- 5. A method for selectively opening the rings in POSS compounds to form functionalized POSS derivatives comprising, reacting $[(RSiO_{1.5})_n]_{\Sigma^{\#}}$, $[(RSiO_{1.5})_n(R^3SiO_{1.5})_m]_{\Sigma^{\#}}$ or $[(RSiO_{1.5})_n(R^1R^2SiO_{1.0})_m]_{\Sigma^{\#}}$ with a strong acid to form said derivatives, having a conjugate base which base is F, OH, SH, NHR, NR₂, ClO₄, SO₃CH₃, SO₃CF₃, SO₃OH, SO₃Cl, SO₃CH₃, NO₃, PO₄ or Cl, where n is 6-12, m is 1-10, where R^1 , R^2 and R^3 are different substituents than R which are all selected from the group consisting of aliphatic, aromatic, olefinic, alkoxy, siloxy and H and where # is the sum of the lettered substituents in said POSS compound.
- 10. The method of claim 5 wherein $[(RSiO_{1.5})_n(R^3SiO_{1.5})_m]_{\Sigma^\#}$ is reacted with said acid to form $[(RSiO_{1.5})_6(R^3XSiO_{1.0})_1(RXSiO_{1.0})_1]_{\Sigma^8}$, where R^3 is of the same group as R but is a different substituent and # is m + n.
- 11. The method of claim 5 wherein $[(RSiO_{1.5})_7(R^3SiO_{1.5})_1]_{\Sigma 8}$ is reacted with said acid to form $[(RSiO_{1.5})_4(RXSiO_{1.0})_3]$ and R^3 is of the same group as R but is a different substituent.

 12. The method of claim 3 wherein the compound of formula 1 is reacted with said acid to form a compound selected from the formulas 7a, 8a, 7c, 9a or 7d as follows:

Formula 7d

18. A polyhedral oligomeric silsesquioxane (POSS) compound of the formula,

 $[(RSiO_{1.5})_n(RXSiO_{1.0})_m]_{\Sigma^\#}$, where n is 4-24, m is 1-10, R is aliphatic, aromatic, olefinic, alkoxy, siloxy or H and X is the conjugate base of an acid, which base is of F, OH, when the OH groups are in an exo-stereochemical position, SH, NHR or NR₂, C1O₄, SO₃OH, SO₃CF₃, SO₃Cl,

SO₃CH₃, NO₃, or PO₄, when said compound has at least three open rings.

- 19. The POSS compound of claim 18 selected from the group consisting of $[(RSiO_{1.5})_n(RXSiO_{1.0})_m]_{\Sigma\#}$, $[(RSiO_{1.5})_n(R^3SiO_{1.5})_m(R^3SiO_{1.5})_m]_{\Sigma\#}$, and $[(RSiO_{1.5})_n(R^1R^2SiO_{1.0})_m]_{\Sigma\#}$.
- 20. A method for expanding rings in polyhedral oligomeric silsesquioxane (POSS) compounds comprising, reacting $[(RSiO_{1.5})_n (R(HO)SiO_{1.0})_m]_{\Sigma^{\#}}$ with $Y_2SiR^1R^2$ silane reagents to obtain at least one expanded POSS ring in $[(RSiO_{1.5})_{n+m} (R^1R^2SiO_{1.0})_j]_{\Sigma^{\#}}$, where R, R¹ and R² are