VLSI DESIGN TEST/POWER

PROJECT 1

GCD SYNTHESIS, SCAN INSERTION AND ATPG GENERATION

Team members:

Alamalakala Hareesh	M08974088
Vinay Kumar Burugu	M08813508
Sai Chaitanya Nandipati	M08905912

Task 1:

Objective of the task:

The objective is to write a testbench for the GCD module and verify the functionality after synthesizing it using it Design Compiler

Solution of the Problem:

The VHDL code is modified by either adding the default statement or initial values and the same is synthesized and the test bench is designed in VHDL to verify the operation functionally.

Help from the tool to solve(Script):

The following is the test bench for the VHDL GCD module.

```
library ieee;
use ieee.std_logic_1164.all;
entity tb gcd bsd is
end tb_gcd_bsd;
architecture tb gcd bsd ar of tb gcd bsd is
component gcd bsd is
 port( rst : in std logic;
         clk: in std logic;
         go_i : in std_logic;
         x i: in std logic vector (3 downto 0);
         y i: in std logic vector (3 downto 0);
     d_o : out std_logic_vector (3 downto 0));
end component;
constant bit width: integer:=4;
signal t x i : std logic vector(bit width-1 downto 0);
signal t_y_i : std_logic_vector(bit_width-1 downto 0);
signal t_d_o: std_logic_vector(bit_width-1 downto 0);
signal t_rst,t_clk,t_go_i : std_logic:='0';
signal counter: integer:=0;
begin
GCD: gcd_bsd
        port map(t_rst,t_clk,t_go_i,
                 t_x_i,t_y_i,
                 t d o);
tb clock process: process(t clk)
begin
        t clk <= not t clk after 50 ns;
end process tb_clock_process;
tb reset process: process
beain
t_rst <= '1'; wait for 100 ns;
t rst <= '0';
wait:
end process tb_reset_process;
```

```
tb gcd bsd ar process2: process(t clk)
begin
        if(rising_edge(t_clk)) then
                 if (counter<290) then
                 counter<=counter+1;
        elsif (counter=291) then
                 counter<=0;
end if;
end if;
end process tb_gcd_bsd_ar_process2;
tb_gcd_bsd_ar_process: process(t_clk)
begin
if(rising_edge(t_clk)) then
        if(t_rst<='0')then
        t_go_i<='1';
        end if;
        if(counter=0) then
        t_x_i<="1111";
        t_y_i<="0101";
        elsif(counter=20) then
        t x i<="1110";
        t_y_i<="0111";
        elsif(counter=40) then
        t x i<="0011";
        t_y_i<="0101";
        elsif(counter=60) then
        t x i<="1001";
        t_y_i<="0101";
        elsif(counter=80) then
        t x i<="1001";
        t_y_i<="0101";
        elsif(counter=100) then
        t_x_i<="1111";
        t_y_i<="0001";
        elsif(counter=120) then
        t_x_i<="1100";
        t_y_i<="0010";
        elsif(counter=140) then
        t x i<="1000";
        t_y_i<="1000";
        elsif(counter=160) then
        t x i<="1001";
        t_y_i<="0110";
        elsif(counter=180) then
        t_x_i<="1001";
```

```
t_y_i<="0110";
       elsif(counter=200) then
       t x i<="0001";
       t_y_i<="0101";
       elsif(counter=220) then
       t x i<="0111";
       t_y_i<="0011";
       elsif(counter=240) then
       t_x_i<="1101";
       t_y_i<="0100";
       end if:
       end if:
end process tb_gcd_bsd_ar_process;
end tb_gcd_bsd_ar;
extensive test cases for the VHDL code verification after synthesis:
library ieee;
use ieee.std logic 1164.all;
use ieee.std logic arith.all;
entity tb gcd bsd is
end tb gcd bsd;
architecture tb_gcd_bsd_ar of tb gcd bsd is
component gcd bsd is
  port( rst : in std logic;
        clk: in std logic;
        go i: in std logic;
        x i: in std logic vector (3 downto 0);
        y i: in std logic vector (3 downto 0);
     d o : out std logic vector (3 downto 0));
end component;
constant bit width: integer:=4;
signal t x i : std logic vector(bit width-1 downto 0);
signal t y i : std logic vector(bit width-1 downto 0);
signal t d o: std logic vector(bit width-1 downto 0);
signal t rst,t clk,t go i:std logic:='0';
signal counter: integer:=0;
begin
GCD: gcd bsd
       port map(t_rst,t_clk,t_go_i,
               t_x_i,t_y_i,
                t d o);
tb clock process: process(t clk)
```

```
begin
       t clk <= not t clk after 50 ns;
end process to clock process;
tb reset process: process
begin
t rst <= '1'; wait for 100 ns;
t rst <= '0';
wait;
end process to reset process;
tb gcd bsd ar process2: process(t clk)
begin
       if(rising edge(t clk)) then
              if (counter<1000000) then
              counter<=counter+1;
       elsif (counter=100000000) then
              counter<=0;
end if;
end if;
end process tb gcd bsd ar process2;
tb gcd bsd ar process: process
begin
--if(rising edge(t clk)) then
       if(t rst<='0')then
       t go i<='1';
       end if;
       for i in 2**(bit width)-1 downto 1 loop
       for j in 2**(bit width)-1 downto 1 loop
              t x i <= conv std logic vector(i,bit width);
              t y i <= conv std logic vector(j,bit width);
              wait for 5000 ns;
       end loop;
       end loop;
       --end if:
end process tb_gcd_bsd_ar_process;
end tb gcd bsd ar;
```

Results reported by the tool:

GCD waveform capture for sample inputs:

GCD waveform capture for the all the possible inputs :

Important Observations:

The VHDL simulation is run on the modified and synthesized code and the results have been checked for the proper GCD output. The results are as expected.

Task2:

1.Objective of the task:

The objective is to synthesize the given GCD module after replacing the latches with the Flip-flops in the vhdl design using the library saed90nm_typ_ht_verilog.zip,saed90nm.sdb and saed90nm typ ht.db

2.Solution of the Problem:

The Synopsys Design Compiler can be used to synthesize the modified and functionally verified VHDL code.

The GCD VHDL code given has some latches inferred in the synthesis because of not defining an edefault case in the case statement. So to avoid the latches inference the following code is added before the case statement.

