Heurísticas matemáticas (matheuristics)

Elisangela Martins de Sá

CEFET

1° semestre, 2025

Sumário

Heurísticas matemáticas

Definição

Exemplo de uma estratégia matheurística

Heurísticas RENS e RINS

Relaxation Enforced Neighbourhood Search (RENS) Relaxation Induced Neighbourhood Search (RINS)

Heurística Relax and Fix e Fix and Optimize

Estruturas de vizinhança

Distância de Hamming Vizinhança usando distâncias de Hamming Heurística Local branching

Implementação das heurísticas matemáticas

Revisão: visão geral

Sumário

Heurísticas matemáticas

Definição

Exemplo de uma estratégia matheurística

Heurísticas RENS e RINS

Relaxation Enforced Neighbourhood Search (RENS) Relaxation Induced Neighbourhood Search (RINS)

Heurística Relax and Fix e Fix and Optimize

Estruturas de vizinhança

Distância de Hamming Vizinhança usando distâncias de Hamming Heurística Local branching

Implementação das heurísticas matemáticas

Revisão: visão geral

Métodos heurísticos

Definição

Métodos heurísticos: são algoritmos que buscam retornar uma solução de qualidade em **um tempo adequado** sem garantir a otimalidade da solução encontrada.

- Métodos construtivos: algoritmos que constroem soluções iniciais.
- Métodos de refinamento: algoritmos que buscam melhorar uma dada solução.
 - Métodos de busca local: algoritmos que buscam melhorar uma dada solução realizando uma busca em sua vizinhança.

Conveniência

- Podem ser usadas para encontrar boas soluções em tempo razoável.
- Podem ser combinadas com métodos exatos para acelerar sua convergência.

Log do solver CPLEX

```
Nodes
                                                      Cuts/
   Node Left
                  Objective
                             IInf Best Integer
                                                   Best Bound
                                                                 ItCnt
     0+
                                        12.0000
                                                       0.0000
     0 +
                                         6.0000
                                                       0.0000
      0
                     4.6267
                               10
                                         6.0000
                                                       4.6267
                                                                    47
      0
                     4.6267
                               11
                                         6.0000
                                                                    53
                                                      Cuts: 9
      0
                     4.6267
                               11
                                         6.0000
                                                     Cuts: 12
                                                                    61
      0+
                                         5.0000
                                                       4.6267
                                         5.0000
                                                       5,0000
      0
                     cutoff
                                                                    61
Elapsed time = 0.05 sec. (3.78 ticks, tree = 0.01 MB,
solutions = 3)
Clique cuts applied: 2
Cover cuts applied: 2
Flow cuts applied: 1
Zero-half cuts applied:
Gomory fractional cuts applied: 1
Root node processing (before b&c):
  Real time
                             0.05 sec. (3.78 ticks)
                             0.05 sec. (3.78 ticks)
Total (root+branch&cut) =
```

Combinação de heurísticas (H) e métodos exatos (EM) [Ngoo et al., 2024]

Integração flexível (loose)

Integração forte (tight)

Métodos heurísticos

Definição

Matheurísticas ou heurísticas matemáticas (MIP heuristics): são procedimentos para encontrar boas soluções para um problema usando modelos de programação matemática [Ngoo et al., 2024].

Relaxação: exemplo

Programa Linear Inteiro

$$\max 150x_1 + 200x_2$$
s. a $x_1 \le 4$

$$x_2 \le 3$$

$$2x_1 + 3x_2 \le 12$$

$$x_1, x_2 \in \mathbb{Z}_+$$

Relaxação: exemplo

Exemplo:

Considere o seguinte problema da mochila

$$\label{eq:constraints} \begin{array}{l} \max \ 3x_1 + 14x_2 + 18x_3 \\ \text{s. a} \ 3x_1 + 5x_2 + 6x_3 \leq 10 \\ x_1, x_2, x_3 \in \{0, 1\} \end{array}$$

Solução relaxada

• Solução: $\bar{x} = (0; 0, 8; 1)$

Problema da mochila com adição de cortes de cobertura

 Considere o seguinte problema da mochila após adição de cortes de cobertura

$$\max 11x_1 + 5x_2 + 18x_3 + 7x_4 + 8x_5 \tag{1}$$

s. a
$$5x_1 + 6x_2 + 6x_3 + 4x_4 + 3x_5 \le 12$$
 (2)

$$x_1 + x_3 + x_5 \le 2 \tag{3}$$

$$x_3 + x_4 + x_5 \le 2 \tag{4}$$

$$x_1, x_2, x_3, x_4, x_5 \in \{0, 1\}$$
 (5)

▶ Solução da relaxação linear: $\bar{x} = [0, 5; 0; 1; 0, 5; 0, 5]$ $- \bar{x}_1 = 0, 5; \bar{x}_2 = 0; \bar{x}_3 = 1; \bar{x}_4 = 0, 5; \bar{x}_5 = 0, 5$

Problema do caixeiro viajante

Relaxação linear

► Função objetivo: 9

▶ Solução x_{ij}

O/D	1	2	3	4	5
1				1	
2			0.4		0.6
3		1			
4	0.6				0.4
5	0.4		0.6		

Problema do caixeiro viajante

Relaxação linear

- ► Função objetivo: 9
- ightharpoonup Solução x_{ij}

O\D	1	2	3	4	5
1				1	
2			0.4		0.6
3		1			
4	0.6				0.4
5	0.4		0.6		

Dados de entrada

- ► Depósito: nó 1
- ► Matriz de custo

O\D	1	2	3	4	5
1	0	5	2	2	6
2	4	0	1	4	4
3	2	1	0	1	5
4	1	1	5	0	2
5	3	5	1	5	0

Formulação: Problema bin-packing

min
$$\sum_{j=1}^{m} y_j$$
 (6)

$$\sum_{j=1}^{m} x_{ij} = 1 \qquad \forall i \in \{1, \dots, n\} \qquad (7)$$

$$\sum_{i=1}^{n} w_i x_{ij} \le C y_j \qquad \forall j \in \{1, \dots, m\} \qquad (8)$$

$$y_j \in \{0, 1\}, x_{ij} \in \{0, 1\} \qquad (9)$$

Problema bin-packing relaxado

Considere que cada caixa tem capacidade ${\cal C}=12$ e 7 caixas candidatas

Objetos	1	2	3	4	5	6	7	Total
w_i	3	5	7	6	2	4	7	34

Solução do problema relaxado (valores não nulos)

,			`					
Caix	as	1	2	3	4	5		
y_j		0.17	1	0.58	0.08	1		
	1					1		
	2	0.4				0.6		
	3			1				
x_{ij}	4		0.83		0.17			
	5					1		
	6					1		
	7		1					

Sumário

Heurísticas matemáticas

Definição

Exemplo de uma estratégia matheurística

Heurísticas RENS e RINS

Relaxation Enforced Neighbourhood Search (RENS) Relaxation Induced Neighbourhood Search (RINS)

Heurística Relax and Fix e Fix and Optimize

Estruturas de vizinhança

Distância de Hamming Vizinhança usando distâncias de H

Heurística Local branching

Implementação das heurísticas matemáticas

Revisão: visão gera

Notação

- Seja x o vetor de variáveis de decição
- Seja I o conjunto de índices das variáveis inteiras

Procedimento RENS

- 1. Resolver a relaxação linear do problema original (PL)
 - lacktriangle obter uma solução relaxada ar x
 - encontrar $F \subset I$, tal que $\bar{x}_j \notin \mathbb{Z}$, para todo $j \in F$
- 2. Realizar os arredondamentos, correspondentes a x_j para $j \in F$, usando a solução do subproblema reduzido $P(\bar{x})$
 - ▶ $P(\bar{x})$ resulta da fixação das variáveis x_j em \bar{x}_j para $j \in I \setminus F$.

