

Figure 6. Flow chart of the AM subroutine

the secondary x-axis). The trajectories can be divided into two kinds, differing whether the particle is captured or not. The borderline case of a trajectory for which the particle is just captured is called the critical trajectory. The distance between the parallel part of the critical trajectory and the x-axis defines the capture radius (see Figure 7).

There are two critical trajectories, one above and one below the axis of flow. Thus we have two capture radii,  $R_{\rm cal}$  and  $R_{\rm ca2}$ . The average capture radius  $\frac{1}{2}(R_{\rm cal}+R_{\rm ca2})$  is exactly the quantity  $R_{\rm ca}$  which appears in equation (1). The proof that this single-wire analysis applies to the multiwire regular matrix can be found in Birss, Gerber, and Parker.<sup>2</sup>

The XSECT subroutine always computes in principle the capture radius,  $R_{\rm cal}$ , above the axis of flow. To obtain  $R_{\rm ca2}$ , the computation has to be



Figure 7. Arrangement of the axes of flow and various parameters used in the XSECT subroutine

performed in the mirror image of the original flow with respect to the primary x-axis. This is achieved by the same input data as for  $R_{\rm cal}$ , only instead of  $\alpha$  an angle  $\beta = 2\pi - \alpha$  is used.

The XSECT subroutine uses the same limiting conditions (i), (iii), and (iv) as the previous subroutines. However, instead of (ii) a more rigorous condition, which would be linked to the ratio  $|V_{\rm ma}/V_{0a}|$  and would define the escape of the particle, is required. Bearing in mind that the escape occurs when the fluid drag ultimately exceeds the magnetic traction force, we can find, by analysing (19a), the relation

(ii') 
$$r_a \cos(\theta - \alpha) < -\sqrt[3]{\left|\frac{V_{ma}}{V_{0a}}\right|}$$

which is the condition used in XSECT in place of (ii).

The action of the XSECT subroutine can be described in terms of values YLA, YL, YHA, YH, which are respectively the initial and current estimates of the lower and upper value of Y, the ordinate of a point on the critical trajectory, and in terms of auxiliary parameters P and Q (see Figure 7).

At the beginning YL = YLA and YH = YHA. The particle is started at the point  $\{XAO, YAO = \frac{1}{2}(YLA + YHA)\}$  and the trajectory is produced. If the particle is captured, YL is raised to YAO; if it is not captured, YH is

lowered to YAO. The new starting point is set, in either case, as  $\frac{1}{2}(YL + YH)$ . This process is repeated. If the initial estimates have been chosen correctly, i.e. if the unknown Y lies indeed between YLA and YHA, the sequential values YL and YH will converge towards Y. When YL and YH have come sufficiently close to give Y with a required accuracy, the process is halted.

If Y does not lie between YLA and YHA, the starting point would converge upon one of these values. This is, however, avoided by defining the parameters P and Q which lie below YHA and above YLA. Every time the starting point enters the region either between YHA and P or YLA and Q, the values YHA or YLA are redefined until the point Y lies between them. Then Y is found as mentioned previously.



Figure 8. Flow chart of the XSECT subroutine

Having found Y, the time step length is made negative and the trajectory is iterated backwards up to a point C, where the difference between its ordinate YCA and that of the previous iteration is less than a stipulated error. The coordinate YCA is taken as the capture radius, the value XCA gives the distance from the origin to the place where the capture radius has been gauged.

The action of the XSECT subroutine, which has been just described, can be followed from its flow chart shown in Figure 8.

### 4.2 Graph-plotting programs

The curves of the trajectories and velocities produced by the main program require a pictorial representation. Any graph-plotting package can be used for this purpose. As an example we present here two simple graph-plotting programs based on the GINO-F package. Details of the specific commands can be found in the manual *Graph Plotting from Fortran Programs* available from the Computing Laboratory, University of Salford.

The program TRAJECTORIES reads the number of trajectories, the points of the wire contour, and the points of individual trajectories via channels 1, 5, and 6, respectively. The program VELOCITIES reads the number of velocity curves, the velocity range, the angle  $\alpha$  via channel 1, and the points of the individual velocity curves via channel 6.

## 4.3 Example

As an example a brief investigation of FeO spherical particles carried by water and captured in the single-wire approximation is presented. The following data, relevant to the problem, have been used in the computation:

| saturation magnetization of the wire                                  | $M_{\rm s} = 1.6 \times 10^{\rm 6}  {\rm Am}^{-1}$                                                    |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| external magnetic field                                               | $H_0 = 1.0 \times 10^6 \mathrm{Am^{-1}}$                                                              |
| radius of the wire                                                    | $a = 10 \mu \text{m}$                                                                                 |
| radius of the paramagnetic particle                                   | $R=1 \mu m$                                                                                           |
| difference between the susceptibilities of the particle and the fluid | $\chi = 7.178 \times 10^{-3}$                                                                         |
| viscosity of the fluid                                                | $\eta = 1.0 \times 10^{-3} \mathrm{Nm^{-2}}\mathrm{s}$                                                |
| density of the particle                                               | $\rho_{\rm p} = 5.7 \times 10^3  \rm kgm^{-3}$                                                        |
| magnetic velocity                                                     | $V_{ma} = V_{m}/a = \frac{2}{9} (\chi \mu_0 M_s H_0 R_a^2/\eta)$ $= 3.207 \times 10^4 \text{ s}^{-1}$ |
| fluid velocity                                                        | $V_{0a} = -6.288 \times 10^2 \mathrm{s}^{-1}$                                                         |
|                                                                       |                                                                                                       |







Figures 9(a), (b), (c) and (d) show the trajectories computed for the angle  $\alpha = 0^{\circ}$ , 30°, 60°, and 90°, respectively. The respective values of  $R_{\rm ca}$  resulting from the computation are 4.613, 4.367, 4.410, and 4.697.

Note that the trajectories which are just super- and subcritical for, say,  $\alpha = 0^{\circ}$  need not remain so for different values of  $\alpha$ .

It is obvious that by varying the numerical values of the quantities mentioned in this example one can obtain particle trajectories and capture radii for a wide choice of possible physical situations. Thus, as an exercise, one can vary the input data (which reflect the physical properties of the wire, the fluid, and the particles) and observe what will happen to the trajectories and capture radii.

However, to obtain meaningful results, it is necessary to adopt values which would correspond to physical reality. For instance, suppose that the wire is made from an ordinary ferromagnetic material which exhibits only small hysteresis and is characterized by a value  $M_{\rm s}$  of the saturation magnetization. If  $H_{\rm s}$  is a value of the internal magnetic field which is large enough to saturate the wire (this value can be read off from the magnetization curve of the material from which the wire is made) then, due to demagnetizing effects, the value of the external field  $H_0$ , which is perpendicular to the wire axis, has to satisfy the relation

$$H_0 \geqslant H_{\rm s} + \frac{1}{2}M_{\rm s}.\tag{36}$$

Consequently, the constant  $K = M_s/2H_0$  must lie within the limits

$$0 \leq K \leq 1. \tag{37}$$

The values of K, depending on  $M_s$  and  $H_0$ , are usually in the range 0.4 to 0.9.

If the material of the wire is paramagnetic, the value  $H_0$  can be chosen without any constraint and  $M_s$  is given by

$$M_{\rm s} = \chi_{\rm m} H_0, \tag{38}$$

where  $\chi_{\rm m}$  is the susceptibility of the material of the wire. Note that in this case  $M_{\rm s}$  is not the saturation magnetization but only a uniform magnetization. Nevertheless the theory is still valid; it is the uniformity not the saturation of the magnetization which is the necessary condition.

The quantities R and a are restricted as far as their ratio R/a is concerned, namely  $R/a \le 0.1$ , since the theory is formulated for a small particle limit. In practice a is larger than  $1 \mu m$ .

The quantity  $\chi = \chi_p - \chi_f$  can be either positive or negative depending on the value and signs of the  $\chi_p$  and  $\chi_f$  which are respectively the susceptibilities of the particles and the fluid involved in the separation. The magnitudes of  $\chi$  are typically between  $10^{-5}$  and  $10^{-2}$ .

The velocity of the fluid  $V_0$  (which enters in the calculation as the

normalized velocity  $V_{0a} = V_0/a$  can vary over a very broad range, say, from  $1 \text{ mm s}^{-1}$  to  $50 \text{ mm s}^{-1}$ .

To facilitate the legibility of the data and results, the input and output in our programs (sections 4.1 and 4.2) are handled simply in the F-format. The numerical field widths of the format stipulated in the programs should be sufficient to accommodate the results for the data within the indicated range of values. If, however, some results were to require an extension of the field widths, it is easy to change them accordingly or to use the E- instead of the F- format.

### 5. FURTHER EXERCISES

Apart from varying the numerical data, in the manner described in section 4.3 (for instance calculating the trajectories for  $\chi < 0$ , i.e. for  $V_{ma} < 0$ ), the following, more substantial, exercises are suggested.

- (1) Apply the method of solving higher order differential equations (see section 3.3) to equations of particle motion (18a, b), which contain the second-order inertial term. Generalize the main separation program to produce the numerical solutions of these equations.
- (2) Consider a capture process, instead of in the single wire, in the single-sphere approximation. Find the magnetic field and the fluid velocity distribution around a ferromagnetic sphere magnetized to saturation by an external field  $H_0$  and immersed in fluid flow of a background velocity  $V_0$ . In analogy with section 2 derive the appropriate equations of particle motion. Modify the main separation program to solve these equations numerically. Compare the capture efficiency of the single wire and the single-sphere approximations.
- (3) Analyse a capture process in the single-wire approximation, where the wire has an elliptic cross-section. Similarly, as suggested in section 5.2, find the magnetic field, the fluid velocity distribution, and derive the appropriate equations of particle motion. Modify the FUNCTN subroutine accordingly and use the main separation program for finding numerical solutions of these equations. Investigate the capture process for various values of eccentricity and various orientations of the elliptic cross-sections in respect to the directions of fluid flow and magnetic field.

### REFERENCES

1. J. H. P. Watson, J. Appl. Phys., 44, 4209 (1973).

<sup>2.</sup> R. R. Birss, R. Gerber, and M. R. Parker, Filtration & Separation, July/August, 1 (1977).

- 3. R. R. Birss, R. Gerber, and M. R. Parker, I.E.E.E. Trans. Magn., MAG-12, 892 (1976).
- 4. B. I. Bleaney and B. Bleaney, *Electricity and Magnetism*, 2nd edn. (Clarendon Press, Oxford) 47 (1965).
- 5. W. F. Lawson Jr., W. H. Simons, and R. P. Treat, J. Appl. Phys., 48, 3213 (1977).
- 6. D. M. Young and R. T. Gregory, A Survey of Numerical Mathematics (Addison-Wesley, Reading, Mass.) 422 (1972).

editional de l'acceptant de la comme d

TYPICAL INPUT DATA FOR THE MAIN PROGRAM (FOR ALPHA = 30 DEGR.)

