

Road Traffic Sign Classification under Challenging Conditions

Weixi FENG, UG; Prof. Kenneth Lam, Supervisor

The Hong Kong Polytechnic University

Department of Electronic and Information Engineering

- Introduction & Related work
- Proposed work
 - Convolutional Neural Network
 - Random Forests
- Image pre-processing
- Experiments
- Conclusions

Introduction

Traffic Sign Classification is important for Automatic Driving System

- Existing datasets: GTSRB, BelgiumTS etc.
 - b do not include challenging conditions or
 - ► fail to emphasize the relationship between poor conditions and algorithmic performances.

Related work

- Some of the works were based on conventional classifiers such as Support Vector Machine.
- Conventional methods didn't perform as well as Deep Learning based method. Recent CNN-based methods include
 - ensemble of CNNs
 - multi-scale CNN
 - Much deeper networks

Proposed work

C(w, w, k): Convolutional layer with k filters of size $w \times w$

ReLU: ReLU activation layer

BN: Batch Normalization layer

P(w,s): Max-pooling layer with kernel size w and stride s

5

Proposed network - Batch Normalization

- Usually, we must be very careful in parameter initialization and learning rate selection.
- With Batch normalization we could
 - prevent overfitting[4].
 - prevent internal covariate shift
 - set a large learning rate at the beginning.

Input: values of *x* over minibatch: $B = \{x_{1...m}\}$

Output:

$$\widehat{x}_{i} = \frac{x_{i} - \mu_{B}}{\sqrt{\sigma_{B}^{2} + \epsilon}}$$
 normalize
$$y_{i} = \gamma \widehat{x}_{i} + \beta \equiv BN_{\gamma,\beta}(x_{i})$$
 scale and shift

Proposed network - Activation function

- The advantages of using ReLU, instead of tanh
 - ReLU can increase the sparsity
 - Solve the 'vanishing gradient' problem [5]
 - Save computation costs

Proposed work - Ensemble of CNNs

► Theory:

▶ If the errors of P different models have zero mean and are uncorrelated, the average error might be reduced by a factor of P simply by averaging the P models[7].

Problems to think:

- In practice, errors of models trained on similar data tend to be highly correlated.
- Whether to optimize the combination of outputs of various models or not?
- Additional Data?
- Highly generalized to the unseen testing data?

Ensembles of CNNs

[2] D. Cireşan, U. Meier, J. Masci and J. Schmidhuber, "Multi-column deep neural network for traffic sign classification", *Neural Networks*, vol. 32, pp. 333-338, 2012.

Proposed work - Ensembles of CNNs

$$E = \sum_{k=1}^{K} \left\| y_i - \sum_{i=1}^{5} w_i \vec{S}_i \right\|$$

Proposed work – Random Forests

Image Preprocesing

- RGB to grayscale
- CLAHE

Feature Extraction

- HoGs
- Concatenated Features

Classification

- Decision Tree
- Random Forests

Contrast-Limited Adaptive Histogram Equalization(CLAHE)

- Global Histogram Equalization uses the histogram information of the whole image.
 - Cannot adapt the local contrast information
- CLAHE transforms a pixel value from a neighbourhood region.

Feature Extraction - HoGs

Histogram of Oriented Gradients(HoGs) is good for describing shape and appearance. It extracts local gradient information.

In Apply D_x and $[-t_0,t_1]$ and $[-t_0,t_1]$ and $[-t_0,t_1]$ to Image. Graphepute and to get the gradient information at each pixel mage. Compute $\int_{I_x}^{I_x} I_y^2$ and $tan^{-1} \left(\frac{y}{I_x}\right)$ to

ZeDinidgramegerifdonlahookstandicpikel Form one histogram for each block.

- 2. Divide image into blocks and cells. Form an edistagement for blocks and cells. Form one feature vector
- 3. Concatenate block histograms into one feature vector

A cell

2x2 cells form into a block

Feature Extraction - HoGs

Tricks:

- 1. Normalize local histogram will give better results
- 2. Overlapping between neighbouring blocks significantly Increase the effectiveness of HoG

Random Forests - Decision Tree

- Tree structure is widely used for better management of data.
- ▶ It is also an effective tool for classification and detection
- How to build such a tree?
 - ► ID3 & C4.5 Entropy
 - ► Classification And Regression Tree(CART) Gini

CART algorithm

- Input da a a seet, each da a a a a dimension a (a titui butes).
- Concept. Carragaly anithmuselita and incoleviatoritar acceileanales has these data is as preside as possible
 - **Gim**i imparityty
- Steps:
 - Earthspititooonside astabuile utest that hous ent been used.
 - Chooseone atattribe that et es the eargest gain i gain.
 - Stopp when GGineique quads zer zerropoer-peter nets rarbe satisfied.

$$Gini(S) = 1 - \sum_{x \in X} p^2(x)$$

$$Gain(S, A) = Gini(S) - \sum_{S_i \subseteq S} p(S_i)Gini(S_i)$$

Random Forests

- Random Forests combines a number of decision trees into one classifier
- Applies CART-like algorithm
- Step:
 - Bootstrap aggregating
 - Train a decision tree
 - ▶ Repeat the above steps until we have enough trees

Random Forests - Bootstrap aggregating

- Assume owe that we that the test set where, is represent, and a water y
- bootstrap aggregating draw one sample from dataset S with
- beptatrappaggregatives this etto get N samples. These N samples form a
- new training set.
- Advantages: variance
 - Peducing variance. Decrease correlation between decision trees.
 - Pecrease correlation between decision trees.
 - Without increasing the bias.

