Unidade 1

Bancos de Dados Relacionais e Linguagem SQL

1.4 Modelagem histórica e recursiva: Mapeamento, Arcos, Hierarquias

Modelando Dados Históricos

- Para facilitar nosso entendimento e aplicação do aprendizado sobre relacionamentos, vamos apresentar um problema que é recorrente.
- Imagine um modelo de dados ou uma necessidade de negócios onde eu precise armazenar as modificações ocorridas na linha do tempo.

Modelando Dados Históricos

- Os relacionamento 1:N não atenderiam esta necessidade em sua aplicação simples, correto? Mas qual o motivo?
- São necessidades específicas que precisam do armazenamento de versões dos dados tendo como base a data de registro.
- Observe as situações a seguir.

Modelando Dados Históricos quando...

- Registro de auditoria é necessário.
- Ocorre mudança nos valores dos atributos na linha do tempo.
- · Ocorre mudança dos relacionamentos na linha do tempo.
- · Preciso produzir relatórios com base em dados antigos.
- Preciso manter versões antigas dos dados e por tempo determinado.

Modelando Dados Históricos

- Estes cenários podem ser resolvidos com a implementação de uma relação N:N, ou seja, na prática se transforma em duas relações 1:N.
 Recomenda-se que tenhamos um UID virtual registrado.
- Para resolução de um relacionamento N:N adiciona-se então uma terceira entidade que receberá as chaves das duas outras tabelas e possibilitará atributos adicionais.

Modelando Dados Históricos

Exercício de modelagem de tempo no canvas

- Os arcos na modelagem de dados ajudam os designers a esclarecer um OR entre os relacionamentos.
- Relembrando, cada negócio possui limitações em relação as quais valores de atributos e relacionamentos são permitidos.
- Elas podem ser referir a um único atributo de uma entidade ou a relacionamentos entre entidades. Isto se chama RESTRIÇÃO.

- ARCOS, representam relacionamentos OR exclusivos, que existem quando um relacionamento entre uma entidade e outras (duas ou mais) são não coexistentes, ou seja, só ocorre um relacionamentos por vez.
- Observe no exemplo a notação da modelagem:

- Um arco sempre pertence a uma entidade e podem incluir mais que dois relacionamentos.
- Nem todos os relacionamentos de uma entidade precisam ser incluídos em um arco, mas uma entidade pode ter vários arcos.
- Um arco sempre deve consistir em relacionamentos da mesma opcionalidade.

- Os relacionamentos em um arco devem ser exclusivos ou opcionais e podem ter cardinalidade diferente.
- Arcos e super ou subtipos irão modelar a exclusividade mútua que, em algumas situações, podem ser melhor modeladas com arco e outras com supertipos e subtipos.
- Veja mais um exemplo:

Arcos - Quando não usar

- Dados hierárquicos são comuns como organogramas corporativos e escolares.
- O entendimento deste modelo nos ajuda a modelar, gráficos corporativos, estruturas da construção civil, linhagens familiares ou qualquer outra hierarquia que encontremos no mundo real.

- Há que se destacar no entanto uma diferença conceitual entre o que é hierarquia nos relacionamentos e o como se representa uma hierarquia no mundo real.
- Esta é uma representação hierárquica estrutural.

 Porém uma forma melhor de representá-lo no modelo de dados seria com um auto relacionamento, veja:

- No relacionamento hierárquico as relações são mais explícitas e portanto de mais fácil entendimento pois são muito semelhantes a um gráfico organizacional.
- No relacionamento recursivo (auto relacionamento) a representação tende a ser mais simples (no quesito visualização do modelo) porque você está usando apenas uma entidade.
- Seu modelo de dados deve refletir as regras de negócios mapeadas!

Exercício de modelagem de tempo no canvas

Referências bibliográficas

CAMPOS, Vitor Valerio de Souza, 2020. Projeto de BD Relacional. Disponível em: https://www.uel.br/pessoal/valerio/05%20Projeto%20de%20BD%20Relacional%20-%204%20folhas.pdf Acesso em: 26 set. 2021.

SILBERSCHATZ, A., et. Al. Sistema de Banco de Dados . 1ª ed. São Paulo. Pearson, 1999.

MANNINO, Michael V. Projeto, Desenvolvimento de Aplicações e Administração de Banco de Dados. 3ª ed. Porto Alegre. Bookman, 2008.

MEDEIROS, Marcelo. Banco de dados para sistema de informação. 1ª ed. Florianópolis. Visual Books,2006.

BARBIERI, Carlos. Modelagem e administração de dados. 1ª ed. Rio de Janeiro. Infobook, 1994.

Referências bibliográficas

MACHADO, Diego. Normalização em Bancos de Dados, 2015. Disponível em: https://medium.com/@diegobmachado/normaliza%C3%A7%C3%A3o-em-banco-de-dados-5647cdf84a12>. Acesso em: 25 set. 2021.

MELO, Izabela Vanessa de Almeida. Armazenamento em nuvem: como preservar documentos digitais?. Disponível em: <

http://www.dsc.ufcg.edu.br/~pet/jornal/maio2011/materias/recapitulando.html >. Acesso em: 25 set. 2021.

REIS, Fabio. Modelagem de Dados - Normalização - Forma Normal de Boyce-Codd, 2018. Disponível em: https://www.youtube.com/watch?v=o6mSiTO-vak. Acesso em: 25 set. 2021.