Informatyka, studia dzienne, inż I s	[st.]	Ι	$in\dot{z}$	dzienne.	ι	studia	vka.	${ m format}$	Inf	
--------------------------------------	---------	---	-------------	----------	---	--------	------	---------------	-----	--

semestr VI

Sztuczna inteligencja i systemy ekspertowe 2019/2020 Prowadzący: dr hab. inż. Piotr Lipiński Poniedziałek, 12:00

Data odda	ia:	Ocena:

Maciej Pracucik 216869 Adam Jóźwiak 2167862

Zadanie 1: Piętnastka

1. Cel

Celem zadania było napisanie programu rozwiązującego zagadkę logiczną, Piętnastkę, poprzez wykorzystanie różnych metod przeszukiwania stanu oraz przebadanie ich.

2. Wprowadzenie

Piętnastka to układanka logiczna składająca się z piętnastu klocków, numerowanych od 1 do 15, ułożonych na kwadratowej planszy, o wymiarach 4x4. Celem układanki jest przestawienie tak klocków, żeby ustawić je w kolejności rosnącej, przy czym pusty element musi znaleźć się na końcu. Przesuwanie klocków umożliwia nam puste miejsce na planszy.

Poszukiwanie rozwiązania łamigłówki jest zbliżone do znajdowania ścieżki w grafie, gdzie stan układanki jest węzłem w grafu.

W celu odnalezienie właściwej ścieżki stostujemy następujące strategie:

- BFS Breadth First Search przeszukiwanie "wszerz" rozpoczynając od zadanego wierzchołka w grafie, odwiedza wszystkie osiągalne z niego wierzchołki na tym samym poziomie rekursji, według ustalonej wcześniej kolejności sprawdzania. Następnie odwiedza wszystkie osiągalne wierzchołki pochodne, na kolejnym poziomie rekursji
- DFS Depth First Search przeszukiwanie "w głąb" rozpoczyna przechodzenie grafu od zadanego wierzchołka, odwiedzając pierwszy z pochodnych wierzchołków, kolejność przechodzenia jest wcześniej ustalana,

powtarzając to dla każdego pochodnego wierzchołka. Jeżeli algorytm nie będzie mógł wchodzić dalej (osiągnie zadaną maksymalną głębokość rekursji), cofa się o jeden poziom rekursji i bada krawędź kolejnego nieodwiedzonego jeszcze wierzchołka.

— A* - Algorytm heurystyczny znajduje najkrótsza mozliwą ścieżkę, jeśli taka istnieje. W przypadku piętnastki algorytm A* tworzy ścieżkę wybierając wierzchołek tak, aby minimalizować wartość heurestyki. Metody obliczania tej wartości to: metoda Hammminga, gdzie obliczamy ile klocków znajduje się na niewłaściwych pozycjach, metoda Manhattan, gdzie liczymy jakie odległości dzielą klocki od ich docelowych miejsc.

3. Opis implementacji

Program został napisany w języku Python. Klasa Fifteen jest klasą główną natomiast plik FileManager.py odpowiadaja za wczytywanie układanki, zapis statystyk oraz zapis ułożonej układanki. W klasie Fifteen znajdują się wszystkie strategie oraz niezbędne operacje na układance, np. odnaleznie pozycji pustej, zamiana elementów, przedstawienie możliwych ruchów.

4. Materialy i metody

W tym miejscu należy opisać, jak przeprowadzone zostały wszystkie badania, których wyniki i dyskusja zamieszczane są w dalszych sekcjach. Opis ten powinien być na tyle dokładny, aby osoba czytająca go potrafiła wszystkie przeprowadzone badania samodzielnie powtórzyć w celu zweryfikowania ich poprawności. Przy opisie należy odwoływać się i stosować do opisanych w sekcji drugiej wzorów i oznaczeń, a także w jasny sposób opisać cel konkretnego testu. Najlepiej byłoby wyraźnie wyszczególnić (ponumerować) poszczególne eksperymenty tak, aby łatwo było się do nich odwoływać dalej.

5. Wyniki

BFS

5.1. DRUL

DRUL

6. Dyskusja

Sekcja ta powinna zawierać dokładną interpretację uzyskanych wyników eksperymentów wraz ze szczegółowymi wnioskami z nich płynącymi. Najcenniejsze są, rzecz jasna, wnioski o charakterze uniwersalnym, które mogą być istotne przy innych, podobnych zadaniach. Należy również omówić i wyjaśnić wszystkie napotkane problemy (jeśli takie były). Każdy wniosek powinien mieć poparcie we wcześniej przeprowadzonych eksperymentach (odwołania

do konkretnych wyników). Jest to jedna z najważniejszych sekcji tego sprawozdania, gdyż prezentuje poziom zrozumienia badanego problemu.

7. Wnioski

W tej, przedostatniej, sekcji należy zamieścić podsumowanie najważniejszych wniosków z sekcji poprzedniej. Najlepiej jest je po prostu wypunktować. Znów, tak jak poprzednio, najistotniejsze są wnioski o charakterze uniwersalnym.

Literatura

[1] T. Oetiker, H. Partl, I. Hyna, E. Schlegl. Nie za krótkie wprowadzenie do systemu LATEX2e, 2007, dostępny online.