

Klasifikasi Inefisiensi Klaim Peserta BPJS Kesehatan Menggunakan XGBoost

The Jam Maths

Anggota The JamMaths

Cornelius Justin S. Hadi Universitas Indonesia

M. Hanif Pramudya Z.
Universitas Indonesia

Tulus Setiawan Universitas Indonesia

Table of Contents

Data Preparation

Data Cleaning

Feature Selection

Feature Engineering

Modelling

O1
Data Preparation

Dataset yang Digunakan

sampling healtkathon2022.csv

sampling healthkathon2022 diagnosa.csv

	id	diag	levelid
0	6	006.9	1
1	57	J02.9	1

sampling healthkathon2022 procedure.csv

	id	proc
0	6	90.59
1	6	69.01

merupakan data kunjungan peserta JKN ke fasilitas kesehatan rujukan tingkat lanjut

> Jumlah baris: 11401882

22

Jumlah Kolom:

merupakan data yang berisi diagnosa penyakit peserta, di mana dalam satu kunjungan peserta bisa memiliki lebih dari satu diagnosa.

> Jumlah baris: 11401882

Jumlah Kolom:

merupakan data yang berisi prosedur/tindakan medis yang didapatkan peserta JKN. Dalam setiap kunjungan, peserta bisa mendapatkan satu atau lebih prosedur/tindakan medis.

> Jumlah baris: 12202871

Jumlah Kolom:

Data Duplikat pada sampling_healtkathon2022.csv

```
df.duplicated().sum()
```

14

Data Duplikat pada sampling_healthkathon2022_diagnosa.csv

```
df_diagnosa.duplicated().sum()
56
```

Data Duplikat pada sampling_healthkathon2022_procedure.csv

```
df_proc.duplicated().sum()
47
```

Counts pada Kolom label (Dataset sampling_healtkathon2022.csv)

O2
Data Cleaning

Dataset sampling_healtkathon2022.csv

Meng-handle Nilai Null

Kolom Kategorik

'jenispulang', 'jenkel', 'pisat', 'diagfktp', 'kdsa', 'kdsp', 'kdsr', 'kdsi', 'kdsd'

Handle :

ubah menjadi modus kolom kategorik tsb.

Syntax:

SimpleImputer(strategy='most_frequent')

Kolom Numerik 'biaya'

Handle :

ubah menjadi median biaya tsb..

Syntax:

SimpleImputer(strategy='median')

Meng-handle Data Duplikat

Menyamakan Format Penamaan Karakter

Kolom Kategorik

'typefaskes', 'jenkel', 'politujuan', 'diagfktp', 'cbg', 'kdsa', 'kdsp', 'kdsr', 'kdsi', 'kdsd'

Format Karakter :

Samakan huruf kapital

Syntax:

df[obj_col].str.upper()

Kolom Kategorik

'typefaskes', 'jenkel', 'politujuan', 'diagfktp', 'cbg', 'kdsa', 'kdsp', 'kdsr', 'kdsi', 'kdsd'

Format Karakter:

Hilangkan Whitespaces

Syntax:

df[obj_col].str.strip()

Dataset sampling_healthkathon2022_diagnosa.csv

2

Meng-handle Data Duplikat

Menyamakan Format Karakter Kolom "diag"

3

4

Mengambil hanya diagnosa primer (baris dengan levelid = 1)

Dlagnosa sekunder digunakan untuk membuat kolom berisi frekuensi diagnosa sekunder masing-masing id

Hasil dari Proses Cleaning Dataset sampling_healthkathon2022_diagnosa.csv

	id	diag	diag_sekunder_counts
0	6	006	0
1	57	J02	0
2	91	R10	0
3	109	R18	0
4	111	N81	1

Ket : diag = diagnosa primer dari FKRTL

Dataset sampling_healtkathon2022_procedure.csv

1

Meng-handle Data Duplikat

Meng-handle Data Duplikat

O3
Feature Selection

Drop fitur dati2

Drop fitur politujuan

Mengapa fitur politujuan di-drop dari dataset?

Karena jumlah missing value yang terlalu banyak.

