Instructor: Dušan Djukić Date: 3.6.2022.

- 1. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that, whenever $a_1 + a_2 + \cdots + a_n$ is a square (for some n), $f(a_1) + f(a_2) + \cdots + f(a_n)$ is also a square.
- 2. Can every positive integer greater than 100^{100} be written as a sum of 15 fourth powers (some of which may be zero)?
- 3. Find all triples of positive integers a, b, c such that $ab + bc + ca = 4 \cdot \text{lcm}(a, b, c)$.
- 4. Find all positive integers n for which one can find several (at least two) positive rational numbers a_1, a_2, \ldots, a_k such that $a_1 + a_2 + \cdots + a_k = a_1 a_2 \cdots a_k = n$.
- 5. Positive integers a, b, c, d and n are such that a + c < n and $\frac{a}{b} + \frac{c}{d} < 1$. Prove that $\frac{a}{b} + \frac{c}{d} < 1 \frac{1}{n^3}$.
- 6. Find all real numbers α with the following property: There exist a real number $r > \alpha$ and an irrational number x such that both $x^2 rx$ and $x^3 rx$ are rational numbers.

Instructor: Dušan Djukić Date: 7.6.2022.

If p > 2 is a prime, then among $1, 2, \ldots, p-1$ there are exactly $\frac{p-1}{2}$ quadratic residues and as many quadratic non-residues. Legendre's symbol is defined by

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \text{ is a quadratic residue mod } p; \\ -1 & \text{if } a \text{ is a quadratic non-residue mod } p; \\ 0 & \text{if } p \mid a. \end{cases}$$

The congruence $x^2 \equiv a \pmod{p}$ has exactly $\left(\frac{a}{p}\right) + 1$ solutions modulo p.

• If p > 2 is a prime, then $a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right)$. (Euler's criterion)

Consequently, -1 is a quadratic residue mod p if and only if $p \equiv 1 \pmod{4}$ or p = 2.

Also by Euler's criterion, Legendre's symbol is multiplicative: $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.

Let $p \nmid a \ (p > 2)$. Knowing Euler's criterion, we can write $a^{\frac{p-1}{2}}$ as $\frac{a \cdot 2a \cdots (\frac{p-1}{2}a)}{1 \cdot 2 \cdots \frac{p-1}{2}}$. To reduce this modulo p, we note that for each $k = 1, \ldots, \frac{p-1}{2}$ there is a (unique) r_k such that $ka \equiv r_k \pmod{p}$ with $|r_k| \leqslant \frac{p-1}{2}$. Observe that $|r_1|, \ldots, |r_{\frac{p-1}{2}}|$ is a permutation of $1, 2, \ldots, \frac{p-1}{2}$, so writing $e_k = \operatorname{sgn} r_k = \pm 1$ we obtain

$$\left(\frac{a}{p}\right) \equiv \frac{r_1 r_2 \cdots r_{\frac{p-1}{2}}}{1 \cdot 2 \cdots \frac{p-1}{2}} = e_1 e_2 \cdots e_{\frac{p-1}{2}}.$$

Observe that $e_k = -1$ if and only if $\left[\frac{2ka}{p}\right] = 2\left[\frac{ka}{p}\right] + 1$, i.e. $e_k = (-1)^{\left[2ka/p\right]}$. The above equality thus becomes:

- If p > 2 and $p \nmid a$, then $\left(\frac{a}{p}\right) = (-1)^S$, where $S = \sum_{k=1}^{\frac{p-1}{2}} \left\lfloor \frac{2ka}{p} \right\rfloor$. (Gauss' Lemma) Deduce from here:
 - $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$, so 2 is a quadratic residue mod p > 2 if and only if $p \equiv \pm 1 \pmod{8}$.

Now apply the Gauss lemma to $a = \frac{p+q}{2}$ to obtain

$$\left(\frac{q}{p}\right) = \left(\frac{p+q}{p}\right) = \left(\frac{2}{p}\right)\left(\frac{a}{p}\right) = \left(\frac{2}{p}\right)(-1)^{\frac{p^2-1}{8}}(-1)^{S_1} = (-1)^{S_1}, \text{ where } S_1 = \sum_{i=1}^{\frac{p-1}{2}} \left\lfloor \frac{iq}{p} \right\rfloor.$$

Also $\left(\frac{p}{q}\right) = (-1)^{S_2}$. Guess what is S_2 ?

Think graphically: which lattice points do S_1 and S_2 count? So why is $S_1 + S_2 = \frac{p-1}{2} \cdot \frac{q-1}{2}$? Our conclusion:

• If p, q > 2 are distinct primes, then $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}$. (Quadratic reciprocity law)

There is an extension of the Legendre symbol to composite odd moduli, called the Jacobi symbol. Given an odd integer $n = p_1 p_2 \dots p_k$, where the p_i are odd primes (not necessarily distinct), the Jacobi symbol is defined as

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)\left(\frac{a}{p_2}\right)\cdots\left(\frac{a}{p_k}\right).$$

These inherit most relations from the Legendre symbols: $\left(\frac{ab}{n}\right) = \left(\frac{a}{n}\right)\left(\frac{b}{n}\right)$, $\left(\frac{-1}{n}\right) = (-1)^{\frac{n-1}{2}}$, $\left(\frac{2}{n}\right) = (-1)^{\frac{n^2-1}{8}}$, $\left(\frac{m}{n}\right)\left(\frac{n}{m}\right) = (-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}$. An exception is that $\left(\frac{a}{n}\right) = 1$ does not imply that a is a quadratic residue modulo n.

- 7. Given a prime number p, prove that there exists x with $p \mid x^2 x + 3$ if and only if there exists y with $p \mid y^2 y + 25$.
- 8. Let p = 4k + 3 be a prime. Is 3k + 2 a quadratic residue modulo p?
- 9. Let p = 4k 1 be a prime. If congruence $x^2 \equiv a \pmod{p}$ has solutions, prove that these solutions are $x = \pm a^k$.
- 10. Prove that for every prime p>2 there exists a quadratic non-residue $a<\sqrt{p}+1$ modulo p.
- 11. Evaluate $\left[\frac{1}{101}\right] + \left[\frac{2}{101}\right] + \left[\frac{4}{101}\right] + \dots + \left[\frac{2^{99}}{101}\right]$.
- 12. Prove that every prime p has a multiple of the form $x^2 + y^2 + 1$.
- 13. (a) Prove that every prime divisor of $n^4 n^2 + 1$ is of the form 12k + 1.
 - (b) Prove that every prime divisor of $n^8 n^4 + 1$ is of the form 24k + 1.
- 14. Prove that $x^2 + 1$ is not divisible by $y^2 5$ for any x, y (y > 2).
- 15. Prove that (a) 4xy x y, (b) 4xyz x y cannot be a perfect square if x, y, z are positive integers.
- 16. Find all positive integers n such that the set $\{n, n+1, \ldots, n+101\}$ can be partitioned into several subsets with equal products of elements.
- 17. Let $P(x) = x^3 + 14x^2 2x + 1$. Prove that there exists n such that $P(P(\dots P(x) \dots)) \equiv x \pmod{101}$ (P applied n times) for every x.
- 18. Prove that number $N=2^{2^n}+1$ is prime if and only if $3^{\frac{N-1}{2}}\equiv -1\pmod{N}$.

Instructor: Dušan Djukić Date: 10.6.2022.

- 19. Prove that the sum of all quadratic non-residues modulo a prime $p \neq 3$ is a multiple of p.
- 20. Let p be a prime. For a positive integer n denote $s_n = 1^n + 2^n + \cdots + (p-1)^n$. Prove that $s_n \equiv 0 \pmod{p}$ if $p-1 \nmid n$, but $s_n \equiv -1 \pmod{p}$ if $p-1 \mid n$.

The previous problem could be elegantly solved using a primitive root - that is, an integer g whose order modulo p equals p-1: thus $1, g, g^2, \ldots, g^{p-2}$ form a permutation of $1, 2, \ldots, p-1$ modulo p. So it is time to prove that a primitive root modulo a prime p always exists. The key statement, which we prove by induction on n $(n \mid p-1)$, is that the number of residues of order exactly n modulo p equals $\varphi(n)$.

First of all, $x^n-1\equiv 0\pmod p$ has at most n solutions mod p, but $\frac{x^{p-1}-1}{x^n-1}\equiv 0\pmod p$ has at most p-1-n solutions. Hence "at most" is in fact "exactly" in both cases. Thus there are exactly n residues of order dividing n. By the inductive hypothesis, for every d< n, $d\mid n$, there are $\varphi(d)$ residues of order d. Thus, by the following lemma, the number of residues of order exactly n equals $n-\sum_{d\mid n,d< n}\varphi(d)=\varphi(n)$, which finishes the induction:

Lemma.
$$\sum_{d|n} \varphi(d) = n$$
.

Proof. $\varphi(d)$ counts numbers $x \in \{1, 2, ..., n\}$ with $\gcd(x, n) = \frac{n}{d}$. Thus $\sum_{d|n} \varphi(d)$ counts each elements from this set exactly once. \square

- 21. Let p is an odd prime and let a, b, c be integers with $p \nmid b^2 ac$. Prove that $\sum_{x=0}^{p-1} \left(\frac{ax^2 + bx + c}{p}\right) = -\left(\frac{a}{p}\right)$.
- 22. If p is a prime and $p \nmid a$, prove that the congruence $x^2 + y^2 = a$ has exactly $p \left(\frac{-1}{p}\right)$ solutions (x, y) modulo p.
- 23. If a is an integer, prove that the congruence $x^2 + y^2 + z^2 \equiv 2axyz \pmod{p}$ has exactly $\left(p + \frac{3}{2}(-1)^{p'}\right)^2 \frac{5}{4}$ solutions (x, y, z), where $p' = \frac{p-1}{2}$.
- 24. Prove that there are no positive integers a, b, c for which $a^2 + b^2 + c^2$ is divisible by 3(ab + bc + ca).
- 25. Find all positive integers x for which $x^3 + 2x + 1$ is a power of 2.

Instructor: Dušan Djukić Date: 12.6.2022.

- 26. Let p > 2 be a prime and let M be the set of all numbers $1 \le x \le p-1$ such that both x and 4-x are quadratic non-residues modulo p. Compute the product of all elements of M modulo p.
- 27. Suppose that m and n are positive integers such that $\varphi(5^m-1)=5^n-1$. Prove that $\gcd(m,n)>1$.
- 28. Find all pairs of positive rational numbers x, y satisfying $yx^y = y + 1$.
- 29. Are there integers a, b, c, all greater than 2022, that satisfy $a^3 + 2b^3 + 4c^3 = 6abc + 1$?

Instructor: Dušan Djukić Date: 13.6.2022.

- 30. Find all pairs of positive integers x, y that satisfy the equation $3^x 8^y = 2xy + 1$.
- 31. Suppose that a nonempty set of primes M has the property that, for any distinct primes $p_1, p_2, \ldots, p_k \in M$, all prime factors of $p_1 p_2 \cdots p_k + 1$ also lie in M. Prove that M is the set of all primes.
- 32. Find all positive integers n such that $\tau(n)$ divides $2^{\sigma(n)} 1$. As usual, $\tau(n)$ is the number of divisors and $\sigma(n)$ the sum of divisors of n.
- 33. If p and q are primes with p > q, prove that $gcd(p! 1, q! 1) \leq p^{p/3}$.
- 34. Let a be a positive integer and p any prime divisor of $a^3 3a + 1$. If $p \neq 3$, prove that $p \equiv \pm 1 \pmod{9}$.
- 35. For a positive integer k, define the sequence (x_k) by $x_0 = -1$, $x_1 = 1$ and $x_{n+2} = kx_{n+1} x_n$. Prove that there are infinitely many values of k for which this sequence contains no prime.

Instructor: Dušan Djukić Date: 14.6.2022.

- 36. Define $a_1 = 2021^{2021}$, and for $k \ge 2$, let a_k be the remainder when $a_{k-1} a_{k-2} + a_{k-3} \cdots$ is divided by k. Find the 2021^{2022} -th term of the sequence (a_n) .
- 37. Let $n \ge 3$ be an odd positive integer. Show that n is prime if and only if, how ever we choose $\frac{n+1}{2}$ pairwise distinct positive integers, we can find two of them, a and b, such that $\frac{a+b}{\gcd(a,b)} \ge n$.
- 38. Let n be a nonnegative integer. Set $a_0 = n$ and define a_k $(k \ge 1)$ to be the smallest integer greater than a_{k-1} for which $a_k + a_{k-1}$ is a square. Prove that there are exactly $\lfloor \sqrt{2n} \rfloor$ positive integers that cannot be written as a difference of two terms of the sequence $(a_i)_{i\ge 0}$.
- 39. Prove that a positive integer n can be written in the form $n = \frac{a^2 + b^2 + c^2 + d^2}{abcd + 1}$ for some $a, b, c, d \in \mathbb{N}$ if and only if n is a sum of three squares.
- 40. Prove that there are infinitely many pairs of different primes (p,q) such that $p \mid 2^{q-1}-1$ and $q \mid 2^{p-1}-1$.
- 41. By rad(x) we denote the product of all distinct prime factors of a positive integer x. A sequence (a_n) is defined by $a_0 = a \in \mathbb{N}$ and $a_{n+1} = a_n + rad(a_n)$. Prove that there exists an index n for which $\frac{a_n}{rad(a_n)} = 2022$.
- 42. Find all constants c for which there exists a strictly increasing sequence of positive integers satisfying $a_{2n-1} + a_{2n} = c \cdot a_n$.
- 43. Let p > 2 be a prime and let x and y be positive integers with $1 \le x, y \le \frac{p-1}{2}$. If $(px x^2)(py y^2)$ is a perfect square, prove that x = y.
- 44. Can all integers be divided into three disjoint sets such that for every $n \in \mathbb{Z}$ the numbers $n, n-2^6$ and $n+3^6$ all lie in different sets?
- 45. If p is an odd prime, prove that $1^{p-2} + 2^{p-2} + \dots + (\frac{p-1}{2})^{p-2} \equiv \frac{2-2^p}{p} \pmod{p}$.

Solutions: Number Theory – level L4+

Instructor: Dušan Djukić

- 1. Fix x. We observe that, whenever $a^2 > x$, the numbers $f(x+1) + (a^2 x 1)f(1)$ and $f(x) + (a^2 x)f(1)$ are squares, since so is $x + 1 + 1 + \cdots + 1$. But these two squares differ by the fixed quantity f(x+1) f(x) f(1), so if a is too big, this can only happen if this quantity is 0. Therefore f(x+1) = f(x) + f(1), implying that f(x) = cx for some constant $c \in \mathbb{N}$.
- 2. If x is odd, then $2 \mid x^2 + 1$ and $8 \mid x^2 1$. so $16 \mid x^4 1$. Also, if x is even, then $16 \mid x^4$. Thus every fourth power gives the remainder 0 or 1 modulo 16. In particular, if 16n is a sum of 15 fourth powers, then all these fourth powers are even, so n is also a sum of 15 fourth powers.

But number 31 cannot be written as a sum of 15 fourth powers. Thus neither can the numbers $31 \cdot 16$, $31 \cdot 16^2$, etc.

- 3. The number ab + bc + ca is divisible by each of a, b, c, so $a \mid bc$. Similarly, $b \mid ca$ and $c \mid ab$. Thus each of ab, bc, ca itself is a multiple of L = lcm(a, b, c), but their sum is 4L. Thus these three multiples are L, L, 2L in some order. This leads us to a, b, c being k, 2k, 2k for some k and consequently that k = 1.
- 4. Every composite n works: if n = ab, $a, b \ge 2$, then $a+b+1+\cdots+1 = a \cdot b \cdot 1 \cdots 1 = n$. On the other hand, by AM-GM, $n = a_1 + \cdots + a_k \ge k \sqrt[k]{a_1 \cdots a_k} = kn^{1/k}$, so $n \ge k^{\frac{k}{k-1}}$. This rules out n = 2, 3, but also n = 5, as then $k \ge 3$.

The primes $n=p\geqslant 11$ work with the k-tuple $(\frac{p}{2},\frac{1}{2},4,1,\cdots,1)$. Also, n=7 works with the triple $(\frac{7}{6},\frac{4}{3},\frac{9}{2})$.

5. Since $c \leqslant n-2$, we have $\frac{c}{d} \leqslant \frac{c}{c+1} \leqslant \frac{n-2}{n-1}$. Thus, if $\frac{a}{b} \leqslant \frac{1}{n}$, we have $\frac{a}{b} + \frac{c}{d} \leqslant \frac{n-2}{n-1} + \frac{1}{n} = 1 - \frac{1}{n^2 - n} < 1 - \frac{1}{n^3}$. Case $\frac{c}{d} \leqslant \frac{1}{n}$ is analogous.

