TARGET CASE STUDY

Assumptions made:

- 1. The orders are counted on the order_id irrespective of the status of delivery,
- 2. Used custom bins for categorizing the time as dawn, morning, afternoon and night and also Brazil local time is also not taken into account,
- 3. The customer_delivery_date is the default delivery_date.

Q1 - Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

1. Data type of columns in a table

```
select
    column_name,
    data_type
from `target-383507.target`.INFORMATION_SCHEMA.COLUMNS
where table_name = 'customers';
```

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTIO
Row /	column_name	//	data_type	//	
1	customer_id		STRING		
2	customer_unique	_id	STRING		
3	customer_zip_co	de_prefix	INT64		
4	customer_city		STRING		
5	customer_state		STRING		

2. Time period for which the data is given

select distinct extract(year from order_purchase_timestamp) as time_period from `target-383507.target.orders` order by 1 desc;

3. Cities and States of customers ordered during the given period

```
select
  extract(year from o.order_purchase_timestamp) as time_period,
  c.customer_city,
  c.customer_state
from `target-383507.target.customers` c
inner join `target-383507.target.orders` o
on c.customer_id = o.customer_id
order by 1 desc;
```

Query results

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECU
Row	time_period	customer_city	//	customer_state	/
1	2018	acu		RN	
2	2018	ico		CE	
3	2018	ico		CE	
4	2018	ico		CE	
5	2018	ico		CE	
6	2018	ipe		RS	
7	2018	ipe		RS	
8	2018	ipu		CE	
9	2018	ipu		CE	
10	2018	itu		SP	
11	2018	itu		SP	

Q2 - In-depth Exploration:

1.Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
select
```

```
extract(year from order_purchase_timestamp) AS Year,
extract(month from order_purchase_timestamp) AS Month,
count(order_id) as orders_count,
from `target-383507.target.orders`
group by Year, Month
order by Year, Month;
```

EXECU	EXECUTION DETAILS	JSON	RESULTS	IFORMATION	JOB IN
		orders_count	Month	Year	Row
		4	9	2016	1
		324	10	2016	2
		1	12	2016	3
		800	1	2017	4
		1780	2	2017	5
		2682	3	2017	6
		2404	4	2017	7
		3700	5	2017	8
		3245	6	2017	9
		4026	7	2017	10
		4331	8	2017	11

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
select
case
when extract(hour from order_purchase_timestamp) between 3 and 6 then 'Daw
n'
when extract(hour from order_purchase_timestamp) between 7 and 12 then 'Mor
ning'
when extract(hour from order_purchase_timestamp) between 13 and 18 then 'Aft
ernoon'
else 'Night'
end as Purchase_time,
count(customer_id) as customer_count
from `target-383507.target.orders`
group by Purchase_time
order by Purchase_time;
```

Quer	y results			
JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAIL
Row	Purchase_time	//	customer_count	
1	Afternoon		38135	
2	Dawn		1168	
3	Morning		27733	
4	Night		32405	

Q3 - Evolution of E-commerce orders in the Brazil region:

1. Get month on month orders by states

```
select
  c.customer_state,
  extract(year from o.order_purchase_timestamp) as year,
  extract (month from o.order_purchase_timestamp) as month,
  count(o.order_id) as orders
from `target-383507.target.customers` c
inner join `target-383507.target.orders` o
on c.customer_id = o.customer_id
group by 1,2,3
order by 1,2,3;
```

JOB IN	IFORMATION RESULTS	JSON	EXECUTION DET	TAILS EXE	CUTION GRAPH PREVIEW
Row	customer_state	year	month //	orders	
1	AC	2017	1	2	
2	AC	2017	2	3	
3	AC	2017	3	2	
4	AC	2017	4	5	
5	AC	2017	5	8	
6	AC	2017	6	4	
7	AC	2017	7	5	
8	AC	2017	8	4	
9	AC	2017	9	5	
10	AC	2017	10	6	
11	AC	2017	11	5	

