1. (Folland 1.3.6) That $\overline{\mu}$ is a measure is clear, since $\overline{\mu}(\emptyset) = \mu(\emptyset) = 0$, $\operatorname{Im} \overline{\mu} = \operatorname{Im} \mu$ (this shows it is positive) and if $\{A_i\}_{1}^{\infty}$ are disjoint sets in \overline{M} , then each A_i can be written as $E_i \cup F_i$ (for F_i) contained in null sets N_i so that $\overline{\mu} \bigcup_1^{\infty} A_i = \overline{\mu}(\bigcup_1^{\infty} E_i \bigcup_1^{\infty} F_i)$, then $\bigcup_1^{\infty} F_i \subset \bigcup_1^{\infty} N_i$ is a null set, so

$$\overline{\mu}(\bigcup_{1}^{\infty} E_{i} \bigcup_{1}^{\infty} F_{i}) \stackrel{\text{defn.}}{=} \mu(\bigcup_{1}^{\infty} E_{i}) = \sum_{1}^{\infty} \mu(E_{i}) = \sum_{1}^{\infty} \overline{\mu}(E_{i} \cup F_{i})$$

Suppose $N \in \overline{\mathcal{M}}$ with $\overline{\mu}(N) = 0$ and $F \subset N$, then $N = N_1 \cup N_2$ with $N_1 \in \mathcal{M}$, and $N_2 \subset N_3 \in \mathcal{M}$, so that $N \subset N_1 \cup N_3$ which is a μ -measurable set, hence F is contained in the null set $N_1 \cup N_3$ and is μ -measurable. Finally to see uniqueness of $\overline{\mu}$, suppose μ' is another extension of μ to $\overline{\mathcal{M}}$, then for some $E \cup F \in \overline{M}$ we have $\mu(E) = \overline{\mu}(E \cup F) \neq \mu'(E \cup F)$, hence $\mu'(F) > 0$, but then $F \subset N \in \mathcal{M}$ where N is μ null, so that $0 < \mu'(F) \le \mu(N) = 0$.

2. (Folland 1.3.7) Positivity follows from each μ_j and a_j positive, suppose $\{E_i\}_1^{\infty}$ are disjoint, if any of the $\mu_j(\bigcup_1^{\infty} E_i) = \infty$ then $\sum_{i=1}^{\infty} \sum_{j=1}^n a_j \mu_j(E_i) \ge a_j \sum_{i=1}^{\infty} \mu(E_i) = a_j \mu_j(\bigcup_1^{\infty} E_i) = \infty$ and additivity is trivial, otherwise we can interchange sums since they converge in absolute value

$$\sum_{1}^{n} a_{j} \mu_{j}(\emptyset) = \sum_{1}^{n} 0 = 0$$

$$\sum_{1}^{n} a_{j} \mu_{j}(\bigcup_{1}^{\infty} E_{i}) = \sum_{j=1}^{n} a_{j} \sum_{i=1}^{\infty} \mu_{j}(E_{i}) = \sum_{i=1}^{\infty} \sum_{j=1}^{n} a_{j} \mu_{j}(E_{i})$$

3. (Folland 1.3.8) for any N, we have $\bigcup_{n=1}^{N} \bigcap_{j=n}^{\infty} E_j \subset E_k$ for all $k \geq N$, hence $\mu(\bigcup_{n=1}^{N} \bigcap_{j=n}^{\infty} E_j) \leq \lim\inf \mu(E_k)$. By continuity from below we have $\lim_{N\to\infty} \mu(\bigcup_{n=1}^{N} \bigcap_{j=n}^{\infty} E_j) = \mu(\liminf E_k)$, but the limit is bounded above by $\lim\inf \mu(E_k)$, so that $\mu(\liminf E_K) \leq \liminf \mu(E_k)$.

For all N, we have $\bigcap_{n=1}^{N} \bigcup_{j=n}^{\infty} E_j \supset E_k$ for $k \geq n$, hence $\mu(\bigcap_{n=1}^{N} \bigcup_{j=n}^{\infty} E_j) \geq \limsup \mu(E_k)$, since

 $\mu(\bigcup_{i=1}^{\infty} E_i) < \infty$ we can invoke continuity from above to conclude

$$\mu(\limsup(E_k)) = \lim_{n \to \infty} \mu(\bigcap_{n=1}^N \bigcup_{j=n}^\infty E_j) \ge \limsup \mu(E_k)$$

4. (Folland 1.3.9) We can decompose the sets of interest as follows:

$$E = (E \setminus F) \sqcup (E \cap F), \quad F = (F \setminus E) \sqcup (F \cap E), \quad E \cup F = F \cap E \sqcup (E \setminus F) \sqcup (F \setminus E)$$

The result follows from additivity on disjoint sets,

$$\mu(E) + \mu(F) = \mu(E \setminus F) + \mu(E \cap F) + \mu(F \setminus E) + \mu(F \cap E) = \mu(E \cup F) + \mu(E \cap F)$$

5. (Folland 1.3.10) That μ_E is nonnegative follows from μ nonnegative. $= \cap E$ so $\mu_E(\emptyset) = 0$. Finally if $\{A_i\}_1^{\infty}$ are disjoint sets, then so are $\{A_i \cap E\}_1^{\infty}$, hence

$$\mu_E(\bigcup_{i=1}^{\infty} A_i) = \mu(E \cap \bigcup_{i=1}^{\infty} A_i) = \mu(\bigcup_{i=1}^{\infty} E \cap A_i) = \sum_{i=1}^{\infty} \mu(E \cap A_i)$$

6. (Folland 1.3.11) Suppose $\{E_i\}_{1}^{\infty}$ are disjoint sets, then let $F_n = \bigcup_{1}^{n} E_i$, it follows that

$$\mu(\bigcup_{1}^{\infty} E_i) = \mu(\bigcup_{1}^{\infty} F_n) = \lim_{n \to \infty} \mu(F_n) = \lim_{n \to \infty} \sum_{1}^{n} \mu(E_i)$$

In the second case, let $K_n = \bigcap_{1}^n E_n^c$, it follows that $\mu K_1 \leq \mu X$ so we can use continuity from above.

$$\mu(\bigcup_{1}^{\infty} E_i) = \mu(X) - \mu(\bigcap_{1}^{\infty} E_i^c) = \mu(X) - \mu(\bigcap_{1}^{\infty} K_n) = \mu(X) - \lim_{n \to \infty} \mu(K_n) = \mu(X) - \lim_{n \to \infty} \mu\left(\left(\bigcup_{1}^{n} E_n\right)^c\right)$$
$$= \mu(X) - \left(\lim_{n \to \infty} \mu(X) - \sum_{1}^{n} \mu(E_i)\right) = \lim_{n \to \infty} \sum_{1}^{n} \mu(E_i)$$

7. (Folland 1.3.12)

(a) $E\Delta F = (E \setminus F) \sqcup (F \setminus E)$, hence $\mu(E \setminus F) = \mu(F \setminus E) = 0$. It follows that

$$\mu(F) \le \mu(E) + \mu(F \setminus E) = \mu(E)$$
 and $\mu(E) \le \mu(F) + \mu(E \setminus F) = \mu(F)$