04 Feature Engineering

Membuat Kolom Lama Perawatan Peserta

(jika nilai tiap baris > 0, maka peserta rawat inap)

Memisahkan Nilai-Nilai pada Kolom "cbg", "kdsa", "kdsp", "kdsr", "kdsi", "kdsd" (sesuai struktur kodenya) Menjadi Kolom Baru

Keterangan:

- 1. Digit ke-1 merupakan CMG (Casemix Main Groups)
- 2. Digit ke-2 merupakan tipe kasus
- 3. Digit ke-3 merupakan spesifik CBG kasus
- 4. Digit ke-4 berupa angka romawi merupakan severity level

Sumber: Permenkes RI Nomor 27 Tahun 2014 Tentang Petunjuk Teknis Sistem INA-CBGs

Membuat Dua Kolom Baru Berdasarkan 'diagfktp'

Merge Dataframe Utama dengan Dataframe Diagnosa

Dataframe utama (left)

diagfktp_letter	diagfktp_num
L	2
R	23
E	10
Н	54
M	54

Dataframe diagnosa (right)

id	diagfkrtl_letter	diagfkrtl_num	diagfkrtl_sekunder_counts
6	0	6	0
57	J	2	0
91	R	10	0
109	R	18	0

diagfktp_letter	diagfktp_num	diagfkrtl_letter	diagfkrtl_num	diagfkrtl_sekunder_counts
L	2	Н	60.0	0.0
R	23	D	64.0	1.0
E	10	E	<mark>1</mark> 1.0	2.0
Н	54	Н	52.0	2.0
M	54	М	54.0	0.0

Membuat Kolom Berisikan Kode ICD-10, Yang Berkaitan Dengan 'diagfktp' dan 'diagfkrtl' Masing-Masing Baris

diagfktp_letter diagfktp_num

. 2

```
diagfktp_icd10 = []
for i in range(df_no_dup_prepared.shape[0]):
   letter = df no dup prepared.loc[i, 'diagfktp letter']
   num = df_no_dup_prepared.loc[i, 'diagfktp_num']
   if (letter in ['A', 'B']):
        diagfktp_icd10.append('I')
   elif (letter == 'C') or (letter == 'D' and num <= 48):
        diagfktp_icd10.append('II')
   elif letter == 'D' and num >= 50:
        diagfktp_icd10.append('III')
   elif letter == 'E':
       diagfktp_icd10.append('IV')
   elif letter == "F':
       diagfktp_icd10.append('V')
   elif letter == "G':
        diagfktp_icd10.append('VI')
   elif letter == 'H' and num <= 59:
        diagfktp icd10.append('VII')
   elif letter == "H' and num >= 60:
        diagfktp icd10.append('VIII')
   elif letter == "I':
        diagfktp icd10.append('IX')
   elif letter == 'J':
        diagfktp icd10.append('X')
   elif letter == 'K':
        diagfktp icd10.append('XI')
   elif letter == 'L':
       diagfktp icd10.append('XII')
```

```
diagfkrtl_letter diagfkrtl_num
                                                                          60.0
diagfkrtl_icd10 = []
for i in range(df_no_dup_prepared.shape[0]):
   letter = df no dup prepared.loc[i, 'diagfkrtl letter']
   num = df no dup prepared.loc[1, 'diagfkrtl num']
   if (letter in ['A', 'B']):
       diagfkrtl icd10.append('I')
   elif (letter == 'C') or (letter == 'D' and num <= 48):
       diagfkrtl_icd10.append('II')
   elif letter == 'D' and num >= 50:
       diagfkrtl_icd10.append('III')
   elif letter == 'E':
       diagfkrtl_icd10.append('IV')
   elif letter == 'F':
       diagfkrtl_icd10.append('V')
   elif letter == 'G':
       diagfkrtl_icd10.append('VI')
   elif letter == 'H' and num <= 59:
       diagfkrtl_icd10.append('VII')
    elif letter == 'H' and num >= 60:
       diagfkrtl icd10.append('VIII')
```


Manipulasi Data Frame Procedure

Dibuat data frame baru dimana untuk setiap id yang berbeda, dihitung frekuensi jenis procedure yang dilakukan

