Learn more: PMC Disclaimer | PMC Copyright Notice

PLOS ONE

PMCID: PMC8812871

PMID: 35113922

PLoS One. 2022; 17(2): e0263335.

Published online 2022 Feb 3. doi: 10.1371/journal.pone.0263335

Systematic review and meta-analysis of myopia prevalence in African school children

Godwin Ovenseri-Ogbomo, Conceptualization, Data curation, Investigation, Project administration, Writing – original draft, Writing – review & editing, #1 Uchechukwu L. Osuagwu, Conceptualization, Formal analysis, Investigation, Methodology, Project administration, Writing – original draft, Writing – review & editing, 2, † * Bernadine N. Ekpenyong, Conceptualization, Investigation, Methodology, Writing – original draft, Writing – review & editing, 3, † Kingsley Agho, Conceptualization, Formal analysis, Investigation, Methodology, Software, Writing – review & editing, 4, † Edgar Ekure, Conceptualization, Investigation, Methodology, Writing – review & editing, * Antor O. Ndep, Conceptualization, Methodology, Writing – review & editing, * Investigation, Methodology, Validation, Writing – review & editing, * Khathutshelo Percy Mashige, Conceptualization, Investigation, Methodology, Supervision, Writing – review & editing, * Kovin Shunmugan Naidoo, Conceptualization, Investigation, Methodology, Supervision, Writing – original draft, Writing – review & editing, * Onceptualization, Data curation, Investigation, Methodology, Supervision, Writing – original draft, Writing – review & editing, * Onceptualization, Data curation, Investigation, Methodology, Supervision, Writing – original draft, Writing – review & editing, * Onceptualization, Data curation, Investigation, Methodology, Supervision, Writing – original draft, Writing – review & editing, * Onceptualization, Data curation, Investigation, Methodology, Supervision, Writing – original draft, Writing – review & editing, * Onceptualization, Data curation, Investigation, Methodology, Supervision, Writing – original draft, Writing – review & editing, * Onceptualization, Data curation, Investigation, Methodology, Supervision, Writing – Original draft, Writing – review & editing, * Onceptualization, Data curation, Investigation, Methodology, Supervision, Writing – Original draft, Writing – Original draft, Writing – Original draft, Writing – Original draft, Writing – Origi

Aleksandra Barac, Editor

Abstract

Purpose

Increased prevalence of myopia is a major public health challenge worldwide, including in Africa. While previous studies have shown an increasing prevalence in Africa, there is no collective review of evidence on the magnitude of myopia in African school children. Hence, this study reviews the evidence and provides a meta-analysis of the prevalence of myopia in African school children.

Methods

This review was conducted using the 2020 Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Five computerized bibliographic databases, PUBMED, Scopus, Web of Science, ProQuest, and Africa Index Medicus were searched for published studies on the prevalence of myopia in Africa from 1 January 2000 to 18 August 2021. Studies were assessed for methodological quality. Data were gathered by gender, age and refraction technique and standardized to the definition of myopia as refractive error ≥ 0.50 diopter. A meta-analysis was

conducted to estimate the prevalence. Significant heterogeneity was detected among the various studies ($I^2 > 50\%$), hence a random effect model was used, and sensitivity analysis was performed to examine the effects of outliers.

Results

We included data from 24 quality assessed studies, covering 36,395 African children. The overall crude prevalence of myopia over the last two decades is 4.7% (95% CI, 3.9–5.7) in African children. Although the prevalence of myopia was slightly higher in females (5.3%, 95%CI: 4.1, 6.5) than in males (3.7%, 95% CI, 2.6–4.7; p = 0.297) and higher in older [12–18 years 5.1% (95% CI, 3.8–6.3) than younger children (aged 5–11 years, 3.4%, 95% CI, 2.5–4.4; p = 0.091), the differences were not significant. There was a significantly lower prevalence of myopia with cycloplegic compared with non-cycloplegic refraction [4.2%, 95%CI: 3.3, 5.1 versus 6.4%, 95%CI: 4.4, 8.4; p = 0.046].

Conclusions

Our results showed that myopia affects about one in twenty African schoolchildren, and it is overestimated in non-cycloplegic refraction. Clinical interventions to reduce the prevalence of myopia in the region should target females, and school children who are aged 12–18 years.

Introduction

Uncorrected refractive error is the most common cause of visual impairment affecting an estimated one billion people globally [1]. Myopia is the most common refractive error and an important cause of ocular morbidity, particularly among school-aged children and young adults. Worldwide, myopia is reaching epidemic proportions linked to changing lifestyles and modern technology, particularly mobile devices [2]. Globally, myopia affected 22.9% of the world's population in 2000, with projections of an increase to 49.8% by 2050 affecting 4.8 billion people [2], representing a 117% increase over 50 years. According to a 2015 report, it was estimated that globally, about 1.89 billion people are myopic and 170 million have high myopia [3].

The reported prevalence of myopia in children aged 5–17 years ranges from 1.2% in Mechi Zone, Nepal, to 73.0% in South Korea $[\underline{4},\underline{5}]$. Over 15 years, the prevalence of myopia increased from 79.5% to 87.7% in Chinese high school children with an average age of 18.5 \pm 0.7 years $[\underline{6}]$. In South African school children aged 5–15 years, the reported prevalence of myopia was only 2.9% with retinoscopy and 4.0% using autorefraction $[\underline{7}]$. The authors reported that this prevalence increased to 9.6% at age 15 years.

The increase in myopia prevalence will have a significant economic impact because of associated ocular health problems and visual impairment. Uncorrected myopia of between– 1.50 D and– 4.00 D can significantly affect vision to be regarded as a cause of moderate visual impairment and blindness, respectively [8]. Apart from its direct impact on visual impairment, high myopia [usually defined as a spherical equivalent ≥ 5.00 D [4, 9, 10] of myopia, although the definitions used to grade myopia are variable] increases the risk of potentially blinding ocular pathologies such as retinal holes; retinal tears; retinal degeneration; retinal detachment; and myopic macular degeneration [3, 11]. Uncorrected myopia has huge social, economic, psychological and developmental implications [12]. The economic cost of refractive errors, including myopia, has been estimated to be approximately US\$ 202 billion per annum [13], far exceeding that of other eye diseases.

The increasing prevalence of myopia has led to research in the study of the possible mechanism for myopia development, which has generated two broad themes: the role of nature (genetic influences) and nurture (environmental influences including lifestyle). Understanding the mechanism for the development of myopia is also being explored in the control of myopia. Epidemiologic data from Southeast Asia has given credence to the association between near work and myopia, given the number of hours children from this region spend doing near work. Due to vast regional differences in culture, habits, socioeconomic status, educational levels and urbanization, there is uncertainty as to the exact magnitude of the myopia burden among African school–aged children and its trend over time [14].

In the last few decades, there has been a change in the lifestyle and behavior of people in Africa as a result of increasing urbanization [15]. Africa's urban population grew from 27 million in 1950 to 567 million in 2015 (a 2,000% increase), and now 50% of Africa's population live in one of the continent's 7,617 urban agglomerations of 10,000 or more inhabitants [16]. Consequently, more children and young adults in Africa are increasingly engaged in indoor and near work activities compared to earlier generations [17]. Children spend long hours doing schoolwork and, following the advent of technology, increasingly use mobile devices for gaming and other activities [18, 19]. These factors are thought to promote myopia development and/or progression [20–23].

Africa is the world's second largest and second most populous continent, after Asia, and it accounts for about 16% of the world's human population. While every global region will experience a decline in population by 2100, the African population is expected to triple. Africa's population is the youngest amongst all the continents, the median age in 2012 was 19.7 years compared to the global median of 30.4 years. This young population is an important asset for the continent's development. The challenges of the young population must be addressed in time as they constitute the bulk of the productive age of the economy. While rising myopia is a cause for global concern, it is not given due attention in Africa due to a lack of adequate prevalence data and prospective studies tracking the trend of myopia over decades [24]. Due to this, the representation of Africa is poor in studies predicting global trends of myopia [24]. The aim of this study was to systematically review the evidence and provide a meta–analysis of the prevalence of myopia in African school children which will address the knowledge gap and help understand the prevalence of myopia among this group in Africa.

Materials and methods

This systematic review followed the framework of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA. See Checklist in <u>S1 File</u>) [25]. The protocol for the review was registered with PROSPERO (#CRD42020187609).

Search strategy and quality assessment

Two review team members (GO and BE) performed an independent systematic search and review of myopia in Africa using published data spanning the last two decades. Refractive error came into reckoning as a cause of visual impairment in the last two decades, following the change in the definition of visual impairment which was based on presenting visual acuity [26]. The search was conducted on 25th May and 18th August 2021. A third reviewer, KO, adjudicated where there were disagreements. The quality of each selected article was assessed using the checklist developed by Downs and Black [27] and each included article was assessed and scored on a 10-item scale (scoring is shown in S1 Table). The search was restricted to articles available online, articles

mentioning prevalence of myopia in any region of Africa, and articles published in the English language. Searches included the following databases: Web of sciences, PubMed, ProQuest, MEDLINE, Scopus, and African Index Medicus from 1st of January 2000 to August 18, 2021.

We searched these databases using the following MeSH (Medical Subject Heading) terms and keywords: Refractive AND error AND Africa AND children AND prevalence. A number of iterations of these search terms were used, for example, "refractive error AND Africa AND children AND prevalence" or "refractive error AND Africa AND children". Further details about search strategy and MeSH terms are available in the (S2 File). A broader search also used terms such as epidemiology, myopia, and school children. We also identified and included relevant studies by manually searching through the reference lists of identified papers. The PRISMA flowchart presented in Fig 1 shows the process used for selecting articles.

 $\label{eq:fig1} \hline Flow chart of process of selecting articles for the review.$

Inclusion and exclusion criteria

Studies published between 2000 and 2021, investigating the prevalence of refractive error in male and female school children aged 5 to 18 years of age were included in the review. Studies that employed an observational cross-sectional study design; had a clear description of the sampling technique; stated the method of measuring refractive error (cycloplegic or non-cycloplegic refraction), as well as objective or subjective refraction; stated the criteria for defining myopia (spherical equivalent ≥ 0.50 D of myopia [2, 28–30]; the study was either school-based or

population-based; and were published in English language, were included in the review. The decision as to whether the articles met the inclusion criteria was made independently by the two reviewers (GO and BE) and where there was a disagreement, a third reviewer (KO) was consulted.

Studies where the criteria for defining myopia were not specified; the ages of the participants were either not specified or outside the age range specified for this review; or which reported findings from a hospital/clinic-based sample were excluded from the review.

Data extraction

The data extracted from each article included the following: Authors; year of publication; country of study; study design; sample size; sampling technique; the age of study participants; criteria for defining myopia; method of refractive error assessment (cycloplegic vs non-cycloplegic); method of refractive error assessment (objective vs subjective); prevalence of myopia; and the proportion of refractive error due to myopia. Where the reported prevalence was not clearly defined, the corresponding author in the published article was contacted for clarification.

Statistical methods

Meta–analysis was conducted using Stata version 14.0 (StataCorp, College Station, TX, USA). The syntax "metaprop" in Stata was used to generate forest plots and each forest plot showed the prevalence of myopia in school children, by gender, age and refraction technique in individual studies and its corresponding weight, as well as the pooled prevalence in each subset and its associated 95% confidence intervals (CI). A heterogeneity test obtained for the different studies showed a high level of inconsistency (I² > 50%) thereby indicating the use of a random effect model in all the meta–analyses conducted. Sensitivity analysis was carried out by examining the effect of outliers, by employing similar method to that used by Patsopoulos et al. [31], which involves the process of comparing the pooled prevalence before and after eliminating one study at a time. The funnel plot was used to report the potential bias and small/large study effects and Begg's tests was used to assess asymmetry. The prevalence was subdivided into separate datasets based on overall prevalence, males or females, cycloplegic or non-cycloplegic refraction for a more detailed analysis of the prevalence of myopia. Also, to study a possible variation of the prevalence of myopia in terms of age, the age groups in the reported studies were divided into two categories: 5–11 years and 12–18 years. Their respective funnel plots are shown as (\$3-\$57 Files).

Results

Summary of included studies

From the described search strategy, a total of 164 potentially relevant titles/abstracts of articles were initially identified. Fig 1 presents the flowchart of the article screening and selection process. Following a quick inspection of identified studies and removal of duplicate articles, 44 relevant articles were assessed for eligibility. Using the pre–defined inclusion and exclusion criteria, 24 of 30 articles that underwent detailed review were eligible, and data from these studies were included in this study. A breakdown of the eligible studies as well as their quality assessment scores (maximum of 10) are presented in Table 1. S1 Table shows how the quality assessment scores were calculated.

 $\label{thm:continuous} Table\ 1$ Characteristics of studies that reported the prevalence of myopia in school-aged children in Africa and were included in the meta-analysis.

First Author	Year of study	Study Country [†]	Age group (years)	Mean age (year		Total Sample size	Cycloplegia	-	Prevalence of myopia (%)	Comm refrac error
Atowa [32]	2017	Nigeria	8-15	11.5 2.3	±	1197	Yes	Objective	2.7	
Wajuihian [<u>33</u>]	2017	South Africa	13-18	15.8 1.6	±	1586	No	Objective	7	
Chebil [<u>34</u>]	2016	Tunisia	6-14	10.1 1.8	±	6192	Yes	Objective	3.71	
Kedir [<u>35</u>]	2014	Ethiopia	7–15	Not report	ed	570	No	Subjective	2.6	
Soler [<u>36</u>]	2015	Equatorial Guinea	6-16	10.8 3.1	±	425	Yes	Objective	10.4	
Kumah [<u>37</u>]	2013	Ghana	12-15	13.8		2435	Yes	Objective	3.2	
Mehari [<u>38</u>]	2013	Ethiopia	7–18	13.1 2.5	±	4238	No	Objective	6	
Jimenez [<u>39</u>]	2012	Burkina Faso	6-16	11.2 2.4	±	315	No	Objective	2.5	
Naidoo [<u>7</u>]	2003	South Africa	5-15	Not report	ed	4890	Yes	Objective	2.9	
Yamamah [<u>40</u>]	2015	Egypt	6-17	10.7 3.1	±	2070	Yes	Objective	3.1	Astign
Nartey [<u>41</u>]	2016	Ghana	6-16	10.6		811	No	Subjective	4.6	
Anera [<u>42</u>]	2006	Burkina Faso	5-16	10.2 2.2	±	388	Yes	Objective	0.5	
Chukwuemeka [<u>43</u>]	2015	South Africa	7–14	9.9 2.2	±	421	No	Objective	18.7	Astign
Alrasheed [44]	2016	Sudan	6-15	10.8 2.8	±	1678	Yes	Objective	6.8	Myopi
Abdul-Kabir [45]	2016	Ghana	10-15	Not report	ed	208	No	Objective	22.6	Myopi
Ebri [<u>46</u>]	2019	Nigeria	10-18	13.3 1.9	±	4241	Yes	Objective	4.8	Astign
Ezinne [<u>47</u>]	2018	Nigeria	5-15	9.0 2.5	±	998	Yes	Objective	4.5	Myopi

 $^{^{\}dagger}$ = country the study was conducted;

 $^{^{\}mbox{\scriptsize $^{$}$}}$ = authors provided data for only those aged 5–18 years.

The included studies comprised of the following: six (25.0%) studies from Ghana, four (16.7%) each from South Africa, and Nigeria, three from Ethiopia (12.5%), two (8.3%) from Burkina Faso, and one (4.2%) each from Sudan, Egypt, Equatorial Guinea, Somalia and Tunisia (Table 1). Of the reviewed articles, 84.2% (n = 21) were school-based, cross-sectional studies, two (8.3%) were population-based, cross-sectional studies, while one (4.2%) employed a cross-sectional study design but did not report whether it was school or population-based.

Method of measuring refractive error in African school-aged children

Of the reviewed studies, 13 (54.2%) performed cycloplegic refraction to determine the refractive error status of the children, while non-cycloplegic refraction was used in 11 (45.8%) of the studies. Regarding the technique used for refractive error measurement, over three–quarters of the studies (n = 20, 83.3%) performed objective refraction, with about one–sixth (n = 4, 16.7%) performing subjective refraction.

Prevalence of myopia in African school-aged children

The number of children aged 5–18 years included in the study ranged from 208 for a study conducted in Ghana [$\underline{45}$] to 6192 for another study conducted in Tunisia [$\underline{34}$, $\underline{55}$]. The prevalence of myopia reported in these studies ranged from 0.5% [$\underline{42}$] to 10.4% [$\underline{36}$, $\underline{52}$] with cycloplegic refraction. In studies where non–cycloplegic refraction was used to determine refractive error refraction in school children, the reported myopia prevalence ranged from 1.7% [$\underline{51}$] to 22.6% [$\underline{45}$].

Meta-analysis of myopia prevalence in children ag 5–18 years in Africa (2000–2021)

Myopia prevalence among school children in Africa Fig 2 shows a forest plot of the prevalence of myopia among African school children aged 5–18 years. The pooled estimate of myopia in the African region was significant (5.0%, 95%CI: 4.1, 5.8; p<0.001) and about 37.5% of the studies (n = 9) reported significantly higher prevalence of myopia and 50% (n = 12) reporting significantly lower prevalence compared with the pooled estimate across Africa. The study by Abdul–Kabir found the highest prevalence (22.6%) of myopia among Ghanaian children (95%CI: 17.1, 28.9) [45], while Anera et al. found the lowest prevalence among children in Burkina Faso (0.5%, 95%CI: 0.1, 1.9) [42]. The pooled prevalence estimates of myopia was similar to the study by Ebri [46] and Ezinne [47] (4.8%, 95%CI:4.2, 5.5), both involving children from Nigeria [46, 47]. Funnel plots and using Begg's test for Myopia in Africa indicated homogeneity (S3 File) and meta–regression analysis of myopia by year of publication indicated that publication of year increased as the proportion of myopia decreased but this relationship was not statistically significant (p = 0.423, S7 File).

 $\frac{Fig\,2}{Forest\ plot\ of\ myopia\ prevalence\ from\ the\ meta-analysis\ of\ African\ studies.}$

Myopia prevalence by gender of the School children in Africa (2000–2021)

Fig 3 is a forest plot for prevalence of myopia by gender among school children aged 5–18 years in Africa. The prevalence estimates varied significantly between studies in both male and female children (p<0.001, per gender), and the overall pooled prevalence of myopia by gender was 4.8% (95%CI: 4.1, 5.6) and similar between male and female estimates (p = 0.297). Compared with the overall pooled estimate, the prevalence of myopia was slightly higher in male (4.5%, 95%CI: 3.4, 5.5) children than females (5.3%, 95%CI: 4.1, 6.5) but the difference was not significant as indicted by the overlapping of the CIs with that of the overall pooled estimate. Funnel plots and using Begg's test for Myopia by gender reported absence of publication biases (5.4% File).

 $\frac{Fig\,3}{Forest\ plot\ of\ myopia\ prevalence\ by\ gender\ from\ the\ meta-analysis\ of\ African\ studies.}$

Myopia prevalence by age group of the school children in Africa (2000–2021)

The forest plot of the prevalence of myopia in children aged 5–11 years and 12–18 years is presented in Fig 4. The pooled estimate of myopia in school children aged 5–11 years and 12–18 years was lower (3.7%, 95%CI 2.6, 4.7) and higher (5.8%, 95%CI 3.8, 6.3) respectively, than the pooled estimate but none was significant as they overlapped with the pooled estimate in Africa (4.4%, 95%CI 3.6, 5.2). The heterogeneity between the groups was approaching significant (p = 0.091) but older children had a higher prevalence of myopia than younger children. Among those aged 5–11 years, the highest significant prevalence was reported in a Ghanaian study (16.4%, 95%CI: 13.0, 20.3) and a study conducted in Equatorial Guinea (8.2%, 95%CI: 5.8, 11.3) while school children in Ethiopia (0.5%, 95%CI: 0.1, 1.5) had the lowest significant prevalence estimate of myopia. Among those aged 12–18 years, children in Ghana also showed the highest significant prevalence of myopia (20.2%, 95%CI: 16.5, 24.4), but the lowest prevalence was reported among School children in Burkina Faso (0.5%, 95%CI: 0.1, 1.9). The heterogeneity of these studies by age as subgroups analysis were low (S5 File).

 $\label{eq:fig4} \mbox{Forest plot of myopia prevalence by age group across African studies}.$

Myopia prevalence by mode of refraction among school children in Africa (2000–2021)

The forest plot displayed in Fig 5 shows the pooled estimate of myopia prevalence among school children in Africa. Using cycloplegic refraction, studies have reported significantly lower prevalence estimates of myopia among school children in Africa compared with those that used non–cycloplegic refraction (4.2%, 95%CI: 3.3, 5.1 versus 6.4%, 95%CI: 4.4, 8.4; p = 0.046). From the plot, it can be seen that studies that used non cycloplegic technique to determine refraction had greater variabilities in the reported myopia prevalence (ranging from 1.7 to 22.6%), but those that performed cycloplegic refraction had smaller between study variability in the reported prevalence of myopia (range from 0.5 to 10.4%). Funnel plots and the Begg's test for Myopia by refraction technique shown in S6 and S7 Files, respectively, found no publication biases.

Fig 5

Forest plot of myopia prevalence by refraction technique among school children in Africa.

Discussion

Prevalence of myopia

The present study provided recent estimates of the myopia prevalence in African children using data from twenty eight studies conducted over two decades. The prevalence of myopia defined as SER \geq 0.50D of myopia in school children across African countries was 4.7% (95%CI, 3.9, 5.7%) and there were wide variations within and between African countries. A significantly higher prevalence rate was observed in Ghana [45] and South Africa [43], with significantly lower rates in Burkina Faso [42] and Ethiopa [56]. In some countries like Ghana, the variation in the reported prevalence of myopia between studies reached 21% [37, 41, 45, 48, 51, 52]. Although the regional variations in myopia prevalence found in this study are consistent with the statement of Foster and Jiang who remarked that "Considerable regional difference exists from country to country even within the same geographical area" [57], it remains unclear why these variations exist. While the criteria for defining refractive error is often cited as the reason for the variation in the prevalence of refractive errors, including myopia, between studies, this may not be the case in our study because only studies that defined myopia as spherical equivalent of \geq 0.50 D were included.

The overall low prevalence of myopia found across Africa is consistent with other studies that reported lower myopia prevalence in African children compared with Asian children [5, 58]. It is instructive to note that in four of the studies that were included in the current review [36, 43, 45, 52], the reported prevalence of myopia was greater than 10%. Of these, two studies [36, 52] used cycloplegic refraction, which is thought to more accurately estimate the prevalence of myopia [59]. The lower prevalence of myopia in Africa compared with the other regions may be related to the

differences in genetic predisposition to myopia development, and to culture [60–62]. Although the role of genetics in the development and progression of myopia is reported to be small [12], it is believed to have a role in an individual's susceptibility to environmental risk factors for myopia [63]. In addition, several studies have shown the major involvement of environmental factors such as near work (writing, reading, and working on a computer) in myopia development [60, 63]. In many African countries, children do not start education and learning at the same early age as in other countries of Asia. African children are therefore exposed to less near work and are more involved with outdoor activities, resulting in less risk of developing myopia compared with their Asian counterparts. This assertion is supported by the fact that in 2010, the pre-primary school enrolment rate in the most populous country in Africa (Nigeria) was 41.83% compared to 89.12% in 2012 in China (the most populous country in Asia) [64]. We acknowledge that a recent investigation [65] has shown that more precise objective measures are required to make definitive conclusions about the relationship between myopia and near work.

Notwithstanding the relatively low prevalence of myopia found among African children, there is a need to monitor myopia prevalence among children in this region given the increasing access to, and use of, mobile devices among African population [19], including children. This is important considering the reported higher increase in the prevalence of myopia in black children living in Africa (2.8% to 5.5%) compared with other black children not living in Africa (4.8% to 19.9%) after 10 years [58]. It is assumed that black children not in Africa may have more access and exposure to near work, including mobile devices, and less outdoor activities than their counterparts in Africa.

Age and gender-based differences in myopia prevalence

There was a 34.6% increase in the prevalence of myopia between the age groups with the older age group having a higher prevalence of 5.2%. The slightly higher prevalence of myopia between the two age groups shows there is a tendency for myopia prevalence to increase with age which is consistent with previous studies from elsewhere [58, 66, 67]. This increase in myopia prevalence is thought to be associated with the increasing growth of the eyeball. Although the pooled prevalence of myopia in female children was slightly higher than in male children (4.7 versus 3.7%), the difference did not reach statistical significance. The influence of gender on the prevalence of myopia has not been unequivocal in the literature [68–72] with some suggesting that the slightly higher prevalence in females may be related to the different ages of onset of puberty between boys and girls [73]. Other factors that could account for the reported apparent higher prevalence of myopia in girls include limited outdoor activity time than boys [74].

Prevalence of myopia by refraction technique (cycloplegic and non-cycloplegic)

The present study demonstrated that cycloplegic refraction resulted in significantly lower estimates of myopia prevalence than non-cycloplegic refraction, which was consistent with previous studies [75–78]. It has been reported that non-cycloplegic refraction overestimates the prevalence of myopia, yields a non-reliable measurement of association of myopia risk factors [59, 76], and hence cycloplegic refraction is regarded as the gold standard for measuring myopia [59]. Over half of the studies in this review utilised cycloplegic refraction, which is particularly important in this age group where the difference between the cycloplegic and non-cycloplegic refraction is quite high [77, 78]. The fact that non-cycloplegic refraction often results in overestimation of myopia may have, in part, accounted for the high prevalence reported in one study from Ghana [45]. Furthermore, we have demonstrated that cycloplegic refraction results in a lower variability of measured refractive error than non-cycloplegic refraction (see Fig 5), which may reflect the variable accommodative state

during the refraction of children of different ages. This finding underscores the need to appropriately control accommodation when performing refraction especially in young children who have a higher amplitude of accommodation and in whom accommodation is more active.

Implications of the study

This is the first systematic review and meta-analysis to estimate the prevalence of myopia among school children in Africa and its variation with age, gender and refraction technique. As previously reported, the prevalence of myopia in Africa appears low compared to other regions such as South East Asia. This study also provides baseline data for comparison and future prevalence studies to establish a trend in myopia epidemiology in this population. A further remarkable finding in this review is the demonstration that non-cycloplegic refraction overestimated the prevalence of myopia and results in more variable estimates of refractive errors compared with cycloplegic refraction. The interpretation of myopia prevalence data obtained from non-cycloplegic refraction may be potentially misleading to researchers and policymakers. As a result, it is recommended that cycloplegic refraction be used in all studies investigating the prevalence of myopia in children.

Strengths and limitations of the review

This review has certain limitations. Firstly, this review did not investigate the trend in the prevalence of myopia among school children in Africa due to the limited number of studies. Secondly, the selection of English-only studies likely biased the results towards studies in Anglophone countries or countries where the findings were reported in English. Thirdly, the current review did not explore the various factors influencing the epidemiology of myopia in this population. Despite these limitations, a major strength of this study is the selection of studies that used a uniform definition of myopia (i.e. ≥ 0.50 DS of myopia) which allowed for a better comparison in the reported prevalence of myopia. In addition, the study excluded studies that were conducted in unselected groups such as hospital-based studies and studies that did not report any evidence of sampling in the study. In addition, the selected studies were evaluated for robustness in the study designs employed in each study.

Conclusions

In summary, this systematic review and meta-analysis have shown that the prevalence of myopia among schoolchildren in Africa is lower than other regions of the world. The use of non-cycloplegic refraction for estimation of myopia prevalence can be misleading as it returns higher and more variable prevalence estimates. There is a need to monitor the trend of myopia as more children in this region are increasingly being exposed to identified risk factors for myopia development including access to mobile devices, increased near work, increased online or remote learning, and limited time outdoors. Future studies are needed to understand the role of ethnicity on the myopia prevalence in Africa as the inclusion and comparison of the different ethnicities (Black vs White vs Asian) in the same region would add useful information about whether significant differences in the prevalence of myopia among different ethnicity in Africa exists.

Supporting information

S1 Table					
Quality assessment of full-text articles included in review.					
(DOCX)					
Click here for additional data file. (23K, docx)					
S1 File					
PRISMA 2020 checklist.					
(DOCX)					
Click here for additional data file. (32K, docx)					
S2 File					
Search terms for refractive error Africa children prevalence filters (2000–2021).					
(DOCX)					
Click here for additional data file. (13K, docx)					
S3 File					
Funnel plots and 95% confidence intervals of Myopia.					
(DOCX)					
Click here for additional data file. (15K, docx)					

S4 File
Funnel plots and 95% confidence intervals of Myopia by gender.
(DOCX)
Click here for additional data file. (15K, docx)
S5 File
Funnel plots and 95% confidence intervals of Myopia by age in categories.
(DOCX)
Click here for additional data file. (15K, docx)
S6 File
Funnel plots and 95% confidence intervals of Myopia by refraction technique.
(DOCX)
Click here for additional data file. (15K, docx)
S7 File
A meta-regression analysis of Myopia by year of publication.
The vertical axis is the log proportion of Myopia, and the horizontal axis represents year of publication. Each dark dot represented one selected study, and the size of each dark dots corresponds to the weight assigned to each study. Given the slope of the regression line has descending slightly in this figure, this could be interpreted as publication of year increased, the proportion of myopia decreased and, this relationship did not differ statistically (p = 0.5512).

(DOCX)

Click here for additional data file. (37K, docx)

Data used in the analysis.

(XLSX)

Click here for additional data file. (46K, xlsx)

Acknowledgments

The authors acknowledge the guidance of late Prof Alabi, O Oduntan during data collection.

Funding Statement

The authors recieved no specific funding for this work.

Data Availability

All relevant data are within the paper and its <u>Supporting information</u> files.

References

- 1. World Health Organization. WHO launches first World report on vision [cited 2021 June 8]. https://www.who.int/news/item/08-10-2019-who-launches-first-world-report-on-vision.
- 2. Holden BA., Fricke TR., Wilson DA., Jong M., Naidoo KS., Sankaridurg P., et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. *Ophthalmology*. 2016;123:1036–42. doi: 10.1016/j.ophtha.2016.01.006 [PubMed] [CrossRef] [Google Scholar]
- 3. Holden BA, Jong M, Davis S, Wilson D, Fricke T, Resnikoff S. Nearly 1 billion myopes at risk of myopia-related sight-threatening conditions by 2050—time to act now. *Clin Exp Optom*. 2015;98(6):491–3. doi: 10.1111/cxo.12339 [PubMed] [CrossRef] [Google Scholar]
- 4. Pan CW, Ramamurthy D, Saw SM. Worldwide prevalence and risk factors for myopia. *Ophthalmic Physiol Opt.* 2012;32(1):3–16. doi: 10.1111/j.1475-1313.2011.00884.x [PubMed] [CrossRef] [Google Scholar]
- 5. Grzybowski A., Kanclerz P., Tsubota K., Lanca C., Saw S-M. A review on the epidemiology of myopia in school children worldwide. *BMC Ophthalmol*. 2020;20:27–38. doi: 10.1186/s12886-019-1220-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 6. Chen M., Wu A., Zhang L., Wang W., Chen X., Yu X., et al. The increasing prevalence of myopia and high myopia among high school students in Fenghua city, eastern China: a 15-year population-based survey. *BMC Ophthalmol*. 2018;18:159. doi: 10.1186/s12886-018-0829-8 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 7. Naidoo KS, Raghunandan A, Mashige KP, Govender P, Holden BA, Pokharel GP, et al. Refractive error and visual impairment in African children in South Africa. *Invest Ophthalmol Vis Sci.* 2003;44(9):3764–70. doi: 10.1167/iovs.03-0283 [PubMed] [CrossRef] [Google Scholar]
- 8. R. R. Bennett and Rabbetts' clinical visual optics. Oxford: Butterworth-Heinemann; 1998.

- 9. Kempen JH, Mitchell P, Lee KE, Tielsch JM, Broman AT, Taylor HR, et al. The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. *Arch Ophthalmol*. 2004;122(4):495–505. doi: 10.1001/archopht.122.4.495

 [PubMed] [CrossRef] [Google Scholar]
- 10. Williams K, Hammond C. High myopia and its risks. *Community eye health*. 2019;32(105):5–6. [PMC free article] [PubMed] [Google Scholar]
- 11. Holden BA., Mariotti SP., Kocur I., Resnikoff S., He M., Naidoo KS., et al. *The impact of myopia and high myopia: Report of the joint World Health Organization- Brien Holden Vision Institute Global Scientific Meeting on Myopia University of New South Wales, Sydney, Australia, 16–18 March 2015.* Geneva: World Health Organization; 2017. [Google Scholar]
- 12. Congdon N, Burnett A, Frick K. The impact of uncorrected myopia on individuals and society. *Community eye health*. 2019;32(105):7–8. [PMC free article] [PubMed] [Google Scholar]
- 13. Fricke TR., Holden BA., Wilson DA., Schlenther G., Naidoo KS., Resnikoff S., et al. Global cost of correcting vision impairment from uncorrected refractive error. *Bull World Health Organ*. 2012;90:728–38. doi: 10.2471/BLT.12.104034 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 14. Rudnicka AR, Owen CG, Nightingale CM, Cook DG, Whincup PH. Ethnic differences in the prevalence of myopia and ocular biometry in 10- and 11-year-old children: the Child Heart and Health Study in England (CHASE). *Invest Ophthalmol Vis Sci.* 2010;51(12):6270–6. doi: 10.1167/iovs.10-5528 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 15. Wachira L-J. Lifestyle Transition towards Sedentary Behavior among Children and Youth in Sub-Saharan Africa: A narrative review: IntechOpen; 2021.
- 16. OECD/SWAC. Africa's Urbanisation Dynamics 2020: Africapolis, Mapping a New Urban Geography, West African Studies. Paris: OECD Publishing; 2020. [Google Scholar]
- 17. Juma K, Juma PA, Shumba C, Otieno P, Asiki G. Non-Communicable Diseases and Urbanization in African Cities: A Narrative Review. In: Anugwom EE, Awofeso N, editors. Public Health in Developing Countries—Challenges and Opportunities: IntechOpen.
- 18. Porter G, Hampshire K, Abane A, Munthali A, Robson E, Mashiri M, et al. Youth, mobility and mobile phones in Africa: findings from a three-country study. *Information Technology for Development*. 2012;18(2):145–62. [Google Scholar]
- 19. Porter G, Hampshire K, Milner J, Munthali A, Robson E, de Lannoy A, et al. Mobile Phones and Education in Sub-Saharan Africa: From Youth Practice to Public Policy. *Journal of International Development*. 2016;28(1):22–39. [Google Scholar]
- 20. Hepsen IF, Evereklioglu C, Bayramlar H. The effect of reading and near-work on the development of myopia in emmetropic boys: a prospective, controlled, three-year follow-up study. *Vision Res.* 2001;41(19):2511–20. doi: 10.1016/s0042-6989(01)00135-3 [PubMed] [CrossRef] [Google Scholar]
- 21. Ip JM, Saw S-M, Rose KA, Morgan IG, Kifley A, Wang JJ, et al. Role of Near Work in Myopia: Findings in a Sample of Australian School Children. *Investigative Ophthalmology & Visual Science*. 2008;49(7):2903–10. [PubMed] [Google Scholar]
- 22. Huang HM, Chang DS, Wu PC. The Association between Near Work Activities and Myopia in Children-A Systematic Review and Meta-Analysis. *PLoS One*. 2015;10(10):e0140419. doi: 10.1371/journal.pone.0140419 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 23. Sherwin JC, Reacher MH, Keogh RH, Khawaja AP, Mackey DA, Foster PJ. The association between time spent outdoors and myopia in children and adolescents: a systematic review and meta-analysis. *Ophthalmology*. 2012;119(10):2141–51. doi: 10.1016/j.ophtha.2012.04.020 [PubMed] [CrossRef] [Google Scholar]
- 24. Wolffsohn JS, Calossi A, Cho P, Gifford K, Jones L, Li M, et al. Global trends in myopia management attitudes and strategies in clinical practice. *Cont Lens Anterior Eye*. 2016;39(2):106–16. doi: 10.1016/j.clae.2016.02.005 [PubMed] [CrossRef] [Google Scholar]

- 25. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021;372:n71. doi: 10.1136/bmj.n71 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 26. Dandona L, Dandona R. Revision of visual impairment definitions in the International Statistical Classification of Diseases. *BMC medicine*. 2006;4:7-. doi: 10.1186/1741-7015-4-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 27. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. *J Epidemiol Community Health*. 1998;52(6):377–84. doi: 10.1136/jech.52.6.377 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 28. Saxena R, Vashist P, Tandon R, Pandey RM, Bhardawaj A, Gupta V, et al. Incidence and progression of myopia and associated factors in urban school children in Delhi: The North India Myopia Study (NIM Study). *PLoS One*. 2017;12(12):e0189774. doi: 10.1371/journal.pone.0189774 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 29. Saxena R, Vashist P, Tandon R, Pandey RM, Bhardawaj A, Menon V, et al. Prevalence of myopia and its risk factors in urban school children in Delhi: the North India Myopia Study (NIM Study). *PLoS One.* 2015;10(2):e0117349. doi: 10.1371/journal.pone.0117349 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 30. Luo HD, Gazzard G, Liang Y, Shankar A, Tan DT, Saw SM. Defining myopia using refractive error and uncorrected logMAR visual acuity >0.3 from 1334 Singapore school children ages 7–9 years. *Br J Ophthalmol*. 2006;90(3):362–6. doi: 10.1136/bjo.2005.079657 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 31. Patsopoulos NA, Evangelou E, Ioannidis JP. Sensitivity of between-study heterogeneity in meta-analysis: proposed metrics and empirical evaluation. *International Journal of Epidemiology*. 2008;37(5):1148–57. doi: 10.1093/ije/dyn065 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 32. Atowa UC, Munsamy AJ, Wajuihian SO. Prevalence and risk factors for myopia among school children in Aba, Nigeria. *African Vision and Eye Health*; Vol 76, No 1 (2017). [Google Scholar]
- 33. Wajuihian SO, Hansraj R. Refractive Error in a Sample of Black High School Children in South Africa. *Optom Vis Sci.* 2017;94(12):1145–52. doi: 10.1097/OPX.000000000001145 [PubMed] [CrossRef] [Google Scholar]
- 34. Chebil A, Jedidi L, Chaker N, Kort F, Largueche L, El Matri L. Epidemiologic study of myopia in a population of schoolchildren in Tunisia. *Tunis Med.* 2016;94(3):216–20. [PubMed] [Google Scholar]
- 35. Kedir J, Girma A. Prevalence of refractive error and visual impairment among rural school-age children of Goro District, Gurage Zone, Ethiopia. *Ethiop J Health Sci.* 2014;24(4):353–8. doi: 10.4314/ejhs.v24i4.11 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 36. Soler M, Anera RG, Castro JJ, Jiménez R, Jiménez JR. Prevalence of Refractive Errors in Children in Equatorial Guinea. *Optometry and Vision Science*. 2015;92(1). doi: 10.1097/OPX.000000000000448 [PubMed] [CrossRef] [Google Scholar]
- 37. Kumah BD, Ebri A, Abdul-Kabir M, Ahmed AS, Koomson NY, Aikins S, et al. Refractive error and visual impairment in private school children in Ghana. *Optom Vis Sci.* 2013;90(12):1456–61. doi: 10.1097/OPX.0000000000000099 [PubMed] [CrossRef] [Google Scholar]
- 38. Mehari ZA, Yimer AW. Prevalence of refractive errors among schoolchildren in rural central Ethiopia. *Clin Exp Optom*. 2013;96(1):65–9. doi: 10.1111/j.1444-0938.2012.00762.x [PubMed] [CrossRef] [Google Scholar]
- 39. Jimenez R, Soler M, Anera RG, Castro JJ, Perez MA, Salas C. Ametropias in school-age children in Fada N'Gourma (Burkina Faso, Africa). *Optom Vis Sci.* 2012;89(1):33–7. doi: 10.1097/OPX.0b013e318238b3dd [PubMed] [CrossRef] [Google Scholar]
- 40. Yamamah GA, Talaat Abdel Alim AA, Mostafa YS, Ahmed RA, Mohammed AM. Prevalence of Visual Impairment and Refractive Errors in Children of South Sinai, Egypt. *Ophthalmic Epidemiol*. 2015;22(4):246–52. doi: 10.3109/09286586.2015.1056811 [PubMed] [CrossRef] [Google Scholar]

- 41. Nartey ET, van Staden DB, Amedo AO. Prevalence of Ocular Anomalies among Schoolchildren in Ashaiman, Ghana. *Optometry and Vision Science*. 2016;93(6). doi: 10.1097/OPX.0000000000000836 [PubMed] [CrossRef] [Google Scholar]
- 42. Anera RG, Jiménez JR, Soler M, Pérez MA, Jiménez R, Cardona JC. Prevalence of refractive errors in school-age children in Burkina Faso. *Jpn J Ophthalmol.* 50. Japan 2006. p. 483–4. doi: 10.1007/s10384-006-0354-9 [PubMed] [CrossRef] [Google Scholar]
- 43. Chukwuemeka AG. *Prevalence of refractive errors among primary school children (7–14 years) in Motherwell Township, Eastern Cape, South Africa*. Eastern Cape, South Africa: University of Limpopo; 2015. [Google Scholar]
- 44. Alrasheed SH, Naidoo KS, Clarke-Farr PC. Prevalence of visual impairment and refractive error in school-aged children in South Darfur State of Sudan. *African Vision and Eye Health*; Vol 75, No 1 (2016). [Google Scholar]
- 45. Abdul-Kabir M, Bortey DNK, Onoikhua EE, Asare-Badiako B, Kumah DB. Ametropia among school children—a cross-sectional study in a sub-urban municipality in Ghana. *Pediatr Dimensions*. 2016;1(3):65–8. [Google Scholar]
- 46. Ebri AE, Govender P, Naidoo KS. Prevalence of vision impairment and refractive error in school learners in Calabar, Nigeria. *African Vision and Eye Health*; Vol 78, No 1 (2019) [Google Scholar]
- 47. Ezinne NE, Mashige KP. Refractive error and visual impairment in primary school children in Onitsha, Anambra State, Nigeria. *African Vision and Eye Health*; Vol 77, No 1 (2018). [Google Scholar]
- 48. Nakua EK, Otupiri E, Owusu-Dabo E, Dzomeku VM, Otu-Danquah K, Anderson M. Prevalence of refractive errors among junior high school students in the Ejisu Juaben Municipality of Ghana. *J Sci Tech.* 2015;35(1):52–62. [Google Scholar]
- 49. Ndou NP. *Uncorrected refractive errors among primary school children of Moretele sub-distric in North-west Province*, South Africa: University of Limpopo; 2014. doi: 10.5713/ajas.2013.13774 [CrossRef] [Google Scholar]
- 50. Abdi Ahmed Z, Alrasheed SH, Alghamdi W. Prevalence of refractive error and visual impairment among school-age children of Hargesia, Somaliland, Somalia. *East Mediterr Health J.* 2020;26(11):1362–70. doi: 10.26719/emhj.20.077
 [PubMed] [CrossRef] [Google Scholar]
- 51. Ovenseri-Ogbomo GO, Assien R. Refractive error in school children in Agona Swedru, Ghana. *African Vision and Eye Health; South African Optometrist*: Vol 69, No 2 (2010). [Google Scholar]
- 52. Ovenseri-Ogbomo G, Omuemu DV. Prevalence of refractive error among school children in the Cape Coast Municipality, Ghana. *{Opto}*. 2010:59. [Google Scholar]
- 53. Assem AS, Tegegne MM, Fekadu SA. Prevalence and associated factors of myopia among school children in Bahir Dar city, Northwest Ethiopia, 2019. *PLoS One*. 2021;16(3):e0248936. doi: 10.1371/journal.pone.0248936 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 54. Maduka-Okafor FC, Okoye O, Ezegwui I, Oguego NC, Okoye OI, Udeh N, et al. Refractive Error and Visual Impairment Among School Children: Result of a South-Eastern Nigerian Regional Survey. *Clin Ophthalmol*. 2021;15:2345–53. doi: 10.2147/OPTH.S298929 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 55. Rushood AA, Azmat S, Shariq M, Khamis A, Lakho KA, Jadoon MZ, et al. Ocular disorders among schoolchildren in Khartoum State, Sudan. *East Mediterr Health J.* 2013;19(3):282–8. [PubMed] [Google Scholar]
- 56. Woldeamanuel GG, Biru MD, Geta TG, Areru BA. Visual impairment and associated factors among primary school children in Gurage Zone, Southern Ethiopia. *Afr Health Sci.* 2020;20(1):533–42. doi: 10.4314/ahs.v20i1.60 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 57. Foster PJ, Jiang Y. Epidemiology of myopia. *Eye*. 2014;28(2):202–8. doi: 10.1038/eye.2013.280 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 58. Rudnicka AR, Kapetanakis VV, Wathern AK, Logan NS, Gilmartin B, Whincup PH, et al. Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention. *Br J Ophthalmol*. 2016;100(7):882–90. doi: 10.1136/bjophthalmol-2015-307724 [PMC free article] [PubMed]

[CrossRef] [Google Scholar]

- 59. Morgan IG, Iribarren R, Fotouhi A, Grzybowski A. Cycloplegic refraction is the gold standard for epidemiological studies. *Acta Ophthalmol.* 2015;93(6):581–5. doi: 10.1111/aos.12642 [PubMed] [CrossRef] [Google Scholar]
- 60. Ip JM, Huynh SC, Robaei D, Rose KA, Morgan IG, Smith W, et al. Ethnic Differences in the Impact of Parental Myopia: Findings from a Population-Based Study of 12-Year-Old Australian Children. *Investigative Ophthalmology & Visual Science*. 2007;48(6):2520–8. doi: 10.1167/iovs.06-0716 [PubMed] [CrossRef] [Google Scholar]
- 61. Goldschmidt E, Jacobsen N. Genetic and environmental effects on myopia development and progression. *Eye.* 2014;28(2):126–33. doi: 10.1038/eye.2013.254 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 62. Armarnik S, Lavid M, Blum S, Wygnanski-Jaffe T, Granet DB, Kinori M. The relationship between education levels, lifestyle, and religion regarding the prevalence of myopia in Israel. *BMC Ophthalmology*. 2021;21(1):136. doi: 10.1186/s12886-021-01891-w [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 63. Lim LT, Gong Y, Ah-Kee EY, Xiao G, Zhang X, Yu S. Impact of parental history of myopia on the development of myopia in mainland china school-aged children. *Ophthalmology and eye diseases*. 2014;6:31–5. doi: 10.4137/OED.S16031 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 64. The Global Economy. Business and economic data for 200 countries [cited 2021 August 12]. https://www.theglobaleconomy.com/.
- 65. Gajjar S, Ostrin LA. A systematic review of near work and myopia: measurement, relationships, mechanisms and clinical corollaries. *Acta Ophthalmologica*. 2021. doi: 10.1111/aos.15043 [PubMed] [CrossRef] [Google Scholar]
- 66. French AN, Morgan IG, Burlutsky G, Mitchell P, Rose KA. Prevalence and 5- to 6-year incidence and progression of myopia and hyperopia in Australian schoolchildren. *Ophthalmology*. 2013;120(7):1482–91. doi: 10.1016/j.ophtha.2012.12.018
 [PubMed] [CrossRef] [Google Scholar]
- 67. Hashemi H, Fotouhi A, Mohammad K. The age- and gender-specific prevalences of refractive errors in Tehran: the Tehran Eye Study. *Ophthalmic Epidemiol*. 2004;11(3):213–25. doi: 10.1080/09286580490514513 [PubMed] [CrossRef] [Google Scholar]
- 68. Lam CSY, Goh WSH. The incidence of refractive errors among school children in Hong Kong and its relationship with the optical components. *Clinical and Experimental Optometry*. 1991;74(3):97–103. [Google Scholar]
- 69. Maul E, Barroso S, Munoz SR, Sperduto RD, Ellwein LB. Refractive Error Study in Children: results from La Florida, Chile. *Am J Ophthalmol.* 2000;129(4):445–54. doi: 10.1016/s0002-9394(99)00454-7 [PubMed] [CrossRef] [Google Scholar]
- 70. Czepita D, Mojsa A, Ustianowska M, Czepita M, Lachowicz E. Role of gender in the occurrence of refractive errors. *Ann Acad Med Stetin*. 2007;53(2):5–7. [PubMed] [Google Scholar]
- 71. Quek TP, Chua CG, Chong CS, Chong JH, Hey HW, Lee J, et al. Prevalence of refractive errors in teenage high school students in Singapore. *Ophthalmic Physiol Opt.* 2004;24(1):47–55. doi: 10.1046/j.1475-1313.2003.00166.x [PubMed] [CrossRef] [Google Scholar]
- 72. Zhao J, Mao J, Luo R, Li F, Munoz SR, Ellwein LB. The progression of refractive error in school-age children: Shunyi district, China. *Am J Ophthalmol*. 2002;134(5):735–43. doi: 10.1016/s0002-9394(02)01689-6 [PubMed] [CrossRef] [Google Scholar]
- 73. Vision. NRCUCo. *Myopia: Prevalence and Progression*. Washington (DC): National Academies Press (US); 1989. [PubMed] [Google Scholar]
- 74. Gong J-F, Xie H-L, Mao X-J, Zhu X-B, Xie Z-K, Yang H-H, et al. Relevant factors of estrogen changes of myopia in adolescent females. *Chinese medical journal*. 2015;128(5):659. doi: 10.4103/0366-6999.151669 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Lundberg K, Suhr Thykjaer A, Søgaard Hansen R, Vestergaard AH, Jacobsen N, Goldschmidt E, et al. Physical activity and myopia in Danish children-The CHAMPS Eye Study. *Acta Ophthalmol*. 2018;96(2):134–41. doi: 10.1111/aos.13513 [PubMed] [CrossRef] [Google Scholar]

76. Fotouhi A, Morgan IG, Iribarren R, Khabazkhoob M, Hashemi H. Validity of noncycloplegic refraction in the assessment of refractive errors: the Tehran Eye Study. *Acta Ophthalmol*. 2012;90(4):380–6. doi: 10.1111/j.1755-3768.2010.01983.x [PubMed] [CrossRef] [Google Scholar]

77. Fotedar R, Rochtchina E, Morgan I, Wang JJ, Mitchell P, Rose KA. Necessity of cycloplegia for assessing refractive error in 12-year-old children: a population-based study. *Am J Ophthalmol*. 2007;144(2):307–9. doi: 10.1016/j.ajo.2007.03.041 [PubMed] [CrossRef] [Google Scholar]

78. Hu YY, Wu JF, Lu TL, Wu H, Sun W, Wang XR, et al. Effect of cycloplegia on the refractive status of children: the Shandong children eye study. *PLoS One*. 2015;10(2):e0117482. doi: 10.1371/journal.pone.0117482 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2022; 17(2): e0263335.

Published online 2022 Feb 3. doi: 10.1371/journal.pone.0263335.r001

Decision Letter 0

Aleksandra Barac, Academic Editor

13 Dec 2021

PONE-D-21-28841Systematic Review and Meta-analysis of Myopia prevalence in African School children.PLOS ONE

Dear Dr. Osuagwu,

Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE's publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

Please submit your revised manuscript by Jan 27 2022 11:59PM. If you will need more time than this to complete your revisions, please reply to this message or contact the journal office at plosone@plos.org. When you're ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

Please include the following items when submitting your revised manuscript:

- A rebuttal letter that responds to each point raised by reviewers. You should upload this letter as a separate file labeled 'Response to Reviewers'.
- A marked-up copy of your manuscript that highlights changes made to the original version. You should upload this as a separate file labeled 'Revised Manuscript with Track Changes'.
- An unmarked version of your revised paper without tracked changes. You should upload this as a separate file labeled 'Manuscript'.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter. Guidelines for resubmitting your figure files are available below the reviewer comments at the end of this letter.

If applicable, we recommend that you deposit your laboratory protocols in protocols.io to enhance the reproducibility of your results. Protocols.io assigns your protocol its own identifier (DOI) so that it can be cited independently in the future. For instructions see:

https://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols. Additionally, PLOS ONE offers an option for publishing peer-reviewed Lab Protocol articles, which describe protocols hosted on protocols.io. Read more information on sharing protocols at https://plos.org/protocols?utm_medium=editorial-email&utm_source=authorletters&utm_campaign=protocols.

We look forward to	receiving your	revised	manuscript.
--------------------	----------------	---------	-------------

Kind regards,

Aleksandra Barac

Academic Editor

PLOS ONE

Journal Requirements:

When submitting your revision, we need you to address these additional requirements.

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

https://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne formatting sample main body.pdf and

https://journals.plos.org/plosone/s/file? id=ba62/PLOSOne formatting sample title authors affiliations.pdf

2. Please include captions for your Supporting Information files at the end of your manuscript, and update any in-text citations to match accordingly. Please see our Supporting Information guidelines for more information: http://journals.plos.org/plosone/s/supporting-information.

[Note: HTML markup is below. Please do not edit.]

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

Reviewer #2: Yes

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

Reviewer #2: Yes

3. Have the authors made all data underlying the findings in their manuscript fully available?

The <u>PLOS Data policy</u> requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: No

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: The authors conducted a review and meta-analysis of articles on the prevalence of myopia in African children.

This study follows the recommendations for this type of review.

Several points of detail should be reported

- $1\,^{\circ}$ In the inclusion criteria, the authors report having excluded studies in which the ages of the participants were either not specified or outside the age range specified. But they did not clearly define the age ranges of this review themselves.
- 2 ° Two articles have been included but pose a problem in my opinion.
- They did not report whether it was school- or population-based. The inclusion / exclusion criteria are not clear at this level
- They did not specify the method used to determine the refractive error. However, it is clearly specified in the inclusion criteria "stated the method of measuring refractive error cycloplegic or non-cycloplegic refraction, as well as objective or subjective refraction"

I think we should exclude these articles or change the inclusion criteria

- 3° in the table, in addition to the age limits, the median or average of the ages must be included in each article. Moreover, the authors specify it for an article: In another study (43) however, the children were aged 4 24 years but with a mean age of 12 years.
- 4° in the discussion, when the authors evoke the fact that fewer children await early education and learning in many African countries, compared with Asian countries, means that the children do less near work and are more involved with outdoor tasks, nuances must be made.

In a meta-analysis, Gajjar (Acta ophtahlmol 2021) show that the role of near vision is still questionable and that the study of the literature does not allow a conclusion. On the other hand, Tang Y (J Glob Health. 2021) shows the existence of a difference in the prevalence of myopia in China depending on whether the children live in the city or in the countryside.

5° The authors said that "he apparent higher prevalence of myopia in girls may be due to girls having ... shorter axial length than boys". That surprising !!!

Reviewer #2: This is a good Meta-analysis regarding the myopia prevalence in Africa

it is good structured and well-written; however, it would be better if you add a figure showing prevalence of myopia by ethnicity (black vs white vs asian in the same region) to show if it affects the prevalence of myopia or not

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose "no", your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email PLOS at figures@plos.org. Please note that Supporting Information files do not need this step.

2022; 17(2): e0263335.

Published online 2022 Feb 3. doi: <u>10.1371/journal.pone.0263335.r002</u>

Author response to Decision Letter 0

13 Jan 2022

Response to Reviewers comments

Dear Aleksandra Barac

Thanks for the very useful comments which has strengthened our manuscript. We have revised the article according to the suggested comments. We have provided a point-by-point response to all reviewers comments for clarity.

The changes made in the revised manuscript and supplementary files were highlighted using red font for easy identification.

Journal Requirements:

When submitting your revision, we need you to address these additional requirements.

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

https://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne formatting sample main body.pdf and

https://journals.plos.org/plosone/s/file? id=ba62/PLOSOne formatting sample title authors affiliations.pdf

Response: Done

2. Please include captions for your Supporting Information files at the end of your manuscript, and update any in-text citations to match accordingly. Please see our Supporting Information guidelines for more information: http://journals.plos.org/plosone/s/supporting-information.

Response: Done

Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

Reviewer #2: Yes

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

Reviewer #2: Yes

3. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: No

Response: We have included the study data used in the analysis as a spread sheet inline with PlosOne policy

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1:

The authors conducted a review and meta-analysis of articles on the prevalence of myopia in African children.

This study follows the recommendations for this type of review.

Several points of detail should be reported

 1° In the inclusion criteria, the authors report having excluded studies in which the ages of the participants were either not specified or outside the age range specified. But they did not clearly define the age ranges of this review themselves.

Response: Agreed and we have excluded the 4–24year-old range study (Yareed et al) and the 5-19 year study (Ovenseri-Ogbomo et al) as they do not meet our stipulated inclusion criteria of 5-18 year.

- 2 ° Two articles have been included but pose a problem in my opinion.
- They did not report whether it was school- or population-based. The inclusion / exclusion criteria are not clear at this level. They did not specify the method used to determine the refractive error. However, it is clearly specified in the inclusion criteria "stated the method of measuring refractive error cycloplegic or non-cycloplegic refraction, as well as objective or subjective refraction"

Response: The inclusion and exclusion criteria were made clearer and as suggested, we excluded these studies as the two stipulated criteria are not specified [Rushood (39) and Woldeamanuel (47)]

 3° in the table, in addition to the age limits, the median or average of the ages must be included in each article. Moreover, the authors specify it for an article: In another study (43) however, the children were aged 4 - 24 years but with a mean age of 12 years.

Response: We have included the mean age in Table 1 and the study with age range 4-24years was excluded based on the exclusion criteria.

4° in the discussion, when the authors evoke the fact that fewer children await early education and learning in many African countries, compared with Asian countries, means that the children do less near work and are more involved with outdoor tasks, nuances must be made.

Response: In a meta-analysis, Gajjar (Acta ophthalmol 2021) showed that the role of near vision is still questionable and that the study of the literature does not allow a conclusion. On the other hand, Tang Y (J Glob Health. 2021) showed the existence of a difference in the prevalence of myopia in China depending on whether the children live in the city or in the countryside. However, we agree with the reviewer and have made the following revision in the discussion section:

In addition, several studies have shown the major involvement of environmental factors such as near work (writing, reading, and working on a computer) in myopia development(62, 65). In many African countries, children do not start education and learning at the same early age as in other countries of Asia. African children are therefore exposed to less near work and are more involved with outdoor activities, resulting in less risk of developing myopia compared with their Asian counterparts. This assertion is supported by the fact that in 2010, the pre-primary school enrolment rate in the most populous country in Africa (Nigeria) was 41.83% compared to 89.12% in 2012 in China (the most populous country in Asia) (66). We acknowledge that a recent investigation(67) has shown that more precise objective measures are required to make definitive conclusions about the relationship between myopia and near work.

5° The authors said that "he apparent higher prevalence of myopia in girls may be due to girls having ... shorter axial length than boys". That surprising !!!

Response: Zadnik et al study was referring to a specific context in their study, where they found that girls tended to have steeper corneas, stronger crystalline lenses, and shorter eyes/axial length than boys. These findings are specific to their study and cannot be used to explain any result where a higher prevalence of myopia in girls is found. For example, we know that shorter axial length is generally associated with hyperopia and not myopia.

However, the new analysis after removing the 4 studies, showed no statistically significant difference in myopia prevalence between gender. Therefore, we have removed this statement and the revised section now reads:

The influence of gender on the prevalence of myopia has not been unequivocal in the literature (70-74) with some suggesting that the slightly higher prevalence in females may be related to the different ages of onset of puberty between boys and girls (75). Other factors that could account for the reported apparent higher prevalence of myopia in girls include limited outdoor activity time than boys (76).

Reviewer #2

This is a good Meta-analysis regarding the myopia prevalence in Africa. It is good structured and well-written; however, it would be better if you add a figure showing prevalence of myopia by ethnicity (black vs white vs asian in the same region) to show if it affects the prevalence of myopia or not

Response: Thanks for the suggestion. Although the inclusion and comparison of the different ethnicities (Black vs White vs Asian) in the same region would add useful information about the differences in the prevalence of myopia between ethnic groups in Africa, studies that have been conducted in Africa did not specify the different ethnicities. However, we think there is need for such comparison between black vs white vs Asian and this could be another research interest with a different research aim for another manuscript. We have suggested this in the conclusion for future study direction. The section now reads:

Future studies are needed to understand the role of ethnicity on the myopia prevalence in Africa as the inclusion and comparison of the different ethnicities (Black vs White vs Asian) in the same region would add useful information about whether significant differences in the prevalence of myopia among different ethnicity in Africa exists.

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose "no", your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

Response. Thanks for your comments

Attachment

Submitted filename: Response to Reviewers comments.docx

Click here for additional data file. (31K, docx)

2022; 17(2): e0263335.

Published online 2022 Feb 3. doi: <u>10.1371/journal.pone.0263335.r003</u>

Decision Letter 1

Aleksandra Barac, Academic Editor

17 Jan 2022

Systematic Review and Meta-analysis of Myopia prevalence in African School children.

PONE-D-21-28841R1

Dear Dr. Osuagwu,

We're pleased to inform you that your manuscript has been judged scientifically suitable for publication and will be formally accepted for publication once it meets all outstanding technical requirements.

Within one week, you'll receive an e-mail detailing the required amendments. When these have been addressed, you'll receive a formal acceptance letter and your manuscript will be scheduled for publication.

An invoice for payment will follow shortly after the formal acceptance. To ensure an efficient process, please log into Editorial Manager at http://www.editorialmanager.com/pone/, click the 'Update My Information' link at the top of the page, and double check that your user information is up-to-date. If you have any billing related questions, please contact our Author Billing department directly at authorbilling@plos.org.

If your institution or institutions have a press office, please notify them about your upcoming paper to help maximize its impact. If they'll be preparing press materials, please inform our press team as soon as possible -- no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact onepress@plos.org.

Kind regards,

Aleksandra Barac

Academic Editor

PLOS ONE

2022; 17(2): e0263335.

Published online 2022 Feb 3. doi: <u>10.1371/journal.pone.0263335.r004</u>

Acceptance letter

Aleksandra Barac, Academic Editor

24 Jan 2022

PONE-D-21-28841R1

Systematic Review and Meta-analysis of Myopia prevalence in African School children.

Dear Dr. Osuagwu:

I'm pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please let them know about your upcoming paper now to help maximize its impact. If they'll be preparing press materials, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org.

If we can help with anything else, please email us at <u>plosone@plos.org</u>.

Thank you for submitting your work to PLOS ONE and supporting open access.

Kind regards,

PLOS ONE Editorial Office Staff

on behalf of

Dr. Aleksandra Barac

Academic Editor

PLOS ONE

nature > eye > articles > article

Download PDF ↓

Article Open access Published: 04 July 2024

Global estimates on the number of people blind or visually impaired by Uncorrected Refractive Error: a meta-analysis from 2000 to 2020

<u>Vision Loss Expert Group of the Global Burden of Disease Study & the GBD 2019 Blindness and Vision</u>

<u>Impairment Collaborators</u>

Eye 38, 2083-2101 (2024)

3359 Accesses | Metrics

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 partners, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- Store and/or access information on a device
- > Personalised advertising and content, advertising and content measurement, audience research and services development

In 2020, 3.7 million people (95%UI 3.10–4.29) were blind and 157 million (140–176) had MSVI due to URE, a 21.8% increase in blindness and 72.0% increase in MSVI since 2000. Age-standardised prevalence of URE blindness and MSVI decreased by 30.5% (30.7–30.3) and 2.4% (2.6–2.2) respectively during this time. In 2020, South Asia GBD super-region had the highest 50+ years age-standardised URE blindness (0.33% (0.26–0.40%)) and MSVI (10.3% (8.82–12.10%)) rates. The age-standardized ratio of women to men for URE blindness was 1.05:1.00 in 2020 and 1.03:1.00 in 2000. An estimated 419 million (295–562) people 50+ had near VI from uncorrected presbyopia, a +75.3% (74.6–76.0) increase from 2000

Conclusions

The number of cases of VI from URE substantively grew, even as age-standardised prevalence fell, since 2000, with a continued disproportionate burden by region and sex. Global population ageing will increase this burden, highlighting urgent need for novel approaches to refractive service delivery.

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

with global productivity losses is estimated to be 411 billion US dollars annually [11]. URE is readily treated with spectacles, making it one of the most cost-effective healthcare interventions, alongside cataract surgery [12,13,14,15]. Thus, it is a global priority to improve access to refraction services [11], as set out in 'Towards universal eye health: Global Action Plan 2014–2019 of the World Health Assembly (WHA) in 2013 [16]. and more recently in the 'World Report on Vision' by the World Health Organisation (WHO) in 2019 [17], which called for the routine measurement of refractive error services coverage as a means to address the United Nations (UN) Sustainable Development Goals [18] target 3.8 to "achieve universal health coverage, including financial risk protection, access to quality essential healthcare services and access to safe, effective, quality and affordable essential medicines and vaccines for all". Furthermore, these recommendations have been adopted in a resolution by the 73rd WHA member states in 2021, which set global targets for a 40% increase in effective refractive error coverage (eREC) by 2030. As we transition from the efforts of VISION 2020: the Right to Sight initiative to tackle avoidable blindness, these focused targets are fundamental to eliminate avoidable vision loss in future.

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

with the impact of the increased prevalence of myopia, the burden of URE is likely to grow in the future.

The Vision Loss Expert Group (VLEG) curate a comprehensive, continuously updated, online database of ophthalmic epidemiological data and have made important contributions to knowledge about the burden and causes of vision impairment and blindness globally [27,28,29]. These estimates have been used in the WHO Report on Vision in 2019 [17] and the recent Lancet Global Health commission on Global Eye Health Report [15]. Updated analyses are required to reflect rapidly increasing sources of new population data, and to monitor progress in reduction of avoidable sight loss. The need for new population data on vision impairment has been emphasised in a recent paper highlighting the grand challenge priorities for global eye health [30], and will be vital to monitor and measure success against the WHA global target of a 40% increase in eREC.

Thus, the aim of the current study is to provide updated estimates of the global burden of vision loss due to URE, disaggregated by sex, age, year and region, for the period from 2000 to 2020 covered by VISION 2020. The Right to Sight initiative. For the first time

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Asia, and Oceania, 44 from South Asia, 16 from North Africa and the Middle East, 25 from Latin America and the Caribbean, 9 from High income, and 6 from Central Europe, Eastern Europe, and Central Asia. Additionally, the VLEG commissioned the preparation of 5-year age-disaggregated RAAB data from the RAAB repository. Studies were included if they met the following criteria: visual acuity data had to be measured using a test chart that could be mapped to the Snellen scale, and the sample had to be representative of the population. Studies based on self-report of vision loss were excluded. The International Classification of Diseases 11th edition [32] criteria for vision loss, as suggested by WHO, was employed, categorizing individuals according to vision in their better eye on presentation. This classification defines moderate vision loss as visual acuity of 6/60 or better but less than 6/18, severe vision loss as a visual acuity of 3/60 or better but less than 6/60, and blindness as visual acuity of less than 3/60 or less than 10° visual field around central fixation (although the visual field definition is rarely used in population-based eye surveys). Moderate and severe visual impairment (MSVI) was combined to present prevalence data. Vision impairment from uncorrected presbyopia was defined as presenting near vision of worse than <N6 or <N8 at 40 cm where best-corrected distance

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

glaucoma, diabetic retinopathy, and other causes of vision impairment (in aggregate).

We produced location-, year-, age-, and sex-specific estimates of MSVI and blindness using Disease Modelling Meta-Regression (Dismod-MR) 2.1 [34]. The details of the data processing steps are described elsewhere [29]. Briefly, Dismod-MR 2.1 models were run for all vision impairment stratified by severity (moderate, severe, blindness) regardless of cause and, separately, for MSVI and blindness due to each modelled cause of vision impairment. Then, models of MSVI due to specific causes were split into moderate and severe vision loss estimates using the ratio of overall prevalence in the all-cause moderate presenting vision impairment and severe presenting vision impairment models. Next, prevalence estimates for all causes stratified by severity were scaled to the models of all-cause prevalence by severity. This produced final estimates by age, sex, year, and location for each individual cause of vision impairment stratified by severity, including refractive error. Model projection was to the year 2020, coincident with the end of VISION 2020: the Right to Sight initiative, and estimates were age-standardised using the GBD standard population [35]. All generated estimates for visual impairment due to URE are

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

contains supplementary tables for all 21 GBD world regions in 2020. These estimates reveal that in 2020, 3.70 million people (95% UI 3.10–4.29 million) in the world were blind and 157 million (95% UI 140–175 million) had MSVI due to URE. Focusing on those 50+ years of age, 2.29 million people (95% UI 1.79–2.80 million) were blind due to URE globally and 86.1 million (95% UI 74.2–101 million) had MSVI.

Table 1 Number and age-standardised prevalence of people with blindness (<3/60) or MSVI (<6/18 to >/=3/60) due to URE in 7 Super Regions in 2020.

As a percentage of all types of blindness, the burden of blindness due to URE globally is 8.60% (95% UI 7.22–9.99%) and is greatest for the super regions of South Asia (12.71%, 95% UI 10.58–14.82%) and Southeast Asia, East Asia and Oceania (9.34%, 95% UI 7.67–10.94%). These updated data estimate that URE is the leading cause of MSVI globally, accounting for 53.39% (95% UI 47.56–59.51%) of all cases. Focusing on blindness due to URE in those aged 50+ years, South Asia accounts for the largest age-standardised

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

in those 50+ years decreased significantly, by -30.5% (95% UI -30.7 to -30.3) during this time period. The global age-standardised prevalence of MSVI due to URE in those aged 50+ years modestly decreased by -2.4% (95% UI -2.6 to -2.2%) between 2000 and 2020, but with some regional variations. The Latin America and Caribbean super-region demonstrated a slight increase in age-standardised prevalence of MSVI due to URE of +0.8% (95% UI +0.7 to +1.0%), and the High-Income super-region had no change (+0.1%, 95% UI -0.1 to +0.3).

Table 2 Percentage change in crude prevalence, case number and agestandardised prevalence of MSVI and blindness due to URE in adults aged 50 years and older in the 7 Super Regions between 2000 and 2020.

By a clear margin, South Asia had the highest regional 50+ years age-standardised URE blindness and MSVI prevalence in 2020 (blind: 0.3%, 95% UI 0.3–0.4; MSVI: 10.3%; 95% UI 8.8–12.1%) (Table 1), but also demonstrated the greatest reductions in age-standardised URE blindness between 2000 and 2020 (–46.3% (95% LII –46.5 to –46.2%)) (Table 2)

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

(95% UI -42.2 to -41.9): percentage reduction MSVI; women -8.9% (95% UI -9.1 to -8.8), men -4.3% (95% UI -4.5 to -4.1)), although the burden remains substantial.

Table 3 presents the number of people, men and women with near VI from uncorrected presbyopia in the seven super regions. In 2020, an estimated 419 million (95% UI 295–562 million) people aged 50+ had near VI from uncorrected presbyopia globally, with an agestandardised prevalence of 22.3% (95% UI 15.8–29.9%). Approximately 70% of global near VI from presbyopia occurred in two super regions: South Asia and Southeast Asia, East Asia and Oceania (293 million).

Table 3 Number and age-standardised prevalence of people with uncorrected presbyopia aged 50+ years (>N6/N8 at 40 cm when best-corrected distance visual acuity was 6/12 or better) in 7 Super Regions in 2020.

Table 4 presents the percentage change in crude prevalence of near VI due to uncorrected presbyopia in men and women aged 50 years and older between 2000 and 2020. Over this

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Fig. 3: Comparison of the number of men and women with near vision impairment due to uncorrected presbyopia in 2000 and 2020 by seven World GBD super regions, with Global total bottom right panel.

Note scales (values should be multiplied by 1000) are not the same between charts, but rather

convo to highlight the differences across the time period and say differences within CRD super

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Encouragingly, the age-standardised prevalence of blindness due to URE in those aged 50+ years has decreased substantially from 2000 to 2020, potentially reflecting the targeted efforts countries have adopted to tackle severe sight loss. This may in part be explained by the increased use of intra-ocular lenses in cataract surgery over the last 20–30 years, leading to a reduction in blindness due to aphakia [38]. In contrast, the age-standardised prevalence of MSVI due to URE in those aged 50+ years only decreased modestly between 2000 and 2020.

The reductions we observed in age-standardised prevalence are counterbalanced by a striking increase in the unadjusted burden of blindness and MSVI due to URE, meaning that the total number of affected persons in the world has risen. This is driven by two key factors: continued global population growth, which is estimated to reach 10.4 billion in 2100, and an ageing population [39]. In common with the majority of vision-impairing ocular diseases, the likelihood of MSVI and blindness due to URE rapidly increases with age, as shown in Fig. 2. UN projections report that between 2020 and 2050 the global population of those aged 65+ years is expected to double from 703 million to 1.5 billion,

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

of refractive errors, development of infrastructure for spectacle provision, outreach efforts to drive demand, and novel technical approaches to allow more services to be delivered by available, less fully-trained cadres. The WHO World Report on Vision, 2019 [17] sets out four key areas to increase access to eyecare services: (i) Increase of the availability of services through training and improved infrastructure; (ii) Increase the accessibility of services to those who need them; (iii) Increase the affordability of services, and (iv) Increase of the acceptability of refractive services, through awareness raising.

While the burden of vision impairment increases with age, focusing only on the population aged 50 years and above provides an incomplete view of vision impairment due to URE, which also frequently affects younger persons. While we report that those aged 50+ years with MSVI total 86 million in 2020, this only accounts for 55% of all MSVI (167 million). For younger people, the burden of URE is likely driven by the concerning global increase in myopia [42], with recent evidence showing these trends are not only confined to Asian populations [43]. However, there remains a paucity of data on vision impairment due to URE in children and younger adults, which needs to be redressed.

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

demonstrated a reduction in crude prevalence but in all areas the number of cases increased significantly, likely due to the ageing population globally and also improvements in data availability in the last 20 years. It was not possible to generate age-standardised estimates due to sparsity of data. The combination of high, rapidly rising burden and the paucity of data underscores the need for more attention to presbyopia among both researchers and health service planners.

The large burden of uncorrected presbyopia may in part reflect a view that correction for near VI is somehow less important than for distance VI, but studies have shown that vision impairment from URE affects the quality of life to a similar degree whether at distance or near VI [14]. Furthermore, a recent study [46] reported on the considerable productivity loss from un- and under-corrected presbyopia in LICs and LMICs. Using GBD data, the authors estimated 238 million people of working age (15–65 years) in LMICs had uncorrected presbyopia, and estimated the resulting direct productivity loss at \$54 billion dollars, using productivity-adjusted-life-years. The potential for presbyopic correction to improve real-world work productivity is underscored by recent trials [2].

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

impairment due to URE, to strengthen data from younger populations, and focus efforts on developing refractive services in LICs and LMICs to fill the data gaps to achieve greater geographical coverage.

Conclusions

Data from the last 20 years show that the absolute number of people with URE is rising due to population growth and ageing. URE remains a leading global cause of MSVI among persons aged 50+ years, affecting 86 million individuals and accounting for 53.4% of the total figure. This, coupled with the huge burden of near vision impairment due to uncorrected presbyopia, highlights the urgent need for novel and fresh approaches to refractive service delivery. While progress has been made in the last two decades, a reduction in the burden of vision impairment from URE can be realised by adding refractive services to universal health coverage and otherwise improving availability of, and access to, spectacle provision. Though the need is greater in some global regions, URE has not been fully addressed anywhere, and the resulting productivity losses and reduction in quality of life should not be overlooked for any country. Over this decade, the target set by

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

- Visual impairment is a significant global health concern, and the 'World Report on
 Vision' by the World Health Organisation in 2019 called for the routine measurement
 of refractive error services coverage as a means to address the UN Sustainable
 Development Goal 3.8 of universal health coverage
- Uncorrected refractive error (URE) is readily treated with spectacles, making it one of the most cost-effective healthcare interventions, both for distance visual impairment and near visual impairment due to presbyopia
- The need for new population data on vision impairment is vital to monitor and measure success against global targets to increase the coverage of refractive error services by 40% by 2030

What this study adds

• This study provides up-to-date global and regional, sex-specific and age-specific estimates and temporal trends for vision impairment due to uncorrected refractive

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

• These data underscore the persistent and substantial global burden of avoidable vision loss caused by uncorrected refractive error, highlighting the urgent need for novel and fresh approaches to refractive service delivery.

Data availability

The data that support the findings of this study are not openly available due to reasons of sensitivity and are available from the coordinator of the Vision Loss Expert Group (Professor Rupert Bourne; rb@rupertbourne.co.uk) upon reasonable request. Data are located in controlled access data storage at Anglia Ruskin University.

References

1. Ma X, Zhou Z, Yi H, Pang X, Shi Y, Chen Q, et al. Effect of providing free glasses on children's educational outcomes in China: cluster randomized controlled trial. BMJ. 2014;349:23.

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

- 6. Marques AP, Ramke J, Cairns J, Butt T, Zhang JH, Muirhead D, et al. Global economic productivity losses from vision impairment and blindness. E Clin. Med. 2021;35:26.
- 7. Ramrattan RS, Wolfs RC, Panda-Jonas S, Jonas JB, Bakker D, Pols HA, et al. Prevalence and causes of visual field loss in the elderly and associations with impairment in daily functioning: the Rotterdam Study. Arch Ophthalmol. 2001;119:1788–94.
- 8. McCarty CA, Nanjan MB, Taylor HR. Vision impairment predicts 5 year mortality. Br J Ophthalmol. 2001;85:322–6.
- 9. Lee DJ, Gómez-Marín O, Lam BL, Zheng DD. Visual acuity impairment and mortality in US adults. Arch Ophthalmol. 2002;120:1544–50.
- 10. Ehrlich JR, Ramke J, Macleod D, Burn H, Lee CN, Zhang JH, et al. Association between

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

- **14.** Fricke TR, Holden BA, Wilson DA, Schlenther G, Naidoo KS, Resnikoff S, et al. Global cost of correcting vision impairment from uncorrected refractive error. Bull World Health Organ. 2012;90:728–38.
- **15.** Tahhan N, Papas E, Fricke TR, Frick KD, Holden BA. Utility and uncorrected refractive error. Ophthalmology. 2013;120:1736–44.
- 16. WHO. World Health Organization; Geneva: 2013. Universal eye health: a global action plan 2014–2019. https://www.who.int/publications/i/item/universal-eye-health-a-global-action-plan-2014-2019 Accessed 13 Feb 2023.
- 17. World Health Organisation. World report on vision. Geneva; 2019. https://www.who.int/publications/i/item/9789241516570 Accessed 13 Feb 2023.

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

- 22. He MG, Zeng JW, Liu YZ, Xu JJ, Pokharel GP, Ellwein LB. Refractive error and visual impairment in urban children in southern China. Invest Ophth Vis Sci. 2004;45:793–9.
- 23. Walline JJ, Lindsley KB, Vedula SS, Cotter SA, Mutti DO, Ng SM, et al. Interventions to slow progression of myopia in children. Cochrane Database Syst Rev. 2020;1:13.
- **24.** Mountjoy E, Davies NM, Plotnikov D, Smith GD, Rodriguez S, Williams CE, et al. Education and myopia: assessing the direction of causality by Mendelian randomisation. BMJ. 2018;361:6.
- 25. Marmamula S, Narsaiah S, Shekhar K, Khanna RC, Rao GN. Visual Impairment in the South Indian State of Andhra Pradesh: Andhra Pradesh Rapid Assessment of Visual Impairment (AP-RAVI) Project. PLoS ONE. 2013;8:e70120.

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health. 2021;9:e144–e160.

- 30. Ramke J, Evans JR, Habtamu E, Mwangi N, Silva JC, Swenor BK, et al. Grand Challenges in Global Eye Health study group. Grand Challenges in global eye health: a global prioritisation process using Delphi method. Lancet Healthy Longev. 2022;3:e31–e41.
- 31. Bourne RRA, Steinmetz, Flaxman J, Briant SR, Taylor HRB PS, Resnikoff S, et al. GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study. Lancet Global Health. 2021;9:e130–e143.
- 32. International Classification of Diseases 11th edition https://icd.who.int/browse11/l-

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

2100: a forecasting analysis for the Global Burden of Disease Study. Lancet. 2020;396:1285–306.

- 36. Stevens GA, Alkema L, Black RE, et al. Guidelines for accurate and transparent health estimates reporting: the GATHER statement. Lancet. 2016;388:e19–23.
- 37. IAPB Vision Atlas, List of Seven Super Regions https://www.iapb.org/learn/vision-atlas/about/definitions-and-regions/ Accessed 13 June 2022.
- 38. Han X, Zhang J, Liu Z, Tan X, Jin G, He M, et al. Real-world visual outcomes of cataract surgery based on population-based studies: a systematic review. Br J Ophthalmol. (2022). https://doi.org/10.1136/bjophthalmol-2021-320997.
- 39 United Nations (UN) Department of Economic and Social Affairs World Population

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

- 43. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123:1036–42.
- **44**. Courtright P, Lewallen S. Why are we addressing gender issues in vision loss? Community Eye Health. 2009;22:17–9.
- **45**. Fricke TR, Tahhan N, Resnikoff S, Papas E, Burnett A, Ho SM, et al. Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling. Ophthalmology. 2018;125:1492–9.
- **46.** Ma Q, Chen M, Li D, Zhou R, Du Y, Yin S, et al. Potential productivity loss from uncorrected and under-corrected presbyopia in low- and middle-income countries: a life table modelling study. Front Public Health. 2022;10:983423.

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Nathan G. Congdon

Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China

Nathan G. Congdon & Serge Resnikoff

Brien Holden Vision Institute, Sydney, NSW, Australia

Serge Resnikoff

School of Optometry and Vision Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia

Serge Resnikoff

School of Life Course and Population Sciences, King's College London, London, UK

Tasanee Braithwaite

The Medical Eye Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK

Tasanee Braithwaite

Nova Southeastern University College for Optometry, Fort Lauderdale, Florida, USA

Janet Leasher

African Vision Research Institute, University of KwaZulu-Natal (UKZN), Durban, South Africa

Kovin Naidoo

School of Optometry and Vision Science, University of New South Wales, Sydney, Australia

Kovin Naidoo & Rohit C. Khanna

Australian College of Optometry, Vic, Australia

Tim Fricke

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Hugh R. Taylor, Shahina Pardhan & Rupert Bourne

Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, UK

Tabassom Sedighi, Rupert R. A. Bourne & Seth Flaxman

Department of Computer Science, University of Oxford, Oxford, UK

Seth Flaxman

Department of Ophthalmology, Vita-Salute San Raffaele University, Milano, Italy

Maurizio Battaglia Parodi

Ufa Eye Research Institute, Ufa, Russia

Mukkharram M. Bikbov

University Hospital, Dijon, France

Alain Bron

National University of Singapore, Singapore, Singapore

Ching-Yu Cheng

Singapore Eye Research Institute, Singapore, Singapore

Ching-Yu Cheng

University of Michigan, Singapore, Singapore

Monte A. Del Monte

Kellogg Eye Center, Ann Arbor, MI 48105, USA

Monte A. Del Monte

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

John H. Kempen & John H. Kempen

Eye Unit, MyungSung Medical College, Addis Ababa, Ethiopia

John H. Kempen

Department of Ophthalmology, Addis Ababa University, Addis Ababa, Ethiopia

John H. Kempen

Sight for Souls, Bellevue, WA, USA

John H. Kempen

Fattouma Bourguiba University Hospital, University of Monastir, Monastir, 5000, Tunisia

Moncef Khairallah

Allen Foster Community Eye Health Research Centre, Gullapalli Pratibha Rao International Centre for Advancement of Rural Eye care, L.V. Prasad Eye Institute, Hyderabad, India

Rohit C. Khanna

Brien Holden Eye Research Centre, L.V. Prasad Eye Institute, Banjara Hills, Hyderabad, India

Rohit C. Khanna

University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA

Rohit C. Khanna

University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA

Judy E. Kim

HelpMeSee, Instituto Mexicano de Oftalmologia, New York, NY, 10018-8005, USA

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Beijing Institute of Ophthamology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China

School of Biomedical Sciences, Ulster University, Coleraine, UK

Julie-Anne Little

Centre for Public Health, Queen's University, Belfast, UK

Nathan G. Congdon

ORBIS International, New York, NY, USA

Nathan G. Congdon

School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia

Serge Resnikoff, Kovin S. Naidoo, Nina Tahhan, Timothy Fricke & Konrad Pesudovs

Ophthalmology Department, Moorfields Eye Hospital NHS Foundation Trust, London, UK

Tasanee Braithwaite

International Centre for Eye Health, London School of Hygiene & Tropical Medicine, London, UK

Tasanee Braithwaite

College of Optometry, Nova Southeastern University, Fort Lauderdale, FL, USA

Janet L. Leasher

Discipline of Optometry, University of KwaZulu-Natal, Durban, South Africa

Kovin S. Naidoo

Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, VIC, Australia

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Department of Surgery, Marshall University, Huntington, WV, USA

Michael Abdelmasseh

The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran

Mohammad Abdollahi

School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

Mohammad Abdollahi

Pediatrics Nursing Department, Debre Berhan University, Debre Berhan, Ethiopia

Ayele Mamo Abebe

Department of Community Medicine, Babcock University, Ilishan-Remo, Nigeria

Olumide Abiodun

Department of Family and Community Health, University of Health and Allied Sciences, Ho, Ghana

Richard Gyan Aboagye

Department of Adult Health Nursing, Aksum University, Aksum, Ethiopia

Woldu Aberhe Abrha

Department of Banking and Finance, University of Human Development, Sulaymaniyah, Iraq

Hiwa Abubaker Ali

Clinical Sciences Department, University of Sharjah, Sharjah, United Arab Emirates

Eman Abu-Gharbieh

Department of Therapeutics, United Arab Emirates University, Al Ain, United Arab Emirates

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Department of Community Medicine, King Edward Memorial Hospital, Lahore, Pakistan

Saira Afzal

Department of Public Health, Public Health Institute, Lahore, Pakistan

Saira Afza

Department of Biotechnology, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Shahin Aghamiri

Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy

Antonella Agodi

Department of Geography and Planning, Queen's University, Kingston, ON, Canada

Williams Agyemang-Duah

School of Public Health, University of Technology Sydney, Sydney, NSW, Australia

Bright Opoku Ahinkorah

Department of Medical Biochemistry, Shagra University, Shagra, Saudi Arabia

Ageel Ahmad

Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA

Hooman Ahmadzadeh

Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan

Ayman Ahmed

Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Institute of Health Research, University of Health and Allied Sciences, Ho, Ghana

Robert Kaba Alhassan & Mustapha Immurana

Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan

Abid Ali

Center for Biotechnology and Microbiology, University of SWAT, Swat, Pakistan

Syed Shujait Shujait Ali

Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Louay Almidani

Doheny Image Reading and Research Lab (DIRRL), University of California Los Angeles, Los Angeles, CA, USA

Louav Almidan

Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates

Karem H. Alzoubi

Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan

Karem H. Alzoubi

Department of Medicine, University of Thessaly, Volos, Greece

Sofia Androudi

Department of Ophthalmology, Inselspital, Bern, Switzerland

Rodrigo Anguita

Department of Vitreoretinal, Moorfields Eye Hospital, London, UK

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

University Institute of Radiological Sciences and Medical Imaging Technology, The University of Lahore, Lahore, Pakistan

Tahira Ashra

Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran

Seyyed Shamsadin Athari

School of Nursing and Midwifery, Debre Berhan University, Debre Berhan, Ethiopia

Bantalem Tilaye Tilaye Atinafu & Birhan Tsegaw Taye

Faculty of Nursing, Philadelphia University, Amman, Jordan

Maha Moh'd Wahbi Atout

Department of Forensic Medicine, Lumbini Medical College, Palpa, Nepal

Alok Atreva

Department of Health Information Management, Iran University of Medical Sciences, Tehran, Iran

Haleh Ayatollahi

Department of Neurovascular Research, Nested Knowledge, Inc., Saint Paul, MN, USA

Ahmed Y. Azzam

Faculty of Medicine, October 6 University, 6th of October City, Giza Governorate, Egypt

Ahmed Y. Azzam

School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Sara Bagherieh

School of Public Affairs, Nanjing University of Science and Technology, Nanjing, China

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Department of Ophthalmology, Vita-Salute San Raffaele University, Milan, Italy

Maurizio Battaglia Parodi

Department of Surgery, Jimma University, jimma, Ethiopia

Nebiyou Simegnew Bayileyegn

School of Health Science, Bahir Dar University, Bahir Dar, Ethiopia

Alemshet Yirga Berhie

Department of Pharmacology, Popular Medical College, Dhaka, Bangladesh

Abhishek Bhadra

Department of Public Health, North Dakota State University, Fargo, ND, USA

Akshaya Srikanth Srikanth Bhagavathula

Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Jodhpur, India

Pankaj Bhardwaj & Pankaja Raghav Raghav

School of Public Health, All India Institute of Medical Sciences, Jodhpur, India

Pankaj Bhardwaj

Global Health Neurology Lab, NSW Brain Clot Bank, Sydney, NSW, Australia

Sonu Bhaskar

Department of Neurology and Neurophysiology, South West Sydney Local Heath District and Liverpool Hospital, Sydney, NSW, Australia

Sonu Bhaskar

Department of General Medicine, Manipal Academy of Higher Education, Mangalore, India

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Association of Licensed Optometry Professionals, Linda-a-Velha, Portugal

Vera L. A. Carneiro

College of Public Health, James Cook University, Townsville, QLD, Australia

Muthia Cenderadewi

Department of Public Health, University of Mataram, Mataram, Indonesia

Muthia Cenderadewi

Department of Clinical Pharmacy, University of Gondar, Gondar, Ethiopia

Gashaw Sisay Chanie

Research School of Population Health, Australian National University, Canberra, ACT, Australia

Nicolas Cherbuir

Center for Biomedicine and Community Health, VNU-International School, Hanoi, Vietnam

Dinh-Toi Chu

Therapeutic and Diagnostic Technologies, Cooperativa de Ensino Superior Politécnico e Universitário (Polytechnic and University Higher Education Cooperative), Gandra, Portugal

Natália Cruz-Martins

Institute for Research and Innovation in Health, University of Porto, Porto, Portugal

Natália Cruz-Martins

Department of Addiction Medicine, Haukland University Hospital, Bergen, Norway

Omid Dadras

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Department of Ophthalmology, Aristotle University of Thessaloniki, Thessaloniki, Greece

Nikolaos Dervenis

Department of Community Medicine, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India

Vinoth Gnana Chellaiyan Devanbu

Center of Complexity Sciences, National Autonomous University of Mexico, Mexico City, Mexico

Daniel Diaz

Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacán Rosales, Mexico

Daniel Diaz

Department of Human Physiology, University of Gondar, Gondar, Ethiopia

Mengistie Diress & Yibeltal Yismaw Gela

Department of Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam

Thanh Chi Do

Department of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam

Thao Huynh Phuong Do

Department of Conservative Dentistry with Endodontics, Medical University of Silesia, Katowice, Poland

Arkadiusz Marian Dziedzic

School of Health Sciences, University of Science Malaysia, Kubang Kerian, Malaysia

Hisham Atan Edinur

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Endocrinology and Metabolism Research Institute, Non-Communicable Diseases Research Center, Tehran, Iran

Hossein Farrokhpoui

Department of Environmental Health Engineering, Isfahan University of Medical Sciences, Isfahan, Iran

Ali Fatehizadeh

Department of Social Medicine and Epidemiology, Guilan University of Medical Sciences, Rasht, Iran

Alireza Feizkhah

University Eye Clinic, University of Genoa, Genoa, Italy

Lorenzo Ferro Desideri

Department of Nursing, Wollega University, Nekemte, Ethiopia

Getahun Fetensa

Institute of Public Health, Charité Medical University Berlin, Berlin, Germany

Florian Fischer

Department of Ophthalmology, Isfahan University of Medical Sciences, Isfahan, Iran

Ali Forouhari & Mohsen Pourazizi

Emergency Department, Isfahan University of Medical Sciences, Isfahan, Iran

Ali Forouhari

Division of Ophthalmology, University of São Paulo, Ribeirão Preto, Brazil

João M. Furtado

Community Medicine Department, Bayero University, Kano, Kano, Nigeria

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Department of Radiology, Mayo Clinic, Rochester, MN, USA

Sherief Ghozy

Department of Applied Cell Sciences, Urmia University of Medical Sciences, Urmia, Iran

Ali Golchir

Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran

Ali Golchin

Health Systems and Policy Research Department, Indian Institute of Public Health, Gandhinagar, India

Mahaveer Golechha

Department of Genetics, Sana Institute of Higher Education, Sari, Iran

Pouya Goleij

Universal Scientific Education and Research Network (USERN), Kermanshah University of Medical Sciences, Kermanshah, Iran

Pouya Goleij

Department of Epidemiology and Biostatistics, Anhui Medicla University, Hefei, China

Shi-Yang Guan

Toxicology Department, Shriram Institute for Industrial Research, Delhi, India

Sapna Gupta

Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW, Australia

Vivek Kumar Gupta

Department of Pharmacology and Toxicology, Hamadan University of Medical Sciences, Hamadan, Iran

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Institute of Research and Development, Duy Tan University, Da Nang, Vietnam

Mehdi Hosseinzadeh

Department of Computer Science, University of Human Development, Sulaymaniyah, Iraq

Mehdi Hosseinzadeh

Department of Psychology, Tsinghua University, Beijing, China

Chengxi Hu

School of Biotechnology, Tan Tao University, Long An, Vietnam

Hong-Han Huynh

Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan

Bing-Fang Hwang

Department of Occupational Therapy, Asia University, Taiwan, Taichung, Taiwan

Bing-Fang Hwang

Department of Public Health, University of Naples Federico II, Naples, Italy

Ivo lavicol

Faculty of Medicine, University of Belgrade, Belgrade, Serbia

Irena M. Ilic

Institute for Physical Activity and Nutrition, Deakin University, Burwood, VIC, Australia

Sheikh Mohammed Shariful Islam

Sydney Medical School, University of Sydney, Sydney, NSW, Australia

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Department of Ophthalmology, Heidelberg University, Mannheim, Germany

Jost B. Jonas

Department of Community Medicine, Manipal Academy of Higher Education, Mangalore, India

Nitin Joseph, Nithin Kumar & Prasanna Mithra

Department of Economics, National Open University, Benin City, Nigeria

Charity Ehimwenma Joshua

Manipal Institute of Management, Manipal Academy of Higher Education, Manipal, India

Sagarika Kamath

Save Sight Institute, University of Sydney, Sydney, NSW, Australia

Himal Kandel & Yuyi You

Sydney Eye Hospital, South Eastern Sydney Local Health District, Sydney, NSW, Australia

Himal Kandel

School of Health Professions and Human Services, Hofstra University, Hempstead, NY, USA

Ibraheem M. Karaye

Department of Anesthesiology, Montefiore Medical Center, Bronx, NY, USA

Ibraheem M. Karaye

Health Policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Hengameh Kasraei

Department of Ophthalmology, Yenepoya Medical College, Mangalore, India

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Global Consortium for Public Health Research, Datta Meghe Institute of Higher Education and Research, Wardha, India

Mahalagua Nazli Khatib

Department of Medical Physiology, Bahir Dar University, Bahir Dar, Ethiopia

Biruk Getahun Kibret

School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia

Yun Jin Kim

School of Health Sciences, Kristiania University College, Oslo, Norway

Adnan Kica

Department of International Health and Sustainable Development, Tulane University, New Orleans, LA, USA

Adnan Kisa

Department of Nursing and Health Promotion, Oslo Metropolitan University, Oslo, Norway

Sezer Kisa

Independent Consultant, Jakarta, Indonesia

Soewarta Kosen

San Juan de Dios Sanitary Park, Barcelona, Spain

Ai Koyanagi

Department of Anthropology, Panjab University, Chandigarh, India

Kewal Krishan

Faculty of Medicine, Gazi University, Ankara, Türkiye

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA

Xuefeng Liu

Department of Quantitative Health Science, Case Western Reserve University, Cleveland, OH, USA

Xuefeng Liu

School of Pharmacy, University of the West Indies, St. Augustine, Trinidad and Tobago

Sandeep B. Maharaj

Fellow, Planetary Health Alliance, Boston, MA, USA

Sandeep B. Maharaj

Department of Ophthalmology, Tehran University of Medical Sciences, Tehran, Iran

Alireza Mahmoudi

Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, India

Kashish Malhotra

Rabigh Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia

Ahmad Azam Malik

Electrical Engineering Department, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia

Iram Malik

Department of Clinical Pharmacy, Jouf University, Sakaka, Saudi Arabia

Tauqeer Hussain Mallhi

Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Department of Epidemiology and Biostatistics, Shahrekord University of Medical Sciences, Shahrekord, Iran

Abdollah Mohammadian-Hafshejani

Translational Ophthalmology Research Center, Tehran University of Medical Sciences, Tehran, Iran

Maryam Mohammadzadeh

Department of Pharmacology, Abadan School of Medical Sciences, Abadan, Iran

Hoda Mojiri-forushani

Department of Optometry and Vision Sciences, Zahedan University of Medical Sciences, Zahedan, Iran

Hamed Momeni-Moghaddam

Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

Hamed Momeni-Moghaddam

Non-Communicable Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran

Fateme Montazeri, Parsa Mousavi, Amirhossein Parsaei, Mohammad-Mahdi Rashidi & Nazila Rezaei

School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Fateme Montazeri & Seyed Aria Nejadghaderi

Iran University of Medical Sciences, Tehran, Iran

Maryam Moradi

College of Medicine and Public Health, Flinders University, Adelaide, Australia

Ganesh R. Naik

Department of Engineering, Western Sydney University, Sydney, NSW, Australia

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Cardiovascular Research Department, Methodist Hospital, Merrillville, IL, USA

Hien Quang Nguyen

Department of Surgery, Danang Family Hospital, Danang, Vietnam

Phat Tuan Nguyen

Department of General Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam

Van Thanh Nguyen

International Islamic University Islamabad, Islamabad, Pakistan

Robina Khan Niazi

Department of Applied Microbiology, Oslo University Hospital, Taiz, Yemen

Efaq Ali Nomar

Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia

Efaq Ali Noman

Department of Applied Economics and Quantitative Analysis, University of Bucharest, Bucharest, Romania

Bogdan Oancea

School of Pharmacy, University of the Western Cape, Cape Town, South Africa

Osaretin Christabel Okonji

Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada

Andrew T. Olagunju

Department of Psychiatry, University of Lagos, Lagos, Nigeria

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Privatpraxis, Heidelberg, Germany

Songhomitra Panda-Jonas

Global Health Governance Programme, University of Edinburgh, Edinburgh, UK

Jav Pate

School of Dentistry, University of Leeds, Leeds, UK

Jay Patel

Department of Genetics, Yale University, New Haven, CT, USA

Shrikant Pawar

Department of Development Studies, International Institute for Population Sciences, Mumbai, India

Arokiasamy Perianayagam

Department of Zoology, Yadava College, Madurai, India

Navaraj Perumalsamy

Department of Zoology, Annai Fathima College, Madurai, India

Navaraj Perumalsamy

Department of Statistics and Econometrics, Bucharest University of Economic Studies, Bucharest, Romania

Ionela-Roxana Petcu

Medical School, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam

Hoang Tran Pham

Department of Maternal and Child Nursing and Public Health, Federal University of Minas Gerais, Belo Horizonte, Brazil

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran

Zahra Saadatian

Department of Epidemiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Siamak Sabour

Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates

Basema Saddik

Multidisciplinary Laboratory Foundation University School of Health Sciences (FUSH), Foundation University, Islamabad, Pakistan

Umar Saeed

International Center of Medical Sciences Research (ICMSR), Islamabad, Pakistan

Umar Saeed

Ophthalmic Epidemiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Sare Saf

Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Sare Safi

Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran

Amene Saghazadeh

Sharjah Institute of Medical Sciences, University of Sharjah, Sharjah, United Arab Emirates

Fatemeh Saheb Sharif-Askari

Clinical Sciences Department, Sharjah, United Arab Emirates

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Department of Entomology, Ain Shams University, Cairo, Egypt

Abdallah M. Samy

Medical Ain Shams Research Institute (MASRI), Ain Shams University, Cairo, Egypt

Abdallah M. Samy

Market Access, Bayer, Istanbul, Türkiye

Mete Saylan

Faculty of Dentistry, AIMST University, Bedong, Malaysia

Siddharthan Selvaraj

Department of Medicine and Surgery, Government Doon Medical College, Dehradun, India

Yashendra Sethi

National Heart, Lung, and Blood Institute, National Institute of Health, Rockville, MD, USA

Allen Sevlani

Department of Clinical Sciences, Al-Quds University, Ajman, United Arab Emirates

Moyad Jamal Shahwan

Independent Consultant, Karachi, Pakistan

Masood Ali Shaikh

Department of Nursing, Debre Berhan University, Debre Berhan, Ethiopia

Wondimeneh Shibabaw Shiferaw

National Institute of Infectious Diseases, Tokyo, Japan

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Department of Medicine Service, US Department of Veterans Affairs (VA), Birmingham, AL, USA

Jasvinder A. Singh

Department of Radiodiagnosis, All India Institute of Medical Sciences, Bathinda, India

Paramdeep Singh

Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA

Houman Sotoudeh

Directive Board, Association of Licensed Optometry Professionals, Linda-a-Velha, Portugal

Raúl A. R. C. Sousa

Division of Community Medicine, International Medical University, Kuala Lumpur, Malaysia

Chandrashekhar T. Sreeramareddy

Department of Pharmacology, Shaqra University, Shaqra, Saudi Arabia

Mohammad Tabish

Trauma and Injury Research Center, Iran University of Medical Sciences, Tehran, Iran

Majid Taheri

Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Majid Taheri

Aier Eye Hospital, Jinan University, Guangzhou, China

Yao Tan

Pediatric Intensive Care Unit, King Saud University, Riyadh, Saudi Arabia

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Clinical Cancer Research Center, Milad General Hospital, Tehran, Iran

Sahel Valadan Tahbaz

Department of Microbiology, Islamic Azad University, Tehran, Iran

Sahel Valadan Tahbaz

Urmia University of Medical Sciences, Urmia, Iran

Rohollah Valizadeh

Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA

Maria Viskadourou

Department of Epidemiology and Biostatistics, Bahir Dar University, Bahir Dar, Ethiopia

Gizachew Tadesse Wassie

Department of Community Medicine, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka

Nuwan Darshana Wickramasinghe

Department of Ophthalmology Research, Queen Mamohato Memorial Hospital, Maseru, Lesotho

Guadie Sharew Wondimagegn

Ophthalmology Unit, Bahir Dar University, Bahir Dar, Ethiopia

Guadie Sharew Wondimagegn

Department of Microbiology and Immunology, Zagazig University, Zagazig, Egypt

Galal Yahya

Department of Cells and Tissues, Molecular Biology Institute of Barcelona, Barcelona, Spain

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Addictology Department, Russian Medical Academy of Continuous Professional Education, Moscow, Russia

Mikhail Sergeevich Zastrozhin

Department of Public Health, Dilla University, Dilla, Ethiopia

Getachew Assefa Zenebe

School of Medicine, Wuhan University, Wuhan, China

Zhi-Jiang Zhang

College of Traditional Chinese Medicine, Hebei University, Baoding, China

Hanqing Zhao

Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, Warsaw, Poland

Magdalena Zielińska

Department of Nursing, Yasuj University of Medical Sciences, Yasuj, Iran

Mohammad Zoladl

Consortia

Vision Loss Expert Group of the Global Burden of Disease Study

Julie-Anne Little, Nathan G. Congdon, Serge Resnikoff, Tasanee Braithwaite, Janet Leasher, Kovin Naidoo, Tim Fricke, Ian Tapply, Arthur G. Fernandes, Maria Vittoria Cicinelli, Alessandro Arrigo, Nicolas Leveziel, Hugh R. Taylor, Tabassom Sedighi, Seth

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Agodi, Williams Agyemang-Duah, Bright Opoku Ahinkorah, Ageel Ahmad, Hooman Ahmadzadeh, Ayman Ahmed, Haroon Ahmed, Fares Alahdab, Mohammed Albashtawy, Mohammad T. AlBataineh, Tsegaye Alemu, Ahmad Samir Alfaar, Fadwa Alhalaiga Naji Alhalaiga, Robert Kaba Alhassan, Abid Ali, Syed Shujait Shujait Ali, Louay Almidani, Karem H. Alzoubi, Sofia Androudi, Rodrigo Anguita, Abhishek Anil, Anayochukwu Edward Anyasodor, Jalal Arabloo, Aleksandr Y. Aravkin, Damelash Areda, Akeza Awealom Asgedom, Mubarek Yesse Ashemo, Tahira Ashraf, Seyyed Shamsadin Athari, Bantalem Tilaye Tilaye Atinafu, Maha Moh'd Wahbi Atout, Alok Atreya, Haleh Ayatollahi, Ahmed Y. Azzam, Sara Bagherieh, Ruhai Bai, Atif Amin Baig, Freddie Bailey, Ovidiu Constantin Baltatu, Shirin Barati, Martina Barchitta, Mainak Bardhan, Till Winfried Bärnighausen, Amadou Barrow, Maurizio Battaglia Parodi, Nebiyou Simegnew Bayileyegn, Alemshet Yirga Berhie, Abhishek Bhadra, Akshaya Srikanth Srikanth Bhagavathula, Pankaj Bhardwaj, Sonu Bhaskar, Ajay Nagesh Bhat, Gurjit Kaur Bhatti, Mukharram Bikbov, Marina G. Birck, Yasser Bustanji, Zahid A. Butt, Florentino Luciano Caetano dos Santos, Vera L. A. Carneiro, Muthia Cenderadewi, Gashaw Sisay Chanie, Nicolas Cherbuin, Dinh-Toi Chu, Kaleb Coberly, Natália Cruz-Martins, Omid

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Joseph, Charity Ehimwenma Joshua, Sagarika Kamath, Himal Kandel, Ibraheem M. Karaye, Hengameh Kasraei, Soujanya Kaup, Harkiran Kaur, Navjot Kaur, Gbenga A. Kayode, John H. Kempen, Yousef Saleh Khader, Himanshu Khajuria, Rovshan Khalilov, Ajmal Khan, Moawiah Mohammad Khatatbeh, Mahalagua Nazli Khatib, Biruk Getahun Kibret, Yun Jin Kim, Adnan Kisa, Sezer Kisa, Soewarta Kosen, Ai Koyanagi, Kewal Krishan, Burcu Kucuk Bicer, Nithin Kumar, L. V. Simhachalam Kutikuppala, Chandrakant Lahariya, Tri Laksono, Dharmesh Kumar Lal, Van Charles Lansingh, Munjae Lee, Seung Won Lee, Wei-Chen Lee, Stephen S. Lim, Xuefeng Liu, Sandeep B. Maharaj, Alireza Mahmoudi, Kashish Malhotra, Ahmad Azam Malik, Iram Malik, Taugeer Hussain Mallhi, Vahid Mansouri, Roy Rillera Marzo, Andrea Maugeri, Gebrekiros Gebremichael Meles, Abera M. Mersha, Tomislav Mestrovic, Ted R. Miller, Mehdi Mirzaei, Awoke Misganaw, Sanjeev Misra, Prasanna Mithra, Soheil Mohammadi, Abdollah Mohammadian-Hafshejani, Maryam Mohammadzadeh, Hoda Mojiri-forushani, Ali H. Mokdad, Hamed Momeni-Moghaddam, Fateme Montazeri, Maryam Moradi, Parsa Mousavi, Christopher J. L. Murray, Ganesh R. Naik, Gurudatta Naik, Zuhair S. Natto, Muhammad Naveed, Biswa Prakash Nayak, Hadush Negash, Seyed Aria Nejadghaderi, Dang H. Nguyen, Duc Hoang

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Carlos Silva, Jasvinder A. Singh, Paramdeep Singh, Houman Sotoudeh, Raúl A. R. C. Sousa, Chandrashekhar T. Sreeramareddy, Mohammad Tabish, Majid Taheri, Yao Tan, Birhan Tsegaw Taye, Mohamad-Hani Temsah, Jansje Henny Vera Ticoalu, Tala Tillawi, Misganaw Guadie Tiruneh, Aristidis Tsatsakis, Guesh Mebrahtom Tsegay, Miltiadis K. Tsilimbaris, Sree Sudha Ty, Chukwudi S. Ubah, Muhammad Umair, Sahel Valadan Tahbaz, Rohollah Valizadeh, Maria Viskadourou, Gizachew Tadesse Wassie, Nuwan Darshana Wickramasinghe, Guadie Sharew Wondimagegn, Galal Yahya, Lin Yang, Yao Yao, Arzu Yiğit, Yazachew Yismaw, Naohiro Yonemoto, Yuyi You, Mikhail Sergeevich Zastrozhin, Getachew Assefa Zenebe, Zhi-Jiang Zhang, Hanqing Zhao, Magdalena Zielińska, Mohammad Zoladl, Jaimie D. Steinmetz & Rupert Bourne

Contributions

Please see <u>Appendix 2</u> for more detailed information about individual author contributions to the research, divided into the following categories: managing the overall research enterprise; writing the first draft of the manuscript; primary responsibility for applying

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

honoraria for lectures, presentations, speakers bureaus, manuscript writing or educational events from King Edward Medical University; participation on a Data Safety Monitoring Board or Advisory Board with the National Bioethics Committee Pakistan, King Edward Medical University Institutional Ethical Review Board and Ethical Review Committee in Board of Faculty, and Ethical Review Board Fatima Jinnah Medical University and Sir Ganga Ram Hospital; leadership or fiduciary role in other board, society, committee or advocacy group, paid or unpaid, Pakistan Association of Medical Editors, Fellow of Faculty of Public Health Royal Colleges UK (FFPH), Society of Prevention, Advocacy And Research, King Edward Medical University. (SPARK), Member Pakistan Society of Infectious Diseases, Member Pakistan Society of Internal Medicine, Member Pakistan Society of Community Medicine and Public Health; other financial or non-financial interests in the Higher Education Commission of Pakistan as a member Research and Publications Committee, and Pakistan Medical and Dental Council as a member Journal Research Evaluation Committee: all outside the submitted work. O C Baltatu reports support for the present manuscript from National Council for Scientific and Technological Development (CNPq, 304224/2022-7), and Anima Institute - Al research professor fellowship; leadership or fiduciary role in

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Hub Germany; all outside the submitted work. S Bhaskar reports grants or contracts from the Japan Society for the Promotion of Science (JSPS), JSPS International Fellowship, Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Australian Academy of Science, Grant-in-Aid for Scientific Research (KAKENHI); leadership or fiduciary roles in board, society, committee or advocacy groups, paid or unpaid with Rotary District 9675 as the District Chair of Diversity, Equity, and Inclusion; the Global Health & Migration Hub Community and the Global Health Hub Germany (Berlin, Germany) as the Chair and Manager; PLOS One, BMC Neurology, Frontiers In Neurology, Frontiers in Stroke, Frontiers in Public Health and BMC Medical Research Methodology as an Editorial Board Member, outside the submitted work. R Bourne reports support for the present manuscript to their institution from the World Health Organization (WHO), Brien Holden Vision Institute, Foundation Thea, Fred Hollows Foundation, Lions Clubs International Foundation; and grants or contracts to their institution from Sightsavers International and the University of Heidelberg. M Cenderadewi reports grants or contracts from James Cook University (International Research Training Program Scholarship for doctoral study), and support for attending meetings and travel from James Cook

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

all outside the submitted work. J H Kempen reports support for the present manuscript from Sight for Souls and Mass Eye and Ear Global Surgery Program. K Krishan reports nonfinancial support from UGC Centre of Advanced Study, CAS II, Department of Anthropology, Panjab University, Chandigarh, India, outside the submitted work. V C Lansingh reports consulting fees from HelpMeSee; and support for attending meetings and travel from HelpMeSee; all outside the submitted work. J L Leasher reports leadership or fiduciary role in other board, society, committee or advocacy group, unpaid as a member of the National Eye Institute National Eye Health Education Program planning committee; outside the submitted work. M Lee reports support for the present manuscript from the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2021R1I1A4A01057428) and Bio-convergence Technology Education Program through the Korea Institute for Advancement Technology (KIAT) funded by the Ministry of Trade, Industry and Energy (No. P0017805). K S Naidoo reports other financial support from OneSight EssilorLuxottica Foundation as an employee; outside the submitted work. M Saylan reports support for attending meetings and/or travel from Janssen Pharmaceuticals; outside the submitted work. J A Singh reports consulting fees

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

owned stock options in Amarin, Viking and Moderna Pharmaceuticals; outside the submitted work. Y S Samodra reports grants or contracts from Taipei Medical University; and other financial or non-financial interests as the co-founder of Benang Merah Research Center, outside the submitted work. N Tahhan reports support for attending meetings and travel from the Brien Holden Foundation to the ISER Conference; outside the submitted work. Y Tan reports support for the present manuscript from the Department of Ophthalmology and the Hospital Central South University and Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital of Central South University. J H V Ticoalu reports other financial or non-financial support as a co-founder of Benang Merah Research Center; outside the submitted work.

Vision Loss Expert Group of the Global Burden of Disease Study: A Bron reports payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing or educational events from Théa. N Congdon reports grants or contracts from any entity from Welcome Trust and MRC; consulting fees from Belkin Vision; and support for attending meetings and/or travel from Singapore National Eye Center. M A Del Monte reports

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

of study materials, medical writing, article processing charges, etc.) from Michael F. Marmor, M.D. Professor of Retinal Science and Disease as endowment to support salary; grants or contracts from any entity (from National Eye Institute R01 EY017011 and National Eye Institute R01 EY015130) as partial salary support; patents planned, issued or pending (WO2015123561A2 and WO2021062169A1); and leadership or fiduciary role in other board, society, committee or advocacy group, paid or unpaid with Jack McGovern Coats' Disease Foundation and as director of Women's Eye Health and Macular Society Grant Review Chair. J H Kempen reports support for the present manuscript (e.g., funding, provision of study materials, medical writing, article processing charges, etc.) from Mass Eye and Ear Global Surgery Program (as support of salary). J E Kim reports consulting fees from Genentech/Roche, DORC, Notal Vision and Outlook Therapeutics (all as payment to J E Kim); participation on a Data Safety Monitoring Board or Advisory Board with Allergan, Amgen, Apellis, Bausch&Lomb, Clearside, Coherus, Novartis and Regeneron (all as participation on advisory board); leadership or fiduciary role in other borad, society, committee or advocacy group, paid or unpaid, with AAO, APRIS, ASRS, Macular Society and NAEVR/AEVR (all unpaid); and receipt of equipment, materials, drugs, medical writing, gifts

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

president), Greek Glaucoma Society (as president) and Board of Governors, World Glaucoma Association (all unpaid).

Additional information

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Appendix 1

Appendix 2 - Contributions by Authors

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0

International Licence, which permits use sharing adaptation distribution and reproduction

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Uncorrected Refractive Error: a meta-analysis from 2000 to 2020. *Eye* **38**, 2083–2101 (2024). https://doi.org/10.1038/s41433-024-03106-0

Received	Revised	Accepted	
04 July 2023	08 April 2024	19 April 2024	

PublishedIssue Date04 July 2024August 2024

DOI

https://doi.org/10.1038/s41433-024-03106-0

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Provided by the Springer Nature SharedIt content-sharing initiative

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 209 , also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy-policy for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

- > Store and/or access information on a device
- > Personalised advertising and content, advertising and content measurement, audience research and services development

As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.

Learn more: PMC Disclaimer | PMC Copyright Notice

BMC Public Health. 2024; 24: 2490.

Published online 2024 Sep 12. doi: 10.1186/s12889-024-19914-8

PMCID: PMC11396740

PMID: 39266991

Prevalence, sociodemographic risk factors, and coverage of myopia correction among adolescent students in the central region of Portugal

<u>Amélia Fernandes Nunes</u>, Mariana Cunha, Miguel Castelo-Branco Sousa, and Cristina Albuquerque Godinho 3,4

Abstract

Background

Knowing the prevalence of myopia at school age is essential to implement preventive measures and appropriate interventions, ensure access to vision care, promote a healthier educational environment and improve academic performance. The purpose of this study was to determine the prevalence of myopia and its associated sociodemographic risk factors, as well as to estimate the coverage of myopia correction among adolescents in center of Portugal.

Methods

This cross-sectional study evaluated 1115 adolescents from the 5th to the 9th year of school, with an average of 12.9 years (SD = 1.5) ranging from 10.0 to 18.0 years. Optometric evaluations were carried out in a school environment and consisted of the evaluation of distance visual acuity, assessed using a logarithmic visual acuity chart (ETDRS charts 1 and 2) at 4 m, and measured by refractive error with a pediatric autorefractometer (Plusoptix), by non-cycloplegic. Myopia was defined as spherical equivalent (SE \leq -0.50 diopter (D)) and uncorrected visual acuity (UVA \leq 95VAR). Adjusted logistic regression analysis was applied to investigate risk factors.

Results

We found a myopia rate of 21.5% and a high myopia rate of 1.4%. Higher school level and attendance at urban schools were associated with myopia, but no association was found with age or sex. Only 34.6% of myopic adolescents use the best optical correction and 26.4% do not use any type of optical correction.

Data on the prevalence of refractive problems in Portugal are scarce and heterogeneous. This study, although regional, provides a valuable contribution with a clear and reproducible methodology, following international guidelines and filling gaps in the existing literature. The results show that the rate of myopia in this age group is similar to reports from other European studies. The high rate of adolescents with uncorrected or under-corrected myopia in Portugal is a problem that deserves attention.

Keywords: Adolescence, Myopia, Sociodemographic factors, Visual acuity, Myopia correction coverage, Urban-suburban disparity

Background

Myopia is a refractive condition that tends to develop in pre-adolescence, worsening during puberty and progressing into early adulthood $[\underline{1}]$. The greater the degree of myopia, the greater the risk of ocular complications that can lead to vision loss that is not recoverable $[\underline{2}]$.

The definition of myopia, the methods used to measure ocular refraction and the inconsistent use of cycloplegics, influence the quantifications of myopia prevalence. In most epidemiological studies, myopia is defined by $SE \le -0.50D$ and high myopia by $SE \le -5.00D$, with cycloplegic refraction [3]. However, the literature often uses non-cycloplegic refractive techniques and considers the same myopia definition [4–6]. Large-scale myopia studies rarely use cycloplegics, so there is a tendency to overestimate the rate of myopia [5].

The prevalence rates of myopia, when assessed using refractive techniques with cycloplegia, are higher in Asia than in compared to Europe [7]. Studies reporting non-cycloplegic refractive measurements show a similar pattern of differences but at even higher rates [4, 8]. Although cycloplegic refraction is considered the most appropriate technique for myopia studies, the use of cycloplegic means it takes a long time to measure refraction and can cause temporary side effects, such as blurred near vision and photophobia, which reduces adherence. [9].

Autorefractometers (AR) are instruments frequently used to obtain ocular refraction in epidemiological studies, but closed-field AR's induce an overestimation of myopia. The use of openfield AR allows us to obtain refractive measurements close to cycloplegic refractive methods since it eliminates the stimulation of accommodation caused by instrument proximity [5]. It has also been recommended to measure non-cicloplegic autorefraction and visual acuity (VA) without correction, for higher accuracy in detecting myopia [9, 10]. The World Health Organization recommends measuring distance VA in vision screenings [11]. Employing a pinhole test in these screenings can reveal unmet refractive needs, as an improvement in VA with pinhole suggests the presence of correctable refractive errors [2, 11].

Although the magnitude of this problem presents geographic differences, an increase in the prevalence, incidence and progression rates has been observed globally. In Europe, population prevalence rates are estimated at around 40.0% and in certain parts of East Asia, rates exceed 60.0%, and there is strong evidence that these rates vary greatly with age [7]. This vision eye condition has become a growing concern in eye health, especially among school-age children and adolescents. Current trends show that children and adolescents are becoming myopic at an earlier age and that the degree of myopia continues to progress as these children age [2, 12]. The scientific literature reports that the prevalence of myopia tends to increase from the age of 6 years [7]. East Asia exhibits the highest rates of myopia, while Africa and South America have lower reported rates [13].

Health promotion and screening interventions are essential to prevent myopia and other refractive errors by identifying vision problems early. In addition, these actions can change behaviors by educating about the importance of spectacles and addressing common reasons for non-adherence to their use, such as discomfort or social stigma, thus improving acceptance and appropriate management of vision eye conditions. In Portugal, there is little data allowing to know the real extent of myopia. The National programme for eye health estimates that around 20.0% of children and around 50.0% of the adult population suffer from refractive errors in general, including myopia and other refractive conditions [14]. A study carried out with Portuguese university students recorded an increase in the prevalence of myopia from 23.4 to 41.3% between 2002 and 2014 [15]. Another study, based on the analysis of prescription and sales of ophthalmic lenses, estimated an increase in myopia from 40.0% in 2010 to more than 50.0% in 2020 [16].

The prevalence of refractive problems in Portugal is a topic where available data is relatively scarce and presents significant heterogeneity. Furthermore, these studies often present methodological descriptions that can be considered insufficiently detailed. This work aims to estimate the prevalence of myopia in adolescents who attend school from the 5th to the 9th year in the central region of Portugal. We also intend to understand the association of myopia with some sociodemographic parameters in these adolescents, and to estimate the coverage of myopia correction among this population.

Methods

Study design and participants

This is an epidemiological, cross-sectional and observational study. Participants were children and adolescents attending the 2nd cycle of basic education (5th and 6th grades) and the 3rd cycle of basic education (7th, 8th and 9th grades) in Covilhã, a city in the central area of Portugal.

All schools in the urban area of the municipality where the study was conducted were included, covering 2 schools from the second cycle and 4 schools from the third cycle of basic education. Due to the small number of students in suburban schools and their significant geographic dispersion, 2 from each educational cycle in suburban area were selected based on having the highest number of enrolled students. All children enrolled in the participating schools were invited to join the study, with those receiving authorization from their legal guardians included, without participant randomization.

The inclusion criteria were being a child /adolescent attending the 2nd or 3rd cycle of basic education, aged between 10 and 18 years old, having the authorization from their legal tutor and providing verbal consent on the day of the screening. Incomplete screening records or those with poor cooperation were excluded from the data analysis. Students undergoing treatment with orthokeratology or atropine were also excluded, as this treatment can temporarily influence visual acuity and myopia measurement.

Procedures

The study protocol consisted of the acquisition of refractive measurements in eye screening actions in schools. The study was approved from the Ethics Committee of the National School of Public Health (CEENSP n° 29/2023) and was previously authorized by the Ministry of Education (n°

1307100001). Data were collected between November 2023 and February 2024. The examination and vision testing was performed by AN and MC.

Socio-demographic data were collected, such as age, sex, school level, school location (urban or suburban area), place of birth, and special educational needs.

All study volunteers underwent monocular distance visual acuity measurement and ocular refraction assessement using an autorefractometer Additionally, for participants who wore spectacles on the screening day, the prescription value of the spectacles was also recorded.

Visual acuity

VA was measured with ETDRS (Original Series Chart 1 and Chart 2; Good-Lite; USA) at 4 m under photopic lighting conditions. The lighting in the room was measured with a digital luxmeter (Luxmeter PCE-L335; PCE instruments; Tobarra, Spain) and values equal to or greater than 400 lx were considered acceptable [17]. The ETDRS charts are considered reliable, repeatable and easy to use in screening actions [18]. All VA were recorded on the Visual Acuity Rating scale (VAR), which is a more intuitive system for using a logarithmic charts and allows scoring letter by letter instead of line by line [18, 19]. In this rating system, each letter has a score of 1VAR; each line has 5VAR and the decimal VA = 1.0 is equivalent to 100VAR, and decimal VA = 0.8 is equivalent to 95VAR.

The protocol recommended by the WHO was followed to calculate the effective refractive correction coverage rate [2]. To determine UVA, all children were assessed monocularly and without any refractive correction. Visual acuity with usual correction (VAUC) was assessed in all children who wore glasses or contact lenses with their usual correction. In cases where the presented visual acuity (PVA) - defined as UVA for those not wearing corrective lenses or VAUC for those who did was less than 95VAR, pinhole visual acuity (phVA) was also assessed. The diametre of pinhole was 1.5 mm. The same procedure was applied to record all visual acuity measurements. The patient started at the 80VAR line on the chart (equivalente 0,4 logMAR) and continued reading downwards until reaching a line where they could no longer correctly identify at least three letters. If the patient couldn't read the 80VAR line, they started at the top of the cgart. The final score was based on the number of letters correctly identified. A different card was used for each eye to avoid learning effects.

Autorefraction

AR was performed under non-cycloplegic conditions, using the PlusOptix, model A09 (PlusOptix; Nuremberg, Germany). The PlusOptix is a device that measures ocular refraction at a distance of 1 m from the eyes, reducing the effects of instrumental myopia compared to closed-field AR. The refraction obtained with the PlusOptix A09 has shown agreement with the refraction of cycloplegic retinoscopy and is indicated as a screening method in myopic children [20, 21]. The ocular refraction of each participant was measured three times and the mean value of the SE of the three measurements was calculated. The SE was obtained by adding the spherical component to half the cylindrical component of the ocular refraction measured with the AR. When PlusOptix reported that the participant's ocular refraction exceeded its measurement capacity, the refraction of the student's usual spectacles was considered.

Definition of myopia

In screening activities, some authors recommend the combined use of refraction and VA, recognizing that this combination maximizes the sensitivity of screening in signaling myopia [10, 11, 22]. For children over 6 years of age, some authors recommend a decimal VA \geq 1.0, equivalent to 0.0logMAR or 100VAR [23, 24], other authors recommend a decimal VA \geq 0.8, equivalent to 0.1logMAR or 95VAR [9, 24].

In this study, the criteria of UAV < 95VAR and SE \leq -0.50D were used to define myopia. To facilitate comparison with other studies, only the SE \leq -0.50D criterion was also used. To characterize severity, we considered high myopia SE \leq -6.00D, moderate myopia – 6.00D < SE \leq -3.00D and mild myopia – 3.00D < SE \leq -0.50D.

Statistical analysis

The data were analyzed using SPSS version 28 (IBM SPSS Statistics; New York, USA). Continuous variables were expressed as mean (SD) and categorical variables were presented as counts or proportions. The study of differences between the eyes for the continuous variables was carried out using the paired samples t-test. Chi-square test was used to compare categorical variables between groups. A multivariate logistic regression analysis was carried out using a stepwise backward method to explore the sociodemographic factors associated with myopia. The results of the logistic regression were reported as odds ratios (OR). For all analyses, a two-sided *p-value* < 0.05 was considered statistically significant. Confidence intervals (CI) were calculated at 95%.

Results

A total of 1115 students from urban and suburban schools took part in the study. The average age was 12.9 (SD = 1.5) years, ranging from 10.0 to 18.0 years. The male sex represented 50.9% of the total sample, and 67.4% of the students attended urban schools. There was also a rate of 11.7% of adolescents flagged in school files as having special educational needs (SEN) and 15.6% of participants were from other countries. The majority of migrant students originated from America (n = 99, with 92 from Brazil) and Africa (n = 49, with 43 from Angola). There were 19 adolescents from other European countries and 7 from Asia. The origin of 2 migrant students was not documented. The characteristics of the sample according to various factors are presented in Table 1. The results of the study of the differences between the groups, as well as the prevalence of myopia according to each of the factors analyzed, are also included.

Table 1
General characteristics of the sample

Characteristics		Size	Age [years] (Average± SD)	UVA [< 95VAR] N(%)	Myopia			
		(SE≤-0.50D		SE≤-0.50D and UVA < 95VAR	
					N(%)	p-value (χ^2)	N(%)	p-value (χ^2)
Total samp	le	1115(100)	12.7 ± 1.5	516(46.3)	262(23.5)		240(21.5)	
Sex	Male	568(51.0)	12.7 ± 1.5	245(43.1)	133(23.4)	0.957	121(21.3)	0.857
	Female	547(49.0)	12.7 ± 1.5	271(49.5)	129(23.6)		119(21.8)	
Nature	Portuguese	941(84.4)	12.6 ± 1.5	438(46.5)	221(23.5)	0.982	201(21.4)	0.756
	Migrants	174(15.6)	12.8 ± 1.5	78(44.9)	41(23.6)		39(22.4)	
School level	2nd cycle	437(39.2)	11.2 ± 0.7	190(43.5)	77(17.8)	< 0.001**	74(16.9)	0.003**
	3rd cycle	678(60.8)	13.6 ± 1.0	326(48.1)	185(27.3)		166(24.5)	
SEN	Positive	131(11.7)	13.0 ± 1.4	74(56.5)	29(21.1)	0.686	25(19.1)	0.469
	Negative	984(88.3)	12,6 ± 1.5	442(44.9)	233(23.7)		215(21.8)	
School location	Urban	751(67.4)	12.8 ± 1.5	360(47.9)	195(26)	0.005**	176(23.4)	0.026*
	Suburban	364(32.6)	12.5 ± 1.5	156(42.9)	67(18.4)		64(17.6)	

N - counts; % - proportions; SD - standard deviation - UVA - uncorrected visual acuity; VAR - visual acuity rating scale; SE - spherical equivalent; SEN - special educational needs

Prevalence of myopia and risk factors

The mean values for UVA were 90.6 ± 17 VAR and 89.4 ± 17 VAR for the right and left eyes respectively, and this difference was statistically significant (t = 5.656, p < 0.001). The visual acuity of the worst eye was used to classify myopia. An UVA worse than 95VAR in at least one eye occurred in 516 participants (46.3%; 95% CI: 42.4-50.4%) (Table $\underline{1}$).

For the SE \leq -0.50D criterion, a prevalence of myopia was found to be 23.4% (95% CI: 21.0–26.0%), and for the SE \leq -0.50D and UAV < 95VAR criteria, it was 21.5% (95% CI: 18.9–24.4%). The average value of the SE of the myopic population (n = 262) was – 2.70D (SD = 1.86), in a range between – 0.50D and – 10.37D. Considering SE \leq -6.00D, we account for 16 cases, that is a rate of 1.4% (95% CI: 0.9–2.3%) was found for high myopia. The average value of the SE in high myopia was – 7.52 (SD = 1.32).

The proportion of myopic participants was not significantly different between girls and boys, between Portuguese and migrant students or between participants with and without SEN. However, it was significantly different between the school level, with a higher proportion of adolescents with

^{*}Significant at 0.05 level; ** significant at 0.001 level

myopia in the 3rd cycle; as well as between schools in urban and rural areas, with a higher proportion found in schools in the urban areas. These results was observed for both myopia classification criteria.

The association between the presence of myopia and age, sex, geographical location of the school and school level was studied using the odds ratio (OR) (Table $\underline{2}$).

Table 2

Myopia risk factors

Factor	OR crude (95% CI)	<i>p</i> -value	OR Adjusted (95% CI)	<i>p</i> -value
Age (numeric)	1.097 (0.996-1.208)	0.061	0.924 (0.786-1.085)	0.336
Sex	1.027 (0.772-1.367)	0.854	1.008 (0.756-1.344)	0.958
[male vs. female]				
School location [suburban vs. urban]	1.435 (1.044-1.973)	0.026*	1.409 (1.022-1.941)	0.036*
School level	1.590 (1.172-2.158)	0.003**	1.889 (1.152-3.097)	0.012*
[2nd cycle vs. 3rd cycle]				

^{*}Significant at 0.05 level; ** significant at 0.001 level

The crude OR revealed an association between myopia and the school location, as well as between myopia and the school level. The adjusted OR showed that adolescents from urban schools were 1.4 times more likely to have myopia than those from rural schools, after adjusting for age, sex and cycle of studies. Adolescents in the 3rd cycle of studies were also 1.9 times more likely to have myopia than adolescents in the 2nd cycle, after adjusting for age, sex and school location.

Figure 1 shows the distribution of myopia severity, according to sociodemographic characteristics. Low myopia is more common in all subgrups, but there were sex differences (χ^2 = 11.868, p = 0.003). Low myopia is more common in both boys and girls, but of the universe of myopic boys (121), 52.0% have low myopia and 41.3% have moderate myopia, while of the universe of myopic girls (119), 72.3% have a low degree of myopia and 21.0% have moderate myopia. In the studied sample, boys have the highest proportion of moderate myopia. The distribution of myopia severity did not reveal differences between adolescents at different school levels (χ^2 = 1.077, p = 0.584) ou between school location (χ^2 = 0.109, p = 0.947).

<u>Fig. 1</u>

Myopia distribution by severity. *Legend* (Low myopia, Moderate myopia, High myopia). The number in the bars corresponds to the number of adolescents with the condition

Covarage of myopia correction

We found that 35.8% of the screened population reported wearing spectacles or contact lenses (n = 400). There were significant differences between sex in the use of spectacles, with a higher proportion of girls (218 girls, 54,5% and 182 boys, 45.5%) reporting the use of these devices ($\chi^2 = 6.409$, p = 0.011). However, no significant differences were found between urban and suburban areas, nor among different levels of education. Among the adolescents who reported using some optical correction, 13.0% (95% CI: 9.7–16.3%) did not show up with their usual correction on the screening day (n = 53). Among the adolescents who attended with their usual optical correction (n = 347), the majority (n = 212) used a myopic prescription, with SE \leq -0.50D. However, 36 of the students who use myopia correction do not meet the myopia criterion (UVA \leq 95VAR AND AR SE \geq -0.50D). Hence, of the 240 students with myopia that have been identified, 176 use optical correction. In summary, we found a myopia rate of 21.5% (95% CI: 18.9–24.4%), of which 73.3% (95% CI: 67.8–78.9%) already use some optical correction. Moreover 3.2% (95% CI: 0.8–5.6%) of the sample use prescriptions for myopia while they not need it. It was also noted that the majority use monofocal lenses, with only 12 reported cases using myopia control lenses. There were no records of orthokeratology or atropine usage.

Table 3 shows the counts and proportions of adolescents who habitually use optical correction, according to presenting VA (UVA for those who do not use any correction, or VAUC for those who have spectacles or contact lenses). It also shows the number of cases in which VA improved when measured with the pinhole. It can be observed that only 34.6% (95% CI: 28.6–40.6%) of the myopic population is optically well corrected. Of the myopic teenagers who already use optical correction, a large percentage use insufficient correction to achieve a good vision. It was observed that 38.7% (95% CI: 32.5–44.9%) of the myopic population uses partial correction and 26.7% (95% CI: 21.1–32.3%) does not use any type of correction. The assessment of VA with pinhole in uncorrected or partially corrected myopic adolescents (n = 157) revealed that in 80.3% (95% CI: 74.1–86.5%) of cases it is possible to improve vision with adequate optical correction.

Table 3

Counts and proportions of myopic adolescents who already use some optical correction, according to the limits of uncorrected visual acuity (UVA) and corrected visual acuity (VAUC). SE – spherical equivalent; PhVA – pinhole visual acuity

Criteria		%
SE≤ (-0.50D) and UVA < 95VAR	240	100
VAUC≥95VAR [already wear spectacles or Contact lenses]	83	34.6
VAUC < 95VAR [already wear spectacles or Contact lenses]	93	38.7
UVA < 95VAR [do not wear spectacles or Contact lenses]	64	26.7
PhVA (N= (93+64)) [improved]	126	80.3%

Discussion

This study evaluated the prevalence of myopia in adolescents attending school from the 5th to the 9th year. For the SE \leq -0.50D and UVA < 95VAR criteria, there was a prevalence of myopia of 21.5% (95%CI:18.9–24.4%) and for high myopia there was a prevalence of 1.4% (95%CI:0.9–2.3%). Attending the 3rd cycle of studies and attending schools in urban areas were factors associated with a higher prevalence of myopia, while age and sex were not associated with increased odds of myopia. We also observed that only 34.6% (95% CI: 28.6–40.6%) of myopic students were well-corrected and 26.7% (95% CI: 21.1–32.3%) did not use any optical refraction.

