Training Deep Nets Using Conjugate Deep Nets

The rate of progress of gradient descent on a function F(x) depends on the shape of F: The closer ∇F points to the minimizer of F, the faster the progress. Preconditioning is the process of aligning ∇F with the minimizer by introducing a change of variables x = G(y), and performing gradient descent on F(G(y)) instead. The solution y^* is then mapped back via $x^* = G^{-1}(y^*)$. Typically, G is chosen to cause the Hessian $\nabla^2 F(G(y))$ to be close to identity. But any change of variables that causes $\nabla F(G(y))$ to point along $y - y^*$ would work. This document proposes one such preconditioner, based on the stochastic Hessian.

Notation

We'll write a deep net as a pipeline of functions $\ell = 1, \ldots, L$,

$$z_1 = f_1(z_0; x_1) (1)$$

$$\dots$$
 (2)

$$z_\ell = f_\ell(z_{\ell-1}; x_\ell) \tag{3}$$

$$\dots$$
 (4)

$$z_L = f_L(z_{L-1}; x_L) \tag{5}$$

The vectors x_1, \ldots, x_L are the parameters of the pipeline. The vectors z_1, \ldots, z_L are its intermediate activations, and z_0 is the input to the pipeline. The last layer f_L computes the final activations and their training loss, so the scalar z_L is the loss of the model on the input z_0 . To make this loss's dependence on z_0 and the parameters explicit, we'll sometimes write it as $z_L(z_0;x)$. The foregoing formalization deviates slightly from the traditional deep net formalism in two ways: First, the training labels are subsumed in z_0 , and are propagated through the layers until they're used in the loss. Second, the last layer fuses the loss (which has no parameters) and the last layer (which does).

Backpropagation and forward propagation, the recursive way

We would like to fit the vector of parameters $x = (x_1, ..., x_L)$ given a training dataset, which we'll represent by a stochastic input z_0 to the pipeline. Training the model proceeds by gradient descent steps along the stochastic gradient $\partial z_L(z_0; x)/\partial x$. The components of this direction can be computed by the chain rule with a backward recursion:

$$egin{aligned} rac{\partial z_L}{\partial x_\ell} &= rac{\partial z_L}{\partial z_\ell} rac{\partial z_\ell}{\partial x_\ell} \ rac{\partial z_L}{\partial z_\ell} &= rac{\partial z_L}{\partial z_{\ell+1}} rac{\partial z_{\ell+1}}{\partial z_\ell} \end{aligned}$$

The identification $b_{\ell} \equiv \frac{\partial z_{\ell}}{\partial z_{\ell}}$, $\nabla_x f_{\ell} \equiv \frac{\partial z_{\ell}}{\partial x_{\ell}}$, and $\nabla_z f_{\ell} \equiv \frac{\partial z_{\ell}}{\partial z_{\ell-1}}$ turns this recurrence into

$$egin{aligned} rac{\partial z_L}{\partial x_\ell} &= b_\ell \cdot
abla_x f_\ell \ b_\ell &= b_{\ell+1} \cdot
abla_z f_{\ell+1}, \end{aligned}$$

with the base case $b_L = 1$, a scalar.

Backpropagation, the matrix way

The above equations can be written in vector form as

and

Solving for b and substituting back gives

$$rac{\partial z_L}{\partial x} = e_L M^{-1} D.$$

The matrix M is block bi-diagonal. Its diagonal entries are identity matrices, and its off-diagonal matrices are the gradient of the intermediate activations with respect to the layer's parameters. The matrix D is block diagonal, with the block as the derivative of each layer's activations with respect to its inputs. M is invertible because the spectrum of a triangular matrix can be read off its diagonal, which in this case is all ones.

