ACTIVITÉ L

Une **base** de vecteurs est un objet fondamental en algèbre : cela permet de décrire de manière unique tous les vecteurs à l'aide de combinaisons linéaires (ie. avec des sommes et des produits de vecteurs par un nombre). Dans le plan, une base est un couple formé par deux vecteurs *non colinéaires*, ce qui garantit qu'aucun des deux ne peut être exprimé comme un multiple de l'autre.

1. **a.** Trouver des nombres réels x et y tels que $\vec{b} = x\vec{c} + y\vec{d}$.

On dit que x et y sont les **coordonnées** de \vec{b} dans la base $(\vec{c}; \vec{d})$.

- **b.** Déterminer les coordonnées de \vec{a} et de \vec{f} dans le base $(\vec{c}; \vec{d})$.
- **2.** a. Dans la représentation ci-dessus, donner toutes les bases dont le premier vecteur est \vec{a} .
 - **b.** Une base est dite **orthogonale** quand les vecteurs qui la composent sont de direction perpendiculaire. Dans la représentation ci-dessus, quelles bases sont orthogonales?
 - **c.** Une base est dite **orthonormée** quand elle est orthogonale et quand les vecteurs qui la composent ont la même norme. Parmi les bases citées en **2. b.**, lesquelles sont orthonormées?