K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Low & High Frequency Response of Single-Stage Amplifier

Numerical 1:

For the circuit shown in figure 1, The transistor parameters are $\beta = 100$, $V_{BE_{ON}} = 0.7V$. a) Calculate Lower corner frequency b) Determine mid-band voltage gain.

Figure 1: Circuit 1

Solution:

Above circuit 1 is a common-emitter BJT amplifier DC Analysis:-

Figure 2: DC Equivalent circuit

$$\begin{split} V_B &= V_{th} = \frac{R_2}{R_1 + R_2} \times V_{CC} = \frac{1.5k\Omega}{10k\Omega + 1.5k\Omega} \times 12 = 1.56V \\ \boldsymbol{V_{th}} &= \boldsymbol{1.56V} \\ R_{th} &= R1 \mid\mid R2 = 1.30k\Omega \\ \boldsymbol{R_{th}} &= \boldsymbol{1.30k\Omega} \end{split}$$

Applying KVL to the base-emitter loop:-

$$\begin{split} V_{th} - I_B R_{th} - V_{BE(ON)} - I_E R_E &= 0 \\ I_E &= I_C + I_B = (\beta + 1) I_B \\ \text{Assume } V_{BE(ON)} &= 0.7 V \\ V_{th} - I_B R_{th} - 0.7 V - (\beta + 1) I_B R_E &= 0 \\ I_B &= \frac{V_{th} - 0.7 V}{R_{th} + ((\beta + 1) R_E)} = \frac{1.56 - 0.7}{1.3 k\Omega + (101 \times 0.1 k\Omega)} = 75.43 \mu A \end{split}$$

$$I_C = \beta I_B = 100 \times 75.43 \mu A = 7.5 mA$$

 $I_C = 7.5 mA$

 $I_B = 75.43 \mu A$

Figure 3: Small Signal Equivalent Circuit

Small-Signal parameters:-

$$g_m = \frac{I_C}{V_T} = \frac{7.5mA}{26mV} = 288.46 \frac{mA}{V}$$

 $g_m = 288.46 \frac{mA}{V}$

$$r_{\pi} = \frac{V_T}{I_B} = \frac{26mV}{75.43\mu A} = 346.67\Omega$$

 $r_\pi=346.67\Omega$

Applying KCL at the collector terminal:-

$$g_m V_\pi + \frac{V_{out}}{R_C} = 0$$

$$V_\pi = -\frac{V_{out}}{g_m R_C}$$
.....(1)

Applying KCL at emitter node,

$$\left(\frac{V_{\pi}}{r_{\pi}} + g_{m}V_{\pi}\right) R_{E} = \text{Voltage drop on } R_{E}$$

$$\left[\frac{-V_{out}}{g_{m}R_{C}} \times \frac{1}{r_{\pi}} + g_{m}\left(\frac{-V_{out}}{g_{m}R_{C}}\right)\right] R_{E} = \text{Voltage drop on } R_{E}$$
.....(2)

Applying KVL at the base-emitter loop:-

$$V_{in} = V_{\pi} + \text{Voltage drop on } R_E$$

$$V_{in} = \frac{-V_{out}}{g_m R_C} - \frac{V_{out}}{g_m r_\pi R_C} R_E - \frac{V_{out}}{R_C} R_E$$

$$V_{in} = \frac{-V_{out}}{g_m R_C} - \frac{V_{out}}{\beta R_C} R_E - \frac{V_{out}}{R_C} R_E \quad [\because g_m R_\pi = \beta]$$

$$V_{in} = \frac{-V_{out}\beta + g_m R_E V_{out} + \beta g_m R_E V_{out}}{\beta (g_m R_C)}$$

$$\frac{V_{out}}{V_{in}} = \frac{-\beta g_m R_C}{\beta + (\beta + 1) g_m R_E}$$

$$A_V = \frac{V_{out}}{V_{in}} = \frac{-R_C}{\frac{1}{g_m} + (\frac{\beta + 1}{\beta}) R_E}$$

$$A_V = \frac{V_{out}}{V_{in}} = \frac{-1k\Omega}{\frac{1}{0.28846} + (\frac{101}{100}) \times 100} = -9.57$$

$$A_V=-9.57$$

$$A_{V_{mid}}$$
 with $R_S = \frac{V_{out}}{V_S} = \frac{V_{out}}{V_{in}} \times \frac{V_{in}}{V_S}$

