MIEIC SISTEMAS DISTRIBUÍDOS – 10/11 FEUP

Tipo de prova: com consultaExame da Época NormalDuração: 2 horas21 de Junho de 2011

Cotação máxima: 20 valores

Estrutura da prova: Parte I (escolha múltipla, 50%); Parte II (teórica, 50%).

Parte I: Escolha Múltipla [10 valores]

<u>Utilização</u>: para cada pergunta **só há uma** resposta correcta; indique-a fazendo um círculo nesta folha.

<u>Cotação</u>: cada resposta certa vale 1 ponto; cada resposta errada vale –0.3 pontos; cada resposta ambígua, ininteligível ou não assinalada vale 0 pontos. O total são 10 pontos.

- 1. Um cliente executa um *remote procedure call* (RPC). Apesar de o servidor executar o pedido, este falha ao enviar a resposta. Qual é o comportamento do cliente se o sistema usar a semântica "at most once"?
 - a. Continua a sua execução após enviar o pedido
 - b. Envia um novo pedido após ocorrer um time-out
 - c. Envia novo pedido para confirmar que o anterior foi executado
 - d. Fica bloqueado, eventualmente continua após um time-out
- 2. Um sistema distribuído usa o algoritmo de Berkeley para sincronizar os relógios locais das suas três máquinas. O time-deamon inicia o processo de sincronização às 2:05:00. Se os relógios locais das outras máquinas tiverem os valores 2:04:50 e 2:05:22, qual será o tempo em cada máquina após a sincronização?
 - a. 2:05:00; 2:05:00; 2:05:00
 - b. 2:05:04; 2:05:04; 2:05:04
 - c. 2:05:06; 2:05:06; 2:05:06
 - d. 2:05:22; 2:05:22; 2:00:22
- Qual das seguintes afirmações é verdadeira num sistema que usa o relógio lógico de Lamport (Lamport Logical Clock)
 - a. Os processos usam o algoritmo de sincronização de Lamport para actualizaram os relógios locais
 - b. Os processos incrementam o relógio antes de enviarem um evento, e juntam o valor do relógio em cada mensagem enviada
 - c. Os processos incrementam o relógio num intervalo específico e actualizam o valor quando receberem uma mensagem com um tempo maior
 - d. Um processo só actualiza o seu relógio quando recebe uma mensagem que tiver um valor maior do que o seu valor
- 4. Num sistema de ficheiros distribuído, é preferível disponibilizar um modelo de acesso remoto porque
 - a. O servidor não é um possível ponto de congestionamento do sistema
 - b. Facilita a manutenção da consistência
 - c. É possível usar um mounter automático para manter a consistência
 - d. É possível usar servidores com estado

- 5. Network file system (NFS) lida com falhas no RPC usando
 - a. Dynamic Object Invocation
 - b. Cache no servidor e IDs nas transações RPC
 - c. Serviços de eventos e notificações
 - d. Asynchronous Method Invocation
- 6. O que faz um modelo de falhas ser bizantino
 - a. Falhas intermitentes
 - b. Comportamento arbitrário após a ocorrência duma falha
 - c. A falha resulta num crash do sistema
 - d. Servidores param de responder após a falha, embora os clientes funcionem normalmente
- 7. Sobre o Google File System (GFS) discutido nas aulas teóricas, qual a alínea correcta
 - a. Os ficheiros são divididos em chunks de 64MBytes
 - a. Chunks são guardados em chunk servers
 - b. Clientes interagem com o *GFS master* para obter o contacto do *chunk server* que está a partilhar um *chunk*, e com o *chunk server* para ler e/ou escrever num dado *chunk*
 - c. Todas as outras alíneas estão correctas
- 8. Quando estivermos a resolver um nome num dado *namespace*, resolução iteractiva é pior do que recursiva porque
 - a. Comunicações entre máquinas que estão longe custam menos
 - b. Não consegue usar o sistema de caching do servidor de forma eficiente
 - c. Exige mais trabalho nos servidores de nomes
 - d. A resolução do nome do cliente é mais simples
- 9. Considere o seguinte protocolo de autenticação, onde R_A e R_B são identificadores "once-in-a-lifetime" (nonce). Qual das seguintes afirmações é verdadeira?
 - a. O protocolo é vulnerável a ataques por reflexão
 - b. O protocolo é vulnerável a ataques por repetição de mensagens antigas
 - c. O protocolo é baseado em chaves simétricas
 - d. O protocolo é vulnerável porque a primeira mensagem não é encriptada.

- 10. Nas propriedades ACID, qual das seguintes definições não é válida
 - a. *Atomic*: se uma transacção não conseguir executar todas as suas operações, algumas das suas operações serão visíveis desde que executadas na respectiva ordem
 - b. Consistent: as transacções não alteram a integridade da estrutura de dados
 - c. *Isolated*: se duas ou mais transacções estão a executar ao mesmo tempo, o resultado final é o mesmo que executar essas transacções sequencialmente
 - d. *Durable*: Os efeitos de uma transação em caso de sucesso (*commit*) são permanentes

Parte II: Predominantemente teórica [10 valores]

<u>Utilização</u>: Justificar (brevemente) as suas respostas ; <u>Cotação</u>: indicada em cada pergunta.

- 1. **[1 val.]** Defina sucintamente o que é um sistemas distribuído, e apresente 4 características fundamentais para o seu bom funcionamento?
- 2. **[5 val.]** Considere uma aplicação de transferência de ficheiros que permite que um cliente transfira ficheiros de e para o servidor
 - a. Enumere e descreva sinteticamente três operações básicas que deverão ser suportadas por esse serviço. Para cada uma das operações especifique os seus argumentos e valores de retorno.
 - Admita que teria que implementar uma aplicação deste tipo usando a pilha protocolar da Internet. Que protocolo de transporte considera mais adequado? Justifique.
 - c. Uma alternativa a uma implementação usando directamente os protocolos de transporte da Internet seria usar um serviço de comunicação assíncrona. Enuncie a principal vantagem e a principal desvantagem de uma implementação deste tipo.
 - d. Suponha que pretendia fornecer um serviço de acesso a informação eficiente e robusto. Que tipo de sistema de ficheiros distribuídos recomendaria para o servidor? Justifique constrastando com outras soluções para o sistema de ficheiros.
 - e. Considere concorrência do lado do servidor. Explique a sua principal vantagem e como poderia ser implementada para concretizar essa vantagem. Descreva quaisquer riscos de race conditions na implementação que propõe.
 - f. Admita que se pretende implementar controlo de acesso. Uma possibilidade para autenticar os utilizadores é o uso de um par (*username, password*). Descreva **um** potencial problema de segurança desta alternativa, e como poderia ser resolvido.
 - g. Identifique 1 possível "falha" no servidor. Explique as suas consequências e como poderia minorar essas consequências (**Sugestão**: aborde a consistência e replicação dos dados).
- 3. [2 val.] Sobre sistemas de nomes
 - a. Explique a conveniência de serviços de nomes em sistemas distribuídos.
 - b. Dada a sua estrutura, os nomes podem ser de um de dois tipos. Descreva-os.
 - c. Admita que o domínio *fa.up.pt* não é uma zona, mas antes está integrado na zona de *up.pt*. Descreva o processo de resolução do nome *www.fa.up.pt* a partir de um computador ligado ao subdomínio *eslab.upc.edu*, admitindo que este é uma zona. Assuma ainda que o registo A associado a *www.fa.up.pt* não se encontra em possíveis caches. (**Sugestão**: Faça uma figura)
- **4.** [2 val.] Sobre Distributed Hash Tables
 - a. Usando o algorimo Chord, apresente as finger tables dos nós 0, 1, 2, e 6 (Sugestão: Faça uma figura). Assuma um espaço de endereços de identificação entre 0 e 8 e que só estes nós estão ligados na rede.
 - **b.** Sabendo que o nó 0 tem o item 7 e o nó 1 o item 1, quais os nós visitados até encontrar o item 7 a partir do nó 1?
 - c. Apresente duas vantagens e uma devantagem do protocolo Chord.

SISTEMAS DISTRIBUÍDOS - 10/11 **pMIEIC FEUP**

Tipo de prova: com consulta

Duração: 2 horas

Cotação máxima: 20 valores

Estrutura da prova: Parte I (escolha múltipla, 50%); Parte II (teórica, 50%).

20	
Nome:	
ID:	

Exame de Recurso

14 de Julho de 2011

Parte I: Escolha Múltipla [10 valores]

Utilização: para cada pergunta só há uma resposta correcta; indique-a fazendo um círculo nesta folha.

Cotação: cada resposta certa vale 1 ponto; cada resposta errada vale -0.3 pontos; cada resposta ambígua, ininteligível ou não assinalada vale 0 pontos. O total são 10 pontos.

- 1. Um cliente executa um remote procedure call (RPC). Apesar de o servidor executar o pedido, este falha ao enviar a resposta. Qual é o comportamento do cliente se o sistema usar a semântica "exactly once"?
 - a. Continua a sua execução após enviar o pedido
 - b. Envio um novo pedido após ocorrer um time-out
 - Envio novo pedido para confirmar que o anterior foi executado
 - Fica bloqueado, eventualmente continua após um time-out
- O algoritmo de Berkley pode ser considerado um
 - a. Algoritmo de sincronização centralizado
 - b. Algoritmo de sincronização distribuído
 - Algoritmo centralizado para sincronização de relógios lógicos
 - d. Algoritmo distribuído para sincronização de relógios lógicos
- Considere a seguinte comunicação
 - 1 A quer enviar uma mensagem para B
 - 2 B não está disponível e A continua a sua execução
 - 3 B fica entretanto disponível
 - 4 A envia a mensagem e continua a execução
 - 5 B recebe a mensagem

Que tipo de comunicação é descrita neste exemplo?