| 2 1 16 0.5236 15.0 15.0 32071.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                                                                                                                                                                                                                  |                                                     |                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                  |                                                     |                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 32071.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 1     | 16 0.5                                                                                                                                                                                                                           | 236                                                 |                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15.0 2.6 32071.0 -628.8 0.8 0.0002 0.01 15.0 3.6 32071.0 -628.8 0.8 0.0002 0.01 15.0 1.48 32071.0 -628.8 0.8 0.0002 0.01 15.0 1.48 32071.0 -628.8 0.8 0.0002 0.01 15.0 5.6 32071.0 628.8 0.8 0.0002 0.01 15.0 5.6 32071.0 628.8 0.8 0.0002 0.01 15.0 6.6 32071.0 -628.8 0.8 0.0002 0.01 15.0 7.6 32071.0 -628.8 0.8 0.0002 0.01 15.0 -1.6 32071.0 -628.8 0.8 0.0002 0.01 15.0 -2.6 32071.0 -628.8 0.8 0.0002 0.01 15.0 -2.6 32071.0 -628.8 0.8 0.0002 0.01 15.0 -2.6 32071.0 -628.8 0.8 0.0002 0.01 15.0 -3.6 32071.0 -628.8 0.8 0.0002 0.01 15.0 -528.8 0.8 0.0002 0.01 15.0 -528.8 0.8 0.0002 0.01 15.0 -628.8 0.8 0.0002 0.01 15.0 -628.8 0.8 0.0002 0.01 15.0 -628.8 0.8 0.0002 0.01 15.0 -628.8 0.8 0.0002 0.01 15.0 -628.8 0.8 0.0002 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.0    |                                                                                                                                                                                                                                  | 1.6                                                 |                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 32071.0 | 32071.0 | -628.8                                                                                                                                                                                                                           | 0.8                                                 | 9.0002                                                                                                                         | 0.01                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15.0 3.6 32071.0 -628.8 0.8 0.0002 0.01 15.0 1.48 320971.0 -628.8 0.8 0.0002 0.01 15.0 1.6 320971.0 -628.8 0.8 0.0002 0.01 15.0 5.6 320971.0 -628.8 0.8 0.0002 0.01 15.0 6.6 320971.0 -628.8 0.8 0.0002 0.01 15.0 6.6 320971.0 -628.8 0.8 0.0002 0.01 15.0 7.6 320971.0 -628.8 0.8 0.0002 0.01 15.0 7.6 320971.0 -628.8 0.8 0.0002 0.01 15.0 -1.6 320971.0 -628.8 0.8 0.0002 0.01 15.0 -2.6 320971.0 -628.8 0.8 0.0002 0.01 15.0 -3.6 320971.0 -628.8 0.8 0.0002 0.01 15.0 -3.6 320971.0 -628.8 0.8 0.0002 0.01 15.0 -5.6 320971.0 -628.8 0.8 0.0002 0.01 15.0 -5.6 320971.0 -628.8 0.8 0.0002 0.01 15.0 -5.6 320971.0 -628.8 0.8 0.0002 0.01 15.0 -5.6 320971.0 -628.8 0.8 0.0002 0.01 15.0 -5.6 320971.0 -628.8 0.8 0.0002 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.0    |                                                                                                                                                                                                                                  | 2.6                                                 |                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 32071.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32071.0 | -628.8                                                                                                                                                                                                                           | 0.8                                                 | 0.0002                                                                                                                         | 0.01                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.0    |                                                                                                                                                                                                                                  | 3.6                                                 |                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32071.0 | -628.8                                                                                                                                                                                                                           | 0.8                                                 | 0.0002                                                                                                                         | 0.01                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.0    |                                                                                                                                                                                                                                  | 4.48                                                |                                                                                                                                |                                             | 있는                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 32071.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32071.0 | -628.8                                                                                                                                                                                                                           | 0.8                                                 | 9.0002                                                                                                                         | 0.01                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.0    |                                                                                                                                                                                                                                  | 1.6                                                 |                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15.0       5.6         32071.0       -628.8       0.8       0.0002       0.01         15.0       6.6         32071.0       -628.8       0.8       0.0002       0.01         15.0       7.6         32071.0       -628.8       0.8       0.0002       0.01         15.0       -1.6         2071.0       -628.8       0.8       0.0002       0.01         15.0       -2.6         2071.0       -628.8       0.8       0.0002       0.01         15.0       -3.6         2071.0       -628.8       0.8       0.0002       0.01         15.0       -4.6         2071.0       -628.8       0.8       0.0002       0.01         15.0       -5.6         2071.0       -628.8       0.8       0.0002       0.01         15.0       -5.6         2071.0       -628.8       0.8       0.0002       0.01         15.0       -628.8       0.8       0.0002       0.01         15.0       -628.8       0.8       0.0002       0.01         15.0       -628.8       0.8       0.0002       0.01         15                                                                                                                                                                                                                                                                                                 | 2071.0  | -628.8                                                                                                                                                                                                                           | 0.8                                                 | 0.0002                                                                                                                         | 0.01                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.0    |                                                                                                                                                                                                                                  | 5.6                                                 |                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \$2971.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32071.0 | -628.8                                                                                                                                                                                                                           | 0.8                                                 | 0.0002                                                                                                                         | 0.01                                        | s less sell i stelle din best                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.0    |                                                                                                                                                                                                                                  | 6.6                                                 |                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2071.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2071.0  | -628.8                                                                                                                                                                                                                           | 0.8                                                 | 0.0002                                                                                                                         | 0.01                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.0    |                                                                                                                                                                                                                                  | 7.6                                                 |                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2071.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2071.0  | -628.8                                                                                                                                                                                                                           | 0.8                                                 | 0.0002                                                                                                                         | 0.01                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15.0 -2.6<br>2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -3.6<br>2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -1.48<br>2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -4.6<br>2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -5.6<br>2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -6.6<br>2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -6.6<br>2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.0    |                                                                                                                                                                                                                                  | -1.6                                                |                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2071.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 071.0   | -628.8                                                                                                                                                                                                                           | 8.8                                                 | 0.0002                                                                                                                         | 0.01                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0     |                                                                                                                                                                                                                                  | -2.6                                                | 는 가격하면 있는데 모든데<br>사용하다의 전기                                                                                                     |                                             | 40년 - 12년 - 1<br>- 12년 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2071.0 -628.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2071.0  | -628.8                                                                                                                                                                                                                           | 0.8                                                 | 9.0002                                                                                                                         | 0.01                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.0    |                                                                                                                                                                                                                                  | -3.6                                                | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -4.6<br>2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -5.6<br>2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -6.6<br>2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2071.0  | -628.8                                                                                                                                                                                                                           | 0.8                                                 | 0.0002                                                                                                                         | 0.01                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.0    |                                                                                                                                                                                                                                  | -4.48                                               |                                                                                                                                | als troops                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -5.6<br>2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -6.6<br>2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2071.0  | -628.8                                                                                                                                                                                                                           | 0.8                                                 | 0.0002                                                                                                                         | 0.01                                        | ar service subject toparesural against                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15.0 -5.6<br>2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -6.6<br>2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.0    |                                                                                                                                                                                                                                  | -4.6                                                | . 1868. J. 1868.                                                                                                               | ar Signar                                   | A manuscript of the Company of the Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -6.6<br>2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2071.0  | -628.8                                                                                                                                                                                                                           | 0.8                                                 | 9.0002                                                                                                                         | 0.01                                        | ika i interiori i maariika ka k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15.0 -6.6<br>2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.0    |                                                                                                                                                                                                                                  | -5.6                                                |                                                                                                                                |                                             | 表示 电影 医感觉性 多种种种类属 医红色素                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15.0 -6.6<br>2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2071.0  | -628.8                                                                                                                                                                                                                           | 0.8                                                 | 0.0002                                                                                                                         | 0.01                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2071.0 -628.8 0.8 0.0002 0.01<br>15.0 -7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.0    |                                                                                                                                                                                                                                  | -6.6                                                | , kr. 1945<br>1945 - 1945<br>1945 - 1945<br>1945 - 1945<br>1945 - 1945<br>1945<br>1945<br>1945<br>1945<br>1945<br>1945<br>1945 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>15.0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2071.0  | -628.8                                                                                                                                                                                                                           | 8.8                                                 | 0.0002                                                                                                                         | 0.01                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 발하 <u>는 보</u> 면에 발표하게 되었다. 그런 한 맛들은 그리고 생각하게 됐습니다. 그런 그는 그런 그는 그리고 되었다. 그리고 함께 있는 그런 그리고 있다. 그는 그는 그는 그는 그리고 살아 하는 목가를 하는                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.0    |                                                                                                                                                                                                                                  | 사람들 이 기업 등은 경우 하나 없습니다.                             |                                                                                                                                | STE LA PROPERTO.<br>La companya da santan   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| er anderste begresse großen. De astresse eine soll in Derbeit der Derbeit der der der der der der Steilere de<br>Der Gerkonnen General auch der der steile der der der der der der der der der de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2071.0  | -628.8                                                                                                                                                                                                                           |                                                     | 0.0002                                                                                                                         | 0.01                                        | g egyt megystalagi och av de koloniska i koloniska graden för kalende koloniska i seks förstade koloniska kolo<br>I skillar sekstande koloniska koloniska koloniska koloniska koloniska koloniska koloniska koloniska koloniska                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | ing pagalang di Panggarang Salah di Panggarang Salah di Panggarang Salah di Panggarang Salah di Panggarang Sal<br>Banah di Panggarang Salah di P | y ne y spanjenski politika.<br>Stali objektivalnika |                                                                                                                                | ner – er skiftigskie.<br>De leesterkinge is | the transfer of the state of the contract of the state of |

