

Algebra

Alessandro D'Andrea

35. Diagonalizzazione

Richiami

- Abbiamo introdotto un modo nuovo di associare matrici ad applicazioni lineari
- Questo nuovo modo richiede la scelta di una base in partenza e in arrivo
- Se un operatore T : V → V è lineare, possiamo scegliere la stessa base in partenza e in arrivo
- Se la matrice associata ad un operatore lineare è diagonale, l'azione dell'operatore si comprende più facilmente.
- Oggi: Diagonalizzazione, autovalori e autovettori
- Condizioni necessarie per la diagonalizzabilità di un operatore lineare

Diagonalizzazione e autovettori SAPIENZA UNITELMA SAPIENZA UNIVERSITA DI ROMA DIPRATIMENTO DI LIBORIMATICA DI ROMA DIPRATIMENTO DI ROMA DI

Ho un'applicazione lineare $T: V \to V$. Se scelgo una base $\mathcal{B} = \{v_1, \dots, v_n\}$ di V, posso scrivere la matrice $[T]_{\mathcal{B}}^{\mathcal{B}}$.

Per un'opportuna scelta di \mathcal{B} , può capitare che la matrice corrispondente sia diagonale.

- ▶ Esiste sempre una scelta di \mathcal{B} che renda $[T]_{\mathcal{B}}^{\mathcal{B}}$ diagonale?
- ► Esiste un criterio per capire se *T* è diagonalizzabile?
- Se T è diagonalizzabile, come deve essere fatta una base diagonalizzante B?

Abbiamo già visto che se $\mathcal{B} = \{v_1, \dots, v_n\}$ diagonalizza \mathcal{T} , allora $\mathcal{T}(v_i) = \lambda_i v_i$ per un'opportuna scelta degli scalari $\lambda_i \in \mathcal{K}$.

Un vettore $0 \neq v \in V$ tale che $T(v) = \lambda v$ per qualche $\lambda \in K$ si dice autovettore di T, e il corrispondente λ è un autovalore di T.

Autovettori e autovalori

 $T: V \rightarrow V$ è un'applicazione lineare.

Se $T(v) = \lambda v$, e $v \neq 0$, allora v è un autovettore di T di autovalore $\lambda \in K$.

Posso riscrivere $T(v) = \lambda v$ equivalentemente come $T(v) - \lambda v = 0$, cioè

$$(T-\lambda\operatorname{Id})(v)=0.$$

Se v è un autovettore di T di autovalore λ , allora v è nel nucleo dell'applicazione lineare $T-\lambda$ ld. Se V ha dimensione finita, allora sono affermazioni equivalenti:

- ▶ $T \lambda$ ld ha nucleo non banale
- ► $T \lambda$ ld non è iniettiva
- $ightharpoonup T \lambda \, \text{Id non è invertibile}$
- ▶ $[T \lambda \operatorname{Id}]_{\mathcal{C}}^{\mathcal{B}}$ ha determinante 0 per ogni scelta di \mathcal{B}, \mathcal{C} di V.

Autovalori

Abbiamo un'applicazione K-lineare $T:V\to V$, definita su uno spazio vettoriale V di dimensione finita.

Se $\lambda \in K$ è un autovalore di T, allora $T - \lambda$ Id non è iniettiva, e quindi $\det[T - \lambda \operatorname{Id}]^{\mathcal{B}}_{\mathcal{C}}$ per ogni scelta di basi \mathcal{B}, \mathcal{V} di V. Per fare i conti, posso scegliere $\mathcal{B} = \mathcal{C}$.

Attenzione!

 $[T - \lambda \operatorname{Id}]_{\mathcal{B}}^{\mathcal{B}} = [\operatorname{Id}]_{\mathcal{B}}^{\mathcal{C}}[T - \lambda \operatorname{Id}]_{\mathcal{C}}^{\mathcal{C}}[\operatorname{Id}]_{\mathcal{B}}^{\mathcal{B}} = [\operatorname{Id}]_{\mathcal{B}}^{\mathcal{C}}[T - \lambda \operatorname{Id}]_{\mathcal{C}}^{\mathcal{C}}([\operatorname{Id}]_{\mathcal{B}}^{\mathcal{D}})^{-1}.$ Si dimostra che det $XMX^{-1} = \det M$, e quindi il calcolo di $\det[T - \lambda \operatorname{Id}]_{\mathcal{B}}^{\mathcal{B}}$ non dipende dalla base \mathcal{B} rispetto alla quale si è scritta la matrice!!!