The Hessian

The gradient we computed above is the unique vector v such that $dz_L \equiv z_L(x+dx) - z_L(dx) \to v(x) \cdot dx$ as $dx \to 0$. In this section, we'll compute the Hessian H of z_L with respect to the parameters. This is the unique matrix H(x) such that $dv^{\top} \equiv v^{\top}(x+dx) - v^{\top}(x) \to H(x) dx$ as $dx \to 0$. We'll use the facts that $dM^{-1} = -M^{-1}(dM)M^{-1}$ and $b = e_L M^{-1}$ to write

$$dv = d(e_L M^{-1} D) (6)$$

$$= e_L M^{-1}(dD) + e_L (dM^{-1}) D (7)$$

$$= b \cdot dD - e_L M^{-1}(dM) M^{-1} D \tag{8}$$

$$= b \cdot dD - b \cdot (dM)M^{-1}D \tag{9}$$

We'll compute each of these terms separately.

As part of this agenda, we'll need to define the gradient of tensor-valued functions $g: \mathbb{R}^d \to \mathbb{R}^{o_1 \times \cdots \times o_k}$. We'll define this gradient $\nabla_x g(x) \in \mathbb{R}^{(o_1 \cdots o_k) \times d}$ as the unique matrix-valued function that satisfies $\text{vec}\,(g(x+dx)-g(x)) \to \nabla_x g(x)\,dx$ as $dx \to 0$. This convention allows us to readily define, for example, the Hessian of a vector-valued function: If $g: \mathbb{R}^d \to \mathbb{R}^o$, then $\nabla_{xx}g(x) \in \mathbb{R}^{o \times d^2}$ is the unique matrix such that $\text{vec}\,(\nabla_x g(x+dx)-\nabla_x g(x)) \to \nabla_{xx}g(x)\,dx$. This convention also supports the chain rule as expected: For example, the gradient of $h(x) \equiv f(g(x))$ for a matrix-valued f and g can be written as $\nabla f \nabla g$ as expected. The chain rule in turn lets us define mixed partial derivatives, like $\nabla_{yz}g$ for $g: \mathbb{R}^{|x|} \to \mathbb{R}^{|g|}$. For example, if $g \in \mathbb{R}^{|y|}$ and $g \in \mathbb{R}^{|x|}$ are restrictions of $g \in \mathbb{R}^{|x|}$ to some $g \in \mathbb{R}^{|x|}$ and $g \in \mathbb{R}^{|x|}$ are restrictions of $g \in \mathbb{R}^{|x|}$ to some $g \in \mathbb{R}^{|x|}$ and $g \in \mathbb{R}^{|x|}$ are restrictions of $g \in \mathbb{R}^{|x|}$ to some $g \in \mathbb{R}^{|x|}$ and $g \in \mathbb{R}^{|x|}$ are restrictions of $g \in \mathbb{R}^{|x|}$ to some $g \in \mathbb{R}^{|x|}$ and $g \in \mathbb{R}^{|x|}$ are restrictions of $g \in \mathbb{R}^{|x|}$ to some $g \in \mathbb{R}^{|x|}$ and $g \in \mathbb{R}^{|x|}$ are restrictions of $g \in \mathbb{R}^{|x|}$ to some $g \in \mathbb{R}^{|x|}$ and $g \in \mathbb{R}^{|x|}$ are restrictions of $g \in \mathbb{R}^{|x|}$ to some $g \in \mathbb{R}^{|x|}$ and $g \in \mathbb{R}^{|x|}$ are restrictions of $g \in \mathbb{R}^{|x|}$ to some $g \in \mathbb{R}^{|x|}$ and $g \in \mathbb{R}^{|x|}$ are restrictions of $g \in \mathbb{R}^{|x|}$ to some $g \in \mathbb{R}^{|x|}$ and $g \in \mathbb{R}^{|x|}$ are restrictions of $g \in \mathbb{R}^{|x|}$ to some $g \in \mathbb{R}^{|x|}$ and $g \in \mathbb{R}^{|x|}$ are restrictions of $g \in \mathbb{R}^{|x|}$ to some $g \in \mathbb{R}^{|x|}$ and $g \in \mathbb{R}^{|x|}$ and $g \in \mathbb{R}^{|x|}$ and $g \in \mathbb{R}^{|x|}$ are restrictions of $g \in \mathbb{R}^{|x|}$ and $g \in \mathbb{R}^{|x|}$ and $g \in \mathbb{R}^{|x|}$ are restrictions of $g \in \mathbb{R}^{|x|}$ and $g \in \mathbb{R}^{|x|}$ and $g \in \mathbb{R}^{|x|}$ are restrictions of $g \in \mathbb{R}^{|x|}$ and $g \in \mathbb{R}^{|x|}$ and

