NAME:董骏博

SID: 12432995

1. Verify 2nd invariants.

$$T_{i} \cdot G_{ex} = (Z_{11} + Z_{22} + Z_{33}) (Z_{11} + Z_{22} + Z_{33})$$

$$= Z_{1}^{2} + Z_{2}^{2} + Z_{33}^{2} + 2(G_{11} + Z_{22} + Z_{33}) + Z_{33}G_{11})$$

$$\frac{1}{2} \left(\zeta_{11} \zeta_{11} + \zeta$$

3nd stress invariants:

$$\begin{aligned} & \mathcal{E}_{ijk} \mathcal{E}_{ii} \mathcal{E}_{j2} \mathcal{E}_{k3} &= \mathcal{E}_{i} \cdot (\mathcal{E}_{3} \times \mathcal{E}_{3}) \\ &= \mathcal{E}_{ii} (\mathcal{E}_{32} \mathcal{E}_{33} - \mathcal{E}_{33} \mathcal{E}_{31}) - \mathcal{E}_{12} (\mathcal{E}_{14} \mathcal{E}_{33} - \mathcal{E}_{33} \mathcal{E}_{31}) + \mathcal{E}_{31} (\mathcal{E}_{14} \mathcal{E}_{32} - \mathcal{E}_{32} \mathcal{E}_{31}) \\ &= \mathcal{E}_{ii} \mathcal{E}_{12} \mathcal{E}_{33} + 2 \mathcal{E}_{12} \mathcal{E}_{23} \mathcal{E}_{31} - \mathcal{E}_{11} \mathcal{E}_{3}^{2} - \mathcal{E}_{12} \mathcal{E}_{31}^{2} - \mathcal{E}_{33} \mathcal{E}_{12}^{2} \end{aligned}$$

2. (1) Given:
$$\varepsilon_{ij} = \frac{4v}{\varepsilon} \tau_{ij} - \frac{1}{\varepsilon} \varepsilon_{ij} - \frac{1}{\varepsilon} \varepsilon_{ij} = 0$$

when $i=j: \varepsilon_{ij} = \frac{4v}{\varepsilon} \tau_{ij} - \frac{1}{\varepsilon} \varepsilon_{ij} = 0$

(8ii = 3)

$$||\xi|| = \frac{HV}{3|4(12N)} ||\xi|| - \frac{3V}{3|4(12N)} ||\theta|| = \frac{1}{K} \frac{\xi_{11}}{3} = \frac{1}{|C|} \frac{\theta}{3}$$

:
$$G = \frac{E}{2(14V)}$$
 , $\eta = \frac{VE}{(14V)(12V)}$

3. Substitute
$$z_{ij} = 8ij \hbar e + 24eij$$
 into $z_{ik,i+fk=0}$

($\delta ik \hbar e + 24eik$), $j = 4fk=0$

($\delta ik \hbar e + 24eik$), $j = 8ik \hbar e_j + 4(\frac{\partial^2 u_i}{\partial h_j \partial h_k} + \frac{\partial^2 u_k}{\partial h_j \partial h_k})$

where $e = 2kk$
 $E_{kk} = \frac{1}{2}(\frac{\partial u_k}{\partial h_k} + \frac{\partial u_k}{\partial h_l}) = \frac{\partial u_k}{\partial k}$

So, we can get $: e_{jj} = \frac{\partial^2 u_k}{\partial h_j \partial k}$

substitute e_{ij} into equation

 $\delta ik \hbar \frac{\partial^2 u_k}{\partial h_j \partial h_k} + 4(\frac{\partial^2 u_i}{\partial h_j \partial h_k} + \frac{\partial^2 u_k}{\partial h_j \partial h_i}) + 4k = 0$ ($\delta ik \Rightarrow i$

Six
$$\frac{\partial^2 u}{\partial x_i \partial x_k}$$
 + $\frac{\partial^2 u}{\partial x_i \partial x_k}$ + $\frac{\partial^2 u}{\partial x$

4. (1)
$$Vm = \mathcal{E}_{mik} \frac{1}{2} \left(\frac{\partial uk}{\partial x_i} - \frac{\partial u_i}{\partial x_k} \right)$$

$$= \frac{1}{2} \mathcal{E}_{mik} \frac{\partial uk}{\partial x_i} - \frac{1}{2} \mathcal{E}_{mik} \frac{\partial u_i}{\partial x_k}$$

$$= \frac{1}{2} \mathcal{E}_{mik} \frac{\partial uk}{\partial x_i} + \frac{1}{2} \mathcal{E}_{mki} \frac{\partial uk}{\partial x_k}$$

= Wmxdx.