1 Exercise 3.1.5

Suppose a and b are real numbers. Prove that if a < b < 0 then $a^2 > b^2$. So we want to prove that $(a < b < 0) \rightarrow (a^2 > b^2)$

First we assume the antecedent and make the consequent our goal to prove.

Givens	Goals
a < b < 0	$a^2 > b^2$

Suppose
$$a < b < 0$$

[proof of $a^2 > b^2$]
So if $a < b < 0$ then $a^2 > b^2$

If we multiply the inequality a < b on both sides by the negative number b we have $ab > b^2$ and multiplying a < b on both sides by the negative number a we have $a^2 > ab$. Therefore $a^2 > ab > b^2$ and we have proven our goal and now we can write our proof.

Theorem. Suppose a and b are real numbers. Prove that if a < b < 0 then $a^2 > b^2$.

Proof. Suppose a < b < 0. Multiplying the inequality a < b by the negative number a we can conclude $a^2 > ab$, and, similarly, multiplying a < b by the negative number b we get $ab > b^2$. Therefore, $a^2 > ab > b^2$ and $a^2 > b^2$. Thus, if a < b < 0 then $a^2 > b^2$.

2 Exercise 3.1.6

Suppose a and b are real numbers. Prove that if 0 < a < b then 1/b < 1/a.