Rotating loop in a static magnetic field. Fig. Q6.9 shows a circular loop that rotates with a constant angular velocity ω about its axis in a uniform time-invariant magnetic field of flux density B. The vector \mathbf{B} is perpendicular to the plane of drawing. With \mathcal{E}_0 being a positive constant and $T=2\pi/\omega$, the induced emf in the loop is of the following form:

- (A) $e_{\text{ind}}(t) = \mathcal{E}_0 \cos \omega t$.
- (B) $e_{\text{ind}}(t) = \mathcal{E}_0(1 e^{-t/T}).$
- (C) $e_{\text{ind}}(t) = \mathcal{E}_0 t / T$.
- (D) $e_{\text{ind}}(t) = -\mathcal{E}_0$.
- (E) $e_{\text{ind}}(t) = 0$.

Figure Q6.9 Loop rotating in a uniform time-invariant magnetic field; for Question 6.21.

Solution: (A) Answer: (A)