- a. Transient asynchronous communication
- b. Transient synchronous communication
- Persistent asynchronous communication
- d. Persistent synchronous communication

- Num sistema de ficheiros distribuído, é preferível disponibilizar um modelo Upload/Download porque
 - a. O servidor não é um possível ponto de congestionamento do sistema
 - b. Facilita a manutenção da consistência
 - c. É possível usar um mounter automático para manter a consistência
 - d. É possível usar servidores com estado

- 5. Sobre operações idempotentes
 - a. Acrescentar informação num ficheiro é uma operação idempotente
 - b. Adicionar um número diferente de zero numa conta bancária não é uma operação idempotente
 - c. Adicionar um elemento a uma queue não é uma operação idempotente
 - d. Nenhuma das respostas anteriores
- 6. Suponha que um sistema crasha 1 vez por mês, demorando 10 minutos a fazer o reboot.
 - a. O Mean Time to Failure desse sistema é igual a 10 horas
 - b. O Mean Time to Revovery é igual a 720 minutos
 - c. O sistema apresenta uma taxa de disponibilidade de 99.9%
 - d. O sistema apresenta uma taxa de indisponibilidade de 0.3%
- 7. Sobre exclusão mútua distribuída
 - a. É resolvida usando mensagens, assumindo uma rede fidedigna, assíncrona e que os processos podem falhar
 - b. É resolvida trocando mensagens entre os intervenientes, assumindo uma rede fidedigna e síncrona
 - c. Poder ser resolvida mantendo estado partilhado (e.g., atomic test-and-set de uma variável partilhada)
 - d. Todas as outras alíneas estão correctas
- 8. Em exclusão mútua, qual das seguintes é uma vantagem do modelo central server (servidor central) para garantir exclusão mútua
 - a. É um modelo simples que só necessita de 3 mensagens por entry/exit
 - b. Tem de eleger um servidor central
 - c. Só existe um ponto de falha no sistema, o próprio central server
 d. O central server é o único ponto de congestionamento na rede.
- 9. Sobre o modelo 2-Phase Commit
 - a. Antes de fazer um commit, requer uma fase de pre-commit
 - b. Se o coordenador e um participante crasharem o sistem pode bloquear até pelo menos um deles voltar a estar activo
 - c. Não é usado na prática em detrimento da 3-Phase Commit
 - d. O coordenador consegue juntar-se rapidamente e sem qualquer input externo após um crash
- 10. Sobre a ordem casual de Lamport, ou seja, a ordem *happens-before* (->)
 - a. Se o evento x e y ocorrem nos processos P1 e P2 respectivamente, então ou x->y ou y->x
 - b. O relógio lógico baseado na ordem de Lamport está directamente relacionado com o valor do relógio físico da máquina
 - c. Totally ordered logical clocks baseados na ordem de Lamport são obtidos se, por exemplo, considerarmos o id do processo
 - d. Nenhuma das repostas anteriores

Parte II: Predominantemente teórica [10 valores]

<u>Utilização</u>: Justificar (brevemente) as suas respostas ; <u>Cotação</u>: indicada em cada pergunta.

- 1. [4 val.] Em sistemas de ficheiros distribuidos
 - a. Descreva sucintamente o que são servidores **sem estado** e enumere 3 vantagens em oferecer esse serviço?
 - b. Descreva sucintamente o que são servidores **com estado** e enumere 3 vantagens em oferecer esse serviço?
- 2. [3 val.] Sobre Consenso
 - a. Descreva sucintamente o funcionamento do algoritmo Paxos (divida a sua discrição em 4 fases fundamentais).
 - b. Qual a relação entre o algoritmo Paxos e os relógios lógicos de Lamport?
 - c. Descreva uma situação onde o algoritmo Paxos ajude a resolver um problema de replicação.
 - d. Demonstre que, mesmo na presença de um canal fidedigno, 3 processos nunca conseguirão chegar a um consenso se pelo menos um dele exibir um comportamento bizantino.
- 3. [2 val.] Considere um cenário em que se utiliza criptografia simétrica e um centro de distribuição de chaves secretas de sessão como o pressuposto pelo algoritmo de Needham-Schroeder para criptografia simétrica. Suponha ainda que o centro de distribuição de chaves já conhece as chaves secretas de todos os elementos envolvidos. Apresente um protocolo através do qual um elemento pode mudar a sua chave secreta guardada pelo servidor de chaves. A sua solução deverá resistir a todas as formas de ataque mais conhecidas incluindo "replaying" e "masquerading". Como é evidente nenhuma das chaves (a velha e a nova) deverão passar "em claro" na rede. Deverá explicitar todos os pressupostos e argumentar sobre a correcção da sua solução.
- 4. **[1 val.]** Descreva a forma como geralmente é gerida a *cache* de ficheiros nos clientes NFS com o objectivo de aumentar o desempenho e diminuir a probabilidade de se violar a semântica da partilha concorrente de ficheiros.