Rapport d'essais GYROLIS 2.1

Présentation générale des essais GYROLIS

5 essais ont été rapportés ici : pour les 4 premiers, un gyromètre à fibre optique (FOG) a été utilisé, contre une centrale inertielle à technologie MEMS pour le dernier (rotation verticale seule utilisée) :

- 1 essai sur le circuit départemental de Loire-Atlantique.
- 2 essais sur les pistes militaires de Versailles-Satory.
- 2 essais en ville de Rezé.

Le tableau ci-dessous résume les caractéristiques d'instrumentation des véhicules.

Essai	Véhicule	GPS	Odomètre	Gyromètre
Circuit	J5	Trimble AG 132	0.2415 sur boîte	KVH e-core
	Tx 2.11 m	GPS Différentiel service Omnistar 5 Hz		RD 2100 100 Hz
	Ty nul			
Satory	Scénic	Trimble AG 132	0.1954 sur boîte	KVH e-core
	Tx -0.01 m	GPS différentiel 1 Hz		RD 2100 100 Hz
	Ty nul	+		
		Thalès Sagitta		
		GPS cinématique 1 Hz		
Satory2	Scénic	Trimble AG 132	0.1954 sur boîte	KVH e-core
	Tx -0.01 m	GPS différentiel 1 Hz,		RD 2100 100 Hz
	Ty nul	puis naturel en cours d'essai		
Rezé	J5	Trimble AG 132	0.1208 sur boîte	KVH e-core
	Tx 2.41 m	GPS naturel et différentiel phases et balises 1 Hz		RD 2100 10 Hz
	Ty nul			
Rezé2	J5	Trimble AG 132	0.1208 sur boîte	KVH e-core
	Tx 2.41 m	seulement GPS différentiel phases et balises 1 Hz		RD 2100 10 Hz
	Ty nul			+
				Centrale µstrain
				3DMG 76 Hz

Les caractéristiques des essais sont résumées ci-dessous.

Essai	Vitesse	GPS	Nota
Circuit	< 50 km/h	Pas de masquage	Essai de réglage KVH
			2 tours sens anti-horaire
Satory	< 70 km/h	Pas de masquage partie nord,	3 tours sens anti-horaire
		zone boisée partie sud	Test avec deux modes GPS différents
Satory2	< 70 km/h	Partie nord seulement	1 tour sens anti-horaire
			Test avec mode GPS différentiel puis naturel
Rezé	< 30 km/h	Site urbain dense, parking couvert,	Test urbain
		multi-trajets GPS	Test avec modes GPS différentiel et naturel
Rezé2	< 30 km/h	Site urbain dense, parking couvert,	Test urbain avec les deux gyromètres de
		multi-trajets GPS	technologies différentes (FOG et MEMS)

Essai Circuit

Les paramètres retenus (après réglage)

```
OFFSET_GYRO 0.03°/s
PAS 0.2415 m
TX 2.11 m
TY 0
sqrtQmod_pos 0.16 m (à 10 Hz dans Gyrolis, soit 0.5 m en 1 s)
sqrtQmod_rot 0
sqrtQgyro 0.0044°/s (à 10 Hz et selon donnée constructeur : 0.083°/sqrt(h))
sqrtQgps 5 m
sqrtQdgps 0.8 m
```

L'analyse des données

Les résultats en filtrage (validation du réglage paramètres)

Le réglage des paramètres est validé car l'enveloppe à 2 écarts-types borne bien l'erreur vraie.

Les résultats en lissage

L'erreur estimée (1 écart-type) vaut 0.5 m et correspond à la fusion de la navigation à l'estime et du GPS différentiel Omnistar avec en plus l'effet du lissage. En effet, on peut voir (zoom sur figure en page précédente) qu'en filtrage seul l'erreur est estimée à 0.7 m hors des périodes de masquage (i.e. l'enveloppe à 2 écarts-types égale 1.4 m). Ces précisions dépendent des paramètres caractérisant les données fusionnées et leurs fréquences.

Enfin, à titre de démonstration, la figure ci-dessous illustre l'effet du lissage après application des masquages artificiels ayant servi au réglage (mode avancé en lissage).