### TYPICAL OUTPUT FROM THE MAIN PROGRAM (FOR ALPHA = 30 DEGR.)

K=.80 UMA= 32071.00 UOA= -628.80 UMA/UOA= -51.00 ALPHA=0.523600 XAO= 15.0000 YAO= 1.6000 XHU= 15.0000
YAO= 1.6000
NUMBER OF COMPUTED POINTS Q= 219

|          |         | 그 사람들은 사람들이 가장 살아 있다. |                          |                                |
|----------|---------|-----------------------|--------------------------|--------------------------------|
| ×        | Y       | v v                   | DRA/DT                   | DTH∕DT                         |
| 12.19037 | 8.88566 | 628.09008             | -625.39780               | 3.85099                        |
| 12.13641 | 8.85351 | 628.08329             | -625.37877               | 3.87576                        |
| 12.08246 | 8.82135 | 628.07635             | -625.35959               | 3.90071                        |
| 12.02852 | 8.78918 | 628.06925             | -625.34026               | 3.92585                        |
| 11.97458 | 8.75701 | 628.06199             | -625.32078               | 3.95118                        |
| 11.92065 | 8.72482 | 628.05457             | -625.30115               | 3.97669                        |
| 11.86672 | 8.69263 | 628.04698             | -625.28136               | 4.00238                        |
| 11.81280 | 8.66012 | 628.03921             | -625.26142               | 1.02827                        |
| 11.75889 | 8.62820 | 628.03127             | -625.24132               | 4.05433                        |
| 11.70499 | 8.59598 | 628.02315             | -625.22107               | 1.08058                        |
| 11.65109 | 8.56374 | 628.01484             | -625.20066               | 4.10702                        |
| 11.59720 | 8.53149 | 628,00634             | -625.18009               | 4.13364                        |
| 11.54332 | 8.49923 | 627.99764             | -625.15935               | 4.16045                        |
| 11.48944 | 8.46697 | 627.98873             | -625.13846               | 4.18744                        |
| 11.43558 | 8.43468 | 627.97962             | -625.11740               |                                |
| 11.38172 | 8.40239 | 627.97030             | -625.09618               | 4.21462<br>4.24198             |
| 11.32787 | 8.37009 | 627.96075             | -625.07479               | 4.26952                        |
| 11.27403 | 8.33777 | 627.95098             | -625.05324               |                                |
| 11.22019 | 8.30545 | 627.94097             | -625.03151               | 4.2972 <del>4</del><br>4.32515 |
| 11.16637 | 8.27311 | 627.93073             | -622.00962               | 4.35323                        |
| 11.11255 | 8.24075 | 627.92024             | -624.98757               |                                |
| 11.05874 | 8.20839 | 627.90950             | -624.96533               | 4.38149                        |
| 11.00495 | 8.17601 | 627.89850             | -624.94293               | 4.40993                        |
| 10.95116 | 8.14362 | 627.88723             | -62 <b>1.</b> 92036      | 4.43854                        |
| 10.89738 | 8.11121 | 627.87569             | -624.89761               | 1.16733                        |
| 10.84361 | 8.07879 | 627.86387             | -62 <b>1.871</b> 69      | 4.19628                        |
| 10.78985 | 8.04636 | 627.85176             | ~624.85159               | 4.52541                        |
| 10.73610 | 8.01391 | 627.83935             | -624.82832               | 4.55470                        |
| 10.68236 | 7.98145 | 627.8266 <del>1</del> | -624.80487               | 1.58416                        |
| 10.62863 | 7.94898 | 627.81362             | -624.78124               | 4.61378                        |
| 10.57491 | 7.91649 | 627.80028             | -624.757 <del>44</del>   | 4.61356                        |
| 10.52120 | 7.88398 | 627.78660             | -624.73345               | 4.67349                        |
| 10.46750 | 7.85146 | 627.77259             | -624.70929               | 4.70358                        |
| 10.41382 | 7.81892 | 627.75822             | -624.68495               | 4.73381                        |
| 10.36014 | 7.78636 | 627.74350             | -624.66043               | 4.76418                        |
| 10.30648 | 7.75379 | 627.72842             | -621.63573               | 4.79470                        |
| 10.25283 | 7.72121 | 627.71295             | -621.61085               | 4.82535                        |
| 10.19919 | 7.68860 | 627.69710             |                          | 1.85613                        |
| 10.14556 | 7.65598 | 627.68085             | -624.58579<br>-624.5665  | 4.88703                        |
| 10.09195 | 7.62334 | 627.66418             | -624.56055<br>-624.53513 | 4.91806                        |
| 10.03835 | 7.59068 | 627.64710             | -624.53513               | 4.94919                        |
| 9.98476  | 7.55800 | 627.62959             | -624.50953<br>-624.49375 | 4.98043                        |
| 9.93119  | 7.52531 | 627.61164             | -624.48375<br>-624.45370 | 5.01177                        |
| 9.87763  | 7.49259 | 627.58323             | -624.45779<br>-624.43166 | 5.04320                        |
|          |         | OLT .000E3            | -624.43166               | 5.07472                        |

# TYPICAL OUTPUT FROM THE MAIN PROGRAM (FOR ALPHA = 30 DEGR.)

| 9.82409              | 7.45986              | 627.57436 | -624.40535 | 5.1063  |
|----------------------|----------------------|-----------|------------|---------|
| 9.77056              | 7. <del>1</del> 2710 | 627.55500 | -624.37886 | 5.13796 |
| 9.71704              | 7.39133              | 627.53516 | -624.35220 | 5.16968 |
| 9.66354              | 7.36153              | 627.51481 | -624.32537 | 5.2014  |
| 9.61006              | 7.32872              | 627.49394 | -624.29837 | 5.23323 |
| 9.55659              | 7.29588              | 627.47255 | -624.27120 | 5.26506 |
| 9.50313              | 7.26302              | 627.45061 | -621.24386 | 5.29688 |
| 9.44970              | 7.23013              | 627.42811 | -624.21636 | 5.32872 |
| 9.39628              | 7.19722              | 627.40504 | -624.18870 | 5.36058 |
| 9.3 <del>1</del> 288 | 7.16429              | 627.38138 | -624.16088 | 5.39234 |
| 3.28949              | 7.1313 <del>1</del>  | 627.35713 | -624.13291 | 5.42409 |
| 3.23612              | 7.09836              | 627.33225 | -624.10479 | 5.45578 |
| 9.18278              | 7.06536              | 627.30675 | -624.07652 | 5.48746 |
| 9.12945              | 7.03233              | 627.28060 | -624.04811 | 5.51893 |
| 9.07614              | 6.99927              | 627.25379 | -624.01956 | 5.55034 |
| 9.07617              | 6.99927              | 627.25379 | -624.01956 | 5.550   |

# AND SO ON UNTIL THE END OF THE CURVE:

|         |                              | 강성은 생님은 사람이는 이를 위하고 있다는 것이다. |                      |                |
|---------|------------------------------|------------------------------|----------------------|----------------|
| 1.99124 | 0.41735                      | 5001.67286                   | -4677.03717          | -871.26219     |
| 1.93562 | 0.38296                      | 5480.27835                   | -5160.53217          | -934.83109     |
| 1.87304 | 0.3 <del>1</del> 697         | 6097.52330                   | -5784.10413          | -1013.04001    |
| 1.80132 | 0.30904                      | 6929.73002                   | -6624.48599          | -1112.93695    |
| 1.71689 | 0.26863                      | 8125.14141                   | -7830.53890          | -1247.62033    |
| 1.66812 | 0.24723                      | 8948.72743                   | -8660.67 <b>1</b> 37 | -1335.55755    |
| 1.61342 | 0 <b>.</b> 22 <del>181</del> | 10016,44810                  | -9736.00489          | -1444.80580    |
| 1.55086 | 0.20120                      | 11465.39899                  | -11193.90579         | -1586.01225    |
| 1.47731 | 0.17593                      | 13564.56137                  | -13303.78436         | -1779.20508    |
| 1.38701 | 0.14839                      | 16933.11739                  | -16685.52037         | -2068.28761    |
| 1.33225 | 0.13340                      | 19551.81429                  | -19312.12550         | -2279.52085    |
| 1.26754 | 0.11726                      | 23409.29863                  | -23178.74971         | -2574.57313    |
| 1.18736 | 0.09943                      | 29766.09748                  | -29546.41012         | -3029.53802    |
| 1.13808 | 0.08959                      | 34867.61021                  | -34654.26075         | -3373.57563    |
| 1.07897 | 0.07882                      | 42661.96776                  | -42455.80182         | -3872.16617    |
| 1.00376 | 0.06665                      | 56335.52544                  | -56137.70355         | -4688.95543    |
|         | 对大规模的 电路压电压多位 化二氯 化二氯苯二甲二酚   |                              |                      | 5,9 PE 10,015. |

THEN THE SAME OUTPUT FORMAT FOR CURVES NO.:2,3,4,....,16.

