第16周基础习题课题目

- 1. 设 $X_1,...,X_n$ 为来自均匀分布总体 U(1, heta)的样本,求参数heta的矩估计量。
- 2. 设 $X_1, X_2, ..., X_n$ 为来自总体 X 的样本, X 的密度函数 $p(x) = \frac{2x}{\theta^2}, (0 < x < \theta)$,求则参数 θ 的矩估计量。
- 3. 设 $x_1,...,x_n$ 为来自总体X的样本观测值,X的密度函数为 $p(x)=(\theta+1)x^{\theta}$,其中 $\theta>0.0< x<1$,求参数 θ 的最大似然估计量。
- 4. 对总体 $N(\mu,1)$ 的样本,样本容量 n=25 ,测得样本均值 x=3.55 。

求参数 µ的置信水平 90%的双侧区间估计的区间。

- 5. 对总体 $N(\mu,1)$ 的样本,样本容量 n=9 ,测得样本均值 x=7.68 。求参数 μ 的置信度 92%的双侧区间估计的区间长度。
- 6. 设总体 $X \sim N\left(\mu,1\right)$, 使参数 μ 的 96%双侧置信区间长度不超过 0.08, 则样本容量 n 至少要达到多少?
- 7. X_1,X_2,\cdots,X_{25} 是来自正态总体 $N\left(\mu,4\right)$ 的样本, \overline{x} 是样本均值。对假设检验问题 $H_0:\mu\geq 3$ vs $H_1:\mu<3$ 。若取拒绝域为 $\overline{x}<2.28$,求
- (1) 该检验的、显著性水平:
- (2) 当 $\mu = 1.48$ 时,该检验犯第二类错误(受伪)的概率。
- 8. X_1, \dots, X_{25} 是来自总体 $N(\mu, 4)$ 的样本, 考虑假设检验问题 $H_0: \mu \geq 3$ VS $H_1: \mu < 3$,
 - (1) 若取拒绝域为样本均值 \bar{x} < 2.38、求检验的显著性水平;
 - (2) 当 $\mu = 1.68$ 时, 求该检验犯第二类错误(受伪)的概率;
 - (3) $求 \bar{x} = 2.2$ 的 p 值。

分布函数和分位数

 $\Phi(1.28) = 0.9$, $\Phi(1.44) = 0.925$, $\Phi(1.65) = 0.95$, $\Phi(1.96) = 0.975$, $\Phi(2.33) = 0.99$, $\Phi(1) = 0.84$, $\Phi(1.25) = 0.89$, $\Phi(1.5) = 0.93$, $\Phi(1.75) = 0.96$, $\Phi(2) = 0.98$, $\Phi(3) = 0.999$