https://powcoder.com

Assignment Project Exam Help

Add WeChat powcoder

Introduction to
Assignment Project Exam Help
Information Retrieval
https://powcoder.com

Add WeChat powcoder. Lecture 5: Index Compression

Assignment Project Exam Help Last lecture — index construction

- Sort-based indexing
 - Naïve in-memory inversion
 - Blocked Sortigues of the Broniget Exam Help
 - Merge sort is effective for disk-based sorting (avoid seeks!)
 https://powcoder.com
- Single-Pass In-Memory Indexing
 - No global dictionary

 Chat powcoder
 - Generate separate dictionary for each block
 - Don't sort postings
 - Accumulate postings in postings lists as they occur
- Distributed indexing using MapReduce
- Dynamic indexing: Multiple indices, logarithmic merge

Today Assignment Project Exam Help

Add WeChat powcoder

Brutus \longrightarrow 1 2 4 11 31 45 173 174

CAESAR Assignment Project Exam Help 57 132 ...

CALPURNIA — https://pot/cot/er.com

- Collection statistics in more detail (with RCV1)
 - How big will the dictionary and postings be?
- Dictionary compression
- Postings compression

Why compression (in general)?

- Use less disk space
 - Saves a little money
- Keep more stuff in memory
 - Increases speattps://powcoder.com
- Increase speed of data transfer from disk to memory
 - [read compressed data | decompress] is faster than
 [read uncompressed data]
 - Premise: Decompression algorithms are fast
 - True of the decompression algorithms we use

Assignment Project Exam Help Why compression for inverted indexes? Add WeChat powcoder

- Dictionary
 - Make it small enough to keep in main memory
 - Make it sosiummenty Bucier keep some postings lists in main memory too https://powcoder.com
- Postings file(s)
 - Reduce disk spate Wedebat powcoder
 - Decrease time needed to read postings lists from disk
 - Large search engines keep a significant part of the postings in memory.
 - Compression lets you keep more in memory
- We will devise various IR-specific compression schemes

Assignment Project Exam Help Recall Reuters RCV1

	symbol	statistic	value
	N	documents	800,000
	L	Assignment Project Examavg. # tokens per doc	200 ^p
	M	ternistes: WBPW types) con	¹ ~400,000
•		avg. Atoly We Chart poercood (incl. spaces/punct.)	l 6 r
•		avg. # bytes per token (without spaces/punct.)	4.5
		avg. # bytes per term	7.5
		non-positional postings	100,000,000

Index parameters vs. what we index

(details IIR Table 5.1, p.80)

Add WeChat powcoder

size of	word ty	pes (terms)	non-positional postings			positional postings			
	dictiona	Ssig	nment	Pro-position	E Xa	nde Hel	positional index			
	Size (K)	Δ% h	cumul t tps: //p	Size (K) owcode	Δ 2 1%C O	cumul	Size (K)	Δ %	cumul %	
Unfiltered	484	٨	11 W.	109,971			197,879			
No numbers	474	-2		Chat po)WC(oder ₋₈	179,158	-9	-9	
Case folding	392	-17	-19	96,969	-3	-12	179,158	0	-9	
30 stopwords	391	-0	-19	83,390	-14	-24	121,858	-31	-38	
150 stopwords	391	-0	-19	67,002	-30	-39	94,517	-47	-52	
stemming	322	-17	-33	63,812	-4	-42	94,517	0	-52	

Exercise: give intuitions for all the '0' entries. Why do some zero entries correspond to big deltas in other columns?

Assignment Project Exam Help Lossless vs. lossy compression

- Lossless compression: All information is preserved.
 - What we mostly do in IR.
- Lossy compression: Discard some information
- Several of the propersing steps can be viewed as lossy compression: case folding, stop words, stemming, number elimination.
- Chap/Lecture 7: Prune postings entries that are unlikely to turn up in the top k list for any query.
 - Almost no loss quality for top k list.

