ADVANZ4 Exploratory Report

Introduction

This report contains the analysis of microbiome data including Alpha-Diversity, Ordination, Hierarchical Clustering and detection of differentially abundant taxa. The report was generated using the following parameters:

- Diversity slot type (taxa_slot): igc
- Taxonomic classification system (taxa_slot): metaphlan
- Taxonomic levels (tax_level): Species
- Metadata variables (**metadata_vars**): group, risk_group, center, gender, ethnic_group, CD4diff_48, CD8diff_48, CD4after_48, CD8after_48, CD4, CD8, CD8_CD38_DR, CRP, IL6, TNFa, sCD14, time_point

The following table shows a summary of selected metadata variables with descriptive statistics.

Characteristic	N	Overall, $N = 271^1$	$\mathbf{DTG},\mathrm{N}=144^{1}$	$\mathbf{RTVr},\mathrm{N}=127^{1}$	p-value ²
risk_group	259				0.12
hts		109 (42%)	50 (36%)	59 (48%)	
msm		145 (56%)	85~(62%)	60 (49%)	
pwid		5 (1.9%)	2~(1.5%)	3~(2.5%)	
Unknown		12	7	5	
center	271				
bellvitge		51 (19%)	35~(24%)	16 (13%)	
clinic		120 (44%)	57 (40%)	63~(50%)	
hgtp		17~(6.3%)	9~(6.2%)	8~(6.3%)	
mataro		9(3.3%)	0 (0%)	9 (7.1%)	
sant_pau		23~(8.5%)	14 (9.7%)	9 (7.1%)	
vall_hebron		51 (19%)	29 (20%)	$22\ (17\%)$	
Unknown		0	0	0	
gender	271				0.9
female		35~(13%)	19 (13%)	16 (13%)	
male		236~(87%)	125~(87%)	111 (87%)	
Unknown		0	0	0	
$ethnic_group$	267				0.005
asian		4~(1.5%)	4(2.8%)	0 (0%)	
black		18 (6.7%)	7(4.9%)	11 (8.9%)	
caucassian		106 (40%)	66 (46%)	40 (33%)	
hispanic		105 (39%)	56 (39%)	49 (40%)	
other		34 (13%)	11(7.6%)	23 (19%)	
Unknown		4	0	4	
$CD4diff_48$	205				0.006
< 50		7 (3.4%)	0 (0%)	7~(7.0%)	

>50		198 (97%)	105 (100%)	93 (93%)	
Unknown		66	39	27	
$CD8diff_48$	205				0.024
< 50		69 (34%)	43~(41%)	26~(26%)	
>50		136~(66%)	62~(59%)	74~(74%)	
Unknown		66	39	27	
$CD4after_48$	205				< 0.001
high		15~(7.3%)	4(3.8%)	11 (11%)	
low		90 (44%)	37 (35%)	53 (53%)	
mid		100 (49%)	64 (61%)	$36 \ (36\%)$	
Unknown		66	39	27	
$CD8after_48$	205				0.048
high		171 (83%)	93~(89%)	78 (78%)	
low		3(1.5%)	0 (0%)	3(3.0%)	
mid		$31\ (15\%)$	12 (11%)	19 (19%)	
Unknown		66	39	27	
CD4	201	113 (40, 237)	140 (60, 245)	89 (30, 216)	0.049
Unknown		70	38	32	
CD8	201	697 (462, 1,132)	725 (504, 1,168)	688 (414, 1,053)	0.3
Unknown		70	38	32	
$CD8_CD38_DR$	151	$31\ (19,\ 48)$	31 (17, 48)	$31\ (20,\ 47)$	0.8
Unknown		120	67	53	
CRP	133	$0.18 \ (0.09, \ 0.51)$	$0.15 \ (0.08, \ 0.42)$	$0.20\ (0.10,\ 0.59)$	0.14
Unknown		138	77	61	
IL6	128	8(2, 20)	8(2,23)	7(2, 17)	0.7
Unknown		143	77	66	
TNFa	152	12 (9, 17)	12(8, 19)	13(9, 16)	0.8
Unknown		119	66	53	
sCD14	151	2,204 (1,720, 2,986)	1,976 (1,620, 2,836)	2,250 (1,885, 3,139)	0.046
Unknown		120	67	53	
$time_point$	271				0.9
0		81 (30%)	40~(28%)	41 (32%)	
24		51 (19%)	29~(20%)	$22\ (17\%)$	
48		71 (26%)	38(26%)	33~(26%)	
96		68~(25%)	$37\ (26\%)$	$31\ (24\%)$	
Unknown		0	0	0	

