AUTOMATA

Key Points

- Language Recognition
- The power of encoding
- Everything is a string

Application

- Programming Language (PL)
- Natural Language Processing (NLP)
- Security/Cryptography (Regex)
- Games
- DNA (Genes)

Alphabet (Σ)

- Finite set of symbols

String (w)

- Finite series of symbols maybe in the alphabet.

Set

Collection of objects with common characteristics.

Language

Infinite/finite set of string from alphabet (Σ).

Theorem: All language is a subset of Σ^* .

Sigma Kleene Star (Σ*)

- Set of all possible string from ε (Epsilon).

Σ+

- Same with Σ^* but has no ϵ .

Length (|w|)

- Number of characters in a string (w).

Function of Strings

- 1. |ababb| = 5
- 2. $\#_a$ (ababb) = 2
- 3. Concatenate

w = abba, v = baba

wv = abbababa

vw = babaabba

Theorem: $w \varepsilon = w$

4. Reverse

 $v^R = abab$

Theorem: $(wv)^R = v^R w^R$

5. Replication

 $w^2 = ww = abbaabba$

Relation on String

- 1. Substring
- 2. Prefix
- 3. Suffix

Define a Language

- 1. Listing
- 2. Set Builder

Ø, {} = empty language

 $\{\epsilon\} \neq \emptyset$

○ $L_1 = L_2$ if and only if $L_1 \le L_2$ and $L_1 \ge L_2$.

Operation on Language

U = Universal = sigma Kleene star

- 1. $L_1 \cap L_2$ Intersection
- 2. $L_1 \cup L_2$ Union
- 3. $L_1 \setminus L_2$ Difference
- 4. L₁', L₂c, –L₁ Complement
- 5. $L_1 \oplus L_2$ Symmetric Difference
- 6. L₁L₂ Multiplication (concatenation)
- 7. L_1^R Reversal

 $L_1^R = \{ab, bba, bbab, aaa\}$

Theorem: $(L_1 \ L_2)^R = L_1^R \ L_2^R$

- 8. L₁* Kleene Star
- 9. | L₁ | Cardinality

Theorem: $| \Sigma^* | =$ infinite countably **# of language –** countably infinite

Target

- 1. Define language
- 2. Is w in L?

Decision Problem

Adding two integer

$$L_{-}1 = \{w | w < int > + < int > = < int > where int \in \mathbb{Z}\}$$

 $9 + 3 = 12 \in L_{-}1$
 $7 + 6 = 10 \notin L_{-}1$

Sorting

 $L_1 = \{w_1, w_2 \mid w_1 \# w_2, w_1 \text{ is the given}$ non-sorted sequence of numbers in a form num1, num2, ... where w_2 is the sorted $w_1\}$

 $2, 4, 3, \#, 2, 3, 4 \in L_2$

Language Classes

Machine Hierarchy

- 1. Finite State Machine (Regular Language)
- 2. Push Down Automata (Context Free Language)
- 3. Turing Machine

Why??

- 1. Computational Power
- 2. Efficient
- 3. Decidability
- 4. Clarity

Tractability Hierarchy

P – computes in polynomial time

NP – Nondeterministic, polynomial time

P-SPACE – computational within polynomial space (memory)

P ≤ NP ≤ P-SPACE

Computational

- Define problem as Language
- Define a program as static whose input is a string & output is Accept or Reject
- Accept: w ∈ L
- Reject: w ∉ L

Key Ideas

1. Decision Procedure

Ex.

- is w in L?
- is $L = \emptyset$
- is $L_1 = L_2$
- is L finite

2. Nondeterminism

- given a string but don't know where it belongs.
- given a string but don't know which of the two.

3. Function on Language

Finite State Machine (FSM)

- Deterministic Finite State Machine (DFSM)
 - \circ A DFSM is a quintuple (K, Σ , δ , S ,A)
 - K is the set of state
 - Σ alphabet
 - δ transition matrix
 - S start state
 - A set of final Accept state

Configuration

- Start config (S, w)
- Yields in one step

Ex.

