INTRO. TO COMP. ENG. CHAPTER VI-1 COMBINATIONAL LOGIC •CHAPTER VI

CHAPTER VI

COMBINATIONAL LOGIC BUILDING BLOCKS

INTRO. TO COMP. ENG. CHAPTER VI-2 COMBINATIONAL LOGIC

COMBINAT. LOGIC

INTRODUCTION

•COMBINATIONAL LOGIC
-INTRODUCTION

- Combinational logic
 - Output at any time is determined completely by the current input.
 - We will later consider circuits where the output is determined by the input and the current state (memory) of the system.
 - In this chapter we will consider some useful building blocks that can be pieced together and used in larger designs. This will include:
 - Multiplexers (selectors) and demultiplexers (distributors)
 - Encoders, priority encoders, decoders
 - Adders (full and half)
 - Parity generators and parity checkers
 - Shifters and rotators
 - Comparators

INTRO. TO COMP. ENG. CHAPTER VI-3 COMBINATIONAL LOGIC

DECODERS

BASIC DECODER

•COMBINATIONAL LOGIC
-INTRODUCTION

- Standard decoder is an n-to-m-line decoder, where $m \le 2^n$.
 - Example: 3-to-8-line decoder

• All outputs D_m are low except for the one corresponding to the binary value of the input $A_n...A_1A_0$.

INTRO. TO COMP. ENG. CHAPTER VI-4 COMBINATIONAL LOGIC

DECODERS

DECODERS WITH ENABLE

•COMBINATIONAL LOGIC
•DECODERS
-BASIC DECODER

 Often, combinational logic building blocks will also have an enable line that turns on outputs or leaves them off.

3-to-8 Decoder with Enable

INTRO. TO COMP. ENG. CHAPTER VI-5 COMBINATIONAL LOGIC

DECODERS

TRUTH TABLES

•COMBINATIONAL LOGIC
•DECODERS
-BASIC DECODER

-WITH ENABLE

• Truth table for a **3-to-8-line decoder**:

Inputs		Outputs					
$A_2 A_1 A_0 E$	$\exists \mid D_7 D_7$	D_6 D_5	D_4 D_3	D_2	D_1	D_0	
X X X 0	0 (0	0 0	0	0	0	
0 0 0 1	0	0 0	0 0	0	0	1	
0 0 1 1	0 (0 0	0 0	0	1	0	
0 1 0 1	0 (0 0	0 0	1	0	0	
0 1 1 1	0 (0 0	0 1	0	0	0	
1 0 0 1	0 (0 0	1 0	0	0	0	
1 0 1 1	0 (0 1	0 0	0	0	0	
1 1 0 1	0	1 0	0 0	0	0	0	
1 1 1 1	1 1 (0 0	0 0	0	0	0	

INTRO. TO COMP. ENG. CHAPTER VI-6

COMBINATIONAL LOGIC

DECODERS

IMPLEMENTATION

- DECODERS
 - -BASIC DECODER
 - -WITH ENABLE
 - -TRUTH TABLES
- How can a decoder be implemented? Fill in the circuit!

INTRO. TO COMP. ENG. CHAPTER VI-7 COMBINATIONAL LOGIC

DECODERSDESIGNING WITH DECODERS

- •DECODERS
 -WITH ENABLE
 -TRUTH TABLES
 - -IMPLEMENTATION
- Any Boolean function can implemented using a decoder and OR gates by ORing together the function's minterms.

_	npu A ₁	ts A ₀	Out F ₁	puts F ₂			0
0 0 0	0 0 1 1	0 1 0 1	0 1 0 1	0 1 1 0	$A_0 - 2^0$ $A_1 - 2^1$	3-to-8 Decoder	1 2 3 4
1 1 1 1	0 0 1 1	0 1 0 1	0 0 0 1	1 1 0 0	A ₂ —2 ²		$\begin{array}{c c} 5 \\ 6 \\ 7 \end{array}$

INTRO. TO COMP. ENG. CHAPTER VI-8 COMBINATIONAL LOGIC

DECODERS

DECODER NETWORKS

- DECODERS
 - -TRUTH TABLES
 - -IMPLEMENTATION
 - -DESIGNING W/DECODERS
- · We can also use multiple decoders to form a larger decoder.

A₂ used with enable input to control which decoder will output the **1**.

