#### 复习题一

#### 一、单项选择题

1、下列信号中, ( ) 不是周期信号, 其中 m, n 是整数。

A, 
$$x(t) = x(t + mT)$$
;

A, 
$$x(t) = x(t + mT)$$
; B,  $x(t) = \cos 2\pi t + \sin 5\pi t$ 

$$c$$
,  $x(n) = x(n + mN)$ ;

c. 
$$x(n) = x(n + mN)$$
;  $D = x(n) = \sin 7n + e^{j\pi n}$ 

2、下列关于冲激函数的表达式,选项( )不正确。

A. 
$$\delta(t) = \frac{du(t)}{dt}$$
,

B. 
$$\delta(t) * x(t) = x(t)$$

$$C, \quad \int_{-\infty}^{\infty} \delta(t) x(t) dt = x(0) ;$$

A, 
$$\delta(t) = \frac{du(t)}{dt}$$
; B,  $\delta(t) * x(t) = x(t)$   
C,  $\int_{-\infty}^{\infty} \delta(t)x(t)dt = x(0)$ ; D,  $\delta(t) = \lim_{\tau \to 0} \frac{1}{\tau} G_{2\tau}(t)$ 

A. 
$$\frac{dy(t)}{dt} + 6y(t) + \int_{-\infty}^{t} y(\tau)d\tau = 4x(t)$$
; B.  $y(t) = x(1-t)$ ;

$$\mathsf{B}, \ y(t) = x(1-t)$$

$$c, y(n) = x(n) + 3;$$

D, 
$$\frac{dy(t)}{dt} + 6ty(t) = 4x(t)$$

4、两个单位冲激响应分别为 $h_1(t)$ 、 $h_2(t)$ 的子系统级联,则下面选项中,( ) 不

A, 
$$h(t) = h_1(t) * h_2(t)$$
;

B, 
$$h(t) = h_1(t) + h_2(t)$$
;

c, 
$$H(s) = H_1(s)H_2(s)$$
;

$$\mathsf{C}$$
、 $H(s) = H_1(s)H_2(s)$ ;  $\mathsf{D}$ 、 $h_1(t)*h_2(t) = \delta(t)$ 时子系统互为逆系统

5、一 LTI 系统,它在某激励信号作用下的自由响应是  $(e^{-3t} + e^{-t})u(t)$ , 受迫响应是  $(1-e^{-2t})u(t)$ ,那么下列说法正确的是(

A、系统一定是二阶系统; B、系统的零输入响应中一定包含 $(e^{-3t} + e^{-t})u(t)$ 

C、系统一定稳定;

D、系统的零状态响应中一定包含 $(1-e^{-2t})u(t)$ 

6、图 ab 段电路属于复杂电路中的一部分,其中电感和电容都有初始状态

下图中,选项( )是 ab 段电路的等效 S 域模型。



A.

7、下列关于离散时间信号的运算表达式中,不正确的是(

A. 
$$\nabla u(n) = \delta(n)$$
;

B, 
$$u(n) = \sum_{m=-\infty}^{\infty} \delta(m)$$
;

$$\mathsf{c.} \ \delta(n) * x(n) = x(n);$$

A. 
$$\nabla u(n) = \delta(n)$$
;

B.  $u(n) = \sum_{m=-\infty}^{\infty} \delta(m)$ ;

C.  $\delta(n) * x(n) = x(n)$ ;

D.  $u(-n-1) \leftrightarrow \frac{z}{1-z}$   $|z| < 1$ 

8、关于二阶 LTI 系统,选项(

A、如系统方程为 y(n) + 5y(n-1) + 6y(n-2) = 2u(n)

则  $y_{-i}(n) = A_i(-2)^n + A_2(-3)^n$  , 其中待定系数由边界条件 y(-1), y(-2)确定;

B、如系统方程为 y(n+2)+5y(n+1)+6y(n)=2u(n)

则  $y_{i}(n) = A_{i}(-2)^{n} + A_{2}(-3)^{n}$  , 其中待定系数由边界条件 y(-1), y(-2)确定;

C、如系统函数为 $H(s) = \frac{(s+3)}{(s+3)(s+2)}$ 

则  $y_{zi}(t) = Ae^{-2t}$  , 其中待定系数由边界条件 y(0) 确定;

D、如系统方程为
$$\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 9y(t) = 2\frac{df(t)}{dt} + 5f(t)$$

则  $y_{zi}(n) = (A_0 + A_1 t)e^{-3t}$  ,其中待定系数由边界条件  $y(0_+)$ 、  $y'(0_+)$ 确定。

9、下列系统中, ( )是因果稳定系统。

A, 
$$H(s) = \frac{s-1}{(s+1)(s-2)}$$
  $-1 < \sigma < 2$ , B,  $h(t) = e^{-3t}u(t+1)$   
C,  $H(z) = \frac{z^2 + z + 1}{(z - \frac{1}{2})(z - \frac{1}{3})}$   $|z| > \frac{1}{2}$ ; D,  $y(n) = x(2n)$ 

c. 
$$H(z) = \frac{z^2 + z + 1}{(z - \frac{1}{2})(z - \frac{1}{3})}$$
  $|z| > \frac{1}{2}$ 

$$D, y(n) = x(2n)$$

$$h(t) = 3\delta(t-1)$$

$$B, h(t) = cos(t),$$

c. 
$$H(\omega) = 2G_6(\omega)e^{-j\omega}$$
;

11、系统函数为 $H(s)=\frac{s}{s^2+s+1}$ ,则系统的滤波特性为( )。 A、低通 B、高通 C、带通 D、带阻

二、分析计算题(共 70 分)

1、(25 分) 如下图所示系统,已知  $x(t) = \frac{\sin t}{\pi t}$ ,  $H(\omega) = \begin{cases} 1 & |\omega| \le 1 \\ 0 & |\omega| > 1 \end{cases}$ 

$$x(t) \xrightarrow{M(t)} \underbrace{H(\omega)}_{p(t)} \xrightarrow{n(t)} y(t)$$

(1) 求信号 x(t) 的傅里叶变换  $X(\omega)$ ;

 $G_2(t) \leftrightarrow 2Sa(\omega)$ ,  $2\pi G_2(\omega) \leftrightarrow 2Sa(t)$ ,  $F(\omega) = G_2(\omega)$ 

(2) 设乘法器输出信号  $m(t) \leftrightarrow M(\omega)$ , 画出  $M(\omega)$  的幅频特性;

$$f^{2}(t) \leftrightarrow \frac{1}{2\pi} F(\omega) * F(\omega), \text{ was } 1 \text{ m}$$

- (3) 其中子系统  $H(\omega)$  物理可实现吗?不
- (4) 设第二个乘法器输入信号  $n(t) \leftrightarrow \overline{N(\omega)}$ , 画出  $N(\omega)$  的幅频特性;
- (5) 设  $p(t) = \sum_{n=-\infty}^{\infty} \delta(t nT_s)$ , 确定对信号 n(t) 进行不混叠抽样的奈奎斯特间隔  $T_{s \max}$  。

# $\omega_m = 1$ , $f_{s \max} > 2f_m$ , $T_{s \max} < \pi$

2、(23 分)已知因果 LTI 系统的方程

$$\frac{d^{2}y(t)}{dt^{2}} + a\frac{dy(t)}{dt} + by(t) = \frac{d^{2}x(t)}{dt^{2}} + 2\frac{dx(t)}{dt} + x(t)$$

当输入 x(t) = 1 时,输出  $y(t) = \frac{1}{2}$ ;

当输入 $x(t) = te^{-t}u(t)$ 时,输出 $y(t) = e^{-t} \sin tu(t)$ ;

- (1) 确定 $a \setminus b$ 的值;
- (2) 求系统函数 *H(s)* 及其收敛域;
- (3) 画出系统框图;
- (4) 求该系统逆系统的阶跃响应。

$$H(s) = \frac{(s+1)^2}{s^2 + as + b}, H(0) = \frac{1}{2}$$
(5)

(5) 
$$H(s) = \frac{Y(s)}{F(s)} = \frac{\frac{1}{(s+1)^2 + 1}}{\frac{1}{(s+1)^2}} = \frac{(s+1)^2}{s^2 + 2s + 2}$$
(1) 
$$a = b$$

(2) 
$$H(s) = \frac{(s+1)^2}{s^2 + 2s + 2}$$
  $\sigma > -1$ 

(3) 略

$$Y(s) = F(s)H_1(s) = \frac{1}{s} \cdot \frac{s^2 + 2s + 2}{s^2 + 2s + 1} = \frac{2}{s} + \frac{-1}{(s+1)^2} + \frac{-1}{s+1}$$

(2) 
$$y(t) = (2 - te^{-t} - e^{-t})u(t) \quad h(t) = \delta(t) + te^{-t}u(t)$$

(3)

3、 (22分) 说
$$x_1(n) = \begin{cases} 3, & 3, & 2, & 1 \\ \frac{1}{n=0}, & x_2(n) = n[u(n) - u(n-4)] \end{cases}$$

- (1) 计算 $x(n) = x_1(n) * x_2(n)$ ;
- (2) 求  $x_2(n)$ 的 Z 变换;
- (3) 将  $x_2(n)$ 作为输入信号,通过一LTI 离散系统,设该系统的差分方程为

$$y(n+2) - \frac{5}{2}y(n+1) + y(n) = x(n+1)$$

试求系统函数 H(z), 系统稳定时的单位样值响应 h(n), 以及系统的零状态响应 v(n)。

#### 复习题一答案

一、单项选择题

1、D; 2、D; 3、A; 4、B; 5、D; 6、D; 7、B; 8、A; 9、C; 10、A; 11、C

二、分析计算题

1, (1)  $G_2(t) \leftrightarrow 2Sa(\omega)$ ,  $2\pi G_2(\omega) \leftrightarrow 2Sa(t)$ ,  $F(\omega) = G_2(\omega)$ 

(2) 
$$f^2(t) \leftrightarrow \frac{1}{2\pi} F(\omega) * F(\omega)$$
, 如图 1 所示

- (3) 不可实现
- (4)  $N(\omega) = H(\omega)M(\omega)$ , 如图 2 所示





(5)  $\omega_m = 1$ ,  $f_{smax} > 2f_m$ ,  $T_{smax} < \pi$ 

2. (1) 
$$H(s) = \frac{(s+1)^2}{s^2 + as + b}$$
,  $H(0) = \frac{1}{2}$ 

$$H(s) = \frac{Y(s)}{F(s)} = \frac{\frac{1}{(s+1)^2 + 1}}{\frac{1}{(s+1)^2}} = \frac{(s+1)^2}{s^2 + 2s + 2} \qquad a = b = 2$$

(2) 
$$H(s) = \frac{(s+1)^2}{s^2 + 2s + 2}$$
  $\sigma > -1$ ; (3)  $\approx$ 

(4) 
$$Y(s) = F(s)H_1(s) = \frac{1}{s} \cdot \frac{s^2 + 2s + 2}{s^2 + 2s + 1} = \frac{2}{s} + \frac{-1}{(s+1)^2} + \frac{-1}{s+1}$$

$$y(t) = (2 - te^{-t} - e^{-t})u(t)$$
  $h(t) = \delta(t) + te^{-t}u(t)$ 

3, (1)  $x_2(n) = \delta(n-1) + 2\delta(n-2) + 3\delta(n-3)$ 

$$y(n) = \begin{cases} 0 & 3 & 9 & 17 & 14 & 8 & 3 \end{cases}$$

(2) 
$$X_2(z) = z^{-1} + 2z^{-2} + 3z^{-3} = \frac{z^2 + 2z + 3}{z^3} = \frac{z}{z(z-1)^2} - \frac{z^{-3}}{(z-1)^2} - \frac{4z^{-3}}{z-1}$$

$$H(z) = \frac{z}{z^2 - \frac{5}{2}z + 1} = \frac{\frac{2}{3}z}{z - 2} + \frac{\frac{-2}{3}z}{z - \frac{1}{2}} \quad \frac{1}{2} < |z| < 2$$

$$h(n) = -\frac{2}{3} [(\frac{1}{2})^n u(n) + 2^n u(-n-1)]$$

$$y(n) = x_2(n) * h(n)$$

#### 复习题二

#### 一、简析题

1、已知 f(t) 波形如图 1 所示,画出 f(-2-3t) 的波形。





- 2、设 f(t) 是一个连续信号,写出用一系列矩形脉冲 p(t) (如图 2 所示) 叠加逼近 f(t) 的 近似表达式, 并证明  $f(t) = f(t) * \delta(t)$ 。
- 3、设 $f(t) = \frac{\mathrm{d}}{\mathrm{d}t} [e^{-2t} \delta(t)]$ ,计算函数  $\int_{0}^{\infty} f(t) dt$  的值。
- 4、判断下列系统是否是线性的、时不变的、因果的?

1) 
$$y(t) = \int_{-\infty}^{5t} f(\tau)d\tau$$
; 2)  $y(n) = x(5-n)$ 

$$2) \quad y(n) = x(5-n)$$

- 5、求信号  $f(t) = -te^{-\alpha t}u(t)$  的傅立叶变换  $F(\omega)$  。
- 6、已知带限信号  $f_1(t)$  和  $f_2(t)$ , 其中  $F_1(\omega) = 0$  |f| > 300 Hz;  $F_2(\omega) = 0 \qquad |f| > 800Hz \; ;$

对下列信号进行无混叠抽样,确定其最小抽样频率?

1) 
$$f_1(t)\cos(200\pi t)$$
; 2)  $f_1(t)*f_2(t)$ 

2) 
$$f_1(t) * f_2(t)$$

7、求像函数 
$$F(s) = \frac{1}{1 + e^{-s}}$$
  $\sigma > 0$  的拉普拉斯逆变换。

- 8、两个级联子系统的单位样值响应分别为 $h_1(n)=\alpha^nu(n)$ ,  $h_2(n)=\beta^nu(n)$ ,  $0<\alpha<1$ ,  $0 < \beta < 1$ ,  $\alpha \neq \beta$ , 求复合系统的总单位样值响应 h(n) 。
- 9、求序列  $x(n) = (\frac{1}{2})^n u(-n-1)$  的 Z 变换,并标注其收敛域。
- 10 、 序 列 单 边 Z 变 换 X(z) , 若 序 列 x(n)当 $n \to \infty$ 时收敛,证明其终值 $x(\infty)$ 为 :  $x(\infty) = \lim_{z \to 1} [(z-1)X(z)]_{\circ}$
- 11、已知某系统的系统函数为 $H(s) = \frac{s+4}{s^2+3s+2}$ ,初始状态 $y(0_-) = y'(0_-) = 1$ ,求系统的 零输入响应  $y_{i}(t)$  。
- 12、求下式的卷积积分,绘出 f(t) 的波形图,并标出关键点。

$$f(t) = [u(t-1) - u(t-2)] * [-u(-t)]$$

- 二、设 $f_0(t) = u(t+1) u(t-1)$ 
  - 1、求其傅立叶变换 $F_0(\omega)$ ;
- 2、若以周期T=10 重复  $f_0(t)$ ,从而构建一周期信号 f(t),求该周期信号 f(t) 的指数式 傅立叶级数表达式;
  - 3、求周期信号 f(t) 的功率谱。
- 三、已知离散系统差分方程表示式

$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + \frac{1}{3}x(n-1)$$

- 1、求系统函数和单位样值响应 h(n);
- 2、画出系统框图。
- 四、对某一LTI系统,已知以下信息:
  - 1、系统是因果的;
  - 2、系统函数 H(s) 是有理真分式,且仅有两个极点在  $s = -2\pi l s = -400$ ;
  - 3、若对所有时刻t,输入f(t)=1,则输出y(t)=0;
  - 4、系统的冲击响应在t = 0,时刻的值是 4;

求该系统的系统函数H(s);大致画出其幅频特性,并说明系统的滤波特性。

### 复习题二答案

一、简析题

#### 1、答:



### 2、答:

$$\begin{array}{c|c}
 & p(t) \\
\hline
 & \frac{1}{\Delta^{\text{T}}} \\
\hline
 & -\frac{\Delta^{\text{T}}}{2} & 0 & \frac{\Delta^{\text{T}}}{2} & t
\end{array}$$

$$f(t) \approx \sum_{k=-\infty}^{\infty} f(k\Delta \tau) \Delta \tau p(t - k\Delta \tau)$$

$$f(t) \approx \sum_{k=-\infty}^{\infty} f(k\Delta\tau) \Delta\tau p(t-k\Delta\tau)$$

$$\stackrel{\cong}{\to} \Delta\tau \to 0 \text{ B}, \begin{cases} \Delta\tau \to d\tau \\ k\Delta\tau \to \tau \\ p(t) \to \delta(t) \\ \Sigma \to \int \end{cases}$$

于是: 
$$f(t) = \int_{-\infty}^{\infty} f(\tau)\delta(t-\tau)d\tau$$

3、答: 0

4、

答: 1) 线性, 时变, 非因果

2) 线性, 时变, 非因果

5、答: 
$$\frac{-1}{(\alpha+i\omega)^2}$$

6、答: 1) 800Hz; 2) 600Hz

7、答: 
$$F(s) = \frac{1}{1 - e^{-2s}} - \frac{e^{-s}}{1 - e^{-2s}} \leftrightarrow f(t) = \sum_{n=0}^{\infty} \left[ \delta(t - 2n) - \delta(t - 2n - 1) \right]$$

8、答: 
$$h_1(n) * h_2(n) = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta} u(n)$$

9、答: 
$$X(z) = \frac{z}{\frac{1}{2} - z}$$
  $|z| < \frac{1}{2}$ 

10、答:

证明

因为 
$$\mathcal{Z}[x(n+1)-x(n)]=zX(z)-zx(0)-X(z)$$
$$=(z-1)X(z)-zx(0)$$

取极限得

$$\lim_{z \to 1} (z - 1)X(z) = x(0) + \lim_{z \to 1} \sum_{n=0}^{\infty} [x(n+1) - x(n)]z^{-n}$$

$$= x(0) + [x(1) - x(0)] + [x(2) - x(1)]$$

$$+ [x(3) - x(2)] + \cdots$$

$$= x(0) - x(0) + x(\infty)$$

所以

$$\lim_{z\to 1}(z-1)X(z)=x(\infty)$$

lim<sub>z→1</sub> (z - 1)X(z) = x(∞)  
11、答: 
$$y_{zi}(t) = (3e^{-t} - 2e^{-2t})u(t)$$

12、答:



二、答: 1、 $F_0(\omega) = 2Sa(\omega)$ 

2. 1) 
$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{in\omega_1 t}$$
,  $F_n = \frac{1}{T_1} F_0(\omega) \Big|_{\omega=n\omega_1} = \frac{2}{T_1} Sa(n\omega_1) = \frac{1}{5} Sa(\frac{n\pi}{5})$ 

2) 
$$Fs(\omega) = 2\pi \sum_{n=-\infty}^{\infty} F_n \delta(\omega - n\omega_1) = \frac{2\pi}{5} \sum_{n=-\infty}^{\infty} Sa(\frac{n\pi}{5}) \delta(\omega - \frac{n\pi}{5})$$

3) 
$$s(\omega) = 2\pi \sum_{n=-\infty}^{\infty} |F_n|^2 \delta(\omega - n\omega_1) = 2\pi \sum_{n=-\infty}^{\infty} \left| \frac{1}{5} Sa(\frac{n\pi}{5}) \right|^2 \delta(\omega - \frac{n\pi}{5})$$

三、

系统函数 
$$H(z) = \frac{Y(z)}{X(z)} = \frac{1 + \frac{1}{3}z^{-1}}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}} = \frac{z\left(z + \frac{1}{3}\right)}{z^2 - \frac{3}{4}z + \frac{1}{8}}$$

$$= \frac{10}{3} \left(\frac{z}{z - \frac{1}{z}}\right) - \frac{7}{3} \left(\frac{z}{z - \frac{1}{z}}\right) \left(|z| > \frac{1}{2}\right)$$
单位样值响应  $h(n) = \mathcal{Z}^{-1} \left[H(z)\right] = \left[\frac{10}{3} \left(\frac{1}{2}\right)^n - \frac{7}{3} \left(\frac{1}{4}\right)^n\right] u(n)$ 

$$x(n) \qquad \qquad y(n)$$

$$z^{-1} \qquad \qquad z^{-1} \qquad \qquad z^{-1}$$

四、答: 
$$H(s) = \frac{4s}{(s+2)(s+400)}$$



幅频特性为带通滤波特性

### 复习题三

- 一、选择题
- 1、下列信号中的能量信号是( )。

(B)  $\cos 3\pi t + \sin 2\pi t$ ; (C)  $Si(t) = \int_{0}^{t} Sa(\tau) d\tau$ ; (A) Sa(t); (D)

sgn(t)

- 2、下列信号中的周期信号是( )。
  - (B)  $x(n) = e^{j\frac{9\pi}{8}n}$ ; (A)  $x(t) = \cos 3t + \cos \pi t$ ; (C)  $e^{(\sigma + j\omega)t}$   $\sigma > 0$ ;
    - (D)  $x(n) = cos(\frac{2}{3}n)$
- 3、下列系统中,线性时不变系统是( )。
  - (A)  $y(t) = t^2 x(t)$ ; (B) y'(t) + 3y(t) = 2x(t) + 1;
    - (C)  $y(n) = \sum_{n=0}^{n+3} x(m)$ ; (D)  $y(t) = \int_{-\infty}^{5t} x(\tau) d\tau$
- 4、下列关于冲激函数性质的表达式不正确的是( b)

 $\delta(at) = \frac{1}{a}\delta(t)$  $(A \quad f(t)\delta(t) = f(0)\delta(t)$ 

 $\int_{-\infty}^{t} \delta(\tau) \, \mathrm{d}\tau = \varepsilon(t)$  $\delta(-t) = \delta(t)$ 

- 5、下列各系统中()是可逆系统
  - (A)  $y(t) = x^2(t)$ ; (B) h(n) = u(n);
  - (C)  $y(t) = 3 \frac{dx(t)}{dt}$ ; (D) y(n) = x(2n)
- 6、周期矩形脉冲信号 x(t) 如图所示,若周期T=0.1ms,脉冲宽度  $\tau=25\mu s$ ,幅 度 E=5V 试问能从 x(t) 信号中选出下列选项中的哪个频率分量 ( )。

- (A) 6KHz (B) 40KHz (C) 80KHz (D) 100KHz





第6题图

第7题图

- 7、周期信号x(t)的傅里叶级数展式中含有( )。

)

- (A) 奇次、偶次正弦项;
   (B) 奇次、偶次余弦项;

   (C) 奇次正弦、余弦项;
   (D) 偶次正弦、余弦项
- 8、下列可以实现无失真传输信号的系统是(

(A) 
$$H(\omega) = kG_{2\omega_c}(\omega)e^{-j\omega t_0}$$

(A) 
$$H(\omega) = kG_{2\omega_c}(\omega)e^{-j\omega t_0};$$
 (B)  $g(t) = \frac{k}{2} + \frac{k}{\pi}Si(\omega_c(t - t_0));$ 

(C) 
$$h(t) = k\delta(t-t_0)$$
;

(C) 
$$h(t) = k\delta(t - t_0);$$
 (D)  $h(t) = h(t)u(t)$ 

9、下面哪一幅图像对应着高频信号的成分多? ( )





(A)

(B)

10、下列系统中的因果系统是(

(A) 
$$H(z) = \frac{(z-1)^2}{z-\frac{I}{3}}$$
  $|z| > \frac{1}{3}$ ; (B)  $H(s) = \frac{s-1}{(s+1)(s-2)}$   $-1 < \sigma < 2$ ;

(C) 
$$y(n) = x(2n);$$
 
$$(D) H(z) = \frac{z^2 + z + 1}{(z - \frac{1}{2})(z - \frac{1}{3})} \quad |z| > \frac{1}{2}$$

- 二、计算分析题
- 1、 (1) LTI 系统  $\frac{d^2y(t)}{dt^2} + 7\frac{dy(t)}{dt} + 6y(t) = 2\frac{df(t)}{dt} + 5f(t)$ , 求其零输入响应的解析 式;
  - (2) LTI 系统  $y(n) + 3y(n-1) + 2y(n-2) = 2^n u(n)$ , 求其零输入响应的解析式;
- 2、周期信号 $x(t) = 2 + 5\sin \pi t + \sqrt{3}\cos 3\pi t 2\sin 3\pi t \cos(4\pi t \frac{\pi}{4})$ ,求其平均功率是 多少?
- 3、若已知 $x(t) \leftrightarrow X(\omega)$ ,求信号 $\int_{-\infty}^{t} x(2\tau-2)d\tau$ 的频谱。
- 4、设  $x(t) = (t-1)^2 e^{-2t} u(t-1)$ ,求 x(t) 的拉普拉斯变换 X(s),并标示收敛域。
- 5、求序列 $x(n) = (-1)^n \sum_{m=0}^n 2^m$ 的Z变换,并标明收敛域。
- 6、已知某离散信号的单边 Z 变换为  $F(z) = \frac{2z^2 + z}{(z-2)(z+3)}$ , (|z| > 3), 则其反变换 f(n)。
- 7、已知一零初始状态的 LTI 系统, 当输入  $x_i(t) = u(t)$  激励下的响应为  $y_t(t) = 4e^{-2t}u(t)$ , x = tu(t) x = tu(t)
- 8、一连续 LTI 系统的输入输出方程 y''(t) y'(t) 2y(t) = x(t), 如果该 系统既不是因果的也不是稳定的,求系统的冲激响应 h(t)。
- 9、某因果 LTI 系统,其系统函数 H(s) 的零极点图如图所示,有一个零点 s=1.



- (2) 求冲激响应h(t);
- (3) 说明系统的滤波特性。

#### 复习题三答案

8. 
$$H(s) = \frac{1}{S^2 - S^{-2}} = \frac{1}{(S-2)(S+1)} = \frac{1}{3} \cdot \frac{1}{S \approx 2} - \frac{1}{3} \cdot \frac{1}{S+1}$$
  
 $R(t) = -\frac{1}{3} e^{2t} U(-t) + \frac{1}{3} e^{-t} U(-t)$ 

9. 1) 
$$H(s) = A \cdot \frac{s-1}{(s+1-\frac{y}{2}\delta)(s+1+\frac{y}{2}\delta)}$$
  
 $R(o_{+}) = \lim_{s \to \infty} sH(s) = A = 2$ .  $H(s) = \frac{a(s-1)}{(s+1)^{2}+\frac{3}{4}}$  (「>-1)
  
3.旅稼党

- )  $H(s) \leftrightarrow h(t)$  $H(s) = \frac{2(s+1)-4}{(s+1)^2+\frac{3}{4}} \leftrightarrow 2e^{-t} \left[ \omega_{\frac{1}{2}} + \frac{47}{3} + \frac{47}{3} + \frac{17}{3} + \frac{1}{3} \right] utt$

#### 复习题四

#### 一、单选题

| 1、下列信号中的能量信号是 | ∄ ( )。 |
|---------------|--------|
|---------------|--------|

(A) 
$$2e^{-|t|}$$
;

(B) 
$$Si(t) = \int_{0}^{t} Sa(\tau) d\tau$$
;

- (C)  $\cos 3\pi t + \sin 2\pi t$ ;
- (D) sgn(t)

(A) 
$$\cos 3t + \sin 2\pi t$$
; (B)  $e^{j\frac{9\pi}{8}n}$ ;

(B) 
$$e^{j\frac{9\pi}{8}n}$$
;

(C)  $e^{(3+j5)t}$ ;

- (D) Sa(2t)
- 3、下列系统中,线性时不变系统是(

(A)  $y(t) = t^2 x(t)$ ;

(B) y'(t) + 3y(t) = 2x(t) + 1;

(C) 
$$y(n) = \sum_{m=-\infty}^{n+3} x(m)$$
; (D)  $y(t) = \int_{-\infty}^{5t} x(\tau) d\tau$ 

(D) 
$$y(t) = \int_{-\infty}^{5t} x(\tau) d\tau$$

- 4、关于响应、下列叙述正确的是( )。

#### (A) 零輸入响应和零状态响应中的齐次解部分合起来构成总的自由响应;

- (B) 系统的自由响应是零输入响应的一部分;
- (C) 零状态响应是受迫响应的一部分;
- (D) 零输入响应形式为  $A_1 e^{\lambda_1 t} + A_2 e^{\lambda_2 t}$  的系统,则一定是 2 阶系统。

(A) 
$$y(t) = x^2(t)$$
;

(B) 
$$y(t) = 3 \frac{dx(t)}{dt}$$
;

(C) 
$$y(n) = x(2n)$$
;

(D) 
$$h(n) = u(n)$$

6、下列系统中,因果且稳定的系统是()。

(A) 
$$H(s) = \frac{s-1}{(s+1)(s-2)}$$
  $-1 < \sigma < 2$ ; (B)  $y(t) = x(1-t)$ ;

(c) 
$$H(z) = \frac{z^2 + z + 1}{(z - \frac{1}{2})(z - \frac{1}{3})}$$
  $|z| > \frac{1}{2}$ ; (D)  $y(n) = x(2n)$ 

$$(D) \quad y(n) = x(2n)$$

(A) 
$$H(\omega) = kG_{2\omega_c}(\omega)e^{-j\omega t_0}$$
;

