UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO APUNTES DE PROCESAMIENTO DIGITAL DE SEÑALES SANTIAGO CRUZ CARLOS

SISTEMAS DISCRETOS (clasificación)

- ESTATICOS
- DINAMICOS
 - a. No RECURSIVOS O DE RESPUESTA INFINITA AL IMPULSO

$$y(n) = F(x(n), x(n-i), ctes)$$

$$i: 1 \to N-1$$

b. RECURSIVOS O DE RESPUESTA INFINITA AL IMPULSO

$$y(n) = F(x(n), x(n-i), ctes, x(n), y(n-j), ctes)$$

$$ctes : b_i$$

$$corresponde a la entrada$$

$$i: 1 \rightarrow q$$

$$ctes : a_j$$

$$j: 1 \rightarrow p$$
Corresponde a la salida

ANALISIS DE SISTEMAS DISCRETOS LINEALES E INVARIANTES EN EL TIEMPO

Se demostrará que dichos sistemas se caracterizan por su respuesta al impulso unitario.

Técnicas para el análisis de sistemas lineales

1. Solución de la ecuación de entrada-salida:

$$y(n) = F[de_un_monton_de_chunches]$$

 $F[y(n), y(n-1), y(n-2),..., y(n-M), x(n), x(n-1), x(n-2), x(n-3),...x(n-M)]$

y la forma general es:

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=1}^{M} b_k x(n-k)^{-1}$$

2. Descomponer su señal de entrada en señales elementales, las señales elementales se escogen de manera que sea fácil determinar la respuesta del sistema de cada una de ellas

DESCOMPOSICIÓN DE UNA SEÑAL DISCRETA EN IMPULSOS

¹ Como ya se vio en clases corresponde a un sistema **IIR**

Supongamos que tenemos una señal arbitraria x(n), que queremos expresar como la suma de impulsos unitarios. Para utilizar la notación establecida en la sección anterior escogemos las señales elementales $x_k(n)$ como:

$$x_{\iota}(n) = \delta(n-k)$$

multiplicando por una secuencia cualquiera:

$$x(n)\delta(n-k) = x(k) = \delta(n-k)$$

esto es multiplicar la secuencia por el impulso unitario desplazado precisamente en el punto en el que esta la secuencia.

Si hacemos esto para una secuencia cualquiera y sumamos el resultado de todas estas multiplicaciones, obtendremos una señal igual a la secuencia original x(n), es decir:

$$x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$

Ejemplo: sea la secuencia $x(n)=\{2,4,0,3\}$, exprésela como una sumatoria de impulsos desplazados y escalados:

$$x(n) = \sum_{k=-1}^{2} x(k)\delta(n-k) = 2\delta(n-[-1]) + 4\delta(n-0) + 0\delta(n-1) + 3\delta(n-2)$$

$$x(n) = \sum_{k=-1}^{2} x(k)\delta(n-k) = 2\delta(n+1) + 4\delta(n) + 3\delta(n-2)$$

SISTEMA LTI A RESPUESTA UN **ENTRADAS** DE **ARBITRARIAS:**

LA CONVOLUCIÓN

Ahora que hemos expresado una señal de entrada arbitraria **x(n)** como la suma ponderada de impulsos, estamos preparados para determinar la respuesta de un sistema LTI en reposo a cualquier señal de entrada. Primero denotaremos la respuesta del sistema y(n,k), $-\infty < k < \infty$

Es decir:

$$y(n,k) = h(n,k) = T\{\delta(n-k)\}\$$

$$c_k h(n,k) = x(k)h(n,k)$$

Finalmente, si la entrada es la señal arbitraria x(n) expresada como la suma ponderada de impulsos

$$x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$
$$y(n) = T\{x(n)\} = T\left\{\sum_{k=-\infty}^{\infty} x(k)\delta(n-k)\right\}$$

Oio: la transformación sólo afecta a la variable **n**, por lo que:

$$y(n) = T\{x(n)\} = \sum_{k=-\infty}^{\infty} x(k)T\{\delta(n-k)\}$$

Por lo que:

$$y(n) = T\{x(n)\} = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

¿Pero de dónde sabemos que la transformación del tren de pulsos unitarios desplazados es la respuesta al impulso del sistema?