Merge All Data Frame

Berikut merupakan hasil dari *merge data frame* seluruhnya yang sudah dilakukan *engineering* sebelumnya.

jenispu	lang :	jenkel	pisat	biaya	id	id_peserta	typefaskes	usia	jenispe	l kelasrawat	label	l lama_rawat	cbg_CMC	G cbg_tipe	kasus	cbg_spesifikkasus	cbg_severity	kdsa_CMG	kdsa_t	tipekasus
0	1.0	Р	1.0	184300.0	165666	486	KL	48	1	2 3	(0 0	C	2	5	42	0	-		51
1	1.0	L	1.0	10628400.0	1010828	520	А	63		1 1	(0 3	[o o	4	13	III	150		51
2	1.0	Р	1.0	187300.0	166042	523	KL	53		2 3	(0 0	C	2	5	44	0	-		5
3	1.0	Р	1.0	187300.0	168937	549	KL	54		2 3	(0 0	C	2	5	44	0	150		76
4	1.0	Р	1.0	381600.0	1005899	549	А	53	3	2 3	(0 0	C	2	5	44	0	2		U
esifikkasus	kdsa_s	everity	kdsp_s	pesifikkasus	kdsp_seve	rity kdsr_s	pesifikkasus	kdsr_s	severity	kdsi_spesifik	casus I	kdsd_spesifikk	asus kds	d_severity	diagfk	rt1_sekunder_counts	diagfktp_icd10	diagfkrtl_	icd10	proc_count
2		-		-2		2	- 2		2		12		12	2		0.0	XII		VIII	NaN
74		- 5				9	70		2		72		720	72		1.0	XVIII		Ш	1.0
2		2				2			-		1		-			2.0	IV		IV	NaN
12		Ü		12		ũ.	12		2		12		140	12		2.0	VII		VII	NaN
12		_				-	12		-		-		-	12		0.0	XIII		XIII	NaN

Adanya data *null* merupakan akibat dari ketidak adanya beberapa id di data frame utama+diagnosa pada data frame procedure setelah dilakukannya proses merge data frame

Data Frame Prepared

jenispu	lang	jenkel	pisat	biaya	id :	id_peserta	typefaskes	usia	jenispel	kelasrawat	label	lama_rawat	cbg_CMG	cbg_tipek	asus cbg_spesifikkasus	cbg_severity	kdsa_CMG	kdsa_t	ipekasus
0	1.0	Р	1.0	184300.0	165666	486	KL	48	2	. 3	0	0	Q		5 42	0	-		63
1	1.0	L	1.0	10628400.0	1010828	520	А	63	1	1	0	3	D		4 13	iii	15.		
2	1.0	Р	1.0	187300.0	166042	523	KL	53	2	. 3	0	0	Q		5 44	0			
3	1.0	Р	1.0	187300.0	168937	549	KL	54	2	. 3	0	0	Q		5 44	0			84
4	1.0	Р	1.0	381600.0	1005899	549	А	53	2	3	0	0	Q		5 44	0	1 12		0
esifikkasus	kdsa_	severity	kdsp_s	spesifikkasus	kdsp_seve	rity kdsr_s	pesifikkasus	kdsr_	severity	kdsi_spesifikk	casus k	dsd_spesif <mark>i</mark> kka	sus kdsd	_severity d	iagfkrtl_sekunder_counts	diagfktp_icd10	diagfkrtl_	icd10	proc_count
-		-			M3	5	15				170			174	0.0	XII		VIII	0.0
				85	50	Ø	85		Ø		850		3.78	850	1.0	XVIII		III	1.0
2		-		12	.53	8	_		2		123		2	12.7	2.0	IV		IV	0.0
-		2		12	20	8	- 2		8		2		2	923	2.0	VII		VII	0.0
-						2	-		2		-		-	-	0.0	XIII		XIII	0.0

Untuk setiap data *null* pada fitur 'proc_count' sudah digantikan dengan nilai 0. Kenapa 0? Karena penyebab dari adanya data *null* tersebut seperti yang sudah dijelaskan pada slide sebelumnya. Hal itu berarti untuk setiap id yang 'proc_count' nya bernilai 'Nan', maka tidak ada jenis procedure apapun yang dilakukan terhadap pasien dengan nomor id tersebut. Hal ini yang mendasari kenapa nilai 'Nan' digantikan dengan nilai 0.

