TIPE

Comment résoudre des équations différentielles de

manière analogique?

Aulys VINAY – MPSI 1

Plan:

Introduction

I) Méthode du circuit analogue

II) Méthode des intégrations successives

- Intégration électrique
- Intégration mécanique

Évaluation des coûts et avantages

Introduction

Numérique : exact et modulable, mais discret et coûteux énergétiquement

Analogique : continu, rapide et peu coûteux, mais inexact et peu adaptable

Circuit analogue :

Problèmes

- Complexe pour des équations non linéaires ou de haut degré
- Très peu adaptable à d'autres équations

Méthode d'intégrations successives

$$\frac{3n+bn+(n=J(t))}{n} = \frac{J(t)}{a} - \frac{b}{a}n - \frac{c}{a}n$$

$$\frac{J(t)}{a} \rightarrow \frac{J(t)}{a}$$
"Circuit analytique"

Intégration mécanique

Sources principales:

Analog Computing von Prof. Dr. Bernd Ulmann

Séries de vidéo sur la réalisation d'un intégrateur électrique

https://youtu.be/LF35eXfCMIQ?list=PL_R4uxT5thflWVbSWtl-rx5_C_q0RxjvV