

Machine Learnining Bootcamp

Evaluate Your Time

Machine Learnining Bootcamp

Meet The People Who made it Possible

CORE MANAGERS

PRAKHAR TIWARI Chairperson

PRASHANT ARYA Vice-Chairperson

ANSHUL CHAUHAN
Treasurer

Bootcamp Team

Those Who were always Here for You!

PRASHASY ASHOK
Debugging Mentor

DHRUV DHINGRA

Data Structure Instructor

ABHIMANYU AMAN SRIVASTAVA

Hands on Mentor | IEEE Member

SAJAL LAHOTI

Python Mentor

AYUSH PATEL
Hands On Mentor

CHANDRASHEKHAR CHOUDHARY

Python Mentor

AYUSH VERMA
Design Committee

ARNAV SHARMA

DEEPESH YADAV

Bootcamp Team

Your Mentors!

Abhimanyu Shan Aman Srivastava
IEEE Member & Deep Learning Enthusiast

Aditya Mohan
ACM Electronics Team

What we Learnt throughout the Bootcamp

Python Basics

Data Preprocessing

Regression

Classification

Regularization Methods

Clustering

Natural Language Preprocessing

Deep Learning: ANN and CNN

Dimensionality Reduction

Ensemble Methods

Python Basics and Data Structure

Operators

Decision Statements

Loops

Strings

Methods

Functions and Lambda Expression

Python Basics: Object Oriented

Classes

Objects

Errors

Exception Handling

Debugging Techniques

Day 3 Data Preprocessing

Statistical Operations

Python Libraries

Data Encoding

Splitting Dataset

Feature Scaling

Preprocessing: Feature Scaling

Working with Dataset

Obtaining Features

Slicing of Data

Feature Scaling

Standardization

Normalization

Day 5 Regression

Simple Linear Regression

Multiple Linear Regression

Polynomial Regression

Support Vector Regression

Decision Tree

Random Forest Regression

Regression: A comparative Analysis

Regression Model	Pros	Cons
Linear Regression	Works on any size of dataset, gives informations about relevance of features	The Linear Regression Assumptions
Polynomial Regression	Works on any size of dataset, works very well on non linear problems	Need to choose the right polynomial degree for a good bias/variance tradeoff
SVR	Easily adaptable, works very well on non linear problems, not biased by outliers	Compulsory to apply feature scaling, not well known, more difficult to understand
Decision Tree Regression	Interpretability, no need for feature scaling, works on both linear / nonlinear problems	Poor results on too small datasets, overfitting can easily occur
Random Forest Regression	Powerful and accurate, good performance on many problems, including non linear	No interpretability, overfitting can easily occur, need to choose the number of trees

Day 6-7

Classification

Logistic Regression

K Nearest Neighbour

Support Vector Machine

Kernel SVM

Naive Bayesian

Decision Tree Classification

Random Forest Classification

Classification: A comparative Analysis

Classification Model	Pros	Cons
Logistic Regression	Probabilistic approach, gives informations about statistical significance of features	The Logistic Regression Assumptions
K-NN	Simple to understand, fast and efficient	Need to choose the number of neighbours k
SVM	Performant, not biased by outliers, not sensitive to overfitting	Not appropriate for non linear problems, not the best choice for large number of features
Kernel SVM	High performance on nonlinear problems, not biased by outliers, not sensitive to overfitting	Not the best choice for large number of features, more complex
Naive Bayes	Efficient, not biased by outliers, works on nonlinear problems, probabilistic approach	Based on the assumption that features have same statistical relevance
Decision Tree Classification	Interpretability, no need for feature scaling, works on both linear / nonlinear problems	Poor results on too small datasets, overfitting can easily occur
Random Forest Classification	Powerful and accurate, good performance on many problems, including non linear	No interpretability, overfitting can easily occur, need to choose the number of trees

Day 8 Clustering

K Means Clustering

Hierarchical Clustering

Clustering: A comparative Analysis

Clustering Model	Pros	Cons
K-Means	Simple to understand, easily adaptable, works well on small or large datasets, fast, efficient and performant	Need to choose the number of clusters
Hierarchical Clustering	The optimal number of clusters can be obtained by the model itself, practical visualisation with the dendrogram	Not appropriate for large datasets

Natural Language Processing

Simple Linear Regression

Multiple Linear Regression

Polynomial Regression

Support Vector Regression

Decision Tree

Random Forest Regression

Day 10 Deep Learning

Artificial Neural Networks

Convolutional Neural Networks

Thank You for attending

This session was presented by ACM JUIT

