Customer Segmentation (EDA):

Problem Statement:

Understand the target customers for the strategic team to make decision related to marketing

Context:

Identify the most important shopping groups based on income, age and the mall shopping score.

Objective:

- Divide mall target market into approchable groups.
- Creates the subset of markets based on demographic behaviour criteria to better understand the target for marketing

Import Libraries:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as py
import warnings
warnings.filterwarnings("ignore")
```

Import Dataset:

```
In [2]: data = pd.read_csv(r"\Customer Segmentation\Customers.csv")
In [3]: data
```

Out[3]:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40
	•••					
	195	196	Female	35	120	79
	196	197	Female	45	126	28
	197	198	Male	32	126	74
	198	199	Male	32	137	18
	199	200	Male	30	137	83

200 rows × 5 columns

Out[6]: (200, 5)

In [7]: data.columns

Explore the dataset:

n [4]:	dat	a.head()					
ut[4]:	(CustomerID	G	iender <i>I</i>	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1		Male	19	15	39
	1	2		Male	21	15	81
	2	3	F	emale	20	16	6
	3	4	F	emale	23	16	77
	4	5	F	emale	31	17	40
[5]:	dat	a.tail()					
t[5]:		Customer	ID	Gender	Ag	e Annual Income (k\$)	Spending Score (1-100)
	195	19	96	Female	3.	5 120	79
	196	19	97	Female	4.	5 126	28
	197		98	Male	37	2 126	74
		1:	90			120	
	198		99	Male	37		
		19				2 137	. 18

```
Index(['CustomerID', 'Gender', 'Age', 'Annual Income (k$)',
                 'Spending Score (1-100)'],
                dtype='object')
 In [8]:
          data.index
          RangeIndex(start=0, stop=200, step=1)
Out[8]:
          data.nunique()
 In [9]:
         CustomerID
                                    200
 Out[9]:
         Gender
                                      2
                                     51
         Age
         Annual Income (k$)
                                     64
          Spending Score (1-100)
                                     84
          dtype: int64
          data.count()
In [10]:
         CustomerID
                                    200
Out[10]:
         Gender
                                    200
         Age
                                    200
                                    200
         Annual Income (k$)
          Spending Score (1-100)
                                    200
         dtype: int64
In [11]:
          data.isna().sum() ## To check null values
                                    0
         CustomerID
Out[11]:
         Gender
                                    0
                                    0
         Age
          Annual Income (k$)
                                    0
          Spending Score (1-100)
          dtype: int64
In [12]:
          data[data.duplicated()] ## To check the duplicate values
Out[12]:
           CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
In [13]:
         data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 200 entries, 0 to 199
         Data columns (total 5 columns):
          #
              Column
                                       Non-Null Count Dtype
          0
              CustomerID
                                       200 non-null
                                                        int64
          1
              Gender
                                       200 non-null
                                                        object
          2
                                       200 non-null
                                                        int64
              Age
              Annual Income (k$)
                                       200 non-null
                                                        int64
               Spending Score (1-100) 200 non-null
                                                        int64
          dtypes: int64(4), object(1)
         memory usage: 7.9+ KB
          data.describe()
In [14]:
```

Out[14]:		CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
	count	200.000000	200.000000	200.000000	200.000000
	mean	100.500000	38.850000	60.560000	50.200000
	std	57.879185	13.969007	26.264721	25.823522
	min	1.000000	18.000000	15.000000	1.000000
	25%	50.750000	28.750000	41.500000	34.750000
	50%	100.500000	36.000000	61.500000	50.000000
	75%	150.250000	49.000000	78.000000	73.000000
	max	200.000000	70.000000	137.000000	99.000000

In [15]: data.select_dtypes("0") ## Columns with Object data type

Out[15]: **Gender**

- Male
- Male
- Female
- Female
- Female
- •••
- Female
- Female
- Male
- Male
- Male

200 rows × 1 columns

In [16]: data.select_dtypes("int") ## Columns with interger data type

Out[16]:		CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	19	15	39
	1	2	21	15	81
	2	3	20	16	6
	3	4	23	16	77
	4	5	31	17	40
	•••				
	195	196	35	120	79
	196	197	45	126	28
	197	198	32	126	74
	198	199	32	137	18
	199	200	30	137	83

200 rows × 4 columns

Out[17]:

Univariate Analysis:

In [17]: data.describe()

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

Age Distribution:

```
In [18]: sns.displot(data["Age"])
    py.show()
```


Annual Income Distribution:

```
In [19]: sns.distplot(data["Annual Income (k$)"], color = "orange")
    py.show()
```


Age, Annual Income, Spending Score (1-100) Distribution:

```
In [20]: columns = ["Age" , "Annual Income (k$)" , "Spending Score (1-100)"]

for i in columns:
    sns.distplot(data[i])
    py.show()
```


In [21]: sns.kdeplot(data["Spending Score (1-100)"] , shade = True)
 py.show()

In [22]: sns.kdeplot(data["Annual Income (k\$)"] , color = "Green" , shade = True)
 py.show()


```
In [23]: sns.kdeplot(data["Annual Income (k$)"] , hue = data["Gender"] , shade = True)
    py.show()
```


In [24]: sns.kdeplot(data["Spending Score (1-100)"] , hue = data["Gender"] , shade = True)
 py.show()


```
In [ ]: ###
In [25]: columns = ["Age" , "Annual Income (k$)" , "Spending Score (1-100)"]
```

```
for i in columns:
    sns.kdeplot(data[i] , hue = data["Gender"] , shade = True)
    py.show()
```


Annual Income (k\$)

Check the outliers:

```
In [26]: columns = ["Age" , "Annual Income (k$)" , "Spending Score (1-100)"]

for i in columns:
    sns.boxplot(data = data , x = "Gender" , y = i)
    py.show()
```


Gender Percentage:

```
In [27]: data["Gender"].value_counts(normalize = True) * 100
```

Out[27]: Female 56.0 Male 44.0

Name: Gender, dtype: float64

Conculsion:

- Female percentage more than Male. Also, the Spending Score and Annual Income is highest for Females.
- Females are spending more

Bivariate Analysis:

	Divaii	acc	Alla	ıysı	J .			
[28]:	data.hea	d()						
t[28]:	Custon	nerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100))	
	0	1	Male	19	15	3	9	
	1	2	Male	21	15	8	1	
	2	3	Female	20	16		6	
	3	4			16		7	
	4	5	Female	31	17	4	0	
[29]:	data.col	umns						
[29]:	' (Spend	merID', ing Sco object'	re (1	der', 'Age', 'Ann -100)'],	ual Income (k\$)',		
[30]:	sns.scat	terpl	ot(data	= da	ta , x = "Annual	Income $(k$)$ ", $y =$	"Spending	Score (1
	py.show()						
	100 -		•••	• •	•		•	
	80 -	•		•			٠.	•
	Spending Score (1-100)		•			•		
	Spending 40	••		•	e a gere			
	20 -	•	••	•	8			•
	0 -		20	40	0 60	80 100	120	140

Annual Income (k\$)

```
In [31]: sns.scatterplot(data = data , x = "Annual Income (k$)" , y = "Spending Score (1-10)
py.show()
```


Conclusion:

Between 40 to 70 Annual Income and Spending Score is more

```
In [32]: df = data.drop("CustomerID" , axis = 1)
    sns.pairplot(df)

    py.show()
```



```
In [33]: df1 = data.drop("CustomerID" , axis = 1)
    sns.pairplot(df1 , hue = "Gender")
    py.show()
```


The mean of Age, Income and Spending Score Gender-wise:

Out[35]: Age Annual Income (k\$) Spending Score (1-100)

Gender			
Female	38.098214	59.250000	51.526786
Male	39.806818	62.227273	48.511364

Correlation:

```
In [36]: data.corr()
```

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
CustomerID	1.000000	-0.026763	0.977548	0.013835
Age	-0.026763	1.000000	-0.012398	-0.327227
Annual Income (k\$)	0.977548	-0.012398	1.000000	0.009903
Spending Score (1-100)	0.013835	-0.327227	0.009903	1.000000

```
In [37]: py.figure(figsize = (8,5))
sns.heatmap(df.corr() , annot = True , cmap = "YlOrBr" , linewidth = 1 , linecolor
py.xticks(rotation = "0")
py.show()
```


Tn Γ 1: