第二章 链路层/链路、接入网和局域网

第 6 章: 数据链路层和局域网

目的:

- □ 了解数据链路层服务及协议原理:
 - 差错检测和纠错
 - 共享广播信道: 多路访问协议
 - 链路层寻址
 - 可靠传输,流量控制

链路层

- □6.1 概述和服务
- □6.2差错检测和纠错技术
- □6.3多路访问链路 和协议
- □6.4交换局域网

链路层:介绍

常用术语:

- □ 节点: 主机和路由器(包括网桥和交换机)
- □ **链路**: 沿着通信路径连接相邻 节点的通信信道
 - □ 有线链路
 - □ 无线链路
 - □ 局域网
- □ <mark>帧</mark>: 链路层协议交换的数据单 元。封装网络层数据报

数据链路层的职责:将 分组通过一个链路,从 一个节点传输到临近的 另一个节点。

链路层的特点

- □ 分组传输可以经过不同的 链路使用不同的协议实现:
 - 例如,最初的链路是以太网,然后是帧中继,接着是802.11
- □ 每个链路协议提供不同的 服务
 - 例如,可以在链路上提供或 不提供可靠的传输

传输类比

- □ 从成都到九寨沟的旅途
 - 打的: 成都某地到成都机场
 - 飞机:成都机场到九寨沟机 场
 - 大巴: 九寨沟机场到清华风 景区
- □ 旅客 = 数据包
- □ 运输段 = 通信链路
- □ 运输模式 = 链路层协议
- □ 旅行社 = 路由算法

链路层服务

□ 成帧:

- 把网络层数据报加头和尾, 封装成帧
- 帧头中包括指明目的和源的"物理地址"(不同于IP地址)

□ 链路访问:

- 媒体访问控制(Medium Access Control,MAC)协议
- 共享媒体的多路访问

□ 在邻接节点间的可靠传输

- 我们已经在第三章学习了怎么做!
- 在出错率很低的链路上很少用 (光纤,部分双绞线)
- 无线链路: 高出错率
 - · 问题: 为何链路层和端到端的层都要提供可靠性服务?

链路层服务(续)

□ 差错检测:

- 差错由信号衰减和噪声引起
- 接收者检测错误: 如果发现差错
 - · 发送者重传帧或丢帧

□ 纠错:

- 接收者检测和纠正错误,不需发送者重传
- □ 半双工和全双工
 - 半双工,一个节点不能同时传输和接收
 - 全双工,节点可以同时传输和接收
- □ 流量控制:
 - 在邻接的发送节点和接收节点间的同步调节

适配器通信

- □ 链路层在 "适配器" (网 卡)中实现
 - Ethernet卡, PCMCIA卡, 802.11卡
- □ 发送方:
 - 封装分组成帧
 - 增加检错位、可靠传输、流 量控制等

- □ 接收方
 - 检测差错、可靠交付、流量控制等
 - 提取分组,传给接收节点
- □ 适配器是半自治的
- □ 链路层 & 物理层

链路层

- **□6.1** 概述和服务
- □6.2差错检测和纠错技术
- □6.3多路访问链路 和协议
- □6.4交换局域网

错误检测

EDC= Error Detection and Correction bits (冗余)

D = 被EDC保护的数据,包括头部字段

- · 错误检测不是100%可靠!
 - ・协议有可能漏掉一些错误,但很少
 - ·大的EDC域能提供更好的检错和纠错能力

奇偶校验

单个奇偶位:

检测奇数个位的错误

一比特奇校验 事实上,发生未检测到 错误的概率为**50%-->** 有必要深入研究

接收方检测和纠正错误的能力:前向纠错FEC可以减少发送方重传

二维偶数奇偶校验:

检测和纠正单个位的错误,检测任意组合的两个错误

single bit error

Internet检查和

目标:检测在传输数据段中的"错误"

<u>发送方:</u>

- □ 把数据段内容看成16-bit的整数序列
- □ 检查和: 把数据段内容 加起来,求反码
- □ 发送方把检查和放入数据段的检查和域

接收方:

- □ 计算接收数据的检查和
- □ 计算结果是否是全1?
 - NO 检测到错误
 - YES 没有检测到错 误。但可能有错....