- (b) reflexivity follows from $\mu(E\Delta E) = \mu(\emptyset) = 0$, symmetry follows from $E\Delta F = F\Delta E$, finally transitivity follows from the observation $H \setminus F \subset (H \setminus E) \cup (E \setminus F)$, hence $\mu(H\Delta E) = \mu(E\Delta F) = 0$ implies $\mu(H \setminus F) \leq \mu(H \setminus E) + \mu(E \setminus F) = 0$ and $\mu(F \setminus H) \leq \mu(F \setminus E) + \mu(E \setminus H) = 0$ which gives us that $\mu(H\Delta F) = \mu(H \setminus F) + \mu(F \setminus H) = 0$, proving transitivity.
- (c) $\rho(E,F)=0 \iff E\sim F$, and ρ is nonnegative, symmetry follows from symmetry of Δ , so ρ will define a metric if it satisfies the triangle inequality. But as in the previous question $H\setminus F\subset (H\setminus E)\cup (E\setminus F)$, applying this inequality the other way this implies that $\mu(H\Delta F)\leq \mu(H\Delta E)+\mu(E\Delta F)$, this proves the triangle inequality for ρ .
- **8.** (Folland 1.3.13) Suppose that μ is not semifinite, then there is some $E \in \mathcal{M}$, such that for all $F \subset E$ we have $\mu(F) = \infty$. Suppose $X = \bigcup_{1}^{\infty} E_{i}$, then $E_{i} \cap E \neq \emptyset$ for some i, then $\infty = \mu(E_{i} \cap E) \leq \mu(E_{i})$, so that X cannot be a countable union of sets having finite measure.
- **9.** (Folland 1.3.14) Let $C = \sup\{\mu(F) \mid F \subset E \text{ and } \mu(F) < \infty\}$ and suppose for contradiction that $C < \infty$, then let F_n be a sequence such that $\lim_{n \to \infty} \mu(F_n) = C$, it follows that $\mu(\bigcup_1^n F_j) \ge \mu(F_n)$, hence $\lim_{n \to \infty} \mu(\bigcup_1^n F_j) = C$, using continuity from below we see that in fact $\mu(\bigcup_1^n F_n) = C$. Then $\mu(E \setminus \bigcup_1^\infty F_n) = \infty$, so $E \setminus \bigcup_1^\infty F_n$ has some subset A with $0 < \mu(A) < \infty$, but then

$$C \ge \mu(A \bigcup_{1}^{\infty} F_n) = \mu(\bigcup_{1}^{\infty} F_n) + \mu(A) > \mu(\bigcup_{1}^{\infty} F_n) = C$$

10. (Folland 1.3.15) (a) $\mu_0 \geq 0$ and $\mu_0(\emptyset) = 0$ are obvious, Now let $\{E_i\}_1^{\infty} \subset \mathcal{M}$ be disjoint sets, if $\mu_0(E_j) = \infty$ for some j, then $\mu_0(E_j) \leq \mu_0(\bigcup_1^{\infty} E_i)$ (since every finite measure subset of the former is also a finite measure subset of the latter) and we are done. So assuming each $\mu_0(E_j) < \infty$ l, let $\epsilon > 0$, then we can choose for each E_j some μ -measurable $F_j \subset E_j$ such that $\mu_0(E_j) \geq \mu(F_j) \geq \mu_0(E_j) - \epsilon 2^{-j}$, so that

$$\mu_0(\bigcup_{1}^{\infty} E_i) \ge \limsup \mu(\bigcup_{1}^{n} F_j) \ge \sum_{1}^{\infty} \mu_0(E_i) - \epsilon 2^{-i} = -\epsilon + \sum_{1}^{\infty} \mu_0(E_i)$$

since ϵ was arbitrary this concludes the inequality. To see the converse inequality, let $F \subset \bigcup_1^{\infty} E_i$ such that $\mu(F) < \infty$, then $\sum_1^{\infty} \mu(E_i \cap F) \leq \sum_1^{\infty} \mu_0(E_i)$, taking a sequence $(F_n)_1^{\infty}$, such that $\lim_{n \to \infty} \mu(F_n) = \mu_0(\bigcup_1^{\infty} E_i)$ and $F_n \subset \bigcup_1^{\infty} E_i$ we conclude that

$$\mu_0(\bigcup_{1}^{\infty} E_i) = \lim_{n \to \infty} \mu(F_n) = \lim_{n \to \infty} \sum_{1}^{\infty} \mu(F_n \cap E_i) \le \sum_{1}^{\infty} \mu_0(E_i)$$

so that μ_0 is a measure. To check that μ_0 is semifinite, let $E \in \mathcal{M}$ with $\mu_0(E) = \infty$, then by definition there is some $F \subset E$ with $\mu(F) > 0$, it follows that $\mu_0(F) = \mu(F) > 0$.

