

1. Provide your team background and organization description (if applicable).

None, I am a student doing ML.

2. Explain why you participated in the Allergen Chip challenge.

- Answer My participation in the Allergen Chip Challenge was motivated by a desire to delve into the complexities of integrating different types of data for machine learning applications. The challenge presented a unique opportunity to work with both tabular data and image data, although my final solution focused primarily on the former.
- The experience allowed me to deepen my understanding of tabular data and the importance of feature engineering in machine learning. I was able to explore various techniques for processing and analysing this type of data, and I gained valuable insights into how it can be used to solve complex problems in the field of healthcare.

3. Describe how you built your winning model and elaborate on the technical and modeling choices you made.

- Preprocessing I utilized Multilabel Stratified K-Fold cross-validation due to the multi-target nature of the problem. This ensured a balanced representation of the targets in each fold. Additionally, I engaged in feature engineering, creating new features to capture complex patterns in the data. Specifically, I calculated row-wise statistics such as mean, standard deviation, product, sum, and median across the metadata columns. I also created a feature that represented the multiplication of the row mean and standard deviation. These engineered features provided a more comprehensive representation of the data, capturing potential interactions and dependencies between the original features. By incorporating these features into the model, I was able to significantly improve the model's F1 score, demonstrating their effectiveness in enhancing the model's predictive capabilities.
- In the model building phase, I utilized an XGBoost model, wrapped in a MultiOutputClassifier, to handle the multi-label nature of the problem. After experimenting with various architectures such as Linear Layers, Catboost, LightGBM, and ensemble methods, a well-tuned XGBoost model was the most effective. The model was configured for binary classification with 950 boosting rounds, a learning rate of 0.06, and a 'colsample' bytree' of 0.5 to prevent overfitting. I employed a 15-fold cross-validation strategy, training the model on all other folds and validating it on the current fold for each iteration.

- In the post-processing phase, I focused on optimizing the decision threshold for each target label to maximize the F1 score. This step was crucial as it significantly improved the model's F1 performance. Instead of using a standard threshold of 0.5 for all targets, I calculated the optimal threshold for each target individually. This was achieved by computing the F1 score for a range of thresholds and selecting the one that yielded the highest score for each target.
- Interestingly, I observed a strong correlation between the number of positive samples in a target and its optimal threshold. As the number of positive samples increased, a higher threshold was required to achieve the best performance. This relationship was visualized in a scatter plot, which clearly showed the trend and the strong correlation of 0.945.
- This approach of finding a unique threshold for each target was a key factor in the performance of my model. It allowed the model to adapt to the unique characteristics of each target, thereby improving its overall performance.

4. Were the CPU/RAM resources provided in the challenge notebook sufficient from your point of view?

- I feel like the ram resources were sufficient, but the CPU resources were not sufficient for fast iteration. One of the major reasons I did not use images and was not able experiment with them enough was because of a lack of a GPU and CPU resources.