Department of Mathematics MTL 106 (Probability and Stochastic Processes) Quiz 1

Time: 20 minutes Max. Marks: 10

Date: 11/09/21

Note: The exam is closed-book, and all the questions are compulsory.

1. Let the PMF of a random variable X is given by

$$P\{X = k\} = e^{-20} \frac{20^k}{k!}, \quad k = 0, 1, 2, \dots, \infty.$$

Show that (a) $P\{X \le 10\} \le \frac{1}{5}$; (b) $P\{X \ge 40\} \le \frac{1}{20}$.

(3 + 3 marks)

2. Consider a probability space (Ω, \mathcal{F}, P) , where $\Omega = \{(u, v) \in \mathbb{R}^2 | 0 \le u \le 1, 0 \le v \le 1\}$, and \mathcal{F} is a Borel σ -field on Ω , and $P(A) = \frac{\text{area of } A}{\text{area of } \Omega}$ for every $A \in \mathcal{F}$. Define a random variable $X : \Omega \to \mathbb{R}$ such that $X(u,v) = \frac{u+v}{4}$ for all $(u,v) \in \Omega$. Find the probability density function of X.

(a)
$$E[x] = 20 \ | Vax(x) = 20$$

$$P[|x-20| > 20] = \frac{1}{5}$$

$$P[|x-20| > 20] = \frac{1}{5}$$
(b) $P[|x-20| > 20] = \frac{1}{20}$

$$P[|x-20| > 20] = \frac{1}{20}$$

$$P[|x-20| > 20] = \frac{1}{20}$$
(2)
$$F_{x}(x) = \begin{cases} 0, & x \neq 0 \\ 8x^{2}, & 0 \leq x < \frac{1}{4} \\ 1-\frac{1}{2}(2-4x)^{2}, & |y_{4} \leq x < \frac{1}{2} \\ 1-\frac{1}{2}(2-4x)^{2}, & |y_{4} \leq x < \frac{1}{2} \end{cases}$$

$$f(x) = \begin{cases} 16x, & 0 \leq x < \frac{1}{4} \\ 4(2-4x), & |y_{4} \leq x < \frac{1}{2} \\ 0, & \text{otherwise}. \end{cases}$$

Department of Mathematics

MTL 106 (Probability and Stochastic Processes)

Quiz 1

Time: 20 minutes Max. Marks: 10 Date: 11/09/21

Note: The exam is closed-book, and all the questions are compulsory.

1. Let the PMF of a random variable X is given by

$$P\{X=k\} = e^{-16} \frac{16^k}{k!}, \quad k = 0, 1, 2, \dots, \infty.$$

Show that (a) $P\{X \le 8\} \le \frac{1}{4}$; (b) $P\{X \ge 32\} \le \frac{1}{16}$.

(3 + 3 marks)

2. Consider a probability space (Ω, \mathcal{F}, P) , where $\Omega = \{(u, v) \in \mathbb{R}^2 | 0 \le u \le 1, 0 \le v \le 1\}$, and \mathcal{F} is a Borel σ -field on Ω , and $P(A) = \frac{\text{area of } A}{\text{area of } \Omega}$ for every $A \in \mathcal{F}$. Define a random variable $X : \Omega \to \mathbb{R}$ such that $X(u, v) = \frac{u+v}{3}$ for all $(u, v) \in \Omega$. Find the probability density function of X.

(4 marks)

(1) a)
$$E(x) = 16$$
; $Vax(x) = 16$
 $B(1x - 161 > 8) = \frac{1}{4}$
 $B(x) = \frac{1}{4}$

