A. Informacje o zespole realizującym ćwiczenie

Nazwa przedmiotu:	Automatyka pojazdowa
Nazwa ćwiczenia:	Model dynamiki prototypowego samochodu
Data ćwiczenia:	2022-04-07
Czas ćwiczenia:	15:00 – 16:30
Zespół realizujący ćwiczenie:	Jakub SzczypekJulita WójcikBłażej Szczur

B. Sformułowanie problemu

Celem zajęć jest identyfikacja parametrów modelu dynamicznego samochodu elektrycznego EVE. Pojazd EVE jest demonstracyjnym samochodem elektrycznym. Jest on zasilany jednym silnikiem prądu zmiennego z napędem na tylną oś z przednią osią skrętną. Dane potrzebne do przeprowadzenia obliczenia parametrów modelu zostały zebrane podczas eksperymentu identyfikacyjnego, gdzie rejestrowano wartości wejść $u(t_i)$, wyjść $y(t_i)$, a także chwile czasu t_i . Zależność między siłami działającymi na pojazd można opisać równaniem:

$$ma = F_a - F_f - F_{ar} \pm F_g \quad (1)$$

Po podstawieniu a=v(t), równanie należy zdyskretyzować, a następnie przekształcić do postaci dyskretnego równania wejście – wyjście. Należy zidentyfikować współczynnik oporu b_f w przypadku swobodnego zatrzymania pojazdu EVE oraz współczynniki b_f i b_a dla modelu przyspieszającego pojazdu EVE.

C. Sposób rozwiązania problemu

Do wyznaczenia parametrów modelu skorzystano z gotowych algorytmów identyfikacji z pakietu Matlab, które są częścią *System Identyfication* Toolbox. Przed wykorzystaniem ich, dane odpowiednio przygotowano. Po zaimportowaniu danych do Matlaba utworzono obiekt klasy *iddata*. Identyfikacji dokonano funkcją *armax*, a zidentyfikowane parametry modelu otrzymano funkcją getpvec. W drugiej części zadania konieczne było ręczne zdyskretyzowanie przekształconego równania (1) w celu odpowiedniego doboru parametrów wywołania funkcji armax. Działanie zidentyfikowanego modelu porównano z danymi eksperymentalnymi funkcją *compare*. Współczynniki w każdym z przypadków obliczono przekształcając współczynniki równania wejście-wyjście

```
load('rec1_20kph_break0.mat');
data1 = iddata(rec1_013.speed',[],0.001);
model1 = armax(data1, [1 1]);
v1 = getpvec(model1);
compare(data1,model1)
load('rec1_gas0-100.mat');
data2 = iddata(rec1_006.speed', rec1_006.force',0.001);
model2 = armax (data2, [1 1 1 0]);
v2= getpvec(model2);
compare(data1,model1)
```

Rysunek 1. Identyfikacja przy swobodnym zatrzymaniu

Rysunek 2. Identyfikacja modelu przyspieszającego

```
bf1 = (v1(1) + 1) * 350 / rec1_013.tsim.Delta
bf2 = (v2(1) + 1) * 350 / rec1_006.tsim.Delta
ba2 = v2(2) * 350 / rec1_006.tsim.Delta
```

Rysunek 3. Obliczone współczynniki

D. Wyniki

Rysunek 4. Porównanie danych eksperymentalnych z zidentyfikowanym modelem bez użycia hamulców

Rysunek 5. Porównanie danych eksperymentalnych z zidentyfikowanym modelem przyspieszającym

bf1 = 207.1870

bf2 = 67.3879

ba2 = 3.5396e + 03

Rysunek 6. Obliczone współczynniki

E. Wnioski

- Wartość współczynniki b_a uzyskane w obu przypadkach powinny być podobne, jednak z powodu innych transmitancji wyniki bardzo różnią się.
- Ćwiczenie pozwoliło na zapoznanie się z technikami identyfikacji obiektów, których rezultat może być wykorzystany w funkcjach takich jak step, bode, które są powszechnie używane w świecie automatyki,
- Poznano opis konstrukcji pojazdu EVE oraz jego matematyczny model dynamiki.