Capitolo 6: Spazi Euclidei, sottospazi, teorema di Pitagora, complemento ortogonale #GAL

Definizione:

sia V uno spazio vettoriale

un prodotto scalare su V è un'operazione <-,-> : VxV->R t.c. (proprietà)

- 1. (Commutativa) $\langle \underline{v}, \underline{w} \rangle = \langle \underline{w}, \underline{v} \rangle$
- 2. (Bilineare) $<\mu_1^*\underline{v_1} + \mu_2^*\underline{v_2}, \ \underline{w}> = \mu_1^*<\underline{v_1}, \underline{w}> + \mu_2<\underline{v_2}, \underline{w}>$ $e <\underline{v}, \ \mu_1\underline{w_1} + \mu_2\underline{w_2}> = \mu_1^*<\underline{v}, \underline{w_1}> + \mu_2<\underline{v}, \underline{w_2}> \text{dove }\underline{v}, \ v_1, \underline{v_1}> + \underline{v_2}<\underline{v}, \underline{w_2}> \text{dove }\underline{v}, \ v_1, \underline{v_1}> + \underline{v_2}<\underline{v}, \underline{w_2}> + \underline{v_2}<\underline{v}, \underline{v_2}> + \underline{v_2}<\underline{v}$

 $\underline{v_2}, \ \underline{w}, \ \underline{w_1}, \ \underline{w_2} \in V \ e \ \mu_1, \ \mu_2 \in R$

3. (Definita positiva) $\langle \underline{v},\underline{v}\rangle \geq 0$ $\forall \underline{v} \in V$ e $\langle \underline{v},\underline{v}\rangle = 0$ $\langle =\rangle$ $\underline{v}=\underline{0}$ Uno spazio Euclideo è uno spazio vettoriale che rispetta il prodotto scalare

Definizione(II prodotto scalare standard su Rⁿ):

è definito da
$$(a_1 ... a_n)^t \cdot (b_1 ... b_n)^t = a_1 b_1 + ... + a_n b_n$$

Dimostrazione:

verifica le 3 proprietà

Notazione:

<<u>a,b</u>> arbitrario prodotto scalare in V <u>a</u>•<u>b</u> prodotto scalare standard in Rⁿ Osservazione:

 $\underline{a},\underline{b} \ R^{\mathsf{n}}$ vettori colonna (prodotto scalare) $\underline{a} \cdot \underline{b} = \underline{a}^{\mathsf{t}} \cdot \underline{b}$ (prodotto riga per colonna)

Altri esempi:

$$- V = R^2 < \underline{a}, \underline{b} > = 2a_1b_1 + 2a_2b_2 + a_1b_2 + a_2b_1$$

$$- V = R^3 < \underline{a}, \underline{b} > = 7a_1b_1 + 3a_2b_2 + 5a_3b_3$$

$$- V = R_{[t]} < p(t), q(t) > = 0$$
 $\int_{0}^{1} p(t)q(t) dt$

$$- V = Mat(n,n) < A,B > = tr(AB^{t})$$

Sono tutti esempi di prodotti scalari

Definizioni:

sia V spazio Euclideo

- La norma (lunghezza) di \underline{v} ∈V è $||\underline{v}|| = \sqrt{\langle \underline{v},\underline{v} \rangle}$
- La distanza tra $\underline{v},\underline{w}$ ∈V è d($\underline{v},\underline{w}$) = || \underline{v} \underline{w} ||

Esempi:

in
$$R^n$$
 (con •) $\underline{a} = (a_1 \dots a_n)^t$ $\underline{b} = (b_1 \dots b_n)^t$
 $||\underline{a}|| = \sqrt{(\underline{a} \cdot \underline{a})} = \sqrt{(a_1^2 + \dots + a_n^2)}$

$$d(\underline{a},\underline{b}) = ||\underline{a} - \underline{b}|| = \sqrt{((a_1 - b_1)^2 + ... + (a_n - b_n)^2)}$$

Proposizione:

V spazio Euclideo

- 1. $||\underline{v}|| = 0 <=> \underline{v} = \underline{0}$
- 2. ||cv|| = |c|*||v||
- 3. $<\underline{0},\underline{v}>=\underline{0}$
- 4. Disuguaglianza di Schwartz: $|\langle \underline{a}, \underline{b} \rangle| \le ||\underline{a}||^*||\underline{b}||$
- 5. Disuguaglianza triangolare: $||\underline{a} + \underline{b}|| \le ||\underline{a}|| + ||\underline{b}||$
- 6. Teorema di Carnot: $||\underline{a} + \underline{b}||^2 = ||\underline{a}||^2 + ||\underline{b}||^2 + 2 < \underline{a}, \underline{b} >$

Dimostrazione:

- 1. Proprietà definita positiva
- 2. $||c\underline{v}|| = \sqrt{\langle c\underline{v}, c\underline{v} \rangle} = (bilineare) = \sqrt{c^* \langle \underline{v}, c\underline{v} \rangle} = (bilineare) = \sqrt{c^2 \langle \underline{v}, \underline{v} \rangle} = \sqrt{c^2}$ * $\sqrt{\langle \underline{v}, \underline{v} \rangle} = |c|^*||\underline{v}||$
- 3. <0,v> = <0*0,v> = (bilineare) = 0*<0,v> = 0
- 4. No dimostrazione
- 5. $||\underline{a} + \underline{b}||^2 = \langle \underline{a} + \underline{b}, \underline{a} + \underline{b} \rangle = (bilineare) = \langle \underline{a}, \underline{a} + \underline{b} \rangle + \langle \underline{b}, \underline{a} + \underline{b} \rangle = (bilineare) = \langle \underline{a}, \underline{a} \rangle + \langle \underline{a}, \underline{b} \rangle + \langle \underline{b}, \underline{a} \rangle + \langle \underline{b}, \underline{b} \rangle =$ $= ||\underline{a}||^2 + ||\underline{b}||^2 + 2\langle \underline{a}, \underline{b} \rangle \leq ||\underline{a}||^2 + ||\underline{b}||^2 + 2|\langle \underline{a}, \underline{b} \rangle| \leq (Schwartz) \leq ||\underline{a}||^2$
- $+ ||\underline{b}||^2 + 2||\underline{a}||^*||\underline{b}|| =$

$$= \left(||\underline{a}|| + ||\underline{b}||\right)^2 \ => \ ||\underline{a} + \underline{b}||^2 \le \left(||\underline{a}|| + ||\underline{b}||\right)^2 \ => \ ||\underline{a} + \underline{b}|| \le ||\underline{a}|| + ||\underline{b}||$$

6. Già visto nella dimostrazione 5)

Osservazione:

dati
$$\underline{v},\underline{w} \neq 0 => ||\underline{v}||, ||\underline{w}|| \neq 0$$

Schwartz: $|<\underline{v},\underline{w}>| \leq ||\underline{v}||^*||\underline{w}|| => (|<\underline{v},\underline{w}>|) / (||\underline{v}||^*||\underline{w}||) \leq 1 => -1 \leq (|<\underline{v},\underline{w}>|) / (||\underline{v}||^*||\underline{w}||) \leq 1$

Definizione:

l'angolo tra \underline{v} e \underline{w} è $\underline{v}^{\underline{w}}$ = arcos [($|\langle \underline{v}, \underline{w} \rangle|$) / ($||\underline{v}||^*||\underline{w}||$)]

Osservazione:

$$0 \leq \underline{v} \wedge \underline{w} \leq \pi \quad \cos(\underline{v} \wedge \underline{w}) = (|\langle \underline{v}, \underline{w} \rangle|) / (||\underline{v}||^*||\underline{w}||) = \langle \underline{v}, \underline{w} \rangle = ||\underline{v}||^*||\underline{w}||^* \cos(\underline{v} \wedge \underline{w})$$

