

Practical Computer Networks and Applications

Exercise 2 – IP Version 6 Networks

Prof. Dr. Baun, Prof. Dr. Ebinger, Prof. Dr. Hahm, Prof. Dr. Kappes, Dipl. Inf. (FH) Maurizio Petrozziello

{baun, peter.ebinger, oliver.hahm, kappes, petrozziello}@fb2.fra-uas.de **Frankfurt University of Applied Sciences Faculty of Computer Science and Engineering**

Nibelungenplatz 1

60318 Frankfurt am Main

Contents

Exercise 2

IP Version 6 Addresses

Network Topology - Exercise 2 - ULA

Network Topology of lab exercise 2 – Task 2 ULA (Unique Local Address)

Private Network 1:

- fd12:3456:789a:i::0/64
- Private Network for host machines and Routers
- The number i in the IP address is a placeholder for your group number!

Private Network 2:

- fd12:3456:789a:ffff::0/64
- Private network connecting all networks

Network Topology - Private Network 2

Network Topology of lab exercise 2 – Task 2 ULA (Unique Local Address)

Private Network 2:

fd12:3456:789a:ffff::0/64

Router 2:

- fd12:3456:789a:ffff::ffff
- Router 2 is the gateway for all Routers in private network 1!
- The route to Router 2 needs to be configured on Router 1!
- Router 2 runs a web server on port 80!

Network Topology - Private Network 1

Network Topology of lab exercise 2 – Task 2 ULA (Unique Local Address)

Private Network 1:

fd12:3456:789a:i::0/64

Router 1:

- Has two interfaces
- eth0:fd12:3456:789a:i::1
- eth1:fd12:3456:789a:ffff::i

Host Network:

- Router 1: fd12:3456:789a:i::1
- **Host 1**: fd12:3456:789a:i::10
- **Host 2**: fd12:3456:789a:i::20
- **Host 3**: fd12:3456:789a:i::30

Network Topology – Exercise 2 – Objectives

In the lab exercise you need to accomplish...

- a successful static configuration of the machines!
- successful autoconfiguration of the hosts!
- working static routing on the machines!
- reachability of all machines (all hosts including Router 1 and 2)!

Contents

Exercise 2

IP Version 6 Addresses

IPv6 Addresses

Tabelle: IPv6 address ranges

IPv6 Address	Purpose				
2001:db8::/32	Documentation prefix used for examples				
::1	Localhost				
fc00::/7	Unique Local Addresses (ULA)				
	also known as "Private" IPv6 addresses.				
	(Currently not used! See source: RFC 4193 Section 3.2)				
fd00::/8	Unique Local Addresses (ULA)				
	L-bit set to 1 for local IPv6 address prefix				
fe80::/10	Link Local addresses, only valid inside a				
	single broadcast domain				
2001::/16	Global Unique Addresses (GUA)				
	Routable IPv6 addresses				
ff00::0/8	Multicast addresses				

IPv6 Addresses

Multicast-Scope - ff00::0/8 multicast groups for specific services in a network. Starting with ff and followed by 4 flag bits and 4 bits for indicating specific services.

- Scope ff01 is for local interface (not leaving interface)
- Scope ff02 is for link local address space

In addition to the scope, a Multicast group is specified:

ff0X::1: All IPv6 stations

ff0x::2: All Routers

ff0X::f:UPnP

ff0X::101: All Timeservers (NTP)

ff0X::1:2: DHCPv6 Server

Not all Multicast groups make sense for all Multicast scopes

IPv6 Addresses

There are four way of configuring IPv6 addresses:

- Static adressing with ULA (RFC 4193)
- SLAAC (RFC 4862)
- Stable Private (RFC 7217)
- Privacy Extension (RFC 4941)

IPv6 Addresses in Linux

The ip1 command:

- ip addr...-configuration of IPv6 addresses
- ip route...-configuration of IPv6 routes

-6 option in ip

The option -6 specifies the use of IPv6 addresses. It is important to use this option because without the parameter ip defaults to IPv4!

¹The manpage of ip gives you the full list of functions and options!

Enabling IPv6 Addresses in Linux

Enable IPv6:

```
# sysctl -w net.ipv6.conf.all.disable_ipv6=0
# sysctl -w net.ipv6.conf.lo.disable_ipv6=0
# sysctl -w net.ipv6.conf.default.disable_ipv6=0
```

The file sysctl.conf and command sysctl

Kernel parameters (as enabling IPv6 e.g.) can be set with the command $sysctl^a$! To make the changes permanent you need to edit the file sysctl.conf! In the lab the use of sysctl is sufficient, since changes will be overwritten after reboot!

^aMore information: https://linux.die.net/man/8/sysctl

Static IPv6 Unique Local Addresses – ULA

Tabelle: RFC 4193 Addressing Scheme

Prefix/L	Global ID	Subnet ID	Interface ID
fd00::/8	40 bits	16 bits	64 bits
fd00::/8	12:3456:789a	:0001	0000:0000:0000:0001

Resulting IPv6 address: fd12:3456:789a:0001:0000:0000:0000:0001

Short IPv6 address: fd12:3456:789a:1::1

Tabelle: RFC 4193 Lab Exercise 2

Machine	Prefix/L	Global ID	Subnet ID	Interface ID
Router 1	fd00::/8	xx:xxxx:xxx	i	0000:0000:0000:0001
Host 1	fd00::/8	xx:xxxx:xxx	i	0000:0000:0000:0010
Host 2	fd00::/8	xx:xxxx:xxx	i	0000:0000:0000:0020
Host 3	fd00::/8	xx:xxxx:xxx	i	0000:0000:0000:0030

Network Topology – Exercise 2 – Autoconfiguration

Private Network 1:

- affe:i::0/64
- Private Network for host machines and Routers'

Private Network 2:

- fd12:3456:789a:ffff::0/64
- Private Network spanning all networks

Network Topology of lab exercise 2 – Task 3 Autoconfiguration

Network Topology - Private Network 2

Network Topology of lab exercise 2 – Task 3 Autoconfiguration

Private Network 2:

fd12:3456:789a:ffff::0/64

Router 2:

fd12:3456:789a:ffff::ffff

Router 2 is the gateway for all Routers in private network 1!

The route to **Router 2** needs to be configured on **Router 1**!

Network Topology - Private Network 1

Network Topology of lab exercise 2 – Task 3 Autoconfiguration

Private Network 1:

affe:i::0/64

Router 1:

- Has two interfaces
- eth0:affe:i::0/64
- eth1:fd12:3456:789a:ffff::i

Host Network:

- Router 1 affe:i::1
- Host 1 affe:i::<VAR>
- **Host 2** affe: i:: <VAR>
- Host 3 affe:i::<VAR>
- <VAR> is the placeholder for a dynamically generated address!

Stateless Address Autoconfiguration – SLAAC (RFC 4862)

- The RFC 4862 defines the automatic stateless address generation
- The Host uses its MAC address for the generation of the 64-bit Host-ID (EUI-64)
- The Network Prefix is defined by the scope and or the Router (e.g. fe80::/64 for link-local)
- **Benefit** \rightarrow Stateless generation without an external Router

Router Advertisement Daemon (radvd)

For the automatic assignment of Network prefixes the Router needs a radvd for the management of network prefixes in the network. Without radvd the link local prefix fe80::/64 is used!

Stateless Address Autoconfiguration – SLAAC (RFC 4862)

Extended Unique Identifier (64 Bits)

EUI-64 calculation

Stateless Address Autoconfiguration – SLAAC (RFC 4862)

Message Sequence Diagramm for Router Solicitation

Stable Privacy – RFC 7217

- The RFC 7217 defines the address generation without the use of a MAC address
- A random secret key is generated and used for the generation of the Interface-ID
- Once generated, the Interface-ID is assigned and does not change anymore (until reboot!)
- Benefit: Increased security because no MAC address is used for generation!

Secret Key and Kernel parameter

The stable secret value is stored in the directory /proc/sys/net/ipv6/conf/eth0/stable_secret and is generated by setting the Kernel parameter addr_gen_mode=3!

Stable Privacy – RFC 7217

Example of a generated stable private address:

```
MAC: 86:3a:ea:8a:a7:d9

stable-privacy -> inet6 fe80::6f6d:80e:ab6c:65a0/64

link local -> inet6 fe80::843a:eaff:fe8a:a7d9/64
```

Example of stable secret parameter:

```
$ cat /proc/sys/net/ipv6/conf/eth0/stable_secret
c8c8:036d:9312:71e2:eadc:7c9f:0535:649a
```


Stable Privacy – RFC 7217

In contrast to SLAAC RFC 7217 brings the following benefits:

- + Host's MAC address is not exposed!
- + The address is stable for the Host

Privacy Extension - RFC 4941

- RFC 4941 defines the address generation with a random number
- It is using the address in a temporary manner
- A new Interface-ID gets generated periodically
- Old Interface-IDs can still be used for established connections
- Benefit: Increased security because no MAC address is used for generation!
- Drawback: Address is not stable!

Random generation of Interface-ID

RFC 4941 defines a scheme for the generation of addresses where values for the lifetime are defined and the valid lifetime is calculated with the formula:

CREATION_TIME + TEMP_PREFERRED_LIFETIME - DESYNC_FACTOR Where CREATION_TIME is the time at which the address was created, TEMP_PREFERRED_LIFETIME (the maximum time of validity) and DESYNC_FACTOR (a random number in the range of 0 to 600 seconds)!

Source: https://datatracker.ietf.org/doc/html/rfc4941#page-13

Privacy Extension - RFC 4941

Example of a random generated address:

```
MAC: 86:3a:ea:8a:a7:d9
privacy-extension -> inet6 fd12::8992:3c03:d6e2:ed72/64
link local -> inet6 fe80::843a:eaff:fe8a:a7d9/64
```

Random generation of Interface-ID

The address shown above is generated randomly and temporary and cannot be traced back to any host characteristics!

Privacy Extension - RFC 4941

Compared to SLAAC, the RFC 4941 method has these benefits:

- + Host's MAC address is not exposed!
- + The address is generated dynamically over time!
- Benefit: Increased security because no MAC address is used for generation!

Compared with Stable Privacy, the RFC 4941 method has these benefits:

- Host address is changed over time, therefore increased security!
- Benefit: Increased security because address expires!
- Drawback: Address is not stable!

Neighbor Discovery Protocol – NDP

Only nodes registered to this address

address

will receive the ICMP message

Configuration of the machines

Please follow these rules:

- Make your configurations statically! Use the tool ip exclusively!
- Save your static configuration on file! Use an USB-Drive for the extraction!
- Test your setup! Document it accurately! Demonstrate it in the lab exercise!
- Create slides of your configurations! Use the command-line snippets, screenshots and Wireshark captures for your documentation!

Non persistent configuration on machines

Please be aware, that the configurations on the machines are static and will be deleted after a reboot! Make sure to save your progress on an external drive!