

 $\dot{x} = f(x) + g(x)u$ y = h(x) $\dot{y} = rac{\partial h(x)}{\partial x}\dot{x} =
abla h \cdot (f(x) + g(x)u) = L_f h + (L_g h)u$ 若 $L_g h = 0$,則微分一次未能引出控制u,則需微分兩次:

 $\ddot{y} = \frac{d}{dt}\dot{y} = \frac{d}{dt}(L_f h) = \nabla(L_f h) \cdot (f + gu) = L_f^2 h + (L_g L_f h)u$

若 $L_g L_f h = 0$,則微分二次未能引出控制u,則需微分三次:

$$\ddot{y}'=rac{d}{dt}\ddot{y}=rac{d}{dt}(L_f^2h)=
abla(L_f^2h)\cdot(f+gu)=L_f^3h+(L_gL_f^2h)u$$

(b) 若要在微分中引出控制u,滿足

$$L_g L_f^0 h = L_g L_f^1 h = \ldots = L_g L_f^{r-2} h = 0, \quad L_g L_f^{r-1} h
eq 0$$

則非線性系統的相對階數為r。(微分r次才引出u) (c)!!為什麼我的©變這樣® 若假設系統的相對階數為3,則須滿足

$$L_g h = 0, \quad L_g L_f h = 0, \quad L_g L_f^2 h
eq 0$$

 $\xi_1 = V - 3 - V G v_1$ $\xi_2 = V - 4 - G v_2$ $\xi_3 = V - G v_3$ $\xi_4 = V - G v_4$ $\xi_4 = V + V v_5 + v_5 = G v_4$ $\xi_4 = V v_5 + v_5 = G v_4$ $\xi_4 = V v_5 + v_5 = G v_4 + v_5 = G v_4 + v_5 = G v_5$

(5)¢3

其中 f_1, f_2, f_3 為待定參數。 為了使追蹤誤差隨時間趙近於0,選擇其Lyap $V = \frac{1}{2}e^2 + \frac{1}{2}|b_p| \left(\frac{\bar{K}_y^2}{\gamma_1} + \frac{\bar{K}_f^2}{\gamma_2} + \frac{\bar{K}_r^2}{\gamma_3}\right), \ \gamma_i > 0, i = 1, 2, 3 \eqno(5.5)$ $\dot{V} = -e^2 + b_p e \left(ar{K}_y y + ar{K}_f \cos y + ar{K}_r r
ight)$ $+ |b_p| \left(\frac{\bar{K}_y f_1}{\gamma_1} + \frac{\bar{K}_f f_2}{\gamma_2} + \frac{\bar{K}_r f_3}{\gamma_3} \right)$ 為滿足 $\dot{V} < 0$ 之條件,選擇 f_1, f_2, f_3 為

考慮一非線性系統 $\dot{x}=f(x)+g(x)u \ y=h(x) \ (1.b)$

x為系統狀態,u為控制輸入,y為系統輸出。回授線性化的手段是控制輸入u,對象

輸入-狀態回授線性化是討論(1.a)式中,控制輸入u與狀態x之間的線性化問題,與(1.b)中的輸出y無關。線性化過程主要包含2個步驟:

1. 尋求狀態轉換 $z=\Phi(x)$ 與控制轉換u=u(z,v),使得在新的狀態變數z與新的控制v的作用 下,(1.a)可轉變成線性方程式:

輸入-輸出回授線性化的控制目的是要設計控制律业使得輸出y(t)超近於某一目標訊號 $y_d(t)$,而且 候持狀趣-為有界,認即領我們所考慮的重點將不是狀態-此均線性化,而是輸出y的線性化,所以 輸入-輸出回授線性化的控制設計閱題,一方面要要建立輸入山與輸出y之間的線性關係,另一方 面是要在此線性關係上,使傳輸出始證某一目標訊號 y_d 。

