

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет: «Специальное машиностроение»

Кафедра: «Робототехнические системы и мехатроника»

Лабораторная работа № 6

по курсу «Теория автоматического управления»

Выполнил: Садовец Роман

Группа: СМ7-51Б

Проверил(а):

Оглавление

1. I	Ілан работы 2
2. P	Разработка компонентов системы2
	. Модель двигателя2
	. Модель редуктора4
	. Модель реечной передачи6
	. Модель датчика тока 8
2.5	. Модель служебного преобразователя скоростей и ускорений
2.6	. Модель низкоуровневого контроллера Ошибка! Закладка не
опј	ределена.
3. K	Сомпоновка модели САУ9
4. (Синтез модели. Настройка внутреннего контура коррекции
5. I	

1. План работы

Согласно общему плану распределения обязанностей в команде, в данной работе представлена реализация задач, представленных в таблице 1.

Подзадача	Стоимость,
	%
Создание модели двигателя	2
Создание модели редуктора	2
Создание модели реечной передачи	3
Создание модели датчика тока	2
Создание служебной модели преобразования	3
скоростей	
Компоновка модели объекта управления	10
Компоновка модели САУ	2
Настройка внутреннего контура коррекции	7
Исследование влияния наличия нелинейных	25
элементов на работоспособность системы	

Табл. 1. Таблица распределения по задачам

Суммарно за все выполненные задачи - 56%

2. Разработка компонентов системы

2.1. Модель двигателя

По условию, имеем двигатель ДБУ20-3,7-9-24 ГИ (параметры представлены на рис. 1). Согласно заданию, в модели двигателя должны присутствовать следующие входные и выходные сигналы:

- *Bxoò InVoltage* входное напряжение, приходящее из усилителя мощности;
- *Bxod FbVelocity* обратная связь по скорости, приходящее из динамики обратного маятника через служебный блок преобразования скорости объекта в скорость двигателя;
- *Bxod FbAcceleration* аналогичен предыдущему, но являющийся обратной связью по ускорению;
 - *Выход OutTorque* момент на валу;
 - *Выход OutVelocity* скорость на валу;
 - *Выход OutAcceleration* ускорение на валу;

• Bыход OutCurrent — ток в цепи двигателя (ток якоря).

Если брать в учет вязкое трение, при этом исключая сухое, то ДПТ описывается следующей системой уравнений:

$$\begin{cases} J_{\text{дB}} \ddot{\varphi} = M_{\text{дB}} - M_{\text{тр}}; \\ M_{\text{дB}} = k_{\text{M}} I_{\text{g}}; \\ L_{\text{g}} \dot{I}_{\text{g}} + R_{\text{g}} I_{\text{g}} = U_{\text{упр}} - E_{\text{противо}}; \\ E_{\text{противо}} = k_{\omega} \dot{\varphi} \end{cases}$$
(1)

где ${
m M_{Tp}}=\mu_{{
m Tp1}}*\dot{\phi};\,\mu_{{
m Tp1}}-$ коэф — т вязкого трения на валу

н вини	TTEL 100 0 7 7 0	1
Параметры БДПТ	ДБУ20-3,7-9-	
	24 ГИ	
Напряжение питания, В	24	
Активное	≈10	
сопротивление якоря в		
нормальных условиях,		
Ом		
Скорость холостого	14400	
хода, об/мин		
Ток холостого хода, мА	60	
Начальный пусковой	≈37	
момент, мН*м		
Собственный момент	≈(1,051,4)*(1	п _{вращ} /1000об/мин) ^{0,4}
сопротивления	при (250025	
вращению, мН*м	≈(0,20,4) при	
ppungerinie, mrr m	≈(0,91,2) при	
Скоростной	≈600	
коэффициент Кп,		
об/мин/В		
Наклон механической	≈400	
характеристики $\Delta n/\Delta M$,		
об/мин/мН*м		
Коэффициент момента,	≈16	
мН*м/А		
Индуктивность якоря,	≈350	
мкГн		
Электромеханическая	≈20	
постоянная времени, мс		
Момент инерции	≈500	
ротора, г*мм²		
Угловое ускорение при	≈70	-
пуске, крад/с2		
Габариты, мм*мм	Ø20* L46	'
Рабочий диапазон		0 (обмотка до +125)
температур, °С		+100 (по согласованию)
Рис 1 Папаметт	•	

