MEASUREMENT

Measurement Techniques

Quantity	Accuracy	Instrument
	1 cm	Таре
Length	0.1 cm	Ruler
	0.01 cm	Vernier caliper
	0.001 cm	Micrometer screw gauge
	$1 cm^3$	Measuring cylinder
Volume	$0.05 cm^3$	Pipette/burette
	1 min	Clock
Time	0.01 sec	Stopwatch
	x-axis scale	Time base of C.R.O
Angle	0.5°	Protractor
Temperature	1 °C	Thermometer
	0.5 °C	Thermocouple
P.d	0.01 V	Voltmeter
Current	0.01 A	Ammeter
	0.0001 A	Galvanometer

Using CRO.

- A Cathode-Ray Oscilloscope is a laboratory instrument used to display, measure and analyse waveforms of electrical circuits
- An A.C. current on an oscilloscope is represented as a transverse wave. Therefore you can determine its frequency and amplitude
- The x-axis is the **time** and the y-axis is the **voltage** (or **y-gain**)

Diagram of Cathode-Ray Oscilloscope display showing wavelength and time-base setting

- The period of the wave can be determined from the **time-base** This is **how many** seconds each division represents measured commonly in s div-1 or s cm-1
- Use as many wavelengths shown on the screen as possible to reduce uncertainties
- Dividing the total time by the number of wavelengths will give the time period *T* (Time taken for one complete oscillation)
- The **frequency** is then determined through 1/T

Systematic and Random Errors

Systematic error:

- Constant error in one direction; too big or too small
- Cannot be eliminated by repeating or averaging
- If systematic error small, measurement accurate
- Accuracy: refers to degree of agreement between result of a measurement and true value of quantity.

Random error:

- Random fluctuations or scatter about a true value
- Can be reduced by repeating and averaging
- When random error small, measurement precise
- **Precision:** refers to degree of agreement of repeated measurements of the same quantity (regardless of whether it is correct or not)

Representing precision and accuracy on a graph

Calculation Involving Errors

• Absolute uncertainty: where uncertainty is given as a fixed quantity.

For a quantity $x = (2.0 \pm 0.1)$ mm

Absolute uncertainty = $\Delta x = \pm 0.1 mm$

• Fractional uncertainty: where uncertainty is given as a fraction of the measurement.

For a quantity $x = (2.0 \pm 0.1)$ mm

Fractional uncertainty =
$$\frac{\Delta x}{x} = 0.05$$

• Percentage uncertainty: where uncertainty is given as a percentage of the measurement.

For a quantity $x = (2.0 \pm 0.1)$ mm

Percentage uncertainty =
$$\frac{\Delta x}{x} \times 100 \% = 5 \%$$

Combining Uncertainties:

• Adding / subtracting data – add the absolute uncertainties For example; Diameter of outer layer of tyre(d_1) = 55.0 \pm 0.5cm

Diameter of inner layer of tyre(d_2) = 20.0 \pm 0.8cm

so, difference in diameter = 55.0 - 20.0cm = 35.0cm

and uncertainty in difference = $\pm (0.5 + 0.8)cm = 1.3cm$

$$d_1 - d_2 = 35.0 \pm 1.3$$
cm

• Multiplying / dividing data – add the percentage uncertainties

For example; Distance = $50.0 \pm 0.1m$

Time =
$$5.00 \pm 0.05s$$

speed(V) =
$$\frac{Distance(s)}{Time(t)} = \frac{s}{t} = \frac{50.0}{5.00} = 10.0 ms^{-1}$$

$$\frac{\Delta v}{v} = \left(\frac{\Delta s}{s} + \frac{\Delta t}{t}\right) = \left(\frac{0.1}{50.0} + \frac{0.05}{5.00}\right) = 0.012$$

:. absolute uncertainties $(\Delta v) = 0.012 \times 10.0 = \pm 0.12 \text{ms}^{-1}$

so,
$$v = 10.0 \pm 0.12 ms^{-1}$$

Raising to a power – multiply the uncertainty by the power

For example;
$$Volume(V) = \frac{4}{3}\pi r^3$$

 $r = 2.50 \pm 0.02cm$
 $V = \frac{4}{3}\pi (2.50)^3 = 65.5cm^3$
 $\frac{\Delta V}{V} = \left(3 \times \frac{\Delta r}{r}\right) = \left(3 \times \frac{0.02}{2.50}\right) = 0.024$
 $\therefore absolute \ uncertainity(V) = 0.024 \times 65.5 = 1.57cm^3$
so, $V = 65.5 \pm 1.57cm^3$

Significant Figures

- Actual error: recorded to only 1 significant figure
- Number of decimal places for a calculated quantity is equal to number of decimal places in actual error.
- During a practical, when calculating using a measured quantity, give answers to the same significant figure as the measurement or one less.

Micrometer Screw Gauge

- Measures objects up to 0.01mm
- Place object between anvil & spindle
- Rotate **thimble** until object firmly held by jaws
- Add together value from main scale and rotating scale

Vernier Scale

Measures objects up to 0.1mm

- Place object on rule
- Push slide scale to edge of object.
- The sliding scale is 0.9mm long & is divided into 10 equal divisions.
- Check which line division on sliding scale matches with a line division on rule
- Subtract the value from the sliding scale $(0.09 \times Divisions)$ by the value from the rule.

