.

- (b) Entferne alle Markierungen dieses Spielers sowie alle am weitesten links liegenden Markierungen aller anderen Spieler.
- **Schritt 3:** Wiederhole Schritt 2 mit dem Rest des Kuchens und den übrigen Spielern, bis alle Markierungen entfernt sind.

Der letzte Spieler erhält das verbleibende Stück.

<u>Steinhaus: Cut-Your-Own-Piece-Protokoll</u> <u>Felix' Stück</u>

G H

Steinhaus: Cut-Your-Own-Piece-Protokoll <u>Gábors Stück</u>

37

<u>Steinhaus: Cut-Your-Own-Piece-Protokoll</u> Holgers Stück

Satz. Haben im Cut-Your-Own-Piece-Protokoll 2 der n Spieler verschieden markiert, $dann\ kann\ der\ Kuchen\ X\ so\ aufgeteilt\ werden,\ dass\ gilt:$

- 1. Jeder Spieler erhält ein von ihm selbst markiertes Stück, ohne dass Überlappungen auftreten.
- 2. Es bleibt ein Stück übrig.

Beweis. Induktion über n.

IA: n=2 Siehe obiges Beispiel (Cut & Choose)

IV: Die Behauptung gelte für n

IS: $n \to n+1$ p_1, \cdots, p_{n+1} haben markiert.

Schneide ganz links und gib dieses Stück dem zugehörigen Spieler (Unentschieden beliebig lösen), sagen wir p_1 .

Entferne alle Markierungen von p_1 und

entferne alle Markierungen ganz links von p_2,\cdots,p_{n+1}

 $\stackrel{IV}{\Rightarrow}$ jeder von p_2,\cdots,p_{n+1} erhält ein selbst markierstes Stück ohne Überlappung (also gilt 1.).

Zu zeigen: 2.

Fall 1 Es gibt p_i und p_j , $2 \le i, j \le n+1$, $i \ne j$, deren verbleibenden Markierungen sich unterscheiden $\stackrel{IV}{\Rightarrow}$ es bleibt ein Stück übrigen

Fall 2 Für alle $i, j, 2 \le i, j \le n+1, i \ne j$, haben p_i und p_j nur identische Markierungen.

Fall 2.1 Die Uneinigkeit in den Markierungen der n+1 Spieler zu Beginn betraf die ersten Markierungen von p_2, \dots, p_{n+1}

 \Rightarrow in einer geeigneten Aufteilung gibt es p_i , $2 \le i \le n+1$, der mehr als markiert bekommen hat

Gib p_i stattdessen sein ursprünglich markiertes Stück. Reststück bleibt

Die anderen Stücke können beliebig verteilt werden, wegen identischer Markierungen.

Fall 2.2 Die ersten Markierungen stimmten alle überein.

D.h. die Uneinigkeit der ursprünglichen Annahme für n+1 Spieler betraf die Markierungen von p_1 .

Gib das erste Stück nicht p_1 , sondern z.B. p_2

 \Rightarrow Wir sind in Fall 2.1.

5 Einige neidfreie Moving-Knife-Protokolle

Das Dubins-Spanier-Protokoll ist proportinal, aber nicht neidfrei. Angenommen: F ruft zuerst "Halt" und erhält X_F .

G ruft als Zweiter und erhält X_G .

H erhält $X_H = X - (X_F \cup X_G)$

$$v_F(X_F) = \frac{1}{3}, v_G(X_G) = \frac{1}{3}, v_H(XH) \ge \frac{1}{3}$$

H beneidet weder F noch G (sonst hätte er gerufen).

F beneidet entweder G oder H, falls $v_F(X_G) \neq v_F(X_H)$.

G beneidet nicht F (sonst hätte er gerufen), muss aber H beneiden. G's Strategie:

- Warten, bis die Hälften des Restkuchens gleichwertig
 - $-\ G$ ruft zuerst: kein Neid
 - H ruft zuerst: noch besser für G

Dies klappt nicht für Erstrufer F.

5.1 Stromquists Moving-Knifes-Protkoll

Stromquist: Moving-Knife-Protokoll (neidfreie Aufteilung unter drei Spielern)

Gegeben: Kuchen X = [0, 1], Spielerinnen Claudia, Doro und Edith mit den Maßen v_C , v_D und v_E .

- **Schritt 1:** Ein Schiedsrichter schwenkt ein Schwert kontinuierlich von links nach rechts über den Kuchen und teilt ihn so (hypothetisch) in ein linkes Stück L und ein rechtes Stück R: $X = L \cup R$.
 - Jede der drei Spielerinnen hält ihr Messer parallel zum Schwert und bewegt es (während das Schwert geschwenkt wird) so, dass sie das rechte Stück nach ihrem Maß stets genau halbiert.
 - Das mittlere der drei Messer teilt R (hypothetisch) in zwei Stücke: $R = S \cup T$.
- Schritt 2: \bullet Die erste Spielerin, die denkt, L sei mindestens so gut wie sowohl S als auch T, ruft: "Halt!"
 - Das Schwert und das mittlere Messer schneiden an ihren Positionen.
 - Die Spielerin, die "Halt!" rief, erhält L.
 - ullet Die Spielerin, deren Messer dem Schwert am nächsten und die noch im Spiel ist, erhält S.
 - Die letzte Spielerin erhält *T*.

