De-scoped PICO r statistics

Aditya Rotti

Case	Moments	Parame
cMILC00	$I_{ m CMB}$	1
cMILC01	$I_{ m CMB} \; ; \; I_{ m sync}$	2
cMILC02	$I_{ m CMB} \; ; \; I_{ m dust}$	2
cMILC03	$I_{ m CMB} \; ; I_{ m sync} \; ; I_{ m dust}$	3
cMILC04	$I_{ m CMB} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m dust}}{deta}$	3
${\rm cMILC05}$	$I_{ m CMB} \; ; \; I_{ m sync} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m dust}}{deta}$	4
cMILC06	$I_{ m CMB} \; ; I_{ m sync} \; ; I_{ m dust} \; ; rac{dI_{ m sync}}{deta} \; ; rac{dI_{ m dust}}{deta} \; ({ m H})$	5
${\rm cMILC07}$	$I_{ m CMB} \; ; I_{ m sync} \; ; I_{ m dust} \; ; rac{dI_{ m sync}}{deta} \; ; rac{dI_{ m dust}}{deta} \; ; rac{dI_{ m dust}}{dT}$	6
cMILC08	$I_{ m CMB} \; ; I_{ m sync} \; ; I_{ m dust} \; ; rac{dI_{ m sync}}{deta} \; ; rac{dI_{ m dust}}{deta} \; ; rac{dI_{ m dust}}{dT} \; ; rac{d^2I_{ m dust}}{d^2T}$	7
cMILC09	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$ (H)	7
cMILC10	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$	8
cMILC11	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$ (H)	8
cMILC12	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$; $\frac{d^2I_{\mathrm{dust}}}{d\beta dT}$	9
cMILC13	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$; $\frac{d^2I_{\mathrm{dust}}}{d\beta dT}$ (H)	9
cMILC14	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$; $\frac{d^2I_{\mathrm{dust}}}{d\beta dT}$; $\frac{d^2I_{\mathrm{dust}}}{d^2\beta}$	10

		$r_{ m bias}$	σ_r	r_{95}	SNR	
Case	Alens	· blas	- /	. 30		
cMILC00	0.0	0.00126	0.00007	NaN	18.88195	
	0.3	0.00182	0.00016	NaN	11.10494	
	0.6	0.00234	0.00029	NaN	8.02171	
	0.9	0.00275	0.00040	NaN	6.78713	
cMILC01	0.0	0.00124	0.00007	NaN	18.47204	
	0.3	0.00182	0.00017	NaN	10.94487	
	0.6	0.00233	0.00029	NaN	8.02081	
	0.9	0.00276	0.00041	NaN	6.68414	
cMILC02	0.0	0.00067	0.00006	NaN	10.84850	
	0.3	0.00100	0.00016	NaN	6.40522	
	0.6	0.00141	0.00027	NaN	5.18817	
	0.9	0.00174	0.00037	NaN	4.72768	
cMILC03	0.0	0.00062	0.00006	NaN	9.95139	
	0.3	0.00096	0.00015	NaN	6.19915	
	0.6	0.00135	0.00027	NaN	5.04897	
	0.9	0.00168	0.00036	NaN	4.64135	
cMILC04	0.0	0.00089	0.00009	NaN	10.43432	
	0.3	0.00121	0.00017	NaN	7.01549	
	0.6	0.00163	0.00030	NaN	5.49772	
	0.9	0.00200	0.00042	NaN	4.81675	
cMILC05	0.0	0.00082	0.00009	NaN	9.44254	
	0.3	0.00114	0.00017	NaN	6.64283	
	0.6	0.00156	0.00029	NaN	5.33107	
	0.9	0.00194	0.00041	NaN	4.76759	
cMILC06	0.0	0.00083	0.00011	NaN	7.43734	
	0.3	0.00103	0.00017	NaN	6.18389	
	0.6	0.00126	0.00023	NaN	5.36779	
	0.9	0.00142	0.00029	NaN	4.88190	
cMILC07	0.0	0.00064	0.00017	NaN	3.75336	
	0.3	0.00065	0.00018	NaN	3.68438	
	0.6	0.00067	0.00019	NaN	3.51548	
	0.9	0.00069	0.00021	NaN	3.27471	
cMILC08	0.0	0.00077	0.00140	0.00394	0.55458	
	0.3	0.00077	0.00140	0.00394	0.55430	
	0.6	0.00077	0.00140	0.00394	0.55345	
Continued on next page						

Continued on next page

		$r_{ m bias}$	σ_r	r_{95}	SNR
Case	Alens				
	0.9	0.00077	0.00140	0.00395	0.55207
cMILC09	0.0	0.00083	0.00013	NaN	6.14531
	0.3	0.00056	0.00038	0.00134	1.46439
	0.6	0.00057	0.00063	0.00185	0.90460
	0.9	0.00060	0.00080	0.00227	0.74379
cMILC10	0.0	0.00042	0.00356	0.00861	0.11794
	0.3	0.00042	0.00356	0.00861	0.11793
	0.6	0.00042	0.00356	0.00861	0.11790
	0.9	0.00042	0.00356	0.00861	0.11785
cMILC11	0.0	0.00707	0.00076	NaN	9.31065
	0.3	0.00304	0.00291	0.00932	1.04447
	0.6	0.00136	0.00336	0.00888	0.40513
	0.9	0.00088	0.00346	0.00873	0.25540
cMILC12	0.0	0.00109	NaN	NaN	NaN
	0.3	0.00109	NaN	NaN	NaN
	0.6	0.00109	NaN	NaN	NaN
	0.9	0.00109	NaN	NaN	NaN
cMILC13	0.0	0.00516	0.00022	NaN	23.82658
	0.3	0.00821	0.00505	0.01858	1.62541
	0.6	0.00794	0.00915	0.02673	0.86709
	0.9	0.00777	NaN	NaN	NaN
cMILC14	0.0	0.00336	NaN	NaN	NaN
	0.3	0.00336	NaN	NaN	NaN
	0.6	0.00336	NaN	NaN	NaN
	0.9	0.00336	NaN	NaN	NaN

- 1 Mask
- 2 Posterior plots

3 r constraints