(1) 自我調整適應性控制可分為兩個部分:參數估測及控制設計。參數估測係指對受控體的未知參 數 heta 進行估測,當參數隨時間變化時,參數估測值 $\hat{ heta}$ 也會隨之調整;控制設計是透過由參數估測 所得到的受控體參數,去設計控制律並選定控制參數。此方法為間接型的適應性控制,亦即利用 估測的受控體參數來進行控制設計。

此結構圖跟分成兩個迴路

- 1. 内廻路(控制廻路、快速廻路): 在一短暫的時間 Δt 内,受控體參數可視為不變。控制目的是要使 y 追蹤參考指令 r 。 2. 外迴路(估測迴路、慢迴路)
- 在一段較長的時距 Δt 內,受控體參數的變化很明顯,需要加以估測。

 $\begin{array}{c|c} G_{p}(s,\theta) \\ \hline \\ Fr \ st \oplus tt \ ds \\ \exists t \ S \ \theta^{*} \\ \hline \\ it \ S \ \theta_{s}(t) \\ = F(\theta(t)) \end{array}$

控制器 业

- -短暫的時間 Δt 内,受控體參數可視為不變。控制目的是要使 y 追蹤參考指令 r 。
- 在一段較長的時距 Δt 內,受控體參數的變化很明顯,需要加以估測。

- 体別の $\hat{\theta}$ の $\hat{\theta}$
- 2 抱制設计(control design) 根據前面所估得的受控體參數 θ 來設計控制律並遲定控制參數 θ_c 。 由於此步驟和1.為完全獨立,因此可以採用任何控制理論來設計控制器。

自動調整型(auto-tuning)控制器:

使用時機:自動調整型的控制器適用於受授體的狀態未知,但其特性卻不會改變,或改變很慢的 情形。

增益排程型(gain-scheduling)控制器:

使用時機:受控體的整體操作範圍已知,且容易將其劃分成有限個區域組合。

適應型(adaptation)控制器:

適用時機:受控體的操作環境無法預估,且無規則性或重覆性,無法事先規劃。

如果原非線性系統為三階,回授線性化後之線性系統為二階,其中會有一部份的系統動態為不可 觀察的 (unobservable) ,此動態稱為內部動態 (internal dynamics)

內部動態無法由輸出訊號 y 看到,也不受外部控制訊號 u 影響,造成其穩定性的決定不容易。

零動態定義:使得輸出u為零的系統動態。

設 $\dot{x} = f(x, u)$,y = g(x),若存在 u_0 使得y(t) = 0, $\forall t \ge 0$,則 $\dot{x} = f(x, u_0)$ 稱為零動態。

穩定性分析: (我不是很確定欸? 歡迎修改&補充) 課本pdf p.50

由於內部動態會和外部動態耦合在一起,而外部動態又取決於控制輸入,因此內部動態的穩定性 會隨著不同的控制輸入而有所不同。零動態則和控制輸入u無關,它是**系統的固有特性**,所以零 動態的穩定性可以獨立決定日與環境無關。

由內部動態定義零動態:

當檯面上的輸出為零時,檯面下看不到的系統動態就是零動態。也就是說,零動態是輸出y為零 時的系統動態。零動態就是外部動態為零時的系統動態。

線性系統的零點若全部落在左半平面,則其內部動態為穩定。故對線性系統而言,穩定的零點意 味著穩定的內部動態,but非線性系統沒有Laplace transfer function(沒有零極點的定義),但其 對應的概念就是零動態(使輸出為0的動態)。

$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2^3 + u \\ u \end{bmatrix}$ 並將此式代回原系統 $\dot{x_2} + x_2^3 = 0$

(a) qu=kỷ y+ks*cusy+k*r A実P緊調易療校代入 => y+apy+ cpcosy = bp(ky y+kf cosy+kf +) =) y+(ap-bpk\$)y+(cp-bpk\$)siny=bpkx.r. 幺杂·性参考接式 ym +ym=r =) ay-bpky=1, cy-bpkf=0, bpkf=1 $\begin{cases} k_f^2 = \frac{\alpha_f - 1}{bp} \\ k_f^2 = \frac{C_f}{bp} \\ k_f^2 = \frac{1}{bp} \end{cases}$

