

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-18 EXAMINATION

Subject Name: Basic Mathematics <u>Model Answer</u> Subject Code: 22103

Important Instructions to Examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answers	Marking Scheme
1.		Attempt any five of the following:	10
	a)	Evaluate log ₃ 81	02
	Ans	$\log_3 81$	02
		$=\log_3(3)^4$	1/2
		$=4\log_3 3$	1/2
		=4(1)	1/2
		=4	1/2
			, -
		OR log 81	
		$\log_3 81$ OR	
		$= \frac{\log 81}{\log 3}$ Let $\log_3 81 = x$	1/2
		$=\frac{\log(3)^4}{\log 3}$ $3^x = 81$	1/2
		$=\frac{4\log 3}{\log 3}$ $3^x = 3^4$	1/2
		=4 $x=4$	1/2
	b)	Find the area of the triangle whose vertices are $(4,3)(1,4)$ and $(2,3)$.	02
	Ans	Let $(x_1, y_1) = (4,3), (x_2, y_2) = (1,4)$ and $(x_3, y_3) = (2,3)$	

Subject Name: Basic Mathematics

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-18 EXAMINATION Model Answer

Subject Code: 22103

	•	<u>Moder Answer</u>	J
Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	b)	$A = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ $= \frac{1}{2} \begin{vmatrix} 4 & 3 & 1 \\ 1 & 4 & 1 \\ 2 & 3 & 1 \end{vmatrix}$	1
		$= \frac{1}{2} \left[4(4-3) - 3(1-2) + 1(3-8) \right]$ = 1	1
	c)	Find the value of $\sin(15^{\circ})$ using compound angles	02
	Ans	$\sin(15^{\circ})$	
		$=\sin(45^{\circ}-30^{\circ})$	1/2
		$= \sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}$	1/2
		$= \left(\frac{1}{\sqrt{2}}\right) \left(\frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{2}\right)$	1/2
		$=\frac{\sqrt{3}-1}{2\sqrt{2}}$ or 0.2588	1/2
		$\frac{\mathbf{OR}}{\sin(15^{\circ})}$	
		$=\sin\left(60^{0}-45^{0}\right)$	1/2
		$= \sin 60^{\circ} \cos 45^{\circ} - \cos 60^{\circ} \sin 45^{\circ}$	1/2
		$= \left(\frac{\sqrt{3}}{2}\right) \left(\frac{1}{\sqrt{2}}\right) - \left(\frac{1}{2}\right) \left(\frac{1}{\sqrt{2}}\right)$	1/2
		$=\frac{\sqrt{3}-1}{2\sqrt{2}}$ or 0.2588	1/2
	d)	Find the area of rhombus whose diagonals are 6 cm and 9 cm.	02
	Ans	Area of rhombus = $\frac{1}{2}(d_1 \times d_2)$	
		$=\frac{1}{2}(6\times9)$	1

