Last name	
First name	

LARSON—MATH 610—CLASSROOM WORKSHEET 26 Polynomials.

Concepts & Notation

- (Sec. 3.5) linear functional, trace, dual space, V^* , dual basis, annihilator.
- (Sec. 4.1) linear algebra, \mathbb{F}^{∞} , algebra of formal power series.
- (Sec. 4.2) $\mathbb{F}[x]$, degree, scalar polynomial, monic polynomial.

Review

- 1. What is \mathbb{F}^{∞} ? Let $f, g \in \mathbb{F}^{\infty}$. How is fg defined?
- 2. What is $1 \in \mathbb{F}^{\infty}$?
- 3. What is $x \in \mathbb{F}^{\infty}$?
- 4. What is $x^2 \in \mathbb{F}^{\infty}$?
- 5. What is $\mathbb{F}[x]$?

New

6. What is the degree of $f \in \mathbb{F}[x]$?

7. What is a *scalar* polynomial?

8. What is a *monic* polynomial?

	 (a) fg is a non-zero polynomial; (b) deg(fg) = deg(f) + deg(g); (c) fg is a monic polynomial if and only if both f and g are monic polynomials; (d) fg is a scalar polynomial if and only if both f and g are scalar polynomials; (e) if f + g ≠ 0 then deg(f + g) ≤ max{deg(f), deg(g)}.
10.	What is the difference between a polynomial and a polynomial function?
11.	What is a $root$ of a polynomial?
12.	What is an $ideal$ in $\mathbb{F}[x]$?

9. (Claim:) If f and g are non-zero polynomials over a field $\mathbb F$ then: