

UNIVERSIDADE FEDERAL DE MATO GROSSO ENGENHARIA FLORESTAL

Silvicultura Tropical (40219941)

Exercício Floresta Balanceada

Prof. Gabriel Agostini Orso

gabrielorso16@gmail.com

Objetivo

- Determinar:
 - Quantidade de árvores exploradas por classe diamétrica;
 - Intensidade de exploração.

Uma floresta é dita balanceada se atender os critérios definidos por Meyer (1933).

Na condição de floresta balanceada, a distribuição diamétrica da floresta segue uma distribuição geométrica na forma

$$N_i = K.e^{-a.d_i}$$

Que na sua forma linearizada assume

$$\ln(N_i) = \ln(K) - a.d_i$$
$$\ln(N_i) = \boldsymbol{b_0} + b_1.d_i$$

Um dos resultados desse modelo é que as classes das distribuições diamétricas seguirão a seguinte proporção

$$\frac{N_1}{N_2} = \frac{N_2}{N_3} = \dots = \frac{N_{k-1}}{N_k} = q$$

q é chamado de quociente de Liocourt, que define a taxa de decaimento entre classes diamétricas;

Cada floresta possui um valor q obtido ao ajustar o modelo de Meyer, porém podemos alterá-lo para explorar de forma mais ou menos intensa a floresta

 A intensidade de exploração é dada pelo incremento volumétrico da floresta

$$ICA\% = b_0.d^{b_1}$$

$$ln(ICA\%) = ln(b_0) + b_1.ln(d)$$

$$\ln(ICA\%) = b_0 + b_1 \cdot \ln(d)$$

LI	LI C LS		Fo	G Total (m³)	V Total (m³)	Vm (m³/ind)	Ln(fo)	ln N Est
50	55	60	5233	1233,09	12994,83	2,48	8,56	7,60
60	65	70	4158	1325,29	14993,74	3,61	8,33	7,13
70	75	80	1731	765,98	8791,70	5,08	7,46	6,66
80	85	90	750	427,35	4929,64	6,57	6,62	6,19
90	95	100	370	260,96	3098,19	8,37	5,91	5,72
100	105	110	98	82,57	995,27	10,16	4,58	5,25
110	115	120	25	25,84	316,65	12,67	3,22	4,78
120	125	130	38	47,08	578,79	15,23	3,64	4,31
130	135	140	21	29,05	360,16	17,15	3,04	3,84
140	145	150	12	19,92	227,43	18,95	2,48	3,37
150	155	160	11	21,26	255,38	23,22	2,40	2,90
160	165	170	21	44,53	582,26	27,73	3,04	2,43
170	175	180	13	2,35	26,38	26,38	0,00	1,96
180	185	190	1	2,68	29,98	29,98	0,00	1,49
190	195	200	7	20,99	273,30	39,04	1,95	1,02
200	205	210	3	10,09	115,32	38,44	1,10	0,55
210	215	220	4	15,05	165,86	41,46	1,39	0,08
220	225	230	3	11,70	131,02	43,67	1,10	-0,40

$$\ln(N_i) = b_0 + b_1 \cdot d_i$$

$$b_0 = 10,18435$$

$$b_1 = -0,04702$$

$$q = e^{b_1(d_i - d_{i+1})}$$

$$q = 1,600$$

$$q = 1,6$$

$$q = 1.8$$

$$q = 2,0$$

- Podemos alterar a estrutura da floresta balanceada para extrair mais árvores menores ou maiores, alterando o valor de q;
- Podemos ainda recalcular os parâmetros b_0 e b_1 para garantir que a floresta futura mantenha, por exemplo, um estoque mínimo em área basal;

Novo
$$b_1 = \frac{Ln(q_{desejado})}{(d_i - d_{i+1})}$$

Novo
$$b_0 = Ln(\frac{G.40000}{\sum_{i=1}^{k} d_i^2.e^{novob_1.d_i}})$$

——————————————————————————————————————	2	Γ	G × 40000 1	
G _{rem}	6m²/ha	$b_0 = \ln \left[-\frac{1}{\pi} \right]$	$\frac{G \times 40000}{(1 \times \sum (x_i^2 \times e^{b_1 \times x_i}))}$	= 5,967853
		DAP	$\sum (X^2 * e^(bi*xi))$	
h —	$\ln q$	55	66,843688	
$\nu_1 =$	$\frac{\ln q}{[d_i - d_{i+1}]} = -0,06931$	65	46,680096	
		75	31,074028	
b ₀ =	5,96785	85	19,956432	
b ₁ =	-0,06931	95	12,464138	
		105	7,613137	
		115	4,5661559	
		125	2,6973983	
		135	1,5731227	
		145	0,9074048	
		155	0,51844	
		165	0,2937467	
		175	0,1652156	
		185	0,0923185	
		195	0,0512843	
		205	0,0283395	
		215	0,0155859	
		225	0,0085347	
	AFF and		195,54907	

DAP C.C.	V (m³/ha)	ICA %	V x ICA		
55	18,098645	0,0145825	0,26392258		
65	20,882639	0,0116737	0,2437771		
75	12,24471	0,009648	0,11813741		
85	6,8657988	0,0081667	0,05607076		
95	4,315025	0,0070423	0,03038761		
105	1,3861745	0,0061635	0,00854365		
115	0,4410117	0,0054602	0,00240801		
125	0,8061191	0,0048863	0,00393895		
135	0,5016201	0,0044103	0,00221229		
145	0,3167575	0,0040099	0,00127017		
155	0,3556861	0,0036691	0,00130505		
165	0,8109537	0,003376	0,00273777		
175	0,0367351	0,0031215	0,00011467		
185	0,041758	0,0028989	0,00012105		
195	0,3806349	0,0027026	0,00102869		
205	0,1606152	0,0025284	0,0004061		
215	0,2310026	0,002373	0,00054818		
225	0,182474	0,0022336	0,00040758		
Σ	68,05836		0,73733763		
ICA =	0,0108339				
	1,08339%				

$$\ln(ICA\%) = \boldsymbol{b_0} + b_1.\ln(d)$$

$$\ln(ICA\%) = 5,7142 + 1,3318.\ln(d)$$

ICA% =
$$e^{5,7142+1,3318.Ln(d)}$$

$$n = 15$$
 anos
$$IC = \begin{cases} 1 - \frac{1}{(1+p)^n} \end{bmatrix} \times 100 = 14,9247937 \%$$

$$m^3/ha \qquad IC \qquad m^3/ha \qquad 68,05836 \cdot 0,149247937 = 10,15757$$

Taxa de Corte =
$$\frac{\text{Volume Total x IC}}{100}$$
 = 7293,1352 m³

q =	1,	8
-----	----	---

DAP	Povoamento Real			Povoai	nento Reman	escente	Corte			
C.C.	N	G (m ²)	$V(m^3)$	N	G (m ²)	$V(m^3)$	N	$G(m^2)$	$V(m^3)$	
55	5.233	1.233,09	12.994,83	5.041	1.197,67	12.518,22	192	45,23	476,61	
65	4.158	1.325,29	14.993,74	2.801	929,32	10.098,94	1.357	432,65	4.894,80	
75	1.731	765,98	8.791,70	1.556	687,37	7.902,30	175	77,49	889,40	
85	750	427,35	4.929,64	864	490,49	5.681,45	0	0,00	0,00	
95	370	260,96	3.098,19	480	340,38	4.021,04	0	0,00	0,00	
105	98	82,57	995,27	267	231,01	2.709,42	0 0 0 0 0	0,00	0,00	
115	25	25,84	316,65	148	153,95	1.877,25		0,00	0,00	
125	38	47,08	578,79	82	101,05	1.254,17		0,00	0,00	
135	21	29,05	360,16	46	65,48	784,55		0,00	0,00	
145	12	19,92	227,43	25	41,97	481,66		0,00	0,00	
155	11	21,26	255,38	14	26,64	327,79		0,00	0,00	
165	21	44,53	582,26	8	16,77	217,48	13	27,90	364,78	
175	1	2,35	26,38	4	10,48	114,94	0	0,00	0,00	
185	1	2,68	29,98	2	6,51	72,58	0	0,00	0,00	
195	7	20,99	273,30	1	4,02	52,51	6	16,96	220,79	
205	3	10,09	115,32	1	2,47	28,72	2	7,57	86,60	
215	4	15,05	165,86	0	1,51	17,21	4	13,48	148,65	
225	3	11,70	131,02	0	0,92	10,07	3	10,80	120,94	

