Zadanie: TAB Tablica binarna

XXVIII OI, etap I. Plik źródłowy tab.* Dostępna pamięć: 128 MB.

19.10 - 23.11.2020

Dana jest tablica A zawierająca n wierszy i m kolumn, składająca się z nm pól, w które można wpisywać zera lub jedynki. Wiersze numerujemy liczbami $1, \ldots, n$ od góry do dołu, a kolumny liczbami $1, \ldots, m$ od lewej do prawej (patrz też rysunek poniżej). Pole w i-tym wierszu i j-tej kolumnie (dla $1 \le i \le n, 1 \le j \le m$) ma współrzędne (i, j).

Na tablicy można wykonywać operacje zmiany (negacji) liczb na wybranym prostokącie. Każda operacja jest opisana przez cztery liczby i_1, j_1, i_2, j_2 . Polega ona na tym, że zaznaczamy pola tablicy, które leżą w prostokącie o przeciwległych wierzchołkach w polach (i_1, j_1) oraz (i_2, j_2) , a następnie w każdym polu zaznaczonego prostokąta zmieniamy zera na jedynki, a jedynki na zera.

Powiemy, że operacja jest prosta, jeśli lewy górny róg prostokąta pokrywa się z lewym górnym rogiem tablicy (czyli $i_1 = j_1 = 1$).

Początkowo wszystkie liczby tablicy są zerami. Następnie wykonujemy q operacji, które zmieniają tablicę. Po wykonaniu każdej operacji chcemy wiedzieć, ile dodatkowo prostych operacji musielibyśmy wykonać, aby wszystkie liczby tablicy stały się na powrót zerami.

Wejście

W pierwszym wierszu wejścia znajdują się trzy liczby całkowite n, m i q $(1 \le n, m \le 1000, 1 \le q \le 100\,000)$ oznaczające wymiary tablicy i liczbę operacji do wykonania.

Każdy z kolejnych q wierszy zawiera opis jednej operacji wykonywanej na tablicy; opis jest w postaci czwórki liczb całkowitych i_1, j_1, i_2 i j_2 $(1 \le i_1 \le i_2 \le n, 1 \le j_1 \le j_2 \le m)$.

Wyjście

Na wyjście należy wypisać dokładnie q wierszy zawierających odpowiedzi do kolejnych zapytań z wejścia. Dla i-tego zapytania należy wypisać jedną liczbę całkowitą oznaczającą minimalną liczbę prostych operacji, które trzeba wykonać, aby wszystkie liczby tablicy A zmienionej przez i początkowych operacji z wejścia stały się zerami.

Przykład

Dla danych wejściowych: poprawnym wynikiem jest:

2	3	3		2
1	2	2	2	1
1	1	2	1	3
1	0	1	2	

Wyjaśnienie przykładu: Górny wiersz poniższego rysunku przedstawia tablicę A, na której wykonano kolejno trzy operacje z wejścia. Kolumny przedstawiają zerowanie tablicy minimalną liczbą prostych operacji.

Testy "ocen":

10cen: n=m=4, q=16; każde zapytanie zmienia dokładnie jedną liczbę w tablicy (w kolejności przeglądania wierszami);

20cen: n=1, m=q=1000; i-te zapytanie postaci (1, m+1-i, 1, m) dla $1 \le i \le q;$

3ocen: $n = 1000, m = 1000, q = 100\,000$; *i*-te zapytanie postaci $((2i \bmod n) + 1, (3i \bmod m) + 1, n, m)$ dla $1 \le i \le q$.

Ocenianie

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów.

Podzadanie	Ograniczenia	Punkty
1	$n, m \leq 2$	14
2	q = 1	16
3	n=1	21
4	$n, m \le 10$	9
5	$n, m \le 80$	10
6	bez dodatkowych ograniczeń	30