SỞ GIÁO DUC VÀ ĐÀO TAO NAM ĐỊNH

ĐỀ THI THỬ TỐT NGHIỆP LỚP 12 THPT **NĂM HQC 2022 - 2023**

Môn: **Toán** – lớp 12 THPT (Thời gian làm bài: 90 phút)

MÃ ĐÈ: 202

ĐỀ CHÍNH THỰC

Đề thi gồm 06 trang.

Họ và tên học sinh:

- Gieo một đồng tiền cân đối, đồng chất ba lần. Xác suất để trong ba lần gieo có đúng hai lần Câu 1: xuất hiện mặt ngửa là

- Có bao nhiều cách sắp xếp 4 học sinh thành một hàng dọc? Câu 2:

B. 1.

- **D.** 24.

- Trên khoảng $(0; +\infty)$, đạo hàm của hàm số $y = x^e$ là Câu 3:
 - **A.** $y' = ex^{e-1}$.
- **B.** $y' = \frac{x^{e+1}}{e+1}$. **C.** $y' = \frac{1}{e}x^{e-1}$.
- Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ: Câu 4:

Có bao nhiều giá trị nguyên của tham số m để phương trình f(x) = m có bốn nghiệm phân biêt?

A. 0.

B. 1.

C. 3.

- **D.** 2.
- Trên mặt phẳng tọa độ, điểm M(-1;1) là điểm biểu diễn số phức nào sau đây? Câu 5:
 - **A.** z = 1 + i.
- **B.** z = -1 + i.
- C. z = 1 i.
- **D.** z = -1 i.
- Cho $\int_{0}^{1} f(x) dx = 2 \text{ và } \int_{0}^{1} g(x) dx = 5 \text{ khi dó } \int_{0}^{1} \left[f(x) 2g(x) \right] dx \text{ bằng}$ Câu 6:
 - **A.** −3.

- **D.** 1.

- Đường tiệm cận đứng của đồ thị hàm số $y = \frac{2x}{x+1}$ là **Câu 7:**
 - **A.** x = 2.
- **B.** x = -1.
- **C.** x = 1.
- **D.** v = 2.
- Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình Câu 8: vẽ. Khẳng định nào sau đây đúng?
 - **A.** Hàm số đạt cực đại tại x = 4.
 - **B.** Giá trị cực tiểu của hàm số bằng −1.
 - C. Hàm số không có điểm cực trị.
 - **D.** Hàm số đạt cực tiểu tại x = -1.

Trong không gian Oxyz, khoảng cách từ điểm M(0;3;-1) đến mặt phẳng Câu 9: $(\alpha): 2x + y - 2z - 2 = 0$ bằng

A. 1.

B. $\frac{1}{3}$.

C. 3.

D. $\frac{4}{2}$.

Câu 10: Trong không gian Oxyz, đường thẳng $d: \begin{cases} y = 3 - t \end{cases}$ có một vecto chỉ phương là

A. $\vec{u}(2;-1;1)$.

B. $\vec{v}(-1;3;2)$. **C.** $\vec{a}(-1;2;3)$. **D.** $\vec{b}(-1;-1;1)$.

Câu 11: Trong không gian Oxyz, hình chiếu của điểm A(1;2;-1) trên mặt phẳng (Oxy) là điểm nào sau đây?

A. Q(-1;-2;1). **B.** P(-1;-2;0). **C.** M(1;2;1). **D.** N(1;2;0).

Câu 12: Trong không gian Oxyz, gọi (S) là mặt cầu có tâm $I \in Ox$ và đi qua hai điểm $A(2;1;-1);B(-1;3;\sqrt{2})$. Phương trình của mặt cầu (S) là

A. $x^2 + y^2 + z^2 + 2x - 10 = 0$.

B. $x^2 + y^2 + z^2 - 4x + 2 = 0$.

C. $x^2 + y^2 + z^2 - 2x - 10 = 0$.

D. $x^2 + y^2 + z^2 + 4x - 14 = 0$.

Câu 13: Trong mặt phẳng toạ độ Oxy, biết tập hợp điểm biểu diễn của số phức z thỏa mãn |z-1+i|=|z+2i| là đường thẳng d. Phương trình tổng quát của đường thẳng d là

A. 2x-y+1=0. **B.** x-y-1=0.

C. x+y+1=0.

D. x+2y-1=0.

Câu 14: Hàm số $y = x^3 - 3x + 2$ có giá trị cực đại bằng

C. 20.

D. 0.

Câu 15: Cho f(x), g(x) là các hàm số liên tục trên \mathbb{R} . Trong các mệnh đề sau, mệnh đề nào **sai**?

A. $\int f(x).g(x)dx = \int f(x)dx.\int g(x)dx$.

B. $\int 5f(x)dx = 5\int f(x)dx.$

C. $\iint f(x) - g(x) dx = \iint f(x) dx - \iint g(x) dx$. D. $\iint f(x) + g(x) dx = \iint f(x) dx + \iint g(x) dx$.

Câu 16: Khối bát diện đều thuộc loại khối đa diện đều nào sau đây?

A. {3;5}.

B. {4;3}.

C. {3;4}.

D. {5;3}.

Câu 17: Cho khối lăng trụ đứng ABC.A'B'C' có $AB = AC = a, AA' = a\sqrt{2}$, $BAC = 45^{\circ}$ (tham khảo hình vẽ). Tính thể tích V của khối lăng trụ đã cho.

A. $\frac{\sqrt{2}a^3}{4}$.

B. $\frac{a^s}{4}$.

C. $\frac{a^3}{2}$.

D. $\frac{a^3}{6}$.

Câu 18: Biết phương trình $\log_2^2 x - 2\log_2(2x) - 1 = 0$ có hai nghiệm x_1, x_2 . Giá trị của $x_1.x_2$ bằng

A. 4.

B. $\frac{1}{8}$. **C.** -3.

D. $\frac{1}{2}$.

Câu 19: Cho hàm số y = f(x) có đạo hàm $f'(x) = x(x-1)^3$, $\forall x \in \mathbb{R}$. Hàm số y = f(x) đồng biến trên khoảng nào sau đây?

A. (-1;1).

B. $(0; +\infty)$.

C. (0;1).

D. $(-\infty;0)$.

Câu 20: Giá trị lớn nhất của hàm số $y = \frac{x+5}{x-7}$ trên đoạn [8;12] bằng

A. 15.

B. $\frac{17}{5}$.

C. 13.

D. $\frac{13}{2}$.

Câu 21: Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số $y = x^2 + 2x + 1$, trục hoành và hai đường thẳng x = -1; x = 3.

A. $S = \frac{37}{2}$.

B. $S = \frac{68}{3}$. **C.** $S = \frac{64}{3}$.

D. $S = \frac{56}{3}$.

Câu 22: Cho khối nón có chiều cao bằng a và đường sinh bằng 2a. Thể tích của khối nón đã cho bằng

A. $3\pi a^3$.

B. πa^3 .

C. $\frac{\sqrt{3}\pi a^3}{2}$.

D. $\frac{\pi a^3}{2}$.

Câu 23: Số phức nghịch đảo của số phức z = 3 + 4i là

A. $\frac{3}{5} + \frac{4}{5}i$.

B. 3-4i.

C. $\frac{3}{5} - \frac{4}{5}i$.

D. $\frac{3}{25} - \frac{4}{25}i$.

Câu 24: Cho hình hộp chữ nhật ABCD.A'B'C'D' có $AB = a\sqrt{3}; AD = a$ (tham khảo hình vẽ). Góc giữa hai đường thẳng AB và A'C' bằng

A. 60° .

B. 45° .

C. 75°.

 \mathbf{D} , 30^{0} .

Câu 25: Cho cấp số cộng (u_n) có $u_1 = 2$ và công sai d = -2. Giá trị của u_5 là

B. 6.

D. 32.

Câu 26: Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ.

Mệnh đề nào dưới đây đúng?

A. Hàm số nghịch biến trên (-1;1)...

B. Hàm số nghịch biến trên $(-\infty; -1)$.

C. Hàm số đồng biến trên $(-1; +\infty)$.

D. Hàm số đồng biến trên \mathbb{R} .

Câu 27: Trong không gian Oxyz, gọi α là góc giữa hai mặt phẳng (P): x+2y-z+2=0 và (Q): 2x-y-z+4=0. Tính $\cos \alpha$.

A. $\cos \alpha = \frac{2}{2}$.

B. $\cos \alpha = \frac{3}{4}$. **C.** $\cos \alpha = \frac{1}{6}$. **D.** $\cos \alpha = \frac{1}{3}$.

Câu 28: Tập nghiệm của bất phương trình $3^x \ge 27$ là

A. $(3, +\infty)$.

B. $(-\infty, 3)$.

C. $(-\infty, 3]$.

D. $[3, +\infty)$.

Câu 29: Tập nghiệm của bất phương trình $\log_2(3x-1) > 3$ là

A. $(3;+\infty)$.

B. $\left(\frac{1}{3};3\right)$.

C. $(-\infty,3)$.

D. $\left(\frac{10}{3}; +\infty\right)$.

Câu 30: Cho số phức z = 1 + 2i, tính |z|.

A. |z| = 3.

B. $|z| = \sqrt{3}$.

C. |z| = 5.

D. $|z| = \sqrt{5}$.

Câu 31: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, $SA = a\sqrt{2}$ và vuông góc với đáy (tham khảo hình vẽ). Tính khoảng cách giữa hai đường thẳng BD và SC.