2. Distribution of customers across the states in Brazil

```
select
    customer_state,
    customer_city,
    count(customer_id) as no_of_customers
from `target-383507.target.customers`
    group by 1,2
order by 1,3 desc;
```

Quer	y results					≛ SAVE RESULTS
JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXE	ECUTION GRAPH PREVIEW
Row	customer_state	//	customer_city	//	no_of_customer	
1	AC	**	rio branco		70	
2	AC		cruzeiro do sul		3	
3	AC		xapuri		2	
4	AC		senador guiom	ard	2	
5	AC		brasileia		1	
6	AC		porto acre		1	
7	AC		manoel urbano		1	
8	AC		epitaciolandia		1	
9	AL		maceio		247	
10	AL		arapiraca		29	
11	AL		penedo		8	
					Res	sults per page: 50 ▼

- **Q4 -** Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - 1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment_value" column in payments table

```
select
 x.month,
 x.percent_increase
from (
select
 v.year,
 v.month,
 round((v.lead_payment-v.avg_payment_value)/v.avg_payment_value,2) as percent_increase
from (
select
 s.*,
lead(s.avg_payment_value) over(partition by s.month order by s.year,s.month) as lead_payment
from (
select distinct
 t.year,
 t.month,
 avg(t.payment_value) over(partition by t.year,t.month order by t.year,t.month) as avg_payment
_value
from
(
select
 extract(year from o.order_purchase_timestamp) as year,
 extract(month from o.order_purchase_timestamp) as month,
 p.payment_value
from `target-383507.target.orders` o
inner join `target-383507.target.payments` p on o.order_id = p.order_id
where t.month between 1 and 8
)s
)v
where x.percent_increase is not null
order by 2,1;
```

Quer	y results			
JOB IN	IFORMATION	RESULTS	JSON	EX
Row	month	percent_increase		
1	1	-0.1		
2	2	-0.08		
3	3	-0.03		
4	4	-0.01		
5	8	0.03		
6	6	0.07		
7	5	0.08		
8	7	0.19		

2. Mean & Sum of price and freight value by customer state

```
select
    c.customer_state,
    round(sum(oi.price),0) as sum_price,
    round(avg(oi.price),0) as mean_price,
    round(sum(oi.freight_value),0) as sum_freight_value,
    round(avg(oi.freight_value),0) as mean_freight_value
from `target-383507.target.order_items` oi
inner join `target-383507.target.orders` o on oi.order_id = o.order_id
inner join `target-383507.target.customers` c on o.customer_id = c.customer_id
group by 1
order by 1;
```

JOB IN	FORMATION RESULTS	JSON	EXECUTION DET	TAILS EXE	CUTION GRAPH PREVI
Row	customer_state	sum_price	mean_price	sum_freight_valu	mean_freight_va
1	AC	15983.0	174.0	3687.0	40.0
2	AL	80315.0	181.0	15915.0	36.0
3	AM	22357.0	135.0	5479.0	33.0
4	AP	13474.0	164.0	2789.0	34.0
5	BA	511350.0	135.0	100157.0	26.0
6	CE	227255.0	154.0	48352.0	33.0
7	DF	302604.0	126.0	50625.0	21.0
8	ES	275037.0	122.0	49765.0	22.0
9	GO	294592.0	126.0	53115.0	23.0
10	MA	119648.0	145.0	31524.0	38.0
11	MG	1585308.0	121.0	270853.0	21.0

Q5 - Analysis on sales, freight and delivery time

1. Calculate days between purchasing, delivering and estimated delivery

```
select
  order_id,
  date_diff(order_delivered_customer_date,order_purchase_timestamp,day)
as purchase_delivery_gap,
  date_diff(order_estimated_delivery_date,order_purchase_timestamp,day)
as purchase_estimation_gap,
```

date_diff(order_estimated_delivery_date,order_delivered_customer_date,d
ay) as estimation_delivery_gap
from `target-383507.target.orders`
order by 2 desc;

