Matching Points with Rectangles and Squares

Sergey Bereg, Nikolaus Mutsanas & Alexander Wolff

SOFSEM'06

Outline

- Introduction
 - Matching in graphs and in the plane
 - Already known...
 - Open Problems
- Rectangles
 - General position
 - 1/2-Approximation
- Squares
 - Is there a strong realization?
 - Application to map-labeling
 - NP-Completeness

Matching in graphs

Maximum Matching [Micali & Vazirani]

$$O(\sqrt{n}m)$$

Euclidean Minimum-Weight Perfect Matching [Vaidya] [Varadarajan & Agarwal]

$$O(n^{2.5}\log^4 n)$$

$$O((n/\varepsilon^3)\log^6 n)$$

Matching with segments, rectangles, squares, disks...

Matching in the plane

Definition

- Matching is perfect: covers all points.
- Matching is strong: no overlap.

Matching in the plane

Definition

- Matching is perfect: covers all points.
- Matching is strong: no overlap.

Matching in the plane

Definition

- Matching is perfect: covers all points.
- Matching is strong: no overlap.

Let P be a set of 2n points in the plane.

Theorem (Rendl & Woeginger)

It is NP-hard to decide whether P admits a strong rectilinear segment matching.

Theorem (Ábrego et al.)

If P is in general position (no two points on a horiz./vert. line), then P admits

a perfect disk matching and a perfect square matching
a strong disk matching covering at least 25% of P.
a strong square matching covering at least 40% of P.

Let P be a set of 2n points in the plane.

Theorem (Rendl & Woeginger)

It is NP-hard to decide whether P admits a strong rectilinear segment matching.

Theorem (Ábrego et al.)

If P is in general position (no two points on a horiz./vert. line), then P admits

- a perfect disk matching and a perfect square matching.
- a strong disk matching covering at least 25% of P.
- a strong square matching covering at least 40% of P.

Let P be a set of 2n points in the plane.

Theorem (Rendl & Woeginger)

It is NP-hard to decide whether P admits a strong rectilinear segment matching.

Theorem (Ábrego et al.)

If P is in general position (no two points on a horiz./vert. line), then P admits

- a perfect disk matching and a perfect square matching.
- a strong disk matching covering at least 25% of P.
- a strong square matching covering at least 40% of P.

Let P be a set of 2n points in the plane.

Theorem (Rendl & Woeginger)

It is NP-hard to decide whether P admits a strong rectilinear segment matching.

Theorem (Ábrego et al.)

If P is in general position (no two points on a horiz./vert. line), then P admits

- a perfect disk matching and a perfect square matching.
- a strong disk matching covering at least 25% of P.
- a strong square matching covering at least 40% of P.

Open Problems

Questions

- How many points can be matched strongly?
- Does a given matching have a strong realization?

	matching size	ex. strong realization?
segments	100%	$O(n \log n)$
rectangles	?	$O(n \log n)$
squares	?	?
disks	?	?

Open Problems

Questions

- How many points can be matched strongly?
- Does a given matching have a strong realization?

	matching size	ex. strong realization?
segments	100%	$O(n \log n)$
rectangles	50%	$O(n \log n)$
squares	?	$O(n^2 \log n)$
disks	?	?

 $\textbf{Divide into subsets} \rightarrow \textbf{match subsets} \rightarrow \textbf{put together}$

(almost) Worst Case

 H_1

Worst Case

Matching with n/2 points.

11

Matching with n/2 points.

Optimal matching with n-2 points.

Minimal squares

Minimal squares: points lie on the boundary.

Minimal squares

Minimal squares: points lie on the boundary.

Sliding squares

Is there a strong realization?

Is there a strong realization?

Is there a strong realization?

Labeling rectilinear segments

Given: Set of rectilinear segments, $B \in \mathbb{R}$. Question: Is there a labeling of height B?

Labeling rectilinear segments

Given: Set of rectilinear segments, $B \in \mathbb{R}$. Question: Is there a labeling of height B?

Labeling rectilinear segments

Given: Set of rectilinear segments, $B \in \mathbb{R}$. Question: Is there a labeling of height B?

Labeling rectilinear segments

Given: Set of rectilinear segments, $B \in \mathbb{R}$. Question: Is there a labeling of height B?

Theorem (Kim, Shin & Yang)

Rectilinear segment labeling is solvable in $O(n^2 \log n)$

Let squares slide

- for vertical kernels leftwards as far as possible.
- for *horizontal* kernels *downwards* as far as possible.

Let squares slide

- for vertical kernels leftwards as far as possible.
- for *horizontal* kernels *downwards* as far as possible.