We can fix this by adding the default statement in the case or by defining an initial value outside as shown below. The latches inference is avoided and it confirmed using the simulator tool

```
process( proceed, comparison, cState )
begin

enable <= '0';
xsel <= '0';
ysel <= '0';
xld <= '0';
yld <= '0';
nState <= s0;
case cState is

when init => if( proceed = '0' ) then
nState <= init;
else
nState <= s0;
end if;
```

This can also be done by initializing all the variables with some value in the default statement.

3.Help from the tool to solve(Script):

<u>Synthesis constraints (some fucntions are done using Design Vision):</u>

read_file -format vhdl src/GCD_Calculator.vhd current design gcd bsd

Note: The script is used after the tool is invoked and there are some commands executed by the tool GUI itself.

4.Results reported by the tool:

1. Report Design:

Report : design
Design : gcd_bsd
Version: H-2013.03-SP2

Date : Sun Feb 14 00:54:29 2016

Design allows ideal nets on clock nets.

Library(s) Used:

saed90nm typ ht (File: /home/alamalhh/Semester2/testnpower/db/saed90nm typ ht(1).db)

Local Link Library:

{/home/alamalhh/Semester2/testnpower/db/saed90nm typ ht(1).db}

Flip-Flop Types:

No flip-flop types specified.

Latch Types:

No latch types specified.

Operating Conditions:

Operating Condition Name: TYPICAL

Library: saed90nm typ ht

Process: 1.00 Temperature: 125.00

Voltage: 1.20

Interconnect Model: balanced tree

Wire Loading Model:

Selected automatically from the total cell area.

Name : 8000

Location : saed90nm_typ_ht

Resistance : 0.0015727 Capacitance : 0.000312

Area : 0.01 Slope : 90.6464

Fanout Length Points Average Cap Std Deviation

- 1 13.94
- 2 31.80
- 3 51.61
- 4 73.61
- 5 98.05

6 125.17 7 155.23 8 188.46 9 225.12 10 265.45 11 309.71 12 358.13 13 410.96 14 468.46 15 530.86 16 598.42 17 671.38 18 749.98 19 834.49 20 925.13
Wire Loading Model Mode: enclosed.
Timing Ranges:
No timing ranges specified.
Pin Input Delays:
None specified.
Pin Output Delays:
None specified.
Disabled Timing Arcs:
No arcs disabled.
Required Licenses:
None Required
Design Parameters:
None specified.
2.Report_area:

Design: gcd_bsd

Version: H-2013.03-SP2

Date : Sun Feb 14 00:57:04 2016

Library(s) Used:

saed90nm typ ht (File: /home/alamalhh/Semester2/testnpower/db/saed90nm typ ht(1).db)

Number of ports: 15 Number of nets: 15 Number of cells: 1

Number of combinational cells: 0
Number of sequential cells: 0
Number of macros/black boxes: 0

Number of buf/inv: 0
Number of references: 1

Combinational area: 999.936006 Buf/Inv area: 154.828804

Noncombinational area: 483.840008 Macro/Black Box area: 0.000000 Net Interconnect area: 56.845148

Total cell area: 1483.776013 Total area: 1540.621162

3.Report cell:

Report : cell Design : gcd_bsd

Version: H-2013.03-SP2

Date : Sun Feb 14 00:57:57 2016

Attributes:

b - black box (unknown)

h - hierarchical

n - noncombinational

r - removable

u - contains unmapped logic

Cell	Reference	Library	Area Attributes
M_GCD	gcd		1483.776013 h, n

4.Report Power:

Loading db file '/home/alamalhh/Semester2/testnpower/db/saed90nm_typ_ht(1).db' Information: Propagating switching activity (low effort zero delay simulation). (PWR-6)

Warning: Design has unannotated primary inputs. (PWR-414)

Warning: Design has unannotated sequential cell outputs. (PWR-415)

Report : power

-analysis_effort low

Design : gcd_bsd

Version: H-2013.03-SP2

Date : Sun Feb 14 00:59:22 2016

Library(s) Used:

saed90nm typ ht (File: /home/alamalhh/Semester2/testnpower/db/saed90nm typ ht(1).db)

Operating Conditions: TYPICAL Library: saed90nm_typ_ht

Wire Load Model Mode: enclosed

Design	Wire Load Model	Library
gcd_bsd	8000	saed90nm_typ_ht
gcd	8000	saed90nm_typ_ht
fsm	8000	saed90nm_typ_ht
mux_0	ForQA	saed90nm_typ_ht
mux_1	ForQA	saed90nm_typ_ht
regis_0	ForQA	saed90nm_typ_ht
regis_2	ForQA	saed90nm_typ_ht
comparator	ForQA	saed90nm_typ_ht
subtractor	8000	saed90nm_typ_ht
regis_1	ForQA	saed90nm_typ_ht

Global Operating Voltage = 1.2

Power-specific unit information :

Voltage Units = 1V

Capacitance Units = 1.000000ff

Time Units = 1ns

Dynamic Power Units = 1uW (derived from V,C,T units)

Leakage Power Units = 1pW

Cell Internal Power = 990.0998 nW (66%) Net Switching Power = 515.1822 nW (34%)

Total Dynamic Power = 1.5053 uW (100%)

Cell Leakage Power = 19.6555 uW

Inte	ernal Swi	tching	Leakage	Total
Power Group	Power	Power	Power	Power (%) Attrs
io_pad	0.0000	0.0000	0.0000	0.0000 (0.00%)
memory	0.0000	0.0000	0.0000	0.0000 (0.00%)
black_box	0.0000	0.0000	0.0000	0.0000 (0.00%)
clock_networl	k 0.0000	0.0000	0.0000	0.0000 (0.00%)
register	0.1304	0.1309	5.7311e+06	5.9925 (28.32%)
sequential	0.0000	0.0000	0.0000	0.0000 (0.00%)
combinationa	l 0.8597	0.3842	1.3924e+07	15.1683 (71.68%)
Total	0.9901 uW	0.5152 uV	V 1.9655e+07	pW 21.1608 uW

5.Report Port:

