# Дискретная математика. Модуль 3. Лекция 1

### Клуб альтруистичных и настойчивых

### 11 января 2016

## Схемы. Булевы схемы

ВАЖНОЕ ПРИМЕЧАНИЕ: В данной лекции все рассмотренные функции являются всюду определенными.

Схема — это функция, заданная последовательность присваиваний.

Также в профессиональной среде схемы принято называть SLP (straight line programmes).

Рассмотрим такую функцию f, определенную для булевых значений (булеву функцию):  $f: \{0,1\}^n \to \{0,1\}.$ 

 $\mathit{Baзиcom}$  В булевой функции будем называть некий набор  $B:\{f_1,f_2,\ldots,f_n\}$ , где  $f_1\ldots f_n$  - булевы функции.

Булева схема в базисе В — последовательность функций  $x_1, x_2, x_3...x_n, x_{n+1} := S_1, x_i := S_{L-n}$ , которая вычисляет  $x_L(x_1, \ldots, x_n)$ .

$$S_j = g(S_{i_1}, ..., s_{i_r}), g \in B, i_{< j}$$

Cmandapmnый базис есть базис, состоящий из операций отрицания, конъюнкции и дизъюнкции:  $\{\neg, \lor, \land\}$ 

ПРИМЕР 1

Стандартный базис.  $x_1, \dots x_n, s_1 := \neg x_1, s_2 = \neg x_2, s_3 := x_1 \land s_2, s_4 = x_2 \land s_1; s_5 = s_3 \lor s_4$ 



Если  $x_2 = 0$ , то  $s_5 = x_1$ 

Если  $x_2 = 1$ , то  $s_5 = \neg x_1$ 

Результатом является сложение по модулю 2 (1, если значения  $x_1$  и  $x_2$  разные) -  $\oplus$ .

Составим схему которая является хог нескольких переменных. Индуктивное доказательство существования такой функции:

$$x_1 \oplus x_2 \oplus \ldots \oplus x_{n-1} \oplus x_n = (x_1 \oplus x_2 \oplus \ldots \oplus x_{n-1}) \oplus x_n$$



#### Пример 3

Дизъюнкция n переменных — аналогично, по индукции. Такие рассуждения можно построить и для конъюнкции.



### Анализ схем

Анализ базисов: все ли функции можно выразить через схему в данном базисе? Полный базис: Базис В - полный, если любую булеву функцию можно вычислить схемой в базисе В.

Теорема о стандартном базисе. Стандартный базис — полный.

Доказательство. Вспомним, что ДНФ - это дизъюнкция конъюнктов литералов. Постро-им схему ДНФ.

 $x_1, \ldots, x_n, \neg x_1, \ldots, \neg x_n, c_1, \ldots, c_n, D$ , где  $c_j$  — конъюнкция литералов, D — дизъюнкция. Данный порядок действий соответствует определению ДНФ, следовательно ДНФ представима в виде схемы и любая функция представима в виде ДНФ. что доказано ранее. (Note:  $0 = x \land \neg x, 1 = x \lor \neg x$ ) Q.E.D.

**Лемма.** Пусть базис  $B_1$  — полный.

 $\forall f \in B_1$  вычисляется схемой в базисе  $B_2$ .

Tогда  $B_2$  — nолный.

Доказательство. Вычислим схему в базисе  $B_1$ .

 $(B_1)x_1,...x_n,s_j :=$ вычисление f,F(..)

Теперь вычислим схему в базисе  $B_2$ .  $(B_2)$ вычисление f, F(..)

Q.E.D.

ПРИМЕЧАНИЕ: Заметим, что если стандартный базис выразим через некоторые функции, то данные функции будут составлять полный базис.

**Следствие 1.** Полнота базиса Жегалкина  $\{1, x_1 \land x_2, x_1 \oplus x_2\}$ .

Доказательство.  $\neg x_1 = 1 \oplus x_1 \ x_1 \lor x_2 = x_1 \oplus x_2 \oplus (x_1 \land x_2)$  или  $x_1 \lor x_2 = \neg (\neg x_1 \land \neg x_2)$  Q.E.D.

### Немного о схемах.

Любая формула является схемой. При этом формула — частный случай схемы. Не любая схема — формула.

ПРИМЕР:  $x_1 \oplus x_2 = x_1 \land \neg x_2 \lor \neg x_1 \land x_2 = F(x_1 \oplus x_2) \oplus x_3 = (F) \land \neg x_3 \lor \neg F \land x_3$ 

Следствие 2. Полнота базиса  $\neg$ ,  $\wedge$ .

Доказательство.  $x \lor y = \neg(\neg x \land \neg y)$ 

Q.E.D.

Функция  $f:\{0,1\}^n \to \{0,1\}$  называется монотонной, если  $\forall i: x_i \leqslant y_i \Rightarrow f(x_1\dots x_n) \leqslant f(y_1\dots y_n)$ 

Mонотонный базис — это базис ∨, ∧

**Теорема о монотонном базисе.** Монотонный базис  $\{\lor,\land\}$  — неполный

Доказательство. Воспользоваться монотонностью функций  $x_1 \lor x_2$  и  $x_1 \land x_2$  и немонотонностью функции  $\neg x_1$  Q.E.D.

Утверждение 1. Схема в монотонном базисе вычисляет монотонную функцию.

Доказательство. Доказываем индукцией по размеру схем

$$x_1, \dots, x_n, S_1 \dots S_L, S_{L+1}$$
$$s_{L+1} := f(s_{i_1} \dots s_{i_r})$$
$$S_{i\alpha}(x) \leqslant S_{i\alpha}(y)$$

Так как f — монотонная

$$S_{L+1}(x) \leqslant S_{L+1}(y)$$

Q.E.D.

Заметим также неполноту следующих базисов:

- 1.  $\{\land, \oplus\}$
- 2.  $\{1, \land\}$
- 3.  $\{1, \oplus\}$

**Утверждение 2.** Пусть f вычисляется схемой в базисе  $\{1, \oplus\}$ . Тогда  $f = a_0 \oplus \oplus_{i=1} (a_i \wedge x_i)$  Доказательство.

$$a_0 + \sum a_i x_i + b_0 + \sum b_i x_i = (a_0 + b_0) + \sum (a_i + b_i) x_i$$

Q.E.D.

Не все булевы функции — линейные

Линейных функций —  $2^{n+1}$ 

Булевых функций —  $2^{2^n}$ 

Получается, линейных функций меньше.