OFFICIAL MIDTERM 1 SYLLABUS

UNKNOWN AUTHOR (EDITED BY COLTON GRAINGER)

Here's an "official" midterm syllabus that I dug up from Canvas. We covered this and different content in class, and used more sophisticated terminology.

To critique the following syllabus, start noticing::

- they're only sketchs of recipes for performing "pseudo-mathematics",
- they're dated by the job market
- they're constrained by calculator computation,

However, I want all y'all to suceed in the midterm. Let's have a "cautious" look at the material together.

1. Content on Midterm 1

- 1. Sampling Techniques
 - Stratified
 - Clustered
 - Simple random sample (SRS)
 - Systematic
- 2. Classifying Variables
 - Quantitative
 - Qualitative
- 3. Levels of Measurement
 - Nominal
 - Ordinal
 - Interval
 - Ratio
- 4. Statistics vs. Parameters
 - Samples vs. statistics
 - Populations vs. parameters
- 5. Experiments vs. Observational studies
 - Control vs. treatment groups
 - Variable = what we are measuring
 - Placebo

 $Date \colon 2019\text{-}09\text{-}26.$

1

- 6. Histograms
 - Quantitative
 - Class width
 - Max Min divided by number classes (round up to nearest whole number)
 - Midpoint = middle of class
 - Class boundaries
 - Subtract 0.5 from lower limit
 - Add 0.5 to upper limit
- 7. Other graphs/charts
 - Ogive vs. time series
 - Circle graph
 - Mutually exclusive portions of the pie ONLY
 - Bar graph vs. pareto
 - Stem & leaf
 - Box & whisker
- 8. Shapes of distributions
 - Mound/symmetric
 - Skewed
 - Uniform
 - Bimodal
- 9. Frequency tables
 - L1 = data points
 - L2 = frequency of each data point
- 10. 5% trimmed mean
 - Determine n (number of data points)
 - N * 0.05 (yields number to trim off of top and bottom)
 - Re-compute mean using 1-var stats
- 11. Weighted averages
- 12. Basic Stats
 - Mean
 - Median
 - Quartiles (Q1, Q3, IQR)
 - Min/Max
 - Mode
- 13. Coefficient of variation
 - take σ / μ , then convert to percentage
 - \bullet What % of the mean is the standard deviation?
- 14. Chebyshev's Theorem
 - $1 1/(k^2)$ gives the proportion of data that lies within a radius of k standard deviations from the mean
 - therefore, at least 75% lies within 2 standard deviations

15. Probability

- Mutually exclusive events vs. independent events
 - mutually exclusive events are represented by disjoint sets
 - Independent = one thing doesn't affect probability of another thing
- With vs. without replacement & how that affects 2-component probability problems
- Sample space $\Omega = \{x, y, z\}$
- P(A) vs. $P(A)^c$
- if $E_1, E_2, ...$ are disjoint events, and their union is the entire sample space Ω , then $\mathbf{P}(E_1) + \mathbf{P}(E_2) + \cdots = \mathbf{P}(E_1 \sqcup E_2 \sqcup ...) = \mathbf{P}(\Omega) = 1$.
- Common examples:
 - 6 sided die
 - 52 card deck
 - roulette
- "Given" probabilities & contingency tables
- $P(A \text{ or } B) = P(A \cup B) \text{ vs. } P(A \& B) = P(A \cap B)$
- Continuous vs. discrete random variables
- Probability distribution tables
 - Calculate average or expected value and variance based on probability distribution

16. Odds

- the "odds for an event" is the ratio of the number ways P(E) to get the event E you want against the number of ways $P(E^c)$ to not get what you want E^c
- the "odds against an event" is the reverse ratio
 - these are also called "betting odds"
- What's the relation to of betting odds to probability?

17. Binomials

- using the TI-84 with the (n, p, k) notation
 - n trials
 - p probability of success
 - r observed sucesses
- binompdf gives the PMF (or the exact number of outcomes)
- binomcdf gives the CMF (or the cumulative number of outcomes up to a specified number of observed successes)
 - the calculator counts from 0 to number you put in for k
 - Use binomcdf for following scenarios:
 - * "at most k"
 - * "k or less"
 - * "fewer than k"
 - Use 1 binomcdf for the following scenarios:
 - * "at least k"
 - * "k or more"
 - * "greater than k"
- Rules for using binomials
 - the trials are independent
 - each trial has only 2 outcomes (success or failure)
 - the probability of success for each trial is constant

18. Normal Distributions

- Normal vs. Standard Normal
- Symmetrical properties
- Empirical rule
 - -68% within 1σ , 95% within 2σ , 99.7% within 3σ of μ
- Z-scores (Negative vs. positive z-scores and how they relate to μ)

$$-Z = x - \mu$$

- Find the cumulative probability given a Z-score or x-value (normalcdf)
- Find the Z-score given a cumulative probability (invNorm)

19. Control Signals

- 9 consecutive values are above mean or 9 consecutive values are below mean
- Any value is outside 3σ
- 2 of 3 consecutive values have absolute value greater between 2σ and 3σ

20. Central Limit Theorem

- As the number of samples n increases, the mean of the various samples \bar{x} approaches the normal distribution
- one needs $n \geq 30$ if one doesn't know that the original distribution is normal

2. Calculator Functions

Be comfortable with:

- 1. INPUTTING DATA INTO LISTS (L1, L2)
- 2. 1-VAR STATS
- 3. BINOMPDF
- 4. BINOMCDF
- 5. TABLE FUNCTION TO FIND N FOR BINOMIALS
- 6. NORMALCDF
- 7. INVNORM