Communication Networks 2

TECHNISCHE UNIVERSITÄT DARMSTADT

Multipath TCP

Slides adopted from

Olivier Bonaventure «Decoupling TCP from IP with Multipath TCP» http://inl.info.ucl.ac.be

Prof. Dr.-Ing. **Ralf Steinmetz**KOM - Multimedia Communications Lab

Overview

- 1 The Motivations for Multipath TCP
 - 1.1 The Origins of TCP
 - 1.2 The Changing Internet
- 2 The Multipath TCP Protocol
 - 2.1 Some Basics & Design objectives
 - 2.2 The Multipath TCP Protocol Control Plane Overview
 - 2.3 The Multipath TCP protocol Data plane
 - 2.4 The Multipath TCP protocol Congestion control
 - 2.5 The Multipath TCP protocol Control plane
 - 2.6 The Multipath TCP control plane Connection establishment in details
 - 2.7 The Multipath TCP control plane Closing a Multipath TCP connection
 - 2.8 The Multipath TCP control plane Address dynamics
- 3 Multipath TCP use cases
 - 3.1 Multipath TCP use cases Datacenters
 - 3.2 Multipath TCP use cases Smartphones
- 4 Conclusion
- **5 References**

1 The Motivations for Multipath TCP

The motivations for Multipath TCP

The changing Internet

The Multipath TCP Protocol

Multipath TCP use cases

1.1 The Origins of TCP

Source: http://spectrum.ieee.org/computing/software/the-strange-birth-and-long-life-of-unix

The Unix pipe model

The TCP bytestream model

Endhosts have evolved

Mobile devices have multiple wireless interfaces

User Expectations

What Technology provides

What Technology provides

What Technology provides

When IP addresses change TCP connections have to be re-established!

Datacenters

1.2 The Changing Internet

The motivations for Multipath TCP

The changing Internet

The Multipath TCP Protocol

Multipath TCP use cases

The Internet architecture that we explain to our students

Application

Transport

Network

Datalink

Physical

Datalink

Physical

Physical

Network

Datalink

Physical

O. Bonaventure, Computer networking: Principles, Protocols and Practice, open ebook, http://inl.info.ucl.ac.be/cnp3

A typical "academic" network

Application

Transport

Network

Datalink

Physical

Datalink

Physical

Network

Datalink

Physical

Application

Transport

Network

Datalink

Physical

The end-to-end principle

In reality

Figure 1: Box plot of middlebox deployments for small (fewer than 1k hosts), medium (1k-10k hosts), large (10k-100k hosts), and very large (more than 100k hosts) enterprise networks. Y-axis is in log scale.

- almost as many middleboxes as routers
- various types of middleboxes are deployed

Sherry, Justine, et al. "Making middleboxes someone else's problem: Network processing as a cloud service." Proceedings of the ACM SIGCOMM 2012 conference. ACM, 2012.

A Middlebox Zoo

Web Security Appliance

VPN Concentrator

SSL Terminator

ACE XML Gateway

PIX Firewall Right and Left

Cisco IOS Firewall

IP Telephony Router

Streamer

Voice Gateway

NAT

http://www.cisco.com/web/about/ac50/ac47/2.html

How to model those Middleboxes?

In the official architecture, they do not exist In reality...

TCP segments processed by a router

Ver	IHL		ToS	Total length					
Identification				Flags	Frag. Offset				
TTL Pro			otocol	Cł	necksum				
	Source IP address								
	Destination IP address								
S	ource	oort		Des	tination port				
Sequence number									
	Acknowledgment number								
THL	THL Reserved Flags Window				ndow				
(Checks	um		Urgent pointer					
Options									
Payload									

TCP segments processed by a NAT

Ver	IHL	-	ToS	Total length				
	dentific	atio	n	Flags	Frag. Offset			
TTL Protocol			otocol	Checksum				
	Source IP address							
	Des	stina	ation IF	o addre	ess			
S	ource p	oort		Des	tination port			
	Sequence number							
	Acknowledgment number							
THL	THL Reserved Flags Window				indow			
C	gent pointer							
Options								
Payload								

Ver	IHL		ToS	Total length					
Identification			n	Flags	Frag. Offset				
7	TTL Protocol			Checksum					
	Source IP address								
	Destination IP address								
S	ource	por	t	Des	tination port				
	Sequence number								
	Acknowledgment number								
THL	THL Reserved Flags Window				indow				
(Checksum			Urgent pointer					
	Options								
	Doylood								
	Payload								

TCP segments processed by a NAT (2)

active mode ftp behind a NAT

```
220 ProFTPD 1.3.3d Server (BELNET FTPD Server) [193.190.67.15]
ftp_login: user `<null>' pass `<null>' host `ftp.belnet.be'
Name (ftp.belnet.be:obo): anonymous
---> USER anonymous
331 Anonymous login ok, send your complete email address as your password
Password:
---> PASS XXXX
---> PORT 192,168,0,7,195,120
200 PORT command successful
---> LIST
150 Opening ASCII mode data connection for file list
lrw-r---- 1 ftp ftp 6 Jun 1 2011 pub -> mirror
```

226 Transfer complete

TCP segments processed by an ALG running on a NAT

Ver	IHL	_	ГоS	Total length				
Identification			n	Flags	Frag. Offset			
٦	TTL Protoco		tocol	Checksum				
	S	Sour	ce IP a	addres	S			
	De	stina	ation IF	^o addre	ess			
S	ource	oort		Des	tination port			
	Sequence number							
	Acknowledgment number							
THL	HL Reserved Flags Window				indow			
Checksum				Urgent pointer				
Options								
Doylood								
	Payload							

Ver	IHL		ToS	Total length					
Identification				Flags Frag. Offset					
TTL F		Pro	otocol	CI	necksum				
	Source IP address								
	Destination IP address								
S	Source port Destination port								
	Sequence number								
	Acknowledgment number								
THL	Reserv	/ed	Flags	s Window					
(Checks	um		Urgent pointer					
	Options								
Payload									

2 The Multipath TCP Protocol

The motivations for Multipath TCP

The changing Internet

Multipath TCP use cases

2.1 Some Basics & Design objectives

Multipath TCP is an evolution of TCP

Design objectives

- Support unmodified applications
- Work over today's networks
- Works in all networks where regular TCP works

RFC 6824: TCP Extensions for Multipath Operation with Multiple Addresses

RFC 6182: Architectural Guidelines for Multipath TCP Development

RFC 6356: Coupled Congestion Control for Multipath Transport Protocols

Identification of a TCP connection

_											
1	•	Ver	IHL	7	ГоS	To	otal length				
Į		I	dentific	atio	n	Flags Frag. Offset					
IF	,	-	TTL	Pro	tocol	Checksum					
		Source IP address									
J		Destination IP address									
1		S	Source	por	t	Destination port					
		Sequence number									
		Acknowledgment number									
TC	;P	THL Reserved Flag				Window					
		(Checks	um		Urgent pointer					
	Ì	Options									
		Doylood									
		Payload									
N	y										

Four tuple

- IP_{source}
- IP_{dest}
- Port_{source}
- Port_{dest}

All TCP segments contain the four tuple

The *new* bytestream model

2.2 The Multipath TCP Protocol - Control Plane Overview

Control plane

■ How to manage a Multipath TCP connection that uses several paths?

Data plane

How to transport data?

Congestion control

How to control congestion over multiple paths?

A naïve Multipath TCP

A naïve Multipath TCP In today's Internet?

Design decision

- A Multipath TCP connection is composed of one of more regular TCP subflows that are combined
- Each host maintains state that glues the TCP subflows that compose a Multipath TCP connection together
- Each TCP subflow is sent over a single path and appears like a regular TCP connection along this path

Multipath TCP and the architecture

A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, "Architectural guidelines for multipath TCP development", RFC6182 2011.