Random Forests - Training

Concept:

- CART-like algorithm
- Random features

Steps:

- Calculate Gini at present node
- Randomly select *m* attributes from *M* total attributes. Consider these m attributes.
- Select the attribute that gives the largest Gini gain.
- Split on the attribute(dimension)
 Mid point

Random Forests

- Random selection of training samples
- Random features
- Reason:
 - Different training samples decorrelate the trees.
 - Dominate features will increase correlation
 - ▶ Randomize the features to avoid repeatedly using dominate features
 - ► Further decorrelate trees

Random Forests

- Technical considerations
 - Number of trees
 - Number of features
 - Overfitting: limit depth, number of samples etc.
 - Class weights: unbalanced dataset
 - Out of bag error

Dataset

- ► German Traffic Sign Recognition Benchmark
 - ► The German Traffic Sign Recognition Benchmark(GTSRB) is an official dataset available years ago. It includes 39,209 training images in 43 classes and 12,630 testing images.

Dataset

0

- The VIP Cup Dataset has:
 - ► 49 real scenes + 49 unreal scenes
 - ► 14 types of traffic signs
 - ► 12 challenging conditions
 - ▶ 5 levels of severity

level 1 level 2 level 3 level 4 level 5

00-no challenge 07-gaussian blur

01-decolorization 08-noise

02-lens blur 09-rain

03-codec error 10-shadow

04-darkening 11-snow

05-dirty lens 12-haze

06-exposure

Data preparation

Data augmentation for ConvNet

- Compensation on type 07 and 12
- Random crop
- Random saturation
- Random contrast
- Vertical flip

Data preparation for ConvNet

Experimental results

Running our trained network on 12159 testing images. We gained an average accuracy 92.21%

Challenge Type	Accurac y(%)	Challenge Type	Accurac y(%)
No challenge	99.19	Gaussian blur	91.41
Decolorizatio	96.99	Noise	96.73
n			
Lens blur	94.07	Rain	92.27
Codec error	59.71	Shadow	97.59
Darkening	96.48	Snow	95.62
Dirty lens	98.36	Haze	95.19
Exposure	93.04	Overall	92.21

➤ We found that codec error (challenge 03) is the most influential condition on our network. Around 47% of the misclassified images belong to the codec-error challenge, among which 74% are higher than level 2. Figure 2 shows some images of the codec-error challenge, and some images belonging to other challenges.

Experimental results

In order to show the effect of batch normalization and ReLU in this experiment. We tried different combinations of activation function and batch normalization. The experiment results are shown below.

Combinati	ReLU only	tanh + BN	ReLU +
on			BN
Accuracy	77.53%	83.38%	92.21%

Experimental results

Dataset	Including negative samples			
Network	Single CNN	Ensemble -	Ensemble – linear	
		Averaging	combination	
Accuracy	92.21%	92.94%	93.13%	

Dataset	Excluding negative samples			
Network	Single CNN	Ensemble -	Ensemble – linear	
		Averaging	combination	
Accuracy	94.10%	95.17%	95.19%	

Random Forests on GTSRB

Name	Dimensio	Cell Size	Block	Overlap	Bin	Orientation
	\mathbf{n}		Size			
HoG1	1568	5x5	10x10	50%	8	Unsigned
HoG2	1568	5x5	10x10	50%	8	Signed
HoG2	2916	4x4	8x8	50%	9	Unsigned

HoG	Number of	Number of Trees	Classification
	Features		Accuracy(%)
		50	93.91
	Log2 100 500	100	94.93
		500	95.20
		50	95.68
2	sqrt	sqrt 100 96.15	96.15
		500	96.77
		50 93.91 100 94.93 500 95.20 50 95.68 100 96.15	95.66
	100	100	96.28
		500	96.92

Random Forests on VIP Cup

HoG	Cells/blo	nbi	No. of Trees	No. of	Accuracy
block	ck	n		Features	
6x6	3x3	8	500	Sqrt	83.55
8x8	2x2	8	500	Sqrt	81.50
Concatenate HoGs		500	100	84.43	

Convolutional Neural Network

Random Forests

Convolutional Neural Network	Random Forests
Adv: More accurate	Adv: Accurate
Robust to all kinds of noises mingled together	Less computational costs Handle both small and large dataset
Disadv: High computational costs Requires a large amount of data Hardware requirements	Disadv: Less robust to various noises(partially because of the dataset) Less accurate than ConvNet

Conclusion

- Convolutional Neural Network performs well in classifying traffic signs. Even though images are distorted with different kinds of noise, we could still reach satisfactory results with the help of batch normalization etc.
- Creating Ensemble of ConvNets does not really increase the accuracy a lot.
 - Around 1% increase
 - Strong, highly correlated classifiers. No randomized steps.
- Random Forests performs well on GTSRB but not as well as ConvNet on VIP Cup dataset.
- A huge boost from single tree to forests
 - ► ~6% > ~84%
- Can Deep learning replace Random Forests?

References

- [1] J. Greenhalgh and M. Mirmehdi, "Real-time detection and recognition of road traffic signs," *IEEE Trans. Intell. Transp. Syst.*, vol. 13, no. 4, pp. 1498–1506, Dec. 2012.
- [2] D. Cireşan, U. Meier, J. Masci and J. Schmidhuber, "Multi-column deep neural network for traffic sign classification", *Neural Networks*, vol. 32, pp. 333-338, 2012.
- [3] P. Sermanet and Y. LeCun, "Traffic sign recognition with multi-scale Convolutional Networks," *The 2011 International Joint Conference on Neural Networks*, San Jose, CA, 2011, pp. 2809-2813.
- [4] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
- [5] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network acoustic models. In ICML, 2013
- [6] D. Kingma and J. Ba. Adam: A method for stochastic optimization. ICLR, 2015.
- [7] Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.