**GOTO 3** 

```
THE MAIN PROGRAM SERVES AS A CARRIAGE TO INPUT DATA AND OUTPUT RESULTS
C AFTER THE EQUATIONS HAVE BEEN SOLVED.IT ALSO DIRECTS THE DATA TO THE
C APPROPRIATE SUBROUTINE THAT IS TO PERFORM THE ITERATIONS ON THE EQUATIONS
C WHICH ARE HELD IN THE SUBROUTINE 'FUNCTN'. THERE ARE TWO METHODS OF
C ITERATION, THE RUNGE-KUTTA AND THE ADAMS-MOULTON METHOD.
   IN ADDITION TO THIS THE SUBROUTINE 'XSECT' WILL FIND THE CAPTURE CROSS-
 SECTION OF THE WIRE FOR DIFFERENT FLUID VELOCITIES.
C
C
      UMA, VOA, AK AND DTO ARE THE MAGNETIC AND FLUID VELOCITIES,
C
      THE SHORT RANGE CONSTANT AND THE TIME STEP, RESPECTIVELY.
      E IS THE MAXIMUM DEVIATION BETWEEN PREDICTOR AND CORRECTOR IN THE
ć
      PREDICTOR-CORRECTOR METHODS.
      YLA AND YHA ARE PARAMETERS IN 'XSECT' SUBROUTINE.
C
      J IS THE CONTROL INTEGER WHICH SELECTS THE METHOD OF ITERATION.
c
C
      K IS THE CONTROL INTEGER WHICH SELECTS THE MODE OF OUTPUT.
C
C
      IO IS THE NUMBER OF INITIAL VALUES OF X AND Y, READ IN AS XA AND YA,
C
      FOR WHICH CURVES WILL BE PRODUCED.
С
      Z IS THE RATIO OF UMA TO UOA.
С
      YC IS THE CAPTURE CROSS-SECTION.
      U IS THE VELOCITY OF THE PARTICLE AT A GIVEN POINT.
С
      THE SUBROUTINES WILL PRODUCE Q POINTS(I.E. Q X-Y PAIRS)FOR
С
C
      EACH CURVE.THIS PARAMETER IS IMPORTANT IN THE PLOTTING OF THE
C
      CURVES.
C
      DAR, DIT AND DEET ARE ARRAYS OF THE GRADIENTS, I.E. THE RADIAL
      AND ANGULAR VELOCITIES, AND THE TIME STEP, RESPECTIVELY.
.c.
C
      ALPHA IS THE INCLINATION OF THE FLUID VELOCITY TO THE X-AXIS.
C
     INTEGER Q
     DIMENSION X(1000), Y(1000), G(1000), F(1000), U(1000)
     DIMENSION DAR(1000), DIT(1000), DEET(1000)
     READ(1,1001)J,K,IO,ALPHA
     T=0
 100 I=I+1
     IF(J.EQ.3)60T0 3
     READ(1,1002)XAO,YAO
     READ(1,1000)UMA,UOA,AK,DTO,E
     XA=XA0*COS(ALPHA)-YA0*SIN(ALPHA)
     YA=YAO*COS(ALPHA)+XAO*SIN(ALPHA)
     ZZ=UMA/UQA
     DT=DTO
     GOTO(1,2),J
    1 CALL RK(XA, YA, UMA, UOA, AK, DT, NN, X, Y, U, ALPHA, DAR, DIT, DEET)
    2 CALL AMCXA, YA, UMA, UOA, AK, DT, NN, X, Y, U, E, ALPHA, DAR, DIT, DEET)
    3 READ(1,1004)UMA,UOA,AK,DT,YLA,YHA,XAO,ALPHA
     CALL XSECT(YLA, YHA, UMA, UOA, AK, DT, Z, YC, XC, XAO, ALPHA)
      IF(K.EQ.3)GOTO4
     WRITE(2,1006)AK, UMA, UOA, Z, ALPHA, XC, YC
      IF(K.EQ.2)GOTOS
    4 WRITE(3,1005)Z,YC,XC,ALPHA
                                     5 IF(I.EQ.IO)GOTO 20
     I=I+1
```

```
10 Q=NN
                     IECK.EQ.33BOTOS
     WRITE(2,1009) AK, UMA, UOA, 22, ALPHA, XAO, YAO
     WRITE(2,1007)Q
     URITE(2.1008)
     WRITE(2,1002)(X(N),Y(N),U(N),DAR(N),DIT(N),DEET(N),N=1,Q)
     IF(K.EQ.2)60T07
   6 WRITE(3,1003)Q
     WRITE(3, 1002)(X(N), Y(N), U(N), DAR(N), DIT(N), DEET(N), N=1,Q)
