

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE160203603

FCC REPORT

(WIFI)

Applicant: Shenzhen TongFang Information Technologies CO.,LTD.

Floor3, Building D, TongFang Information Harbour, LangShan

Address of Applicant: Road, High-tech Industrial Park North, NanShan District,

ShenZhen, P.R.China 51805

Equipment Under Test (EUT)

Product Name: MID

Model No.: B9SS3, B9S3

FCC ID: 2ABKZ-UC197908

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 26 Feb., 2016

Date of Test: 26 Feb., to 17 Mar., 2016

Date of report issued: 18 Mar., 2016

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	18 Mar., 2016	Original

Viki zhul Test Engineer Tested by: Date: 18 Mar., 2016

Reviewed by: Date: 18 Mar., 2016

Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2 6.7		
	6.7.1	SPURIOUS EMISSION Conducted Emission Method	
	6.7.2		
_	· · · · · -		
7	TES	T SETUP PHOTO	57
8	EUT	CONSTRUCTIONAL DETAILS	58

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Shenzhen TongFang Information Technologies CO.,LTD.
Address of Applicant:	Floor3, Building D, TongFang Information Harbour, LangShan Road, High-tech Industrial Park North, NanShan District, ShenZhen, P.R.China 51805
Manufacturer	Shenzhen TongFang Information Technologies CO.,LTD.
Address of Manufacturer:	Floor3, Building D, TongFang Information Harbour, LangShan Road, High-tech Industrial Park North, NanShan District, ShenZhen, P.R.China 51805

5.2 General Description of E.U.T.

Product Name:	MID
Model No.:	B9SS3, B9S3
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2 dBi
AC adapter:	Model: FEF0500200A1BU Input: AC100-240V 50/60Hz 0.3A Output: DC 5.0V, 2.0A
Power supply:	Rechargeable Li-ion Battery DC3.7V-2300mAh
Remark:	The model: B9SS3, B9S3 Smart HD were identical inside, the electrical circuit design, layout, components used and internal wiring, with only dfference being model name.

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

Report No: CCISE160203603

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Operation mode Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11p, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016

Cond	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207
Test Method:	ANSI C63.4: 2009
Test Frequency Ra	ge: 150 kHz to 30 MHz
Class / Severity:	Class B
Receiver setup:	RBW=9 kHz, VBW=30 kHz
Limit:	Limit (dBuV)
	Frequency range (MHz) Quasi-peak Average
	0.15-0.5 66 to 56* 56 to 46*
	0.5-5 56 46
	* Decreases with the logarithm of the frequency.
Test procedure Test setup:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement.
rest setup.	Reference Plane LISN 40cm 80cm Filter AC power Equipment E.U.T Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m
Test Uncertainty:	±3.28 dB
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Neutral:

Trace: 7 Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : MID

Condition EUT : B9SS3 Model

Test Mode : WIFI mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki

Remark

Kemark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>		dBu∀	dBu√	<u>dB</u>	
1	0.165	38.79	0.17	10.77	49.73	65.21	-15.48	QP
2	0.230	29.52	0.16	10.75	40.43	52.44	-12.01	Average
1 2 3 4 5 6 7 8 9	0.289	29.70	0.16	10.74	40.60	50.54	-9.94	Average
4	0.389	32.07	0.16	10.72	42.95	48.08	-5.13	Average
5	0.396	42.10	0.16	10.72	52.98	57.95	-4.97	QP
6	0.444	43.65	0.16	10.74	54.55	56.98	-2.43	QP
7	0.449	34.37	0.16	10.74	45.27	46.89	-1.62	Average
8	0.779	31.37	0.18	10.80	42.35	46.00	-3.65	Average
9	0.839	42.07	0.18	10.82	53.07	56.00	-2.93	QP
10	1.433	41.47	0.19	10.92	52.58	56.00	-3.42	QP
11	1.527	30.02	0.19	10.93	41.14	46.00	-4.86	Average
12	2.237	40.95	0.20	10.95	52.10	56.00	-3.90	QP

Line:

Trace: 5

Site : CCIS Shielding Room Condition : FCC PART15 B QP LISN LINE

EUT : MID
Model : B9SS3
Test Mode : WIFI mode
Power Rating : AC 120V/60H2

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	₫₿uѶ	₫B	₫B	dBu₹	dBu∀	dB	
1	0.226	40.44	0.26	10.75	51.45	62.61	-11.16	QP
2	0.296	29.24	0.26	10.74	40.24	50.37	-10.13	Average
1 2 3	0.300	41.05	0.26	10.74	52.05	60.24	-8.19	QP
4 5 6 7 8 9	0.396	42.42	0.26	10.72	53.40	57.95	-4.55	QP
5	0.396	33.58	0.26	10.72	44.56	47.95	-3.39	Average
6	0.449	43.96	0.27	10.74	54.97	56.89	-1.92	QP
7	0.454	33.80	0.27	10.74	44.81	46.80	-1.99	Average
8	0.614	29.32	0.27	10.77	40.36	46.00	-5.64	Average
9	0.775	29.07	0.28	10.80	40.15	46.00	-5.85	Average
10	0.813	41.72	0.28	10.81	52.81	56.00	-3.19	QP
11	1.495	28.48	0.30	10.92	39.70	46.00	-6.30	Average
12	1.511	42.23	0.30	10.92	53.45	56.00	-2.55	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)						
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2						
Limit:	30dBm						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data

Test CH	Maximum	Limit(dBm)	Result			
1031 011	802.11b	802.11g	802.11n(H20)	Ellilli (dBill)	Nesult	
Lowest	7.70	8.02	7.43			
Middle	7.86	8.38	7.77	30.00	Pass	
Highest	7.92	8.37	7.79			

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Page 14 of 58

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)						
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1						
Limit:	>500kHz						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data

Test CH	6dB	Limit(kHz)	Result			
1631 011	802.11b	Liiiiii(Ki iZ)	Nesuit			
Lowest	8.24	16.56	17.84			
Middle	8.24	16.48	17.72	>500	Pass	
Highest	8.24	16.56	17.76			

Test CH	99%	Limit(kHz)	Result			
1030011	802.11b	Limit(Kriz)	result			
Lowest	10.56	16.56	17.76			
Middle	10.56	16.56	17.76	N/A	N/A	
Highest	10.56	16.56	17.76			

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 13.MAR.2016 04:31:38

Lowest channel

Date: 13.MAR.2016 04:30:45

Middle channel

Date: 13.MAR.2016 04:29:58

Highest channel

Date: 13.MAR.2016 04:32:24

Lowest channel

Date: 13.MAR.2016 04:33:10

Middle channel

Data: 13 MAD 2016 04:34:0

Highest channel

Test mode: 802.11n(H20)

Date: 13.MAR.2016 04:35:08

Lowest channel

Date: 13.MAR.2016 04:36:03

Middle channel

Data: 13 MAD 2016 04:36:5

Highest channel

99% **OBW**

Test mode: 802.11b

Date: 13.MAR.2016 04:28:20

Lowest channel

Date: 13.MAR.2016 04:28:39

Middle channel

Date: 13.MAR.2016 04:29:12

Highest channel

Test mode: 802.11g

Date: 13.MAR.2016 04:27:14

Lowest channel

Date: 13.MAR.2016 04:27:35

Middle channel

Dato: 13 MAD 2016 04:27:50

Highest channel

Test mode: 802.11n(H20)

Date: 13.MAR.2016 04:26:47

Lowest channel

Date: 13.MAR.2016 04:26:23

Middle channel

Dato: 13 MAD 2016 04:25:5

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)						
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2						
Limit:	8dBm						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data

Test CH	Pow	er Spectral Density (c	Limit(dBm)	Result		
1031 011	802.11b 802.11g 802.11n(H20)		Limit(dBiri)	rtosuit		
Lowest	-1.06	-4.90	-5.85			
Middle	-0.60	-4.82	-5.62	8.00	Pass	
Highest	-0.52	-4.67	-5.44			

Test plot as follows:

Date: 13.MAR.2016 04:23:28

Lowest channel

Date: 13.MAR.2016 04:23:11

Middle channel

Date: 13.MAR.2016 04:22:52

Highest channel

Date: 13.MAR.2016 04:23:49

Lowest channel

Date: 13.MAR.2016 04:24:08

Middle channel

Date: 13.MAR.2016 04:24:28

Highest channel

Test mode: 802.11n(H20)

Date: 13.MAR.2016 04:24:48

Lowest channel

Date: 13.MAR.2016 04:25:06

Middle channel

Date: 13.MAR.2016 04:25:24

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Date: 13.MAR.2016 04:16:47

Lowest channel

Highest channel

802.11g

Date: 13.MAR.2016 04:22:10

Date: 13.MAR.2016 04:21:36

Date: 13.MAR.2016 04:18:04

Lowest channel

Highest channel

802.11n(H20)

Date: 13.MAR.2016 04:19:49

Lowest channel

Highest channel

Date: 13.MAR.2016 04:20:57

6.6.2 Radiated Emission Method

0.0.2	Natiated Lillission Method								
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
	Test Method:	ANSI C63.10: 2009 and KDB 558074v03r03 section 12.1							
	Test Frequency Range:	2.3GHz to 2.5GHz							
	Test site:	Measurement Distance: 3m							
	Receiver setup:								
		Frequency	Detector Peak	RBW 1MHz	VBW 3MHz	Remark Peak Value			
		Above 1GHz	RMS	1MHz	3MHz	Average Value			
	Limit:			<u>'</u>	-				
		Freque	ency	Limit (dBuV/		Remark			
		Above ²	1GHz	54.0		Average Value			
	Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data							
	Test setup:	AE SOCM (To	umtable) Gro	Horn Ante	Antenna Ton	wer			
	Test Instruments:	Refer to section	5.6 for detail	ls					
	Test mode:	Refer to section							
	Test results:	Passed							
-		•							

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: MID EUT : B9SS3 Model Test mode : B-L Mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Viki REMARK :

TITL									
	Free		Antenna Factor						Remark
	rreq	Peact	ractor	LUSS	ractor	rever	LINE	TIME	Remark
	MHz	dBu∇	—dB/m	₫B	₫B	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000	24.45	23.68	6.63	0.00	54.76	74.00	-19.24	Peak
	2390.000	13.48	23.68	6.63	0.00	43.79	54.00	-10.21	Average

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Vertical:

: 3m chamber Site

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: MID EUT Model : B9SS3 Test mode : B-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki REMARK :

III										
	T	ReadAntenna Level Factor								
	Freq	rever	ractor	Loss	ractor	rever	Line	Limit	Kemark	
-	MHz	dBu₹	─dB/m	₫B	dB	dBuV/m	dBuV/m	dB		
1	2390.000 2390.000			6.63 6.63		54.66 43.70				

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : MID : D9SS3
Test mode : B-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
REMARK :

			Antenna Factor			Limit Line		
	MHz	—dBuV	— <u>dB</u> /m	 <u>d</u> B	$\overline{dBuV/m}$	dBuV/m	dB	
l 2	2483.500 2483.500				54.01 43.78			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: MID EUT . D9SS3

Test mode : B-H Mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki

REMARK :

MAK	h :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBu∀/m	<u>dB</u>	
1	2483.500	25.40	23.70	6.85	0.00	55.95	74.00	-18.05	Peak
)	2483 500	13 32	23 70	6 85	0.00	43 87	54 00	-10 13	Amerage

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : MID Model : B9SS3 Test mode : G-L Mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Viki

REMARK

יוטוונינו			Antenna Factor						
	MHz	dBu∜	$-\overline{dB}/\overline{m}$	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000					54.47 44.12			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: MID EUT : B9SS3 Model

Test Engineer: Viki REMARK :

MIL										
			Antenna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∇		<u>ab</u>	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
	2390.000	24.38	23.68	6.63	0.00	54.69	74.00	-19.31	Peak	
)	2390, 000	13, 43	23, 68	6, 63	0.00	43, 74	54,00	-10.26	Average	

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: MID EUT Model : B9SS3 Test mode : G-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki

REMARK

I.	•	Read.	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						
	MHz	dBu∇	$-\frac{dB}{m}$	<u>d</u> B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>d</u> B	
			23.70 23.70						Peak Average

Remark:

2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: MID EUT Model : B9SS3 Test mode : G-H Mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Viki REMARK :

m	: A								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹		<u>d</u> B	<u>ab</u>	dBuV/m	dBuV/m	<u>d</u> B	
	2483.500	23.79	23.70	6.85	0.00	54.34	74.00	-19.66	Peak
)	2483 500	13 26	23 70	6 85	0.00	43 81	54 00	-10 19	Average

Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : MID : B9SS3 Model Test mode : N20-L Mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Viki REMARK :

Mr.	rv :									
	Freq		Antenna Factor				Limit Line		Remark	
	MHz	—dBu∇			<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>		
	2390.000 2390.000			6.63 6.63			74.00 54.00			

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : MID : B9SS3 Model : N20-L Mode Test mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Viki REMARK :

	Read	Antenna	Cable	Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	—dBu₹		dB	<u>dB</u>	dBu√/m	dBuV/m	<u>dB</u>	
2390.000 2390.000								

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : MID : B9SS3 Model : N20-H Mode Test mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Viki REMARK:

	Freq		Antenna Factor						
2	MHz	dBu₹	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	dB	
	2483.500 2483.500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : MID : B9SS3 : N20-H Mode Model

Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Viki REMARK:

9.1	KK :									
	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
	2483,500 2483,500				0.00 0.00					

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2009 and KDB558074 section 11
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
	Spectrum Analyzer
	E.U.T
	Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

Test mode: 802.11b Lowest channel

Date: 13.MAR.2016 04:42:02

30MHz~25GHz

Middle channel

Date: 13.MAR.2016 04:42:32

30MHz~25GHz

Highest channel

Date: 13.MAR.2016 04:43:10

30MHz~25GHz

Test mode: 802.11g Lowest channel

Date: 13.MAR.2016 04:44:02

30MHz~25GHz

Middle channel

Date: 13.MAR.2016 04:44:56

30MHz~25GHz

Highest channel

Date: 13.MAR.2016 04:45:28

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 13.MAR.2016 04:46:08

30MHz~25GHz

Middle channel

Date: 13.MAR.2016 04:46:44

30MHz~25GHz

Highest channel

Date: 13.MAR.2016 04:47:34

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.2	09 and 15.205	;)	
Test Method:	ANSI C63.10:2	009			
Test Frequency Range:	9kHz to 25GHz				
Test site:	Measurement [Distance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
·	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	Above IGHZ	RMS	1MHz	3MHz	Average Value
Limit:	Freque	ncy	Limit (dBuV/	m @3m)	Remark
	30MHz-8	8MHz	40.0)	Quasi-peak Value
	88MHz-21	6MHz	43.5	5	Quasi-peak Value
	216MHz-9	60MHz	46.0)	Quasi-peak Value
	960MHz-	1GHz	54.0		Quasi-peak Value
	Above 1	GHz	54.0		Average Value
			74.0		Peak Value
Test Procedure:	the ground degrees to 2. The EUT wantenna, watower. 3. The antendathe ground Both horized make the result of find the 5. The test-result of find the limit spof the EUT have 10dB	I at a 3 meters determine the vas set 3 meters which was more and height is various and height is various and vermeasurement the anterest and with a maximum respected the rota tab maximum respected to the rotation of the rotatio	r chamber. The position of the maximum the polarization of the polarization of the polarization of the position of the ported. Otherwood of the ported of the position of the ported of the position of the ported of the position of th	e table was he highest of the interferop of a variue of the normal to heights from 0 degrated Mode. The action of the action was arranged to heights from 0 degrated Mode. The action of	radiation. rence-receiving able-height antenna our meters above ne field strength. Intenna are set to nged to its worst from 1 meter to 4 rees to 360 degrees

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

Model : B9SS3
Test mode : WIFI Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
REMARK EUT : MID

REMARK

	Freq		Antenna Factor				Limit Line	Over Limit	
_	MHz	dBu₹			<u>db</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1	180.017	55.49	9.20	2.73	28.97	38.45	43.50	-5.05	QP
2	239.987	49.59	11.80	2.82	28.59	35.62	46.00	-10.38	QP
2	366.823	47.54	14.78	3.09	28.64	36.77	46.00	-9.23	QP
4	420.580	47.65	16.03	3.13	28.82	37.99	46.00	-8.01	QP
5	601.427	41.46	18.50	3.94	28.93	34.97	46.00	-11.03	QP
6	731.920	45.71	20.00	4.29	28.55	41.45	46.00	-4.55	QP

