London School of Geometry and Number Theory

London Junior Number Theory Seminar

The Euler system of Heegner points ¹

David Ang

Tuesday, 10 May 2022

 $^{^1}$ Victor Kolyvagin, 1989. **Euler Systems**, in *Grothendieck Festschrift* $\stackrel{\triangleleft}{\bullet}$ $\stackrel{\triangleright}{\bullet}$ $\stackrel{\triangleright}{\bullet}$ $\stackrel{\triangleright}{\bullet}$ $\stackrel{\triangleright}{\bullet}$ $\stackrel{\triangleright}{\bullet}$ $\stackrel{\triangleright}{\bullet}$ $\stackrel{\triangleright}{\bullet}$

Overview

- ► Introduction
 - From Gross-Zagier to Kolyvagin
 - ► Application to BSD
 - The main result
- ► Generalised Selmer groups
 - Selmer structures
 - Application of Tate duality
 - Application of Chebotarev density
- ► The Euler system of Heegner points
 - Heegner points of higher conductors
 - Derived Kolyvagin classes
 - Computing the Selmer group

Assumptions

▶ Elliptic curve E/\mathbb{Q} with modular parameterisation $\phi: X_0(N) \twoheadrightarrow E$.

Assumptions

- ▶ Elliptic curve E/\mathbb{Q} with modular parameterisation $\phi: X_0(N) \rightarrow E$.
- ▶ Imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$ with **Heegner condition**: ²

$$p \mid N \implies p \text{ is split in } K.$$

²assume $\operatorname{End}(E) \cong \mathbb{Z}$ and $D \neq 1, 3$

Assumptions

- ▶ Elliptic curve E/\mathbb{Q} with modular parameterisation $\phi: X_0(N) \twoheadrightarrow E$.
- ▶ Imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$ with **Heegner condition**: ²

$$p \mid N \implies p \text{ is split in } K.$$

Consequences

▶ An ideal $\mathcal{N}_K \subseteq \mathcal{O}_K$ such that $\mathcal{O}_K/\mathcal{N}_K \cong \mathbb{Z}/N$.

 $^{^2}$ assume $\operatorname{End}({\it E})\cong \mathbb{Z}$ and ${\it D}
eq 1,3$

Assumptions

- ▶ Elliptic curve E/\mathbb{Q} with modular parameterisation $\phi: X_0(N) \twoheadrightarrow E$.
- ▶ Imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$ with **Heegner condition**: ²

$$p \mid N \implies p \text{ is split in } K.$$

- ▶ An ideal $\mathcal{N}_{\mathcal{K}} \leq \mathcal{O}_{\mathcal{K}}$ such that $\mathcal{O}_{\mathcal{K}}/\mathcal{N}_{\mathcal{K}} \cong \mathbb{Z}/N$.
- ▶ A cyclic *N*-isogeny $\mathbb{C}/\mathcal{O}_K \to \mathbb{C}/\mathcal{N}_K^{-1}$.

 $^{^2}$ assume $\operatorname{End}({\it E})\cong \mathbb{Z}$ and ${\it D}
eq 1,3$

Assumptions

- ▶ Elliptic curve E/\mathbb{Q} with modular parameterisation $\phi: X_0(N) \twoheadrightarrow E$.
- ▶ Imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$ with **Heegner condition**: ²

$$p \mid N \implies p \text{ is split in } K.$$

- ▶ An ideal $\mathcal{N}_K \subseteq \mathcal{O}_K$ such that $\mathcal{O}_K/\mathcal{N}_K \cong \mathbb{Z}/N$.
- ▶ A cyclic *N*-isogeny $\mathbb{C}/\mathcal{O}_K \to \mathbb{C}/\mathcal{N}_K^{-1}$.
- ▶ A point $x_1 \in X_0(N)$

 $^{^2}$ assume $\operatorname{End}({\it E})\cong \mathbb{Z}$ and ${\it D}
eq 1,3$

Assumptions

- ▶ Elliptic curve E/\mathbb{Q} with modular parameterisation $\phi: X_0(N) \twoheadrightarrow E$.
- ▶ Imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$ with **Heegner condition**: ²

$$p \mid N \implies p \text{ is split in } K.$$

- ▶ An ideal $\mathcal{N}_K \subseteq \mathcal{O}_K$ such that $\mathcal{O}_K/\mathcal{N}_K \cong \mathbb{Z}/N$.
- ▶ A cyclic *N*-isogeny $\mathbb{C}/\mathcal{O}_K \to \mathbb{C}/\mathcal{N}_K^{-1}$.
- ▶ A point $x_1 \in X_0(N)(K^1)$ by CM theory.

 $^{^2}$ assume $\operatorname{End}({\it E})\cong \mathbb{Z}$ and ${\it D}
eq 1,3$

Assumptions

- ▶ Elliptic curve E/\mathbb{Q} with modular parameterisation $\phi: X_0(N) \rightarrow E$.
- ▶ Imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$ with **Heegner condition**: ²

$$p \mid N \implies p \text{ is split in } K.$$

- ▶ An ideal $\mathcal{N}_K \subseteq \mathcal{O}_K$ such that $\mathcal{O}_K/\mathcal{N}_K \cong \mathbb{Z}/N$.
- ▶ A cyclic *N*-isogeny $\mathbb{C}/\mathcal{O}_K \to \mathbb{C}/\mathcal{N}_K^{-1}$.
- ▶ A point $x_1 \in X_0(N)(K^1)$ by CM theory.
- ▶ A Heegner point $P_1 := \phi(x_1) \in E(K^1)$.

²assume End(E) $\cong \mathbb{Z}$ and $D \neq 1, 3$

Assumptions

- ▶ Elliptic curve E/\mathbb{Q} with modular parameterisation $\phi: X_0(N) \rightarrow E$.
- ▶ Imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$ with **Heegner condition**: ²

$$p \mid N \implies p \text{ is split in } K.$$

- ▶ An ideal $\mathcal{N}_K \subseteq \mathcal{O}_K$ such that $\mathcal{O}_K/\mathcal{N}_K \cong \mathbb{Z}/N$.
- ▶ A cyclic *N*-isogeny $\mathbb{C}/\mathcal{O}_K \to \mathbb{C}/\mathcal{N}_K^{-1}$.
- ▶ A point $x_1 \in X_0(N)(K^1)$ by CM theory.
- ▶ A Heegner point $P_1 := \phi(x_1) \in E(K^1)$.
- ► A basic Heegner point

$$P_{K} := \sum_{\sigma \in \operatorname{Gal}(K^{1}/K)} \sigma(P_{1}) \in E(K).$$

²assume $\operatorname{End}(E)\cong\mathbb{Z}$ and $D\neq 1,3$

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986) There is some $c \neq 0$ such that $L'(E/K, 1) = c \cdot \hat{h}(P_K)$.

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986)

There is some $c \neq 0$ such that $L'(E/K, 1) = c \cdot \hat{h}(P_K)$.

Corollary

If $L'(E/K, 1) \neq 0$, then $\mathrm{rk}_{\mathbb{Z}} E(K) \geq 1$.

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986)

There is some $c \neq 0$ such that $L'(E/K, 1) = c \cdot \widehat{h}(P_K)$.

Corollary

If $L'(E/K, 1) \neq 0$, then $\mathrm{rk}_{\mathbb{Z}} E(K) \geq 1$.

Theorem (Kolyvagin, 1989)

If $\widehat{h}(P_K) \neq 0$, then $E(K)_{/\mathrm{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_K$.

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986)

There is some $c \neq 0$ such that $L'(E/K, 1) = c \cdot \widehat{h}(P_K)$.

Corollary

If $L'(E/K, 1) \neq 0$, then $\operatorname{rk}_{\mathbb{Z}} E(K) \geq 1$.

Theorem (Kolyvagin, 1989)

If $\widehat{h}(P_K) \neq 0$, then $E(K)_{/\mathrm{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_K$.

Corollary

If $L'(E/K, 1) \neq 0$, then $\mathrm{rk}_{\mathbb{Z}} E(K) = 1$.

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986)

There is some $c \neq 0$ such that $L'(E/K, 1) = c \cdot \widehat{h}(P_K)$.

Corollary

If $L'(E/K, 1) \neq 0$, then $\operatorname{rk}_{\mathbb{Z}} E(K) \geq 1$.

Theorem (Kolyvagin, 1989)

If $\widehat{h}(P_K) \neq 0$, then $E(K)_{/\text{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_K$.

Corollary

If $L'(E/K, 1) \neq 0$, then $\mathrm{rk}_{\mathbb{Z}} E(K) = 1$.

This almost proves weak BSD for analytic rank $\leq 1!$

Theorem (Weak BSD for analytic rank ≤ 1) Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q})$.

Theorem (Weak BSD for analytic rank ≤ 1)

Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

$$\operatorname{ord}_{s=1} \ L(E/\mathbb{Q},s) = \operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}).$$

Proof.

Consider the functional equation

$$\Lambda(E/\mathbb{Q},s)=\epsilon\cdot\Lambda(E/\mathbb{Q},2-s)$$

Theorem (Weak BSD for analytic rank ≤ 1)

Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

$$\operatorname{ord}_{s=1} \ L(E/\mathbb{Q},s) = \operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}).$$

Proof.

Consider the functional equation

$$\begin{array}{cc} \Lambda(E/\mathbb{Q},s) = \epsilon \cdot \Lambda(E/\mathbb{Q},2-s) \\ \stackrel{\frac{d^k}{ds^k} \Big|_{s=1}}{\Longrightarrow} & L^{(k)}(E/\mathbb{Q},1) = \epsilon \cdot (-1)^k \cdot L^{(k)}(E/\mathbb{Q},1). \end{array}$$

Theorem (Weak BSD for analytic rank ≤ 1)

Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

$$\operatorname{ord}_{s=1}\ L(E/\mathbb{Q},s)=\operatorname{rk}_{\mathbb{Z}}E(\mathbb{Q}).$$

Proof.

Consider the functional equation

$$\Lambda(E/\mathbb{Q}, s) = \epsilon \cdot \Lambda(E/\mathbb{Q}, 2 - s)$$

$$\stackrel{\frac{d^k}{ds^k} \Big|_{s=1}}{\Longrightarrow} L^{(k)}(E/\mathbb{Q}, 1) = \epsilon \cdot (-1)^k \cdot L^{(k)}(E/\mathbb{Q}, 1).$$

Then

$$\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \begin{cases} 0 & \epsilon = + \\ 1 & \epsilon = - \end{cases}$$

Theorem (Weak BSD for analytic rank ≤ 1)

Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

$$\operatorname{ord}_{s=1}\ L(E/\mathbb{Q},s)=\operatorname{rk}_{\mathbb{Z}}E(\mathbb{Q}).$$

Proof.

Consider the functional equation

$$\begin{array}{cc} \Lambda(E/\mathbb{Q},s) = \epsilon \cdot \Lambda(E/\mathbb{Q},2-s) \\ \stackrel{\frac{d^k}{ds^k} \Big|_{s=1}}{\Longrightarrow} & L^{(k)}(E/\mathbb{Q},1) = \epsilon \cdot (-1)^k \cdot L^{(k)}(E/\mathbb{Q},1). \end{array}$$

Then

$$\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \begin{cases} 0 & \epsilon = + \\ 1 & \epsilon = - \end{cases}$$

Consider cases for ϵ .

Theorem (Weak BSD for analytic rank ≤ 1)

Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

$$\operatorname{ord}_{s=1} \ L(E/\mathbb{Q},s) = \operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}).$$

Proof (for $\epsilon = -$).

<u>Fact</u>: There is Heegner $K = \mathbb{Q}(\sqrt{-D})$ such that $L(E_D/\mathbb{Q}, 1) \neq 0$.

Theorem (Weak BSD for analytic rank ≤ 1)

Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

$$\mathrm{ord}_{s=1}\ L(E/\mathbb{Q},s)=\mathrm{rk}_{\mathbb{Z}}E(\mathbb{Q}).$$

Proof (for $\epsilon = -$).

<u>Fact</u>: There is Heegner $K = \mathbb{Q}(\sqrt{-D})$ such that $L(E_D/\mathbb{Q}, 1) \neq 0$. Then

$$\operatorname{ord}_{s=1} \ L(E/K,s) = \underbrace{\operatorname{ord}_{s=1} \ L(E/\mathbb{Q},s)}_{1} + \underbrace{\operatorname{ord}_{s=1} \ L(E_D/\mathbb{Q},s)}_{0}.$$

Theorem (Weak BSD for analytic rank ≤ 1)

Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

$$\mathrm{ord}_{s=1}\ L(E/\mathbb{Q},s)=\mathrm{rk}_{\mathbb{Z}}E(\mathbb{Q}).$$

Proof (for $\epsilon = -$).

<u>Fact</u>: There is Heegner $K = \mathbb{Q}(\sqrt{-D})$ such that $L(E_D/\mathbb{Q}, 1) \neq 0$. Then

$$\operatorname{ord}_{s=1} \ L(E/K,s) = \underbrace{\operatorname{ord}_{s=1} \ L(E/\mathbb{Q},s)}_{1} + \underbrace{\operatorname{ord}_{s=1} \ L(E_D/\mathbb{Q},s)}_{0}.$$

In particular

$$L'(E/K,1) \neq 0$$

Theorem (Weak BSD for analytic rank ≤ 1)

Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

$$\mathrm{ord}_{s=1}\ L(E/\mathbb{Q},s)=\mathrm{rk}_{\mathbb{Z}}E(\mathbb{Q}).$$

Proof (for $\epsilon = -$).

<u>Fact</u>: There is Heegner $K = \mathbb{Q}(\sqrt{-D})$ such that $L(E_D/\mathbb{Q}, 1) \neq 0$. Then

$$\operatorname{ord}_{s=1} \ L(E/K,s) = \underbrace{\operatorname{ord}_{s=1} \ L(E/\mathbb{Q},s)}_{1} + \underbrace{\operatorname{ord}_{s=1} \ L(E_D/\mathbb{Q},s)}_{0}.$$

In particular

$$L'(E/K, 1) \neq 0 \stackrel{G-Z}{\Longrightarrow} \widehat{h}(P_K) \neq 0$$

Theorem (Weak BSD for analytic rank ≤ 1)

Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

$$\mathrm{ord}_{s=1}\ L(E/\mathbb{Q},s)=\mathrm{rk}_{\mathbb{Z}}E(\mathbb{Q}).$$

Proof (for $\epsilon = -$).

<u>Fact</u>: There is Heegner $K = \mathbb{Q}(\sqrt{-D})$ such that $L(E_D/\mathbb{Q}, 1) \neq 0$. Then

$$\mathrm{ord}_{s=1}\ L(E/K,s) = \underbrace{\mathrm{ord}_{s=1}\ L(E/\mathbb{Q},s)}_{1} + \underbrace{\mathrm{ord}_{s=1}\ L(E_D/\mathbb{Q},s)}_{0}.$$

In particular

$$L'(E/K,1) \neq 0 \stackrel{\mathsf{G-Z}}{\Longrightarrow} \widehat{h}(P_K) \neq 0 \stackrel{\mathsf{K}}{\Longrightarrow} E(K)_{/\mathrm{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_K.$$

Theorem (Weak BSD for analytic rank ≤ 1)

Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

$$\mathrm{ord}_{s=1}\ L(E/\mathbb{Q},s)=\mathrm{rk}_{\mathbb{Z}}E(\mathbb{Q}).$$

Proof (for $\epsilon = -$).

<u>Fact</u>: There is Heegner $K = \mathbb{Q}(\sqrt{-D})$ such that $L(E_D/\mathbb{Q}, 1) \neq 0$. Then

$$\operatorname{ord}_{s=1} \ L(E/K,s) = \underbrace{\operatorname{ord}_{s=1} \ L(E/\mathbb{Q},s)}_{1} + \underbrace{\operatorname{ord}_{s=1} \ L(E_D/\mathbb{Q},s)}_{0}.$$

In particular

$$L'(E/K,1) \neq 0 \stackrel{G-Z}{\Longrightarrow} \widehat{h}(P_K) \neq 0 \stackrel{K}{\Longrightarrow} E(K)_{\text{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_K.$$

<u>Fact</u>: complex conjugation of K acts like $-\epsilon$ on $E(K)_{/tors}$.

Theorem (Weak BSD for analytic rank ≤ 1)

Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

$$\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}).$$

Proof (for $\epsilon = -$).

<u>Fact</u>: There is Heegner $K = \mathbb{Q}(\sqrt{-D})$ such that $L(E_D/\mathbb{Q}, 1) \neq 0$. Then

$$\mathrm{ord}_{s=1}\ \mathit{L}(\mathit{E}/\mathit{K},s) = \underbrace{\mathrm{ord}_{s=1}\ \mathit{L}(\mathit{E}/\mathbb{Q},s)}_{1} + \underbrace{\mathrm{ord}_{s=1}\ \mathit{L}(\mathit{E}_\mathit{D}/\mathbb{Q},s)}_{0}.$$

In particular

$$L'(E/K,1) \neq 0 \stackrel{G-Z}{\Longrightarrow} \widehat{h}(P_K) \neq 0 \stackrel{K}{\Longrightarrow} E(K)_{/\mathrm{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_K.$$

<u>Fact</u>: complex conjugation of K acts like $-\epsilon$ on $E(K)_{/tors}$.