¿Por qué se le llama convolución?

Decimos que la entrada $\mathbf{x}(\mathbf{n})$ se convoluciona con la respuesta impulsional $\mathbf{h}(\mathbf{n})$ para producir la salida y(n).

SISTEMAS LINEALES, INVARIANTES EN EL TIEMPO Y **CAUSALES**

Se definió un sistema causal como aquel cuya salida depende de las muestras pasadas y presentes de la señal de entrada pero no de las muestras **futuras**. En otras palabras, la salida del sistema es un instante de tiempo **n**, digamos **n=n**_o, depende solo de sus valores de **x(n)** para **n≤no**

3. LA TRANSFORMADA Z Y SUS APLICACIONES AL ANALISIS DE SISTEMAS LTI

¿Para qué sirve la transformada Z?

Hacer más fácil las operaciones matemáticas

Sistemas discretos

Para el sistema

$$x(n) \rightarrow | h(n) | \rightarrow y(n)$$

Transformando
 $X(z) \rightarrow | H(z) | \rightarrow Y(z)$

$$X(Z) \rightarrow H(Z) \rightarrow Y(Z)$$

Recordando que x(n) es un conjunto de muestras de x(t), ye se puede escribir como:

$$x(n) = \sum_{n=-\infty}^{+\infty} x(nT)\delta(t - nT)$$

Aplicando transformada de Laplace

$$TL\{x(n)\} = \int_{0}^{\infty} \left[\sum_{n=-\infty}^{+\infty} x(nT)\delta(t-nT) \right] e^{-st} dt$$

Como la variable de integración es x, la sumatoria de x(nT) puede salir de la integral

$$TL\{x(n)\} = \sum_{n=-\infty}^{+\infty} x(nT) \int_{0}^{\infty} [\delta(t-nT)] e^{-st} dt$$

Por lo tanto calculando:

$$\int_{0}^{\infty} [\delta(t - nT)] e^{-st} dt$$

Y recordando las propiedades del impulso unitario:

$$\int_{a}^{b} \delta(t - t_0)g(t)dt = \begin{cases} g(t_0); a < t_0 < b \\ 0; otro_caso \end{cases}$$

Y por lo tanto:

$$\int_{0}^{\infty} [\delta(t - nT)] e^{-st} dt = e^{-s[nT]}$$
y sustituyendo en la original

$$TL\{x(n)\} = \sum_{n=-\infty}^{+\infty} x(nT)e^{-snT}dt$$

Renombrando la variable

$$e^{-snT} = \left(e^{s}\right)^{-nT} = \left(z\right)^{-nT} \quad \mathbf{y} \quad T = 1$$

$$\boxed{z = e^{s}}$$

$$TL\{x(n)\} = \sum_{n=-\infty}^{+\infty} x(nT)z^{-n}dt$$

$$X(z) = \sum_{n=-\infty}^{+\infty} x(n)z^{-n}$$

LA TRANSFORMADA Z (DIRECTA)

La transformada z de una señal discreta x(n) se define como la serie de potencias

$$X(z) = \sum_{n=-\infty}^{+\infty} x(n)z^{-n}$$

z: es la variable compleja

Ejemplos: determine las transformadas x de las siguientes señales de duración finita.

