MIT OpenCourseWare http://ocw.mit.edu

6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.047/6.878 - Computational Biology: Genomes, Networks, Evolution

Rapid sequence alignment and Database search

Local alignment, varying gap penalties Karp-Rabin: Semi-numerical methods

BLAST: dB search, neighborhood search

Statistics of alignment scores (recitation)

Challenges in Computational Biology

Tues: Sequence alignment + dynamic programming

- Dynamic programming
 - Problems that can be decomposed into subparts
 - Identical sub-problems: reuse computation
 - Bottom-up approach: systematically fill table
- The sequence alignment problem
 - Genomes change: mutation, insertions, deletions
 - Alignment: infer evolutionary events
 - Scoring metric reflects evolutionary properties
- Dynamic programming and sequence alignment
 - Alignment scores are additive: decomposable
 - Represent sub-problem scores in M(i,j) matrix
 - Duality between alignment and path through matrix
- Needleman-Wunsch algorithm
 - Local update rule: F(i,j) = max{up, left, diagonal}
 - Save choice pointers for traceback
 - Bottom-right corner gives optimal alignment score
 - Trace-back of pointers gives optimal path/alignment

Today's Goal: Diving deeper into alignments

1. Global alignment vs. Local alignment

- Needleman-Wunsch and Smith-Waterman
- Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching

- Karp-Rabin algorithm and semi-numerical methods
- Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching

- Hashing with neighborhood search
- Two-hit blast and hashing with combs

4. Probabilistic foundations of sequence alignment

- Mismatch penalties, BLOSUM and PAM matrices
- Statistical significance of an alignment score

Today's Goal: Diving deeper into alignments

1. Global alignment vs. Local alignment

- Needleman-Wunsch and Smith-Waterman
- Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching

- Karp-Rabin algorithm and semi-numerical methods
- Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching

- Hashing with neighborhood search
- Two-hit blast and hashing with combs

4. Probabilistic foundations of sequence alignment

- Mismatch penalties, BLOSUM and PAM matrices
- Statistical significance of an alignment score

Intro to Local Alignments

- Statement of the problem
 - A local alignment of strings s and t is an alignment of a substring of s with a substring of t

- Why local alignments?
 - Small domains of a gene may be only conserved portions
 - Looking for a small gene in a large chromosome (search)
 - Large segments often undergo rearrangements

Global Alignment

Needleman-Wunsch algorithm

Initialization: F(0, 0) = 0

Iteration:

$$F(i, j) = \max \begin{cases} F(i-1, j) - d \\ F(i, j-1) - d \\ F(i-1, j-1) + s(x_i, y_j) \end{cases}$$

Termination: Bottom right

vs. Local alignment

Smith-Waterman algorithm

Initialization: F(0, j) = F(i, 0) = 0

Iteration:

F(i, j) = max $\begin{cases} \mathbf{0} \\ F(i-1, j) - d \\ F(i, j-1) - d \\ F(i-1, j-1) + s(xi, yj) \end{cases}$

Termination: Anywhere

More variations on the theme: semi-global alignment

Sequence alignment variations

Some algorithmic variations to save time/space

- Save time: Bounded-space computation
 - Space: O(k*m)
 - Time: $O(k^*m)$, where k = radius explored
 - Heuristic
 - Not guaranteed optimal answer
 - Works very well in practice
 - Practical interest

- Save space: Linear-space computation
 - Save only one col / row / diag at a time
 - Computes optimal score easily
 - Recursive call modification allows traceback
 - Theoretical interest
 - Effective running time slower
 - Optimal answer guaranteed

Sequence alignment with generalized gap penalties

Implementing a generalized gap penalty function F(gap_length)

Initialization: same

Iteration:

$$F(i, j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j) \\ \max_{k=0...i-1} F(k,j) - \gamma(i-k) \\ \max_{k=0...j-1} F(i,k) - \gamma(j-k) \end{cases}$$

Termination: same

Running Time: O(N²M) (cubic)

Space: O(NM)

Do we have to be so general?

Algorithmic trade-offs of varying gap penalty functions

Linear gap penalty: $w(k) = k^*p$

- State: Current index tells if in a gap or not
 Achievable using quadratic algorithm (even w/ linear space)

Quadratic: $w(k) = p+q*k+rk^2$.

- State: needs to encode the length of the gap, which can be O(n)
- To encode it we need O(log n) bits of information. Not feasible

Affine gap penalty: w(k) = p + q*k, where q < p

- State: add binary value for each sequence: starting a gap or not
- Implementation: add second matrix for already-in-gap (recitation)

Length (mod 3) gap penalty for protein-coding regions

- Gaps of length divisible by 3 are penalized less: conserve frame
- This is feasible, but requires more possible states
- Possible states are: starting, mod 3=1, mod 3=2, mod 3=0

Today's Goal: Diving deeper into alignments

- 1. Global alignment vs. Local alignment
 - Needleman-Wunsch and Smith-Waterman
 - Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching

- Karp-Rabin algorithm and semi-numerical methods
- Hash functions and randomized algorithms
- 3. The BLAST algorithm and inexact matching
 - Hashing with neighborhood search
 - Two-hit blast and hashing with combs
- 4. Probabilistic foundations of sequence alignment
 - Mismatch penalties, BLOSUM and PAM matrices
 - Statistical significance of an alignment score

Linear-time string matching

- When looking for exact matches of a pattern
- Karp-Rabin algorithm: interpret it numerically
 - Start with 'broken' version of the algorithm
 - Progressively fix it to make it work
- Several other solutions exist, not covered today:
 - Z-algorithm / fundamental pre-processing, Gusfield
 - Boyer-Moore and Knuth-Morris-Pratt algorithms are earliest instantiations, similar in spirit
 - Suffix trees: beautiful algorithms, many different variations and applications, limited use in CompBio
 - Suffix arrays: practical variation, Gene Myers

Karp-Rabin algorithm

- Key idea:
 - Interpret strings as numbers: fast comparison

Karp-Rabin algorithm

(this actually works)

- Key idea:
 - Interpret strings as numbers: fast comparison
- To make it work:
 - Compute next number based on previous one → O(1)
 - Hashing (mod p) → keep the numbers small → O(1)

Hashing is good, but leads to collisions

- Consequences of (mod p) 'hashing'
 - Good: Enable fast computation (use small numbers)
 - Bad: Leads to spurious hits (collisions)
- Complete algorithm must deal with the bad

Karp Rabin key idea: Semi-numerical approach

- Idea 1: semi-numerical approach:
 - Consider all m-mers:T[1...m], T[2...m+1], ..., T[m-n+1...n]
 - Map each T[s+1...s+m] into a number t_s
 - Map the pattern P[1...m] into a number p
 - Report the m-mers that map to the same value as p

Semi-numerical approach: implementation

- First attempt:
 - Assume $\Sigma = \{0,1\}$ (for {A,G,T,C} convert: A \rightarrow 00, G \rightarrow 01, A \rightarrow 10, G \rightarrow 11)
 - Think about each T[s+1...s+m] as a number in binary representation, i.e.,

```
t_s = T[s+1]2^{m-1} + T[s+2]2^{m-2} + ... + T[s+m]2^0
```

- Output all s such that t_s is equal to the number p represented by P
- Problem: how to map all m-mers in O(n) time ?
 - Find a fast way of computing t_{s+1} given t_s

Computing t_{s+1} based on t_s in constant time

- Middle digits of the number are already computed
 Shift them to the left
- Remove the high-order bit
- Add the low-order bit

Idea 2: Computing all numbers in linear time

How to transform

$$t_s = \underline{T[s+1]2^{m-1}} + T[s+2]2^{m-2} + ... + T[s+m]2^0$$
 Into
$$t_{s+1} = T[s+2]2^{m-1} + T[s+3]2^{m-2} + ... + \underline{T[s+m+1]2^0} ?$$

- Can compute t_{s+1} from t_s using 3 arithmetic operations:
 - Subtract T[s+1]2^{m-1}
 - Multiply by 2 (i.e., shift the bits by one position)
 - Add T[s+m+1]2⁰
- Therefore: $t_{s+1} = (t_s T[s+1]2^{m-1})^2 + T[s+m+1]2^0$
- Therefore, we can compute all $t_0, t_1, ..., t_{n-m}$ using O(n) arithmetic operations, and a number for P in O(m)

Problem: Long strings = big numbers

- To get O(n) time, we would need to perform each arithmetic operation in O(1) time
- However, the arguments are m-bit long!
- If m large, it is unreasonable to assume that operations on such big numbers can be done in O(1) time
- We need to reduce the number range to something more manageable

Dealing with long numbers in constant time

Idea 3: Hashing

We will instead compute

$$t_s^*=T[s+1]2^{m-1}+T[s+2]2^{m-2}+...+T[s+m]2^0$$
 mod q where q is an "appropriate" prime number

One can still compute t'_{s+1} from t'_s:

$$t'_{s+1} = (t'_{s} - T[s+1]2^{m-1})*2 + T[s+m+1]2^{0} \mod q$$

If q is not large, we can compute all t's (and p') in O(n) time

Problem: hashing leads to false positives

- Unfortunately, we can have false positives, i.e.,
 T[s+1...s+m]≠P but t_s mod q = p mod q
- Our approach:
 - Use a random q
 - Show that the probability of a false positive is small
 - → randomized algorithm

Karp-Rabin algorithm: Putting it all together

(this actually works)

- Key idea: Semi-numerical computation
 - Idea 1: Interpret strings as numbers => fast comparison
 (other semi-numerical methods: Fast Fourier Transform, Shift-And)
- To make it work:
 - Idea 2: Compute next number based on previous one → O(1)
 - Idea 3: Hashing (mod p) → keep the numbers small → O(1)

Today's Goal: Diving deeper into alignments

- 1. Global alignment vs. Local alignment
 - Needleman-Wunsch and Smith-Waterman
 - Varying gap penalties and algorithmic speedups
- 2. Linear-time exact string matching
 - Karp-Rabin algorithm and semi-numerical methods
 - Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching

- Hashing with neighborhood search
- Two-hit blast and hashing with combs
- 4. Probabilistic foundations of sequence alignment
 - Mismatch penalties, BLOSUM and PAM matrices
 - Statistical significance of an alignment score

Increased sequence availability → new problems

- Global Alignment and Dyn. Prog. Applications
 - Assume sequences have some common ancestry
 - Finding the "right" alignment between two sequences
 - Find minimum number of transformation operations
 - Understanding evolutionary events: mutations, indels
- Sequence databases
 - Query: new sequence. Subject: many old sequences
 - Goal: which sequences are related to the one at hand
 - most sequences will be completely unrelated to query
 - Individual alignment needs not be perfect.
 - Once initial matches are reported, can fine-tune them later
 - Query must be very fast for a new sequence

Speeding up your searches

- Exploit nature of the problem
 - If you're going to reject any match with idperc <= 90, then why bother even looking at sequences which don't have a stretch of 10 nucleotides in a row.
 - Pre-screen sequences for common long stretches
- Put the speed where you need it
 - Pre-processing the database is off-line.
 - Once the query arrives, must act fast
- Solution: content-based indexing and BLAST
 - Example: index 10-mers.
 - Only one 10-mer in 4¹⁰ will match, one in a million.
 - (even with 500 k-mers, only 1 in 2000 will match).
 - Additional speedups...

BLAST

Basic local alignment search tool - all 46 versions »
SF Altschul, W Gish, W Miller, EW Myers, DJ Lipman - J. Mol. Biol, 1990

Gish', Webb Miller2 Eugene W. Myers3 and David J. Lipmanl ... Cited by **21457** - Related Articles - View as HTML - Web Search

(Gapped blast: 24000 citations!)

Blast Algorithm Overview

- Receive query
 - 1. Split query into overlapping words of length W
 - Find neighborhood words for each word until threshold T
 - 3. Look into the table where these neighbor words occur: seeds S
 - 4. Extend seeds S until score drops off under X
- Report significance and alignment of each match

The BLAST Search Algorithm

High-scoring Segment Pair (HSP)

Why BLAST works(1): Pigeonhole and W-mers

- Pigeonhole principle
 - If you have 2 pigeons and 3 holes, there must be at least one hole with no pigeon

- Pigeonholing mis-matches
 - Two sequences, each 9 amino-acids, with 7 identities
 - There is a stretch of 3 amino-acids perfectly conserved
- In general:
 - Sequence length: n
 - Identities: t
 - Can use W-mers for W= [n/(n-t+1)]

Why BLAST works(2): K-mer matches in practice

True alignments: Looking for K-mers

number of k-mers that happen for each length of k-mer.

Extensions to the basic algorithm

- Ideas beyond W-mer indexing?
 - Faster
 - Better sensitivity (less false negatives)
- 1. Filtering: Low complexity regions cause spurious hits
 - Filter out low complexity in your query
 - Filter most over-represented items in your database

2. Two-hit BLAST

- Two smaller W-mers are more likely than one longer one
- Therefore it's a more sensitive searching method to look for two hits instead of one, with the same speed.
- Improves sensitivity for any speed, speed for any sensitivity
- 3. Beyond W-mers, hashing with Combs

Extension(3): Combs and Random Projections

Key idea:

- No reason to use only consecutive symbols
- Instead, we could use combs, e.g.,

```
RGIKW \rightarrow R*IK* , RG**W , ...
```

- Indexing same as for W-mers:
 - For each comb, store the list of positions in the database where it occurs
 - Perform lookups to answer the query
- How to choose the combs? At random
 - Randomized projection:
 Califano-Rigoutsos'93, Buhler'01, Indyk-Motwani'98
 - Choose the positions of * at random
 - Analyze false positives and false negatives

Extension(3): Combs and Random Projections

Performance Analysis:

- Assume we select k positions, which do not contain *, at random with replacement
- What is the probability of a false negative?
 - At most: 1-idperck
 - In our case: $1-(7/9)^4 = 0.63...$
- What is we repeat the process I times, independently?
 - Miss prob. = 0.63^{1}
 - For I=5, it is less than 10%

Query: RKIWGDPRS

Datab.: RKIVGDRRS

k=4

Query: *KI*G***S

Datab.: *KI*G***S

Today's Goal: Diving deeper into alignments

1. Global alignment vs. Local alignment

- Needleman-Wunsch and Smith-Waterman
- Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching

- Karp-Rabin algorithm and semi-numerical methods
- Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching

- Hashing with neighborhood search
- Two-hit blast and hashing with combs

4. Probabilistic foundations of sequence alignment

- Mismatch penalties, BLOSUM and PAM matrices
- Statistical significance of an alignment score

Varying scores/penalties for matches/mismatches

	Α	G	Т	С
Α	+1	-1/2	7	7
G	-1/2	+1	-1	-1
Т	-1	-1	+1	-1/2
C	-1	-1	-1/2	+1

purine pyrimid.

Transitions:

A⇔G C⇔T common (lower penalty)

Transversions:

All other operations

Nucleotide sequences Protein space: amino-acid similarities

	С	S	Т	Р	Α	G	N	D	E	Q	Н	R	K	M	1	L	٧	F	Υ	W	
C	9																				С
S	-1	4																			S
T	-1	1	5																		T
P	-3	1	-1	7																	P
Α	0	1	0	7	4																Α
G	-3	0	-2	-2	0	6															G
N	-3	1	0	-2	-2	0	6														N
D	-3	0	-1	۲-	-2	-1	1	6													D
E	-4	0	-1	7	-1	-2	0	2	5												Е
Q	-3	0	-1	-1	-1	-2	0	0	2	5											Q
Н	-3	-1	-2	-2	-2	-2	1	-1	0	0	8										Н
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5									R
K	-3	0	-1	-1	-1	-2	0	-1	1	1	-1	2	5								K
M	-1	7	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5							M
1	-1	-2	-1	ვ	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4						1
L	-1	-2	-1	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4					L
٧	-1	-2	0	-2	0	-3	-3	-3	-2	-2	-3	-3	-2	1	3	1	4				٧
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6			F
Υ	-2	-2	-2	<u>ფ</u>	-2	-3	-2	-3	-2	7	2	-2	-2	-1	-1	-1	-1	3	7		Υ
W	-2	-3	-2	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11	W

BLOSUM matrix of AA similarity scores

- Where do these scores come from?
- Are two aligned sequences actually related?

Probabilistic Model of Alignments

- we'll focus on protein alignments without gaps
- given an alignment, we can consider two possibilities

R: the sequences are related by evolution

U: the sequences are unrelated

- How can we distinguish these possibilities?
- How is this view related to amino-acid substitution matrices?

Model for Unrelated Sequences

- we'll assume that each position in the alignment is sampled randomly from some distribution of amino acids
- let q_a be the probability of amino acid a
- the probability of an *n*-character alignment of *x* and *y* is given by

$$\Pr(x, y \mid U) = \prod_{i=1}^{n} q_{x_i} \prod_{i=1}^{n} q_{y_i}$$

Model for Related Sequences

- we'll assume that each pair of aligned amino acids evolved from a common ancestor
- let p_{ab} be the probability that evolution gave rise to amino acid a in one sequence and b in another sequence
- the probability of an alignment of x and y is given by

$$Pr(x, y | R) = \prod_{i=1}^{n} p_{x_i y_i}$$

Probabilistic Model of Alignments

- How can we decide which possibility (U or R) is more likely?
- one principled way is to consider the relative likelihood of the two possibilities (the odds ratio)

$$\frac{\Pr(x,y \mid R)}{\Pr(x,y \mid U)} = \frac{\prod_{i} p_{x_{i}y_{i}}}{\prod_{i} q_{x_{i}} \prod_{i} q_{y_{i}}} = \frac{\prod_{i} p_{x_{i}y_{i}}}{\prod_{i} q_{x_{i}} q_{y_{i}}}$$

• taking the log, we get

$$\log \frac{\Pr(x, y \mid R)}{\Pr(x, y \mid U)} = \sum_{i} \log \left(\frac{p_{x_i y_i}}{q_{x_i} q_{y_i}} \right)$$

Probabilistic Model of Alignments

the score for an alignment is thus given by:

$$S = \sum_{i} s(x_i, y_i) = \log \frac{\Pr(x, y \mid R)}{\Pr(x, y \mid U)}$$

• the substitution matrix score for the pair a, b should thus be given by:

$$s(a,b) = \log\left(\frac{p_{ab}}{q_a q_b}\right)$$

Substitution Matrices

- two popular sets of matrices for protein sequences
 - PAM matrices [Dayhoff et al., 1978]
 - BLOSUM matrices[Henikoff & Henikoff, 1992]
- both try to capture the the relative substitutability of amino acid pairs in the context of evolution

Substitution Matrices

• the substitution matrix score for the pair a, b is given by:

$$s(a,b) = \log\left(\frac{p_{ab}}{q_a q_b}\right)$$

- but how do we get values for P_{ab} (probability that a and b arose from a common ancestor)?
- it depends on how long ago sequences diverged
 - diverged recently: $p_{ab} \approx 0$ for $a \neq b$
 - diverged long ago: $p_{ab} \approx q_a q_b$

Substitution Matrices

 <u>key idea</u>: trusted alignments of related sequences provide information about biologically permissible mutations

BLOSUM Matrices

- [Henikoff & Henikoff, PNAS 1992]
- probabilities estimated from "blocks" of sequence fragments that represent structurally conserved regions in proteins
- transition frequencies observed directly by identifying blocks that are at least
 - 45% identical (BLOSUM-45)
 - 50% identical (BLOSUM-50)
 - 62% identical (BLOSUM-62)
 - etc.

