

AD-E430123

TECHNICAL REPORT ARBRL-TR-02092

BLAST LOADING ON MODEL EARTH COVERED MAGAZINES

Charles N. Kingery

August 1978

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

78 10 27 065

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

BLAST LOADING ON MODEL EARTH COVERED MAGAZINES 6. PERFORMING ORG. REPORT NUMBER 6. PERFORMING ORG. REPORT	TITLE (end Subtitle) BLAST LOADING ON MODEL EARTH COVERED MAGAZINES. AUTHOR(*) Charles N. Kingery PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	3. RECIPIENT'S CATALOG NUMBER 5. TYPE OF REPORT & PERIOD COVERED 6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(*) CE-BRL-77-1 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 12. REPORT DATE AUGUST 1978 14. NUMBER OF PAGES 134 15. SECURITY CLASS. (of this report)
TITLE (emd Substitie) BLAST LOADING ON MODEL EARTH COVERED MAGAZINES. BLAST LOADING ON MODEL EARTH COVERED MAGAZINES. Charles N. Kingery PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) Abendeen Proving Ground, Maryland 21005 1. CONTROLLING OFFICE WAME AND ADDRESS U.S. Army Ballistic Research Eaboratory (ATTN: DRDAR-BLT) Abendeen Proving Ground, Maryland 21005 1. CONTROLLING OFFICE WAME AND ADDRESS U.S. Army Ballistic Research Eaboratory (ATTN: DRDAR-BLT) Abendeen Proving Ground, Maryland 21005 1. SECURITY CLASS. (of this report) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20514 DESTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of this abbitract entered in Block 20, if different from Report) DISTRIBUTION STATEMENT (of this abbitract entered in Block 20, if different from Report) Munition Magazines Scaled Model Tests Scale	BLAST LOADING ON MODEL EARTH COVERED MAGAZINES. AUTHOR(*) Charles N. Kingery PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	Final 6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(*) CE-BRL-77-1 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 42. REPORT DATA AUGUST 1978 14. NUMBER OF PAGES 134 15. SECURITY CLASS. (of this report) UNCLASSIFIED
TITLE (emd Substitie) BLAST LOADING ON MODEL EARTH COVERED MAGAZINES. BLAST LOADING ON MODEL EARTH COVERED MAGAZINES. Charles N. Kingery PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) Abendeen Proving Ground, Maryland 21005 1. CONTROLLING OFFICE WAME AND ADDRESS U.S. Army Ballistic Research Eaboratory (ATTN: DRDAR-BLT) Abendeen Proving Ground, Maryland 21005 1. CONTROLLING OFFICE WAME AND ADDRESS U.S. Army Ballistic Research Eaboratory (ATTN: DRDAR-BLT) Abendeen Proving Ground, Maryland 21005 1. SECURITY CLASS. (of this report) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20514 DESTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of this abbitract entered in Block 20, if different from Report) DISTRIBUTION STATEMENT (of this abbitract entered in Block 20, if different from Report) Munition Magazines Scaled Model Tests Scale	BLAST LOADING ON MODEL EARTH COVERED MAGAZINES. AUTHOR(*) Charles N. Kingery PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	Final 6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(*) CE-BRL-77-1 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 42. REPORT DATA AUGUST 1978 14. NUMBER OF PAGES 134 15. SECURITY CLASS. (of this report) UNCLASSIFIED
Charles N. Kingery Performing organization name and address U.S. Army Ballistic Research Laboratory Antin: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 Controlling Office name and Address U.S. Army Ballistic Research Laboratory (ATIN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 Controlling Office name and Address U.S. Army Ballistic Research Laboratory (ATIN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 Abordeen Proving Ground, Maryland 21005 A MONITORING AGENCY NAME AND RESSECT AND ADDRESS (Idiliteration Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 Controlling office name and Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 Controlling office name and formation unlimited. Approved for public release; distribution unlimited. NOV 22 1978 Supplementary notes This work was performed for and funded by the Department of Defense Explosive Safety Board Explosive Safety Free Field Blast A ABSTRACT (Captibuse on reverse side If necessary and Identity by block number) A ABSTRACT (Captibuse on reverse side If necessary and Identity by block number) A ABSTRACT (Captibuse on reverse side If necessary and Identity by block number) A ABSTRACT (Captibuse on reverse side If necessary and Identity by block number) A ABSTRACT (Captibuse on reverse side If necessary and Identity by block number) A ABSTRACT (Captibuse on reverse side If necessary and Identity by block number) A ABSTRACT (Captibuse on reverse side If necessary and Identity by block number) A ABSTRACT (Captibuse on reverse side If necessary and Identity by block number) Manilion Magazines Scaled Model Tests Explosive Safety Free Field Blast	Charles N. Kingery PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(*) CE-BRL-77-1 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 12. REPORT DATE AUGUST 1978 14. NUMBER OF PAGES 134 15. SECURITY CLASS. (of this report) UNCLASSIFIED
Charles N. Kingery Performing organization name and address U.S. Army Ballistic Research Laboratory Antin: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 Controlling Office name and Address U.S. Army Ballistic Research Laboratory (ATIN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 Controlling Office name and Address U.S. Army Ballistic Research Laboratory (ATIN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 Abordeen Proving Ground, Maryland 21005 A MONITORING AGENCY NAME AND RESSECT AND ADDRESS (Idiliteration Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 Controlling office name and Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 Controlling office name and formation unlimited. Approved for public release; distribution unlimited. NOV 22 1978 Supplementary notes This work was performed for and funded by the Department of Defense Explosive Safety Board Explosive Safety Free Field Blast A ABSTRACT (Captibuse on reverse side If necessary and Identity by block number) A ABSTRACT (Captibuse on reverse side If necessary and Identity by block number) A ABSTRACT (Captibuse on reverse side If necessary and Identity by block number) A ABSTRACT (Captibuse on reverse side If necessary and Identity by block number) A ABSTRACT (Captibuse on reverse side If necessary and Identity by block number) A ABSTRACT (Captibuse on reverse side If necessary and Identity by block number) A ABSTRACT (Captibuse on reverse side If necessary and Identity by block number) A ABSTRACT (Captibuse on reverse side If necessary and Identity by block number) Manilion Magazines Scaled Model Tests Explosive Safety Free Field Blast	Charles N. Kingery PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(*) CE-BRL-77-1 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 12. REPORT DATE AUGUST 1978 14. NUMBER OF PAGES 134 15. SECURITY CLASS. (of this report) UNCLASSIFIED
Charles N. Kingery Performing Organization name and address U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) Abendeen Proving Ground, Maryland 21005 1. Contractling Office Name and Address U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLD) Abendeen Proving Ground, Maryland 21005 1. Contractling Office Name and Address U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Abendeen Proving Ground, Maryland 21005 1. Contractling Office Name and Address U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Abendeen Proving Ground, Maryland 21005 1. Contracting Office Name And Address U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Abendeen Proving Ground, Maryland 21005 1. Contracting Office Name And Address U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Abendeen Proving Ground, Maryland 21005 1. Contracting Office Name And Address U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Abendeen Proving Ground, Maryland 21005 1. Contracting Office Name And Address U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Abendeen Proving Ground, Maryland 21005 1. Contracting Office Name And Address U.S. Army Armament Research & Development Command U.S. Army Ballistic Research & Development Command U.S. Army Armament Research & Development Command U.S. Army Armament Research & Development Command U.S. Army Armament Proving Ground, Maryland 21005 1. Contracting Office Name And Address U.S. Army Armament Research & Development Command U.S. Army Armament Proving Ground Science Command U.S. Army Armament Proving Ground Science Command U.S. Army Armament Research & Development Command U.S. Army Armament Research & Development Command U.S. Army Armament Proving Ground Science Command U.S. Army Armament Research & Devel	Charles N. Kingery PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	8. CONTRACT OR GRANT NUMBER(*) CE-BRL-77-1 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 42. REPORT DATA AUGUST 1978 14. NUMBER OF PAGES 134 15. SECURITY CLASS. (of this report) UNCLASSIFIED
CE-BRL-77-1 PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 1. CONTROLLING OFFICE WAME AND ADDRESS U.S. Army Pallistic Research Laboratory (ATTN: DRDAR-BLT) (ATTN: DRDAR-BLT) (ATTN: DRDAR-BLT) U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) (ATTN: DRD	Charles N. Kingery PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	CE-BRL-77-1 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 12. REPORT DATE AUGUST 1978 M. NUMBER OF PAGES 134 15. SECURITY CLASS. (of this report) UNCLASSIFIED
CE-BRL-77-1 PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 1. CONTROLLING OFFICE WAME AND ADDRESS U.S. Army Pallistic Research Laboratory (ATTN: DRDAR-BLT) (ATTN: DRDAR-BLT) (ATTN: DRDAR-BLT) U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) (ATTN: DRD	Charles N. Kingery PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	CE-BRL-77-1 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 12. REPORT DATE AUGUST 1978 M. NUMBER OF PAGES 134 15. SECURITY CLASS. (of this report) UNCLASSIFIED
Charles N. Kingery Performing organization name and address U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) Abendeen Proving Ground, Maryland 21005 1. Controlling office name and address U.S. Army Armament Research & Development Command U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Abendeen Proving Ground, Maryland 21005 1. Monitorning agency name a address(if different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 5. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Approved for public release; distribution unlimited. Schedule Schedu	PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 12. REPORT DATS 13. AUGUST 1978 14. NUMBER OF PAGES 134 15. SECURITY CLASS. (of this report) UNCLASSIFIED
U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) U.S. Army Ballistic Research & Development Command U.S. Army Ballistic Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 Abertalen Proving Ground, Maryland 21005 Abortalen Forestal Building GB-270 Washington, DC 20314 Colstribution Statement (of this Report) Approved for public release; distribution unlimited. Colstribution Statement (of the abetract entered in Block 20, 11 different from Report) B. Supplementary notes This work was performed for and funded by the Department of Defense Explosive Safety Board Colstribution Magazines Scaled Model Tests Scaled Model Tests Explosive Safety Free Field Blast Colstraction and processes and Identify by block number) Colstraction and processes and Identify by block number) Colstraction and processes and Identify by block number) Munition Magazines Scaled Model Tests Explosive Safety Free Field Blast Colstraction and processes and Identify by block number)	PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	AUGUST 1978 AUGUST 1978 Member of PAGES 134 15. SECURITY CLASS. (of this report) UNCLASSIFIED
(ATTN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 1. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 4. MONITORING AGENCY NAME & ADDRESS(II diliterent from Controlling Ottics) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. Approved for public release; distribution unlimited. NOV 22 1978 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 1ft different from Report) B. SUPPLEMENTARY NOTES This work was performed for and funded by the Department of Defense Explosive Safety Board NEW WORDS (Continue on reverse side if necessary and identify by block number) Munition Magazines Scaled Model Tests Explosive Safety Free Field Blast 5. ABSTRACT (Continue on reverse side if necessary and identify by block number) (mba)	U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	AUGUST 1978 AUGUST 1978 Member of PAGES 134 15. SECURITY CLASS. (of this report) UNCLASSIFIED
(ATTN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 1. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 4. MONITORING AGENCY NAME & ADDRESS(II diliterent from Controlling Ottics) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. Approved for public release; distribution unlimited. NOV 22 1978 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 1ft different from Report) B. SUPPLEMENTARY NOTES This work was performed for and funded by the Department of Defense Explosive Safety Board NEW WORDS (Continue on reverse side if necessary and identify by block number) Munition Magazines Scaled Model Tests Explosive Safety Free Field Blast 5. ABSTRACT (Continue on reverse side if necessary and identify by block number) (mba)	ACTTN: DRDAR-BLT) Aberdeen Proving Ground, Maryland 21005 CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	AUGUST 1978 AUGUST 1978 Member of PAGES 134 15. SECURITY CLASS. (of this report) UNCLASSIFIED
Abstract (Continue on reverse side if necessary and identity by block number) Abstract (Continue on reverse side if necessary and identity by block number) Abstract (Continue on reverse side if necessary and identity by block number) Abstract (Continue on reverse side if necessary and identity by block number) August 12. Report Date 12. Report Date 12. Report Date 13. August 1978 I. AUGUST 1978 AUGUST 1978 I. A	Aberdeen Proving Ground, Maryland 21005 CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	AUGUST 1978 1. NUMBER OF PAGES 134 15. SECURITY CLASS. (of this report) UNCLASSIFIED
1. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Marmament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 1. Aberdeen Proving Ground, Maryland 21005 1. SECURITY CLASS. (of this report) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 1. DECLASSIFICATION/DOWNGRADING DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. Approved for public release; distribution unlimited. NOV 22 1978 1. SUPPLEMENTARY NOTES This work was performed for and funded by the Department of Defense Explosive Safety Board 1. KEY WORDS (Continue on reverse side II necessary and identity by block number) Munition Magazines Scaled Model Tests Explosive Safety Free Field Blast 5. Abstract (Continue on reverse side II necessary and identity by block number) (mba)	CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	AUGUST 1978 1. NUMBER OF PAGES 134 15. SECURITY CLASS. (of this report) UNCLASSIFIED
U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 A MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. Approved for public release; distribution unlimited. NOV 22 1978 7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different from Report) B. Supplementary notes This work was performed for and funded by the Department of Defense Explosiv Safety Board D. KEY WORDS (Continue on reverse side II necessary and identify by block number) Munition Magazines Scaling Techniques Scaled Model Tests Explosive Safety Free Field Blast 5. Abstract (Continue on reverse side II necessary and identify by block number) (mba)	U.S. Army Armament Research & Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	AUGUST 1978 1. NUMBER OF PAGES 134 15. SECURITY CLASS. (of this report) UNCLASSIFIED
U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Abordeen Proving Ground, Maryland 21005 4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 5. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. Approved for public release; distribution unlimited. NOV 22 1978 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) B. SUPPLEMENTARY NOTES This work was performed for and funded by the Department of Defense Explosiv Safety Board 5. KEY WORDS (Continue on reverse side if necessary and identify by block number) Munition Magazines Scaled Model Tests Explosive Safety Free Field Blast 5. Abstract (Continue on reverse side if necessary and identify by block number) (mba)	U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	134 15. SECURITY CLASS. (of this report) UNCLASSIFIED
Abstract (Continue on reverse side if necessary and identify by block number) Amount of Defense Explosive Safety 134 A MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 B. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. NOV 22 1978 B. SUPPLEMENTARY NOTES This work was performed for and funded by the Department of Defense Explosive Safety Board D. KEY WORDS (Continue on reverse side if necessary and identify by block number) Munition Magazines Scaled Model Tests Explosive Safety Free Field Blast S. Abstract (Continue on reverse side if necessary and identify by block number) (mba)	(ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 21005 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	134 15. SECURITY CLASS. (of this report) UNCLASSIFIED
A MONITORING AGENCY NAME & ADDRESS(II ditierent from Controlling Office) Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20514 S. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. Approved for public release; distribution unlimited. NOV 22 1978 D. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) B. Supplementary notes This work was performed for and funded by the Department of Defense Explosive Safety Board D. KEY WORDS (Continue on reverse elde II necessary and identity by block number) Munition Magazines Scaled Model Tests Structure Loading Explosive Safety Free Field Blast D. Abstract (Continue on reverse elde II necessary and identity by block number) (mba)	Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	15. SECURITY CLASS. (of this report) UNCLASSIFIED
Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DD C Approved for public release; distribution unlimited. Approved for public release; distribution unlimited. NOV 22 1978 D. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) B. Supplementary notes This work was performed for and funded by the Department of Defense Explosive Safety Board KEY WORDS (Continue on reverse elde II necessary and identify by block number) Munition Magazines Scaled Model Tests Scructure Loading Explosive Safety Free Field Blast A ABSTRACT (Continue on reverse elde II necessary and identify by block number) (mba)	Department of Defense Explosive Safety Board Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	UNCLASSIFIED
Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. NOV 22 1978 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) B Supplementary notes This work was performed for and funded by the Department of Defense Explosive Safety Board KEY WORDS (Continue on reverse side if necessary and identify by block number) Munition Magazines Scaling Techniques Scaled Model Tests Explosive Safety Free Field Blast Abstract (Cartinue on reverse side if necessary and identify by block number) (mba)	Forrestal Building GB-270 Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unlimited. Approved for public release; distribution unlimited. NOV 22 1978 D. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) B. Supplementary notes This work was performed for and funded by the Department of Defense Explosive Safety Board KEY WORDS (Continue on reverse side if necessary and identify by block number) Munition Magazines Scaled Model Tests Explosive Safety Free Field Blast A ABSTRACT (Continue on reverse side if necessary and identify by block number) (mba)	Washington, DC 20314 DISTRIBUTION STATEMENT (of this Report)	15. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution unlimited. NOV 22 1978 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) B Supplementary notes This work was performed for and funded by the Department of Defense Explosive Safety Board KEY WORDS (Continue on reverse side II necessary and identity by block number) Munition Magazines Scaling Techniques Scaled Model Tests Explosive Safety Free Field Blast A ABSTRACT (Continue on reverse side II necessary and identity by block number) (mba)	DISTRIBUTION STATEMENT (of this Report)	DDC
Approved for public release; distribution unlimited. NOV 22 1978 NOV 22 1978 NOV 22 1978 Supplementary notes This work was performed for and funded by the Department of Defense Explosiv Safety Board KEY WORDS (Continue on reverse side II necessary and identity by block number) Munition Magazines Scaled Model Tests Explosive Safety Free Field Blast Abstract (Continue on reverse side II necessary and identity by block number) (mba)		DDC
DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report) B. Supplementary notes This work was performed for and funded by the Department of Defense Explosive Safety Board KEY WORDS (Continue on reverse elde if necessary and identify by block number) Munition Magazines Scaled Model Tests Scaled Model Tests Structure Loading Explosive Safety Free Field Blast Abstract (Continue on reverse elde if necessary and identify by block number) (mba)	Approved for public release; distribution unlimited	
DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report) B. Supplementary notes This work was performed for and funded by the Department of Defense Explosive Safety Board KEY WORDS (Continue on reverse elde if necessary and identify by block number) Munition Magazines Scaled Model Tests Scaled Model Tests Structure Loading Explosive Safety Free Field Blast Abstract (Continue on reverse elde if necessary and identify by block number) (mba)	Approved for public release; distribution unlimited	
NOV 22 1978 DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report) B. Supplementary notes This work was performed for and funded by the Department of Defense Explosive Safety Board KEY WORDS (Continue on reverse side if necessary and identify by block number) Munition Magazines Scaled Model Tests Scaled Model Tests Structure Loading Explosive Safety Free Field Blast Abstract (Continue on reverse side if necessary and identify by block number) (mba)	(18) SELET ALLY D-1430	
E. SUPPLEMENTARY NOTES This work was performed for and funded by the Department of Defense Explosiv Safety Board E. KEY WORDS (Continue on reverse side if necessary and identify by block number) Munition Magazines Scaled Model Tests Explosive Safety Free Field Blast S. Abstract (Continue on reverse side if necessary and identify by block number) (mba)	(18) SRIET (19 VD-E430 =	
This work was performed for and funded by the Department of Defense Explosiv Safety Board KEY WORDS (Continue on reverse side it necessary and identity by block number) Munition Magazines Scaling Techniques Scaled Model Tests Structure Loading Explosive Safety Free Field Blast Abstract (Continue on reverse side it necessary and identity by block number) (mba)		105 NOV 55 1818
This work was performed for and funded by the Department of Defense Explosiv Safety Board KEY WORDS (Continue on reverse side it necessary and identity by block number) Munition Magazines Scaling Techniques Scaled Model Tests Structure Loading Explosive Safety Free Field Blast Abstract (Continue on reverse side it necessary and identity by block number) (mba)		20/11
This work was performed for and funded by the Department of Defense Explosive Safety Board No. KEY WORDS (Continue on reverse side if necessary and identify by block number) Munition Magazines Scaling Techniques Scaled Model Tests Structure Loading Explosive Safety Free Field Blast O. Abstract (Continue on reverse side if necessary and identify by block number) (mba)	. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	
This work was performed for and funded by the Department of Defense Explosive Safety Board No. KEY WORDS (Continue on reverse side if necessary and identify by block number) Munition Magazines Scaling Techniques Scaled Model Tests Structure Loading Explosive Safety Free Field Blast O. Abstract (Continue on reverse side if necessary and identify by block number) (mba)		B
This work was performed for and funded by the Department of Defense Explosive Safety Board No. KEY WORDS (Continue on reverse side if necessary and identify by block number) Munition Magazines Scaling Techniques Scaled Model Tests Structure Loading Explosive Safety Free Field Blast O. Abstract (Continue on reverse side if necessary and identify by block number) (mba)		
This work was performed for and funded by the Department of Defense Explosive Safety Board KEY WORDS (Continue on reverse side II necessary and identity by block number) Munition Magazines Scaling Techniques Scaled Model Tests Structure Loading Explosive Safety Free Field Blast AbSTRACT (Continue on reverse side II necessary and identity by block number) (mba)		
Safety Board KEY WORDS (Continue on reverse elde II necessary and identity by block number) Munition Magazines Scaling Techniques Scaled Model Tests Structure Loading Explosive Safety Free Field Blast AbSTRACT (Continue on reverse elds II necessary and identity by block number) (mba)	SUPPLEMENTARY NOTES	
Safety Board KEY WORDS (Continue on reverse elde II necessary and identity by block number) Munition Magazines Scaling Techniques Scaled Model Tests Structure Loading Explosive Safety Free Field Blast Abstract (Cartisus as reverse elds II necessary and identity by block number) (mba)	m	
Munition Magazines Scaling Techniques Scaled Model Tests Structure Loading Explosive Safety Free Field Blast Abstract (Centimus on reverse elds II necessary and identity by block number) (mba)		artment of Defense Explosive
Munition Magazines Scaling Techniques Scaled Model Tests Structure Loading Explosive Safety Free Field Blast AbSTRACT (Continue on reverse side if necessary and identify by block number) (mba)	Safety Board	
Munition Magazines Scaling Techniques Scaled Model Tests Structure Loading Explosive Safety Free Field Blast Abstract (Continue on reverse state if necessary and identify by block number) (mba)	KEY WORDS (Continue on reverse side if necessary and identify by block number,)
Scaled Model Tests Structure Loading Explosive Safety Free Field Blast Abstract (Continue on reverse state If necessary and Identity by block number) (mba)		
Explosive Safety Free Field Blast Abstract (Continue on reverse side if necessary and identify by block number) (mba)		
. Abstract (Continue on reverse side if necessary and identify by block number) (mba)		
	Free Field Blast	
This report contains the results obtained from a series of high explosive te		
	This report contains the results obtained from a	series of high explosive tes
designed to determine the blast loading on scaled models of earth covered	designed to determine the blast loading on scaled	models of earth covered
munition storage magazines. A 1/30th scaled (non-responding) model was expo	munition storage magazines. A 1/30th scaled (non-	-responding) model was expos
to three charge weights (.454, .908 and 1.135 kg) and a 1/45th scaled model	to three charge weights (.454, .908 and 1.135 kg)	and a 1/45th scaled model w
exposed to a .454 kg charge weight. The objective was to determine the weig	exposed to a .454 kg charge weight. The objective	e was to determine the weigh
configuration and stand-off distance for an uncovered TNT charge that would	configuration and stand-off distance for an uncover	ered TNT charge that would
produce the pressure and impulse loading obtained from the explosion of a	produce the pressure and impulse loading obtained	from the explosion of a
loaded earth covered munition magazine when placed at the side to side safe		d at the side to side safe
	D I JAN 73 1473 EDITION OF ! NOV 65 IS OBSOLETE	(Continu