Exemplo 1: Problema Bin-packing

$$\min \sum_{j=1}^{m} y_j \tag{10}$$

$$\sum_{j=1}^{m} x_{ij} = 1 \qquad \forall i \in \{1, \dots, n\} \tag{11}$$

$$\sum_{i=1}^{n} w_i x_{ij} \le C y_j \qquad \forall j \in \{1, \dots, m\} \tag{12}$$

$$y_j \in \{0, 1\}, x_{ij} \in \{0, 1\} \tag{13}$$

Problema bin-packing relaxado

Considere que cada caixa tem capacidade C=12

Objetos	1	2	3	4	5	6	7	Total
w_i	3	5	7	6	2	4	7	34

Solução do problema relaxado

Caix	Caixas		2	3	4	5
$y_{\scriptscriptstyle J}$	y_j		1	0.58	0.08	1
	1					1
	2	0.4				0.6
	3			1		
x_{ij}	4		0.83		0.17	
	5					1
	6					1
	7		1			

$$I_y = \{1, 2, 3, 4, 5, 6, 7\}$$

►
$$I_y = \{1, 2, 3, 4, 5, 6, 7\}$$

► $I_x = \{(i, j) \ \forall i, j = 1, \dots, 7\}$

► $F_y = ?$

► $F_x = ?$

$$F_y = ?$$

$$F_x = ?$$

Exemplo 1 - Problema reduzido

Ilustração das variáveis do problema reduzido

Caixas					15	
	2	7 4	3	4	6 <mark>2</mark>	

Exemplo 1 - Problema reduzido

Ilustração das variáveis do problema reduzido

Solução do problema reduzido

Relaxação: exemplo

Programa Linear Inteiro

$$\label{eq:continuous} \begin{aligned} \max & 150x_1 + 200x_2\\ \text{s. a} & x_1 \leq 4\\ & x_2 \leq 3\\ & 2x_1 + 3x_2 \leq 12\\ & x_1, x_2 \in \mathbb{Z}_+ \end{aligned}$$

Determine o problema reduzido para a solução ótima da relaxação linear D e determine o gap entre a solução ótima e a solução encontrada via RENS.

Relaxação: exemplo

Programa Linear Inteiro

$$\label{eq:continuous} \begin{aligned} \max & 150x_1 + 200x_2\\ \text{s. a} & x_1 \leq 4\\ & x_2 \leq 3\\ & 2x_1 + 3x_2 \leq 12\\ & x_1, x_2 \in \mathbb{Z}_+ \end{aligned}$$

Determine o problema reduzido para a solução ótima da relaxação linear D e determine o gap entre a solução ótima e a solução encontrada via RENS.

Notação

Problema MIP ou PI

$$(MIP \text{ ou } PI) \max_{x \in \mathbb{R}^n_+} \left\{ c'x : Ax \leq b, x_j \in \mathbb{Z}, j \in I \right\}$$

Relaxação linear

$$(PL) \max_{x \in \mathbb{R}^n_+} \left\{ c'x : Ax \le b, j \in I \right\}$$

- ▶ Seja \bar{x} a solução do (PL) e $F = \{j \in I : \bar{x}_j \notin \mathbb{Z}\}$
- Problema reduzido

$$P(\bar{x}): \max_{x \in \mathbb{R}_+^n} \left\{ c'x : Ax \le b, x_j = \bar{x}_j \ \text{para } j \in I \backslash F, x_j \in \mathbb{Z} \text{ para } j \in F \right\}$$

Notação

- ullet $ilde{x}$ é uma solução incumbente dada
- ▼ x̄ é a solução do (PL)
- $J = \{ j \in I : \tilde{x}_j = \bar{x}_j \}$
- Problema reduzido

$$P(\overline{x},J): \max_{x \in \mathbb{R}^n_+} \left\{ cx : Ax \leq b, x_j = \overline{x}_j \text{ para } j \in J, x_j \in \mathbb{Z}, \forall j \in I \setminus J \right\}$$

Notação

- $ightharpoonup ilde{x}$ é uma solução incumbente dada
- ightharpoonup \bar{x} é a solução do (PL)
- $J = \{ j \in I : \tilde{x}_j = \bar{x}_j \}$
- Problema reduzido

$$P(\overline{x},J): \max_{x \in \mathbb{R}^n_+} \left\{ cx : Ax \leq b, x_j = \overline{x}_j \text{ para } j \in J, x_j \in \mathbb{Z}, \forall j \in I \setminus J \right\}$$

Procedimento RINS

- 1. Resolver o problema (PL) e obter \bar{x} .
- 2. Realizar os arredondamentos em relação a \overline{x} usando a solução do subproblema reduzido associado a \overline{x} e J.

Exemplo: Considere que cada caixa tem capacidade C=12

Objetos	1	2	3	4	5	6	7
w_i	3	5	7	6	2	4	7

Solução incumbente:

Solução ilicambente.								
Caix	as	1	2	3	4	5		
y_j	y_j		1	1	1	0		
	1	1						
	1 2 3	1						
	3		1					
x_{ij}	4			1				
	5 6	1						
	6			1				
	7				1			

Solução da relaxação:

•	Joinção da Telaxação.								
	Caixas		1	2	3	4	5		
ſ	y_j		1	0.8	1	0	0		
ſ		1	1						
		2		0.8	0.2				
İ		3		0.4	0.6				
İ	x_{ij}	4	0.5	0.5					
	·	5	1						
		6	1						
		7			1				

Definição do conjunto J

$$I_y \setminus J_y = \{2,4\}$$

Exemplo: Considere que cada caixa tem capacidade C=12

$$P(\overline{x}, J) : \min y_2 + y_4 + 2$$

$$x_{11} = x_{51} = 1, \quad x_{21} + x_{22} + x_{23} = 1$$

$$x_{32} + x_{33} = 1, \quad x_{41} + x_{42} = 1$$

$$x_{61} + x_{63} = 1, \quad x_{73} + x_{74} = 1$$

$$5x_{21} + 6x_{41} + 4x_{61} \le 7$$

$$5x_{22} + 7x_{32} + 6x_{42} \le 12y_2$$

$$5x_{23} + 7x_{33} + 4x_{63} + 7x_{73} \le 12$$

$$7x_{74} \le 12y_4$$

$$y_j \in \{0, 1\}, x_{ij} \in \{0, 1\}$$

Sumário

Heurísticas matemáticas

Definição

Exemplo de uma estratégia matheurística

Heurísticas RENS e RINS

Relaxation Enforced Neighbourhood Search (RENS) Relaxation Induced Neighbourhood Search (RINS)

Heurística Relax and Fix e Fix and Optimize

Estruturas de vizinhança

Distância de Hamming

Vizinhança usando distâncias de Hamming

Heurística Local branching

Implementação das heurísticas matemáticas

Revisão: visão geral

Problema de localização de instalações com 3 instalações candidatas e 4 clientes.

