Redes Locais (LAN)

Mestrado Integrado em Engenharia de Comunicações

3° ano, 1°semestre 2012/2013

Sumário

- Redes de Área Local (LAN)
 - Objectivos
 - Características
 - Topologias
 - Tecnologias
 - Sub-níveis MAC e LLC
- Estudo de Casos
 - Ethernet
 - Token Ring
 - FDDI
- Equipamentos de Interligação

Redes de Computadores

Conceitos gerais

Uma rede é caracterizada por:

- 1) topologia de interligação entre os seus elementos:
 - a) Linhas
 - b) Equipamentos de interligação, comutadores
 - c) Equipamentos terminais
- 2) tecnologia usada na transmissão: eléctrica, óptica, banda larga, wireless, infravermelhos, etc
- 3) tecnologia usada na comutação: comutação de pacotes, de mensagem, de célula, de circuito, etc
- 4) serviço prestado:
 datagramas, circuitos virtuais, conexões, QoS, tempo real, etc
- 5) pilha de protocolos usados (em especial, nível 1 a 4)

Redes de Computadores

Conceitos gerais

WAN, MAN, LAN, PAN

- designação depende da área geográfica coberta
 - WAN (wide area networks): área alargada, acima das dezenas de kilómetros
 - MAN (*metropolitan area networks*): cobertura de uma área metropolitana, até poucas dezenas de kilómetros
 - LAN (local areas networks): área local, até poucas centenas de metros
 - PAN (personal area networks): área pessoal, até poucas dezenas de metros
- condicionam o tipo de protocolos que podem ser usados

Características (LAN)

- Elevadas velocidades de transmissão
 - mega (10^6) , giga (10^9) , tera (10^{12}) bps
- Acesso ao meio (MAC) é geralmente partilhado
 - barramentos ou anéis de multiacesso em canal único.
- Protocolos de acesso rápidos
 - admite protocolos contenciosos (colisões)
 - acesso democrático oferecido a todos os sistemas
- Tolerantes a utilização reduzida de recursos
 - baixo factor de utilização conduz a melhor desempenho
- Bom desempenho para diferentes tipos de tráfego
 - tempo real, transaccional, regular
- Fácil instalação, configuração e interligação

Topologias (LAN)

Topologias LAN mais frequentes:

- barramento, anel, estrela e árvore
- usam meios de transmissão variados: UTP/STP, cabo coaxial ou fibra óptica.
- podem usar repetidores como extensão do meio de transmissão e para o acesso ao meio de transmissão (caso do anéis)

Topologias (LAN)

Tecnologias (LAN)

LAN de Acesso Partilhado (shared LAN)

- as estações disputam a largura de banda existente
- a transmissão no meio é difundida por todas as estações
- por definição, uma LAN é um domínio de entrega directa de tramas entre estações, designado por domínio de colisão.
- as estações recebem a trama com um atraso mínimo
- o **método de acesso** partilhado varia com a topologia:
 - acesso contencioso: barramento e estrela com hub-repetidor
 - acesso ordenado: anel e barramento com testemunho (token)
- o desempenho de uma LAN de Acesso Partilhado varia com o tipo de aplicações e com o número de estações interligadas

Tecnologias (LAN)

LAN Comutada (switched LAN)

- é uma geração recente de LAN
- é introduzido um comutador para criar e isolar sub-domínios de colisão dentro de um domínio de entrega directa
- o comutador de LAN filtra a difusão em função dos endereços da estação de destino das tramas (função *bridging*)
- a comutação de tramas é simultânea
- maior largura de banda agregada por redução das colisões
- consequentemente, melhor desempenho

Tecnologias (LAN)

LAN Comutada (switched LAN)

- 3 domínios de colisão: LAN L1, LAN L2 e LAN L3
- 1 domínio de entrega directa: a LAN comutada
- 9 estações na mesma LAN comutada
- 1 porta do comutador ligada a cada LAN Li

Tecnologias (LAN)

LAN Virtual Comutada (switched VLAN)

- as estações ligam directamente ao comutador
- certos comutadores tem a capacidade de associar conjuntos de portas em diferentes domínios de entrega constituindo LANs virtuais
- as estações ligam-se ao comutador normalmente em ponto-a-ponto full-duplex

Tecnologias (LAN)

LAN Virtual Comutada (switched VLAN)

2 domínios de entrega: VLAN L1 e VLAN L2

1 porta do comutador ligada a cada estação
portas do comutador associadas por configuração formando LANs virtuais

Tecnologias (LAN)

Exemplos de tecnologias usadas em LANs:

- Ethernet (IEEE 802.3), Fast Ethernet (IEEE 802.3u)
- Token Ring (IEEE 802.5), Token Bus (IEEE 802.4)
- Distributed Queue Dual Bus (DQDB) (IEEE 802.6)
- Fiber Distributed Data Interface (norma ANSI)
- Wireless LAN (IEEE 802.11a, IEEE802.11b, ...)
- Asynchronous Transfer Mode (ATM) (ITU-T)

Protocolos do nível de ligação de dados (LAN)

O nível de ligação é dividido em 2 sub-níveis

- Logical Link Control (LLC) (IEEE 802.2)
 - funções similares ao HDLC (controlo de fluxo, detecção e controle de erros, etc)
 - endereço de nível lógico (LSAP LLC Service Access Point) (endereço de hardware da estação + referência local)
 - pode suportar primitivas orientadas ou não à conexão
- Medium Access Control (MAC)
 - varia com o tipo de LAN, i.e. cada LAN tem um sub-nível MAC próprio
 - determina a sequência de bits que é posta no meio de transmissão

Protocolos do nível de ligação de dados (LAN)

Protocolos do nível de ligação de dados (LAN)

Encapsulamento

- Um LLC protocol data unit (L-PDU) contém informação de controlo e dados que a entidade LLC transmissora envia à entidade LLC receptora
- Na transmissão,
 - o sub-nível MAC encapsula cada **L-PDU**, adicionando o seu próprio *header (cabeçalho)* e *trailer (terminação)*
 - os bits do cabeçalho são usados para definir diferentes tipos de MAC PDU (depende do tipo de LAN em questão)
- Na recepção,
 - o sub-nível MAC remove o *header* e *trailer* de cada **MAC-PDU** e entrega o
 L-PDU ao sub-nível superior.

Protocolos do nível de ligação de dados (LAN)

- A primeira LAN, construída na Xerox nos anos 70
- Hoje é a tecnologia dominante:
 - Barata: 100Mbps por cerca de 20 Euros!
 - Tem evoluído nas velocidades: 10, 100, 1000 Mbps

Esboço original da rede local Ethernet feito por **Bob Metcalfe**

- Normalizada pela organização IEEE (IEEE 802.3)
- Trata-se de uma rede local com <u>topologia em barramento</u>, sobre qualquer meio físico de transmissão
- Para acesso ao meio utiliza-se uma técnica de <u>contenção</u>, em que cada sistema aguarda que o meio esteja livre para iniciar a transmissão...

Como?

 "Escutando" o meio até que não hajam bits a passar: significa todas as estações estão "caladas"...

 Mas, pode haver problemas: dois sistemas aguardam ao mesmo tempo uma oportunidade de envio e iniciam a transmissão em simultâneo!

Diz-se que ocorreu uma colisão!

Como se evitam as colisões?

Não se evitam, mas podem-se detectar!

 O sistema que envia, deve continuar à escuta, para ver se o que está a ser enviado corresponde aos seus dados. Se não, ocorreu uma colisão.

Quando um sistema detecta uma colisão, procede do seguinte modo:

- continua a enviar dados, para perturbar o meio, a fim de que todos se apercebam que ocorreu uma colisão...
- de seguida desiste de transmitir, por um período de tempo aleatório, a fim de diminuir a probabilidade de nova colisão...
- o tempo de espera é tanto maior, quanto maior for o nº de colisões

Esta técnica designa-se por CSMA-CD

(Carrier-Sense Multiple Access, with Colision Detection)
 * Não garante um tempo mínimo de espera
 * Funciona mal em situações de sobrecarga da rede

Ethernet: o acesso múltiplo é contencioso e há detecção de colisões

A inicia transmissão C inicia transmissão $t_2 = t_{colisão}$ - D

$$t_3 = t_{colisão} + D$$

t_p: C detecta colisão A detecta colisão

 $2t_p$: o meio fica livre

$$t_p = d/v =$$
 tempo de propagação fim a fim no meio de Tx $d =$ comprimento do meio de Tx $r =$ ritmo de tx (bits/s) $v =$ velocidade de propagação no meio $v =$ L= comp da trama (bits)

Detecção de colisão

- baseada no tempo de ida-e-volta (round trip) de uma trama
- é necessário garantir um tamanho mínimo de trama (o tempo de transmissão tem que ser superior ao dobro do tempo de propagação)
- Jamming: Para garantir que outras estações se apercebam da ocorrência de colisão, a que detecta deve forçar uma transmissão de | bits, igual a pelo menos o comprimento do meio de transmissão, antes de parar de transmitir.

