INTEGRAL DEFINIDA SEGÚN RIEMANN

1.- PARTICIONES DE UN INTERVALO [a,b].

<u>Definición</u>: Dado un intervalo a,b de \mathbb{R} , se llama partición de a,b a cualquier conjunto finito $P = \{x_0, x_1, ..., x_n\}$ tal que $a = x_0 < x_1 < ... < x_n = b$.

La longitud del intervalo *i*-ésimo $[x_{i-1}, x_i]$, para i = 1, ..., n, se representa por $\Delta x_i = x_i - x_{i-1}$ y la magnitud $|P| = \max_{i=1,...,n} \Delta x_i$ se denomina diámetro de la partición P.

Se dice que otra partición P' es posterior a P cuando P' se obtiene de añadir algún punto a P, es decir, si $P \subset P'$.

2.- SUMAS DE RIEMANN. INTEGRAL DEFINIDA SEGÚN RIEMANN.

Sea $f:[a,b] \to \mathbb{R}$ una función **acotada** en a,b y sea $P = \{x_0, x_1, ..., x_n\}$ una partición de este intervalo. Consideremos un conjunto arbitrario T de puntos $t_i \in [x_{i-1}, x_i]$, i = 1, ..., n.

<u>Definición</u>: Se llama *suma de Riemann* de f, relativa a la partición P y al conjunto de puntos T, al número $S(P,T) = \sum_{i=1}^{n} f(t_i) \cdot \Delta x_i$.

<u>Definición</u>: Se dice que la función f es integrable según Riemann sobre el intervalo a,b, y su integral es el número I, si para cualquier sucesión de particiones $\{P_n\}$ del intervalo a,b tal que $\lim_{n\to\infty} |P_n| = 0$, (donde $\forall n$ P_{n+1} es posterior a P_n) y para cualquier conjunto de puntos T_n correspondiente a cada partición P_n , se verifica que:

$$I = \lim_{n \to \infty} S(P_n, T_n).$$

Cuando se cumplen estas condiciones, el número I se llama integral definida (de Riemann) de la función f sobre el intervalo a,b y se denota por $\int_a^b f(x)dx$.

3.- TEOREMAS DE INTEGRABILIDAD.

<u>Teorema</u>: Si f es una función creciente o decreciente en a,b, entonces f es integrable en a,b.

 $\underline{\textit{Teorema}}$: Si f es una función continua (continua a trozos) sobre a,b, entonces f es integrable en a,b.

4.- PROPIEDADES DE LA INTEGRAL DEFINIDA.

$$1.- \int_a^b dx = b - a$$

2.- Si f es integrable sobre a,b, entonces f es integrable sobre cualquier intervalo $a',b'\subset a,b$.

3.- Sea a < c < b. Si f es integrable sobre a, c y c, b, entonces f es integrable sobre a, b y

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

4.- Recíprocamente, si f es integrable sobre a,b, entonces f es integrable sobre a,c y c,b, siendo a < c < b, y

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

5.- Si f y g son integrables sobre a,b , entonces f+g también es integrable sobre a,b y

$$\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx.$$

6.- Sea f integrable sobre a,b y c una constante. Entonces la función $c \cdot f$ también es integrable sobre a,b y

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx.$$

- 7.- Si f y g son integrables sobre a,b, entonces $f \cdot g$ también es integrable sobre a,b.
- 8.- Si f y g son integrables sobre a,b y $|g(x)| \ge c \ \forall x \in [a,b]$ donde c > 0, entonces f/g también es integrable sobre a,b.
- 9.- Sean f y g integrables sobre a,b . Si $\forall x \in [a,b]$ $f(x) \leq g(x)$, entonces $\int_a^b f(x) dx \leq \int_a^b g(x) dx$.
- 10.- Si f es integrable sobre a,b, entonces |f| es integrable sobre a,b y $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx.$

Además por definición:

$$\int_{a}^{a} f(x)dx = 0$$

Si f es integrable sobre $a,b: \int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$.

