Bullseye Detection using YOLOv8 and ONNX

Saksham Khandelwal

May 2025

Outline

- Introduction
- Dataset Preparation
- Annotation
- Model Training
- Results
- 6 Model Export
- Inference Demo
- 8 Challenges and Solutions
- Project Timeline
- Onclusion and Future Work

Introduction &

Aim

- Real-time bullseye detection
- Lack of specialized detectors for bullseye patterns
- Goal: build a robust, accurate, and fast detection system

Objectives

- Oreate a diverse custom bullseye dataset
- Fine-tune YOLOv8 and MobileNetSSD models
- Second Strategies S
- Optimize and export model to ONNX/TensorRT

Data Collection Overview

- Hand-drawn captures: varied lighting, backgrounds, angles
- Online sources: Google Images for red/white bullseyes
- Roboflow Universe: additional labeled samples

Total images: 550

Sample Dataset Images

figureExamples of bullseye images used for training

Preprocessing Pipeline

- HEIC conversion via pillow-heif + PIL
- Resize to 768x1024 with padding using OpenCV
- Sequential renaming for YOLO compatibility
- Train/Validation split

Key script: aspect ratio preservation ensures no distortion

Annotation with CVAT

- Tool: CVAT for precise bounding boxes
- Export: YOLO TXT format (class, x_center, y_center, width, height)
 normalized
- Folder structure: images/train, labels/train, etc.

CVAT annotation interface example

Model Selection

- YOLOv8m: 25.9M params, balanced speed/accuracy
- Other variants: nano (3.2M), small (11.2M), large (43.7M)
- Chosen for real-time capability on RTX 4070

Hyperparameters

Parameter	Value
Model	YOLOv8m
Batch Size	32
Epochs	100
Image Size	640×640
Workers	4
Learning Rate	0.01 (default)
Momentum	0.937 (default)
Weight Decay	0.0005 (default)
Device	NVIDIA RTX 4070

Table: Training Configuration Summary

Training Command

```
import torch
from ultralytics import YOLO
model = YOLO("yolov8m.yaml")
results = model.train(
    data="config.yaml",
    epochs=100,
    batch=32,
    workers=4,
    device=0
```

Data Augmentation

Default YOLOv8 augmentations:

- Mosaic (enabled)
- HSV color jitter (h=0.015, s=0.7, v=0.4)
- Horizontal flip (0.5)
- Scaling, translation, rotation
- Perspective/stretch

Improves model robustness without manual tuning.

Quantitative Results

Precision: 0.995

• Recall: 1.000

mAP@0.5: 0.995

mAP@0.5:0.95: 0.9785

Loss Curves

Training & Validation Loss vs. Epochs

Per-Class Performance

ullet Class "bullseye": AP@0.5 = 0.995

Exporting to ONNX

Conversion Command

yolo export model=runs/detect/train/weights/best.pt
format=onnx

ONNX size: 98 MB

Side-by-Side Video

May 2025

Key Challenges

- HEIC conversion aspect ratio preservation
- Annotation
- Ensuring GPU utilization in training

Solutions Applied

- Used pillow-heif + padding script
- Validated YOLO format via CVAT checks
- Configured torch CUDA and conda environment

Timeline of Work

[5 April] Assignment reviewed and setup
[6 April] Dataset collection and script development
[7-8 April] Annotation and preprocessing
[9 April] Model training and evaluation
[10 April] Model export and report writing

Conclusion

- High accuracy detection achieved
- Real-time inference demonstrated
- ONNX export enables flexible deployment

Future Work

- Deploy on edge devices with TensorRT
- Expand dataset with varied bullseye designs
- Implement tracking and multi-object scenarios

Questions?

Thank you!