Definizione:

- $-\underline{v}^{\underline{w}} = \pi/2 <=> \cos(\underline{v}^{\underline{w}}) = 0 <=> <\underline{v},\underline{w}> = 0$ In questo caso, $\underline{v},\underline{w}$ si dicono ortogonali e scriviamo $\underline{v} \perp \underline{w}$
- 0 è ortogonale a qualsiasi v

Esempio:

$$(1-10)^{t} \cdot (220)^{t} = 1*2-1*2+1*0 = 0 =$$
ortogonali

Esempi:

- Disuguaglianza triangolare: $||\underline{a} + \underline{b}|| \le ||\underline{a}|| + ||\underline{b}||$ AC \le AB + BC

- Teorema di Pitagora: Teorema di Carnot $||\underline{a} + \underline{b}||^2 = ||\underline{a}||^2 + ||\underline{b}||^2 + 2 < \underline{a}, \underline{b} > (< \underline{a}, \underline{b} > = 0, perché \underline{a}, \underline{b} \text{ ortogonali})$ $BC^2 = AB^2 + AC^2$
- Teorema del coseno: Teorema di Carnot (in R²)

Teorema(Pitagora):

$$\text{se } \underline{v_1}, \dots, \underline{v_n} \text{ ortogonali a 2 a 2 } (\underline{v_i} \perp \underline{v_j} \quad \text{se i} \neq j) => ||\underline{v_1} + \dots + \underline{v_n}||^2 = ||\underline{v_1}||^2 + \dots + ||v_n||^2$$

Dimostrazione:

$$\begin{aligned} &||\underline{v_1} + ... + \underline{v_n}||^2 = <\underline{v_1} + ... + \underline{v_n}, \, \underline{v_1} + ... + \underline{v_n}> = (bilineare) = <\underline{v_1}, \underline{v_1}> + ... + \\ &<\underline{v_1}, \underline{v_n}> + <\underline{v_2}, \underline{v_1}> + ... + <\underline{v_2}, \underline{v_n}> + <\underline{v_n}, \underline{v_1}> + ... + <\underline{v_n}, \underline{v_n}> = \\ &= {}^{n}\Sigma_{i,j=1} <\underline{v_i}, \underline{v_j}> \text{ per ipotesi} <\underline{v_i}, \underline{v_j}> = 0 \quad \text{per i} \neq j => \\ &<\underline{v_n}, \underline{v_n}> = ||\underline{v_1}||^2 + ... + ||\underline{v_n}||^2 \end{aligned}$$

Proposizione:

se
$$\underline{v_1} + ... + \underline{v_n} \neq 0$$
 ortogonali a 2 a 2 => $\underline{v_1}$, ..., $\underline{v_n}$ LI

Dimostrazione

$$\begin{aligned} & \text{supponiamo } c_1 \underline{v_1} + ... + c_n \underline{v_n} = 0 \quad \text{vogliamo dimostrare } c_i = 0 \quad \forall i \\ & 0 = <\underline{0}, \underline{v}> = < c_1 \underline{v_1} + ... + c_n \underline{v_n}> = (\text{bilineare}) = c_1 <\underline{v_1}, \underline{v_i}> + ... + c_i <\underline{v_i}, \underline{v_i}>$$

Osservazione:

il viceversa non vale $(1\ 0)^{t}$, $(1\ 1)^{t}$ sono LI ma non ortogonali Ortogonale è più forte di LI

Definizione:

sia H⊆V un sottospazio il completamento ortogonale di H

$$\mathsf{H}^{\perp} = \{ \overline{\mathsf{A}} \in \mathsf{A} : \overline{\mathsf{A}} \top \overline{\mathsf{M}} \quad \forall \overline{\mathsf{M}} \in \mathsf{H} \}$$

