The interaction of Selection and Linkage—Heterotic Models |

Presentor: Yuejian Mo

Author: R.C. Lewontin, 1963

2018.06.11 @ SUSTech

Nothing in Biology Makes Sense Except in the Light of

Evolution. — Theodosius Dobzhansky

Background | What it is?

In 1960s, we known that:

- ▶ Single loci, Selection, Population genetic change
- But two-loci or mulit-loci do not.

So the paper provide some two-loci model. *(need picture)*

Background | What it is?

Here are results of Lewontin and Kojima:

- 1. If the fitnesses are additive between loci, linkage does not effect the final equilibrium state of the population.
- If linkage is tighter than the value demanded by the magnitude of the epistasis there may be permanent linkage disequilibrium.
- 3. The rate of genetic chagne with time is affected by the tightness of the linkage.
- 4. In some cases stable gene frequency equilibria are possible only if linkage is tight enough.

Background | What it is?

Three main modes of selection in natural and artificial populations:

- Heterotic Models
- ▶ Series optimum selection
- Undirectional selection(Neutral Theory) (need picture)

Mathematics of Selection and Linkage | What is the mean?

Figure 2.—The genetic transformation, T, broken up into its components during a single generation.

Figure 1: The genetic transformation T

Evidence:

Heterosis is important, then

```
degree\ of\ heterosis = f(number\ of\ heterozygosity)
```

Hypothesis:

 ${\sf Epistatic(\quad)} ==> {\sf interaction} \ {\sf of} \ {\sf linkage} \ {\sf and} \ {\sf selection}$

Test

- ► Two-locus model
- ► Five-locus model

TABLE 3

Relative fitnesses of the nine genotypes for two-locus heterotic models

	AA	Aa	aa
BB	.40	.60	.30
Bb	.60	1.00	.50
bb	.50	.70	.40
o) Model 2: asymmetric p	eartially heterotic mode	el with epistasis	
BB	.5000	.5000	.3750
Bb	.5625	1.0000	.3125
bb	.3750	.4375	.3750
c) Model 3: mixed overdo	minance, underdomina	nce model	
BB	.90	$\overset{Aa}{.20}$.90
Bb	.20	1.00	.20
bb	.90	.20	.90

Figure 2: Relative fitness for two-locus heterotic models

TABLE 4

Results of Model 1. Symbols are as explained in the text

R	g_{00}	g_{e1}	g_{10}	g_{11}	p	r	D	D'	\overline{W}
.00	.50000	.00000	.00000	.50000	.50000	.50000	+.25000	+1.00000	.70000
	.00000	.58333	.41667	.00000	.58333	.41667	24306	-1.00000	.70836
.01	.46225	.05195	.01777	.46805	.51420	.48002	+.21543	+.92384	.69014
	.02359	.55936	.38914	.02791	.58295	.41273	21700	90191	.70378
.02	.42023	.10875	.03871	.43231	.52898	.45894	+.17746	+.82093	.6804
	.04984	.53246	.35855	.05915	.58230	.40839	18797	79042	.6890
.03	.37049	.17398	.06621	.38932	.54447	.43670	+.13272	+.66717	.6708
	.08051	.50089	.32332	.09528	.58140	.40383	15449	65799	.6795
.04									
	.11793	.46211	.28148	.13848	.58004	.39941	11374	49096	.6703
.06									
	.20082	.37418	.19621	.22879	.57500	.39703	02747	12033	.6595
.08									
	.21773	.35566	.18039	.24622	.57339	.39819	01054	04616	.6588
.10									
	.22172	.35125	.17676	.25032	.57297	.39848	00659	02886	.6587
.30									
	.22703	.34539	.17195	.25563	.57242	.39898	00135	00591	.6586
.50									
	.22766	.34473	.17141	.25620	.57239	.39907	00076	00327	.6586

Figure 3: Posults of Model1

TABLE 10

Results of five-locus experiments in Drosophila melanogaster with genes se, ss, k, e and ro. Data of Dr. Grace B. Cannon

		Population and week								
		Population 20			Population 21			Population 22		
		0	28	50	0	28	50	0	28	50
(a) Ger	ie frequ	encies								
se		.007	.102	.058	.007	.044	.073	.005	.026	.037
SS		.012	.052	.216	.012	.078	.203	.009	.106	.186
\boldsymbol{k}		.012	.026	.200	.012	.100	.177	.009	.092	.175
e		.012	.013	.174	.012	.133	.219	.009	.106	.181
ro		.007	.064	.084	.007	.066	.094	.005	.026	.048
(b) D a	$\operatorname{nd} D'$ v	alues								
ss-k	D	+ .0247 + .1408			+.0610 +.1166			+.0693 +.1328		
	D'	-	1.0000	+.8980		+.6616	+.8265		+.8426	+.9323
k- e	D	-	0003	+.1182		+.0781	+.1231		+.0823	+.1173
	D'	-	-1.0000	+.8491		+.9008	+.8905	-	-1.0000	+.8184
ss-e	D	-	0123	+.1154		+.0588	+.0907		+.0810	+.1039
	D'	_	-1.0000	+.8459		+.8695	+.5721		+.8547	+.7059

Figure 4: Results of five-locus experiments

What about the following and question?

- -Epistasis is required in order for linkage to be important in natural selection.
- -Five-locus models show *cumulative* effect of the linkage along the chromosome.