DATE - 26\10\2023

TEAM ID - 3884

PROJECT TITLE - Age Based Customer Segmentation Using Data Science

Importing Libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error
from sklearn.svm import SVR
from sklearn.linear_model import LinearRegression
```

In [6]: dataset= pd.read_csv("C:\\Users\\sowen\\Downloads\\Mall_Customers.csv")
 dataset

Out[6]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

200 rows × 5 columns

Data Exploration

In [7]: dataset

Out[7]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

200 rows × 5 columns

In [8]: dataset.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Genre	200 non-null	object
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64

dtypes: int64(4), object(1) memory usage: 7.9+ KB

In [9]: dataset.drop('CustomerID', axis=1, inplace=True)
 dataset.drop('Genre', axis=1, inplace=True)
 dataset

Out[9]:

Age	Annual Income (k\$)	Spending Score (1-100)
19	15	39
21	15	81
20	16	6
23	16	77
31	17	40
35	120	79
45	126	28
32	126	74
32	137	18
30	137	83
	19 21 20 23 31 35 45 32 32	21 15 20 16 23 16 31 17 35 120 45 126 32 126 32 137

200 rows × 3 columns

In [10]: dataset.describe()

Out[10]:

Age	Annual Income (k\$)	Spending Score (1-100)
00.000000	200.000000	200.000000

count	200.000000	200.000000	200.000000
mean	38.850000	60.560000	50.200000
std	13.969007	26.264721	25.823522
min	18.000000	15.000000	1.000000
25%	28.750000	41.500000	34.750000
50%	36.000000	61.500000	50.000000
75%	49.000000	78.000000	73.000000
max	70.000000	137.000000	99.000000

In [11]: dataset.columns

Data Visualization

1.Histogram

```
In [12]: plt.figure(figsize=(10, 6))
    plt.hist(dataset['Age'], bins=20, color='blue', alpha=0.7)
    plt.title('Age based customer segmentation')
    plt.xlabel('Age')
    plt.ylabel('Gender')
    plt.show()
```


2. Bar chart

In [13]: plt.figure(figsize=(12,6))
 sns.pairplot(dataset)

Out[13]: <seaborn.axisgrid.PairGrid at 0x1e03726b6d0>

<Figure size 864x432 with 0 Axes>


```
dataset.hist(figsize=(10,8))
In [14]:
Out[14]: array([[<AxesSubplot:title={'center':'Age'}>,
                    <AxesSubplot:title={'center':'Annual Income (k$)'}>],
                  [<AxesSubplot:title={'center':'Spending Score (1-100)'}>,
                    <AxesSubplot:>]], dtype=object)
                              Age
                                                                    Annual Income (k$)
            35
                                                        35
            30
                                                        30
            25
                                                        25
            20
                                                        20
           15
                                                        15
           10
                                                        10
            5
                                                         5
                                                         0
            0
                      30
                20
                            40
                                  50
                                                             20
                                                                  40
                                                                       60
                                                                            80
                                                                                 100
                                                                                      120
                                                                                           140
                     Spending Score (1-100)
            35
            30
            25
            20
           15
           10
            5
```

Visualising Correlation

In [15]: dataset.corr()

Out[15]:

Age Annual Income (k\$) Spe	ending Score (1-100)
-----------------------------	----------------------

Age	1.000000	-0.012398	-0.327227
Annual Income (k\$)	-0.012398	1.000000	0.009903
Spending Score (1-100)	-0.327227	0.009903	1.000000

```
In [16]: plt.figure(figsize=(10,5))
sns.heatmap(dataset.corr(), annot=True)
```

Out[16]: <AxesSubplot:>

By using PCA Algorithm

```
In [17]: X = dataset.drop('Spending Score (1-100)', axis=1)
y = dataset['Spending Score (1-100)']
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
n_components = 2

In [18]: pca = PCA(n_components=n_components)
X_pca = pca.fit_transform(X_scaled)
X_train, X_test, y_train, y_test = train_test_split(X_pca, y, test_size=0.2
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")
```

Mean Squared Error: 483.55682175408344

Training model:1_ Decision Tree Regressor

```
In [19]: decision_tree = DecisionTreeRegressor()
    decision_tree.fit(X_train, y_train)
    y_pred = decision_tree.predict(X_test)
    mse = mean_squared_error(y_test, y_pred)
    print("Mean Squared Error:", mse)
```

Mean Squared Error: 1073.35

Training model:2_Support vector machine algorithm

```
In [20]: svm = SVR(kernel='rbf', C=1.0, gamma='scale')
svm.fit(X_train, y_train)

Out[20]: SVR()

In [21]: y_pred = svm.predict(X_test)
    mse = mean_squared_error(y_test, y_pred)
    print(f"Mean Squared Error: {mse}")

Mean Squared Error: 524.8207652112172
```

Training model:3_Linear Regression

```
In [23]: regression_model = LinearRegression()
    regression_model.fit(X_train, y_train)

y_pred = regression_model.predict(X_test)

mse = mean_squared_error(y_test, y_pred)
    r2 = r2_score(y_test, y_pred)

print(f"Mean Squared Error (MSE): {mse}")
    print(f"R-squared (R2): {r2}")
```

Mean Squared Error (MSE): 483.55682175408344 R-squared (R2): 0.01963177813218009