

Informatik

Was ist Informatik?

The European synonym for computer science—informatics—more clearly suggests the field is about information processes, not computers.

PETER J. DENNING

Computer Science is a science of abstraction - creating the right model for a problem and devising the appropriate mechanizable techniques to solve it.

— Alfred Aho —

Controlling complexity is the essence of computer programming.

— Brian Kernighan —

Informatik

Computer Science

is the systematic study of **algorithmic processes** that describe and transform information: their theory, analysis, design, efficiency, implementation and application.

Association of Computing Machinery, 1989

Zentrale Fragestellungen dieser Vorlesung

- Welche Probleme können grundsätzlich durch einen Algorithmus gelöst werden und darüber hinaus effizient gelöst werden?
- Wie muss eine Maschine beschaffen sein, um einen als Programm formulierten Algorithmus auszuführen?

Algorithmus

- Der Begriff leitet sich ab aus dem Namen des persischen Mathematikers und Astronomen *Muhammad Ibn Musa Al-Chwarizmi*
 - um 825, Haus der Weisheit in Bagdad
 - Buch mit Rechenverfahren zur Lösung linearer und quadratischer Gleichungssysteme

- Ein Algorithmus ist eine **Handlungsvorschrift**, die in einer Folge von Einzelschritten beschreibt, wie aus gegebener Information (Eingabe) gesuchte Information (Ausgabe) ermittelt wird.
- Ein Algorithmus löst eine **Klasse** von Problemen
 - unterschiedliche Probleme derselben Klasse sind durch unterschiedliche Eingabedaten gekennzeichnet

Eigenschaften eines Algorithmus

- Allgemeinheit
- **■** Eindeutigkeit
- Finitheit
- Ausführbarkeit
- Determinismus
- Determiniertheit
- Terminierung
- Korrektheit
- Effizienz
- Portabilität
- Wiederverwendbarkeit
- Erweiterbarkeit

Darstellung von Algorithmen

- Natürliche Sprache
- Visuelle Methoden
 - Flussdiagramm
 - Struktogramm (Nassi-Shneiderman-Diagramm)
- Programmiersprache
- Pseudocode
- Hardwareentwurf

Flussdiagramme

- gehen zurück auf Frank Gilbreth, 1921, Darstellung von Geschäftsprozessen und Arbeitsabläufen
- Wesentliche Grafikelemente
 - DIN 66001

Struktogramme

- entwickelt von Isaac Nassi und Ben Shneiderman, 1972
- Wesentliche Grafikelemente
 - DIN 66261

Struktogramme Beispiel: Primzahltest

Beschreibung durch Pseudocode

- Pseudocode ist ein Mittelding zwischen natürlicher Sprache und formaler Programmiersprache
- Schlüsselwörter, die an echte Programmiersprachen angelehnt sind, werden durch natürlich-sprachliche Formulierungen ergänzt
- Pseudocode ist nicht standardisiert, sondern wird intuitiv verwendet
- Beispiel: Berechnung des größten gemeinsamen Teilers zweier gegebener Zahlen a und b durch den Euklidischen Algorithmus

```
if b größer als a then vertausche beide
repeat
  teile a ganzzahlig durch b
  if Rest gleich 0 then b ist das Ergebnis und
     der Algorithmus endet
  else
     verwende b als neuen Dividenden
     verwende den Rest als neuen Divisor
```

```
Es ist der ggT von a=544 und b=391 gesucht

544: 391 = 1 Rest 153

391: 153 = 2 Rest 85

153: 85 = 1 Rest 68

85: 68 = 1 Rest 17

68: 17 = 4 Rest 0
```

Der ggT von 544 und 391 ist 17

Berechenbarkeit

- Ein Problem heißt **berechenbar**, wenn zu seiner Lösung ein Algorithmus formuliert werden kann
- Um den Berechenbarkeitsbegriffs formal zu fassen, wurden (<u>vor</u> der Erfindung des Digitalrechners!) in der ersten Hälfte des 20. Jahrhunderts u.a. abstrakte Maschinenmodelle entwickelt wie die *Registermaschine* oder die *Turing-Maschine*
- ⇒ Turing-Berechenbarkeit
 - Idee: ein Algorithmus ist (TURING-) berechenbar, wenn eine TURING-Maschine existiert, die die mit dem Algorithmus assoziierte Funktion berechnet
 - Der Ansatz wurde 1936 entwickelt vom englischen Mathematiker ALAN M. TURING, 1912-1954

TURING-Maschine

■ Idee: kariertes Rechenpapier

5	6	7	8	•	4	3	2	1	
	2	2	7	1	2				
		1	7	0	3	4			
			1	1	3	5	6		
					5	6	7	8	
	2	4	5	3	4	6	3	8	

■ Umsetzung: Band-bearbeitende Maschine

TURING-Maschine

4

Beispiel: Verdopplungsmaschine

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5, f\}$$

$$\Sigma = \{0, 1\}$$

$$\Gamma = \{0, 1, \square\}$$

$$F = \{f\}$$

δ	0	1	
q_0	_	\Box, R, q_1	_
q_1	\square, R, q_3	$1, R, q_2$	_
q_2	$0, R, q_2$	$1, R, q_2$	1, H, f
q_3	$0, R, q_3$	$1, R, q_3$	$0, R, q_4$
q_4	_	_	$0, L, q_5$
q_5	$0, L, q_5$	$1, L, q_5$	\Box, R, q_1
f	_	_	_

TURING-Maschine

Beispiel: Inkrementiermaschine

■ bei einer Eingabe "29" ergeben sich folgende Momentaufnahmen

Die einzelne Momentaufnahme heißt Konfiguration der Turing-Maschine.

TURING-Berechenbarkeit

- Wenn ein Algorithmus Eingaben aus einer Menge X akzeptiert und Ausgaben aus einer Menge Y erzeugt, dann berechnet er eine (evtl. partielle) Funktion $f: X \to Y$
- Eine Funktion $f: \Sigma^* \to \Gamma^*$ heißt **Turing-berechenbar**, falls es eine Turing-Maschine TM gibt, so dass für alle $x \in \Sigma^*$ und $y \in \Gamma^*$ gilt:

$$f(\mathbf{x}) = \mathbf{y} \quad \text{ genau dann, wenn } \quad \mathbf{q}_0 \ \mathbf{x} \ \vdash^* \ \mathbf{q}_t \ \mathbf{y}$$
 wobei $\mathbf{q}_t \in \mathsf{F}.$

Mit anderen Worten: f ist Turing-berechenbar, wenn es eine TM gibt, die f realisiert, d.h. bei Eingabe von $x \in \Sigma^*$ eine erfolgreiche Berechnung des Funktionswerts $f(x) \in \Gamma^*$ durchführt und stoppt,

oder, falls f(x) undefiniert ist, auch in eine unendliche Schleife gehen kann.

Fleißige Biber

TIBOR RADÓ, Ohio State University, 1962

- Eine Turing-Maschine die
 - aus genau einem Endzustand und n weiteren Zuständen besteht,
 - als nicht-leeres Bandsymbol nur den Strich besitzt ($\Gamma = \{ \mid, \square \}$),
 - mit dem Schreib-/Lesekopf nur R- und L-Bewegungen durchführt,
 - mit einem leeren Band beginnt und
 - irgendwann im Endzustand anhält,
- heißt Biber.
- Schreibt der Biber mit *n* inneren Zuständen die maximale Anzahl von Strichen aufs Band, heißt er **fleißiger Biber** (*busy beaver*).
- Die Radó-Funktion **bb**(*n*) nennt die Anzahl der Striche, die ein fleißiger Biber mit *n* inneren Zuständen aufs Band schreibt.

RADÓ-Funktion

n	Anzahl der TM	$\mathbf{bb}(n)$
1	64	1
2	20.736	4
3	16.777.216	6
4	$2,56 \cdot 10^{10}$	13
5	$\approx 6,34 \cdot 10^{13}$	≥ 4098
6	$\approx 2,32 \cdot 10^{17}$	$\geq 1,29 \cdot 10^{865}$
7	$\approx 1,18 \cdot 10^{21}$?

WHILE-Berechenbarkeit Definition

Eine Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt **WHILE-berechenbar**, falls es ein WHILE-Programm P gibt, das f berechnet, d.h. das mit den Eingabewerten $n_1, n_2, ..., n_k$ in den Variablen $x_1, x_2, ..., x_k$ (und dem Wert 0 in allen anderen Variablen) gestartet wird und, falls $f(n_1, n_2, ..., n_k)$ definiert ist, mit diesem Ergebnis in der Variablen x_0 stoppt oder, falls $f(n_1, n_2, ..., n_k)$ undefiniert ist, niemals anhält.

ACKERMANN-Funktion Wertetabelle

	n = 0	n = 1	n=2	n=3	n = k
A(0,n)	1	2	3	4	k+1
A(1,n)	2	3	4	5	k+2
A(2,n)	3	5	7	9	2k+3
A(3,n)	5	13	29	61	$2^{k+3} - 3$
A(4,n)	13	$2^{16} - 3$	$2^{65536} - 3$	$2^{2^{65536}} - 3$	$2^{2} -3$
					k+2 viele Potenzen
A(5,n)	$2^{16} - 3$	$2^{65536} - 3$	• • •		

ACKERMANN-Funktion Definition

(1)
$$A(0,n) = n+1$$

(2)
$$A(m+1,0) = A(m,1)$$

(3)
$$A(m+1,n+1) = A(m,A(m+1,n))$$

ACKERMANN-Funktion Monotonie-Eigenschaften

a.
$$n < A(m,n)$$

b.
$$A(m,n) < A(m,n+1)$$

c.
$$A(m, n+1) \le A(m+1, n)$$

d.
$$A(m,n) < A(m+1,n)$$

e.
$$m \le m', n \le n' \Rightarrow A(m,n) \le A(m',n')$$
 all gemeine Monotonie-Eigenschaft

Fortsetzung des Beweises "es gibt ein k, sodass $f_P(n) < A(k, n)$ für alle n"

- Betrachtung von $P \equiv \text{LOOP } x_i \text{ DO } Q \text{ END}$
- $m \le n$ sei derjenige Variablenwert für x_i , bei dem $f_p(n)$ maximal wird

Fälle:

- m = 0: (Schleife wird gar nicht durchlaufen)
 - Alle Variablen in P behalten ihren ursprünglichen Wert, d.h. ihre Summe bleibt unverändert: Es gilt $f_P(n) \le n$ und wegen Monotonie-Eigenschaft (a) auch $f_P(n) \le n < A(k, n)$ für beliebige k. Wähle k = 0.
- m = 1: (Schleife wird einmal durchlaufen)
 - Es gilt $f_P(n) = f_Q(n-1) + 1$ da x_i in Q nicht vorkommt.
 - Nach Induktionsvoraussetzung gibt es ein k_1 für das gilt: $f_Q(n-1) < A(k_1, n-1)$.
 - Somit: $f_P(n) < A(k_1, n-1) + 1$
 - bzw. $f_P(n) \le A(k_1, n-1)$ wegen der Ganzzahligkeit der Werte
 - $< A(k_1, n)$ wegen Monotonie-Eigenschaft (b).
 - Wähle $k = k_1$.

Fortsetzung des Beweises "es gibt ein k, sodass $f_P(n) < A(k, n)$ für alle n"

Fälle:

- \blacksquare m > 1: (Schleife wird mehrmals durchlaufen)
 - Es gilt $f_P(n) = f_Q(f_Q(... (f_Q(n-m)...) + m (f_Q m-mal geschachtelt))$
 - Nach Induktionsvoraussetzung gibt es ein k_1 für das gilt: $f_O(\cdot) < A(k_1, \cdot)$.
 - Somit: $f_P(n) < A(k_1, f_O(f_O(... (f_O(n-m)...) + m) (f_O(m-1-mal geschachtelt))$
 - **b**zw. $f_P(n) \le A(k_1, f_O(f_O(\dots (f_O(n-m)\dots) + m 1))$ (wegen der Ganzzahligkeit der Werte)
 - usw...
 - bis $f_P(n) \le A(k_1, A(k_1, (... A(k_1, A(k_1, n-m)...))$ (A m-mal geschachtelt)
 - < $A(k_1, A(k_1, (... A(k_1, A(k_1+1, n-m)...))$ (wegen Monotonie-Eigenschaft (d))
 - $= A(k_1, A(k_1, (... A(k_1+1, n-m+1)...)$ (wegen Definition (3), A m-1-mal geschachtelt)
 - usw...
 - $= A(k_1+1, n-1)$
 - $< A(k_1+1, n)$ (wegen Monotonie-Eigenschaft (b))
 - Wähle $k = k_1 + 1$.

ACKERMANN-Funktion WHILE-Berechenbarkeit

Wiederholung Beispiel

$$A(1,3) = A(0, A(1,2))$$

$$= A(0, A(0, A(1,1)))$$

$$= A(0, A(0, A(0, A(1,0))))$$

$$= A(0, A(0, A(0, A(0, A(0,1))))$$

$$= A(0, A(0, A(0, A(0,2)))$$

$$= A(0, A(0, A(0,3))$$

$$= A(0, A(0, A(0,3))$$

$$= A(0, A(0, A(0,3))$$

(1)
$$A(0, n) = n + 1$$

$$\begin{array}{lll} (1) & A(0,\,n) & = n+1 \\ (2) & A(m+1,\,0) & = A(m,\,1) \end{array}$$

(3)
$$A(m+1, n+1) = A(m, A(m+1, n))$$

Abbildung auf Stapelverfahren

- Ersetze 0, n durch n+1 (Stapel wird niedriger)
- Für m > 0 ersetze m, 0 durch m 1, 1
- Für m, n > 0 ersetze m, n durch m 1, m, n 1(Stapel wird höher)

ACKERMANN-Funktion WHII F-Berechenbarkeit

■ WHILE-Programm mit Stack-Operationen

```
INIT(stack);
PUSH(x_1, stack);
PUSH(x_2, stack);
WHILE SIZE(stack) \neq 1 DO
  POP(x_2, stack);
  POP(x_1, stack);
  IF x_1 = 0 THEN PUSH(x_2 + 1, stack);
    ELSIF x_2 = 0 THEN PUSH(x_1 - 1, stack); PUSH(1, stack)
    ELSE PUSH(x_1 - 1, stack); PUSH(x_1, stack); PUSH(x_2 - 1, stack)
  END;
END;
POP(x_0, stack)
```

Church-Turing-These

■ Gleichmächtige Berechnungsmodelle

- TURING-Maschinen
- WHILE- und GOTO-Programme
- λ-Kalkül, Church, 1936
- μ-rekursive Funktionen
- MARKOV-Algorithmen, 1960
- Registermaschinen (Random Access Machines), Shepherdson & Sturgis, 1963
- ...

■ These:

Die Klasse der Turing-berechenbaren Funktionen stimmt mit der Klasse der im intuitiven Sinne berechenbaren Funktionen überein.

Entscheidbarkeit

■ Entscheidungsproblem

- Frage, ob ein beliebiges Element x aus einer Grundmenge M eine bestimmte Eigenschaft P hat
- Antwort: "Ja" oder "Nein"

■ Sprache des Entscheidungsproblems

■ $L_P = \{ x \mid x \in M \text{ und } x \text{ hat die Eigenschaft } P \}$

Definition der Entscheidbarkeit

■ Eine Sprache (bzw. Menge) $L_P \subseteq M$ heißt **entscheidbar**, wenn es einen Algorithmus gibt, der zu jedem $x \in M$ nach endlich vielen Schritten die Antwort "Ja" oder "Nein" auf die Frage liefert, ob $x \in L_P$ ist.

alternativ:

■ ..., wenn die charakteristische Funktion $\chi_{L_P}: M \to \{0, 1\}$ berechenbar ist.

Halteproblem

Es ist nicht entscheidbar, ob eine gegebene Turing-Maschine für eine gegebene Eingabe anhält.

Beweis:

- Codiere eine TM als Wort über {0, 1}*
- Definiere "Diagonalsprache" D
 - $D = \{ \langle M \rangle \mid M \text{ ist eine TM, die bei Eingabe von } \langle M \rangle \text{ anhält } \}$
 - D ist entscheidbar, falls das Halteproblem entscheidbar wäre
 - Dann wäre χ_D durch eine TM M_D berechenbar
- Modifiziere M_D zu M'_D gemäß:

$$\operatorname{start} \longrightarrow M_D \longrightarrow \operatorname{"Band} = 0\,?\text{"} \stackrel{ja}{\longrightarrow} \operatorname{stop}$$

$$\left| \begin{array}{c} nein \end{array} \right|$$

	0	1	2	3	4	5	6	
<i>S</i> ₀	0	1	1	0	1	0	1	
S_1	1	1	1	0	1	0	1	• • •
S_2	0	0	1	0	1	0	1	
S_3	0	1	1	0	0	0	1	• • •
S_4	0	1	0	0	1	0	1	
S_5	0	1	1	0	1	0	0	
56	I	1	1	U	1	U	1	• • •
:	:	:	:	:	:	:		

Halteproblem

4

Widerspruchsbeweis fortgesetzt...