5.- PRIMER TEOREMA DEL VALOR MEDIO PARA LA INTEGRAL DEFINIDA. GENERALIZACIÓN.

<u>Teorema</u>: Sea $f:[a,b] \to \mathbb{R}$ una función integrable en el intervalo a,b.

a) Sean $m, M \in \mathbb{R}$ tales que $m \le f(x) \le M \ \forall x \in a, b$. Entonces $\exists \mu \in m, M$ tal que

$$\int_{a}^{b} f(x)dx = \mu(b-a)$$

b) Si además f es continua en a,b, entonces existe un punto $c \in a,b$ tal que

$$\int_{a}^{b} f(x) dx = f(c)(b-a)$$

Demostración:

a) Por ser $m \le f(x) \le M \ \forall x \in a,b$ entonces

$$m \int_{a}^{b} dx \le \int_{a}^{b} f(x) dx \le M \int_{a}^{b} dx$$

$$\Leftrightarrow m(b-a) \le \int_{a}^{b} f(x) dx \le M(b-a)$$

$$\Leftrightarrow m \le \frac{\int_{a}^{b} f(x) dx}{b-a} \le M$$
Entonces $\exists \mu \in m, M$ tal que $\frac{\int_{a}^{b} f(x) dx}{b-a} = \mu$

b-a

b) Se deduce de manera inmediata por la continuidad de la función.

Interpretación geométrica: Si f es no negativa y continua en a,b, la expresión

$$\frac{\int_{a}^{b} f(x)dx}{b-a} = \mu$$

implica que el área bajo la curva y = f(x), es decir el área limitada por la curva y = f(x) y las rectas x = a, x = b e y = 0 es igual al área del rectángulo cuya base es a,b y su altura μ .

GENERALIZACIÓN.

<u>Teorema</u>: Sean f y g dos funciones integrables en el intervalo a,b, y supongamos que el signo de g se mantiene constante sobre a,b.

a) Sean $m, M \in \mathbb{R}$ tales que $m \le f(x) \le M \ \forall x \in a, b$. Entonces $\exists \mu \in m, M$ tal que

$$\int_a^b f(x) \cdot g(x) dx = \mu \cdot \int_a^b g(x) dx.$$

b) Si además f es continua en a,b , entonces existe un punto $c \in a,b$ tal que

$$\int_{a}^{b} f(x) \cdot g(x) dx = f(c) \cdot \int_{a}^{b} g(x) dx.$$

Demostración:

a) Supongamos que $g(x) \ge 0 \quad \forall x \in a,b$ (la demostración es análoga si se supone $g(x) \le 0 \quad \forall x \in a,b$).

Por ser $m \le f(x) \le M \ \forall x \in a,b$:

$$m \cdot g(x) \le f(x) \cdot g(x) \le M \cdot g(x) \quad \forall x \in a, b$$

$$\Rightarrow m \cdot \int_a^b g(x) dx \le \int_a^b f(x) \cdot g(x) dx \le M \cdot \int_a^b g(x) dx$$

Suponemos que $\int_a^b g(x)dx > 0$ (en otro caso, de las desigualdades anteriores se deduce que $\int_a^b f(x) \cdot g(x)dx = 0$, verificándose el teorema de forma inmediata).

Entonces:

$$m \le \frac{\int_a^b f(x) \cdot g(x) dx}{\int_a^b g(x) dx} \le M$$

En consecuencia, $\exists \mu \in m, M$ tal que $\frac{\int_a^b f(x) \cdot g(x) dx}{\int_a^b g(x) dx} = \mu$

b) Se deduce de manera inmediata por la continuidad de la función.

6.- TEOREMAS FUNDAMENTALES DEL CÁLCULO INTEGRAL.

Sea f integrable sobre el intervalo a,b. En este caso tiene sentido definir la función

$$F(x) = \int_{a}^{x} f = \int_{a}^{x} f(t)dt \ \forall x \in [a,b].$$

<u>Teorema</u>: Si f es integrable en a,b, entonces F es continua en a,b.

