Code No.: 22ES41

			SET-I
R22	H.T.No.	22R01A	0545

CMR INSTITUTE OF TECHNOLOGY: HYDERABAD **UGC AUTONOMOUS**

B.Tech. IV - Semester- I - Mid Term Examinations - April - 2024 DISCRETE MATHEMATICS AND GRAPH THEORY (Common to CSE, CSM, CSD, CSC & AIM)

[Time: 120 Minutes]

[Max. Marks: 30]

- Note: 1. This question paper contains two parts A and B.
 - 2. Part A is compulsory which carries 5 marks. Answer all questions in Part A.
 - 3. Part B consists of 5 questions. Answer all 5 questions. Each question carries 5 marks

4. Illustrate your answers with NEAT sketches wherever necessary.

PART-A

5 x 1M=5M

No.	Question	BTL	CO	PO
a	Write the dual of $q \rightarrow p$.	3	1	1,2,12
b	Define Tautology.	1	1	1,2,12
0	Define Modus Tollens formula.	2	2	1,2,12
1	Write the Minterms for two variables.	1	2	1,2,12
0	Find all subsets of {3, 7}.	1	3	1,2,12
	No.	Write the dual of $q \to p$. Define Tautology. Define Modus Tollens formula. d Write the Minterms for two variables.	Write the dual of $q \rightarrow p$. Define Tautology. Define Modus Tollens formula. 2 d Write the Minterms for two variables.	Write the dual of $q \rightarrow p$. Define Tautology. Define Modus Tollens formula. Write the Minterms for two variables. 1 2 2

5 x 5M=25M PART-B BTL CO PO Question 1,2,12 S. No. Construct the truth table for the compound proposition 2 $(p \land q) \rightarrow (\neg r)$ 2 1,2,12 Prove the following result: 2 $\neg [\{(p \lor q) \land r\} \rightarrow \neg q] \Leftrightarrow \neg [\neg \{(p \lor q) \land r\} \lor \neg q] \Leftrightarrow q \land r$ 1,2,12 Prove that, for any propositions p, q, r, the compound proposition $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$ is a tautology. 1,2,12 For any propositions p, q, prove the following: (i) $\neg (p \downarrow q) \Leftrightarrow (\neg p \uparrow \neg q)$ (ii) $\neg (p \uparrow q) \Leftrightarrow (\neg p \downarrow \neg q)$ 1,2,12 Obtain the principal conjunctive normal form of the formula

 $(\neg p \to r) \land (q \leftrightarrow p)$

OR

	Show that the premises $p \to q, p \to r, q \to \neg r, r$ are consistent.	2	2	1,2,12
2	Show that $s \vee r$ is tautologically implied by			1,2,12
8	Show that $s \lor r \lor b$ the second $(p \lor q) \land (p \to r) \land (q \to s)$	3	2	
	OR			
	Prove by the mathematical induction that sum of first n natural	3	2	1,2,12
9	numbers is $\frac{n(n+1)}{2}$.			
			T	1,2,12
	If $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{1, 2, 4, 6, 8\}$ and $B = \{2, 4, 6, 8\}$			1,2,12
10	5, 9} compute the following:	2	3	
10	\overline{A} , \overline{B} , $\overline{A} \cup \overline{B}$, $\overline{A} \cap \overline{B}$, $\overline{A} \cap \overline{B}$, $\overline{A} \cup \overline{B}$, $\overline{A} - B$, $\overline{B} - A$, $A \triangle B$.			
	OR			
-	For any two sets A,B prove the commutative laws:	2	3	1,2,12
11	(i) $A \cup B = B \cup A$ (ii) $A \cap B = B \cap A$.			