- Also: M'_D stoppt genau dann, wenn M_D den Wert 0 ausgeben würde. Falls M_D den Wert 1 ausgibt, geht M'_D in eine Endlosschleife.
- nun starte M'_D mit Eingabe $\langle M'_D \rangle$
- Falls M'_D mit dieser Eingabe anhält: $M'_D \in D$
 - M_D gibt bei dieser Eingabe 0 aus (vgl. Def. von M'_D),

 - d.h. $M'_D \notin D$. Widerspruch!
- Falls M'_D mit dieser Eingabe <u>nicht</u> anhält: $M'_D \notin D$
 - M_D gibt bei dieser Eingabe 1 aus (vgl. Def. von M'_D),
 - $\blacksquare \quad \text{d.h. } \chi_D\left(\langle M'_D\rangle\right)=1,$
 - d.h. $M'_D \in D$. Widerspruch!
- Also ist die Annahme falsch: das Halteproblem ist nicht entscheidbar!

O-Notation

Eine Funktion f(n) wächst *mit der Ordnung* O(g(n)), wenn eine positive Konstante c existiert, so dass $|f(n)| \le c \cdot |g(n)|$ für alle $n > n_0$

Sortierproblem

Algorithmus "SelectionSort" (auch "MinSort")

Prinzip:

- Suche kleinstes Element
- Vertausche es mit dem Element an der ersten Stelle
- Wende denselben Algorithmus auf die restlichen n-1 Elemente an

Beispiel:

Sortierproblem

Algorithmus "SelectionSort"

Implementierung

die zu sortierenden Elemente befinden sich in der Liste M[0..n-1]

```
i = 0
n = len(M)
while i < n:
    min = i
    j = i + 1
    while j < n:
        if M[j] < M[min]:
            min = j
        j = j + 1

M = swap(M,i,min)
    i = i+1</pre>
```

■ Komplexitätsanalyse

- zum Sortieren der gesamten Folge werden n-1 Durchläufe benötigt
- im i-ten Durchlauf werden n-i Vergleiche und eine Vertauschung durchgeführt
- in Summe sind das $(n-1)+(n-2)+\ldots+2+1=\frac{(n-1)\cdot n}{2}=$ $\frac{n^2}{2}-\frac{n}{2} \text{ Vergleiche}$ und n-1 Vertauschungen
- die Komplexitätsklasse von SelectionSort ist somit $O(n^2)$

Sortierproblem Algorithmus "TreeSort"

Prinzip:

- Die Elementmenge wird in einen binären Baum umsortiert
- Der Baum ist mit jeder Einfügung automatisch sortiert:

Ein *in-order-Durchlauf* durch einen binären Suchbaum ist äquivalent zum Durchlauf durch eine sortierte Liste (bei im Wesentlichen gleichem Laufzeitverhalten)

in-order-Durchlauf: linker Teilbaum – Wurzel – rechter Teilbaum

Beispiel: Liste = [judy, mary, bill, fred, jane, tom, alice, joe, dave]

Sortierproblem Algorithmus "TreeSort"

Implementierung

```
ein tree wird dargestellt als Liste
[<left_subtree>,root,<right_subtree>]
wobei beide Teilbäume vom Typ tree sind
```

■ Komplexitätsanalyse

- zum Sortieren der gesamten Folge werden n Durchläufe benötigt
- pro Durchlauf wird ein Element in den Baum eingefügt
- das Einfügen erfordert einen Suchaufwand, der höchstens der maximalen Höhe des Baums entspricht
 - bei einem balancierten Baum: ld(n)
 - bei einem nicht-balancierten Baum: n
- die Komplexitätsklasse von TreeSort ist somit bestenfalls $O(n \cdot \log(n))$ bzw. schlechtestenfalls $O(n^2)$

```
\mathrm{ld}(x) = \mathrm{ld}(10) \cdot \log(x)
```

Komplexität

4

Beispiele für Laufzeiten von Algorithmen unterschiedlicher Komplexität

complexity	<i>n</i> =10	<i>n</i> =20	<i>n</i> =50	<i>n</i> =100	<i>n</i> =1000	<i>n</i> =10,000	<i>n</i> =100,000
$O(\log(n))$							1 ns
O(n)							6 μs
$O(n \cdot \log(n))$						8 μs	0.1 ms
$O(n^2)$					60 μs	6 ms	0.6 s
O(2 ⁿ)	600 μs	0.6 s	18.7 h	hangs	hangs	hangs	hangs
O(n!)	22 ms	111 y	hangs	hangs	hangs	hangs	hangs

ermittelt auf einem 16.700 Dhrystone-MIPS-Rechner (i5-4690 Quadcore, 3,8 GHz)

Travelling Salesman Problem NP-vollständig

- Ein Handlungsreisender soll auf einer Rundreise *n* vorgegebene Stationen besuchen und schließlich zu seinem Ausgangspunkt zurückkehren. Die Entfernungen (Kosten) zwischen allen Paaren von Stationen sind gegeben. Die Gesamtlänge der Rundreise soll minimal sein.
- Alle bisher vorgeschlagenen Algorithmen laufen im Prinzip auf dasselbe Schema hinaus:
 - Bilde alle Permutationen der n Stationen $\in O(n!)$
 - Ignoriere diejenigen, die keine Rundreise darstellen
 - Von den verbliebenen Permutationen wähle diejenige mit minimalen Kosten

