ACM-ICPC Standard Code Library

李珎 2014/10/15

目录

数学	3
GCD	3
EXTGCD	3
模线性方程	3
逆元	4
拓展欧几里得求逆元	4
线性求逆元	4
Pell 方程	5
素数测试	5
Millar-rabin	6
Pollar-Rho	7
欧拉函数	8
线性筛	8
单值	9
性质	9
莫比乌斯函数	9
HDU4746 Mobius	10
Lucas 定理	12
n! mod p 的性质	13
拉格朗日插值法	13
牛顿迭代	14
高斯消元	14
FFT	14
中国剩余定理	17
积分	18
自适应 Simpson	18
龙贝格积分	19
Baby-Step-Giant-Step	19
公式	22
A^x mod C	22
组合数性质	22
Polya	23
博弈游戏	23
威佐夫博奕	23
反 Nim 博弈(Anti-SG)	24
砍树博弈	24
无向图删边博弈	24
常用算法	25
矩阵快速幂	25
最长回文串 Manacher 算法	26
直线下格点统计	26
环状最长公共子串	
双向广搜	28

Dancing Links-重复覆盖	29
Dancing-Links 精确覆盖	31
数据结构	32
线段树	32
路径压缩并查集	34
倍增 LCA	35
树分治	36
计算几何	39
平面一条直线穿过最多圆个数	39
基础定义	41
点在线段上	42
线段是否相交	42
直线相交	42
点在线段上	43
线段与线段交点	43
中垂线	43
三维点模板	43
三角剖分	44
其他	61
大数模板	61
io 优化	70
用位运算生成下一个含有 k 个 1 的二进制数	72
枚举子集	72
预处理子集和	72

数学

GCD

```
int gcd(int a,int b){
   if (b==0)return a;
   return gcd(b , a%b);
}
EXTGCD
int extgcd(int a,int b,int & x,int & y)
{
   int d = a;
   if (b!=0){
      d = extgcd(b,a%b,y,x);
      y = (a/b)*x;
   }else{
      x=1; y=0;
   }
   return d;
}
```

模线性方程

```
ax + by = \gcd(a,b) = d 通解为: x = x1 + \left(\frac{b}{a}\right) * t, y = y1 - \left(\frac{a}{a}\right) * t 模线性方程合并: a_1 * x + a_2 * y == b2 - b1 c1 == c \ (mod \ lcm(a1,a2)) \ (c \ \text{前面方程求出的最小特解}) int main() { while(~scanf("%d",&n)) { LL a1,b1; bool ok = 1; scanf("%lld%lld",&a1,&b1); if(n == 1) { printf("%lld\n",a1+b1);
```

```
continue;
      }
      for(int i = 1 ; i < n ; i ++){
          LL a2,b2;
          scanf("%lld%lld",&a2,&b2);
          LL gg = gcd(a1,a2);
          if((b2 - b1) % qq != 0)ok = 0;
          if(ok){
             LL d = ext_gcd(a1,a2);
             x *= (b2-b1)/d;
             x = x - (x*d/a2)*(a2/d);
             if(x < 0) x += a2/d;
             LL c = a1 * x + b1;
             b1 = c;
             a1 = a1 / d * a2;
         }
      }
      if(ok)
          printf("%lld\n",b1);
      else
          printf("-1\n");
   }
   return 0;
}
逆元
拓展欧几里得求逆元
int mod_inverse(int a,int m)
{
   int x,y;
   extgcd(a,m,x,y);
   return ( m + x % m ) % m;
}
线性求逆元
int inv(int a) {
   //return fpow(a, MOD-2, MOD);
   return a == 1 ? 1 : (long long)(MOD - MOD / a) * inv(MOD % a) % MOD;
}
```

Pell方程

```
假设对于 Pell 方程 x^2 - D*y^2 = 1 sqrt(D)=[a0,a1,...an,b1,b2...b(m-1),bm,b1,b2,...] 即以[b1,b2...bm] 为循环节出现 p/q=[a0,a1,...an,b1,b2,....b(m-1)] 则一定有: bm-1 = 2*b1 且若 m 为偶数: x = p, y = q 若 m 为奇数: x = 2*p^2 + 1, y = p*q
```

如果我们求出 Pell 方程的最小正整数解后,就可以根据递推式求出所有的解。

$$x_n = x_{n-1}x_1 + dy_{n-1}y_1$$
$$y_n = x_{n-1}y_1 + y_{n-1}x_1$$

则根据上式我们可以构造矩阵,然后就可以快速幂了。

$$\begin{bmatrix} x_k \\ y_k \end{bmatrix} = \begin{bmatrix} x_1 & dy_1 \\ y_1 & x_1 \end{bmatrix}^{k-1} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

这样就可以求出第 k 大的解。

素数测试

```
int power(int a, int e, int m){
    if (e == 0) return 1;
    if (e == 1) return a % m;
    int t = power(a, e/2, m);
    if (e % 2 == 1) return (t * t * a) % m;
    return (t * t) % m;
}
//int 范围内可测
bool isprime(int x){
    const int a[4] = {2, 3, 5, 7};
    for (int i = 0; i < 4; i++)
        if (power(a[i], x-1, x) != 1) return false;
    return true;</pre>
```

}

Millar-rabin

```
typedef long long LL;
LL mul(LL a, LL b, LL mod)
{
   LL ans=0;
   while (b){
       if (b&1) ans=(ans+a)%mod;
       a=(a<<1)%mod;
       b>>=1;
   }
   return ans;
}
bool test(LL n, LL b) {
   LL m = n - 1;
   LL counter = 0;
   while (~m & 1) {
      m >>= 1;
      counter ++;
   }
   LL ret = pow_mod(b, m, n);
   if (ret == 1 || ret == n - 1) {
      return true;
   }
   counter --;
   while (counter >= 0) {
       ret = multiply_mod(ret, ret, n);
      if (ret == n - 1) {
          return true;
      }
      counter --;
   return false;
}
const int BASE[12] = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37\};
bool is_prime(LL n) {
   if (n < 2) {
      return false;
```

```
if (n < 4) {
    return true;
}
if (n == 3215031751LL) {
    return false;
}
for (int i = 0; i < 12 && BASE[i] < n; ++ i) {
    if (!test(n, BASE[i])) {
        return false;
    }
}
return true;
}
</pre>
```

Pollar-Rho

```
typedef long long LL;
LL pollard_rho(LL n, LL seed) {
   LL x, y, head = 1, tail = 2;
   x = y = rand() % (n - 1) + 1;
   while (true) {
      x = multiply_mod(x, x, n);
      x = add_mod(x, seed, n);
      if (x == y) {
          return n;
      }
      LL d = gcd(abs(x - y), n);
      if (1 < d \&\& d < n) {
          return d;
      }
      head ++;
      if (head == tail) {
          y = x;
          tail <<= 1;
      }
   }
}
vector <LL> divisors;
void factorize(LL n) {
```

```
if (n > 1) {
       if (is_prime(n)) {
          divisors.push_back(n);
       } else {
          LL d = n;
          while (d >= n) \{
             d = pollard_rho(n, rand() % (n - 1) + 1);
          }
          factorize(n / d);
          factorize(d);
      }
   }
}
欧拉函数
线性筛
void get_phi(int N)
{
   CLR(check, 0);
   fai[1] = 1;
   int tot = 0;
   for(int i=2;i<N;i++){</pre>
       if(!check[i]){
          prime[tot ++] = i;
          phi[i] = i-1;
       for(int j=0;j<tot;j++){</pre>
          if(i * prime[j] > N)break;
          check[i * prime[j]] = true;
          if(i % prime[j] == 0){
              phi[i * prime[j]] = phi[i] * prime[j];
             break;
          }else{
              phi[i * prime[j]] = phi[i] * (prime[j] - 1);
          }
      }
```

}

}

单值

```
int phi(int x)
   int num = x;
   for(int i = 2; i * i <= x; i ++){
      if(x \% i == 0){
          num = (num / i) * (i-1);
          while(x % i == 0)x /= i;
      }
   }
   if(x != 1)num = (num/x) * (x-1);
   return num;
}
性质
1. 若(N%a==0 && (N/a)%a==0) 则有:E(N)=E(N/a)*a;
2. 若(N%a==0 && (N/a)%a!=0) 则有:E(N)=E(N/a)*(a-1);
3. 若N>2, 欧拉函数E(N)必定是偶数若gcd(a,b) = 1,则有E(a * b) = E(a) * E(b)
4. 若N>1,不大于N且与N互素的所有正整数的和是1/2 * N * E(N)
5. 因子和:若 k=p1^a1*p2^a2...*pi^ai
 F(k) = (p1^0+...+p1^a1)*(p2^0+...+p2^a2)*...*(pi^0 + ... + pi^ai)
   \sum_{d|n} \mu(d) = [n == 1]
   \sum_{d|n} \boldsymbol{\varphi}(\boldsymbol{d}) = \boldsymbol{n}
7. A^x = A^(x % Phi(C) + Phi(C)) (mod C) 其中 phi 是欧拉函数
莫比乌斯函数
f(n) = \sum_{d|n} \mu(d) F(n/d)
1,
    f(n) = sigma(d|n, g(d))
    g(n) = sigma(d|n, mu(d)*f(n/d))
```

```
2,
```

```
f(n) = sigma(n|d, g(d))
    g(n) = sigma(n|d, mu(d/n)*f(d))
bool check[N];
int mu[N];
int prime[N];
void get_mu()
{
   CLR(check,0);
   mu[1] = 1;
   int tot = 0;
   for(int i=2;i<N;i++){</pre>
       if(!check[i]){
          prime[tot ++] = i;
          mu[i] = -1;
       }
       for(int j=0;j<tot;j++){</pre>
          if(i * prime[j] >= N)break;
          check[i * prime[j]] = true;
          if(i % prime[j] == 0){
              mu[i * prime[j]] = 0;
              break;
          }else{
              mu[i * prime[j]] = -mu[i];
          }
       }
   }
}
```

HDU4746 Mobius

```
题意: 给 a 在 1-n, b 在 1-m 之间, 问有多少对 a, b 使得 gcd(a,b)的因子数少于 p typedef long long ll; #define FILL(x) memset(x,0,sizeof(x)) #define CLR(a,b) memset(a,b,sizeof(a)) const int maxn = 500000+20; bool check[maxn]; int mu[maxn],prime[maxn],num[maxn],sum[maxn]; int G[maxn][30];
```

```
int n,m,p;
void Mobius(int N)
{
   FILL(check);
   mu[1] = 1;
   num[1] = 0;
   int tot = 0;
   for(int i=2;i<=N;i++){
       if(!check[i]){
           prime[tot ++] = i;
           mu[i] = -1;
           num[i] = 1;
       }
       for(int j=0;j<tot;j++){</pre>
           if(i * prime[j] > N)break;
           check[i * prime[j]] = true;
           num[i * prime[j]] = num[i] + 1;
           if(i % prime[j] == 0){
              mu[i * prime[j]] = 0;
              break;
           }else{
              mu[i * prime[j]] = -mu[i];
           }
       }
   }
}
void init()
{
   FILL(G);
   for(int i=1;i<maxn;i++){</pre>
       for(int j=i;j<maxn;j+=i){</pre>
           G[j][num[i]] += mu[j/i];
       }
   }
   for(int i=1;i<maxn;i++)</pre>
       for(int j=0; j<30; j++){
          G[i][j] += G[i-1][j];
   }
   for(int i=0;i<maxn;i++)</pre>
       for(int j=1; j<30; j++){
           G[i][j] += G[i][j-1];
   }
}
void solve()
```

```
if(n>m)swap(n,m);
if(p>=19){
    ll ans = (ll)n * m;
    printf("%I64d\n",ans);
    return;
}
ll ans = 0;
for(int i=1,last=i;i<=n;i=last+1){
    last = min(n/(n/i),m/(m/i));
    ans += (ll)(G[last][p] - G[i-1][p])*(n/i)*(m/i); //分块加速
}
printf("%I64d\n",ans);
}</pre>
```

