Markow

- Macierz przejścia: $P = [p_{ij}]$, gdzie $p_{ij} = P(X_{n+1} = j \mid X_n = i)$.
- Wiersze macierzy sumują się do 1.
- Rozkład X_t reprezentowany przez wektor $\pi(t)$: $\pi(t)_s = P(X_t = s)$. Wtedy $\pi(t+1) = \pi(t)M$ i ogólniej $\pi(t+s) = \pi(t)M^s$.
- $M^s_{a,b}$ prawdopodobieństwo przejścia z a do b w s krokach.
- $f_{a,b}(s)$ prawdopodobieństwo pierwszego przejścia z a do $b\le s$ krokach.
- $f_{a,b}$ prawdopodobieństwo pierwszego przejścia z a do b.
- $p_{a,b}(s)$ prawdopodobieństwo przejścia z a do b.
- Stan powracający $f_{a,a} = 1$. Stan chwilowy nie powracający.
- a jest powracający $\iff \sum_{n=1}^{\infty} p_{a,a}^{(n)} = +\infty.$
- Stan b jest osiągalny z $a \iff p_{a,b} > 0$. Oznaczamy $b \in A(a)$.
- Stany a i b się komunikują $\iff a \in A(b) \land b \in A(a)$.
- W skończonym łańcuchu Markowa dla każdego stanu a istnieje stan powracający b osiągalny z a.
- Klasa to spójna silna składowa. Każda klasa składa się z samych stanów powracających lub chwilowych.
- Łańcuch jest **nieredukowalny**, jeśli składa się z jednej klasy powracającej.
- Stan a jest okresowy, jeśli istnieje d>1 (okres a), że jeśli $p_{a,a}(k)>0$ dla pewnego k, to d|k. Stan nieokresowy nazywamy nieokresowym. Łańcuch bez stanów okresowych nazywamy nieokresowym.
- Twierdzenie Ergodyczne: Jeśli łańcuch jest nieokresowy i nieredukowalny, to istnieje wektor π , że:
 - 1. suma współrzędnych = 1,
 - 2. $\pi = \pi P$,
 - 3. $\lim_{n\to\infty} p_{a,b}(n) = \pi_b.$

Wektor spełniający 1 i 2 to **rozkład stacjonarny**, a 1,2,3 **graniczny** łańcucha.

Rozkład jednostajny Unif([a,b])

- Gęstość: $f(z) = \frac{1}{b-a}$ dla $z \in [a, b], 0$ wpp.
- Dystrybuanta: $F(z) = \frac{z-a}{b-a}$ dla $z \in [a, b], 0$ wpp.
- $\mathbb{E}[X] = \frac{a+b}{2}$, $Var(X) = \frac{(b-a)^2}{12}$.

Rozkład wykładniczy $X \sim \text{Exp}(\theta)$

- Dystrybuanta: $F(z) = 1 e^{-\theta z}$ dla $z \ge 0$, 0 wpp.
- Brak pamięci: $P(X > s + t \mid X > s) = P(X > t)$.
- Suma n-zmiennych wykładniczych: X_1, X_2, \ldots, X_n niezależne o tym samym rozkładzie: $f_{X_1+X_2+\ldots+X_n}(z) = \frac{\theta^n}{(n-1)!} z^{n-1} e^{-\theta z}.$

Rozkład normalny/Gaussa $X \sim \mathcal{N}(\mu, \sigma^2)$

- Dystrybuanta: $\Phi(z) = F(z) = \int_{-\infty}^{z} f(t) dt$.
- Jeśli $X \sim \mathcal{N}(\mu, \sigma^2)$, to $cX + a \sim \mathcal{N}(c\mu + a, c^2\sigma^2)$.
- Suma: Jeśli $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$ i $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$ są niezależne, to $X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.
- Suma n-zmiennych jednostajnych: X_1, X_2, \ldots, X_n niezależne o tym samym rozkładzie: $f_{X_1+X_2+\ldots+X_n}(z) = \frac{\theta^n}{(n-1)!} z^{n-1} e^{-\theta z}.$

