23 вопрос

Def: Корень многочлена

Элемент $c\in K$ называется корнем многочлена $f\in A[x]$, если f(c)=0. Говорят также, что c - корень ур-я f(x)=0

Th: Безу

Элемент $c \in A$ является корнем многочлена $f \in A[x] \iff (x-c)$ делит f кольцо A[x]

Док-во:

При делении f на (x-c) в частном получим многочлен q, а в остатке - r-const: f=q(x-c)+r

Полагая в левой и правой части (x-c), получим f(c)=q(c-c)+r=r.

Def: Кратный корень

Элемент $c\in A$ называется k - кратным корнем многочлена $f\in A[x]$, если f делится на $(x-c)^k$, но не делится на $(x-c)^{k+1}$.

$$c\in A$$
 - корень кратности $k<=>f(x)=(x-c)^kg(x)$, где НОД($x-c$, $g(x)$) = 1.

Th: Корень кратности $k\geqslant 2$ многочлена f является корнем кратности k-1 многочлена f'. Простой корень многочлена f не является корнем многочлена f'

Док-во:

Пусть c - корень кратности k многочлена f: $f=q(x-c)^k$, q делится на (x-c) . Тогда $f'=q'(x-c)^k+qk(x-c)^{k-1}=(q'(x-c)+qk)(x-c)^{k-1}$ т.к. q'(x-c) делится на (x-c) , qk не делится на (x-c) , то (q'(x-c)+qk) делится на (x-c) чтд.

Th: Пусть кольцо K не содержит делителей нуля. Тогда любой многочлен $f \in K[x]$ степени n>0 имеет в кольце K не более n корней с учетом их кратностей

Док-во:

Пусть $f(x)=(x-\alpha_1)(x-\alpha_2)\dots(x-\alpha_s)g=(x-\beta_1)(x-\beta_2)\dots(x-\beta_t)h$, где $\alpha_1,\alpha_2,\alpha_3,\dots,\alpha_s,\beta_1,\beta_2,\dots,\beta_t$ - элементы кольца К. $\alpha_i\neq\beta_j$ при $i\neq j$, а многочлены g и h корней в К не имеют. Вычисляя значения многочлена f в точке α_i получим прдеставление о в виде произведения ненуливых элементов колца К, что противоречит тому, что в К нет делителя нуля. чтд.