

Qualitative Methoden

Überblick

Lernziele

- Einsatzmöglichkeit von qualitativen Methoden verstehen
- Wert von Fallstudien einschätzen können

Interne vs. externe Validität

Laboruntersuchung vs. Feldstudie

- Konstanthalten von Störvariablen im Labor
 - "Quicksort ist schneller als Mergesort bei den Daten X auf Computer Y wenn implementiert mit Z von V'."
 - Zuverlässige Messung der abhängigen Variablen (hohe interne Validität)
 - Nicht verallgemeinerbar auf andere Belegungen der Störvariablen (geringe externe Validität)
 - Aus praktischen und ethischen Gruenden nicht immer möglich
- Untersuchung im Feld, Störvariablen nicht immer kontrollierbar
 - Hohe externe Validität
 - Geringe interne Validität

Qualitative Methoden

- Interpretation von verbalem Material
- Fokus auf Erfahrung
- Offene Befragungen
- "Mehr Details als ein Messwert"
- Realismus statt Laborbedingungen
- Keine statistischen Signifikanztests
- Mehr Zeitaufwand
- Schwer vergleichbar

Oberflächliche Abgrenzung

Quantitativ

- "Naturwissenschaftlich"
- Labor
- Erklären
- "Harte Methoden"
- Messen
- Stichprobe
- Zahlen
- Abstraktion

Qualtitativ

- "Geisteswissenschaftlich"
- Feld
- Verstehen
- "Weiche Methoden"
- Beschreiben
- Einzelfall
- Texte, Bilder
- Komplexität

Qualitative und quantitative Methoden

- Kombination qualitativer und quantiativer Methoden typisch
- Programmverständnis:
 - Beobachten von Entwicklern, während sie Fehler in Software beheben
 - Lösungsstrategie von Entwicklern beobachten und abstrahieren
 - Zeit und Qualität von Fehlerbehebung
 - Zusammenhang zwischen Lösungsstrategie und Zeit/Qualität von Fehlerbehebung untersuchen

Fallstudien

Fallstudie

- Detaillierte Untersuchung eines einzigen Beispiels (oder weniger einzelner Beispiele)
- Oft im User-Interface-Bereich

- Beispiele:
 - Beobachten, wie Entwickler mit neuem Tool umgehen
 - Anwenden eines neuen Programmierparadigmas auf bestehende Implementierung

Evaluieren neuer Methoden

- Vom Autor selbst auf eigenem Beispiel
- Vom Autor selbst auf bestehendem Beispiel
- Von Drittem auf eigenem Beispiel
- Von Drittem auf bestehendem Beispiel
- Von neutralem Dritten auf bestehendem Beispiel
- Kontrolliertes Experiment

Fallstudien zur Theoriebildung

- Pilotstudie, Erkundungsexperiment
- In frühen Phasen der Untersuchung
- Zum Bilden von Theorien (die dann z.B. quantitativ untersucht werden)

Fallstudien und Quantitative Methoden

- Innerhalb einer Fallstudie Messungen möglich
 - z.B. Geschwindigkeitsvorteil durch neuen
 Datenbankindex
 - Inferenzstatistik für Hypothesen über diesen Fall

Kein Schluss auf allgemeine Fälle (externe Validität)

Aufgabe

- Nehmen Sie zu folgenden Aussagen Stellung:
 - Theoretisches Wissen ist wertvoller als praktisches Wissen
 - Man kann nicht von einem Fall verallgemeinern;
 daher sind Fallstudien sinnlos für Wissenschaft
 - Fallstudien sind gut, um Hypothesen zu generieren, aber zum Überprüfen sind andere Methoden besser

Beispiel: Aspekte für Produktlinien

Aspekt-orientierte Programmierung (AOP)

- Modularisierung von einem querschneidenen Belang in einem Aspekt
- Dieser Aspekt beschreibt die Änderungen dieses Belangs in der restlichen Software

Aspekte für Produktlinien

- Ausgangspunkt
 - Forscher schlugen AOP fuer Produktlinien vor
 - viele Publikationen, wenig Erfahrung
 - keine grossen Beispiele
- Idee
 - Umsetzen einer praktischen AOP Produktlinie
 - Zerlegung eines bestehenden Systems (statt Neuentwicklung)
 - Dadurch Realismus

Kästner, Apel, Don Batory. A Case Study Implementing Features Using AspectJ. In SPLC, pages 223-232. 2007.

