Многоцветные числа Рамсея

- 1. Докажите следующие утверждения.
 - (a) $R(n,n) > (n-1)^2$.

 - (a) R(n,n) > (n-1). (b) Если $C_r^n < 2^{C_n^2-1}$, то R(n,n) > r. (c) Если $C_r^n < s \cdot 2^{C_n^2-1}$, то R(n,n) > r s. (d) $R(n,n) > r C_r^n \cdot 2^{1-C_n^2} 1$ для любого r. (e) Теорема Эрдеша. $R(n,n) \gtrsim \frac{n}{e} \cdot 2^{\frac{n}{2}}$.
- (а) На плоскости отметили 17 точек и соединили каждые 2 из них цветным отрезком: красным, желтым или зеленым. Докажите, что тогда есть одноцветный треугольник.
 - (b) Придумайте 9 точек на плоскости и раскраску в 3 цвета всех соединяющих их отрезков, для которой нет одноцветного треугольника.

Числом Рамсея $R(m_1, ..., m_k)$ называется минимальное из таких целых положительных чисел x, что для любой раскраски ребер графа K_x в k цветов для некоторого i найдется m_i -клика i-ого цвета.

Например, очевидно, что R(1, m, n) = 1 и R(2, m, n) = R(m, n) для любых m, n. В задаче 2 доказано, что $10 \le R(3,3,3) \le 17$. Но не очевидно, что такое число существует для любых m_1,\ldots,m_k .

- 3. Докажите следующие утверждения.
 - (a) $R(m, n, p) \leq R(R(m, n), p)$.
 - (b) $R(m_1, m_2, \dots, m_k) \le R(m_1 1, m_2, \dots, m_k) + R(m_1, m_2 1, \dots, m_k) + \dots$ $\ldots + R(m_1, m_2, \ldots, m_k - 1).$

Домашнее задание

- **1.** Найдите оценку на $R(m_1, m_2, \dots, m_k)$ через полиномиальные коэффициенты.
- **2.** Докажите, что если ребра графа K_{31} раскрашены в синий, белый и красный цвета так, что нет ни синей 4-клики, ни белой 3-клики, ни красной 3-клики, то из каждой вершины выходит 14, 15 или 16 синих ребер.
- **3.** Найдите нижние оценки на $R(\underbrace{n,\ldots,n}_{l})$, аналогичные утверждениям задачи $\mathbf{1}(\mathbf{a},\mathbf{e})$.