Class17

Downstream analysis

```
library(tximport)
  # setup the folder and filenames to read
  folders <- dir(pattern="SRR21568*")</pre>
  samples <- sub("_quant", "", folders)</pre>
  files <- file.path( folders, "abundance.h5" )</pre>
  names(files) <- samples</pre>
  txi.kallisto <- tximport(files, type = "kallisto", txOut = TRUE)</pre>
1 2 3 4
  head(txi.kallisto$counts)
                 SRR2156848 SRR2156849 SRR2156850 SRR2156851
ENST00000539570
                                      0
                                            0.00000
                                                              0
ENST00000576455
                          0
                                            2.62037
ENST00000510508
                          0
                                      0
                                           0.00000
                                                              0
ENST00000474471
                          0
                                      1
                                           1.00000
                                                              0
                          0
                                                              0
ENST00000381700
                                            0.00000
ENST00000445946
                                            0.00000
```

We now have our estimated transcript counts for each sample in R. We can see how many transcripts we have for each sample:

```
colSums(txi.kallisto$counts)
```

```
SRR2156848 SRR2156849 SRR2156850 SRR2156851
2563611 2600800 2372309 2111474
```

how many transcripts are detected in at least one sample:

```
sum(rowSums(txi.kallisto$counts)>0)
```

[1] 94561

filter out those annotated transcripts with no reads:

```
to.keep <- rowSums(txi.kallisto$counts) > 0
kset.nonzero <- txi.kallisto$counts[to.keep,]</pre>
```

those with no change over the samples:

```
keep2 <- apply(kset.nonzero,1,sd)>0
x <- kset.nonzero[keep2,]</pre>
```

PCA

compute the principal components, centering and scaling each transcript's measured levels so that each feature contributes equally to the PCA:

```
pca <- prcomp(t(x), scale=TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC1 PC2 PC3 PC4
Standard deviation 183.6379 177.3605 171.3020 1e+00
Proportion of Variance 0.3568 0.3328 0.3104 1e-05
Cumulative Proportion 0.3568 0.6895 1.0000 1e+00
```

use the first two principal components as a co-ordinate system for visualizing the summarized transcriptomic profiles of each sample:

Q. Use ggplot to make a similar figure of PC1 vs PC2 and a seperate figure PC1 vs PC3 and PC2 vs PC3.

```
library(ggplot2)
library(ggrepel)

# Make metadata object for the samples
colData <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))
rownames(colData) <- colnames(txi.kallisto$counts)

# Make the data.frame for ggplot
y <- as.data.frame(pca$x)
y$Condition <- as.factor(colData$condition)

ggplot(y) +
   aes(PC1, PC2, col=Condition) +
   geom_point() +</pre>
```

```
geom_text_repel(label=rownames(y)) +
theme_bw()
```



```
library(ggrepel)

# Make metadata object for the samples
colData <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))
rownames(colData) <- colnames(txi.kallisto$counts)

# Make the data.frame for ggplot
y <- as.data.frame(pca$x)
y$Condition <- as.factor(colData$condition)

ggplot(y) +
   aes(PC1, PC3, col=Condition) +
   geom_point() +
   geom_text_repel(label=rownames(y)) +
   theme_bw()</pre>
```



```
library(ggrepel)

# Make metadata object for the samples
colData <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))
rownames(colData) <- colnames(txi.kallisto$counts)

# Make the data.frame for ggplot
y <- as.data.frame(pca$x)
y$Condition <- as.factor(colData$condition)

ggplot(y) +
   aes(PC2, PC3, col=Condition) +
   geom_point() +
   geom_text_repel(label=rownames(y)) +
   theme_bw()</pre>
```


Differential-expression analysis

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

-- note: fitType='parametric', but the dispersion trend was not well captured by the function: y = a/x + b, and a local regression fit was automatically substituted. specify fitType='local' or 'mean' to avoid this message next time.

final dispersion estimates

fitting model and testing

```
res <- results(dds)
head(res)</pre>
```

 $\log 2$ fold change (MLE): condition treatment vs control

Wald test p-value: condition treatment vs control

DataFrame with 6 rows and 6 columns

pvalue	stat	lfcSE	log2FoldChange	baseMean	
<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	
NA	NA	NA	NA	0.000000	ENST00000539570
0.516261	0.6491203	4.86052	3.155061	0.761453	ENST00000576455
NA	NA	NA	NA	0.000000	ENST00000510508
0.965846	0.0428185	4.24871	0.181923	0.484938	ENST00000474471
NA	NA	NA	NA	0.000000	ENST00000381700
NA	NA	NA	NA	0.000000	ENST00000445946
				padj	
				<numeric></numeric>	

ENST00000539570 NA
ENST00000576455 NA
ENST00000510508 NA
ENST00000474471 NA
ENST00000381700 NA
ENST00000445946 NA