Now suppose that $\frac{a}{b}, \frac{c}{d} > \frac{1}{n}$ and $\frac{a}{b} + \frac{c}{d} > 1 - \frac{n-1}{n}$. Then $\frac{a}{b} \cdot \frac{c}{d} > \frac{1}{n} \cdot \frac{n-2}{n} = \frac{n-2}{n^2}$, so $bd < ac \cdot \frac{b}{a} \cdot \frac{d}{c} < \frac{1}{4}(a+c)^2 \cdot \frac{n^2}{n-2} \leqslant \frac{n^2(n-1)^2}{4(n-2)} < n^3$. Therefore $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd} \leqslant 1 - \frac{1}{bd} < 1 - \frac{1}{n^3}$.

6. Denote $x^2 - rx = a$. Then $b = x^3 - rx = x(rx + a) - rx = rx^2 + (a - r)x = (r^2 - r + a)x + ra$, so $b - ra = (r^2 - r + a)x$. Since b - ra, $r^2 - r + a \in \mathbb{Q}$ and $x \notin \mathbb{Q}$, it follows that $r^2 - r + a = x^2 - rx + (r^2 - r) = 0$. This quadratic in x has an irrational solution x if and only if its discriminant D = r(4 - 3r) is not a rational square, so $0 < r < \frac{4}{3}$. On the other hand, $r = \frac{4}{3} - \frac{1}{3^n}$ works for n > 1, so the answer is all $\alpha < \frac{4}{3}$.

- 7. For p = 2, 3, 11 this is easy, so let p be some other prime. The two conditions reduce to $p \mid (2x-1)^2 + 11$ and $p \mid (2y-1)^2 + 99$, so x and y exist if and only if -11 and -99 are quadratic residues modulo p, respectively. Since $99 = 3^2 \cdot 11$, these are simultaneously quadratic residues, and therefore the statement.
- 8. We have $\left(\frac{3k+2}{4k+3}\right) = \left(\frac{12k+8}{4k+3}\right) = \left(\frac{-1}{4k+3}\right) = -1$, so the answer is No.
- 9. For $x = \pm a^k$ we have $x^2 = a^{2k} = a \cdot a^{\frac{p-1}{2}} = a(\frac{a}{p}) = a$ by Euler criterion, since a is a quadratic residue.
- 10. Let a be the smallest positive quadratic non-residue modulo p. Choose the smallest k such that ka > p. Then 0 < ka p < a, so it is a q.residue and hence so is k. Therefore $k \ge a$, but $k < \frac{a^2}{p} + 1$, which implies the statement.
- 11. Since 2 is a quadratic non-residue modulo $101 \equiv 5 \pmod{8}$, we have $101 \mid 2^{50} + 1$ and hence $101 \mid 2^{i} + 2^{50+i}$ for $i = 0, 1, \dots, 49$. Therefore $\lfloor \frac{2^{i}}{101} \rfloor + \lfloor \frac{2^{50+i}}{101} \rfloor = \frac{2^{i} + 2^{50+i}}{101} 1$. Summing up over $i = 0, \dots, 49$ gives the result $\frac{2^{100} 1}{101} 50$.
- 12. The sets $X = \{x^2 \pmod{p}\}$ and $Y = \{-1 y^2 \pmod{p}\}$ each have $\frac{p+1}{2}$ elements (we count zero as well), so they must overlap for some x and y: then $p \mid x^2 + y^2 + 1$.
- 13. (a) Note that n⁴ n² + 1 = (n² 1)² + n² = (n² + 1)² 3n², so both -1 and 3 are quadratic residues modulo p (p | n⁴ n² + 1). This implies p ≡ 1 (mod 12).
 (b) By part a, if p | n⁸ n⁴ + 1, then p ≡ 1 (mod 12). Moreover, n⁸ n⁴ + 1 = (n⁴ + n² + 1)² 2(n³ n)², so 2 is also a quadratic residue modulo p...
- 14. If y is even, then $y^2 5 \equiv 3 \pmod{4}$, but $x^2 + 1$ has no such divisors. On the other hand, if y is odd, then $4 \mid y^2 5$, but $4 \nmid x^2 + 1$.
- 15. Let us do (b). If $4xzy x y = t^2$, then $(4xz 1)(4yz 1) = 4zt^2 + 1$, so $(\frac{-z}{4xz 1}) = 1$. But if z is odd, then $(\frac{-z}{4xz 1}) = -(-1)^{\frac{z-1}{2}}(\frac{4xz 1}{z}) = (-1)^{\frac{z+1}{2}}(\frac{-1}{-z}) = -1$. Therefore $z = 2^k u$ must be even, but then $(\frac{-z}{4xz 1}) = (\frac{-2^k u}{4xz 1}) = (\frac{2}{2^{k+2}xu 1})^k(\frac{-u}{2^{k+2}xu 1}) = 1^k \cdot (-1) = -1$ by the "z odd" case.
- 16. There are either one or two multiples of 101 among $n, \ldots, n+101$, so there can be only two subsets. On the other hand, the numbers $n, \ldots, n+101$ cannot include a multiple of 103, so they are $1, 2, \ldots, 102$ modulo 103, but their product is $-1 \pmod{103}$ by Wilson's theorem and is a quadratic non-residue modulo 103, a contradiction.
- 17. The problem is equivalent to proving that $P(0), P(1), \ldots, P(100)$ are distinct modulo 101, that is, that $101 \nmid \frac{P(x)-P(y)}{x-y}$ if $101 \nmid x-y$. Suppose that $101 \mid \frac{P(x)-P(y)}{x-y} = (x^2+xy+y^2)+14(x+y)-2$ with $x \not\equiv y \pmod{101}$. Multiplying by 4 and completing squares we find that $101 \mid (2x+y+14)^2+3(y-29)^2$. However, $(\frac{-3}{101})=-1$, so 101 must divide both 2x+y+14 and y-29, but this in turn implies $x \equiv y \equiv 29 \pmod{101}$, a contradiction.

- 18. We know that $N \equiv 5 \pmod{12}$, so if n is prime, then 3 is its quadratic non-residue and hence $3^{\frac{N-1}{2}} \equiv -1 \pmod{N}$. On the other hand, if $3^{\frac{N-1}{2}} \equiv -1 \pmod{N}$, then the order of 3 modulo every prime divisor p of N is $N-1=2^{2^n}$, which implies that $N-1\mid p-1$ and hence p=N.
- 19. The sum of quadratic non-residues is congruent to $\sum_{i=1}^{p-1} i \sum_{j=1}^{\frac{p-1}{2}} j^2 = \frac{p(p-1)}{2} \frac{p(p^2-1)}{24}$, which is divisible by p.
- 20. Here is a general method of computing sums of this type. We have $p^{n+1} = \sum_{x=0}^{p-1} \left((x+1)^{n+1} x^{n+1} \right) = \sum_{x=0}^{p-1} \left(\binom{n+1}{1} x^n + \binom{n+1}{2} x^{n-1} + \cdots + \binom{n+1}{n} x + 1 \right) = \binom{n+1}{1} s_n + \binom{n+1}{2} s_{n-1} + \cdots + \binom{n+1}{n} s_1 + p$. In this way, we easily obtain by induction that $p \mid s_n$ for $n = 1, 2, \ldots, p-2$. Furthermore, $s_{p-1} \equiv -1$ and $s_m \equiv s_n \pmod{p}$ whenever $m \equiv n \pmod{p-1}$, and the proof is complete.

Now there is another, easier proof that uses primitive roots: since 1, 2, ..., p-1 are a permutation of $1, g, g^2, ..., g^{p-2}$, where g is a primitive root modulo p, we have $s_n \equiv 1 + g^n + g^{2n} + \cdots + g^{(p-2)n} = \frac{g^{(p-1)n} - 1}{g^n - 1} \equiv 0 \pmod{p}$ if $p-1 \nmid n$.

- 21. By the Euler criterion, the sum in the problem is congruent to $\sum_{x=0}^{p-1} (ax^2 + bx + c)^{\frac{p-1}{2}} = \sum_{x=0}^{p-1} \left[a^{\frac{p-1}{2}} x^{p-1} + A_{p-2} x^{p-2} + \dots + A_1 x + A_0 \right] = a^{\frac{p-1}{2}} s_{p-1} + A_{p-2} s_{p-2} + \dots + A_1 s_1 + pA_0 \equiv -a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p} \right) \pmod{p}$. But make sure it is not $(p-1)\left(\frac{a}{p} \right)!$
- 22. For every fixed x = 0, 1, ..., p 1, there are $1 + \left(\frac{a x^2}{p}\right)$ possible values of $y \pmod{p}$. The total number of solutions is $p + \sum_{x=0}^{p-1} \left(\frac{a x^2}{p}\right) = p \left(\frac{-1}{p}\right)$.
- 23. The congruence can be rewritten as $(z-axy)^2 \equiv a^2x^2y^2-x^2-y^2$, so for given x,y it has $1+\left(\frac{a^2x^2y^2-x^2-y^2}{p}\right)$ solutions. Next, if only x is fixed, we have $p+\sum_y\left(\frac{(a^2x^2-1)y^2-x^2}{p}\right)$ solutions. By the previous problem, this equals $p-\left(\frac{a^2x^2-1}{p}\right)$ if $ax\not\equiv\{-1,0,1\}\pmod p$, but $p+p\left(\frac{-1}{p}\right)$ if $ax\equiv\pm 1$ and $p+(p-1)\left(\frac{-1}{p}\right)$ if $x\equiv 0\pmod p$.

Thus the total number of solutions is $p^2 - \sum_x \left(\frac{a^2x^2-1}{p}\right) + 3p\left(\frac{-1}{p}\right) = p^2 + 1 + 3p(-1)^{p'}$.

- 24. We can assume that gcd(a,b,c) = 1. If $a^2 + b^2 + c^2 = 3n(ab+bc+ca)$, then $(a+b+c)^2 = (3n+2)(ab+bc+ca)$. There is a prime divisor $p \equiv 2 \pmod{3}$ of 3n+2 with $v_p(3n+2)$ odd. Then p must divide both a+b+c and $ab+bc+ca \equiv ab-(a+b)^2 = -(a^2+ab+b^2)$, but this is impossible unless $p \mid a,b,c$.
- 25. Clearly, x is odd. Since $3 \mid x^3 + 2x$ for all x, it follows that n is even. Now $(x+1)(x^2 x+3) = 2^n + 2$ is a square-plus-two, so all of its odd prime divisors are 1 or 3 modulo 8. Thus $x^2 x + 3 \equiv 1$ or 3 (mod 8), which implies $x \equiv 1$ or 3 modulo 8, but then $x^3 + 2x + 1$ is resp. 4 or 2 modulo 8. Therefore $n \leq 2$, and only (x, n) = (1, 2) is a solution.
- 26. Let A be the set of all x such that both x and 4-x are quadratic non-residues (QNR), and B be the set of all x for which both x and 4-x are quadratic residues (QR). Let us compute $\prod_{x \in B} x$. We see that $\prod_B x$ is the same as $\prod (4-x^2)$ over all $1 \le x < \frac{p}{2}$ for which $4-x^2$ is a QR. This is the same as saying 2-x and 2+x are both QR

or both QNR, so $2 - x \in A \cup B$. Thus $\prod_{x \in B} x = \prod_{x \in A \cup B \setminus \{2\}} x$, which reduces to $\prod_{x \in A} x = 2$.