Auswahl der Fallstudie

- Ein einziges Projekt: Berkeley DB Java Edition
- Eingebetette Datenbank
- Wohlbekannte Domäne
- Realistische Größe (ca. 84K Codezeilen, 300 Klassen), aber nicht zu gross
- Realistisch als Produktlinie benutzbar (eingebetette Systeme)

Beobachtungen

- Neue Sprachkonstrukte kaum verwendet
- Wenig querschneidende Belange
- Fragilität
- Lesbarkeit und Verständlichkeit
- Diverse Argumente, weitgehend subjektiv

Reflektion

- Für diesen Fall ist AOP ungeeignet
- Nur einziger Fall, aber realistisch
- Keine statistischen Tests oder Vergleiche
- Widerlegt Hypothese, dass Aspekte geeignet sind für Produktlinien
- Teils subjektiv

Aufgabe

- Diskutieren Sie, in wie weit die Ergebnisse der Fallstudie nützlich sind
- Was hätten Sie anders gemacht?

Kritik an Fallstudien

- Unkontrolliert und subjektiv -> unzuverlässig
- Tendenz zur Bestätigung bestehender Hypothesen
- Nicht verallgemeinerbar
- Viele Details, schwer zusammenfassbar

Lernen durch Fallstudien

- Betrachten eines Problems im Kontext
- Lernen aus Einzelfällen
 - Regel-Lernen für Einsteigerlevel
 - Experten durch praktische Erfahrung
 - Probleme wirklich verstehen (learning by doing)
- Realistische Details
- Nicht abstrahiert/simplifiziert auf einfache Modelle
- Verhindert "Elfenbeinturm-Forschung"
- Beweis kaum möglich, aber lernen aus Erfahrungen

Fallstudie zum Falsifizieren

- Fallstudie kann eine Hypothese falsifizieren
- Gut gewähltes Beispiel kann reichen ("Wenn schon einfache Beispiele nicht klappen...")
- Beispiel
 - Galileo Schwerkraftexperiment mit Fallbeispiel (Feder vs. Blei) statt Experimentserie
 - AOP für bekannte nichttriviale querschneidende Belange in Datenbanken

Auswahl von Fällen

Auswahl	Begründung
Zufall	Reduziert Voreingenommenheit; eher verallgemeinerbar
Extremer Fall	Ungewöhnlicher Fall; besonders problematisch oder besonders geeignet; Verdeutlicht einen Punkt sehr stark
Maximale Variation	Mehre sehr unterschiedliche Fälle (z.B. drei Fälle die sich durch Größe/Sprache/Erfahrung unterscheiden)
Kritischer Fall	Erlaubt Schlussfolgerungen wie: "Wenn es hier (nicht) klappt, klappt es in allen Fällen (nicht)" z.B. zur Plausibilitätspruefung einer Theorie
Paradigmatisch	Allgemeiner typischer Fall, der von mehreren Forschern wiederverwendet wird; Theorien basieren auf diesem Fall

Auswahl von Fallstudien

- Auswahl von guten Fallstudien erfordert Erfahrung
 - Abhängig vom Zweck
 - Machbarkeit zeigen?
 - Maximales Potential einer Methode aufzeigen?
 - Praktische Anwendbarkeit demonstrieren?
 - Bestehende Meinung widerlegen?
 - Methoden vergleichen?
- Gilt auch für Auswahl von Benchmarks!

