Fundamental Robotics a comprehensive summary of robotics

Nils Funk

Contents

1	Intr	roduction	2
2	Fun	ndamental Algebra	3
	2.1	Matrix Classes	3
		2.1.1 Rotation Matrix	3
		2.1.2 Matrix Derivatives	3
		2.1.3 Jacobian	3
		2.1.4 Hessian	3
		2.1.5 Eigendecomposition	3
3	Fun	ndamental Analysis	4
4	Fun	ndamental Probability	5
5	Fun	ndamental Mechanics	6
	5.1	Coordinate Frames	6
		5.1.1 Inertia Frame of Reference	6
	5.2	Sources	6
	5.3	Definitions	6
		5.3.1 Rigid Body Transformation	6
	5.4	Rotation Group SO(3)	6
		5.4.1 Rotation Matrices	6
		5.4.2 Euler Angles	6
		5.4.3 Axis Angle Parametrization	6
		5.4.4 Quaternions	6
	5.5	Time Derivatives of Rotations	6
	5.6	Skew Symmetric	7
		5.6.1 Transformation vs Displacement	7
	5.7	Momentum	7
		5.7.1 Linear Momentum	7
		5.7.2 Angular Momentum	7
		5.7.3 Rate of Change of Angular Momentum	7
	5.8	Moment of Inertia	7
		5.8.1 Principal Axis of Inertia	7

6	Fundamental Control	9
7	Fundamental Machine Learning	10
8	Fundamental Computer Vision	11
	- 1	
	- 2	
	- 3	

Introduction

2 Fundamental Algebra

2.1 Matrix Classes

2.1.1 Rotation Matrix

$$R = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

- Orthogonal: Matrix times its transpose equals the identity $RR^T = I$
- Special orthogonal: Determinant is +1
- Closed under multiplication: The product of any two rotation matrices is another rotation matrix
- The inverse of a rotation matrix is also a rotation matrix

2.1.2 Matrix Derivatives

A(t)

$$\dot{A}(t) = \begin{bmatrix} \frac{dR_{11}(t)}{dt} & \frac{dR_{12}(t)}{dt} \\ \frac{dR_{21}(t)}{dt} & \frac{dR_{22}(t)}{dt} \end{bmatrix}$$

$$\frac{d}{dt}(A\pm B)=\dot{A}\pm\dot{B}$$

$$\frac{d}{dt}(AB) = \dot{A}B + A\dot{B}$$

$$\frac{d}{dt}(A(\theta(t))) = \frac{dA}{d\theta}\dot{\theta}$$

2.1.3 Jacobian

2.1.4 Hessian

${\bf 2.1.5}\quad {\bf Eigende composition}$

3 Fundamental Analysis

4 Fundamental Probability

5 Fundamental Mechanics

5.1 Coordinate Frames

5.1.1 Inertia Frame of Reference

An inertial frame is a frame with constant acceleration i.e. $\mathbf{a} = 0$. A body with zero net force acting upon it is not accelerating within the inertial frame; that is, such a body is at rest or it is moving at a constant speed in a straight line.

5.2 Sources

5.3 Definitions

Transformation from coordinate frame B to frame A

$${}^{A}\mathbf{A}_{B}, {}^{A}\mathbf{R}_{B}$$

5.3.1 Rigid Body Transformation

- length is preserved ||g(p) g(q)|| = ||p q||
- cross product is preserved $g_*(v) \times g_*(w) = g_*(v \times w)$
- inner product is preserved $g_*(v) \cdot g_*(w) = v \cdot w$

5.4 Rotation Group SO(3)

$$SO(3) = {\mathbf{R} \in \mathbb{R} | \mathbf{R}^T \mathbf{R} = \mathbf{R} \mathbf{R}^T = \mathbf{I}, det \mathbf{R} = 1}$$

- 5.4.1 Rotation Matrices
- 5.4.2 Euler Angles
- 5.4.3 Axis Angle Parametrization

Rodrigues' formula

5.4.4 Quaternions

5.5 Time Derivatives of Rotations

$$R^T(t)R(t) = I\tfrac{d}{dt}(.)\dot{R}^TR + R^T\dot{R} = 0$$

$$R(t)R^T(t) = I\tfrac{d}{dt}(.)R\dot{R}^T + \dot{R}R^T = 0$$

 $R^T \dot{R}$ and $\dot{R} R^T$ are skew symmetric

- 5.6 Skew Symmetric
- 5.6.1 Transformation vs Displacement
- 5.7 Momentum
- 5.7.1 Linear Momentum
- 5.7.2 Angular Momentum

$${}^{A}\mathbf{H}_{C}^{B} = \mathbf{I}_{C} \cdot {}^{A} \omega^{B}$$

Angular momentum **H** with inertia tensor **I** with C as the origin and angular velocity ω of the body B in coordinate frame A.

5.7.3 Rate of Change of Angular Momentum

The rate of change of angular momentum of the rigid body B relative to C in A is equal to the resultant moment of all external forces M acting on the body B relative to C.

$$\frac{{}^{A}d^{A}\mathbf{H}_{C}^{B}}{dt} = \mathbf{M}_{C}^{B}$$

Simplification

$$\frac{{}^{B}d^{A}\mathbf{H}_{C}^{B}}{dt} + {}^{A}\omega^{B} \times \mathbf{H}_{C} = \mathbf{M}_{C}^{B}$$

$$\begin{bmatrix} I_{11} & 0 & 0 \\ 0 & I_{22} & 0 \\ 0 & 0 & I_{33} \end{bmatrix} \begin{bmatrix} \dot{\omega}_1 \\ \dot{\omega}_2 \\ \dot{\omega}_3 \end{bmatrix} + \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \begin{bmatrix} I_{11} & 0 & 0 \\ 0 & I_{22} & 0 \\ 0 & 0 & I_{33} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} = \begin{bmatrix} M_{C,1} \\ M_{C,2} \\ M_{C,3} \end{bmatrix}$$

The second term on the left hand side, ${}^{A}\omega^{B} \times \mathbf{H}_{C}$, is zero when angular velocity ${}^{A}\omega^{B}$ is perpendicular to \mathbf{H}_{C} . This is the case if the body rotates around a **principal axis of inertia**.

5.8 Moment of Inertia

The moment of inertia \mathbf{I} is a tensor that determines the torque needed for a desired angular acceleration about a rotational axis; similar to how mass determines the force needed for a desired acceleration. It depends on the body's mass distribution and the axis chosen, with larger moments requiring more torque to change the body's rotation. It is an **additive** property: for a point mass the moment of inertia is just the mass m times the square of the distance r to the rotation axis.

$$\mathbf{I} = mr^2$$

For bodies free to rotate in 3D, their moments can be described by a symmetric 3x3 matrix, with a set of mutually perpendicular **principal axes** for which this matrix is diagonal and torques around the axes act **independently** of each other.

5.8.1 Principal Axis of Inertia

Measured in the body frame the inertia matrix is a constant real symmetric matrix. A real symmetric matrix has the eigendecomposition into the product of a rotation matrix \mathbf{Q} and a diagonal matrix $\mathbf{\Lambda}$.

$$\mathbf{I}_{\mathbf{C}}^B = \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^\mathsf{T}$$

where

$$\mathbf{\Lambda} = \begin{bmatrix} I_1 & 0 & 0 \\ 0 & I_2 & 0 \\ 0 & 0 & I_3 \end{bmatrix}$$

The columns of the rotation matrix \mathbf{Q} define the directions of the principal axes of the body, and the constant I_1, I_2 and I_3 are called the **principal moments of inertia**.

6 Fundamental Control

7 Fundamental Machine Learning

8 Fundamental Computer Vision