A₁ and A₀ used to select which output on specific decoder will output 1. 3-to-8 Decoder Implemented with two 2-to-4 Decoders

INTRO. TO COMP. ENG. CHAPTER VI-9 COMBINATIONAL LOGIC

ENCODERS

BASIC ENCODER

- DECODERS
 - -IMPLEMENTATION
 - -DESIGNING W/DECODERS
 - -DECODER NETWORKS
- Standard binary encoder is an m-to-n-line encoder, where $m \le 2^n$.
 - Example: 8-to-3-line encoder

INTRO. TO COMP. ENG. CHAPTER VI-10 COMBINATIONAL LOGIC

ENCODERS

ENCODER TRUTH TABLE

•DECODERS
•ENCODERS
-BASIC ENCODER

Outnuts

• Truth table for an **8-to-3-line encoder**:

	inputs								ııpı	มเอ
D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	A ₂	A ₁	A_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

• Assumed that only one input is 1. What happens if more then one is 1?

INTRO. TO COMP. ENG. **CHAPTER VI-11**

ENCODERS

DECODERS ENCODERS -BASIC ENCODER -TRUTH TABLE

- **COMBINATIONAL LOGIC**
- **DESIGNING WITH ENCODERS**
 - Encoders are useful when the occurrence of one of several disjoint events needs to be represented by an integer identifying the event.

pp. 253-254 of Ercegovac, Lang and Moreno, "Introduction to Digital Systems", 1999.

INTRO. TO COMP. ENG. CHAPTER VI-12 COMBINATIONAL LOGIC

ENCODERS

PRIORITY ENCODERS

•ENCODERS

- -BASIC ENCODER
- -TRUTH TABLE
- -DESIGN W/ ENCODERS
- A priority encoder takes the input of 1 with the highest index and translates that index to the output.

Innute

inputs								Ol	ıtpı	Its	
D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	A_2	A ₁	A_0	
0	0	0	0	0	0	0	1	0	0	0	
0	0	0	0	0	0	1	X	0	0	1	
0	0	0	0	0	1	X	X	0	1	0	
0	0	0	0	1	X	X	X	0	1	1	
0	0	0	1	X	X	X	X	1	0	0	
0	0	1	X	X	X	X	X	1	0	1	
0	1	X	X	X	X	X	X	1	1	0	
1	X	X	X	X	X	X	X	1	1	1	

INTRO. TO COMP. ENG. CHAPTER VI-13 COMBINATIONAL LOGIC

ENCODERS

DESIGN WITH P-ENCODER

- ENCODERS
 - -TRUTH TABLE
 - -DESIGN W/ ENCODERS
 - -PRIORITY ENCODERS
- Priority encoders are useful when inputs have a predefined priority and we
 wish to select the input with the highest priority.

Example: Resolving interrupt requests

pp. 253-256 of Ercegovac, Lang and Moreno, "Introduction to Digital Systems", 1999.

INTRO. TO COMP. ENG. **CHAPTER VI-14 COMBINATIONAL LOGIC**

MULTIPLEXERS

BASIC MULTIPLEXER (MUX)

ENCODERS

0

X

X

X

X

- -DESIGN W/ ENCODERS
- -PRIORITY ENCODERS

Output

 $A_0 = \mathbf{0}$

 $A_1 = 0$

 $A_2 = 0$

 $A_3 = 0$

 $A_0 = 1$

 $A_1 = 1$

 $A_2 = 1$

- -DESIGN W/ P-ENCODERS
- Selects one of many inputs to be directed to an output.

INTRO. TO COMP. ENG. CHAPTER VI-15 COMBINATIONAL LOGIC

MULTIPLEXERS

USING PASS GATES

- •ENCODERS
 •MULTIPLEXERS
 -BASIC MULTIPLEXER
- The 4x1 mux can be implemented with pass gates as follows.

INTRO. TO COMP. ENG. CHAPTER VI-16 COMBINATIONAL LOGIC

MULTIPLEXERS

DESIGN WITH MULTIPLEXERS

- ENCODERS
 MULTIPLEXERS
 BASIC MULTIPLEXER
 USING PASS GATES
- Any Boolean function can be implemented by setting the inputs corresponding to the function and the selectors as the variables.

INTRO. TO COMP. ENG. CHAPTER VI-17 COMBINATIONAL LOGIC

DEMULTIPLEXERS

BASIC DEMULTIPLEXER

- •MULTIPLEXERS
 - -BASIC MULTIPLEXER
 - **-USING PASS GATES**
 - -DESIGN W/ MULTIPLEX.
- Takes one input and selects one of many outputs to direct the input.

INTRO. TO COMP. ENG. CHAPTER VI-18 COMBINATIONAL LOGIC

DEMULTIPLEXERS

DESIGN W/ DEMULTIPLEXERS

- •MULTIPLEXERS
 •DEMULTIPLEXERS
 -BASIC DEMULTIPLEXER
- A demultiplexer is useful for routing an input to a desired location.