Fallstudien erfordern Selbstreflektion

- Gefahr der Verfälschung und Manipulation
 - Auswahl von sehr vorteilhaftem (trivialen) Fall
 - "Vergessen" von Problemen
 - Vereinfachende Annahmen
- Protokoll führen, eigene Arbeit kritisch überprüfen
- Erwartungen vor der Fallstudie und Hypothesen transparent machen
- In der Praxis tendieren Fallstudien zum Widerlegen von Hypothesen

Fallstudien zusammenfassen

- Fallstudienbeschreibungen oft lang, subjektiv und Anekdotisch
- Oft nicht knapp zusammenfassbar, da reale Fälle komplex sind
- Erfahrungen im Kontext weitergeben
 - Aus Erfahrungen anderer lernen
 - Zusammenfassung nicht immer erwünscht
- Details in Anhang

Fragebögen

Lernziele

 Chancen und Risiken von Fragebögen verstehen

Aufgabe

- Entwerfen Sie einen Fragebogen
 - 1. Wie intiutiv ist die Interaktion mit dem iPad?
 - 2. Wie zufrieden sind Studierende an der FIN?
- Stellen Sie die Ergebnisse vor

Fragebögen

- In Informatik oft benutzt, aber meist oberflächlich
- Vor Beginn Literatur dazu lesen!
- Experten befragen!

 Wenn möglich, etablierten Fragebogen benutzen

Beispiel

- Geschlossene Fragen quantitativ auswerten
- Likert-Skala, z.B. 1-5
 - Wie erfahren bist du im Umgang mit folgenden Programmiersprachen?

	sehr unerfahren	unerfahren	mittel	erfahren	sehr erfahren
Java	1	2	3	×	5
С	1	2	×	4	5
Haskell	1	2	×	4	5
Prolog	1	×	3	4	5

Falsche Antworten?

Frage	Antwort
Immatrikulation	1945
Seit wie vielen Jahren programmierst du?	99
Wie viele Programmierkurse hast du belegt	99
Java, C, Haskell, Prolog, Programmierparadigmen	5
Anzahl weiterer Programmiersprachen mit mittlerer Erfahrung	99
In welcher Domäne waren/sind diese Projekte hauptsächlich angesiedelt?	Nirgendwo. Ich habe meine unerträglichen Fähigkeiten vor der Menschheit verborgen weil sonst alle in eine tiefe Depression verfallen wären.

Vorteil von Fragebögen

- Geringe Kosten
- Große Zielgruppen
- Gut zur Ergänzung
- Online durchführbar (aber: missverständliche Fragen?)

Tools: PROPHET, SurveyMonkey, EFSSurvey

Beispiel: Programmiererfahrung

- Expertenbefragung und Literaturanalyse
- Kontrolliertes Experiment mit 128 Probanden (Passau, Marburg, Magdeburg)
- Vergleich Anzahl korrekter Antworten mit Antworten im Fragebogen
- Extraktion von 2 relevanten Fragen
- Nächster Schritt: Experiment replizieren und überprüfen, ob dieselben relevanten Fragen extrahiert werden

Beispiel: Programmiererfahrung

Questionnaire

Years	Self Estimation	Education	Other
y.Prog y.ProgProf	s.PE s.Experts s.ClassMates s.Java s.C s.Haskell s.Prolog s.NumLanguages s.ObjectOriented s.Imperative s.Functional s.Logical	e.Years e.Courses	o.Size o.Age

Evaluation

Participants: 128 students from three different German universities

Comprehension Tasks

```
1.
    public static void main(String[] args) {
2.
      int array[] = \{14, 5, 7\};
3.
      for (int counter1 = 0; counter1 < array.length; counter1++)</pre>
      for (int counter2 = counter1; counter2 > 0; counter2--)
5.
        if (array[counter2 - 1] > array[counter2]) {
6.
           int variable1 = array[counter2];
           array[counter2] = array[counter2 - 1];
8.
           array[counter2 - 1] = variable1;
9.
10.
      for (int counter3 = 0; counter3 < array.length; counter3++)</pre>
        System.out.println(array[counter3]);
11.
12. }
```

What does executing this method print?

Ergebnis

- 2 relevante Fragen:
 - Erfahrung mit logischer Programmierung
 - Programmiererfahrung im Vergleich zu Kommillitonen

Nächster Schritt

- Experiment replizieren
- Überprüfen, ob dieselben Fragen extrahiert werden

Interviews

Arten von Interviews

- Ausmaß der Standardisierung (strukturiert, halbstrukturiert, unstrukturiert)
- Autoritatsanspruch des Interviewers (weich, neutral, hart)
- Art des Kontaktes (direkt, telefonisch, schriftlich)
- Anzahl der befragten Personen (Einzelinterview, Gruppeninterview, Survey)
- Anzahl der Interviewer (ein Interviewer, Tandem, Hearing)
- Funktion (z. B. ermittelnd vermittelnd)

Strukturierte Interviews

- Fragen und deren Abfolge sind klar definiert
- Hauptsächlich geschlossene Fragen
- Mögliche Antworten sind vorgefertigt und werden nur angekreuzt (sollten dem Probanden aber nicht gezeigt werden)

Geeignet bei gut bekannten Themenbereichen

Offene/Unstrukturierte Interviews

- Forschungs- und Feldgespräche
- Offene Fragen
- Eher Gespräch als typische Frage/Antwort-Situation
- Besonders geeignet zum Explorieren
- Interviewer darf Befragten nicht beeinflussen und keine eigene Meinung zeigen

Aufgabe

- Führen Sie ein Interview durch
- Sammeln Sie Stärken und Schwächen Ihrer Interviewart und stellen Sie diese vor

Arbeitsschritte

- Inhaltiche Vorbereitung
 - Warum, Thema, Personen, ggf. spezifische Fragen
 - Interviewleitfaden erstellen
- Organisatorische Vorbereitung
 - Kontaktaufnahme
 - Diktiergerät (+Ersatz)/Kamera/Skype
 - Schulen/Instruieren Externer Interviewer
- Interview
 - Gesprächsbeginn + Aufbau
 - Durchführung und Aufzeichnung
 - Gesprächsende + Nachgespräch + Verabschiedung
 - Gesprächsnotizen anfertigen

Dokumentation

- Transkription
 - Zeitaufwändig
 - Ca. 1 Seite Text pro Minute
- Archivierung des Materials
 - 10 Jahre (DFG-Richtlinie)
- Datenschutz
 - Anonymisierung
 - Vernichtung/Rückgabe des Rohmaterials

Dokumentation - Beispiel

Box 5.2			
Einige Transkriptionszeichen			
Transkiptionszeichen	Bedeutung		
montag kam er ins krankenhaus	Interviewtext (nur Kleinschreibung!)		
MONtag kam er ins krankenhaus	Betonung von Silben durch Großschreibung		
MONtag kam er * ins krankenhaus	Kurzpause durch *		
MONtag kam er ** ins krankenhaus	längere Pause durch **		
MONtag kam er *2* ins krankenhaus	Pause über 1 Sek. mit Längenangabe *Sek.*		
MONtag kam er *2* ins kranken/	Abbruch eines Wortes oder Satzes durch /		
MONtag kam er *2* in=s kranken/	Wortverschmelzung durch =		
MONtag kam er *2* in=s krank'n/	ausgefallene Buchstaben durch '		
MONtag kaaam er *2* in=s krank'n/	Dehnung durch Buchstabenwiederholung		
MONtag kaaam er *2* in=s krank'n/ (WEINEN)	Kommentar in Klammern und Großbuchstaben		
MONtag kaaam er *2* in=s <krank'n (weinen)<="" td=""><td>Tonhöhe fallend < (steigend: >)</td></krank'n>	Tonhöhe fallend < (steigend: >)		
I: #Wann# A: #MONtag# kaaam er *2* in=s <krank'n <="" td=""><td>gleichzeitiges Reden von Interviewer (I) und Befragungsperson (hier: A) markiert durch Doppelkreuz (#)</td></krank'n>	gleichzeitiges Reden von Interviewer (I) und Befragungsperson (hier: A) markiert durch Doppelkreuz (#)		
(WEINEN)	Bortz & Döring. Forschungsmethoden und		
	Evaluation für Human- und Sozialwissenschaftler.		
	2006. p. 313.		

Literatur

 Bortz & Döring. Forschungsmethoden und Evaluation für Human- und Sozialwissenschaftler. 4., überarb. Aufl., 2006.
 Kapitel 4 und 5.

Aus dem Uninetz: http://www.springer.com/psychology/book/978-3-540-33305-0