- $ightharpoonup y_j$ indica se a instalação j será aberta ou não
- $ightharpoonup x_{ij}$ indica se o cliente i será alocado a instalação j ou não
- Objetivo: minimizar o custo total de instalação e de transporte

Solução relaxação linear

y_j	0.25	0.5	0.25
$y_j \\ x_{ij}$	1	0	0
	0	1	0
	0	1	0
	0	0	1

Iteração 1

- Integralizando apenas os índices referentes a candidata 1
- ► Função objetivo: 28956.525

,		,	
y_j	0	0.5	0.5
x_{ij}	0	0	1
	0	1	0
	0	1	0
	0	0	1

Iteração 2

- ▶ Integralizando os índices referentes a candidata 2
- ► Função objetivo: 32403.95

y_j	0	0	1
x_{ij}	0	0	1
	0	0	1
	0	0	1
	0	0	1

Iteração 2

- Integralizando os índices referentes a candidata 2
- Função objetivo: 32403.95

Solução ótima - função objetivo: 31230.275

у	1	0	0
Χ	1	0	0
	1	0	0
	1	0	0
	1	0	0

Heurística Relax and Fix:Lógica do algoritmo

1. Passo 1: Particionamento das variáveis de decisão inteiras

 $x \mid \mathbb{Z} \mid \mathbb{Z$

Heurística Relax and Fix:Lógica do algoritmo

- 1. Passo 1: Particionamento das variáveis de decisão inteiras
 - $x \mid \mathbb{Z} \mid \mathbb{Z$
- 2. Passo 2
 - Relaxação

Heurística Relax and Fix:Lógica do algoritmo

- 1. Passo 1: Particionamento das variáveis de decisão inteiras
- 2. Passo 2
 - Relaxação
 - Solução do problema resultante
 - $\tilde{x}^1 \begin{bmatrix} \tilde{x}_1^1 & \tilde{x}_2^1 & \tilde{x}_3^1 & \tilde{x}_4^1 & \tilde{x}_5^1 & \tilde{x}_6^1 & \tilde{x}_7^1 & \tilde{x}_8^1 & \tilde{x}_9^1 \end{bmatrix}$

Heurística Relax and Fix: Lógica do algoritmo

- 1. Passo 2
 - Relaxação
 - $x \quad \mathbb{Z} \quad \mathbb{Z} \quad \mathbb{Z} \quad \mathbb{R} \quad \mathbb{R} \quad \mathbb{R} \quad \mathbb{R} \quad \mathbb{R} \quad \mathbb{R}$
 - Solução do problema resultante

$$\tilde{x}^1 \ \boxed{ \tilde{x}_1^1 \quad \tilde{x}_2^1 \quad \tilde{x}_3^1 \quad \tilde{x}_4^1 \quad \tilde{x}_5^1 \quad \tilde{x}_6^1 \quad \tilde{x}_7^1 \quad \tilde{x}_8^1 \quad \tilde{x}_9^1 }$$

- 2. Passo 3
 - Relaxação e fixação
 - $x \quad \boxed{\tilde{x}_1^1 \quad \tilde{x}_2^1 \quad \tilde{x}_3^1} \quad \mathbb{Z} \quad \mathbb{Z} \quad \mathbb{Z} \quad \mathbb{R} \quad \mathbb{R} \quad \mathbb{R}$

Heurística Relax and Fix: Lógica do algoritmo

- 1. Passo 2
 - Relaxação
 - $x \mid \mathbb{Z} \mid \mathbb{Z} \mid \mathbb{Z} \mid \mathbb{R} - Solução do problema resultante
 - $\tilde{x}^1 \ \boxed{ \ \tilde{x}_1^1 \ \ \tilde{x}_2^1 \ \ \tilde{x}_3^1 \ \ \tilde{x}_4^1 \ \ \tilde{x}_5^1 \ \ \tilde{x}_6^1 \ \ \tilde{x}_7^1 \ \ \tilde{x}_8^1 \ \ \tilde{x}_9^1 }$
- 2. Passo 3
 - ► Relaxação e fixação
 - $x \mid \tilde{x}_1^1 \quad \tilde{x}_2^1 \quad \tilde{x}_3^1 \mid \mathbb{Z} \quad \mathbb{Z} \mid \mathbb{Z} \mid \mathbb{R} \quad \mathbb{R} \quad \mathbb{R}$
 - Solução do problema resultante
 - $\tilde{x}^2 \begin{bmatrix} \tilde{x}_1^1 & \tilde{x}_2^1 & \tilde{x}_3^1 & \tilde{x}_4^2 & \tilde{x}_5^2 & \tilde{x}_6^2 & \tilde{x}_7^2 & \tilde{x}_8^2 & \tilde{x}_9^2 \end{bmatrix}$

Heurística Relax and Fix: Lógica do algoritmo

- 1. Passo 2
 - Relaxação
 - $x \mid \mathbb{Z} \mid \mathbb{Z} \mid \mathbb{Z} \mid \mathbb{R} - Solução do problema resultante
 - $\tilde{x}^1 \ \boxed{ \ \tilde{x}_1^1 \ \ \tilde{x}_2^1 \ \ \tilde{x}_3^1 \ \ \tilde{x}_4^1 \ \ \tilde{x}_5^1 \ \ \tilde{x}_6^1 \ \ \tilde{x}_7^1 \ \ \tilde{x}_8^1 \ \ \tilde{x}_9^1 }$
- 2. Passo 3
 - ► Relaxação e fixação
 - $x \mid \tilde{x}_1^1 \quad \tilde{x}_2^1 \quad \tilde{x}_3^1 \mid \mathbb{Z} \quad \mathbb{Z} \mid \mathbb{Z} \mid \mathbb{R} \quad \mathbb{R} \quad \mathbb{R}$
 - Solução do problema resultante
 - $\tilde{x}^2 \mid \tilde{x}_1^1 \quad \tilde{x}_2^1 \quad \tilde{x}_3^1 \mid \tilde{x}_4^2 \quad \tilde{x}_5^2 \quad \tilde{x}_6^2 \quad \tilde{x}_7^2 \quad \tilde{x}_8^2 \quad \tilde{x}_9^2$
- 3. Passo 4
 - ► Relaxação e fixação
 - $x \mid \tilde{x}_1^1 \quad \tilde{x}_2^1 \quad \tilde{x}_3^1 \mid \tilde{x}_4^2 \quad \tilde{x}_5^2 \quad \tilde{x}_6^2 \mid \mathbb{Z} \quad \mathbb{Z} \quad \mathbb{Z}$

Heurística Relax and Fix: Lógica do algoritmo

- 1. Passo 2
 - Relaxação
 - $x \mid \mathbb{Z} \mid \mathbb{Z} \mid \mathbb{Z} \mid \mathbb{R} - Solução do problema resultante

$$\tilde{x}^1 \begin{bmatrix} \tilde{x}_1^1 & \tilde{x}_2^1 & \tilde{x}_3^1 \\ \tilde{x}_4^1 & \tilde{x}_5^1 & \tilde{x}_6^1 \\ \tilde{x}_7^1 & \tilde{x}_8^1 & \tilde{x}_9^1 \\ \end{bmatrix}$$

- 2. Passo 3
 - Relaxação e fixação

$$x \mid \tilde{x}_1^1 \quad \tilde{x}_2^1 \quad \tilde{x}_3^1 \quad \mathbb{Z} \quad \mathbb{Z} \quad \mathbb{Z} \quad \mathbb{R} \quad \mathbb{R} \quad \mathbb{R}$$

Solução do problema resultante

$$\tilde{x}^2 \mid \tilde{x}_1^1 \quad \tilde{x}_2^1 \quad \tilde{x}_3^1 \mid \tilde{x}_4^2 \quad \tilde{x}_5^2 \quad \tilde{x}_6^2 \mid \tilde{x}_7^2 \quad \tilde{x}_8^2 \quad \tilde{x}_9^2$$

- 3. Passo 4
 - ► Relaxação e fixação

$$x \mid \tilde{x}_1^1 \mid \tilde{x}_2^1 \mid \tilde{x}_3^1 \mid \tilde{x}_4^2 \mid \tilde{x}_5^2 \mid \tilde{x}_6^2 \mid \mathbb{Z} \mid \mathbb{Z} \mid \mathbb{Z}$$

Solução do problema resultante

Problema relaxado - função objetivo: 2.83

у	0.47222	0.47222	0.47222	0.47222	0.47222	0.47222
х	0.16667	0.16667	0.16667	0.16667	0.16667	0.16667
	0.16667	0.16667	0.16667	0.16667	0.16667	0.16667
	0.16667	0.16667	0.16667	0.16667	0.16667	0.16667
	0.16667	0.16667	0.16667	0.16667	0.16667	0.16667
	0.16667	0.16667	0.16667	0.16667	0.16667	0.16667
	0.16667	0.16667	0.16667	0.16667	0.16667	0.16667
	0.16667	0.16667	0.16667	0.16667	0.16667	0.16667

- Iteração 1
- ▶ Integralizando índices referentes às caixa 1 e 2
- Função objetivo: 2.8333333333

у	0	0	0.70833	0.70833	0.70833	0.70833
Х	0	0	0.25	0.25	0.25	0.25
	0	0	0.25	0.25	0.25	0.25
	0	0	0.25	0.25	0.25	0.25
	0	0	0.25	0.25	0.25	0.25
	0	0	0.25	0.25	0.25	0.25
	0	0	0.25	0.25	0.25	0.25
	0	0	0.25	0.25	0.25	0.25

- Iteração 2
- Integralizando índices referentes às caixa 3 e 4
- Função objetivo: 2.8333333333

0	0	1	1	0.41667	0.41667
0	0	0	0	0.5	0.5
0	0	0	1	0	0
0	0	0	0	0.5	0.5
0	0	1	0	0	0
0	0	1	0	0	0
0	0	1	0	0	0
0	0	0	1	0	0
	0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 1 0 0 1	0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0	0 0 0 0 0.5 0 0 0 1 0 0 0 0 0.5 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

- Iteração 3
- ▶ Integralizando índices referentes às caixa 5 e 6
- Função objetivo: 3

Heurística Relax and Fix

Algorithm 1 Heurística Relax and Fix

```
Entradas: MIP(P \cap \mathbb{Z}^{|I|} \times \mathbb{R}^{n-|I|}),
                Partições I_t para t \in \{1, ..., T\}
Saída : x^*
for t \in \{1, ..., T\} do
     for i \in I do
          if j \in I_t then
              Faça x_i \in \mathbb{Z}
          end
          else
               Faça x_i \in \mathbb{R} para j \in I_k, \forall k = t+1, \ldots, T
          end
     end
     \bar{x} \leftarrow Solução 	ext{ ótima do } MIP(P) 	ext{ resultante}
     P = P \cap \{x : x_i = \bar{x}_i, \forall j \in I_t\}
end
x^* \leftarrow \bar{x}
Retorne x^*
```

Particionamento para problema de Localização de instalações

Proposta de particionamento

- lacktriangle Seja $J=\{1,\ldots,n\}$ o conjunto das instalações candidatas
- Seja NP o número de partes que serão criadas e TP o tamanho de cada parte, assumindo partes homogêneas.
- ▶ Particionamento: Distribuir os elementos de *J* em sequência para cada uma das *NP* partes.
 - ▶ Se j pertence à parte p, então as variáveis y_j e x_{ij} pertenceriam a esta partição para todo i.

Exemplo:

- $I = \{1, 2, 3, 4, 5, 6\}$
- ▶ Se NP = 2, então TP = 3
 - ▶ Parte $1 = \{1, 2, 3\} : y_1, y_2, y_3, x_{i1}, x_{i2}, x_{i3}, \forall i$
 - ▶ Parte $2 = \{4, 5, 6\} : y_4, y_5, y_6, x_{i4}, x_{i5}, x_{i6}, \forall i$

Particionamento para problema de Localização de instalações

Proposta de particionamento

- ▶ Seja $J = \{1, ..., n\}$ o conjunto das instalações candidatas
- ightharpoonup Seja NP o número de partes que serão criadas e TP o tamanho de cada parte, assumindo partes homogêneas.
- ▶ Particionamento: Distribuir os elementos de *J* em sequência para cada uma das *NP* partes.
 - ▶ Se j pertence à parte p, então as variáveis y_j e x_{ij} pertenceriam a esta partição para todo i.

Exemplo:

- $I = \{1, 2, 3, 4, 5, 6\}$
- ▶ Se NP = 3, então TP = 2
 - ▶ Parte $1 = \{1, 2\} : y_1, y_2, x_{i1}, x_{i2}, \forall i$
 - ▶ Parte $2 = \{3, 4\} : y_3, y_4, x_{i3}, x_{i4}, \forall i$
 - ▶ Parte $3 = \{5, 6\} : y_5, y_6, x_{i5}, x_{i6}, \forall i$

Relax and Fix - Localização de facilidades - 100 instalações e 5 partes

Iteração 1

Valor da solução relaxada 50.6255

Facilidades instaladas:

Iteração 2

Valor da solução relaxada 56.3516

Facilidades instaladas:

Iteração 3

Valor da solução relaxada 63.97

Facilidades instaladas:

Iteração 4

Valor da solução relaxada 87.5696

Facilidades instaladas:

Iteração 5

Valor da solução relaxada 183.788

Facilidades instaladas: 82 85 89 96

Tempo 20.21

Relax and Fix - Localização de facilidades - 100 instalações e 10 partes

Iteração 1

Valor da solução relaxada 49.3027

Facilidades instaladas:

Iteração 2

Valor da solução relaxada 50.6255

Facilidades instaladas:

Iteração 3

Valor da solução relaxada 53.1623

Facilidades instaladas:

Iteração 4

Valor da solução relaxada 56.3516

Facilidades instaladas:

Iteração 5

Valor da solução relaxada 58.4608

Facilidades instaladas:

Tempo 1.96

Relax and Fix - Localização de facilidades - 100 instalações e 5 partes

Iteração 6

Valor da solução relaxada 63.97

Facilidades instaladas:

Iteração 7

Valor da solução relaxada 74.4656

Facilidades instaladas:

Iteração 8

Valor da solução relaxada 87.5696

Facilidades instaladas:

Iteração 9

Valor da solução relaxada 126.478

Facilidades instaladas: 82

Iteração 10

Valor da solução relaxada 200.009 Facilidades instaladas: 82 94 95 96

Tempo 7.53

Resultados - Relax and fix

Table 1: Comparação dos resultados de três particionamentos do Relax-and-fix: 5 partes, 10 partes e 20 partes com o resultado usando apenas o CPLEX limitado a 2 minutos.

l.	5		10		20		CPX
	F.O	Tim[s]	F.O	Tim[s]	F.O	Tim[s]	F.O
а	183.79	20.21	200.01	8.54	203.51	6.39	308.36
b	139.68	6.63	145.47	4.32	147.80	5.57	151.32
С	123.33	8.09	124.68	4.94	130.54	5.57	152.66

- 1. Passo 1: Particione o vetor de variáveis de variáveis de decisão inteiras
 - ► Vetor de variáveis de decisão
 - $x \mid \mathbb{Z} \mid \mathbb{Z$
 - Solução incumbente inicial

$$\tilde{x}^0 \begin{bmatrix} \tilde{x}_1^0 & \tilde{x}_2^0 & \tilde{x}_3^0 | & \tilde{x}_4^0 & \tilde{x}_5^0 & \tilde{x}_6^0 | & \tilde{x}_7^0 & \tilde{x}_8^0 & \tilde{x}_9^0 \end{bmatrix}$$

- 1. Passo 1: Particione o vetor de variáveis de variáveis de decisão inteiras
 - Vetor de variáveis de decisão
 - x \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z}
 - Solução incumbente inicial

$$\tilde{x}^0 \, \left[\begin{array}{cccc} \tilde{x}_1^0 & \tilde{x}_2^0 & \tilde{x}_3^0 \\ \end{array} \right] \, \left. \begin{array}{cccc} \tilde{x}_4^0 & \tilde{x}_5^0 & \tilde{x}_6^0 \\ \end{array} \right] \, \left. \begin{array}{ccccc} \tilde{x}_7^0 & \tilde{x}_8^0 & \tilde{x}_9^0 \\ \end{array} \right]$$

