# AUTOMATIC VACCUM CLEANER WITH AIR QUALITY MONITORING

**Submitted to** 

**RCS Sastra** 

**Submitted by** 

D Jai Akash

(BTech ECE)

#### **PROBLEM STATEMENT:**

In urban environments, indoor air quality can significantly impact the health and well-being of occupants. Traditional vacuum cleaners often contribute to indoor air pollution by stirring up dust and allergens during cleaning operations. Additionally, without real-time monitoring, occupants may be unaware of deteriorating air quality levels caused by dust and particulate matter accumulation.

To address these challenges, there is a need for an Automatic Vacuum Cleaner equipped with advanced sensors capable of not only efficiently cleaning indoor spaces but also monitoring air quality in real-time. Such a system would provide occupants with a healthier living environment by minimizing indoor air pollution and alerting them to potential air quality issues.

The key objectives of this project are:

- Designing and implementing an Automatic Vacuum Cleaner capable of autonomously cleaning indoor spaces.
- Integrating air quality monitoring sensors into the vacuum cleaner to measure particulate matter levels and other pollutants.
- Developing algorithms to analyze sensor data and provide real-time feedback on air quality status.

#### **REAL LIFE APPLICATIONS:**

The Automatic Vacuum Cleaner with Air Quality Monitoring is applicable in homes, offices, schools, healthcare facilities, hospital venues, and commercial spaces. By combining cleaning efficiency with real-time air quality monitoring, it enhances indoor environments, improves occupant well-being, and ensures safety and satisfaction across diverse settings.

## **COMPONENTS REQUIRED:**

| Sno | Component             | Quantity    |
|-----|-----------------------|-------------|
| 1   | Arduino Uno           | 1           |
| 2   | Gear Motors           | 2           |
| 3   | L293D Motor Driver    | 1           |
| 4   | DC Motor              | 1           |
| 5   | Ultrasonic Sensor     | 1           |
| 6   | LCD Display           | 1           |
| 7   | Dust Sensor(DSM501A)  | 1           |
| 8   | Switch                | 1           |
| 9   | 330 ohm resistor      | 1           |
| 10  | 4.7 kiloohm resistor  | 1           |
| 11  | 250 ohm potentiometer | 1           |
| 12  | Connecting wires      | As Required |

# **PIN DESCRIPTION OF THE COMPONENTS:**

## Arduino Uno:



## **Ultrasonic Sensor:**



# Dust Sensor(dsm501a):



# Motor Driver(L293D):



# LCD Display:



## **CIRCUIT DIAGRAM:**



# Note:

- ✓ Due to the unavailability of DSM501A(Dust sensor) in tinkercad instead I have placed a Gas sensor in place of DSM501A.
- ✔ For DSM501A pinouts

| DSM501A Arduino Uno |
|---------------------|
|---------------------|

| PIN 3 | VCC |
|-------|-----|
| PIN 4 | A0  |
| PIN 5 | GND |

#### **WORKING:**

#### Initialization:

 Upon startup, the vacuum cleaner initializes its sensors, motors, and display.

#### Sensors Activation:

- The ultrasonic sensor continuously measures the distance to objects in front of the vacuum cleaner.
- The dust sensor periodically samples the air quality to detect dust levels.

#### Obstacle Avoidance:

- If the ultrasonic sensor detects an obstacle within 10cm, the vacuum cleaner activates its obstacle avoidance routine.
- The vacuum cleaner stops its forward motion, rotates to the left or right to avoid the obstacle, and then continues moving forward once the obstacle is cleared.

### Air Quality Monitoring:

- The dust sensor measures the concentration of dust particles in the air.
- If the dust level falls below a certain threshold, indicating relatively clean air, the vacuum cleaner stops its cleaning operation to conserve power and prevent unnecessary cleaning.
- The current air quality reading is displayed on the LCD display for user monitoring.

#### Cleaning Operation:

- While the dust level is above the threshold, indicating the need for cleaning, the vacuum cleaner continues its cleaning operation.
- The DC motor responsible for suction is activated to suck up dust and garbage from the floor.
- The vacuum cleaner moves forward in its cleaning path using its gear motors for propulsion.

#### Continuous Monitoring:

- Throughout the cleaning process, the vacuum cleaner continuously monitors the environment using its sensors.
- It dynamically adjusts its cleaning behavior based on real-time feedback
   from the ultrasonic sensor and dust sensor.

#### Completion and Shutdown:

- Once the cleaning operation is complete or if the dust level falls below the threshold for an extended period, indicating a clean environment, the vacuum cleaner stops its cleaning operation.
- The vacuum cleaner shuts down its motors and sensors.

#### **PURPOSE OF THE COMPONENTS:**

| Arduino Uno: The Arduino Uno serves as the main microcontroller unit,    |
|--------------------------------------------------------------------------|
| responsible for controlling the operation of the vacuum cleaner, reading |
| sensor data, and controlling motor movements based on input from         |
| sensors.                                                                 |

☐ Two Gear Motors: These motors are used to drive the wheels of the vacuum cleaner. They provide the necessary propulsion for the vacuum cleaner to move around and clean the designated area.

|       |                                     | L293D Motor Driver: The L293D motor driver is used to control the                                                                                                                       |  |  |
|-------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|       |                                     | speed and direction of the gear motors. It takes input signals from the Arduino and provides the necessary power and control signals to the motors.                                     |  |  |
|       |                                     | DC Motor: The DC motor is used for suction purposes. It creates the                                                                                                                     |  |  |
|       |                                     | vacuum necessary to collect dust and debris from the floor.                                                                                                                             |  |  |
|       |                                     | Ultrasonic Sensor: The ultrasonic sensor is used for obstacle detection.                                                                                                                |  |  |
|       |                                     | It emits ultrasonic waves and measures the time taken for the waves to bounce back. By calculating the distance to obstacles, the vacuum cleaner can avoid collisions.                  |  |  |
|       |                                     | LCD Display: The LCD display provides visual feedback to the user. It                                                                                                                   |  |  |
|       |                                     | can display information such as the current air quality level and cleaning status for user interaction.                                                                                 |  |  |
|       |                                     | Dust Sensor: The dust sensor is used for air quality monitoring. It                                                                                                                     |  |  |
|       |                                     | detects the concentration of dust particles in the air. By periodically sampling the air, the vacuum cleaner can determine when cleaning is required based on the detected dust levels. |  |  |
|       |                                     | Switch: The switch serves as a user input device. It can be used to turn                                                                                                                |  |  |
|       |                                     | the vacuum cleaner on/off or to trigger specific actions, such as initiating a cleaning cycle or resetting the system.                                                                  |  |  |
| CODE: |                                     |                                                                                                                                                                                         |  |  |
|       | #ir                                 | #include "LiquidCrystal.h"                                                                                                                                                              |  |  |
|       | LiquidCrystal lcd(13,12,11,10,9,8); |                                                                                                                                                                                         |  |  |

long readUltrasonicDistance(int triggerPin, int echoPin) {

int GAS\_VAL = 0;

pinMode(triggerPin, OUTPUT);

digitalWrite(triggerPin, LOW);

delayMicroseconds(2);

```
digitalWrite(triggerPin, HIGH);
delayMicroseconds(10);
digitalWrite(triggerPin, LOW);
pinMode(echoPin, INPUT);
return pulseIn(echoPin, HIGH);
}
void setup()
pinMode(4, OUTPUT);
pinMode(5, OUTPUT);
pinMode(6, OUTPUT);
pinMode(7, OUTPUT);
pinMode(A0, INPUT);
Serial.begin(9600);
lcd.begin(16,2);
lcd.setCursor(0,0);
lcd.print(" AIR QUALITY ");
}
void loop()
GAS_VAL = analogRead(A0);
Serial.println(GAS_VAL);
lcd.setCursor(7,8);
lcd.print(GAS_VAL);
if(GAS_VAL>310)
{
```

```
if (0.01723 * readUltrasonicDistance(2, 3) < 10) {
digitalWrite(4, LOW);
digitalWrite(5, HIGH);
digitalWrite(6, LOW);
digitalWrite(7, HIGH);
}
else {
digitalWrite(4, HIGH);
digitalWrite(5, LOW);
digitalWrite(6, LOW);
digitalWrite(7, HIGH);
}
delay(10);
}
 else
 {
digitalWrite(4, LOW);
digitalWrite(5, LOW);
digitalWrite(6, LOW);
digitalWrite(7, LOW);
}
}
```

#### **CONCLUSION:**

In conclusion, the Automatic Vacuum Cleaner designed with an Arduino Uno, gear motors, L293D motor driver, DC motor, ultrasonic sensor, LCD display, dust sensor, and a switch offers a comprehensive solution for efficient cleaning and air quality monitoring. By leveraging these components, the vacuum cleaner can navigate obstacles, detect dust levels, and provide real-time feedback to users. This versatile and intelligent system enhances indoor air quality, promotes cleanliness, and contributes to a healthier living environment.

#### **REFERENCES:**

Ultrasonic sensor: Getting Started with the HC-SR04 Ultrasonic sensor | Arduino Project Hub

Dust Sensor: <u>Dust Sensor DSM501A with Arduino, PM10 & PM2.5 Air Quality Monitoring, Arduino</u> Project (youtube.com)

LCD Display: Liquid Crystal Displays (LCD) with Arduino | Arduino Documentation

L293D: Obstacle Avoiding Robot Circuit Tinkercad 1 (youtube.com)

Tinkercad Link: Circuit design Automatic vaccum cleaner - Tinkercad

#### **ADDITIONAL:**

☐ Incorporate a Wi-Fi module (e.g., ESP8266) to enable remote monitoring and control of the vacuum cleaner via a smartphone app or web interface.