The term involving dD

The matrix D is block-diagonal with its ℓ th diagonal block containing the matrix $D_{\ell} \equiv \nabla_x f_{\ell}$. Using the facts that $\text{vec}(ABC) = (C^{\top} \otimes A) \text{vec}(B)$, and $(A \otimes B)^{\top} = A^{\top} \otimes B^{\top}$, we get

$$b \cdot (dD) = \begin{bmatrix} b_1 & \cdots & b_L \end{bmatrix} \begin{bmatrix} dD_1 & & & \\ & \ddots & & \\ & & dD_L \end{bmatrix}$$

$$(10)$$

$$= \begin{bmatrix} b_1 \cdot dD_1 & \cdots & b_L \cdot dD_L \end{bmatrix} \tag{11}$$

$$= \left[\operatorname{vec} \left(dD_1 \right)^\top \left(I \otimes b_1^\top \right) \quad \cdots \quad \operatorname{vec} \left(dD_L \right)^\top \left(I \otimes b_L^\top \right) \right] \tag{12}$$

$$= \begin{bmatrix} \operatorname{vec} (dD_1) \\ \vdots \\ \operatorname{vec} (dD_L) \end{bmatrix}^{\top} \begin{bmatrix} I \otimes b_1^{\top} & & \\ & \ddots & \\ & & I \otimes b_L^{\top} \end{bmatrix}$$
 (13)

Observe that $\operatorname{vec}(dD_{\ell}) = d\operatorname{vec}\nabla_x f_{\ell}(z_{\ell-1}; x_{\ell})$ varies with dx through both its arguments x_{ℓ} and $z_{\ell-1}$. Using mixed partials of vector-valued functions described above, we get

$$\operatorname{vec}(dD_{\ell}) = d\operatorname{vec}(\nabla_x f_{\ell}) = (\nabla_{xx} f_{\ell}) \ dx_{\ell} + (\nabla_{zx} f_{\ell}) \ dz_{\ell-1}.$$

Stacking these equations gives

$$egin{bmatrix} \operatorname{vec}\left(dD_{1}
ight) \ dots \ \operatorname{vec}\left(dD_{L}
ight) \end{bmatrix} = egin{bmatrix}
abla_{xx}f_{1} & & & \ & \ddots & \ & &
abla_{xx}f_{L} \end{bmatrix} dx + egin{bmatrix}
abla_{zx}f_{1} & & & \ & \ddots & \ & &
abla_{zx}f_{L} \end{bmatrix} egin{bmatrix} dz_{0} \ dots \ dz_{L-1} \end{bmatrix}.$$

Each vector dz_{ℓ} in turn varies with dx via $dz_{\ell} = (\nabla_x f_{\ell}) dx_{\ell} + (\nabla_z f_{\ell}) dz_{\ell-1}$, with the base case $dz_0 = 0$, since the input z_0 does not vary with dx. Stacking up this recurrence gives

$$egin{bmatrix} I & & & & & \ -
abla_z f_2 & I & & & \ & & \ddots & & \ & & -
abla_z f_L & 1 \end{bmatrix} egin{bmatrix} dz_1 \ dots \ dz_{L-1} \ dz_L \end{bmatrix} = egin{bmatrix}
abla_x f_1 & & & \ & \ddots & \ & &
abla_x f_L \end{bmatrix} dx.$$