BLOSUM Matrices

- given: a set of sequences in a block
- fill in matrix A with number of observed substitutions (we won't worry about details of some normalization that happens here)

 b

a paired with $b \longrightarrow$

$$p_{ab} = \frac{A_{ab}}{\sum_{c,d} A_{cd}} \qquad q_a = \frac{\sum_{b} A_{ab}}{\sum_{c,d} A_{cd}}$$

(you are not responsible for the remainder of this section)

Statistics of Alignment Scores

Q: How do we assess whether an alignment provides good evidence for homology?

A: determine how likely it is that such an alignment score would result from chance.

3 ways to calculate chance; look at alignment scores for

- real but non-homologous sequences
- real sequences shuffled to preserve compositional properties
- sequences generated randomly based upon a DNA/protein sequence model

Statistics of Alignment Scores

- earlier we considered how do decide if a <u>single</u> alignment was more likely due to relatedness or chance
- but what if we're considered many alignments?
 - e.g. what if we're doing a BLAST search against a large protein database?
- we'd like to know how many high-scoring alignments we're likely to get by chance

Distribution of Scores

- Karlin & Altschul, *PNAS*, 1990
- consider a random model in which
 - we're looking for ungapped local alignments
 - the lengths of the sequences in each pair are
 m and n
- the expected number of alignments, E, with score at least S is given by:

$$E(S) = Kmne^{-\lambda S}$$

Distribution of Scores

$$E(S) = Kmne^{-\lambda S}$$

- S is a given score threshold
- *m* and *n* are the lengths of the sequences under consideration
- K and λ are constants that can be calculated from
 - the substitution matrix
 - the frequencies of the individual amino acids

K = measure of the relative indpdce of points in context of MSP score λ = the unique positive-valued solution to $S_{i,j} P_x(i) P_v(j) e^{\lambda Sij} = 1$

Statistics of Alignment Scores

- to generalize this to searching a database, have *n* represent the summed length of the sequences in the DB
- the NCBI BLAST server does just this
- with this analysis, can also calculate *p*-values (the <u>probability</u> of a random alignment scoring at least *S*)
- theory for gapped alignments not as well developed
- computational experiments suggest this analysis holds for gapped alignments (but K and λ must be estimated from data)

Summary: Diving deeper into sequence alignment

1. Global alignment vs. Local alignment

- Needleman-Wunsch and Smith-Waterman
- Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching

- Karp-Rabin algorithm and semi-numerical methods
- Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching

- Hashing with neighborhood search
- Two-hit blast and hashing with combs

4. Probabilistic foundations of sequence alignment

- Mismatch penalties, BLOSUM and PAM matrices
- Statistical significance of an alignment score

Tomorrow's recitation: Deeper into Alignments

- Affine gap penalties
 - Augmenting the state-space
 - Linear, affine, piecewise linear, general gap penalty
- Statistical significance of alignment
 - Where does $s(x_i, y_i)$ come from?
 - Are two aligned sequences actually related

3c. Massive pre-processing

Suffix Trees

Suffix trees

- Great tool for text processing
 - E.g., searching for exact occurrence of a pattern
- Suffix tree for: xabxac

Suffix tree definition

- Definition: Suffix tree ST for text T[1..n]
 - Rooted, directed tree T, n leaves, numbered 1..n
 - Text labels on the edges
 - Path to leaf i spells out the suffix S[i..], by concatenating edge labels
 - Common prefixes share common paths, diverge to form internal nodes

Properties of suffix trees

- How much space do we need to represent a suffix tree of T[1..n]?
- Only O(n)
 - At most O(n) edges
 - Each edge label can be represented as T[i...j]

Exact string matching with suffix trees

- Given the suffix tree for text T
- Search for pattern P[1...m]
 - For every character in P, traverse the appropriate path of the tree, reading one character each time
 - If P is not found in a path, P does not occur in T
 - If P is found in its entirety, then all occurrences of P in T are exactly the children of that node
 - Every child corresponds to exactly one occurrence
 - Simply list each of the leaf indices
- Time: O(m)

T: xabxac

P: abx

Suffix Tree Construction

- Running time: O(n²)
- Can be improved to O(n)