La matrice associata all'applicazione identità, se la base in partenza coincide con la base in arrivo, è la matrice identità.

Cosa ottengo, calcolando il determinante di una matrice, alla quale è stato sottratto un multiplo dell'identità?

Il polinomio caratteristico

Se

$$p(x) = \det egin{pmatrix} a_{11} - x & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - x & \dots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - x \end{pmatrix},$$

allora p(x) è un polinomio in x.

L'unico monomio nell'espressione del determinante che contiene n fattori non costanti è dato dal prodotto dei coefficienti sulla diagonale principale; in tale prodotto, il termine di grado massimo è $(-1)^n x^n$.

In conclusione, p(x) è un polinomio di grado n in x, ed è noto come polinomio caratteristico della matrice (a_{ij}) .

Se V ha dimensione n, gli autovalori di $T: V \to V$ sono le radici (in K) di un polinomio $p_T(x)$ di grado n.

Un esempio - I

L'altra volta, abbiamo — per caso — messo in forma diagonale l'applicazione lineare $F:\mathbb{R}^2\to\mathbb{R}^2$ di matrice

$$[F] = \begin{pmatrix} 4 & 2 \\ -1 & 1 \end{pmatrix}$$

Gli autovalori di F sono le radici del suo polinomio caratteristico, cioè di det $[F - x \, ld]$. Calcoliamolo subito:

$$\begin{vmatrix} 4-x & 2 \\ -1 & 1-x \end{vmatrix} = (4-x)(1-x)-(-1)\cdot 2 = (x^2-5x+4)+2 = x^2-5x+6.$$

Gli autovalori sono allora le soluzioni dell'equazione $x^2 - 5x + 6 = 0$, e cioè

$$x = \frac{5 \pm \sqrt{25 - 24}}{2} = \frac{5 \pm 1}{2} = 2,3.$$

Autovalori e molteplicità

Se K è un campo, un polinomio di grado n a coefficienti in K ha al più n radici in K. Può averne di meno per due motivi:

- ► Esistono polinomi a coefficienti in *K* che non hanno radici in *K*
 - ▶ ad esempio, $x^2 + 1 = 0$ non ha soluzioni reali.
- Un polinomio può avere una radice multipla
 - Ad esempio, $x^3 + x^2 x 1$ si fattorizza come $(x + 1)^2(x 1)$. Il prodotto $(x + 1)^2(x 1)$ si annulla esattamente quando si annulla (almeno) uno dei fattori, e cioè quando x + 1 = 0, x + 1 = 0 oppure x 1 = 0. Si ottiene x = 1, -1, e si dice che -1 è una radice doppia.

Se K è un campo algebricamente chiuso (ad esempio, se $K=\mathbb{C}$), si evita il primo problema. Il secondo si evita contando ogni radice con la sua molteplicità.

Un polinomio a coefficienti complessi di grado *n* possiede *n* radici (complesse), se contate con la propria molteplicità.

Autospazi

Se sappiamo che $\lambda \in K$ è un autovalore dell'applicazione lineare $T: V \to V$, allora deve esistere almeno un autovettore di T di autovalore λ . In altre parole, $\ker(T - \lambda \operatorname{Id}) \neq \{0\}$.

 $\ker(T - \lambda \operatorname{Id})$ è un sottospazio di V, e ogni suo elemento non nullo è un autovettore di T di autovalore λ . Questo sottospazio è detto autospazio di T di autovalore λ .

Se λ non è un autovalore di T, allora $ker(T - \lambda ld) = \{0\}$.

La dimensione di $\ker(T-\lambda\operatorname{Id})$ è detta molteplicità geometrica dello scalare λ : vale 0 se λ non è autovalore di T, ed è > 0 non appena λ sia autovalore di T.

Molteplicità di autovalori - I

Situazione: V è un K-spazio vettoriale di dimensione finita, $T: V \to V$ è lineare, e $\lambda \in K$ è un autovalore di T.

La molteplicità geometrica di λ è la dimensione dell'autospazio di T relativo a λ :

$$m = \dim \ker (T - \lambda \operatorname{Id}).$$

Posso calcolare il polinomio caratteristico di T rispetto a qualsiasi base di V. Scelgo allora una base di $\ker(T - \lambda \operatorname{Id})$ e la completo ad una base $\mathcal B$ di V.