Satz. Das Stromquist-Protokoll ist neidfrei.

 $\begin{array}{cccc} & C & \text{Messer} & 1 \\ Beweis. & \text{O.B.d.A. halte} & D & \text{Messer} & 2 \\ & E & \text{Messer} & 3 \end{array}$

Fall 1 • C ruft "Halt!" und erhält L.

 $\Rightarrow v_C(L) \ge v_C(S)$ und $v_C(L) \ge v_C(T)$ (sonst hätte sie nicht gerufen) $\Rightarrow C$ beneidet weder D noch E.

D 1 111 G

• D erhält S.

Wegen $v_D(S) \ge v_D(L)$ (sonst hätte sie L bekommen) und $v_D(S) = v_D(T)$ (da sie R halbiert)

beneidet D weder C noch E

• E erhält T.

Wegen $v_E(T) \ge v_E(S)$ (da sie R mit Messer 3 halbiert) und $v_E \ge v_E(L)$ (da sie L nicht bekommen hat),

beneidet E wender C noch D.

Fall 2 • D ruft "Halt!" und erhält L.

D beneidet weder C noch E (wie in Fall 1):

 $v_D(L) \ge v_D(S)$ und $v_D(L) \ge v_D(T)$.

 \bullet C erhält S.

C beneidet nicht D (da sie sonst zuerst gerufen hätte) und C beneidet nicht E (da sie R halbiert: $v_C(S) \ge v_C(T)$)

• E erhält T.

E beneidet nicht D (da sie sonst zuerst gerufen hätte) und E beneidet nicht C (da sie R halbiert: $v_E(T) \ge v_E(S)$).

Fall 3 • E ruft zuerst "Halt!" und erhält L.

• sonstige Argumentation wie oben.

Bemerkung. Eine Verallgemeinerung von Stromquist für n > 3 Spieler ist nicht bekannt.

5.2 Austins Moving-Knife-Protokoll

Cut & Choose ist "ungerecht":

Der Chooser ist im Vorteil, falls die Spieler unterschiedlich bewerten.

Definition. Eine Aufteilung des Kuchens $X = X_1 \cup X_2$ heißt gerecht, falls für i = 1 und i = 2 gilt:

$$v_1(X_i) = \frac{1}{2} = v_2(X_i)$$

Ein CCP heißt gerecht, falls es eine gerechte Aufteilung garantiert, sofern sich beide Spieler an die Regeln $^{\mbox{\it E}}$ Strategien halten.

Austin: Cut & Choose by Moving Knives (garantiert beiden Spielern genau 1/2 des Kuchens)

Gegeben: Kuchen X = [0, 1], Spieler Felix und Gábor mit den Maßen v_F und v_G .

Schritt 1: Ein Messer wird kontinuierlich von links nach rechts über den (rechteckigen) Kuchen geschwenkt, bis ein Spieler (sagen wir: Felix) "Halt!" ruft, weil das Messer den Kuchen dort in $X = A \cup B$ teilt mit

$$\mathbf{v}_{\mathbf{F}}(A) = \mathbf{v}_{\mathbf{F}}(B) = 1/2.$$

Schritt 2: Felix platziert nun ein zweites Messer über dem linken Rand des Kuchens und schwenkt beide Messer parallel und kontinuierlich von links nach rechts so über den Kuchen, dass zwischen ihnen nach seinem Maß stets genau 1/2 des Kuchens liegt.

Dieses (sich stetig verändernde) Stück heiße \tilde{A} .

Schritt 3: • Sobald Gábor glaubt, dass

$$\boldsymbol{v}_{\mathbf{G}}(\tilde{A}) = 1/2$$

gilt, ruft er: "Halt!"

- Beide Messer schneiden an ihren Positionen.
- Gábor wählt entweder das Stück \tilde{A} oder $X \tilde{A}$.
- Felix erhält die andere Portion.

Satz. Austin ist gerecht.

Beweis.

$$v_F(\tilde{A}) = \frac{1}{2} = v_F(X - \tilde{A})$$

$$\begin{aligned} v_G(\tilde{A}_l) &= \frac{1}{2} \checkmark \\ \text{Sonst: } v_G(\tilde{A}_l) &< \frac{1}{2} \\ \Rightarrow v_G(\tilde{A}_r) &> \frac{1}{2} \end{aligned}$$

denn \tilde{A}_l und \tilde{A}_r sind komplementär (d.h. \tilde{A}_r hat linkes Messer dieselbe Position wie das rechte Messer für \tilde{A}_l).

Da sich G's Bewertung von \tilde{A} stetig mit der Messerbewegung ändert, muss es eine Position geben mit $v_G(\tilde{A}) = \frac{1}{2}$.

Abweichende Strategie: Maul halten und abwarten.

Bemerkung. Keine Verallgemeinerung für n > 2 Spieler bekannt.

Satz. Kein endliches CCP kann für zwei Spieler eine gerechte Aufteilung garantieren.

Beweis. Sei C ein beliebiges, fest gewähltes endliches CCP. In Stufe k liegen k Stücke vor. l legt dann fest:

- welches dieser Stücke
- von wem $(p_1 \text{ oder } p_2)$ geschnitten wird und
- welchen Wert die neuen Stücke für den Cutter haben.