Preprocessing

Sebelum melakukan modelling, dilakukan data preprocessing dengan metode sebagai berikut

Pemilihan Algoritma: Membandingkan XGBoost dan Light GBM

XGBoost / Light GBM

eXtreme Gradient Boosting / Light Gradient Boosting Machine

Imbalanced Dataset

Gradient Boosting bekerja dengan baik pada dataset yang tidak seimbang karena pada setiap pembuatan tree, algoritma ini memperbaiki error tree sebelumnya Fast

XGBoost dan Light GBM dapat melakukan komputasi paralel ketika membuat tree, serta kita dapat memanfaatkan GPU Optimized

Kedua algoritma ini menggunakan algoritma Gradient Boosting yang sudah dioptimalkan, seperti memiliki hyperparameter regularisasi untuk mencegah overfitting

Pemilihan Algoritma (Optimasi Model): Hyperparameter Tuning XGBoost

Hyperparameter tuning menggunakan algoritma **Bayesian Search Optimization** dengan cross-validation

Data yang diambil untuk hyperparameter tuning sebanyak 25% dari keseluruhan

Hyperparameter yang dilakukan tuning:

- 1. Banyak data yang diover-under sampling
- 2. K-neighbors pada SMOTE
- 3. Learning rate
- 4. Max depth
- 5. Banyak subsample untuk training
- 6. Banyak sampel kolom untuk training
- 7. Nilai regularisasi L1 dan L2

Dibuat pipeline model dengan over-undersampling

Fitting 3 folds for each of 1 candidates, totalling 3 fits Fitting 3 folds for each of 1 candidates, totalling 3 fits

Pemilihan Algoritma (Optimasi Model): Hyperparameter Tuning XGBoost

Hasil

Hyperparameter	Value
Over-sampling strategy	0.20
SMOTE k-neighbors	858
Under-sampling strategy	0.88
Learning rate	0.15
Max depth	64
Subsample	1.0
Column sample	0.5
L1 regularization	1.88
L2 regularization	0.01

Pemilihan Algoritma (Optimasi Model): Hyperparameter Tuning Light GBM

Hyperparameter tuning menggunakan algoritma **Bayesian Search Optimization** dengan cross-validation

Data yang diambil untuk hyperparameter tuning sebanyak 25% dari keseluruhan

Hyperparameter yang dilakukan tuning:

- 1. Banyak data yang diover-under sampling
- 2. K-neighbors pada SMOTE
- 3. Tipe algoritma boosting
- 4. Learning rate
- 5. Max depth
- 6. Banyak sampel kolom untuk training
- 7. Nilai regularisasi L1 dan L2
- 8. Minimum split gain
- 9. Banyak maksimum leave pada tree
- 10. Banyaknya data minimum pada child (leaf)

Dibuat pipeline model dengan over-undersampling

search.fit(X train, y train)

Fitting 3 folds for each of 1 candidates, totalling 3 fits

Pemilihan Algoritma (Optimasi Model): Hyperparameter Tuning Light GBM

Hasil

Hyperparameter	Value
Over-sampling strategy	0.10
Under-sampling strategy	0.70
SMOTE k-neighbors	1000
Boosting type	dart
Learning rate	0.13
Max Depth	25
Column sample	0.55
L1 regularization	0.01
L2 regularization	0.01
Min Split Gain	0.13
Num leaves	3213
Min child samples	200

