Term Project for CSED441

New Global Pooling For Generating Score Map

20150560 CSE Dongwon Kim 20150384 CSE Eunyoung Hyung

Introduction Global Pooling?

Global Pooling

Pooling

Global pooling

Global Pooling

CNN for classification

Global Pooling

Instead, global pooling can be used to estimate the location of object

Related Works

That gave us the idea

Related Works

- Global Max Pooling(GMP)
- Global Average Pooling(GAP)
- Log-sum-exponential Pooling(LSE)
- Global Weighted Rank Pooling(GWRP)

Global Max Pooling(GMP)

- Hypothesizes the location of the object in the image at the position with the maximum score.
- Therefore, GMP often underestimates the sizes of objects.

Figure 4: Illustration of the weakly-supervised learning procedure. At training time, given an input image with an aeroplane label

Global Average Pooling(GAP)

- The global average pooling(GAP) outputs the spatial average of the feature map.
- GAP, also used frequently, encourages all responses to be high so it often overestimates them.

ing layer combined with our class activation mapping (CAM)

Log-sum-exponential Pooling(LSE)

- LSE takes advantages of both GMP and GAP by using a parameter r which makes pooling become between GAP and GMP
 - The function's output is close to GAP when r is small and GMP when r is large.

Figure 5. Heat map for class train generated by proposal network trained with average pooling, max pooling and LSE pooling respectively.

Global Weighted Rank Pooling(GWRP)

- Also generalization of GMP and GAP
 - Regards high score of pixel as more important one
 - But also takes the low score of pixel into account
- It encourages objects to occupy a certain fraction of an image, but, unlike GAP, is less prone to overestimating object sizes.

Our VVork New Global Pooling

Problem of GMP and GAP

- GMP assumes smaller size, GAP assumes larger size
- Can we make pooling to assume appropriate size of object?
 - -> Weighted average

Idea

- Consider every pixels in feature map in global pooling
 - But, Focus on more important pixels
- Use weighted average to bring this 'focus' in global pooling
 - Score of each pixels becomes weight
 - No additional hyperparameter
 - No additional learning parameter
- Global Squared Average Pooling(GSAP)

•
$$\sum_{i,j} \frac{f_k(i,j)^2}{\sum_{i,j} f_k(i,j)}$$

Experiments

Setup

- Keras with Theano background
- VGG16 without last fully connected layer as pre-trained model
- Learning rate 0.001
- Trained for 40 epoch
- Train last 4 convolution layers of VGG16 + fully connected layer
- Dataset INRIA Person dataset
 - Consisted with 2 category: img with people, and without people
 - Only image and label was trained
- Bounding box
 - It is drawn for regions with value > 20% of the max value of the CAM.

Evaluation

- Classification error
 - Test set of INRIA person dataset(588 images)

Method	Total loss	Accuracy
GMP	0.58	0.962
GAP	0.07	0.979
GSAP	0.08	0.967

No significant accuracy drop compared to GMP and GAP

Evaluation

- Detection evaluation
 - Because of the time limitation, we haven't perform qualitative evaluation.
 - But there are many examples shows GSAP's advantage, especially in multi object detection. (GMP-GSAP-GAP)

Conclusion

- GAP and GMP has problem when estimating object's size.
- GSAP, can solve this issue. It focus more on important region.
- Classification accuracy is higher than GMP, almost similar with GAP.
- GSAP especially performs better in multi-object-detection problem.
 - GMP tends to predict scores for only top1 object.
 - Because it train/predict only top score pixel.
 - GAP tends to predict high scores for interval between object.
 - It focus on every pixel equally, therefore predicted objects becomes larger and m erged.