Induktion über k zeigt: In jeder Stufe gibt es einen "nicht-terminierenden Fall" (NF).

IA k = 1 Mindestens 2 Stücke nötig.

Selbst wenn Cutter halbiert, kann anderer Spiler anders bewerten \Rightarrow NF

IV In Stufe k sind wir in NF.

Seien $A_{1,k}, \dots, A_{k,k}$ die Stücke in Stufe k mit den Werten $a_{i,k} = v_1(A_{i,k})$ und $b_{i,k} = v_2(A_{i,k}), 1 \le i \le k$.

IS zu zeigen: Es gibt in Stufe k + 1 einen NF.

O.B.d.A. werde $A_{k,k}$ geschnitten in Stufe k.

$$\Rightarrow$$
 für $1 \le i \le k-1 : a_{i,k+1} = a_{i,k}$ und $b_{i,k+1} = b_{i,k}$.

 p_2 sie der Cutter: $A_{k,k}=A_{k,k+1}\cup A_{k+1,k+1}$ mit den Werten: $b_{k,k+1}>0$ und $b_{k+1,k+1}>0$ mit $b_{k,k}=b_{k,k+1}+b_{k+1,k+1}$

Setzen nun $a_{k,k+1}>0$ und $a_{k+1,k+1}>0$ so, dass wir in NF sind. In Stufe k in NF (nach IV) \Rightarrow Für kein $S\subseteq\{1,\cdots,k\}$ gilt $\sum\limits_{i\in S}a_{i,k}=\frac{1}{2}=\sum\limits_{i\in S}b_{i,k}$

Für
$$T \subseteq \{1, \dots, k+1\}$$
 ist $\sum_{i \in T} a_{i,k}$ vielleicht $= \frac{1}{2}$ vielleicht $\neq \frac{1}{2}$.

$$T = \sum_{i \in T} a_{i,k} \neq \frac{1}{2}$$
 Sei $M = \min$ $\|\frac{1}{2} - \sum_{i \in T} a_{i,k}\| \Rightarrow M > 0$, da bei $k = 2$, $M = \frac{1}{2}$ gilt.

Sei $a_{k_k+1} = \frac{1}{2}min\{a_{k,k},M\}$, $a_{k+1,k+1} = a_{k,k} - a_{k,k+1}$. Für $S \subseteq \{1,\cdots,k+1\}$ mit

$$\sum_{i \notin S} a_{i,k+1} = \sum_{i \in S} a_{i,k+1} = \frac{1}{2} = \sum_{i \in T} b_{i,k+1} = \sum_{i \notin T} b_{i,k+1}$$

darf ich annehmen: $k\in S$ und $k+1\not\in S$ (da: Stufe k war NF). Aber wegen Wahl von M ist $\sum_{i\in S}a_{i,k+1}=\frac12$ unmöglich!

- Wenn Summe ohne $a_{k,k+1} > 0$ gleich $\frac{1}{2}$ ist, so ist sie mit $a_{k,k+1}$ ungleich $\frac{1}{2}$
- Wenn Summe ohne $a_{k,k+1} > 0$ ungleich $\frac{1}{2}$ ist, so ist sie auch mit $a_{k,k+1}$ ungleich $\frac{1}{2}$ da $a_{k,k+1} \leq \frac{M}{2}$ und es fehlt $\geq M$ bis $\frac{1}{2}$.

Brams, Taylor & Zwicker: Moving-Knife-Protokoll (neidfreie Aufteilung unter vier Spielern)

Gegeben: Kuchen X, Spieler Doro, Edith, Felix und Gábor mit den Maßen v_D , v_E , v_F und v_G .

Schritt 1: Mit dem Austin-Protokoll erzeugen Felix und Gábor vier für beide gleich gute Stücke (nach ihren Maßen), die **D**oro sortiert als X_1, X_2, X_3 und X_4 mit:

$$egin{array}{lll} m{v_D}(X_1) & \geq \ m{v_D}(X_2) & \geq \ m{v_D}(X_3) & \geq \ m{v_D}(X_4), \\ m{v_F}(X_i) & = \ m{v_G}(X_i) & = \ ^1\!\!/^4 & ext{für } 1 \leq i \leq 4. \end{array}$$

Schritt 2: Doro schneidet $X_1 = X_1' \cup R$ (wobei R leer sein kann), so dass gilt: $\mathbf{v}_{\mathbf{D}}(X_1') = \mathbf{v}_{\mathbf{D}}(X_2)$.

Schritt 3: Aus $\{X'_1, X_2, X_3, X_4\}$ wählen

Edith, Doro, Felix und Gábor

(in dieser Reihenfolge) je ein Stück. Wenn Edith es nicht schon genommen hat, muss **D**oro X'_1 nehmen.

Schritt 4 (nur falls $R \neq \emptyset$): Entweder Edith oder Doro hat X'_1 . Nenne diese Spielerin P, die andere Q.

Mit Austin schneiden **Q** und **F**elix den Rest R in vier Stücke R_1, R_2, R_3, R_4 , so dass für alle $i \in \{1, ..., 4\}$:

$$\boldsymbol{v}_{\mathbf{Q}}(R_i) = (1/4) \cdot \boldsymbol{v}_{\mathbf{Q}}(R) \text{ und } \boldsymbol{v}_{\mathbf{F}}(R_i) = (1/4) \cdot \boldsymbol{v}_{\mathbf{F}}(R).$$

P, Gábor, **Q**, Felix wählen ihr R_i in dieser Reihenfolge.

