

Algoritmos para séries temporais 1

CONTEÚDO

- 1. Apresentação
- 2. Definição de Séries Temporais
- 3. Machine Learning + Pré-processamento de TS
- 4. Forecasting
- 5. Algoritmos 1 (Distância, Intervalo, Dicionário)
- 6. Algoritmos 2 (Deep Learning, Comitês)
- 7. Aula prática usando Aeon

DIA

26/08 (Merlin)

09/09 (JP)

16/09 (Jorge)

23/09 (Eduarda)

30/09 (Artur)

07/10 (Miller)

14/10()

CONTEÚDO

- 1. Algoritmos de distância
- 2. Algoritmos de intervalos
- 3. Algoritmos de dicionários

Aqui veremos alguns **algoritmos** mais básicos mas ainda assim clássicos muito utilizados tanto para a classificação quanto a regressão de séries temporais

Ou seja, poderemos compara séries temporais, agrupá-las em classes conhecidas ou não, e até mesmo obter informações de fora da série temporal a partir dela

Alguns exemplos

Alguns exemplos

Distâncias

Consiste em avaliar o quanto duas séries temporais de acordo com a distância entre os pontos (menor distância, maior similaridade)

Obtendo uma forma de medir distâncias, podemos utilizar algoritmos clássicos como KNN ou k-means, ou reconhecer padrões nas séries temporais.

Assim como em aprendizado de máquina clássico, temos várias distâncias diferentes que podemos escolher (manhatan, euclidiana...)

Mas também podemos usar distâncias mais relacionadas às séries temporais, sendo a principal delas a DTW (Distance time warping)

DTW

Essa distância não associa um ponto a um ponto, mas sim um ponto ao ponto com menor distância dentro de um intervalo

$$dtw(i,j) = c(x_i, y_j) + min \begin{cases} dtw(i-1,j) \\ dtw(i,j-1) \\ dtw(i-1,j-1) \end{cases}$$

$$(x_i - y_j)^2$$

DTW

Pairwise Euclidean Distance

#DistanceProfile

DTW

Com essas matrizes de distância, entramos em uma outra forma de analisar as séries temporais, as Matrix profile

Matrix profile, nada mais é do que a matriz de distância que criamos, podendo ser entre séries diferentes ou comparando uma série consigo mesma

Com o matrix profile, podemos encontrar informações interessantes como motifs(subsequência que se repete) e discords (anomalias)

Exemplo de Motif

Exemplo de discord

Intervalos

Algoritmos de intervalo

São algoritmos que trabalham com partes da série temporal.

Assim acaba-se treinando vários modelos, um para cada parte e no fim, faz -se um ensemble desses modelos.

Algoritmos de intervalo

Para quem nunca viu, um ensemble é uma forma de juntar resultados de modelos, podendo ser feito usando a média entre eles, votações e por aí vai.

Algoritmos de intervalo

Entre os algoritmos de destaque, temos:

- TSF
- RISE
- CIF

O TSF ou Time Series Forest é um modelo que aleatoriamente escolhe um intervalo da série e extrae a média, desvio padrão e slope.

Com esses dados, ele constrói uma árvore de decisão

RISE

O RISE ou Random Interval Spectral Ensemble é bem parecido, só que extraindo informações relacionadas à frequência, como o power spectrum e a correlação.

CIF

Assim como os anteriores, o CIF (ou Canonical Interval Forest) constrói uma árvore, só que ele extrai características utilizando o CATCH 22

CAnonical Time-series CHaracteristics ou CATCH 22

Conjunto de 22 características extraídas de uma série temporal após um estudo extensivo em mais de 1000 características.

É consideravelmente rápido, e muito útil para aplicar algoritmos de machine learning em séries temporais

CAnonical Time-series CHaracteristics ou CATCH 22

Algumas features

- DN_HistogramMode_5 Moda de um histograma com 5 bins.
- DN_HistogramMode_10 Moda de um histograma com 10 bins.
- SB_BinaryStats_mean_longstretch1 Comprimento médio das sequências contínuas de 1s em uma série binarizada.
- DN_OutlierInclude_p_001_mdrmd Proporção de outliers com um limite de 0,001.

Para saber mais, tem o site deles explicando mais certinho

https://time-series-features.gitbook.io/catch22-features

Adendo

Essa ideia de ensemble também pode ser usada em outras tarefas.

Podemos por exemplo juntar vários algoritmos de distância usando distâncias diferentes.

Assim temos algoritmos como o COTE e o HIVE

Dicionários

Dicionários

Por ser uma área relativamente recente, muita coisa das séries temporais vem emprestada de outras áreas da IA.

Seja extrair features e usar técnicas de Machine Learning clássico, usar medidas de distância vindas da análise de áudio com a DTW, ou usar técnicas da visão computacional como veremos mais pra frente em redes neurais.

Os pesquisadores já tentaram de tudo.

Dicionários

Então por que não transformar a série temporal em um texto e aplicar técnica de Processamento de linguagem natural.

Para suprir essa necessidade, temos as técnicas de dicionário, sendo a mais famosa delas a Bag-of-SFA-Symbols (BOSS)

BOSS

O BOSS consiste em segmentar a série temporal e aplicar transformações nesses segmentos usando a Symbolic Fourier Approximation (SFA).

O SFA discretiza os coeficiente obtidos pela transformada de fourier, sendo cada um desses termos discretos uma letra.

BOSS

BOSS

Assim conseguimos que a série se transforme em sequências de caracteres, e podemos aplicar algoritmos como bag of words nelas

Obrigado!

