

FAKULTÄT FÜR PHYSIK Praktikum Moderne Physik

Praktikum: P4 Gruppe: 22 Zutreffendes bit	Mi WS20/21 Itte ausfüllen
Namen: Paul Filip useba[at]student.kit.edu	
Namen: Janic Beck	
Versuch: Mößbauer-Effekt	
Betreuer: Paras Koundal Duro	chgeführt am: 29.11.20
Wird vom Betreuer ausgefüllt.	
1. Abgabe am:	
Rückgabe am: Kommentar:	
2. Abgabe am: Ergebnis: + / 0 / - Handzeichen: Datum: Kommentar:	

Contents

1. Theory & Preparation

1.1 Mössbauer effect

The process of **resonant absorption** in nuclear physics describes the phenomenon of subsequent de- and excitation of two equal atoms to the same energy levels via one γ -quant. Consider for example an excited state of ⁵⁷Fe, that emits a photon with energy (roughly) 14.4 keV during its transition to the ground state.

$$^{57}\mathrm{Fe}^* \longrightarrow ^{57}\mathrm{Fe} + \gamma$$

In principle, one could use this emitted photon to excite another ⁵⁷Fe atom to the higher energy state. The photon is absorbed resonantly by the atom during this process.

In reality, resonant absorption such as the Na-D-line only occurs under certain circumstances. Due to conservation laws the energy E_{γ} of the emitted photon does not exactly equal the transition energy E_0 , but is instead shifted downward by the nuclear recoil energy. A similar analysis finds that the energy for absorption of the same atom is shifted upwards.

$$\underbrace{E_{\gamma} = E_0 - \frac{p_{\gamma}^2}{2m}}_{\text{Emission}} \qquad \underbrace{E_{\gamma} = E_0 + \frac{p_{\gamma}^2}{2m}}_{\text{Absorption}} \tag{1.1}$$

With the photon impulse p_{γ} and atom mass m. If the line width introduced by natural broadening, Doppler broadening or other effects does not exceed the gap $\frac{p_{\gamma}^2}{m}$ resonant absorption cannot occur. This is visualised in ??.

1.2 Mössbauer spectroscopy

Es war einmal ...

2. Experiment & Evaluation