Vocabulary vs. collection size

- How big is the term vocabulary?
 - That is, how many distinct words are there?
- Can we assume an upper bound?
 - Not really: Atheast: 7030 w1037 different words of length 20
- In practice, the vocabulary will keep growing with the collection size
 - Especially with Unicode ©

Assignment Project Exam Help. Vocabulary vs. collection size

- Heaps' law: $M = kT^b$
- M is the size of the vocabulary, T is the number of tokens in the collection Project Exam Help
- In a log-log plot of weedful approxize Mervs. T, Heaps' law predicts a line with slope about ½
 - It is the simplest possible relationship between the two in log-log space
 - An empirical finding ("empirical law")

Assignment Project Exam Help Heaps' Law Fig 5.1 p81 Add WeChat powcoder

For RCV1, the dashed line

 $\log_{10}M = 0.49 \log_{10}T + 1.64$

is the best least sousiemment Project Exam Help

Good empirical fit for Reuters RCV1!

For first 1,000,020 tokens, law predicts 38,323 terms; actually, 38,365 terms

Assignment Project Exam Help Exercises

- What is the effect of including spelling errors, vs. automatically correcting spelling errors on Heaps' law?
 Assignment Project Exam Help
- Compute the wagabularwsize Mcfanthis scenario:
 - Looking at a collection of web pages, you find that there are 3000 different terms in the first 1,000,000 tokens and 30,000 different terms in the first 1,000,000 tokens.
 - Assume a search engine indexes a total of 20,000,000,000 (2×10^{10}) pages, containing 200 tokens on average
 - What is the size of the vocabulary of the indexed collection as predicted by Heaps' law?

Zipf's law

- Heaps' law gives the vocabulary size in collections.
- We also study the relative frequencies of terms.
- In natural language, there are a few very frequent https://powcoder.com terms and very many very rare terms.
- Zipf's law: Theoth was trequency proportional to 1/i.
- $cf_i \propto 1/i = K/i$ where K is a normalizing constant
- cf_i is <u>collection frequency</u>: the number of occurrences of the term t_i in the collection.

Zipf Assignment Project Exam Help Consequences

- If the most frequent term (the) occurs cf₁ times
 - then the second most frequent term (of) occurs cf₁/2 times Assignment Project Exam Help
 - the third most frequent term (and) occurs cf₁/3 times ... https://powcoder.com
- Equivalent: $cf_i = K/i$ where K is a normalizing factor, so Add WeChat powcoder
 - $\log \operatorname{cf}_i = \log K \log i$
 - Linear relationship between log cf_i and log i
- Another power law relationship

Zipf's law for Reuters RCV1

Assignment Project Exam Help Compression

- Now, we will consider compressing the space for the dictionary and postings
 Assignment Project Exam Help
 Basic Boolean index only

- https://powcoder.com
 No study of positional indexes, etc.
- We will consider compression schemes

Assignment Project Exam Help

Add WeChat powcoder

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

DICTIONARY COMPRESSION

Assignment Project Exam Help Why compress the dictionary?

Add WeChat powcoder

- Search begins with the dictionary

We want to keep it in memory

Assignment Project Exam Help

Memory footprint competition with other applications https://powcoder.com

- Embedded/mobile deviges may have very little memory
- Even if the dictionary isn't in memory, we want it to be small for a fast search startup time
- So, compressing the dictionary is important

Assignment Project Exam Help Dictionary storage - first cut

- Add WeChat powcoder
- Array of fixed-width entries
 - ~400,000 terms; 28 bytes/term = 11.2 MB. Assignment Project Exam Help

Assignment Project Exam Help Fixed-width terms are wasteful

- Most of the bytes in the **Term** column are wasted we allot 20 bytes for 1 letter terms.
 - And we still Saignament up to option of the still state of the state o
- Written English averages 4.5 characters/word.
 - Exercise: Why Ais it is that the pounded to use for estimating the dictionary size?
- Ave. dictionary word in English: ~8 characters
 - How do we use ~8 characters per dictionary term?
- Short words dominate token counts but not type average.

Compressing the term list: Assignment Project Exam Help Dictionary-as-a-String

- Add WeChat powcoder

 Store dictionary as a (long) string of characters:
 - Pointer to next word shows end of current word
 - ■Hope to save μρ το 60% of edictionary space.