TCP,UDP的校验和包括首部和数据,IP校验和只计算首部

循环冗余校验CRC(Cyclic Redundancy Check)

- □ 把数据D,看成d位二进制数
- □ 发送方与接收方商定一个r+1位模式 (生成多项式), 6
- □ 目标:选择r位循环冗余位,R,将它们添加到D后面
 - **⟨D,R⟩** 的**d+r**位二进制数使用模2运算能被**r+1**位的二进制数 **G**整 除
 - 接收方用G去除接收到的<D,R>的d+r位二进制数,如果余数非零:错误发生
 - 能检测到少于r+1位的各种猝发错误
- □ 被各种链路层协议广泛使用

CRC例子

想找到一个R,对于n有:

 $D.2^r XOR R = nG$

两边都异或R:

 $D.2^r = nG XOR R$

如果用G来除 D.2^r ,余 数等于R:

R = remainder $\begin{bmatrix} D.2^r \\ G \end{bmatrix}$

- □国际标准已经定义了8-、16-、32-位生成多项式*G*; 8-位*CRC*用于*ATM*头部5字节的保护; 32-*CRC*用于大量链路层IEEE协议。
- □每个CRC标准能够检测少于r+1位的猝发错误和任意的奇数个比特错误.....
- □其他检错和纠错方法不常用,故不作专门介绍
- □ 校验和通常应用于网络层及其之上的层次,要求简单快速的软件实现方式,而*CRC*通常应用于链路层,可以适配器硬件实现复杂的算法。

链路层

- **□6.1** 概述和服务
- □6.2差错检测和纠错技术
- □6.3多路访问链路和协议
- □6.4交换局域网

多路访问链路和协议(多路访问协议,多 址接入协议)

两种类型的"链路":

- □点对点
 - PPP (用于拨号访问)或HDLC
- □广播(有线或无线共享)
 - 传统以太网
 - ○802.11无线局域网

多址访问协议

- □单个共享广播信道
- □两个或多个节点同时传输:冲突(碰撞)
 - ○冲突(碰撞):一个节点同时接收两个或多个信号时发 生冲突
 - 在某个时刻只有一个节点发送数据才可以发送成功信息

多址访问协议

- □ 分布式算法决定各节点如何共享信道,即决定节点 什么时候可以传数据
- □ 共享信道既要负责进行数据传输,又要负责分布式 算法的控制信息的传输
 - 没有带外信道传输控制信息

理想的多址访问协议

速率为R bps的广播信道

- 1. 当一个节点有数据发送时,它能以R bps的速率发送.
- 2. 当有M个节点要发送数据,每个节点的平均发送速率 为 R/M
- 3. 完全分散:
 - 不需要主节点协调传输
 - 不需要时钟、时隙同步
- 4. 简单

MAC 协议:分类

3大类:

- □ 信道划分
 - 把信道划分为小"片" (时隙, 频分, 码分)
 - 给节点分配专用的小"片"
- □ 随机访问
 - 不划分信道,允许冲突
 - 能从冲突中"恢复"
- □ 轮流
 - 通过集中调整共享访问避免冲突

6.3.1时分多路访问: TDMA

TDMA: time division multiple access

- □ 轮流访问信道
- □ 在每个循环中,每个站点得到一个固定长度的时隙
 - 时隙长度通常为数据服务单元的发送时间
- □未被使用的时隙空闲
- □ 例子: 6个站点的局域网, 1,3,4 被使用, 2,5,6空 闲

频分多路访问: FDMA

FDMA: frequency division multiple access

- □ 信道被分成不同频段
- □ 每个站点分配一个固定的频段
- □未被使用的频段空闲
- □ 例子: 6个站点的局域网, 1,3,4 被使用, 2,5,6空闲

码分多路访问 (CDMA)

CDMA (Code Division Multiple Access)

- □每个节点分配一个唯一的编码
- □每个节点用它唯一的编码来对它发送的数据进行 编码
- □允许多个节点"共存",信号可叠加,即可以同 时传输数据而无冲突 (如果编码 是"正交化"的

6.3.2随机接入协议

- □ 节点有数据包发送
 - 以信道满数据率R传送
 - 节点间没有协调者
- □ 2个或更多的发送节点 -> "冲突collision",
- □ 随机访问MAC协议要求:
 - 能够检测冲突
 - 能够从冲突中恢复 (例如:通过延时重传)
- □ 随机访问MAC协议实例:
 - ALOHA
 - 时隙ALOHA
 - O CSMA, CSMA/CD, CSMA/CA

纯 (非时隙) ALOHA

- □ 非时隙Aloha: 简单,不需同步
- □ 帧一到达
 - 立即传输
- □ 冲突概率增加:
 - 在t₀发送的帧和在 [t₀-1,t₀+1]的发送的其它帧冲突

纯Aloha效率

P(给定节点成功传送) = P(节点传送). $P(没有其他节点在[t_0-1,t_0]内传送)$. P(没有其他节点在[to,to+1]内传送) $= p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$ $= p \cdot (1-p)^{2(N-1)}$

... 选择p值,然后求N->无穷时的极限...

= 1/(2e) = 0.18

时隙ALOHA

假设

- □ 所有帧大小相同
- □时间被划分为相同大小的 时隙,一个时隙等于传送 一帧的时间
- □ 节点只能在一个时隙的开 始才能传送
- □ 节点需要同步
- □ 如果一个时隙有多个节点 同时传送, 所有节点都能 检测到冲突

实现

- □ 当节点要发送新帧,它等到 下一时隙开始时传送
- □ 没有冲突,节点可以在下一 时隙发送新帧
- □ 如果有冲突,节点在随后的 时隙以概率p重传该帧,直 到成功为止。

时隙ALOHA

优点

- □ 单个活跃节点可以持续 以满速率传送帧
- □ 具有高分散性: 只需节 点的时隙同步
- □简单

缺点

- □ 冲突,浪费时隙
- □空闲时隙
- □ 节点只有在传输数据包 时才能检测到冲突

时隙Aloha效率

效率: 当有很多节点,每个节点 有很多帧要发送时,成功时隙所 占的百分比

- □ 假设有N个节点,每个节点在 时隙以概率p发送
- □ 一个节点在一个时隙成功传 送的概率 = p(1-p)^{N-1}
- □ 任一节点传送成功的概率 = $Np(1-p)^{N-1}$

- □ 为了得到N个活跃节点的 最大效率,必须找出使表 达式Np(1-p)N-1 取最大 值的p*
- □ 为了得到大量活跃节点的 最大效率, 我们求**N**趋 近无穷时Np*(1-p*)N-1 极限值,计算可知最大效 率为1/e =0 .37

最佳:信道有 37%的 有效传输

CSMA (Carrier Sense Multiple Access) 载波侦听多路访问

CSMA: 传送前侦听:

□ 如果信道闲: 传送整个帧

□ 如果信道忙: 延迟传送

□ 类比人类行为: 不打断他人!

CSMA冲突

冲突还是可能发生:

传播延迟可能导致两个节点没侦 听到其它节点的传送

冲突:

整个数据包的传送时间被浪费

注意:

距离和传播延时决定冲突概率

spatial layout of nodes

CSMA/CD (冲突检测)

CSMA/CD:

- 在一个短时间内检测冲突
- 放弃冲突传送,减少带宽浪费
- □冲突检测:
 - 在有线LANs中容易:测量信号强度,比较传送和接收 信号
 - 在无线LANs中困难: 传输中接收可能关闭
- □ 人类行为: 有礼貌的会谈

CSMA/CD协议

基本思想:

- □ 1. 当一个节点要发送数据时,首先监听信道,看是否 有载波。
- □ 2. 如果信道空闲,则发送数据; 如果信道忙,则继续 对信道进行监听。一旦发现空闲,便立即发送。
- □ 3. 如果在发送过程中未检测到碰撞,则传输成功;否 则停止正常发送,转而发送一短暂的干扰信号jam,强 化冲突,使其它站点都能知道出现了冲突。
- □ 4. 发送了干扰信号后,指数退避一随机时间, 即假设该 帧经过n次冲突后,适配器在{0,1,2,...,2m-1}中随机 选取一个K值 , 其中m=min(n,10),然后等待K*512比 特时间后,回到第2步

CSMA/CD协议

- 拥塞信号: 48比特,确保 所有传送者知道冲突发 生
- 比特时间: 对于10 Mbps Ethernet 为0.1微秒, 当K=1023,等待时间大 约50毫秒

指数回退:

- □ 目标: 适配器依据当前 负载情况重传
 - □ 重负载:等待时间变长
- □ 第一次冲突: 在{0,1} 中选k值:延迟Kx512比 特时间传送
- □ 第二次冲突: 在 {0,1,2,3}中选k值...
- **□ 10**次以后,在 {0,1,2,3,4,...,1023}中 选k值。

CSMA/CD 效率

- □ †_{prop} = 在LAN中任两个节点间传播所用最大时间
- □ T_{trans} = 发送最大帧所用时间

efficiency
$$\Box \frac{1}{1 \Box 5t_{prop} / t_{trans}}$$

- □ 当†prop接近O时,效率接近于1
- □当†_{trans}趋于无穷时,效率接近于1

CSMA/CD协议讨论

CSMA/CD协议讨论

CSMA/CD协议讨论

6.3.3 "轮转" MAC协议

分割信道MAC协议

- 在高负载的情况下,信道共享公平高效
- ○低负载效率低:延迟访问,如果只有一个活跃节点 只分配了 1/N的带宽

随机访问MAC协议

- 低负载效率高: 单个节点可以获得整个信道
- 高负载:冲突开销大

"轮转"协议

两者的折中!

"轮转" MAC协议

轮询:

- □ 主节点轮流 "邀请" 从属节点传送数据
- □ 关注:
 - 轮询开销
 - 延迟
 - 主节点失效,整个网络失效

令牌传递:

- □ 控制令牌从一个节点顺序传到 下一个节点
- □ 令牌消息
- □ 关注:
 - 令牌开销
 - 延时
 - 令牌失效

MAC协议总结

□共享介质

- 信道分割: 时间,频率,代码
 - 时分,码分,频分
- 随机分割 (动态)
 - · ALOHA, S-ALOHA, CSMA, CSMA/CD
 - · 载波侦听: 有线网络容易实现, 无线网络困难
 - · CSMA/CD用于以太网,CSMA/CA用于无线网络
- o 轮转
 - · 中心节点轮询, 令牌传递

6.4 交换局域网

- □多址访问协议广泛应用于局域网
- □基于随机访问的CSMA/CD广泛应用于局域网
- □基于令牌传递技术的令牌环和FDDI在局域网 技术中变得次要

链路层

- **□6.1** 概述和服务
- □6.2差错检测和纠 错技术
- □6.3多路访问链路 和协议
- □6.4交换局域网

6.4.1链路层寻址和ARP

32位IP地址

- □网络层地址
- □用于把分组送到目的IP网络(回忆IP网络定义)
- □IP协议初始化前配置

48位MAC(或LAN 或物理或Ethernet)地址:

- □链路层地址
- □用于把数据帧从一个接口传送到另一个接口(同 一网络中)
- □ 48位MAC地址固化在适配器的ROM

局域网地址

在局域网中的每一个适配器都有一个唯一的LAN地址

局域网地址

- □ MAC地址由IEEE统一分配
- □ 厂商购买一块MAC地址空间 (要保证唯一性)
- □ 比较:
- (a) MAC地址:好像身份证号码
- (b) IP地址: 好像邮政地址
- □ MAC平面地址 => 可移动
 - 能从一个LAN移动到另一个LAN
- □ IP层次地址
 - 依赖节点所依附的IP网络

回忆应用层的主机名,网络层**IP**地址,链路层**MAC**地址。 有利于保持各层独立的原则。

回忆前面的路由讨论

A把IP分组发送给 B:

frame source,

addr

dest address

B's MAC A's MAC

addr

- 查找B的网络地址,发现B和A在 同一网络中
- 链路层发送分组给B,该分组包含 在链路层帧中

addr

ARP: 地址解析协议

问题:知道B的IP地址怎么知道它的MAC地址

- □每个在局域网上的IP 节点 (Host, Router) 都有ARP 表
- □ ARP表:局域网上一 些节点的IP/MAC地 址映射
 - < IP address; MAC address;
 TTL>
 - TTL (Time To Live): 映射地址的失 效时间 (典型为20分 钟)

ARP协议

- □ A想发送分组给 B,A知道 B的IP地址(假设B的MAC地址不在A的ARP表中)
- □ A广播包含B的IP地址的ARP查询包
 - 目的MAC地址= FF-FF-FF-FF-FF
 - 在局域网上的所有机器都能收到ARP查询
- □ B收到 ARP包,回给A一个带有B的MAC地址的包
 - 包单播unicast发送给A的MAC地址
- □ A缓存IP-to-MAC地址对在 ARP表中,直到信息过期 (timeout)
 - 软件规定:如果ARP表的信息在一定时间内没有刷新,则信息将过期。
- □ ARP是即插即用的:
 - 无需网络管理员干预,节点就能创建ARP表

由数据到子网以外

A通过R向B发送分组

- □ 在路由器R中有两个ARP表,每个针对一个IP网络 (LAN)
- □ 在主机的路由表中发现路由器的IP: 111.111.111.110
- □ 在主机的ARP表中发现MAC地址: E6-E9-00-17-BB-

- □ A创建一个分组,源地址为A,目的地址为B
- □ A使用ARP得到R的111.111.111.110的MAC地址
- □ A创建一个链路层帧,该帧以R的MAC地址为目的地址,并包含 A-to-B的IP数据包

帧头		IP首部				IP数据	帧尾
E6-E9-00- 74	MAC 1-29-9C- 3-FF-55		源IP地址 111.111.111	目的IP地址 222.222.222. 222		DATA	CRC校验

□ A的适配器发送帧,R的适配器收到帧

5-51

□ R从Ethernet帧中提取IP数据包,得知目的地址为B

IP首	IP数据		
 源IP地址 111.111.111	目的IP地址 222.222.222.222		DATA

- □ R查找路由表,得知B在LAN2中,使用222.222. 222.220接口运行ARP得到B的MAC地址
- □ R创建一个包含A-to-B的IP数据包的帧发送给B

帧头			IP首部			IP数据	帧尾
49-BD-D2- 1A-	MAC 23-F9- -06-9D		源IP地址 111.111.111.111	目的IP地址 222.222.222. 222		DATA	CRC校验

或网 5-52

6.4.2以太网Ethernet

主流的 LAN技术

- □ 价格便宜!
- □ 第一个广泛使用的LAN技术
- □比令牌和ATM简单、便宜
- □ 更高速率,其速度可达到: 10, 100, 1000 Mbps, 10Gbps

Metcalfe的以太网草图

星型拓扑

- □ 90年代中期流行总线拓扑结构
- □ 现在星型拓扑结构盛行
- □ 连接设备:集线器hub或交换机switch (后面介绍)

集线器Hub

- □ 集线器本质上是物理层的中继器:
 - 比特信号的整形放大和信号的转换,比如光信号与 电信号的转换(带电口光口的集线器)
 - 收到的比特信号发送给所有其它连接节点
 - 多个端口使用相同的传输速率
 - 没有帧缓存,也没有CSMA/CD(适配器检测冲突)

Ethernet帧结构

把IP分组(或其它网络层协议包)封装在 Ethernet帧

Preamble:前同步码,8个字节

- □前7个字节为 10101010, 最后一个为 10101011
- □用于发送方和接收方的时钟同步

Ethernet帧结构(续)

- □ Addresses: MAC地址,6个字节
 - 如果适配器收到的帧的目的地址与之匹配或者是一个广播地址(ARP包),就把帧传给网络层
 - 否则,抛弃该帧
- □ Type: 类型, 2个字节,
 - 指明可以支持的高层协议,主要是IP协议,也可以是其他协议如: Novell IPX和 AppleTalk
- □ Data:46~1500字节
- □ CRC:循环冗余校验(帧校验序列), 4个字节。
 - 接收方检测,如果有错,丢弃该帧

不可靠的无连接服务

- □无连接:发送和接收适配器间不"握手"
- □不可靠:接收适配器不向发送适配器发送确认帧
 - 传递到网络层的数据报流可能有间隙
 - ○如果应用使用TCP协议,间隙会被填好
 - 否则,应用能看见间隙

Ethernet使用 CSMA/CD

- □非时隙
- □ 适配器检测到有其它适配器 发送的时候,就不会发送帧 ,即它采用了载波侦听机制
- □ 在发送过程中,适配器检测 到有其他适配器发送,它将 中止发送,即它采用了冲突 检测机制

□ 在试图重传之前,适配 器会等待一个随机时间, 即随机访问

Ethernet技术:10BaseT 和 100BaseT

- □ 10/100 Mbps速率;后者被称为"快速 ethernet"
- □BASE表示基带以太网; T 表示双绞线
- □早期通过转发器(repeater,中继器)延长网段
- □各节点都连接到集线器上 "星型拓扑结构";在 节点和适配器间最大距离为100米

Gbit Ethernet

- □使用标准的Ethernet帧格式
- □允许点到点链路和共享广播信道
- □共享模式使用*CSMA/CD*技术;必须限制节点间的最大距离,以确保效率
- □使用的集线器,被称为"有缓冲器的分配装置"
- □点到点的信道是全双工的1 Gbps速率
- □ 现在已经有10 Gbps!

6.4.3链路层交换机

如何互联局域网网段

- □集线器(物理层)
- □交换机 (链路层)

集线器(Hub)

- □ 连接局域网内各网段的设备
- □扩展各节点间的最大距离
- □ 但是各物理网段的冲突域仍然汇集成一个大的冲突域(逻辑网段)
 - 如果一个在CS域的节点和一个在EE域的节点同时通信:冲突
- □ 不能使 10BaseT和100BaseT网段互联

Ethernet交换机

- □ 本质上是多口网桥
- □ 2层 (帧)转发, 使用LAN地址 过滤
- □ 交换: A-to-A'和 B-to-B'同时工作,不冲突
- □大量接口
- □ 经常: 单个主机, 星型结构 连到交换机
 - Ethernet, 但不冲突!

Ethernet交换机(Switch)

- □ 链路层设备
 - 存储和转发以太网帧
 - 检查帧头,并根据目的MAC地址有选择的转发帧
 - 当MAC帧被转发到某一共享网段时,需要使用 CSMA/CD访问该网段
- □透明性
 - ○主机不关心交换机的存在
- □ 即插即用,自学习
 - 交换机不需要被配置

交换机转发

- ·交换机怎么确定将接收到的MAC帧转发到哪一个网段呢?
- 这听起来象是一个路由问题...

自学习

- □ 交换机有一个交换表
- □ 交换表的表项:
 - (MAC地址,接口,时间)
 - ○交换表中过期的表项将被删除 (TTL 可以是60分钟)
- □ 交换机学习哪一个主机可以通过哪一个接口到达交换机
 - 当接收一数据帧时,交换机"学习"发送者的位置:进入 交换机的LAN网段
 - 在交换表中记录发送者/位置对应关系

Address	Interface	Time	
62-FE-F7-11-89-A3	1	9:32	
7C-BA-B2-B4-91-10	3	9:36	

过滤/转发

当交换机接收一数据帧时:

```
根据接收帧的目的MAC地址检索交换表if 目的MAC地址的表项被发现then{
    if 如果目的地址在接收帧的网段中then 丢弃该帧
    else 转发该帧到指定的接口
    }
    else 广播
```

向所有(除接收帧所在的接口外)其它接口转发

交换机举例

假设C发送数据帧到D

- □ 交换机接收来自C的数据帧
 - 因为D不在交换表中,交换机将转发数据帧到接口2和3
 - 注意交换机在接口1接收到来自发送者C的帧,"学习",添加新的表项
- □数据帧被D接收

交换机举例

假设D回复数据帧给C.

- □ 交换机接收来自D的数据帧
 - 因为C在交换表中,所以交换机只向接口1转发数据帧
 - 交换机在接口2接收到来自发送者C的帧,"学习",添加新的表项
- □数据帧被C接收

交换机: 冲突隔离

- □ 交换机将一个子网划分成若干个LAN网段
- □ 交换机过滤数据包:
 - 同一LAN网段的数据帧传输不被转发到其它LAN网 段
 - ○每个LAN网段变成一个独立的冲突域

交换机: 专用接入

- □ 交换机具有大量接口
- □ 主机可以直接连接到交换机
- □ 没有冲突: 全双工模式运行

交换: A-到-A' 和 B-到-B' 同时交换,没有冲突

交换机

- □直通交换:帧从输入转发到输出端口,不必等 待整个帧的装配
 - ○轻微减少延时
- □ 可混合各种共享/专用, 10/100/1000 Mbps 接口

机构网络举例

交换机 vs. 路由器

- □都是存储转发设备
 - ○路由器:网络层设备,转发分组
 - ○交换机:数据链路层设备,转发帧
- □路由器实现路由算法建立路由表,并转发分组
- □交换机实现自学习包含交换表、转发/过滤

综合比较

	<u>hubs</u>	routers switches	
流量隔离	no	yes yes	
即插即用	yes	no yes	
优化路由	no	yes no	
直通交换	yes	no yes	

第六章: 总结

- □ 数据链路层服务:
 - 差错检测,纠错
 - 共享广播信道: 多址访问
 - 链路层寻址, ARP
- □ 链路层技术的实例和实现:
 - Ethernet
 - o 交换式LAN

第六章: 复习大纲

- □ 链路层提供的服务
 - 成帧
 - 链路访问
 - 差错检测
- □ 链路类型: 点对点和共享
- □共享介质使用多址访问技术
 - 信道划分
 - 随机访问
 - 轮转
- □ 链路层编址
 - MAC地址是一种全局性的平面地址
 - ARP协议的功能

第六章: 复习大纲

□以太网技术

- 以太网技术定义链路层和物理层的实现方式
- 帧格式
- 以太网提供无连接、不可靠的服务
- 共享式以太网采用CSMA/CD介质访问控制技术 的基本原理
- 物理层采用曼彻斯特编码
- 连接设备使用集线器和交换机
- 集线器和交换机各自的特点

本章作业

□ 习题: R2, R6, P1, P5, P18, P21

第5章 数据链路层

- □ 数据链路层功能: 完成帧在两个相邻节点的传输
- □ 分组传输可经由不同链路,使用不同链路层协议传输(IP over everything)
- □ 数据链路层提供服务:成帧、链路访问控制、可靠传输、差错检测和纠错、流量控制
- □ 适配器 (网卡) 是链路层设备,实现了数据链路层和物理层功能
- □ 差错检测:原数据D添加冗余信息EDC,检测不是100%可靠
 - 奇偶校验: 检测奇数个错误; 二维奇偶校验: 检测并纠正单个bit 错误, 检测任意组合两个bit错误
 - 校验和:接收方计算校验和,结果不全1意味着出错,全1表明未 检测到错误(可能有错)
 - *CRC校验: 检测r+1bit猝发错误
 - · 数据D,r+1 bit生成多项式G,r bit CRC校验位R,R = D*2^r mod G(余数不足r bit左侧需补O)
 - ・用硬件实现

多路访问控制

- □ 在共享信道上解决节点什么时候传输数据的问题
- □ 信道划分类:共享信道划分为若干子信道,分配给节点专用的固定子信道
 - TDMA,子信道为时隙
 - FDMA,子信道为频段
 - CDMA, 子信道为编码
 - 高负载效率高,低负载效率低
- □ 随机访问类: 竞争信道,成功则以满速率发送
 - o 纯ALOHA协议:有数据即可发送,冲突概率大
 - o 时隙ALOHA协议:只能在时隙开始处发送,降低了冲突概率
 - CSMA协议: 发送前监听信道,闲则发,忙则延迟发送。距离和传播延迟决定冲突概率
 - CSMA/CD协议:发送过程中监听信道,冲突后停止发送
 - 高负载冲突概率大,效率低
- □ 轮转类:轮流访问共享信道

CSMA/CD协议*

- □ 1.发送数据时监听信道是否有载波存在
- □ 2.闲则发送; 忙则继续监听至空闲后发送
- □ 3.发送过程中未检测到碰撞,则传输成功;否则停止发送,并发送48bit干扰信号jam, 强化冲突
- □ 4.指数退避等待随机时间K*512bi+时间,K值在{0,1,2,...,2m-1}中选取,m=min(n,10),n为冲突次数,回到第2步
- □ 网络最远两台主机AB之间传播延迟为+,节点A在+O时刻发送数据后只需监听2+时间, 若2+时间内没有检测到冲突,则无需再监听
 - 最坏情况下节点A在+O+2+时间后检测到冲突(即A信号即将到达B之前B发送数据)
 - 最短情况是节点A在+O时刻检测到冲突(即B在+O-+时刻之前已发出数据)
 - A, B同时在+O时刻发出数据,则在+O++时刻都将检测到冲突

ARP协议

- □ 链路层地址: MAC地址, 48bit, 物理地址, 平面结构 IP地址, 32bit, 逻辑地址, 层次结构
- □ ARP协议:由IP地址获得MAC地址,主机维护ARP表
 - 主机A发送数据给同一网络主机B,若主机A的ARP表中没有 主机B的MAC地址,则运行ARP协议由B的IP地址获得B的 MAC地址,随后完成帧的封装并发送
 - 主机A发送数据给不同网络主机B,则主机A应把数据发给网关路由器,若主机A的ARP表中没有网关路由器在A网络侧的MAC地址,则运行ARP协议由网关路由器A网络侧IP地址获得该侧接口的MAC地址,随后完成帧的封装并发送至网关路由器选路

以太网

- □ 组网拓扑: 星型拓扑、总线拓扑
- □ 物理层设备: 中继器、集线器
- □以太网帧结构

- 18字节首前, Data與40-10UJ子市
- 最短帧长64字节,最大帧长1518字节,其中MTU=1500,与之对应的MSS=1500-IP首部(字节)-TCP首部(20字节)=1460字节

MSS:最大报文段长度,即TCP报文段能承载的应用层数据最大长度

- 不可靠的无连接服务
- 使用CSMA/CD

交换机

- □链路层设备
 - ○存储和转发以太网帧
 - 检查帧头,并根据目的MAC地址有选择的转发帧
 - 当MAC帧被转发到某一共享网段时,需要使用CSMA/CD 访问该网段
 - 即插即用,自学习

	集线器	交换机	路由器
流量(冲突) 隔离	不能	能	能
即插即用	是	是	否
转发方式	扩散 (广播)	过滤转发	选路
转发表	无	交换表(自学 习)	路由表(选路 算法)
直通交换	是	是	否
互联异构网络	不能	能	能
网络协议层次	物理层	数据链路层	网络层

应用层协议

协议	功能	使用服务	服务器端口 号	有无状 态	所在层次	体系结 构
HTTP	与web服务器通 信	TCP	80	无状态	应用层	C/S
FTP	完成文件传输	TCP	21(控制连 接) 20(数据连 接)	有状态	应用层	C/S
SMTP	电子邮件发送	TCP	25	无状态	应用层	C/S
POP3	接收电子邮件	TCP	110	无状态	应用层	C/S
IMAP	接收电子邮件	TCP	143	有状态	应用层	C/S
DNS	由域名获得相应 IP地址	UDP	53	无状态	应用层	C/S
DHCP	自动获取IP地址	UDP	68	/	应用层	C/S
WIME	SMTP邮件服	务扩展,使	之能传送任何	可内容	应用层	

协议

协议	功能	所属层次	使用服务	服务器端口号	IP首部上层协议字段
TCP	主机进程之间的报文段 通信	传输层			
UDP	主机进程之间的用户数 据报通信	传输层			
IP	主机之间的分组传输	网络层			
IPv6	解决IP地址短缺问题	网络层			
ICMP	网络层控制信息的传输	直接用IP传输	IP		1
RIP	域内路由协议,距离向 量算法实例	应用层,为 网络层服务	UDP	520	17
OSPF	域内路由协议,链路状 态算法实例	直接用IP传 输	IP		89
BGP	边界网关协议,域间路 由协议	应用层,为 网络层服务	ТСР	179	6
ARP	完成 IP 地址到 MAC 地址的解析	/			

多点访问控制协议/MAC协议

类别	协议	原理	特点
信道划 分类	TDMA	子信道"时隙"	高负载效率高,低负 载效率低,资源浪费
	FDMA	子信道"频段"	大
	CDMA	子信道"编码"	
随机访 问类	纯ALOHA	有帧即发送	低负载效率高,能以 满速率发送; 高负载 ——
叫 矢	时隙ALOHA	时隙开始时刻才能发 送	效率低,冲突开销大
	CSMA	发送前监听信道,闲 才发送	
	CSMA/CD	同CSMA,发送过程中检测到冲突则停止发送	
轮转类	轮询	主节点询问	结合前两类优点。存 在单点失效,时间延
	令牌	在环拓扑中,获得令 牌才能发送	迟大问题