Primer teorema fundamental del cálculo integral: Si f es continua en a,b, entonces $F(x) = \int_a^x f$ es derivable en a,b y su derivada es F'(x) = f(x) $\forall x \in a,b$.

Demostración:

$$F \text{ es derivable en } a,b \iff \exists \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x} = F'(x) \in \mathbb{R}, \ \forall x \in [a,b]$$

$$\frac{F(x+\Delta x)-F(x)}{\Delta x} = \frac{\int_{a}^{x+\Delta x} - \int_{a}^{x} f}{\Delta x} = \frac{\int_{x}^{x+\Delta x} - \int_{x}^{x} f}{\Delta x} = \frac{f(c) \cdot \Delta x}{\Delta x}$$

Luego,
$$\lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(c) \cdot \Delta x}{\Delta x} = f(x) \in \mathbb{R}$$

<u>Definición</u>: Dada una función f definida en un intervalo I, se dice que otra función F es *primitiva* de f en I si F es derivable y F' = f en I.

<u>Observación</u>: Según acabamos de ver, si f es continua en a,b, $F(x) = \int_a^x f$ es una primitiva de f en a,b.

 $\underline{Teorema}$: Toda función f que admite primitiva tendrá infinitas primitivas que se diferencian entre sí en una constante.

Demostración:

- a) Es evidente que si F es una primitiva de f, la función $G = F + C \quad \forall C \in \Re$ también lo es.
- b) Si F y G son dos primitivas de f se verifica que:

$$(G-F)'(x) = G'(x) - F'(x) = f(x) - f(x) = 0$$

entonces G-F es una constante.

<u>Definición</u>: Se llama *integral indefinida* de f al conjunto de todas las primitivas de f y se denota por $\int f(x) dx$ (notación de Leibniz).

Segundo teorema fundamental del cálculo integral: Sea f continua sobre a,b y G una primitiva cualquiera de f en a,b . Entonces

$$\int_{a}^{b} f(x)dx = G(b) - G(a) = G(x)\Big]_{a}^{b}$$

(Regla de Barrow o Fórmula de Newton-Leibniz).

Demostración:

Por el primer teorema fundamental del cálculo integral, $F(x) = \int_a^x f$ es una primitiva de f en a,b.

Al serlo también G, se tiene que F-G es constante, es decir,

$$F(x) = G(x) + C \quad \forall x \in a, b$$

$$F(a) = \int_{a}^{a} f = 0 = G(a) + C \implies C = -G(a)$$

y
$$F(b) = \int_{a}^{b} f = G(b) + C = G(b) - G(a)$$
.

7.- INTEGRACIÓN POR PARTES.

Teorema: Si u y v son dos funciones derivables con derivada continua en a,b entonces:

$$\int_{a}^{b} u(x)v'(x)dx = u(x)v(x)\Big]_{a}^{b} - \int_{a}^{b} u'(x)v(x)dx$$

Demostración:

Derivando la función producto uv obtenemos:

$$(u(x)v(x))' = u'(x)v(x) + u(x)v'(x)$$

donde todos los sumandos son funciones continuas y por tanto integrables, luego:

$$\int_{a}^{b} (u(x)v(x))'dx = \int_{a}^{b} u'(x)v(x)dx + \int_{a}^{b} u(x)v'(x)dx$$

Aplicando ahora la regla de Barrow al primer miembro de esta igualdad se obtiene el resultado buscado.

8.- INTEGRACIÓN POR SUSTITUCIÓN.

Sea f continua sobre el intervalo a,b. Sea $\varphi=\varphi(t)$ derivable con derivada continua sobre el intervalo α,β , tal que $a\leq \varphi(t)\leq b \ \forall t\in\alpha,\beta$, siendo $\varphi(\alpha)=a$ y $\varphi(\beta)=b$. Entonces

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt$$