B.
$$\frac{a\sqrt{2}}{2}$$
.

C.
$$\frac{a}{2}$$

D.
$$\frac{a\sqrt{2}}{4}$$
.

Câu 32: Bất phương trình $2\log_3(4x-3) + \log_{\frac{1}{0}}(2x+3)^2 \le 2$ có tập nghiệm là

A.
$$\left(\frac{3}{4}; +\infty\right)$$
.

B.
$$\left(\frac{3}{4};3\right]$$
.

B.
$$\left(\frac{3}{4};3\right]$$
. **C.** $\left(-\frac{3}{8};3\right)$. **D.** $\left[-\frac{3}{8};3\right]$.

D.
$$\left[-\frac{3}{8}; 3 \right]$$

Câu 33: Cho hình trụ có chiều cao bằng h và bán kính đáy bằng r. Diện tích xung quanh S_{xq} của hình trụ được tính bởi công thức

$$\mathbf{A.} \ S_{xq} = \pi r^2 h \,.$$

B.
$$S_{xq} = \frac{1}{2}\pi rh$$
. **C.** $S_{xq} = 2\pi rh$. **D.** $S_{xq} = \pi rh$.

$$\mathbf{C.} \ S_{xq} = 2\pi rh \ .$$

$$\mathbf{D.} \ S_{xq} = \pi r h$$

Câu 34: Với a là số thực dương tùy ý, $\log_{81} \sqrt[3]{a}$ bằng

A.
$$\frac{3}{4}\log_3 a$$
.

A.
$$\frac{3}{4}\log_3 a$$
. **B.** $\frac{1}{27}\log_3 a$. **C.** $\frac{1}{12}\log_3 a$. **D.** $\frac{4}{3}\log_3 a$.

C.
$$\frac{1}{12}\log_3 a$$

D.
$$\frac{4}{3}\log_3 a$$

Câu 35: Cho hàm số f(x) có đạo hàm liên tục trên đoạn [1;2], f(1)=1 và f(2)=2. Tính $I = \int f'(x) dx.$

A.
$$I = 1$$
.

B.
$$I = -1$$
.

B.
$$I = -1$$
. **C.** $I = 3$.

D.
$$I = \frac{7}{2}$$
.

Câu 36: Họ tất cả các nguyên hàm của hàm số $f(x) = 3x^2 + \frac{1}{\sin^2 x}$ là

A.
$$x^3 - \cot x + C$$

A.
$$x^3 - \cot x + C$$
. **B.** $6x - \frac{2}{\sin^2 x} + C$. **C.** $x^3 - \tan x + C$. **D.** $x^3 + \cot x + C$.

$$\mathbf{C.} \ x^3 - \tan x + C.$$

D.
$$x^3 + \cot x + C$$

Câu 37: Hàm số nào dưới đây có đồ thị như hình vẽ?

A.
$$y = -x^3 + 3x + 1$$

A.
$$y = -x^3 + 3x + 1$$
. **B.** $y = x^4 - 2x^2 + 1$.

C.
$$y = -x^4 + 2x^2 + 1$$
. **D.** $y = x^3 - 3x + 1$.

D.
$$y = x^3 - 3x + 1$$

- **Câu 38:** Trong không gian Oxyz, mặt cầu (S): $x^2 + y^2 + z^2 4x + 2y + 2z 3 = 0$ có bán kính bằng
 - **A.** 3.

- **B.** 9.

- **Câu 39:** Cho x, y là các số thực dương thỏa mãn $\log_2 \frac{2xy + 3x + 3y + 4}{x^2 + xy + y^2} = x(2x 3) + y(2y 3) 3$.
 - Tính giá trị lớn nhất của biểu thức F = x + y 1.
 - **A.** 4.

C. 1.

- **D.** 2.
- Câu 40: Đặt $I = \int_{1}^{1} \frac{(2x+1)e^x + 2ax^2 + a}{e^x + ax} dx$. Có bao nhiều giá trị nguyên của a thuộc khoảng (0;2023) để
 - I > 6?
 - **A.** 2023.
- **B.** 2024.
- **C.** 1877.
- **D.** 189.

Câu 41: Cho hàm số $y = f(x) = ax^4 + bx^3 + cx^2 + dx + e$ $(a \ne 0)$, hàm số y = f'(1+2x) có đồ thị như hình vẽ sau:

Có bao nhiều giá trị nguyên dương của tham số m để hàm số $g(x) = f(|x^3 + 5x| + m)$ có ít nhất 5 điểm cực trị?

A. 6.

- **C.** 10.

Câu 42: Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} thỏa mãn f(1) = 5 và $xf(1-x^3)+f'(x)=x^7-5x^4+7x+3 \text{ v\'oi m\'oi } x \in \mathbb{R}. \text{ T\'inh } \int_{0}^{x} f(x)dx.$

- **A.** $-\frac{5}{6}$.
- **B.** $-\frac{13}{12}$. **C.** $\frac{5}{6}$. **D.** $\frac{17}{6}$.

Câu 43: Xét các số phức z thỏa mãn $|z+2-4i|+|z-3+i|=5\sqrt{2}$. Biết giá trị lớn nhất của biểu thức $P=\left|z+i\right|-\left|z-3-3i\right|$ có dạng $\sqrt{a}-\sqrt{b};a,b\in\mathbb{N}$. Giá trị của biểu thức a-b bằng

Câu 44: Trên tập hợp số phức, xét phương trình $z^2 - 2(m+1)z + m^2 + 4m + 3 = 0$ (m là tham số thực). Có bao nhiều giá trị của m để phương trình có hai nghiệm phân biệt z_1, z_2 thỏa mãn $(z_1 - z_2)^2 + 2m = z_1 + \overline{z_2}$?

D. 0.

Câu 45: Cho hình chóp tam giác đều S.ABC có AB = a, khoảng cách giữa hai đường thẳng SA và BC bằng $\frac{a\sqrt{6}}{3}$ (tham khảo hình vẽ). Thể tích khối chóp S.ABC bằng

B.
$$\frac{\sqrt{2}a^3}{6}$$
.

C.
$$\frac{\sqrt{2}a^3}{3}$$
.

D.
$$\frac{\sqrt{2}a^3}{9}$$
.

Cho hình chóp S.ABCD có Câu 46: đáy là hình $AB = 2\sqrt{3}a$, $AD = \sqrt{3}a$, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy (tham khảo hình vẽ). Tính thể tích khối cầu ngoại tiếp hình chóp S.ABCD.

B.
$$\frac{16\pi a^3}{3}$$
.

C. $16\pi a^3$.

D.
$$\frac{26\pi a^3}{3}$$
.

Câu 47: Trong không gian Oxyz, cho mặt phẳng (P): 2y-3z-3=0 và hai đường thẳng $d_1: \frac{x}{2} = \frac{y-1}{-1} = \frac{z+2}{1}; \ d_2: \begin{cases} x=-1+2t \\ y=1+t \\ z=1 \end{cases}.$ Đường thẳng Δ nằm trong mặt phẳng (P) đồng thời

cắt cả hai đường thẳng $\,d_1\,$ và $\,d_2\,$ có phương trình là

A.
$$\frac{x-2}{1} = \frac{y}{3} = \frac{z+1}{2}$$
. **B.** $\frac{x+2}{1} = \frac{y}{-3} = \frac{z-1}{2}$. **C.** $\frac{x+2}{1} = \frac{y}{3} = \frac{z-1}{2}$. **D.** $\frac{x-2}{1} = \frac{y}{-3} = \frac{z+1}{2}$.

Câu 48: Trong không gian Oxyz, cho ba điểm A(-15;7;-11), B(-3;1;1), C(7;-1;5) và đường thẳng $(d):\frac{x-1}{-1}=\frac{y+1}{4}=\frac{z+1}{1}$. Gọi (α) là mặt phẳng chứa (d) sao cho A, B, C ở cùng phía đối với mặt phẳng (α) . Gọi d_1 , d_2 , d_3 lần lượt là khoảng cách từ A, B, C đến (α) . Giá trị lớn nhất của biểu thức $T=d_1+2d_2+3d_3$ bằng

- **A.** $\sqrt{41}$.
- **B.** $\sqrt{82}$.
- C. $\frac{1}{2}\sqrt{41}$.
- **D.** $2\sqrt{67}$

Câu 49: Cho phương trình $\log_9(x+1)^2 + \log_{\frac{1}{3}} \frac{x}{m} = 1$ (với m là tham số thực). Có bao nhiều giá trị nguyên dương của tham số m để phương trình đã cho có nghiệm thực?

A. 1. **B.** 3. **C.** Vô số. **D.** 2.

Câu 50: Cho hàm số y = f(x) có đạo hàm $f'(x) = (x-1)^2 (x^2 - 2x)$, với $\forall x \in \mathbb{R}$. Số giá trị nguyên của tham số m để hàm số $g(x) = f(x^3 - 3x^2 + m)$ có 8 điểm cực trị là

A. 2.

B. 3.

C. 1

D. 4.

----- HÉT -----

SỞ GIÁO DUC VÀ ĐÀO TAO NAM ĐỊNH

ĐỀ THI THỬ TỐT NGHIỆP LỚP 12 THPT **NĂM HQC 2022 – 2023**

Môn: **Toán** – lớp 12 THPT (Thời gian làm bài: 90 phút)

ĐỀ CHÍNH THỰC MÃ ĐÈ: 204

Đề thi gồm 06 trang.

Họ và tên học sinh:

Số báo danh:

- Trong không gian Oxyz, khoảng cách từ điểm M(0;3;-1) đến mặt phẳng Câu 1: $(\alpha): 2x + y - 2z - 2 = 0$ bằng
 - **A.** 1.

- $\frac{1}{2}$.
- **D.** 3.

- Trên khoảng $(0; +\infty)$, đạo hàm của hàm số $y = x^e$ là **Câu 2:**
 - **A.** $y' = \frac{1}{x} x^{e-1}$.
- **B.** $y' = ex^{e-1}$. **C.** $y' = x^e \ln x$.
- **D.** $y' = \frac{x^{e+1}}{e+1}$.
- Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ: Câu 3:

Có bao nhiều giá trị nguyên của tham số m để phương trình f(x) = m có bốn nghiệm phân biêt?

