Proof of the SVD

BY AMEER QAQISH

Abstract

In this article we give a simple proof of the SVD.

Theorem 1. Let V, W be finite-dimensional inner product spaces over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Suppose X is a subspace of V, Y is a subspace of W, Y and $Y: X \to Y$. Then $T^*: Y^{\perp} \to X^{\perp}$.

Proof. Let $w \in Y^{\perp}$ be arbitrary. For all $x \in X$, $(T^* w, x) = (w, Tx) = 0$. Thus $T^*w \in X^{\perp}$.

Theorem 2. Let V, W be n-dimensional inner product spaces over \mathbb{F} and let $T \in L(V, W)$. Then there exist orthonormal bases $\{v_1, \ldots, v_n\}$ of $V, \{w_1, \ldots, w_n\}$ of W and $\sigma_1, \ldots, \sigma_n \geq 0$ such that $Tv_j = \sigma w_j$ for each $j \in \{1, \ldots, n\}$. Equivalently, there exist isometries $J_1 \in L(\mathbb{F}^n, V)$, $J_2 \in L(\mathbb{F}^n, W)$ and diagonal $D \in M(n, \mathbb{F})$ such that

$$T = J_2 D J_1^*$$
.

Proof. We use (\cdot, \cdot) to denote inner products. Using the definition $(Tv, w) = (v, T^*w)$ and the Cauchy-Schwarz inequality, it is easy to see that

$$||T|| = ||T^*|| = \sup \{(Tv, w) : v \in V, w \in W, ||v|| = ||w|| = 1\}.$$

By compactness of $S^1 \times S^1$, this supremum is actually a maximum. Thus there exist $v_1 \in V$, $w_1 \in W$ such that $(Tv_1, w_1) = (v_1, T^*w_1) = \sigma_1$, with $\sigma_1 = ||T||$. By Cauchy-Schwarz, we must have $Tv_1 = \sigma_1 w_1$, $T^*w_1 = \sigma_1 v_1$. Thus $T^* : \operatorname{span}(w_1) \to \operatorname{span}(v_1)$. By theorem (1), $T : \operatorname{span}(v_1)^{\perp} \to \operatorname{span}(w_1)^{\perp}$. By induction, there are orthonormal bases $\{v_2, \ldots, v_n\}$ of $\operatorname{span}(v_1)^{\perp}$, $\{w_2, \ldots, w_n\}$ of $\operatorname{span}(w_1)^{\perp}$ and $\sigma_2, \ldots, \sigma_n \geq 0$ such that $Tv_j = \sigma_j w_j$ for each $j \in \{2, \ldots, n\}$. Thus $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V and $\{w_1, \ldots, w_n\}$ is an orthonormal basis of V and V and V and V are each V are exist that