Lucas 定理

```
int inv(int a) {
   //return fpow(a, MOD-2, MOD);
   return a == 1 ? 1 : (long long)(MOD - MOD / a) * inv(MOD % a) % MOD;
}
LL C(LL n, LL m)
   if(m < 0) return 0;
   if(n < m)return 0;</pre>
   return fac[n] * inv(fac[m]*fac[n-m] % MOD) % MOD;
}
LL n,m;
LL lucas(LL n,LL m,LL p)
   LL ret = 1;
   while(n && m){
       LL a = n % p,b = m % p;
       if(a < b)return 0;
       ret = ret * C(a,b) % p;
       n /= p;
      m /= p;
   }
   return ret;
}
```

n! mod p的性质

```
int fact[MAX_P];//n<p 时候的表,利用周期性
void init()//预处理, o(p)
   fact[0] = 1;
   for(int i=1;i<MAX_P;i++){</pre>
      fact[i] = fact[i-1] * i % p;
   }
}
// 分解 n!=a*p^e, 返回 a mod p, 0(log p (n))
int mod_fact(int n,int p,int &e)
{
   e = 0;
   if(n==0)return 1;
   //计算 p 的倍数的部分
   int res = mod_fact(n / p , p , e);
   e += n/p;
   //由于(p-1)!=-1,因此(p-1)!^{(n/p)}只需要知道 n/p 的奇偶就可以计算了
   if(n/p %2 != 0)return res * (p - fact[n%p]) % p;
   return res * fact[n%p] %p;
}
拉格朗日插值法
double lagrangePolynomial(double x, double xs[],double ys[],int n)
{
   double ans = 0;
   for(int i=0;i<n;i++){</pre>
      double f = 1;
      for(int j=0;j<n;j++){</pre>
          if(i == j) continue;
             f=f*(x-xs[j])/(xs[i]-xs[j]);
      ans += f * ys[i];
   }
   return ans;
}
```

牛顿迭代

```
x' = x - f(x) / f'(x)
高斯消元
int Gauss()
{
   int i,j,k,col,max_r;
   for(k=0,col=0;k<equ&col<var;k++,col++){</pre>
       max_r = k;
       for(i=k+1;i<equ;i++)</pre>
          if(fabs(a[i][col])>fabs(a[max_r][col]))
             max_r = i;
       if(fabs(a[max_r][col])<eps)return 0; //无解,有自由变元
       if(k != max_r){
          for(j=col;j<var;j++)</pre>
              swap(a[k][j],a[max_r][j]);
          swap(x[k],x[max_r]);
       }
       x[k]/=a[k][col];
       for(j=col+1;j<var;j++)a[k][j]/=a[k][col];
       a[k][col] = 1;
       for(i=0;i<equ;i++)</pre>
          if(i!=k){
             x[i] = x[k]*a[i][k];
              for(j=col+1;j<var;j++)a[i][j]-=a[k][j]*a[i][col];
             a[i][col]=0;
          }
   }
   return 1;
}
FFT
#define L(x) (1 << (x))
const double PI = acos(-1.0);
const int N = 17, Maxn = L(N + 1);
double ax[Maxn], ay[Maxn], bx[Maxn], by[Maxn];
struct FFT
{
   private:
   int revv(int x, int bits) {
```

```
int ret = 0;
   for (int i = 0; i < bits; i++) {
      ret <<= 1;
      ret |= x & 1;
      x >>= 1;
   }
   return ret;
}
void fft(double * a, double * b, int n, bool rev)
{
   int bits = 0;
   while (1 << bits < n) ++bits;</pre>
   for (int i = 0; i < n; i++)
      int j = revv(i, bits);
      if (i < j)
      {
          double t = a[i];
          a[i] = a[i];
          a[j] = t;
          t = b[i];
          b[i] = b[j];
          b[j] = t;
      }
   }
   for (int len = 2; len <= n; len <<= 1)
   {
      int half = len >> 1;
      double wmx = cos(2 * PI / len);
      double wmy = sin(2 * PI / len);
      if (rev)
          wmy = -wmy;
      for (int i = 0; i < n; i += len)
      {
          double wx = 1;
          double wy = 0;
          for (int j = 0; j < half; j++)
          {
             double cx = a[i + j];
             double cy = b[i + j];
             double dx = a[i + j + half];
             double dy = b[i + j + half];
             double ex = dx * wx - dy * wy;
             double ey = dx * wy + dy * wx;
             a[i + j] = cx + ex;
```

```
b[i + j] = cy + ey;
                 a[i + j + half] = cx - ex;
                 b[i + j + half] = cy - ey;
                 double wnx = wx * wmx - wy * wmy;
                 double wny = wx * wmy + wy * wmx;
                 wx = wnx;
                 wy = wny;
             }
          }
      }
      if (rev)
          for (int i = 0; i < n; i++)
             a[i] /= n;
             b[i] /= n;
          }
      }
   }
public:
   int solve(int a[],int na,int b[],int nb,long long ans[])
      int len = max(na, nb), ln;
      for(ln=0; L(ln)<len; ++ln);</pre>
      len=L(++ln);
      for (int i = 0; i < len ; ++i)
          if (i >= na) ax[i] = 0, bx[i] = 0;
          else ax[i] = a[i], bx[i] = 0;
      }
      fft(ax, ay, len, 0);
      for (int i = 0; i < len; ++i)
      {
          if (i >= nb) bx[i] = 0, by[i] = 0;
          else bx[i] = b[i], by[i] = 0;
      fft(bx, by, len, 0);
      for (int i = 0; i < len; ++i)
      {
          double cx = ax[i] * bx[i] - ay[i] * by[i];
          double cy = ax[i] * by[i] + ay[i] * bx[i];
          ax[i] = cx, ay[i] = cy;
      }
      fft(ax, ay, len, 1);
      for (int i = 0; i < len; ++i)
```

```
ans[i] = ax[i] + 0.01;
   return len:
}
int solve(int a[], int na, long long ans[])
   int len = na, ln;
   for(ln = 0; L(ln) < na; ++ln);</pre>
   len=L(++ln);
   for(int i = 0;i < len; ++i)</pre>
   {
       if (i >= na) ax[i] = 0, ay[i] = 0;
       else ax[i] = a[i], ay[i] = 0;
   }
   fft(ax, ay, len, 0);
   for(int i=0;i<len;++i)</pre>
   {
       double cx = ax[i] * ax[i] - ay[i] * ay[i];
       double cy = 2 * ax[i] * ay[i];
       ax[i] = cx, ay[i] = cy;
   }
   fft(ax, ay, len, 1);
   for(int i=0;i<len;++i)</pre>
       ans[i] = ax[i] + 0.5;
   return len;
}
```

中国剩余定理

};

```
typedef int typec;

typec CRT_2(typec a, typec x, typec b, typec y)
{
    typec xx,yy,tmp;
    tmp = extgcd(a,b,xx,yy);
    typec c = y - x;
    while (c<0)
        c += a;
    if (c%tmp!=0) return -1;
        xx *= c/tmp;
        yy *= c/tmp;</pre>
```

```
typec t = yy/(a/tmp);
   while (yy-t*(a/tmp)>0)
       t++;
   while (yy-(t-1)*(a/tmp)<=0)
   return (t*(a/tmp)-yy)*b+y;
}
typec CRT(typec a[],typec r[],int n)
   int i;
   typec m = a[0]/\_gcd(a[0],a[1])*a[1];
   typec ans = CRT_2(a[0], r[0], a[1], r[1])%m;
   for (i=2;i<n&&ans!=-1;i++)</pre>
   {
       ans = CRT_2(m,ans,a[i],r[i]);
       m*=a[i]/\_gcd(m,a[i]);
       ans%=m;
   return ans;
}
```

积分

自适应 Simpson

```
double F(double x1)
{
   return 4 * sqrt(a*a-x1*x1) * sqrt(b*b-x1*x1);
}
double simpson(double a, double b)
{
   double c = a + (b-a)/2;
   return (F(a) + 4*F(c) + F(b))*(b-a)/6;
}
double asr(double a, double b, double eps, double A)
{
   double c = a + (b-a)/2;
   double L = simpson(a,c);
   double R = simpson(c,b);
   if(fabs(L+R-A) \leq 15*eps)return L+R+(L+R-A)/15;
   return asr(a,c,eps/2,L) + asr(c,b,eps/2,R);
}
double asr(double a,double b,double eps)
```

```
{
    return asr(a,b,eps,simpson(a,b));
}
```

龙贝格积分

```
double romberg(double (*f)(double), double l, double r) {
   const int N = 20;
   double a[N][N], p[N];
   p[0] = 1;
   for (int i = 1; i < N; i++)
      p[i] = p[i - 1] * 4;
   a[0][0] = (f(l) + f(r)) / 2;
   for (int i = 1, n = 2; i < N; i++, n <<= 1) {
      a[i][0] = 0;
      for (int j = 1; j < n; j += 2)
          a[i][0] += f((r - l) * j / n + l);
      a[i][0] += a[i - 1][0] * (n / 2);
      a[i][0] /= n;
   }
   for (int j = 1; j < N; j++)
      for (int i = 0; i < N - j; i++)
          a[i][j] = (a[i + 1][j - 1] * p[j] - a[i][j - 1]) / (p[j] - 1);
   return a[0][N-1]*(r-1);
}
```

