期中复习题

一、选择题:

1. 设	A为n	! 阶可逆矩阵,	则下列结论恒成立的是
------	-----	----------	------------

(A) $(2A)^{-1} = 2A^{-1};$ (B) $(2A^{-1})^T = (2A^T)^{-1};$

(C) $((A^T)^T)^{-1} = ((A^{-1})^{-1})^T;$ (D) $((A^{-1})^{-1})^T = ((A^T)^{-1})^{-1}.$

2. 已知 A , B 为四阶方阵 , |A| = -2 , |B| = -2 , 则 $|A^*(2B)^{-1}| = ______$

(A) $\frac{1}{4}$; (B) $-\frac{1}{4}$; (C) 2; (D) 8.

3. 设n 阶可逆方阵A 的伴随矩阵是 A^* , 实常数k ≠ 0。则 $(kA)^* =$ _____

(A) kA^* ;

(B) $k^{n-1}A^*$;

(C) $k^n A^*$:

(D) $k^{-1}A^*$

4. 设A为n阶非奇异矩阵(n > 2), A^* 为A的伴随矩阵,则

(A) $(A^*)^* = |A|^{n-1} A$;

(B) $(A^*)^* = |A|^{n+1} A$;

(C) $(A^*)^* = |A|^{n-2} A$;

(D) $(A^*)^* = |A|^{n+2} A$.

5. 设三阶矩阵 $A = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$,已知伴随矩阵 A^* 的秩为 1,则必有_____

(A) $a \neq b \perp a + 2b \neq 0$;

(B) $a \neq b \perp a + 2b = 0$;

(C) $a = b \vec{\boxtimes} a + 2b \neq 0$; (D) $a = b \vec{\boxtimes} a + 2b = 0$.

6. 设 $A = (a_{ij})_{3\times 3}$ 满足 $A^* = A^T$, 若 $a_{11} = a_{12} = a_{13} = a$, a > 0 ,则 $a = _$

(A) $1/\sqrt{3}$:

(B) $\sqrt{3}$:

(C) 1/3;

(D) 3.

7. 민	知 $oldsymbol{eta}$	β_1 , β_2 , α_1 , α_2 为3维列向量组,	行列式 A	$A = \alpha_1, \alpha_2, \beta_1 = -4,$	
	B	$= \alpha_2, \alpha_1, \beta_2 = 1$,则行列式	$ \alpha_1 + \alpha_2, -$	$-2\alpha_1 + \alpha_2, \beta_1 - 2\beta_2 \mid = $	
(C)	-6; -18	3;	(B) 6; (D) 18.		
8. IJ	ζ Α,	B 为 n 阶方阵 ,且 $r(A) = r(B)$	7),则		
	(A)	r(A-B)=0;	(B)	r(A+B)=2r(A);	
	(C)	r(A,B)=2r(A);	(D)	$r(A,B) \le r(A) + r(B) \circ$	
9. 向	量组	$\alpha_1, \alpha_2, \dots, \alpha_s \ (s \ge 2)$ 线性无	关,且可由	向量组 $oldsymbol{eta}_1$, $oldsymbol{eta}_2$,…, $oldsymbol{eta}_s$ 线性	上表示,则以
下结	论中	不能成立的是			
	(A)	向量组 β_1 , β_2 ,, β_s 线性无	关;		
	(B)	对任一个 α_j (0 $\leq j \leq s$), 向量	量组 $lpha_{_j}$, $eta_{_2}$,, $oldsymbol{eta}_s$ 线性相关;	
	(C)	存在一个 α_j (0 $\leq j \leq s$), 向量	置组 $oldsymbol{lpha}_{j}$, $oldsymbol{eta}_{2}$,…, $oldsymbol{eta}_s$ 线性无关;	
	(D)	向量组 α_1 , α_2 ,, α_s 与向量组	$\exists \beta_1, \beta_2, \dots$	· , <i>β</i> _s 等价。	
10.	句量组	且 α_1 , α_2 ,, α_t $(t \ge 2)$ 可线性	表示向量组	$\beta_1, \beta_2, \dots, \beta_s, $ \mathbb{M}	
	(A)	当 $t < s$ 时,向量组 α_1 , α_2 ,	·· ,α ,必线性	生相关;	
	(B)	当 $t < s$ 时,向量组 β_1 , β_2 ,	$,oldsymbol{eta}_s$ 必线性	生相关;	
	(C)	当 $t > s$ 时,向量组 α_1, α_2 ,	··,α, 必线性	生相关;	
	(D)	当 $t > s$ 时,向量组 β_1 , β_2 ,…	\cdot , $oldsymbol{eta}_s$ 必线性	相关。	
11. i	没 A :	为 $m \times n$ 矩阵, $b \neq 0$,且 $r(A) =$	n,则线性方	〒程组 Ax = b	·
		有唯一解; (B) 有无穷。			
12. i	已知知	矩阵 $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & k \\ 3 & 6 & 9 \end{pmatrix}$, $B = (b_i)$	$_{j})_{3\times3}\neq0$,	且 $AB=0$,则	
	(A)	当 $k = 6$ 时,必有秩 $r(B) = 1$;	(B)) 当 $k=6$ 时,必有秩 $r(B)$	(3) = 2;

(C) 当 $k \neq 6$ 时,必有秩r(B) = 1; (D) 当 $k \neq 6$ 时,必有秩r(B) = 2。

13. 设 α_1 , α_2 ,…, α_s 为 n 维列向量组,矩阵 $A=(a_{ij})_{m\times n}$,下列选项中正确的是						
(A) 若 α_1 , α_2 ,…, α_s 线性相关,则 $A\alpha_1$, $A\alpha_2$,…, $A\alpha_s$ 线性无关;						
(B) 若 α_1 , α_2 ,…, α_s 线性相关,则 $A\alpha_1$, $A\alpha_2$,…, $A\alpha_s$ 线性相关;						
(C) 若 $lpha_1$, $lpha_2$,…, $lpha_s$ 线性无关,则 $Alpha_1$, $Alpha_2$,…, $Alpha_s$ 线性无关;						
(D) 若 $lpha_1$, $lpha_2$,…, $lpha_s$ 线性无关,则 $Alpha_1$, $Alpha_2$,…, $Alpha_s$ 线性相关。						
14. 设 A , B 为 n 阶矩阵($n \ge 2$), 且 $AB = 0$, $B \ne 0$, 则必有						
(A) $ A^* = 0$; (B) $ B^* = 0$; (C) $ B = 0$; (D) $A = 0$.						
15. 已知 $P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$, 若 $P^mAP^n = A$,则以下选项中正确()						
(A) $m = 5$, $n = 4$; (B) $m = 5$, $n = 5$;						
(C) $m = 4$, $n = 5$; (D) $m = 4$, $n = 4$.						
16. 设线性空间 R^n 中向量组 α_1 , α_2 , α_3 线性无关,则 R^n 的下列生成子空间中,维数						
为 3 的生成子空间是						
(A) $L(\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 - \alpha_1);$ (B) $L(\alpha_1 + \alpha_2, \alpha_2 - \alpha_3, \alpha_3 + \alpha_1);$						
(C) $L(\alpha_1 - \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1);$ (D) $L(\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1).$						
17. 已知 A 为 n 阶可逆矩阵 ($n \ge 2$), 交换 A 的第 1, 2 列得 B , 则						
(A) 交换伴随矩阵 A^* 的第 1, 2 行得 B^* ;						
(B) 交换伴随矩阵 A^* 的第 1, 2 行得 $(-B^*)$;						
(C) 交换伴随矩阵 A^* 的第 1, 2 列得 B^* ;						

18. n 维向量 α_1 , α_2 , $\cdots \alpha_s$ (3 $\leq s \leq n$) 线性无关的	充要条件是 ()				
(A) 存在不全为零的数 $k_1,k_2,\cdots k_s$, 使 k_1lpha_1 +	$k_2\alpha_2 + \dots + k_s\alpha_s \neq 0$;				
(B) α_1 , α_2 ,… α_s 中任意两个向量都线性无关	;				
(C) α_1 , α_2 ,… α_s 中任意一个向量都不能用其	余向量线性表示;				
(D) α_1 , α_2 ,… α_s 中存在一个向量,它不能用	其余向量线性表示。				
19. 设矩阵 $A_{m \times n}$, $B_{n \times m}$,且 $m < n$,则以下结论一	定正确的是 ()				
(A) 方程组 $ABx = 0$ 有非零解;	(B) 方程组 <i>BAx</i> = 0 有非零解;				
(C) 方程组 $ABx = 0$ 只有零解;	(D) 方程组 <i>BAx</i> = 0 只有零解。				
20. 以下命题一定成立的是 ()					
(A) 设向量组 α_1 , α_2 , α_3 是齐次线性方程组 Ax	$=0$ 的基础解系,向量组 eta_1 , eta_2 , eta_3 可由				
α_1 , α_2 , α_3 线性表示,则 β_1 , β_2 , β_3 也是 $Ax = 0$ 的	基础解系;				
(B) 设向量组 α_1 , α_2 , α_3 是齐次线性方程组 Ax	$=0$ 的基础解系, $\alpha_1,\alpha_2,\alpha_3$ 可由向量组				
β_1 , β_2 , β_3 线性表示,则 β_1 , β_2 , β_3 也是 $Ax = 0$ 的基础解系;					
(C) 设 A 是 $m \times n$ 矩阵, $m < n$ 时,非齐次线	性方程组 $Ax = b$ 一定有解;				
(D) 若齐次线性方程组 $Ax = 0$ 只有零解,则非	卡齐次线性方程组 $Ax = b$ 必有唯一解。				
21. 设 A 为 n 阶方阵,且 $A^2+2E=3A$,则 ()				
(A) $r(A-E)+r(A-2E)=0$;	(B) $r(A-E)+r(A-2E)=n$				
(C) $0 < r(A-E) + r(A-2E) < n$;	(D) 以上都有可能。				
22. 设矩阵 $A_{m \times n}$,已知存在矩阵 $B_{n \times m} \neq 0$,使 AB	B=0,则必有 ()				
(A) $r(A) < n$;	(B) $r(A) = n$;				
(C) $r(A) < m$;	(D) $r(A) = m$.				

23. 设 α , β 是非齐次线性方程组 ($\lambda E-A$)x=b 的两个不同的解,则以下选项中一定是 A 对应特征值 λ 的特征向量为 ()

(A)
$$\alpha + \beta$$
; (B) $\alpha - \beta$; (C) α ;

24. 设A为n阶方阵, λ_1 , λ_2 是矩阵A的两个特征值, α_1 , α_2 是矩阵A的对应到这两个特征值的特征向量,下列说法正确的是 ()

- (C) 若 $\lambda_1 \neq \lambda_2$,那么 $\alpha_1 + \alpha_2$ 不可能是矩阵A的特征向量;
- (D) 若 $\lambda_1 = 0$, 那么 $\alpha_1 = 0$ 。

25. 设n维向量 $\alpha = (1,1,\cdots,1)$, $n \ge 2$, 矩阵 $A = E - \alpha^T \alpha$, 则 A^{-1} 为 (

(A)
$$E-(n-1)\alpha^T\alpha$$
;

(B)
$$E - \frac{1}{n-1} \alpha^T \alpha$$
;

(C)
$$E - n\alpha^T \alpha$$
;

(D)
$$E - \frac{1}{n} \alpha^T \alpha$$
.

二、填空题:

1. 设行列式

$$D = egin{array}{c|cccc} 1 & 1 & 3 & 1 \\ 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 3 \\ 4 & 5 & 1 & 2 \\ \end{bmatrix}$$
, A_{ij} 是 D 中元素 a_{ij} 的代数余子式,则

- 2. 已知 $-a_{32}a_{1k}a_{41}a_{2l}$ 是 4 阶行列式 $|a_{ij}|_4$ 的展开式中的某一项。则 k=______。
- 3. 设A 是n 阶方阵,且行列式|A|=3,则| $(-6^{-1}A)^{-1}+A^*$ |=_____。

4. 设
$$A = \begin{pmatrix} 1 & 1 & 1 \\ a_1 & a_2 & a_3 \\ a_1^2 & a_2^2 & a_3^2 \end{pmatrix}$$
, $b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, 其中 a_i 互不相同, $i = 1,2,3$,则线性方程组 $A^T x = b$

的解是_____

5. 设行列式
$$D = \begin{vmatrix} 0 & 1 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 3 \end{vmatrix}$$
, $A_{ij} 是 D$ 中元素 a_{ij} 的代数余子式,则

$$\sum_{i=1}^{3} \sum_{i=1}^{3} A_{ij} = \underline{\hspace{1cm}}_{\circ}$$

6. 设
$$A$$
, B 为 n 阶方阵, $C = \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}$,则其伴随矩阵 $C^* = \underline{\qquad}$ 。

8. 设
$$a \neq b$$
 , 设 $D_n = \begin{vmatrix} a+b & ab & 0 & 0 & \cdots & 0 & 0 \\ 1 & a+b & ab & 0 & \cdots & 0 & 0 \\ 0 & 1 & a+b & ab & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & a+b & ab \\ 0 & 0 & 0 & 0 & \cdots & 1 & a+b \end{vmatrix}$, 则

(1) 行列式 $D_k 与 D_{k-1}$ ($k = 2, 3, \dots, n$) 之间的递推关系式为______;

(2)
$$|D_n| = _____$$

9. 设常数 $k \neq 0$, 向量 $\alpha = (a_1, a_2, \dots, a_n) \neq 0$, $\beta = (1, 1, \dots, 1)$, 矩阵 $A = kE + \beta^T \alpha$,则 |A| =

11. 设矩阵
$$A = \begin{pmatrix} 0 & 0 & \cdots & 0 & a_0 \\ a_1 & 0 & \cdots & 0 & 0 \\ 0 & a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & a_n & 0 \end{pmatrix}, \quad a_i \neq 0, i = 0, 1, 2, \cdots, n,$$

则矩阵 $A^{-1} =$ _____。

12. 设
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{pmatrix}$$
, $\alpha = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$, 已知向量 $A\alpha$ 与 α 线性相关,则 $a = \underline{\hspace{1cm}}$ 。

13. 设
$$A = \begin{pmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$, 已知线性方程组 $Ax = \beta$ 有解但不唯一,则 $a = \underline{\hspace{1cm}}$ 。

14. 设A是 4×5 矩阵,且秩为2。矩阵B是5阶方阵,且B的列向量都是齐次线性方程组 Ax = 0的解,则矩阵B的秩r(B)的最大值为_____。

15. 已知 4 阶矩阵 A 的秩 r(A)=3,则齐次线性方程组 $A^*x=0$ 的基础解系