Thus
$$E(\mathbb{Q})_{/\text{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_K$$
, so $\operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}) = 1$. \square


```
Theorem (Kolyvagin, 1989)

If \hat{h}(P_K) \neq 0, then E(K)_{/\text{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_K.
```

Theorem (Kolyvagin, 1989)

If $\hat{h}(P_K) \neq 0$, then $E(K)_{/tors} = \mathbb{Z} \cdot \frac{1}{n} P_K$.

Theorem (main result 2)

Let $\ell \in \mathbb{N}$ be an odd prime of good reduction such that

$$\operatorname{Gal}(\mathbb{Q}(E[\ell])/\mathbb{Q}) \cong \operatorname{GL}_2(\mathbb{F}_\ell), \qquad P_K \notin \ell E(K).$$

Then $\operatorname{Sel}(K, E[\ell]) = \mathbb{F}_{\ell} \cdot \delta(P_K)$.

²Benedict Gross, 1991. Kolyvagin's work on modular elliptic curves () × () × () × () > ()

Theorem (Kolyvagin, 1989)

If
$$\widehat{h}(P_K) \neq 0$$
, then $E(K)_{/\mathrm{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_K$.

Theorem (main result ²)

Let $\ell \in \mathbb{N}$ be an odd prime of good reduction such that

$$\operatorname{Gal}(\mathbb{Q}(E[\ell])/\mathbb{Q}) \cong \operatorname{GL}_2(\mathbb{F}_{\ell}), \qquad P_K \notin \ell E(K).$$

Then $\operatorname{Sel}(K, E[\ell]) = \mathbb{F}_{\ell} \cdot \delta(P_K)$.

Proof (of Kolyvagin).

For any $\ell \in \mathbb{N}$, there is a short exact sequence

$$0 \to E(K)/\ell E(K) \xrightarrow{\delta} \mathrm{Sel}(K, E[\ell]) \to \mathrm{III}(K, E)[\ell] \to 0.$$

Theorem (Kolyvagin, 1989)

If
$$\widehat{h}(P_K) \neq 0$$
, then $E(K)_{/\text{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_K$.

Theorem (main result ²)

Let $\ell \in \mathbb{N}$ be an odd prime of good reduction such that

$$\operatorname{Gal}(\mathbb{Q}(E[\ell])/\mathbb{Q}) \cong \operatorname{GL}_2(\mathbb{F}_{\ell}), \qquad P_K \notin \ell E(K).$$

Then
$$\operatorname{Sel}(K, E[\ell]) = \mathbb{F}_{\ell} \cdot \delta(P_K)$$
.

Proof (of Kolyvagin).

For any $\ell \in \mathbb{N}$, there is a short exact sequence

$$0 \to E(K)/\ell E(K) \xrightarrow{\delta} \mathrm{Sel}(K, E[\ell]) \to \mathrm{III}(K, E)[\ell] \to 0.$$

Choose any $\ell \in \mathbb{N}$ such that K and $\mathbb{Q}(E[\ell])$ are linearly disjoint over \mathbb{Q} .

²Benedict Gross, 1991. Kolyvagin's work on modular elliptic curves $\langle \mathcal{O} \rangle \rangle \langle \mathcal{E} \rangle \langle \mathcal{E} \rangle \rangle$

Theorem (Kolyvagin, 1989)

If
$$\widehat{h}(P_K) \neq 0$$
, then $E(K)_{\text{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_K$.

Theorem (main result ²)

Let $\ell \in \mathbb{N}$ be an odd prime of good reduction such that

$$\operatorname{Gal}(\mathbb{Q}(E[\ell])/\mathbb{Q}) \cong \operatorname{GL}_2(\mathbb{F}_{\ell}), \qquad P_K \notin \ell E(K).$$

Then
$$\operatorname{Sel}(K, E[\ell]) = \mathbb{F}_{\ell} \cdot \delta(P_K)$$
.

Proof (of Kolyvagin).

For any $\ell \in \mathbb{N}$, there is a short exact sequence

$$0 \to E(K)/\ell E(K) \xrightarrow{\delta} \operatorname{Sel}(K, E[\ell]) \to \operatorname{III}(K, E)[\ell] \to 0.$$

Choose any $\ell \in \mathbb{N}$ such that K and $\mathbb{Q}(E[\ell])$ are linearly disjoint over \mathbb{Q} . Then $E(K)[\ell] = 0$, so that $\dim_{\mathbb{F}_{\ell}} E(K)/\ell E(K) = \mathrm{rk}_{\mathbb{Z}} E(K)$. \square

²Benedict Gross, 1991. Kolyvagin's work on modular elliptic curves $\langle \neg \neg \rangle$ $\langle \neg \neg \rangle$ $\langle \neg \neg \neg \rangle$

Selmer groups can be defined in general.

Selmer groups can be defined in general.

Let M be a (non-scalar, simple) self-dual $\mathbb{F}_{\ell}[\operatorname{Gal}(L/K)]$ -module.

Selmer groups can be defined in general.

Let M be a (non-scalar, simple) self-dual $\mathbb{F}_{\ell}[\operatorname{Gal}(L/K)]$ -module.

Example

Let $M = E[\ell]$.

Selmer groups can be defined in general.

Let M be a (non-scalar, simple) self-dual $\mathbb{F}_{\ell}[\operatorname{Gal}(L/K)]$ -module.

Example

Let $M = E[\ell]$.

Fact: Galois equivariance of ℓ -Weil pairing implies M is non-scalar.

Selmer groups can be defined in general.

Let M be a (non-scalar, simple) self-dual $\mathbb{F}_{\ell}[\operatorname{Gal}(L/K)]$ -module.

Example

Let $M = E[\ell]$.

- **Fact**: Galois equivariance of ℓ -Weil pairing implies M is non-scalar.
- ▶ <u>Fact</u>: surjective ℓ -adic representation implies M is simple.

Selmer groups can be defined in general.

Let M be a (non-scalar, simple) self-dual $\mathbb{F}_{\ell}[\operatorname{Gal}(L/K)]$ -module.

Example

Let $M = E[\ell]$.

- **Fact**: Galois equivariance of ℓ -Weil pairing implies M is non-scalar.
- ▶ Fact: surjective ℓ -adic representation implies M is simple.

By inflation-restriction, there is a short exact sequence

$$0 \to H^1(G_{\nu}^{\mathrm{ur}}, M^{I_{\nu}}) \to H^1(K_{\nu}, M) \to H^1(I_{\nu}, M)^{G_{\nu}^{\mathrm{ur}}} \to 0.$$

Selmer groups can be defined in general.

Let M be a (non-scalar, simple) self-dual $\mathbb{F}_{\ell}[\operatorname{Gal}(L/K)]$ -module.

Example

Let $M = E[\ell]$.

- **Fact**: Galois equivariance of ℓ -Weil pairing implies M is non-scalar.
- ▶ <u>Fact</u>: surjective ℓ -adic representation implies M is simple.

By inflation-restriction, there is a short exact sequence

$$\mathsf{Example}^0 \to H^1(G_{\nu}^{\mathrm{ur}}, M^{I_{\nu}}) \to H^1(K_{\nu}, M) \to H^1(I_{\nu}, M)^{G_{\nu}^{\mathrm{ur}}} \to 0.$$

Let $v \nmid \ell$ have good reduction. Then there is a short exact sequence

$$0 \to E(K_{\nu})/\ell E(K_{\nu}) \xrightarrow{\delta} H^{1}(K_{\nu}, M) \to H^{1}(K_{\nu}, E)[\ell] \to 0.$$

A **Selmer structure** on M is an assignment

$$v \longmapsto H^1_f(K_v, M) \subseteq H^1(K_v, M),$$

such that $H_f^1(K_v, M) = H^1(G_v^{ur}, M^{l_v})$ for almost all places v of K.

A **Selmer structure** on M is an assignment

$$v \longmapsto H^1_f(K_v, M) \subseteq H^1(K_v, M),$$

such that $H_f^1(K_v, M) = H^1(G_v^{ur}, M^{l_v})$ for almost all places v of K. Its **singular quotient** $H_s^1(K_v, M)$ sits in

$$0 \to H^1_f(K_{\nu},M) \to H^1(K_{\nu},M) \xrightarrow{(\cdot)^s} H^1_s(K_{\nu},M) \to 0.$$

A **Selmer structure** on M is an assignment

$$v \longmapsto H^1_f(K_v, M) \subseteq H^1(K_v, M),$$

such that $H_f^1(K_v, M) = H^1(G_v^{ur}, M^{l_v})$ for almost all places v of K. Its **singular quotient** $H_s^1(K_v, M)$ sits in

Example
$$0 \to H^1_f(K_v, M) \to H^1(K_v, M) \xrightarrow{(\cdot)^s} H^1_s(K_v, M) \to 0.$$

► The unramified Selmer structure has

$$H^1_f(K_v,M) := H^1(G_v^{\mathrm{ur}},M^{I_v}), \qquad H^1_s(K_v,M) := H^1(I_v,M)^{G_v^{\mathrm{ur}}}.$$

A **Selmer structure** on M is an assignment

$$v \longmapsto H^1_f(K_v, M) \subseteq H^1(K_v, M),$$

such that $H_f^1(K_v, M) = H^1(G_v^{ur}, M^{l_v})$ for almost all places v of K. Its **singular quotient** $H_s^1(K_v, M)$ sits in

Example
$$0 \to H^1_f(K_v, M) \to H^1(K_v, M) \xrightarrow{(\cdot)^s} H^1_s(K_v, M) \to 0.$$

► The unramified Selmer structure has

$$H^1_f(K_v,M) := H^1(G_v^{\mathrm{ur}},M^{I_v}), \qquad H^1_s(K_v,M) := H^1(I_v,M)^{G_v^{\mathrm{ur}}}.$$

► The **geometric** Selmer structure has

$$H^1_f(K_v, M) := E(K_v)/\ell E(K_v), \qquad H^1_s(K_v, M) := H^1(K_v, E)[\ell].$$

There is a localisation map

$$(\cdot)_{\nu}:H^1(K,M)\to H^1(K_{\nu},M).$$

There is a localisation map

$$(\cdot)_{\nu}:H^1(K,M)\to H^1(K_{\nu},M).$$

▶ The **classical** Selmer group Sel(K, M) sits in

$$0 \to \mathrm{Sel}(K,M) \to H^1(K,M) \xrightarrow{\prod_v (\cdot)_v^s} \prod_v H^1_s(K_v,M).$$

There is a localisation map

$$(\cdot)_{\nu}:H^1(K,M)\to H^1(K_{\nu},M).$$

▶ The **classical** Selmer group Sel(K, M) sits in

$$0 \to \mathrm{Sel}(K,M) \to H^1(K,M) \xrightarrow{\prod_{\nu} (\cdot)_{\nu}^s} \prod_{\nu} H^1_{\mathfrak{s}}(K_{\nu},M).$$

▶ The **relaxed** Selmer group $Sel^{S}(K, M)$ sits in

$$0 \to \mathrm{Sel}(K,M) \to \mathrm{Sel}^{S}(K,M) \xrightarrow{\prod_{v \in S} (\cdot)_{v}^{s}} \bigoplus_{v \in S} H^{1}_{s}(K_{v},M).$$

There is a localisation map

$$(\cdot)_{\nu}:H^1(K,M)\to H^1(K_{\nu},M).$$

▶ The **classical** Selmer group Sel(K, M) sits in

$$0 \to \mathrm{Sel}(K,M) \to H^1(K,M) \xrightarrow{\prod_{\nu} (\cdot)_{\nu}^s} \prod_{\nu} H^1_s(K_{\nu},M).$$

▶ The **relaxed** Selmer group $Sel^{S}(K, M)$ sits in

$$0 \to \mathrm{Sel}(K, M) \to \mathrm{Sel}^{S}(K, M) \xrightarrow{\prod_{v \in S} (\cdot)_{v}^{s}} \bigoplus_{v \in S} H_{s}^{1}(K_{v}, M).$$

▶ The **restricted** Selmer group $Sel_S(K, M)$ sits in

$$0 \to \mathrm{Sel}_{\mathcal{S}}(K, M) \to \mathrm{Sel}(K, M) \xrightarrow{\prod_{v \in \mathcal{S}} (\cdot)_v} \bigoplus_{v \in \mathcal{S}} H^1_f(K_v, M).$$

Let S be a finite set of places of K. There are exact sequences

$$0\,\longrightarrow\,\mathrm{Sel}\,\longrightarrow\,\mathrm{Sel}^{\,\varsigma}\,\longrightarrow\,\bigoplus_{v\in S}H^1_s(K_v,M)$$

$$0 \longrightarrow \mathrm{Sel}_S \longrightarrow \mathrm{Sel} \longrightarrow \bigoplus_{v \in S} H^1_f(K_v, M)$$

Let $S' \subseteq S$ be finite sets of places of K. There are exact sequences

$$0 \, \longrightarrow \, \mathrm{Sel}^{S'} \, \longrightarrow \, \mathrm{Sel}^S \, \longrightarrow \, \bigoplus_{\nu \in S \setminus S'} H^1_s(K_\nu, M)$$

$$0 \longrightarrow \mathrm{Sel}_S \longrightarrow \mathrm{Sel}_{S'} \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_f(K_v, M)$$

Let $S' \subseteq S$ be finite sets of places of K. There are exact sequences

$$0 \, \longrightarrow \, \mathrm{Sel}^{S'} \, \longrightarrow \, \mathrm{Sel}^S \, \longrightarrow \, \bigoplus_{\nu \in S \setminus S'} H^1_s(K_\nu, M)$$

$$\bigoplus_{v \in S \setminus S'} H^1_f(K_v, M)^\vee \, \to \, \mathrm{Sel}_{S'}^\vee \, \to \, \mathrm{Sel}_S^\vee \, \to \, 0.$$

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

Proof.

Local Tate duality gives a perfect pairing

$$H^1_s(K_v,M) \times H^1_f(K_v,M) \to \mathbb{F}_\ell.$$

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^S \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M) \longrightarrow \operatorname{Sel}_{S'}^{\vee} \longrightarrow \operatorname{Sel}_S^{\vee} \longrightarrow 0.$$

Proof.

Local Tate duality gives a perfect pairing

$$H^1_s(K_v,M)\times H^1_f(K_v,M)\to \mathbb{F}_\ell.$$

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^S \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M) \longrightarrow \operatorname{Sel}_{S'}^{\vee} \longrightarrow \operatorname{Sel}_S^{\vee} \longrightarrow 0.$$

Proof.

Local Tate duality gives a perfect pairing

$$H^1_s(K_v,M) \times H^1_f(K_v,M) \to \mathbb{F}_\ell.$$

By the snake lemma, may assume that S and S' contain all bad places.

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^S \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M) \longrightarrow \operatorname{Sel}_{S'}^{\vee} \longrightarrow \operatorname{Sel}_S^{\vee} \longrightarrow 0.$$

Proof.

Local Tate duality gives a perfect pairing

$$H^1_s(K_v,M) \times H^1_f(K_v,M) \to \mathbb{F}_\ell.$$

By the snake lemma, may assume that S and S' contain all bad places. The Poitou-Tate exact sequence gives exactness at

$$\mathrm{Sel}^S \to \bigoplus_{v \in S} H^1(K_v, M) \to \mathrm{Sel}^{S \vee}.$$

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^S \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M) \longrightarrow \operatorname{Sel}_{S'}^{\vee} \longrightarrow \operatorname{Sel}_S^{\vee} \longrightarrow 0.$$

Proof.

Local Tate duality gives a perfect pairing

$$H^1_s(K_v,M) \times H^1_f(K_v,M) \to \mathbb{F}_\ell.$$

By the snake lemma, may assume that S and S' contain all bad places. The Poitou-Tate exact sequence gives exactness at

$$\mathrm{Sel}^S \to \bigoplus_{v \in S} H^1(K_v, M) \to \mathrm{Sel}^{S \vee}.$$

Diagram chase. \square

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^S \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M) \longrightarrow \operatorname{Sel}_{S'}^{\vee} \longrightarrow \operatorname{Sel}_S^{\vee} \longrightarrow 0.$$

<u>Fact</u>: complex conjugation of K respects the exact sequence.

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^S \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M) \longrightarrow \operatorname{Sel}_{S'}^{\vee} \longrightarrow \operatorname{Sel}_S^{\vee} \longrightarrow 0.$$

Fact: complex conjugation of K respects the exact sequence. Thus

$$0 \to \operatorname{Sel}^{S'\pm} \to \operatorname{Sel}^{S\pm} \to \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M)^{\pm} \to \operatorname{Sel}^{\vee\pm}_{S'} \to \operatorname{Sel}^{\vee\pm}_S \to 0.$$

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^S \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M) \longrightarrow \operatorname{Sel}_{S'}^{\vee} \longrightarrow \operatorname{Sel}_S^{\vee} \longrightarrow 0.$$

Fact: complex conjugation of K respects the exact sequence. Thus

$$0 \to \operatorname{Sel}^{S'\pm} \to \operatorname{Sel}^{S\pm} \to \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M)^\pm \to \operatorname{Sel}^{\vee\pm}_{S'} \to \operatorname{Sel}^{\vee\pm}_S \to 0.$$

Specialising to $S' = \emptyset$ and $M = E[\ell]$,

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^S \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M) \longrightarrow \operatorname{Sel}_{S'}^{\vee} \longrightarrow \operatorname{Sel}_S^{\vee} \longrightarrow 0.$$

Fact: complex conjugation of K respects the exact sequence. Thus

$$0 \to \operatorname{Sel}^{S'\pm} \to \operatorname{Sel}^{S\pm} \to \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M)^\pm \to \operatorname{Sel}^{\vee\pm}_{S'} \to \operatorname{Sel}^{\vee\pm}_S \to 0.$$

Specialising to $S' = \emptyset$ and $M = E[\ell]$,

$$0 \to \operatorname{coker} \left(\operatorname{Sel}^{\mathcal{S}\pm} \to \bigoplus_{\nu \in \mathcal{S}} H^1_{\mathfrak{s}}(K_{\nu}, E[\ell])^{\pm} \right) \to \operatorname{Sel}^{\vee \pm} \to \operatorname{Sel}^{\vee \pm}_{\mathcal{S}} \to 0.$$

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^S \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M) \longrightarrow \operatorname{Sel}_{S'}^{\vee} \longrightarrow \operatorname{Sel}_S^{\vee} \longrightarrow 0.$$

Fact: complex conjugation of K respects the exact sequence. Thus

$$0 \to \operatorname{Sel}^{S'\pm} \to \operatorname{Sel}^{S\pm} \to \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M)^\pm \to \operatorname{Sel}^{\vee\pm}_{S'} \to \operatorname{Sel}^{\vee\pm}_S \to 0.$$

Specialising to $S' = \emptyset$ and $M = E[\ell]$,

$$0 \to \operatorname{coker} \left(\operatorname{Sel}^{\mathcal{S}\pm} \to \bigoplus_{\nu \in \mathcal{S}} H^1_{s}(K_{\nu}, E[\ell])^{\pm} \right) \to \operatorname{Sel}^{\vee \pm} \to \operatorname{Sel}^{\vee \pm}_{S} \to 0.$$

<u>Idea</u>: choose appropriate S.

Assume M is non-scalar and simple.

Assume M is non-scalar and simple.

Let $K(E[\ell]) \subseteq L \subseteq L'$ be finite extensions, and fix $\sigma \in \operatorname{Gal}(L'/L)^-$. Choose a lift of complex conjugation $\tau \in \operatorname{Gal}(L'/\mathbb{Q})$.

Assume M is non-scalar and simple.

Let $K(E[\ell]) \subseteq L \subseteq L'$ be finite extensions, and fix $\sigma \in \operatorname{Gal}(L'/L)^-$. Choose a lift of complex conjugation $\tau \in \operatorname{Gal}(L'/\mathbb{Q})$.

Lemma

There is a finite set S of inert primes of K/\mathbb{Q} such that

- 1. $\left(\frac{p}{L'/\mathbb{Q}}\right) \sim \sigma \tau$ for all $p \in S$, and
- 2. $\operatorname{Sel}_{S}^{\pm} \subseteq H^{1}(L'/K, E[\ell])^{\pm}$.

Assume M is non-scalar and simple.

Let $K(E[\ell]) \subseteq L \subseteq L'$ be finite extensions, and fix $\sigma \in \operatorname{Gal}(L'/L)^-$. Choose a lift of complex conjugation $\tau \in \operatorname{Gal}(L'/\mathbb{Q})$.

Lemma

There is a finite set S of inert primes of K/\mathbb{Q} such that

- 1. $\left(\frac{p}{L'/\mathbb{Q}}\right) \sim \sigma \tau$ for all $p \in S$, and
- 2. $\operatorname{Sel}_{S}^{\pm} \subseteq H^{1}(L'/K, E[\ell])^{\pm}$.

Proof.

► Chebotarev density gives *S* satisfying 1.

Assume M is non-scalar and simple.

Let $K(E[\ell]) \subseteq L \subseteq L'$ be finite extensions, and fix $\sigma \in \operatorname{Gal}(L'/L)^-$. Choose a lift of complex conjugation $\tau \in \operatorname{Gal}(L'/\mathbb{Q})$.

Lemma

There is a finite set S of inert primes of K/\mathbb{Q} such that

- 1. $\left(\frac{p}{L'/\mathbb{Q}}\right) \sim \sigma \tau$ for all $p \in S$, and
- $2. \ \operatorname{Sel}_S^{\pm} \subseteq H^1(L'/K, E[\ell])^{\pm}.$

Proof.

- ► Chebotarev density gives *S* satisfying 1.
- ► <u>Fact</u>: non-scalar and simple imply 2. □

Assume M is non-scalar and simple.

Let $K(E[\ell]) \subseteq L \subseteq L'$ be finite extensions, and fix $\sigma \in \operatorname{Gal}(L'/L)^-$. Choose a lift of complex conjugation $\tau \in \operatorname{Gal}(L'/\mathbb{Q})$.

Lemma

There is a finite set S of inert primes of K/\mathbb{Q} such that

- 1. $\left(\frac{p}{L'/\mathbb{Q}}\right) \sim \sigma \tau$ for all $p \in S$, and
- 2. $\operatorname{Sel}_{S}^{\pm} \subseteq H^{1}(L'/K, E[\ell])^{\pm}$.

Proof.

- ► Chebotarev density gives *S* satisfying 1.
- ► <u>Fact</u>: non-scalar and simple imply 2. □

<u>Idea</u>: choose appropriate L'/L to bound Sel_5^{\pm} .

Both $\operatorname{Sel}^{S\pm}$ and $H^1_s(K_v, E[\ell])^{\pm}$ in

$$0 \to \operatorname{coker} \left(\operatorname{Sel}^{S\pm} \to \bigoplus_{v \in S} H^1_s(K_v, E[\ell])^{\pm} \right) \to \operatorname{Sel}^{\vee\pm} \to \operatorname{Sel}^{\vee\pm}_S \to 0$$

are generated by some $c(n) \in H^1(K, E[\ell])^{\pm}$ indexed by $n \in \mathbb{N}$.

Both $\operatorname{Sel}^{S\pm}$ and $H^1_s(K_v, E[\ell])^{\pm}$ in

$$0 \to \operatorname{coker} \left(\operatorname{Sel}^{S\pm} \to \bigoplus_{v \in S} H^1_s(K_v, E[\ell])^{\pm} \right) \to \operatorname{Sel}^{\vee\pm} \to \operatorname{Sel}^{\vee\pm}_S \to 0$$

are generated by some $c(n) \in H^1(K, E[\ell])^{\pm}$ indexed by $n \in \mathbb{N}$.

Each c(n) is generated by a **Heegner point of conductor** n.

Both $\operatorname{Sel}^{5\pm}$ and $H^1_s(K_v, E[\ell])^{\pm}$ in

$$0 \to \operatorname{coker} \left(\operatorname{Sel}^{S\pm} \to \bigoplus_{v \in S} H^1_s(K_v, E[\ell])^{\pm} \right) \to \operatorname{Sel}^{\vee\pm} \to \operatorname{Sel}^{\vee\pm}_S \to 0$$

are generated by some $c(n) \in H^1(K, E[\ell])^{\pm}$ indexed by $n \in \mathbb{N}$.

Each c(n) is generated by a **Heegner point of conductor** n.

conductor 1	
ring of integers $\mathcal{O}_{\mathcal{K}}$	
Hilbert class field K^1	
Heegner point $P_1 \in E(K^1)$	

Both $\operatorname{Sel}^{5\pm}$ and $H^1_s(K_v, E[\ell])^{\pm}$ in

$$0 \to \operatorname{coker} \left(\operatorname{Sel}^{S\pm} \to \bigoplus_{v \in S} H^1_s(K_v, E[\ell])^{\pm} \right) \to \operatorname{Sel}^{\vee \pm} \to \operatorname{Sel}^{\vee \pm}_S \to 0$$

are generated by some $c(n) \in H^1(K, E[\ell])^{\pm}$ indexed by $n \in \mathbb{N}$.

Each c(n) is generated by a **Heegner point of conductor** n.

conductor 1	conductor n
ring of integers $\mathcal{O}_{\mathcal{K}}$	order $\mathcal{O}_{K,n}$
Hilbert class field K^1	ring class field <i>K</i> ⁿ
Heegner point $P_1 \in E(K^1)$	Heegner point $P_n \in E(K^n)$

The Heegner points $P_n \in E(K^n)$ satisfy "Euler system" relations.

The Heegner points $P_n \in E(K^n)$ satisfy "Euler system" relations.

Consider only the square-free $n \in \mathbb{N}$ (coprime to $ND\ell$) such that:

 $p \mid n \implies p \text{ is inert in } K.$

The Heegner points $P_n \in E(K^n)$ satisfy "Euler system" relations.

Consider only the square-free $n \in \mathbb{N}$ (coprime to $ND\ell$) such that:

By class field theory,
$$p \mid n \implies p$$
 is inert in K .

$$\operatorname{Gal}(K^n/K^1) \cong \operatorname{Cl}(\mathcal{O}_{K,n})/\operatorname{Cl}(\mathcal{O}_K) \cong (\mathcal{O}_K/n)^\times/(\mathbb{Z}/n)^\times.$$

The Heegner points $P_n \in E(K^n)$ satisfy "Euler system" relations.

Consider only the square-free $n \in \mathbb{N}$ (coprime to $ND\ell$) such that:

By class field theory,
$$p \mid n \implies p$$
 is inert in K .

$$\operatorname{Gal}(K^n/K^1) \cong \operatorname{Cl}(\mathcal{O}_{K,n})/\operatorname{Cl}(\mathcal{O}_K) \cong (\mathcal{O}_K/n)^\times/(\mathbb{Z}/n)^\times.$$

Since *n* is square-free,

$$\operatorname{Gal}(K^n/K^1) \cong \prod_{p|n} \operatorname{Gal}(K^p/K^1).$$

The Heegner points $P_n \in E(K^n)$ satisfy "Euler system" relations.

Consider only the square-free $n \in \mathbb{N}$ (coprime to $ND\ell$) such that:

By class field theory,
$$p \mid n \implies p$$
 is inert in K .

$$\operatorname{Gal}(K^n/K^1) \cong \operatorname{Cl}(\mathcal{O}_{K,n})/\operatorname{Cl}(\mathcal{O}_K) \cong (\mathcal{O}_K/n)^\times/(\mathbb{Z}/n)^\times.$$

Since *n* is square-free,

$$\operatorname{Gal}(K^n/K^1) \cong \prod_{p|n} \operatorname{Gal}(K^p/K^1).$$

Since $p \mid n$ is inert in K,

$$\operatorname{Gal}(K^p/K^1) = \mathbb{Z}/(p+1) \cdot \sigma_p$$
.

The Heegner points $P_n \in E(K^n)$ satisfy "Euler system" relations.

Consider only the square-free $n \in \mathbb{N}$ (coprime to $ND\ell$) such that:

$$p \mid n \implies p \text{ is inert in } K.$$

Proposition (AX3)

Let n = pq. Then

- 1. $\sum_{i=0}^{p} \sigma_p^i P_{pq} = a_p P_q$ in $E(K^q)$, and
- 2. $\overline{P_{pq}} = \overline{\left(\frac{\mathfrak{p}_{\mathfrak{q}}}{K^q/K}\right)P_q} \text{ in } \overline{E}(\mathbb{F}_{\mathfrak{p}_{\mathfrak{q}}}).$

The Heegner points $P_n \in E(K^n)$ satisfy "Euler system" relations.

Consider only the square-free $n \in \mathbb{N}$ (coprime to $ND\ell$) such that:

$$p \mid n \implies p \text{ is inert in } K.$$

Proposition (AX3)

Let n = pq. Then

- 1. $\sum_{i=0}^{p} \sigma_{p}^{i} P_{pq} = a_{p} P_{q}$ in $E(K^{q})$, and
- 2. $\overline{P_{pq}} = \overline{\left(\frac{\mathfrak{p}_{\mathfrak{q}}}{K^q/K}\right)P_q}$ in $\overline{E}(\mathbb{F}_{\mathfrak{p}_{\mathfrak{q}}})$.

Proof (sketch of 1).

If $H_p: \operatorname{Div}(X_0(N)) \to \operatorname{Div}(X_0(N))$ is the Hecke correspondence, then

$$\sum_{i=0}^{p} \sigma_{p}^{i} x_{pq} = H_{p} x_{q}.$$

The Heegner points $P_n \in E(K^n)$ satisfy "Euler system" relations.

Consider only the square-free $n \in \mathbb{N}$ (coprime to $ND\ell$) such that:

$$p \mid n \implies p \text{ is inert in } K.$$

Proposition (AX3)

Let n = pq. Then

- 1. $\sum_{i=0}^{p} \sigma_{p}^{i} P_{pq} = a_{p} P_{q}$ in $E(K^{q})$, and
- 2. $\overline{P_{pq}} = \overline{\left(\frac{\mathfrak{p}_{\mathfrak{q}}}{K^q/K}\right)P_q} \text{ in } \overline{E}(\mathbb{F}_{\mathfrak{p}_{\mathfrak{q}}}).$

Proof (sketch of 1).

If $H_p: \operatorname{Div}(X_0(N)) \to \operatorname{Div}(X_0(N))$ is the Hecke correspondence, then

$$\sum_{i=0}^{p} \sigma_{p}^{i} x_{pq} = H_{p} x_{q}.$$

By E-S theory, $\phi(H_pD)=a_p\phi(D)$ for any $D\in \mathrm{Div}(X_0(N))$. \square

Given $P_n \in E(K^n)$, how to derive $c(n) \in H^1(K, E[\ell])$?

Given $P_n \in E(K^n)$, how to derive $c(n) \in H^1(K, E[\ell])$?

Define a "trace"

$$\mathcal{T}_n := \sum_{\tau \in \mathcal{T}} \tau \in \mathbb{Z}[\mathrm{Gal}(K^n/K)],$$

where T is a set of coset representatives for $\operatorname{Gal}(K^n/K^1) \leq \operatorname{Gal}(K^n/K)$.

Given $P_n \in E(K^n)$, how to derive $c(n) \in H^1(K, E[\ell])$?

Define a "trace"

$$\mathcal{T}_n := \sum_{\tau \in \mathcal{T}} \tau \in \mathbb{Z}[\mathrm{Gal}(K^n/K)],$$

where T is a set of coset representatives for $Gal(K^n/K^1) \leq Gal(K^n/K)$.

Define the Kolyvagin derivative

$$D_n := \prod_{\rho \mid n} D_\rho \in \mathbb{Z}[\operatorname{Gal}(K^n/K^1)],$$

where D_p is any solution to $(\sigma_p - 1)D_p = p + 1 - T_p$ in $\mathbb{Z}[Gal(K^n/K)]$.

Given $P_n \in E(K^n)$, how to derive $c(n) \in H^1(K, E[\ell])$?

Define a "trace"

$$\mathcal{T}_n := \sum_{\tau \in \mathcal{T}} \tau \in \mathbb{Z}[\mathrm{Gal}(K^n/K)],$$

where T is a set of coset representatives for $Gal(K^n/K^1) \leq Gal(K^n/K)$.

Define the Kolyvagin derivative

$$D_n := \prod_{\rho \mid n} D_\rho \in \mathbb{Z}[\operatorname{Gal}(K^n/K^1)],$$

where D_p is any solution to $(\sigma_p - 1)D_p = p + 1 - T_p$ in $\mathbb{Z}[\operatorname{Gal}(K^n/K)]$.

Define

$$\mathcal{P}_n := [T_n D_n P_n] \in E(K^n) / \ell E(K^n).$$

Define $\mathcal{P}_n := [T_n D_n P_n] \in E(K^n) / \ell E(K^n)$.

Define $\mathcal{P}_n := [T_n D_n P_n] \in E(K^n) / \ell E(K^n)$.

Fact: By AX3,

- $ightharpoonup \mathcal{P}_n$ is fixed by $G_n := \operatorname{Gal}(K^n/K)$, and
- $ightharpoonup \mathcal{P}_n$ lies in the $\epsilon_n := -\epsilon \cdot (-1)^{\#\{p|n\}}$ eigenspace.

Define $\mathcal{P}_n := [T_n D_n P_n] \in E(K^n) / \ell E(K^n)$.

Fact: By AX3,

- $ightharpoonup \mathcal{P}_n$ is fixed by $G_n := \operatorname{Gal}(K^n/K)$, and
- $ightharpoonup \mathcal{P}_n$ lies in the $\epsilon_n := -\epsilon \cdot (-1)^{\#\{p|n\}}$ eigenspace.

There is an exact diagram

Define $\mathcal{P}_n := [T_n D_n P_n] \in E(K^n) / \ell E(K^n)$.

Fact: By AX3,

- $ightharpoonup \mathcal{P}_n$ is fixed by $G_n := \operatorname{Gal}(K^n/K)$, and
- $ightharpoonup \mathcal{P}_n$ lies in the $\epsilon_n := -\epsilon \cdot (-1)^{\#\{p|n\}}$ eigenspace.

There is an exact diagram

$$0 \longrightarrow H^1_f(K, E[\ell])^{\epsilon_n} \stackrel{\delta}{\longrightarrow} H^1(K, E[\ell])^{\epsilon_n} \longrightarrow H^1_s(K, E[\ell])^{\epsilon_n} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow^{\operatorname{res}_n} \qquad \qquad \downarrow$$

$$0 \rightarrow H^1_f(K^n, E[\ell])^{G_n \epsilon_n} \xrightarrow[\delta_n]{} H^1(K^n, E[\ell])^{G_n \epsilon_n} \rightarrow H^1_s(K^n, E[\ell])^{G_n \epsilon_n}$$

$$\downarrow^{\operatorname{tra}_n}$$

Define $\mathcal{P}_n := [T_n D_n P_n] \in E(K^n) / \ell E(K^n)$.

Fact: By AX3,

- $ightharpoonup \mathcal{P}_n$ is fixed by $G_n := \operatorname{Gal}(K^n/K)$, and
- $ightharpoonup \mathcal{P}_n$ lies in the $\epsilon_n := -\epsilon \cdot (-1)^{\#\{p|n\}}$ eigenspace.

There is an exact diagram

$$0 \longrightarrow H^1_f(K, E[\ell])^{\epsilon_n} \stackrel{\delta}{\longrightarrow} H^1(K, E[\ell])^{\epsilon_n} \longrightarrow H^1_s(K, E[\ell])^{\epsilon_n} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow^{\operatorname{res}_n} \qquad \qquad \downarrow$$

$$0 \to H^1_f(K^n, E[\ell])^{G_n \epsilon_n} \xrightarrow[\delta_n]{} H^1(K^n, E[\ell])^{G_n \epsilon_n} \to H^1_s(K^n, E[\ell])^{G_n \epsilon_n}$$

$$\downarrow^{\operatorname{tra}_n}$$

Define $c(n) \in H^1(K, E[\ell])^{\epsilon_n}$ by

$$\operatorname{res}_n(c(n)) = \delta_n(\mathcal{P}_n).$$

Define $c(n) \in H^1(K, E[\ell])$ by $res_n(c(n)) = \delta_n(\mathcal{P}_n)$.

Define $c(n) \in H^1(K, E[\ell])$ by $\operatorname{res}_n(c(n)) = \delta_n(\mathcal{P}_n)$.

Lemma

- 1. If $v \nmid n$, then $c(n)_v^s = 0$ (i.e. $c(n) \in \operatorname{Sel}^{\{p|n\}\epsilon_n}$).
- 2. If $v \mid n$, then $c(n)_v^s = 0$ if and only if $\mathcal{P}_{n/v} \in \ell E(K_v)$.

Define $c(n) \in H^1(K, E[\ell])$ by $\operatorname{res}_n(c(n)) = \delta_n(\mathcal{P}_n)$.

Lemma

- 1. If $v \nmid n$, then $c(n)_v^s = 0$ (i.e. $c(n) \in \operatorname{Sel}^{\{p|n\}\epsilon_n}$).
- 2. If $v \mid n$, then $c(n)_v^s = 0$ if and only if $\mathcal{P}_{n/v} \in \ell E(K_v)$.

Proof (sketch of 1).

Assume $v \nmid \ell$ has good reduction.

Define $c(n) \in H^1(K, E[\ell])$ by $\operatorname{res}_n(c(n)) = \delta_n(\mathcal{P}_n)$.

Lemma

- 1. If $v \nmid n$, then $c(n)_{v}^{s} = 0$ (i.e. $c(n) \in \operatorname{Sel}^{\{p|n\}_{\epsilon_{n}}}$).
- 2. If $v \mid n$, then $c(n)_v^s = 0$ if and only if $\mathcal{P}_{n/v} \in \ell E(K_v)$.

Proof (sketch of 1).

Assume $v \nmid \ell$ has good reduction. Then

$$0 \longrightarrow H_f^1(K_v, E[\ell]) \longrightarrow H^1(K_v, E[\ell]) \xrightarrow{(\cdot)^s} H_s^1(K^n, E[\ell])$$

$$\downarrow \qquad \qquad \downarrow^{\operatorname{res}_n} \qquad \qquad \downarrow$$

$$0 \longrightarrow H_f^1(K_v^n, E[\ell]) \xrightarrow{\delta_n} H^1(K_v^n, E[\ell]) \xrightarrow{(\cdot)^s} H_s^1(K_v^n, E[\ell])$$

Define $c(n) \in H^1(K, E[\ell])$ by $\operatorname{res}_n(c(n)) = \delta_n(\mathcal{P}_n)$.

Lemma

- 1. If $v \nmid n$, then $c(n)_{v}^{s} = 0$ (i.e. $c(n) \in \operatorname{Sel}^{\{p|n\}\epsilon_{n}}$).
- 2. If $v \mid n$, then $c(n)_v^s = 0$ if and only if $\mathcal{P}_{n/v} \in \ell E(K_v)$.

Proof (sketch of 1).

Assume $v \nmid \ell$ has good reduction. Then

Define $c(n) \in H^1(K, E[\ell])$ by $\operatorname{res}_n(c(n)) = \delta_n(\mathcal{P}_n)$.

Lemma

- 1. If $v \nmid n$, then $c(n)_{v}^{s} = 0$ (i.e. $c(n) \in \operatorname{Sel}^{\{p|n\}\epsilon_{n}}$).
- 2. If $v \mid n$, then $c(n)_v^s = 0$ if and only if $\mathcal{P}_{n/v} \in \ell E(K_v)$.

Proof (sketch of 1).

Assume $v \nmid \ell$ has good reduction. Then K_v^n/K_v is unramified, so

Define $c(n) \in H^1(K, E[\ell])$ by $\operatorname{res}_n(c(n)) = \delta_n(\mathcal{P}_n)$.

Lemma

- 1. If $v \nmid n$, then $c(n)_{v}^{s} = 0$ (i.e. $c(n) \in \operatorname{Sel}^{\{p|n\}\epsilon_{n}}$).
- 2. If $v \mid n$, then $c(n)_v^s = 0$ if and only if $\mathcal{P}_{n/v} \in \ell E(K_v)$.

Proof (sketch of 1).

Assume $v \nmid \ell$ has good reduction. Then K_v^n/K_v is unramified, so

Thus $(\operatorname{res}_n(c(n)_v))^s = 0$ by exactness. \square

Compute Sel^ϵ and $\mathrm{Sel}^{-\epsilon}$ separately.

Compute Sel^{ϵ} and $Sel^{-\epsilon}$ separately.

Use the short exact sequence

$$0 \to \operatorname{coker} \left(\operatorname{Sel}^{S\pm} \to \bigoplus_{p \in S} H^1_s(K_p, E[\ell])^{\pm} \right) \to \operatorname{Sel}^{\pm} \to \operatorname{Sel}^{\pm}_S \to 0.$$

Compute Sel^{ϵ} and $Sel^{-\epsilon}$ separately.

Use the short exact sequence

$$0 \to \operatorname{coker} \left(\operatorname{Sel}^{\mathcal{S}\pm} \to \bigoplus_{\rho \in \mathcal{S}} H^1_{\mathcal{S}}(K_{\rho}, E[\ell])^{\pm} \right) \to \operatorname{Sel}^{\pm} \to \operatorname{Sel}^{\pm}_{\mathcal{S}} \to 0.$$

Restricted:

▶ Choose L'/L to get S such that $Sel_S^{\pm} \subseteq H^1(L'/K, E[\ell])^{\pm}$.

Compute Sel^{ϵ} and $Sel^{-\epsilon}$ separately.

