

ESTATÍSTICA I

ÉPOCA de RECURSO (2014.02.05)

Duração: 2h 20m / Com consulta

Em todas as suas respostas defina, com clareza, a terminologia que adoptar e as hipóteses subjacentes aos diferentes passos da sua análise.

- 1. (3.5 VALORES) Um equipamento electrónico contém dois componentes, A e B, que podem ser facilmente removidos e substituídos por outros. Se o equipamento avariar, a probabilidade do componente A ter de ser substituído é de 60%. Algumas avarias de A podem provocar estragos no componente B. Se A tiver de ser substituído, a probabilidade de B também ter de ser substituído é de 70%. Se não for necessário substituir A, a probabilidade de B ter de ser substituído é de 10%.
 - a) Calcule a percentagem de todas as avarias do equipamento que implicam a substituição dos dois componentes.
 - b) Calcule a probabilidade do componente A ter sido substituído sabendo que:
 - i. o componente B não teve de ser substituído;
 - ii. o componente B teve de ser substituído.
- 2. (4 VALORES) Para preencher a última semana da época de concertos de Verão uma empresa, especialista no ramo, candidata-se à organização de seis concertos semelhantes, mas estatisticamente independentes. A empresa tem 40% de possibilidades de conseguir o contrato para organizar cada um dos concertos, ganhando 200 UM (unidades monetárias) por cada contrato conseguido. As despesas com a candidatura à organização dos seis concertos são de 300 UM. A empresa tem ainda um encargo adicional com horas extraordinárias que, obviamente, aumentam com o número de contratos conseguidos. O valor a pagar pelas horas extraordinárias é igual a dez vezes o quadrado do número de contratos conseguidos.
 - a) Calcule o valor esperado e o desvio padrão do número de contratos obtidos pela empresa.
 - Calcule a probabilidade de a empresa perder dinheiro com a candidatura e a organização dos concertos
 - c) Calcule o valor esperado e o desvio padrão do lucro obtido pela empresa
 - d) Admita, agora, que a empresa atribui, antes da sua realização, um índice de atractividade a cada concerto. Esse índice varia entre 0 e 3 (em que 3 representa a atractividade máxima) e cuja função densidade de probabilidade se apresenta a seguir:

$$f_X(x) = \begin{cases} \frac{4}{27} \cdot (9x - 6x^2 + x^3), \text{ para } 0 \le X \le 3\\ 0, \text{ caso contrário} \end{cases}$$

Seja Z o índice de sucesso atribuído pela principal revista da área a cada concerto e $Z = X^2 + 1$ a função de transformação usada pela empresa para estimar o valor de Z.

(1/2)

AMG

Obtenha a função densidade de probabilidade de Z.

3. (4 VALORES) Admita que, no final de uma linha de soldadura automática, 7% das peças são retocadas manualmente por um operador. Admita ainda que o ritmo de produção é de uma peça por minuto e que a necessidade de uma peça necessitar de ser retocada é independente das anteriores.

- a) Calcule a probabilidade de o operador permanecer dez minutos sem executar nenhum retoque.
- b) Calcule a probabilidade de, numa sequência de seis peças, a última ser a segunda peça a necessitar de retoque.
- c) Calcule o tempo que, em média, o operador permanece sem executar nenhum retoque.
- d) O tempo que o operador demora a retocar uma peça segue uma distribuição Normal com valor esperado igual a 2.95 minutos e desvio padrão igual a 0.32 minutos. Calcule a probabilidade de o operador demorar mais de 10 minutos a retocar 3 pecas.
- 4. (3 VALORES) A DECO, no intuito de testar a fiabilidade de um certo tipo de cintos de segurança, recolheu uma amostra aleatória simples de 20 cintos que testou, tendo três dos cintos falhado (i.e., não aguentaram o esforço de tracção).
 - a) Construa o intervalo de confiança a 90% para a proporção de cintos que falham no referido teste
 - Repita a alínea anterior considerando agora que falharam 60 cintos numa amostra aleatória simples de dimensão 400.
 - c) Compare e comente os resultados obtidos nas alíneas anteriores.
- 5. (3 VALORES) A tabela abaixo apresenta o consumo de combustível que um grupo de 10 instrutores de uma escola de condução obteve ao conduzir, em cidade e em estrada, um determinado modelo automóvel num dia de trabalho. O consumo está expresso em litros e a segunda coluna representa a distância percorrida (número total de quilómetros) até se consumirem completamente os litros indicados nas colunas três e quatro. Por exemplo, o António percorreu uma distância de 91 km, nos quais 6.7 litros foram gastos em estrada e 7.4 em cidade.

Condutor	Distância (km)	Consumo (l)		Condutor	Distância	Consumo (l)	
		estrada	cidade	Conductor	(km)	estrada	cidade
António	91	6.7	7.4	Luís	108	7.3	8.8
Gaspar	86	6.7	7.1	Zénabo	106	7.4	8.9
João	95	7.1	8.1	Fangio	98	7.2	8.7
Pedro	94	7.0	8.3	Mário	92	7.1	8.4
Vasco	87	6.9	8.0	Manuel	94	6.5	8.1

- a) Calcule o intervalo de confiança a 95% para a variância do consumo diário de combustível por condutor em estrada
- b) Calcule o intervalo de confiança a 95% para o valor esperado da diferença de consumo, aos cem quilómetros, entre cidade e estrada.
- 6. (2.5 VALORES) Considere duas amostras aleatórias independentes de grande dimensão de uma mesma população com tamanhos n_1 e n_2 . Propõem-se dois estimadores para μ : $\hat{\theta}_1$ (média aritmética das médias amostrais) e $\hat{\theta}_2$ (média ponderada das médias amostrais). Qual dos dois estimadores escolheria? Justifique.

$$\hat{\theta}_1 = \frac{\bar{X}_1 + \bar{X}_2}{2} \qquad \qquad \hat{\theta}_2 = \frac{n_1 \cdot \bar{X}_1 + n_2 \cdot \bar{X}_2}{n_1 + n_2}$$
(2/2)

AMG