Let squares slide

- for vertical kernels leftwards as far as possible.
- for *horizontal* kernels *downwards* as far as possible.

Let squares slide

- for vertical kernels leftwards as far as possible.
- for *horizontal* kernels *downwards* as far as possible.

Let squares slide

- for vertical kernels leftwards as far as possible.
- for horizontal kernels downwards as far as possible.

When does a square stop sliding?

Observations

- The resulting positions can be computed in advance.
- Every square has O(n) relevant positions.

Problem

Given: $P \subseteq \mathbb{R}^2$, matching $M \subseteq \binom{P}{2}$

- Do kernels overlap?
- Calculate relevant positions.
- Solve decision problem with 2-SAT.

Problem

Given: $P \subseteq \mathbb{R}^2$, matching $M \subseteq \binom{P}{2}$

- Do kernels overlap? $O(n \log n)$
- Calculate relevant positions.
- Solve decision problem with 2-SAT.

Problem

Given: $P \subseteq \mathbb{R}^2$, matching $M \subseteq \binom{P}{2}$

- Do kernels overlap? $O(n \log n)$
- Calculate relevant positions. O(n²)
- Solve decision problem with 2-SAT.

Problem

Given: $P \subseteq \mathbb{R}^2$, matching $M \subseteq \binom{P}{2}$

- Do kernels overlap? O(n log n)
- Calculate relevant positions. $O(n^2)$
- Solve decision problem with 2-SAT. $O(k_{\text{max}} \cdot n \log n)$

Problem

Given: $P \subseteq \mathbb{R}^2$, matching $M \subseteq \binom{P}{2}$

- Do kernels overlap? O(n log n)
- Calculate relevant positions. $O(n^2)$
- Solve decision problem with 2-SAT. $O(n \cdot n \log n)$

Problem

Given: $P \subseteq \mathbb{R}^2$, matching $M \subseteq \binom{P}{2}$

- Do kernels overlap? O(n log n)
- Calculate relevant positions. $O(n^2)$
- Solve decision problem with 2-SAT. $O(n^2 \log n)$

Problem

Given: $P \subseteq \mathbb{R}^2$, matching $M \subseteq \binom{P}{2}$

Question: Is there a strong square realization of M?

- Do kernels overlap? O(n log n)
- Calculate relevant positions. O(n²)
- Solve decision problem with 2-SAT. $O(n^2 \log n)$

Conclusion

The decision problem can be solved in $O(n^2 \log n)$.

- Labels also below / to the left of a point.
- Variable label sizes.
- Sliding area can be shortened.

NP-Completeness

ESPSM

Given: Point set $P \subseteq \mathbb{R}^2$

Question: Does a strong perfect square-matching exist?

Theorem (Bereg, Mutsanas & Wolff '05)

ESPSM is NP-hard.

Proof

By reduction from PLANAR 3-SAT to ESPSM.

NP-Completeness

ESPSM

Given: Point set $P \subseteq \mathbb{R}^2$

Question: Does a strong perfect square-matching exist?

Theorem (Bereg, Mutsanas & Wolff '05)

ESPSM is NP-hard.

Proof

By reduction from PLANAR 3-SAT to ESPSM

NP-Completeness

ESPSM

Given: Point set $P \subseteq \mathbb{R}^2$

Question: Does a strong perfect square-matching exist?

Theorem (Bereg, Mutsanas & Wolff '05)

ESPSM is NP-hard.

Proof.

By reduction from Planar 3-Sat to ESPSM.

Input: planar 3-SAT formula $\varphi = (x_1 \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land \dots$

Goal: Point set $P \subseteq \mathbb{R}^2$ with:

P admits s. p. square-matching $\Leftrightarrow \varphi$ satisfiable.

Input: planar 3-SAT formula $\varphi =$

 $(x_1 \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land \dots$

20

Goal: Point set $P \subseteq \mathbb{R}^2$ with:

P admits s. p. square-matching $\Leftrightarrow \varphi$ satisfiable.

Input: planar 3-SAT formula $\varphi =$

 $(x_1 \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land \dots$

Goal: Point set $P \subseteq \mathbb{R}^2$ with:

P admits s. p. square-matching $\Leftrightarrow \varphi$ satisfiable.

Variable Gadget

$$v = true$$

Variable Gadget

$$v = false$$

Input: planar 3-SAT formula $\varphi =$

 $(x_1 \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land \dots$

22

Goal: Point set $P \subseteq \mathbb{R}^2$ with:

P admits s. p. square-matching $\Leftrightarrow \varphi$ satisfiable.

Is there a strong realization Application to map-labeling NP-Completeness

Thank you for your attention!