- (a) $x1(n)=\{1,2,5,7,0,1\}$ (b) $x2(n)=\{1,2,5,7,0,1\}$

Solución:

$$X1(z) = \sum_{n=-\infty}^{+\infty} x(n)z^{-n} = 1 + 2z^{-1} + 5z^{-2} + 7z^{-3} + 0z^{-4} + 1z^{-5}$$

$$X1(z) = \sum_{n=-2}^{+3} x(n)z^{-n} = z^{-(-2)} + 2z^{-(-1)} + 5z^{-0} + 7z^{-(1)} + 0z^{-(2)} + 1z^{-(3)} (c) \quad x(n) = \delta(n)$$

$$X(z) = \sum_{n=0}^{\infty} [\delta(n)]z^{-n} = 1(z^{-(0)}) + 0(z^{-(1)}) + 0(z^{-(2)}) + \cdots$$

$$\boxed{TZ[\delta(n)]} = 1$$

Ejemplo:

EJEMPLO:

 $h(n) = a^n u(n);$; {| a < 1 Calcular H(z), (SECUENCIA GEOMETRICA)

$$TZ\{h(n)\} = \sum_{n=0}^{\infty} a^n u(n) z^{-n}$$
 Secuencia geométrica

$$H(z) = \sum_{n=0}^{\infty} a^n u(n) z^{-n} = a^0 z^{-0} + a^1 z^{-1} + a^2 z^{-2} + \dots + a^{\infty} z^{-\infty}$$

Deseamos su forma cerrada:

Si N=∞

$$H(z) = \sum_{n=0}^{N} a^{n} u(n) z^{-n} = 1 + a z^{-1} + a^{2} z^{-2} + \dots + a^{N} z^{-N}$$

La idea es dejar a H(z) nuevamente en función de la sumatoria

$$H(z) = \sum_{n=0}^{N} a^{n} u(n) z^{-n} = 1 + a z^{-1} + a^{2} z^{-2} + \dots + a^{N-1} z^{-(N-1)} + a^{N} z^{-N}$$
 Factorizando:

$$H(z) = 1 + az^{-1} \left(1 + az^{-1} + \dots + a^{N-1-1} z^{-(N-1-1)} + a^{N-1} z^{-(N-1)} \right)$$

$$H(z) = 1 + az^{-1} \left(1 + az^{-1} + \dots + a^{N-2} z^{-(N-2)} + a^{N-1} z^{-(N-1)} \right)$$

Sumando y restando el término faltante:

$$H(z)=1+az^{-1}\left(1+az^{-1}+\cdots+a^{N-1}z^{-(N-1)}+a^Nz^{-N}-a^Nz^{-N}\right)$$
 Desarrollando $H(z)=1+az^{-1}\left(1+az^{-1}+\cdots+a^{N-1}z^{-(N-1)}+a^Nz^{-N}\right)-az^{-1}\left(a^Nz^{-N}\right)$ Observe como el término grande entre parentesis es nuevamente una sumatoria. Por lo tanto:

$$H(z) = 1 + az^{-1} \left(\sum_{n=0}^{N} a^n z^{-n} \right) - a^{N+1} z^{-N-1}$$

Factorizando:

$$H(z) = 1 + az^{-1}[H(z)] - a^{N+1}z^{-N-1}$$

$$H(z) - az^{-1}[H(z)] = 1 - a^{N+1}z^{-N-1}$$

$$H(z)[1 - az^{-1}] = 1 - a^{N+1}z^{-(N+1)}$$

$$H(z) = \frac{1 - a^{N+1}z^{-(N+1)}}{1 - az^{-1}}$$

Y tomando el límite cuando N tiende a infinito, debido que aún esta para un valor finito:

$$\lim_{N \to \infty} \frac{1 - a^{N+1} z^{-(N+1)}}{1 - az^{-1}} = \frac{1}{1 - az^{-1}}$$

$$|H(z)| = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}$$

Analisis en el dominio Z de sistemas lineales e invariantes en el tiempo

SEÑALES DE ENERGÍA Y SEÑALES DE POTENCIA

$$E = \sum_{n=-\infty}^{n=+\infty} |x(n)|^2$$

- Energía de una señal discreta
- Tanto de señales reales como complejas
- · Puede ser finita o infinita
- Si E es finita x(n) es señal de energía

