

Trabajo Práctico Anual "Sistema de Gestión Energética"

Grupo: 1

Integrantes:

- Jonathan Strelczuk 116.565-3
- Mauricio Rocha 158.090-5
- Guido Dicomo 121.305-2
- Flavia De Rosa 158.739-0

Fecha de entrega: 22/05/2018

Profesor: Martin Aguero

Ayudante a cargo: Martin Aguero

Repositorio: https://github.com/jstrelczuk/dds-tp-2018-grupo-01.git

Branch: Master

Commit ID:

Diseño de Sistemas - SGE - Grupo 1 - Entrega 1

Sumario

DISEÑO DE SISTEMAS	0
Registro de cambios	2
Tabla de decisión grupal, sobre el diseño	3
1.Diagrama de clases:	4
Adapter:	5
Command	6
2. Comunicación entre sistema y dispositivos	7

Registro de cambios

Fecha	Modificaciones	
16/05/2018	Se incorpora el patrón de Diseño Estructural Decorator, para	
	modelar los dispositivos de tipo Estándar / Inteligentes	
20/05/2018	Se modifica el patrón de diseño Decorator por Adapter, por	
	considerarlo mejor para el requerimiento.	

Tabla de decisión grupal, sobre el diseño

FECHA	DECISIÓN	VENTAJA	DESVENTAJA	ALTERNATIVA
16/05/2018	Utilizamos	Permite agregar funcionalidad	No cumple con el	Se cambia por
	Decorator para	extra a los dispositivos	requerimiento.	el patrón
	modelar los	estándar, por medio de un	Agrega	Adapter.
	dispositivos	adaptador, y de esta manera	funcionalidad, pero	
	Estándar /	adquirir las funcionalidades de	la idea es crear	
	Inteligentes	un dispositivo Inteligente.	una interfaz	
			compatible a través	
			de un adaptador	
17/05/2018	Utilizamos	Permite controlar		
	Command para la	eficientemente magnitudes		
	incorporación de	medidas, donde a través de		
	Actuadores y	una serie de reglas		
	Sensores.	preestablecidas, determinarán		
		las acciones asociadas a		
		cumplirse por el Actuador con		
		los dispositivos.		
20/05/2018	Cambiamos al	Permite que dos interfaces		
	patrón Adapter,	sean compatibles a través de		
	por considerar que	un adaptador. Para el		
	aplica mejor al	requerimiento, el dispositivo		
	requerimiento.	Estándar + Adaptador,		
		funcionara como un DI.		
21/05/2018	Se agrega un	Permite cambiar a los distintos		
	enum	modos de funcionamiento, que		
	EstadoDispositivo.	tiene el dispositivo.		
		(Encendido, Apagado y		
		AhorroEnergia).		

1. Diagrama de clases:

Se incorporaron patrones de diseño para la aplicación de los requerimientos funcionales.

Adapter:

El requerimiento solicitaba que un dispositivo Estándar, pueda ser tratado como un Dispositivo Inteligente, si a este se le agrega un módulo Adaptador.

Command

En el requerimiento aparecen dos nuevos actores: Los Actuadores y los Sensores. Mientras que los actuadores, envían acciones a realizar en los dispositivos, los sensores realizan las mediciones de ciertas magnitudes, como temperatura, humedad, movimiento,

Las acciones a ejecutar, representan la/las condiciones que se evalúen como ciertas al momento de verificar la medición.

2. Comunicación entre sistema y dispositivos

Pensamos en la tecnología que ofrece OPC (Ole Process Control). El OPC es un estándar de comunicación en el campo del control y supervisión de procesos, que ofrece una interfaz común para la comunicación, permitiendo que componentes individuales, interactúen y compartan datos.

OPC UA (arquitectura unificada), extiende la adquisición de datos, el modelado de la información y la comunicación entre cliente y aplicaciones de una forma fiable y segura. Se considera también un lenguaje de programación con capacidades de comunicación a través de las redes, la cual se puede implementar en: Java, .net, C/C++, entre otros.

Las ventajas de OPC UA, son coincidentes con los requerimientos no funcionales del SGE:

Facil configuracion y mantenimiento.

Tecnología orientada a servicios.

Mejor alcance de la conectividad.

Alto Rendimiento.

La seguridad de los datos está basada en la certificación digital.

Tiempo de espera configurable, deteccion y recuperacion de errores.

OPC-UA se construye en varias capas, donde los componentes fundamentales de son los mecanismos de transporte(Servicios Web) y el modelo de datos (jerarquía de tipos).

Al evaluar el impacto en el modelo de objetos:

- Consideramos los grandes volúmenes de datos que se generan a través de los dispositivos.
- 2. Tuvimos en cuenta como los datos, se transfieren del dispositivo a la nube, para ser procesados, entre otros, el consumo de energía de los clientes.

La tecnología OPC UA, permite comunicación continua desde los sensores y actuadores individuales hasta el ERP o la nube. Posee algunos inconvenientes en cuanto a dar respuesta de procesos complejos en tiempo real, pero se puede resolver agregando tecnologías como tsn (redes sensibles en el tiempo).