实验 3 元器件与测量基础

一、实验目的

- 1.熟悉测量验证常用元器件参数、采用替代法(测量回路电流)测量其伏安特性的方法。
- 2.熟悉测量误差及减小测量误差的注意事项。

二、实验仪器和器材

1.实验仪器

直流稳压电源型号:IT6302 台式多用表型号:UT805A

2.实验(箱)器材

电路实验箱

元器件: 电阻(1/2W:100 Ω 、470 Ω 、1k、4.7k、10k

1/4W: 470Ω); 二极管(1N4148);电容(0.1μF、

 $4.7\mu F$, $47\mu F$)

三、实验内容

- 1.观测给定元器件,用万用表检测电阻、电容;判别二极管的极性、测量二极管的正向压降;(选:判别三极管的类型和 e、b、c 三个管脚)。
- 2.选用不同档位测量, 计算相对误差。分析: 减小测量误差应选择合适的量程。
- 3.测量电阻和二极管的伏安特性。分析:电阻为线性器件,二极管为非线性器件且正向和反向的伏安特性不对称。
- 4.观测电阻超过额定功率(选:二极管超过最大允许电流时)的现象。分析:元器件工作超过极限参数时会发热损坏。

四、实验原理

- 1.常用元器件的识别与简单测试
 - 电子元器件根据封装和安装形式可分不同类 : 如分立器件与集成器件、直插式器件与表面安装器件;根据电气特性可分不同类: 如有源器件与无源器件、线性器件与非线性器件。
 - 无源器件是指没有电压、电流或功率放大能力的元器件,如电阻、电容、电感、二级管等。
 - 有源器件是指有电压、电流或功率放大作用的器件,如三极管、场效应管、运算放大器等。有源器件正常工作的基本条件是必须向器件提供相应的电源,如果没有电源,器件将无法工作。
 - 选用电子器件应熟悉其种类、特点、性能、指标、用途及使用方法。
 - 常用种类: 电阻器、电位器、电容器、电感器、二级管、三极管、场效应管、数码管和运算放大器等。
- 2.元器件的伏安特性
 - 加在元器件两端的电压 V 与元器件的电流 I 之间的关系曲线—伏安特性曲线。
 - 测试伏安特性曲线:点测法,扫描法
 - 电流测量方法:直接测量,替代法间接测量
- a. 线性电阻器件伏安特性曲线:

b. 二极管是非线性器件, 正向和反向伏安特性都是非线性的且是不对称的:

五、**实验步骤及实验数据**

- 1.用万用表检量电阻、电容及二极管、三极管
- a. 读出实验箱器件库电阻器的标称值和偏差,用万用表测量出实际电阻值。(设: 5 位半万用表准确度 0.02%±6)

电阻标称值 Rτ	100Ω	470Ω 1kΩ		1kΩ	10kΩ
允许偏差范围	0.02%±6	0.02%±6	0.02%±6	0.02%±6	0.02%±6
(测量档位)	200 档	2k 档	2k 档	20k 档	20k 档

测量值 R	98.76 Ω	0.46862k Ω	0.98901k Ω	0.9896k Ω	10.0066k Ω
偏差(实际值与标称 值)	1.24 Ω	1.38 Ω	10.99 Ω	10.4 Ω	6.6 Ω
绝对测量误差	1.24 Ω	1.38 Ω	10.99Ω	10.4 Ω	6.6 Ω
相对测量误差 β	1.24%	0.29%	1.10%	1.04%	0.07%

b. 读出实验箱器件库电容器的标称值,用万用表检测电容器质量,估测电容值。(设: 5 位半万用表测量电容准确度 0.2%±5)

电容标称值 Cτ	0.1μF (104)	4.7μF	4.7μF	47μF	
允许偏差范围	独石	钽电容	钽电容	±20% 铝电解 M-III	
漫值 C	600nF 档	6μF 档	60µF 档	60µF 档	
	99.0nf	4.916μf	4.91µf	48.30μf	
偏差(实际值与标称 值)	0.001μf	0.216μf	0.21µf	1.3µf	
测量误差β	1.00%	4.59%	4.59%	2.77%	

c. 用万用表判断实验箱器件库二极管的好坏;检测二极管的阳阴极、正向压降。(多用表 UT805A 显示"OVL.D- V" 表示反向电阻无穷大)

