

Disciplina: Fundamentos de Banco de Dados

2. Modelo ER (Parte III)

Professora: Marília S. Mendes

E-mail: marilia.mendes@ufc.br

Onde encontrar a matéria?

Capítulo 3 – Construindo modelos ER

- Seção 3.1: Propriedades do modelo ER
- Seção 3.2: Determinando construções
- Seção 3.3: Verificação do modelo
- Seção 3.4: Estabelecimento de padrões
- Seção 3.5: Estratégias de modelagem

Tópicos

- Propriedades do modelo ER
- Determinando construções
- Verificação do modelo
- Estabelecimento de padrões
- Estratégias de modelagem

Tópicos

- Propriedades do modelo ER
- Determinando construções
- Verificação do modelo
- Estabelecimento de padrões
- Estratégias de modelagem

Propriedades do modelo ER

Modelo ER é um modelo formal

Poder de expressão é limitado

Equivalência entre modelos

Modelo ER é um modelo formal

- Modelo preciso, não ambíguo
- Diferentes leitores de um mesmo modelo ER devem sempre entender exatamente o mesmo
- DER pode ser usado como entrada de uma ferramenta CASE

Fundamental: todos os envolvidos devem estar treinados na sua perfeita compreensão.

Importância do treinamento

Propriedades do modelo ER

Modelo ER é um modelo formal

▶ Poder de expressão é limitado

Equivalência entre modelos

Poder de expressão limitado

- Modelo ER apresenta apenas algumas propriedades de um Banco de Dados
 - Foi concebido para o projeto da estrutura de um BD relacional
- Pouco poderoso para expressar restrições de integridade (regras de negócio)

Exercício 1

 Relacionamento que associa um produto de uma indústria com seus componentes

- ▶ Restrição a ser imposta
 - Um produto não pode aparecer na lista de seus componentes

Exercício 1 (a)

O modelo apresentado na figura contém esta restrição (um produto não pode aparecer na lista de seus componentes)? Justifique

Exercício 1 (b)

Caso negativo, é possível alterar o modelo em questão para incluir esta restrição, se considerarmos que o nível de profundidade da hierarquia de composição de cada produto não excede três (tem-se apenas produtos prontos, produtos semi-acabados e matérias-primas)? Caso afirmativo, apresente a solução.

Exercício 1 (c)

É possível estender a solução do quesito anterior para uma hierarquia não limitada de níveis de composição?

Propriedades do modelo ER

Modelo ER é um modelo formal

Poder de expressão é limitado

Equivalência entre modelos

Equivalência entre modelos

Dois modelos ER diferentes podem ser equivalentes

- Modelos equivalentes
 - Expressam o mesmo
 - Modelam a mesma realidade

Equivalência entre modelos

- Para fins de projeto de BD, dois modelos ER são equivalentes
 - Geram o mesmo esquema de BD
- Considerar um conjunto de regras de tradução de modelos ER para modelos lógicos BD
- Veremos estas regras mais adiante...

Exemplo de modelos equivalentes

Modelo que representa um conceito através de um relacionamento n:n

Modelo que representa o mesmo conceito através de uma entidade

Exemplo de modelos equivalentes

a) CONSULTA como relacionamento n:n

Modelo equivalente

a) CONSULTA como entidade

 O relacionamento n:n é representado como uma entidade

 A entidade criada é relacionada às entidades que originalmente participavam do relacionamento

- A entidade criada tem como identificador:
 - As entidades que originalmente participavam do relacionamento

A entidade criada tem como identificador:

Os atributos que eram identificadores do relacionamento original (caso o relacionamento original tivesse atributos identificadores)

 Nos relacionamentos de que participa, a cardinalidade da entidade criada é sempre (I,I)

 As cardinalidades das entidades que eram originalmente associadas pelo relacionamento são transcritas ao novo modelo relacionamento

Modelos ER sem relacionamento n:n

- Relacionamento n:n pode ser transformado em entidade
- É possível construir modelos sem relacionamentos n:n
- ▶ Há variantes da abordagem ER, que
 - Excluem o uso de relacionamentos n:n
 - Excluem apenas o uso de relacionamentos n:n com atributos
- Exemplo:
 - Várias abordagens baseadas na Engenharia de Informações

Tópicos

- Propriedades do modelo ER
- Determinando construções
- Verificação do modelo
- Estabelecimento de padrões
- Estratégias de modelagem

Identificando construções

- Determinação da construção da abordagem ER (Entidade, relacionamento, ...) que será usada para modelar um objeto de uma realidade
 - Não pode ser feita através da observação do objeto isoladamente
 - È necessário conhecer o contexto (modelo dentro do qual o objeto aparece)

Identificando construções – Recomendação geral

Decisão por uma construção para a modelagem de um objeto está sujeita a alteração durante a modelagem

 Não despender um tempo excessivo em longas discussões sobre como modelar um objeto

Desenvolvimento do modelo e o aprendizado sobre a realidade irão refinando e aperfeiçoando o modelo

Atributo x Entidade relacionada

Atributo x Entidade relacionada – Critérios (1)

O objeto está vinculado a outros objetos

Deve ser modelado como entidade

Caso contrário

Pode ser modelado como atributo

Atributo x Entidade relacionada – Critérios (2)

- Conjunto de valores de um determinado objeto é fixo (domínio fixo)
 - Pode ser modelado como atributo
- Existem transações no sistema que alteram o conjunto de valores do objeto (domínio variável)
 - Não deve ser modelado como atributo

Para pensar...

- Deseja-se modelar os clientes de uma organização. Cada cliente possui um identificador, um nome, um endereço e um país. Discuta as vantagens e desvantagens das duas alternativas de modelagem de país.
 - a) Como atributo da entidade cliente
 - b) Como entidade relacionada a cliente

Atributo x Generalização / Especialização

Questão

- Modelar um determinado objeto (por exemplo, a categoria funcional de cada empregado de uma empresa)
- Como atributo?
 - Categoria funcional como atributo da entidade EMPREGADO
- Ou como uma especialização?
 - Cada categoria funcional corresponde a uma especialização da entidade empregado

Atributo x Generalização / Especialização

- Especialização deve ser usada quando
 - As classes especializadas de entidades possuem propriedades particulares
 - Atributos
 - Relacionamentos
 - Generalizações / especializações

Atributo x Generalização / Especialização

Atributo opcional

- Atributo opcional
 - Podem indicar subconjuntos de entidades que são modelados mais corretamente através de especializações
- Exemplo

Atributo opcional

Atributo multivalorado é indesejável

- ▶ SGBD relacional seque o padrão SQL/2:
 - Atributo multivalorado não possui implementação direta
- SGBD OO ou objeto relacional:
 - Atributo multivalorado geralmente é modelado como classe separada.
- Atributos multivalorados podem induzir a um erro de modelagem
 - Ocultar entidades e relacionamentos em atributos multivalorados.

Atributo multivalorado: eliminação

Exercício 2

Apresente um diagrama ER que modele mais precisamente esta realidade. Explique no que seu diagrama é mais preciso que o diagrama mostrado na figura.

Tópicos

- Propriedades do modelo ER
- Determinando construções
- Verificação do modelo
- Estabelecimento de padrões
- Estratégias de modelagem

Verificação do Modelo

- Modelo deve ser correto
- Modelo deve ser completo
- Modelo deve ser livre de redundâncias
- Modelo deve refletir o aspecto temporal
- Entidades isoladas e entidades sem atributos

Modelo deve ser correto

Erros

- Sintáticos: modelo não respeita as regras de construção do modelo ER
- Semânticos: modelos refletem a realidade de forma inconsistente

Exemplos de erros sintáticos

- Associar atributos a atributos
- Associar relacionamentos a atributos
- Associar relacionamentos através de outros relacionamentos
- Especializar relacionamentos ou atributos

► Estabelecer associações incorretas

► Estabelecer associações incorretas

► Estabelecer associações incorretas

 Usar uma entidade do modelo como atributo de outra entidade

Representando os mesmos dados duas vezes

- Usar uma entidade do modelo como atributo de outra entidade
 - Problema: redundância

- Usar uma entidade do modelo como atributo de outra entidade
 - Problema: redundância

 Usar uma entidade do modelo como atributo de outra entidade

Erros semânticos

São mais difíceis de verificar

Regras de normalização auxiliam na validação

Verificação do Modelo

- Modelo deve ser correto
- Modelo deve ser completo
- Modelo deve ser livre de redundâncias
- Modelo deve refletir o aspecto temporal
- Entidades isoladas e entidades sem atributos

Modelo deve ser completo

- Deve fixar todas propriedades desejáveis do banco de dados
- Somente pode ser verificado por alguém que conhece profundamente o sistema a ser implementado
 - Envolver o usuário

Verificação de Completude

- Forma de verificar
 - Dados que devem ser obtidos do banco de dados estão presentes?
 - Todas as transações de modificação do banco de dados podem ser executadas sobre o modelo?
- Requisito é aparentemente conflitante com a falta de poder de expressão de modelos ER
 - Verificar as que podem ser expressas pelo modelo ER

Verificação do Modelo

- Modelo deve ser correto
- Modelo deve ser completo
- Modelo deve ser livre de redundâncias
- Modelo deve refletir o aspecto temporal
- Entidades isoladas e entidades sem atributos

Modelo deve ser livre de redundâncias

Modelo deve ser mínimo, isto é, não deve conter conceitos redundantes

- ▶ Tipos de redundância
 - Relacionamentos redundantes
 - Atributos redundantes

Relacionamentos redundantes

Relacionamentos resultantes da combinação de outros relacionamentos entre as mesmas entidades

Relacionamento redundante pode ser **eliminado** do modelo sem perda de informações

Atributos redundantes

Atributos deriváveis da execução de procedimentos de busca de dados ou cálculos sobre o banco de dados

O que fazer com construções redundantes?

- Não devem aparecer no modelo
- Implementação pode conter redundância controlada de dados (desempenho)

Revisitando Exemplo – Relacionamentos redundantes

Revisitando Exemplo – Relacionamentos redundantes

Revisitando Exemplo Atributos Redundantes

Revisitando Exemplo Atributos Redundantes

Atributos nr. de empregados e código do departamento foram eliminados

Verificação do Modelo

- Modelo deve ser correto
- Modelo deve ser completo
- Modelo deve ser livre de redundâncias
- Modelo deve refletir o aspecto temporal
- Entidades isoladas e entidades sem atributos

Modelo deve refletir o aspecto temporal

Dados temporais

- Dados que mudam ao longo do tempo e
- Para as quais BD mantém histórico
- ▶ Tipos de dados temporais
 - Atributos cujos valores são modificados ao longo do tempo
 - Relacionamentos que são modificados ao longo do tempo

Atributos temporais

Banco de dados contém apenas o salário atual Banco de dados contém a história dos salários

Relacionamento 1:1 temporal

Banco de dados contém apenas a alocação atual Banco de dados contém a história das alocações

Relacionamento 1:n temporal

EMPREGADO

nº documento de lotação

LOTAÇÃO data

DEPARTAMENTO

Banco de dados contém apenas a lotação atual Banco de dados contém a história das lotações

Relacionamento n:n temporal

Banco de dados contém apenas a inscrição atual Banco de dados contém a história das inscrições

Consulta a dados referentes ao passado

- Muitas vezes, informações referentes ao passado são eliminadas da base de dados (arquivamento)
- Podem ser necessárias no futuro
 - Por motivos legais
 - Para realização de auditorias
 - Para tomada de decisões

Dados referentes ao passado Planejar arquivamento

Solução que poderia ser considerada

- Incluir novamente as informações no banco de dados, quando elas forem necessárias
- Problema: restrições de integridade referencial

Planejar informações estatísticas

- Quando informações antigas são necessárias apenas para tomada de decisões
- Pode ser conveniente manter no banco de dados informações compiladas e eliminar as informações usadas na compilação

Verificação do Modelo

- Modelo deve ser correto
- Modelo deve ser completo
- Modelo deve ser livre de redundâncias
- Modelo deve refletir o aspecto temporal
- ▶ Entidades isoladas e entidades sem atributos

Entidade isolada

Caso raro, mas não incorreto

- Entidade que muitas vezes aparece isolada (caso típico):
 - Entidade que modela a organização na qual o sistema implementado pelo BD está embutida

Entidade isolada - Exemplo

- Exemplo: BD de uma universidade
- A entidade UNIVERSIDADE pode ser necessária, caso se deseje manter no BD alguns atributo da universidade
- O modelo não deveria conter o relacionamento desta entidade com outras, como ALUNO ou CURSO
 - ▶ BD modela uma única universidade
 - Não é necessário informar ao BD em que universidade o aluno está inscrito ou a qual universidade o aluno pertence

Tópicos

- Propriedades do modelo ER
- Determinando construções
- Verificação do modelo
- Estabelecimento de padrões
- Estratégias de modelagem

Estabelecimento de padrões

- Modelo de dados são usados para comunicação
 - Com pessoas da organização
 - Com programas (ferramentas CASE, geradores de código, ...)
- É necessário estabelecer padrões de confecção de modelos
- Na prática e na literatura
 - Muitas variantes do modelo ER
 - Variantes em
 - Sintaxe
 - Semântica

Variantes do modelo ER

Peter Chen (acadêmica)

Engenharia de Informações

UML

Merise (notação Européia)

Diagramas ER, convenções de nomes e questões de projeto

Fonte: ELMASRI; NAVATHE, 2011

Diagramas ER - Participação total e parcial

- ☐ Todo funcionário é gerente de um departamento?
- ☐ Todo departamento possui um funcionário como gerente?

Fonte: ELMASRI; NAVATHE, 2011

Diagramas ER, convenções de nomes e questões de projeto

Fonte: ELMASRI; NAVATHE, 2011

Variantes do modelo ER

Peter Chen (acadêmica)

▶ Engenharia de Informações

UML

Merise (notação Européia)

Engenharia de Informações

Notação para cardinalidade máxima e mínima:

- Cardinalidade (mínima, máxima) 1
- Cardinalidade mínima 0
- Cardinalidade máxima n

Notação Engenharia de Informações

- Relacionamentos representados por linha
- Consequências
 - Apenas relacionamentos binários
 - Atributos aparecem exclusivamente em entidades

Notação Engenharia de Informações

- Denominação de relacionamento na forma de verbo
 - DEPARTAMENTO tem lotado EMPREGADO
 - EMPREGADO está lotado em DEPARTAMENTO

Notação Engenharia de Informações

 Notação para cardinalidade máxima e mínima é gráfica

Notação Engenharia de Informações

 Atributos são anotados dentro dos retângulos das entidades (ideia muito aceita e usada em quase todas as variantes de notações)

Notação Engenharia de Informações

- Generalização / Especialização é chamada de subconjunto (subtipo) de entidades
 - Representada através do aninhamento dos símbolos de entidade

Engenharia de Informações Subtipos de Entidades

Variantes do modelo ER

Peter Chen (acadêmica)

Engenharia de Informações

UML

Merise (notação Européia)

Abordagem UML

- Conjunto de notações para modelagem de software sob vários aspectos e diferentes níveis de abastração
- Abordagem diferente da abordagem ER
 - Conceitos e notações diferentes

UML - Terminologia

- ▶ Terminologia
 - Originária da programação OO
 - Correspondência

ER	UML
Entidade	Classe
Relacionamento	Associação
Cardinalidade	Multiplicidade
Generalização/Especialização	Generalização

Diagrama

Lembra diagramas do modelo de Engenharia de Informação

Características

- Atributos anotados dentro das entidades
- Relacionamentos representados por linhas
- Cardinalidade anotada por um par mínimo ..máximo
- Não existe conceito de identificador

Exemplo

Exercício

- Transformar o modelo ER do sistema de vendas para a notação UML
 - ► DIA -> UML

Variantes do modelo ER

Peter Chen (acadêmica)

Engenharia de Informações

UML

▶ Merise (notação Européia)

Notação MERISE

Uso de ferramentas de modelagem

- Diagrama ER não deve ser confeccionado manualmente
 - Muito trabalhoso
 - Revisões são frequentes
 - Diagramas feitos à mão não são atualizados, quando de alterações do esquema

Uso de ferramentas de modelagem

 Recomendável que seja usada uma ferramenta de computador para apoio à modelagem

Alternativas

- Uso de uma ferramenta CASE
- Uso de programas de propósito geral

Estratégias de Modelagem

Estratégia de modelagem ER

 Uma sequencia de passos (uma "receita de bolo") de transformação de modelos desde o modelo inicial até o final

Diferentes estratégias

- Ascendente (Bottom-up)
- Descendente (Top-down)
- De dentro para fora (Inside-out)

Estratégia Ascendente (bottom-up)

- Descrições de dados existentes
 - Modelar sistemas já existentes
 - Processo denominado Engenharia Reversa

Estratégia Descendente (top-down)

Partir de conceitos mais abstratos ("de cima")

 Ir gradativamente refinando esses conceitos em conceitos mais detalhados

Estratégia Descendente (*top-down*) – Processo 1

Modelagem superficial

- ► Enumeração das entidades
- Identificação dos relacionamentos (cardinalidade máxima) e hierarquias de generalização/especialização entre as entidades
- Determinação dos atributos de entidades e relacionamentos
- Determinação dos identificadores de entidades e relacionamentos
- O banco de dados é verificado quanto ao aspecto temporal

Estratégia Descendente (top-down) – Processo 2

- Modelagem detalhada
 - Domínio dos atributos
 - Cardinalidades mínimas
 - Demais descrições de integridade

- Validação do modelo
 - Construções redundantes ou deriváveis a partir de outras no modelo
 - Validação com o usuário

Estratégia de dentro pra fora (inside-out)

Identificar conceitos mais importantes (centrais)

 Ir adicionando conceitos periféricos a eles relacionados

Estratégia de dentro pra fora (inside-out) - Exemplo

Definição de estratégia de modelagem

Na prática

 Nenhuma das estratégias propostas na literatura é universalmente aceita

▶ Normal

Combinação de diversas estratégias de modelagem

Compreensível

 Processo de modelagem é um processo de aprendizagem

Definição da estratégia de modelagem

- Identificar qual a fonte de informações principal para o processo de modelagem
- Descrições de dados existentes
 - Estratégia ascendente (bottom-up)
- ▶ Conhecimento de pessoas sobre o sistema
 - Estratégia descendente (top-down)/de dentro pra fora (insideout)

Organização da disciplina

- ☑ Conceitos Gerais
- ☑ SGBD e modelo de dados
- ☑ Modelo ER
- Modelo Relacional
- ■Álgebra Relacional
- Mapeamento ER-Relacional
- □ SQL
- Normalização
- Evolução de modelos

Prova

Data: 18/04

Local: Sala de aula

▶ Horário: 10h – 12h

Aula de revisão, resolução de exercícios e tira-dúvidas: 11/04

- Por onde (o que?) estudar?
 - Livro: Sistemas de Banco de dados (Elmasri e Navathe, 2011)
 - ▶ Caps. I e 2 (Conceitos Gerais, SGBD e modelo de dados)
 - ▶ Caps. 7 e 8 (Modelo ER)
 - Livro: Projeto de Banco de dados (Heuser, 2009)
 - ▶ Cap. I (Conceitos Gerais, SGBD e modelo de dados)
 - ▶ Caps. 2 e 3 (Modelo ER)
 - Façam exercícios de ambos os livros!

Bibliografia Utilizada nesta aula

HEUSER, C.A.Projeto de banco de dados. 6 ed. Bookman, 2009. ISBN: 9788577803828.

▶ ELMASRI, R.; NAVATHE, S. B. Sistemas de banco de dados. 6 ed. Pearson/Addison-Wesley, 2011. ISBN: 9788579360855