Санкт-Петербургский Государственный Университет

Факультет математики и механики

Теория вероятностей

Лектор: Зайцев А. Ю.

5 семестр

Содержание

1	Лекция 02.09.25	2
2	Лекция 09.09.25	3
3	Лекция 16.09.25	6

1 Лекция 02.09.25

В средние века довольно популярной была игра в кости. На гранях кубика изображены числа из множества {1, 2, 3, 4, 5, 6}. Если предположить, что кубик идеален (т.е. симметричен и однороден), и подбрасывается в идеальных условиях без посторонних воздействий, то у нас нет объективных причин считать одну грань более предпочтительной, чем другую. Такие элементарные исходы являются равновозможными.

В таком случае, вероятность выпадения любой конкретной грани, например, шестёрки, определяется как отношение числа благоприятствующих исходов к общему числу всех возможных равновероятных исходов: \mathbb{P} ("выпала шестёрка") = $\frac{1}{6}$.

Аналогично, вероятность события "выпало чётное число" (исходы: 2, 4, 6) будет равна: $\mathbb{P}($ "чётное число") = $\frac{3}{6} = \frac{1}{2}$.

Это классическое определение вероятности, которое эффективно, когда пространство исходов конечно и исходы равновозможны. Однако для более сложных задач (бесконечные пространства, неравновозможные исходы) потребуется более общий аксиоматический подход.

Напоминание. Комбинаторика предоставляет инструменты для подсчёта числа исходов, что часто помогает в вычислении вероятностей по классическому определению:

• Число перестановок из *n* различных элементов:

n!

• Размещения: Число способов выбрать k элементов из n (порядок важен):

$$A_n^k = \frac{n!}{(n-k)!}$$

• Сочетания: Число способов выбрать k элементов из n (порядок не важен):

$$C_n^k = \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

Определение 1.1 (Колмогоровская модель). *Вероятностное пространство* – тройка $(\Omega, \mathcal{F}, \mathbb{P})$, где

- Ω множество элементарных исходов;
- \mathcal{F} σ -алгебра подмножеств Ω (σ -алгебра событий);
- \mathbb{P} вероятностная мера на \mathcal{F} , то есть функция $\mathbb{P}:\mathcal{F}\to[0,1]$ такая, что
 - 1. $\mathbb{P}(A) \geq 0$ (неотрицательность);
 - 2. $\mathbb{P}(\Omega) = 1$ (нормированность);
 - 3. A_1, \ldots, A_n, \ldots и $A_i \cap A_j = \emptyset$, тогда $\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$ (счетная аддитивность).

Замечание. Дискретная модель вкладывается в колмогоровскую, если взять в качестве σ -алгебры все подмножества Ω .

Определение 1.2. Событие единичной вероятности называется достоверным.

Определение 1.3. Событие нулевой вероятности называется невозможным.

Пример 1.1. Если мы бросаем шарик в квадратную область, то вероятность попасть в какую-то конкретную точку равна нулю, потому что мера Лебега точки равна нулю.

Определение 1.4. *Геометрическая вероятность* — модель, где вероятностное пространство Ω является измеримым подмножеством \mathbb{R}^n с мерой Лебега λ , причём $0 < \lambda(\Omega) < +\infty$. Вероятность определяется как нормированная мера Лебега:

$$\mathbb{P}(A) = \frac{\lambda(A)}{\lambda(\Omega)}, \qquad A \subset \Omega, \ A \in \mathcal{B}.$$

В этом случае часто рассматривают борелевскую σ -алгебру $\mathcal B$ (наименьшау σ -алгебру, которая содержит все открытые множества Ω).

Пример 1.2. На плоскости задан прямоугольник со сторонами a, b > 0. С какой вероятностью случайно выбранная в нем точка будет ближе к центру прямоугольника, чем к любому из его углов?

Решение: Множество искомых точек в общем случае образует неправильный шестиугольник (см. Рис. 1).

Рис. 1: Множество искомых точек

Определение 1.5. Пусть $A, B \in \mathcal{F}$, тогда A, B называют *совместными*, если $A \cap B \neq \emptyset$.