 $^{^{1}{\}rm n}$ (%); Median (IQR) $^{2}{\rm Fisher's}$ exact test; Pearson's Chi-squared test; Wilcoxon rank sum test

Quality Control

The objective of this section is to check if there is any association between the total number of sequencing reads and the different levels of each categorical variable. Only the two most significant associations are shown.

Alpha Diversity

Representation of the increase in the Gene Richness in relation to the total number of mapped reads for each of the samples. Dashed line represents the quantile at a probability of 2%.

Gene Richness by categorical variables

This section shows the genetic wealth for each of the different levels of each of the categorical variables. Plots were produced using the ggstatsplot package. The upper text presents information on inferential statistics and the bottom one provides information about Bayesian hypothesis-testing and estimation.

Figure 1: Stats structure

#> \$group

#>
#> \$CD8after_48

Pairwise test: Dunn test, Comparisons shown: only significant

Gene Richness by numeric variables

In this section, Gene Richness was correlated with numeric metadata variables. Plots were produced using the ggstatsplot package. The upper text presents information on inferential statistics and the bottom one provides information about Bayesian hypothesis-testing and estimation.

Figure 2: Stats structure

#> [[1]]

#> #> [[2]]

Gene Richness by longitudinal variable

In this section, Gene Richness was correlated with longitudinal metadata variables.

#> \$time_point

Taxa description based on Non-Metric Multidimendional Scaling (NMDS) ordering

Bar plot showing the relative abundance of different taxa in each sample. Sample axis order was determined using Non-metric Multidimensional Scaling (NMDS). The Bray method was used for distance calculations on Shotgun data, for 16s data Wunifrac distance was used. In the upper part of the graph are shown the distribution of the values of the variables selected from the metadata.

#> \$Genus

Enterobacter Fusobacterium Desulfovibrio Sellimonas Barnesiella Megasphaera Holdemanella Methanosphaera

Pediococcus Megamonas Weissella Lachnospira Flavonifractor

Firmicutes_unclassified Klebsiella

Klebsiella
Clostridium
Eggerthella
Anaerostipes
Ruthenibacterium
Oscillibacter
Dialister
Alistipes
Fusicatenibacter

Fusicatenibacter

Parabacteroides Catenibacterium Dorea

Roseburia Eubacterium Ruminococcus Lactobacillus

Bacteroides Enterococcus Prevotella

Methanobrevibacter Escherichia Veillonella

Phascolarctobacterium Lachnoclostridium Akkermansia

Coprococcus Butyrivibrio

#>

#> \$Species

Hierarchical Clustering Analysis

Heatmap showing the abundance of different taxas in each sample. Sample order was determined using ward.D2 hierarchical clustering. The categorical and numeric variables present in the mre object were used for sample annotation.

Ordination Analysis (Non-metric multidimensional scaling).

Ordination by categorical variables

Non-metric multidimensional scaling plot of categorical metadata variables and microbial community compositions. One plot for each categorical metadata. NMDS analysis within the vegan package of R software package based on dissimilarities calculated using the Bray-Curtis (Shotgun data) or WUnifrac (16s data) index of bacterial communities composition for the relative abundance of each OTU in relation to the categorical variables.

