PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 97/20054 (51) International Patent Classification 6: (11) International Publication Number: A1 C12N 15/63, 15/00, 15/09, A61K 39/12, 5 June 1997 (05.06.97) (43) International Publication Date: 39/275, 39/285, 39/395, 39/42, C07K 16/08 (81) Designated States: AU, CA, JP, European patent (AT, BE, PCT/US96/19274 (21) International Application Number: CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, 2 December 1996 (02.12.96) (22) International Filing Date: Published (30) Priority Data: 1 December 1995 (01.12.95) With international search report. US 08/566,398 Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of VIROGENETICS CORPORATION [US/US]; amendments. (71) Applicant: Rensselaer Technology Park, 465 Jordan Road, Troy, NY 12180 (US). (72) Inventors: PAOLETTI, Enzo; 297 Murray Avenue, Delmar, NY 12054 (US). GETTIG, Russell, R.D. 2, Box 421C, Averill Park, NY 12018 (US). (74) Agents: FROMMER, William, S. et al.; Curtis, Morris & Safford, P.C., 530 Fifth Avenue, New York, NY 10036

(54) Title: RECOMBINANT POXVIRUS-FELINE INFECTIOUS PERITONITIS VIRUS, COMPOSITIONS THEREOF AND METH-ODS FOR MAKING AND USING THEM

(57) Abstract

Attenuated recombinant viruses containing DNA encoding FIPV antigen(s), compositions thereof, as well as methods for making and using the compositions, expression products therefrom, and antibodies generated, are disclosed and claimed. The recombinant viruses can be NYVAC or ALVAC recombinant viruses. The compositions and products therefrom and antibodies generated have several preventive, therapeutic and diagnostic uses.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Amenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL.	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil .	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
Ci	Côte d'Ivoire	Ll	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China ·	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	ТJ	Tajikistan
DK	Denmark	· MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

RECOMBINANT POXVIRUS-FELINE INFECTIOUS PERITONITIS VIRUS, COMPOSITIONS THEREOF AND METHODS FOR MAKING AND USING THEM

5

10

15

RELATED APPLICATIONS

Reference is made to allowed application Serial No. 08/105,483, filed August 12, 1993, which in turn is a continuation of application Serial No. 07/847,951, filed March 6, 1992, which in turn is a continuation-in-part of application Serial No. 07/713,967, filed June 11, 1991, which in turn is a continuation-in-part of application Serial No. 07/666,056, filed March 7, 1991, now allowed application Serial No. 08/036,217, filed March 24, 1993, and issued November 15, 1994 as U.S. Patent No. 5,364,773. Each of the aforementioned and above-referenced applications and patent are hereby incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to modified recombinant poxviruses, compositions thereof and to 20 methods of making and using the same; for instance, a vaccinia virus or avipox (e.g. canarypox or fowlpox) virus. For example, the invention relates to modified poxvirus-feline infectious peritonitis virus (FIPV) recombinants, compositions thereof, and methods for 25 making and using the recombinants and compositions. invention further relates to such recombinants which are attenuated recombinants, especially NYVAC- or ALVAC-FIPV recombinants, compositions thereof and methods for making and using the recombinants and compositions. 30 invention relates to a recombinant poxvirus-FIPV, such recombinants which express(es) gene product(s) of FIPV, compositions containing such recombinants and/or gene product(s), and methods for making and using the recombinants or compositions. The gene product can be 35 FIPV N, M, and three versions of S (S1-complete spike; S2-spike minus the signal sequence; and S3-spike C-

25

30

terminal section) or combinations thereof such as M and The recombinants or compositions containing them can induce an immunological response against FIPV infection, when administered to a host. The host is preferably a 5 feline, e.g., a cat or kitten. The response can be protective. Thus, the composition can be immunological, or antigenic, or a vaccine.

The invention additionally relates to the products of expression of the poxvirus which by themselves are 10 useful for eliciting an immune response e.g., raising antibodies or stimulating cell-mediated responses, which antibodies or responses are useful against FIPV infection, or which expression products or antibodies elicited thereby, isolated from a cell culture or from an animal, are useful for preparing a diagnostic kit, test or assay for the detection of FIPV, or of the recombinant virus, or of infected cells, or, of the expression of the antigens or products in other systems. The isolated expression products and antibodies elicited by the recombinant virus are especially useful in kits, tests or assays for detection of antibodies or antigens in a system, host, serum or sample; and the expression products are useful for generation of antibodies.

Several publications are referenced in this application. Full citation to these references is found at the end of the specification immediately preceding the claims or where the publication is mentioned; and each of these publications is hereby incorporated herein by reference.

BACKGROUND OF THE INVENTION

Vaccinia virus and more recently other poxviruses have been used for the insertion and expression of foreign genes. The basic technique of inserting foreign genes into live infectious poxvirus involves 35 recombination between pox DNA sequences flanking a foreign genetic element in a donor plasmid and homologous

sequences present in the rescuing poxvirus (Piccini et al., 1987).

Specifically, the recombinant poxviruses are constructed in two steps known in the art which are analogous to the methods for creating synthetic recombinants of poxviruses such as the vaccinia virus and avipox virus described in U.S. Patent Nos. 4,769,330, 4,772,848, 4,603,112, 5,100,587, and 5,179,993, the disclosures of which are incorporated herein by reference.

First, the DNA gene sequence to be inserted into the virus, particularly an open reading frame from a non-pox source, is placed into an *E. coli* plasmid construct into which DNA homologous to a section of DNA of the poxvirus has been inserted. Separately, the DNA gene sequence to be inserted is ligated to a promoter. The promoter-gene linkage is positioned in the plasmid construct so that the promoter-gene linkage is flanked on both ends by DNA homologous to a DNA sequence flanking a region of pox DNA containing a nonessential locus. The resulting plasmid construct is then amplified by growth within *E. coli* bacteria (Clewell, 1972) and isolated (Clewell et al., 1969; Maniatis et al., 1982).

Second, the isolated plasmid containing the DNA gene sequence to be inserted is transfected into a cell culture, e.g. chick embryo fibroblasts, along with the poxvirus. Recombination between homologous pox DNA in the plasmid and the viral genome respectively gives a poxvirus modified by the presence, in a nonessential region of its genome, of foreign DNA sequences. The term "foreign" DNA designates exogenous DNA, particularly DNA from a non-pox source, that codes for gene products not ordinarily produced by the genome into which the exogenous DNA is placed.

Genetic recombination is in general the exchange of homologous sections of DNA between two strands of DNA.

In certain viruses RNA may replace DNA. Homologous

WO 97/20054 PCT/US96/19274

4

sections of nucleic acid are sections of nucleic acid (DNA or RNA) which have the same sequence of nucleotide bases.

Genetic recombination may take place naturally

during the replication or manufacture of new viral
genomes within the infected host cell. Thus, genetic
recombination between viral genes may occur during the
viral replication cycle that takes place in a host cell
which is co-infected with two or more different viruses
or other genetic constructs. A section of DNA from a
first genome is used interchangeably in constructing the
section of the genome of a second co-infecting virus in
which the DNA is homologous with that of the first viral
genome.

However, recombination can also take place between 15 sections of DNA in different genomes that are not perfectly homologous. If one such section is from a first genome homologous with a section of another genome except for the presence within the first section of, for example, a genetic marker or a gene coding for an 20 antiquenic determinant inserted into a portion of the homologous DNA, recombination can still take place and the products of that recombination are then detectable by the presence of that genetic marker or gene in the recombinant viral genome. Additional strategies have 25 recently been reported for generating recombinant vaccinia virus.

Successful expression of the inserted DNA genetic sequence by the modified infectious virus requires two conditions. First, the insertion must be into a nonessential region of the virus in order that the modified virus remain viable. The second condition for expression of inserted DNA is the presence of a promoter in the proper relationship to the inserted DNA. The promoter must be placed so that it is located upstream from the DNA sequence to be expressed.

30

35

Vaccinia virus has been used successfully to immunize against smallpox, culminating in the worldwide eradication of smallpox in 1980. In the course of its history, many strains of vaccinia have arisen. These different strains demonstrate varying immunogenicity and are implicated to varying degrees with potential complications, the most serious of which are post-vaccinial encephalitis and generalized vaccinia (Behbehani, 1983).

With the eradication of smallpox, a new role for vaccinia became important, that of a genetically engineered vector for the expression of foreign genes. Genes encoding a vast number of heterologous antigens have been expressed in vaccinia, often resulting in protective immunity against challenge by the corresponding pathogen (reviewed in Tartaglia et al., 1990a, 1990b).

The genetic background of the vaccinia vector has been shown to affect the protective efficacy of the expressed foreign immunogen. For example, expression of Epstein Barr Virus (EBV) gp340 in the Wyeth vaccine strain of vaccinia virus did not protect cottontop tamarins against EBV virus induced lymphoma, while expression of the same gene in the WR laboratory strain of vaccinia virus was protective (Morgan et al., 1988).

A fine balance between the efficacy and the safety of a vaccinia virus-based recombinant vaccine candidate is extremely important. The recombinant virus must present the immunogen(s) in a manner that elicits a protective immune response in the vaccinated animal but lacks any significant pathogenic properties. Therefore attenuation of the vector strain would be a highly desirable advance over the current state of technology.

A number of vaccinia genes have been identified

35 which are non-essential for growth of the virus in tissue culture and whose deletion or inactivation reduces virulence in a variety of animal systems.

WO 97/20054

PCT/US96/19274

6

The gene encoding the vaccinia virus thymidine kinase (TK) has been mapped (Hruby et al., 1982) and sequenced (Hruby et al., 1983; Weir et al., 1983).

Inactivation or complete deletion of the thymidine kinase gene does not prevent growth of vaccinia virus in a wide variety of cells in tissue culture. TK vaccinia virus is also capable of replication in vivo at the site of inoculation in a variety of hosts and administered by a variety of routes.

10 It has been shown for herpes simplex virus type 2 that intravaginal inoculation of guinea pigs with TK virus resulted in significantly lower virus titers in the spinal cord than did inoculation with TK virus (Stanberry et al., 1985). It has been demonstrated that herpesvirus encoded TK activity in vitro was not important for virus growth in actively metabolizing cells, but was required for virus growth in quiescent cells (Jamieson et al., 1974).

Attenuation of TK vaccinia has been shown in mice inoculated by the intracerebral and intraperitoneal 20 routes (Buller et al., 1985). Attenuation was observed both for the WR neurovirulent laboratory strain and for the Wyeth vaccine strain. In mice inoculated by the intradermal route, TK recombinant vaccinia generated equivalent anti-vaccinia neutralizing antibodies as 25 compared with the parental TK+ vaccinia virus, indicating that in this test system the loss of TK function does not significantly decrease immunogenicity of the vaccinia virus vector. Following intranasal inoculation of mice 30 with TK and TK recombinant vaccinia virus (WR strain), significantly less dissemination of virus to other locations, including the brain, has been found (Taylor et al., 1991a).

Another enzyme involved with nucleotide metabolism

is ribonucleotide reductase. Loss of virally encoded ribonucleotide reductase activity in herpes simplex virus (HSV) by deletion of the gene encoding the large subunit

was shown to have no effect on viral growth and DNA synthesis in dividing cells in vitro, but severely compromised the ability of the virus to grow on serum starved cells (Goldstein et al., 1988). Using a mouse model for acute HSV infection of the eye and reactivatable latent infection in the trigeminal ganglia, reduced virulence was demonstrated for HSV deleted of the large subunit of ribonucleotide reductase, compared to the virulence exhibited by wild type HSV (Jacobson et al., 1989).

Both the small (Slabaugh et al., 1988) and large (Schmidtt et al., 1988) subunits of ribonucleotide reductase have been identified in vaccinia virus. Insertional inactivation of the large subunit of ribonucleotide reductase in the WR strain of vaccinia virus leads to attenuation of the virus as measured by intracranial inoculation of mice (Child et al., 1990).

The vaccinia virus hemagglutinin gene (HA) has been mapped and sequenced (Shida, 1986). The HA gene of vaccinia virus is nonessential for growth in tissue culture (Ichihashi et al., 1971). Inactivation of the HA gene of vaccinia virus results in reduced neurovirulence in rabbits inoculated by the intracranial route and smaller lesions in rabbits at the site of intradermal inoculation (Shida et al., 1988). The HA locus was used for the insertion of foreign genes in the WR strain (Shida et al., 1987), derivatives of the Lister strain (Shida et al., 1988) and the Copenhagen strain (Guo et al., 1989) of vaccinia virus. Recombinant HA vaccinia virus expressing foreign genes have been shown to be immunogenic (Guo et al., 1989; Itamura et al., 1990; Shida et al., 1988; Shida et al., 1987) and protective against challenge by the relevant pathogen (Guo et al., 1989: Shida et al., 1987).

Cowpox virus (Brighton red strain) produces red (hemorrhagic) pocks on the chorioallantoic membrane of chicken eggs. Spontaneous deletions within the cowpox

WO 97/20054

genome generate mutants which produce white pocks (Pickup et al., 1984). The hemorrhagic function (<u>u</u>) maps to a 38 kDa protein encoded by an early gene (Pickup et al., 1986). This gene, which has homology to serine protease inhibitors, has been shown to inhibit the host inflammatory response to cowpox virus (Palumbo et al., 1989) and is an inhibitor of blood coagulation.

The <u>u</u> gene is present in WR strain of vaccinia virus (Kotwal et al., 1989b). Mice inoculated with a WR vaccinia virus recombinant in which the <u>u</u> region has been inactivated by insertion of a foreign gene produce higher antibody levels to the foreign gene product compared to mice inoculated with a similar recombinant vaccinia virus in which the <u>u</u> gene is intact (Zhou et al., 1990). The <u>u</u> region is present in a defective nonfunctional form in Copenhagen strain of vaccinia virus (open reading frames B13 and B14 by the terminology reported in Goebel et al., 1990a, b).

Cowpox virus is localized in infected cells in cytoplasmic A type inclusion bodies (ATI) (Kato et al., 20 The function of ATI is thought to be the protection of cowpox virus virions during dissemination from animal to animal (Bergoin et al., 1971). The ATI region of the cowpox genome encodes a 160 kDa protein which forms the matrix of the ATI bodies (Funahashi et al., 1988; Patel et al., 1987). Vaccinia virus, though containing a homologous region in its genome, generally does not produce ATI. In WR strain of vaccinia; the ATI region of the genome is translated as a 94 kDa protein (Patel et al., 1988). In Copenhagen strain of vaccinia 30 virus, most of the DNA sequences corresponding to the ATI region are deleted, with the remaining 3' end of the region fused with sequences upstream from the ATI region to form open reading frame (ORF) A26L (Goebel et al., 35 1990a,b).

A variety of spontaneous (Altenburger et al., 1989; Drillien et al., 1981; Lai et al., 1989; Moss et al.,

35

1981; Paez et al., 1985; Panicali et al., 1981) and engineered (Perkus et al., 1991; Perkus et al., 1989; Perkus et al., 1986) deletions have been reported near the left end of the vaccinia virus genome. A WR strain 5 of vaccinia virus with a 10 kb spontaneous deletion (Moss et al., 1981; Panicali et al., 1981) was shown to be attenuated by intracranial inoculation in mice (Buller et al., 1985). This deletion was later shown to include 17 potential ORFs (Kotwal et al., 1988b). Specific genes 10 within the deleted region include the virokine N1L and a 35 kDa protein (C3L, by the terminology reported in Goebel et al., 1990a,b). Insertional inactivation of N1L reduces virulence by intracranial inoculation for both normal and nude mice (Kotwal et al., 1989a). The 35 kDa protein is secreted like N1L into the medium of vaccinia 15 virus infected cells. The protein contains homology to the family of complement control proteins, particularly the complement 4B binding protein (C4bp) (Kotwal et al., 1988a). Like the cellular C4bp, the vaccinia 35 kDa protein binds the fourth component of complement and 20 inhibits the classical complement cascade (Kotwal et al., 1990). Thus the vaccinia 35 kDa protein appears to be involved in aiding the virus in evading host defense mechanisms.

The left end of the vaccinia genome includes two genes which have been identified as host range genes, Kil (Gillard et al., 1986) and C7L (Perkus et al., 1990). Deletion of both of these genes reduces the ability of vaccinia virus to grow on a variety of human cell lines (Perkus et al., 1990). 30

Two additional vaccine vector systems involve the use of naturally host-restricted poxviruses, avipox viruses. Both fowlpoxvirus (FPV) and canarypoxvirus (CPV) have been engineered to express foreign gene products. Fowlpox virus (FPV) is the prototypic virus of the Avipox genus of the Poxvirus family. The virus causes an economically important disease of poultry which WO 97/20054 PCT/US96/19274

10

25

30

1Ó

has been well controlled since the '1920's by the use of live attenuated vaccines. Replication of the avipox viruses is limited to avian species (Matthews, 1982) and there are no reports in the literature of avipoxvirus causing a productive infection in any non-avian species including man. This host restriction provides an inherent safety barrier to transmission of the virus to other species and makes use of avipoxvirus based vaccine vectors in veterinary and human applications an attractive proposition.

FPV has been used advantageously as a vector expressing antigens from poultry pathogens. The hemagglutinin protein of a virulent avian influenza virus was expressed in an FPV recombinant (Taylor et al., 1988a). After inoculation of the recombinant into chickens and turkeys, an immune response was induced which was protective against either a homologous or a heterologous virulent influenza virus challenge (Taylor et al., 1988a). FPV recombinants expressing the surface glycoproteins of Newcastle Disease Virus have also been developed (Taylor et al., 1990; Edbauer et al., 1990).

Despite the host-restriction for replication of FPV and CPV to avian systems, recombinants derived from these viruses were found to express extrinsic proteins in cells of nonavian origin. Further, such recombinant viruses were shown to elicit immunological responses directed towards the foreign gene product and where appropriate were shown to afford protection from challenge against the corresponding pathogen (Tartaglia et al., 1993a,b; Taylor et al., 1992; 1991b; 1988b).

Feline infectious peritonitis virus (FIPV) produces a chronic, progressive, immunologically-mediated disease in felines such as domestic and exotic cats. The route of FIPV infection is thought to occur primarily through the oral cavity and pharynx. Clinically apparent FIP occurs after the virus crosses the mucosal barrier and a primary viremia takes FIPV to its many target organs

(liver, spleen, intestine and lungs). Two forms of the disease have been described as effusive (wet) and noneffusive (dry). The effusive form results in the classic fluid accumulation seen in infected cats which is caused 5 by an Arthus-type vasculitis in the target organs mediated by complement activation and an intense inflammatory response. The non-effusive form is characterized by little or no ascitic fluid accumulation but internal organs may be infiltrated with granular 10 fibrinous deposits. Thus, antibodies formed in response to FIPV infection (primarily to the spike protein) tend to enhance the pathogenesis of the disease and are obviously unwanted in a vaccine or immunological composition (Olsen and Scott, 1991). (However, expression of such proteins by a recombinant and the recombinants themselves are useful if one desires antigens or antibodies therefrom for a kit, test or assay or the like).

FIPV is a member of the Coronaviridae family. Coronaviruses are large, positive stranded RNA viruses 20 with genomic lengths of 27-30 kb. The virion is enveloped and is studded with peplomeric structures called spikes. The left half of the FIPV genome encodes a large polyprotein which is cleaved into smaller fragments, some of which are involved in RNA replication. The right half of the FIPV genome encodes 3 major structural proteins designated nucleocapsid (N), matrix (M) and spike (S). The FIPV S gene product mediates attachment of the virus to the cell receptor, triggers 30 membrane fusion, and elicits virus-neutralizing The N protein is necessary for encapsidating antibodies. genomic RNA and directing its incorporation into the capsid, and is thought to be involved in RNA replication. The FIPV M glycoprotein appears to be important for FIP 35 viral maturation and for the determination of the site at which virus particles are assembled (Spann et al., 1988). Because of the antibody-dependent enhancement (ADE)

of FIP in cats, attempts to produce a safe and

efficacious vaccine or immunological composition against FIPV have been largely unsuccessful. Inactivated FIPV vaccines and heterologous live coronavirus vaccines did not afford any protection against FIPV infection and vaccination usually resulted in increased sensitization to the disease. A modified live virus vaccine, Primucell, is the first and only commercially marketed FIPV vaccine. Primucell is a temperature sensitive strain of FIPV that can replicate at the cooler temperatures of the nasal cavity, but not at systemic body temperatures (Gerber et al., 1990). intranasally administered Primucell is thought to produce a localized immunity to FIPV. However, serious questions remain concerning the efficacy and enhancement potential of this vaccine (Olsen and Scott, 1991). 15

Vaccinia virus has been used as a vector for generating recombinant viruses expressing FIPV structural genes. A recombinant expressing the FIP M gene was shown to increase the survival time of cats after challenge with FIPV (Vennema et al., 1990).

Vennema, et al. (1991) relates to primary structure of the membrane and nucleocapsid protein genes of feline infectious peritonitis virus and to certain recombinant vaccinia viruses thereof introduced into kittens. 25 Vennema et al. FIPV matrix gene was cloned from a pathogenic strain (79-1146) and its sequence appears identical to the matrix gene (discussed herein). Vennema et al. recombinant, vFM, contains the coding region of matrix coupled to the vaccinia 7.5K early/late promoter inserted at the thymidine kinase (tk) locus. Note that the promotor was not linked precisely to the matrix ATG initiation codon, but rather to a position 48 bp upstream from the ATC. Also, a vaccinia T5NT early transcriptional termination signal (Yuen et al., 1987) located in the coding region of the matrix gene was not removed.

Moreover, the vaccinia strain in Vennema et al. is the WR strain (Vennema et al. at page 328, left column,

first 2 lines; see also, the donor plasmids and control viruses as mentioned on the same page in the section "Construction of Recombinant Vaccinia Viruses expressing the FIPV M and N proteins" beginning at mid-left column 5 clearly indicate via literature citations that the WR strain is used). The choice of strain is important because the WR strain is a laboratory virus - not a vaccine strain - and the virulence characteristics of the WR strain do not make it a presently acceptable vector 10 for a recombinant that may contact humans, let alone a recombinant in a composition such as a vaccine or antigenic or immunological composition targeted to felines, such as kittens, or other animals in contact with humans, especially young children or immunosuppressed individuals, due to recent concerns of 15 contact transmission (such "other animals" could be laboratory cell cultures or animals for antigen expression or for antibody production for making kits, tests or assays).

Thus, the Vennema, et al. articles fail to teach or suggest the recombinants, compositions and methods of the present invention.

More particularly, recombinants in the present invention preferably employ NYVAC or vectors (NYVAC and ALVAC are highly attenuated vectors having a BSL1 containment level).

Further, in constructs of the present invention, preferably the coding region is coupled to the promotor in a precise coupling to the ATG codon with no

30 intervening sequence. (Any T5NT sequence can be inactivated by a base substitution which does not change the amino acid sequence but will prevent early transcriptional termination in a poxvirus vector). In addition, multiple, e.g., two, copies of the coding region directly coupled to the promotor can be present in each recombinant viral genome in the present invention.

The Vennema et al. efficacy study used SPF kittens (13-14 weeks old) which were vaccinated subcutaneously at

35

day 0 and day 21 with 1 x 10 $^{\circ}$ and 5 x 10 $^{\circ}$ pfu respectively. On day 35 the cats were challenged orally with FIP strain 79-1146.

The herein protocol was similar, with the major

difference being a lower vaccination dose (1 x 107). The
Vennema protection results were based on mortality with 3
of 8 cats vaccinated with vFM surviving (37.5%). Vennema
et al. deemed their challenge sufficient in that 7 of 8
unvaccinated cats succumbed to the challenge exposure and
died. Upon necropsy, all challenged cats, in Vennema et
al. including the three surviving vFM vaccinated cats,
had pathological signs of FIP infection including
peritoneal effusions and granulomatous lesions on the
viscera.

By contrast, the trials herein were more stringent. 15 Herein applicants scored protection as surviving and being free from FIP pathology upon necropsy. Using this criteria, Applicants had 3 out of 5 cats vaccinated with vCP262 protected (60%) with 0% of the unvaccinated cats 20 protected. If the Vennema et al. results were scored using Applicants' criteria, Vennema would have had no protection; and ergo no recombinant suitable for vaccine In addition, the Vennema et al. observed fever and weight loss in all challenged cats. In Applicants' 25 trials, (see trial 3 in particular) Applicants' observed even no weight loss and a lower febrile response after challenge.

Thus, the recombinants of the present invention employ an acceptable vector for all uses and a surprisingly higher protection level at a lower dose than the Vennema et al. vaccinia recombinant.

Recent studies using monoclonal antibodies directed against the S gene (Olsen et al., 1992) have shown also that mABs which neutralize the virus also cause ADE. No enhancement is observed with mABs against matix or nucleocapsid proteins.

Thus, prior to the present invention, there has been a need for poxvirus-FIPV recombinants, especially such

20

25

35

recombinants using an acceptable vector and such recombinants having expression at low doses which indeed affords protection; and, there has been a need for compositions containing such recombinants, as well as a 5 need for methods for making and using them. And, moreover, it would be especially surprising and unexpected if this poxvirus-FIPV recombinant was modified so as to be attenuated, e.g., an attenuated vaccinia virus-FIPV recombinant or an attenuated avipox-FIPV recombinant, such as a NYVAC-FIPV or ALVAC-FIPV recombinant; because, for instance, from attenuation and, diminished or lack of productive replication of the poxvirus in the host, one skilled in the art would have not expected and would be surprised by the usefulness of 15 the attenuated recombinant, especially in a composition for felines and other hosts, and more especially in such a composition which provides a response including protection in felines.

Attenuated poxvirus vectors would also be especially advantageous for antigenic or vaccine compositions, particularly in view of attenuated vectors providing diminished or little or no pathogenic properties with regard to the intended host or, to unintended, possibly accidental hosts, such as those who work with the vector in formulating or administering the vector or antigen, or who may otherwise come into contact with it. That is, attenuated poxvirus vectors provide diminished or little or no pathogenic properties to intended hosts such as cats, kittens and the like and to unintended, possibly accidental hosts, such as humans engaged in formulating the vector into a composition for administration or in administering the composition (e.g., veterinarians, technicians, other workers) or, who may otherwise come into contact with the vector (e.g., pet owners).

It can thus be appreciated that provision of a FIPV recombinant poxvirus, and of compositions and products therefrom, particularly NYVAC or ALVAC based FIPV recombinants and compositions and products therefrom,

would be a highly desirable advance over the current state of technology.

OBJECTS AND SUMMARY OF THE INVENTION

It is therefore an object of this invention to

5 provide modified recombinant viruses, which viruses have enhanced safety, and to provide a method of making such recombinant viruses.

Additional objects of this invention include: to provide a recombinant poxvirus-FIPV, compositions

10 containing the recombinant, antigen(s) from the recombinant or from the composition, methods for making the recombinant and composition, methods of using the compositions or the recombinant, e.g., in vivo and in vitro uses for expression by administering or infecting.

15 Preferably the poxvirus-FIPV recombinant composition is an antigenic, or vaccine or immunological composition (i.e., a composition containing a recombinant which expresses antigen, or the product from expression of the antigen).

It is a further object of this invention to provide a modified vector for expressing a gene product in a host, wherein the vector is modified so that it has attenuated virulence in the host.

It is another object of this invention to provide a
method for expressing a gene product in a cell cultured
in vitro using a modified recombinant virus or modified
vector having an increased level of safety and to provide
the use of such product in compositions.

In one aspect, the present invention relates to a

modified recombinant virus having inactivated virusencoded genetic functions so that the recombinant virus
has attenuated virulence and enhanced safety. The
functions can be non-essential, or associated with
virulence. The virus is advantageously a poxvirus,

particularly a vaccinia virus or an avipox virus, such as
fowlpox virus and canarypox virus. The modified
recombinant virus can include, within a non-essential

25

30

region of the virus genome, a heterologous DNA sequence which encodes an antigen or epitope derived from FIPV.

