

## Talen en Compilers

2009/2010, periode 2

Andres Löh

Department of Information and Computing Sciences
Utrecht University

December 17, 2009

# 10. Regular languages





### This lecture

#### Regular languages

Regular languages

Finite state automata

NFAs vs. DFAs

Regular grammars

Regular grammars vs. finite state automata

# 10.1 Regular languages



## **Context-free languages**

The languages we dealt with until now were mostly **context-free** languages:

- can be described using a context-free grammar,
- can be parsed relatively easily (for instance, using parser combinators),
- resulting parsers need polynomial time and space (often not much worse than linear).

## **Context-free languages**

The languages we dealt with until now were mostly **context-free** languages:

- can be described using a context-free grammar,
- can be parsed relatively easily (for instance, using parser combinators),
- resulting parsers need polynomial time and space (often not much worse than linear).

The rest of the course: classes of languages and/or grammars that allow more efficient parsing.



### **Regular languages**

A proper subset of the context-free languages:

- can be described using finite state automata,
- can be described using regular grammars,
- can be described using regular expressions,
- ▶ can be parsed very easily, in linear time and constant space.

[Faculty of Science

### **Regular languages**

A proper subset of the context-free languages:

- can be described using finite state automata,
- can be described using regular grammars,
- can be described using regular expressions,
- can be parsed very easily, in linear time and constant space.

We will look at the different formalisms, their respective advantages and disadvantages, and show their equivalence.

Faculty of Science

### 10.2 Finite state automata









< □ > < 圖 > < 필 > < 필 > ● 필 > ■ 필 ■

▶ Input alphabet:
X = {a,b}





- ▶ Input alphabet:
  X = {a,b}
- ▶ States: Q = {S, A, B, C}



- ▶ Input alphabet:
  X = {a,b}
- ▶ States:
  Q = {S, A, B, C}
- ► Transitions:  $d::Q \to X \to Q$



- ▶ Input alphabet:
  X = {a,b}
- ▶ States:
  Q = {S, A, B, C}
- ► Transitions:  $d :: Q \rightarrow X \rightarrow Q$



- ▶ Input alphabet:
  X = {a,b}
- ▶ States:
  Q = {S, A, B, C}
- ► Transitions:  $d::Q \to X \to Q$



- ▶ Input alphabet: X = {a,b}
- ▶ States:
  Q = {S, A, B, C}
- ► Transitions:
  d :: Q → X → Q
- ► Start state: S (where  $S \in Q$ )



- ▶ Input alphabet:
  X = {a,b}
- ▶ States:
  Q = {S, A, B, C}
- ► Transitions:
  d :: Q → X → Q
- Start state:
  S (where S ∈ Q)
- Accepting states:
  F = {A}
  (where F ⊆ Q)





### **Definition of a DFA**

#### A DFA is given by

- ▶ an input alphabet X,
- ▶ a set of states Q,
- ▶ a transition function d of type  $Q \rightarrow X \rightarrow Q$ ,
- ightharpoonup a start state  $S \in Q$ ,
- ▶ a set of accepting states  $F \subseteq Q$ .

Faculty of Science

### **Definition of a DFA**

#### A DFA is given by

- ▶ an input alphabet X,
- ▶ a set of states Q,
- ▶ a transition function d of type  $Q \rightarrow X \rightarrow Q$ ,
- ightharpoonup a start state  $S \in Q$ ,
- ▶ a set of accepting states  $F \subseteq Q$ .

Often, a DFA is simply written as a tuple (X,Q,d,S,F).

Faculty of Science

### **Definition of a DFA**

#### A DFA is given by

- ▶ an input alphabet X,
- a set of states Q,
- ▶ a transition function d of type  $Q \rightarrow X \rightarrow Q$ ,
- ightharpoonup a start state  $S \in Q$ ,
- ▶ a set of accepting states  $F \subseteq Q$ .

Often, a DFA is simply written as a tuple (X, Q, d, S, F).

Sometimes, when X and Q are clear from the context,  $(\mathsf{d},\mathsf{S},\mathsf{F})$  is sufficient to specify a DFA.