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

,	•		105
Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	d)	Area of rhombus = 27	1
	e) Ans	The length , breadth and height of a cuboid are 8 cm,11 cm and 15 cm respectively. Find the total surface area. Let $l=8$, $b=11$, $h=15$ Total surface Area of a cuboid = $2[lb+bh+hl]$	02
			1
		$=2[8\times11+11\times15+15\times8]$	1
		= 746	1
	f)	Find the range of the data: 14, 18, 22, 35, 42, 44, 8, 7, 5 and 2	02
	Ans	Range = L - S $= 44 - 2$	1
		= 44 - 2 $= 42$	
		— 4 2	1
	g)	If mean is 34.5 and standard deviation is 5 find the coefficient of variance.	02
	Ans	Coefficient of variance = $\frac{\sigma}{x} \times 100$	
		$=\frac{\frac{x}{5}}{34.5} \times 100$	1
		=14.493	1
2.		Attempt any three of the following:	12
	a)	If $A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$ prove that $A^2 = I$	04
	Ans	$A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Q.	Sub	Answers	Marking
No.	Q. N.	/ WISWEIS	Scheme
2.	a)	$A^2 = AA$	
		$\begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 & -1 \end{bmatrix}$	
		$= \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$	
		$ \begin{bmatrix} 0+4-3 & 0-3+3 & 0+4-4 \\ 0-12+12 & 4+9-12 & -4-12+16 \end{bmatrix} $	
		$= \begin{vmatrix} 0-12+12 & 4+9-12 & -4-12+16 \end{vmatrix}$	2
		$\begin{bmatrix} 0-12+12 & 3+9-12 & -3-12+16 \end{bmatrix}$	
		$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
		$= \begin{vmatrix} 0 & 1 & 0 \end{vmatrix}$	2
		$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$	
		=I	
		$\therefore A^2 = I$	
		$x^2 + 23x$	
	b)	Resolve into partial fractions: $\frac{x^2 + 23x}{(x+3)(x^2+1)}$	04
		$\frac{x^2 + 23x}{(x+3)(x^2+1)} = \frac{A}{x+3} + \frac{Bx+C}{x^2+1}$	
	Ans	$(x+3)(x^2+1)$ $x+3$ x^2+1	1/2
		$\therefore x^2 + 23x = (x^2 + 1)A + (x + 3)(Bx + C)$	
		Put $x = -3$	
		$(-3)^2 + 23(-3) = ((-3)^2 + 1)A$	
		$\therefore -60 = 10A$	1
		$\therefore A = -6$	1
		Put $x = 0$	
		$\therefore 0 = (1)A + (3)(0+C)$	
		$\therefore 0 = -6 + 3C$	1
		$\therefore C = 2$	
		Put $x = 1$	
		$\therefore 24 = 2(-6) + 4B + 4(2)$	1
		$\therefore B = 7$	
		$\therefore \frac{x^2 + 23x}{(x+3)(x^2+1)} = \frac{-6}{x+3} + \frac{7x+2}{x^2+1}$	1/2
		$(x+3)(x^2+1)$ $x+3$ x^2+1	

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

	,	inc. busic Mathematics inoder Answer Subject code.		
Q. No.	Sub Q.N.	Answers	Mar Sch	
2.	c)	Solve the following equations by Cramer's rule: x + y + z = 2 y + z = 1 x + z = 3	0	4
	Ans	$D = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix}$ $= 1(1-0)-1(0-1)+1(0-1)=1$ $D_x = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 3 & 0 & 1 \end{vmatrix}$	1	-
		$= 2(1-0)-1(1-3)+1(0-3)=1$ $\therefore x = \frac{D_x}{D} = \frac{1}{1} = 1$	1	Ĺ
		$D_{y} = \begin{vmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 3 & 1 \end{vmatrix}$ $= 1(1-3) - 2(0-1) + 1(0-1) = -1$ $\therefore y = \frac{D_{y}}{D} = \frac{-1}{1} = -1$	1	
		$D_z = \begin{vmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 3 \end{vmatrix}$ $= 1(3-0)-1(0-1)+2(0-1)=2$ $\therefore z = \frac{D_z}{D} = \frac{2}{1} = 2$	1	

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Q. No.	Sub Q. N.	Answers Sc.								
2.	d)	Find mean of the fo	Find mean of the following data:							
		Class - Interval	0-10	10-20	20-30	30-40	40-50			
		Frequency	3	5	8	3	1			
	Ans			lass- erval	X_i	f_i	$f_i x_i$			
)-10	5	3	15			
				0-20	15	5	75		2	
				0-30	25	8	200			
				0-40	35	3	105			
			4	0-50	45	20	45			
						20	440			
		$\text{Mean } \bar{x} = \frac{\sum f_i x_i}{N}$								
		$\therefore \bar{x} = \frac{440}{20}$							1	
		$\therefore x = 22$							1	
3.		Attempt any three	of the fo	llowing:					12	
	a)	If $\tan A = \frac{1}{2}$, $\tan B = \frac{1}{3}$, find the value of $\tan (A + B)$							04	
	Ans	$\tan\left(A+B\right) = \frac{\tan A}{1-\tan A}$								
		$-\frac{1}{2}$	$-\frac{1}{3}$						2	
		$=\frac{\frac{1}{2}}{1-\left(\frac{1}{2}\right)}$	$\sqrt{\left(\frac{1}{2}\right)}$							
		=1)(3)						2	