A regular TCP connection

What is a regular TCP connection?

- It starts with a three-way handshake
 - SYN segments may contain special options
- All data segments are sent in sequence
 - There is no gap in the sequence numbers
- It is terminated by using FIN or RST

Multipath TCP

How to combine two TCP subflows?

How to link TCP subflows?

How to link TCP subflows?

Subflow agility

Multipath TCP supports

- addition of subflows
- removal of subflows

2.3 The Multipath TCP protocol - Data plane

Control plane

■ How to manage a Multipath TCP connection that uses several paths?

Data plane

How to transport data?

Congestion control

How to control congestion over multiple paths?

How to transfer data?

How to transfer data in today's Internet?

Multipath TCP Data transfer

Two levels of sequence numbers

Multipath TCP - Data transfer

Multipath TCP - How to deal with losses?

Data losses over one TCP subflow

Fast retransmit and timeout as in regular TCP

Multipath TCP

What happens when a TCP subflow fails?

Retransmission heuristics

Heuristics used by current Linux implementation

- Fast retransmit is performed on the same subflow as the original transmission
- Upon timeout expiration, reevaluate whether the segment could be retransmitted over another subflow
- Upon loss of a subflow, all the unacknowledged data are retransmitted on other subflows

Flow control

How should the window-based flow control be performed?

- Independant windows on each TCP subflow
- A single window that is shared among all TCP subflows

Independant windows

Independant windows - possible problem

Impossible to retransmit, window is already full on green subflow

A single window shared by all subflows

A single window shared by all subflows Impact of middleboxes

Multipath TCP Windows

Multipath TCP maintains one window per Multipath TCP connection

- Window is relative to the last acked data (Data Ack)
- Window is shared among all subflows
 - It's up to the implementation to decide how the window is shared
- Window is transmitted inside the window field of the regular TCP header
- If middleboxes change window field,
 - use largest window received at MPTCP-level
 - use received window over each subflow to cope with the flow control imposed by the middlebox

Multipath TCP buffers

Sending Multipath TCP information

How to exchange the Multipath TCP specific information between two hosts?

Option 1

Use TLVs to encode data and control information inside payload of subflows

Option 2

Use TCP options to encode all Multipath TCP information

Option 1: Michael Scharf, Thomas-Rolf Banniza, MCTCP: A Multipath Transport Shim Layer, GLOBECOM 2011

Multipath TCP with only options

Advantages

- Normal way of extending TCP
- Should be able to go through middleboxes or fallback

Drawbacks

- •limited size of the TCP options, notably inside SYN
- What happens when middleboxes drop TCP options in data segments

Multipath TCP using TLV

Advantages

- Multipath TCP could start as regular TCP and move to Multipath only when needed
- Could be implemented as a library in userspace
- TLVs can be easily extended

Drawbacks

- TCP segments contain TLVs including the data and not only the data
 - problem for middleboxes, DPI, ..
- Middleboxes become more difficult

Michael Scharf, Thomas-Rolf Banniza, MCTCP: A Multipath Transport Shim Layer, GLOBECOM 2011

Is it safe to use TCP options?

Known option (TS) in Data segments

Honda, Michio, et al. "Is it still possible to extend TCP?." Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference. ACM. 2011.

© O. Bonaventure, 2011

Is it safe to use TCP options?

Unknown option in Data segments

Honda, Michio, et al. "Is it still possible to extend TCP?." Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference. ACM, 2011.

© O. Bonaventure, 2011

Multipath TCP options

TCP option format

Kind Length Option-specific data	Kind	Length	Option-specific data
----------------------------------	------	--------	----------------------

Initial design

 One option kind for each purpose (e.g. Data Sequence number)

Final design

■ A single variable-length Multipath TCP option

Multipath TCP option

A single option type

 to minimise the risk of having one option accepted by middleboxes in SYN segments and rejected in segments carrying data

Kind Length Subtype

Subtype specific data
(variable length)

Data sequence numbers and TCP segments

How to transport Data sequence numbers?

- Same solution as for TCP
 - Data sequence number in TCP option is the Data sequence number of the first byte of the segment

Source port			Destination port		
Sequence number					
Acknowledgment number					
THL	Reserved	Flags	Window		
Checksum			Urgent pointer		
Datasequence number					
Payload					

Multipath TCP - Data transfer

TCP sequence number and middleboxes

Honda, Michio, et al. "Is it still possible to extend TCP?." Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference. ACM, 2011.

© O. Bonaventure, 2011

Which middleboxes change TCP sequence numbers?

Some firewalls change TCP sequence numbers in SYN segments to ensure randomness

• fix for old windows95 bug

Transparent proxies terminate TCP connections

Other types of middlebox interference

Data segments

Such a middlebox could also be the network adapter of the server that uses LRO to improve performance.

Segment coalescing

Honda, Michio, et al. "Is it still possible to extend TCP?." Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference. ACM, 2011.

© O. Bonaventure, 2011

Data sequence numbers and middleboxes

Data sequence numbers and middleboxes

A "middlebox" that both splits and coalesces TCP segments

Data sequence numbers and middleboxes

How to avoid desynchronisation between the bytestream and data sequence numbers?

Solution

- Multipath TCP option carries mapping between Data sequence numbers and (difference between initial and current) subflow sequence numbers
 - mapping covers a part of the bytestream (length)

Multipath TCP - Data transfer

Data sequence numbers and middleboxes

Multipath TCP and middleboxes

With the DSS mapping, Multipath TCP can cope with middleboxes that

- combine segments
- split segments

Are they the most annoying middleboxes for Multipath TCP?

Unfortunately not

The worst middlebox

Is this an academic exercise or reality?

The worst middlebox

Is unfortunately very old...

Any ALG for a NAT

```
220 Proftpd 1.3.3d Server (BELNET ftpd Server) [193.190.67.15]
```

ftp_login: user `<null>' pass `<null>' host `ftp.belnet.be'

Name (ftp.belnet.be:obo): anonymous

---> USER anonymous

331 Anonymous login ok, send your complete email address as your password

Password:

---> PASS XXXX

---> PORT 192,168,0,7,195,120

200 PORT command successful

---> LIST

150 Opening ASCII mode data connection for file list

Irw-r--r-- 1 ftp ftp 6 Jun 1 2011 pub -> mirror

226 Transfer complete

Coping with the worst middlebox

What should Multipath TCP do in the presence of such a worst middlebox ?

- Do nothing and ignore the middlebox
 - but then the bytestream and the application would be broken and this problem will be difficult to debug by network administrators
- Detect the presence of the middlebox
 - and fallback to regular TCP (i.e. use a single path and nothing fancy)

Multipath TCP **MUST** work in all networks where regular TCP works.

Detecting the worst middlebox ?

How can Multipath TCP detect a middlebox that modifies the bytestream and inserts/removes bytes?

- Various solutions were explored
- In the end, Multipath TCP chose to include its own checksum to detect insertion/deletion of bytes

The worst middlebox

Multipath TCP Data sequence numbers

What should be the length of the data sequence numbers?

- 32 bits
 - compact and compatible with TCP
 - wrap around problem at highspeed requires PAWS
- 64 bits
 - wrap around is not an issue for most transfers today
 - takes more space inside each segment

Multipath TCP - Data sequence numbers

Data sequence numbers and Data acknowledgements

- Maintained inside implementation as 64 bits field
- Implementations can, as an optimisation, only transmit the lower 32 bits of the data sequence and acknowledgements

Data Sequence Signal option

Cost of the DSN checksum

C. Raiciu, et al. "How hard can it be? designing and implementing a deployable multipath TCP," NSDI'12: Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, 2012.

