Rezolvarea unor probleme prin metode de învățare automată

Obiective

Dezvoltarea sistemelor care învață singure.

Aspecte teoretice

Tehnici de pre-procesare a imaginilor.

Proiectarea sistemelor care învată singure.

Evaluarea sistemelor care învață singure. Metrici de performanță.

Termen de predare și evaluare

Laborator 13

Punctajele acordate:

- Clasificarea emoticoane 100 puncte
- Clasificare folosind model pre-antrenat 200 puncte
- Clasificare folosind model antrenat folosind
 - o Caracteristici "extrase manual" 100 puncte
 - o Caracteristici "extrase automat" 200 puncte
- Clasificarea multi-label a imaginilor 100 puncte (bonus)

Cerințe

Job-ul de la Facebook se consolideaza. Utilizatorii sunt foarte incantati de noul algoritm de detectie a filtrelor in poze si a emotilor in texte, asadar poti sa te ocupi de o noua functionalitate care ar face platforma si mai atractiva.

Echipa de analisti ar dori sa evalueze starea emotionala a utilizatorilor si pe baza imaginilor (daca ei au poze de profil sau posteaza imagini vesele sau triste). De aceea, noul tau task este sa implementezi un algoritm de clasificare a pozelor care care sa indice daca o poza este vesela sau trista.

Team leaderul echipei de ML iti propune un plan de lucru in 3 iteratii:

- Iteratia 1: clasificarea emotiilor in imagini continand emoticoane (de exemplu Happy faces ⊚ versus Sad faces ⊗). Pentru aceasta va trebui:
 - o creata o baza cu imagini cu emoticoane si etichetele corespunzatoare
 - o https://github.com/iamcal/emoji-data
 - o antrenarea unui clasificator de emotii in imagini cu emoticoane
 - o testarea clasificatorului
- Iteratia 2: clasificarea emotiilor in imagini cu fete reale folosind un clasificator pre-antrenat. Pentru aceasta va trebui:
 - Preluarea unei baze cu imagini faciale (de ex <u>https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/overview</u>)
 - Preluarea unui clasificator (model) de emotii in imagini pre-antrenat (de ex https://github.com/thoughtworksarts/EmoPy)
 - o Testarea clasificatorului
- Iteratia 3: clasificarea emotiilor in imagini cu fete reale folosind un clasificator antrenat de la 0. Pentru aceasta va trebui:

- Preluarea unei baze cu imagini faciale (de ex <u>https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/overview</u>)
- Antrenarea unui clasificator (model) de emotii in imagini folosind caracteristici ale imaginilor extrase
 - manual descriptori precum Haar (https://www.merl.com/publications/docs/TR2004-043.pdf), HOG (https://hal.inria.fr/file/index/docid/548512/filename/hog_cvpr2005.pdf).
 Se pot folosi descriptorii implementati in biblioteci specifice de Computer Vision precum OpenCV (https://opencv.org/), SciKit-Image (https://scikit-image.org/).
 - automat modele de extragere preantrenate (precum Facenet) sau antrenate de la 0.
- o Testarea clasificatorului

Clasificarea imaginilor poate fi:

- Multi-class fiecare imagine apartine unei anumite emotii
- Multi-label o imagine poate avea associate mai multe emotii (de ex baza cu imagini EmoReact https://www.behnaznojavan.com/emoreact descrie imaginile prin mai multe etichete emotionale) – tema optionala