We can solve for the vector $\begin{bmatrix} dz_1 \\ \vdots \\ dz_L \end{bmatrix} = M^{-1}D \ dx$ and use the downshifting matrix

$$P \equiv egin{bmatrix} 0 & & & \ I & 0 & \ & \ddots & \ & I & 0 \ \end{bmatrix}$$

to plug back the vector
$$\begin{bmatrix} dz_0 \\ \vdots \\ dz_{l-1} \end{bmatrix} = PM^{-1}D \ dx$$
:

$$egin{bmatrix} \operatorname{vec}\left(dD_{1}
ight) \ dots \ \operatorname{vec}\left(dD_{L}
ight) \end{bmatrix} = \left(egin{bmatrix}
abla_{xx}f_{1} & & & \ & \ddots & \ & &
abla_{xx}f_{L} \end{bmatrix} + egin{bmatrix}
abla_{zx}f_{1} & & & \ & \ddots & \ & &
abla_{zx}f_{L} \end{bmatrix} PM^{-1}D
ight) \ dx.$$

The term involving dM

The matrix dM is lower-block-diagonal with dM_2, \ldots, dM_L , and $dM_\ell \equiv d\nabla_z f_\ell$. Similar to the above, we can write

$$b \cdot (dM)M^{-1}D = \begin{bmatrix} b_1 & \cdots & b_{L-1} & b_L \end{bmatrix} \begin{bmatrix} 0 & & & \\ -dM_2 & 0 & & \\ & \ddots & & \\ & -dM_L & 0 \end{bmatrix} M^{-1}D$$
(14)

$$= -\begin{bmatrix} b_2 \cdot dM_2 & \cdots & b_L \cdot dM_L & 0 \end{bmatrix} M^{-1} D \tag{15}$$

$$= - \begin{bmatrix} \operatorname{vec} \left(dM_2 \right)^\top \left(I \otimes b_2^\top \right) & \cdots & \operatorname{vec} \left(dM_L \right)^\top \left(I \otimes b_L^\top \right) & 0 \end{bmatrix} M^{-1} D \tag{16}$$

$$= -\begin{bmatrix} \operatorname{vec}(dM_{1}) \\ \vdots \\ \operatorname{vec}(dM_{L}) \end{bmatrix}^{\top} \begin{bmatrix} 0 \\ I \otimes b_{2}^{\top} & 0 \\ & \ddots \\ & I \otimes b_{L}^{\top} & 0 \end{bmatrix} M^{-1}D$$

$$(17)$$

$$= - \begin{bmatrix} \operatorname{vec} (dM_1) \\ \vdots \\ \operatorname{vec} (dM_L) \end{bmatrix}^{\top} \begin{bmatrix} I \otimes b_1^{\top} & & \\ & \ddots & \\ & & I \otimes b_L^{\top} \end{bmatrix} P M^{-1} D.$$
 (18)

Each matrix $dM_{\ell} = d\nabla_z f_{\ell}(z_{\ell-1}; x_{\ell})$ varies with dx through both x_{ℓ} and $z_{\ell-1}$ as $d\text{vec}(M_{\ell}) = (\nabla_{xz} f_{\ell}) dx_{\ell} + (\nabla_{zz} f_{\ell}) dz_{\ell-1}$. Following the steps of the previous section gives

$$egin{bmatrix} \operatorname{vec}\left(dM_{1}
ight) \ dots \ \operatorname{vec}\left(dM_{L}
ight) \end{bmatrix} = \left(egin{bmatrix}
abla_{xz}f_{1} & & & \ & \ddots & \ & &
abla_{xz}f_{L} \end{bmatrix} + egin{bmatrix}
abla_{zz}f_{1} & & & \ & \ddots & \ & &
abla_{zz}f_{L} \end{bmatrix} PM^{-1}D
ight) \ dx.$$

Putting it all together

We have just shown that the Hessian of the deep net has the form

$$H \equiv rac{\partial^2 z_L}{\partial x^2} = D_D \left(D_{xx} + D_{zx}PM^{-1}D_x
ight) + D_x^ op M^{-T}P^ op D_M \left(D_{xz} + D_{zz}PM^{-1}D_x
ight)$$

