图论

第四、五讲:图的矩阵表示

方聪

2024 年秋季

- 1 关联矩阵
- 2 邻接矩阵与相邻矩阵
- 3 谱图理论

- 1 关联矩阵
- ② 邻接矩阵与相邻矩阵
- 3 谱图理论

有向图关联矩阵

- 设 $D = \langle V, E \rangle$ 是无环有向图, $V = \{v_1, v_2, ..., v_n\}, E = \{e_1, e_2, ..., e_m\}$
- 关联矩阵 (incidence matrix):

$$M(D) = [m_{ij}]_{n \times m}, m_{ij} =$$

$$\begin{cases} 1, v_i \neq e_j \text{的起点} \\ 0, v_i \neq e_j \text{不关联} \\ -1 v_i \neq e_j \text{的终点} \end{cases}$$

• D与 M(D) 是相互唯一确定的

有向图关联矩阵 (例)

图 1: 有向图关联矩阵

有向图关联矩阵 (性质)

- 每列和为零: $\sum_{i=1}^{n} m_{ii} = 0$ (每条边关联两个顶点)
- 每行绝对值和为 $d(v_i): d(v_i) = \sum_{j=1}^m m_{ij}$, 其中 1 的个数为 $d^+(v)$, -1 的个数为 $d^-(v)$
- 握手定理: $\sum_{i=1}^{n} \sum_{j=1}^{m} m_{ij} = 0$ (各项点入度之和等于出度之和)
- 平行边: 相同两列

无向图关联矩阵

- 设 G < V, E >是无环无向图, $V = \{v_1, v_2, ..., v_n\}, E = \{e_1, e_2, ..., e_m\}$
- 关联矩阵 (incidence matrix):

$$M(G) = [m_{ij}]_{n \times m}, m_{ij} = \begin{cases} 1, v_i \leq e_j \notin \mathbb{K} \\ 0, v_i \leq e_j \in \mathbb{K} \end{cases}$$

• G与 M(G) 是相互唯一确定的

无向图关联矩阵 (例)

例:

图 2: 无向图关联矩阵

无向图关联矩阵 (性质)

- 每列和为 2: $\sum_{i=1}^{n} m_{ij} = 2$
- 每行和为 $d(v):d(v_i)=\sum_{j=1}^m m_{ij}$
- 每行所有 1 对应的边组成的集合为 v; 的关联集
- 平行边: 相同两列
- 伪对角阵: 若 G 有 k 个连通分支,则 G 的关联矩阵 M(G) 为伪对角阵

$$M(G) = \begin{bmatrix} v_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ v_1 & \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ v_4 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} M(G) = \begin{bmatrix} M(G_1) & & & & \\ M(G_2) & & & & \\ & M(G_k) & & & \\ & & M(G_k) & & \\ \end{bmatrix}$$

图 3: 无向图的关联矩阵

无向图基本关联矩阵

- 设 G < V, E >是无环无向图, $V = \{v_1, v_2, ..., v_n\}, E = \{e_1, e_2, ..., e_m\}$
- 任意1个顶点
- 基本关联矩阵 (fundamental incidence matrix): 从 M(G) 删 除参考点对应的行,记作 $M_f(G)$

无向图关联矩阵的秩

定理

n 阶无向连通图 G 的关联矩阵的秩 r(M(G)) = n - 1

证明.

在关联矩阵中删掉一行,依然可以复原原始矩阵,因此 $r \leq n-1$,下面证明 $r \geq n-1$ 。取 M 的前 n-1 行,记为 M_1, \cdots, M_{n-1} ,他们是线性无关的,否则必定存在不全为 0 的 $k_1, \cdots, k_{n-1} \in \{0,1\}$,在模 2 加法意义下使得 $\sum_{i=1}^{n-1} k_i M_i = 0$,不妨设其中 $k_1, \cdots, k_s = 1$ 其余为 0,此处 $s \neq 1$,否则 v_1 为孤立点与连通矛盾;此时 M 的子阵 $[M_1, \cdots, M_s]^{\mathsf{T}}$ 每列恰有两个 1 或者每列均为 0,可以得到 G 至少有两个连通分支,矛盾

无向图基本关联矩阵的秩

定理

n 阶无向连通图 G 的基本关联矩阵的秩 $r(M_f(G)) = n-1$

推论

- 推论 1: G 有 p 个连通分支,则 $r(M(G)) = r(M_f(G)) = n p$,其中 $M_f(G)$ 是从 M(G) 的每 个对角块中删除任意 1 行而得到的
- 推论 2: G 连通 $\Leftrightarrow r(M(G)) = r(M_f(G)) = n-1$

基本关联矩阵与生成树

定理

设 $M_f(G)$ 是 n 阶连通图 G 的一个基本关联矩阵。 M_f' 是 $M_f(G)$ 中任意 n-1 列组成的方阵,则 M_f' 各列所对应的边集 $\left\{e_{i_1},e_{i_2},...,e_{i_{n-1}}\right\}$ 的导出子图 $G\left[\left\{e_{i_1},e_{i_2},...,e_{i_{n-1}}\right\}\right]$ 是 G 的生成 树当且仅当 M_f' 的行列式 $\left|M_f'\right| \neq 0$

用关联矩阵求所有生成树

- 忽略环, 求关联矩阵
- 任选参考点, 求基本关联矩阵
- 求所有 n-1 阶子方阵, 计算行列式, 行列式非 0 的是生成树

- 1 关联矩阵
- 2 邻接矩阵与相邻矩阵
- 3 谱图理论

有向图邻接矩阵

- 设 D =< V, E > 是有向图, V = v₁, v₂, ..., v_n
- 邻接矩阵 (adjacencematrix): $A(D) = [a_{ij}]_{n \times n}, a_{ij} = \mathcal{K}v_i$ 到 v_j 的边数

图 4: 有向图的邻接矩阵

有向图邻接矩阵 (性质)

- 每行和为出度: $\sum_{i=1}^{n} a_{ij} = d^{+}(v_{i})$
- 每列和为入度: $\sum_{i=1}^{n} a_{ij} = d^{-}(v_{j})$
- 握手定理: $\sum_{i=1}^n \sum_{j=1}^n a_{ij} = \sum_{i=1}^n d^+(v_i) = \sum_{j=1}^n d^-(v_j)$
- 环个数:∑_{i=1}ⁿ a_{ii}

邻接矩阵与通路数

定理

设
$$A(D) = A = [a_{ij}]_{n \times n}, A^r = A^{r-1} \cdot A, (r \ge 2), A^r = [a_{ij}^{(r)}]_{n \times n},$$
则

- $a_{ij}^{(r)} = \mathcal{K} v_i$ 到 v_j 长度为 r 的通路总数
- $\sum_{i=1}^n \sum_{j=1}^n a_{ij}^{(r)} =$ 长度为r 的通路总数
- $\sum_{i=1}^{n} a_{ii}^{(r)} =$ 长度为 r 的回路总数

推论

$$B_r = A + A^2 + ... + A^r = \left[b_{ij}^{(r)} \right]_{n \times n}$$

- $b_{ii}^{(r)} = \mathcal{K} v_i$ 到 v_i 长度小于等于 r 的通路总数
- $\sum_{i=1}^{n} \sum_{i=1}^{n} b_{ii}^{(r)} =$ 长度小于等于 r 的通路总数

用邻接矩阵求通路数 (例)

图 5: 邻接矩阵求通路数

用邻接矩阵求通路数 (例, 续)

- v₂ 到 v₄ 长度为 3 和 4 的通路数:1,2
- v₂ 到 v₄ 长度 ≤ 4 的通路数:4
- v₄ 到 v₄ 长度为 4 的回路数:5
- v₄ 到 v₄ 长度 ≤ 4 的回路数:11

$$A^{2} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$B^{2} = \begin{bmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad B^{3} = \begin{bmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 6 \end{bmatrix} \qquad B^{4} = \begin{bmatrix} 0 & 2 & 7 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 7 & 11 \end{bmatrix}$$

图 6: 邻接矩阵求通路数

可达矩阵

- 设 $D = \langle V, E \rangle$ 是 n 阶有向图, $V(D) = \{v_1, v_2, ..., v_n\}$ 可达矩阵: $P(D) = [p_{ij}]_{n \times n}, p_{ij} = \begin{cases} 1, \mathcal{M}v_i$ 可达 $v_j \\ 0, \mathcal{M}v_i$ 不可达 v_j

可达矩阵(性质)

- 主对角线元素都是 1: ∀v; ∈ V, 从 v; 可达 v;
- $\forall i \neq j, p_{ij} = 1 \Leftrightarrow b_{ij}^{(n-1)} > 0$

可达矩阵 (例)

$$A(D) = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 2 & 1 & 0 \\ v_2 & 0 & 0 & 1 & 0 \\ v_3 & 0 & 0 & 0 & 1 \\ v_4 & 0 & 0 & 1 & 1 \end{bmatrix} \quad P = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$A^{4} = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$B^{2} = \begin{bmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad B^{3} = \begin{bmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 6 \end{bmatrix} \qquad B^{4} = \begin{bmatrix} 0 & 2 & 7 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 7 & 11 \end{bmatrix}$$

$$B^3 = \begin{bmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$B^4 = \begin{bmatrix} 0 & 2 & 7 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 7 & 11 \end{bmatrix}$$

无向图相邻矩阵

- 设 G =< V, E > 是无向简单图, V = {v₁, v₂, ..., v_n}

$$A(G) = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 1 & 0 & 1 \\ v_2 & v_3 & 1 & 0 & 0 \\ v_4 & 1 & 1 & 0 & 0 \end{bmatrix}$$

图 8: 无向图相邻矩阵

无向图相邻矩阵 (性质)

- A(G) 对称: a_{ij} = a_{jj}
- 每行 (列) 和为顶点度: $\sum_{i=1}^{n} a_{ij} = d(v_j)$
- 握手定理: $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} = \sum_{i=1}^{n} d(v_j) = 2m$

相邻矩阵与通路数

定理

设
$$A(G) = A = [a_{ij}]_{n \times n}, A^r = A^{r-1} \cdot A, (r \ge 2), A^r = [a_{ij}^{(r)}]_{n \times n}, B_r = A + A^2 + ... + A^r = [b_{ij}^{(r)}]_{n \times n},$$
 则

- $a_{ij}^{(r)} = \mathcal{K} v_i$ 到 v_j 长度为 r 的通路总数
- $\sum_{i=1}^{n} a_{ii}^{(r)} =$ 长度为 r 的回路总数

推论

- $a_{ii}^{(2)} = d(v_i)$
- G 连通 \Rightarrow 距离 $d(v_i,v_j) = min\left\{r|a_{ij}^{(r)} \neq 0\right\}$

用相邻矩阵求通路数 (例)

$$A(G) = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ v_4 & 1 & 1 & 0 & 0 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 3 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 3 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 2 & 4 & 1 & 3 \\ 4 & 2 & 3 & 4 \\ 1 & 3 & 0 & 1 \\ 2 & 4 & 1 & 2 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 7 & 6 & 4 & 6 \\ 6 & 11 & 2 & 6 \\ 4 & 2 & 3 & 4 \\ 6 & 6 & 4 & 7 \end{bmatrix}$$

$$A^{4} = \begin{bmatrix} 7 & 6 & 4 & 6 \\ 6 & 11 & 2 & 6 \\ 4 & 2 & 3 & 4 \\ 6 & 6 & 4 & 7 \end{bmatrix}$$

图 9: 用相邻矩阵求通路数

用相邻矩阵求通路数 (例, 续)

- v₁ 到 v₂ 长度为 4 的通路数:6 14142,14242,14232,12412,14212,12142
- v₁ 到 v₃ 长度为 4 的通路数: 4 12423, 12323, 14123, 12123
- v₁ 到 v₁ 长度为 4 的回路数: 7 14141, 14241, 14121, 12121, 12421, 12321, 12141

连通矩阵

- 设 $G = \langle V, E \rangle$ 是 n 阶无向简单图, $V = \{v_1, v_2, ..., v_n\}$ 连通矩阵: $P(G) = [p_{ij}]_{n \times n}, p_{ij} = \begin{cases} 1, \exists v_i \vdash v_j$ 连通 $0, \exists v_i \vdash v_j$ 不连通

连通矩阵(性质)

- 主对角线元素都是 1: ∀v; ∈ V, v; 与 v; 连通
- 连通图: 所有元素都是 1
- 伪对角阵: 对角块是连通分支的连通矩阵
- 设 $B_r = A + A^2 + \dots + A^r = \left[b_{ij}^{(r)}\right]_{n \times n}$, 则 $\forall i \neq j, p_{ij} = 1 \Leftrightarrow b_{ij}^{(n-1)} > 0$

连通矩阵 (例)

P =

图 10: 连通矩阵

0 0

0

0

0

- 1 关联矩阵
- ② 邻接矩阵与相邻矩阵
- 3 谱图理论

度数矩阵与拉普拉斯矩阵

- 设 $G = \langle V, E \rangle$ 是无向简单图, $V = \{v_1, v_2, ... v_n\}$
- G 的度数矩阵: $D = [d_{ij}]_{n \times n}, d_{ij} = \begin{cases} d(i), i = j \\ 0, i \neq j \end{cases}$, 其中 $d_{n \times 1} = (d(i))_{1 < i < n} = \mathbf{A1}_n$, \mathbf{A} 为 \mathbf{G} 的相邻矩阵
- 拉普拉斯矩阵 L = D − A
- L 的二次型: $x^T L x = \sum_{(a,b) \in E} (x_a x_b)^2$

拉普拉斯二次型

证明.

$$x^{\top} A x = \sum_{u \in V} \sum_{v \in V} A_{uv} x_u x_v = \sum_{u \in V} \sum_{v \in N(u)} x_u x_v = 2 \sum_{(u,v) \in E} x_u x_v \quad (1)$$

$$x^{\top} D x = \sum_{u \in V} \sum_{v \in V} D_{uv} x_u x_v = \sum_{u \in V} d(u) x_u^2$$
 (2)

方聪

拉普拉斯二次型

证明.

结合 (1) 和 (2), 有

$$x^{\top} A x = \sum_{u \in V} d(u) x_u^2 - 2 \sum_{(u,v) \in E} x_u x_v$$

$$= \sum_{(u,v) \in E} (x_u^2 + x_v^2 - 2x_u x_v)$$

$$= \sum_{(u,v) \in E} (x_u - x_v)^2$$
(3)

谱定理

定理(谱定理)

若 M 为一个 $n\times n$ 的实对称矩阵,则存在实数 $\lambda_1,\lambda_2,...,\lambda_n$ 和 n 个相互正交的单位向量 $\psi_1,\psi_2,...,\psi_n$,其中对于任意 $i\in\{1,2,...,n\}$,向量 ψ_i 为矩阵 M 的特征向量,其对应的特征值 为 λ_i i.e. $M\psi_i=\lambda_i\psi_i$

定理

对于简单无向图 $G = \langle V, E \rangle$, 其拉普拉斯矩阵 L 是半正定的

证明.

取
$$x$$
 为 L 的单位特征向量,则有 $x^TLx = x^T\lambda x = \lambda$
 $\Rightarrow \lambda = x^TLx = \sum_{(a,b) \in E} (x_a - x_b)^2 \ge 0$ 故 L 半正定

定理

L 的最小特征值 $\lambda_1 = 0$

证明.

由于 $L1_n = (D-A)1_n = 0$, 知 0 为 L 的一个特征值,再由 L 半 正定知 $\lambda_1 = 0$

定理

 $0 = \lambda_1 \le \lambda_2 \le ... \le \lambda_n$ 为图 G = < V, E > 的拉普拉斯矩阵 L 的特征值,则 $\lambda_2 > 0$ 当且仅当图 G 是连通的

定理

 $0 = \lambda_1 \le \lambda_2 \le ... \le \lambda_n$ 为图 G = < V, E > 的拉普拉斯矩阵 L 的特征值,则 $\lambda_2 > 0$ 当且仅当图 G 是连通的

证明.

若图 G 不连通,则 G 可以写成两个不连通的子图 G_1,G_2 的并, $L = \begin{bmatrix} L_{G_1} & 0 \\ 0 & L_{G_2} \end{bmatrix}$,取 $x_1 = \begin{bmatrix} 0_{G_1} \\ 1_{G_2} \end{bmatrix}$, $x_2 = \begin{bmatrix} 1_{G_1} \\ 0_{G_2} \end{bmatrix}$, $\Rightarrow Lx_1 = Lx_2 = 0$, 因此 L 关于特征值 0 至少有两个相互正交的特征向量 x_1,x_2 ,故 $\lambda_1 = \lambda_2 = 0$ 若 G 连通,设 ψ 为 L 关于特征值 0 对应的特征向量, $L\psi = 0$, $\psi^T L\psi = \sum_{(a,b) \in E} (\psi_a - \psi_b)^2 = 0$, $\Rightarrow \forall (a,b) \in E, \psi_a = \psi_b$,由于 G 连通,知 $\psi = c1_n$,因此 0 对应的特征空间维数为 1, $\Rightarrow \lambda_2 > \lambda_1 = 0$

拉普拉斯矩阵 (例)

定理

完全图 K_n 的拉普拉斯矩阵存在特征值 0 和 n, 其中 n 对应的特征空间重数为 n-1

证明.

设 ψ 为任意与 1_n 正交的非零向量, i.e. $\sum_{i=1}^n \psi(i) = 0$, $L\psi(i) = \sum_{(i,j)\in E} (\psi_i - \psi_j) = \sum_{j\neq i} (\psi_i - \psi_j) = (n-1)\psi_i - \sum_{j\neq i} \psi_j = n\psi_i$ 由 i 的任意性, $L\psi = n\psi$,因此全部与 1_n 正交的向量均为特征值 n 对应的特征向量,重数为 n-1

低频/高频特征值

• 对于图 G 的拉普拉斯矩阵 L 的全部特征值 $0 = \lambda_1 \le \lambda_2 \le ... \le \lambda_n$,较小的 λ_i 被称为低频特征值, λ_n 被称为高频特征值,低频特征值对应的特征向量可以用于图的结构模拟

Courant — FischerTheorem

定理 (Courant — FischerTheorem)

对于对称矩阵 M 以及 n 个特征值 $\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n$,有: $\lambda_k = \max_{S \in R^n, \dim S = k} \min_{x \in S, x \neq 0} \frac{x^T M x}{x^T x} = \min_{T \in R^n, \dim T = n-k+1} \max_{x \in T, x \neq 0} \frac{x^T M x}{x^T x}$