(b) Suppose μ is semifinite, then it is clear for a set E of finite measure we have $\mu(E) = \mu_0(E)$ by monotonicity. If E has infinite measure, then by (Folland 1.3.14) we have

$$\mu_0(F) := \sup \{ \mu(F) \mid F \subset E \text{ and } \mu(F) < \infty \} = \infty = \mu(F)$$

(c) Define ν as follows,

$$\nu(E) := \begin{cases} 0 & E \text{ is } \mu\text{-semi-finite} \\ \infty & \text{else} \end{cases}$$

Once again positivity and $\nu(\emptyset) = 0$ are obvious, to check countable additivity let $\{E_i\}_1^{\infty} \subset \mathcal{M}$ be disjoint. If $\nu(\bigcup_1^{\infty} E_i) = 0$, then $\bigcup_1^{\infty} E_i$ is μ -semi-finite, hence so is every E_i , so that $\sum_1^{\infty} \nu(E_i) = \sum_1^{\infty} 0$. If $\nu(\bigcup_1^{\infty} E_i) = \infty$, then at least one E_i is not semifinite because otherwise for any $F \subset \bigcup_1^{\infty} E_i$ with $\mu(F) = \infty$ and $\mu_0(F) = 0$ we have $\infty = \mu(F) = \sum_1^{\infty} \mu(F \cap E_i)$ and $0 = \mu_0(F) = \sum_1^{\infty} \mu_0(F \cap E_i)$, so that for some E_i we have $\mu(F \cap E_i) = \infty$, but E_i is semifinite by assumption, so that $\mu_0(F \cap E_i) \neq 0$ a contradiction, this shows that at least one E_j is not semifinite, so that $\sum_1^{\infty} \nu(E_i) \geq \nu(E_j) = \infty = \nu(\bigcup_1^{\infty} E_i)$. This suffices to show that ν is a measure, to see that $\mu = \mu_0 + \nu$, let $E \in \mathcal{M}$, if E is semifinite then either it is finite and $\mu(E) = \mu(E_0)$ by monotonicity, or it has infinite measure in which case we are done by (Folland 1.3.14). If E is not semifinite, then $\infty = \mu(E) = \nu(E) \leq \nu(E) + \mu_0(E)$ and we are

- 11. (Folland 1.3.16) (a) We can write $X = \bigcup_{1}^{\infty} A_i$ with $\mu(A_i) < \infty$ by the sigma finite hypothesis, hence if E is locally measurable, we have $E = E \cap \bigcup_{1}^{\infty} A_i = \bigcup_{1}^{\infty} (E \cap A_i) \in \mathcal{M}$ by closure under countable unions.
- (b) Let $E \in \tilde{\mathcal{M}}$, then for any A with $\mu(A) < \infty$ we have $E^c \cap A = E \cup A^c = (E \cap A) \cup A^c \in \mathcal{M}$. If $\{E_i\}_1^{\infty} \subset \mathcal{M}$, then $A \cap \bigcup_1^{\infty} E_i = \bigcup_1^{\infty} (A \cap E_i) \in \mathcal{M}$.
- (c) positivity and $\tilde{\mu}(\emptyset) = 0$ are clear. Now let $\{E_i\}_1^{\infty} \subset \tilde{\mathcal{M}}$ be disjoint, if $\bigcup_1^{\infty} E_i \notin \mathcal{M}$, then at least one $E_j \notin \mathcal{M}$, in which case $\sum_1^{\infty} \tilde{\mu}(E_i) \geq \tilde{\mu}(E_j) = \infty = \tilde{\mu}(\bigcup_1^{\infty} E_i)$. If $\bigcup_1^{\infty} E_i \in \mathcal{M}$, and $\mu(\bigcup_1^{\infty} E_i) = \infty$, then $\bigcup_1^{\infty} \tilde{\mu}(E_i)$ is infinity in either the case all $E_i \in \mathcal{M}$ or the case some $E_i \notin \mathcal{M}$. Finally, if $\bigcup_1^{\infty} E_i \in \mathcal{M}$, and $\mu(\bigcup_1^{\infty} E_i) < \infty$, then $E_i = E_i \cap (\bigcup_1^{\infty} E_i) \in \mathcal{M}$, so that

$$\tilde{\mu}(\bigcup_{1}^{\infty} E_i) = \mu(\bigcup_{1}^{\infty} E_i) = \sum_{1}^{\infty} \mu(E_i) = \sum_{1}^{\infty} \tilde{\mu}(E_i)$$

- (d) Suppose $F \subset N$ where N is a $\tilde{\mu}$ -null set, then $\tilde{\mu}(N) = 0 \neq \infty \implies N \in \mathcal{M}$ and $\mu(N) = \tilde{\mu}(N) = 0$, it follows by completion of μ that $F \in \mathcal{M} \subset \tilde{\mathcal{M}}$.
- (e) It is clear that $\underline{\mu}(\emptyset) = 0$ and $\underline{\mu} \geq 0$. Now let $\{E_i\}_1^{\infty} \subset \mathcal{M}$ be disjoint, If some $\underline{\mu}(E_j) = \infty$, then so does $\underline{\mu}(\bigcup_1^{\infty} E_j)$, since the former is a subset of the latter. If this is not the case, then let $\epsilon > 0$ and take $F_i \in \mathcal{M}$ such that $\mu(E_i) \geq \mu(F_i) \geq \underline{\mu}(E_i) \epsilon 2^{-i}$, so that

$$\underline{\mu}(\bigcup_{1}^{\infty} E_i) \ge \limsup \mu(\bigcup_{1}^{n} F_i) \ge \sum_{1}^{\infty} \underline{\mu}(E_i) - \epsilon 2^{-i} = -\epsilon + \sum_{1}^{\infty} \underline{\mu}(E_i)$$

since epsilon was arbitrary this gives the inequality. For the converse, if $F \subset \bigcup_{1}^{\infty} E_{i}$ with $\mu(F) < \infty$, then $\sum_{1}^{\infty} \mu(E_{i} \cap F) \leq \sum_{1}^{\infty} \underline{\mu}(E_{i})$, taking a sequence F_{n} with $\lim_{n \to \infty} \mu(F_{n}) = \underline{\mu}(\bigcup_{1}^{\infty} E_{i})$, and $F_{n} \subset \bigcup_{1}^{\infty} E_{i}$ (we can do this due to the semifinite assumption), we use the inequality to conclude that

$$\underline{\mu}(\bigcup_{1}^{\infty} E_i) = \lim_{n \to \infty} \mu(F_n) = \lim_{n \to \infty} \sum_{1}^{\infty} \mu(F_n \cap E_i) \le \sum_{1}^{\infty} \underline{\mu}(E_i)$$

So that indeed $\underline{\mu}$ is a measure. The fact that $\underline{\mu}|_{\mathcal{M}} = \mu$ is directly a consequence of monotonicity. Let E be a $\underline{\mu}$ locally measurable set, and let $A \in \mathcal{M} \subset \tilde{\mathcal{M}}$ be such that $\mu(A) < \infty$, then $\underline{\mu}(A) = \mu(A) < \infty$, so that by locally measurable assumption we have $E \cap A \in \tilde{\mathcal{M}}$, hence $E \cap A = (E \cap A) \cap A \in \mathcal{M}$ by definition of $\tilde{\mathcal{M}}$, this suffices to show that E is locally measurable with repect to μ , so that $E \in \tilde{\mathcal{M}}$, i.e. μ is saturated.

