Section 3.3: The Bin Packing Problem

Last time we discussed simple approx. alg.s Today we will dwelop an approximation scheme.

Approximation scheme {A_{\mathcal{e}}}:

- | \top ransfam $\top \rightarrow \top$ ":
 - a. Remove all items smalls than $\frac{\mathcal{E}}{2}$. $(\top \to \top)$ $\Rightarrow O(\frac{1}{\mathcal{E}})$ items fit in one bin
 - b. Round up sizes of remaining items (I'→ I")

 ⇒ O(\(\frac{1}{6}\)) different them sizes
- 2. Do dyn. prg. on I'' $\Rightarrow A_{\epsilon}(I'') = OPT(I'')$
- 3. Add small Hens to the packing using First-Fit (or any other Anyfit alg.)

Adding small items to the packing (3.)

Lemma 3.10

$$A_{\varepsilon}(I) \leq \max_{\varepsilon} A_{\varepsilon}(I''), \frac{2}{2-\varepsilon} \text{Size}(I) + 19$$

 $\frac{\text{Proof}}{\text{If no extra bin is needed for adding the small items, } A_{\epsilon}(I) = A_{\epsilon}(I'').$

Otherwise, all bins, except possibly the last one, are filled to more than $1-\frac{5}{2}$. In this case,

$$A_{\varepsilon}(I) \leq \left\lceil \frac{\text{Size}(I)}{|-\varepsilon/2|} \right\rceil \leq \frac{\text{Size}(I)}{|-\varepsilon/2|} + |$$

$$= \frac{2}{2-\varepsilon} \text{Size}(I) + |$$

Rounding scheme (1.b)

Last time we saw that a randing schene similar to the one we used for Knapsack would at best yield an approx. Jacter of 1.5. Instead, we will use:

Linear grouping:
- Sort items in I' by decreasing sizes.
- Partition items in groups of k consecutive items.
(k will be determined later)

- For each group, round up item sizes to largest size in the group.
The result is called I".

Ex: (k=4)

Each item in the i'th group of I' is at least as large as any item in the (i+1)st group of I'':

Thus, for any packing of I', there is a packing of all but the first group of I" using the same number of bins.

Since the first group of I" can be packed in at most k bins, this proves:

Lemma 3.11: OPT(I") \leq OPT(I') +k

Packing I" using dyn. prg. (2.)

We will use the same approach as in Section 3.2:

Since all items in I" have size at least \$2, at most \$2 items fit into each bin.

There are $N \leq \lceil n/k \rceil$ different item sizes $S_1, S_2, ..., S_N$ in I''.

Hence, any packing of a bin can be represented by a vector $(m_1, m_2, ..., m_N)$, $m_i
leq 3/\epsilon$, where m_i is the number of items of size S_i in the bin. A vector representing the contents of a bin is called a bin configuration. Let B be the set of possible bin configurations. Note that $|B| < (\frac{3}{6})^N$.

for the dyn. prg. we will use an N-dimensional table B with n_i+1 rows in the i'th dimension, where n_i is the number of items of size s_i in I''. B[$m_1, m_2, ..., m_N$] will be the minimum number of bins required to pack m_i items of size s_i , $|\leq i \leq N$.

Ex:

$$\mathcal{E} = 0.4$$
 $T = 0.6, 0.5, 0.4, 0.4, 0.3, 0.1, 0.1$

Choosing $k = 3$, we obtain

 $T' = 0.6, 0.5, 0.4, 0.4, 0.3$
 $T' = 0.6, 0.6, 0.6, 0.4, 0.4$
 $S_1 = 0.6, S_2 = 0.4$
 $n_1 = 3, n_2 = 2$
 $\mathcal{B} = \{(0,1), (0,2), (1,0), (1,1)\}$

$$B[3,2] = 1 + \min_{\{m_1,m_2\} \in \mathcal{B}} \{B[3-m_1, 2-m_2]\}$$

= $1 + \min_{\{B[3,1], B[3,0], B[2,2], B[2,1]\}}$

Approximation

$$A_{\varepsilon}(T) \leq \max \left\{ A_{\varepsilon}(T''), \frac{2}{2-\varepsilon} \operatorname{Size}(I) + 1 \right\}, \text{ by Lumma 3.10} \right.$$

$$\leq \max \left\{ \operatorname{OPT}(I''), \frac{2}{2-\varepsilon} \operatorname{OPT}(I) + 1 \right\}, \text{ since} \right.$$

$$A_{\varepsilon}(T'') = \operatorname{OPT}(I'') \text{ and } \operatorname{OPT} \geqslant \operatorname{Size}(I)$$

$$\leq \max \left\{ \operatorname{OPT}(I') + k, \frac{2}{2-\varepsilon} \operatorname{OPT}(I) + 1 \right\}, \text{ by Lumma 3.1/} \right.$$

$$\leq \max \left\{ \operatorname{OPT}(I) + k, \frac{2}{2-\varepsilon} \operatorname{OPT}(I) + 1 \right\}, \text{ since } I' \leq I$$

$$\frac{2}{2-\varepsilon} \leq |+\varepsilon| \iff 2 \leq (2-\varepsilon)(1+\varepsilon)$$

$$\iff 2 \leq 2+\varepsilon-\varepsilon^{2}$$

$$\iff \varepsilon \leq |+\varepsilon|$$

Thus, we just nud to choose as appropriate value of k to obtain $k \le \varepsilon \cdot OPT(I)$: $k = \lfloor \varepsilon \cdot Size(I) \rfloor$

With this value of k

$$A_{\varepsilon}(I) \leq (I+\varepsilon) \cdot OPT(I) + I$$
asymptotic approximation scheme

Running time

 $k = \lfloor \varepsilon \cdot \text{size}(I) \rfloor \geqslant \lfloor \varepsilon \cdot n' \cdot \frac{\varepsilon}{\lambda} \rfloor \geqslant n' \cdot \frac{\varepsilon^{\lambda}}{4}$, where n' = |I'|, since all items in I' have size at least $\frac{\varepsilon}{\lambda}$.

 $N \leq \left\lceil \frac{n^{1}}{k} \right\rceil \leq \left\lceil \frac{4}{\epsilon^{2}} \right\rceil$

Table size $\leq (n')^N \leq n^N$

Time per entry $O(|\mathcal{E}|) \subseteq O((\frac{2}{\mathcal{E}})^N)$

Running time $O((\frac{2}{\epsilon})^N n^N) \subseteq O((\frac{2n}{\epsilon})^{\lceil \frac{n}{2} \rceil})$ not fully poly. time

Hence, dAzq is an Asymptotic poly time approx, scheme (APTAS)

This proves:

Theorem 3.12: There is an APTAS for Bin Packing

There is no PTAS for Bin Packing:

Theorem 3.8

No approx alg. for Bin Packing has an absolute approx. ratio better than $\frac{3}{2}$, unless P = NP.

Proof:

Reduction from Partition Problem (given a set S of integers, can S be partitioned into two sets S, and S_z such that $\sum_{s \in S_1} s = \sum_{s \in S_z} s$?)

Lt B= Zs.

Scale each integer by $\frac{2}{13}$, resulting in a set of numbers with sum 2. Use these numbers as input for the bin packing problem.

Chary, at least 2 bins are needed, and 2 bins are sufficient, if and only if the instance of the Partition problem is a yes-instance.

Thus, any Bin Packing alg. with an approx. ratio smaller than 3/2 will use exactly 2 bins, if and only if the input to the Parktion problem is a yes-instance.