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	b)	Prove: $\tan\left(\frac{\pi}{4} + A\right) = \frac{\cos A + \sin A}{\cos A - \sin A}$	04
	Ans	$\tan\left(\frac{\pi}{4} + A\right)$	
		$= \frac{\tan\frac{\pi}{4} + \tan A}{1 - \tan\frac{\pi}{4} \tan A}$	1
		$=\frac{1+\tan A}{1-\tan A}$	1
		$= \frac{1 + \frac{\sin A}{\cos A}}{1 - \frac{\sin A}{\cos A}}$	1
		$=\frac{\cos A + \sin A}{\cos A - \sin A}$	1
		<u>OR</u>	
		$\frac{\cos A + \sin A}{\cos A - \sin A}$	
		$= \frac{1 + \frac{\sin A}{\cos A}}{1 - \frac{\sin A}{\cos A}}$	1
		$= \frac{1 + \tan A}{1 - \tan A}$	1
		$= \frac{\tan \frac{\pi}{4} + \tan A}{1 - \tan \frac{\pi}{4} \tan A}$	1
		$= \tan\left(\frac{\pi}{4} + A\right)$	1
	c)	Prove: $\frac{\sin 4A + \sin 5A + \sin 6A}{\cos 4A + \cos 5A + \cos 6A} = \tan 5A$	04

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

	=		
Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	c)	$\sin 4A + \sin 5A + \sin 6A$	
	A	$\frac{1}{\cos 4A + \cos 5A + \cos 6A}$	
	Ans		
		$= \frac{\left(\sin 4A + \sin 6A\right) + \sin 5A}{\left(\cos 4A + \cos 6A\right) + \cos 5A}$	
		$= \frac{2\sin\left(\frac{4A+6A}{2}\right)\cos\left(\frac{4A-6A}{2}\right)+\sin 5A}{2\cos\left(\frac{4A+6A}{2}\right)\cos\left(\frac{4A-6A}{2}\right)+\cos 5A}$	
		$=\frac{2}{(4A+6A)(4A-6A)}$	2
		$= \frac{2\sin 5A\cos(-A) + \sin 5A}{2\cos 5A\cos(-A) + \cos 5A}$	1
		$-2\cos 5A\cos(-A)+\cos 5A$	
		$\sin 5A \left[2\cos(-A) + 1 \right]$	
		$= \frac{\sin 5A \left[2\cos(-A) + 1 \right]}{\cos 5A \left[2\cos(-A) + 1 \right]}$	1/2
		$= \tan 5A$	1/2
		(4) (22)	
	d)	Prove: $\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$	04
	Ans	Let $\cos^{-1}\left(\frac{4}{5}\right) = A$	
		$\therefore \cos A = \frac{4}{5}$	
		$\therefore \sin^2 A = 1 - \cos^2 A$	
		$=1-\frac{16}{25}$	
		9	
		$=\frac{25}{25}$	
		$= \frac{9}{25}$ $\therefore \sin A = \frac{3}{5}$	1
		5	1
		$\cos^{-1}\left(\frac{12}{13}\right) = B$	
		$\therefore \cos B = \frac{12}{13}$	
		$\therefore \sin^2 B = 1 - \cos^2 B$	
		$\therefore \sin^2 B = 1 - \frac{144}{169}$	

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Q.	Sub		Marking
No.	Q.N.	Answers	Scheme
3.	d)	$\therefore \sin^2 B = \frac{25}{169}$	
		$\therefore \sin B = \frac{5}{13}$	1
		$\therefore \cos(A+B) = \cos A \cos B - \sin A \sin B$	
		$= \left(\frac{4}{5}\right) \left(\frac{12}{13}\right) - \left(\frac{3}{5}\right) \left(\frac{5}{13}\right)$	1
		$=\frac{48}{65} - \frac{15}{65}$	
		$\therefore \cos\left(A+B\right) = \frac{33}{65}$	
		$\therefore A + B = \cos^{-1}\left(\frac{33}{65}\right)$	1/2
		$\therefore \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$	1/2
		<u>OR</u>	
		Let $\cos^{-1}\left(\frac{4}{5}\right) = A$ $\therefore \cos A = \frac{4}{5}$ 5 3	
		$\therefore \tan A = \frac{3}{4}$	
		$A = \tan^{-1}\left(\frac{3}{4}\right)$	
		$\therefore \cos^{-1}\left(\frac{4}{5}\right) = \tan^{-1}\left(\frac{3}{4}\right)$	1
		$\cos^{-1}\left(\frac{12}{13}\right) = B$	
		$\therefore \cos B = \frac{12}{13}$	
		$\therefore \tan B = \frac{5}{12}$	