(b) & u= ky y+kgosy+fit 此时永久长*白9位30位,皇文已=y-7m 有效设差 5p=6p-16,后二后-16,后二后-16 b y+(ap-bpky)++(cp-bpkf)(usy=bp-kr-r

=) $\dot{y} + (a_p - b_p (\bar{k}_p + \frac{a_{p'}}{b_p})) \dot{y} + (c_p - b_p (\bar{k}_p + \frac{c_p}{b_p})) cos y = b_p (\bar{k}_p + \frac{1}{b_p}) r$

=) y+(1-bp kg)y+ (-bp kg) (wy = (1+ bp kr) + 且 e= y - ym = y- (r-yn)=> y= e+r-ym 代入上我 (e+r-7m)+(1-bp ky)y - bp kt cosy =(1+bp kr)+

9.6.2 適應性追蹤(adaptive tracking)

上一個例題的系統輸出y(t)是要趨近於設定值y=0(此稱為 regulation 問題),本節的設 計目的是要 y(t) 去追蹤(track 或 follow)—個參考模式的狀態 $y_m(t)$ 。考慮下列之一階系統

$$\dot{y} + a_p y = b_p u \qquad (9.6.15)$$

其中參數 a_p , b_p 為未知。這裡的控制目標是要設計 u ,使得 y(t) 能追蹤 $y_m(t)$,其中 $y_m(t)$ 源自

$$\dot{y}_m + a_m y = b_m r$$
 \Rightarrow $y_m = \frac{b_m}{s + a_m} r$ (9.6.16)

其 a_m,b_m 為已知之參數,r為輸入參考指令。適應性控制的設計仍然分成二個步驟進行:

控制訊號採用線性回授的方式,

$$u = K_y^* y + K_r^* r$$
 (9.6.17)

其中 y 是系統的輸出值, r 為參考命令, 均為已知。將控制 u 代入(9.6.15)式中, 得到 y 與 r 間

$$y = \frac{b_p K_r^*}{s + a_p - b_p K_y^*} r \qquad (9.6.18)$$

由於要求 y 和 ym 要一致,比較(9.6.16)和(9.6.18)式得到如下的結果

$$\frac{b_m}{s + a_m} = \frac{b_p K_r^*}{s + a_p - b_p K_y^*} \Rightarrow K_r^* = \frac{b_m}{b_p}, \quad K_y^* = \frac{a_p - a_m}{b_p} \quad (9.6.19)$$

皇Lyapunov 映れい1ハ-2 =) v = x x = x (ax 3 - x3 + u) ら U1=-ax2+x3-x 代入上式 =) $\dot{V} = -X^2 = -V_1(x) \le 0$ € V = ax3 - X4+ X4 5-1 (X) = - (X4+X1)..(1) =) X4 4 -X2-AX3 =-X(X+AX2) 满足條件的选择多 且满足(1),故能稳定系统 :. X= ax'-x'-x-ax'= -X'-X

(a) x = ax2-x3+4 2 u= x3-ax3 - x1tx

cc)由(a),迴步後5家性化会由於多終發放在9量澳1誤蓋 故控制率每法灾美灾现 , 另一缺矣是 控制证明订后 由(b),因 U,不包含X3项, 故妻值较小,更容易实现

(a) 选定+面5 = X(+X)-1 S = 2X, X, +2X, X, = 2X, X, +1X, (X,+4) 若UN採用F列

$$U = \begin{cases} U_{N}^{+} & x_{1}^{2} + x_{2} - 1 < 0 \\ U_{N}^{-} & x_{1}^{2} + x_{2}^{2} - 1 > 0 \end{cases}$$

