PROBLEMA P1

Dato il circuito riportato nella figura sottostante, determinare:

- 1) il valore delle resistenze R_3 , R_4 , R_5 , R_6 , in modo che le correnti di drain di M_1 M_2 valgano $I_{D1} = 20 \text{ mA}, V_{DS1} = 3 \text{ V}; I_{D2} = 1 \text{ mA}, V_{DS2} = -3 \text{ V}$
- 2) la potenza dissipata dai due MOSFETs M_1 e M_2 e la potenza dissipata dal circuito;
- 3) il guadagno di tensione ai piccoli segnali ac $A_v = v_o/v_i$;
- 4) le resistenze di ingresso e uscita ai piccoli segnali ac R_{in} e R_{out} .

 $V_{DD} = V_{SS} = 15 \text{ V},$ $R_I=600 \text{ k}\Omega$, $R_2 = 400 \text{ k}\Omega$, $R_L = 48 \text{ k}\Omega$, $R_i = 500 \Omega$, $k_n = 10 \text{ mA/V}^2$,

 $k_p = 2 \text{ mA/V}^2$,

 $V_{TP} = -3 \text{ V},$ $\lambda_{p} = 0 \text{ V}^{-1};$

OK 92 IN SAT.

PARAMETRI AL PICCO CO SEGNALE

$$\frac{CS}{Avt} = -Son_1 RL_1 = -G_1 47 \left(\frac{N_{01}}{N_{01}} = -Son_1 \frac{N_{01}}{N_{01}} + \frac{RL_1}{N_{01}} \right)$$

$$\frac{CQ_{01}}{N_{01}} = \frac{P_{01}||P_{2}}{R_{01}} = 0, 393$$

$$\frac{AV}{R_{01}} = \frac{R_{01}||P_{2}}{R_{01}} = 240 \text{ K.2.} \left(\frac{OVVIO}{OVVIO} \right)$$

$$\frac{R_{00}}{R_{00}} = \frac{R_{0}}{R_{0}} = 16 \text{ K.2.} \left(\frac{V_{00}}{V_{01}} + \frac{V_{01}}{S_{01}} \right)$$

$$\frac{R_{01}}{R_{01}} = \frac{R_{01}}{R_{01}} = \frac{R_{$$

Esercizio 1

Sia dato il circuito in figura realizzato con un amplificatore operazionale ideale. Sappiamo che C_1 = 1 nF e C_2 = 100 nF, R_1 = 1 k Ω , R_2 = 10 k Ω , R_3 = 99 k Ω e R_4 = 990 k Ω

- 1) Calcolare il guadagno per $\omega = 0$.
- 2) Calcolare la funzione di trasferimento $W(\omega)$ e tracciare il diagramma di Bode asintotico del modulo e della fase
- 3) Dato il segnale di ingresso:

$$v_{i(t)} = V_{s1} \cdot \sin(\omega_1 t + \pi) + V_{s2} \cdot \sin(\omega_2 t + \frac{\pi}{2})$$

 $V_{s1} = 10 \text{ mV}, \omega_1 = 10^4 \text{rad/s}, V_{s2} = 5 \text{ mV}, \omega_2 = 10^6 \text{rad/s},$

calcolare il segnale di uscita usando i diagrammi di Bode disegnati al punto 2).

PROBLEMA Q2

Data la seguente tabella della verità

- 1) Ricavare la mappa di Karnaugh corrispondente;
- 2) Trovare una F minimizzata
- 3) Disegnare la rete logica minimizzata tramite porte logiche fondamentali.

fondamentali.													0	1	0	1	0					
				-													0	1	1	0	1	
ĆD																	0	1	1	1	0	
AB\	00	01	11	10		Α	В		С	D						· -	1	0	0	0	X	
00	1	1	1				•			+							1	0	0	1	1	
01	1			1					1	0	1	0	0									
11	1		Х	X		ΙŎ	$\bar{4}$	$ _{ar{B}}$	ď	<u>-</u>	$ _{\overline{D}}$					_	1	0	1	1	1	
10	х	1	1			4	4	В	(1	D					_	1	1	0	0	1	
												\bigcap	\bar{B}	· D	٦	_	1	1	0	1	0	
$ar{B} \cdot B$) +	$\bar{C} \cdot \bar{I}$	<u></u> +,	$B \cdot \overline{l}$	5					•			_	_		_	1	1	1	0	X	
									†				<i>C</i>	$\cdot \overline{D}$		_	1	1	1	1	X	
																-F						
												\bigcap	В	$\cdot \overline{D}$								
											•					_						
																_						
																_						