Summary

(10M

Payment Per Loss

 $oldsymbol{Y}^L$ is the payment per loss variable.

Policy Limits

The policy limit is the maximum amount the **insurer** will pay for a single loss. For an insurance policy with a policy limit u,

$$Y^L = X \wedge u = egin{cases} X, & X < u \ u, & X \geq u \end{cases}$$

$$egin{aligned} \mathrm{E}\Big[ig(Y^Lig)^k\Big] &= \mathrm{E}\Big[ig(X\wedge u)^k\Big] \ &= \int_0^u x^k \, f(x) \, \mathrm{d}x + u^k \cdot S(u) \ &= \int_0^u k \, x^{k-1} S(x) \, \mathrm{d}x \end{aligned}$$

 $(X \wedge u)$ is the limited loss variable, and its mean, $\mathbf{E}[X \wedge u]$, is the limited expected value.

INCREASED LIMIT FACTOR

For b is the original limit and u is the increased limit,

$$ILF = rac{\mathrm{E}[X \wedge u]}{\mathrm{E}[X \wedge b]}$$

Deductibles

The deductible is the amount the **policyholder** has to pay before receiving any reimbursement.

ORDINARY DEDUCTIBLE

$$Y^L = (X-d)_+ = egin{cases} 0, & X < d \ X-d, & X \geq d \end{cases} = X - (X \wedge d)$$

$$\mathrm{E}[Y^L] = \mathrm{E}[(X-d)_+] = \mathrm{E}[X] - \mathrm{E}[X \wedge d]$$

$$egin{aligned} \mathrm{E}\Big[ig(Y^Lig)^k\Big] &= \mathrm{E}\Big[ig(X-dig)_+^k\Big] \ &= \int_d^\infty ig(x-dig)^k f(x) \,\mathrm{d}x \ &= \int_d^\infty k \, (x-d)^{k-1} S(x) \,\mathrm{d}x \end{aligned}$$

LOSS ELIMINATION RATIO

For a policy with an ordinary deductible d_i

$$LER = rac{\mathrm{E}[X \wedge d]}{\mathrm{E}[X]}$$

FRANCHISE DEDUCTIBLE

$$Y^L = egin{cases} 0, & X \leq d \ X, & X > d \end{cases}$$

$$\mathrm{E}ig[Y^Lig] = \mathrm{E}ig[(X-d)_+ig] + d\cdot S(d)$$

Payment Per Payment

 Y^P is the payment per payment variable, i.e., $Y^P=Y^L\mid Y^L>0$.

$$\mathrm{E}ig[Y^Pig] = rac{\mathrm{E}ig[Y^Lig]}{S(d)} \qquad \Leftrightarrow \qquad \mathrm{E}ig[Y^Lig] = \mathrm{E}ig[Y^Pig] \cdot S(d)$$

 $(X-d\mid X>d)$ is the excess loss variable, and its mean, e(d), is the mean excess loss.

$$e(d) = \mathrm{E}[X-d\mid X>d] = rac{\mathrm{E}igl[(X-d)_+igr]}{S(d)}$$

HELPFUL PROPERTIES

Loss,	Mean,	Excess Loss,	Mean Excess Loss,
X	K	F	Ter .
Exponential (θ)	$-\theta$	Exponential (θ)	$-\theta$
	$rac{a+b}{2}$	Uniform $(0, b-d)$	$rac{b-d}{2}$

Loss, X	Mean, E [X]	Excess Loss, $oldsymbol{X-d} oldsymbol{X} > oldsymbol{d}$	Mean Excess Loss, $\mathbf{E}\left[oldsymbol{X}-oldsymbol{d}\midoldsymbol{X}>oldsymbol{d} ight]$
Pareto (α, θ)	$\frac{ heta}{lpha-1}$	Pareto $(\alpha, \theta+d)$	$\frac{\theta+d}{\alpha-1}$
S-P Pareto (α, θ)	$\frac{\alpha heta}{lpha-1}$	$\text{Pareto} \ (\alpha, \ d)$	$\frac{d}{\alpha-1}$

The Ultimate Formula

$$\mathrm{E}ig[Y^Lig] = lpha \left(1+r
ight) \left(\mathrm{E}ig[X \wedge rac{m}{1+r}ig] - \mathrm{E}ig[X \wedge rac{d}{1+r}ig]
ight)$$

where

- X is the loss variable,
- d is the deductible (set to 0 if not applicable),
- u is the policy limit (set to ∞ if not applicable),
- α is the coinsurance (set to 1 if not applicable),