Anhang

Protokolle nach Alphabet(bzw. Grundprotokoll und Verbesserung) sortiert.

Chefkoch.de Rezept: Österreichischer Obstkuchen...

http://www.chefkoch.de/rezepte/drucken/7765102...

Österreichischer Obstkuchen vom Blech

Äpfel schälen, in ca. 0,5 cm dicke Scheiben schneiden. Pflaumen und Aprikosen entsteinen, halbieren.

Die Butter in einem Topf zerlassen und abkühlen lassen. Mehl sieben und mit dem Backpulver mischen. Eier, Zucker und Vanillezucker schaumig rühren, die abgekühlte, noch flüssige Butter löffelweise nach und nach zu der Eiermasse geben. Weiterrühren und nach und nach die Mehl-Backpulvermischung hinzugeben. Zum Schluss noch die Sahne unterrühren. Blech einfetten oder mit Backpapier auslegen, und den Teig aufstreichen, bis das Blech halbhoch gefüllt ist. Obst auf den Teig legen (bei Äpfeln oder Pflaumen sollte man zwischen den Obststücken etwas Platz lassen, damit sich der Teig schön über das Obst "wölben" kann). Aprikosen evtl. mit Mandelblättchen bestreuen, Äpfel und Pflaumen mit Zimt. Bei 180 Grad C (Umluftofen) ca. 30-40 Minuten goldgelb backen.

Zubereitungszeit: 30 Min.
Schwierigkeitsgrad: normal
Brennwert p. P.: keine Angabe

Zutaten für 12 Portionen:

1,5 kg Obst, (z.B: Äpfel, Pflaumen, Aprikosen, Johannisbeeren)

6 Ei(er)

250 g Zucker 1 Pck. Vanillezucker

150 g Butter

300 g Mehl

1 Pck. Backpulver

6 EL süße Sahne, flüssig

Verfasser: schlecker mäulchen

1 von 1 06.03.2010 15:25

Cut and Choose

zwischen

und

Edith

Schritt 1: Eine der Spielerinnen schneidet den Kuchen in zwei Stücke, die nach ihrer Bewertung gleich sind.

Schritt 2: Die andere Spielerin wählt eines der beiden Stücke; das andere geht an die Schneiderin.

Steinhaus: Cut-Your-Own-Piece-Protokoll

Gegeben: Kuchen/Seegrundstück X = [0, 1], n Spieler.

- **Schritt 1:** Jeder Spieler macht n-1 Markierungen, um den Kuchen in n Stücke vom Wert jeweils 1/n nach seinem Maß aufzuteilen.
 - Diese n(n-1) Markierungen seien alle parallel.
 - Kein Spieler kennt die Markierungen der anderen Spieler.
- Schritt 2: (a) Das Stück zwischen linkem Rand und der am weitesten links liegenden Markierung geht an einen (beliebigen) Spieler, der dort markiert hat.

Dieser Spieler scheidet damit aus.

- (b) Entferne alle Markierungen dieses Spielers sowie alle am weitesten links liegenden Markierungen aller anderen Spieler.
- **Schritt 3:** Wiederhole Schritt 2 mit dem Rest des Kuchens und den übrigen Spielern, bis alle Markierungen entfernt sind.

Der letzte Spieler erhält das verbleibende Stück.

Even & Paz: Divide-and-Conquer-Protokoll

Gegeben: Kuchen X = [0, 1], Spieler p_1, p_2, \dots, p_n , wobei $\mathbf{v}_i, 1 \le i \le n$, das Maß von p_i mit $\mathbf{v}_i(X) = 1$ sei.

Schritt 1: Ist n = 1, so erhält p_1 den ganzen Kuchen.

Schritt 2: Ist n = 2k für ein $k \ge 1$, so:

2(a): teilen p_1, p_2, \dots, p_{n-1} den Kuchen mit parallelen Schnitten im Verhältnis k : k nach ihrem Maß:

2(b): p_n wählt:

- entweder das Stück A links vom k-ten Schnitt (falls $v_n(A) \ge k/n = 1/2$ von X)
- \bullet oder andernfalls das Stück X-A.

2(c): Mittels Divide & Conquer für *k* Spieler:

- teilt p_n das gewählte Stück mit den k-1 Spielern, deren Schnitt echt in dieses hineinfällt;
- teilen die k übrigen Spieler das andere Stück.

Fortsetzung: nächste Folie

Even & Paz: Divide-and-Conquer-Protokoll Fortsetzung

Schritt 3: Ist n = 2k + 1 für ein $k \ge 1$, so:

3(a): teilen p_1, p_2, \dots, p_{n-1} den Kuchen mit parallelen Schnitten im Verhältnis k : k + 1 nach ihrem Maß:

- **3(b):** p_n wählt entweder das Stück A links vom k-ten Schnitt (falls $v_n(A) \ge k/n = k/(2k+1)$ von X)
 - \bullet oder andernfalls das Stück X-A.
- **3(c):** Hat p_n das Stück A gewählt, so teilt er es mittels Divide & Conquer für k Spieler mit den k-1 Spielern, deren Schnitt echt in A fällt;
 - ullet Hat p_n das Stück X-A gewählt, so teilt er es mittels Divide & Conquer für k+1 Spieler mit den k Spielern, deren Schnitt echt in X-A fällt.
 - In beiden Fällen teilen die k+1 bzw. k übrigen Spieler das jeweils andere Stück mittels Divide & Conquer für k+1 bzw. k Spieler.

