WHAT IS CLAIMED IS:

1	1.	An alkaline battery comprising:
2		a cathode comprising an active cathode material including lambda-manganese
3	dioxide;	
4		an anode comprising zinc;
5		a separator between the anode and the cathode; and
6		an alkaline electrolyte contacting the anode and the cathode,
7	wherein the active cathode material has a specific discharge capacity to a 0.8V cutof	
8	of greater than 290 mAh/g at a discharge rate of 20 mA/g of active cathode material.	
1	2.	The battery of claim 1, wherein the active cathode material has a specific
2	discharge capacity to a 0.8V cutoff of greater than 300 mAh/g at a discharge rate of 20 mA/g	
3	of active cathode material.	
1	3.	The battery of claim 1, wherein the battery has a specific discharge capacity to
2	a 0.8V cutoff of 310 mAh/g or greater at a discharge rate of 20 mA/g of active cathode	
3	material.	
1	4.	The battery of claim 1, wherein the lambda-manganese dioxide is heated to a
2	temperature	of less than 150°C.
1	5.	The battery of claim 1, wherein the lambda-manganese dioxide is heated to at
2	a temperature of 120°C or less.	
1	6.	The battery of claim 1, wherein the lambda-manganese dioxide has a B.E.T.
2	surface area of greater than 4 m ² /g.	
1	7.	The battery of claim 1, wherein the lambda-manganese dioxide has a B.E.T.
2	surface area of greater than 8 m ² /g.	

1	8.	The battery of claim 1, wherein the lambda-manganese dioxide has a total	
2	pore volume of from 0.05 to 0.15 cubic centimeters per gram.		
1	· · · 9.	An alkaline battery comprising:	
2		a cathode comprising an active cathode material including lambda-manganese	
3	dioxide having a total pore volume of from 0.05 to 0.15 cubic centimeters per gram, and the		
4	lambda-manganese dioxide has a B.E.T. surface area of greater than 8 m ² /g, wherein the		
5	lambda-manganese dioxide is heated to a temperature of 150°C or less;		
6		an anode including zinc;	
7		a separator between the anode and the cathode; and	
8		an electrolyte contacting the cathode, the anode and the separator.	
1	10.	The battery of claim 9, wherein the active cathode material has a specific	
2	discharge capacity to a 0.8V cutoff of greater than 290 mAh/g at a discharge rate of 20 mA/g		
of active cathode material.		node material.	
•			
1	11.	The electrochemical cell of claim 10, wherein the active cathode material has	
2	a specific discharge capacity to a 0.8V cutoff of greater than 300 mAh/g at a discharge rate of		
3	20 mA/g of active cathode material.		
1	12.	A method of manufacturing an alkaline battery comprising:	
2		providing a positive electrode including an active cathode material including	
3	lambda-manganese oxide; and		
4		forming a battery including the positive electrode and a zinc electrode,	
5	wherein the active cathode material has a specific discharge capacity to a 0.8V cutoff		
6	of greater than 300 mAh/g at a discharge rate of 20 mA/g of active cathode material.		

The method of claim 12, wherein providing the electrode includes preparing:

13.

2

3

from -0.02 to +0.02; 4 adding an acid to the water and compound until the water has a pH of 1 or 5 less; 6 separating a solid from the water and acid; and 7 drying the solid at a temperature of 120°C or below to obtain the lambdamanganese dioxide. 14. The method of claim 13, wherein the compound has a B.E.T. surface area of 1 between 1 and 10 m²/g. 2 15. The method of claim 13, wherein the compound has a total pore volume of 1 between 0.05 and 0.15 cubic centimeters per gram. 2 16. The method of claim 13, wherein the compound of the formula Li_{1+x}Mn_{2-x}O₄ 1 has a spinel-type crystal structure. 2 17. The method of claim 13, wherein the solid is dried at a temperature of less than about 100°C. 2 18. The method of claim 13, wherein the solid is dried at a temperature between 1 50°C and 70°C. 2 The method of claim 13, wherein x is from -0.005 to +0.005. 19. 20. The method of claim 13, wherein contacting water and the compound includes forming a slurry. 2

The method of claim 20, wherein the slurry is maintained at a temperature

The method of claim 13, wherein the acid concentration is between 1 and 8

21.

22.

below 50°C.

molar.

1

2

2

Attorney Docket No.: 08935-250001 (M 4970)

- 1 23. The method of claim 13, wherein the acid is sulfuric acid, nitric acid, perchloric acid, hydrochloric acid, toluene sulfonic acid, or trifluoromethyl sulfonic acid.
- 1 24. The method of claim 20, wherein the temperature of the slurry is maintained 2 substantially constant during the addition of acid.
- 1 25. The method of claim 13, wherein the pH is 1 or less.
- 1 26. The method of claim 13, further comprising washing the solid separated from 2 the water and acid with water until the washings have a pH greater than 6.