Prüfungsteilnehmer	Prüfungstermin	Einzelp-üfungsnumme
Kennzahl:	_ Frühjahr	46112
Kennwort:	1997	
Arbeitsplatz-Nr.:		
Erste Staatsprüfung	g für ein Lehramt an ö - Prüfungsaufgaben -	ffentlichen Schulen
Fach: Inf	ormatik (nicht vertie	eft studiert)
Einzelprüfung: Gru	ndlagen der Informatik	
Anzahl der gestellten Ti	nemen (Aufgaben): 1	
Anzahl der Druckseiten	dieser Vorlage: 2	

Sämtliche Teilaufgaben sind zu bearbeiten!

Teilaufgabe 1

Gegeben sei die Grammatik Γ mit $\{a,b,c\}$ als Menge der Terminalzeichen, den Nichtterminalzeichen Z, A und B, dem Axiom Z und den Produktionsregeln

 $Z \rightarrow aA$

B → P8

 $Z \rightarrow bA$

B→c

 $\mathcal{L}(\Gamma)$ bezeichne den Sprachschatz von Γ .

- a) Sei M die Menge aller Zeichenreihen über {a,b,c}, die mit dem Zeichen c enden. Beweisen oder widerlegen Sie folgende Behauptungen:
 - $\mathcal{L}(\Gamma) \subseteq M$. a1)
 - $M \subseteq \mathcal{L}(\Gamma)$. a2)
- b) Geben Sie einen deterministischen endlichen Automaten an, der genau die Zeichenreihen von $\mathcal{L}(\Gamma)$ akzeptiert.
- Beschreiben Sie $\mathcal{L}(\Gamma)$ durch einen regulären Ausdruck.

Teilaufgabe 2

a) Von einem Algorithmus A der Art

PROCEDURE A(VAR x: ARRAY [1..n] OF REAL)

sei bekannt, daß er die Zeitkomplexität $O(n^2)$ hat. Erläutern Sie ausführlich, was diese Aussage bedeutet. In welchem Sinne ist ein Algorithmus mit Zeitkomplexität O(n) "besser" als A?

- b) Beschreiben Sie verbal die Wirkungsweise des Algorithmus QUICKSORT zum Sortieren einer Folge von Zahlen.
- c) Welche Zeitkomplexität hat QUICKSORT? Begründen Sie Ihre Antwort.
- d) Nennen Sie noch wenigstens zwei andere Sortierverfahren mit einer Zeitkomplexität von gleicher Größenordnung wie die Zeitkomplexität von QUICKSORT.

Teilaufgabe 3

Durch die Funktionsvereinbarung

```
function f(n:nat)nat:

if n = 0 then 3

[] n = 1 then 0

[] n = 2 then 2

else f(n-2) + f(n-3) endif
```

ist eine Funktion $f: \mathbb{N}_0 \to \mathbb{N}_0$ definiert. Die Funktion $g: \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$ sei gegeben durch

$$g(n,x,y,z) = x \cdot f(n+2) + y \cdot f(n+1) + z \cdot f(n).$$

- a) Bestimmen Sie (für beliebige $x, y, z \in \mathbb{N}_0$) den Wert von g(3, x, y, z).
- b) Beweisen Sie, daß für $n,x,y,z \in \mathbb{N}_0$, $n \ge 1$, gilt: g(n,x,y,z) = g(n-1,y,x+z,x).
- c) Geben Sie unter Verwendung von b) einen rekursiven Algorithmus an, der g(n,x,y,z) für beliebige $n,x,y,z \in \mathbb{N}_0$ berechnet.
- d) Geben Sie einen iterativen Algorithmus an, der f(n) für beliebiges $n \in \mathbb{N}_0$ berechnet.

Teilaufgabe 4

Gegeben sei die dreistellige Schaltfunktion f mit

$$f(a,b,c) = (a \wedge b) \vee (\neg a \wedge \neg b) \vee (a \wedge \neg c) \vee (\neg a \wedge c) \vee (b \wedge c) \vee (\neg b \wedge \neg c).$$

- a) Geben Sie ein Schaltnetz für f an.
- b) Beweisen Sie, daß für alle Schaltvariablen a,b,c gilt:

$$f(a,b,c) = (a \lor \neg b \lor c) \land (\neg a \lor b \lor \neg c).$$

- c) Beweisen oder widerlegen sie folgende Behauptungen:
 - c1) f(a,b,c) = f(b,a,c) für alle Schaltvariablen a,b,c.
 - c2) $f(a,b,c) = f(\neg b, \neg a,c)$ für alle Schaltvariablen a,b,c.