Universidade Federal de Santa Catarina Centro Tecnológico Depto de Informática e Estatística

INE5403-Fundamentos de Matemática Discreta para a Computação Prof. Daniel S. Freitas

7 - ESTRUTURAS ALGÉBRICAS

7.1) Operações Binárias

- 7.2) Semigrupos
- 7.3) Produtos e Quocientes de Semigrupos
- 7.4) Grupos
- 7.5) Produtos e Quocientes de Grupos

LISTA DE EXERCÍCIOS

- 1. (Kolman5-seção 9.1-exs.1, 3, 5 e 7) Em cada exercício abaixo, determine se a descrição dada para * é uma definição válida de uma operação binária sobre o conjunto.
 - (1) a * b é definida sobre \mathbb{R} como ab (multiplicação comum).
 - (3) a * b é definida sobre \mathbb{Z}^+ como a^b .
 - (5) a * b é definida sobre \mathbb{Z}^+ como a b.
 - (7) a * b é definida sobre \mathbb{R} como o maior número racional que é menor do que ab.
- 2. (Kolman5-seção 9.1-exs.9 a 19) Em cada exercício abaixo, determine se a operação binária * é comutativa e se ela é associativa sobre o conjunto.
 - (9) a * b é definida sobre \mathbb{Z}^+ como a + b + 2.
 - (11) a * b é definida sobre \mathbb{R} como $a \times |b|$.
 - (13) a * b é definida sobre \mathbb{R} como o mínimo de $a \in b$.
 - (15) a * b é definida sobre \mathbb{R} como ab/3.
 - (17) a * b é definida sobre um reticulado A como $a \vee b$.
 - (19) a*b é definida sobre o conjunto dos números racionais como $a*b = \frac{a+b}{2}$.
- 3. (Kolman5-seção 9.1-ex.21) Prove que é verdadeiro (ou falso) afirmar que a operação binária do exercício (19) possui a propriedade de idempotência.
- 4. (Kolman5-seção 9.1-ex.23) Preencha a tabela a seguir de modo que a operação binária * seja comutativa e possua a propriedade de idempotência.

5. (Kolman5-seção 9.1-ex.25) Considerando a operação binária *, definida sobre o conjunto $A = \{a,b,c,d\}$ pela seguinte tabela:

*	a	b	\mathbf{c}	d
a	a	c	b	d
b	d	a	b	\mathbf{c}
\mathbf{c}	c	d	a	a
d	d	b	a	\mathbf{c}

compute:

(a)
$$c*d e d*c$$

(b)
$$b * d e d * b$$

(c)
$$a * (b * c)$$
 e $(a * b) * c$

- (d) A operação * é comutativa? E associativa?
- 6. (Kolman5-seção 9.1-ex.27) Complete a tabela dada abaixo de modo que a operação binária * seja associativa.

- 7. (Kolman5-seção~9.1-ex.29) Seja um conjunto A com n elementos. Quantas operações binárias comutativas podem ser definidas sobre A?
- 8. (Kolman5-seção 9.1-ex.30) Seja $A = \{a, b\}$.
 - (a) Construa uma tabela para cada uma das 16 operações binárias que podem ser definidas sobre A.
 - (b) Usando as tabelas que você construiu, identifique as operações binárias sobre A que são comutativas.