

NT6513

Preliminary

24K 4-Bit Microcontroller with Speech Synthesizer and LCD Driver

Features

- NT6610C-based single-chip 4-bit Microcontroller with LCD driver
- ROM: 24K x 16 bits (bank switched)
- RAM: 256 x 4 bits (system control register & data memory)
- Operating Voltage Range: 2.4V 5.5V
- 8 CMOS I/O ports
- 4 level subroutine nesting including interrupts`
- One 8-bit timers with pre-divider circuit
- Warm-up timer for power-on reset
- Powerful interrupt sources:
 - -Speech end interrupt
 - -Timer0 interrupt
 - -Port B interrupt (falling edge)

- System clock: 4 MHz single-pad voltage-controlled oscillator
- Table Branch and Return Constant Instructions for Table Data Generation
- Data pointer with special system register control
- Two low power operating modes HALT and STOP
- Instruction cycle time: 1 μs for 4 MHz voltagecontrolled oscillator
- Built-in speech synthesizer and 2 channel tone generator
- Type B LCD drive circuit
- LCD driver: 40 x 8 (1/8 duty cycle, 1/4 bias)
- LCD off by programming LCDOFF register
- Available in CHIP FORM

General Description

NT6513 is a single chip 4 bit μ C dedicated chip for handheld games. This device integrates a NT6610C 4-bit CPU core with RAM, ROM, timer, speech synthesizer, tone generator and dot matrix LCD driver.

Pad Configuration

Block Diagram

Pad Description

Pad No.	Symbol	I/O	Description
1 ~ 4	PA0 ~ PA3/ SEG37 ~ 40	I/O	Bit programmable I/O, shared by LCD Seg37 ~ 40
5	GND	Р	Ground
6 ~ 9	PB0 ~ PB3	I/O	Bit programmable I/O, Vector Interrupt
10	OSCI	1	OSC input
11	TEST	1	TEST (internal pull low, no connect for user)
12	RESET	I	Reset input (internal pull high, active low)
13	AOUT	0	Audio output
14	AOUT	0	Audio output
15	VDD	Р	Power supply
16 ~ 23	COM8 -1	0	Common signal output for LCD display
24 ~ 59	SEG36 -1	0	Segment signal output for LCD display, Seg31-36 shared by output,

Functional Description

1. CPU

The CPU core contains the following function blocks: Program Counter, ALU, Carry Flag, Accumulator, Table Branch Register (TBR), Data Pointer (INX, DPH, DPM and DPL), and Stack.

(a) PC (Program Counter)

The PC is used for ROM addressing consisting of 12-bits: Page Register (PC11), and Ripple Carry Counter (PC10 - PC0).

The program counter normally increases by one (+1) with each execution of an instruction except in the following cases:

- When executing a jump instruction (such as JMP, BA0, BAC);
- 2) When executing a subroutine call instruction (CALL);
- 3) When an interrupt occurs;
- 4) When the chip is at INITIAL RESET. The program counter is loaded with data corresponding to each instruction. The unconditional jump instruction (JMP) can be set at 1-bit page register for higher than 2K.

Program Counter can only address a 4K program ROM. To address 24K program ROM, use bank switch (Refer to the ROM description in Section 3 for details).

(b) ALU and CY

ALU performs arithmetic and logic operations.

The ALU provides the following functions:

2. RAM

RAM consists of general-purpose data memory, LCD RAM, and system registers.

(a) RAM Addressing

Data memory and system register can be accessed in one instruction by direct addressing. Following is the memory allocation map:

\$000 - \$01F: System register and I/O (32 × 4 bits)

\$020 - \$0FF: Data Memory (224 x 4 bits)

Binary addition/subtraction (ADC, SBC, ADD, SUB, ADI, SBI)

Decimal adjustment for addition/subtraction (DAA, DAS) Logic operations (AND, EOR, OR, ANDI, EORI, ORI) Decision (BA0, BA1, BA2, BA3, BAZ, BAC)

The Carry Flag (CY) holds the arithmetic operation ALU overflow.

During interrupt or call instruction, carry is pushed into stack and restored from stack by RTNI. It is unaffected by a RTNW instruction.

(c) Accumulator

Accumulator is a 4-bit register holding the results of the arithmetic logic unit. In conjunction with ALU, data transfers between the accumulator and system register, LCD RAM, or data memory can be performed.

(d) Stack

A group of registers used to save the contents of CY & PC (10-0) sequentially with each subroutine call or interrupt. It is organized 13 bits \times 4 levels. The MSB is saved for CY. 4 levels are the maximum allowed for subroutine calls and interrupts.

The contents of Stack are returned sequentially to the PC with the return instructions (RTNI/RTNW). Stack is operated on a first-in, last-out basis. This 4-level nesting includes both subroutine calls and interrupt requests. Note that program execution may enter an abnormal state if the number of calls and interrupt requests exceeds 4, and the bottom of stack will be shifted out.

\$100 - \$2FF: Reserved

\$300 - \$34F: LCD RAM space (80 x 4 bits)

(b) Data Memory

Data memory is organized as 224×4 bits (\$020 - \$0FF). Because of its static nature, the RAM can keep data after the CPU enters STOP or HALT.

(c) System Registers

The configuration of system registers is as follows:

	Bit 3	Bit 2	Bit 1	Bit 0	R/W	Remarks
\$00	IES	IET0	-	IEP	R/W	Interrupt enable flags
\$01	IRQSE	IRQT0	-	IRQP	R/W	Interrupt request flags
\$02	-	TM0.2	TM0.1	TM0.0	R/W	Timer0 mode register (TM0)
\$03	-	-	-	-	-	Reserved
\$04	T0L.3	T0L.2	T0L.1	T0L.0	R/W	Timer0 load/counter register low nibble
\$05	T0H.3	T0H.2	T0H.1	T0H.0	R/W	Timer0 load/counter register high nibble
\$06	SEG34	SEG33	SEG32	SEG31	W	Output port register
\$07	-	-	SEG36	SEG35	W	Output port register
\$08	PA.3	PA.2	PA.1	PA.0	R/W	PORTA
\$09	PB.3	PB.2	PB.1	PB.0	R/W	PORTB
\$0A	PA3OUT	PA2OUT	PA1OUT	PA0OUT	W	Set PORTA to be output
\$0B	PB3OUT	PB2OUT	PB1OUT	PB0OUT	W	Set PORTB to be output
\$0C	PPULL	LCDOFF	OP1	OP0	R W	OP1, OP0: Bonding Option LCDOFF: LCD Power control PPULL: Port pull-up control
\$0D	O/S	PAS	SPS	LPS	W	SPS, LPS: Speech or LCD frequency control PAS: Set PORTA as LCD segment37-40 O/S: Set LCD segment 31-36 as output
\$0E	TBR.3	TBR.2	TBR.1	TBR.0	R/W	Table Branch Register (TBR)
\$0F	INX.3	INX.2	INX.1	INX.0	R/W	Pseudo Index Register (INX)
\$10	DPL.3	DPL.2	DPL.1	DPL.0	R/W	Data Pointer for INX low nibble
\$11	-	DPM.2	DPM.1	DPM.0	R/W	Data Pointer for INX middle nibble
\$12	-	DPH.2	DPH.1	DPH.0	R/W	Data Pointer for INX high nibble
\$13	TV1.3	TV1.2	TV1.1	TV1.0	W	Tone generator 1 volume low nibble
\$14	PWMMD	-	-	-	W	PWM mode selection
\$15	SEN/ TG1EN	SST/ TV1.6	SV1/ TV1.5	SV0/ TV1.4	R/W	Speech control bit or Tone generator 1 volume high nibble
\$16	SA3/ TG1.3	SA2/ TG1.2	SA1/ TG1.1	SA0/ TG1.0	W	SA3 ~ 0: Speech data start address low nibble TG1.3 ~ 0: Tone generator 1 low nibble
\$17	SA7/ TG1.7	SA6/ TG1.6	SA5/ TG1.5	SA4/ TG1.4	W	SA7 ~ 4: Speech data start address TG1.7 ~ 4: Tone generator 1 middle nibble
\$18	SA11/ TG1.11	SA10/ TG1.10	SA9/ TG1.9	SA8/ TG1.8	W	SA11 ~ 8: Speech data start address TG1.11 ~ 8: Tone generator 1 high nibble

The second contract of the second	-4		/ t! 1\
The configuration	of Syst	em registers	(continuea)

\$19	STS	SA14	SA13	SA12	W	SA14 ~ 12: Speech data start address high nibble STS: Speech or tone generator selection bit
\$1A	TV2.3	TV2.2	TV2.1	TV2.0	W	Tone generator 2 volume low nibble
\$1B	TG2EN	TV2.6	TV2.5	TV2.4	R/W	Tone generator 2 volume high nibble TG2EN: Tone generator 2 enable
\$1C	TG2.3	TG2.2	TG2.1	TG2.0	W	Tone generator 2 low nibble
\$1D	TG2.7	TG2.6	TG2.5	TG2.4	W	Tone generator 2 middle nibble
\$1E	TG2.11	TG2.10	TG2.9	TG2.8	W	Tone generator 2 high nibble
\$1F	BNK3	BNK2	BNK1	BNK0	R/W	Bank Register for ROM (BNK)

(d) Data Pointer

Data memory can be indirectly addressed by the Data Pointer. Pointer address is located in register DPM (3-bits) and DPL (4-bits). The addressing range can have 128 locations. Pseudo index address (INX) is used to read or write Data memory, then RAM address bit9-bit0 comes from DPH, DPM and DPL.

3. ROM

NT6513 can address up to 24K words of program area from \$000 to \$5FFF. The ROM can be defined as program ROM, speech data and melody wave table continuously without any limitation.

(a) Vector Address Area (\$000 to \$004)

The program is sequentially executed. An area from address \$000 through \$004 is reserved for special interrupt service routines as starting execution of a vector address.

Address	Instruction	Remarks
\$000	JMP	Jump to RESET
\$001	JMP	Jump to Speech End
\$002	JMP	Jump to TIMER0
	NOP	·
\$004	JMP	Jump to PB

JMP can be replaced by any other instruction.

(b) Table Data Reference

Table Data can be stored in program memory and can be referenced by using Table Branch (TJMP) and Return Constant (RTNW) instructions. The Table Branch Register (TBR) and Accumulator (A) is placed by an offset address in program ROM. TJMP instruction branch into address ((PC11 - PC8) \times (2⁸) + (TBR, A)). The address is determined by RTNW to return look-up value into (TBR, A). ROM code bit7-bit4 is placed into TBR and bit3-bit0 into A.

(c) Bank Switch Mapping

Program Counter (PC11 - PC0) can only address 4K ROM space. Bank switch technique is used to extend the CPU address space. The lower 2K of the CPU addressing space maps to lower 2K of ROM space (BANK0). The upper 2K of the CPU addressing space maps to one of the fifteen banks (BANK 1 ~ 15) of the upper 30K of ROM. (according to the Bank Register)

The bank switch mapping is as follows:

CPU Address	ROM Space					
	BNK = 0	BNK = 1	BNK = 2	BNK = 3	BNK = 4	BNK = 5
000-7FF	0000 - 07FF					
	(BANK 0)					
800 - FFF	0800-0FFF	1000 -17FF	1800 -1FFF	2000 -27FF	2800 -2FFF	3000 -37FF
	(BANK 1)	(BANK 2)	(BANK 3)	(BANK 4)	(BANK 5)	(BANK 6)

CPU Address	ROM Space	ROM Space	ROM Space	ROM Space	ROM Space
	BNK = 6	BNK = 7	BNK = 8	BNK = 9	BNK = A
000-7FF	0000 - 07FF	000 - 07FF	000 - 07FF	000 - 07FF	000 - 07FF
	(BANK 0)	(BANK 0)	(BANK 0)	(BANK 0)	(BANK 0)
800 - FFF	3800 -3FFF	4000 -47FF	4800 -4FFF	5000 -57FF	5800 -5FFF
	(BANK 7)	(BANK 8)	(BANK 9)	(BANK 10)	(BANK 11)

(d) System Register 0CH

	Bit 3	Bit 2	Bit 1	Bit 0	R/W	Remarks	Power-on
\$0C	Х	Х	OP1	OP0	R	Bit0: Bonding option 0, internal weak drive Bit1: Bonding option 1, internal weak drive	Pull high Pull low
	Х	Х	0	1			Yes
	Х	Х	0	0		OP0 bond to GND	
	Х	Х	1	1		OP1 bond to VDD	
	Х	Х	1	0		OP0 bond to GND and OP1 bond to VDD	

Up to 4 different bonding options are possible for the user's needs. The chip's program has 4 different program flows that will vary depending on which bonding option is used. The readable contents of OP1 and OP0 will differ depending on bonding.