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

(Item 20 Continued)

Pseparation distance. A 1/30 scaled model exposed to a 1.135 kg hemispherical pentolite charge at a stand-off distance of 1.6m gave the best model simulation. This will scale, for a full-size test, to a hemispherical charge of TNT weighing 34,050 kg placed 47.2 m from the center line of the acceptor structures.

UNCLASSIFIED

TABLE OF CONTENTS

				Pag	e
	LIS	T OF	ILLUSTRATIONS	. 5	
	LIS	т оғ	TABLES	. 7	0
Ι.	INT	RODU	CTION	. 9	
	Α.		kground		
	В.		ectives	. 9	
	c.		roach	. 9)
11.		•		. 10	ľ
11.					
	A.		el Magazine Design	. 10	
	В.		t Charges	. 10	
		1.	Type of Explosive	. 10	
		2.	Charge Configuration		
		3.	Charge Weights	. 14	
	C.		t Instrumentation System	. 14	
		1.	Pressure Transducer	. 14	
		2.	Tape Recorder System	. 14	
	D.	Tes	t Layout	. 14	
		1.	Full Size Magazine	. 14	
		2.	Scale Model Magazine	. 18	,
	E.	Tes	t Series	. 18	,
		1.	Test Series I	. 18	,
		2.	Test Series II	. 18	,
		3.	Test Series III	. 18	,
		4.	Test Series IV	. 25	,
II.	RES	ULTS		. 25	,
	Α.	Sca	ling Blast Parameters	. 25	,
		1.	Standard Atmospheric Conditions	. 25	,
		2	Altitude Corrections	. 29)

TABLE OF CONTENTS (Continued)

			Page
	В.	Blast Loading on a 1/30 Scale Model Magazine	30
		1. Charge Weight 0.454 kg (1 lb) Pentolite	30
		2. Charge Weight 0.908 kg (2 lb) Pentolite	32
		3. Charge Weight 1.135 kg (2.5 lb) Pentolite	32
	C.	Blast Loading on a 1/45 Scale Model Magazine	40
IV.	DIS	CUSSION AND RECOMMENDATIONS	46
	Α.	Comparison of Results	46
	В.	Shock Reflection and Diffraction	48
		1. Mach Reflection Pressure on Front Slope	49
		2. Shock Diffraction Pressure on the Roof	49
		3. Shock Diffraction Pressure on the Rear Slope	57
		4. Discussion of Theory and Experiment	57
	c.	Predicted Pressure and Impulse for Eskimo V	57
	ACK	NOWLEDGMENTS	62
	APP	ENDIXES	63
	Α.	Series I - Model Scale 1/30 Charge Weight 0.454 kg Pentolite	65
	В.	Series II - Model Scale 1/30 Charge Weight 0.908 kg Pentolite	83
	c.	Series III - Model Scale 1/30 Charge Weight 1.135 kg Pentolite	99
	D.	Series VI - Model Scale 1/45 Charge Weight 0.454 kg Pentolite	111
	DIS	TRIBUTION LIST	125

LIST OF ILLUSTRATIONS

Figure		Page
1.	Standard Munition Storage Magazine	11
2.	1/30 Scale Model Munition Storage Magazine	12
3.	1/45 Scale Model Munition Storage Magazine	13
4.	Instrumentation System	15
5.	Gage Locations on Full Size Magazine	16
6.	Gage Locations on 1/30 Scale Model Magazine	19
7.	1/30 Scale Wood Model - Instrumented	20
8.	1/30 Scale Sand Model - Instrumented	23
9.	1/45 Scale Concrete Model - Instrumented	26
10.	Pressure and Impulse Distribution on Full Scale Magazine - Series I	35
11.	Pressure and Impulse Distribution on Full Scale Magazine - Series II	38
12.	Pressure and Impulse Distribution on Full Scale Magazine - Series III	42
13.	Pressure and Impulse Distribution on Full Scale Magazine - Series IV	45
14.	Comparison of Results from ESKIMO III and Test Series III, Scaled to 34,050 kg TNT	48
15.	Mach Reflection and Diffraction Pattern	50
16.	Overpressure Ratio versus Scaled Distance	51
17.	Input Pressure Ratio versus Mach Reflection Pressure Ratio	52
18.	Input Pressure Ratio versus Diffracted Shock Pressure Ratio	56
19.	ESKIMO V Test Layout	59
20.	Predicted Peak Overpressure Contour for ESKIMO V	60
21.	Predicted Overpressure Impulse Contour for ESKIMO V	61

LIST OF TABLES

Table			Page
I.	Gage Positions on Full Size Magazine		17
II.	Gage Distances - Series I Model Tests		21
III.	Gage Distances - Series II Model Tests		22
IV.	Gage Distances - Series III Model Tests		24
٧.	Gage Distances - Series IV Model Tests		27
VI.	Test Matrix		28
VII.	Average Overpressure (psi) versus Time (msec) - Series I		31
VIII.	Average Impulse (psi-msec) versus Time (msec)		33
IX.	Summary of Results on 1/30 Scale Model Magazine		34
х.	Average Overpressure (psi) versus Time (msec) - Series II		36
XI.	Average Impulse (psi-msec) versus Time (msec) - Series II		37
XII.	Average Overpressure (psì) versus Time (msec) - Series III		39
XIII.	Average Impulse (psi-msec) versus Time (msec) - Series III		41
XIV.	Average Overpressure (psi) versus Time (msec) - Series IV		43
XV.	Average Impulse (psi-msec) versus Time (msec - Series IV		44
XVI.	Comparison of Results from ESKIMO III and Test Series III		47
XVII.	Mach Reflection and Diffraction - Theory and Experiment	•	53
WIII.	Predicted Pressures and Impulses at Suggested Gauge		5.8

INTRODUCTION

A. Background

The Department of Defense Explosives Safety Board (DDESB) has for the past five years sponsored scale model studies at the Ballistic Research Laboratory (BRL)¹,². This work was sponsored in an effort to supplement and complement, as well as aid in the design of, full scale field tests. It was shown in Reference 2 that blast parameters from scaled models as small as 1/50 the full size storage magazines could be correlated directly with results from full scale tests. With this background knowledge and experience the present test program was planned and executed.

B. Objectives

The primary objective of this project is to furnish information that will aid in the design of a large scale field test. The objectives of the large scale field test are (1) to demonstrate the safety of explosive storage in economically constructed non-circular steel and concrete arch magazines at a minimum side-to-side separation distance and (2) to use a smaller uncovered charge to produce the blast loads generated from a much larger explosive source contained in a standard earth-covered storage magazine similar to the one used in the ESKIMO III test³. The planned full-size field test is designated ESKIMO V.

C. Approach

The approach to meet the primary objective was first to meet the following secondary objectives:

- 1. Design the scale model structure.
- 2. Establish the charge configuration.
- 3. Establish the charge.
- 4. Establish the instrumentation system.
- 5. Conduct the test series.

¹R. E. Reisler, L. Giglio-Tos, G. D. Teel, "Air Blast Parameters from Pentolite Cylinders Detonated on the Ground," Ballistic Research Laboratories Memorandum Report No. 2471, April 1975. (AD #B003883L)

²C. N. Kingery, G. A. Coulter, G. T. Watson, "Blast Parameters from Explosions in Model Earth Covered Magazines," Ballistic Research Laboratories Memorandum Report No. 2680, September 1976. (AD #A031414)

³F. H. Weals, "ESKIMO III Magazine Separative Tests," Naval Weapons Center Report TP-5771, February 1976.

- 6. Recommend charge weight and location.
- 7. Predict blast loading on the full-size structures to be exposed on $\mathsf{ESKIMO}\ \mathsf{V}.$

II. TEST PROCEDURE

The test procedures followed to meet the primary objective were those required to meet the secondary objectives noted under Approach.

A. Model Magazine Design

The standard munition storage magazine being scaled for this test series is shown in Figure 1. The overall width is 27.43 metres (90 feet), length 35.05 metres (115 feet) and height 4.88 metres (16 feet). In ESKIMO III the distance between the center line of the donor magazine to the center line of the acceptor magazines was 34.75 metres (114 feet).

From preliminary calculations it appeared that a 13,620 kg (30,000) pound TNT charge would give the required pressure of 5.37 to 6.55 bars (78-95 psi) and impulse 44.83 bar-msec (650 psi-msec) over the top of the structure. Based on these preliminary estimates the model scale was established as 1/30. This implies that a .454 kg (1 pound) charge would simulate 12,259 kg (27,000 lb) of explosive. The 1/30 scale model, as designed for this test series, is shown in Figure 2.

In the later phase of the test series it appeared desirable to simulate a 41,370 kg (91,125 lb) TNT charge. Therefore a 1/45 scale model was designed so that blast loading could be simulated with a .454 kg (1 lb) pentolite charge. The dimensions of the 1/45 scale model are shown in Figure 3.

B. Test Charges

Before the test charges could be cast it was first necessary to establish (1) the type of explosive required, (2) the configuration most appropriate, and (3) the weights required.

1. Type of Explosive. The BRL has over the past 25 years established a wealth of basic blast data from pentolite charges. Pentolite is relatively insensitive to shock, making it safe to handle and it gives good repeatability from shot to shot. Although TNT is planned for the full scale test it does not have the repeatability required of the small charge weights. Therefore, pentolite which has a TNT equivalency of 1.17 was selected for use on this program.

⁴T-M 5-1300, "Structure to Resist the Effects of Accidental Explosions," Army Manual, June 1969.

Figure 1. Standard Munition Storage Magazine

Figure 2. 1/30 Scale Model Munition Storage Magazine

Figure 5. 1/45 Scale Model Munition Storage Magazine

- 2. Charge Configuration. The charge configurations first considered were a hemi-cylinder as used in Reference 2 or a cylindrical charge as used in Reference 1. After plotting the shock profile (iso-pressure and iso-impulse contours) along the 0, 45, 90, 135 and 180 degree lines it became apparent that the loading on a structure would be quite non-symmetric. Therefore, a recommendation was made to the DDESB that a hemispherical charge be considered for the full-size test.
- 3. Charge Weights. The recommendation for hemispherical charges as the donor configuration was accepted and an order for three charge weights was issued. These charge weights were 0.454, 0.908 and 1.135 kg or 1, 2 and 2.5 pounds of pentolite. The amount of explosive these charges will simulate and the location from the centerline of the acceptor magazine are discussed in later sections of this report.

C. Test Instrumentation System

The test instrumentation system consisted of (1) the pressure transducer, (2) the tape recorder with amplifiers, calibration and timing.

- 1. Pressure Transducer. Piezo-electric gauges were used throughout the series of tests. Two types were used. One type was the Susquehanna Instruments Model ST-4 with tourmaline sensors and the second type was a PCB Electronics Inc., Model 113A24 which has a quartz sensing element and a built-in source follower.
- 2. Tape Recorder System. The tape recorder consisted of three basic units the power supply and voltage calibrator, the amplifier and the FM recorder. The FM tape recorder used was a Honeywell 7600 having a frequency response of 80 k Hz. Once the signal was recorded on the magnetic tape it was played back and recorded on a Honeywell Model 1858 Visrecorder. This oscillograph has excellent frequency response and the overpressure versus time recorder at the individual positions were read directly from the oscillograph playback. The overall instrumentation system is shown in Figure 4.

D. Test Layout

The test layout depended primarily on the selection of the model scale and charge weight because the gage locations on the model are fixed. The charge weight then governs the distance from the charge to a specific model scale.

1. <u>Full Size Magazine</u>. The locations of the gages on the full-size structure exposed on <u>ESKIMO</u> III are shown in Figure 5. The distances from the gauge locations listed in Table I are measured along the ground surface to the geometric center of the interior of the donor structure. Also listed in Table I are the peak overpressures and impulses recorded at similar positions on the two acceptor magazines. These values are

Figure 4. Instrumentation System

Figure 5. Gage Locations on Full Size Magazine

Table I. Gage Positions on Full Size Magazine

			Pe	ak		
Position	Dista		Overpre	essure	Impu	lse
No.	m	ft	bar	psi	bar-msec	psi-msec
2	22.6	74	7.59 8.28	110 120	- 55.4	804
5	28.7	94	11.4	165	- 45.7	662
6	31.7	104	5.52 6.55	80 95	36.5 55.6	529 806
11	37.8	124	5.38 5.86	78 85	42.9 44.3	622 642
12	43.9	144	2.76	40	33.4	484
13	53.0	174	3.45	50	45.0	652
10A	33.8	111	5.17 3.79	75 55	42.5 41.4	616 600
10B	39.6	130	4.14 2.76	60 40	54.8 40.9	795 593

NOTE: Position 10A and 10B bracket Position 10 on the Model Structure.

> Distance between center lines of Donor and Acceptor Magazine is 34.7 metres (114 feet).

First value is from Magazine A Second value is from Magazine B

bar x 100 = kPa

taken from the full scale test ESKIMO III report, Reference 3. The gage locations have been given position numbers to correspond with those used in the scaled model.

2. Scale Model Magazine. The locations of the gage positions on the 1/30 scale model are shown in Figure 6. Not all positions were instrumented on each shot. A maximum of 13 positions and a minimum of 7 positions were instrumented during the series of tests. The relative positions of the gages remained constant for a particular model scale but the distance between the charge center and the center line of the model was varied for each charge weight used.

E. Test Series

There were four series of tests. In series I, II, and III the model size was held constant while the charge weights were changed. In the series IV tests the model scale was changed. Each series is described in the following sections.

- 1. Test Series I. In test series I a 1/30 scale wooden model was instrumented as shown in Figure 7. The objective of this test series was, through the use of a scaled model, to determine the peak overpressure and impulse that might be expected on a full size storage magazine when subjected to a 13620 kg (30,000 lb) hemispherical charge of TNT placed at a distance of 34.7 metres from the centerline. The method used to determine the scaled distances of the gage positions relative to the charge center is presented in Table II.
- 2. Test Series II. In test series II the full size magazine is assumed to be subjected to the blast load from 27240 kg (60,000 lb) of TNT. Since the charge weight was doubled then the distance from the model centerline to the charge center must be increased by 21/3 or 1.26. Therefore the 34.74 metres for series I must become 43.77 metres for series II. The method for calculating the scaled distances for the increased charge weight is presented in Table III. In test series II it was desirous to obtain the same peak overpressure but increase the positive impulse.
- 3. Test Series III. In test series III the same scaled model 1/30 was used but it was formed with sand. A photograph of the instrumented model is presented in Figure 8. The record quality improved considerably when the sand model was used. Based on the results from test series II there was still a need to increase the positive impulse. Therefore, a charge weight of 34050 kg (75,000 lb) was selected as a candidate for the full scale test. The procedure as noted in Tables II and III was used again to determine the scaled distance to place the small charge. The method is presented in Table IV along with the full

10

6 Z 💮

Figure 6. Gage Locations on 1/30 Scale Model Magazine

Figure 7. 1/30 Scale Wood Model - Instrumented

Table II. Gage Distances - Series I Model Tests

Position	Full Scale Distance	Scale	Distance
No.	m ft	m	ft
1	18.3 60	.62	2.03
2	22.6 74	.77	2.51
3	26.2 86	.89	2.92
4	26.2 86	.89	2.92
5	28.7 94	.97	3.19
6	31.7 104	1.08	3.53
7	38.7 127	1.31	4.31
8	35.4 116	1.20	3.93
9	35.4 116	1.20	3.93
10	36.9 121	1.25	4.10
11	37.8 124	1.28	4.20
12	43.9 144	1.49	4.88
13	53.0 174	1.80	5.90
14	25.6 84	.87	2.85
15*	34.7 114	1.18	3.87

Given: $W_2 = 13620 \text{ kg } (30,000 \text{ lb}) \text{ TNT}$ $R_2 = 34.7 \text{m} (114 \text{ ft})$

Determine: Scale distance R_1 for W_1 equal to .531 kg (1.17 lb) TNT.

 R_1 = Scale distances from Charge Center to Model Center Line

 R_2 = Full scale distance from Charge Center to Magazine Center

Line
$$R_1 = R_2 \left(\frac{W_1^{1/3}}{W_2^{1/3}} \right)$$

 $R_1 = 34.7 (0.03391)$

 $R_1 = 1.18m$

NOTE: TNT Equivalency of Pentolite = 1.17
*Center line distance, R₂

Table III. Gage Distances - Series II Model Tests

Position	Full Scale		Model Scale	
No.	<u>m</u>	ft		ft
1	27.3	89.6	.93	3.04
2	31.6	103.6	1.07	3.51
3	35.1	115.3	1.19	3.91
4	35.1	115.3	1.19	3.91
5	37.7	123.6	1.28	4.19
6	40.7	133.6	1.38	4.53
7	47.0	154.1	1.59	5.21
8	44.2	145.0	1.50	4.92
9	44.2	145.0	1.50	4.92
10	45.4	149.0	1.54	5.05
11	46.8	153.6	1.59	5.21
12	52.9	173.6	1.79	5.89
13	62.1	203.6	2.10	6.90
14	34.6	113.6	1.17	3.85
15*	43.8	143.6	1.48	4.87

Given: $W_2 = 27240 \text{ kg } (60,000 \text{ lb}) \text{ TNT}$ $R_2 = 43.8 \text{ m } (143.6 \text{ ft})$

Determine: R $_{1}\text{, Scale distance for W}_{1}$ equal to 1.062 kg (2.34 lb) TNT

 R_1 = Scale distance from Charge Center to Model Center Line

 R_2 = Full scale distance Charge Center to Magazine Center Line

$$R_1 = R_2 \left(\frac{W_1^{1/3}}{W_2^{1/3}} \right)$$

 $R_1 = 43.8 (0.03391)$

 $R_1 = 1.48m$

Figure 8. 1/30 Scale Sand Model - Instrumented

Table IV. Gage Distances - Series III Model Tests

Position	Full Scale	Distances	Model Scal	e Distances
No.	m	ft	m	ft
1	30.7	100.7	1.04	3.41
2	35.0	114.7	1.19	3.89
3	38.5	126.3	1.31	4.28
4	38.5	126.3	1.31	4.28
5	41.1	134.7	1.39	4.57
6	44.1	144.7	1.50	4.91
7	50.1	164.5	1.70	5.58
8	47.5	156.0	1.61	5.29
9	47.5	156.0	1.61	5.29
10	48.8	160.0	1.65	5.43
11	50.2	164.7	1.70	5.59
12	56.3	184.7	1.91	6.26
13	65.4	214.7	2.22	7.28
14	38.0	124.7	1.29	4.23
15	47.2	154.7	1.60	5.25

Given: $W_2 = 34050 \text{ kg } (75,000 \text{ lb}) \text{ TNT}$ $R_2 = 47.2 \text{m} (154.7 \text{ ft})$

Determine: Scale distance R $_1$, for a W $_1$ equal to 1.328 kg (2.925 1b) TNT = W $_1$

 $R_{1}^{}$ = Scale distance from Charge Center to Model Center Line

 R_2 = Full scale distance from Charge Center to Magazine Center Line

$$R_1 = R_2 \left(\frac{W_1^{1/3}}{W_2^{1/3}} \right)$$

 $R_1 = 47.2 (0.03391)$

 $R_1 = 1.60m$

and model scale distances.

