Sihirli karelerin oluşturulması

Yusuf Seha Uysal

Bölümler

- 1. Tanım
- 2. Tek boyutlular için Siyam metodu
- 3. 4k boyutlular için X metodu
- 4. 4k+2 boyutlular için Conway'in LUX metodu

Tanım

Bir **sihirli kare** nxn boyutlarında bir sayı dizisidir. 1'den n^2 ye kadar olan tam sayılardan oluşur. Tüm satır, sütun ve köşegenlerinin toplamı sabit bir sayıya eşittir. Bu sabite **sihirli toplam** denir. Sihirli karenin uzunluğunu belirleyen n sayısına ise sihirli karenin **boyut**u denir.

Tanım

Bir **sihirli kare** nxn boyutlarında bir sayı dizisidir. 1'den n^2 ye kadar olan tam sayılardan oluşur. Tüm satır, sütun ve köşegenlerinin toplamı sabit bir sayıya eşittir. Bu sabite **sihirli toplam** denir. Sihirli karenin uzunluğunu belirleyen n sayısına ise sihirli karenin **boyut**u denir.

Boyut: n=3

Sihirli toplam: 15

Sihirli Toplam

$$M = \frac{n(n^2 + 1)}{2}$$

1x1 ve 2x2 sihirli kareler

$$M = \frac{n(n^2 + 1)}{2}$$

Ortadaki sayı 5 olmalı

Birin köşede olduğunu farz edelim

> Köşeye 9 gelmesi gerekir

> > 9'un olduğu hiçbir satır sütun ya da köşegene 5'ten büyük bir sayı gelemeyeceğinden 6, 7, ve 8'in tümü taralı siyah alanda bulunmalıdır. Çelişki Öyleyse 1 köşede değil.

4 ve 2, 9 ile aynı satırda olmalı

Tek boyutlu sihirli kareler (2k+1)

17	24 1		8	15	
23	5	7	14	16	
4	6	13	20	22	
10	12	19	21	3	
11	18	25	2	9	

Tek boyutlu sihirli kareler (2k+1)

17	24 1		8	15	
23	5	7	14	16	
4	6	13	20	22	
10	12	19	21	3	
11	18	25	2	9	

4k boyutlu sihirli kareler

1	15	14	4
12	6	7	9
8	10	11	5
13	3	2	16

4k+2 boyutlu sihirli kareler

35	1	6	26	19	24
3	32	7	21	23	25
31	9	2	22	27	20
8	28	33	17	10	15
30	5	34	12	14	16
4	36	29	13	18	11

Tek boyutlu sihirli kareler (2k+1)

4k boyutlu sihirli kareler

4k+2 boyutlu sihirli kareler

Tek boyutlu sihirli kareler (2k+1)

Siyam metodu

4k boyutlu sihirli kareler

X metodu

4k+2 boyutlu sihirli kareler

LUX metodu

Algoritma:

 Karenin ilk satırının ortasına 1 yazılarak başlanır

Algoritma:

Karenin ilk satırının ortasına
 1 yazılarak başlanır

- Karenin ilk satırının ortasına 1 yazılarak başlanır
- Her sayıdan sonra bir sonraki sayı öncekinin sağ üst çaprazına yazılır (↗)

- Karenin ilk satırının ortasına 1 yazılarak başlanır
- 2. Her sayıdan sonra bir sonraki sayı öncekinin sağ üst çaprazına yazılır (↗)

1	
	2

- Karenin ilk satırının ortasına 1 yazılarak başlanır
- Her sayıdan sonra bir sonraki sayı öncekinin sağ üst çaprazına yazılır (↗)
- 3. Eğer sıradaki blok dolu ise sayı bir aşağıdaki bloğa yazılır (\(\eqrip \)

	1	
3		
		2

- Karenin ilk satırının ortasına
 1 yazılarak başlanır
- Her sayıdan sonra bir sonraki sayı öncekinin sağ üst çaprazına yazılır (↗)
- 3. Eğer sıradaki blok dolu ise sayı bir aşağıdaki bloğa yazılır (↓)