27. We first note that $5^m - 1$ cannot be a power of 2 unless m = 1. Indeed, if $8 \mid 5^m - 1$, then $2 \mid m$ and hence $24 \mid 5^m - 1$.

Let $5^m - 1 = 2^a p_1^{b_1} \cdots p_k^{b_k}$ where the p_i are distinct primes. Then $5^n - 1 = 2^{a-1} p_1^{b_1-1} \cdots p_k^{b_k-1} (p_1-1) \cdots (p_k-1)$ is also divisible by 2^a .

Suppose that gcd(m, n) = 1. Then $gcd(5^m - 1, 5^n - 1) = 4$, so each $b_i = 1$ and a = 2. This implies that m is odd, so $5^m - 1 = 5*^2 - 1$. It follows that 5 is a quadratic residue modulo each p_i , so $p_i \equiv \pm 1 \pmod{5}$. Moreover, no $p_i - 1$ is divisible by 5, so each $p_i \equiv -1 \pmod{5}$. Now $-1 \equiv 5^m - 1 \equiv (-1)^{k+1}$ and $-1 \equiv -3^{k+1} \pmod{5}$, implying the contradictory conditions $2 \mid k$ and $4 \mid k+1$.

- 28. Let $y = \frac{m}{n}$, where $\gcd(m,n) = 1$. Since $x^y = \frac{m+n}{m}$ is also an m-th power of a rational number and m, m+n are coprime, it follows that both m, m+n are m-th powers. But $2^m > m$, so m can be an m-th power only for m = 1. Then $(x,y) = ((n+1)^n, \frac{1}{n})$, where $n \in \mathbb{N}$.
- 29. Recall that $x^3 + y^3 + z^3 3xyz = (x + y + z)(x + \omega y + \omega^2 z)(x + \omega^2 y + \omega z)$, where $\omega = \frac{-1+i\sqrt{3}}{2}$ is the primitive (complex) cubic root of 1. Applying this factorization for $a, b\sqrt[3]{2}, c\sqrt[3]{4}$ yields $a^3 + 2b^3 + 4c^3 6abc = (a + b\sqrt[3]{2} + c\sqrt[3]{4})(a + b\omega\sqrt[3]{2} + c\omega\sqrt[3]{4})$.

The smallest solution of the original equation in \mathbb{N} is (a,b,c)=(1,1,1); thus $(1+\sqrt[3]{2}+\sqrt[3]{4})(1+\omega\sqrt[3]{2}+\omega\sqrt[3]{4})(1+\omega^2\sqrt[3]{2}+\omega\sqrt[3]{4})=1$. Now raise this to the *n*-th power: we have $(1+\sqrt[3]{2}+\sqrt[3]{4})^n=a+b\sqrt[3]{2}+c\sqrt[3]{4}$ for some positive integers a,b,c. But since algebra does not distinguish between the real and complex roots, we also have $(1+\omega\sqrt[3]{2}+\omega^2\sqrt[3]{4})^n=a+b\omega\sqrt[3]{2}+c\omega^2\sqrt[3]{4}$ and $(1+\omega^2\sqrt[3]{2}+\omega\sqrt[3]{4})^n=a+b\omega^2\sqrt[3]{2}+c\omega\sqrt[3]{4}$. Multiplying these three equalities gives us $a^3+2b^3+4c^3-6abc=1$ for every n. Choosing n big leads to an arbitrarily big solution (a,b,c).

30. If $2 \mid y$, then modulo 4 we find that also $2 \mid x$, so $2xy + 1 = 3^x - 8^y$ is a difference of squares and hence $3^{x/2} + 8^{y/2} \le 2xy + 1 \le x^2 + y^2 + 1$, which leaves us only with small cases to test. The only solution will be (x, y) = (4, 2).

If y is odd, then modulo 3 we find $3 \mid xy$. If $3 \mid x$, then the LHS is a difference of cubes, which we deal with as in the first case. Finally, if $3 \nmid x$, then $v_3(y) = k > 0$, then $v_3(3^x - 2xy) = k + 2$, but $v_3(2xy) = k$, so x = k and hence $3^x - 8^y < 0$, a contradiction.

31. Suppose there is a prime p not in M. We distinguish two groups of primes in P: set $M_{\infty} \subset M$ of residues mod p that occur in M infinitely often, and the finite set $M_1 = M \setminus M_{\infty}$. Let a be the product of elements of M_1 .

Whenever m is a product of several elements of M_{∞} , all prime factors of am+1 must lie in M_{∞} (note that am+1 is coprime to all of M_1). Hence, if K is the set of residues that can be obtained as product of elements in M_{∞} , then $f: m \to am+1$ maps K onto itself (also note that this map is bijective). But since $1 \in K$ and $f^{-1}(1) = 0$, it follows that $0 \in K$, contrary to the assumption that $p \notin M$.

- 32. Let $n = \prod_i p_i^{r_i+1}$ and let p be the smallest prime divisor of $\tau(n) = \prod (r_i+1)$. Suppose that $p \mid 2^{\sigma(n)} 1$. The order of 2 modulo p divides $\gcd(p-1,\sigma(n))$, so there is a prime q < p dividing $\sigma(n) = \prod_i \frac{p_i^{r_i+1}-1}{p_i-1}$. Hence $q \mid \frac{p_i^{r_i+1}-1}{p_i-1}$ for some i, so the order of p_i modulo q divides r_i+1 . Since $\gcd(r_i+1,q-1)=1$ by the assumption, it follows that this order is 1, i.e. $q \mid p_i-1$, and hence $q \mid \frac{p_i^{r_i+1}-1}{p_i-1} \equiv r_i+1 \pmod{q}$. This is again impossible, as $\gcd(r_i+1,q) \mid \gcd(\tau(n),q)=1$. Therefore the only solution is n=1.
- 33. Suppose to the contrary that $d = \gcd(p!-1, q!-1) > p^{p/3}$. Since d < q!, p!/q!, we have $\frac{p}{3} < q < \frac{2p}{3}$. Observe that $\frac{p!}{q!} \equiv 1 \pmod{d}$, so $d \mid \frac{p!}{q!} q!$.

