

L) (jathan) Knytchy rahamanra = tulot (-) (P1++) X1+ P2X2 = 11+5 (=) (2+2) x, + 3x2 = 24+4 (=) $X_2 = -\frac{4}{3} \times_1 + \frac{28}{3}$ (kurann prirretty edelliseen kurnonn) tetanthony (x, x) st modulerelle 1 PX++XA

2.) Pelanjien ominatsunksille patee: Merkstaan: V= Veksi Koko: Jx Hx Vx H = Hanski Nopens: VX JN & HN J= Jaska Sosianlisuus: Hs X Vs X ds Heikin preferensseille patee, etta A>B (=> A:> B: vahntaan kahdella ominaisuudella i. a) Koska Vx>Hx ja Vs>Hs ylla oleva ehto tayttyy => V>H => Veksi parempi tuin Hanski. b). Koska Hx}Jx ja HN>Jn, H>J => Hanski parempi kuin Jaska c) Koska JNYVN ja JSYVS, JYV =) daska parempi kuin Veksi d) Vante: Heikin preserenseit eivat ole transi-Toolistos: Vastaoletus: Heikin preferenssit transi-Nyt V> H ja HTJ=)Transitivisuadan nojala tulee patea VIJ, Knitenkin J- kohdan nojalla

J>V, milia on ristinita =) vastaoletus epatosi, o

3. Piirrä indifferenssikäyrät korille (x_1, x_2) , kun x_1 on tavallinen hyödyke, ja x_2 on tavallinen hyödyke arvoilla $\overline{x}_2 \leq x_2 \leq \widehat{x}_2$ ja haitake arvoilla $x_2 > \widehat{x}_2$.

Olennaista kuvan piirtämisessä ovat seuraavat asiat:

- 1. (a) Kun $x_2 < \overline{x}_2$, molemmat hyödykkeet ovat tavallisia. Jos hyödykekorista otetaan pois jompaa kumpaa hyödykettä, kuluttaja pysyy indifferenttinä vanhan ja uuden korin välillä vain jos toista hyödykettä lisätään. Indifferenssikäyrän täytyy siis olla laskeva.
 - (b) Kun $\overline{x}_2 \leq x_2 \leq \widehat{x}_2$, hyödyke 2 on neutraali. Hyödykkeen 2 lisääminen tai vähentäminen ei johda hyödyn muuttumiseen. Indifferenssikäyrä on x_2 -akselin suuntainen.
 - (c) Kun $x_2 > \hat{x}_2$, hyödyke 2 on haitake. Jos haitaketta lisätään, kuluttajan täytyy saada lisää tavallista hyödykettä x_1 , jotta hän olisi indifferentti kahden korin välillä. Indifferenssikäyrä on nouseva.

Kuviin on piirretty muutama tällaiseen tilanteeseen liittyvä indifferenssikäyrä Kuviossa alla $\overline{x}_2 = 5$ ja $\hat{x} = 10$.

Toinen mahdollinen kuvio:

(1/2) = (1/2) = (1/2) = 7

-M=(N, X) N

Edellisen tehtävän kuva tietokoneella tehtynä

Tehtävä 5. Arttu pitää sekä pähkinöistä (hyödyke 1) että kirsikoista (hyödyke 2). Sellaisten hyödykekombinaatioden joukko, jotka ovat Artun mielestä yhtä hyviä kuin kombinaatio A = (1, 16), voidaan kirjoittaa $x_2 = 20 - 4\sqrt{x_1}$. Sellaisten hyödykekombinaatioiden joukko, jotka ovat Artun mielestä yhtä hyviä kuin kombinaatio B = (36, 0), voidaan kirjoittaa $x_2 = 24 - 4\sqrt{x_1}$.

- (a) Taulukoi ja piirrä (tehtävä vaatii melko tarkkaa kuvaa) indifferenssikäyrän I_A ja I_B pisteitä ja hahmottele nämä indifferenssikäyrät.
- (b) Mikä on Artun indifferenssikäyrän IA kulmakerroin pisteessä (9,8)? Entä pisteessä (4,12)? Arvioi graafisesti.
- (c) Minkä muotoinen on Artun hyötyfunktio? Tarkista matemaattisesti kohdan b tulokset.
- (d) Olkoon pähkinöiden hinta $p_1 = 1$ ja kirsikoiden vastaavasti $p_2 = 2$. Olkoon Artun käytössä 24 euroa. Piirrä Artun budjettisuora yo. kuvaan. Ratkaise graafisesti, montako pähkinää ja kirsikkaa Artun on ostettava, jotta hänen hyötynsä olisi suurin mahdollinen?

Vastaus:

(a) Taulukoidaan ensin joitain arvoja:

Piirretään sitten ensin molemmat indifferenssikäyrät ja budjettisuora samaan kuvaajaan:

5.

Koska tästä on vaikea löytää vastauksia muihin kohtiin, hahmotellaan vielä I_A ja budjettisuora tarkemmin välillä [3, 16]:

(b) Käsivaralla piirretyn kuvaajan perusteella olisi voinut arvioida pisteen (9,8) kulmakertoi-

meksi n. -4/5 ja pisteen (4,12) kulmakertoimeksi n. -1.

(c) Jos indifferenssikäyrät hyödyllä c ovat muotoa $x_2=c-4\sqrt{x_1}$, niin hyötyfunktio on muotoa $u(x_1,x_2)=x_2+4\sqrt{x_1}$.

