Department of Mathematics MTL 601 (Probability and Statistics) Tutorial Sheet No. 1

- 1. Show that $\Im \cap A$ is a σ -field on $A \subset \Omega$ if \Im is a σ -field on Ω .
- 2. Let A_1, A_2, \ldots, A_n be events on a probability space (Ω, \Im, P) .

(i) For
$$n = 3$$
, if $P(A_1 \cap A_2 \cap A_3) = P(A_1^c \cap A_2^c \cap A_3^c)$, then each equals $\frac{1}{2} \left[1 - \sum_{i=1}^3 P(A_i) + \sum_{i>j=1}^3 \sum_{i>j=1}^3 P(A_i \cap A_j) \right]$.

(ii)
$$P(\cap_{i=1}^n A_i) \ge \sum_{i=1}^n P(A_i) - (n-1).$$

- 3. The base and altitude of a right triangle are obtained by picking points randomly from [0, a] and [0, b], respectively. Show that the probability that the area of the triangle so formed will be less than ab/4 is $(1 + ln^2)/2$.
- 4. Consider a randomly chosen group of $n \leq 365$ persons. What is the probability that at least two of them have the same birthdays?
- 5. In a movie theater that can accommodate n+k persons, n persons are to be seated. What is the probability that $r \leq n$ given seats are occupied.
- 6. Let a sample of size 4 be drawn with (without) replacement from an urn containing 12 balls of which 5 are white. If the sample contains 3 white balls then find the probability the ball drawn on the third draw was white.
- 7. A certain test is 95% accurate on those who have cancer and 95% accurate on those who do not have this type. If $\frac{1}{4}$ % of the people under test have this type of cancer. What is the probability that a person has this type of cancer when his test says he does?
- 8. If A and B are independent and $A \subseteq B$ show that either P(A) = 0 or P(B) = 1.
- 9. A lot of five identical batteries is life tested. The probability assignment is assumed to be $P(A) = \int_A \frac{1}{\lambda} e^{-x/\lambda} dx$ for any event $A \subseteq [0, \infty)$, where $\lambda > 0$ is a known constant. Thus the probability that a battery fails after time t is given by $P(t, \infty) = \int_t^\infty \frac{1}{\lambda} e^{-x/\lambda} dx$, $t \ge 0$. If the times to failure of the batteries are independent, what is the probability that at least one battery will operating after t_0 hours?
- 10. Consider measurable space (Ω, F) , where $\Omega = \{a, b, c, d\}$ and $F = \{\phi, \Omega, \{a, b\}, \{c, d\}\}$. Examine if the function $X : \Omega \to R$ defined by X(a) = X(b) = 1, X(c) = 1, X(d) = 2 is F-measurable. Find the minimal σ -field w.r.t which X is measurable.
- 11. A die is tossed two times. Define X =sum of scores and Y =absolute difference of scores on the two tosses. Identify the probability space and verify that X, Y are random variables on this probability space. Write down the events: $\{X = 3\}$, $\{Y \le 1\}$, $\{X > 5\}$, $-1 < X \le 4.5$ and determine their probabilities. Also find the p.m.f. of X and the distribution of Y. Using these determine $P(X \le 7|X > 4)$ and $P(Y > 2.5|Y \le 4)$.
- 12. If X is a random variable on a probability space (Ω, F, P) , then show that a + bX, |X|, $X^+ = \begin{cases} X, & X \ge 0 \\ 0, & X < 0 \end{cases}$ are random variables on this probability space.
- 13. Let $\Omega=[0,1]$. Define $X:\to R$ by $X(w)=\left\{\begin{array}{ll} w, & 0\leq w\leq \frac{1}{2}\\ w-\frac{1}{2}, & \frac{1}{2}< w\leq 1 \end{array}\right.$. For any interval $I\subseteq[0,1]$, define $P(I)=\int 2xdx$. Identify the probability space and verify that X is a random variable on this space. Determine the distribution function of X and use this to find $P(X>\frac{1}{2}),\ P(\frac{1}{4}< X<\frac{1}{2}),\ P(X<\frac{1}{2}|X>\frac{1}{4}).$

- 14. An urn contains n cards numbered 1, 2, ..., n. Let X be the least number on the m cards drawn randomly without replacement from the urn. Find probability distribution of random variable X. Compute $P(X \ge \frac{3}{2})$.
- 15. Let X be a continuous random variable taking values in the interval [0,1]. If $P(x < X \le y)$, for all $x, y, 0 \le x < y \le 1$ depends only on (y-x), then show that X has uniform probability distribution on the interval [0,1].
- 16. Let X be a random variable with distribution function

$$F_X(x) = \begin{cases} 0, & x < 0\\ \frac{1}{6} + \frac{x}{3}, & 0 \le x < 1\\ 1, & x \ge 1 \end{cases}$$

Show that $F_X(x) = \alpha F_1(x) + (1-\alpha)F_2(x)$ for some α where F_1 and F_2 are respectively distribution functions of a discrete and a continuous random variable. Find α . Evaluate conditional probability $P\left(\frac{1}{2} \le X \le 1 | X > \frac{1}{4}\right)$.

17. Let X be a random variable such that $P(X > \frac{1}{2}) = \frac{7}{8}$ and its pdf is:

$$f_X(x) = \begin{cases} ax, & 0 \le x < 1\\ b - x, & 1 \le x < 2\\ 0, & \text{otherwise} \end{cases}$$

Determine a, b and find the distribution function of X.

- 18. Suppose X, the random number of eggs laid by a bird is a Poisson distributed random variable with parameter λ . The probability of an egg developing is p. Find the pmf of random variable Y, the number of eggs developing. Also find the pmf of |Y-4|.
- 19. Let X be a standard normal distributed random variable. Find pdf of (i) Y=a+bX (ii) $Y=\ln X$ (iii) $Z=X^2$
- 20. A discrete random variable X has a uniform probability distribution on the set $\{-k, -(k-1), \ldots, -1, 0, 1, 2, \ldots, r\}$. Find the probability distribution of (a) |X| and (b) $(X+1)^2$.
- 21. Let X be a continuous random variable with pdf

$$f_X(x) = \begin{cases} \frac{x^3}{64}, & 0 \le x \le 4\\ 0, & \text{elsewhere} \end{cases}$$

Find pdf of the random variable $\min(\sqrt{X}, 2 - \sqrt{X})$.

- 22. Let X be a random variable with Poisson distribution with parameter λ . Show that the characteristic function of X is $\varphi_X(t) = \exp\left[\lambda(e^{it} 1)\right]$. Hence, compute $E(X^2)$, Var(X) and $E(X^3)$.
- 23. Let X be a random variable with $N(0, \sigma^2)$. Find the moment generating function for the random variable X. Deduce the moments of order n about zero for the random variable X from the above result.
- 24. The moment generating function of a discrete random variable X is given by $M_X(t) = \frac{1}{6} + \frac{1}{2}e^{-t} + \frac{1}{3}e^t$. If μ is the mean and σ^2 is the variance of this random variable, find $P(\mu \sigma < X < \mu + \sigma)$.