(B) 
$$h(t) = 3e^{-3t}u(t)$$
;

(C) 
$$H(z) = \frac{(z-1)^2}{z-\frac{1}{2}}$$
  $\frac{1}{2} < |z| < \infty$ ; (D)  $h(t) = k \frac{\omega_c}{\pi} Sa(\omega_c(t-t_0))$ 

8、周期信号 $x(t) = 1 + 3 \sin \pi t + \sqrt{3} \cos 3\pi t - \sin 3\pi t - \sin (4\pi t - \frac{\pi}{4})$ , 其平均功率等 于 ( ) W。

- (A)  $\frac{15}{2}$ ; (B)  $\frac{89}{8}$ ; (C) 6;

(A) <del>2</del>; 2 8 9、经过理想抽样后所得样本信号的频谱是( ) (B) 连续周期谱;

(C) 离散非周期谱;

- 10、图 1 所示 ab 段电路属于复杂电路中的一部分, 其中电感和电容都有初始状 态,请从下图中确定电路的 S 域模型是( )。



## 二、分析计算题

1、信号x(t)如图1所示



- (1) 画出 x(2-t)u(1-t) 的波形图。
- (2) 计算  $\int_{0}^{t} x(\tau)\delta(2\tau-3)d\tau + \int_{0}^{2} x(\tau)\delta(\tau-1)]d\tau$ 。
- (3) 求信号x(t)的傅里叶变换 $X(\omega)$ 。

- (4) 如设  $x_T(t) = x(t) * \sum_{n=-\infty}^{\infty} \delta(t-6n)$ ,试判断  $x_T(t)$  的傅里叶级数展式中是否含有:直流项?正弦项?余弦项?奇次项?偶次项?
  - (5) 系统如图2所示,如 $H(\omega)=G_{\frac{4\pi}{3}}(\omega)e^{-j\omega}$ ,那么系统阶跃相应的 $g(\infty)=?$
- (6) 将 x(t) 作为输入信号,通过图2  $H(\omega) = G_{\frac{4\pi}{3}}(\omega)$  的系统,输出 y(t) 会不会产生失真?若对输出信号 y(t) 进行不混叠抽样,试求信号的最小抽样频率为多少  $H_{z}$  。
- 2、如图 3 所示系统, 已知

(1) 
$$h_1(t) = \frac{1}{t\pi}$$
  $h_2(t) = \cos t$ ;

(2) 
$$h_1(n) = n[u(n) - u(n-3)], h_2(n) = 3^n[u(n) - u(n-3)]$$

求复合系统的总冲激响应h(•)。



3、

- (1) 设 $x(t) \leftrightarrow X(\omega)$ , 试确定信号  $\int_{-\pi}^{t} x(2\tau 1)d\tau$  的频谱。
- (2) 设 $x(t) = (t-1)^2 e^{-3t} u(t-1)$ , 求x(t)的拉普拉斯变换X(s), 并标示收敛域。
- (3) 已知  $x(n) = (-1)^n \sum_{m=0}^n 2^m$ ,求其 Z 变换,并标示收敛域。
- 4、已知一因果 LTI 的系统函数  $H(s) = \frac{s^2}{s^2 + s + 1}$ 
  - (1) 求系统的单位冲激响应h(t);
  - (2) 画出系统的零极点分布图,说明系统的滤波性能;
  - (3) 如输入 $x(t) = e^{-t}u(t)$ ,试求系统的零状态响应y(t)。

5、已知一LTI 的系统函数 
$$H(z) = \frac{z(z+3)}{z^2 - \frac{3}{2}z - 1}$$

- (1) 求稳定系统的单位冲激响应 h(n);
- (2) 写出(含待定系数)系统零输入响应的数学表达式 y<sub>i</sub>(n);
- (3) 画出系统框图;
- (4) 写出系统的差分方程。

## 复习题四答案

#### 一、单选题

C B D

二、分析计算题



1、(1)

(2) 
$$\frac{1}{4}u(t-\frac{3}{2})+1$$
;

(3) 
$$X(t) = G_1(t) * G_3(t), X(\omega) = 3Sa(\frac{3\omega}{2})Sa(\frac{\omega}{2}) = \frac{2(\cos\omega - \cos 2\omega)}{\omega^2}$$

- (4) 直流项、余弦项、奇次项、偶次项;
- (5) 1; (6) )产生失真, $\frac{2}{3}Hz$

**2.** (1) 
$$h(t) = h_2(t) * [\delta(t) + h_1(t)] = \sin t + \cos t$$

(2) 
$$h(n) = h_2(n) * [\delta(n) + h_1(n)] = \begin{cases} 1 & 4 & 14 & 15 & 18 \end{cases}$$

3、

$$(1) \int_{-\infty}^{t} x(2\tau - 1)d\tau \leftrightarrow \frac{1}{2} \left[\pi X(0)\delta(\omega) + \frac{1}{j\omega} X(\frac{\omega}{2})e^{-j\frac{\omega}{2}}\right]$$

(2) 
$$X(s) = \frac{2}{(s+3)^3} e^{-(s+3)}$$
  $\sigma > -3$ ; (3)  $\frac{z^2}{(z+2)(z+1)}$   $|z| > 2$ 

4、 (1) 
$$h(t) = \delta(t) - e^{-\frac{t}{2}} (\cos \frac{\sqrt{3}}{2} t + \frac{1}{\sqrt{3}} \sin \frac{\sqrt{3}}{2} t) u(t)$$
; (2) 高通

(3) 
$$y(t) = (e^{-t} - \frac{2}{\sqrt{3}}e^{-\frac{t}{2}}\sin\frac{\sqrt{3}}{2}t)u(t)$$

