Approximation Algorithms CS3230: Design and Analysis of Algorithms

Roger Zimmermann

National University of Singapore Spring 2017

Approximation Algorithms

- The decision versions of certain combinatorial problems are \mathcal{NP} -complete.
- The optimization versions of these problems are \mathcal{NP} -hard, hence no polynomial-time algorithms are known.
- What to do if such a problem is of practical importance?
- Recall: good performance for branch-and-bound algorithms cannot be guaranteed.
- Different approach: solve the problem approximately, but fast.

Approximation Algorithms

Goal:

- Guaranteed to run in polynomial time.
- Guaranteed to find a "high quality" solution, say within 1% of optimum.

Obstacle:

 Need to prove a solution's value is close to optimum, without even knowing what the optimal value is.

Heuristics

- Why may an approximation be appealing:
 - Sometimes a good (but not necessary optimal) solution will suffice.
 - In practice the input data may be inaccurate.
- Approximation algorithms are based on problem-specific heuristics.
- A heuristic is a rule drawn from experience, rather than a mathematically proved assertion.

Accuracy Ratio

- If we use an approximation algorithm we would like to know: how accurate is it?
- Relative error (low → approaches 0):

$$re(s_a) = \frac{f(s_a) - f(s^*)}{f(s^*)}$$

where s^* is an exact solution and s_a is an approximation solution to the problem.

Accuracy ratio (accurate → approaches 1):

$$r(s_a) = \frac{f(s_a)}{f(s^*)}$$
 or $r(s_a) = \frac{f(s^*)}{f(s_a)}$

c-Approximation Algorithm

- Typically $f(s^*)$ is unknown (the optimal value of the objective function).
- Hence, compute a good upper bound on the value of $f(s_a)$.
- Definition: A polynomial time approximation algorithm is said to be a c-approximation algorithm if $r(s_a) \le c$, where $c \ge 1$.
- The smallest value of c is called the performance ratio and denoted with R_A .

• Theorem 1: If $\mathcal{P} \neq \mathcal{NP}$ there exists no c-approximation algorithm for TSP, i.e., there exists no polynomial-time approximation algorithm for this problem such that for all instances $f(s_a) \leq c \times f(s^*)$ for some constant c.

- Proof by contradiction:
 - If $f(s_a) \leq c \times f(s^*) \rightarrow$ Hamiltonian circuit problem can be solved in polynomial time $\rightarrow \mathcal{P} = \mathcal{NP}$, a contradiction.

- Proof of Theorem 1: assume c-approx. algorithm exist.
 - Map graph G(|V|=n) to a complete weighted graph G': $w=1 \ \forall \ (e \in E)$ and add e' with w=cn+1 between each pair of vertices not adjacent in G.
 - If G has a Hamiltonian circuit, its length in G' is $n \to \text{exact}$ solution s^* to TSP for G'.
 - If s_a is an approximate solution obtained for G', then $f(s_a) \leq cn$ (by assumption).
 - If G does not have a Hamiltonian circuit \rightarrow for shortest tour in G': $f(s_a) \ge f(s^*) > cn$.
 - Could solve the Hamiltonian circuit problem in polynomial time by mapping G to G'.
 - Since Hamiltonian circuit problem is NP-complete → Contradiction!

- Approx. Algorithm 1 for TSP: Nearest-neighbor algorithm.
- Greedy algorithm based on nearest-neighbor heuristic.
 - 1. Choose an arbitrary city as a start.
 - 2. Repeat the following operation until all the cities have been visited: go to the unvisited city nearest the one visited last (ties can be broken arbitrarily).
 - 3. Return to the starting city.

Ex. 1: TSP Nearest-Neighbor Algorithm

- s_a : a b c d a of length 10.
- s^* : a b d c a of length 8.
- $r(s_a) = 10/8 = 1.25$.

Problem: it may force us to traverse a very large edge on the last leg of the tour:

$$R_A=\infty$$
.

Ex.: If |ad| = w, then

$$r(s_a) = \frac{f(s_a)}{f(s^*)} = \frac{4+w}{8}$$

Ex. 2: TSP Multifragment Algorithm

- Approx. Algorithm 2 for TSP: Multifragment-heuristic algorithm.
 - 1. Sort the edges in increasing order of their weight. (Ties can be broken arbitrarily.) Initialize the set of tour edges to be constructed to the empty set.
 - 2. Repeat this step until a tour of length n is obtained, where n is the number of cities in the instance being solved; add the next edge on the sorted edge list to the set of tour edges, provided this addition does not create a vertex of degree 3 or a cycle of length less than n; otherwise skip the edge.
 - 3. Return the set of tour edges.

Ex. 1: TSP Multifragment Algorithm

- Edge list: ab, cd, bc, ac, bd, ad
 - 1 1 2 3 3 6
- Result: $\{ab, cd, bc, ad\}$

- Approx. Algorithm 2 for TSP: Multifragment-heuristic algorithm.
 - In general produces better results than the nearest-neighbor algorithm.

Euclidean TSP

- An important subset of instances of the Traveling Salesman Problem are called <u>Euclidean</u>.
- Euclidean intercity distances satisfy the following natural conditions:
 - Triangle inequality $d[i,j] \le d[i,k] + d[k,j]$ for any triple of cities i, j, and k.
 - Symmetry d[i,j] = d[j,i] for any pair of cities i and j.

Euclidean TSP

 Given Euclidean instances of the TSP, the accuracy ratio of the nearest-neighbor and the multifragment-heuristic algorithms is as follows:

$$\frac{f(s_a)}{f(s^*)} \le \frac{1}{2}(\lceil \log_2 n \rceil + 1)$$

- $f(s_a)$: heuristic tour.
- $f(s^*)$: shortest tour.
- Note: performance ratio R_A is unbounded (Why?).

- Approx. Algorithm 3 for TSP: Minimum-spanning- tree-based algorithm (twice-around-the-tree algorithm).
 - Construct a minimum spanning tree of the graph corresponding to a given instance of the traveling salesman problem.
 - 2. Starting at an arbitrary vertex, perform a walk around the MST recording all the vertices passed by (DFS traversal).
 - 3. Scan the vertex list obtained in step 2 and eliminate from it all repeated occurances of the same vertex except the starting one at the end of the list. The vertices remaining on the list will form a Hamiltonian circuit, which is the output of the algorithm.

Ex. 1: TSP MST Algorithm

- A twice-around the tree walk: a, b, c, b, d, e, d, b, a.
- After elimination: a, b, c, d, e, a of length 39.

- Approx. Algorithm 3 for TSP: Minimum-spanning- tree-based algorithm (twice-around-the-tree algorithm).
- Theorem 2: The twice-around-the-tree algorithm is a 2-approximation algorithm for the TSP with Euclidean distances.

Proof on next slide.

- Proof of Theorem 2.
 - Want to show: $f(s_a) \leq 2f(s^*)$.
 - $-f(s^*)>w(T)\geq w(T^*)$ (T: spanning tree, T^* : minimum spanning tree) since we obtained a spanning tree T by deleting any edge from the optimal tour, $w(T^*)\leq w(T)$ since T^* is MST, so $w(T^*)< f(s^*)$.
 - $-\Rightarrow 2f(s^*)>2w(T^*)=$ (the length of the walk obtained in Step 2) \geq (the length of the tour $s_a)=f(s_a)$. (Shortcuts cannot increase the length of a tour.)
 - $\Rightarrow 2f(s^*) > f(s_a)$.

- Proof of Theorem 2.
 - Want to show: $f(s_a) \leq 2f(s^*)$.
 - $-f(s^*) > w(T) \ge w(T^*) \Rightarrow 2f(s^*) > 2w(T^*) \Rightarrow 2f(s^*) > f(s_a).$

Ex. 3: TSP Christofides Algorithm

- A Eulerian circuit exists in a connected multigraph if and only if all its vertices have even degrees (multigraph: multiple edges allowed between 2 vertices).
- The Christofides algorithm obtains such a multigraph by adding to the graph the edges of the minimum-weight matching of all the odd-degree vertices in its MST.
- The performance ratio of the Christofides algorithm on Euclidean instances is 1.5, a better approximation.

Eulerian Circuits

- Leonhard Euler, Swiss mathematician (April 15, 1707 to September 18, 1783).
- Solved the famous Seven Bridges of Königsberg problem in 1736.
- Q: "Is is possible in a single stroll to cross all the bridges exactly once and return to the starting point?"

Eulerian Paths and Circuits

- Eulerian path: A path in a graph which visits each edge exactly once.
- Eulerian circuit: An Eulerian path which starts and ends at the same vertex.
- Necessary condition for the existense of Eulerian cycles:
 - All vertices in the graph must have an even degree
 (For an Eulerian path, the two endpoints are allowed to have odd degree.)
- Eulerian paths can be computed in polynomial time with Fleury's algorithm.

