产品规格书

Specification For Approval

产品型号 PRODUCTS: 设计公司: DESIGN HOUSE: 适用机种: APPLICATION: 终端客户 TERMINAL CUSTOMER: 平台项目:□是□西	产品描述 DESCRIBE:	3.5 " TFT		
DESIGN HOUSE: 适用机种: APPLICATION: 终端客户 TERMINAL CUSTOMER:				
APPLICATION: 终端客户 TERMINAL CUSTOMER:				
TERMINAL CUSTOMER:				_
平台项目: □是 □否				
	平台项目:□是 □否			_
APPROVED BY DESIGN HOUSE		APPROVED BY D	DESIGN HOUSE	
硬件 软件 项目 审核	硬件	软件	项目	审核

APPROVED BY TRUST

项目

审核

研发

□结构 □硬件

1/15______ Version 1.0

物流

质量

<u>月录</u>

序号	内容	页
	封页	1
	目录	2
1.0	模组类型	3
2.0	结构规格	3
3.0	模组图	4
4.0	光电特性	5
5.0	电气特性	9
6.0	接口定义	10
7.0	方块示意图	11
8.0	驱动时序	12
9.0	极限特性说明	13
10.0	注意事项	14
11.0	最终说明	15
	修改记录	16

1.0 模组类型

显示类型: [320 RGB x480 点阵, TFT-LCD模组]

视角: [12 点]

背光: [白色 LED 背光]

驱动 IC: [ILI9488]

接口方式: [8080 3/4WIRE-SPI, 8/16bit]

2.0 结构规格

类型	典型值	单位
玻璃类型	TFT	-
像素点阵	320 RGB x 480	像素
模组尺寸	54.56*84.07*2.15/3.25with TP	毫米
玻璃显示区	48.96 x 73.44	毫米
像素尺寸	0.153 x 0.153	毫米

3.0 模组图

4.0 光电特性

类型		代号		条件	最小	典型	最大	单位
		垂直	θL		60	70	-	
		视 角. θR	C/R ≥ 10	60	70	-		
视	用	水平	φU	B/L On	60	70	-	度
		视 角.	φD		40	60	-	
亮度(中	心点)		Y_L		_	300	-	cd/m ²
对比	度	(C/R		400	500	-	-
响应时间	上升		T_R			4	8	毫秒
 	下降	T_{F}				12	24	毛切
色坐标	白色		X		(0.283)	(0.303)	(0.323)	
			y	$\phi = 0$ $\theta = 0^{\circ}$ Normal	(0.305)	(0.325)	(0.345)	
	红色		X	Viewing Angle B/L On	(0.606)	(0.626)	(0.646)	
	40		у		(0.314)	(0.334)	(0.354)	
	绿色		x		(0.257)	(0.277)	(0.297)	
			y		(0.529)	(0.549)	(0.569)	
	蓝色		x		(0.122)	(0.142)	(0.162)	
	蓝色		у		(0.122)	(0.142)	(0.162)	

4.1 θ and ϕ

- 最佳的视觉角度就是如图所示的观察方向 $(\phi = 0)$.
- 0°≤θ<90°, 0°≤φ<360°

4.2 对比度 (Cr)

驱动电压

对比度: $C_r = B_{ns}/B_s$

4.3 响应时间 T_R 与 T_F

4.4 光学测量方法

5.0 电气特性

5.1 TFT-LCD 模组特性

类型	符号	条件	最小	典型	最大	单位
系统电压	$V_{ m DD}$	T _a = 25 °C	2.7	3.3	3.5	
输入逻辑电压	V_{IH}	高电平	$0.8 \times V_{DD}$	_	V_{DD}	V
	V_{IL}	低电平	-0.3V	_	$0.2 \times V_{DD}$	
工作电流	I_{DD}	V_{DD} = 3.3V	_	5	-	mA

5.2 背光特性

类型	符号	条件	最小	典型	最大	单位
正向电压	VF			3.2	3.5	伏
均匀度	AVG	IF= 90 毫安		80		%
亮度(包含玻璃)	Lv			TBD		Cd/m2

6.0 接口定义

端口号	代码	说明描述
1-5	XL/YU/XR/YD	TP 信号输入端,不用时悬空.
5	GND	Ground(OV)
6	VCC	系统电压 2.8-3.3V
7	VCC	系统电压 2.8-3.3V
8	TE	同步信号输出端,不用时悬空.
9	CS/SPI_CS	屏幕片选信号输入端。当片选信号为"L"时,数据/指令 I/O 口使
		能。
10	RS/SPI_A0	使用 MCU 接口时,作为指令/数据 选择端口:"H":数据;"L":
		指令。使用串口SPI接口时,作为 <mark>指令/数据 选择端口:"H":数</mark>
11	WR/SPI_SCL	│据 ; "L":指令。 │使用 MCU 接口时,作为 <mark>写信号输入端</mark> ;使用 <mark>串口SPI</mark> 接口时,│
11	WK/SII_SCL	使用 Mico 安山的,作为与信号相入端;使用中口31 1 安山的, 作为:SPI时钟信号输入端。
12	RD	使用 MCU 接口时,作为读信号输入端. 使用串口SPI接口时,
		直接接到VCC端.
13	SPI_SDA	使用 MCU 接口时,直接接到 GND 端。 使用串口 S P I 接口时,
		串口数据输入端.
14	SPI_SDO	使用 MCU 接口时,不用要悬空. 使用串口 S P I 接口时,串口
		输出端。
15	/RESET	复位信号输入端。当上电后必须进行复位。
16	GND	Ground (0V)
17-32	DB0-DB15	数据输入端
33	LEDA	背光正极 3.2-3.3 V 输入端
34-36	LEDK	背光负极输入端
37	GND	Ground (0V)
38	IM0	│数据端口选择,一般常用 8 位,16 位,串口 S P I : 如下(建议在 │)
39	IM1	】主板上 IM0-2 端口上:各放两个电阻: 一个上拉到 V C C,一个下 │ 拉到 GND,灵活使用贴元件处理)
40	IM2	IMO 接地(GND), IM1 接高(VCC), IM2 接地(GND):
		16 位接口: DBO-DB15;
		IMO 接高 (VCC), IM1 接高 (VCC), IM2 接地 (GND):
		8 位接口:DB0-DB7;其它 DB8-DB15 接地处理.
		IMO 接高 (VCC), IM1 接地 (GND), IM2 接高 (VCC):
		3-line SPI: SDA, SDO ,其它 DB 0 -DB15 接地处理.
		IMO接高(VCC), IM1接高(VCC), IM2接高(VCC):
		4-line SPI: SDA, SDO ,其它 DBO-DB15 接地处理.