Current through base = I_B , Current through emitter = $I_E = (\beta + 1)I_B$

$$Z_i = R_{th} \mid\mid [r_{\pi} + (\beta + 1)R_E]$$

$$\frac{V_{in}}{V_S} = \frac{Z_i}{Z_i + R_S}$$

$$Z_i = 1300 \mid\mid [346.67 + (10100)] = 1300 \mid\mid 10446.67 = 1.16k\Omega$$

$$Z_i=1.16k\Omega$$

$$rac{V_{in}}{V_S} = rac{1160}{1160 + 500} = 0.6987$$
 $rac{V_{in}}{V_S} = \mathbf{0.6987}$

$$A_{V_{mid}}$$
 with $R_S = \frac{V_{out}}{V_{in}} \times \frac{V_{in}}{V_S} = -9.57 \times 0.6987 = -6.686$

$$A_{V_{mid}} ext{ with } R_S = -6.686$$

$$A_{V_{mid}}$$
 in dB = $20log_{10}(6.686) = 16.5dB$

$$A_{V_{mid}} ext{ in dB} = 16.5 dB$$

Lower cut-off frequency analysis:-

Due to C_{C_1} alone:-

Figure 4: Small Signal low frequency equivalent circuit for C_{C_1}

To find R_{eq}

$$R_{eq} = R_S + R_i$$

$$R_i = R_{th}||(r_\pi + (\beta + 1)R_E)$$

$$R_i = R_{eq} = 1.16k\Omega$$

$$f_{L_{CC1}} = \frac{1}{2\pi \times C_{C_1} \times R_{eq}} = \frac{1}{2\pi \times 0.1 \times 10^{-6} \times 1.66 \times 10^{3}} = 958.76 Hz$$

Since we have only one capacitor, Overall cut-off frequency f_L will be:-

$$f_L = f_{L_{CC1}} = 958.76 Hz$$

SIMULATED RESULTS:

Above circuit was simulated in LTSpice and results are presented below:

Figure 5: Circuit Schematic 1

Figure 6: Low frequency response

${\bf Comparison\ of\ Theoretical\ and\ Simulated\ Values:}$

Parameters	Theoretical	Simulated
I_C	7.5mA	7.1mA
$A_{V_{mid}}(dB)$	16.5	16.34
Overall Cut-off frequency f_L	958.76Hz	956.04Hz

Table 1: Numerical 1

Numerical 2:

For the circuit shown in figure 7, a) Determine $V_{GS},\,I_D\,\,$ b) Find $g_{m_o},\,g_m\,\,$ c) Calculate mid-band gain (A_V) d) Determine Z_i e) Calculate A_{V_S} f) Determine $f_{L_{CC1}}$, $f_{L_{CC2}}$, $f_{LS}~$ g) Determine cut-off frequency Given: $I_{DSS}=6mA,~V_P=-6V,~r_d=100k\Omega$

Figure 7: Circuit 2

Solution:

DC Analysis:-

Figure 8: DC Equivalent circuit

Applying KVL to the Gate-Source loop:-

$$V_{GS} = -I_D R_S$$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

$$V_{GS} = -6mA\left(1 + \frac{V_{GS}}{6}\right)^2 \times 1.2k\Omega$$

$$V_{GS} = -7.2 \left(1 + \frac{V_{GS}}{3} + \frac{V_{GS}^2}{36} \right)^2$$

$$V_{GS} = -7.2 - 0.2V_{GS}^2 - 2.4V_{GS}$$

$$0.2V_{GS}^2 + 3.4V_{GS} + 7.2 = 0$$

Solving above quadratic equation, we get

$$V_{GS} = -2.479V$$

or

 $V_{GS} = -14.52V$, We reject this value, as $(V_{GS} > V_P)$

$$\therefore V_{GS} = -2.479V$$

$$I_D = -\frac{V_{GS}}{R_S} = \frac{2.479V}{1.2k\Omega} = 2.065mA$$

$$\boldsymbol{I_D=2.065mA}$$

Figure 9: Small Signal Equivalent Circuit

Small-Signal parameters:-

$$\begin{split} g_{mo} &= \left| \frac{2I_{DSS}}{V_P} \right| = \frac{2 \times 6}{6} = 2mA/V \\ g_m &= g_{mo} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = 2 \times \left(1 - \frac{2.479}{6} \right) = 1.1736 \ mA/V \\ g_m &= \mathbf{1.1736} \ mA/V \\ r_d &= \mathbf{100k} \Omega \quad \text{(Given)} \end{split}$$

