MINISTÉRIO DA DEFESA DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA INSTITUTO MILITAR DE ENGENHARIA Seção de Engenharia de Defesa (SE/10)

EE 600200: Álgebra Linear Computacional

Lista de Exercícios #2

Cap Suzane GAERTNER Martins

Rio de Janeiro, RJ MAIO de 2025

a. [ELON] Exercício 2.7:

Sejam $F_1 = S(u_1, v_1)$ e $F_2 = S(u_2, v_2)$ os subespaços de \mathbb{R}^3 gerados pelos vetores $u_1 = (0, 1, -2)$, $v_1 = (1, 1, 1)$, $u_2 = (-1, 0, 3)$ e $v_2 = (2, -1, 0)$. Ache números a_1, b_1, c_1 e a_2, b_2, c_2 tais que se tenha:

$$F_1 = \{(x, y, z) \in \mathbb{R}^3; \ a_1 x + b_1 y + c_1 z = 0\}$$
$$F_2 = \{(x, y, z) \in \mathbb{R}^3; \ a_2 x + b_2 y + c_2 z = 0\}$$

Solução

Para encontrar a equação de cada subespaço F_i como um plano em \mathbb{R}^3 da forma

$$F_i = \{(x, y, z) \in \mathbb{R}^3; \ a_i x + b_i y + c_i z = 0\}$$

basta determinar um vetor normal $n_1 = (a_i, b_i, c_i)$ a esse plano. Esse vetor deve ser ortogonal aos vetores geradores, logo podemos tomar:

$$n_i = u_i \times v_i$$

a.1. Subespaço $F_1 = S(u_1, v_1)$

•
$$u_1 = (0, 1, -2), v_1 = (1, 1, 1)$$

Calculemos o produto vetorial

$$n_1 = u_1 \times v_1 = \begin{bmatrix} i & j & k \\ 0 & 1 & -2 \\ 1 & 1 & 1 \end{bmatrix} = 3i - 2j - k$$

Logo, uma equação válida é 3x - 2y - z = 0 ou seja, $a_1 = 3, b_1 = -2, c_1 = -1$

a.2. Subespaço $F_2 = S(u_2, v_2)$

•
$$u_2 = (-1, 0, 3), v_2 = (2, -1, 0)$$

Calculemos o produto vetorial

$$n_2 = u_2 \times v_2 = \begin{bmatrix} i & j & k \\ -1 & 0 & 3 \\ 2 & -1 & 0 \end{bmatrix} = 3i + 6j + k$$

Logo, uma equação válida é 3x + 6y + z = 0

ou seja, $a_2 = 3, b_2 = 6, c_2 = 1$ Logo, teremos:

$$F_1 = \{(x, y, z) \in \mathbb{R}^3; \ 3x - 2y - z = 0\}$$

$$F_2 = \{(x, y, z) \in \mathbb{R}^3; \ 3x + 6y + z = 0\}$$

b. [ELON] Exercício 2.11:

Seja F o subespaço de \mathbb{R}^3 gerado pelos vetores u=(1,1,1) e v=(1,-1,-1). Ache números a,b,c com a seguinte propriedade: um vetor w=(x,y,z) pertence a F se, e somente se, ax+by+cz=0.

Solução

Para encontrar a equação do subespaço F como um plano em \mathbb{R}^3 da forma

$$F = \{(x, y, z) \in \mathbb{R}^3; \ ax + by + cz = 0\}$$

basta determinar um vetor normal n = (a, b, c) a esse plano. Esse vetor deve ser ortogonal aos vetores geradores, logo podemos tomar:

$$n = u \times v$$

•
$$u = (1, 1, 1), v = (1, -1, -1)$$

Calculemos o produto vetorial

$$n = u \times v = \begin{bmatrix} i & j & k \\ 1 & 1 & 1 \\ 1 & -1 & -1 \end{bmatrix} = 2j - 2k$$

Logo, uma equação válida é $2y-2z=0 \rightarrow y-z=0$ ou seja, a=0,b=1,c=-1.