(1, abbaababb)

 $\vdash_m (2,\, bbaababb)\;...$

 $(1, abbaababb) \vdash_{m}^{*} (3, bb)$

Computation:

$$(S, w) \vdash_{m}^{*} (q_{0}, \epsilon)$$

$$w \in L(m) \text{ if } q \in A.$$

$$w \notin L(m) \text{ if } q \notin A.$$

$\mathsf{L}\to\mathsf{FSM}$

 Its okay even is has multiple states but prefer small no. of states.

 $L = \{w \mid w \text{ start \& ends in different letter}\}$ $\Sigma = \{a, b\}$

 $L = \{ w / \#_a(w) = 2 \}$

 $L = \{w \mid \#_a(w) \text{ is divisible by } 3\}$

 $L = \{ w \mid w \text{ is an alternating} \}$

 $L = \{w \mid w \text{ has a double a and double b}\}$

Theorem: Any FSM has Regular Language

Non-Deterministic Finite State Machine (NDFSM)

- Is a quintuple (K, Σ, Δ, S, A)
 Δ transition function
- Has epsilon (ε) transition

Transition table:

Δ	3	а	b
q ₀	q ₁		q ₁ , q ₂
q ₁		q ₀ , q ₁	q ₂
Q ₂		q ₁	q ₀

Difference with DFSM:

- 1. ε-transition
- 2. state can have no outgoing
- 3. state can multiple outgoing

Definition: M accepts w, if one of its computation ends in accept state, reject, w if none of its computation ends in accept state

Theorem: DFSM = NDFSM

Operation on Language NDFSM

L*

- the new initial state would also be the final state.
- Kleene star always has an ϵ (epsilon).
- It is not necessary to create a new initial state if the existing initial state doesn't have a loop.

with loop:

without loop:

Ľ

- change from normal state to final state
- change from final state to normal state

 $L_{1}{}^{\mathsf{R}}$

- change from final state to start state
- change from start state to final state
- reverse all of the arrows

Alternating:

$L_1 \cap L_2$

- states of L₁ x states of L₂

δ	а	b
→13 - initial	14	25
14	14	24
15	15	25
23	24	14
24 - final	24	14
25	25	15

 $L_1 \setminus L_2 = L_1 \cap L_2$

δ	а	b
→13 - initial	14	25
14	14	24
15	15	25
23 - final	24	15
24	24	14
25 - final	25	15

 $L_1L_2 = (L_1 \setminus L_2) U (L_2 \setminus L_1)$

 $(L_2 \setminus L_1)$

δ	а	b
→13 - initial	14	25
14 - final	14	24
15	15	25
23	24	15
24	24	14
25	25	15

Simulators of FSM

- minimum FSM (≈L)

Theorem: There is a Unique Min DFSM for a regular

language

Theorem: The ≈L is the lower bound of the # of

state.

Theorem: Myhill Nerode Theorem – A language is Regular if and only if the number of equivalent FSM to ≈L is finite.

FSM: Transducer $(L_1 \Rightarrow L_2)$

- can have NO Accept State
- Output can be repeated

1. Moore Machine

- Is a seven tuple (K, Σ, O, δ, D, S, A)
 - o O Output
 - D Output Transition

Output: string: babbaab

 \vdash_m (A, babbaab, ε)

 \vdash_m (C, abbaab, 1)

⊢_m (D, bbaab, **11**)

⊢_m (C, baab, **110**)

⊢_m (C, aab, **1101**)

⊢_m (D, ab, **11011**)

⊢_m (D, b, **110110**)

 \vdash_m (C, ϵ , 1101100)

2. Mealy Machine

- Is a six tuple (K, Σ , δ , O, S, A)

Output: string: abaabba

⊢_m (A, abaabba, **0**)

⊢_m (B, baabba, **01**)

⊢_m (D, aabba, **010**)

⊢_m (C, abba, **0101**) ⊢_m (D, bba, **01010**)

rm (D, DDa, Ololo)

⊢_m (D, ba, **010100**) ⊢_m (D, a, **0101000**)

 $\vdash_{m} (C, \epsilon, 01010001)$

Stochastic FSM

1. Markov Model (AI)

- Is a trituple (K, π, A)
 - π vector probability matrix
 - o A transition probability matrix
- There's NO Start and Final State
- No. of state = n
- Start state depends on the value of random probability of $\boldsymbol{\pi}$.
- Sum of probability is equal to 100.
- P (A|A) supposed to create a table