Baby-Step-Giant-Step

```
A^n=B(mod C), 求 n
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;

typedef long long LL;

#define MAXN 131071
struct HashNode { LL data, id, next; };
```

```
HashNode hash[MAXN<<1];</pre>
bool flag[MAXN<<1];</pre>
LL top;
void Insert ( LL a, LL b )
{
   LL k = b \& MAXN;
   if ( flag[k] == false )
      flag[k] = true;
       hash[k].next = -1;
       hash[k].id = a;
       hash[k].data = b;
       return;
   }
   while( hash[k].next != -1 )
   {
       if( hash[k].data == b ) return;
       k = hash[k].next;
   }
   if ( hash[k].data == b ) return;
   hash[k].next = ++top;
   hash[top].next = -1;
   hash[top].id = a;
   hash[top].data = b;
}
LL Find ( LL b )
{
   LL k = b \& MAXN;
   if( flag[k] == false ) return -1;
   while (k != -1)
   {
       if( hash[k].data == b ) return hash[k].id;
       k = hash[k].next;
   }
   return -1;
}
LL BabyStep_GiantStep ( LL A, LL B, LL C )
   top = MAXN; B %= C;
   LL tmp = 1, i;
   for ( i = 0; i \le 100; tmp = tmp * A % C, i++)
       if ( tmp == B % C ) return i;
```

```
LL D = 1, cnt = 0;
   while (tmp = gcd(A,C)) !=1)
   {
      if( B % tmp ) return -1;
      C /= tmp;
      B /= tmp;
      D = D * A / tmp % C;
      cnt++;
   }
   LL M = (LL)ceil(sqrt(C+0.0));
   for (tmp = 1, i = 0; i \le M; tmp = tmp * A % C, i++)
      Insert ( i, tmp );
   LL \times, y, K = fpow( A, M, C );
   for (i = 0; i \le M; i++)
   {
      ext\_gcd (D, C, x, y); // D * X = 1 (mod C)
      tmp = ((B * x) % C + C) % C;
      if (y = Find(tmp))! = -1)
          return i * M + y + cnt;
      D = D * K % C;
   }
   return -1;
}
int main()
{
   LL A, B, C;
   while( scanf("%I64d%I64d%I64d",&A,&C,&B ) !=E0F )
      if ( !A && !B && !C ) break;
      memset(flag,0,sizeof(flag));
      LL tmp = BabyStep_GiantStep ( A, B, C );
      if ( tmp == -1 )puts("No Solution");
      else printf("%I64d\n",tmp);
   }
   return 0;
}
```

公式

A^x mod C

$$A^{x} = A^{(x \bmod Phi(C) + Phi(C))} \bmod C (x \ge Phi(C))$$

组合数性质

- 1. C(n,k)=C(n-1,k)+C(n-1,k-1) 1<=k<=n-1
- 2. $1*C(n,1)+2*C(n,2)+...+n*C(n,n)=n*2^{(n-1)}$ (n>=1)
- 3. 通过对等式(1+x) $^n=sigma(C(n,k)*x^k)$ k: 0->n 两边就微分,可以得到 $sigma(k^p*C(n,k))$ k: 1->n 的和 $\sum_{k=1}^n C(n,k)^2 = C(2n,n)$
- 4. C(r,0)+C(r+1,1)+...+C(r+k,k) = C(r+k+1,k)
- 5, C(0,k)+C(1,k)+...+C(n-1,k)+C(n,k)=C(n+1,k+1)

概率公式

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_j P(B|A_j)P(A_j)}$$

$$P((X|A) = x) = \frac{P(X = x, A)}{P(A)}$$

$$P(A) = \sum_{k} P(A|B_k)P(B_k)$$

Polya

5.2 Burnside引理

- 设 $G=\{p_1,p_3,...,p_s\}$ 是目标集[1,n]上的置换群。每个置换都写成不相交循环的乘积。G将[1,n]分成I个等价类。 $c_1(p_k)$ 是在置换 p_k 的作用下不动点的个数,也就是长度为I的循环的个数。
- Burnside引理:等价类个数: l=[c₁(p₁)+c₁(p₂)+...+c₁(p₀)]/|G|
- 例如, $G=\{e, (12), (34), (12)(34)\}$. $c_1(g_1)=4, c_1(g_2)=2, c_1(g_3)=2, c_1(g_4)=0$. I=[4+2+2+0]/4=2. 以本例列表分析:

• & & $= \sum c_1(p_i) = \sum |\mathbf{Z}_k|$

S_{jk} k	1234	c ₁ (a _j)	
(1) (2) (3) (4) (1 2) (3) (4) (1) (2) (3 4) (1 2) (3 4)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 2 2 0	$(1)^4$ $(1)^2(2)$ $(1)^2(2)$ $(2)^2$
$ Z_{\mathbf{k}} $	2 2 2 2	8	

Pólya定理:设 $G=\{p_1,p_2,...,p_g\}$ 是Ω上的一个置换群, $C(p_k)$ 是置换 p_k 的循环的个数,HM中的颜色对Ω中的元素着色,着色方案数为 $\frac{1}{|G|}[m^{c(p_k)}+m^{c(p_k)}+...+m^{|c(p_k)|}]$

 $G=\{(v_1)(v_2)(v_3),(v_1v_2v_3),(v_3v_2v_1),(v_1)(v_2v_3),(v_2)(v_1v_3),(v_3)(v_1v_2)\}$ 故不同的方案数为

 $m=1/6*[3^3+2*3+3*3^2]=10$

博弈游戏

威佐夫博奕

//有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,//规定每次至少取一个,多者不限,最后取光者得胜。

//(ak,bk)(ak ≤ bk ,k=0,1,2,...,n)表示奇异局势

//求法:

//ak =[k(1+√5)/2], bk= ak + k (k=0,1,2,...,n 方括号表示取整函数)

[判断] Gold=(1+sqrt(5.0))/2.0;

1321) 假设(a,b) 为第k种奇异局势(k=0,1,2...) 那么k=b-a;

2) 判断其a==(int)(k*Gold), 相等则为奇异局势 [注意]

采用适当的方法,可以将非奇异局势变为奇异局势。 假设面对的局势是(a,b)

若b=a,则同时从两堆中取走 a 个物体,就变为了奇异局势(0,0); 1.如果a=ak,

1.1 b>bk, 那么取走b - bk个物体,即变为奇异局势(ak, bk); 1.2 b<bk,则同时从两堆中拿走ak-a[b-ak]个物体,

```
变为奇异局势(a[b-ak],a[b-ak]+b-ak); 2.如果a=bk,
2.1 b>ak,则从第二堆中拿走多余的数量b-ak
2.2 b<ak,则:若b=aj(j<k)从第一堆中拿走多余的数量a-bj;(a>bj)
若b=bj(j<k)从第一堆中拿走多余的数量a-aj;(a>aj)
//THE code int main() {
   int t,m,k,a,b; while(scanf("%d%d",&a,&b)!=EOF) {
   if(a>b) swap(a,b); k=b-a; m=k*(1+sqrt(5.0))/2; if(m==a) puts("0"); else puts("1");
}
return 0; }
输出方案:
   a=k*gold , b=a+k
   k=a/gold+1; k=b/(gold+1)+1;
```

反 Nim 博弈(Anti-SG)

最后不能走的赢。

对于任意一个Anti-SG游戏,如果我们规定当局面中所有的单一游戏的SG值为Ø时,游 戏结束,则先手必胜当且仅当:

- 1、游戏的SG函数不为0且游戏中某个单一游戏的SG函数大于1;
- 2、游戏的 SG 函数为 0 且游戏中没有单一游戏的 SG 函数大于 1。

砍树博弈

```
一棵树 dfs 等价转换成一堆石子后,石子数可能为 0 多颗树同理...
```

```
// nim ^= dfs(root, root)
int dfs(int u,int f) { //从根节点开始搜
    int nim=0;
    for(int i=p[u];i!=-1;i=e[i].nxt) {
        int v=e[i].b;
        if(v==f) continue;
        nim^=(dfs(v,u)+1);
    }
    return nim;
}
```

无向图删边博弈

无向图,每次可以删除一条和 root 相连的边,并且去掉和 root 不相连的部分。不能删了,就算输了。

[解析]

先用双连通缩点,然后就变成一棵树的删边游戏了。

- 1 若分量中边的条数为奇数,则该分量缩成一条新边。
- 2 所分量中边的条数为偶数,则该分量缩成一个点。
- 3 把桥边加回去。

常用算法

矩阵快速幂

```
#define CLR(a,b) memset(a,b,sizeof(a))
typedef long long ll;
typedef vector<ll> vec;
typedef vector<vec> mat;
mat mul(mat &A,mat &B)
{
   mat C(A.size(), vec(B[0].size()));
   for(int i=0;i<A.size();i++){</pre>
       for(int k=0;k<B.size();k++){</pre>
          for(int j=0;j<B[0].size();j++){</pre>
              C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % mod;
          }
       }
   }
   return C;
}
mat pow(mat A,ll n){
   mat B(A.size(), vec(A.size()));
   for(int i=0;i<A.size();i++){
       B[i][i] = 1;
   }
   while(n > 0){
       if(n & 1) B = mul(B,A);
       A = mul(A, A);
       n >>= 1;
   }
   return B;
}
```

最长回文串 Manacher 算法

palindrome[i]是以i为对称中心的最长回文串长度

```
void manacher(char *text, int n) {
   palindrome[0] = 1;
   for (int i = 1, j = 0; i < n; ++ i) {
       if (j + palindrome[j] <= i) {</pre>
          palindrome[i] = 0;
       } else {
          palindrome[i] = min(palindrome[(j << 1) - i], j + palindrome[j] - i);</pre>
       }
       while (i - palindrome[i] >= 0 && i + palindrome[i] < n</pre>
              && text[i - palindrome[i]] == text[i + palindrome[i]]) {
          palindrome[i] ++;
       }
       if (i + palindrome[i] > j + palindrome[j]) {
          j = i;
       }
   }
}
```

直线下格点统计

```
}
   return count((a + b * n) / m, (a + b * n) % m, m, b);
}
环状最长公共子串
int n, a[N << 1], b[N << 1];
bool has(int i, int j) {
   return a[(i-1) % n] == b[(j-1) % n];
}
const int DELTA[3][2] = \{\{0, -1\}, \{-1, -1\}, \{-1, 0\}\};
int from[N][N];
int solve() {
   memset(from, 0, sizeof(from));
   int ret = 0;
   for (int i = 1; i \le 2 * n; ++ i) {
      from[i][0] = 2;
      int left = 0, up = 0;
      for (int j = 1; j <= n; ++ j) {
          int upleft = up + 1 + !!from[i - 1][j];
          if (!has(i, j)) {
             upleft = INT_MIN;
          }
          int max = std::max(left, std::max(upleft, up));
          if (left == max) {
             from[i][j] = 0;
          } else if (upleft == max) {
             from[i][j] = 1;
          } else {
             from[i][j] = 2;
          left = max;
      }
      if (i >= n) {
          int count = 0;
          for (int x = i, y = n; y;) {
             int t = from[x][y];
             count += t == 1;
             x += DELTA[t][0];
```

```
y += DELTA[t][1];
          }
          ret = std::max(ret, count);
          int x = i - n + 1;
          from [x][0] = 0;
          int y = 0;
          while (y \le n \&\& from[x][y] == 0) {
             y++;
          }
          for (; x <= i; ++ x) {
             from[x][y] = 0;
             if (x == i) {
                 break;
             for (; y <= n; ++ y) {
                 if (from[x + 1][y] == 2) {
                    break;
                 if (y + 1 \le n \& from[x + 1][y + 1] == 1) {
                    y ++;
                    break;
                 }
             }
          }
      }
   }
   return ret;
}
双向广搜
struct State { }; //状态
queue<State>que[2];
bool vis[2];
bool flag;
void bfs(int d) {
   int size=que[d].size();
   while(size--) {
      //普通单广转移新状态v
      //状态出队
      if(vis[d][v])
          continue;
      if(vis[d^1][v]) { flag=true; return; }
      //新状态入队
```

```
}
int dbfs() { //初始化
    int cnt=0;
    while(true) {
        cnt++;
        if(que[0].size()<que[1].size()) bfs(0);
        else bfs(1);
        if(flag) break;
    }
    return cnt;
}
```