Рис. 1. Параметры выбранного ДПТ

Из параметров ДПТ выделим основные константы:

$$k_{\omega} = \frac{1}{\frac{2\pi}{60}} k_n = \frac{1}{\frac{2\pi}{60} * 600} = \frac{1}{20\pi} \left[\frac{c}{\text{рад}} * B \right]$$
 $k_{\text{M}} = 16 * 10^{-3} \left[\frac{\text{H * M}}{\text{A}} \right]$

$$R_{\scriptscriptstyle \mathrm{H}} = 10 \ [\mathrm{OM}]$$

$$L_{\scriptscriptstyle \mathrm{H}} = 350*10^{-6} \ [\Gamma\mathrm{H}]$$

$$J_{\scriptscriptstyle \mathrm{JB}} = 0.5*10^{-6} \ [\mathrm{K}\mathrm{\Gamma}*\mathrm{M}^2]$$

Положим $\mu_{{
m Tp}1}=10^{-7}$

По итогам моделирования получим следующую схему, представленную на рисунке 2.

Рис. 2. Конечная структурная схема двигателя

Также добавляем маску для данного блока с учетом расчетных (входных) параметров (рис. 3).

Рис. 3. Маска для двигателя

2.2. Модель редуктора

Редуктор предназначен для снижения выходного количества оборотов двигателя и повышения момента. Рассматриваются следующие входные и выходные параметры:

• *Bxoo InTorque* – момент на входном валу, приходящий из двигателя;

- *Bxod InVelocity* скорость на входном валу, приходящая из двигателя;
- *Bxod InAcceleration* ускорение на входном валу, приходящее из двигателя;
 - *Выход OutTorque* момент на выходном валу;
 - *Выход OutVelocity* скорость на выходном валу;
 - *Выход OutAcceleration* ускорение на выходном валу.

По условиям задания имеем редуктор со следующими параметрами:

$$i=100$$

$$J_{
m peg}=2.4*10^{-6}\,[{
m Kr}*{
m M}^2]$$

Также учтем момент вязкого трения, которые возникает при вращении зубчатых колёс. Редуктор можно описать следующими уравнениями:

$$\begin{cases} \dot{\varphi}_{\text{BMX}} = \frac{1}{i} * \dot{\varphi}_{\text{BX}} \\ \ddot{\varphi}_{\text{BMX}} = \frac{1}{i} * \ddot{\varphi}_{\text{BX}} \end{cases},$$

$$J_{\text{ped}} \frac{\ddot{\varphi}_{\text{BX}}}{i} = M_{\text{BMX}} - M_{\text{Tp}} + M_{\text{BMX}}^*$$

$$(2)$$

Поскольку мы рассматриваем упрощенную систему (не берём в учет КПД подшипников и зубчатых передач), то можно сказать, что $M^*_{\mathrm{Bыx}}=i*M_{\mathrm{Bx}}$, где $M^*_{\mathrm{Bыx}}$ - теоретический момент на валу редуктора до вычета момента вязкого трения и инерции редуктора.

В упрощенном случае $M_{\rm Tp}=\mu_{\rm Tp2}*\dot{\phi}_{\rm вых}$. Положим $\mu_{\rm Tp2}=10^{-5}$. Тогда получим структурную схему, представленную на рисунке 4.

Рис. 4. Конечная структурная схема редуктора

Также добавляем маску для данного блока с учетом расчетных (входных) параметров (рис. 5).

Рис. 5. Маска для редуктора

2.3. Модель реечной передачи

Реечная передача предназначена для преобразования вращательного движения вала в линейное перемещение корпуса модели для стабилизации маятника. Рассматриваются следующие входные и выходные параметры:

- *Bxod InTorque* момент на шестерне, приходящий из редуктора;
- *Bxod InVelocity* скорость на шестерне, приходящая из редуктора;
- *Bxod InAcceleration* ускорение на шестерне, приходящее из редуктора;
 - *Выход OutForce* сила, действующая на ось шестерни рейкой;
 - *Выход OutSpeed* скорость центра шестерни;
 - *Выход OutAcceleration* ускорение центра шестерни.

По условиям задания имеем реечную передачу со следующими параметрами:

$$i=20~\left[rac{\mathrm{pag}}{\mathrm{m}}
ight]$$
 $J_{\mathrm{III}}=1*10^{-6}~\mathrm{[Kr*m}^2\mathrm{]}$

Также учтем момент вязкого трения, которые возникает в местах контакта зубчатых передач.

$$\begin{cases} v_{\text{вых}} = \frac{1}{i} * \dot{\varphi}_{\text{вх}} \\ a_{\text{вых}} = \frac{1}{i} * \ddot{\varphi}_{\text{вх}} \\ F_{\text{вых}} = F_{\text{вых}}^* - F_{\text{ин}} - F_{\text{тр}} \\ F_{\text{вых}}^* = \frac{M_{\text{вх}}}{2 * \pi} * i \end{cases}$$
(3)

где $F_{\rm ин}$ — сила инерции корпуса, $F_{\rm ин}=(m+M)*a_{\rm вых},$ m — масса обратного маятника (палки), М — масса всего корпуса

В упрощенном случае $F_{\rm rp} = \mu_{\rm rp3} * v_{\rm вых}$. Положим $\mu_{\rm rp3} = 10^{-5}$. Тогда получим структурную схему, представленную на рисунке 6.

Также добавляем маску для данного блока с учетом расчетных (входных) параметров (рис. 7).

Рис. 6. Конечная структурная схема реечной передачи

Block Parameters: RackAndPinion			
Subsystem (mask)			
Parameters			
Gear ratio of RackAndPinion, [rad/m^3] i_rail 20 :			
Weight of body M	0.2		
Weight of inverted pendulum m 0.1			
Coef of viscous friction k_visco	1e-05		

Рис. 7. Маска для реечной передачи

2.4. Модель датчика тока

Датчик тока обеспечивает снятия тока якоря с двигателя, и возвращает значение измеренное напряжение (сигнал) на вход микроконтроллера в виде тока. Датчик тока — это прибор, которые снимает разницу потенциалов с внутреннего резистивного элемента, и конвертирует полеченные сигналы в ток. В схеме используются следующие входы и выходы:

- Bxod RealCurrent действительный ток на двигателе;
- *Выход MeasuredCurrent* измеренный ток на двигателе

Обычно сопротивление принимается крайне малым, дабы не влиять на механические характеристики двигателя. Примем:

$$R = 0.01 [OM]$$

Датчик тока описывается следующим уравнением:

$$U_{\text{BMX}} = I_{\text{BX}} * R \tag{4}$$

Тогда получим следующую схему для датчика тока (рис. 8):

Рис. 8. Конечная структурная схема датчика тока

2.5. Модель служебного преобразователя скоростей и ускорений

Модуль используются для преобразования выходных значений линейного перемещения модели маятника в угловое вращение вала двигателя. Это необходимо для создания контура обратной связи между выходной моделью маятника и двигателем. Из сигналов в модуле используются:

- *Bxod InVelocity* линейная скорость динамики объекта;
- Bxod InAcceleration линейное ускорение динамики объекта;
- *Выход OutVelocity* угловая скорость динамики объекта, приведенная к валу двигателя.

• *Выход OutAcceleration* – угловое ускорение динамики объекта, приведенная к валу двигателя.