Banach & Knaster: Last-Diminisher-Protokoll (proportionale Aufteilung unter *n* Spielern)

Gegeben: Kuchen X = [0, 1], Spieler p_1, p_2, \ldots, p_n , wobei $\boldsymbol{v}_i, 1 \leq i \leq n$, das Maß von p_i mit $\boldsymbol{v}_i(X) = 1$ sei. Setze N := n.

Schritt 1: p_1 schneidet vom Kuchen ein Stück S_1 mit $\mathbf{v}_1(S_1) = 1/N$.

Schritt 2: p_2, p_3, \ldots, p_n geben dieses Stück von einem zum nächsten, wobei sie es ggf. beschneiden. Dabei sei $S_{i-1}, 2 \le i \le n$, das Stück, das p_i von p_{i-1} bekommt.

- Ist $\mathbf{v}_i(S_{i-1}) > 1/N$, so schneidet p_i etwas ab und gibt S_i mit $\mathbf{v}_i(S_i) = 1/N$ weiter.
- Ist $v_i(S_{i-1}) \leq 1/N$, so gibt p_i das Stück $S_i = S_{i-1}$ weiter.
- Der letzte Spieler, der etwas davon abgeschnitten hatte, erhält S_n und scheidet aus.

Schritt 3: Setze die Reste zusammen zum neuen Kuchen $X := X - S_n$, benenne ggf. die im Spiel verbliebenen Spieler um in $p_1, p_2, \ldots, p_{n-1}$ und setze n := n - 1.

Schritt 4: Wiederhole die Schritte 1 bis 3, bis n = 2 gilt. Diese beiden, p_1 und p_2 , spielen "Cut and Choose".

Modified Last-Diminisher-Protokoll

Gegeben: Kuchen X = [0, 1], Spieler p_1, p_2, \ldots, p_n , wobei $\boldsymbol{v}_i, 1 \leq i \leq n$, das Maß von p_i mit $\boldsymbol{v}_i(X) = 1$ sei. Setze N := n.

Schritt 1: p_1 schneidet vom Kuchen ein Stück S_1 mit $\boldsymbol{v}_1(S_1) = 1/N$.

Schritt 2: $p_2, p_3, \ldots, p_{n-1}$ geben dieses Stück von einem zum nächsten, wobei sie es ggf. beschneiden. S_{i-1} , $2 \le i \le n-1$, sei das Stück, das p_i von p_{i-1} bekommt.

- Ist $v_i(S_{i-1}) > 1/N$, $2 \le i \le n-1$, so schneidet p_i etwas ab und gibt S_i mit $v_i(S_i) = 1/N$ weiter.
- Ist $v_i(S_{i-1}) \leq 1/N$, $2 \leq i \leq n-1$, so gibt p_i das Stück $S_i = S_{i-1}$ weiter.
- Ist $v_n(S_{n-1}) \ge 1/N$, so scheidet p_n mit S_{n-1} aus.
- Ist $v_n(S_{n-1}) < 1/N$, so scheidet der letzte Spieler, der etwas davon abgeschnitten hatte, mit S_{n-1} aus.

Schritt 3: Setze die Reste zusammen zum neuen Kuchen $X := X - S_n$, benenne ggf. die im Spiel verbliebenen Spieler um in p_1, p_2, \dots, p_{n-1} und setze n := n - 1.

Schritt 4: Wiederhole die Schritte 1 bis 3, bis n = 1 gilt.

Kuhn á la Dawson: Lone-Divider-Protokoll

Gegeben: • Kuchen X = [0,1], Spieler p_1, p_2, \ldots, p_n , wobei $v_i, 1 \le i \le n$, das Maß von p_i sei.

- Je weiter links ein Spieler in dieser Reihenfolge steht, desto höher sein Rang.
- Der Spieler mit Rang *n* heißt der *Divider* (seine Identität ist bekannt), die anderen sind die *Choosers* (ihr Rang wird erst nach Schritt 2 enthüllt).

Schritt 1: Der *Divider* teilt X in n Stücke vom Wert 1/n.

Schritt 2: Die *Choosers* markieren akzeptable Stücke (vom Wert $\geq 1/n$), jeder mindestens eines. Dabei kennt kein *Chooser* die Markierungen der anderen *Choosers*.

Schritt 3: (a) Ist die Menge \mathcal{D} aller *Choosers* entscheidbar, so führe die Entscheidbare Allokationsprozedur aus.

(b) Ist $\mathcal D$ nicht entscheidbar, so bestimme (Tafel!):

- ullet die Menge $\mathcal{C}\subseteq\mathcal{D}$ aller *Conflicting Choosers* und
- die Menge $\mathcal{D} := \mathcal{D} \mathcal{C}$ der *Decidable Choosers*.

Fall 1: Ist $\mathcal{D} = \emptyset$, so führe die

Maximale Neuaufteilungsprozedur aus.

Fall 2: Ist $\mathcal{D} \neq \emptyset$, so führe die

Partielle Neuaufteilungsprozedur aus.

