

FCC PART 15.249 TEST REPORT

For

Shenzhen Rakwireless Technology Co., Ltd.

RM1007, Hangsheng Technology Building, 4th South Gaoxing Avenue, Science and Technology Park, Nanshan District, Shenzhen, China

FCC ID: 2AF6B-RAKSMR006

www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
JUSTIFICATION	
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	5
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	7
TEST EQUIPMENT LIST	8
FCC§15.203 - ANTENNA REQUIREMENT	0
APPLICABLE STANDARD	9
Antenna Connector Construction	
FCC §15.207 – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	
FCC§15.205, §15.209 & §15.249 - RADIATED EMISSIONS	
APPLICABLE STANDARD	
TEST EQUIPMENT SETUP	
EUT SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	16
TEST RESULTS SUMMARY	
TEST DATA	
FCC§15.215(C) - 20DB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	23

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The Shenzhen Rakwireless Technology Co., Ltd. 's product, model number: RAK811(FCC ID: 2AF6B-RAKSMR006) or the "EUT" in this report was an LoRa Module, which was measured approximately: 22.0 mm (L) * 14.0 mm (W) *1.7 mm (H), rated with input voltage: DC3.3V.

Report No.: RSZ170330002-00

*All measurement and test data in this report was gathered from production sample serial number: 1700575. (Assigned by BACL, Kunshan). The EUT supplied by the applicant was received on 2017-03-30.

Objective

This report is prepared on behalf of *Shenzhen Rakwireless Technology Co., Ltd.* in accordance with Part 2-Subpart J, and Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209, 15.215 and 15.249 rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.249 Page 3 of 29

Measurement Uncertainty

	Item	Uncertainty	
AC Power Line	s Conducted Emissions	±3.26 dB	
RF conducted test with spectrum		±0.9dB	
RF Output Power with Power meter		±0.5dB	
D. Estadaminia	30MHz~1GHz	±5.91dB	
Radiated emission	Above 1G	±4.92dB	
Occupi	ied Bandwidth	±0.5kHz	
Temperature		±1.0℃	
H	Iumidity	±6%	

Report No.: RSZ170330002-00

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Test site at Bay Area Compliance Laboratories Corp. (Kunshan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.10-2013.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 815570. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.249 Page 4 of 29

SYSTEM TEST CONFIGURATION

Justification

The system was configured for testing in engineering mode.

EUT Exercise Software

No software was used.

Equipment Modifications

No modifications were made to the unit tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	Notebook	E6410	GYXJ3A00 JSD2
DELL	Mouse	MOC5UO	G1900NKD
DELL	Adapter	LA90PM130	CN-06C3W2-72438-6BT-194A-A03
Kingston	U disk	4 GB	N/A

Report No.: RSZ170330002-00

External I/O Cable

Cable Description	Length (m)	From/Port	То
Un-Shielding Detachable USB Cable	1.5	PC	U disk
Un-Shielding Detachable USB Cable	1.5	PC	Mouse
Un-shielding Detachable USB Cable	1.0	EUT	PC
Un-shielding Detachable AC Cable	0.9	Adapter	LISN 1
Un-shielding Un-detachable DC Cable	0.9	Adapter	PC

FCC Part 15.249 Page 5 of 29

Report No.: RSZ170330002-00

Block Diagram of Test Setup

For conducted emission:

FCC Part 15.249 Page 6 of 29

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207(a)	Conduction Emissions Comp	
15.205, §15.209, §15.249	Radiated Emissions	Compliance
§15.215 (c)	20 dB Bandwidth	Compliance

Report No.: RSZ170330002-00

FCC Part 15.249 Page 7 of 29

TEST EQUIPMENT LIST

Manufacturer	ufacturer Description		Serial Number	Calibration Date	Calibration Due Date			
AC Line Conducted test								
Rohde & Schwarz	EMI Test Receiver	ESCS30	834115/007	2016-11-25	2017-11-25			
Rohde & Schwarz	LISN	ESH3-Z5	862770/011	2016-10-10	2017-10-10			
Rohde & Schwarz	Pulse limiter	ESH3-Z2	879940/0058	2016-06-18	2017-06-17			
MICRO-COAX	Coaxial line	UFB-293B-1- 0480-50X50	97F0173	2016-09-08	2017-09-08			
Rohde & Schwarz	CE Test software	EMC 32	V 09.10.0	NCR	NCR			
	R	adiation test						
Sonoma Instrunent	Amplifier	330	171377	2016-12-12	2017-12-12			
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2016-11-25	2017-11-25			
Sunol Sciences	Broadband Antenna	JB3	A090314-2	2016-01-09	2019-01-08			
Narda	Narda Pre-amplifier		2001270	2016-09-08	2017-09-08			
EMCO	Horn Antenna	3116	00084159	2016-10-18	2019-10-17			
Rohde & Schwarz	Signal Analyzer	FSIQ26	100048	2016-11-25	2017-11-25			
ETS	Horn Antenna	3115	6229	2016-01-11	2019-01-10			
R&S	Auto test Software	EMC32	V 09.10.0	NCR	NCR			
haojintech	Coaxial Cable	Cable-1	001	2016-12-12	2017-12-12			
haojintech	Coaxial Cable	Cable-2	002	2016-12-12	2017-12-12			
haojintech	Coaxial Cable	Cable-3	003	2016-12-12	2017-12-12			
MICRO-COAX	Coaxial Cable	Cable-4	004	2016-12-12	2017-12-12			
MICRO-COAX	Coaxial Cable	Cable-5	005	2016-12-12	2017-12-12			

Report No.: RSZ170330002-00

FCC Part 15.249 Page 8 of 29

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RSZ170330002-00

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction

The EUT used a non-standard SMA jack antenna for test, the antenna gain is 2.0 dBi. For the end user, this module will be soldered on a PCB that has an internal antenna, and the max gain shell no exceed 2dBi.

FCC Part 15.249 Page 9 of 29

FCC §15.207 – AC LINE CONDUCTED EMISSIONS

Applicable Standard

According to FCC §15.207

EUT Setup

Report No.: RSZ170330002-00

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with per ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W		
150 kHz – 30 MHz	9 kHz		

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.249 Page 10 of 29

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Report No.: RSZ170330002-00

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207,

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in compliance with the limit if

$$L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL., $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	22 ℃
Relative Humidity:	51 %
ATM Pressure:	101.0 kPa

The testing was performed by Layne Li on 2017-04-14.

FCC Part 15.249 Page 11 of 29

EUT Operation Mode: Transmitting

Report No.: RSZ170330002-00

Frequency (MHz)	QuasiPeak (dBµV)	Average (dB \mu V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.230000		25.70	9.000	L1	10.0	26.75	52.45	Compliance
0.230000	40.15		9.000	L1	10.0	22.30	62.45	Compliance
0.260000		26.04	9.000	L1	10.0	25.39	51.43	Compliance
0.260000	38.82		9.000	L1	10.0	22.61	61.43	Compliance
0.340000		23.02	9.000	L1	10.0	26.18	49.20	Compliance
0.340000	34.18		9.000	L1	10.0	25.02	59.20	Compliance
3.440000		27.58	9.000	L1	9.9	18.42	46.00	Compliance
3.440000	33.46		9.000	L1	9.9	22.54	56.00	Compliance
7.390000		31.62	9.000	L1	10.0	18.38	50.00	Compliance
7.390000	37.24		9.000	L1	10.0	22.76	60.00	Compliance
21.180000		31.09	9.000	L1	10.4	18.91	50.00	Compliance
21.180000	39.41		9.000	L1	10.4	20.59	60.00	Compliance

FCC Part 15.249 Page 12 of 29

AC 120V/60 Hz, Neutral

80

60

20

150k

Level in dBµ

3M 4M 5M 6

8 10M

Report No.: RSZ170330002-00

20M

30M

2M

Frequency in Hz

Note:

300 400 500

800 1M

FCC Part 15.249 Page 13 of 29

¹⁾ Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation The corrected factor has been input into the transducer of the test software.

²⁾ Corrected Amplitude = Reading + Correction Factor

³⁾ Margin = Limit – Corrected Amplitude

FCC§15.205, §15.209 & §15.249 - RADIATED EMISSIONS

Applicable Standard

As per FCC§15.249 (a), except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

Report No.: RSZ170330002-00

As per FCC§15.249 (c), Field strength limits are specified at a distance of 3 meters.

Test Equipment Setup

The spectrum analyzer or receiver is set as:

Below 1000MHz:

RBW = 100 kHz / VBW = 300 kHz / Sweep = Auto

Above 1000MHz:

Peak: RBW = 1MHz / VBW = 1MHz / Sweep = Auto Average: RBW = 1MHz / VBW = 10Hz / Sweep = Auto

FCC Part 15.249 Page 14 of 29

EUT Setup

Below 1G:

Report No.: RSZ170330002-00

Above 1GHz:

The radiated emission and out of band emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC part 15.209, 15.205 and FCC part 15.249 limits.