Report : port Design : gcd_bsd

Version: H-2013.03-SP2

Date : Sun Feb 14 01:00:31 2016

	I	Pin Wi	re Ma	x 1	Иах	Coı	nnection	
Port	Dir	Load	Load	Trar	ns C	ар	Class	Attrs
clk	 in	0.0000	0.0000					
CIK	in	0.0000	0.0000					
go_i	in	0.0000	0.0000					
rst	in	0.0000	0.0000					
x_i[0]	in	0.0000	0.0000					
x_i[1]	in	0.0000	0.0000					
x_i[2]	in	0.0000	0.0000					
x_i[3]	in	0.0000	0.0000					
y_i[0]	in	0.0000	0.0000					
y_i[1]	in	0.0000	0.0000					
y_i[2]	in	0.0000	0.0000					
y_i[3]	in	0.0000	0.0000					

d_o[0]	out	0.1000	0.0000	 	
d_o[1]	out	0.1000	0.0000	 	
d_o[2]	out	0.1000	0.0000	 	
d_o[3]	out	0.1000	0.0000	 	

6.Report timing:

Report : timing
-path full
-delay max
-max_paths 1
Design : gcd_bsd

Version: H-2013.03-SP2

Date : Sun Feb 14 01:01:38 2016

Operating Conditions: TYPICAL Library: saed90nm_typ_ht

Wire Load Model Mode: enclosed

Startpoint: rst (input port clocked by clk) Endpoint: M_GCD/Y_REG/output_reg[1]

(rising edge-triggered flip-flop clocked by clk)

Path Group: clk Path Type: max

Des/Clust/Port Wire Load Model Library

gcd_bsd	8000	saed90nm_typ_ht
gcd	8000	saed90nm_typ_ht
subtractor	8000	saed90nm_typ_ht
regis_2	ForQA	saed90nm_typ_ht

Point	Incr	Path			
clock clk (rise edge)		0.00	0.00		
clock network delay (ideal)		0.30	0.30		
input external delay		2.00	2.30 f		
rst (in)	0.00	2.30	f		
M_GCD/rst (gcd)		0.00	2.30 f		
M_GCD/U_COMP/rst (comparator)			0.00	2.30 f	
M_GCD/U_COMP/U3/QN (NOR2X0))		0.2	2 2.52 r	-
M_GCD/U_COMP/output[1] (compa	rator))	0.00	2.52 r	
M_GCD/X_SUB/cmd[1] (subtractor)			0.00	2.52 r	
M_GCD/X_SUB/U4/ZN (INVX0)			0.16	2.68 f	
M_GCD/X_SUB/U16/QN (NAND2X	1)		0.15	5 2.83 r	
M_GCD/X_SUB/U40/Q (XOR2X1)			0.21	3.04 f	
M_GCD/X_SUB/U19/QN (NOR2X0))		0.10	3.14 r	
M GCD/X SUB/yout[1] (subtractor)			0.00	3.14 r	

```
M GCD/Y MUX/result[1] (mux 1)
                                              0.00
                                                      3.14 r
M GCD/Y MUX/U7/Q (AO22X1)
                                               0.17
                                                       3.31 r
M GCD/Y MUX/output[1] (mux 1)
                                               0.00
                                                      3.31 r
M GCD/Y REG/input[1] (regis 2)
                                             0.00
                                                     3.31 r
M GCD/Y REG/U7/Q (AO22X1)
                                               0.14
                                                       3.45 r
M GCD/Y REG/output reg[1]/D (DFFARX1)
                                                   0.03
                                                           3.48 r
data arrival time
                                          3.48
clock clk (rise edge)
                                    100.00
                                             100.00
clock network delay (ideal)
                                        0.30
                                               100.30
M GCD/Y REG/output reg[1]/CLK (DFFARX1)
                                                    0.00
                                                           100.30 r
library setup time
                                           100.13
data required time
                                           100.13
                                           100.13
data required time
data arrival time
                                          -3.48
slack (MET)
                                          96.65
```

Important Observations:

The combination ,sequential and the net wiring are numbers are observed in the synthesis results. Also the timing is verified at 10MHz. There is no negative slack observed and timing is met.

Task3:

Objective of the task:

To insert DFT logic into the synthesized VHDL code for DFT

Solution of the Problem:

The Synopsys Design Compiler can be used to insert the DFT logic into the synthesized RTL when the tool is given with additional scan configuration and scan insertion commands.

Help from the tool to solve(Script):

The following is the script used for the scan insertion and DFT generation for the GCD VHDL code.

```
#1 Setup variables for scan chain insertion
set dft runname scan; # name appended to output files
set scan library [list /home/alamalhh/Semester2/testnpower/db/saed90nm typ ht(1).db]; #
Library with scan chain cells
set scancell SDFFARX1; # Name of ScanFF Cell
# Setup timing variables for dft drc command
set test default delay 0; # define time when values are applied to input ports
set test default bidir delay 0; # Defines the default switching time of bidirectional
# ports in a tester cycle.
set test default strobe 40; # default strobe time in a test cycle for output ports
# and bidirectional ports in output mode
set test default period 100; # Defines the default length of a test vector cycle
# Setup scan chain for insert dft
set test default scan style multiplexed flip flop;
# Defines the default scan style for the insert dft command.
#2.Insert test structures in the design
# Update filebase
set basename gcd bsd
set filebase [format "%s%s" [format "%s%s" $basename "_"] $dft_runname]
# Update target library
# Set the scan cells to use in the design
#set scan register type -type {DFFPOSX1 SCAN};
set scan register type -type ${scancell};
# Make sure to add a test out port
set scan configuration -create dedicated scan out ports true
# Infer clock and reset lines
create test protocol-infer async-infer clock
dft drc -verbose
# Replace flip flops with multiplexed flipflops
compile -scan
```

```
# Check for constraint violations
report constraint -all violators
#3.Build a scan chain
# connects all scan-enabled ff's together into scan-chain
# note, it creates two new ports: test si & test se
insert dft
# set drive strength of the test ports to 2 (so it isn't assumed to be infinite)
set drive 2 test si
set drive 2 test se
# since you've already inserted scan-ff's, we don't want that to happen again,
# when we run insert dft
set scan configuration -replace false
# run insert scan again to set drive-strength constraints
insert dft
# report any constraints that may have been violated by inserting the test
# structures
report constraint -all violators
dft drc -verbose -coverage estimate
report scan path -view existing -chain all
report cell
#4.Save reports,test protocol amd DFT verilog design
report dft drc
set filename [format "%s%s%s" ./reports/ $filebase ".violators"]
redirect $filename { report constraint -all violators }
# report dft drc
set filename [format "%s%s%s" ./reports/ $filebase ".dft drc"]
redirect $filename { dft drc -verbose -coverage estimate }
# report scan path
set filename [format "%s%s%s" ./reports/ $filebase ".scan path"]
redirect $filename { report scan path -view existing -chain all }
# report cells
set filename [format "%s%s%s" ./reports/ $filebase ".cell"]
redirect $filename { report cell }
# Write out protocol
set filename [format "%s%s%s" ./src/ $filebase ".spf"]
write test protocol -output $filename
# Write out scan chain design
set filename [format "%s%s%s" ./src/ $filebase ".v"]
redirect change names { change names -rules verilog -hierarchy -verbose }
write -format verilog -hierarchy -output $filename
```