4. Test Series IV. Although test series III gave the desired pressure and scaled impulse it was decided to conduct one series with a smaller model 1/45 and one of the previously used charge weights. A sand model similar to the one shown in Figure 8 was used on the first shot and a concrete model as shown in Figure 9 was used for the second and third shots. The method for calculating the distances from the charge center to the structure center line of the full scale and model structure is presented in Table V.

III. RESULTS

The results will be presented primarily in tabular form with selected overpressure versus time histories to show the loading at pertinent gauge locations. The major portion of the tests was conducted using a 1/30 scale model and three different charge weights. Only one charge weight was fired against the 1/45 scale model. The shot matrix is presented in Table VI.

A. Scaling Blast Parameters

1. Standard Atmospheric Conditions. The Hopkinson scaling law⁵ was used in this report to design the model test layout, select the charge weights and predict the blast loading that might be expected on a full-scale munition magazine. Scaling laws allow the prediction of blast wave properties from small scale experiments to any other scale, provided the type of explosive source, the geometry of the source, and atmospheric conditions are identical.

Theoretically, a target located a distance R_1 from the center of an explosive source of weight W_1 will be subjected to a blast wave with a peak overpressure of amplitude P, a duration t_{+1} and a positive impulse I_1 . Now the Hopkinson scaling law states that the distance R_2 at which a target must be placed to receive the same peak overpressure, from a different charge weight W_2 , is a function of the cube roots of the charge weights. The relationship is given by

$$\frac{R_1}{W_1^{1/3}} = \frac{R_2}{W_2^{1/3}}$$

and

$$R_2 = R_1 \left(\frac{W_2}{W_1}\right)^{1/3}$$

⁵B. Hopkinson, British Ordnance Board Minutes 13565, 1915.

Figure 9. 1/45 Scale Concrete Model - Instrumented

Table V. Gage Distances - Series IV Model Tests

Position	Full Sca	le Distance	Model Scal	e Distance
No.	m	ft	m	ft
1	33.8	111	.79	2.60
2	38.1	125	.89	2.93
3	41.5	136	.97	3.18
4	41.5	136	.97	3.18
5	44.2	145	1.03	3.39
6	47.2	155	1.11	3.63
7	53.1	174	1.24	4.07
8	50.6	166	1.18	3.89
9	50.6	166	1.18	3.89
10	51.8	170	1.21	3.98
11	53.3	175	1.25	4.10
12	59.4	195	1.39	4.56
13	68.6	225	1.61	5.27
14	41.1	135	.96	3.16
15	50.3	165	1.18	3.86

Given: $\begin{array}{ccccc} 41370 & \text{kg} & (91,125 & 1b) & \text{TNT} = W_2 \\ & R_2 = 50.3 & \text{m} & (165 & \text{ft}) \end{array}$

Determine: Scale distance $\rm R^{}_1$ for $\rm W^1$ equal to 0.531 kg (1.17 lb) TNT

 $R_{1}^{}$ = Scale distance from Charge Center to Model Center Line

 R_2 = Full scale distance from Charge Center to Magazine Center Line

$$R_1 = R_2 \left(\frac{W_1^{1/3}}{W_2^{1/3}} \right)$$

 $R_1 = 50.3 (.02341)$

 $R_1 = 1.18 \text{ m}$

Table VI. Test Matrix

Shot	Charge kg	Weights 1b	Model Scale	Model Type	Series	Remarks
1	0.449	0.99	1/30	Wood	I	*
2	0.451	0.99	1/30	Wood	I	
3	0.897	1.98	1/30	Wood	11	
4	0.897	1.98	1/30	Wood	11	
5	0.903	1.99	1/30	Wood	11	**
6	0.898	1.98	1/30	Wood	II	
7	0.451	0.99	1/30	Wood	I	
8	0.901	1.98	1/30	Wood	II	
9	0.896	1.97	1/30	Wood	II	
10	0.449	0.99	1/30	Wood	I	
11	0.902	1.99	1/30	Sand	II	
12	0.451	0.99	1/30	Sand	I	
13	0.452	0.99	1/45	Sand	IV	
14	1.135	2.50	1/30	Sand	III	
15	1.134	2.50	1/30	Sand	III	
16	1.125	2.48	1/30	Sand	111	
17	1.136	2.50	1/30	Sand	111	
18	0.447	0.98	1/45	Concrete	IV	
19	0.448	0.99	1/45	Concrete	IV	
				AV	VERAGE WEIGHTS	
1/30	Model 2w,	7w, 10w,	125	- 0.	.451 kg (0.99 lb))

1/30 Model 2w, 7w, 10w, 125	- 0.451 kg (0.99 lb)
1/30 Model 3w, 4w, 6w, 8w, 9w, 11	- 0.899 kg (1.98 lb)
1/30 Model 14s, 15s, 16s, 17s	- 1.133 kg (2.50 lb)
1/45 Model 13s, 18c, 19c	- 0.449 kg (0.99 lb)

^{*}Shot 1 - Data not usable

^{**}Shot 5 - Misfire

For similar conditions then

Impulse
$$I_2 = I_1 \left(\frac{W_2}{W_1}\right)^{1/3}$$

and

Duration
$$t_{+2} = t_{+1} \left(\frac{W_2}{W_1} \right)^{1/3}$$
.

Note that the scaling factor required to scale the 1/30 model results to the full size structure is $(W_2/W_1)^{1/3}$ or 29.49. Results from the 1/45 scale model must be scaled by a factor of 42.72.

2. Altitude Corrections. When blast parameters are scaled from standard sea level conditions to altitudes where the ambient atmospheric conditions are appreciably different then corrections must be made 6 . The correction for overpressure is

$$p_{\mathbf{a}} = p_{\mathbf{o}} \left(\frac{P_{\mathbf{a}}}{P_{\mathbf{o}}} \right)$$

where

 p_a = overpressure at altitude

 p_0 = overpressure at sea level

 $P_a = ambient pressure at altitude$

P_O = ambient pressure at sea level.

The corrected value for distance (R) for the new overpressure level is given by

$$R_{a} = R_{o} \left(\frac{W_{2}}{W_{1}} \right)^{1/3} \left(\frac{P_{o}}{P_{a}} \right)^{1/3}$$

⁶R. G. Sachs, "The Dependence of Blast on Ambient Pressure and Temperature," BRL Report No. 466, Aberdeen Proving Ground, Md. 1944.

(AD #ATI 39393)

where

 $R_a = distance at altitude$

R = distance at sea level

W₂ = charge weight - full scale

 W_1 = charge weight - model scale.

For impulse at altitude, the relationship is

$$I_{a} = I_{o} \left(\frac{W_{2}}{W_{1}}\right)^{1/3} \left(\frac{P_{a}}{P_{o}}\right)^{2/3} \left(\frac{T_{o}}{T_{a}}\right)^{1/2}$$

where

 $T_a = temperature at altitude - degrees K$

T = temperature at sea level - degrees K.

B. Blast Loading on a 1/30 Scale Model Magazine

The dimensions of the 1/30 scale model magazine are shown in Figure 2. The locations of the airblast gages are shown in Figure 6 with their distances from ground zero or charge center given in Tables II, III, and IV.

1. Charge Weight 0.454 kg (1 lb) Pentolite. In planning the test layout the pentolite charge was assumed to represent 1.17 that amount of TNT. Therefore, in the scaling relationship W1 was equal to 0.531 kg (1.17 lb) TNT. The tests conducted with this scale model and charge weight are noted in Table II as Series I Model Tests. Although the model was constructed with 1-inch thick plywood and heavy internal bracing the results were dissappointing. Some gage positions received excessive accelerations which were superimposed on the record of overpressure versus time. During this series Positions 3, 4, 8 and 9 were removed and Positions 14 and 15 were added. (See Figure 6).

On shot 12 a 1/30 scale sand model was instrumented and tested. Positions 1, 7, 8, 10, 12, 13, 14, and 15 were instrumented as shown in Figure 8. The results from the sand model were excellent and all but two of the following shots were conducted with sand models.

The records of pressure versus time for each position were tabulated at equal time increments and an average overpressure versus time established. These averages for each position are listed in Table VII.

Table VII. Average Overpressure (psi) versus Time (msec) - Series I

	15		92	54	43	34	56	17	14	13	8.9	9.0	10	9.9	3.0	3.0	2.0	1.0	0								* *
	14		245																								*
	13		29	23	20	17	15	13	12	9.4	8.0	7.1	6.1	4.5	3.8	3.3	3.6	2.9	2.3	1.4	1.1	9.	7.	. 2	0		* *
551153	12		24	20	18	15	13	12	10	6	6	∞	7	S	4	23	7	7	-	0							*
	11		59	48	38	32	28	23	20	16	13	10	7	2	3	7	0										* *
average overpressure (psr) versus rime (msec)	10		37	27/46	36	30	22	19	16	14	11	10	80	2	3	2	2	0									*
TI Che	6		63	27	40	30	25	20	15	12	10	6	7	S	4	4	3	0									*
120	∞		63	22	45	33	30	24	18	15	11	8	9	3	7	0											*
(Pol	7		44	30	25	56	16	14	13	10	10	6	∞	2	4	3	7	1	0								*
ressar	9		26	45	28	27	6	_	S	S	9	3	4	0													*
diana	2		177	124	87	62	41	42	38	31	56	24	22	21	14	12	7	0									* *
No.	4		216	170	20	20	35	25	20	15	10	8	2	0													*
	3		248	160	140	80	09	20	40	40	25	15	2	0													*
2100	7		335	215	121	84	73	52	46	39	30	34	38	20	7	0											* *
	1		284	121	89	43	31	22	18	12	6	10	S	0													* *
	Position	Time	00.	.05	.10	.15	.20	.25	.30	.35	.40	.45	.50	09.	.70	.80	06.	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	

The * indicates the number of acceptable records used in the averaging process.

From the average overpressure versus time tabulations, impulse versus time was calculated and these calculations are listed in Table VIII. At the bottom of each column the total impulse is noted. The total impulse values from the model were scaled up to full size and are also listed in Table VIII. The gage calibrations are for pounds per square inch (psi) and therefore the listings in Table VII and VIII are overpressure in psi and impulse in psi - msec.

The results from the Series I tests are summarized in Table IX where the pressure and impulse values are listed in both psi, bar and psi-msec, bar-msec. The values listed in Table IX are presented in Figure 10 to show the peak overpressure (bars) and impulse (bar-msec) distribution of the various positions over the full scale munition storage magazine exposed to a 13620 kg (30,000 lb) hemispherical TNT charge.

The peak overpressure recorded at Position 15 was satisfactory but the overpressure impulse was too low, 30.9 bar-msec vs the required 44.8 bar-msec. Therefore, the charge weight was doubled and another test series was conducted.

2. Charge Weight 0.908 kg (2 lb) Pentolite. These tests are designated as Series II and in Table III it is noted that the pentolite charge is assumed to represent 1.062 kg (2.34 lb) TNT. A 1/30 scale model was instrumented and as noted in Series I not all gage positions were instrumented on all shots. Average values of the overpressure versus time recorded at the various positions are listed in Table X. The average values of overpressure versus time were used to calculate the impulse versus time at each gage position. The impulse versus time calculations are listed in Table XI and the total impulse is listed at the bottom of each column for the scale model with a second value for the impulse to be expected on the full size magazine. The peak overpressure and total positive impulse values from Series II are listed in Table IX. The values listed in Table IX are presented in Figure 11 to show the pressure and impulse distribution to be expected over a full scale munition storage magazine exposed to a 27240 kg (60,000 lb) hemispherical TNT charge.

The peak overpressure meets the established criterion but again the overpressure impulse is too low - 41.2 bar-msec versus 44.8 bar-msec. The charge weight was increased 2.5 times the series 1 charge weight and a third test series was conducted.