## **Running a DFA**

$$\begin{array}{l} \mathsf{dfa} :: (\mathsf{Q} \to \mathsf{X} \to \mathsf{Q}) \to \mathsf{Q} \to [\mathsf{X}] \to \mathsf{Q} \\ \mathsf{dfa} \ \mathsf{d} \ \mathsf{q} \ [] &= \mathsf{q} \\ \mathsf{dfa} \ \mathsf{d} \ \mathsf{q} \ (\mathsf{x} : \mathsf{xs}) = \mathsf{dfa} \ \mathsf{d} \ (\mathsf{d} \ \mathsf{q} \ \mathsf{x}) \ \mathsf{xs} \\ \end{array}$$

## **Running a DFA**

#### Question

Does this function look familiar?

## **Running a DFA**

#### Question

Does this function look familiar?

## Acceptance by a DFA

A word xs is **accepted** by a DFA if running the DFA on the word, starting in the start state S, yields an accepting state.

Faculty of Science

## Acceptance by a DFA

A word xs is **accepted** by a DFA if running the DFA on the word, starting in the start state S, yields an accepting state.

 $\begin{aligned} &\mathsf{dfaAccept} :: [X] \to (Q \to X \to Q, Q, \mathsf{Set}\ Q) \to \mathsf{Bool} \\ &\mathsf{dfaAccept}\ \mathsf{xs}\ (d, s, \mathsf{fs}) = \mathsf{dfa}\ \mathsf{d}\ \mathsf{s}\ \mathsf{xs}\ \mathsf{`member'}\ \mathsf{fs} \end{aligned}$ 

# Language of a DFA

All words that are accepted by the DFA (d, S, F).

 $\{w \in [X] \mid \mathsf{dfaAccept} \ w \ (\mathsf{d},\mathsf{S},\mathsf{F})\}$ 

# Language of a DFA

All words that are accepted by the DFA (d, S, F).

$$\{w \in [X] \mid \mathsf{dfaAccept} \ w \ (\mathsf{d},\mathsf{S},\mathsf{F})\}$$

One language can in general be described by multiple automata.

#### Question

Can the empty language be described by a DFA?

#### Question

Can the empty language be described by a DFA?

 $\mathsf{start} \longrightarrow \mathsf{S}$ 

Any automaton without accepting states is possible.

#### Question

Can the language  $\{\varepsilon\}$  be described by a DFA?

#### Question

Can the language  $\{\varepsilon\}$  be described by a DFA?

 $\mathsf{start} \longrightarrow \mathsf{S}$ 

#### Question

Can the language  $\{\varepsilon\}$  be described by a DFA?

$$\mathsf{start} \longrightarrow \mathsf{S}$$

In general, any automaton where the starting state is accepting will accept the empty word (and possibly other words).

### **Observation**

Running a DFA is clearly possible in linear time and constant space.

#### Similar to DFA, but:

- ▶ Potentially multiple start states.
- ► Potentially multiple transitions for the same terminal from a given state.

Faculty of Science

#### Similar to DFA, but:

- ▶ Potentially multiple start states.
- ► Potentially multiple transitions for the same terminal from a given state.

#### Formally:

- ▶ an input alphabet X,
- ▶ a set of states Q,
- ▶ a transition function d of type  $Q \rightarrow X \rightarrow Set Q$ ,
- ▶ a **set of** start states  $S \subseteq Q$ ,
- ▶ a set of accepting states  $F \subseteq Q$ .



◆□▶◆御▶◆団▶◆団▶ 団 めの◎

## Interpretation using choices

- ▶ We can choose a start state.
- ▶ When processing a terminal, we can choose one of the possible transitions for that terminal at that state and thereby end up with a new state.
- ▶ A word is accepted if there is a sequence of choices that gets us to an accepting state.

Faculty of Science

# Interpretation using a set of all possible choices

- ▶ At any time, a set of states in the NFA is active. We start with the set of start states.
- When we process a terminal, we take all possible actions from all current states and thereby end up with a new set of states.
- ▶ A word is accepted if the set of states that is active after processing the word contains at least one accepting state.

# **NFA** example





## **Running an NFA**

$$\begin{array}{l} \mathsf{nfa} :: (\mathsf{Q} \to \mathsf{X} \to \mathsf{Set} \; \mathsf{Q}) \to \mathsf{Set} \; \mathsf{Q} \to [\mathsf{X}] \to \mathsf{Set} \; \mathsf{Q} \\ \mathsf{nfa} \; \mathsf{d} \; \mathsf{qs} \; [] &= \mathsf{qs} \\ \mathsf{nfa} \; \mathsf{d} \; \mathsf{qs} \; (\mathsf{x} : \mathsf{xs}) = \mathsf{nfa} \; \mathsf{d} \; (\mathsf{join} \; (\mathsf{map} \; (\mathsf{flip} \; \mathsf{d} \; \mathsf{x}) \; \mathsf{qs})) \; \mathsf{xs} \end{array}$$

where join is the concat for sets and computes the union of a set of sets:

$$\mathsf{join} :: \mathsf{Set} \; (\mathsf{Set} \; \mathsf{Q}) \to \mathsf{Set} \; \mathsf{Q}$$

## Acceptance by an NFA

 $\begin{array}{l} \mathsf{nfaAccept} :: [\mathsf{X}] \to (\mathsf{Q} \to \mathsf{X} \to \mathsf{Set} \; \mathsf{Q}, \mathsf{Set} \; \mathsf{Q}) \to \mathsf{Bool} \\ \mathsf{nfaAccept} \; \mathsf{xs} \; (\mathsf{d}, \mathsf{ss}, \mathsf{fs}) = \mathsf{not} \; (\mathsf{null} \; (\mathsf{nfa} \; \mathsf{d} \; \mathsf{ss} \; \mathsf{xs} \; \text{`intersect'} \; \mathsf{fs})) \end{array}$ 

#### 10.3 NFAs vs. DFAs





Every DFA (d, S, F) is trivially an NFA.



Every DFA (d, S, F) is trivially an NFA.

The start state S becomes the one-element set of start states  $\{S\}$ .

Every DFA (d, S, F) is trivially an NFA.

The start state S becomes the one-element set of start states  $\{S\}$ .

The transition function is changed such that it returns singleton sets:

Every DFA (d, S, F) is trivially an NFA.

The start state S becomes the one-element set of start states  $\{S\}$ .

The transition function is changed such that it returns singleton sets:

$$d' :: Q \to X \to \mathsf{Set} \ Q$$

$$d' \ \mathsf{q} \ \mathsf{x} = \mathsf{singleton} \ (\mathsf{d} \ \mathsf{x})$$

It is quite easy to show that the resulting NFA accepts the same language.

#### From NFA to DFA

We can also make a DFA from an NFA.

Question

How?

#### From NFA to DFA

We can also make a DFA from an NFA.

#### Question

How?

The construction is called the **powerset construction**:

- ► For each **set of states** in the NFA, we get **one state** in the DFA.
- ► The set of start states in the NFA thus corresponds to a single state in the DFA.
- ▶ Since the transition function for the NFA takes sets of states to sets of states, we can then reuse it for the DFA.
- ▶ All states that contain an accepting state of the NFA become accepting states in the DFA.



# From NFA to DFA – example







# From NFA to DFA – example









### 10.4 Regular grammars



## Regular grammar

A context-free grammar G is called **regular** if all productions are of one of the following two forms:

$$A \rightarrow xE$$
 $A \rightarrow x$ 

where x is a (possibly empty) sequence of terminals, and A and B are nonterminals.

## Regular grammar

A context-free grammar G is called **regular** if all productions are of one of the following two forms:

$$\begin{array}{c} A \rightarrow xB \\ A \rightarrow x \end{array}$$

where  $\times$  is a (possibly empty) sequence of terminals, and A and B are nonterminals.

In other words: Every right hand side has at most one nonterminal that must occur in the end.

## Regular language

A language is called **regular** if it can be described by a regular grammar.