NT6513 Bonding Option

4. Timer

NT6513 has two 8-bit timers. Their operations are countingup. The timers consist of an 8-bit counter and an 8-bit preload register.

Timer provides the following functions:

- * Programmable interval timer
- * Read counter value

(a) Timer0 Configuration and Operation:

The Timer0 consists of an 8-bit write-only timer load register (TL0L, TL0H), and an 8-bit read-only timer counter (TC0L, TC0H). The timer counter can be initialized by writing data into the timer load register (TL0L, TL0H).

The low nibble should be written first, and then the high nibble. The timer counter is loaded with contents of the load register automatically when the high nibble is written or counts overflow happens. The timer overflow will generate an interrupt if the interrupt enable flag is set.

The timer can be programmed in several different system clock sources by setting the Timer Mode register (TM0).

(b) Timer Mode Register:

Timer Mode Register (TM0) is 4-bit register used for timer control as shown in Table 1. Mode Register selects input pulse sources to the timer.

Table 1. Timer 0 Mode Registers

TM0.2	TM0.1	TM0.0	Prescaler Divide Ratio	Clock Source
0	0	0	/2 ¹¹	System clock
0	0	1	/2 ⁹	System clock
0	1	0	/27	System clock
0	1	1	/2 ⁵	System clock
1	0	0	/2³	System clock
1	0	1	/2²	System clock
1	1	0	/2 ¹	System clock
1	1	1	/2 ⁰	System clock

5. I/O Ports

The MCU provides 8-bidirectional I/O pads. Each I/O pad contains pull-up MOS controllable by program. The PORT control registers (PAOUT, PBOUT) control ON/OFF of the output buffer.

5.1 PORTA~B

These ports contain 8-bidirectional I/O ports. The circuit configuration of PORTA~B as below.

I/O ports of NT6513 can be accessed by read/write system register.

Memory map addresses are listed as follow:

Address	Bit 3	Bit 2	Bit 1	Bit 0	R/W	Remarks	
\$08	PA.3	PA.2	PA.1	PA.0	R/W	PORTA	
\$09	PB.3	PB.2	PB.1	PB.0	R/W	PORTB	
\$0A	PA3OUT	PA2OUT	PA1OUT	PA0OUT	W	Set PORTA to be output	
\$0B	PB3OUT	PB2OUT	PB1OUT	PB0OUT	W	Set PORTB to be output	
\$0C	PPULL	LCDOFF	OP1	OP0	R W	OP1, OP0: Bonding Option LCDOFF: LCD Power control PPULL: Port pull-up control	

5.2 Controlling the pull-up MOS

These ports contain pull-up MOS controlled by program. The register PPULL controls On/Off of all pull-up MOS simultaneously. Pull-up MOS also controlled by the port data registers (PORTA, PORTB) of each port also. So the pull-up MOS can be turned On/Off by writing data 1/0 to port data register while the port is input.

5.3 Port Interrupt

PORTB interrupt (falling edge) is not controlled by Port I/O control register. It is means that if a interrupt request (IEx is set to 1 & one port bit high go low) is been touched and that the condition is the other port bits are high level whenever the port bit is output or input.

6. Speech synthesizer and Tone generator

Built-in speech synthesizer uses 5-bit $\mu\text{-Law}$ PCM coding to synthesize speech. The speech ROM is shared with

program ROM, so the longest speech is about 10 seconds, depending on the sampling rate and the program ROM size.

(a) The block diagram of speech synthesizer and tone generator

(b) The speech ROM mapping control register or tone generator (\$16~\$19)

Address	Bit 3	Bit 2	Bit 1	Bit 0	R/W	Remarks
\$16	SA3	SA2	SA1	SA0 W SA3 ~ 0: Speech data start address low nibb		SA3 ~ 0: Speech data start address low nibble
\$17	SA7	SA6	SA5	SA4	W SA7 ~ 4: Speech data start address	
\$18	SA11	SA10	SA9	SA8	W SA11 ~ 8: Speech data start address	
\$19	STS	SA14	SA13	SA12	W SA14 ~ 12: Speech data start address high nil STS: Speech or tone generator selection bit	

STS: Speech or tone generator 1 selection bit

0: Tone generator 1 (default)

1: Speech synthesizer

Speech addressing

Bit SA14~SA0 14 13 12 10 9 8 6 5 2 0 11 3 ROM address A2 A14 A13 A12 A11 A10 A9 Α8 Α7 A6 A5 А3 A4 Α1 A0

The format of speech data

Address	Speech Data							
Address	D15 D14~D10		D9~D5	D4~D0				
N (Start address)	0	SD2	SD1	SD0				
N+1	0	SD5	SD4	SD3				
	0							
N + m (End address)	1	X	11111	SD (3m)				

(c) Speech control register (\$15)

\$15	SEN	SST	SV1	SV0	W	Speech control bit or Tone generator 1 volume high nibble
------	-----	-----	-----	-----	---	--

SEN: Speech synthesizer enable flag

0: Speech synthesizer disable (default)

1: Speech synthesizer enable

SST: Speech synthesizer status flag

0: Speech synthesizer is idle

1: Speech synthesizer is playing

The control bit SST can read by CPU to check whether the speech is playing. While SST wrote to "1", the rising edge triggers the speech to start playing, and the SST will reset to "0" while the speech ending and it will cause a speech end interrupt request simultaneously.

SV1, SV0: Speech synthesizer volume control

SV1	SV0	Volume Level
0	0	0
1	0	1
0	1	2
1	1	4

(d) Speech synthesizer sampling rate adjustment

Address	Bit 3	Bit 2	Bit 1	Bit 0	R/W		Remarks	
\$0D	-	-	SPS	-	W	SPS:	Speech frequency control	

SPS: Speech synthesizer sampling rate adjustment

0: Speech playback sampling rate is 8KHz @4MHz oscillator

1: Speech playback sampling rate is 8KHz @2MHz oscillator

(c) Tone generator control register

NT6513 has two 12-bits tone generators, and the tone generator 1 is shared with speech synthesizer. The tone generators generate the specific frequency of tone with square wave.