- Karenin ilk satırının ortasına 1 yazılarak başlanır
- Her sayıdan sonra bir sonraki sayı öncekinin sağ üst çaprazına yazılır (↗)
- 3. Eğer sıradaki blok dolu ise sayı bir aşağıdaki bloğa yazılır (\(\equiv \)

୨ଝଝ	୨៧៥	อ๙๓	ଅ ବ୍ଦେଶ	๒๓๑	_{ප්} රිර	かぐ回	ಅದದ	9	во	ต๙	๕๘	៧៧	ďЪ	วว๕	୨୯୯	๑๕๓
ว๗๓	୨୯ଜ	ხეე	buo	७ ៤๙	ම ්ස	២ជ៧	ว๗	૦ત	ព៨	ଝିଆ	വ്	ለፎ	૦૦૯	๑๓๓	ว๕๒	୨ଝିଝ
೦೧೦	७୨୦	ಶಿಲಿದ	ಅ๔๘	שכש	්	ეე	9ದ	ต๗	໕๖	៧៥	ለፈ	๑๑๓	อต๒	๑๕๑	๑๗๐	อตโอ
ಠಂದ	២២ជ	୭୯៧	ככש	២ದ៥	๑๕	๓๔	ძხ	ሮ ሮ	๗๔	๙๓	๑๑๒	อตอ	იში	אלפ	ว๗๑	οκο
២២៧	ම ශ්ර	ම ්දී	ಅದಡ	०द	ตต	ต๕	<mark>៥</mark> ៤	๗๓	ď២	999	จตอ	०दत	95ದ	୨ଘ៧	೦ದಗ	ಠ೦ದ
୭୯୯	තරය	២๘๓	อต	ต๒	ඳීව	໕n	៧២	๙๑	990	೧೮೮	೦៥ದ	שלפ	965	೦ದದ	๒๐๗	උගුත
חלט	ಅದಅ	១២	ต๑	ĈО	៥២	๗๑	ďΟ	οοα	೧២ದ	ଚଝ๗	იხხ	១៨៥	୭୦୯	്രാ	ව්වල්	७दद
ಅದಂ	99	no	ਫ਼ਿਨ	ጛሬ	៧០	ದಗ	೨೦ದ	ว๒๗	9៥៦	ඉර්ලී	೦ದಡ	๒๐๓	ഉഠഭ	୭ଅଣ	७៥๓	שלש
90	b୯	๔๘	של	מל	ជជ	๑๐๗	כשפ	୨୯୯	95៥	១๘๓	pop	ღღი	២២๓	ଜୟଜ	ලපල	ಅದಂ
២ದ	๔๗	לל	ជ៥	๘๗	500	១២៥	०दद	ები	೧ದ២	७୦୨	മമഠ	ଅପ୍ତା	ଅ ଜ୍ଜ	ම ර්ට	ಠಿದುರ	α
ďኃ	ጛ໕	ದಡ	ದರಿ	200	୨୭୯	०दत	שלפ	೦ದ೦	000	ಅ೦೧	២៧๘	७୯୦	७๕๙	២៧๘	ದ	២៧
bď	๘๓	900	००द	๑๒๓	୨๔७	959	១៨០	סממ	ಅಂದ	७ ୩៧	ಠಿಣನ	២៥๘	ലവവ	๗	ප්	៤ ៥
๘๒	909	900	966	୨୯୨	920	୨๗๙	೦೧೮	๒๑๗	വോ	ම සීසී	७๕๗	യിട	ъ	២៥	दद	ზო
900	рок	ესე	୨୯୦	೧೯೮	១៧๘	୨୯៧	ලඉර	២៧៥	୭ଝଝ	ම ඳී්	២៧៥	Œ	७๔	ፈп	'ප්ම	ದ೦
೨೨६	900	งต๙	೧๕๘	୨៧៧	сус	๒๑๕	២៧៤	២៥៣	യയ	ଡୋଝ	હ	២ព	৫৩	99	<mark>ದ</mark> ಂ	ממ
onb	១៧๘	୨໕៧	യാ	೨೫೧	ಅಂಡ	២៧៧	២៥២	യവാ	២៧ព	n	២២	৫০	סכ	៧๙	๙๘	๑๑๗
୨๓๗	ი๕๖	୨ଆଝି	०๙๔	๒๑๓	๒๓๒	២៥១	balo	ಅದನ	в	ଓଡ	¢О	ፎፈ	៧๘	ď៧	995	១ព៥