Пример 1.3. При подбрасывании игрального кубика:

- *Событие А: "выпало четное число"* {2, 4, 6};
- *Событие В: "выпало число, меньшее 3"* {1, 2};

Они совместные, так как $A \cap B = \{2\}$ (исход "2" благоприятствует обоим событиям).

Определение 1.6. *Условная вероятность* события A при условии наступления события B определяется формулой:

$$\mathbb{P}\left(A\mid B\right) = \frac{\mathbb{P}\left(A\cap B\right)}{\mathbb{P}\left(B\right)},\qquad$$
если $\mathbb{P}\left(B\right) \neq 0.$

2 Лекция 09.09.25

Используя формулу для условной вероятности, переписанную в виде

$$\mathbb{P}(A \cap B) = \mathbb{P}(A \mid B) \cdot \mathbb{P}(B) = \mathbb{P}(B \mid A) \cdot \mathbb{P}(A),$$

можно по индукции доказать, что:

$$\mathbb{P}(A_1 \cap A_2 \cap \cdots \cap A_n) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2 \mid A_1) \cdot \cdots \cdot \mathbb{P}(A_n \mid A_1 \cap \cdots \cap A_{n-1}).$$

Определение 2.1. События A_1, \ldots, A_n называют *независимыми в совокупности*, если вероятность пересечения любого числа событий будет равна произведению вероятностей каждого отдельного события, в частности:

$$\mathbb{P}(A_1 \cap \cdots \cap A_n) = \mathbb{P}(A_1) \cdot \ldots \cdot \mathbb{P}(A_n);$$

Замечание. Если A, B - независимые, то A, \overline{B} - тоже независымые.

Используя это замечание, можно получить, что: $\mathbb{P}(A \cap \overline{B}) = \mathbb{P}(A) \cdot \mathbb{P}(\overline{B}) = \mathbb{P}(A)(1 - \mathbb{P}(B)) = \mathbb{P}(A) - \mathbb{P}(A)\mathbb{P}(B) = \mathbb{P}(A) - \mathbb{P}(A \cap B)$.

Рассмотрим теперь $\Omega = H_1 \sqcup \cdots \sqcup H_n$.

Определение 2.2. Такой набор H_1, \ldots, H_n называт полной группой несовместных событий, а каждое конкретное H_i - гипотезой.

Возьмем $A \in \mathcal{F}$ и распишем его используя полную группу гипотез: $A = (H_1 \cap A) \cup (H_2 \cap A) \cup \dots (H_n \cap A)$, получили объединение попарно непересекающихся множеств. Очевидным образом получим: $\mathbb{P}(A) = \mathbb{P}(H_1 \cap A) + \dots + \mathbb{P}(H_n \cap A)$.

Теперь воспользуемся переписанной формулой условной вероятности: $\mathbb{P}(H_j \cap A) = \mathbb{P}(H_i) \cdot \mathbb{P}(A \mid H_i)$. В итоге получаем:

Определение 2.3 (Формула полной вероятности).

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(H_j) \mathbb{P}(A \mid H_j);$$

Теперь найдем $\mathbb{P}(H_j \mid A)$. Воспользуемся формулой условной вероятности: $\mathbb{P}(H_j \mid A) = \frac{\mathbb{P}(H_j \cap A)}{\mathbb{P}(A)}$, при условии, что $\mathbb{P}(A) \neq 0$. Распишем числитель, используя переписанную формулу условной вероятности, а для знаменателя воспользуемся формулой полной вероятности:

Определение 2.4 (Формула Байеса).

$$\mathbb{P}(H_j \mid A) = \frac{\mathbb{P}(H_j)\mathbb{P}(A \mid H_j)}{\sum\limits_{i=1}^{n} \mathbb{P}(H_i)\mathbb{P}(A \mid H_i)}.$$

Пример 2.1. Представим, что на некотором заводе работает 3 станка (H_1, H_2, H_3) , производящих детали. Эти детали могут быть бракованными. Мы случайным образом берем одну произведенную на заводе деталь. Событие A будет состоять в том, что деталь, которую мы взяли оказалась бракованной. Нам известно с какой вероятностью каждый из станков производит бракованные детали, а также известна их производительность. Пусть $\mathbb{P}(H_1) = 0.4$, $\mathbb{P}(H_2) = 0.35$, $\mathbb{P}(H_3) = 0.25$, $\mathbb{P}(A \mid H_i) = 0.03$. Оказалось, что взятая нами деталь бракованная. Требуется понять с какой вероятностью она была произведена на станке под номером 1.

Пример 2.2. Еще пример, про болезнь и результат теста.

Определение 2.5. *Случайная величина* — измеримая функция из Ω в \mathbb{R} :

$$\xi:\Omega \to \mathbb{R},\;\; \xi^{-1}(B) \in \mathcal{F}\;\; \forall B \in \mathcal{B}$$
 (σ -алгебра борелевских подмножеств Ω).

Замечание. Зачем нужна измеримость? Потому что мы будем интересоваться вероятностями событий вида $\mathbb{P}(\xi \in B)$, то есть $\mathbb{P}\{\omega : \xi(\omega) \in B\}$ а они существуют только если $\xi^{-1}(B)$ лежит в σ -алгебре \mathcal{F} , так как вероятность определена только на ней. Так что это минимальное требование к функции – быть измеримой.

Определение 2.6. Если $\xi: \Omega \to \mathbb{R}$ – случайная величина, то с ней можно связать распределение случайной величины — вероятнострую меру на \mathcal{B} :

$$P_{\xi}(B) = \mathbb{P}(\xi \in B), \ B \in \mathcal{B};$$

Замечание. Другими словами, если для случайной величины ξ мы знаем $\mathbb{P}(\xi \in B)$, то мы знаем ее распределение.

Определение 2.7. *Схемой Бернулли* называется вероятностный эксперимент, удовлетворяющий следующим условиям:

- 1. Проводится серия из *п* последовательных независимых испытаний.
- 2. Каждое испытание имеет ровно ∂sa исхода: условно называемые "успех" (событие A) и "неудача" (событие \overline{A} , дополнение к A).
- 3. Вероятность «успеха» в каждом отдельном испытании постоянна и равна p, где $0 \le p \le 1$. Соответственно, вероятность "неудачи" равна q = 1 p.

Формализация с помощью индикаторной случайной величины: для математического описания k-го испытания в серии $(k=1,2,\ldots,n)$ вводится индикаторная случайная величина ξ_k :

$$\xi_k(\omega) = \begin{cases} 1, & \text{если } \omega \in A, \\ 0, & \text{если } \omega \notin A. \end{cases}$$

Эта величина имеет распределение Бернулли с параметром $p = \mathbb{P}(A)$:

$$P_{\xi}(x) = \begin{cases} p, & \text{при } x = 1, \\ 1 - p, & \text{при } x = 0. \end{cases}$$

Пример 2.3 (Геометрическая модель схемы Бернулли для n=2). Для наглядного представления последовательности из двух независимых испытаний Бернулли используется модель с единичным квадратом. Пространство элементарных исходов: $\Omega = [0,1] \times [0,1]$. Каждая точка $\omega = (\omega_1, \omega_2)$ – это возможный исход всего опыта.

Независимость обеспечена тем, что мы используем нормированную меру Лебега. Вероятность попадания в любое множество (событие) равна его площади, так как площадь всего Ω равна 1. Это в точности соответствует правилу умножения вероятностей для независимых событий.

Определение 2.8. Пусть ξ – случайная величина, тогда $F: \mathbb{R} \to \mathbb{R}$:

$$F(x) = \mathbb{P}(\xi < x) = P_{\xi}((-\infty, x]), \quad x \in \mathbb{R}$$

называется функцией распределения случайной величины ξ (или меры P_{ξ}).

Замечание. Функция распределения однозначно характеризует распределение.

Пример 2.4 (Схема Бернулли). Функция распределения ξ_k имеет вид (см. Рис 2):

$$F_{\xi_k}(x) = \mathbb{P}(\xi_k \le x) = \begin{cases} 0, & x < 0, \\ 1 - p, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

Рис. 2: График функции распределения для ξ_k

3 Лекция 16.09.25

hello

hello

hello

hello

hello