# Chapter 5: Probability

sum rule



Section 5.3: Independence and Multiplicative Rule

COMPOUND EVENTS

Previously: P(AorB)=P(A)+P(B)-P(A and B)

A **compound event** is any event combining two or more simple events.

NOTATION P(A and B) can denote two different things:

- It is the outcomes that belong to both A and B, that is in the intersection of both. Use this when making "one Aand B overlaplintersection
- It also is used when making "two selections": it is the outcomes in A in the 1st trial followed by the outcomes in B in the 2nd trial No venn Diagram [(A and B) = [(A first ce letter and b second trial)]

### INDEPENDENCE VS. DEPENDENCE

- Two events are **independent** of the occurrence of one event does not affect the probability Def
- of the occurrence of the other event. Ex: flipping aim repeatedly dice rolls, ...

  If two events are not independent, they are said to be dependent. ( wext section) Def

**EX**: Independent events? Or Dependent events? Why or why not?

(a) A =You find a parking spot B =First week of school dependent;

(b) C =You pass your class D =Your mom is a good cook

independent

## MULTIPLICATION RULE FOR INDEPENDENT EVENTS

**Symbolic** 

 $P(A \text{ and } B) = P(A) \times P(B)$ 

Meaning

When two events are independent, the probability of event A followed by event B is found by multiplying the probability of event A by the probability of event B.

= 3 HH HT TH TT 3 #5 = 4

## EXPLANATION OF FORMULA

Let S be the sample space of flipping a coin twice. Let A be the event of H on first flip and B the be even of H on second flip. Then P(H on 1st and H on 2nd) =  $P(A \text{ and } B) = \frac{\# A \text{ and } B}{\# S} = \frac{1}{4}$ . Now,  $P(A) = \frac{1}{4} = \frac{1}{2}$  and  $P(B) = \frac{1}{4} = \frac{1}{2}$  so,  $P(A)P(B) = \frac{1}{2} \cdot \frac{1}{2}$  This example show why the formula works. We will prove a more general version in the next section.

## **DISJOINT EVENTS VS INDEPENDENT EVENTS**

- When making one selection, these do mean the same thing.
- When making two or more selections, these do **NOT** mean the same thing.

y next section



We use some basic logic to come up with a simple way to compute the probability of events with "at least one

...". If we let  $A = \{$  none of ...  $\}$  then the complement of A,  $A^c$ , means not A. But, negative nothing is the same

thing as "at least one" must be true. Formally, we use the complement rule:  $P(A^c) = 1 - P(A)$ Note:  $P(A^c) = 1 - P(A)$   $\Rightarrow P(at \ least \ one) = 1 - P(none)$ 

Really uset

Ex: Let's say that for the next seven days, the probability of rain is 5%. Assume the chance of rain each day is independent. What is the probability that it rains at least one day over the next seven days.

## Ridiculously LONG way...

P(at least one day of rain)

The Sane Wav...

What's the complement of at least one day of rain?

$$P(\text{at least one } R) = 1 - P(\text{no } R \text{ an 7 days})$$

$$= 1 - P(\text{NNNNNNN})$$

$$= 1 - P(\text{N)} \cdot P(\text{N}) \cdots P(\text{N})$$

$$= 1 - P(\text{N}) \cdot P(\text{N}) \cdots P(\text{N})$$

$$= 1 - P(\text{N}) \cdot P(\text{N}) \cdots P(\text{N})$$

$$= 1 - 0.95^{7} = 0.302$$

$$= 1 - 0.95^{7} = 0.302$$

Ex: A bag contains an assortment of Jolly Rancher candies. Specifically, there are 5 apple, 8 watermelon, 10 cherry, and 15 grape flavored candies. You get to randomly select three candies with replacement. Find the probability of getting at least one watermelon.

$$P(a+least one W) = 1 - P(noW)$$

$$= 1 - \left(\frac{30}{38}\right)^{3}$$

$$= 10.508$$

38 (andres 20 na westernelin

Ex: A satellite defense system has five independent satellites that each have a 0.92 chance of detecting a missile threat.

(a) What's the probability that at least one satellite does detect a missile threat?

(b) What's the probability that at least one satellite does not detect a missile threat?

does not detect a missile threat?
$$f(a+|a|) = |-f(T)|$$

$$= |-f(T)|$$

$$= |-f(T)|$$

$$= |-6.92|$$

$$= |-6.92|$$