COMP2610/6261 - Information Theory

Lecture 21: Hamming Codes & Coding Review

Robert C. Williamson

Research School of Computer Science

16 October, 2018

Noisy Channel Coding Theorem proves there exists codes with rate R < C with arbitrarily low probability of error.

Noisy Channel Coding Theorem proves there exists codes with rate R < C with arbitrarily low probability of error.

But proof was non-constructive — we used a random code in order to be able to actually calculate error probability.

Noisy Channel Coding Theorem proves there exists codes with rate R < C with arbitrarily low probability of error.

But proof was non-constructive — we used a random code in order to be able to actually calculate error probability.

What about constructive codes?

Noisy Channel Coding Theorem proves there exists codes with rate R < C with arbitrarily low probability of error.

But proof was non-constructive — we used a random code in order to be able to actually calculate error probability.

What about constructive codes?

We will focus on linear codes amd look at two simple linear codes:

- repetition codes
- Hamming codes

We will sketch what can be said about the rate and reliability of the latter

- Repetition Codes
- The (7,4) Hamming code
 - Coding
 - Decoding
 - Syndrome Decoding
 - Multiple errors
 - Error Probabilities
- 3 Coding: Review

Repetition Codes

Simplest channel code: add *redundancy* by repeating every bit of the message (say) 3 times:

Source sequence s	Transmitted sequence t
0	0 0 0
1	1 1 1

This *repetition code* is called R₃.

Repetition Codes for the BSC

Example

On a binary symmetric channel with flip probability f, receiver sees

$$r = t + \eta$$

where η is a *noise* vector

•
$$p(\eta_i = 1) = f$$

Repetition Codes for the BSC

Example

On a binary symmetric channel with flip probability *f*, receiver sees

$$r = t + \eta$$

where η is a *noise* vector

•
$$p(\eta_i = 1) = f$$

Example setting of η , and resulting message r:

s	0	0	1	0	1	1	0
t	$\widetilde{000}$	$\overrightarrow{000}$	111	$\widetilde{000}$	111	111	$\widehat{000}$
η	000	0 0 1	000	000	101	000	000
r	000	0 0 1	111	000	010	111	000

Note that elements of η are not replicated like those of t

noise acts independently on every bit

Goal: Communication with small probability of error and high rate:

- Repetition codes introduce redundancy on a per-bit basis
- Can we improve on this?

Goal: Communication with small probability of error and high rate:

- Repetition codes introduce redundancy on a per-bit basis
- Can we improve on this?

Goal: Communication with small probability of error and high rate:

- Repetition codes introduce redundancy on a per-bit basis
- Can we improve on this?

Idea: Introduce redundancy to blocks of data instead

Goal: Communication with small probability of error and high rate:

- Repetition codes introduce redundancy on a per-bit basis
- Can we improve on this?

Idea: Introduce redundancy to blocks of data instead

Block Code

A block code is a rule for encoding a length-K sequence of source bits ${\bf s}$ into a length-N sequence of transmitted bits ${\bf t}$.

- Introduce redundancy: N > K
- Focus on Linear codes

We will introduce a simple type of block code called the (7,4) Hamming code

An Example

The (7, 4) Hamming Code

Consider K = 4, and a source message $\mathbf{s} = 1000$

The repetition code R_2 produces

$$t = 1 1 0 0 0 0 0 0$$

The (7,4) Hamming code produces

$$t = 1000101$$

- Redundancy, but not repetition
- How are these magic bits computed?

- Repetition Codes
- 2 The (7,4) Hamming code
 - Coding
 - Decoding
 - Syndrome Decoding
 - Multiple errors
 - Error Probabilities
- Coding: Review

Consider K = 4, N = 7 and s = 1000

Coding

Consider K = 4, N = 7 and s = 1000

Copy the source bits into the the first 4 target bits:

Set *parity-check* bits so that the number of ones within each circle is even:

So we have $\mathbf{s} = 1\ 0\ 0\ 0 \xrightarrow{\text{encoder}} \mathbf{t} = 1\ 0\ 0\ 0\ 1\ 0\ 1$

Algebraically, we have set:

$$t_i = s_i$$
 for $i = 1, \dots, 4$
 $t_5 = s_1 \oplus s_2 \oplus s_3$
 $t_6 = s_2 \oplus s_3 \oplus s_4$
 $t_7 = s_1 \oplus s_3 \oplus s_4$

where we use modulo-2 arithmetic

In matrix form:

$$\mathbf{t} = \mathbf{G}^{T} \mathbf{s} \text{ with } \mathbf{G}^{T} = \begin{bmatrix} \mathbf{I}_{4} \\ \mathbf{P} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix},$$

where
$$\mathbf{s} = \begin{bmatrix} s_1 & s_2 & s_3 & s_4 \end{bmatrix}^T$$

G is called the *Generator matrix* of the code.

