

Instytut Informatyki Zakład Elektrotechniki Teoretycznej i Informatyki Stosowanej

Praca dyplomowa magisterska

na kierunku INFORMATYKA w specjalności Inżynieria Systemów Informatycznych

Meta-metody służące do poprawy jakości klasyfikacji

Konrad Ziaja

promotor dr inż. Łukasz Skonieczny

Warszawa 2017

POLITECHNIKA WARSZAWSKA Wydział Elektroniki i Technik Informacyjnych

OŚWIADCZENIE

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa magisterska pt. Meta-metody służące do poprawy jakości klasyfikacji:

- została napisana przeze mnie samodzielnie,
- nie narusza niczyich praw autorskich,
- nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam, że przedłożona do obrony praca dyplomowa nie była wcześniej podstawą postępowania związanego z uzyskaniem dyplomu lub tytułu zawodowego w uczelni wyższej. Jestem świadom, że praca zawiera również rezultaty stanowiące własności intelektualne Politechniki Warszawskiej, które nie mogą być udostępniane innym osobom i instytucjom bez zgody Władz Wydziału Elektrycznego.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Konrad Ziaja

Spis treści

I	WS1	tęp		1				
2	Wst	Vstęp teoretyczny						
	2.1	Klasyf	ikacja danych	9				
	2.2			4				
		2.2.1	Dane niezrównoważone	4				
		2.2.2	Wstępne przetwarzanie danych	4				
		2.2.3	Brakujące wartości atrybutów	4				
		2.2.4	Usunięcie niekompletnych obserwacji	Ę				
		2.2.5	Imputacja danych	Ę				
		Przegl	ąd algorytmów klasyfikacji danych	6				
		2.3.1	Drzewo decyzyjne	6				
		2.3.2	Naiwny klasyfikator bayesowski	6				
		2.3.3	Klasyfikator k najbliższych sąsiadów (kNN)	6				
		2.3.4	Las losowy	6				
		2.3.5	Bagging	6				
		2.3.6	Boosting	6				
		2.3.7	Stacking	6				
	2.4	Ocena	poprawności klasyfikacji	6				
		2.4.1	Miary jakości klasyfikacji danych	6				
		2.4.2	Metody pomiaru jakości klasyfikacji danych	Ĉ				
Bi	ibliog	grafia		12				

Rozdział 1

Wstęp

Trzeba napisać jakiś wstęp :(

Cel pracy

I jakiś cel pracy :((:()))

Rozdział 2

oraz niezależna od próby.

Wstęp teoretyczny

2.1 Klasyfikacja danych

może coś pisać o uczeniu maszynowym i że klasyfikacja jest nadzorowana? inline brakujące dane

inline

Klasyfikacja jest to proces przyporządkowania danych do jednej z predefiniowanych klas na podstawie atrybutów tych danych. Algorytm klasyfikacji na podstawie analizy danych trenujących, zawierających atrybuty oraz klasę, tworzy model klasyfikacyjny. Stworzony model klasyfikacyjny wykorzystywany jest do predykcji klasy (kategorii) nowych danych bez określonej klasy. Celem algorytmu budującego model, jest odnalezienie wzorców, w jaki sposób atrybuty obiektu wpływają na przynależność do danej klasy, starając

się o to, aby wiedza na temat analizowanych danych była możliwie ogólna

Klasyfikacja danych jest procesem dwuetapowym:

- budowa modelu proces ten polega na analizie obiektów z przyporządkowaną klasą oraz na budowie modelu opisującego predefiniowany zbiór klas danych,
- właściwa klasyfikacja otrzymany model stosuje się do przydzielania klasy nowym obiektom.

Budowa modelu jest także procesem dwu-etapowym. Dzieli się ona na:

- uczenie klasyfikator budowany jest w oparciu o dane treningowe,
- ocena jakości klasyfikacji jakoś klasyfikacji badana jest w oparciu o dane testowe.

W zależności od liczebności klas w zbiorze danych, możemy wyróżnić:

- klasyfikację binarną klasyfikator decyduje o przypisaniu obiektu do jednej z dwóch klas (np. czy człowiek jest zdrowy lub nie)
- klasyfikację wieloklasową obiektowi przypisuje się jedną z wielu predefiniowanych klas.

Do reprezentacji danych uczących, testowych oraz do klasyfikacji najczęściej stosuje się system informacyjny.

Zachmurzenie	Temp.	Temp. wody	Opady	Wiatr	Pływać	h(x)
słonecznie	32	25	brak	sła by	tak	tak
słonecznie	31	26	brak	umiarkowany	tak	nie
pochmurnie	22	15	brak	b. mocny	nie	nie
pochmurnie	20	18	brak	słaby	tak	tak
całkowite zachmurzenie	12	6	brak	umiarkowany	nie	nie
całkowite zachmurzenie	10	8	duże	słaby	nie	nie
pochmurnie	21	10	brak	mocny	nie	tak
słonecznie	25	17	brak	umiarkowany	tak	nie
pochmurnie	23	17	przelotne	umiarkowany	nie	tak

Tablica 2.1: Przykład danych treningowych składających się z 5 atrybutów oraz klasy decyzyjnej. W ostatniej kolumnie znajduje się wynik klasyfikacji. W pięciu przypadkach, klasyfikator poprawnie wskazał klasę.

2.2 Dane

2.2.1 Dane niezrównoważone

zrobić przykład danych niezrównoważonych

2.2.2 Wstępne przetwarzanie danych

2.2.3 Brakujące wartości atrybutów

Często zdarza się, że bazy danych nie są kompletne, że brakuje kilku wartości różnych atrybutów. Brakujące wartości mogą być wynikiem błędu człowieka, aplikacji, programu pomiarowego, nie podania danych lub z innego powodu. Zazwyczaj brakujące dane oznaczone są pustymi polami,? lub w inny opisany sposób. Istnieje kilka sposobów na rozwiązanie tego problemu.

2.2.4 Usunięcie niekompletnych obserwacji

Najprostszym sposobem jest usunięcie wierszy lub kolumn, w których brakuje wartości. Przed usunięciem, należy przeanalizować dane, sprawdzić, które usunięcie będzie najbardziej korzystne (usunie najmniej danych). Może bowiem zdarzyć się, że zamiast usuwać dużą ilość przykładów (wiersze), bardziej opłaca usunąć się atrybut (kolumnę), który ma dużo pustych komórek. Opisana metoda niesie ze sobą niepożądane konsekwencje. Usuwając, niektóre obserwacje lub atrybuty, pozbywa się części informacji. Skutkiem tego zabiegu model predykcyjny może działać słabiej. Następstwem stosowania tego sposobu jest także, w przyszłości brak możliwości predykcji niekompletnych przykładów.

2.2.5 Imputacja danych

Innym pomysłem na rozwiązanie tego problemu jest imputacja danych. Brakujące dane można obliczyć lub wyznaczyć różnymi technikami na podstawie wartości pozostałych obserwacji. Jeżeli atrybut zawiera wartości ciągłe, brakujące elementy można zastąpić wartością średnią lub medianą całej kolumny. W przypadku wartości dyskretnych można uzupełnić je wartością występującą najczęściej. Stosując takie rozwiązanie można wprowadzić szum do danych. Dającym lepsze rezultaty rozwiązaniem, może być zastosowanie klasyfikatora lub regresji w celu imputacji danych.

2.3 Przegląd algorytmów klasyfikacji danych

- 2.3.1 Drzewo decyzyjne
- 2.3.2 Naiwny klasyfikator bayesowski
- 2.3.3 Klasyfikator k najbliższych sąsiadów (kNN)
- 2.3.4 Las losowy
- 2.3.5 Bagging
- 2.3.6 Boosting
- 2.3.7 Stacking

2.4 Ocena poprawności klasyfikacji

2.4.1 Miary jakości klasyfikacji danych

Jakość klasyfikacji można ocenić na podstawie kilku współczynników. Do ich obliczenia wykorzystuje się macierz pomyłek (tabela 2.2). Tworzona jest ona w oparciu o wynik klasyfikacji. Dla klasyfikacji binarnej macierz składa się z dwóch kolumn oraz dwóch wierszy. W wierszach znajdują się poprawne klasy decyzyjne, natomiast w kolumnach przewidziane przez klasyfikator. Zaklasyfikowane obiekty, umieszcza się w odpowiedniej grupie. Nazwa grup

		Klasa predykowa	ana	
		pozytywna	negatywna	
Klasa	pozytywna	prawdziwie pozytywna (TP)	fałszywie negatywna (FN)	
rzeczywista	negatywna	fałszywie pozytywna (FP)	prawdziwie negatywna (TN)	

Tablica 2.2: Macierz pomyłek

inspirowana była nazewnictwem medycznym. Dla dwóch wyróżniamy następujące grupy:

- prawdziwie pozytywna (ang. true positive), skrót TP: są to obiekty należące klasy pozytywnej oraz zakwalifikowane przez klasyfikator jako pozytywne (trafienie, z ang. hit)
- fałszywie negatywna (ang. false negative), skrót FN: są to obiekty należące klasy pozytywnej, ale zostały błędnie zakwalifikowane przez klasyfikator jako negatywne (błąd pominięcia, z ang. miss)

- fałszywie pozytywna (ang. false positive), skrót FP: są to obiekty należące klasy negatywnej, błędnie uznane przez klasyfikator jako pozytywne (fałszywy alarm, ang. false alarm)
- prawdziwie negatywna (ang. true negative), skrót TN: są to obiekty należące klasy negatywnej, i sklasyfikowane przez klasyfikator jako negatywne (poprawnie odrzucone, ang. correct rejection)

Ocenę jakości klasyfikacji przeprowadza się w oparciu o współczynniki wyliczane na podstawie macierzy pomyłek.

Podstawowym kryterium służącym do oceny klasyfikacji jest dokładność (ang. accuracy), jest to stosunek wszystkich poprawnie sklasyfikowany przykładów klasy pozytywnej oraz negatywnej do wszystkich przykładów. Miara ta określa dokładność z jaką klasyfikator podaje poprawny wynik.

$$accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

Można wyróżnić także błąd klasyfikatora, obliczany na podstawie dokładności.

$$Error\ rate = 1 - accuracy$$

Trzecim wskaźnikiem oceny klasyfikacji jest TPR (ang. true positive rate), często określany jako czułość (ang. sensitivity lub recall). Jest to stosunek obiektów poprawnie sklasyfikowanych jako pozytywne z wszystkimi pozytywnymi przykładami. Wskaźnik ten pokazuje poprawność klasyfikowania obserwacji pozytywnych. W medycynie, wykorzystując te miarę można określać skuteczność wykrywania osób chorych.

$$TPR = \frac{TP}{TP + FN}$$

Kolejną miarą oceniającą klasyfikację jest TNR (ang. true negative rate), nazywana także specyficznością (ang. specificity.). Wskazuje ona efektywność klasyfikowania przykładów negatywnych. Jest to stosunek poprawnie przydzielonych przykładów negatywnych do wszystkich negatywnych obserwacji. Z jej pomocą, można ocenić celność klasyfikacji osób zdrowych.

$$TNR = \frac{TN}{TN + FP}$$

Istotnym wskaźnikiem jest także precyzja (ang. precision). Określa ona jaka część przykładów uznanych za pozytywne przez klasyfikator została poprawnie oznaczona. Precyzja wyrażana jest jako stosunek prawdziwie pozytywnych przypadków do wszystkich przykładów uznanych za pozytywne. W medycynie, pokazuje procentowo ile osób uznanych za chorych, jest rzeczywiście

chora.

$$precision = \frac{TP}{TP + FP}$$

inline

wstawic przykład klasyfikacji dn o wysokiej skuteczności (np 95), ale o niskim wykrywaniu małej klasy Większość istniejących algorytmów klasyfikacji, jest nastawiona na poprawną klasyfikację danych klasy większościowej. Zakładają równomierny rozkład liczebności klas. Jednak przykłady z klasy mniejszościowej sa czesto ważniejsze i ich poprawne wykrywanie stanowi priorytet. Niezrównoważenie klas w zbiorze danych stanowi problem w fazie uczenia i znacząco obniża jakość klasyfikacji. Ze względu na częstość występowania klasy dominującej, klasyfikator osiąga wysoką skuteczność przy niskiej lub zerowej wykrywalności klasy mniejszościowej. Dodatkowo klasyfikację może utrudniać szum, przykłady brzegowe oraz klasy nakładające się na siebie. Należy oczekiwać od klasyfikatora wysokiej skuteczności wykrywania klasy mniejszościowej, nawet kosztem pogorszenia rozpoznawania klasy większościowej. Opisane powyżej wskaźniki, takie jak dokładność i błąd nie zapewniają poprawnej oceny rozpoznawania klasy mniejszościowej. Klasyfikator może osiągnąć wysokość skuteczność klasyfikacji np. 95% przy prawie zerowej lub zerowej wykrywalności klasy mniejszościowej. Dlatego oceniając klasyfikator pracujący na niezrównoważonych danych, należy obliczyć osobno współczynniki precyzji, czułości oraz specyficzności dla każdej kategorii danych. Jak wspomniano wcześniej, bardzo często polepszenie jakości klasyfikacji klasy mniejszościowej połączona jest z pogorszeniem rozpoznawalności klasy wiekszościowej. Majac współczynnik czułości oraz specyficzności ciężko zdecydować, który klasyfikator jest lepszy. Kubat i Matwin zaproponowali połączenie obu tych współczynników, w postaci średniej geometrycznej czułości oraz specyficzności [1].

$$G-mean = \sqrt{precision*recall}$$

Klasyfikator z wyższym G-mean, zapewnia lepszą rozpoznawalność obu klas, jednocześnie zachowując, aby dokładność w rozpoznawaniu obu klas była zbilansowana. Współczynnik ten jest niezależny od rozkładu klas w danych [2].

Ocenę klasyfikacji danych niezrównoważonych możemy dokonać także przy pomocy F-measure. Jest to średnia harmoniczna precyzji oraz czułości. Współczynnik F-measure można obliczyć dla obu klas. β wykorzystywana jest do określenia zależności pomiędzy precyzja oraz czułością.

$$F-measure = \frac{(1+\beta)^2 * precision * recall}{\beta^2 * precision + recall}$$

Zazwyczaj $\beta = 1$, wtedy:

$$F-measure = 2*\frac{precision*recall}{precision+recall}$$

napisac o roznych F i o tym jak wyniki wyglada, pokazać test napisc o roc

napisac gdzies o nadmiernym dopasowaniu -> walidacja krzyżowa

inline

inline

inline

2.4.2 Metody pomiaru jakości klasyfikacji danych

W celu oceny klasyfikatora powinno wykorzystywać się dwa zbiory, treningowy oraz testowy. Najpierw należy zbudować model w oparciu o dane testowe, a następnie wykonać klasyfikację testową w oparciu o zbiór testowy. W celu poprawnej oceny klasyfikacji zbioru testowego konieczna jest znajomość odpowiedniej przynależności jego składników do klas oraz zestawienie jej z przyporządkowaniem składników do klas, które zostały zasugerowane przez klasyfikator. Następnie buduje się macierz pomyłek w o parciu o sklasyfikowane przypadki. Kolejnym krokiem jest obliczenie opisanych wyżej współczynników w oparciu o tą macierz. Istnieją różne schematy postępowania, służące do oceny zbudowanego modelu. może cos napisac jeszcze o celu https://en.wikipedia.org/wiki/Cross-validation_(statistics)

inline

Metoda z jednym zbiorem

Do budowy klasyfikatora wykorzystywany jest cały zbiór dostępnych danych. W procesie testowania, bierze udział także cały zbiór danych. Metoda ta, nie jest zbyt wartościowa i prowadzi do zawyżenia jakości klasyfikatora. W przypadku nowych danych, taki model osiągnie gorsze wyniki niż wskazywałyby na to obliczone współczynniki.

