WELCOME TO DATA SCIENCE

Stefan Jansen DAT-NYC

WELCOME TO DATA SCIENCE

LEARNING OBJECTIVES

- ▶ Setup your development environment and review python basics
- ▶ Describe the roles and components of a successful learning environment
- ▶ Define data science and the data science workflow
- ▶ Apply the data science workflow to meet your classmates

DATA SCIENCE

PRE-WORK

PRE-WORK REVIEW

- ▶ Define basic data types used in object-oriented programming
- ▶ Recall the Python syntax for lists, dictionaries, and functions
- ▶ Create files and navigate directories using the command line interface

ENVIRONMENT SETUP

DEV ENVIRONMENT SETUP

- ▶ Brief intro of tools
- ▶ Environment setup
 - ▶ Create a Github account
 - ▶Install Python 2.7 and Anaconda
 - ▶ Practice Python syntax, Terminal commands, and Pandas
- ▶iPython Notebook test and Python review

DEV ENVIRONMENT SETUP

- ▶ Test your new setup using the lesson 1 starter code available at /lessons/ lesson-1/code/starter-code/lesson1-starter-code.ipynb in the Github repo
- Ask your classmates and instructor for help if you have problems!

INTRODUCTION

WHAT IS DATA SCIENCE?

WHAT IS DATA SCIENCE?

- A set of tools and techniques for data
- ▶ Interdisciplinary problem-solving
- ▶ Application of scientific techniques to practical problems

DATA SCIENCE BASED BUSINESS MODELS

♥ FiveThirtyEight

UBER

WHO ARE DATA SCIENTISTS?

DIRECTIONS (Teams of 3-4, 10 minutes)

- 1. Who are Data Scientists?
- 2. How do Data Scientists add value?
- 3. What makes a good Data Scientist?
- 4. When finished, share your answers with the class

DELIVERABLE

Answers to the above questions

WHAT ARE THE ROLES IN DATA SCIENCE?

x`

Data Developer Engineer

Data Researcher Researcher Scientist Statistician

Data Creative Jack of All Trades Artist Hacker

Data Businessperson Leader Businessperson Entrepeneur

WHAT ARE THE ROLES IN DATA SCIENCE?

▶ Data Science involves a variety of skill sets, not just one.

WHAT ARE THE ROLES IN DATA SCIENCE?

- ▶ These roles prioritize different skill sets.
- ▶ However, all roles involve some part of each skillset.
- ▶ Where are your strengths and weaknesses?

DATA SCIENCE BASELINE

ACTIVITY: DATA SCIENCE BASELINE QUIZ

DIRECTIONS (10 minutes)

- 1. Form groups of three.
- 2. Answer the following questions.
 - a. True or False: Gender (coded male=0, female=1) is a continuous variable.
 - b. According to the table on the next slide, BMI is the _____
 - i. Outcome
 - ii. Predictor
 - iii. Covariate
 - c. Draw a normal distribution
 - d. True or False: Linear regression is an unsupervised learning algorithm.
 - e. What is a hypothesis test?

ACTIVITY: DATA SCIENCE BASELINE QUIZ

table 3. Adjusted mean* (95% confidence interval) of BMI and serum concentration of metabolic biomarkers in American adults by categories of weekly frequency of fast-food or pizza meals, NHANES 2007-2010

EMI as serum biomorker	Weekly frequency of fast-load or pizza medi:				h _p
	2 Time	1 Time	2-3 Times	≥ # Times	
DMF, kg m ⁻²					
All (W=8169)	27.5 (27.1, 27.8)	27.9 (27.6, 28.2)	28.9 (28.4, 29.4)	28.8 (28.3, 29.2)	< 0.0001
Men (n = 4002)	27.9 (27.4, 28.3)	23.0 (27.6, 28.4)	28.5 (28.0, 29.0)	28.6 (28.2, 29.0)	0.05
Wemen (n = 4167)	27.2 (25.8, 27.5)	27.7 (27.3, 28.1)	29.3 (28.6, 29.9)	29.0 (28.1, 29.8)	< 0.0001
Total cholesterol, mg d ⁻¹ (N = 8236)	199 (197, 207)	193 (196, 200)	199 (195, 201)	198 (195, 201)	0.5
HOl-circlesteral, ang di-					
All (n = B236)	54 [53, 55]	53 (52, 54)	52 (51, 53)	51 (50, 52)	< 0.0001
Men (n = 4042)	48 [47, 49]	48 (47, 49)	48 (46, 49)	46 (45, 47)	0.003
Women (n = 4194)	60 (59, 61)	50 (57, 60)	56 (55, 57)	56 (54, 50)	0.001
LDischainsteral ² , mg dl ^{−1}					
All (n = 3604)	113 (111, 116)	117 (113, 120)	113 (110, 116)	114 (110, 118)	0.5
< 50 Years (n=2151)	107 (105, 110)	112 (109, 116)	111 (107, 114)	108 (104, 112)	0.8
8 50 Years (n = 1453)	123 (110, 129)	126 (121, 131)	110 (113, 123)	129 (122, 137)	0.5
Triglycerides, mg di 1 (n = 3559)	103 (93, 109)	103 (99, 108)	110 (106, 115)	110 (104, 117)	0.2
Festing glocose ² , mg sl ⁻¹					
All (n = 3060)	99 (90, 100)	99 (90, 100)	99 (98, 100)	99 (90, 100)	0.5
Men (n = 1750)	102 (101, 104)	102 (101, 104)	101 (29, 102)	101 (99, 102)	0.1
Women (a = 1918)	97 (95, 98)	95 (94, 97)	97 (96, 99)	98 (96, 101)	0.2
Glycohomoglobin, 35 IW = 8234)	5.42 (5.39, 5.44)	5.39 (5.36, 5.42)	539 (5.36, 5.42)	5.40 (5.37, 5.44)	0.2

Abbreviations: Bivil body mass index: HDL, high-density lipoprotein. LDL low-density lipoprotein. NHANES. National Health and Nutrition Examination Surveys. "Adjusted means were computed from multiple linear regression models with each blomarker as a continuous dependent variable. All blomarkers (except NM, total, and HDL-trailesterol, brightenium analysis; therefore, the back-transformed values for LDL-trailesterol, highesterol, facility analysis; therefore, the back-transformed values for LDL-trailesterol, highesterol, facility alues and glocose and algorithmedials included frequency of fast food meals (0, 1, 2-3 and 2-4 times), age (20-39, 40-59 and 2-60), say, reconstructly inen-Hispanic white, non-Hispanic black, Moxican-American and other, powerly income ratio (41.3 > 1.3-2.5 a 3.5 and unknown), years of education (< 12, 12, some college and a college), serum cotinine (continuous), hours of fasting before phieleotomy, (continuous), physical activity (sone, testiles of Mail minutes/week), alcohol-diriking status (naver dirible, former clanker, current dirible and unknown). A refer to observations used in the representant model for each biometric. "Presents for the Settlerwsite objected if test for frequency of fast-food meals with say (Presents of 005); thus, the results are strailfied by sex "Significant interaction of frequency of fast-food meals with say (Presents of 100).

INTRODUCTION

THE DATA SCIENCE WORKFLOW

- ▶ A methodology for doing Data Science
- ▶ Similar to the scientific method
- ▶ Helps produce *reliable* and *reproducible* results
 - ▶ Reliable: Accurate findings
 - ▶ *Reproducible*: Others can follow your steps and get the same results

The steps:

- 1. Identify the problem
- 2. Acquire the data
- 3. Parse the data
- 4. Mine the data
- 5. Refine the data
- 6. Build a data model
- 7. Present the results

DOTTET THE HIGHLON Sácssály business/product objectivos Identify and hypothesian guais and oritoria for casessos. Create a set of questions for identifying correct data set. ■ Montry the "right" data serial. ☐ Import data and setup local or remstedata structure □ Determine most appropriate took to zork with-data PLEST THE DATE ☐ Feed any documentation provided with the data. ☐ Ferbert ecobratory data analysis ☐ Verifythe quality of the data MINE THE DUTY. □ Determine sampling methodology and sample data ☐ Format, desa, sive and contine datain Python ☐ Create necessary derived volumes from the data-frew datas RETINE THE BATA □ Mostly trends and eathers Apoly decoriptive and inferential statistics ☐ Document and transform data RESIDENCE MODEL □ Belectaran periodi prodet □ Exité model □ Evaluate and refinemedel. PRESENT THE RESILES

Summarior findings with normalize storytelling techniques
 Francatlimitations and encountriess of your analysis
 Bérnilly billey up problems and questions for intervanaivels

DATA SCIENCE WORKFLOW

- ☐ Identify the "right" data set(s)
- Import data and set up local or remote data structure
- Determine most appropriate tools to work with data

MINE THE DATA

- Determine sampling methodology and sample data
- ☐ Format, clean, slice, and combine data in Python
- Create necessary derived columns from the data (new data)

DATA: STRUCTURED vs UNSTRUCTURED

dny3d © 123RF.com

UNSTRUCTURED DATA

Bundit Chuangboonsri © 123RF.com

- Sessions 13 and 14 in Unit 3
 - Natural Language Processing

WE WILL MOSTLY LOOK AT STRUCTURED DATA

• Unit 2

- Linear Regression (sessions 6 and 7)
- Classification and Logistic Regression (session 8 and 9)

Unit 3

Decision Trees and Random Forests (session 12)

milosb © 123RF.com

DATA CAN HAVE A TIME DIMENSION

- Sessions 15 and 16 in Unit 3
 - Time Series

OR CROSS-SECTIONAL

And most of the course will focus on it

29

ML ALGORITHMS ON OUR AGENDA

PRESENT THE RESULTS

- Summarize findings with narrative, storytelling techniques
- ☐ Present limitations and assumptions of your analysis
- Identify follow up problems and questions for future analysis

GREAT FREE (OPTIONAL) RESOURCES

An Introduction to Statistical Learning: with Applications in R (by James et al.).

For a more advanced treatment of these topics, check out The Elements of Statistical Learning: Data Mining, Inference, and Prediction (by Hastie et al.)

GUIDED PRACTICE

DATA SCIENCE WORK FLOW

ACTIVITY: DATA SCIENCE WORKFLOW

DIRECTIONS (25 minutes)

- 1. Divide into 4 groups, each located at a whiteboard.
- **2. IDENTIFY**: Each group should develop 1 research question they would like to know about their classmates. Create a hypothesis to your question. Don't share your question yet! (5 minutes)
- **3. ACQUIRE**: Rotate from group to group to collect data for your hypothesis. Have other students write or tally their answers on the whiteboard. (10 minutes)
- **4. PRESENT:** Communicate the results of your analysis to the class. (10 minutes)
 - a. Create a narrative to summarize your findings.
 - b. Provide a basic visualization for easy comprehension.
 - c. Choose one student to present for the group.

DELIVERABLE

Presentation of the results

CONCLUSION

REVIEW

CONCLUSION

•

DATA SCIENCE

BEFORE NEXT CLASS

BEFORE NEXT CLASS

DUE DATES: Github Course page

▶ Project: Begin work on Project 1 & Start thinking about Final Part 1

WELCOME TO DATA SCIENCE

Q & A

WELCOME TO DATA SCIENCE

EXIT TICKET

DON'T FORGET TO FILL OUT YOUR EXIT TICKET