COVID 19 VACCINE ANALYSIS

Phase 2

2.1 Short explanation:

Covid vaccine analysis informs vaccine distribution strategies, addressing logistical challenges and promoting equitable access. It plays a cruical role in managing vaccine hesitancy by providing data on a vaccine safety and efficacy. It guides decisions on potential booster doses and adaptation to combat emerging variants of the virus.

2.2 Data set link:

https://www.kaggle.com/datasets/gpreda/covid-world-vaccination-progress

The data (country vaccinations) contains the following information:

- **Country** this is the country for which the vaccination information is provided;
- **Country ISO Code** ISO code for the country;
- **Date** date for the data entry; for some of the dates we have only the daily vaccinations, for others, only the (cumulative) total;
- **Total number of vaccinations** this is the absolute number of total immunizations in the country;
- Total number of people vaccinated a person, depending on the immunization scheme, will receive one or more (typically 2) vaccines; at a certain moment, the number of vaccinations might be larger than the number of people;
- Total number of people fully vaccinated this is the number of people that received the entire set of immunization according to the immunization scheme (typically 2); at a certain moment in time, there might be a certain number of people that received one vaccine and another number (smaller) of people that received all vaccines in the scheme;
- **Daily vaccinations (raw)** for a certain data entry, the number of vaccinations for that date/country;
- **Daily vaccinations** for a certain data entry, the number of vaccinations for that date/country;

- Total vaccinations per hundred ratio (in percent) between vaccination number and total population up to the date in the country;
- Total number of people vaccinated per hundred ratio (in percent) between population immunized and total population up to the date in the country;
- Total number of people fully vaccinated per hundred ratio (in percent) between population fully immunized and total population up to the date in the country;
- Number of vaccinations per day number of daily vaccinations for that day and country;
- **Daily vaccinations per million** ratio (in ppm) between vaccination number and total population for the current date in the country;
- Vaccines used in the country total number of vaccines used in the country (up to date);
- **Source name** source of the information (national authority, international organization, local organization etc.);

2.3 Columns to be used:

- Total vaccination
- People vaccinated
- People fully vaccinated
- Country

2.4 Libraries:

NUMPY:

NumPy is a Python library used for working with arrays. It also has functions for working in domain of linear algebra, Fourier transform, and matrices.

- To download: Pip install numpy
- To import: import numpy as np

PANDAS:

Pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive.

- To download : Pip install pandas
- To import: import pandas as pd

MATPLOTLIB:

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Matplotlib makes easy things easy and hard things possible.

- To download: Pip install matplotlib
- To import: import matplotlib.pyplot as plt

SEABORN:

Seaborn library is a widely popular data visualization library that is commonly used for data science and machine learning tasks

- To download: Pip install seaborn
- To import: import seaborn as sns

2.5 TEST AND TRAIN:

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import plotly.express as px

df=pd.read csv("country vaccinations.csv")

print(df.info()) #TO FIND BASIC INFORMATIION ABOUT DATASET

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 86512 entries, 0 to 86511

Data columns (total 15 columns):

#	Column	Non-Null Count Dtype				
0	country	86512 non-null object				
1	iso_code	86512 non-null object				
2	date	86512 non-null object				
3	total_vaccinations	43607 non-null float64				

4	people	vaccinated	41294 non-null	float64
---	--------	------------	----------------	---------

5	people	fully	vaccinated	38802 non-null	float64
---	--------	-------	------------	----------------	---------

11	daily	vaccinations	ner	million	86213 non-null f	float64
1 1	aaii	' acciliations		1111111011	00215 11011 11411 1	LICATOI

dtypes: float64(9), object(6)

memory usage: 9.9+ MB

None

df.head(10) #DISPLAY FIRST 10 DATA IN DATASET

df.tail(10)

df.describe()

df.descr	ibe()						
10	otal vaccinations	people vaccinated pe	ople fully vaccinated dall	y vaccinations raw	daily vaccinations	total_vaccinations_per_hundred p	eople vaccina
count	4.960700e+04	4.129400e+04	3.880200e+04	3.538200e+64	8.521300e+04	43607 000000	
mean.	4.592964e+07	1.770508e+07	1.413830e+07	2.705996e+06	1.313055e+05	80.186543	
std	2.245004e+08	7.078731e+07	5.713620e+07	1.212427e+06	7.662386e+05	67.913577	
min	0.000000e+00	0.000000e+00	1.000000e+00	0.000000e+00	0.000000e+00	0.000000	
26%	5.264100e+05	3.494642e+05	2.439622±+05	4.969000e+03	9:000000e+02	16.050000	
78%	3.590096e+05 1.701230e+07	2.187310e+06 9.152520e+06	1.722140e+06 7.550870e+06	2.530900e+04 1.234925e+05	7.343000e+03 4.409800e+04	67 520000 132 735000	
max	3.263129e+09	1.275541e+09	1.2407776+09	2.474100e+07	2.242429e+07	345-370000	
lf.i	snull()	.sum()					
cou	ntry			0			
iso_	code			0			
date	2			0			
tota	l_vaco	cination	S	4	2905		
peo	ple_va	accinate	d	2	45218		
peo	ple_fu	ılly_vac	cinated		4771	0	
dail	y_vac	cination	ns_raw		5115	0	
dail	y_vac	cination	ıs		299		
tota	l_vac	cination	s_per_hu	ındred	42	2905	
peo	ple va	accinate	d per hi	ındred	۷	15218	
-			cinated 1		ndred	47710	
-		• —	ns per m	_	_	299	
	cines		P	0		.,,,	
				U	0		
	rce_na				0		
sou	rce_w	ebsite			0		
dtyı	pe: int	64					
	alue_cines	counts('	'vaccines	s")			
Johns	on vac	cines					
	nson,		Oxford/A	AstraZeı	neca, P	fizer/BioNTe	ch
	erna, C		straZeneca	a, Pfize	er/BioN	Tech	
Oxfo		63 raZeneca	à				
Oxfo		22 razeneca	a, Pfizer/	/RioNTe	ch.		
	46	29					
John		hnson, N	Moderna, N	lovavax	, Oxfor	d/AstraZenec	a, Pf

```
Johnson&Johnson, Oxford/AstraZeneca, Sinovac
Moderna, Oxford/AstraZeneca, Pfizer/BioNTech, Sinovac, Sputnik V
Johnson&Johnson, Moderna
          251
Johnson&Johnson, Pfizer/BioNTech, Sinopharm/Beijing
EpiVacCorona, Oxford/AstraZeneca, QazVac, Sinopharm/Beijing, Sputnik V, ZF
Length: 84, dtype: int64
  df.hist(figsize=(12,12),layout=(5,3))
  array([[<AxesSubplot:title={'center':'total vaccinations'}>,
     <AxesSubplot:title={'center':'people vaccinated'}>,
     <AxesSubplot:title={'center':'people fully vaccinated'}>],
    [<AxesSubplot:title={'center':'daily vaccinations raw'}>,
     <AxesSubplot:title={'center':'daily vaccinations'}>,
     <AxesSubplot:title={'center':'total vaccinations per hundred'}>],
    [<AxesSubplot:title={'center':'people vaccinated per hundred'}>,
     <AxesSubplot:title={'center':'people fully vaccinated per hundred'}>,
     <AxesSubplot:title={'center':'daily vaccinations per million'}>],
    [<AxesSubplot:>, <AxesSubplot:>],
    [<AxesSubplot:>, <AxesSubplot:>]], dtype=object)
          total vaccinations
                                       people vaccinated
                                                                   people fully vaccinated
                              40000
 40000
                                                           30000
                              30000
30000
                                                           20000
                              20000
20000
                              10000
                                                           10000
10000
                                          0.50 0.75 1.00
                                                                   0.25 0.50 0.75 1.00
        daily vaccinations raw 1e9
                                       daily vaccinations
                                                                total vaccinations per hundred
                                                           15000
                              80000
30000
                              60000
                                                           10000
20000
                              40000
                                                            5000
 10000
                              20000
             1.0
                 1.5
                      2.0
                                            1.0
                                                                      100
                                                                            200
                                                                 daily_vaccinations_per_million
     people vaccinated per hundred
                                people_fully_vaccinated_per_hundred
                                                           80000
 10000
                              10000
                                                           60000
 7500
                                                           40000
 5000
                               5000
                                                           20000
 2500
    0
                      100
                                                                   25000 50000 75000 100000
                                                   100
```

import seaborn as sns
sns.heatmap(df.corr())
<AxesSubplot:>

2.6 EXPLANATION:

Total Vaccinated till Date

In this section, we are going to see how many total vaccines have been used in each country. Check the code below for more information. The data shows the United States has administrated most vaccines in the world followed by China,

United Kingdom, England, India and at the last some countries include Saint Helena, San Marino has 0 vaccination.

```
country wise total vaccinated = {}
for country in df.country.unique():
  vaccinated = 0
  for i in range(len(df)):
    if df.country[i] == country:
       vaccinated += df.daily_vaccinations[i]
  country wise total vaccinated[country] = vaccinated
   made a seperate dict from the df
  country wise total vaccinated df =
pd.DataFrame.from dict(country wise total vaccinated,
                                   orient='index',
                                   columns = ['total vaccinted till date'])
#
    converted dict to df
country wise total vaccinated df.sort values(by = 'total vaccinted till date',
ascending = False, inplace = True)
country wise total vaccinated df
```

	total_vaccinted_till_date
United States	68767620
China	34922496
United Kingdom	19660299
England	1660259 <mark>1</mark>
India	13483116
***/	900
Trinidad and Tobago	441
Venezuela	155
Saint Helena	0
San Marino	0
Greenland	0

```
fig = px.bar(country wise total vaccinated df,
         y = 'total vaccinted till date',
         x = country_wise total vaccinated df.index,
         color = 'total vaccinted till date',
         color discrete sequence= px.colors.sequential.Viridis r
fig.update layout(
  title={
        'text': "Vaccination till date in various countries",
        'y':0.95,
        'x':0.5
  xaxis title="Countries",
  yaxis title="Total vaccinated",
  legend title="Total vaccinated"
fig.show()
                    Vaccination till date in various countries
                                                        total vaccinted till date
      60M
      50M
  Total vaccinated
      40M
                                                           40M
     30M
                                                           30M
                                                           20M
      20M
                                                           10M
```

Country Wise Daily Vaccination

To check what is the vaccination trend in each country, check the below code. We are drawing the line plot where the x-axis is the date and the y-axis is the count of daily vaccination, Colours Is set to be the **country**.

```
data = new df[['country','total vaccinations']].nlargest(25,'total vaccinations')
```

fig = px.bar(data, x = 'country',y = 'total_vaccinations',title="Number of total vaccinations according to countries",) fig.show()

Number of total vaccinations according to countries

2.7 METRICS USED FOR ACCURACY:

Precision is used for accuracy checks. Precision is a measure of a model's performance that tells you how many of the positive predictions made by the model are actually correct. It is calculated as the number of true positive predictions divided by the number of true positive and false positive predictions.