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Subject Name: Basic Mathematics

Model Answer

Subject Code:

22103

Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	d)	$B = \tan^{-1}\left(\frac{5}{12}\right)$ $\therefore \cos^{-1}\left(\frac{12}{13}\right) = \tan^{-1}\left(\frac{5}{12}\right)$ $L.H.S. = \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{5}{12}\right)$	1
		$= \tan^{-1} \left(\frac{\frac{3}{4} + \frac{5}{12}}{1 - \left(\frac{3}{4}\right)\left(\frac{5}{12}\right)} \right)$ $= \tan^{-1} \left(\frac{56}{33}\right)$	1/2
		Let $\tan^{-1}\left(\frac{56}{33}\right) = C$ $\therefore \tan C = \frac{56}{33}$ 56	
		$\therefore \cos C = \frac{33}{65}$ $\therefore C = \cos^{-1}\left(\frac{33}{65}\right)$ $\therefore \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$	1
4.	a)	Attempt any three of the following: If $A = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix}$ show that $A^2 - 8A$ is scalar matrix.	12 04
	Ans	$A^2 - 8A$ $= A.A - 8A$	

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

	G 1		
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	a)	$ \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix} - 8 \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix} = \begin{bmatrix} 36 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 32 & 36 \end{bmatrix} - \begin{bmatrix} 16 & 32 & 32 \\ 32 & 16 & 32 \\ 32 & 32 & 16 \end{bmatrix} \begin{bmatrix} 20 & 0 & 0 \end{bmatrix} $	2+1
		$= \begin{bmatrix} 20 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 20 \end{bmatrix}$ $\therefore A^2 - 8A \text{ is scalar matrix}$	1
	b)	Resolve into partial fraction: $\frac{3x-1}{(x-4)(x+1)(x-1)}.$	04
	Ans	$\frac{3x-1}{(x-4)(x+1)(x-1)} = \frac{A}{x-4} + \frac{B}{x+1} + \frac{C}{x-1}$	1/2
		$\therefore 3x - 1 = A(x+1)(x-1) + B(x-4)(x-1) + C(x-4)(x+1)$ Put $x = 4$	
		$3(4)-1 = A(4+1)(4-1)$ $\therefore 11 = 15A$ 11	1
		$A = \frac{11}{15}$ Put $x = -1$ $3(-1) - 1 = B(-1 - 4)(-1 - 1)$	
		$\therefore -4 = B(-5)(-2)$ $\therefore B = \frac{-2}{5}$	1
		Put $x = 1$ 3(1)-1 = C(1-4)(1+1) $\therefore 2 = C(-3)(2)$	
		$\therefore 2 = C(-3)(2)$ $\therefore C = \frac{-1}{3}$	1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103	
---------------------------------	--------------	---------------	-------	--

Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	b)	$\therefore \frac{3x-1}{(x-4)(x+1)(x-1)} = \frac{\frac{11}{15}}{x-4} + \frac{\frac{-2}{5}}{x+1} + \frac{\frac{-1}{3}}{x-1}$	1/2
	c)	Prove that $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 60^{\circ} \cdot \cos 80^{\circ} = \frac{1}{16}$	04
	Ans	$\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{2} (2\cos 20^{\circ} \cos 40^{\circ}) \cdot \left(\frac{1}{2}\right) \cos 80^{\circ}$	1/2
		$= \frac{1}{4} \left[\cos \left(20^{\circ} + 40^{\circ} \right) + \cos \left(20^{\circ} - 40^{\circ} \right) \right] \cos 80^{\circ}$	1/2
		$=\frac{1}{4}\left[\cos\left(60^{\circ}\right)+\cos\left(-20^{\circ}\right)\right]\cos 80^{\circ}$	1/2
		$= \frac{1}{4} \left[\frac{1}{2} \cos 80^{\circ} + \cos 20^{\circ} \cos 80^{\circ} \right]$	
		$= \frac{1}{4} \left[\frac{1}{2} \cos 80^{\circ} + \frac{1}{2} \left(2 \cos 20^{\circ} \cos 80^{\circ} \right) \right]$	1/2
		$= \frac{1}{8} \left[\cos 80^{\circ} + \cos \left(20^{\circ} + 80^{\circ} \right) + \cos \left(20^{\circ} - 80^{\circ} \right) \right]$	1/2
		$=\frac{1}{8}\left[\cos 80^{\circ} + \cos \left(100^{\circ}\right) + \cos \left(-60^{\circ}\right)\right]$	
		$= \frac{1}{8} \left[\cos 80^{\circ} + \cos \left(180 - 80^{\circ} \right) + \frac{1}{2} \right]$	1/2
		$=\frac{1}{8}\left[\cos 80^{\circ} - \cos \left(80^{\circ}\right) + \frac{1}{2}\right]$	1/2
		$=\frac{1}{16}$	1/2
			0.4
	d)	Prove: $\sin A \cdot \sin (60 - A) \cdot \sin (60 + A) = \frac{1}{4} \sin 3A$.	04
	Ans	$L.H.S. = \sin A.\sin(60 - A).\sin(60 + A)$	
		$= \sin A \left(\sin 60 \cos A - \cos 60 \sin A \right) \left(\sin 60 \cos A + \cos 60 \sin A \right)$	1/2
		$= \sin A \left[\frac{\sqrt{3}}{2} \cos A - \frac{1}{2} \sin A \right] \left[\frac{\sqrt{3}}{2} \cos A + \frac{1}{2} \sin A \right]$	1
1	1		1

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER - 18 EXAMINATION

Sub	ject Nai	me: Basic Mathematics <u>Model Answer</u> Subject Code: 22	2103	
Q. No.	Sub Q.N.	Answers		arking theme
4.	d)	$L.H.S. = sinA \left[\left(\frac{\sqrt{3}}{2} cosA \right)^2 - \left(\frac{1}{2} sinA \right)^2 \right]$		1/2
		$= \sin A \left[\frac{3}{4} \cos^2 A - \frac{1}{4} \sin^2 A \right]$		
		$=\frac{1}{4}\sin A\left[3\cos^2 A-\sin^2 A\right]$		1/2
		$= \frac{1}{4} \sin A \left[3 \left(1 - \sin^2 A \right) - \sin^2 A \right]$		
		$= \frac{1}{4}\sin A \left[3 - 3\sin^2 A - \sin^2 A\right]$		1/2
		$= \frac{1}{4} [3 \sin A - 3 \sin^3 A - \sin^3 A]$		
		$= \frac{1}{4} \left[3\sin A - 4\sin^3 A \right]$		1/2
		$= \frac{1}{4} \sin 3 A = R.H.S.$		1/2
		(1)		0.4
	e)	Prove: $\tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) = \cos^{-1}\left(\frac{9}{2}\right)$		04
	Ans	$L.H.S. = \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right)$		

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

	-	inc. busic with the children in the same in the control of the con	
Q. No.	Sub Q.N.	Answers	Marking Scheme
5.		Attempt any two of the following:	12
	a)	Attempt the following:	
			06
	(i)	Find the equation of straight line passes through the points $(-4,6)$ and $(8,-3)$.	03
	Ans	Let $(x_1, y_1) = (-4, 6)$ and $(x_2, y_2) = (8, -3)$	
		Equation of line is,	
		$\underline{y-y_1} = \underline{x-x_1}$	
		$y_1 - y_2 \qquad x_1 - x_2$	
		$\therefore \frac{y-6}{6+3} = \frac{x+4}{-4-8}$	2
		$\therefore \frac{y-6}{9} = \frac{x+4}{-12}$	
		$\therefore -12y + 72 = 9x + 36$	
		$\therefore 9x + 12y - 36 = 0$	1
		or	
		3x + 4y - 12 = 0	
	(ii)	Find the equation of line passing through the point $(2,5)$ and through the intersection of the	03
		lines $x + y = 0$ and $2x - y = 9$.	
	Ans	Let $(x_1, y_1) = (2,5)$	
		x + y = 0	
		2x - y = 9	
		3x = 9	
		x = 3	
		$\therefore y = -3$	
		$\therefore (x_2, y_2) = (3, -3)$	1
		Equation of line is,	
		$\underline{y-y_1} = \underline{x-x_1}$	
		$y_1 - y_2 \qquad x_1 - x_2$	
		$\therefore \frac{y-5}{5+3} = \frac{x-2}{2-3}$	1
		5+3 2-3	