MUCHAS SEÑALES QUE POSEEN ENERGÍA INFINITA TIENEN POTENCIA MEDIA FINITA

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|^2$$

Si definimos a la energía de una señal en un intervalo finito:

$$E = \sum_{n=-\infty}^{n=+\infty} |x(n)|^2 \Rightarrow E_x = \sum_{n=-N}^{n=N} |x(n)|^2$$

Entonces:

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \{E_x\}$$

Analicemos las posibilidades:

 E_x finita \rightarrow P=0

 E_x Infinita \rightarrow entonces **P** podría ser finita o infinita

 \rightarrow Si **P** es finita y diferente de 0 \rightarrow es una señal de potencia

ANALISIS FRECUENCIAL DE SEÑALES Y SISTEMAS

ANALISIS FRECUENCIAL DE SEÑALES EN TIEMPO CONTINUO

Series de Fourier para señales periódicas de tiempo continuo

¿Qué estudia Fourier? El espectro de las señales.

De las series de Fourier del HSU², función periódica de periodo **T**

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right)$$

Observe la función: ¿Quién es ao, an y bn?

$$a_0 = \frac{1}{T} \int_{-T/2}^{+T/2} f(t) dt$$

$$a_n = \frac{2}{T} \int_{-T/2}^{+T/2} f(t) \cos(n\omega_0 t) dt$$

$$b_n = \frac{2}{T} \int_{-T/2}^{+T/2} f(t) \sin(n\omega_0 t) dt$$

² Análisis de Fourier, Hwei P. Hsu

Series de Fourier de las derivadas de funciones periódicas discontinuas

Relación importante:

$$\sum_{n=-\infty}^{\infty} \delta(t - nT) = \frac{1}{T} + \frac{2}{T} \sum_{n=1}^{\infty} \cos(n\omega_0 t)$$

Tren de impulsos periódicos unitarios:

$$\delta_T = \sum_{n=-\infty}^{\infty} \delta(t - nT) = \frac{1}{T} + \frac{2}{T} \sum_{n=1}^{\infty} \cos(n\omega_0 t)$$

Forma compleja de las series de Fourier

Sea una función periódica de periodo T:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right]$$

De las identidades:

$$\cos(n\omega_0 t) = \frac{1}{2} \left(e^{jn\omega_0 t} + e^{-jn\omega_0 t} \right)$$

$$\sin(n\omega_0 t) = \frac{1}{2i} \left(e^{jn\omega_0 t} - e^{-jn\omega_0 t} \right)$$

Sustituyendo en la f(t):

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left\{ a_n \left[\frac{1}{2} \left(e^{jn\omega_0 t} + e^{-jn\omega_0 t} \right) \right] + b_n \left[\frac{1}{2j} \left(e^{jn\omega_0 t} - e^{-jn\omega_0 t} \right) \right] \right\}$$
 Desarrollando:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[\frac{1}{2} (a_n - jb_n) e^{jn\omega_0 t} + \frac{1}{2} (a_n + jb_n) e^{-jn\omega_0 t} \right] c_0 = \frac{a_0}{2}$$

$$_{n}=\frac{1}{2}(a_{n}-jb_{n})$$

$$c_{-n} = \frac{1}{2}(a_n + jb_n)$$

$$f(t) = c_0 + \sum_{n=1}^{\infty} \left(c_n e^{jn\omega_0 t} + c_{-n} e^{-jn\omega_0 t} \right)$$

$$f(t) = c_0 + \sum_{n=1}^{\infty} \left(c_n e^{jn\omega_0 t} \right) + \sum_{n=-1}^{-\infty} \left(c_n e^{jn\omega_0 t} \right)$$
$$f(t) = c_0 + \sum_{n=-\infty}^{\infty} \left(c_n e^{jn\omega_0 t} \right)$$

