Calling Genomic Variants from DNAseq data

Oxford Biomedical Data Science Training Programme

Genomic DNA Sequencing

- Whole genome sequencing
- Exome sequencing (2% of genome)
- Targeted panel (~10-100 genes)
- Variant types
 - Single nucleotide variants
 - Small insertions and deletion (indels)
 - Copy number variations
 - Structural variations

Germline vs Somatic Variants

Germline

- Rare disease
- De novo mutations
- Trio or family
- Assume diploid

Somatic

- Cancer
- Tumour vs germline
- Tumour purity
- Tumour heterogeneity
- Cannot assume diploid

SNV / Indel Calling Workflow

Step 1 - QC of Raw Sequencing Data

Read Quality Control

- FastQC
- Traffic light overview
- Graphical summaries
- HTML report

Step 2 - Mapping Reads to a Reference Genome

Mapping Reads

- Find the position(s) in the reference genome where each short read sequence aligns with the fewest mismatches
- Must be fast (millions of short reads)
- Must allow small differences (sequencing errors or polymorphisms)
- String matching problem

Reference Sequence

Short Read Mapping Tools

- General purpose alignment tools: BLAST, BLAT
- First short read specific tools:
 - Eland, MAQ use hash tables
- Second generation tools:
 - Bowtie, BWA Burrows-Wheeler Transform
- Third generation tools:
 - SOAP3 uses GPU processing
- Trade off between sensitivity, specificity and processing time
- For DNAseq we want accurate SNP/indel detection so specificity is key

Burrows-Wheeler Aligner

- Recommended by the Broad Institute best practice guidelines
- Aligns short sequences (< 400nt) against long reference genome
- Fast (if not too many errors)
- Gapped alignment (enables short indel calling)
- Soft clipping (ends of reads do not have to align)
- Takes FASTQ as input
 - Requires Sanger quality score format
- Produces SAM as output
- Default parameters optimised for mammalian DNA sequencing
- New algorithm BWA-MEM now recommended for read length > 70bp

Step 3 - QC of Mapped Reads

Picard Tools

- SAM/BAM/CRAM & VCF processing
- Overlapping functionality with Samtools/Pysam
- Written in Java
- Broad Institute
- Many BAM Quality control tools
 - CollectAlignmentSummaryMetrics
 - CollectBaseDistributionByCycle
 - CollectGcBiasMetrics
 - CollectHsMetrics

CollectMultipleMetrics

Target Coverage Metrics

- ON_BAIT_BASES: The number of PF aligned bases that mapped to a baited region of the genome.
- NEAR_BAIT_BASES: The number of PF aligned bases that mapped to within a fixed interval of a baited region, but not on a baited region.
- OFF_BAIT_BASES: The number of PF aligned bases that mapped to neither on or near a bait.
- ON_TARGET_BASES: The number of PF aligned bases that mapped to a targeted region of the genome.
- MEAN_BAIT_COVERAGE: The mean coverage of all baits in the experiment.
- MEAN_TARGET_COVERAGE: The mean coverage of targets that received at least coverage depth = 2 at one base.
- FOLD_ENRICHMENT: The fold by which the baited region has been amplified above genomic background.
- ZERO_CVG_TARGETS_PCT: The number of targets that did not reach coverage=2 over any base.
- PCT_TARGET_BASES_20X: The percentage of ALL target bases achieving 20X or greater coverage.

Expect > 60% selected bases

Expect > 80% bases covered at 20x

	BAIT_SET	rgPicardHsMet
	GENOME_SIZE	3101804739
	BAIT_TERRITORY	51680059
	TARGET_TERRITORY	51680059
	BAIT_DESIGN_EFFICIENCY	1
	TOTAL_READS	1070677
	PF_READS	1070677
	PF_UNIQUE_READS	1070677
	PCT_PF_READS	1
	PCT_PF_UQ_READS	1
	PF_UQ_READS_ALIGNED	1006099
	PCT_PF_UQ_READS_ALIGNED	0.939685
	PF_UQ_BASES_ALIGNED	100941269
	ON_BAIT_BASES	60373413
	NEAR_BAIT_BASES	23200732
	OFF_BAIT_BASES	17367124
	ON_TARGET_BASES	60373413
	PCT_SELECTED_BASES	0.827948
1	PCT_OFF_BAIT	0.172052
	ON_BAIT_VS_SELECTED	0.722393
	MEAN_BAIT_COVERAGE	1.168215
	MEAN_TARGET_COVERAGE	113.898567
	PCT_USABLE_BASES_ON_BAIT	0.558298
	PCT_USABLE_BASES_ON_TARGET	0.558298
	FOLD_ENRICHMENT	35.897849
	ZERO_CVG_TARGETS 7 CT	0.32985
	FOLD_80_BASE_PENALTY	3.451472
	PCT TARGET BASES 2X	0.010046

Expect enrichment > 30x

Removing Duplicate Reads

- Remove read pairs with identical mapping coordinates
 - Assumed to be PCR duplicates
 - Unlikely to happen by chance in WGS
- Sets duplicate flag in BAM file
- Can also remove duplicates from file

Output from Picard MarkDuplicates

- READ_PAIR_DUPLICATES:
 - The number of read pairs that were marked as duplicates.
- PERCENT_DUPLICATION:
 - The percentage of mapped sequence that is marked as duplicate.
- ESTIMATED_LIBRARY_SIZE:
 - The estimated number of unique DNA molecules in the library based on paired end duplication.