Используются ранее введенные параметры редуктора и реечной передачи. В самом простом случае всю систему можно описать следующими уравнениям:

$$\begin{cases} \dot{\varphi}_{\text{вых}} = i_{\text{ред}} * i_{\text{р.п}} * v_{\text{вх}} \\ \ddot{\varphi}_{\text{вых}} = i_{\text{ред}} * i_{\text{р.п}} * a_{\text{вх}} \end{cases}$$
(3)

Для устранения помех в системе также включим в общую схему фильтр низких частот НЧ. Тогда получим структурную схему, представленную на рисунке 9.

Рис. 9. Конечная структурная схема служебного преобразователя скоростей

3. Компоновка модели САУ

Возьмем все разработанные нами subsystems и объединим их в единую system. Наденем на каждую из этих subsystems маску для ввода необходимых параметров. Получим общую схему, представленную на рисунке 10.

Рис. 10. Полная компоновка модели САУ

4. Синтез модели. Настройка внутреннего контура коррекции

По заданию внутренний контур коррекции — это последовательное корректирующее устройство КУ, расположенной внутри низкоуровненного контроллера после вычисления ошибки между задающим и реальным значением положения.

Синтезировать систему необходимо исходя из того, что входным сигналом является сигнал ошибка, а выходным — значением момента на двигателе.

К самому важному требованию, которое можно предъявить к системе, можно выделить реакцию на ступенчатое воздействие (рис. 11, 12). Для синтеза понадобиться линеаризовать модель маятника, а также разомкнуть связь с высокоуровневым контроллером. Тогда с помощью Response Optimazer зададим требования, указанные на рисунке 11, входным воздействием назначим вход в низкоуровневый контроллер (ОС осталась, с высокоуровневым разомкнули и поставили на вход ступенчатое воздействие), а выходом — выходной момент на двигателе.

Рис. 11. Требования к синтезу для ступенчатого воздействия

Синтезируем систему с указанными требованиями. Тогда на выходе получим значение коэффициента усиления последовательного КУ: $k_{\pi}=8.2491$

Рис. 12. График, отображающий требования к реакции на ступенчатое воздействие

5. Исследование влияния нелинейностей на работоспособность системы

Перед началом синтеза рассмотрим графики, выводимые при отсутствии нелинейности внутри схем. Наибольший интерес будут представлять такие графики, как: *угол отклонения маятника от нулевого положения* φ (рис. 13) и *значение момента на валу двигателя* (рис. 14).

Рис. 13. График угла до введения нелинейных элементов

Рис. 14. График момента двигателя до введения нелинейных элементов

Далее рассмотрим нелинейности, которые можно добавить в систему и проанализировать последствия их влияния. Введём в каждый из блоков хотя бы по одному из таковых (помимо служебного преобразователя — в нём уже присутствует нелинейности в виде инертности фильтра НЧ):

I. Мертвый ход (люфт) редуктора

Люфт удобнее всего реализовать с помощью блока Backlash (рис. 15). Он даёт возможность установить систему, в которой изменение во входе вызывает равное изменение в выходе, кроме тех случаев, когда вход изменяет направление. Когда вход изменяет направление, начальное изменение во входе не оказывает влияния на выход. Блок очень похож на мертвую зону, но действует не только в нулевой области (на старте), но и при изменении вращения. На рисунках 16-18 представлены выходные параметры при введении люфта в редуктор.

Рис. 15. Блок Backlash

Рис. 16. График угла маятника при наличии люфта редуктора

Экспериментально было определенно, что при ширине люфта более 5 Н*м системы выходит из равновесия и прекращает стабилизироваться (происходит прыжок между значениями угла маятника). Для просмотра варианта с потерей равновесия при наличии люфта можно открыть модель в ветке Non-linear на GitHub и изучить этот момент более детально.