Algoritma:

 1 den n^2 ye kadar olan sayılar sırayla kare içine doldurulur

Algoritma:

 1 den n^2 ye kadar olan sayılar sırayla kare içine doldurulur

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

Algoritma:

 1 den n^2 ye kadar olan sayılar sırayla kare içine doldurulur

Y	63	62	A	5	59	58	8
56	10	11	53	52	14	15	49
48	18	19	45	44	22	23	41
25	39	38	28	29	35	34	32
33	31	30	36	37	27	26	40
24	42	43	21	20	46	47	17
16	50	51	13	12	54	55	9
57	7	6	60	61	3	2	64

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

- 4x4 lük alt karelerin her birine bir X çizilir
- Bu X'ler ile kesişmeyen girdilerin sırası tersine çevrilir.

4x4 bir kare için inceleyelim

4x4 bir kare için inceleyelim

John Horton Conway (1937–2020)

Algoritma:

 Verilen kareyi 2x2 lik bloklardan oluşacak şekilde (2k+1)x(2k+1) lik bir kareye dönüştür

Algoritma:

 Verilen kareyi 2x2 lik bloklardan oluşacak şekilde (2k+1)x(2k+1) lik bir kareye dönüştür

- Verilen kareyi 2x2 lik bloklardan oluşacak şekilde (2k+1)x(2k+1) lik bir kareye dönüştür
- 2. Oluşturulan karenin
 - İlk k+1 satırını L ile,
 - 1 satırını **U** ile, ve
 - Kalan *k*-1 satırını **X** ile doldur

- Verilen kareyi 2x2 lik bloklardan oluşacak şekilde (2k+1)x(2k+1) lik bir kareye dönüştür
- 2. Oluşturulan karenin
 - İlk k+1 satırını L ile,
 - 1 satırını **U** ile, ve
 - Kalan k-1 satırını X ile doldur

- Verilen kareyi 2x2 lik bloklardan oluşacak şekilde (2k+1)x(2k+1) lik bir kareye dönüştür
- 2. Oluşturulan karenin
 - İlk k+1 satırını L ile,
 - 1 satırını **U** ile, ve
 - Kalan k-1 satırını X ile doldur
- 3. Ortadaki **U** ile üstündeki **L**'nin yerini değiştir

- Verilen kareyi 2x2 lik bloklardan oluşacak şekilde (2k+1)x(2k+1) lik bir kareye dönüştür
- 2. Oluşturulan karenin
 - İlk k+1 satırını L ile,
 - 1 satırını **U** ile, ve
 - Kalan k-1 satırını X ile doldur
- 3. Ortadaki **U** ile üstündeki **L**'nin yerini değiştir

- Verilen kareyi 2x2 lik bloklardan oluşacak şekilde (2k+1)x(2k+1) lik bir kareye dönüştür
- 2. Oluşturulan karenin
 - İlk k+1 satırını L ile,
 - 1 satırını **U** ile, ve
 - Kalan k-1 satırını X ile doldur
- 3. Ortadaki **U** ile üstündeki **L**'nin yerini değiştir

- 4. Elde edilen 2k+1 boyutunda kare daha önce gördüğümüz Siyam yöntemi ile numaralandırılır
- 5. Ve bu kareden yararlanılarak 2x2 lik kareler sırayla şu şekilde doldurulur

