Problem C The Stern-Brocot Number System

Input: standard input
Output: standard output

The Stern-Brocot tree is a beautiful way for constructing the set of all nonnegative fractions m / n where m and n are relatively prime. The idea is to start with two fractions $\binom{0}{1}, \frac{1}{0}$ and then repeat the following operations as many times as desired:

$$\frac{m+m'}{n+n'}$$
 Insert $\frac{m}{n+n'}$ between two adjacent fractions $\frac{m}{n}$ and $\frac{m'}{n'}$.

For example, the first step gives us one new entry between $\frac{0}{1}$ and $\frac{1}{0}$,

$$\frac{0}{1}, \frac{1}{1}, \frac{1}{0};$$

and the next gives two more:

$$\frac{0}{1}, \frac{1}{2}, \frac{1}{1}, \frac{2}{1}, \frac{1}{0}$$

The next gives four more,

$$\frac{0}{1}$$
, $\frac{1}{3}$, $\frac{1}{2}$, $\frac{2}{3}$, $\frac{1}{1}$, $\frac{3}{2}$, $\frac{2}{1}$, $\frac{3}{1}$, $\frac{1}{0}$

and then we will get 8, 16, and so on. The entire array can be regarded as an infinite binary tree structure whose top levels look like this:

The construction preserves order, and we couldn't possibly get the same fraction in two different places.

We can, in fact, regard the *Stern-Brocot tree* as a *number system* for representing rational numbers, because each positive, reduced fraction occurs exactly once. Let's use the letters L and R to stand for going down to the left or right branch as we proceed from the root of the tree to a particular fraction; then a string of L's and R's uniquely identifies a place in the tree. For example, LRRL means that we go left from $\frac{1}{1}$ down to $\frac{1}{2}$, then right to $\frac{2}{3}$, then right to $\frac{3}{4}$, then left to $\frac{5}{7}$. We can consider LRRL to be a representation of $\frac{5}{7}$. Every positive fraction gets

represented in this way as a unique string of L's and R's.

Well, actually there's a slight problem: The fraction $^{\frac{1}{1}}$ corresponds to the *empty* string, and we need a notation for that. Let's agree to call it I, because that looks something like 1 and it stands for "identity".

In this problem, given a positive rational fraction, you are expected to represent it in Stern-Brocot number system.

Input

The input file contains multiple test cases. Each test case consists of a line contains two positive integers m and n where m and n are relatively prime. The input terminates with a test case containing two 1's for m and n, and this case must not be processed.

Output

For each test case in the input file output a line containing the representation of the given fraction in the *Stern-Brocot number system*.

Sample Input

5 7 878 323 1 1

Sample Output

LRRL RRLRRLRLLLLRLRRR

Rezaul Alam Chowdhury