Exercise 1: Definitions. For each of the following, define the term and stat its importance in statistics (spatial statistics if the term is specific to spatial stats). (I expect 2-3 sentences for each of these, no more.)

(a) edge effects (for point pattern data)

(b) CSR (complete spatial randomness)

Solution:

Solution:

(c) Monte Carlo tests (also, why are they so useful when working with point pattern data?)

Solution:

Exercise 2: We model CSR using a spatial Poisson process (for point pattern data). Consider a rectangular region R with $0 \ge x \ge 3$ and $0 \ge y \ge 2$.

- (a) If the intensity for a (homogenous) Poisson process in this region is given by $\lambda(x, y) = 1.4$,
 - i. What is the distribution of N(R), the number of events in the region?

Solution:

ii. Find P(N(R)) = 12, the probability that there are 12 events in the region.

Solution:

- (b) If the intensity of the inhomogeneous Poisson process in this region is $\lambda(x, y) = x + y$,
 - i. Calculate $\gamma = \iint_{\mathbb{R}} \lambda(x, y) dx dy$

Solution:

ii. Find the distribution of N(R)

Solution:

iii. What is the expected number of event sin the region R?

Solution: