EPITA / In	foS2
------------	------

NOM : Prénom :

Mars 2018

Groupe :

Contrôle Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours (5 points – pas de points négatifs)

Choisissez la ou les bonnes réponses :

Soit une tension sinusoïdal $u(t) = U\sqrt{2}. sin(\omega t + \varphi)$

- 1. Par convention, U est une constante réelle positive, en Ampère.
 - a. VRAI

- b. FAUX
- **2.** Quelle relation est correcte ? T représente la période de u(t) et f, sa fréquence.

a.
$$\omega = 2.\pi.T$$

c.
$$f = 2.\pi.\omega$$

b.
$$\omega T = 2.\pi$$

d.
$$\frac{\omega}{T} = \frac{2.\pi}{f}$$

On note \underline{U} , l'amplitude complexe de u(t).

3. Quel est le module de \underline{U} ?

a.
$$< u >$$

d.
$$\frac{U}{\sqrt{2}}$$

4. Quel est l'argument de \underline{U} ?

a.
$$\omega t + \varphi$$

c.
$$\omega t$$

- 5. Quelle formule représente l'impédance complexe d'un condensateur de capacité C?
- a. $-jC\omega$
- b $\frac{-1}{iCa}$
- c. $\frac{1}{jC}$
- d. $\frac{-j}{c\omega}$
- **6.** Quelle formule représente l'impédance complexe d'une bobine d'inductance *L*?
- a. *jL*

- b. $\frac{1}{jL\omega}$
- c. $jL\omega$
- d. $\frac{-j}{L\omega}$

- 7. Dans une bobine, la tension est :
- a. En avance de $\frac{\pi}{2}$ sur le b. En retard de $\frac{\pi}{2}$ sur le c. En phase avec le
- courant.

courant.

- courant.
- **8.** Quelle est l'unité de $C\omega$?

a.
$$\Omega$$

- d. sans dimension
- 9. Une bobine L et un condensateur C sont en parallèle. L'impédance équivalente à ces 2 composants vaut:

a.
$$Z_{eq} = -\frac{LC\omega^2}{jL\omega + 1/jC\omega}$$

c.
$$Z_{eq} = \frac{jL\omega}{1-LC\omega^2}$$

b.
$$Z_{eq} = -\frac{LC\omega^2}{jL\omega + jC\omega}$$

d.
$$Z_{eq} = \frac{1/jC\omega}{1-LC\omega^2}$$

10. Quel est alors le déphasage de la tension aux bornes de $Z_{cute{e}q}$ par rapport au courant qui la traverse?

a.
$$+\frac{\pi}{2}$$

c.
$$-\pi$$

b.
$$-\frac{\pi}{2}$$

d. $\pm \frac{\pi}{2}$ selon la fréquence

Identification de dipôles (3 points) Exercice 2.

On souhaite déterminer la nature d'un dipôle inconnu. Pour cela, on mesure la tension u(t) à ses bornes et le courant i(t) qui le traverse.

En justifiant votre réponse, déterminer la nature du dipôle ainsi que sa grandeur caractéristique (Résistance R pour une résistance, capacité C pour un condensateur et inductance L pour une bobine) dans les cas suivants :

1.
$$u(t) = U.\sqrt{2}.\cos(\omega t)$$
 et $i(t) = I.\sqrt{2}.\cos(\omega t - \frac{\pi}{2})$ avec
$$\begin{cases} \omega = 2000 \ rd/s \\ U = 10 \ V \\ I = 5 \ mA \end{cases}$$

2. $u(t) = U.\sqrt{2}\cos\left(\omega t - \frac{\pi}{2}\right)$ et $i(t) = I.\sqrt{2}.\sin(\omega t)$ avec	$\begin{cases} \omega = 2000 \ rd/s \\ U = 15 \ V \\ I = 20 \ mA \end{cases}$

Valeurs moyennes et efficaces (4 points) Exercice 3.

Donner l'expression de u(t) pour $t \in [0;T]$ (T = Période du signal) avant de déterminer (en la justifiant) la valeur moyenne et la valeur efficace du signal suivant :

Régime sinusoïdal forcé (8 points) Exercice 4.

Soit le circuit ci-contre.

On donne:

$$\left(i_1(t) = I.\sqrt{2}.\cos(\omega t)\right)$$

$$\begin{cases} i_2(t) = I.\sqrt{2}.\sin(\omega t) \\ e(t) = E.\sqrt{2}.\sin(\omega t) \end{cases}$$

$$e(t) = E.\sqrt{2}.\sin(\omega t)$$

On suppose connus I, E, ω, L, R et C

Déterminer l'expression de la tension u(t) aux bornes de R_1 .

Rq : Il faut commencer par flécher cette tension. Ensuite, vous pouvez utiliser le théorème de votre choix (superposition, Thévenin et/ou Norton) pour déterminer \underline{U} . Si besoin, n'oubliez pas de justifier les calculs par des schémas partiels (pour le théorème de superpostion, par exemple).