In another aspect, the present invention relates to an antigenic, immunological or vaccine composition or a therapeutic composition for inducing an antigenic or immunological or protective response in a host animal inoculated with the composition, said composition including a carrier and a modified recombinant virus having inactivated nonessential virus-encoded genetic functions so that the recombinant virus has attenuated virulence and enhanced safety. The virus used in the composition according to the present invention is advantageously a poxvirus, particularly a vaccinia virus or an avipox virus, such as fowlpox virus and canarypox virus. The modified recombinant virus can include, within a non-essential region of the virus genome, a heterologous DNA sequence which encodes an antigenic protein, e.g., derived from FIPV. The composition can contain a recombinant poxvirus which contains coding for 20 and expresses FIPV antigen(s) or the isolated antigen(s).

In yet another aspect, the present invention relates to methods employing the aforementioned recombinant or composition; for instance, for obtaining an in vivo response to FIPV antigen(s). The method can comprise administering the recombinant or composition either to felines or other hosts, e.g., laboratory animals such as rodents such as rats, mice, gerbils or the like for antibody production for kits, assays and the like.

In a further aspect, the present invention relates to a method for expressing a gene product in a cell in vitro by introducing into the cell a modified recombinant virus having attenuated virulence and enhanced safety. The modified recombinant virus can include, within a nonessential region of the virus genome, a heterologous DNA sequence which encodes an antigenic protein, e.g. derived from FIPV virus. The product can then be administered to individuals, e.g., felines or mice to stimulate an immune response. The antibodies raised can

be useful in individuals for the prevention or treatment of FIPV or and, the antibodies from individuals or animals or the isolated in vitro expression products can be used in diagnostic kits, assays or tests to determine the presence or absence in a sample such as sera of rabies or other maladies or antigens therefrom or antibodies thereto (and therefore the absence or presence of the virus or of the products, or of an immune response to the virus or antigens).

In a still further aspect, the present invention 10 relates to a modified recombinant virus and compositions containing such. The virus can have nonessential virusencoded genetic functions inactivated therein so that the virus has attenuated virulence, and the modified recombinant virus further contains DNA from a 15 heterologous source in a nonessential region of the virus The DNA can code for FIPV antigen(s). genome. particular, the genetic functions are inactivated by deleting an open reading frame encoding a virulence factor or by utilizing naturally host restricted viruses. 20 The virus used according to the present invention is advantageously a poxvirus, particularly a vaccinia virus or an avipox virus, such as fowlpox virus and canarypox virus. Advantageously, the open reading frame is selected from the group consisting of J2R, B13R + B14R, 25 A26L, A56R, C7L - K1L, and I4L (by the terminology reported in Goebel et al., 1990a,b); and, the combination In this respect, the open reading frame thereof. comprises genomic regions which comprise a thymidine kinase gene, a hemorrhagic region, an A type inclusion 30 body region, a hemagglutinin gene, a host range gene region or a large subunit, ribonucleotide reductase; or, the combination thereof. A suitable modified Copenhagen strain of vaccinia virus is identified as NYVAC

35 (Tartaglia et al., 1992), or a vaccinia virus from which has been deleted J2R, B13R+B14R, A26L, A56R, C7L-K1l and I4L or a thymidine kinase gene, a hemorrhagic region, an A type inclusion body region, a hemagglutinin gene, a

15

20

30

35

host range region, and a large subunit, ribonucleotide reductase (See also U.S. Patent No. 5,364,773).

Alternatively, a suitable poxvirus is an ALVAC or, a canarypox virus (Rentschler vaccine strain) which was attenuated, for instance, through more than 200 serial passages on chick embryo fibroblasts, a master seed therefrom was subjected to four successive plaque purifications under agar from which a plaque clone was amplified through five additional passages.

The invention in yet a further aspect relates to the product of expression of the inventive poxvirus-FIPV recombinant and uses therefor, such as to form antigenic, immunological or vaccine compositions, for administration to a host, e.g., animals, such as felines, or for administration for protection or response or for treatment, prevention, diagnosis or testing, and, to methods employing such compositions. The FIPV antigen(s), or the DNA encoding FIPV antigen(s) can code for M, N, and the three versions of S; S1, S2, S3, or combinations thereof, e.g., M+N.

The present invention (recombinants, compositions and methods and uses) finds a basis in the discoveries that NYVAC and ALVAC recombinants, particularly NYVAC- and ALVAC-FIPV recombinants, surprisingly have expression despite attenuation, and expression which can confer a truly protective response in a susceptible host.

These and other embodiments are disclosed or are obvious from and encompassed by the follow detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

The following detailed description, given by way of example, but not intended to limit the invention solely to the specific embodiments described, may best be understood in conjunction with the accompanying drawings, in which:

Figure 1 shows the DNA sequence of FIPV matrix gene open reading frame (strain 79-1146);

shows the DNA sequence of the FIPV matrix . Figure 2 gene donor plasmid (The modified matrix gene coding region is initiated at 2408 and terminates at 1620; the entomopox 42K 5 promoter starts at 2474; the C5 left arm is from 1 to 1549 and the C5 right arm is from 2580 to 2989); Figure 3 shows the DNA sequence of FIPV nucleocapsid gene open reading frame (strain 79-1146); 10 Figure 4 shows the DNA sequence of the FIPV nucleocapsid gene donor plasmid (the nucleocapsid gene coding region initiates at 2101 and terminates at 968; the vaccinia I3L promoter starts at 2160; the C3 left arm is from 1 to 939 and the C3 15 right arm is from 2285 to 4857); Figure 5 shows the DNA sequence of FIPV spike gene open reading frame (strain 79-1146); Figure 6 shows the DNA sequence of the FIPV spike 20 gene donor plasmid (the modified spike gene coding region is initiated at 591 and terminates at 4976; the vaccinia H6 promoter starts at 471; the C6 left arm is from 1 to 387 and the C6 right arm is from 25 4983 to 6144); Figure 7 shows the DNA sequence of the FIPV spike gene minus signal sequence donor plasmid (the modified spike gene coding region is initiated at 591 and terminates at 4922; 30 the vaccinia H6 promoter starts at 471; the C6 left arm is from 1 to 387 and the C6 right arm is from 4929 to 6090); Figure 8 shows the DNA sequence of the FIPV spike gene C-terminal fragment donor plasmid 35 (the modified spike gene coding region initiates at 591 and terminates at 2369: the vaccinia H6 promoter starts at 471;

10

15

30

35

the C6 left arm is from 1 to 387 and the C6 right arm is from 2376 to 3537);

- Figure 9 shows the DNA sequence of a 7351 bp fragment of canarypox DNA containing the C3 open reading frame (the C3 ORF is initiated at position 1458 and terminates at position 2897);
- Figure 10 shows the DNA sequence of a 3208 bp fragment of canarypox DNA containing the C5 open reading frame (the C5 ORF is initiated at position 1537 and terminates at position 1857); and,
- Figure 11 shows the DNA sequence of a 3706 bp fragment of canarypox DNA containing the C6 open reading frame (the C6 ORF is initiated at position 377 and terminates at position 2254).

DETAILED DESCRIPTION OF THE INVENTION

To develop a new vaccinia vaccine strain, NYVAC (vP866), the Copenhagen vaccine strain of vaccinia virus 20 was modified by the deletion of six nonessential regions of the genome encoding known or potential virulence The sequential deletions are detailed below (See U.S. Patent No. 5,364,773). All designations of vaccinia restriction fragments, open reading frames and 25 nucleotide positions are based on the terminology reported in Goebel et al., 1990a,b.

The deletion loci were also engineered as recipient loci for the insertion of foreign genes.

The regions deleted in NYVAC are listed below. listed are the abbreviations and open reading frame designations for the deleted regions (Goebel et al., 1990a,b) and the designation of the vaccinia recombinant (vP) containing all deletions through the deletion specified:

- (1) thymidine kinase gene (TK; J2R) vP410;
- (2) hemorrhagic region (u; B13R + B14R) vP553;
- (3) A type inclusion body region (ATI; A26L) vP618;

22

- (4) hemagglutinin gene (HA; A56R) vP723;
- (5) host range gene region (C7L K1L) vP804; and
- (6) large subunit, ribonucleotide reductase (I4L) vP866 (NYVAC).

NYVAC is a genetically engineered vaccinia virus 5 strain that was generated by the specific deletion of eighteen open reading frames encoding gene products associated with virulence and host range. NYVAC is highly attenuated by a number of criteria including i) 10 decreased virulence after intracerebral inoculation in newborn mice, ii) inocuity in genetically $(\underline{nu}^*/\underline{nu}^*)$ or chemically (cyclophosphamide) immunocompromised mice, iii) failure to cause disseminated infection in immunocompromised mice; iv) lack of significant induration and ulceration on rabbit skin, v) rapid 15 clearance from the site of inoculation, and vi) greatly reduced replication competency on a number of tissue culture cell lines including those of human origin. Nevertheless, NYVAC based vectors induce excellent responses to extrinsic immunogens and provided protective 20 immunity.

TROVAC refers to an attenuated fowlpox that was a plaque-cloned isolate derived from the FP-1 vaccine strain of fowlpoxvirus which is licensed for vaccination of chicks. ALVAC is an attenuated canarypox virus-based vector that was a plaque-cloned derivative of the licensed canarypox vaccine, Kanapox (Tartaglia et al., 1992). ALVAC has some general properties which are the same as some general properties of Kanapox. ALVAC-based recombinant viruses expressing extrinsic immunogens have also been demonstrated efficacious as vaccine vectors (Tartaglia et al., 1993a,b). This avipox vector is restricted to avian species for productive replication. On human cell cultures, canarypox virus replication is aborted early in the viral replication cycle prior to viral DNA synthesis. Nevertheless, when engineered to express extrinsic immunogens, authentic expression and processing is observed in vitro in mammalian cells and

et al., 1992).

35

inoculation into numerous mammalian species induces antibody and cellular immune responses to the extrinsic immunogen and provides protection against challenge with the cognate pathogen (Taylor et al., 1992; Taylor et al., 1991b). Recent Phase I clinical trials in both Europe and the United States of a canarypox/rabies glycoprotein recombinant (ALVAC-RG) demonstrated that the experimental vaccine was well tolerated and induced protective levels of rabiesvirus neutralizing antibody titers (Cadoz et al., 1992; Fries et al., 1992). Additionally, peripheral blood mononuclear cells (PBMCs) derived from the ALVAC-RG vaccinates demonstrated significant levels of lymphocyte proliferation when stimulated with purified FIPV (Fries

NYVAC, ALVAC and TROVAC have also been recognized as 15 unique among all poxviruses in that the National Institutes of Health ("NIH") (U.S. Public Health Service), Recombinant DNA Advisory Committee, which issues guidelines for the physical containment of genetic material such as viruses and vectors, i.e., guidelines 20 for safety procedures for the use of such viruses and vectors which are based upon the pathogenicity of the particular virus or vector, granted a reduction in physical containment level: from BSL2 to BSL1. No other poxvirus has a BSL1 physical containment level. Even the Copenhagen strain of vaccinia virus - the common smallpox vaccine - has a higher physical containment level; namely, BSL2. Accordingly, the art has recognized that NYVAC, ALVAC and TROVAC have a lower pathogenicity than any other poxvirus. 30

Clearly based on the attenuation profiles of the NYVAC, ALVAC, and TROVAC vectors and their demonstrated ability to elicit both humoral and cellular immunological responses to extrinsic immunogens (Tartaglia et al., 1993a,b; Taylor et al., 1992; Konishi et al., 1992) such recombinant viruses offer a distinct advantage over previously described vaccinia-based recombinant viruses.

WO 97/20054

10

24

PCT/US96/19274

The invention provides poxvirus-FIPV recombinants, preferably NYVAC- and ALVAC-FIPV recombinants which contain exogenous DNA coding for any or all of FIPV, M, N, and the three versions of S; S1, S2, S3, or combinations thereof, e.g., M+N.

The administration procedure for recombinant poxvirus-FIPV or expression product thereof, compositions of the invention such as immunological, antigenic or vaccine compositions or therapeutic compositions, can be via a parenteral route (intradermal, intramuscular or subcutaneous). Such an administration enables a systemic immune response, or humoral or cell-mediated responses.

More generally, the inventive poxvirus-FIPV recombinants, antigenic, immunological or vaccine poxvirus-FIPV compositions or therapeutic compositions 15 can be prepared in accordance with standard techniques well known to those skilled in the pharmaceutical or veterinary art. Such compositions can be administered in dosages and by techniques well known to those skilled in the medical or veterinary arts taking into consideration such factors as the age, sex, weight, species and condition of the particular patient, and the route of administration. The compositions can be administered alone, or can be co-administered or sequentially administered with compositions, e.g., with "other" 25 immunological, antigenic or vaccine or therapeutic compositions thereby providing multivalent or "cocktail" or combination compositions of the invention and methods employing them. Again, the ingredients and manner (sequential or co-administration) of administration, as 3.0 well as dosages can be determined taking into consideration such factors as the age, sex, weight, species and condition of the particular patient, and, the route of administration. In this regard, reference is made to U.S. Serial No. 08/486,969, filed June 7, 1995, incorporated herein by reference, and directed to rabies compositions and combination compositions and uses thereof.

30

35

Examples of compositions of the invention include liquid preparations for orifice, e.g., oral, nasal, anal, vaginal, peroral, intragastric, etc., administration such as suspensions, syrups or elixirs; and, preparations for parenteral, subcutaneous, intradermal, intramuscular or intravenous administration (e.g., injectable administration) such as sterile suspensions or emulsions. In such compositions the recombinant poxvirus or antigens may be in admixture with a suitable carrier, diluent, or 10 excipient such as sterile water, physiological saline, glucose or the like. The compositions can also be lyophilized. The compositions can contain auxiliary substances such as wetting or emulsifying agents, pH buffering agents, adjuvants, gelling or viscosity enhancing additives, preservatives, flavoring agents, 15 colors, and the like, depending upon the route of administration and the preparation desired. Standard texts, such as "REMINGTON'S PHARMACEUTICAL SCIENCE", 17th edition, 1985, incorporated herein by reference, may be consulted to prepare suitable preparations, without undue 20 experimentation. Suitable dosages can also be based upon the examples below.

Further, the products of expression of the inventive recombinant poxviruses and compositions comprising them can be used directly to stimulate an immune response in individuals or in animals. Thus, the expression products can be used in compositions of the invention instead or in addition to the inventive recombinant poxvirus in the aforementioned compositions.

Additionally, the inventive recombinant poxvirus and the expression products therefrom and compositions of the invention stimulate an immune or antibody response in animals; and therefore, those products are antigens. From those antibodies or antigens, by techniques well-known in the art, monoclonal antibodies can be prepared and, those monoclonal antibodies or the antigens, can be employed in well known antibody binding assays, diagnostic kits or tests to determine the presence or

absence of particular FIPV antigen(s); and therefore, the presence or absence of the virus or of the antigen(s) or to determine whether an immune response to the virus or antigen(s) has simply been stimulated. Those monoclonal antibodies or the antigens can also be employed in immunoadsorption chromatography to recover or isolate FIPV antigen(s) or expression products of the inventive recombinant poxvirus or compositions of the invention.

Methods for producing monoclonal antibodies and for uses of monoclonal antibodies, and, of uses and methods for FIPV antigens - the expression products of the inventive poxvirus and compositions - are well known to those of ordinary skill in the art. They can be used in diagnostic methods, kits, tests or assays, as well as to recover materials by immunoadsorption chromatography or by immunoprecipitation.

Monoclonal antibodies are immunoglobulins produced by hybridoma cells. A monoclonal antibody reacts with a single antigenic determinant and provides greater 20 specificity than a conventional, serum-derived antibody. Furthermore, screening a large number of monoclonal antibodies makes it possible to select an individual antibody with desired specificity, avidity and isotype. Hybridoma cell lines provide a constant, inexpensive source of chemically identical antibodies and preparations of such antibodies can be easily standardized. Methods for producing monoclonal antibodies are well known to those of ordinary skill in the art, e.g., Koprowski, H. et al., U.S. Patent No. 4,196,265, issued April 1, 1989, incorporated herein by 30 reference.

Uses of monoclonal antibodies are known. One such use is in diagnostic methods, e.g., David, G. and Greene, H. U.S. Patent No. 4,376,110, issued March 8, 1983; incorporated herein by reference. Monoclonal antibodies have also been used to recover materials by immunoadsorption chromatography, e.g., Milstein, C. 1980,

25

30

Scientific American 243:66, 70, incorporated herein by reference.

Accordingly, the inventive recombinant poxvirus and compositions have several herein stated utilities. utilities also exist for embodiments of the invention.

A better understanding of the present invention and of its many advantages will be had from the following examples, given by way of illustration.

EXAMPLES

DNA Cloning and Synthesis. Plasmids were constructed, screened and grown by standard procedures (Maniatis et al., 1982; Perkus et al., 1985; Piccini et al., 1987). Restriction endonucleases were obtained from Bethesda Research Laboratories, Gaithersburg, MD, New England Biolabs, Beverly, MA; and Boehringer Mannheim Biochemicals, Indianapolis, IN. Klenow fragment of E. coli polymerase was obtained from Boehringer Mannheim Biochemicals. BAL-31 exonuclease and phage T4 DNA ligase were obtained from New England Biolabs. The reagents were used as specified by the various suppliers. 20

Synthetic oligodeoxyribonucleotides were prepared on a Biosearch 8750 or Applied Biosystems 380B DNA synthesizer as previously described (Perkus et al., 1989). DNA sequencing was performed by the dideoxy-chain termination method (Sanger et al., 1977) using Sequenase (Tabor et al., 1987) as previously described (Guo et al., 1989). DNA amplification by polymerase chain reaction (PCR) for sequence verification (Engelke et al., 1988) was performed using custom synthesized oligonucleotide primers and GeneAmp DNA amplification Reagent Kit (Perkin Elmer Cetus, Norwalk, CT) in an automated Perkin Elmer Cetus DNA Thermal Cycler. Excess DNA sequences were deleted from plasmids by restriction endonuclease digestion followed by limited digestion by BAL-31 35 exonuclease and mutagenesis (Mandecki, 1986) using synthetic oligonucleotides.

Cells, Virus, and Transfection. The origins and conditions of cultivation of the Copenhagen strain of

30

vaccinia virus has been previously described (Guo et al., 1989). Generation of recombinant virus by recombination, in situ hybridization of nitrocellulose filters and screening for B-galactosidase activity are as previously described (Piccini et al., 1987).

The origins and conditions of cultivation of the Copenhagen strain of vaccinia virus and NYVAC has been previously described (Guo et al., 1989; Tartaglia et al., 1992). Generation of recombinant virus by recombination, in situ hybridization of nitrocellulose filters and screening for B-galactosidase activity are as previously described (Panicali et al., 1982; Perkus et al., 1989).

NYVAC is prepared by reference to U.S. Patent No. 5,364,773 and allowed U.S. application Serial No.

15 105,483, incorporated herein by reference.

The parental canarypox virus (Rentschler strain) is a vaccinal strain for canaries. The vaccine strain was obtained from a wild type isolate and attenuated through more than 200 serial passages on chick embryo

fibroblasts. A master viral seed was subjected to four successive plaque purifications under agar and one plaque clone was amplified through five additional passages after which the stock virus was used as the parental virus in *in vitro* recombination tests. The plaque purified canarypox isolate is designated ALVAC.

The strain of fowlpox virus (FPV) designated FP-1 has been described previously (Taylor et al., 1988a). It is an attenuated vaccine strain useful in vaccination of day old chickens. The parental virus strain Duvette was obtained in France as a fowlpox scab from a chicken. The virus was attenuated by approximately 50 serial passages in chicken embryonated eggs followed by 25 passages on chicken embryo fibroblast cells. The virus was subjected to four successive plaque purifications. One plaque isolate was further amplified in primary CEF cells and a stock virus, designated as TROVAC, established.

NYVAC, ALVAC and TROVAC viral vectors and their derivatives were propagated as described previously

(Piccini et al., 1987; Taylor et al., 1988a,b). Vero cells and chick embryo fibroblasts (CEF) were propagated as described previously (Taylor et al., 1988a,b).

EXAMPLE 1 - GENERATION OF ALVAC-BASED FIPV RECOMBINANTS

1. Generation of an ALVAC Recombinant Expressing the Feline Infectious Peritonitis Virus (FIPV) Matrix Glycoprotein Gene Open Reading Frame (VCP262).

10

15

20

25

30

40

5

The 79-1146 FIPV strain was obtained from Dr. F. Scott (Cornell University, Ithaca, NY). Total RNA was isolated from FIPV infected CRFK cells using the quanidium isothiocyanate-cesium chloride procedure of Chirgwin, et al., (1979). First strand cDNA was synthesized using AMV reverse transcriptase and random oligonucleotide primers (6 mers) by the procedure of Watson and Jackson (1985), yielding single-stranded cDNA complementary to the FIPV positive strand mRNA.

The matrix gene (M) was amplified by PCR from the first strand cDNA using oligonucleotide primers RG739 (SEQ ID NO:1) (5'-TAAGAGCTCATGAAGTACATTTTGCT-3') and RG740 (SEQ ID NO:2) (5'-ATTGGTACCGTTTAGTTACACCATATG-3'). These primers were derived from Genbank sequence COFIPVMN (Accession # X56496) (Vennema et al., 1991). This 800 bp PCR fragment was digested with Asp718/SacI, gel purified, and ligated into pBluescript SK+ digested with Asp718/SacI to yield pBSFIPM. The M gene ORF was sequenced and is presented in Figure 1 (SEQ ID NO:3).

pBSFIPM was transformed into GM48 (dam-) cells, and plasmid DNA isolated which was demethylated (pBSFIPM-demeth). A 330 bp PCR fragment was amplified from pBSFIPM using oligonucleotides RG751 (SEQ ID NO:4) (5'-TCTGAGCTCTTTATTGGGAAGAATATGATAATATTTT-

- 35 GGGATTTCAAAATTGAAAATATATAATTACAATATAAAATGAAGTACATTTTGCT-3') and RG752 (SEQ ID NO:5)
 - (5'CACATGATCAGCATTTTAATGCCATAAACGAGCCAGCTAAA-TTGTGGTCTGCCATATTG TAACACTGTTATAAATACAATC-3') and digested with SacI/BclI. This fragment was gel purified and ligated into pBSFIPM (demeth) digested with BclI to

20

25

yield pFIPM42K. An 85 bp fragment was generated as a PCR primer-dimer from oligonucleotides RG749 (SEQ ID NO:6) (5'-TCCGAGCTCTAATTAATT-AACGAGCAGATAGTCTCGTTCTCGCCCTGCCTG-3')and RG750 (SEQ ID NO:7) (5'-

ATTTCAAAATTGAAAATATATATATACAATATAAA-3'). The T5NT sequence is modified such that it no longer functions as an early transcription stop signal and no amino acids are changed. This cassette was excised by digesting pFIPM42KVQ with Asp718/HindIII and isolated as a 950bp fragment. The ends of this fragment were blunted using Klenow polymerase and ligated into the ALVAC C5 locus insertion plasmid pNC5LSP-5, digested with SmaI. The resulting donor plasmid, pC5FIPM42K, was confirmed by DNA sequence analysis. It consists of the entomopox 42K promoter coupled to the FIPV matrix ORF at the ATG

This donor plasmid, pC5FIPM42K, was used in *in vivo* recombination (Piccini et al., 1987) with the ALVAC virus vector to generate the recombinant virus vCP262.

flanked by the left and right arms of the ALVAC C5

insertion locus (Figure 2 (SEQ ID NO:9)).

Immunoprecipitation analysis from a radiolabeled

lysate of VERO cells infected with vCP262 using a FIP matrix specific monoclonal antibody designated 15A9.9 (Olsen et al., 1992) showed expression of a 30 kDa polypeptide band. This was consistent with the expected size of the M gene product. In addition, the band comigrated with an immunoprecipitated band from FIPV infected cells. Fluorescent activated cell sorting (FACS) analysis using the same monoclonal antibody showed

25

30

this expressed protein from vCP262 was localized in the cytoplasm of the infected cell.

2. Generation of an ALVAC Recombinant Expressing the FIPV Nucleocapsid Gene Open Reading Frame (vCP261A).

The FIPV nucleocapsid gene (N) was amplified by PCR using the first strand cDNA (described in 1 above) as template and oligonucleotide primers RG741 (SEQ ID NO:10) (5'-TAAGAGCTCATG-GCCACACAGGGACAA-3') and RG742 (SEQ ID NO:11) (5'-TATGGTACCTTA-GTTCGTAACCTCATC-3'). These primers were derived from Genbank sequence COFIPVMN (Accession # X56496) (Vennema et al., 1991). The resulting 1150 bp fragment was digested with Asp718/SacI and ligated into pBluescript SK+ digested with Asp718/SacI resulting in pBSFIPN. The N gene ORF was sequenced and is presented in Figure 3 (SEQ ID NO:12).

The vaccinia I3L promoter (SEQ ID NO:13) (5'TGAGATAAAGTGAAAATATATATCATTATATTACAAAGTACAATTATTTAGGTTTAA

20 TC-3')(Schmitt and Stunnenberg, 1988) was coupled to the
ATG of the N ORF as follows. A 370 bp fragment was
amplified by PCR using pBSFIPN as template and
oligonucleotide primers RG747 (SEQ ID NO:14) (5'CATCAGCATGAGGTCCTGTACC-3') and RG748 (SEQ ID NO:15)

3') and RG750 (SEQ ID NO:7)(5'-TACGAGCTCAAGCTTCCCGGGTTAATTAATTAGTCA

TCAGGCAGGCGAGAACG-3'). This fragment was digested with SacI and ligated into pFIPNI3L digested with SacI to yield pFIPNI3LVQ. The N gene expression cassette (I3L promoted N) was excised as a 1300 bp fragment by digesting pFIPNI3LVQ with Asp718/HindIII. The ends of this fragment were blunted using Klenow polymerase and

PCT/US96/19274

20

ligated into the C3 insertion plasmid, pSPCP3LSA (see below), digested with SmaI. The resulting donor plasmid, pC3FIPNI3L, was confirmed by DNA sequence analysis. It consists of the vaccinia I3L promoter coupled to the FIPV N gene ORF flanked by the left and right arms of the ALVAC C3 insertion locus (Figure 4 (SEQ ID NO:16)).

This donor plasmid, pC3FIPNI3L, was used in *in vivo* recombination (Piccini et al., 1987) with the ALVAC virus vector to generate the recombinant virus vCP261A.

10 Immunoprecipitation analysis from a radiolabeled lysate of VERO cells infected with vCP261A using a FIP nucleocapsid specific monoclonal antibody designated 17B7.1 (Olsen et al., 1992) showed expression of a 45 kDa polypeptide band. This was consistent with the expected size of the N gene product. In addition, the band comigrated with an immunoprecipitated band from FIPV infected cells. FACS analysis using the same monoclonal antibody showed this expressed protein from vCP261A was localized in the cytoplasm of the infected cell.

3. Generation of an ALVAC Recombinant Expressing both the FIPV Matrix and Nucleocapsid Open Reading Frames (vCP282).

Plasmid pC5FIPM42K (Figure 2, SEQ ID NO:9) containing the FIPV matrix gene ORF coupled to the entomopox 42K promoter was used in *in vivo* recombination (Piccini et al., 1987) with the ALVAC-FIP-N recombinant (vCP261A) (described in 2 above) to generate the double recombinant vCP282. This recombinant contains the FIPV M gene ORF (42K promoter) inserted into the C5 locus and the FIPV N gene ORF (I3L promoter) inserted into the C3 locus.

Immunoprecipitation analysis from a radiolabeled lysate of VERO cells infected with vCP282 using a FIP matrix specific monoclonal antibody designated 15A9.9 (Olsen et al., 1992) showed expression of a 30 kDa polypeptide band while using a nucleocapsid specific monoclonal antibody designated 17B7.1 showed expression of a 45 kDa polypeptide band. This was consistent with

25

30

the expected size of the M and N gene products respectively. In addition, both bands comigrated with an immunoprecipitated bands from FIPV infected cells. Fluorescent activated cell sorting (FACS) analysis using the same monoclonal antibodies showed these expressed proteins from vCP282 were localized in the cytoplasm of the infected cell.

4. Generation of an ALVAC Recombinant Expressing the Complete FIPV Spike Glycoprotein Gene ORF (vCP281).

The FIPV spike gene (S) was obtained by PCR amplification from first strand cDNA template (described in 1 above) in three sections. PCR primers were synthesized based on Genbank sequence COFIPE2 (Accession #X06170) (De Groot et al., 1987). The 5' end was amplified by PCR using oligonucleotide primers JP53 (SEQ ID NO:17) (5'-CATCATGAGCTCATGATTGTGCTCGTAAC-3') and JP77 (SEQ ID NO:18) (5'-AACAGCCGCTTGTGCGC-3'). The isolated 1630 bp fragment was digested with SacI/HindIII and ligated into pBluescript SK+ digested with SacI/HindIII to yield pBSFIP-SA, which was confirmed by DNA sequence analysis.

The middle section of S was amplified by PCR using oligonucleotide primers JP84 (SEQ ID NO:19) (5'-CTTGGTATGAAGCTTAG-3') and JP85 (SEQ ID NO:20) (5'-GGTGACTTAAAGCTTGC-3'). The isolated 1715 bp fragment was digested with HindIII and ligated into pBluescript SK+digested with HindIII. Two clones, pKR5 and pKW13 were sequenced and found to have errors (based on Genbank sequence COFIPE2) but in different locations. To correct these PCR errors, a section of pKW13 was replaced with a subfragment from pKR5 as follows. PKR5 was digested with ClaI, blunted with Klenow polymerase, digested with BstEII and a 750 bp fragment isolated and cloned into pKR13 digested with SmaI/BstEII. The resulting plasmid, pBSFIPS-MII, was confirmed by DNA sequence analysis.

The 3' section of S was amplified by PCR using oligonucleotide primers JP71 (SEQ ID NO:21) (5'-

TAATGATGCTATACATC-3') and JP90 (SEQ ID NO:22) (5'-CATCATGGTACCTTAGTGGACATGCACTTT-3'). The isolated 1020 bp fragment was digested with HinDIII/Asp718 and ligated into pBluescript SK+ digested with HinDIII/Asp718 to yield pBSFIPS-C, which was confirmed by DNA sequence analysis.

The complete DNA sequence of the FIPV Spike gene as derived from the 79-1146 strain cDNA is presented in Figure 5 (SEQ ID NO:23).

The spike ORF contains three T5NT early transcriptional stop signals. Two were eliminated from the middle section by introducing mutations via PCR. A 330 bp PCR fragment was amplified from pBSFIPS-MII using oligonucleotide primers RG757B (SEQ ID NO:24) (5'-

15 CATTAGACTCTGTGACGCCATGTGATGTAAGCGCACAAGCGGCTGTTATCGATGGTGCCATAGTTGGAGCTATGACTTCCATTAACA
GT- GAACTGTTAGGCCTAACACATTGGACAACGACACCTAATTTCTATTAC3')and RG758B (SEQ ID NO:25) (5'CATTAGACTGTAAACCTGCATGTATTCAACTTG-

- CACAGATATTGTAAAATTTGTAGGTATCGTGACATTACCAGTGCTAATTGGTTGCAC
 GT-CTCCGTCAGAATGTGTGACGTTAATAAATACCAAAG-3'), digested
 with HgaI/BspMI and cloned into HgaI/BspMI digested
 pBSFIPS-MII to yield pMJ5. Sequence analysis of pMJ5
 revealed a 33 bp deletion which was corrected by
- replacing the 250 bp StuI/BspMI fragment with a PCR fragment amplified from pBSFIPS-MII using oligonucleotide primers RG758B (SEQ ID NO:25) and JP162 (SEQ ID NO:26) (5'-GTGAACTGTTAGGCCTAACACA-TTGGACAACGACACCTAATTTCTATTAC-
- 3'). The isolated fragment was digested with StuI/BspMI and ligated into pMJ5 digested with StuI/BspMI to yield pNR3. This plasmid had a base change at position 2384 which was corrected using the U.S.E. mutagenesis kit (Pharmacia) to yield pBSFIPS-MIIDII. This plasmid contains the middle section of the S gene with changed T5NT sequences and the introduction of new ClaI and StuI sites while maintaining the correct amino acid sequence.

In order to couple the vaccinia H6 promoter (SEQ ID NO:27) (5'-

TTCTTTATTCTATACTTAAAAAGTGAAAATAAATACAAAGGTTCTTGAGGGTTGTGTTAAATTGAAAGCGAGAAAAAAAATAATCATAAATTATTTCATTATCGC
G-ATATCCGTTAAGTTTGTATCGTA-3') (Perkus et al., 1989) to
the ATG of the S gene the following was performed. The
3' end of the H6 promoter coupled to the S gene amplified
as a PCR fragment from pBSFIPS-A (5' section of S gene)
using oligonucleotide primers RG755 (SEQ ID NO:28) (5'CTTGTATGCATTCATTATTTG-3') and RG756 (SEQ ID NO:29) (5'TCCGAGCTCGATATCCGTTAAGTTTGTATCGTAATGATTGTGCTCGTAAC-3').

The 100 bp fragment was digested with SacI/NsiI and
ligated to pBSFIPS-A digested with SacI/NsiI to yield
pBSFIPS-AH6.

To remove the T5NT sequence in the 5' section of the spike gene without altering the amino acid sequence, a 350 bp PCR fragment was amplified from pBSFIPS-AH6 using oligonucleotide primers RG753 (SEQ ID NO:30) (5'-TCACTGCAGATGTACAATCTG-3') and RG754 (SEQ ID NO:31) (5'-CAGTATACGATGTGTAAGCAATTGTCCAAAAA-GCTCCACTAACACCAGTGGTTAAAT-

TAAAAGATATACAACCAATAGGAAATGTGCTAAAGAAATTGTAACCATTAATATAGA AATGG-3'). The fragment was digested with PstI/AccI and ligated into pBSFIPS-AH6 digested with PstI/AccI to yield pNJ1.

The 5', middle and 3' ends of the S gene were

coupled together to form the complete ORF as follows.

First, the 3' section was excised as a 1000 bp fragment by digesting pBSFIPS-C with Asp718/HinDIII and ligating into pNJI (5' section) digested with Asp718/HinDIII yielding pBSFIPS-A/CH6. The middle section was added by excising a 1700 bp fragment from pBSFIPSMIIDII by digesting with HinDIII and ligating into pBSFIPS-A/CH6 digested with HinDIII and screened for orientation. The resulting plasmid, pBSFIPSH6II, contains the complete S ORF coupled to the 3' end of the H6 promoter with all three T5NT sequences eliminated.

To insert the complete S ORF into a C6 donor plasmid, a 4.4 kb cassette was excised from pBSFIPSH6II by digesting with EcoRV/EcoRI and filling in the ends

WO 97/20054

36

PCT/US96/19274

with Klenow polymerase. This cassette was ligated into pJCA070 digested with EcoRV/EcoRI and filled in with Klenow polymerase. The resulting plasmid, pOG9, was found by DNA sequence analysis to have a 110 bp insert in 5 the H6 promoter between the NruI and EcoRV sites. remove these sequences, pOG9 was digested with NruI/EcoRV and religated to yield the donor plasmid pC6FIPSH6II which has the complete H6 promoter minus four base pairs between the NruI and EcoRI sites which is not required 10 for early and late transcription. This plasmid consists of the left arm of the C6 locus, the H6 promoter, complete S gene ORF and the right arm of the C6 locus (Figure 6 (SEO ID NO:32)). A mutation in the stop codon adds an additional nine amino acids to the C-terminus of spike (Figure 7). 15

This donor plasmid, pC6FIPSH6II, was used in *in vivo* recombination (Piccini et al., 1987) with the ALVAC virus vector to generate the recombinant virus vCP281.

Immunoprecipitation analysis from a radiolabeled lysate of CRFK cells infected with vCP281 using a FIP 20 spike specific monoclonal antibody designated 23F4.5 (Olsen et al., 1992) showed expression of a 220 kDa polypeptide band. This was consistent with the expected size of the S gene product. In addition, the band comigrated with an immunoprecipitated band from FIPV 25 infected cells, consistent with proper glycosylation. FACS analysis using the same monoclonal antibody showed this expressed protein from vCP281 was localized in the cytoplasm of the infected cell. However, inoculation of monolayers of CRFK cells with vCP281 showed strong fusigenic activity, indicating the protein was also on the surface of these cells. No fusigenic activity was observed in CRFK cells infected with the ALVAC parental virus (control).

5. Generation of an ALVAC Recombinant Expressing the FIPV Spike Glycoprotein Gene ORF Minus the Signal Sequence (vCP283B)

The 57 bp signal sequence was removed from the Nterminus of the S gene and replaced by an ATG by
inserting a 270 bp PCR fragment into pOG9 as follows.
The PCR fragment was amplified from pBSFIPS-A using
oligonucleotide primers RG759 (SEQ ID NO:33) (5'GCTATTTTCCATGGCTTCC-3') and RG760 (SEQ ID NO:34) (5'TCCGAGCTCGATATCCGTTAAGTTTGTATCGTAATGA-CAACAAATAATGAATGC3'). The fragment was digested with EcoRV/NcoI and
ligated into pOG9 digested with EcoRV/NcoI to yield
pOM12. pOM12 was digested with EcoRV/NruI and religated
to remove the 110 bp insert in the H6 promoter. The
resulting donor plasmid, pC6FIPSH6-SS, was confirmed by
DNA sequence analysis (Figure 7 (SEQ ID NO:35)).

This donor plasmid, pC6FIPSH6-SS, was used in in vivo recombination (Piccini et al., 1987) with the ALVAC virus vector to generate the recombinant virus vCP283B.

Immunoprecipitation analysis from a radiolabeled lysate of CRFK cells infected with vCP283B using a cat FIP-immune serum (#511) showed expression of a polypeptide band of about 145±10 kDa. This was consistent with the predicted size of a non-glycosylated S gene product. Immunofluorescence analysis using the same polyclonal serum showed this expressed protein was localized in the cytoplasm of vCP283B infected CEF cells. No fusigenic activity was observed in CRFK cells.

- Generation of an ALVAC Recombinant Expressing the C-terminal Section of the FIPV Spike Glycoprotein Gene ORF (vCP315).
- aa out of 1452 aa total) was linked to the H6 promoter as follows. pOG9 was digested with NruI/BstEII and a 6.2 kb fragment isolated. This fragment contains the 1749 bp C-terminal portion of the S gene. A fragment containing the 3' end of the H6 promoter coupled to an ATG codon flanked by a BstEII site was generated by annealing oligonucleotides JP226 (SEQ ID NO:36) (5'-CATTAGCATGATATCCGTTAAGTTTGTATCGT-AATGGGTAACCCTGAGTAGCAT-3') and JP227 (SEQ ID NO:37) (5'-

ATGCTACTCAGGGTTACCCATTACGATACAAACTTAACGGATATCATGCTAATG-3') and digesting with NruI/BstEII. This fragment was ligated into the 6.2 kb pOG9 fragment (see 4 above) to yield the donor plasmid pC6FIPSH6-C, which was confirmed by DNA sequence analysis (Figure 8 (SEQ ID NO:38)).

This donor plasmid, pC6FIPSH6-C, was used in *in vivo* recombination (Piccini et al., 1987) with the ALVAC virus vector to generate the recombinant virus vCP315.

Western blot analysis from a lysate of CRFK cells infected with vCP315 using a cat FIP-immune serum (#511) showed expression of a 56 kDa polypeptide band. This was slightly smaller than the predicted size of the truncated, non-glycosylated S gene product (64 kDa). Immunofluorescence analysis using the same polyclonal serum showed a weak detection of the protein localized in the cytoplasm of vCP315 infected CEF cells. No fusigenic activity was observed in CRFK cells.

EXAMPLE 2 - GENERATION OF C3, C5 AND C6 INSERTION PLASMIDS

20

15

10

Generation of C3 insertion plasmid pSPCP3LA.

An 8.5 kb canarypox BglII fragment was cloned into the BamI site of pBluescript SK+ (Stratagene, La Jolla, CA) to yield pWW5. Nucleotide sequence analysis of this fragment revealed an open reading frame designated C3 25 initiated at position 1458 and terminated at position 2897 in the sequence presented in Figure 9 (SEQ ID In order to delete the entire C3 open reading frame (ORF), PCR primers were designed to amplify a 5' 30 and a 3' fragment relative to the C3 ORF. Oligonucleotide primers RG277 (SEQ ID NO:40) (5'-CAGTTG-GTACCACTGGTATTTTATTTCAG-3') and RG278 (SEQ ID NO:41) (5'-TATCTGAATTCCTGCAGCCCGGGTTTTTATAGCTAATTAGTCAAATG-TGAGTTAATATTAG-3') were used to amplify the 5' fragment 35 from pWW5 and oligonucleotide primers RG279 (SEQ ID NO:42)

(5'TCGCTGAATTCGATATCAAGCTTATCGATTTTATGACTAGTTAATCAAATAAA AA-GCATACAAGC-3') were used to amplify the 3' fragment from pWW5. The 5' fragment was digested with

Asp718/EcoRI and the 3' fragment digested with EcoRI/SacI. The 5' and 3' arms were then ligated into pBluescript SK+ digested with Asp718/SacI to yield pC3I. This plasmid contains the C3 insertion locus with the C3 ORF deleted and replaced with a multiple cloning site flanked by vaccinia early transcriptional and translational termination signal. pC3I was confirmed by DNA sequence analysis.

The flanking arms of pC3I were lengthened as A 908 bp fragment upstream of the C3 locus was follows. 10 obtained by digestion of pWW5 with NsiI and SspI. bp PCR fragment was amplified from pWW5 using oligonucleotide primers CP16 (SEQ ID NO:43)(5'-TCCGGTACCGCGCCGCAGATATTTGTTAGCTTCTGC-3') and CP17 (SEQ ID NO:44) (5'-TCGCTCGAGTAGGATACCTACCTACCTA-CG-3'), 15 digested with Asp718/XhoI and ligated into pIBI25 (International Biotechnologies, Inc., New haven, CT) to yield pSPC3LA. pSPC3LA was digested within pIBI25 with EcORV and within the insert (canarypox DNA) with NsiI and 20 ligated to the 908 bp Nsi/SspI fragment generating pSPCPLAX which contains 1444 bp of canarypox DNA upstream of the C3 locus. A 2178 bp BglII/StyI fragment of canarypox DNA was isolated from pXX4 (which contains a 6.5 kb NsiI fragment of canarypox DNA cloned into the PstI site of pBluescript SK+). A 279 bp PCR fragment was amplified from pXX4 using oligonucleotide primers CP19 (SEQ ID NO:45) (5'-TCGCTCGAGCTTTCTTGACAATAACATAG-3') and CP20 (SEQ ID NO:46) (5'-TAGGAGCTCTTTATACTACTGGGTTACAAC-3'), digested with XhoI/SacI and ligated into pIBI25 30 digested with SacI/XhoI to yield pSPC3RA.

To add additional unique sites to the multiple cloning site (MCS) in pC3I, pC3I was digested with EcoRI/ClaI (in the MCS) and ligated to kinased and annealed oligonucleotides CP12 (SEQ ID NO:47) (5'-AATTCCTCGAGGGATCC-3') and (SEQ ID NO:48) (5'-CGGGATCCCTCG-AGG-3') (containing an EcoRI sticky end, XhoI site, BamHI site and a sticky end compatible with ClaI) to yield pSPCP3S. pSPCP3S was digested within the

canarypox sequences downstream of the C3 locus with Styl and SacI (from pBluescript SK+) and ligated to a 261 bp BglII/SacI fragment from pSPC3RA and the 2178 bp BglII/StyI fragment from pXX4 generating pCPRAL containing 2572 bp of canarypox sequences downstream of the C3 locus. pSPCP3S was digested within the canarypox sequences upstream of the C3 locus with Asp718 (in pBluescript SK+) and AccI and ligated to a 1436 bp Asp718/AccI fragment from pSPCPLAX generating pCPLAI containing 1457 bp of canarypox DNA upstream of the C3 10 locus. pCPLAI was digested within the canarypox sequences downstream of the C3 locus with Styl and SacI (in pBluescript SK+) and ligated to a 2438 bp StyI/SacI fragment from pCPRAL generating plasmid pSPCP3LA. left arm of pSPCP3LA was shortened by about 500 bp as pSPCP3LA was digested with NotI/NsiI and a follows. Oligonucleotides CP34 6433 bp fragment was isolated. (SEQ ID NO:49) (5'-GGCCGCGTCGACATGCA-3') and CP35 (SEQ ID NO:50) (5'-TGTCGACGC-3') were annealed and ligated into 20 this fragment to yield pSPCP3LSA. This is the C3 insertion plasmid which consists of 939 bp of canarypox DNA upstream of the C3 locus, stop codons in six reading frames, early transcriptional termination signal, an MCS, early transcriptional termination signal, stop codons in 25 six reading frames and 2572 bp of canarypox DNA downstream of the C3 locus.

Generation of C5 insertion plasmid pNC5LSP-5.

A genomic library of canarypox DNA was constructed in the cosmid vector pVK102 (Knauf and Nester, 1982) probed with pRW764.5 (a pUC9 based plasmid containing an 880 bp canarypox PvuII fragment which includes the C5 ORF) and a cosmid clone containing a 29 kb insert was identified (pHCOS1). A 3.3 kb ClaI fragment from pHCOS1 containing the C5 region was identified. The C5 ORF is initiated at position 1537 and terminated at position 1857 in the sequence shown in Figure 10 (SEQ ID NO:51).

The C5 insertion vector was constructed in two steps. The 1535 bp upstream sequence was generated by

PCR amplification from purified genomic canarypox DNA using oligonucleotide primers C5A (SEQ ID NO:52) (5'-ATCATCGAATTCTGAATGTTAAATGTTATACTTTG-3') and C5B (SEQ ID NO:53) (5'-GGGGGTACCTTTGAGAGTACCACTTCAG-3'). This

fragment was digested with EcoRI and ligated into pUC8 digested with EcoRI/SmaI to yield pC5LAB. The 404 bp arm was generated by PCR amplification using oligonucleotides C5C (SEQ ID NO:54) (5'-

GGGTCTAGAGCGGCCGCTTATAAAGATCTAAAATGCATAATTTC-3') and C5DA

(SEQ ID NO:55) (5'-ATCATCCTGCAGGTATTCTAAACTAGGAATAGATG3'). This fragment was digested with PstI and cloned into SmaI/PstI digested pC5LAB to yield pC5L. pC5L was digested within the MCS with Asp718/NotI and ligated to kinased and annealed oligonucleotides CP26 (SEQ ID NO:56)

15 (5'GTACGTGACTAATTAGCTATAAAAAGGATCCGGTACCCTCGAGTCTAGAATCGATCCCGGGTTTTTATGACTAGTTAATCAC-3') and CP27 (SEQ ID NO:57)
(5'-

GGCCGTGATTAACTAGTCATAAAAACCCCGGGATCGATTCTAGACTCGAGGGTACCGG-ATCCTTTTTATAGCTAATTAGTCAC-3') to yield pC5LSP. This 20 plasmid was digested with EcoRI, ligated with kinased and self-annealed oligonucleotide CP29 (SEQ ID NO:58) (5'-AATTGCGGCCGC-3') and digested with NotI. The linearized plasmid was purified and self-ligated to generate pNC5LSP-5. This C5 insertion plasmid contains 25 1535 bp of canarypox DNA upstream of the C5 ORF, translation stop codons in six reading frames, vaccinia early transcription termination signal, an MCS with BamHI, KpnI, XhoI, ClaI and SmaI restriction sites, 30 vaccinia early termination signal, translation stop codons in six reading frames and 404 bp of downstream canarypox sequence (31 bp of C5 coding sequence and 373

Generation of C6 insertion plasmid pC6L.

bp of downstream canarypox sequence).

Figure 11 (SEQ ID NO:59) is the sequence of a 3.7 kb segment of canarypox DNA. Analysis of the sequence revealed an ORF designated C6L initiated at position 377 and terminated at position 2254. The following describes

a C6 insertion plasmid constructed by deleting the C6 ORF and replacing it with an MCS flanked by transcriptional and translational termination signals. A 380 bp PCR fragment was amplified from genomic canarypox DNA using oligonucleotide primers C6A1 (SEQ ID NO:60) (5'-ATCATCGAG-CTCGCGGCCGCCTATCAAAAGTCTTAATGAGTT-3') and C6B1 (SEQ ID NO:61) (5'GAATTCCTCGAGCTGCAGCCCGGGTTTTTATAGCTAATTAGTCATTTT-TTCGTAAGTAAGTATTTTTATTTAA-3'). A 1155 bp PCR fragment was amplified from genomic canarypox DNA using oligonucleotide primers C6C1 (SEQ ID NO:62) (5'-CCCGGGCTGCAGCTCGAGGAATTCTT-TTTATTGATTAACTAGTCAAATGAGTATATATATGAAAAAGTAA-3') and C6D1 (SEQ ID NO:63) (5'-

15 GATGATGGTACCTTCATAAATACAAGTTTGATTAAACTT-AAGTTG-3'). The 380 bp and 1155 bp fragments were fused together by adding them together as template and amplifying a 1613 bp PCR fragment using oligonucleotide primers C6A1 (SEQ ID NO:49) and C6D1 (SEQ ID NO:52). This fragment was

digested with SacI/KpnI and ligated into pBluescript SK+
digested with SacI/KpnI. The resulting plasmid, pC6L was
confirmed by DNA sequence analysis. It consists of 370
bp of canarypox DNA upstream of C6, vaccinia early
termination signal, translation stop codons in six
reading frames, an MCS containing SmaI, PstI, XhoI and

EcoRI sites, vaccinia early termination signal, translation stop codons in six reading frames and 1156 bp of downstream canary pox sequence.

pJCA070 was derived from pC6L by ligating a cassette containing the vaccinia H6 promoter coupled to another foreign gene into the SmaI/EcoRI sites of pC6L. Cutting pJCA070 with EcoRV/EcoRI excises the foreign gene and the 5' end of the H6 promoter.

EXAMPLE 3 - EFFICACY TRIALS WITH ALVAC-BASED FELINE INFECTIOUS PERITONITIS VIRUS RECOMBINANTS

Trial 1 Safety, antigenicity and efficacy trial with vCP261A(N), vCP262 (M) and vCP282(M+N).

35

Twenty five specific pathogen-free (SPF) 10-12 week old cats from Harlan Sprague Dawley, Inc. were randomly divided into five groups (5 cats/group). Groups were vaccinated subcutaneously (neck area) twice (day 0 and day 21) with 10^7 TCID_{so}/dose with either vCP261, vCP262, Five cats in one group were vCP282 or vCP261A + vCP262. not vaccinated and served as challenge controls. At day 35, all cats were challenged orally with $10^{3.5}$ TCID_{so} per cat with a virulent FIP virus (strain 1146). The cats 10 were observed daily for 33 days post challenge to monitor mortality and visible manifestations of FIP virus infection. At day 33, all surviving cats were necropsied and examined for FIP pathology. The non-effusive form was detected by isolation of FIP virus from the intestinal tract and identification by virus-neutralization tests. 15 Cats with the effusive form had a thick yellow fluid in the peritoneal cavity, white edematous fluid in the pleural cavity and lesions on the intestine, spleen and Some infected cats showed ocular involvement with conjunctivitis, blepharospasm and opalesent retina. 20

None of the vaccinated cats showed any adverse local or systemic postvaccination reactions. All five nonvaccinated cats either died with FIP signs or when necropsied had FIP signs, thus validating the challenge dose. Dead and dying cats displayed signs of both effusive and non-effusive forms of FIP. The results from the ALVAC-FIP recombinant vaccinated cats is presented in Table 1. None of these cats developed virus neutralizing antibody prior to challenge on day 35. All cats had a febrile response following challenge. All vaccinated groups showed partial protection with the best protection in the vCP262 and vCP282 vaccinated groups, each having 3/5 cats with no FIP mortality or signs. Thus, it appears from this study that the ALVAC-FIP matrix recombinants provided the best overall protection.

Trial 2 Safety, antigenicity and efficacy trial with vCP262 (M) in comparison with PRIMUCELL.

Twenty three SPF cats aged 10-12 weeks from Hill Grove, Great Britain were used in this trial. Ten cats were vaccinated subcutaneously with vCP262 at a dose of 108 pfu on days 0 and 21. Five cats received a commercially available FIP vaccine (PRIMUCELL, Smithkline Beecham) which was given as recommended by the manufacturer (2 doses, 21 days apart, intranasal, 104.8 TCID50 per dose). Eight cats were non-vaccinated and served as challenge controls. On day 35, all cats were challenged with a virulent FIP virus (strain 79-1146) at a dose of 320 DECP50 given intranasally. Surviving cats were rechallenged on day 84 and those surviving were necropsied on day 104 and examined for FIP pathology.

None of the vaccinated cats showed any adverse local or systemic postvaccination reactions. Within the control group, four of the cats either died or had FIP pathology when necropsied. The remaining four controls (housed in a separate unit from the other controls) survived both challenges and appeared to be protected.

They all showed significant increase in serum neutralizing antibodies to FIP following challenge, thus indicating exposure to the virus. Whether this indicates technical problems with the challenge protocol or a natural protection is unknown.

Serological analysis showed no significant viral neutralizing antibody titers to FIP in cats receiving two inoculations of vCP262. In contrast, significant titers were observed after one inoculation of PRIMUCELL and these titers were boosted after the second inoculation.

30 Cats in both groups showed high titers following challenge.

The mortality data results for the vaccinated cats is presented in Table 2. In the vCP262 group, 8/10 cats (80%) survived the first challenge, while 6/10 (60%) survived both challenges (60%). In contrast, in the PRIMUCELL group, only 1/5 cats survived the first challenge. The surviving cat also survived the second challenge. It is important to note that 3 of the 4 dead

PRIMUCELL vaccinated cats died on or before day 11 which indicates an enhancement of the normal progression of the disease. No enhancement was observed with vCP262 vaccinated cats. Thus, compared to PRIMUCELL, vCP262 provides greater protection with no enhancement of the disease.

Safety, antigenicity and efficacy trial Trial 3 with vCP262 (M) in combination with the spike recombinants (vCP281(S1), vCP283B(S2) and vCP315(S3)).

10

15

20

35

Thirty six 9 week old SPF cats were received from Harlan Sprague Dawley, Inc. and randomly divided into six groups (6 cats/group). Groups received two subcutaneous inoculations (dose of about 10' TCID, for each recombinant at day 0 and day 21,) with the following recombinants: 1) vCP262 (matrix), 2) vCP262 plus vCP281 (S1 spike - complete), 3) vCP262 plus vCP283B (S2 spike minus signal sequence) and 4) vCP262 plus vCP315 (S3 spike - C-terminal section). One group was vaccinated intranasally with a commercially available FIP vaccine (PRIMUCELL, Pfizer Animal Health) as recommended by the manufacturer (2 doses, day 0 and day 21). One group was not vaccinated and served as challenge controls. 25 days following the second vaccination (day 36), all cats were challenged orally with 103.5 TCID per cat with a virulent FIP virus (NVSL FIP-1146, 89-5-1). were monitored for weight, temperature, serologic response and mortality for 35 days post challenge. Necropsy was performed on the majority of dead cats to 30 look for FIP signs and FIPV virus was isolated from two cats to confirm infection.

None of the cats vaccinated with ALVAC recombinants showed any adverse local or systemic postvaccination reactions. All cats vaccinated with PRIMUCELL had virus neutralizing titers. In the recombinant groups, only cats in the group receiving matrix plus complete spike had virus neutralizing titers (3/6 after the second vaccination).

WO 97/20054 PCT/US96/19274

46

The mortality data is presented in table 3. Necropsied cats showed signs of both the effusive (majority) and non-effusive forms of the disease. One cat had FIP induced encephalitis (control group). The 5 lowest mortality (33%) was observed in the group vaccinated with vCP262 (matrix) alone. Groups receiving vCP262 plus any of the spike recombinants showed little, if any protection. The PRIMUCELL vaccinated group showed a mortality of 66.7%. Antibody induced enhancement (early death) was observed in both the PRIMUCELL and 10 vCP281 (S1 - complete spike) groups. Five out of six (83.3%) of the control nonvaccinated cats died from FIP infection which validated the challenge.

Fever and weight loss are indicators of FIP disease. There was relative postchallenge weight loss in all the groups. However the vCP262 vaccinated group showed only a slight weight loss as compared to PRIMUCELL and the control groups. Chronic fever was observed in all cats, however the group that was vaccinated with vCP262 exhibited consistently lower temperatures that the other 20 groups.

15

From this study it was concluded that vCP262 provided protection (67.7%) against a severe FIP challenge. In addition, cats vaccinated with this recombinant showed a lower febrile response and less weight loss following challenge. The other FIP recombinants (vCP281, vCP283B, and vCP315) as well as PRIMUCELL provided poor protection and even enhancement of mortality (PRIMUCELL, vCP281).

TABLE 1 Results of FIP Efficacy Trial with ALVAC Matrix & Nucleocapsid Recombinants

Groups	Neutra Antibo	rus alizing dy Titer MAT)¹	Mortality		Protection ³	
	Day 35	Day 63	Alive ²	Dead		
Control	<2	>14,190	2(2FIP+)	3	0/5 (0%)	
vCP261A (N)	<2	446	2(1FIP+)	3	1/4 (20%)	
vCP262 (M)	<2	>11,585	4(1FIP+)	1	3/5 (60%)	
vCP282 (M+N)	<2	>16,384	4(1FIP+)	1	3/5 (60%)	
vCP261A (N) + vCP262 (M)	<2 ⁻	>16,384	3(1FIP+)	2	2/5 (40%)	

- Titers expressed as reciprocal of final serum dilution.
- 2. Numbers in parenthesis represent cats with FIP signs at necropsy.
 - 3. No mortality or FIP signs.

TABLE 2 Results of Efficacy Trial Comparing ALVAC Matrix Recombinant with PRIMUCELL

5	Groups	Number of Cats	Mortality		Protection
			1st Challenge Day 35	2nd Challenge ¹ Day 84	·
	Control	8	3	.1	4/8 (50%)
10	vCP262 (M)	10	. 2	2	6/10 (60%)
	PRIMUCELL	5	42	0	1/5 (20%)

- 1. Includes cats necropsied with FIP pathology at day 15 104.
 - Three of these cats died on or before day 11 indicating enhancement.

10

TABLE 3 Mortality Data Comparing ALVAC-based Matrix and Spike Recombinants with PRIMUCELL.

Group	Mortality	Enhancement ¹
vCP262 (M)	2/6 (33%)	NO
vCP262 (M) + vCP281 (S1)	6/6 (100%)	YES
vCP262 (M) + vCP283 (S2)	5/6 (83.3%)	NO
vCP262 (M) + vCP315 (S3)	5/6 (83.3%)	NO
PRIMUCELL	4/6 (66.7%)	YES
Control	5/6 (83.3%)	NO

Death on or prior to day 15 post challenge.

EXAMPLE 4 - GENERATION OF NYVAC-BASED FIPV RECOMBINANTS

Using insertion loci and promoters as in USSN 105,483, incorporated herein by reference, such as by modifying plasmid pRW842 for insertion of rabies glycoprotein G gene into TK deletion locus (used for generation of vP879), e.g., by excising out of pRW842 the rabies DNA and inserting therefor the herein disclosed FIPV DNA coding for M, N, and the three versions of S; S1, S2, S3, or combinations thereof (for instance M and N) and by then employing the resultant plasmids in recombination with NYVAC, vP866, NYVAC-FIPV(M), (N), and the three versions of (S); (S1), (S2), (S3), and (M + N) recombinants are generated; and analysis confirms expression.

Having thus described in detail preferred embodiments of the present invention, it is to be understood that the invention defined by the appended claims is not to be limited by particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope thereof.

REFERENCES

- 1. Altenburger, W., C-P. Suter and J. Altenburger, Archives Virol. 105:15-27 (1989).
- 5 2. Behbehani, A.M., Microbiological Reviews 47:455-509 (1983).
- 3. Bergoin, M., and Dales, S., <u>In</u> Comparative Virology, eds. K. Maramorosch and E. Kurstak, (Academic Press, NY) pp. 169-205 (1971).
 - Buller, R.M.L., G.L. Smith, Cremer, K., Notkins,
 A.L., and Moss, B., Nature 317:813-815 (1985).
- 15 5. Cadoz, M., A. Strady, B. Meignier, J. Taylor, J. Tartaglia, E. Paoletti and S. Plotkin, The Lancet, 339:1429 (1992).
- 6. Child, S.J., Palumbo, G.J., Buller, R.M.L., and Hruby, D.E. Virology **174**:625-629 (1990).
 - 7. Chirgwin, J., Przybyla, A., MacDonald, R., and Rutter, W., Biochem. 18:5294-5299 (1979).
- 25 8. Clewell, D.B. and D.R. Helinski, Proc. Natl. Acad. Sci. USA **62**:1159-1166 (1969).
 - 9. Clewell, D.B., J. Bacteriol 110:667-676 (1972).
- 30 10. De Groot, R., Maduro, J., Lenstra, J., Horzinek, M., Van Der Zeijst, and Spaan, W., J. Gen. Virol 68:2639-2646 (1987).
- 11. Drillien, R., Kochren, F., and Kirn, A., Virology 35 **111**:488-499 (1981).
 - 12. Edbauer, C., R. Weinberg, J. Taylor, A. Rey-Senelonge, J.F. Bouquet, P. Desmettre, E. Paoletti, Virology 179:901-904 (1990).
- 40
 13. Engelke, D.R., Hoener, P.A., Collins, F.S., Proc.
 Natl. Acad. Sci. USA 85:544-548 (1988).
- 14. Fries et al., 32nd Interscience Conference on
 Antimicrobial Agents and Chemotherapy, Anaheim, CA
 (October 1992).
 - 15. Funahashi, S., T. Sato and H. Shida, J. Gen. Virol. **69**:35-47 (1988).
- 16. Gerber, J.D., J.D. Ingersoll, A.M. Gast, K.K. Christianson, N.L. Selzer, R.M. Landon, N.E. Pfeiffer, R.L. Sharpe, and W.H. Beckenhauer, Vaccine 8:536-542 (1990).

- 17. Gillard, S., Spehner, D., Drillien, R., and Kirn, A., Proc. Natl. Acad. Sci. USA 83:5573-5577 (1986).
- 18. Goebel, S.J., Johnson, G.P., Perkus, M.E., Davis,
 S.W., Winslow, J.P., Paoletti, E., Virology 179:247-266 (1990a).
- 19. Goebel, S.J., G.P. Johnson, M.E. Perkus, S.W. Davis, J.P. Winslow and E. Paoletti, Virology **179**:517-563 (1990b).
 - 20. Goldstein, D.J. and S.K. Weller, Virology **166**:41-51 (1988).
- 15 21. Guo, P., Goebel, S., Davis, S., Perkus, M.E., Languet, B., Desmettre, P., Allen, G., and Paoletti, E., J. Virol. **63**:4189-4198 (1989).
- 22. Hruby, D.E., R.A. Maki, D.B. Miller and L.A. Ball, Proc. Natl. Acad. Sci. USA **80**:3411-3415 (1983).
 - 23. Hruby, D.E. and L.A. Ball, J. Virol. **43**:403-409 (1982).
- 25 24. Ichihashi, Y. and Dales, S., Virology **46**:533-543 (1971).
- 25. Itamura, S., H. Iinuma, H. Shida, Y. Morikawa, K. Nerome and A. Oya, J. Gen. Virol. **71**:2859-2865 (1990).
 - 26. Jacobson, J.G., D.A. Leib, D.J. Goldstein, C.L. Bogard, P.A. Schaffer, S.K. Weller and D.M. Coen, Virology 173:276-283 (1989).
 - 27. Jamieson, A.T., G.A. Gentry and J.H. Subak-Sharpe, J. Gen. Virol. 24:465-480 (1974).
- 28. Kato, S., M. Takahashi, S. Kameyama and J. Kamahora, Biken's 2:353-363 (1959).
 - 29. Knauf V.C. and Nester, E.W., Plasmid 8:45-54 (1982)...
 - 30. Konishi et al., Virology **190**:454-458 (1992).
 - 31. Kotwal, G.J. and Moss, B., Nature (London) **335**:176-178 (1988a).
- 32. Kotwal, G.J. and Moss, B., Virology **167**:524-537 (1988b).
 - 33. Kotwal, G.J., A.W. Hugin and B. Moss, Virology 171:579-587 (1989a).
- 55 34. Kotwal, G.J. and B. Moss, J. Virol. **63**:600-606 (1989b).

- 35. Kotwal, G.J., S.N. Isaacs, R. McKenzie, M.M. Frank and B. Moss, Science **250**:827-830 (1990).
- 36. Lai, C.K. and B.G. Pogo, Virus Res. **12**:239-250 (1989).
 - 37. Mandecki, W., Proc. Natl. Acad. Sci. USA 83:7177-7182 (1986).
- 10 38. Maniatis, T., Fritsch, E.F., and Sambrook, J., <u>In</u>
 Molecular cloning: a laboratory manual, (Cold Spring
 Harbor Laboratory, Cold Spring Harbor, NY) (1982).
 - 39. Matthews, R.E.F., Intervirology 17:42-44 (1982).
- 15
 40. Morgan, A.J., M. Mackett, S. Finerty, J.R. Arrand, F.T. Scullion and M.A. Epstein, J. Med. Virol. 25:189-195 (1988).
- 20 41. Moss, B., E. Winters and J.A. Cooper, J. Virol. 40:387-395 (1981).
 - 42. Olsen, C., Corapi, W., Ngichabe, C., Baines, J., and Scott, F., J. Virology **66**:956-965 (1992).
- 25
 43 Olsen, C. and Scott, F., Feline Health Topics Vol. 6
 No. 2 (1991).
- 44. Paez, E., Dallo, S., and Esteban, M., Proc. Natl. Acad. Sci. USA 82:3365-3369 (1985).
 - 45. Palumbo, G.J., Pickup, D.J., Fredrickson, T.N., Mcintyre, L.J., and Buller, R.M.L., Virology 172:262-273 (1989).
- 35
 46. Panicali, D., Davis, S.W., Mercer, S.R., and Paoletti, E., J. Virol. 37:1000-1010 (1981).
- 47. Panicali, D. and E. Paoletti, Proc. Natl. Acad. Sci. 40 USA **79**:4927-4931 (1982).
 - 48. Patel, D.D. and Pickup, D.J., EMBO 6:3787-3794 (1987).
- 45 49. Patel, D.D., Ray, C.A., Drucker, R.P., and Pickup, D.J., Proc. Natl. Acad. Sci. USA **85**:9431-9435 (1988).
- 50. Perkus, M.E., Goebel, S.J., Davis, S.W., Johnson, G.P., Limbach, K., Norton, E.K., and Paoletti, E., Virology **179**:276-286 (1990).
- 51. Perkus, M.E., S.J. Goebel, S.W. Davis, G.P. Johnson, E.K. Norton and E. Paoletti, Virology 180:406-410 (1991).

- 52. Perkus, M.E., A. Piccini, B.R. Lipinskas and E. Paoletti, Science 229:981-984 (1985).
- 53. Perkus, M.E., D. Panicali, S. Mercer and E. Paoletti, Virology 152:285-297 (1986).
 - 54. Perkus, M.E., Limbach, K., and Paoletti, E., J. Virol. **63**:3829-3836 (1989).
- 10 55. Piccini, A., Perkus, M.E., Paoletti, E., Methods in Enzymology 153:545-563 (1987).
 - 56. Piccini, A., M.E. Perkus, and E. Paoletti, Methods in Enzymology 153:545-563 (1987).
- 15
 57. Pickup, D.J., B.S. Ink, W. Hu, C.A. Ray and W.K. Joklik, Proc. Natl. Acad. Sci. USA 83:7698-7702 (1986).
- 20 58. Pickup, D.J., B.S. Ink, B.L. Parsons, W. Hu and W.K. Joklik, Proc. Natl. Acad. Sci. USA **81**:6817-6821 (1984).
- 59. Sanger, F., Nickel, S. Coulson, A.R., Proc. Natl. Acad. Sci. **74**:5463-5467 (1977).
 - 60. Schmidtt, J.F.C. and H.G. Stunnenberg, J. Virol. **62**:1889-1897 (1988).
- 30 61. Schmitt, J.F.C. and Stunnenberg, H.G., J. Virology 62:1889-1897 (1988).
- 62. Shida, H., Hinuma, Y., Hatanaka, M., Morita, M., Kidokoro, M., Suzuki, K., Maruyzam, T., Takahashi-Nishimaki, F., Sugimoto, M., Kitamura, R., Miyazawa, T., and Hayami, M., J. Virol. 62:4474-4480 (1988).
 - 63. Shida, H., Virology 150:451-462 (1986).
- 40 64. Shida, H., T. Tochikura, T. Sato, T. Konno, K. Hirayoshi, M. Seki, Y. Ito, M. Hatanaka, Y. Hinuma, M. Sugimoto, F. Takahashi-Nishimaki, T. Maruyama, K. Miki, K. Suzuki, M. Morita, H. Sashiyama and M. Hayami, EMBO 6:3379-3384 (1987).
- 45
 65. Slabaugh, M., N. Roseman, R. Davis and C. Mathews,
 J. Virol. **62**:519-527 (1988).
- 66. Spann, W., Cavanagh, D., and Horzinek, M., J. Gen. Virol. **69**:2939-2952 (1988).
 - 67. Stanberry, L.R., Kit, S., Myers, M.G., J. Virol. **55**:322-328 (1985).
- 55 68. Tabor, S. and C. C. Richardson, Proc. Natl. Acad. Sci. USA **84**:4767-4771 (1987).

- 69. Tartaglia, J., Pincus, S., Paoletti, E., Critical Reviews in Immunology 10:13-30 (1990a).
- 70. Tartaglia, J. and Paoletti, E., <u>In</u> Immunochemistry of Viruses, II, eds. M.H.V. van Regenmortel & A.R. Neurath, (Elsevier Science Publishers, Amsterdam) pp. 125-151 (1990b).
- 71. Tartaglia, J., J. Taylor, W.I. Cox, J.-C. Audonnet,
 10 M.E. Perkus, A. Radaelli, C. de Giuli Morghen, B.
 Meignier, M. Riviere, K. Weinhold & E. Paoletti, <u>In</u>
 AIDS Research Reviews, eds. W. Koff, F. Wong-Staal &
 R.C. Kenedy, Vol. 3, (Marcel Dekker, NY) pp. 361-378
 (1993a).
- 15
 72. Tartaglia, J., Jarrett, O., Desmettre, P., Paoletti,
 E. J. Virol. **67**:2370-2375 (1993b).
- 73. Tartaglia, J., Perkus, M.E., Taylor, J., Norton,
 20 E.K., Audonnet, J.-C., Cox, W.I., Davis, S.W., Van
 Der Hoeven, J., Meignier, B., Riviere, M., Languet,
 B., Paoletti, E., Virology 188:217-232 (1992).
- 74. Taylor, G., E.J. Stott, G. Wertz and A. Ball, J. Gen. Virol. **72**:125-130 (1991a).
 - 75. Taylor, J., C. Trimarchi, R. Weinberg, B. Languet, F. Guillemin, P. Desmettre and E. Paoletti, Vaccine 9:190-193 (1991b).
- 76. Taylor, J., Weinberg, R., Kawaoka, Y., Webster, R.G., and Paoletti, E., Vaccine 6:504-508 (1988a).
- 77. Taylor, J., R. Weinberg, B. Lanquet, P. Desmettre, and E. Paoletti, Vaccine 6:497-503 (1988b).
 - 78. Taylor, J., R. Weinberg, J. Tartaglia, C. Richardson, G. Alkhatib, D. Briedis, M. Appel, E. Norton & E. Paoletti, Virology 187:321-328 (1992).
- 79. Taylor, J., Edbauer, C., Rey-Senelonge, A., Bouquet, J.-F., Norton, E., Goebel, S., Desmettre, P., Paoletti, E., J. Virol. **64**:1441-1450 (1990).
- 45 80. Vennema, H., De Groot, R., Harbour, D., Dalderup, M., Gruffydd-Jones, T., Horzinek, M., and Spaan, W., J. Virology 64:1407-1409 (1990).
- 81. Vennema, H., De Groot, R., Harbour, D., Horzinek, M., and Spaan, W., Virology **181**:327-335 (1991).
 - 82. Watson, C., and Jackson, J., <u>In</u> DNA Cloning, Volume I: A Practical Approach, Glover, D.M., ed. (IRL Press, Oxford) pp. 79-88 (1985).
- 55 83. Weir, J.P. and B. Moss, J. Virol. **46**:530-537 (1983).

- 84. Yuen, L., and Moss, B., Proc. Natl. Acad. Sci. USA 84:6417-6421 (1987).
- 85. Zhou, J., L. Crawford, L. McLean, X. Sun, M. Stanley, N. Almond and G.L. Smith, J. Gen. Virol. 71:2185-2190 (1990).

25

WHAT IS CLAIMED IS:

- 1. A recombinant poxvirus containing therein DNA from feline infectious peritonitis virus in a non-essential region of the poxvirus genome wherein the poxvirus is
- (i) a vaccinia virus wherein J2R, B13R + B14R, A26L, A56R, C7L-K1L and I4L are deleted from the virus, or a thymidine kinase gene, a hemorrhagic region, an A type inclusion body region, a hemagglutinin gene, a host range region, and a large subunit, ribonucleotide reductase are deleted from the virus; or, the poxvirus is
- (ii) canarypox which was attenuated through more than 200 serial passages on chick embryo fibroblasts, a master seed therefrom was subjected to four successive plaque purifications under agar, from which a plaque clone was amplified through five additional passages.
 - 2. The recombinant of claim 1 wherein the poxvirus is the canarypox virus.
- The recombinant of claim 2 which is vCP262, vCP261A, vCP282, vCP281, vCP283B, vCP315.
 - 4. The recombinant of claim 1 wherein the feline infectious peritonitis virus DNA encodes M, N, and the three versions of S; S1, S2, S3, or combinations thereof.
 - $\,$ 5. The recombinant of claim 4 wherein the DNA encodes M.
 - $\hbox{ 6.} \quad \hbox{The recombinant of claim 4 wherein the DNA} \\ \hbox{encodes N.}$
- 7. The recombinant of claim 4 wherein the DNA encodes S.
 - $8. \,$ The recombinant of claim 4 wherein the DNA encodes S1.
- 9. The recombinant of claim 4 wherein the DNA so encodes S2.
 - $$10\,.$$ The recombinant of claim 4 wherein the DNA encodes S3.

WO 97/20054

- $\,$ 11. The recombinant of claim 4 wherein the DNA encodes M+N.
- 12. The recombinant of claim 1 wherein the poxvirus is the vaccinia virus.
- 5 13. The recombinant of claim 3 which is vCP262.
 - 14. An immunological composition comprising a recombinant as claimed in claim 1, 2, 3, 11, 12 or 13, and a carrier.
- 15. A method for inducing an immunological response in a host comprising administering a recombinant as claimed in anyone of claims 1, 2, 3, 11, 12 or 13.
 - 16. A method for inducing an immunlogical response comprising administering a composition as claimed in claim 14.
 - 17. A method for expressing a gene product in vitro comprising infecting a cell culture with a recombinant as claimed in claim 1, 2, 3, 11, 12 or 13.

WO 97/20054 PCT/US96/19274

Figure 1

1	ATGAAGTACA	TTTTGCTAAT	ACTCGCGTGC	ATAATTGCAT	GCGTTTATGG	TGAACGCTAC
61	TGTGCCATGC	AAGACAGTGG	CTTGCAGTGT	ATTAATGGCA	CAAATTCAAG	ATGTCAAACC
121	TGCTTTGAAC	GTGGTGATCT	TATTTGGCAT	CTTGCTAACT	GGAACTTCAG	CTGGTCTGTA
181	ATATTGATTG	TTTTTATAAC	AGTGTTACAA	TATGGCAGAC	CACAATTTAG	CTGGCTCGTT
241	TATGGCATTA	AAATGCTGAT	CATGTGGCTA	TTATGGCCTA	TTGTTCTAGC	GCTTACGATT
301	TTTAATGCAT	ACTCTGAGTA	CCAAGTTTCC	AGATATGTAA	TGTTCGGCTT	TAGTGTTGCA
361	GGTGCAGTTG	TAACGTTTGC	ACTTTGGATG	ATGTATTTTG	TGAGATCTGT	TCAGCTATAT
421	AGAAGAACCA	AATCATGGTG	GTCTTTTAAT	CCTGAGACTA	ATGCAATTCT	TTGTGTTAAT
481	GCATTGGGTA	GAAGTTATGT	GCTTCCCTTA	GATGGTACTC	CTACAGGTGT	TACCCTTACT
541	CTACTTTCAG	GAAATCTATA	TGCTGAAGGT	TTCAAAATGG	CTGGTGGTTT	AACCATCGAG
601	CATTTGCCTA	ÄATACGTCAT	GATTGCTACA	CCTAGTAGAA	CCATCGTTTA	TACATTAGTT
661	GGAAAACAAT	TAAAAGCAAC	TACTGCCACA	GGATGGGCTT	ACTACGTAAA	ATCTAAAGCT
721	GGTGATTACT	CAACAGAAGC	ACGTACTGAC	AATTTGAGTG	AACATGAAAA	ATTATTACAT
781	ATGGTGTAA					

Figure 2

. 1	GAATTGCGGC	CGCTGAATGT	TAAATGTTAT	ACTTTGGATG	AAGCTATAAA	TATGCATTGG
61	AAAAATAATC	CATTTAAAGA	AAGGATTCAA	ATACTACAAA	ACCTAAGCGA	TAATATGTTA
121	ACTAAGCTTA	TTCTTAACGA	CGCTTTAAAT	ATACACAAAT	AAACATAATT	TTTGTATAAC
181	CTAACAAATA	ACTAAAACAT	АААААТААТА	AAAGGAAATG	TAATATCGTA	ATTATTTTAC
241	TCAGGAATGG	GGTTAAATAT	TTATATCACG	TGTATATCTA	TACTGTTATC	GTATACTCTT
301	TACAATTACT	ATTACGAATA	TGCAAGAGAT	AATAAGATTA	CGTATTTAAG	AGAATCTTGT
361	CATGATAATT	GGGTACGACA	TAGTGATAAA	TGCTATTTCG	CATCGTTACA	TAAAGTCAGT
421	TGGAAAGATG	GATTTGACAG	ATGTAACTTA	ATAGGTGCAA	AAATGTTAAA	TAACAGCATT
481	CTATCGGAAG	ATAGGATACC	AGTTATATTA	TACAAAAATC	ACTGGTTGGA	TAAAACAGAT
541	TCTGCAATAT	TCGTAAAAGA	TGAAGATTAC	TGCGAATTTG	TAAACTATGA	CAATAAAAAG
601	CCATTTATCT	CAACGACATC	GTGTAATTCT	TCCATGTTTT	ATGTATGTGT	TTCAGATATT
661	ATGAGATTAC	TATAAACTTT	TTGTATACTT	ATATTCCGTA	AACTATATTA	ATCATGAAGA
721	AAATGAAAAA	GTATAGAAGC	TGTTCACGAG	CGGTTGTTGA	AAACAACAAA	ATTATACATT
781	CAAGATGGCT	TACATATACG	TCTGTGAGGC	TATCATGGAT	AATGACAATG	CATCTCTAAA
841	TAGGTTTTTG	GACAATGGAT	TCGACCCTAA	CACGGAATAT	GGTACTCTAC	AATCTCCTCT
901	TGAAATGGCT	GTAATGTTCA	AGAATACCGA	GGCTATAAAA	ATCTTGATGA	GGTATGGAGC
961	TAAACCTGTA	GTTACTGAAT	GCACAACTTC	TTGTCTGCAT	GATGCGGTGT	TGAGAGACGA
1021	СТАСААААТА	GTGAAAGATC	TGTTGAAGAA	TAACTATGTA	AACAATGTTC	TTTACAGCGG
1081	AGGCTTTACT	CCTTTGTGTT	TGGCAGCTTA	CCTTAACAAA	GTTAATTTGG	TTAAACTTCT
1141	ATTGGCTCAT	TCGGCGGATG	TAGATATTTC	AAACACGGAT	CGGTTAACTC	CTCTACATAT
1201	AGCCGTATCA	TTAAAAATAA	TAACAATGGT	TAAACTTCTA	TTGAACAAAG	GTGCTGATAC
1261	TGACTTGCTG	GATAACATGG	GACGTACTCC	TTTAATGATC	GCTGTACAAT	CTGGAAATAT
1321	TGAAATATGT	AGCACACTAC	ТТААААААА	TAAAATGTCC	AGAACTGGGA	AAAATTGATC
1381	TTGCCAGCTG	TAATTCATGG	TAGAAAAGAA	GTGCTCAGGC	TACTTTTCAA	CAAAGGAGCA
1441	GATGTAAACT	ACATCTTTGA	AAGAAATGGA	AAATCATATA	CTGTTTTGGA	ATTGATTAAA
1501	GAAAGTTACT	CTGAGACACA	AAAGAGGTAG	CTGAAGTGGT	ACTCTCAAAG	GTACGTGACT
1561	AATTAGCTAT	AAAAAGGATC	CGGTACCCTC	GAGTCTAGAA	TCGATCCCGT	ACCGTTTAGT
1621	TACACCATAT	GTAATAATTT	TTCATGTTCA	CTCAAATTGT	CAGTACGTGC	TTCTGTTGAG
1681	TAATCACCAG	CTTTAGATTT	TACGTAGTAA	GCCCATCCTG	TGGCAGTAGT	TGCTTTTAAT
1741	TGTTTTCCAA	CTAATGTATA	AACGATGGTT	CTACTAGGTG	TAGCAATCAT	GACGTATTTA

Figure 2 (cont'd.)