Städte	mögliche Rundreisen	Laufzeit	
3	1	1	msec
4	3	3	msec
5	12	6	msec
6	60	60	msec
7	360	360	msec
8	2.520	2,5	sec
9	20.160	20	sec
10	181.440	3	min
11	1.814.400	0,5	Stunden
12	19.958.400	5,5	Stunden
13	239.500.800	2,8	Tage
14	3.113.510.400	36	Tage
15	43.589.145.600	1,3	Jahre
16	653.837.184.000	20	Jahre

Rechner Begriffserläuterung

- Rechner = programmgesteuertes Informationsverarbeitungssystem
- Informationsverarbeitung: das Erfassen, Eingeben, Sortieren, Filtern, Strukturieren, Konvertieren, Manipulieren, Verknüpfen, Speichern, Archivieren, Übertragen, Ausgeben und Löschen von Information
- Information Repräsentation Daten Interpretation
- Informationsarten = Wahrheitswert, Zahlen, Text, Bild, Audio, Video, Befehle, Adressen, ...
- Programm = Verarbeitungsvorschrift (*Algorithmus*), Folge von Befehlen
- programmierbar = Programm ist (austauschbar) gespeichert
 - ⇒ Universalrechner

ASCII Zeichensatz

	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@, §	Р	6	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	С	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	\mathbf{E}	U	e	u
0110	ACK	SYN	&	6	F	V	f	V
0111	BEL	ETB	,	7	G	W	g	W
1000	BS	CAN	(8	Η	X	h	X
1001	HT	EM)	9	I	Y	i	У
1010	$_{ m LF}$	SUB	*	••	J	Z	j	\mathbf{z}
1011	VT	ESC	+	;	K	[, Ä	k	$\{, \ddot{a}$
1100	FF	FS	,	<	L	Ö	1	, ö
1101	CR	GS	-	=	M], Ü	m	}, ü
1110	SO	RS		^	N	^	n	~, ß
1111	SI	US	/	?	О	_	О	DEL

Rastergrafik

■ RGB-Farbcodierung

	R	G	В
schwarz	0	0	0
rot	255	0	0
grün	0	255	0
blau	0	0	255
cyan	0	255	255
magenta	255	0	255
gelb	255	255	0
weiß	255	255	255

True Color: 256 Intensitätstufen je Farbanteil

Vektorgrafik

- für geografische Karten, CAD-Zeichnungen oder virtuelle 3D-Bilder
 - die Umrisse grafischer Objekte werden dargestellt durch Primitive wie Linien, Linienzüge, Bézierkurven, Polygone, Ellipsen, usw.
 - Farben, Farbverläufe, Schraffuren usw. werden als Attribute zugeordnet
 - Primitive werden üblicherweise als Text in einer Markup-Sprache gespeichert

Video (Bewegtbilder)

■ Bewegungseindruck entsteht durch Betrachten von Bildfolgen

- untere Schwelle fürs menschliche Auge: 16 18 Bilder/Sekunde (Hz)
- Kino, Fernsehen: 24 48 Hz
- Monitore: 60 Hz, für "weiche" Bewegungsabläufe beim Gaming auch 120, 144 oder 240 Hz

■ Kompressionsansätze

- Differenzcodierung (Unterschiede aufeinanderfolgender Bilder)
- plus Verschiebungsvektor

Referenzframe N

Zielframe N+1

Differenzframe

Audiosignale

- Ton wird durch Luftdruckänderungen im Raum transportiert, die sich als Longitudinalwelle ausbreiten
- ein Mikrofon konvertiert Ton in ein (analoges) elektrisches Signal, ein Lautsprecher umgekehrt

Negative (ganze) Zahlen Zweierkomplement

- Negative Zahlen sollten so codiert werden, dass die übliche Addition von Binärzahlen zum richtigen Ergebnis führt (→ Zurückführung der Subtraktion auf die Addition)
- **Beispiel:** Was wäre eine geeignete Binärdarstellung für -10₁₀?

Antwort: Invertiere jede Stelle und addiere 1 (ignoriere den Übertrag in die N-te Stelle)

- Diese Darstellungsform negativer ganzer Zahlen heißt **Zweierkomplement**-Darstellung
 - die höchstwertige Stelle zeigt an, ob die Zahl positiv (0) oder negativ (1) ist
 - bei einer N-stelligen Darstellungsbreite ist der gültige Zahlenbereich das Intervall [-2^{N-1}, +2^{N-1}-1]

Zahlenring modulo 28 im Zweierkomplement

Formate nach IEEE 754-2008

Тур	Gesamtanzahl Stellen	Stellen c	Stellen f
half precision	16	5	10
single precision	32	8	23
double precision	64	11	52
quadruple precision	128	15	112

Präfixe für Dateneinheiten

- die gewohnten SI-Präfixe sind **Dezimalpräfixe**
- sie wurden jedoch häufig an Zweierpotenzen angepasst interpretiert (insbesondere mit der Maßeinheit Byte)
- um Mehrdeutigkeit zu vermeiden: Binärpräfixe (IEC 60027-2, 1998), ihre Akzeptanz ist allerdings gering

SI-Präfix	Zehner- potenz	an Binärzahlen angepasste Interpretation	Zweier- potenz	Binärpräfix
k (Kilo)	10 ³	1.024	2 ¹⁰	Ki (Kibi)
M (Mega)	10 ⁶	1.048.576	2 ²⁰	Mi (Mebi)
G (Giga)	10 ⁹	1.073.741.824	2 ³⁰	Gi (Gibi)
T (Tera)	1012	1.099.511.627.776	2 ⁴⁰	Ti (Tebi)
P (Peta)	10 ¹⁵	1.125.899.906.842.624	2 ⁵⁰	Pi (Pebi)
E (Exa)	10 ¹⁸	1.152.921.504.606.846.976	2 ⁶⁰	Ei (Exbi)

Befehlssatz Befehlsgruppen

- **arithmetische Befehle**: Addition, Subtraktion, Multiplikation, Division, ...
- logische Befehle: Und-, Oder-, XOR-Verknüpfung, Negation, ...
- Transportbefehle: Laden bzw. Verschieben von Werten in Register oder in den Speicher
- Schiebe- und Rotationsbefehle (bezogen auf Registerinhalte)
- **Befehle zur Programmablaufsteuerung**: Test- und Vergleichsbefehle, Sprungbefehle, Unterprogrammaufruf und -rücksprung, ...
- Systembefehle: Ein-/Ausgabebefehle für Peripheriegeräte, Befehle die den Zustand des Rechners in besonderer Weise verändern wie HLT und SYSCALL (Zugriff auf privilegierte Funktionen des Betriebssystems)

Rechnermodell für eine einfache hypothetische Maschinensprache J. Glenn Brookshear, Computer Science

Central pro	ocessing unit		Main me	mory
Registers			Address	Cells
 0	Program counter		0 0	
1		Bus	01	
2	Instruction register		02	
: :			03	:
F			FF	•

Befehlssatz einer einfachen hypothetischen Maschinensprache J. Glenn Brookshear, Computer Science, Appendix C

Opcode	Operanden	Beschreibung
1	RXY	Lade Speicherwort aus Adresse XY in Register R
2	RXY	Lade Wert XY in Register R
3	RXY	Speichere Inhalt von Register R in Speicheradresse XY
4	0RS	Verschiebe Inhalt von Register R in Register S
5	RST	Addiere Inhalte der Register S und T und lege Ergebnis in R ab (alle Werte
		im Zweierkomplement)
6	RST	Addiere Inhalte der Register S und T und lege Ergebnis in R ab (alle Werte
		im an IEEE 754 angelehnten Gleitkommaformat 1+3+5 bit)
7	RST	OR-verknüpfe Inhalte der Register S und T und lege Ergebnis in R ab
8	RST	AND-verknüpfe Inhalte der Register S und T und lege Ergebnis in R ab
9	RST	XOR-verknüpfe Inhalte der Register S und T und lege Ergebnis in R ab
A	RoX	Rotiere den Inhalt von Register R um X Stellen nach rechts
В	RXY	Springe zum Befehl in Speicheradresse XY wenn der Inhalt von Register R
		gleich dem Inhalt von Register R0 ist
С	000	Halte die weitere Befehlsausführung an

Befehlssatz einer einfachen hypothetischen Maschinensprache Assembler-Notation

Opcode	Operanden	Assemblernotation
1	RXY	LOAD R, XY
2	RXY	LOADI R, XY
3	RXY	STORE XY, R
4	0RS	MOVE S, R
5	RST	ADD R, S, T
6	RST	ADD-FLOAT R, S, T
7	RST	OR R, S ,T
8	RST	AND R, S, T
9	RST	XOR R, S, T
A	RoX	ROTATE-RIGHT R, X
В	RXY	JUMP XY, R
С	000	HALT

Beispielprogramm: GAUßsche Summe


```
20
      ; Initialisierung
                                                   00
     LOADI 0,00
00:
                                                   11
                                                   14
     LOAD 1,14
02:
                                                   22
                                               4
     LOADI 2,00
04:
                                                   00
                                                   23
     LOADI 3,FF
06:
                                                   FF
                                                   B1
                                               9
                                                   10
      ; Laufschleife
                                                   52
08:
     JUMP 10,1
                                                   21
                                                   51
     ADD 2,2,1
OA:
                                                   13
     ADD 1,1,3
OC:
                                                   BO
                                                   80
OE:
     JUMP
           08,0
                                              10
                                                    32
                                              11
                                                   15
                                              12
                                                   CO
      ; Abschluss
                                              13
                                                   00
     STORE 15,2
10:
                                              14
                                                    n
12:
     HALT
                                              15
                                                 Ergebnis
```

Simulator

https://joeledstrom.github.io/brookshear-emu/#20001114220023FFB11052215113B0083215C0000A

Gesetze der Schaltalgebra

Axiome

$$a \cdot b = b \cdot a$$

$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

$$a \cdot 1 = a$$

$$a \cdot \overline{a} = 0$$

$$a + b = b + a$$

$$a + (b \cdot c) = (a + b) \cdot (a + c)$$

$$a + 0 = a$$

$$a + \overline{a} = 1$$

Kommutativität
Distributivität
Identität
Komplementierung

Theoreme

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

$$a \cdot a = a$$

$$a + (a \cdot b) = a$$

$$\overline{a + b} = \overline{a} \cdot \overline{b}$$

$$\overline{\overline{a}} = a$$

$$a + (b + c) = (a + b) + c$$

$$a + a = a$$

$$a \cdot (a + b) = a$$

$$\overline{a \cdot b} = \overline{a} + \overline{b}$$

Assoziativität
Idempotenz
Absorption
DeMorgan
Involution

Man beachte die **Dualität**:

Tausch von · /+ und 0/1 ergibt jeweils das duale Gesetz

Verknüpfungsglieder Schaltsymbole

Konjunktion (AND)

$$\begin{bmatrix} a & & & \\ b & & & \end{bmatrix}$$
 & $\begin{bmatrix} a \cdot b \end{bmatrix}$