Myopia is notably more prevalent in Asia, with scientific literature indicating that children and adolescents in East Asia experience exceptionally high rates of myopia. In some regions, the prevalence has been reported to exceed 80.0% [25]. Given the limited information on myopia prevalence among adolescents in Portugal, it is more practical to analyze and compare myopia trends within the European context, where data are more robust. While extensive research exists in regions such as China, utilizing data from European countries provides a more relevant comparison to Portugal's situation and enables a more immediate and applicable analysis of local trends and predictors.

Studies on the prevalence of myopia in European children and adolescents are few, and those we found that had been published in the last 5 years report rates ranging from 10% in Sweden to 24.8% in Austria [$\underline{26}$, $\underline{27}$]. When cycloplegic refraction is used, rates are lower [$\underline{26}$, $\underline{28}$, $\underline{29}$] than when cycloplegia is not used [$\underline{27}$, $\underline{30}$]. It should also be noted that most studies use SE \leq -0.50D as the definition of myopia [$\underline{22}$, $\underline{26}$, $\underline{28}$ - $\underline{30}$] but some studies use a more myopic cutoff point [$\underline{31}$] and the joint assessment of autorefraction and visual acuity [$\underline{32}$].

The myopia rate found in the present study is similar to that reported in other studies from European countries. A comparison of our results with reports from other studies that used more conservative criteria to define myopia (e.g., $SE \le -0.50$ and $UVA \le 95VAR$) reveals that myopia is slightly more prevalent among adolescents in Portugal (21.5%) than in Bulgaria (19.0%) [26], and very similar to the prevalence reported in Germany (21.5%), where the definition of myopia used a cutoff point $SE \le -0.75D$ [31]. For a broader comparison with the $SE \le -0.50D$ criterion, we found a prevalence rate of 23.4%. This value is very close to that reported by other studies with children

and adolescents in Europe, which used the same definition of myopia. In Austria, a rate of 24.8% was found between the ages of 15 and 18, and in Spain, a rate of 20.1% was reported in children aged 6 to 7 [22, 30].

The prevalence of myopia and associated risk factors among children has not yet been determined. It is known that genetic and environmental factors play a role in its etiology. Risk factors for myopia may include a combination of genetic, environmental and lifestyle factors, with the most obvious being genetics, time outdoors, near work and sex [33]. The literature also reports that the prevalence of myopia increases with age, is more frequent in girls and in the urban areas [22, 34]. In the present study, there was no association between myopia and age, but an association was found with school level, with a higher prevalence of mypia in the 3rd cycle. Although a higher school level necessarily requires an older age, the age-adjusted multivariate analysis revealed that age has no association and that the probability of myopia is 1.9 times greater in adolescents in the 3rd cycle. We believe that this association is influenced by other factors that also contribute to myopia, such as the intensity of close work and excessive use of digital screens [34]. Adolescents in the 3rd cycle of studies have a greater academic workload, which requires them to dedicate more time to tasks with near vision. Furthermore, the excessive use of digital screens, both for academic support and leisure, tends to be greater among older adolescents [35].

Regarding sex, there is no consensus in the literature, with older studies reporting that men have a higher prevalence of myopia, while more recent studies report that women show higher prevelances [34]. Other authors also report finding no association between sex and myopia [36], in line with the results from our study. The urban environment is also described as a factor associated with myopia and urban-rural differences tend to be stronger where there is a greater disparity in living conditions [37, 38]. This study also found this association, with adolescents attending an urban school being 1.4 times more likely to have myopia than those attending a suburban school. In a study carried out in India, where the location of the school was also taken into account, it was observed that the rate of myopia was 1.3 times higher in urban schools than in suburban schools [39].

Multi-ethnic population-based studies suggest that the prevalence of myopia varies according to ethnicity. The scientific literature reports that the prevalence of myopia is highest in Asian populations (above 50.0%), and lowest in African regions (around 15.0%) and shows values between 20.0 and 40.0% in Europe and America [3, 13]. In our study, no significant differences were found in myopia rates between Portuguese and migrant adolescents. For the most conservative criterion, SE \leq -0.50D and UVA < 95VAR, the prevalence of myopia was 21.4% for the Portuguese and 22.4% for the migrants' adolescents. The migrant population in this study was mostly from Brazil and African countries, with a low rate of students from Asia. We believe that the low representation of Asian adolescents is the main reason why the migrant population had a prevalence rate similar to that of adolescents born in Portugal.

Scientific literature reports that children with special educational needs have a higher prevalence of vision dysfunction when compared to population samples, and one of the main causes of this disability is refractive errors [40]. In our study, there were no significant differences in the proportion of myopic adolescents between those with (vs. without) SEN. Since adolescents with low levels of autonomy and low capacity for collaboration in the acquisition of measurements have been excluded from the study, adolescents from the SEN group with greater potential for vision impairment may have been left out of our sample. On the other hand, this analysis is limited to myopia, and refractive errors such as hyperopia or astigmatism in individuals with SEN may be more frequent [41].

Another finding from our study that deserves reflection concerns the use of optical correction. Other authors report that the use of corrective spectacles improves the cognitive and educational well-being, psychological well-being, mental health, and quality of life of school-age children and adolescents [42]. Several authors have reported high rates of uncorrected myopia in school-age children [24, 43]. Our study found that only 34.6% of adolescents with myopia were well-corrected, with 38.7% being under-corrected, and 26.7% not using any correction. According to WHO recommendations, in screening activities, an improvement in visual acuity with a pinhole means that the problem of vision impairment can be solved with the use of suitable spectacles [11]. In the present study, when evaluating visual acuity with the pinhole in uncorrected or undercorrected myopic participants, an improvement was obtained in 80.3% of cases, which means that these adolescents can see their vision improved with a simple pair of appropriately prescribed spectacles. We also found that there is a significant percentage of teenagers who report having spectacles, but who do not use them regularly (13.0%). Several studies have explored compliance to spectacle use in impairement vision due to refractive errors, and a systematic review reveals that non-adherence rates in children are hiegh, even when glasses are freely provided. The reasons for non-adherence are varief, including factors such as broken glasses, forgetfulness, parental perceptions, and peer pressure [44, 45]. The design of the present study did not allow us to explore the reasons for this behavior, but it reinforces the message that teenagers' refusal to wear prescribed spectacles puts their eye health and their professional and academic future at risk [42]. Health professionals and the educational community must come together to raise awareness of the risks of non-compliance with spectacles, promote educational campaigns, and debunk myths and beliefs.

The main strength of this work lies in its analysis of data on myopia from a large sample of adolescents in the central region of Portugal, providing valuable insights into the prevalence of myopia in Portugal. However, there are also some limitations. One of the main limitations of this study is the fact that cycloplegic refraction was not used. Nevertheless, we sought a methodological design that would minimize this aspect, looking for a reliable alternative. An open-field autorefractometer was used, an instrument that is described as the closest technique to cycloplegic refraction [21, 37]. Another important measure was to combine the spherical equivalent measurement with uncorrected visual acuity, as proposed by others authors [9, 10], enabling to confer more confidence to the myopia prevalence values found in the present study. The definition of a refractive threshold and a visual acuity threshold as a cut-off point for myopia is therefore an added value and strengthens the findings of this study. The selection of the eye with poorer visual acuity may have contributed to some overestimation of myopia prevalence compared to studies that consider only one eye. However, this approach has also been adopted in similar studies [28, 32]. The association between myopia prevalence and the presence of modifiable environmental risk factors (e.g., shorter distance and longer time spent for near work) was not addressed in this study, representing an opportunity for future work. Studying modifiable environemental risk factors is fundamental for understanding which habits and behaviors of adolescents are associated with the development of myopia, providing relevant evidence for the development of recommendations for its prevention and management.

Conclusions

This paper is a cross-sectional study of myopia in adolescents at a center in Portugal. It shows that myopia in adolescence is comparable to that reported by other European countries, being at the upper end of reported rates (above 20.0%). Moreover, it showed that mypia was higher among higher school levels and among students of urban schools.

The high prevalence of uncorrected or under-corrected myopia is a worrying aspect. Another pertinent aspect concerns non- compliance with spectacles, as a considerable number of students who reported having spectacles were not wearing them at the time of the assessment. Adolescents' refusal to wear their usual spectacles puts their ocular health and their school and professional future at risk.

The epidemiological burden of myopia among schoolchildren necessitates a cross-sectoral approach, involving both health and education sectors, to ensure systematic screening, effective refractive error services, optical correction, and ongoing follow-up for affected children. Our results also highlight the critical need for public education on eye care and the development of an effective and sustainable school-age vision screening program to prevent vision impairment and blindness. By integrating public education with practical screening initiatives, we can ensure early detection and treatment, ultimately safeguarding children's vision health.

Acknowledgements

We thank the Clinical and Experimental Center for Vision Sciences and UBImedical for their support with the necessary materials and assistance in data collection.

Abbreviations

SE Spherical equivalent

AR Autorefroctometer

VA Visual acuity

ETDRS Early Treatment of Diabetic Retinopathy Study

UVA Uncorrected visual acuity

VAUC Visual acuity with usual correction

PhVA Pinhole visual acuity

VAR Visual Acuity Rating

OR Odds ratio

CI Confidence interval

SEN Special educational needs

Author contributions

AFN, MCBS and CAG contributed to the concept of the study. AFN and MC acquired and analyzed the data. AFN and CAG helped with the interpretation of the data. AFN and MC drafted the manuscript. MCBS and CAG supervised the study. All authors read and approved the final manuscript.

Funding

No funding was received for this research.

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

This study conformed to the principles of the Declaration of Helsinki, and informed consent was signed by the participants' parents. The Ethics Committee of the National School of Public Health, approved this study (approval number CEENSP n° 29/2023).

Consent for publication

Not Applicable.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- 1. Ducloux A, Marillet S, Ingrand P, Bullimore MA, Bourne RA, Leveziel N. Progression of myopia in teenagers and adults: a nationwide longitudinal study of a prevalent cohort. Br J Nurs. 2021;0:1–6. 10.1136/bjophthalmol-2021-319568.

 10.1136/bjophthalmol-2021-319568 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 2. Keel S, Müller A, Block S, Bourne R, Burton MJ, Chatterji S, et al. Keeping an eye on eye care: monitoring progress towards effective coverage. Lancet Glob Heal. 2021;9(10):e1460–4. 10.1016/S2214-109X(21)00212-6. 10.1016/S2214-109X(21)00212-6 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 3. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–42. 10.1016/j.ophtha.2016.01.006. 10.1016/j.ophtha.2016.01.006 [PubMed] [CrossRef] [Google Scholar]

- 4. Grzybowski A, Kanclerz P, Tsubota K, Lanca C, Saw SM. A review on the epidemiology of myopia in school children worldwide. BMC Ophthalmol. 2020;20:1–11. 10.1186/s12886-019-1220-0. 10.1186/s12886-019-1220-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 5. Berke A. Prevalence of myopia in children and adults in Europe and North America. Optometry Contact Lenses. 2021;1(2):48–55. 10.54352/dozv.YCPT5231. 10.54352/dozv.YCPT5231 [CrossRef] [Google Scholar]
- 6. Singh H, Singh H, Latief U, Tung GK, Shahtaghi NR, Sahajpal NS, et al. Myopia, its prevalence, current therapeutic strategy and recent developments: a review. Indian J Ophthalmol. 2022;70(8):2788–99. 10.4103/ijo.IJO_2415_21. 10.4103/ijo.IJO_2415_21 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 7. Németh J, Tapasztó B, Aclimandos WA, Kestelyn P, Jonas JB, De Faber JH, et al. Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. Eur J Ophthalmol. 2021;31(3):853–83. 10.1177/1120672121998960. 10.1177/1120672121998960 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 8. Flitcroft DI, He M, Jonas JB, Jong M, Naidoo K, Ohno-Matsui K, et al. IMI-defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies. Investig Ophthalmol Vis Sci. 2019;60(3):M20–30. 10.1167/iovs.18-25957. 10.1167/iovs.18-25957 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 9. Wang J, Ying GS, Fu X, Zhang R, Meng J, Gu F, et al. Prevalence of myopia and vision impairment in school students in Eastern China. BMC Ophthalmol. 2020;20:1–10. 10.1186/s12886-019-1281-0. 10.1186/s12886-019-1281-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 10. Yu H, Shao Y, Yuan H, Yan B. Age-determined referral criteria of myopia for large-scale vision screening. Eye Sci. 2015;30(4):151–5. 10.3978/j.issn.1000-4432.2015.11.03. 10.3978/j.issn.1000-4432.2015.11.03 [PubMed] [CrossRef] [Google Scholar]
- 11. WHO World Health Organization. Vision and eye screening implementation handbook. Licence: CC BY-NC-SA 3.0 IGO. 2023. ISBN:978-92-4-008245-8.
- 12. Burton MJ, Faal HB, Ramke J, Ravilla T, Holland P, Wang N et al. (2019) Announcing The Lancet Global Health Commission on Global Eye Health. Lancet Glob Heal. 2019;7(12):e1612–3. 10.1016/S2214-109X(19)30450-4 [PubMed]
- 13. Baird PN, Saw SM, Lança C, Guggenheim JA, Smith IE, Zhou X, et al. Myopia Nat Rev Dis Prim. 2020;6(1):99. 10.1038s41572-020-00231-4. 10.1038/s41572-020-00231-4 [PubMed] [CrossRef] [Google Scholar]
- 14. SNS Direção Geral Saúde. Programa Nacional para a Saúde Da Visão revisão e extensão a 2020. DGS; 2016.
- 16. Carneiro VA, González-Méijome JM. Prevalence of refractive error in Portugal estimated from ophthalmic lens manufacturing data: ten-years analysis. PLoS ONE. 2023;18(4):e0284703. 10.1371/journal.pone.0284703. 10.1371/journal.pone.0284703 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 17. Tidbury LP, Czanner G, Newsham D. Fiat lux: the effect of illuminance on acuity testing. Graefe's Archive Clin Experimental Ophthalmol. 2016;254(6):1091–7. 10.1007/s00417-016-3329-7. 10.1007/s00417-016-3329-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 18. Elliott DB. The good (logMAR), the bad (Snellen) and the ugly (BCVA, number of letters read) of visual acuity measurement. Ophthalmic Physiol Opt. 2016;36(4):355–8. 10.1111/opo.12310. 10.1111/opo.12310 [PubMed] [CrossRef] [Google Scholar]
- 19. Bailey IL, Lovie-Kitchin JE. Visual acuity testing. From the laboratory to the clinic. Vision Res. 2013;90:2–9. 10.1016/j.visres.2013.05.004. 10.1016/j.visres.2013.05.004 [PubMed] [CrossRef] [Google Scholar]

- 20. Payerols A, Eliaou C, Trezeguet V, Villain M, Daien V. Accuracy of PlusOptix A09 distance refraction in pediatric myopia and hyperopia. BMC Ophthalmol. 2016;6:1–7. 10.1186/s12886-016-0247-8. 10.1186/s12886-016-0247-8 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 21. Yilmaz I, Ozkaya A, Alkin Z, Ozbengi S, Yazici AT, Demirok A. Comparison of the Plusoptix A09 and Retinomax K-Plus 3 with retinoscopy in children. J Pediatr Ophthalmol Strabismus. 2015;52(1):37–42. 10.3928/01913913-20141230-06. 10.3928/01913913-20141230-06 [PubMed] [CrossRef] [Google Scholar]
- 22. Wang J, Xie H, Morgan I, Chen J, Yao C, Zhu J, et al. How to conduct school myopia screening: comparison among myopia screening tests and determination of associated cutoffs. Asia-Pacific J Ophthalmol. 2022;11(1):12–8.

 10.1097/APO.000000000000487. 10.1097/APO.000000000000487 [PubMed] [CrossRef] [Google Scholar]
- 23. Wang J, Liu J, Ma, Zhang Q, Li R, He X, et al. Prevalence of myopia in 3-14-year-old Chinese children: a school-based cross-sectional study in Chengdu. BMC Ophthalmol. 2021;21(1):318. 10.1186/s12886-021-02071-6. 10.1186/s12886-021-02071-6 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 24. Wang H, Li Y, Qiu K, Zhang R, Lu X, Luo L, et al., et al. Prevalence of myopia and uncorrected myopia among 721 032 schoolchildren in a city-wide vision screening in southern China: the Shantou Myopia Study. Br J Ophthalmol. 2023;107(12):1798–805. 10.1136/bjo-2021-320940. 10.1136/bjo-2021-320940 [PubMed] [CrossRef] [Google Scholar]
- 25. We XX, Yu LL, Majid AZA, Xu Y. Study on the prevalence of myopia and its associated factors in China: a systemic review. Eur Rev Med Pharmacol Sci. 2023;27(17). 10.26355/eurrev_202309_33559. [PubMed]
- 26. Demir P, Baskaran K, Theagarayan B, Gierow P, Sankaridurg P, Macedo AF. Refractive error, axial length, environmental and hereditary factors associated with myopia in Swedish children. Clin Experimental Optometry. 2021;104(5):595–601. 10.1080/08164622.2021.1878833. 10.1080/08164622.2021.1878833 [PubMed] [CrossRef] [Google Scholar]
- 27. Yang L, Vass C, Smith L, Juan A, Waldhör T. Thirty-five-year trend in the prevalence of refractive error in Austrian conscripts based on 1.5 million participants. Br J Ophthalmol. 2020;104(10):1338–44. 0.1136/bjophthalmol-2019-315024. 10.1136/bjophthalmol-2019-315024 [PubMed] [CrossRef] [Google Scholar]
- 28. Harrington SC, Stack J, O'Dwyer V. Risk factors associated with myopia in schoolchildren in Ireland. Br J Ophthalmol. 2019;103(12):1803–9. 10.1136/bjophthalmol-2018-313325. 10.1136/bjophthalmol-2018-313325 [PubMed] [CrossRef] [Google Scholar]
- 29. Guillon-Rolf R, Grammatico-Guillon L, Leveziel N, Pelen F, Durbant E, Chammas J, Khanna RK. Refractive errors in a large dataset of French children: the ANJO study. Sci Rep. 2022;12(1):4069. 10.1038/s41598-022-08149-5. 10.1038/s41598-022-08149-5 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 30. Alvarez-Peregrina C, Martinez-Perez C, Villa-Collar C, González-Pérez M, González-Abad A, Sánchez-Tena MA. (2021) The prevalence of myopia in children in Spain: an updated study in 2020. International Journal of Environmental Research and Public Health. 2021; 18(23): 12375. 10.3390/ijerph182312375 [PMC free article] [PubMed]
- 31. Philipp D, Vogel M, Brandt M, Rauscher FG, Hiemisch A, Wahl S, et al. The relationship between myopia and near work, time outdoors and socioeconomic status in children and adolescents. BMC Public Health. 2022;22(1):2058. 10.1186/s12889-022-14377-1. 10.1186/s12889-022-14377-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 32. Dragomirova M, Antonova A, Stoykova S, Mihova G, Grigorova D. Myopia in Bulgarian school children: prevalence, risk factors, and health care coverage. BMC Ophthalmol. 2022;22(1):248. 10.1186/s12886-022-02471-2. 10.1186/s12886-022-02471-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 33. Ying ZQ, Li DL, Zheng XY, Zhang XF, Pan CW. (2024) Risk factors for myopia among children and adolescents: an umbrella review of published meta-analyses and systematic reviews. British Journal of Ophthalmology. 2024;108(2):167–174. 10.1136/bjo-2022-322773 [PubMed]
- 34. Morgan IG, Wu PC, Ostrin LA, Tideman JL, Yam JC, Lan W, et al. IMI risk factors for myopia. Invest Ophthalmol Vis Sci. 2021;62(5):3. 10.1167/iovs.62.5.3. 10.1167/iovs.62.5.3 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

- 35. Lissak G. Adverse physiological and psychological effects of screen time on children and adolescents: literature review and case study. Environ Res. 2018;164:149–57. 10.1016/j.envres.2018.01.015. 10.1016/j.envres.2018.01.015 [PubMed] [CrossRef] [Google Scholar]
- 36. Hansen MH, Hvid-Hansen A, Jacobsen N, Kessel L. Myopia prevalence in Denmark–a review of 140 years of myopia research. Acta Ophthalmol. 2021;99(2):118–27. 10.1111/aos.14562. 10.1111/aos.14562 [PubMed] [CrossRef] [Google Scholar]
- 37. Rudnicka AR, Kapetanakis VV, Wathern AK, Logan NS, Gilmartin B, Whincup PH, et al. Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention. Br J Ophthalmol. 2016;100(7):882–90. 0.1136/bjophthalmol-2015-307724. [PMC free article] [PubMed]
- 38. Wang Y, Liu L, Zhang L. Rural-urban differences in prevalence of and risk factors for refractive errors among school children and adolescents aged 6–18 years in Dalian, China. Front Public Health. 2022;10:917781.

 10.3389/fpubh.2022.917781. 10.3389/fpubh.2022.917781 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 39. Gopalakrishnan A, Hussaindeen JR, Sivaraman V, Swaminathan M, Wong YL, Armitage JA, et al. Myopia and its association with near work, outdoor time, and housing type among schoolchildren in south India. Optom Vis Sci. 2023;100(1):105–10. 10.1097/OPX.000000000001975. 10.1097/OPX.00000000000001975 [PubMed] [CrossRef] [Google Scholar]
- 40. Choi KY, Wong HY, Cheung HN, Tseng JK, Chen CC, Wu CL, et al. Impact of visual impairment on balance and visual processing functions in students with special educational needs. PLoS ONE. 2022;17(4):e0249052. 10.1101/2020.09.28.20202879. 10.1101/2020.09.28.20202879 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 41. Nielsen LS, Skov L, Jensen H. (2007). Visual dysfunctions and ocular disorders in children with developmental delay. II. Aspects of refractive errors, strabismus and contrast sensitivity. Acta Ophthalmologica Scandinavica. 2007;85(4):419–426. 10.1111/j.1600-0420.2007.00881.x [PubMed]
- 42. Pirindhavellie GP, Yong AC, Mashige KP, Naidoo KS, Chan VF. The impact of spectacle correction on the well-being of children with vision impairment due to uncorrected refractive error: a systematic review. BMC Public Health. 2023;23(1):1575. 10.1186/s12889-023-16484-z. 10.1186/s12889-023-16484-z [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 43. Yang M, Luensmann D, Fonn D, Woods J, Jones D, Gordon K, Jones L. Myopia prevalence in Canadian school children: a pilot study. Eye. 2018;32(6):1042–7. 0.1038/s41433-018-0015-5. 10.1038/s41433-018-0015-5 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 44. Dhirar N, Dudeja S, Duggal M, Gupta PC, Jaiswal N, Singh M, et al. Compliance to spectacle use in children with refractive errors-a systematic review and meta-analysis. BMC Ophthalmol. 2020;20(1):71. 10.1186/s12886-020-01345-9.

 10.1186/s12886-020-01345-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 45. Wu L, Feng J, Zhang M. Implementing interventions to promote spectacle wearing among children with refractive errors: a systematic review and meta-analysis. Front Public Health. 2023;11:1053206. 10.3389/fpubh.2023.1053206. 10.3389/fpubh.2023.1053206 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

www.aaojournal.org

Verify you are human by completing the action below.

www.aaojournal.org needs to review the security of your connection before proceeding.

As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.

Learn more: PMC Disclaimer | PMC Copyright Notice

Journal of **Ophthalmology**

J Ophthalmol. 2020; 2020: 4395278.

Published online 2020 Nov 4. doi: <u>10.1155/2020/4395278</u>

PMCID: PMC7803099

PMID: 33489329

Recent Epidemiology Study Data of Myopia

Zhao-Yu Xiang ¹ and Hai-Dong Zou^{図1,2}

Abstract

Myopia, a pandemic refractive error, is affecting more and more people. The progression of myopia could cause numerously serious complications, even leading to blindness. This review summarizes the epidemiological studies on myopia after 2018 and analyzes the risk factors associated with myopia. The prevalence of myopia varies in different regions, age, and observation time. East Asia has been gripped by an unprecedented rise in myopia, and other parts of the world have also seen an increase. The prevalence of myopia in children continues to rise and aggravates with age. The prevalence of high myopia has also increased along with myopia. Racial dependence and family aggregation can be seen frequently in myopia patients. Increased outdoor activities are proven to be protective factors for myopia, as near-distance work and higher education levels affect in the opposite. The impact of gender or urbanization on myopia is controversial. The relationship between nutrition, digital screens, Kawasaki disease, pregnant women smoking during pregnancy, and myopia is still not clear for lack of sufficient evidence. Understanding the various factors that affect myopia helps to clarify the mechanism of myopia formation and also to formulate reasonable prevention and control measures of myopia to protect people's health, especially for adolescents.

1. Introduction

Uncorrected refractive error is not only the second leading cause of global blindness but also the leading cause of preventable visual impairment in children [1]. Myopia, the main manifestation of refractive error, is now an alarming pandemic: 2.5 billion people could be affected by myopia by the end of this decade [2]. In many regions, such as eastern China, myopia is often addressed as a "simple" refractive error, instead of a disease [3]. However, it undeniably increases the risk of diseases of blindness such as macular degeneration, retinal detachment, cataracts, and glaucoma [4-6]. Almost 15 years ago, myopic macular degeneration had already driven myopia to become the leading cause of permanent monocular blindness in Japan [7] and the most frequent cause of severe visual impairment and blindness in the elderly Chinese population in Taiwan [8]. Apart from its deleterious effects on functional vision, the loss of visual acuity associated with uncorrected myopia or permanent vision loss significantly affects all aspects of an individual's quality of life. The constraints that affected individuals experience are likely to further limit their independent choices

and pose additional monetary and physical burdens [9]. Furthermore, the economic and financial burden of myopia on families incorporate both the cost of optical devices or other refractive modalities and the need for frequent and long-term management of the condition by an eye-care practitioner [10]. For Chinese urban migrant families, merely the cost of spectacles deters the parents from providing refractive error correction for their children [11], resulting in an increase in myopia and deteriorating functional vision that will certainly damage the future lives of the young. Naidoo et al. reported that the potential global productivity loss associated with the burden of visual impairment was estimated at US\$244 billion from uncorrected myopia in 2015 [12]. Controlling myopia, therefore, should be emphasized as a major worldwide public health objective.

2. Global Prevalence of Myopia and High Myopia

In 2016, Holden et al. estimated that the global prevalence of myopia was 1.406 billion people worldwide (22.9% of the global population), and that 163 million people had high myopia in 2000. They also concluded that, by 2050, there will be 4.758 billion people with myopia (49.8% of the global population), and 938 million will have high myopia [13]. In accordance with Holden's methodology, we searched PubMed (National Library of Medicine) on March 1, 2020, for epidemiological studies on myopia after January 1, 2018, regardless of the original language of publication. Population-based studies were chosen because they reflect the real-world data of the epidemic. Countries were grouped based on the continent they belonged to. A summary of the data is given in Table 1, showing that the prevalence of myopia varies significantly between different regions, ages, and observation times.

Table 1

Population-based epidemiology study results of myopia and high myopia published from January 1, 2018, to March 1, 2020, in PubMed (National Library of Medicine) database.

Reference	Region,	Participant	Age range,	Cycloplegia	Mean age	Myopia	
	country	number	year/cohort		(SD), year	Definition	Prev (95% %
Chen et al. [<u>14</u>]	East Asia, China (East)	43858	Third-year high school students	No	18.4 (0.7) overall	SE < -0.5 D	79.5 in 20 87.7 in
Huang et al. [<u>15</u>]	East Asia, China (Taiwan)	6069	6-15	No	10.5 (2.3)	SE < 0.0 D	76.6
Wang et al. [<u>16</u>]	East Asia, China (East)	4801	5–20	No	12.3 (3.8)	$SE \le -0.5 D +$ $UCVA \le 20/25$	63.1 6
Thorn et al. [<u>17</u>]	East Asia, China (East)	13220	5–16	No	9.4 (1.9)	SE≤-1.0 D	49.5
Choy et al. [<u>18</u>]	East Asia, China (Hong Kong)	1396	6–13	No	8.8 (N/A)	SE ≤ −0.5 D	37.7 4
Wang et al. [<u>19</u>]	East Asia, China (southwest)	1626	40-80	No	N/A	SE < -0.5 D	26.4 2 ov 31.5 35 Hai 16.8 20.8
Wang et al. [<u>20</u>]	East Asia, China (Inner Mongolia)	2090	40-80	No	N/A	SE < -0.5 D	29.4 3 ov 31.8 34 Hai 23.0 26 Mor
Yam et al. [21]	East Asia, China (Hong	10137 (4257	6-8 and parents	No*	7.6 (1.0) in children and	$SE \le -0.5 D$ (in children) and	25.0 in cl

SE, spherical equivalent; N/A, not available; UCVA, uncorrected visual acuity. *Cycloplegic measurements in patients needed a detailed eye examination. †Cycloplegic measurements in 135 patients. [‡]The last recorded refraction including autorefraction, cycloplegic refraction, and/or subjective refractions. [§]Cycloplegic measurements in 633

According to epidemiological surveys from the past two years, the prevalence of myopia varies depending on the continent, country, and region. East Asia has been gripped by an unprecedented rise in myopia, and other parts of the world have also seen an increase. As Morgan et al. referred to in their review, the highest rates occur in China, Japan, and Singapore [46]. In China, the highest prevalence occurs in the eastern areas, which are the economically developed parts of China, as shown in Table 1. In South Asia, the prevalence is much lower than in East Asia. In India, the prevalence of myopia is similar to that of the nearby Tibetan province of China where the prevalence is nearly the lowest in all of China. A meta-analysis concluded that only 5.3% of children younger than 16 years of age are myopic in India [47]. The prevalence of myopia in Europe and North America ranges from 6.2% to 26.2% (Table 1).

At present, most of the epidemiological studies of myopia are based on cross-sectional data, while there are relatively few cohort studies. Cohort studies are more informative since they present the annual incidence and progress of myopia, and currently, they all suggest that the prevalence of myopia is increasing every year. According to the published research, the prevalence of myopia among 12- to 17-year-old students in the United States from 1971 to 2004 increased from 12.0% to 31.2%, and over the past 30 years, the prevalence in all ages has increased significantly [48]. A retrospective study of myopia in Taiwan showed that the average prevalence in 7-year-olds increased from 5.8% in 1983 to 21% in 2000; at the age of 12, the prevalence of myopia was 36.7% in 1983 and increased to 61% by 2000 [49]. In southern China, a 5-year follow-up survey was conducted on 6- to 15-year-old children. The cumulative average annual myopia progression was -2.20 D, and the annual change rate of myopia was -0.43 D [50]. Another study in Beijing, North China, showed that the annual incidence of myopia was 7.8%, and the progression of myopia was -0.17 D [51].

A critical parameter for the epidemiological analysis of myopia is age, since prevalence rates have been known to increase significantly with age, as shown in Table 1. In Finland, a total of 240 myopic school children with a mean spherical equivalent (SE) of -1.43 D at baseline were followed up for 22 years, at the end of which, the mean SE of the more myopic eye was -5.29 D. About 32% of the children receiving their first myopic glasses between and around 11 years of age had high myopia (SE \leq -6.00 D in one eye) in adulthood. A younger onset age of myopia predicted a greater prevalence of high myopia after 22 years, suggested by a prevalence of 65% for those with baseline ages between 8.8 and 9.7 years and 7% for those aged between 11.9 and 12.8 years [52]. An epidemic of high myopia occurs parallel to myopia, as shown in Table 1, perhaps because early-onset myopia progresses more and more before it stabilizes [46].

3. The Risk Factors of Myopia

The pathogenesis of myopia is not entirely clear from the current research, and more is believed to be the result of genetic and environmental interactions [53]. The rapid development of the modern economy, the process of industrialization, and the improvement of living standards have all affected the occurrence and development of myopia. Similar to other chronic eye diseases, the risks of myopia can be classified as genetic or environmental factors, the latter of which includes outdoor activities, near-distance work, education, gender, and urban environment, among others, as shown in Table 2.

Table 2
Risk factors for the prevalence of myopia.

Risk factors	Reference	Region, country	Odds ratio: prevalence with factor vs. without factor		
Parental myopia	Atowa et al. [<u>54</u>]	Africa, Nigeria	6.80 for one myopic parent and 9.47 for tw		
	Yang et al. [<u>43</u>]	North America, Canada (suburban)	2.52		
	Harrington et al. [<u>36</u>]	Europe, Ireland	2.4 (paternal)		
	Kim et al. [<u>55</u>]	East Asia, Korea	1.84 for myopia and 3.48 for high myopia		
Low outdoor activity	Singh et al. [<u>28</u>]	South Asia, India (North)	19.73 (<1.5 hours per day)		
	Hagen et al. [<u>34</u>]	Europe, Norway	1.96 (less sport outdoors) and 0.67 (less other outdoors)		
	Atowa et al. [<u>54</u>]	Africa, Nigeria	1.25		
	Yang et al. [<u>43</u>]	North America, Canada (suburban)	1.17		
Time spent on near work/studying/playing	Harrington et al. [<u>36</u>]	Europe, Ireland	3.7 (using screens >3 hours per day) and 2.2 (frequently reading/writing)		
	Singh et al. [<u>28</u>]	South Asia, India (North)	2.94 (reading/writing > 4 hours daily) and 8.33 (playing video games > 2 hours daily)		
	Wang et al. [<u>16</u>]	East Asia, China (East)	1.88 (moderate school workload) and 2.36 (high school workload)		
	Chiang et al. [<u>41</u>]	North America, U.S.	1.27 (watched 2 hours of television daily) and 1.28 (used the computer for 1 hour daily)		
High level of education	Wang et al. [<u>19</u>]	East Asia, China (Southwest)	2.50 (undergraduate/graduate)		
	Wang et al. [<u>20</u>]	East Asia, China (Inner Mongolia)	1.52 (middle/high school) and 3.77 (undergraduate/graduate)		
	Chiang et al. [<u>41</u>]	North America, U.S.	1.79 (senior high school graduate education)		
	Yang et al. [<u>32</u>]	Europe, Austria	1.3–1.7 (≥graduated from professional training or served an apprenticeship) in 2013–2017		
	01 1	r 1	4.47.6.40 1 3		

The common characteristics of hereditary diseases are race-dependency and familial aggregation, both of which are often seen with myopia. A study based on children of different races found that Asians had the highest prevalence of myopia (18.5%), followed by Hispanics (13.2%), and Caucasians had the lowest prevalence (4.4%) [56]. The apparent familial aggregation of myopia can be shown by the high ratio of parental myopia. A study of Chinese children with an average age of 11.45 years found that the prevalence of myopia in children with one or two myopic parents was 2-3 times higher than that in subjects without parental myopia [53]. In Poland, if both parents are myopic, the odds ratio (OR) of the children having high myopia in adulthood has been shown to be 3.9 [52]. Children with parental myopia also have larger SEs and longer eye axial lengths. To a large extent, family association is considered a genetic factor of myopia, rather than inheritance, because family members have the same environment. However, genetic change cannot explain the rapid changes in prevalence that have taken place over the past one or two generations. Genetics play an important role in early-onset myopia and impose a level of baseline risk, while changes in the environment, especially education and outdoor activities, are the main cause of the emergence of myopia epidemics $[\underline{46}]$. To date, more than 25 myopic loci have been discovered via linkage analyses, most of which are on autosomal chromosomes. These loci can be found in the Online Mendelian Inheritance in Man (OMIM) database [57]. A few reports have indicated an interactive effect between genetic predisposition and environmental stress [58]; however, the underlying mechanism remains unclear.

3.2. Outdoor Activity

Increasing outdoor activity has been proven to be a protective factor for myopia in many epidemiological investigations, as shown in <u>Table 2</u>. In Guangzhou, 3 years after an increase in outdoor activity in the first grade of a primary school, the accumulation of myopia was 37% lower than that in students without the intervention, and the difference was statistically significant (P > 0.05) [59]. Similar results were found in school children in North Ireland, Brazil, and Poland [60–62]. Ho et al. even suggested that 120 min/day of outdoor light exposure during school can prevent the incidence of myopia [63].

The protective mechanism of outdoor activities in relation to myopia is complicated and includes higher illuminance, reduced peripheral defocus, vitamin D, chromatic spectrum of light, physical activity, circadian rhythms, spatial frequency characteristics, and less near-distance work [64]. Among them, higher illuminance is the most well-established theory with evidence shown in both animal and human studies. Norton and Siegwart used animal models to study the relationship between refractive status and light conditions and found that low light (1 to 50 lux) and darkness (<1 lux) are conducive to the extension of the eye axial length, leading to myopia. Strong light (1000–2800 lux), however, delays the occurrence and development of myopia [65]. This effect may be a result of an increase in dopamine receptor D1 activity in the ON pathway [66]. Additionally, Landis et al. measured the amount of time 102 children spent in scotopic (<1-1 lux), mesopic (1-30 lux), indoor photopic (>30–1000 lux), and outdoor photopic (>1000 lux) light during both weekdays and weekends using wearable light sensors, and they found that rod pathways stimulated by dim light exposure are also important in human myopia development. They then suggested that the optimal strategy for preventing myopia with environmental light includes both dim and bright light exposure [67]. Apart from illuminance, many more studies have emerged that focus on the "outdoor light-dopamine" mechanism. Dopamine is a key regulator of both circadian rhythms and eye growth [68]. Natural light from outdoor activities stimulates the retina to secrete more dopamine, and this dopamine was found to control eye growth [69].

We believe that some reported risk factors for myopia may be ascribed to outdoor activity, for example, the seasonal change of myopia growth. Gwiazda et al. found that the speed of myopia progression changes from month to month and is slower from April to September. Therefore, the average progress in winter is higher than that of summer, and the difference is statistically significant (P < 0.0001), which may be due to children spending more time outdoors in summer than in winter [70]. In Czech, Rusnak et al. observed 398 eyes of 12-year-old children and found significantly higher axial length growth during the winter period than the summer period. They suggested that the lack of daylight exposure in winter may lead to myopia progression [71].

3.3. Near-Distance Work

Many studies have shown that near-distance work is an important risk factor for myopia, such as reading, writing, and working on a computer, as shown in Table 2. Sherwin et al. demonstrated that children working at a distance less than 30 cm had 2.5 times the rate of myopia than those working at longer distances. Additionally, children who would read for more than 30 min at a time had a higher incidence of myopia than children who read for less than 30 min [72]. Research on the effect of near-distance work and eye movement parameters on myopia has speculated that long-term near-distance work maintains the retina image in a defocused state for a long time. Adjusting to the blurred image, then, results in an increased adjustment lag, which, together with other parameters that make chronic hyperopia defocused for a long time, induces the retina to produce some neurotransmitters or growth factors to regulate the inappropriate growth of the eye axial length, leading to the progression of myopia [73]. Working long hours at a close distance and with a low frequency of breaks during study may also be risk factors for myopia, but further research is still needed.

3.4. Education

Studies in Singapore, Germany, and other countries found that higher levels of education increase the prevalence of myopia [74, 75]. Previous studies have even shown that the higher the level of education, the higher the prevalence of myopia, as shown in Table 2. Better schools or cram schools have also been shown to be risk factors for myopia [76, 77]. A study that tested the biological interaction of genetic predisposition and the education level on myopia risk found that individuals with high genetic risk combined with a college education have a high risk of myopia, and patients with high genetic risk but only primary education have a much lower risk of myopia [78]. Education may reflect a complex combination of higher levels of exposure to near-reading and correspondingly lower levels of outdoor physical activity, leading to an upregulation of high-risk genes, excessive eye growth, and the development of myopia.

3.5. Others

Other myopia-related risk factors such as gender, urbanization, nutrition, digital screens [79, 80], Kawasaki disease [81], and maternal grandmother smoking during pregnancy [82] have been reported, but most of them lack sufficient evidence. Data concerning the effect of gender or urbanization on myopia prevalence, for example, is conflicting. In one study in India on children younger than 16 years old, girls living in urban areas were significantly more likely to have myopia than boys [47], whereas Reed et al. found the opposite to be true [39]. In the same report from Indian, the prevalence of myopia was shown to be higher in urban areas compared to rural areas (OR 2.12) [47], supporting the idea that severe air pollution in cities may accelerate myopia progression [83]. However, Morris et al. did not find strong evidence associating urban or rural

status with the incidence of myopia in a United Kingdom cohort of 3,512 children. In that study, the association between the geographical setting and myopia was considered to be potentially driven by underlying confounding factors such as education and time spent outdoors [84].

Nutrition is important for eye development in children and has been suggested to play a role in the incidence of myopia in early life. For example, children who were breastfed during the first 6 months of life were found to be less likely to have myopia [85]. However, the association between diet and myopia is controversial [86, 87]. Recently, there was no significant correlation between an infant's diet at 6, 9, and 12 months and SE, axial length, or myopia at age three years in a Singapore cohort study [88].

4. Conclusions

In summary, myopia not only affects the physical and mental health of individuals but also puts a great burden on society. Myopic adolescents are more likely to be anxious than those without myopia [89]. Knowing the various factors that affect the occurrence and development of adolescent myopia is conducive to clarifying the mechanism of myopia formation and also to formulating reasonable prevention and control measures of myopia to protect the health of adolescents.

Acknowledgments

This work was funded by the Chinese National Nature Science Foundation (81670898 and 82071012), The Project of Shanghai Shen Kang Hospital Development Centre (SHDC2018110), The Science and Technology Commission of Shanghai Municipality (20DZ1100200), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20172022), Shanghai General Hospital, Clinical Research (CTCCR-2018Z01), Shanghai Engineering Research Center of Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China (19DZ2250100), National Key R&D Program of China (2016YFC0904800 and 2019YFC0840607), and National Science and Technology Major Project of China (2017ZX09304010).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors' Contributions

Xiang Zhao-Yu contributed to the literature search, manuscript preparation, manuscript editing, and manuscript review. Zou Hai-Dong contributed to the concept, design, definition of intellectual content, literature search, data acquisition, data analysis, manuscript preparation, manuscript editing, and manuscript review.

References

- 1. Pascolini D., Mariotti S. P. Global estimates of visual impairment: 2010. *British Journal of Ophthalmology.* 2012;96(5):614–618. doi: 10.1136/bjophthalmol-2011-300539. [PubMed] [CrossRef] [Google Scholar]
- 2. Dolgin E. The myopia boom. *Nature*. 2015;519(7543):276–278. doi: 10.1038/519276a. [PubMed] [CrossRef] [Google Scholar]

- 3. Wang X., Yi H., Lu L., et al. Population prevalence of need for spectacles and spectacle ownership among urban migrant children in eastern China. *JAMA Ophthalmology.* 2015;133(12):1399–1406. doi: 10.1001/jamaophthalmol.2015.3513.