- 2. Passo 2
 - ► Fixar e otimizar (Parte 1)

- 1. Passo 1: Particione o vetor de variáveis de variáveis de decisão inteiras
 - Vetor de variáveis de decisão
 - x \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z}
 - Solução incumbente inicial

$$\tilde{x}^0 \begin{bmatrix} \tilde{x}_1^0 & \tilde{x}_2^0 & \tilde{x}_3^0 | \tilde{x}_4^0 & \tilde{x}_5^0 & \tilde{x}_6^0 | \tilde{x}_7^0 & \tilde{x}_8^0 & \tilde{x}_9^0 \end{bmatrix}$$

- 2. Passo 2
 - ► Fixar e otimizar (Parte 1)

$$x \mid \mathbb{Z} \mid \mathbb{Z} \mid \mathbb{Z} \mid \tilde{x}_4^0 \mid \tilde{x}_5^0 \mid \tilde{x}_6^0 \mid \tilde{x}_7^0 \mid \tilde{x}_8^0 \mid \tilde{x}_9^0 \mid$$

Solução do problema resultante

$$\tilde{x}^1 \ | \ \tilde{x}_1^1 \ | \ \tilde{x}_2^1 \ | \ \tilde{x}_3^1 \ | \ \tilde{x}_4^0 \ | \ \tilde{x}_5^0 \ | \ \tilde{x}_6^0 \ | \ \tilde{x}_7^0 \ | \ \tilde{x}_8^0 \ | \ \tilde{x}_9^0$$

- 1. Passo 2
 - ► Fixar e otimizar (Parte 1)

Solução do problema resultante

- 2. Passo 3
 - ► Fixar e otimizar (Parte 2)

- 1. Passo 2
 - ► Fixar e otimizar (Parte 1)

$$x \mid \mathbb{Z} \mid \mathbb{Z} \mid \mathbb{Z} \mid \tilde{x}_4^0 \mid \tilde{x}_5^0 \mid \tilde{x}_6^0 \mid \tilde{x}_7^0 \mid \tilde{x}_8^0 \mid \tilde{x}_9^0 \mid$$

Solução do problema resultante

$$\tilde{x}^1 \begin{bmatrix} \tilde{x}_1^1 & \tilde{x}_2^1 & \tilde{x}_3^1 & \tilde{x}_4^0 & \tilde{x}_5^0 & \tilde{x}_6^0 & \tilde{x}_7^0 & \tilde{x}_8^0 & \tilde{x}_9^0 \end{bmatrix}$$

- 2. Passo 3
 - ► Fixar e otimizar (Parte 2)

$$x \mid \tilde{x}_1^1 \quad \tilde{x}_2^1 \quad \tilde{x}_3^1 \quad \mathbb{Z} \quad \mathbb{Z} \quad \mathbb{Z} \mid \tilde{x}_7^0 \quad \tilde{x}_8^0 \quad \tilde{x}_9^0$$

► Solução do problema resultante

$$\tilde{x}^2 \ \boxed{ \ \tilde{x}_1^1 \ \ \tilde{x}_2^1 \ \ \tilde{x}_3^1 \ \ \tilde{x}_4^2 \ \ \tilde{x}_5^2 \ \ \tilde{x}_6^2 \ \ \tilde{x}_7^0 \ \ \tilde{x}_8^0 \ \ \tilde{x}_9^0 }$$

1. Passo 3

► Fixar e otimizar (Parte 2)

$$x \mid \tilde{x}_1^1 \quad \tilde{x}_2^1 \quad \tilde{x}_3^1 \mid \mathbb{Z} \quad \mathbb{Z} \mid \mathbb{Z} \mid \tilde{x}_7^0 \quad \tilde{x}_8^0 \quad \tilde{x}_9^0 \mid$$

Solução do problema resultante

2. Passo 4

► Fixar e otimizar (Parte 3)

$$x \mid \tilde{x}_1^1 \quad \tilde{x}_2^1 \quad \tilde{x}_3^1 \mid \tilde{x}_4^2 \quad \tilde{x}_5^2 \quad \tilde{x}_6^2 \mid \mathbb{Z} \quad \mathbb{Z} \quad \mathbb{Z}$$

Solução do problema resultante

Heurística Fix and Optimize

Algorithm 2 Heurística com uma iteração de Fix and Optimize

```
Entradas: MIP(P \cap \mathbb{Z}^{|I|} \times \mathbb{R}^{n-|I|}), \tilde{x}
                   Partições I_t
                                                            para
t \in \{1, ..., T\}
Saída : x^*
\tilde{P} = P \cap \{x : x_j = \tilde{x}_j, \forall j \in I\}
for t \in \{1, ..., T\} do
      if j \in I_t then
     \tilde{P} \leftarrow \tilde{P} \setminus \{x_i = \tilde{x}_i\}
     end
     \tilde{x} \leftarrow Solução 	ext{ ótima do } MIP(\tilde{P})
     for j \in I_t do
     \tilde{P} \leftarrow \tilde{P} \cap \{x_i = \tilde{x}_i\}
      end
end
x^* \leftarrow \tilde{x}
Retorne x^*
```

Observação

 O algoritmo representa apena uma iteração de Fix and Optimize.

Fix and optimize (adaptado)

```
Loop principal Fix and Optimize (82 94 95 96)
                 Iteração 1: 1-10
Valor da solução incumbente 200.009
Facilidades instaladas: 82 94 95 96
                 Iteração 2: 11-20
Valor da solução incumbente 193.58
Facilidades instaladas: 11 15 94 96
                 Iteração 3: 21-30
Valor da solução incumbente 189.672
Facilidades instaladas: 15 20 21 26
                 Iteração 4: 31-40
Valor da solução incumbente 184.655
Facilidades instaladas: 15 20 32 35
                 Iteração 5: 41-50
Valor da solução incumbente 184.655
Facilidades instaladas: 15 20 32 35
```

Fix and optimize (adaptado)

Iteração 6: 51-60 Valor da solução incumbente 180.396 Facilidades instaladas: 35 53 54 58 Iteração 7: 61-70 Valor da solução incumbente 180.15 Facilidades instaladas: 53 54 58 69 Iteração 8: 71-80 Valor da solução incumbente 176.862 Facilidades instaladas: 53 58 69 78 Iteração 9: 81-90 Valor da solução incumbente 176.581 Facilidades instaladas: 58 78 82 85 Iteração 10: 91-100 Valor da solução incumbente 176.581 Facilidades instaladas: 58 78 82 85

Fix and optimize (adaptado)- Localização de instalação - capa.txt

Iteração 11: 1-10 Valor da solução incumbente 176.581 Facilidades instaladas: 58 78 82 85

Iteração 12: 11-20 Valor da solução incumbente 175.925 Facilidades instaladas: 15 58 78 85

Iteração 13: 21-30

Parte = { 21 22 23 24 25 26 27 28 29 30 15 58 78 85}

Valor da solução incumbente 175.925

Facilidades instaladas: 15 58 78 85

Resultados - fix and optimize

Table 2: Comparação dos resultados de três particionamentos: 5 partes, 10 partes e 20 partes com o resultado usando apenas o CPLEX limitado a 2 minutos.