METRICS CLASS net.st.picard.sam.DuplicationMetrics

HISTOGRAM java.lang.Double

LIBRARY UNPAIRED_READS_EXAMINED READ_PAIRS_EXAMINED UNMAPPED_READS

UNPAIRED READ DUPLICATES READ_PAIR_DUPLICATES READ_PAIR_OPTICAL_DUPLICATES

PERCENT_DUPLICATION ESTIMATED_LIBRARY_SIZE

AGILENT50MM 1095 633960 1098 375 99531 0 0.157159 1801628

Step 4 - Variant Calling

Genome Analysis Toolkit

Genome Analysis Toolkit

Variant Discovery in High-Throughput Sequencing Data

Developed in the Data Sciences Platform at the Broad Institute, the toolkit offers a wide variety of tools with a primary focus on variant discovery and genotyping. Its powerful processing engine and high-performance computing features make it capable of taking on projects of any size.

Best Practices

Pipelines optimized for accuracy and performance

Blog

Announcements and progress updates

Forum

Ask the team for help and report issues

▲ Download GATK 4.0

GATK Best Practices Workflow

Germline Variants

1. Pre-processing

2. Variant Calling

3. Annotation & Filtering

Base Quality Score Recalibration

- Improves accuracy of base quality scores to reduce false positive variant calls
- Analyse the variation among several features of a base:
 - Reported quality score
 - The position within the read
 - The preceding and current nucleotide (sequencing chemistry effect)
- These covariates are used to recalibrate the quality scores of all reads in a BAM file
- For example, a pre-calibration file could contain only reported Q25 bases
- These bases actually mismatch the reference at a 1 in 100 rate, so are actually Q20 empirically
- Base mismatches with the reference occur at the end of the reads more frequently than at the beginning
- Mismatches are strongly associated with sequencing context, in that the dinucleotide AC is often much lower quality than TG
- The recalibration tool corrects average Q score (shifting from Q25 to Q20)
- Also reduces quality of end of read AC bases compared to TG bases at the start of the read

Reduced error per machine cycle

GATK HaplotypeCaller

- Call SNVs & indels by performing a local de-novo assembly
- Offers improved indel detection & phases haplotypes (vs UnifiedGenoyper)
- De-novo assembly method
 - Determine if a region has the potential to be variable
 - Construct a de Bruijn graph assembly of the region
 - The paths in the graph are potential haplotypes to be evaluated
 - Calculate haplotype likelihoods given the data
 - Determine if there are any variants on the most likely haplotypes
 - Compute the allele frequency distribution to determine most likely allele count
- Performed on each sample
- Produces a Genome VCF (.gvcf) file
- GVCFs can be combined using CombineGVCFs

Joint Genotyping

- Gain power by calling variants on multiple samples
- Computationally inexpensive
- Works on combined GVCFs
- GenotypeGVCFs

Variant Quality Score Recalibration

- Variant calling is very sensitive
- Machine learning to identify variants that are likely to be real
 - Trains a model based on annotations of known variants
 - Applies the model to the entire dataset
 - Needs large, high quality set of known variants

VCF File Format

Alterative Variant Callers

Joint Genotyping

- Samtools
- SomaticSniper
- FaSD-somatic
- JointSNVMix2
- Virmid
- SNVSniffer
- CaVEMan

Heuristic

- VarScan2
- SOAPsnv
- VarDict
- qSNP
- RADIA
- Shimmer

Joint Allele Freq

- Mutect2
- Strelka2
- LoFreq
- EBCall
- deepSNV
- LoLoPicker
- MuSE

Machine learning / ensemble methods: MutationSeq, SomaticSeq, SNooPer, BAYSIC

Step 5: Variant Annotation & Filtering

Variant Annotation

- Determining the potential biological action of SNVs and small indels
- Known variants
 - dbSNP identifier (rs number)
 - 1000 genomes allele frequency (rare / common)
- Variant location
 - Intron, UTR, CDS, splice site, promoter etc
- Variant effect
 - Non-synonymous coding / missense
 - Predicted effect (SIFT, Polyphen2, Provean)
 - Nonsense (premature stop codon)
 - Frameshift (indels)
- Variant evolutionary conservation
 - GERP, PhastCons
- Regulatory effects
 - Transcription factor binding sites
 - microRNAs
 - CpG islands
- Phenotype and disease association

Variant Annotation Tools

http://www.mutationtaster.org/StartQueryEngine.html

http://wannovar.usc.edu/index.php

VCF Filtering Tools

- Filtering of VCF files can be done using several tools
 - 1. SnpSift filter
 - 2. VCFfilter (part of the VCFlib toolkit)
 - 3. GATK Select Variants
- Can filter on any logical combination of fields
- Syntax varies between tools

VCF Filtering Schemes for Different Genetic Models

- De novo variants
 - Homozygous reference in unaffected parents and heterozygous in proband
- Recessive variants
 - Heterozygous in unaffected parents and homozygous non-reference in affected proband
 - Can also be compound heterozygous in proband (two different mutations in the same gene)
- Dominant variants
 - Heterozygous in affected individuals but homozygous reference in unaffected

Related workflows

- RNAseq variant calling
- UMI-based variant calling
- Structural variants
- Copy number variants