

An R package for exploratory data analysis for teaching and research

François Husson, Julie Josse & Sébastien Lê

Why FACTOMINER?

- To make exploratory multivariate data analysis with a free software
- The possibility to propose new methods (taking into account different structure on the data)
- To have a package user friendly and oriented to practitioner (a very easy GUI)

1 – The classical methods

Methods implemented are similar in their main objective: to sum up and simplify the data by reducing the dimensionality of the dataset

- Continuous variables: Principal Components Analysis
- ☐ Contingency table: Correspondence Analysis
- ☐ Categorical variables: Multiple Correspondence Analysis
- Continuous and categorical variables: Mixed Data Analysis

Data: performances of 41 athletes during two meetings of decathlon

	100m	Long.jump	Shot.put	High.jump	400m	110m.hurdle	Discus	Pole.vault	Javeline	1500m	Rank	Points	Competition
SEBRLE	11.04	7.58	14.83	2.07	49.81	14.69	43.75	5.02	63.19	291.70	1	8217	Decastar
CLAY	10.76	7.40	14.26	1.86	49.37	14.05	50.72	4.92	60.15	301.50	2	8122	Decastar
KARPOV	11.02	7.30	14.77	2.04	48.37	14.09	48.95	4.92	50.31	300.20	3	8099	Decastar
BERNARD	11.02	7.23	14.25	1.92	48.93	14.99	40.87	5.32	62.77	280.10	4	8067	Decastar
YURKOV	11.34	7.09	15.19	2.10	50.42	15.31	46.26	4.72	63.44	276.40	5	8036	Decastar
Sebrle	10.85	7.84	16.36	2.12	48.36	14.05	48.72	5.00	70.52	280.01	1	8893	OlympicG
Clay	10.44	7.96	15.23	2.06	49.19	14.13	50.11	4.90	69.71	282.00	2	8820	OlympicG
Karpov	10.50	7.81	15.93	2.09	46.81	13.97	51.65	4.60	55.54	278.11	3	8725	OlympicG
Macey	10.89	7.47	15.73	2.15	48.97	14.56	48.34	4.40	58.46	265.42	4	8414	OlympicG
Warners	10.62	7.74	14.48	1.97	47.97	14.01	43.73	4.90	55.39	278.05	5	8343	OlympicG

- Introduction of supplementary information:
 - supplementary continuous variables
- Graphs enriched by :
 - representing the variables according to their quality of representation
- Indicators:
 - contribution
 - quality of representation

Variables factor map (PCA)

Decastar

OlympicG

Casarsa

Introduction of supplementary information:

Dimension 2 (17.37%)

- supplementary individuals
- supplementary categorical variables

Individuals factor map (PCA)

- Graphs enriched by:
 - coloring according to supplementary information
 - confidence ellipses around the categories
 - Indicators:
 - contribution
 - quality of representation

Description of the dimensions

By the quantitative variables:

- The correlation between each variable and the coordinate of the individuals on the axis s is calculated
- The correlation coefficients are sorted
- Only the significant correlations are given

	\$Dim.1		\$Dim.2	
	\$Dim.1\$quan	ti	\$Dim.2\$qu	anti
Best variable		Dim.1	1	Dim.2
to describe the ——	Points	0.96	Discus	0.61
1 st dimension	Long.jump	0.74	Shot.put	0.60
	Shot.put	0.62		
	Rank	-0.67		
	400m	-0.68		
	110m.hurdle	-0.75	Significant le	evel = 0.05
	100m	-0.77	· ·	
AGRO COMPUS				

Description of the dimensions

By the qualitative variables:

 Perform a one-way analysis of variance with the coordinates of the individuals on the axis explained by the qualitative variable

\$Dim.1\$quali

P-value

Competition

0.155

A F-test by variable

\$Dim.1\$category

Estimate P-value

OlympicG 0.4393 0.155

Decastar -0.4393 0.155

Significant level = 0.2

For each category, a student
 T-test to compare the average
 of the category with the general
 mean

2 – Structure on the data

Different structure on the data are proposed:

- □ a partition on the variables: several sets of variables are simultaneously studied: Multiple Factor Analysis,
 □ Generalized Procrustes Analysis
- ☐ a hierarchy on the variables: variables are grouped and subgrouped (like in questionnaires structured in topics and subtopics): Hierarchical Multiple Factor Analysis
- □ a partition on the individuals: several sets of individuals described by the same variables: Dual Multiple Factor

Groups of variables (MFA)

Objectives : - study the link between the sets of variables

- balance the influence of each group of variables
- give the classical graphs but also specific graphs:
 groups of variables partial representation

Examples: - Genomic: DNA, protein

- Sensory analysis: sensorial, physico-chemical
- Comparison of coding (quantitative / qualitative)

Hierarchy on the variables (HMFA)

Two levels for the hierarchy: the first one contains L groups, each I group contains J_I subgroups, and each subgroup have K_I variables

Objective: to balance the groups and the subgroups of variables

Partition on the individuals (DMFA)

Objective: to compare the covariance matrices

Menu of the FactoMineR GUI

Main window of the PCA

Graphical options

74 Graphical options						
Plot individuals graph ▽	Plot variables graph ✓					
Title of the graph	Title of the graph					
Hide some elements:	Draw variables with a cos² >: 0.1					
ind ☐ ind sup ☐ quali ☐	Labels for the active variables					
Label for the active individuals	Labels for the supplementary variables 🔽					
Label for the supplementary factor 🔽						
	Color for active variables Change Color					
Color of the active individuals Change Color	Color for supplementary variables Change Color					
Color for factors Change Color	Change cool					
Coloring for individuals by individual Competition						
x limits of the graph:						
OK Annuler Aide						

4 – Conclusion

For researchers, practitioners and students: with classical and advanced methods

The FactoMineR package is available on the CRAN

The GUI can be simply loaded:

source("http://factominer.free.fr/install-facto.r")

A website is dedicated to this package: http://factominer.free.fr

Future: dynamical graphs

Perspective: UseR!2008 (2 tutorials), UseR!2009 at Rennes

MFA example: representation of the individuals

MFA example: representation of the variables

MFA example: representation of the groups

MFA example: representation of the partial points

MFA example: representation of the partial points

Unsupervised classification

MFA example: representation of the individuals

Prefmap-PLS graph between Rank and Points

MFA example: representation of the variables

Projection of the groups

Biplot between axes 1 and 2 for group versicolor

Individual factor map

Individual factor map

Individual factor map

*Dataframe

X100m

The FactoMineR team is nearly all the time ready to improve the package

