Análisis Matemático II - (1033)

Ejercicios sobre integrales de superficie de campos vectoriales

Ejercicio 1. Calcular la integral de superficie del campo vectorial F(x,y,z) = (x+z,y,x+y+z) a través de la superficie cilíndrica

$$S = \{(x, y, z) \in \mathbb{R}^3 : z = 2 - y \land x^2 + y^2 \le 1\}$$

orientando la superficie S, según la normal ascendente (3º componente positiva).

Ejercicio 2. Calcular la integral de superficie del campo vectorial F(x, y, z) = (2x + 3z, y, x + z), a través de la superficie plana

$$S = \{(x, y, z) \in \mathbb{R}^3 : z = 2 - y \wedge x^2 + y^2 \le 1\}$$

utilizando la norma ascendente (3° componente positiva).

Ejercicio 3. Calcular la integral de superficie del campo vectorial $F(x,y,z) = \left(-\frac{x}{\sqrt{x^2+y^2}}, -\frac{y}{\sqrt{x^2+y^2}}, 0\right)$, a través de la superficie cónica

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 : z = \sqrt{x^2 + y^2} \land 0 \le z \le 1 \right\}$$

orientando la superficie S, según la normal ascendente (3° componente positiva).

Ejercicio 4. Calcular la integral de superficie del campo vectorial $F(x,y,z) = (x,y,z^2)$, a través de la superficie parabólica

$$S = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2 \land x^2 + y^2 < 1\}$$

utilizando la norma ascendente (3° componente positiva).

Ejercicio 5. Calcular la integral de superficie del campo vectorial F(x, y, z) = (-x, -y, z), a través de la superficie

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 : z = \sqrt{x^2 + y^2} \land 1 \le z \le 4 \right\}$$

Utilizando la norma ascendente (3º componente positiva).

Ejercicio 6. Calcular la integral de superficie del campo vectorial $F(x, y, z) = (x + y, x^2 + y^2, e^z + z^2)$ sobre la superficie

$$S = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 = 4 \land 0 \le z \le 4\}$$

Orientando al cilindro según la normal exterior. Note que no se trata de una superficie cerrada.

Ejercicios relacionados con el Teorema de Gauss (o de la divergencia)

Ejercicio 7. Aplicando el Teorema de la divergencia calcular la integral de superficie del campo vectorial F(x, y, z) = (x + z, y, x + y + z) a través de la superficie S, frontera del sólido:

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1\}.$$

orientada según la normal exterior.

Ejercicio 8. Aplicar el Teorema de la Divergencia para calcular la integral de superficie del campo vectorial

$$F(x, y, z) = (xy^2, x^2y, z)$$

a través de la superficie S, frontera del sólido

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 9 \land 0 \le y \land 0 \le z \le 3\}.$$

orientada según la normal exterior.

Ejercicio 9. Aplicando el Teorema de la divergencia calcular la integral de superficie del campo vectorial

$$F(x, y, z) = (x^3, y^3, z^3)$$

a través de la superficie S, frontera del sólido:

$$\Omega = \{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1 \land z \ge 0 \}.$$

orientada según la normal exterior.

Ejercicio 10. Aplicar el Teorema de la Divergencia para calcular la integral de superficie del campo vectorial

$$F(x,y,z) = (xy^2, x^2y, z)$$

a través de la superficie S, frontera del sólido

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z \le 1\}.$$

orientada según la normal exterior.

Ejercicio 11. Calcular la integral de superficie del campo vectorial $F(x, y, z) = (2x^2y, x + 5xy^2, z)$ a través de la superficie S, frontera del sólido

$$V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 4 \land z > 0\}$$

Orientada exteriormente.

Ejercicio 12. Calcular la integral de superficie del campo vectorial $F(x, y, z) = (x, y^2, z)$ a través de la superficie S frontera del sólido

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1 \land 0 \le z \le 1\}$$

Orientándola según la normal interior.