ЛЕКЦИЯ

Тема: «Численные методы определения собственных значений и собственных векторов матриц» (3 часа)

Постановка задачи.

Дана квадратная матрица $A_{n \times n}$, необходимо определить ее собственные значения $\lambda_k (k=1,...n)$ и собственные вектора $V^{(k)} (k=1,...n)$.

Собственные значения определяются из решения алгебраического характеристического уравнения

$$\det(A - \lambda E) = 0, \tag{1}$$

где E - единичная матрица.

В скалярной форме уравнение (1) можно записать

$$\det \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix} = 0.$$
 (2)

Раскрывая определитель (2) получаем алгебраическое уравнение n-ой степени, которое имеет равно n корней, среди которые могут быть вещественные, комплексно-сопряженные, кратные.

Каждому собственному значению λ_k соответствует собственный вектор $V^{(k)}$, определяемый из решения системы линейных алгебраических уравнений

$$(A - \lambda_k E)V^{(k)} = 0. (3)$$

Причем вектор $V^{(k)} \neq 0$. Собственный вектор определяется с точностью до множителя, так как система (2) однородна и если $V^{(k)}$ собственный вектор, то $\alpha V^{(k)}$, где $\alpha = \mathrm{const} \neq 0$, тоже собственный вектор.

При использовании численных методов рассматривается также матрица собственных векторов

$$V = \begin{pmatrix} V_1^{(1)} & V_1^{(2)} & \dots & V_1^{(n)} \\ V_2^{(1)} & V_2^{(2)} & \dots & V_2^{(n)} \\ \dots & \dots & \dots & \dots \\ V_n^{(1)} & V_n^{(2)} & \dots & V_n^{(n)} \end{pmatrix}. \tag{4}$$

Рассмотрим некоторые задачи, которые решаются с помощью определения собственных значений и собственных векторов.

1. Решение дифференциальных уравнений.

В качестве примера рассмотрим систему линейных обыкновенных дифференциальных уравнений вида

$$\frac{dx}{dt} = Ax. ag{5}$$

где A - квадратная матрица $n \times n$, x - n -мерный вектор.

Решение (5) будем искать в виде

$$x = Ve^{\lambda t} \,. \tag{6}$$

где V - n-мерный вектор, λ - параметр.

Подставим (6) в (5), тогда

$$V\lambda e^{\lambda t} = AVe^{\lambda t} \Longrightarrow (A - E\lambda)V = 0. \tag{7}$$

Ненулевое решение системы (5) при $V \neq 0$ будет существовать тогда и только тогда, когда

$$\det(A - E\lambda) = 0. \tag{8}$$

Алгебраическое уравнение имеет равно n корней. Рассмотрим случай, когда среди корней нет кратных. Каждому корню λ_k соответствует вектор, который находится из системы (3), и частное решение системы (5) вида $V_k e^{\lambda_k t}$. Тогда общее решение системы (5) определяется как линейная комбинация частных решений

$$x = \sum_{k=1}^{n} C_k V^{(k)} e^{\lambda_k t}, \qquad (9)$$

где C_k - произвольные постоянные.

Собственные значения и собственные вектора матриц требуется определять и при решении более сложных нелинейных дифференциальных уравнений, в частности, при решении дифференциальных уравнений в частных производных.

2. Устойчивость положений равновесия динамических систем.

Для определения устойчивости положений равновесия (неподвижных точек) дифференциальных уравнений используется система в отклонениях относительно этих положений равновесия вида

$$\frac{d\Delta x}{dt} = A\Delta x + Q_2(\Delta x). \tag{5}$$

где Δx - n-мерный вектор отклонений от положения равновесия, $Q_2(\Delta x)$ - слагаемые второго порядка и выше по отклонениям Δx , причем $Q_2(0) = 0$.

Согласно первому методу Ляпунова положение равновесия $\Delta x=0$ асимптотически устойчиво, если для всех собственных чисел их вещественная часть $\mathrm{Re}(\lambda_k) < 0$, и не устойчиво, если хотя бы для одного собственного числа $\mathrm{Re}(\lambda_k) > 0$. Устойчивость положения равновесия означает $\Delta x(t) \to 0$ при $t \to \infty$.

3. Условие сходимости итерационных алгоритмов.

В качестве примера можно рассмотреть итерационные методы решения СЛАУ Ax = B. В этом случае их общая формула имеет вид

$$x^{\left(k+1\right)} = Cx^{\left(k\right)} + F. \tag{6}$$

Для сходимости итерационного процесса необходимо и достаточно, чтобы спектральный радиус матрицы C был меньше 1. Спектральный радиус – это наибольшее по модулю собственное число матрицы.

То же самое относится к итерационным алгоритмам решения нелинейных алгебраических уравнений и систем. Там тоже необходимо

определять собственные числа матриц, определяющих итерационную процедуру.

Перечисленные задачи не исчерпывают весь перечень задач, где необходимо определять собственные значения и собственные вектора матриц.

Методы решения.

Все методы решения задачи на собственные значения и собственные вектора матриц можно условно разделить на две группы:

- 1. Методы, основанные на непосредственном решении алгебраических уравнений (2) и (3).
 - 2. Методы, основанные на подобных преобразованиях матриц.

Для задачи первым методом сначала производится решения развертывание определителя (2). Для этого используются специальные алгоритмы. После приведения (2) к полиному n-ой степени определяются его корни с использовании численных методов решения нелинейных уравнений. Такой подход к решению задачи можно использовать для матриц относительно невысокого порядка, поскольку эти методы оказываются неустойчивыми по отношению к погрешностям округления, то есть неизбежно возникающей вычислительной погрешности. Методы, основанные на преобразовании матриц, не имеют этих недостатков и чаще всего используются на практике.

Подобные преобразования матриц.

Определение. Преобразование $P^{-1}AP$, где P - невырожденная матрица ($\det(P) \neq 0$), называется преобразованием подобия.

Основные свойства подобных преобразований.

Свойство 1. При подобных преобразованиях собственные значения не изменяются.

Доказательство.

$$\det(P^{-1}AP - \lambda E) = \det(P^{-1}(A - \lambda E)P) =$$

$$= \det(P^{-1})\det(A - \lambda E)\det(P) = 0$$

Так как $\det \left(P^{-1} \right) \neq 0$ и $\det \left(P \right) \neq 0$, то характеристические уравнения исходной и преобразованной систем имеют одинаковые собственные значения.

Свойство 2. При подобном преобразовании $P^{-1}AP$ собственные вектора изменяются следующим образом $V^{(k)} = PV_*^{(k)} \, \big(k = 1, 2, ... n \big)$, где $V_*^{(k)}$ - собственный вектор преобразованной матрицы

Доказательство.

Для преобразованной матрицы

$$(P^{-1}AP - \lambda_k E)V_*^{(k)} = P^{-1}(A - \lambda_k E)PV_*^{(k)} = 0.$$

Поэтому
$$V^{(k)} = PV_*^{(k)} (k = 1, 2, ...n).$$

Свойство 3. Если все собственные вектора $V^{(k)}(k=1,2,...n)$ линейно независимы, то матрица A приводится к диагональному виду, то есть существует невырожденная матрица P такая, что $P^{-1}AP = D$.

Доказательство.

Имеем для каждого собственного вектора

$$(A - \lambda_k E)V^{(k)} = 0 (k = 1, 2, ...n).$$

Объединяя все эти СЛАУ в одну систему, получим

$$(A-D)V = 0 , (7)$$

где
$$DE = D = \begin{pmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \lambda_n \end{pmatrix}$$
, V - матрица собственных векторов (в

каждый столбец этой матрицы записывается все собственные вектора по порядку).

Так как собственные вектора линейно независимые, то матрица V не вырождена и обратная ей матрица существует. Тогда, умножая соотношение слева, получим

$$V^{-1}(A-D)V = V^{-1}AV - V^{-1}DV = 0 \Rightarrow V^{-1}AV = D,$$
 (8)

Следствие. Если посредством подобных преобразований матрица A приводится к диагональному виду, то на главной диагонали матрицы D стоят собственные значения исходной матрицы A, а матрица преобразований при этом есть матрица ее собственных векторов, то есть P = V.

Свойство 4. Если матрица A симметрична, то с помощью подобных преобразований она приводится к диагональному виду [1, 2], причем преобразование подобия можно осуществить с помощью ортогональных матриц (без доказательства).

Определение [1, 2]. Квадратная матрица U с вещественными элементами называется ортогональной, если результат ее умножения U на транспонированную матрицу $UU^* = E$, где E - единичная матрица. Данное определение эквивалентно условию $U^* = U^{-1}$.

Свойство 5. Любая квадратная матрица с помощью подобных преобразований приводится к верхней треугольной форме [1, 2] (без доказательства).

Верхняя треугольная матрица имеет вид

$$A^{\Delta} = \begin{pmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & \dots & * \\ 0 & 0 & 0 & * \end{pmatrix},$$

где знаком (*) отмечены элементы матрицы, которые могут быть отличны от нуля.

Наиболее простыми формами треугольной матрицы, к которым может приведена любая квадратная матрица являются: жорданова нормальная форма и фробениусова нормальная форма [2].

Следствие. Если квадратная матрица с помощью подобных преобразований приведена к верхней треугольной матрице, то на ее главной диагонали стоят собственные значения исходной матрицы, то есть ее характеристический многочлен имеет вид

$$\begin{vmatrix} a_{11}^{\Delta} - \lambda & * & * & * \\ 0 & a_{22}^{\Delta} - \lambda & * & * \\ 0 & 0 & \dots & * \\ 0 & 0 & 0 & a_{nn}^{\Delta} - \lambda \end{vmatrix} = 0.$$

Раскрывая этот определить, например, по первой строке, получим

$$(a_{11}^{\Delta} - \lambda)(a_{22}^{\Delta} - \lambda)...(a_{nn}^{\Delta} - \lambda) = 0$$
,

откуда следует приведенное утверждение.

Наиболее простые формы треугольной матрицы, к которым может быть приведена любая квадратная матрица, это: жорданова нормальная форма и фробениусова нормальная форма [2].

Метод вращений (метод Якоби)

Метод вращений это итерационный метод определения собственных значений и собственных векторов симметричных матриц. Итерации в

соответствии с методом вращений сходятся к диагональной матрице, то есть если на k -ой итерации получена матрица A_k , то

$$\lim_{k \to \infty} A_k = D . (9)$$

Если условие (9) выполняется, то для любого $\forall \, \delta > 0$ (заданной погрешности) существует $\exists N$ такое, что $\sum_{i \neq j} \left| a_{ij}^{(N)} \right| < \delta$.

Замечание. Однако всегда надо помнить, что условие (9) теоретическое и с точки зрения вычислительной математике нельзя говорить, что заданная погрешность может быть любым малым числом. Если, например, число δ сравнимо с вычислительной погрешностью, которая возникает при расчетах на компьютере, то определение матрицы D с заданной точность проблематично. То есть заданная погрешность δ не может слишком малой и должна быть выбрана рационально.

Алгоритм метода вращений проиллюстрируем на простом примере двумерной симметричной матрицы. Введем в рассмотрение двумерную матрицу вращений

$$U = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix},\tag{10}$$

где φ - угол, который надо определить исходя из приведения матрицы к диагональному виду.

Нетрудно заметить, что матрица (10) является ортогональной, то есть $\boldsymbol{U}^* = \boldsymbol{U}^{-1}.$

Сделаем подобное преобразование двумерной симметричной матрицы

$$U^*AU = U^* \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} U = \begin{pmatrix} d_{11} & d_{12} \\ d_{12} & d_{22} \end{pmatrix}. \tag{11}$$

После перемножения получим

$$d_{12} = (a_{12}\cos\varphi + a_{22}\sin\varphi)\cos\varphi - (a_{11}\cos\varphi + a_{12}\sin\varphi)\sin\varphi. \tag{12}$$

Тогда из условия $d_{12} = 0$ нетрудно получить

$$tg2\varphi = 2\frac{a_{12}}{a_{11} - a_{22}}. (13)$$

Определяя угол φ из (13) и проводя ортогональное преобразование, получим

$$U^*AU = U^* \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} U = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}.$$
 (14)

Таким образом, преобразование (14) позволило определить собственные значения исходной матрицы. Кроме того, если (как было доказано выше свойство 3) матрица приведена к диагональному виду, то матрица преобразований и будет матрицей собственных векторов V=U, то есть каждый столбец матрицы U есть собственный вектор исходной матрицы.

Формула (13) для обнуления недиагонального элемента обобщается на случай n-мерной матрицы, тогда

$$tg2\varphi_{ij}^{(k)} = 2\frac{a_{ij}^{(k-1)}}{a_{ii}^{(k-1)} - a_{jj}^{(k-1)}},$$
(15)

которая применяется на k -ой итерации для обнуления элемента $a_{ij}^{(k)}$.

При реализации алгоритма метода в общем случае рекомендуется на каждом шаге итерационного процесса выбирать элемент $a_{ij}^{(k)}$, имеющий наибольший модуль.

Таким образом, для получения матрицы A_k на k -ой итерации необходимо осуществить следующие преобразования

$$U_k^* ... U_2^* U_1^* A U_1 U_2 ... U_k = A_k.$$
(16)

Здесь k -ая матрица преобразований имеет вид

$$U_{k} = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & \dots & \dots & 0 \\ 0 & 1 & 0 & \dots & \dots & \dots & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & \dots & 0 \\ 0 & \dots & 0 & \cos \varphi_{ij}^{(k)} & \dots & -\sin \varphi_{ij}^{(k)} & \dots & 0 \\ 0 & \dots & 0 & \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & 0 & \sin \varphi_{ij}^{(k)} & \dots & \cos \varphi_{ij}^{(k)} & \dots & 0 \\ 0 & \dots & 0 & \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & 0 & \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & 0 & \dots & \dots & \dots & \dots & 0 & 1 \end{pmatrix}.$$

$$(17)$$

где положение элементов $\left(-\sin\varphi_{ij}^{(k)}\right)$ и $\left(\sin\varphi_{ij}^{(k)}\right)$ соответствует положениям элементов $a_{ij}^{(k-1)}=a_{ji}^{(k-1)}$ матрицы A_{k-1} , над которой производится подобное преобразование.

После выполнения условия остановки алгоритма $\sum_{i\neq j} \left|a_{ij}^{(N)}\right| < \delta$ элементы, стоящие на главой диагонали матрицы A_N , представляют собой оценки для собственных значений исходной матрицы $\tilde{\lambda}_i = a_{ii}^{(N)}$, i=1,2,...n. А результирующая матрица преобразований $P_k = U_1U_2...U_k$ приближенно равна матрице собственных векторов $\tilde{V} = P_k$ матрицы A.

LR (LU) - алгоритм

Данный алгоритм применяется для определения собственных значений и собственных векторов квадратных невырожденных матриц ($\det A \neq 0$) не обязательно симметричных. Алгоритм основывается на разложении A = LR, где L и R - нижняя и верхняя треугольные матрицы. Они имеют следующую структуру

$$L = \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ * & 1 & 0 & \dots & 0 \\ * & * & \dots & 0 & 0 \\ * & \dots & \dots & 1 & 0 \\ * & \dots & * & * & 1 \end{pmatrix}. \qquad R = \begin{pmatrix} * & * & \dots & * \\ 0 & * & * & \dots & * \\ 0 & 0 & \dots & * & * \\ 0 & \dots & \dots & * & * \\ 0 & \dots & \dots & * & * \\ 0 & \dots & 0 & 0 & * \end{pmatrix}$$
(17)

где знаком (*) отмечены элементы матрицы, которые могут быть отличны от нуля.

Если проведено разложение A=LR, посредством перестановки сомножителей получается матрица подобная исходной. Данное утверждение нетрудно доказать. Для этого преобразованную матрицу $A_1=RL$ умножим слева на $E=L^{-1}L$. Тогда $A_1=L^{-1}LRL=L^{-1}AL$, то есть матрицы A и A_1 подобны. На основании этих преобразований организуется итерационная процедура

$$A = L_1 R_1 \Rightarrow A_1 = R_1 L_1 = L_2 R_2 \Rightarrow A_2 = R_2 L_2 = L_3 R_3 \Rightarrow \dots$$
 (18)

Преобразования (18) можно представить следующим образом

$$L_k^{-1} \dots L_2^{-1} L_1^{-1} A L_1 L_2 \dots L_k = A_k$$
 (19)

Доказано, что итерационный процесс (19) сходится к верхней треугольной матрице [1], то есть

$$\lim_{k \to \infty} A_k = A^{\Delta} \ . \tag{20}$$

Если условие (20) выполняется, то для любого $\forall \delta > 0$ (заданной погрешности) существует $\exists N$ такое, что $\sum\limits_{i>j}\left|a_{ij}^{(N)}\right| < \delta$. Здесь $\sum\limits_{i>j}\left|a_{ij}^{(N)}\right|$

означает сумму по модулю всех элементов, стоящих ниже главной диагонали.

Если итерационный процесс в соответствии с заданной погрешностью закончен, то элементы матрицы A_k , стоящие на главной диагонали, есть приближенные оценки искомых собственных значений

 $\tilde{\lambda}_i = a_{ii}^{(N)}, \ i = 1, 2, ... n$. Для определения собственных векторов исходной матрицы сначала находят матрицу собственных векторов для преобразованной почти треугольной матрицы из решения СЛАУ

$$(A_k - E\tilde{\lambda}_i)\tilde{V}_*^{(i)} = 0, \quad i = 1, 2, ...n$$
 (21)

а потом в соответствии со свойством 2 определяют собственные вектора исходной матрицы

$$\tilde{V}^{(i)} = P_k \tilde{V}_*^{(i)}, \quad (i = 1, 2, ...n)$$
 (22)

где $P_k = L_1 L_2 ... L_k$ - результирующая матрица преобразований итерационного процесса.

LR (LU) разложение квадратной матрицы.

Для реализации итерационного процесса (19) необходимо на каждой итерации осуществлять разложение A = LR, где матрицы L,R имеют вид (17). Для этого может быть использован, например, метод Гаусса в матричной форме, изложенный в лекции, посвященной решению СЛАУ. В соответствии с этим методом сначала матрица A (или любая матрица A_k на каждом шаге итерационного процесса) может быть приведена к верхней треугольной форме

$$N_{n-1}...N_2N_1A = R. (7)$$

где матрица N_i обнуляет элементы i-ого столбца, стоящие под главной диагональю.

Матрицы N_i определяются следующим образом

$$N_{i} = \begin{pmatrix} 1 & 0 & \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & 0 & \dots & \dots & \dots & 0 \\ 0 & 0 & \dots & 0 & \dots & \dots & 0 \\ 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ 0 & \dots & 0 & -\frac{a_{i+1,i}}{a_{i,i}} & \dots & 0 & 0 \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ 0 & \dots & 0 & -\frac{a_{n,i}}{a_{i,i}} & 0 & \dots & 1 \end{pmatrix},$$

$$(23)$$

причем матрица N_i определяется по элементам предыдущей матрице $N_{i-1}...N_1A$.

Введем матрицу $L^{-1} = N_{n-1}...N_2N_1$ и найдем ей обратную

$$L = (N_{n-1}...N_2N_1)^{-1} = N_1^{-1}N_2^{-1}...N_n^{-1}$$
(24)

Определение обратных матриц N_i^{-1} не представляет трудности, так как для этого надо лишь изменить знаки i -ом столбце для элементов, стоящих ниже главной диагонали, то есть

$$N_i^{-1} = \begin{pmatrix} 1 & 0 & \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & 0 & \dots & \dots & \dots & 0 \\ 0 & 0 & \dots & 0 & \dots & \dots & 0 \\ 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ 0 & \dots & 0 & \frac{a_{i+1,i}}{a_{i,i}} & \dots & 0 & 0 \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ 0 & \dots & 0 & \frac{a_{n,i}}{a_{i,i}} & 0 & \dots & 1 \end{pmatrix}.$$
 (24)

Необходимо отметить, что алгоритм разложения A = LR здесь приведем для случая, когда $a_{i,i} \neq 0$. Для более общего случая алгоритм разложения на множители усложняется [1].

Существуют и другие методы приведения квадратных матриц к верхнему треугольному виду, в частности, построенные на подобных преобразованиях с помощью ортогональных матриц [1].

Использованные источники

- 1. Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. Москва: Наука, 1984. - 318 с.
- 2. Гантмахер Ф. Р. Теория матриц.— 5-е изд.—М.: Физматлит, 2004. 560 с.