(2)
$$P(x) = \begin{cases} 9 \\ x = 32 \end{cases} = \frac{1}{16}$$

$$f(x) = \begin{cases} 9 \\ x \end{cases}, 0 \le x \le \frac{1}{16}$$

$$f(x) = \begin{cases} 9 \\ x \end{cases}, 0 \le x \le \frac{1}{16}$$

$$f(x) = \begin{cases} 9 \\ x \end{cases}, 0 \le x \le \frac{1}{16}$$

$$f(x) = \begin{cases} 9 \\ x \end{cases}, 0 \le x \le \frac{1}{16}$$

$$f(x) = \begin{cases} 9 \\ x \end{cases}, 0 \le x \le \frac{1}{16}$$

$$f(x) = \begin{cases} 9 \\ x \end{cases}, 0 \le x \le \frac{1}{16}$$

$$f(x) = \begin{cases} 9 \\ x \end{cases}, 0 \le x \le \frac{1}{16}$$

$$f(x) = \begin{cases} 9 \\ x \end{cases}, 0 \le x \le \frac{1}{16}$$

$$f(x) = \begin{cases} 9 \\ x \end{cases}, 0 \le x \le \frac{1}{16}$$

$$f(x) = \begin{cases} 9 \\ x \end{cases}, 0 \le x \le \frac{1}{16}$$

Department of Mathematics MTL 106 (Probability and Stochastic Processes) Quiz 1

Time: 20 minutes Max. Marks: 10

Date: 11/09/21

Note: The exam is closed-book, and all the questions are compulsory.

1. Let the PMF of a random variable X is given by

$$P\{X = k\} = e^{-12} \frac{12^k}{k!}, \quad k = 0, 1, 2, \dots, \infty.$$

Show that (a) $P\{X \le 6\} \le \frac{1}{3}$; (b) $P\{X \ge 24\} \le \frac{1}{12}$.

(3 + 3 marks)

2. Consider a probability space (Ω, \mathcal{F}, P) , where $\Omega = \{(u, v) \in \mathbb{R}^2 | 0 \le u \le 1, 0 \le v \le 1\}$, and \mathcal{F} is a Borel σ -field on Ω , and $P(A) = \frac{\text{area of } A}{\text{area of } \Omega}$ for every $A \in \mathcal{F}$. Define a random variable $X : \Omega \to \mathbb{R}$ such that $X(u, v) = \frac{u+v}{2}$ for all $(u, v) \in \Omega$. Find the probability density function of X.

(4 marks)

(1) (A)
$$E[x] = 12^{-1}, Vax(x) = 12^{-1}$$
 $P\{x-12|36\} \leq \frac{1}{3}$
 $P\{x-12|3/2\} \leq \frac{1}{3}$

(b) $P\{x-12|3/2\} \leq \frac{1}{3}$
 $P\{x-12|3/2\} \leq \frac{1}{3}$

(2) $F_{x}(x) = \begin{bmatrix} 0 & x < 0 \\ 2x^{2} & 0 \leq x < 1 \\ 1 & x \geq 1 \end{bmatrix}$
 $f(x) = \begin{bmatrix} 4x & 0 < x < \frac{1}{2} \\ 4-4x & 0 \leq x < 1 \\ 0 & 1 & 3 + 6 + 6 + 6 \end{bmatrix}$

Department of Mathematics

MTL 106 (Probability and Stochastic Processes)

Quiz 1

Time: 20 minutes Max. Marks: 10

Date: 11/09/21

Note: The exam is closed-book, and all the questions are compulsory.

1. Let the PMF of a random variable X is given by

$$P\{X = k\} = e^{-8} \frac{8^k}{k!}, \quad k = 0, 1, 2, \dots, \infty.$$

Show that (a) $P\{X \le 4\} \le \frac{1}{2}$; (b) $P\{X \ge 16\} \le \frac{1}{8}$.

(3 + 3 marks)

2. Consider a probability space (Ω, \mathcal{F}, P) , where $\Omega = \{(u, v) \in \mathbb{R}^2 | 0 \le u \le 1, 0 \le v \le 1\}$, and \mathcal{F} is a Borel σ -field on Ω , and $P(A) = \frac{\text{area of } A}{\text{area of } \Omega}$ for every $A \in \mathcal{F}$. Define a random variable $X : \Omega \to \mathbb{R}$ such that $X(u, v) = \frac{u+v}{5}$ for all $(u, v) \in \Omega$. Find the probability density function of X.

(4 marks)

(1) (a)
$$E(x) = 81$$
, $Vex(x) = 8$
 $P\{|x-8| > 4\} = \frac{1}{2}$
 $P\{|x-8| > 8\} = \frac{1}{2}$

(b) $P\{|x-8| > 8\} = \frac{1}{2}$
 $P\{|x-8| > 8\} = \frac{1}{2}$

(2) $F_{x}(x) = \begin{cases} 0 & x < 2 \\ 25x & x < 2 \\ 1-\frac{1}{2}(2-5x) & 5 < 2 \\ 5(2-5x) & 5 < 2 \end{cases}$

Sherwise