The runtimes of each iteration ran about as predicted. When using randomized quicksort, the act of deciding the pivot definitely added to the running times of the program. This can be seen by comparing T(N)" or T(N) to T(N), where each of these runs theoretically has the same runtime O(nlogn), however T(N) sets the pivot to the last element whereas T(N)" and T(N) use random quicksort. Random quicksort requires a calculation for each time it is called, thus the run time is longer. However, those runtimes are still significantly smaller than T(N)" for when N is greater than 1000. I chose .15 for the c1 constant and .1 for the c2 constant, to make the graph somewhat readable. All the runtimes were within the bounds of  $O(n^2)$  and O(n), with all but T(N)" running at about O(nlogn), as expected. T(N)" ran at worst case and definitely pushed towards  $O(n^2)$  run time.

The chart below was imported from Excel, all the run times are in microseconds. I could not get more precise measurements than microseconds so many of the N=10 run I believe are rounded up, but that doesn't affect the data too much. Average run is the blue column.

|               | RUN 1   | RUN 2   | RUN 3   | RUN 4   | RUN 5   | AVERAGE RUN |
|---------------|---------|---------|---------|---------|---------|-------------|
| T(N) 10       | 1       | 2       | 1       | 1       | 1       | 1.2         |
| T(N) 100      | 15      | 17      | 15      | 15      | 17      | 15.8        |
| T(N) 1000     | 231     | 202     | 223     | 225     | 233     | 222.8       |
| T(N) 10000    | 2955    | 3066    | 3201    | 3230    | 3125    | 3115.4      |
|               |         |         |         |         |         |             |
| T(N)' 10      | 9       | 9       | 9       | 11      | 11      | 9.8         |
| T(N)' 100     | 105     | 117     | 105     | 132     | 104     | 112.6       |
| T(N)' 1000    | 1247    | 1160    | 1295    | 1178    | 1190    | 1214        |
| T(N)' 10000   | 13191   | 12565   | 12620   | 12812   | 12682   | 12774       |
|               |         |         |         |         |         |             |
| T(N)" 10      | 1       | 2       | 1       | 1       | 1       | 1.2         |
| T(N)" 100     | 103     | 103     | 106     | 105     | 112     | 105.8       |
| T(N)" 1000    | 10632   | 10374   | 10213   | 10739   | 10684   | 10528.4     |
| T(N)" 10000   | 1047337 | 1036540 | 1039302 | 1044948 | 1027761 | 1039177.6   |
|               |         |         |         |         |         |             |
| T(N)''' 10    | 13      | 13      | 14      | 13      | 16      | 13.8        |
| T(N)''' 100   | 85      | 105     | 123     | 115     | 111     | 107.8       |
| T(N)''' 1000  | 967     | 1201    | 990     | 941     | 1226    | 1065        |
| T(N)''' 10000 | 8994    | 9057    | 9892    | 10681   | 12830   | 10290.8     |

| n     | c1(N^2) | c1    | n     | c2(N) | c2  |
|-------|---------|-------|-------|-------|-----|
| 10    | 15      | 0.15  | 10    | 1     | 0.1 |
| 100   | 1500    | 0.15  | 100   | 10    | 0.1 |
| 1000  | 150000  | 0.15  | 1000  | 100   | 0.1 |
| 10000 | 1500000 | 0.015 | 10000 | 1000  | 0.1 |

The graph below was created by putting data into Excel and graphing it. The run time is in microseconds along the y-axis and the number of elements is on the x-axis. O(n^2) is the top bounding line for the graph, while O(n) graphs the lower bound.

|         | N = 10 | N = 100 | N = 1000 | N = 10000 |
|---------|--------|---------|----------|-----------|
| T(N)    | 1.2    | 15.8    | 222.8    | 3115.4    |
| T(N)'   | 9.8    | 112.6   | 1214     | 12774     |
| T(N)''  | 1.2    | 105.8   | 10528.4  | 1039177.6 |
| T(N)''' | 13.8   | 107.8   | 1065     | 10290.8   |