The statistics of the marginal boxplots were calculated using the ANOVA test. The Permutational Multivariate Analysis of Variance Using Distance Matrices (PERMANOVA) was computed using the vegan::adonis() function. The bottom table shows the results of the PERMANOVA for each categorical variable.

id	Df	SumsOfSqs	MeanSqs	F.Model	R2	PrF.
group	1	0.9565124	0.9565124	3.409143	0.012514788	0.001
risk_group	2	2.8339413	1.4169706	5.165222	0.038788070	0.001
center	5	2.2744560	0.4548912	1.625573	0.029758458	0.002
gender	1	2.7318254	2.7318254	9.971147	0.035742574	0.001
ethnic_group	4	1.8604200	0.4651050	1.684405	0.025071370	0.001
CD4diff_48	1	0.7980095	0.7980095	2.833267	0.013764863	0.004
CD8diff_48	1	0.3653768	0.3653768	1.287498	0.006302382	0.170
CD4after_48	2	0.7747815	0.3873907	1.368068	0.013364202	0.078
CD8after_48	2	1.5293299	0.7646650	2.736507	0.026379405	0.002
time_point	3	1.2042928	0.4014309	1.424795	0.015756690	0.026
record_id	94	46.4281638	0.4939166	2.897412	0.607455395	0.001
cluster	1	8.2019180	8.2019180	32.337087	0.107312005	0.001

Changes in Beta diversity along longitudinal variable by each categorical variable #> \$group

#> \$risk_group

Timepoint = 24

Timepoint = 48

Pairwise test: Dunn test, Comparisons shown: only significant

Timepoint = 96

Pairwise test: Dunn test, Comparisons shown: only significant

#>

#> \$center

Timepoint = 24

Pairwise test: Dunn test, Comparisons shown: only significant

Timepoint = 96

Pairwise test: Dunn test, Comparisons shown: only significant

#>

#> \$gender

Timepoint = 24

Timepoint = 96

Timepoint = 48

Pairwise test: Dunn test, Comparisons shown: only significant

Timepoint = 48

#> \$ethnic_group

Timepoint = 24

Pairwise test: Dunn test, Comparisons shown: only significant

Timepoint = 96

Pairwise test: Dunn test, Comparisons shown: only significant

#>

#> \$CD4diff_48

Timepoint = 48

Pairwise test: Dunn test, Comparisons shown: only significant

Timepoint = 24

$W_{\rm Mann-Whitney} = 36.00, \, \rho = 0.10, \, \hat{r}_{\rm biserial}^{\rm rank} = 1.00, \, {\rm Cl}_{95\%} \, [1.00, \, 1.00], \, n_{\rm obs} = 37$

Timepoint = 48

Timepoint = 96

#>

#> \$CD8diff_48

Timepoint = 24

Timepoint = 48

Timepoint = 96

#>

#> \$CD4after_48

Timepoint = 24

Pairwise test: Dunn test, Comparisons shown: only significant

Timepoint = 48

Pairwise test: Dunn test, Comparisons shown: only significant

Timepoint = 96

Pairwise test: Dunn test, Comparisons shown: only significant

#>

#> \$CD8after_48

Pairwise test: Dunn test, Comparisons shown: only significant

Pairwise test: Dunn test, Comparisons shown: only significant

Ordination by numeric variables

Correlation analysis between NMDS components (NMDS1 and NMDS2) and numeric variables presents in the mre object. Plots were produced using the ggstatsplot package. The upper text presents information on inferential statistics and the bottom one provides information about Bayesian hypothesis-testing and estimation.

Figure 3: Stats structure

#> \$CD4

#> #> \$CD8

#> #> \$CRP

#> #> \$IL6

#> #> \$TNFa

#> #> \$sCD14

Differential abundance

Statistical Inference of Associations between Microbial Communities And host phenoTypes (SIAMCAT).

Detection of changes in community composition that are associated with metadata variables using LASSO logistic regression modeling. For this purpose, the abundance matrix was relativized and expressed in times ones. Feature selection was performed with "prevalence" method removing those features with low prevalence across samples (relative abundance cutoff value set as 0.5). Feature normalization was performed using centred log-ratio ("log.clr") transformation. Finally, for visualization purposes, only those associations with an fdr < 0.05 (Default value) were considered.

#> \$group

#> #> \$gender