Antivalenz (XOR)

$$\begin{bmatrix} a & \cdots \\ b & \cdots \end{bmatrix} = 1 \begin{bmatrix} \cdots & a \neq b \end{bmatrix}$$

NAND

$$a \longrightarrow b$$

Äquivalenz (XNOR)

$$\begin{bmatrix} a & ----- \\ b & ---- \end{bmatrix} = \begin{bmatrix} ----- \\ a = b \end{bmatrix}$$

Disjunktion (OR)

$$\begin{bmatrix} a & & & \\ b & & & \end{bmatrix} \ge 1 \begin{bmatrix} & & \\ & & & \end{bmatrix} = a + b$$

Identität

$$a - 1 - a$$

NOR

$$\geq 1$$
 $\bigcirc \qquad \overline{a+b}$

Negation (NOT)

$$a \longrightarrow 1 \bigcirc \overline{a}$$

Verknüpfungsglieder Komplexgatter

Verknüpfungsglieder mit mehr als zwei Eingängen

Halbleiter n- und p-Dotierung

■ Kristallgitter mit Störatomen

Silizium (Si) Germanium (Ge) Galliumarsenid (GaAs)

Phosphor (P) Arsen (As) Antimon (Sb)

Bor (B) Gallium (Ga) Indium (In)

■ pn-Übergang

Feldeffekt-Transistor npn-Zonenfolge

■ keine Spannung liegt an

Feldeffekt-Transistor npn-Zonenfolge

■ Spannung über der Drain-Source-Strecke

Feldeffekt-Transistor Anlegen eines elektrischen Felds über der p-Zone

■ Schichtfolge: Metal – Oxide – Semiconductor (MOS)

MOS-Feldeffekt-Transistoren

pMOS

CMOS-Schaltungen NAND und NOR

Bustreiber

■ Wired-OR (Open Drain)

- low-aktive Signale
- aktiviert durch <u>mindestens</u> einen Busteilnehmer

Tristate

- Z (hochohmig)
- trennt einen Busteilnehmer vom Bus
- höchstens ein Busteilnehmer gleichzeitig darf schreiben

■ Grundschaltung eines 4-bit-Registers

■ Grundschaltung eines 4-bit-Rechtsschieberegisters

Erweiterung der Register-Grundschaltung ENABLE und CLEAR-Steuersignale

CLEAR	ENABLE	D
0	0	out_i
0	1	in_i
1	0	0
1	1	0

Erweiterung der Register-Grundschaltung **Z**ählfunktion

Synchroner 4-Bit-Vorwärtszähler

Endliche Automaten Beispiel

Beispiel: Steuerung eines Getränke-Münzautomaten

- ein Becher Getränk kostet 3€
- Münzeingabe: 1€ oder 2€
- sobald der Verkaufspreis erreicht oder überschritten ist, wird ein Becher Getränk ausgegeben
- bei Überzahlung wird das Restgeld ebenfalls ausgegeben

Beispiel: Steuerung eines Getränke-Münzautomaten

■ Spezifikation mittels Automatengraph

X = { -, 1€, 2€ } Münzeinwurf

Y = { k, G, GR } kein Getränk, Getränk, Getränk und Rückgeld

Beispiel: Steuerung eines Getränke-Münzautomaten

■ Technische Realisierung

■ Schritt 1: Codierungen festlegen

X	X ₁	x ₀
-	0	0
1€	0	1
2€	1	0

Υ	y ₁	y ₀
k	0	0
G	1	0
GR	1	1

Z	Z ₁	z_0
0€ eing.	0	0
1€ eing.	0	1
2€ eing.	1	0

Schritt 2: Automatentabelle aufstellen

Z ₁	z_0	X ₁	\mathbf{x}_0	y ₁	y ₀	Z ₁	z_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	D	D	D	D
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	0
0	1	1	0	1	0	0	0
0	1	1	1	D	D	D	D
1	0	0	0	0	0	1	0
1	0	0	1	1	0	0	0
1	0	1	0	1	1	0	0
1	0	1	1	D	D	D	D
1	1	0	0	D	D	D	D
1	1	0	1	D	D	D	D
1	1	1	0	D	D	D	D
1	1	1	1	D	D	D	D

■ Technische Realisierung

■ Schritt 3: pro Ausgabespalte minimale DNF finden

$$y_1 = x_0 z_1 + x_1 z_0 + x_1 z_1$$

$$z_1' = x_0 z_0 + \bar{x}_0 \bar{x}_1 z_1 + x_1 \bar{z}_0 \bar{z}_1$$

$$y_0 = x_1 z_1$$

$$z_0' = \bar{x}_0 \bar{x}_1 z_0 + x_0 \bar{z}_0 \bar{z}_1$$

Endliche Automaten

Beispiel: Steuerung eines Getränke-Münzautomaten

Technische Realisierung

Schritt 4: Schaltbild erzeugen

Princeton-Rechner

John von Neumann, Arthur W. Burks, Herman H. Goldstine, 1946/47

"Klassischer Universalrechenautomat"

 \longrightarrow Steuersignale

 \longrightarrow Datensignale

von Neumann-Architektur

- Die Struktur des Rechners ist **unabhängig** von speziellen, zu bearbeitenden Problemen.
- Vielmehr wird für jedes Problem eine Bearbeitungsvorschrift, das Programm, von außen eingegeben und im Speicher abgelegt. Erst dieses Programm macht den Rechner arbeitsfähig.
- Programme und von diesen benötigte Daten sowie Zwischen- und Endergebnisse werden in einem einheitlichen Speicher abgelegt.
- Befehle eines Programms werden im allgemeinen aus aufeinanderfolgenden Speicherplätzen geholt. Diese **sequentielle** Verarbeitung kann jedoch durch Sprungbefehle unterbrochen werden.

von Neumann-Architektur Erweiterungen

- Die Werke werden nicht mehr paarweise miteinander verbunden, sondern durch eine gemeinsame Übertragungsschiene (Bus).
- Statt eines einziges Rechenregisters (Akkumulator, AC) werden im Rechenwerk mehrere Universalregister (Registersatz) verwendet.
- Leit- und Rechenwerk werden gemeinsam als **Zentraleinheit** bezeichnet (CPU, central processing unit)
- Eingabe- und Ausgabewerk werden zu einem **E/A-Werk** zusammengefasst. "Das" E/A-Werk ist Stellvertreter für viele im Grundsatz gleichartige E/A-Werke (Tastatur und Maus, Monitor, HDD, optische Laufwerke, LAN-Schnittstelle, USB-Schnittstelle, usw.)

Befehlszyklus 3..5 Phasen

Realisierung eines einfachen Rechners mit BROOKSHEARS Befehlssatz IR und PC

_ie input enable

_oe output enable

Realisierung eines einfachen Rechners mit BROOKSHEARS Befehlssatz Speicherwerk

Multiplexer (1-MUX)

Realisierung eines einfachen Rechners mit BROOKSHEARS Befehlssatz Operationensteuerung

■ Befehlsholphase (1)

Realisierung eines einfachen Rechners mit BROOKSHEARS Befehlssatz Operationensteuerung

Befehlsholphase (2)

Realisierung eines einfachen Rechners mit BROOKSHEARS Befehlssatz Befehlsentschlüsselung

Realisierung eines einfachen Rechners mit BROOKSHEARS Befehlssatz Rechenwerk

Realisierung eines einfachen Rechners mit BROOKSHEARS Befehlssatz Registersatz

Realisierung eines einfachen Rechners mit BROOKSHEARS Befehlssatz Operationensteuerung

MOVE und ADD

Realisierung eines einfachen Rechners mit BROOKSHEARS Befehlssatz Operationensteuerung

STORE

Realisierung eines einfachen Rechners mit BROOKSHEARS Befehlssatz Operationensteuerung

Speicherorganisation

Speichertechnologien

Statischer RAM (SRAM)

- 6 Transistoren
- schnell
- für Cache-Speicher

Dynamischer RAM (DRAM)

- 1 Transistor, 1 Kapazität
- langsam, hoher Energieverbrauch, zerstörendes Lesen, Refreshing erforderlich
- für Hauptspeicher

1-Transistor-DRAM-Zelle "Stacked Capacitor"-Technik

RAM-Varianten DIMM – Dual In-line Memory Module

SDRAM

DDR2

DDR4

Aufgliederung eines DIMM-Speichermoduls

Memory-mapped I/O speicherbezogene E/A-Register-Adressierung

Programmgesteuerte, Port-basierte Ein-/Ausgabe Intel 8042 Tastaturcontroller für serielle PS/2-Schnittstelle

■ **Beispiel:** Abfrage des Tastatur-Controllers

■ DR: Port 60h

CSR: Port 64h


```
kbRead: in al, 64h; read status byte test al, 1; test OUTB flag jz kbRead; wait for OUTB = 1 in al, 60h; read data byte
```

Unterbrechungen

Berechnung der Einsprungadresse von Unterbrechungsroutinen

DMA – Direct Memory Access Ablauf eines DMA-Transfers

Cache-Speicher Zugriffsstrategien

- Lesezugriff versucht zuerst im Cache zu lesen
 - \blacksquare hit $\rightarrow \checkmark$
 - miss → Zugriff auf Hauptspeicher, Kopie in Cache
- **Schreibzugriff**
 - $miss \rightarrow$
 - write-around (auch write-no-allocate): Schreiben nur in den Hauptspeicher
 - write-allocate: Schreiben in Hauptspeicher, Kopie in Cache
 - *hit* → Kohärenzproblem
 - **Durchschreibeverfahren** (engl. *write-through*): jeder Schreibvorgang wird auf beiden Speichern durchgeführt
 - Rückschreibeverfahren (engl. write-back): Daten werden zunächst nur in den Cache geschrieben und durch ein *Dirty-Bit* als geändert gekennzeichnet
 - Rückschreiben erfolgt erst bei Verdrängung oder (falls auch andere Komponenten auf Hauptspeicher zugreifen dürfen) gemäß eines Cache-Kohärenz-Protokolls
 - Praxiserfahrung: die beste Effizienz bietet die Kombination write-allocate/write-back

Cache-Speicher Cache Line

Organisationsformen für Cache-Speicher Direct mapped cache / direkt abbildender Cache

Speicherhierarchie

Vergleich Einkern-/Zweikernprozessor

- Elektr. Leistungsaufnahme $P \sim C \cdot U_V^2 \cdot f$
- Zwei Kerne, jeweils um 15% reduzierte Taktrate und Betriebsspannung

fast doppelte Performanz

Quelle: intel.com

Cache-Struktur in Mehrkernprozessoren

Pipelining

ohne Pipelining

$$T_{oP} = (k \cdot n) \cdot \tau$$

mit Pipelining

$$T_{mP} = (k + (n-1)) \cdot \tau$$

Pipelining Datenflusskonflikte

■ RAW (Read-After-Write)-Konflikt

Lösung

■ Einfügen von Wartezyklen (*pipeline stalls*)

Pipelining Steuerflusskonflikte

- bei Sprungbefehlen
 - unbedingter Sprungbefehl
 - Delayed-branch-Methode: Einfügen von no-ops
 - bedingter Sprungbefehl
 - Sprungvorhersage (branch prediction)