INTRO. TO COMP. ENG. CHAPTER VI-22 COMBINATIONAL LOGIC

ADDERS

HALF- AND FULL-ADDERS

- •DEMULTIPLEXERS
- •SHIFTERS
- •ROTATORS
 -BASIC ROTATOR
- Two basic building blocks for arithmetic are half- and full-adders as depicted by the block diagrams below.

INTRO. TO COMP. ENG. CHAPTER VI-23 COMBINATIONAL LOGIC

ADDERS

HALF-ADDER (HA)

SHIFTERSROTATORSADDERSHALF- & FULL-ADDERS

- First of all, how do we add?
- 2's complement arithmetic allows us to add numbers normally.

Inp	uts	Sum S	Carry-ou		
A B		S	C _{OUT}		
0	0	0	0		
0	1	1	0		
1	0	1	0		
1	1	0	1		

$$S = \overline{A}B + A\overline{B} = A \oplus B$$

$$C_{OUT} = AB$$

INTRO. TO COMP. ENG. CHAPTER VI-24 COMBINATIONAL LOGIC

ADDERS

FULL-ADDER (FA) (1)

- •ROTATORS
 •ADDERS
 -HALF- & FULL-ADDERS
 -HALF-ADDER (HA)
- Half-adder missed a possible carry-in. A full-adder (FA) includes this additional carry-in.

Inp	uts	Carry-in	Sum	Carry-out	
A	В	C _{IN}	S	C _{OUT}	
0	0	0	0	0	
0	0	1	1	0	$S = (A \oplus B) \oplus C_{IN}$
0	1	0	1	0	
0	1	1	0	1	$C_{OUT} = AB + C_{IN}(A \oplus B)$
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	
			1		

INTRO. TO COMP. ENG. CHAPTER VI-25 COMBINATIONAL LOGIC

ADDERS

FULL-ADDER (FA) (2)

•ADDERS

- -HALF- & FULL-ADDERS
- -HALF-ADDER (HA)
- -FULL-ADDER (FA)

$$\mathbf{S} = (\mathbf{A} \oplus \mathbf{B}) \oplus \mathbf{C}_{\mathbf{IN}}$$
$$\mathbf{C}_{\mathbf{OUT}} = \mathbf{AB} + \mathbf{C}_{\mathbf{IN}}(\mathbf{A} \oplus \mathbf{B})$$

INTRO. TO COMP. ENG. CHAPTER VI-26 COMBINATIONAL LOGIC

ADDERS

BINARY ADDITION

•ADDERS

- -HALF- & FULL-ADDERS
- -HALF-ADDER (HA)
- -FULL-ADDER (FA)

A 4-bit binary adder can be formed with four full-adders as follows.

INTRO. TO COMP. ENG. CHAPTER VI-27 COMBINATIONAL LOGIC

COMPARATORS

MAGNITUDE COMPARATOR

- ADDERS
 - -HALF-ADDER (HA)
 - -FULL-ADDER (FA)
 - -BINARY ADDITION
- Given two n-bit magnitudes, A and B, a comparator indicates whether
 - A = B, A > B, or A < B

n-bit input magnitudes

INTRO. TO COMP. ENG. CHAPTER VI-28 COMBINATIONAL LOGIC

COMPARATORS

MAGNITUDE COMPARATOR

•ADDERS
•COMPARATORS
-MAG. COMPARATOR

 The approach is to use the XNOR function (equivalence) on each of the nbits as follows

$$X_i = A_i B_i + \overline{A}_i \overline{B}_I = \overline{A_i \oplus B}_i$$

The Boolean functions for a 4-bit magnitude comparator is as follows

•
$$(\mathbf{A} = \mathbf{B}) = x_3 x_2 x_1 x_0$$

•
$$(\mathbf{A} > \mathbf{B}) = \mathbf{A}_3 \overline{\mathbf{B}_3} + x_3 \mathbf{A}_2 \overline{\mathbf{B}_2} + x_3 x_2 \mathbf{A}_1 \overline{\mathbf{B}_1} + x_3 x_2 x_1 \mathbf{A}_0 \overline{\mathbf{B}_0}$$

•
$$(A < B) = \overline{A_3}B_3 + x_3\overline{A_2}B_2 + x_3x_2\overline{A_1}B_1 + x_3x_2x_1\overline{A_0}B_0$$

Note: $\mathbf{A}_{i}\overline{\mathbf{B}}_{i}$ indicates whether $\mathbf{A}_{i} > \mathbf{B}_{i}$, $\overline{\mathbf{A}}_{i}\mathbf{B}_{i}$ indicates whether $\mathbf{A}_{i} < \mathbf{B}_{i}$, and x_{i} indicates whether $\mathbf{A}_{i} = \mathbf{B}_{i}$.