Automatic Speech Recognition Lecture Note 3: Discrete Fourier Transform

1. Discrete Fourier Transform

The discrete Fourier transform (DFT) of a finite-duration sequence $x[n], 0 \le n \le N-1$, is defined as

$$X[k] = \sum_{n=0}^{N-1} x[n]W^{nk},$$

where $W=e^{-j(2\pi/N)}$. The *inverse* discrete Fourier transform (IDFT) is given by

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W^{-kn}.$$

Note that the DFT computation yields samples of the spectrum of a finite sequence at the points $\omega_k = \frac{2\pi k}{N}$.

2. Periodicity of DFT and IDFT

The DFT is periodic in k with period N. The IDFT is periodic in n with period N and each period is identical to the original sequence.

3. Convolution Theorem of DFT

Let $x_1[n]$ and $x_2[n]$ be N-point finite duration sequences. Let $X_1[k]$ and $X_2[k]$ be their DFTs. Let $X[k] = X_1[k]X_2[k]$. Then the IDFT of X[k], say x[n], corresponds to the *circular (or periodic)* convolution of $x_1[n]$ and $x_2[n]$, defined by

$$x[n] = \sum_{m=0}^{N-1} \tilde{x}_1[m]\tilde{x}_2[n-m],$$

where $\tilde{x}_i[n]$ is the periodic extension of $x_i[n]$, i.e.,

$$\tilde{x}_i[n] = x_i[n \mod N].$$

proof: The DFT, say Y[k], of x[n] as defined above is

$$Y[k] = \sum_{n=0}^{N-1} x[n] W^{nk} = \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} \tilde{x}_1[m] \tilde{x}_2[n-m] W^{nk}$$

$$= \sum_{m=0}^{N-1} \tilde{x}_1[m] \sum_{n=0}^{N-1} \tilde{x}_2[n-m] W^{nk}$$

$$= \sum_{m=0}^{N-1} \tilde{x}_1[m] W^{km} \sum_{n=0}^{N-1} \tilde{x}_2[n-m] W^{k(n-m)}$$

$$= \cdots \sum_{r=-m}^{N-1-m} \tilde{x}_2[r] W^{kr}$$

$$= \cdots \left(\sum_{r=-m}^{N-1} + \sum_{r=0}^{N-1-m} \right) \tilde{x}_2[r] W^{kr}$$

$$= \cdots \left(\sum_{r=N-m}^{N-1} + \sum_{r=0}^{N-1-m} \right) \tilde{x}_2[r] W^{kr}$$

$$= \cdots \sum_{r=0}^{N-1} x_2[r] W^{kr}$$

$$= \sum_{m=0}^{N-1} \tilde{x}_1[m] W^{km} X_2[k]$$

$$= \sum_{m=0}^{N-1} x_1[m] W^{km} X_2[k]$$

$$= X_1[k] X_2[k].$$

4. FIR Filter Implementation via DFT

The convolution of two finite-duration sequences with lengths N_1 , N_2 is finite-duration with length $N_1 + N_2 - 1$. This can be implemented by DFT by augmenting the original sequences to a length $\geq N_1 + N_2 - 1$, and then compute the IDFT of the product of DFTs. This is practical because the DFT computation can be very fast.

5. Fast Fourier Transform

The Fast Fourier Transform (FFT) is nothing more than a fast way to compute DFT. Consider an N-point sequence where $N = N_1 N_2$.

The two-dimensional DFT of a matrix $N_1 \times N_2$ is computationally less expensive than the one-dimensional N-point DFT. Exploiting this idea, the DFT of x[n], $0 \le n \le N-1$ can be computed by the following steps:

- Let N = LM, and put x[n] into the (l, m)-th (index starting from 0) element of the $L \times M$ matrix with n = Ml + m.
- Compute the L-point DFT of each column with kernel W^M . This results in a new matrix q(s, m).
- Multiply each element in q(s,m) by W^{ms} where $W = e^{-j(2\pi/N)}$. Call the new matrix h(s,m).
- Compute the DFT of each row of h, with W^L as the kernel. Call the final matrix X(s,r).

Then X[k] = X(s,r) where k = Lr + s (index starting from 0). With such implementation, the time complexity of FFT is $O(N \log N)$.