 [PubMed] [CrossRef] [Google Scholar]
- 4. Wong T. Y., Ferreira A., Hughes R., Carter G., Mitchell P. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review. *American Journal of Ophthalmology.* 2014;157(1):9.e12–25.e12. doi: 10.1016/j.ajo.2013.08.010. [PubMed] [CrossRef] [Google Scholar]
- 5. Shen L., Melles R. B., Metlapally R., et al. The association of refractive error with glaucoma in a multiethnic population. *Ophthalmology.* 2016;123(1):92–101. doi: 10.1016/j.ophtha.2015.07.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 6. Lin S.-C., Singh K., Chao D. L., Lin S. C. Refractive error and the risk of age-related macular degeneration in the South Korean population. *Asia-Pacific Journal of Ophthalmology.* 2016;5(2):115–121. doi: 10.1097/apo.0000000000000169. [PubMed] [CrossRef] [Google Scholar]
- 7. Iwase A., Araie M., Tomidokoro A., Yamamoto T., Shimizu H., Kitazawa Y. Prevalence and causes of low vision and blindness in a Japanese adult population. *Ophthalmology.* 2006;113(8):1354–1362. doi: 10.1016/j.ophtha.2006.04.022. [PubMed] [CrossRef] [Google Scholar]
- 8. Hsu W.-M., Cheng C.-Y., Liu J.-H., Tsai S.-Y., Chou P. Prevalence and causes of visual impairment in an elderly Chinese population in Taiwan. *Ophthalmology*. 2004;111(1):62–69. doi: 10.1016/j.ophtha.2003.05.011. [PubMed] [CrossRef] [Google Scholar]
- 9. Frick K. What the comprehensive economics of blindness and visual impairment can help us understand. *Indian Journal of Ophthalmology.* 2012;60(5):406–410. doi: 10.4103/0301-4738.100535. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 10. Holden B., Sankaridurg P., Smith E., Aller T., Jong M., He M. Myopia, an underrated global challenge to vision: where the current data takes us on myopia control. *Eye.* 2014;28(2):142–146. doi: 10.1038/eye.2013.256. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 11. Yi H., Zhang H., Ma X., et al. Impact of free glasses and a teacher incentive on children's use of eyeglasses: a cluster-randomized controlled trial. *American Journal of Ophthalmology.* 2015;160(5):889.e1–896.e1. doi: 10.1016/j.ajo.2015.08.006. [PubMed] [CrossRef] [Google Scholar]
- 12. Naidoo K. S., Fricke T. R., Frick K. D., et al. Potential lost productivity resulting from the global burden of myopia. *Ophthalmology.* 2019;126(3):338–346. doi: 10.1016/j.ophtha.2018.10.029. [PubMed] [CrossRef] [Google Scholar]
- 13. Holden B. A., Fricke T. R., Wilson D. A., et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. *Ophthalmology*. 2016;123(5):1036–1042. doi: 10.1016/j.ophtha.2016.01.006. [PubMed] [CrossRef] [Google Scholar]
- 14. Chen M., Wu A., Zhang L., et al. The increasing prevalence of myopia and high myopia among high school students in Fenghua city, eastern China: a 15-year population-based survey. *BMC Ophthalmology.* 2018;18(1):p. 159. doi: 10.1186/s12886-018-0829-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 15. Huang Y. P., Singh A., Lai L. J. The prevalence and severity of myopia among suburban school children in Taiwan. *Annals of the Academy of Medicine, Singapore.* 2018;47(7):253–259. [PubMed] [Google Scholar]
- 16. Wang J., Ying G.-s., Fu X., et al. Prevalence of myopia and vision impairment in school students in Eastern China. *BMC Ophthalmology.* 2020;20(1):p. 2. doi: 10.1186/s12886-019-1281-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 17. Thorn F., Chen J., Li C., et al. Refractive status and prevalence of myopia among Chinese primary school students. *Clinical and Experimental Optometry.* 2020;103(2):177–183. doi: 10.1111/cxo.12980. [PubMed] [CrossRef] [Google Scholar]

- 18. Choy B. N. K., You Q., Zhu M. M., Lai J. S. M., Ng A. L. K., Wong I. Y. H. Prevalence and associations of myopia in Hong Kong primary school students. *Japanese Journal of Ophthalmology.* 2020;64(4):p. 437. doi: 10.1007/s10384-020-00733-4. [PubMed] [CrossRef] [Google Scholar]
- 19. Wang M., Cui J., Shan G., et al. Prevalence and risk factors of refractive error: a cross-sectional Study in Han and Yi adults in Yunnan, China. *BMC Ophthalmology.* 2019;19(1):p. 33. doi: 10.1186/s12886-019-1042-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 20. Wang M., Ma J., Pan L., et al. Prevalence of and risk factors for refractive error: a cross-sectional study in Han and Mongolian adults aged 40–80 years in Inner Mongolia, China. *Eye.* 2019;33(11):1722–1732. doi: 10.1038/s41433-019-0469-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 21. Yam J. C., Tang S. M., Kam K. W., et al. High prevalence of myopia in children and their parents in Hong Kong Chinese Population: the Hong Kong Children Eye Study. *Acta Ophthalmologica*. 2020;98(5) doi: 10.1111/aos.14350. [PubMed] [CrossRef] [Google Scholar]
- 22. Qian X., Liu B., Wang J., et al. Prevalence of refractive errors in Tibetan adolescents. *BMC Ophthalmology.* 2018;18(1):p. 118. doi: 10.1186/s12886-018-0780-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 23. Pan C.-W., Wu R.-K., Li J., Zhong H. Low prevalence of myopia among school children in rural China. *BMC Ophthalmology*. 2018;18(1):p. 140. doi: 10.1186/s12886-018-0808-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 24. Yotsukura E., Torii H., Inokuchi M., et al. Current prevalence of myopia and association of myopia with environmental factors among schoolchildren in Japan. *JAMA Ophthalmology.* 2019;137(11):1233–1239. doi: 10.1001/jamaophthalmol.2019.3103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 25. Ueda E., Yasuda M., Fujiwara K., et al. Trends in the prevalence of myopia and myopic maculopathy in a Japanese population: the hisayama study. *Investigative Opthalmology & Visual Science*. 2019;60(8):2781–2786. doi: 10.1167/iovs.19-26580. [PubMed] [CrossRef] [Google Scholar]
- 26. Nakamura Y., Nakamura Y., Higa A., et al. Refractive errors in an elderly rural Japanese population: the Kumejima study. *PLoS One.* 2018;13(11) doi: 10.1371/journal.pone.0207180.e0207180 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 27. Lim D. H., Han J., Chung T.-Y., Kang S., Yim H. W. The high prevalence of myopia in Korean children with influence of parental refractive errors: the 2008-2012 Korean National Health and Nutrition Examination Survey. *PLoS One.* 2018;13(11) doi: 10.1371/journal.pone.0207690.e0207690 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 28. Singh N. K., James R. M., Yadav A., Kumar R., Asthana S., Labani S. Prevalence of myopia and associated risk factors in schoolchildren in North India. *Optometry and Vision Science*. 2019;96(3):200–205. doi: 10.1097/opx.000000000001344. [PubMed] [CrossRef] [Google Scholar]
- 29. Latif M. Z., Khan M. A., Afzal S., Gillani S. A., Chouhadry M. A. Prevalence of refractive errors; an evidence from the public high schools of Lahore, Pakistan. *Journal of the Pakistan Medical Association*. 2019;69(4):464–467. [PubMed] [Google Scholar]
- 30. Hashemi H., Nabovati P., Yekta A., Shokrollahzadeh F., Khabazkhoob M. The prevalence of refractive errors among adult rural populations in Iran. *Clinical and Experimental Optometry.* 2018;101(1):84–89. doi: 10.1111/cxo.12565. [PubMed] [CrossRef] [Google Scholar]
- 31. Parrey M. U. R., Elmorsy E. Prevalence and pattern of refractive errors among Saudi adults. *Pakistan Journal of Medical Sciences*. 2019;35(2):394–398. doi: 10.12669/pjms.35.2.648. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 32. Yang L., Vass C., Smith L., Juan A., Waldhör T. Thirty-five-year trend in the prevalence of refractive error in Austrian conscripts based on 1.5 million participants. *British Journal of Ophthalmology.* 2020;104(10):p. 1338. doi: 10.1136/bjophthalmol-2019-315024. [PubMed] [CrossRef] [Google Scholar]

- 33. Shapira Y., Mimouni M., Machluf Y., Chaiter Y., Saab H., Mezer E. The increasing burden of myopia in Israel among young adults over a generation. *Ophthalmology.* 2019;126(12):1617–1626. doi: 10.1016/j.ophtha.2019.06.025. [PubMed] [CrossRef] [Google Scholar]
- 34. Hagen L. A., Gjelle J. V. B., Arnegard S., Pedersen H. R., Gilson S. J., Baraas R. C. Prevalence and possible factors of myopia in Norwegian adolescents. *Scientific Reports*. 2018;8(1):p. 13479. doi: 10.1038/s41598-018-31790-y. [PMC free article]

 [PubMed] [CrossRef] [Google Scholar]
- 35. Popović-Beganović A., Zvorničanin J., Vrbljanac V., Zvorničanin E. The prevalence of refractive errors and visual impairment among school children in Brčko district, Bosnia and Herzegovina. *Seminars in Ophthalmology.* 2018;33(7-8):858–868. doi: 10.1080/08820538.2018.1539182. [PubMed] [CrossRef] [Google Scholar]
- 36. Harrington S. C., Stack J., O'Dwyer V. Risk factors associated with myopia in schoolchildren in Ireland. *British Journal of Ophthalmology.* 2019;103(12) doi: 10.1136/bjophthalmol-2018-313325. [PubMed] [CrossRef] [Google Scholar]
- 37. Alvarez-Peregrina C. C., Sanchez-Tena M. A. M. A., Martinez-Perez C. C., Villa-Collar C. C. Prevalence and risk factors of Myopia in Spain. *Journal of Ophthalmology.* 2019;2019:7. doi: 10.1155/2019/3419576.3419576 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 38. Czepita M., Czepita D., Safranow K. Role of gender in the prevalence of myopia among polish schoolchildren. *Journal of Ophthalmology.* 2019;2019:4. doi: 10.1155/2019/9748576.9748576 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 39. Reed D. S., Ferris L. M., Santamaria J., et al. Prevalence of myopia in newly enlisted airmen at joint base san antonio. *Clinical Ophthalmology.* 2020;14:133–137. doi: 10.2147/opth.S233048. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 40. Theophanous C., Modjtahedi B., Batech M., Marlin D., Luong T., Fong D. Myopia prevalence and risk factors in children. *Clinical Ophthalmology.* 2018;12:1581–1587. doi: 10.2147/OPTH.S164641. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 41. Chiang S.-Y., Weng T.-H., Lin C.-M., Lin S.-M. Ethnic disparity in prevalence and associated risk factors of myopia in adolescents. *Journal of the Formosan Medical Association*. 2020;119(1):134–143. doi: 10.1016/j.jfma.2019.03.004. [PubMed] [CrossRef] [Google Scholar]
- 42. Mayro E. L., Hark L. A., Shiuey E., et al. Prevalence of uncorrected refractive errors among school-age children in the School District of Philadelphia. *Journal of American Association for Pediatric Ophthalmology and Strabismus*. 2018;22(3):214–217. doi: 10.1016/j.jaapos.2018.01.011. [PubMed] [CrossRef] [Google Scholar]
- 43. Yang M., Luensmann D., Fonn D., et al. Myopia prevalence in Canadian school children: a pilot study. *Eye.* 2018;32(6):1042–1047. doi: 10.1038/s41433-018-0015-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 44. Signes-Soler I., Piñero D. P., Murillo M. I., Tablada S. Prevalence of visual impairment and refractive errors in an urban area of Mexico. *International Journal of Ophthalmology.* 2019;12(10):1612–1617. doi: 10.18240/ijo.2019.10.14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 45. Galvis V., Tello A., Otero J., et al. Prevalence of refractive errors in Colombia: MIOPUR study. *British Journal of Ophthalmology.* 2018;102(10):1320–1323. doi: 10.1136/bjophthalmol-2018-312149. [PubMed] [CrossRef] [Google Scholar]
- 46. Morgan I. G., French A. N., Ashby R. S., et al. The epidemics of myopia: aetiology and prevention. *Progress in Retinal and Eye Research.* 2018;62:134–149. doi: 10.1016/j.preteyeres.2017.09.004. [PubMed] [CrossRef] [Google Scholar]
- 47. Sheeladevi S., Seelam B., Nukella P., Borah R., Ali R., Keay L. Prevalence of refractive errors, uncorrected refractive error, and presbyopia in adults in India: a systematic review. *Indian Journal of Ophthalmology.* 2019;67(5):583–592. doi: 10.4103/ijo.IJO_1235_18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 48. Vitale S., Sperduto R. D., Ferris F. L. Increased prevalence of myopia in the United States between 1971-1972 and 1999-2004. *Archives of Ophthalmology.* 2009;127(12):1632–1639. doi: 10.1001/archophthalmol.2009.303. [PubMed] [CrossRef] [Google Scholar]

- 49. Lin L. L., Shih Y. F., Hsiao C. K., Chen C. J. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. *Annals of the Academy of Medicine, Singapore*. 2004;33(1):27–33. [PubMed] [Google Scholar]
- 50. Zhou W.-J., Zhang Y.-Y., Li H., et al. Five-year progression of refractive errors and incidence of myopia in school-aged children in western China. *Journal of Epidemiology.* 2016;26(7):386–395. doi: 10.2188/jea.JE20140258. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 51. Zhao J., Mao J., Luo R., Li F., Munoz S. R., Ellwein L. B. The progression of refractive error in school-age children: Shunyi District, China. *American Journal of Ophthalmology.* 2002;134(5):735–743. doi: 10.1016/s0002-9394(02)01689-6. [PubMed] [CrossRef] [Google Scholar]
- 52. Pärssinen O., Kauppinen M. Risk factors for high myopia: a 22-year follow-up study from childhood to adulthood. *Acta Ophthalmologica*. 2019;97(5):510–518. doi: 10.1111/aos.13964. [PubMed] [CrossRef] [Google Scholar]
- 53. Wu X., Gao G., Jin J., et al. Housing type and myopia: the mediating role of parental myopia. *BMC Ophthalmology*. 2016;16(1):p. 151. doi: 10.1186/s12886-016-0324-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 54. Atowa U. C., Wajuihian S. O., Munsamy A. J. Associations between near work, outdoor activity, parental myopia among school children in Aba, Nigeria. *International Journal of Ophthalmology.* 2020;13(2):309–316. doi: 10.18240/ijo.2020.02.16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 55. Kim H., Seo J. S., Yoo W.-S., et al. Factors associated with myopia in Korean children: Korea National Health and nutrition examination survey 2016-2017 (KNHANES VII) *BMC Ophthalmology.* 2020;20(1):p. 31. doi: 10.1186/s12886-020-1316-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 56. Kleinstein R. N., Jones L. A., Hullett S., et al. Refractive error and ethnicity in children. *Archives of Ophthalmology.* 2003;121(8):1141–1147. doi: 10.1001/archopht.121.8.1141. [PubMed] [CrossRef] [Google Scholar]
- 57. Cai X.-B., Shen S.-R., Chen D.-F., Zhang Q., Jin Z.-B. An overview of myopia genetics. *Experimental Eye Research*. 2019;188 doi: 10.1016/j.exer.2019.107778.107778 [PubMed] [CrossRef] [Google Scholar]
- 58. Enthoven C. A., Tideman J. W. L., Polling J. R., et al. Interaction between lifestyle and genetic susceptibility in myopia: the Generation R study. *European Journal of Epidemiology.* 2019;34(8):777–784. doi: 10.1007/s10654-019-00512-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 59. He M., Xiang F., Zeng Y., et al. Effect of time spent outdoors at school on the development of myopia among children in China. *Jama*. 2015;314(11):1142–1148. doi: 10.1001/jama.2015.10803. [PubMed] [CrossRef] [Google Scholar]
- 60. O'Donoghue L., Kapetanankis V. V., McClelland J. F., et al. Risk factors for childhood myopia: findings from the NICER study. *Investigative Ophthalmology & Visual Science*. 2015;56(3):1524–1530. doi: 10.1167/iovs.14-15549. [PubMed] [CrossRef] [Google Scholar]
- 61. Czepita M., Czepita D., Lubiński W. The influence of environmental factors on the prevalence of myopia in Poland. *Journal of Ophthalmology.* 2017;2017:5. doi: 10.1155/2017/5983406.5983406 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 62. Sánchez-Tocino H., Villanueva Gómez A., Gordon Bolaños C., et al. The effect of light and outdoor activity in natural lighting on the progression of myopia in children. *Journal Français d'Ophtalmologie.* 2019;42(1):2–10. doi: 10.1016/j.jfo.2018.05.008. [PubMed] [CrossRef] [Google Scholar]
- 63. Ho C.-L., Wu W.-F., Liou Y. M. Dose-response relationship of outdoor exposure and myopia indicators: a systematic review and meta-analysis of various research methods. *International Journal of Environmental Research and Public Health.* 2019;16(14):p. 2595. doi: 10.3390/ijerph16142595. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 64. Lingham G., Mackey D. A., Lucas R., Yazar S. How does spending time outdoors protect against myopia? A review. *British Journal of Ophthalmology.* 2020;104(5):593–599. doi: 10.1136/bjophthalmol-2019-314675. [PubMed] [CrossRef] [Google Scholar]

- 65. Norton T. T., Siegwart J. T., Jr. Light levels, refractive development, and myopia—a speculative review. *Experimental Eye Research.* 2013;114:48–57. doi: 10.1016/j.exer.2013.05.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 66. Chen S., Zhi Z., Ruan Q., et al. Bright light suppresses form-deprivation myopia development with activation of dopamine D1 receptor signaling in the ON pathway in retina. *Investigative Opthalmology & Visual Science.* 2017;58(4):2306–2316. doi: 10.1167/iovs.16-20402. [PubMed] [CrossRef] [Google Scholar]
- 67. Landis E. G., Yang V., Brown D. M., Pardue M. T., Read S. A. Dim light exposure and myopia in children. *Investigative Opthalmology & Visual Science*. 2018;59(12):4804–4811. doi: 10.1167/iovs.18-24415. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 68. Stone R. A., Pardue M. T., Iuvone P. M., Khurana T. S. Pharmacology of myopia and potential role for intrinsic retinal circadian rhythms. *Experimental Eye Research.* 2013;114:35–47. doi: 10.1016/j.exer.2013.01.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 69. French A. N., Ashby R. S., Morgan I. G., Rose K. A. Time outdoors and the prevention of myopia. *Experimental Eye Research*. 2013;114:58–68. doi: 10.1016/j.exer.2013.04.018. [PubMed] [CrossRef] [Google Scholar]
- 70. Gwiazda J., Deng L., Manny R., Norton T. T. Seasonal variations in the progression of myopia in children enrolled in the correction of myopia evaluation trial. *Investigative Opthalmology & Visual Science.* 2014;55(2):752–758. doi: 10.1167/iovs.13-13029. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 71. Rusnak S., Salcman V., Hecova L., Kasl Z. Myopia progression risk: seasonal and lifestyle variations in axial length growth in Czech children. *Journal of Ophthalmology.* 2018;2018:5. doi: 10.1155/2018/5076454.5076454 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 72. Sherwin J. C., Reacher M. H., Keogh R. H., Khawaja A. P., Mackey D. A., Foster P. J. The association between time spent outdoors and myopia in children and adolescents. *Ophthalmology*. 2012;119(10):2141–2151. doi: 10.1016/j.ophtha.2012.04.020. [PubMed] [CrossRef] [Google Scholar]
- 73. Huang J. O., Le Y. L. A longitudinal study on the relationship between the nearwork oculomoter functions and the myopiaprogression in myopia juveniles. *Chinese Journal of Practical Ophthalmology.* 2008;26(9):910–912. doi: 10.3760/cma.j.issn.1006-4443.2008.09.010. in Chinese. [CrossRef] [Google Scholar]
- 74. Rose K. A., Morgan I. G., Smith W., Burlutsky G., Mitchell P., Saw S. M. Myopia, lifestyle, and schooling in students of Chinese ethnicity in Singapore and Sydney. *Archives of Ophthalmology.* 2008;126(4):527–530. doi: 10.1001/archopht.126.4.527. [PubMed] [CrossRef] [Google Scholar]
- 75. Nickels S., Hopf S., Pfeiffer N., Schuster A. K. Myopia is associated with education: results from NHANES 1999–2008. *PLoS One.* 2019;14(1) doi: 10.1371/journal.pone.0211196.e0211196 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 76. Mirshahi A., Ponto K. A., Hoehn R., et al. Myopia and level of education. *Ophthalmology.* 2014;121(10):2047–2052. doi: 10.1016/j.ophtha.2014.04.017. [PubMed] [CrossRef] [Google Scholar]
- 77. Ku P.-W., Steptoe A., Lai Y.-J., et al. The associations between near visual activity and incident myopia in children. *Ophthalmology.* 2019;126(2):214–220. doi: 10.1016/j.ophtha.2018.05.010. [PubMed] [CrossRef] [Google Scholar]
- 78. Verhoeven V. J. M., Buitendijk G. H., Buitendijk G. H. S., et al. Education influences the role of genetics in myopia. *European Journal of Epidemiology.* 2013;28(12):973–980. doi: 10.1007/s10654-013-9856-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 79. Lanca C., Saw S. M. The association between digital screen time and myopia: a systematic review. *Ophthalmic and Physiological Optics*. 2020;40(2):216–229. doi: 10.1111/opo.12657. [PubMed] [CrossRef] [Google Scholar]
- 80. Enthoven C. A., Tideman J. W. L., Polling J. R., Yang-Huang J., Raat H., Klaver C. C. W. The impact of computer use on myopia development in childhood: the Generation R study. *Preventive Medicine*. 2020;132 doi: 10.1016/j.ypmed.2020.105988.105988 [PubMed] [CrossRef] [Google Scholar]

- 81. Kung Y.-J., Wei C.-C., Chen L. A., et al. Kawasaki disease increases the incidence of myopia. *BioMed Research International.* 2017;2017:6. doi: 10.1155/2017/2657913.2657913 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 82. Williams C., Suderman M., Guggenheim J. A., et al. Grandmothers' smoking in pregnancy is associated with a reduced prevalence of early-onset myopia. *Scientific Reports.* 2019;9(1):p. 15413. doi: 10.1038/s41598-019-51678-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 83. Wei C.-C., Lin H.-J., Lim Y.-P., et al. PM2.5 and NOx exposure promote myopia: clinical evidence and experimental proof. *Environmental Pollution.* 2019;254:p. 113031. doi: 10.1016/j.envpol.2019.113031. [PubMed] [CrossRef] [Google Scholar]
- 84. Morris T. T., Guggenheim J. A., Northstone K., Williams C. Geographical variation in likely myopia and environmental risk factors: a multilevel cross classified analysis of A UK cohort. *Ophthalmic Epidemiology.* 2020;27(1):1–9. doi: 10.1080/09286586.2019.1659979. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 85. Liu S., Ye S., Wang Q., Cao Y., Zhang X. Breastfeeding and myopia: a cross-sectional study of children aged 6-12 years in Tianjin, China. *Scientific Reports*. 2018;8(1):p. 10025. doi: 10.1038/s41598-018-27878-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 86. Edwards M. H., Leung S. S. F., Lee W. T. K. Do variations in normal nutrition play a role in the development of myopia? *Optometry and Vision Science.* 1996;73(10):638–643. doi: 10.1097/00006324-199610000-00002. [PubMed] [CrossRef] [Google Scholar]
- 87. Lim L. S., Gazzard G., Low Y.-L., et al. Dietary factors, myopia, and axial dimensions in children. *Ophthalmology.* 2010;117(5):993.e4–997.e4. doi: 10.1016/j.ophtha.2009.10.003. [PubMed] [CrossRef] [Google Scholar]
- 88. Chua S. Y.-L., Sabanayagam C., Tan C.-S., et al. Diet and risk of myopia in three-year-old Singapore children: the GUSTO cohort. *Clinical and Experimental Optometry.* 2018;101(5):692–699. doi: 10.1111/cxo.12677. [PubMed] [CrossRef] [Google Scholar]
- 89. Łazarczyk J. B., Urban B., Konarzewska B., et al. The differences in level of trait anxiety among girls and boys aged 13–17 years with myopia and emmetropia. *BMC Ophthalmology.* 2016;16(1):p. 201. doi: 10.1186/s12886-016-0382-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Learn more: PMC Disclaimer | PMC Copyright Notice

WILEY Open Access Collection

<u>Ophthalmic Physiol Opt.</u> 2022 Nov; 42(6): 1232–1252. Published online 2022 Aug 12. doi: 10.1111/opo.13035

PMID: <u>35959749</u>

PMCID: PMC9804554

Regional variations and temporal trends of childhood myopia prevalence in Africa: A systematic review and meta-analysis

Emmanuel Kobia-Acquah, ¹ Daniel Ian Flitcroft, ¹ Prince Kwaku Akowuah, ² Gareth Lingham, ¹ and James Loughman ¹

Abstract

Purpose

To provide contemporary and future estimates of childhood myopia prevalence in Africa.

Methods

A systematic online literature search was conducted for articles on childhood (\leq 18 years) myopia (spherical equivalent [SE] \leq -0.50D; high myopia: SE \leq -6.00D) in Africa. Population- or school-based cross-sectional studies published from 1 Jan 2000 to 30 May 2021 were included. Meta-analysis using Freeman–Tukey double arcsine transformation was performed to estimate the prevalence of childhood myopia and high myopia. Myopia prevalence from subgroup analyses for age groups and settings were used as baseline for generating a prediction model using linear regression.

Results

Forty-two studies from 19 (of 54) African countries were included in the meta-analysis (N = 737,859). Overall prevalence of childhood myopia and high myopia were 4.7% (95% CI: 3.3%–6.5%) and 0.6% (95% CI: 0.2%–1.1%), respectively. Estimated prevalence across the African regions was highest in the North (6.8% [95% CI: 4.0%–10.2%]), followed by Southern (6.3% [95% CI: 3.9%-9.1%]), East (4.7% [95% CI: 3.1%–6.7%]) and West (3.5% [95% CI: 1.9%–6.3%]) Africa. Prevalence from 2011 to 2021 was approximately double that from 2000 to 2010 for all studies combined, and between 1.5 and 2.5 times higher for ages 5–11 and 12–18 years, for boys and girls and for urban and rural settings, separately. Childhood myopia prevalence is projected to increase in urban settings and older children to 11.1% and 10.8% by 2030, 14.4% and 14.1% by 2040 and 17.7% and 17.4% by 2050, respectively; marginally higher than projected in the overall population (16.4% by 2050).

Conclusions

Childhood myopia prevalence has approximately doubled since 2010, with a further threefold increase predicted by 2050. Given this trajectory and the specific public health challenges in Africa, it is imperative to implement basic myopia prevention programmes, enhance spectacle coverage and ophthalmic services and generate more data to understand the changing myopia epidemiology to mitigate the expanding risk of the African population.

Keywords: Africa, childhood, myopia, prevalence, systematic review and meta-analysis, time trends

Key points

- For a long time, Africa has been left out of the global myopia conversation due to the comparatively low prevalence of this refractive error on the continent.
- Since 2010, childhood myopia has approximately doubled in the overall population and across different age groups, sex and study settings, and is projected to increase again threefold by the year 2050.
- The trend of increasing childhood myopia prevalence poses a significant public health threat to the continent, considering the challenges of lack of access to ophthalmic services and poor spectacle coverage.

INTRODUCTION

Myopia is a major contributor to vision impairment globally and is characterised primarily by poor uncorrected distance vision. 1 Although symptoms can easily be corrected with spectacles, contact lenses and laser refractive surgery, the availability of correction varies between countries. Thus, uncorrected refractive errors remain the commonest cause of vision impairment globally. 1 Myopia is also associated with an increased risk of ocular complications that can result in permanent vision loss, such as cataract, glaucoma, retinal detachment and myopic maculopathy (which remains without an effective treatment). 2 3 4 5 Myopia is a growing public health problem due to its association with these severe sight-threatening conditions.

Globally, myopia is expected to affect half of the world's population by the year 2050, unless current trends can be reversed. There is a myopia epidemic in urban parts of East and Southeast Asia, with prevalence estimates reported to be as high as 96.5% in 19-year-old male conscripts in South Korea. Myopia has also increased steadily in Western countries in recent decades, with the prevalence of myopia reported to have doubled in the United States and estimated to affect 50% of young persons in parts of Europe. $\frac{6}{7}$, $\frac{10}{11}$, $\frac{12}{12}$ Considering the increase in the development, urbanisation and environmental/lifestyle changes in Africa, with a projected two-thirds of the African population (an additional 950 million people) expected to live in cities by the year 2050, $\frac{13}{14}$ it is likely that the prevalence of myopia is also increasing in Africa. Other factors such as the recent increase in access to education $\frac{15}{16}$ may also influence the risk of myopia development among African school

children. Given that nearly 50% of the African population are under 18 years of age, with a projected 1 billion African child population by 2055, ¹⁷ an increase in myopia prevalence in this age group may portend a devastating cohort effect in future generations.

Generally, the prevalence of myopia in Africa is considered to be relatively low; however, estimates as high as 40% have been reported in some populations. 18, 19, 20 Previous systematic reviews, meta-analyses and future projections on myopia prevalence have been conducted for Asian and Western countries, 21, 22 with very limited pooled estimates on myopia in Africa. Existing meta-analyses suggest that the prevalence of childhood myopia in Africa is relatively low, ranging from 4.7% to 6.2%. 23, 24, 25 However, these meta-analyses are based on a limited number of studies, with as few as six to eight included studies in some reviews (compared with China for example, where a recent meta-analysis included more than 40 studies). 21 In addition, no effort has been made previously to analyse pooled estimates for the different African subregions and for high myopia, or to analyse recent time trends or provide future projections on childhood myopia prevalence in Africa.

Although myopia prevalence is comparatively lower in Africa, it is important to note that it potentially has a greater short-term impact on individuals due to the problem of inadequate spectacle coverage (some communities have recorded spectacle coverage as low as 0 to 22%), and restricted access to eye care for those who may become myopic or develop ocular health complications. 26, 27, 28, 29 These inequalities explain why uncorrected refractive error (primarily myopia) is the leading cause of vision impairment worldwide and second leading cause of blindness. Consequently, there is a strong public health need to provide an analysis of the regional variations, changing trends and future prevalence estimates to inform future policy decisions on myopia in Africa. Therefore, the aim of this systematic review and meta-analysis was to appraise the currently available literature pertaining to myopia prevalence in Africa and to provide contemporary and future estimates of myopia prevalence in children across the different African countries and Global Burden of disease (GBD) African regions.

METHODS

This systematic review and meta-analysis were reported following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) and meta-analyses of observational studies in epidemiology (MOOSE) guidelines for reporting (Table <u>S1</u>). The meta-analysis follows the methodology described by Rudnicka and Owen. <u>30</u> The review was previously registered on PROSPERO (University of York, https://www.crd.york.ac.uk/prospero/) (ID: CRD42020200655).

Literature search strategy

The following online databases were searched between 15 May 2021 and 30 May 2021 for the literature on myopia prevalence in Africa: Medline via PubMed, Google Scholar, Cochrane Library, Africa Journals Online and Scopus. Searches were restricted to studies published from 2000 onwards to reflect myopia prevalence in the 21st century. All unpublished studies were excluded from the review. No language restriction was applied to the search—studies in languages other than English were translated to English using Google Translate (google.com). The PICO (patient/population, intervention, comparison and outcomes) framework of the study was Population (children in Africa), Intervention (none), Comparison (none) and Outcome (prevalence of myopia and high myopia). This PICO was used to define the search strategy. Literature search terms were first generated in PubMed using the combination of search words or terms provided in

Table 1 and then applied in other databases (Appendix 1). An ancestry literature search was also performed by perusing the references of eligible articles for any relevant article not captured on the initial database search. Two reviewers independently performed the primary and ancestry literature searches. Disagreements between the two reviewers were resolved by consensus involving a third reviewer.

TABLE 1

Search strategy for PubMed

1	Prevalence [Text Word] OR Prevalence [MeSH Terms]
2	Epidemiology [Text Word] OR Epidemiology [MeSH Terms]
3	Incidence [Text Word] OR Incidence [MeSH Terms]
4	Myopia [Text Word] OR Myopia [MeSH Terms]
5	Nearsightedness [Text Word] OR Nearsightedness [MeSH Terms]
6	Shortsightedness [Text Word] OR Shortsightedness [MeSH Terms]
7	Refractive error [Text Word] OR Refractive error [MeSH Terms]
8	Children [Text Word] OR Children [MeSH Terms]
9	Paediatric [Text Word] OR Paediatric [MeSH Terms]
10	Africa [Text Word] OR Africa [MeSH Terms]
11	Name of each African country [Text Word] OR Name of each African country

Inclusion and exclusion criteria

Inclusion criteria for the systematic review and meta-analysis were (1) population- or school-based cross-sectional or longitudinal studies published from 1 Jan 2000 to 30 May 2021, inclusive. For longitudinal studies, information on myopia at the most recent follow-up was used; (2) studies with participants 18 years and younger; studies including participants older than 18 years were included if they provided age stratifications such that information for the age group of interest could be extracted; (3) studies that provided a clear definition of myopia (i.e., spherical equivalent ≤-0.50 D or visual acuity [VA] worse than 6/9.5 that can be corrected with minus lenses). Studies with VA cutoffs were included because an uncorrected VA of 6/9.5 which can be corrected with minus lenses has been shown to be reliable (sensitivity and specificity of 97.8% and 97.1%, respectively) in detecting myopia in children; 31 (4) studies that reported the prevalence of myopia and/or high myopia or provided information with which the prevalence could be calculated (i.e., proportion of the number of participants with myopia and/or high myopia and total number of participants in the study) and (5) studies that used a valid method for measuring refractive error (i.e., autorefraction, retinoscopy and subjective refraction) were allowed. Exclusion criteria were (1) clinic- or hospitalbased studies; (2) unpublished studies; (3) studies specific to participants with ocular conditions such as amblyopia, strabismus, corneal abnormalities, glaucoma and other clinical diseases such as autism, cerebral palsy and dyslexia and (4) studies in isolated populations such as schools for the deaf/blind.

Studies were initially screened using their titles and abstracts. All potentially relevant full-text articles were then assessed to ensure they satisfied the inclusion criteria. Two reviewers performed screening and eligibility assessment of articles; disagreements about article eligibility were resolved by discussions with a third reviewer. Information extracted from eligible articles included name of authors, article publication year, study location/country, period of study, study design, sample size, participants' mean age or range, method of diagnosis, myopia definition used, overall prevalence of myopia and age- and gender-specific prevalence of myopia. The quality of studies was assessed using the Joanna Briggs Institute Critical Appraisal Checklist for Prevalence Studies (JBI-CACPS) $\frac{32}{100}$ (Appendix $\frac{2}{100}$). Studies that used cycloplegia to measure myopia were considered as using standard, reliable methods based on the JBI-CACPS tool. Two reviewers also performed study quality assessment; disagreements were resolved by discussions with a third reviewer.

Data analysis

Statistical analysis was performed with R version 4.1.2 (The R Project for Statistical Computing, rproject.org, 2021) and OpenMeta (analyst) (Brown University, http://www.cebm.brown.edu/openmeta/), an open source software for meta-analysis. 33 Individual study proportions and pooled estimates were assessed and reported with a 95% confidence interval. The Freeman-Tukey double arcsine transformation was applied to study proportions to minimise the effects of studies with extremely high or low prevalence estimates on the overall pooled estimates. 34 Degree of inconsistency (I²) and Cochran Q statistics were used to assess heterogeneity between studies. The Cochran Q statistic is based on the chi-square distribution. The I² statistic was chosen because it provides an estimate of the percentage of heterogeneity across studies, not due to chance. Heterogeneity was considered meaningful when $I^2 > 50\%$, based on the recommendation by Higgins et al. $\frac{35}{36}$ The random effect model was used to analyse pooled estimates due to expected heterogeneity between studies. Univariable meta-regression analysis was performed to investigate variables such as sex, age, study setting, region of study and period of publication as possible sources of heterogeneity across studies. In addition, a multiple metaregression model including sex, age, study setting and region as co-variates was used to investigate the effect of publication year on myopia prevalence. Study regions were defined using the GBD regions; 1 however, only studies from North Africa were included from the North Africa and Middle East region. The leave-one-out analysis was performed to assess potential outliers and robustness of the pooled effects. Leave-one-out analysis provides an untransformed prevalence estimate and evaluates the effect each study has on the overall estimate by performing a series of meta-analyses, and each analysis performed without one study. This was conducted to show how each individual study affected the overall estimate. 36 Publication bias was evaluated using funnel plot, Egger's and Peter's test. In studies that presented myopia prevalence using both autorefraction and retinoscopy as diagnostic tests, and for unilateral and bilateral myopia separately, only data from autorefraction and unilateral myopia prevalence were extracted for the analysis. Due to the high variability in the age groupings used by the individual studies, categorising studies included in the review and metaanalysis into smaller age groups was not possible; hence, ages were grouped broadly into two categories: 5-11 years (younger children) and 12-18 years (older children). Data on rural and urban settings were extracted from studies that provided information for both rural and urban settings; however, for studies that did not provide information on rural and urban areas, the setting where the study was conducted was used. For analysis of year-specific prevalence, studies were classified into the following groups based on the year of publication: 2000–2005, 2006–2010, 2011–2015 and 2016–2021. Although data collection/study period reflects better on the prevalence within a given year, a sizable number of studies (18 studies) did not provide information on study

period, so publication year was used as a proxy to represent the study period. The publication years were then stratified to reflect the prevalence of childhood myopia within the last two decades (2000–2010 and 2011–2021).

Using SPSS (IBM-SPSS, ibm.com) and GraphPad Prism Version 8.4.3 (GraphPad, graphpad.com), regression analyses were conducted to generate prediction models for myopia prevalence in the overall population, in 5–11 years and 12–18 years age groups, and in urban and rural settings over the next three decades. The myopia prevalence values obtained from the subgroup analyses based on year of publication for these subgroups were used as baseline for generating the prediction model. Given the lack of data in some years and the use of publication year as a proxy measure of study period, studies were grouped into 5-year bins by year of publication, and the mid-points for the various year groups (i.e., 2003 for year group 2000–2005; 2008 for 2006–2010; 2013 for 2011–2015; 2018 for 2016–2020) were used as an independent variable in the regression analysis. Linear regression models were generated, and a decision of the best prediction model was made based on the coefficient of determination (R^2), sum of squared residuals (SSR) and statistical significance of F-test as described in the study by Priscilla and Verkicharla. For all statistical analyses, significance was set at p < 0.05.

RESULTS

Figure 1 shows the PRISMA flowchart detailing the steps in identifying articles included in this systematic review and meta-analysis. There were 3715 articles identified in the initial literature search, and 42 studies were included in the systematic review and meta-analysis.

FIGURE 1

Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flowchart of steps in identifying studies.

A summary of the characteristics of studies included in the systematic review is presented in Table S2. Briefly, seven studies were conducted in Ghana, 38, 39, 40, 41, 42, 43, 44 six in Ethiopia, 45, 46, 47, 48, 49, 50 five in Nigeria, 51, 52, 53, 54, 55 four in South Africa, 56, 57, 58, 59 three from Egypt, 20, 60, 61 two each in Kenya, 62, 63 Burkina Faso 64, 65 and Sudan, 66, 67 and one each in Rwanda, 68 Tunisia, 69 Libya, 70 Somalia, 71 Tanzania, 72 Togo, 73 Equatorial Guinea, 74 Morocco, 75 Uganda, 76 Malawi 77 and Benin 78 (Figure 2). Forty of the studies were school-based, and two were population-based. All included studies were cross-sectional. The pooled sample size from all studies was 737,859. Overall, most studies had good-quality ratings according to our assessment based on the JBI-CACPS, with all studies scoring 'Yes' in at least five of the nine checklists. Importantly, all studies scored 'Yes' to the questions: 'Were valid methods used for the identification of the condition?'; 'Was the sample frame appropriate to address the target population?'; and 'Was the sample size adequate?'; with 83% of the studies scoring a 'Yes' to the question 'Were study participants sampled in an appropriate way?'. A summary of the assessment of study quality is provided in Appendix 2.

FIGURE 2

Map of Africa showing prevalence of childhood myopia in each country included in the meta-analysis. Number in parenthesis represents number of studies in each country.

The prevalence of childhood myopia in Africa was pooled from all 42 studies and was estimated to be 4.7% (95% CI: 3.3%–6.5%). There was high heterogeneity between studies ($I^2 = 98.6\%$; Q = 2942.2 [df = 41], p < 0.001). The prevalence of high myopia (spherical equivalent $\leq -6.00D$) was pooled from nine studies and was estimated to be 0.6% (95% CI: 0.2%–1.1%; $I^2 = 89.6\%$; Q = 77.0 [df = 8], p < 0.001). Individual study prevalence ranged from 0.4% to 36.9% and 0.1% to 2.3% for myopia and high myopia, respectively. Forest plots for myopia and high myopia prevalence are presented in Figure 3. The study by Rushood et al. 66 (with a sample size of 671,119—approximately 91% of the total sample size) had the strongest impact on the pooled estimate. Sensitivity analysis of the untransformed proportions revealed that the study by Rushood and colleagues had the most impact on the estimate of childhood myopia in Africa. When the Rushood et al. 66 study was excluded from the analysis, the overall untransformed prevalence of childhood myopia increased from 4.0% to 4.9% (Figure 4). However, when the Freeman–Tukey double arcsine transformation was applied

to study proportion before conducting meta-analysis, the impact of the study by Rushood et al. was minimal—estimate of childhood myopia in Africa, with and without the study by Rushood et al., was 4.7% and 4.9%, respectively. More than twice as many studies were published from 2011 to 2021 compared with 2000-2010. As illustrated in Figure 5, there was asymmetry in the funnel plot [Egger's test (p < 0.001) and Peter's test (p < 0.001)]; however, the risk of potential publication bias is deemed to be low for meta-analysis of prevalence studies with low proportions like our study.

FIGURE 3

Forest plot of overall prevalence of childhood myopia in Africa. The prevalence of (a) childhood myopia in Africa was estimated to be 4.7% (95% CI: 3.3%–6.5%) and (b) high myopia was estimated to be 0.6% (95% CI: 0.2%–1.1%). The diamond represents the pooled estimate.

FIGURE 4

Leave-one-out sensitivity plot of all studies reporting the prevalence of childhood myopia in Africa. A leave-one-out sensitivity analysis provides an untransformed prevalence estimate and was performed to evaluate the contribution of each study to the overall estimate of childhood myopia in Africa. This revealed that the overall estimate of childhood myopia in Africa was most affected by the study by Rushood et al., 66 followed by the Saa et al. 73 study.

Funnel plot of studies reporting the prevalence of myopia in Africa.

The prevalence of childhood myopia in boys and girls were each pooled from 29 studies. Girls had similar prevalence rates [5.0% (95% CI: 3.2%–7.2)] to boys [4.9% (95% CI: 3.1%–7.1%)]. The prevalence of myopia in children aged 5–11 years and 12–18 years old was pooled from 17 and 23 studies, respectively; the pooled estimate was 4.6% (95% CI: 2.0%–8.1%) in children aged 5–11 years and 5.8% (95% CI: 4.0%–7.8%) in children aged 12–18 years, respectively. There was no significant association between myopia prevalence and age group (p = 0.08).

Estimated prevalence across the African regions was highest in North Africa (6.8% [95% CI: 4.0%–10.2%]), followed by Southern Africa (6.3% [95% CI: 3.9%–9.1%]), East Africa (4.7 [95% CI: 3.1%–6.7%]) and West Africa (3.5% [95% CI: 1.9%–6.3%]) (Figure 6), but the differences were not significant on meta-regression (p = 0.36). The prevalence of childhood myopia in rural settings was 4.9% (95% CI: 2.5%–8.1%) and in urban settings was 6.0% (95% CI: 3.7%–8.8%), but there was no association between study setting and myopia prevalence (p = 0.81).

FIGURE 6

Forest plot showing prevalence of childhood myopia in (a) East Africa (b) West Africa (c) North Africa (d) Southern Africa. The diamond represents the pooled estimates.

Estimated prevalence of myopia in studies with cycloplegia was approximately 30% lower than for studies without cycloplegia (4.0% vs. 5.7%, respectively), with studies using noncycloplegic refraction showing greater variability in their prevalence estimates (Figure S1). The estimated pooled prevalence from studies that performed retinoscopy with or without subjective refraction was lower (3.9% [95% CI: 2.3%–5.9%]) than from studies that performed autorefraction with or without subjective refraction (6.0% [95% CI: 3.1%–9.7%]). A summary of the various subgroup analyses conducted is presented in Table $\underline{2}$.

 $\begin{tabular}{ll} TABLE\ 2 \\ \\ Summary\ of\ subgroup\ analysis\ of\ childhood\ myopia\ prevalence\ in\ Africa \\ \\ \hline \end{tabular}$

					Heterogeneity				
Subgroup		Number of studies	Total participants	Prevalence (%) (95% CI)	I ² statistics (%)	Q- statistic (df)	<i>p</i> -value*	<i>p-</i> value (subgroup)	
Sex									
	Bo ys	29	397,947	4.9 (3.1-7.1)	98.6	754.4 (28)	<0.001	0.98	
	Gi rls	29	309,884	5.0 (3.2-7.2)	98.7	1096.2 (28)	<0.001		
Age (year	rs)								
	5- 11	17	7503	4.6 (2.0-8.1)	97.5	432.4 (16)	<0.001	0.08	
	12 - 18	23	16,071	5.8 (4.0-7.8)	95.9	450.6 (22)	<0.001		
Setting									
	Ru ral	17	19,009	4.9 (2.5-8.1)	98.7	549.9 (16)	<0.001	0.81	
	Ur ba n	25	697,967	6.0 (3.7-8.8)	99.4	1460.1 (24)	<0.001		
Region	••								
J	Ea st Af ric	13	17,935	4.7 (3.1-6.7)	96.7	309.5 (12)	<0.001	0.36	
	a W est Af ric	16	29,822	3.5 (1.9-6.3)	99.1	922.4 (15)	<0.001		
	a No rth Af ric a	8	683,222	6.8 (4.0-10.2)	99.0	724.2 (7)	<0.001		

^{*}p-value represents test of the null hypothesis that heterogeneity is equal to zero. †p-value represents test of the null hypothesis that the prevalence in all subgroups is the same—results displayed are from univariable meta-regression models.

The prevalence of childhood myopia between 2000–2010 and 2011–2021 was pooled from 12 and 30 studies, respectively. The pooled prevalence of childhood myopia between 2000–2010 was 2.9% $(95\% \text{ CI: } 1.6\% - 4.6\%; \text{ I}^2 = 96.4, \text{ Q}[df] = 268.0 \text{ (11)}, p < 0.001)$ and 2011–2021 was 5.6% (95% CI: 3.6%-8.0%; $I^2 = 99.6$, Q(df) = 2453.5 (29), p < 0.001). There was no significant association between childhood myopia prevalence and publication year after adjusting for sex, age, study setting and region of study (p = 0.72). Estimated myopia prevalence from 2006 to 2010 (2.3%) was markedly lower than the prevalence from 2001 to 2005 (4.3%), implying a reducing trend in prevalence within these periods. However, qualitative review/analysis of the data suggests that the lower reported prevalence in this period could be due to the locations of studies included from 2006 to 2010, with six of eight studies conducted in West (four studies) and East (two studies) Africa, where the prevalence of myopia is generally lower. Childhood myopia prevalence in the last decade (2011– 2021) was approximately double the prevalence in the decade of 2000–2010 for all studies combined, and 1.5 times higher for ages 5–11 years and 12–18 years, separately. In the last decade, childhood myopia prevalence was approximately 2.5 times higher than the prevalence in the decade of 2000–2010 for boys and girls, separately. A similar trend was observed in rural and urban settings; however, there was no significant difference in myopia prevalence between 2000-2010 and 2011–2021 for either urban or rural settings. A summary of the subgroup analyses of time trends for myopia prevalence for age, sex and study setting within the past two decades is presented in Table 3.