Pemilihan Algoritma: Train XGBoost and Light GBM with Tuned Hyperparameter

digunakan data train sebanyak 32% dari keseluruhan data

XGBoost

```
X train full, X test, y train full, y test = train test split(X prepared, y,
                                                              test size=.6.
                                                              random state=42)
X_train, X_val, y_train, y_val = train_test_split(X_train_full,
                                                  y train full,
                                                  test size=.2,
                                                  random_state=42)
X train.shape, X val.shape, X test.shape
((3648597, 777), (912150, 777), (6841121, 777))
es = xgb.callback.EarlyStopping(rounds=100, metric name='auc',
                                data name='validation 0',
                                maximize=True,
                                save best=True)
model pipeline = imbpipeline([
    ('over', SMOTE(sampling strategy=0.19676221847208702, n jobs=-1,
                   k neighbors=858)),
    ('under', RandomUnderSampler(sampling strategy=0.8849275028627146)),
    ('xgb', xgb.XGBClassifier(n_estimators=1000, colsample bytree=0.5,
                              gamma=0, learning rate=0.05377367769556463,
                              max depth=64, reg alpha=1.8796306666826916,
                              reg_lambda=0.01, subsample=1.0,
                              min child weight=1,
                              scale pos weight=1/0.8849275028627146,
                              callbacks=[es], objective='binary:logistic',
                              eval metric=['auc', 'logloss'],
                              verbosity=2, n jobs=-1, tree method='approx'))
1)
model_pipeline.fit(X_train, y_train, xgb_eval_set=[(X_val, y_val)])
```

<u>Light GBM</u>

```
X train full, X test, y train full, y test = train test split(X prepared, y,
                                                              test size=.6.
                                                              random state=42)
X train, X val, y train, y val = train test split(X train full,
                                                  y train full,
                                                  test_size=.2,
                                                  random state=42)
X train.shape, X val.shape, X test.shape
((3648597, 777), (912150, 777), (6841121, 777))
model pipeline = imbpipeline([
    ('over', SMOTE(sampling strategy=.10107109574278936, k neighbors=1000)),
    ('under', RandomUnderSampler(sampling strategy=0.6967907665329958)),
    ('lgbm', lgbm.LGBMClassifier(n estimators=220, boosting type='dart',
                                 colsample bytree=0.5510238606246517,
                                 learning rate=0.13366708157335833,
                                 max depth=25, min child samples=200,
                                 min split gain=0.12624055231690842,
                                 num leaves=3213, reg alpha=0.01,
                                 reg lambda=0.01, objective='binary',
                                 n jobs=-1))
1)
model pipeline.fit(X train, y train, lgbm eval set=[(X val, y val)],
```

(split train, val, dan test menggunakan random_state yang sama pada kedua model, sehingga menghasilkan splitting data yang sama persis)

Pemilihan Algoritma (Optimasi Model): Threshold Tuning XGBoost dan Light GBM

Dilakukan **prediksi probabilitas** pada **data validasi**, lalu probabilitas tersebut diplot menjadi ROC dan Precision-Recall Curve.

Pemilihan Algoritma: Evaluasi XGBoost dan Light GBM pada Data Validasi

th_prec_09 = th_pr[np.argmax(precision > 0.9)] diambil threshold yang menghasilkan setidaknya 90% precision pada kedua model

XGBoost

ROC-AUC score: 0.88680238798704	-64
---------------------------------	-----

	precision	recall	f1-score	support
0 1	0.99 0.90	1.00 0.40	1.00 0.55	899559 12591
accuracy macro avg weighted avg	0.95 0.99	0.70 0.99	0.99 0.77 0.99	912150 912150 912150

<u>Light GBM</u>

ROC-AUC score:	0.8837498612214778
----------------	--------------------

	precision	recall	f1-score	support
0 1	0.99 0.90	1.00 0.40	1.00 0.55	899559 12591
accuracy macro avg weighted avg	0.95 0.99	0.70 0.99	0.99 0.77 0.99	912150 912150 912150

Pemilihan Algoritma: Evaluasi XGBoost dan Light GBM pada Data Test

XGBoost

XGBoost I	Predict	time on	test set:	592.900143	3849335 seconds
	р	recision	recall	f1-score	support
	0	0.99	1.00	1.00	6747001
	1	0.91	0.40	0.56	94120
accu	racy			0.99	6841121
macro	_	0.95	0.70	0.78	6841121
weighted	avg	0.99	0.99	0.99	6841121

Light GBM

Light GB	M Pre	dict time on	test set:	398.96043	038368225	seconds
		precision	recall	f1-score	support	
	0	0.99	1.00	1.00	6747001	
	1	0.90	0.40	0.55	94120	
accu	racy			0.99	6841121	
macro	avg	0.95	0.70	0.77	6841121	
weighted	avg	0.99	0.99	0.99	6841121	

