

# Programa de Asignatura

### Historia del programa

| Lugar y fecha de elaboración         | Participantes                                                                  | Observaciones (Cambios y justificaciones)                 |
|--------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------|
| Cancún, Q. Roo 28 de Abril de 2010/1 | M.C. David Flores Granados Ing. Mónica Patricia René M.C. José Enrique Alvarez | Se modificó el programa.<br>Se actualizó la bibliografía. |

### Relación con otras asignaturas

| Anteriores                                      | Posteriores |
|-------------------------------------------------|-------------|
|                                                 |             |
| Asignatura(s)                                   |             |
| a)IT0316 Arquitectura de computadoras           |             |
| b)IT0218 Electrónica Digital                    |             |
|                                                 | No aplica   |
| Tema(s)                                         |             |
| a)Todos.                                        |             |
| b)Unidad III La Unidad Central de procesamiento |             |

### Nombre de la asignatura Departamento o Licenciatura

Principios de automatización y robótica Ingeniería en Telemática

| Ciclo | Clave  | Créditos | Área de formación curricular |
|-------|--------|----------|------------------------------|
| 3 - 4 | IT3472 | 6        | Licenciatura Elección Libre  |

| Tipo de asignatura | Horas de estudio |    |    |    |
|--------------------|------------------|----|----|----|
|                    | HT               | HP | TH | HI |
| Seminario          | 32               | 16 | 48 | 48 |

# Objetivo(s) general(es) de la asignatura

### Objetivo cognitivo

Describir los principios teóricos que constituyen los fundamentos de la robótica para el conocimiento del contexto disciplinar.

### Objetivo procedimental

Aplicar los fundamentos de la robótica para la implementación de un robot simulado y físico

### Objetivo actitudinal

Fomentar el trabajo colaborativo para el desarrollo de prácticas en el laboratorio.

### **Unidades y temas**

### Unidad I. INTRODUCCIÓN

Revisar las áreas operativas donde la robótica juega un papel importante para la clasificación de los tipos de robots existentes.

- 1) Historia
- 2) Descripción de Mecánica
- 3) Descripción de Control
- 4) Áreas disciplinares y operativas

#### Unidad II. ESPACIO Y TRANSFORMACIONES

Describir los componentes físicos de un robot para la definición de su posición espacial

- 1) Posición, Orientación y Trama
- 2) Operadores
- 3) Aritmética de Transformaciones
  - a) Traslaciones
  - b) Rotaciones

| c) Transformaciones                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4) Consideraciones Computacionales                                                                                                                                    |
| Unidad III. CINEMÁTICA DE MANIPULADORES  Propósito de la unidad III: Clasificar las operaciones que definen la cinemática de los manipuladores para la representación |
| física de un robot.                                                                                                                                                   |
| 1) Vínculos                                                                                                                                                           |
| 2) Espacios                                                                                                                                                           |
| a) Actuador                                                                                                                                                           |
| b) Articulación                                                                                                                                                       |
| c) Cartesiano                                                                                                                                                         |
| 3) Caso de Estudio                                                                                                                                                    |
|                                                                                                                                                                       |
| Unidad IV. DINAMICA DE MANIPULADORES                                                                                                                                  |
| Representar las operaciones que definen la dinámica de los manipuladores para su experimentación en simuladores.                                                      |
| 1) Notación para posición y orientación variante en el tiempo.                                                                                                        |
| 2) Velocidad Lineal y Rotacional en cuerpos rígidos                                                                                                                   |
| 3) Aceleración de un cuerpo Rígido                                                                                                                                    |
| 4) Formación Iterativa y Cerrada                                                                                                                                      |
| Unidad V. CALCULO Y GENERACION DE TRAYECTORIAS                                                                                                                        |
|                                                                                                                                                                       |
| Emplear la teoría cinemática y dinámica de un robot para la generación de trayectorias de movimiento en un robot físico.                                              |

1) Descripción de Rutas y su Generación

- 2) Esquemas en el espacio de Articulación
- 3) Esquemas en el espacio Cartesiano
- 4) Generación de Rutas en Tiempo de Ejecución
- 5) Caso de Estudio

# Actividades que promueven el aprendizaje

Recuperación de Ideas previas Moderar el Trabajo en equipo Coordinar la Discusión de casos prácticos Demostración Foro

Realización de Investigación bibliográfica Participar en el Trabajo en equipo Exposición Simulación Solución de ejercicios y problemas

# Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal

http://www.ict.csiro.au/robotics/ToolBox7.htm

## Criterios y/o evidencias de evaluación y acreditación

| Criterios       | Porcentajes |
|-----------------|-------------|
| Prácticas       | 30          |
| Exámenes        | 30          |
| Investigaciones | 20          |

| Participación en Clase | 20  |
|------------------------|-----|
| Total                  | 100 |

### Fuentes de referencia básica

### **Bibliográficas**

No aplica

#### Web gráficas

Craig J. (2006). Robótica (3ª. Edición). Pearson Prentice Hall: USA.

Jazar R. (2006). Theory of Applied Robotics: Kinematics, Dynamics, and Control. Springer: USA

Engineering. Charles River Media: USA.

Spong M. y Hutchinson S. (2004). Robot Modeling and Control. Wiley: USA.

Tsai L-W. (1998). Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley: USA.

### Fuentes de referencia complementaria

### **Bibliográficas**

Howie C. et. al. (1999) Principles of Robot Motion: Theory, Algorithms, and Implementations (Intelligent Robotics and Autonomous Agents). The MIT Press: USA

Selig J. (2001) Geometric Fundamentals of Robotics (Monographs in Computer Science) (2nd edition). Springer: USA Siegwart R. Introduction to Autonomous Mobile Robots (Intelligent Robotics and Autonomous Agents). The MIT Press: USA

### Web gráficas

No aplica

### Perfil profesiográfico del docente

#### **Académicos**

Ingeniería, licenciatura o posgrado en Ciencias de la Computación, Sistemas, Eléctrica o Electrónica.

#### **Docentes**

2 años de experiencia impartiendo asignaturas afines en instituciones de educación superior o posgrado

### **Profesionales**

Experiencia en el desarrollo de software de base, sistemas embebidos, controladores de dispositivos.