Che forma ha la matrice $[T]_{\mathcal{B}}^{\mathcal{B}}$?

$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} \lambda \operatorname{\mathsf{Id}}_{m \times m} & X \\ 0_{k \times m} & M \end{pmatrix},$$

dove M è una matrice quadrata $k \times k$ e X una matrice $m \times k$.

Molteplicità di autovalori - II

$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} \lambda \operatorname{Id}_{m \times m} & X \\ 0_{k \times m} & M \end{pmatrix}.$$

Calcoliamone il polinomio caratteristico, utilizzando ripetutamente lo sviluppo di Laplace lungo le prime colonne:

$$p_T(x) = \det\begin{pmatrix} (\lambda - x) \operatorname{Id}_{m \times m} & X \\ 0_{k \times m} & M - x \operatorname{Id}_{k \times k} \end{pmatrix} = \pm (x - \lambda)^m p_M(x).$$

In conclusione, λ — se contata con la sua molteplicità — è radice di $p_T(x)$ almeno m volte.

La molteplicità algebrica di un autovalore è pari almeno alla molteplicità geometrica dello stesso autovalore.

Se λ è un autovalore di T, allora

$$m_a(\lambda) \geq m_g(\lambda) \geq 1$$
.

Diagonalizzazione - I

Come posso sperare di diagonalizzare un'applicazione lineare $T: V \to V$? (dim $V < \infty$)

- ► Calcolo gli autovalori di T
 - ▶ calcolo il polinomio caratteristico di T e poi ne calcolo le radici
- Calcolo gli autospazi di T relativi a ciascun autovalore
 - l'autospazio relativo a λ è ker($T \lambda \operatorname{Id}$), e basta quindi risolvere un sistema di equazioni lineari per ciascun autovalore
- Cerco di formare una base di autovettori di T
 - il meglio che posso fare è scegliere un po' di vettori linearmente indipendenti in ciascun autospazio e mettere tutto insieme, sperando di ottenere una base di V
 - ma il numero di vettori che posso scegliere nel λ -autospazio non supera $m_q(\lambda)$
 - e $m_g(\lambda) \leq m_a(\lambda)$
 - e la somma delle $m_a(\lambda)$ è minore o uguale del grado del polinomio caratteristico, che è dim V.

Il meglio che posso fare è scegliere una base da ciascun autospazio, mettere tutto insieme, e sperare di ottenere una base di V.

Diagonalizzazione - II

Quali sono i possibili problemi in questa strategia?

- La somma delle molteplicità algebriche degli autovalori può essere inferiore al grado del polinomio caratteristico (cioè a dim V)
 - Non accade se utilizziamo un campo K algebricamente chiuso, ma può effettivamente accadere per altre scelte. Questo può essere un problema nel caso $K = \mathbb{R}$, ad esempio.
- La molteplicità geometrica di qualche autovalore può essere inferiore alla sua molteplicità algebrica
 - Questo può accadere, ed è il motivo più comune di non diagonalizzabilità di un'applicazione lineare.
- I vettori che metto insieme, anche se nel numero giusto, non risultano linearmente indipendenti
 - Se sono nel numero giusto (cioè: $m_g(\lambda) = m_a(\lambda)$ per ogni autovalore λ , e inoltre $\sum m_a(\lambda) = \dim V$), sono sempre linearmente indipendenti. Lo vedremo nella prossima lezione.

Un esempio - II

Torniamo all'esempio visto prima: abbiamo già calcolato che gli autovalori dell'applicazione lineare $T: \mathbb{R}^2 \to \mathbb{R}^2$ di matrice

$$[F] = \begin{pmatrix} 4 & 2 \\ -1 & 1 \end{pmatrix}$$

sono 2 e 3. Per determinare gli autospazi, è sufficiente calcolare ker(F-2 ld) e ker(F-3 ld). Iniziamo col primo:

$$\begin{pmatrix} 4-2 & 2 \\ -1 & 1-2 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ -1 & -1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}.$$

Possiamo concludere che $\ker(T-2\operatorname{Id})=\langle (-1,1)\rangle$. Proviamo col secondo autovalore:

$$\begin{pmatrix} 4-3 & 2 \\ -1 & 1-3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix},$$

e quindi $\ker(T-3 \text{ Id}) = \langle (-2,1) \rangle$. La base era stata trovata così!