

Analysis of a Length-Structured Model for Fish

Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations

# Analysis of a Length-Structured Model for Fish

Geigh Zollicoffer

University Of Nebraska – Lincoln – SACNAS

Supervised by Dr. Richard Rebarber



#### Introduction

Analysis of a Length-Structured Model for Fish

> Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations White perch are found in Nebraska lakes, but are not native to Nebraska, and are invasive. The population exhibits stunting, which means that populations are dominated by smaller (less desirable) fish. We introduce a length-based model for this population and study the convergence of the total population, and see how this is affected by different survival rates.



Analysis of a Length-Structured Model for Fish

Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations

#### We use a length-based model:

- Easier to collect length data than age data
- Managers might be more interested in size distribution than age distribution
- Life history parameters might be length-based. For instance, larger fish hold more eggs.
- More tractable to mathematical analysis.



# Length-Structured Model

Analysis of a Length-Structured Model for Fish

> Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations

#### Population vector

$$P_0(t)$$

$$P_1(t)$$

$$\vdots$$

$$P_n(t)$$



## Length-Structured Model

Analysis of a Length-Structured Model for Fish

Geigh Zollicoffer

Introduction

Mathematical Model

#### Results

Numerical Simulations

#### Population vector

$$\begin{bmatrix}
P_0(t) \\
P_1(t) \\
\vdots \\
P_n(t)
\end{bmatrix}$$

#### Assumptions:

- The time step is constant, determined by the behavior of species, or by data collection.
- Each stage is corresponds to the size of the fish with  $P_0$  being newborn fish, and  $P_n$  being the largest fish possible.
- In one time step a fish can either stay in its length class, or grow into the next length class.



#### **Parameters**

Analysis of a Length-Structured Model for Fish

> Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations

#### Parameters:

- Average length of fish in  $i^{th}$  stage is  $L_i$ .
- Survival rate of stage i fish each time step is  $s_i$ .
- $\bullet$  Fecundity of stage i fish each time step is  $f_i$



#### **Parameters**

Analysis of a Length-Structured Model for Fish

> Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations

#### Parameters:

- Average length of fish in  $i^{th}$  stage is  $L_i$ .
- Survival rate of stage i fish each time step is  $s_i$ .
- ullet Fecundity of stage i fish each time step is  $f_i$

Let  $p_t$  be the probability that at time step t grows into the next stage (if it survives).

### Matrix

Analysis of a Length-Structured Model for Fish

> Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations We use a model of the form  $\vec{P}(t+1) = A_{p_t} \vec{P}(t)$ , where  $A_{p_t} =$ 

| 0     | $f_1$        | $f_2$        | $f_3$        |    | $f_{n-2}$    | $f_{n-1}$        | $f_n$ |  |
|-------|--------------|--------------|--------------|----|--------------|------------------|-------|--|
| $s_0$ | $s_1(1-p_t)$ | 0            | 0            |    | 0            | 0                | 0     |  |
| 0     | $s_1p_t$     | $s_2(1-p_t)$ | 0            |    | 0            | 0                | 0     |  |
| 0     | 0            | $s_2p_t$     | $s_3(1-p_t)$ |    | 0            | 0                | 0     |  |
|       |              |              |              |    |              |                  |       |  |
| :     | :            | :            | :            | ٠. | :            | :                | :     |  |
| 0     | 0            | 0            | 0            |    | $s_{n-2}p_t$ | $s_{n-1}(1-p_t)$ | 0     |  |
| l 0   | 0            | 0            | 0            |    | 0            | Sm 1 77+         | Sn    |  |



Analysis of a Length-Structured Model for Fish

Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations Biomass: assume the mass of a fish of length  $L_i$  is  $W_i = \alpha L_i^3$ , where  $\alpha$  is the mass-length coefficient.

Analysis of a Length-Structured Model for Fish

> Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations Biomass: assume the mass of a fish of length  $L_i$  is  $W_i = \alpha L_i^3$ , where  $\alpha$  is the mass-length coefficient.

The Population Biomass at time step t is

$$B(t) = \sum_{i=0}^{n} W_i P_i(t).$$

Analysis of a Length-Structured Model for Fish

Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations Biomass: assume the mass of a fish of length  $L_i$  is  $W_i = \alpha L_i^3$ , where  $\alpha$  is the mass-length coefficient.

The Population Biomass at time step t is

$$B(t) = \sum_{i=0}^{n} W_i P_i(t).$$

Nonlinearity:  $g:[0,\infty)\to (0,1]$  is strictly decreasing and continuous, with

$$g(0) = 1,$$
 
$$\lim_{y \to \infty} g(y) = 0.$$

Analysis of a Length-Structured Model for Fish

Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations Biomass: assume the mass of a fish of length  $L_i$  is  $W_i = \alpha L_i^3$ , where  $\alpha$  is the mass-length coefficient.

The Population Biomass at time step t is

$$B(t) = \sum_{i=0}^{n} W_i P_i(t).$$

Nonlinearity:  $g:[0,\infty)\to (0,1]$  is strictly decreasing and continuous, with

$$g(0) = 1, \quad \lim_{y \to \infty} g(y) = 0.$$

We study the dynamical system

$$\vec{P}(t+1) = A_{p_t}\vec{P}(t), \quad p_t = g(B(t)).$$



Analysis of a Length-Structured Model for Fish

> Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations

#### This means:

- If there is low biomass, the probability that fish get larger in a time step is close to one.
- If there is high biomass, the probability that a fish gets larger in a time step is close to zero.
- This means the model penalizes crowding.

# White Perch - Nonlinearity

Analysis of a Length-Structured Model for Fish

Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations Recall that B(t) is the biomass at year t. We model the probability  $p_t$  at year t that a fish grows into the next length class in one year by a Beverton-Holt response function

$$p_t = g(B(t)) = \frac{1}{1 + b_{\text{growth}}B(t)}$$

where  $b_{\rm growth}=9.0\times 10^{-6}~{\rm g}^{-1}$  is the scaling parameter for density-dependent growth .

# Convergence

Analysis of a Length-Structured Model for Fish

Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations

- The vector  $\vec{P}^*$  is globally asymptotically attracting if for every nonzero, nonnegative  $\vec{P}(0)$ ,  $\lim_{t\to\infty} \vec{P}(t) = \vec{P}^*$ .
- The spectral radius of a matrix A,  $\rho(A)$ , is the largest eigenvalue of A. It determines the asymptotic behavior of solutions to  $\vec{x}(t+1) = A\vec{x}(t)$ .

# Main Theorem (Callahan et al 2019)

Analysis of a Length-Structured Model for Fish

Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations Assume  $(s_i)$  and  $(f_i)$  are nondecreasing in i. This is often true, but not always (for instance, in the presence of angling).

- $\textbf{ If } \rho(A_1) < 1, \text{ then the zero population } \vec{0} \text{ is globally asymptotically attracting}.$
- ② If  $\rho(A_0) < 1 < \rho(A_1)$ , then the system has a unique nonzero equilibrium  $\vec{P}^*$ .

## Main Theorem (Callahan et al 2019)

Analysis of a Length-Structured Model for Fish

Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations Assume  $(s_i)$  and  $(f_i)$  are nondecreasing in i. This is often true, but not always (for instance, in the presence of angling).

- If  $\rho(A_1) < 1$ , then the zero population  $\vec{0}$  is globally asymptotically attracting.
- ② If  $\rho(A_0) < 1 < \rho(A_1)$ , then the system has a unique nonzero equilibrium  $\vec{P}^*$ .
- The condition that  $s_i$  nondecreasing is often not satisfied. For instance, new anglers usually try to catch larger fish.

# Main Theorem (Callahan et al 2019)

Analysis of a Length-Structured Model for Fish

Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations Assume  $(s_i)$  and  $(f_i)$  are nondecreasing in i. This is often true, but not always (for instance, in the presence of angling).

- $\textbf{ If } \rho(A_1) < 1, \text{ then the zero population } \vec{0} \text{ is globally asymptotically attracting}.$
- 2 If  $\rho(A_0) < 1 < \rho(A_1)$ , then the system has a unique nonzero equilibrium  $\vec{P}^*$ .
- ullet The condition that  $s_i$  nondecreasing is often not satisfied. For instance, new anglers usually try to catch larger fish.
- We study whether the theorem is true even if  $s_i$  is not non-decreasing.

Results from "Length-Structured Density Dependent Model for Fish", Callahan et al.



#### White Perch - Survival

Analysis of a Length-Structured Model for Fish

> Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations

- In the paper it is assumed that the survival rate across age classes is a constant s=0.68, which we assume is the survival rate across length classes.
- In our talk we study many other survivals that did not satisfy the non-decreasing condition.



Analysis of a Length-Structured Model for Fish

> Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations

|           |           | Test 1      | Test 2     | Test 3   | Test 4   | Test 5   | Test 6   | Test 7   | Test 8   | Test 9   | Test 10  | Test 11  | Test 12  | Test 13  | Test 14  | Test 15  |
|-----------|-----------|-------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|           |           | Initial Por | ulation ve | ctors    |          |          |          |          |          |          |          |          |          |          |          |          |
| Populatio | n Class 0 | 353.4217    | 2353.124   | 1812.296 | 4904.518 | 2883.791 | 1862.671 | 3334.658 | 1944.419 | 4498.567 | 614.075  | 3474.026 | 93.06387 | 1878.461 | 2000.399 | 2699.525 |
| Populatio | n Class 1 | 4613.723    | 2803.567   | 3940.567 | 1433.102 | 129.2874 | 2965.923 | 4668.628 | 2273.709 | 2251.968 | 2036.592 | 4171.845 | 3373.882 | 2732.769 | 4159.357 | 476.8635 |
| Populatio | n Class 2 | 4001.86     | 1345,458   | 3901.479 | 4004.101 | 2232.655 | 4362.763 | 4054.75  | 1233.436 | 1028.362 | 1376.435 | 3048.148 | 2192.544 | 2809.601 | 671.6917 | 732.5743 |
| Populatio | n Class 3 | 1429.734    | 3745.092   | 3342.561 | 4480.557 | 3231.51  | 4667.508 | 2422.741 | 3922.115 | 4498.255 | 3583.349 | 2873.686 | 2189.101 | 1979.111 | 302.3339 | 3155.706 |
| Populatio | n Class 4 | 2718.316    | 2519.439   | 667.5193 | 2987.633 | 2606.015 | 3342.321 | 3783.746 | 4414.188 | 3812.928 | 1416.922 | 1630.211 | 585.1841 | 1990.654 | 421.2353 | 4296.602 |
| Populatio | n Class 5 | 4923.881    | 3234.048   | 107.7794 | 4420.084 | 1861.563 | 1033.882 | 2085.237 | 4568.558 | 4412.432 | 4480.994 | 2282.123 | 4073.408 | 2576.836 | 819.4916 | 4871.108 |
| Populatio | n Class 6 | 3578.39     | 1538.728   | 2799.204 | 4718.658 | 4685.673 | 3269.253 | 4858.93  | 2791.425 | 1424.751 | 4132.894 | 3568.978 | 1624.277 | 3287.653 | 1621.1   | 2854.192 |
| Populatio | n Class 7 | 4194.848    | 693.6232   | 1504.095 | 2745.79  | 4147.664 | 360.2578 | 4939.874 | 2994.341 | 3366.13  | 1950.133 | 4422.025 | 1231.141 | 4754.576 | 1508.634 | 4984.251 |
| Populatio | n Class 8 | 2166.303    | 2377.865   | 4697.049 | 3641.934 | 4245.427 | 2033.635 | 4320.738 | 744.3836 | 3321.4   | 2489.515 | 3604.278 | 1713.566 | 3611.743 | 58.40496 | 2767.708 |
|           |           | Limiting P  | opulation  | Vectors  |          |          |          |          |          |          |          |          |          |          |          |          |
| Populatio | n Class 0 | 1.81E-12    | 1.83E-12   | 1.71E-12 | 1.64E-12 | 2.22E-12 | 1.67E-12 | 1.81E-12 | 1.59E-12 | 1.58E-12 | 1.68E-12 | 1.61E-12 | 2.08E-12 | 2.25E-12 | 2.22E-12 | 1.67E-12 |
| Populatio | n Class 1 | 5.22E-13    | 5.27E-13   | 4.92E-13 | 4.74E-13 | 6.41E-13 | 4.82E-13 | 5.24E-13 | 4.58E-13 | 4.56E-13 | 4.85E-13 | 4.66E-13 | 6.01E-13 | 6.50E-13 | 6.42E-13 | 4.83E-13 |
| Populatio | n Class 2 | 1.51E-13    | 1.52E-13   | 1.42E-13 | 1.37E-13 | 1.85E-13 | 1.39E-13 | 1.51E-13 | 1.32E-13 | 1.32E-13 | 1.40E-13 | 1.35E-13 | 1.74E-13 | 1.88E-13 | 1.85E-13 | 1.39E-13 |
| Populatio | n Class 3 | 1.74E-13    | 1.76E-13   | 1.64E-13 | 1.58E-13 | 2.14E-13 | 1.61E-13 | 1.75E-13 | 1.53E-13 | 1.52E-13 | 1.62E-13 | 1.56E-13 | 2.01E-13 | 2.17E-13 | 2.14E-13 | 1.61E-13 |
| Populatio | n Class 4 | 5.03E-14    | 5.08E-14   | 4.74E-14 | 4.56E-14 | 6.17E-14 | 4.64E-14 | 5.04E-14 | 4.41E-14 | 4.39E-14 | 4.67E-14 | 4.49E-14 | 5.79E-14 | 6.26E-14 | 6.18E-14 | 4.65E-14 |
| Populatio | n Class 5 | 5.81E-14    | 5.87E-14   | 5.48E-14 | 5.27E-14 | 7.13E-14 | 5.36E-14 | 5.82E-14 | 5.10E-14 | 5.08E-14 | 5.40E-14 | 5.19E-14 | 6.69E-14 | 7.23E-14 | 7.14E-14 | 5.37E-14 |
| Populatio | n Class 6 | 1.68E-14    | 1.69E-14   | 1.58E-14 | 1.52E-14 | 2.06E-14 | 1.55E-14 | 1.68E-14 | 1.47E-14 | 1.47E-14 | 1.56E-14 | 1.50E-14 | 1.93E-14 | 2.09E-14 | 2.06E-14 | 1.55E-14 |
| Populatio | n Class 7 | 1.94E-14    | 1.96E-14   | 1.83E-14 | 1.76E-14 | 2.38E-14 | 1.79E-14 | 1.94E-14 | 1.70E-14 | 1.69E-14 | 1.80E-14 | 1.73E-14 | 2.23E-14 | 2.41E-14 | 2.38E-14 | 1.79E-14 |
| Populatio | n Class 8 | 7.87E-15    | 7.94E-15   | 7.42E-15 | 7.14E-15 | 9.66E-15 | 7.26E-15 | 7.89E-15 | 6.90E-15 | 6.87E-15 | 7.31E-15 | 7.02E-15 | 9.06E-15 | 9.79E-15 | 9.67E-15 | 7.28E-15 |

 $s_i = [.2.8.2.8.2.8.2.8.2]$ 



Analysis of a Length-Structured Model for Fish

Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations

|                    | _           |             |          |          |          |          |          |          |          |          |          |          |          | _        |          |
|--------------------|-------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                    |             |             | Test 3   | Test 4   | Test 5   | Test 6   | Test 7   | Test 8   | Test 9   | Test 10  | Test 11  | Test 12  | Test 13  | Test 14  | Test 15  |
|                    | Initial Pop | oulation ve | ctors    |          |          |          |          |          |          |          |          |          |          |          |          |
| Population Class 0 | 353.4217    | 2353.124    | 1812.296 | 4904.518 | 2883.791 | 1862.671 | 3334.658 | 1944.419 | 4498.567 | 614.075  | 3474.026 | 93.06387 | 1878.461 | 2000.399 | 2699.525 |
| Population Class 1 | 4613.723    | 2803.567    | 3940.567 | 1433.102 | 129.2874 | 2965.923 | 4668.628 | 2273.709 | 2251.968 | 2036.592 | 4171.845 | 3373.882 | 2732.769 | 4159.357 | 476.8635 |
| Population Class 2 | 4001.86     | 1345,458    | 3901.479 | 4004.101 | 2232.655 | 4362.763 | 4054.75  | 1233,436 | 1028.362 | 1376.435 | 3048.148 | 2192.544 | 2809.601 | 671.6917 | 732.5743 |
| Population Class 3 | 1429.734    | 3745.092    | 3342.561 | 4480.557 | 3231.51  | 4667.508 | 2422.741 | 3922.115 | 4498.255 | 3583.349 | 2873.686 | 2189.101 | 1979.111 | 302.3339 | 3155.706 |
| Population Class 4 | 2718.316    | 2519.439    | 667.5193 | 2987.633 | 2606.015 | 3342.321 | 3783.746 | 4414.188 | 3812.928 | 1416.922 | 1630.211 | 585.1841 | 1990.654 | 421.2353 | 4296.602 |
| Population Class 5 | 4923.881    | 3234.048    | 107.7794 | 4420.084 | 1861.563 | 1033.882 | 2085.237 | 4568.558 | 4412.432 | 4480.994 | 2282.123 | 4073.408 | 2576.836 | 819.4916 | 4871.108 |
| Population Class 6 | 3578.39     | 1538.728    | 2799.204 | 4718.658 | 4685.673 | 3269.253 | 4858.93  | 2791.425 | 1424.751 | 4132.894 | 3568.978 | 1624.277 | 3287.653 | 1621.1   | 2854.192 |
| Population Class 7 | 4194.848    | 693.6232    | 1504.095 | 2745.79  | 4147.664 | 360.2578 | 4939.874 | 2994.341 | 3366.13  | 1950.133 | 4422.025 | 1231.141 | 4754.576 | 1508.634 | 4984.251 |
| Population Class 8 | 2166.303    | 2377.865    | 4697.049 | 3641.934 | 4245.427 | 2033.635 | 4320.738 | 744.3836 | 3321.4   | 2489.515 | 3604.278 | 1713.566 | 3611.743 | 58.40496 | 2767.708 |
|                    | Limiting P  | opulation   | Vectors  |          |          |          |          |          |          |          |          |          |          |          |          |
| Population Class 0 | 1.81E-12    | 1.83E-12    | 1.71E-12 | 1.64E-12 | 2.22E-12 | 1.67E-12 | 1.81E-12 | 1.59E-12 | 1.58E-12 | 1.68E-12 | 1.61E-12 | 2.08E-12 | 2.25E-12 | 2.22E-12 | 1.67E-12 |
| Population Class 1 | 5.22E-13    | 5.27E-13    | 4.92E-13 | 4.74E-13 | 6.41E-13 | 4.82E-13 | 5.24E-13 | 4.58E-13 | 4.56E-13 | 4.85E-13 | 4.66E-13 | 6.01E-13 | 6.50E-13 | 6.42E-13 | 4.83E-13 |
| Population Class 2 | 1.51E-13    | 1.52E-13    | 1.42E-13 | 1.37E-13 | 1.85E-13 | 1.39E-13 | 1.51E-13 | 1.32E-13 | 1.32E-13 | 1.40E-13 | 1.35E-13 | 1.74E-13 | 1.88E-13 | 1.85E-13 | 1.39E-13 |
| Population Class 3 | 1.74E-13    | 1.76E-13    | 1.64E-13 | 1.58E-13 | 2.14E-13 | 1.61E-13 | 1.75E-13 | 1.53E-13 | 1.52E-13 | 1.62E-13 | 1.56E-13 | 2.01E-13 | 2.17E-13 | 2.14E-13 | 1.61E-13 |
| Population Class 4 | 5.03E-14    | 5.08E-14    | 4.74E-14 | 4.56E-14 | 6.17E-14 | 4.64E-14 | 5.04E-14 | 4.41E-14 | 4.39E-14 | 4.67E-14 | 4.49E-14 | 5.79E-14 | 6.26E-14 | 6.18E-14 | 4.65E-14 |
| Population Class 5 | 5.81E-14    | 5.87E-14    | 5.48E-14 | 5.27E-14 | 7.13E-14 | 5.36E-14 | 5.82E-14 | 5.10E-14 | 5.08E-14 | 5.40E-14 | 5.19E-14 | 6.69E-14 | 7.23E-14 | 7.14E-14 | 5.37E-14 |
| Population Class 6 | 1.68E-14    | 1.69E-14    | 1.58E-14 | 1.52E-14 | 2.06E-14 |          |          | 1.47E-14 |          | 1.56E-14 | 1.50E-14 | 1.93E-14 | 2.09E-14 | 2.06E-14 | 1.55E-14 |
| Population Class 7 | 1.94E-14    | 1.96E-14    | 1.83E-14 | 1.76E-14 | 2.38E-14 | 1.79E-14 | 1.94E-14 | 1.70E-14 | 1.69E-14 | 1.80E-14 | 1.73E-14 | 2.23E-14 | 2.41E-14 | 2.38E-14 | 1.79E-14 |
| Population Class 8 | 7.87E-15    | 7.94E-15    | 7.42E-15 | 7.14E-15 | 9.66E-15 | 7.26E-15 | 7.89E-15 |          |          | 7.31E-15 | 7.02E-15 | 9.06E-15 | 9.79E-15 | 9.67E-15 | 7.28E-15 |

