In [1]:

```
import numpy as np
import pandas as pd
import numpy as np
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from seaborn import load_dataset
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
1 df = load_dataset('iris')
2 df.head()
```

Out[2]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

In [3]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype		
0	sepal_length	150 non-null	float64		
1	sepal_width	150 non-null	float64		
2	petal_length	150 non-null	float64		
3	petal_width	150 non-null	float64		
4	species	150 non-null	object		
<pre>dtypes: float64(4), object(1)</pre>					

memory usage: 6.0+ KB

In [4]:

```
1 df['species'].unique()
```

Out[4]:

```
array(['setosa', 'versicolor', 'virginica'], dtype=object)
```

In [5]:

```
1 df1=df[df['species']!='versicolor']
2 df1
```

Out[5]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

100 rows × 5 columns

In [6]:

```
1 df1['species'].unique()
```

Out[6]:

array(['setosa', 'virginica'], dtype=object)

In [7]:

```
lr = LinearRegression()
```

In [8]:

```
1 lb = LabelEncoder()
```

```
In [9]:
```

```
df1['species'] = lb.fit_transform(df1['species'])
df1
```

Out[9]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
145	6.7	3.0	5.2	2.3	1
146	6.3	2.5	5.0	1.9	1
147	6.5	3.0	5.2	2.0	1
148	6.2	3.4	5.4	2.3	1
149	5.9	3.0	5.1	1.8	1

100 rows × 5 columns

In [10]:

```
1 x = df1.iloc[:,0].values.reshape(-1,1)
2 y = df1.iloc[:,4].values.reshape(-1,1)
```

In [11]:

```
1 x
      [5.8],
     [5.7],
     [5.4],
     [5.1],
     [5.7],
     [5.1],
     [5.4],
     [5.1],
     [4.6],
     [5.1],
     [4.8],
     [5.],
     [5.],
     [5.2],
     [5.2],
     [4.7],
     [4.8],
     [5.4],
      [5.2],
     ſ5.5l.
```

```
In [12]:
 1 y
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       Γ11.
In [13]:
 1 lr.fit(x,y)
Out[13]:
LinearRegression()
In [ ]:
 1
In [14]:
 1 x_train, x_test, y_train, y_test = train_test_split(x, y,test_size=0.3, random_state
In [15]:
 1 lr.fit(x_train, y_train)
Out[15]:
LinearRegression()
```

In [16]:

```
plt.scatter(x,y)
plt.plot(x_test, lr.predict(x_test), color = 'r')
```

Out[16]:

[<matplotlib.lines.Line2D at 0x1ef6a857460>]

In [17]:

```
1 loglr = LogisticRegression()
```

In [18]:

```
1 loglr.fit(x_test, y_test)
```

Out[18]:

LogisticRegression()

```
In [24]:
```

```
1 x_test
Out[24]:
array([[5. ],
       [6.3],
       [4.7],
       [7.6],
       [7.2],
       [6.8],
       [5.4],
       [6.3],
       [6.5],
       [6.7],
       [6.3],
       [5.8],
       [6.4],
       [4.3],
       [5.],
       [4.8],
       [4.6],
       [4.8],
       [5.5],
       [4.4],
       [5.],
       [6.8],
       [4.6],
       [5.6],
       [4.8],
       [5.3],
       [4.6],
       [5.9],
       [6.4],
       [6.2]])
In [23]:
 1 y_pred = loglr.predict(x_test)
 2 y_pred
Out[23]:
array([0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
       0, 0, 0, 0, 0, 1, 1, 1])
```

In [19]:

```
plt.scatter(x,y)
plt.plot(x_test, loglr.predict(x_test), color = 'r')
```

Out[19]:

[<matplotlib.lines.Line2D at 0x1ef6a978610>]

In [20]:

```
1 sns.regplot(x,y,logistic=True)
```

Out[20]:

<AxesSubplot:>

Confusion Matrix

```
In [30]:
```

```
df1 = pd.DataFrame(y_test)
df2 = pd.DataFrame(y_pred)
pd.concat([df1, df2],axis = 1)
```

Out[30]:

Out[30]:				
	0	0		
0	0	0		
1	1	1		
2	0	0		
3	1	1		
4	1	1		
5	1	1		
6	0	0		
7	1	1		
8	1	1		
9	1	1		
10	1	1		
11	1	1		
12	1	1		
13	0	0		
14	0	0		
15	0	0		
16	0	0		
17	0	0		
18	0	0		
19	0	0		
20	0	0		
21	1	1		
22	0	0		
23	1	0		
24	0	0		
25	0	0		
26	0	0		