Report Esercizio

W19-D5

Redatto da Andrea Sciattella

29/06/2024

TRACCIA

Durante la lezione teorica, abbiamo visto la **Threat Intelligence** e gli indicatori di compromissione.

Abbiamo visto che gli IOC sono evidenze o eventi di un attacco in corso, oppure già avvenuto.

Per l'esercizio pratico di oggi, trovate in allegato una cattura di rete effettuata con Wireshark. **Analizzate** la cattura attentamente e rispondere ai seguenti quesiti:

- 1. Identificare eventuali IOC, ovvero evidenze di **attacchi in corso**.
- 2. In base agli IOC trovati, fate delle ipotesi sui potenziali vettori di attacco utilizzati.
- 3. Consigliate un'azione per ridurre gli impatti dell'attacco.

SVOLGIMENTO ESERCIZIO

Per questo esercizio ci serviremo del file .pcapng fornito dalla Epicode, per la verifica e analisi di una cattura di rete su wireshark.

Apriamo Wireshark (packet sniffer e analizer) e carichiamo il file sul tool:

 A primo sguardo, notiamo che le richieste sono di solo DUE dispositivi presenti sulla stessa rete: 192.168.200.150 (Macchina Target) & 192.168.200.100 (Macchina Attacante)

Source	Destination			
192.168.200.150	192.168.200.255			
192.168.200.100	192.168.200.150			

• Guardando meglio la cattura, notiamo che sono presenti SOLO le richieste ARP dei due dispositivi menzionati al passo precedente (192.168.200.150 - 192.168.200.100).

```
Source
Destination
Protoco > Length Info

PCSSystemtec_fd:87:...
PCSSystemtec_39:7d:...
ARP
60 Who has 192.168.200.100? Tell 192.168.200.150

PCSSystemtec_39:7d:...
PCSSystemtec_fd:87:...
ARP
42 192.168.200.100 is at 08:00:27:39:7d:fe

PCSSystemtec_39:7d:...
PCSSystemtec_fd:87:...
ARP
42 Who has 192.168.200.150? Tell 192.168.200.100

PCSSystemtec_fd:87:...
PCSSystemtec_fd:87:...
ARP
60 192.168.200.150 is at 08:00:27:fd:87:1e
```

 Analizzando con calma e attenzione, abbiamo raggiunto la conclusione che si tratta di una scansione delle porte aperte effettuata dalla macchina attaccante, per via delle moltissime richieste generate dalle HIGH PORTS alle WELL KNOWN PORTS della macchina target:

Г	2 23.764214995	192.168.200.100	192.168.200.150	TCP	74 53060 → 80 [SYN] Seq=0 Win=64240
	3 23.764287789	192.168.200.100	192.168.200.150	TCP	74 33876 - 443 [SYN] Seq=0 Win=64240
1	4 23.764777323	192.168.200.150	192.168.200.100	TCP	74 80 → 53060 [SYN, ACK] Seq=0 Ack=1
	5 23.764777427	192.168.200.150	192.168.200.100	TCP	60 443 → 33876 [RST, ACK] Seq=1 Ack=:
	6 23.764815289	192.168.200.100	192.168.200.150	TCP	66 53060 - 80 [ACK] Seq=1 Ack=1 Win=0
_	7 23.764899091	192.168.200.100	192.168.200.150	TCP	66 53060 → 80 [RST, ACK] Seq=1 Ack=1

(Notiamo da questo screenshot che si tratta molto probabilmente di una scansione alle porte, data la presenza di una connessione tramite 3-WAY HANDSHAKE alla porta 80 che contiene il servizio http)

W19-D5

No.	Time	Source	Destination	Protocol	Length Info
	46 36.776402500	192.168.200.100	192.168.200.150	TCP	74 49814 → 256 [SYN] Seq=0 Win=6424
1	47 36.776451284	192.168.200.150	192.168.200.100	TCP	60 199 → 50684 [RST, ACK] Seq=1 Ack
	48 36.776451357	192.168.200.150	192.168.200.100	TCP	60 995 → 54220 [RST, ACK] Seq=1 Ack
	49 36.776478201	192.168.200.100	192.168.200.150	TCP	74 46990 - 139 [SYN] Seq=0 Win=6424
	50 36.776496366	192.168.200.100	192.168.200.150	TCP	74 33206 - 143 [SYN] Seq=0 Win=6424
	51 36.776512221	192.168.200.100	192.168.200.150	TCP	74 60632 - 25 [SYN] Seq=0 Win=64240
	52 36.776568606	192.168.200.100	192.168.200.150	TCP	74 49654 → 110 [SYN] Seq=0 Win=6424
	53 36.776671271	192.168.200.100	192.168.200.150	TCP	74 37282 → 53 [SYN] Seq=0 Win=64240
	54 36.776720715	192.168.200.100	192.168.200.150	TCP	74 54898 → 500 [SYN] Seq=0 Win=6424
	55 36.776813123	192.168.200.150	192.168.200.100	TCP	60 587 → 34648 [RST, ACK] Seq=1 Ack
	56 36.776843423	192.168.200.100	192.168.200.150	TCP	74 51534 → 487 [SYN] Seq=0 Win=6424
	57 36.776904828	192.168.200.150	192.168.200.100	TCP	74 445 - 33042 [SYN, ACK] Seq=0 Ack
	58 36.776904922	192.168.200.150	192.168.200.100	TCP	60 256 → 49814 [RST, ACK] Seq=1 Ack
	59 36.776904961	192.168.200.150	192.168.200.100	TCP	74 139 → 46990 [SYN, ACK] Seq=0 Ack
	60 36.776905004	192.168.200.150	192.168.200.100	TCP	60 143 → 33206 [RST, ACK] Seq=1 Ack
	61 36.776905043	192.168.200.150	192.168.200.100	TCP	74 25 → 60632 [SYN, ACK] Seq=0 Ack=
	62 36.776905082	192.168.200.150	192.168.200.100	TCP	60 110 → 49654 [RST, ACK] Seq=1 Ack
	63 36.776905123	192.168.200.150	192.168.200.100	TCP	74 53 → 37282 [SYN, ACK] Seq=0 Ack=
	64 36.776905162	192.168.200.150	192.168.200.100	TCP	60 500 → 54898 [RST, ACK] Seq=1 Ack
	65 36.776914772	192.168.200.100	192.168.200.150	TCP	66 33042 → 445 [ACK] Seq=1 Ack=1 Wi
	66 36.776941020	192.168.200.100	192.168.200.150	TCP	66 46990 → 139 [ACK] Seq=1 Ack=1 Wi
	67 36.776962320	192.168.200.100	192.168.200.150	TCP	66 60632 → 25 [ACK] Seq=1 Ack=1 Win
	68 36.776983878	192.168.200.100	192.168.200.150	TCP	66 37282 → 53 [ACK] Seq=1 Ack=1 Win
	69 36.777118481	192.168.200.150	192.168.200.100	TCP	60 487 → 51534 [RST, ACK] Seq=1 Ack
	70 36.777143014	192.168.200.100	192.168.200.150	TCP	74 56990 → 707 [SYN] Seq=0 Win=6424
	71 36.777186821	192.168.200.100	192.168.200.150	TCP	74 35638 → 436 [SYN] Seq=0 Win=6424
	72 36.777302991	192.168.200.100	192.168.200.150	TCP	74 34120 → 98 [SYN] Seq=0 Win=64240
	73 36.777337934	192.168.200.100	192.168.200.150	TCP	74 49780 → 78 [SYN] Seq=0 Win=64240
	74 36.777430632	192.168.200.150	192.168.200.100	TCP	60 707 → 56990 [RST, ACK] Seq=1 Ack
	75 36.777430741	192.168.200.150	192.168.200.100	TCP	60 436 → 35638 [RST, ACK] Seq=1 Ack
=	76 36.777473018	192.168.200.100	192.168.200.150	TCP	74 36138 → 580 [SYN] Seq=0 Win=6424
	77 36.777522494	192.168.200.100	192.168.200.150	TCP	74 52428 → 962 [SYN] Seq=0 Win=6424
	78 36.777623082	192.168.200.150	192.168.200.100	TCP	60 98 → 34120 [RST, ACK] Seq=1 Ack=
	79 36.777623149	192.168.200.150	192.168.200.100	TCP	60 78 → 49780 [RST, ACK] Seq=1 Ack=
	80 36.777645027	192.168.200.100	192.168.200.150	TCP	74 41874 → 764 [SYN] Seq=0 Win=6424
	81 36.777680898	192.168.200.100	192.168.200.150	TCP	74 51506 → 435 [SYN] Seq=0 Win=6424
	82 36.777758636	192.168.200.150	192.168.200.100	TCP	60 580 → 36138 [RST, ACK] Seq=1 Ack
	83 36.777758696	192.168.200.150	192.168.200.100	TCP	60 962 → 52428 [RST, ACK] Seq=1 Ack
	84 36.777871245	192.168.200.150	192.168.200.100	TCP	60 764 → 41874 [RST, ACK] Seq=1 Ack
	85 36.777871293	192.168.200.150	192.168.200.100	TCP	60 435 → 51506 [RST, ACK] Seq=1 Ack
	86 36.777893298	192.168.200.100	192.168.200.150	TCP	66 33042 → 445 [RST, ACK] Seq=1 Ack
	87 36.777912717	192.168.200.100	192.168.200.150	TCP	66 46990 → 139 [RST, ACK] Seq=1 Ack
	88 36.777986759	192.168.200.100	192.168.200.150	TCP	66 60632 → 25 [RST, ACK] Seq=1 Ack=
	89 36.778031265	192.168.200.100	192.168.200.150	TCP	66 37282 → 53 [RST, ACK] Seq=1 Ack=

(In questa parte invece vediamo per la maggior parte flag RST (Reset della connessione) e ACK (Acknowledgement) che determinano una porta chiusa, al contrario dei singoli ACK presenti in questa parte di screenshot per le porte 445, 139, 25 e 53 che risultano aperte.)

W19-D5

No.	Time	Source	Destination	Protocol	Length Info
	121 36.779605843	192.168.200.150	192.168.200.100	TCP	60 884 → 51262 [RST, ACK] Seq=1 Ack=1 W
	122 36.779637573	192.168.200.100	192.168.200.150	TCP	74 44244 - 699 [SYN] Seg=0 Win=64240 Le
	123 36.779776288	192.168.200.100	192.168.200.150	TCP	74 43630 - 703 [SYN] Seg=0 Win=64240 Le
	124 36.779856041	192.168.200.150	192.168.200.100	TCP	60 699 → 44244 [RST, ACK] Seg=1 Ack=1 W
	125 36.779911109	192.168.200.100	192,168,200,150	TCP	74 55136 → 274 [SYN] Seq=0 Win=64240 Le
	126 36.779946174	192.168.200.100	192.168.200.150	TCP	74 40522 - 42 [SYN] Seq=0 Win=64240 Len
	127 36.780035851	192.168.200.150	192.168.200.100	TCP	60 703 → 43630 [RST, ACK] Seq=1 Ack=1 W
	128 36.780121127	192.168.200.150	192.168.200.100	TCP	60 274 → 55136 [RST, ACK] Seq=1 Ack=1 W
	129 36.780149473	192.168.200.100	192.168.200.150	TCP	74 57552 - 58 [SYN] Seq=0 Win=64240 Len-
	130 36.780170333	192.168.200.100	192.168.200.150	TCP	74 40822 - 266 [SYN] Seq=0 Win=64240 Le
	131 36.780215176	192.168.200.150	192.168.200.100	TCP	60 42 → 40522 [RST, ACK] Seq=1 Ack=1 Wi
	132 36.780301750	192.168.200.150	192.168.200.100	TCP	60 58 → 57552 [RST, ACK] Seq=1 Ack=1 Wi
	133 36.780325837	192.168.200.100	192.168.200.150	TCP	74 37252 - 11 [SYN] Seq=0 Win=64240 Len
	134 36.780346429	192.168.200.100	192.168.200.150	TCP	74 40648 - 235 [SYN] Seq=0 Win=64240 Le
	135 36.780409818	192.168.200.100	192.168.200.150	TCP	74 36548 - 739 [SYN] Seq=0 Win=64240 Le
	136 36.780427899	192.168.200.100	192.168.200.150	TCP	74 38866 - 55 [SYN] Seq=0 Win=64240 Len
	137 36.780472830	192.168.200.100	192.168.200.150	TCP	74 52136 - 999 [SYN] Seq=0 Win=64240 Le
	138 36.780490897	192.168.200.100	192.168.200.150	TCP	74 38022 - 317 [SYN] Seq=0 Win=64240 Le
100	139 36.780577880	192.168.200.150	192.168.200.100	TCP	60 266 → 40822 [RST, ACK] Seq=1 Ack=1 W
	140 36.780577981	192.168.200.150	192.168.200.100	TCP	60 11 → 37252 [RST, ACK] Seq=1 Ack=1 Wi
	141 36.780578026	192.168.200.150	192.168.200.100	TCP	60 235 → 40648 [RST, ACK] Seq=1 Ack=1 W
	142 36.780578074	192.168.200.150	192.168.200.100	TCP	60 739 → 36548 [RST, ACK] Seq=1 Ack=1 W
	143 36.780578119	192.168.200.150	192.168.200.100	TCP	60 55 → 38866 [RST, ACK] Seq=1 Ack=1 Wi
	144 36.780578158	192.168.200.150	192.168.200.100	TCP	60 999 → 52136 [RST, ACK] Seq=1 Ack=1 W
	145 36.780578198	192.168.200.150	192.168.200.100	TCP	60 317 → 38022 [RST, ACK] Seq=1 Ack=1 W
	146 36.780617671	192.168.200.100	192.168.200.150	TCP	74 49446 → 961 [SYN] Seq=0 Win=64240 Le
	147 36.780701625	192.168.200.100	192.168.200.150	TCP	74 51192 - 241 [SYN] Seq=0 Win=64240 Le
	148 36.780805705	192.168.200.150	192.168.200.100	TCP	60 961 → 49446 [RST, ACK] Seq=1 Ack=1 W
1	149 36.780824718	192.168.200.100	192.168.200.150	TCP	74 42642 → 293 [SYN] Seq=0 Win=64240 Le
	150 36.780889399	192.168.200.150	192.168.200.100	TCP	60 241 → 51192 [RST, ACK] Seq=1 Ack=1 W
	151 36.780906540	192.168.200.100	192.168.200.150	TCP	74 41828 → 974 [SYN] Seq=0 Win=64240 Le
	152 36.780958307	192.168.200.100	192.168.200.150	TCP	74 49014 → 137 [SYN] Seq=0 Win=64240 Le
	153 36.781007559	192.168.200.150	192.168.200.100	TCP	60 293 → 42642 [RST, ACK] Seq=1 Ack=1 W
	154 36.781116869	192.168.200.150	192.168.200.100	TCP	60 974 → 41828 [RST, ACK] Seq=1 Ack=1 W
	155 36.781116971	192.168.200.150	192.168.200.100	TCP	60 137 → 49014 [RST, ACK] Seq=1 Ack=1 W
	156 36.781138769	192.168.200.100	192.168.200.150	TCP	74 45464 → 223 [SYN] Seq=0 Win=64240 Le
	157 36.781159927	192.168.200.100	192.168.200.150	TCP	74 42700 → 1014 [SYN] Seq=0 Win=64240 L
	158 36.781255484	192.168.200.150	192.168.200.100	TCP	60 223 → 45464 [RST, ACK] Seq=1 Ack=1 W
	159 36.781255593	192.168.200.150	192.168.200.100	TCP	60 1014 → 42700 [RST, ACK] Seq=1 Ack=1
	160 36.781321950	192.168.200.100	192.168.200.150	TCP	74 55360 - 918 [SYN] Seq=0 Win=64240 Le
	161 36.781356928	192.168.200.100	192.168.200.150	TCP	74 45648 - 512 [SYN] Seq=0 Win=64240 Le
	162 36.781420319	192.168.200.100	192.168.200.150	TCP	74 53246 → 354 [SYN] Seq=0 Win=64240 Le
	163 36.781487105	192.168.200.150	192.168.200.100	TCP	60 918 → 55360 [RST, ACK] Seq=1 Ack=1 W
	164 36.781487210	192.168.200.150	192.168.200.100	TCP	74 512 - 45648 [SYN, ACK] Seq=0 Ack=1 W

(Altra parte di screen che dimostra veritiera la nostra ipotesi riguardante uno scanner di porte, dove rileva tutte porte chiuse in questa parte di cattura.

CONCLUSIONI

• Identificare eventuali IOC, ovvero evidenze di attacchi in corso.

Vediamo dalla cattura di rete che l'unico IoC presente in questa cattura sia "Unusual inbound and outbound network traffic" come definito da Fortinet e Crowdstrike, cioè traffico inusuale in entrata e in uscita nella nostra rete, come già dimostrato nella nostra analisi.

• In base agli IOC trovati, fate delle ipotesi sui potenziali vettori di attacco utilizzati.

Osservando attentamente il comportamento possiamo affermare che si tratta di uno scanner di rete/porte, molto probabilemente Nmap per la sua facilità di utilizzo.

• Consigliate un'azione per ridurre gli impatti dell'attacco.

Primo consiglio fondamentale in questi casi è di ridurre il numero di porte e servizi aperti, per poter limitare i punti di accesso e infiltrazione alle nostre macchine. Come seconda soluzione altrettanto efficace, si consiglia di introdurre regole firewall per bloccare l'indirizzo IP della macchina attaccante per bloccare ogni prossimo tentativo di attacco ed eseguire una scan antivirus e malware per rilevare possibili backdoor o malware lasciati dai malintenzionati che hanno compiuto l'attacco.