Généralisations du théorème de Cantor-Bernstein aux autres catégories que les ensembles

Louis Lascaud

July 5, 2022

Table des matières

- 1 Théorème de Cantor Bernstein classique
- 2 Vers un théorème de Cantor-Bernstein topologique
- 3 Problème en algèbre générale
- 4 Pistes pour un TCB universel

Présentation du théorème

Cardinalité

Relation d'équipotence

On dit que deux ensembles A et B sont équipotents, ou en bijection, ou isomorphes (au sens ensembliste), ou encore qu'ils ont le même cardinal, s'il existe une bijection $A \longrightarrow B$, ou ce qui est équivalent, s'il existe une bijection $B \longrightarrow A$. On note : $A \simeq B$.

Cardinaux

On appelle *cardinal* ou *taille* tout représentant d'une classe d'équivalence de la relation d'équipotence. On fixe une *transversale* pour cette relation : celle choisie par habitude contient par exemple : \emptyset , les 1, n pour $n \in \mathbb{N}^*$, l'ensemble \mathbb{N} lui-même, $\mathcal{P}(\mathbb{N}) \simeq \mathbb{R}$, puis $\mathcal{P}(\mathbb{R})$, $\mathcal{P}(\mathcal{P}(\mathbb{R}))$, etc.

Ordre cardinal

Comparaison des cardinaux

La relation définie sur la classe des cardinaux par $C\hookrightarrow C'$ si et seulement s'il existe une injection de C dans C', est un ordre sur la classe des cardinaux, ou $\frac{\operatorname{Set}}{\simeq}$.

Proof.

- **1 Réflexivité :** l'identité de E dans E convient :
- 2 Transitivité : par composition de deux injections ;
- 3 Antisymétrie : ... ?

Présentation du théorème

Le théorème de Cantor-Bernstein

Théorème de Cantor-Schröder-Bernstein

Soient A et B deux ensembles. S'il existe une injection de A dans B, et s'il existe une injection de B dans A, alors A et B sont en bijection. Autrement dit, la relation \hookrightarrow est antisymétrique.

Présentation du théorème

Heuristique : le cinéma infini

Le cas des ensembles finis

Un théorème fondamental

Théorème fondamental des ensembles finis

Toute injection d'un ensemble fini dans lui-même est bijective.

Le cas des ensembles finis

Démonstration

Figure: Illustration de l'hypothèse de récurrence du théorème fondamental

Le cas des ensembles finis

Deux façons de conclure

Première méthode : unicité du cardinal

Tout ensemble fini est en bijection avec un unique intervalle $\{1,...,n\}$ de \mathbb{N} , n étant un entier naturel quelconque. L'entier n est alors appelé cardinal de l'ensemble.

Deuxième méthode : caractérisation de la surjectivité par inversibilité à droite

On suppose que $f: E \longrightarrow F$ et $g: F \longrightarrow E$. Alors g est surjective si et seulement si elle est inversible à droite. Cet inverse, appelé section, est toujours injectif.

Lexique des catégories

Catégorie

Une catégorie $\mathcal C$ est définie par :

- ▶ une collection d'objets, représentée par une classe, propre ou impropre, identifiée à C;
- ▶ la collection des *flèches* ou *morphismes* entre ces objets ;
- ► l'association, à toute flèche f de A dans B, de son départ (ou domaine) A et de son arrivée B (ou co-domaine);
- une loi de composition interne entre les flèches notée $f\circ g$, appelée composition, dès Cod(g)=Dom(f)
- ▶ l'associativité de la composition ;
- un élément neutre pour la composition, associé à tout objet A de la catégorie C, noté id_A .

Comment généraliser le théorème de Cantor-Bernstein

Lexique des catégories

Sous-catégorie, sous-catégorie pleine

Une sous-catégorie \mathcal{C}' d'une catégorie \mathcal{C} est la donnée de certains objets de \mathcal{C} , mais pas forcément tous, et de certaines flèches de \mathcal{C} , mais pas forcément toutes. Une sous-catégorie est dite *pleine* si pour tous objets A,B de \mathcal{C}' , $\mathrm{Hom}_{\mathcal{C}'}(A,B)=\mathrm{Hom}_{\mathcal{C}}(A,B)$.

Foncteur

Un foncteur ou foncteur covariant d'une catégorie $\mathcal C$ dans une catégorie $\mathcal D$ est la donnée d'une fonction qui à tout objet X de $\mathcal C$, associe un objet F(X) de $\mathcal D$ et d'une fonction qui à tout morphisme $f:X\longrightarrow Y$ de $\mathcal C$, associe un morphisme $F(f):F(X)\longrightarrow F(Y)$ de $\mathcal D$, vérifiant : $F(id_X)=id_{F(X)}$ pour tout objet X de $\mathcal C$, et pour tous objets X,Y,Z et morphismes $f:X\longrightarrow Y$ et $g:Y\longrightarrow Z$ de $\mathcal C$, $F(g\circ f)=F(g)\circ F(f)$.

Comment généraliser le théorème de Cantor-Bernstein

Lexique des catégories

Isomorphisme

Un isomorphisme entre deux objets X,Y d'une catégorie $\mathcal C$ est un morphisme f de X dans Y tel qu'il existe un morphisme g de Y dans X tel que $g\circ f=f\circ g=id_X.$

Comment généraliser le théorème de Cantor-Bernstein

Lexique des catégories

Catégorie concrète

Une catégorie est *concrète* s'il existe un foncteur fidèle, dit *foncteur d'oubli* de cette catégorie vers la catégorie des ensembles ; on peut donc la voir comme une sous-catégorie de Set.

Catégories concrètes usuelles

Catégorie	Objets	Morphismes
Set ou Ens	Ensembles	Applications
Ord	Ensembles ordonnées	Applications croissantes
Tot-Ord	Ensembles totalement ordonnées	ldem
K -Vect	IK-espaces vectoriels	Applications linéaires
Met	Espaces métriques	Morphismes pour la topologie métrique
Тор	Espaces topologiques	Applications continues
Mon	Monoïdes	Morphismes de monoïdes
Grp	Groupes	Morphismes de groupes
Ab	Groupes abéliens	ldem
Ring	Anneaux (unitaires)	Morphismes d'anneaux unitaires
ACU	Anneaux commutatifs unitaires	ldem
Krp	Corps	Morphismes de corps
K-Alg	K -algèbres	Morphismes d'algèbres

L'Théorème de Cantor Bernstein classique

Comment généraliser le théorème de Cantor-Bernstein

Comment généraliser le théorème de Cantor-Bernstein

Un peu de vocabulaire

Théorème de Cantor-Bernstein modulo une catégorie

On appelle $\mathcal C$ -théorème de Cantor-Bernstein ou théorème de Cantor-Bernstein modulo une catégorie concrète $\mathcal C$, la proposition : pour tous objets A et B de $\mathcal C$, s'il existe un morphisme injectif de A vers B et s'il existe un morphisme injectif de B vers A, alors A et B sont isomorphes. On note : $\mathcal C$ -CB.

Catégorie bernsteinienne

Une catégorie C est dite bernsteinienne, si C-CB.

Cas des espaces vectoriels

Analogie ensembliste

Théorème de Cantor-Bernstein modulo la catégorie des espaces vectoriels de dimension finie

Si deux espaces vectoriels de dimension finie sur $\mathbb K$ s'injectent réciproquement l'un dans l'autre aux moyens d'applications linéaires, alors ces deux espaces sont isomorphes.

Cas des espaces vectoriels

Rappels axiomatiques

Axiome du choix

Soient I un ensemble et $(A_i)_{i\in I}$ une famille d'ensembles. Alors il existe une application σ de I dans $\bigcup_{i\in I}A_i$ telle que, pour tout $i\in I$, $\sigma(i)\in A_i$. On note cet axiome AC et on dit que σ est une fonction de choix.

Cas des espaces vectoriels

Rappels axiomatiques

Chaîne

Une *chaîne* d'un ensemble ordonné (E, \leqslant) est une partie A de cet ensemble E sur laquelle la restriction $\leqslant_{|A \times A}$ de l'ordre est totale.

Ensemble inductif

Un ensemble inductif E est un ensemble ordonné dont toute chaîne est majorée (par un élément a priori dans E).

Lemme de Zorn

Tout ensemble inductif a un élément maximal.

Cas des espaces vectoriels

Construction de la dimension infinie

Théorème de la base incomplète

Dans un espace vectoriel E quelconque sur \mathbb{K} , de toute famille génératrice \mathcal{G} , pour toute famille libre \mathcal{L} incluse dans \mathcal{G} , on peut trouver une famille de vecteurs contenue dans \mathcal{G} et contenant tous les vecteurs de \mathcal{L} qui soit une base de E.

Cas des espaces vectoriels

Idée de preuve

- I L'ensemble des familles libres comprises entre \mathcal{L} et \mathcal{G} est inductif pour l'inclusion : en effet, toute chaîne est majorée par sa réunion, qui est bien une famille libre.
- 2 D'après le lemme de Zorn, on a un élément maximal \mathcal{B} . On vérifie que cet élément est une base de E.

Cas des espaces vectoriels

Construction de la dimension infinie

Existence de bases

Tout espace vectoriel admet des bases.

Théorème de la dimension

Dans tout espace vectoriel, le cardinal de toute partie libre est inférieur au sens de l'ordre cardinal au cardinal de toute partie génératrice de E.

Unicité de la dimension

Sur un espace vectoriel quelconque, toutes les bases ont le même cardinal. Celui-ci définit alors la *dimension* de l'espace vectoriel considéré.

Cas des espaces vectoriels

Construction de la dimension infinie

Caractérisation de l'isomorphie

Deux espaces vectoriels sont isomorphes si et seulement s'ils ont la même dimension.

Cas des espaces vectoriels

Un K-Vect théorème de Cantor-Bernstein

Théorème de Cantor-Bernstein pour les espaces vectoriels

Si deux espaces vectoriels quelconques sur \mathbb{K} s'injectent réciproquement l'un dans l'autre aux moyens d'applications linéaires, alors ces deux espaces sont isomorphes.

Cas des espaces vectoriels

Preuve

- I On invoque l'existence de bases sur E et sur F, respectivement \mathcal{B} et \mathcal{B}' .
- 2 On applique le théorème ensembliste à ces bases :
 - **1** Si f est une application injective de E sur F, alors $\mathcal{B} \hookrightarrow f(\mathcal{B})$
 - 2 Puisque f est une injection linéaire, $f(\mathcal{B})$ est libre donc par théorème de la dimension $f(\mathcal{B}) \hookrightarrow \mathcal{B}'$
 - 3 On en déduit $\mathcal{B} \hookrightarrow \mathcal{B}'$ et par symétrie $\mathcal{B}' \hookrightarrow \mathcal{B}$. En appliquant TCB, \mathcal{B} et \mathcal{B}' sont en bijection.
- ${f 3}$ D'après l'unicité de la dimension, E et F ont la même dimension. On conclut avec le théorème de caractérisation.

Cas des espaces vectoriels

Négation de Top-CB et de Met-CB

Espace topologique

Un espace topologique (E,\mathcal{O}) est la donnée d'un ensemble E et de \mathcal{O} une famille de parties de E non vide, stable par réunion et par intersection finie, appelée famille des *ouverts* de E.

Ouverts métriques

Les ouverts d'un espace métrique (E,d) sont les réunions quelconques de boules ouvertes pour d. En particulier, tout espace métrique est un espace topologique.

Cas des espaces vectoriels

Négation de Top-CB et de Met-CB

Négation de Top-CB et de Met-CB

La catégorie des espaces topologiques (et donc, des espaces métriques) n'est pas bernsteinienne.

Proof.

On prend $E = \mathbb{R}$ et $F = \mathbb{R}_+$

- f I F s'injecte continûment dans E par l'injection canonique
- \blacksquare E et F ne sont pas homéomorphes par connexité par arcs

Renforcement des propriétés pour que la catégorie soit bernsteinienne

Espaces compacts

Bijection continue sur un compact

Toute bijection sur un compact est un homéomorphisme.

Renforcement des propriétés pour que la catégorie soit bernsteinienne

Espaces compacts

Négation de Compacts-CB

La catégorie des espaces compacts n'est pas non plus bernsteinienne.

Proof.

On prend E = [0, 1] et $F = [0, 1] \cup [2, 3]$

- lacktriangle s'injecte continûment dans F par l'injection canonique
- \mathbf{Z} F injecte continûment dans F par morceaux
- ${f 3}$ E et F ne sont pas homéomorphes par connexité

Renforcement des propriétés pour que la catégorie soit bernsteinienne

Espaces de Banach

Suite de Cauchy

Une suite $(u_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ est dite de Cauchy si $\forall \varepsilon>0 \ \exists N\in\mathbb{N} \ \forall n,p\geqslant N \quad d(u_n,u_p)\leqslant \varepsilon$, ou de façon équivalente, $\forall \varepsilon>0 \ \exists N\in\mathbb{N} \ \forall n\geqslant N \ \forall k\geqslant 0 \quad d(u_{n+k},u_n)\leqslant \varepsilon.$

Propriété

Toute suite convergente est de Cauchy.