A. 0.

C. 3.

- **D.** 2.
- Cho $\int_{0}^{1} f(x) dx = 2$ và $\int_{0}^{1} g(x) dx = 5$ khi đó $\int_{0}^{1} \left[f(x) 2g(x) \right] dx$ bằng Câu 4:
 - **A.** −8.

- **C.** 1.

- **D.** 12.
- Trên mặt phẳng tọa độ, điểm M(-1;1) là điểm biểu diễn số phức nào sau đây? Câu 5:
 - **A.** z = 1 + i.
- **B.** z = -1 i. **C.** z = 1 i.
- **D.** z = -1 + i.
- Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số $y = x^2 + 2x + 1$, trục hoành và hai Câu 6: đường thẳng x = -1; x = 3.
 - **A.** $S = \frac{37}{3}$. **B.** $S = \frac{56}{3}$. **C.** $S = \frac{68}{3}$.

- **D.** $S = \frac{64}{3}$.

Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị Câu 7: như hình vẽ.

Mệnh đề nào dưới đây đúng?

- A. Hàm số nghịch biến trên (-1;1)...
- **B.** Hàm số nghịch biến trên $(-\infty; -1)$.
- C. Hàm số đồng biến trên $(-1; +\infty)$.
- **D.** Hàm số đồng biến trên \mathbb{R} .

- Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như Câu 8: hình vẽ. Khẳng định nào sau đây đúng?
 - **A.** Hàm số đạt cực tiểu tại x = -1.
 - **B.** Giá trị cực tiểu của hàm số bằng −1.
 - C. Hàm số không có điểm cực trị.
 - **D.** Hàm số đạt cực đại tại x = 4.

- Cho khối nón có chiều cao bằng a và đường sinh bằng 2a. Thể tích của khối nón đã cho bằng Câu 9:
 - \mathbf{A} , πa^3 .
- **B.** $3\pi a^3$.
- C. $\frac{\pi a^3}{3}$.
- **D.** $\frac{\sqrt{3\pi a^3}}{2}$.
- Câu 10: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, $SA = a\sqrt{2}$ và vuông góc với đáy (tham khảo hình vẽ). Tính khoảng cách giữa hai đường thẳng BD và SC.
 - $\mathbf{A} \cdot \frac{a}{4}$.

- C. $\frac{a\sqrt{2}}{a}$.
- **D.** $\frac{a\sqrt{2}}{a}$.

- **Câu 11:** Bất phương trình $2\log_3(4x-3) + \log_{\frac{1}{2}}(2x+3)^2 \le 2$ có tập nghiệm là
 - **A.** $\left(\frac{3}{4}; +\infty\right)$. **B.** $\left(\frac{3}{4}; 3\right)$.
- **C.** $\left(-\frac{3}{8};3\right)$.
- **D.** $\left| -\frac{3}{8};3 \right|$.

- **Câu 12:** Hàm số $y = x^3 3x + 2$ có giá trị cực đại bằng
 - **A.** -1.

- C. 20.
- **D.** 0.
- **Câu 13:** Giá trị lớn nhất của hàm số $y = \frac{x+5}{x-7}$ trên đoạn [8;12] bằng
 - **A.** 15.

- **B.** $\frac{17}{5}$.
- **C.** 13.
- **D.** $\frac{13}{2}$.
- **Câu 14:** Cho hình trụ có chiều cao bằng h và bán kính đáy bằng r. Diện tích xung quanh S_{xq} của hình trụ được tính bởi công thức
 - **A.** $S_{xa} = \pi rh$.
- **B.** $S_{xq} = 2\pi rh$.
- **C.** $S_{xq} = \frac{1}{2} \pi r h$.
- $\mathbf{D.} \ S_{xq} = \pi r^2 h .$
- Câu 15: Có bao nhiều cách sắp xếp 4 học sinh thành một hàng dọc?

- **B.** 24.

- **D.** 10.
- **Câu 16:** Cho khối lăng trụ đứng ABC.A'B'C' có $AB = AC = a, AA' = a\sqrt{2}$, $BAC = 45^{\circ}$ (tham khảo hình vẽ). Tính thể tích V của khối lăng trụ đã cho.
 - A. $\frac{a^3}{4}$.
- **B.** $\frac{\sqrt{2}a^3}{4}$.
- C. $\frac{a^3}{2}$.
- **D.** $\frac{a^3}{\epsilon}$.

Câu 17: Biết phương trình $\log_2^2 x - 2\log_2(2x) - 1 = 0$ có hai nghiệm x_1, x_2 . Giá trị của $x_1.x_2$ bằng

C. −3.

Câu 18: Số phức nghịch đảo của số phức z = 3+4i là

A. $\frac{3}{5} - \frac{4}{5}i$.

B. $\frac{3}{5} + \frac{4}{5}i$. **C.** $\frac{3}{25} - \frac{4}{25}i$. **D.** 3 - 4i.

Câu 19: Trong mặt phẳng toạ độ Oxy, biết tập hợp điểm biểu diễn của số phức z thỏa mãn |z-1+i|=|z+2i| là đường thẳng d. Phương trình tổng quát của đường thẳng d là

A. 2x - y + 1 = 0.

B. x+2y-1=0.

C. x+y+1=0.

Câu 20: Cho hình hộp chữ nhật ABCD.A'B'C'D' có $AB = a\sqrt{3}; AD = a$ (tham khảo hình vẽ). Góc giữa hai đường thẳng AB và A'C' bằng

A. 60° .

B. 45° .

 $C. 75^{\circ}.$

D. 30° .

Câu 21: Hàm số nào dưới đây có đồ thị như hình vẽ?

A. $y = -x^3 + 3x + 1$. **B.** $y = x^4 - 2x^2 + 1$.

C. $y = -x^4 + 2x^2 + 1$. **D.** $y = x^3 - 3x + 1$.

Câu 22: Cho cấp số cộng (u_n) có $u_1 = 2$ và công sai d = -2. Giá trị của u_5 là

A. 10.

C. −6.

D. 32.

Câu 23: Cho hàm số y = f(x) có đạo hàm $f'(x) = x(x-1)^3$, $\forall x \in \mathbb{R}$. Hàm số y = f(x) đồng biến trên khoảng nào sau đây?

A. (-1;1).

B. $(-\infty;0)$.

C. (0;1).

D. $(0;+\infty)$.

Câu 24: Tập nghiệm của bất phương trình $\log_2(3x-1) > 3$ là

A. $(3;+\infty)$.

B. $\left(\frac{1}{3};3\right)$.

C. $(-\infty,3)$.

D. $\left(\frac{10}{3}; +\infty\right)$.

Câu 25: Cho f(x), g(x) là các hàm số liên tục trên \mathbb{R} . Trong các mệnh đề sau, mệnh đề nào sai?

 $\mathbf{A.} \int 5f(x)dx = 5 \int f(x)dx.$

B. $\iint f(x) + g(x) dx = \iint f(x) dx + \iint g(x) dx.$

C. $\int f(x).g(x)dx = \int f(x)dx. \int g(x)dx.$ D. $\int \left[f(x) - g(x) \right] dx = \int f(x)dx - \int g(x)dx.$

Câu 26: Đường tiệm cận đứng của đồ thị hàm số $y = \frac{2x}{x+1}$ là

A. x = 1.

B. y = 2.

C. x = 2.

D. x = -1.

Câu 27: Gieo một đồng tiền cân đối, đồng chất ba lần. Xác suất để trong ba lần gieo có đúng hai lần xuất hiện mặt ngửa là