イロトイクトイミトイミト ヨ かなべ

From the definition, it is immediately clear that every regular language is context-free.

From the definition, it is immediately clear that every regular language is context-free.

#### Question

Is every context-free language regular?

From the definition, it is immediately clear that every regular language is context-free.

#### Question

Is every context-free language regular?

No. The standard example is the language  $\{a^nb^n \mid n \in \mathbb{N}\}.$ 

From the definition, it is immediately clear that every regular language is context-free.

#### Question

Is every context-free language regular?

No. The standard example is the language  $\{a^nb^n \mid n \in \mathbb{N}\}.$ 

We will investigate later how such a negative statement (not belonging to the class of regular languages) can be proved.



# **Closure properties**

As context-free languages, regular languages are closed under

- ▶ union (corresponds to the <|> combinator),
- sequencing (corresponds to the <\*> combinator),
- ▶ the star operator (corresponds to the many combinator).

# **Closure properties**

As context-free languages, regular languages are closed under

- ▶ union (corresponds to the <|> combinator),
- sequencing (corresponds to the <\*> combinator),
- the star operator (corresponds to the many combinator).

While context-free languages are not closed under intersection, regular languages are (werkcollege).



# Simplifying regular grammars

For every regular language, there is a regular grammar that has no productions of the form

$$\begin{array}{c} \mathsf{A} \to \mathsf{B} \\ \mathsf{C} \to \varepsilon \end{array}$$

where A, B, and C are nonterminals, except that for the start symbol there may be a production

$$\mathsf{S} o arepsilon$$

The grammar transformation works in two phases:

- $\blacktriangleright$  first all productions of the form A  $\rightarrow$  B are removed;
- ▶ then all epsilon-productions are removed.

Consider all pairs of nonterminals Y and Z.

If  $Y \Rightarrow^* Z$ :

▶ for every production  $Z \rightarrow z$  (with z a sequence of symbols, but not a single nonterminal), add a production  $Y \rightarrow z$ .

If  $Y \to Z$  is in the grammar, remove it.

Consider all pairs of nonterminals Y and Z.

If  $Y \Rightarrow^* Z$ :

▶ for every production  $Z \to z$  (with z a sequence of symbols, but not a single nonterminal), add a production  $Y \to z$ .

If  $Y \to Z$  is in the grammar, remove it.

The only problematic productions left are now epsilon-productions.

For each production  $Y \to \varepsilon$ , consider all productions  $Z \to xY$  (where x now can consist only of terminals) and add a production  $Z \to x$ .

Then remove all epsilon-productions but  $S \to \varepsilon$  if it exists.



We can simplify a regular grammar even further and require that all productions are of one of the following two forms

$$Y \rightarrow xZ$$
  
 $Y \rightarrow x$ 

where x is thus a single terminal, except for the start symbol S, for which a production of S  $\to \varepsilon$  is allowed.

We can simplify a regular grammar even further and require that all productions are of one of the following two forms

$$Y \rightarrow xZ$$
  
 $Y \rightarrow x$ 

where x is thus a single terminal, except for the start symbol S, for which a production of S  $\to \varepsilon$  is allowed.

The transformation works by introducing new nonterminals. For example

$$A \rightarrow xyC$$

is transformed into

$$A \rightarrow xB$$
 $B \rightarrow yC$ 
Universiteit Utrech

# 10.5 Regular grammars vs. finite state automata





#### From NFA to regular grammars

For each NFA, there exists a regular grammar that describes the same language.

### From NFA to regular grammars

For each NFA, there exists a regular grammar that describes the same language.

- ▶ the states become nonterminals,
- ▶ the start state becomes the start symbol,
- for each transition



we introduce a production

$$A \rightarrow xB$$

▶ for each accepting state F we introduce a production

$$A \rightarrow \varepsilon$$





## From regular grammars to an NFA

We can also produce an automaton for every regular grammar.

### From regular grammars to an NFA

We can also produce an automaton for every regular grammar. We first simplify the grammar. Then, all the hard work is done.



