Teoría de Números 2021

Lista 02

23.julio.2021

- 1. (Entregar sólo (a) y (c)). Para cualesquiera $a,b,c\in\mathbb{N}$, valen
 - a) ([a,b],[a,c]) = [a,(b,c)].

c) (ab, ca, bc)(a, b, c) = (a, b)(c, a)(b, c).

b) [(a,b),(a,c)] = (a,[b,c]).

- d) [ab, ca, bc][a, b, c] = [a, b][c, a][b, c].
- 2. Sea F_n la secuencia de números de Fibonacci, $F_1=1$, $F_2=2$, $F_n=F_{n-1}+F_{n-2}$, para $n\geq 3$. Muestre que para todo $n\geq 1$, si $a=F_n$ y $b=F_{n+1}$, entonces el algoritmo de Euclides para encontrar (a,b) ejecuta exactamente n divisiones.
- 3. ¿Cuáles de las siguientes ecuaciones tienen solución entera? En caso afirmativo, encuentre una solución de dicha ecuación.
 - i) 6x + 51y = 22.
 - ii) 14x + 35y = 93.
 - iii) 33x + 14y = 115.
- 4. Determine todos los pares ordenados $(a,b) \in \mathbb{N} \times \mathbb{N}$ tales que el menor múltiplo común de a y b es $2^3 \cdot 5^7 \cdot 11^{13}$.
- 5. Asumiendo que (a,b) = 1, pruebe los siguientes:
 - a) $(a+b, a-b) = 1 {6} {2}$.
 - b) $(2a + b, a + 2b) = 1 \circ 3$.
 - c) $(a+b, a^2+b^2) = 1 {6} 2.$
- 6. Para $n \geq 1$, y $a, b \in \mathbb{Z}^+$, muestre que
 - a) Si (a, b) = 1, entonces $(a^n, b^n) = 1$.
 - b) Si $a^n \mid b^n$, entonces $a \mid b$.
- 7. ¿Cuál es la probabilidad de que al elegir al azar un divisor positivo de 2021^{99} , éste sea un múltiplo de 2021^{77} ?
- 8. Un entero se llama libre de cuadrados si no es divisible por el cuadrado de ningún entero.
 - a) Pruebe que un entero n > 1 es un cuadrado si, y sólo si, en la factoración en primos canónica de n todos los exponentes son pares.
 - b) Muestre que n>1 es libre de cuadrados si, y sólo si, admite una factoración como producto de primos distintos.
 - c) Todo entero n > 1 es el producto de un cuadrado perfecto, y un entero libre de cuadrados.
 - d) Verifique que todo entero $n \in \mathbb{Z}$ puede expresarse en la forma $n = 2^k m$, donde $k \ge 0$ y m es un número impar.
- 9. Determine si el número 701 es primo.
- 10. Si n > 1 no es primo, entonces $M_n = 2^n 1$ no es un primo de Mersenne. Esto es, muestre que si $d \mid n$, entonces $2^d 1 \mid 2^n 1$.

Verifique que $2^{35} - 1$ es divisible por 31 y por 127.