

AMENDMENTS TO THE SPECIFICATION

1. Please amend the paragraph beginning on page 7, line 20, as follows:

When used in a LAN network environment, the computer 20 is connected to the LAN 66 through a network interface adapter 68. When used in a WAN network environment, the computer typically includes a modem⁶⁹ or other means for establishing communications over the WAN 68, such as the Internet. The modem⁶⁹, which may be internal or external, may be connected to the system bus 26 via the serial port interface or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 20, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation, FIGURE 12 illustrates remote application programs 48 as residing on memory device 24. It will be appreciated that the network connections shown are exemplary in other means of establishing communication between the computers may be used. Although many other internal components of the computer 20 are not shown, those of ordinary skill will appreciate that such components and their interconnection are well known. Accordingly, additional details concerning the internal construction of the computer 20 need not be disclosed in connection with the present invention.

2. Please amend the paragraph beginning on page 14, line 14, as follows:

As is shown in FIGURE 6, the first piece of data 100, "THIS", is deposited in the hash table position 108 corresponding to the hash table key "5". Continuing to FIGURE 7, the second piece of data 102, "THAT", corresponds to a hash table key of "10". In an actual embodiment, if the hash table 96 does not have sufficient locations to correspond to each potential [[has]] hash key, the numbering of the hash table locations restarts at the beginning of the hash table 96 in sequential order as illustrated in FIGURE 7 at 110. In the illustrative embodiment, the hash table

LAW OFFICES OF
CHRISTENSEN O'CONNOR JOHNSON KINDNESS^{PLC}
1420 Fifth Avenue
Suite 2800
Seattle, Washington 98101
206.682.8100

key "10" is located at hash table position 112. Accordingly, because hash table position 112 is available, the second piece of data 102 is stored in this hash table position. With continued referenced to FIGURE 7, hash table key "1", corresponding to the third piece of data 104, "FOO", is located at hash table position 114. Because no data is in hash table position 114, the third piece of data 104 is stored at that position.

3. Please amend the paragraph beginning on page 14, line 26, as follows:

FIGURE 8 is a block diagram illustrating a key collision and the insertion of data in accordance with the present invention. The fourth piece of data 106, "BAR", corresponds to a hash table key of "5." However, when the hash table position 108 associated with the hash table key of "5" is examined, the first piece of data 100 is already stored at this position. Accordingly, the fourth piece of data 106 cannot be stored at position 108. With reference to block 506 as described above, in the event a cache slot is unavailable, the next sequential block is obtained. In the illustrative embodiment, position 108 is the last position on the hash table 96. In this illustrative embodiment, the next available position would be position 116 at the top of hash table 96. As illustrated in FIGURE 7~~FIGURE~~ 8, because there is no data stored at hash table position 116, the fourth piece of data 106 is stored at this position.

4. Please amend the paragraph beginning on page 16, line 10, as follows:

With reference to decision block 906, if there is an entry in the hash table 96 matching the hash key, a test is conducted to determine whether the raw data from the request for the data matches the raw data used to store the entry in the hash table as illustrated by decision block 920. Because the hashing algorithm may generate the same key for two distinct pieces of data, comparing the raw data from the data in memory and the request mitigates the incorrect transfer

of data and allows for the use of chaining. If the raw data from the request does not match the raw data from the entry, the next sequential hash entry is located at block 922. The process then repeats to decision block 906. If the raw data from the request matches the raw data from the entry, the data is returned at block 924 and the routine 900 terminates at block 926.

5. Please amend the paragraph beginning on page 18, line 5, as follows:

While the presently preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention as defined by the appended claims. The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

6. Please delete the paragraph beginning on page 19, line 1, continuing through page 19, line 2.

LAW OFFICES OF
CHRISTENSEN O'CONNOR JOHNSON KINDNESS^{PLLC}
1420 Fifth Avenue
Suite 2800
Seattle, Washington 98101
206.682.8100