

MB8464A-80/-80L/-80LL/-10/-10L/-10LL/-15/-15L/-15LL CMOS 64K BIT LOW POWER SRAM

8K Words x 8 Bits CMOS Static RAM with Low Power and Data Retention

The Fujitsu MB8464A is a 8,192 words x 8 bits static random access memory fabricated with a CMOS silicon gate process. The memory uses asynchronous circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible and a single +5 V power supply is required.

The MB8464A has low power dissipation, low cost, and high performance, and it is ideally suited for use in microprocessor systems and other applications where fast access time and ease of use are required.

Organization: 8,192 words x 8 bits

Access time:
 80 ns max.
 100 ns max.
 (MB8464A-80/-80L/-80LL)
 (MB8464A-10/-10L/-10LL)
 150 ns max.
 (MB8464A-15/-15L/-15LL)

Static operation: no clock required
 TTL compatible inputs and outputs

Three-state outputs

· Common data inputs and outputs

• Single +5 V power supply ±10% tolerance

Low power standby: 11 mW max. (MB8464A-80/-10/-15)

0.55 mW max. (MB8464A-80L/-10L/-15L) 0.55 mW max. (MB8464A-80LL/-10LL/-15LL)

Data retention current: 1 mA max. (MB8464A-80/-10/-15)
 25 LA max. (MB8464A-80L/-10L/-15L)

2 µA max. at 0°C to 40°C

(MB8464A-80LL/-10LL/-15LL)

Data retention: 2.0 V min.

Standard 28-pin Plastic Packages:

DIP (600 mil) MB8464A-xx(L/LL)P Skinny DIP (300 mil) MB8464A-xx(L/LL)PSK SOP (450 mil) MB8464A-xx(L/LL)PF

Standard 32-pad Ceramic Package:

LCC (metal seal) MB8464A-xx(L/LL)CV

Absolute Maximum Ratings (See Note)

Rating		Symbol	Value	Unit
Supply Voltage		Vcc	-0.5 to +7.0	V
Input Voltage		V _{IN}	-0.5° to V _{CC} +0.5	V
Output Voltage		V _{out}	0.5 to V _{CC} +0.5	٧
Temperature Under Bias		TBIAS	-10 to +85	°C
Storage Temperature Ceramic		_	-65 to +150	°C
Range	Plastic	T _{STG}	-45 to +125	°C

* -2.0 V for pulse width less than 20 ns.

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

CAPACITANCE (TA= 25° C, f = 1MHz)

Parameter	Symbol	Min	Тур	Max	Unit
I/O Capacitance (V _{I/O} =0V)	Cvo			8	pF
Input Capacitance (V _N =0V)	Cin			6	pF

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	٧
Ambient Temperature	T _A	0		70	•c

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	MB8464A- 80/10/15		MB8464A 10L/10LL		Unit	Test Condition
		Min	Max	Min	Max		
Standby Supply Current	I _{SB1}		2		0.1	mA	CS₂≤0.2V, CS ₁≥V _∞ −0.2V (CS₂≤0.2V or CS₂≥V _{cc} −0.2V)
	I _{SB2}		3		3	mA	CS1=VIH or CS2=VIL
Active Supply Current	l _{cc1}		50		50	mA	CS ₁ =V _{IL} , CS ₂ =V _{IH} V _{IN} =V _{IH} or V _{IL} , I _{OUT} =0mA
Operating Supply Current	lccz		60		60	mA	Cycle=Min., Duty=100% I _{our} =0mA
Input Leakage Current	lu	-1	1	-1	-1	μА	V _{IN} =0V to V _{CC}
Output Leakage Current	luo	-2	2	-2	2	μA	
Input Low Voltage	VIL	-2.0°	0.8	-2.0*	0.8	٧	
Input High Voltage	V _{IH}	2.2	V _{cc} +0.3	2.2	V _{cc} +0.3	>	
Output High Voltage	V _{OH}	2.4		2.4		٧	l _{oн} =−1.0mA
Output Low Voltage	Vα		0.4		0.4	>	l _{oL} =2.1mA

^{* -2.0}V Min for pulse width less than 20ns. (V_{IL} Min.=-0.3V at DC level)

Fig. 2 - AC TEST CONDITIONS

Input Pulse Levels:

0.6V to 2.4V

. Input Pulse Rise and Fall Times: 5ns (Transient Time between 0.8V and 2.2V)

• Timing Reference Levels:

Input : V_{IL}=0.8V, V_{IH}=2.2V Output : V_{OL}=0.8V, V_{OH}=2.0V

· Output Load:

	R ₁	R,	Cſ	Parameters Measured
Load I	1.8kΩ	990Ω	100pF	except t _{cLZ} , t _{CLZ} , t _{CHZ} , t _{CHZ} , t _{WLZ} and t _{WHZ}
Load II	1.8kΩ	990Ω	5pF	touz, touz, touz, touz touz twuz, and twuz

< Output Load > +5V Ę R, Dour o-(VO) ≨ R₂

* Including jig and stray capacitance

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted) READ CYCLE

Parameter	Symbol	MB8464A- 80/80L/80LL		MB8464A- 10/10L/10LL		MB8464A- 15/15L/15LL		Unit
		Min	Max	Міп	Max	Min	Max]
Read Cycle Time	t _{AC}	80		100		150		ns
Address Access Time	taa		80		100		150	ns
CS, Access Time	1 _{AC1}		80		100		150	ns
CS₂ Access Time	tacz		80		100		150	ns
Output Enable to Output Valid	toe		35		45		55	ns
Output Hold from Address Change	toн	10		10		10		ns
Chip Select to Output Low-Z*1	1 _{CLZ}	10		10		10		ns
Output Enable to Output Low-Z*1	toiz	5		5		5		ns
Chip Select to Output High-Z*1	t _{chz}		35		35		40	ns
Output Enable to Output High-Z*1	t _{онz}	-	30		35		40	ns

READ CYCLE TIMING DIAGRAM *2

Note: '1 Transition is measured at the point of ±500mV from steady state voltage.

*2 WE is high for Read Cycle.

*3 Device is continuously selected, CS1=OE=VIL, CS2=VIH.

*4 Address valid prior to or coincident with CS, transition low, CS2 transition high.

WRITE CYCLE

Parameter	Symbol	MB8464A- 80/80L/80LL		MB8464A- 10/10L/10LL		MB8464A- 15/15L/15LL		Unit
		Min	Max	Min	Max	Min	Max	7 !
Write Cycle Time	t _{wc}	80		100		150		ns
Address Valid to End of Write	t _{AW}	60		80		100		ns
Chip Select to End of Write	t _{cw}	60		80		100		ns
Data Valid to End of Write	tow	30		35		40		ns
Data Hold Time	t _{он}	5		5		5		ns
Write Pulse Width	t _{we}	60		70		90		ns
Address Setup Time	tas	0		0		0		ns
Write Recovery Time	t _{wn}	5		5		5		ns
Write Enable to Output Low-Z*1	twcz	5		5		5		ns
Write Enable to Output High-Z*1	twnz		30		35		40	ns

WRITE CYCLE TIMING DIAGRAM *2

^{*1} Transition is measured at the point of ±500mV from steady state voltage.
*2 If OE, CS₁ and CS₂ are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.

Note: *1 If OE, CS₂ and WE are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.

^{*2} If OE, CS, and WE are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.

^{*3} Transition is measured at the point of ±500mV from steady state voltage.

DATA RETENTION CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter Data Retention Supply Voltage		Symbol	Min	Тур	Max	Unit
		V _{DR}	2.0		5.5	٧
	Standard				1.0	mA
Data Retention Supply Current*2	L-Version	l _{DR}		1.0	25	μА
Copply Collient	LL-Version*3			1.0	2.0	μА
Data Retention Setup Time		tons	0			ns
Operation Recovery Time		t _R	t _{nc}			ns

Note:

*2 $\overline{\text{CS}_2}$ controlled: V_{DR} =3.0V, $\overline{\text{CS}_2}$ <0.2V $\overline{\text{CS}_1}$ controlled: V_{DR} =3.0V, $\overline{\text{CS}_1}$ > V_{DR} -0.2V (CS₂<0.2V or CS₂ \geq V_{DR}-0.2V)

*3 VDR=3.0V, TA=0°C to 40°C

DATA RETENTION TIMING

TYPICAL CHARACTERISTICS CURVES

Fig. 3 – NORMALIZED POWER SUPPLY CURRENT vs. SUPPLY VOLTAGE

Fig. 5 – NORMALIZED POWER SUPPLY CURRENT vs. CYCLE TIME

Fig. 7 – NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

Fig. 4 – NORMALIZED POWER SUPPLY CURRENT vs. AMBIENT TEMPERATURE

Fig. 6 - NORMALIZED POWER SUPPLY CURRENT vs. AMBIENT TEMPERATURE

Fig. 8 – NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (Cont'd)

PACKAGE DIMENSIONS (Cont'd)