Address	Bit 3	Bit 2	Bit 1	Bit 0	R/W	Remarks
\$16	TG1.3	TG1.2	TG1.1	TG1.0	W Tone generator 1 low nibble	
\$17	TG1.7	TG1.6	TG1.5	TG1.4	W	Tone generator 1 middle nibble
\$18	TG1.11	TG1.10	TG1.9	TG1.8	W	Tone generator 1 high nibble
\$1C	TG2.3	TG2.2	TG2.1	TG2.0	W	Tone generator 2 low nibble
\$1D	TG2.7	TG2.6	TG2.5	TG2.4	W	Tone generator 2 middle nibble
\$1E	TG2.11	TG2.10	TG2.9	TG2.8	W	Tone generator 2 high nibble

(d) Tone generator volume control register

Address	Bit 3	Bit 2	Bit 1	Bit 0	R/W	Remarks
\$13	TV1.3	TV1.2	TV1.1	TV1.0	W	Tone generator 1 volume low nibble
\$15	TG1EN	TV1.6	TV1.5	TV1.4	R/W	Tone generator 1 volume high nibble TG1EN: Tone generator 1 enable
\$1A	TV2.3	TV2.2	TV2.1	TV2.0	W	Tone generator 2 volume low nibble
\$1B	TG2EN	TV2.6	TV2.5	TV2.4	R/W	Tone generator 2 volume high nibble TG2EN: Tone generator 2 enable

The volume control register are 7-bits register used to control the output level of the tone generator.

TGxEN: Tone generator x enable

0: Tone generator x disable (default)

1:Tone generator x enable

Note: x=1 or 2

(e) PWM mode selection

Address	Bit 3	Bit 2	Bit 1	Bit 0	R/W	Remarks
\$14	PWMMD	-	-	-	W	PWM mode selection

PWMMD: PWM mode selection

0: Single Ended (default), while the speech output only to AOUT and $\overline{\text{AOUT}}$ output high impedance

1: Double Ended, while the speech output to AOUT and $\overline{\text{AOUT}}$

Note: The AOUT and AOUT will output high impedance when both the speech synthesizer and the tone generator are not enable.

(f) Programming notice

Never execute the "HALT" or "STOP" instruction while playing Speech or Tone Generator is playing.

(g) Music Table

Music Table 1

Following is the music scale reference table for Tone Generator channel 1(or channel 2) under OSX =4MHz.

Note	Ideal freq.	N	TGCR (TGx.11~TGx.0) (x = 1 or 2)	Real freq.	Error%		ldeal freq.	N	TGCR (TGx.11~TGx.0) (x = 1 or 2)	Real freq.	Error%
B2	123.47	4050	FD2	123.46	-0.01	#F5	739.99	676	2A4	739.64	-0.05
C3	130.81	3822	EEE	130.82	0.01	G5	783.99	638	27E	783.70	-0.04
#C3	138.59	3608	E18	138.58	-0.01	#G5	830.61	602	25A	830.56	-0.01
D3	146.83	3405	D4D	146.84	0.01	A5	880.00	568	238	880.28	0.03
#D3	155.56	3214	C8E	155.57	0.00	#A5	932.33	536	218	932.84	0.06
E3	164.81	3034	BDA	164.80	-0.01	B5	987.77	506	1FA	988.14	0.04
F3	174.61	2863	B2F	174.64	0.02	C6	1046.5	478	1DE	1046.0	-0.05
#F3	185.00	2703	A8F	184.98	-0.01	#C6	1108.7	451	1C3	1108.7	-0.01
G3	196.00	2551	9F7	196.00	0.00	D6	1174.7	426	1AA	1173.7	-0.08
#G3	207.65	2408	968	207.64	-0.01	#D6	1244.5	402	192	1243.8	-0.06
А3	220.00	2273	8E1	219.97	-0.01	E6	1318.5	379	17B	1319.3	0.06
#A3	233.08	2145	861	233.10	0.01	F6	1396.9	358	166	1396.7	-0.02
В3	246.94	2025	7E9	246.91	-0.01	#F6	1480.0	338	152	1479.3	-0.05
C4	261.63	1911	777	261.64	0.01	G6	1568.0	319	13F	1567.4	-0.04
#C4	277.18	1804	70C	277.16	-0.01	#G6	1661.2	301	12D	1661.1	-0.01
D4	293.66	1703	6A7	293.60	-0.02	A6	1760.0	284	11C	1760.6	0.03
#D4	311.13	1607	647	311.14	0.00	#A6	1864.7	268	10C	1865.7	0.05
E4	329.63	1517	5ED	329.60	-0.01	В6	1975.5	253	0FD	1976.3	0.04
F4	349.23	1432	598	349.16	-0.02	C7	2093.0	239	0EF	2092.1	-0.05
#F4	369.99	1351	547	370.10	0.03	#C7	2217.5	225	0E1	2222.2	0.22
G4	392.00	1276	4FC	391.85	-0.04	D7	2349.3	213	0D5	2347.4	-0.08
#G4	415.30	1204	4B4	415.28	-0.01	#D7	2489.0	201	0C9	2487.6	-0.06
A4	440.00	1136	470	440.14	0.03	E7	2637.0	190	0BE	2631.6	-0.21
#A4	466.16	1073	431	465.98	-0.04	F7	2793.8	179	0B3	2793.3	-0.02
B4	493.88	1012	3F4	494.07	0.04	#F7	2960.0	169	0A9	2958.6	-0.05
C5	523.25	956	3BC	523.01	-0.05	G7	3136.0	159	09F	3144.7	0.28
#C5	554.37	902	386	554.32	-0.01	#G7	3322.4	150	096	3333.3	0.33
D5	587.33	851	353	587.54	0.04	A7	3520.0	142	08E	3521.1	0.03
#D5	622.25	804	324	621.89	-0.06	#A7	3729.3	134	086	3731.3	0.05
E5	659.26	758	2F6	659.63	0.06	В7	3951.1	127	07F	3937.0	-0.36
F5	698.46	716	2CC	698.32	-0.02	C8	4186.0	119	077	4201.7	0.37

Music Table2

Following is the music scale reference table for Tone Generator channel 1(or channel 2) under OSX =2MHz.

