MIDTERM EXAMINATION INDEX 22

FINANCIAL ECONOMETRICS					
Head of Mathematics	Department	of	Lecturer	Student ID: Name:	Date: April 2020

INSTRUCTIONS:

- 1. This is a group assignment. Please remember to write down your team member names and exam paper index.
- 2. You are not allowed to copy from each other.
- 3. You should not send out this exam paper file. If you send out this exam paper file, some points will be deducted (*I can easily find out since the exam index is unique for each team*).

You should submit the pdf file on Blackboard before Saturday 25 April at 13:00. The pdf file can be prepared with Word, or scanned from a handwritten paper.

Question 1. (10 points) What 5 assumptions are usually made about the unobservable error terms in the Classical Linear Regression Model? Briefly explain the meaning of each.

Question 2. (15 points) Which of the following models can be estimated using Ordinary Least Squares, where x,y,z are the variables and α, β, γ are the parameters to be estimated?

$$a) y_t = e^{\alpha} x_t^{\beta} e^{u_t}$$

$$b) y_t = \alpha^2 + \beta y_t x_t + u_t$$

$$c) \ln(y_t) = \alpha + \beta x_t z_t + u_t$$

$$d) y_t = \alpha + \beta x_t z_t + u_t$$

Question 3. (20 points) In an estimated simple regression model, based on [34] observations, the estimated slope parameter is 0.310 and the estimated standard error is 0.082.

b) Test the null hypothesis that the estimated slope is 0.5, against the alternative that it is not, at the 5% level of significance.

Question 4. (15 points) For this question, you are given the following data
$$(X'X)^{-1} = \begin{bmatrix} 1.3 & 2.1 & -1.4 \\ 2.1 & 0.8 & 1.9 \\ -1.4 & 1.9 & 3.4 \end{bmatrix}, \quad (X'y) = \begin{bmatrix} -1.6 \\ 2.9 \\ 0.8 \end{bmatrix},$$

$$s^2 = 0.86$$
 , $T = 103$

The regression equation is $y_t = \beta_1 + \beta_2 X_{2t} + \beta_3 X_{3t} + u_t$

a) What are the values for
$$(\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3)$$
?

b) What are the Standard Errors of
$$(\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3)$$
?

Question 5 (20 points) using the formula to estimate the coefficients in a simple linear regression model using OLS. The dependent variable is nominal GDP or real GDP.

Table 3.8 gives data on gross domestic product (GDP) for the United States for the years 1959–1997.

- a. Plot the GDP data in current and constant (i.e., 1992) dollars against
- **b.** Letting *Y* denote GDP and *X* time (measured chronologically starting with 1 for 1959, 2 for 1960, through 39 for 1997), see if the following model fits the GDP data:

$$Y_t = \beta_1 + \beta_2 X_t + u_t$$

Estimate this model for both current and constant-dollar GDP.

- **c.** How would you interpret β_2 ?
- **d.** If there is a difference between β_2 estimated for current-dollar GDP and that estimated for constant-dollar GDP, what explains the difference?

TABLE 3.8 NOMINAL AND REAL GDP, UNITED STATES, 1959-1997

Year	NGDP	RGDP	Year	NGDP	RGD
1959	507.2000	2210.200	1979	2557.500	4630.600
1960	526.6000	2262.900	1980	2784.200	4615.000
1961	544.8000	2314.300	1981	3115.900	4720.700
1962	585.2000	2454.800	1982	3242.100	4620.300
1963	617.4000	2559.400	1983	3514.500	4803.700
1964	663.0000	2708.400	1984	3902.400	5140.100
1965	719.1000	2881.100	1985	4180.700	5323.500
1966	787.7000	3069.200	1986	4422.200	5487.700
1967	833.6000	3147.200	1987	4692.300	5649.500
1968	910.6000	3293.900	1988	5049.600	5865.200
1969	982.2000	3393.600	1989	5438.700	6062.000
1970	1035.600	3397.600	1990	5743.800	6136.300
1971	1125.400	3510.000	1991	5916.700	6079.400
1972	1237.300	3702.300	1992	6244.400	6244.400
1973	1382.600	3916.300	1993	6558.100	6389.60
1974	1496.900	3891.200	1994	6947.000	6610.700
1975	1630.600	3873.900	1995	7269.600	6761 700
1976	1819.000	4082.900	1996	7661.600	6994.800
1977	2026.900	4273.600	1997	8110.900	269.800
1978	2291.400	4503.000			

NGDP = nominal GDP (current dollars in billions). real GDP (1992 billions of dollars) RGDF

Source: Economic Repor

Question 6. (20 points)

From a sample of 209 firms, Wooldridge obtained the following regression results*: $\log(\widehat{\text{salary}}) = 4.32 + (0.280)\log(\text{sales}) + 0.0174 \text{ roe} + 0.00024$

(0.0041)(0.00054)

= 0.283

sales = annual firm sales

roe = return on equity in percent

ros = return on firm's stock

and where figures in the parentheses are the estimated standard errors.

a. Interpret the preceding regression taking into account any prior expectations that you may have about the signs of the various coefficients.

b. Which of the coefficients are *individually* statistically significant at the ► 5 percent level?

c. What is the overall significance of the regression? Which test do you use? And why?

±0.05, 207

3