Rodzaj niepewności	Sposób wyznaczania
Niepewności pomiarów bezpośrednich	
Niepewność standardowa typu A niepewność statystyczna	Dla serii n równoważnych pomiarów niepewność pomiaru $u(x)$ utożsamiamy z estymatorem odchylenia standardowego średniej $s(\bar{x})$
(pomiary powtórzone n-krotnie)	$u_A(x) \equiv s(\bar{x}) = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n(n-1)}}$ gdzie $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$
Niepewność standardowa typu B niepewność szacowana (wykonany jeden pomiar lub wyniki nie wykazują rozrzutu)	Uwzględnia: - niepewność wzorcowania (np. niepewność przyrządu pomiarowego $\Delta_p x$) - niepewność eksperymentatora $\Delta_e x$ - niepewność odczytu wielkości tablicowych $\Delta_t x$ - inne niepewności $u_B(x) = \sqrt{\frac{\left(\Delta_p x\right)^2}{3} + \frac{\left(\Delta_e x\right)^2}{3} + \frac{\left(\Delta_t x\right)^2}{3} + \cdots}$
Niepewność standardowa całkowita (standard uncertainty) (gdy obydwa typy niepewności A i B występują równocześnie)	$u(x) = \sqrt{u_A^2(x) + u_B^2(x)}$ $u(x) = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n(n-1)} + \frac{(\Delta_p x)^2}{3} + \frac{(\Delta_e x)^2}{3} + \frac{(\Delta_t x)^2}{3} + \cdots}$
Niepewności pomiarów pośrednich	
Niepewność złożona, którą wyliczamy korzystając z wyznaczonych niepewności standardowych $u(x_j)$ pomiarów bezpośrednich	Dla wielkości: $y=f(x_1,x_2,x_k)$ $u_c(y)=\sqrt{\sum_{j=1}^k\left(\frac{\partial f}{\partial x_j}\right)^2u^2(x_j)}$
(combined standard uncertainty)	(wielkości x_j są nieskorelowane)
Niepewność rozszerzona (expanded uncertainty)	$U(x)=ku(x)$ lub $U_c(y)=ku_c(y)$ w większości zastosowań (w tym w LPF) przyjmuje się k=2
Zapis niepewności i wyniku pomiarów (obowiązuje zasada podawania 2 cyfr znaczących niepewności po zaokrągleniu do góry)	Dla niepewności standardowych zalecany jest zapis z użyciem nawiasów, dla niepewności rozszerzonej z użyciem symbolu \pm . Pomiar masy $m=2,026$ kg, $u(m)=0,036$ zapis $m=2,026(36)$ kg Obliczona wartość objętości bryły i jej niepewność $V=23,5835$ m³, $u_c(V)=0,786$ m³, $U_c(V)=1,572$ m³ zapis wyniku: $V=(23,6\pm1,6)$ m³