Введение в искусственный интеллект. Машинное обучение

Тема: Линейные классификаторы

Бабин Д.Н., Иванов И.Е.

кафедра Математической Теории Интеллектуальных Систем

План

- Понятие линейной классификации
- Биологический нейрон и перцептрон
- Функции активации
- Эмпирические правила обучения и SGD
- Теорема Новикова
- Примеры линейных классификаторов: логистическая регрессия, оптимальный байесовский классификатор

Напоминание: линейность байесовского классификатора

Из предыдущего материала известно, что оптимальный байесовский бинарный классификатор определяется как:

$$a(x) = \operatorname{sign}(\lambda_+ p(y = +1|x) - \lambda_- p(y = -1|x)) = \operatorname{sign}\left(\frac{p(y = +1|x)}{p(y = -1|x)} - \frac{\lambda_-}{\lambda_+}\right)$$

Теорема о линейности байесовского классификатора

Если распределения p(x|y) экспонентны, параметры $d(), \delta$ не зависят от y, и среди признаков x_1, \ldots, x_n есть константа, то байесовский классификатор линеен:

$$a(x) = \operatorname{sign}(\langle w, x \rangle - w_0), w_0 = \ln \frac{\lambda_-}{\lambda_+};$$

при этом апостериорные вероятности классов $p(y|x) = \sigma(\langle w, x \rangle y)$, где $\sigma(z) = \frac{1}{1+e^{-z}}$ – логистическая функция (сигмоид).

Мотивация

- Линейные модели возникают как оптимальные байесовские классификаторы для довольно широкого класса распределений
- Линейные модели достаточно хорошо изучены
- 3 Линейные модели могут моделировать довольно сложные зависимости

Мотивация

- Линейные модели возникают как оптимальные байесовские классификаторы для довольно широкого класса распределений
- ② Линейные модели достаточно хорошо изучены
- 3 Линейные модели могут моделировать довольно сложные зависимости

Линейный классификатор

Это алгоритм классификации, основанный на построении линейной разделяющей поверхности

Мотивация

- Линейные модели возникают как оптимальные байесовские классификаторы для довольно широкого класса распределений
- ② Линейные модели достаточно хорошо изучены
- 3 Линейные модели могут моделировать довольно сложные зависимости

Линейный классификатор

Это алгоритм классификации, основанный на построении линейной разделяющей поверхности

• В случае **двух** классов разделяющей поверхностью является **гиперплоскость**, которая делит пространство признаков на два полупространства

Мотивация

- Линейные модели возникают как оптимальные байесовские классификаторы для довольно широкого класса распределений
- ② Линейные модели достаточно хорошо изучены
- ③ Линейные модели могут моделировать довольно сложные зависимости

Линейный классификатор

Это алгоритм классификации, основанный на построении линейной разделяющей поверхности

- В случае **двух** классов разделяющей поверхностью является **гиперплоскость**, которая делит пространство признаков на два полупространства
- В случае числа классов больше двух разделяющая поверхность кусочно-линейна 🔯

Разделяющая поверхность: напоминание

• Рассмотрим задачу бинарной классификации: $X \to Y$, $Y = \{+1, -1\}$ на обучающей выборке $X^m = (x_i, y_i)_{i=1}^m$

Разделяющая поверхность: напоминание

- Рассмотрим задачу бинарной классификации: $X \to Y$, $Y = \{+1, -1\}$ на обучающей выборке $X^m = (x_i, y_i)_{i=1}^m$
- Будем алгоритм искать в виде $a(x, w) = \operatorname{sign} g(x, w)$, где g(x, w) дискриминантная функция, а w вектор параметров

Разделяющая поверхность: напоминание

- Рассмотрим задачу бинарной классификации: $X \to Y$, $Y = \{+1, -1\}$ на обучающей выборке $X^m = (x_i, y_i)_{i=1}^m$
- Будем алгоритм искать в виде $a(x, w) = \operatorname{sign} g(x, w)$, где g(x, w) дискриминантная функция, а w вектор параметров
- g(x,w)=0 разделяющая поверхность (граница между классами); тогда ошибка классификации $a(x_i,w)\neq y_i\Leftrightarrow y_ig(x_i,w)<0$.

Линейная классификация: определения

Два класса

Дискриминантная функция:

$$g(x,w) = \sum_{j=1}^{n} w_j f_j - w_0$$
, где

 $f_i:X o\mathbb{R}$ – числовые признаки.

Алгоритм классификации

$$a(x, w) = \operatorname{sign}(\sum_{i=1}^{n} w_i f_i - w_0).$$

Если ввести константный признак $f_0 \equiv -1$, то

$$x = (f_0(x), \ldots, f_n(x)),$$

и алгоритм в векторной записи:

$$a(x, w) = sign(\langle w, x \rangle).$$

$$y_i g(x_i, w) = \langle w, x_i \rangle y_i$$

Линейная классификация: определения

Два класса

Дискриминантная функция:

$$g(x,w) = \sum_{j=1}^{n} w_{j}f_{j} - w_{0}$$
, где

 $f_i:X o\mathbb{R}$ – числовые признаки.

Алгоритм классификации

$$a(x, w) = \operatorname{sign}(\sum_{j=1}^{n} w_j f_j - w_0).$$

Если ввести константный признак $f_0 \equiv -1$, то

$$x=(f_0(x),\ldots,f_n(x)),$$

и алгоритм в векторной записи:

$$a(x, w) = sign(\langle w, x \rangle).$$

$$y_i g(x_i, w) = \langle w, x_i \rangle y_i$$

Произвольное число классов

У каждого класса $c \in Y$ свой вектор весов: $w^c = (w_0^c, \dots, w_n^c)$.

Линейный классификатор:

$$a(x, w) = \arg\max_{c \in Y} \sum_{j=0}^{n} w_j^c f_j(x) = \arg\max_{c \in Y} \langle w^c, x \rangle.$$

$$y_i g(x_i, w) =$$

$$\langle x_i, w^{y_i} \rangle - \max_{c \in Y, c \neq y_i} \langle x_i, w^c \rangle$$

Замечание. Обратите внимание на разницу со случаем двух классов!

6 / 21

Время для вопросов

Биологический нейрон

- Кора головного мозга содержит 10¹¹ нейронов
- Каждый нейрон связан синапсами с 10³ — 10⁴ другими нейронами
- Скорость распространения импульсов 100 м/с
- Входы (много) дендриты
- Выход (один) аксон

Математическая модель нейрона

Предложена МакКалоком и Питтсом в 1943 году¹.

$$a(x,w) = \sigma(\langle w, x \rangle) = \sigma(\sum_{j=1}^{n} w_j f_j - w_0)$$

где $\sigma(x)$ - некоторая функция активации (например, sign).

¹McCulloch, W. S. and Pitts, W. (1943). "A logical calculus of the ideas immanent in nervous activity"

Примеры функций активаций

Историческая справка: правила Хэбба и Розенблатта

Правило Хэбба, 1949²

В задаче бинарной ($Y = \{-1, +1\}$) классификации линейный классификатор: $a(x, w) = \text{sign}(\langle w, x \rangle)$

Функция потерь: $L(a(x_i, w), y_i) = [a(x_i, w) \neq y_i].$

Шаг обновления: если $a(x_i,w^{(t)}) \neq y_i \Leftrightarrow a(x_i,w^{(t)})y_i < 0$, то $w^{(t+1)} = w^{(t)} + \eta x_i y_i$

³Rosenblatt, F. (1957). "The perceptron, a perceiving and recognizing automaton" (3) (2) (2)

²Hebb, D. O. (1949). "The organization of behavior: a neuropsychological theory."

Историческая справка: правила Хэбба и Розенблатта

Правило Хэбба, 1949²

В задаче бинарной ($Y = \{-1, +1\}$) классификации линейный классификатор: $a(x, w) = \text{sign}(\langle w, x \rangle)$

Функция потерь: $L(a(x_i, w), y_i) = [a(x_i, w) \neq y_i].$

Шаг обновления: если $a(x_i, w^{(t)}) \neq y_i \Leftrightarrow a(x_i, w^{(t)})y_i < 0$, то $w^{(t+1)} = w^{(t)} + \eta x_i y_i$

Правило перцептрона Розенблатта, 19573

Пусть $X = \{0,1\}^n$, $Y = \{0,+1\}$, линейный классификатор — это функция Хевисайда $a(x,w) = \theta(\langle w,x\rangle) = [\langle w,x\rangle>0]$. Тогда: если $a(x_i,w^{(t)}) \neq y_i$: $w^{(t+1)} = w^{(t)} + nx_i$. если $v_i = 1$. и $w^{(t+1)} = w^{(t)} - nx_i$. если $v_i = 0$

³Rosenblatt, F. (1957). "The perceptron, a perceiving and recognizing automaton" (3) (2) (2)

²Hebb, D. O. (1949). "The organization of behavior: a neuropsychological theory."

SGD для линейной регрессии: ADALINE

В задаче регрессии функция потерь:

$$L(a(x_i, w), y_i) = \frac{1}{2}(a(x_i, w) - y_i)^2$$

Эмпирическое правило обновления весов — т.н. дельта-правило:

$$w^{(t+1)} = w^{(t)} - \eta(a(x_i, w^{(t)}) - y_i)x_i$$

Адаптивный линейный нейрон (ADAptive Linear NEuron) ADALINE предложен Уидроу и Хоффом в 1960^4 : $a(x,w)=\langle w,x\rangle$

Дельта-правило в случае ADALINE совпадает с градиентным шагом стохастического градиентного спуска:

$$w^{(t+1)} = w^{(t)} - \eta(\langle w^{(t)}, x_i \rangle - y_i)x_i$$

⁴Widrow, B. and Hoff, M. E. (1960). "Adaptive switching circuits"

SGD как объединяющая сила правил обновления

Дельта-правило (эмпирическое правило обновления весов):

$$w^{(t+1)} = w^{(t)} - \eta(a(x_i, w^{(t)}) - y_i)x_i$$

Т.о., правило Хэбба и правило Розенблатта — суть одно и то же (а именно, дельта-правило), и совпадают с правилом ADALINE (которое является градиентным шагом стохастического градиентного спуска) с заменой $\langle w^{(t)}, x_i \rangle$ на:

- $a(x, w) = sign(\langle w, x \rangle)$ в случае правила Хэбба,
- $a(x,w) = \theta(\langle w,x \rangle)$ в случае правила Розенблатта.

Теорема Новикова⁵

Задача бинарной классификации $X=\mathbb{R}^{n+1},\,Y=\{-1,+1\}.$

Теорема Новикова, 1962

Пусть выборка X^m линейно разделима, т.е. $\exists \tilde{w}, ||\tilde{w}|| = 1, \exists \delta > 0: \langle \tilde{w}, x_i \rangle y_i > \delta$ для всех i=1,...,m. Пусть начальный вектор весов $w^0=0$. Также в процедуре обучения каждый объект обучающей выборки появляется повторно через некоторый конечный интервал времени.

Тогда алгоритм SGD с правилом Хэбба находит вектор весов w:

- разделяющий выборку без ошибок,
- ullet при любом шаге градиентного спуска η ,
- независимо от порядка предъявления x_i ,
- ullet за конечное число исправлений вектора w: $t_{max} \leq rac{1}{\delta^2} \max_i ||x_i||^2$

Теорема Новикова: доказательство

С одной стороны. $\langle \tilde{\mathbf{w}}, \mathbf{w}^t \rangle = \langle \tilde{\mathbf{w}}, \mathbf{w}^{t-1} \rangle + \eta \langle \tilde{\mathbf{w}}, \mathbf{x}_i \rangle \mathbf{v}_i > \langle \tilde{\mathbf{w}}, \mathbf{w}^{t-1} \rangle + \eta \delta > \cdots > \langle \tilde{\mathbf{w}}, \mathbf{w}^0 \rangle + t \eta \delta = t \eta \delta.$ С другой стороны, поскольку выборка конечна. $\exists D > 0 : ||x_i|| < D$ для всех i. В силу этого $||w^t||^2 = ||w^{t-1}||^2 + \eta^2||x_i||^2 + 2\eta \langle w^{t-1}, x_i \rangle y_i$. Так как для применения правила Хэбба должно быть $\langle w^{t-1}, x_i \rangle v_i < 0$, то $||w^t||^2 < ||w^{t-1}||^2 + n^2D^2 < \cdots < ||w^0||^2 + tn^2D^2 = tn^2D^2$ По неравенству Коши-Буняковского $\langle \tilde{w}, w^t \rangle \leq ||\tilde{w}|| \cdot ||w^t||$. Объединяя эти неравенства, получаем $\eta \delta t \leq \langle \tilde{w}, w^t \rangle \leq \eta D \sqrt{t} \cdot ||\tilde{w}||$, или $\sqrt{t} \leq \frac{D}{\delta}$. T.о. при $t>\frac{D^2}{S^2}$ не найдётся ни одного x_i , т.ч. $\langle w^t,x_i\rangle y_i<0$, т.е. вся выборка будет правильно классифицирована. Ч.т.д.

Время для вопросов

Линейность байесовского классификатора

Из предыдущего материала известно, что оптимальный байесовский бинарный классификатор определяется как:

$$a(x) = \operatorname{sign}(\lambda_+ p(y = +1|x) - \lambda_- p(y = -1|x)) = \operatorname{sign}\left(\frac{p(y = +1|x)}{p(y = -1|x)} - \frac{\lambda_-}{\lambda_+}\right)$$

Теорема о линейности байесовского классификатора

Если распределения p(x|y) экспонентны, параметры $d(), \delta$ не зависят от y, и среди признаков x_1, \ldots, x_n есть константа, то байесовский классификатор линеен:

$$a(x) = \operatorname{sign}(\langle w, x \rangle - w_0), w_0 = \ln \frac{\lambda_-}{\lambda_+};$$

при этом апостериорные вероятности классов $p(y|x) = \sigma(\langle w, x \rangle y)$, где $\sigma(z) = \frac{1}{1 + e^{-z}}$ – логистическая функция (сигмоид).

Линейность байесовского классификатора

Из предыдущего материала известно, что оптимальный байесовский бинарный классификатор определяется как:

$$a(x) = \operatorname{sign}(\lambda_+ p(y = +1|x) - \lambda_- p(y = -1|x)) = \operatorname{sign}\left(\frac{p(y = +1|x)}{p(y = -1|x)} - \frac{\lambda_-}{\lambda_+}\right)$$

Теорема о линейности байесовского классификатора

Если распределения p(x|y) экспонентны, параметры $d(), \delta$ не зависят от y, и среди признаков x_1, \ldots, x_n есть константа, то байесовский классификатор линеен: $a(x) = \text{sign}(\langle w, x \rangle - w_0), w_0 = \ln \frac{\lambda_-}{\lambda_-};$

при этом апостериорные вероятности классов $p(y|x) = \sigma(\langle w, x \rangle y)$, где $\sigma(z) = \frac{1}{1+e^{-z}}$ – логистическая функция (сигмоид).

Т.о., от решающего правила типа $a(x,w)=\theta(\langle w,x\rangle)$ перешли к правилу $a(x,w)=[\sigma(\langle w,x\rangle)>\frac{1}{2}]$, но все так же от линейной функции по входу; однако при этом дополнительно приобрели возможность оценивать вероятность принадлежности к классу

Определение логистической регрессии

Классификационная бинарная модель, в которой вероятность принадлежности к положительному классу задаётся **сигмоидом** от **линейной функции** по входу.

Определение логистической регрессии

Классификационная бинарная модель, в которой вероятность принадлежности к положительному классу задаётся **сигмоидом** от **линейной функции** по входу.

Напоминание: максимизация логарифма правдоподобия:

•
$$L(w, X^m) = \log \prod_{i=1}^m p(x_i, y_i) \rightarrow \max_w$$

Определение логистической регрессии

Классификационная бинарная модель, в которой вероятность принадлежности к положительному классу задаётся **сигмоидом** от **линейной функции** по входу.

Напоминание: максимизация логарифма правдоподобия:

• $L(w, X^m) = \log \prod_{i=1}^m p(x_i, y_i) \rightarrow \max_w$

Подставим в формулу выражение для логистической регрессии $p(x,y) = p(y|x) \cdot p(x) = \sigma(\langle w, x \rangle) \cdot const(w)$:

•
$$L(w, X^m) = \sum_{i=1}^m \log \sigma(\langle w, x_i \rangle y_i) + const(w) \rightarrow \max_w$$

Определение логистической регрессии

Классификационная бинарная модель, в которой вероятность принадлежности к положительному классу задаётся **сигмоидом** от **линейной функции** по входу.

Напоминание: максимизация логарифма правдоподобия:

•
$$L(w, X^m) = \log \prod_{i=1}^m p(x_i, y_i) \rightarrow \max_w$$

Подставим в формулу выражение для логистической регрессии $p(x,y) = p(y|x) \cdot p(x) = \sigma(\langle w, x \rangle) \cdot const(w)$:

•
$$L(w, X^m) = \sum_{i=1}^m \log \sigma(\langle w, x_i \rangle y_i) + const(w) \rightarrow \max_w$$

Максимизация L эквивалентна минимизации аппроксимированного Э.Р. с логарифмической функцией потерь R:

$$R(w, X^m) = \sum_{i=1}^m \log(1 + \exp(-\langle w, x_i \rangle y_i)) \to \min_w$$

Многоклассовая логистическая регрессия

Рассмотрим случай произвольного количества классов |Y| > 2. Тогда линейный классификатор (напоминание):

$$a(x) = \underset{c \in Y}{\operatorname{arg max}} \langle w^c, x \rangle \quad x, w^c \in \mathbb{R}^n$$

Многоклассовая логистическая регрессия

Рассмотрим случай произвольного количества классов |Y| > 2. Тогда линейный классификатор (напоминание):

$$a(x) = \underset{c \in Y}{\operatorname{arg\,max}} \langle w^c, x \rangle \quad x, w^c \in \mathbb{R}^n$$

Вероятность принадлежности объекта x к классу c определяется т.н. функцией SoftMax:

$$SoftMax(\langle w^c, x \rangle) = P(y = c | x, w) = \frac{\exp(\langle w^c, x \rangle)}{\sum_{z \in Y} \exp(\langle w^z, x \rangle)}$$

T.o. функция $SoftMax: \mathbb{R}^{|Y|} \to \mathbb{R}^{|Y|}$ преобразует любой вещественнозначный вектор в вектор дискретного распределения.

Takeaway notes

 Линейный классификатор – предельный простой случай (тем не менее, работающий на практике!)

Takeaway notes

- Линейный классификатор предельный простой случай (тем не менее, работающий на практике!)
- При линейно разделимых множествах процедура построения разделяющей поверхности конечна

Takeaway notes

- Линейный классификатор предельный простой случай (тем не менее, работающий на практике!)
- При линейно разделимых множествах процедура построения разделяющей поверхности конечна
- Все эмпирические правила классификации и регрессии это частные случаи SGD

Время для вопросов