LOIIOMI	ng is the r	nusic sca	ale reterence table f	e table for Tone Generator channel 1(or channel 2) under OSX =2MHz. R							
Note	ldeal freq.	N	TGCR (TGx.11~TGx.0) (x = 1 or 2)	Real freq.	Error%	Note	ldeal freq.	N	TGCR (TGx.11~TGx.0) (x = 1 or 2)	Real freq.	Error%
B1	61.73	4050	FD2	61.73	0.00	C5	523.25	478	1DE	523.01	-0.05
C2	65.10	3840	F00	65.10	0.00	#C5	554.37	451	1C3	554.32	-0.01
#C2	69.29	3608	E18	69.29	0.00	D5	587.33	426	1AA	586.85	-0.08
D2	73.42	3405	D4D	73.42	0.00	#D5	622.25	402	192	621.89	-0.06
#D2	77.78	3214	C8E	77.78	0.00	E5	659.26	379	17B	659.63	0.06
E2	82.41	3034	BDA	82.40	-0.01	F5	698.46	358	166	698.32	-0.02
F2	87.31	2863	B2F	87.32	0.01	#F5	739.99	338	152	739.64	-0.05
#F2	92.50	2703	A8F	92.49	-0.01	G5	783.99	319	13F	783.70	-0.04
G2	98.00	2551	9F7	98.00	0.00	#G5	830.61	301	12D	830.56	-0.01
#G2	103.82	2408	968	103.82	0.00	A5	880.00	284	11C	880.28	0.03
A2	110.00	2273	8E1	109.99	-0.01	#A5	932.33	268	10C	932.84	0.06
# A2	116.54	2145	861	116.55	0.01	В5	987.77	253	0FD	988.14	0.04
B2	123.47	2025	7E9	123.46	-0.01	C6	1046.5	239	0EF	1046.0	-0.05
C3	130.81	1911	777	130.82	0.01	#C6	1108.7	225	0E1	1111.1	0.22
#C3	138.59	1804	70C	138.58	-0.01	D6	1174.7	213	0D5	1173.7	-0.08
D3	146.83	1703	6A7	146.80	-0.02	#D6	1244.5	201	0C9	1243.8	-0.06
#D3	155.56	1607	647	155.57	0.00	E6	1318.5	190	0BE	1315.8	-0.21
E3	164.81	1517	5ED	164.80	-0.01	F6	1396.9	179	0B3	1396.7	-0.02
F3	174.61	1432	598	174.58	-0.02	#F6	1480.0	169	A9	1479.3	-0.05
#F3	185.00	1351	547	185.05	0.03	G6	1568.0	159	09F	1572.3	0.28
G3	196.00	1276	4FC	195.92	-0.04	#G6	1661.2	150	096	1666.7	0.33
#G3	207.65	1204	4B4	207.64	-0.01	A6	1760.0	142	08E	1760.6	0.03
А3	220.00	1136	470	220.07	0.03	#A6	1864.7	134	086	1865.7	0.05
#A3	233.08	1073	431	232.99	-0.04	В6	1975.5	127	07F	1968.5	-0.36
В3	246.94	1012	3F4	247.04	0.04	C 7	2093.0	119	077	2100.8	0.37
C4	261.63	956	3BC	261.51	-0.04	#C7	2217.5	113	071	2212.4	-0.23
#C4	277.18	902	386	277.16	-0.01	D7	2349.3	106	06A	2358.5	0.39
D4	293.66	851	353	293.77	0.04	#D7	2489.0	100	064	2500.0	0.44
#D4	311.13	804	324	310.95	-0.06	E7	2637.0	95	05F	2631.6	-0.21
E4	329.63	758	2F6	329.82	0.06	F7	2793.8	89	059	2809.0	0.54
F4	349.23	716	2CC	349.16	-0.02	#F7	2960.0	84	054	2976.2	0.55
#F4	369.99	676	2A4	369.82	-0.05	G7	3136.0	80	050	3125.0	-0.35
G4	392.00	638	27E	391.85	-0.04	#G7	3322.4	75	04B	3333.3	0.33
#G4	415.30	602	25A	415.28	-0.01	A7	3520.0	71	047	3521.1	0.03
A4	440.00	568	238	440.14	0.03	#A7	3729.3	67	043	3731.3	0.05
#A4	466.16	536	218	466.42	0.06	В7	3951.1	63	03F	3968.3	0.44
В4	493.88	506	1FA	494.07	0.04	C8	4186.0	60	03C	4166.7	-0.46

7. LCD

The LCD has 8 common signal pads, one controller, one LCD voltage generator, and 40 segment driver pads. The controller consists of display data RAM and a duty generator. The LCD is 1/8 duty, and 1/4 bias. The LCD data RAM is a dual port RAM that automatically transfers data to segment. The LCD can be turned off with the internal LCDOFF register.

When the "STOP" instruction is executed, the LCD will be turned off, but the data of LCD RAM is the same before execution the "STOP" instruction.

(a) LCD control register (\$0C)

Address	Bit 3	Bit 2	Bit 1	Bit 0	R/W	Remarks	
	-	-	OP1	OP0	R	OP1, OP0:	Bonding Option
\$0C	PPULL	LCDOFF	-	-	W	LCDOFF:	LCD Power control
						PPULL:	Port pull-up control

LCDOFF: LCD Power control

0: LCD on (default)

1: LCD off

When LCD off, the COMx and SEGx are pulled low.

(b) LCD frequency control and shared output control

Address	Bit 3	Bit 2	Bit 1	Bit 0	R/W	Remarks		
\$0D	O/S	PAS	SPS	LPS	W	SPS, LPS: Speech or LCD frequency control PAS: Set PORTA as LCD segment37 ~ 40 O/S: Set LCD segment 31 ~ 36 as output		

O/S: Set LCD segment 31-36 as output

0: SEG 31-36 as LCD segment (default) 1: SEG 31-36 as output

PAS: Set PORTA as LCD segment37-40

0: SEG 37-40 as PORTA (default) 1: SEG 37-40 as LCD segment

LPS: LCD frequency control

LPS	LCD frame frequency					
LFS	fosc = 4 MHz	fosc = 2 MHz				
0 (default)	61 Hz	30 Hz				
1	122 Hz	61 Hz				

(b) LCD Voltage Generator

LCD voltages V1, V2, V3 are obtained using resistor divider network. The LCD can be turned off by with the LCDOFF register.