Ex. 3: TSP Christofides Algorithm

- Three possibilities to add edges to MST: (a,b) and (c,e): 15; (a,c) and (b,e): 17; (a,e) and (b,c): 18.
- The minimum weight matching of 4 odd-degree vertices is (a, b) and (c, e). This generates a multigraph.

Ex. 3: TSP Christofides Alg.

• Eulerian circuit: a-b-c-e-d-b-a; after one shortcut a-b-c-e-d-a of length 37.

- 2-opt, 3-opt and Lin-Kernighan algorithms.
- The strategy:
 - Get the initial tour: constructed either randomly or by nearest-neighbor.
 - Iteration: explores a neighborhood of the current tour by replacing a few edges by others. If the changes produce a shorter tour, replace the current one and continue; otherwise, return the current one and stop.

• $l = 41 > l_{nn} = 39$.

• $l = 46 > l_{nn} = 39$.

• $l = 45 > l_{nn} = 39$.

• $l = 38 < l_{nn} = 39$ (new tour).

TSP Held-Karp Bound

- Lower bound: Held-Karp.
- Based on linear programming. Fast to compute.
- Typically very close (< 1%) to the length of an optimal tour.
- Hence, estimate $r(s_a) = f(s_a)/f(s^*) \approx f(s_a)/HK(s^*)$.

Approximate TSP

 Average tour quality and running times for various heuristics on the 10,000-city random uniform Euclidean instances [Joh02].

	% excess over the	Running time
Heuristic	Held-Karp bound	(seconds)
nearest neighbor	24.79	0.28
multifragment	16.42	0.20
Christofides	9.81	1.04
2-opt	4.70	1.41
3-opt	2.88	1.50
Lin-Kernighan	2.00	2.06

 Practical examples in circuit-board and VLSI-chip design (ex.: AMD Opteron 2 die).

See also Concorde TSP Solver (GATech).

Approximation Algorithm for Knapsack

- Greedy algorithm for the discrete knapsack problem.
 - Compute the value-to-weight ratio $r_i = v_i/w_i$, for $i = 1, \ldots, n$ for the n items given.
 - Sort the items in non-decreasing order of the ratios.
 - Iteration: If the current item on the list fits into the knapsack, then place it; otherwise, proceed to the next item until no item is left in the sorted list.

Ex.: Discrete (or 0-1) Knapsack Problem

• The knapsack's capacity W is 10.

item	weight	value	value weight
1	4	\$40	10
2	7	\$42	6
3	5	\$25	5
4	3	\$12	4

• For knapsack capacity W=10: choose items 1 and 3 with value \$65 (this happens to be optimal).

Ex.: Discrete (or 0-1) Knapsack Problem (2)

- The greedy algorithm does not always yield an optimal solution.
- Illustration:

item	weight	value	value weight
1	1	\$2	2
2	W	W	1

- The knapsack's capacity W > 2.
- The greedy algorithm selects item 1. The optimal selection is item 2.
- Accuracy ratio $r(s_a) = W/2$.

Ex.: Discrete (or 0-1) Knapsack Problem (3)

- Tweak greedy algorithm to achieve a finite performance ratio R_A .
- Modification:
 - Choose the better of two alternatives:
 The one obtained by the greedy algorithm or the one consisting of the largest value that fits into the knapsack.
- For Enhanced Greedy Algorithm $R_A = 2$.

Approximation Algorithm for Knapsack

- Greedy algorithm for the continuous (or fractional) knapsack problem.
 - Compute the value-to-weight ratio $r_i = v_i/w_i$, for i = 1, ..., n for the n items given.
 - Sort the items in non-decreasing order of the ratios.
 - Iteration: If the current item on the list fits into the knapsack in its entirety, then place it and proceed to the next; otherwise, take the largest fraction until the knapsack is filled to its full capacity or no item is left in the sorted list.
 - ⇒ Always optimal!

Ex.: Continuous Knapsack Problem

• The knapsack's capacity W is 10.

item	weight	value	value weight
1	4	\$40	10
2	7	\$42	6
3	5	\$25	5
4	3	\$12	4

• For knapsack capacity W=10: choose items 1 and 6/7 of item 2 with value \$76 (\$40 + \$36).

Approximation Algorithm for Knapsack

• For the discrete version of the knapsack problem there exist polynomial-time approximation schemes to approximate $s_a^{(k)}$ with any predefined level of accuracy.

$$\frac{f(s^*)}{f(s_a^{(k)})} \le 1 + 1/k$$
 for any instance of size n ,

where k is an integer parameter in the range $0 \le k < n$.