Exercice 009 - Solution

GSF-6053

Hiver 2025

Énoncé

Supposons que Y_1, Y_2, \ldots, Y_n forment un échantillon aléatoire provenant de la distribution exponentielle définie par la fonction de densité :

$$f(y;\lambda) = \lambda e^{-\lambda y}, \quad y \ge 0$$

où $\lambda > 0$ est le paramètre inconnu.

1. Trouvez l'estimateur du maximum de vraisemblance (MLE) pour λ .

Réponse:

Nous considérons un échantillon Y_1, Y_2, \ldots, Y_n issu d'une distribution exponentielle avec la fonction de densité :

$$f(y;\lambda) = \lambda e^{-\lambda y}, \quad y \ge 0$$

où $\lambda > 0$ est le paramètre à estimer.

Étape 1 : Écrire la Fonction de Vraisemblance

La fonction de vraisemblance $L(\lambda)$ est le produit des densités individuelles :

$$L(\lambda) = \prod_{i=1}^{n} f(Y_i; \lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda Y_i} = \lambda^n e^{-\lambda \sum_{i=1}^{n} Y_i}$$

Étape 2 : Calculer la Log-Vraisemblance

Prendre le logarithme de la fonction de vraisemblance :

$$\ell(\lambda) = \ln L(\lambda) = n \ln \lambda - \lambda \sum_{i=1}^{n} Y_i$$

Soit $S = \sum_{i=1}^{n} Y_i$, alors:

$$\ell(\lambda) = n \ln \lambda - \lambda S$$

Étape 3 : Dériver la Log-Vraisemblance et Trouver le Maximum

Dérivons $\ell(\lambda)$ par rapport à λ :

$$\frac{d\ell}{d\lambda} = \frac{n}{\lambda} - S$$

Pour trouver le maximum, posons $\frac{d\ell}{d\lambda} = 0$:

$$\frac{n}{\lambda} - S = 0 \quad \Rightarrow \quad \lambda = \frac{n}{S} = \frac{1}{\overline{Y}}$$

où $\overline{Y} = \frac{S}{n}$ est la moyenne de l'échantillon.

L'estimateur du maximum de vraisemblance pour λ est :

$$\hat{\lambda} = \frac{1}{\overline{Y}}$$

2. Déterminez la distribution de l'estimateur $\hat{\lambda}$.

Réponse:

Puisque Y_i suit une distribution exponentielle de paramètre λ , la somme $S = \sum_{i=1}^{n} Y_i$ suit une distribution Gamma avec paramètres $\alpha = n$ et $\beta = \lambda$ (notation Gamma (α, β)).

L'estimateur $\hat{\lambda} = \frac{n}{S}$ est alors une transformation de S. Pour déterminer sa distribution, considérons que si $S \sim \operatorname{Gamma}(n,\lambda)$, alors $\frac{S}{n} \sim \operatorname{Gamma}(n,\frac{\lambda}{n})$.

Cependant, $\hat{\lambda}=\frac{1}{\overline{Y}}=\frac{n}{S}$ suit une distribution Inverse Gamma. Plus précisément :

$$\hat{\lambda} \sim \text{Inverse-Gamma}(n, \lambda n)$$

où la fonction de densité de l'Inverse Gamma est donnée par :

$$f_{\hat{\lambda}}(x) = \frac{(\lambda n)^n}{\Gamma(n)} x^{-(n+1)} e^{-\frac{\lambda n}{x}}, \quad x > 0$$

L'estimateur $\hat{\lambda} = \frac{1}{\overline{Y}}$ suit une distribution Inverse Gamma avec paramètres n et λn .

$$\hat{\lambda} \sim \text{Inverse-Gamma}(n, \lambda n)$$

