练习 1. 假设 $\{E_k\}_{k\geq 1}$ 是 \mathbb{R}^n 中的可测集, $E_k \subset Q_e$, Q_e 是 \mathbb{R}^n 中边长为 1 的方体. 如果 $m(E_k) \to 1$,那么给定 $0 < \lambda < 1$,是否存在子列 $\{E_{k_i}\}_{j\geq 1}$ 满足 $m(\bigcap_{i=1}^{\infty} E_{k_i}) > \lambda$?

练习 2. 假设 $E \subset \mathbb{R}^n$ 是可测集, $E \subset Q_e$, 其中 Q_e 是 \mathbb{R}^n 中边长为 1 的方体. 假设存在 $\alpha > 0$ 使得对 Q_e 的任意子方体 $Q \subset Q_e$ 均成立 $m(E \cap Q) \geq \alpha |Q|$. 问: 是否 m(E) = 1?

练习 3. 找满足这样条件的开集 \mathcal{O} ,其闭包的边界有正测度: $m(\overline{\mathcal{O}} \setminus \text{Int } \overline{\mathcal{O}}) > 0$. (建议:可考虑构造类 Cantor 集时奇数步移除的开区间的并.)

练习 4. 假设 E, F 是 \mathbb{R}^n 中的可测集,m(E) > 0,m(F) > 0. 证明:

- (i) 原点是 $E_{\#} := \{x y : x, y \in E\}$ 的内点.
- (ii) $\{x + y : x \in E, y \in F\}$ 与 $\{x y : x \in E, y \in F\}$ 均包含内点.

练习 5. 假设 $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}^n$ 是一个线性变换. 证明:

- (i) 对任何可测集 $E \subset \mathbb{R}^n$, $\mathcal{L}(E)$ 是可测集.
- (ii) 对任何 $E \subset \mathbb{R}^n$, $m_*(E) < \infty$,均有 $m_*(\mathcal{L}(E)) = |\det \mathcal{L}| m_*(E)$,其中 $\det \mathcal{L}$ 是该线性变换对应的 $n \times n$ 矩阵的行列式.

练习 6. 令 $E = \{(x,y) \in \mathbb{R}^2 : x^2/a^2 + y^2/b^2 \le 1\}$, 其中 a,b > 0. 根据如下步骤验证 $m(E) = \pi ab$.

- (i) 假设 T 是 \mathbb{R}^2 中的三角形. 说明: m(T) 即为 T 的面积.
- (ii) 记 \mathbb{R}^2 中单位圆盘 B_1 的内接与外切正 n 边形为 P_n 与 Q_n . 利用 (i) 证明:

$$m(P_n) = n \sin \frac{\pi}{n} \cos \frac{\pi}{n}, \ m(Q_n) = n \tan \frac{\pi}{n}.$$

- (iii) 利用 (ii) 证明: $m(B_1) = \pi$.
- (iv) 利用 (iii) 证明: $m(E) = \pi ab$.

练习 7. 假设 $E \subset (-\pi, \pi]$, $0 \le a < b < \infty$. 令

$$S_E(a,b) := \{ (r\cos\theta, r\sin\theta) \in \mathbb{R}^2 : \theta \in E, \ a < r < b \}.$$

根据如下步骤验证 $S_E(a,b)$ 的可测性并计算其测度.

- (i) 证明: $m_*(S_E(a,b)) \leq (b^2 a^2)m_*(E)/2$. 注: 前者是 \mathbb{R}^2 的外测度,后者是 \mathbb{R} 的外测度.
- (ii) 证明: 如果 E 可测,则 $S_E(a,b)$ 可测,并且 $m(S_E(a,b)) = (b^2 a^2)m(E)/2$. 注: 前者 是 \mathbb{R}^2 的测度,后者是 \mathbb{R} 的测度.