

CSE 6140/ CX 4140 Computational Science and Engineering ALGORITHMS

NP Completeness 4

Instructor: Xiuwei Zhang

Assistant Professor

School of Computational Science and Engineering

Based on slides by Prof. Ümit V. Çatalyürek

Genres of NP-complete problems

- Six basic genres of NP-complete problems and paradigmatic examples.
 - Packing problems: SET-PACKING, INDEPENDENT SET.
 - Covering problems: SET-COVER, VERTEX-COVER.
 - Constraint satisfaction problems: SAT, 3-SAT.
 - Sequencing problems: HAMILTONIAN-CYCLE, TSP.
 - Partitioning problems: 3-COLOR, 3D-MATCHING.
 - Numerical problems: 2-PARTITION, SUBSET-SUM, KNAPSACK.

Basic reduction strategies.

- Reduction by simple equivalence.
 - INDEPENDENT-SET -- VERTEX-COVER
 - VERTEX COVER -- CLIQUE
- Reduction from special case to general case
 - VERTEX-COVER ≤ SET-COVER
- Reduction from general case to special case
 - SAT ≤_D 3SAT
- Reduction by encoding with gadgets
 - 3-SAT ≤_D INDEPENDENT-SET

Establishing NP-Completeness

- Recipe to establish NP-completeness of problem Y.
 - Step 1. Show that Y is in NP.
 - Describe how a potential solution/witness will be represented
 - Describe a procedure to check whether the potential witness is a correct solution to the problem instance, and argue that this procedure takes polynomial time
 - Step 2. Choose an NP-complete problem X.
 - Step 3. Prove that $X \leq_p Y$ (X is **poly-time reducible** to Y).
 - Describe a procedure f that converts the inputs i of X to inputs of Y in polynomial time
 - Show that the reduction is correct by showing that
 X(i) = YES

 Y(f(i)) = YES (if and only if, proof in both directions)

Prove that $X \leq_{p} Y$

X is NP-Complete. Y is at least as difficult as X. Y is NP-complete.

Independent set

- Independent set (IS)
 - Given a graph G=(V,E), find the largest independent set: a set of vertices in the graph with no edges between them.
 - Decision version?
 - is there an independent set of at least K vertices?
- IS is NP (Step 1)
 - Certificate: set of vertices S
 - Certifier: Check size of S ≥ K, and no pair of vertices in S is connected by an edge, polynomial time

Independent set

- Independent set (IS)
 - Given a graph G=(V,E), find the largest independent set: a set of vertices in the graph with no edges between them.
 - Decision version: is there an independent set of at least K vertices?
 - Reduction by gadget (Step 2: choosing 3SAT)

3-Satisfiability Reduces to Independent Set

- Claim. 3-SAT \leq D INDEPENDENT-SET.
- Pf. Given an instance Φ of 3-SAT (I_1), we construct an instance (G, k) of INDEPENDENT-SET (I_2) that has an independent set of size k iff Φ is satisfiable.
- Construction (Step 3a)

$$\Phi = \left(\overline{x_1} \vee x_2 \vee x_3\right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3\right) \wedge \left(\overline{x_1} \vee x_2 \vee x_4\right)$$

3-Satisfiability Reduces to Independent Set

- Claim. 3-SAT \leq_{p} INDEPENDENT-SET.
- Pf. Given an instance Φ of 3-SAT (I_1), we construct an instance (G, k) of INDEPENDENT-SET (I_2) that has an independent set of size k iff Φ is satisfiable.
- Construction (Step 3a)
 - G contains 3 vertices for each clause, one for each literal.
 - Connect 3 literals in a clause in a triangle.
 - Connect literal to each of its negations.
 - The size of I_2 is polynomial in the size of I_1

G

$$k = 3$$

$$\Phi = \left(\overline{x_1} \vee x_2 \vee x_3\right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3\right) \wedge \left(\overline{x_1} \vee x_2 \vee x_4\right)$$

3 Satisfiability Reduces to Independent Set

- Claim. Φ is satisfiable iff G contains independent set of size $k = |\Phi|$
- $(I_1 \text{ has a solution} \iff I_2 \text{ has a solution})$

Step 3b

- => Given satisfying assignment (sol to I_1), select one true literal from each triangle. Show the corresponding set of vertices is an independent set of size k.
 - Call this set of vertices S. |S|=k
 - Show S is an independent set by contradiction:
 - Assume S is not an IS.
 - There are two vertices sharing an edge. Say y_i and y_i , $y_i \in S$, $y_i \in S$.
 - One vertex from each triangle. $y_i = \neg y_i$, contradicts with that both y_i and y_i are True.

$$k = 3$$

G

3 Satisfiability Reduces to Independent Set

- Claim. Φ is satisfiable iff G contains independent set of size k = |Φ|
- (I₁ has a solution ⇔ I₂ has a solution)

Step 3c

- <= Let S be independent set of size k (sol. to I_2). Show that Φ has a truth assignment.
 - S must contain exactly one vertex in each triangle.
 - Set the literals corresponding to the vertices in S to True. (and any other variables in a consistent way)
 - Is this a "valid" assignment (can a variable to assigned both True and False?)?
 - Assume there exists such a variable x. If both x and $\neg x$ are True, then both are in S. Contradicts with that S is an independent set.
 - Truth assignment $\overline{\mathfrak{z}}_{1}$ consistent and all clauses $\overline{\mathfrak{z}}_{2}$ satisfied. We have a truth $\overline{\mathfrak{z}}_{3}$ signment for Φ

G

$$k = 3$$

$$\Phi = \left(\overline{x_1} \vee x_2 \vee x_3\right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3\right) \wedge \left(\overline{x_1} \vee x_2 \vee x_4\right)$$

Examples of NP-complete problems

Summary of some NPc problems

Basic reduction strategies.

- Reduction by simple equivalence.
 - INDEPENDENT-SET ≡ VERTEX-COVER
 - VERTEX COVER ≡ CLIQUE
- Reduction from special case to general case
 - VERTEX-COVER ≤_D SET-COVER (?)
- Reduction from general case to special case
 - 3SAT ≤_D SAT
- Reduction by encoding with gadgets
 - 3-SAT ≤_D INDEPENDENT-SET