The definitions below annotate the size of the various matrices in this expression assuming the first layer has a-dimensional activations $(z_1 \in \mathbb{R}^a)$ and p-dimensional parameters $(x_1 \in \mathbb{R}^p)$:

$$D_D \equiv egin{bmatrix} I \otimes b_1 \ p imes ap \end{pmatrix} \cdot ... \ I \otimes b_L \end{bmatrix}, D_M \equiv egin{bmatrix} I \otimes b_1 \ a imes a^2 \end{pmatrix} \cdot ... \ I \otimes b_L \end{bmatrix}, P \equiv egin{bmatrix} 0 \ I & 0 \ ... \ I & 0 \end{bmatrix}$$
 $D_x \equiv egin{bmatrix} \nabla_x f_1 \ ap imes p \end{pmatrix} \cdot ... \ \nabla_x f_L \end{bmatrix}, D_{xz} \equiv egin{bmatrix} \nabla_x z f_1 \ a^2 imes p \end{pmatrix} \cdot ... \ \nabla_x z f_L \end{bmatrix},$
 $D_{zx} \equiv egin{bmatrix} \nabla_z x f_1 \ ap imes a \end{pmatrix} \cdot ... \ \nabla_z x f_L \end{bmatrix}, D_{zz} \equiv egin{bmatrix} \nabla_z z f_1 \ a^2 imes a \end{pmatrix} \cdot ... \ \nabla_z z f_L \end{bmatrix},$
 $M \equiv egin{bmatrix} I \ -\nabla_z f_2 & I \ -\nabla_z f_3 & I \ ... \ -\nabla_z f_L & 1 \end{bmatrix}.$

The inverse of the Hessian

The above shows that the Hessian is a second order matrix polynomial in M^{-1} . M itself is block-biadiagonal, but because M^{-1} is dense, H is dense. To invert H, we introduce changes of variables to rewrite it as a second order matrix polynomial in M. Since polynomials of banded-diagonal matrices are banded-diagonal, inverting H under this change of variables is fast.

With the identification $Y \equiv M^{-1}D_x$, we can rewrite the Hessian as

$$\begin{split} H &= D_D D_{xx} + D_D D_{zx} P M^{-1} D_x + D_x^\top M^{-\top} P^\top D_M D_{xz} + D_x^\top M^{-\top} P^\top D_M D_{zz} P M^{-1} D_x \\ &= D_D D_{xx} + D_D D_{zx} P Y + Y^\top P^\top D_M D_{xz} + Y^\top P^\top D_M D_{zz} P Y \\ &= \begin{bmatrix} Y \\ I \end{bmatrix}^\top \begin{bmatrix} P^\top D_M D_{zz} P & P^\top D_M D_{xz} \\ D_D D_{zx} P & D_D D_{xx} \end{bmatrix} \begin{bmatrix} Y \\ I \end{bmatrix} \\ &= \underbrace{D_D D_{xx} - I}_{\equiv D} + \begin{bmatrix} Y \\ I \end{bmatrix}^\top \underbrace{\begin{bmatrix} P^\top D_M D_{zz} P & P^\top D_M D_{xz} \\ D_D D_{zx} P & I \end{bmatrix}}_{=\mathcal{K}} \begin{bmatrix} Y \\ I \end{bmatrix}. \end{split}$$

By the matrix inversion lemma, we have

$$\begin{split} H^{-1} &= D^{-1} - D^{-1} \begin{bmatrix} Y \\ I \end{bmatrix} \left(K^{-1} + \begin{bmatrix} Y \\ I \end{bmatrix}^{\top} D^{-1} \begin{bmatrix} Y \\ I \end{bmatrix} \right)^{-1} \begin{bmatrix} Y \\ I \end{bmatrix}^{\top} D^{-1} \\ &= D^{-1} - D^{-1} \begin{bmatrix} Y \\ I \end{bmatrix} \left(K^{-1} + D^{-1} + Y^{\top} D^{-1} + D^{-1} Y + Y^{\top} D^{-1} Y \right)^{-1} \begin{bmatrix} Y \\ I \end{bmatrix}^{\top} D^{-1} \end{split}$$