Foundations of Data Science, Fall 2020

7b. Optimisation I

Prof. Dan Olteanu

DaST

Oct 16, 2020

https://lms.uzh.ch/url/RepositoryEntry/16830890400

https://uzh.zoom.us/j/96690150974?pwd=cnZmMTduWUtCeWoxYW85Z3RMYnpTZz09

Solving Machine Learning Problems

Most machine learning methods can be cast as optimisation problems.

- · So far: Closed-form solutions e.g., minimisation of least squares and ridge regression objectives
- Most interesting learning problems do not admit closed-form solutions :(

Two approaches to solving the problems beyond closed-form solutions:

1. Frame the objective of the ML problem as a mathematical problem

Use existing blackbox solver for such problems

When objectives can be formulated as convex optimisation problems

2. Gradient-based optimisation methods

They are not blackbox: optimisation hyper-parameters affect performance

A Crash Course in Optimisation

Today:

· Convex optimisation

Next time:

- · Recap: Gradients, Hessians
- · Gradient Descent
- · Stochastic Gradient Descent
- · Constrained optimisation

Most machine learning packages, e.g., scikit-learn, tensorflow, octave, torch, have optimisation methods readily implemented.

You need to understand the basics of optimisation to use them effectively.

Convex Sets

A set $C \subseteq \mathbb{R}^D$ is convex if for any $\mathbf{x}, \mathbf{y} \in C$ and $\lambda \in [0, 1]$, it holds $\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in C$

Examples of Convex Sets

Set ℝ^D

 $\lambda \ \mathbf{x} + (\mathbf{1} - \lambda) \ \mathbf{y} \in \mathbb{R}^{D}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{D}$

· Intersections of convex sets

Given convex sets C_1, \ldots, C_n , the set $\bigcap_{i=1}^n C_i$ is convex

For any *L*-norm $||\cdot||$, the set $B = \{\mathbf{x} \in \mathbb{R}^D : ||\mathbf{x}|| \leq 1\}$ is convex \mathbf{x}

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, the polyhedron $\{\mathbf{x} \in \mathbb{R}^n : \mathbf{A} \mathbf{x} \leq \mathbf{b}\}$ is convex

Positive semidefinite cone: The set of positive semi-definite matrices

Showing the Set of PSD Matrices is Convex

A \in $\mathbb{R}^{D\times D}$ is $PSD: \forall \times \in \mathbb{R}^{D}: \times^T A \times \ge 0$.

To show: Any combination $\lambda A + (1-\lambda)B \in \underbrace{SL}_{D}$ if $A_1B \in SL^D$ $x^{T}(\lambda_{A} + (n-\lambda)B)x = x^{T}\lambda_{A}x + x^{T}(n-\lambda)Bx$ $\lambda + [0,1] \longrightarrow \frac{\lambda \cdot x^T A x}{\geqslant 0} + (\frac{\lambda}{20} \cdot x^T B x)$ $\geqslant 0.$

Showing the Norm Balls Form Convex Sets

$$B = \begin{cases} \times \in \mathbb{R}^{2} & | || \times || \leq 1 \end{cases}$$

$$Take \times, y \in B \text{ and } \lambda \in C_{0}, \eta$$

$$To show: \lambda \times + (n - \lambda) \cdot y + \in B$$

$$|| \lambda \times || + (n - \lambda) \cdot y \cdot || \leq \frac{|| \lambda \times || + || (1 - \lambda) \cdot y \cdot ||}{|| \lambda \times || + (1 - \lambda) \cdot || y \cdot ||}$$

$$= \lambda || \times || + (1 - \lambda) \cdot || y \cdot ||$$

$$\leq 1$$

Convex Functions

A function $f: \mathbb{R}^n \to \mathbb{R}$ defined on a convex domain is convex if:

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^D$ where f is defined and $0 \le \lambda \le 1$,

Examples of Convex Functions

- Affine functions: $f(\mathbf{x}) = \mathbf{b}^{\mathsf{T}} / \mathbf{x} + c$
- Quadratic functions: $f(\mathbf{x}) = 1/2 \mathbf{/} \mathbf{x}^{\mathsf{T}} \mathbf{/} \mathbf{A} \mathbf{/} \mathbf{x} + \mathbf{b}^{\mathsf{T}} \mathbf{/} \mathbf{x} + c$, where \mathbf{A} is symmetric positive semidefinite
- Nonnegative weighted sums of convex functions: Given convex functions f_1,\ldots,f_n and $w_1,\ldots,w_n\in\mathbb{R}_{\geq 0}$, the following is a convex function

$$f(\mathbf{x}) = \sum_{i=1}^{k} \underline{w_i} \cdot \underline{f_i(\mathbf{x})}$$

Convex Optimisation

Given convex functions $f(\mathbf{x}), g_1(\mathbf{x}), \dots, g_m(\mathbf{x})$ and affine functions $h_1(\mathbf{x}), \dots h_n$, a **convex optimisation problem** is of the form:

minimize
$$f(\mathbf{x})$$

subject to
$$g_i(\mathbf{x}) \leq 0$$
 $i \in \{1, \dots, m\}$

$$h_j(\mathbf{x}) = 0$$
 $j \in \{1, \ldots, n\}$

Goal is to find an optimal value of a convex optimisation problem:

$$v^* = \min\{f(\mathbf{x}) : g_i(\mathbf{x}) \le 0, i \in \{1, \dots, m\}, h_i(\mathbf{x}) = 0, j \in \{0, \dots, n\}\}$$

Whenever $f(\mathbf{x}^*) = v^*$ then \mathbf{x}^* is a (not necessarily unique) optimal point

* del

- $v^*\stackrel{def}{=} +\infty$ for infeasible instances (feasible = fulfils all constraints g_i and h_j)
- $v^* \stackrel{def}{=} -\infty$ for unbounded instances (unbounded = the set of feasible instances has no infimum)

Local Optima are Global Optima for Convex Optimisation Problems

x is locally optimal if:

- x is feasible and
- There is B>0 s.t. $f(\mathbf{x})\leq f(\mathbf{y})$ for all feasible \mathbf{y} with $||\mathbf{x}-\mathbf{y}||_2\leq B$.

x is globally optimal if:

- x is feasible and
- $f(\mathbf{x}) \leq f(\mathbf{y})$ for all feasible \mathbf{y} .

Theorem: For a convex optimisation problem, all locally optimal points are

Prof by ankadiation. I bosolly optimal point x that is not globally optimal: I y +x s.t. f(y) (46)

x locally optimal => FB s.t. it familled f(x) = f(x) s.t. 11x-2112 EB.

Local Optima are Global Optima for Convex Optimisation Problems: Proof

Let
$$t=\lambda g+(n-\lambda)\times$$
 where $\lambda=\frac{B}{2 \cdot \|x-y\|_2}$.

To get $\lambda + [0,n]$, we may alreade B as we like.

While this λ , it halds that $\|x-y\|_2 \in B$ fince:

 $\|x-y\|_2 = \|x-(\lambda y+(n-\lambda)x)\|_2 = \|\lambda x-\lambda y\|_2$

Let us expand $f(x)$, $f(x) = \frac{B}{2 \cdot \|x-y\|_2} = \frac{B}{2 \cdot \|x-y\|_2$

Classes of Convex Optimisation Problems

Linear Programming:

minimize $\mathbf{c}^\mathsf{T} \, \mathbf{x} + d$ subject to $\mathbf{A} \, \mathbf{x} \leq \mathbf{e}$ $\mathbf{B} \, \mathbf{x} = \mathbf{f}$

Quadratically Constrained Quadratic Programming:

$$\begin{split} & \text{minimize } \frac{1}{2} \mathbf{x}^\mathsf{T} \, \mathbf{B} \, \mathbf{x} + \mathbf{c}^\mathsf{T} \, \mathbf{x} + d \\ & \text{subject to } \frac{1}{2} \mathbf{x}^\mathsf{T} \, \mathbf{Q}_i \, \mathbf{x} + \mathbf{r}_i^\mathsf{T} \, \mathbf{x} + s_i \leq 0 \\ & \qquad \qquad i \in \{1, \dots, m\} \end{split}$$

Semidefinite Programming:

minimize ${\rm tr}({\bf C}~{\bf X})$ subject to ${\rm tr}({\bf A}_i~{\bf X})=b_i$ $i\in\{1,\ldots,m\}$ ${\bf X}$ positive semidefinite

 $\mathrm{tr}(\boldsymbol{\mathsf{A}})$ is the $\ensuremath{\mathsf{trace}}$ of the matrix $\boldsymbol{\mathsf{A}}$

Linear Programming

Looking for solutions $\mathbf{x} \in \mathbb{R}^n$ to the following optimisation problem

 $\begin{aligned} & \text{minimize } \mathbf{c}^\mathsf{T} \ \mathbf{x} + d \\ & \text{subject to } \mathbf{A} \ \mathbf{x} \leq \mathbf{e} \\ & \mathbf{B} \ \mathbf{x} = \mathbf{f} \end{aligned}$

- No closed-form solution
- Efficient algorithms exist, both in theory and practice (for tens of thousands of variables)

Linear Model with Absolute Loss

Suppose we have data (X, y) and that we want to minimise the objective:

$$\mathcal{L}(\mathbf{w}) = \sum_{i=1}^{N} |\mathbf{x}_{i}^{\mathsf{T}}\mathbf{w} - y_{i}|$$

We would like to transform this optimisation problem into a linear program.

We introduce one ζ_i for each datapoint.

The linear program in the D+N variables $\textit{w}_1,\ldots,\textit{w}_D,\zeta_1,\ldots,\zeta_N$

minimize
$$\sum_{i=1}^{N} \zeta_i$$
 subject to:

 $\mathbf{v}^{\mathsf{T}}\mathbf{x}_{i}-y_{i}\leq\zeta_{i},$

 $i=1,\ldots,N$

 $y_i - \mathbf{w}^\mathsf{T} \mathbf{x}_i \le \zeta_i,$ $i = 1, \dots, N$

The solution to this linear program gives \boldsymbol{w} that minimises the objective $\mathcal{L}.$

Recall: Likelihood of Linear Regression (Gaussian Noise Model)

Likelihood

$$\rho(\mathbf{y} \mid \mathbf{X}, \mathbf{w}, \sigma) = \left(\frac{1}{2\pi\sigma^2}\right)^{N/2} \exp\left(-\frac{1}{2\sigma^2}(\mathbf{X}\mathbf{w} - \mathbf{y})^{\mathsf{T}}(\mathbf{X}\mathbf{w} - \mathbf{y})\right)$$

 $\mbox{Maximise Likelihood = Maximise Log-Likelihood (log: } \mathbb{R}^+ \rightarrow \mathbb{R} \mbox{ is increasing)} \label{eq:maximise Likelihood}$

$$LL(\mathbf{y} \mid \mathbf{X}, \mathbf{w}, \sigma) = -\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (\mathbf{X}\mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{X}\mathbf{w} - \mathbf{y})$$

Maximise Log-Likelihood = Minimise Negative Log-Likelihood

$$\begin{split} \mathrm{NLL}(\mathbf{y} \mid \mathbf{X}, \mathbf{w}, \sigma) &= \frac{N}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} (\mathbf{X}\mathbf{w} - \mathbf{y})^\mathsf{T} (\mathbf{X}\mathbf{w} - \mathbf{y}) \\ &= \underbrace{\frac{N}{2} \log(2\pi\sigma^2)}_{\text{ordered}} + \frac{1}{2\sigma^2} \left(\underbrace{\mathbf{w}^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{w}}_{\text{w}^\mathsf{T} \mathbf{B} \mathbf{w}} - \underbrace{2\mathbf{y}^\mathsf{T} \mathbf{X} \mathbf{w}}_{\text{constant}} + \underbrace{\mathbf{y}^\mathsf{T} \mathbf{y}}_{\text{constant}} \right) \end{split}$$

This is a convex quadratic optimisation problem with no constraints!

Minimising the Lasso Objective

For the Lasso objective, i.e., linear model with ℓ_1 -regularisation, we have

$$\mathcal{L}_{\text{\tiny lasso}}(\mathbf{w}) = \sum_{i=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} - y_{i})^{2} + \lambda \sum_{i=1}^{D} |w_{i}| = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{y}^{\mathsf{T}} \mathbf{X} \mathbf{w} + \mathbf{y}^{\mathsf{T}} \mathbf{y} + \lambda \sum_{i=1}^{D} |w_{i}|$$

- Quadratic part of the loss function cannot be framed as linear programming
- Lasso regularisation does not allow for closed-form solutions
- Can be rephrased as quadratic programming problem
- Alternatively resort to general optimisation methods

19