 $s_i = \left[.2.8.2.8.2.8.2.8.2\right]$ 

- Convergence to zero Sequence
- Convergence no matter starting population vector



Analysis of a Length-Structured Model for Fish

> Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations

|   |           |           | 162f T      | rest 2     | 1621.3   | rest 4   | 1621.2   | rest o   | Test /   | rest 8   | rest 9   | lest 10  | 1624 11  | Test 12  | 1621 13  | Test 14  | rest 12  |
|---|-----------|-----------|-------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|   |           |           | Initial Pop | ulation ve | ctors    |          |          |          |          |          |          |          |          |          |          |          |          |
| P | opulation | n Class 0 | 2207.945    | 3448.189   | 4629.29  | 4865.068 | 3076.441 | 1230.348 | 3981.227 | 524.1111 | 739.0871 | 2790.59  | 2665.816 | 3179.416 | 4189.203 | 555.9249 | 1532.484 |
| P | opulation | n Class 1 | 2231.078    | 659.1533   | 2463.193 | 1825.163 | 2915.665 | 2907.456 | 3089.253 | 4291.764 | 98.82332 | 2138.963 | 4773.774 | 3991.851 | 4603.951 | 1486.771 | 527.8057 |
| P | opulation | n Class 2 | 2328.312    | 617.5042   | 3274.414 | 1545.748 | 3491.27  | 4688.384 | 351.0676 | 3490.999 | 4821.459 | 1335.97  | 1338.738 | 2508.505 | 2491.14  | 1982.093 | 2969.138 |
| P | opulation | n Class 3 | 1395.196    | 954.5143   | 4450.617 | 604.5619 | 146.6617 | 238.9365 | 346.3949 | 3668.711 | 4851.865 | 3768.68  | 1250.423 | 3254.061 | 1388.056 | 2103.778 | 1413.638 |
| P | opulation | n Class 4 | 3376.877    | 728.6605   | 2692.628 | 4578.829 | 2639.413 | 269.8883 | 680.0369 | 3252.653 | 619.3025 | 4491.882 | 4638.364 | 3979.775 | 3262.6   | 1557.377 | 776.1081 |
| P | opulation | n Class 5 | 4518.323    | 2925.218   | 1411.026 | 677.391  | 160.3642 | 103.0902 | 3944.457 | 2581.353 | 2337.05  | 3642.22  | 342.9117 | 1166.869 | 4586.494 | 3469.216 | 3.293338 |
| P | opulation | n Class 6 | 4542.629    | 366.8085   | 4879.788 | 1660.589 | 4135.712 | 3407.393 | 461.9923 | 1631.941 | 3283.47  | 2034.151 | 1497.002 | 3004.195 | 2549.197 | 459.3592 | 1417.977 |
| P | opulation | n Class 7 | 3735.985    | 4111.631   | 182.1276 | 4487.399 | 1699.931 | 2993.143 | 1189.344 | 3308.881 | 1450.928 | 4691.579 | 2957.918 | 562.3119 | 4870.957 | 2010.443 | 2754.054 |
| P | opulation | n Class 8 | 1302.558    | 3614.515   | 1631.223 | 2498.244 | 4233.555 | 570.1502 | 1218.24  | 587.8274 | 3772.683 | 1277.137 | 1016.496 | 2578.828 | 986.3947 | 1475.904 | 4354.511 |
|   |           |           | Limiting P  | opulation  | Vectors  |          |          |          |          |          |          |          |          |          |          |          |          |
| P | opulation | n Class 0 | 7.74E+03    | 7.74E+03   | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 |
| P | opulation | n Class 1 | 1.45E+04    | 1.45E+04   | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 |
| P | opulation | n Class 2 | 5.45E+03    | 5.45E+03   | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 |
| P | opulation | n Class 3 | 2.05E+03    | 2.05E+03   | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 |
| P | opulation | n Class 4 | 7.69E+02    | 7.69E+02   | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 |
| P | opulation | n Class 5 | 2.89E+02    | 2.89E+02   | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 |
| P | opulation | n Class 6 | 1.09E+02    | 1.09E+02   | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 |
| P | opulation | n Class 7 | 3.12E+01    | 3.12E+01   | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 |
| P | opulation | n Class 8 | 8.06E+00    | 8.06E+00   | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 |
|   |           |           |             |            |          |          |          |          |          |          |          |          |          |          |          |          |          |

