Moments and Moment Generating Functions

• The *moments* (or *raw moments*) of a random variable or of a distribution are the expectations of the powers of the random variable which has the given distribution.

Moments

• If X is a random variable, the rth moment of X, usually denoted by μ_r , is defined as

$$\mu_r' = \mathscr{E}[X^r]$$

if the expectation exists.

• Note that $\mu_1' = \mathscr{E}[X] = \mu_X$, the mean of X.

Central moments

- If X is a random variable, the rth central moment of X about a is defined as $\mathscr{E}[(X-a)^r]$.
- If $a = \mu_X$, we have the rth central moment of X about μ_X , denoted by μ_r , which is

$$\mu_r = \mathscr{E}[(X - \mu_X)^r].$$

Note that

• $\mu_1 = \mathscr{E}[(X - \mu_X)] = 0$ and $\mu_2 = \mathscr{E}[(X - \mu_X)^2]$, the variance of X.

• Also note that all odd moments of X about μ_X are 0 if the density function of X is symmetrical about μ_X , provided such moments exist.

Moment Generating Functions (mgf)

• The moment generating function $\varphi(t)$ of the random variable X is defined for all values t by

$$\phi(t) = E[e^{tX}]$$

$$= \begin{cases} \sum_{x} e^{tx} p(x), & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx, & \text{if } X \text{ is continuous} \end{cases}$$

We call $\varphi(t)$ the moment generating function

- because all of the moments of X can be obtained by successively differentiating $\varphi(t)$.
- For example,

$$\phi'(t) = \frac{d}{dt} E[e^{tX}]$$

$$= E\left[\frac{d}{dt}(e^{tX})\right]$$

$$= E[Xe^{tX}]$$

• Hence, $\phi'(0) = E[X]$

Similarly,

$$\phi''(t) = \frac{d}{dt}\phi'(t)$$

$$= \frac{d}{dt}E[Xe^{tX}]$$

$$= E\left[\frac{d}{dt}(Xe^{tX})\right]$$

$$= E[X^2e^{tX}]$$

• And so $\phi''(0) = E[X^2]$

• In general,

• the *n*th derivative of $\varphi(t)$ evaluated at t = 0 equals $E[X^n]$,

that is,

$$\phi^n(0) = E[X^n], \qquad n \geqslant 1$$

An important property

• An important property of moment generating functions is that the moment generating function of the sum of independent random variables is just the product of the individual moment generating functions.

To see this,

- suppose that X and Y are independent and have moment generating functions $\varphi_X(t)$ and $\varphi_Y(t)$, respectively.
- Then $\varphi_{X+Y}(t)$, the moment generating function of X+Y, is given by

$$\phi_{X+Y}(t) = E[e^{t(X+Y)}]$$

$$= E[e^{tX}e^{tY}]$$

$$= E[e^{tX}]E[e^{tY}], \text{ since } X \text{ and } Y \text{ are independent.}$$

$$= \phi_X(t)\phi_Y(t)$$

mgf of the Binomial Distribution with Parameters n and p

$$\phi(t) = E[e^{tX}]$$

$$= \sum_{k=0}^{n} e^{tk} \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} (pe^{t})^{k} (1-p)^{n-k}$$

$$= (pe^{t} + 1 - p)^{n}$$

Hence,
$$\phi'(t) = n(pe^t + 1 - p)^{n-1}pe^t$$

and so $E[X] = \phi'(0) = np$

Differentiating a second time yields

$$\phi''(t) = n(n-1)(pe^t + 1 - p)^{n-2}(pe^t)^2 + n(pe^t + 1 - p)^{n-1}pe^t$$

and so

$$E[X^2] = \phi''(0) = n(n-1)p^2 + np$$

Thus, the variance of X is given

$$Var(X) = E[X^{2}] - (E[X])^{2}$$

$$= n(n-1)p^{2} + np - n^{2}p^{2}$$

$$= np(1-p) \blacksquare$$

mgf of the Poisson Distribution with Mean λ

$$\phi(t) = E[e^{tX}]$$

$$= \sum_{n=0}^{\infty} \frac{e^{tn}e^{-\lambda}\lambda^n}{n!}$$

$$= e^{-\lambda} \sum_{n=0}^{\infty} \frac{(\lambda e^t)^n}{n!}$$

$$= e^{-\lambda}e^{\lambda e^t}$$

$$= \exp{\{\lambda(e^t - 1)\}}$$

Differentiation yields

$$\phi'(t) = \lambda e^t \exp\{\lambda(e^t - 1)\},$$

$$\phi''(t) = (\lambda e^t)^2 \exp\{\lambda(e^t - 1)\} + \lambda e^t \exp\{\lambda(e^t - 1)\}$$
and so
$$E[X] = \phi'(0) = \lambda,$$

$$E[X^2] = \phi''(0) = \lambda^2 + \lambda,$$

$$Var(X) = E[X^2] - (E[X])^2$$

$$= \lambda$$

Thus, both the mean and the variance of the Poisson equal λ .