(c) LCD RAM Area Configuration:

Address	Bit3	Bit2	Bit1	Bit0
\$300	SEG1	SEG1	SEG1	SEG1
\$301	SEG2	SEG2	SEG2	SEG2
\$302	SEG3	SEG3	SEG3	SEG3
\$303	SEG4	SEG4	SEG4	SEG4
\$304	SEG5	SEG5	SEG5	SEG5
\$305	SEG6	SEG6	SEG6	SEG6
\$306	SEG7	SEG7	SEG7	SEG7
\$307	SEG8	SEG8	SEG8	SEG8
\$308	SEG9	SEG9	SEG9	SEG9
\$309	SEG10	SEG10	SEG10	SEG10
\$30A	SEG11	SEG11	SEG11	SEG11
\$30B	SEG12	SEG12	SEG12	SEG12
\$30C	SEG13	SEG13	SEG13	SEG13
\$30D	SEG14	SEG14	SEG14	SEG14
\$30E	SEG15	SEG15	SEG15	SEG15
\$30F	SEG16	SEG16	SEG16	SEG16
\$310	SEG17	SEG17	SEG17	SEG17
\$311	SEG18	SEG18	SEG18	SEG18
\$312	SEG19	SEG19	SEG19	SEG19
\$313	SEG20	SEG20	SEG20	SEG20
\$314	SEG21	SEG21	SEG21	SEG21
\$315	SEG22	SEG22	SEG22	SEG22
\$316	SEG23	SEG23	SEG23	SEG23
\$317	SEG24	SEG24	SEG24	SEG24
\$318	SEG25	SEG25	SEG25	SEG25
\$319	SEG26	SEG26	SEG26	SEG26
\$31A	SEG27	SEG27	SEG27	SEG27
\$31B	SEG28	SEG28	SEG28	SEG28
\$31C	SEG29	SEG29	SEG29	SEG29
\$31D	SEG30	SEG30	SEG30	SEG30
\$31E	SEG31	SEG31	SEG31	SEG31
\$31F	SEG32	SEG32	SEG32	SEG32
\$320	SEG33	SEG33	SEG33	SEG33
\$321	SEG34	SEG34	SEG34	SEG34
\$322	SEG35	SEG35	SEG35	SEG35
\$323	SEG36	SEG36	SEG36	SEG36
\$324	SEG37	SEG37	SEG37	SEG37
\$325	SEG38	SEG38	SEG38	SEG38
\$326	SEG39	SEG39	SEG39	SEG39
\$327	SEG40	SEG40	SEG40	SEG40
Duty	COM4	COM3	COM2	COM1

LCD RAM Area Configuration (continued):

Address	Bit 3	Bit 2	Bit 1	Bit 0	
\$328	SEG1	SEG1	SEG1	SEG1	
\$329	SEG2	SEG2	SEG2	SEG2	
\$32A	SEG3	SEG3	SEG3	SEG3 SEG3	
\$32B	SEG4	SEG4	SEG4	SEG4	
\$32C	SEG5	SEG5	SEG5	SEG5	
\$32D	SEG6	SEG6	SEG6	SEG6	
\$32E	SEG7	SEG7	SEG7	SEG7	
\$32F	SEG8	SEG8	SEG8	SEG8	
\$330	SEG9	SEG9	SEG9	SEG9	
\$331	SEG10	SEG10	SEG10	SEG10	
\$332	SEG11	SEG11	SEG11	SEG11	
\$333	SEG12	SEG12	SEG12	SEG12	
\$334	SEG13	SEG13	SEG13	SEG13	
\$335	SEG14	SEG14	SEG14	SEG14	
\$336	SEG15	SEG15	SEG15	SEG15	
\$337	SEG16	SEG16	SEG16	SEG16	
\$338	SEG17	SEG17	SEG17	SEG17	
\$339	SEG18	SEG18	SEG18	SEG18	
\$33A	SEG19	SEG19	SEG19	SEG19	
\$33B	SEG20	SEG20	SEG20	SEG20	
\$33C	SEG21	SEG21	SEG21	SEG21	
\$33D	SEG22	SEG22	SEG22	SEG22	
\$33E	SEG23	SEG23	SEG23	SEG23	
\$33F	SEG24	SEG24	SEG24	SEG24	
\$340	SEG25	SEG25	SEG25	SEG25	
\$341	SEG26	SEG26	SEG26	SEG26	
\$342	SEG27	SEG27	SEG27	SEG27	
\$343	SEG28	SEG28	SEG28	SEG28	
\$344	SEG29	SEG29	SEG29	SEG29	
\$345	SEG30	SEG30	SEG30	SEG30	
\$346	SEG31	SEG31	SEG31	SEG31	
\$347	SEG32	SEG32	SEG32	SEG32	
\$348	SEG33	SEG33	SEG33	SEG33	
\$349	SEG34	SEG34	SEG34	SEG34	
\$34A	SEG35	SEG35	SEG35	SEG35	
\$34B	SEG36	SEG36	SEG36	SEG36	
\$34C	SEG37	SEG37	SEG37	SEG37	
\$34D	SEG38	SEG38	SEG38	SEG38	
\$34E	SEG39	SEG39	SEG39	SEG39	
\$34F	SEG40	SEG40	SEG40	SEG40	
Duty	COM8	COM7	COM6	COM5	

(d) LCD Waveform

The output waveform of 1/8 duty and 1/4 bias is shown below.

8. Interrupt

Four interrupt sources are available on the NT6513:

- Speech End interrupt (SE)
- Timer0 interrupt (TMR0)
- PortB falling edge detection interrupt (PB)
- (a) Interrupt Control Bits and Interrupt Service:
- Interrupt control flags are mapped on \$00 and \$01 of the system register. They can be accessed or tested by the program. These flags are cleared to 0 at initialization.

	Bit 3	Bit 2	Bit 1	Bit 0	Remarks
\$00	IES	IET0	-	IEP	Interrupt enable flags
\$01	IRQSE	IRQT0	-	IRQP	Interrupt request flags

- Interrupt request begins when IRQx is set to 1 and IEx is 1. At this time, interrupt will activate and vector address will commence from the priority PLA corresponding to the interrupt source. When an interrupt occurs, the PC and CY flags will be saved in stack memory and jump to an interrupt service vector address. After interrupt occurs, all interrupt enable flags (IEx) are automatically reset to 0, so any interrupt is disabled. The IRQx, which caused interrupt, must be reset by software in the interrupt service routine. When IEx is set to 1 again, NT6513 can service multi-level interrupts.

(b) Vector Address and Interrupt Priority

Priority	Interrupt source		
1 (Most)	RESET		
2	Speech end		
3	Timer0		
4 (Least)	РВ		

9. System Clock and Oscillation Circuit

The system clock generator produces clock pulses supplied to the CPU and on-chip peripherals.