Рис. 17. График момента двигателя при наличии люфта двигателя

Рис. 18. Параметры блока Backlash

Делая вывод по проделанной работе можно сказать, что наличие люфта сказывается и на устойчивости системы, и на её колебательности

II. Зона нечувствительности двигателя (реактивная нагрузка)

Зона нечувствительности в зоне регулирования — это отсутствие реакции двигателя при малых значениях напряжений. Данная зона нечувствительности исполняется с помощью блока Dead zone. Введём его в цепь с напряжением с параметрами, указанными на рисунке 19, и выведем интересуемые параметры (рис. 20, 21).

По полученным графикам можно сказать, что зона нечувствительности увеличивает время стабилизации всей системы, т.е. из-за её наличия вся конструкция затрачивает большее чуть большее время на разгон и торможение

Block Parameters: Dead Zone	×		
Dead Zone			
Output zero for inputs within the dead zone. Offset input signals by either the Start or End value when outside of the dead zone.			
Parameters			
Start of dead zone:			
- 5	:		
End of dead zone:			
5	:		
☑ Saturate on integer overflow			
☑ Treat as gain when linearizing			
☑ Enable zero-crossing detection			

Рис. 19. Параметры блока Dead zone

Рис. 20. График угла маятника при наличии мертвой зоны двигателя

Рис. 21. График момента двигателя при наличии мертвой зоны двигателя

III. Нагрев резистора в схеме датчика тока

Поскольку нагрев резистора происходит в течение какого-то времени и только до определенного значения, то переделаем структурную схему датчика тока (см. рис. 22). Обычно при нагреве сопротивление резистора возрастает, а если быть более точным, то увеличивается на 0,4...0,5% от номинала при нагреве на один градус Цельсия. Примем, что резистор максимально нагреется до 30 градусов с некоторой условно заданной скоростью.

Рис. 22. Схема датчика тока при учёте нагрева резистора

Проводя анализ выходных характеристик (рис. 23) можно прийти к выводу, что нагрев резистора не сказывается (либо сказывается крайне мало) на выходных параметрах всей системы.

Рис. 23. График угла маятника при учёте нагрева резистора в схеме датчика тока

IV. Шумы в датчике в датчике Холла

Датчик Холла — измерительный преобразователь для измерения величины магнитного поля. Измерение магнитного поля — очень сложное дело, которое подвержено большому количеству внешних влияний и воздействий. Одно из последствий таких влияний — наличие шума.

Рассмотрим случай наличия шума в датчике Холла. Пусть имеется генератор Uniform Random Number, который выбрасывает в схему рандомные

численные значения. Тогда получим схему, представленную на рисунке 24. На рисунке 26 и 27 – выходные графики системы.

Рис. 24. Схема датчика Холла при наличии шумов в схеме

Block Parameters: Uniform Random Number1	×
Uniform Random Number	
Output a uniformly distributed random signal. Output is repeatable for a given seed.	
Parameters	
Minimum:	
-0.02	:
Maximum:	
0.02	:
Seed:	
0	:
Sample time:	
0.1	:
☑ Interpret vector parameters as 1-D	

Рис. 25. Параметры генератора шума (произвольных чисел)

Рис. 26. График угла маятника при наличии шумов в датчике Холла

Рис. 27. График моментов двигателя при наличии шумов в датчике Холла

На основе полученных графиков можно сказать, что шумы в датчике Холла имеет крайне большое значение на выходных параметрах всей системы. Все выходные значения начинают сильно скакать на всём промежутке своей работы.

V. Все нелинейности вместе

Рассмотрим случай, когда в системе присутствуют сразу все нелинейности, рассмотренные выше.

Введем параметры:

- Ширина зоны люфта редуктора: 0,5 Н*м
- Мертвая зона двигателя: от -1,2 В до 1,2 В
- Нагрев резистора до 30 градусов
- Амплитуда шумов 0.005 и шагом 0.001

Выходные графики примут вид:

Рис. 28. График угла маятника при наличии всех рассмотренных нелинейностей

Рис. 29. График момента на валу двигателя при наличии всех рассмотренных нелинейностей

Приложение

1. Публичный репозиторий для лабораторных работ по TAУ // GitHub URL: https://github.com/RiXenGC/Control-Theory.git