Results reported by the tool:

The

Important Observations:

```
Accepted scan configuration for modes: all dft
In mode: all dft...
Information: Starting test protocol creation. (TEST-219)
 ...inferring clock signals...
Information: Inferred system/test clock port clk (45.0,55.0). (TEST-260)
 ...inferring asynchronous signals...
Information: Inferred active high asynchronous control port rst. (TEST-261)
In mode: all dft...
 Pre-DFT DRC enabled
Information: Starting test design rule checking. (TEST-222)
 Loading test protocol
 ...basic checks...
 ...basic sequential cell checks...
       ...checking for scan equivalents...
 ...checking vector rules...
 ...checking pre-dft rules...
 ...saving simulation value info...
Begin Pre-DFT violations...
Warning: Clock rst connects to data input (D) of DFF M GCD/TOFSM/cState reg[0]. (D10-1)
Warning: Clock rst connects to data input (D) of DFF M GCD/TOFSM/cState reg[2]. (D10-2)
Warning: Clock rst connects to data input (D) of DFF M GCD/TOFSM/cState reg[1]. (D10-3)
Warning: Clock rst connects to data input (D) of DFF M GCD/X REG/output reg[3]. (D10-4)
Warning: Clock rst connects to data input (D) of DFF M GCD/X REG/output reg[2]. (D10-5)
Warning: Clock rst connects to data input (D) of DFF M GCD/X REG/output reg[1]. (D10-6)
Warning: Clock rst connects to data input (D) of DFF M GCD/X REG/output reg[0]. (D10-7)
Warning: Clock rst connects to data input (D) of DFF M GCD/Y REG/output reg[3]. (D10-8)
Warning: Clock rst connects to data input (D) of DFF M GCD/Y REG/output reg[2]. (D10-9)
Warning: Clock rst connects to data input (D) of DFF M GCD/Y REG/output reg[1]. (D10-10)
Warning: Clock rst connects to data input (D) of DFF M GCD/Y REG/output reg[0]. (D10-11)
Warning: Clock rst connects to data input (D) of DFF M GCD/OUT REG/output reg[3].
(D10-12)
Warning: Clock rst connects to data input (D) of DFF M GCD/OUT REG/output reg[2].
(D10-13)
Warning: Clock rst connects to data input (D) of DFF M GCD/OUT REG/output reg[1].
(D10-14)
Warning: Clock rst connects to data input (D) of DFF M GCD/OUT REG/output reg[0].
(D10-15)
Pre-DFT violations completed...
```

DRC Report	
Total violations: 15	
15 PRE-DFT VIOLATIONS 15 Clock feeding data input violations (D10)	
Warning: Violations occurred during test design ru	ule checking. (TEST-124)
Sequential Cell Report	
0 out of 15 sequential cells have violations	
SEQUENTIAL CELLS WITHOUT VIOLATIONS * 15 cells are valid scan cells M_GCD/TOFSM/cState_reg[0] M_GCD/TOFSM/cState_reg[1] M_GCD/TOFSM/cState_reg[1] M_GCD/X_REG/output_reg[3] M_GCD/X_REG/output_reg[1] M_GCD/X_REG/output_reg[0] M_GCD/Y_REG/output_reg[3] M_GCD/Y_REG/output_reg[1] M_GCD/Y_REG/output_reg[1] M_GCD/Y_REG/output_reg[1] M_GCD/Y_REG/output_reg[0] M_GCD/OUT_REG/output_reg[2] M_GCD/OUT_REG/output_reg[1] M_GCD/OUT_REG/output_reg[1] M_GCD/OUT_REG/output_reg[1] M_GCD/OUT_REG/output_reg[0] Information: Test design rule checking completed Current design is 'gcd_bsd'. Current design is 'gcd_bsd'.	,
Information: Choosing a test methodology will res (UIO-12)	strict the optimization of sequential cells.
Beginning Pass 1 Mapping	

Processing 'regis 1'

Processing 'subtractor'

Processing 'comparator'

Processing 'regis_2'

Processing 'regis 0'

Processing 'mux 1'

Processing 'mux 0'

Processing 'fsm'

Processing 'gcd 0'

Processing 'gcd bsd'

Updating timing information

Information: Updating design information... (UID-85)

Information: Design 'gcd_bsd' has no optimization constraints set. (OPT-108)

Beginning Mapping Optimizations (Medium effort)

Structuring 'regis 1'

Mapping 'regis_1'

Structuring 'subtractor'

Mapping 'subtractor'

Structuring 'comparator'

Mapping 'comparator'

Structuring 'regis 2'

Mapping 'regis 2'

Structuring 'regis 0'

Mapping 'regis 0'

Structuring 'mux 1'

Mapping 'mux 1'

Structuring 'mux 0'

Mapping 'mux 0'

Structuring 'fsm'

Mapping 'fsm'

Warning: The nextstate or clock_on object of the test_cell definition of the library cell 'SDFFSSRX2' has scan pins. (OPT-1209)

Warning: The nextstate or clock_on object of the test_cell definition of the library cell 'SDFFSSRX1' has scan pins. (OPT-1209)

		TOTAL			
ELAPSE	D V	NORST N	EG SE	TUP DESIGN	
TIME	AREA	SLACK	COST	RULE COST	ENDPOINT
					-
0:00:00	1586.7	0.00	0.0	0.0	
0:00:01	1586.7	0.00	0.0	0.0	
0:00:01	1586.7	0.00	0.0	0.0	
0:00:01	1586.7	0.00	0.0	0.0	
0:00:01	1586.7	0.00	0.0	0.0	
0:00:01	1586.7	0.00	0.0	0.0	