TABLE 3

Prevalence of childhood myopia in the past two decades according to age, sex and setting

Subgroup	2000-201	0		2011-202	2011-2021			
	Number	Total	Prevalence	Number	Total	Prevalence		
	of studies	participants	(%) (95% CI)	of studies	participants	(%) (95% CI)		
Age (years	()							
	5 3	1089	3.1 (0.9-6.5)	14	6414	4.9 (1.8-9.4)	0.62	
	_							
	1							
	1							
	15	3207	4.2 (1.4-8.3)	18	12,864	6.2 (4.2-8.7)	0.31	
	2							
	-							
	1							
	8							
Sex								
	В9	4446	2.7 (1.3-4.4)	20	393,501	6.2 (3.6-9.4)	0.07	
	0							
	у							
	S							
	G 9	4722	2.6 (1.0-4.9)	20	305,162	6.4 (3.8-9.5)	0.05	
	i							
	r							
	1							
	S							
Setting								
	R 5	4627	2.5 (0.6-5.4)	12	14,382	6.2 (2.8-10.9)	0.16	
	u							
	r							
	a							
	1							
	U 7	10,290	3.3 (1.6-5.6)	18	6,87,677	7.3 (4.1–11.3)	0.13	
	r							
	b							
	a							
	n							

The authors have only presented pooled estimate predictions; however, it is worthwhile to acknowledge that our predictions using individual studies (Figure S2) were similar to the pooled estimate predictions. Based on the linear regression models, the prevalence of childhood myopia in urban settings in Africa is projected to increase to 11.1% by 2030, 14.4% by 2040 and 17.7% by the year 2050, which is marginally higher than expected in the overall population (10.3% by 2030, 13.4% by 2040 and 16.4% by 2050) and noticeably higher than in rural settings (7.0% by 2030,

7.7% by 2040 and 8.4% by 2050), respectively (Figure 7). Similarly, childhood myopia prevalence is projected to increase to 10.8% by 2030, 14.1% by 2040 and 17.4% in ages 12–18 years, higher than projected for ages 5–11 years (8.5% by 2030, 11.0% by 2040 and 13.5% by 2050; Figure 8).

FIGURE 7

Prevalence of childhood myopia (%) in African children from the year 2000 to 2050. (a) Urban (b) rural (c) overall. The filled circles indicate the pooled prevalence estimate from the meta-analysis and the open circles indicate the predicted prevalence of myopia using a linear regression model. The dashed black lines running on either side of the linear fit/regression line represents the 95% prediction interval.

FIGURE 8

Prevalence of childhood myopia (%) in African children from the year 2000 to 2050. (a) 5–11 years (b) 12–18 years. The filled circles indicate the pooled prevalence estimate from the meta-analysis and the open circles indicate the predicted prevalence of myopia using a linear regression model. The dashed black lines running on either side of the linear fit/regression line represent the 95% prediction interval.

DISCUSSION

This meta-analysis suggests that the prevalence of myopia (4.7%) and high myopia (0.6%) in African children remains low but has approximately doubled over the past decade across different age groups, sex and study settings. More importantly, the prevalence of childhood myopia in Africa is predicted to more than treble again to reach 16.4% by the year 2050.

The estimated prevalence of childhood myopia in our study is considerably lower than reported in other locations outside Africa such as Taiwan $\frac{80}{36.4\%}$, China $\frac{81}{63.1\%}$, Norway $\frac{82}{13.4\%}$, Germany $\frac{83}{12-13}$ (11.4%), Ireland $\frac{84}{12-13}$ years; 19.9%), Northern Ireland $\frac{85}{12-13}$ years; 17.7%) and Australia 86 (18.9%). Our estimate is also lower than the childhood prevalence of myopia (37.7%) and high myopia (3.1%) reported in a meta-analysis of Chinese studies. 87 The current estimate of childhood myopia is similar to a recent meta-analysis estimate in Africa, ²³ despite differences in the number of studies included, which provides some reassurance as to the validity of the various estimates based on current data. This study addresses some of the key limitations of all previous reviews, 23, 24, 25 particularly the recent review by Ovenseri-Ogbomo et al., 23 such as lack of time trend analysis and future projections of childhood myopia prevalence in Africa. Analysis of the temporal trends and projections of the trends could be useful in developing targeted policy measures in addressing the condition in future. Also, there has not been any previously pooled estimates across the different regions to highlight geographic variations of childhood myopia across the continent (given the development disparities, 88 myopia prevalence may vary across the different regions). Furthermore, the study by Ovenseri-Ogbomo et al. 23 did not provide an estimate for childhood high myopia prevalence in Africa. Our study therefore provides for the first-time pooled regional estimates of childhood myopia, childhood high myopia prevalence and changing trends in childhood myopia prevalence as well as projecting the prevalence in Africa by the year 2050.

The lower prevalence of childhood myopia reported in Africa may reflect a combination of genetic and behavioural influences. Historically, Africans have had lower exposure to known environmental risk factors for myopia development, including lower literacy rates, later time for primary school enrolment, lower average number of years spent in formal education and lower rate of urbanisation, compared with other Asian and Western countries. 89, 90, 91 The low prevalence estimates means that relatively little attention has been afforded to Africa when considering the public health implications of the global myopia epidemic. It is interesting, however, that our analyses suggest the condition has approximately doubled over the past decade in the overall population and across different age groups, sex and study settings, perhaps in response to an increasing level of exposure to myopiagenic risk factors. For instance, urbanisation in most capital cities and access to education have increased in many African countries in recent years. 13, 92, 93 According to data from the United Nations Educational, Scientific and Cultural Organisation (UNESCO), enrolment rates among primary school children in Sub-Saharan Africa have increased dramatically in the last decade. $\frac{15}{10}$ In Ghana, for example, the introduction of a free Senior High School (SHS) educational policy has seen the enrolment of students in SHS double within the past few years. 16 An increase in access to education exposes children to an increase in near work activities such as reading, which is considered a significant contributory mechanism for myopia development. Mobile phone penetration in Africa has also increased rapidly, increasing from 1% in 2000 to 54% in 2012, 94 representing a new form of near work that has also been implicated as a potential risk of myopia. 95 $\frac{96}{9}$ Furthermore, many African countries have been identified as some of the fastest growing economies in the world. 98 This is typically associated with increased urbanisation 92, 99 and other environmental and lifestyle changes, such as less time spent outdoors, known to increase risk of myopia development. $\frac{100}{101}$, $\frac{101}{102}$ Regional variations in the prevalence rates in our study highlights this assertion and showed that the two most developed regions on the continent with average

human development index (HDI) above 0.7—Northern and Southern Africa⁸⁸—had the highest prevalence of childhood myopia, further supporting the known associations between myopia and socio-economic development.

These factors are likely to drive a continued rise in myopia prevalence in Africa. Our predictions suggest that the greatest increase in childhood myopia will occur in urban settings and older children, where prevalence is projected to reach 17.7% and 17.4% by 2050, noticeably higher than the 8.4% and 13.5% predicted in rural settings and younger children, respectively. This finding is significant as it highlights the need for African countries to put in place measures to mitigate the predicted trend of increasing myopia prevalence in urban settings, especially due to the positive development trajectory of many African countries. It is, however, worth acknowledging that these predictions are susceptible to unpredictable social changes (such as was experienced during the COVID-19 pandemic) and must be interpreted with caution. For example, in East Asia, there is evidence of a temporary acceleration of both the onset and the progression of myopia, particularly in societies that have shifted to home schooling. 103, 104 In contrast, for Africa, despite the recent improvement in school enrolment rates, the generally weaker education systems have been overwhelmed by the COVID-19 pandemic 105 and may therefore potentially disrupt the predicted trends in our study, resulting in less myopia. The actual impact of COVID-19 on myopia in Africa may need to be explored further.

Given the recent and projected continued rise of myopia in Africa, it is important to consider the public health implications specific to the region. Despite the low estimated prevalence of childhood myopia in Africa, uncorrected refractive error is ranked as the leading cause of vision impairment in Africa because of the general lack of access to refractive error services and poor spectacle coverage in most parts of the continent. 26, 29, 106 Poor vision due to myopia in children can easily be remedied with timely cost-effective optical intervention; however, lack of access to these inexpensive services in Africa poses a significant burden on the education and vision-related quality of life of affected individuals, with the disease burden reflected as increased disability adjusted life years in myopic children. 107 108 Notwithstanding the recent drive to improve spectacle access, particularly in rural areas of Africa, some communities continue to report spectacle coverage as low as 0%-22.2%. 28 and myopia continues to exert a negative public health impact as a significant cause of disability. 107, 108 Furthermore, myopic children have an increased risk of developing severe sightthreatening ocular disease later in life. The apparent absence of current myopia control therapies such as orthokeratology, myopia control spectacles and contact lenses in most African countries poses a significant additional challenge in the remediation of the condition on the continent. $\frac{109}{100}$ Ophthalmology services are also not sufficiently established in most areas to deal with even the most routine ocular health complications associated with myopia, such as cataract and glaucoma. $\frac{110}{100}$

A major limitation of our investigation was that only one study ⁶⁶ accounted for nearly 91% of the overall sample size. Given that this study reported a low prevalence of myopia, it affected the untransformed pooled estimate from the leave-one-out analysis and might have lowered the estimates found in the respective subgroup analysis for regions, settings and publication year. A Freeman–Tukey double arcsine transformation was applied, however, to mitigate the impact of large studies. Due to the difficulties in categorising children into smaller age groups, age was classified broadly into younger (5–11) and older (12–18) children, perhaps leading to nonsignificant differences between the two groups, as revealed by the meta-regression analysis, despite the noticeable differences in their prevalence estimates. Furthermore, only two of the 42 studies were population-based; however, school-based studies give an approximation to population-based studies in children, when the enrolment and completion rates are high, but this may not be the case in Africa, particularly for completion rates. Because of the substantial dropout rate (Sub-Saharan

African ranks highest globally in out-of-school rate), ¹¹¹ which primarily affects low-performing students, school-based studies may tend to inflate the prevalence of myopia in those remaining in school, particularly at the senior levels. Despite the high dropout rates among African school children, enrolment rates in Africa have also increased dramatically in recent years, with gross primary school enrolment rate in Sub-Saharan Africa averaging 100% in 2019. ¹⁵ 111 Therefore, the estimated prevalence in our study probably provides the best possible representation of the current burden of childhood myopia among school children in those countries for which data are available in Africa to date.

Another potential limitation relates to the inclusion of studies that did not use cycloplegic refraction to confirm myopia status. This is particularly important in Africa where myopia prevalence is low, given that even low amounts of pseudomyopia and small errors in myopia estimation could considerably distort the overall estimate of myopia. 112 Almost half of the studies included in this review did not use cycloplegia (n = 14) or did not state whether it was used or not (n = 5). As expected, studies that used cycloplegia reported lower prevalence of myopia overall, likely reflecting the established influence of accommodation on myopia in children. 113, 114 Use of cycloplegic refraction is considered the most reliable method for identifying refractive error in children due to errors associated with noncycloplegic refraction and is therefore the preferred method for epidemiological studies of refractive error. 112, 115, 116 In our meta-analysis, these errors are reflected in the wider confidence intervals and variability of the prevalence in studies that did not use cycloplegia (Figure \$1), which is consistent with the study by Ovenseri-Ogbomo and colleagues. 23 Even though the difference between cycloplegic and noncycloplegic studies was not statistically significant, the inclusion of noncycloplegic data could have potentially contributed to a slight overestimation of the overall pooled estimate of myopia herein. Future epidemiological studies on childhood myopia prevalence in Africa should endeavour to use cycloplegic techniques in conformance with international guidelines 112, 117 to provide more accurate and precise estimates of childhood myopia prevalence in Africa.

Lack of data primarily due to resource and logistical constraints remains problematic in terms of producing reliable estimates of myopia and high myopia in Africa—this was highlighted during our literature search and subsequent exclusion of nearly 100 hospital/clinic-based studies as researchers find these type of studies less resource-intensive to execute. Just 19 of the 54 countries in Africa are represented in this analysis, with 11 of those countries represented by just a single study. Furthermore, data on high myopia were only available from six countries. The lack of myopia data has been identified as a global issue, but this is particularly problematic in Africa. Africa is a very diverse continent; single studies, therefore, cannot be expected to adequately represent an entire country, and the 19 countries included cannot be reasonably expected to be representative of Africa as a whole. This can only be addressed with data that are more robust. Consideration should be given, therefore, to exploiting the improving school attendance statistics to implement proper school screening strategies that can inform public health planning specific to the African situation.

Lastly, despite the observation of asymmetry in the funnel plot, this may not directly imply the presence of publication bias. As discussed in the study by Hunter et al., ⁷⁹ funnel plot asymmetry in meta-analysis of prevalence studies may be due to scale artefacts, as the standard error of an effect is correlated with an effect such that studies with particularly low or high prevalence outcomes have a larger standard error.

There are also some notable strengths to this study. This is one of the most comprehensive estimates of childhood myopia prevalence in Africa to date, including nearly twice the number of studies relative to the earlier work. Our inclusion criteria and more comprehensive search strategy

allowed us, for example, to source and include a reasonable mix of data from urban and rural settings. A key strength of this study was the analytical approach used in the meta-analysis. Even though the Rushood et al. study $\frac{38}{}$ accounted for nearly 91% of the study sample, when this was factored into our analyses, there was only a small increase (4.7% to 4.9%) in the transformed estimated prevalence of myopia, perhaps reinforcing the robustness of our analytical approach. Furthermore, the use of the JBI-CACPS ensured that all of the included studies fulfilled a minimum quality requirement considering the heterogenous nature of the different studies. It is reassuring to note that our findings are consistent with the recent investigation, $\frac{23}{}$ and other studies that explored urban-rural differences in myopic children. $\frac{21}{}$ 81

In conclusion, the current meta-analysis estimated the pooled prevalence of myopia and high myopia in African children aged ≤18 years as 4.7% and 0.6%, respectively. The prevalence of childhood myopia has approximately doubled since 2010 across different age groups, sex and study settings. This trend seems likely to continue as the African region becomes increasingly urbanised and as the lifestyle of African children continues to evolve in ways that increase exposure to known risks of myopia development and progression. Due to poorer access to eye care, myopia exerts a relatively greater public health burden in Africa because of vision impairment from uncorrected myopia. This reinforces the need to generate more data to better understand the changing epidemiology of myopia in Africa, and to inform an appropriate myopia control response to mitigate the expanding risk of myopia and its complications for the African population.

AUTHOR CONTRIBUTIONS

Emmanuel Kobia-Acquah: Conceptualization (lead); data curation (lead); formal analysis (lead); investigation (lead); methodology (equal); project administration (equal); resources (equal); software (equal); supervision (supporting); validation (supporting); visualization (equal); writing – original draft (lead); writing – review and editing (supporting). Daniel Ian Flitcroft: Formal analysis (supporting); methodology (equal); resources (equal); software (equal); supervision (lead); validation (lead); visualization (equal); writing – original draft (supporting); writing – review and editing (lead). Prince Kwaku Akowuah: Conceptualization (supporting); data curation (supporting); formal analysis (supporting); investigation (supporting); methodology (equal); project administration (supporting); resources (equal); software (equal); validation (supporting); visualization (equal); writing – original draft (supporting); writing – review and editing (supporting). **Gareth Lingham:** Data curation (supporting); formal analysis (supporting); methodology (equal); resources (equal); software (equal); supervision (lead); validation (supporting); visualization (equal); writing – original draft (supporting); writing – review and editing (lead). James Loughman: Formal analysis (supporting); methodology (equal); project administration (equal); resources (equal); software (equal); supervision (lead); validation (lead); visualization (equal); writing – original draft (supporting); writing – review and editing (lead).

FUNDING INFORMATION

None.

CONFLICT OF INTEREST

JL has received research grant funding support from Health Research Board (Ireland), Nevakar and CooperVision; has consultancy relationships with Dopavision, Kubota Vision, Ocuco and Ebiga Vision; has received honoraria from Thea Pharmaceuticals and Ocuco for lectures; has received

equipment on loan from Topcon and CooperVision; has two patents pending (one in myopia management data analytics and one in biomonitoring for low-dose atropine treatment in myopia) and is Director of Ocumetra, all in the field of myopia management. DIF has received research grant funding support from Health Research Board (Ireland), Nevakar and CooperVision; has consultancy or other relationships with Dopavision, Kubota Vision, Essilor, Johnson & Johnson, Thea Pharmaceuticals and Vivior; has received equipment on loan from Topcon and CooperVision; has two patents pending (one in myopia management data analytics and one in biomonitoring for low-dose atropine treatment in myopia) and is Director of Ocumetra, all in the field of myopia management.

Supporting information

ACKNOWLEDGEMENT

Open access funding provided by IReL. Open access funding provided by IReL.

APPENDIX 1.

Search terms

PUBMED "myopia OR nearsightedness OR shortsightedness OR refractive error OR ametropia" AND "prevalence OR incidence OR epidemiology" AND "Children OR Paediatric" AND "Africa"

Google Scholar "prevalence OR epidemiology" AND "myopia OR refractive errors" AND "Africa OR the name of each of the 54 countries in Africa"

Africa Journals Online "prevalence OR epidemiology" AND "myopia OR refractive errors" AND "Africa"

Scopus prevalence OR epidemiology AND myopia OR refractive error AND Africa

Cochrane Library "prevalence OR epidemiology" AND "myopia OR refractive error" AND "Africa"

APPENDIX 2.

Assessment of Study Quality - Joanna Briggs Institute Critical Appraisal Checklist for Prevalence Studies (JBI-CACPS)

Number	Study	Was the sample frame appropriate to address the target population?	Were study participants sampled in an appropriate way?	Was the sample size adequate?	Were the study subjects and the setting described in detail?	Was the data analysis conducted with sufficient coverage of the identified sample?	Were valid methods used for the identification of the condition?	Wa coi me a s rel for pa
1.	Souvounou et al. (2008) 78	Y	U	Y	Y	N	Y	Y
	Burkina Faso							
2.	Anera et al. (2006) 64	Y	U	Y	U	Y	Y	N
3.	Jimenez et al (2012) ⁶⁵	Y	Y	Y	Y	Y	Y	N
	Egypt							
4.	Yamamah et al. (2015) 60	Y	Y	Y	Y	N	Y	Y
5.	Mohamed et al. (2014) ²⁰	Y	Y	Y	Y	Y	Y	Y
6.	Arafa et al. (2019) 61	Y	Y	Y	Y	N	Y	Y
	Equatorial Guinea							
7.	Soler et al. (2015) ⁷⁴	Y	Y	Y	Y	Y	Y	Y
	Ethiopia							
8.	Gessesse and Teshome	Y	Y	Y	Y	Y	Y	Y

Y, Yes; N, No; U, Unclear; N/A, Not Applicable.

Notes

Kobia-Acquah E, Flitcroft DI, Akowuah PK, Lingham G, Loughman J. Regional variations and temporal trends of childhood myopia prevalence in Africa: A systematic review and meta-analysis. *Ophthalmic Physiol Opt.* 2022;42:1232–1252. 10.1111/opo.13035 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

REFERENCES

- 1. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. *Lancet Glob Health*. 2017;5:e1221–34. [PubMed] [Google Scholar]
- 2. Flitcroft DI. The complex interactions of retinal, optical and environmental factors in myopia aetiology. *Prog Retin Eye Res.* 2012;31:622–60. [PubMed] [Google Scholar]
- 3. Haarman AEG, Enthoven CA, Tideman JL, Tedja MS, Verhoeven VJM, Klaver CCW. The complications of myopia: a review and meta-analysis. *Invest Ophthalmol Vis Sci.* 2020;61:ARVO E-Abstract 49. [PMC free article] [PubMed] [Google Scholar]
- 4. Yokoi T, Ohno-Matsui K. Diagnosis and treatment of myopic maculopathy. *Asia Pacific J Ophthalmol*. 2019;7:415–21. [PubMed] [Google Scholar]
- 5. Wang Y, Huang C, Tseng Y, Zhong J, Li X. Refractive error and eye health: an umbrella review of meta-analyses. *Front Med.* 2021;8:759767. 10.3389/fmed.2021.759767 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 6. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. *Ophthalmology*. 2016;123:1036–42. [PubMed] [Google Scholar]
- 7. Chen M, Wu A, Zhang L, Wang W, Chen X, Yu X, et al. The increasing prevalence of myopia and high myopia among high school students in Fenghua city, eastern China: a 15-year population-based survey. *BMC Ophthalmol*. 2018;18:1–10. 10.1186/s12886-018-0829-8 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 8. Yam JC, Tang SM, Kam KW, Chen LJ, Yu M, Law AK, et al. High prevalence of myopia in children and their parents in Hong Kong Chinese population: the Hong Kong children eye study. *Acta Ophthalmol*. 2020;98:e639–48. [PubMed] [Google Scholar]
- 9. Jung SK, Lee JH, Kakizaki H, Jee D. Prevalence of myopia and its association with body stature and educational level in 19-year-old male conscripts in Seoul, South Korea. *Invest Ophthalmol Vis Sci.* 2012;53:5579–83. [PubMed] [Google Scholar]
- 10. Vitale S, Sperduto RD, Ferris FL. Increased prevalence of myopia in the United States between 1971-1972 and 1999-2004. *Arch Ophthalmol.* 2009;127:1632–9. [PubMed] [Google Scholar]
- 11. Alvarez-Peregrina CC, Sanchez-Tena MAMA, Martinez-Perez CC, Villa-Collar CC. Prevalence and risk factors of myopia in Spain. *J Ophthalmol*. 2019;2019:1–7. 10.1155/2019/3419576 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 12. Schuster AK, Elflein HM, Pokora R, Urschitz MS. Prevalence and risk factors of myopia in children and adolescents in Germany: results of the KiGGS survey. *Klin Padiatr*. 2017;229:234–40. [PubMed] [Google Scholar]
- 13. Moriconi-Ebrard F, Heinrigs P, Trémolières M, editors. *Africa's urbanisation dynamics 2020: Africapolis, mapping a new urban geography.* Paris: OECD, Sahel and West Africa Club Secretariat; 2020. [Google Scholar]
- 14. Walther O. Urbanisation and demography in North and West Africa, 1950-2020. West African Papers 2021, No. 33, OECD Publishing, Paris, 10.1787/4fa52e9c-en. [CrossRef]
- 15. UNESCO . Primary school enrollment Country rankings [Internet]. 2021. [cited 2021 Oct 8]. Available from: http://data.uis.unesco.org/
- 16. Abdul-Rahaman N, Basit A, Rahaman A, Ming W, Ahmed A-R, Salma A-RS. The free senior high policy: an appropriate replacement to the progressive free senior high policy. *Int J Educ Literacy Stud.* 2018;6:26–33. [Google Scholar]

- 17. UNICEF . Children in Africa: key statistics on child survival and population [Internet]. 2019. [cited 2021 Oct 8]. Available from: https://data.unicef.org/resources/children-in-africa-child-survival-brochure/
- 18. Ben Kumah D, Aggrey Nyarko J, Afoakwa P, Nelson-Ayifah D, Ankamah E, Appenteng Osae E, et al. Prevalence of myopia among senior high school students in the Kumasi Metropolis. *JOJ Ophthalmol.* 2016;1:555566.

 10.19080/JOJO.2016.01.555566 [CrossRef] [Google Scholar]
- 19. Otutu M, Nachega J, Harvey J, Meyer D. The prevalence of refractive error in three communities of Cape Town, South Africa. *African Vis Eye Heal.* 2012;71:32–8. [Google Scholar]
- 20. Mohamed A, Wasfi E, Kotb S, Khalek E. Refractive errors among primary schools children in Assiut District, Egypt. *J Educ Pract.* 2014;5:101–13. [Google Scholar]
- 21. Tang Y, Chen A, Zou M, Liu Z, Young CA, Zheng D, et al. Prevalence and time trends of refractive error in Chinese children: a systematic review and meta-analysis. *J Glob Health*. 2021;11:1–11. 10.7189/jogh.11.08006 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 22. Williams KM, Bertelsen G, Cumberland P, Wolfram C, Verhoeven VJM, Anastasopoulos E, et al. Increasing prevalence of myopia in Europe and the impact of education. *Ophthalmology*. 2015;122:1489–97. [PMC free article] [PubMed] [Google Scholar]
- 23. Ovenseri-Ogbomo G, Osuagwu UL, Ekpenyong BN, Agho K, Ekure E, Ndep AO, et al. Systematic review and meta-analysis of myopia prevalence in African school children. *PLoS One*. 2022;17:e0263335. 10.1371/journal.pone.0263335 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 24. Rudnicka A, Kapetanakis V, Wathern A, Logan N, Gilmartin B, Whincup P, et al. Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention. *Br J Ophthalmol.* 2016;100:882–90. [PMC free article] [PubMed] [Google Scholar]
- 25. Hashemi H, Fotouhi A, Yekta A, Pakzad R, Ostadimoghaddam H, Khabazkhoob M. Global and regional estimates of prevalence of refractive errors: systematic review and meta-analysis. *J Curr Ophthalmol*. 2018;30:3–22. [PMC free article] [PubMed] [Google Scholar]
- 26. Ntodie M, Danquah L, Kandel H, Abokyi S. Toward eliminating blindness due to uncorrected refractive errors: assessment of refractive services in the northern and central regions of Ghana. *Clin Exp Optom.* 2014;97:511–5. [PubMed] [Google Scholar]
- 27. Loughman J, Nxele LL, Faria C, Thompson S, Ramson P, Chinanayi FS, et al. Rapid assessment of refractive error, presbyopia, and visual impairment and associated quality of life in Nampula, Mozambique. *J Vis Impair Blind*. 2015;109:199–212. [Google Scholar]
- 28. Chan VF, Mebrahtu G, Ramson P, Wepo M, Naidoo KS. Prevalence of refractive error and spectacle coverage in Zoba Ma'ekel Eritrea: a rapid assessment of refractive error. *Ophthalmic Epidemiol*. 2013;20:131–7. [PubMed] [Google Scholar]
- 29. Nsubuga N, Ramson P, Govender P, Chan VF, Wepo M, Naidoo KS. Uncorrected refractive errors, presbyopia and spectacle coverage in Kamuli District, Uganda. *Afr Vis Eye Health*. 2016;75:1–6. 10.4102/aveh.v75i1.327 [CrossRef] [Google Scholar]
- 30. Rudnicka AR, Owen CG. An introduction to systematic reviews and meta-analyses in health care. *Ophthalmic Physiol Opt.* 2012;32:174–83. [PubMed] [Google Scholar]
- 31. Leone J, Mitchell P, Morgan I, Kifley A, Rose KA. Use of visual acuity to screen for significant refractive errors in adolescents: is it reliable? *Arch Ophthalmol*. 2010;128:94–9. [PubMed] [Google Scholar]
- 32. Munn Z, MClinSc SM, Lisy K, Riitano D, Tufanaru C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. *Int J Evid Based Healthc.* 2015;13:147–53. [PubMed] [Google Scholar]
- 33. Wallace BC, Dahabreh IJ, Trikalinos TA, Lau J, Trow P, Schmid CH. Closing the gap between methodologists and end-users: R as a computational back-end. *J Stat Softw.* 2012;49:1–15. [Google Scholar]

- 34. Miller JJ. The inverse of the Freeman-Tukey double arcsine transformation. *Am Stat.* 1978;32:138–8. [Google Scholar]
- 35. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses testing for heterogeneity. *Br Med J.* 2003;327:557–60. [PMC free article] [PubMed] [Google Scholar]
- 36. Higgins JPT. Commentary: heterogeneity in meta-analysis should be expected and appropriately quantified. *Int J Epidemiol.* 2008;37:1158–60. [PubMed] [Google Scholar]
- 37. Priscilla JJ, Verkicharla PK. Time trends on the prevalence of myopia in India a prediction model for 2050. *Ophthalmic Physiol Opt.* 2021;41:466–74. [PubMed] [Google Scholar]
- 38. Abdul-Kabir M, Bortey D, Onoikhua E, Asare-Bediako B, Kumah D. Ametropia among school children-a cross-sectional study in a sub-urban municipality in Ghana. *Pediatr Dimens*. 2016;1:65–8. [Google Scholar]
- 39. Nartey E, van Staden D, Amedo A. Prevalence of ocular anomalies among schoolchildren in Ashaiman, Ghana. *Optom Vis Sci.* 2016;93:607–11. [PubMed] [Google Scholar]
- 40. Ovenseri-Ogbomo G, Omuemu V. Prevalence of refractive error among school children in the Cape Coast municipality, Ghana. *Clin Optom.* 2010;2:59–66. [Google Scholar]
- 41. Nakua E, Otupiri E, Owusu-Dabo E, Dzomeku V, Otu-Danquah K, Anderson M. Prevalence of refractive errors among junior high school students in the Ejisu Juaben municipality of Ghana. *J Sci Technol*. 2015;35:52–62. [Google Scholar]
- 42. Kumah B, Ebri A, Abdul-Kabir M, Ahmed A, Koomson N, Aikins S, et al. Refractive error and visual impairment in private school children in Ghana. *Optom Vis Sci.* 2013;90:1456–61. [PubMed] [Google Scholar]
- 43. Ovenseri-Ogbomo G, Assien R. Refractive error in school children in Agona Swedru, Ghana. *Afr Vis Eye Health*. 2010;69:86–92. [Google Scholar]
- 44. Asare FA, Morjaria P. Prevalence and distribution of uncorrected refractive error among school children in the Bongo District of Ghana. *Cogent Med.* 2021;8:1911414. 10.1080/2331205X.2021.1911414 [CrossRef] [Google Scholar]
- 45. Gessesse S, Teshome A. Prevalence of myopia among secondary school students in Welkite town: South-Western Ethiopia. *BMC Ophthalmol*. 2020;20:176. 10.1186/s12886-020-01457-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 46. Kedir J, Girma A. Prevalence of refractive error and visual impairment among rural school-age children of Goro District, Gurage zone, Ethiopia. *Ethiop J Health Sci.* 2014;24:353–8. [PMC free article] [PubMed] [Google Scholar]
- 47. Yared A, Belaynew W, Destaye S, Ayanaw T, Zelalem E. Prevalence of refractive errors among school children in Gondar town, Northwest Ethiopia. *Middle East Afr J Ophthalmol*. 2012;19:372–6. [PMC free article] [PubMed] [Google Scholar]
- 48. Mehari Z, Yimer A. Prevalence of refractive errors among schoolchildren in rural Central Ethiopia. *Clin Exp Optom*. 2013;96:65–9. [PubMed] [Google Scholar]
- 49. Kassa T, Alene G. Prevalence of refractive errors in pre-school and school children of debark and Kola Diba towns, North-Western Ethiopia. *Ethiop J Health Dev.* 2003;17:117–24. [Google Scholar]
- 50. Assem AS, Tegegne MM, Fekadu SA. Prevalence and associated factors of myopia among school children in Bahir Dar city, Northwest Ethiopia, 2019. *PLoS One*. 2021;16:e0248936. 10.1371/journal.pone.0248936 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 51. Atowa UC, Munsamy AJ, Wajuihian SO. Prevalence and risk factors for myopia among school children in Aba, Nigeria. *Afr Vis Eye Health*. 2017;76:a369. 10.4102/aveh.v76i1.369 [CrossRef] [Google Scholar]
- 52. Ogbonna GO. Prevalence of refractive error among early primary school age children in Ado-Odo Ota local government area, Nigeria. *Res Sq.* 2020. 10.21203/rs.3.rs-24652/v1 [CrossRef] [Google Scholar]
- 53. Ezegwui I, Oguego N, Okoye O, Maduka-Okafor F, Udeh N, Aghaji A, et al. Prevalence of refractive errors and visual impairment in school children in Enugu South-East Nigeria. *Niger J Clin Pract.* 2021;24:380–6. [PubMed] [Google Scholar]

- 54. Ebri AE, Govender P, Naidoo KS. Prevalence of vision impairment and refractive error in school learners in Calabar, Nigeria. *Afr Vis Eye Health.* 2019;78:a487. 10.4102/aveh.v78i1.487 [CrossRef] [Google Scholar]
- 55. Ezinne N, Mashige K. Refractive error and visual impairment in primary school children in Onitsha, Anambra state, Nigeria. *Afr Vis Eye Health*. 2018;77:1–8. 10.4102/aveh.v77i1.455 [CrossRef] [Google Scholar]
- 56. Mabaso R, Oduntan A, Mpolokeng M. Refractive status of primary school children in Mopani district, Limpopo Province, South Africa. *Afr Vis Eye Health*. 2006;65:125–33. [Google Scholar]
- 57. Naidoo K, Raghunandan A, Mashige K, Govender P, Holden B, Pokharel G, et al. Refractive error and visual impairment in African children in South Africa. *Invest Ophthalmol Vis Sci.* 2003;44:3764–70. [PubMed] [Google Scholar]
- 58. Wajuihian S, Hansraj R. Refractive error in a sample of black high school children in South Africa. *Optom Vis Sci.* 2017;94:1145–52. [PubMed] [Google Scholar]
- 59. Magakwe T, Xulu-Kasaba Z, Hansraj R. Visual impairment and refractive error amongst school-going children aged 6–18 years in Sekhukhune District (Limpopo, South Africa). *Afr Vis Eye Health*. 2020;79:a551. 10.4102/aveh.v79i1.551 [CrossRef] [Google Scholar]
- 60. Yamamah G, Talaat Abdel Alim A, Mostafa Y, Ahmed R, Mahmoud A. Prevalence of visual impairment and refractive errors in children of South Sinai, Egypt. *Ophthalmic Epidemiol*. 2015;22:246–52. [PubMed] [Google Scholar]
- 61. Arafa AEED, Ewis AAE, Mahran WM, Mohamed AAE, El-Shabrawy EM. Prevalence and risk factors of refractive errors among preparatory school students in Beni-Suef. *Egypt. J Public Health (Bangkok)*. 2019;27:43–7. [Google Scholar]
- 62. Ragot A, Baraza M, Clarke-Farr P. Prevalence of myopia and its socio-demographic distribution amongst secondary school going adolescents in Lurambi Sub-County, Kakamega, Kenya. *Ophthalmol J.* 2020;5:64–70. [Google Scholar]
- 63. Muma M, Kimani K, Kariuki-Wanyoike M, Ilako D, Njuguna M. Prevalence of refractive errors among primary school pupils in Kilungu division of Makueni District, Kenya. *Med J Zambia*. 2009;36:157–64. [Google Scholar]
- 64. Anera R, Jiménez J, Soler M, Pérez M, Jiménez R, Cardona J. Prevalence of refractive errors in school-age children in Burkina Faso. *Jpn J Ophthalmol.* 2006;50:483–4. [PubMed] [Google Scholar]
- 65. Jiménez R, Soler M, Anera R, Castro J, Pérez M, Salas C. Ametropias in school-age children in Fada N' Gourma (Burkina Faso, Africa). *Optom Vis Sci.* 2012;89:33–7. [PubMed] [Google Scholar]
- 66. Rushood A, Azmat S, Shariq M, Khamis A, Lakho K, Jadoon M, et al. Ocular disorders among schoolchildren in Khartoum State, Sudan. *East Mediterr Health J.* 2013;19:282–8. [PubMed] [Google Scholar]
- 67. Alrasheed SH, Naidoo KS, Clarke-Farr PC. Prevalence of visual impairment and refractive error in school-aged children in South Darfur State of Sudan. *Afr Vis Eye Health*. 2016;75:a355. 10.4102/aveh.v75i1.355 [CrossRef] [Google Scholar]
- 68. Semanyenzi S, Karimurio J, Nzayirambaho M. Prevalence and pattern of refractive errors in high schools of Nyarugenge district. *Rwanda Med J.* 2015;72:8–13. [Google Scholar]
- 69. Chebil A, Jedidi L, Chaker N, Kort F, Largueche L, El Matri L. Epidemiologic study of myopia in a population of schoolchildren in Tunisia. *La Tunisie Medicale*. 2016;94:216–20. [PubMed] [Google Scholar]
- 70. Elmajri K. A survey of the prevalence of refractive errors among children in lower primary schools in Darnah city, Libya. *Adv Ophthalmol Vis Syst.* 2017;7:378–83. [Google Scholar]
- 71. Ahmed Z, Alrasheed S, Alghamdi W. Prevalence of refractive error and visual impairment among school-age children of Hargesia, Somaliland, Somalia. *East Mediterr Health J.* 2020;26:1362–70. [PubMed] [Google Scholar]
- 72. Wedner SH, Ross DA, Todd J, Anemona A, Balira R. Myopia in secondary school students in Mwanza City, Tanzania: the need for a national screening programme. *Br J Ophthalmol*. 2002;86:1200–6. [PMC free article] [PubMed] [Google Scholar]
- 73. Nonon Saa K, Atobian K, Banla M. Refractive errors among schoolchildren in the central region of Togo. *J Fr Ophtalmol*. 2013;36:769–74. [PubMed] [Google Scholar]

- 74. Soler M, Anera R, Castro J, Jiménez R, Jiménez J. Prevalence of refractive errors in children in Equatorial Guinea. *Optom Vis Sci.* 2015;92:53–8. [PubMed] [Google Scholar]
- 75. Anera R, Soler M, De La Cruz CJ, Salas C, Ortiz C. Prevalence of refractive errors in school-age children in Morocco. *Clin Exp Ophthalmol*. 2009;37:191–6. [PubMed] [Google Scholar]
- 76. Kawuma M, Mayeku R. A survey of the prevalence of refractive errors among children in lower primary schools in Kampala district. *Afr Health Sci.* 2002;2:69–72. [PMC free article] [PubMed] [Google Scholar]
- 77. Msiska V, Njuguna M, Kariuki M. Magnitude and pattern of significant refractive errors in primary school children of Ntcheu, a rural district in Malawi. *East Afr J Ophthalmol.* 2009;15:18–20. [Google Scholar]
- 78. Sounouvou I, Tchabi S, Doutetien C, Sonon F, Yehouessi L, Bassabi S. A study of refractive errors in a primary school in Cotonou, Benin. *J Fr Ophtalmol*. 2008;31:771–5. [PubMed] [Google Scholar]
- 79. Hunter JP, Saratzis A, Sutton AJ, Boucher RH, Sayers RD, Bown MJ. In meta-analyses of proportion studies, funnel plots were found to be an inaccurate method of assessing publication bias. *J Clin Epidemiol*. 2014;67:897–903. [PubMed] [Google Scholar]
- 80. Hsu C, Huang N, Lin P, Tsai D, Tsai C, Woung L, et al. Prevalence and risk factors for myopia in second-grade primary school children in Taipei: a population-based study. *J Chin Med Assoc*. 2016;79:625–32. [PubMed] [Google Scholar]
- 81. Wang J, Ying G, Fu X, Zhang R, Meng J, Gu F, et al. Prevalence of myopia and vision impairment in school students in Eastern China. *BMC Ophthalmol*. 2020;20:1–10. 10.1186/s12886-019-1281-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 82. Hagen L, Gjelle J, Arnegard S, Pedersen H, Gilson S, Baraas R. Prevalence and possible factors of myopia in Norwegian adolescents. *Sci Rep.* 2018;8:1–10. 10.1038/s41598-018-31790-y [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 83. Schuster A, Krause L, Kuchenbäcker C, Prütz F, Elflein H, Pfeiffer N, et al. Prevalence and time trends in myopia among children and adolescents: results of the German KiGGS study. *Dtsch Ärztebl Int.* 2020;117:855–60. [PMC free article] [PubMed] [Google Scholar]
- 84. Harrington SC, Stack J, Saunders K, O'Dwyer V. Refractive error and visual impairment in Ireland schoolchildren. *Br J Ophthalmol*. 2019;103:1112–8. [PMC free article] [PubMed] [Google Scholar]
- 85. O'Donoghue L, McClelland JF, Logan NS, Rudnicka AR, Owen CG, Saunders KJ. Refractive error and visual impairment in school children in Northern Ireland. *Br J Ophthalmol*. 2010;94:1155–9. [PubMed] [Google Scholar]
- 86. French A, Morgan I, Burlutsky G, Mitchell P, Rose K. Prevalence and 5-to 6-year incidence and progression of myopia and hyperopia in Australian schoolchildren. *Ophthalmology*. 2013;120:1482–91. [PubMed] [Google Scholar]
- 87. Dong L, Kang Y, Li Y, Wei W, Jonas J. Prevalence and time trends of myopia in children and adolescents in China: a systemic review and meta-analysis. *Retina*. 2020;40:399–411. [PubMed] [Google Scholar]
- 88. United Nations Development Programme . Human development report [Internet]. 2020. [cited 2021 Oct 8]. Available from: https://hdr.undp.org/content/human-development-report-2020
- 89. Ramamurthy D, Lin Chua SY, Saw S-M. A review of environmental risk factors for myopia during early life, childhood and adolescence. *Clin Exp Optom*. 2015;98:497–506. [PubMed] [Google Scholar]
- 90. Rose KA, French AN, Morgan IG. Environmental factors and myopia. *Asia Pacific J Ophthalmol*. 2016;5:403–10. [PubMed] [Google Scholar]
- 91. Wenbo L, Congxia B, Hui L. Genetic and environmental-genetic interaction rules for the myopia based on a family exposed to risk from a myopic environment. *Gene.* 2017;626:305–8. [PubMed] [Google Scholar]
- 92. Güneralp B, Lwasa S, Masundire H, Parnell S, Seto KC. Urbanization in Africa: challenges and opportunities for conservation. *Environ Res Lett.* 2018;30:015002. 10.1088/1748-9326/aa94fe [CrossRef] [Google Scholar]

- 93. Nkrumah RB, Sinha V. Revisiting global development frameworks and research on universal basic education in Ghana and sub-Saharan Africa: a review of evidence and gaps for future research. *Rev Educ*. 2020;8:733–64. [Google Scholar]
- 94. Deloitte . Sub-Saharan Africa Mobile Observatory 2012 [Internet]. [cited 2021 Dec 29]. Available from: https://www.gsma.com/publicpolicy/wp-content/uploads/2013/01/gsma_ssamo_full_web_11_12-1.pdf
- 95. Foreman J, Salim AT, Praveen A, Fonseka D, Ting DSW, Guang He M, et al. Association between digital smart device use and myopia: a systematic review and meta-analysis. *Lancet Digit Health*. 2021;3:e806–18. [PubMed] [Google Scholar]
- 96. Loughman J, Flitcroft DI. Are digital devices a new risk factor for myopia? *Lancet Digit Health*. 2021;3:e756–7. [PubMed] [Google Scholar]
- 97. McCrann S, Loughman J, Butler J, Paudel N, Flitcroft D. Smartphone use as a possible risk factor for myopia. *Clin Exp Optom.* 2021;104:35–45. [PubMed] [Google Scholar]
- 98. Obeng-Odoom F. Africa: on the rise, but to where? Forum Soc Econ. 2015;44:234–50. [Google Scholar]
- 99. Annez P, Buckley R, Kalarickal J. African urbanization as flight? Some policy implications of geography. *Urban Forum*. 2010;21:221–34. [Google Scholar]
- 100. Ip JM, Rose KA, Morgan IG, Burlutsky G, Mitchell P. Myopia and the urban environment: findings in a sample of 12-year-old Australian school children. *Invest Ophthalmol Vis Sci.* 2008;49:3858–63. [PubMed] [Google Scholar]
- 101. Zhang M, Li L, Chen L, Lee J, Wu J, Yang A, et al. Population density and refractive error among Chinese children. *Invest Ophthalmol Vis Sci.* 2010;51:4969–76. [PubMed] [Google Scholar]
- 102. De Kock R, Futcher LA. Mobile device usage in higher education institutions in South Africa. In: 2016 Information Security for South Africa (ISSA). Johannesburg, South Africa: IEEE; 2016. p. 27–34. 10.1109/ISSA.2016.7802925 [CrossRef] [Google Scholar]
- 103. Zhang X, Cheung SSL, Chan HN, Zhang Y, Wang YM, Yip BH, et al. Myopia incidence and lifestyle changes among school children during the COVID-19 pandemic: a population-based prospective study. *Br J Ophthalmol*. 2021:1–7. 10.1136/bjophthalmol-2021-319307 [PubMed] [CrossRef] [Google Scholar]
- 104. Chen H, Liao Y, Zhou W, Dong L, Wang W, WangID X. The change of myopic prevalence in children and adolescents before and after COVID-19 pandemic in Suqian, China. *PLoS One*. 2022;17:e0262166. 10.1371/journal.pone.0262166 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 105. Ceesay EK. Potential impact of COVID-19 outbreak on education, staff development and training in Africa. *Res Glob*. 2021;3:100049. 10.1016/j.resglo.2021.100049 [CrossRef] [Google Scholar]
- 106. Resnikoff S, Pascolini D, Mariotti S, Pokharel G. Global magnitude of visual impairment caused by uncorrected refractive errors in 2004. *Bull World Health Organ*. 2008;86:63–70. [PMC free article] [PubMed] [Google Scholar]
- 107. Kandel H, Khadka J, Goggin M, Pesudovs K. Impact of refractive error on quality of life: a qualitative study. *Clin Exp Ophthalmol*. 2017;45:677–88. [PubMed] [Google Scholar]
- 108. Li H, Liu Y, Dong L, Zhang R, Zhou W, Wu H, et al. Global, regional, and national prevalence, disability adjusted life years, and time trends for refraction disorders, 1990–2019: findings from the global burden of disease study 2019. *BMC Public Health*. 2021;21:1–2. 10.1186/s12889-021-11648-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 109. Nti A, Owusu-Afriyie B, Osuagwu U, Ovenseri-Ogbomo G, Ogbuehi K, Ouzzani M, et al. Trends in myopia management attitudes and strategies in clinical practice: survey of eye care practitioners in Africa. *Cont Lens Anterior Eye*. 2022;101597. 10.1016/j.clae.2022.101597 [PubMed] [CrossRef] [Google Scholar]
- 110. Courtright P, Mathenge W, Kello AB, Cook C, Kalua K, Lewallen S. Setting targets for human resources for eye health in sub-Saharan Africa: what evidence should be used? *Hum Resour Health*. 2016;14:1–8. 10.1186/s12960-016-0107-x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

- 111. UNESCO . New methodology shows that 258 million children, adolescents and youth are out of school [Internet]; 2019. [cited 2021 Oct 8]. Available from: http://uis.unesco.org/sites/default/files/documents/newmethodology-shows-258-million-children-adolescents-and-youth-are-out-school.pdf
- 112. Morgan IG, Iribarren R, Fotouhi A, Grzybowski A. Cycloplegic refraction is the gold standard for epidemiological studies. *Acta Ophthalmol.* 2015;93:581–5. [PubMed] [Google Scholar]
- 113. Farhood Q. Cycloplegic refraction in children with cyclopentolate versus atropine. *J Clin Exp Ophthalmol.* 2012;3:1–6. 10.4172/2155-9570.1000239 [CrossRef] [Google Scholar]
- 114. Choong Y, Chen A, Goh P. A comparison of autorefraction and subjective refraction with and without cycloplegia in primary school children. *Am J Ophthalmol.* 2006;142:68–74. [PubMed] [Google Scholar]
- 115. Fotouhi A, Morgan IG, Iribarren R, Khabazkhoob M, Hashemi H. Validity of noncycloplegic refraction in the assessment of refractive errors: the Tehran eye study. *Acta Ophthalmol.* 2012;90:380–6. [PubMed] [Google Scholar]
- 116. Grzybowski A, Kanclerz P, Tsubota K, Lanca C, Saw SM. A review on the epidemiology of myopia in school children worldwide. *BMC Ophthalmol*. 2020;20:27. 10.1186/s12886-019-1220-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 117. Flitcroft DI, He M, Jonas JB, Jong M, Naidoo K, Ohno-Matsui K, et al. IMI defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies. *Invest Ophthalmol Vis Sci.* 2019;60:M20–30. [PMC free article] [PubMed] [Google Scholar]

As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.

