MOWNIT laboratorium 8

Rozwiązywanie równań nieliniowych

Zadanie 1

Dla poniższych funkcji i punktów początkowych metoda Newtona zawodzi. Wyjaśnij dlaczego. Następnie znajdź pierwiastki, modyfikując wywołanie funkcji scipy.optimize.newton lub używając innej metody.

- (a) $f(x) = x^3 5x, x_0 = 1$
- (b) $f(x) = x^3 3x + 1, x_0 = 1$
- (c) $f(x) = 2 x^5, x_0 = 0.01$
- (d) $f(x) = x^4 4.29x^2 5.29, x_0 = 0.8$

Warunki zbieżności metody Newtona

- 1. $f \in C^2[a, b]$
- 2. f nie ma minimów, maksimów i punktów przecięcia w [a,b], czyli f'if'' nie zmieniają znaku
- 3. f(a)f(b) < 0

Rozwiązanie

- (a) f'' zmienia znak w punkcie x=0
- (b) f' zmienia znak w punkcie x=1
- (c) x = 0.01 jest bardzo blisko punktu x = 0, w którym pochodne się zerują
- (d) f'' zmienia znak w między x_0 , a miejscami zerowymi

Obliczone miejsca zerowe metodą bisekcji:

Funkcja	Obliczony pierwiastek
f_a	0
f_a	0.3472963553340378
f_a	1.148698354996668
f_a	2.3000000000006366

Zadanie 2

Dane jest równanie:

$$f(x) = x^2 - 3x + 2 = 0$$

Każda z następujących funkcji definiuje równoważny schemat iteracyjny:

$$\phi_1(x) = \frac{x^2 + 2}{3}, \quad \phi_2(x) = \sqrt{3x - 2}, \quad \phi_3(x) = 3 - \frac{2}{x}, \quad \phi_4(x) = \frac{x^2 - 2}{2x - 3}$$

- Przeanalizuj zbieżność oraz rząd zbieżności schematów iteracyjnych odpowiadających funkcjom $\phi_i(x)$ dla pierwiastka $\alpha=2$ badając wartość $|\phi'_i(2)|$
- Potwierdź analizę teoretyczną implementując powyższe schematy iteracyjne i weryfikując ich zbieżność (lub brak). Każdy schemat iteracyjny wykonaj przez 10 iteracji.

$$|\phi_1'(2)| = \frac{4}{3}$$

$$|\phi_2'(2)| = \frac{3}{4}$$

$$|\phi_3'(2)| = \frac{1}{2}$$

$$|\phi_4'(2)| = 0$$

Tylko pochodna funkcji ϕ_1 w punkcie 2 jest większa od 1, więc jej schemat iteracyjny będzie rozbieżny, a reszta powinna być zbieżna.

Empiryczny rząd zbieżności

$$r = \frac{\ln \frac{\varepsilon_k}{\varepsilon_{k+1}}}{\ln \frac{\varepsilon_{k-1}}{\varepsilon_k}}$$

ϕ_1	ϕ_2	ϕ_3	ϕ_4
1.133	0.936	0.860	1.661
1.192	0.953	0.935	1.914
1.282	0.965	0.969	1.994
1.422	0.974	0.985	1.943
1.628	0.981	0.992	inf
1.854	0.986	0.996	nan
1.979	0.989	0.998	nan
1.999	0.992	0.999	nan
2.000	0.994	1.000	nan

Tabela 2: Rzędy zbieżności schematów każdej funkcji, w kolejnych iteracjach

Dla funkcji ϕ_2 i ϕ_3 rząd zbieżności stabilizuje się na poziomie 1, są to metody liniowe. 2 pozostałe funkcje wykazują zbieżność kwadratową, ale należy pamiętać że w przypadku ϕ_1 jest to rozbieżność, ponieważ wartości z tego schematu w kolejnych iteracjach uciekają do nieskończoności. W przypadku funkcji ϕ_4 w pewnym momencie błąd obliczeń spadł do zera, więc nie dało się obliczyć rzędu zbieżności dla wyższych iteracji.