 $s_i = [.9.7.7.7.7.7.7.5]$ 



Analysis of a Length-Structured Model for Fish

> Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations

|                    | Test 1      | Test 2      | Test 3   | Test 4   | Test 5   | Test 6   | Test 7   | Test 8   | Test 9   | Test 10  | Test 11  | Test 12  | Test 13  | Test 14  | Test 15  |
|--------------------|-------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                    | Initial Pop | oulation ve | ctors    |          |          |          |          |          |          |          |          |          |          |          |          |
| Population Class 0 | 2207.945    | 3448.189    | 4629.29  | 4865.068 | 3076.441 | 1230.348 | 3981.227 | 524.1111 | 739.0871 | 2790.59  | 2665.816 | 3179.416 | 4189.203 | 555.9249 | 1532.484 |
| Population Class 1 | 2231.078    | 659.1533    | 2463.193 | 1825.163 | 2915.665 | 2907.456 | 3089.253 | 4291.764 | 98.82332 | 2138.963 | 4773.774 | 3991.851 | 4603.951 | 1486.771 | 527.8057 |
| Population Class 2 | 2328.312    | 617.5042    | 3274.414 | 1545.748 | 3491.27  | 4688.384 | 351.0676 | 3490.999 | 4821.459 | 1335.97  | 1338.738 | 2508.505 | 2491.14  | 1982.093 | 2969.138 |
| Population Class 3 | 1395.196    | 954.5143    | 4450.617 | 604.5619 | 146.6617 | 238.9365 | 346.3949 | 3668.711 | 4851.865 | 3768.68  | 1250.423 | 3254.061 | 1388.056 | 2103.778 | 1413.638 |
| Population Class 4 | 3376.877    | 728.6605    | 2692.628 | 4578.829 | 2639.413 | 269.8883 | 680.0369 | 3252.653 | 619.3025 | 4491.882 | 4638.364 | 3979.775 | 3262.6   | 1557.377 | 776.1081 |
| Population Class 5 | 4518.323    | 2925.218    | 1411.026 | 677.391  | 160.3642 | 103.0902 | 3944.457 | 2581.353 | 2337.05  | 3642.22  | 342.9117 | 1166.869 | 4586,494 | 3469.216 | 3.293338 |
| Population Class 6 | 4542.629    | 366.8085    | 4879.788 | 1660.589 | 4135.712 | 3407.393 | 461.9923 | 1631.941 | 3283.47  | 2034.151 | 1497.002 | 3004.195 | 2549.197 | 459.3592 | 1417.977 |
| Population Class 7 | 3735.985    | 4111.631    | 182.1276 | 4487.399 | 1699.931 | 2993.143 | 1189.344 | 3308.881 | 1450.928 | 4691.579 | 2957.918 | 562.3119 | 4870.957 | 2010.443 | 2754.054 |
| Population Class 8 | 1302.558    | 3614.515    | 1631.223 | 2498.244 | 4233.555 | 570.1502 | 1218.24  | 587.8274 | 3772.683 | 1277.137 | 1016.496 | 2578.828 | 986.3947 | 1475.904 | 4354.511 |
|                    | Limiting P  | opulation   | Vectors  |          |          |          |          |          |          |          |          |          |          |          |          |
| Population Class 0 | 7.74E+03    | 7.74E+03    | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 | 7.74E+03 |
| Population Class 1 | 1.45E+04    | 1.45E+04    | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 | 1.45E+04 |
| Population Class 2 | 5.45E+03    | 5.45E+03    | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 | 5.45E+03 |
| Population Class 3 | 2.05E+03    | 2.05E+03    | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 | 2.05E+03 |
| Population Class 4 | 7.69E+02    | 7.69E+02    | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 | 7.69E+02 |
| Population Class 5 | 2.89E+02    | 2.89E+02    | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 | 2.89E+02 |
| Population Class 6 | 1.09E+02    | 1.09E+02    | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 | 1.09E+02 |
| Population Class 7 | 3.12E+01    | 3.12E+01    | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 | 3.12E+01 |
| Population Class 8 | 8.06E+00    | 8.06E+00    | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 | 8.06E+00 |

 $s_i = [.9.7.7.7.7.7.7.5]$ 

- Convergence to unique limiting population
- Convergence no matter starting population vector



Analysis of a Length-Structured Model for Fish

> Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations

|           |           | Test 1      | Test 2     | Test 3   | Test 4   | Test 5   | Test 6   | Test 7   | Test 8   | Test 9   | Test 10  | Test 11  | Test 12  | Test 13  | Test 14  | Test 15  |
|-----------|-----------|-------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|           |           | Initial Pop | ulation ve | ctors    |          |          |          |          |          |          |          |          |          |          |          |          |
| Populatio | n Class 0 | 1742.875    | 3143.467   | 3355.82  | 585.7258 | 2550.202 | 896.8455 | 2555.041 | 68.27783 | 2567.816 | 4145.404 | 1098.28  | 799.3442 | 1214.381 | 3159.774 | 419.931! |
| Populatio | n Class 1 | 209.605     | 4388.82    | 3262.104 | 1202.118 | 2478.221 | 546.806  | 4367.561 | 1870.301 | 4962.949 | 2559.372 | 2031.4   | 3334.193 | 4171.351 | 1216.348 | 1251.525 |
| Populatio | n Class 2 | 711.6986    | 3311.759   | 2655.244 | 3424.542 | 3256.842 | 4525.792 | 351.1074 | 4613.426 | 2279.219 | 2759.809 | 3149.54  | 89.60185 | 4067.956 | 2857.065 | 4056.73  |
| Populatio | n Class 3 | 382.9642    | 4377.068   | 3575.535 | 4196.268 | 3718.531 | 4381.755 | 4937.694 | 2732.398 | 2130.204 | 1066.424 | 2776.538 | 598.3768 | 3144.866 | 4908.644 | 422,1155 |
| Populatio | n Class 4 | 3702.633    | 2337.585   | 2524.053 | 4850.723 | 1509.767 | 4998.963 | 4613.567 | 2369.434 | 1066.074 | 2939.103 | 637.8953 | 4760.627 | 11.19099 | 4248.41  | 2656.23  |
| Populatio | n Class 5 | 2282.626    | 706.6801   | 2439.997 | 1075.848 | 448.0597 | 4321.273 | 2821.305 | 2482.687 | 966.2474 | 713.8161 | 845.9917 | 4879.27  | 1898.62  | 1417.221 | 4003.115 |
| Populatio | n Class 6 | 3341.247    | 340.6723   | 2489.192 | 3801.717 | 4129.827 | 184.3876 | 2157.31  | 1544.855 | 4163.771 | 261.1176 | 4.997091 | 154.5727 | 4522.028 | 3412.288 | 3694.116 |
| Populatio | n Class 7 | 3496.23     | 3571.212   | 4679.878 | 2920.514 | 1947.935 | 2723.412 | 1689.223 | 4754.188 | 3633.185 | 3416.54  | 2090.812 | 2469.409 | 3401.758 | 1790.623 | 708.3149 |
| Populatio | n Class 8 | 2856.786    | 1539.93    | 1946.408 | 2014.758 | 3876.524 | 4988.081 | 3603.617 | 4909.966 | 2648.728 | 3042.797 | 2442.428 | 4313.611 | 1894.116 | 4934.634 | 2189.47  |
|           |           | Limiting P  | opulation  | Vectors  |          |          |          |          |          |          |          |          |          |          |          |          |
| Populatio | n Class 0 | 2.34E+03    | 2.34E+03   | 2.34E+03 | 2.34E+03 | 2.34E+03 | 2.34E+03 | 2.34E+03 | 2.34E+03 | 2.34E+03 | 2.34E+03 | 2.34E+03 | 2.34E+03 | 2.34E+03 | 2.34E+03 | 2.34E+0: |
| Populatio | n Class 1 | 3.13E+03    | 3.13E+03   | 3.13E+03 | 3.13E+03 | 3.13E+03 | 3.13E+03 | 3.13E+03 | 3.13E+03 | 3.13E+03 | 3.13E+03 | 3.13E+03 | 3.13E+03 | 3.13E+03 | 3.13E+03 | 3.13E+0: |
| Populatio | n Class 2 | 1.62E+03    | 1.62E+03   | 1.62E+03 | 1.62E+03 | 1.62E+03 | 1.62E+03 | 1.62E+03 | 1.62E+03 | 1.62E+03 | 1.62E+03 | 1.62E+03 | 1.62E+03 | 1.62E+03 | 1.62E+03 | 1.62E+0: |
| Populatio | n Class 3 | 6.79E+02    | 6.79E+02   | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 |
| Populatio | n Class 4 | 2.37E+02    | 2.37E+02   | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+0; |
| Populatio | n Class 5 | 8.24E+01    | 8.24E+01   | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+0: |
| Populatio | n Class 6 | 2.87E+01    | 2.87E+01   | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+0  |
| Populatio | n Class 7 | 9.44E+00    | 9.44E+00   | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 |
| Populatio | n Class 8 | 3.37E+00    | 3.37E+00   | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 |