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

: MID : B9SS3 : D9SS3

Test mode : WIFI Mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki

REMARK : EUT

	Freq		Antenna Factor						Remark
_	MHz	—dBu∇	— <u>d</u> B/m		dB	$\overline{dB}\overline{uV/m}$	dBuV/m		
1	47.160	39.41	16.59	1.27	29.84	27.43	40.00	-12.57	QP
2	119.856	46.64	11.80	2.17	29.39	31.22	43.50	-12.28	QP
3	180.017	52.85	9.20	2.73	28.97	35.81	43.50	-7.69	QP
4	239.987	46.77	11.80	2.82	28.59	32.80	46.00	-13.20	QP
5	601.427	40.25	18.50	3.94	28.93	33.76	46.00	-12.24	QP
6	731.920	41.36	20.00	4.29	28, 55	37, 10	46.00	-8.90	OP

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	44.64	36.12	10.60	40.22	51.14	74.00	-22.86	Vertical	
4824.00	45.28	36.12	10.60	40.22	51.78	74.00	-22.22	Horizontal	
Test mode: 80	02.11b		Test channel: Lowest			Remark: Ave	erage		
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over		
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polar.	
								Polar. Vertical	

Test mode: 802.11b			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	44.47	36.32	10.64	40.15	51.28	74.00	-22.72	Vertical
4874.00	45.42	36.32	10.64	40.15	52.23	74.00	-21.77	Horizontal
Test mode: 80	02.11b		Test channel: Middle			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	35.61	36.32	10.64	40.15	42.42	54.00	-11.58	Vertical
4874.00	35.24	36.32	10.64	40.15	42.05	54.00	-11.95	Horizontal

Test mode: 802.11b			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	44.60	36.58	10.70	40.08	51.80	74.00	-22.20	Vertical
4924.00	44.60	36.58	10.70	40.08	51.80	74.00	-22.20	Horizontal
Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	34.58	36.58	10.70	40.08	41.78	54.00	-12.22	Vertical
4924.00	35.00	36.58	10.70	40.08	42.20	54.00	-11.80	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode: 80	Test mode: 802.11g		Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	46.46	36.12	10.60	40.22	52.96	74.00	-21.04	Vertical
4824.00	45.05	36.12	10.60	40.22	51.55	74.00	-22.45	Horizontal
Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	36.39	36.12	10.60	40.22	42.89	54.00	-11.11	Vertical
4824.00	35.55	36.12	10.60	40.22	42.05	54.00	-11.95	Horizontal

Test mode: 802.11g			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	44.60	36.32	10.64	40.15	51.41	74.00	-22.59	Vertical
4874.00	44.25	36.32	10.64	40.15	51.06	74.00	-22.94	Horizontal
Test mode: 80	າວ 11ຕ		Test channel: Middle			Remark: Average		
1001111000100	72. I Ig		1 CSt Chair	irici. iviidaic		Noman. Ave	ray c	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: 8	est mode: 802.11g			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	44.57	36.58	10.70	40.08	51.77	74.00	-22.23	Vertical	
4924.00	44.51	36.58	10.70	40.08	51.71	74.00	-22.29	Horizontal	
Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	34.53	36.58	10.70	40.08	41.73	54.00	-12.27	Vertical	
4924.00	35.12	36.58	10.70	40.08	42.32	54.00	-11.68	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	46.61	36.12	10.60	40.22	53.11	74.00	-20.89	Vertical	
4824.00	45.45	36.12	10.60	40.22	51.95	74.00	-22.05	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	36.57	36.12	10.60	40.22	43.07	54.00	-10.93	Vertical	
4824.00	35.67	36.12	10.60	40.22	42.17	54.00	-11.83	Horizontal	

Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	44.73	36.32	10.64	40.15	51.54	74.00	-22.46	Vertical
4874.00	44.35	36.32	10.64	40.15	51.16	74.00	-22.84	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Middle			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	35.06	36.32	10.64	40.15	41.87	54.00	-12.13	Vertical
4874.00	35.11	36.32	10.64	40.15	41.92	54.00	-12.08	Horizontal

Test mode: 80	02.11n(H20)		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	45.34	36.58	10.70	40.08	52.54	74.00	-21.46	Vertical
4924.00	45.21	36.58	10.70	40.08	52.41	74.00	-21.59	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	35.04	36.58	10.70	40.08	42.24	54.00	-11.76	Vertical
4924.00	35.16	36.58	10.70	40.08	42.36	54.00	-11.64	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.