If $q \leq \frac{p}{2}$, then $q! \mid \frac{p!}{q!}$, and since d is coprime to q!, we have $d \mid \frac{p!}{q!^2} - 1$. Hence $d^3 < p!$, finishing this case.

Now let $q > \frac{p}{2}$. Then (p-q)! divides $\frac{p!}{q!}$ and is coprime to d, so $d \mid \binom{p}{q} - \frac{q!}{(p-q)!}$ and hence $d < 2^p$, which is less than $p^{p/3}$ for $p \ge 11$. Cases p = 5, 7 work in the same way and the smaller cases are obvious.

- 34. Consider x such that $x + \frac{1}{x} \equiv a \pmod{p}$. Then $a^3 3a + 1 = x^3 + x^{-3} + 1 = \frac{x^9 1}{x^3(x^3 1)}$. If such an integer x exists, then its order modulo p is 9, so $9 \mid p 1$. Now assume the contrary. Then $a^2 4$ is not a quadratic residue, so consider all elements of the form $m + n\sqrt{a^2 4}$ modulo p. There are $p^2 1$ nonzero elements and they form a field, so by Fermat's theorem the order of every element divides $p^2 1$. But the order of element x is 9, so $9 \mid p^2 1$.
- 35. We have $x_{n+1}^2 x_n x_{n+2} = x_{n+1}(kx_n x_{n-1}) x_n(kx_{n+1} x_n) = x_n^2 x_{n-1}x_{n+1}$, so by induction $x_n^2 x_{n-1}x_{n+1} = k+2$. Now set k+2 to be a square: $k = m^2 - 2$. Then $x_{n-1}x_{n+1} = (x_n - m)(x_n + m)$, but $x_{n+1} > x_n + m$ for $n \ge 1$, so x_{n+1} must be composite.
- 36. We observe that $a_k \in \{0, 1, \dots, k-1\}$ is the number such that $a_1 a_2 + a_3 \dots + (-1)^k a_{k-1} = k b_k$ for some integer b_k . If k is even and $b_k > 0$, then b_k does not increase; if k is odd and $b_k > 0$, then b_k decreases at least by 1; if $b_k = 0$, then all consequent terms a_i and b_i (i > k) are zero. Thus b_k reaches zero before its 2021^{2022} -th term, so all the a_i after it are zero, and $a_{2021^{2022}} = 0$.
- 37. If n=pq is composite (p,q>1), the numbers $1,2,\ldots,p$ and $p+1,p+3,\ldots,pq-p$ (which are $\frac{n+1}{2}$ in total) obviously form a counterexample. Suppose n is prime. We can assume w.l.o.g. that their GCD is 1. If there are a,b with $n\mid a$ and $n\nmid b$, then $\frac{a}{\gcd(a,b)}>n$, so a and b violate the condition. But if none is divisible by n, then there are a,b among them such that $n\mid a\pm b$, and then these two violate the condition.
- 38. Let $a_{k-1} + a_k = b_k^2$. Note that $(b_k 1)^2 < 2a_{k-1} < b_k^2$. Since $(b_k + 1)^2 2a_k = (b_k + 1)^2 2b_k^2 + 2a_{k-1} = 2 + 2a_{k-1} (b_k 1)^2 \ge 2$, i.e. $(b_k + 1)^2 a_k > a_k$, it follows that $b_{k+1} = b_k + 1$ and hence $b_k = b_1 + (k-1)$.

Now we easily obtain $a_{k+1} - a_{k-1} = 2b_1 + 2k - 1$, so $(a_{k+1} - a_k) = (a_{k-1} - a_{k-2}) + 2$. Thus every number of the form $a_1 - a_0 + 2k$ or $a_2 - a_1 + 2k$, and no others, can