Applying KCL at the drain terminal:-

$$\begin{split} g_m V_{GS} + \frac{V_{out}}{r_d} + \frac{V_{out}}{R_D} + \frac{V_{out}}{R_L} &= 0 \\ V_{GS} = -\frac{V_{out}}{g_m} \left(\frac{1}{r_d} + \frac{1}{R_D} + \frac{1}{R_L} \right) \\ V_{GS} = V_{in} \\ A_{V_{mid}} = \frac{V_{out}}{V_{in}} &= -g_m (r_d \mid\mid R_D \mid\mid R_L \mid) \\ A_{V_{mid}} = -1.1736 mA/V (100k \mid\mid 3k \mid\mid 3.9k \mid) &= -1.956 \end{split}$$

$$A_{V_{mid}}=-1.956$$

Input Impedance:-

$$Z_i = R_{sig} + R_G$$

$$Z_i = 1k\Omega + 1M\Omega = 1001k\Omega$$

$$Z_i=1001k\Omega$$

$$A_{V_{mid}} \text{ with } R_{sig} = \frac{V_{out}}{V_S} = \frac{V_{out}}{V_{in}} \times \frac{V_{in}}{V_S}$$
$$\frac{V_{in}}{V_S} = \frac{R_G}{R_G + R_{sig}} = \frac{1M\Omega}{1001k\Omega} = 0.999$$

$$V_S = R_G + R_{sig} = 1001k\Omega = 0.333$$

$$A_{V_{mid}}$$
 with $R_{sig} = 0.99 \times -1.956 = -1.954$

$$A_{V_{mid}}$$
 with $R_{sig}=-1.954$

$$A_{V_{mid}}$$
 in $dB = 20log_{10}(1.954) = 5.818dB$

$$A_{V_{mid}}$$
 in $dB=5.818dB$

Due to C_{C_1} alone:-

Figure 10: Small Signal low frequency equivalent circuit for C_{C_1}

$$R_{eq} = R_{sig} + R_G = 1k\Omega + 1M\Omega = 1001k\Omega$$

$$f_{L_{CC1}} = \frac{1}{2\pi \times C_{C_1} \times R_{eq}} = \frac{1}{2\pi \times 1001 \times 1000 \times 0.1} = 1.589Hz$$

$$f_{L_{CC1}} = 1.589Hz$$

Due to C_{C_2} alone:-

Figure 11: Small Signal low frequency equivalent circuit for C_{C_2}

$$R_{eq} = R_D + R_L = (r_d \mid\mid R_D) + R_L = (100k \mid\mid 3k) + 3.9k = 6.813k\Omega$$

$$f_{L_{CC2}} = \frac{1}{2\pi \times C_{C_2} \times R_{eq}} = \frac{1}{2\pi \times 6.813k \times 4.7} = 4.97Hz$$

$$f_{L_{CC2}} = 4.97Hz$$

Due to C_S alone:-

Figure 12: Small Signal low frequency equivalent circuit for \mathcal{C}_S

Since $V_S = 0$; and also gate and source are open circuit \rightarrow : $R_{sig} \& R_G$ are ignored

$$\begin{split} R_{eq} &= R_S \mid\mid \left[\frac{r_d + (R_D \mid\mid R_L)}{1 + g_m r_d}\right] = 1.2k \mid\mid \left[\frac{100k + 1.695k}{1 + 117.36}\right] = 1.2k \mid\mid 0.8592k = 500.7\Omega \\ f_{L_{CS}} &= \frac{1}{2\pi \times C_S \times R_{eq}} = \frac{1}{2\pi \times 10 \times 500.7} = 29.68Hz \\ f_{L_S} &= \mathbf{29.68Hz} \end{split}$$

Since, $f_{L_{CS}} > f_{L_{CC2}} > f_{LCC1}$

 \therefore Lower cut-off frequency = $f_{L_{CS}} = 29.68 Hz$

SIMULATED RESULTS:

Above circuit was simulated in LTSpice and results are presented below:

Figure 13: Circuit Schematic 2

Figure 14: Low frequency response of the circuit

Figure 15: Low frequency response for C_{C_1}

Figure 16: Low frequency response for C_{C_2}

Figure 17: Low frequency response for C_S

${\bf Comparison\ of\ Theoretical\ and\ Simulated\ Values:}$

Parameters	Theoretical	Simulated
I_D, V_{GS}	2.065mA, -2.479V	2.067mA, -2.481V
Lower cut-off frequency due to C_{C_1}	1.589Hz	1.611Hz
Lower cut-off frequency due to C_{C_2}	4.97Hz	6.2Hz
Lower cut-off frequency due to C_S	29.68Hz	26.78Hz
Overall cut-off frequency f_L	29.68Hz	26.86Hz
Mid-band Voltage gain A_V in dB	5.82dB	5.96dB