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
5.	a)(ii)	$\therefore \frac{y-5}{8} = \frac{x-2}{-1}$ $\therefore -y+5 = 8x-16$	
		$\therefore 8x + y - 21 = 0$	1
	b)	Attempt the following:	06
	(i) Ans	Find the acute angle between the lines $3x + 2y + 4 = 0$ and $2x - 3y - 7 = 0$. For $3x + 2y + 4 = 0$,	03
		slope $m_1 = \frac{-a}{b} = \frac{-3}{2}$ For $2x - 3y - 7 = 0$,	1/2
		slope $m_2 = \frac{-a}{b} = \frac{-2}{-3} = \frac{2}{3}$	1/2
		$\therefore \tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $	
		$= \frac{\frac{-3}{2} - \frac{2}{3}}{1 + \left(\frac{-3}{2}\right)\left(\frac{2}{3}\right)}$	1
		$\therefore \tan \theta = \infty$	1/2
		$\therefore \theta = \tan^{-1}(\infty)$	
		$\therefore \theta = 90^0 \text{or} \frac{\pi}{2}$	1/2
		<u>OR</u>	
		Consider $m_1 m_2 = \left(\frac{-3}{2}\right) \left(\frac{2}{3}\right)$	1
		=-1 	1
		∴ $m_1 m_2 = -1$ ∴ Lines are perpendicular	
		$\therefore \theta = 90^0 \text{or} \frac{\pi}{2}$	1

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

	C1-		
Q. No.	Sub Q.N.	Answers	Marking Scheme
110.	Q.11.		Scrieme
5.	b)(ii)	Find the distance between lines $3x + 2y = 5$ and $6x + 4y = 6$	03
	Ans	$L_1: 3x + 2y - 5 = 0$ and $L_2: 6x + 4y - 6 = 0$	
	11110	$\therefore L_1: 6x + 4y - 10 = 0$ and $L_2: 6x + 4y - 6 = 0$	
		$\therefore a = 6$, $b = 4$, $c_1 = -10$ and $c_2 = -6$	
		$c_0 - c_1$	
		$d = \left \frac{c_2 - c_1}{\sqrt{a^2 + b^2}} \right $	
		6 10	
		$=\left \frac{-6+10}{\sqrt{6^2+4^2}}\right $	2
		$=\left \frac{4}{\sqrt{52}}\right $	1
		$=0.555$ or $\frac{2}{\sqrt{13}}$	
		V13	
			06
	c)	Attempt the following:	
	(i)	A square grassy plot is of side 100 metre. It has a gravel path 10 metres wide all round it on the	03
		inside. Find the area of path.	
	Ans	Area of path = Area of grassy plot – Area of inner square of grassy plot	
		$=(100)^2-(80)^2$	2
		= 3600	
			1
	٥)(::)	TT 1 2 2 3 TT 1 2 2 2 2 3 TT 1 2 2 2 2 3 TT 1 2 2 2 3 TT 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	c)(ii)	The volume of cube is 1000 cm ³ . Find its total surface area.	03
	Ans	Let side of cube $= l$	
		$\therefore \text{ volume of cube} = l^3 = 1000$	1
		$\therefore l = 10$	_
		Total surface area of cube = $6l^2$	
		$=6(10)^{2}$	1
		= 600	1
6.		Attempt any two of the following:	12
	a)	Find mean, standard deviation and coefficient of variance of the following data:	

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

	Sub												Marking
Q. No.	Q.N.					Answ	vers						Marking Scheme
6.	a)		Class-Interval	0-10	10-20	20-3	30	30-40	40-50				06
			Frequency	3	5	8		3	1				
			,			1							
	Ans		Class Interval	X_i	f_i	$f_i x_i$	d_{i}	$=\frac{x_i-a}{h}$	$\frac{a}{f_i}$	$d_i = d_i^2$	f_i	$\frac{1}{i}d_i^2$	
			0-10	5	3	15		-2	-6	4	_	12	
			10-20	15	5	75		-1	-5	1		5	
			20-30	25	8	200		0	0	0		0	3
			30-40	35	3	105		1	3	1		3	
			40-50	45	1	45		2	2	4		4	
					20	440			-6		2	24	
		$\vec{x} = \vec{x}$ $\vec{x} = \vec{x}$		$\frac{\sum f_i d_i}{N}$	$\frac{1}{2} \times h$								1
			$= \sqrt{\frac{24}{20} - \left(\frac{-6}{20}\right)^2} \times $ $= 10.54$ $= 10.54$ $= -\frac{1}{20}$:10)								1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103	
•		•		Ĺ

