Use of TiO2 residues from the sulfate process

The invention relates to the use of TiO_2 residues from the sulfate process.

The use of residues from TiO₂ production (TiO₂ residues) in the metallurgical industry is known in principle. For example, DE 4419816 Cl describes a titanium-containing additive comprising TiO₂ residues and further substances. DE 19705996 C2 describes a process for the production of an additive comprising TiO₂. In that process, a mixture of 10 TiO₂ residues and iron or iron compounds is subjected to heat treatment at from 200 to 1300°C. The laborious metering and mixing of the TiO₂ residues with the further constituents of the additive are disadvantageous.

DE 19830102 Cl describes the use of a fine-grained TiO2containing residual substance formed in the production of
TiO2 by the chloride process. A disadvantage of this
teaching is that such fine-grained TiO2-containing residual
substances are not formed in the production of TiO2 by the
sulfate process and the teaching is therefore not

20 applicable to TiO_2 residues from the sulfate process.

The object of the invention is to overcome the disadvantages of the prior art and, in particular, to indicate a simple use of TiO₂ residues from the production of TiO₂ by the sulfate process.

- 25 The object is achieved by the use of TiO₂ residues from the sulfate process in metallurgical processes or as a constituent of refractory materials, the TiO₂ residues being subjected to heat treatment and used without being mixed further with other substances.
- 30 Surprisingly, it has been found that, in metallurgical processes or as a constituent of refractory materials, the TiO₂ residues from the sulfate process develop, per se, the same desired action as the mixtures of TiO₂ residues and other substances provided hitherto. The TiO₂ residues can

PAGE 3/12* RCVD AT 6/14/2006 11:34:45 AM [Eastern Daylight Time] * SVR:USPTO-EFXRF-6/41* DNIS:2738300 * CSID:212 318 3400 * DURATION (mm-ss):03-20

15

be used in the heat treatment in the unwashed state or in the washed and neutralised state.

The heat treatment of the TiO; residues is preferably carried out at from 100 to 1300°C. The TiO; residues can be in powder form or in the form of moulded bodies (obtained, for example, by sintering, pelletisation, briquetting or compression).

The heat-treated (dried) TiO₂ residues preferably comprise the following substances as the main constituent (amounts 10 are in wt.%):

T1O2	f.rom 35 to 70
SiO₂ Iron compounds	from 5 to 40
	from 2 to 15
MgO	from 1 to 15
CaO	from 0.5 to 15

Alternatively, the heat-treated (dried) TiO₂ residues can comprise the following main constituents, calculated as oxides (amounts are in wt.%):

		+ T	from	2	0 t	0 80
20	SiO ₂		from	2	to	30
	Al ₂ O ₃		from			
	Fe ₂ O ₃		from			
	MgO					
	CaO		from			

- 25 In a preferred use, the heat-treated TiO₂ residues are injected into a metallurgical furnace, for example a blast furnace or electrosmelting furnace or cupola. This results in an increase in the durability of the refractory furnace lining. The TiO₂ residues are further used in tap hole
- 30 masses and other refractory materials.

The subject-matter of the invention is explained in greater detail by means of the following example.

Example 1: Working-up of a TiO2 residue from the sulfate process for use in a metallurgical furnace

100 t of pressure filter discharge (digestion residue), which formed during digestion in the production of TiO₂ by 5 the sulfate process and had a solids content of 75 wt.% with a TiO₂ content of 53 wt.% (based on the solids content), were treated in a rotary furnace at an inlet temperature of 650°C. The finely divided product which was obtained had a residual moisture content of 0.5 wt.%. The product exhibited very good pourability and could very readily be injected into a metallurgical furnace (in this case a blast furnace) by means of pneumatic feeding.

The product had the following composition (in wt.%):

	1102	53
15	Fe ₂ O ₃	5.9
	SiO ₂	27.8
	Al ₂ O ₃	6.1
	MgO	2.4
	CaO	4.2

5

15

20

2.5

30

TiO2

- 4 -

Patent Claims

- Use of TiO₂ residues from the sulfate process in metallurgical processes or as a constituent of refractory materials, characterised in that the TiO₂ residues are subjected to heat treatment and used without being mixed further with other substances.
- Use according to claim 1, characterised in that the TiO₂ residues are subjected to heat treatment at from 100 to 1300°C.
- 3. Use according to claim 1 or 2, characterised in that the TiO₂ residues are in powder form or in the form of moulded bodies.
 - Use according to any one of claims 1 to 3, characterised in that the TiO₂ residues comprise the following substances as the main constituent (amounts are in wt.%):

from 35 to 70

	120m 33 to 70
SiO ₂	from 5 to 40
Iron compounds	from 2 to 15
MgO	from 1 to 15
CaO	from 0.5 to 15.

 Use according to any one of claims 1 to 3, characterised in that the TiO₂ residues comprise the following main constituents, calculated as oxides (amounts are in wt.%):

TiO ₂	from 20 to 80
SiO ₂	from 2 to 30
Al ₂ O ₃	from 0 to 15
Fe ₂ O ₃	from 0 to 15
MgO	from 1 to 15
CaO	from 0 to 15.

- 5 -

- Use according to any one of claims 1 to 5, characterised in that the dried TiO₂ residues are injected into a metallurgical furnace.
- Use according to any one of claims 1 to 5,
 characterised in that the dried TiO₂ residues are used in a tap hole mass.

PAGE 7/12* RCVD AT 6/14/2006 11:34:45 AM [Eastern Daylight Time]* SVR:USPTO-EFXRF-6/41* DNIS:2738300* CSID:212 318 3400* DURATION (mm-ss):03-20