Output can be:

2 steps (A – (A)ttack, B – (S)tandby, C – (W)alk)

Steps	Probability
AA	(.5)(.4)
AS	(.5)(.4)
AW	(.5)(.2)
SA	(.25)(.4)
SS	(.25)(.25)
SW	(.25)(.35)
WA	(.25)(.5)
WS	(.25)(.2)
WW	(.25) (.3)

2. Hidden Markov Model (HMM)

- Is a five tuple (K, O, π , A, B)

- B – P (0 | q₁)

P (001 | B)

- AAB = (.45)(.4)(.3)
- ACB = (.45)(.3)(.45)
- CCB = (.3)(.3)(.45)

CAB = (.3)(.25)(.3)

Problems:

- Decoding problem it is hard to find a path, common algo used (Viterbi Algorithm)
- Evaluation Problem How can we determine if the path is right, common algo used (Forward Algorithm)
- Training Problem

3. Buchi Automata DA ≠ NDA

- Input: "infinite string"
- It is a five tuple $(K, \Sigma, \triangle, S, A)$
- Accepts when it enters in the accepts in infinite # of times.
- A language accept by Buchi Automata is called Buchi Language.

Theorem: L_1 is Regular, L_2 is Buchi Accepted, L_1L_2 is Buchi Acceptable.

Decision Procedure

- 1. Emptiness if there's no loop
- 2. Non-empty
- 3. Finite
- 4. Equivalent

$$A = B$$
Iff $A \subseteq B \& B \subseteq A$

$$L_1 = L_2$$
Iff $L_1 \cap L_2' = \emptyset$,
$$L_2 \cap L_1' = \emptyset$$

Zugzwang – any moves that will result to a lose.

Regular Expression

- Simple pattern language
- Formal def: A regEx is a string that can be formed according to ff. rules:
 - Ø is a RegEx
 - 2. ε is a RegEx
 - 3. $\forall x \in \Sigma$, x is a RegEx
 - 4. Given two regex α & β then $\alpha\beta$ is regex.
 - 5. Given two regex $\alpha \& \beta$ then $\alpha \cup \beta$ is regex.
 - 6. Given a regex α , α^* is a regex.
 - 7. Given a regex α , α + is a regex.
 - 8. Given a regex α , (α) is a regex.

a* = aa+

Order of Operation = (), * +, $\alpha\beta$, +

L =
$$\{w|w \text{ starts in }a\}$$

= a (a + b)*
L = $\{w|w \text{ ends in }b\}$
= (a+b)*b
L = $\{w|w \text{ has a substring abb}\}$
= (a+b)*abb(a+b)*
L = $\{w|w \text{ starts }\& \text{ ends in same letter}\}$
= a(a+b)*a + b(a+b)*b

$$L = \{w | \#_a(w) \text{ is exactly } 2\}$$

 $L = \{w | \#_a(w) \text{ is even}\}$

= (b*ab*a)*b*

 $L = \{w | w \text{ is alternate}\}$

=
$$(ab)^*(a+\epsilon) + (ba)^*(b+\epsilon)$$
 or $(a+\epsilon)(ba)^*(b+\epsilon)$

L = {w|w has a double a's & double b's}

$$= (a+b)*aa(a+b)*bb(a+b)* +$$

(a+b)*bb(a+b)*aa(a+b)*

$$L = \{w | \#_a(w) \ge 2\}$$

$$= (a+b)^* a (a+b)^* a (a+b)^*$$

 $L = \{w | |w| \text{ is even}\}$

 $= (ab+ba+bb+aa)^*$

$$L = \{w | \#_a(w) > 0 \& \#_b(w) > 0\}$$

= a+

L = {w|w starts with some a's & follow by some b's} = a*b*

Theorem: If you have FSM then you also have RegEx and vice versa.