	_					P
		systiles	syzygętic	syzygial	syzygysza	ibelyiteszczecinszomo
		htt	ps://pc	wcod	er.com	
Freq.	Postings ptr.	Term ptr.	ld We(That p	owcode	Total string length =
33				T P		$400K \times 8B = 3.2MB$
29						10011 11 02 3.21(12)
44						Pointers resolve 3.2M
126						$_$ positions: $log_2 3.2M =$
						22bits = 3bytes

Assignment Project Exam Help Space for dictionary as a string

Add WeChat powcoder

- 4 bytes per term for Freq.
- 4 bytes per term for pointer to Postings. Assignment Project Exam Help

 3 bytes per term pointer

Now avg. 11 bytes/term, not 20.

- Avg. 8 bytes pertermenter from
- 400K terms x 149 W 60MB (againstel 1.2MB for fixed width)

Assignment Project Exam Help Blocking

- Store pointers to every kth term string.
 - Example below: k=4.
- Need to store term lengths (1 extra byte)

Net

Assignment Project Exam Help

Add WeChat powcoder

- Example for block size k = 4
- Where we used 3 bytes/pointer without blocking

 3 x 4 = 12 bytes,

now we use 3 + 4 ttps: bytes: coder.com

Add WeChat powcoder Shaved another ~0.5MB. This reduces the size of the dictionary from 7.6 MB to 7.1 MB. We can save more with larger k.

Why not go with larger k?

Assignment Project Exam Help Exercise

Add WeChat powcoder

Estimate the space usage (and savings compared to 7.6 MB) with blocking, for block sizes of k = 4, 8 and 16.
 Assignment Project Exam Help

https://powcoder.com

Assignment Project Exam Help Dictionary search without blocking Add WeChat powcoder

Assuming each

dictionary term equally likely in query (not really Project Exam Help Box

so in practice!), averagepowcoder.come

Exercise: what if the frequencies of query terms were non-uniform but known, how would you structure the dictionary search tree?

Dictionary Search with blocking

- Binary search down to 4-term block;
 - Then linear search through terms in block.
- Blocks of 4 (binary tree), avg. = $(1+2\cdot2+2\cdot3+2\cdot4+5)/8 = 3$ compares

Assignment Project Exam Help Exercise

Add WeChat powcoder

Estimate the impact on search performance (and slowdown compared to k=1) with blocking, for block sizes of k Assignmento Project Exam Help

https://powcoder.com

Assignment Project Exam Help Front coding

Add WeChat powcoder

- Front-coding:
 - Sorted words commonly have long common prefix store differences signment Project Exam Help
 - (for last k-1 in a block of k)
 https://powcoder.com
 8automata8automate9automatic10automation

Begins to resemble general string compression. 29

Front Encoding [Witten, Molfat, Bell]

Add WeChat powcoder

- Complete front encoding
 - (prefix-len, suffix-len, suffix)
- Partial 3-in-4 front encoding

 Exam Help
 - No encoding/locument/epsion for the first string in a block
 - Enables binary search
 Add WeChat powcoder

Assume previous string is "auto"

String	Complete Front Encoding	Partial 3-in-4 Front Encoding
8, automata	4, 4, mata	, 8, automata
8, automate	7, 1, e	7, 1, e
9, automatic	7, 2, ic	7, 2, ic
10, automation	8, 2, on	8, , on

RCV1 dictionary compression summary Add WeChat powcoder

Technique	Size in MB
Fixed width Assignment Project Exam Help	11.2
https://powcoder.com Dictionary-as-String with pointers to every term Add WeChat powcoder	7.6
Also, blocking $k = 4$	7.1
Also, Blocking + front coding	5.9

Assignment Project Exam Help

Add WeChat powcoder

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

POSTINGS COMPRESSION

Assignment Project Exam Help Postings compression

- The postings file is much larger than the dictionary, factor of at least 10.
- Key desideratum: store each posting compactly.
- A posting for dutppurposesoider.donlD.
- Alternatively, we can use log₂ 800,000 ≈ 20 bits per docID.
- Our goal: use a lot less than 20 bits per docID.

Assignment Project Exam Help Postings: two conflicting forces Add WeChat powcoder

- A term like *arachnocentric* occurs in maybe one doc out of a million – we would like to store this posting using log₂ Assignment Project Exam Help
- A term like the gesyrs in virtually ayery doc, so 20 bits/posting is too expensive.
 Prefer 0/1 bitmap vector in this case

Assignment Project Exam Help Postings file entry

- We store the list of docs containing a term in increasing order of docID.
 - computer significating piect. Exam Help
- Consequence: https://pesstooglore.com/
- 33,14,107,5,43 ... Add WeChat powcoder Hope: most gaps can be encoded/stored with far fewer than 20 bits.