Dancing Links-重复覆盖

```
LL L[M],R[M],U[M],D[M];
LL S[M];
bool hash1[M];
LL Col[M], Row[M];
void init()
   for (int i=0;i<=n;i++)</pre>
   {
       L[i]=i-1; R[i]=i+1;
       U[i]=D[i]=i;
   }
   L[0]=n;
   R[n]=0;
   int cnt=n+1;
   for (int i=0;i<n;i++)</pre>
   {
       int head=cnt,tail=cnt;
       for (int j=0;j<n;j++)</pre>
           int c = j+1;
           if(g[i][j]==1)
           {
              S[c]++;
              Col[cnt]=c;
              Row[cnt]=i;
              U[D[c]]=cnt;
              D[cnt]=D[c];
              U[cnt]=c;
```

```
D[c]=cnt;
             L[cnt]=tail; R[tail]=cnt;
             R[cnt]=head; L[head]=cnt;
             tail=cnt;
             cnt++;
          }
      }
   }
}
void remove(int &c) {
   for(int i = D[c]; i != c ; i = D[i]) {
      L[R[i]] = L[i];
      R[L[i]] = R[i];
   }
}
void resume(int &c) {
   for(int i = U[c]; i != c ; i = U[i]) {
      L[R[i]] = i;
      R[L[i]] = i;
   }
}
int h() {
   bool hash[N];
   memset(hash,false,sizeof(hash));
   int ret = 0;
   for(int c = R[0]; c != 0; c = R[c]) {
      if(!hash[c]) {
          ret ++;
          hash[c] = true;
          for(int i = D[c] ; i != c ; i = D[i]) {
             for(int j = R[i]; j != i; j = R[j]) {
                 hash[Col[j]] = true;
             }
          }
      }
   }
   return ret;
bool dfs(int deep,int lim) {
   if(deep + h() > lim) {
       return false;
   }
   if(R[0] == 0) {
      return true;
   }
```

```
int idx , i , j , minnum = INF;
   for(i = R[0]; i != 0; i = R[i]) {
       if(S[i] < minnum) {</pre>
          minnum = S[i];
          idx = i;
       }
   }
   for(i = D[idx]; i != idx; i = D[i]) {
       remove(i);
       for(j = R[i]; j != i ; j = R[j]) {
          remove(j);
       }
       if(dfs(deep+1,lim)) {
          return true;
       }
       for(j = L[i]; j != i ; j = L[j]) {
          resume(j);
       resume(i);
   }
   return false;
}
```

Dancing-Links 精确覆盖

```
void remove(int &c) {
   L[R[c]] = L[c];
   R[L[c]] = R[c];
   for(int i = D[c]; i != c ; i = D[i]) {
      for(int j = R[i]; j != i ; j = R[j]) {
          U[D[j]] = U[j];
          D[U[j]] = D[j];
          --S[Col[j]];
      }
   }
}
void resume(int &c) {
   for(int i = U[c];i != c;i = U[i]) {
      for(int j = L[i]; j != i ; j = L[j]) {
          ++S[Col[j]];
          U[D[j]] = j;
          D[U[j]] = j;
      }
```

```
}
   L[R[c]] = c;
   R[L[c]] = c;
}
bool dfs() {
   if(R[0] == 0) {
       return true;
   }
   int i , j;
   int idx,minnum = 999999;
   for(i = R[0]; i != 0 ; i = R[i]) {
       if(S[i] < minnum) {</pre>
          minnum = S[i];
          idx = i;
       }
   }
   remove(idx);
   for(i = D[idx]; i != idx; i = D[i]) {
       ans [deep++] = Row[i];
       for(j = R[i]; j != i ; j = R[j]) {
          remove(Col[j]);
       }
       if(dfs()) {
          return true;
       }
       deep --;
       for(j = L[i]; j != i ; j = L[j]) {
          resume(Col[j]);
       }
   }
   resume(idx);
   return false;
}
```

数据结构

线段树

```
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 131072;</pre>
```

```
bool hash[maxn+1];
int cover[maxn << 2];</pre>
int XOR[maxn << 2];</pre>
void pushXOR(int rt)
   if(cover[rt] != -1)cover[rt] ^= 1;
   else XOR[rt] ^= 1;
void build(int l,int r,int rt) {
   if (l == r) {
      node[rt] = 1;
       return;
   int m = (l + r) >> 1;
   build(lson);
   build(rson);
   PushUP(rt);
}
void PushUP(int rt) {
   node[rt] = node[rt<<1] + node[rt<<1|1];</pre>
void PushDown(int rt) {
   if(cover[rt] != -1){
      cover[rt << 1] = cover[rt << 1 | 1] = cover[rt];
      XOR[rt << 1] = XOR[rt << 1 | 1] = 0;
      cover[rt] = -1;
   if(X0R[rt]){
      pushXOR(rt<<1);</pre>
      pushX0R(rt<<1|1);</pre>
      XOR[rt] = 0;
   }
void update(int L,int R,int l,int r,int rt,int val) {
   if (L <= l && r <= R) {
      cover[rt] = val;
      XOR[rt] = 0;
       return ;
   if (l == r) return ;
   PushDown(rt);
   int m = (l + r) >> 1;
   if (L <= m) update(L , R , lson, val);</pre>
   if (R > m) update(L , R , rson, val);
```

```
void update2(int L,int R,int l,int r,int rt) {
   if (L <= l && r <= R) {
      pushXOR(rt);
      return;
   }
   if (l == r) return ;
   PushDown(rt);
   int m = (l + r) >> 1;
   if (L <= m) update2(L , R , lson);</pre>
   if (R > m) update2(L , R , rson);
}
void query(int l,int r,int rt) {
   if (cover[rt] == 1) {
      for (int it = l ; it <= r ; it ++) {</pre>
          hash[it] = true;
      }
       return ;
   } else if (cover[rt] == 0) return ;
   if (l == r) return ;
   PushDown(rt);
   int m = (l + r) >> 1;
   query(lson);
   query (rson);
}
路径压缩并查集
namespace ufset{
        const int N=1000;
        int fa[N], rank[N];
        void init() { for (int i=0;i<N;++i) fa[i]=i,rank[i]=0; }</pre>
        int find(int x){
            int r=x,y;
            while (fa[r]!=r) r=fa[r];
            while (fa[x]!=r) { y=fa[x],fa[x]=r,x=y;}
            return r;
        }
        void unionset(int x,int y){
                                        // x,y roots
             if (rank[x]>rank[y]) fa[y]=x;
             else { fa[x]=y; if (rank[x]==rank[y]) ++rank[y]; }
        }
};
```

倍增 LCA

```
int head[N],idx,n;
int fa[N],deep[N];;
int f[N][M];
int ans;
struct node
{
   int v,w;
   int nxt;
}edge[N << 1];</pre>
void init()
   CLR(dp, 0x3f);
   CLR(head, -1);
   CLR(fa,-1);
   idx = 0;
}
void add_edge(int u,int v,int w)
{
   edge[idx] \cdot v = v;
   edge[idx].w = w;
   edge[idx].nxt = head[u];
   head[u] = idx ++;
   edge[idx] \cdot v = u;
   edge[idx].w = w;
   edge[idx].nxt = head[v];
   head[v] = idx++;
}
void dfs_deep(int s)
{
   for(int i = head[s]; ~i ; i = edge[i].nxt){
       int v = edge[i].v;
       if(v == fa[s])continue;
       fa[v] = s;
       deep[v] = deep[s] + 1;
       dfs_deep(v);
   }
}
```

```
void bz() // 倍增祖先
{
   for(int i = 1; i \le n; i + +){
      f[i][0] = fa[i];
   }
   int i , j ;
   for(j = 1 ; j < M ; j ++)
   {
      for(i = 1 ; i <= n ; i ++)</pre>
         f[i][j] = f[f[i][j-1]][j-1];
      }
   }
}
int LCA(int u , int v)
{
   if(deep[u] < deep[v]) swap(u , v) ;
   int d = deep[u] - deep[v] ;
   int i ;
   for(i = 0 ; i < M ; i ++)
      if( (1 << i) & d)
      {
          u = f[u][i];
      }
   }
   if(u == v) return u;
   for(i = M - 1 ; i >= 0 ; i --)
   {
      if(f[u][i] != f[v][i])
          u = f[u][i];
         v = f[v][i];
      }
   }
   u = f[u][0];
   return u ;
}
```

树分治

HDU 4012

题意:给一棵树,各点有点权,问所有路径中点权 mod k为0的有序端点对中字典序最小的

```
做法:点分治,分别统计
const int mod = 1000000+3;
#pragma comment(linker,"/STACK:102400000,102400000")
const int \max k = 1000000 + 20;
const int maxn = 100000+20;
int n,K;
struct edge{
   int x , next;
}e[maxn << 1];</pre>
int inv[maxk], val[maxn], pre[maxn], hash[maxk];
PII tds[maxn];
bool centroid[maxn];
int subtree_size[maxn];
int ecnt, tot;
vector<int> upd;
pair<int,int> ans;
void update(int x , int y)
   if (x > y) swap(x , y);
   ans = min(ans , make_pair(x , y));
}
//返回(最大子树的顶点数, 顶点编号)
pair<int,int> search_centroid(int v, int p, int t)
   pair<int,int> res = MP(INF,-1);
   int m = 0;
   subtree size[v] = 1;
   for(int i=pre[v];~i;i=e[i].next){
      int w = e[i].x;
      if (w == p || centroid[w])continue;
      res = min(res, search_centroid(w, v, t));
      m = max(m, subtree_size[w]);
      subtree_size[v] += subtree_size[w];
   }
   m = max(m, t-subtree_size[v]);//the subtree of v or the subtree of v in another
direction
   res = min(res, MP(m, v));
```

```
return res;
}
//以 v 为根的子树中的所有顶点到中心的距离
void enumerate_paths(int v, int p, int d)
{
   tds[tot++] = MP(d, v);
   for(int i=pre[v];~i;i=e[i].next){
      int w = e[i].x;
      if(w == p || centroid[w])continue;
      enumerate_paths(w, v, (LL)d * val[w] % mod);
   }
}
void solve_subproblem(int v)
{
   int s = search_centroid(v, -1, subtree_size[v]).SE;
   centroid[s] = true;
   hash[1] = s;
   upd.PB(1);
   for(int i=pre[s];~i;i=e[i].next){
      int w = e[i].x;
      if(centroid[w])continue;
      tot = 0;
      enumerate_paths(w, s, val[w]);
      subtree_size[w] = tot;
      for(int j=0;j<tot;j++){
          int to = (LL)inv[tds[j].FI] * inv[val[s]] % mod * K % mod;
          if(hash[to] != 0x7F7F7F7F){
             update(tds[j].SE, hash[to]);
          }
      }
      for(int j=0;j<tot;j++){</pre>
          hash[tds[j].FI] = min(hash[tds[j].FI],tds[j].SE);
          upd.PB(tds[j].FI);
      }
   }
   while(!upd.empty()){
      hash[upd.back()] = 0x7F7F7F7F, upd.pop_back();
   }
   for(int i=pre[s];~i;i=e[i].next){
```

```
if(centroid[e[i].x])continue;
    solve_subproblem(e[i].x);
}

centroid[s] = false;
}
```

计算几何

平面一条直线穿过最多圆个数

```
// template
typedef complex<double> pnt;
typedef pair<pnt,double> circle;
const int N = 1005;
const double eps = 1e-10;
const double pi = acos(-1.0);
inline bool eq(double a, double b){return abs(b-a) < eps;}</pre>
inline double fix(double arg) {
   while(arg > pi) arg -= 2*pi;
   while(arg <= -pi) arg += 2*pi;</pre>
   return arg;
}
circle num[N];
struct line {
   int id,c;
   double arg;
   line(){}
   line(int _id,int _c,double _arg) :
   id(_id) , c(_c), arg(_arg){
                cout<<"add: "<<id<<" "<<arq<<" "<<c<endl;
      //
   }
   bool operator < (const line& A) const{</pre>
       return eq(arg , A.arg) ? c > A.c : arg < A.arg;</pre>
   }
} Line[N<<2]:</pre>
// cut line
#define ht first
#define rs second
inline void cut_line(const circle &A, const circle &B, int& ans, int& cnt,const int&
id) {
```

```
double d = abs(A.ht - B.ht) ;
   if(d <= abs(A.rs - B.rs)) {</pre>
       if(d <= B.rs - A.rs ) {ans ++; return ;}</pre>
       if(eq(d , A.rs - B.rs) ) {
          Line[cnt++] = line(id, 1 , arg(B.ht - A.ht));
          Line[cnt++] = line(id,-1 , arg(B.ht - A.ht));
       }
       return ;
   }
   double t;
   t = acos((A.rs - B.rs)/d);
   double ag = arg(B.ht - A.ht);
   Line[cnt++] = line(id, 1, fix(ag-t));
   Line[cnt++] = line(id,-1, fix(ag+t));
   if(d > A.rs + B.rs + eps) {
       double t = acos((A.rs + B.rs)/d);
       Line[cnt++] = line(id, 1, fix(ag+t));
       Line[cnt++] = line(id,-1, fix(ag-t));
   }
}
// solve
bool vis[N];
int work(int n, int len){
   int ans = 0, sum = 0;
   for(int i=0;i<n;i++){
       vis[i] = 0;
   }
   for(int i=0;i<len+len;i++) {</pre>
       int k = i%len;
       int id = Line[k].id;
       int c = Line[k].c;
       if(c == 1){
          assert(vis[id]==0);
          vis[id] = 1; sum ++;
       }
       else if(c == -1) {
          if(vis[id] == 1)
             sum --, vis[id] = 0;
       }
       if(sum > ans ) ans = sum;
   }
   return ans;
}
// main
int main(){
```

```
int cas;
   cin >> cas;
   for(int oo=1; oo<= cas; oo++) {
       int n, len = 0;
       scanf("%d",&n);
       for(int i=0;i<n;i++) {</pre>
          int x,y,r;
          scanf("%d%d%d",&x,&y,&r);
          num[i] = make_pair(pnt(x,y) , r);
       }
       int ans = 0;
       for(int s = 0; s < n; s ++) {
                       cout<<"start: "<<s<endl;</pre>
          len = 0; int sum = 1;
          for(int i=0;i< n; i++) if(i!=s)
              cut_line(num[s] , num[i], sum, len, i);
          sort(Line, Line + len);
          sum += work(n,len);
          if(sum > ans) ans = sum;
       }
       printf("Case #%d: %d\n",oo, ans);
   }
}
基础定义
const double EPS = 1e-8;
const double PI = acos(-1.0);
template <class T> T sqr(T x){return x * x;}
点和向量
struct Point{
   double x,y;
   Point(){}
   Point(double x, double y) : x(x), y(y){}
};
inline double dist(const Point &a,const Point &b)
{
       return sqr(a.x-b.x)+sqr(a.y-b.y);
```

}

```
typedef Point Vec;
Vec operator + (Vec a, Vec b) { return Vec(a.x+b.x,a.y+b.y); };
Vec operator - (Vec a,Vec b){return Vec(a.x-b.x,a.y-b.y);};
Vec operator * (Vec a,double p){return Vec(a.x * p,a.y *p);};
Vec operator / (Vec a,double p){return Vec(a.x / p,a.y / p);};
inline int sgn(double x){return (x>EPS) - (x<-EPS);}</pre>
bool operator < (Point a, Point b) { return sgn(a.x - b.x) < 0 \mid | sgn(a.x - b.x) == 0 &&
a.y < b.y;
bool operator == (Point a, Point b) { return sgn(a.x - b.x) == 0 \& sgn(a.y - b.y) == 0;}
inline double dotDet(Vec a, Vec b) { return a.x * b.x + a.y * b.y;}
inline double crossDet(Vec a, Vec b) { return a.x * b.y - a.y * b.x;}
inline double dotDet(Point o, Point a, Point b) { return dotDet(a - o, b - o);}
inline double crossDet(Point o, Point a, Point b) { return crossDet(a - o, b - o);}
inline double vecLen(Vec x) { return sqrt(dotDet(x, x));}
inline Vec vecUnit(Vec x) { return x / vecLen(x);}
inline Vec normal(Vec x) { return Vec(-x.y, x.x) / vecLen(x);}
```

点在线段上

inline bool onSeg(Point x, Point a, Point b) { return $sgn(crossDet(x, a, b)) == 0 \& sgn(dotDet(x, a, b)) < 0;}$

线段是否相交

```
int segIntersect(Point a, Point c, Point b, Point d) {
    Vec v1 = b - a, v2 = c - b, v3 = d - c, v4 = a - d;
    int a_bc = sgn(crossDet(v1, v2));
    int b_cd = sgn(crossDet(v2, v3));
    int c_da = sgn(crossDet(v3, v4));
    int d_ab = sgn(crossDet(v4, v1));
    if (a_bc * c_da > 0 && b_cd * d_ab > 0) return 1;
    if (onSeg(b, a, c) && c_da) return 2;
    if (onSeg(c, b, d) && d_ab) return 2;
    if (onSeg(d, c, a) && a_bc) return 2;
    if (onSeg(a, d, b) && b_cd) return 2;
    return 0;
}
```

直线相交

```
Point lineIntersect(Point P, Vec v, Point Q, Vec w) {
    Vec u = P - Q;
```

```
double t = crossDet(w, u) / crossDet(v, w);
       return P + v * t;
}
点在线段上
inline bool InLine(const Point &a,const Point &b,const Point &c)
{
       return fabs(crossDet(b-a,c-a))<EPS && dotDet(a-c,b-c)<EPS;
}
线段与线段交点
inline void LineToLine(const Point &a,const Point &b,const Point &c,const Point &d)
       double s1=crossDet(c-a,b-a),s2=crossDet(b-a,d-a);
       if (s1*s2<-EPS) return;
       Point e=c+(d-c)*s1/(s1+s2);
       if (InLine(a,b,e) && InLine(c,d,e))
       {
               Add(e.x);
       }
}
中垂线
void midVerticalLine(Point a, Point b, Point &c, Point &d){
   c.x = (a.x + b.x)/2;
   c.y = (a.y + b.y)/2;
   d.x = c.x + (a.y - b.y)/2;
   d.y = c.y + (b.x - a.x)/2;
}
三维点模板
struct P3
       double x,y,z;
       P3(){}
       P3(double a, double b, double c) {x=a;y=b;z=c;}
```

```
inline void read(){scanf("%lf%lf%lf",&x,&y,&z);}
};
inline P3 operator +(const P3 &a,const P3 &b){return P3(a.x+b.x,a.y+b.y,a.z+b.z);}
inline P3 operator -(const P3 &a,const P3 &b){return P3(a.x-b.x,a.y-b.y,a.z-b.z);}
inline P3 operator *(const double &a,const P3 &b){return P3(a*b.x,a*b.y,a*b.z);}
inline P3 operator *(const P3 &b,const double &a){return P3(a*b.x,a*b.y,a*b.z);}
inline P3 operator /(const P3 &a,const double &b){return P3(a.x/b,a.y/b,a.z/b);}
```

三角剖分

三角剖分剖分线模板

Vector 多边形模板

```
struct Poly{
    vector<Point> pt;
    Poly() { pt.clear(); }
    ~Poly(){}
    Poly(vector<Point> &pt) : pt(pt){}
    Point operator [] (int x) const { return pt[x];}
    int size() { return pt.size();}
    double area() {
        double ret = 0.0;
        for (int i = 0, sz = pt.size(); i < sz; i++) {
            ret += crossDet(pt[i], pt[(i + 1) % sz]);
        }
        return fabs(ret / 2.0);
}</pre>
```

};

多边形切割

线段与多边形相交

```
bool isIntersect(Point a, Point b, Poly &poly) {
    for (int i = 0, sz = poly.size(); i < sz; i++) {
        if (segIntersect(a, b, poly[i], poly[(i + 1) % sz])) return true;
    }
    return false;
}

struct Circle {
    Point c;
    double r;
    Circle(){}
    Circle(Point c,double r):c(c),r(r){}
};</pre>
```

点在圆内

```
inline bool inCircle(Point a, Circle c) { return vecLen(c.c - a) < c.r;}
bool lineCircleIntersect(Point s, Point t, Circle C, vector<Point> &sol) {
    Vec dir = t - s, nor = normal(dir);
    Point mid = lineIntersect(C.c, nor, s, dir);
    double len = sqr(C.r) - dotDet(C.c - mid, C.c - mid);
    if (sgn(len) < 0) return 0;//不相交</pre>
```

线段与圆相交

```
bool segCircleIntersect(Point s, Point t, Circle C){
   vector<Point> tmp;
   tmp.clear();
   if (lineCircleIntersect(s ,t, C, tmp)){
       if(tmp.size() < 2)return false;
       for(int i=0,sz = tmp.size();i < sz;i++){
            if(onSeg(tmp[i],s,t))return true;
       }
   }
   return false;
}</pre>
```

点在多边形内

```
int ptInPoly( Point p, Poly &poly) {
    int wn = 0,sz = poly.size();
    for(int i=0;i<sz;i++){
        if(onSeg(p, poly[i], poly[(i+1) % sz])) return -1;//在边上
        int k = sgn(crossDet(poly[(i+1) % sz] - poly[i], p - poly[i]));
        int d1 = sgn(poly[i].y - p.y);
        int d2 = sgn(poly[(i+1) % sz].y - p.y);
        if (k > 0 && d1 <= 0 && d2 > 0 ) wn++;
        if (k < 0 && d2 <= 0 && d1 > 0) wn--;
    }
    if (wn != 0) return 1;
    return 0;
}
```

空间四面体

```
#define MAX_N 10
struct Poly4{
   P3 p[4];
}a [MAX_N];
struct Sphere
       P3 o;
       double r;
       inline void read(){o.read();scanf("%lf",&r);}
}b[MAX_N];
int n,m;
vector <Tinter> inter;
vector<Poly> polies;
vector<Circle> circles;
vector<double> bak;
inline void Add(double x)
       bak.push_back(x);
}
圆与圆交点
inline void CircleIntersectCircle(const Circle &a,const Circle &b)
       double l=dist(a.c,b.c);
       double s=((a.r-b.r)*(a.r+b.r)/l+1)/2;
       double t=sqrt(-(l-sqr(a.r+b.r))*(l-sqr(a.r-b.r))/(l*l*4));
       double ux=b.c.x-a.c.x,uy=b.c.y-a.c.y;
       double ix=a.c.x+s*ux+t*uy,iy=a.c.y+s*uy-t*ux;
       double jx=a.c.x+s*ux-t*uy,jy=a.c.y+s*uy+t*ux;
       Add(ix);
       Add(jx);
}
线段与圆交点
inline void LineToCircle(const Point &a,const Point &b,const Circle &c)
{
       double h=fabs(crossDet(c.c-a,b-a))/vecLen(b-a);
```

```
if (h>c.r+EPS) return;
       double lamda=dotDet(c.c-a,b-a);
       lamda/=dist(a,b);
       Point x=a+(b-a)*lamda;
       double d=sqrt( sqr(c.r)-sqr(h) );
       d/=vecLen((b-a));
       Point e=x+(b-a)*d;
       Point f=x-(b-a)*d;
       if (InLine(a,b,e))
               Add(e.x);
       if (InLine(a,b,f))
               Add(f.x);
       return;
}
圆和圆交点
inline void CircleToCircle()
   //求圆和圆的交点
       for (int i=0;i<circles.size();++i)</pre>
               for (int j=i+1;j<circles.size();++j)</pre>
               if (dist(circles[i].c,circles[j].c)<=sqr(circles[i].r+circles[j].r))</pre>
               if (dist(circles[i].c,circles[j].c)>=sqr(circles[i].r-circles[j].r))
      {
          CircleIntersectCircle(circles[i], circles[j]);
      }
       }
}
圆和多边形交点
inline void CircleToPoly()
       for (int i=0;i<circles.size();++i)</pre>
                for (int j=0;j<polies.size();++j)</pre>
                       for (int v=0;v<polies[j].size();++v)</pre>
```

}

LineToCircle(polies[j][v],polies[j][(v+1)%polies[j].size()],circles[i]);

多边形与多边形交点

```
inline void PolyToPoly()
       for (int i=0;i<polies.size();++i)</pre>
               for (int j=i+1;j<polies.size();++j)</pre>
                      for (int u=0;u<polies[i].size();++u)</pre>
                             for (int v=0;v<polies[j].size();++v)</pre>
       LineToLine(polies[i][u],polies[i][(u+1)%polies[i].size()],polies[j][v],polies[j
][(v+1)%polies[j].size()]);
}
直线 x = x0 与圆的交点
inline void Get(const Circle &c,double x,double &l,double &r)
   //直线 x = x0 与圆的交点
       double y=fabs(c.c.x-x);
       double d=sqrt(fabs( sqr(c.r)-sqr(y) ));
       l=c.c.y+d;
       r=c.c.y-d;
}
梯形/三角形边界与圆边界形成的弧面积
inline double arcArea(const Circle &a,double l,double x,double r,double y)
{
   //梯形/三角形边界与圆边界形成的弧的面积
       double len=sqrt(sqr(l-r) + sqr(x-y));
       double d=sqrt(sqr(a.r)-sqr(len)/4.0);
       double angle=atan(len/2.0/d);
       return fabs(angle*sqr(a.r)-d*len/2.0);
}
取剖分线段
inline void Get_Interval(const Circle &a,double l,double r)
{
       double L1, L2, R1, R2, M1, M2;
       Get(a, l, L1, L2);
       Get(a,r,R1,R2);
```

```
Get(a,(l+r)/2.0,M1,M2);
        int D1=1,D2=-1;
        double A1=arcArea(a,l,L1,r,R1),A2=arcArea(a,l,L2,r,R2);
        inter.push_back( Tinter(L1,R1,M1,D1,A1) );
        inter.push_back( Tinter(L2,R2,M2,D2,A2) );
}
计算一段面积
inline double calcSlice(double x1,double xr)
{
   const int inf = 8;
        inter.clear();
        double lmost=-inf,rmost=inf;
        for (int i=0;i<polies.size();++i)</pre>
        {
int cc=0;
Tinter I[5];
for (int u=0;u<polies[i].size();++u)</pre>
        Point x=polies[i][u];
        Point y=polies[i][(u+1)%polies[i].size()];
        double l=min(x.x,y.x), r=max(x.x,y.x);
        if (l<=xl+EPS && xr<=r+EPS)</pre>
{
if (fabs(l-r)<EPS) continue;</pre>
Point d=y-x;
Point Left=x+d/d.x*(xl-x.x);
Point Right=x+d/d.x*(xr-x.x);
Point Mid=(Left+Right)/2;
                                I[cc++]=Tinter(Left.y,Right.y,Mid.y,1,0);
                        }
                }
                sort(I,I+cc);
                if (cc==2)
                        I[1].delta=-1;
                        inter.push_back(I[0]);
                        inter.push_back(I[1]);
                        lmost=max(lmost, I[1].mid);
                        rmost=min(rmost, I[0].mid);
                }
        }
```

```
for (int i=0;i<circles.size();++i)</pre>
       if (fabs(circles[i].c.x-xl)<circles[i].r+EPS &&
fabs(circles[i].c.x-xr)<circles[i].r+EPS)</pre>
               Get_Interval(circles[i],xl,xr);
       if (!inter.size()) return 0;
       double ans=0;
       sort(inter.begin(),inter.end());
       int cnt=0;
       for (int i=0;i<inter.size();++i)</pre>
               if (cnt>0)
               {
       ans+=(fabs(inter[i-1].x-inter[i].x)+fabs(inter[i-1].y-inter[i].y))*(xr-xl)/2.0;
                       ans+=inter[i-1].delta*inter[i-1].Area;
                       ans-=inter[i].delta*inter[i].Area;
               }
               cnt+=inter[i].delta;
       }
       return ans;
}
极角排序
inline void ToHull(vector <Point> &a)
       sort(a.begin(),a.end());
       int hull[10],len,limit=1;
       hull[len=1]=0;
       for (int i=1;i<4;++i)
               while (len>limit &&
crossDet(a[hull[len]]-a[hull[len-1]],a[i]-a[hull[len]])>=0) --len;
               hull[++len]=i;
       limit=len;
       for (int i=2; i>=0; --i)
               while (len>limit &&
crossDet(a[hull[len]]-a[hull[len-1]],a[i]-a[hull[len]])>=0) --len;
               hull[++len]=i;
       }
       vector <Point> b=a;
```

```
a.resize(len-1);
        for (int i=0; i<len-1; ++i)
                a[i]=b[hull[i+1]];
}
计算总面积
double calcArea(double z){
   //cout<<z<endl;</pre>
   polies.clear();
   circles.clear();
   bak.clear();
   //与四面体的交面
   for(int i=0;i<n;i++){</pre>
       vector <Point> cross;
       for(int j=0; j<4; j++){
          for(int k=j+1; k<4; k++){
              if(sgn(a[i].p[j].z-a[i].p[k].z)){
                    double l = min(a[i].p[j].z,a[i].p[k].z);
                     double r = max(a[i].p[j].z,a[i].p[k].z);
                     if(l \le z + EPS) \& z \le r + EPS) {
                        //线与平面相交,求交点
                        P3 d=a[i].p[k]-a[i].p[j];
                        d=d/d.z;
                        d=d*(z-a[i].p[j].z);
                        d=d+a[i].p[j];
                        cross.push_back(Point(d.x,d.y));
                    }
             }
          }
       sort(cross.begin(),cross.end());
       cross.erase(unique(cross.begin(),cross.end()),cross.end());
       if (cross.size()>2)
                {
          if (cross.size()==4)
          ToHull(cross);
                       polies.push_back(cross);
                }
   }
   for(int i=0;i<m;i++){
       if (fabs(z-b[i].o.z)+EPS<b[i].r)
       {
```

Point o(b[i].o.x,b[i].o.y);

```
double r=sqrt( sqr(b[i].r)-sqr(z-b[i].o.z) );
          circles.push_back(Circle(o,r));
       }
   }
   for(int i=0;i<polies.size();i++){</pre>
       for(int j=0;j<polies[i].size();j++)</pre>
          Add(polies[i][j].x);
   }
   for(int i=0;i<circles.size();i++){</pre>
          Add(circles[i].c.x - circles[i].r);
          Add(circles[i].c.x);
          Add(circles[i].c.x + circles[i].r);
   }
        CircleToCircle();
        CircleToPoly();
        PolyToPoly();
   sort(bak.begin(),bak.end());
/*
  if(bak.size()>2){
       cout<<z<":";
       for(int i=0;i<bak.size();i++)</pre>
       cout<<bak[i]<<" ";
   cout<<endl;
  }
*/
        double res=0;
        for (int i=0;i+1<bak.size();++i)</pre>
        if (fabs(bak[i+1]-bak[i])>EPS)
                res+=calcSlice(bak[i],bak[i+1]);
        return res;
}
void solve(){
   int inf = 8;
   const int block = 4000;
   double ans = calcArea(-inf)+calcArea(inf);
   double h = (inf + inf)/(double)block;
   /*
   for(int i=0;i<=block;i++){</pre>
       ans += calcArea(-inf+i*h);
```

```
}*/
   for (int i=1;i<block;i+=2)</pre>
      ans+=4*calcArea(-inf+i*h);
   for (int i=2;i<block;i+=2)</pre>
      ans+=2*calcArea(-inf+i*h);
   ans*=(h/3.0);
   printf("%.3lf\n",ans);
}
int main()
   while(cin>>n>>m){
       if(!(n||m))break;
      for(int i=0;i<n;i++)</pre>
          for(int j=0; j<4; j++)
             a[i].p[j].read();
      for(int i=0;i<m;i++){
          b[i].read();
      }
      solve();
   }
   return 0;
}
点在圆内
inline bool inCircle(Point a, Circle c) { return vecLen(c.c - a) < c.r;}</pre>
bool lineCircleIntersect(Point s, Point t, Circle C, vector<Point> &sol) {
       Vec dir = t - s, nor = normal(dir);
       Point mid = lineIntersect(C.c, nor, s, dir);
       double len = sqr(C.r) - dotDet(C.c - mid, C.c - mid);
        if (sgn(len) < 0) return 0;//不相交
        if (sgn(len) == 0) {
               sol.push_back(mid);//相切
                return 1;
       }
       Vec dis = vecUnit(dir);
       len = sqrt(len);
       sol.push_back(mid + dis * len);
       sol.push_back(mid - dis * len);
       return 2;//正常情况
}
```

线段与圆相交

```
bool segCircleIntersect(Point s, Point t, Circle C){
   vector<Point> tmp;
   tmp.clear();
   if (lineCircleIntersect(s ,t, C, tmp)){
      if(tmp.size() < 2)return false;</pre>
      for(int i=0, sz = tmp.size(); i < sz; i++){
          if(onSeg(tmp[i],s,t))return true;
      }
   }
   return false;
}
多边形切割成三角形
vector<Poly> cutPolies(Point s, Point t, vector<Poly> polies) {
   vector<Poly> ret;
   ret.clear();
   for(int i=0,sz = polies.size();i < sz; i++){
      Poly tmp;
      tmp = cutPoly(polies[i] , s , t);
      if(tmp.size() >= 3 && tmp.area() > EPS ) ret.push_back(tmp);
      tmp = cutPoly(polies[i] , t , s);
      if(tmp.size() >= 3 && tmp.area() > EPS) ret.push_back(tmp);
   }
   return ret;
点在多边形内
int ptInPoly( Point p, Poly &poly) {
   int wn = 0,sz = poly.size();
   for(int i=0;i<sz;i++){
      if(onSeg(p, poly[i], poly[(i+1) % sz])) return -1;//在边上
      int k = sgn(crossDet(poly[(i+1) % sz] - poly[i], p - poly[i]));
      int d1 = sgn(poly[i].y - p.y);
      int d2 = sgn(poly[(i+1) % sz].y - p.y);
      if (k > 0 \&\& d1 \le 0 \&\& d2 > 0) wn++;
      if (k < 0 \&\& d2 <= 0 \&\& d1 > 0) wn--;
   if (wn != 0) return 1;
   return 0;
}
```

```
bool circlePoly( Circle C, Poly &poly ){
   int sz = poly.size();
   if(ptInPoly(C.c, poly))return true;
   for(int i=0;i<sz;i++){
      if(inCircle(poly[i], C))return true;
   }
   for(int i=0;i<sz;i++){
      if(segCircleIntersect(poly[i],poly[(i+1) % sz], C))return true;
   }
   return false;
}
vector<double> circleWithPolies( Circle C, vector<Poly> &polies ){
   vector<double> ret;
   ret.clear();
   int sz = polies.size();
   for(int i=0;i<sz;i++){
      if(circlePoly(C,polies[i]))
      ret.push_back(polies[i].area());
   }
   return ret;
}
```

三角剖分简化模板

```
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<vector>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const double EPS = 1e-8;
const double PI = acos(-1.0);
template <class T> T sqr(T x) {return x*x;}
struct Point{
   double x,y;
   Point(){};
   Point(double x,double y):x(x),y(y){};
inline double dis(const Point &a,const Point &b)
```

```
{
   return sqr(a.x-b.x)+sqr(a.y-b.y);
}
typedef Point Vec;
Vec operator+(Vec a, Vec b){
   return Vec(a.x+b.x,a.y+b.y);
Vec operator-(Vec a, Vec b){
   return Vec(a.x-b.x,a.y-b.y);
Vec operator*(Vec a, double p){
   return Vec(a.x*p,a.y*p);
}
Vec operator/(Vec a,double p){
   return Vec(a.x/p,a.y/p);
inline int sgn(double x){return (x>EPS)-(x<-EPS);}</pre>
inline double dotDet(Vec a, Vec b){
   return a.x*b.x + a.y*b.y;
}
inline double crossDet(Vec a, Vec b){
   return a.x* b.y - a.y * b.x;
}
inline double dotDet(Point o,Point a,Point b){
   return dotDet(a-o,b-o);
inline double crossDet(Point o,Point a,Point b){
   return crossDet(a-o,b-o);
}
inline double vecLen(Vec x){
   return sqrt(dotDet(x,x));
}
inline Vec vecUnit(Vec x){
   return x/vecLen(x);
inline Vec normal(Vec x){
   return Vec(-x.y,x.x);
}
inline bool onSeg(Point x,Point a,Point b){
   return sgn(crossDet(x,a,b)==0) && sgn(dotDet(x,a,b)<0);
}
struct Tinter{double x,y,Area,mid;int delta;Tinter(){};
             Tinter(double xx, double yy, double mm, int dd, double aa) {
```

```
x = xx; y = yy; mid = mm;
                 delta = dd;Area = aa;
             }
};
inline bool operator<(const Tinter &a,const Tinter &b)
   return a.mid>b.mid +EPS;
}
inline bool operator==(const Tinter &a,const Tinter &b)
   return fabs(a.mid-b.mid)<EPS;</pre>
}
int segIntersect(Point a,Point c,Point b,Point d){
   Vec v1 = b-a, v2 = c-b, v3 = d-c, v4 = a-d;
   int a_bc = sgn(crossDet(v1,v2));
   int b_cd = sgn(crossDet(v2,v3));
   int c_da = sgn(crossDet(v3,v4));
   int d ab = sqn(crossDet(v4,v1));
   if(a_bc * c_da >0 && b_cd * d_ab >0) return 1;
   if(onSeg(b,a,c)&& c_da) return 2;
   if(onSeg(c,b,d)&& d_ab) return 2;
   if(onSeg(d,c,a)&& a_bc) return 2;
   if(onSeg(a,d,b)&& b_cd) return 2;
   return 0;
}
Point lineIntersect(Point P, Vec v, Point Q, Vec w)
   Vec u = P-Q;
   double t = crossDet(w,u) / crossDet(v,w);
   return P + v * t;
}
struct Poly{
   vector<Point> pt;
   Poly(){pt.clear();}
   ~Poly(){}
   Poly(vector<Point>&pt):pt(pt){};
   Point operator[](int x)const {return pt[x];}
   int size(){return pt.size();}
};
```

vector<double> bak;

```
double ans[55];
vector<Poly> polies;
vector<Tinter> inter;
inline void Add(double x){
   bak.push_back(x);
}
inline bool InLine(const Point &a,const Point &b,const Point &c)
   return fabs(crossDet(b-a,c-a)<EPS && dotDet(a-c,b-c)<EPS);
}
inline void LineToLine(const Point &a,const Point &b,const Point &c,const Point &d)
{
   double s1 = crossDet(c-a,b-a),s2 = crossDet(b-a,d-a);
   if(s1*s2 < -EPS) return;
   Point e = c + (d-c) *s1/(s1+s2);
   if(InLine(a,b,e) && InLine(c,d,e))
       Add(e.x);
}
inline void PolyToPoly()
{
   for(int i=0;i<polies.size();++i)</pre>
       for(int j=i+1;j<polies.size();++j)</pre>
       for(int u=0;u<polies[i].size();++u)</pre>
       for(int v=0;v<polies[j].size();++v)</pre>
LineToLine(polies[i][u],polies[i][(u+1)%polies[i].size()],polies[j][v],polies[j][(
v+1)%polies[j].size()]);
}
inline void calcSlice(double xl,double xr)
{
   const int inf = 1000;
   inter.clear();
   double lmost = -inf,rmost = inf;
   for(int i=0;i<polies.size();++i)</pre>
       int cc = 0;
      Tinter I[5];
       for(int u=0;u<polies[i].size();++u)</pre>
```

```
{
          Point x = polies[i][u];
          Point y = polies[i][(u+1)%3];
          double l=min(x.x,y.x),r=max(x.x,y.x);
          if(l<=xl+EPS && xr<=r+EPS){</pre>
              if(fabs(l-r)<EPS)continue;</pre>
              Point d = y-x;
              Point Left = x+d/d.x*(xl-x.x);
              Point Right = x+d/d.x*(xr-x.x);
              Point Mid = (Left+Right)/2.0;
              I[cc++] = Tinter(Left.y,Right.y,Mid.y,1,0);
          }
          }
                     sort(I,I+cc);
          if(cc==2){
              I[1].delta=-1;
              inter.push_back(I[0]);
              inter.push_back(I[1]);
              lmost = max(lmost, I[1].mid);
              rmost = min(rmost, I[0].mid);
       }
   }
   if(!inter.size())return ;
   sort(inter.begin(),inter.end());
   int cnt = 0;
   //cout<<inter.size()<<endl;</pre>
   for(int i=0;i<inter.size();++i)</pre>
   {
       if(cnt>0)
          ans[cnt]
                                                                                       +=
fabs((inter[i-1].x-inter[i].x)+fabs(inter[i-1].y-inter[i].y))*(xr-xl)/2.0;
       cnt += inter[i].delta;
   }
   return ;
void calcArea()
{
   bak.clear();
   for(int i=0;i<polies.size();i++)</pre>
   for(int j=0;j<polies[i].size();j++)</pre>
       Add(polies[i][j].x);
   PolyToPoly();
```

```
sort(bak.begin(),bak.end());
   for(int i=0;i<bak.size();i++)</pre>
       if(fabs(bak[i+1]-bak[i]>EPS))
          calcSlice(bak[i],bak[i+1]);
}
int main()
{
   int T;
   cin>>T;
   while(T--)
   {
       polies.clear();
       memset(ans,0,sizeof(ans));
       int n;
      cin>>n;
       for(int i=0;i<n;i++){
          Point p[3];
          for(int i=0;i<3;i++)
              cin>>p[i].x>>p[i].y;
          Vec a = p[2]-p[0];
          Vec b = p[1]-p[0];
          if(fabs(a.x*b.y-b.x*a.y)<EPS){</pre>
              continue;
          }
          vector<Point> v;
          for(int i=0;i<3;i++)
          v.push_back(p[i]);
          Poly tra(v);
          polies.push_back(tra);
       }
       calcArea();
       for(int i=1;i<=n;i++)
          printf("%.8lf\n",ans[i]);
   return 0;
}
```