I	RF FixOpt - 1 iter		FixOpt		CPX	z^*		
Ι	F.O	T[s]	F.O	T[s]	F.O	T[s]	F.O	F.O
а	200.01	8.5	177.22	66.9	171.61	120.0	308.36	171.56
b	145.47	4.3	139.53	16.2	132.45	120.0	151.32	129.79
С	124.68	4.9	120.24	13.2	115.38	120.0	152.66	115.06

Sumário

Heurísticas matemáticas

Definição

Exemplo de uma estratégia matheurística

Heurísticas RENS e RINS

Relaxation Enforced Neighbourhood Search (RENS) Relaxation Induced Neighbourhood Search (RINS)

Heurística Relax and Fix e Fix and Optimize

Estruturas de vizinhança

Distância de Hamming Vizinhança usando distâncias de Hamming Heurística Local branching

Implementação das heurísticas matemáticas

Revisão: visão geral

Definições: Hamming distance

Definição

Distância de Hamming (Hamming distance) entre dois vetores binários fornece o número de posições em que estes vetores se diferem.

Distância de Hamming

$$\delta(x^a, x^b) = \sum_{j \in I} |x_j^a - x_j^b| = \sum_{j \in I} [x_j^a (1 - x_j^b) + x_j^b (1 - x_j^a)]$$

Exemplo:

- a) $x^a = [1, 0, 1, 0, 0], x^b = [0, 0, 1, 0, 1]$
- b) $x^a = [1, 0, 1, 0, 0], x^b = [0, 1, 0, 1, 1]$
- c) $x^a = [1, 0, 1, 0, 0], x^b = [1, 0, 1, 0, 0]$
- d) $x^a = [1, 0, 1, 1, 0], x^b = [1, 1, 1, 1, 0]$

Definição

▶ Vizinhança $\mathcal{N}^k(\tilde{x}) = \{x \in X : \delta(x, \tilde{x}) \leq k\}$

Exemplo:

- 1) Seja $x^a = [1, 0, 1]$, determine:
 - a) $\mathcal{N}^{1}(x^{a}) =$
 - b) $\mathcal{N}^{2}(x^{a}) =$

j	Peso	Util.
1	6	10
2 3	4	3
3	12	12
4	5	4
5	1	1

- Conjunto de soluções viáveis X
- Solução incumbente: $\tilde{x} = (0,0,1,0,0)$

j	Peso	Util.
1	6	10
2	4	3
3	12	12
4	5	4
5	1	1

- Conjunto de soluções viáveis X
- Solução incumbente: $\tilde{x} = (0, 0, 1, 0, 0)$
- Existe uma solução melhor que \tilde{x} em $\mathcal{N}^1(\tilde{x})$?

j	Peso	Util.
1	6	10
2	4	3
3	12	12
4	5	4
5	1	1

- Conjunto de soluções viáveis X
- Solução incumbente: $\tilde{x} = (0, 0, 1, 0, 0)$
- Existe uma solução melhor que \tilde{x} em $\mathcal{N}^1(\tilde{x})$?
- ▶ Existe uma solução melhor que \tilde{x} em $\mathcal{N}^2(\tilde{x})$?

j	Peso	Util.
1	6	10
2	4	3
3	12	12
4	5	4
5	1	1

- Conjunto de soluções viáveis X
- Solução incumbente: $\tilde{x} = (0, 0, 1, 0, 0)$
- ▶ Existe uma solução melhor que \tilde{x} em $\mathcal{N}^1(\tilde{x})$?
- ▶ Existe uma solução melhor que \tilde{x} em $\mathcal{N}^2(\tilde{x})$?
- Existe uma solução melhor que \tilde{x} em $\mathcal{N}^3(\tilde{x})$?

j	Peso	Util.
1	6	10
2	4	3
	12	12
4	5	4
5	1	1

- Conjunto de soluções viáveis X
- Solução incumbente: $\tilde{x} = (0, 0, 1, 0, 0)$
- ▶ Existe uma solução melhor que \tilde{x} em $\mathcal{N}^1(\tilde{x})$?
- ▶ Existe uma solução melhor que \tilde{x} em $\mathcal{N}^2(\tilde{x})$?
- Existe uma solução melhor que \tilde{x} em $\mathcal{N}^3(\tilde{x})$?
- ▶ Defina $\mathcal{N}^k(\tilde{x})$ usando programação linear.

1) (Problema bin packing) Considere que cada caixa tem capacidade $C=12\,$

Objetos	1	2	3	4
w_i	3	5	7	6

Solução:

determine, se existir, alguma solução diferente da solução corrente em $\mathcal{N}^1(\bar{y},\bar{x}), \mathcal{N}^2(\bar{y},\bar{x})$ e $\mathcal{N}^3(\bar{y},\bar{x})$.

1) (Problema bin packing) Considere que cada caixa tem capacidade $C=12\,$

Objetos	1	2	3	4
w_i	3	5	7	6

Solução:

determine, se existir, alguma solução diferente da solução corrente em $\mathcal{N}^1(\bar{y}, \bar{x}), \mathcal{N}^2(\bar{y}, \bar{x})$ e $\mathcal{N}^3(\bar{y}, \bar{x})$.

Definição

▶ Vizinhança $\mathcal{N}^k(\bar{y}) = \{(y, x) \in YX : \delta((y, x), (\bar{y}, \bar{x})) \leq k\}$

1) (Problema bin packing) Considere que cada caixa tem capacidade $C=12\,$

Objetos	1	2	3	4
w_i	3	5	7	6

Solução:

Considere a seguinte estrutura de vizinhança

▶ Vizinhança $\mathcal{N}^k(\bar{y}) = \{(y,x) \in YX : \delta(y,\bar{y}) \leq k\}$ ou seja

$$\mathcal{N}^k(\bar{y}) = \{ (y, x) \in YX : (1 - y_1) + (1 - y_2) + (1 - y_3) + (1 - y_4) \le k \}$$
(1)

determine, se existir, alguma solução melhor que a solução corrente em $\mathcal{N}^1(\bar{y})$

Problema inicial

$$\max 2x_1 + 2x_2 + 3x_3 + 4x_4 + 6x_5 + 5x_6 + 8x_7 + 7x_8 \tag{1}$$

$$s.a \ 4x_1 + 15x_2 + 7x_3 + 9x_4 + 8x_5 + 10x_6 + 9x_7 + 11x_8 \le 32$$
 (2)

$$x_j \in \{0, 1\} \tag{3}$$

- Solução inicial $x^0 = (1, 1, 1, 0, 0, 0, 0, 0)$
- ▶ Defina o subproblema a melhor na vizinhança

$$\mathcal{N}^2(x^0)$$

Definição de estrutura de vizinhança

Tipos de fixação

- Hard fixing: fixação de variáveis em um valor
- ▶ Soft fixing: adição do pseudo-corte $\delta(x, \tilde{x}) \leq k$, que fixa o valor de algumas variáveis de forma menos específica

Hard fixing e Soft Fixing

Hard fixing e Soft Fixing

Hard fixing e Soft Fixing

Local branching [Fischetti and Lodi, 2003]

$$(MIP) \min \{c'x : x \in X, x_j \in \{0, 1\}, j \in I\}$$

Pressupostos:

- Estrutura de vizinhança $\mathcal{N}^k(.) \subset X$

Local branching [Fischetti and Lodi, 2003]

$$(MIP) \min \{c'x : x \in X, x_j \in \{0, 1\}, j \in I\}$$

Pressupostos:

- Estrutura de vizinhança $\mathcal{N}^k(.) \subset X$

Algoritmo Local Branching

- Passo 1: Inicialização
 - Solução inicial viável \bar{x}^0 , distância k.
 - $ightharpoonup Y \leftarrow X$
 - $h \leftarrow 0$

Local branching

Algoritmo Local Branching Básico (\bar{x}^0 , k, X)

- Passo 1: Inicialização
 - $Y \leftarrow X$
 - $h \leftarrow 0$
- ▶ Passo 2: Resolva o $MIP(Y \cap \mathcal{N}^k(\bar{x}^h))$
- Passo 3: Se a solução ótima $x' \in Y \cap \mathcal{N}^k(\bar{x}^h)$ é melhor que \bar{x}^h , então
 - $Y = Y \setminus \mathcal{N}^k(\bar{x}^h).$
 - $h \leftarrow h + 1$
 - $\bar{x}^h \leftarrow \bar{x}'$
 - Se critério de parada não tiver sido atingido, volte ao Passo 2