Instruction cycle time
 1 μs for 4 MHz clock

10. HALT or STOP

- After execution of HALT, NT6513 will enter HALT. In HALT, the CPU will stop operating, but the peripheral circuit (timer) will operate.
- After execution of STOP, NT6513 will enter STOP. In STOP, the entire chip (including oscillator) will stop operating, and the LCD automatically powers-off.
- In HALT, NT6513 will wake up if an interrupt occurs.
- In STOP, NT6513 will wake up if port interrupt occurs.

11. Warm-up Timer

The warm-up timer eliminates an initial oscillation instability in the following two cases:

- 1) Power-on reset
- 2) Wake-up from STOP.

The warm-up time interval is 32 clock cycles.

12. System Reset

- Hardware reset input
- Warm-up timer for power-on reset

(a) Initial State

Hardware	After Power-on Reset		
Program Counter	\$000		
CY	Undefined		
Data Memory	Undefined		
AC	Undefined		
Timer 0 Counter	Undefined		
Timer 0 Load Register	Undefined		
Timer 0 mode Register	\$0		
Interrupt Enable Flags	0		
Interrupt Request Flags	0		
DPH, DPM, DPL	Undefined		
TBR	Undefined		
LCD driver output	0 (active)		
LCD frequency control (LPS)	0		
Speech sampling rate control (SPS)	0		
Set PORTA as LCD segment 37 ~ 40 (PAS)	0 (PORTA)		
Set LCD segment 31 ~ 36 as output (O/S)	0 (segment 31 ~ 36)		
PAOUT	\$0 (input)		
PBOUT	\$0 (input		
PPULL	0 (disable)		
Tone generator enable	0 (disable)		
Tone generator volume	\$0		
STS	0 (Tone generator selected)		
Speech volume	\$0		
Speech data address	Undefined		
PWM mode (PWMMD)	0 (Single ended)		
Speech enable (SEN)	0 (Disable)		
Bank register	\$0		

13. Instruction Set

All instructions are one cycle and one-word instructions. The characteristics are memory-oriented operation. Arithmetic and Logical Instruction

Accumulator Type

Mnemonic	Instruction Code	Function	Flag Change
ADC X(,B)	00000 0bbb xxx xxxx	$AC \leftarrow Mx + AC + CY$	CY
ADCM X(,B)	00000 1bbb xxx xxxx	$AC,Mx \leftarrow Mx + AC + CY$	CY
ADD X(,B)	00001 0bbb xxx xxxx	$AC \leftarrow Mx + AC$	CY
ADDM X(,B)	00001 1bbb xxx xxxx	$AC,Mx \leftarrow Mx + AC$	CY
SBC X(,B)	00010 0bbb xxx xxxx	$AC \leftarrow Mx + -AC + CY$	CY
SBCM X(,B)	00010 1bbb xxx xxxx	$AC,Mx \leftarrow Mx + -AC + CY$	CY
SUB X(,B)	00011 0bbb xxx xxxx	AC ← Mx + -AC + 1	CY
SUBM X(,B)	00011 1bbb xxx xxxx	$AC,Mx \leftarrow Mx + -AC +1$	CY
EOR X(,B)	00100 0bbb xxx xxxx	$AC \leftarrow Mx \oplus AC$	
EORM X(,B)	00100 1bbb xxx xxxx	$AC, Mx \leftarrow Mx \oplus AC$	
OR X(,B)	00101 0bbb xxx xxxx	$AC \leftarrow Mx \mid AC$	
ORM X(,B)	00101 1bbb xxx xxxx	$AC,Mx \leftarrow Mx \mid AC$	
AND X(,B)	00110 0bbb xxx xxxx	AC ← Mx & AC	
ANDM X(,B)	00110 1bbb xxx xxxx	AC,Mx ← Mx & AC	
SHR	11110 0000 000 0000	$0 \rightarrow AC[3]; AC[0] \rightarrow CY;$ AC shift right one bit	CY

Immediate Type

Mnemonic Instruction Code		Instruction Code	Function	Flag Change
ADI	X,I	01000 iiii xxx xxxx	$AC \leftarrow Mx + I$	CY
ADIM	X,I	01001 iiii xxx xxxx	$AC, Mx \leftarrow Mx + I$	CY
SBI	X,I	01010 iiii xxx xxxx	AC ← Mx + -l +1	CY
SBIM	X,I	01011 iiii xxx xxxx	$AC,Mx \leftarrow Mx + -I + 1$	CY
EORIM	X,I	01100 iiii xxx xxxx	$AC,\!Mx \leftarrow Mx \oplus I$	
ORIM	X,I	01101 iiii xxx xxxx	AC,Mx ← Mx II	
ANDIM	X,I	01110 iiii xxx xxxx	$AC,Mx \leftarrow Mx \& I$	

^{*} In the assembler ASM66 V1.0, EORIM mnemonic is EORI. However, EORI has the same operation identical with EORIM. Same is true for the ORIM with respect to ORI, and ANDIM with respect to ANDI.

Decimal Adjust

Mnemonic	Instruction Code	Function	Flag Change
DAA X	11001 0110 xxx xxxx	$AC; Mx \leftarrow Decimal \ adjust \ for \ add.$	CY
DAS X	11001 1010 xxx xxxx	$AC; Mx \leftarrow Decimal \ adjust \ for \ sub.$	CY

Transfer Instruction

Mnemonic	Instruction Code	Function	Flag Change
LDA X(,B)	00111 0bbb xxx xxxx	$AC \leftarrow Mx$	
STA X(,B)	00111 1bbb xxx xxxx	$Mx \leftarrow AC$	
LDI X,I	01111 iiii xxx xxxx	$AC,Mx \leftarrow I$	

Control Instruction

Mnemonic	Instruction Code	Function	Flag Change
BAZ X	10010 xxxx xxx xxxx	$PC \leftarrow X \text{if AC=0}$	
BNZ X	10000 xxxx xxx xxxx	PC ← X if AC≠0	
BC X	10011 xxxx xxx xxxx	$PC \leftarrow X \text{if CY=1}$	
BNC X	10001 xxxx xxx xxxx	PC ← X if CY≠1	
BA0 X	10100 xxxx xxx xxxx	$PC \leftarrow X \text{ if } AC(0)=1$	
BA1 X	10101 xxxx xxx xxxx	$PC \leftarrow X \text{ if } AC(1)=1$	
BA2 X	10110 xxxx xxx xxxx	$PC \leftarrow X \text{ if } AC(2)=1$	
BA3 X	10111 xxxx xxx xxxx	$PC \leftarrow X \text{ if } AC(3)=1$	
CALL X	11000 yayy yay yayy	ST ← CY; PC +1	
CALL X	ALL X		
RTNW H;L	11010 000h hhh IIII	$PC \leftarrow ST; TBR \leftarrow hhhh;$	
KINVVII,L	11010 000111111111111	AC ←IIII	
RTNI	11010 1000 000 0000	CY;PC ← ST	CY
HALT	11011 0000 000 0000		
STOP	11011 1000 000 0000		
JMP X	1110p xxxx xxx xxxx	$PC \leftarrow X(Include p)$	
TJMP	11110 1111 111 1111	PC ←(PC11-PC8) (TBR) (AC)	
NOP	11111 1111 111 1111	No Operation	

Where,

PC	Program counter	1	Immediate data
AC	Accumulator	•	Logical exclusive OR
-AC	Complement of accumulator	I	Logical OR
CY	Carry flag	&	Logical AND
Mx	Data memory	bbb	RAM bank=000
Р	ROM page =0		
ST	Stack	TBR	Table Branch Register

Absolute Maximum Ratings*

DC Supply Voltage	0.3V to +7V
Input Voltage	0.3V to V DD +0.3V
Operating Ambient Temperature	10°C to +60°C
Storage Temperature	55°C to +125°C

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics (VDD = 3.0V, GND = 0V, Ta = 25°C, Fosc = 4 MHz, unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
VDD	Operating Voltage	2.4	3.0	5.5	V	
Іор	Operating Current	-	0.8	1.5	mA	All output unload
ISB	Standby Current (Stop)	-	-	1	μΑ	All output unload
lıL	Input Current	-1	-	1	μΑ	V(input) = 3.0V
VIH1	Input High Voltage	0.7×VDD	-	VDD+0.3	٧	PORTA, PORTB
VIL1	Input Low Voltage	-0.3	-	0.3×VDD	٧	PORTB, PORTB
VIH2	Input High Voltage	0.8×VDD	-	VDD+0.3	V	RESET, TEST
VIL2	Input Low Voltage	-0.3	-	0.2×VDD	V	RESET, TEST
Voн1	Output high voltage	VDD-0.7	-	-	V	PORTA, PORTB, AOUT and AOUT, IOH1 = -2mA
Vol1	Output low voltage	-	-	0.6	V	PORTA, PORTB, AOUT and AOUT, lol1 = 2mA
Voн2	Output high voltage	VDD-0.7	-	-	٧	SEG31 ~ 36 set to output port, IoH2 = -1mA
VOL2	Output low voltage	-	-	0.6	V	SEG31 ~ 36 set to output port, IoL2 = 1mA
Rpu	Pull-up Resistance	-	130	200	ΚΩ	PORTA and PORTB, VI/0=0V
ILCD	LCD lighting current	-	30	-	μΑ	Exclude CPU operation current

AC Electrical Characteristics ($V_{DD} = 3.0V$, GND = 0V, $T_A = 25$ °C, $F_{OSC} = 4$ MHz, unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions	
∆F /F	Frequency Stability	-	6	9	%	[F(3.0)-F(2.5)]/F(3.0)	
∆F /F	ΔF /F Frequency Variation		-	10	%	[F(MAX)-F(TYP)]/F(TYP)	

Typical RC oscillator R-F curve: (for reference only)

Application Circuit (for reference only):

AP1:

AP2:

Bonding Diagram

Substrate connects to GND.

Pad	Designation	Х	Y	Pad	Designation	Х	Y	Pad	Designation	Х	Υ
No	Doorgilation	~	•	No	Doolgilation	^	•	No	Designation	^	•
1	SEG[13]	-7	946.15	21	SEG[33]	-860.3	-576.5	41	COM[2]	864	-461.5
2	SEG[14]	-122	946.15	22	SEG[34]	-860.3	-691.5	42	COM[3]	864	-346.5
3	SEG[15]	-237	946.15	23	SEG[35]	-860.3	-811.5	43	COM[4]	864	-231.5
4	SEG[16]	-352	946.15	24	SEG[36]	-860.3	-944.5	44	COM[5]	864	-116.5
5	SEG[17]	-467	946.15	25	SEG[37]	-707.5	-944.5	45	COM[6]	864	-1.5
6	SEG[18]	-582.65	946.15	26	SEG[38]	-587.5	-944.5	46	COM[7]	864	113.5
7	SEG[19]	-702.65	946.15	27	SEG[39]	-467.5	-944.5	47	COM[8]	864	228.5
8	SEG[20]	-860.3	946.15	28	SEG[40]	-347.5	-944.5	48	SEG[1]	864	343.5
9	SEG[21]	-860.3	808.5	29	GND	-227	-944.5	49	SEG[2]	864	458.5
10	SEG[22]	-860.3	688.5	30	PORTB[0]	0	-944.5	50	SEG[3]	864	573.5
11	SEG[23]	-860.3	573.5	31	PORTB[1]	118	-944.5	51	SEG[4]	864	688.5
12	SEG[24]	-860.3	458.5	32	PORTB[2]	238	-944.5	52	SEG[5]	864	808.5
13	SEG[25]	-860.3	343.5	33	PORTB[3]	358	-944.5	53	SEG[6]	864	946.2
14	SEG[26]	-860.3	228.5	34	OSCI	478	-944.5	54	SEG[7]	708	946.15
15	SEG[27]	-860.3	113.5	35	PAD_TEST	598	-944.5	55	SEG[8]	588	946.15
16	SEG[28]	-860.3	-1.5	36	PAD_RESETB	718	-944.5	56	SEG[9]	463	946.15
17	SEG[29]	-860.3	-116.5	37	BDN	864	-944.5	57	SEG[10]	343	946.15
18	SEG[30]	-860.3	-231.5	38	BD	864	-819.5	58	SEG[11]	223	946.15
19	SEG[31]	-860.3	-346.5	39	VCC	763.95	-691.5	59	SEG[12]	108	946.15
20	SEG[32]	-860.3	-461.5	40	COM[1]	864	-576.5				

BONI	NG OPTION:										
	OP0		-127	-944	.5 for Gnd						
	OP1		864	-691	.5 for Vcc						

Ordering Information

Part No.	Package
NT6513H	Chip Form