7.1 TFT-LCD 模组单元

7.2 TFT-LCD 模组单元 SPI 3/4 WIRE

7.3 背光单元

LED CIRCUIT DIAGRAM:

8.0 读/写时序(8080 时序)

参考 IC SPEC

9.0 极限特性说明

类型	代码	参数	单位
逻辑电压	$V_{ m DD}$	2.7 to 3.6	伏
直流转换电压	V_{CI}	3.0to 3.6	伏
LCD 驱动电压	V_{LCD}	-0.3 to +22	1/\
操作温度	Тор	-20 to +70	$^{\circ}$
存储温度	T_{ST}	-30 to +80	

9.1 信赖性参数

类型	条件	CRITERIA
高温运行	60°C ,200 小时	
低温运行	-20 °C for 200 小时	
高温高湿存储	40°C, 90% RH for 240小时	
高温存储	70 °C for 200 小时	
低温存储	-20 °C for 200 小时	
冷热循环	-30 °C (30 分钟) ↓↑ 25 °C (5 分钟) ↓↑ 70 °C (30 分钟) 循环 10 次	◆ 实验后没有显示异常.◆ 总消耗电流在正常工作电流的两倍以下。
震动实验	震动频率: 40~500 Hz 加速度: 5g 每个方向 (x, y, z): 50 sec	

10.0 注意事项

10.1 静电

因为本产品含有 CMOS 集成电路, 所以对静电比较敏感, 请在操作的时候注意防静电保护。

10.2 电源开关顺序

- 1. 数据信号不应该在逻辑电压没有到达额定电压的情况下输入,如果不按照这个顺序可能造成模组的永久性损坏。
- 2. 当连接电源后, BIAS 电压要晚于逻辑电压提供。
- 3. 当断开电源后,逻辑电压要晚于 BIAS 电压断开。
- 4. 建议推荐增加串联一个电阻保护显示屏幕的 BAIS 电路,类似于电路限制作用,电阻阻值取决于模组的种类。一般是 $50 \sim 100 \, \Omega$ 。

10.3 操作

1. 必须保证模组在指定的电压范围内运行,如果超过指定电压范围运行可能导致模组的寿命缩短,在这种情况下也会

导致模组性能降低。

- 2. 模组的响应时间在低温状态下比常温时响应慢,另一方面,玻璃在高温时会显示深蓝色。这些现象并不是模组的故障或缺点,只是液晶的特性。当模组恢复到常温状态时,显示将会变的正常。
- 3. 当模组运行时,在显示区域施加压力可能导致显示的不正常。当把模组再开关一次后显示将会变的正常。
- 4. 潮湿的环境可能引起线路的电化学腐蚀从而导致线路开路。如果环境温度高于40℃时,请确保湿度在50%以下。

10.4 包装

- 1. 不要把产品放在潮湿的地方太久。当存储环境的温度大于 35℃时,请特别注意环境的湿度不要太高。高温高湿的环境可能导致产品品质的降低。请在指定的温度与湿度范围内存放产品。
- 2. 玻璃是易碎物品, 请轻拿轻放。请不要拿硬度超过 2H 的物品触碰模组。
- 3. 粘合上下偏光片或背光的胶材是有机物质,这些有机物质容易被例如丙酮、甲苯、乙醇破坏。当你有用到这些化学药品的时候请防治这些化学药品接触到产品。
- 4. 碰到唾液或泪水时候,应立即用脱脂棉布擦去唾液或泪水,而不能清洗。如果长时间有唾液或泪水在上面,该处可能引起显示颜色的偏色
- 5. 显示面的潮湿沉积或者是接触到低温物体将会引起偏光片损坏,或产生脏点现象。在使用前因该使显示屏慢慢的升温到室内温度以上。
- 6. 用手直接触摸显示区域和接触产品是对偏光片有害的,且容易引起静电问题。
- 7. 显示屏上的玻璃容易在操作中破碎、破裂以及产生缺口。特别是在靠近边缘的时候,请不要突然撞击或接触到硬的物体。

10.5 Long-term storage 长期存储

如果长期存放模组,我们建议采用以下的方法:

- 1. 用聚乙烯静电袋密封产品尽量避免与空气接触。不必一定使用干燥剂。
- 2. 在阴暗的地方储存,存储温度最好控制在0 ℃ 到 35 ℃之间。.
- 3. 保证显示屏幕偏光片表面不要被任何东西弄脏。我们推荐用我们的包装来运输产品。

10.6 清洁产品

请用脱脂棉布或相类似的柔软材料清洁产品。请轻轻擦拭产品,不要用化学药水。

11.0 最终说明

修改记录

版本 ⁻	号	修改日期	页	描述
V01	,	2017-09-19		第一版