Własności rozkładów

- $EX = \int_{-\infty}^{\infty} t f_X(t) dt$, o ile funckaj $t f_X(t)$ jest całkowalna z modułem na \mathbb{R} .
- $E[g(X)] = \int_{-\infty}^{\infty} g(t) f_X(t) dt$, o ile funkcja $g(t) f_X(t)$ jest całkowalna z modułem na \mathbb{R} .
- Twierdzenie DeMoivre'a-Laplace'a: Niech S_n będzie liczbą sukcesów w n niezależnych próbach z prawdopodobieństwem sukcesu p. Wówczas, dla każdego a < b: $P(a \le \frac{S_n np}{\sqrt{np(1-p)}} \le b) \to \Phi(b) \Phi(a)$
- Niezależność zmiennych losowych: X,Y niezależne \iff $F_{X,Y}(x,y) = F_X(x)F_Y(y)$
- Suma niezależnych zmiennych losowych: X, Y niezależne $\implies f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(t) f_Y(z-t) dt$
- Prawdopodobieństwo całkowite: $P(X \in A) = \int_{-\infty}^{\infty} P(X \in A|Y=y) f_Y(y) dt$

Niezależność zdarzeń

- Niezależność skończonej rodziny: Rodzina zdarzeń niezależnych, każde o P(A) < 1, nie pokrywa całej przestrzeni zdarzeń.
- Jeśli X,Y są niezależne, f,g dowolne funkcje, to f(X) i g(Y) są niezależne.

Rozkład dwumianowy $(X \sim Binom(n, p))$

- Kształt: P(X=k) rośnie dla $k \leq \lfloor (n+1)p \rfloor$, potem maleje.
- Granica: Jeśli $n \to \infty, p \to 0, np = \lambda$, to Binom $(n, p) \to \text{Pois}(\lambda)$.
- Suma: Binom (n_1, p) + Binom (n_2, p) ~ Binom $(n_1 + n_2, p)$.

Rozkład Poissona $(X \sim Pois(\lambda))$

- Kształt: P(X = k) rośnie dla $k \le |\lambda|$, potem maleje.
- Suma: $Pois(\lambda_1) + Pois(\lambda_2) \sim Pois(\lambda_1 + \lambda_2)$.
- Warunkowe: Dla $X, Y \sim \text{Pois}(\lambda_1, \lambda_2)$:

$$P(X=k\mid X+Y=n) = \binom{n}{k} \left(\frac{\lambda_1}{\lambda_1+\lambda_2}\right)^k \left(\frac{\lambda_2}{\lambda_1+\lambda_2}\right)^{n-k}.$$

Rozkład geometryczny $(X \sim \mathbf{Geom}(p))$

- Brak pamięci: $P(X = n \mid X > m) = P(X = n m)$.
- Własność definiująca: Zmienna X przyjmująca wartości $1,\,2\,\dots$ o brakującej pamięci ma rozkład geometryczny.
- Minimum: Jeśli $X \sim \text{Geom}(p), Y \sim \text{Geom}(q)$ niezależne, to $\min(X,Y) \sim \text{Geom}(1-(1-p)(1-q))$.

Inne własności

- Granica Poissona: Jeśli $n \to \infty, p \to 0$, i $np = \lambda$, to: Binom $(n,p) \to \mathrm{Pois}(\lambda)$
- Rozkład warunkowy Poissona: Dla X,Y niezależnych zmiennych o rozkładzie Poissona, rozkład $X\mid X+Y=n$ jest dwumianowy: $P(X=k\mid X+Y=n)=\binom{n}{k}\left(\frac{\lambda_1}{\lambda_1+\lambda_2}\right)^k\left(\frac{\lambda_2}{\lambda_1+\lambda_2}\right)^{n-k}$
- Wartość oczekiwana z funkcji generującej momenty: $\mathbb{E}[X]=M_X'(0),$ gdzie $M_X(t)=\mathbb{E}[e^{tX}].$
- Wartość oczekiwana z funkcji tworzącej prawdopodobieństwa $g_X(t) = \mathbb{E}[t^X]$: $\mathbb{E}[X] =$

- $\lim_{t\to 1^-}g_X'(t),$ a dla funkcji $g_X(t)$ zbieżnych na całej prostej rzeczywistej: $\mathbb{E}[X]=g_X'(1)$
- Wariancja z funkcji tworzącej prawdopodobieństwa: Jeśli X ma skończoną wartość oczekiwaną i wariancję, to: $\mathbb{E}[X^2] = \lim_{t\to 1^-} \left(g_X'(t) + g_X''(t)\right)$, a wariancja wynosi: $\operatorname{Var}(X) = \lim_{t\to 1^-} \left(g_X'(t) + g_X''(t) (g_X'(t))^2\right)$.
- Wartość oczekiwana i wariancja z funkcji generującej prawdopodobieństwa: Jeśli $g_X(t)$ oraz $g_X'(t)$ są zbieżne na całej prostej rzeczywistej, to: $\mathbb{E}[X^2] = g_X'(1) + g_X''(1)$,, a wariancja wynosi: $\operatorname{Var}(X) = g_X'(1) + g_X''(1) (g_X'(1))^2$.