Three postings entries Add WeChat powcoder

enco Anssignment Project Exam Help									
THE	docIDs		283042	283043	1	283044		283045	
	gaps	https://	housedo	1	1		1		
COMPUTER	docIDs	nttps.//	powegode	1.00483154		283159		283202	
	gaps			107	5		43		
ARACHNOCENTRIC	docIDs	2 5 20401 VV	eChat po	owcoder					
	gaps	252000 248	3100	71100001					

Variable length encoding

- Aim:
 - For *arachnocentric*, we will use ~20 bits/gap entry.
 - For the, designment Broject Exam Help
- If the average kaps potenties. Conve want to use "log₂G bits/gap entry.
 Add WeChat powcoder
 Key challenge: encode every integer (gap) with about
- Key challenge: encode every integer (gap) with about as few bits as needed for that integer.
- This requires a variable length encoding
- Variable length codes achieve this by using short codes for small numbers

Variable Byte (VB) codes

- For a gap value G, we want to use close to the fewest bytes needed to hold log₂ G bits
- Begin with one byte to store Fxam Help it to be a continuation bit oder.com
- If $G \le 127$, binary-encode it in the 7 available bits and set c = 1
- Else encode G's lower-order 7 bits and then use additional bytes to encode the higher order bits using the same algorithm
- At the end set the continuation bit of the last byte to 1 (c = 1) and for the other bytes c = 0.

Hex(824)=0x0338

Assignment Project Example (214577)=0x00034631

Add WeChat powcoder

docIDs	824	829		215406
gaps		5		214577
VB code A	søigament Pro	jecco Exai	n He	p 0001101
	10111000			00001100
	https://pow	10110001		

Postings stored as the byte concatenation

Key property: VB-encoded postings are uniquely prefix-decodable.

> For a small gap (5), VB uses a whole byte.

Assignment Project Exam Help Other variable unit codes

- Instead of bytes, we can also use a different "unit of alignment": 32 bits (words), 16 bits, 4 bits (nibbles).
- Variable byteiglignene Project Exspaddiffyou have many small gaps – nibbles do better in such cases.

 https://powcoder.com

 Variable byte codes:
- - Used by many coom we cialates earch settems
 - Good low-tech blend of variable-length coding and sensitivity to computer memory alignment matches (vs. bit-level codes, which we look at next).
- There is also recent work on word-aligned codes that pack a variable number of gaps into one word (e.g., simple9)

Simple9 Assignment Project Exam Help

- Encodes as many gaps as possible in one DWORD
- 4 bit selector + 28 bit data bits

Encodes Agossible ways to euce the detail bits

Selector	# of gaps encoded https://pow		Wasted bits
0000	28	1	0
0001	14 Add WeCh	nat powcoder	0
0010	9	3	1
0011	7	4	0
0100	5	5	3
0101	4	7	0
0110	3	9	1
0111	2	14	0
1000	1	28	0

Assignment Project Exam Help Unary code

Add WeChat powcoder

- Represent *n* as *n* 1s with a final 0.
- Unary code for 3 is 1110.

 Assignment Project Exam Help
 Unary code for 40 is
- Unary code for WeChat powcoder

This doesn't look promising, but....

Assignment Project Exam Help Bit-Aligned Codes

- Breaks between encoded numbers can occur after any bit position
- Unary codessignment Project Exam Help
 - Encode k by k 1s followed by 0 coder.com
 - 0 at end makes code unambiguous
 Add WeChat powcoder

Number	Code
0	0
1	10
2	110
3	1110
4	11110
5	111110

Unary and Binary Codes Add WeChat powcoder

- Unary is very efficient for small numbers such as 0 and 1, but quickly becomes very expensive
 Assignment Project Exam Help
 1023 can be represented in 10 binary bits, but requires
 - 1023 can be represented in 10 binary bits, but requires
 1024 bits in untipys://powcoder.com
- Binary is more efficient for large numbers, but it may be ambiguous