The Hamming code is linear!

Codewords

Each (unique) sequence that can be transmitted is called a *codeword*.

	S	Codeword (t)
	0010	0010111
Codeword examples:	0110	0110001
	1010	1010010
	1110	?

For the (7,4) Hamming code we have a total of 16 codewords

The (7,4) Hamming code Codewords

Write

$$\mathbf{G}^T = \begin{bmatrix} \mathbf{G}_1. & \mathbf{G}_2. & \mathbf{G}_3. & \mathbf{G}_4. \end{bmatrix}$$

where each G_{i} is a 7 dimensional bit vector

Then, the transmitted message is

$$\mathbf{t} = \mathbf{G}^T \mathbf{s}$$

$$= \begin{bmatrix} \mathbf{G}_1. & \mathbf{G}_2. & \mathbf{G}_3. & \mathbf{G}_4. \end{bmatrix} \mathbf{s}$$

$$= s_1 \mathbf{G}_1. + \ldots + s_4 \mathbf{G}_4.$$

Codewords

There are 2⁷ possible transmitted bit strings

• There are $2^7 - 2^4$ other bit strings that immediately imply corruption

• If we see a codeword, does that imply no corruption?

Any two codewords differ in at least three bits

Each original bit belongs to at least two circles

Useful in constructing reliable decoders

- Repetition Codes
- 2 The (7,4) Hamming code
 - Coding
 - Decoding
 - Syndrome Decoding
 - Multiple errors
 - Error Probabilities
- Coding: Review

Decoding

We can encode a length-4 sequence ${\bf s}$ into a length-7 sequence ${\bf t}$ using 3 parity check bits

Decoding

We can encode a length-4 sequence **s** into a length-7 sequence **t** using 3 parity check bits

t can be corrupted by noise which can flip *any* of the 7 bits (including the parity check bits):

Decoding

We can encode a length-4 sequence **s** into a length-7 sequence **t** using 3 parity check bits

t can be corrupted by noise which can flip *any* of the 7 bits (including the parity check bits):

How should we decode r?

- We could do this exhaustively using the 16 codewords
- Assuming BSC, uniform p(s): Get the most probable explanation
- Find **s** such that $\|\mathbf{t}(\mathbf{s}) \ominus \mathbf{r}\|_1$ is minimum

Decoding

We can encode a length-4 sequence ${\bf s}$ into a length-7 sequence ${\bf t}$ using 3 parity check bits

t can be corrupted by noise which can flip *any* of the 7 bits (including the parity check bits):

How should we decode r?

- We could do this exhaustively using the 16 codewords
- Assuming BSC, uniform p(s): Get the most probable explanation
- Find **s** such that $||\mathbf{t}(\mathbf{s}) \ominus \mathbf{r}||_1$ is minimum

We can get the most probable source vector in an more *efficient* way.

Decoding Example 1

We have $\mathbf{s} = 1\ 0\ 0\ 0 \overset{\text{encoder}}{\longrightarrow} \mathbf{t} = 1\ 0\ 0\ 0\ 1\ 0\ 1 \overset{\text{noise}}{\longrightarrow} \mathbf{r} = 1\ 1\ 0\ 0\ 1\ 0\ 1$:

- (1) Detect circles with wrong (odd) parity
 - What bit is responsible for this?

Decoding Example 1

We have $\mathbf{s} = 1\ 0\ 0\ 0 \overset{\text{encoder}}{\longrightarrow} \mathbf{t} = 1\ 0\ 0\ 0\ 1\ 0\ 1 \overset{\text{noise}}{\longrightarrow} \mathbf{r} = 1\ 1\ 0\ 0\ 1\ 0\ 1$:

- (2) Detect culprit bit and flip it
 - The decoded sequence is $\hat{\mathbf{s}} = 1000$

Decoding Example 2

We have $\mathbf{s} = 1\ 0\ 0\ 0 \overset{\text{encoder}}{\longrightarrow} \mathbf{t} = 1\ 0\ 0\ 0\ 1\ 0\ 1 \overset{\text{noise}}{\longrightarrow} \mathbf{r} = 1\ 0\ 0\ 0\ 0\ 1$:

- (1) Detect circles with wrong (odd) parity
 - What bit is responsible for this?

Decoding Example 2

We have $\mathbf{s} = 1\ 0\ 0\ 0 \overset{\text{encoder}}{\longrightarrow} \mathbf{t} = 1\ 0\ 0\ 0\ 1\ 0\ 1 \overset{\text{noise}}{\longrightarrow} \mathbf{r} = 1\ 0\ 0\ 0\ 0\ 1$:

- (2) Detect culprit bit and flip it
 - The decoded sequence is $\hat{\mathbf{s}} = 1000$

Decoding Example 3

We have $\mathbf{s} = 1000 \stackrel{\text{encoder}}{\longrightarrow} \mathbf{t} = 1000101 \stackrel{\text{noise}}{\longrightarrow} \mathbf{r} = 1010101$:

- (1) Detect circles with wrong (odd) parity
 - What bit is responsible for this?

Decoding Example 3

We have $\mathbf{s} = 1\ 0\ 0\ 0 \overset{\text{encoder}}{\longrightarrow} \mathbf{t} = 1\ 0\ 0\ 0\ 1\ 0\ 1 \overset{\text{noise}}{\longrightarrow} \mathbf{r} = 1\ 0\ 1\ 0\ 1\ 0\ 1$:

- (2) Detect culprit bit and flip it
 - The decoded sequence is $\hat{\mathbf{s}} = 1000$

- Repetition Codes
- 2 The (7,4) Hamming code
 - Coding
 - Decoding
 - Syndrome Decoding
 - Multiple errors
 - Error Probabilities
- 3 Coding: Review

Optimal Decoding Algorithm: Syndrome Decoding

- Define the syndrome as the length-3 vector \mathbf{z} that describes the pattern of violations of the parity bits r_5 , r_6 , r_7 .
 - ightharpoonup $\mathbf{z}_i = 1$ when the *i*th parity bit does not match the parity of \mathbf{r}
 - Flipping a single bit leads to a different syndrome

Optimal Decoding Algorithm: Syndrome Decoding

- Define the syndrome as the length-3 vector \mathbf{z} that describes the pattern of violations of the parity bits r_5 , r_6 , r_7 .
 - ightharpoonup $\mathbf{z}_i = 1$ when the *i*th parity bit does not match the parity of \mathbf{r}
 - Flipping a single bit leads to a different syndrome
- ② Check parity bits r_5 , r_6 , r_7 and identify the syndrome

Optimal Decoding Algorithm: Syndrome Decoding

- **①** Define the syndrome as the length-3 vector **z** that describes the pattern of violations of the parity bits r_5 , r_6 , r_7 .
 - ightharpoonup $\mathbf{z}_i = 1$ when the *i*th parity bit does not match the parity of \mathbf{r}
 - Flipping a single bit leads to a different syndrome
- ② Check parity bits r_5 , r_6 , r_7 and identify the syndrome
- Unflip the single bit responsible for this pattern of violation
 - This syndrome could have been caused by other noise patterns

Optimal Decoding Algorithm: Syndrome Decoding

- Define the syndrome as the length-3 vector **z** that describes the pattern of violations of the parity bits r_5 , r_6 , r_7 .
 - ightharpoonup $\mathbf{z}_i = 1$ when the *i*th parity bit does not match the parity of \mathbf{r}
 - Flipping a single bit leads to a different syndrome
- ② Check parity bits r_5 , r_6 , r_7 and identify the syndrome
- Unflip the single bit responsible for this pattern of violation
 - This syndrome could have been caused by other noise patterns

z	000	0 0 1	010	011	100	101	110	111
Flip bit	none	r ₇	<i>r</i> ₆	<i>r</i> ₄	<i>r</i> ₅	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> ₃

Optimal Decoding Algorithm: Syndrome Decoding

Given $\mathbf{r} = r_1, \dots, r_7$, assume BSC with small noise level f:

- Define the syndrome as the length-3 vector **z** that describes the pattern of violations of the parity bits r_5 , r_6 , r_7 .
 - ightharpoonup $\mathbf{z}_i = 1$ when the *i*th parity bit does not match the parity of \mathbf{r}
 - Flipping a single bit leads to a different syndrome
- ② Check parity bits r_5 , r_6 , r_7 and identify the syndrome
- Unflip the single bit responsible for this pattern of violation
 - ▶ This syndrome could have been caused by other noise patterns

z	000	0 0 1	010	011	100	101	110	111
Flip bit	none	r ₇	<i>r</i> ₆	r_4	<i>r</i> ₅	<i>r</i> ₁	r_2	r_3

The optimal decoding algorithm unflips at most one bit

Syndrome Decoding: Matrix Form

Recall that we just need to compare the expected parity bits with the actual ones we received:

$$z_1 = r_1 \oplus r_2 \oplus r_3 \ominus r_5$$

$$z_2 = r_2 \oplus r_3 \oplus r_4 \ominus r_6$$

$$z_3 = r_1 \oplus r_3 \oplus r_4 \ominus r_7,$$

Syndrome Decoding: Matrix Form

Recall that we just need to compare the expected parity bits with the actual ones we received:

$$z_1 = r_1 \oplus r_2 \oplus r_3 \ominus r_5$$

$$z_2 = r_2 \oplus r_3 \oplus r_4 \ominus r_6$$

$$z_3 = r_1 \oplus r_3 \oplus r_4 \ominus r_7,$$

but in modulo-2 arithmetic $-1 \equiv 1$ so we can replace \ominus with \oplus so we have:

$$\mathbf{z} = \mathbf{Hr} \text{ with } \mathbf{H} = \begin{bmatrix} \mathbf{P} & \mathbf{I}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Syndrome Decoding: Matrix Form

Recall that we just need to compare the expected parity bits with the actual ones we received:

$$z_1 = r_1 \oplus r_2 \oplus r_3 \ominus r_5$$

$$z_2 = r_2 \oplus r_3 \oplus r_4 \ominus r_6$$

$$z_3 = r_1 \oplus r_3 \oplus r_4 \ominus r_7,$$

but in modulo-2 arithmetic $-1 \equiv 1$ so we can replace \ominus with \oplus so we have:

$$\mathbf{z} = \mathbf{Hr} \text{ with } \mathbf{H} = \begin{bmatrix} \mathbf{P} & \mathbf{I}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Homework: What is the syndrome for a codeword?

- Repetition Codes
- 2 The (7,4) Hamming code
 - Coding
 - Decoding
 - Syndrome Decoding
 - Multiple errors
 - Error Probabilities
- 3 Coding: Review

Optimal Decoding Algorithm: Syndrome Decoding

When the noise level *f* on the BSC is small, it may be reasonable that we see only a single bit flip in a sequence of 4 bits

The syndrome decoding method exactly recovers the source message in this case

• c.f. Noise flipping one bit in the repetition code R₃

But what happens if the noise flips more than one bit?

Decoding Example 4: Flipping 2 Bits

We have $\mathbf{s} = 1\ 0\ 0\ 0 \overset{\text{encoder}}{\longrightarrow} \mathbf{t} = 1\ 0\ 0\ 0\ 1\ 0\ 1 \overset{\text{noise}}{\longrightarrow} \mathbf{r} = 1\ 0\ 1\ 0\ 1\ 0 \overset{\text{o}}{\longrightarrow}$:

- (1) Detect circles with wrong (odd) parity
 - What bit is responsible for this?

Decoding Example 4: Flipping 2 Bits

We have $\mathbf{s} = 1000 \stackrel{\text{encoder}}{\longrightarrow} \mathbf{t} = 1000101 \stackrel{\text{noise}}{\longrightarrow} \mathbf{r} = 1010100$:

- (2) Detect culprit bit and flip it
 - The decoded sequence is $\hat{\mathbf{s}} = 1 \ 1 \ 1 \ 0$
 - ▶ We have made 3 errors but only 2 involve the actual message

Decoding Exercises

[Mackay, Ex 1.5]: Decode the following sequences using the syndrome decoding for the (7,4) Hamming code:

(a)
$$\mathbf{r} = 1101011 \rightarrow \hat{\mathbf{s}} = ??$$

(b)
$$\mathbf{r} = 0110110 \rightarrow \hat{\mathbf{s}} = ??$$

(c)
$$\mathbf{r} = 01001111 \rightarrow \hat{\mathbf{s}} = ??$$

(d)
$$\mathbf{r} = 11111111 \rightarrow \hat{\mathbf{s}} = ??$$

Work out the answers on your own.

The (7,4) Hamming code: Solution

For each exercise we simply compute the *syndrome* and use the optimal decoding algorithm (Table above) to determine which bit we should unflip.

(a)
$$\mathbf{r} = 1101011 \rightarrow : z_1 = r_1 \oplus r_2 \oplus r_3 \oplus r_5 = 0$$
 $z_2 = r_2 \oplus r_3 \oplus r_4 \oplus r_6 = 1$ $z_3 = r_1 \oplus r_3 \oplus r_4 \oplus r_7 = 1$ Therefore $\mathbf{z} = 011$, we unflip r_4 , $\hat{\mathbf{s}} = 1100$

(b)
$$\mathbf{r} = 0110110 \rightarrow \mathbf{z} = 111$$
, we unflip r_3 , $\hat{\mathbf{s}} = 0100$

(c)
$$\mathbf{r} = 0100111 \rightarrow \mathbf{z} = 001$$
, we unflip r_7 , $\hat{\mathbf{s}} = 0100$

(d) $\mathbf{r} = 11111111 \rightarrow \mathbf{z} = 000$, we don't unflip any bit, $\hat{\mathbf{s}} = 1111$

Zero-Syndrome Noise Vectors

[Mackay, Ex 1.7] Find some noise vectors that give the all-zero syndrome (so that the optimal decoding algorithm will not correct them). How many of these vectors are there?

Solution

By definition we have that the all-zero syndrome implies that the corresponding noise components should cancel out. For example for the first component we have:

 $z_1=r_1 \oplus r_2 \oplus r_3 \oplus r_5=t_1 \oplus t_2 \oplus t_3 \oplus t_5 \oplus \eta_1 \oplus \eta_2 \oplus \eta_3 \oplus \eta_5$. But $t_i=s_i$ for $i=1,\ldots,4$ and $t_5=s_1 \oplus s_2 \oplus s_3$. Therefore $z_1=2s_1 \oplus 2s_2 \oplus 2s_3 \oplus \eta_1 \oplus \eta_2 \oplus \eta_3 \oplus \eta_5=\eta_1 \oplus \eta_2 \oplus \eta_3 \oplus \eta_5$. Thus, we have:

$$z_1 = \eta_1 \oplus \eta_2 \oplus \eta_3 \oplus \eta_5 = 0$$

$$z_2 = \eta_2 \oplus \eta_3 \oplus \eta_4 \oplus \eta_6 = 0$$

$$z_3 = \eta_1 \oplus \eta_3 \oplus \eta_4 \oplus \eta_7 = 0$$

which is equivalent to:

$$\eta_5 = \eta_1 \oplus \eta_2 \oplus \eta_3
\eta_6 = \eta_2 \oplus \eta_3 \oplus \eta_4
\eta_7 = \eta_1 \oplus \eta_3 \oplus \eta_4$$

Solution (cont.)

As η_5 is determined by η_1,η_2,η_3 we have $2^3=8$ possibilities here. Now, for fixed η_1,η_2 (and η_3) in the previous step we only have two possibilities for η_4 , which determines η_6 .

We have now that all the variables are set and η_7 is fully determined by their values.

Thus, we have 8 \times 2 \times 1 possible noise vectors that yield the all-zero syndrome.

The trivial noise vectors that yield this syndrome are: $\eta =$ 0000000 and $\eta =$ 1111111.

However, we can follow the above procedure and set the corresponding variables.

This is equivalent to having arbitrary settings for η_1, η_2, η_3 and η_4 which gives us 16 possible noise vectors which exactly correspond to the 16 codewords of the (7,4) Hamming code.

- Repetition Codes
- The (7,4) Hamming code
 - Coding
 - Decoding
 - Syndrome Decoding
 - Multiple errors
 - Error Probabilities
- 3 Coding: Review

Error Probabilities

Error Probabilities

$$p(\mathsf{Block}\;\mathsf{Error})\;:p_B=p(\hat{\mathbf{s}}\neq\mathbf{s})$$

Error Probabilities

$$p(\mathsf{Block}\;\mathsf{Error})\;:p_B=p(\hat{\mathbf{s}}\neq\mathbf{s})$$

$$p(\text{Bit Error}) : p_b = \frac{1}{K} \sum_{k=1}^{K} p(\hat{s}_k \neq s_k)$$

Error Probabilities

$$p(\mathsf{Block}\;\mathsf{Error})\;:p_B=p(\hat{\mathbf{s}}\neq\mathbf{s})$$

$$p(\text{Bit Error}) : p_b = \frac{1}{K} \sum_{k=1}^K p(\hat{s}_k \neq s_k)$$

Rate :
$$R = \frac{K}{N} = \frac{4}{7}$$

Error Probabilities

Decoding Error: Occurs if at least one of the decoded bits \hat{s}_i does not match the corresponding source bit s_i for i = 1, ... 4

$$p(\mathsf{Block}\;\mathsf{Error})\;$$
: $p_B=p(\hat{\mathbf{s}}\neq\mathbf{s})$

$$p(\text{Bit Error}) : p_b = \frac{1}{K} \sum_{k=1}^K p(\hat{s}_k \neq s_k)$$

Rate :
$$R = \frac{K}{N} = \frac{4}{7}$$

What is the probability of block error for the (7,4) Hamming code with f = 0.1?

Leading-Term Error Probabilities

Block Error: This occurs when 2 or more bits in the block of 7 are flipped

We can approximate p_B to the leading term:

$$\rho_B = \sum_{m=2}^{7} {7 \choose m} f^m (1-f)^{7-m}$$
$$\approx {7 \choose 2} f^2 = 21 f^2.$$

Leading-Term Error Probabilities

Bit Error: Given that a block error occurs, the noise must corrupt 2 or more bits

The most probable case is when the noise corrupts 2 bits, which induces 3 errors in the decoded vector:

Leading-Term Error Probabilities

Bit Error: Given that a block error occurs, the noise must corrupt 2 or more bits

The most probable case is when the noise corrupts 2 bits, which induces 3 errors in the decoded vector:

•
$$p(\hat{s}_i \neq s_i) \approx \frac{3}{7} p_B$$
 for $i = 1, \dots, 7$

Leading-Term Error Probabilities

Bit Error: Given that a block error occurs, the noise must corrupt 2 or more bits

The most probable case is when the noise corrupts 2 bits, which induces 3 errors in the decoded vector:

•
$$p(\hat{s}_i \neq s_i) \approx \frac{3}{7}p_B$$
 for $i = 1, \dots, 7$

All bits are equally likely to be corrupted (due to symmetry)

Leading-Term Error Probabilities

Bit Error: Given that a block error occurs, the noise must corrupt 2 or more bits

The most probable case is when the noise corrupts 2 bits, which induces 3 errors in the decoded vector:

•
$$p(\hat{s}_i \neq s_i) \approx \frac{3}{7}p_B$$
 for $i = 1, \dots, 7$

- All bits are equally likely to be corrupted (due to symmetry)
- $\rho_b \approx \frac{3}{7} \rho_B \approx 9 f^2$

What Can Be Achieved with Hamming Codes?

- H(7,4) improves p_b at a moderate rate R = 4/7
- BCH are a generalization of Hamming codes.

- Repetition Codes
- The (7,4) Hamming code
 - Coding
 - Decoding
 - Syndrome Decoding
 - Multiple errors
 - Error Probabilities
- 3 Coding: Review

Coding: Review

Source Coding for Compression

- Shrink sequences
- Identify and remove redundancy
- Size limited by entropy
- Source Coding Theorems (Block & Variable Length)

Channel Coding for Reliability

- Protect sequences
- Add known form of redundancy
- Rate limited by capacity
- Noisy-Channel Coding Theorem