中国科学技术大学

2015-2016 学年第二学期考试试卷-答案

考试科目:	原子物理学	得分:	得分:		
学生所在系:	姓名 :	学号:			

物理学常数:

电子电荷 $e = 1.60 \times 10^{-19} \text{C}$, 电子质量 $m_e = 9.11 \times 10^{-31} \text{kg} = 0.511 \text{MeV}/c^2$ Planck 常数 $h = 6.63 \times 10^{-34} \text{J·s}$, 真空光速 $c = 3.00 \times 10^8 \text{m·s}^{-1}$ 真空磁导率 $\mu_0=4\pi\times 10^{-7} \text{N·A}^{-2}$, 真空介电常数 $\epsilon_0=8.85\times 10^{-12} \text{C}^2\cdot \text{J}^{-1}\cdot \text{m}^{-1}$ Rydberg 常数 $R_\infty=10973731\text{m}^{-1}$, 原子质量单位 $u=1.66\times 10^{-27}\text{kg}=931\text{MeV}/c^2$

玻尔半径 $a_1 = 0.529 \times 10^{-10} \text{m}$, 阿伏伽德罗常数 $N_A = 6.022 \times 10^{23} \text{mol}^{-1}$

玻尔兹曼常数 $k = 8.62 \times 10^{-5} \text{eV} \cdot \text{K}^{-1}$

精细结构常数
$$\alpha = \frac{e^2}{4\pi\varepsilon_0} \frac{1}{hc} = \frac{1}{137.036}$$
,Bohr 磁子 $\mu_B = \frac{eh}{2m_e} = 0.927 \times 10^{-23} \text{J} \cdot \text{T}^{-1}$

组合常数:

$$\frac{e^2}{4\pi\varepsilon_0}$$
 =1.44fm·MeV, $m_e c^2$ =0.511MeV, hc = 1.240nm·keV

一. 选择题 (每题 3 分, 共 30 分, 请将答案填入下表中)

1	2	3	4	5	6	7	8	9	10
A	C	D	В	C	С	С	В	В	D

- 1. 在一次使用金箔做 α 粒子散射实验的过程中,探测器分别在散射角 120°和 90°处,相同时间内测量到的粒子数之比为
- **A. 2: 3** B. 4: 9 C. 9: 16 D. 16: 9

- 2. 导致碱金属原子能级精细结构辟裂的原因是
 - A. 原子实的极化和轨道贯穿 B. 运动的相对论效应
 - C. 自旋-轨道相互作用 D. 以上三者都是

- 3. 在弗兰克-赫兹实验中,观测到 Hg 原子发出的波长为 184.9nm 的光谱线,若 不考虑反冲,使 Hg 原子发出该谱线的电子的动能应当为
- A. 4.68eV B. 4.9eV C. 5.78eV **D. 6.73eV**

- 4. 在戴维逊-革末实验中,通过测量被 Ni 晶体散射的电子束在空间的分布特征,

 - A. 确定了 e/m 的值 B. 证实了电子的波动性
 - C. 认定了光电效应的确实性 D. 测量了 Ni 原子的大小

	В						
5.	基态氧原子核外	电子的排	布为 1s ² 2s ²	2p ⁴ ,依排	居泡利原理和	和洪德定则,	其能量
	最低的原子态为						
	A. $2^{1}S_{0}$	B. $2^{3}P_{0}$	С.	2^3P_2	D. 2^{3} S	51	
	C						
5.	Be 为周期表中第						
	成原子态。若将		数发为 2s3p	的电子组	且态,通过国	电偶极跃迁能	够发出
	的光谱线的数目	•					
		B. 9	C. 10	D.	6		
7	C 甘大 g .	百乙良粉斗	ョ 21 〉 技力	由乙排去	У ГА 12 . 14 2	. 古甘大台	и с · Б
٠.	基态 Sc 原子() 子通过斯特恩-棒			电丁排机	八[Ar]3d4s ⁻	,一凩荃心	Ŋ Sc 原
	1 通过别符总-19 A. 2 束			1 亩	D 6 世	í	
	C C	D. 3 A	С.	7 / 1	D. 0 %		
3.	_	的交替规	律, 周期表	中第二主	:族的锶原ヨ	子(7=38)能	级多重
•	结构是	LH 3 / C 12 / 20	11 7 7:4794-60	. 1 /4-1	7/2/CH 3 MG//31 3	(2 50) [[
		В. —	、三重	C. 单	重 [) . 二、四重	
	В						
9.	基态氢原子在波	设导腔中 ,	当微波发生	器频率调	到 1.40×10	0 ¹⁰ Hz 时,发	生了顺
	磁共振。此时恒	巨定磁场的	B值应为				
	A. 0.02T	B. 0.	.500T	C. 5.00	T D	. 1.40T	
						_	
	В						1. /m 1
10	_ . 电子组态 2p3d		$O_{3, 2, 1}, 2s2$				电偶极
10	. 电子组态 2p3d 辐射跃迁所产生	E的光谱线	O _{3, 2, 1} ,2s2 _] 的数为	p可形成	${}^{3}P_{2, 1, 0}, {}^{3}D$		电偶极
10	. 电子组态 2p3d 辐射跃迁所产生 A. 9	E的光谱线	$O_{3, 2, 1}, 2s2$	p可形成	${}^{3}P_{2, 1, 0}, {}^{3}D$		电偶极
10	. 电子组态 2p3d 辐射跃迁所产生	E的光谱线	O _{3, 2, 1} ,2s2 _] 的数为	p可形成	${}^{3}P_{2, 1, 0}, {}^{3}D$		电偶极
	- 电子组态 2p3d 辐射跃迁所产生 A. 9 D	E的光谱线 B. 7	O _{3, 2, 1} ,2s2j 的数为 C.6	p可形成	³ P _{2, 1, 0} , ³ D D. 0	$P_{3, 2, 1} \rightarrow {}^{3}P_{2, 1, 0}$	电偶极
10	. 电子组态 2p3d 辐射跃迁所产生 A. 9 D	E的光谱线 B. 7	O _{3, 2, 1} ,2s2j 的数为 C.6	p可形成	³ P _{2, 1, 0} , ³ D D. 0	$P_{3, 2, 1} \rightarrow {}^{3}P_{2, 1, 0}$	电偶极
	. 电子组态 2p3d 辐射跃迁所产生 A. 9 D	E的光谱线 B. 7 E2分 , 共	O _{3, 2, 1} ,2s2 _j 的数为 C.6 30 分,请	p 可形成 将答案直	³ P _{2, 1, 0} , ³ D D. 0	P _{3,2,1} → ³ P _{2,1,0}	
=	电子组态 2p3d 辐射跃迁所产生A. 9填空题 (每空按照玻尔的氢原	E的光谱线 B. 7 E 2 分,共 頁子模型,	O _{3, 2, 1} ,2s2j 的数为 C. 6 30 分,请 电子从 n=5	p 可形成 将答案直 的轨道向	³ P _{2, 1, 0} , ³ D D. 0 接填在本 词 可 n=2 的轨道	/ _{3, 2, 1} → ³ P _{2, 1, 0} (卷中) 道跃迁,发出	
二 1. 线	 电子组态 2p3d 辐射跃迁所产生A. 9 D 填空题 (每空 按照玻尔的氢原的波长为 434 	E的光谱线 B. 7 E 2 分,共 至子模型, 4.1 nm	O _{3, 2, 1} ,2s2 的数为 C. 6 30 分,请 电子从 n=5 ,跃迁后原	p 可形成 将答案直 的轨道向 i子的角动	³ P _{2, 1, 0} , ³ D D. 0 接填在本证 可 n=2 的轨边 力量为2 h	¹ 3, 2, 1→ ³ P _{2, 1, 0} 【卷中) 道跃迁,发出 —	的光谱
二 1. 线	电子组态 2p3d 辐射跃迁所产生A. 9填空题 (每空按照玻尔的氢原	E的光谱线 B. 7 E 2 分,共 至子模型, 4.1 nm	O _{3, 2, 1} ,2s2 的数为 C. 6 30 分,请 电子从 n=5 ,跃迁后原	p 可形成 将答案直 的轨道向 i子的角动	³ P _{2, 1, 0} , ³ D D. 0 接填在本证 可 n=2 的轨边 力量为2 h	¹ 3, 2, 1→ ³ P _{2, 1, 0} 【卷中) 道跃迁,发出 —	的光谱
二 1. 线。 2.	 电子组态 2p3d 辐射跃迁所产生A. 9 D 填空题 (每空 按照玻尔的氢原的波长为 434 	E的光谱线 B. 7 E 2 分,共 是子模型, 4.1 nm ² S _{1/2} 的寿命	O _{3, 2, 1} , 2s2 的数为 C. 6 30 分,请 电子从 n=5 ,跃迁后原 分 10 ⁻¹ s,	p 可形成 将答案直 的轨道向 i子的角动	³ P _{2, 1, 0} , ³ D D. 0 接填在本证 可 n=2 的轨边 力量为2 h	¹ 3, 2, 1→ ³ P _{2, 1, 0} 【卷中) 道跃迁,发出 —	的光谱
二 1. 线。 级。	 电子组态 2p3d 辐射跃迁所产生A. 9 填空题 (每空按照玻尔的氢原的波长为434 氢原子亚稳态 2 	E的光谱线 B. 7 ≧2分, 共 夏子模型, 4.1 nm ² S _{1/2} 的寿命	D _{3, 2, 1} , 2s2 的数为 C. 6 30 分, 请 电子从 n=5 ,跃迁后原 令为 10 ⁻¹ s, 倍.	p 可形成 将答案直 的轨道向 译子的角琴 激发态 2	³ P _{2, 1, 0} , ³ D D. 0 I接填在本证 In=2 的轨边 力量为2 h ² P _{1/2} 的寿命	《卷中》 道跃迁,发出 ——· 为 10 ⁻⁹ s,这间	的光谱
二 1. 线 2. 级 3.	. 电子组态 2p3d 辐射跃迁所产生 A. 9 D . 填空题 (每空 按照玻尔的氢原 的波长为43d 氢原子亚稳态 2 的自然宽度相差_	E的光谱线 B. 7 E 2 分,共 長子模型, 4.1 nm ² S _{1/2} 的寿命 10 ⁸ 原子,在弱	D _{3, 2, 1} , 2s2 的数为 C. 6 30 分,请 电子从 n=5 ,跃迁后原 令为 10 ⁻¹ s, 	p 可形成 将答案直 的轨的角式 激发态 2	³ P _{2, 1, 0} , ³ D D. 0 接填在本证 In=2 的轨道 力量为2h ² P _{1/2} 的寿命	《卷中》 道跃迁,发出 ——· 为 10 ⁻⁹ s,这间	的光谱
二 1. 线 2. 级 3. 约 4.	. 电子组态 2p3d 辐射跃迁所产生 A. 9 D . 填空题 (每空 按照玻尔的氢原 的波长为43d 氢原子亚稳态 2 的自然宽度相差 处于 ³P ₀ 态的镁 镁原子,在弱磁量 Ti 原子 3d³4s 组	E的光谱线 B. 7 E 2 分,共 是 2 分,共 是子模型, 4.1 nm ² S _{1/2} 的寿命 几0 ⁸ 原子,将分 场本形成的	D _{3, 2, 1} , 2s2 的数为 C. 6 30 分, 请 电子跃后后, 为 10 ⁻¹ s, 一份的一份的一份的一份的一个。 是一个的一个。	p 可形成 将答案 道 所	3P _{2,1,0} , 3D D. 0 接填在本证 可 n=2 的轨道 力量为2 h ² P _{1/2} 的寿命 1 级. 态分别高出	【卷中) 道跃迁,发出 —· 为 10 ⁻⁹ s,这〕 级.而处于	的光谱 两个能 •P ₂ 态
二 1. 线 2. 级 3. 的 4. 655	. 电子组态 2p3d 辐射跃迁所产生A. 9 D	E的光谱线 B. 7 E 2 分,共 夏子模型, 4.1 nm ² S _{1/2} 的寿命 几08 原子,将成的 51.004cm ⁻¹ 、	D _{3, 2, 1} , 2s2 的数为 C. 6 30 分,请 电子从 n=5 ,为 10 ⁻¹ s, 一倍. 号磁场一5。 5 6742.755	p 可形成 将答案 的 的 子 数 分 分	3P _{2,1,0} , 3D D. 0 I接填在本证 In=2 的轨边 力量为2h ² P _{1/2} 的寿命 1 级. 态分别高出 42.965.0 cm	【卷中) 道跃迁,发出 ——· 为 10 ⁻⁹ s,这页 级.而处于: 4 6556.833cm	的光谱 两个能 •P ₂ 态
