FP 5

minXPrev	minXCurr	TTC	delta minX
7.974	7.913	12.9722	0.061
7.913	7.849	12.264	0.064
7.849	7.804	17.3422	0.045
7.804	7.744	12.9067	0.06
7.744	7.683	12.5951	0.061
7.683	7.581	7.43234	0.102
7.581	7.558	32.8612	0.023
7.558	7.515	17.4767	0.043
7.515	7.468	15.8894	0.047
7.468	7.414	13.7297	0.054
7.414	7.344	10.4914	0.07
7.344	7.273	10.2436	0.071
7.273	7.195	9.22441	0.078
7.195	7.136	12.0949	0.059
7.136	7.042	7.49146	0.094
7.042	6.972	9.96004	0.07
6.972	6.897	9.19596	0.075
6.897	6.815	8.311	0.082

The values highlighted in red looks off, however, as explained below, it just means the car is slowing down and it takes longer for collision.

The smaller the distance is between current and previous x, the bigger the TTC. This is because as the car slows down, the distance between frames decreases. If the car is moving slow, the TTC will be higher because it takes much longer to crash. Similarly, if the car is moving fast, the TTC is lower because it takes very little time to crash.

FP 6

camera TTC	ratio
13.0126	1.00768
13.9229	1.00718
13.101	1.00763
15.9091	1.00629
15.3344	1.00652
14.9812	1.00668
15.7693	1.00634
15.2449	1.00656
15.5669	1.00642
12.2208	1.00818
12.1519	1.00823
12.03	1.00831
9.85925	1.01014
9.70959	1.0103
10.7058	1.00934
10.5783	1.00945
9.7031	1.01031
8.85196	1.0113

Similar to lidar, the smaller the ratio, the higher the TTC.

Detector/Descriptor

AKAZE, BRISK was used to calculate the camera TTC.

Camera TTC	Lidar TTC
13.0126	12.9722
13.9229	12.264
13.101	17.3422
15.9091	12.9067
15.3344	12.5951
14.9812	7.43234
15.7693	32.8612
15.2449	17.4767
15.5669	15.8894
12.2208	13.7297

10.4914
10.2436
9.22441
12.0949
7.49146
9.96004
9.19596
8.311

I took the standard deviation of the TTC values for all combinations because I wanted to see how much the times vary. Those that has 100 or higher leads to higher standard deviation. Those with high standard deviations are ignored.

Although FAST, FREAK gave the lowest standard deviation, **AKAZE**, **BRISK** was chosen. **AKAZE**, **BRISK** was chosen because it has the third lowest standard deviation and its camera values are closest to lidar TTC values.