Fortsetzung: nächste Folie

28

Kuhn á la Dawson: Lone-Divider-Protokoll Entscheidbare Allokationsprozedur

Schritt 1: Hat ein $p_i \in \mathcal{D}$ genau ein Stück als akzeptabel markiert oder ist nur noch ein solches Stück für $p_i \in \mathcal{D}$ übrig, so erhält p_i dieses Stück. Setze $\mathcal{D} := \mathcal{D} - \{p_i\}$. Wiederhole diesen Schritt, solange dies möglich ist.

Schritt 2: Ist $\mathcal{D} \neq \emptyset$, so wählt der Spieler p_i von höchstem Rang in \mathcal{D} ein für ihn akzeptables Stück, so dass

$$\mathcal{D} := \mathcal{D} - \{p_i\}$$

bzgl. der noch übrigen Stücke immer noch entscheidbar ist. Gehe zu Schritt 1.

Schritt 3: Das letzte noch übrige Stück erhält der Divider.

Fortsetzung: nächste Folie

29

Kuhn á la Dawson: Lone-Divider-Protokoll Maximale Neuaufteilungsprozedur

- Es gibt mindestens zwei Stücke, die kein Spieler als akzeptabel markiert hat. Diese heißen *freie Stücke*.
- Schritt 1: (a) Der *Chooser* von höchstem Rang, der der *Selector* sein möchte, tauscht Platz und Rang mit dem *Chooser* von niedrigstem Rang.
 - **(b)** Möchte kein *Chooser* der *Selector* sein, so wird der *Chooser* von niedrigstem Rang zum *Selector* erklärt.
- **Schritt 2:** Der *Selector* wählt eines der freien Stücke aus, nennt es X_n und gibt es dem *Divider*, der mit X_n ausscheidet.
- **Schritt 3:** (a) Setze die übrigen Stücke zum neuen Kuchen $X := X X_n$ zusammen,
 - **(b)** setze n := n 1 und
 - (c) führe das Lone-Divider-Protokoll mit den verbliebenen Spielern von Beginn an aus.

Dabei hat der *Selector* nun den niedrigsten Rang und ist somit der neue *Divider*.

Fortsetzung: nächste Folie

Kuhn á la Dawson: Lone-Divider-Protokoll Partielle Neuaufteilungsprozedur

- Stücke, die für keinen *Conflicting Chooser* in *C* akzeptabel sind, heißen *freie Stücke*.
- Stücke, die für einen *Conflicting Chooser* in *C* akzeptabel sind, heißen *Konfliktstücke*.
- **Schritt 1:** (a) Der *Chooser* in C von höchstem Rang, der der *Selector* sein möchte, tauscht Platz und Rang mit dem *Chooser* von niedrigstem Rang in C.
 - **(b)** Möchte kein *Chooser* in \mathcal{C} der *Selector* sein, so sei der *Chooser* von niedrigstem Rang in \mathcal{C} der *Selector*.
- Schritt 2: Seien k, ℓ und m die Parameter für $\mathcal C$ (Tafel!).

Der Selector wählt $\ell \leq \|\mathcal{C}\| - 1$ freie Stücke aus, so dass \mathcal{D} auch dann noch entscheidbar ist, wenn weder diese ℓ Stücke noch Konfliktstücke gewählt werden dürfen.

- Schritt 3: Setze diese ℓ Stücke und die Konfliktstücke zum neuen Kuchen zusammen und teile ihn mit Lone-Divider unter den Spielern in \mathcal{C} (selber Rang!) auf. Der *Selector* ist mit niedrigstem Rang der neue *Divider*.
- Schritt 4: Teile die übrigen freien Stücke unter den Spielern aus \mathcal{D} und dem ursprünglichen Divider mit der Entscheidbaren Allokationsprozedur auf.

30

Fink: Lone-Chooser-Protokoll (proportionale Aufteilung unter *n* Spielern)

Gegeben: Kuchen X = [0, 1], Spieler p_1, p_2, \dots, p_n , wobei $\mathbf{v}_i, 1 \le i \le n$, das Maß von p_i mit $\mathbf{v}_i(X) = 1$ sei.

Runde 1: p_1 und p_2 spielen "Cut and Choose", wobei p_1 beginnt und das Stück S_1 und p_2 das Stück S_2 erhält, $X = S_1 \cup S_2$, so dass $\mathbf{v}_1(S_1) = 1/2$ und $\mathbf{v}_2(S_2) \ge 1/2$.

Runde 2: p_3 teilt S_1 mit p_1 und S_2 mit p_2 so:

- p_1 schneidet S_1 in S_{11} , S_{12} und S_{13} , so dass $\boldsymbol{v}_1(S_{11}) = \boldsymbol{v}_1(S_{12}) = \boldsymbol{v}_1(S_{13}) = 1/6$.
- p_2 schneidet S_2 in S_{21} , S_{22} und S_{23} , so dass $\boldsymbol{v}_2(S_{21}) = \boldsymbol{v}_2(S_{22}) = \boldsymbol{v}_2(S_{23}) \geq 1/6$.
- p_3 wählt ein bestes Stück aus $\{S_{11}, S_{12}, S_{13}\}$ und ein bestes Stück aus $\{S_{21}, S_{22}, S_{23}\}$.

