Završni ispit

21. lipnja 2011.

Ime i Prezime: Matični broj:

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa.

1. zadatak (4 boda)

Neka je prijelazna matrica vremenski diskretnog linearnog sustava $\Phi = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix}$, gdje je T vrijeme diskretizacije sustava. Na sustav djeluje diskretni poremećaj nultog očekivanja i varijance Q = diag(1,0). Ako je varijanca početnog stanja sustava P(0) = diag(1,0), odredite:

- a) (2 boda) sve moguće ustaljene vrijednosti očekivanja stanja sustava,
- b) (2 boda) eksplicitno rješenje vremenske ovisnosti varijance stanja sustava, P(k).

2. zadatak (9 boda)

Upravljanje kutnom brzinom motora ω pomoću napona njegove armature u moguće je pojednostvljeno opisati na način:

$$\dot{\omega} = k \ u, \ k = \text{konst.}$$

Zakret motora Θ mjerimo enkoderom. Za navedeni sustav, uz k=1, potrebno je:

- a) (1 bod) odrediti opis u prostoru stanja uz varijable stanja Θ i ω ako je izlaz sustava zakret motora Θ .
- b) (2 boda) projektirati kontinuirani estimator stanja punog reda kojim će se polovi dinamike greške estimacije postaviti u s = -5.
- c) (2 boda) projektirati kontinuirani estimator stanja reduciranog reda kojim će se polovi dinamike greške estimacije postaviti u s=-5.
- d) (4 boda) projektirati kontinuirani Kalmanov filtar za estimaciju kutne brzine motora, ali uz stohastički model sustava. Neka na akceleraciju motora djeluje aditivni procesni šum $w \sim (0, 1/100)$ uzrokovan nesigurnošću u upravljačkom naponu, ekscentricitetom osovine i poremećajima u opterećenju motora. Mjerenje filtra y je izlaz enkodera koji je zašumljen aditivinim bijelim šumom $v \sim (0, 1/10)$. Odredite kovarijancu estimacije u ustaljenom stanju.

3. zadatak (3 boda)

Izračunajte vrijednost međukorelacijske funkcije $R_{uy}(10)$ periodičkih signala u(k) i y(k).

4. zadatak (5 bodova)

Pretpostavimo da estimiramo konstantu x na temelju zašumljenih mjerenja $y_k = \sqrt{x}(1+v_k) \ v_k \sim N(0,1)$.

- a) (2 boda) Napišite jednadžbe proširenog Kalmanova filtra za estimaciju x. Ako je $x_0 = 3$, $P_0 = 1$ te $y_1 = 1$ i $y_2 = 3$, odredite a-posteriori estimate \hat{x}_2^+ te P_2^+ .
- b) (1 bod) Čemu je pritom jednaka informacijska matrica \mathcal{I}_2^+ ?

c) (2 boda) Pretpostavimo da je narušena pretpostavka o nekoreliranosti mjernog šuma te vrijedi:

$$v_k = \frac{1}{2}v_{k-1} + \xi_{k-1}, \ \xi_k \sim (0, Q_{\xi}).$$

Transformirajte sustav u oblik pogodan za Kalmanov filtar pri čemu se uzima u obzir obojenost šuma.

5. zadatak (3 boda)

U identifikacijskom eksperimentu sustav je doveden u radnu točku i zatim je u toj radnoj točki snimljena prijelazna funkcija tog sustava. Iz prijelazne funkcije određeno je da je $t_{95\%}=30$ s.

- a) (2 boda) Odredite parametre PRBS signala koji se može koristiti za identifikaciju tog sustava i kojega je moguće realizirati posmačnim registrom s n=4 stupnja.
- b) (1 bod) Skicirajte autokorelacijsku funkciju PRBS-a s tako odabranim parametrima.

6. zadatak (3 boda)

Neka je dan sustav opisan sljedećom prijenosnom funkcijom:

$$G_s(s) = \frac{2}{4s+1}$$

koji je pobuđen signalom šuma spektralne gustoće snage:

$$S_{uu}(\omega) = \frac{16}{\omega^2 + 64}$$

- a) (2 bodova) Odredite spektralnu gustoću dobivenog izlaznog signala $S_{yy}(\omega)$.
- b) (1 bod) Iz $S_{yy}(\omega)$ odredite $R_{yy}(\tau)$.

7. zadatak (3 boda)

Parametarskom metodom identifikacije dobiven je ARX model sustava opisan kao:

$$A(z^{-1}) = 1 + z^{-2}$$
$$B(z^{-1}) = 1 + 0.5z^{-1}$$

- a) (1 bod) Skicirajte blokovsku shemu ARX modelske strukture.
- b) (2 boda) Napišite jednadžbu diferencija identificiranog modela.

TEORIJA

1. zadatak (1 bod)

Koji ispitni signal je pogodan za identifikaciju frekvencijske karakteristike sustava na temelju jednog identifikacijskog eksperimenta. Matematički zapišite taj signal i odgovorite na koji se način odabiru ključni parametri tog signala?

2. zadatak (1 bod)

Koji je idealni pobudni signal sustava za provođenje korelacijske analize i zbog čega on nije ostvariv? Objasnite osnovni postupak korelacijske analize i pokažite čemu je jednaka težinska funkcija sustava uz idealni ulazni signal. Koja pretpostavka na moguće ostale (poremećajne) ulaze u sustav pritom mora vrijediti?

3. zadatak (1 bod)

Pokažite da je autokorelacijska funkcija PRBS signala periodična. Je li i međukorelacijska funkcija PRBS signala i odziva sustava na takav signal periodična? Pokažite. Ako pretpostavimo da se autokorelacijska funkcija PRBS signala može približno nadomjestiti sekvencom delta-impulsa površine A, napišite izraz za međukorelacijsku funkciju. Na temelju toga objasnite kako je potrebno odabrati period PRBS-a.

4. zadatak (1 bod)

Kakva će biti procjena parametara ARX modela dobivena metodom najmanjih kvadrata ako postoji korelacija između poopćene pogreške modela, te izlaza i ulaza sustava? Navedite koju metodu identifikacije bi trebalo upotrijebiti ili koji bi model trebalo upotrijebiti da se dobije bolja procjena parametara determinističkog dijela modela.

5. zadatak (1 bod)

Objasnite nepraktičnost direktne procjene parametara za on-line primjene identifikacije pomoću metode najmanjih kvadrata (tj. neprestano osvježavanje procjene parametara kako nailaze novi uzorci ulaznog i izlaznog signala sustava). Napišite jednadžbu osvježavanja parametara kod rekurzivne metode najmanjih kvadrata, zapisanu pomoću Kalmanova vektora pojačanja.

6. zadatak (1 bod)

Objasnite sukob pomaka i varijance kod odabira reda matematičkog modela čije se parametre određuje nekom od metoda parametarske identifikacije.

7. zadatak (1 bod)

Navedite prednosti i nedostatke sekvencijalnog Kalmanova filtra naspram osnovnog (batch).

8. zadatak (1 bod)

Navedite prednosti i nedostatke informacijskog Kalmanova filtra naspram osnovnog.

9. zadatak (1 bod)

Navedite prednosti i nedostatke korijenskog Kalmanova filtra naspram osnovnog.

10. zadatak (1 bod)

Kakva statitstička svojstva ima inovacija optimalnog Kalmanova filtra? Navedite barem jedan uzrok odstupanja od toga te kako se ono *on-line* može detektirati i ispraviti (skicirati shemu).