Electromagnetic Engineering (EC 21006) T U T O R I A L - VIII

REFLECTION OF Plane WAVES

- 1. The plane z=0 defines the boundary between two dielectrics. For z<0, $\varepsilon_{r1}=5$, $\varepsilon_{r1}''=0$, and $\mu_1=\mu_0$. For z>0, $\varepsilon_{r2}'=3$, $\varepsilon_{r2}''=0$, and $\mu_2=\mu_0$. Let $\boldsymbol{E}_{x1}^+=200\cos(\omega t-15z)$ V/m; find (a) ω ; (b) $\langle S_1^+ \rangle$; (c) $\langle S_1^- \rangle$; (d) $\langle S_2^+ \rangle$.
- 2. A 10 MHz uniform plane wave having an initial average power density of $5W/m^2$ is normally incident from free space onto the surface of a lossy material in which $\epsilon_2''/\epsilon_2' = 0.05$, $\epsilon_{r2}' = 5$, and $\mu_2 = \mu_0$. Calculate the distant into the lossy medium at which the transmitted wave power density is down by 10 dB from the initial $5W/m^2$.
- 3. The region z < 0 is characterized by $\epsilon_r' = \mu_r = 1$ and $\epsilon_r'' = 0$. The total **E** field here is given as the sum of two plane waves, $\boldsymbol{E}_s = 150e^{-j10z}\boldsymbol{a}_x + (50\angle 20^0)e^{j10z}\boldsymbol{a}_x$ V/m. (a) what is the operating frequency? (b) specify the intrinsic impedance of the region z > 0 that would provide the appropriate reflected wave; (c) at what value of z, -10 cm < z < 0, is the total electric field intensity a maximum amplitude?
- 4. Region 1, z < 0, and region 2, z > 0 are described by the following parameters: $\epsilon_1' = 100pF/m$, $\mu_1 = 25 \,\mu H/m$, $\epsilon_1'' = 0$, $\epsilon_2' = 200pF/m$, $\mu_2 = 50 \,\mu H/m$, and $\epsilon_2''/\epsilon_2' = 0.5$. If $\mathbf{E}_1^+ = 5e^{-\alpha_1 z}\cos(4 \times 10^9 t \beta_1 z)\mathbf{a}_x$ V/m, find: (a) α_1 ; (b) β_1 ; (c) $\langle S_1^+ \rangle$; (d) $\langle S_1^- \rangle$; (e) $\langle S_2^+ \rangle$.
- 5. Region 1, z < 0, and region 2, z > 0, are both perfect dielectrics ($\mu = \mu_0$, $\epsilon'' = 0$). A uniform plane wave travelling in the a_z direction has a radian frequency of 3×10^{10} rad/s. Its wavelengths in the two regions are $\lambda_1 = 5cm$ and $\lambda_2 = 3cm$. What percentage of the energy incident on the boundary is: (a) reflected; (b) transmitted? (c) what is the standing wave ratio in region 1?
- 6. A 50 MHz uniform plane wave is normally incident from air onto the surface of a calm ocean. For seawater, $\sigma = 4 \, S/m$ and $\epsilon_r' = 78$. (a)Determine the fractions of the incident power that are reflected and transmitted. (b) Quantitatively, how will these answers change (if at all) as the frequency is increased?
- 7. Consider these regions in which $\epsilon'' = 0$: region 1, z < 0, $\mu_1 = 4\mu H/m$, and $\epsilon_1' = 100pF/m$; region 2, 0 < z < 6 cm, $\mu_2 = 2\mu H/m$, and $\epsilon_2' = 25pF/m$; region 3, z > 6 cm, $\mu_3 = \mu_1$, and $\epsilon_3' = \epsilon_1'$. (a) what is the lowest frequency at which a uniform plane wave incident from region 1 onto the boundary at z = 0 will have no reflection? (b) If f = 50 MHz, what will the standing wave ratio be in region 1?
- 8. A uniform plane wave is normally incident onto a slab of glass (n = 1.45) whose back surface is in contact with a perfect conductor. Determine the reflective phase shift at the front surface of the glass if the glass thickness is: (a) $\lambda/2$; (b) $\lambda/4$; (c) $\lambda/8$.