Learn more: PMC Disclaimer | PMC Copyright Notice

Journal of **Ophthalmology**

J Ophthalmol. 2020; 2020: 4395278.

Published online 2020 Nov 4. doi: <u>10.1155/2020/4395278</u>

PMCID: PMC7803099

PMID: 33489329

Recent Epidemiology Study Data of Myopia

Zhao-Yu Xiang ¹ and Hai-Dong Zou^{図1,2}

Abstract

Myopia, a pandemic refractive error, is affecting more and more people. The progression of myopia could cause numerously serious complications, even leading to blindness. This review summarizes the epidemiological studies on myopia after 2018 and analyzes the risk factors associated with myopia. The prevalence of myopia varies in different regions, age, and observation time. East Asia has been gripped by an unprecedented rise in myopia, and other parts of the world have also seen an increase. The prevalence of myopia in children continues to rise and aggravates with age. The prevalence of high myopia has also increased along with myopia. Racial dependence and family aggregation can be seen frequently in myopia patients. Increased outdoor activities are proven to be protective factors for myopia, as near-distance work and higher education levels affect in the opposite. The impact of gender or urbanization on myopia is controversial. The relationship between nutrition, digital screens, Kawasaki disease, pregnant women smoking during pregnancy, and myopia is still not clear for lack of sufficient evidence. Understanding the various factors that affect myopia helps to clarify the mechanism of myopia formation and also to formulate reasonable prevention and control measures of myopia to protect people's health, especially for adolescents.

1. Introduction

Uncorrected refractive error is not only the second leading cause of global blindness but also the leading cause of preventable visual impairment in children [1]. Myopia, the main manifestation of refractive error, is now an alarming pandemic: 2.5 billion people could be affected by myopia by the end of this decade [2]. In many regions, such as eastern China, myopia is often addressed as a "simple" refractive error, instead of a disease [3]. However, it undeniably increases the risk of diseases of blindness such as macular degeneration, retinal detachment, cataracts, and glaucoma [4-6]. Almost 15 years ago, myopic macular degeneration had already driven myopia to become the leading cause of permanent monocular blindness in Japan [7] and the most frequent cause of severe visual impairment and blindness in the elderly Chinese population in Taiwan [8]. Apart from its deleterious effects on functional vision, the loss of visual acuity associated with uncorrected myopia or permanent vision loss significantly affects all aspects of an individual's quality of life. The constraints that affected individuals experience are likely to further limit their independent choices

and pose additional monetary and physical burdens [9]. Furthermore, the economic and financial burden of myopia on families incorporate both the cost of optical devices or other refractive modalities and the need for frequent and long-term management of the condition by an eye-care practitioner [10]. For Chinese urban migrant families, merely the cost of spectacles deters the parents from providing refractive error correction for their children [11], resulting in an increase in myopia and deteriorating functional vision that will certainly damage the future lives of the young. Naidoo et al. reported that the potential global productivity loss associated with the burden of visual impairment was estimated at US\$244 billion from uncorrected myopia in 2015 [12]. Controlling myopia, therefore, should be emphasized as a major worldwide public health objective.

2. Global Prevalence of Myopia and High Myopia

In 2016, Holden et al. estimated that the global prevalence of myopia was 1.406 billion people worldwide (22.9% of the global population), and that 163 million people had high myopia in 2000. They also concluded that, by 2050, there will be 4.758 billion people with myopia (49.8% of the global population), and 938 million will have high myopia [13]. In accordance with Holden's methodology, we searched PubMed (National Library of Medicine) on March 1, 2020, for epidemiological studies on myopia after January 1, 2018, regardless of the original language of publication. Population-based studies were chosen because they reflect the real-world data of the epidemic. Countries were grouped based on the continent they belonged to. A summary of the data is given in Table 1, showing that the prevalence of myopia varies significantly between different regions, ages, and observation times.

Table 1

Population-based epidemiology study results of myopia and high myopia published from January 1, 2018, to March 1, 2020, in PubMed (National Library of Medicine) database.

Reference	Region,	Participant	Age range,	Cycloplegia	Mean age	Myopia	
	country	number	year/cohort		(SD), year	Definition	Prev (95% %
Chen et al. [<u>14</u>]	East Asia, China (East)	43858	Third-year high school students	No	18.4 (0.7) overall	SE < -0.5 D	79.5 in 20 87.7 in
Huang et al. [<u>15</u>]	East Asia, China (Taiwan)	6069	6-15	No	10.5 (2.3)	SE < 0.0 D	76.6
Wang et al. [<u>16</u>]	East Asia, China (East)	4801	5–20	No	12.3 (3.8)	$SE \le -0.5 D +$ $UCVA \le 20/25$	63.1 6
Thorn et al. [<u>17</u>]	East Asia, China (East)	13220	5–16	No	9.4 (1.9)	SE≤-1.0 D	49.5
Choy et al. [<u>18</u>]	East Asia, China (Hong Kong)	1396	6–13	No	8.8 (N/A)	SE ≤ −0.5 D	37.7 4
Wang et al. [<u>19</u>]	East Asia, China (southwest)	1626	40-80	No	N/A	SE < -0.5 D	26.4 2 ov 31.5 35 Hai 16.8 20.8
Wang et al. [<u>20</u>]	East Asia, China (Inner Mongolia)	2090	40-80	No	N/A	SE < -0.5 D	29.4 3 ov 31.8 34 Hai 23.0 26 Mor
Yam et al. [21]	East Asia, China (Hong	10137 (4257	6-8 and parents	No*	7.6 (1.0) in children and	$SE \le -0.5 D$ (in children) and	25.0 in cl

SE, spherical equivalent; N/A, not available; UCVA, uncorrected visual acuity. *Cycloplegic measurements in patients needed a detailed eye examination. †Cycloplegic measurements in 135 patients. [‡]The last recorded refraction including autorefraction, cycloplegic refraction, and/or subjective refractions. [§]Cycloplegic measurements in 633

According to epidemiological surveys from the past two years, the prevalence of myopia varies depending on the continent, country, and region. East Asia has been gripped by an unprecedented rise in myopia, and other parts of the world have also seen an increase. As Morgan et al. referred to in their review, the highest rates occur in China, Japan, and Singapore [46]. In China, the highest prevalence occurs in the eastern areas, which are the economically developed parts of China, as shown in Table 1. In South Asia, the prevalence is much lower than in East Asia. In India, the prevalence of myopia is similar to that of the nearby Tibetan province of China where the prevalence is nearly the lowest in all of China. A meta-analysis concluded that only 5.3% of children younger than 16 years of age are myopic in India [47]. The prevalence of myopia in Europe and North America ranges from 6.2% to 26.2% (Table 1).

At present, most of the epidemiological studies of myopia are based on cross-sectional data, while there are relatively few cohort studies. Cohort studies are more informative since they present the annual incidence and progress of myopia, and currently, they all suggest that the prevalence of myopia is increasing every year. According to the published research, the prevalence of myopia among 12- to 17-year-old students in the United States from 1971 to 2004 increased from 12.0% to 31.2%, and over the past 30 years, the prevalence in all ages has increased significantly [48]. A retrospective study of myopia in Taiwan showed that the average prevalence in 7-year-olds increased from 5.8% in 1983 to 21% in 2000; at the age of 12, the prevalence of myopia was 36.7% in 1983 and increased to 61% by 2000 [49]. In southern China, a 5-year follow-up survey was conducted on 6- to 15-year-old children. The cumulative average annual myopia progression was -2.20 D, and the annual change rate of myopia was -0.43 D [50]. Another study in Beijing, North China, showed that the annual incidence of myopia was 7.8%, and the progression of myopia was -0.17 D [51].

A critical parameter for the epidemiological analysis of myopia is age, since prevalence rates have been known to increase significantly with age, as shown in Table 1. In Finland, a total of 240 myopic school children with a mean spherical equivalent (SE) of -1.43 D at baseline were followed up for 22 years, at the end of which, the mean SE of the more myopic eye was -5.29 D. About 32% of the children receiving their first myopic glasses between and around 11 years of age had high myopia (SE \leq -6.00 D in one eye) in adulthood. A younger onset age of myopia predicted a greater prevalence of high myopia after 22 years, suggested by a prevalence of 65% for those with baseline ages between 8.8 and 9.7 years and 7% for those aged between 11.9 and 12.8 years [52]. An epidemic of high myopia occurs parallel to myopia, as shown in Table 1, perhaps because early-onset myopia progresses more and more before it stabilizes [46].

3. The Risk Factors of Myopia

The pathogenesis of myopia is not entirely clear from the current research, and more is believed to be the result of genetic and environmental interactions [53]. The rapid development of the modern economy, the process of industrialization, and the improvement of living standards have all affected the occurrence and development of myopia. Similar to other chronic eye diseases, the risks of myopia can be classified as genetic or environmental factors, the latter of which includes outdoor activities, near-distance work, education, gender, and urban environment, among others, as shown in Table 2.

Table 2
Risk factors for the prevalence of myopia.

Risk factors	Reference	Region, country	Odds ratio: prevalence with factor vs. without factor		
Parental myopia	Atowa et al. [<u>54</u>]	Africa, Nigeria	6.80 for one myopic parent and 9.47 for two myopic parents		
	Yang et al. [<u>43</u>]	North America, Canada (suburban)	2.52		
	Harrington et al. [<u>36</u>]	Europe, Ireland	2.4 (paternal)		
	Kim et al. [<u>55</u>]	East Asia, Korea	1.84 for myopia and 3.48 for high myopia		
Low outdoor activity	Singh et al. [<u>28</u>]	South Asia, India (North)	19.73 (<1.5 hours per day)		
	Hagen et al. [<u>34</u>]	Europe, Norway	1.96 (less sport outdoors) and 0.67 (less other outdoors)		
	Atowa et al. [<u>54</u>]	Africa, Nigeria	1.25		
	Yang et al. [<u>43</u>]	North America, Canada (suburban)	1.17		
Time spent on near work/studying/playing	Harrington et al. [<u>36</u>]	Europe, Ireland	3.7 (using screens >3 hours per day) and 2.2 (frequently reading/writing)		
	Singh et al. [<u>28</u>]	South Asia, India (North)	2.94 (reading/writing > 4 hours daily) and 8.33 (playing video games > 2 hours daily)		
	Wang et al. [<u>16</u>]	East Asia, China (East)	1.88 (moderate school workload) and 2.36 (high school workload)		
	Chiang et al. [<u>41</u>]	North America, U.S.	1.27 (watched 2 hours of television daily) and 1.28 (used the computer for 1 hour daily)		
High level of education	Wang et al. [<u>19</u>]	East Asia, China (Southwest)	2.50 (undergraduate/graduate)		
	Wang et al. [<u>20</u>]	East Asia, China (Inner Mongolia)	1.52 (middle/high school) and 3.77 (undergraduate/graduate)		
	Chiang et al. [<u>41</u>]	North America, U.S.	1.79 (senior high school graduate education)		
	Yang et al. [<u>32</u>]	Europe, Austria	1.3–1.7 (≥graduated from professional training or served an apprenticeship) in 2013–2017		
	01 1	r 1	4.47.6.40 1 3		

The common characteristics of hereditary diseases are race-dependency and familial aggregation, both of which are often seen with myopia. A study based on children of different races found that Asians had the highest prevalence of myopia (18.5%), followed by Hispanics (13.2%), and Caucasians had the lowest prevalence (4.4%) [56]. The apparent familial aggregation of myopia can be shown by the high ratio of parental myopia. A study of Chinese children with an average age of 11.45 years found that the prevalence of myopia in children with one or two myopic parents was 2-3 times higher than that in subjects without parental myopia [53]. In Poland, if both parents are myopic, the odds ratio (OR) of the children having high myopia in adulthood has been shown to be 3.9 [52]. Children with parental myopia also have larger SEs and longer eye axial lengths. To a large extent, family association is considered a genetic factor of myopia, rather than inheritance, because family members have the same environment. However, genetic change cannot explain the rapid changes in prevalence that have taken place over the past one or two generations. Genetics play an important role in early-onset myopia and impose a level of baseline risk, while changes in the environment, especially education and outdoor activities, are the main cause of the emergence of myopia epidemics $[\underline{46}]$. To date, more than 25 myopic loci have been discovered via linkage analyses, most of which are on autosomal chromosomes. These loci can be found in the Online Mendelian Inheritance in Man (OMIM) database [57]. A few reports have indicated an interactive effect between genetic predisposition and environmental stress [58]; however, the underlying mechanism remains unclear.

3.2. Outdoor Activity

Increasing outdoor activity has been proven to be a protective factor for myopia in many epidemiological investigations, as shown in <u>Table 2</u>. In Guangzhou, 3 years after an increase in outdoor activity in the first grade of a primary school, the accumulation of myopia was 37% lower than that in students without the intervention, and the difference was statistically significant (P > 0.05) [59]. Similar results were found in school children in North Ireland, Brazil, and Poland [60–62]. Ho et al. even suggested that 120 min/day of outdoor light exposure during school can prevent the incidence of myopia [63].

The protective mechanism of outdoor activities in relation to myopia is complicated and includes higher illuminance, reduced peripheral defocus, vitamin D, chromatic spectrum of light, physical activity, circadian rhythms, spatial frequency characteristics, and less near-distance work [64]. Among them, higher illuminance is the most well-established theory with evidence shown in both animal and human studies. Norton and Siegwart used animal models to study the relationship between refractive status and light conditions and found that low light (1 to 50 lux) and darkness (<1 lux) are conducive to the extension of the eye axial length, leading to myopia. Strong light (1000–2800 lux), however, delays the occurrence and development of myopia [65]. This effect may be a result of an increase in dopamine receptor D1 activity in the ON pathway [66]. Additionally, Landis et al. measured the amount of time 102 children spent in scotopic (<1-1 lux), mesopic (1-30 lux), indoor photopic (>30–1000 lux), and outdoor photopic (>1000 lux) light during both weekdays and weekends using wearable light sensors, and they found that rod pathways stimulated by dim light exposure are also important in human myopia development. They then suggested that the optimal strategy for preventing myopia with environmental light includes both dim and bright light exposure [67]. Apart from illuminance, many more studies have emerged that focus on the "outdoor light-dopamine" mechanism. Dopamine is a key regulator of both circadian rhythms and eye growth [68]. Natural light from outdoor activities stimulates the retina to secrete more dopamine, and this dopamine was found to control eye growth [69].

We believe that some reported risk factors for myopia may be ascribed to outdoor activity, for example, the seasonal change of myopia growth. Gwiazda et al. found that the speed of myopia progression changes from month to month and is slower from April to September. Therefore, the average progress in winter is higher than that of summer, and the difference is statistically significant (P < 0.0001), which may be due to children spending more time outdoors in summer than in winter [70]. In Czech, Rusnak et al. observed 398 eyes of 12-year-old children and found significantly higher axial length growth during the winter period than the summer period. They suggested that the lack of daylight exposure in winter may lead to myopia progression [71].

3.3. Near-Distance Work

Many studies have shown that near-distance work is an important risk factor for myopia, such as reading, writing, and working on a computer, as shown in Table 2. Sherwin et al. demonstrated that children working at a distance less than 30 cm had 2.5 times the rate of myopia than those working at longer distances. Additionally, children who would read for more than 30 min at a time had a higher incidence of myopia than children who read for less than 30 min [72]. Research on the effect of near-distance work and eye movement parameters on myopia has speculated that long-term near-distance work maintains the retina image in a defocused state for a long time. Adjusting to the blurred image, then, results in an increased adjustment lag, which, together with other parameters that make chronic hyperopia defocused for a long time, induces the retina to produce some neurotransmitters or growth factors to regulate the inappropriate growth of the eye axial length, leading to the progression of myopia [73]. Working long hours at a close distance and with a low frequency of breaks during study may also be risk factors for myopia, but further research is still needed.

3.4. Education

Studies in Singapore, Germany, and other countries found that higher levels of education increase the prevalence of myopia [74, 75]. Previous studies have even shown that the higher the level of education, the higher the prevalence of myopia, as shown in Table 2. Better schools or cram schools have also been shown to be risk factors for myopia [76, 77]. A study that tested the biological interaction of genetic predisposition and the education level on myopia risk found that individuals with high genetic risk combined with a college education have a high risk of myopia, and patients with high genetic risk but only primary education have a much lower risk of myopia [78]. Education may reflect a complex combination of higher levels of exposure to near-reading and correspondingly lower levels of outdoor physical activity, leading to an upregulation of high-risk genes, excessive eye growth, and the development of myopia.

3.5. Others

Other myopia-related risk factors such as gender, urbanization, nutrition, digital screens [79, 80], Kawasaki disease [81], and maternal grandmother smoking during pregnancy [82] have been reported, but most of them lack sufficient evidence. Data concerning the effect of gender or urbanization on myopia prevalence, for example, is conflicting. In one study in India on children younger than 16 years old, girls living in urban areas were significantly more likely to have myopia than boys [47], whereas Reed et al. found the opposite to be true [39]. In the same report from Indian, the prevalence of myopia was shown to be higher in urban areas compared to rural areas (OR 2.12) [47], supporting the idea that severe air pollution in cities may accelerate myopia progression [83]. However, Morris et al. did not find strong evidence associating urban or rural

status with the incidence of myopia in a United Kingdom cohort of 3,512 children. In that study, the association between the geographical setting and myopia was considered to be potentially driven by underlying confounding factors such as education and time spent outdoors [84].

Nutrition is important for eye development in children and has been suggested to play a role in the incidence of myopia in early life. For example, children who were breastfed during the first 6 months of life were found to be less likely to have myopia [85]. However, the association between diet and myopia is controversial [86, 87]. Recently, there was no significant correlation between an infant's diet at 6, 9, and 12 months and SE, axial length, or myopia at age three years in a Singapore cohort study [88].

4. Conclusions

In summary, myopia not only affects the physical and mental health of individuals but also puts a great burden on society. Myopic adolescents are more likely to be anxious than those without myopia [89]. Knowing the various factors that affect the occurrence and development of adolescent myopia is conducive to clarifying the mechanism of myopia formation and also to formulating reasonable prevention and control measures of myopia to protect the health of adolescents.

Acknowledgments

This work was funded by the Chinese National Nature Science Foundation (81670898 and 82071012), The Project of Shanghai Shen Kang Hospital Development Centre (SHDC2018110), The Science and Technology Commission of Shanghai Municipality (20DZ1100200), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20172022), Shanghai General Hospital, Clinical Research (CTCCR-2018Z01), Shanghai Engineering Research Center of Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China (19DZ2250100), National Key R&D Program of China (2016YFC0904800 and 2019YFC0840607), and National Science and Technology Major Project of China (2017ZX09304010).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors' Contributions

Xiang Zhao-Yu contributed to the literature search, manuscript preparation, manuscript editing, and manuscript review. Zou Hai-Dong contributed to the concept, design, definition of intellectual content, literature search, data acquisition, data analysis, manuscript preparation, manuscript editing, and manuscript review.

References

- 1. Pascolini D., Mariotti S. P. Global estimates of visual impairment: 2010. *British Journal of Ophthalmology.* 2012;96(5):614–618. doi: 10.1136/bjophthalmol-2011-300539. [PubMed] [CrossRef] [Google Scholar]
- 2. Dolgin E. The myopia boom. *Nature*. 2015;519(7543):276–278. doi: 10.1038/519276a. [PubMed] [CrossRef] [Google Scholar]

- 3. Wang X., Yi H., Lu L., et al. Population prevalence of need for spectacles and spectacle ownership among urban migrant children in eastern China. *JAMA Ophthalmology.* 2015;133(12):1399–1406. doi: 10.1001/jamaophthalmol.2015.3513.

 [PubMed] [CrossRef] [Google Scholar]
- 4. Wong T. Y., Ferreira A., Hughes R., Carter G., Mitchell P. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review. *American Journal of Ophthalmology.* 2014;157(1):9.e12–25.e12. doi: 10.1016/j.ajo.2013.08.010. [PubMed] [CrossRef] [Google Scholar]
- 5. Shen L., Melles R. B., Metlapally R., et al. The association of refractive error with glaucoma in a multiethnic population. *Ophthalmology.* 2016;123(1):92–101. doi: 10.1016/j.ophtha.2015.07.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 6. Lin S.-C., Singh K., Chao D. L., Lin S. C. Refractive error and the risk of age-related macular degeneration in the South Korean population. *Asia-Pacific Journal of Ophthalmology.* 2016;5(2):115–121. doi: 10.1097/apo.0000000000000169. [PubMed] [CrossRef] [Google Scholar]
- 7. Iwase A., Araie M., Tomidokoro A., Yamamoto T., Shimizu H., Kitazawa Y. Prevalence and causes of low vision and blindness in a Japanese adult population. *Ophthalmology.* 2006;113(8):1354–1362. doi: 10.1016/j.ophtha.2006.04.022. [PubMed] [CrossRef] [Google Scholar]
- 8. Hsu W.-M., Cheng C.-Y., Liu J.-H., Tsai S.-Y., Chou P. Prevalence and causes of visual impairment in an elderly Chinese population in Taiwan. *Ophthalmology*. 2004;111(1):62–69. doi: 10.1016/j.ophtha.2003.05.011. [PubMed] [CrossRef] [Google Scholar]
- 9. Frick K. What the comprehensive economics of blindness and visual impairment can help us understand. *Indian Journal of Ophthalmology.* 2012;60(5):406–410. doi: 10.4103/0301-4738.100535. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 10. Holden B., Sankaridurg P., Smith E., Aller T., Jong M., He M. Myopia, an underrated global challenge to vision: where the current data takes us on myopia control. *Eye.* 2014;28(2):142–146. doi: 10.1038/eye.2013.256. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 11. Yi H., Zhang H., Ma X., et al. Impact of free glasses and a teacher incentive on children's use of eyeglasses: a cluster-randomized controlled trial. *American Journal of Ophthalmology.* 2015;160(5):889.e1–896.e1. doi: 10.1016/j.ajo.2015.08.006. [PubMed] [CrossRef] [Google Scholar]
- 12. Naidoo K. S., Fricke T. R., Frick K. D., et al. Potential lost productivity resulting from the global burden of myopia. *Ophthalmology.* 2019;126(3):338–346. doi: 10.1016/j.ophtha.2018.10.029. [PubMed] [CrossRef] [Google Scholar]
- 13. Holden B. A., Fricke T. R., Wilson D. A., et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. *Ophthalmology*. 2016;123(5):1036–1042. doi: 10.1016/j.ophtha.2016.01.006. [PubMed] [CrossRef] [Google Scholar]
- 14. Chen M., Wu A., Zhang L., et al. The increasing prevalence of myopia and high myopia among high school students in Fenghua city, eastern China: a 15-year population-based survey. *BMC Ophthalmology.* 2018;18(1):p. 159. doi: 10.1186/s12886-018-0829-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 15. Huang Y. P., Singh A., Lai L. J. The prevalence and severity of myopia among suburban school children in Taiwan. *Annals of the Academy of Medicine, Singapore.* 2018;47(7):253–259. [PubMed] [Google Scholar]
- 16. Wang J., Ying G.-s., Fu X., et al. Prevalence of myopia and vision impairment in school students in Eastern China. *BMC Ophthalmology.* 2020;20(1):p. 2. doi: 10.1186/s12886-019-1281-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 17. Thorn F., Chen J., Li C., et al. Refractive status and prevalence of myopia among Chinese primary school students. *Clinical and Experimental Optometry.* 2020;103(2):177–183. doi: 10.1111/cxo.12980. [PubMed] [CrossRef] [Google Scholar]

- 18. Choy B. N. K., You Q., Zhu M. M., Lai J. S. M., Ng A. L. K., Wong I. Y. H. Prevalence and associations of myopia in Hong Kong primary school students. *Japanese Journal of Ophthalmology.* 2020;64(4):p. 437. doi: 10.1007/s10384-020-00733-4. [PubMed] [CrossRef] [Google Scholar]
- 19. Wang M., Cui J., Shan G., et al. Prevalence and risk factors of refractive error: a cross-sectional Study in Han and Yi adults in Yunnan, China. *BMC Ophthalmology.* 2019;19(1):p. 33. doi: 10.1186/s12886-019-1042-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 20. Wang M., Ma J., Pan L., et al. Prevalence of and risk factors for refractive error: a cross-sectional study in Han and Mongolian adults aged 40–80 years in Inner Mongolia, China. *Eye.* 2019;33(11):1722–1732. doi: 10.1038/s41433-019-0469-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 21. Yam J. C., Tang S. M., Kam K. W., et al. High prevalence of myopia in children and their parents in Hong Kong Chinese Population: the Hong Kong Children Eye Study. *Acta Ophthalmologica*. 2020;98(5) doi: 10.1111/aos.14350. [PubMed] [CrossRef] [Google Scholar]
- 22. Qian X., Liu B., Wang J., et al. Prevalence of refractive errors in Tibetan adolescents. *BMC Ophthalmology.* 2018;18(1):p. 118. doi: 10.1186/s12886-018-0780-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 23. Pan C.-W., Wu R.-K., Li J., Zhong H. Low prevalence of myopia among school children in rural China. *BMC Ophthalmology*. 2018;18(1):p. 140. doi: 10.1186/s12886-018-0808-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 24. Yotsukura E., Torii H., Inokuchi M., et al. Current prevalence of myopia and association of myopia with environmental factors among schoolchildren in Japan. *JAMA Ophthalmology.* 2019;137(11):1233–1239. doi: 10.1001/jamaophthalmol.2019.3103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 25. Ueda E., Yasuda M., Fujiwara K., et al. Trends in the prevalence of myopia and myopic maculopathy in a Japanese population: the hisayama study. *Investigative Opthalmology & Visual Science*. 2019;60(8):2781–2786. doi: 10.1167/iovs.19-26580. [PubMed] [CrossRef] [Google Scholar]
- 26. Nakamura Y., Nakamura Y., Higa A., et al. Refractive errors in an elderly rural Japanese population: the Kumejima study. *PLoS One.* 2018;13(11) doi: 10.1371/journal.pone.0207180.e0207180 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 27. Lim D. H., Han J., Chung T.-Y., Kang S., Yim H. W. The high prevalence of myopia in Korean children with influence of parental refractive errors: the 2008-2012 Korean National Health and Nutrition Examination Survey. *PLoS One.* 2018;13(11) doi: 10.1371/journal.pone.0207690.e0207690 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 28. Singh N. K., James R. M., Yadav A., Kumar R., Asthana S., Labani S. Prevalence of myopia and associated risk factors in schoolchildren in North India. *Optometry and Vision Science*. 2019;96(3):200–205. doi: 10.1097/opx.000000000001344. [PubMed] [CrossRef] [Google Scholar]
- 29. Latif M. Z., Khan M. A., Afzal S., Gillani S. A., Chouhadry M. A. Prevalence of refractive errors; an evidence from the public high schools of Lahore, Pakistan. *Journal of the Pakistan Medical Association*. 2019;69(4):464–467. [PubMed] [Google Scholar]
- 30. Hashemi H., Nabovati P., Yekta A., Shokrollahzadeh F., Khabazkhoob M. The prevalence of refractive errors among adult rural populations in Iran. *Clinical and Experimental Optometry.* 2018;101(1):84–89. doi: 10.1111/cxo.12565. [PubMed] [CrossRef] [Google Scholar]
- 31. Parrey M. U. R., Elmorsy E. Prevalence and pattern of refractive errors among Saudi adults. *Pakistan Journal of Medical Sciences*. 2019;35(2):394–398. doi: 10.12669/pjms.35.2.648. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 32. Yang L., Vass C., Smith L., Juan A., Waldhör T. Thirty-five-year trend in the prevalence of refractive error in Austrian conscripts based on 1.5 million participants. *British Journal of Ophthalmology.* 2020;104(10):p. 1338. doi: 10.1136/bjophthalmol-2019-315024. [PubMed] [CrossRef] [Google Scholar]

- 33. Shapira Y., Mimouni M., Machluf Y., Chaiter Y., Saab H., Mezer E. The increasing burden of myopia in Israel among young adults over a generation. *Ophthalmology.* 2019;126(12):1617–1626. doi: 10.1016/j.ophtha.2019.06.025. [PubMed] [CrossRef] [Google Scholar]
- 34. Hagen L. A., Gjelle J. V. B., Arnegard S., Pedersen H. R., Gilson S. J., Baraas R. C. Prevalence and possible factors of myopia in Norwegian adolescents. *Scientific Reports*. 2018;8(1):p. 13479. doi: 10.1038/s41598-018-31790-y. [PMC free article]

 [PubMed] [CrossRef] [Google Scholar]
- 35. Popović-Beganović A., Zvorničanin J., Vrbljanac V., Zvorničanin E. The prevalence of refractive errors and visual impairment among school children in Brčko district, Bosnia and Herzegovina. *Seminars in Ophthalmology.* 2018;33(7-8):858–868. doi: 10.1080/08820538.2018.1539182. [PubMed] [CrossRef] [Google Scholar]
- 36. Harrington S. C., Stack J., O'Dwyer V. Risk factors associated with myopia in schoolchildren in Ireland. *British Journal of Ophthalmology.* 2019;103(12) doi: 10.1136/bjophthalmol-2018-313325. [PubMed] [CrossRef] [Google Scholar]
- 37. Alvarez-Peregrina C. C., Sanchez-Tena M. A. M. A., Martinez-Perez C. C., Villa-Collar C. C. Prevalence and risk factors of Myopia in Spain. *Journal of Ophthalmology.* 2019;2019:7. doi: 10.1155/2019/3419576.3419576 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 38. Czepita M., Czepita D., Safranow K. Role of gender in the prevalence of myopia among polish schoolchildren. *Journal of Ophthalmology.* 2019;2019:4. doi: 10.1155/2019/9748576.9748576 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 39. Reed D. S., Ferris L. M., Santamaria J., et al. Prevalence of myopia in newly enlisted airmen at joint base san antonio. *Clinical Ophthalmology.* 2020;14:133–137. doi: 10.2147/opth.S233048. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 40. Theophanous C., Modjtahedi B., Batech M., Marlin D., Luong T., Fong D. Myopia prevalence and risk factors in children. *Clinical Ophthalmology.* 2018;12:1581–1587. doi: 10.2147/OPTH.S164641. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 41. Chiang S.-Y., Weng T.-H., Lin C.-M., Lin S.-M. Ethnic disparity in prevalence and associated risk factors of myopia in adolescents. *Journal of the Formosan Medical Association*. 2020;119(1):134–143. doi: 10.1016/j.jfma.2019.03.004. [PubMed] [CrossRef] [Google Scholar]
- 42. Mayro E. L., Hark L. A., Shiuey E., et al. Prevalence of uncorrected refractive errors among school-age children in the School District of Philadelphia. *Journal of American Association for Pediatric Ophthalmology and Strabismus*. 2018;22(3):214–217. doi: 10.1016/j.jaapos.2018.01.011. [PubMed] [CrossRef] [Google Scholar]
- 43. Yang M., Luensmann D., Fonn D., et al. Myopia prevalence in Canadian school children: a pilot study. *Eye.* 2018;32(6):1042–1047. doi: 10.1038/s41433-018-0015-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 44. Signes-Soler I., Piñero D. P., Murillo M. I., Tablada S. Prevalence of visual impairment and refractive errors in an urban area of Mexico. *International Journal of Ophthalmology.* 2019;12(10):1612–1617. doi: 10.18240/ijo.2019.10.14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 45. Galvis V., Tello A., Otero J., et al. Prevalence of refractive errors in Colombia: MIOPUR study. *British Journal of Ophthalmology.* 2018;102(10):1320–1323. doi: 10.1136/bjophthalmol-2018-312149. [PubMed] [CrossRef] [Google Scholar]
- 46. Morgan I. G., French A. N., Ashby R. S., et al. The epidemics of myopia: aetiology and prevention. *Progress in Retinal and Eye Research.* 2018;62:134–149. doi: 10.1016/j.preteyeres.2017.09.004. [PubMed] [CrossRef] [Google Scholar]
- 47. Sheeladevi S., Seelam B., Nukella P., Borah R., Ali R., Keay L. Prevalence of refractive errors, uncorrected refractive error, and presbyopia in adults in India: a systematic review. *Indian Journal of Ophthalmology.* 2019;67(5):583–592. doi: 10.4103/ijo.IJO_1235_18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 48. Vitale S., Sperduto R. D., Ferris F. L. Increased prevalence of myopia in the United States between 1971-1972 and 1999-2004. *Archives of Ophthalmology.* 2009;127(12):1632–1639. doi: 10.1001/archophthalmol.2009.303. [PubMed] [CrossRef] [Google Scholar]

- 49. Lin L. L., Shih Y. F., Hsiao C. K., Chen C. J. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. *Annals of the Academy of Medicine, Singapore*. 2004;33(1):27–33. [PubMed] [Google Scholar]
- 50. Zhou W.-J., Zhang Y.-Y., Li H., et al. Five-year progression of refractive errors and incidence of myopia in school-aged children in western China. *Journal of Epidemiology.* 2016;26(7):386–395. doi: 10.2188/jea.JE20140258. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 51. Zhao J., Mao J., Luo R., Li F., Munoz S. R., Ellwein L. B. The progression of refractive error in school-age children: Shunyi District, China. *American Journal of Ophthalmology.* 2002;134(5):735–743. doi: 10.1016/s0002-9394(02)01689-6. [PubMed] [CrossRef] [Google Scholar]
- 52. Pärssinen O., Kauppinen M. Risk factors for high myopia: a 22-year follow-up study from childhood to adulthood. *Acta Ophthalmologica*. 2019;97(5):510–518. doi: 10.1111/aos.13964. [PubMed] [CrossRef] [Google Scholar]
- 53. Wu X., Gao G., Jin J., et al. Housing type and myopia: the mediating role of parental myopia. *BMC Ophthalmology*. 2016;16(1):p. 151. doi: 10.1186/s12886-016-0324-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 54. Atowa U. C., Wajuihian S. O., Munsamy A. J. Associations between near work, outdoor activity, parental myopia among school children in Aba, Nigeria. *International Journal of Ophthalmology.* 2020;13(2):309–316. doi: 10.18240/ijo.2020.02.16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 55. Kim H., Seo J. S., Yoo W.-S., et al. Factors associated with myopia in Korean children: Korea National Health and nutrition examination survey 2016-2017 (KNHANES VII) *BMC Ophthalmology.* 2020;20(1):p. 31. doi: 10.1186/s12886-020-1316-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 56. Kleinstein R. N., Jones L. A., Hullett S., et al. Refractive error and ethnicity in children. *Archives of Ophthalmology.* 2003;121(8):1141–1147. doi: 10.1001/archopht.121.8.1141. [PubMed] [CrossRef] [Google Scholar]
- 57. Cai X.-B., Shen S.-R., Chen D.-F., Zhang Q., Jin Z.-B. An overview of myopia genetics. *Experimental Eye Research.* 2019;188 doi: 10.1016/j.exer.2019.107778.107778 [PubMed] [CrossRef] [Google Scholar]
- 58. Enthoven C. A., Tideman J. W. L., Polling J. R., et al. Interaction between lifestyle and genetic susceptibility in myopia: the Generation R study. *European Journal of Epidemiology.* 2019;34(8):777–784. doi: 10.1007/s10654-019-00512-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 59. He M., Xiang F., Zeng Y., et al. Effect of time spent outdoors at school on the development of myopia among children in China. *Jama*. 2015;314(11):1142–1148. doi: 10.1001/jama.2015.10803. [PubMed] [CrossRef] [Google Scholar]
- 60. O'Donoghue L., Kapetanankis V. V., McClelland J. F., et al. Risk factors for childhood myopia: findings from the NICER study. *Investigative Ophthalmology & Visual Science*. 2015;56(3):1524–1530. doi: 10.1167/iovs.14-15549. [PubMed] [CrossRef] [Google Scholar]
- 61. Czepita M., Czepita D., Lubiński W. The influence of environmental factors on the prevalence of myopia in Poland. *Journal of Ophthalmology.* 2017;2017:5. doi: 10.1155/2017/5983406.5983406 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 62. Sánchez-Tocino H., Villanueva Gómez A., Gordon Bolaños C., et al. The effect of light and outdoor activity in natural lighting on the progression of myopia in children. *Journal Français d'Ophtalmologie.* 2019;42(1):2–10. doi: 10.1016/j.jfo.2018.05.008. [PubMed] [CrossRef] [Google Scholar]
- 63. Ho C.-L., Wu W.-F., Liou Y. M. Dose-response relationship of outdoor exposure and myopia indicators: a systematic review and meta-analysis of various research methods. *International Journal of Environmental Research and Public Health.* 2019;16(14):p. 2595. doi: 10.3390/ijerph16142595. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 64. Lingham G., Mackey D. A., Lucas R., Yazar S. How does spending time outdoors protect against myopia? A review. *British Journal of Ophthalmology.* 2020;104(5):593–599. doi: 10.1136/bjophthalmol-2019-314675. [PubMed] [CrossRef] [Google Scholar]

- 65. Norton T. T., Siegwart J. T., Jr. Light levels, refractive development, and myopia—a speculative review. *Experimental Eye Research.* 2013;114:48–57. doi: 10.1016/j.exer.2013.05.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 66. Chen S., Zhi Z., Ruan Q., et al. Bright light suppresses form-deprivation myopia development with activation of dopamine D1 receptor signaling in the ON pathway in retina. *Investigative Opthalmology & Visual Science.* 2017;58(4):2306–2316. doi: 10.1167/iovs.16-20402. [PubMed] [CrossRef] [Google Scholar]
- 67. Landis E. G., Yang V., Brown D. M., Pardue M. T., Read S. A. Dim light exposure and myopia in children. *Investigative Opthalmology & Visual Science*. 2018;59(12):4804–4811. doi: 10.1167/iovs.18-24415. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 68. Stone R. A., Pardue M. T., Iuvone P. M., Khurana T. S. Pharmacology of myopia and potential role for intrinsic retinal circadian rhythms. *Experimental Eye Research.* 2013;114:35–47. doi: 10.1016/j.exer.2013.01.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 69. French A. N., Ashby R. S., Morgan I. G., Rose K. A. Time outdoors and the prevention of myopia. *Experimental Eye Research*. 2013;114:58–68. doi: 10.1016/j.exer.2013.04.018. [PubMed] [CrossRef] [Google Scholar]
- 70. Gwiazda J., Deng L., Manny R., Norton T. T. Seasonal variations in the progression of myopia in children enrolled in the correction of myopia evaluation trial. *Investigative Opthalmology & Visual Science.* 2014;55(2):752–758. doi: 10.1167/iovs.13-13029. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 71. Rusnak S., Salcman V., Hecova L., Kasl Z. Myopia progression risk: seasonal and lifestyle variations in axial length growth in Czech children. *Journal of Ophthalmology.* 2018;2018:5. doi: 10.1155/2018/5076454.5076454 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 72. Sherwin J. C., Reacher M. H., Keogh R. H., Khawaja A. P., Mackey D. A., Foster P. J. The association between time spent outdoors and myopia in children and adolescents. *Ophthalmology*. 2012;119(10):2141–2151. doi: 10.1016/j.ophtha.2012.04.020. [PubMed] [CrossRef] [Google Scholar]
- 73. Huang J. O., Le Y. L. A longitudinal study on the relationship between the nearwork oculomoter functions and the myopiaprogression in myopia juveniles. *Chinese Journal of Practical Ophthalmology.* 2008;26(9):910–912. doi: 10.3760/cma.j.issn.1006-4443.2008.09.010. in Chinese. [CrossRef] [Google Scholar]
- 74. Rose K. A., Morgan I. G., Smith W., Burlutsky G., Mitchell P., Saw S. M. Myopia, lifestyle, and schooling in students of Chinese ethnicity in Singapore and Sydney. *Archives of Ophthalmology.* 2008;126(4):527–530. doi: 10.1001/archopht.126.4.527. [PubMed] [CrossRef] [Google Scholar]
- 75. Nickels S., Hopf S., Pfeiffer N., Schuster A. K. Myopia is associated with education: results from NHANES 1999–2008. *PLoS One.* 2019;14(1) doi: 10.1371/journal.pone.0211196.e0211196 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 76. Mirshahi A., Ponto K. A., Hoehn R., et al. Myopia and level of education. *Ophthalmology.* 2014;121(10):2047–2052. doi: 10.1016/j.ophtha.2014.04.017. [PubMed] [CrossRef] [Google Scholar]
- 77. Ku P.-W., Steptoe A., Lai Y.-J., et al. The associations between near visual activity and incident myopia in children. *Ophthalmology.* 2019;126(2):214–220. doi: 10.1016/j.ophtha.2018.05.010. [PubMed] [CrossRef] [Google Scholar]
- 78. Verhoeven V. J. M., Buitendijk G. H., Buitendijk G. H. S., et al. Education influences the role of genetics in myopia. *European Journal of Epidemiology.* 2013;28(12):973–980. doi: 10.1007/s10654-013-9856-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 79. Lanca C., Saw S. M. The association between digital screen time and myopia: a systematic review. *Ophthalmic and Physiological Optics*. 2020;40(2):216–229. doi: 10.1111/opo.12657. [PubMed] [CrossRef] [Google Scholar]
- 80. Enthoven C. A., Tideman J. W. L., Polling J. R., Yang-Huang J., Raat H., Klaver C. C. W. The impact of computer use on myopia development in childhood: the Generation R study. *Preventive Medicine*. 2020;132 doi: 10.1016/j.ypmed.2020.105988.105988 [PubMed] [CrossRef] [Google Scholar]

- 81. Kung Y.-J., Wei C.-C., Chen L. A., et al. Kawasaki disease increases the incidence of myopia. *BioMed Research International.* 2017;2017:6. doi: 10.1155/2017/2657913.2657913 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 82. Williams C., Suderman M., Guggenheim J. A., et al. Grandmothers' smoking in pregnancy is associated with a reduced prevalence of early-onset myopia. *Scientific Reports.* 2019;9(1):p. 15413. doi: 10.1038/s41598-019-51678-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 83. Wei C.-C., Lin H.-J., Lim Y.-P., et al. PM2.5 and NOx exposure promote myopia: clinical evidence and experimental proof. *Environmental Pollution.* 2019;254:p. 113031. doi: 10.1016/j.envpol.2019.113031. [PubMed] [CrossRef] [Google Scholar]
- 84. Morris T. T., Guggenheim J. A., Northstone K., Williams C. Geographical variation in likely myopia and environmental risk factors: a multilevel cross classified analysis of A UK cohort. *Ophthalmic Epidemiology.* 2020;27(1):1–9. doi: 10.1080/09286586.2019.1659979. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 85. Liu S., Ye S., Wang Q., Cao Y., Zhang X. Breastfeeding and myopia: a cross-sectional study of children aged 6-12 years in Tianjin, China. *Scientific Reports*. 2018;8(1):p. 10025. doi: 10.1038/s41598-018-27878-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 86. Edwards M. H., Leung S. S. F., Lee W. T. K. Do variations in normal nutrition play a role in the development of myopia? *Optometry and Vision Science.* 1996;73(10):638–643. doi: 10.1097/00006324-199610000-00002. [PubMed] [CrossRef] [Google Scholar]
- 87. Lim L. S., Gazzard G., Low Y.-L., et al. Dietary factors, myopia, and axial dimensions in children. *Ophthalmology.* 2010;117(5):993.e4–997.e4. doi: 10.1016/j.ophtha.2009.10.003. [PubMed] [CrossRef] [Google Scholar]
- 88. Chua S. Y.-L., Sabanayagam C., Tan C.-S., et al. Diet and risk of myopia in three-year-old Singapore children: the GUSTO cohort. *Clinical and Experimental Optometry.* 2018;101(5):692–699. doi: 10.1111/cxo.12677. [PubMed] [CrossRef] [Google Scholar]
- 89. Łazarczyk J. B., Urban B., Konarzewska B., et al. The differences in level of trait anxiety among girls and boys aged 13–17 years with myopia and emmetropia. *BMC Ophthalmology.* 2016;16(1):p. 201. doi: 10.1186/s12886-016-0382-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.

