MAT A29 TUT0018, Tutorial 6 (Week 7) Tuesdays 7 - 9pm (We will start at 7:10pm)

XiangQian Hong (Richard) richard.hong@mail.utoronto.ca

Analyze the given graph of f'(x) and determine the intervals where f(x) is increasing and decreasing.

(-inf, -2) decreasing (-2, -1) increasing (-1, 2) decreasing (2, inf) increasing

Analyze the given graph of f'(x) and determine the maximum and minima of f(x).

$$f'(x) = 0$$

 $x = -2, -1, 0, 1, 2$

we want to know f''(x) at these points $f''(x) < 0 \rightarrow x$ is a local maximum $f''(x) > 0 \rightarrow x$ is a local minimum

$$f''(x) > 0$$
, $x = -2$, 0, 2 Minima $f''(x) < 0$, $x = -1$, 1 Maxima

Produce a graph with the following properties: there is a local maximum at x=2, a local minimum at x=1, and the graph is neither concave up nor concave down.

Consider $f(x) = x^3 - 6x^2$. Determine where f(x) is increasing and decreasing.

$$f(x)$$
 decreasing => $f'(x) < 0$
 $f(x)$ increasing => $f'(x) > 0$
 $f'(x) = 3x^2 - 12x$

XCO

f(x) is increasing when x in (-inf, 0) and (4, inf). f(x) is decreasing from (0, 4).

Consider $f(x) = x^3 - 6x^2$. Determine the local minima and maxima of f(x).

$$f'(x) = 3x^2 - 12x$$
, $f''(x) = 6x - 12$
 $f'(x) = 0$ when $x = 0, 4$

$$f''(0) = -12$$

 $f''(4) = 24 - 12 = 12$

x = 0 f(x) is a local maxima x = 4 f(x) is a local minima

Consider $f(x) = x^3 - 6x^2$. Determine where f(x) is concave up and concave down. Locate any inflection points of f(x).

$$f''(x) = 0$$
, x is a inflection point $f''(x) > 0$, $f(x)$ is concave up in this interval $f''(x) < 0$, $f(x)$ is concave down

$$f''(x) = 6x - 12 = 0 => x = 2$$

$$f''(3) = 18 - 12 = 6$$

$$f''(1) = 6 - 12 = -6$$

$$x > 2$$
, $f''(x) > 0$ thus $f(x)$ is concave up $x < 2$, $f''(x) < 0$ thus $f(x)$ is concave down

Suppose that f(t) represents the size of a population at time t. Interpret the sentence "the population is growing more slowly" using mathematical notation and f(t), f'(t), and f''(t).

$$f(t)$$
 is growing if $f'(t) > 0$
more slowly => $f'(t)$ is decreasing => $f''(t) < 0$

$$f'(t) > 0$$
 and $f''(t) < 0$