1

Assignment 14

Mtech in AI Department Priya Bhatia AI20MTECH14015

Abstract

This document demonstrates the proof of linearity and approach to find the minimal polynomial for P, where P is the operator on \mathbb{R}^2 .

Download the latex-tikz codes from

https://github.com/priya6971/matrix theory EE5609/tree/master/Assignment14

1 PROBLEM

Let P be the operator on R^2 which projects each vector onto the x-axis, parallel to the y-axis: p(x,y) = (x,0). Show that P is linear. What is the minimal polynomial for P?

2 **Definitions**

Characteristic Polynomial	For an $n \times n$ matrix A , characteristic polynomial is defined by, $p(x) = x\mathbf{I} - \mathbf{A} $
Cayley-Hamilton Theorem	If $p(x)$ is the characteristic polynomial of an $n \times n$ matrix \mathbf{A} , then, $p(\mathbf{A}) = 0$
Minimal Polynomial	Minimal polynomial $m(x)$ is the smallest factor of characteristic polynomial $p(x)$ such that, $m(\mathbf{A}) = 0$ Every root of characteristic polynomial should be the root of minimal polynomial

TABLE 1: Definitions

3 Solution

Proof of P is linear	Consider two vectors (x_1, y_1) and (x_2, y_2) , then $P((x_1, y_1) + (x_2, y_2)) = P(x_1 + x_2, y_1 + y_2)$ $P((x_1, y_1) + (x_2, y_2)) = P(x_1 + x_2, 0)$ $P((x_1, y_1) + (x_2, y_2)) = P((x_1, 0), (x_2, 0))$ Now, consider some scalar k , then $P(k(x_1, y_1)) = P((kx_1, ky_1))$ $P(k(x_1, y_1)) = P((kx_1, 0))$ $P(k(x_1, y_1)) = kP(x_1, 0)$
	Thus, using above observations we can conclude that P is linear.
Matrix form of Projection	For the projection $P(x, y) = (x, 0)$, the matrix of linear transform is, $P(x, y) = \mathbf{A} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (x, 0)$ So, $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
Characteristic polynomial	$p(x) = \begin{vmatrix} x\mathbf{I} - \mathbf{A} \end{vmatrix}$ $= \begin{vmatrix} x - 1 & 0 \\ 0 & x - 0 \end{vmatrix}$ $= x(x - 1)$
Minimal Polynomial	$p(x) = x^{a}(x-1)^{b}, a \le 1, b \le 1$
a = 1, b = 1	m(x) = x(x-1) $\implies m(\mathbf{A}) = \mathbf{A}(\mathbf{A} - \mathbf{I}) = 0$ $\implies x(x-1)$ is a minimal polynomial
Conclusion	For the given matrix \mathbf{A} , $x(x-1)$ is the characteristic polynomial as well as minimal polynomial.

TABLE 2: Illustration of Proof and finding of minimal polynomial