Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claim 1 (currently amended) A compound of formula (I)

$$R^{2} \xrightarrow{II} Z^{1} \longrightarrow Alk^{1} \longrightarrow Alk^{2} \longrightarrow R^{5}$$

$$R^{3} \longrightarrow Z^{2} \longrightarrow Alk^{1} \longrightarrow Alk^{2} \longrightarrow R^{5}$$

$$R^{6} \longrightarrow R^{1} \longrightarrow R^{1}$$

a stereochemically isomeric form thereof, an N-oxide form thereof, a pharmaceutically acceptable acid addition salt thereof, or a quaternary ammonium salt thereof, wherein

is C₁₋₄alkylcarbonyl, C₁₋₄alkylcarbonylC₁₋₄alkyl, carbonyl, carbonylC₁₋₄alkyl, or C₁₋₆alkanediyl optionally substituted with hydroxy, halo, amino, hydroxyC₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkylcarbonyloxy, or C₃₋₆cycloalkylcarbonyloxyC₁₋₄alkyloxycarbonyloxy, or C₃₋₆cycloalkylcarbonyloxyC₁₋₄alkyloxycarbonyloxy;

Alk² is C_{1_4} alkylcarbonyl C_{1_4} alkyl; C_{1_6} alkanediyl substituted with hydroxy, halo, amino, hydroxy C_{1_4} alkyl, C_{1_4} alkyloxy, C_{1_4} alkyloxy C_{1_4} alkyloxycarbonyloxy, or C_{3_6} cycloalkylcarbonyloxy C_{1_4} alkyloxycarbonyloxy; C_{3_8} cycloalkanediyl optionally substituted with halo, hydroxy, hydroxy C_{1_4} alkyl, C_{1_4} alkyloxy, C_{1_4} alkyloxy C_{1_4} alkyloxy, C_{1_4} alkyloxy C_{1_4} alkyloxy, C_{1_4}

C₁₋₄alkylcarbonyloxyC₁₋₄alkyloxycarbonyloxy, or

C₃₋₆cycloalkylcarbonyloxyC₁₋₄alkyloxycarbonyloxy;

-Z¹-Z²- is a bivalent radical of formula

$$\begin{array}{llll} \hline -\text{O-CH}(R^4)\text{-CH}_2\text{-} & (a-1), \\ -\text{O-CH}(R^4)\text{-CH}_2\text{-O-} & (a-2), \\ -\text{O-CH}(R^4)\text{-CH}_2\text{-S-} & (a-3), \\ -\text{O-CH}(R^4)\text{-CH}_2\text{-CH}_2\text{-} & (a-4), \\ \hline -\text{O-CH}(R^4)\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-} & (a-5), \\ -\text{O-C}(R^4)\text{=CH-} & (a-6), \\ \hline -\text{O-C}(R^4)\text{=CH-CH}_2\text{-} & (a-7), \\ \hline \text{-O-C}(R^4)\text{=CH-CH}_2\text{-CH}_2\text{-} & (a-8), \\ \hline \text{or} & -\text{O-CH}(R^4)\text{-CH=CH-} & (a-9), \\ \hline \end{array}$$

wherein optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by hydroxy;

R¹, R² and R³ are each independently selected from hydrogen, C₁₋₆alkyl, C₃₋₆alkenyl, C₁₋ 6alkyloxy, trihalomethyl, trihalomethoxy, halo, hydroxy, cyano, nitro, amino, C₁₋₆alkylcarbonylamino, C₁₋₆alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, aminocarbonyl, mono- or di(C₁₋₆alkyl)aminocarbonyl, aminoC₁₋₆alkyl, mono- or di(C₁₋₆alkyl)aminoC₁₋₆alkyl, C₁₋₄alkylcarbonyloxy-C₁₋₄alkyloxycarbonyloxy, or C₃₋₆cycloalkylcarbonyloxyC₁₋₄alkyloxy-carbonyloxy; or

when R¹ and R² are on adjacent carbon atoms, R¹ and R² taken together may form a bivalent radical of formula

-CH ₂ -CH ₂ -CH ₂ -	(b-1),	-O-CH ₂ -CH ₂ -	(b-6),
-CH ₂ -CH ₂ -CH ₂ -	(b-2),	-OCH ₂ -CH ₂ -O-	(b-7),
-CH ₂ -CH ₂ -CH ₂ -CH ₂ -	(b-3),	-OCH ₂ -CH ₂ -CH ₂ -	(b-8),
-CH=CH-CH=CH-	(b-4),	-OCH ₂ -CH ₂ -CH ₂ -CH ₂ -	(b-9),
-O-CH ₂ -O-	(b-5),		

wherein optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by hydroxy, C₁₋₄alkyl or CH₂OH;

R⁴ is hydrogen, C₁₋₆alkyl, phenylmethyl, hydroxyC₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl, C_{1-4} alkyloxycarbonyl, C_{1-4} alkylcarbonyloxy C_{1-4} alkyloxycarbonyl, C₃₋₆cycloalkylcarbonyloxyC₁₋₄alkyloxycarbonyloxy, or a direct bond when the bivalent radical $-Z^1-Z^2$ - is of formula (a-6) (a-7) or (a-8);

