

Outline

- ◆ Partition an overview
- ◆ Kernighagn & Lin heuristic (KL)
- ◆ Fiduccia-Mattheyses heuristic (FM)
- ◆Simulated annealing based method (SA)
- ◆Multilevel circuit partitioning
- ◆ Partitioning for wirelength minimization
- ◆Clustering for delay minimization

2024/4/11

Andy Yu-Guang Chen

Importance of Circuit Partitioning

- ◆ Divide-and-conquer methodology
 - The most effective way to solve problems of high complexity
 - Ex: min-cut based placement, partitioning-based test generation,...
- ◆ System-level partitioning for multi-chip designs
 - ➤ Inter-chip interconnection delay dominates system performance.
- ◆ Circuit emulation/parallel simulation
 - Partition large circuit into multiple FPGAs (ex: Quickturn), or multiple special-purpose processors (ex: Zycad).
- ◆ Parallel CAD development
 - Task decomposition and load balancing
- ◆ In deep-submicron designs, partitioning defines local and global interconnect, and has significant impact on circuit performance

2024/4/11

Andy Yu-Guang Chen

7

Basic Definitions

- ◆Cell: a logic block used to build larger circuits.
- ◆Pin: a wire (metal or polysilicon) to which another external wire can be connected.
- ◆Nets: a collection of pins which must be electronically connected.
- ◆ Netlist: a list of all nets in a circuit.

2024/4/11

Andy Yu-Guang Chen

Basic Definitions

- ♦ Manhattan distance: If two points (pins) are located at coordinates (x_1, y_1) and (x_2, y_2) , the Manhattan distance between them is given by $d_{12} = |x_1-x_2| + |y_1-y_2|$.
- ◆ Rectilinear spanning tree: a spanning tree that connects its pins using Manhattan paths.
- ◆ Steiner tree: a tree that connects its pins, and additional points (Steiner points) are permitted to used for the connections.

2024/4/11

Circuit Representation

- ◆ Netlist:
 - Gates: A, B, C, D
 - ➤ Nets: {A,B,C}, {B,D}, {C,D}

- ◆Hypergraph:
 - ➤ Vertices: A, B, C, D
 - ➤ Hyperedges: {A,B,C}, {B,D}, {C,D}
 - ➤ Vertex label: Gate size/area
 - Hyperedge label: Importance of net (weight)

2024/4/11

Andy Yu-Guang Chen

Some Terminology

- **♦** Partitioning
 - Dividing bigger circuits into a small number of partitions (top down)
- ◆ Clustering
 - Cluster small cells into bigger clusters (bottom up)
- Covering / Technology Mapping
 - Clustering such that each partitions (clusters) have some special structure (ex: can be implemented by a cell in a cell library)
- k-way Partitioning
 - Dividing into k partitions
- ◆ Bipartitioning
 - 2-way partitioning
- **♦** Bisectioning
 - Bipartitioning such that the two partitions have the same size

2024/4/11

Andy Yu-Guang Chen

11

Problem Definition: Partitioning

- ♦ k-way partitioning: Given a graph G(V, E), where each vertex $v \in V$ has a size s(v) and each edge $e \in E$ has a weight w(e), the problem is to divide the set V into k disjoint subsets $V_1, V_2, ..., V_k$, such that an objective function is optimized, subject to certain constraints.
- ♦ Bounded size constraint: The size of the *i*-th subset is bounded by B_i ($\sum_{v \in V_i} s(v) \leq B_i$).
 - > Is the partition balanced?
- ♦ Min-cut cost between two subsets: Minimize $\sum_{\forall e=(u,v)\land p(u)\neq p(v)} w(e)$, where p(u) is the partition # of node u.
- ◆ The 2-way, balanced partitioning problem is NP-complete, even in its simple form with identical vertex sizes and unit edge weights.

2024/4/13

Andy Yu-Guang Chen

Circuit Partitioning Formulation

- ◆General multi-way partitioning formulation:
 - \triangleright Partition a network N into N_1 , N_2 , ..., N_k such that
 - · Each partition has an area constraint

$$\sum_{v \in N_i} a(v) \le A_i$$

· Each partition has an I/O constraint

$$c(N_i, N - N_i) \leq I_i$$

➤ Minimize the total interconnection:

$$\sum_{N_i} c(N_i, N - N_i)$$

2024/4/11

Andy Yu-Guang Chen

15

Partitioning Algorithms

- ◆Iterative partitioning algorithms
- ◆Spectral based partitioning algorithms
- ◆ Deterministic vs. probabilistic algorithms
- ◆ Net partitioning vs. module partitioning
- ◆Multi-way partitioning
- ◆Multi-level partitioning
- ◆ Further study in partitioning techniques (timing-driven ...)

2024/4/11

Andy Yu-Guang Chen

Iterative Partitioning Algorithms

- Greedy iterative improvement method
 - ➤ [Kernighan-Lin 1970]
 - >[Fiduccia-Mattheyses 1982]
 - >[Krishnamurthy 1984]
- **◆Simulated Annealing**
 - >[Kirkpartrick-Gelatt-Vecchi 1983]
 - ➤[Greene-Supowit 1984]

2024/4/11

Andy Yu-Guang Chen

17

Kernighan-Lin Algorithm

- ◆ Kernighan and Lin, "An efficient heuristic procedure for partitioning graphs," *The Bell System Technical Journal*, vol. 49, no. 2, Feb. 1970.
- ◆ An **iterative**, **2-way**, **balanced** partitioning (bisectioning) heuristic.
- ◆Till the cut size keeps decreasing
 - Vertex pairs which give the largest decrease or the smallest increase in cut size are exchanged.
 - > These vertices are then **locked** (and thus are prohibited from participating in any further exchanges).
 - ➤ This process continues until all the vertices are locked.
 - Find the set with the largest partial sum for swapping.
 - Unlock all vertices.

2024/4/11

Andy Yu-Guang Chen

A Trivial Approach

- ◆Try all possible bisections, find the best one
- ♦ If there are 2n vertices, # of possibilities = $\frac{C_n^{2n}}{2} = \frac{(2n)!}{(2 \times (n!^2))} = n^{O(n)}$
- ◆For 4 vertices (A,B,C,D), 3 possibilities
 - 1. X={A,B} & Y={C,D}
 - 2. X={A,C} & Y={B,D}
 - 3. $X=\{A,D\} \& Y=\{B,C\}$
- ◆For 100 vertices, 5x10²⁸ possibilities
 - ➤ Need 1.59x10¹³ years if one can try 100M possibilities per second

2024/4/11

Andy Yu-Guang Chen

21

Idea of KL Algorithm

- ◆D_A = Decrease in cut value if moving A
- External cost (connection) E_A Internal cost I_A
 - ➤ Moving node a from block X to block Y would increase the value of the cutset by E_A and decrease it by I_A

 $D_A = 2-1 = 1$ $D_B = 1-1 = 0$

2024/4/11

Andy Yu-Guang Chen

Recap of KL Algorithm

Pair-wise exchange of nodes to reduce cut size

Allow cut size to increase temporarily within a pass

Compute the gain of a swap

Repeat

Perform a feasible swap of max gain

Mark swapped nodes "locked"

Update swap gains

Until no feasible swap

Find max prefix partial sum in gain sequence g₁, g₂, ..., g_m

Make corresponding swaps permanent

Start another pass if current pass reduces the cut size (usually converge after a few passes)

2024/4/11

Andy Yu-Guang Chen

Kernighan-Lin Algorithm

Algorithm: Kernighan-Lin(G) Input: G = (V, E), |V| = 2n.

Output: Balanced bi-partition A and B with "small" cut cost.

2 Bipartition G into A and B such that $|V_A| = |V_B|, V_A \cap V_B = \emptyset$,

and $V_A \cup V_B = V$. 3 repeat

4 Compute D_v , $\forall v \in V$.

for i = 1 to n do

- Find a pair of unlocked vertices $v_{ai} \in V_A$ and $v_{bi} \in V_B$ whose exchange makes the largest decrease or smallest increase in cut
- 7 Mark v_{ai} and v_{bi} as locked, store the gain ĝ_i, and compute the new D_v, for all unlocked v ∈ \(\lambda_i \mathbf{V}_i\).
 8 Find k, such that G_k = \(\sum_{i=1}^{\infty} \vec{\epsilon}_{i=1}^{\infty} \vec{\epsilon}_{i}\) is maximized;
- 9 if $G_k > 0$ then
- Move $v_{a1}, ..., v_{ak}$ from V_A to V_B and $v_{b1}, ..., v_{bk}$ from V_B to V_A ;
- 11 Unlock v, $\forall v \in V$.
- 12 until $G_k \leq 0$;
- 13 end

2024/4/11

Andy Yu-Guang Chen

Time Complexity

- lacktriangle Line 4: Initial computation of D: $O(n^2)$
- ightharpoonup Line 5: The **for**-loop: O(n)
- ♦ The body of the loop: $O(n^2)$. ▶ Lines 6--7: Step *i* takes $(n-i+1)^2$ time.
- ♦ Lines 4--11: Each pass of the repeat loop: $O(n^3)$.
- ◆Suppose the repeat loop terminates after *r* passes.
- ♦ The total running time: $O(rn^3)$.
 - ➤ Polynomial-time algorithm?

2024/4/11

Andy Yu-Guang Chen

3:

A Useful Survey Paper

◆ Charles Alpert and Andrew Kahng, "Recent Directions in Netlist Partitioning: A Survey", Integration: the VLSI Journal, 19(1-2), 1995, pp. 1-81

2024/4/1

Andy Yu-Guang Chen

Extensions of K-L Algorithm

- ♦ Unequal sized subsets (assume $n_1 < n_2$)
 - 1. Partition: $|A| = n_1$ and $|B| = n_2$.
 - 2. Add n_2 - n_1 dummy vertices to set A. Dummy vertices have no connections to the original graph.
 - 3. Apply the Kernighan-Lin algorithm.
 - 4. Remove all dummy vertices.
- ◆ Unequal sized "vertices"
 - 1. Assume that the smallest "vertex" has unit size.
 - 2. Replace each vertex of size *s* with *s* vertices which are fully connected with edges of infinite weight.
 - 3. Apply the Kernighan-Lin algorithm.
- ♦ k-way partition
 - 1. Partition the graph into k equal-sized sets.
 - 2. Apply the Kernighan-Lin algorithm for each pair of subsets.
 - 3. Time complexity? Can be reduced by recursive bi-partition.

2024/4/11

Andy Yu-Guang Chen

35

Drawbacks of the Kernighan-Lin Heuristic

- ◆ The K-L heuristic handles only unit vertex weights.
 - ➤ Vertex weights might represent block sizes, different from blocks to blocks.
 - Reducing a vertex with weight w(v) into a clique with w(v) vertices and edges with a high cost increases the size of the graph substantially.
- ◆ The K-L heuristic handles only exact bisections.
 - Need dummy vertices to handle the unbalanced problem.
- ◆ The K-L heuristic cannot handle hypergraphs.
 - Need to handle multi-terminal nets directly.
- lacktriangle The time complexity of a pass is high, $O(n^3)$.

2024/4/11

Andy Yu-Guang Chen

Coping with Hypergraph

◆ A hypergraph H=(N, L) consists of a set N of vertices and a set L of hyperedges, where each hyperedge corresponds to a subset N; of distinct vertices with $|N_i| \ge 2$.

- ◆ Schweikert and Kernighan, "A proper model for the partitioning of electrical circuits," 9th Design Automation Workshop, 1972.
- ◆ For multi-terminal nets, **net cut** is a more accurate measurement for cut cost (i.e., deal with hyperedges).
 - ➤ {A, B, E}, {C, D, F} is a good partition.
 - Should not assign the same weight for all edges.

37

Fiduccia-Mattheyses Heuristic

- ◆ Fiduccia and Mattheyses, "A linear time heuristic for improving network partitions," DAC-82.
- New features to the K-L heuristic:
 - Aims at reducing net-cut costs; the concept of cutsize is extended to hypergraphs.
 - Only a single vertex is moved across the cut in a single move.
 - Vertices are weighted.
 - > Can handle "unbalanced" partitions; a balance factor is introduced.
 - > A special data structure is used to select vertices to be moved across the cut to improve running time.
 - \triangleright Time complexity O(P), where P is the total # of terminals.

2024/4/11

Andy Yu-Guang Chen

Features of FM Algorithm

- ◆ Modification of KL Algorithm:
 - Can handle non-uniform vertex weights (areas)
 - > Allow unbalanced partitions
 - Extended to handle hypergraphs
 - Clever way to select vertices to move, run much faster

2024/4/11

Andy Yu-Guang Chen

39

Problem Formulation

- ◆Input: A hypergraph with
 - ➤ Set vertices V. (|V| = n)
 - Set of hyperedges E (total # pins in netlist = p)
 - ► Area a_u for each vertex u in V
 - Cost ce for each hyperedge in e
 - > An area ratio r
- ◆Output: 2 partitions X & Y such that
 - ➤ Total cost of hyperedges cut is minimized
 - > area(X) / (area(X) + area(Y)) is about r
- ◆This problem is NP-Complete!!!!!

2024/4/11

Andy Yu-Guang Chen

Cut

- Cutstate of a net:
 - Net 1 and Net 3 are cut by the partition.
 - Net 2, Net 4, Net 5, and Net 6 are uncut.
- ◆ Cutset = {Net 1, Net 3}.
- $|A| = \text{size of } A = a_1 + a_5; |B| = a_2 + a_3 + a_4 + a_6.$
- **lack** Balanced 2-way partition: Given a fraction r, 0 < r < 1, partition a graph into two sets A and B such that

$$\Rightarrow \frac{|A|}{|A|+|B|} \approx r$$
.

> Size of the cutset is minimized.

2024/4/11

Andy Yu-Guang Chen

Ideas of FM Algorithm

- ◆Similar to KL:
 - ➤ Work in passes
 - Lock vertices after moved
 - Actually, only move those vertices up to the maximum partial sum of gain
- ◆ Difference from KL:
 - ➤ Not exchanging pairs of vertices
 - Move only one vertex at each time
 - > The use of gain bucket data structure

2024/4/11

Andy Yu-Guang Chen

Input Data Structures

Cell array		Net array	
C1	Nets 1, 2	Net 1	C1, C2, C3, C4
C2	Nets 1, 3	Net 2	C1, C5
C3	Nets 1, 4	Net 3	C2, C5
C4	Nets 1, 5, 6	Net 4	C3, C6
C5	Nets 2, 3	Net 5	C4, C6
C6	Nets 4, 5, 6	Net 6	C4, C6

• Size of the network: $P = \sum_{i=1}^{6} n(i) = 14$

Only move a cell at a time, preserving "balance."

$$\begin{array}{ll} \frac{|A|}{|A|+|B|} & \approx & r \\ rW - S_{max} & \leq & |A| \leq rW + S_{max}, \end{array}$$

Basic Ideas: Balance and Movement

where W=|A|+|B|; $S_{\text{max}}=\max_{i}s(i)$.

◆ g(i): gain in moving cell i to the other set, i.e., size of old cutset - size of new cutset.

♦ Suppose $\widehat{g_i}$'s: g(b), g(e), g(d), g(a), g(f), g(c) and the largest partial sum is g(b)+g(e)+g(d). Then we should move b, e, d resulting two sets: $\{a, c, e, d\}$, $\{b, f\}$.

Unit 5A

Cell Gains and Data Structure Manipulation

 $-p(i) \leq g(i) \leq p(i)$

♦ Two "bucket list" structures, one for set A and one for set B ($P_{\text{max}} = \text{max}_i p(i)$).

• O(1)-time operations: find a cell with Max Gain, remove Cell i from the structure, insert Cell i into another structure, update g(i) to g(i)+ Δ , update the Max Gain pointer.

2024/4/11

Andy Yu-Guang Chen

65

Net Distribution and Critical Nets

- igoplus Distribution of Net i: (A(i), B(i)) = (2, 3).
 - \triangleright (A(i), B(i)) for all i can be computed in O(P) time.

- Critical Nets: A net is critical if it has a cell which if moved will change its cutstate.
 - \triangleright 4 cases: A(i) = 0 or 1, B(i) = 0 or 1.

Gain of a cell depends only on its critical nets.

2024/4/11

Andy Yu-Guang Chen

Complexity of Updating Cell Gains

- Once a net has "locked' cells at both sides, the net will remain cut from now on.
- Suppose we move $a_1, a_2, ..., a_k$ from left to right, and then move b from right to left
- lacktriangle At most only moving $a_1, a_2, ..., a_k$ and b need updating!

- lack To update the cell gains, it takes O(n(i)) work for Net i.
- ◆ Total time = n(1)+n(2)+...+n(N) = O(P).

2024/4/1

Andy Yu-Guang Chen

Time Complexity of FM

- ◆For each pass,
 - Constant time to find the best vertex to move
 - After each move, time to update gain buckets is proportional to degree of vertex moved
 - Total time is O(p), where p is total number of pins
- ◆ Number of passes is usually small

2024/4/11

Andy Yu-Guang Chen

73

Extension by Krishnamurthy

◆ "An Improved Min-Cut Algorithm for Partitioning VLSI Networks", IEEE Trans. Computer, 33(5):438-446, 1984.

2024/4/11

Andy Yu-Guang Chen

- ◆ For each vertex, instead of having a gain bucket, a gain vector is used
- ◆ Gain vector is a sequence of potential gain values corresponding to numbers of possible moves into the future
- ◆Therefore, rth entry looks r moves ahead
- ◆Time complexity is O(pr), where r is max # of lookahead moves stored in gain vector
- ◆ If ties still occur, some researchers observe that LIFO order improves solution quality

2024/4/11

Andy Yu-Guang Chen

75

Ratio Cut Objective by Wei and Cheng

 "Towards Efficient Hierarchical Designs by Ratio Cut Partitioning", ICCAD, pages 1:298-301, 1989.

2024/4/11

Andy Yu-Guang Chen

- ◆It is not desirable to have some pre-defined ratio on the partition sizes
- Wei and Cheng proposed the Ratio Cut objective
- ◆Try to locate natural clusters in circuit and force the partitions to be of similar sizes at the same time
- ◆ Ratio Cut $R_{xy} = C_{xy}/(|X| \cdot |Y|)$
- A heuristic based on FM was proposed

2024/4/11

4/4/11

Andy Yu-Guang Chen

77

Sanchis Algorithm

◆ "Multiple-way Network Partitioning", IEEE Trans. Computers, 38(1):62-81, 1989.

2024/4/1

Andy Yu-Guang Chen

Multi-Way Partitioning

- ◆ Dividing into more than 2 partitions
- Algorithm by extending the idea of FM + Krishnamurthy

2024/4/11

Andy Yu-Guang Chen

79

Greedy Algorithm

- ◆ A very simple technique for State Space Search Problem
- ◆Start from any state
- ◆ Always move to a neighbor with the min cost (assume minimization problem)
- ◆Stop when all neighbors have a higher cost than the current state

2024/4/11

Andy Yu-Guang Chen

Simulated Annealing

- ◆ Very general search technique
- ◆Try to avoid being trapped in local minimum by making probabilistic moves
- ◆ Popularize as a heuristic for optimization by:
 - ➤ Kirkpatrick, Gelatt and Vecchi, "Optimization by Simulated Annealing", Science, 220(4598):498-516, May 1983

2024/4/11

Andy Yu-Guang Chen

00

Basic Idea of SA

- ♦ Inspired by the Annealing Process:
 - The process of carefully cooling molten metals in order to obtain a good crystal structure
 - First, metal is heated to a very high temperature
 - > Then slowly cooled
 - By cooling at a proper rate, atoms will have an increased chance to regain proper crystal structure
- Attaining a min cost state in simulated annealing is analogous to attaining a good crystal structure in annealing

2024/4/11

Andy Yu-Guang Chen

Simulated Annealing

- ◆ Kirkpatrick, Gelatt, and Vecchi, "Optimization by simulated annealing," Science, May 1983.
- ◆ Greene and Supowit, "Simulated annealing without rejected moves," ICCD-84.

The SA Procedure

Let *t* be the initial temperature

Repeat

Repeat

- > Pick a neighbor of the current state randomly
- ▶ Let c = cost of current state
 Let c' = cost of the neighbour picked
- \triangleright If c' < c, then move to the neighbour (downhill move)
- If c' > c, then move to the neighbour with probablility $e^{-(c'-c)/t}$ (uphill move)

Until equilibrium is reached

Reduce t according to cooling schedule

Until Freezing point is reached

2024/4/11

Andy Yu-Guang Chen

Simulated Annealing Basics

- ◆ Non-zero probability for "up-hill" moves.
- Probability depends on
 - 1. magnitude of the "up-hill" movement
 - 2. total search time

$$Prob(S \rightarrow S') = \left\{ \begin{array}{ll} 1 & \text{if } \Delta C \leq 0 \ \ /* \ "down-hill" \ moves*/\\ e^{-\Delta C} & \text{if } \Delta C > 0 \ \ /* \ "up-hill" \ moves*/ \end{array} \right.$$

- $igspace \Delta C = cost(S') Cost(S)$
- ◆ T: Control parameter (temperature)
- ♦ Annealing schedule: $T=T_0$, T_1 , T_2 , ..., where $T_i = r^i T_0$, r < 1.

Unit 5A

87

Things to decide when using SA

- When solving a combinatorial problem, we have to decide:
 - ➤ The state space
 - >The neighborhood structure
 - ➤ The cost function
 - ➤ The initial state
 - > The initial temperature
 - The cooling schedule (how to change t)
 - ➤ The freezing point

2024/4/11

Andy Yu-Guang Chen

Basic Ingredients for Simulated Annealing

◆Analogy:

Physical system	Optimization problem
state	configuration
energy	cost function
ground state	optimal solution
quenching	iterative improvement
careful annealing	simulated annealing

- ◆ Basic Ingredients for Simulated Annealing:
 - > Solution space
 - Neighborhood structure
 - Cost function
 - > Annealing schedule

Unit 5A

89

State Space Search Problem

- ◆Combinatorial optimization problems (like partitioning) can be thought as a State Space Search Problem
- ◆ A <u>State</u> is just a configuration of the combinatorial objects involved
- ◆The State Space is the set of all possible states (configurations)
- ◆ A Neighborhood Structure is also defined (which states can one go in one step)
- ◆There is a cost corresponding to each state
 - Search for the min (or max) cost state

2024/4/11

Andy Yu-Guang Chen

Common Cooling Schedules

- ◆Initial temperature, Cooling schedule, and freezing point are usually experimentally determined
- ◆Some common cooling schedules:

 $\triangleright t = \alpha t$, where α is typically around 0.95

 $> t = e^{-\beta t} t$, where β is typically around 0.7

2024/4/11

Andy Yu-Guang Chen

91

Partition by Simulated Annealing

- ◆ Kirkpatrick, Gelatt, and Vecchi, "Optimization by simulated annealing," Science, May 1983.
- ◆ Solution space: set of all partitions

♦ Neighborhood structure:

2024/4/11

Andy Yu-Guang Chen

Bisectioning using SA

◆ Johnson, Aragon, McGeoch and Schevon, "Optimization by Simulated Annealing: An Experimental Evaluation Part I, Graph Partitioning", Operations Research, 37:865-892, 1989.

