Convergence of analysis results

Área de Mecánica Computacional

April 21, 2016

1 Cantilever beam

Figure 1 shows a cantelever beam under a tip load P. The beam is of length l; moment of inertia I; height 2c and material properties corresponding to Poissons ratio and Young modulos ν and E respectively.

Figure 1: Cantelever beam.

The analytic solution (Timoshenko & Goodier, 1970) is given by:

$$u = -\frac{P}{2EI}x^{2}y - \frac{\nu P}{6EI}y^{3} + \frac{P}{2IG}y^{3} + \left(\frac{Pl^{2}}{2EI} - \frac{Pc^{2}}{2IG}\right)y$$

$$v = \frac{\nu P}{2EI}xy^{2} + \frac{P}{6EI}x^{3} - \frac{Pl^{2}}{2EI}x + \frac{Pl^{3}}{3EI}$$

$$\varepsilon_{xx} = \frac{\partial u}{\partial x} \equiv -\frac{P}{EI}xy$$

$$\varepsilon_{yy} = \frac{\partial v}{\partial y} \equiv \frac{\nu P}{EI}xy$$

$$\gamma_{xy} = \frac{\partial u}{\partial u} + \frac{\partial v}{\partial x} \equiv \frac{P}{2IG}(y^{2} - c^{2})$$

while the particular solution for parameters $E=1000.0,\,\nu=0.30,\,l=24$ and 2c=8 is shwon below:

//

Figure 2: Horizontal field.

The beam was also analyzed with the FEM using solid lineal square elements under plane stress conditions. We conducted 5 different analysis with the following set of characteristic element size h = [6.0, 3.0, 1.5, 1.0, 0.5]. The meshes are shown in fig. 3

Figure 3: Finite element meshes.

The horizontal and vertical displacement contours for the FE-solution and the analytic solution are compared in fig. 4 for the case h=1.0. Notice that in the finite elment models the load is applied as nodal point loads of the same magnitud distributed along all the nodes at x=0. This implies a uniform load distribution instead of the parabolic load consistent with the shear stress in the analytic solution.

Figure 4: Analytic (left) vs Numerical (right) solution.

$$\begin{split} \prod_{FE} &= -\frac{1}{2}U^T K U \\ \prod_{Exa} &= \frac{\prod_{n=1}^2 - \prod_n \prod_{n=2}}{2\prod_{n=1} - \prod_n - \prod_{n=2}} \end{split}$$

Using n = 5 we have $\prod_{Exa} = -154.09$.

$$\|\vec{u}_{Exa} - \vec{u}_{FE}\| \equiv (\prod_{Exa} - \prod_{FE})^{1/2}$$

h	\prod_{FE}	$\ \vec{u}_{Exa} - \vec{u}_{FE}\ $	$rac{\ ec{u}_{Exa} - ec{u}_{FE}\ }{\ ec{u}_{Exa}\ }$
6.0	-118.414	5.973	0.481
3.0	-139.273	3.849	0.310
1.5	-145.866	2.868	0.231
1.0	-147.501	2.567	0.207
0.5	-148.811	2.298	0.185

Table 1: Convergence of anlysis results

Figure 5: Energy norm of the error

$$\log(\|\vec{u}_{Exa} - \vec{u}_{FE}\|) = \log c + k \log h$$

References

Burden, R. L., Faires, J. D., & Palmas, O., 2002. *Análisis numérico*, no. QA297. B87 1985., Thomson Learning México.

Downey, A., 2012. Think Python, "O'Reilly Media, Inc.".

Press, W. H., 2007. Numerical recipes 3rd edition: The art of scientific computing, Cambridge university press.

Timoshenko, S. & Goodier, J., 1970. Theory of Elasticity, McGraw-Hill, 3rd edn.