Analysis 3

Contents

Ι	Sequence of Functions	1
1	Introduction	1
2	Pointwise convergence	1
3	Uniform convergence 3.1 Second method	2 2
4	Uniform convergence	3
5	Sequence of continuous functions	4

Sequence of Functions

PART

Τ

1 Introduction

In previous courses, we analysed the convergence of sequences of numbers (example: $U_n = \left\{\frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots\right\} = \sum_{n=1}^{\infty} \frac{1}{n^2}$) with a series of tests. In this course we will be analysing sequences of functions $f_n(x)$.

An example, is $f_n(x) = \frac{x}{x+n} = \{f_1, f_2, f_3, \ldots\} = \left\{\frac{x}{x+1}, \frac{x}{x+2}, \frac{x}{x+3}, \ldots\right\}$.

There are 2 ways these sequences can converge: pointwise and uniformly

Figure 1. Plot of the sequence $f_n(x) = xe^{-nx}$

2 Pointwise convergence

This is a very natural way of proving convergence since all you have to do is fix f_n to a point x then the sequence just becomes an ordinary sequence of numbers, and if they all converge to a number we can define a limit function f and say that they converge to f pointwisely.

Definition 2.1. We say that a sequence of functions f_n where $f_n: I \to \mathbb{R}$, $I \subset \mathbb{R}$, converges pointwise to function $f: I \to \mathbb{R}$ on the interval I if:

$$\forall x \in I \ \forall \epsilon > 0 \ \exists n \in \mathbb{N} \ \forall n \ge \mathbb{N} : |f_n(x) - f(x)| < \epsilon.$$

You either prove convergence using the definition or by doing:

- 1. Let x = 0 then find $\lim_{n \to \infty} f_n(0) = \text{some } f(x)$
- 2. Then let $x \neq 0$ and again find $\lim_{n \to \infty} f_n(x) = f(x)$
- 3. If neither of the results are unbounded $\pm \infty$ then we say $f_n(x)$ is convergent to some f(x)

Remark. if the result of step 1 is q(x) and step 2 results in h(x) where $q(x) \neq h(x)$ then we define the limit function:

$$f(x) = \begin{cases} g(x) & x = 0\\ h(x) & x \in]0, 1] \end{cases}.$$

3 Uniform convergence

The idea of uniform convergence is that the sequence always approaches it's limit function as the value of n increases.

Definition 3.1. We say that a sequence of functions f_n where $f_n: I \to I$ $\mathbb{R}, I \subset \mathbb{R}$, converges uniformly to function $f: I \to \mathbb{R}$ on the interval I

$$\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall n \ge N \; \forall x \in I : \sup_{x \in I} |f_n(x) - f(x)| < \epsilon.$$

Remark. We can also prove uniform convergence by proving

$$\lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f(x)| = 0.$$

Let f_n be a sequence of functions defined on $E \subset \mathbb{R}$. We will say that f_n converges pointwise to the function f if for every $\varepsilon > 0$ and for every $x \in E, \exists N \in \mathbb{N}$ such that for all $n > N |f_n(x) - f(x)| < \varepsilon$ we write $\lim_{n \to \infty} f_n(x) = f(x)^{1}.$

¹ The integer N depends on ε and $x ; N(\varepsilon, x)$

Example. Let $f_x(x) = \frac{x}{x+n}$; $x \in [0,1] = E$, study the pointwise convergence of f_n .

$$\lim_{n \to \infty} f_n(x) = 0.$$

We conclude that f_n converges pointwise to $f(x) = 0 \quad \forall x \in [0,1]$

Example. let $f_n(x) = \frac{nx}{1+nx}$ where $x \in [0,1] = E$. Study the point-

- $x = 0, x \to +\infty \implies nx \to \infty$. Undetermined form. $f_n(0) = 0 \implies \lim_{n \to \infty} f_n(0) = 0$ $x \neq 0$ (x is fixed) $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{nx}{1 + nx} = 1$

Then f_n converges pointwise to

$$f(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x \in]0, 1] \end{cases}.$$

3.1 Second method

using the definition of the pointwise convergence.

$$\forall x \in E, \forall \varepsilon > 0 \ \exists N \in \mathbb{N}/\forall n > N \ |f_n(x) - f(x)| < \varepsilon.$$

we must find N first for x = 0 $|f_n(0) - f(0)| = 0 - 0 = 0 < \varepsilon$ then the choice of N is arbitrary.

for $x \neq 0$

$$|f_n(x) - f(x)| = \left| \frac{nx}{1 + nx} \right| = \left| \frac{1}{nx + 1} \right| = \frac{1}{nx + 1} < \varepsilon.$$

We choose N such that $N \ge \frac{1-\varepsilon}{\varepsilon x}$

4 Uniform convergence

Definition 4.1. Let f_n be a sequence of functions defined on $E \subset \mathbb{R}$. We say that f_n converges uniformly to the limit function f if

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}/\forall n > N \sup_{x \in E} |f_n(x) - f(x)| < \varepsilon.$$

f(x) is the limit function $x \in E^{2}$.

 2 N depends on only $\varepsilon, N(\varepsilon)$

- **Remark.** Pointwise convergence means that at every point the sequence of function has its own speed of convergence (that can be very fast at some points and very slow at others)
 - Uniform convergence means there is an overall speed of convergence

Example.
$$f_n(x) = \frac{1}{n}x^2$$
.

 $\lim_{n\to\infty} f_n(x) = 0$ the sequence $\frac{1}{n}x^2$ CV pointwise to f(x) = 0 (no overall speed of CV for all points)

Example.
$$g_n(x) = \frac{\sin(nx)}{n}$$
; $x \neq 0$

 $\lim_{n\to\infty} g_n(x) = 0$ the sequence CV uniform to g(x) = 0 (there is an overall speed of CV for all points)

Remark. To prove the uniform convergence of a sequence of functions f_n defined on E to the limit function, we may prove the pointwise convergence by proving the integer N is independent of x or

$$\lim_{n\to\infty} \sup |f_n(x) - f(x)| = 0$$

Example. Let $f_n(x) = \frac{x}{x+n}$; $x \in [0,1]$ and $n \in \mathbb{N}$.

Study the uniform convergence of $f_n(x)$ to f(x) = 0 by showing that

$$\lim_{n \to \infty} f_n(x) = 0$$

$$|f_n(x) - f(x)| = \frac{x}{x+n} < \varepsilon \implies n > x\left(\frac{1}{\varepsilon} - 1\right)$$

 $|f_n(x) - f(x)| = \frac{x}{x+n} < \varepsilon \implies n > x \left(\frac{1}{\varepsilon} - 1\right).$ $x \in [0,1] \implies n > \frac{1}{\varepsilon}, \ N > \frac{1}{\varepsilon} \implies N = N(\varepsilon) \text{ then } f_n \text{ converges}$

Example. Let $f_n(x) = \frac{nx}{1+nx}$ defined on [1,2]. Show the uniform convergence of f_n to the limit function using sup.

 $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{nx}{1 + nx} = 1 \text{ (x is fixed)}. \quad f_n \text{ converges pointwise to } f(x) = 0 \text{ on } [1, 2].$

$$\lim_{n\to\infty}\sup|f_n(x)-f(x)|$$

wise to
$$f(x) = 0$$
 on $[1, 2]$.

$$\lim_{n \to \infty} \sup |f_n(x) - f(x)|$$
Let $g(x) = |f_n(x) - f(x)| = \left| \frac{nx}{1 + nx} - 1 \right| = \left| -\frac{1}{1 + nx} \right| = \frac{1}{1 + nx}$

$$g'(x) = -\frac{n}{(1 + nx)^2} < 0 \ \forall x \in [1, 2] \ \text{TABLE OF VAR HERE}$$

 $\lim_{n \to \infty} \sup |f_n(x) - f(x)| = \lim_{n \to \infty} \sup g(x) = \lim_{n \to \infty} \frac{1}{1+n} = 0.$ $\therefore f_n \text{ converges uniformly to } f(x) = 1$

Example. Let $f_n(x) = ne^{-nx}$; $x \in [0, +\infty[$.

