Morphological Inflection: A Reality Check

Sarah Payne & Salam Khalifa

Stony Brook University

first.last@stonybrook.edu

Outline

- What is morphological inflection?
- Evaluation complexities
- Setup
- Findings & Implications

What is Morphological Inflection?

Patterns of word formation to express grammatical categories

```
○ English: walk+Past → walked
```

O Mandarin: 3+PL → tāmen 'they'

○ Hebrew: √ħt/+Dim+Sg+Def → haħataltul 'the kitty'

○ Latin: amic+Fem+Sg+Gen → amīcae 'the friend's'

Shona: bik+1sg.Subj+6cl.Obj+Past+Caus+Pass→ ndakachibikiswa

'I was made to cook it'

- Patterns of word formation to express grammatical categories
 - Roots/stems modified by many processes
 - Suffixation/prefixation/circumfixation, stem mutations, reduplication

- Patterns of word formation to express grammatical categories
 - Roots/stems modified by many processes
 - Suffixation/prefixation/circumfixation, stem mutations, reduplication
 - Express number, tense, mood, voice, aspect, evidentiality, ...

- Patterns of word formation to express grammatical categories
 - Roots/stems modified by many processes
 - Suffixation/prefixation/circumfixation, stem mutations, reduplication
 - Express number, tense, mood, voice, aspect, evidentiality, ...
 - Common across the world's languages
 - Vary dramatically in terms of complexity or "richness"

- Patterns of word formation to express grammatical categories
 - Roots/stems modified by many processes
 - Suffixation/prefixation/circumfixation, stem mutations, reduplication
 - Express number, tense, mood, voice, aspect, evidentiality, ...
 - Common across the world's languages
 - Vary dramatically in terms of complexity or "richness"
 - Poses a learning challenge for both machines and humans

Morphological Inflection as an NLP task

Training: (lemma, inflected form, feature set)
 swim swam V;Pst
 eat eats V;Prs;3;Sc
 cat cats N;Pt
 ...

Morphological Inflection as an NLP task

```
• Training:
              (lemma, inflected form, feature set)
                  swim
                                   V:Pst
                          swam
                  eat
                          eats V;Prs;3;SG
                  cat cats
                                    N:PL
                  • • •
                          • • •
  Testing:
              (lemma, feature set) → inflected form
                  swim
                                    V:Prs:3:SG
                  box
                                    N:PL
                  cat
                                    N:SG
```

Morphological Inflection as an NLP task

```
• Training:
              (lemma, inflected form, feature set)
                  swim
                                   V:Pst
                          swam
                  eat
                          eats V:Prs:3:SG
                  cat cats
                                    N:PL
                  • • •
                          • • •
  Testing:
              (lemma, feature set) → inflected form
                  swim
                          swims
                                    V:Prs:3:$G
                  box
                          boxes
                                    N;PL
                  cat
                                    N;SG
                          cat
```

Morphological Inflection: Applications

Cognitive Modeling

- Insight into the cognitive computations underlying morphological learning
- Past Tense Debate
 - Early connectionist account (Rumelhart & McClelland 1986)
 - Several shortcomings
- Recent advances in ANN architectures
 - Renewed interest in the plausibility of ANNs as cognitive models

Natural Language Processing

- Traditionally: downstream tasks
 - In settings where pipelining is still common (e.g., low-resource)
 - Particularly for languages with lots of inflectional morphology
- May provide insight into the behavior of ANN architectures
 - A particular kind of string-to-string mapping problem
 - Varying performance may reflect divergent properties of different architectures

- Kirov & Cotterell (2018): encoder-decoder network can overcome practical limitations of older ANNs
 - Near 100% test accuracy
 - Learn several inflectional classes at once

- Kirov & Cotterell (2018): encoder-decoder network can overcome practical limitations of older ANNs
 - Near 100% test accuracy
 - Learn several inflectional classes at once
- Corkerey et al. (2019): K&C model still fails empirically
 - Predictions don't match well with human nonce word judgments: over-irregularizes!
 - Massive variability in model rankings & correlation with human rankings between seeds

Best systems on a subset of the 2018

CONLL-SIGMORPHON shared task

	High	Medium	Low
Adyghe	100.00(uzh-2)	94.40(uzh-1)	90.60(ua-8)
Albanian	98.90(bme-2)	88.80(iitbhu-iiith-2)	36.40(uzh-1)
Arabic	93.70(uzh-1)	79.40(uzh-1)	45.20(uzh-1)
Armenian	96.90(bme-2)	92.80(uzh-1)	64.90(uzh-1)
Asturian	98.70(uzh-1)	92.40(iitbhu-iiith-2)	74.60(uzh-2)
Azeri	100.00(axsemantics-2)	96.00(iitbhu-iiith-2)	65.00(iitbhu-iiith-2)
Bashkir	99.90(uzh-2)	97.30(uzh-2)	77.80(iitbhu-iiith-1)
Basque	98.90(bme-2)	88.10(iitbhu-iiith-2)	13.30(uzh-1)
Belarusian	94.90(uzh-1)	70.40(uzh-1)	33.40(ua-8)
Bengali	99.00(bme-3)	99.00(uzh-2)	72.00(uzh-2)
Breton	100.00(waseda-1)	96.00(uzh-2)	72.00(uzh-1)
Bulgarian	98.30(uzh-2)	83.80(uzh-2)	62.90(ua-8)
Catalan	98.90(uzh-2)	92.80(waseda-1)	72.50(ua-8)
Classical-syriac	100.00(axsemantics-1)	100.00(axsemantics-2)	96.00(uzh-2)
Cornish	_	70.00(uzh-1)	40.00(ua-4)
Crimean-tatar	100.00(iit-varanasi-1)	98.00(uzh-2)	91.00(iitbhu-iiith-2)
Czech	94.70(uzh-1)	87.20(uzh-1)	46.50(uzh-2)
Danish	95.50(uzh-1)	80.40(uzh-1)	87.70(ua-6)
Dutch	97.90(uzh-1)	85.70(uzh-1)	69.30(ua-6)
English	97.10(uzh-2)	94.50(uzh-1)	91.80(ua-8)

Very good performance on medium and high training

Performance on closely-related languages is highly variable

Azeri	100.00(axsemantics-2)	96.00(iitbhu-iiith-2)	65.00(iitbhu-iiith-2)
Turkish	98.50(uzh-2)	90.70(uzh-1)	39.50(iitbhu-iiith-2)
Turkmen	—	98.00(iitbhu-iiith-1)	90.00(uzh-2)
Belarusian	94.90(uzh-1)	70.40(uzh-1)	33.40(ua-8)
Russian	94.40(uzh-2)	86.90(uzh-1)	53.50(uzh-1)
Ukrainian	96.20(uzh-2)	81.40(uzh-1)	57.10(ua-6)
Finnish Ingrian Karelian	95.40(uzh-1) —	82.80(uzh-1) 92.00(uzh-2) 100.00(uzh-2)	25.70(uzh-1) 46.00(iitbhu-iiith-2) 94.00(ua-5)
Kashubian	—	88.00(bme-2)	68.00(ua-5)
Lower-sorbian	97.80(uzh-1)	85.10(uzh-1)	54.30(ua-6)
Polish	93.40(uzh-2)	82.40(uzh-2)	49.40(ua-6)
Danish	95.50(uzh-1)	80.40(uzh-1)	87.70(ua-6)
Norwegian-bokm	aal 92.10(uzh-2)	84.10(uzh-1)	90.10(ua-6)
Swedish	93.30(uzh-1)	79.80(uzh-1)	79.00(ua-8)

Czech	94.70(uzh-1)	87.20(uzh-1)	46.50(uzh-2)
Slovak	97.10(uzh-1)	78.60(uzh-1)	51.80(uzh-2)
Galician	99.50(uzh-1)	90.80(uzh-1)	61.10(uzh-2)
Portuguese	98.60(uzh-2)	94.80(uzh-2)	75.80(uzh-2)
Irish	91.50(uzh-2)	77.10(uzh-1)	37.70(uzh-1)
Scottish-gaelic		94.00(iitbhu-iii	th-1) 74.00(iitbhu-iiith-2)

Morphological Inflection isn't solved! 🚨 🚨

Evaluation Complexities

Morphological Inflection: Outstanding Issues

- NNs are trained on unrealistically large/saturated data
- NNs are rarely evaluated against child learning trajectories and error patterns
- Current evaluation metrics fail to control for:
 - Overlap between train and test
 - Performance variation across multiple splits
 - Frequency effects in uniform sampling

Belth, Payne et al. (2021, Cogsci) Kodner, Payne et al. (2023, ACL) Kodner, Khalifa, Payne, & Liu (2023, Cogsci)

Kodner, Payne et al. (2023, ACL) Kodner, Khalifa & Payne (2023, EMNLP)

- Uniform sampling & large training sets
 - Training and evaluation sets sampled uniformly by type from a corpus. Usually large corpora.

- Uniform sampling & large training sets
 - Training and evaluation sets sampled uniformly by type from a corpus. Usually large corpora.
 - Practical, but creates an unnatural bias towards low-frequency types which are mostly regular.

- Uniform sampling & large training sets
 - Training and evaluation sets sampled uniformly by type from a corpus. Usually large corpora.
 - Practical, but creates an unnatural bias towards low-frequency types which are mostly regular.

Contribution

- A frequency weighted sampling to match practical use-cases during child language acquisition (aka true low-resource).
- A sampling strategy that balances OOV lemmas and features to evaluate models' generalizability.

• Evaluation on single splits:

• Evaluation on **single splits**: a single set of Train+Dev+Test splits.

- Evaluation on single splits: a single set of Train+Dev+Test splits.
 - Problematic because:
 - Results based on a single set aren't informative in low-res settings.
 - Even in high-res, a set sampled using a different seed results in a different performance.

- Evaluation on single splits: a single set of Train+Dev+Test splits.
 - Problematic because:
 - Results based on a single set aren't informative in low-res settings.
 - Even in high-res, a set sampled using a different seed results in a different performance.

Contribution

- Use multiple sets of splits
- Use variable data sizes.

Uncontrolled overlap between train & test components

- Two types: lemma overlap and feature overlap.
- It hinders the evaluation of generalizability due to the uncontrolled OOV rates.

Uncontrolled overlap between train & test components

- Two types: lemma overlap and feature overlap.
- It hinders the evaluation of generalizability due to the uncontrolled OOV rates.

Contribution

 Control for both types of overlap regardless of the split and sampling technique.

- No train triples appear in test
 - O But what about lemmas or feature sets individually?

- No train triples appear in test
 - O But what about lemmas or feature sets individually?
- Four possible relationships between train & test triples:

Illustrative Train Set

```
eat eating V; V. PTCP; PRS
run ran V; PST
```

- No train triples appear in test
 - O But what about lemmas or feature sets individually?
- Four possible relationships between train & test triples:

Illustrative Train Set

Illustrative Test Set

```
eat eating V; V. P_{TCP}; P_{RS} eat V; P_{ST} \leftarrow No OOV, not attested together run ran V; P_{ST}
```

- No train triples appear in test
 - But what about lemmas or feature sets individually?
- Four possible relationships between train & test triples:

Illustrative Train Set

Illustrative Test Set

```
eat eating V; V. P_{TCP}; P_{RS} eat V; P_{ST} \leftarrow No OOV, not attested together run ran V; P_{ST} run V; N_{FIN} \leftarrow Only feature set is OOV
```

- No train triples appear in test
 - But what about lemmas or feature sets individually?
- Four possible relationships between train & test triples:

Illustrative Train Set

eat eating V; V. PTCP; PRS
run ran V; PST

Illustrative Test Set

V; NFIN

V;PsT

run

see

eat V; PsT ← No OOV, not attested together

← Only **feature set** is OOV

← Only **lemma** is OOV

- No train triples appear in test
 - Out what about lemmas or feature sets individually?
- Four possible relationships between train & test triples:

Illustrative Train Set

eat eating V; V. PTCP; PRS run ran V; PST

Illustrative Test Set

```
eat V; PsT ← No OOV, not attested together

run V; NFIN ← Only feature set is OOV

see V; PsT ← Only lemma is OOV

go V; Prs; 3; Sg ← Lemma and feature set are OOV
```

- No train triples appear in test
 - O But what about lemmas or feature sets individually?
- Four possible relationships between train & test triples:

- No train triples appear in test
 - But what about lemmas or feature sets individually?
- Four possible relationships between train & test triples:

Setup

Setup

- 6 Languages
- 3 Split Types
- 4 Systems
- 5 Random Seeds

Setup: Languages

• 6 Languages: English, Arabic, German, Spanish, Swahili, Turkish

increasingly agglutinative _____

UniMorph 3 + 4 intersected with frequency information for weighted sampling

CHILDESGerman, English, Spanish

Wikipedia Swahili & Turkish

PATB Arabic

- 3 Split Types
- 4 Systems
- 5 Random Seeds

Setup: Split Types

- 6 Languages: English, Arabic, German, Spanish, Swahili, Turkish
- 3 Split Types:
 - UNIFORM: partition UniMorph uniformly at random
 - WEIGHTED: partition at random weighted by type frequency
 - OverlapAware: enforce a maximum 50% proportion of FEATSATTESTED
- 4 Systems
- 5 Random Seeds

Setup: Systems

- 6 Languages: English, Arabic, German, Spanish, Swahili, Turkish
- 3 Split Types: Uniform, Weighted, and OverlapAware
- 4 Systems:
 - CLUZH-B4: character-level transducer that significantly outperformed the 2022
 SIGMORPHON baseline, with beam decoding
 - CLUZH-GR: character-level transducer with greedy decoding
 - CHR-TRM: character-level transformer that was used as a baseline in 2021 and 2022
 SIGMORPHON shared tasks
 - NonNeur: non-neural baseline using a majority classifier
- 5 Random Seeds

Setup: Random Seeds

- 6 Languages: English, Arabic, German, Spanish, Swahili, Turkish
- 3 Split Types: Uniform, Weighted, and OverlapAware
- 4 Systems: CLUZH-B4, CLUZH-GR, CHR-TRM, NonNeur
- 5 Random Seeds for re-splitting and re-evaluation

Feature Overlap in Training

	SmallTrain	featsAttested	featsNovel	σ
400 train 100 ftune 1000 test	Uniform	80.33	19.67	19.5
	Weighted	90.44	9.56	11.1
	OverlapAware	48.81	51.19	0.98
	LargeTrain	featsAttested	featsNovel	σ
1600 train 400 ftune 1000 test	Uniform	96.17	3.83	5.55
	Weighted	95.36	4.64	7.28
	OverlapAware	49.92	50.08	0.17

Feature Overlap in Training

	SmallTrain	featsAttested	featsNovel	σ
400 train 100 ftune 1000 test	Uniform	80.33	19.67	19.5
	Weighted	90.44	9.56	11.1
	OverlapAware	48.81	51.19	0.98
	LargeTrain	featsAttested	featsNovel	σ
1600 train 400 ftune 1000 test	Uniform	96.17	3.83	5.55
	Weighted	95.36	4.64	7.28
	OverlapAware	49.92	50.08	0.17

Overlap rate is high but not 100% when not controlled for UNIFORM & WEIGHTED are similar for large training size

Feature Overlap in Training

Overlap rate is highly variable across seed/language when not controlled for

Findings & Implications

Evaluation

We evaluated across several dimensions:

- Training set size
- Sampling Strategy
- Overlap awareness

Evaluation

We evaluated across several dimensions:

- Training set size
- Sampling Strategy
- Overlap awareness

All reported accuracies are averaged across 5 splitting seeds per language.

Results: Effect of Sampling Strategy

Accuracy on SamplingStrategy splits for each size

Results: Effect of Sampling Strategy

Accuracy on SamplingStrategy splits for each size

Results: Effect of Overlap

Accuracy on Overlap Aware splits for each size

Results: Effect of Feature Overlap

Results: Effect of Lemma Overlap

Results: Correlation with Overlaps

Correlations between Accuracy and overlap partition Uncontrolled: Weighted and Uniform, Controlled: Overlap Aware

Overlap Partition	Uncontrolled ρ	Controlled ρ
featsAttested	0.97	0.45
featsNovel	0.16	0.93
lemmaAttested	0.84	0.88
lemmaNovel	0.78	0.82
both	0.89	0.49
featsOnly	0.73	0.21
lemmaOnly	0.24	0.89
neither	-0.04	0.85

Results: Correlation with Overlaps

Accuracy difference between FEATSATTESTED AND FEATSNOVEL and correlation with FEATSATTESTED for each language

Train Size	Language Strategy	Avg. Score Difference	featsAttested \sim Accuracy $ ho$
Small	Arabic	33.00%	0.57
	Swahili	40.04	0.63
	German	40.35	0.23
	Turkish	41.96	0.83
	Spanish	52.60	0.75
	English	74.10	0.66
Large	Arabic	35.79%	0.44
	German	36.19	0.73
	Swahili	39.26	0.64
	Turkish	52.14	0.59
	Spanish	61.01	0.64
	English	80.17	0.82

Thank you!