   7 IF(I.EQ.IO)60TO 20
     60TO 100
  20 STOP
 1000 FORMAT(2F10.2,F10.5,2F10.8,2F10.5)
 1001 FORMAT(315,F10.5)
 1002 FORMAT(1X,F10.5,2F20.5,2F15.5,F15.10)
 1003 FORMAT(1X, I10)
 1004 FORMAT(2F10.2,F10.5,F10.8,SF10.5)
 1005 FORMAT(1X,F10.5,3F20.5)
 1006 FORMAT(SH0 K=,F3.2,7H UMA=,F10.2,
    CZH UOA=, F10.2/10H UMA/UOA=,
    CF7.2,9H RLPHR=,F8.6/7H XCR=,
    CF9.4/7H RCA=,F9.4)
 1007 FORMAT(1X,31H NUMBER OF COMPUTED POINTS Q=,14///>
1008 FORMAT(1X;88H X Y V C DRAZDT DTHZDT DTZZZZZ
 1009 FORMAT(SH0 K=,F3.2,7H VMA=,F10.2,
    C7H UOA=,F10.2/10H UMA/UOA=,
    CF7.2,9H ALPHA=,F8.6/7H XAO=,
    CF9.4/7H YAO=,F9.4)
 1010 FORMAT(////)
     END
C
C
C
  THE FUNCTN SUBROUTINE.
C
C
  THIS SUBROUTINE CONTAINS THE EQUATIONS TO BE ITERATED.
     SUBROUTINE FUNCTN(RA, THETA, VMA, VOA, AK, DRADT, DTHDT, ALPHA)
    DRADT=UOAx(1.0-(RAxx(-2)))*COS(THETA-ALPHA)-UMAxAK/(RAxx5)-UMAx
    1COS(2.0*THETA)/(RA**3)
    DTHDT=-UOA*(1.0+(RA**(-2)))*SIN(THETA-ALPHA)/RA-UMA*SIN(2.0*THETA
    1)/(RA##4)
    RETURN
C
C
 THE RUNGE-KUTTA METHOD.
C
C
  THIS IS A SELF-STARTING , FOURTH-ORDER METHOD OF HIGH ACCURACY.
С
  IT INCORPORATES THE STEP LENGTH ADJUSTMENT.
C
C
    SUBROUTINE RK(XA, YA, UMA, VOA, AK, DT, N, X, Y, V, ALPHA, DAR, DIT, DEET)
    REAL L,KR1,KT1,KR2,KT2,KR3,KT3,KR4,KT4
DIMENSION X(1000),Y(1000),U(1000)
    DIMENSION DAR(1000), DIT(1000), DEET(1000)
```

```
N=1
  .._.
X(N)=XA
  THETA=ATAN2(YA, XA)
  Z≑RA+0.2
  IF(Z.LE,14.2)Z=14.2
 1 R=RA
  CALL FUNCTN(RA, THETA, VMA, VOA, AK, DRADT, DTHDT, ALPHA)

V(N)=SQRT(DRADT*DRADT+RA*RA*DTHDT*DTHDT)

DAR(N)=DRADT

DIT(N)=DTUDT
40 CALL FUNCTIK RA, THETA, UMA, UOA, AK, DRADT, DTHDT, ALPHA)
  DIT(N)=DTHDT
  DEET(N)=DT
  IF(N.EQ.1000)GOTO 2
  IF(RA.LT.1.01.AND.RA.GT.1.00)GOTO 2
  IF(RA.GT.Z)GOTO 2
  KR1=DRADT*DT
  RA=R+0.S*KR1
THETA=TH+0.S*KT1
  KT1=DTHDT*DT
                            CALL FUNCTNY RA, THETA, UMA, VOA, AK, DRADT, DTHDT, ALPHA)
  KR2=DRADT*DT
  KT2=DTHDT*DT
  RA=R+0.5*KR2
THETA=TH+0.5*KT2
  CALL FUNCTN(RA, THETA, UMA, UDA, AK, DRADT, DTHDT, ALPHA)
  KR3=DRADT*DT
  KT3=DTHDT*DT
                            RA=R+KR3
                                    SE SALAGOS
  THETA=TH+KT3
  CALL FUNCTIK RA, THETA, UMA, UOA, AK, DRADT, DTHDT, ALPHA)
  KR4=DRADT*DT
  KT4=DTHDT*DT
  DRA=(KR1+2.0*(KR2+KR3)+KR4)/6.0
  DTH=(KT1+2.0*(KT2+KT3)+KT4)/6.0
  RA=R+DRA
  THETA=TH+DTH
  IF(RA.LT.1.00.OR.ABS(DRA).GT.0.1)GOTO 4
  X(N)=RA*COS(THETA)
  Y(N)=RA#SIN(THETA)
  GOTO 1
 4 DT=DT/2.0
  RA=R
  THETA=TH
  GOTO 40
2 RETURN
                         Song the control of the second of the second
THE ADAMS-MOULTON METHOD.
THIS METHOD USES THE FIFTH-ORDER ADAMS-MOULTON PREDICTOR-
CORRECTOR METHOD UTILISING THE RUNGE-KUTTA METHOD AS ITS STARTER
```

С

¢

C C

C

C

TO FIND THE FIRST FOUR POINTS.

```
C THE ERROR IN THIS TECHNIQUE IS GOVERNED BY E.
C IT ALSO INCORPORATES THE STEP LENGTH ADJUSTMENT
C
    SUBROUTINE AMCXA, YA, UMA, UOA, AK, DT, N, X, Y, U, E, ALPHA, F, G, DEET)
    REAL L, KR1, KT1, KR2, KT2, KR3, KT3, KR4, KT4
    DIMENSION X(1000),Y(1000),F(1000),G(1000),U(1000)
    DIMENSION DEET(1000)
    NO=4
    N=1
    AX=(N)X
    Y(N)=YA
    RA=SQRT(XA#XA+YA#YA)
    THETA=ATAN2(YA,XA)
    7=RA+0.2
    IF(2.LE.14.2)Z=14.2
C START OF RUNGE-KUTTA
  1 R=RA
  40 CALL FUNCTNOR, THETA, UMA, UDA, AK, DRADT, DTHDT, ALPHA)
    U(N)=SQRT(DRADT#DRADT+RA#RA#DTHDT#DTHDT)
    F(N)=DRADT
    G(N)=OTHOT
    IF(N.EQ.1000)GOTO 3
    IF(RA.LE.1.01.AND.RA.GE.1.00)G0T0 3
    IF(RA.GE.2)60T0 3
    IF(N.GE.NO)GOTO 2
    KR1=DRADT*DT
    KT1=DTHDT*DT
    RA=R+0.5*KR1
    THETA=TH+0.5*KT1
    CALL FUNCTOK RA, THETA, UMA, UOA, AK, DRADT, DTHDT, ALPHA)
    KR2=DRADT*DT
    KT2=DTHDT*DT
    RA=R+0.5×KR2
    THETA=TH+0.5×KT2
    CALL FUNCTIK RA, THETA, UMA, UOA, AK, DRADT, DTHDT, ALPHA)
    KR3=DRADT**DT
KT3=DTHDT**DT
    RA=R+KR3
THETA=TH+KT3
    CALL FUNCTIK RA, THETA, VMA, VOA, AK, DRADT, DTHOT, ALPHA)
    KR4=DRADT*DT
    KT4=DTHDT*DT
    DRA=(KR1+2.0#(KR2+KR3)+KR4)/6.0
   DTH=(KT1+2.0m(KT2+KT3)+KT4)/6.0
    RA=R+DRA
    THETA=TH+DTH
    IF(RA.LT.1.00.OR.ABS(DRA).GT.0.1)GOTO 4
   X(N)=RA#COS(THETA)
   Y(N)=RA#SIN(THETA)
   GOTO 1
  4 DT=DT/2.0
   N0=N+4
   RA=R
```

```
THETA=TH
     60T0 40
C START OF ADAMS-MOULTON
     R=RA
TH=THETA
   2 R=RA
     F1=F(N)
     61=G(N)
     N=N-1
     F2=F(N)
     G2=6(N)
     N=N-1
     F3=F(N)
     63=6(N)
     N=N-1
     F4=F(N)
     AMR1=R+DT*(55.0*F1-59.0*F2+37.0*F3-9.0*F4)/24.0
     AMT1=TH+DT#(55.0#G1-59.0#G2+37.0#G3-9.0#G4)/24.0
     RA=AMR1
     THETA=AMT1
     CALL FUNCTIK RA, THETA, UMA, UOA, AK, DRADT, DTHDT, ALPHA)
     AMR2=R+DT*(9.0*DRADT+19.0*F1-5.0*F2+F3)/24.0
     AMT2=TH+DT#(9.0#DTHDT+19.0#G1-5.0#G2+G3)/24.0
     ETA=ABS(AMR1-AMR2)/AMR2
     IF(ETA.GE.E)GOTO 600
     IF(AMT2.LT.1.0E-10)GOTO 700
     ZETA=ABS(AMT1-AMT2)/AMT2
     IF(ZETA.GE.E)GOTO 600
     GOTO 700
 600 DT=DT/2.0
    NO=N+4
    RA=R
    THETA=TH
    GOTO 1
 700 RA=AMR2
     IF(RA.LT.1.00.OR.ABS(RA-R).GT.0.1)GOTO 600
    CALL FUNCTNORA, THETA, UMA, UOA, AK, DRADT, DTHDT, ALPHA)
    N=N+1
    F(N)=DRADT
    G(N)=DTHDT
    U(N)=SQRT(DRADT*DRADT+RA*RA*DTHDT*DTHDT)
    DEET(N)=DT
    X(N)=RA*COS(THETA)
    Y(N)=RA#SIN(THETA)
    IF(N.EQ.1000)GOTO 3
    IF(RA.LE.1.01.AND.RA.GE.1.00)GOTO 3
    IF(RA.GT.Z)GOTO 3
    GOTO 2
   3 RETURN
    END
C
C
C
  THE XSECT SUBROUTINE.
C
```

```
C THIS SUBROUTINE CALCULATES THE CAPTURE CROSS SECTION OF THE WIRE.
C IT DOES SO BY ITERATING A CURVE AND ASSESSING WHETHER
C CAPTURE HAS TAKEN PLACE OR NOT. IF IT HAS, THE STARTING POINT WAS
C TOO LOW AND IT IS THEN RAISED TO HALF-WAY BETWEEN ITS PRESENT
C POSITION AND THE STARTING VALUE OF THE CURVE WHEN THE PARTICLE LAST
C MISSED THE WIRE WHICH IS A LITTLE TOO HIGH.SIMILARLY THE HIGH VALUE
  IS LOWERED IF THE PARTICLE MISSES THE WIRE.BY REPEATING THIS
 PROCESS UNTIL THE HIGH AND LOW STARTING POINTS CONVERGE THE CAPTURE
C CROSS-SECTION IS FOUND. THIS IS REPEATED AS A FUNCTION OF THE
C
  RATIO UMA:UOA.
C
     SUBROUTINE XSECT(YLA, YHA, UMA, UOA, AK, DTO, Z, YC, XC, XAO, ALPHA)
     REAL L, KR1, KT1, KR2, KT2, KR3, KT3, KR4, KT4
     WRITE(2,1040)
 1040 FORMAT(13H0 ITERATIONS//)
     M=0
     D=0.0
     Z=UMA/UOA
     YAO=(YLA+YHA)>2.0
    YH=YHA
    YL=YLA
   3 DT=DTO
   7 YA=XAOMSIN(ALPHA)+YAOMCOS(ALPHA)
     XA=XAO#COS(ALPHA)-YAO#SIN(ALPHA)
     RA=SQRT(XA#XA+YA#YA)
     THETA=ATAN2(YA,XA)
   1 R=RA
     TH=THETA
     CALL FUNCTIK RA, THETA, UMA, UOA, AK, DRADT, DTHDT, ALPHA)
     IF(M.EQ.0)GOTO 500
    YC=RAMSIN(THETA-ALPHA)
    XC=RA#COS(THETA-ALPHA)
     DRC=ABS(YC-D)
    IF(DRC.LT.0.0005)GOTO 6
    D=YC
 SØØ KR1=DRADT#DT
    KT1=DTHDT*DT
    RA=R+0.5*KR1
    THETA=TH+0.SMKT1
    CALL FUNCTN( RA, THETA, UMA, VOA, AK, DRADT, DTHDT, ALPHA)
    KR2=DRADT#DT
    KT2=DTHDT#DT
    RA=R+0.5*KR2
    THETA=TH+0.5×KT2
    CALL FUNCTIK RA, THETA, UMA, UOA, AK, DRADT, DTHDT, ALPHA)
    KR3=DRADT*DT
    KT3=DTHDT*DT
    RA=R+KR3
    THETA=TH+KT3
    CALL FUNCTIK RA, THETA, UMA, UOA, AK, DRADT, DTHDT, ALPHA)
    KR4=DRADT*DT
    KT4=DTHDT#DT
    DRA=(KR1+2.0=(KR2+KR3)+KR4)/6.0
    DTH=(KT1+2.0x(KT2+KT3)+KT4)/6.0
    RA=R+DRA
    THETA=TH+DTH
```

```
IF(M.EQ.1)GOTO 1
              IF(RA.GT.1.00.AND.ABS(DRA).LT.0.1)G0T0 8
              RA=R
              THETA=TH
              DT=DT/2.0
              GOTO 1
         8 IF(RA.GT.1.00.AND.RA.LT.1.01)GOTO 10
              RL=-(ABS(Z)**0.3333)
              IF(RA*COS(THETA-ALPHA).LT.RL)GOTO 20
              GOTO 1
      10 YL=YAO
              P=YHA-0.1
              WRITE(2,1020)YAO
 1020 FORMAT(1X,F20.5)
              IFCYL.LT.P>GOTO 100
              YHA=YHA+0.2
              YH=YHA
   100 YAO=(YH+YL)/2.0
              U=YH-YL
              IF(W.LT.0.001)GOTO 5
              GOTO 3
                                                                                                                                                                       SANTA SANTA
     OAY=HY 0S
                                                  The control of the co
              Q=YLA+0.1
             WRITE(2,1030)YAO
1030 FORMAT(1X,F30.5)
              IF(YH.GT.Q)G0T0 200
              YLA=YLA/2.0
             IF(YLA.LT.0.05)YLA=0.0
             YL=YLA
  200 YAO=(YH+YL)/2.0
             W=YH-YL
             IF(W.LT.0.001)GOTO 5
             GOTO 3
       S DT=-DTO
             M=1
             WRITE(2,1010)YAO
1010 FORMAT(1X,F10.5//)
             GOTO 7
       6 RETURN
             END
```