	Sub								NA pulsina a
Q. No.	Q. N.				Ansv	vers			Marking Scheme
6.	a)	OR							
			Class erval	X_i	f_i	$f_i x_i$	x_i^2	$f_i x_i^2$	
		(0-10	5	3	15	25	75	
		1	0-20	15	5	75	225	1125	3
		2	0-30	25	8	200	625	5000	
		3	0-40	35	3	105	1225	3675	
		4	0-50	45	1	45	2025	2025	
					20	440		11900	
		Mean $\overline{x} = \frac{\sum f_i x}{N}$ $\therefore \overline{x} = \frac{440}{20}$ $\therefore \overline{x} = 22$ S.D. $\sigma = \sqrt{\frac{\sum f_i x}{N}}$							1
		S.D. $\sigma = \sqrt{\frac{\sum f_i x}{N}}$ $= \sqrt{\frac{1190}{20}}$ $\sigma = 10.54$	$\frac{100}{100}$ $-(22)^2$						1
		Coefficient of va	=	$\frac{\sigma}{x} \times 100$ $\frac{10.54}{22} \times 10$ 47.91	0				 1

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Sub	ject Nan	ne: Basic Mathema	atics		Model Ar	<u>ıswer</u>		Subject Code:	221	03	
Q. No.	Sub Q. N.				An	swers		,		Mark Sche	
6.	b)	Attempt the following:									6
	(i)	Find mean for the	e follow	ing data:							
		Class-Interval	10-20	20-30	30-4	0 40-5	0 50-60	0 60-70		0	3
		Frequency	4	6	10	18	9	3			
	Ans							_			
	7 1115		C	Class	x_i	f_i	$f_i x_i$				
				10-20	15	4	60				
				20-30	25	6	150				
				30-40	35	10	350			2	2
				40-50	45	18	810				
				50-60	55	9	495				
				60-70	65	3	195				
						50	2060				
	b)(ii)	Mean $\overline{x} = \frac{\sum f_i x_i}{N}$ $\therefore \overline{x} = \frac{2060}{50}$ $\therefore \overline{x} = 41.2$ The two sets of o		_	ven below:	Set-II				1/2	½
					$\bar{x} = 82.5$	$\bar{x} = 48.75$					
					$\sigma = 7.3$	$\sigma = 8.35$					
		Which of the two	sets is n	nore con	sistent?						

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

		<u> </u>		
Q. No.	Sub Q. N.	Answers	Mark Sche	
			00.10	
6.	b)(ii) Ans	Coefficient of variance $V = \frac{\sigma}{x} \times 100$		
		For set-I		
		$V_1 = \frac{7.3}{82.5} \times 100$		
		$\therefore V_1 = 8.848$	1	
		For set-II		
		$V_2 = \frac{8.35}{48.75} \times 100$		
		$V_2 = 17.128$	1	
		$\therefore V_1 < V_2$		
		∴ Set-I is more consistent.	1	
	c)	Solve the following equations by matrix inversion method:		
			0	5
		x+3y+2z=6, $3x-2y+5z=5$, $2x-3y+6z=7$.		
	Ans	Let $A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & -2 & 5 \\ 2 & -3 & 6 \end{bmatrix}$, $B = \begin{bmatrix} 6 \\ 5 \\ 7 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$		
		$ A = \begin{vmatrix} 1 & 3 & 2 \\ 3 & -2 & 5 \\ 2 & -3 & 6 \end{vmatrix}$		
		A = 1(-12+15)-3(18-10)+2(-9+4)		
		A = -31	1	
		$\therefore A \neq 0$		
		$\therefore A^{-1}$ exists		

