### Sensor Signal Processing Cluster Analysis

## **Sensor Signal Processing**

Prof. Dr.-Ing. Andreas König

Lehrstuhl Integrierte Sensorsysteme



FB Elektrotechnik und Informationstechnik Technische Universität Kaiserslautern

Fall Semester 2005



© Andreas König Slide4-1

### **Course Contents**

- 1. Introduction
- 2. Signal Processing and Analysis
- 3. Feature Computation
- 4. Cluster Analysis
- 5. Dimensionality Reduction Techniques
- 6. Data Visualization & Analysis
- 7. Classification Techniques
- 8. Sensor Fusion
- 9. Systematic Design of Sensor Systems
- 10. Outlook

### **Chapter Contents**

### Sensor Signal Processing Cluster Analysis

### 4. Cluster Analysis

- 4.1 Motivation
- 4.2 Conventional clustering
- 4.3 Vector quantization
- 4.4 Self-organizing feature map
- 4.5 Dynamic extensions
- 4.6 Summary

© Andreas König Slide4-3

### Motivation

- ➤ After signal processing and feature computation further condensing or compression of the data is desirable
- Unsupervised clustering techniques can serve for that purpose



### Motivation

### Sensor Signal Processing Cluster Analysis

- ➤ There is a close relation between data analysis and compression based on clustering techniques
- ➤ The purpose is to represent the data by a reduced number of prototypes or cluster centers (centroids)



### Motivation

### Sensor Signal Processing Cluster Analysis

- According to a chosen metric, e.g., Euclidean distance or Mahalanobis distance, clustering takes place in feature space
- Feature space representation relates to the interpretation of feature vectors as points in M-dimensional space



➤ In case of 2D-representation (M=2) a standard scatter plot shows the feature space

### Motivation

### Sensor Signal Processing Cluster Analysis

- > Proximity in feature space expresses similarity and, thus, relations and structure in the data
- > This can be exploited for a compact representation of the original data set in the sense of data compression of for data analysis



### Motivation

### Sensor Signal Processing Cluster Analysis

© Andreas König Slide4-7

- ➤ The notion of proximity in feature space depends on the chosen metric
- The Euclidean distance implies circular cluster shapes:

$$d_{ij} = \sqrt{\sum_{m=0}^{M-1} (x_{im} - \mu_{jm})^2}$$

$$(4.1)$$
Positions of three centroids  $\mu_j$ 

$$x_1$$
© Andreas König Slide4-8

### Motivation

### Sensor Signal Processing Cluster Analysis

➤ The Mahalanobis distance incorporates covariance information and implies elipsoidal cluster shapes:

$$d_{ij} = \left(\vec{x}_i - \vec{\mu}_j\right)^T \Sigma_j^{-1} \left(\vec{x}_i - \vec{\mu}_j\right) \tag{4.2}$$



$$\Sigma_{j} = \frac{1}{N_{j}} \sum_{i=1}^{N_{j}} \left( \overrightarrow{x}_{i} - \overrightarrow{\mu}_{j} \right) \left( \overrightarrow{x}_{i} - \overrightarrow{\mu}_{j} \right)^{T} \quad (4.3)$$

$$\overrightarrow{\mu_j} = \frac{1}{N_j} \sum_{i=1}^{N_j} \vec{x}_i$$
 (4.4)

© Andreas König Slide4-9

### Motivation

- ➤ Clustering algorithms can be grouped according to certain aspects or characteristics [s. e.g., 3]
  - ✓ Static or dynamic centroid allocation
  - ✓ Initialization of centroids
  - ✓ Flat/hierarchical clustering
  - ✓ Growing/pruning/alternating approaches
  - ✓ Underlying optimization strategy
  - ✓ Crispness / fuzzyness of cluster membership

# Sensor Signal Processing Cluster Analysis

### Conventional clustering

- A straight forward clustering technique was introduced by the authors Linde, Buzo, and Gray, denoted as LBG algorithm
- > This iterative method starts with the choice of an arbitrary but fixed number of centroids
- > The centroids have to be initialized at the beginning:
  - Random initialization by small, random values
  - Selection of a sequence/random collection of data samples



Andreas König Slide4-11

### Conventional clustering

- For the process, each data or feature vector is enhanced by an additional entry  $c_i$  for the cluster affiliation expressed by the centroid index
- $\succ$  Alternatively, a membership matrix expresses the same with 0,1 for the  $c_{ij}$



### Conventional clustering

Sensor Signal Processing Cluster Analysis

- > The algorithm proceeds as follows:
  - 1. Initialization
  - 2. Compute cluster affiliation for every data vector:

$$c_{ij} = \begin{cases} 1 & if \quad d_{ij} = \min_{k} \left( \sum_{m=0}^{M-1} (x_{im} - \mu_{km})^{2} \right) \\ 0 & else \end{cases}$$
(4.5)

3. Compute new centroids:

$$\overrightarrow{\mu_{j}} = \frac{1}{N_{i}} \sum_{i=0}^{N-1} c_{ij} \overrightarrow{x}_{i} \quad with \quad N_{j} = \sum_{i=0}^{N-1} c_{ij}$$
 (4.6)

4. Compute the achieved quantization error:

$$E(k) = \sum_{i=0}^{N-1} \sum_{j=0}^{K-1} \sum_{m=0}^{M-1} c_{ij} (x_{im} - \mu_{jm})^2$$
(4.7)

4. If k<maxstep and E(k)>ErrThresh k++; Goto 2 else Break

Andreas König Slide4-13

### Conventional clustering

Sensor Signal Processing Cluster Analysis

➤ Illustration of step 2





### Conventional clustering

### Sensor Signal Processing Cluster Analysis

➤ Illustration of step 3





- ➤ In the regarded static case, it is not guaranteed that all centroids will be properly employed (dead codebook vectors)
- Extensions of the basic algorithm to exploit all centroids

© Andreas König Slide4-15

### Conventional clustering

### Sensor Signal Processing Cluster Analysis

- ➤ The previously introduced procedure is also known as the k-means or c-means clustering algorithm [3]
- The centroid positions imply a Voronoi tesselation of the feature space



> Alternatives to clustering criterion J and optimization of J [3]



### Sensor Signal Processing Vector quantization Cluster Analysis The quantization property of clustering techniques is best displayed for data compression, e.g., vector quantization in image and signal coding: lmage lmage Block 8x8 Pixel 8x8 Pixel Block = 512 Bit Index Codebook Codebook 6 Bit Transmitter Receiver © Andreas König Slide4-17

### Vector quantization

### Sensor Signal Processing Cluster Analysis

Codebook generation and vector quantization (using SOM):





# Vector quantization Sensor Signal Processing Cluster Analysis Codebook generation and vector quantization (using SOM):

© Andreas König Slide4-19

# Vector quantization Results for different frames: Codebook generation Codebook adaptation Codebook adaptation Codebook adaptation Codebook adaptation Codebook adaptation

### Self-organizing feature map

### Sensor Signal Processing Cluster Analysis

- ➤ The Self-Organizing feature Map (SOM), introduced by Teuvo Kohonen is the probably most well-known and applied neural network
- ➤ The SOM was derived from physiological evidence observed in the somato sensory cortex



© Andreas König Slide4-21

### Self-organizing feature map

### Sensor Signal Processing Cluster Analysis

- > The SOM features the properties of data quantization, probability density approximation, topology preserving dimensionality reducing mapping
- > Typically, 1D- or 2D-SOM neuron grids are employed (3D in Robotics)
- > SOM learning in its common technical implementation:
  - 1. Random initialization of neuron weight vectors  $\vec{w}_j$
  - 2. Iterative presentation of stimuli vectors  $\vec{v}_i$  and computation of the winner neuron  $N_c$   $d_c = \min_{j=1}^{N_{SOM}} \sum_{i=1}^{M} (v_i w_{ij})^2$
  - 3. Adaptation of the winning neuron and the neigbors

$$w_{ij}(t+1) = \begin{cases} w_{ij}(t) + \alpha(t)N_c(r(t))(v_i^k - w_{ij}(t)) & for \quad j \in N_c(r(t)) \\ w_{ij}(t) & for \quad j \notin N_c(r(t)) \end{cases}$$

4. Reduce  $\alpha(t)$  and r(t); Terminate learning by max. steps/error

# Self-organizing feature map Sensor Signal Processing Cluster Analysis

- > During the training process, the SOM unfolds in the multivariate pattern space and creates a topology preserving mapping to the 2D neuron grid
- Example of SOM visualization for *Cube*-data:



# Self-organizing feature map Sensor Signal Processing Cluster Analysis

© Andreas König Slide4-23

© Andreas König Slide4-24

SOM component planes for *Cube*-data:



### Self-organizing feature map

### Sensor Signal Processing Cluster Analysis

- SOM only indicates the presence of cluster, yet intra/inter cluster distances remain obscure
- The *Unified-Distance-Matrix* complements SOM with distance information





 $dyx_{ii} = d(u_{ii+1}, u_{i+1,i})$  $dz_{ij} = 0.5*(dxy_{ij} + dyx_{ij})$ 

| U-Matrix | U-Matrix | U-Matrix              | U-Matrix            | 2j+1                |
|----------|----------|-----------------------|---------------------|---------------------|
| 2i-1     |          | dz <sub>i-1,j-1</sub> | dy <sub>i-1,j</sub> | dz <sub>i-1,j</sub> |
| 2i       |          | dx <sub>i,j-1</sub>   | du <sub>i,j</sub>   | $dx_{i,j}$          |
| 2i+1     |          | dz <sub>i,j-1</sub>   | dy <sub>i,j</sub>   | $dz_{i,j}$          |



du(i,j) arbitrarily, set to mean of 8 neighbors

© Andreas König Slide4-25

### Self-organizing feature map

### Sensor Signal Processing Cluster Analysis

- > SOM quantizes the data, i.e., SOM weight vectors are representatives of clusters of database vectors, which themselves are not directly visible
- > SOM interpolation properties cause the placement of weight vectors in feature space regions actually void of data samples
- For high intrinsic dimension larger than SOM dimension the SOM tends to fold and twist in the attempt to establish a mapping to the 2D neural grid
- > SOM only indicates the presence of clusters. Distance information requires, e.g., U-Matrix





➤ Alternative: Sammon's Nonlinear distance preserving mapping (NLM)

# Self-organizing feature map Sensor Signal Processing Cluster Analysis

- After SOM training, the computed weight vectors are subject to NLM
- Comparison of SOM & SOM/NLM mapping for *Iristrain* data
- ➤ Intra/inter cluster distances become overt
- SOM unfolding & effect of interpolation vectors clearer
- ➤ The idea can be extended to a generalization of the component planes



© Andreas König Slide4-27

### Dynamic extensions

- In a realistic application case, the number of clusters is a priori not known
- ➤ Also, the cluster shape and the appropriate metric and number of centroids is unknown
- > Dynamic or growing algorithms provide powerful alternatives
- ➤ Prominent examples are Fritzke's Growing Cells, the Neural Gas, or the Dynamic vector quanitization algorithm (DVQ)
- Rough concept:



### Summary

### Sensor Signal Processing Cluster Analysis

- > The chapter gave a survey of the concept and selected conventional as well as neural clustering methods
- > Clustering techniques can serve for compressing and for analyzing data
- ➤ In classification, clustering helps to find an appropriate number and location of local models to employ in a classifier
- ➤ The centroids represent the original data set with (much) less storage and computational requirements
- ➤ Due to the unsupervised nature of clustering, fine tuning might be required for classification (supervised) application
- ➤ The achievable quantization error depends strongly on the optimization technique employed (to be revisited)
- ➤ Choice of metric crucial but difficult: Euclidean distance common choice
- > Dynamic growing techniques powerful but not necessarily easier to use

© Andreas König Slide4-29