1801 GGCAAATGCT	CGATGGTTAA	ACCACCAGCC	ATTTTGAAAC	CTTCAGCATA	TAGATTTCCT
1861 GAAAGTAGAG	TAAGGGTAAC	ACCTGTAGGA	GTACCATCTA	AGGGAAGCAC	ATAACTTCTA
1921 CCCAATGCAT	TAACACAAAG	AATTGCATTA	GTCTCAGGAT	TAAAAGACCA	CCATGATTTG
1981 GTTCTTCTA	r ATAGCTGAAC	AGATCTCACA	AAATACATCA	TCCAAAGTGC	AAACGTTACA
2041 ACTGCACCTO	G CAACACTAAA	GCCGAACATT	ACATATCTGG	AAACTTGGTA	CTCAGAGTAT
2101 GCATTAAAA	A TCGTAAGCGC	TAGAACAATA	GGCCATAATA	GCCACATGAT	CAGCATTTTA
2161 ATGCCATAA	A CGAGCCAGCT	AAATTGTGGT	CTGCCATATT	GTAACACTGT	TATAAATACT
2221 ATCAATATT	A CAGACCAGCT	GAAGTTCCAG	TTAGCAAGAT	GCCAAATAAG	ATCACCACGT
2281 TCAAAGCAG	G TTTGACATCT	TGAATTTGTG	CCATTAATAC	ACTGCAAGCC	ACTGTCTTGC
2341 ATGGCACAG	T AGCGTTCACC	ATAAACGCAT	GCAATTATGC	ACGCGAGTAT	TAGCAAAATG
2401 TACTTCATT	T TATATTGTAA	TTATATATT	TCAATTTTGA	AATCCCAAAA	TATTATCATA
2461 TTCTTCCCA	A TAAAGAGCTC	тааттаатта	ACGAGCAGAT	AGTCTCGTTC	TCGCCCTGCC
2521 TGATGACTA	а ттааттаасс	CGGGAAGCTG	GGTTTTTATG	ACTAGTTAAT	CACGGCCGCT
2581 TATAAAGAT	C TAAAATGCAT	AATTTCTAAA	TAATGAAAAA	AAGTACATCA	TGAGCAACGC
2641 GTTAGTATA	T TTTACAATGG	AGATTAACGC	TCTATACCGT	TCTATGTTTA	TTGATTCAGA
2701 TGATGTTTT	a gaaaagaaag	TTATTGAATA	TGAAAACTTT	AATGAAGATG	AAGATGACGA
2761 CGATGATTA	T TGTTGTAAAT	CTGTTTTAGA	TGAAGAAGAT	GACGCGCTAA	AGTATACTAT
2821 GGTTACAAA	G TATAAGTCTA	ТАСТАСТААТ	GGCGACTTGT	GCAAGAAGGT	ATAGTATAGT
2881 GAAAATGTT	G TTAGATTATG	ATTATGAAAA	ACCAAATAAA	TCAGATCCAT	ATCTAAAGGT
2941 ATCTCCTTT	G CACATAATTI	CATCTATTCC	TAGTTTAGAA	TACCTGCAG	

WO 97/20054 PCT/US96/19274

Figure 3

1 ATGGCCACAC AGGGACAACG CGTCAACTGG GGAGATGAAC CTTCCAAAAG ACGTGGTCGT 61 TCTAACTCTC GTGGTCGGAA GAATAATGAT ATACCTTTGT CATTCTACAA CCCCATTACC 121 CTCGAACAAG GATCTAAATT TTGGAATTTA TGTCCGAGAG ACCTTGTTCC CAAAGGAATA 181 GGTAATAAGG ATCAACAAAT TGGTTATTGG AATAGACAGA TTCGTTATCG TATTGTAAAA 241 GGCCAGCGTA AGGAACTCGC TGAGAGGTGG TTCTTTTACT TCTTAGGTAC AGGACCTCAT 301 GCTGATGCTA AATTCAAAGA CAAGATTGAT GGAGTCTTCT GGGTTGCAAG GGATGGTGCC 361 ATGAACAAGC CCACAACGCT TGGCACTCGT GGAACCAATA ACGAATCCAA ACCACTGAGA 421 TTTGATGGTA AGATACCGCC ACAGTTTCAG CTTGAAGTGA ACCGTTCTAG GAACAATTCA 481 AGGTCTGGTT CTCAGTCTAG ATCTGTTTCA AGAAACAGAT CTCAATCTAG AGGAAGACAC 541 CATTCCAATA ACCAGAATAA TAATGTTGAG GATACAATTG TAGCCGTGCT TGAAAAATTA 601 GGTGTTACTG ACAAACAAAG GTCACGTTCT AAACCTAGAG AACGTAGTGA TTCCAAACCT 661 AGGGACACAA CACCTAAGAA TGCCAACAAA CACACCTGGA AGAAAACTGC AGGCAAGGGA 721 GATGTGACAA CTTTCTATGG TGCTAGAAGT AGTTCAGCTA ACTTTGGTGA TAGTGATCTC 781 GTTGCCAATG GTAACGCTGC CAAATGCTAC CCTCAGATAG CTGAATGTGT TCCATCAGTG 841 TCTAGCATAA TCTTTGGCAG TCAATGGTCT GCTGAAGAAG CTGGTGATCA AGTGAAAGTC 901 ACGCTCACTC ACACCTACTA CCTGCCAAAG GATGATGCCA AAACTAGTCA ATTCCTAGAA 961 CAGATTGACG CTTACAAGCG ACCTTCTGAA GTGGCTAAGG ATCAGAGGCA AAGAAGATCC 1021 CGTTCTAAGT CTGCTGATAA GAAGCCTGAG GAGTTGTCTG TAACTCTTGT GGAGGCATAC 1081 ACAGATGTGT TTGATGACAC ACAGGTTGAG ATGATTGATG AGGTTACGAA CTAA

Figure 4

1	GCGGCCGCGT	CGACATGCAT	TGTTAGTTCT	GTAGATCAGT	AACGTATAGC	ATACGAGTAT
61	AATTATCGTA	GGTAGTAGGT	ATCCTAAAAT	AAATCTGATA	CAGATAATAA	CTTTGTAAAT
121	CAATTCAGCA	ATTTCTCTAT	TATCATGATA	ATGATTAATA	CACAGCGTGT	CGTTATTTTT
181	TGTTACGATA	GTATTTCTAA	AGTAAAGAGC	AGGAATCCCT	AGTATAATAG	AAATAATCCA
241	TATGAAAAAT	ATAGTAATGT	ACATATTTCT	AATGTTAACA	TATTTATAGG	TAAATCCAGG
301	AAGGGTAATT	TTTACATATC	TATATACGCT	TATTACAGTT	ATTAAAAATA	TACTTGCAAA
361	CATGTTAGAA	GTAAAAAAGA	AAGAACTAAT	TTTACAAAGT	GCTTTACCAA	AATGCCAATG
421	GAAATTACTT	AGTATGTATA	TAATGTATAA	AGGTATGAAT	ATCACAAACA	GCAAATCGGC
481	TATTCCCAAG	TTGAGAAACG	GTATAATAGA	тататттста	GATACCATTA	ATAACCTTAT
541	AAGCTTGACG	TTTCCTATAA	TGCCTACTAA	GAAAACTAGA	AGATACATAC	ATACTAACGC
601	CATACGAGAG	TAACTACTCA	TCGTATAACT	ACTGTTGCTA	ACAGTGACAC	TGATGTTATA
661	ACTCATCTTT	GATGTGGTAT	AAATGTATAA	TAACTAȚATT	ACACTGGTAT	TTTATTTCAG
721	ТТАТАТАСТА	TATAGTATTA	TATATTAAAA	TTGTATAATT	TATTATTAT	ATTCAGTGTA
781	GAAAGTAAAA	TACTATAAAT	ATGTATCTCT	TATTTATAAC	TTATTAGTAA	AGTATGTACT
841	ATTCAGTTAT	ATTGTTTTAT	AAAAGCTAAA	TGCTACTAGA	TTGATATAAA	TGAATATGTA
901	ATAAATTAGT	AATGTAGTAT	ACTAATATTA	ACTCACATTT	GACTAATTAG	CTATAAAAAC
961	CCGTACCTTA	GTTCGTAACC	TCATCAATCA	TCTCAACCTG	TGTGTCATCA	AACACATCTG
1021	TGTATGCCTC	CACAAGAGTT	ACAGACAACT	CCTCAGGCTT	CTTATCAGCA	GACTTAGAAC
1081	GGGATCTTCT	TTGCCTCTGA	TCCTTAGCCA	CTTCAGAAGG	TCGCTTGTAA	GCGTCAATCT
1141	GTTCTAGGAA	TTGACTAGTT	TTGGCATCAT	CCTTTGGCAG	GTAGTAGGTG	TGAGTGAGCG
1201	TGACTTTCAC	TTGATCACCA	GCTTCTTCAG	CAGACCATTG	ACTGCCAAAG	ATTATGCTAG
1261	ACACTGATGG	AACACATTCA	GCTATCTGAG	GGTAGCATTT	GGCAGCGTTA	CCATTGGCAA
1321	CGAGATCACT	ATCACCAAAG	TTAGCTGAAC	TACTTCTAGC	ACCATAGAAA	GTTGTCACAT
1381	CTCCCTTGCC	TGCAGTTTTC	TTCCAGGTGT	GTTTGTTGGC	ATTCTTAGGT	GTTGTGTCCC
1441	TAGGTTTGGA	ATCACTACGT	TCTCTAGGTT	TAGAACGTGA	CCTTTGTTTG	TCAGTAACAC
1501	CTAATTTTTC	AAGCACGGCT	ACAATTGTAT	CCTCAACATT	ATTATTCTGG	TTATTGGAAT
1561	GGTGTCTTCC	TCTAGATTGA	GATCTGTTTC	TTGAAACAGA	TCTAGACTGA	GAACCAGACC
1621	TTGAATTGTT	CCTAGAACGG	TTCACTTCAA	GCTGAAACTG	TGGCGGTATC	TTACCATCAA
1681	ATCTCAGTGG	TTTGGATTCG	TTATTGGTTC	CACGAGTGCC	AAGCGTTGTG	GGCTTGTTCA
1741	TGGCACCATC	CCTTGCAACC	CAGAAGACTO	CATCAATCTT	GTCTTTGAAT	TTAGCATCAG

Figure 4 (cont'd.)

1801	CATGAGGTCC	TGTACCTAAG	AAGTAAAAGA	ACCACCTCTC	AGCGAGTTCC	TTACGCTGGC
1861	CTTTTACAAT	ACGATAACGA	ATCTGTCTAT	TCCAATAACC	AATTTGTTGA	TCCTTATTAC
1921	CTATTCCTTT	GGGAACAAGG	TCTCTCGGAC	ATAAATTCCA	AAATTTAGAT	CCTTGTTCGA
1981	GGGTAATGGG	GTTGTAGAAT	GACAAAGGTA	TATCATTATT	CTTCCGACCA	CGAGAGTTAG
2041	AACGACCACG	TCTTTTGGAA	GGTTCATCTC	CCCAGTTGAC	GCGTTGTCCC	TGTGTGGCCA
2101	TGATTAAACC	TAAATAATTG	TACTTTGTAA	TATAATGATA	TATATTTTCA	CTTTATCTCA
2161	GAGCTCTAAT	TAATTAACGA	GCAGATAGTC	TCGTTCTCGC	CCTGCCTGAT	GACTAATTAA
2221	TTAACCCGGG	AAGCTGGGCT	GCAGGAATTC	CTCGAGGGAT	CCCGATTTTT	ATGACTAGTT
2281	AATCAAATAA	AAAGCATACA	AGCTATTGCT	TCGCTATCGT	TACAAAATGG	CAGGAATTTT
2341	GTGTAAACTA	AGCCACATAC	TTGCCAATGA	AAAAAATAGT	AGAAAGGATA	CTATTTTAAT
2401	GGGATTAGAT	GTTAAGGTTC	CTTGGGATTA	TAGTAACTGG	GCATCTGTTA	ACTITTACGA
2461	CGTTAGGTTA	GATACTGATG	TTACAGATTA	TAATAATGTT	ACAATAAAAT	ACATGACAGG
2521	ATGTGATATT	TTTCCTCATA	TAACTCTTGG	AATAGCAAAT	ATGGATCAAT	GTGATAGATT
2581	TGAAAATTTC	AAAAAGCAAA	TAACTGATCA	AGATTTACAG	ACTATTTCTA	TAGTCTGTAA
2641	AGAAGAGATG	TGTTTTCCTC	AGAGTAACGC	CTCTAAACAG	TTGGGAGCGA	AAGGATGCGC
2701	TGTAGTTATG	AAACTGGAGG	TATCTGATGA	ACTTAGAGCC	CTAAGAAATG	TTCTGCTGAA
2761	TGCGGTACCC	TGTTCGAAGG	ACGTGTTTGG	TGATATCACA	GTAGATAATC	CGTGGAATCC
2821	TCACATAACA	GTAGGATATG	TTAAGGAGGA	CGATGTCGAA	AACAAGAAAC	GCCTAATGGÄ
2881	GTGCATGTCC	AAGTTTAGGG	GGCAAGAAAT	ACAAGTTCTA	GGATGGTATT	AATAAGTATC
2941	TAAGTATTTG	GTATAATTTA	TTAAATAGTA	TAATTATAAC	AAATAATAAA	TAACATGATA
3001	ACGGTTTTTA	ТТАСААТААА	ATAGAGATAA	TATCATAATG	АТАТАТАТА	CTTCATTACC
3061	AGAAATGAGT	· AATGGAAGAC	TTATAAATGA	ACTGCATAAA	GCTATAAGGT	ATAGAGATAT
3121	AAATTTAGTA	AGGTATATAC	TTAAAAAATG	CAAATACAAT	AACGTAAATA	TACTATCAAC
3181	GTCTTTGTAT	TTAGCCGTAA	GTATTTCTGA	TATAGAAATG	GTAAAATTAT	TACTAGAACA
3241	CGGTGCCGAT	TAAAATTTTA	GTAAAAATCC	TCCTCTTCAT	AAAGCTGCTA	GTTTAGATAA
3301	TACAGAAATI	GCTAAACTAC	TAATAGATTO	TGGCGCTGAC	ATAGAACAGA	TACATTCTGG
3361	AAATAGTCC	TTATATATT	CTGTATATAC	AAACAATAAG	TCATTAACTA	GATATTTATT
3423	AAAAAAAGGT	r GTTAATTGTA	A ATAGATTCT	TCTAAATTAT	TACGATGTAC	TGTATGATAA
348	GATATCTGAT	GATATGTAT	A AAATATTTAT	r AGATTTTAAT	ATTGATCTTA	ATATACAAAC
354	TAGAAATTT	r GAAACTCCGT	TACATTACG	TATAAAGTAT	AAGAATATAG	ATTTAATTAG

Figure 4 (cont'd.)

3601	GATATTGTTA	GATAATAGTA	TTAAAATAGA	TAAAAGTTTA	TTTTTGCATA	AACAGTATCT
3661	CATAAAGGCA	CTTAAAAATA	ATTGTAGTTA	CGATATAATA	GCGTTACTTA	TAAATCACGG
3721	AGTGCCTATA	AACGAACAAG	ATGATTTAGG	TAAAACCCCA	TTACATCATT	CGGTAATTAA
3781	TAGAAGAAAA	GATGTAACAG	CACTTCTGTT	AAATCTAGGA	GCTGATATAA	ACGTAATAGA
3841	TGACTGTATG	GGCAGTCCCT	TACATTACGC	TGTTTCACGT	AACGATATCG	AAACAACAAA
3901	GACACTTTTA	GAAAGAGGAT	CTAATGTTAA	TGTGGTTAAT	AATCATATAG	ATACCGTTCT
3961	AAATATAGCT	GTTGCATCTA	ААААСААААС	TATAGTAAAC	TTATTACTGA	AGTACGGTAC
4021	TGATACAAAG	TTGGTAGGAT	TAGATAAACA	TGTTATTCAC	ATAGCTATAG	AAATGAAAGA
4081	ATAATTAT	CTGAATGCGA	TCTTATTATA	TGGTTGCTAT	GTAAACGTCT	ATAATCATAA
4141	AGGTTTCACT	CCTCTATACA	TGGCAGTTAG	TTCTATGAAA	ACAGAATTTG	TTAAACTCTT
4201	ACTTGACCAC	GGTGCTTACG	TAAATGCTAA	AGCTAAGTTA	TCTGGAAATA	CTCCTTTACA
4261	TAAAGCTATG	TTATCTAATA	GTTTTAATAA	TATAAAATTA	CTTTTATCTT	ATAACGCCGA
4321	СТАТААТТСТ	СТАААТААТС	ACGGTAATAC	GCCTCTAACT	TGTGTTAGCT	TTTTAGATGA
4381	CAAGATAGCT	ATTATGATAA	ТАТСТААААТ	GATGTTAGAA	АТАТСТАААА	ATCCTGAAAT
4441	AGCTAATTCA	GAAGGTTTTA	TAGTAAACAT	GGAACATATA	AACAGTAATA	AAAGACTACT
4501	ATCTATAAAA	GAATCATGCG	AAAAAGAACT	AGATGTTATA	ACACATATAA	AGTTAAATTC
4561	TATATATTCT	TTTAATATCT	TTCTTGACAA	TAACATAGAT	CTTATGGTAA	AGTTCGTAAC
4621	TAATCCTAGA	GTTAATAAGA	TACCTGCATG	TATACGTATA	TATAGGGAAT	TAATACGGAA
4681	ааатааатса	TTAGCTTTTC	ATAGACATCA	GCTAATAGTT	AAAGCTGTAA	AAGAGAGTAA
4741	GAATCTAGGA	ATAATAGGTA	GGTTACCTAT	AGATATCAAA	САТАТААТАА	TGGAACTATT
4801	AAGTAATAAT	GATTTACATT	CTGTTATCAC	CAGCTGTTGT	AACCCAGTAG	TATAAAG

1	ATGATTGTGC	TCGTAACTTG	CCTCTTGTTG	TTATGTTCAT	ACCACACAGT	TTTGAGTACA
61	ACAAATAATG	AATGCATACA	AGTTAACGTA	ACACAATTGG	CTGGCAATGA	AAACCTTATC
121	AGAGATTTTC	TGTTTAGTAA	CTTTAAAGAA	GAAGGAAGTG	TAGTTGTTGG	TGGTTATTAC
181	CCTACAGAGG	TGTGGTACAA	CTGCTCTAGA	ACAGCTCGAA	CTACTGCCTT	TCAGTATTTT
241	AATAATATAC	ATGCCTTTTA	TTTTGTTATG	GAAGCCATGG	AAAATAGCAC	TGGTAATGCA
301	CGTGGTAAAC	CATTATTATT	TCATGTGCAT	GGTGAGCCTG	TTAGTGTTAT	TATATCGGCT
361	TATAGGGATG	ATGTGCAACA	AAGGCCCCTT	TTAAAACATG	GGTTAGTGTG	CATAACTAAA
421	AATCGCCATA	TTAACTATGA	ACAATTCACC	TCCAACCAGT	GGAATTCCAC	ATGTACGGGT
481	GCTGACAGAA	AAATTCCTTT	CTCTGTCATA	CCCACGGACA	ATGGAACAAA	AATCTATGGT
541	CTTGAGTGGA	ATGATGACTT	TGTTACAGCT	TATATTAGTG	GTCGTTCTTA	TCACTTGAAC
601	АТСААТАСТА	ATTGGTTTAA	CAATGTCACA	CTTTTGTATT	CACGCTCAAG	CACTGCTACC
661	TGGGAATACA	GTGCTGCATA	TGCTTACCAA	GGTGTTTCTA	ACTTCACTTA	TTACAAGTTA
721	AATAACACCA	ATGGTCTAAA	AACCTATGAA	TTATGTGAAG	ATTATGAACA	TTGCACTGGC
781	TATGCTACCA	ATGTATTTGC	TCCGACATCA	GGTGGTTACA	TACCTGATGG	ATTTAGTTTT
841	AACAATTGGT	TCTTGCTTAC	AAATAGTTCC	ACTTTTGTTA	GTGGCAGGTT	TGTAACAAAT
901	CAACCATTAT	TGATTAATTG	CTTGTGGCCA	GTGCCCAGTT	TTGGTGTAGC	AGCACAAGAA
961	TTTTGTTTTG	AAGGTGCACA	GTTTAGCCAA	TGTAATGGTG	TGTCTTTAAA	TAACACAGTG
1021	GATGTTATTA	GATTCAACCT	TAATTTCACT	GCAGATGTAC	AATCTGGTAT	GGGTGCTACA
1081	GTATTTTCAC	TGAATACAAC	AGGTGGTGTC	ATTCTTGAAA	TTTCATGTTA	TAGTGACACA
1141	GTGAGTGAGT	CTAGTTCTTA	CAGTTATGGT	GAAATCCCGT	TCGGCATAAC	TGACGGACCA
1201	CGATACTGTT	ATGTACTTTA	CAATGGCACA	GCTC'I"I'AAAT	ATTTAGGAAC	ATTACCACCC
1261	AGTGTAAAGG	AAATCGCTAT	TAGTAAGTGG	GGCCATTTTT	ATATTAATGG	TTACAATTTC
1321	TTTAGCACAT	TTCCTATTGG	TTGTATATCI	TTTAATTTAA	CCACTGGTGT	TAGTGGAGCT
1381	TTTTGGACAA	TTGCTTACAC	ATCGTATACT	GAAGCATTAG	TACAAGTTGA	AAACACAGCT
1441	ATTAAAAATG	TGACGTATTG	TAACAGTCAC	ATTAATAACA	TTAAATGTTC	TCAACTTACT
1501	. GCTAATT T GA	ATAATGGATT	TTATCCTGTT	GCTTCAAGTG	AAGTAGGTTT	CGTTAATAAG
1561	AGTGTTGTGT	TATTACCTAG	CTTTTTCACA	TACACCGCTG	TCAATATAAC	CATTGATCTT
1621	GGTATGAAGC	TTAGTGGTTA	TGGTCAACCO	: ATAGCCTCGA	CACTAAGTAA	CATCACACTA
1681	CCAATGCAGG	ATAACAATAC	TGATGTGTAG	TGTATTCGTT	CTAACCAATT	CTCAGTTTAT
1741	GTTCATTCCA	CTTGCAAAAG	TTCTTTATGO	GACAATATTI	TTAATCAAGA	CTGCACGGAT

1801	GTTTTAGAGG	CTACAGCTGT	TATAAAAACT	GGTACTTGTC	CTTTCTCATT	TGATAAATTG
1861	AACAATTACT	TGACTTTTAA	CAAGTTCTGT	TTGTCGTTGA	GTCCTGTTGG	TGCTAATTGC
1921	AAGTTTGATG	TTGCTGCACG	TACAAGAACC	AATGAGCAGG	TTGTTAGAAG	TCTATATGTA
1981	ATATATGAAG	AAGGAGACAA	CATAGTGGGT	GTACCGTCTG	ATAATAGCGG	TCTGCACGAT
2041	TTGTCTGTGC	TACACCTAGA	CTCCTGTACA	GATTACAATA	TATATGGTAG	AACTGGTGTT
2101	GGTATTATTA	GACGAACTAA	CAGTACGCTA	CTTAGTGGCT	TATATTACAC	ATCACTATCA
2161	GGTGATTTGT	TAGGCTTTAA	AAATGTTAGT	GATGGTGTCA	TTTATTCTGT	GACGCCATGT
2221	GATGTAAGCG	CACAAGCGGC	TGTTATTGAT	GGTGCCATAG	TTGGAGCTAT	GACTTCCATT
2281	AACAGTGAAC	TGTTAGGTCT	AACACATTGG	ACAACGACAC	CTAATTTTTA	TTACTACTCT
2341	ATATATAATT	ACACAAGTGA	GAGGACTCGT	GGCACTGCAA	TTGACAGTAA	CGATGTTGAT
2401	TGTGAACCTG	тсатаасста	ТТСТААТАТА	GGTGTTTGTA	AAAATGGTGC	TTTGGTTTTT
2461	ATTAACGTCA	CACATTCTGA	CGGAGACGTG	CAACCAATTA	GCACTGGTAA	TGTCACGATA
2521	CCTACAAATT	TTACCATATC	TGTGCAAGTT	GAATACATGC	AGGTTTACAC	TACACCAGTA
2581	TCAATAGATT	GTGCAAGATA	CGTTTGTAAT	GGTAACCCTA	GATGTAACAA	ATTGTTAACA
2641	CAATATGTGT	CTGCATGTCA	AACTATTGAA	CAAGCACTTG	CAATGGGTGC	CAGACTTGAA
2701	AACATGGAGG	TTGATTCCAT	GTTGTTTGTC	TCGGAAAATG	CCCTTAAATT	GGCATCTGTT
2761	GAGGCGTTCA	ATAGTACAGA	AAATTTAGAT	CCTATTTACA	AAGAATGGCC	TAGCATAGGT
2821	GGTTCTTGGC	TAGGAGGTCT	AAAAGATATA	CTACCGTCCC	ATAATAGCAA	ACGTAAGTAT
2881	GGTTCTGCTA	TAGAAGATTT	GCTTTTTGAT	AAAGTTGTAA	CATCTGGTTT	AGGTACAGTT
2941	GATGAAGATT	ATAAACGTTG	TACTGGTGGT	TACGACATAG	CAGACTTGGT	GTGTGCTCAA
3001	TATTACAATG	GCATCATGGT	TCTACCAGGT	GTAGCTAATG	CTGACAAGAT	GACTATGTAC
3061	ACAGCATCAC	TTGCAGGTGG	ТАТААСАТТА	GGTGCACTTG	GTGGTGGCGC	CGTGGCTATA
3121	CCTTTTGCAG	TAGCAGTACA	GGCTAGACTT	AATTATGTTG	CTCTACAAAC	TGATGTATTG
3181	ААТАААААСС	AACAGATCCT	GGCTAATGCT	TTCAATCAAG	CTATTGGTAA	CATTACACAG
3241	GCTTTTGGTA	AGGTTAATGA	TGCTATACAT	CAAACATCAC	AAGGTCTTGC	CACTGTTGCT
330	L AAAGCGTTGC	G CAAAAGTGCA	AGATGTTGT	AACACACAAG	GGCAAGCTTT	AAGTCACCTT
3361	ACAGTACAA	TGCAAAATAA	TTTTCAAGC	ATTAGTAGTT	CTATTAGTGA	TATTTATAAC
342	AGGCTTGACC	G AACTGAGTGO	TGATGCACA	GTTGATAGGC	TGATTACAGO	TAGACTTACA
348	GCACTTAAT(CATTTGTGT(TCAGACTCT	ACCAGACAAG	CAGAGGTTAC	GGCTAGTAGA
						ATTCGGATTC

WO 97/20054 PCT/US96/19274

Figure 5 (cont'd.)

3601	TGTGGTAATG	GTACACATTT	GTTTTCACTA	GCAAATGCAG	CACCAAATGG	CATGATTTTC
3661	TTTCATACAG	TACTATTACC	AACAGCTTAT	GAAACTGTAA	CAGCTTGGTC	AGGTATTTGT
3721	GCTTCAGATG	GCGATCGCAC	TTTCGGACTT	GTCGTTAAAG	ATGTGCAGTT	GACGTTGTTT
3781	CGTAATCTAG	ATGACAAGTT	CTATTTGACC	CCCAGAACTA	TGTATCAGCC	TAGAGTTGCA
3841	ACTAGTTCTG	ATTTTGTTCA	AATTGAAGGG	TGTGATGTGT	TGTTTGTCAA	CGCGACTGTA
3901	ATTGATTTGC	CTAGTATTAT.	ACCTGACTAT	ATTGACATTA	ATCAAACTGT	TCAAGACATA
3961	TTAGAAAATT	ACAGACCAAA	CTGGACTGTA	CCTGAATTTA	CACTTGATAT	TTTCAACGCA
4021	ACCTATTTAÁ	ATCTGACTGG	TGAAATTGAT	GACTTAGAGT	TTAGGTCAGA	AAAGCTACAT
4081	AACACTACAG	TAGAACTTGC	CATTCTCATT	GATAACATTA	ATAATACATT	AGTCAATCTT
4141	GAATGGCTCA	ATAGAATTGA	AACTTATGTA	AAATGGCCTT	GGTATGTGTG	GCTACTGATA
4201	GGTTTAGTAG	TAGTATTTTG	CATACCATTA	CTGCTATTTT	GCTGTTTTAG	CACAGGTTGT
4261	TGTGGATGCA	TAGGTTGTTT	AGGAAGTTGT	TGTCACTCTA	TATGTAGTAG	AAGACAATTT
4321	GAAAATTATG	AACCAATTGA	AAAAGTGCAT	GTCCACTAA		

. 1	GAGCTCGCGG	CCGCCTATCA	AAAGTCTTAA	TGAGTTAGGT	GTAGATAGTA	TAGATATTAC
61	TACAAAGGTA	TTCATATTTC	CTATCAATTC	TAAAGTAGAT	GATATTAATA	ACTCAAAGAT
121	GATGATAGTA	GATAATAGAT	ACGCTCATAT	AATGACTGCA	AATTTGGACG	GTTCACATTT
181	TAATCATCAC	GCGTTCATAA	GTTTCAACTG	CATAGATCAA	AATCTCACTA	AAAAGATAGC
241	CGATGTATTT	GAGAGAGATT	GGACATCTAA	CTACGCTAAA	GAAATTACAG	TTATAAATAA
301	TACATAATGG	ATTTTGTTAT	CATCAGTTAT	ATTTAACATA	AGTACAATAA	AAAGTATTAA
361	АТАААААТАС	TTACTTACGA	AAAAATGACT	AATTAGCTAT	AAAAACCCTT	AATTAATTAG
421	TTATTAGACA	AGGTGAAAAC	GAAACTATTT	GTAGCTTAAT	TAATTAGAGC	TTCTTTATTC
481	TATACTTAAA	AAGTGAAAAT	AAATACAAAG	GTTCTTGAGG	GTTGTGTTAA	ATTGAAAGCG
541	AGAAATAATC	ATAAATTATT	TCATTATCGA	TCCGTTAAGT	TTGTATCGTA	ATGATTGTGC
601	TCGTAACTTG	CCTCTTGTTG	TTATGTTCAT	ACCACACAGT	TTTGAGTACA	ACAAATAATG
661	AATGCATACA	AGTTAACGTA	ACACAATTGG	CTGGCAATGA	AAACCTTATC	AGAGATTTTC
721	TGTTTAGTAA	CTTTAAAGAA	GAAGGAAGTG	TAGTTGTTGG	TGGTTATTAC	CCTACAGAGG
781	TGTGGTACAA	CTGCTCTAGA	ACAGCTCGAA	CTACTGCCTT	TCAGTATTTT	AATAATATAC
841	ATGCCTTTTA	TTTTGTTATG	GAAGCCATGG	AAAATAGCAC	TGGTAATGCA	CGŢGGTAAAC
901	CATTATTATT	TCATGTGCAT	GGTGAGCCTG	TTAGTGTTAT	TATATCGGCT	TATAGGGATG
961	ATGTGCAACA	AAGGCCCCTT	TTAAAACATG	GGTTAGTGTG	CATAACTAAA	AATCGCCATA
1021	TTAACTATGA	ACAATTCACC	TCCAACCAGT	GGAATTCCAC	ATGTACGGGT	GCTGACAGAA
1081	AAATTCCTTT	CTCTGTCATA	CCCACGGACA	ATGGAACAAA	AATCTATGGT	CTTGAGTGGA
1141	ATGATGACTT	TGTTACAGCT	TATATTAGTG	GTCGTTCTTA	TCACTTGAAC	ATCAATACTA
1201	ATTGGTTTAA	CAATGTCACA	CTTTTGTATT	CACGCTCAAG	CACTGCTACC	TGGGAATACA
1261	GTGCTGCATA	TGCTTACCAA	GGTGTTTCTA	ACTTCACTTA	TTACAAGTTA	AATAACACCA
1321	ATGGTCTAAA	AACCTATGAA	TTATGTGAAG	ATTATGAACA	TTGCACTGGC	TATGCTACCA
1381	ATGTATTTGC	TCCGACATCA	GGTGGTTACA	TACCTGATGG	ATTTAGTTTT	AACAATTGGT
1441	TCTTGCTTAC	AAATAGTTCC	ACTTTTGTTA	GTGGCAGGTT	TGTAACAAAT	CAACCATTAT
1501	TGATTAATTG	CTTGTGGCCA	GTGCCCAGTT	TTGGTGTAGC	AGCACAAGAA	TTTTGTTTTG
1561	AAGGTGCACA	GTTTAGCCAA	TGTAATGGTG	TGTCTTTAAA	TAACACAGTG	GATGTTATTA
1621	GAT'ICAACCT	TAATTTCACT	GCAGATGTAC	AATCTGGTAT	GGGTGCTACA	GTATTTTCAC
1681	TGAATACAAC	: AGGTGGTGTC	ATTCTTGAAA	TTTCATGTTA	TAGTGACACA	GTGAGTGAGT
1741	CTAGTTCTTA	CAGTTATGGT	GAAATCCCGT	TCGGCATAAC	TGACGGACCA	CGATACTGTT

Figure 6 (cont'd.)

