$Mathematical\ Logic_Assignment_2$

Hongli SHEN

March 2024

Contents

1	Which of the following are well formed propositional formulas?	2
2	Parse Tree	2
3	Propositional Formalization	2
4	Properties of formulas I	3
5	Properties of formulas II	3

1 Which of the following are well formed propositional formulas?

- It is not a well formed propositional formula.
- It is a well formed propositional formula.
- It is not a well formed propositional formula.
- It is a well formed propositional formula.
- It is not a well formed propositional formula.
- It is not a well formed propositional formula.
- It is not a well formed propositional formula.
- It is a well formed propositional formula.
- It is a well formed propositional formula.

2 Parse Tree

Figure 1: Parse Tree

3 Propositional Formalization

- $(D \rightarrow (B \land C))$
- $((A \lor B) \to (\neg C))$
- $(D \leftrightarrow (C \land (\neg A)))$

- $(D \rightarrow ((\neg C) \rightarrow A))$
- $(((\neg D) \rightarrow C) \lor (D \rightarrow (\neg B)))$
- $(((\neg(B\lorC))\land D)\to A)$
- $\bullet \ (((((A \land B) \land C) \leftrightarrow (\neg D)) \lor (((\neg A) \land (\neg B)) \rightarrow ((\neg C) \rightarrow (\neg D))))$

4 Properties of formulas I

- ① Base Case: For the simplest propositional language, which contains only one item. m = 1 and n = 0. Thus, m = n + 1. Satisfied.
- ② Inductive Step: Suppose that a propositional language A contains k atoms and satisfies m = n + 1.

Let us consider a propositional language that contains (k+1) atoms. we can write it as $B = A \star P$ (\star includes $\land \lor \rightarrow \leftrightarrow$) and P stands for a new atom. The total number of logical connectives in B is obviously (k-1+1).

Therefore, for B, $(m_B = k + 1)$ and $(n_B = n_A + 1 = k - 1 + 1 = k)$.

Therefore, $(m_B = n_B + 1)$.

(m = n + 1) stays true for all propositional language.

5 Properties of formulas II

- 1 If UV is a formula in propositional language. Then V is the suffix of UV, which contains more closing brackets than opening brackets.
- ② If VW is a formula in propositional language. Then V is the prefix of VW, which contains more opening brackets than closing brackets.
- $\ensuremath{\mathfrak{D}}$ v cannot satisfy the statements above at the same time.

In conclusion, UV and VW cannot both be formulas in propositional language.