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Q. No.	Sub Q. N.	Answers	Marking Scheme
6.	c)	Matrix of minors = $\begin{bmatrix} \begin{vmatrix} -2 & 5 \\ -3 & 6 \end{vmatrix} & \begin{vmatrix} 3 & 5 \\ 2 & 6 \end{vmatrix} & \begin{vmatrix} 3 & -2 \\ 2 & -3 \end{vmatrix} \\ \begin{vmatrix} 3 & 2 \\ -3 & 6 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 2 & 6 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 2 & -3 \end{vmatrix} \\ \begin{vmatrix} 3 & 2 \\ -2 & 5 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 3 & 5 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 3 & -2 \end{vmatrix} \end{bmatrix}$ $= \begin{bmatrix} 3 & 8 & -5 \\ 24 & 2 & -9 \\ 19 & -1 & -11 \end{bmatrix}$	1
		$\begin{bmatrix} 2 & 2 & 3 \\ 19 & -1 & -11 \end{bmatrix}$ Matrix of cofactors = $\begin{bmatrix} 3 & -8 & -5 \\ -24 & 2 & 9 \end{bmatrix}$	
		$\begin{bmatrix} 19 & 1 & -11 \end{bmatrix}$ OR	1
		$\begin{vmatrix} C_{11} = + \begin{vmatrix} -2 & 5 \\ -3 & 6 \end{vmatrix} = 3 & , & C_{12} = -\begin{vmatrix} 3 & 5 \\ 2 & 6 \end{vmatrix} = -8 & , & C_{13} = + \begin{vmatrix} 3 & -2 \\ 2 & -3 \end{vmatrix} = -5 $ $\begin{vmatrix} C_{21} = -\begin{vmatrix} 3 & 2 \\ -3 & 6 \end{vmatrix} = -24 & , & C_{22} = + \begin{vmatrix} 1 & 2 \\ 2 & 6 \end{vmatrix} = 2 & , & C_{23} = -\begin{vmatrix} 1 & 3 \\ 2 & -3 \end{vmatrix} = 9$	
		$\begin{vmatrix} C_{31} = + \begin{vmatrix} 3 & 2 \\ -2 & 5 \end{vmatrix} = 19 , C_{32} = -\begin{vmatrix} 1 & 2 \\ 3 & 5 \end{vmatrix} = 1 , C_{33} = + \begin{vmatrix} 1 & 3 \\ 3 & -2 \end{vmatrix} = -11$ $\text{Matrix of cofactors} = \begin{bmatrix} 3 & -8 & -5 \\ -24 & 2 & 9 \\ & & & & & & & & & & & & & & & & &$	
			2
		$Adj.A = \begin{bmatrix} 3 & -24 & 19 \\ -8 & 2 & 1 \\ -5 & 9 & -11 \end{bmatrix}$	1/2
		$A^{-1} = \frac{1}{ A } \text{Adj.} A$ $= \frac{1}{-31} \begin{bmatrix} 3 & -24 & 19 \\ -8 & 2 & 1 \\ -5 & 9 & -11 \end{bmatrix}$	1/2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Subject Name: Basic Mathematics	<u>Model Answer</u>	Subject Code:	22103	
---------------------------------	---------------------	---------------	-------	--

Q. No.	Sub Q. N.	Answers	Marking Scheme
6.	c)	$ \begin{aligned} X &= A^{-1}B \\ \begin{bmatrix} x \\ y \\ z \end{bmatrix} &= \frac{1}{-31} \begin{bmatrix} 3 & -24 & 19 \\ -8 & 2 & 1 \\ -5 & 9 & -11 \end{bmatrix} \begin{bmatrix} 6 \\ 5 \\ 7 \end{bmatrix} \\ \begin{bmatrix} x \\ y \\ z \end{bmatrix} &= \frac{1}{-31} \begin{bmatrix} 18 - 120 + 133 \\ -48 + 10 + 7 \\ -30 + 45 - 77 \end{bmatrix} \\ \begin{bmatrix} x \\ y \\ z \end{bmatrix} &= \frac{1}{-31} \begin{bmatrix} 31 \\ -31 \\ -62 \end{bmatrix} \\ \begin{bmatrix} x \\ y \\ z \end{bmatrix} &= \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} \\ \therefore x &= -1, y = 1, z = 2 \end{aligned} $	1
		<u>Important Note</u>	
		In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.	