0:00:01	1586.7	0.00	0.0	0.0
0:00:01	1586.7	0.00	0.0	0.0
0:00:01	1586.7	0.00	0.0	0.0
0:00:01	1586.7	0.00	0.0	0.0
0:00:01	1586.7	0.00	0.0	0.0
0:00:01	1586.7	0.00	0.0	0.0

Beginning Delay Optimization Phase

TOTAL			
WORST I	NEG SE	TUP DESIGN	
REA SLACK	COST	RULE COST	ENDPOINT
			_
1586.7 0.00	0.0	0.0	
1586.7 0.00	0.0	0.0	
1586.7 0.00	0.0	0.0	
	WORST I REA SLACK 	WORST NEG SET REA SLACK COST	WORST NEG SETUP DESIGN REA SLACK COST RULE COST

Beginning Area-Recovery Phase (cleanup)

		TOTAL			
ELAPS	ED '	WORST N	IEG SE	TUP DESIGN	
TIME	AREA	SLACK	COST	RULE COST	ENDPOINT
0:00:01	1586.7	0.00	0.0	0.0	
0:00:01	1586.7	0.00	0.0	0.0	
0:00:01	1575.2	0.00	0.0	0.0	
0:00:01	1569.5	0.00	0.0	0.0	
0:00:01	1569.5	0.00	0.0	0.0	
0:00:01	1569.5	0.00	0.0	0.0	
0:00:01	1569.5	0.00	0.0	0.0	
0:00:01	1569.5	0.00	0.0	0.0	
0:00:01	1569.5	0.00	0.0	0.0	
0:00:01	1569.5	0.00	0.0	0.0	
0:00:01	1569.5	0.00	0.0	0.0	
0:00:01	1569.5	0.00	0.0	0.0	
0:00:01	1569.5	0.00	0.0	0.0	

Loading db file '/home/alamalhh/Semester2/testnpower/db/saed90nm_typ_ht(1).db'

Optimization Complete

Information: Updating design information... (UID-85)

Report : constraint -all_violators Design : gcd_bsd

Version: H-2013.03-SP2

Date : Thu Feb 18 23:55:45 2016

This design has no violated constraints.

Information: Starting test design rule checking. (TEST-222)

Warning: Violations occurred during test design rule checking. (TEST-124)

Information: Test design rule checking completed. (TEST-123)

Architecting Scan Chains
Routing Scan Chains
Routing Global Signals
Mapping New Logic
Resetting current test mode

Accepted scan configuration for modes: all dft

Information: Starting test design rule checking. (TEST-222)

Warning: Violations occurred during test design rule checking. (TEST-124)

Information: Test design rule checking completed. (TEST-123)

Architecting Scan Chains
Routing Scan Chains
Routing Global Signals
Mapping New Logic
Resetting current test mode

Beginning Phase 1 Design Rule Fixing (max transition)

ELAPSE	_			TUP DESIGN	
TIME	AREA 	SLACK	COST	RULE COST	ENDPOINT
0:00:06	1605.9	0.00	0.0	3.8 test_se	
0:00:06	1605.9	0.00	0.0	3.8 test_se	

Beginning Phase 2 Design Rule Fixing (max transition)

TOTAL

ELAPSED WORST NEG SETUP DESIGN
TIME AREA SLACK COST RULE COST ENDPOINT

In mode: Internal_scan Design has scan chains in this mode Design is scan routed Post-DFT DRC enabled
Information: Starting test design rule checking. (TEST-222) Loading test protocolbasic checksbasic sequential cell checkschecking vector ruleschecking clock ruleschecking scan chain ruleschecking scan compression ruleschecking X-state ruleschecking tristate ruleschecking tristate ruleschecking scan detailsextracting scan detailssaving simulation value info
Clock violations completed
DRC Report
Total violations: 15
15 CLOCK VIOLATIONS 15 Clock as data different from capture clock for stable cell violations (C26)
Warning: Violations occurred during test design rule checking. (TEST-124)
Sequential Cell Report
0 out of 15 sequential cells have violations
SEQUENTIAL CELLS WITHOUT VIOLATIONS

```
* 15 cells are valid scan cells
    M_GCD/TOFSM/cState reg[0]
    M GCD/TOFSM/cState reg[2]
    M GCD/TOFSM/cState reg[1]
    M GCD/X REG/output reg[3]
    M GCD/X REG/output reg[2]
    M GCD/X REG/output reg[1]
    M GCD/X REG/output reg[0]
    M GCD/Y REG/output reg[3]
    M GCD/Y REG/output reg[2]
    M GCD/Y REG/output reg[1]
    M GCD/Y REG/output reg[0]
    M GCD/OUT REG/output reg[3]
    M GCD/OUT REG/output reg[2]
    M GCD/OUT REG/output reg[1]
    M GCD/OUT REG/output reg[0]
....Inferring feed-through connections....
Information: Test design rule checking completed. (TEST-123)
 Running test coverage estimation...
1008 faults were added to fault list.
ATPG performed for stuck fault model using internal pattern source.
_____
#patterns #faults #ATPG faults test
                                     process
        detect/active red/au/abort coverage CPU time
stored
______
Begin deterministic ATPG: #uncollapsed_faults=866, abort_limit=10...
                     1/0/0 90.67%
        771
              94
                                     0.00
        68
              7
                   16/0/0 99.29%
                                    0.00
                   16/0/0 100.00%
                                    0.00
      Pattern Summary Report
                             0
#internal patterns
  Uncollapsed Stuck Fault Summary Report
```

Chiconapoca	Otdon i	auit	Carring	, , , ,

fault class	code #fa	ults
Detected	DT	988
Possibly detected	PT	0
Undetectable	UD	20
ATPG untestable	AU	0
Not detected	ND	0
total faults	100	8

0

0

test coverage 100.00% Information: The test coverage above may be inferior than the real test coverage with customized protocol and test simulation library. *********** Report: Scan path Design: gcd bsd Version: H-2013.03-SP2 Date : Thu Feb 18 23:55:50 2016 _____ TEST MODE: Internal scan VIEW : Existing DFT _____ _____ AS SPECIFIED BY USER _____ _____ AS BUILT BY insert dft _____ Scan_path Len ScanDataIn ScanDataOut ScanEnable MasterClock SlaveClock I 1 15 test si test so test se clk -*********** Report : cell Design: gcd bsd Version: H-2013.03-SP2 Date : Thu Feb 18 23:55:50 2016 Attributes: b - black box (unknown) h - hierarchical n - noncombinational r - removable u - contains unmapped logic

Library Area Attributes

Cell

Reference

M_GCD	gcd_test	_1 1512.345585
		h, n
U1	INVX0	saed90nm_typ_ht 5.529600
U2	INVX0	saed90nm_typ_ht 5.529600
U3	DELLN2X2	saed90nm_typ_ht 15.667200

Total 4 cells 1539.071985

Warning: Can't find object 'dft drc' in design 'gcd bsd'. (UID-95)

Writing test protocol file '/home/alamalhh/Semester2/testnpower/src/gcd_bsd_scan.spf' for mode 'Internal scan'...