Caso contrário

- $Y = Y \setminus \mathcal{N}^k(\bar{x}^h)$
- Resolva o problema MIP(Y) e obtenha sua solução ótima x''
- Pare
- ▶ Retorne a melhor solução entre \bar{x}^h e x''

Local branching básico

Critério de parada

- Parar após todos os problemas serem resolvidos (Método Exato)
- ► Parar após um dado número de iterações (Matheurística)
- ▶ Impor um tempo limite de resolução (Matheurística)

Local branching com tempo limite

Algorithm 3 LocalBranching(\bar{x}, k^0 , tempo limite)

 $k \leftarrow k_0, Y \leftarrow X, x^* \leftarrow \bar{x};$

enquanto Critério de parada não atendido faça

Resolver $MIP(Y \cap \mathcal{N}^k(\tilde{x}), \text{tempo limite})$

caso Nenhuma solução viável obtida faça $k \leftarrow k - \lceil \frac{k}{2} \rceil$;

caso Solução ótima x' encontrada faça

$$Y = Y \setminus \mathcal{N}^k(\tilde{x})$$

$$\tilde{x} \leftarrow x' \ \mathsf{e} \ k \leftarrow k_0$$

se $c'x' < c'x^*$ então $x^* \leftarrow x'$;

fim

caso Solução viável encontrada faça

$$Y = Y \setminus \mathcal{N}^0(\tilde{x}) \in \tilde{x} \leftarrow x'$$

fim

caso $Y = \emptyset$ faça $Y = Y \setminus \mathcal{N}^k(\tilde{x})$ e aplique uma diversificação;

fim

Retorne x^*

Problema inicial

$$\max 2x_1 + 2x_2 + 3x_3 + 4x_4 + 6x_5 + 5x_6 + 8x_7 + 7x_8 \tag{1}$$

$$s.a \ 4x_1 + 15x_2 + 7x_3 + 9x_4 + 8x_5 + 10x_6 + 9x_7 + 11x_8 \le 32$$
 (2)

$$x_j \in \{0, 1\} \tag{3}$$

Considere a solução inicial $x^0=(1,0,0,1,0,1,1,0)$ com valor de f.o. $z^0=19$

Problema inicial

$$\max 2x_1 + 2x_2 + 3x_3 + 4x_4 + 6x_5 + 5x_6 + 8x_7 + 7x_8 \tag{1}$$

$$s.a \ 4x_1 + 15x_2 + 7x_3 + 9x_4 + 8x_5 + 10x_6 + 9x_7 + 11x_8 \le 32$$
 (2)

$$x_j \in \{0, 1\} \tag{3}$$

Considere a solução inicial $x^0=(1,0,0,1,0,1,1,0)$ com valor de f.o. $z^0=19\,$

Iteração 1: k=3

$$\max 2x_1 + 2x_2 + 3x_3 + 4x_4 + 6x_5 + 5x_6 + 8x_7 + 7x_8$$

$$s.a 4x_1 + 15x_2 + 7x_3 + 9x_4 + 8x_5 + 10x_6 + 9x_7 + 11x_8 \le 32$$

$$(1 - x_1) + x_2 + x_3 + (1 - x_4) + x_5 + (1 - x_6) + (1 - x_7) + x_8 \le 3$$

$$x_j \in \{0, 1\}$$

Solução
$$x' = (1, 0, 0, 0, 1, 1, 1, 0)$$
 e $z' = 21$

Iteração 1: k=3

$$\max 2x_1 + 2x_2 + 3x_3 + 4x_4 + 6x_5 + 5x_6 + 8x_7 + 7x_8$$

$$s.a 4x_1 + 15x_2 + 7x_3 + 9x_4 + 8x_5 + 10x_6 + 9x_7 + 11x_8 \le 32$$

$$(1 - x_1) + x_2 + x_3 + (1 - x_4) + x_5 + (1 - x_6) + (1 - x_7) + x_8 \le 3$$

$$x_j \in \{0, 1\}$$

Solução $x^\prime=(1,0,0,0,1,1,1,0)$ e $z^\prime=21$ Iteração 2: k=3

$$\max 2x_1 + 2x_2 + 3x_3 + 4x_4 + 6x_5 + 5x_6 + 8x_7 + 7x_8$$

$$s.a 4x_1 + 15x_2 + 7x_3 + 9x_4 + 8x_5 + 10x_6 + 9x_7 + 11x_8 \le 32$$

$$(1 - x_1) + x_2 + x_3 + (1 - x_4) + x_5 + (1 - x_6) + (1 - x_7) + x_8 \ge 4$$

$$(1 - x_1) + x_2 + x_3 + x_4 + (1 - x_5) + (1 - x_6) + (1 - x_7) + x_8 \le 3$$

$$x_j \in \{0, 1\}$$

Iteração 2: k=3

$$\max 2x_1 + 2x_2 + 3x_3 + 4x_4 + 6x_5 + 5x_6 + 8x_7 + 7x_8$$

$$s.a 4x_1 + 15x_2 + 7x_3 + 9x_4 + 8x_5 + 10x_6 + 9x_7 + 11x_8 \le 32$$

$$(1 - x_1) + x_2 + x_3 + (1 - x_4) + x_5 + (1 - x_6) + (1 - x_7) + x_8 \ge 4$$

$$(1 - x_1) + x_2 + x_3 + x_4 + (1 - x_5) + (1 - x_6) + (1 - x_7) + x_8 \le 3$$

$$x_j \in \{0, 1\}$$

Solução
$$x'=(1,0,0,0,1,0,1,1)$$
 e $z'=23$ Iteração 3: $k=3$ max $2x_1+2x_2+3x_3+4x_4+6x_5+5x_6+8x_7+7x_8$ s.a $4x_1+15x_2+7x_3+9x_4+8x_5+10x_6+9x_7+11x_8\leq 32$ $(1-x_1)+x_2+x_3+(1-x_4)+x_5+(1-x_6)+(1-x_7)+x_8\geq 4$ $(1-x_1)+x_2+x_3+x_4+(1-x_5)+(1-x_6)+(1-x_7)+x_8\geq 4$ $(1-x_1)+x_2+x_3+x_4+(1-x_5)+x_6+(1-x_7)+(1-x_8)\leq 3$ $x_i\in\{0,1\}$

Exemplo 1: Local branching aplicado ao bin packing

► Solução inicial

(Problema bin packing) Considere que cada caixa tem capacidade ${\cal C}=12$

Objetos	1	2	3	4
w_i	3	5	7	6

Vizinhança

$$\mathcal{N}^k(\bar{y}) = \{(y,x) \in YX : \delta(y,\bar{y}) \leq k\}$$

Exemplo 1: Local branching aplicado ao bin packing

Solução inicial

Iter 1 k=1

Solução:

(Problema bin packing) Considere que cada caixa tem capacidade ${\cal C}=12$

Objetos	1	2	3	4
w_i	3	5	7	6

Vizinhança

$$\mathcal{N}^k(\bar{y}) = \{(y, x) \in YX : \delta(y, \bar{y}) \le k\}$$

Exemplo 1: Local branching aplicado ao bin packing

lter 1 k = 1

Solução:

Iter 2 k=1

Solução:

(Problema bin packing) Considere que cada caixa tem capacidade $C=12\,$

Objetos	1	2	3	4
w_i	3	5	7	6

Vizinhança

$$\mathcal{N}^k(\bar{y}) = \{(y,x) \in YX : \delta(y,\bar{y}) \leq k\}$$

Implementação Local branching

▶ Busca em uma vizinhança $\mathcal{N}^k(\tilde{x})$ pode ser definida adicionando o pseudo-corte $\delta(x, \tilde{x}) \leq k$, ou seja,

$$\sum_{j \in I} [(1 - \tilde{x}_j)x_j + \tilde{x}_j(1 - x_j)] \le k$$

▶ O novo conjunto de solução $Y = Y \setminus \mathcal{N}^k(\tilde{x})$ pode ser representado eliminando $\delta(x, \tilde{x}) \leq k$ e adicionando o pseudo-corte $\delta(x, \tilde{x}) \geq k + 1$, ou seja,

$$\sum_{j \in I} [(1 - \tilde{x}_j)x_j + \tilde{x}_j(1 - x_j)] \ge k + 1$$

Implementação Local branching

Sugestão de implementação no concert:

```
IloExpr branch(env);
for(int j = 0; j < n; j++){
  branch += ( 1 - x[j])*vx[j] + x[j]*(1 - vx[j]);
}
IloExtractable left_branching = mod.add(branch <= k);
depois
mod.remove(left_branching);
mod.add(branch >= k + 1);
branch.end();
```

Sumário

Implementação das heurísticas matemáticas

Revisão: visão geral

Heurísticas matemáticas: revisão RENS e RINS

Problema da mochila

$$\max 2x_1 + 2x_2 + 3x_3 + 4x_4 + 6x_5 + 5x_6 + 8x_7 + 7x_8$$

$$s.a 4x_1 + 15x_2 + 7x_3 + 9x_4 + 8x_5 + 10x_6 + 9x_7 + 11x_8 \le 31$$

$$(2)$$

$$x_i \in \{0, 1\}$$

$$(3)$$

Com base na solução da relaxação linear x=(0.75,0,0,0,1,0,1,1)

- Defina o subproblema reduzido RENS.
- ▶ Defina o subproblema reduzido RINS utilizando a solução incumbente $\tilde{x}=(1,1,1,0,0,0,0,0)$

Heurísticas matemáticas: revisão Relax-and-Fix

- ▶ Partição= {{1,2,3}, {4,5,6}, {7,8}}
- ▶ Problema da mochila

$$\max 2x_1 + 2x_2 + 3x_3 + 4x_4 + 6x_5 + 5x_6 + 8x_7 + 7x_8$$

$$s.a 4x_1 + 15x_2 + 7x_3 + 9x_4 + 8x_5 + 10x_6 + 9x_7 + 11x_8 \le 31$$

$$x_j \in \{0, 1\}$$

Heurísticas matemáticas: revisão Relax-and-Fix

- ► Partição= {{1,2,3}, {4,5,6}, {7,8}}
- Problema da mochila

$$\max 2x_1 + 2x_2 + 3x_3 + 4x_4 + 6x_5 + 5x_6 + 8x_7 + 7x_8$$

$$s.a 4x_1 + 15x_2 + 7x_3 + 9x_4 + 8x_5 + 10x_6 + 9x_7 + 11x_8 \le 31$$

$$x_j \in \{0, 1\}$$

- ▶ Iteração 1:
 - ightharpoonup Problema SP_1

$$\max 2x_1 + 2x_2 + 3x_3 + 4x_4 + 6x_5 + 5x_6 + 8x_7 + 7x_8$$
 (1)

$$s.a 4x_1 + 15x_2 + 7x_3 + 9x_4 + 8x_5 + 10x_6 + 9x_7 + 11x_8 \le 31$$
 (2)

$$x_1 \in \{0, 1\}, x_2 \in \{0, 1\}, x_3 \in \{0, 1\}$$
 (3)

$$x_4 \in [0, 1], x_5 \in [0, 1], x_6 \in [0, 1], x_7 \in [0, 1], x_8 \in [0, 1]$$
 (4)

• Solução $\bar{x} = (0, 0, 0, 0, 1, 0.3, 1, 1)$

Relaxação e Fixação

Particionamento das variáveis

Heurísticas matemática: Relaxação

Relaxação

Heurísticas matemática: Relaxação

Múltiplos Modelos

Relaxação

Heurísticas matemática: Relaxação

Múltiplos Modelos

- ► Função objetivo
- Variáveis
- Restrições

Relaxação

Múltiplos Modelos
 ▶ Variáveis
 ▶ Restrições

Único modelo

Múltiplos Modelos

► Variáveis

► Restrições

Conversão de tipo

► IloConversion

IloConversion - Concert

► IloConversion(IloEnv, IloNumVar, IloNumVar::Type)

```
IloNumVar x(env, 0, 1, ILOBOOL);
IloConversion convx(env, x, ILOFLOAT);
mod.add(convx); // Relaxa
mod.remove(convx); // Retira a relaxação
```


Fixação

Hard fixing

Fixação

Hard fixing

Fixação

- Adição de uma restrição $x_j = \bar{x}_j$
- Mudança de bounds

$$\bar{x}_j \le x_j \le \bar{x}_j$$

Adição de uma restrição $x_i = \bar{x}_i$

► Mudança de bounds

 $\bar{x}_j \le x_j \le \bar{x}_j$

Fixação

Mudança de limitante inferior (LB) e limitante superior (UB)

Concert: setBounds(IloNum lb, IloNum ub)

```
IloNumVar x(env, 0, 1, ILOBOOL);
x.setBounds(1,1);
```


Hard fixing

Fixação

Soft fixing

- Adição de uma restrição $x_j = \bar{x}_j$
- Mudança de bounds

$$\bar{x}_j \le x_j \le \bar{x}_j$$

Hard fixing

Fixação

Soft fixing

- Adição de uma restrição $x_j = \bar{x}_j$
- Mudança de bounds

$$\bar{x}_j \le x_j \le \bar{x}_j$$

Hard fixing

Adição de uma restrição $x_i = \bar{x}_i$

Mudança de bounds $\bar{x}_j \leq x_j \leq \bar{x}_j$

Fixação

Soft fixing

Pseudo cortes

 $\delta(x, \tilde{x}) \leq k$

Distância de hamming

$$\delta(x, \tilde{x}) = \sum_{j} |x_j - \tilde{x}_j| = \sum_{j} [x_j (1 - \tilde{x}_j) + \tilde{x}_j (1 - x_j)]$$

Hard fixing

Adição de uma restrição $x_i = \bar{x}_i$

Mudança de bounds $\bar{x}_j \leq x_j \leq \bar{x}_j$

Fixação

Soft fixing

Pseudo cortes

 $\delta(x, \tilde{x}) \leq k$

Distância de hamming

$$\delta(x, \tilde{x}) = \sum_{j} |x_j - \tilde{x}_j| = \sum_{j} [x_j (1 - \tilde{x}_j) + \tilde{x}_j (1 - x_j)]$$

Pseudocortes

$$\delta(x, \tilde{x}) = \sum_{j} |x_j - \tilde{x}_j| = \sum_{j} [x_j (1 - \tilde{x}_j) + \tilde{x}_j (1 - x_j)]$$

```
Código
```

```
IloExpr branch(env);
for(int j = 0; j < n; j++){
  branch += y[j] * (1 - ytil[j]) + ytil[j] * (1 - y[j]);
}
IloExtractable left_branching = mod.add( branch <= k);
.
mod.remove(left_branching);
mod.add( branch >= k + 1);
```

Referências

Matteo Fischetti and Andrea Lodi. Local branching. *Mathematical programming*, 98:23–47, 2003.

Chong Man Ngoo, Say Leng Goh, Nasser R Sabar, Mohd Hanafi Ahmad Hijazi, Graham Kendall, et al. A survey of mat-heuristics for combinatorial optimisation problems: variants, trends and opportunities. *Applied Soft Computing*, page 111947, 2024.