(f) It is clear that $\mu \geq 0$ and $\mu(\emptyset) = \mu_0(\emptyset) = 0$. Now let $\{E_i\}_1^\infty \subset \mathcal{M}$ be disjoint. Then

$$\mu(\bigcup_{1}^{\infty} E_i) = \mu_0(X_1 \cap \bigcup_{1}^{\infty} E_i) = \mu_0(\bigcup_{1}^{\infty} (X_1 \cap E_i)) = \sum_{1}^{\infty} \mu_0(X \cap E_i) = \sum_{1}^{\infty} \mu(E_i)$$

so that μ is a measure. Note that X_2 (which is not countable or cocountable) is locally finite, since if A has finite measure, then $A \cap X_1$ is finite, hence A^c is uncountable, so that $A \cap X_2$ must be countable, so that $A \cap X_2 \in \mathcal{M}$. Now for any $E \subset X_2$ such that $E \in \mathcal{M}$, we have $\mu(E) = \mu_0(E \cap X_1) = \mu_0(\emptyset) = 0$, so that $\underline{\mu}(X_2) = 0$ (note here that $X_1 \cup X_2$ is obviously semifinite since any set containing infinitely members of X_1 contains a set with finitely many which is also countable or cocountable respectively so that μ is a measure on our space), but $X_2 \notin \mathcal{M}$ so that

$$\tilde{\mu}(X_2) = \infty \neq 0 = \underline{\mu}(X_2)$$

12. (Folland 1.4.17)

$$\mu^*(E \cap \bigcup_{1}^{n} A_i) = \mu^* \left((E \cap \bigcup_{1}^{n} A_i) \cap A_n \right) + \mu^* \left((E \cap \bigcup_{1}^{n} A_i) \cap A_n^c \right) = \mu^*(A_n) + \mu^*(\bigcup_{1}^{n-1} A_n)$$

applying this process recursively we find that $\mu^*(E \cap \bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mu^*(E \cap A_i)$, so that by monotonicity we have for any n,

$$\mu^*(E \cap \bigcup_{1}^{\infty} A_i) \ge \mu^*(E \cap \bigcup_{1}^{n} A_i) = \sum_{1}^{n} \mu^*(E \cap A_i)$$

and hence $\mu^*(E \cap \bigcup_{1}^{\infty} A_i) \geq \sum_{1}^{\infty} \mu^*(E \cap A_i)$.

13. (Folland 1.4.18)

(a) Let $\epsilon > 0$ and $\{A_j\}_1^{\infty} \subset \mathcal{A}$, such that $\mu^*(E) \geq \sum_{j=1}^{\infty} \mu_0(A_j) - \epsilon$ and $E \subset \bigcup_{j=1}^{\infty} A_j$ (existence of such a collection is guaranteed by the definition of outer measure). Take $A = \bigcup_{j=1}^{\infty} A_j \in \mathcal{A}_{\sigma}$, then

$$\mu^*(A) = \inf\{\sum_{1}^{\infty} \mu_0(B_i) \mid A \subset \bigcup_{1}^{\infty} B_i \text{ and } B_i \in \mathcal{A}\} \le \sum_{1}^{\infty} \mu_0(A_j) \le \mu^*(E) + \epsilon$$

(b) Suppose such a set exists, since $A \subset M$ is a sigma algebra we know that B is measurable, it follows that for $F \subset X$, we have

$$\mu^*(F \cap E^c) = \mu^*(F \cap E^c \cap B^c) + \mu^*(F \cap E^c \cap B) = \mu^*(F \cap (B \setminus E)) + \mu^*(F \cap B^c)$$

< $\mu^*(B \setminus E) + \mu^*(F \cap B^c) = \mu^*(F \cap B^c)$

so that they are equal, since the other equality follows from monotonicity. Applying this equality, we get

$$\mu^*(F) = \mu^*(F \cap B) + \mu^*(F \cap B^c) \ge \mu^*(F \cap E) + \mu^*(F \cap B^c) = \mu^*(F \cap E) + \mu^*(F \cap E^c)$$

so that E is measurable.