Learn more: PMC Disclaimer | PMC Copyright Notice

BMC Public Health. 2024; 24: 2490.

Published online 2024 Sep 12. doi: 10.1186/s12889-024-19914-8

PMCID: PMC11396740

PMID: 39266991

Prevalence, sociodemographic risk factors, and coverage of myopia correction among adolescent students in the central region of Portugal

<u>Amélia Fernandes Nunes</u>, Mariana Cunha, Miguel Castelo-Branco Sousa, and Cristina Albuquerque Godinho 3,4

Abstract

Background

Knowing the prevalence of myopia at school age is essential to implement preventive measures and appropriate interventions, ensure access to vision care, promote a healthier educational environment and improve academic performance. The purpose of this study was to determine the prevalence of myopia and its associated sociodemographic risk factors, as well as to estimate the coverage of myopia correction among adolescents in center of Portugal.

Methods

This cross-sectional study evaluated 1115 adolescents from the 5th to the 9th year of school, with an average of 12.9 years (SD = 1.5) ranging from 10.0 to 18.0 years. Optometric evaluations were carried out in a school environment and consisted of the evaluation of distance visual acuity, assessed using a logarithmic visual acuity chart (ETDRS charts 1 and 2) at 4 m, and measured by refractive error with a pediatric autorefractometer (Plusoptix), by non-cycloplegic. Myopia was defined as spherical equivalent (SE \leq -0.50 diopter (D)) and uncorrected visual acuity (UVA \leq 95VAR). Adjusted logistic regression analysis was applied to investigate risk factors.

Results

We found a myopia rate of 21.5% and a high myopia rate of 1.4%. Higher school level and attendance at urban schools were associated with myopia, but no association was found with age or sex. Only 34.6% of myopic adolescents use the best optical correction and 26.4% do not use any type of optical correction.

Data on the prevalence of refractive problems in Portugal are scarce and heterogeneous. This study, although regional, provides a valuable contribution with a clear and reproducible methodology, following international guidelines and filling gaps in the existing literature. The results show that the rate of myopia in this age group is similar to reports from other European studies. The high rate of adolescents with uncorrected or under-corrected myopia in Portugal is a problem that deserves attention.

Keywords: Adolescence, Myopia, Sociodemographic factors, Visual acuity, Myopia correction coverage, Urban-suburban disparity

Background

Myopia is a refractive condition that tends to develop in pre-adolescence, worsening during puberty and progressing into early adulthood $[\underline{1}]$. The greater the degree of myopia, the greater the risk of ocular complications that can lead to vision loss that is not recoverable $[\underline{2}]$.

The definition of myopia, the methods used to measure ocular refraction and the inconsistent use of cycloplegics, influence the quantifications of myopia prevalence. In most epidemiological studies, myopia is defined by $SE \le -0.50D$ and high myopia by $SE \le -5.00D$, with cycloplegic refraction [3]. However, the literature often uses non-cycloplegic refractive techniques and considers the same myopia definition [4–6]. Large-scale myopia studies rarely use cycloplegics, so there is a tendency to overestimate the rate of myopia [5].

The prevalence rates of myopia, when assessed using refractive techniques with cycloplegia, are higher in Asia than in compared to Europe [7]. Studies reporting non-cycloplegic refractive measurements show a similar pattern of differences but at even higher rates [4, 8]. Although cycloplegic refraction is considered the most appropriate technique for myopia studies, the use of cycloplegic means it takes a long time to measure refraction and can cause temporary side effects, such as blurred near vision and photophobia, which reduces adherence. [9].

Autorefractometers (AR) are instruments frequently used to obtain ocular refraction in epidemiological studies, but closed-field AR's induce an overestimation of myopia. The use of openfield AR allows us to obtain refractive measurements close to cycloplegic refractive methods since it eliminates the stimulation of accommodation caused by instrument proximity [5]. It has also been recommended to measure non-cicloplegic autorefraction and visual acuity (VA) without correction, for higher accuracy in detecting myopia [9, 10]. The World Health Organization recommends measuring distance VA in vision screenings [11]. Employing a pinhole test in these screenings can reveal unmet refractive needs, as an improvement in VA with pinhole suggests the presence of correctable refractive errors [2, 11].

Although the magnitude of this problem presents geographic differences, an increase in the prevalence, incidence and progression rates has been observed globally. In Europe, population prevalence rates are estimated at around 40.0% and in certain parts of East Asia, rates exceed 60.0%, and there is strong evidence that these rates vary greatly with age [7]. This vision eye condition has become a growing concern in eye health, especially among school-age children and adolescents. Current trends show that children and adolescents are becoming myopic at an earlier age and that the degree of myopia continues to progress as these children age [2, 12]. The scientific literature reports that the prevalence of myopia tends to increase from the age of 6 years [7]. East Asia exhibits the highest rates of myopia, while Africa and South America have lower reported rates [13].

Health promotion and screening interventions are essential to prevent myopia and other refractive errors by identifying vision problems early. In addition, these actions can change behaviors by educating about the importance of spectacles and addressing common reasons for non-adherence to their use, such as discomfort or social stigma, thus improving acceptance and appropriate management of vision eye conditions. In Portugal, there is little data allowing to know the real extent of myopia. The National programme for eye health estimates that around 20.0% of children and around 50.0% of the adult population suffer from refractive errors in general, including myopia and other refractive conditions [14]. A study carried out with Portuguese university students recorded an increase in the prevalence of myopia from 23.4 to 41.3% between 2002 and 2014 [15]. Another study, based on the analysis of prescription and sales of ophthalmic lenses, estimated an increase in myopia from 40.0% in 2010 to more than 50.0% in 2020 [16].

The prevalence of refractive problems in Portugal is a topic where available data is relatively scarce and presents significant heterogeneity. Furthermore, these studies often present methodological descriptions that can be considered insufficiently detailed. This work aims to estimate the prevalence of myopia in adolescents who attend school from the 5th to the 9th year in the central region of Portugal. We also intend to understand the association of myopia with some sociodemographic parameters in these adolescents, and to estimate the coverage of myopia correction among this population.

Methods

Study design and participants

This is an epidemiological, cross-sectional and observational study. Participants were children and adolescents attending the 2nd cycle of basic education (5th and 6th grades) and the 3rd cycle of basic education (7th, 8th and 9th grades) in Covilhã, a city in the central area of Portugal.

All schools in the urban area of the municipality where the study was conducted were included, covering 2 schools from the second cycle and 4 schools from the third cycle of basic education. Due to the small number of students in suburban schools and their significant geographic dispersion, 2 from each educational cycle in suburban area were selected based on having the highest number of enrolled students. All children enrolled in the participating schools were invited to join the study, with those receiving authorization from their legal guardians included, without participant randomization.

The inclusion criteria were being a child /adolescent attending the 2nd or 3rd cycle of basic education, aged between 10 and 18 years old, having the authorization from their legal tutor and providing verbal consent on the day of the screening. Incomplete screening records or those with poor cooperation were excluded from the data analysis. Students undergoing treatment with orthokeratology or atropine were also excluded, as this treatment can temporarily influence visual acuity and myopia measurement.

Procedures

The study protocol consisted of the acquisition of refractive measurements in eye screening actions in schools. The study was approved from the Ethics Committee of the National School of Public Health (CEENSP n° 29/2023) and was previously authorized by the Ministry of Education (n°

1307100001). Data were collected between November 2023 and February 2024. The examination and vision testing was performed by AN and MC.

Socio-demographic data were collected, such as age, sex, school level, school location (urban or suburban area), place of birth, and special educational needs.

All study volunteers underwent monocular distance visual acuity measurement and ocular refraction assessement using an autorefractometer Additionally, for participants who wore spectacles on the screening day, the prescription value of the spectacles was also recorded.

Visual acuity

VA was measured with ETDRS (Original Series Chart 1 and Chart 2; Good-Lite; USA) at 4 m under photopic lighting conditions. The lighting in the room was measured with a digital luxmeter (Luxmeter PCE-L335; PCE instruments; Tobarra, Spain) and values equal to or greater than 400 lx were considered acceptable [17]. The ETDRS charts are considered reliable, repeatable and easy to use in screening actions [18]. All VA were recorded on the Visual Acuity Rating scale (VAR), which is a more intuitive system for using a logarithmic charts and allows scoring letter by letter instead of line by line [18, 19]. In this rating system, each letter has a score of 1VAR; each line has 5VAR and the decimal VA = 1.0 is equivalent to 100VAR, and decimal VA = 0.8 is equivalent to 95VAR.

The protocol recommended by the WHO was followed to calculate the effective refractive correction coverage rate [2]. To determine UVA, all children were assessed monocularly and without any refractive correction. Visual acuity with usual correction (VAUC) was assessed in all children who wore glasses or contact lenses with their usual correction. In cases where the presented visual acuity (PVA) - defined as UVA for those not wearing corrective lenses or VAUC for those who did was less than 95VAR, pinhole visual acuity (phVA) was also assessed. The diametre of pinhole was 1.5 mm. The same procedure was applied to record all visual acuity measurements. The patient started at the 80VAR line on the chart (equivalente 0,4 logMAR) and continued reading downwards until reaching a line where they could no longer correctly identify at least three letters. If the patient couldn't read the 80VAR line, they started at the top of the cgart. The final score was based on the number of letters correctly identified. A different card was used for each eye to avoid learning effects.

Autorefraction

AR was performed under non-cycloplegic conditions, using the PlusOptix, model A09 (PlusOptix; Nuremberg, Germany). The PlusOptix is a device that measures ocular refraction at a distance of 1 m from the eyes, reducing the effects of instrumental myopia compared to closed-field AR. The refraction obtained with the PlusOptix A09 has shown agreement with the refraction of cycloplegic retinoscopy and is indicated as a screening method in myopic children [20, 21]. The ocular refraction of each participant was measured three times and the mean value of the SE of the three measurements was calculated. The SE was obtained by adding the spherical component to half the cylindrical component of the ocular refraction measured with the AR. When PlusOptix reported that the participant's ocular refraction exceeded its measurement capacity, the refraction of the student's usual spectacles was considered.

Definition of myopia

In screening activities, some authors recommend the combined use of refraction and VA, recognizing that this combination maximizes the sensitivity of screening in signaling myopia [10, 11, 22]. For children over 6 years of age, some authors recommend a decimal VA \geq 1.0, equivalent to 0.0logMAR or 100VAR [23, 24], other authors recommend a decimal VA \geq 0.8, equivalent to 0.1logMAR or 95VAR [9, 24].

In this study, the criteria of UAV < 95VAR and SE \leq -0.50D were used to define myopia. To facilitate comparison with other studies, only the SE \leq -0.50D criterion was also used. To characterize severity, we considered high myopia SE \leq -6.00D, moderate myopia – 6.00D < SE \leq -3.00D and mild myopia – 3.00D < SE \leq -0.50D.

Statistical analysis

The data were analyzed using SPSS version 28 (IBM SPSS Statistics; New York, USA). Continuous variables were expressed as mean (SD) and categorical variables were presented as counts or proportions. The study of differences between the eyes for the continuous variables was carried out using the paired samples t-test. Chi-square test was used to compare categorical variables between groups. A multivariate logistic regression analysis was carried out using a stepwise backward method to explore the sociodemographic factors associated with myopia. The results of the logistic regression were reported as odds ratios (OR). For all analyses, a two-sided *p-value* < 0.05 was considered statistically significant. Confidence intervals (CI) were calculated at 95%.

Results

A total of 1115 students from urban and suburban schools took part in the study. The average age was 12.9 (SD = 1.5) years, ranging from 10.0 to 18.0 years. The male sex represented 50.9% of the total sample, and 67.4% of the students attended urban schools. There was also a rate of 11.7% of adolescents flagged in school files as having special educational needs (SEN) and 15.6% of participants were from other countries. The majority of migrant students originated from America (n = 99, with 92 from Brazil) and Africa (n = 49, with 43 from Angola). There were 19 adolescents from other European countries and 7 from Asia. The origin of 2 migrant students was not documented. The characteristics of the sample according to various factors are presented in Table 1. The results of the study of the differences between the groups, as well as the prevalence of myopia according to each of the factors analyzed, are also included.

Table 1

General characteristics of the sample

Characteristics		Size	Age [years] (Average ± SD)	UVA [< 95VAR] N(%)	Myopia				
		[N (%)]			SE≤-0.50I	SE≤-0.50D		SE≤-0.50D and UVA < 95VAR	
					N(%)	p-value	N(%)	p-value ()	
						0			
Total samp	le	1115(100)	12.7 ± 1.5	516(46.3)	262(23.5)		240(21.5)		
Sex	Male	568(51.0)	12.7 ± 1.5	245(43.1)	133(23.4)	0.957	121(21.3)	0.857	
	Female	547(49.0)	12.7 ± 1.5	271(49.5)	129(23.6)		119(21.8)		
Nature	Portuguese	941(84.4)	12.6 ± 1.5	438(46.5)	221(23.5)	0.982	201(21.4)	0.756	
	Migrants	174(15.6)	12.8 ± 1.5	78(44.9)	41(23.6)		39(22.4)		
School	2nd cycle	437(39.2)	11.2 ± 0.7	190(43.5)	77(17.8)	<	74(16.9)	0.003**	
level	3rd cycle	678(60.8)	13.6 ± 1.0	326(48.1)	185(27.3)	0.001**	166(24.5)		
SEN	Positive	131(11.7)	13.0 ± 1.4	74(56.5)	29(21.1)	0.686	25(19.1)	0.469	
	Negative	984(88.3)	12,6 ± 1.5	442(44.9)	233(23.7)		215(21.8)		
School	Urban	751(67.4)	12.8 ± 1.5	360(47.9)	195(26)	0.005**	176(23.4)	0.026*	
location	Suburban	364(32.6)	12.5 ± 1.5	156(42.9)	67(18.4)		64(17.6)		

N - counts; % - proportions; SD - standard deviation - UVA - uncorrected visual acuity; VAR - visual acuity rating scale; SE - spherical equivalent; SEN - special educational needs

Prevalence of myopia and risk factors

The mean values for UVA were 90.6 ± 17 VAR and 89.4 ± 17 VAR for the right and left eyes respectively, and this difference was statistically significant (t = 5.656, p < 0.001). The visual acuity of the worst eye was used to classify myopia. An UVA worse than 95VAR in at least one eye occurred in 516 participants (46.3%; 95% CI: 42.4-50.4%) (Table $\underline{1}$).

For the SE \leq -0.50D criterion, a prevalence of myopia was found to be 23.4% (95% CI: 21.0–26.0%), and for the SE \leq -0.50D and UAV < 95VAR criteria, it was 21.5% (95% CI: 18.9–24.4%). The average value of the SE of the myopic population (n = 262) was – 2.70D (SD = 1.86), in a range between – 0.50D and – 10.37D. Considering SE \leq -6.00D, we account for 16 cases, that is a rate of 1.4% (95% CI: 0.9–2.3%) was found for high myopia. The average value of the SE in high myopia was – 7.52 (SD = 1.32).

The proportion of myopic participants was not significantly different between girls and boys, between Portuguese and migrant students or between participants with and without SEN. However, it was significantly different between the school level, with a higher proportion of adolescents with

^{*}Significant at 0.05 level; ** significant at 0.001 level

myopia in the 3rd cycle; as well as between schools in urban and rural areas, with a higher proportion found in schools in the urban areas. These results was observed for both myopia classification criteria.

The association between the presence of myopia and age, sex, geographical location of the school and school level was studied using the odds ratio (OR) (Table $\underline{2}$).

Table 2

Myopia risk factors

Factor	OR crude (95% CI)	<i>p</i> -value	OR Adjusted (95% CI)	<i>p</i> -value			
Age (numeric)	1.097 (0.996-1.208)	0.061	0.924 (0.786-1.085)	0.336			
Sex	1.027 (0.772-1.367)	0.854	1.008 (0.756-1.344)	0.958			
[male vs. female]							
School location [suburban vs. urban]	1.435 (1.044-1.973)	0.026*	1.409 (1.022-1.941)	0.036*			
School level	1.590 (1.172-2.158)	0.003**	1.889 (1.152-3.097)	0.012*			
[2nd cycle vs. 3rd cycle]							

^{*}Significant at 0.05 level; ** significant at 0.001 level

The crude OR revealed an association between myopia and the school location, as well as between myopia and the school level. The adjusted OR showed that adolescents from urban schools were 1.4 times more likely to have myopia than those from rural schools, after adjusting for age, sex and cycle of studies. Adolescents in the 3rd cycle of studies were also 1.9 times more likely to have myopia than adolescents in the 2nd cycle, after adjusting for age, sex and school location.

Figure 1 shows the distribution of myopia severity, according to sociodemographic characteristics. Low myopia is more common in all subgrups, but there were sex differences (χ^2 = 11.868, p = 0.003). Low myopia is more common in both boys and girls, but of the universe of myopic boys (121), 52.0% have low myopia and 41.3% have moderate myopia, while of the universe of myopic girls (119), 72.3% have a low degree of myopia and 21.0% have moderate myopia. In the studied sample, boys have the highest proportion of moderate myopia. The distribution of myopia severity did not reveal differences between adolescents at different school levels (χ^2 = 1.077, p = 0.584) ou between school location (χ^2 = 0.109, p = 0.947).

Fig. 1

Myopia distribution by severity. *Legend* (Low myopia, Moderate myopia, High myopia). The number in the bars corresponds to the number of adolescents with the condition

Covarage of myopia correction

We found that 35.8% of the screened population reported wearing spectacles or contact lenses (n = 400). There were significant differences between sex in the use of spectacles, with a higher proportion of girls (218 girls, 54,5% and 182 boys, 45.5%) reporting the use of these devices ($\chi^2 = 6.409$, p = 0.011). However, no significant differences were found between urban and suburban areas, nor among different levels of education. Among the adolescents who reported using some optical correction, 13.0% (95% CI: 9.7–16.3%) did not show up with their usual correction on the screening day (n = 53). Among the adolescents who attended with their usual optical correction (n = 347), the majority (n = 212) used a myopic prescription, with SE \leq -0.50D. However, 36 of the students who use myopia correction do not meet the myopia criterion (UVA \leq 95VAR AND AR SE \leq -0.50D). Hence, of the 240 students with myopia that have been identified, 176 use optical correction. In summary, we found a myopia rate of 21.5% (95% CI: 18.9–24.4%), of which 73.3% (95% CI: 67.8–78.9%) already use some optical correction. Moreover 3.2% (95% CI: 0.8–5.6%) of the sample use prescriptions for myopia while they not need it. It was also noted that the majority use monofocal lenses, with only 12 reported cases using myopia control lenses. There were no records of orthokeratology or atropine usage.

Table $\underline{3}$ shows the counts and proportions of adolescents who habitually use optical correction, according to presenting VA (UVA for those who do not use any correction, or VAUC for those who have spectacles or contact lenses). It also shows the number of cases in which VA improved when measured with the pinhole. It can be observed that only 34.6% (95% CI: 28.6–40.6%) of the myopic population is optically well corrected. Of the myopic teenagers who already use optical correction, a large percentage use insufficient correction to achieve a good vision. It was observed that 38.7% (95% CI: 32.5–44.9%) of the myopic population uses partial correction and 26.7% (95% CI: 21.1–32.3%) does not use any type of correction. The assessment of VA with pinhole in uncorrected or partially corrected myopic adolescents (n = 157) revealed that in 80.3% (95% CI: 74.1–86.5%) of cases it is possible to improve vision with adequate optical correction.

Table 3

Counts and proportions of myopic adolescents who already use some optical correction, according to the limits of uncorrected visual acuity (UVA) and corrected visual acuity (VAUC). SE – spherical equivalent; PhVA – pinhole visual acuity

Criteria	N	%
SE≤ (-0.50D) and UVA < 95VAR	240	100
VAUC≥95VAR [already wear spectacles or Contact lenses]	83	34.6
VAUC < 95VAR [already wear spectacles or Contact lenses]	93	38.7
UVA < 95VAR [do not wear spectacles or Contact lenses]	64	26.7
PhVA (N= (93+64)) [improved]	126	80.3%

Discussion

This study evaluated the prevalence of myopia in adolescents attending school from the 5th to the 9th year. For the SE \leq -0.50D and UVA < 95VAR criteria, there was a prevalence of myopia of 21.5% (95%CI:18.9–24.4%) and for high myopia there was a prevalence of 1.4% (95%CI:0.9–2.3%). Attending the 3rd cycle of studies and attending schools in urban areas were factors associated with a higher prevalence of myopia, while age and sex were not associated with increased odds of myopia. We also observed that only 34.6% (95% CI: 28.6–40.6%) of myopic students were well-corrected and 26.7% (95% CI: 21.1–32.3%) did not use any optical refraction.

Myopia is notably more prevalent in Asia, with scientific literature indicating that children and adolescents in East Asia experience exceptionally high rates of myopia. In some regions, the prevalence has been reported to exceed 80.0% [25]. Given the limited information on myopia prevalence among adolescents in Portugal, it is more practical to analyze and compare myopia trends within the European context, where data are more robust. While extensive research exists in regions such as China, utilizing data from European countries provides a more relevant comparison to Portugal's situation and enables a more immediate and applicable analysis of local trends and predictors.

Studies on the prevalence of myopia in European children and adolescents are few, and those we found that had been published in the last 5 years report rates ranging from 10% in Sweden to 24.8% in Austria [26, 27]. When cycloplegic refraction is used, rates are lower [26, 28, 29] than when cycloplegia is not used [27, 30]. It should also be noted that most studies use SE \leq -0.50D as the definition of myopia [22, 26, 28–30] but some studies use a more myopic cutoff point [31] and the joint assessment of autorefraction and visual acuity [32].

The myopia rate found in the present study is similar to that reported in other studies from European countries. A comparison of our results with reports from other studies that used more conservative criteria to define myopia (e.g., $SE \le -0.50$ and $UVA \le 95VAR$) reveals that myopia is slightly more prevalent among adolescents in Portugal (21.5%) than in Bulgaria (19.0%) [26], and very similar to the prevalence reported in Germany (21.5%), where the definition of myopia used a cutoff point $SE \le -0.75D$ [31]. For a broader comparison with the $SE \le -0.50D$ criterion, we found a prevalence rate of 23.4%. This value is very close to that reported by other studies with children and adolescents in Europe, which used the same definition of myopia. In Austria, a rate of 24.8% was found between the ages of 15 and 18, and in Spain, a rate of 20.1% was reported in children aged 6 to 7 [22, 30].

The prevalence of myopia and associated risk factors among children has not yet been determined. It is known that genetic and environmental factors play a role in its etiology. Risk factors for myopia may include a combination of genetic, environmental and lifestyle factors, with the most obvious being genetics, time outdoors, near work and sex [33]. The literature also reports that the prevalence of myopia increases with age, is more frequent in girls and in the urban areas [22, 34]. In the present study, there was no association between myopia and age, but an association was found with school level, with a higher prevalence of mypia in the 3rd cycle. Although a higher school level necessarily requires an older age, the age-adjusted multivariate analysis revealed that age has no association and that the probability of myopia is 1.9 times greater in adolescents in the 3rd cycle. We believe that this association is influenced by other factors that also contribute to myopia, such as the intensity of close work and excessive use of digital screens [34]. Adolescents in the 3rd cycle of studies have a greater academic workload, which requires them to dedicate more time to tasks with near vision. Furthermore, the excessive use of digital screens, both for academic support and leisure, tends to be greater among older adolescents [35].

Regarding sex, there is no consensus in the literature, with older studies reporting that men have a higher prevalence of myopia, while more recent studies report that women show higher prevelances [34]. Other authors also report finding no association between sex and myopia [36], in line with the results from our study. The urban environment is also described as a factor associated with myopia and urban-rural differences tend to be stronger where there is a greater disparity in living conditions [37, 38]. This study also found this association, with adolescents attending an urban school being 1.4 times more likely to have myopia than those attending a suburban school. In a study carried out in India, where the location of the school was also taken into account, it was observed that the rate of myopia was 1.3 times higher in urban schools than in suburban schools [39].

Multi-ethnic population-based studies suggest that the prevalence of myopia varies according to ethnicity. The scientific literature reports that the prevalence of myopia is highest in Asian populations (above 50.0%), and lowest in African regions (around 15.0%) and shows values between 20.0 and 40.0% in Europe and America [3, 13]. In our study, no significant differences were found in myopia rates between Portuguese and migrant adolescents. For the most conservative criterion, SE \leq -0.50D and UVA < 95VAR, the prevalence of myopia was 21.4% for the Portuguese and 22.4% for the migrants' adolescents. The migrant population in this study was mostly from Brazil and African countries, with a low rate of students from Asia. We believe that the low representation of Asian adolescents is the main reason why the migrant population had a prevalence rate similar to that of adolescents born in Portugal.

Scientific literature reports that children with special educational needs have a higher prevalence of vision dysfunction when compared to population samples, and one of the main causes of this disability is refractive errors [40]. In our study, there were no significant differences in the proportion of myopic adolescents between those with (vs. without) SEN. Since adolescents with low levels of autonomy and low capacity for collaboration in the acquisition of measurements have been excluded from the study, adolescents from the SEN group with greater potential for vision impairment may have been left out of our sample. On the other hand, this analysis is limited to myopia, and refractive errors such as hyperopia or astigmatism in individuals with SEN may be more frequent [41].

Another finding from our study that deserves reflection concerns the use of optical correction. Other authors report that the use of corrective spectacles improves the cognitive and educational well-being, psychological well-being, mental health, and quality of life of school-age children and adolescents [42]. Several authors have reported high rates of uncorrected myopia in school-age children [24, 43]. Our study found that only 34.6% of adolescents with myopia were well-corrected, with 38.7% being under-corrected, and 26.7% not using any correction. According to WHO recommendations, in screening activities, an improvement in visual acuity with a pinhole means that the problem of vision impairment can be solved with the use of suitable spectacles [11]. In the present study, when evaluating visual acuity with the pinhole in uncorrected or undercorrected myopic participants, an improvement was obtained in 80.3% of cases, which means that these adolescents can see their vision improved with a simple pair of appropriately prescribed spectacles. We also found that there is a significant percentage of teenagers who report having spectacles, but who do not use them regularly (13.0%). Several studies have explored compliance to spectacle use in impairement vision due to refractive errors, and a systematic review reveals that non-adherence rates in children are hiegh, even when glasses are freely provided. The reasons for non-adherence are varief, including factors such as broken glasses, forgetfulness, parental perceptions, and peer pressure [44, 45]. The design of the present study did not allow us to explore the reasons for this behavior, but it reinforces the message that teenagers' refusal to wear prescribed spectacles puts

their eye health and their professional and academic future at risk [42]. Health professionals and the educational community must come together to raise awareness of the risks of non-compliance with spectacles, promote educational campaigns, and debunk myths and beliefs.

The main strength of this work lies in its analysis of data on myopia from a large sample of adolescents in the central region of Portugal, providing valuable insights into the prevalence of myopia in Portugal. However, there are also some limitations. One of the main limitations of this study is the fact that cycloplegic refraction was not used. Nevertheless, we sought a methodological design that would minimize this aspect, looking for a reliable alternative. An open-field autorefractometer was used, an instrument that is described as the closest technique to cycloplegic refraction [21, 37]. Another important measure was to combine the spherical equivalent measurement with uncorrected visual acuity, as proposed by others authors [9, 10], enabling to confer more confidence to the myopia prevalence values found in the present study. The definition of a refractive threshold and a visual acuity threshold as a cut-off point for myopia is therefore an added value and strengthens the findings of this study. The selection of the eye with poorer visual acuity may have contributed to some overestimation of myopia prevalence compared to studies that consider only one eye. However, this approach has also been adopted in similar studies [28, 32]. The association between myopia prevalence and the presence of modifiable environmental risk factors (e.g., shorter distance and longer time spent for near work) was not addressed in this study, representing an opportunity for future work. Studying modifiable environemental risk factors is fundamental for understanding which habits and behaviors of adolescents are associated with the development of myopia, providing relevant evidence for the development of recommendations for its prevention and management.

Conclusions

This paper is a cross-sectional study of myopia in adolescents at a center in Portugal. It shows that myopia in adolescence is comparable to that reported by other European countries, being at the upper end of reported rates (above 20.0%). Moreover, it showed that mypia was higher among higher school levels and among students of urban schools.

The high prevalence of uncorrected or under-corrected myopia is a worrying aspect. Another pertinent aspect concerns non- compliance with spectacles, as a considerable number of students who reported having spectacles were not wearing them at the time of the assessment. Adolescents' refusal to wear their usual spectacles puts their ocular health and their school and professional future at risk.

The epidemiological burden of myopia among schoolchildren necessitates a cross-sectoral approach, involving both health and education sectors, to ensure systematic screening, effective refractive error services, optical correction, and ongoing follow-up for affected children. Our results also highlight the critical need for public education on eye care and the development of an effective and sustainable school-age vision screening program to prevent vision impairment and blindness. By integrating public education with practical screening initiatives, we can ensure early detection and treatment, ultimately safeguarding children's vision health.

Acknowledgements

We thank the Clinical and Experimental Center for Vision Sciences and UBImedical for their support with the necessary materials and assistance in data collection.

Abbreviations

SE Spherical equivalent

AR Autorefroctometer

VA Visual acuity

ETDRS Early Treatment of Diabetic Retinopathy Study

UVA Uncorrected visual acuity

VAUC Visual acuity with usual correction

PhVA Pinhole visual acuity

VAR Visual Acuity Rating

OR Odds ratio

CI Confidence interval

SEN Special educational needs

Author contributions

AFN, MCBS and CAG contributed to the concept of the study. AFN and MC acquired and analyzed the data. AFN and CAG helped with the interpretation of the data. AFN and MC drafted the manuscript. MCBS and CAG supervised the study. All authors read and approved the final manuscript.

Funding

No funding was received for this research.

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

This study conformed to the principles of the Declaration of Helsinki, and informed consent was signed by the participants' parents. The Ethics Committee of the National School of Public Health, approved this study (approval number CEENSP nº 29/2023). Consent for publication

Not Applicable.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- 1. Ducloux A, Marillet S, Ingrand P, Bullimore MA, Bourne RA, Leveziel N. Progression of myopia in teenagers and adults: a nationwide longitudinal study of a prevalent cohort. Br J Nurs. 2021;0:1–6. 10.1136/bjophthalmol-2021-319568.

 10.1136/bjophthalmol-2021-319568 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 2. Keel S, Müller A, Block S, Bourne R, Burton MJ, Chatterji S, et al. Keeping an eye on eye care: monitoring progress towards effective coverage. Lancet Glob Heal. 2021;9(10):e1460-4. 10.1016/S2214-109X(21)00212-6. 10.1016/S2214-109X(21)00212-6 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 3. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–42. 10.1016/j.ophtha.2016.01.006. 10.1016/j.ophtha.2016.01.006 [PubMed] [CrossRef] [Google Scholar]
- 4. Grzybowski A, Kanclerz P, Tsubota K, Lanca C, Saw SM. A review on the epidemiology of myopia in school children worldwide. BMC Ophthalmol. 2020;20:1–11. 10.1186/s12886-019-1220-0. 10.1186/s12886-019-1220-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 5. Berke A. Prevalence of myopia in children and adults in Europe and North America. Optometry Contact Lenses. 2021;1(2):48–55. 10.54352/dozv.YCPT5231. 10.54352/dozv.YCPT5231 [CrossRef] [Google Scholar]
- 6. Singh H, Singh H, Latief U, Tung GK, Shahtaghi NR, Sahajpal NS, et al. Myopia, its prevalence, current therapeutic strategy and recent developments: a review. Indian J Ophthalmol. 2022;70(8):2788–99. 10.4103/ijo.IJO_2415_21. 10.4103/ijo.IJO_2415_21 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 7. Németh J, Tapasztó B, Aclimandos WA, Kestelyn P, Jonas JB, De Faber JH, et al. Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. Eur J Ophthalmol. 2021;31(3):853–83. 10.1177/1120672121998960. 10.1177/1120672121998960 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 8. Flitcroft DI, He M, Jonas JB, Jong M, Naidoo K, Ohno-Matsui K, et al. IMI-defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies. Investig Ophthalmol Vis Sci. 2019;60(3):M20–30. 10.1167/iovs.18-25957. 10.1167/iovs.18-25957 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

- 9. Wang J, Ying GS, Fu X, Zhang R, Meng J, Gu F, et al. Prevalence of myopia and vision impairment in school students in Eastern China. BMC Ophthalmol. 2020;20:1–10. 10.1186/s12886-019-1281-0. 10.1186/s12886-019-1281-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 10. Yu H, Shao Y, Yuan H, Yan B. Age-determined referral criteria of myopia for large-scale vision screening. Eye Sci. 2015;30(4):151–5. 10.3978/j.issn.1000-4432.2015.11.03. 10.3978/j.issn.1000-4432.2015.11.03 [PubMed] [CrossRef] [Google Scholar]
- 11. WHO World Health Organization. Vision and eye screening implementation handbook. Licence: CC BY-NC-SA 3.0 IGO. 2023. ISBN:978-92-4-008245-8.
- 12. Burton MJ, Faal HB, Ramke J, Ravilla T, Holland P, Wang N et al. (2019) Announcing The Lancet Global Health Commission on Global Eye Health. Lancet Glob Heal. 2019;7(12):e1612–3. 10.1016/S2214-109X(19)30450-4 [PubMed]
- 13. Baird PN, Saw SM, Lança C, Guggenheim JA, Smith IE, Zhou X, et al. Myopia Nat Rev Dis Prim. 2020;6(1):99. 10.1038s41572-020-00231-4. 10.1038/s41572-020-00231-4 [PubMed] [CrossRef] [Google Scholar]
- 14. SNS Direção Geral Saúde. Programa Nacional para a Saúde Da Visão revisão e extensão a 2020. DGS; 2016.
- 16. Carneiro VA, González-Méijome JM. Prevalence of refractive error in Portugal estimated from ophthalmic lens manufacturing data: ten-years analysis. PLoS ONE. 2023;18(4):e0284703. 10.1371/journal.pone.0284703. 10.1371/journal.pone.0284703 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 17. Tidbury LP, Czanner G, Newsham D. Fiat lux: the effect of illuminance on acuity testing. Graefe's Archive Clin Experimental Ophthalmol. 2016;254(6):1091–7. 10.1007/s00417-016-3329-7. 10.1007/s00417-016-3329-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 18. Elliott DB. The good (logMAR), the bad (Snellen) and the ugly (BCVA, number of letters read) of visual acuity measurement. Ophthalmic Physiol Opt. 2016;36(4):355–8. 10.1111/opo.12310. 10.1111/opo.12310 [PubMed] [CrossRef] [Google Scholar]
- 19. Bailey IL, Lovie-Kitchin JE. Visual acuity testing. From the laboratory to the clinic. Vision Res. 2013;90:2–9. 10.1016/j.visres.2013.05.004. 10.1016/j.visres.2013.05.004 [PubMed] [CrossRef] [Google Scholar]
- 20. Payerols A, Eliaou C, Trezeguet V, Villain M, Daien V. Accuracy of PlusOptix A09 distance refraction in pediatric myopia and hyperopia. BMC Ophthalmol. 2016;6:1–7. 10.1186/s12886-016-0247-8. 10.1186/s12886-016-0247-8 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 21. Yilmaz I, Ozkaya A, Alkin Z, Ozbengi S, Yazici AT, Demirok A. Comparison of the Plusoptix A09 and Retinomax K-Plus 3 with retinoscopy in children. J Pediatr Ophthalmol Strabismus. 2015;52(1):37–42. 10.3928/01913913-20141230-06. 10.3928/01913913-20141230-06 [PubMed] [CrossRef] [Google Scholar]
- 22. Wang J, Xie H, Morgan I, Chen J, Yao C, Zhu J, et al. How to conduct school myopia screening: comparison among myopia screening tests and determination of associated cutoffs. Asia-Pacific J Ophthalmol. 2022;11(1):12–8.

 10.1097/APO.000000000000487. 10.1097/APO.0000000000000487 [PubMed] [CrossRef] [Google Scholar]
- 23. Wang J, Liu J, Ma, Zhang Q, Li R, He X, et al. Prevalence of myopia in 3-14-year-old Chinese children: a school-based cross-sectional study in Chengdu. BMC Ophthalmol. 2021;21(1):318. 10.1186/s12886-021-02071-6. 10.1186/s12886-021-02071-6 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 24. Wang H, Li Y, Qiu K, Zhang R, Lu X, Luo L, et al., et al. Prevalence of myopia and uncorrected myopia among 721 032 schoolchildren in a city-wide vision screening in southern China: the Shantou Myopia Study. Br J Ophthalmol. 2023;107(12):1798–805. 10.1136/bjo-2021-320940. 10.1136/bjo-2021-320940 [PubMed] [CrossRef] [Google Scholar]

- 25. We XX, Yu LL, Majid AZA, Xu Y. Study on the prevalence of myopia and its associated factors in China: a systemic review. Eur Rev Med Pharmacol Sci. 2023;27(17). 10.26355/eurrev_202309_33559. [PubMed]
- 26. Demir P, Baskaran K, Theagarayan B, Gierow P, Sankaridurg P, Macedo AF. Refractive error, axial length, environmental and hereditary factors associated with myopia in Swedish children. Clin Experimental Optometry. 2021;104(5):595–601. 10.1080/08164622.2021.1878833. 10.1080/08164622.2021.1878833 [PubMed] [CrossRef] [Google Scholar]
- 27. Yang L, Vass C, Smith L, Juan A, Waldhör T. Thirty-five-year trend in the prevalence of refractive error in Austrian conscripts based on 1.5 million participants. Br J Ophthalmol. 2020;104(10):1338–44. 0.1136/bjophthalmol-2019-315024. 10.1136/bjophthalmol-2019-315024 [PubMed] [CrossRef] [Google Scholar]
- 28. Harrington SC, Stack J, O'Dwyer V. Risk factors associated with myopia in schoolchildren in Ireland. Br J Ophthalmol. 2019;103(12):1803–9. 10.1136/bjophthalmol-2018-313325. 10.1136/bjophthalmol-2018-313325 [PubMed] [CrossRef] [Google Scholar]
- 29. Guillon-Rolf R, Grammatico-Guillon L, Leveziel N, Pelen F, Durbant E, Chammas J, Khanna RK. Refractive errors in a large dataset of French children: the ANJO study. Sci Rep. 2022;12(1):4069. 10.1038/s41598-022-08149-5. 10.1038/s41598-022-08149-5 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 30. Alvarez-Peregrina C, Martinez-Perez C, Villa-Collar C, González-Pérez M, González-Abad A, Sánchez-Tena MA. (2021) The prevalence of myopia in children in Spain: an updated study in 2020. International Journal of Environmental Research and Public Health. 2021; 18(23): 12375. 10.3390/ijerph182312375 [PMC free article] [PubMed]
- 31. Philipp D, Vogel M, Brandt M, Rauscher FG, Hiemisch A, Wahl S, et al. The relationship between myopia and near work, time outdoors and socioeconomic status in children and adolescents. BMC Public Health. 2022;22(1):2058. 10.1186/s12889-022-14377-1. 10.1186/s12889-022-14377-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 32. Dragomirova M, Antonova A, Stoykova S, Mihova G, Grigorova D. Myopia in Bulgarian school children: prevalence, risk factors, and health care coverage. BMC Ophthalmol. 2022;22(1):248. 10.1186/s12886-022-02471-2. 10.1186/s12886-022-02471-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 33. Ying ZQ, Li DL, Zheng XY, Zhang XF, Pan CW. (2024) Risk factors for myopia among children and adolescents: an umbrella review of published meta-analyses and systematic reviews. British Journal of Ophthalmology. 2024;108(2):167–174. 10.1136/bjo-2022-322773 [PubMed]
- 34. Morgan IG, Wu PC, Ostrin LA, Tideman JL, Yam JC, Lan W, et al. IMI risk factors for myopia. Invest Ophthalmol Vis Sci. 2021;62(5):3. 10.1167/iovs.62.5.3. 10.1167/iovs.62.5.3 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 35. Lissak G. Adverse physiological and psychological effects of screen time on children and adolescents: literature review and case study. Environ Res. 2018;164:149–57. 10.1016/j.envres.2018.01.015. 10.1016/j.envres.2018.01.015 [PubMed] [CrossRef] [Google Scholar]
- 36. Hansen MH, Hvid-Hansen A, Jacobsen N, Kessel L. Myopia prevalence in Denmark–a review of 140 years of myopia research. Acta Ophthalmol. 2021;99(2):118–27. 10.1111/aos.14562. 10.1111/aos.14562 [PubMed] [CrossRef] [Google Scholar]
- 37. Rudnicka AR, Kapetanakis VV, Wathern AK, Logan NS, Gilmartin B, Whincup PH, et al. Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention. Br J Ophthalmol. 2016;100(7):882–90. 0.1136/bjophthalmol-2015-307724. [PMC free article] [PubMed]
- 38. Wang Y, Liu L, Zhang L. Rural-urban differences in prevalence of and risk factors for refractive errors among school children and adolescents aged 6–18 years in Dalian, China. Front Public Health. 2022;10:917781.

 10.3389/fpubh.2022.917781. 10.3389/fpubh.2022.917781 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 39. Gopalakrishnan A, Hussaindeen JR, Sivaraman V, Swaminathan M, Wong YL, Armitage JA, et al. Myopia and its association with near work, outdoor time, and housing type among schoolchildren in south India. Optom Vis Sci. 2023;100(1):105–10. 10.1097/OPX.000000000001975. 10.1097/OPX.00000000000001975 [PubMed] [CrossRef] [Google Scholar]

- 40. Choi KY, Wong HY, Cheung HN, Tseng JK, Chen CC, Wu CL, et al. Impact of visual impairment on balance and visual processing functions in students with special educational needs. PLoS ONE. 2022;17(4):e0249052.

 10.1101/2020.09.28.20202879. 10.1101/2020.09.28.20202879 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 41. Nielsen LS, Skov L, Jensen H. (2007). Visual dysfunctions and ocular disorders in children with developmental delay. II. Aspects of refractive errors, strabismus and contrast sensitivity. Acta Ophthalmologica Scandinavica. 2007;85(4):419–426. 10.1111/j.1600-0420.2007.00881.x [PubMed]
- 42. Pirindhavellie GP, Yong AC, Mashige KP, Naidoo KS, Chan VF. The impact of spectacle correction on the well-being of children with vision impairment due to uncorrected refractive error: a systematic review. BMC Public Health. 2023;23(1):1575. 10.1186/s12889-023-16484-z. 10.1186/s12889-023-16484-z [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 43. Yang M, Luensmann D, Fonn D, Woods J, Jones D, Gordon K, Jones L. Myopia prevalence in Canadian school children: a pilot study. Eye. 2018;32(6):1042–7. 0.1038/s41433-018-0015-5. 10.1038/s41433-018-0015-5 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 44. Dhirar N, Dudeja S, Duggal M, Gupta PC, Jaiswal N, Singh M, et al. Compliance to spectacle use in children with refractive errors-a systematic review and meta-analysis. BMC Ophthalmol. 2020;20(1):71. 10.1186/s12886-020-01345-9.

 10.1186/s12886-020-01345-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 45. Wu L, Feng J, Zhang M. Implementing interventions to promote spectacle wearing among children with refractive errors: a systematic review and meta-analysis. Front Public Health. 2023;11:1053206. 10.3389/fpubh.2023.1053206. 10.3389/fpubh.2023.1053206 [PMC free article] [PubMed] [CrossRef] [Google Scholar]