A. $\frac{1}{8}$.

B. $\frac{1}{3}$.

C. $\frac{1}{4}$.

D. $\frac{3}{8}$.

Câu 28:	Cho số phức $z = 1 + 2i$, tính $ z $.								
	A. $ z = 3$.	B. $ z = 5$.	C. $ z = \sqrt{5}$.	D. $ z = \sqrt{3}$.					
Câu 29:	Tập nghiệm của bất phương trình $3^x \ge 27$ là								
	A. $[3, +\infty)$.	B. $(3, +\infty)$.	C. $(-\infty, 3]$.	D. $(-\infty, 3)$.					
Câu 30:	Với a là số thực dương tùy ý, $\log_{81} \sqrt[3]{a}$ bằng								
	$\mathbf{A.} \ \frac{3}{4} \log_3 a.$	B. $\frac{1}{12}\log_3 a$.	C. $\frac{4}{3}\log_3 a$.	D. $\frac{1}{27}\log_3 a$.					
Câu 31:	Trong không gian Oxy	z , hình chiếu của điển	n $A(1;2;-1)$ trên mặt p	ohẳng (Oxy) là điểm nào					
	sau đây?								
	A. $P(-1;-2;0)$.		•	D. $N(1;2;0)$.					
Câu 32:	Khối bát diện đều thuộc loại khối đa diện đều nào sau đây?								
	A. {4;3}.	B. {5;3}.	C. {3;5}.	D. {3;4}.					
Câu 33:	Cho hàm số $f(x)$ c	ó đạo hàm liên tục t	trên đoạn $[1;2]$, $f(1)$	=1 và $f(2)=2$. Tính					
	$I = \int_{1}^{2} f'(x) dx.$								
	A. $I = 1$.	B. $I = -1$.	C. $I = 3$.	D. $I = \frac{7}{2}$.					
Câu 34:	Trong không gian C	∂xyz , gọi $ig(Sig)$ là mặ	út cầu có tâm $I \in O$	x và đi qua hai điểm					
	$A(2;1;-1);B(-1;3;\sqrt{2})$. Phương trình của mặt cầu (S) là								
	A. $x^2 + y^2 + z^2 + 2x - z^2$	10 = 0.	B. $x^2 + y^2 + z^2 + 4x - 14 = 0$.						
	$\mathbf{C.} \ \ x^2 + y^2 + z^2 - 2x - 1$	0=0.	D. $x^2 + y^2 + z^2 - 4x + 2 = 0$.						
		$\int x =$	-1+2t						
Câu 35:	Trong không gian $Oxyz$, đường thẳng $d:\begin{cases} x=-1+2t \\ y=3-t \end{cases}$ có một vecto chỉ phương là								
		z=2+t							
	A. $\vec{u}(2;-1;1)$.	B. $\vec{b}(-1;-1;1)$.	C. $\vec{a}(-1;2;3)$.						
Câu 36:		B. $\vec{b}(-1;-1;1)$.	C. $\vec{a}(-1;2;3)$.						
Câu 36:	A. $\vec{u}(2;-1;1)$.	B. $\vec{b}(-1;-1;1)$.	C. $\vec{a}(-1;2;3)$.						
	 A. u(2;-1;1). Trong không gian Oxyz A. 3. Họ tất cả các nguyên hà 	B. $\vec{b}(-1;-1;1)$. \vec{a} , mặt cầu $(S): x^2 + y^2$ B. 9. \vec{a} m của hàm số $f(x) = 3$	C. $\vec{a}(-1;2;3)$. $+z^2-4x+2y+2z-3=$ C. 1. $3x^2+\frac{1}{\sin^2 x}$ là	0 có bán kính bằng D. 6.					
	A. $\vec{u}(2;-1;1)$. Trong không gian $Oxyz$ A. 3.	B. $\vec{b}(-1;-1;1)$. \vec{a} , mặt cầu $(S): x^2 + y^2$ B. 9. \vec{a} m của hàm số $f(x) = 3$	C. $\vec{a}(-1;2;3)$. $+z^2-4x+2y+2z-3=$ C. 1. $3x^2+\frac{1}{\sin^2 x}$ là	0 có bán kính bằng D. 6.					
Câu 37:	A. $\vec{u}(2;-1;1)$. Trong không gian $Oxyz$ A. 3. Họ tất cả các nguyên hà A. $6x - \frac{2}{\sin^2 x} + C$.	B. $\vec{b}(-1;-1;1)$. x , mặt cầu $(S): x^2 + y^2$ B. 9. x minh của hàm số $f(x) = 3B. x^3 - \cot x + C.$	C. $\vec{a}(-1;2;3)$. $+z^2-4x+2y+2z-3=$ C. 1. $3x^2+\frac{1}{\sin^2 x}$ là C. $x^3-\tan x+C$.	 có bán kính bằng D. 6. D. x³ + cot x + C. 					
Câu 37:	A. $\vec{u}(2;-1;1)$. Trong không gian $Oxyz$ A. 3. Họ tất cả các nguyên hà A. $6x - \frac{2}{\sin^2 x} + C$.	B. $\vec{b}(-1;-1;1)$. 2., mặt cầu $(S): x^2 + y^2$ B. 9. 2. m của hàm số $f(x) = 3$ B. $x^3 - \cot x + C$. 2. xyz, gọi α là góc g	C. $\vec{a}(-1;2;3)$. $+z^2-4x+2y+2z-3=$ C. 1. $3x^2+\frac{1}{\sin^2 x}$ là C. $x^3-\tan x+C$.	0 có bán kính bằng D. 6.					
Câu 37: Câu 38:	A. $\vec{u}(2;-1;1)$. Trong không gian $Oxyz$ A. 3. Họ tất cả các nguyên hả A. $6x - \frac{2}{\sin^2 x} + C$. Trong không gian $Oxyz$ $(Q): 2x - y - z + 4 = 0$. A. $\cos \alpha = \frac{2}{3}$.	B. $\vec{b}(-1;-1;1)$. B. $\vec{a}(x) = 3$. B. $\vec{b}(x) = 3$.	C. $\vec{a}(-1;2;3)$. $+z^2-4x+2y+2z-3=$ C. 1. $6x^2+\frac{1}{\sin^2 x}$ là C. $x^3-\tan x+C$. giữa hai mặt phẳng (C. $\cos \alpha = \frac{1}{6}$.	E 0 có bán kính bằng D. 6. D. $x^3 + \cot x + C$. (P): $x + 2y - z + 2 = 0$ và D. $\cos \alpha = \frac{1}{3}$.					
Câu 37: Câu 38:	A. $\vec{u}(2;-1;1)$. Trong không gian $Oxyz$ A. 3. Họ tất cả các nguyên hả A. $6x - \frac{2}{\sin^2 x} + C$. Trong không gian $Oxyz$ $(Q): 2x - y - z + 4 = 0$. A. $\cos \alpha = \frac{2}{3}$.	B. $\vec{b}(-1;-1;1)$. B. $\vec{a}(x) = 3$. B. $\vec{b}(x) = 3$.	C. $\vec{a}(-1;2;3)$. $+z^2-4x+2y+2z-3=$ C. 1. $6x^2+\frac{1}{\sin^2 x}$ là C. $x^3-\tan x+C$. giữa hai mặt phẳng (C. $\cos \alpha = \frac{1}{6}$.	D. 6. D. $x^3 + \cot x + C$. (P) : $x + 2y - z + 2 = 0$ và					
Câu 37: Câu 38:	A. $\vec{u}(2;-1;1)$. Trong không gian $Oxyz$ A. 3. Họ tất cả các nguyên hà A. $6x - \frac{2}{\sin^2 x} + C$. Trong không gian $Oxyz$ (Q): $2x - y - z + 4 = 0$. A. $\cos \alpha = \frac{2}{3}$. Đặt $I = \int_0^1 \frac{(2x+1)e^x + 2ax}{e^x + ax}$ $I > 6$?	B. $\vec{b}(-1;-1;1)$. \vec{c} , mặt cầu $(S): x^2 + y^2$ B. 9 . Im của hàm số $f(x) = 3$ B. $x^3 - \cot x + C$. xyz , gọi α là góc g Tính $\cos \alpha$. B. $\cos \alpha = \frac{3}{4}$. $\frac{x^2 + a}{4}$ dx. Có bao nhiều	C. $\vec{a}(-1;2;3)$. $+z^2-4x+2y+2z-3=$ C. 1. $3x^2+\frac{1}{\sin^2 x}$ là C. $x^3-\tan x+C$. giữa hai mặt phẳng (C. $\cos \alpha = \frac{1}{6}$.	E 0 có bán kính bằng D. 6. D. $x^3 + \cot x + C$. E P: $x + 2y - z + 2 = 0$ và D. $\cos \alpha = \frac{1}{3}$. nuộc khoảng (0;2023) để					
Câu 37: Câu 38:	A. $\vec{u}(2;-1;1)$. Trong không gian $Oxyz$ A. 3. Họ tất cả các nguyên hà A. $6x - \frac{2}{\sin^2 x} + C$. Trong không gian $Oxyz$ (Q): $2x - y - z + 4 = 0$. A. $\cos \alpha = \frac{2}{3}$. Đặt $I = \int_0^1 \frac{(2x+1)e^x + 2a}{e^x + ax}$	B. $\vec{b}(-1;-1;1)$. B. $\vec{a}(x) = 3$. B. $\vec{b}(x) = 3$.	C. $\vec{a}(-1;2;3)$. $+z^2-4x+2y+2z-3=$ C. 1. $6x^2+\frac{1}{\sin^2 x}$ là C. $x^3-\tan x+C$. giữa hai mặt phẳng (C. $\cos \alpha = \frac{1}{6}$.	D. $cos \alpha = \frac{1}{3}$.					

- **Câu 40:** Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} thỏa mãn f(1) = 5 và $xf(1-x^3)+f'(x)=x^7-5x^4+7x+3 \text{ v\'oi m\'oi } x \in \mathbb{R}. \text{ T\'inh } \int_{0}^{x} f(x)dx.$
- **B.** $\frac{17}{6}$. **C.** $-\frac{13}{12}$. **D.** $\frac{5}{6}$.
- Câu 41: Trên tập hợp số phức, xét phương trình $z^2 2(m+1)z + m^2 + 4m + 3 = 0$ (m là tham số thực). Có bao nhiều giá trị của m để phương trình có hai nghiệm phân biệt z_1, z_2 thỏa mãn $(z_1 - z_2)^2 + 2m = z_1 + \overline{z_2}$?

- **D.** 1.
- **Câu 42:** Cho hàm số $y = f(x) = ax^4 + bx^3 + cx^2 + dx + e$ $(a \ne 0)$, hàm số y = f'(1+2x) có đồ thị như hình vẽ sau:

Có bao nhiều giá trị nguyên dương của tham số m để hàm số $g(x) = f(|x^3 + 5x| + m)$ có ít nhất 5 điểm cực trị?

A. 6.

B. 4.

- Trong không gian Oxyz, cho ba điểm A(-15;7;-11), B(-3;1;1), C(7;-1;5) và đường thẳng Câu 43: (d): $\frac{x-1}{-1} = \frac{y+1}{4} = \frac{z+1}{1}$. Gọi (α) là mặt phẳng chứa (d) sao cho A, B, C ở cùng phía đối với mặt phẳng (α) . Gọi d_1 , d_2 , d_3 lần lượt là khoảng cách từ A, B, C đến (α) . Giá trị lớn nhất của biểu thức $T = d_1 + 2d_2 + 3d_3$ bằng
 - **A.** $\sqrt{82}$.
- **B.** $2\sqrt{67}$. **C.** $\sqrt{41}$.
- **D.** $\frac{1}{2}\sqrt{41}$.
- Câu 44: Cho hình chóp tam giác đều S.ABC có AB = a, khoảng cách giữa hai đường thẳng SA và BC bằng $\frac{a\sqrt{6}}{3}$ (tham khảo hình vẽ). Thể tích khối chóp S.ABC bằng

- **B.** $\frac{\sqrt{2}a^3}{6}$.
- C. $\frac{\sqrt{2}a^3}{3}$. D. $\frac{\sqrt{2}a^3}{9}$.

- **Câu 45:** Cho phương trình $\log_9(x+1)^2 + \log_{\frac{1}{3}} \frac{x}{m} = 1$ (với m là tham số thực). Có bao nhiều giá trị nguyên dương của tham số m để phương trình đã cho có nghiệm thực?
 - **A.** 1.

- B. Vô số.
- **C.** 3.

D. 2.

Câu 46: Cho hình chóp S.ABCD có đáy là hình $AB = 2\sqrt{3}a$, $AD = \sqrt{3}a$, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy (tham khảo hình vẽ). Tính thể tích khối cầu ngoại tiếp hình chóp S.ABCD.

A.
$$\frac{16\pi a^3}{3}$$
.

B.
$$16\pi a^3$$

C.
$$\frac{32\pi a^3}{3}$$
.

D.
$$\frac{26\pi a^3}{3}$$
.

Câu 47: Cho x, y là các số thực dương thỏa mãn $\log_2 \frac{2xy + 3x + 3y + 4}{x^2 + xy + y^2} = x(2x - 3) + y(2y - 3) - 3.$ Tính giá trị lớn nhất của biểu thức F = x + y - 1.

Trong không gian Oxyz, cho mặt phẳng (P):2y-3z-3=0 và hai đường thẳng Câu 48: $d_1: \frac{x}{2} = \frac{y-1}{-1} = \frac{z+2}{1}; \ d_2: \begin{cases} x = -1+2t \\ y = 1+t \end{cases}. \text{ Dường thẳng } \Delta \text{ nằm trong mặt phẳng } \left(P\right) \text{ đồng thời } thời$

cắt cả hai đường thẳng d_1 và d_2 có phương trình là

A.
$$\frac{x+2}{1} = \frac{y}{-3} = \frac{z-1}{2}$$
. **B.** $\frac{x-2}{1} = \frac{y}{-3} = \frac{z+1}{2}$. **C.** $\frac{x+2}{1} = \frac{y}{3} = \frac{z-1}{2}$. **D.** $\frac{x-2}{1} = \frac{y}{3} = \frac{z+1}{2}$.

- **Câu 49:** Xét các số phức z thỏa mãn $|z+2-4i|+|z-3+i|=5\sqrt{2}$. Biết giá trị lớn nhất của biểu thức $P = \left|z+i\right| - \left|z-3-3i\right|$ có dạng $\sqrt{a}-\sqrt{b}; a,b \in \mathbb{N}$. Giá trị của biểu thức a-b bằng

- **Câu 50:** Cho hàm số y = f(x) có đạo hàm $f'(x) = (x-1)^2(x^2-2x)$, với $\forall x \in \mathbb{R}$. Số giá trị nguyên của tham số m để hàm số $g(x) = f(x^3 - 3x^2 + m)$ có 8 điểm cực trị là
 - **A.** 2.

D. 4.

----- HÉT -----

SỞ GIÁO DUC VÀ ĐÀO TAO NAM ĐỊNH

ĐỀ CHÍNH THỰC

ĐỀ THI THỬ TỐT NGHIỆP LỚP 12 THPT **NĂM HQC 2022 – 2023**

Môn: **Toán** – lớp 12 THPT (Thời gian làm bài: 90 phút)

MÃ ĐÈ: 206

Đề thi gồm 06 trang.

Ho và tên học sinh:

Số báo danh:

Câu 1: Trong mặt phẳng toạ độ Oxy, biết tập hợp điểm biểu diễn của số phức z thỏa mãn |z-1+i|=|z+2i| là đường thẳng d. Phương trình tổng quát của đường thẳng d là

A. 2x - y + 1 = 0.

B. x+2y-1=0.

C. x-y-1=0.

D. x + y + 1 = 0.

Cho hình hộp chữ nhật ABCD.A'B'C'D' có $AB = a\sqrt{3}; AD = a$ **Câu 2:** (tham khảo hình vẽ). Góc giữa hai đường thẳng AB và A'C'bằng

A. 45° .

B. 60° .

 $\mathbf{C.}\ 30^{0}$.

 \mathbf{D} , 75° .

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, Câu 3: $SA = a\sqrt{2}$ và vuông góc với đáy (tham khảo hình vẽ). Tính khoảng cách giữa hai đường thẳng BD và SC.

C. $\frac{a\sqrt{2}}{4}$.

D. $\frac{a\sqrt{2}}{2}$.

Giá trị lớn nhất của hàm số $y = \frac{x+5}{x-7}$ trên đoạn [8;12] bằng Câu 4:

A. 13.

B. $\frac{17}{5}$. **C.** $\frac{13}{2}$.

D. 15.

Họ tất cả các nguyên hàm của hàm số $f(x) = 3x^2 + \frac{1}{\sin^2 x}$ là Câu 5:

A. $x^3 - \tan x + C$.

B. $x^3 + \cot x + C$. **C.** $x^3 - \cot x + C$.

D. $6x - \frac{2}{\sin^2 x} + C$.

Cho khối lăng trụ đứng ABC.A'B'C' có $AB = AC = a, AA' = a\sqrt{2}$, Câu 6: $BAC = 45^{\circ}$ (tham khảo hình vẽ). Tính thể tích V của khối lăng trụ đã cho.

A. $\frac{a^3}{4}$.

B. $\frac{\sqrt{2}a^3}{4}$.

C. $\frac{a^3}{2}$.

D. $\frac{a^3}{6}$.

Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số $y = x^2 + 2x + 1$, trục hoành và hai Câu 7: đường thẳng x = -1; x = 3.

A.
$$S = \frac{64}{3}$$
. **B.** $S = \frac{68}{3}$. **C.** $S = \frac{56}{3}$.

B.
$$S = \frac{68}{3}$$

C.
$$S = \frac{56}{3}$$
.

D.
$$S = \frac{37}{3}$$
.

Trên mặt phẳng tọa độ, điểm M(-1;1) là điểm biểu diễn số phức nào sau đây? Câu 8:

A.
$$z = 1 - i$$
.

B.
$$z = 1 + i$$
.

C.
$$z = -1 + i$$
.

D.
$$z = -1 - i$$
.

Cho số phức z = 1 + 2i, tính |z|. Câu 9:

A.
$$|z| = 3$$
.

B.
$$|z| = 5$$
.

C.
$$|z| = \sqrt{5}$$
.

C.
$$|z| = \sqrt{5}$$
. **D.** $|z| = \sqrt{3}$.

Câu 10: Đường tiệm cận đứng của đồ thị hàm số $y = \frac{2x}{x+1}$ là

A.
$$x = 1$$
.

B.
$$y = 2$$
.

C.
$$x = -1$$
.

$$x = 2$$

Câu 11: Trong không gian Oxyz, gọi (S) là mặt cầu có tâm $I \in Ox$ và đi qua hai điểm $A\big(2;1;-1\big); B\big(-1;3;\sqrt{2}\,\big).$ Phương trình của mặt cầu $\big(S\,\big)$ là

A.
$$x^2 + y^2 + z^2 + 4x - 14 = 0$$
.

B.
$$x^2 + y^2 + z^2 + 2x - 10 = 0$$
.

C.
$$x^2 + y^2 + z^2 - 2x - 10 = 0$$
.

D.
$$x^2 + y^2 + z^2 - 4x + 2 = 0$$
.

Câu 12: Trong không gian Oxyz, hình chiếu của điểm A(1;2;-1) trên mặt phẳng (Oxy) là điểm nào sau đây?

A.
$$P(-1;-2;0)$$
. **B.** $Q(-1;-2;1)$. **C.** $M(1;2;1)$.

B.
$$Q(-1;-2;1)$$

D.
$$N(1;2;0)$$
.

Câu 13: Hàm số $y = x^3 - 3x + 2$ có giá trị cực đại bằng

Câu 14: Có bao nhiêu cách sắp xếp 4 học sinh thành một hàng dọc?

Câu 15: Cho khối nón có chiều cao bằng a và đường sinh bằng 2a. Thể tích của khối nón đã cho bằng

A.
$$\frac{\pi a^3}{3}$$
.

B.
$$\pi a^3$$
.

C.
$$3\pi a^3$$
.

D.
$$\frac{\sqrt{3}\pi a^3}{3}$$
.

Câu 16: Trong không gian Oxyz, đường thẳng $d:\begin{cases} x=-1+2t\\ y=3-t \end{cases}$ có một vecto chỉ phương là

A.
$$\vec{u}(2;-1;1)$$
.

B.
$$\vec{b}(-1;-1;1)$$
. **C.** $\vec{a}(-1;2;3)$. **D.** $\vec{v}(-1;3;2)$.

C.
$$\vec{a}(-1;2;3)$$
.

D.
$$\vec{v}(-1;3;2)$$
.

Câu 17: Số phức nghịch đảo của số phức z = 3 + 4i là

A.
$$\frac{3}{5} - \frac{4}{5}i$$
.

B.
$$\frac{3}{5} + \frac{4}{5}i$$
.

B.
$$\frac{3}{5} + \frac{4}{5}i$$
. **C.** $\frac{3}{25} - \frac{4}{25}i$.

D.
$$3-4i$$

Câu 18: Hàm số nào dưới đây có đồ thị như hình vẽ?

A.
$$y = -x^4 + 2x^2 + 1$$
. **B.** $y = -x^3 + 3x + 1$.

B.
$$y = -x^3 + 3x + 1$$
.

C.
$$y = x^4 - 2x^2 + 1$$
. **D.** $y = x^3 - 3x + 1$.

D.
$$y = x^3 - 3x + 1$$

Câu 19: Cho hàm số y = f(x) có đạo hàm $f'(x) = x(x-1)^3$, $\forall x \in \mathbb{R}$. Hàm số y = f(x) đồng biến trên khoảng nào sau đây?

A.
$$(-1;1)$$
.

B.
$$(-\infty;0)$$
.

D.
$$(0;+\infty)$$
.

Câu 20: Trên khoảng $(0; +\infty)$, đạo hàm của hàm số $y = x^e$ là **A.** $y' = \frac{1}{e} x^{e-1}$. **B.** $y' = \frac{x^{e+1}}{e+1}$. **C.** $y' = x^e \ln x$. **D.** $y' = ex^{e-1}$. **Câu 21:** Trong không gian Oxyz, gọi α là góc giữa hai mặt phẳng (P): x+2y-z+2=0 và (Q): 2x-y-z+4=0. Tính $\cos \alpha$. **A.** $\cos \alpha = \frac{2}{3}$. **B.** $\cos \alpha = \frac{3}{4}$. **C.** $\cos \alpha = \frac{1}{6}$. **D.** $\cos \alpha = \frac{1}{3}$.

C.
$$\int f(x).g(x)dx = \int f(x)dx.\int g(x)dx$$
.

D. $\int \left[f(x)-g(x) \right] dx = \int f(x)dx-\int g(x)dx$.

Câu 23: Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ:

Có bao nhiều giá trị nguyên của tham số m để phương trình f(x) = m có bốn nghiệm phân biệt?

Câu 24: Với a là số thực dương tùy ý, $\log_{81} \sqrt[3]{a}$ bằng

A.
$$\frac{3}{4}\log_3 a$$
.

B.
$$\frac{1}{12}\log_3 a$$
.

C.
$$\frac{4}{3}\log_3 a$$
.

A.
$$\frac{3}{4}\log_3 a$$
. **B.** $\frac{1}{12}\log_3 a$. **C.** $\frac{4}{3}\log_3 a$. **D.** $\frac{1}{27}\log_3 a$.

Câu 25: Cho $\int_{0}^{1} f(x) dx = 2$ và $\int_{0}^{1} g(x) dx = 5$ khi đó $\int_{0}^{1} \left[f(x) - 2g(x) \right] dx$ bằng

Câu 26: Gieo một đồng tiền cân đối, đồng chất ba lần. Xác suất để trong ba lần gieo có đúng hai lần xuất hiện mặt ngửa là

A.
$$\frac{1}{8}$$
.

B.
$$\frac{1}{3}$$
. **C.** $\frac{1}{4}$.

C.
$$\frac{1}{4}$$

D.
$$\frac{3}{8}$$
.

Câu 27: Biết phương trình $\log_2^2 x - 2\log_2(2x) - 1 = 0$ có hai nghiệm x_1, x_2 . Giá trị của $x_1.x_2$ bằng

A.
$$\frac{1}{2}$$
.

$$\frac{1}{8}$$
.

Câu 28: Tập nghiệm của bất phương trình $3^x \ge 27$ là

A.
$$[3,+\infty)$$
.

B.
$$(3, +\infty)$$
. **C.** $(-\infty, 3]$. **D.** $(-\infty, 3)$.

C.
$$(-\infty,3]$$
.

D.
$$(-\infty, 3)$$
.

Câu 29: Cho cấp số cộng (u_n) có $u_1 = 2$ và công sai d = -2. Giá trị của u_5 là

D. 6.

Câu 30: Tập nghiệm của bất phương trình $\log_2(3x-1) > 3$ là

A.
$$(-\infty, 3)$$
.

B.
$$\left(\frac{1}{3};3\right)$$
.

$$\mathbf{C.}\left(\frac{10}{3};+\infty\right). \qquad \mathbf{D.}\left(3;+\infty\right).$$

D.
$$(3; +\infty)$$
.

Câu 31: Khối bát diện đều thuộc loại khối đa diện đều nào sau đây?

Câu 32: Cho hàm số f(x) có đạo hàm liên tục trên đoạn [1;2], f(1)=1 và f(2)=2. Tính $I = \int_{1}^{\infty} f'(x) dx.$

A.
$$I = 1$$
.

B.
$$I = -1$$
.

B.
$$I = -1$$
. **C.** $I = 3$.

D.
$$I = \frac{7}{2}$$
.

Câu 33: Trong không gian Oxyz, mặt cầu (S): $x^2 + y^2 + z^2 - 4x + 2y + 2z - 3 = 0$ có bán kính bằng

Câu 34: Bất phương trình $2\log_3(4x-3) + \log_{\frac{1}{2}}(2x+3)^2 \le 2$ có tập nghiệm là

$$\mathbf{A.} \left(\frac{3}{4}; 3 \right].$$

B.
$$\left(\frac{3}{4}; +\infty\right)$$
. **C.** $\left(-\frac{3}{8}; 3\right)$. **D.** $\left[-\frac{3}{8}; 3\right]$.

C.
$$\left(-\frac{3}{8};3\right)$$
.

D.
$$\left[-\frac{3}{8}; 3 \right]$$

Câu 35: Trong không gian Oxyz, khoảng cách từ điểm M(0;3;-1) đến mặt $(\alpha): 2x + y - 2z - 2 = 0$ bằng

B. 1.

C. $\frac{1}{3}$.

D. $\frac{4}{2}$.

Câu 36: Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thi như hình vẽ. Mệnh đề nào dưới đây đúng?

A. Hàm số nghịch biến trên (-1;1)...

B. Hàm số đồng biến trên $(-1; +\infty)$.

C. Hàm số đồng biến trên \mathbb{R} .

D. Hàm số nghịch biến trên $(-\infty; -1)$.

Câu 37: Cho hình trụ có chiều cao bằng h và bán kính đáy bằng r. Diện tích xung quanh S_{xq} của hình trụ được tính bởi công thức

A.
$$S_{xq} = \frac{1}{3}\pi rh$$
. **B.** $S_{xq} = \pi rh$. **C.** $S_{xq} = \pi r^2 h$. **D.** $S_{xq} = 2\pi rh$.

$$\mathbf{B.} \ S_{xq} = \pi r h$$

$$\mathbf{C.} \ S_{xq} = \pi r^2 h$$

$$\mathbf{D.} \ S_{xq} = 2\pi rh$$

Câu 38: Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?

A. Hàm số đạt cực tiểu tại x = -1.

B. Giá trị cực tiểu của hàm số bằng −1.

C. Hàm số không có điểm cực trị.

D. Hàm số đạt cực đại tại x = 4.

Câu 39: Cho hình chóp tam giác đều S.ABC có AB = a, khoảng cách giữa hai đường thẳng SA và BC bằng $\frac{a\sqrt{6}}{3}$ (tham khảo hình vẽ). Thể tích khối chóp S.ABC bằng

A.
$$\frac{\sqrt{2}a^3}{2}$$
.

B.
$$\frac{\sqrt{2}a^3}{6}$$
.

C.
$$\frac{\sqrt{2}a^3}{3}$$

C.
$$\frac{\sqrt{2}a^3}{3}$$
. D. $\frac{\sqrt{2}a^3}{9}$.

Câu 40: Cho hàm số $y = f(x) = ax^4 + bx^3 + cx^2 + dx + e$ $(a \ne 0)$, hàm số y = f'(1+2x) có đồ thị như hình vẽ sau:

Có bao nhiều giá trị nguyên dương của tham số m để hàm số $g(x) = f(|x^3 + 5x| + m)$ có ít nhất 5 điểm cực trị?

A. 4.

B. 6.

C. 10.

D. 2.

hình chóp S.ABCD có đáy là hình Câu 41: Cho $AB = 2\sqrt{3}a$, $AD = \sqrt{3}a$, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy (tham khảo hình vẽ). Tính thể tích khối cầu ngoại tiếp hình chóp S.ABCD.

A.
$$\frac{16\pi a^3}{3}$$
.

B.
$$16\pi a^3$$
.

C.
$$\frac{32\pi a^3}{3}$$
.

D.
$$\frac{26\pi a^3}{3}$$
.

Câu 42: Trong không gian Oxyz, cho ba điểm A(-15;7;-11), B(-3;1;1), C(7;-1;5) và đường thẳng (d): $\frac{x-1}{-1} = \frac{y+1}{4} = \frac{z+1}{1}$. Gọi (α) là mặt phẳng chứa (d) sao cho A, B, C ở cùng phía đối với mặt phẳng (α) . Gọi d_1 , d_2 , d_3 lần lượt là khoảng cách từ A, B, C đến (α) . Giá trị lớn nhất của biểu thức $T = d_1 + 2d_2 + 3d_3$ bằng

- **A.** $\sqrt{41}$.
- **B.** $2\sqrt{67}$. **C.** $\sqrt{82}$.
- **D.** $\frac{1}{2}\sqrt{41}$.

Câu 43: Xét các số phức z thỏa mãn $|z+2-4i|+|z-3+i|=5\sqrt{2}$. Biết giá trị lớn nhất của biểu thức P = |z+i| - |z-3-3i| có dạng $\sqrt{a} - \sqrt{b}; a,b \in \mathbb{N}$. Giá trị của biểu thức a-b bằng

A. 3.

B. 7.

C. 5.

D. 9.

SỞ GIÁO DUC VÀ ĐÀO TAO NAM ĐỊNH

ĐỀ CHÍNH THỰC

MÃ ĐÈ: 208

ĐỀ THI THỬ TỐT NGHIỆP LỚP 12 THPT **NĂM HQC 2022 – 2023**

Môn: **Toán** – lớp 12 THPT (Thời gian làm bài: 90 phút)

Đề thi gồm 06 trang.

Họ và tên học sinh: Số báo danh:

Trong mặt phẳng toạ độ Oxy, biết tập hợp điểm biểu diễn của số phức z thỏa mãn Câu 1: |z-1+i|=|z+2i| là đường thẳng d. Phương trình tổng quát của đường thẳng d là

- **A.** x+y+1=0. **B.** x+2y-1=0. **C.** 2x-y+1=0. **D.** x-y-1=0.

Với a là số thực dương tùy ý, $\log_{81} \sqrt[3]{a}$ bằng Câu 2:

- **A.** $\frac{3}{4}\log_3 a$. **B.** $\frac{1}{12}\log_3 a$. **C.** $\frac{4}{2}\log_3 a$. **D.** $\frac{1}{27}\log_3 a$.
- Trong không gian Oxyz, gọi (S) là mặt cầu có tâm $I \in Ox$ và đi qua hai điểm Câu 3: $A(2;1;-1);B(-1;3;\sqrt{2})$. Phương trình của mặt cầu (S) là

A. $x^2 + y^2 + z^2 + 4x - 14 = 0$.

B. $x^2 + y^2 + z^2 - 2x - 10 = 0$.

C. $x^2 + y^2 + z^2 + 2x - 10 = 0$.

- **D.** $x^2 + y^2 + z^2 4x + 2 = 0$.
- Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị Câu 4: như hình vẽ.

Mệnh đề nào dưới đây đúng?

A. Hàm số nghịch biến trên (-1;1)...

B. Hàm số đồng biến trên $(-1; +\infty)$.

C. Hàm số đồng biến trên \mathbb{R} .

D. Hàm số nghịch biến trên $(-\infty; -1)$.

Đường tiệm cận đứng của đồ thị hàm số $y = \frac{2x}{x+1}$ là Câu 5:

A. v = 2.

B. x = -1.

C. x = 1.

D. x = 2.

Câu 6: Tập nghiệm của bất phương trình $3^x \ge 27$ là

A. $[3, +\infty)$.

B. $(3, +\infty)$. **C.** $(-\infty, 3]$.

D. $(-\infty, 3)$.

Tập nghiệm của bất phương trình $\log_2(3x-1) > 3$ là **Câu 7:**

A. $(3;+\infty)$.

B. $\left(\frac{10}{3}; +\infty\right)$.

C. $(-\infty, 3)$.

D. $\left(\frac{1}{3};3\right)$.

Cho f(x), g(x) là các hàm số liên tục trên \mathbb{R} . Trong các mệnh đề sau, mệnh đề nào sai? Câu 8:

A. $\iint f(x) - g(x) dx = \iint f(x) dx - \iint g(x) dx$. **B.** $\iint f(x) + g(x) dx = \iint f(x) dx + \iint g(x) dx$.

C. $\int f(x).g(x)dx = \int f(x)dx.\int g(x)dx$. D. $\int 5f(x)dx = 5\int f(x)dx$.

Số phức nghịch đảo của số phức z = 3 + 4i là Câu 9:

A. $\frac{3}{5} - \frac{4}{5}i$.

B. $\frac{3}{5} + \frac{4}{5}i$.

C. $\frac{3}{25} - \frac{4}{25}i$.

- Câu 10: Hàm số nào dưới đây có đồ thi như hình vẽ?
 - **A.** $y = -x^3 + 3x + 1$. **B.** $y = x^3 3x + 1$.

 - C. $y = x^4 2x^2 + 1$. D. $y = -x^4 + 2x^2 + 1$.

- **Câu 11:** Trên mặt phẳng tọa độ, điểm M(-1;1) là điểm biểu diễn số phức nào sau đây?
 - **A.** z = 1 i.
- **B.** z = -1 i.
- C. z = -1 + i.
- **D.** z = 1 + i.
- **Câu 12:** Cho khối lăng trụ đứng ABC.A'B'C' có $AB = AC = a, AA' = a\sqrt{2}$, $BAC = 45^{\circ}$ (tham khảo hình vẽ). Tính thể tích V của khối lăng trụ đã cho.

- **B.** $\frac{a^3}{2}$.
- C. $\frac{a^3}{4}$.
- **D.** $\frac{a^3}{6}$.

Câu 13: Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ:

- Có bao nhiều giá trị nguyên của tham số m để phương trình f(x) = m có bốn nghiệm phân biêt?
- **A.** 3.

B. 1.

C. 0.

- **D.** 2.
- Câu 14: Cho khối nón có chiều cao bằng a và đường sinh bằng 2a. Thể tích của khối nón đã cho bằng
 - **A.** $\frac{\pi a^3}{3}$.
- **B.** πa^3 .
- **C.** $3\pi a^3$.
- **D.** $\frac{\sqrt{3}\pi a^3}{3}$.
- **Câu 15:** Cho hình hộp chữ nhật ABCD.A'B'C'D' có $AB = a\sqrt{3}; AD = a$ (tham khảo hình vẽ). Góc giữa hai đường thẳng AB và A'C' bằng
 - **A.** 30° .
- **B.** 60° .
- C. 75⁰.
- **D.** 45⁰.

- **Câu 16:** Cho cấp số cộng (u_n) có $u_1 = 2$ và công sai d = -2. Giá trị của u_5 là

- **B.** 32.
- **D.** 6.

- **Câu 17:** Trên khoảng $(0; +\infty)$, đạo hàm của hàm số $y = x^e$ là
 - **A.** $y' = \frac{1}{e} x^{e-1}$. **B.** $y' = \frac{x^{e+1}}{e+1}$. **C.** $y' = x^e \ln x$. **D.** $y' = ex^{e-1}$.

- **Câu 18:** Trong không gian Oxyz, đường thẳng $d: \begin{cases} y = 3 t \end{cases}$ có một vecto chỉ phương là z = 2 + t
 - **A.** $\vec{a}(-1;2;3)$.
- **B.** $\vec{v}(-1;3;2)$.
- C. $\vec{u}(2;-1;1)$. D. $\vec{b}(-1;-1;1)$.
- Câu 19: Có bao nhiều cách sắp xếp 4 học sinh thành một hàng dọc?

- **B.** 10.

- **D.** 24.
- Câu 20: Trong không gian Oxyz, hình chiếu của điểm A(1;2;-1) trên mặt phẳng (Oxy) là điểm nào sau đây?
 - **A.** P(-1;-2;0).
- **B.** N(1;2;0). **C.** Q(-1;-2;1). **D.** M(1;2;1).
- **Câu 21:** Biết phương trình $\log_2^2 x 2\log_2(2x) 1 = 0$ có hai nghiệm x_1, x_2 . Giá trị của $x_1.x_2$ bằng

- **B.** $\frac{1}{2}$. **C.** $\frac{1}{8}$.
- **D.** 4.
- Câu 22: Cho hàm số f(x) có đạo hàm liên tục trên đoạn [1;2], f(1)=1 và f(2)=2. Tính $I = \int_{1}^{\infty} f'(x) dx.$
 - **A.** I = 1.
- **B.** $I = \frac{7}{2}$. **C.** I = 3.
- **D.** I = -1.
- Câu 23: Họ tất cả các nguyên hàm của hàm số $f(x) = 3x^2 + \frac{1}{\sin^2 x}$ là
 - **A.** $6x \frac{2}{\sin^2 x} + C$. **B.** $x^3 + \cot x + C$. **C.** $x^3 \tan x + C$. **D.** $x^3 \cot x + C$.

- Câu 24: Cho $\int_{0}^{1} f(x) dx = 2$ và $\int_{0}^{1} g(x) dx = 5$ khi đó $\int_{0}^{1} \left[f(x) 2g(x) \right] dx$ bằng

- C. 12.
- **D.** −3.
- Câu 25: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, $SA = a\sqrt{2}$ và vuông góc với đáy (tham khảo hình vẽ). Tính khoảng cách giữa hai đường thẳng BD và SC.

B. $\frac{a\sqrt{2}}{2}$.

C.
$$\frac{a\sqrt{2}}{4}$$
.

D. $\frac{a}{4}$.

- **Câu 26:** Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số $y = x^2 + 2x + 1$, trục hoành và hai đường thẳng x = -1; x = 3.
 - **A.** $S = \frac{56}{2}$.
- **B.** $S = \frac{68}{3}$. **C.** $S = \frac{64}{3}$. **D.** $S = \frac{37}{3}$.
- **Câu 27:** Cho hình trụ có chiều cao bằng h và bán kính đáy bằng r. Diện tích xung quanh S_{xq} của hình trụ được tính bởi công thức
 - **A.** $S_{xq} = \frac{1}{3}\pi rh$. **B.** $S_{xq} = \pi rh$. **C.** $S_{xq} = \pi r^2 h$. **D.** $S_{xq} = 2\pi rh$.

- Câu 28: Cho số phức z = 1 + 2i, tính |z|.
 - **A.** |z| = 3.
- **B.** $|z| = \sqrt{3}$. **C.** $|z| = \sqrt{5}$.

- Câu 29: Hàm số $y = x^3 3x + 2$ có giá trị cực đại bằng **B.** −1. **C.** 20. **D.** 4. Câu 30: Khối bát diện đều thuộc loại khối đa diện đều nào sau đây? **B.** {5;3}. **A.** {4;3}. **D.** {3;4}.
- **Câu 31:** Cho hàm số y = f(x) có đạo hàm $f'(x) = x(x-1)^3$, $\forall x \in \mathbb{R}$. Hàm số y = f(x) đồng biến trên khoảng nào sau đây?
- **B.** $(-\infty;0)$. C. $(0;+\infty)$. **A.** (-1;1). **D.** (0;1).
- **Câu 32:** Trong không gian Oxyz, mặt cầu (S): $x^2 + y^2 + z^2 4x + 2y + 2z 3 = 0$ có bán kính bằng D. 6.
- **Câu 33:** Bất phương trình $2\log_3(4x-3) + \log_{\frac{1}{2}}(2x+3)^2 \le 2$ có tập nghiệm là **A.** $\left(\frac{3}{4};3\right)$. **B.** $\left(\frac{3}{4}; +\infty\right)$. **C.** $\left(-\frac{3}{8}; 3\right)$. **D.** $\left[-\frac{3}{8}; 3\right]$.
- **Câu 34:** Trong không gian Oxyz, khoảng cách từ điểm M(0;3;-1) đến mặt phẳng $(\alpha): 2x + y - 2z - 2 = 0$ bằng
 - C. $\frac{1}{2}$. **D.** $\frac{4}{3}$. **B.** 1. **A.** 3.
- **Câu 35:** Giá trị lớn nhất của hàm số $y = \frac{x+5}{x-7}$ trên đoạn [8;12] bằng
- **Câu 36:** Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?

B. $\frac{13}{2}$.

- **A.** Hàm số đạt cực tiểu tại x = -1.
- **B.** Giá tri cực tiểu của hàm số bằng −1.
- C. Hàm số không có điểm cực trị.
- **D.** Hàm số đạt cực đại tại x = 4.

D. $\frac{17}{5}$.

- Câu 37: Gieo một đồng tiền cân đối, đồng chất ba lần. Xác suất để trong ba lần gieo có đúng hai lần xuất hiện mặt ngửa là
 - $\frac{1}{9}$.

A. 15.

- **B.** $\frac{1}{2}$.
- **C.** $\frac{1}{4}$.

C. 13.

- **D.** $\frac{3}{9}$.
- **Câu 38:** Trong không gian Oxyz, gọi α là góc giữa hai mặt phẳng (P): x+2y-z+2=0 và (Q): 2x-y-z+4=0. Tính $\cos \alpha$.
 - **A.** $\cos \alpha = \frac{2}{3}$. **B.** $\cos \alpha = \frac{3}{4}$. **C.** $\cos \alpha = \frac{1}{6}$. **D.** $\cos \alpha = \frac{1}{3}$.

- **Câu 39:** Trong không gian Oxyz, cho ba điểm A(-15;7;-11), B(-3;1;1), C(7;-1;5) và đường thẳng (d): $\frac{x-1}{-1} = \frac{y+1}{A} = \frac{z+1}{1}$. Gọi (α) là mặt phẳng chứa (d) sao cho A, B, C ở cùng phía đối

với mặt phẳng (α) . Gọi d_1 , d_2 , d_3 lần lượt là khoảng cách từ A, B, C đến (α) . Giá trị lớn nhất của biểu thức $T = d_1 + 2d_2 + 3d_3$ bằng

A. $2\sqrt{67}$.

B. $\sqrt{41}$.

C. $\frac{1}{2}\sqrt{41}$. D. $\sqrt{82}$.

Câu 40: Cho phương trình $\log_9(x+1)^2 + \log_{\frac{1}{3}} \frac{x}{m} = 1$ (với m là tham số thực). Có bao nhiều giá trị nguyên dương của tham số m để phương trình đã cho có nghiệm thực?

B. Vô số.

D. 2.

Trên tập hợp số phức, xét phương trình $z^2 - 2(m+1)z + m^2 + 4m + 3 = 0$ (m là tham số thực). Câu 41: Có bao nhiều giá trị của m để phương trình có hai nghiệm phân biệt z_1, z_2 thỏa mãn $(z_1 - z_2)^2 + 2m = z_1 + \overline{z_2}$?

Câu 42: Cho hàm số $y = f(x) = ax^4 + bx^3 + cx^2 + dx + e$ $(a \ne 0)$, hàm số y = f'(1+2x) có đồ thị như hình vẽ sau:

Có bao nhiều giá trị nguyên dương của tham số m để hàm số $g(x) = f(|x^3 + 5x| + m)$ có ít nhất 5 điểm cực trị?

A. 4.

B. 10.

C. 6.

D. 2.

Câu 43: Xét các số phức z thỏa mãn $|z+2-4i|+|z-3+i|=5\sqrt{2}$. Biết giá trị lớn nhất của biểu thức P = |z + i| - |z - 3 - 3i| có dạng $\sqrt{a} - \sqrt{b}$; $a, b \in \mathbb{N}$. Giá trị của biểu thức a - b bằng

A. 7.

C. 5.

D. 3.

hình chóp S.ABCD có đáy là hình chữ Câu 44: Cho $AB = 2\sqrt{3}a$, $AD = \sqrt{3}a$, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy (tham khảo hình vẽ). Tính thể tích khối cầu ngoại tiếp hình chóp S.ABCD.

B. $\frac{26\pi a^3}{3}$.

C. $\frac{16\pi a^3}{3}$.

D. $16\pi a^3$.

Câu 45: Cho x, y là các số thực dương thỏa mãn $\log_2 \frac{2xy + 3x + 3y + 4}{x^2 + xy + y^2} = x(2x - 3) + y(2y - 3) - 3.$ Tính giá trị lớn nhất của biểu thức F = x + y - 1.

A. 2.

B. 4.

C. 3.

D. 1.

Câu 46: Cho hình chóp tam giác đều S.ABC có AB = a, khoảng cách giữa hai đường thẳng SA và BC bằng $\frac{a\sqrt{6}}{3}$ (tham khảo hình vẽ). Thể tích khối chóp S.ABC bằng

A.
$$\frac{\sqrt{2}a^3}{3}$$

A.
$$\frac{\sqrt{2}a^3}{3}$$
. **B.** $\frac{\sqrt{2}a^3}{2}$.

C.
$$\frac{\sqrt{2}a^3}{6}$$

C.
$$\frac{\sqrt{2}a^3}{6}$$
. D. $\frac{\sqrt{2}a^3}{9}$.

Câu 47: Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} thỏa mãn f(1) = 5 $xf(1-x^3)+f'(x)=x^7-5x^4+7x+3 \text{ v\'oi m\'oi } x \in \mathbb{R}. \text{ Tính } \int_{0}^{1} f(x) dx.$

A.
$$\frac{5}{6}$$
.

B.
$$\frac{17}{6}$$
.

$$\frac{\mathbf{C}}{6}$$
.

B.
$$\frac{17}{6}$$
. **C.** $-\frac{5}{6}$. **D.** $-\frac{13}{12}$.

Câu 48: Trong không gian Oxyz, cho mặt phẳng (P): 2y-3z-3=0 và hai đường thẳng $d_1: \frac{x}{2} = \frac{y-1}{-1} = \frac{z+2}{1}; \ d_2: \begin{cases} x = -1+2t \\ y = 1+t \\ z = 1 \end{cases}. \text{ Dường thẳng } \Delta \text{ nằm trong mặt phẳng } \left(P\right) \text{ đồng thời } \left(P\right)$

cắt cả hai đường thẳng d_1 và d_2 có phương trình là

A.
$$\frac{x-2}{1} = \frac{y}{3} = \frac{z+1}{2}$$
.

B.
$$\frac{x+2}{1} = \frac{y}{3} = \frac{z-1}{2}$$

A.
$$\frac{x-2}{1} = \frac{y}{3} = \frac{z+1}{2}$$
. **B.** $\frac{x+2}{1} = \frac{y}{3} = \frac{z-1}{2}$. **C.** $\frac{x+2}{1} = \frac{y}{-3} = \frac{z-1}{2}$. **D.** $\frac{x-2}{1} = \frac{y}{-3} = \frac{z+1}{2}$.

$$\frac{1}{1} \cdot \mathbf{D} \cdot \frac{x-2}{1} = \frac{y}{-3} = \frac{z+1}{2}$$

Câu 49: Đặt $I = \int_{0}^{1} \frac{(2x+1)e^{x} + 2ax^{2} + a}{e^{x} + ax} dx$. Có bao nhiều giá trị nguyên của a thuộc khoảng (0;2023) để

I > 6?

Câu 50: Cho hàm số y = f(x) có đạo hàm $f'(x) = (x-1)^2(x^2-2x)$, với $\forall x \in \mathbb{R}$. Số giá trị nguyên của tham số m để hàm số $g(x) = f(x^3 - 3x^2 + m)$ có 8 điểm cực trị là

A. 2.

B. 1.

C. 3.

D. 4.

----- HÉT -----

SỞ GIÁO DỤC VÀ ĐÀO TẠO NAM ĐỊNH

KỲ THI THỦ TỐT NGHIỆP LỚP 12 THPT NĂM HỌC 2022-2023 **HƯỚNG DẪN CHẨM MÔN TOÁN LỚP 12**

I. TRẮC NGHIỆM (50 câu, mỗi câu 0.2 điểm)

I. TRAC NGHIỆM Mã đề		202	204	206	208
Câu	1				
	1	В	A	D	A
2		D	В	С	В
3 4		A	D	В	С
		D	A	A	D
	5	В	D	С	В
	6	С	D	С	A
	7	В	В	A	A
	8	D	A	С	С
	9	A	A	С	C
	10	A	В	С	В
	11	D	В	В	C
	12	A	В	D	В
	13	C	C	В	D
	14	В	В	В	В
	15	A	В	В	A
	16	С	С	A	С
	17	С	A	С	D
	18	A	С	D	С
	19	D	С	В	D
	20	С	D	D	В
	21	С	D	С	D
	22	В	С	С	A
	23	D	В	D	D
	24	D	A	В	В
	25	С	С	В	A
	26	В	D	D	С
	27	С	D	D	D
	28	D	C	A	C
	29	A	A	В	D
	30	D	В	D	D
	31	C	D	D	В
	32	В	D	A	A
	33	C	A	A	A
	34	C	A	A	В
	35	A	A	В	C
	36	A		D	A
	37	D	A B	D	D A

Mã đề Câu	202	204	206	208
38	A	С	A	С
39	В	С	В	D
40	С	В	D	D
41	В	D	С	В
42	D	С	С	D
43	В	A	A	D
44	C	В	C	A
45	В	D	A	C
46	A	С	A	C
47	A	A	A	В
48	В	D	В	A
49	D	A	A	A
50	С	С	В	В