FCC Part 15.249 Page 15 of 29

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Report No.: RSZ170330002-00

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 meter, and the EUT is placed on a turntable, which is 0.8 meter above ground plane for below 1GHz and 1.5 meter above ground plane for above 1GHz, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the data in the following table, the EUT complied with the FCC Part 15.205, 15.209 & §15.249

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	22 ℃
Relative Humidity:	51 %
ATM Pressure:	101.0 kPa

The testing was performed by Layne Li on 2017-05-02.

FCC Part 15.249 Page 16 of 29

30 MHz to 10 GHz:

125 kHz

Frequency	Receiver		Turntable Rx Antenna (Corrected Corrected	FCC 115.249/15.2			
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree		eight Polar (dB) (dBuV/		Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	Low Channel								
436.53	34.75	QP	188	2.4	Н	-8.34	26.41	46	19.59
903.00	81.40	QP	259	1.1	V	-0.86	80.54	94	13.46
901.76	27.89	QP	353	1.3	V	-0.86	27.03	46	18.97
928.15	27.54	QP	284	1.1	V	-0.86	26.68	46	19.32
1806.00	63.56	PK	4	1.3	Н	-8.04	55.52	74	18.48
1806.00	55.74	Ave.	4	1.3	Н	-8.04	47.70	54	6.30
2709.00	62.94	PK	250	1.7	Н	-4.88	58.06	74	15.94
2709.00	53.50	Ave.	250	1.7	Н	-4.88	48.62	54	5.38
3612.00	59.47	PK	239	1.6	V	-1.61	57.86	74	16.14
3612.00	48.40	Ave.	239	1.6	V	-1.61	46.79	54	7.21
4515.00	58.26	PK	295	1.2	V	0.92	59.18	74	14.82
4515.00	46.14	Ave.	295	1.2	V	0.92	47.06	54	6.94
			M	iddle Ch	annel				
436.53	35.70	QP	181	2.3	Н	-8.34	27.36	46	18.64
915.00	85.15	QP	172	1.1	V	-0.86	84.29	94	9.71
901.83	28.30	QP	54	1.9	V	-0.86	27.44	46	18.56
928.61	28.16	QP	62	1.3	V	-0.86	27.30	46	18.70
1830.00	62.54	PK	347	2.4	Н	-8.04	54.50	74	19.50
1830.00	53.63	Ave.	347	2.4	Н	-8.04	45.59	54	8.41
2745.00	62.92	PK	328	2.2	Н	-4.88	58.04	74	15.96
2745.00	52.19	Ave.	328	2.2	Н	-4.88	47.31	54	6.69
3660.00	58.68	PK	69	1.6	V	-1.28	57.40	74	16.60
3660.00	48.59	Ave.	69	1.6	V	-1.28	47.31	54	6.69
4575.00	54.58	PK	345	1.7	V	1.15	55.73	74	18.27
4575.00	46.32	Ave.	345	1.7	V	1.15	47.47	54	6.53

Report No.: RSZ170330002-00

FCC Part 15.249 Page 17 of 29

Frequency	R	eceiver	Turntable	Rx An	tenna		Corrected	FCC 15.249/15.2	
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree Height Pola (m) (H/V	Polar (H/V)	Factor (dB)	Amplitude (dBμV/m)		Margin (dB)	
	High Channel								
436.53	35.17	QP	100	2.4	Н	-8.34	26.83	46	19.17
927.00	86.03	QP	204	2.6	V	-0.86	85.17	94	8.83
901.68	28.80	QP	241	1.4	V	-0.86	27.94	46	18.06
928.14	27.95	QP	239	1.7	V	-0.86	27.09	46	18.91
1854.00	64.42	PK	202	1.5	Н	-7.56	56.86	74	17.14
1854.00	55.47	Ave.	202	1.5	Н	-7.56	47.91	54	6.09
2781.00	62.15	PK	232	2.3	Н	-4.33	57.82	74	16.18
2781.00	50.76	Ave.	232	2.3	Н	-4.33	46.43	54	7.57
3708.00	59.74	PK	47	1.0	V	-1.28	58.46	74	15.54
3708.00	49.29	Ave.	47	1.0	V	-1.28	48.01	54	5.99
4635.00	56.08	PK	79	1.0	V	1.15	57.23	74	16.77
4635.00	44.9	Ave.	79	1.0	V	1.15	46.05	54	7.95