Propriété

Toute suite de Cauchy est bornée.

Propriété

Toute suite de Cauchy ayant une valeur d'adhérence converge.

Renforcement des propriétés pour que la catégorie soit bernsteinienne

Espaces de Banach

Complétude

Un espace métrique dans lequel toute suite de Cauchy converge est dit *complet*.

Espace de Banach

Un espace vectoriel normé complet est appelé *espace de Banach*. En particulier, d'après le théorème de Bolzano-Weierstrass, tous les espaces vectoriels de dimension finie.

Renforcement des propriétés pour que la catégorie soit bernsteinienne

Espaces de Banach

Sous-espaces de Banach

Les sous-espaces de Banach d'un espace de Banach sont ses sous-espaces vectoriels fermés.

Propriété

Un espace vectoriel normé est complet si et seulement si toute série absolument convergente est convergente.

Renforcement des propriétés pour que la catégorie soit bernsteinienne

Isomorphismes dans les espaces de Banach

Théorème des fermés emboîtés

Dans tout espace métrique complet, toute intersection décroissante de fermés non vides dont les diamètres tendent vers zéro est réduite à un singleton.

Théorème de Baire

Dans un espace complet, toute intersection dénombrable d'ouverts denses est dense.

Théorème de Banach-Schauder, théorème de l'application ouverte

Toute application linéaire continue surjective entre deux espaces de Banach est ouverte (c'est-à-dire, l'image de tout ouvert est ouvert).

Renforcement des propriétés pour que la catégorie soit bernsteinienne

Théorème de Pelczynski

Sous-espace complémenté

Un sous-espace de Banach d'un espace de Banach est dit complémenté s'il admet un supplémentaire qui soit un sous-espace de Banach, c'est-à-dire un supplémentaire fermé.

Théorème de Pelczynski

Soient X,Y deux espaces de Banach. On suppose X est isomorphe à un sous-espace complémenté de Y, que Y est isomorphe à un sous-espace complémenté de X, et que X et Y sont isomorphes à leur carré. Alors X et Y sont isomorphes.

Structures à une loi

Définitions

Magma

Un $\mathit{magma}\ (E,\star)$ est la donnée d'un ensemble E et d'une loi de composition interne sur E, c'est à dire une application $\star: E \times E \longrightarrow E.$

Morphisme de magmas

Un morphisme de magmas f de (E,\star) dans (F,\diamond) est une application de E dans F telle que pour tous $x,y\in E$, $f(x\star y)=f(x)\diamond f(y)$.

Problème en algèbre générale

Structures à une loi

Définitions

Monoïde

Un *monoide* est un magma associatif contenant un élément neutre à la fois à droite et à gauche.

Morphisme de monoïdes

Un *morphisme de monoïdes* est un morphisme entre les magmas correspondant qui envoie le neutre d'un magma sur l'autre.

Étude pour les groupes

Il nous faut :

- Deux groupes infinis d'après le théorème de Cantor-Bernstein pour les groupes finis
- 2 Deux groupes de même cardinaux
- 3 On ne peut pas choisir parmi les groupes $(\mathbb{Z}^n,+)$, $n\in\mathbb{N}$: c'est une suite strictement croissante pour l'injection par morphisme.

Étude pour les groupes

Négation de Grp-CB

La catégorie des groupes n'est pas bernsteinienne.

Proof.

Prenons $G = \mathbb{Q}^{\mathbb{N}}$ et $G' = \mathbb{Z} \times \mathbb{Q}^{\mathbb{N}^*}$.

- I $G \hookrightarrow G'$ par $f \longmapsto (0, \tilde{f})$ où \tilde{f} est décalée 1
- 2 $G' \hookrightarrow G$ par l'application qui à (k,f) associe la suite g telle que g(0)=k et g(n)=f(n) sinon
- ${\bf 3}$ G et G' ne sont pas isomorphes en considérant un antécédent de (2,0), on obtient 3 divise 2, ce qui est absurde.