·· 李UN=U B 滿足SS <D

(b) (5 = 0 =) 2X12X2 +1X2(X12+4)=0 =) $X_1^2 + X_1^2 + U = 0 = 0$ $U = -2X_1^2$ 故益 以=-2×1 ,見り満足5(Xo)=0 ,5(Xo)=0

1. ミス:スル、意:さいせん ま、コスキャのは、コミ・スポス・ス・スニル、コンド (1.2) = - Sin 31 (=1+31) +3 (=2-(0) 81) Sin 81 +6X1 sin (121) N = V

2. 由上式 =) 以= 1 6 sin(121) X1 [V+sin21(2+23)-3(22-032)sin3]

(a) y = dy = dh x = 7 h (fix)+9(x) u) = Lfh + Lgh. u 若上的力力,因以為一門皆

(P) j= 計(Pt)= 計(Pty)x = 2(24.t)(++3n)= 2(24.t)+2(44.t3)n = Lit H + FTF 3 H .M , = PE => LFL 3 H fo

cc) npt =) LgLf h +0 ,且LgLg h=0, h=0,1,2..., h

亏 3= ≠(x) 代x x = 5+8≠,使网蛋子养较各≥新进程囊定 艮P重找到V,(X) >0 ,且满足 V. (x) = dv x = dx (fx)+qxxu) ≤ - Vax)≤0 其中Va(x)为正定函数

1.建立外層結構

椭床系统改家各 x=f(x)+g(x)p(x)+g(x)(3-p(x)) 此日的进入子条终交的言元号为5一岁(4) 3.定以外居然林集的控制识别 Z=3-B(x) =) Z=3-B(x) = U-B(x)

定义新的控制讯号 V: Z= U- j (x) , 放可得 { x = f(x) + g(x) p(x) + g(x) = 2 = v 淀猴结構控制律

言文 V(XZ) 各军集经交后) Upunov func. =) v(x,z) = dv x + dv z = 0/2 (fw)+g w),p(x)+g w(z)+zv(L) Check 以上函校向量 rank 4 湍核 为了使 v<0,故选控制律V

V: - 3x 3(x) - K & Ú(x,3)= 0x (f(x)+3(x) p(x))-k8+ ≤ - Va(x)-k3+20 1 2=V=4-x 4)=) u=V+x(x)

 $u = p'(x) + V = \frac{\partial^2}{\partial x} (f(x) + g(x) + g(x) + \frac{\partial^2}{\partial x} g(x) - k(3 - p(x))$

(b) 対象原産業をみまさ準式 、夏 X = X₁ 、5 = X₂ =) { 対₁ = X₁ 5 = J (X₁) + 3 (X₁) 5 j = X₁ + M

1. 含多=卢(Xi),使肽熊X分类毛症辖定 至Lyapunov函数v.(x,)=至 =) $\dot{V}_1(x_1) = X_1 \dot{X}_1 = X_1 (X_1 \dot{S}) \leq - V_A(X_1) \leq 0$ 且VA另一正定函数 . 章VA(x)= x,4 見り3=ø(x)=-x,2

」: 決定外層集終控制律 U=声(Xi) - <u>Byi</u> 9(Xi) - ka $= \frac{\partial f}{\partial x_{i}} \left(f(x_{i}) + f(x_{i}) \right) - \frac{\partial f}{\partial x_{i}} f(x_{i}) - k \left(3 - f(x) \right)$ $= -2x_{i} \left(x_{i} \left(-x_{i}^{2} \right) - x_{i} \cdot x_{i} - k \left(x_{i} + x_{i}^{2} \right) \right)$ 1)建立函校向量分,adig... adig

其中 adfg = [f,g] = 2g f-2f g 为订控條件

(3) 若以上海足,則求解 P.D.E. 17 15 1 = 0 , |=1,2 ... h-1

(4)建立狀態座标転換

[2,, Z, ... Zn] = [p,, Lsm, ... Lsm] 及控制訊号载换 N= Q(x)+ P(x)·V (5) 建立無息1生新星 Z = Acz+Bc V

16) 会V:-K及代入得别迎路特性的 再利用極東指定,設計最佳的收斂

(1) V= - (k, 2, + K, Z, ... + k, 2n) = - (k, p, + k, Lf p, + ... + kn Ls p,) 化回求得X批解辨是FB9U

´シ= 盐= 盐x=マh(f(x)+g(x)u) = Lfh+ Lgh· U

 $\ddot{y} = \frac{d}{dt} (Lfh) = \frac{dx}{dt} (Lfh) \dot{x} = \nabla (Lfh) (fix) + g(x) u$ = Light Lalah.W

= Ligh + Lig Lg h . u

(b) 由文,若 17 h = 0 . 見り為の智

プラギレフトチロ 、レクはトニロ、見りなけな 装 Lgh=Lglish=--=Lgligth=0 , Lg Lghto,即当 ng (1) IJF

两部部熟 九·[5HI…3k]

可得标准式 $\begin{bmatrix} \frac{\dot{3}_1}{\dot{3}_2} \\ \frac{\dot{3}_2}{\dot{3}_3} \end{bmatrix} = \begin{bmatrix} \frac{\dot{3}_2}{\dot{3}_3} \\ \alpha(5,\Lambda) + b(5,\Lambda) \cdot u \end{bmatrix}$ (3+2fexearnal)

+) j = Ac3+BcV n=8(3,4) [AFFinternal] 其中 九= g(o, h) 其 zero dynamics (a) FIL

(1) X'=-X'1-TX'1-X' X'=N \$ X1=X , 3= X2 1th

=) $\begin{cases} \dot{X} = -X^{2} - 2X^{3} - 3 = f(x) + g(x) & 3 \\ \dot{S} = u & 3 \end{cases}$

(リラダ(x)= 5 代入=) な=-X2-2×3-ダ(x) ②Lypunov函数 V. (x)= ×

V.(x) = X x = X (-x3-2X3-3) ≤ -Va(x) ≤0 且 VA(X) - 正定函校 , ② VA(X)= 2X*+ X* \$ 1 = -X+ X

(4) 决定外展系统支控制律 N= 8 (x) + 3 1/1 3 (x) - kZ

 $= \frac{\partial x}{\partial x} \left(f(x) + g(x) \right) + \frac{\partial v}{\partial x} g(x) - k \left(\frac{1}{2} - g(x) \right)$

= (-2X +1) (-X,-3X3+X,-X)+3X(-1)-k(X+X,-X)

董章讓各狀態落入丟人所指定的滑动面工上 【二章前入一、批態

装速定滑动面 5(×,t) = (最+ 入)ⁿ⁻¹ 灸

0>(₩\$+\$) \$\frac{1}{4}\$ \$\frac{1}{4}\$ \$\frac{1}{4}\$\$

* 【s=95 (5+3 Ni) J C Un 、 Sco 関リ上に時十刀は笑: 野車岸 Un * { un 、 Sco

生控制在滑动面上 ,则温足 >) u: ueg = \frac{-\sigma_{\sigma_{\sigma}}}{-\sigma_{\sigma_{\sigma}}} = 0

u: ueg = \frac{-\sigma_{\sigma_{\sigma}}}{-\sigma_{\sigma_{\sigma}}} = 0

v: ueg = \frac{-\sigma_{\sigma_{\sigma}}}{-\sigma_{\sigma_{\sigma}}} = 0

藉由輔引AU將狀態X線性化

の寻求批能転換 Z=p(x), 角控制転換 U= 4(x,v) 可転換为線性eg. z= Az+BV

② 針对線性eg. 設計控制律 V=-kz 7得閉迴路特性 0%

· 輸入-輸出:

律主U和Y文間的線性A像,而帶狀態X的線H的 仁保持XA有界,使得Y追出能目标为,且需对Y代数分较次 引出4得到相又对肾核(外部)來又具室內部动態 私カロンタオイ