Jamming > dr/v

- Devido à detecção de portadora, uma colisão só pode suceder dentro de um intervalo de tempo máximo t_p após o início de uma transmissão. t_p é chamado *slot time*.
- Decorrido este tempo sem haver colisão, o meio está adquirido e a trama será transmitida na totalidade.
- Se houver mais do que uma estação a aguardar o fim de uma transmissão, quando tal suceder, a colisão é certa. Para evitar este evento:
 - Após uma colisão, as estações envolvidas esperam (retraem) um tempo aleatório (que, com alguma probabilidade será diferente para cada uma) antes de acederem novamente ao meio para retransmitir.

Carrier Sense Multiple Access/Collision Detection (CSMA/CD)

acesso ao meio:

<u>se</u> meio está activo *(detecção de portadora)*

então acesso ao meio (aguarda até meio estar livre)

senão transmite(trama) e detecta (tx e lança processo de detecção)

<u>se</u> detecta = colisão *(detecção de colisão)*

<u>então</u> transmite(*jam*); (aborta transmissão, reforça colisão)

K:=K+1; *(conta as colisões)*

espera(K); (espera tempo aleatório, backoff)

acesso ao meio (tenta novamente o acesso)

senão K:=0

Exponential Backoff:

Depois de detectar a *K-ésima* colisão, o adaptador escolhe um número aleatório N no intervalo [0.. 2^k-1] e espera N*512 bits (tempo de transmissão) antes de tentar de novo

- primeira colisão: $N \in \{0,1\}$ aguarda N * 512 *tempos de bit*

- segunda colisão: $N \in \{0,1,2,3\}$

. . . .

- décima colisão: $K = 10, N \in \{0,1,2,...,1023\}$

O tempo de um bit depende da taxa de transmissão

A 10 Mbps, o tempo de um bit é 0,1 microsegundo

Para N=1023 o tempo de espera é de aproximadamente 50 ms

Os dados são transmitidos em pacotes ou frames:

Preâmbulo	Endereço destino	Endereço origem	Tipo	Dados	Sequência de controlo
8 bytes	6 bytes	6 bytes	2 bytes	de 46 a 1500 bytes	4 bytes

- O preâmbulo permite que o receptor se <u>sincronize</u> com o emissor
- Cada sistema tem um <u>endereço</u> único de 48 bits, atribuído pelo fabricante da placa, que em princípio, não é possível alterar
- Cada frame contem o endereço do emissor e do receptor;
- O campo tipo é uma espécie de etiqueta que indica que dados são transportados em cada frame.
- A <u>sequência de controlo</u> permite detectar erros de transmissão!

- É a placa de rede que implementa o mecanismo de acesso ao meio, bem como tudo o necessário para criar, enviar e receber tramas Ethernet:
 - O Software (*driver* da placa fornecido pelo fabricante) permite o acesso essas funções... Sem ele a placa é inútil
 - O Hardware (placa de rede), depende do barramento interno do computador onde vai ser encaixada (PCI, ISA, EISA, etc) e também do meio de transmissão usado (cabo coaxial, UTP ou fibra)

Cada *placa de rede* Ethernet tem um *endereço* atribuído pelo fabricante no momento da concepção: Em princípio (...) não pode ser alterado, e não se fabricam placas com endereços repetidos!

- Designam-se por endereços MAC, e são representados em hexadecimal *Exemplos: 08:00:69:02:01:FC* ou 08-00-69-02-01-FC *Prefixo identifica fabricante: 08:00:69 (Google: Vendor MAC Addresses)*
- •Com 6 bytes (ou seja 48 bits), podemos ter no máximo: $2^48 = 281.474.976.710.656$ de sistemas!

Será muito ou pouco?

• A <u>eficiência máxima</u> de transmissão é:

$$\frac{1500 \text{ bytes de informação}}{8+6+6+2+1500+4 \text{ bytes totais por trama}}$$

= 98%!

• **Tecnologia Ethernet** 10Base2

- 10: 10Mbps; 2: tamanho máximo de cabo de 185 metros (~200)
- Cabo coaxial fino; Ligação multiponto, partilhada
- Facilidade de acrescentar e remover sistemas da rede;
- Usando "repetidores" podem-se ligar múltiplos segmentos

• Tecnologia Ethernet <u>10BaseT</u> e <u>100BaseT</u>

- 10/100 Mbps; também se designa por Fast Ethernet,
- T (de *Twisted Pair*) porque usa pares entrançados; tamanho máximo de 100 metros; topologia física em estrela ou árvore; topologia lógica barramento;
- Os computadores ligam-se a um HUB que não os isola das colisões;