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXE	CUTION GRAPH PREVIEW
Row	order_id	//	purchase_delive	purchase_estima	estimation_deliy	
1	ca07593549f181	6d26a572e06	209	28	-181	
2	1b3190b2dfa9d7	'89e1f14c05b	208	19	-188	
3	440d0d17af5528	15d15a9e41a	195	30	-165	
4	0f4519c5f1c541	ddec9f21b3bd	194	32	-161	
5	285ab9426d6982	2034523a855f	194	28	-166	
6	2fb597c2f772eca	a01b1f5c561b	194	39	-155	
7	47b40429ed8cce	3aee9199792	191	15	-175	
8	2fe324febf907e3	ea3f2aa9650	189	22	-167	
9	2d7561026d542d	c8dbd8f0daea	188	28	-159	
10	437222e3fd1b07	396f1d9ba8c	187	42	-144	
11	c27815f7e3dd0b	926b5855262	187	25	-162	

- 2. Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:
 - time_to_delivery = order_purchase_timestamporder_delivered_customer_date
 - diff_estimated_delivery = order_estimated_delivery_dateorder delivered customer date

select

```
order_id,
```

date_diff(order_delivered_customer_date,order_purchase_timestamp,day)
as time_to_delivery,

 $\frac{date_diff}(order_estimated_delivery_date, order_delivered_customer_date, day)}{as\ diff_estimated_delivery}$

from `target-383507.target.orders`

Query results

JOB IN	IFORMATION RESUL	TS JSON		EXECUTION DETA	ILS EXECU
Row	order_id	time_to_de	elivery	diff_estimated_c	
1	1950d777989f6a877539f53	79	30	-12	
2	2c45c33d2f9cb8ff8b1c86cc	28	30	28	
3	65d1e226dfaeb8cdc42f6654	12	35	16	
4	635c894d068ac37e6e03dc5	4e	30	1	
5	3b97562c3aee8bdedcb5c2e	45	32	0	
6	68f47f50f04c4cb6774570cf	de	29	1	
7	276e9ec344d3bf029ff83a16	1c	43	-4	
8	54e1a3c2b97fb0809da548a	59	40	-4	
9	fd04fa4105ee8045f6a0139c	a5	37	-1	
10	302bb8109d097a9fc6e9cefd	5	33	-5	
11	66057d37308e787052a3282	8	38	-6	

3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

select

```
c.customer_state,
round(avg(oi.freight_value),2) as avg_freight_value,
ceil(avg(date_diff(o.order_delivered_customer_date,o.order_purchase_timestamp
,day))) as avg_time_to_delivery,
ceil(avg(date_diff(o.order_estimated_delivery_date,o.order_delivered_customer_
date,day))) as avg_diff_estimated_delivery
from `target-383507.target.orders` o
inner join `target-383507.target.customers` c on o.customer_id = c.customer_id
inner join `target-383507.target.order_items` oi on o.order_id = oi.order_id
group by 1
order by 1;
```

Query results RESULTS EXECUTION GRAPH PREVIEW JOB INFORMATION JSON EXECUTION DETAILS customer_state avg_time_to_del avg_diff_estimat Row avg_freight_valu AC 40.07 21.0 21.0 1 2 ΑL 35.84 24.0 8.0 3 AM 33.21 26.0 19.0 4 AΡ 34.01 28.0 18.0 5 BΑ 26.36 19.0 11.0 CE 6 32.71 21.0 11.0 7 DF 21.04 13.0 12.0 8 ES 22.06 16.0 10.0 9 G0 22.77 15.0 12.0 10 MA 38.26 22.0 10.0 11 MG 20.63 12.0 13.0

- 4. Sort the data to get the following:
- 5. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5

select

```
c.customer_state,
round(avg(oi.freight_value),2) as highest_avg_freight_value,
from `target-383507.target.orders` o
inner join `target-383507.target.customers` c on o.customer_id = c.customer_id
inner join `target-383507.target.order_items` oi on o.order_id = oi.order_id
group by 1
order by 2 desc
limit 5;
```