Conséquences

On en déduit :

- qu'il n'y a pas de théorème de Cantor-Bernstein pour les magmas ;
- 2 qu'il n'y a pas de théorème de Cantor-Bernstein pour les monoïdes ;
- 3 qu'il n'y a pas de théorème de Cantor-Bernstein pour les groupes abéliens.

Le cas des corps commutatifs

Clôture algébrique

Un corps K est dit *algébriquement clos* si tout polynôme non constant à coefficients dans K admet au moins une racine qui soit un élément de K. (Il revient au même de dire que tout polynôme non constant a autant de racines que son degré, comptées avec leur multiplicité, ou que tout polynôme non constant est scindé.)

Remarque

Si deux corps sont isomorphes, et si l'un est algébriquement clos, alors l'autre l'est aussi.

Problème en algèbre générale

Structures à deux lois

Le cas des corps commutatifs

Théorème de Steinitz

Tout corps commutatif admet une clôture algébrique, c'est-à-dire une extension de corps (aussi appelée parfois *sur-corps*) algébriquement close.

Idée de preuve

- $\ensuremath{\mathbf{I}}$ On choisit un ensemble Ω de cardinal indénombrable et plus grand que K
- **2** L'ensemble des extensions algébriques $(L,+,\times)$ de K où $L\subseteq\Omega$, muni de l'ordre : être un sous-corps de, est inductif
- f 3 Par le lemme de Zorn, il admet un élément maximal F
- f 4 F est algébriquement clos
 - Une extension algébrique est de même cardinal que le corps d'origine
 - 2 Soit E une extension algébrique de F. On montre que E=F par maximalité de F

Extensions transcendantes

Base de transcendance

Pour tout extension de corps L de K, une famille d'élements de L est une base de transcendance si elle est algébriquement indépendante sur K et si elle n'est strictement contenue dans aucune famille algébriquement indépendante de L. Une famille $\mathcal F$ d'éléments de L est dite algébriquement indépendante sur K si pour tous $x_1,...,x_n\in L$, il n'existe pas de polynôme non nul $P\in K[X_1,...,X_n]$ tel que $P(x_1,...,x_n)=0$.

Théorème

Pour toute extension transcendante L de K, il existe des bases de transcendance de L sur K.

Problème en algèbre générale

Structures à deux lois

Un contre-exemple pour Krp-CB

Théorème

La catégorie des corps est non bersteinienne.

Le cas des corps commutatifs

Proof.

Prenons $K_1 = \mathbb{C}$ et $K_2 = \mathbb{C}(X)$.

- $1 K_1 \hookrightarrow K_2$ canoniquement
- $K_2 \hookrightarrow K_1$:
 - lacktriangle est une extension transcendante de $\mathbb Q$
 - 2 On pose $K=\mathbb{Q}(x_i)_{i\in I}$ et L=K(X). Alors $\mathbb{C}(X)\simeq\overline{K}(X)\to\overline{L}\simeq\mathbb{C}$
- $\mathbf{3}$ K_1, K_2 ne sont pas isomorphes car l'un est algébriquement clos

Problème en algèbre générale

Structures à deux lois

Conséquences

Théorème

La catégorie des anneaux est non bersteinienne.

Théorème

La catégorie ACU est non bersteinienne.

etc.

Résumé

Catégorie ${\cal C}$	c-CB
Structures ensemblistes	
Ensembles finis	✓
Ensembles	✓
Structures algébriques	
Magmas	×
Monoïdes	×
Groupes	×
Groupes abéliens	×
Groupes finis	✓
Anneaux (unitaires)	×
Corps	×
Structures topologiques	
Espaces vectoriels de dimension finie	✓
Espaces vectoriels	✓
Espaces vectoriels normés de dimension finie	✓
Espaces de Banach	Théorème de Pelczynski
Espaces métriques	×
Espaces topologiques	×
Espaces compacts	×

Un cas de figure simple

Catégories très petites et rigides

Catégorie très petite

Une catégorie $\mathcal C$ sera dite *très petite* si tous les objets de $\mathcal C$ sont des ensembles finis.

Catégorie rigide

Une catégorie concrète est dite *rigide* si tout morphisme bijectif est un isomorphisme.

Un cas de figure simple

Catégories très petites et rigides

Théorème

Pour toute catégorie très petite et rigide \mathcal{C} , $\mathcal{C}\text{-CB}$ est trivialement vérifié.

Les invariants d'isomorphie

Ensembles quotients

Ensemble quotient

Soit E un ensemble et $\mathcal R$ une relation d'équivalence sur E. Alors on note $E/\mathcal R$ l'ensemble quotient par $\mathcal R$ défini par $E/\mathcal R=\{\overline{x}_{\mathcal R}\mid x\in E\}.$

Projection canonique

L'application $\pi: E \longrightarrow E/\mathcal{R}$ qui à x fait correspondre la classe de x par \mathcal{R} , notée $\overline{x}_{\mathcal{R}}$, est une surjection appelée projection canonique.

Les invariants d'isomorphie

Théorème de factorisation

Théorème de factorisation pour les applications

Soit F un ensemble quelconque et f une application de E dans F. Alors f est compatible avec $\mathcal R$ (i. e.

 $\forall x,y\in E\quad x\sim y\Rightarrow f(x)=f(y))$ si et seulement s'il existe une unique application \tilde{f} telle que $f=\tilde{f}\circ\pi$ (se qui se réécrit $f(x)=\tilde{f}(\overline{x})$ pour tout $x\in E$). Dans ce cas de compatibilité, on dit qu'on passe au quotient dans l'application f.

Les invariants d'isomorphie

Théorème de factorisation

Les invariants d'isomorphie

Théorème de factorisation

Théorème de factorisation carré

Soit F un ensemble muni d'une relation d'équivalence $\mathcal S$ que l'on se permet de noter \equiv , ses classes $\widehat{\cdot}$ et f une application de E dans F. Alors f est compatible avec $\mathcal R$ modulo $\mathcal S$ (i. e. $\forall x,y\in E\quad x\sim y\Rightarrow f(x)\equiv f(y)$) si et seulement s'il existe une unique application $\widetilde f$ telle que $\chi\circ f=\widetilde f\circ\pi$ (se qui se réécrit $\widehat{f(x)}=\widetilde f(\overline x)$ pour tout $x\in E$). Dans le cas de compatibilité, on dit encore qu'on passe au quotient dans f.

Les invariants d'isomorphie

Théorème de factorisation

$$E \xrightarrow{f} F$$

$$\pi \downarrow \qquad \qquad \downarrow \chi$$

$$E/\mathcal{R} \xrightarrow{\tilde{f}} F/\mathcal{S}$$

Théorème de factorisation

Remarques

Dans chacun des deux théorèmes précédents :

- $\begin{array}{ll} \textbf{I} \quad \tilde{f} \text{ est injective si et seulement si} \\ \forall x,y \in E \quad x \sim y \Leftrightarrow f(x) = f(y) \text{ (respectivement} \\ \forall x,y \in E \quad x \sim y \Leftrightarrow f(x) \equiv f(y) \text{) ;} \end{array}$
- \hat{f} est surjective si et seulement si f est surjective ;
- 3 \tilde{f} est bijective si et seulement si f est surjective et $\forall x,y \in E \quad x \sim y \Leftrightarrow f(x) = f(y)$ (respectivement f est surjective et $\forall x,y \in E \quad x \sim y \Leftrightarrow f(x) \equiv f(y)$).

Les invariants d'isomorphie

Invariants d'isomorphie

Définition

Soit $\mathcal C$ une catégorie concrète. On appelle *invariant d'isomorphie*, tout foncteur de $\mathcal C$ dans Set qui passe au quotient pour la relation d'isomorphie \simeq de $\mathcal C$ et la relation d'équipotence sur Set en un foncteur tel que l'application quotient sur les objets soit injective.

Les invariants d'isomorphie

Invariants d'isomorphie

Théorème de Cantor-Bernstein pour une catégorie admettant un invariant d'isomorphie

Soit $\mathcal C$ une catégorie concrète qui admette un invariant d'isomorphie f qui transforme les morphismes injectifs en injections. Alors $\mathcal C\text{-CB}$.

Les invariants d'isomorphie

Invariants d'isomorphie

$$egin{array}{cccc} \mathcal{C} & \stackrel{f}{\longrightarrow} & \mathrm{Set} \ \pi_1 & & & \downarrow \pi_2 \ \mathcal{C} / \sim & \stackrel{\widetilde{f}}{\longrightarrow} & \mathrm{Set} / \simeq \end{array}$$

Conclusion

- 1 Plus les objets sont *mous*, moins il y a de TCB
- 2 Paradoxe vis-à-vis des ensembles
- 3 Deux mouvements d'ensemble : choix des morphismes et rigidité des catégories quant à leurs propriétés