Conversely, assume that E is measurable, and $\mu^*(E) < \infty$, then let (A_n^{σ}) be a sequence of \mathcal{A}_{σ} sets, each containing E, such that $\lim_{n\to\infty} \mu^*(A_n^{\sigma}) = \mu^*(E)$ which is possible by part (a), then $\bigcap_{1}^{\infty} A_n^{\sigma}$ is $\mathcal{A}_{\sigma\delta}$, and for any n we have (using measurability in the equality) that

$$0 \le \mu^* (\cap_1^\infty A_n^\sigma \setminus E) \le \mu^* (A_n^\sigma \setminus E) = \mu^* (A_n^\sigma) - \mu^* (E), \quad \forall n$$

So by the squeeze theorem $\mu^*(\cap_1^\infty A_n^\sigma \setminus E) = 0$.

(c) The finiteness condition is only used in the converse, so assume that E is measurable, and we can write $X = \bigcup_{1}^{\infty} A_{i}$ for $A_{i} \in \mathcal{A}$, then $X = \bigcup_{1}^{\infty} B_{i}$ where $B_{n} = A_{n} \cap_{1}^{n-1} A_{i}^{c} \in \mathcal{A}$. By part (b), we can choose E_{i} , such that E_{i} is $\mathcal{A}_{\sigma\delta}$, $E \cap B_{i} \subset E_{i}$ and $\mu^{*}(E_{i} \setminus (E \cap B_{i})) = 0$ (we can also say $E_{i} \subset B_{i}$ by taking intersection- intersections of $\mathcal{A}_{\sigma\delta}$ sets are $\mathcal{A}_{\sigma\delta}$). Now since each $E_{i} \subset B_{i}$ so that $\{E_{i}\}_{1}^{\infty}$ are disjoint, it follows that (using here (Folland 1.4.17), because E_{i} measurable for all i, since E_{i} is $\mathcal{A}_{\delta\sigma}$)

$$\mu^*(\bigcup_{1}^{\infty} E_i \setminus E) = \mu^*(\bigcup_{1}^{\infty} E_i \cap E^c) = \sum_{1}^{\infty} \mu^*(E_i \cap E^c) = \sum_{1}^{\infty} \mu^*(E_i \setminus (E \cap B_i)) = \sum_{1}^{\infty} 0 = 0$$

14. (Folland 1.4.19) First suppose that E is measurable, then

$$\mu_0(X) = \mu^*(X) = \mu^*(E \cap X) + \mu^*(E^c \cap X) = \mu^*(E) + \mu^*(E^c) \implies \mu^*(E) = \mu_0(X) - \mu^*(E^c)$$

Conversely, if $\mu_*(E) = \mu^*(E)$, then for any measurable $A \supset E$,

$$\mu^*(E) = \mu_0(X) - \mu^*(E^c) = \mu^*(X) - \mu^*(E^c) = \mu^*(A) + \mu^*(A^c) - \mu^*(E^c)$$

and furthermore

$$u^*(E^c) = u^*(A \setminus E) + u^*(A^c \cap E^c) = u^*(A \setminus E) + u^*(A^c) \implies u^*(A \setminus E) = u^*(E^c) - u^*(A^c)$$

Combining these we get for any $A \supset E$

$$\mu^*(A \setminus E) = \mu^*(E^c) - \mu^*(A^c) = (\mu^*(A) + \mu^*(A^c) - \mu^*(E)) - \mu^*(A^c) = \mu^*(A) - \mu^*(E)$$

