### Bilinear Transformation

Nithin.K

January 17, 2025

### Problem Statement

### **Given Differential Equation:**

$$\frac{d^2y}{dx^2} + 1 = 0 (1)$$

#### **Initial Conditions:**

$$y(0) = 0, \quad y'(0) = 0$$
 (2)

# Laplace Transform Method

### **Laplace Transform:**

$$\mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt$$
 (3)

### **Properties:**

$$\mathcal{L}\{y''\} = s^2 Y(s) - sy(0) - y'(0) \tag{4}$$

$$\mathcal{L}\{1\} = \frac{1}{s} \tag{5}$$

### **Applying Laplace Transform:**

$$s^2Y(s) + \frac{1}{s} = 0 {(6)}$$



# Inverse Laplace Transform

Solving for Y(s):

$$Y(s) = \frac{-1}{s^3} \tag{7}$$

**Inverse Laplace Transform:** 

$$\mathcal{L}^{-1}\left(\frac{2}{s^3}\right) = x^2 u(x) \tag{8}$$

Solution:

$$y(x) = -\frac{x^2}{2} \tag{9}$$

## Bilinear Transform

### Mapping to z-domain:

$$s = \frac{2}{h} \left( \frac{1 - z^{-1}}{1 + z^{-1}} \right) \tag{10}$$

**Substituting:** 

$$Y(z) = -\left(\frac{h}{2}\right)^3 \left(\frac{1+3z^{-1}+3z^{-2}+z^{-3}}{1-3z^{-1}+3z^{-2}-z^{-3}}\right)$$
(11)

**Difference Equation:** 

$$y(n+3) = -3y(n+1) + y(n) + 3y(n+2) + h^2\delta(n)$$
 (12)



Nithin.K Bilinear Transformation January 17, 2025

# Finite Difference Approximation

### **Second Derivative Approximation:**

$$\frac{d^2y}{dx^2} \approx \frac{y_{n+1} - 2y_n + y_{n-1}}{h^2} \tag{13}$$

### Substituting:

$$y_{n+1} = 2y_n - y_{n-1} - h^2 (14)$$

#### **Initial Conditions:**

$$y_0 = 0, \quad y_1 = 0$$
 (15)

## Plot of the Solution



### Conclusion

- Laplace Transform provides an analytical solution.
- Bilinear Transform maps it to the z-domain for digital processing.
- Finite Difference Method allows computational approximation.
- Reference : https://github.com/nithin769/EE1030/sciprogramming/question-9.3.11.3/codes