二 1. 线 2. 级 3. 的 4. 655	. 电子组态 2p3d 辐射跃迁所产生 A. 9 D . 填空题 (每空 按照玻尔的氢原 的波长为43d 氢原子亚稳态 2 的自然宽度相差 处于 ³P ₀ 态的镁 镁原子,在弱磁量 Ti 原子 3d³4s 组	E的光谱线 B. 7 E 2 分,共 夏子模型, 4.1 nm ² S _{1/2} 的寿命 几08 原子,将成的 51.004cm ⁻¹ 、	D _{3, 2, 1} , 2s2 的数为 C. 6 30 分,请 电子从 n=5 ,为 10 ⁻¹ s, 一倍. 号磁场一5。 5 6742.755	p 可形成 将答案 的 的 子 数 分 分	3P _{2,1,0} , 3D D. 0 I接填在本证 In=2 的轨边 力量为2h ² P _{1/2} 的寿命 1 级. 态分别高出 42.965.0 cm	【卷中) 道跃迁,发出 ——· 为 10 ⁻⁹ s,这页 级.而处于: 4 6556.833cm	的光谱 两个能 •P ₂ 态
二 1. 3. 3. 4. 659 FI	. 电子组态 2p3d 辐射跃迁所产生A. 9 D	E的光谱线 B. 7 E 2 分,共 是 2 分,共 是子模型, 4.1 nm ² S _{1/2} 的寿命 历,存分 场。态形成的 51.004cm ⁻¹ 、 最低能级的	D _{3, 2, 1} , 2s2 的数为 C. 6 30 分,请 电 跃	p 可形成 将答案 道 角 没 分相对1、8 是 cm ⁻¹ 、数 <i>J</i> =	3P _{2,1,0} , 3D D. 0 接填在本证 可 n=2 的轨道 力量为2 h 2P _{1/2} 的寿命 1个能 级. 态分别高出 42.965.0 cm	【卷中) 道跃迁,发出 ——· 为 10 ⁻⁹ s,这可 ——· 4 6556.833cm ——·	的光谱 两个能 ¹ 、为
二 1. 3. 3. 4. 5. 5.	. 电子组态 2p3d 辐射跃迁所产生A. 9 D	E的光谱线 B. 7 E 2 分, 共 子模型, 1.1 nm 2 nm 2 nm 2 nm 2 nm 2 nm 3 nm 4 nm 4 nm 5 nm 5 nm 5 nm 5 nm 5 nm 5	D _{3, 2, 1} , 2s2 的数为 C. 6 30 分,请 电 跃 近后, 为 10 ⁻¹ s, 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	p 可	3P _{2,1,0} , 3D D. 0 接填在本证 可 n=2 的轨动 量为2 h 2P _{1/2} 的寿命 1 级. 态分别高出42.965.0 cm = 1	【卷中) 道跃迁,发出 一· 为 10 ⁻⁹ s,这可 级. 而处于 4 6556.833cm 一 ⁻¹ ,该 5 重态 ——·	的光谱 P 2 态 -1、为 组态 为 数
二 1. 3. 3. 4. 5. 5.	. 电子组态 2p3d 辐射跃迁所产生A. 9 D · 填空题 (每空 按照玻尔的氢原的波长为434 氢原子亚稳态 2 的自然宽度和64 cm ⁻¹ 、666 2345 ,其中能量:	E的光谱线 B. 7 E 2 分, 共 子模型, 1.1 nm 2 nm 2 nm 2 nm 2 nm 2 nm 3 nm 4 nm 4 nm 5 nm 5 nm 5 nm 5 nm 5 nm 5	D _{3, 2, 1} , 2s2 的数为 C. 6 30 分,请 电 跃 近后, 为 10 ⁻¹ s, 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	p 可	3P _{2,1,0} , 3D D. 0 接填在本证 可 n=2 的轨动 量为2 h 2P _{1/2} 的寿命 1 级. 态分别高出42.965.0 cm = 1	【卷中) 道跃迁,发出 一· 为 10 ⁻⁹ s,这可 级. 而处于 4 6556.833cm 一 ⁻¹ ,该 5 重态 ——·	的光谱 P 2 态 -1、为 组态 为 数

- 6. Hg 原子的电子组态为 6s6d,按 jj 耦合方式,形成的能级数为_4___,耦合结果表示为 $(\frac{1}{2},\frac{3}{2})_{1,2}$, $(\frac{1}{2},\frac{5}{2})_{2,3}$ _____.
- 7. 从 X 射线管发出的 $K\alpha$ 线的波长为 0.071nm,该射线管阳极靶材料的原子序数为 42 . $K\alpha X$ 射线是由 $2p\rightarrow 1s$ 或 ${}^2S_{1/2}\rightarrow {}^2P_{1/2}$ 跃迁产生的,实际上包含 2 条波长很接近的谱线.
- 8. 由实验测得 $^{1}H^{35}Cl$ 分子的转动常数 $B=10.397cm^{-1}$,该分子的约化质量为 1.63 $\times 10^{-27}kg$,则 HCl 分子中两原子的平衡距离为____nm.

三. 计算题 (共 40 分, 请将解答写在试卷上)

- 1. **(10 分)** 氢原子中电子的波函数为 $\psi_{211} = \frac{1}{8\sqrt{\pi}} (\frac{1}{a_1})^{\frac{3}{2}} (\frac{r}{a_1}) e^{-\frac{r}{2a_1}} \sin \theta e^{i\varphi}$,其中 a_1 为第一玻尔半径.
- (1) 计算电子沿径向分布的几率密度;
- (2) 求出电子沿径向出现几率极大的壳层的半径;
- (3) 这一状态的电子,轨道角动量是多少?该角动量在 z 方向的分量是多少?解:(1) 沿径向分布的几率密度为

$$R_{21}^2 r^2 = r^2 \iint |\psi_{211}|^2 \sin\theta d\theta d\phi = \frac{1}{64\pi} (\frac{1}{a_1})^3 (\frac{r}{a_1})^2 e^{-\frac{r}{a_1}} r^2 \int_0^{\pi} \sin^2\theta d\theta \int_0^{2\pi} d\phi$$

$$= \frac{2\pi}{64\pi} \left(\frac{1}{a_1}\right)^3 \left(\frac{r}{a_1}\right)^2 e^{-\frac{r}{a_1}} r^2 \int_0^{\pi} \frac{1 - \cos 2\theta}{2} d\theta = \frac{\pi}{64} \left(\frac{1}{a_1}\right)^3 \left(\frac{r}{a_1}\right)^2 r^2 e^{-\frac{r}{a_1}} = \frac{\pi}{64} \left(\frac{1}{a_1}\right)^5 r^4 e^{-\frac{r}{a_1}}$$

(2)
$$\frac{d(R_{21}^2r^2)}{dr} = \frac{\pi}{64} (\frac{1}{a_1})^5 \frac{d(r^4 e^{-\frac{r}{a_1}})}{dr} = \frac{\pi}{64} (\frac{1}{a_1})^5 (4r^3 e^{-\frac{r}{a_1}} - \frac{1}{a_1}r^4 e^{-\frac{r}{a_1}})$$

$$= \frac{\pi}{64} \left(\frac{1}{a_1}\right)^5 \left(\frac{4}{r} - \frac{1}{a_1}\right) r^4 e^{-\frac{r}{a_1}}$$

r=0, $r=4a_1$ 导数为零, 取极大值的条件为 $r=4a_1$ 。

(3) 轨道角动量
$$p_l = \sqrt{l(1+1)}h = \sqrt{2}h$$

轨道角动量在 z 方向的分量 $p_{l_z} = +1h$

2. (8分) 右表为 Na 原子的几个能量较低的能级与基态能级的差值.

(1) Na 原子是单个价电子的原子; 原子态 为双重态, 但某些双重态只有单一能级, 为 什么?

(2) 将表中的电子组态(只需要写出价电子 态即可)和原子态填写完整;

(3)若原子被激发到 **29172.889** cm⁻¹ 的能级,向低能级跃迁能够产生哪些电偶极辐射?

(4) 若原子被激发到 30272.58cm⁻¹ 的能级,向低能级跃迁能够产生哪些电偶极辐射?解:(1) S 能级是单层的,因为轨道角动量为0,没有自旋-轨道相互作用,因而不会导致能级分裂。或者,总角动量量子数只能取单一的 1/2,因而能级是单层的。

电子组态	原子态	能级(cm ⁻¹)
3s	$3^2S_{1/2}$	0.000
3р	$3^{2}P_{1/2}$	16956.172
3р	$3^{2}P_{3/2}$	16973.368
4s	$4^2S_{1/2}$	25739.991
3d	$3^2D_{3/2}$	29172.839
3d	$3^2D_{5/2}$	29172.889
4p	$4^{2}P_{1/2}$	30266.99
4p	$4^{2}P_{3/2}$	30272.58

(2) 见表。

(3) 这一能级的原子态为 $3^2D_{5/2}$,可能的电偶极跃迁为 $3^2D_{5/2} \to 3^2P_{3/2}$,以及 $3^2P_{3/2} \to 3^2S_{1/2}$

3. **(8分)** Ge 原子基态的电子组态为 $4s^24p^2$,某一激发态的电子组态为 $4s^24p5s$,电子按 LS 方式耦合成原子态.

(1) $4s^24p^2$ 能形成哪些能级,基态能级是什么?

(2) 4s²4p5s 能形成哪些能级?

(3) 从组态 $4s^24p5s$ 向组态 $4s^24p^2$ 的电偶极辐射跃迁有哪些? 能够发出多少条光谱线?

4. **(8分)** 钇原子 (Y) 的波长为 407.7359nm 的谱线是 ${}^2F_{5/2} \rightarrow {}^2D_{3/2}$ 跃迁发出的,在 1T 的**弱外磁场**中,该谱线将产生塞曼分裂.

(1) 分别计算上述相关能级的朗德因子;

(2) 画图表示相关能级在外磁场中的分裂情况;

(3)上述光谱线分裂为几条谱线? 计算分裂后的谱线相对于原谱线移动的波数;

(4) 在垂直于磁场方向能观察到几条谱线? 在平行于磁场方向能观察到几条谱线?

(1)
$$g_{LS} = 1 + \frac{J *^2 - L *^2 + S *^2}{2J *^2} = 1 + \frac{J(J+1) - L(L+1) + S(S+1)}{2J \times (J+1)}$$

$${}^{2}F_{5/2}$$
能级 $g_{2} = 1 + \frac{5/2 \times (5/2+1) - 3 \times 4 + 1/2 \times (1/2+1)}{2 \times 5/2 \times (5/2+1)^{2}} = \frac{6}{7}$

2
D_{3/2} 能级 $g_{1} = 1 + \frac{3/2 \times (3/2+1) - 2 \times 3 + 1/2 \times (1/2+1)}{2 \times 3/2 \times (3/2+1)^{2}} = \frac{4}{5}$

(2) ²F_{5/2} 能级分裂为 6 个能级, ²D_{3/2} 能级分裂为 4 个能级

(3)
$$\Delta W = (M_2 g_2 - M_1 g_1) \frac{\mu_B B}{hc} = (M_2 g_2 - M_1 g_1) \mathcal{L}$$

$$\mathcal{L} = \frac{\mu_B B}{hc} = 0.467 \text{cm}^{-1}$$

$$M$$
 5/2 3/2 1/2 -1/2 -3/2 -5/2

$$g_2 = 6/7$$
 M_2g_2 15/7 9/7 3/7 -3/7 -9/7 -15/7 $g_2 = 4/5$ M_1g_1 6/5 2/5 -2/5 -6/5

$$\Delta M = +1 \ \sigma^+ \ 33/35 \ 31/35 \ 29/35 \ 27/35$$

$$M_2 g_2 - M_1 g_1 \quad \Delta M = 0 \quad \pi \quad 3/35 \quad 1/35 \quad -1/35 \quad -3/35$$

$$\Delta M = -1 \sigma^{-} - 27/35 - 29/35 - 31/35 - 33/35$$

共分裂为12条,移动的波数分别为

$$\frac{33}{35}\mathcal{L}, \frac{31}{35}\mathcal{L}, \frac{29}{35}\mathcal{L}, \frac{27}{35}\mathcal{L}, \frac{3}{35}\mathcal{L}, \frac{1}{35}\mathcal{L}, -\frac{1}{35}\mathcal{L}, -\frac{3}{35}\mathcal{L}, -\frac{27}{35}\mathcal{L}, -\frac{29}{35}\mathcal{L}, -\frac{29}{35}\mathcal{L}, -\frac{31}{35}\mathcal{L}, -\frac{33}{35}\mathcal{L}, -\frac{33}$$

$$= 0.440 \text{cm}^{-1}$$
, 0.414cm^{-1} , 0.387cm^{-1} , 0.360cm^{-1} , 0.040cm^{-1} , 0.013cm^{-1} ,

$$-0.013 cm^{^{-1}} \,, \ \, -0.040 cm^{^{-1}} \,, \ \, -0.360 cm^{^{-1}} \,, \ \, -0.387 cm^{^{-1}} \,, \ \, -0.414 cm^{^{-1}} \,, \ \, -0.440 cm^{^{-1}} \,, \ \, -0.040 cm^{^{-1}} \,, \ \, -0.000 cm^{^{-1}$$

(4) 在垂直于磁场方向上观察到12条,平行于磁场方向上观察到8条。

- 5. **(6分)** ¹²C¹⁸O 分子的键长 *R*₀=0.1128nm.
 - (1) 该分子纯转动谱线的间隔是多少?
- (2) 若测量该分子的拉曼散射,计算小拉曼位移光谱线的间隔以及第一条反斯托克斯线与第一条斯托克斯线之间的波数差.

解: 跃迁的选择定则为
$$\Delta J=\pm 1$$
, 纯转动谱线波数 $V_r=\frac{h}{8\pi^2 Lc}2J_2=2BJ_2$,

相邻谱线间隔
$$\Delta v_r^{\prime\prime} = \frac{h}{8\pi^2 Ic} [2J_2 - 2(J_2 - 1)] = \frac{2h}{8\pi^2 Ic} = 2B$$
, 其中 $B = \frac{h}{8\pi^2 Ic}$

转动惯量
$$I = \mu R_0^2 = \frac{m_1 m_2}{m_1 + m_2} R_0^2 = \frac{12 \times 18}{12 + 18} \times 1.66 \times 10^{-27} \times (0.1128 \times 10^{-9})^2 \,\mathrm{kg} \cdot \mathrm{m}^2$$

$$=1.521\times10^{-46}$$
kg·m²

转动常数
$$B = \frac{h}{8\pi^2 Ic} = 184.0 \text{m}^{-1} = 1.840 \text{cm}^{-1}$$

或
$$I = \mu R_0^2 = \frac{m_1 m_2}{m_1 + m_2} R_0^2 = \frac{12 \times 18}{12 + 18} u \times (0.1128 \text{nm})^2 = 0.09161 u \cdot \text{nm}^2$$

$$B = \frac{hc}{8\pi^2 Ic^2} = \frac{1.24 \text{nm} \cdot \text{keV}}{8\pi^2 \times 0.0916 \times 931 \times 10^3 \text{keV} \cdot \text{nm}^2} = 1.842 \times 10^{-7} \text{nm}^{-1} = 1.842 \text{cm}^{-1}$$

于是
$$\Delta \frac{1}{100}$$
= $2B = 3.680$ cm⁻¹或 $\Delta \frac{1}{100}$ = $2B = 3.683$ cm⁻¹

(2) 小拉曼散射位移是在转动能级上产生的,选择定则为 $\Delta J_R = 0, \pm 2$ 。

于是小拉曼位移光谱线的间隔为

$$\sqrt[9]{p_{+1}} - \sqrt[9]{p} = 4B = 7.360 \text{cm}^{-1} \quad \text{TeV} \sqrt[9]{p_{+1}} - \sqrt[9]{p} = 4B = 7.365 \text{cm}^{-1}$$

第1条斯托克斯线和第1条反斯托克斯线之间

$$9/p_{=0} - 9/p_{=0} = 12B = 22.08$$
cm⁻¹ $= 12B = 12B = 12B = 12B$