Sicherheit in Android und iOS

David Artmann¹ Kristoffer Schneider¹

¹Hochschule für angewandte Wissenschaften Würzburg-Schweinfurt

30. Juni 2015

Gliederung

- Gemeinsamkeiten und Unterschiede
 - Systemsicherheit
 - Applikationssicherheit
- Systemkultur
 - Android vs. iOS
 - Opensource von Android
 - Proprietät unter iOS
- Härten
 - Tips für Endnutzer
 - Ratschläge für Entwickler

00000

Gliederung

- Gemeinsamkeiten und Unterschiede
 - Systemsicherheit
 - Applikationssicherheit
- Systemkultur
 - Android vs. iOS
 - Opensource von Android
 - Proprietät unter iOS
- Härter
 - Tips für Endnutzer
 - Ratschläge für Entwickler

Systemsicherheit

Trusted Execution Environment / Secure Enclave

Secure boot chain

Userland (Sandboxing / Rechte

Systemsicherheit

Trusted Execution Environment / Secure Enclave

Secure boot chain

FH-W-S

Systemsicherheit

Trusted Execution Environment / Secure Enclave

Secure boot chain

Userland (Sandboxing / Rechte)

Gliederung

- Gemeinsamkeiten und Unterschiede
 - Systemsicherheit
 - Applikationssicherheit
- Systemkultur
 - Android vs. iOS
 - Opensource von Android
 - Proprietät unter iOS
- Härter
 - Tips für Endnutzer
 - Ratschläge für Entwickler

App-Berechtigungen

iOS bis Android M granularer

Zeitweise Abhilfe durch AppOps

Mit iOS 9 und Android M gleichauf

App-Berechtigungen

iOS bis Android M granularer

Zeitweise Abhilfe durch AppOps

App-Berechtigungen

iOS bis Android M granularer Zeitweise Abhilfe durch AppOps

Mit iOS 9 und Android M gleichauf

App-Berechtigungen

iOS bis Android M granularer Zeitweise Abhilfe durch AppOps

Mit iOS 9 und Android M gleichauf

FH-W-S

Gliederung

- Gemeinsamkeiten und Unterschiede
 - Systemsicherheit
 - Applikationssicherheit
- Systemkultur
 - Android vs. iOS
 - Opensource von Android
 - Proprietät unter iOS
- Härter
 - Tips für Endnutzer
 - Ratschläge für Entwickler

freie Modifikation

dezentrale Updatepolitik

offener Quelltext

einheitliche Konfiguration

zentrale Updateregelung

freie Modifikation

dezentrale Updatepolitik

offener Quelltext

einheitliche Konfiguration

zentrale Updateregelung

freie Modifikation

dezentrale Updatepolitik

offener Quelltext

einheitliche Konfiguration

zentrale Updateregelung

freie Modifikation

dezentrale Updatepolitik

offener Quelltext

einheitliche Konfiguration

zentrale Updateregelung

freie Modifikation

dezentrale Updatepolitik

offener Quelltext

einheitliche Konfiguration

zentrale Updateregelung

freie Modifikation

dezentrale Updatepolitik

offener Quelltext

einheitliche Konfiguration

zentrale Updateregelung

freie Modifikation

dezentrale Updatepolitik

offener Quelltext

einheitliche Konfiguration

zentrale Updateregelung

freie Modifikation

dezentrale Updatepolitik

offener Quelltext

einheitliche Konfiguration

zentrale Updateregelung

freie Modifikation

dezentrale Updatepolitik

offener Quelltext

einheitliche Konfiguration

zentrale Updateregelung

geschlossener Quelltext

FH-W-S

Gliederung

- Gemeinsamkeiten und Unterschiede
 - Systemsicherheit
 - Applikationssicherheit
- Systemkultur
 - Android vs. iOS
 - Opensource von Android
 - Proprietät unter iOS
- Härter
 - Tips für Endnutzer
 - Ratschläge für Entwickler

