ANÁLISIS NUMÉRICO

Práctica No. 4

Solución a Sistemas de Ecuaciones No Lineales -Ceros de Funciones-

Prof. César Carreón Otañez Ayud2: Jorge Zavaleta Sánchez Ayud: Isaí López Servín

Ciudad Universitaria

- 1. Programar los métodos de:
 - a) Bisección.
 - b) Secante.
 - c) Newton.
 - d) Regla Falsa.

Para cada caso, pedir los datos entrada correspondientes: función punto(s) inicial(es), tolerancia, etc. Devolver la raíz si la encuentra, si no desplegar el mensaje donde se diga qué ocurrió. Entregar los códigos de cada método.

[Computational].

- 2. Usar el Método de Bisección (programado) para encontrar la solución de las siguientes funciones con una tolerancia de 10^{-5} .
 - a) $f(x) = x 2^{-x}$, para $0 \le x \le 1$.
 - b) $f(x) = e^x x^2 + 3x 2$, para $0 \le x \le 1$.
 - c) $f(x) = 2x\cos(2x) (x+1)^2$, para $-3 \le x \le -2$ y $-1 \le x \le 0$.
 - d) $f(x) = x\cos(x) 2x^2 + 3x 1$, para $0.2 \le x \le 0.3$ y $1.2 \le x \le 1.3$.

[Computational].

3. Sea $f(x) = (x+2)(x+1)^2x(x-1)^3(x-2)$, ¿para qué cero de f el Método de Bisección converge cuando se aplican los intervalos siguientes para su búsqueda?,

a)
$$[-1.5, 2.5]$$
 b) $[-0.5, 2.4]$ c) $[-0.5, 3]$ d) $[-3, -0.5]$

[Ejercicio].

- 4. Hallar una aproximación a $\sqrt{3}$ con una tolerancia de 10^{-4} usando el algoritmo de Bisección. [Hint: considerar $f(x) = x^2 3$.]
 - a) Escribir las primeras 5 iteraciones del método.

[Ejercicio].

b) Implementando el programa.

[Computacional].

- 5. La función definida por $f(x) = \sin(\pi x)$ tiene ceros en todos los enteros. Muestre que cuando -1 < a < 0 y 2 < b < 3, el método de bisección converge a
 - a) 0, si a + b < 2.
 - b) 2, si a + b > 2.
 - c) $1, \sin a + b = 2.$

[Ejercicio].

6. Definiendo $e_k = x_k - x^*$, para la iteración de Secante, demostrar la siguiente igualdad:

$$e_{k+1} = \frac{f(x_k)/e_k - f(x_{k-1})/e_{k-1}}{f(x_k) - f(x_{k-1})} (e_k e_{k-1})$$

[Ejercicio]

7. Sean $[a_0,b_0],[a_1,b_1]\cdots[a_n,b_n]$ sucesión de intervalos generados por el método de bisección. Si

$$r = \lim_{n \to \infty} Cn$$

con

$$C_n = \frac{1}{2}(a_n + b_n)$$

demostrar

$$|r - C_n| \le 2^{-(n+1)} (b_0 - a_0)$$

[Ejercicio]

- 8. Sea la función $f(x) = x^4 + 2x^2 x 3$
 - a) Manipulando la función f da cuatro variantes de ella, de tal forma que se puede ver como una función $f(x) = g_i(x) x$ de punto fijo para i = 1, 2, 3, 4.
 - b) De cada una de las funciones realizar 4 iteraciones del método de Punto Fijo con $x_0 = 1$.
 - c) Calcular la derivada de $g_i(x)$ y decir si el método eventualmente converge para éstas funciones.

[Ejercicio]

9. Usar la iteración de Punto Fijo para mostrar que la función $g(x) = \pi + 0.5 \sin(x/2)$ tiene un punto fijo en el intervalo $[0, 2\pi]$ con una tolerancia de 10^{-2} . (Programar el ejemplo en específico con una gráfica de la función).

[Computacional]

10. Para cada una de las siguientes funciones hallar el intervalo [a, b] donde el método de Punto Fijo converge.

$$x = \frac{2 - e^x + x^2}{3}$$

$$x = \frac{5}{x^2} + 2$$

$$x = 6^{-x}$$

$$x = 0.5(\sin(x) + \cos(x))$$

[Ejercicio]

11. Mostrar las primeras 5 iteraciones del Método de Newton para hallar el cero de $f(x) = x^2 - 6$ con $x_0 = 1$.

[Ejercicio]

- 12. Sea $f(x) = x^2 6$ con $x_0 = 3$ y $x_1 = 2$, hallar x_4 para
 - a) El método de Secante.
 - b) El método de Regla Falsa.
 - c) ¿Cuál de los dos métodos se acerca más a $\sqrt{6}$?.

[Ejercicio]

- 13. Usar Newton para hallar la solución de las siguientes funciones con una tolerancia de 10^{-5} :
 - a) $f(x) = e^x + 2^{-x} + 2\cos(x) 6 = 0$ para $1 \le x \le 2$.
 - b) $f(x) = \ln(x-1) + \cos(x-1) = 0$ para 1.3 < x < 2.
 - c) $f(x) = 2x\cos(2x) (x-2)^2 = 0$ para $2 \le x \le 3$ y $3 \le x \le 4$.
 - d) $f(x) = (x-2)^2 \ln(x) = 0$ para $1 \le x \le 2$ y $e \le x \le 4$.
 - e) $f(x) = e^x 3x^2 = 0$ para $0 \le x \le 1$ y $3 \le x \le 5$.
 - f) $f(x) = \sin(x) e^{-x}$ para $0 \le x \le 1, 3 \le x \le 4$ y $6 \le x \le 7$.

[Computational]

14. Calcular las raíces del ejercicio 13 con el método de Secante.

- [Computational].
- 15. Calcular las raíces del ejercicio 13 con el método de Regla Falsa.
- [Computacional].

16. El siguiente polinomio

$$P(x) = 230x^4 + 18x^3 + 9x^2 - 221x - 9$$

tiene dos ceros, uno en [-1,0] y otro en [0,1], hallarlos con una tolerancia de 10^{-6} para

- a) Método de Regla Falsa.
- b) Método de Secante.
- c) Método de Newton.

Usando los programas de cada método.

[Computacional]

- 17. Supongamos que se desea desarrollar un método iterativo para calcular la raíz cuadrada de un número positivo y, de manera equivalente, resolver la ecuación no lineal $f(x) = x^2 y = 0$ dado y. Dadas las funciones g_1 , g_2 listadas a continuación, dan un problema equivalente de punto fijo a f(x) = 0. Para cada función determinar si la iteración de punto fijo correspondiente dado por $x_{k+1} = g_i(x_k)$ es convergente localmente a \sqrt{y} si y = 3. Explicar la razón en cada caso.
 - a) $q_1(x) = y + x x^2$
 - b) $g_2(x) = 1 + x x^2/y$
 - c) ¿Cuál es la función de la iteración de punto dada por el método de Newton para este problema en particular?.

[Ejercicio]

18. Escribir un programa usando el método de Newton para resolver el problema de hallar la raíz nésima de un número y, o de manera equivalente, resolver $f(x) = x^n - y = 0$. La rutina debe devolver tanto valores reales como complejos.

[Computacional]

19. El control de un determinado sistema eléctrico conduce a la resolución del siguiente sistema de ecuaciones no lineales:

$$\begin{split} I*\cos(\phi) = & 2/3\\ \cos(\delta) + 0.91*I*\sin(\phi + \delta) = & 1.22\\ 0.76*I*\cos(\phi + \delta) = & \sin(\delta) \end{split}$$

sabiendo que por consideraciones técnicas los ángulos ϕ y δ deben estar comprendidos entre 0 y $\pi/2$ y que la densidad de corriente I debe ser positiva, se pide resolver mediante el método de Newton el sistema partiendo de los datos iniciales siguientes:

- a) I = 1, $\phi = 0.1$ y $\delta = 0.1$.
- b) $I = \phi = \delta = 1$.

Comentar la admisibilidad de las soluciones encontradas.

[Computacional]

20. Resolver el siguiente sistema de ecuaciones no lineales por el Método de Newton:

$$U + \frac{0.27}{U} - 1.31 * \cos(\phi) = 0$$
$$\frac{0.405}{U} - 1.31 * \sin(\phi) = 0$$

dar al menos 3 condiciones iniciales distintas y comentar los resultados.

[Computacional]

- 21. Resolver los siguientes sistemas programando el Método de Newton para varias variables.
 - a) Puntos iniciales $x_1 = 15$ y $x_2 = -2$

$$x_1 + x_2(x_2(5 - x_2) - 2) = 13$$

 $x_1 + x_2(x_2(1 + x_2) + 14) = 29$

b) Puntos iniciales
$$x_1=(1+\sqrt{3})/2,\ x_2=(1-\sqrt{3})/2$$
 y $x_3=\sqrt{3}$
$$x_1^2+x_2^2+x_3^2=5$$

$$x_1+x_2=1$$

$$x_1+x_3=3$$

c) Puntos inciales $x_1 = 1$, $x_2 = 2$, $x_3 = 1$, $x_4 = 1$.

$$x_1 + 10x_2 = 0$$

$$\sqrt{5}(x_3 - x_4) = 0$$

$$(x_2 - x_3)^2 = 0$$

$$\sqrt{10}(x_1 - x_4)^2 = 0$$

[Computacional]

22. Para la función del ejercicio 21b resolverlo por la iteración de punto fijo.

[Computacional]

23. Dado el teorema de Sherman-Morrison

Teorema. Sea A una matriz no singular $y \bar{x}$, \bar{y} vectores con $\bar{y}^t A^{-1} \bar{x} \neq -1$. Entonces $A + \bar{x} \bar{y}^t$ es no singular y

$$(A + \bar{x}\bar{y}^t)^{-1} = A^{-1} - \frac{A^{-1}\bar{x}\bar{y}^tA^{-1}}{1 + \bar{y}^tA^{-1}\bar{x}}$$

Demostrar

$$\left(A^{-1} - \frac{A^{-1}\bar{x}\bar{y}^tA^{-1}}{1 + \bar{y}^tA^{-1}\bar{x}}\right)(A + \bar{x}\bar{y}^t) = I$$

[Ejercicio]

Número de integrantes: a lo más 4.

Formato de Entrega:

- Los ejercicios correspondientes a la primera parte, deberán ser escaneados o fotografiados y anexar todo en un archivo pdf con imágenes nítidas. Cualquier hoja que no tenga una vista nítida no será calificada.
- Cada programa realizado debe llevar comentarios, estar indentados y tener los nombres del/los creador/es, el nombre del archivo debe coincidir con el número del ejercicio (p.e: ejercicio22.***).
- Si se llegan a encontrar códigos iguales se anulara la calificación de todos lo integrantes en el tema correspondiente.

Fecha de Entrega: 12 de Enero.