### ROCÍO PILAR FANJUL COYA COLABORADORA HONORÍFICA DE ECONOMÍA FINANCIERA



Curso: 2015\_2016 MATERIA: DIRECCIÓN FINANCIERA 1

**SEGUNDO SEMESTRE** 

B.T.II: LA DECISIÓN DE INVERSIÓN\_FINANCIACIÓN EN AMBIENTE DE CERTIDUMBRE

#### TEMA 2. ANÁLISIS DE PROYECTOS PUROS.

- 2.1. FUNDAMENTOS: APLICABILIDAD Y CONSISTENCIA.-
- 2.2. INTERSECCIÓN ÚNICA.-
- 2.3. NO HAY INTERSECCIÓN.-
- 2.4. INTERSECCIÓN MÚLTIPLE.-



- ANÁLISIS DE DOS PROYECTOS PUROS DE INVERSIÓN\_FINANCIACIÓN.
  - **«CASO»: INTERSECCIÓN ÚNICA SIMPLE.**
  - **«CASO»: NO HAY INTERSECCIÓN.**
  - «CASO»: INTERSECCIÓN MÚLTIPLE.
- **O ANÁLISIS DE TRES PROYECTOS PUROS DE INVERSIÓN\_FINANCIACIÓN.** 
  - **«CASO»: INTERSECCIÓN ÚNICA SIMPLE.**
  - **«CASO»: NO HAY INTERSECCIÓN.**
  - **«CASO»: INTERSECCIÓN MÚLTIPLE.**



FANJUL, J. L.; ROBLEDA, H.; FERNÁNDEZ, C. y BILBAO, A. (1991): Análisis de Proyectos. Casos y Supuestos. Universidad de León, Fundación Monteleón.



FANJUL, J. L. y CASTAÑO, F. J. (2006): Dirección Financiera Caso a Caso Thomson-Civitas, Aranzadi, Navarra



#### INTERSECCIÓN MÚLTIPLE



#### INTERSECCIÓN MÚLTIPLE

#### La CONDICIÓN NECESARIA

para que NO EXISTA INTERSECCIÓN ÚNICA SIMPLE entre las FUNCIONES VAN de DOS Proyectos Puros de Inversión: «G» y «H»; en el intervalo:

$$(0, r_M]$$
;  $donde: r_M = Valor \, minimo \, (r_G, r_H) = r_G$ 

Donde:  $r_M$  = menor de las TIR (RCI) de ambos Proyectos.

Es que: el TIR (RCI) de «G» sea MAYOR que el TIR (RCI) de «H».

$$r_G > r_H$$

#### La CONDICIÓN SUFICIENTE

es que el TIR (RCI) de «G» sea MAYOR que el TIR (RCI) de «H».

Y que la PRIMERA DERIVADA del VAN del «PROYECTO DIFERENCIA» SI SE ANULA en el intervalo de estudio.

$$r_G > r_H$$

$$VAN_D(x) = 0, \forall x \in (0, r_M]$$



| G |
|---|
| H |
| D |

| Pre | oyecto  | $Q_0$ | $Q_1$ | $Q_2$ | $Q_3$           | $Q_4$ | VAN(0) | RCI      |
|-----|---------|-------|-------|-------|-----------------|-------|--------|----------|
|     | UNO     | -100  | 400   | 0     | 2000            | 0     | 2300   | 3,850185 |
|     | DOS     | -100  | 0     | 2000  | 0               | 0     | 1900   | 3,472136 |
| UNC | o - Dos | 0     | 400   | -2000 | 2000            | 0     | 400    | 0,381966 |
| De  | rivada  | -400  | 4000  | -6000 | Valor extremos: | -2400 | 9,7214 | 0,837722 |

Paso 0 : establecer el intervalo de estudio. $(0, r_{M}]$ ; donde:  $r_{M} = Valor \, m \acute{i} n i mo \, (r_{G}, r_{H})$ 

La Paso 2: calcular el Rendimiento del Capital Invertido:  $r_G$ ,  $r_H$ 

$$\begin{cases} r_G = 3,850185 \\ r_H = 3,472136 \end{cases} \Rightarrow Intervalo = (0, r_M]; donde : r_M = Valor \, minimo \, (r_G, r_H) = r_H = 3,472136$$

**Paso 1:** aplicar el criterio de ordenación siguiente:  $VAN_G(0) \ge VAN_H(0)$ 

$$VAN_G(0) = -100 + 400 + 0 + 2000 + 0 = 2300$$

$$VAN_H(0) = -100 + 0 + 2000 + 0 + 0 = 1900$$

#### Comprobaremos que la PRIMERA DERIVADA DEL VAN del PROYECTO DIFERENCIA

SI SE ANULA en el <u>intervalo de estudio</u>:  $(0, r_M]$   $r_M = Valor mínimo (r_G, r_H) = 3,472136$ .

$$VAN_{G}(0) \ge VAN_{H}(0)$$

$$r_{G} > r_{H}$$

$$VAN_{D}(x) = \sum_{j=1}^{j=n} \frac{(-j) \cdot Q_{j}}{(1+x)^{j+1}} \longrightarrow VAN_{D}(x) = 0$$

| G |  |
|---|--|
| H |  |
|   |  |

|          | Proyecto  | $Q_0$ | $Q_1$ | $Q_2$ | $Q_3$           | $Q_4$ | VAN(0) | RCI      |
|----------|-----------|-------|-------|-------|-----------------|-------|--------|----------|
| 1        | UNO       | -100  | 400   | 0     | 2000            | 0     | 2300   | 3,850185 |
| ĺ        | DOS       | -100  | 0     | 2000  | 0               | 0     | 1900   | 3,472136 |
| ,        | UNO - DOS | 0     | 400   | -2000 | 2000            | 0     | 400    | 0,381966 |
| <b>'</b> | Derivada  | -400  | 4000  | -6000 | Valor extremos: | -2400 | 9,7214 | 0,837722 |

$$VAN_D(x) = +\frac{400}{(1+x)} - \frac{2000}{(1+x)^2} + \frac{2000}{(1+x)^3}$$

$$VAN_{D}'(x) = -\frac{400}{(1+x)^{2}} + \frac{4000}{(1+x)^{3}} - \frac{6000}{(1+x)^{4}}$$

# $VAN_{D}(x) = \sum_{j=1}^{j=n} \frac{(-j) \cdot Q_{j}}{(1+x)^{j+1}}$

## En los extremos del intervalo de estudio, la PRIMERA DERIVADA del VAN del PROYECTO DIFERENCIA toma VALORES DE SIGNOS OPUESTOS:

$$(0, r_M] r_M = Valor mínimo (r_G, r_H) = 3,472136.$$

$$VAN_{D}^{'}(0) = -2400$$
  
 $VAN_{D}^{'}(3,472136) = 9,721359$ 

Aplicar la REGLA de los SIGNOS de Harriot\_Descartes a:

Con el cambio de variable:  $\left| y = \frac{1}{1+x} \right|$ 

-400

$$y = \frac{1}{1+x}$$

$$VAN_D' = -\frac{400}{(1+x)^2} + \frac{4000}{(1+x)^3} - \frac{6000}{(1+x)^4}$$

$$15 \cdot y^2 - 10 \cdot y + 1 = 0 \Rightarrow y = \begin{cases} 0,544152 \\ 0,122515 \end{cases} \rightarrow x = \frac{1 - y}{y} = \begin{cases} 0,837722 \\ 7,162278 \end{cases}$$

TEOREMA DE BOLZANO: EL NÚMERO DE RAÍCES ES IMPAR.

REGLA de los SIGNOS de Harriot-Descartes: EL NÚMERO MÁXIMO DE RAÍCES POSITIVAS viene dado por EL NÚMERO DE CAMBIOS DE SIGNO;

cuando es menor la diferencia entre el número de variaciones de signo y el número de raíces positivas es un número par.

Tenemos una raíz positiva en el intervalo: 0,837722; la otra Raíz: 7,162278, está fuera del intervalo.

La PRIMERA DERIVADA del VAN del PROYECTO DIFERENCIA SI SE ANULA en el

intervalo:

$$(0, r_M]; donde: r_M = Valor \, mínimo \, (r_G, r_H) = r_H = 3,472136$$

$$VAN_{D}(x) = 0$$

#### INTERSECCIÓN MÚLTIPLE



#### ANÁLISIS DE DOS PROYECTOS PUROS DE INVERSIÓN

✓ NO HAY INTERSECCIÓN: LA ORDENACIÓN ES COINCIDENTE

✓ INTERSECCIÓN ÚNICA SIMPLE: LAS FUNCIONES VAN SE CORTA EN UN PUNTO EN EL QUE CAMBIA LA ORDENACIÓN

✓ INTERSECCIÓN MÚLTIPLE: LAS FUNCIONES VAN SE CORTAN EN VARIOS PUNTOS EN LOS QUE CAMBIA LA ORDENACIÓN