5, 
$$(1)$$
  $h(n) = -(-\frac{1}{2})^n u(n) - 2^{n+1} u(-n-1)$ 

(2) 
$$A_1(-\frac{1}{2})^n + A_2(2)^n$$

(4) 
$$y(n) - \frac{3}{2}y(n-1) - y(n-2) = x(n) + 3x(n-1)$$

# 复习题五

# 一 单选题

| 1, | 下列信号中的功率信号是(                                                | )。                                                             |                        |
|----|-------------------------------------------------------------|----------------------------------------------------------------|------------------------|
|    | (A) $(e^{-5t} + e^{-t})u(t)$ ;                              | (B) $G_{\tau}(t)$ ;                                            |                        |
|    | (C) $\cos 3t + \sin(2\pi t)$ ;                              | (D) $Sa(t)$                                                    |                        |
| 2, | 下列信号中的周期信号是( (A) $x(t) = \cos 3t + \cos \pi t$ ;            | (B) $x(n) = \cos(\frac{2}{5}n)$ ;                              |                        |
|    | (C) $x(t) = \int_{0}^{t} Sa(\tau) d\tau$ ;                  | $(D)  x(n) = \cos(\frac{9\pi}{7}n)$                            | ı)                     |
| 3, | 已知系统的激励与响应的关系                                               | 系为 $y(t) = e^{-t} \int_{-\infty}^{t} x(\tau) e^{\tau} d\tau$ , | 则该系统是                  |
| (  | )                                                           |                                                                |                        |
|    | (A) 线性时不变系统;                                                | (B) 线性时变系统                                                     |                        |
|    | (C) 非线性时不变系统;                                               | (D) 非线性时变                                                      | <b>系</b> 统             |
| 4、 | $\frac{\mathrm{d}}{\mathrm{d}t}[e^{-2t}\delta(t)] = ($      |                                                                |                        |
| 5、 | (A) $-2e^{-2t}\delta(t)$ ; (B) $\delta'($ 下列系统中,可逆的系统是(     | $(C) -2\delta(t);$                                             | (D) $\delta(t)$        |
|    | (A) $y(t) = x^2(t);$                                        | (B) $h(n) = u(n)$ ;                                            |                        |
|    | (C) $y(t) = 2\frac{dx(t)}{dt}$ ;                            | (D) $y(n) = x(3n)$                                             |                        |
| 6, | 下列表达式中,错误的是(                                                | ) 。                                                            |                        |
|    | (A) $\delta(t) = \lim_{k \to \infty} \frac{k}{\pi} Sa(kt);$ | (B) $\int_{-\infty}^{\infty} \delta(t) dt = 1$                 |                        |
|    | (C) $\sum_{n=-\infty}^{\infty} x(n)\delta(n) = x(0);$       | (D) $\sum_{m=-\infty}^{n} \delta(m) = 1$                       |                        |
|    | 一线性时不变系统 $y(n)+3y(n-1)+$                                    | $+2y(n-2)=2^nu(n)$ ,其零输入                                       | 、响应的解析式                |
| 为  | ( );<br>(A) $A_1 e^{-t} + A_2 e^{-2t}$ ;                    | $(D)$ $A$ $(1)^n$ $A$ $(0)^n$                                  |                        |
|    | (A) $A_1e^{t} + A_2e^{t}$ ;<br>(C) $A_1 + A_2e^{2t}$ ;      | (B) $A_1(-1)^n + A_2(-2)^n$ ;<br>(D) $A_1 + A_2 2^n$           |                        |
| 8, | 周期信号 $x(t) = 2 + 3 \sin \pi t + \sqrt{3} \cos \pi t$        |                                                                | 其平均功率等                 |
| 于  |                                                             |                                                                |                        |
|    | (A) $\frac{89}{8}$ ; (B) $\frac{89}{9}$ ;                   | (C) 10;                                                        | (D) 11                 |
| 9, | 周期矩形脉冲信号 $x(t)$ 如图 $1$ 所                                    | 示,若周期 $T = 0.1 ms$ ,脉冲                                         | 宽度 $\tau = 20 \mu s$ , |
| 幅  | 度 $E = 5V$ 试问能从 $x(t)$ 信号                                   | 中选出下列选项中的哪个                                                    | 下 频 率 分 量 。            |

(

- (A) 8KHz; (B) 50KHz;
- (C) 80KHz; (D) 100KHz

10、图 2 所示周期信号 x(t) 的傅里叶级数展式中含有(

)。

(A) 奇次、偶次正弦项;

(B) 奇次、偶次余弦项; (D) 偶次正弦、余弦项





11、下列可以实现无失真传输信号的系统是(

(A) 
$$H(\omega) = 5G_{2\omega_c}(\omega)e^{-j\omega t_0}$$
;

(A) 
$$H(\omega) = 5G_{2\omega_c}(\omega)e^{-j\omega t_0};$$
 (B)  $g(t) = \frac{3}{2} + \frac{3}{\pi}Si(\omega_c(t - t_0));$ 

(C) 
$$h(t) = k\delta(t - t_0)$$
:

(C) 
$$h(t) = k\delta(t - t_0)$$
; (D)  $h(t) = h(t)u(t)$ 

12、两台电视机正在播放同一个节目, 电视机 A 的字幕比电视机 B 的字幕清晰, 那么两台电视机的频带宽度 ( )。 (A)  $B_A > B_B$ ; (B)  $B_A = B_B$ ; (C)  $B_A < B_B$ ; (D) 不确定

(A) 
$$B_A > B_B$$
;

(B) 
$$B_A = B_B$$

(C) 
$$B_{\Lambda} < B_{R}$$

13、下列系统中的因果系统是(

A, 
$$H(z) = \frac{z-1}{z-\frac{1}{3}}$$
  $|z| > \frac{1}{3}$ ;

A, 
$$H(z) = \frac{z-1}{z-\frac{1}{2}}$$
  $|z| > \frac{1}{3}$ ; B,  $H(s) = \frac{s-1}{(s+1)(s-2)}$   $-1 < \sigma < 2$ 

C, 
$$y(n) = x(2n)$$
;

D, 
$$H(z) = \frac{z^3 + 2z^2 + z + 1}{(z + \frac{1}{2})(z - \frac{1}{5})}$$
  $|z| > \frac{1}{2}$ 