- 1. Study the pointwise convergence of f_n
- 2. Study the pointwise convergence of f_n on $[0, +\infty]$
- 3. Study the uniform convergence of f_n on $[1, +\infty]$

1.
$$x = 0$$
; $\lim_{n \to \infty} f_n(x) = 1$
 $x \neq 0$ (x is fixed)

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} nxe^{-nx} = \lim_{n \to \infty} \frac{nx}{e^{nx}} = 0 \ \forall x \in [0, 1]$$
2. $|f_n(x) - f(x)| = g(x) = nxe^{-nx}$.

2.
$$|f_n(x) - f(x)| = g(x) = nxe^{-nx}$$
.
 $g'(x) = ne^{-nx}(1 - nx)$
 $g'(x) = 0 \implies x = \frac{1}{n}$
 $\sup |f_n(x) - f(x)| = \frac{1}{e} \neq 0$ then f_n doesn't converge uniformly to $f(x) = 0$ for $x \in [0, +\infty[$

to
$$f(x) = 0$$
 for $x \in [0, +\infty[$
3. $x \in [1, +\infty[\frac{1}{n} < 1]$
 $g(x)$ decreases $\implies \sup |f_n(x) - f(x)| = g(1) = ne^{-n}$
 $\lim_{n \to \infty} \sup |f_n(x) - f(x)| = \lim_{n \to \infty} \frac{n}{e^n} = 0$ then f_n converges uni-

ı

5 Sequence of continuous functions

Theorem 5.1. If a sequence of continuous functions on $E \subset \mathbb{R}$ converges uniformly to the limit function f then f is continuous.

- If a sequence of continuous functions f_n converges pointwise to a discontinuous function f, then the convergence is not uniform.
 - The continuity of the limit function f(x) on E is a necessary but not sufficient condition for the uniform sequence of functions f_n .

In the previous year, you took numberical sequences, for example $U_n = \frac{1}{n+1} \implies \{\frac{1}{2}, \frac{1}{3}, \ldots\}$, but this year we will be studying sequences of functions so we have to study 2 variables, the usual n and x

In this case, there 2 types of convergence pointwise and uniform. In pointwise, we let x be a fixed variable and instead of studying the entire continuoum of values of n we study only one value. so

Definition 5.1. If f_n is a sequence of functions defined on $x \in E \subset \mathbb{R}$, we say that f_n converges pointwise to the functions f if for $\forall \epsilon > 0$ and $\forall x \in E, \exists N \in \mathbb{N} \text{ such that for all } n > N ||f_n(x) - f(x)|| < \epsilon \text{we write}$ $\lim_{n \to \infty} f_n(x) = f(x).$

Example.
$$f_n(x) = \frac{x}{x+n} \ x \in [0,1] = E \subset \mathbb{R}$$

Study the pointwise convergence of f_n .

We let x be fixed and take the limit $\lim_{n\to\infty} f_n(x) = 0$. We conclude that f_n converges

Example.
$$f_n(x) = \frac{nx}{1+nx} \ x \in [0,1] = E$$
. Study the pointwise convergence of f_n .

•
$$x = 0$$
 $f_n(0) = \frac{0}{1+0} = 0$

•
$$x = 0$$
 $f_n(0) = \frac{0}{1+0} = 0$
• x fixed $x \in]0,1]$ $\lim_{n \to \infty} \frac{nx}{1+nx} = \lim_{n \to \infty} \frac{x}{x} = 1$ (by Hopital)

IF:

1.
$$\lim_{n\to a} f(x) = 0$$
 and $\lim_{n\to a} \text{ type } 0^0$

2.
$$\lim_{n \to a} f(x) = \infty$$
 and $\lim_{n \to a} g(x) = 0$ type ∞^0
3. $\lim_{n \to a} \text{ and } \lim_{n \to a} g(x) = \infty$ type 1^∞

3.
$$\lim_{n \to a} \text{ and } \lim_{n \to a} g(x) = \infty \text{ type } 1^{\infty}$$

Example.
$$f_n(x) = \frac{nx}{1+n}$$
 using the definition