$$f(t) = c_0 + \sum_{n=-\infty}^{\infty} \left(c_n e^{jn\omega_0 t} \right)$$

$$c_0 = \frac{a_0}{2} = \frac{1}{T} \int_{-T/2}^{+T/2} f(t) dt$$

$$c_n = \frac{1}{2}(a_n - jb_n) = \frac{1}{T} \int_{-T/2}^{+T/2} f(t)e^{-jn\omega_0 t} dt$$

$$c_{-n} = \frac{1}{2}(a_n + jb_n) = \frac{1}{T} \int_{-T/2}^{+T/2} f(t)e^{+jn\omega_0 t} dt$$

Observe como se integra en T y se valúa en el periodo, y queda en función de n

Integral de Fourier, para señales NO periódicas

Representación frecuencial de funciones No periódicas, por medio de las series de Fourier.

Sea **f(t)** una función periódica con periodo **T**, cuando **T** se aproxima al infinito, **f(t)** se convierte en una función **No periódica**; encontrar la representación de Fourier de esta función No periódica.

$$F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t}dt$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{+j\omega t} dt$$

MATLAB Y LAS FUNCIONES ESPECIALES EN PROCESAMIENTO DIGITAL DE SEÑALES

```
% ESCALON UNITARIO
clf %limpiar
A=1;
t=0:0.01:10;
escalon_unitario=A*ones(1,length(t));
plot(t,escalon_unitario);
title('ESCALON UNITARIO');
xlabel('tiempo [s]');
axis([0 10 0 1.2]); % fija el eje x y y.
```



```
% IMPULSO UNITARIO
clf % limpiar
A=1;
t=0:0.5:10;
impulso_unitario=A*zeros(1,length(t));
impulso_unitario(1)=A;
```

```
stem(t, impulso_unitario); %muestra la grafica como '0' title('impulso UNITARIO'); xlabel('tiempo [s]'); axis([0 10 0 1.2]); % fija el eje x y y.
```



```
% IMPULSO UNITARIO DESPLAZADO
clf %limpiar
A=1;
t=0:1:10;
impulso_unitario=A*zeros(1,length(t));
to=5;
t_val=to+1;
impulso_unitario(t_val)=A;
stem(t, impulso_unitario); %muestra la grafica como '0'
title('IMPULSO UNITARIO DESPLAZADO');
xlabel('tiempo [s]');
axis([0 10 0 1.2]); % fija el eje x y y.
```



```
% RAMPA
clf %limpiar
A=1;
t=0:0.5:10;
rampa=A*t; %ecuacion rampa
plot(t,rampa);
title('RAMPA');
xlabel('tiempo [s]');
```


ayuda ZEROS(M,N) or ZEROS([M,N]) is an M-by-N matrix of zeros. STEM(X,Y) plots the data sequence Y at the values specified in X.

TAREA 2

1.- Dados los vectores:

$$x = \begin{bmatrix} 0.0258 & -3.1545 & 12.286 & -5.845 & 1.15698 \end{bmatrix}$$

 $h = \begin{bmatrix} -1.119 & 2.839 & 5.7779 & 2.839 & -1.119 \end{bmatrix}$

Calcular:

- a) Y=h^TX si estan en Q4
- b) Y=h^TX si estan en Q8
- c) $Y=h^TX$ si estan en Q11
- d) En punto flotante de IEEE
- e) Calcular el error numérico en cada caso y compararlos.
- **2.-** Demostrar que la convolución es conmutatita para cualquier x(n) y h(n).

$$y(n) = \sum_{i=0}^{N-1} h(i)x(n-i) = \sum_{i=0}^{N-1} x(i)h(n-i)$$

$$y(n) = \sum_{i=0}^{N-1} h(i)x(n-i)$$

3.- para la autocorrelación demostrar que: $r_{xy}(I)=x(I)y(-I)$

4.- Para el siguiente sistema:

Calcular las siguientes cosas para: