Page 1 of 16

Appln No.: 10/659,044 Page 1 of Applicant(s): Sarah E. Kim et al.
THICK METAL LAYER INTEGRATED PROCESS FLOW TO IMPROVE POWER DELIVERY AND MECHANICAL BUFFERING

FIG. 1A

Appln No.: 10/659,044 Page 2 of 16 Applicant(s): Sarah E. Kim et al. THICK METAL LAYER INTEGRATED PROCESS FLOW TO IMPROVE POWER DELIVERY AND MECHANICAL BUFFERING

FIG. 1B

FIG. 1C

Page 3 of 16

Appln No.: 10/659,044 Applicant(s): Sarah E. Kim et al.

THICK METAL LAYER INTEGRATED PROCESS FLOW TO IMPROVE POWER DELIVERY AND MECHANICAL

FIG.1D

FIG. 2

Applicant(s): Sarah E. Kim et al.

Page 4 of 16

THICK METAL LAYER INTEGRATED PROCESS FLOW TO

IMPROVE POWER DELIVERY AND MECHANICAL

FIG. 5

Applicant(s): Sarah E. Kim et al.

Page 5 of 16

THICK METAL LAYER INTEGRATED PROCESS FLOW TO

IMPROVE POWER DELIVERY AND MECHANICAL

Page 6 of 16

Applicant(s): Sarah E. Kim et al.
THICK METAL LAYER INTEGRATED PROCESS FLOW TO IMPROVE POWER DELIVERY AND MECHANICAL

Appln No.: 10/659,044 Page 7 of 1
Applicant(s): Sarah E. Kim et al.
THICK METAL LAYER INTEGRATED PROCESS FLOW TO
IMPROVE POWER DELIVERY AND MECHANICAL
BUFFERING Page 7 of 16

	FLOW 1		FLOW 2
	1. NO CU DIFFUSION BARRIER		1. NO CU DIFFUSION BARRIER
	NEEDED		NEEDED
900~_	2. USE PHOTO-DEFINABLE ILD	900~_	2. USE PHOTO-DEFINABLE ILD
902~	PASSIVATION DEP (NITRIDE)	902~	PASSIVATION DEP (NITRIDE)
904~	POLYIMIDE PATTERN	904~	POLYIMIDE PATTERN
906	DEVELOP POLYIMIDE	906~	DEVELOP POLYIMIDE
908~	BLM DEP	908~	BLM DEP
910~	PR COATING	910~	PR COATING
912~	PR (THICK METAL LAYER #1) PATTERN	912~	PR (THICK METAL LAYER #1) PATTERN
_	CU PLATING		CU PLATING
914	RESIST STRIP	914	RESIST STRIP
916	BLM ETCH/ASH	916	BLM ETCH/ASH
918A	DEPOSIT DIELECTRIC	918B~_	DEPOSIT DIELECTRIC
920~	(PHOTO-DEFINABLE POLYMER)	954~	(SELF-PLANARIZING POLYMER)
922~	PHOTO-PATTERN VIAS	956	PR COATING
924	DEVELOP DIELECTRIC	958~	PATTERN VIAS
926	BLM DEP	960~	ETCH DIELECTRIC (DRY)
~	PR COATING	924	PR STRIP
928~	PR (THICK METAL LAYER #2)	926	BLM DEP
930~	PATTERN	928~	PR COATING
932~	CU PLATING		PR (THICK METAL LAYER #2)
934~	RESIST STRIP	930~	PATTERN
936	BLM ETCH/ ASH	932	CU PLATING
	DEPOSIT DIELECTRIC	934~	RESIST STRIP
938~	(PHOTO-DEFINABLE POLYMER)	962	BLM ETCH/ASH
940~	PHOTO-PATTERN VIAS		DEPOSIT DIELECTRIC
942~	DEVELOP DIELECTRIC	964~	(SELF-PLANARIZING POLYMER)
944	BLM DEP	966	PR COATING
946	PR COATING	968~	PATTERN VIAS
948~	BUMP PATTERN	970~	ETCH DIELECTRIC (DRY)
950	BUMP PLATING	942	PR STRIP
952	RESIST STRIP	944	BLM DEP
777	BLM ETCH/ASH	946	PR COATING
		948	BUMP PATTERN
		950	BUMP PLATING
		952	RESIST STRIP
		7	BLM ETCH/ASH
Į		į	
	FIO 04		

FIG. 9A

Appln No.: 10/659,044 Page 8 of 16 Applicant(s): Sarah E. Kim et al. THICK METAL LAYER INTEGRATED PROCESS FLOW TO IMPROVE POWER DELIVERY AND MECHANICAL BUFFERING

Page 9 of 16

Appln No.: 10/659,044 Page 9 of 1
Applicant(s): Sarah E. Kim et al.
THICK METAL LAYER INTEGRATED PROCESS FLOW TO
IMPROVE POWER DELIVERY AND MECHANICAL
BUFFERING

	FLOW 3		FLOW 4
	1. CU DIFFUSION BARRIER		1. CU DIFFUSION BARRIER
900~	2. USE PHOTO-DEFINABLE ILD	900~	2. USE SELF-PLANARIZING ILD
902~	PASSIVATION DEP (NITRIDE)	902~	PASSIVATION DEP (NITRIDE)
904~	POLYIMIDE PATTERN	904	POLYIMIDE PATTERN
906	DEVELOP POLYIMIDE	906~	DEVELOP POLYIMIDE
908~	BLM DEP	908~	BLM DEP
910~	PR COATING	910~	PR COATING
910	PR (THICK METAL LAYER #1)	910	PR (THICK METAL LAYER #1)
912~	PATTERN ´	912~	PATTERN PATTERN
914~	CU PLATING	914~	CU PLATING
916~	RESIST STRIP	916	RESIST STRIP
1100~	BLM ETCH/ASH	1100	BLM ETCH/ASH
918B	EL DIFFUSION BARRIER PLATING	918B	EL DIFFUSION BARRIER PLATING
0,00	DEPOSIT DIELECTRIC	3700	DEPOSIT DIELECTRIC
920~	(SELF-PLANARIZING POLYMER)	954~	(SELF-PLANARIZING POLYMER)
922~	PHOTO-PATTERN VIAS	956	PR COATING
924~	DEVELOP DIELECTRIC	958	PATTERN VIAS
926	BLM DEP	960~	ETCH DIELECTRIC (DRY)
928~	PR COATING	924~	PR STRIP
· · ·	PR (THICK METAL LAYER #2)	926	BLM STRIP
930~	PATTERN	928~	PR COATING
932	CU PLATING	-,	PR (THICK METAL LAYER #2)
934~	RESIST STRIP	930~	PATTERN
1102~	BLM ETCH/ASH	932	CU PLATING
936~	EL DIFFUSION BARRIER PLATING	934~	RESIST STRIP
7	DEPOSIT DIELECTRIC	1102	BLM ETCH/ASH
938	(PHOTO-DEFINABLE POLYMER)	962~	EL DIFFUSION BARRIER PLATING
940	PHOTO-PATTERN VIAS		DEPOSIT DIELECTRIC
942	DEVELOP DIELECTRIC	964~	(SELF-PLANARIZING POLYMER)
944	BLM DEP	966	PR COATING
946	PR COATING	968	PATTERN VIAS
948	BUMP PATTERN	970~	ETCH DIELECTRIC (DRY)
950	BUMP PLATING	942~~	PR STRIP
952	RESIST STRIP	944 946	BLM DEP
	BLM ETCH/ASH		PR COATING
}		948	BUMP PATTERN
}		950	BUMP PLATING
ŀ		952	RESIST STRIP
ļ			BLM ETCH/ASH