Report No.: RSZ170330002-00

FCC Part 15.249 Page 18 of 29

250 kHz

Frequency	Re	eceiver	Turntable	Rx An	itenna	Corrected Factor	Corrected Amplitude	FCC 15.249/15.2	
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)	(dB)	(dBµV/m)	Limit (dBµV/m)	Margin (dB)
			L	ow Cha	nnel				
436.53	38.13	QP	181	2.0	Н	-8.34	29.79	46	16.21
903.00	83.60	QP	259	1.1	V	-0.86	82.74	94	11.26
901.84	27.55	QP	56	1.4	V	-0.86	26.69	46	19.31
928.22	31.14	QP	284	1.1	V	-0.86	30.28	46	15.72
1806.00	60.18	PK	154	1.3	Н	-8.04	52.14	74	21.86
1806.00	53.4	Ave.	154	1.3	Н	-8.04	45.36	54	8.64
2709.00	58.98	PK	338	1.2	Н	-4.88	54.10	74	19.90
2709.00	48.85	Ave.	338	1.2	Н	-4.88	43.97	54	10.03
3612.00	48.73	PK	164	1.0	V	-1.61	47.12	74	26.88
3612.00	39.78	Ave.	164	1.0	V	-1.61	38.17	54	15.83
			Mi	ddle Ch	annel				
436.53	35.91	QP	71	1.1	Н	-8.34	27.57	46	18.43
915.00	84.28	QP	177	1.1	V	-0.86	83.42	94	10.58
901.67	28.73	QP	231	2.7	V	-0.86	27.87	46	18.13
928.23	30.23	QP	121	2.8	V	-0.86	29.37	46	16.63
1830.00	61.04	PK	93	2.3	Н	-8.04	53.00	74	21
1830.00	54.52	Ave.	93	2.3	Н	-8.04	46.48	54	7.52
2745.00	59.99	PK	183	2.3	Н	-4.88	55.11	74	18.89
2745.00	48.66	Ave.	183	2.3	Н	-4.88	43.78	54	10.22
3660.00	50.31	PK	170	1.8	V	-1.28	49.03	74	24.97
3660.00	41.24	Ave.	170	1.8	V	-1.28	39.96	54	14.04

Report No.: RSZ170330002-00

FCC Part 15.249 Page 19 of 29

Reading

36.06

83.69

28.10

30.33

63.36

53.63

58.4

47.29

51.03

41.93

Frequency

(MHz)

436.53

927.00

901.49

928.11

1854.00

1854.00

2781.00

2781.00

3708.00

3708.00

Receiver

(dBμV) (PK/QP/Ave.)

Detector

QP

QP

QP

QP

PK

Ave.

PK

Ave.

PK

Ave.