Switches Ethernet

- Ao contrário dos HUBs, podem comutar porta a porta ou mesmo armazenar e reenviar as tramas
- Portas podem ser dedicadas ou partilhadas; o mesmo switch pode ter portas a diferentes velocidades;
- Uma frame pode ser <u>comutada</u> do link de origem para o link de destino; os outros links podem estar a comutar tramas ao mesmo tempo;

Ethernet

	10BASE5	10BASE2	10BASE-T	10BASE-F	
Transmission medium	Coaxial cable (50 ohm)	Coaxial cable (50 ohm)	Unshielded twisted pair	850-nm optical fiber pair Manchester/ On-off	
Signaling technique	Baseband (Manchester)	Baseband (Manchester)	Baseband (Manchester)		
Topology	Bus	Bus	Star	Star	
Maximum segment length (m)	500	185	100	500	
Nodes per segment	100	30	_	33	
Cable diameter	10 mm	5 mm	0.4 to 0.6 mm	62.5/125 μm	

Fast Ethernet

	100B	ASE-TX	100BASE-FX	100BASE-T4	
Transmission medium	2 pair, STP	2 pair, Category 5 UTP	2 optical fibers	4 pair, Category 3, 4, or 5 UTP	
Maximum segment length	100 m	100 m	100 m	100 m	
Network span	200 m	200 m	400 m	200 m	

Gigabit Ethernet

- Normalizada pelo IEEE
- Rede local com topologia física em Anel
- Para acesso ao meio utiliza-se uma técnica de <u>passagem de</u> <u>testemunho</u>, baseada na utilização de um pacote de dados especial e único <u>o testemunho (ou token)</u>:
 - O testemunho circula de sistema em sistema, sempre no mesmo sentido
 - Um sistema para que possa transmitir deve possuir o *testemunho*: para tal basta aguardar a sua vez
 - Na posse do testemunho envia os seus dados e aguarda até os receber de volta (devem dar uma volta completa ao anel)... Sabe assim se chegaram bem e se foram recebidos
 - Depois deve passar o testemunho a outro sistema

- Transmissão <u>sequencial</u> (ao contrário da transmissão por <u>difusão</u> na rede Ethernet)
- Os dados também são "empacotados", mas agora com um formato um pouco diferente:

- 1		Contr. acesso		Endereço destino	Endereço origem	Dados	Sequência de controlo	Marca fim	Estado	
	1	1	1	2 a 6 bytes	2 a 6 bytes	(sem limites)	4 bytes	1	1	

- No inicio da trama tem dois campos para indicar se é o <u>token</u> e se está livre ou ocupado (controlo de acesso e controlo de trama)
- No final tem um byte para marcar o <u>estado</u> (foi recebida correctamente, está com erros, etc..)

- Potenciais problemas:
 - **Inicialização** do anel
 - quem gera o token?
 - Situação de <u>perda de token</u>
 - erros de transmissão deturpam o token e ele deixa de ser reconhecido
 - Duplicação de token
 - por erro de um dos sistemas...

Soluções: Utilização de temporizadores

Caso de estudo: FDD/

Fiber Distributed Data Interface

- Topologia em anel (duplo)
- Meio de transmissão: fibra óptica
- Velocidade de transmissão: 100Mbps
- Técnica de acesso ao meio:
 - Baseado na passagem de testemunho, tal como na Token Ring
 - Uma ligeira diferença (devido ao débito mais elevado):

As estações libertam o token logo que acabam de transmitir... ... para melhor ocupação do anel!

Equipamentos de interligação: Repetidor, HUB

Repetidor

- opera ao nível físico (OSI), equipamento passivo
- não interpreta as tramas
- monitorização contínua de sinais e sua regeneração
- repete tudo o que "ouve"
- permite cobrir maiores distâncias
- permite maior flexibilidade no desenho da rede

Ex. HUB Ethernet

Equipamentos de interligação: Bridge

Bridge

- opera ao nível da ligação lógica (nível 2 OSI)
- ligação por interface de rede; tem endereço físico;
- interpreta o formato das tramas; faz aprendizagem;
- permite isolar tráfego
- divide o domínio colisão
- configuração transparente
- em configuração múltipla, evita ciclos infinitos (Algoritmo Spanning Tree)

Equipamentos de interligação: Switch

Switch

- mais de 2 interfaces
- capacidade aprendizagem como as *bridges*
- permite paralelismo
- requer buffering adequado
- reduz carga na rede
- aumenta desempenho
- pode validar endereços MAC
- cria LANs virtuais
- usado em LAN, MAN e WAN

Exemplo de LAN

[LMAN,Stallings00]