Análisis Termodinámico de un Ciclo Rankine Solar con Tolueno

Daniel Fernando Aranda Contreras, Jeremy Carreño Fontalvo, Santiago Silva Quintero

Escuela E3T, Universidad Industrial de Santander

June 4, 2025

Introducción y Conceptos Clave

- Título del Estudio: ANÁLISIS TERMODINÁMICO DE UN CICLO RANKINE SOLAR CON TOLUENO COMO FLUIDO DE TRABAJO Y RECUPERACIÓN DE CALOR.
- Autores: Daniel Fernando Aranda Contreras, Jeremy Carreño Fontalvo, Santiago Silva Quintero (Escuela E3T, Universidad Industrial de Santander).

Resumen del Estudio:

- Aborda el análisis termodinámico de una planta de energía solar basada en un ciclo Rankine.
- Utiliza la energía solar como fuente de calor primaria.
- Se emplea tolueno como fluido de trabajo, justificado por la baja temperatura operativa del ciclo en comparación con el agua.

Componentes Principales del Sistema:

 Calentador, recalentador, turbina de alta presión, turbina de baja presión, intercambiador de calor recuperativo, bomba y condensador.

Objetivos del Estudio:

 Analizar y calcular las presiones en cada estado, el trabajo específico de las turbinas y la bomba, y la transferencia de calor en los componentes.

Caso de Estudio y Descripción del Ciclo

- Una planta de energía solar con un ciclo Rankine que utiliza energía solar como fuente de calor.
- Receptores parabólicos concentran la energía solar en una tubería con fluido de transferencia de calor.
- El fluido de transferencia de calor entra a la planta a $T_{f,in} = 288^{\circ}C$.
- Fluido de Trabajo: Se usa tolueno debido a la baja temperatura de trabajo del ciclo, lo que lo hace más eficiente que el agua.
- Puntos Clave del Ciclo:
 - Tolueno sale del calentador a $T_1 = T_{f,in} \Delta T_H$, con $\Delta T_H = 20 \ K$.
 - Expansión en turbina de alta presión (HPt) de $P_1 = P_{high} = 1034 \ kPa$ a $P_2 = P_{reheat} = 250 \ kPa$, con $\eta_{HPt} = 0.81$.
 - Recalentamiento a $T_3 = T_{f,in} \Delta T_{RH}$, con $\Delta T_{RH} = 20$ K.
 - Expansión en turbina de baja presión (LPt) con $\eta_{LPt} = 0.78$.
 - Presión de condensación ajustada para tolueno como líquido saturado a $T_6 = T_{amb} + \Delta T_c$, donde $T_{amb} = 35^{\circ} C$ y $\Delta T_c = 15$ K.
 - Bombeo a alta presión con eficiencia $\eta_p=0.6$.
 - Recuperación de calor del tolueno que sale de la turbina de baja presión mediante un intercambiador de calor regenerativo

Cálculos y Resultados Clave

Presiones en los Estados:

- $P_1 = 1034 \ kPa$
- $P_2 = 250 \text{ kPa}$
- $P_3 = 250 \text{ kPa}$
- $P_4 = P_5 = P_6 = 12.29 \text{ kPa}$ (presión de condensación)
- $P_6 = 12.13 \text{ kPa (para } T_6 = 323.15 \text{ K o } 50^{\circ}\text{ C})$
- $P_7 = P_6$ (salida de la bomba)
- $P_8 = P_1 = 1034 \text{ kPa}$

Generación de Entropía Específica (kJ/kg·K):

- Turbina de Alta Presión $(s_{gen,HPt})$: $s_2 s_1 = 0.231$
- Turbina de Baja Presión $(s_{gen,LPt})$: $s_4 s_3 = 0.06$
- Bomba $(s_{gen,P})$: $s_7 s_6 = 0.006$
- Recuperador $(s_{gen,r})$: -1.837 (Nota: Un valor negativo para la generación de entropía total es termodinámicamente incorrecto. Podría ser un error de signo o una referencia a una Δs específica de un flujo).

Eficiencia Térmica Global

Diagrama T-s y Conclusiones

diagrama_Ts.png

Referencias

- Aranda Contreras, D. F., Carreño Fontalvo, J., & Silva Quintero, S. (s.f.). ANÁLISIS TERMODINÁMICO DE UN CICLO RANKINE SOLAR CON TOLUENO COMO FLUIDO DE TRABAJO Y RECUPERACIÓN DE CALOR. Escuela E3T, Universidad Industrial de Santander.
- Resumen. (s.f.).
- Se emplea tolueno como fluido de trabajo, una elección justificada por la baja temperatura operativa del ciclo en comparación con el agua. (s.f.).
- El sistema incorpora un calentador, un recalentador, una turbina de alta presión, una turbina de baja presión, un intercambiador de calor recuperativo, una bomba y un condensador. (s.f.).
- El fluido de transferencia de calor solar ingresa a la planta a $T_{f,in} = 288^{\circ} C.$ (s.f.).