

Universidade Federal do Ceará Campus Quixadá

Relatório da Prática 01

Microcontroladores

Autores:

David Machado Couto Bezerra - 475664 Antonio César de Andrade Júnior - 473444

Professor: Thiago Werlley Bandeira da Silva

1 Led RGB

A primeira parte da prática pedia para alternar a ativação de 3 leds (ou led RGB) utilizando uma função delay. Foi utilizada a placa de prototipação FRDM-KL43Z, que possui um microcontrolador Cortex-M0+, 3 leds e 3 resistores de 220 Ω cada, o esquemático montado é mostrado na Figura 1 (foi utilizada a imagem de um arduino due, pois o software utilizado para desenho não possui a placa utilizada).

Figura 1: Parte 1

1.1 Registradores e portas

- PCR: Configura um pino específico de uma porta como GPIO;
- PDDR: Configura um pino de uma porta como saída ou entrada;
- PSOR: deixa um pino específico como HIGH.
- PCOR: deixa um pino específico como LOW.

Foram utilizados os pinos 1 para o led RED, 2 para o led GREEN e 4 para o led BLUE, ambos da porta A.

1.2 Resultados

Com as configurações feitas temos os resultados mostrados nas figuras:

- Figura 2 é a configuração do LED RGB para a cor vermelha.
- Figura 3 é a configuração do LED RGB para a cor verde.
- Figura 4 é a configuração do LED RGB para a cor azul.

Com isso, temos que foi obtido o requisitado da primeira parte da prática.

Figura 2: LED RGB - RED

Figura 3: LED RGB - GREEN

Figura 4: LED RGB - BLUE

2 Combinação de cores no LED RGB

A segunda parte pede para fazer uma combinação de cores com um led RGB. Foi utilizado o led RGB interno da placa FRDM-kl25z.

2.1 Registradores e portas

- PCR: Configura um pino específico de uma porta como GPIO;
- PDDR: Configura um pino de uma porta como saída ou entrada;
- PSOR: deixa um pino específico como HIGH.
- PCOR: deixa um pino específico como LOW.

Os pinos que ativam as cores do led são 18 para RED, 19 para GREEN (ambos da porta B) e o pino 1 da porta D para BLUE.

2.2 Resultados

A combinação das cores do LED RGB foi obtida e as seguintes combinações foram feitas:

- A figura 5 mostra a mistura entra as cores vermelho e azul que resulta em roxo.
- A figura 6 mostra a mistura entra as cores verde e azul que resulta em ciano.
- A figura 7 mostra a mistura entra as cores vermelho e verde que resulta em ciano.

Com essas combinações pode ser visto que foi realizado as combinações de cores que foi requisitado na segunda parte da prática.

3 Controle de LED's utilizando switchs

A terceira parte da prática requisitava acionar 2 LED's através de 2 botões. Foram utilizados 2 botões, 2 leds, 2 resistores de 220Ω e 2 resistores de $10k\Omega$. O esquemático do circuito é mostrado na Figura 8.

3.1 Registradores e portas

- PCR: Configura um pino específico de uma porta como GPIO;
- PDDR: Configura um pino de uma porta como saída ou entrada;
- PSOR: deixa um pino específico como HIGH;

Figura 5: LED RGB - ROXO

Figura 6: LED RGB - CIANO

- PCOR: deixa um pino específico como LOW;
- PDIR: flag que indica se o botão está ativado.

Foram escolhidos os pinos 1 e 29 (ambos da porta E) para os leds e os pinos 5 e 12 (ambos da porta A).

3.2 Resultados

O circuito funcionando com a placa FRDM-KL43Z é mostrado na figura 9:

Figura 7: LED RGB - MARROM

Figura 8: Esquemático do circuito com dois leds e dois botões

4 Filtro RC e efeito bouncing

Por último era pedido para fazer um filtro passa-baixa em cada um dos botões do item anterior para evitar o efeito de bounce. Para isso foram utilizados um resistor de 1 k Ω no lugar do de 220 Ω e 2 capacitores 10 μ F. O esquemático é mostrado na Figura 10, quando o circuito é alimentado por uma fonte externa e Figura 11 quando o circuito recebe sinal da placa.

Foram utilizados os mesmos registradores do item passado e pinos 12 da porta A, para o botão, e 1 da porta E, para o led.

Figura 9: Configuração proposta do esquemático

Figura 10: Circuito com filtro e alimentado por fonte

Figura 11: Circuito com filtro e alimentado pela placa

4.1 Bouncing

São oscilações causadas pela energia cinética proveniente do contado entre os condutores de um sistema mecânico, por exemplo botão. Essas oscilações são mostradas na Figura 12.

Figura 12: Efeito bounce

4.2 Filtro passa-baixa

Para evitar o bouncing, foi feito um filtro passa-baixa com um capacitor de $10\mu F$ e um resistor de $10k\Omega$. A frequência de corte é calculada com a seguinte fórmula:

$$F_c = \frac{1}{2\pi RC}$$

4.3 Resultados

A Figura 13 mostra o circuito alimentado pela placa e com a ponteira do osciloscópio.

Figura 13: Circuito montado

A Figura 14 mostra o sinal do botão (alimentado pela fonte externa) sem o filtro. Já a Figura 15 mostra o amortecimento do sinal provocado pelo filtro.

Figura 14: Sinal sem filtro (alimentado por fonte)

Figura 15: Sinal com filtro (alimentado por fonte)

A Figura 16 mostra o sinal do botão (alimentado pela placa) sem o filtro. Já a Figura 17 mostra o amortecimento do sinal provocado pelo filtro.

Figura 16: Sinal sem filtro (alimentado pela placa)

Figura 17: Sinal com filtro (alimentado pela placa)

5 Códigos

Todos os códigos seguem a mesma estrutura inicial:

- Declaração dos registradores por meio de structs e definição das portas e GPIOs;
- Ativação dos clocks das portas que serão usadas por meio dos bits de SCGC5 (bit 9 para A, 10 para B, 11 para C, 12 para D e 13 para E);
- Definição dos pinos como GPIO por meio do registrador PCR;
- Definição da direção dos pinos (entrada ou saída);
- Mandar sinal low para algum pino por meio de PSOR;
- Mandar sinal high para algum pino por meio de PCOR;
- Verificar se existe algum sinal de entrada por meio de PDIR.

Link do repositório:

https://github.com/Ceand1/Praticas1