2024/4/11

Andy Yu-Guang Chen

93

SA – The Evaluation

- ◆ An extensive empirical study of Simulated Annealing versus Iterative Improvement Approaches
- ◆ Conclusion: SA is a competitive approach, getting better solutions than KL for random graphs
- Remarks:
 - ➤ Netlists are not random graphs, but sparse graphs with local structure
 - SA is too slow. So KL/FM variants are still most popular
 - Multiple runs of KL/FM variants with random initial solutions may be preferable to SA

2024/4/11

Andy Yu-Guang Chen

Some Other Approaches

- ◆KL/FM-SA Hybrid: Use KL/FM variant to find a good initial solution for SA, then improve that solution by SA at low temperature
- **◆**Tabu Search
- **♦**Genetic Algorithm
- ◆ Spectral Methods (finding Eigenvectors)
- **♦** Network Flows
- **♦**Quadratic Programming

2024/4/11

Andy Yu-Guang Chen

Multi-Level Partitioning

◆G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar, "Multilevel Hypergraph Partitioning: Applications in VLSI Domain", DAC 1997

2024/4/11

Andy Yu-Guang Chen

99

Multilevel Partitioning

- ◆ Three phases (for bipartitioning)
- Coarsening: construct a sequence of smaller (coarser) graphs.
 - Initial partitioning: construct a bipartitioning solution for the coarsest graph.
 - Uncoarsening & refinement: the bipartitioning solution is successively
 projected to the next-level finer graph, and at each level an iterative
 refinement algorithm (such as KL or FM) is used to further improve the
 solution.

2024/4/11

hMETIS

- ◆ Three coarsening algorithms:
 - Edge coarsening: A maximal matching of the vertices.
 - Hyperedge coarsening: a set of hyperedges is selected, and the vertices belonging to a selected hyperedge are merged into a cluster. (Preference: hyperedges with large weights and hyperedges of small size.)
 - Modified hyperedge coarsening: hyperedge coarsening + merging the remaining vertices of each hyperedge into a cluster.

2024/4/11

Andy Yu-Guang Chen

Uncoarsening and Refinement Phase

- ➤ Based on FM with two simplifications:
 - Limit number of passes to 2
 - Early-Exit FM (FM-EE), stop each pass if k vertex moves do not improve the cut
- ◆HER (Hyperedge Refinement)
 - ➤ Move a group of vertices between partitions so that an entire hyperedge is removed from the cut

2024/4/11

Andy Yu-Guang Chen

103

hMETIS Algorithm

- ◆ Software implementation available for free download from Web
- ♦ hMETIS-EE₂₀
 - 20 random initial partitions
 - with 10 runs using HEC for coarsening
 - with 10 runs using MHEC for coarsening
 - > FM-EE for refinement
- ♦ hMETIS-FM₂₀
 - > 20 random initial partitions
 - with 10 runs using HEC for coarsening
 - > with 10 runs using MHEC for coarsening
 - > FM for refinement

2024/4/11

Andy Yu-Guang Chen

Experimental Results

- Compared with five previous algorithms
- ♦ hMETIS-EE₂₀ is:
 - > 4.1% to 21.4% better
 - On average 0.5% better than the best of the 5 algorithms
 - Roughly 1 to 15 times faster
- ♦ hMETIS-FM₂₀ is:
 - ➤ On average 1.1% better than hMETIS-EE₂₀
 - ➤ Improve the best-known bisections for 9 out of 23 test circuits
 - Twice as slow as hMETIS-EE₂₀

2024/4/11

Andy Yu-Guang Chen

105

Partitioning for Wirelength Minimization

- ◆ Chen, Chang, Lin, "IMF: Interconnection-driven floorplanning for large-scale building-module designs," ICCAD-05
- Minimizing cut size is not equivalent to minimizing wirelength (WL)

