ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta 28 gennaio 2014

Esercizio A

$R_1 = 10 \text{ k}\Omega$	$R_{10} = 6 \text{ k}\Omega$	$V_{cc} \wedge V_{cc} \wedge R_{4}$ $V_{cc} \wedge V_{cc} \wedge R_{9}$	
$R_2 = 20 \text{ k}\Omega$	$R_{11} = 20 \text{ k}\Omega$	$R_1 \stackrel{\triangleright}{>} R_3 \stackrel{\triangleright}{>} \stackrel{\vee}{=} C_2 R_7 \stackrel{\triangleright}{>} R_8 \stackrel{\triangleright}{>} \stackrel{\vee}{=} C_3$	
$R_4 = 100 \ \Omega$	$C_1 = 10 \text{ nF}$	$\mathbf{c}_{_{1}}$	
$R_5 = 4 k\Omega$	$C_2=1 \mu F$	Q_1 Q_2 Q_4	
$R_6 = 20 \text{ k}\Omega$	$C_3 = 100 \text{ nF}$		·
$R_7 = 265 \text{ k}\Omega$	$C_4 = 1 \text{ nF}$	R_{11}	V _U
$R_8 = 500 \Omega$	$V_{\rm CC} = 18 \text{ V}$		77
$R_9 = 1 \text{ k}\Omega$			

 Q_1 è un transistore MOS a canale p resistivo, con la corrente di drain in saturazione data da $I_D=k(V_{GS}-V_T)^2$ con k=1 mA/V² e $V_T=-1$ V. Q_2 è un transistore BJT BC109B resistivo con $h_{re}=h_{oe}=0$. Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_3 in modo che, in condizioni di riposo, la tensione dell'emettitore di Q_2 sia 12 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_1 . (R: $R_3 = 1046.5 \Omega$)
- 2) Determinare V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 e C_4 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -9.58$)
- 3) (**Solo per 12 CFU**) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 0$ Hz; $f_{p1} = 2387.32$ Hz; $f_{z2} = 138.82$ Hz; $f_{p2} = 492$ Hz; $f_{z4} = 0$ Hz; $f_{p4} = 7923$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{BC} + \overline{D}E + \overline{A}\right)\left(\overline{\overline{C} + D}\right) + \overline{B\overline{E}}\left(C + \overline{E}\right)$$

con in totale, non più di 18 transistori e disegnare lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento di tutti i transistori.

Esercizio C

$R_1 = 1 k \Omega$	$R_4 = 4 k \Omega$
$R_2 = 6 k \Omega$	$R_5 = 1 \text{ k } \Omega$
$R_3 = 1 \text{ k}\Omega$	$C = 1 \mu F$
$V_{CC} = 5 \text{ V}$	

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 5V$, Q_1 ha una $R_{on} = 0$ e $V_T = -1$ V. Determinare la frequenza del segnale di uscita del multivibratore. (R: f = 564.4 Hz)

$$Id = K (Vos-V_{\tau})^{2}$$

$$K = 4 mA/V^{2} V_{\tau} = -4V$$

) Det.
$$R_3$$
 per $V_E = 12V$

$$I_E = \frac{V_E}{R} = 2mA$$

$$R_3 = \frac{V_{50} - V_5}{I_0} = \frac{1046.508}{I_0} SC$$

$$R_{1} = 10 K 2$$

$$R_{2} = 20 K 2$$

$$R_{4} = 100 R$$

$$R_{5} = 4 K R$$

$$R_{6} = 20 K R$$

$$R_{7} = 265 K R$$

$$R_{8} = 500 R$$

$$R_{9} = 1 K R$$

$$R_{10} = 6 K R$$

$$R_{11} = 20 K R$$

$$C_{12} = 10 K R$$

$$C_{13} = 10 K R$$

$$C_2 = 4\mu F$$
 $C_3 = 100 \mu F$
 $C_6 = 6.836 \mu A$

$$h_{FE} = 230 =) I_{B} = \frac{I_{C}}{h_{FE}} = 6.836 \mu A$$

 $h_{ie} = 4800$
 $h_{fe} = 300$

$$g_{m} = 2k | V_{05} - V_{7}| =$$

$$= 3.5132 \times 10^{-3} \frac{4}{V}$$

.) FOLL E ZERI ELEKAF (1=10nF)

(1:
$$f_{P1} = \frac{1}{2\pi (R_1 ll R_2)} = 2387.324 Hz$$
 $f_{Z1} = \phi Hz$

$$f_{22} = \frac{1}{2\pi C_2 (R_4 + R_3)} = 138.817 He$$

$$\frac{V_{ie}(s)}{V_{i}(s)} = A_{cB} \frac{s^{2} \left(\omega + S + \omega_{22}\right)}{\left(s + \omega_{P1}\right)\left(s + \omega_{P2}\right)\left(s + \omega_{P4}\right)}$$

ESERCIZIO B

Y=
$$(BC+DE+A)(C+D)+BE(C+E)=$$

= $(B+C+DE+A)(C+B)+BC+BE+EC+BE=$

= $BC+CE+BE+AD)+BE$

ESCALECA+CED+ACD+BC+BE+EC+BE=

= $BC+CE+BE+AD)+BE$

ENGRED

Van

Van

Van

Van

PDN:

Unity Unity Unity Unity Unity Unity

Unity Unity Unity

ESCALE

SCALE

(or od 1 Uis: Uis viene $\frac{1}{2n} + \frac{1}{4n} = \frac{3}{4n} = \frac{3}{2n} > \frac{1}{2n} > \frac{1}{2n} = \frac{4}{3}n > n$

=)
$$V_6=5V$$
]=) $V_{05}=\phi V>V_7=$) Q_1 non Conducte $V_5=5V$

R1=1KR

Rz=6K2

Rz=1KR

Ry = 4KR

C = 1 MF

VT= - IV

$$V_{RIM} = \frac{1}{3}V_{CC} = \frac{1.6}{1.6}$$
 $V_{RIM} = V_{CC} \frac{R_4}{R_3 + R_4} = 4V$

$$V_{1H} = \frac{2}{3}V_{CC} = \frac{1}{3} = \left(\frac{V_{CC} - \frac{2}{3}V_{CC}}{R_3}\right)\frac{1}{R_3} = \frac{1.6}{6} \text{ mA}$$

$$I_{R4} = \left(\frac{2}{3}V_{CC}\right)\frac{1}{R_4} = 8.3 \times 10^{-4} \text{ A}$$

2)
$$Q = \phi$$

$$V_{1N2} > V_{con2} > V_{\ell_1}$$

2.50 > 1.60 > 0.588V

$$\hat{f} = \frac{1}{T} = 564.40 \text{ Hz}$$