Essai Satory GPS différentiel (code)

Les paramètres retenus (a priori)

```
OFFSET_GYRO 0.03°/s
PAS 0.1954 m
TX -0.01 m
TY 0
sqrtQmod_pos 0.16 m
sqrtQmod_rot 0
sqrtQgyro 0.0044°/s
sqrtQgps 5 m
sqrtQdgps 0.8 m
```

L'analyse des données

Les résultats en filtrage (réglage a priori)

atory_msk.txt

L'interprétation de ce graphique est difficile : les pics d'erreur plane sont artificiels : ils correspondent aux masquages dans la partie sud du circuit où il n'y a pas de référence ! On note toutefois que le réglage est optimiste, un glissement des roues est probable...

Les résultats en filtrage (validation du réglage paramètres)

On ajuste donc le paramètre correspondant au modèle en l'augmentant de 0.16 à 0.32 m.

Les résultats en lissage

La zone boisée sud donne lieu à quelques masquages courts. L'algorithme y pallie et la précision estimée (1 écart-type) atteint 2.5 m dans cette partie du circuit.

En maintenant le paramètre correspondant au modèle à sa valeur a priori (0.16 m), on risquerait de détecter des points GPS aberrants à tord, voire de rendre l'algorithme instable (figure suivante).

L'instabilité de l'algorithme s'explique comme suit : une première solution aberrante est détectée. L'estime pure prend alors le relais et naturellement dérive, mais en sous-estimant l'erreur prédite à cause du réglage trop optimiste du paramètre correspondant au modèle. Ceci entraîne par la suite le rejet à tord de toute une série de solutions GPS, voire de la totalité de celles-ci.

Essai Satory GPS cinématique (phase)

Les paramètres retenus (après réglage)

```
OFFSET_GYRO 0.03°/s
PAS 0.1954 m
TX -0.01 m
TY 0
sqrtQmod_pos 0.32 m (à 10 Hz dans Gyrolis, soit 1 m en 1 s)
sqrtQmod_rot 0
sqrtQgyro 0.0044°/s
sqrtQgps 5 m
sqrtQdgps 0.1 m
```

On a diminué le paramètre lié au DGPS, considérant le DGPS cinématique, qui utilise la phase et non le code seul du signal GPS, de précision décimétrique (et non plus métrique).

L'analyse des données

Les résultats en filtrage (validation du réglage paramètres)

 $satoryrtk_msk.txt$

L'interprétation du graphique précédent est difficile : les pics d'erreur plane sont artificiels : ils correspondent aux masquages dans la partie sud du circuit où il n'y a pas de référence !

Seul un zoom sur le graphique d'erreur plane est exploitable. Le réglage est correct.

Les résultats en lissage

La partie sud donne lieu systématiquement à de longs masquages (zone boisée). L'algorithme y pallie et la précision estimée (1 écart-type) atteint 7 m dans cette partie du circuit.

Essai Satory2 GPS différentiel (code) puis naturel

Les paramètres retenus (a priori)

```
OFFSET_GYRO 0.03°/s
PAS 0.1954 m
TX -0.01 m
TY 0
sqrtQmod_pos 0.16 m
sqrtQmod_rot 0
sqrtQgyro 0.0044°/s
sqrtQgps 5 m
sqrtQdgps 0.8 m
```

L'analyse des données

Les résultats en lissage

On distingue bien deux paliers, à 0.65 puis 1.7 m (précision résultant d'une part du filtrage (D)GPS et navigation à l'estime, et d'autre part du lissage).

Les résultats en simulation temps réel

On distingue aussi deux paliers, à 0.85 puis 2.4 m (précision résultant du filtrage (D)GPS et navigation à l'estime, sans lissage).

Essai Rezé

Les paramètres retenus (a priori)

```
OFFSET_GYRO -0.05°/s
PAS 0.1208 m
TX 2.41 m
TY 0
sqrtQmod_pos 0.16 m
sqrtQmod_rot 0
sqrtQgyro 0.0044°/s
sqrtQgps 2 m
sqrtQdgps 0.5 m
```

L'analyse des données

Les résultats en filtrage (validation du réglage paramètres)

eze_msk.txt

A nouveau, l'interprétation de ce graphique est difficile : le pic d'erreur plane est artificiel : il correspond au masquage dans la partie nord (parking couvert) où il n'y a pas de référence ! Seul un zoom sur le graphique d'erreur plane est exploitable. Il confirme le réglage.

Les résultats en lissage

La partie nord donne lieu à masquage (c'est un parking couvert). L'algorithme y pallie et la précision estimée (1 écart-type) atteint 5 m dans cette partie du circuit. Elle varie entre 0.5 et 1.5 m un peu plus loin, dans une rue étroite où on perd le différentiel.

On note que:

- quelques points (D)GPS aberrants ont été détectés (et n'ont pas été utilisés) ;
- le filtrage (et le lissage) font un compromis entre les points (D)GPS utilisés et les points prédits à l'estime seule, sans que ni les uns ni les autres ne soient considérés comme parfaitement vrais.

Les deux figures ci-dessous illustrent ces notas (ce sont deux zooms sur la figure précédente).

Zoom 1 : 2 points DGPS aberrants n'ont pas été utilisés.

Zoom 2 : la trajectoire filtrée et lissée est un compromis entre la trajectoire (D)GPS et celle prédite à l'estime seule. On note aussi 2 points GPS aberrants (à gauche) et 1 point DGPS aberrant (à droite). Ces points ne sont pas utilisés.

Essai Rezé2 (gyromètre FOG)

Les paramètres retenus (a priori)

```
OFFSET_GYRO -0.05°/s
PAS 0.1208 m
TX 2.41 m
TY 0
sqrtQmod_pos 0.16 m
sqrtQmod_rot 0
sqrtQgyro 0.0044°/s
sqrtQgps 2 m
sqrtQdgps 0.5 m
```

L'analyse des données

Les résultats en lissage

eze2_kvh_lis.txt

Quasiment toute la 2ème partie est masquée (sauf à l'arrivée) et l'erreur prédite atteint 6 m.

Essai Rezé2 (gyromètre MEMS)

Les paramètres retenus (après réglage labo)

```
OFFSET_GYRO 0
PAS 0.1208 m
TX 2.41 m
TY 0
sqrtQmod_pos 0.16 m
sqrtQmod_rot 0
sqrtQgyro 5°/s (à 10 Hz et bien plus que la donnée constructeur)
sqrtQgps 2 m
sqrtQdgps 0.5 m
```

L'analyse des données

Les résultats en filtrage (validation du réglage paramètres)

reze2_imu_msk.txt

Attention, la 2ème partie est inexploitable car masquée (pas de référence). Le réglage semble correct.

Les résultats en lissage

Avec ce gyromètre MEMS, l'erreur prédite atteint 25 m (contre 6 m pour le gyromètre à fibre-optique).

Installation

GYROLIS consiste en un ensemble de fichiers à installer comme suit (circuit, satory, satory2, rezé et rezé2 constituent cinq jeux d'essais livrés avec le logiciel) :

□gyrolis	
gyrolis.bat gyrolis.exe	
gyrolis.fig logo.fig	
ecn.bmp irccyn.bmp lepc.bmp	
	□bin
	☐ FigureMenuBar.fig☐ FigureToolBar.fig
	□lib (librairie dll matlab)
circuit.prm	□circuit □ circuit.gps □ circuit.utc □ circuit.odo □ circuit.gyr
asatory.prm (a pri	ori) et 🖺 satory032.prm (après réglage) ou 🖺 satory010.prm (si GPS RTK) Satory satory.gps (= au choix : 🖺 satory.dgps ou 🖺 satory.gpsrtk) 🖺 satory.utc 🖺 satory.odo 🖺 satory.gyr
astory.prm	□satory2 ■ satory2.gps ■ satory2.utc ■ satory2.gyr
reze.prm	□reze □ reze.gps □ reze.utc □ reze.odo □ reze.gyr
🗎 reze.prm (si KVI	H) ou Treze2.prm (si IMU) Treze2 Treze2.gps Treze2.utc Treze2.odo Treze2.gyr (= au choix : Treze2.kvh ou Treze2.imu)
lisezmoi.txt	

lisezmoi.txt: Logiciel Gyrolis 2.1

Installer Gyrolis : copier sous un répertoire de votre choix :

- l'application gyrolis.exe
- les répertoires bin et lib (et ses sous-répertoires)

Lancer Gyrolis : double cliquer gyrolis.bat depuis l'explorateur Windows ou bien créer un raccourci vers ce programme batch.