Proprietà:

1. H[⊥] è un sottospazio di V

2. Se H = Span(
$$\underline{w_1}$$
, ..., $\underline{w_n}$) allora H $^{\perp}$ = { $\underline{v} \in V : \underline{v_1} \perp \underline{w_1}$, ..., $\underline{v_n} \perp \underline{w_n}$ }

Dimostrazione:

1.
$$\underline{0} \perp \underline{w} \quad \forall \underline{w} \in V \implies \underline{0} \in H^{\perp}$$

$$se \quad \underline{v_1}, \underline{v_2} \in H^{\perp} \implies \langle \underline{v_1}, \underline{w} \rangle = \langle \underline{v_2}, \underline{w} \rangle = 0 \quad \forall \underline{w} \in H$$

$$= \rangle \langle \underline{c_1}, \underline{v_1} + \underline{c_2}, \underline{v_2}, \underline{w} \rangle = (bilineare) = \underline{c_1}, \underline{v_1}, \underline{w} \rangle + \underline{c_2}, \underline{v_2}, \underline{w} \rangle = 0 + 0 = 0$$

$$=> c_1 \underline{v_1} + c_2 \underline{v_2} \perp \underline{w} \quad \forall \underline{w} \in H => c_1 \underline{v_1} + c_2 \underline{v_2} \in H^{\perp}$$

$$2. \text{ Se } \underline{v} \perp \underline{w} \quad \forall \underline{w} \in H => \underline{v} \perp \underline{w_1}, \dots, \underline{v_n} \perp \underline{w_n} => \{\underline{v} \in V : \underline{v} \perp \underline{w} \quad \forall \underline{w} \in H\} \subseteq \{\underline{v} \in V : \underline{v_1} \perp \underline{w_1}, \dots, \underline{v_n} \perp \underline{w_n} => \{\underline{v} \in V : \underline{v} \perp \underline{w} \quad \forall \underline{w} \in H\} \subseteq \{\underline{v} \in V : \underline{v_1} \perp \underline{w_1}, \dots, \underline{v_n} \perp \underline{w_n} \quad \forall \underline{w} \in H$$

$$=> \underline{w} = c_1 \underline{w_1} + \dots + c_n \underline{w_n} \text{ per qualche } c_i = \underline{v_i} \underline{w} >= \underline{v_i} \underline{c_1} \underline{w_1} + \dots + c_n \underline{v_i} \underline{w_n} >= 0$$

$$=> \underline{v} \perp \underline{w} => \{\underline{v} \in V : \underline{v_1} \perp \underline{w_1}, \dots, \underline{v_n} \perp \underline{w_n} \} \subseteq \{\underline{v} \in V : \underline{v} \perp \underline{w} \quad \forall \underline{w} \in H\}$$

Esempio:

trovare
$$H^{\perp}$$
 dove $H = \text{Span}(\underline{w_1}, \underline{w_2}) = \text{Span}((1 \ 1 \ 1)^t, (1 \ 0 \ 2)^t) \subseteq R^3$
cerchiamo $\underline{v} = (v_1 \ v_2 \ v_3)^t \subseteq R^3$ t.c. $\underline{v} \perp \underline{w_1}, \underline{v} \perp \underline{w_2}$
 $\underline{v} \cdot \underline{w_1} = 0 \implies (v_1 \ v_2 \ v_3)^t (1 \ 1 \ 1)^t = v_1 + v_2 + v_3 = 0$ $\underline{v} \cdot \underline{w_2} = 0 \implies$
 $(v_1 \ v_2 \ v_3)^t (1 \ 0 \ 2)^t = v_1 + 2v_3 = 0 \iff$
 $<=> \{v_1 + v_2 + v_3 = 0; \ v_1 + 2v_3 = 0\} \implies \text{Span}((2 \ -1 \ -1)^t) = H^{\perp}$