Mid-term work----Jing Tang

Figure 1 Roadmap Figure

Exploratory analyses

Summary

- Demographic variables matter.
- High correlated continuous variable: education-num, hours-per-week, capital-gain, age.
- Potential non-linear variables: hours-per-week, age

Building a prediction model

Try different model

Accurancy

	Model	Score
0	Support Vector Machines	78.97
6	Linear SVC	78.84
2	Random Forest	78.72
3	Naive Bayes	77.34
1	KNN	76.58
5	Stochastic Gradient Decent	75.19
7	Decision Tree	74.70
4	Perceptron	71.96

Accurancey: Cross-validation

	Model	Score
3	Log regression (Scaled)	0.846441
4	Random Forest	0.846081
0	Support Vector Machines	0.845481
1	KNN	0.831840
7	Stochastic Gradient Decent	0.819682
8	Decision Tree	0.811801
5	Naive Bayes	0.801601
2	Log regression	0.798201
6	Perceptron	0.771639

feature_int = ['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', 'hours-perweek', 'Gender']

Accurancy:

```
Model Score
2
                Random Forest 81.58
6
                  Linear SVC 81.38
1
                         KNN 80.66
0
      Support Vector Machines 80.41
  Stochastic Gradient Decent 79.12
5
3
                 Naive Bayes 79.04
7
               Decision Tree 77.01
4
                  Perceptron 76.41
Accurancy: Cross-validation
                       Model
                                 Score
3
      Log regression (Scaled) 0.824401
      Support Vector Machines 0.821881
0
4
                Random Forest 0.821800
1
                         KNN 0.813560
7
  Stochastic Gradient Decent 0.801482
              Log regression 0.798041
2
```

Summary:

5

8

6

• Choosing Logistic model (Standardized data) as the original model, then improving the accuracy of Logistic model.

Logistic Model

Logistic Model0

Unscaled Model

feature_int = ['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', 'hours-perweek', 'COUNTRY', 'Gender']

Naive Bayes 0.797361

Perceptron 0.762838

Decision Tree 0.782120


```
calculate cross-validated AUC (M1. X_train): 0.58771598885
calculate cross-validated accurancy (M1. X_train): 0.798000883123
0.798
            precision
                       recall f1-score
                                           support
                           0.97
                                     0.88
                                             19002
         0
                 0.81
                 0.71
                                              5998
         1
                           0.27
                                     0.39
avg / total
                 0.78
                           0.80
                                    0.76
                                              25000
[[ -7.04159544e-03 -3.77490358e-06 -1.82154165e-03
                                                    3.42875087e-04
   7.98473701e-04 -8.08803001e-03 -6.98790968e-05 -5.94919493e-04]]
```

calculate cross-validated AUC (M2. X_train_scaled): 0.847230754501

calculate cross-validated accurancy (M2. X_train_scaled): 0.825240820903
0.82524

	precision	recall	f1-score	support	
0	0.84	0.95	0.89	19002	
1	0.72	0.44	0.55	5998	
avg / total	0.81	0.83	0.81	25000	

[[0.58573414 0.05504313 0.86491518 2.36424125 0.28049507 0.43726323 -0.06905303 -0.54412693]]

Area under the ROC curve.: 0.861541415606

calculate testing accuracy (M1. X_train_scaled_poly): 0.825552175638

Logistic Model1 (Full model)

Full model: feature_cols = ['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss','RACE_1','RACE_2','RACE_3','RACE_4', 'hours-per-week', 'WORKC_1', 'WORKC_2','WORKC_3', 'WORKC_4','MARRI_1', 'MARRI_2', 'COUNTRY','RELATION_1', 'RELATION_2', 'RELATION_3', 'RELATION_4', 'RELATION_5', 'OCCUP_1',

'OCCUP_2', 'OCCUP_3', 'OCCUP_4', 'OCCUP_5', 'OCCUP_6', 'OCCUP_7', 'OCCUP_8', 'OCCUP_9', 'OCCUP_10', 'OCCUP_11', 'OCCUP_12', 'OCCUP_13', 'OCCUP_14']

Unscaled Model

calculate testing accuracy (M1. X_train): 0.795265176564

Area under the ROC curve.: 0.578371088093

Standardized-scaled model

calculate testing accuracy (M1. X_train_scaled): 0.758497553234

Area under the ROC curve.: 0.720032426562

Estimates:

```
['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', 'RACE_1','RACE_2','RACE_3','RACE_4' 'hours-per-week', 'WORKC_1', 'WORKC_2', 'WORKC_3', 'WORKC_4', 'MARRI_1', 'MARRI_2', 'COUNTRY', 'RELATION_1', 'RELATION_2', 'RELATION_3', 'RELATION_4', 'RELATION_5', 'OCCUP_1', 'OCCUP_2', 'OCCUP_3', 'OCCUP_4', 'OCCUP_5', 'OCCUP_6', 'OCCUP_7', 'OCCUP_8', 'OCCUP_9', 'OCCUP_10', 'OCCUP_11', 'OCCUP_12', 'OCCUP_13', 'OCCUP_14']
```

