

Machine Learning with LEGO® Bricks

Viacheslav Sydora

Course overview

• Subfield of artificial intelligence

- Subfield of artificial intelligence
- Learning patterns from examples

Not Machine Learning

- Subfield of artificial intelligence
- Learning patterns from examples

Not Machine Learning

- Subfield of artificial intelligence
- Learning patterns from examples

Not Machine Learning

- Subfield of artificial intelligence
- Learning patterns from examples

Why machine learning?

- works automatically
- can surpass humans

What else can machine learning do?

Source: <u>freeCodeCamp</u>

Data, Features & Labels

• Learning patterns from examples

Data, Features & Labels

- Data observations, measurements, ...
- Features what predictions are made from (input)
- Labels what to predict (output)

Automatic fruit detector – Concept

• Features: ?

• Label: ?

Automatic fruit detector – Concept

- Features: length and color of the fruit
- Label: fruit name (apple/banana)

Automatic fruit detector – Assembly

Open the experiment page

Connect hub and start the program

1

Switch on the hub by pressing the large button for about 3 seconds.

2

Click on the Bluetooth button and wait until the hub starts beeping.

3

Click on "Connect hub", find your hub in the window, select it and click on "Pair".

4

Click on 'Start program' and wait until a notification appears on the website.

Start program

Automatic fruit detector - Data collection

1

Select the fruit for which data will be collected.

3

Place the fruit in the caliper, close the gripper, remove the fruit, and press the left button on the hub to measure the length.

2

Scan the color. Hold the fruit near the color sensor and press the right button on the hub.

4

The data point will now be displayed on the website!
Repeat the steps for other apples and bananas!

How can we predict a new fruit?

K-Nearest Neighbors – Algorithm

Automatic fruit detector - Prediction

Training Prediction

Switch the device to prediction mode.

click

Scan the color and measure the length of the fruit as you did during data collection.

The prediction and the nearest neighbors will now be displayed on the website!

Phases of model development

Influence of corrupted data

1

Switch the device to prediction mode and display the decision boundary.

2

Corrupt the data. Change some of the labels to incorrect ones and observe how the decision boundary changes.

Try changing the number of voting neighbors (K) to restore the accuracy

Classification and regression

Classification

• prediction of a category

Regression

• prediction of a number

Pitcher – Concept

Features: ?

Label: ?

Pitcher – Concept

Features: Distance to the target

Label: Motor power

Pitcher – Assembly

Open the experiment page

Connect hub and start the program

1

Switch on the hub by pressing the large button for about 3 seconds.

2

Click on the Bluetooth button and wait until the hub starts beeping.

3

Click on "Connect hub", find your hub in the window, select it and click on "Pair".

4

Click on 'Start program' and wait until a notification appears on the website.

Start program

Pitcher - Data collection

1

Place the pitcher in the shaded area on the mat.

2

Place the ball in the holder and position the paddle on the top. Press the left button to throw the ball.

3

Hold a cardboard at the point where the ball landed and press the right button to measure the distance.

4

Repeat the steps for other motor speeds.

Motor power: 10% → 40%

□ Update motor power

click

Pitcher – Data analysis

Pitcher – Data analysis

How well does the line fit?

How well does the line fit?

• Loss describes how good model predictions are.

Linear regression

• **Linear regression** – determining a line that reflects a relationship between variables.

Pitcher – Fit the line

Switch the device to prediction mode.

click

Line Equation

*p = m - d + b = 0.47 - d + 35.70

Try adjusting the slope and intercept to move the line and minimize the loss.

Pitcher - Prediction

1

Place the ball in the holder and position the target in front of the pitcher.

2

Measure the distance to the target. Place the cardboard in the center of the target and press the right button.

3

Pitch the ball into the target by pressing the left button

Supervised and unsupervised learning

Completion time

Reinforcement learning

• Reinforcement learning — learning through trial and error.

Source: DeepMind

Reinforcement learning

• Reinforcement learning — learning through trial and error.

Source: Giphy

Applications – Robots

Source: <u>YouTube</u>

Applications – Bots in computer games

Source: HuggingFace

Applications – Bots in computer games

Source: <u>HuggingFace</u>

Abstraction

Environment

Abstraction

Abstraction

Example of Super Mario Bros

Action: jump under the box with "?"

Crawler – Concept

Crawler – Concept

Crawler – Assembly

Open the experiment page

Connect hub and start the program

1

Switch on the hub by pressing the large button for about 3 seconds.

2

Click on the Bluetooth button and wait until the hub starts beeping.

3

Click on "Connect hub", find your hub in the window, select it and click on "Pair".

4

Click on 'Start program' and wait until a notification appears on the website.

Start program

Crawler – Training

1

Reset the experiment.

2

Place the crawler about one elbow-length away from the box, with the distance sensor facing the box.

3

Click "Continue" so the crawler makes a movement.

4

Observe how the table gets filled.

	Next State				
	· ·	الله	8 5		
•		0	+3	0	
of State	+1		+12	+11	
Current S	-9	-13		0	
-	0	0	0		

Why is it not working?

Trying something new?

Trying something new?

Exploration-Exploitation-Dilemma

Exploration-Exploitation-Dilemma

Crawler – Training

1

Reset the experiment. Set exploration to high.

2

Place the crawler about one elbow-length away from the box, with the distance sensor facing the box.

3

Click "Continue" so the crawler makes a movement.

4

Observe how the table gets filled. Reduce exploration over time.

	Next State				
	· ·	الله	8 5		
•		0	+3	0	
of State	+1		+12	+11	
Current S	-9	-13		0	
-	0	0	0		

Foresight

Foresight

Foresight

Crawler – Training

1

Reset the experiment. Set exploration to high. Turn on the foresight.

2

Place the crawler about one elbow-length away from the box, with the distance sensor facing the box.

3

Click "Continue" so the crawler makes a movement.

4

Observe how the table gets filled. Reduce exploration over time.

		Next State				
	•	€ ∧.	8 5	•		
•		0	+3	0		
out State	e +1		+12	+11		
W To	-9	-13		0		
- C	0	0	0			

Other applications

- Clicked = +1
- Watched 10 minutes = +5
- Liked = +10
- Ignored the video = -10

How recommendation systems work

Action: recommend a video

Summary

Machine learning is no magic

Machine learning can do a lot

Power brings responsibility