:

Runde n-1: Für $i, 1 \le i \le n-1$, hat p_i ein Stück X_i mit $\mathbf{v}_i(X_i) \ge 1/(n-1)$ und schneidet X_i in n Stücke $X_{i1}, X_{i2}, \ldots, X_{in}$ mit $\mathbf{v}_i(X_{ij}) \ge 1/n(n-1)$.

Spieler p_n wählt für jedes $i, 1 \le i \le n-1$, eines dieser Stücke von größtem Wert nach seinem Maß \boldsymbol{v}_n .

Dubins & Spanier: Moving-Knife-Protokoll (proportionale Aufteilung unter *n* Spielern)

Definition 1 Eine Aufteilung des Kuchens $X = \bigcup_{i=1}^{n} X_i$, wobei X_i die Portion des i-ten Spielers ist, heißt proportional, falls für alle i, $1 \le i \le n$, gilt:

$$\boldsymbol{v}_i(X_i) \geq \frac{1}{n}.$$

Schritt 1: • Ein Messer wird kontinuierlich von links nach rechts über den Kuchen geschwenkt.

- Der erste Spieler, der denkt, das Stück links vom Messer ist 1/n wert, ruft "Halt!"
- Das Stück wird geschnitten und dem Rufer gegeben. Dieser scheidet damit aus.

Schritt 2, 3, ..., n-1: Wiederhole Schritt 1 mit den übrigen Spielern und dem restlichen Kuchen.

Schritt *n*: Es ist noch ein Spieler übrig. Dieser erhält das restliche Stück.

Stromquist: Moving-Knife-Protokoll (neidfreie Aufteilung unter drei Spielern)

Gegeben: Kuchen X = [0, 1], Spielerinnen Claudia, Doro und Edith mit den Maßen v_C , v_D und v_E .

- **Schritt 1:** Ein Schiedsrichter schwenkt ein Schwert kontinuierlich von links nach rechts über den Kuchen und teilt ihn so (hypothetisch) in ein linkes Stück L und ein rechtes Stück R: $X = L \cup R$.
 - Jede der drei Spielerinnen hält ihr Messer parallel zum Schwert und bewegt es (während das Schwert geschwenkt wird) so, dass sie das rechte Stück nach ihrem Maß stets genau halbiert.
 - Das mittlere der drei Messer teilt R (hypothetisch) in zwei Stücke: $R = S \cup T$.
- Schritt 2: Die erste Spielerin, die denkt, L sei mindestens so gut wie sowohl S als auch T, ruft: "Halt!"
 - Das Schwert und das mittlere Messer schneiden an ihren Positionen.
 - Die Spielerin, die "Halt!" rief, erhält L.
 - \bullet Die Spielerin, deren Messer dem Schwert am nächsten und die noch im Spiel ist, erhält S.
 - Die letzte Spielerin erhält T.

Austin: Cut & Choose by Moving Knives (garantiert beiden Spielern genau 1/2 des Kuchens)

Gegeben: Kuchen X = [0, 1], Spieler Felix und Gábor mit den Maßen v_F und v_G .

Schritt 1: Ein Messer wird kontinuierlich von links nach rechts über den (rechteckigen) Kuchen geschwenkt, bis ein Spieler (sagen wir: Felix) "Halt!" ruft, weil das Messer den Kuchen dort in $X = A \cup B$ teilt mit

$$\boldsymbol{v}_{\mathbf{F}}(A) = \boldsymbol{v}_{\mathbf{F}}(B) = 1/2.$$

Schritt 2: Felix platziert nun ein zweites Messer über dem linken Rand des Kuchens und schwenkt beide Messer parallel und kontinuierlich von links nach rechts so über den Kuchen, dass zwischen ihnen nach seinem Maß stets genau 1/2 des Kuchens liegt.

Dieses (sich stetig verändernde) Stück heiße \hat{A} .

Schritt 3: • Sobald Gábor glaubt, dass

$$\boldsymbol{v}_{\mathbf{G}}(\tilde{A}) = 1/2$$

gilt, ruft er: "Halt!"

- Beide Messer schneiden an ihren Positionen.
- Gábor wählt entweder das Stück \tilde{A} oder $X \tilde{A}$.
- Felix erhält die andere Portion.

Brams, Taylor & Zwicker: Moving-Knife-Protokoll (neidfreie Aufteilung unter vier Spielern)

Gegeben: Kuchen X, Spieler Doro, Edith, Felix und Gábor mit den Maßen v_D , v_E , v_F und v_G .

Schritt 1: Mit dem Austin-Protokoll erzeugen Felix und Gábor vier für beide gleich gute Stücke (nach ihren Maßen), die **D**oro sortiert als X_1, X_2, X_3 und X_4 mit:

$$egin{array}{lll} m{v_D}(X_1) & \geq \ m{v_D}(X_2) & \geq \ m{v_D}(X_3) & \geq \ m{v_D}(X_4), \\ m{v_F}(X_i) & = \ m{v_G}(X_i) & = \ ^1\!\!/^4 & ext{für } 1 \leq i \leq 4. \end{array}$$

Schritt 2: Doro schneidet $X_1 = X_1' \cup R$ (wobei R leer sein kann), so dass gilt: $\mathbf{v}_{\mathbf{D}}(X_1') = \mathbf{v}_{\mathbf{D}}(X_2)$.