-1.11278668 -0.88370349 -0.74886455 -0.79963161 -0.91424917 -1.32847974

-0.49463583 -0.98504778 -0.40401746 -1.00351381 -0.455645 -0.75747635

Logistic Model2 (remove 'relationship')

feature_cols1 = ['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss','RACE_1','RACE_2','RACE_3','RACE_4', 'hours-per-week', 'WORKC_1', 'WORKC_2','WORKC_3', 'WORKC_4','MARRI_1', 'MARRI_2', 'COUNTRY', 'OCCUP_1', 'OCCUP_2', 'OCCUP_3', 'OCCUP_5', 'OCCUP_6', 'OCCUP_7', 'OCCUP_8', 'OCCUP_9', 'OCCUP_10', 'OCCUP_11', 'OCCUP_12', 'OCCUP_13', 'OCCUP_14']

Unscaled Model

calculate cross-validated AUC (M1. X_train): 0.5809455482400867

calculate cross-validated accurancy (M1. X_train): 0.7982008671169387 0.7982

р	recision	recall	f1-score	support	
0	0.81	0.97	0.88	19002	
1	0.71	0.27	0.39	5998	
avg / total	0.78	0.80	0.76	25000	
[[-4.42035222e	-03 -3.7233	2391e-06	-2.9832140	06e-03 3.	42027200e-04
7.97769842e	-04 -7.2766	1647e-04	-6.0346926	4e-05 -1.	38654888e-04
-9.66147028e	-05 -1.0453	3295e-02	-2.5293177	'5e-05 4.	76522073e-04
2.18498208e	-04 -6.1400	3978e-04	-2.3384414	l6e-03 -4.	82363724e-03
-3.89778561e	-04 -2.8281	3169e-03	-9.9908614	1e-04 -1.	07483237e-06
-3.02612228e	-04 1.4815	1392e-03	-2.8960835	4e-04 -5.	01501696e-04

-5.42083218e-04 -1.45348352e-03 -7.13567238e-05 1.12447504e-03 8.71677110e-05 -1.17200374e-04 6.73695720e-05 -1.74417815e-04]]

Standardized-scaled model

calculate cross-validated AUC (M2. X_train_scaled): 0.9054762065500791

calculate cross-validated accurancy (M2. X_train_scaled): 0.8537210149121623 0.85372

0.85372	precision	recall f1-	score	suppo	ort	
0 1	0.88 0.74	0.93 0.60	0.91 0.66	196	998	
1	0.74	0.00	0.00	25	790	
avg / total	0.85	0.85	0.85	250	999	
0.01348837 -0.03036924 -1.38362396 -1.1455992	0.07500652 -0.05490716 -1.15825013 -0.07177437 -1.60098623	-0.0607792 -1.09534569 -1.44366064 -0.55137932	0.387 -1.529 -1.193	755505 956301 833004	-0.12569672 -0.08053401 -0.91741658	0.02777222 0.29358836 -0.99960628
-0.61082211	-0.97090439]]				

Standardized-scaled polynomial model (degree = 3)

Logistic Model3

 $feature_cols = ['age', 'education-num', 'fnlwgt', 'capital-gain', 'capital-loss', 'hours-perweek', 'Gender', 'gend$

'RACE_1','RACE_2','RACE_3','RACE_4','WORKC_1','WORKC_2','WORKC_3','WORKC_4','MARRI_1','MARRI_2']

Unscaled model

Mid. 2. ROC curve (M1. X_train)

```
Model-Score calculate cross-validated AUC (M1. X_train): 0.5810886525633755
```

calculate cross-validated accurancy (M1. X_train): 0.7982008671169387 0.7982

	precision	recall	f1-score	support	
0	0.81	0.97	0.88	19002	
1	0.71	0.27	0.39	5998	
avg / total	0.78	0.80	0.76	25000	

```
[[-7.06420916e-03 -3.76551369e-06 -1.82762507e-03 3.42920001e-04 7.98718274e-04 -8.11448221e-03 -2.21783578e-05 6.97802698e-05 1.46016451e-05 -1.04944810e-04 -4.16856674e-04 -7.95533308e-04]]
```

Standardized-scaled model

Mid. 2. ROC curve (M1. X_train_scaled)

calculate cross-validated AUC (M2. X_train_scaled): 0.8986232368760698
calculate cross-validated accurancy (M2. X_train_scaled): 0.8464409503233521

	precision	recarr	11-score	Support	
0 1	0.87 0.73	0.93 0.58	0.90 0.64	19002 5998	
avg / total	0.84	0.85	0.84	25000	
2.7741870	8e-01 7.5209 7e-01 4.0172 8e-04 -1.9065	7416e-01	-1.51287615	5e-01 6.112	203317e-02

Standardized-scaled polynomial model (degree = 3)

Mid. 2. ROC curve (M1. X_train_scaled_poly)

calculate cross-validated AUC (M2. X_train_scaled_poly): 0.8986232368760698
calculate cross-validated accurancy (M2. X_train_scaled_poly): 0.8464409503233521

support	f1-score	recall	precision	
19002	0.91	0.94	0.88	0
5998	0.65	0.58	0.74	1
25000	0.85	0.85	0.85	avg / total

Summary:

- Comparing to Model0 and Model1, Model2 and Model3 are better model.
- There are no need to include all the predictors in the model.
- Standardized-scaled polynomial model always show best performance.