Exercise 1. Crank¹

Let us consider the manipulator robot, or crank of Figure 1 (on the left).

https://www.youtube.com/watch?v=nLd-DyiNxLo

Figure 1: RR Robot manipulator.

This robot is composed of two links of length l_1 and l_2 . Its two degrees of freedom denoted by x_1 and x_2 are represented in the figure. The inputs u_1 , u_2 of the system are the angular speeds of the links (i.e., $u_1 = \dot{x}_1$, $u_2 = \dot{x}_2$). We will take as output the vector $y = (y_1, y_2)$ corresponding to the coordinates of the tip of the second link.

- 1) Give the state equations of the robot. We will take the state vector $\mathbf{x} = (x_1, x_2)^T$.
- 2) We would like y to follow a setpoint **w** describing a target circle (on the right of Figure 1). This setpoint satisfies:

$$\mathbf{w} = \mathbf{c} + r \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}.$$

Give the expression of a control law that allows to perform this task. We will use a feedback linearization method and we will place the poles at -1.

- 3) Study the singularities of the control.
- 4) Let us consider the case $l_1 = l_2$, $\mathbf{c} = (3,4)^T$ and r = 1. For which values of l_1 are we certain to be able to move freely on the target circle, without encountering singularities?
- 5) Write a program illustrating this control law.

 $^{^{1}} A dapted \ from \ https://www.ensta-bretagne.fr/jaulin/robmooc.pdf$

Solution of Exercise 1.1

1) Give the state equations of the robot. We will take the state vector $\mathbf{x} = (x_1, x_2)^T$.

The state equations of the crank are:

$$\dot{x}_1 = u_1,
\dot{x}_2 = u_2,
y_1 = l_1 \cos x_1 + l_2 \cos(x_1 + x_2),
y_2 = l_1 \sin x_1 + l_2 \sin(x_1 + x_2).$$

2) We would like y to follow a setpoint w describing a target circle (on the right of Figure 1). This setpoint satisfies:

$$\mathbf{w} = \mathbf{c} + r \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}.$$

Give the expression of a control law that allows to perform this task. We will use a feedback linearization method and we will place the poles at -1.

By differentiating the output, we obtain:

$$\dot{y}_1 = -l_1 \dot{x}_1 \sin x_1 - l_2 (\dot{x}_1 + \dot{x}_2) \sin(x_1 + x_2)
= -l_1 u_1 \sin x_1 - l_2 (u_1 + u_2) \sin(x_1 + x_2),
\dot{y}_2 = l_1 \dot{x}_1 \cos x_1 + l_2 (\dot{x}_1 + \dot{x}_2) \cos(x_1 + x_2)
= l_1 u_1 \cos x_1 + l_2 (u_1 + u_2) \cos(x_1 + x_2).$$

Thus,

$$\dot{\mathbf{y}} = \begin{pmatrix} -l_1 \sin x_1 - l_2 \sin(x_1 + x_2) & -l_2 \sin(x_1 + x_2) \\ l_1 \cos x_1 + l_2 \cos(x_1 + x_2) & l_2 \cos(x_1 + x_2) \end{pmatrix} \mathbf{u} + \mathbf{0}.$$

This means that

$$\mathbf{A}(\mathbf{x}) = \begin{pmatrix} -l_1 \sin x_1 - l_2 \sin(x_1 + x_2) & -l_2 \sin(x_1 + x_2) \\ l_1 \cos x_1 + l_2 \cos(x_1 + x_2) & l_2 \cos(x_1 + x_2) \end{pmatrix},$$

$$\mathbf{b}(\mathbf{x}) = \mathbf{0},$$

and that

$$\mathsf{R} = egin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}$$
 ,

which is balanced. We take $\mathbf{u} = \mathbf{A}^{-1}(\mathbf{x})\mathbf{v}$ to have two decoupled integrators. We then choose the proportional controller:

$$\mathbf{v} = (\mathbf{w} - \mathbf{y}) + \dot{\mathbf{w}}$$

$$= \mathbf{c} + r \begin{pmatrix} \cos t \\ \sin t \end{pmatrix} - \begin{pmatrix} l_1 \cos x_1 + l_2 \cos(x_1 + x_2) \\ l_1 \sin x_1 + l_2 \sin(x_1 + x_2) \end{pmatrix} + r \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix},$$

which places all the poles at -1.

```
clear all close all clc
syms 11 12 x1 x2

A = [-11 * sin(x1) - 12* sin(x1 +x2), - 12 *sin(x1 + x2); 11 *cos(x1) + 12 *cos(x1 +x2), 12 *cos(x1 + x2)];

detA = simplify(det(A))
adjA = adjoint(A)
invA = adjA/detA
invA = simplify(inv(A))
```

We have that $\boldsymbol{A}(\boldsymbol{x})^{-1} = \frac{1}{\det \boldsymbol{A}(\boldsymbol{x})} \operatorname{adj} \boldsymbol{A}(\boldsymbol{x})$ with

```
 \det A = \\ 11*12*\sin(x2) \\  \operatorname{adj}A = \\  \begin{bmatrix} & 12*\cos(x1+x2), & 12*\sin(x1+x2) \\ [-12*\cos(x1+x2)-11*\cos(x1), & -12*\sin(x1+x2)-11*\sin(x1)] \end{bmatrix} \\ \operatorname{inv}A = \\  \begin{bmatrix} & \cos(x1+x2)/(11*\sin(x2)), & \sin(x1+x2)/(11*\sin(x2)) \\ [-(12*\cos(x1+x2)+11*\cos(x1))/(11*12*\sin(x2)), & -(12*\sin(x1+x2)+11*\sin(x1))/(11*12*\sin(x2))] \end{bmatrix} \\ \operatorname{inv}A = \\  \begin{bmatrix} & \cos(x1+x2)/(11*\sin(x2)), & \sin(x1+x2)+11*\sin(x1)/(11*12*\sin(x2)) \\ [-(12*\cos(x1+x2)+11*\cos(x1))/(11*12*\sin(x2)), & \sin(x1+x2)/(11*\sin(x2)) \\ [-(12*\cos(x1+x2)+11*\cos(x1))/(11*12*\sin(x2)), & -(12*\sin(x1+x2)+11*\sin(x1))/(11*12*\sin(x2)) \end{bmatrix}
```

3) Study the singularities of the control.

Since

$$\det \mathbf{A}(\mathbf{x}) = I_1 I_2 \sin x_2.$$

This determinant is equal to zero if $l_1 l_2 \sin x_2 = 0$. This happens if $x_2 = k\pi$, $k \in \mathbb{Z}$, where $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ is the set of integer numbers.

4) Let us consider the case $l_1 = l_2$, $\mathbf{c} = (3,4)^T$ and r = 1. For which values of l_1 are we certain to be able to move freely on the target circle, without encountering singularities?

Let $l_1 = l_2 = I$. We have a singularity if $\sin x_2 = 0$. Thus, either both links are folded up (and therefore y is not on the circle) or both links are stretched out. In the latter case (which is of interest to us) the point \mathbf{y} is on the circle of radius 2I that intersects the target circle if:

$$2I \in \left[-1 + \sqrt{4^2 + 3^2}, \sqrt{4^2 + 3^2} + 1\right] = [5 - 1, 5 + 1] = [4, 6]$$

where $\sqrt{4^2+3^2}$ corresponds to the distance of the center of the circle to the origin. Thus, the circle is outside the workspace of the manipulator if l<2. We will have a singularity on the circle if $l\in[2,3]$. If we wish to move freely on the circle, we need to choose l>3.

5) Write a program illustrating this control law.

Solve