1. "Forwarding" is	about moving a pa	cket from a rou	ter's input link to the
•	· ·	•	
appropriate output	unk. souring 13	about determining	the end-to-routes
between sources an	d destinations.		

2. a. No Vc number can be assigned to the new VC.

because the New VC cannot be established in the network.

b. One link has two available UC numbers.

4 links —7 24 = 16

One example: (10, 00, 00, 10)

3. a.	Prefix Match	Link Interface
	11 00000 00	o
	[[] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1
	11 1 0 0 0 0	Z
	111000011	3
	other wise	3

b. first address 5th entry: bink interface 3.

second address 3nd entry: bink interface 2.

third address 4th entry: bink interface 3.

4. a. 128.119.40.129

b. Four equal size subnets:

128. 119. 40.64 /28

128.119. 40. 80/28

128. 119.40.96/28

128-119. 40. 112/28

_5

J									
	step	N	D(t), P(t)	o(u), p(u)	D(v). <i>P(</i> v)	D(w), P(w)	p(y) , p(y)	0(2), p(2)	
	o	Х	00	Ø	3, x	6, x	f, x	3. X	
	1	ΚV	7, √	6, √	3, x	6, x	6, ×	9. x	
	2	χνμ	7. √	6, v	}. x	<i>l</i> , x	6, x	9, x	
	3	χνưw	7, V	6,√	3, x	6, x	ſ, x	Ŷ. X	
	¥	xvuwy	7. ∨	6 , v	3, x	6, x	β, x	8.x	
	5	xvu wy t	7. ~	6 , ∨	3, X	6, X	6, x	8 , x	
	6	xvu wytz	7. v	6,∨	3, X	6, x	6, x	7, X	
	-		,						•

6. a. eBGP

b. iBGP

c. e BGP

d. iBGP

7. a. 32-4=28 bits are available for multicast address.

Thus, the size of the multicast address space is $N=2^{28}$.

b. The probability that two groups choose the same address is $\frac{1}{N} = 2^{-28} = 3.73 \times 10^{-9}$

C. The probability that 1000 groups all have different address is

$$\frac{N \times (N-1) \times (N-2) \times \cdots \times (N-999)}{N^{000}} = (1-\frac{1}{N}) (1-\frac{1}{N}) \cdots (1-\frac{999}{N})$$

Ignoring cross-product terms, this is approximately equal to.

$$1-\left(\frac{1+2+\cdots+999}{N}\right)=1-\frac{999\times6000}{2N}=0.998$$

Therefore, the probability that they interfere with each other is 1-0.998 = 0.002.