3 SEM BCA (CBCS) FLAT 3.2

2024

(December)

COMPUTER APPLICATION

Paper: 3.2

(Formal Language and Automata Theory)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Fill in the blanks: $1 \times 5 = 5$
 - (a) If NFA of 7 states is converted into DFA, maximum possible number of states for the DFA is _____.
 - (b) If control enters no way to come out from the state, then that state is called _____.

- (c) Type 2 language is called _____.
- (d) ____ is used to represent regular languages.
- (e) CNF stands for _____.
- 2. Answer the following:

2×5=10

- (a) Define derivability and reachability in CFG.
- (b) A transition table for finite state machine M is given:

90-		
Present State	Next State	
	20	RI
$\rightarrow q_0$	q_2	$q_{_1}$
$q_{_1}$	q_3	q_0
$q_{_2}$	q_0	q_3
$q_3^{}$	$q_{_1}$	$q_{_{2}}$

Check whether the string 101101 is accepted by the automata or not.

- (c) Design a DFA that accepts all strings over (a, b), starting with a and ending with b.
- (d) Write the regular expression having at least 2 a's, from the alphabet (a, b).
- (e) Convert the following CFL to CFG:

$$L\left(G\right) = \left\{a^{n}b^{n}, n \geq 1\right\}$$

3. Answer any five of the following:

(a) Show that the following grammar is ambiguous:

$$S \rightarrow SBS \mid a$$

$$B \rightarrow b$$

- (b) Construct a context free grammar G which generates all integers.
- (c) Describe the variations of turing machines.

- (d) Explain the structure of a PDA with diagram.
- (e) Eliminate all the null productions from the grammar G with production rules

$$S \rightarrow ABAC$$

$$A \rightarrow aA \mid \varepsilon$$

$$B \rightarrow bB \mid \varepsilon$$

$$C \rightarrow c$$

(f) Consider the grammar G with production rules

$$S \rightarrow aAB$$

$$A \rightarrow bBb$$

$$B \to A \mid \lambda$$

For the string 'abbbb', find the left most derivation and right most derivation. Also generate the derivation tree for the given string.

- 4. Answer the following questions: (any five) 6×5=30
 - (a) $M = (\{q_1, q_2, q_3\}, \{0, 1\}, \delta, q_1, \{q_3\})$ is an NFA, where δ is given by

$$\delta(q_1, 0) = \{q_2, q_3\}$$

$$\delta\left(q_{1},1\right)=\left\{ q_{1}\right\}$$

$$\delta(q_2, 0) = \{q_1, q_2\}$$

$$\delta\left(q_{2},1\right)=\left\{ \phi\right\}$$

$$\delta\left(q_3,0\right) = \left\{q_2\right\}$$

$$\delta(q_3, 1) = \{q_1, q_2\}$$

Construct an equivalent DFA.

(b) Construct a Moore machine equivalent to a Mealy machine given by the transition table: 5+1=6

Present State		ate		
State	$\alpha = 0$	Output	α=1	Output
$\rightarrow q_1$	$q_{_3}$	0	q_{2}	0
q_2	$q_{_1}$	1	$q_{_4}$	0
q_3	q_{2}	1	$q_{_1}$	1
$q_{_4}$	$q_{\scriptscriptstyle 4}$	1	q_3	0

Fig: Transition Table of Mealy machine. Also construct the transition diagram.

- (c) Write the differences between NFA and DFA. Whether NFA is equivalent to DFA, justify your answer. 4+2=6
- (d) Find a regular expression corresponding to the following with alphabet (0, 1): 2×3=6
 - (i) The language of all strings containing exactly two 0's.
 - (ii) The language of all strings containing at least two 0's.

- (iii) The language of all strings that contains 00 as substring.
- (e) Convert the grammar G with production rules

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

to CNF.

- (f) Design a Turing machine M over $\{0, 1\}$ such that string contains equal number of 0's and 1's.
- (g) Describe the Chomsky hierarchy.