3. Charge Weight 1.135 kg (2.5 lb) Pentolite. These tests were designated as Series III and in Table IV it is noted that the pentolite charge is assumed to represent 1.328 kg (2.927 lb) of TNT. A 1/30 scale sand model was used for Shots 14, 15, 16, and 17. The instrumented positions are given in Table XII where the average values of overpressure versus time are listed. The average values of overpressure versus time were used to calculate impulse versus time at each gage

Table VIII. Average Impulse (psi-msec) versus Time (msec) - Series I

15		22.4.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	15.19	118
14		6.63 5.38 5.38 5.50 2.25 2.25 1.00 1.13 1.00 .93 .25 .25 .25 25	36.45	1074
13		30 93 93 93 93 93 94 95 95 95 95 95 95 95 95 95 95	88.6	291
12			8.38	247
11		2.68 2.15 2.15 1.50 1.08 1.08 1.08 2.73 2.40 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.5	14.43	426
10		1.41 1.78 1.65 1.03 1.03 .88 .75 .45 .45 .27 .27 .27	12.05	355
6			14.01 1	413
∞		2.95 2.50 1.95 1.58 1.05 1.05 .48 .35 .48 .35 .25	14.49 1	427
7			10.75 1	317
9			9.50 1	280
rc		7.53 2.60 2.10 2.00 2.00 1.73 1.15 1.15 1.05 1.30 2.00 1.73 1.25 1.15 1.30 2.00	34.40	1014
4			25.70	758
3			35.46 2	1046
7		 	5.84 3	352 1
-			24.18 4	713 1
			2	
Position	Time msec	.00 .10 .10 .25 .30 .35 .35 .36 .45 .50 .50 .50 .70 .80 .11 .11 .12 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13	Model	Full Scale

Table IX. Summary of Results on 1/30 Scale Model Magazine

	1	se	bar-msec	66.3	100*			75.0*	24.8	41.4	43.0	•	40.3	40.1	36.0	26.6	85.0	45.6	(\$
s 111	Tota	Impulse	osi-msec	962	1450*			1088*	360	601	624		585	587	522	386	1233	661	$M_2 = 34050 \text{ kg } (75,000 \text{ lbs})$
Series III	ak	essure	bar	181 12.5	17.9*			11.0*	6.34	4.28	5.38		4.14	4.62	2.34	2.55	14.6	00.9	34050 kg
	Peak	Overpr	psi bar	181	5 60*	,		160*	92	62	78		09	29	34	37	211	87	W ₂ =
	11	se	bar-msec	6.62	128.5	72.6	65.1	83.1	16.6	30.8	30.8	37.7	34.1	32.7	27.7	29.5	77.2	41.2	(bs)
Series II	Total	Impulse	psi-msec	1158	1864	1053	944	1205	241	447	447	546	494	474	402	428	1119	298	$M_2 = 27240 \text{ kg } (60,000 \text{ 1bs})$
Seri	Peak	essure	psi bar	14.8	20.5	15.4	14.6	11.5	6.97	4.00	4.76	5.52	2.69	4.62	2.00	2.48	14.6	5.24	27240 K
	Pe	Overpr	psi	214	293	224	211	167	101	28	69	80	39	29	29	36	212	92	w 2 =
	al	ılse	bar-msec	49.2	93.2	72.1	52.3	6.69	19.3	21.9	29.5	28.5	24.5	29.4	17.0	20.1	74.1	30.9	16s)
Series I	Tota	ndwI	psi-msec	713	1352	1046	758	1014	280	317	427	413	355	426	247	291	1074	448	W ₂ = 13620 kg (30,000 lb
	Peak	verpressure	bar	19.6	23.3	17.1	14.9	12.2	69.9	3.03	4.34	4.34	3.17	4.07	1.66	2.00	16.9	5.24	13620 kg
		Overpr	psi	284															W 2
			Position	1	2	2	4	S	9	7	∞	6	10	11	12	13	14	15	

*Extrapolated values.

Figure 10. Pressure and Impulse Distribution on Full Scale Magazine - Series I

Table X. Average Overpressure (psi) versus Time (msec) - Series II

15	76 49 49 39 25 25 11 10 11 11 11 11 11 11 11 11 11 11 11
14	212 182 132 96 70 70 41 13 13 13 10 13
13	36 29 22 22 22 19 10 10 10 10 10 10 10 10 10 10 10 10 10
12	222 269 201 201 211 312 313 313 313 313 313 313 313 31
=	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10	39 37/56 36 31 31 23 23 21 14 16 17 10 10 10 10 10 10 10 10 10 10 10 10 10
6	80 50 50 50 50 50 7 7 7 7 7 7 8 8 8 8 7 7 7 7 7 7 7 7 8 8 8 8 9 7 7 7 7
∞	69 33 31 31 31 31 32 33 30 30 30 30 30 30 30 30 30 30 30 30
7	288 223 238 240 101 101 102 23 24 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27
9	101 37 24 22 18 12 0
ıs	167 135 111 75 58 55 50 42 42 37 7 7 8 8
4	211 160 110 61 58 42 32 31 24 16 0
ю	224 139 153 123 95 64 26 0
7	293 187 117 92 93 49 63 45 52 24 30 24 119 115 10
-	214 77 77 77 77 85 80 83 81 113 113 90 90 90 90 90 90 90 90 90 90 90 90 90
Position Time Msec	

Table XI. Average Impulse (psi-msec) versus Time (msec) - Series II

	15		14	2.65	7	7	_						_	_		.45	. 35	.30	.40	.25	0												20.28	
	14		o o	7.85	5.70	4.15	2.78	2.00	1.70	1.15	. 75	.63	1.00	.40	0																		37.96	
	13		1 62	1.35	1.18	1.03	.90	.80	.70	09.	.53	.48	.83	99.	.65	.61	. 54	.43	. 34	.27	.21	.18	.16	.13	.10	.08	.05	.05	.03	0			14.52	
11 52	12		1 28	1.20	1.05	.93	.80	89.	.63	. 60	.50	.42	.71	.56	.40	. 28	.23	. 23	. 24	. 24	.29	.35	.33	. 33	. 29	.22	.21	.19	.17	.13	.05	0	13.64	
sallac -	=		2 00	2.40	1.98	1.70	1.53	1.35	1.15	.95	.73	.43	.45	.30	.10	0																	16.07	
(msec)	10		1 90	2.30	1.68	1.40	1.20	1.10	.95	.83	. 75	.65	1.05	.85	.65	.50	.46	.25	.15	.10	0												16.76	
versus time (msec)	6		2 2	2.73	2.20	1.53	1.05	.80	.60	.55	.73	.80	1.35	1.03	.73	. 65	.30	0															18.53	
	∞		202	2.28	1.75	1.38	1.03	.75	.53	. 48	.53	.50	.75	.45	.50	09.	.45	.15	0														15.16	
Average impurse (psi-msec)	_		2 45	1.70	1.28	1.10	1.00	.90	.80	.75	.70	.58	.95	.85	.75	09.	.40	. 25	.10	0													15.16	
asınd	9		2 15	1.53	1.15	1.00	.75	.30	0																								8.18	
age 1ml	2		7 55	6.15	4.65	3.34	2.84	2.63	2.30	1.98	1.75	1.53	2.40	1.65	.95	.74	.40																40.86	
	4		96.0	6.75	4.28	2.98	2.50	1.85	1.58	1.38	1.00	.40	0																				32.00	
Table V	ы		0 0	7.35	6.95	5.45	3.98	2.25	.65	0																							35.71	
	7		12.0	7.50	5.23	4.63	3.55	2.80	2.70	2.43	2.33	1.80	2.75	2.70	2.75	2.25	2.20	2.15	1.70	1.25	.50	0											63.22	
	-		82	4.95	3.30	2.38	1.75	1.40	1.43	1.55	1.63	1.75	3.40	2.55	1.60	1.20	.87	.58	.42	.15	0												39.29	
	Position	Time	00.	.10	.15	.20	.25	.30	.35	.40	.45	.50	09.	.70	.80	06.	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	2.0	2.1	2.2					Model 3	

O 14.8

IMPULSE bar - ms

© 29.5

0 79.9

Figure II. Pressure and Impulse Distribution on Full Scale Magazine - Series II

Tab1e	XII.	Average	Overp	ressure	(psi)	versus	Time	(msec)	Series	111
Positio	n 1	6	7	8	10	11	12	13	14	15
Time ms	ec									
.00	181	71	62	78	42	67	34	37	211	87
. 05	118	53/92	45	62	38/60	55	28	31	165	70
.10	78	31	36	53	43	44	25	26	132	53
.15	60	26	32	47	33	43	23	23	100	43
.20	42	19	28	35	29	31	19	20	73	32
.25	33	17	22	27	27	33	18	18	51	27
.30	32	14	22	23	22	29	16	16	38	22
.35	28	9.5	19	20	20	23	15	13	28	18
.40	20	4.7	16	18	19	22	13	11	23	16
. 45	22	5.0	16	15	16	20	12	8.7	20	15
.50	17	3.6	12	13	14	17	11	7.7	16	13
.60	12	2.6		10	13	11	8.		13	10
.70		.0 0	9.6	8.4	8.7	5.5	7.		11	8.9
.80		. 0	7.8	6.6	6.3	2.8	5.		7.3	
.90		. 3	6.4	3.3	5,5	0	5.		4.5	
1.0		. 5	4.4	2.1	4.1		3.	2 3.5	3.3	4.7
1.1		. 8	2.9	1.0	3.6		3.	6 2.5	.5	0 3.2
1.2		. 0	2.7	. 5	3.3		5.	1 1.7	0	1.5
1.3		. 8	2.7	0	2.2		4.			.80
1.4	2.	.0	4.9		1.0		4.			0
1.5		. 0	3.3		.10		4.			
1.6		. 75	1.4		.50)	4.			
1.7		. 25	1.5		0		3.			
1.8		. 13	2.2				3.		5	
1.9	0		0				3.			
2.0							2.	6		
2.1							1.			
2.2							1.			
2.3							1.			
2.4								5		
2.5								5		
2.6							0			

position. The impulse versus time calculation are listed in Table XIII with the total impulse noted at the bottom of each column. The peak overpressure and total positive impulse values from Series III are listed in Table IX. They are presented in Figure 12 to show the pressure and impulse distribution to be expected over a full scale munition storage magazine exposed to a 34,050 kg (75,000 lb) hemispherical charge of TNT.

On test series III the peak overpressure criterion was satisfied at Position 15 with 6.0 bars (87.0 psi). The requirement was from 5.37 to 6.55 bars (78 - 95 psi). The overpressure impulse requirement was 44.8 bars (650 psi-msec) and at Position 15 an overpressure impulse of 45.6 bars (661 psi-msec) was obtained. Therefore, a recommendation for the full scale test was a 34,050 kg (74,000 lb) hemispherical charge of TNT placed 47.2 m (155 ft) from the center line of the acceptor magazines.

C. Blast Loading on a 1/45 Scale Model Magazine

The dimensions of the 1/45 scale model magazine are shown in Figure 3. A photograph of the instrumented model is presented in Figure 9. This test series (Series IV) was conducted to determine the blast loading to be expected from a 41,370 kg (91,125 lb) TNT charge placed 50.3 m (165 ft) from the centerline of the full size munition storage magazine. As noted in Table VI, on Shot 13 a sand model was used while on Shots 18 and 19 a concrete model was used. The gage position and charge weight are given in Table V.

Values of the average overpressure versus time for the three shots are listed in Table XIV for all positions instrumented. These average values of overpressure versus time were used to calculate values of average impulse versus time which are listed in Table XV. The total positive impulse for each position is listed at the bottom of each column. The second value in the column is the scaled up value of total impulse to be expected at the same location on a full size structure.

The distribution of peak overpressure and impulse to be expected over a full size magazine is shown in Figure 13.

Although the full-scale charge weight for Test Series IV would be approximately 22 percent greater than the 34050 kg (75,000 lb) considered for Test Series III, there was very little difference in the scaled up overpressure impulse values on the top of the structure. Compare the overpressure impulse values presented in Figure 12 versus Figure 13.

Table XIII. Average Impulse (psi-msec) versus Time (msec) - Series III

			• • • • •	ac (max		,01100				
Position	1	6	7	8	10	11	12	13	14	15
Time-mse	c									
.00										
.05	7.48	3.10	2.68	3.50	2.00	3.05	1.55	1.70	9.40	3.93
.10	4.91	3.08	2.03	2.88	2.58	2.48	1.33	1.43	7.43	3.08
. 15	3.44	1.42	1.70	2.50	1.90	2.18	1.20	1.23	5.80	2.40
.20	2.54	1.11	1.50	2.05	1.55	1.85	1.05	1.08	4.33	1.88
.25	1.88	.91	1.25	1.55	1.40	1.60	.93	.95	3.10	1.48
.30	1.64	.78	1.10	1.25	1.23	1.55	.85	.85	2.23	1.23
. 35	1.49	.56	1.03	1.08	1.05	1.30	.78	.73	1.65	1.00
.40	1.19	. 36	88	.95	.98	1.13	.70	.60	1.28	.85
.45	1.04	. 24	.80	.83	.88	1.05	.63	.49	1.08	.78
.50	.98	.22	.70	.70	. 75	.93	.58	.41	.90	.70
.60	1.48	.31	1.15	1.15	1.35	1.40	.99	.71	1.45	1.15
.70	1.06	.13	1.03	. 92	1.09	.83	.80	.58	1.20	.95
.80	. 85	0	.87	. 75	.75	.42	. 63	. 43	.92	.87
.90	.71		.71	.50	.55	.14	.53	.42	.59	.74
1.00	.54		.54	.27	.48	0	.41		. 39	.56
1.1	.41		. 37	.16	. 39		. 34	.30	. 04	.40
1.2	. 30		.28	.08	. 35		. 44	.21	.03	. 24
1.3	.20		.27	.03	.28		.50	.14	0	.12
1.4	. 19		. 38	0	:.16		.49	.10		.04
1.5	.15		.41		. 06		.48	.07		0
1.6	. 09		.24		.03		.45	.07		
1.7 1.8	.05		. 15		0.03		.41	.09		
1.8	0		.19		U		.34	.06		
2.0	U		0				. 29	0		
2.1			U				.23	U		
2.2							.16			
2.3							.12			
2.4							.08			
2.5							.05			
2.6							0			
Mode1	32.64	12.22	20.37	21.15	19.84	19.91	17.71	13.09	41.82	22.4
Full Scale	962	360	601	624	585	587	522	386	1233	661

PEAK OVERPRESSURE bar © 2.55

O 66.3

Figure 12. Pressure and Impulse Distribution on Full Scale Magazine - Series III

Table XIV. Average Overpressure (psi) versus Time (msec) - Series IV

15		81	50	45	36	30	18	15	12	9.5	7.8	6.5	3.7	0.9	3.5	3.0	1.5	0						
14		156	126	96	63	43	32	25	19	14	10	7.3	6.3	4.0	2.0	0								
13		36	29	23	18	15	12	11	9.4	8.6	8.3	8.0	5.2	4.2	2.8	2.2	1.2	9.	4.	0				
12		31	28	25	20	16	15	12	9.2	7.8	8.4	6.5	5.3	5.0	4.0	5.5	4.6	4.2	3.6	3.4	3.0	1.8	6.	
11		70	45	42	38	30	21	16	9.7	7.0	5.3	2.9	2.0	0										
10		55	48	36	31	26	21	18	18	14	12	8.7	7.3	4.4	3.8	4.1	1.3	1.8	1.8	1.0	0			
7		57	45	29	24	22	20	17	15	13	11	8.9	6.5	4.4	3.7	3.2	1.2	1.0	0					
9		96	39	25	15	14	9.3	3.8	4.3	3.6	3.6	2.8	0											
2		147	103	74	89	20	31	21	14	11	11	10	∞	0										
2		347	150	113	72	41	30	21	15	10	S	3	0											
1		172	96	61	43	31	24	23	56	16	13	12	8.0	5.3	4.0	3.0	2.3	0						
Position	Time msec	00.	.05	.10	.15	.20	.25	.30	.35	.40	.45	.50	09.	.70	.80	06.	1.0	1.1	1.2	1.3	1.4	1.5	1.6	