1801	ATGTACTTTA	CAATGGCACA	GCTCTTAAAT	ATTTAGGAAC	ATTACCACCC	AGTGTAAAGG
1861	AAATCGCTAT	TAGTAAGTGG	GGCCATTTCT	ATATTAATGG	TTACAATTTC	TTTAGCACAT
1921	TTCCTATTGG	TTGTATATCT	TTTAATTTAA	CCACTGGTGT	TAGTGGAGCT	TTTTGGACAA
1981	TTGCTTACAC	ATCGTATACT	GAAGCATTAG	TACAAGTTGA	AAACACAGCT	ATTAAAAATG
2041	TGACGTATTG	TAACAGTCAC	ATTAATAACA	TTAAATGTTC	TCAACTTACT	GCTAATTTGA
2101	ATAATGGATT	TTATCCTGTT	GCTTCAAGTG	AAGTAGGTTT	CGTTAATAAG	AGTGTTGTGT
2161	TATTACCTAG	CTTTTTCACA	TACACCGCTG	TCAATATAAC	CATTGATCTT	GGTATGAAGC
2221	TTAGTGGTTA	TGGTCAACCC	ATAGCCTCGA	CACTAAGTAA	CATCACACTA	CCAATGCAGG
2281	ATAACAATAC	TGATGTGTAC	TGTATTCGTT	CTAACCAATT	CTCAGTTTAT	GTTCATTCCA
2341	CTTGCAAAAG	TTCTTTATGG	GACAATATTT	TTAATCAAGA	CTGCACGGAT	GTTTTAGAGG
2401	CTACAGCTGT	ТАТАААААСТ	GGTACTTGTC	CTTTCTCATT	TGATAAATTG	AACAATTACT
2461	TGACTTTTAA	CAAGTTCTGT	TTGTCGTTGA	GTCCTGTTGG	TGCTAATTGC	AAGTTTGATG
2521	TTGCTGCACG	TACAAGAACC	AATGAGCAGG	TTGTTAGAAG	TCTATATGTA	ATATATGAAG
2581	AAGGAGACAA	CATAGTGGGT	GTACCGTCTG	ATAATAGCGG	TCTGCACGAT	TTGTCTGTGC
2641	TACACCTAGA	CTCCTGTACA	GATTACAATA	TATATGGTAG	AACTGGTGTT	GGTATTATTA
2701	GACGAACTAA	CAGTACGCTA	CTTAGTGGCT	TATATTACAC	ATCACTATCA	GGTGATTTGT
2761	TAGGCTTTAA	AAATGTTAGT	GATGGTGTCA	TTTATTCTGT	GACGCCATGT	GATGTAAGCG
2821	CACAAGCGGC	TGTTATCGAT	GGTGCCATAG	TTGGAGCTAT	GACTTCCATT	AACAGTGAAC
2881	TGTTAGGCCT	AACACATTGG	ACAACGACAC	CTAATTTCTA	TTACTACTCT	ATATATAATT
2941	ACACAAGTGA	GAGGACTCGT	GGCACTGCAA	TTGACAGTAA	CGATGTTGAT	TGTGAACCTG
3001	TCATAACCTA	ТТСТААТАТА	GGTGTTTGTA	AAAATGGTGC	TTTGGTATTT	ATTAACGTCA
3061	CACATTCTGA	CGGAGACGTG	CAACCAATTA	GCACTGGTAA	TGTCACGATA	CCTACAAATT
3121	TTACCATATO	TGTGCAAGTT	GAATACATGO	AGGTTTACAC	TACACCAGTA	TCAATAGATT
3181	GTGCAAGATA	CGTTTGTAAT	GGTAACCCTA	GATGTAACAA	ATTGTTAACA	CAATATGTGT
3241	CTGCATGTCA	AACTATTGAA	CAAGCACTTG	CAATGGGTGC	CAGACTTGAA	AACATGGAGG
330	TTGATTCCAT	GTTGTTTGTC	TCGGAAAATC	CCCTTAAATT	GGCATCTGTT	GAGGCGTTCA
3361	ATAGTACAGA	AAATTTAGAT	CCTATTTACA	AAGAATGGCC	TAGCATAGGT	GGTTCTTGGC
342	TAGGAGGTCT	AAAAGATATA	CTACCGTCCC	ATAATAGCAA	ACGTAAGTAT	GGTTCTGCTA
348	TAGAAGATTT	GCTTTTTGAT	AAAGTTGTAA	A CATCTGGTTT	AGGTACAGTT	GATGAAGATT
354	1 ATAAACGTTC	TACTGGTGG	TACGACATAC	CAGACTTGGT	GTGTGCTCA	TATTACAATG

Figure 6 (cont'd.)

3601	GCATCATGGT	TCTACCAGGT	GTAGCTAATG	CTGACAAGAT	GACTATGTAC	ACAGCATCAC
3661	TTGCAGGTGG	TATAACATTA	GGTGCACTTG	GTGGTGGCGC	CGTGGCTATA	CCTTTTGCAG
3721	TAGCAGTACA	GGCTAGACTT	AATTATGTTG	CTCTACAAAC	TGATGTATTG	ААТАААААСС
3781	AACAGATCCT	GGCTAATGCT	TTCAATCAAG	CTATTGGTAA	CATTACACAG	GCTTTTGGTA
3841	AGGTTAATGA	TGCTATACAT	CAAACATCAC	AAGGTCTTGC	CACTGTTGCT	AAAGCGTTGG
3901	CAAAAGTGCA	AGATGTTGTC	AACACACAAG	GGCAAGCTTT	AAGTCACCTT	ACAGTACAAT
3961	TGCAAAATAA	TTTTCAAGCC	ATTAGTAGTT	CTATTAGTGA	TATTTATAAC	AGGCTTGACG
4021	AACTGAGTGC	TGATGCACAA	GTTGATAGGC	TGATTACAGG	TAGACTTACA	GCACTTAATG
4081	CATTTGTGTC	TCAGACTCTA	ACCAGACAAG	CAGAGGTTAG	GGCTAGTAGA	CAACTTGCCA
4141	AAGACAAGGT	TAATGAATGT	GTTAGGTCTC	AGTCTCAGAG	ATTCGGATTC	TGTGGTAATG
4201	GTACACATTT	GTTTTCACTA	GCAAATGCAG	CACCAAATGG	CATGATTTTC	TTTCATACAG
4261	TACTATTACC	AACAGCTTAT	GAAACTGTAA	CAGCTTGGTC	AGGTATTTGT	GCTTCAGATG
4321	GCGATCGCAC	TTTCGGACTT	GTCGTTAAAG	ATGTGCAGTT	GACGTTGTTT	CGTAATCTAG
4381	ATGACAAGTT	CTATTTGACC	CCCAGAACTA	TGTATCAGCC	TAGAGTTGCA	ACTAGTTCTG
4441	ATTTTGTTCA	AATTGAAGGG	TGTGATGTGT	TGTTTGTCAA	CGCGACTGTA	ATTGATTTGC
4501	CTAGTATTAT	ACCTGACTAT	ATTGACATTA	ATCAAACTGT	TCAAGACATA	TTAGAAAATT
4561	ACAGACCAAA	CTGGACTGTA	CCTGAATTTA	CACTTGATAT	TTTCAACGCA	ACCTATTTAA
4621	ATCTGACTGG	TGAAATTGAT	GACTTAGAGT	TTAGGTCAGA	AAAGCTACAT	AACACTACAG
4681	TAGAACTTGC	CATTCTCATT	GATAACATTA	ATAATACATT	AGTCAATCTT	GAATGGCTCA
4741	ATAGAATTGA	AACTTATGTA	AAATGGCCTT	GGTATGTGTG	GCTACTGATA	GGTTTAGTAG
4801	TAGTATTTTG	CATACCATTA	CTGCTATTTT	GCTGTTTTAG	CACAGGTTGT	TGTGGATGCA
4861	TAGGTTGTTT	AGGAAGTTGT	TGTCACTCTA	TÄTGTAGTAG	AAGACAATTT	GAAAATTATG
4921	AACCAATTGA	AAAAGTGCAT	GTCCACAAGG	TACAATTCTT	TTTATTGATT	AACTAGTCAA
4981	ATGAGTATAT	` ÀTAATTGAAA	AAGTAAAATA	TAAATCATAT	AATAATGAAA	CGAAATATCA
5041	GTAATAGACA	GGAACTGGCA	GATTCTTCTT	CTAATGAAGT	AAGTACTGCT	AAATCTCCAA
5101	AATTAGATAA	AAATGATACA	GCAAATACAG	CTTCATTCAA	CGAATTACCT	TTTAATTTTT
5161	TCAGACACAC	CTTATTACAA	ACTAACTAAG	TCAGATGATG	AGAAAGTAAA	TATAAATTTA
5221	ACTTATGGGT	TAATATAATA	AAAGATTCAT	GATATTAATA	ATTTACTTAA	CGATGTTAAT
5281	AGACTTATTO	CATCAACCCC	TTCAAACCTT	TCTGGATATI	ATAAAATACC	AGTTAATGAT
5341	ATTAAAATAC	G ATTGTTTAAG	AGATGTAAAT	AATTATTTGG	AGGTAAAGGA	ТАТАААТТА

Figure 6 (cont'd.)

5401	GTCTATCTTT	CACATGGAAA	TGAATTACCT	ATATTAATA	ATTATGATAG	GAATTTTTTA
5461	GGATTTACAG	CTGTTATATG	TATCAACAAT	ACAGGCAGAT	CTATGGTTAT	GGTAAAACAC
5521	TGTAACGGGA	AGCAGCATTC	TATGGTAACT	GGCCTATGTT	TAATAGCCAG	ATCATTTTAC
5581	ТСТАТАААСА	TTTTACCACA	AATAATAGGA	TCCTCTAGAT	ATTTAATATT	ATATCTAACA
5641	ACAACAAAAA	AATTTAACGA	TGTATGGCCA	GAAGTATTTT	CTACTAATAA	AGATAAAGAT
5701	AGTCTATCTT	ATCTACAAGA	TATGAAAGAA	GATAATCATT	TAGTAGTAGC	TACTAATATG
5761	GAAAGAAATG	TATACAAAAA	CGTGGAAGCT	TTTATATTAA	ATAGCATATT	ACTAGAAGAT
5821	ттаааатста	GACTTAGTAT	AACAAAACAG	TTAAATGCCA	ATATCGATTC	TATATTTCAT
5881	CATAACAGTA	GTACATTAAT	CAGTGATATA	CTGAAACGAT	CTACAGACTC	AACTATGCAA
5941	GGAATAAGCA	ATATGCCAAT	TATGTCTAAT	ATTTTAACTT	TAGAACTAAA	ACGTTCTACC
6001	AATACTAAAA	ATAGGATACG	TGATAGGCTG	TTAAAAGCTG	CAATAAATAG	TAAGGATGTA
6061	GAAGAAATAC	TTTGTTCTAT	ACCTTCGGAG	GAAAGAACTT	TAGAACAACT	TAAGTTTAAT
6121	CAAACTTGTA	TTTATGAAGG	TACC			

Figure 7

1	GAGCTCGCGG	CCGCCTATCA	AAAGTCTTAA	TGAGTTAGGT	GTAGATAGTA	TAGATATTAC
61	TACAAAGGTA	TTCATATTTC	CTATCAATTC	TAAAGTAGAT	GATATTAATA	ACTCAAAGAT
121	GATGATAGTA	GATAATAGAT	ACGCTCATAT	AATGACTGCA	AATTTGGACG	GTTCACATTT
181	TAATCATCAC	GCGTTCATAA	GTTTCAACTG	CATAGATCAA	AATCTCACTA	AAAAGATAGC
241	CGATGTATTT	GAGAGAGATT	GGACATCTAA	CTACGCTAAA	GAAATTACAG	TTATAAATAA
301	TACATAATGG	ATTTTGTTAT	CATCAGTTAT	ATTTAACATA	AGTACAATAA	AAAGTATTAA
361	АТАААААТАС	TTACTTACGA	AAAAATGACT	AATTAGCTAT	AAAAACCCTT	AATTAATTAG
421	TTATTAGACA	AGGTGAAAAC	GAAACTATTT	GTAGCTTAAT	TAATTAGAGC	TTCTTTATTC
481	TATACTTAAA	AAGTGAAAAT	AAATACAAAG	GTTCTTGAGG	GTTGTGTTAA	ATTGAAAGCG
541	AGAAATAATC	TTATTAAATA	TCATTATCGA	TCCGTTAAGT	TTGTATCGTA	ATGACAACAA
601	ATAATGAATG	CATACAAGTT	AACGTAACAC	AATTGGCTGG	CAATGAAAAC	CTTATCAGAG
661	ATTTTCTGTT	TAGTAACTTT	AAAGAAGAAG	GAAGTGTAGT	TGTTGGTGGT	TATTACCCTA
721	CAGAGGTGTG	GTACAACTGC	TCTAGAACAG	CTCGAACTAC	TGCCTTTCAG	TATTTTAATA
781	ATATACATGC	CTTTTATTT	GTTATGGAAG	CCATGGAAAA	TAGCACTGGT	AATGCACGTG
841	GTAAACCATT	ATTATTTCAT	GTGCATGGTG	AGCCTGTTAG	TGTTATTATA	TCGGCTTATA
901	GGGATGATGT	GCAACAAAGG	CCCCTTTTAA	AACATGGGTT	AGTGTGCATA	ACTAAAAATC
961	GCCATATTAA	CTATGAACAA	TTCACCTCCA	ACCAGTGGAA	TTCCACATGT	ACGGGTGCTG
1021	ACAGAAAAAT	TCCTTTCTCT	GTCATACCCA	CGGACAATGG	AACAAAAATC	TATGGTCTTG
1081	AGTGGAATGA	TGACTTTGTT	ACAGCTTATA	TTAGTGGTCG	TTCTTATCAC	TTGAACATCA
1141	ATACTAATTG	GTTTAACAAT	GTCACACTTT	TGTATTCACG	CTCAAGCACT	GCTACCTGGG
1201	AATACAGTGC	TGCATATGCT	TACCAAGGTG	TTTCTAACTT	CACTTATTAC	AAGTTAAATA
1261	ACACCAATGG	TCTAAAAACC	TATGAATTAT	GTGAAGATTA	TGAACATTGC	ACTGGCTATG
1321	CTACCAATGT	ATTTGCTCCG	ACATCAGGTG	GTTACATACC	TGATGGATTT	AGTTTTAACA
1383	ATTGGTTCTT	GCTTACAAAT	AGTTCCACTI	TTGTTAGTGG	CAGGTTTGTA	ACAAATCAAC
144	CATTATTGAT	TAATTGCTTG	TGGCCAGTGC	CCAGTTTTGG	TGTAGCAGCA	CAAGAATTTT
150	l GTTTTGAAGG	TGCACAGTTT	AGCCAATGTA	ATGGTGTGTC	TTTAAATAAC	ACAGTGGATG
156	1 TTATTAGATT	CAACCTTAAT	TTCACTGCAG	ATGTACAATC	TGGTATGGGT	GCTACAGTAT
162	1 TTTCACTGAA	TACAACAGGT	GGTGTCATTC	TTGAAATTTC	: ATGTTATAGT	GACACAGTGA
168	1 GTGAGTCTAG	TTCTTACAG	TATGGTGAAA	TCCCGTTCGG	CATAACTGAC	GGACCACGAT
174	1 ACTGTTATGT	ACTTTACAA	GGCACAGCT	TTAAATATT	AGGAACATTA	CCACCCAGTG

Figure 7 (cont'd.)

						AATTTCTTTA
1861	GCACATTTCC	TATTGGTTGT	ATATCTTTTA	ATTTAACCAC	TGGTGTTAGT	GGAGCTTTTT
1921	GGACAATTGC	TTACACATCG	TATACTGAAG	CATTAGTACA	AGTTGAAAAC	ACAGCTATTA
1981	AAAATGTGAC	GTATTGTAAC	AGTCACATTA	ATAACATTAA	ATGTTCTCAA	CTTACTGCTA
2041	ATTTGAATAA	TGGATTTTAT	CCTGTTGCTT	CAAGTGAAGT	AGGTTTCGTT	AATAAGAGTG
2101	TTGTGTTATT	ACCTAGCTTT	TTCACATACA	CCGCTGTCAA	TATAACCATT	GATCTTGGTA
2161	TGAAGCTTAG	TGGTTATGGT	CAACCCATAG	CCTCGACACT	AAGTAACATC	ACACTACCAA
2221	TGCAGGATAA	CAATACTGAT	GTGTACTGTA	TTCGTTCTAA	CCAATTCTCA	GTTTATGTTC
2281	ATTCCACTTG	CAAAAGTTCT	TTATGGGACA	ATATTTTTAA	TCAAGACTGC	ACGGATGTTT
2341	TAGAGGCTAC	AGCTGTTATA	AAAACTGGTA	CTTGTCCTTT	CTCATTTGAT	AAATTGAACA
2401	ATTACTTGAC	TTTTAACAAG	TTCTGTTTGT	CGTTGAGTCC	TGTTGGTGCT	AATTGCAAGT
2461	TTGATGTTGC	TGCACGTACA	AGAACCAATG	AGCAGGTTGT	TAGAAGTCTA	TATGTAATAT
2521	ATGAAGAAGG	AGACAACATA	GTGGGTGTAC	CGTCTGATAA	TAGCGGTCTG	CACGATTTGT
2581	CTGTGCTACA	CCTAGACTCC	TGTACAGATT	ACAATATATA	TGGTAGAACT	GGTGTTGGTA
2641	TTATTAGACG	AACTAACAGT	ACGCTACTTA	GTGGCTTATA	TTACACATCA	CTATCAGGTG
2701	ATTTGTTAGG	CTTTAAAAAT	GTTAGTGATG	GTGTCATTTA	TTCTGTGACG	CCATGTGATG
2761	TAAGCGCACA	AGCGGCTGTT	ATCGATGGTG	CCATAGTTGG	AGCTATGACT	TCCATTAACA
2821	GTGAACTGTT	AGGCCTAACA	CATTGGACAA	CGACACCTAA	TTTCTATTAC	TACTCTATAT
2881	ATAATTACAC	AAGTGAGAGG	ACTCGTGGCA	CTGCAATTGA	CAGTAACGAT	GTTGATTGTG
2941	AACCTGTCAT	AACCTATTCT	AATATAGGTG	TTTGTAAAAA	TGGTGCTTTG	GTATTTATTA
3001	ACGTCACACA	TTCTGACGGA	GACGTGCAAC	CAATTAGCAC	TGGTAATGTC	ACGATACCTA
3061	CAAATTTTAC	CATATCTGTG	CAAGTTGAAT	ACATGCAGGT	TTACACTACA	CCAGTATCAA
3121	TAGATTGTGC	AAGATACGTT	TGTAATGGTA	ACCCTAGATG	TAACAAATTG	TTAACACAAT
3181	ATGTGTCTGC	atgtcaaact	' ATTGAACAAG	CACTTGCAAT	GGGTGCCAGA	CTTGAAAACA
3241	TGGAGGTTGA	TTCCATGTTG	TTTGTCTCGG	AAAATGCCCT	TAAATTGGCA	TCTGTTGAGG
3301	CGTTCAATAG	TACAGAAAAT	TTAGATCCTA	TTTACAAAGA	ATGGCCTAGO	ATAGGTGGTT
3361	CTTGGCTAG	G AGGTCTAAAA	GATATACTAC	CGTCCCATA	TAGCAAACGT	AAGTATGGTT
342	CTGCTATAGA	A AGATTTGCT'	TTTGATAAAG	TTGTAACATO	TGGTTTAGGT	ACAGTTGATG
3483	L AAGATTATA	A ACGTTGTACT	GGTGGTTACC	G ACATAGCAGA	CTTGGTGTGT	GCTCAATATT
354	ACAATGGCAT	CATGGTTCT	CCAGGTGTA	G CTAATGCTG	CAAGATGACT	ATGTACACAG

3601 CATCACTTGC AGGTGGTATA ACATTAGGTG CACTTGGTGG TGGCGCCGTG GCTATACCTT 3661 TTGCAGTAGC AGTACAGGCT AGACTTAATT ATGTTGCTCT ACAAACTGAT GTATTGAATA 3721 AAAACCAACA GATCCTGGCT AATGCTTTCA ATCAAGCTAT TGGTAACATT ACACAGGCTT 3781 TTGGTAAGGT TAATGATGCT ATACATCAAA CATCACAAGG TCTTGCCACT GTTGCTAAAG 3841 CGTTGGCAAA AGTGCAAGAT GTTGTCAACA CACAAGGGCA AGCTTTAAGT CACCTTACAG 3901 TACAATTGCA AAATAATTTT CAAGCCATTA GTAGTTCTAT TAGTGATATT TATAACAGGC 3961 TTGACGAACT GAGTGCTGAT GCACAAGTTG ATAGGCTGAT TACAGGTAGA CTTACAGCAC 4021 TTAATGCATT TGTGTCTCAG ACTCTAACCA GACAAGCAGA GGTTAGGGCT AGTAGACAAC 4081 TTGCCAAAGA CAAGGTTAAT GAATGTGTTA GGTCTCAGTC TCAGAGATTC GGATTCTGTG 4141 GTAATGGTAC ACATTTGTTT TCACTAGCAA ATGCAGCACC AAATGGCATG ATTTTCTTTC 4201 ATACAGTACT ATTACCAACA GCTTATGAAA CTGTAACAGC TTGGTCAGGT ATTTGTGCTT 4261 CAGATGGCGA TCGCACTTTC GGACTTGTCG TTAAAGATGT GCAGTTGACG TTGTTTCGTA 4321 ATCTAGATGA CAAGTTCTAT TTGACCCCCA GAACTATGTA TCAGCCTAGA GTTGCAACTA 4381 GTTCTGATTT TGTTCAAATT GAAGGGTGTG ATGTGTTGTT TGTCAACGCG ACTGTAATTG 4441 ATTTGCCTAG TATTATACCT GACTATATTG ACATTAATCA AACTGTTCAA GACATATTAG 4501 AAAATTACAG ACCAAACTGG ACTGTACCTG AATTTACACT TGATATTTTC AACGCAACCT 4561 ATTTAAATCT GACTGGTGAA ATTGATGACT TAGAGTTTAG GTCAGAAAAG CTACATAACA 4621 CTACAGTAGA ACTTGCCATT CTCATTGATA ACATTAATAA TACATTAGTC AATCTTGAAT 4681 GGCTCAATAG AATTGAAACT TATGTAAAAT GGCCTTGGTA TGTGTGGCTA CTGATAGGTT 4741 TAGTAGTAGT ATTTTGCATA CCATTACTGC TATTTTGCTG TTTTAGCACA GGTTGTTGTG 4801 GATGCATAGG TTGTTTAGGA AGTTGTTGTC ACTCTATATG TAGTAGAAGA CAATTTGAAA 4861 ATTATGAACC AATTGAAAAA GTGCATGTCC ACAAGGTACA ATTCTTTTTA TTGATTAACT 4921 AGTCAAATGA GTATATATAA TTGAAAAAGT AAAATATAAA TCATATAATA ATGAAACGAA 4981 ATATCAGTAA TAGACAGGAA CTGGCAGATT CTTCTTCTAA TGAAGTAAGT ACTGCTAAAT 5041 CTCCAAAATT AGATAAAAAT GATACAGCAA ATACAGCTTC ATTCAACGAA TTACCTTTTA 5101 ATTTTTCAG ACACACCTTA TTACAAACTA ACTAAGTCAG ATGATGAGAA AGTAAATATA 5161 AATTTAACTT ATGGGTATAA TATAATAAAG ATTCATGATA TTAATAATTT ACTTAACGAT 5221 GTTAATAGAC TTATTCCATC AACCCCTTCA AACCTTTCTG GATATTATAA AATACCAGTT .5281 AATGATATTA AAATAGATTG TTTAAGAGAT GTAAATAATT ATTTGGAGGT AAAGGATATA 5341 AAATTAGTCT ATCTTTCACA TGGAAATGAA TTACCTAATA TTAATAATTA TGATAGGAAT

WO 97/20054 PCT/US96/19274

Figure 7 (cont'd.)

