Dictionary

Fredrik Meyer

1 Algebraic Geometry

1.1 General properties

1.1.1 Fano variety

A variety X is Fano if the anticanonical sheaf ω_X^{-1} is ample.

1.2 Results and theorems

1.2.1 Kodaira vanishing

If k is a field of characteristic zero, X is a smooth and projective k-scheme of dimension d, and \mathcal{L} is an ample invertible sheaf on X, then $H^q(X, \mathcal{L} \otimes_{\mathscr{O}_X} \Omega^p_{X/k}) = 0$ for p+q>d. In addition, $H^q(X, \mathcal{L}^{-1} \otimes_{\mathscr{O}_X} \Omega^p_{X/k}) = 0$ for p+q< d.

1.2.2 Riemann-Roch for curves

The **Riemann-Roch theorem** relates the number of sections of a line bundle with the genus of a smooth curve C. Let \mathcal{L} be a line bundle ω_C the canonical sheaf on C. Then

$$h^0(C, \mathcal{L}) - h^0(C, \mathcal{L}^{-1} \otimes_{\mathscr{O}_C} \omega_C) = \deg(\mathcal{L}) + 1 - g.$$

1.2.3 Serre vanishing

One form of Serre vanishing states that if X is a proper scheme over a noetherian ring A, and \mathcal{L} is an ample sheaf, then for any coherent sheaf \mathcal{F} on X, there exists an integer n_0 such that for each i > 0 and $n \geq n_0$ the group $H^i(X, \mathcal{F} \otimes_{\mathscr{O}_X} \mathcal{L}^n) = 0$ vanishes.

1.3 Sheaves and bundles

1.3.1 Ample line bundle

A line bundle \mathcal{L} is **ample** if for any coherent sheaf \mathcal{F} on X, there is an integer n (depending on \mathcal{F}) such that $\mathcal{F} \otimes_{\mathscr{O}_X} \mathcal{L}^{\otimes n}$ is generated by global sections. Equivalently, a line bundle \mathcal{L} is ample if some tensor power of it is very ample.

1.3.2 Very ample line bundle

A line bundle \mathcal{L} is **very ample** if there is an embedding $i: X \hookrightarrow \mathbb{P}_S^n$ such that the pullback of $\mathscr{O}_{\mathbb{P}_S^n}(1)$ is isomorphic to \mathcal{L} . In other words, there should be an isomorphism $i^* \mathscr{O}_{\mathbb{P}_S^n} \simeq \mathcal{L}$.

1.3.3 Anticanonical sheaf

The **anticanonical sheaf** ω_X^{-1} is the inverse of the canonical sheaf ω_X , that is $\omega_X^{-1} = \mathcal{H}om_{\mathscr{O}_X}(\omega_X, \mathscr{O}_X)$.

1.3.4 Canonical divisor

The **canonical divisor** K_X is the class of the canonical sheaf ω_X in the divisor class group.

1.3.5 Canonical sheaf

If X is a smooth algebraic variety of dimension n, then the canonical sheaf is $\omega := \wedge^n \Omega^1_{X/k}$ the n'th exterior power of the cotangent bundle of X.

1.4 Toric geometry

1.4.1 Polarized toric variety

A toric variety equipped with an ample T-invariant divisor.

2 Commutative algebra

2.1 Modules

2.1.1 Depth

Let R be a noetherian ring, and M a finitely-generated R-module and I an ideal of R such that $IM \neq M$. Then the I-depth of M is (see Ext):

$$\inf\{i \mid \operatorname{Ext}_R^i(R/I, M) \neq 0\}.$$

This is also the length of a maximal M-sequence in I.

2.2 Rings

2.2.1 Cohen-Macaulay ring

A local Cohen-Macaulay ring (CM-ring for short) is a commutative noetherian local ring with Krull dimension equal to its depth. A ring is Cohen-Macaulay if its localization at all prime ideals are Cohen-Macaulay.

2.2.2 Depth of a ring

The depth of a ring R is is its depth as a module over itself.

2.2.3 Gorenstein ring

A commutative ring R is Gorenstein if each localization at a prime ideal is a Gorenstein local ring. A Gorenstein local ring is a local ring with finite injective dimension as an R-module. This is equivalent to the following: $\operatorname{Ext}_R^i(k,R)=0$ for $i\neq n$ and $\operatorname{Ext}_R^n(k,R)\simeq k$ (here $k=R/\mathfrak{m}$ and n is the Krull dimension of R).

3 Convex geometry

3.1 Cones

3.1.1 Simplicial cone

A cone C generated by $\{v_1, \dots, v_k\} \subseteq N_{\mathbb{R}}$ is simplicial if the v_i are linearly independent.

3.2 Polyhedra

3.2.1 Dual (polar) polyhedron

If Δ is a polyhedron, its dual Δ ° is defined by

$$\Delta^{\circ} = \{ x \in N_{\mathbb{R}} \mid \langle x, y \rangle \ge -1 \,\forall \, y \in \Delta \} \,.$$

3.2.2 Reflexive polytope

A polytope Δ is reflexive if the following two conditions hold:

- 1. All facets Γ of Δ are supported by affine hyperplanes of the form $\{m \in M_{\mathbb{R}} \mid \langle m, v_{\Gamma} \rangle \}$ for some $v_{\Gamma} \in N$.
- 2. The only interior point of Δ is 0, that is: $Int(\Delta) \cap M = \{0\}$.

4 Homological algebra

4.1 Derived functors

4.1.1 Ext

Let R be a ring and M, N be R-modules. Then $\operatorname{Ext}_R^i(M, N)$ is the right-derived functors of the $\operatorname{Hom}(M, -)$ -functor. In particular, $\operatorname{Ext}_R^i(M, N)$ can be computed as follows: choose a projective resolution C of N over R. Then apply the left-exact functor $\operatorname{Hom}_R(M, -)$ to the resolution and take homology. Then $\operatorname{Ext}_R^i(M, N) = h^i(C)$.

4.1.2 Tor

Let R be a ring and M, N be R-modules. Then $\operatorname{Tor}_R^i(M, N)$ is the right-derived functors of the $-\otimes_R N$ -functor. In particular $\operatorname{Tor}_R^i(M, N)$ can be computed by taking a projective resolution of M, tensoring with N, and then taking homology.