Data Analysis and Interpretation

Report

Week One | Assignment One

Anish Kulkarni, Parth Jatakia, Toshi Parmar, Vedant Basu 28 September 2016

1 Assigned Responsibilities

The following Responsibilities were designated to each team member:

Week	Role Assigned	Member
	Leader	Vedant Basu
Week One	Coder	Parth Jatakia
	Website Manager	Anish Kulkarni
	Report Writer	Toshi Parmar

Table 1: Week By Week Summary of Assigned Roles

2 Summary of Work Done

1. Webpage Designing

Anish designs the webpage considering appropriate specifications with the help of Google Sites.

2. Familiarising with Python 2.7

Members familiarise themselves with Python 2.7 & the matplotlib library by plotting Gaussian(Fig 1), Binomial(Fig 2) & Poisson distributions(Fig 3) for three different parameter values. Following are the plots for respective distributions-

Figure 3: Poisson Distribution

3. Algorithm for Monte-Carlo Estimation of π

Discussion ensued in the first meet of the team to decide an efficient algorithm to carry out the Monte-Carlo Approximation. Method followed is -

(a) Generating random numbers.

Using numpy's numpy.random.uniform(-1, 1, 2000) command which draws random numbers from a uniform distribution in the interval, 4000 random numbers for the abscissa and ordinate of points are generated.

(b) Finding π for each iteration.

No. of points which lie inside the circle (distance less than the radius of circle, r = 1 are calculated(n). The value of π in this iteration is -

$$\pi_i = 4 \frac{n}{2000.0}$$

(c) Mean value of π , Sample Width, Standard Deviation & Error.

The mean value of π is the average of all sample values obtained from 500 iterations of the former two steps.

$$\pi = \sum_{i=1}^{500} \pi_i$$

Next up, the sample width of our distribution is estimated as the standard deviation of the π values.

And the standard deviation of our data can be estimated as-

$$\sigma = \frac{No.ofTrials}{No.ofTrials - 1}$$

Error in the data is equalled to the standard deviation of our data, i.e. σ .

(d) Plotting the Histogram⁴

Thematplotliblibrary's Histogram generating function is used with binsize equal led to 500^{0.5} (since it is an ideal central factor for 500 observations) which approximates to 23.

The histogram is *normalised* to 1.

Figure 4: Approximation of π