5401TTTTTAGGATTTACAGCTGTTATATGTATCAACAATACAGGCAGATCTATGGTTATGGTA5461AAACACTGTAACGGGAAGCAGCATTCTATGGTAACTGGCCTATGTTTAATAGCCAGATCA5521TTTTACTCTATAAACATTTACCACAAATAATAGGATCCTCTAGATATTAATATATATAT5581CTAACAACAACAAAAAAAATTTAACGATGTATGGCCAGAAGTATTTTCTACTAATAAAGAT5641AAAGATAGTCTATCTTATCTACAAGATATGAAAGAAGATAATCATTTAGTAGTAGCTACT5701AATATGGAAAGAAATGTATACAAAAAACGTGGAAGCTTTTATATTAAATAGCATATTACTA5761GAAGATTTAAAATCTAGACTTAGTATAACAAAACAGTTAAATGCCAATATCGATTCTATA5821TTTCATCATAACAGTAGTACATTAATCAGTGATATACTGAAACGATCTACAGACTCAACT5881ATGCAAGGAATAAGCAATATGCCAATTATGTCTAATATTTTAACTTTAGAACTAAAAACGT5941TCTACCAATACTAAAAATAGGATACGTGATAAGCTGCAATAAATAGTAAG6001GATGTAGAAGAAATACTTTGTTCTATACCTTCGGAGGAAAGAACTTTAGAACAACTTAAG6061TTTAATCAAACTTGTATTTATGAAGGTACCTCGGAGGAAAGAACTTTAGAACAACTTAAG

					•	
1	GAGCTCGCGG	CCGCCTATCA	AAAGTCTTAA	TGAGTTAGGT	GTAGATAGTA	TAGATATTAC
61	TACAAAGGTA	TTCATATTTC	CTATCAATTC	TAAAGTAGAT	GATATTAATA	ACTCAAAGAT
121	GATGATAGTA	GATAATAGAT	ACGCTCATAT	AATGACTGCA	AATTTGGACG	GTTCACATTT
181	TAATCATCAC	GCGTTCATAA	GTTTCAACTG	CATAGATCAA	AATCTCACTA	AAAAGATAGC
241	CGATGTATTT	GAGAGAGATT	GGACATCTAA	CTACGCTAAA	GAAATTACAG	AATAAATTT
301	TACATAATGG	ATTTTGTTAT	CATCAGTTAT	ATTTAACATA	AGTACAATAA	AAAGTATTAA
361	ATAAAAATAC	TTACTTACGA	AAAAATGACT	AATTAGCTAT	AAAAACCCTT	AATTAATTAG
421	TTATTAGACA	AGGTGAAAAC	GAAACTATTT	GTAGCTTAAT	TAATTAGAGC	TTCTTTATTC
481	TATACTTAAA	AAGTGAAAAT	AAATACAAAG	GTTCTTGAGG	GTTGTGTTAA	ATTGAAAGCG
541	AGAAATAATC	ATAAATTATT	TCATTATCGA	TCCGTTAAGT	TTGTATCGTA	ATGGGTAACC
601	CTAGATGTAA	CAAATTGTTA	ACACAATATG	TGTCTGCATG	TCAAACTATT	GAACAAGCAC
661	TTGCAATGGG	TGCCAGACTT	GAAAACATGG	AGGTTGATTC	CATGTTGTTT	GTCTCGGAAA
721	ATGCCCTTAA	ATTGGCATCT	GTTGAGGCGT	TCAATAGTAC	AGAAAATTTA	GATCCTATTT
781	ACAAAGAATG	GCCTAGCATA	GGTGGTTCTT	GGCTAGGAGG	TCTAAAAGAT	ATACTACCGT
841	CCCATAATAG	CAAACGTAAG	TATGGTTCTG	CTATAGAAGA	TTTGCTTTTT	GATAAAGTTG
901	TAACATCTGG	TTTAGGTACA	GTTGATGAAG	ATTATAAACG	TTGTACTGGT	GGTTACGACA
961	TAGCAGACTT	GGTGTGTGCT	CAATATTACA	ATGGCATCAT	GGTTCTACCA	GGTGTAGCTA
1021	ATGCTGACAA	GATGACTATG	TACACAGCAT	CACTTGCAGG	TGGTATAACA	TTAGGTGCAC
1081	TTGGTGGTGG	CGCCGTGGCT	ATACCTTTTG	CAGTAGCAGT	ACAGGCTAGA	CTTAATTATG
1141	TTGCTCTACA	AACTGATGTA	TTGAATAAAA	ACCAACAGAT	CCTGGCTAAT	GCTTTCAATC
1201	AAGCTATTGG	TAACATTACA	CAGGCTTTTG	GTAAGGTTAA	TGATGCTATA	CATCAAACAT
1261	CACAAGGTCT	TGCCACTGTT	GCTAAAGCGT	TGGCAAAAGT	GCAAGATGTT	GTCAACACAC
1321	AAGGGCAAGC	TTTAAGTCAC	CTTACAGTAC	AATTGCAAAA	TAATTTTCAA	GCCATTAGTA
1381	GTTCTATTAG	TGATATTTAT	AACAGGCTTG	ACGAACTGAG	TGCTGATGCA	CAAGTTGATA
1441	GGCTGATTAC	AGGTAGACTT	ACAGCACTTA	ATGCATTTGT	GTCTCAGACT	CTAACCAGAC
1501	AAGCAGAGGT	TAGGGCTAGT	AGACAACTTG	CCAAAGACAA	GGTTAATGAA	TGTGTTAGGT
1561	CTCAGTCTCA	GAGATTCGGA	TTCTGTGGTA	ATGGTACACA	TTTGTTTTCA	CTAGCAAATG
1621	CAGCACCAAA	TGGCATGATT	TTCTTTCATA	CAGTACTATT	ACCAACAGCT	TATGAAACTG
1681	TAACAGCTTG	GTCAGGTATT	TGTGCTTCAG	ATGGCGATCG	CACTTTCGGA	CTTGTCGTTA
1741	AAGATGTGCA	GTTGACGTTG	TTTCGTAATC	TAGATGACAA	GTTCTATTTG	ACCCCCAGAA

Figure 8 (cont'd.)

1801 CTATGTATCA GCCTAGAGTT GCAACTAGTT CTGATTTTGT TCAAATTGAA GGGTGTGATG
1861 TGTTGTTTGT CAACGCGACT GTAATTGATT TGCCTAGTAT TATACCTGAC TATATTGACA
1921 TTAATCAAAC TGTTCAAGAC ATATTAGAAA ATTACAGACC AAACTGGACT GTACCTGAAT
1981 TTACACTTGA TATTTTCAAC GCAACCTATT TAAATCTGAC TGGTGAAATT GATGACTTAG
2041 AGTTTAGGTC AGAAAAGCTA CATAACACTA CAGTAGAACT TGCCATTCTC ATTGATAACA
2101 TTAATAATAC ATTAGTCAAT CTTGAATGGC TCAATAGAAT TGAAACTTAT GTAAAATGGC
2161 CTTGGTATGT GTGGCTACTG ATAGGTTTAG TAGTAGTATT TTGCATACÇA TTACTGCTAT
2221 TTTGCTGTTT TAGCACAGGT TGTTGTGGAT GCATAGGTTG TTTAGGAAGT TGTTGTCACT
2281 CTATATGTAG TAGAAGACAA TTTGAAAATT ATGAACCAAT TGAAAAAGTG CATGTCCACA
2341 AGGTACAATT CTTTTTATTG ATTAACTAGT CAAATGAGTA TATATAATTG AAAAAGTAAA
2401 ATATAATCA TATAATAATG AAACGAAATA TCAGTAATAG ACAGGAACTG GCAGATTCTT
2461 CTTCTAATGA AGTAAGTACT GCTAAATCTC CAAAATTAGA TAAAAATGAT ACAGCAAATA
2521 CAGCTTCATT CAACGAATTA CCTTTTAATT TTTTCAGACA CACCTTATTA CAAACTAACT
2581 AAGTCAGATG ATGAGAAAGT AAATATAAAT TTAACTTATG GGTATAATAT AATAAAGATT
2641 CATGATATTA ATAATTTACT TAACGATGTT AATAGACTTA TTCCATCAAC CCCTTCAAAC
2701 CTTTCTGGAT ATTATAAAAT ACCAGTTAAT GATATTAAAA TAGATTGTTT AAGAGATGTA
2761 AATAATTATT TGGAGGTAAA GGATATAAAA TTAGTCTATC TTTCACATGG AAATGAATTA
2821 CCTAATATTA ATAATTATGA TAGGAATTTT TTAGGATTTA CAGCTGTTAT ATGTATCAAC
2881 AATACAGGCA GATCTATGGT TATGGTAAAA CACTGTAACG GGAAGCAGCA TTCTATGGTA
2941 ACTGGCCTAT GTTTAATAGC CAGATCATTT TACTCTATAA ACATTTTACC ACAAATAATA
3001 GGATCCTCTA GATATTTAAT ATTATATCTA ACAACAACAA AAAAATTTAA CGATGTATGG
3061 CCAGAAGTAT TTTCTACTAA TAAAGATAAA GATAGTCTAT CTTATCTACA AGATATGAAA
3121 GAAGATAATC ATTTAGTAGT AGCTACTAAT ATGGAAAGAA ATGTATACAA AAACGTGGAA
3181 GCTTTTATAT TAAATAGCAT ATTACTAGAA GATTTAAAAT CTAGACTTAG TATAACAAAA
3241 CAGTTAAATG CCAATATCGA TTCTATATTT CATCATAACA GTAGTACATT AATCAGTGAT
3301 ATACTGAAAC GATCTACAGA CTCAACTATG CAAGGAATAA GCAATATGCC AATTATGTCT
3361 AATATTTTAA CTTTAGAACT AAAACGTTCT ACCAATACTA AAAATAGGAT ACGTGATAGG
3421 CTGTTAAAAG CTGCAATAAA TAGTAAGGAT GTAGAAGAAA TACTTTGTTC TATACCTTCG
3481 GAGGAAAGAA CTTTAGAACA ACTTAAGTTT AATCAAACTT GTATTTATGA AGGTACC

Figure 9

1	AGATATTTGT	TAGCTTCTGC	CGGAGATACC	GTGAAAATCT	ATTTTCTGGA	AGGAAAGGGA
61	GGTCTTATCT	ATTCTGTCAG	CAGAGTAGGT	TCCTCTAATG	ACGAAGACAA	TAGTGAATAC
121	TTGCATGAAG	GTCACTGTGT	AGAGTTCAAA	ACTGATCATC	AGTGTTTGAT	AACTCTAGCG
181	TGTACGAGTC	CTTCTAACAC	TGTGGTTTAT	TGGCTGGAAT	AAAAGGATAA	AGACACCTAT
241	ACTGATTCAT	TTTCATCTGT	CAACGTTTCT	CTAAGAGATT	CATAGGTATT	ATTATTACAT
301	CGATCTAGAA	GTCTAATAAC	TGCTAAGTAT	ATTATTGGAT	TTAACGCGCT	ATAAACGCAT
361	CCAAAACCTA	CAAATATAGG	AGAAGCTTCT	CTTATGAAAC	TTCTTAAAGC	TTTACTCTTA
421	CTATTACTAC	TCAAAAGAGA	TATTACATTA	ATTATGTGAT	GAGGCATCCA	ACATATAAAG
481	AAGACTAAAG	CTGTAGAAGC	TGTTATGAAG	AATATCTTAT	CAGATATATT	AGATGCATTG
541	TTAGTTCTGT	AGATCAGTAA	CGTATAGCAT	ACGAGTATAA	TTATCGTAGG	TAGTAGGTAT
601	ССТААААТАА	ATCTGATACA	GATAATAACT	TTGTAAATCA	ATTCAGCAAT	TTCTCTATTA
661	TCATGATAAT	GATTAATACA	CAGCGTGTCG	TTATTTTTTG	TTACGATAGT	ATTTCTAAAG
721	TAAAGAGCAG	GAATCCCTAG	TATAATAGAA	ATAATCCATA	TGAAAAATAT	AGTAATGTAC
781	ATATTTCTAA	TGTTAACATA	TTTATAGGTA	AATCCAGGAA	GGGTAATTTT	TACATATCTA
841	TATACGCTTA	TTACAGTTAT	TAAAAATATA	CTTGCAAACA	TGTTAGAAGT	AAAAAAGAAA
901	GAACTAATTT	TACAAAGTGC	TTTACCAAAA	TGCCAATGGA	AATTACTTAG	TATGTATATA
961	ATGTATAAAG	GTATGAATAT	CACAAACAGC	AAATCGGCTA	TTCCCAAGTT	GAGAAACGGT
1021	ATAATAGATA	TATTTCTAGA	TACCATTAAT	AACCTTATAA	GCTTGACGTT	TCCTATAATG
1081	CCTACTAAGA	AAACTAGAAG	ATACATACAT	ACTAACGCCA	TACGAGAGTA	ACTACTCATC
1141	GTATAACTAC	TGTTGCTAAC	AGTGACACTG	ATGTTATAAC	TCATCTTTGA	TGTGGTATAA
1201	ATGTATAATA	ACTATATTAC	ACTGGTATTT	TATTICAGTT	ATATACTATA	TAGTATTAAA
1261	AATTATATTI	GTATAATTAT	ATTATTATAT	TCAGTGTAGA	AAGTAAAATA	CTATAAATAT
1321	GTATCTCTTA	TTTATAACTT	ATTAGTAAAG	TATGTACTAT	TCAGTTATAT	TGTTTTATAA
1381	AAGCTAAATC	CTACTAGATT	GATATAAATG	AATATGTAAT	AAATTAGTAA	TGTAGTATAC
1441	TAATATTAAC	TCACATTATG	AATACTACTA	A ATCACGAAGA	ATGCAGTAAA	ACATATGATA
1501	CAAACATGTT	AACAGTTTTA	AAAGCCATTA	GTAATAAACA	GTACAATATA	ATTAAGTCTT
1561	TACTTAAAA	A AGATATTAAT	GTTAATAGAT	TATTAACTAG	TTATTCTAAC	GAAATATATA
1621	AACATTTAGA	A CATTACATTA	TGTAATATA	TTATAGAACG	TGCAGCAGAC	аталасатта
1681	TAGATAAGA	A CAATCGTACA	CCGTTGTTT	r ATGCGGTAAA	GAATAATGAT	TATGATATGG
174	TTAAACTCC	TAAAAAATTA 1	GGCGCGAAT	G TAAATTTACA	AGATAGTATA	GGATATTCAT

Figure 9 (cont'd.)

AGAATCTAA AGACAAATG AGGATTGTT ATTAAGCAT	CTTTGAAGCT		TAGGTAGAAC		
AGACAAATG AGGATTGTT ATTAAGCAT		GTGAAATTAT	TATTAAAGTC		
AGGATTGTT ATTAAGCAT	TAAGCATTTT			AGGTGCATAT	GTAGGTTTGA
ATTAAGCAT		CCTATACACC	ATTCTGTAAT	GAAATTAGAT	CACTTAATAT
	TATAAAATTA	GGAGCAAATC	CAAATACAAT	TAACGGCAAT	GGAAAAACAT
	TGCTGTAACA	ТСТААТААТА	CACTACTGGT	AGAACAGCTG	CTGTTATATG
AĢCAGAAGT	TAATAATGGT	GGTTATGATG	TTCCAGCTCC	TATTATATCC	GCTGTCAGTG
TAACAATTA	TGATATTGTT	AAGATACTGA	TACATAATGG	TGCGAATATA	AATGTATCCA
GGAAGATGG	TAGAACGTCT	TTACATACAG	CTATGTTTTG	GAATAACGCT	AAAATAATAG
TGAGTTGCT	TAACTATGGA	AGTGACATAA	ACAGCGTAGA	TACTTATGGT	AGAACTCCGT
ATCTTGTTA	TCGTAGCTTA	AGTTATGATA	TCGCTACTAA	ACTAATATCA.	CGTATCATTA
'AACAGATGT	CTATCGTGAA	GCACCAGTAA	ATATCAGCGG	ATTTATAATT	AAAAAAAA
TATAGAAAA	TAATGATATA	TTCAAATTAA	TTAAAGATGA	TTGTATTAAA	GAGATAAACA
ACTTAAAAG	TATAACCCTT	AATAAATTTC	ATTCATCTGA	CATATTTATA	CGATATAATA
TGATATATG	TTTATTAACG	AGATTTATTC	AACATCCAAA	GATAATAGAA	CTAGACAAAA
ACTCTACGC	TTATAAATCT	ATAGTCAACG	AGAGAAAAAT	CAAAGCTACT	TACAGGTATT
TCAAATAAA	AAAAGTATTA	ACTGTACTAC	CTTTTTCAGG	ATATTTCTCT	ATATTGCCGT
TTGATGTGTT	AGTATATATA	CTTGAATTCA	TCTATGATAA	TAATATGTTG	GTACTTATGA
GAGCGTTATC	ATTAAAATGA	AATAAAAAGC	ATACAAGCTA	TTGCTTCGCT	ATCGTTACAA
AATGGCAGGA	ATTTTGTGTA	AACTAAGCCA	CATACTTGCC	AATGAAAAA	ATAGTAGAAA
GATACTATT	TTAATGGGAT	TAGATGTTAA	GGTTCCTTGG	GATTATAGTA	ACTGGGCATC
rgttaacttt	TACGACGTTA	GGTTAGATAC	TGATGTTACA	GATTATAATA	ATGTTACAAT
AAAATACATG	ACAGGATGTG	ATATTTTTCC	TCATATAACT	CTTGGAATAG	CAAATATGGA
TCAATGTGA	T AGATTTGAA	A ATTTCAAAA	A GCAAATAAC	T GATCAAGAT	T TACAGACTAT
TTCTATAGTC	TGTAAAGAAG	AGATGTGTTT	TCCTCAGAGT	AACGCCTCTA	AACAGTTGGG
AGCGAAAGGA	TGCGCTGTAG	TTATGAAACT	GGAGGTATCT	GATGAACTTA	GAGCCCTAAG
AAATGTTCTG	CTGAATGCGG	TACCCTGTTC	GAAGGACGTG	TTTGGTGATA	TCACAGTAGA
TAATCCGTGG	AATCCTCACA	TAACAGTAGG	ATATGTTAAG	GAGGACGATG	TCGAAAACAA
	ATGGAGTGCA	TGTCCAAGTT	TAGGGGGCAA	GAAATACAAG	TTCTAGGATG
GAAACGCCTA				ma Amama amm	300000000000000000000000000000000000000
	TATAGAAAA ACTTAAAAG TGATATATG ACTCTACGC TCAAATAAA TGATGTGTT AGCGTTATC AGCGATACTAT TGATACTTT AAAATACATG TCAATGTGA TCAATGTGA TCTATAGTC AGCGAAAGGA AAATGTTCTG TAATCCGTGG	TATAGAAAA TAATGATATA ACTTAAAAG TATAACCCTT TGATATATG TTTATTAACG ACTCTACGC TTATAAATCT TCAAATAAA AAAAGTATTA TGATGTGTT AGTATATATA AGCGTTATC ATTAAAATGA ATTGGCAGGA ATTTTGTGTA CGATACTATT TAATGGGAT TCAATGTGAT ACAGGATGTG TCAATGTGAT AGATTTGAA ATTTAATGGAT TCAATGTGAT AGATTTGAA TCTATAGTC TGTAAAGAAG AGCGAAAGGA TGCGCTGTAG AAATGTTCTG CTGAATGCGG TAATCCGTGG AATCCTCACA	TATAGAAAA TAATGATATA TTCAAATTAA ACTTAAAAG TATAACCCTT AATAAATTTC TGATATATG TTTATTAACG AGATTTATTC ACTCTACGC TTATAAATCT ATAGTCAACG TCAAATAAA AAAAGTATTA ACTGTACTAC TGATGTGTT AGTATATATA CTTGAATTCA AGCGTTATC ATTAAAATGA AATAAAAAGC ATGGCAGGA ATTTTGTGTA AACTAAGCCA GATACTATT TTAATGGGAT TAGATGTTAA CTTAACTTT TACGACGTTA GGTTAGATAC TCAATGTGAT AGATTTGAAA ATTTCAAAA CTCTATAGTC TGTAAAGAAG AGATGTGTTT AGCGAAAGGA TGCGCTGTAG TTATGAAACT AAATGTTCTG CTGAATGCGG TACCCTGTTC TAATCCGTGG AATCCTCACA TAACAGTAGG	TATAGAAAA TAATGATATA TTCAAATTAA TTAAAGATGA ACTTAAAAG TATAACCCTT AATAAATTC ATTCATCTGA TGATATATG TTTATTAACG AGATTTATTC AACATCCAAA ACTCTACGC TTATAAATCT ATAGTCAACG AGAGAAAAAT TCAAATAAA AAAAGTATTA ACTGTACTAC CTTTTTCAGG TGATGTGTT AGTATATATA CTTGAATTCA TCTATGATAA AAGCGTTATC ATTAAAATGA AATAAAAAAGC ATACAAGCTA ACTGCAGGA ATTTTGTGTA AACTAAGCCA CATACTTGCC AGATACTATT TTAATGGGAT TAGATGTTAA GGTTCCTTGG TGATACTTT TACGACGTTA GGTTAGATAC TGATGTTACA AAAATACATG ACAGGATGTG ATATTTTCC TCATATAACT TCAATGTGAT AGATTTGAAA ATTTCAAAAA GCAAATAAC TCTATAGTC TGTAAAGAAG AGATGTGTTT TCCTCAGAGT AAATGTTCTG CTGAATGCGG TACCCTGTTC GAAGGACGTG TAATCCGTGG AATCCTCACA TAACAGTAGG ATATGTTAAG GAAACGCCTA ATGGAGTGCA TGTCCAAGTT TAGGGGGCAA	AACAGATGT CTATCGTGAA GCACCAGTAA ATATCAGCGG ATTTATAATT TATAGAAAA TAATGATATA TTCAAATTAA TTAAAGATGA TTGTATTAAA ACTTAAAAG TATAACCCTT AATAAATTC ATCATCTGA CATATTTATA TGATATATG TTTATTAACG AGATTTATC AACATCCAAA GATAAATAGAA ACTCTACGC TTATAAATCT ATAGTCAACG AGAGAAAAAT CAAAGCTACT TCAAATAAA AAAAGTATTA ACTGTACTAC CTTTTTCAGG ATATTTCTCT TGATGTGTT AGTATATATA CTTGAATTCA TCTATGATAA TAATATGTTG AGCGTTATC ATTAAAATGA AATAAAAAGC ATACAAGCTA TTGCTTCGCT ATGGCAGGA ATTTTGTGTA AACTAAGCCA CATACTTGC AATGAAAAAA AGATACTATT TACGACGTTA GGTTAGATAC TGATGTTACA GATTATAATA AAAATACATG ACAGGATGT ATATTTTCC TCATATAACT CTTGGAATAG TCAATGTGAT AGATTTGAAA ATTTCAAAAA GCAAATAACT GATCAAGAT ACCGAAAGGA TGCGCTGTAG TTAGAACT GGAGGTATCT GATGAACTTA ACCGAAAGGA TGCGCTGTAG TTATGAAACT GAAGGACGTG TTTGGTGATA AAATGTTCTG CTGAATGCGG TACCCTGTTC GAAGGACGTG TTTGGTGATA AAATGTTCTG CTGAATGCGG TACCCTGTTC GAAGGACGTG TTTGGTGATA AAATGTTCTG CTGAATGCGG TACCCTGTTC GAAGGACGTG TTTGGTGATA AAATGTTCTG AATCCCACA TAACAGTAGG ATATGTTAAG GAGGACGATG TAAACCCTCAA ATGGAGTGCA TGTCCAAGTT TAGGGGGCAA GAAATACAAG TAAACCCCTCAA ATGGAGTGCA TTACCAAGTT TAGGGGGCAA GAAATACAAG TAAACCCCTCAA ATGGAGTGCA TTATCGTATA ATTTTATAAA TAGTATAAATT

Figure 9 (cont'd.)

3601	АТАААТААСА	TGATAACGGT	TTTTATTAGA	ATAAAATAGA	GATAATATCA	TAATGATATA
3661	TAATACTTCA	TTACCAGAAA	TGAGTAATGG	AAGACTTATA	AATGAACTGC	ATAAAGCTAT
3721	AAGGTATAGA	GATATAAATT	TAGTAAGGTA	татасттааа	AAATGCAAAT	ACAATAACGT
3781	AAATATACTA	TCAACGTCTT	TGTATTTAGC	CGTAAGTATT	TCTGATATAG	AAATGGTAAA
3841	ATTATTACTA	GAACACGGTG	CCGATATTTT	AAAATGTAAA	AATCCTCCTC	TTCATAAAGC
3901	TGCTAGTTTA	GATAATACAG	AAATTGCTAA	ACTACTAATA	GATTCTGGCG	CTGACATAGA
3961	ACAGATACAT	TCTGGAAATA	GTCCGTTATA	TATTTCTGTA	TATAGAAACA	ATAAGTCATT
4021	AACTAGATAT	TTATTAAAAA	AAGGTGTTAA	TTGTAATAGA	TTCTTTCTAA	ATTATTACGA
4081	TGTACTGTAT	GATAAGATAT	CTGATGATAT	GTATAAAATA	TTTATAGATT	TTAATATTGA
4141	TCTTAATATA	CAAACTAGAA	ATTTTGAAAC	TCCGTTACAT	TACGCTATAA	AGTATAAGAA
4201	TATAGATTTA	ATTAGGATAT	TGTTAGATAA	TAGTATTAAA	ATAGATAAAA	GTTTATTTTT
4261	GCATAAACAG	TATCTCATAA	AGGCACTTAA	AAATAATTGT	AGTTACGATA	TAATAGCGTT
4321	ACTTATAAAT	CACGGAGTGC	CTATAAACGA	ACAAGATGAT	TTAGGTAAAA	CCCCATTACA
4381	TCATTCGGTA	ATTAATAGAA	GAAAAGATGT	AACAGCACTT	CTGTTAAATC	TAGGAGCTĢA
4441	TATAAACGTA	ATAGATGACT	GTATGGGCAG	TCCCTTACAT	TACGCTGTTT	CACGTAACGA '
4501	TATCGAAACA	ACAAAGACAC	TTTTAGAAAG	AGGATCTAAT	GTTAATGTGG	TTAATAATCA
4561	TATAGATACC	GTTCTAAATA	TAGCTGTTGC	ATCTAAAAAC	AAAACTATAG	TAAACTTATT
4621	ACTGAAGTAC	GGTACTGATA	CAAAGTTGGT	AGGATTAGAT	AAACATGTTA	TTCACATAGC
4681	TATAGAAATG	AAAGATATTA	ATATACTGAA	TGCGATCTTA	TTATATGGTT	GCTATGTAAA
4741	CGTCTATAAT	CATAAAGGTT	TCACTCCTCT	ATACATGGCA	GTTAGTTCTA	TGAAAACAGA
4801	ATTTGTTAAA	CTCTTACTTG	ACCACGGTGC	TTACGTAAAT	GCTAAAGCTA	AGTTATCTGG
4861	AAATACTCCT	TTACATAAAG	CTATGTTATC	TAATAGTTTT	AATAATATAA	AATTACTTTT
4921	ATCTTATAAC	GCCGACTATA	ATTCTCTAAA	TAATCACGGT	AATACGCCTC	TAACTTGTGT
4981	TAGCTTTTTA	GATGACAAGA	TAGCTATTAT	GATAATATCT	AAAATGATGT	TAGAAATATC
5041	TAAAAATCCT	GAAATAGCTA	ATTCAGAAGG	TTTTATAGTA	AACATGGAAC	ATATAAACAG
5101	TAATAAAAGA	CTACTATCTA	TAAAAGAATC	ATGCGAAAAA	GAACTAGATG	TTATAACACA
5161	TATAAAGTTA	AATTCTATAT	ATTCTTTTAA	TATCTTTCTT	GACAATAACA	TAGATCTTAT
5221	GGTAAAGTTC	GTAACTAATC	CTAGAGTTAA	TAAGATACCT	GCATGTATAC	GTATATATAG
5281	GGAATTAATA	CGGAAAAATA	AATCATTAGO	TTTTCATAGA	CATCAGCTAA	TAGTTAAAGC
5341	TGTAAAAGAG	AGTAAGAATC	: TAGGAATAAT	AGGTAGGTTA	CCTATAGATA	TCAAACATAT

Figure 9 (cont'd.)

