

SCHWEIZERISCHE EIDGENOSSENSCHAFT

EIDG. AMT FÜR GEISTIGES EIGENTUM

PATENTSCHRIFT

Veröffentlicht am 16. Juni 1941

Gesuch eingereicht: 6. Dezember 1938, 18 ½ Uhr. — Patent eingetragen: 31. März 1941. (Priorität: Großbritannien, 14. April 1938.)

HAUPTPATENT

MAY & BAKER, LIMITED, London (Großbritannien).

Verfahren zur Herstellung von 4.4'-Diamidino-α, γ-diphenoxypropan.

Es ist bekannt, daß gewisse substituierte Derivate des Di-und Triphenylmethans baktericide Eigenschaften besitzen. Es ist ebenso bekannt, daß der Ersatz der Aminogruppe in seiner Reihe von Diaminoalkylenen durch Amidingruppen die therapeutischen Eigenschaften dieser Verbindungen verbessert. Es wurde nun gefunden, daß viele amidinsubstituierte Abkömmlinge der Diarylalkylene des Typus AmR-10 (CH2)n-RAm, in welchem Am den Amidinrest

ganze, 12 nicht übersteigende Zahl bedeutet, trypanocide und andere therapeutisch wertvolle Eigenschaften besitzen. Es wurde ferner gefunden, daß der Ersatz einer oder mehrerer CH₂-Gruppen in der Alkylenkette durch ein zweiwertiges Element wie Sauerstoff oder Schwefel, oder eine zweiwertige Gruppe wie NH in vielen Fällen diese Eigenschaften ver-

bessert, während Amidinderivate des direkt abgebundenen Phenylrestes (in diesem Fall ist n = 0) auch therapeutisch aktiv sind. 25

Die Herstellung solcher Diamidinabkömmlinge der allgemeinen Formel Am. R. X. R. Am, in welcher Am die Amidingruppe

eine Bindung darstellt, welche entweder eine einfache Bindung sein kann oder eine Alkylenkette — $(CH_2)_n$ —, worin n 1—12 ist und sworin auch eine oder mehrere der CH_2 -Gruppen durch Sauerstoff oder Schwefel, oder die Gruppe NH ersetzt sein können, erfolgt aus den entsprechenden Dicyanverbindungen, und zwar durch Behandlung derselben in wasserfreier Alkohollösung mit trockener Chlorwasserstoffoder Bromwasserstoffsäure, wodurch die Cyangruppen in Iminoätherhydrochloride oder Hydrobromide verwandelt werden

$$\begin{cases}
-CN \text{ wird } -C \\
O-R
\end{cases} R = Alkyl,$$

5 welche bei der Behandlung mit Ammoniak das gewünschte Amidin liefern.

Gegenstand des vorliegenden Patentes ist nun ein Verfahren zur Herstellung von 4.4'-Diamidino-a, \gamma-diphenoxypropan, dadurch ge10 kennzeichnet, daß man 4,4'-Dicyan-a, \gamma-diphenoxypropan mit wasserfreiem Halogenwasserstoff in wasserfreier Lösung, die mindestens zum Teil absolut alkoholisch ist, behandelt und das entstandene Iminoätherhydro15 halogenid mit Ammoniak in das Diamidin
überführt.

Die neue Verbindung schmilzt bei 193 bis 194° C unter Zersetzung. Sie läßt sich leicht in ihr Dihydrochlorid vom Schmelzpunkt 287° C 20 (unter Zersetzung) oder andere Salze überführen und kann sowohl als solche, als auch in Form ihrer Salze als Arzneimittel verwendet werden.

Als Halogenwasserstoff verwendet man mit 25 Vorteil trockenes Chlor- oder Bromwasserstoffgas. Neben dem absoluten Alkohol kann die Reaktionslösung auch noch weitere wasserfreie Lösungsmittel, wie Nitrobenzol, Chloroform usw., enthalten. Die Ammoniakbehand-26 lung erfolgt zweckmäßig mit einer alkoholischen Ammoniaklösung.

Beispiel:

10 g 4,4' - Dicyan -α, γ - diphenoxypropan (NC—C₆H₄—O—CH₂—CH₂—CH₂—O—C₆H₄—ss CN) werden in 400 cm³ Nitrobenzol aufgelöst und 10 cm³ abs. Äthylalkohol zugegeben. Die Lösung wird bei 0°C mit trockenem Chlorwasserstoff gesättigt und 18 Stunden lang stehen gelassen. Das 4.4'-Diiminoäther-tohydrochlorid scheidet sich ab, wird filtriert und mit Äther gewaschen. 10 g desselben werden in einem geschlossenen Gefäß mit 100 cm³ äthylalkoholischem Ammoniak (10°/₀)

6 Stunden lang au-40 ° C erhitzt. Der Alkohol wird entfernt und der Rückstand mit 5 200 cm³ warmem Wasser und 20 cm³ konzentrierter Salzsäure ausgezogen. Beim Kühlen scheidet sich das Dihydrochlorid des 4,4'-Diamidino- α, γ -diphenoxypropans ab. Nach Umkristallisieren aus verdünnter Chlorwasserstoff- 50 säure schmilzt es unter Zersetzung bei 287 ° C.

Die freie Base wird durch Zugabe von verdünnter Natronlauge zu einer wäßrigen Lösung des Hydrochlorids erhalten. Sie schmilzt unter Zersetzung bei 193—194° C.

PATENTANSPRUCH:

Verfahren zur Herstellung von 4.4'-Diamidino-α, γ-diphenoxypropan, dadurch gekennzeichnet, daß man 4.4'-Dicyan-α, γ-diphenoxypropan in wasserfreier Lösung, die minde- ω stens zum Teil absolut alkoholisch ist, mit wasserfreiem Halogenwasserstoff behandelt und das entstandene Iminoätherhydrohalogenid mit Ammoniak in das Diamidin überführt.

Die neue Verbindung schmilzt bei 193 bis 45 194° C unter Zersetzung und läßt sich leicht in ihr bei 287° C unter Zersetzung schmelzendes Dihydrochlorid überführen.

UNTERANSPRUCHE:

- 1. Verfahren nach Patentanspruch, da- 70 durch gekennzeichnet, daß man als Halogenwasserstoff Chlorwasserstoffgas verwendet.
- 2. Verfahren nach Patentanspruch, dadurch gekennzeichnet, daß man als Halogenwasserstoff Bromwasserstoffgas verwendet.
- 3. Verfahren nach Patentanspruch, dadurch gekennzeichnet, daß die Reaktionslösung neben absolutem Alkohol noch weitere wasserfreie Lösungsmittel enthält.
- 4. Verfahren nach Patentanspruch, da-so durch gekennzeichnet, daß man eine alkoholische Ammoniaklösung verwendet.

MAY & BAKER, LIMITED. Vertreter: E. BLUM & Co., Zürich.