2.4 The Multipath TCP protocol - Congestion control

Control plane

■ How to manage a Multipath TCP connection that uses several paths?

Data plane

■ How to transport data?

Congestion control

How to control congestion over multiple paths?

TCP congestion control

A linear rate adaption algorithm

- $\bullet \ \ rate(t+1) = lpha_C + eta_C rate(t)$ when the network is congested
- $rate(t+1) = \alpha_N + \beta_N rate(t)$ when the network is *not* congested

To be fair and efficient, a linear algorithm must use additive increase and multiplicative decrease (AIMD)

```
# Additive Increase Multiplicative Decrease
if congestion :
    rate=rate*betaC  # multiplicative decrease, betaC<1
else
    rate=rate+alphaN  # additive increase, v0>0
```

AIMD in TCP

Congestion control mechanism

Each host maintains a congestion window (cwnd)

No congestion

- Congestion avoidance (additive increase)
- increase cwnd by one segment every round-trip-time

Congestion

- TCP detects congestion by detecting losses
- Mild congestion (fast retransmit multiplicative decrease)
- cwnd=cwnd/2 and restart congestion avoidance
- Severe congestion (timeout)
- cwnd=1, set slow-start-threshold and restart slow-start

Evolution of the congestion window

Congestion control for Multipath TCP

Simple approach

• independant congestion windows

2.5 The Multipath TCP protocol - Control plane

Control plane

How to manage a Multipath TCP connection that uses several paths?

Data plane

How to transport data?

Congestion control

How to control congestion over multiple paths?

2.6 The Multipath TCP control plane - Connection establishment in details

Connection establishment in details

Closing a Multipath TCP connection

Address dynamics

Multipath TCP - Connection establishment

Principle

Roles of the initial TCP handshake

Check willingness to open TCP connection

- Propose initial sequence number
- Negotiate Maximum Segment Size

TCP options

negotiate Timestamps, SACK, Window scale

Multipath TCP

- check that server supports Multipath TCP
- propose Token in each direction
- propose initial Data sequence number in each direction
- Exchange keys to authenticate subflows

How to extend TCP? Theory

TCP options were invented for this purpose

Exemple SACK

How to extend TCP? Practice

What happens when there are middleboxes on the path?

TCP options

In SYN segments

Honda, Michio, et al. "Is it still possible to extend TCP?." Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference, ACM, 2011.

© O. Bonaventure, 2011

How to extend TCP? The worst case

What happens when there are middleboxes on the path?

Multipath TCP handshake

Multipath TCP option in third ACK

Multipath TCP handshake Token exchange

Initial Data Sequence number

Why do we need an initial Data Sequence number?

- Setting IDSN to a random value improves security
- Hosts must know IDSN to avoid losing data in some special cases

Initial Data Sequence number

Initial Data Sequence number

How to negotiate the IDSN?

2.7 The Multipath TCP control plane - Closing a Multipath TCP connection

Connection establishment in details

Closing a Multipath TCP connection

Address dynamics

Closing a Multipath TCP connection

How to close a Multipath TCP connection?

■ By closing all subflows?

Closing a Multipath TCP connection

Closing a Multipath TCP connection

FAST Close

2.8 The Multipath TCP control plane - Address dynamics

Connection establishment in details

Closing a Multipath TCP connection

Address dynamics

Multipath TCP Address dynamics

How to learn the addresses of a host?

How to deal with address changes?

