Билинейность геометрического произведения для решения задачи декодирования

Панченко Святослав

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Научный руководитель д.ф.-м.н. В. В. Стрижов

Москва, 2022 г.

Декодирование сигналов

Задача

Имея пару синхронизированных временных рядов, требуется построить предсказательную модель, восстанавливающую значения второго ряда по известным значениям первого.

Проблема

Главные компоненты первого ряда, статистически значимые для предсказания значений второго, неизвестны.

Предлагается

Построить предсказательную модель на основе низкоразмерного признакового описания, полученного из представления отрезка временного ряда в конформной геометрической алгебре.

Постановка задачи декодирования

Регрессионная задача декодирования: построить предсказательную модель $\mathbf{f}_{\mathbf{XY}}^R: \mathbb{R}^h o \mathbb{R}^p$, которая по представлению предыстории $\mathbf{X}_{t,h} \in \mathbb{R}^h$ ряда \mathbf{s}_{x} предсказывает представление горизонта прогнозирования $\mathbf{Y}_{t,p} \in \mathbb{R}^p$ ряда \mathbf{s}_{y} :

$$\hat{\mathbf{Y}}_{t,p} = \mathbf{f}_{\mathbf{XY}}^{R} \Big(\mathbf{X}_{t,h} \Big)$$

Конформная геометрическая алгебра

 $\mathcal{G}^{4,1}$ — алгебра над пространством $\mathbb{R}^{4,1}$, в которой операторы над пространством \mathbb{R}^3 представляются в виде элементов, а их действие описывается геометрическим произведением.

Выражение в алгебре

$$C = c_1 \wedge c_2 \wedge c_3$$

$$L = a_1 \wedge a_2 \wedge e_{\infty}$$

$$R = \exp(\phi L^*/2)$$

$$C' = RCR^{-1}$$

$$\Pi = p_1 \wedge p_2 \wedge p_3 \wedge e_{\infty}$$

$$\pi = \Pi^*$$

$$C'' = -\pi C' \pi^{-1} =$$

= $-\pi R C R^{-1} \pi^{-1}$

Представление истории ряда в виде мультивектора

Гипотеза:

В конформной геометрической алгебре существуют мультивекторы, являющиеся информативным низкоразмерным признаковым описанием в задаче декодирования.

Предлагается перейти к рассмотрению предсказательной модели для $\mathbf{Y}_{t,p}$ с использованием таких мультивекторов:

$$egin{aligned} \hat{\mathbf{Y}}_{t,p} &= \mathbf{f}\Big(\mathbf{X}_{t,h}\Big) = \mathbf{\tilde{f}}\Big(\mathbf{g}\Big(\mathbf{X}_{t,h}\Big)\Big) = \mathbf{\tilde{f}}\Big(\mathbf{V}_{t}\Big) \ \mathbf{V}_{t} &= \mathbf{g}\Big(\mathbf{X}_{t,h}\Big) \in \mathcal{G}_{4,1} \end{aligned}$$

Для построения интерпретируемого мультивектора воспользуемся связью между пространствами \mathbb{R}^3 и $\mathbb{R}^{4,1}$.

Пространственно-временное представление: граф в \mathbb{R}^3

В соответствии с размерностью представления предыстории h расположим h точек в \mathbb{R}^3 $\mathbf{a}_1,...,\mathbf{a}_h$, являющихся узлами графа. В графе проведём ребра, A – его матрица смежности. Также построим сферы радиуса r с центрами в каждом из узлов.

Переход от представления в \mathbb{R}^3 к представлению в $\mathcal{G}^{4,1}$

Базис пространства \mathbb{R}^3 $\{e_1,e_2,e_3\}$ дополним векторами $\{e_+,e_-\}$ до пятимерного пространства $\mathbb{R}^{4,1}$ с сигнатурой (4,1). Найдём теперь конформные представления сфер в узлах графа – элементы конформной геометрической алгебры $\mathcal{G}^{4,1}$.

Конформное представление сферы

Конформное представление сферы S_i формируется как внешнее произведение четырёх конформных образов точек $\mathbf{x}_1^{(i)}, \mathbf{x}_2^{(i)}, \mathbf{x}_3^{(i)}, \mathbf{x}_4^{(i)}$, лежащих на сфере в R^3 и не лежащих в одной плоскости:

$$S_i = X_1^{(i)} \wedge X_2^{(i)} \wedge X_3^{(i)} \wedge X_4^{(i)},$$

где $X_1^{(i)},\ X_2^{(i)},\ X_3^{(i)},\ X_4^{(i)}$ – конформные образы точек $\mathbf{x}_1^{(i)},\mathbf{x}_2^{(i)},\mathbf{x}_3^{(i)},\mathbf{x}_4^{(i)}$

$$\mathbf{x}_{1}^{(i)} = \mathbf{a}_{i} + (r, 0, 0)^{\mathsf{T}}$$
 $\mathbf{x}_{2}^{(i)} = \mathbf{a}_{i} + (0, r, 0)^{\mathsf{T}}$
 $\mathbf{x}_{3}^{(i)} = \mathbf{a}_{i} + (0, 0, r)^{\mathsf{T}}$
 $\mathbf{x}_{4}^{(i)} = \mathbf{a}_{i} + (-r, 0, 0)^{\mathsf{T}}$

Предлагаемый способ формирования мультивекторов

На каждую из сфер подействуем оператором растяжения с разными коэффициентами. В качестве коэффициентов растяжения α_i предлагается взять значения временного ряда:

$$\alpha_i := \mathbf{X}_{t-h+i}, \ i = \overline{1,h}$$

Сферы S_i под действием оператора:

$$\Omega_i := D_{\alpha_i} S_i D_{\alpha_i}^{-1},$$

где произведение элементов алгебры $D_{\alpha_i}S_iD_{\alpha_i}^{-1}$ описывает действие оператора.

$$\begin{split} D_{\alpha_i} &= \cosh\Big(-\frac{\log \alpha_i}{2}\Big) + \sinh\Big(-\frac{\log \alpha_i}{2}\Big) e_{\infty} \wedge e_0 \\ D_{\alpha_i}^{-1} &= \cosh\Big(-\frac{\log \alpha_i}{2}\Big) - \sinh\Big(-\frac{\log \alpha_i}{2}\Big) e_{\infty} \wedge e_o \end{split}$$

Получение мультивекторов

Из растянутых сфер Ω_i в конформной геометрической алгебре сформируем низкоразмерное представление предыстории ряда – мультивекторы V^+ и V^- (**A** – матрица смежности исходного графа в \mathbb{R}^3):

$$V^{+} = \sum_{i=1}^{h} \Omega_{i} \quad V^{-} = \sum_{i=1}^{h} \sum_{j=1}^{h} \mathbf{A}_{ij} \left\langle \Omega_{i}^{*} \Omega_{j} \right\rangle_{5}$$

Мультивектор V^+ является элементом 5-мерного подпространства, а мультивектор V^- – элементом одномерного подпространства в $\mathcal{G}^{4,1}$.

Совокупность из шести коэффициентов разложения $V^+ + V^-$ по базису в $\mathcal{G}^{4,1}$ (V_1^+,\ldots,V_5^+,V_1^-) используем в качестве признакового описания в задаче предсказания горизонта $\mathbf{Y}_{t,p}$.

Интерпретация признаков

$$V^+ = \sum_i \Omega_i$$

Сумма коэффициентов V^+ характеризует поведение ряда в среднем, сглаживая шум.

VСходный ряд V^+ (h=50)

$$V^- \; = \; \sum_i \sum_j A_{ij} \langle \Omega_i^* \Omega_j \rangle_5$$

Величина V^- характеризует суммарный объём пересечения растянутых сфер Ω_i .

Вычислительный эксперимент

После перехода к мультивекторному представлению в задаче предсказания $\hat{\mathbf{Y}}_{t,p} = \tilde{\mathbf{f}}(\mathbf{V}_t)$ функция $\tilde{\mathbf{f}}$ выбирается из параметрического семейства:

$$\tilde{\mathbf{f}}(\mathbf{V}_t) = \tilde{\mathbf{f}}(\mathbf{V}_t|\boldsymbol{\theta})$$

$$\hat{\boldsymbol{\theta}} = \operatorname*{arg\,min}_{\boldsymbol{\theta}} L\Big(\mathbf{Y}, \hat{\mathbf{Y}}\Big)$$

Эксперимент проводится на одном из датасетов базы данных Food-Tracking Task with ECoG, где предлагается по сигналам электрокортикограмм восстановить траекторию движения конечности.

Датасет Epidural-ECoG Food-Tracking Task

Иллюстрация исходного и целевого сигналов. Слева: один из 64-х исходных сигналов. Справа: 3 целевых временных ряда — 3 координаты сочленения.

Результаты: левое запястье, h = 25, $corr = 0.91 \pm 0.06$

Приведём результаты решения, где в качестве модели использовалась полносвязная нейронная сеть.

Коэффициент корреляции Пирсона на тестовой выборке составил 0.91 ± 0.06 , что не уступает результатам, полученным другими методами в данной задаче.

Выносится на защиту

- Предлагается метод снижения размерности в задаче анализа сигналов в виде алгоритма построения мультивекторного описания представления предыстории исходного временного ряда.
- Подтверждается гипотеза о возможности построения мультивектора, являющегося информативным представлением элемента фазовой траектории сигнала.
- Полученный метод успешно применяется в прикладной задаче декодирования сигналов электрокортикограмм для предсказания координат конечности.