其他

大数模板

#pragma comment(linker, "/STACK:1024000000,1024000000")

```
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
/*
* 完全大数模板
* 输出 cin>>a
* 输出 a.print();
* 注意这个输入不能自动去掉前导 0 的,可以先读入到 char 数组,去掉前导 0,再用构造函数。
*/
#define MAXN 9999
#define MAXSIZE 1010
#define DLEN 4
class BigNum
{
public:
   int a[500]; //可以控制大数的位数
   int len:
public:
   BigNum(){len=1;memset(a,0,sizeof(a));} //构造函数
   BigNum(const int);
                     //将一个 int 类型的变量转化成大数
  BigNum(const char*); //将一个字符串类型的变量转化为大数
  BigNum(const BigNum &); //拷贝构造函数
  BigNum & Operator=(const BigNum &); //重载赋值运算符,大数之间进行赋值运算
  friend istream& operator>>(istream&,BigNum&); //重载输入运算符
   friend ostream& operator<<(ostream&,BigNum&); //重载输出运算符
   BigNum operator+(const BigNum &)const; //重载加法运算符,两个大数之间的相加运算
   BigNum operator-(const BigNum &)const; //重载减法运算符,两个大数之间的相减运算
   BigNum operator*(const BigNum &)const; //重载乘法运算符,两个大数之间的相乘运算
   BigNum operator/(const int &)const;
                                     //重载除法运算符,大数对一个整数进行相除运算
   BigNum operator^(const int &)const;
                                     //大数的 n 次方运算
   int operator%(const int &)const;
                                     //大数对一个 int 类型的变量进行取模运算
```

```
bool operator>(const BigNum &T)const; //大数和另一个大数的大小比较
   bool operator>(const int &t)const; //大数和一个 int 类型的变量的大小比较
   void print();
                    //输出大数
};
BigNum::BigNum(const int b) //将一个 int 类型的变量转化为大数
{
   int c,d=b;
   len=0;
   memset(a,0,sizeof(a));
   while(d>MAXN)
   {
      c=d-(d/(MAXN+1))*(MAXN+1);
      d=d/(MAXN+1);
      a[len++]=c;
   }
   a[len++]=d;
BigNum::BigNum(const char *s) //将一个字符串类型的变量转化为大数
{
   int t,k,index,L,i;
   memset(a,0,sizeof(a));
   L=strlen(s);
   len=L/DLEN;
   if(L%DLEN)len++;
   index=0;
   for(i=L-1;i>=0;i-=DLEN)
   {
      t=0;
      k=i-DLEN+1;
      if(k<0)k=0;
      for(int j=k;j<=i;j++)</pre>
         t=t*10+s[i]-'0';
      a[index++]=t;
   }
}
BigNum::BigNum(const BigNum &T):len(T.len) //拷贝构造函数
{
   int i;
   memset(a,0,sizeof(a));
   for(i=0;i<len;i++)</pre>
      a[i]=T.a[i];
}
BigNum & BigNum::operator=(const BigNum &n) //重载赋值运算符,大数之间赋值运算
{
```

```
int i;
   len=n.len;
   memset(a,0,sizeof(a));
   for(i=0;i<len;i++)</pre>
       a[i]=n.a[i];
   return *this;
}
istream& operator>>(istream &in,BigNum &b)
   char ch[MAXSIZE*4];
   int i=-1;
   in>>ch;
   int L=strlen(ch);
   int count=0,sum=0;
   for(i=L-1;i>=0;)
   {
      sum=0;
       int t=1;
       for(int j=0; j<4\&\&i>=0; j++, i--, t*=10)
       {
          sum+=(ch[i]-'0')*t;
       }
       b.a[count]=sum;
      count++;
   }
   b.len=count++;
   return in;
}
ostream& operator<<(ostream& out,BigNum& b) //重载输出运算符
{
   int i;
   cout<<b.a[b.len-1];</pre>
   for(i=b.len-2;i>=0;i--)
   {
       printf("%04d",b.a[i]);
   return out;
}
BigNum BigNum::operator+(const BigNum &T)const //两个大数之间的相加运算
{
   BigNum t(*this);
   int i, big;
   big=T.len>len?T.len:len;
   for(i=0;i<big;i++)</pre>
   {
```

```
t.a[i]+=T.a[i];
      if(t.a[i]>MAXN)
      {
          t.a[i+1]++;
          t.a[i]-=MAXN+1;
      }
   }
   if(t.a[big]!=0)
      t.len=big+1;
   else t.len=big;
   return t;
}
BigNum BigNum::operator-(const BigNum &T)const //两个大数之间的相减运算
   int i,j,big;
   bool flag;
   BigNum t1,t2;
   if(*this>T)
      t1=*this;
      t2=T;
      flag=0;
   }
   else
   {
      t1=T;
      t2=*this;
      flag=1;
   }
   big=t1.len;
   for(i=0;i<big;i++)</pre>
      if(t1.a[i]<t2.a[i])
      {
          j=i+1;
          while(t1.a[j]==0)
             j++;
          t1.a[j--]--;
          while(j>i)
             t1.a[j--]+=MAXN;
          t1.a[i]+=MAXN+1-t2.a[i];
      }
      else t1.a[i]-=t2.a[i];
   }
   t1.len=big;
```

```
while(t1.a[len-1]==0 && t1.len>1)
   {
      t1.len--;
      big--;
   if(flag)
      t1.a[big-1]=0-t1.a[big-1];
   return t1;
}
BigNum BigNum::operator*(const BigNum &T)const //两个大数之间的相乘
   BigNum ret;
   int i,j,up;
   int temp,temp1;
   for(i=0;i<len;i++)</pre>
   {
      up=0;
      for(j=0;j<T.len;j++)</pre>
          temp=a[i]*T.a[j]+ret.a[i+j]+up;
          if(temp>MAXN)
          {
             temp1=temp-temp/(MAXN+1)*(MAXN+1);
             up=temp/(MAXN+1);
             ret.a[i+j]=temp1;
          }
          else
          {
             up=0;
             ret.a[i+j]=temp;
          }
      }
      if(up!=0)
         ret.a[i+j]=up;
   }
   ret.len=i+j;
   while(ret.a[ret.len-1]==0 && ret.len>1)ret.len--;
   return ret;
}
BigNum BigNum::operator/(const int &b)const //大数对一个整数进行相除运算
   BigNum ret;
   int i,down=0;
   for(i=len-1;i>=0;i--)
   {
```

```
ret.a[i]=(a[i]+down*(MAXN+1))/b;
      down=a[i]+down*(MAXN+1)-ret.a[i]*b;
   }
   ret.len=len;
   while(ret.a[ret.len-1]==0 && ret.len>1)
      ret.len--;
   return ret;
}
int BigNum::operator%(const int &b)const //大数对一个 int 类型的变量进行取模
{
   int i,d=0;
   for(i=len-1;i>=0;i--)
      d=((d*(MAXN+1))%b+a[i])%b;
   return d;
}
BigNum BigNum::operator^(const int &n)const //大数的n次方运算
{
   BigNum t, ret(1);
   int i;
   if (n<0) exit(-1);
   if(n==0)return 1;
   if(n==1)return *this;
   int m=n;
   while(m>1)
      t=*this;
      for(i=1;(i<<1)<=m;i<<=1)
         t=t*t;
      m-=i;
      ret=ret*t;
      if(m==1)ret=ret*(*this);
   return ret;
bool BigNum::operator>(const BigNum &T)const //大数和另一个大数的大小比较
{
   int ln;
   if(len>T.len)return true;
   else if(len==T.len)
   {
      ln=len-1;
      while(a[ln]==T.a[ln]&\&ln>=0)
        ln--:
      if(ln>=0 && a[ln]>T.a[ln])
         return true;
```

```
else
         return false;
   }
   else
      return false;
}
bool BigNum::operator>(const int &t)const //大数和一个 int 类型的变量的大小比较
{
   BigNum b(t);
   return *this>b;
}
void BigNum::print() //输出大数
{
   int i;
   printf("%d",a[len-1]);
   for(i=len-2;i>=0;i--)
     printf("%04d",a[i]);
   printf("\n");
}
bool ONE(BigNum a)
{
   if(a.len == 1 && a.a[0] == 1)return true;
   else return false;
}
BigNum A,B,X,Y;
char str1[10010], str2[10010], str3[10010], str4[10010];
int a[1010],b[1010],x[1010],y[1010];
int c[1010];
int main()
   //freopen("in.txt","r",stdin);
   //freopen("out.txt","w",stdout);
   int T;
   int n;
   int iCase = 0;
   scanf("%d",&T);
   while(T--)
   {
      iCase++;
      scanf("%d",&n);
      cin>>A>>X>>B>>Y;
      printf("Case %d: ",iCase);
      A = A-1;
```

```
X = X-1;
B = B-1;
Y = Y-1;
for(int i = 0; i < n; i++)
   if(A.a[0]%2 == 0)a[i] = 0;
   else a[i] = 1;
   if(B.a[0]%2 == 0)b[i] = 0;
   else b[i] = 1;
   if(X.a[0]%2 == 0)x[i] = 0;
   else x[i] = 1;
   if(Y.a[0]%2 == 0)y[i] = 0;
   else y[i] = 1;
   A = A/2;
   B = B/2;
   X = X/2;
   Y = Y/2;
bool flag = false;
for(int k = 0; k \le n; k++)
{
   x[n] = x[0];
   y[n] = y[0];
   for(int i = 0; i < n; i++)
       x[i] = x[i+1];
       y[i] = y[i+1];
   for(int i = 0; i < n; i++)
   {
       if(a[i] == x[i])c[i] = 0;
       else c[i] = 1;
   }
   bool fff = true;
   for(int i = 0; i < n; i++)
       if(b[i]^c[i] != y[i])
       {
          fff = false;
          break;
       }
   if(fff)flag = true;
   if(flag)break;
}
if(flag)printf("Yes\n");
```

```
else printf("No\n");
   }
   return 0;
}
io 优化
char buf[MAXN];
gets(buf);
int v;
char *p=strtok(buf," ");
while(p) {
   sscanf(p,"%d",&v);
   p=strtok(NULL," ");
}
//ACMonster's IO
int get() {
   char c;
   while(c=getchar(),(c<'0'||c>'9')&&(c!='-'));
   bool flag=(c=='-');
   if(flag)
      c=getchar();
   int x=0;
   while(c>='0'&&c<='9') {
      x=x*10+c-'0';
      c=getchar();
   }
   return flag?-x:x;
void output(long long x) {
   if(x<0) {
      putchar('-');
      x=-x;
   int len=0,data[20];
   while(x) {
      data[len++]=x%10;
      x/=10;
   }
   if(!len)
      data[len++]=0;
   while(len--)
```

```
putchar(data[len]+'0');
   putchar('\n');
}
inline int readint() {
   char c=getchar();
   while(!isdigit(c))
       c=getchar();
   int x=0;
   while(isdigit(c)) {
      x=x*10+c-'0';
       c=getchar();
   }
   return x;
}
char buf[20];
inline void writeint(int x) {
   if(x==0) {
       putchar('0');
       return;
   }
   if(x<0) {
       putchar('-');
      x=-x;
   }
   int bas=0;
   while(x) {
      buf[bas++]=x%10+'0';
      x/=10;
   }
   while(k--)
       putchar(buf[bas]);
}
template<class T> inline T& RDD(T &x) {
   char c;
   for (c = getchar(); c < '-'; c = getchar());</pre>
   if (c == '-') {
      x = '0' - getchar();
      for (c = getchar(); '0' <= c && c <= '9'; c = getchar()) x = x * 10 + '0'
- c;
   } else {
      x = c - '0';
      for (c = getchar(); '0' <= c && c <= '9'; c = getchar()) x = x * 10 + c -
'0';
```

```
}
return x;
}
```

用位运算生成下一个含有 k 个 1 的二进制数

```
b = x & -x;
t = x + b;
c = t ^ x;
m = (c >> 2) / b;
r = t | m; //最终结果
```

枚举子集

```
for (int x = S; x; x = (x-1)&S)
```

预处理子集和