Address dynamics

Basic solution: multihomed server

Address dynamics

Basic solution: mobile client

Address dynamics with NATs

Solution

- Each address has one identifier
 - Subflow is established between id=0 addresses
- Each host maintains a list of <address,id> pairs of the addresses associated to an MPTCP endpoint
- MPTCP options refer to the address identifier
 - ADD_ADDR contains <address,id>
 - REMOVE_ADDR contains <id>

Address dynamics

3 **Multipath TCP use cases**

The motivations for Multipath TCP

The changing Internet

The Multipath TCP Protocol

Multipath TCP use cases

- Datacenters
- Smartphones

3.1 Multipath TCP use cases - Datacenters

The motivations for Multipath TCP

The changing Internet

The Multipath TCP Protocol

Multipath TCP use cases

- Datacenters
- Smartphones

Datacenters evolve

Traditional Topologies are tree-based

- Poor performance
- Not fault tolerant

Shift towards multipath topologies: FatTree, Bube, Viz, Cisco, EC2

C. Raiciu, et al. "Improving datacenter performance and robustness with multipath TCP," ACM SIGCOMM 2011.

Fat Tree Topology [Fares et al., 2008; Clos, 1953]

C. Raiciu, et al. "Improving datacenter performance and robustness with multipath TCP," ACM SIGCOMM 2011.

TCP in data centers

TCP in FAT tree networks Cost of collissions

C. Raiciu, et al. "Improving datacenter performance and robustness with multipath TCP," ACM SIGCOMM 2011.

How to get rid of these collisions?

Consider TCP performance as an optimization problem

The Multipath TCP way

MPTCP better utilizes the FatTree network

C. Raiciu, et al. "Improving datacenter performance and robustness with multipath TCP," ACM SIGCOMM 2011.

3.2 Multipath TCP use cases - Smartphones

The motivations for Multipath TCP

The changing Internet

The Multipath TCP Protocol

Multipath TCP use cases

- Datacenters
- Smartphones

Usage of 3G and WiFI

How should Multipath TCP use 3G and WiFi?

- Full mode
 - Both wireless networks are used at the same time
- Backup mode
 - Prefer WiFi when available, open subflows on 3G and use them as backup
- Single path mode
 - Only one path is used at a time, WiFi preferred over 3G

Multipath TCP: Full mode

Multipath TCP: Backup mode

Multipath TCP: Backup mode

What happens when link fails?

Multipath TCP: single-path mode

Multipath TCP supports break before make

Evaluation scenario

Recovery after failure

C. Paasch, et al., "Exploring mobile/WiFi handover with multipath TCP," presented at the CellNet '12: Proceedings

of the 2012 ACM SIGCOMM workshop on Cellular networks: operations, challenges, and future design, 2012.

Source: Olivier Bonaventure "Decoupling TCP from IP with Multipath TCP"

KOM – Multimedia Communications Lab 176

Recovery after failure

C. Paasch, et al., "Exploring mobile/WiFi handover with multipath TCP," presented at the CellNet '12: Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks: operations, challenges, and future design, 2012. Source: Olivier Bonaventure «Decoupling TCP from IP with Multipath TCP»

KOM – Multimedia Communications L

Recovery after failure

C. Paasch, et al., "Exploring mobile/WiFi handover with multipath TCP," presented at the CellNet '12: Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks: operations, challenges, and future design, 2012. Source: Olivier Bonaventure «Decoupling TCP from IP with Multipath TCP»

KOM – Multimedia Communications L

4 Conclusion

Multipath TCP is becoming a reality

- Due to the middleboxes the protocol is more complex than initially expected
- RFC has been published
- there is running code!
- Multipath TCP works over today's Internet!

What's next?

- More use cases
 - IPv4/IPv6, anycast, load balancing, deployment
- Measurements and improvements to the protocol
 - Time to revisit 20+ years of heuristics added to TCP

5 References

The Multipath TCP protocol

- http://www.multipath-tcp.org
- http://tools.ietf.org/wg/mptcp/

A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, "Architectural guidelines for multipath TCP development", RFC6182 2011.

A. Ford, C. Raiciu, M. J. Handley, and O. Bonaventure, "TCP Extensions for Multipath Operation with Multiple Addresses," RFC6824, 2013

C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure, and M. Handley, "How hard can it be? designing and implementing a deployable multipath TCP," NSDI'12: Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, 2012.

Implementations

Linux

http://www.multipath-tcp.org

FreeBSD

http://caia.swin.edu.au/urp/newtcp/mptcp/

Simulators

- http://nrg.cs.ucl.ac.uk/mptcp/implementation.html
- http://code.google.com/p/mptcp-ns3/

Sébastien Barré. Implementation and assessment of Modern Hostbased Multipath Solutions. PhD thesis. UCL, 2011

S. Barre, C. Paasch, and O. Bonaventure, "Multipath tcp: From theory to practice," *NETWORKING 2011*, 2011.

Middleboxes

M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and H. Tokuda, "Is it still possible to extend TCP?," IMC '11: Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference, 2011.

V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, "Design and implementation of a consolidated middlebox architecture," *USENIX NSDI*, 2012.

J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar, "Making middleboxes someone else's problem: network processing as a cloud service," SIGCOMM '12: Proceedings of the ACM SIGCOMM 2012 conference on Applications, technologies, architectures, and protocols for computer communication, 2012.

Multipath congestion control

Background

D. Wischik, M. Handley, and M. B. Braun, "The resource pooling principle," *ACM SIGCOMM Computer ...*, vol. 38, no. 5, 2008.

Coupled congestion control

F. Kelly and T. Voice. Stability of end-to-end algorithms for joint routing and rate control. ACM SIGCOMM CCR, 35, 2005.

P. Key, L. Massoulie, and P. D. Towsley, "Path Selection and Multipath Congestion Control," INFOCOM 2007. 2007, pp. 143–151.

C. Raiciu, M. J. Handley, and D. Wischik, "Coupled Congestion Control for Multipath Transport Protocols," *RFC*, vol. 6356, Oct. 2011.

D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, "Design, implementation and evaluation of congestion control for multipath TCP," NSDI'11: Proceedings of the 8th USENIX conference on Networked systems design and implementation, 2011.

Multipath congestion control

More

R. Khalili, N. Gast, M. Popovic, U. Upadhyay, J.-Y. Le Boudec, MPTCP is not Pareto-optimal: Performance issues and a possible solution, Proc. ACM Conext 2012

Y. Cao, X. Mingwei, and X. Fu, "Delay-based Congestion Control for Multipath TCP," ICNP2012, 2012.

T. A. Le, C. S. Hong, and E.-N. Huh, "Coordinated TCP Westwood congestion control for multiple paths over wireless networks," ICOIN '12: Proceedings of the The International Conference on Information Network 2012, 2012, pp. 92–96.

T. A. Le, H. Rim, and C. S. Hong, "A Multipath Cubic TCP Congestion Control with Multipath Fast Recovery over High Bandwidth-Delay Product Networks," *IEICE Transactions*, 2012.

T. Dreibholz, M. Becke, J. Pulinthanath, and E. P. Rathgeb, "Applying TCP-Friendly Congestion Control to Concurrent Multipath Transfer," Advanced Information Networking and Applications (AINA), 2010 24th IEEE International Conference on, 2010, pp. 312–319.

Use cases

Datacenter

C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. J. Handley, "Improving datacenter performance and robustness with multipath TCP," *ACM SIGCOMM* 2011.

Mobile

G. Detal, Ch. Paasch, S. van der Linden, P. Mérindol, G. Avoine, O. Bonaventure, Revisiting Flow-Based Load Balancing: Stateless Path Selection in Data Center Networks, to appear in Computer Networks

C. Pluntke, L. Eggert, and N. Kiukkonen, "Saving mobile device energy with multipath TCP," *MobiArch '11: Proceedings of the sixth international workshop on MobiArch*, 2011.

C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure, "Exploring mobile/WiFi handover with multipath TCP," CellNet '12: Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks: operations, challenges, and future design, 2012.