Writing verilog file '/home/alamalhh/Semester2/testnpower/src/gcd bsd scan.v'.

<u>Important Observations:</u>

The scan chain has been generated and it is confirmed from the reported generated in the DFT insertion phase by the Design Compiler.

The scan chain size is 15 as 15 flip-flops are present. The scan input is test_si and output is test_so, test_se is scan enable and the clk is only used as the scan clock.

There are no DFT violations observed in the DFT insertion flow using the Design Compiler.

Task 4:

Objective of the task:

The objective of the task is to generated the test patterns for the synthesized and scan inserted netlist of the GCD module

Solution of the Problem:

The Synopsys Tetramax tool is used to generate the test patterns and check the coverage of the circuit

Help from the tool to solve(Script):

The required commands are executed in the GUI mode in the Tetramax tool

Results reported by the tool:

```
STIL 1.0 { Design 2005; }
Header {
 Title " TetraMAX (TM) H-2013.03-SP2-i130530 190956 STIL output";
 Date "Fri Feb 19 00:34:08 2016";
 Source "Minimal STIL for design `gcd bsd'";
 History {
  Ann {* Thu Feb 18 23:55:40 2016 *}
  Ann {* DFT Compiler H-2013.03-SP2 *}
  Ann {* Uncollapsed Transition Fault Summary Report *}
  Ann {* ----- *}
  Ann {* fault class code #faults *}
  Ann {* ------ *}
  Ann {* -----*}
  Ann {* *}
  Ann (* Pattern Summary Report *)
  Ann {* ----- *}
  Ann {* #internal patterns 65 *}
Ann {* #full_sequential patterns 65 *}
  Ann {* ------*}
  Ann {* *}
  Ann {* rule severity #fails description *}
  Ann {* ---- *}
  Ann (* N21 warning 1 unsupported UDP entry *)
Ann (* C26 warning 15 clock as data different from capture clock for stable cell *)
```

```
Ann {* *}
    Ann {* clock_name
                           off usage *}
   Ann {* -----
    Ann {* clk
                        0 master shift *}
   Ann {* rst
                        0 master reset *}
   Ann {* *}
    Ann {* There are no constraint ports *}
   Ann {* There are no equivalent pins *}
   Ann {* There are no net connections *}
 }
Signals {
  "rst" ln; "clk" ln; "go i" ln; "x i[3]" ln; "x i[2]" ln; "x i[1]" ln; "x i[0]" ln;
  "y i[3]" ln; "y i[2]" ln; "y i[1]" ln; "y i[0]" ln; "test si" ln { Scanln; } "test se" ln;
  "d o[3]" Out; "d o[2]" Out; "d o[1]" Out; "d o[0]" Out; "test so" Out { ScanOut;
 }
SignalGroups {
  "_pi" = '"clk" + "go_i" + "rst" + "x_i[0]" + "x_i[1]" + "x_i[2]" + "x_i[3]" +
  "y i[0]" + "y i[1]" + "y i[2]" + "y i[3]" + "test si" + "test se"; // #signals=13
  " in" = ""rst" + "clk" + "go _i" + "x_i[3]" + "x_i[2]" + "x_i[1]" + "x_i[0]" +
  "y i[3]" + "y i[2]" + "y i[1]" + "y i[0]" + "test si" + "test se"; // #signals=13
  "all inputs" = "'clk" + "go i" + "rst" + "x i[0]" + "x i[1]" + "x i[2]" +
  "x i[3]" + "y i[0]" + "y i[1]" + "y i[2]" + "y i[3]" + "test si" + "test se";
  // #signals=13
  " po" = ""d o[0]" + "d o[1]" + "d o[2]" + "d o[3]" + "test so"; // #signals=5
  " si" = ""test si" { ScanIn; } // #signals=1
  "all outputs" = "d o[0]" + "d o[1]" + "d o[2]" + "d o[3]" + "test so"; // #signals=5
  "all ports" = "all inputs" + "all outputs"; // #signals=18
  " clk" = "clk" + "rst"; // #signals=2
  " so" = ""test so" { ScanOut; } // #signals=1
  " out" = ""d o[3]" + "d o[2]" + "d o[1]" + "d o[0]" + "test so"; // #signals=5
Timing {
  WaveformTable " allclock launch capture WFT " {
    Period '100ns':
    Waveforms {
      "all inputs" { 0 { '0ns' D; } }
      "all inputs" { 1 { '0ns' U; } }
      "all inputs" { Z { '0ns' Z; } }
      "all inputs" { N { '0ns' N; } }
      "all outputs" { X { '0ns' X; '40ns' X; } }
      "all outputs" { H { '0ns' X; '40ns' H; } }
      "all outputs" { L { '0ns' X; '40ns' L; } }
      "all outputs" { T { '0ns' X; '40ns' T; } }
      "clk" { P { '0ns' D; '45ns' U; '55ns' D; } }
      "rst" { P { '0ns' D; '45ns' U; '55ns' D; } }
    }
```

```
WaveformTable "_multiclock_capture_WFT_" {
  Period '100ns';
  Waveforms {
    "all inputs" { 0 { '0ns' D; } }
    "all inputs" { 1 { '0ns' U; } }
    "all inputs" { Z { '0ns' Z; } }
    "all inputs" { N { '0ns' N; } }
    "all outputs" { X { '0ns' X; '40ns' X; } }
    "all_outputs" { H { '0ns' X; '40ns' H; } }
    "all outputs" { L { '0ns' X; '40ns' L; } }
    "all outputs" { T { '0ns' X; '40ns' T; } }
    "clk" { P { '0ns' D; '45ns' U; '55ns' D; } }
    "rst" { P { '0ns' D; '45ns' U; '55ns' D; } }
  }
}
WaveformTable " allclock launch WFT " {
  Period '100ns';
  Waveforms {
    "all inputs" { 0 { '0ns' D; } }
    "all_inputs" { 1 { '0ns' U; } }
    "all inputs" { Z { '0ns' Z; } }
    "all inputs" { N { '0ns' N; } }
    "all outputs" { X { '0ns' X; '40ns' X; } }
    "all outputs" { H { '0ns' X; '40ns' H; } }
    "all outputs" { L { '0ns' X; '40ns' L; } }
    "all outputs" { T { '0ns' X; '40ns' T; } }
    "clk" { P { '0ns' D; '45ns' U; '55ns' D; } }
    "rst" { P { '0ns' D; '45ns' U; '55ns' D; } }
  }
WaveformTable " allclock capture WFT " {
  Period '100ns';
  Waveforms {
    "all_inputs" { 0 { '0ns' D; } }
    "all inputs" { 1 { '0ns' U; } }
    "all_inputs" { Z { '0ns' Z; } }
    "all inputs" { N { '0ns' N; } }
    "all outputs" { X { '0ns' X; '40ns' X; } }
    "all outputs" { H { '0ns' X; '40ns' H; } }
    "all outputs" { L { '0ns' X; '40ns' L; } }
    "all outputs" { T { '0ns' X; '40ns' T; } }
    "clk" { P { '0ns' D; '45ns' U; '55ns' D; } }
    "rst" { P { '0ns' D; '45ns' U; '55ns' D; } }
  }
WaveformTable " default WFT " {
  Period '100ns';
```

```
Waveforms {
     "all inputs" { 0 { '0ns' D; } }
     "all inputs" { 1 { '0ns' U; } }
     "all inputs" { Z { '0ns' Z; } }
     "all inputs" { N { '0ns' N; } }
     "all outputs" { X { '0ns' X; '40ns' X; } }
     "all outputs" { H { '0ns' X; '40ns' H; } }
     "all outputs" { L { '0ns' X; '40ns' L; } }
     "all outputs" { T { '0ns' X; '40ns' T; } }
     "clk" { P { '0ns' D; '45ns' U; '55ns' D; } }
     "rst" { P { '0ns' D; '45ns' U; '55ns' D; } }
   }
 }
ScanStructures {
 ScanChain "1" {
   ScanLength 15;
   ScanIn "test si";
   ScanOut "test so";
   ScanInversion 0;
   ScanCells "gcd bsd.M GCD.OUT REG.output reg 0 .SI"
"gcd bsd.M GCD.OUT REG.output reg 1 .SI"
   "gcd bsd.M GCD.OUT REG.output reg 2 .SI"
"gcd bsd.M GCD.OUT REG.output reg 3 .SI"
   "gcd bsd.M GCD.TOFSM.cState reg 0 .SI" "gcd bsd.M GCD.TOFSM.cState reg 1 .SI"
   "gcd bsd.M GCD.TOFSM.cState reg 2 .SI" "gcd bsd.M GCD.X REG.output reg 0 .SI"
   "gcd bsd.M GCD.X REG.output reg 1 .SI" "gcd bsd.M GCD.X REG.output reg 2 .SI"
   "gcd_bsd.M_GCD.X_REG.output_reg_3_.SI" "gcd_bsd.M_GCD.Y_REG.output_reg_0_.SI"
   "gcd bsd.M GCD.Y REG.output reg 1 .SI" "gcd bsd.M GCD.Y REG.output reg 2 .SI"
   "gcd bsd.M GCD.Y REG.output reg 3 .SI";
   ScanMasterClock "clk";
 }
PatternBurst " burst " {
 PatList { "_pattern_" {
 }
PatternExec {
 PatternBurst " burst ";
Procedures {
 "multiclock capture" {
   W " multiclock capture WFT ";
   C { "all inputs"=0N0\r10 N; "all outputs"=XXXXX; }
   V { " pi"=\r13 # ; " po"=#####; }
 "allclock capture" {
   W " allclock capture WFT ";
```

```
C { "all inputs"=0N0\r10 N; "all outputs"=XXXXX; }
   V { " pi"=\r13 # ; " po"=#####; }
 "allclock launch" {
   W " allclock launch WFT ";
   C { "all inputs"=0N0\r10 N; "all outputs"=XXXXX; }
   V { " pi"=\r13 # ; " po"=#####; }
  "allclock launch capture" {
   W " allclock launch capture WFT ";
   C { "all inputs"=0N0\r10 N; "all outputs"=XXXXX; }
   V { " pi"=\r13 # ; " po"=#####; }
 "load unload" {
   W "_default_WFT_";
   C { "all inputs"=0N0\r10 N; "all outputs"=XXXXX; }
   "Internal scan pre shift": V { "test se"=1; }
               W " default WFT ";
   Shift {
     V { "_clk"=P0; "_si"=#; "_so"=#; }
   }
 }
MacroDefs {
 "test setup" {
   W " default WFT ";
   C { "all inputs"=\r13 N; "all outputs"=XXXXX; }
   V { "clk"=0; "rst"=0; }
   V { }
 }
Pattern " pattern " {
 W " multiclock capture WFT ";
 "precondition all Signals": C { "_pi"=\r13 0 ; "_po"=XXXXX; }
 Macro "test setup";
 Ann {* full sequential *}
 "pattern 0": Call "load unload" {
   "test si"=111001010101000; }
 Call "allclock launch" {
   " pi"=01P0100101101; }
 Call "allclock capture" {
   " pi"=P001100011110; }
 Ann {* full sequential *}
  "pattern 1": Call "load unload" {
   "test so"=LLLLLLLLLLLL; "test si"=010000101011011; }
 Call "allclock launch" {
   " pi"=P000010101010; }
 Call "allclock capture" {
   " pi"=P101010100000; }
```

```
Ann {* full sequential *}
  "pattern 2": Call "load unload" {
   "test so"=LLHLLHLHHHHHHH; "test si"=000110101011110; }
  Call "allclock launch" {
   " pi"=P100110111001; }
  Call "allclock capture" {
   " pi"=P000110111000; }
 Ann {* full sequential *}
  "pattern 3": Call "load unload" {
   "test so"=LLHHLHHHLLHHLL; "test si"=111001101010101; }
  Call "allclock launch" {
   " pi"=P100011100101; }
  Call "allclock capture" {
   " pi"=P100100100100; }
 Ann {* full sequential *}
  "pattern 4": Call "load unload" {
   "test so"=HLLHLLHLHHHLHL; "test si"=101001110101010; }
  Call "multiclock capture" {
   " pi"=0100100010100; }
  Call "allclock launch capture" {
   " pi"=P000111000010; }
 Ann {* full sequential *}
  "pattern 5": Call "load unload" {
   "test_so"=LLLLHHHLLHHHLHL; "test_si"=110011000110111; }
  Call "allclock launch" {
   " pi"=P100110100011; }
  Call "allclock capture" {
   " pi"=P001111001000; }
 Ann {* full sequential *}
  "pattern 6": Call "load unload" {
The final ATPG patterns:
"test si"=111001010101000; }
   "test so"=LLLLLLLLLLLLL; "test si"=010000101011011; }
   "test so"=LLHLLHLHHHHHHH; "test si"=000110101011110; }
   "test so"=LLHHLHHHLLHHLL; "test si"=111001101010101; }
   "test so"=HLLHLLHLHHHLHL; "test si"=101001110101010; }
   "test so"=LLLLHHHLLHHHLHL; "test si"=110011000110111; }
   "test so"=LLLHHLLLLHHLLL; "test si"=001110101101000; }
   "test so"=LLHLLHLHLHHLLLH; "test si"=110001101110010; }
   "test so"=HLLLHLHLHLHLH; "test si"=110110011110010; }
   "test so"=HLLLLHHLLHH; "test si"=010011011011001; }
   "test so"=HLLHHLHHHLLLLHH; "test si"=001001011100101; }
   "test so"=LHLLLHHHLHHHLHL; "test si"=001111010001001; }
   "test so"=LLHHHHLHLHHLLH; "test si"=111110001010101; }
   "test so"=HHHHLLLHLHLHLHH; "test si"=011101010100011; }
   "test so"=HHHLHLHHLHHHHH; "test si"=0001010111100101; }
```

```
"test so"=LLLHLHLLHLLHLL; "test si"=10010101011011; }
"test so"=LLLLLLLLLHLLL; "test si"=110000001010111; }
"test so"=HHLLLLLHLHLHHHH; "test si"=111101111110011; }
"test so"=HHHHLHHHLHLLHH; "test si"=1101001101010101; }
"test so"=LHLLLHHLLHHLLHL; "test si"=100111111010110; }
"test so"=LLLHHLHLHHHHHLL; "test si"=110001110101001; }
"test so"=HLLLHHHLLHHLLHH; "test si"=111111001110100; }
"test so"=HHHHHLLHHHLLH; "test si"=101010101011011; }
"test so"=LHLHLHLHLHHHHH; "test si"=0011101101101101; }
"test so"=LHLLHLLLHHHHHLH; "test si"=1000010101010000; }
"test so"=LHLHHHHHHHHLLL; "test si"=1100101001011110; }
"test so"=LHLLHHLLLHHHHHHL; "test si"=001100110100001; }
"test so"=HLHLLHLLHHLLH; "test si"=101001110110111; }
"test so"=LHLLHLHLLHHLHL; "test si"=010011101110011; }
"test so"=HLLHLHLLLHLHLHL; "test si"=101001100010101; }
"test so"=LLLHLLHLHHHHLHH; "test si"=110000010101001; }
"test so"=LLHLLHHHHLLH; "test si"=100101001110001; }
"test so"=LLHLLHHHLLHLHHH; "test si"=101000001000101; }
"test so"=HLHLLLLHLHLHLH; "test si"=011100100111111; }
"test so"=HHHLLHLLLHHHHHH; "test si"=100110011001010; }
"test so"=HLLHHLLHHHLHLHL; "test si"=00000000111100; }
"test_so"=LLLLLLLLHHLLL; "test_si"=110000111101110; }
"test so"=HLLHLLHHLHLLHH; "test si"=011111010101100; }
"test so"=LHHHHHHHHHLLHHLL; "test si"=0101011111000111; }
"test so"=LHLHLHLHLHLHHHH; "test si"=010000110101100; }
"test so"=HLLHHLLHHHLHHLL; "test si"=0100101111110010; }
"test so"=LLHLLHHHLLHLHHH; "test si"=100000110100001; }
"test so"=HLLHHLLLHLHLHLH; "test si"=010011010110001; }
"test so"=HLLHLLHLLHLLH; "test si"=010011001110000; }
"test so"=HLLHHLLHHLLH; "test si"=010111011110001; }
"test so"=HLHHHLHHLLHHLHH; "test si"=011011101011011; }
"test so"=HHLHHHLHHHLLHHH; "test si"=010111001110110; }
"test so"=LLHLHLLHHLLH; "test si"=01010101010111; }
"test so"=HLHLHLHHHLHHHH; "test si"=101010111110001; }
"test so"=LHLHLLHLLHLLHL; "test si"=101010011110010; }
"test so"=LLHLLHHLLHHL: "test si"=101101010101011: }
"test so"=HLHHHLLHHLHHLHH; "test si"=101001000100000; }
"test so"=HLLHHLLHHHLLLLL; "test si"=010101011011011; }
"test so"=HLHLHHHHLLLHHL; "test si"=111101101011011; }
"test so"=HHHLHHLHHLHHLH; "test si"=111001101011110; }
"test so"=HHLLHHLHHLHHLH; "test si"=1101010010111100; }
"test so"=HLHLHHLHHLHHLH; "test si"=111110000101100; }
"test so"=HLLLHLLHHLLHHLL; "test si"=111001011110011; }
"test so"=LLLHHLHHLHHLHH; "test si"=111010100100001; }
"test so"=HHLHLHLLHHLLHL: "test si"=011110000000100; }
"test so"=HHHHLLLLLLLHLLH; "test si"=100000100111000; }
"test so"=LLLLLLLLLLLL; "test si"=010011001001011; }
"test so"=HLLHHLLHLHLHHH; "test si"=100011110000001; }
```

```
"test_so"=LLLHHHHLLLLLLHH; "test_si"=100110011011010; } "test_so"=LLLLLLLLLLLLL; "test_si"=011101101001011; }
```

Important Observations:

The total faults possible reported by the ATPG tool are 486 of which 9 are ATPG untestable. So the ATPG test coverage is 98.15%.

There are 65 patterns generated by the ATPG tool