Honours Analysis Notes

Anthony Catterwell

April 17, 2019

Contents

1	The	Real Number System
	1.1	Introduction
	1.2	Ordered Field Axioms

1 The Real Number System

1.1 Introduction

1.2 Ordered Field Axioms

• Postulate 1 Field Axioms

There are functions + and \cdot defined on $\mathbb{R}^2 := \mathbb{R} \times \mathbb{R}$, which satisfy the following properties $\forall a, b, c \in \mathbb{R}$

- Closure Properties: a + b, $a \cdot b \in \mathbb{R}$
- Associative Properties: a + (b + c) = (a + b) + c and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- Commutative Properties: a + b = b + a and $a \cdot b = b \cdot a$
- Distributive Law: $a \cdot (b+c) = a \cdot b + a \cdot c$
- Existence of Additive Identity: There is a unique element $0 \in \mathbb{R}$ such that 0+a=a for all $a \in \mathbb{R}$
- Existence of Multiplicative Identity: There is a unique element $1 \in \mathbb{R}$ such that $1 \neq 0$ and $1 \cdot a = a$ for all $a \in \mathbb{R}$
- Existence of Additive Inverses: For every $x \in \mathbb{R}$ there is a unique element $-x \in \mathbb{R}$ such that

$$x + (-x) = 0$$

- Existence of Multiplicative Inverses: For every $x \in \mathbb{R} \setminus \{0\}$ there is a unique element $x^{-1} \in \mathbb{R}$ such that

$$x \cdot (x^{-1}) = 1$$

• Postulate 2 Order Axioms

There is a relation < on $\mathbb{R} \times \mathbb{R}$ that has the following properties:

- Trichotomy Property Given $a, b \in \mathbb{R}$, one and only one of the following statements hold:

$$a < b, b < a, \text{ or } a = b$$

- Transitive property For $a, b, c \in \mathbb{R}$

$$a < b \text{ and}; c \implies a < c$$