## $\begin{array}{c} {\rm BBM~205} \\ {\rm Spring~2015~Butunleme~Exam} \end{array}$

## SHOW YOUR WORK TO RECEIVE FULL CREDIT. KEEP YOUR CELLPHONE TURNED OFF.

| Maraa.     |  |  |  |
|------------|--|--|--|
| Name.      |  |  |  |
| 1 1 WIII C |  |  |  |

1. (3 points) Solve the recurrence relation with the given initial condition below.  $a_n = 2a_{n-1} + 8a_{n-2}$ ;  $a_0 = 4$ ,  $a_1 = 10$ .

| 2. | (3 points) (a) (1 point) How many bit strings of length seven either begin with two 0's or end with three 1's?                                                                                                                                |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (b) (1 point) How many subsets with more than two elements does a set with 100 elements have?                                                                                                                                                 |
|    | (c) (1 point) How many ways are there to select three <b>unordered</b> elements from a set with five (different) elements when <b>repetition is allowed</b> ?                                                                                 |
| 3. | <ul> <li>(3 points) Suppose that there are nine students in a discrete mathematics class at a small college.</li> <li>(a) (1.5 points) Show that the class must have at least five male students or at least five female students.</li> </ul> |
|    | (b) (1.5 points) Show that the class must have at least three male students or at least seven female students.                                                                                                                                |

## 4. (4 points) Use

- (a) (2 points) Kruskal's algorithm
- (b) (2 points) Prim's algorithm

to find a minimum spanning tree for the weighted graph below.



- 5. (3 points) (a) (1.5 points) Write the chromatic number of the graphs below depending on the values of m and n.
  - a)  $K_n$  b)  $C_n$
- c)  $K_{m,n}$

- (b) (1.5 points) For which values of n do these graphs have an Euler circuit?
  - a)  $K_n$  b)  $C_n$  c)  $Q_n$

6. (2 points) Show that in a simple connected graph with at least two vertices there must be two vertices that have the same degree.

- 7. (4 points) (a) (2 points) Determine whether the given graph has a Hamilton cycle. Construct such a cycle when one exists.
  - (b) (2 points) If no Hamilton cycle exists, determine whether the graph has an Hamilton path and construct such a path if one exists.



8. (3 points) Let P(n) be the statement that

$$1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n}$$

where n is an integer greater than 1. Show that P(n) is true for all  $n \geq 2$  using induction by following the steps below.

- (a) (1 point) Show that P(2) is true.
- (b) (1 point) What is the inductive hypothesis?
- (c) (1 point) Complete the inductive step.

9. (3 points) (a) (1 point) Show that  $x^2 + 4x + 17$  is  $O(x^3)$ .

(b) (2 points) Show that  $x^3$  is **not**  $O(x^2 + 4x + 17)$ .

10. (3 points) Prove that at least one of the real numbers  $a_1, a_2, \ldots, a_n$  is greater than or equal to the average of these numbers.

11. (3 points) Show that if G is a bipartite simple graph with n vertices and e edges, then  $e \le n^2/4$ .

12. (3 points) Suppose that v is an endpoint of a cut edge. Prove that v is a cut vertex if and only if this vertex is not pendant.

13. (3 points) Let S(n,k) denote the number of functions from  $\{1,\ldots,n\}$  onto  $\{1,\ldots,k\}$ . Show that S(n,k) satisfies the recurrence relation

$$S(n,k) = k^n - \sum_{i=1}^{k-1} C(k,i)S(n,i).$$