21603 Model Theory I

Rohan Jain

Contents

Chapter 1		Page 2
1.1	random info	2
1.2	Structures and Languages	2

Chapter 1

1.1 random info

rami@cmu.edu

- 1. Set Theory
- 2. Model Theory
- 3. Recursion Theory
- 4. Proof Theory

1973 book by Chang and Keisler - Model Theory - Highly recommended for elementary model theory.

What is model theory? Model Theory = logic + universal algebra

1984 - W. Hodges - Shorter Model Theory

model theory = algebraic geometry - field theory

Algebraic structures:

- 1. groups
- 2. rings
- 3. vector spaces
- 4. fields
- 5. graphs (V, E)
- 6. ordered structures

Around 1870, mathematicians started to layout the foundations for mathematics. One of the ideas was axiomatization. One example was Euclidean axioms for plane geometry.

1.2 Structures and Languages

Definition 1.2.1: Language

L is a language if $L = F \cup R \cup C$ are parameter disjoint.

Definition 1.2.2: L-structure

Let L be a language (similarity type/signature). Then \mathcal{M} is an L-structure provided:

$$\mathcal{M} = (U, \{ f^{\mathcal{M}} \mid f \in F \}, \{ r^{\mathcal{M}} \mid r \in R \}, \{ c^{\mathcal{M}} \mid c \in C \})$$

where U is a nonempty set. U is also called the universe of \mathcal{M} .

For any $f \in F$ there is U(f) natural number such that $f^{\mathcal{M}}: U^{n(F)} \to U$, $R^{\mathcal{M}} \subseteq U^{n(R)}$, $C^{\mathcal{M}} \subseteq U$, $\forall c \in C$.

Notation: $|\mathcal{M}| = U$. The cardinal of \mathcal{M} is |U|. $||\mathcal{M}||$ denotes the cardinality of \mathcal{M} .

Definition 1.2.3: Theory

Let L be a language. A theory T is a set of sentences in L. A sentence is a finite set of symbols from L.

Example 1.2.1 (Sentences)

 $L_{\rm gr} = \{e, \cdot\}.\ e \in C, \cdot \in F.\ T_{\rm gr} = \{\forall x \forall y \forall z (x \cdot (y \cdot z) = (x \cdot y) \cdot z), \forall x (x \cdot e = x, e \cdot x = x), \forall x \exists y (x \cdot y = e, y \cdot x = e)\}.$ These are the group axioms (associativity, identity, existence of inverse).

Definition 1.2.4: Term

Let L be a language. A term is:

- 1. c is a term for any $c \in C$.
- 2. x when x is a variable.
- 3. τ_1, \ldots, τ_k terms, $f \in F$, n(f) = k, then $f(\tau_1, \ldots, \tau_k)$ is a term.

Definition 1.2.5: Term

Term(L) is a minimal set of finite strings of symbols from $L \cup \{(,)\} \cup X$ that contains $C \cup x$ and closed under the following rule:

 $\tau_1, \ldots, \tau_k \in \text{Term}(L), fk - \text{place function symbol}, \text{then } f(\tau_1, \ldots, \tau_k) \in \text{Term}(L)$

Example 1.2.2 (L_r)

 $L_r = \{0,1,+,-\}. \ \operatorname{Term}(L_r) \supseteq \{\sum a_j x_1^{n_j} \mid a_j \in \mathbb{Z}, n_j \in \mathbb{N}\}.$

Example 1.2.3 $(L_{\rm gr})$

 $\operatorname{Term}(L_{\operatorname{gr}}) \supseteq \{x_1 \cdot x_n \cdots x_n \mid x_i \in X, n \in \omega\}.$

Definition 1.2.6: AFml

Let L be a language. The set of atomic formulas denotes by AFml(L) is the smallest set of formulas in L that contains $L \cup \{(,),=\} \cup X$ such that:

- 1. If $\tau_1, \tau_2 \in \text{Term}(L)$, then $\tau_1 = \tau_2 \in \text{AFml}(L)$.
- 2. Given $R(x_1, \ldots, x_n)$ relation symbol and $\tau_1, \ldots, \tau_n \in \text{Term}(L)$, then $R(\tau_1, \ldots, \tau_n) \in \text{AFml}(L)$.

Definition 1.2.7: Fml

Fml(L) is the set of (first order) formulas in L. Which is the minimal set of finite strings of symbols from $L \cup \{(,), =, \neg, \lor, \land, \implies, \longleftarrow, \lor, \exists\} \cup X$ such that:

- 1. $Fml(L) \supseteq AFml(L)$.
- 2. If φ is a formula, then $\neg \varphi$ is a formula.
- 3. If $x \in \{\land, \lor, \implies, \iff\}$ and $\varphi, \psi \in \operatorname{Fml}(L)$, then $(\varphi x \psi) \in \operatorname{Fml}(L)$.
- 4. If $\varphi \in \text{Fml}(L)$, $Q \in \{\forall, \exists\}$, and $x \in X$, then $Qx\varphi \in \text{Fml}(L)$.
- 5. If $\varphi \in \text{Fml}(L)$, $\text{FV}(\varphi)$ is the set of free variables in φ defined by induction on the structure of φ . Case 1: $\varphi \in \text{AFml}(L)$.
 - (a) φ is $\tau_1 = \tau_2$. $FV(\varphi) = FV(\tau_1) \cup FV(\tau_2)$.
 - (b) φ is $R(\tau_1, \ldots, \tau_n)$. $FV(\varphi) = FV(\tau_1) \cup \ldots \cup FV(\tau_n)$.

Case 2:

- (a) if φ is $\neg \psi$, then $FV(\varphi) = FV(\psi)$.
- (b) if $\varphi = \psi_1 * \psi_2$ for $* \in \{ \land, \lor, \Longrightarrow, \longleftrightarrow \}$, then $FV(\varphi) = FV(\psi_1) \cup FV(\psi_2)$.

Case 3: φ is $Qx\psi$, $Q \in \{\forall, \exists\}$. Then $FV(\varphi) = FV(\psi) \setminus \{x\}$.

6. Sent(L) are the sentences in L. Sent(L) = $\{\varphi \in \text{Fml}(L) \mid \text{FV}(\varphi) = \emptyset\}$.

Example 1.2.4

If $L_f = \{+, \cdot, 0, 1\}$, then $T_f = \{$

- $\forall x \forall y \forall z (x \cdot (y \cdot z) = (x \cdot y) \cdot z),$
- $\forall x \forall y \forall z (x + (y + z) = (x + y) + z)$,
- $\forall x \forall y (x + y = y + x)$,
- $\bullet \ \forall x \forall y (x \cdot y = y \cdot x),$
- $\bullet \ \forall x(x \cdot 1 = x, 1 \cdot x = x),$
- $\forall x(x + 0 = x, 0 + x = x),$
- $\forall x \exists y (x \cdot y = 1, y \cdot x = 1),$
- $\forall x \exists y (x + y = 0, y + x = 0),$
- $\forall x \forall y \forall z (x \cdot (y + z) = (x \cdot y) + (x \cdot z))$

}.

Definition 1.2.8: L-theory

T is an L-theory if $T \subseteq Sent(L)$.

The example above is "field theory".

Definition 1.2.9

Let M be an L-structure. $\tau(\bar{x})$ is a term, $\bar{a} \in |M|^{\ell(n)}$. T

Case 1: $\tau(\bar{x}) = c$ for some constant symbol. Then $\tau^M(\bar{a}) = c^M$.

Case 2: $\tau(\bar{x}) = x_i$. Then $\tau^M(\bar{a}) = a_i$.

Case 3: $\tau(\bar{x}) = f(\tau_1, \dots, \tau_k)$. Then $\tau^M(\bar{a}) = f^M(\tau_1^M(\bar{a}), \dots, \tau_k^M(\bar{a}))$.

Definition 1.2.10: \models

Let L be a language, $\varphi \in \operatorname{Fml}(L)$, M and L-structure, $n = \ell(\bar{x})$, $\bar{a} \in |M|^n$. Define $M \models \varphi(\bar{a})$ at \bar{a} by induction on the structure of φ :

- If φ is atomic,
 - when $\varphi(x)$ is $\tau_1 = \tau_2$, then $M \models \varphi(\bar{a})$ iff $\tau_1(\bar{a}) = \tau_2(\bar{a})$.
 - when $\varphi(x)$ is $R(\tau_1, \dots, \tau_k)$, then $M \models \varphi(\bar{a})$ iff $(\tau_1(\bar{a}), \dots, \tau_k(\bar{a})) \in R^M$.
- If φ is not atomic, then:
 - if φ is $\neg \psi$, then $M \models \varphi(\bar{a})$ iff $M \models \psi(\bar{a})$ is false.
 - if φ is $\psi_1 * \psi_2$ for $* \in \{\land, \lor, \Longrightarrow, \iff\}$, then $M \models \varphi(\bar{a})$ iff $M \models \psi_1(\bar{a})$ and $M \models \psi_2(\bar{a})$.
 - if φ is $\exists y \psi(y, \bar{x})$, then $M \models \varphi(\bar{a})$ iff there is $b \in |M|$ such that $M \models \psi(b, \bar{a})$.
 - if φ is $\forall y \psi(y, \bar{x})$, then $M \models \varphi(\bar{a})$ iff for all $b \in |M|$, $M \models \psi(b, \bar{a})$.

Definition 1.2.11

Let M be an L-structure and T an L-theory. $M \models T$ iff for every $\varphi \in T$, $M \models \varphi$. We say T "satisfies" M.

Example 1.2.5 (Models)

 $M \models T_f \iff (|M|, +^M, \cdot^M, 0^M, 1^M)$ is a field.

Definition 1.2.12: Mod

 $Mod(T) = \{M \text{ L-structure } | M \models T\}.$

Example 1.2.6

 $Mod(T_f)$ is the class of all fields and $Mod(T_{gr})$ is the class of all groups.

Definition 1.2.13: Structure Isomorphism

Let M,N both be L-structures. f is an isomorphism from M onto N if $f:|M| \to |N|$ is a bijection such that:

- $f(c^M) = c^N$ for all $c \in C$.
- $G(x_1,\ldots,x_k)$ function symbol. $a_1,\ldots,a_k\in |M|$, then $f(G^M(a_1,\ldots,a_k))=G^N(f(a_1),\ldots,f(a_k))$.
- $R(x_1, \ldots, x_k)$ predicate symbol. $a_1, \ldots, a_k \in |M|$, then $(a_1, \ldots, a_k) \in R^M$ iff $(f(a_1), \ldots, f(a_k)) \in R^N$.

We write $f: M \cong N$. Also $M \cong N \iff \exists f: M \cong N$.

Definition 1.2.14

Let $\lambda \geq \aleph_0$, T an L-theory. T is λ -categorical if for all $M, N \models T$ of cardinality $\lambda, M \cong N$.

Theorem 1.2.1 Los Conjecture (1954)

Let L be a language, T a first order L-theory, in an at most countable language. If $\exists \lambda > \aleph_0$ such that T is λ -categorical, then for all $\mu > \aleph_0$, T is μ -categorical.

Somewhere around 1961-1965, Morley proved this conjecture.