Table 2: Numerical 2

Numerical 3:

For the circuit shown in figure 18, a) Determine V_{GS} , I_D b) Find g_{m_o} , g_m c) Calculate mid-band gain (A_V) d) Determine Z_i e) Calculate A_{V_S} f) Determine $f_{L_{CC1}}$, $f_{L_{CC2}}$, f_{L_S} g) Determine low cut-off frequency h) Determine high cut-off frequency Given: $I_{DSS}=6mA,\ V_P=-6V,\ r_d=100k\Omega,\ C_{wi}=3pF,\ C_{wo}=5pF,\ C_{gd}=4pF,\ C_{gs}=6pF$ and $C_{ds}=1pF$

Figure 18: Circuit 3

Solution:

DC Analysis:-

Figure 19: DC Equivalent circuit

Applying KVL to the Gate-Source loop:-

$$V_{GS} = -I_D R_S$$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

$$V_{GS} = -6mA\left(1 + \frac{V_{GS}}{6}\right)^2 \times 1.2k\Omega$$

$$V_{GS} = -7.2 \left(1 + \frac{V_{GS}}{3} + \frac{V_{GS}^2}{36} \right)^2$$

$$V_{GS} = -7.2 - 0.2V_{GS}^2 - 2.4V_{GS}$$

$$0.2V_{GS}^2 + 3.4V_{GS} + 7.2 = 0$$

Solving above quadratic equation, we get

$$V_{GS} = -2.479V$$

or

 $V_{GS} = -14.52V$, We reject this value, as $(V_{GS} > V_P)$

$$\therefore V_{GS} = -2.479V$$

$$I_D = -\frac{V_{GS}}{R_S} = \frac{2.479V}{1.2k\Omega} = 2.065mA$$

$$I_D=2.065mA$$

Figure 20: Small Signal Equivalent Circuit

Small-Signal parameters:-

$$\begin{split} g_{m_o} &= \left| \frac{2I_{DSS}}{V_P} \right| = \frac{2 \times 6}{6} = 2mA/V \\ g_m &= g_{m_o} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = 2 \times \left(1 - \frac{2.479}{6} \right) = 1.1736 \ mA/V \\ g_m &= \mathbf{1.1736} \ mA/V \\ r_d &= \mathbf{100k}\Omega \quad \text{(Given)} \end{split}$$

$$\begin{split} g_m V_{GS} + \frac{V_{out}}{r_d} + \frac{V_{out}}{R_D} + \frac{V_{out}}{R_L} &= 0 \\ V_{GS} = -\frac{V_{out}}{g_m} \left(\frac{1}{r_d} + \frac{1}{R_D} + \frac{1}{R_L} \right) \\ V_{GS} = V_{in} \\ A_{V_{mid}} &= \frac{V_{out}}{V_{in}} = -g_m (r_d \mid\mid R_D \mid\mid R_L \mid) \\ A_{V_{mid}} &= -1.1736 mA/V (100k \mid\mid 3k \mid\mid 3.9k \mid) = -1.956 \end{split}$$

$$A_{V_{mid}} = -1.956$$

Input Impedance:-

$$Z_i = R_{sig} + R_G$$

 $Z_i = 1k\Omega + 1M\Omega = 1001k\Omega$
 $\boldsymbol{Z_i} = \mathbf{1001}k\Omega$

$$A_{V_{mid}} \text{ with } R_{sig} = \frac{V_{out}}{V_S} = \frac{V_{out}}{V_{in}} \times \frac{V_{in}}{V_S}$$

$$\frac{V_{in}}{V_S} = \frac{R_G}{R_G + R_{sig}} = \frac{1M\Omega}{1001k\Omega} = 0.999$$

$$A_{V_{mid}} \text{ with } R_{sig} = 0.99 \times -1.956 = -1.954$$

$$A_{V_{mid}} \text{ with } R_{sig} = -1.954$$

$$A_{V_{mid}} \text{ in } dB = 20log_{10}(1.954) = 5.818dB$$

$$A_{V_{mid}} \text{ in } dB = 5.818dB$$

Due to C_{C_1} alone:-

Figure 21: Small Signal low frequency equivalent circuit for C_{C_1}

$$R_{eq} = R_{sig} + R_G = 1k\Omega + 1M\Omega = 1001k\Omega$$

$$f_{L_{CC1}} = \frac{1}{2\pi \times C_{C_1} \times R_{eq}} = \frac{1}{2\pi \times 1001 \times 1000 \times 0.1} = 1.589Hz$$