Table XV. Average Impulse (psi-msec) versus Time (msec) - Series IV

15	3.28 2.38 2.03 1.65 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	15.51	663
14	7.05 3.98 3.98 3.98 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.1	27.1	1157
13	1.63 1.30 1.03 .83 .68 .51 .41 .41 .42 .41 .42 .43 .66 .74 .75 .09	06.6	423
12	1.48 1.13 1.13 1.13 1.13 1.13 1.68 1.68 1.53 1.41 1.45 1.59 1.45 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.5	12.52	535
11	2.88 2.18 2.00 1.70 1.28 .93 .64 .42 .31 .21 .21	12.89	551
10	2.58 2.10 1.68 1.43 1.18 .90 .80 .80 .85 .52 .52 .53 .77 .14	15.82	929
^	2.55 1.85 1.33 1.15 1.05 .93 .80 .70 .50 .50 .50 .50 .77 .77 .77 .77	13.86	592
9	3.38 1.60 1.00 1.00 .73 .33 .20 .20 .18 .16	8.50	363
Ŋ	6.25 4.43 3.55 2.95 2.03 1.30 1.30 63 63 63 63 63	24.40	1042
7	12.4 6.58 4.63 2.83 1.78 1.28 .90 .63 .38 .20	31.76	1357
-	6.70 3.93 2.60 1.85 1.138 1.17 1.23 1.05 1.00 1.00 1.00 1.00 1.67 1.27	24.15	1032
Position Time msec	. 05 . 10 . 15 . 20 . 30 . 35 . 30 . 45 . 50 . 60 90 90 1. 1 1. 2 1. 3 1. 5 1. 6	Mode1	Full Scale

PEAK OVERPRESSURE bar © 2.48

OVERPRESSURE IMPULSE bar-ms

© 29.2

0 71.1

Figure 13. Pressure and Impulse Distribution on Full Scale Magazine - Series IV

IV. DISCUSSION AND RECOMMENDATIONS

The results from test Series III met the requirement for an impulse load of 44.8 bar-msec (650 psi-msec) on the earth cover at the apex of the arch of the acceptor magazine. A comparison of the data from ESKIMO III and Test Series III will be made in this section. The predicted values for ESKIMO V will also be presented.

A. Comparison of Results

The peak overpressure and impulse obtained at the gauge location shown in Table I and the scaled-up values recorded at similar positions on the model, as presented in Table IX, are listed in Table XVI for a direct comparison. The peak overpressure and overpressure impulse values obtained on ESKIMO III and the values obtained on Test Series III scaled up to 34050 kg (75,000 lb) TNT are presented in Figure 14. There is very good correlation of peak overpressure from Position 5 through Position 13. The reason for the large difference in peak overpressure at Positions 2 and 14 is believed to be caused by the difference in the angle of the slope of the earth cover and the shock front generated from two different explosive configurations.

The covered explosive charge from ESKIMO III would produce a curved shock front propagating downward toward the slope, probably producing a regular reflection at the toe of the slope. The bare hemispherical charge used in Test Series III produces a vertical shock front starting up the toe of the slope which in turn produces a Mach reflection, and a Mach stem moves up the slope.

The overpressure impulse shows the same trend except the model values are higher at all three front slope positions than recorded on the ESKIMO III front slope positions.

Although the peak overpressures recorded at Position 6 show excellent correlation there is a dramatic drop in the overpressure impulse obtained from the scaled model. Here again it appears to be a function of the explosion sources and the angle of the shock relative to earth cover on the structures. As the shock front moves up the front slope of the model magazine a Mach stem is formed; and when the Mach stem reaches the top of the slope and moves across the top surface of the structure a vortex forms behind the Mach shock front causing a lowering of pressure within the shock wave. This lowering of overpressure versus time will of course generate less impulse than a shock wave without the influence of a vortex. The angle of the shock front impinging the full size structure on ESKIMO III apparently did not form a Mach stem up the front slope nor a vortex across the top of the structure. Therefore, the impulse is lower than the model up the slope and higher at Position 6.

Table XVI. Comparison of Results from ESKIMO III and Test Series III

se	Mode1	962	1450*		1233	1088*		360	•	199	587		624	601		585	1	552	1	386
Impulse	psi msec ESKIMO III		1	804			662	529	806	•	622	642			809		694	, 484		652
ssure	Mode1	181	260*	1	211	160*	1	92	1	87	67	1	78	62		09	1	34	1	37
Peak Overpressure	PSI ESKIMO III	1	110	120	•	•	165	80	95		78	85	•	•	65	•	50	40	•	20
se	Mode1	66.3	100*	1	85.0	75.0*	1	24.8	1	45.6	40.1	1	43.0	41.4	1	40.3		36.0	1	26.6
Impulse	BAKIMO III M	ı	1	55.4	•	•		36.5	55.6	•	42.9	44.3	1	-	41.9	•	47.8	33.4	•	45.0
ssure	Mode1	12.5	17.9*	1	14.6	11.0*	1	6.34	1	00.9	4.62		5.38	4.28	1	4.14	1	2.34	,	2.55
Peak Overpre	ESKIMO III Model		7.59	8.28		1	11.4	5.52	6.55	1	5.38	5.86	1		4.48		3.45	2.76		3.45
Position	NO.	1	2a	2b	14	5a	Sb	6a	99	15	11a	11b	8	7	10a	10	10b	12a	12b	13

Designation a and b are for Magazine A and B on ESKIMO III. Values from the model test series III are listed with the a designation.

^{*} Indicates extrapolated values based on other test series.

Figure 14. Comparison of Results from ESKIMO III and Test Series III Scaled to 34050 kg TNT

Other positions show very good correlation of both peak overpressure and overpressure impulse with the exception of position 13 where the impulse from ESKIMO III is higher than recorded on test Series III.

B. Shock Reflection and Diffraction - Theory and Experiment

The theoretical treatment of shock reflection and diffraction presented in this section was taken from Reference 7. It contains a summary of methods for predicting the effects of terrain on blast wave propagation.

1. Mach Reflection Pressure on the Front Slope. The peak Mach reflection overpressure up the center of the front slope of the model structure can be determined from two-dimensional theory. A typical Mach reflection pattern is shown in Figure 15. Here the incident shock pressure ratio Z is $P_{\rm S}/P_{\rm O}$, where $P_{\rm S}$ is the peak incident overpressure and $P_{\rm O}$ is atmospheric pressure. The pressure ratio for the Mach reflected shock Z is $P_{\rm M}/P_{\rm O}$, where $P_{\rm m}$ is the peak Mach overpressure and $P_{\rm O}$ is atmospheric pressure. The angle 0 in Figure 15 is 26.6 degrees.

The incident shock pressure ratio Z for a hemispherical pentolite surface burst is plotted versus scaled distance in Figure 16. This curve was developed from data presented in Reference 1. When Z is determined for a selected scaled distance up the front slope then the Mach reflection ratio $\mathbf{Z}_{\mathbf{m}}$ can be determined from Figure 17 where $\mathbf{Z}_{\mathbf{m}}$ is plotted as a function of Z for a slope angle of 26.6 degrees. This curve was developed from data presented in Reference 7.

The values of Z_{m} determined up the front slope for selected scaled distances have been plotted in Figure 16 and listed for the gauge positions 2, 14, and 6 in Table XVII. The Mach pressure ratio Z_{m} values were converted to P_{m} values for a direct comparison with experimental values of P_{m} .

2. Shock Diffraction Pressures on the Roof. When a rising slope changes to a falling slope then the Mach reflection process changes to a shock diffraction. The process is reversed and the pressure on the surface becomes less than the input pressure. This condition is shown in Figure 15 where Z_{m} becomes the input shock ratio and the diffracted shock pressure ratio is noted as Z_{T} which is P_{T}/P_{0} where P_{T} is the overpressure on the top of the structure and P_{0} is the atmospheric pressure. A plot of Z_{T} as a function of Z_{m} for 0 equal to 26.6° is presented in Figure 18. Based on the assumption that the diffraction process is a reversal of the reflection process the overpressure ratio Z_{T} across the top of the model structure becomes equal to Z, the incident overpressure ratio shown in Figure 16. The values of Z_{T} , determined from Figure 18 have been plotted

⁷R. J. Arave and N. R. Wallace, "Dynamic Pressure from Blast Waves: Methods for Predicting the Effects of Terrain," URS Corporation, URS 649-6, February 1966.

Figure 15. Mach Reflection and Diffraction Pattern

Figure 16. Overpressure Ratio versus Scaled Distance

Figure 17. Input Pressure Ratio versus Mach Reflection Pressure Ratio

Table XVII. Mach Reflection and Diffraction-Theory and Experiment

Series 1

Position Number	Scaled Distance	Z	z_{m}		Peak verpressure
	λ			Theory	Experiment
	ft/1bs ^{1/3}			psi	psi
2	2.51	15.0	23.0	338	338
14	2.85	11.4	17.6	259	245
5	3.19	8.7	13.6	199	177
	3.43	7.3	11.4	168	
		$^{\rm Z}{}_{\rm m}$	z_{T}		
6	3.53	10.8	6.9	100	97
15	3.87	8.9	5.6	82	76
11	4.20	7.4	4.6	67	59
**	4.31	7.0	4.3	63	-
		z_{T}	$z_{\rm R}$		
12	4.88	3.2	1.8	27	24
		Seri	es II		
		Z	$Z_{\mathfrak{m}}$		
2	2.79	12.0	18.5	272	293
14	3.06	9.6	14.9	219	212
5	3.33	7.8	12.2	179	167
*	3.52	7.0	11.0	162	-
		Z _m	z _T		
6	3.60	10.4	6.6	97	101
15	3.87	8.9	5.6	82	76
11	4.14	7.6	4.7	69	67
**	4.22	7.3	4.5	66	
		z_{T}	$z_{\mathbf{R}}$		
12	4.67	3.6	2.1	30	29

Table XVII. Mach Reflection and Diffraction-Theory and Experiment (Continued)

Series III

osition Number	Scaled Distance	Z	Z _m		Peak verpressure
	$\frac{\lambda}{\text{ft/1bs}^{1/3}}$			Theory	Experiment
	ft/1bs ^{1/3}			psi	psi
2 14 5 *	2.87 3.12 3.37 3.55	11.0 9.0 7.8 6.8	17.0 14.0 12.2 10.7	250 206 179 157	260 211 160
		Z _m	z _T		
6 15 11 **	3.62 3.87 4.12 4.19	10.3 8.9 7.7 7.4	6.5 5.6 4.8 4.6	96 82 70 68	92 87 67
		z _T	$z_{\rm R}$		
12	4.61	3.7	2.1	31	34

Table XVII. Mach Reflection and Diffraction-Theory and Experiment (Continued)

Series IV

Position Number	Scaled Distance	Z	$Z_{\mathbf{m}}$	Peak Mach Overpressure				
	λ		///	Theory	Experiment			
	ft/1bs ^{1/3}			psi	psi			
2	2.93	10.6	16.4	241	347			
14	3.16	8.9	13.9	203	156			
5	3.39	7.6	11.9	175	147			
*	3.43	7.3	11.4	168	-			
		$z_{\mathfrak{m}}$	z_{T}					
6	3.63	10.0	6.3	93	96			
15	3.87	8.9	5.6	82	81			
11	4.10	7.8	4.9	71	70			
**	4.31	7.0	4.3	63	-			
		z_{T}	z _R					
13	4.56	3.9	2.3	33	31			

^{*}Top of front slope.

NOTE:

$$Z = P_s/P_o$$

$$Z_m = P_m/P_o$$

$$Z_T = P_T/P_o$$

$$Z_R = P_R/P_o$$

WHERE:

 P_s = Peak incident overpressure

 P_{m} = Peak mach overpressure

 P_T = Peak overpressure on top of structure

 P_{R} = Peak overpressure on rear slope

 $P_{o} = Atmospheric pressure.$

^{**}Rear edge of roof.

Figure 18. Input Pressure Ratio versus Diffracted Shock Pressure Ratio.

in Figure 16. The values determined at scaled distances for gauge positions 6, 15, and 11 are listed in Table XVII for direct comparison with measured values of peak overpressure.

- 3. Shock Diffraction Pressure on the Rear Slope. When the shock wave passes over the top surface of the structure and starts down the rear surface, a second shock diffraction occurs as shown in Figure 15. The diffracted shock ratio \mathbf{Z}_T now becomes the input pressure ratio and the pressure ratio down the rear slope becomes \mathbf{Z}_R which is $\mathbf{P}_R/\mathbf{P}_0$, where \mathbf{P}_R is the peak overpressure on the rear slope and \mathbf{P}_0 is the atmospheric pressure. A plot of \mathbf{Z}_R versus \mathbf{Z}_T is presented in Figure 18. Values of \mathbf{Z}_T for scaled distances down the rear slope were determined from Figure 18 to determine values of \mathbf{Z}_R which are plotted in Figure 16. A value of \mathbf{Z}_R determined for Position 12 on the rear slope is listed in Table XVII and converted to \mathbf{P}_R for a direct comparison with measured values.
- 4. Discussion of Theory and Experiment. The determination of peak overpressures on the front slope, top and rear of the model structure was made for the complete series of tests using the theory developed in Reference 7. The comparisons of the theoretical values with measured values is quite good. The overall variation of theory versus experiment is less than ±5 percent.

C. Predicted Pressure and Impulse for ESKIMO V

Two munition storage magazines will be exposed to a hemispherical TNT charge consisting of 9,376, 8-pound demolition blocks making a total weight of 34,054 kg (75,008 lbs). The structure will be placed equidistant 47.2 metres (155 feet) from ground zero (see Figure 19). The suggested gauge locations, distances, predicted peak overpressure, and impulses are listed in Table XVIII. The peak overpressures to be expected on structures A and B are presented as iso-pressure contours in Figure 20. The predicted overpressure impulse values for the full scale test are presented as iso-impulse contours in Figure 21.

The distances and impulse predictions have been scaled for charge weight only and not for the atmospheric pressure or temperature that might be expected at the test site because the test date for ESKIMO V has not been established at this time. The values are noted in both bars and psi for planning convenience and gauge calibration.

Note that the gauge locations on the full size structure do not correspond directly with the gauge locations on the $1/30 \rm th$ or $1/45 \rm th$ scaled models.

Table XVIII. Suggested Gauge Locations, Predicted Pressures and Impulses for ESKIMO $\rm V$

Position Number	Dista from		Pea Overpre		Positive	Impulse
	Metres	Feet	bar	Psi	bar-Msec	Psi-Msec
*1	30.5	100.0	15.2	220	66.3	962
A2	35.1	115.0	17.9	260	100.0	1450
В3	38.5	126.3	14.1	205	83.0	1204
B4	38.1	125.0	14.6	211	85.0	1233
A5	38.5	126.3	14.1	205	83.0	1204
*6	41.1	135.0	11.0	160	75.0	1088
*7	44.2	145.0	6.34	92	24.8	360
A8	50.1	164.5	4.28	62	41.4	601
A9	47.5	156.0	5.52	80	43.0	624
*10	47.2	155.0	6.00	87	45.6	661
B11	48.5	156.0	5.52	80	43.0	624
B12	48.8	160.0	4.14	60	40.3	585
*13	50.3	165.0	4.62	67	40.4	587
B14	53.3	175.0	3.45	50	36.6	530
A15	56.4	185.0	2.34	34	36.0	522
A16	65.5	215.0	2.55	37	26.6	386

^{*}Common to Structures A and B

NOTE: Gauge positions on ESKIMO V structure not all equivalent to gauge positions on Models.

Gauge	Positions	
ESKIMO	V = MODEL	

Ligure 19. TSkIMO A Test Lavout

Figure 20. Predicted Peak Overpressure Contours for ESKIMO V

Figure 21. Predicted Overpressure Impulse Contours for ESKIMO V

ACKNOWLEDGMENTS

The author wishes to acknowledge the following individuals and their specific contributions. First, Mr. George Coulter, as field project officer, guided the day to day activities on the test site. Mr. G. T. Watson operated the recording trailer and Mr. Vincent King and Mr. Kenneth Holbrook constructed, instrumented, and placed the models. Mr. King was also the explosive handler. Mr. William Matthews assisted in the design of the models and did the art work presented in the report.

APPENDIXES

PRESSURE VERSUS TIME DATA

The Appendixes show the average overpressure versus time recorded at the gage positions instrumented on the 1/30 and 1/45 scale models. They are divided into four sections for presenting the different charge weights and model scales. The divisions are as follows:

Appendix A - Model Scale 1/30 - Charge Weight .454 kg Pentolite

Appendix B - Model Scale 1/30 - Charge Weight .908 kg Pentolite

Appendix C - Model Scale 1/30 - Charge Weight 1.135 kg Pentolite

Appendix D - Model Scale 1/45 - Charge Weight .454 kg Pentolite.

All plots of overpressure versus time are presented in units of bars versus milliseconds, where the bar is obtained by dividing pounds per square inch (psi) by 14.5. The bar multiplied by 100 is equivalent to one kilopascal.

APPENDIX A

Series I - Model Scale 1/30 Charge Weight 0.454 kg Pentolite

APPENDIX A - LIST OF ILLUSTRATIONS

l- i	gure												Page
	A-1	Overpressure	versus	Time,	Position	1							67
	Δ-2	Overpressure	versus	Time,	Position	2							68
	A-3	Overpressure	versus	Time,	Position	3							69
	A-4	Overpressure	versus	Time,	Position	4							70
	Λ-5	Overpressure	versus	Time,	Position	5							71
	A-6	Overpressure	versus	Time,	Position	6							72
	A-7	Overpressure	versus	Time,	Position	7	•				•		73
	A-8	Overpressure	versus	Time,	Position	8							74
	A-9	Overpressure	versus	Time,	Position	9	•						75
	A-10	Overpressure	versus	Time,	Position	10							76
	A-11	Overpressure	versus	Time,	Position	11							77
	A-12	Overpressure	versus	Time,	Position	12							78
	A-13	Overpressure	versus	Time,	Position	13			•				79
	A-14	Overpressure	versus	Time,	Position	14					•		80
	A-15	Overpressure	versus	Time,	Position	15							81

Figure A-1. Overpressure versus Time, Position 1

Tigure A-2. Overpressure versus Time, Position 2

Figure A-4. Overpressure versus Time, Position 4

Figure A-5. Overpressure versus Time, Position 5

Figure A.6. Overpressure versus Time, Position 6

Figure A-8. Overpressure versus Time, Position 8

74

Figure A-9. Overpressure versus Time, Position 9

Figure A-10. Overpressure versus Time, Position 10

Figure A-11. Overpressure versus Time, Position 11

Figure A-12. Overpressure versus Time, Position 12

Figure A-15. Overpressure versus Time, Position 13

Figure A-14. Overpressure versus Time, Position 14

Figure A-15. Overpressure versus Time, Position 15

APPENDIX B

Series II - Model Scale 1/30 Charge Weight 0.908 kg Pentolite

APPENDIX B - LIST OF ILLUSTRATIONS

Figure														Page
B-1	Overpressure	versus	Time,	Position	1									85
B-2	Overpressure	versus	Time,	Position	2									86
B-3	Overpressure	versus	Time,	Position	5									87
B-4	Overpressure	versus	Time,	Position	6									88
B-5	Overpressure	versus	Time,	Position	7									89
B-6	Overpressure	versus	Time,	Position	8								٠	90
B-7	Overpressure	versus	Time,	Position	9			•		•				91
B-8	Overpressure	versus	Time,	Position	10)	•					٠		92
B-9	Overpressure	versus	Time,	Position	11		•		•					93
B-10	Overpressure	versus	Time,	Position	12		•							94
B-11	Overpressure	versus	Time,	Position	13	;								95
B-12	Overpressure	versus	Time,	Position	14								•	96
B-13	Overpressure	versus	Time,	Position	15									97

Figure B-1. Overpressure versus Time Position 1

Tighte B-1. Overpressure gensus lime, Position 2

Figure 8-3. Overpressure versus Time, Position 5

Figure B-4. Overpressure versus Time, Position 6

Figure B-5. Overpressure versus Time, Position 7

Figure B-6. Overpressure versus Time, Position 8

Figure B-7. Overpressure versus Time, Position 9

Figure B-8. Overpressure versus Time, Position 10

Figure B-9. Overpressure versus Time, Position 11

Figure B-10. Overpressure versus Time, Position 12

Figure B-11. Overpressure versus Time, Position 13

Figure B-12. Overpressure versus Time, Position 14

Figure B-13. Overpressure versus Time, Position 15

APPENDIX C

Series III - Model Scale 1/30 Charge Weight 1.135 kg Pentolite

APPENDIX C - LIST OF ILLUSTRATIONS

F	igure												Page
	C-1	Overpressure	versus	Time,	Position	1							101
	C-2	Overpressure	versus	Time,	Position	6							102
	C-3	Overpressure	versus	Time,	Position	7							103
	C-4	Overpressure	versus	Time,	Position	8							104
	C-5	Overpressure	versus	Time,	Position	10							105
	C-6	Overpressure	versus	Time,	Position	11							106
	C-7	Overpressure	versus	Time,	Position	12			•				107
	C-8	Overpressure	versus	Time,	Position	13							108
	C-9	Overpressure	versus	Time,	Position	14							109
	C-10	Overpressure	versus	Time,	Position	15							110

Figure C-1. Overpressure versus Time, Position 1

Figure C-2. Overpressure versus Time, Position 6

Figure C-3. Overpressure versus Time, Position 7

Figure C-4. Overpressure versus Time, Position 8

Figure C-5. Overpressure versus Time, Position 10

Figure C-6. Overpressure versus Time, Position 11

Figure C-7. Overpressure versus Time, Position 12

Figure C-8. Overpressure versus Time, Position 13

Figure C-9. Overpressure versus Time, Position 14

Figure C-10. Overpressure versus Time, Position 15

APPENDIX D

Series VI - Model Scale 1/45 Charge Weight 0.454 kg Pentolite

APPENDIX D - LIST OF ILLUSTRATIONS

F	igure												Page
	D-1	Overpressure	versus	Time,	Position	1.							113
	D-2	Overpressure	versus	Time,	Position	2.							114
	D-3	Overpressure	versus	Time,	Position	5.							115
	D-4	Overpressure	versus	Time,	Position	6.							116
	D-5	Overpressure	versus	Time,	Position	7.							117
	D-6	Overpressure	versus	Time,	Position	10					•		118
	D-7	Overpressure	versus	Time,	Position	11							119
	D-8	Overpressure	versus	Time,	Position	12							120
	D-9	Overpressure	versus	Time,	Position	13	•		•				121
	D-10	Overpressure	versus	Time,	Position	14					•		122
	D-11	Overpressure	versus	Time,	Position	15							123

Figure D-1. Overpressure versus Time, Position 1

Figure D-2. Overpressure versus Time, Position 2

Figure D-3. Overpressure versus Time, Position 5

Figure D-4. Overpressure versus Time, Position 6

Figure D-5. Overpressure versus Time, Position 7

Figure D-6. Overpressure versus Time, Position 10

Figure D-7. Overpressure versus Time, Position 11

Figure D-8. Overpressure versus Time, Position 12

Figure D-9. Overpressure versus Time, Position 13

Figure D-10. Overpressure versus Time, Position 14

Figure D-11. Overpressure versus Time, Position 15

No. o		No. of	
Copie	<u>Organization</u>	Copies	Organization
12	Commander Defense Documentation Center ATTN: DDC-TCA Cameron Station Alexandria, VA 22314		Director Defense Communications Agency ATTN: NMCSSC (Code 510) Washington, DC 20305 Director
1	Director Defense Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, VA 22209		Defense Intelligence Agency ATTN: DT-1C, Dr. J. Vorona DIR-4C3, R. Sauer Washington, DC 20301 Director
1	Director of Defense Research & Engineering Department of Defense Washington, DC 20301	2	Defense Nuclear Agency ATTN: Mr. J. F. Moulton, SPAS Dr. E. Sevin, SPSS Washington, DC 20305
1	Director Weapons Systems Evaluation Gp. ATTN: CPT Donald E. McCoy Washington, DC 20305	. 4	Defense Nuclear Agency ATTN: SPTL Tech Lib (2 cys) APSI (ARCHIVES) LGLS, Mr. E. L. Eagles
3	Director Institute for Defense Analyses ATTN: Dr. J. Menkes Dr. J. Bengston Tech Info Ofc 400 Army-Navy Drive Arlington, VA 22202	s 1	Washington, DC 20305 Commander Field Command Defense Nuclear Agency ATTN: Tech Lib, FCWS-SC Kirtland AFB, NM 87115
1	Office Secretary of Defense Director of Defense Rsch & Eng ATTN: Mr. J. Persh, Staff Specialist, Materials and Structures Washington, DC 20301		Chief Las Vegas Liaison Office Field Command TD, DNA ATTN: Document Control P. O. Box 2702 Las Vegas, NV 89104
1	Assistant Secretary of Defense (MRA&L) ATTN: ID (Mr. H. Metcalf) Washington, DC 20301	1	DNA Information and Analysis Center TEMPO, General Electric Co. Center for Advanced Studies ATTN: DASIAC
1	Assistant to the Secretary of Defense (Atomic Energy) ATTN: Document Control Washington, DC 20301		816 State Street Santa Barbara, CA 93102

No. of	•	No. o	f
Copies	Organization	Copie	<u>Organization</u>
1	Defense Civil Preparedness Ager ATTN: David W. Benson Washington, DC 20301	ncy 1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center
5	Chairman DOD Explosives Safety Board Room 856-C, Hoffman Bldg. I 2461 Eisenhower Avenue Alexandria, VA 22331	1	Moffett Field, CA 94035 Commander US Army Electronics Research and Development Command ATTN: DELSD-L
2	Chairman Joint Chiefs of Staff ATTN: J-3, Operations J-5, Plans & Policy (R&D Division) Washington, DC 20301	1	Tech Support Activity Fort Monmouth, NJ 07703 Commander US Army Communications Rsch and Development Command
2	Director Joint Strategic Target Planning Staff ATTN: JLTW TPTP	4	ATTN: DRDCO-SGS Fort Monmouth, NJ 07703 Commander US Army Missile Research and Development Command
1	Offutt AFB, Omaha, NB 68113 Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue	1	ATTN: DRDMI-R DRDMI-RSS, Mr. B. Cobb DRDMI-RX, Mr. W. Thomas DRDMI-RR, Mr. L. Lively Redstone Arsenal, AL 35809 Commander
1	Alexandria, VA 22333 Commander US Army Materiel Development and Readiness Command ATTN: Mr. W.G. Queen, DRCSF 5001 Eisenhower Avenue Alexandria, VA 22333	2	US Army Missile Materiel Readiness Command ATTN: DRSMI-AOM Redstone Arsenal, AL 35809 Commander US Army Tank Automotive Research & Development Cmd
1	Commander US Army Aviation Research and Development Command ATTN: DRSAV-E 12th and Spruce Streets St. Louis, MO 63166	1	ATTN: DRDTA DRDTA-UL Warren, MI 48090

