FÍSICA 2 (FÍSICA) - CÁTEDRA DIANA SKIGIN

SEGUNDO CUATRIMESTRE DE 2021

Guía 6: Paquetes de Ondas

Velocidad de grupo y de fase

- 1. Discuta cuál de estos métodos permite determinar la velocidad de fase y cuál la de grupo:
 - a) Medir el tiempo que tarda un pulso sonoro (por ejemplo, un aplauso) en impactar sobre una superficie reflectora ubicada a una distancia conocida. y volver a su punto de partida.
 - b) Medir la longitud de un tubo que resuena a una frecuencia conocida (y corregir por efectos de borde).
 - c) Medir el tiempo que tarda un pulso lumínoso en recorrer una distancia conocida.
 - d) Medir la longitud de una cavidad resonante que oscila en un modo y frecuencia conocidos.
- 2. Obtenga la velocidad de fase y de grupo para los siguientes casos. Compárelas y discuta en cuales casos ambas velocidades son similares.
 - a) Ecuación de ondas clásica.
 - b) Ecuación de Klein-Gordon, considerando las siguientes situaciones:
 - 1) $\omega_0 = 0$, con c y k_0 arbitrarios.
 - 2) $\omega_0 = 1 \,\mathrm{s}^{-1} \,\mathrm{y} \,c = 1 \,\mathrm{m} \,\mathrm{s}^{-1}, \,\mathrm{con} \,k_0 \,\mathrm{tomando los \, valores:} \,1 \,\mathrm{m}^{-1}, \,3 \,\mathrm{m}^{-1}, \,\mathrm{y} \,10 \,\mathrm{m}^{-1}.$
- 3. Demuestre que la velocidad de grupo v_g y la velocidad de fase v_f están relacionadas por:

$$v_{\rm g} = v_{\rm f} - \lambda \frac{dv_{\rm f}}{d\lambda}$$

¿Cómo es $\frac{dv_f}{d\lambda}$ en un medio no dispersivo? En ese caso, ¿cómo se relacionan la velocidad de grupo y la de fase?

Paquetes Gaussianos

4. Función Gaussiana: Considere la siguiente función de una coordenada arbitraria z:

$$f(z) = A \exp \left[-\frac{(z-\mu)^2}{4\Delta^2} \right],$$

conocida como función de Gauss (aka campana de Gauss, función normal, etc.), cuyos parámetros A, μ y Δ son conocidos.

- a) Muestre analítica o gráficamente que esta función:
 - es definida positiva (si A > 0).
 - tiene un único máximo en $z = \mu$.
 - tiende a 0 para $z \to \pm \infty$.

b) Determine el desplazamiento en z respecto a la posición del máximo, necesario para que la altura de la función se reduzca a la mitad. Es decir, obtenga Δz tal que:

$$f(\mu \pm \Delta z) = 1/2 f(\mu)$$

Utilice este resultado para definir el ancho de la campana. ¿Qué parámetro de la función determina dicho ancho?

- c) ¿A qué altura de la función corresponde el ancho definido por 2Δ ?
- 5. Se quiere investigar la relación entre el ancho de un paquete y el desfasaje de las frecuencias que lo componen.
 - a) Tome el siguiente pulso con un espectro gaussiano de ancho Δk centrado en k_0 (note que las frecuencias están en fase):

$$\hat{\psi}(k) = A \exp\left[-\frac{(k-k_0)^2}{4\Delta k^2}\right].$$

Calcule $\psi(x)$ y vea que tiene una envolvente Gaussiana que modula una portadora de frecuencia k_0 . Note que el pulso está centrado en x=0 y que se cumple la relación $\Delta x \Delta k = 1/2$ (el paquete Gaussiano es el de mínima incerteza).

b) Ahora desfase las distintas frecuencias en forma lineal, tal que:

$$\hat{\psi}(k) = A \exp\left[-\frac{(k-k_0)^2}{4\Delta k^2}\right] \exp\left[i\alpha(k-k_0)\right].$$

Calcule $\psi(x)$ y vea que es el mismo pulso que en la parte (a), pero desplazado en α hacia la derecha (una fase lineal sólo corre la función).

c) Ahora agregue una fase cuadrática, es decir:

$$\hat{\psi}(k) = A \exp\left[-\frac{(k-k_0)^2}{4\Delta k^2}\right] \exp\left[i\beta(k-k_0)^2\right].$$

Calcule $\psi(x)$ y vea que es un pulso gaussiano centrado en x=0 pero con un ancho Δx que cumple:

$$\Delta x \Delta k = \frac{1}{2} \sqrt{1 + 16\beta^2 \Delta k^4}.$$

Verifique que el producto de ambos anchos cumple la relación de incerteza general $\Delta x \Delta k \geq 1/2$, y luego determine el valor de β tal que se cumpla la relación de mínima incerteza $\Delta x \Delta k = 1/2$.

d) A partir del resultado anterior, discuta si es cierto que, si se quiere disminuir el ancho espacial de un paquete (Δx) , siempre se debe aumentar su ancho espectral (Δk) . ¿Contradice esto a la relación de incerteza mínima?

Sugerencia: Puede ser útil obtener Δx como función de Δk , y luego graficar o derivar la primera en función de la segunda.

Ayuda:
$$\int_{-\infty}^{+\infty} \exp\left[(x+a)^2\right] dx = \sqrt{\pi}$$
.

6. Repita el ejercicio anterior, considerando que el espectro $\hat{\psi}(k)$ corresponde a un pulso que se propaga en un medio arbitrario evaluado en t=0. Resuelva analíticamente a partir de la linealización de la relación de dispersión y halle $\psi(x,t)$ en cada caso. ¿Qué supuestos debe verificar el espectro para que el desarrollo sea lo más exacto posible?

7. Se tiene un pulso de ancho Δk centrado en k_0 tal que la siguiente es una buena aproximación para la relación de dispersión:

$$\omega(k) = \omega_0(k_0) + \omega'(k_0)(k - k_0) + \frac{1}{2}\omega''(k_0)(k - k_0)^2$$

donde $\omega' = \frac{d\omega}{dk}$ y $\omega'' = \frac{d^2\omega}{dk^2}$. Si en t=0 el pulso se propaga hacia x<0, y se escribe:

$$\psi(x,0) = \Re \mathfrak{e} \left[A \int_{-\infty}^{+\infty} \exp \left[-\frac{(k-k_0)^2}{4\Delta k^2} \right] \exp \left(ikx \right) dk \right],$$

calcule $\psi(x,t)$. Obtenga la posición y el ancho del paquete como función del tiempo. ¿Es cierto que cualquier paquete se ensancha al viajar por un medio dispersivo?

Propiedades de la transformada de Fourier

- 8. Sea f(t) una función real del tiempo. Muestre que su transformada de Fourier $\mathcal{F}[f]$ es una función de la frecuencia angular $\hat{f}(\omega)$ que cumple $\overline{\hat{f}(\omega)} = \hat{f}(-\omega)$. Use esto para escribir a f(t) como superposición de senos y cosenos.
- 9. Muestre que la transformada de Fourier \mathcal{F} es una transformación lineal, es decir:

$$\mathcal{F}[af + bg] = a\mathcal{F}[f] + b\mathcal{F}[g]$$

donde f y g son funciones de x, y a y b son constantes.

Paquetes cuadrados

10. Considere un espectro de frecuencias cuadrado, centrado en una frecuencia angular ω_0 y de ancho $\Delta\omega$:

$$\hat{\phi}(\omega) = \begin{cases} \Delta \omega^{-1}, & \text{si } \omega \in [\omega_0 - \frac{\Delta \omega}{2}, \omega_0 + \frac{\Delta \omega}{2}] \\ 0, & \text{en caso contrario} \end{cases}$$
 (1)

- a) Grafique el espectro $\hat{\phi}(\omega)$.
- b) Verifique que este espectro corresponde a una función $\phi(t)$ dada por:

$$\phi(t) = \frac{1}{2\pi} \left[\frac{\sin(\frac{\Delta\omega}{2}t)}{\frac{\Delta\omega}{2}t} \right] e^{i\omega_0 t}$$

y grafique su módulo $|\phi(t)|$.

- c) Sea T un tiempo más prolongado que la duración de cualquier experimento que pueda idear. Muestre que si $\Delta \omega$ es suficientemente pequeño como para que $\Delta \omega T \ll 1$, entonces durante un tiempo menor que T, $\phi(t)$ es una función armónica de amplitud y fase prácticamente constantes. Elija valores numéricos razonables para T y $\Delta \omega$, y grafique el espectro correspondiente.
- 11. Considere una secuencia de pulsos de duración Δt y amplitud A_0 que se repiten N veces con período τ (con $\tau < \Delta t$), dando lugar a la siguiente señal $\phi(t)$:

a) Considere la función que describe a un pulso situado en el intervalo $[n\tau, (n+1)\tau]$:

$$\phi_n(t) = \begin{cases} A_0, & \text{si } t \in [n\tau, n\tau + \Delta t] \\ 0, & \text{en caso contrario} \end{cases}$$
 (2)

de forma que $\phi(t) = \sum_{n=0}^{N-1} \phi_n(t)$. Compruebe que la transformada de $\phi_n(t)$ es igual a la transformada de $\phi_0(t)$, multiplicada por una fase $e^{in\theta}$.

- b) Obtenga $\hat{\phi}_0(\omega)$ y a partir de la misma obtenga $\hat{\phi}(\omega)$.
- c) Grafique el espectro de amplitudes $|\hat{\phi}(\omega)|$ o bien de energías $|\hat{\phi}(\omega)|^2$.

Ayuda: Puede resultarle útil la siguiente identidad para series geométricas:

$$\sum_{n=0}^{N-1} e^{-2i\alpha n} = \frac{e^{-2i\alpha N} - 1}{e^{-2i\alpha} - 1} = e^{-i\alpha(N-1)} \frac{\sin(\alpha N)}{\sin(\alpha)}$$

 $con \alpha = \pi \nu \tau.$

- d) Considere la duración total de la señal $T_{\rm tot}=N\tau$. Verifique que, para un valor finito de $T_{\rm tot}$, el espectro está formado por una superposición de armónicos casi discretos de la frecuencia fundamental $\nu_1=\tau^{-1}$, siendo realmente cada armónico un continuo de frecuencias que se extiende sobre una banda de ancho $\Delta\nu\approx T_{\rm tot}^{-1}$. Verifique también que los componentes armónicos más importantes se encuentran en el intervalo de frecuencias dado por $[0,\nu_{\rm máx}]$, con $\nu_{\rm máx}=\Delta t^{-1}$.
- e) ¿Por qué vale $\nu_{\text{máx}}\Delta t\approx 1$ si, en principio, podría valer $\nu_{\text{máx}}\Delta t\gg 1$? ¿La misma pregunta es aplicable a $\Delta\nu$ y T_{tot} ?

Propagación de paquetes en interfaces

12. Se tienen dos cuerdas semi-infinitas de distinta densidad lineal de masa, μ_1 y μ_2 , unidas en un punto y sometidas a una tensión T_0 . Sobre la primera, se propaga hacia la derecha una perturbación de la forma indicada en la figura, a velocidad v. Se conocen μ_1 , μ_2 , T_0 , L y h.

- a) Hallar el desplazamiento $\psi(x,t)$ considerando que los medios son no dispersivos.
- b) Explique cualitativamente cómo cambian estos resultados si el segundo medio es dispersivo.