 $s_i = [.9.8.7.6.5.5.5.5.4]$ 



Analysis of a Length-Structured Model for Fish

> Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations

|           |           | Test 1      | Test 2     | Test 3   | Test 4   | Test 5   | Test 6   | Test 7   | Test 8   | Test 9   | Test 10  | Test 11  | Test 12  | Test 13  | Test 14  | Test 15  |
|-----------|-----------|-------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|           |           | Initial Pop | ulation ve | ctors    |          |          |          |          |          |          |          |          |          |          |          |          |
| Populatio | n Class 0 | 1742.875    | 3143.467   | 3355.82  | 585.7258 | 2550.202 | 896.8455 | 2555.041 | 68.27783 | 2567.816 | 4145.404 | 1098.28  | 799.3442 | 1214.381 | 3159.774 | 419.931! |
| Populatio | n Class 1 | 209.605     | 4388.82    | 3262.104 | 1202.118 | 2478.221 | 546.806  | 4367.561 | 1870.301 | 4962.949 | 2559.372 | 2031.4   | 3334.193 | 4171.351 | 1216.348 | 1251.52  |
| Populatio | n Class 2 | 711.6986    | 3311.759   | 2655.244 | 3424.542 | 3256.842 | 4525.792 | 351.1074 | 4613.426 | 2279.219 | 2759.809 | 3149.54  | 89.60185 | 4067.956 | 2857.065 | 4056.73  |
| Populatio | n Class 3 | 382.9642    | 4377.068   | 3575.535 | 4196.268 | 3718.531 | 4381.755 | 4937.694 | 2732.398 | 2130.204 | 1066.424 | 2776.538 | 598.3768 | 3144.866 | 4908.644 | 422.115! |
| Populatio | n Class 4 | 3702.633    | 2337.585   | 2524.053 | 4850.723 | 1509.767 | 4998.963 | 4613.567 | 2369.434 | 1066.074 | 2939.103 | 637.8953 | 4760.627 | 11.19099 | 4248.41  | 2656.23  |
| Populatio | n Class 5 | 2282.626    | 706.6801   | 2439.997 | 1075.848 | 448.0597 | 4321.273 | 2821.305 | 2482.687 | 966.2474 | 713.8161 | 845.9917 | 4879.27  | 1898.62  | 1417.221 | 4003.11! |
| Populatio | n Class 6 | 3341.247    | 340.6723   | 2489.192 | 3801.717 | 4129.827 | 184.3876 | 2157.31  | 1544.855 | 4163.771 | 261.1176 | 4.997091 | 154.5727 | 4522.028 | 3412.288 | 3694.116 |
| Populatio | n Class 7 | 3496.23     | 3571.212   | 4679.878 | 2920.514 | 1947.935 | 2723.412 | 1689.223 | 4754.188 | 3633.185 | 3416.54  | 2090.812 | 2469.409 | 3401.758 | 1790.623 | 708.3149 |
| Populatio | n Class 8 | 2856.786    | 1539.93    | 1946.408 | 2014.758 | 3876.524 | 4988.081 | 3603.617 | 4909.966 | 2648.728 | 3042.797 | 2442.428 | 4313.611 | 1894.116 | 4934.634 | 2189.47: |
|           |           | Limiting P  | opulation  | Vectors  |          |          |          |          |          |          |          |          |          |          |          |          |
| Populatio |           | 2.34E+03    | 2.34E+03   | 2.34E+03 |          | 2.34E+03 |          | 2.34E+03 |          |          | 2.34E+03 |          | 2.34E+03 |          | 2.34E+03 | 2.34E+0: |
| Populatio |           | 3.13E+03    | 3.13E+03   | 3.13E+03 |          |          |          |          |          |          | 3.13E+03 |          |          | 3.13E+03 | 3.13E+03 | 3.13E+0: |
| Populatio |           | 1.62E+03    | 1.62E+03   | 1.62E+03 | 1.62E+03 | 1.62E+03 |          |          |          |          | 1.62E+03 |          | 1.62E+03 | 1.62E+03 | 1.62E+03 | 1.62E+0: |
| Populatio | n Class 3 | 6.79E+02    | 6.79E+02   | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+02 | 6.79E+0; |
| Populatio | n Class 4 | 2.37E+02    | 2.37E+02   | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+02 | 2.37E+0; |
| Populatio | n Class 5 | 8.24E+01    | 8.24E+01   | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+01 | 8.24E+0: |
| Populatio | n Class 6 | 2.87E+01    | 2.87E+01   | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+01 | 2.87E+0: |
| Populatio | n Class 7 | 9.44E+00    | 9.44E+00   | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 | 9.44E+00 |
| Populatio | n Class 8 | 3.37E+00    | 3.37E+00   | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 | 3.37E+00 |

 $s_i = [.9.8.7.6.5.5.5.4]$ 

- Convergence to unique limiting population Steep Slope
- Convergence no matter starting population vector



