ΕΞΕΤΑΣΗ ΣΕΠΤΕΜΒΡΙΟΥ 2011 ΣΤΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ στο Τμήμα Επιστήμης Υπολογιστών

ΘΕΜΑ 1ο. (2) Να επιλυθεί με τη μέθοδο απαλοιφής το ομογενές γραμμικό σύστημα

$$x + 2y + 3z + 4w = 0$$

$$2x - y - 4z - 7w = 0$$

$$3x + y - z - 3w = 0$$

$$4x + 3y + 2z + w = 0$$

και να ευρεθεί μια βάση του διανυσματικού χώρου των λύσεων. Πόση είναι η τάξη του πίνακα των συντελεστών του συστήματος;

ΘΕΜΑ 20. (2) (α) Αν $a, b, c \in \mathbb{R}$, να αποδειχθεί οτι το γραμμικό σύστημα

$$x - 2y + z = a$$
$$2x + y + z = b$$
$$x + 3y = c$$

έχει λύση ή λύσεις τότε και μόνον τότε όταν a-b+c=0. Αν αυτό συμβαίνει, να περιγραφεί το σύνολο των λύσεων ως σύμπλοκο ενός διανυσματικού υποχώρου του \mathbb{R}^3 .

(β) Εστω $f:\mathbb{R}^3\to\mathbb{R}^3$ η γραμμική απεικόνιση με πίνακα (ως προς την διατεταγμένη κανονική βάση του \mathbb{R}^3) τον

$$A = egin{pmatrix} 1 & -2 & 1 \ 2 & 1 & 1 \ 1 & 3 & 0 \end{pmatrix}.$$

Είναι η f ισομορφισμός; Aν όχι, να ευρεθεί ο πυρήνας Ker f και μια βάση του.

 (γ) Να ευρεθεί ο $\mathrm{Im} f$ και η διάστασή του. Πόση είναι η τάξη του πίνακα A; Είναι ο A αντιστρέψιμος;

 Θ EMA 3o. (2) Av

$$A = \begin{pmatrix} -1 & 1 & 0 & 0 \\ -2 & 2 & 2 & -1 \\ 0 & 1 & 3 & 2 \\ 1 & 0 & 2 & 5 \end{pmatrix},$$

να υπολογιστεί ο A^{-1} , αν υπάρχει.

ΘΕΜΑ 40. (3) Εστω

$$A = egin{pmatrix} 2 & 1 & 0 \ 0 & 2 & 0 \ 0 & 0 & -1 \end{pmatrix}.$$

- (α) Να υπολογιστούν το χαραχτηριστικό πολυώνυμο και οι ιδιοτιμές του Α.
- (β) Να ευρεθούν οι ιδιόχωροι του Α.
- (γ) Είναι ο Α διαγωνοποιήσιμος;

ΘΕΜΑ 50. (2) Να κατασκευαστεί μια ορθοκανονική βάση του \mathbb{R}^4 (ως προς το ευκλείδειο εσωτερικό γινόμενο) της οποίας τρία διανύσματα να ανήκουν στο χώρο λύσεων της εξίσωσης x-2y+2z-w=0.