Week 1 Physics Notes

plutonium.bmb

August 2024

1 Units and Measurements

1.1 SI Units

- What is a unit?
 - A basic, arbitrary, widely accepted reference standard.
 - Used in conjunction with a number to express the measurement of a physical quantity
 - Types
 - * Fundamental Units (g, kg, ft, lb)
 - * Derived Units (Newton, Velocity, Joule)
 - Set of fundamental and derived units: system of units.
- Systems of units
 - 1. International System of Units
 - From French Système international d'unités. It was also formerly known as the meter-kilogram-second (MKS) system.
 - Developed and recommended by the General Conference on Weights and Measurement in 1971.
 - Expressed in multiple or fractional quantities in powers of 10 (SI Prefixes).
 - 2. Imperial System of Units
 - Also known as British System and foot-pound-second (FPS).
 - 3. centimeter-gram-second (CGS)
- Base SI Units

Table	1:	List	of	base	SI	units
т		1				

Length	$_{ m metre}$	m
Mass	kilogram	kg
Time	second	s
Electric Current	amprere	A
Temperature	kelvin	K
Amount of substance	mole	mol
Luminous Intensity	candela	cd

• SI prefixes and multipliers

Table 2: List of SI prefixes $(10^{n>1})$

Prefix	Symbol	Base 10
quetta	Q	10^{30}
ronna	R	10^{27}
yotta	Y	10^{24}
zetta	Z	10^{21}
exa	Е	10^{18}
peta	Р	10^{15}
tera	Т	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deca	da	10^{1}

Table 3: List of SI prefixes $(10^{n<1})$ Prefix | Symbol | Base 10

Prefix	Symbol	Base 10
deci	d	10^{-1}
centi	c	10^{-2}
mili	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	р	10^{-12}
femto	f	10^{-15}
atto	a	10^{-18}
zepto	Z	10^{-21}
yocto	У	10^{-24}
ronto	r	10^{-27}
quecto	q	10^{-30}

Conversion Factors 1.2

• Distance	• Area	* quart-gallon:
• Distance	• Area	* (11411-9411011.

Distance	• Area	* quart-gallon:
- Imperial-Metric * inches-	- Non-SI Unit to Metric	$\frac{4qt}{1gal}$
centimeters: $1in$	* acres- kilometers:	* pint-gallon:
2.54cm * feet-meters:	$\frac{1ac}{4.046m^2}$	8pt
$\frac{1ft}{0.30m}$	* hectare-kilometer:	$\overline{1gal}$
* miles- kilometers:	$\frac{1ha}{10km^2}$	* ounce-gallon (imperial):
$\frac{1mi}{1.61km}$ - Imperial-Imperial	 Volume Metric Units * liters-m³: 	$\frac{160floz}{1gal}$
mpenai	. <u> </u>	

- Metric Units

* liters-m³:

$$\frac{1L}{1 + \frac{1}{1 + \frac{1}$$

* feet-inches:
$$\frac{1L}{1dm^3}$$
 * ton-it*:
$$\frac{1ft}{12in}$$
 * milliters-cc:
$$\frac{1ton}{35ft^3}$$
 * yards-feet:
$$\frac{1mL}{1}$$

* yards-feet:
$$\frac{1mL}{1cc}$$

$$\frac{1yd}{3ft}$$
- Imperial Units
- Kitchen Units

$$\frac{1mi}{1760yd}$$
 $\frac{1gal}{4.55L}$ $\frac{16c}{1gal}$

- * tablespoon-• Mass * ton (metric): ounce (impe-1trial): - Imperial and $\overline{1000kq}$ Metric • Time 8tbsp* kilogramspounds: 5floz• Temperature 1kg- Farenheit-* teaspoon- $\overline{2.2lb}$ Celsius: ounce (im-* ounceperial):
 - pounds: $F \deg = (\frac{9}{5}C \deg) + 32$ $\frac{6tsp}{1floz} \qquad \frac{16oz}{1lb} \qquad C \deg = \frac{5}{9}(F \deg 32)$

1.3 Percent Error

• Percent Error Formula

$$\%$$
 error = $\frac{|\text{ actual value} - \text{theoretical value}|}{\text{theoretical value}}$

- Definitions
 - Actual Value
 - * Also known as the experimental value.
 - * It is the value that came up from an experiment's results.
 - Theoretical Value
 - * It is the calculated ideal value of the result if an experiment were to be conducted perfectly in an ideal environment.
 - Percent Error
 - * Determines the margin of error of the actual value from the theoretical value.
 - * This may tell if the experiment was conducted successfully.

1.4 Accuracy vs. Precision

- Definitions
 - Accuracy
 - * degree of conformity of a measure to a standard or a true value (Merriam-Webster Dictionary)
 - Precision
 - * the quality of strictly conforming to a pattern, standard, or convention (Merriam-Webster Dictionary)

- Accuracy and precision are not mutually exclusive, one can change without the other changing.
- Accuracy and precision are not all black and white, it is more effective to think of them as percentages rather than absolutes.
- Graphical Explanation

Figure 1: a diagram showing the permutations of accuracy and precision (Hazra, 2017)

1.5 Scientific Notation

- a succinct way of writing huge numbers by expressing them in powers of $10 (10^n)$.
 - if n > 0, then the coefficient will become larger.
 - if n < 0, then the coefficient will become smaller.
- Parts of Scientific Notation
 - $*5.67 \cdot 10^{-4}$
 - * $5.67 \rightarrow \text{coefficient}$
 - * $10 \rightarrow base$
 - * -4 \rightarrow exponent
- Examples:
 - $* 1 \cdot 10^6 = 1000000$
 - $* 4.56 \cdot 10^{-3} = 0.00456$

1.6 Significant Figures

- Significant figures are the digits in a number that are important for determining its precision. They convey how accurately a measurement is known.
- Rules for Significant Figures
 - 1. All nonzero digits are significant
 - ex. 11.73 has 4 significant figures.
 - 2. All zeros that are found between nonzero digits are significant.
 - ex. 300.45 has 5 significant figures (including the zeros between 3 and 4).
 - 3. Leading zeros (to the left of the first nonzero digit) are not significant.
 - ex. 0.0098 has 2 significant figures
 - 4. Trailing zeros for a whole number that ends with a decimal point are significant.
 - ex. 4500.00 has 6 significant figures.
 - 5. Trailing zeros to the right of the decimal place are significant.
 - ex. 0.00410 has 3 significant figures.
 - 6. Irrational numbers have an infinite amount of significant figures
 - ex. π and e are irrational numbers and therefore have an infinite amount of significant figures.
 - 7. In scientific notation, like $A \cdot 10^n$, the number of significant figures comes from the value A only. The exponent n is treated as an exact number and doesn't affect the count of significant figures.
 - ex. The value 5,200 can be written in scientific notation to reflect two, three, and four significant digits:
 - $5.2 \cdot 10^3 \rightarrow \text{two significant figures}$
 - $5.20 \cdot 10^3 \rightarrow \text{three significant figures}$
 - $5.200 \cdot 10^3 \rightarrow \text{four significant figures}$