- be expressed as a difference of two terms. The inexpressible ones are of the form $a_1 a_0 2k$ ($\lfloor a_1 a_0 12 \rfloor$ of them) or $a_2 a_1 2k$ ($\lfloor a_2 a_1 12 \rfloor$ of them), which is in total $\lfloor a_2 a_0 32 \rfloor = b_1 1$, as desired.
- 39. Let $a \geqslant b \geqslant c \geqslant d \geqslant 0$. If d=0 or $n=b^2+c^2+d^2$, we are done, so assume not. If $n>b^2+c^2+d^2$, then from $a^2+b^2+c^2+d^2=nabcd+n$ we get a>nbcd, so $n=a(a-nbcd)+b^2+c^2+d^2>a>n$, which is impossible. Thus $n< b^2+c^2+d^2$, but then by Vieta jumping we can assume $a\leqslant \frac{nbcd}{2}$ to obtain $nabcd+n=a^2+b^2+c^2+d^2\leqslant \frac{nabcd}{2}+b^2+c^2+d^2$, i.e. $a\leqslant \frac{2(b^2+c^2+d^2-n)}{nbcd}<\frac{6b^2}{nbcd}$. Hence $n\leqslant 6$, which can be written as a sum of three squares.
- 40. For $n \in \mathbb{N}$, n > 1, take arbitrary prime divisors $p \mid 2^{2^n} + 1$ and $q \mid 2^{2^{n+1}} + 1$. The order of 2 modulo p is 2^{n+1} , so $2^{n+1} \mid p-1$. Moreover, by Euler's criterion, $2^{\frac{p-1}{2}} \equiv (\frac{2}{p}) = (-1)^{\frac{p^2-1}{8}} = 1 \pmod{p}$, so in fact $2^{n+2} \mid p-1$. We similarly deduce that $2^{n+3} \mid q-1$. Now $p \mid 2^{2^{n+1}} 1 \mid 2^{q-1}$ and $q \mid 2^{2^{n+2}} 1 \mid 2^{p-1} 1$.
- 41. Denote $b_n = \frac{a_n}{rad(a_n)}$. Since $rad(a_n)$ divides $rad(a_{n+1})$ we have $b_{n+1} \mid b_n + 1$. If there are indices i < j with $b_i < 2022 < b_{i+1}$, we will be done by "continuity". If, to the contrary, this does not happen, there are two possible cases.
 - (i) $b_n < 2022$ for all n big enough. Since a_n increases indefinitely, then so does $rad(a_n)$, so at some moment $rad(a_n)$ receives a new prime p > 2022. This means that $p \nmid a_n$ and $p \mid a_{n+1} = \frac{b_n + 1}{b_n} a_n$, so $p \mid b_n + 1$ and hence $b_n \ge 2022$, a contradiction.
 - (ii) $b_n > 2022$ for all n. We can assume w.l.o.g. that b_0 is the smallest term of the sequence (b_n) . Suppose that $b_{i+1} = b_i + 1$ for all $0 \le i < n$. Then $rad(a_0) = \cdots = rad(a_{n-1}) = R$. But for every prime $p \le n$ there is a multiple of p among b_0, \ldots, b_{n-1} , so $p \mid a_k$ for some k and consequently $p \mid R$. Since not every prime divides R, there must be an index n such that $b_n < b_{n-1} + 1$, i.e. $b_{n-1} + 1 = db_n$ for some d > 1 and $rad(a_{n+1}) = dR$, so gcd(d,R) = 1. Recall that $b_0 \le b_n = \frac{b_0 + n}{d}$, which reduces to $n \ge (d-1)b_0$. By above, this means that all primes up to $(d-1)b_0$ divide R, but d does not divide R, so $d > (d-1)b_0$, which is impossible.
- 42. Clearly, c > 2 is rational. First of all, suppose that $c = \frac{p}{q}$ is not an integer. We can assume w.l.o.g. that the GCD of all terms is 1, but $q(a_{2n-1} + a_{2n}) = pa_n$ would imply that $q \mid a_n$ for all n, contradicting the assumption.
 - Now let c = 3. Letting $d_n = a_{n+1} a_n$ we have $d_{2n+1} + 2d_{2n} + d_{2n-1} = 3d_n$, so one of $d_{2n-1}, d_{2n}, d_{2n+1}$ is less than d_n . If we assume d_n is minimal, we get a contradiction.
 - We claim the answer are the integers $c \ge 4$. For c = 4 an obvious example is $a_n = 2n + 1$. Let $c \ge 5$. Then we can define the sequence inductively by $a_{2n-1} = \lfloor \frac{ca_n 1}{2} \rfloor$ and $a_{2n} = \lfloor \frac{ca_n + 2}{2} \rfloor$ and easily prove that it satisfies the conditions.
- 43. Suppose $(px x^2)(py y^2) = k^2$. Since $k^2 (xy)^2 = pxy(p x y) > 0$, we have k > xy and $k \equiv \pm xy \pmod{p}$.
 - (i) k xy = lp for some $l \in \mathbb{N}$. Then lp(lp + 2xy) = pxy(p x y), which reduces to $xy(p x y 2l) = l^2p > 0$, so $p \mid x + y + 2l$ and 0 < x + y + 2l < p, which is impossible.

- (ii) k+xy=lp for some $l\in\mathbb{N}$. Then lp(lp-2xy)=pxy(p-x-y), which reduces to $xy(p-x-y+2l)=l^2p$, so $p\mid x+y-2l$. On the other hand, $lp=k+xy<2k\leqslant \frac{p^2}{2}$ implies 0<2l< p, so we must have x+y=2l. Then also $xy=l^2$ and hence x=y=l.
- 44. For each n, the numbers n-64, n, n+729 are in distinct sets. The problem condition for n-64 and n+729 gives us that n-64, n-128, n+665, as well as n+665, n+729, n+1458, belong to different sets. Therefore n+665 is not in the same set with either of n-64 and n+729, and hence must lie in the set containing n. It follows that each of the three sets is periodic modulo 665.

On the other hand, n + 64 and n + 729 are in the same set, so n - 64, n, n + 64 are in three different sets; likewise, so are n, n + 64, n + 128, so n - 64 and n + 128 are in the same set. Hence the sets are also periodic modulo 192. Since (192, 665) = 1, each set has a period 1, which is impossible.

45. To start with $k^{p-2} \equiv \frac{1}{k}$. On the other hand, $2^p - 2 = \sum_{k=1}^{p-1} {p \choose k}$, so $\frac{2^p - 2}{p} = \sum_{k=1}^{p-1} \frac{(p-1)!}{k!(p-k)!} = \sum_{k=1}^{p-1} \frac{1}{k} {p-1 \choose k-1} \equiv \sum_{k=1}^{p-1} \frac{(-1)^{k-1}}{k} \pmod{p}$. Therefore $\frac{2^p - 2}{p} \equiv \sum_{k=1}^{p-1} \frac{1}{k} - \sum_{k=1}^{p-1} \frac{2}{2k} = \sum_{k=\frac{p+1}{2}}^{p-1} \frac{1}{k} = -\sum_{k=1}^{p-1} \frac{1}{k} \pmod{p}$, as desired.