Example 2.8 (Random walk on a graph) A graph is a set of vertices and a set of edges. Two vertices are neighbors if there is an edge joining them. The degree of vertex v is the number of neighbors of v. For the graph in Figure 2.1, deg(a) = 1, deg(b) = deg(c) = deg(d) = 4, deg(e) = 3, and deg(f) = 2.

For vertices i and j, write $i \sim j$ if i and j are neighbors. The one-step transition

chain. Given a graph G such a process is called *simple random walk on G*.

Figure 2.1 Graph on six vertices.

$$P(X_1 = j | X_0 = i) = \begin{cases} \frac{1}{\deg(i)}, & \text{if } i \sim j, \\ 0, & \text{otherwise.} \end{cases}$$

$$\mathbf{P} = \begin{pmatrix} a & b & c & d & e & f \\ a & 0 & 1 & 0 & 0 & 0 & 0 \\ 1/4 & 0 & 1/4 & 1/4 & 1/4 & 0 \\ 0 & 1/4 & 0 & 1/4 & 1/4 & 1/4 \\ 0 & 1/4 & 1/4 & 0 & 1/4 & 1/4 \\ e & 0 & 1/3 & 1/3 & 1/3 & 0 & 0 \\ f & 0 & 0 & 1/2 & 1/2 & 0 & 0 \end{pmatrix}$$

(a) The *cycle graph* on nine vertices is shown in Figure 2.2. Simple random walk on the cycle moves left or right with probability 1/2. Each vertex has degree two. The transition matrix is defined using clock arithmetic. For a cycle with k vertices, $\rho(\chi_1=\hat{\chi}) \setminus \chi_0=\hat{\chi}$

$$P_{ij} = \begin{cases} 1/2, & \text{if } j \equiv i \pm 1 \mod k, \\ 0, & \text{otherwise.} \end{cases}$$

(b) In the *complete graph*, every pair of vertices is joined by an edge. The complete graph on five vertices is shown in Figure 2.2. The complete graph on k vertices has $\binom{k}{2}$ edges. Each vertex has degree k-1. The entries of the transition matrix are

$$P_{ij} = \begin{cases} 1/(k-1), & \text{if } i \neq j \\ 0, & \text{if } i = j. \end{cases}$$

Figure 2.2 (a) Cycle graph on nine vertices. (b) Complete graph on five vertices.

Consider random walk on the cycle graph consisting of five vertices {0, 1, 2, 3, 4}. Describe the six-step transition probabilities of the chain.

$$P = 2 \begin{pmatrix} 0 & 1/2 & 0 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 0 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{pmatrix}$$

$$P^{6} = 2 \begin{pmatrix} 5/16 & 7/64 & 15/64 & 15/64 & 7/64 \\ 7/64 & 5/16 & 7/64 & 15/64 & 15/64 & 15/64 \\ 15/64 & 7/64 & 5/16 & 7/64 & 15/64 & 15/64 \\ 3 & 15/64 & 15/64 & 7/64 & 5/16 & 7/64 \\ 4 & 7/64 & 15/64 & 15/64 & 7/64 & 5/16 \end{pmatrix}$$

Example 2.14 For gambler's ruin, assume that the gambler's initial stake is \$3 and the gambler plays until either gaining \$8 or going bust. At each play the gambler wins \$1, with probability 0.6, or loses \$1, with probability 0.4. Find the gambler's expected fortune after four plays.

$$N = 8$$
; $k = 3$
 $x_i = \begin{cases} +1 & 0.6 \\ -1 & 0.4 \end{cases}$

$$\chi_0 = 3$$

$$E[\chi_4 \mid \chi_0 = 3]$$

$$= P^4 = \sum_{\chi_4} \chi_4 \varphi(\chi_4 \mid \chi_0 = 3)$$

0	(1	0	0	0	0	0	0	0	0
1	0.496	0.115	0	0.259	0	0.130	0	0	0
2	0.237	0	0.288	0	0.346	0	0.130	0	0
3	0.064	0.115	0	0.346	0	0.346	0	0.130	0
= 4	0.026	0	0.154	0	0.346	0	0.346	0	0.130
5	0	0.026	0	0.154	0	0.346	0	0.259	0.216
6	0	0	0.026	0	0.154	0	0.288	0	0.533
7	0	0	0	0.026	0	0.115	0	0.115	0.744
8	0	0	0	0	0	0	0	0	1

$$E(X_4|X_0 = 3) = \sum_{j=0}^{8} jP(X_4 = j|X_0 = 3) = \sum_{j=0}^{8} jP_{3,j}^4$$

$$= 0(0.064) + 1(0.115) + 3(0.346) + 5(0.346) + 7(0.130)$$

$$= $3.79.$$

Ecuación de Chapman-Kolmogorov

For $m, n \ge 0$, the matrix identity $P^{m+n} = P^m P^n$ gives

$$P_{ij}^{m+n} = \sum_{k} P_{ik}^{m} P_{kj}^{n}, \text{ for all } i, j.$$

$$P(X_{n+m} = j \mid X_o = i) = \sum_{k} P(X_{n+m} = j \mid X_m = k) P(X_m = k \mid X_o = i)$$

Distribution of X_n

Let X_0, X_1, \dots be a Markov chain with transition matrix **P** and initial distribution α . For all $n \geq 0$, the distribution of X_n is αP^n . That is,

$$P(X_n = j) = (\alpha P^n)_j$$
, for all j .

Example 2.3 (Chained to the weather) Some winter days in Minnesota it seems like the snow will never stop. A Minnesotan's view of winter might be described by the following transition matrix for a weather Markov chain, where r, s, and c denote

Estados ~
$$S = \{0, 1, 2, 3, ..., 8\}$$

$$X_{1} = j$$

$$X_{2} = 0, 1, 2, 3, ..., 8\}$$

$$X_{3} = 0, 1, 2, ..., 8$$

$$x_{4} = 0, 1, 2, ..., 8$$

$$x_{5} = 0, 1, 2, ..., 8$$

$$x_{7} = 0, 1, 2$$

rain, snow, and clear, respectively.

$$\mathbf{P}^2 = \begin{matrix} r & s & c \\ 0.12 & 0.72 & 0.16 \\ 0.11 & 0.76 & 0.13 \\ 0.11 & 0.72 & 0.17 \end{matrix}$$

ly.
$$\chi_{3} = 7, 5, C$$
 $c = (0.1)$

$$\alpha P^{2} = (0.5, 0.5, 0) \begin{pmatrix} 0.12 & 0.72 & 0.16 \\ 0.11 & 0.76 & 0.13 \\ 0.11 & 0.72 & 0.17 \end{pmatrix} = (0.115, 0.74, 0.145).$$

Joint Distribution

Let X_0, X_1, \dots be a Markov chain with transition matrix **P** and initial distribution α . For all $0 \le n_1 < n_2 < \dots < n_{k-1} < n_k$ and states $i_1, i_2, \dots, i_{k-1}, i_k$,

$$P(X_{n_1} = i_1, X_{n_2} = i_2, \dots, X_{n_{k-1}} = i_{k-1}, X_{n_k} = i_k)$$

$$= (\alpha P^{n_1})_{i_1} (P^{n_2 - n_1})_{i_1 i_2} \cdots (P^{n_k - n_{k-1}})_{i_{k-1} i_k}.$$
(2.5)

Example 2.16 Danny's daily lunch choices are modeled by a Markov chain with transition matrix

	Burrito	∳ Falafel	1 Pizza	Sushi	
▶ Burrito (0.0	0.5	0.5	0.0	
p [†] Falafel	0.5	0.0	0.5	0.0	
Pizza /	0.4	0.0	0.0	0.6	•
3 Sushi	0.0	0.2	0.6	0.2	

0.115 0.74

