Basics of Complexity Analysis: The RAM Model and the Growth of Functions

Antonio Carzaniga

Faculty of Informatics University of Lugano

Semptember 24, 2008

© 2006-2007 Antonio Carzaniga

Outline

- Informal analysis of two Fibonacci algorithms
- The random-access machine model
- Measure of complexity
- Characterizing functions with their asymptotic behavior
- Big-O, omega, and theta notations

© 2006–2007 Antonio Carzaniga

Slow vs. Fast Fibonacci

- We informally characterized our two Fibonacci algorithms
 - ► Fibonacci is *exponential* in *n*
 - ► SmartFibonacci is (almost) *linear* in *n*
- How do we characterize the complexity of algorithms?
 - ▶ in general
 - ▶ in a way that is specific of the *algorithms*
 - but independent of any implementation detail

A Model of the Computer

- An informal model of the random-access machine (RAM)
- Basic types in the RAM model
 - integer and floating-point numbers
 - ► limited size of each "word" of data (e.g., 64 bits)
- Basic steps in the RAM model
 - operations involving basic types
 - ► load/store: assignment, use of a variable
 - arithmetic operations: addition, multiplication, division, etc.
 - branch operations: conditional branch, jump
 - subroutine call
- A basic step in the RAM model takes a constant time

Analysis in the RAM Model

SmartFibonacci(n)		cost	times (n > 1)
1	if $n = 0$	c 1	1
2	then return 0	c ₂	0
3	elseif $n=1$	c ₃	1
4	then return 1	C 4	0
5	else <i>pprev</i> ← 0	C 5	1
6	prev ← 1	<i>c</i> ₆	1
7	for $i \leftarrow 2$ to n	C 7	<i>n</i> − 1
8	$\mathbf{do} \ f \leftarrow \mathit{prev} + \mathit{pprev}$	c 8	<i>n</i> − 1
9	$pprev \leftarrow prev$	C 9	<i>n</i> − 1
10	prev ← f	<i>c</i> ₁₀	<i>n</i> − 1
11	return f	<i>c</i> ₁₁	1

$$T(n) = c_1 + c_3 + c_5 + c_6 + c_{11} + (n-1)(c_7 + c_8 + c_9 + c_{10})$$

$$T(n) = nC_1 + C_2 \Rightarrow T(n)$$
 is a linear function of n

© 2006-2007 Antonio Carzaniga

Input Size

- In general we measure the complexity of an algorithm as a function of the *size* of the input
 - size measured in bits
 - did we do that for SmartFibonacci?
- **Example:** given a sequence $A = \langle a_1, a_2, ..., a_n \rangle$, and a value x, output true if A contains x

Find(
$$A$$
, x)

1 for $i \leftarrow 1$ to $length(A)$

2 do if $A[i] = x$

3 then return true

4 return false

$$T(n) = Cn$$

Worst-Case Complexity

- In general we measure the complexity of an algorithm *in the* worst case
- **Example:** given a sequence $A = \langle a_1, a_2, ..., a_n \rangle$, output true if A contains two equal values $a_i = a_i$ (with $i \neq j$)

```
FindEquals(A)

1 for i \leftarrow 1 to length(A) - 1

2 do for j \leftarrow i + 1 to length(A)

3 do if A[i] = A[j]

4 then return true

5 return false
```

$$T(n) = C\frac{n(n-1)}{2}$$

© 2006-2007 Antonio Carzaniga

۵

Constant Factors

■ Does a load/store operation cost more than, say, an arithmetic operation?

$$x \leftarrow 0$$
 vs. $y + z$

- We do not care about the specific costs of each basic step
 - these costs are likely to vary significantly with languages, implementations, and processors
 - ▶ so, we assume $c_1 = c_2 = c_3 = \cdots = c_i$
 - ► we also ignore the specific *value* c_i, and in fact *we ignore every* constant cost factor

© 2006-2007 Antonio Carzaniga

Order of Growth

- We care only about the *order of growth* or *rate of growth* of T(n)
 - so we ignore lower-order terms

E.g., in

$$T(n) = an^2 + bn + c$$

we only consider the n^2 term and say that T(n) is a quadratic function in n

We write

$$T(n) = \Theta(n^2)$$

and say that "T(n) is theta of n-squared"

© 2006-2007 Antonio Carzaniga

1.1

⊕-Notation

■ Given a function g(n), we define the *family of functions* $\Theta(g(n))$

$$\Theta(g(n)) = \{f(n) : \exists c_1 > 0, \exists c_2 > 0, \exists n_0 > 0\}$$

 $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0$

2006-2007 Antonio Carzaniga

Examples

■
$$T(n) = n^2 + 10n + 100$$
 $\Rightarrow T(n) = \Theta(n^2)$

$$T(n) = n + 10 \log n \Rightarrow T(n) = \Theta(n)$$

$$T(n) = n \log n + n \sqrt{n} \Rightarrow T(n) = \Theta(n \sqrt{n})$$

$$T(n) = 2^{\frac{n}{6}} + n^7 \quad \Rightarrow T(n) = \Theta(2^{\frac{n}{6}})$$

$$T(n) = \frac{10+n}{n^2} \Rightarrow T(n) = \Theta(\frac{1}{n})$$

■
$$T(n) = \text{complexity of SmartFibonacci} \Rightarrow T(n) = \Theta(n)$$

- We characterize the behavior of T(n) in the limit
- The Θ -notation is an *asymptotic notation*

© 2006-2007 Antonio Carzaniga

13

O-Notation

■ Given a function g(n), we define the *family of functions* O(g(n))

$$O(g(n)) = \{f(n) : \exists c > 0, \exists n_0 > 0\}$$

$$: 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0$$

© 2006-2007 Antonio Carzaniga

Examples

■
$$T(n) = n^2 + 10n + 100$$
 $\Rightarrow T(n) = O(n^2)$ $\Rightarrow T(n) = O(n^3)$

$$T(n) = n + 10 \log n \quad \Rightarrow T(n) = O(2^n)$$

$$T(n) = n \log n + n \sqrt{n} \Rightarrow T(n) = O(n^2)$$

■
$$T(n) = 2^{\frac{n}{6}} + n^7$$
 $\Rightarrow T(n) = O((1.5)^n)$

$$T(n) = \frac{10+n}{n^2} \Rightarrow T(n) = O(1)$$

$$f(n) = O(g(n)) \wedge g(n) = \Theta(h(n)) \Rightarrow f(n) = O(h(n))$$

© 2006-2007 Antonio Carzaniga

. .

Examples

$$n^2 - 10n + 100 = O(n \log n)$$
? NO

$$f(n) = \Theta(2^n) \Rightarrow f(n) = O(n^2 2^n)? \text{ YES}$$

$$f(n) = \Theta(n^2 2^n) \Rightarrow f(n) = O(2^{n+2\log_2 n})$$
? YES

$$f(n) = O(2^n) \Rightarrow f(n) = \Theta(n^2)? \text{ NO}$$

$$\sqrt{n} = O(\log^2 n)$$
? NO

$$n^2 + (1.5)^n = O(2^{\frac{n}{2}})$$
? NO

© 2006-2007 Antonio Carzaniga

Example

■ So, what is the complexity of FindEquals?

FindEquals(A)

1 for $i \leftarrow 1$ to length(A) - 12 do for $j \leftarrow i + 1$ to length(A)3 do if A[i] = A[j]4 then return true

5 return false

$$T(n) = \Theta(n^2)$$

- ightharpoonup n = length(A)
- we measure the worst-case complexity

© 2006-2007 Antonio Carzaniga

1.7

Ω -Notation

■ Given a function g(n), we define the *family of functions* $\Omega(g(n))$

$$\Omega(g(n)) = \{f(n) : \exists c > 0, \exists n_0 > 0\}$$

 $: 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0\}$

© 2006-2007 Antonio Carzaniga

Θ , O, and Ω as Relations

- Theorem: for any two functions f(n) and g(n), $f(n) = \Omega(g(n)) \wedge f(n) = O(g(n)) \Leftrightarrow f(n) = \Theta(g(n))$
- The Θ -notation, Ω -notation, and O-notation can be viewed as the "asymptotic" =, \geq , and \leq relations for functions, respectively
- The above theorem can be interpreted as saying

$$f \ge g \land f \le g \Leftrightarrow f = g$$

- When f(n) = O(g(n)) we say that g(n) is an *upper bound* for f(n), and that g(n) dominates f(n)
- When $f(n) = \Omega(g(n))$ we say that g(n) is a *lower bound* for f(n)

© 2006-2007 Antonio Carzaniga

1.0

Θ , O, and Ω as Anonymous Functions

■ We can use the Θ -, O-, and Ω -notation to represent anonymous (unknown or unsecified) functions E.g.,

$$f(n) = 10n^2 + O(n)$$

means that f(n) is equal to $10n^2$ plus a function we don't know or we don't care to know that is asymptotically at most linear in n.

Examples

$$n^2 + 4n - 1 = n^2 + \Theta(n)$$
? YES
 $n^2 + \Omega(n) - 1 = O(n^2)$? NO
 $n^2 + O(n) - 1 = O(n^2)$? YES
 $n \log n + \Theta(\sqrt{n}) = O(n\sqrt{n})$? YES

© 2006-2007 Antonio Carzaniga

o-Notation

■ The upper bound defined by the *O*-notation may or may not be *asymptotically tight*

E.g., $n \log n = O(n^2)$ is not asymptotically tight $n^2 - n + 10 = O(n^2)$ is asymptotically tight

■ We use the *o*-notation to denote upper bounds that are *not* asymtotically tight. So, given a function g(n), we define the family of functions o(g(n))

```
o(g(n)) = \{ f(n) : \exists c > 0, \exists n_0 > 0 
: 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}
```

© 2006-2007 Antonio Carzaniga

2.1

ω -Notation

■ The lower bound defined by the Ω -notation may or may not be asymptotically tight

E.g.,

 $2^n = \Omega(n \log n)$ is not asymptotically tight $n + 4n \log n = \Omega(n \log n)$ is asymptotically tight

■ We use the ω -notation to denote lower bounds that are *not* asymtotically tight. So, given a function g(n), we define the family of functions $\omega(g(n))$

$$\omega(g(n)) = \{ f(n) : \exists c > 0, \exists n_0 > 0$$

: $0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}$

© 2006-2007 Antonio Carzaniga