CSARCH1 LE2 Reviewer Series

Sequential Circuit Design

Version: 0.0

When designing a circuit diagram,

Example 1:

Design the following state diagram with two JK flip-flops.

Input	Present State		Next State		Output
X	A	B	A	B	Y
0	0	0	1	1	0
0	0	1	0	0	1
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	1	1	0
1	1	1	1	1	0

Input	Presen	nt State	Next	State	Flip Flop Input			-	Output
X	A	B	A	B	JA	KA	JΒ	KB	Y
0	0	0	1	1	1	X	1	X	0
0	0	1	0	0	0	X	X	1	1
0	1	0	0	0	X	1	0	X	0
0	1	1	0	1	X	1	X	0	0
1	0	0	1	0	1	X	0	X	1
1	0	1	1	1	1	X	X	0	1
1	1	0	1	1	X	0	X	1	0
1	1	1	1	1	X	0	X	0	0

Excitation	Table

Q(t)	Q(t+1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

For each state A and B, we use the excitation table for JK flip-flop to know which inputs to feed to each flip-flop to represent going from one state to the next.

. A	B JB				
X^{\prime}	00	01	11	10	
0	1	X	X		
1		X	X	X	

А	AB KB					
X^{Λ}	00	01	11	10		
0	X	1		X		
1	X		1			

1	B					
X^A	00	01	11	10		
0		$\lceil 1 \rceil$				
1	1	1				

From this, we can also generate a boolean equation for each input as well as the output.

$$JA = \overline{B}$$

$$JB = \overline{A}\overline{X}$$

$$KA = \overline{X}$$

$$KB = \overline{A}\overline{X} + ABX$$

$$Y = \overline{A}X + \overline{A}B$$