Assignment Project Exam Help Elias-y Code

Add WeChat powcoder

• To encode a number k, compute

•
$$k_d = \lfloor \log_2 k \rfloor$$
 unary

Assignment Project Exam Help binary
• $k_r = k - 2^{\lfloor \log_2 k \rfloor}$

• k_d is number of binary digits, encoded in unary

Number Add We Chat powcoder				
	1	0	0	0
	2	1	0	10 0
	3	1	1	10 1
	6	2	2	110 10
	15	3	7	1110 111
	16	4	0	11110 0000
	255	7	127	11111110 1111111
	1023	9	511	1111111110 111111111

Assignment Project Exam Help Elias-8 Code

- Elias-γ code uses no more bits than unary, many fewer for k > 2
 - 1023 takes 1 going entitle and 1024 bits Using unary
- In general, taket 25 10 gok to deits com
- To improve coding of large numbers, use Elias-δ code
 - Instead of encoding k_d in unary, we encode $k_d + 1$ using Elias- γ
 - Takes approximately 2 log₂ log₂ k + log₂ k bits

Assignment Project Exam Help Elias-8 Code

Add WeChat powcoder Split (k_d+1) into:

$$k_{dd} = \lfloor \log_2(k_d+1) \rfloor$$
 $k_{dr}^{\text{Assign}} = \Pr[\text{Project Example Project E$

• encode k_{dd} in https://poin binary.and k_r in binary

Number (k)	dd	WeC	that kad	$p_{k_{dr}}$	coder
1	0	0	0	0	0
2	1	0	1	0	10 0 0
3	1	1	1	0	10 0 1
6	2	2	1	1	10 1 10
15	3	7	2	0	110 00 111
16	4	0	2	1	110 01 0000
255	7	127	3	0	1110 000 1111111
1023	9	511	3	2	1110 010 111111111

```
COMP6714: Information Retrieval & Web Search Com
   # Generating Elias-gamma and Elias-delta codes in Python
                 Assignment Project Exam Help
   import math
   def unary_encode(n):
   Add WeChat powcoder def binary_encode(n, width):
      r = ""
      for i in range(0, width):
       if ((1 << i) \& n) > 0:
       r = "1" + r
       else:
       r = "0" + r
                            Assignment Project Exam Help
      return r
   def gamma_encode(n):
      logn = int(math.log(n,2))
      return unary_encode( logn ) + " " httap Sicole BOW COder.com
   def delta_encode(n):
    logn = int(math.log(n,2))
                                    Add WeChat powcoder
  if n == 1:
    return "0"
    else:
    loglog = int(math.log(logn+1,2))
    residual = logn+1 - int(math.pow(2, loglog))
          return unary_encode( loglog ) + " " + binary_encode( residual, loglog ) + " " + binary_encode(n, logn)
   if __name__ == "__main__":
      for n in [1,2,3, 6, 15,16,255,1023]:
          logn = int(math.log(n,2))
          loglogn = int(math.log(logn+1,2))
          print n, "d_r", logn
          print n, "d_dd", loglogn
          print n, "d_dr", logn + 1 - int(math.pow(2,loglogn))
          print n, "delta", delta_encode(n)
          #print n, "gamma", gamma_encode(n)
          #print n, "binary", binary_encode(n)
```

Assignment Project Exam Help Gamma code properties

- G is encoded using $2 \lfloor \log G \rfloor + 1$ bits
 - Length of offset is log G bits
 - Length of seighment Projecto Exam Help
- All gamma codesphaye ancodernumber of bits
- Almost within a factor of 2 of best possible, log₂ G
- Gamma code is uniquely prefix-decodable, like VB
- Gamma code can be used for any distribution
- Gamma code is parameter-free

Assignment Project Exam Help Gamma seldom used in practice

- Machines have word boundaries 8, 16, 32, 64 bits
 - Operations that cross word boundaries are slower
- Compressing and manipulating at the granularity of bits can be slowtps://powcoder.com
- Variable byte encoding is aligned and thus Add Wechat powcoder potentially more efficient
- Regardless of efficiency, variable byte is conceptually simpler at little additional space cost

Assignment Project Exam Help Shannon Limit

- Is it possible to derive codes that are optimal (under certain assumptions)?
- What is the optimal average code length for a code that encodes each integer (gap.lengths) independently?
 Lower bounds on average code length: Shannon
- Lower bounds on average code length: Shannon entropy
 - $H(X) = -\sum_{x=1}^{n} Pr[X=x] log Pr[X=x]$
- Asymptotically optimal codes (finite alphabets): arithmetic coding, Huffman codes

How to design an optimal code

Global Bernoulli Model for geometric distribution?