- Problem: hyperedge weight is a constant value!
 - Shall map the min-cut cost to wirelength (WL) change
 - Shall assign the hyperedge weight as the value of wirelength contribution if the hyperedge is cut

2024/4/11

Andy Yu-Guang Chen

Net Weight Assignment

• net₁ connects a movable node a and a fixed node 1.
Weight(net₁) = WL(net₁ is cut) – WL(net₁ is not cut)

$$= L - OL = L$$

net₂ connects a movable node b and a fixed node 2.
Weight(net₂) = WL(net₂ is cut) – WL(net₂ is not cut)

$$= 0.8L - 0.2L = 0.6L$$

107

Examples

Cut weight is proportitional to the wirelength (WL)

WL = Cut weight + 0.2L

0.2L is the WL lower bound: placing a & b in the left side)

- Theorem: $WL_i = W_{1,i} + n_{cut,i}$
 - n_{cut,i}: cut weight for net i
 - $w_{1,i}$: the wirelength lower bound for net i
- Then, we have $\min(\sum WL_i) = \min(\sum (w_{1,i} + n_{cut,i})) = \sum w_{1,i} + \min(\sum n_{cut,i})$

Finding the minimum wirelength is equivalent to finding the cut weight

2024/4/11

Andy Yu-Guang Chen

Unit Delay Model

- No gate delay.
- ◆ No interconnection delay within a cluster.
- ◆ Delay of 1 unit for an interconnection between 2 clusters.
- ◆ An optimal algorithm for area constraint only (Lawler, Levitt and Turner, IEEE TC, 1966).
- ◆ An optimal algorithm for pin constraint only (Cong and Ding, ICCAD, 1992).

Circuit delay = 3.

2024/4/11

General Delay Model

- Each gate has a delay.
- ◆ No interconnection delay within a cluster.
- ◆ Delay of *D* units for an interconnection between 2 clusters.
- ◆ A heuristic algorithm for area constraint only (Murgai, Brayton and Sangivanni-Vincentelli, ICCAD, 1991).

D = 2, $\delta(v) = 1$, circuit delay = 6+4 = 10.

General Delay Model (Cont'd)

- Rajaraman and Wong, "Optimal clustering for delay minimization," DAC, 1993.
- Optimal algorithm: $O(n^2 \log n + nm)$, where n is # of gates, m is # of interconnections.
- Definitions:
 - M: the area constraint on a cluster.
 - W(C): the total area of the gates in cluster C.
 - N: a given combinational circuit.
 - N_v: v and all its predecessors in N.
 - $\delta(v)$: the delay of v.
 - $\Delta(u,v)$: maximum delay along any path from the output of u to the output of v, ignoring delays on interconnections.
 - w(v): the area of v.
 - I(v): the delay at v in an optimal clustering of N_v . For each primary input v, $I(v) = \delta(v)$.
 - $I'(u)=I(u)+\Delta(u,v)$, for each u in $N_v-\{v\}$.

2024/4/11

Andy Yu-Guang Chen

113

General Delay Model (Cont'd)

- Algorithm: labeling phase + clustering phase.
- **Labeling phase:** compute l(v) for each v in a topological order.
 - P: the set of nodes in N_v -{v} sorted in non-increasing order in the value of l'.

```
Algorithm Labeling(v);
begin
done \leftarrow false;
cluster(v) \leftarrow \{v\};
while (not done)
        Remove the first node u in P;
        if (W(cluster(v)) + w(u)) \le M)
                  cluster(v) \leftarrow cluster(v) \cup \{u\};
                  if P is empty
                          done \leftarrow true;
                  endif
        else
                  done ← true;
        endif
endwhile
l_1(v) \leftarrow max\{l'(x) \mid x \in cluster(v) \cap \mathcal{PI}\};

l_2(v) \leftarrow ll(u) + D; max\{l'(u) + P \mid u \in N_v - cluster(v)\}
l(v) \leftarrow max\{l_1(v), l_2(v)\};
```

Andy Yu-Guang Chen

