Projet de physique Numérique - Allée de Von Karman

Simulation python

Cadiou Corentin Petit Antoine

Janvier 2014

Mise en place de la simulation Point de départ

Incorporation du problème BFECC

L'obstacle qui bouge

Résultats de la simulation

La propulsion

Code initial : simulation d'une cellule de Rayleigh-Benard. Schéma d'advection :

- ▶ advection 1/2 lagrangienne -¿ diffusion (u,v);
- ▶ advection 1/2 lagrangienne -¿ diffusion (T);

Premières modifications :

suppression de la température;

Premières modifications :

- suppression de la température;
- modification des conditions aux limites :

Premières modifications :

- suppression de la température;
- modification des conditions aux limites :
 - ▶ haut et bas :

$$\left. \frac{\partial u}{\partial y} \right|_{y=0,H} = \left. \frac{\partial v}{\partial y} \right|_{y=0,H} = 0$$

Premières modifications :

- suppression de la température;
- modification des conditions aux limites :
 - haut et bas :

$$\left. \frac{\partial u}{\partial y} \right|_{y=0,H} = \left. \frac{\partial v}{\partial y} \right|_{y=0,H} = 0$$

droite :

$$\left. \frac{\partial u}{\partial x} \right|_{x=W} = \left. \frac{\partial v}{\partial y} \right|_{y=W} = 0$$

Premières modifications :

- suppression de la température;
- modification des conditions aux limites :
 - haut et bas :

$$\left. \frac{\partial u}{\partial y} \right|_{y=0,H} = \left. \frac{\partial v}{\partial y} \right|_{y=0,H} = 0$$

droite :

$$\left. \frac{\partial u}{\partial x} \right|_{x=W} = \left. \frac{\partial v}{\partial y} \right|_{v=W} = 0$$

gauche :

$$\frac{\partial u}{\partial x}\Big|_{x=0} = u_0$$
 $\frac{\partial v}{\partial x}\Big|_{x=0} = 0$

Mise en place de la simulation

Point de départ

Incorporation du problème

BFECC

L'obstacle qui bouge

Résultats de la simulation

La propulsion

Obstacle

Pour commencer, nous avons imposé un obstacle fixe (noté \mathcal{O}) :

$$\forall (x,y) \in \mathcal{O} : u(x,y) = v(x,y) = 0$$

On visualisait en regardant le champ de vitesse . . .

Traceurs

 \dots avant de remplacer cet affichage par la visualisation de traceurs, c'est-à-dire un champ supplémentaire noté ${\cal T}$ advecté et passif tel que :

$$\forall n \in \mathbb{Z} \quad T(0, n\Delta, t > 0) = 1$$

 $\forall (x, y) \quad T(x, y, 0) = 0$

Traceurs "derrière"

Idée : l'obstacle impose $\forall (x,y) \in \mathcal{O} : T^n(x,y) = 0$ et on met initialement $\forall (x,y) \notin \mathcal{O} : T^0 = 1$.

Mise en place de la simulation

Point de départ Incorporation du problème

BFECC

L'obstacle qui bouge

Résultats de la simulation

La propulsion

Back and Forth Error Compensation and Correct

On effectue les pas suivants pour un champ scalaire $X^n(x, y)$, un champ de vitesse \vec{v} et un opérateur d'advection $A(\vec{v}, X)$:

$$X_1 = A(\vec{v}, X^n) \tag{1}$$

$$X_2 = A(-\vec{v}, X_1) \tag{2}$$

$$X^{n+1} = A(\vec{v}, X - \alpha(X^n - X_2))$$
 (3)

Dans la littérature, $\alpha = \frac{1}{2}$.

BFECC instable

Dans nos conditions (pas de diffusion physique, haut Reynolds) : BFECC instable

Solution : diminuer α

Si on diminue α , la diffusion numérique augmente :

Mise en place de la simulation

Point de départ Incorporation du problème BFECC

L'obstacle qui bouge

Résultats de la simulation

La propulsion

Mise en place de la simulation

Point de départ Incorporation du problème BFECC L'obstacle qui bouge

Résultats de la simulation La propulsion

L'effet de l'amplitude d'oscillation

On fait varier l'amplitude d'oscillation

Travail de la force de traînée pour une amplitude entre 0,01° et 0,09° à une fréquence de 10 Hz.

L'effet de l'amplitude d'oscillation

Sur une plus grande plage d'amplitudes, la traînée devient motrice

Travail de la traînée au bout de 2000 itérations

Interpolation

0.005

Amplitude (u.a.)

0.006

0.007

0.008

Régression linéaire de W_t^{-1} en fonction de θ_0

0.003

0.004

0.002

0.001

0.009

L'effet de la fréquence d'oscillation

On fait varier la fréquence d'oscillation

Travail de la force de traînée pour une fréquence entre 10~Hz et 20~Hz à une amplitude de $0.02\,^\circ$.

Interpolation

On interpole la force de traînée moyenne (pentes des droites d'interpolations des droites précédentes)

La force de traînée est linéaire en fréquence sur la plage étudiée.