Rajasubstituutiosuhdetta laskiessa MU_2 on vakio 1, koska hyötyfunktiossa komponentti x_2 on lineaarinen. Saadaan $MRS(x_1,x_2)=(-MU_1/MU_2)(x_1,x_2)=-MU_1(x_1,x_2)=-\partial_1 u(x_1,x_2)=-4\cdot 1/2\sqrt{x_1}=-2\frac{1}{\sqrt{x_1}}$.

Siis täsmälliset arvot b-kohtaan ovat $MRS(9,9)=-2\cdot 1/\sqrt{9}=-\frac{2}{3},\ MRS(4,12)=-2\cdot 1/\sqrt{4}=-1.$

(d) Budjettisuoran yhtälö on $x_1+2x_2=24 \Rightarrow x_2=12-\frac{1}{2}x_1$. Tiedetään, että hyöty maksimoituu, kun budjettisuora tangeeraa indifferenssikäyrää. Tämä piste on kuvaajan perusteella on piste (16, 4). Tässä pisteessä todella indifferenssikäyrän tangentin kulmakerroin eli $MRS(16,4)=-2\cdot 1/\sqrt{16}=-\frac{1}{2}$ on sama kuin budjettisuoran kulmakerroin $-\frac{1}{2}$.

Tehtävä 6. Laske seuraavien yleisten hyötyfunktioiden rajahyödyt ja rajasubstituutiosuhteet.

$u(x_1,x_2)$	$MU_1(x_1,x_2)$	$MU_2(x_1,x_2)$	$MRS(x_1, x_2)$
$2x_1 + 3x_2$			
$4x_1 + 6x_2$			
$ax_1 + bx_2$			
$2\sqrt{x_1} + x_2$			
$\ln x_1 + x_2$			
$v(x_1) + x_2$			
x_1x_2			
x_1^a x_2^b			
x_2^b			
$a \ln x_1 + b \ln x_2$			
$(x_1+1)(x_2+2)$			
$(x_1+a)(x_2+b)$			
$x_1^a + x_2^a$			

Vastaus: Vastaukset saadaan suoraviivaisesti derivoimalla:

vastaukse			
$u(x_1,x_2)$	$MU_1(x_1,x_2)$	$MU_2(x_1, x_2)$	$MRS(x_1, x_2)$
	$\partial_1 u(x_1, x_2)$	$\partial_2 u(x_1, x_2)$	$-rac{MU_1}{MU_2}$
$2x_1 + 3x_2$	2	3	$-\frac{2}{3}$
$4x_1 + 6x_2$	4	6	$-\frac{2}{3}$
$ax_1 + bx_2$	a	b	$-\frac{a}{b}$
$2\sqrt{x_1} + x_2$	$\frac{1}{\sqrt{x_1}}$	1	$-\frac{1}{\sqrt{x_1}}$
$\ln x_1 + x_2$	$\frac{1}{x_1}$	1	$-\frac{1}{x_1}$
$v(x_1) + x_2$	$v'(x_1)$	1	$-v'(x_1)$
x_1x_2	x_2	x_1	$-\frac{x_2}{x_1}$
$x_1^a x_2^b$	$x_2^b a x_1^{a-1}$	$x_1^a b x_2^{b-1}$	$-\frac{ax_2}{bx_1}$
$a \ln x_1 + b \ln x_2$	$\frac{a}{x_1}$	$\frac{b}{x_2}$	$-rac{ax_2}{bx_1}$
$(x_1+1)(x_2+2)$	(x_2+2)	$(x_1 + 1)$	$-\frac{x_2+2}{x_1+1}$
$(x_1+a)(x_2+b)$	(x_2+b)	(x_1+a)	$-\frac{x_2+b}{x_1+a}$
	0-		3

Ks. seuraava sivu

Huomautus. Huomataan, että osassa tapauksista osittaisderivaattoja tai niiden suhdetta ei välttämättä ole määritelty reaalilukuna joissain yksittäisissä pisteissä, esimerkiksi pisteissä $x_1 = 0$ tai

6.

g. – 0. Tälläin voideen egimerkiksi sonie, että ka, nisteessä reinhväty tai, suhstituutiesuhde ei ele	
$x_2=0$. Tällöin voidaan esimerkiksi sopia, että ko . pisteessä rajahyöty tai -substituutiosuhde ei ole tällaisissa pisteissä määritelty.	
8	

6. Laske seuraavien yleisten hyötyfunktioiden rajahyödyt ja rajasubstituutiosuhteet.

$u(x_1,x_2)$	$MU_1(x_1,x_2)$	$MU_2(x_1,x_2)$	$MRS(x_1, x_2)$
$2x_1 + 3x_2$			
$4x_1 + 6x_2$			
$ax_1 + bx_2$			
$2\sqrt{x_1} + x_2$			
$\ln x_1 + x_2$			
$v(x_1) + x_2$			
x_1x_2			
$x_1^a x_2^b$			
$a \ln x_1 + b \ln x_2$			
$(x_1+1)(x_2+2)$			
$(x_1+a)(x_2+b)$			
$x_1^a + x_2^a$	ax_1^{a-1}	ax_2^{a-1}	$-\left(\frac{x_1}{x_2}\right)^{a-1}$