Verteilte Entwicklung bei Herstellern und privaten Gruppen

Intransparenz durch die Verteilte Entwicklung

Die Update-Problematik

Verteilte Entwicklung bei Herstellern und privaten Gruppen

Intransparenz durch die Verteilte Entwicklung

Die Update-Problematik

Verteilte Entwicklung bei Herstellern und privaten Gruppen

Intransparenz durch die Verteilte Entwicklung

Die Update-Problematik

Verteilte Entwicklung bei Herstellern und privaten Gruppen

Intransparenz durch die Verteilte Entwicklung

Die Update-Problematik

Rooting von Androidsystemen

Möglich durch Exploits oder spezielle Builds

Gefährdung des Sicherheitssystems

Rooting von Androidsystemen

Möglich durch Exploits oder spezielle Builds

Gefährdung des Sicherheitssystems

Rooting von Androidsystemen

Möglich durch Exploits oder spezielle Builds

Gefährdung des Sicherheitssystems

Beispiel: Rooting von Samsung Geräten durch einen Sicherheitslücke

Möglich durch Exploits oder spezielle Builds

Gefährdung des Sicherheitssystems

FH/W-S

Opensource von Android

Beispiel: Rooting von Samsung Geräten durch einen Sicherheitslücke

Möglich durch Exploits oder spezielle Builds

Gefährdung des Sicherheitssystems

Beispiel: Rooting von Samsung Geräten durch einen Sicherheitslücke

Möglich durch Exploits oder spezielle Builds

Gefährdung des Sicherheitssystems

Beispiel: Rooting von Samsung Geräten durch einen Sicherheitslücke Der Exploit

Wurde von alephzain, des XDA-Forums entdeckt

Betroffen sind waren bzw. sind mehrere Geräte von Samsung (S2, S3)

Zugriff auf den gesamten physischen Arbeitsspeicher möglich

Fahrlässige Berechtigungsvergabe für /dev/exynos-mem

Veränderungen am Kernel durch jeden Nutzer möglich

Beispiel: Rooting von Samsung Geräten durch einen Sicherheitslücke Der Exploit

Wurde von alephzain, des XDA-Forums entdeckt

Betroffen sind waren bzw. sind mehrere Geräte von Samsung (S2, S3)

Zugriff auf den **gesamten** physischen Arbeitsspeicher möglich

Fahrlässige Berechtigungsvergabe für /dev/exynos-mem

Veränderungen am Kernel durch jeden Nutzer möglich

Beispiel: Rooting von Samsung Geräten durch einen Sicherheitslücke Der Exploit

Wurde von alephzain, des XDA-Forums entdeckt

Betroffen sind waren bzw. sind mehrere Geräte von Samsung (S2, S3)

Zugriff auf den gesamten physischen Arbeitsspeicher möglich

Fahrlässige Berechtigungsvergabe für /dev/exynos-mem

Veränderungen am Kernel durch **jeden** Nutzer möglich

Beispiel: Rooting von Samsung Geräten durch einen Sicherheitslücke Der Exploit

Wurde von alephzain, des XDA-Forums entdeckt

Betroffen sind waren bzw. sind mehrere Geräte von Samsung (S2, S3)

Zugriff auf den **gesamten** physischen Arbeitsspeicher möglich

Fahrlässige Berechtigungsvergabe für /dev/exynos-mem

Veränderungen am Kernel durch **jeden** Nutzer möglich

Beispiel: Rooting von Samsung Geräten durch einen Sicherheitslücke Der Exploit

Wurde von alephzain, des XDA-Forums entdeckt

Betroffen sind waren bzw. sind mehrere Geräte von Samsung (S2, S3)

Zugriff auf den gesamten physischen Arbeitsspeicher möglich

Fahrlässige Berechtigungsvergabe für /dev/exynos-mem

Veränderungen am Kernel durch jeden Nutzer möglich

Hersteller und proprietäre Apps

Nur schwer zu kontrollieren

Erweiterte Rechte durch Herstellerzertifikate

Beispiel: Google Settings

Hersteller und proprietäre Apps

Nur schwer zu kontrollieren

Erweiterte Rechte durch Herstellerzertifikate

Beispiel: Google Settings

Hersteller und proprietäre Apps

Nur schwer zu kontrollieren

Erweiterte Rechte durch Herstellerzertifikate

Beispiel: Google Settings

Beispiel: Google Einstellungen

Auf den meisten Geräten vorinstalliert

Dient zur Synchronisation mit dem Google-Account

Installation durch Google möglich

Weitere versteckte Funktionen

Beispiel: Google Einstellungen

Auf den meisten Geräten vorinstalliert

Dient zur Synchronisation mit dem Google-Account

Installation durch Google möglich

Weitere versteckte Funktionen?

Beispiel: Google Einstellungen

Auf den meisten Geräten vorinstalliert

Dient zur Synchronisation mi dem Google-Account

Installation durch Google möglich

Weitere versteckte Funktionen?

Beispiel: Google Einstellungen

Auf den meisten Geräten vorinstalliert

Dient zur Synchronisation mit dem Google-Account

Installation durch Google möglich

Neitere versteckte Funktionen?

Beispiel: Google Einstellungen

Auf den meisten Geräten vorinstalliert

Dient zur Synchronisation mit dem Google-Account

Installation durch Google möglich

Weitere versteckte Funktionen?

Beispiel: Google Einstellungen

Auf den meisten Geräten vorinstalliert

Dient zur Synchronisation mit dem Google-Account

Installation durch Google möglich

Weitere versteckte Funktionen?

Gliederung

- Gemeinsamkeiten und Unterschiede
 - Systemsicherheit
 - Applikationssicherheit
- Systemkultur
 - Android vs. iOS
 - Opensource von Android
 - Proprietät unter iOS
- Härter
 - Tips für Endnutzer
 - Ratschläge für Entwickler

Produktion HW/SW im eigenen Haus

Ungewissheit durch Proprietät

Umgehen dieser Politik durch Jailbreaking

Produktion HW/SW im eigenen Haus

Ungewissheit durch Proprietät

Umgehen dieser Politik durch Jailbreaking

Produktion HW/SW im eigenen Haus

Ungewissheit durch Proprietät

Umgehen dieser Politik durch Jailbreaking

Publizieren von undokumentierten Diensten im Juni 2013 **Nach** Zdziarski's Paper

lockdownd

com.apple.mobile.pcapd

com.apple.mobile.file_relay

com.apple.mobile.house_arrest

Publizieren von undokumentierten Diensten im Juni 2013 **Nach** Zdziarski's Paper

lockdownd

com.apple.mobile.pcapd

com.apple.mobile.file_relay

com.apple.mobile.house_arrest

Publizieren von undokumentierten Diensten im Juni 2013 **Nach** Zdziarski's Paper

lockdownd com.apple.mobile.pcapd com.apple.mobile.file_relay com.apple.mobile.house_arrest

Publizieren von undokumentierten Diensten im Juni 2013 **Nach** Zdziarski's Paper

com.apple.mobile.pcapd

com.apple.mobile.file_relay

com.apple.mobile.house_arrest

Publizieren von undokumentierten Diensten im Juni 2013 **Nach** Zdziarski's Paper

lockdownd

com.apple.mobile.pcapd

com.apple.mobile.file_relay

com.apple.mobile.house_arrest

Publizieren von undokumentierten Diensten im Juni 2013 **Nach** Zdziarski's Paper

lockdownd

com.apple.mobile.pcapd

com.apple.mobile.file_relay

com.apple.mobile.house_arrest

lockdownd

Ermöglicht Zugriff über TCP Port 62078

Abarbeitung über eigenes Protokoll *usbmux*

Übergebene Portnummer auf localhost

lockdownd

Ermöglicht Zugriff über TCP Port 62078

Abarbeitung über eigenes Protokoll usbmux

Übergebene Portnummer auf localhost

lockdownd

Ermöglicht Zugriff über TCP Port 62078

Abarbeitung über eigenes Protokoll usbmux

Übergebene Portnummer auf localhost

com.apple.mobile.pcapd

Sniffingsoftware auf Basis von pcap

Implementierung durch Bibliothek libcap

Kein visueller Hinweis auf Aktivität des Dienstes

com.apple.mobile.pcapd

Sniffingsoftware auf Basis von pcap

Implementierung durch Bibliothek libcap

Kein visueller Hinweis auf Aktivität des Dienstes

com.apple.mobile.pcapd

Sniffingsoftware auf Basis von pcap

Implementierung durch Bibliothek libcap

Kein visueller Hinweis auf Aktivität des Dienstes

com.apple.mobile.pcapd

Sniffingsoftware auf Basis von pcap

Implementierung durch Bibliothek libcap

Kein visueller Hinweis auf Aktivität des Dienstes

com.apple.mobile.file_relay

Zugriff auf Adressbuch, GPS Daten, Fotos

Metadaten Abbild des Dateisystems

Apple

In iOS 8 and later, this capability requires additional configuration before use

com.apple.mobile.file_relay

Zugriff auf Adressbuch, GPS Daten, Fotos

Metadaten Abbild des Dateisystems

Apple

In iOS 8 and later, this capability requires additional configuration before use

com.apple.mobile.file_relay

Zugriff auf Adressbuch, GPS Daten, Fotos

Metadaten Abbild des Dateisystems

Apple:

In iOS 8 and later, this capability requires additional configuration before use.

com.apple.mobile.file_relay

Zugriff auf Adressbuch, GPS Daten, Fotos

Metadaten Abbild des Dateisystems

Apple:

In iOS 8 and later, this capability requires additional configuration before use.

com.apple.mobile.house arrest

Offiziell für Datentransfer von iTunes und Testdaten für Xcode

Zdziarski: Zugriff auf Library, Cache, Cookies, bevorzugte Ordner

Obwohl die iTunes GUI dies nicht erlaubt

com.apple.mobile.house arrest

Offiziell für Datentransfer von iTunes und Testdaten für Xcode

Zdziarski: Zugriff auf Library, Cache, Cookies, bevorzugte Ordner

Obwohl die iTunes GUI dies nicht erlaubt

com.apple.mobile.house arrest

Offiziell für Datentransfer von iTunes und Testdaten für Xcode

Zdziarski: Zugriff auf Library, Cache, Cookies, bevorzugte Ordner

Obwohl die iTunes GUI dies nicht erlaubt

Historische Exploits

libTiff Exploit

Ikee Virus

No iOS Zone

Historische Exploits

libTiff Exploit

Ikee Virus

Historische Exploits

libTiff Exploit

Ikee Virus

Historische Exploits

libTiff Exploit

Ikee Virus

Historische Exploits

libTiff Exploit

Ikee Virus

libTiff Exploit (2007)

Pufferüberlauf der libtiff Bibliothek

Wurde für Jailbreak genutzt

iOS Prozesse liefen noch mit root (iOS 1)

libTiff Exploit (2007)

Pufferüberlauf der libtiff Bibliothek

Wurde für Jailbreak genutzt

iOS Prozesse liefen noch mit root (iOS 1)

libTiff Exploit (2007)

Pufferüberlauf der libtiff Bibliothek

Wurde für Jailbreak genutzt

iOS Prozesse liefen noch mit root (iOS 1)

Ikee Virus (2009)

Einer der ersten Würmer unter iOS

Standardpasswort der Jailbreak SSH Zugänge ausgenutzt

Bösartige Variante Ikee.B stahl Daten

Ikee Virus (2009)

Einer der ersten Würmer unter iOS

Standardpasswort der Jailbreak SSH Zugänge ausgenutzt

Bösartige Variante Ikee.B stahl Dater

Ikee Virus (2009)

Einer der ersten Würmer unter iOS

Standardpasswort der Jailbreak SSH Zugänge ausgenutzt

Bösartige Variante Ikee.B stahl Daten

No iOS Zone (2014)

https://www.youtube.com/watch?v=i2tYdmOQisA

Fehler im Parser für SSL-Zertifikate

Verbinden zu WLAN-AP führt zu DoS und Bootloop

No iOS Zone (2014)

https://www.youtube.com/watch?v=i2tYdmOQisA

Fehler im Parser für SSL-Zertifikate

Verbinden zu WLAN-AP führt zu DoS und Bootloop

No iOS Zone (2014)

https://www.youtube.com/watch?v=i2tYdmOQisA

Fehler im Parser für SSL-Zertifikate

Verbinden zu WLAN-AP führt zu DoS und Bootloop

Gliederung

- Gemeinsamkeiten und Unterschiede
 - Systemsicherheit
 - Applikationssicherheit
- Systemkultur
 - Android vs. iOS
 - Opensource von Android
 - Proprietät unter iOS
- Härten
 - Tips für Endnutzer
 - Ratschläge für Entwickler

Gliederung

- Gemeinsamkeiten und Unterschiede
 - Systemsicherheit
 - Applikationssicherheit
- Systemkultur
 - Android vs. iOS
 - Opensource von Android
 - Proprietät unter iOS
- Härten
 - Tips für Endnutzer
 - Ratschläge für Entwickler