Rx Antenna

Height Polar

2.0

3.1

1.9

2.5

1.4

1.4

1.4

1.4

1.2

1.2

(m) (H/V) High Channel

Η

V

V

V

Η

Н

Н

Н

V

V

-0.86

-0.86

-0.86

-7.56

-7.56

-4.33

-4.33

-1.28

-1.28

82.83

27.24

29.47

55.80

46.07

54.07

42.96

49.75

40.65

Turntable

Degree

274

185

226

198

281

281

193

193

75

75

,		Corrected Amplitude (dBµV/m)	mplitude 15.249/15.205	
	-8 34	27.72	46	18.28

94

46

46

74

54

74

54

74

54

11.17

18.76

16.53

18.2

7.93

19.93

11.04

24.25

13.35

Report No.: RSZ170330002-00

FCC Part 15.249 Page 20 of 29

500 kHz

Frequency	Ro	eceiver	Turntable	Rx An	itenna		Corrected	FCC 15.249/15.2	
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	Low Channel								
436.53	34.87	QP	84	1.2	Н	-8.34	26.53	46	19.47
903.00	82.10	QP	196	3.7	V	-0.86	81.24	94	12.76
901.64	28.67	QP	190	2.2	V	-0.86	27.81	46	18.19
928.07	31.53	QP	143	1.2	V	-0.86	30.67	46	15.33
1806.00	63.56	PK	4	1.3	Н	-8.04	55.52	74	18.48
1806.00	55.74	Ave.	4	1.3	Н	-8.04	47.70	54	6.30
2709.00	62.94	PK	250	1.7	Н	-4.88	58.06	74	15.94
2709.00	53.5	Ave.	250	1.7	Н	-4.88	48.62	54	5.38
3612.00	59.47	PK	239	1.6	V	-1.61	57.86	74	16.14
3612.00	48.4	Ave.	239	1.6	V	-1.61	46.79	54	7.21
4515.00	58.26	PK	295	1.2	V	0.92	59.18	74	14.82
4515.00	46.14	Ave.	295	1.2	V	0.92	47.06	54	6.94
			Mi	iddle Ch	annel				
436.53	34.41	QP	258	1.8	Н	-8.34	26.07	46	19.93
915.00	83.42	QP	134	1.5	V	-0.86	82.56	94	11.44
900.07	28.70	QP	190	1.2	V	-0.86	27.84	46	18.16
931.34	31.99	QP	175	3.5	V	-0.86	31.13	46	14.87
1830.00	62.54	PK	347	2.4	Н	-8.04	54.50	74	19.50
1830.00	53.63	Ave.	347	2.4	Н	-8.04	45.59	54	8.41
2745.00	62.92	PK	328	2.2	Н	-4.88	58.04	74	15.96
2745.00	52.19	Ave.	328	2.2	Н	-4.88	47.31	54	6.69
3660.00	58.68	PK	69	1.6	V	-1.28	57.40	74	16.60
3660.00	48.59	Ave.	69	1.6	V	-1.28	47.31	54	6.69
4575.00	54.58	PK	345	1.7	V	1.15	55.73	74	18.27
4575.00	46.32	Ave.	345	1.7	V	1.15	47.47	54	6.53

Report No.: RSZ170330002-00

FCC Part 15.249 Page 21 of 29

Frequency	R	eceiver	Turntable	Rx Antenna			orrected Corrected	15.249/15.205/15.209	
(MHz)	Reading Detector Degree H	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
			Н	igh Cha	nnel				
436.53	35.92	QP	168	1.6	Н	-8.34	27.58	46	18.42
927.00	84.65	QP	104	2.6	V	-0.86	83.79	94	10.21
898.32	28.44	QP	204	3.6	V	-1.23	27.21	46	18.79
932.81	33.36	QP	239	2.1	V	-0.86	32.5	46	13.5
1854.00	64.42	PK	202	1.5	Н	-7.56	56.86	74	17.14
1854.00	55.47	Ave.	202	1.5	Н	-7.56	47.91	54	6.09
2781.00	62.15	PK	232	2.3	Н	-4.33	57.82	74	16.18
2781.00	50.76	Ave.	232	2.3	Н	-4.33	46.43	54	7.57
3708.00	59.74	PK	47	1.0	V	-1.28	58.46	74	15.54
3708.00	49.29	Ave.	47	1.0	V	-1.28	48.01	54	5.99

1.0

1.0

V

V

1.15

1.15

57.23

46.05

Report No.: RSZ170330002-00

74

54

16.77

7.95

Note:

4635.00

4635.00

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Corrected Factor + Reading Margin = Limit - Corrected. Amplitude

PK

Ave.

79

79

56.08

44.9

FCC Part 15.249 Page 22 of 29

FCC§15.215(c) - 20dB EMISSION BANDWIDTH

Applicable Standard

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in § 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

Report No.: RSZ170330002-00

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that indicated 20dB bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	23 ℃
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by Phil Zhu on 2017-05-01.

Please refer to the following table and plots.

FCC Part 15.249 Page 23 of 29

Test Mode: Transmitting

125 kHz

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
Low Channel	903	0.139
Middle Channel	915	0.139
High Channel	927	0.138

Report No.: RSZ170330002-00

250 kHz

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
Low Channel	903	0.303
Middle Channel	915	0.301
High Channel	927	0.301

500 kHz

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
Low Channel	903	0.774
Middle Channel	915	0.754
High Channel	927	0.725

FCC Part 15.249 Page 24 of 29

125 kHz

Low Channel

Middle Channel

FCC Part 15.249 Page 25 of 29

High Channel

250 kHz

Low Channel

FCC Part 15.249 Page 26 of 29

Middle Channel

High Channel

FCC Part 15.249 Page 27 of 29

500 kHz

Low Channel

Middle Channel

FCC Part 15.249 Page 28 of 29

High Channel

Report No.: RSZ170330002-00

***** END OF REPORT *****

FCC Part 15.249 Page 29 of 29