1. Cel

2. Algorytm Gillespie

Celem laboratorium było zasymulowanie procesów reakcji z wykorzystaniem równańtypu Master oraz algorytmu Gillespie. Równania master to:

$$\Gamma_1(t) = k_1$$

$$\Gamma_2(t) = k_2$$

$$\Gamma_3(t) = k_3 x_1 x_2$$

$$\Gamma_4(t) = k_4 x_3,$$

które odpowiadały odpowiednio produkcji cząstki x1 lub x2, reakcji tworzenia x3 oraz degradacji x3.

Symulowane procesy to:

$$\frac{dx_1}{dt} = -k_3 x_1 x_2 + k_1 \implies \frac{dx_1}{dt} = -\Gamma_3(t) + \Gamma_1(t)$$

$$\frac{dx_2}{dt} = -k_3 x_1 x_2 + k_2 \implies \frac{dx_2}{dt} = -\Gamma_3(t) + \Gamma_2(t)$$

$$\frac{dx_3}{dt} = k_3 x_1 x_2 - k_4 x_3 \implies \frac{dx_3}{dt} = \Gamma_3(t) - \Gamma_4(t)$$

Algorytm Gillespie polega na zasymulowanie wybranego procesu:

$$\Gamma_{max} = \sum_{i=1}^{n} \Gamma_i \tag{1}$$

$$\Delta t = -\frac{1}{\Gamma_{max}} \ln(U_1), U_1 \sim U(0, 1), \tag{2}$$

$$m = \min \left\{ s; \frac{\sum_{i=1}^{s} \Gamma_i}{\Gamma_{max}} > U_2, \quad s = 1, 2, \dots, n \right\}, U_2 \sim U(0, 1),$$
 (3)

gdzie indeks m wskazuje wybrany proces.

3. Wyniki

W trakcie laboratorium zasymulowano proces powtarzając całość raz, 5 razy albo 100 razy, w ostatnim przypadku wyliczając wartość średniej oraz odchylenia standardowego. Ponieważ krok czasowy w każdym z przypadków był różny, w celu uśrednienia wyników oraz zbudowania wspólnego indeksu, zmienna niezależna (czas) została przeskalowana i zrównana do 50 punktów pomiarowych.

Rys 1. Wykresy x1, x2, x3 przy jednej iteracji.

Rys 2. Wykresy x1, x2, x3 przy pięciu iteracjach.

Rys 3. Wykres x3 przy stu iteracjach.

4. Wnioski

Przebiegi wyglądają dość podobnie, jednakże w zadanym zakresie nie biegają do jednej wartości. Również po osiągnięciu względnej i szybkiej stabilności widoczna była przez cały czas znaczna fluktuacja. Najważniejszą obserwacją jest brak zmniejszania się błędu wraz z wydłużaniem czasu symulacji - zarówno wartość średniej jak i błędu ustabilizowały się na pewnych wartościach.