	1N4007	LED	LED(共阴数码管)
正向压降	0.57V	0.3	1.62
反向电阻	ovl.d	0.38	ovl.d

- d. (选) 用万用表判断给定三极管的好坏; 检测三极管的类型、极性、放大倍数。
- 2. 测量元器件伏安特性
- a. 测量电阻器伏安特性 RX(470Ω, 1/4W),
- r: 100Ω1/2W

■ 假定被测器件 RX 的阻抗及阻抗特性未知,额定功率未知;已知取样标准电阻 r 为 100 欧姆,其电压电流为线性关系。

(表格中电压 Vs 为参考电源电压设定值,要求记录实际输出测量值 Vo, Vr 取样标准电阻 r 电压测量值,Vo, Vo 取样标准电阻

参考设定 电压 Vs	0	0.5	1	1.5	2	3	6	
电源输出 电压 Vo	0.0037V	0.50184V	1.00064V	1.4996V	1.99898V	2.9973V	5.9918V	
取样电压 Vr	0.00065V	0.08717V	0.17381V	0.26052V	0.34727V	0.5208V	1.0417V	
V _{RX} =Vo-Vr	0.00305V	0.41467V	0.82683V	1.23908V	1.65171V	2.4765V	4.9501V	
I _{RX} =Vr/r	0.0065mA	0.8717mA	1.7381mA	2.6052mA	3.472mA	5.208mA	10.417mA	

b. 测量二极管伏安特性 DX(1N4148) ,r: 100

(二极管伏安特性正相反相不对称,正向反向都要测,

正向测量:

-									
	Vs	0	0.3	0.5	0.7	1	2	3	6
	Vo(V)	0.0038	0.3034	0.5029	0.7019	0.89	1.9882	2.9772	5.9422
	取样电压 Vr(V)	0	0.0002	0.01	0.0987	0.3316	1.2389	2.1869	5.0834
	$V_{DX}=Vo-Vr(V)$	0.0038	0.3032	0.5019	0.6032	0.5584	0.7493	0.7903	0.8588
	I _{DX} =Vr/r	0	0.002mA	0.1mA	0.987mA	3.316mA	12.389mA	21.869mA	50.834mA

反向测量

设定电压 Vs	-0.5	-1	-2	-3	-6	-10	
Vo(V)	-0.5	-1	-2	-3	-6	-10	
取样电压 Vr(V)	-0.5031	-1.0031	-2.0036	-3.0042	-6.0049	-10.0063	

$V_{DX}=V_{O}-V_{\Gamma}(V)$	0.0031	0.0031	0.0036	0.0042	0.0049	0.0063	
I _{DX} =Vr/r	0.031mA	0.031mA	0.036mA	0.042mA	0.049mA	0.063mA	

3.测试验证极限参数

在测量电阻 RX 伏安特性后,将电压 V 调大(可应用电源的连续调整钮),被测电阻的电压电流及功率增加,当电阻的工作功率不大于其额定功率,电阻工作正常,当电阻的工作功率超过其额定功率后,就会发热温度过高,当功率继续增加,电阻就会冒烟、烧毁。

电压升高时, 电阻温度高, 禁止直接接触小心烫伤

电压Vs	0	0.5	1	1.5	2	3	6	10	11+	20	31
Vo(V)	0.0038	0. 5022	1.001	1. 4999	1. 9993	2. 9978	5. 9916	9. 9844		19. 9658	30. 9989
取样电压Vr(V)	0. 0007	0. 0871	0. 173 9	0. 2606	0. 3475	0. 5211	1. 10433	1. 7406		3. 6195	5. 6509
$V_{RX} = V_{O} - \underline{Vr}(V)$	0. 00 31	0. 4151	0.8 217	1. 2393	1. 65 18	2. 476 7	4. 888 727	8. 243 8	11	16. 3463	25.34 8
$I_{RX} = \underline{Vr}/r$	0. 03 1mA	4. 151m A	8.2 17m A	12.393 mA	16.5 18mA	24.76 7mA	48.88 727mA	82.43 8mA		163. 463m A	253. 4 8mA
$V_{RX}XI_{RX}$	0. 09 61 μ w	1.723m w	6.7 52m w	15.359 mw	27. 2 84mw	61.34 Omw	0. 239 w	0.680 w	≥0.25W	2. 672w	6. 578 w
是否 过热冒烟烧毁		否								是	是