Preliminary Definitions

Definition. A matrix, $A \in \mathbb{R}^{m \times n}$ is positive semidefinite if:

$$\forall x \in \mathbb{R}^n, x^T A x > 0$$

Definition. A function f is affine if

$$f(v) = Av + b$$

for some matrix A and some vector b.

Definition. For some minimisation problem with objective function $f: \mathbb{R}^n \to \mathbb{R}$ and inequality constraints $g_i: \mathbb{R}^n \to \mathbb{R}$ and equality constraints $h_j: \mathbb{R}^n \to \mathbb{R}$ that are continuously differentiable at the optimal solution x^* the KKT conditions are (providing some constraints hold): $\exists \mu_i$ and λ_i such that

$$\nabla f(x^*) + \sum_{i=1}^m \mu_i \nabla g_i(x^*) + \sum_{j=1}^l \lambda_j \nabla h_j(x^*) = 0 \quad (stationarity)$$

$$g_i(x^*) \le 0$$

$$h_j(x^*) = 0$$

$$\mu_i \ge 0$$

$$\mu_i g_i(x^*) = 0$$

Definition. Rates of convergence

Definition. Multivariate Taylor's Theorem

Definition. Interior Point

Definition. Linear Programming

Definition. Quadratic Constrained Programming