Now by (Folland 1.4.18 (a)), we have some sequence $(A_n^{\sigma})_n$ of \mathcal{A}_{σ} sets, such that $E \subset A_n^{\sigma}$ for all n, and $\mu(A_n^{\sigma}) \to \mu(E)$. It follows that for all n, we have

$$0 \le \mu^* \left(\left(\bigcap_{1}^{\infty} A_n^{\sigma} \right) \setminus E \right) \le \mu^* (A_n^{\sigma} \setminus E) = \mu^* (A_n^{\sigma}) - \mu^* (E)$$

Since this holds for all n taking the limit on the right we get $\mu^*((\bigcap_{1}^{\infty} A_n^{\sigma}) \setminus E) = 0$, so E is contained in a $\mathcal{A}_{\sigma\delta}$ set, such that the measure of the difference set is zero. We are done by (Folland 1.4.18(b)).

15. (Folland 1.4.20)

(a) If $\{A_i\}_1^{\infty} \subset \mathcal{M}^*$, and $E \subset \bigcup_1^{\infty} A_i$, then from monotonicity and subadditivity we have $\mu^*(E) \leq \mu^*(\bigcup_1^{\infty} A_i) \leq \sum_1^{\infty} \mu^*(A_i)$, hence

$$\mu^+(E) = \inf\{\sum_{i=1}^{\infty} \mu^*(A_i) \mid E \subset \bigcup_{i=1}^{\infty} A_i \text{ and } A_i \in \mathcal{M}^*\} \ge \mu^*(E)$$

Suppose there exists $E \subset A \in \mathcal{M}^*$ with $\mu^*(A) = \mu^*(E)$, then $\mu^*(E) = \mu^*(A) \ge \mu^*(E) \ge \mu^*(E)$. Conversely, If $\mu^+(E) = \mu^*(E)$, then for any n, there are some $A_i \in \mathcal{M}^*$ with $E \subset \bigcup_{1}^{\infty} A_i$ such that $\sum_{1}^{\infty} \mu^*(A_i) \leq \mu^*(E) + \frac{1}{n}$, then for each n we define $B_n = \bigcup_{n=1}^{\infty} A_n$, then

$$\mu^*(E) \le \mu^*(B_n) \le \sum_{i=1}^{\infty} \mu^*(A_i) \le \mu^*(E) + \frac{1}{n}$$

It follows that $\mu^*(E) \leq \mu^*(\bigcap_1^\infty B_n) \leq \mu^*(E) + \frac{1}{n}$ for all n, and hence $\mu^*(E) = \mu^*(B_n)$. \square **(b)** If μ^* is induced by a pre-measure, then by (Folland 1.4.18 (a)) we find that for any $E \subset X$ we have some $A_n \supset E$ with $\mu^*(A_n) - n^{-1} \le \mu^*(E)$, hence for any n,

$$\mu^*(E) \le \mu^*(\bigcap_{1}^{\infty} A_n) \le \mu^*(A_n) \le \mu^*(E) + n^{-1}$$

So that $\mu^*(E) = \mu^*(\bigcap_1^\infty A_n) \in \mathcal{M}^*$, and hence we are done by (a).

(c) Define the outer measure as follows:

$$\mu^*: \begin{cases} X \mapsto 2\\ \{1\} \mapsto 2\\ \{0\} \mapsto 1 \end{cases}$$

Then since $\mu^*(X) \neq \mu^*\{1\} + \mu^*\{0\}$ we find that $\{X,\emptyset\}$ is the sigma algebra of measurable sets. It follows that $\mu^+(\{0\}) = \mu^*(X) = 2 \neq 1 = \mu^*(\{0\}).$

- 16. (Folland 1.4.21)
- 17. (Folland 1.4.22)
- 18. (Folland 1.4.23)
- 19. (Folland 1.4.24)