

INSTRUCTIONS GENERALES

L'utilisation de la calculatrice non programmable est autorisée ;

Le candidat peut traiter les exercices de l'épreuve suivant l'ordre qui lui convient ;

L'utilisation de la couleur rouge lors de la rédaction des solutions est à éviter.

COMPOSANTES DU SUJET

L'épreuve est composée de quatre exercices et un problème indépendants entre eux et répartis suivant les domaines comme suit :

Exercice 1	Suites numériques	2,5 points
Exercice 2	Géométrie dans l'espace	3 points
Exercice 3	Nombres complexes	3 points
Exercice 4	Calcul des probabilités	3 points
Problème	Etude d'une fonction numérique et calcul intégral	8,5 points

✓ ln désigne la fonction logarithme népérien

0,5

RS 22F

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2022 - الموضوع - مادة: الرياضيات - مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية - خيار فرنسية

Exercice 1 (2,5 points):

Soit (u_n) la suite numérique définie par $u_0 = 2$ et $u_{n+1} = \frac{\sqrt{2}}{2}u_n + \frac{2-\sqrt{2}}{2}$ pour tout n de IN

- 1) a) Montrer que pour tout n de IN, $u_n > 1$
- b) Montrer que pour tout n de IN, $u_{n+1} u_n = \frac{\sqrt{2} 2}{2} (u_n 1)$ et déduire que la suite (u_n) est décroissante et convergente
 - 2) On pose pour tout n de IN, $v_n = u_n 1$
- a) Montrer que (v_n) est une suite géométrique et déterminer sa raison et son premier terme.
- 0,5 b) Ecrire u_n en fonction de n puis déduire la limite de la suite (u_n) .
- 0,25 | c) Calculer la somme $S = u_0 + u_1 + u_2 + + u_{2021}$

Exercice 2 (3 points):

Dans l'espace rapporté à un repère orthonormé direct $(O, \vec{i}, \vec{j}, \vec{k})$, on considère les deux points A(1,-1,1) et B(5,1,-3). Soit (S) la sphère de centre $\Omega(3,0,-1)$ et de rayon R=3, et (Δ) la droite passant par le point A et de vecteur directeur $\vec{u}(2,-2,1)$

- 0,25 | 1) a) Calculer la distance ΩA
- 0,5 b) Montrer que les droites (Δ) et (ΩA) sont perpendiculaires.
- 0,25 c) Déduire la position relative de la droite (Δ) et la sphère (S)
- 2) Soit le point $M_a(2a-3, 3-2a, a-1)$ où $a \in \mathbb{R}$, montrer que $\overline{AM_a} = (a-2)\overrightarrow{u}$ et déduire que $M_a \in (\Delta)$ pour tout $a \in \mathbb{R}$
 - 3) a) Vérifier que 2x-2y+z-9a+13=0 est une équation du plan (P_a) passant par M_a et perpendiculaire à la droite (Δ)
 - **b)** Montrer que $d(\Omega, (P_a)) = |3a-6|$
- 0,5 c) Déterminer les deux valeurs de a pour lesquelles le plan (P_a) est tangent à la sphère (S).

Exercice 3 (3 points):

Dans le plan complexe rapporté à un repère orthonormé direct $(O; \vec{u}, \vec{v})$, on considère les points A, B et C d'affixes respectives $Z_A = 1 + 5i$, $Z_B = 1 - 5i$ et $Z_C = 5 - 3i$

- 1) Déterminer le nombre complexe Z_D affixe du point D milieu du segment $\begin{bmatrix} AC \end{bmatrix}$
- 2) Soit h l'homothétie de centre A et de rapport $\frac{1}{2}$.