Considere as duas bases ordenadas de \mathbb{R}^3 dadas por $E = \{\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^\top, \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^\top, \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^\top \}$ e $S = \{\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^\top, \begin{bmatrix} 2 & 1 & 2 \end{bmatrix}^\top, \begin{bmatrix} 1 & 2 & 2 \end{bmatrix}^\top \}$. Dê o que se pede:

- a) Escreva o vetor $v=[v]_E=\begin{bmatrix} 2 & 6 & 10 \end{bmatrix}^\top$ como uma combinação linear dos vetores de S.
 - b) Responda: qual é a representação de v na base S, i.e., $[v]_S$?
 - c) Responda: qual é a representação dos vetores de E na base S?
- d) Determine a matriz P tal que $[v]_S = P[v]_E$. Essa matriz é chamada de matriz de mudança de base. Há alguma relação entre P e a representação dos vetores de E na base S?
 - e) Seja $A = \begin{bmatrix} 1 & 5 & -2 \\ 2 & -1 & -1 \\ -3 & 1 & 2 \end{bmatrix}$ a matriz correspondente a um operador com respoito

linear em \mathbb{R}^3 . Determine a matriz que representa esse operador com respeito à base S.

Solução

a) Para escrever $v = \begin{bmatrix} 2 & 6 & 10 \end{bmatrix}^{\top}$ como uma combinação linear dos vetores de $S = \{ \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{\top}, \begin{bmatrix} 2 & 1 & 2 \end{bmatrix}^{\top}, \begin{bmatrix} 1 & 2 & 2 \end{bmatrix}^{\top} \}$ procuramos escalares α, β, γ tais que:

$$S \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 10 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 10 \end{bmatrix}$$

Com isso, temos o sistema linear:

$$\begin{cases} \alpha + 2\beta + \gamma = 2\\ 0\alpha + \beta + 2\gamma = 6\\ \alpha + 2\beta + 2\gamma = 10 \end{cases}$$

Resolvendo o sistema acima, obtemos $(\alpha, \beta, \gamma) = (14, -10, 8)$, assim:

$$v = 14 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - 10 \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} + 8 \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$

b) A representação de v na base S é:

$$\begin{bmatrix} v \end{bmatrix}_S = \begin{bmatrix} 14 \\ -10 \\ 8 \end{bmatrix}$$

c) Para a representação dos vetores de $E=(e_1,e_2,e_3)$ na base S iremos escrever cada vetor como uma combinação linear dos vetores de $S=\{\begin{bmatrix}1&0&1\end{bmatrix}^{\mathsf{T}},\begin{bmatrix}2&1&2\end{bmatrix}^{\mathsf{T}},\begin{bmatrix}1&2&2\end{bmatrix}^{\mathsf{T}}\}$ procuramos escalares $\alpha_i,\beta_i,\gamma_i$ tais que:

$$S \begin{bmatrix} \alpha_i \\ \beta_i \\ \gamma_i \end{bmatrix} = [e_i]$$

Com isso, temos o sistema linear:

$$\begin{cases} \alpha + 2\beta + \gamma \\ 0\alpha + \beta + 2\gamma \\ \alpha + 2\beta + 2\gamma \end{cases} = [e_i]$$

Resolvendo as equações para cada i obtemos:

$$\begin{bmatrix} e_1 \end{bmatrix}_S = \begin{bmatrix} -2 & 2 & -1 \end{bmatrix}^\top$$
$$\begin{bmatrix} e_2 \end{bmatrix}_S = \begin{bmatrix} -2 & 1 & 0 \end{bmatrix}^\top$$
$$\begin{bmatrix} e_3 \end{bmatrix}_S = \begin{bmatrix} 3 & -2 & 1 \end{bmatrix}^\top$$

d) Como E é a base canônica, $[v]_E$ é o próprio vetor em coordenadas-padrão. A matriz P é exatamente aquela que leva coordenadas de E para coordenadas de S, sendo suas colunas $[e_1]_S$, $[e_2]_S$, $[e_3]_S$. Logo,

$$P = \begin{bmatrix} -2 & -2 & 3\\ 2 & 1 & -2\\ -1 & 0 & 1 \end{bmatrix}$$

- e) Dada a matriz A, sabemos que a mudança de base obedece a fórmula $A_S = PAP^{-1}$ sendo P a matriz de mudança de base.
- \bullet Calculando a matriz inversa de P, através do método de eliminação de Gauss-Jordan:

$$\begin{bmatrix} -2 & -2 & 3 & 1 & 0 & 0 \\ 2 & 1 & -2 & 0 & 1 & 0 \\ -1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \Rightarrow L_1 = L_1 - 3L_3 \Rightarrow L_2 = L_1 + L_2 \Rightarrow$$

$$\begin{bmatrix} 1 & -2 & 0 & 1 & 0 & -3 \\ 0 & -1 & 1 & 1 & 1 & 0 \\ -1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \Rightarrow L_3 = L_1 + L_3 \Rightarrow L_2 = L_2 - L_3 \Rightarrow L_3 = 2L_2 - L_3 \Rightarrow L_4 = L_1 + 2L_2 \Rightarrow L_5 = L_5$$

• Calculando agora a matriz da multiplicação de P e A, temos:

$$P \cdot A = \begin{bmatrix} -2 & -2 & 3 \\ 2 & 1 & -2 \\ -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 5 & -2 \\ 2 & -1 & -1 \\ -3 & 1 & 2 \end{bmatrix} = \begin{bmatrix} -15 & -5 & 12 \\ 10 & 7 & -9 \\ -4 & -4 & 4 \end{bmatrix}$$

 \bullet Calculando agora a multiplicação do resultado de P e A com $P^{-1},$ temos:

$$[P \cdot A] \cdot P^{-1} = \begin{bmatrix} -15 & -5 & 12 \\ 10 & 7 & -9 \\ -4 & -4 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 2 \end{bmatrix} = \begin{bmatrix} -3 & -11 & -1 \\ 1 & 9 & 6 \\ 0 & -4 & -4 \end{bmatrix}$$

• Logo, a matriz de A na base S é:

$$A_S = \begin{bmatrix} -3 & -11 & -1 \\ 1 & 9 & 6 \\ 0 & -4 & -4 \end{bmatrix}$$

a. [SCHAUM] Exercício 7.57:

Verify that the following is an inner product on \mathbb{R}^2 , where $u = (x_1, x_2)$ and $v = (y_1, y_2)$:

$$f(u,v) = x_1y_1 - 2x_1y_2 - 2x_2y_1 + 5x_2y_2$$

Solução Sabemos que uma função é um produto interno em \mathbb{R}^n se forem verificadas as seguintes propriedades:

- 1. Bilinearidade
- 2. Simetria
- 3. Positividade
- 4. Nulidade apenas se o vetor for nulo
- Bilinearidade: A função será linear caso obedeça a seguinte propriedade:

$$f(a_1u + a_2u', v) = f(a_1u, v) + f(a_2u', v)$$

Calculando $f(a_1u + a_2u', v)$:

$$f(a_1u + a_2u', v) = (a_1x_1 + a_2x'_1)y_1 - 2(a_1x_1 + a_2x'_1)y_2 - 2(a_1x_2 + a_2x'_2)y_1 + 5(a_1x_2 + a_2x'_2)y_2$$

Calculando $f(a_1u, v)$ e $f(a_2u', v)$:

$$f(a_1u, v) = (a_1x_1)y_1 - 2(a_1x_1)y_2 - 2(a_1x_2)y_1 + 5(a_1x_2)y_2$$

$$f(a_2u', v) = (a_2x_1')y_1 - 2(a_2x_1')y_2 - 2(a_2x_2')y_1 + 5(a_2x_2')y_2$$

Assim, unindo as parcelas contendo os fatores semelhantes, é possível confirmar a validade da propriedade.

• Simetria: A função será simétrica se:

$$f(u,v) = f(v,u)$$

Calculando f(v, u):

$$f(v,u) = (y_1)(x_1) - 2(y_1)(x_2) - 2(y_2)(x_1) + 5(y_2)(x_2)$$

Reescrevendo a equação, utilizando a comutatividade:

$$f(v,u) = (x_1)(y_1) - 2(x_1)(y_2) - 2(x_2)(y_1) + 5(x_2)(y_2)$$

Logo, podemos verificar que as equações são iguais, confirmando a validade da propriedade.

• Positividade: $\forall u \in \mathbb{R}^2$; $f(u, u) > 0, u \neq 0$

Calculando a função f(u, u):

$$f(v,u) = (x_1)(x_1) - 2(x_1)(x_2) - 2(x_2)(x_1) + 5(x_2)(x_2)$$
$$f(v,u) = x_1^2 - 4x_1x_2 + 5x_2^2$$

Podemos reescrevê-la como:

$$f(v,u) = (x_1 - 2x_2)^2 + x_2^2$$

Com isso, verificamos que a função é composta por dois fatores sempre positivos. Assim, teremos f(u, u) > 0.

• Nulidade apenas se o vetor for nulo: Verificamos no item anterior que a função será sempre positiva, visto que seus fatores são $(x_1 - 2x_2)^2 + x_2^2$.

Assim, para que a função possa assumir o valor 0, teremos apenas a possibilidade trivial, ou seja, $x_1 = 0$ e $x_2 = 0$

b. [SCHAUM] Exercício 7.65:

Find a basis of the subspace W of \mathbb{R}^4 orthogonal to $u_1 = (1, -2, 3, 4)$ and $u_2 = (3, -5, 7, 8)$.

Solução Para achar uma base de $W = \{v = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : v \cdot u_1 = 0, v \cdot u_2 = 0\}$, com $u_1 = (1, -2, 3, 4)$ e $u_2 = (3, -5, 7, 8)$, fazemos os produtos internos, obtendo o sistema linear:

$$\begin{cases} x_1 - x_2 + 3x_3 + 4x_4 = 0\\ 3x_1 - 5x_2 + 7x_3 + 8x_4 = 0 \end{cases}$$

Como são 2 (duas) equações e 4 (quatro) incógnitas, tomamos $x_3=\alpha$ e $x_4=\beta$ como parâmetros e resolvemos:

- 1. Da primeira equação: $x_1 = 2x_2 3\alpha 4\beta$
- 2. E substituindo na segunda: $3(2x_2 3\alpha 4\beta) 5x_2 + 7\alpha + 8\beta = 0 \rightarrow x_2 = 2\alpha + 4\beta$

3. Logo,
$$x_1 = 2(2\alpha + 4\beta) - 3\alpha - 4\beta = \alpha + 4\beta$$

Portanto, o vetor de W é: $v = (x_1, x_2, x_3, x_4) = (\alpha + 4\beta, 2\alpha + 4\beta, \alpha, \beta)$. Separando os parâmetros, poderemos escrever o vetor como:

$$v = \alpha \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 4 \\ 4 \\ 0 \\ 1 \end{bmatrix}$$

Assim, a base do subespaço W que queremos é $V = \{ \begin{bmatrix} 1 & 2 & 1 & 0 \end{bmatrix}^\top, \begin{bmatrix} 4 & 4 & 0 & 1 \end{bmatrix}^\top \}.$

[FORD] Exercício 7.32:

The inner product of two $n \times 1$ vectors u, v is the real number $(u, v) = u^T v$. Now let's investigate the $n \times n$ matrix $A = uv^T$. For n = 5, 15, 25, generate vectors u = rand(n, 1) and v = rand(n, 1). In each case, compute rank (uv^T) , $||u||_2||v||_2$, and $||uv^T||_2$. What do you conclude from the experiment? Prove each assertion. It Will help to recall the rank + nullity = n (Theorem 3.4).

Solução Arquivo "Questao4.py"

```
import numpy as np
   import pandas as pd
   import math
   def compute_norm(vec):
5
        """Calcula a norma L2 de um vetor sem usar numpy.linalg."""
6
        total = 0.0
        for val in vec.flatten():
            total += val * val
        return math.sqrt(total)
10
11
   def main():
12
        resultados = []
13
        for n in [5, 15, 25]:
14
            \# Gera u e v em R \hat{} n
15
            u = np.random.rand(n, 1)
16
            v = np.random.rand(n, 1)
17
            # Constrói A = u v^T
18
            A = u @ v.T
20
            \# Calcula normas de u e v passo a passo
21
            norm_u = compute_norm(u)
22
            norm_v = compute_norm(v)
23
            # Determina rank(A): para matriz uv^T, rank = 1 se u e v \neq 1
25
            → 0, senão 0
            if norm_u == 0.0 or norm_v == 0.0:
26
                rank_A = 0
27
            else:
28
                rank_A = 1
```

```
# Produto das normas
30
            produto_normas = norm_u * norm_v
31
32
            # Norma espectral de A (posto 1) = produto_normas
            norma_espectral = produto_normas
34
35
            resultados.append({
36
                 'n': n,
37
                 'rank(uv^T)': rank_A,
38
                 ||u||_2 \cdot ||v||_2: produto_normas,
                 ||uv^T||_2: norma_espectral
40
            })
41
42
        df = pd.DataFrame(resultados)
43
        print(df.to_string(index=False))
44
   if __name__ == "__main__":
46
        main()
47
```

• Conclusões:

- 1. $rank(uv^T) = 1$ O produto $A = uv^T$ gera uma matriz de posto 1, pois todas as colunas de A são múltiplos do vetor u. Se $u \neq 0$ e $v \neq 0$, a dimensão da imagem de A é 1; se algum for o vetor zero, então A = 0 e rank(A) = 0.
- 2. Pelo teorema da dimensão (rank + nulidade = n), a nulidade é n-1.
- 3. $||uv^T||_2 = ||u||_2||v||_2$ A norma espectral $||A||_2$ é o maior valor singular de A. Para uma matriz de posto 1, $A = uv^T$, o único valor singular não nulo é $||u||_2||v||_2$. Assim, experimental e teoricamente, $||uv^T||_2 = ||u||_2||v||_2$

a. [FORD] Exercício 6.38:

Show that each matrix is orthogonal in two different ways, using the definition and by directly showing that the columns have unit length and are orthogonal.

$$P_1 = \begin{bmatrix} -0.40825 & 0.43644 & 0.80178 \\ -0.8165 & 0.21822 & -0.53452 \\ -0.40825 & -0.87287 & 0.26726 \end{bmatrix}$$

$$P_2 = \begin{bmatrix} -0.51450 & 0.48507 & 0.70711 \\ -0.68599 & -0.72761 & 0.0000 \\ 0.51450 & -0.48507 & 0.70711 \end{bmatrix}$$

b. [FORD] Exercício 6.39:

Are any of the two matrices orthogonal?

$$P_1 = \begin{bmatrix} -0.58835 & 0.70206 & 0.40119 \\ -0.78446 & -0.37524 & -0.49377 \\ -0.19612 & -0.60523 & 0.77152 \end{bmatrix}$$

$$P_2 = \begin{bmatrix} -0.47624 & -0.4264 & 0.30151 \\ 0.087932 & 0.86603 & -0.40825 \\ -0.87491 & -0.26112 & 0.86164 \end{bmatrix}$$

Solução Arquivo "Questao5.py"

```
import numpy as np
2
   def is_orthogonal_by_definition(M, tol=1e-4):
3
4
        Verifica se M é ortogonal pelo critério M^T M = I.
5
       Retorna True se M^T M for aproximadamente a matriz identidade.
8
       if M.shape[0] != M.shape[1]:
9
            return False
10
       I = np.eye(M.shape[0])
11
       return np.allclose(M.T @ M, I, atol=tol)
13
```

```
def is_orthogonal_by_vectors(M, tol=1e-4):
14
        Verifica se M é ortogonal checando comprimentos unitários e
16
            ortogonalidade
                                 entre as colunas.
        Retorna True se todas as colunas tiverem norma 1 e forem
17
            mutuamente ortogonais.
        11 11 11
18
19
        if M.shape[0] != M.shape[1]:
20
            return False
21
        cols = [M[:, i] for i in range(M.shape[1])]
22
        # Checa norma unitária de cada coluna
23
        for v in cols:
24
            if not np.allclose(np.dot(v, v), 1.0, atol=tol):
25
                return False
26
        # Checa ortogonalidade mútua
27
        for i in range(len(cols)):
28
            for j in range(i + 1, len(cols)):
29
                 if not np.allclose(np.dot(cols[i], cols[j]), 0.0,
30
                 \rightarrow atol=tol):
                     return False
31
        return True
32
33
   # Matrizes a testar 6.38
34
   P1 = np.array([
35
        [-0.40825, 0.43644,
                               0.80178],
36
        [-0.81650, 0.21822, -0.53452],
37
        [-0.40825, -0.87287, 0.26726]
38
   ])
39
40
   P2 = np.array([
41
        [-0.51450, 0.48507,
                                0.70711],
42
        [-0.68599, -0.72761,
                                0.00000],
43
        [ 0.51450, -0.48507,
                               0.70711]
44
   1)
45
46
   # Matrizes a testar 6.39
47
   P3 = np.array([
48
        [-0.58835, 0.70206, 0.40119],
49
        [-0.78446, -0.37524, -0.49377],
50
        [-0.19612, -0.60523, 0.77152]
51
   ])
52
53
```

```
P4 = np.array([
54
        [-0.47624, -0.4264, 0.30151],
55
        [0.087932, 0.86603, -0.40825],
56
        [-0.87491, -0.26112, 0.86164]
   ])
58
59
   # Teste das funções com tolerância ajustada
60
   for name, P in [('P1', P1), ('P2', P2),('P3', P3),('P4', P4)]:
61
       print(f"Testando {name}:")
62
       print(" - Ortogonal por definição?
63
        → is_orthogonal_by_definition(P))
       print(" - Ortogonal verificando vetores? ",
64
           is_orthogonal_by_vectors(P))
```

• Das 4 (quatro) matrizes, apenas a última não é ortogonal.