Theorem: If generation = regex, if determining if an element = FSM

Applications:

- Password
- Email checker

Manipulating or simplifying RegEx

- ε is commutative
- associative in union
- \emptyset an identity for Union (ab + \emptyset) = ab
- Union is idempotent a + a = a
- Given any two set A and B, if $B \subseteq A$, then $A \cup B$
- Concatenation is associative
- Concatenation is not commutative
- aε is still a
- \emptyset is zero a \emptyset = \emptyset
- Distribute concatenation over union

- $Ø^* = \varepsilon$
- = *
- $(\alpha^*)^* = \alpha^*$
- a*a* = a*
- $\alpha^* \beta^* = \alpha^*$
- $(\alpha + \beta)^* = (\alpha^* \beta^*)^*$

$\textbf{RegEx} \rightarrow \textbf{FSM}$

a*b*

(ab+ba+bb+aa)*

b*ab*a(a+b)*

$\text{FSM} \to \text{RegEx}$

Regular Grammar

- Rule based
- Is a four tuple (V, Σ, R, S)
- V set of all the symbol
 - o Nonterminal (capital letters Ex. A, B ... S, \emptyset , ...)
 - \circ Terminal (Σ ∪ ε)
- Σ terminal without ε = alphabet
- R Set of all the rules $X \rightarrow Y$
- S is the nonterminal start

Rules of Rules of Grammar

- 1. Has a left hand side with a single nonterminal.
- 2. Has a right hand side with three possible:
 - a. E
 - **b.** Terminal from Σ (single)
 - **c.** Single terminal followed aby single nonterminal

Note: If there is a violation within these rules will automatically not be a Regular Grammar.

Theorem: Any regular grammar has also a grammar.

$\textbf{RG} \to \textbf{DFSM}$

 $S \rightarrow aB \mid bA$

 $A \rightarrow aB \mid \epsilon$

 $B \to bA \mid \epsilon$

$$S \to aB$$

$$A \to aB \mid bB \mid \epsilon$$

 $L = \{w \mid |w| \text{ is even}\}$

$$S \rightarrow Aa \mid Ba \mid \epsilon$$

 $A \rightarrow As \mid Bs$

Generating a string

- Forward computation / can also use backward computation
- For Alternating:
- $S \rightarrow bA \rightarrow baB \rightarrow babA \rightarrow babaB \rightarrow bababA \rightarrow babab \epsilon$
- In tree

CHAPTER 8: Regular Grammar and non-Regular Grammar

Theorem:

- 1. Regular language is finite countably
- 2. Every finite language is regular
- **3.** If a language has a DFSM, RG, RegEx then it has a regular language
- 4. Closure
 - a. Close under Union
 - b. Concatenation
 - c. Kleene Star
- 5. Complement
 - a. Reverse
 - b. Intersection
 - c. Letter Substitution
- **6.** If the $|w| \ge |K|$, then somewhere in the computation has a loop.

Pumping Lemma for Regular Language

- If L is a RL then $\exists |K| \ge |$
- $\forall w \in L$
- |w| ≥ |K|
- ∃ x, y, z
- w = xyz
- |xz| ≤ |K|
- y≠ε
- then $\exists q, xy^qz \in L$

Ex. W = ababab x = ab, y = ab, z = ab $xy^qz = ab(ab)^qab \in L$

 $L=\{a^nb^n,\,n\in\mathbb{Z}^+\}$

Assume:

|K| = 200

 $w = a^{100}b^{100}$

 $x = a^{99}$

y = a

 $z = b^{100}$

a⁹⁹ (a)^qb¹⁰⁰ ∉ L

Non - Regular

- balance parenthesis
- palindrome
- measures the number of the elements (letters)

Chapter 9: Decidability

 if it has algorithm then it is decidability, otherwise not.

Decision Procedure:

- 1. Membership "is w in L?"
 - Regex, RG, FSM answers the membership
- 2. Emptiness | Totality
 - a. Emptiness L (M) = \emptyset
 - i. There is no path to the final state.
 - b. Totality L (M) = Σ^*
 - i. All of the state is a final state.
- 3. Finiteness | Infiniteness
 - a. Finiteness there is no loop from start to finish
 - i. The regex has no Kleene star
 - b. There is a loop from start to finish
 - i. It has Kleene star
- 4. Equivalent
 - a. $A \cap B' = \emptyset$
 - b. $B \cap A' = \emptyset$
- 5. Minimality (min DFSM)
 - a. Number of states is the minimum.