

UNIVERSIDADE EDUARDO MONDLANE

FACULDADE DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA

Licenciatura em Engenharia Informática

REDES DE COMPUTADORES

TEMA:

PROPOSTA DE RESOLUÇÃO DO TESTE-1

Autor:

CUMBE, José Afonso

Docentes:

Eng. Lourino Chemane Monitor: Assane Cipriano

Maputo, Maio 2011

CORREÇÃO DO TESTE 1 – 2011 de REDES DE COMPUTADORES

PARTE-I

1. Apresente o grafo e a arquitectura dos protocolos da internet.

Resposta: a internet é uma rede baseada na pilha de protocolos TCP/IP, diferente do modelo de referência OSI ele é um modelo de 4 camadas.

Grafo de protocolos da internet

Arquitectura dos protocolos da internet

	FTTP, TFTP, TELNET	Layer 4 Application		
	TCP	UDP		Layer 3
<u>2.</u>	Protocol	Protocol		Transport
	Network layer (IP Protocol)			Layer 2 Network
	Physical Layer/Link La	ayer Protocol		Layer 1 Physical / Link

Explique as diferenças entre os protocolos IP e TCP. Apresente os formatos dos respectivos datagramas e use-os para explicar as diferenças dos dois protocolos.

Resposta: o primeiro aspecto a considerar na diferenciação destes protocolos uns com os outros é a sua localização na pilha de protocolos do modelo de referência OSI. O protocolo TCP (transmition control protocol) opera na camada de transporte, o protocolo IP (internet protocol) opera na camada de rede.

Um segundo aspecto a considerar é a função desempenhada por cada um destes protocolos. O protocolo IP é responsável pelo endereçamento lógico dos hosts e nodos na rede e desempenha a função básica de roteamento dos pacotes. O protocolo TCP garante a entrega confiável ao receptor e a identificação das aplicações as quais os pacotes são endereçados.

Outra diferença entre estes protocolos é a constituição dos seus datagramas. Os datagrama TCP contêm campos que garantem a entrega confiável (Acknolodgement, número de sequência, etc) ao passo que o IP é protocolo sem conexão e sem confiabilidade.

Datagrama IP

0	4	8	16	19	24	31
VERS	HLEN	SERVICE TYPE	TOTAL LENGTH			
IDENTIFICATION			FLAGS	FRAGMENT OFFSET		
TIME TO LIVE PROTOCOL		HEADER CHECKSUM				
SOURCE IP ADDRESS						
DESTINATION IP ADDRESS						
IP OPTIONS (IF ANY)				PADDING		
DATA						

Datagrama TCP

0		8 16			31			
	Porta Origem			Porta Destino				
		Confirmação do "Piggyback"						
	Compr. Header	О	Flags	Janela				
	Checksum			Apontador de Urgente				
	Op coes (0 ou mais palavras de 32 bits)							
		DAD	os					

PARTE-II

- 1. Considere o endereço de rede da classe "X" 172.16.80.0/26. O administrador desta rede nos solicitou auxílio para criar 4 sub-redes de imediato e mais 3 sub-redes posteriormente. De acordo com os valores encontrados, responda:
 - a) Qual é classe do endereço da sub-rede?
 - b) Qual será a nova máscara para atender ao pedido do administrador representada nas duas anotações (decimal e binária)?
 - c) Quantas sub-redes serão criadas?
 - d) Qual é o endereço da 4ª sub-rede?
 - e) Quantos hosts por sub-rede serão criados?
 - f) Qual o endereço de broadcast da 5ª sub-rede?
 - g) Qual é a faixa de endereços destinada a enumeração de hosts da 2ª sub-rede?

Respostas:

Dados:

Endereço: "X"172.16.80.0/26

Nsr = 4+3=7

- a) O endereço da sub-rede é da classe "B".
- b) Resolução:

Transformar em binário a rede (172.16.80.0/26)

11111111 11111111 11111111 11000000

11→Sr; 000000→Hosts

 $Sr=2^n \ge 7 \longrightarrow 2^3 \ge 7^n = 3$ para 8 Sr.

Nova mascara: 255.255.255.248 (Decimal)

11111111 11111111 11111111 11111000 (Binário)

c)
$$Sr=2^n \ge 7 \rightarrow 2^3 \ge 7^n = 3, 2^3 = 8.$$

Serão criadas 8 sub-redes

d) No de hosts
$$\rightarrow$$
 n=3, 2³-2=6

O endereço da 4a Sub-rede =172.16.80.24

e) N° de hosts por sub-rede
$$\rightarrow$$
 n=3, 2³-2=6

Serão criados 6 hosts por sub-rede.

O endereço de broadcast da 5a sub-rede = 172.16.80.39

Faixa de endereços:

172.16.80.9 à 172.16.80.14

2. a) i

Dados:

BW=10Mbps

 $Tp=20\mu s$

Tam Pac=10000bits

Te=0

Ttrans=

 $Ttotal=2Tp+2Ttrans+Te=2x20\mu s+2x1024+0=2040\mu s$

ii

 $Tt = \mu s$

T1=Tp+2Tt+Te=20+1000=1020

T2=Tp+2Tt+Te=20+1000=1020

Ttotal=2x1020=2040 μs

b) Switch – opera na camada de enlance de dados

Cartas de rede – Camada de física e enlance de dados

Links – Camada de enlance de dados.