Schritt 3: Aus $\{X'_1, X_2, X_3, X_4\}$ wählen

Edith, Doro, Felix und Gábor

(in dieser Reihenfolge) je ein Stück. Wenn Edith es nicht schon genommen hat, muss **D**oro X'_1 nehmen.

Schritt 4 (nur falls $R \neq \emptyset$): Entweder Edith oder Doro hat X'_1 . Nenne diese Spielerin P, die andere Q.

Mit Austin schneiden **Q** und **F**elix den Rest R in vier Stücke R_1, R_2, R_3, R_4 , so dass für alle $i \in \{1, ..., 4\}$:

$$\boldsymbol{v}_{\mathbf{Q}}(R_i) = (1/4) \cdot \boldsymbol{v}_{\mathbf{Q}}(R) \text{ und } \boldsymbol{v}_{\mathbf{F}}(R_i) = (1/4) \cdot \boldsymbol{v}_{\mathbf{F}}(R).$$

P, Gábor, **Q**, Felix wählen ihr R_i in dieser Reihenfolge.

Selfridge-Conway-Protokoll (neidfreie Aufteilung unter drei Spielern)

Gegeben: Kuchen X, Spieler Felix, Gábor und Holger.

Schritt 1: Felix schneidet X in drei gleiche Stücke (nach seinem Maß). Gábor sortiert diese als X_1, X_2, X_3 mit:

$$\mathbf{v}_{\mathbf{F}}(X_1) = \mathbf{v}_{\mathbf{F}}(X_2) = \mathbf{v}_{\mathbf{F}}(X_3) = \frac{1}{3}$$
 $\mathbf{v}_{\mathbf{G}}(X_1) \ge \mathbf{v}_{\mathbf{G}}(X_2) \ge \mathbf{v}_{\mathbf{G}}(X_3)$

Schritt 2: Ist $v_{\mathbf{G}}(X_1) > v_{\mathbf{G}}(X_2)$, so schneidet Gábor von X_1 etwas ab, so dass er $X_1' = X_1 - R$ erhält mit

$$\boldsymbol{v}_{\mathbf{G}}(X_1') = \boldsymbol{v}_{\mathbf{G}}(X_2).$$

Ist $v_{\mathbf{G}}(X_1) = v_{\mathbf{G}}(X_2)$, so sei $X'_1 = X_1$.

Schritt 3: Aus $\{X'_1, X_2, X_3\}$ wählen

Holger, Gábor und Felix

(in dieser Reihenfolge) je ein Stück. Wenn **H**olger es nicht schon genommen hat, muss **G**ábor X'_1 nehmen.

Schritt 4 (nur falls es $R \neq \emptyset$ gibt): Entweder Gábor oder Holger hat X'_1 . Nenne diesen Spieler P, den anderen Q.

 ${f Q}$ schneidet den Rest R in drei Stücke R_1, R_2, R_3 mit

$$v_{\mathbf{Q}}(R_1) = v_{\mathbf{Q}}(R_2) = v_{\mathbf{Q}}(R_3) = (1/3) \cdot v_{\mathbf{Q}}(R),$$

die von den Spielern P, Felix und Q (in dieser Reihenfolge) gewählt werden.

Das Viertel-Protokoll für Drei

Gegeben: Kuchen X = [0, 1], Spielerinnen Claudia, **D**oro und Edith mit den Maßen $v_{\mathbf{C}}$, $v_{\mathbf{D}}$ und $v_{\mathbf{E}}$.

Schritt 1: Claudia schneidet $X = X_1 \cup X_2$, so dass gilt:

$$v_{\mathbf{D}}(X_1) = 1/3$$
 und $v_{\mathbf{D}}(X_2) = 2/3$.

Schritt 2: (a) Gilt $v_D(X_2) \ge 1/2$ und $v_E(X_1) \ge 1/4$, dann

- geht X_1 an Edith, und
- Claudia und **D**oro teilen sich X_2 mit Cut & Choose.

Analog wird der symmetrische Fall behandelt:

$$v_{\mathbf{E}}(X_2) \ge 1/2$$
 und $v_{\mathbf{D}}(X_1) \ge 1/4$.

- **(b)** Gilt $v_{\mathbf{D}}(X_2) \ge 1/2$ und $v_{\mathbf{E}}(X_1) < 1/4$, dann
 - geht X_1 an Claudia, und
 - Doro und Edith teilen sich X_2 mit Cut & Choose.

Analog wird der symmetrische Fall behandelt:

$$v_{\mathbf{E}}(X_2) \ge 1/2$$
 und $v_{\mathbf{D}}(X_1) < 1/4$.

Bemerkung: Gilt also $v_{\mathbf{D}}(X_2) \ge 1/2$ oder $v_{\mathbf{E}}(X_2) \ge 1/2$, so ist unser Ziel erreicht.

- (c) Gilt $v_D(X_2) < 1/2$ und $v_E(X_2) < 1/2$, dann
 - geht X_2 an Claudia, und
 - Doro und Edith teilen sich X_1 mit Cut & Choose.

Literatur

- Jack Robertson and William Webb: "Cake-Cutting Algorithms: Be Fair if You Can", A K Peters, 1998
- Steven J. Brams and Alan D. Taylor: "Fair Division: From Cake-Cutting to Dispute Resolution", Cambridge University Press, 1996