No. of		No. of	
Copies	Organization	Copies	Organization
	Commander US Army Armament Research and Development Command ATTN: DRDAR-TSS (2 cys)	1	Commander Iowa Army Ammunition Plant Burlington, IA 52502
	DRDAR-LC Dover, NJ 07801	_	Commander Joliet Army Ammunition Plant Joliet, IL 60436
	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib DRSAR-SA		Kansas Army Ammunition Plant Parsons, KS 67357
3	Rock Island, IL 61299 Commander	1	Commander Lone Star Army Ammunition Plant Texarkana, TX 75502
	US Army Armament Materiel Readiness Command ATTN: Joint Army-Navy-Air Force Conventional Ammunition		Commander Longhorn Army Ammunition Plant Marshall, TX 75671
	Prof Coord Gp/ E. Jordan Rock Island, IL 61299		Commander Louisiana Army Ammunition Plant
	Commander US Army Rock Island Arsenal Rock Island, IL 61299	1	Shreveport, LA 71102 Commander Milan Army Ammunition Plant
	Commander Dugway Proving Ground ATTN: STEDP-TO-H, Mr. Miller Dugway, UT 84022	1	Milan, TN 38358 Commander Radford Army Ammunition Plant Radford, VA 24141
	Commander US Army Watervliet Arsenal Watervliet, NY 12189		Commander Ravenna Army Ammunition Plant Ravenna, OH 44266
	Commander Pine Bluff Arsenal Pine Bluff, AR 71601		Commander US Army Harry Diamond Labs ATTN: DELHD-TI
	Commander Cornhusker Army Ammunition Plan Grand Island, NE 68801		2800 Powder Mill Road Adelphi, MD 20783
	Commander Indiana Army Ammunition Plant Charlestown, IN 47111		Commander US Army Materials and Mechanics Research Center ATTN: DRXMR-ATL Watertown, MA 02172

No. of Copies		No. of Copies	
1	Commander US Army Natick Research and Development Command ATTN: DRXRE, Dr. D. Sieling Natick, MA 01762		Office of the Inspector General Department of the Army ATTN: DAIG-SD Washington, DC 20310 HQDA (DAMO-ODC, COL G. G.
1	Commander US Army Foreign Science and Technology Center		Watson) Washington, DC 20310
	ATTN: Rsch & Data Branch Federal Office Building 220 - 7th Street, NE		HQDA (DAEN-MCE-D, Mr. R. Wright) Washington, DC 20314
	Charlottesville, VA 22901	1	HQDA (DAEN-MCC-D, Mr. L. Foley) Washington, DC 20314
1	Director DARCOM Field Safety Activity ATTN: DRXOS-ES Charlestown, IN 47111	1	HQDA (DAEN-RDL) Washington, DC 20314
1	Director DARCOM, ITC	1	Division Engineer US Army Engineer Division Fort Belvoir, VA 22060
	ATTN: Dr. Chiang Red River Depot Texarkana, TX 75501	1	US Army Eng Div ATTN: Mr. Char P. O. Box 1600
1	Commander US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range NM 88002	1	Huntsville, AL 35809 Commander US Army Construction Engineering Research Laboratory P. O. Box 4005 Champaign, IL 61820
1	Director US Army Engineer School Fort Belvoir, VA 22060	1	Director US Army Engineer Waterways Experiment Station
1	Commander US Army Nuclear Agency 7500 Backlick Rd, Bldg 2073 Springfield, VA 22150		ATTN: WESNS, Mr. J. M. Watt P. O. Box 631 Vicksburg, MS 39180
1	HQDA (DAMA-CSM-CA) Washington, DC 20310	1	Commander US Army Research Office P. O. Box 12211 Research Triangle Park
2	HQDA (DAMA-AR; NCL Div) Washington, DC 20310		NC 27709

No. of Copies Organization	No. of Copies Organization
<pre>Director US Army Advanced BMD Technology Center ATTN: M. Whitfield Huntsville, AL 35807</pre>	1 Commander Naval Ordnance Systems Command ATTN: Code ORD-43B Mr. Fernandes Washington, DC 20360
<pre>1 Commander US Army Ballistic Missile Defense Systems Command ATTN: J. Veeneman P. O. Box 1500, West Station Huntsville, AL 35807</pre>	2 Commander Naval Sea Systems Command ATTN: SEA-04H, Mr. C.P. Jones SEA-0333 Washington, DC 20360
1 Commander US Army Europe ATTN: AEAGB (S&E) APO New York 09403	2 Commander David W. Taylor Naval Ship Research & Development Ctr ATTN: Mr. A. Wilner, Code 1747 Dr. W.W. Murray, Code 17 Bethesda, MD 20084
4 Chief of Naval Operations ATTN: OP-41B, CPT S.N.Howard OP-411, J. W. Connelly OP-754 OP-985FZ Department of the Navy Washington, DC 20350	3 Commander
<pre>1 Assistant Secretary of the Na (Research & Development) Navy Department Washington, DC 20350</pre>	Naval Surface Weapons Center ATTN: Dr. Leon Schindel Dr. Victor Dawson Dr. P. Huang
1 Commander Bureau of Naval Weapons ATTN: Code F121, H. Roylance Department of the Navy Washington, DC 20360	Silver Spring, MD 20910 2 Commander Naval Weapons Center ATTN: Code 0632 China Lake, CA 93555
1 Commander Naval Air Systems Command ATTN: AIR-532 Washington, DC 20361	<pre>1 Commander Naval Weapons Support Center ATTN: NAPEC Crane, IN 47522</pre>

No. o Copie		No. o Copie	
2	Commander Naval Explosive Ord Disposal Facility ATTN: Code 501, L. Wolfson Code D Indian Head, MD 20640		AFSC (DSCPSL) Andrews AFB Washington, DC 20331 HQ AFSC (IGFG) Andrews AFB Washington, DC 20334
1	Commander Naval Ship Research and Development Ctr Facility ATTN: Mr. Lowell T. Butt	1	AFRPL (M. Raleigh) Edwards AFB, CA 93523
	Underwater Explosions Research Division Portsmouth, VA 23709	1	ADTC (ADBPS-12) Eglin AFB, FL 32542
1	Commander Naval Weapons Evaluation	2	AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542
	Facility ATTN: Document Control Kirtland AFB		AFATL (DLYV, R. L. McGuire) Eglin AFB, FL 32542
1	Albuquerque, NM 87117 Commander	1	USAFTAWC (OA) Eglin AFB, FL 32542
	Naval Civil Engineering Lab ATTN: Code L51 Port Hueneme, CA 93041	1	Ogden ALC/MMWRE ATTN: Mr. Ted E. Comins Hill AFB, UT 84406
1	Commander Naval Research Laboratory ATTN: Code 2027, Tech Lib Washington, DC 20375	3	AFWL (WLA; WLD; WLRP, LTC H. C. McClammy) Kirtland AFB, NM 87117
2			AFWL (DEO, Mr. F.H. Peterson; SYT, MAJ W. A. Whitaker; SRR; WSUL; SR) Kirtland AFB, NM 87117
	Monterey, CA 93940		Director of Aerospace Safety USAF/IGD/AFISC (SEV)
1	HQ USAF (AFNIE-CA) Washington, DC 20330		COL G. J. Corak Norton AFB, CA 92409
4	HQ USAF (AFRIDQ; AFRDOSM; AFRDPM; AFRD) Washington, DC 20330	1	AFCEC-DE (LTC Walkup) Tyndall AFB Panama City, FL 32401

No. of		No. of	
Copies	Organization	Copies	Organization
	AFFDL (FBE, Mr. R.M. Bader) Wright-Patterson AFB, OH 45433		Institute of Makers of Explosives ATTN: Mr. Harry Hampton Graybar Building, Rm 2449
	AFLC (MMWM/CPT D. Rideout; IGYE/K. Shopker) Wright-Patterson AFB, OH 45433		420 Lexington Avenue New York, NY 10017
	AFML (MAMD, Dr. T. Nicholas; MAS; MANC, Mr. D. Schmidt; MAX, Dr. A.M. Lovelace) Wright-Patterson AFB, OH 45433	3	Battelle Columbus Laboratories ATTN: Dr. L. E. Hulbert Mr. J. E. Backofen, Jr. 505 King Avenue Columbus, OH 43201
	FTD (ETD) Wright-Patterson AFB, OH 45433	1	Director Lawrence Livermore Laboratory Technical Information Division
	Headquarters Energy Research and Development Administration Dept of Military Applications Washington, DC 20545	1	P. O. Box 808 Livermore, CA 94550 Director Los Alamos Scientific Laboratory
	Director Division of Operational Safety Energy Research & Development Administration ATTN: Carlo Ferrara, Jr. Washington, DC 20545	2	ATTN: Dr. J. Taylor P. O. Box 1663 Los Alamos, NM 87544 Sandia Laboratories ATTN: Info Distr Division Dr. W. A. von Riesemann Albuquerque, NM 87115
	Albuquerque Operations Office Energy Research and Development Administration ATTN: ODI P. O. Box 5400 Albuquerque, NM 87115	2	Director Lewis Directorate US Army Air Mobility Research and Development Laboratory Lewis Research Center ATTN: Mail Stop 77-5
1	Research Director - Pittsburgh Mining and Safety Research Center	1	21000 Brookpark Road Cleveland, OH 44135
	Bureau of Mines, Department of the Interior ATTN: Dr. Robert W. Van Dolah 4800 Forbes Avenue Pittsburgh, PA 15213	1	Director National Aeronautics and Space Administration Marshall Space Flight Center Huntsville, AL 35812

	DISTRIBU	JI IUN I	.151
No. of	f	No. of	
Copies	Organization	Copies	Organization
2	Director National Aeronautics and Space Administration Aerospace Safety Research and Data Institute ATTN: Mr. S. Weiss Mail Stop 6-2	2	Black & Veatch Consulting Engineers ATTN: Mr. H. L. Callahan 1500 Meadow Lake Parkway Kansas City, MO 64114 The Boeing Company
1	Mr. R. Kemp Mail Stop 6-2 Lewis Research Center Cleveland, OH 44135 Director		Aerospace Group ATTN: Dr. Peter Grafton Dr. D. Strome Mail Stop 8C-68 Seattle, WA 98124
	National Aeronautics and Space Administration Scientific and Technical Information Facility P. O. Box 8757 Baltimore/Washington		General American Research Div. General American Trans. Corp. ATTN: Dr. J. C. Shang 7449 N. Natchez Avenue Niles, IL 60648
1	International Airport, MD 2124 National Academy of Sciences	40 1	Hercules, Inc. ATTN: Billings Brown Box 93
	ATTN: Mr. D. G. Groves 2101 Constitution Avenue, NW Washington, DC 20418	1	
1	Aeronautical Research Assoc. of Princeton, Inc. ATTN: Dr. C. Donaldson		Research Associates 3831 Menlo Drive Baltimore, MD 21215
	50 Washington Road Princeton, NJ 08540	2	Kaman-AviDyne ATTN: Dr. N. P. Hobbs Mr. S. Criscione
1	Aerospace Corporation P. O. Box 95085 Los Angeles, CA 90045		Northwest Industrial Park 83 Second Avenue Burlington, MA 01803
1	Agbabian Associates ATTN: Dr. D. P. Reddy 250 N. Nash Street El Segundo, CA 90245	3	Kaman Sciences Corporation ATTN: Dr. F. H. Shelton Dr. D. Sachs Dr. R. Keefe 1500 Garden of the Gods Road
2	AVCO Corporation Structures and Mechanics Dept. ATTN: Dr. William Broding Mr. J. Gilmore Wilmington, MA 01887		Colorado Springs, CO 80907

No. of	E	No. of	
Copies	Organization	<u>Copies</u> <u>Organization</u>	
1	Knolls Atomic Power Laboratory ATTN: Dr. R. A. Powell Schenectady, NY 12309	y 1 Brown University Division of Engineering ATTN: Prof. R. Clifton Providence, RI 02912	
2	Martin Marietta Laboratories ATTN: Dr. P. F. Jordan Mr. R. Goldman 1450 S. Rolling Road Baltimore, MD 21227	1 Georgia Institute of Tech ATTN: Dr. S. Atluri 225 North Avenue, NW Atlanta, GA 30332	
1	Mason & Hangar-Silas Mason Company, Inc. Pantex Plant - ERDA ATTN: Director of Development P. O. Box 647		
1	Amarillo, TX 79177 McDonnell Douglas Astronautics Western Division ATTN: Dr. Lea Cohen 5301 Bolsa Avenue	1 Massachusetts Institute of Technology Aeroelastic and Structures Research Laboratory ATTN: Dr. E. A. Witmer Cambridge, MA 02139	
1	Huntington Beach, CA 92647 Monsanto Research Corporation Mound Laboratory ATTN: Frank Neff Miamisburg, OH 45342	1 Ohio State University	cs
1		3 Southwest Research Institut ATTN: Dr. H. N. Abramson Dr. W. E. Baker Dr. U. S. Lindholm 8500 Culebra Road	e
1	R&D Associates ATTN: Mr. John Lewis P. O. Box 9695 Marina del Rey, CA 90291	San Antonio, TX 78228 1 Stanford Research Institute ATTN: Dr. W. Reuland	
1	Science Applications, Inc 8th Floor 2361 Jefferson Davis Highway Arlington, VA 22202	306 Wynn Drive, NW Huntsville, AL 35805 1 Texas A & M University Dept of Aerospace Engineeri ATTN: Dr. James A. Strickl College Station, TX 77843	

No. of Copies

Organization

- 1 University of Alabama ATTN: Dr. T. L. Cost P. O. Box 2908 University, AL 35486
- University of Delaware
 Department of Mechanical
 and Aerospace Engineering
 ATTN: Prof. J. R. Vinson
 Newark, DE 19711

Aberdeen Proving Ground

Dir, USAMSAA

ATTN: Dr. J. Sperrazza Mr. R. Norman, GWD

Cdr/Dir, USA CSL, EA ATTN: DRDAR-CLJ-L

Office of the Program Manager for Demilitarization and Installation Restoration

ATTN: DRXDC-T Cdr, USATECOM

ATTN: DRSTE-SG-H