Analysis of a Length-Structured Model for Fish

> Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations

|                    | Test 1      | Test 2      | Test 3   | Test 4   | Test 5   | Test 6   | Test 7   | Test 8   | Test 9   | Test 10  | Test 11  | Test 12  | Test 13  | Test 14  | Test 15  |
|--------------------|-------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                    | Initial Pop | oulation ve | ctors    |          |          |          |          |          |          |          |          |          |          |          |          |
| Population Class 0 | 3915.509    | 3972.947    | 4088.174 | 1220.48  | 3101.391 | 2821.344 | 3390.53  | 1580.356 | 1132.672 | 4930.255 | 2483.997 | 4488.233 | 1414.2   | 4310.937 | 3691.285 |
| Population Class 1 | 3428.436    | 4629.049    | 3001.724 | 4422.113 | 3733.423 | 936.9144 | 262.4277 | 387.4374 | 1990.026 | 3590.905 | 112.0683 | 1442.827 | 1025.906 | 2214.673 | 190.007  |
| Population Class 2 | 2331.096    | 894.1998    | 424.9853 | 3563.234 | 4886.278 | 2658.448 | 4005.862 | 4253.07  | 3482.843 | 2065.917 | 269.1577 | 1345.234 | 2195.67  | 2740.046 | 4771.22  |
| Population Class 3 | 1301.59     | 2587.706    | 4611.79  | 1890.742 | 1919.568 | 1775.167 | 3392.843 | 722.6345 | 323.2038 | 493.1512 | 704.369  | 2970.971 | 136.2511 | 2834.304 | 3711.862 |
| Population Class 4 | 2846.341    | 3135.027    | 267.9891 | 1244.598 | 1301.028 | 1573.918 | 4730.045 | 1852,429 | 3738.308 | 3672.796 | 4467.372 | 2379.395 | 4380.922 | 3401.975 | 4687.248 |
| Population Class 5 | 1243.853    | 4565.912    | 2635.125 | 1264.269 | 4387.348 | 3633.707 | 457.7907 | 3111.957 | 2102.002 | 3186.531 | 2329.1   | 1841.555 | 3050.461 | 1856.893 | 2566.82  |
| Population Class 6 | 1596.508    | 3319.841    | 594.2664 | 3836.218 | 4030.48  | 2578.864 | 4542.192 | 4987.76  | 4056.587 | 369.2094 | 2804.284 | 3278.055 | 1017.962 | 391.1435 | 1204.524 |
| Population Class 7 | 4554.011    | 1945.964    | 1900.715 | 249.3094 | 2305.605 | 3953.224 | 2549.765 | 2586.721 | 1898.026 | 602.5408 | 2472.282 | 4691.002 | 2599.584 | 2281.754 | 1299.820 |
| Population Class 8 | 4426.1      | 3700.038    | 4064.163 | 3426.443 | 454.8084 | 1022.463 | 3074.518 | 4952.556 | 1595.339 | 4907.981 | 338.9274 | 3102.126 | 269.1215 | 239.219  | 3794.87  |
|                    | Limiting P  | opulation   | Vectors  |          |          |          |          |          |          |          |          |          |          |          |          |
| Population Class 0 | 3.50E-13    | 3.19E-13    | 2.75E-13 | 2.51E-13 | 5.91E-13 | 2.52E-13 | 3.06E-13 | 3.75E-13 | 2.40E-13 | 2.83E-13 | 5.14E-13 | 3.36E-13 | 4.59E-13 | 3.83E-13 | 2.75E-13 |
| Population Class 1 | 1.87E-13    | 1.70E-13    | 1.47E-13 | 1.34E-13 | 3.15E-13 | 1.35E-13 | 1.63E-13 | 2.00E-13 | 1.28E-13 | 1.51E-13 | 2.75E-13 | 1.79E-13 | 2.45E-13 | 2.04E-13 | 1.47E-13 |
| Population Class 2 | 9.96E-14    | 9.09E-14    | 7.82E-14 | 7.16E-14 | 1.68E-13 | 7.19E-14 | 8.71E-14 | 1.07E-13 | 6.84E-14 | 8.06E-14 | 1.47E-13 | 9.56E-14 | 1.31E-13 | 1.09E-13 | 7.84E-14 |
| Population Class 3 | 5.32E-14    | 4.85E-14    | 4.18E-14 | 3.82E-14 | 8.98E-14 | 3.84E-14 | 4.65E-14 | 5.70E-14 | 3.65E-14 | 4.30E-14 | 7.82E-14 | 5.10E-14 | 6.98E-14 | 5.82E-14 | 4.18E-14 |
| Population Class 4 | 1.42E-14    | 1.29E-14    | 1.11E-14 | 1.02E-14 | 2.40E-14 | 1.02E-14 | 1.24E-14 | 1.52E-14 | 9.75E-15 | 1.15E-14 | 2.09E-14 | 1.36E-14 | 1.86E-14 | 1.55E-14 | 1.12E-14 |
| Population Class 5 | 3.79E-15    | 3.46E-15    | 2.97E-15 | 2.72E-15 | 6.40E-15 | 2.73E-15 | 3.31E-15 | 4.06E-15 | 2.60E-15 | 3.06E-15 | 5.57E-15 | 3.63E-15 | 4.97E-15 | 4.14E-15 | 2.98E-13 |
| Population Class 6 | 1.01E-15    | 9.22E-16    | 7.94E-16 | 7.26E-16 | 1.71E-15 | 7.29E-16 | 8.84E-16 | 1.08E-15 | 6.94E-16 | 8.17E-16 | 1.49E-15 | 9.70E-16 | 1.33E-15 | 1.11E-15 | 7.95E-16 |
| Population Class 7 | 2.70E-16    | 2.46E-16    | 2.12E-16 | 1.94E-16 | 4.55E-16 | 1.95E-16 | 2.36E-16 | 2.89E-16 | 1.85E-16 | 2.18E-16 | 3.97E-16 | 2.59E-16 | 3.54E-16 | 2.95E-16 | 2.12E-16 |
| Population Class 8 | 9.82E-17    | 8.96E-17    | 7.71E-17 | 7.05E-17 | 1.66E-16 | 7.08E-17 | 8.59E-17 | 1.05E-16 | 6.74E-17 | 7.94E-17 | 1.44E-16 | 9.42E-17 | 1.29E-16 | 1.07E-16 | 7.72E-13 |