$$f_{L_{CC1}} = 1.589Hz$$

Due to C_{C_2} alone:-

Figure 22: Small Signal low frequency equivalent circuit for C_{C_2}

$$R_{eq} = R_D + R_L = (r_d \mid\mid R_D) + R_L = (100k \mid\mid 3k) + 3.9k = 6.813k\Omega$$

$$f_{L_{CC2}} = \frac{1}{2\pi \times C_{C_2} \times R_{eq}} = \frac{1}{2\pi \times 6.813k \times 4.7} = 4.97Hz$$

$$f_{L_{CC2}} = 4.97Hz$$

Due to C_S alone:-

Figure 23: Small Signal low frequency equivalent circuit for C_S

Since $V_S = 0$; and also gate and source are open circuit $\rightarrow : R_{sig} \& R_G$ are ignored

$$\begin{split} R_{eq} &= R_S \mid\mid \left[\frac{r_d + (R_D \mid\mid R_L)}{1 + g_m r_d}\right] = 1.2k \mid\mid \left[\frac{100k + 1.695k}{1 + 117.36}\right] = 1.2k \mid\mid 0.8592k = 500.7\Omega \\ f_{L_{CS}} &= \frac{1}{2\pi \times C_S \times R_{eq}} = \frac{1}{2\pi \times 10 \times 500.7} = 29.68Hz \\ f_{L_S} &= \mathbf{29.68}Hz \end{split}$$

Since, $f_{L_{CS}} > f_{L_{CC2}} > f_{LCC1}$

 \therefore Lower cut-off frequency = $f_{L_{CS}} = 29.68 Hz$

High frequency equivalent circuit:-

Figure 24: Small Signal high frequency equivalent circuit

$$\begin{split} C_i &= C_{gs} + C_{mi} + C_{wi} \\ C_{mi} &= C_{gd}(1 - A_{V_{mid}}) = 4(1 + 5.82) = 27.28pF \\ C_i &= 6pF + 27.28pF + 3pF = 36.28pF \\ C_o &= C_{wo} + C_{mo} + C_{ds} \\ C_{mo} &= C_{gd} \left(1 - \frac{1}{A_{V_{mid}}}\right) = 4\left(1 - \frac{1}{5.82}\right) = 4.687pF \\ C_o &= 5pF + 4.687pF + 1pF = 10.687pF \end{split}$$

For f_{H_i}

Figure 25: Small Signal equivalent circuit for f_{H_i}

$$R_{eq} = R_{sig} \mid\mid R_G$$
 $R_{eq} = 1k\Omega \mid\mid 1M\Omega$
 $R_{eq} = 999\Omega$
 $f_{H_i} = \frac{1}{2\pi R_{eq}C_i} = \frac{10^{12}}{2\pi \times 999 \times 36.28} = 4.39MHz$
 $f_{H_i} = 4.39MHz$

For f_{H_o}

Figure 26: Small Signal equivalent circuit for f_{H_o}

$$\begin{split} R_{eq} &= r_d \mid\mid R_D \mid\mid R_L \\ R_{eq} &= 100k\Omega \mid\mid 3k\Omega \mid\mid 3.9k\Omega \\ R_{eq} &= 1.667k\Omega \\ f_{H_o} &= \frac{1}{2\pi R_{eq}C_o} = \frac{10^{12}}{2\pi \times 1.667 \times 10^3 \times 10.687} = 8.93MHz \\ f_{H_o} &= 8.93MHz \end{split}$$

Since, $f_{H_i} < f_{H_o}$

 \therefore Higher cut-off frequeny $f_H = f_{H_i} = 4.39 MHz$

SIMULATED RESULTS:

Above circuit was simulated in LTSpice and results are presented below:

Figure 27: Circuit Schematic 3

Figure 28: Low frequency response of the circuit

Figure 29: Low frequency response for C_{C_1}

Figure 30: Low frequency response for C_{C_2}

Figure 31: Low frequency response for C_S

Figure 32: Complete frequency Response

Comparison of Theoretical and Simulated Values:

Parameters	Theoretical	Simulated
I_D, V_{GS}	2.065mA, -2.479V	2.067mA, -2.481V
Lower cut-off frequency due to C_{C_1}	1.589Hz	1.611Hz
Lower cut-off frequency due to C_{C_2}	4.97Hz	6.2Hz
Lower cut-off frequency due to C_S	29.68Hz	26.78Hz
Overall cut-off frequency f_L	29.68Hz	26.86Hz
Mid-band Voltage gain A_V in dB	5.82dB	5.96dB
Overall cut-off frequency f_H	4.39MHz	4.41MHz

Table 3: Numerical 3