Rysunek 1: Wykres błędów względnych schematów iteracyjnych w zależności od iteracji

Rysunek 2: Wykres z rysunku 1 uwzględniający jedynie zbieżne schematy

Zadanie 3

Napisz schemat iteracji wg metody Newtona dla każdego z następujących równań nieliniowych:

(a)
$$x^3 - 2x - 5 = 0$$

(b)
$$e^{-x} = x$$

(c)
$$x \sin(x) = 1$$

Jeśli x_0 jest przybliżeniem pierwiastka z dokładnością 4 bitów, ile iteracji należy wykonać aby osiągnąć:

- 24-bitową dokładność
- 53-bitową dokładność (jeśli chodzi o samą mantysę, to zakładam że miało być 52)

Miejsca zerowe wyznaczone z dokładnością do 4 bitów w mantysie:

- (a) 2.0
- (b) 0.5625
- (c) 1.0625

Metody

Do zamiany liczb zmiennoprzecinkowych na reprezentację binarną używam funkcji struct.pack i struct.unpack.

Schemat iteracyjny Newtona obliczam zgodnie ze wzorem:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Wyniki

Dokładność	f_a	f_b	f_c
24 bity	3	2	2
52 bity	4	3	3

Tabela 3: Ilość potrzebnych iteracji schematu do uzyskania żądanej dokładności dla każdej funkcji

Zadanie 4

Napisz schemat iteracji wg metody Newtona dla następującego układu równań nieliniowych:

$$x_1^2 + x_2^2 = 1$$

$$x_1^2 - x_2 = 0$$

Pierwiastki tego układu to:

$$x_1=\pm\sqrt{\frac{\sqrt{5}-1}{2}}$$

$$x_2 = \frac{\sqrt{5} - 1}{2}$$

Korzystając z tego, oblicz błąd względny rozwiązania znalezionego metodą Newtona.

Rozwiązanie

Funkcja z której będziemy korzystać w schemacie, będzie funkcją 2 zmiennych:

$$F(x_1,x_2) = \left(x_1^2 + x_2^2 - 1, x_1^2 - x_2\right)$$

$$F'(x_1, x_2) = \begin{pmatrix} 2x_1 & 2x_2 \\ 2x_1 & -1 \end{pmatrix}$$

Schemat iteracyjny Newtona dla funkcji wielu zmiennych:

$$X_{k+1} = X_k - (F'(X_k))^{-1} F(X_k)$$

gdzie X jest wektorem zmiennych.

Za punkt startowy obliczeń przyjąłem $x_1=1, x_2=0$ i ustawiłem 5 iteracji algorytmu.

Wyniki

Pierwiastek	Wartość	Błąd	Błąd względny
x_1	0.78615	$4.657*10^{-12}$	$5.924*10^{-12}$
x_2	0.61803	$9.415*10^{-14}$	$1.523 * 10^{-13}$

Tabela 4: Obliczone wartości pierwiastów oraz błędy obliczeń

Obliczenia są bardzo dokładne, błąd jest widoczny dopiero na 12 miejscu po przecinku. Trzeba zwrócić uwagę na to, że obliczyłem tu tylko jeden z pierwiastków x_1 , dlatego że metoda Newtona znajduje tylko jedno rozwiązanie, w tym przypadku jedną parę (x_1,x_2)

Wnioski

Dzisiejsze laboratorium skupiało się na zrozumieniu metody Newtona w rozwiązywaniu układów równań nieliniowych. Pierwsze zadanie pokazuje, że pomimo bycia najpopularniejszą i z reguły dokładną metodą, są przypadki w których całkowicie zawodzi i trzeba użyć innego podejścia. 2 zadanie uczy, że spośród równoważnych schematów iteracyjnch można znajdować takie o lepszy lub gorszych właściwościach do naszych zastosowań (zbieżne, o większym stopniu zbieżności). Zadanie 3 pokazuje że w schemacie iteracyjnym Newtona już po niewielkiej liczbie iteracji dostajemy bardzo dokładny wynik, dzięki jego zbieżności kwadratowej. Zadanie 4 rozszerza tą metodę na układy wielu niewiadomych, z drobnymi modyfikacjami.

Bibliografia

- Plik lab8-intro.pdf z platformy Teams
- Wykład "Równania nieliniowe"