- Assumption: term occurrence are Bernoulli events
- **Notation:**
 - n: # of documents, m: # of terms in vocabulary
 - N: total # of (httipse) pocucredeescom
- Probability of a term to occurring in document d_i: p = N/nm
- Each term-document occurrence is an independent event
- Probability of a gap of length x is given by the geometric distribution $Pr[X = x] = (1 - p)^{x-1} \cdot p$

Assignment Project Exam Helpralization of the unary code. Golomb Code

It can also be deemed as a

- Golomb Code (Golomb 1966): highly efficient way to design optimal Huffman-style code for geometric distributionssignment Project Exam Help
 - Parameter b https://powcoder.com
 - For given $x \ge 1$, computer integer quotient
 - and remainder Add WeChat powcoder

$$q = \lfloor (x-1)/b \rfloor$$
$$r = (x-1)-q \cdot b$$

- Assume $b = 2^k$
 - Encode q in unary, followed by r coded in binary
 - A bit complicated if b $!= 2^k$. See wikipedia.
- First step: (q+1) bits
- Second step: log(b) bits

Assignment Project. Exam Help Golomb Code & Rice Code

Add WeChat powcoder

- How to determine optimal b*?
- Select minimal b such that

Assignment Project Exam Help
$$(1-p)^b + (1-p)^b \le 1$$

- Result due to danager and Van Worhis 1975: generates an optimal prefix code for geometric distribution
- Small p approximation:

$$b^* \approx \ln 2/p = 0.69 \cdot avg_val$$

Rice code: only allow b = 2^k

Assignment Project Exam Help Local Bernoulli Model

- If length of posting lists is known, then a Bernoulli model on each individual inverted list can be used
- Frequent Words are coded with smaller b, infrequent words with larger b.//powcoder.com
- Term frequency need to be encoded (use gammacode)
- Local Bernoulli outperforms global Bernoulli model in practice (method of practice!)

RCV1 compression Add WeChat powcoder

Data structure	Size in MB
dictionary, fixed-width	11.2
dictionary, term Asisies sintest tineroject Exam Help	7.6
with blocking, k = 4	7.1
with blocking & front coding://powcoder.com	5.9
collection (text, xml markup etc) Add WeChat powcoder	3,600.0
collection (text)	960.0
Term-doc incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, g-encoded	101.0

Google's Indexing Choice

Add WeChat powcoder

- Index shards partition by doc, multiple replicates
- Disk-resident index
 - Use outer parts of the disk
 - Use different the prior of the design of different fields: Rice_k (a special kind of Golomb code) for gaps, and Gamma for positions. Add WeChat powcoder
- In-memory index
 - All positions; No docid
 - Keep track of document boundaries
 - Group-variant encoding
 - Fast to decode

Source: Jeff Dean's WSDM 2009 Keynote

Assignment Project Exam Help Other details

Add WeChat powcoder

- $Gap = docid_{n-1} 1$
- Freq = freq -1

Assignment Project Exam Help Pos_Gap = pos_n- pos_n-1 - 1

https://powcoder.com

C.f., Jiangong Zhang/X@bhujoongand Torsten Suel: Performance of Compressed Inverted List Caching in Search Engines. WWW 2008.

Assignment Project Exam Help Index compression summary

- We can now create an index for highly efficient
 Boolean retrieval that is very space efficient
- Only 4% of the total size of the collection
- Only 10-15% dftthe: t/ptal/sizecofcthe text in the collection
 Add WeChat powcoder
- However, we've ignored positional information
- Hence, space savings are less for indexes used in practice
 - But techniques substantially the same.

Assignment Project Exam Help Resources for today's lecture

- IIR 5
- MG 3.3, 3.4.
- Assignment Project Exam Help
 F. Scholer, H.E. Williams and J. Zobel. 2002.

 Compression of the windexes for Fast Query Evaluation. Proc. ACM-SIGIR 2002.

 Add We Chat powcoder
 - Variable byte codes
- V. N. Anh and A. Moffat. 2005. Inverted Index Compression Using Word-Aligned Binary Codes. Information Retrieval 8: 151–166.
 - Word aligned codes