Metoda z wydzielonym zbiorem testowym (ang. the holdout method)

W tej metodzie, zbiór danych dzielony jest w sposób losowy na dwie części. Użytkownik dobiera rozmiar zbioru uczącego (np. 80%) oraz zbioru testowego (np. 20%). Wadą jest, że nie wiadomo ile obiektów danej klasy znajdzie się w zbiorze testowym oraz, że zostaje zmniejszony zbiór uczący. Może to doprowadzić do sytuacji nadmiernego dopasowania (zawyżonych wyników) lub do niedoszacowania klasyfikatora. Ważne jest, aby nie używać ciągle tego samego zbioru testowego do wyboru modeli, ale dokonywać losowania przed każdą oceną.

Ulepszeniem tej metody, może być równy rozkład klas w obu zbiorach, tak aby zostały zachowane proporcje z oryginalnego zbioru.

Sprawdzian krzyżowy z p przykładami (ang. leave-p-out cross-validation)

Sprawdzian krzyżowy z p przykładami wykorzystuje p obserwacji jako zbiór testowy, pozostałe elementy tworzą zbiór uczący. Cały proces jest powtarzany do momentu stworzenia i przetestowania wszystkich możliwych kombinacji p przykładów ze zbioru n. Ten rodzaj metody wymaga uczenia i testowania klasyfikatora $\binom{n}{p}$ razy, gdzie n to liczebność całego zbioru danych. W przypadku dużego zbioru danych oraz p>1, obliczenia mogą zająć bardzo dużo czasu, a nawet ze względu na duża ilość kombinacji, obliczenie ich może być niemożliwe.

Sprawdzian krzyżowy minus jeden element (ang. leave-one-out cross-validation)

Jest to specjalny przypadek sprawdzaniu krzyżowego z p przykładami, dla p=1. W tej metodzie zbiór testowy tworzy jeden element, pozostałe tworzą zbiór uczący. Testowania klasyfikatora trwa do momentu użycia wszystkich obserwacji jako zbioru testowego. W przeciwieństwie do poprzedniej metody, ta jest wolna od czasochłonnych obliczeń, gdyż $\binom{n}{1}$ =n, gdzie n to liczba wszystkich obserwacji. Zazwyczaj ta metoda wykorzystywana jest tylko do małych zbiorów danych.

Sprawdzian krzyżowy k-krotny (ang. k-fold cross-validation)

Zbiór danych jest losowo dzielony na k równych podzbiorów. Następnie każdy z podzbiorów w kolejnych k iteracjach staje się kolejno zbiorem testowym, pozostałe zbiory tworzą zbiór uczący, na podstawie, którego buduje się model. Klasyfikacja i testowanie wykonywane są k-krotnie. Otrzymane wyniki łączy się i uśrednia w celu uzyskania jednego wyniku. Zaletą tej metody jest mały błąd estymacji oraz niższa wariancja błędu niż w przypadku metody minus jednego elementu. Zwykle stosuje się k=3..10, dla których koszt czasowy jest umiarkowany.

Równomierny sprawdzian krzyżowy k-krotny (ang. $Stratified\ k\text{-}fold\ cross-validation}$)

Jest to specjalny przypadek sprawdzianu krzyżowego k-krotnego. Podzbiory tworzone są z zachowaniem proporcji wszystkich klas. Każdy pod-

Rysunek 2.1: Przykład sprawdzianu krzyżowego k-krotnego, k=4.

zbi
ór powinien zawierać w przybliżeniu podobny procent obserwacji z każ
dej kategorii.

Bibliografia

- [1] M. Kubat i S. Matwin. Addresing the curse of imbalanced training sets: one-side selection.
- [2] H. He i E. A. Garcia. Learning from imbalanced data. IEEE Transactions on Data and Knowledge Engineering, 2009.