FIG. 11A

Appln No.: 10/659,044 Page 10 of 16 Applicant(s): Sarah E. Kim et al. THICK METAL LAYER INTEGRATED PROCESS FLOW TO IMPROVE POWER DELIVERY AND MECHANICAL BUFFERING

	FLOW 5	7
	USE CU CMP PROCESS	
900~		
	PASSIVATION DEP (NITRIDE)	┥.
1200		4)
1202	DEPOSIT DIELECTRIC	- 1 1
1204	PR COATING PATTERN VIAS	
1206	PR COATING	- \
1208~		- > 1ST
•	PR (THICK METAL LAYER #1)	/
1210~	PATTERN	4 (
1212~	BLM DEP	↓ \
1214 1216	CU PLATING	4 /
	CU CMP	4.
1218	PASSIVATION DEP (NITRIDE)	1)
1220	DEPOSIT DIELECTRIC	-
1222	PR COATING	4
1224	PATTERN VIAS	-∤ \
1226	PR COATING	- > 2ND
1228~	PR (THICK METAL LAYER #2) PATTERN	[
	BLM DEP	-
1230	CU PLATING	⊣ \
1232	CU CMP	Hノ
1234	PASSIVATION DEP (NITRIDE)	\exists
1236	POLYIMIDE PATTERN	┥)
1238~	DEVELOP POLYIMIDE	11
1240~	BLM DEP	┦ {
1242	PR COATING	$\exists > 3RD$
1244	BUMP PATTERN	1/ 55
1246	BUMP PLATING	1 (
1248	RESIST STRIP	7)
	BLM ETCH/ ASH	1ノ

FIG. 12

Applin No.: 10/659,044 Applicant(s): Sarah E. Kim et al.

Page 11 of 16

THICK METAL LAYER INTEGRATED PROCESS FLOW TO IMPROVE POWER DELIVERY AND MECHANICAL

FIG. 13A

FIG. 13B

Applicant(s): Sarah E. Kim et al.

Page 12 of 16

THICK METAL LAYER INTEGRATED PROCESS FLOW TO IMPROVE POWER DELIVERY AND MECHANICAL

FIG. 13C

FIG. 13D

Appln No.: 10/659,044 Page 13 of 16 Applicant(s): Sarah E. Kim et al. THICK METAL LAYER INTEGRATED PROCESS FLOW TO IMPROVE POWER DELIVERY AND MECHANICAL BUFFERING

FIG. 13E

Page 14 of 16

Appln No.: 10/659,044

Applicant(s): Sarah E. Kim et al.
THICK METAL LAYER INTEGRATED PROCESS FLOW TO
IMPROVE POWER DELIVERY AND MECHANICAL
BUFFERING

		SIMULATION PARAMETERS		RESULTS	(0
1410~	ADDITION THICK METAL LAYERS	METAL WIDTH	VIA RESISTANCE (MΩ)	IMAX (MA)	IR DROP (MV)
1400~	DEFAULT (PRESENT	PRESENT STATE OF ART)		089	29
/ 004/	TAIO 4E NA TUION	C# d3V/ I NETA META 1 AVED #2		430	
1400-	METAL LAYERS	100 µM FOR METAL LAYER #1	0.7	(36% IMAX IMPROVEMENT)	30
/ 704/		70M FOR METAL LAYER #2		230	
707	TWO 15 µM THICK METAL LAYERS		0.7	(22% IMAX IMPROVEMENT)	30
1404	אטוחד איי אס טארד	70M FOR METAL I AVER #2		370	
9	METAL LAYERS		20	(46% IMAX IMPROVEMENT)	49
/400/	YOUT 15 NA TUICK	70 M EOR METALL AVER #2		380	
	METAL LAYERS	100 µM FOR METAL LAYER #1	20	(44% IMAX IMPROVEMENT)	51

Appln No.: 10/659,044 Page 16 of 16 Applicant(s): Sarah E. Kim et al. THICK METAL LAYER INTEGRATED PROCESS FLOW TO IMPROVE POWER DELIVERY AND MECHANICAL BUFFERING

