Homework: 3.10

Monroe Stephenson Math 202: Vector Calculus

Due September 18th, 2020

3.10.4

$$(u+v) \times (u-v) = u \times (u-v) + v \times (u-v)$$
$$= u \times u - u \times v + v \times u - v \times v$$
$$= -2(u \times v)$$

by bilinearity of the cross product by bilinearity of the cross product by skew-symmetry of the cross product

Thus as we see $(u+v) \times (u-v)$ is a scalar multiple of $u \times v$.

3.10.6

$$u \times v = u \times w \implies u \times v - u \times w = 0$$

and by bilinearity,

$$u \times (w - v) = 0$$

Thus for cancellation to work, u and w-v must be colinear, or scalar multiples of each other.

3.10.10

Since this relation is satisfied, we know that (x,y,z) lie in both the l(p,d) line and the l(p,D) line. For the first condition,

$$x_d x_D + y_d y_D + z_d z_D = 0$$
$$\langle d, D \rangle = 0$$

Which implies the lines are orthogonal.

For the second condition, it can be rethought of as

$$cx_D = x_d$$

$$cy_D = y_d$$

$$cz_D = z_d$$

$$\Rightarrow cD = d$$

Thus implying the lines are the same line since d and D are scalar multiples of each other.

3.10.12

As we can see, and calculate, the absolute value of the determinate is equal to the area of the parallelogram formed by d and q - p. Let us call h the shortest distance from the vector d to the point q, or the height of the parallelogram. $h = |(q-p)e_1|$ as we only are considering the component in the e_1 direction for the height. Using bh = Area of parallelogram, we find

$$|d||(q-p)e_1| = |(q-p) \times d| \implies h = \frac{|(q-p) \times d|}{|d|}$$

3.10.15

Let us choose one component to be nonzero, take x without loss of generality, then

$$\frac{x}{a} = 1$$

which is true when x = a. From here we can see that the plane intersects each axis at (a, 0, 0), (0, b, 0), and (0, 0, c)

3.10.17

Let us consider the inner product with the basis such that $|ne_1| = |n|$ and $|ne_2| = 0$. Or in other words if we imagine three dimensional space, then our n vector is one axis, and the two orthogonal vectors embedded in the plane P are the other two axes.

Then

$$\begin{aligned} & |\langle (q-p), n \rangle| \\ & \langle (|(q-p)_{\perp n}|, |(q-p)_{\parallel n}|), (|n|, 0) \rangle \\ \Longrightarrow & |(q-p)_{\parallel n}| |n| = |\langle (q-p), n \rangle| \\ \Longrightarrow & (q-p)_{\parallel n} = \frac{|\langle (q-p), n \rangle|}{|n|}. \end{aligned}$$

And $(q-p)_{\parallel n}=$ the distance to the plane, as seen below.