Use the short exact sequence

$$0 \to \operatorname{coker} \left(\operatorname{Sel}^{\mathcal{S}\pm} \to \bigoplus_{\rho \in \mathcal{S}} H^1_{s}(K_{\rho}, E[\ell])^{\pm} \right) \to \operatorname{Sel}^{\pm} \to \operatorname{Sel}^{\pm}_{s} \to 0.$$

Restricted:

- ▶ Choose L'/L to get S such that $\operatorname{Sel}_S^{\pm} \subseteq H^1(L'/K, E[\ell])^{\pm}$.
- ► Compute $H^1(L'/K, E[\ell])^{\pm}$.

Compute Sel^{ϵ} and $Sel^{-\epsilon}$ separately.

Use the short exact sequence

$$0 \to \operatorname{coker} \left(\operatorname{Sel}^{\mathcal{S}\pm} \to \bigoplus_{\rho \in \mathcal{S}} H^1_{s}(K_{\rho}, E[\ell])^{\pm} \right) \to \operatorname{Sel}^{\pm} \to \operatorname{Sel}^{\pm}_{s} \to 0.$$

Restricted:

- ▶ Choose L'/L to get S such that $\operatorname{Sel}_S^{\pm} \subseteq H^1(L'/K, E[\ell])^{\pm}$.
- ► Compute $H^1(L'/K, E[\ell])^{\pm}$.

Relaxed:

Fact: each $H_s^1(K_p, E[\ell])^{\pm}$ is one-dimensional.

Compute Sel^{ϵ} and $Sel^{-\epsilon}$ separately.

Use the short exact sequence

$$0 \to \operatorname{coker} \left(\operatorname{Sel}^{\mathcal{S}\pm} \to \bigoplus_{\rho \in \mathcal{S}} H^1_{s}(K_{\rho}, E[\ell])^{\pm} \right) \to \operatorname{Sel}^{\pm} \to \operatorname{Sel}^{\pm}_{s} \to 0.$$

Restricted:

- ▶ Choose L'/L to get S such that $Sel_S^{\pm} \subseteq H^1(L'/K, E[\ell])^{\pm}$.
- ► Compute $H^1(L'/K, E[\ell])^{\pm}$.

Relaxed:

- ▶ <u>Fact</u>: each $H_s^1(K_p, E[\ell])^{\pm}$ is one-dimensional.
- ▶ Show $c(n) \in \operatorname{Sel}^{S\epsilon_n}$ is non-zero in $H^1_s(K_p, E[\ell])$ for some n.

Compute Sel^{ϵ} .

Compute $\mathrm{Sel}^\epsilon.$

Let $L := K(E[\ell])$ and $L' := K(E[\ell], \frac{1}{\ell}P_K)$.

Compute Sel^ϵ .

Let
$$L:=K(E[\ell])$$
 and $L':=K(E[\ell],\frac{1}{\ell}P_K)$. Get S such that $\mathrm{Sel}_S^\epsilon\subseteq H^1(L'/K,E[\ell])^\epsilon$

Compute Sel^{ϵ} .

Let
$$L:=K(E[\ell])$$
 and $L':=K(E[\ell],\frac{1}{\ell}P_K)$. Get S such that

$$\mathrm{Sel}_{\mathcal{S}}^{\epsilon}\subseteq H^1(L'/K,E[\ell])^{\epsilon}\cong \underbrace{\mathbb{F}_{\ell}\cdot\delta(P_K)}_{-\epsilon}.$$

Compute Sel^{ϵ} .

Let $L:=K(E[\ell])$ and $L':=K(E[\ell],\frac{1}{\ell}P_K)$. Get S such that

$$\mathrm{Sel}_S^\epsilon \subseteq H^1(L'/K, E[\ell])^\epsilon \cong \underbrace{\mathbb{F}_\ell \cdot \delta(P_K)}_{-\epsilon}.$$

By Frobenius computations,

$$\forall p \in S, \qquad c(p) \in \mathrm{Sel}^{S\epsilon}, \qquad c(p)_p^s \neq 0.$$

Compute Sel^{ϵ} .

Let $L:=K(E[\ell])$ and $L':=K(E[\ell],\frac{1}{\ell}P_K)$. Get S such that

$$\mathrm{Sel}_S^\epsilon \subseteq H^1(L'/K, E[\ell])^\epsilon \cong \underbrace{\mathbb{F}_\ell \cdot \delta(P_K)}_{\bullet}.$$

By Frobenius computations,

$$\forall p \in S, \qquad c(p) \in \mathrm{Sel}^{S\epsilon}, \qquad c(p)_p^s \neq 0.$$

Thus

$$0 \to \operatorname{coker}\left(\operatorname{Sel}^{S\epsilon} \to \bigoplus_{p \in S} H^1_s(K_p, E[\ell])^\epsilon\right) \to \operatorname{Sel}^\epsilon \to \underbrace{\operatorname{Sel}^\epsilon_S}_0 \to 0.$$

Compute $\mathrm{Sel}^{-\epsilon}$.

Compute $\mathrm{Sel}^{-\epsilon}$. Fix $p \in \mathcal{S}$.

Compute $\mathrm{Sel}^{-\epsilon}$. Fix $p \in S$.

Let $L := K(E[\ell], \frac{1}{\ell}P_K)$ and $L' := \ker(G_L \xrightarrow{c(\rho)} E[\ell])$.

Compute $\mathrm{Sel}^{-\epsilon}$. Fix $p \in S$.

Let
$$L:=K(E[\ell], \frac{1}{\ell}P_K)$$
 and $L':=\ker(G_L \xrightarrow{c(p)} E[\ell])$. Get S' such that $\mathrm{Sel}_{S'}^{-\epsilon} \subseteq H^1(L'/K, E[\ell])^{-\epsilon}$

Compute $\mathrm{Sel}^{-\epsilon}$. Fix $p \in S$.

Let
$$L := K(E[\ell], \frac{1}{\ell}P_K)$$
 and $L' := \ker(G_L \xrightarrow{c(p)} E[\ell])$. Get S' such that $\operatorname{Sel}_{S'}^{-\epsilon} \subseteq H^1(L'/K, E[\ell])^{-\epsilon} \cong \underbrace{\mathbb{F}_{\ell} \cdot \delta(P_K)}_{\mathbb{F}_{\ell} \cdot \mathcal{E}(p)} \oplus \underbrace{\mathbb{F}_{\ell} \cdot c(p)}_{\mathbb{F}_{\ell} \cdot \mathcal{E}(p)}.$

Compute $\mathrm{Sel}^{-\epsilon}$. Fix $p \in S$.

Let
$$L := K(E[\ell], \frac{1}{\ell}P_K)$$
 and $L' := \ker(G_L \xrightarrow{c(p)} E[\ell])$. Get S' such that $\operatorname{Sel}_{S'}^{-\epsilon} \subseteq H^1(L'/K, E[\ell])^{-\epsilon} \cong \underbrace{\mathbb{F}_{\ell} \cdot \delta(P_K)} \oplus \underbrace{\mathbb{F}_{\ell} \cdot c(p)}.$

By Frobenius computations,

$$\forall q \in S', \qquad c(pq) \in \mathrm{Sel}^{S'-\epsilon}, \qquad c(pq)_q^s \neq 0.$$

Compute $\mathrm{Sel}^{-\epsilon}$. Fix $p \in S$.

Let $L:=K(E[\ell], \frac{1}{\ell}P_K)$ and $L':=\ker(G_L \xrightarrow{c(p)} E[\ell])$. Get S' such that

$$\mathrm{Sel}_{S'}^{-\epsilon} \subseteq H^1(L'/K, E[\ell])^{-\epsilon} \cong \underbrace{\mathbb{F}_{\ell} \cdot \delta(P_K)}_{-\epsilon} \oplus \underbrace{\mathbb{F}_{\ell} \cdot c(p)}_{\epsilon}.$$

By Frobenius computations,

$$\forall q \in S', \qquad c(pq) \in \mathrm{Sel}^{S'-\epsilon}, \qquad c(pq)_q^s \neq 0.$$

Thus

$$0 \to \operatorname{coker}\left(\operatorname{Sel}^{S'-\epsilon} \to \bigoplus_{q \in S'} H^1_s(K_q, E[\ell])^{-\epsilon}\right) \to \operatorname{Sel}^{-\epsilon} \to \underbrace{\operatorname{Sel}^{-\epsilon}_{S'}}_{\subseteq \mathbb{F}_{\ell} \cdot \delta(P_K)} \to 0.$$

Thank you!