17	24	1	8	15
23	5	7	14	16
4	6	13	20	22
10	12	19	21	3
11	18	25	2	9

17	24	1	8	15
23	5	7	14	16
4	6	13	20	22
10	12	19	21	3
11	18	25	2	9

17	24	1	8	15
23	5	7	14	16
4	6	13	20	22
10	12	19	21	3
11	18	25	2	9

68	65	96	93	4	1	32	29	60	57
66	67	94	95	2	3	30	31	58	59
92	89	20	17	28	25	56	53	64	61
90	91	18	19	26	27	54	55	62	63
16	13	24	21	49	52	80	77	88	85
14	15	22	23	50	51	78	79	86	87
37	40	45	48	76	73	81	84	9	12
38	39	46	47	74	75	82		10	11
41	44	69	72	97	100	5	8	33	36
43	42	71	70	99	98	7	6	35	34

68	65	96	93	4	1	32	29	60	57
66	67	94	95	2	3	30	31	58	59
92	89	20	17	28	25	56	53	64	61
90	91	18	19	26	27	54	55	62	63
16	13	24	21	49	52	80	77	88	85
14	15	22	23	50	51	78	79	86	87
37	40	45	48	76	73	81	84	9	12
38	39	46	47	74	75	82	83	10	11
41	44	69	72	97	100	5	8	33	36
43	42	71	70	99	98	7	6	35	34

Kaynakça

- [1] Wikipedia contributors. "Magic square." Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/Magic_square
- [2] Mathematics in School, Vol. 24, No. 3 (May, 1995), p. 27
- [3] Jacob, G., & Murugan, A. On the Construction of Doubly Even Order Magic Squares. Research and Development Centre, Bharathiar University, Coimbatore.
- [4] Photo by Denise Applewhite, Princeton University Office of Communications.
- [5] Delucchi, Emanuele. Construction of Magic Squares Notes.
- [6] Wikipedia contributors. "Conway's LUX method for magic squares." Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/Conway%27s_LUX_method_for_magic_squares
- [7] Block and Tavares, Before Sudoku: The World of Magic Squares, OUP, 2009
- [8] **Limpananont, S.** (2024). *Magic Squares: The Siamese Method* https://www.saranontlimpananont.com/magic-square-siamese-method/
- [9] Walkington, W. (2012, March 9). From the Magic Square to the Magic Torus. Magic Squares, Spheres and Tori. Retrieved from https://carresmagiques.blogspot.com/2020/04/from-magic-square-to-magic-torus.html

Dinlediğiniz için teşekkürler

			rien.												
16	255	2	241	14	253	4	243	12	251	6	245	10	249	8	247
1	242	15	256	3	244	13	254	5	246	11	252	7	248	9	250
240	31	226	17	238	29	228	19	236	27	230	21	234	25	232	23
225	18	239	32	227	20	237	30	229	22	235	28	231	24	233	26
223	48	209	34	221	46	211	36	219	44	213	38	217	42	215	40
210	33	224	47	212	35	222	45	214	37	220	43	216	39	218	41
63	208	49	194	61	206	51	196	59	204	53	198	57	202	55	200
50	193	64	207	52	195	62	205	54	197	60	203	56	199	58	201
80	191	66	177	78	189	68	179	76	187	70	181	74	185	72	183
65	178	79	192	67	180	77	190	69	182	75	188	71	184	73	186
176	95	162	81	174	93	164	83	172	91	166	85	170	89	168	87
161	82	175	96	163	84	173	94	165	86	171	92	167	88	169	90
159	112	145	98	157	110	147	100	155	108	149	102	153	106	151	104
146	97	160	111	148	99	158	109	150	101	156	107	152	103	154	105
127	144	113	130	125	142	115	132	123	140	117	134	121	138	119	136
114	129	128	143	116	131	126	141	118	133	124	139	120	135	122	137

Sunumuzun son bölümüyle devam ediyoruz