## 二、分析计算题

- 1、计算  $\int_{0}^{t} e^{-6\tau} \delta'(\tau) d\tau =$
- 2、若已知 $x(t) \leftrightarrow X(\omega)$ ,求信号 $\int_{-\infty}^{t} x(3\tau-2)d\tau$ 的频谱。
- 3、已知函数的单 f(t) 边 拉 普 拉 斯 变 换 为  $F(s) = \frac{s}{s+1}$  , 求 函 数  $y(t) = 3e^{-2t} f(3t)$ 的单边拉普拉斯变换。
- 4、已知某离散信号的单边 Z 变换为 F (z) =  $\frac{2z^2 + z}{(z-1)(z+3)}$ , (|z|>3), 则其反变换

5、已知一零初始状态的LTI系统, 当输入 $x_i(t) = u(t)$ 激励下的响应为

$$y_1(t) = 3e^{-2t}u(t)$$
,求输入  $x_2(t) = tu(t)$ 激励下的响应  $y(t)$ 

6、一离散 LTI 系统的输入输出方程为:

$$y(n)-1.2y(n-1)+0.35y(n-2)=2x(n)+x(n-1)$$

设  $x(n) = 2^n u(n)$ , 且系统的零输入响应为

$$y_{zi}(n) = \left[\frac{2}{3}(0.7)^n - \frac{1}{15}(0.5)^n\right]u(n)$$
, 试求系统全响应在  $n = 0$  时刻的值  $y(0) = ?$ 

**7**、一连续 LTI 系统的输入输出方程 y''(t) - y'(t) - 2y(t) = x(t),如果该系统既不是因果的也不是稳定的,求系统的冲激响应 h(t)。

8、已知某因果离散线性时不变反馈系统的框图如图 3 所示, 其中  $H_1(z) = \frac{2}{2-z^{-1}}$ ,  $H_2(z) = 1 - Kz^{-1}$ , 求使得系统稳定的 K 值取值范围。



9、已知某因果 LTI 系统函数 H(s) 的零、极点分布如图 4 所示,有一个零点位于 坐标原点,有一对共轭极点。当系统输入为  $x(t)=e^{\frac{t}{2}}$  时,对所有 t ,系统输出为  $y(t)=\frac{1}{2}e^{\frac{t}{2}}$  。

- (1) 求系统函数H(s);
- (2) 写出包含待定系数的零输入响应数学表达式;
- (3) 大致画出系统的幅频特性,并说明其滤波特性。



图 4

- 10、设x(t)是频带宽带为 $\omega_m$ 的低频信号,  $X(\omega)$ 如图 5 所示,
- (1) 试确定对信号 x(2t)\*x(t) 进行不混叠抽样的最小抽样角频率 (写出分析步骤);

(2) 将 x(t) 输入图 6 所示系统, 设  $H_{I}(\omega) = -j \, sgn(\omega)$ ,  $H_{2}(\omega) = G_{2\omega_{0}}(\omega)$ , 其中  $2\omega_{m} < \omega_{0}$ ,试写出输出 y(t) 的数学表示式,并画出  $Y(\omega)$  的频谱图。  $X(\omega)$ 



### 复习题五答案

$$=-\frac{3}{2}(e^{-\lambda t}-1)=\frac{3}{2}(-2^{-\lambda t})ut$$

$$\sqrt{3}$$
 $(3) = H(3) I(8) = \frac{3^2 + 8}{3^2 + 123 + 0-31} \cdot \frac{3}{3^2}$ 

$$y_{3s}(0) = \lim_{\lambda \to \infty} \overline{y}_{3s}(\lambda) = 2$$

$$y(0) = y_{35}(0) + y_{3i}(0) = 2 + \frac{3}{3} - \frac{1}{15} = 2.6 = \frac{3}{15}$$

7. 
$$H(s) = \frac{1}{s^2 - s - 2} = \frac{1}{(s+1)(s-2)} = \frac{\frac{1}{3}}{s-2} + \frac{-\frac{1}{3}}{s+1}$$

$$f(t) = \frac{1}{3}e^{2t}u(-t) + \frac{1}{3}e^{-t}u(-t) = \frac{1}{3}(e^{-t} - e^{3t})u(-t).$$

8. 
$$\frac{X(8)}{X(8)} = \frac{1}{\frac{1}{H_1(8)} + H_2(8)} = \frac{H_1(8)}{1 + H_1(8) + H_2(8)}$$

$$= \frac{\frac{2}{2-3^{-1}}}{1+\frac{2}{2-3^{-1}}(1-k3^{-1})} = \frac{23}{2548-1-2k} = \frac{\frac{1}{2}8}{3-\frac{1+2k}{4}}$$

9. 1. 
$$\sqrt{3}$$
 H(s)=  $A \frac{S}{(S+1-\delta^{\frac{11}{2}})(S+1+\delta^{\frac{11}{2}})}$   
H(t)= H(\frac{1}{2})e^{\frac{1}{2}} = A \frac{\frac{1}{2}e^{\frac{1}{2}}}{(\frac{2}{3})^2+\frac{3}{4}} = A \frac{\frac{1}{2}e^{\frac{1}{2}}}{4} = \frac{1}{2}e^{\frac{1}{2}}
$$A=3. H(s)=\frac{3S}{(S+1)^2+\frac{3}{4}}$$

3. W=0 PF (HIW) =0. (W) +0.

(HIM) Ne-CU

南道.

(2.1) X(zt)\*X(t) ⇔ 之X(空) X(W). 即带宽为Wm.

2).:- 55gn(w => 7t G260(w) => \$\frac{100}{7} \text{Loc(w)} \text{Loc(wot).}

 $\sqrt{(\omega)} = \sqrt{(\omega)} = \chi(\omega + \omega_0) \operatorname{Sgn}(\omega + \omega_0) - \chi(\omega - \omega_0) \operatorname{Sgn}(\omega - \omega_0)$   $\sqrt{(\omega)} = \sqrt{(\omega)} \operatorname{Grad}(\omega).$ 

