Exercise Sheet 4

Exercise 1

Show that regular perturbation fails on the boundary value problem

$$\varepsilon y''(x) + 2y'(x) + y(x) = 0, \quad 0 < x < 1, \quad 0 < \varepsilon \ll 1$$

with y(0) = 0, y(1) = 1. Find the exact solution and plot it for $\varepsilon = 0.05$ and $\varepsilon = 0.005$. If $x = O(\varepsilon)$, show (on a graph or analytically) that $\varepsilon y''(x)$ is large. If x = O(1), show that $\varepsilon y''(x) = O(1)$. Find an inner and an outer approximation of the exact solution.

Exercise 2

Use singular perturbation methods to obtain a uniform approximate solutions to the problems

1.
$$\varepsilon y''(x) + x^{1/3}y'(x) + y(x) = 0, y(0) = 0, y(1) = e^{-3/2}$$
,

2.
$$\varepsilon y''(x) - (2x+1)y'(x) + 2y(x) = 0, y(0) = 1, y(1) = 0.$$

In each case consider 0 < x < 1 and $0 < \varepsilon \ll 1$.

Exercise 3

Find a uniformly valid approximation of a solution to the problem

$$\varepsilon y''(x) - g(x)y'(x) = f(x)$$
 $0 < x < 1, 0 < \varepsilon \ll 1$
 $y(0) = 0, y(1) = -1,$

where g(x) > 0 for $x \in [0, 1]$ and g and f are continuous functions on [0, 1]. Illustrate your general result on the graph for some chosen by you functions g and f.