Déterminer le nombre complexe $Z_{\mathbb{E}}$ affixe du point \mathbb{E} l'image de \mathbb{B} par h

0,25

0,5

0,5

0,5

صفحة			
4	الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2022 ــ الموضوع - مادة: الرياضيات- مسلك علوم الحياة والأرض ومسلك العلوم الفيزيانية - خيار فرنسية		
0,5	3) On considère la rotation R de centre C et d'angle $\left(\frac{-\pi}{2}\right)$, déterminer l'image de B par R		
	4) Soit F le point d'affixe $Z_F = -1 + i$		
0,25	a) Vérifier que $\frac{Z_D - Z_A}{Z_F - Z_A} \times \frac{Z_F - Z_E}{Z_D - Z_E} = -1$		
0,5	b) En déduire que $(\overline{AF}, \overline{AD}) + (\overline{ED}, \overline{EF}) = \pi [2\pi]$		
0,5	c) Déterminer la forme trigonométrique du nombre $\frac{Z_E - Z_F}{Z_A - Z_F}$ et déduire la nature du		
0.5	triangle AEF		
0,5	d) Déduire que les points A, D, E et F appartiennent à un cercle dont on déterminera un diamètre.		
	Exercice 4 (3 points):		
	Une urne contient trois boules blanches, quatre boules rouges et cinq boules vertes,		
	indiscernables au toucher. On tire au hasard et simultanément trois boules de l'urne.		
	1) On considère les événements suivants: A : " Obtenir exactement deux boules rouges "		
0,75	a) Montrer que $p(A) = \frac{12}{55}$ et $p(B) = \frac{21}{44}$		
0,75	b) Calculer $p(A/B)$: la probabilité de l'événement A sachant que l'événement B est		
	réalisé. Les événements A et B sont-ils indépendants ?		
	2) Soit la variable aléatoire X qui associe à chaque tirage le nombre de boules vertes tirées		
1	a) Déterminer la loi de probabilité de X		
0,5	b) Calculer la probabilité d'obtenir au moins deux boules vertes.		
	Problème (8,5 points):		
	Soit f la fonction numérique définie sur $[0, +\infty[$ par $\begin{cases} f(x) = x^4(\ln x - 1)^2 ; x > 0 \\ f(0) = 0 \end{cases}$		
0,75	et (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$ (unité : lcm) 1) Calculer $\lim_{x \to +\infty} f(x)$ puis déterminer la branche infinie de (C) au voisinage de $+\infty$		
	2) a) Montrer que f est continue à droite en 0		
0,5	b) Etudier la dérivabilité de f à droite en 0 puis interpréter le résultat géométriquement		
0,75	3) a) Montrer que $f'(x) = 2x^3(\ln x - 1)(2\ln x - 1)$ pour tout x de l'intervalle $]0, +\infty[$		
0,5	b) Dresser le tableau de variations de f		

Ā	الصفد	
$ \overline{}$	4	RS
4		

22F

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2022 - الموضوع - مادة: الرياضيات- مسلك علوم الحياة والأرض ومسلك العلوم الفيزيانية - خيار فرنسية

0,5

4) a) Sachant que $f''(x) = 2x^2(6 \ln x - 5) \ln x$ pour tout x de l'intervalle $]0, +\infty[$, étudier le signe de f''(x) sur $]0, +\infty[$

0,5

b) Déduire que la courbe (C) admet deux points d'inflexion dont on déterminera les abscisses

1

5) a) Construire la courbe (C) dans le repère (O, \vec{i}, \vec{j}) (on prend : $\sqrt{e} \approx 1.6$ et $e^2 \approx 7.2$)

0.5

b) En utilisant la courbe (C), déterminer le nombre de solutions de l'équation $x^2(\ln x - 1) = -1$

٠,

6) On considère la fonction g définie sur \mathbb{R} par g(x) = f(|x|)

0,5

a) Montrer que la fonction g est paire

0,5

b) Construire (C_g) la courbe représentative de g dans le même repère $\left(O,\vec{i},\vec{j}\right)$

0,5

7) a) On pose $I = \int_1^e x^4 (\ln x - 1) dx$, en utilisant une intégration par parties, montrer que $I = \frac{6 - e^5}{25}$

0,5

b) On considère la fonction h définie sur l'intervalle $]0,+\infty[$ par $h(x)=x^5(\ln x-1)^2$. Vérifier que $h'(x)=5f(x)+2x^4(\ln x-1)$

0,5

e) Déduire que $\int_{1}^{e} f(x) dx = -\frac{1}{5} - \frac{2}{5}I$

0,5

d) Calculer l'aire du domaine délimité par la courbe (C) et l'axe des abscisses et les droites d'équations x = 1 et x = e