Quer	y results			
JOB IN	FORMATION	RESULTS	JSON	EXECUTION
Row	customer_state	/,	highest_avg_frej	
1	RR		42.98	
2	PB		42.72	
3	RO		41.07	
4	AC		40.07	
5	PI		39.15	

6. Top 5 states with highest/lowest average time to delivery

```
select
    c.customer_state,
    ceil(avg(date_diff(o.order_delivered_customer_date,o.order_purchase_time
    stamp,day))) as avg_time_to_delivery,
    from `target-383507.target.orders` o
    inner join `target-
383507.target.customers` c on o.customer_id = c.customer_id
    group by 1
    order by 2 desc
limit 5;
```

Query results							
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION			
Row	customer_state	//	avg_time_to_del				
1	RR		29.0				
2	AP		27.0				
3	AM		26.0				
4	AL		25.0				
5	PA		24.0				

5. Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
select
```

```
c.customer_state,
ceil(avg(date_diff(o.order_estimated_delivery_date,o.order_delivered_customer_date,day))) as fast_delivery
from `target-383507.target.orders` o
inner join `target-383507.target.customers` c on o.customer_id = c.customer_id
group by 1
order by 2 desc
limit 5;
```

Query results						
JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS		
Row	customer_state	//	fast_delivery			
1	AC		20.0			
2	RO		20.0			
3	AP		19.0			
4	AM		19.0			
5	RR		17.0			

6. Payment type analysis:

1. Month over Month count of orders for different payment types

select

```
p.payment_type,
extract(year from o.order_purchase_timestamp) as year,
extract (month from o.order_purchase_timestamp) as month,
count(o.order_id) as orders
from `target-383507.target.orders` o
inner join `target-383507.target.payments` p on o.order_id = p.order_id
group by 1,2,3
order by 1,2,3;
```

Quer	y results				≛ SAVE RE
JOB IN	IFORMATION RESULTS	JSON	EXECUTION DET	TAILS EXE	CUTION GRAPH PRI
Row	payment_type	year	month	orders	
1	UPI	2016	10	63	
2	UPI	2017	1	197	
3	UPI	2017	2	398	
4	UPI	2017	3	590	
5	UPI	2017	4	496	
6	UPI	2017	5	772	
7	UPI	2017	6	707	
8	UPI	2017	7	845	
9	UPI	2017	8	938	
10	UPI	2017	9	903	
11	UPI	2017	10	993	

2. Count of orders based on the no. of payment installments

```
select
  payment_installments,
  count(order_id) as order_count
from `target-383507.target.payments`
group by 1
order by 1;
```

Quer	y results			
JOB INFORMATION		RESULTS	JSON	EXECUTIO
Row	payment_installr	order_count		
1	0	2		
2	1	52546		
3	2	12413		
4	3	10461		
5	4	7098		
6	5	5239		
7	6	3920		
8	7	1626		
9	8	4268		
10	9	644		
11	10	5328		

Q7 - Actionable Insights

- Not exactly, there is a growing trend in orders as it initially (2016) and then later (2018) we see a sharp dip in orders. Initially we see 2017 March. We get to see a peak in 2017 March. Also, we can find peaks during 2017 Nov and 2018 Jan, March. With given data we find peak in March repeated, indicating seasonality in the region.
- But when we do see rise in payment value between 2016 to 2017 only considering Jan to Aug month on month even with oscillating growth percentages.
- From the result obtained, it is found that the maximum customer distribution is from the state named "SP" in Brazil.
- We can see a sizeable number of undelivered orders while getting the delivery date differences.
- We see customers prefer credit card payments more than UPI and debit card.
- For those customers who pay by installments, we see high number for less than 10 installments and few for more than 10 installments.
- Customers prefer afternoons and nights to carry out purchases.

Q8 - RECOMMENDATION

- For having limited time sales for goods that are less purchased, we can use the evening and night to attract more sales. Performing this on March month would be adding more success to this
- Since people prefer credit cards for payment mode, we can use cashbacks and offers for improving sales