5401	AATAATGGAA	CTATTAAGTA	ATAATGATTT	ACATTCTGTT	ATCACCAGCT	GTTGTAACCC
5461	AGTAGTATAA	AGTGATTTTA	TTCAATTACG	AAGATAAACA	TTAAATTTGT	TAACAGATAT
5521	GAGTTATGAG	TATTTAACTA	AAGTTACTTT	AGGTACAAAT	TATTATAAAA	GTAATATAAT
5581	AGAAAATTAT	CTTGAGTCTT	CATTTCCATC	ACCGTCTAAA	TTTATTATTA	AAACCTTATT
5641	ATATAAGGCT	GTTGAGTTTA	GAAATGTAAA	TGCTGTAAAA	AAAATATTAC	AGAATGATAT
5701	TGAATATGTT	AAAGTAGATA	GTCATGGTGT	CTCGCCTTTA	CATATTATAG	CTATGCCTTC
5761	AAATTTTTCT	CTCATAGACG	CTGACATGTA	TTCAGAATTT	AATGAAATTA	GTAATAGACT
5821	TCAAAAATCT	AAAGATAGTA	ACGAATTTCA	ACGAGTTAGT	CTACTAAGGA	CAATTATAGA
5881	ATATGGTAAT	GATAGTGATA	TTAATAAGTG	TCTAACATTA	GTAAAAACGG	ATATACAGAG
5941	TAACGAAGAG	ATAGATATTA	TAGATCTTTT	GATAAATAAA	GGAATAGATA	TAAATATTAA
6001	AGACGATTTA	GGAAACACAG	CTTTGCATTA	CTCGTGTGAT	TATGCTAAGG	GATCAAAGAT
6061	AGCTAAAAAG	TTACTAGATT	GTGGAGCAGA	TCCTAACATA	GTTAATGATT	TAGGTGTTAC
6121	ACCACTAGCG	TGTGCCGTTA	ATACTTGCAA	CGAGATACTA	GTAGATATTC	TGTTAAATAA
6181	TGATGCGAAT	CCTGATTCAT	CTTCCTCATA	TTTTTTAGGT	ACTAATGTGT	TACATACAGC
6241	CGTAGGTACC	GGTAATATAG	ATATTGTAAG	ATCTTTACTT	ACGGCTGGTG	CCAATCCTAA
6301	TGTAGGAGAT	AAATCTGGAG	TTACTCCTTT	GCACGTTGCT	GCAGCTGATA	AAGACAGTTA
6361	TCTGTTAATG	GAGATGCTAC	TAGATAGCGG	GGCAGATCCA	AATATAAAT	GCGCAAACGG
6421	TTTTACTCCT	TTGTTTAATG	CAGTATATGA	TCATAACCGT	ATAAAGTTA'I'	TATTTCTTTA
6481	CGGGGCTGAT	ATCAATATTA	CTGACTCTTA	CGGAAATACT	CCTCTTACTT	ATATGACTAA
6541	TTTTGATAAT	AAATATGTAA	ATTCAATAAT	TATCTTACAA	ATATATCTAC	TTAAAAAAGA
6601	ATATAACGAT	GAAAGATTGT	TTCCACCTGG	TATGATAAAA	AATTTAAACT	TTATAGAATC
6661	AAACGATAGT	CTTAAAGTTA	TAGCTAAAAA	GTGTAATTCG	TTAATACGCT	ATAAGAAAAA
6721	TAAAGACATA	GATGCAGATA	ACGTATTATT	GGAGCTTTTA	GAGGAAGAGG	AAGAAGATGA
6781	AATAGACAGA	TGGCATACTA	CATGTAAAAT	ATCTTAAATA	GTAATTAAAT	CATTGAAATA
6841	TTAACTTACA	AGATGATCGA	GGTCACTTAT	TATACTCTTT	` AATAATGGGT	' ACAAAGAGTA
6901	TTCATACGTT	AGTTAAATCT	AACGATGTAA	A TACGTGTTCG	TGAATTAATA	AAGGATGATA
6961	GATGTTTGAT	AAATAAAAGA	AATAGAAGAA	ATCAGTCACC	TGTATATATA	GCTATATACA
7021	L AAGGACTTTA	TGAAATGACT	GAAATGTTAT	TGCTAAATA	TGCAAGTCTA	GATACTAAAA
7081	TACCTTCTT	AATTATAGC	A GCTAAAAATA	A ATGACTTAC	TATGATAAAA	TTATTGATAC
714	AATACGGGG	CAAATTAAA	GATATTTAT	r TAAGGGACA	AGCATTAATO	ATAGCTCTCA

WO 97/20054 PCT/US96/19274

Figure 9 (cont'd.)

7201 GAAATGGTTA CCTAGATATA GCTGAATATT TACTTTCATT AGGAGCAGAA TTTGTTAAAT

7261 ACAGACATAA GGTAATATAT AAATATCTAT CAAAAGATGC GTATGAATTA CTTTTTAGAT

7321 TTAATTATGA CGITAATATA ATAGATTGAG A

			•			
	TGAATGTTAA					
61	TTAAAGAAAG					
121	TTAACGACGC	ATATAAATTT	CACAAATAAA	CATAATTTTT	GTATAACCTA	ACAAATAACT
181	AAAACATAAA	AATAATAAA	GGAAATGTAA	TATCGTAATT	ATTTTACTCA	GGAATGGGGT
241	ТАААТАТТТА	TATCACGTGT	ATATCTATAC	TGTTATCGTA	TACTCTTTAC	AATTACTATT
301	ACGAATATGC	AAGAGATAAT	AAGATTACGT	ATTTAAGAGA	ATCTTGTCAT	GATAATTGGG
361	TACGACATAG	TGATAAATGC	TATTTCGCAT	CGTTACATAA	AGTCAGTTGG	AAAGATGGAT
421	TTGACAGATG	TAACTTAATA	GGTGCAAAAA	TGTTAAATAA	CAGCATTCTA	TCGGAAGATA
481	GGATACCAGT	TATATTATAC	AAAAATCACT	GGTTGGATAA	AACAGATTCT	GCAATATTCG
541	TAAAAGATGA	AGATTACTGC	GAATTTGTAA	ACTATGACAA	TAAAAAGCCA	TTTATCTCAA
601	CGACATCGTG	TAATTCTTCC	ATGTTTTATG	TATGTGTTTC	AGATATTATG	AGATTACTAT
661	AAACTTTTTG	TATACTTATA	TTCCGTAAAC	TATATTAATC	ATGAAGAAAA	TGAAAAAGTA
721	TAGAAGCTGT	TCACGAGCGG	TTGTTGAAAA	CAACAAAATT	ATACATTCAA	GATGGCTTAC
781	ATATACGTCT	GTGAGGCTAT	CATGGATAAT	GACAATGCAT	CTCTAAATAG	GTTTTTGGAC
841	AATGGATTCG	ACCCTAACAC	GGAATATGGT	ACTCTACAAT	CTCCTCTTGA	AATGGCTGTA
901	ATGTTCAAGA	ATACCGAGGC	ТАТАААААТС	TTGATGAGGT	ATGGAGCTAA	ACCTGTAGTT
961	ACTGAATGCA	CAACTTCTTG	TCTGCATGAT	GCGGTGTTGA	GAGACGACTA	CAAAATAGTG
1021	AAAGATCTGT	TGAAGAATAA	CTATGTAAAC	AATGTTCTTT	ACAGCGGAGG	CTTTACTCCT
1081	TTGTGTTTGG	CAGCTTACCT	TAACAAAGTT	AATTTGGTTA	AACTTCTATT	GGCTCATTCG
1141	GCGGATGTAG	ATATTTCAAA	CACGGATCGG	TTAACTCCTC	TACATATAGC	CGTATCAAAT
1201	AAAAATTTAA	CAATGGTTAA	ACTTCTATTG	AACAAAGGTG	CTGATACTGA	CTTGCTGGAT
1261	AACATGGGAC	GTACTCCTTT	· AATGATCGCT	GTACAATCTG	GAAATATTGA	AATATGTAGC
1321	ACACTACTTA	AATAAAAAA	AATGTCCAGA	ACTGGGAAAA	ATTGATCTTG	CCAGCTGTAA
1381	TTCATGGTAG	AAAAGAAGTO	CTCAGGCTAC	TTTTCAACAA	AGGAGCAGAT	GTAAACTACA
1441	TCTTTGAAAG	AAATGGAAAA	TCATATACTO	TTTTGGAAT1	GATTAAAGAA	AGTTACTCTG
1501	AGACACAAAA	GAGGTAGCT	AAGTGGTACT	CTCAAAATGC	: AGAACGATGA	CTGCGAAGCA
1561	AGAAGTAGAG	AAATAACACT	TTATGACTT	CTTAGTTGT	GAAAAGATAG	AGATATAA TG
1621	ATGGTCATAA	A ATAACTCTG	TATTGCAAG	T AAATGCAATA	A ATAAGTTAGA	AAATTTATTT A
1683	AGGATAGTTA	A AAAATAGAA	A AAAAGAGTTA	A ATTTGTAGGO	TTAAAATAA	T ACATAAGATC
1743	ATTAAAATT	A TAAATACGC	AATAATAAT	A AATAGATTAT	C ACTTATTACO	TTCAGAGATA

Figure 10 (cont'd.)

				*******	እ አ ም ር () እ ም እ እ ም	ጥጥርጥ እ አጥ እ አ
	AAATTTAAGA					
1861	TGAAAAAAAG	TACATCATGA	GCAACGCGTT	AGTATATTTT	ACAATGGAGA	TTAACGCTCT
1921	ATACCGTTCT	ATGTTTATTG	ATTCAGATGA	TGTTTTAGAA	AAGAAAGTTA	TTGAATATGA
1981	AAACTTTAAT	GAAGATGAAG	ATGACGACGA	TGATTATTGT	TGTAAATCTG	TTTTAGATGA
2041	AGAAGATGAC	GCGCTAAAGT	ATACTATGGT	TACAAAGTAT	AAGTCTATAC	TACTAATGGC
2101	GACTTGTGCA	AGAAGGTATA	GTATAGTGAA	AATGTTGTTA	GATTATGATT	ATGAAAAACC
2161	АДАТАДАТСА	GATCCATATC	TAAAGGTATC	TCCTTTGCAC	ATAATTTCAT	CTATTCCTAG
2221	TTTAGAATAC	TTTTCATTAT	ATTTGTTTAC	AGCTGAAGAC	GAAAAAAATA	TATCGATAAT
2281	AGAAGATTAT	GTTAACTCTG	CTAATAAGAT	GAAATTGAAT	GAGTCTGTGA	TAATAGCTAT
2341	AATCAGAGAA	GTTCTAAAAG	GAAATAAAAA	TCTAACTGAT	CAGGATATAA	AAACATTGGC
2401	TGATGAAATC	AACAAGGAGG	AACTGAATAT	AGCTAAACTA	TTGTTAGATA	GAGGGGCCAA
2461	AGTAAATTAC	AAGGATGTTT	ACGGTTCTTC	AGCTCTCCAT	AGAGCTGCTA	TTGGTAGGAA
2521	ACAGGATATG	ATAAAGCTGT	TAATCGATCA	TGGAGCTGAT	GTAAACTCTT	TAACTATTGC
2581	TAAAGATAAT	CTTATTAAAA	AAAAATAATA	TCACGTTTAG	TAATATTAAA	TAATTATATA
2641	AACTCTATTA	СТААТААСТС	CAGTGGATAT	GAACATAATA	CGAAGTTTAT	ACATTCTCAT
2701	CAAAATCTTA	TTGACATCAA	GTTAGATTGT	GAAAATGAGA	TTATGAAATT	AAGGAATACA
2761	AAAATAGGAT	GTAAGAACTT	ACTAGAATGT	TTTATCAATA	ATGATATGAA	TACAGTATCT
2821	AGGGCTATAA	ACAATGAAAC	GATTAAAAAT	TATAAAAATC	ATTTCCCTAT	ATATAATACG
2881	CTCATAGAAA	AATTCATTTC	TGAAAGTATA	CTAAGACACG	AATTATTGGA	TGGAGTTATA
2941	AATTCTTTTC	AAGGATTCAA	TAATAAATTG	CCTTACGAGA	TTCAGTACAT	TATACTGGAG
3001	AATCTTAATA	ACCATGAACT	ТТААААААА	TTAGATAATA	TACATTAAAA	AGGTAAATAG
3061	ATCATCTGTT	ATTATAAGCA	AAGATGCTTG	TTGCCAATAA	TATACAACAG	GTATTTGTTT
3121	AATTTTTAATT	CTACATATTT	GATGTTCATT	CTCTTTATAT	AGTATACACA	GAAAATTCAT
3181	AATCCACTTA	GAATTTCTAG	TTATCTAG			

1	AAGCTTCTAT	CAAAAGTCTT	AATGAGTTAG	GTGTAGATAG	TATAGATATT	ACTACAAAGG
61	TATTCATATT	TCCTATCAAT	TCTAAAGTAG	ATGATATTAA	TAACTCAAAG	ATGATGATAG
121	TAGATAATAG	ATACGCTCAT	ATAATGACTG	CAAATTTGGA	CGGTTCACAT	TTTAATCATC
181	ACGCGTTCAT	AAGTTTCAAC	TGCATAGATC	AAAATCTCAC	TAAAAAGATA	GCCGATGTAT
241	TTGAGAGAGA	TTGGACATCT	AACTACGCTA	AAGAAATTAC	AGTTATAAAT	AATACATAAT
301	GGATTTTGTT	ATCATCAGTT	ATATTTAACA	TAAGTACAAT	AAAAAGTATT	TAAAAATAAA
361	ACTTACTTAC	GAAAAAATGT	CATTATTACA	AAAACTATAT	TTTACAGAAC	AATCTATAGT
421	AGAGTCCTTT	AAGAGTTATA	ATTTAAAAGA	TAACCATAAT	GTAATATTTA	CCACATCAGA
481	TGTTGATACT	GTTGTAGTAA	TAAATGAAGA	TAATGTACTG	TTATCTACAA	GATTATTATC
541	ATTTGATAAA	ATTCTGTTTT	TTAACTCCTT	TAATAACGGT	TTATCAAAAT	ACGAAACTAT
601	TAGTGATACA	ATATTAGATA	TAGATACTCA	TAATTATTAT	ATACCTAGTT	CTTCTTCTTT
661	GTTAGATATT	СТАААААААА	GAGCGTGTGA	TTTAGAATTA	GAAGATCTAA	ATTATGCGTT
721	AATAGGAGAC	AATAGTAACT	TATATTATAA	AGATATGACT	TACATGAATA	ATTGGTTATT
781	TACTAAAGGA	TTATTAGATT	ACAAGTTTGT	ATTATTGCGC	GATGTAGATA	AATGTTACAA
841	ACAGTATAAT	AAAAAGAATA	CTATAATAGA	TATAATACAT	CGCGATAACA	GACAGTATAA
901	CATATGGGT"I	AAAAATGTTA	TAGAATACTG	TTCTCCTGGC	TATATATTAT	GGTTACATGA
961	TCTAAAAGCC	GCTGCTGAAG	ATGATTGGTT	AAGATACGAT	AACCGTATAA	ACGAATTATC
1021	TGCGGATAAA	TTATACACTT	TCGAGTTCAT	AGTTATATTA	GAAAATAATA	TAAAACATTT
1081	ACGAGTAGGT	ACAATAATTG	TACATCCAAA	CAAGATAATA	GCTAATGGTA	CATCTAATAA
1141	TATACTTACT	GATTTTCTAT	CTTACGTAGA	AGAACTAATA	TATCATCATA	ATTCATCTAT
1201	AATATTGGCC	GGATATTTT	TAGAATTCTT	TGAGACCACT	ATTTTATCAG	AATTTATTTC
1261	TTCATCTTCT	GAATGGGTAA	TGAATAGTAA	CTGTTTAGTA	CACCTGAAAA	CAGGGTATGA
1321	AGCTATACTC	TTTGATGCTA	GTTTATTTT	CCAACTCTCT	ACTAAAAGCA	ATTATGTAAA
1381	ATATTGGACA	AAGAAAACTT	TGCAGTATAA	GAACTTTTT	AAAGACGGTA	AACAGTTAGC
1441	ATATATAAAA	ATTAAGAAAG	ATAGTCAGGT	GATAGATAGA	GTATGTTATT	TACACGCAGC
1501	TGTATATAAT	CACGTAACTT	' ACTTAATGGA	TACGTTTAAA	ATTCCTGGTT	TTGATTTTAA
1561	ATTCTCCGGA	ATGATAGATA	TACTACTGTT	TGGAATATTO	CATAAGGATA	ATGAGAATAT
1621	ATTTTATCCG	AAACGTGTTT	CTGTAACTAA	A TATAATATCA	A GAATCTATCT	ATGCAGATTT
1681	TTACTTTATA	TCAGATGTTA	ATAAATTCAC	TAAAAAGATA	GAATATAAAA	CTATGTTTCC
174]	1 TATACTCGCA	GAAAACTACI	atccaaaag	AAGGCCCTAT	TTTACACATA	CATCTAACGA

Figure 11 (cont'd.)

1801 AGATCTTCTG TCTATCTGTT TATGCGAAGT AACAGTTTGT AAAGATATAA AAAATCCATT
1861 ATTATATTCT AAAAAGGATA TATCAGCAAA ACGATTCATA GGTTTATTTA CATCTGTCGA
1921 TATAAATACG GCTGTTGAGT TAAGAGGATA TAAAATAAGA GTAATAGGAT GTTTAGAATG
1981 GCCTGAAAAG ATAAAAATAT TTAATTCTAA TCCTACATAC ATTAGATTAT TACTAACAGA
2041 AAGACGTTTA GATATTCTAC ATTCCTATCT GCTTAAATTT AATATAACAG AGGATATAGC
2101 TACCAGAGAT GGAGTCAGAA ATAATTTACC TATAATTTCT TTTATCGTCA GTTATTGTAG
2161 ATCGTATACT TATAAATTAC TAAATTGCCA TATGTACAAT TCGTGTAAGA TAACAAAGTG
2221 TAAATATAAT CAGGTAATAT ATAATCCTAT ATAGGAGTAT ATATAATTGA AAAAGTAAAA
2281 ATAAATCATA TAATAATGAA ACGAAATATC AGTAATAGAC AGGAACTGGC AGATTCTTCT
2341 TCTAATGAAG TAAGTACTGC TAAATCTCCA AAATTAGATA AAAATGATAC AGCAAATACA
2401 GCTTCATTCA ACGAATTACC TTTTAATTTT TTCAGACACA CCTTATTACA AACTAACTAA
2461 GTCAGATGAT GAGAAAGTAA ATATAAATTT AACTTATGGG TATAATATAA
2521 TGATATTAAT AATTTACTTA ACGATGTTAA TAGACTTATT CCATCAACCC CTTCAAACCT
2581 TTCTGGATAT TATAAAATAC CAGTTAATGA TATTAAAATA GATTGTTTAA GAGATGTAAA
2641 TAATTATTTG GAGGTAAAGG ATATAAAATT AGTCTATCTT TCACATGGAA ATGAATTACC
2701 TAATATTAAT AATTATGATA GGAATTTTTT AGGATTTACA GCTGTTATAT GTATCAACAA
2761 TACAGGCAGA TCTATGGTTA TGGTAAAACA CTGTAACGGG AAGCAGCATT CTATGGTAAC
2821 TGGCCTATGT TTAATAGCCA GATCATTTTA CTCTATAAAC ATTTTACCAC AAATAATAGG
2881 ATCCTCTAGA TATTTAATAT TATATCTAAC AACAACAAAA AAATTTAACG ATGTATGGCC
2941 AGAAGTATTT TCTACTAATA AAGATAAAGA TAGTCTATCT TATCTACAAG ATATGAAAGA
3001 AGATAATCAT TTAGTAGTAG CTACTAATAT GGAAAGAAAT GTATACAAAA ACGTGGAAGC
3061 TTTTATATTA AATAGCATAT TACTAGAAGA TTTAAAATCT AGACTTAGTA TAACAAAACA
3121 GTTAAATGCC AATATCGATT CTATATTTCA TCATAACAGT AGTACATTAA TCAGTGATAT
3181 ACTGAAACGA TCTACAGACT CAACTATGCA AGGAATAAGC AATATGCCAA TTATGTCTAA
3241 TATTTTAACT TTAGAACTAA AACGATTCTA CCAATACTAA AAATAGGATA CGTGATAGGC
3301 TGTTAAAAGC TGCAATAAAT AGTAAGGATG TAGAAGAAAT ACTTTGTTCT ATACCTTCGG
3361 AGGAAAGAAC TTTAGAACAA CTTAAGTTTA ATCAAACTTG TATTTATGAA CACTATAAAA
3421 AAATTATGGA AGATACAAGT AAAAGAATGG ATGTTGAATG TCGTAGTTTA GAACATAACT
3481 ATACGGCTAA CTTATATAAA GTGTACGGAC AAAACGAATA TATGATTACT TATATACTAG
3541 CTCTCATAAG TAGGATTAAT AATATTATAG AAACTTTAAA ATATAATCTG GTGGGGCTAG

WO 97/20054 PCT/US96/19274

Figure 11 (cont'd.)

3601 ACGAATCTAC AATACGTAAT ATAAATTATA TAATTTCACA AAGAACAAAA AAAAATCAGT 3661 TTCTAATACC TTATAGATAA ACTATATTT TTACCACTGA CAACAC

International application No. PCT/US96/19274

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) : Please See Extra Sheet.								
US CL: Please See Extra Sheet.								
	According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED							
	ocumentation searched (classification system followed	by classification symbols)	~~~ ······ · · · · · · · · · · · · · ·					
	530/333, 388.3, 389.1, 403; 435/69.1, 172.1, 320; 42							
	· .							
Documentati	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched							
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)								
APS, STN, CABA, MEDLINE, BIOSIS								
C. DOC	UMENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.					
X 	EP 0 376 744 A1 (CALIFORNIA BIO July 1990 (04.07.90), see entire do	1, 6-10, 12, 14- 17						
Y	2-5.		2-5					
x	EP 0 264 979 A1 (DUPHAR INTE B.V) 27 April 1988 (27.04.88), se	7-10						
Y	VENNEMA et al. Primary Structur Nucleocapsid Protein Genes of Fe Virus and Immunogenicity of Reco in Kittens. Virology. 1991, Vol. 1 entire document, especially abstra-	1, 4-6, 11-12, 14-16						
X Furt	X Further documents are listed in the continuation of Box C. See patent family annex.							
1 '	ocial categories of cited documents:	"T" later document published after the int date and not in conflict with the applic principle or theory underlying the inv	ation but cited to understand the					
E. car	be of particular relevance rlier document published on or after the international filing date	*X* document of particular relevance; the claimed invention cannot be considered govel or cannot be considered to involve an inventive step						
cit	ocument which may throw doubts on priority claim(s) or which is ted to establish the publication date of another citation or other	when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be						
special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means		considered to involve an inventive step when the document as combined with one or more other such documents, such combination being obvious to a person skilled in the art						
	ocument published prior to the international filing date but later than se priority date claimed	*&* document member of the same patent family						
	actual completion of the international search	Date of mailing of the international se	arch report					
13 MAR	CH 1997	I 4 APR 1997						
Commission Box PCT	mailing address of the ISA/US oner of Patents and Trademarks on, D.C. 20231	Authorized officer DANNY LEE Authorized officer DANNY LEE						
Carding Mr. (702) 205 2220		Telephone No. (703) 308-0196						

International application No. PCT/US96/19274

		170390/19274	•	
C (Continua	stion). DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropriate, of the relevant p	assages	Relevant to claim No	
Y	WO 89/03429 A1 (HEALTH RESEARCH INC.) 20 April 1989 (20.04.89), see entire document, especially abstract and page 10.		1-3	
ζ: Υ	TARTAGLIA et al. NYVAC: A Highly attenuated Strain of Vaccinia Virus. Virology. 1992, Vol. 188, pages 217-232, entire document, especially figure 1, abstract, page 219.	see .	2-3, 12-13 1-17	
<i>(</i>	TARTAGLIA et al. Protection of Cats against Feline Leuk Virus by Vaccination with a Canarypox Virus Recombinan ALVAC-FL. Journal of Virology. April 1993, Vol. 67, No pages 2370-2375, see entire document.	t,	1-3, 14-17	
\	TARTAGLIA et al. IX Live Vectors as Vaccines: Highly Attenuated Poxvirus Vectors. AIDS Research and Human Retroviruses. 1992, Vol. 8, No. 8, pages 1445-1447, see entire document.		1-17	
	PICCINI et al. The Use of Vaccinia Virus for the Construct Recombinant Vaccines. BioEssays. December 1986, Vol. 56, pages 248-252, see entire document.	tion of	1-17	
	TAYLOR et al. Fowlpox virus as a vector in non-avian spectacine. December 1988, Vol. 6, pages 466-467, see entire document.	ecies.	1-17	
	·			•
			,	

International application No. PCT/US96/19274

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)				
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:				
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)				
This International Searching Authority found multiple inventions in this international application, as follows:				
Please See Extra Sheet.				
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.				
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.				
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:				
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:				
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.				

International application No. PCT/US96/19274

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):

C12N 15/63, 15/00, 15/09; A61K 39/12, 39/275, 39/285, 39/395, 39/42; C07K 16/08

A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

530/333, 388.3, 389.1, 403; 435/69.1, 172.1, 320; 424/184.1, 199.1, 204.1.

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains claims directed to more than one species of the generic invention. These species are deemed to lack Unity of Invention because they are not so linked as to form a single inventive concept under PCT Rule 13.1. The species are as follows:

- 1. Recombinant poxvirus containing M gene from feline peritonitis virus (FIPV)in a nonessential region wherein the poxvirus is Vaccinia.
- 2. Recombinant poxvirus containing M gene from feline peritonitis virus (FIPV)in a nonessential region wherein the poxvirus is canarypox.
- 3. Recombinant poxvirus containing the N gene from feline peritonitis virus (FIPV)in a nonessential region wherein the poxvirus is Vaccinia.
- 4. Recombinant poxvirus containing S gene from feline peritonitis virus (FIPV)in a nonessential region wherein the poxvirus is Vaccinia.
- 5. Recombinant poxvirus containing S1 gene from feline peritonitis virus (FIPV)in a nonessential region wherein the poxvirus is Vaccinia.
- 6. Recombinant poxvirus containing S2 gene from feline peritonitis virus (FIPV)in a nonessential region wherein the poxvirus is Vaccinia.
- 7. Recombinant poxvirus containing S3 gene from feline peritonitis virus (FIPV)in a nonessential region wherein the poxvirus is Vaccinia.
- 8. Recombinant poxvirus containing M+N gene from feline peritonitis virus (FIPV)in a nonessential region wherein the poxvirus is Vaccinia.
- 9. Recombinant poxvirus containing S gene from feline peritonitis virus (FIPV)in a nonessential region wherein the poxvirus is canarypox.
- 10. Recombinant poxvirus containing S1 gene from feline peritonitis virus (FIPV)in a nonessential region wherein the poxvirus is canarypox.
- 12. Recombinant poxvirus containing S2 gene from feline peritonitis virus (FIPV)in a nonessential region wherein the poxvirus is canarypox.
- 13. Recombinant poxvirus containing S3 gene from feline peritonitis virus (FIPV)in a nonessential region wherein the poxvirus is canarypox.
- 14. Recombinant poxvirus containing M+N gene from feline peritonitis virus (FIPV)in a nonessential region wherein the poxvirus is canarypox.

The claims are deemed to correspond to the species listed above in the following manner:

- 1. claims 1, 4-5, 12, 14-17.
- 2. claims 1, 2-5, 13-17.
- 3. claims 1, 4-5, 12, 14-17 and 6.
- 4. claims 1, 4-5, 12, 14-17 and 7.
- 5. claims 1, 4-5, 12, 14-17 and 8.
- 6. claims 1, 4-5, 12, 14-17 and 9.
- 7. claims 1, 4-5, 12, 14-17 and 10.
- 8. claims 1, 4-5, 12, 14-17 and 11.
- 9. claims 1, 2-5, 13-17 and 6.
- 10. claims 1, 2-5, 13-17 and 7.
- 11. claims 1, 2-5, 13-17 and 8.
- 12. claims 1, 2-5, 13-17 and 9.
- 13. claims 1, 2-5, 13-17 and 10.
- 14. claims 1, 2-5, 13-17 and 11.

International application No. PCT/US96/19274

The species listed above do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, the species lack the same or corresponding special technical features for the following reasons: The special technical feature of each species is lacking because of the location in the genome, immunological response, primary, secondary and tertiary structures, host response and effector cells.

California Biotechnology Inc. (EP 0376744) teaches the construction of a plasmid insertion vector containing heterologous FIPV gene downstream from vaccinia viral promoter all of which is inserted into the vaccinia thymidine kinase (tk) gene (page 4, lines 29-31), the expression of FIPV proteins, production of FIPV antibodies, production of FIPV proteins in tissue culture and use a living virus immunogen in cats (page 4, lines 41-44).

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
 □ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
 □ FADED TEXT OR DRAWING
 □ BLURRED OR ILLEGIBLE TEXT OR DRAWING
 □ SKEWED/SLANTED IMAGES
 □ COLOR OR BLACK AND WHITE PHOTOGRAPHS
 □ GRAY SCALE DOCUMENTS
 □ LINES OR MARKS ON ORIGINAL DOCUMENT
 □ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.