 $s_i = [.2.2.2.2.1.1.1.1.1]$ 



Analysis of a Length-Structured Model for Fish

> Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations

|                    | Test 1      | Test 2      | Test 3   | Test 4   | Test 5   | Test 6   | Test 7   | Test 8   | Test 9   | Test 10  | Test 11  | Test 12  | Test 13  | Test 14  | Test 15  |
|--------------------|-------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                    | Initial Pop | oulation ve | ctors    |          |          |          |          |          |          |          |          |          |          |          |          |
| Population Class 0 | 3915.509    | 3972.947    | 4088.174 | 1220.48  | 3101.391 | 2821.344 | 3390.53  | 1580.356 | 1132.672 | 4930.255 | 2483.997 | 4488.233 | 1414.2   | 4310.937 | 3691.285 |
| Population Class 1 | 3428.436    | 4629.049    | 3001.724 | 4422.113 | 3733.423 | 936.9144 | 262.4277 | 387.4374 | 1990.026 | 3590.905 | 112.0683 | 1442.827 | 1025.906 | 2214.673 | 190.007  |
| Population Class 2 | 2331.096    | 894.1998    | 424.9853 | 3563.234 | 4886.278 | 2658.448 | 4005.862 | 4253.07  | 3482.843 | 2065.917 | 269.1577 | 1345.234 | 2195.67  | 2740.046 | 4771.22  |
| Population Class 3 | 1301.59     | 2587.706    | 4611.79  | 1890.742 | 1919.568 | 1775.167 | 3392.843 | 722.6345 | 323.2038 | 493.1512 | 704.369  | 2970.971 | 136.2511 | 2834.304 | 3711.862 |
| Population Class 4 | 2846.341    | 3135.027    | 267.9891 | 1244.598 | 1301.028 | 1573.918 | 4730.045 | 1852.429 | 3738.308 | 3672.796 | 4467.372 | 2379.395 | 4380.922 | 3401.975 | 4687.248 |
| Population Class 5 | 1243.853    | 4565.912    | 2635.125 | 1264.269 | 4387.348 | 3633.707 | 457.7907 | 3111.957 | 2102.002 | 3186.531 | 2329.1   | 1841.555 | 3050.461 | 1856.893 | 2566.82  |
| Population Class 6 | 1596.508    | 3319.841    | 594.2664 | 3836.218 | 4030.48  | 2578.864 | 4542.192 | 4987.76  | 4056.587 | 369.2094 | 2804.284 | 3278.055 | 1017.962 | 391.1435 | 1204.524 |
| Population Class 7 | 4554.011    | 1945.964    | 1900.715 | 249.3094 | 2305.605 | 3953.224 | 2549.765 | 2586.721 | 1898.026 | 602.5408 | 2472.282 | 4691.002 | 2599.584 | 2281.754 | 1299.826 |
| Population Class 8 | 4426.1      | 3700.038    | 4064.163 | 3426.443 | 454.8084 | 1022.463 | 3074.518 | 4952.556 | 1595.339 | 4907.981 | 338.9274 | 3102.126 | 269.1215 | 239.219  | 3794.87  |
|                    | Limiting P  | opulation   | Vectors  |          |          |          |          |          |          |          |          |          |          |          |          |
| Population Class 0 | 3.50E-13    | 3.19E-13    | 2.75E-13 | 2.51E-13 | 5.91E-13 | 2.52E-13 | 3.06E-13 | 3.75E-13 | 2.40E-13 | 2.83E-13 | 5.14E-13 | 3.36E-13 | 4.59E-13 | 3.83E-13 | 2.75E-13 |
| Population Class 1 | 1.87E-13    | 1.70E-13    | 1.47E-13 | 1.34E-13 | 3.15E-13 | 1.35E-13 | 1.63E-13 | 2.00E-13 | 1.28E-13 | 1.51E-13 | 2.75E-13 | 1.79E-13 | 2.45E-13 | 2.04E-13 | 1.47E-13 |
| Population Class 2 | 9.96E-14    | 9.09E-14    | 7.82E-14 | 7.16E-14 | 1.68E-13 | 7.19E-14 | 8.71E-14 | 1.07E-13 | 6.84E-14 | 8.06E-14 | 1.47E-13 | 9.56E-14 | 1.31E-13 | 1.09E-13 | 7.84E-14 |
| Population Class 3 | 5.32E-14    | 4.85E-14    | 4.18E-14 | 3.82E-14 | 8.98E-14 | 3.84E-14 | 4.65E-14 | 5.70E-14 | 3.65E-14 | 4.30E-14 | 7.82E-14 | 5.10E-14 | 6.98E-14 | 5.82E-14 | 4.18E-14 |
| Population Class 4 | 1.42E-14    | 1.29E-14    | 1.11E-14 | 1.02E-14 | 2.40E-14 | 1.02E-14 | 1.24E-14 | 1.52E-14 | 9.75E-15 | 1.15E-14 | 2.09E-14 | 1.36E-14 | 1.86E-14 | 1.55E-14 | 1.12E-14 |
| Population Class 5 | 3.79E-15    | 3.46E-15    | 2.97E-15 | 2.72E-15 | 6.40E-15 | 2.73E-15 | 3.31E-15 | 4.06E-15 | 2.60E-15 | 3.06E-15 | 5.57E-15 | 3.63E-15 | 4.97E-15 | 4.14E-15 | 2.98E-15 |
| Population Class 6 | 1.01E-15    | 9.22E-16    | 7.94E-16 | 7.26E-16 | 1.71E-15 | 7.29E-16 | 8.84E-16 | 1.08E-15 | 6.94E-16 | 8.17E-16 | 1.49E-15 | 9.70E-16 | 1.33E-15 | 1.11E-15 | 7.95E-16 |
| Population Class 7 | 2.70E-16    | 2.46E-16    | 2.12E-16 | 1.94E-16 | 4.55E-16 | 1.95E-16 | 2.36E-16 | 2.89E-16 | 1.85E-16 | 2.18E-16 | 3.97E-16 | 2.59E-16 | 3.54E-16 | 2.95E-16 | 2.12E-16 |
| Population Class 8 | 9.82E-17    | 8.96E-17    | 7.71E-17 | 7.05E-17 | 1.66E-16 | 7.08E-17 | 8.59E-17 | 1.05E-16 | 6.74E-17 | 7.94E-17 | 1.44E-16 | 9.42E-17 | 1.29E-16 | 1.07E-16 | 7.72E-1  |

```
s_i = [.2.2.2.2.1.1.1.1.1]
```

- Convergence to zero Gentle slope
- Convergence no matter starting population vector



Analysis of a Length-Structured Model for Fish

> Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations The following appears to be true based on numerical simulations:

- If  $\rho(A_1) < 1$ , then the zero population  $\vec{0}$  is globally asymptotically attracting.
- If  $\rho(A_0) < 1 < \rho(A_1)$ , then for every nonzero non-negative initial state  $\vec{P}(0)$ ,

$$\vec{P}(t) 
ightarrow \vec{P}^*$$
 as  $t 
ightarrow \infty$ .

$$P(t) o P^*$$
 as  $t o \infty$ .



#### Future work

Analysis of a Length-Structured Model for Fish

> Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations Since smaller fish are less desirable than larger fish, we would like to identify survivals  $(s_i)$  that lead to limiting populations which are not dominated by small fish. This might lead to management recommendations in the form of fishing regulations.



# Acknowledgements

Analysis of a Length-Structured Model for Fish

Geigh Zollicoffer

Introduction

Mathematical Model

Results

Numerical Simulations This work was made possible through funding from the Undergraduate Research program at UNL (UCARE) program.