Re-Train XGBoost sebagai Model Final

Setelah memilih XGBoost sebagai model final, kami training kembali menggunakan **data train sebanyak 60%** dari keseluruhan data. Juga digunakan **early stopping**, jika hingga **100** tree selanjutnya skor **ROC-AUC** pada **data validasi** tidak meningkat, training akan berhenti.

```
X train full, X test, y train full, y test = train test split(X prepared, y, test size=.2, random state=42)
X train, X val, y train, y val = train test split(X train full, y train full, test size=.25, random state=42)
X train.shape, X val.shape, X test.shape
((6841120, 777), (2280374, 777), (2280374, 777))
es = xgb.callback.EarlyStopping(rounds=100, metric name='auc', data name='validation 0', maximize=True,
                                save best=True)
model_pipeline = imbpipeline([
    ('over', SMOTE(sampling strategy=0.19676221847208702, n jobs=-1, k neighbors=858)),
    ('under', RandomUnderSampler(sampling strategy=0.8849275028627146)),
    ('xgb', xgb.XGBClassifier(n_estimators=1000, colsample_bytree=0.5, gamma=0, learning rate=0.05377367769556463,
                              max depth=64, reg alpha=1.8796306666826916, reg lambda=0.01,
                              subsample=1.0, min child weight=1, scale pos weight=1/0.8849275028627146,
                              callbacks=[es], objective='binary:logistic', eval metric=['auc', 'logloss'],
                              verbosity=2, n jobs=-1, tree method='approx'))
model pipeline.fit(X train, y train, xgb eval set=[(X val, y val)])
```

Evaluasi XGBoost pada Data Validasi menggunakan Threshold yang Telah Ditentukan

th_prec_09 = th_pr[np.argmax(precision > 0.9)] diambil threshold yang menghasilkan setidaknya 90% precision pada kedua model

		precision	recall	f1-score	support
	0	0.99 0.90	1.00 0.40	1.00 0.56	2248940 31434
accura macro a weighted a	vg	0.95 0.99	0.70 0.99	0.99 0.78 0.99	2280374 2280374 2280374

Hasil Pengembangan Model

Evaluasi model pada data **test**

	precision	recall	f1-score	support
0	0.99	1.00	1.00	2248993
1	0.91	0.41	0.56	31381
accuracy			0.99	2280374
macro avg	0.95	0.70	0.78	2280374
weighted avg	0.99	0.99	0.99	2280374

Hasil Pengembangan Model

Evaluasi model pada data tahap final Healthkathon BPJS

Kemudahan Implementasi Model

Saran dalam Implementasi Model

Kami telah mengembangkan dua jenis model yang berbasis algoritma Gradient Boosting, yaitu **XGBoost** dan **Light GBM**. Keduanya memiliki kelebihan dan kekurangan masing-masing. **XGBoost** lebih baik dalam hal **ketepatan memprediksi**, sedangkan **Light GBM** memiliki proses komputasi yang **lebih cepat**. Sehingga, implementasi model di *real life* dapat bergantung pada skenario yang dialami:

- O Jika sumber daya komputasi yang dimiliki mencukupi untuk menggunakan model XGBoost, maka menggunakan XGBoost lebih disarankan karena akan menghasilkan prediksi yang lebih akurat dibanding Light GBM.
- O Jika sumber daya komputasi yang dimiliki terbatas atau pengguna hanya ingin membandingkan algoritma Gradient Boosting dengan algoritma lain (misal, ANN), maka **Light GBM** lebih disarankan karena akan mengurangi waktu komputasi dibanding XGBoost.

Namun, perlu diingat bahwa untuk kasus klasifikasi inefisiensi klaim peserta BPJS Kesehatan ini berhubungan langsung dengan finansial perusahaan. Sehingga, untuk kasus ini kami lebih menyarankan untuk menggunakan **XGBoost** (yaitu, model final kami) karena akan menghasilkan prediksi yang baik walaupun mengorbankan sedikit waktu komputasi yang lebih banyak, demi finansial perusahaan.

Thank You!