# le courant électrique

C'est un déplacement ordonné de charges électriques

### Intensité électrique

C'est le débit de charges qui passent à travers la section d'un fil, en ampères (A)=C/s.

$$I = \frac{dQ}{dt}$$

n charges q par m3 qui avancent à la vitesse v :



L'intensité est une grandeur algébrique elle peut être positive ou négative

ARQS Approximation des régimes quasi-stationnaires

Lorsque le temps de variation du signal est très supérieur au le temps de propagation d'un bout à l'autre du circuit



Dans l'ARQS, l'intensité est la même en tout point d'un fil.





# la tension électrique

Dans un circuit électrique, une charge q possède une énergie potentielle :

$$E_p = qV$$

V est le **potentiel électrique** en volts (V)

Le point du circuit où V=0 est la référence de potentiel

La tension électrique correspond à la différence de potentiel entre deux points du circuit





## Résistance



 $U = R \times i \mid$ Loi d'Ohm

R : Résistance en Ohm ( $\Omega$ )

Convention récepteur Puissance reçue:



Toute la puissance reçue est convertie en chaleur par effet Joule

# Association en série



Pont diviseur de tension



### Caractéristique :

G=1/R: Conductance

en Siemens (S)

## Association en parallèle



$$\boxed{\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}}$$

 $G_{eq} = G_1 + G_2$ 

# Dipôle

C'est un composant électrique qui comporte 2 bornes



La puissance **reçue** par le dipôle est :  $P_{AB} = U_{AB} \times i_{AB}$ 









# Condensateur

#### Deux armatures métaliques séparées par un matériau isolant.



$$i = \frac{dq}{dt}$$

$$q = Cu$$



Ces relations sont valables en convention récepteur

### Énergie stockée

$$E = \frac{1}{2}Cu^2$$
 en

en joules (J)

### Bobine

#### C'est un fil conducteur enroulé, éventuellement autour d'un matériau magnétique.





convention

### Énergie stockée

$$E = \frac{1}{2}Li^2$$
 en joules (J)

### Générateurs

#### Générateur de tension





Caractéristique d'un générateur de tension idéal. La tension est constante.

Modèle linéaire d'un générateur réel



### Générateur de courant)





Caractéristique d'un générateur de courant idéal. L'intensité est

Modèle linéaire d'un générateur réel





$$i = I - \frac{u}{R}$$
  $u = RI - Ri$