R⁶ is hydrogen, C₁₋₆alkyl, C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, phenylmethyl, C₁. 4alkylaminocarbonyl, C₁₋₄alkylcarbonyloxyC₁₋₄alkyloxycarbonyl, or C₃₋₆cycloalkylcarbonyloxyC₁₋₄alkyloxycarbonyloxy;

R⁵ is a radical of formula

wherein n is 1 or 2;

 p^1 is 0, and p^2 is 1 or 2; or p^1 is 1 or 2, and p^2 is 0;

X is oxygen, sulfur, NR⁹ or CHNO₂;

Y is oxygen or sulfur;

R⁷is hydrogen, C₁₋₆alkyl, C₃₋₆cycloalkyl, phenyl or phenylmethyl;

R⁸ is C₁₋₆alkyl, C₃₋₆cycloalkyl, phenyl or phenylmethyl;

R⁹ is cyano, C₁₋₆alkyl, C₃₋₆cycloalkyl, C₁₋₆alkyloxycarbonyl or aminocarbonyl; R¹⁰ is hydrogen or C₁₋₆alkyl;

or R⁹ and R¹⁰ taken together with the nitrogen atom to which they are attached may form a pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, or morpholinyl group, optionally substituted with C₁₋₄alkyl or C₁₋₄alkyloxy; and

Q is a bivalent radical of formula

wherein optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by C_{1} -alkyl, hydroxy or phenyl, [or]

Q is a bivalent radical of formula
$$\begin{array}{c} CH_2-\\ \\ (d-11) \end{array} \quad \text{, or} \quad \begin{array}{c} CH_2-\\ \\ (d-12) \end{array}$$

Claim 2 (currently amended) A compound as claimed in claim 1 wherein R⁵ is a radical of formula (c-1) wherein X is oxygen, and Q is a radical of formula [(d-2) or] (d-5).

Claim 3 (cancel without prejudice)

Claim 4 (previously presented) A compound according to claim 1 wherein R⁴ is hydrogen, Alk¹ is -CH₂-, Alk² is -CH₂-CHOH-CH₂-, R⁶ is hydrogen, R⁵ is a radical of formula (c-1) wherein X is oxygen, R⁷ is hydrogen, and Q is (d-5).

Claim 5 (cancel without prejudice)

Claim 6 (previously presented) A compound according to claim 1 wherein the compound is 1-[3-[[(3,4-dihydro-2*H*-1-benzopyran-2-yl)methyl]amino]- 2-hydroxypropyl]-2,4-imidazolidinedione; a stereoisomeric form or a pharmaceutically acceptable acid addition salt thereof.

Claim 7 (previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically active amount of a compound as claimed in claim 1.

Claim 8 (previously presented) A process for preparing a pharmaceutical composition wherein a therapeutically active amount of a compound as claimed in claim 1 is mixed with a pharmaceutically acceptable carrier.

Claim 9 (canceled)

Claim10 (previously presented) A process for preparing a compound of formula (I) wherein

a) an intermediate of formula (II) is alkylated with an intermediate of formula (III) in a reaction-inert solvent and, optionally in the presence of a suitable base,

$$R^{2} \xrightarrow{II} Z^{1} \longrightarrow Alk^{1} \longrightarrow W + H \longrightarrow N \longrightarrow Alk^{2} \longrightarrow R^{5} \longrightarrow (II)$$

$$R^{3} \xrightarrow{(II)} (III)$$

$$(III)$$

b) an intermediate of formula (IV), wherein Alk1' represents a direct bond or C₁₋₅alkanediyl, is reductively alkylated with an intermediate of formula (III);

$$R^{2} \xrightarrow{II} Z^{1} \longrightarrow Alk^{1} \longrightarrow CHO + H \longrightarrow N \longrightarrow Alk^{2} \longrightarrow R^{5} \longrightarrow (III)$$

c) an intermediate of formula (VI) is reacted with an intermediate of formula (VII) thus yielding compounds of formula (I-a), defined as compounds of formula (I) wherein Alk² represents -CH₂-CHOH-CH₂-;

$$R^{2} \xrightarrow{\mathbb{R}^{3}} (VI)$$

$$R^{3} (VI)$$

$$R^{2} \xrightarrow{\mathbb{R}^{3}} (VI)$$

$$R^{3} \xrightarrow{\mathbb{R}^{3}} (VI)$$

in the above reaction schemes the radicals $-Z^1-Z^2-$, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , Alk^1 and Alk^2 are as defined in claim 1 and W is an appropriate leaving group;

d) or, compounds of formula (I) are converted into each other following art-known transformation reactions; or if desired; a compound of formula (I) is converted into an acid addition salt, or conversely, an acid addition salt of a compound of formula (I) is converted into a free base form with alkali; and, if desired, preparing stereochemically isomeric forms thereof.

Claim 11 (previously presented) A method of treating conditions involving an impaired relaxation of the fundus comprising administering to a subject in need thereof an effective amount of a compound of claim 1.