7202,567

q = 2	,0
-------	----

DAP	Povoamento Real			Povoai	nento Reman	escente	Corte			
C.C.	N	G (m ²)	$V(m^3)$	N	G (m ²)	$V(m^3)$	N	$G(m^2)$	$V(m^3)$	
55	5.233	1.233,09	12.994,83	6.198	1.472,58	15.391,64	0	0,00	0,00	
65	4.158	1.325,29	14.993,74	3.099	1.028,38	11.175,33	1.059	337,51	3.818,40	
75	1.731	765,98	8.791,70	1.550	684,57	7.870,11	181	80,29	921,59	
85	750	427,35	4.929,64	775	439,65	5.092,48	0	0,00	0,00	
95	370	260,96	3.098,19	387	274,59	3.243,78	0	0,00	0,00	
105	98	82,57	995,27	194	167,72	1.967,12	0	0,00	0,00	
115	25	25,84	316,65	97	100,59	1.226,65	0 0 0 0 5 18	0,00	0,00	
125	38	47,08	578,79	48	59,42	737,56		0,00	0,00	
135	21	29,05	360,16	24	34,66	415,25		0,00	0,00	
145	12	19,92	227,43	12	19,99	229,44		0,00	0,00	
155	11	21,26	255,38	6	11,42	140,53		9,56	114,85	
165	21	44,53	582,26	3	6,47	83,91		38,11	498,35	
175	1	2,35	26,38	2	2 3,64 39,91 0 1 2,03 22,69 0	0,00	0,00			
185	1	2,68	29,98	1		0,65	7,30			
195	7	20,99	273,30	0	1,13	14,77	7	19,85	258,53	
205	3	10,09	115,32	0	0,62	7,27	3	9,45	108,05	
215	4	15,05	165,86	0	0,34	3,92	4	14,69	161,94	
225	3	11,70	131,02	0	0,19	2,07	3	11,51	128,95	

6017,959

Cuidado!

$$q = 1,6$$

	DAP	Povoamento Real			Po	woan	nento Remane	escente		Corte		
	C.C.	N	G (m ²)	V (m³)	N	voan	G (m ²)	V (m³)	N	G (m ²)	V (m³)	
	55	5.233	1.233,09	12.994,83	3.6	05	877,82	9.175,12	1.538	362,46	3.819,71	
	65	4.158	1.325,29	14.993,74		09	766,28	8.327,17	1.849	589,26	6.666,57	3.473,43
	75											0.470,40
		1.731	765,98	8.791,70		43	637,62	7.330,40	288	127,32	1.461,30	
	85	750	427,35	4.929,64	9	002	511,87	5.929,07	0	0,00	0,00	0
	95	370	260,96	3.098,19	5	64	399,62	4.720,83	0	0,00	0,00	0
	105	98	82,57	995,27	3	52	305,11	3.578,56	0	0,00	0,00	0
	115	25	25,84	316,65	2	20	228 75	2.789.37	0	0.00	0,00	0
	125	38	47,08	578,79	9	Se o	volume cor	tado supera	a o permit	ido pelo	0,00	0
	135	21	29,05	360,16		ciclo	de corte, é	preciso cor	rigir a qua	ntidade	0,00	0
	145	12	19,92	227,43		de á	rvores cota	idas para at	ender ao	volume	0,00	0
	155	11	21,26	255,38				limite			0,00	0
	165	21	44,53	582,26		21	44,91	582,34	0	0,00	0,00	0
	175	1	2,35	26,38		13	31,57	346,22	0	0,00	0,00	0
	185	1	2,68	29,98		8	22,05	245,98	0	0,00	0,00	0
	195	7	20,99	273,30		5	15,31	200,19	2	5,61	73,10	0
	205	3	10,09	115,32		3	10,58	123,19	0	0,00	0,00	0
	215	4	15,05	165,86		2	7,27	83,05	2	7,51	82,81	0
ł	225	3	11,70	131,02		1	4,98	54,67	2	6,82	76,35	0
	~	· · · · · · · · · · · · · · · · · · ·		 			·	·			12170 92	

2179,83