Evolution of galaxy dynamics over the last 10 Gyrs with MUSE/VLT

DSERVATOIRE de Paris

Author: Mercier Wilfried

Supervisor: Contini Thierry (IRAP) Co-Supervisor: Epinat Benoit (LAM)

Internship at IRAP 11 March - 26 July 2019

Galaxy evolution through cosmic time

Why studying kinematics?

Explain the co-evolution of morphological and dynamical properties of galaxies

- \triangleright main processes responsible for disc formation and settling ?
- $\,\rhd\,$ impact of merging, inflows and outflows on these processes ?
- \triangleright kinematics \rightarrow rotation curve \rightarrow dark matter and angular momentum distribution ?

Integral Field Spectroscopy & MUSE

IFS:

- \triangleright 3D cubes (2D spatial + 1D spectral)
 - \rightarrow photometry + kinematics

MUSE:

- $\triangleright 1 \times 1 \operatorname{arcmin}^2 \operatorname{FoV} \to \mathbf{environment}$
- \triangleright 0.2 arcsec spatial sampling
- ightharpoonup spectral range [4650 Å, 9300 Å]
- > seeing-limited or AO observations
- - ightarrow low-mass galaxies + blind surveys

MUSE instrument. Credit: Contini Thierry (IRAP)

Initial sample

HST image of COSMOS group CGr30

- > 16 MUSE fields in COSMOS area
 - \rightarrow exposures from 1 to 10 hr
 - > seeing-limited (FWHM $\lesssim 0.7$ ") or AO
- $ho \sim 500$ field galaxies with [OII] detection

 $(\text{FWHM} \leq 0.5\text{"})$

- · HST-ACS counterparts
- $\cdot \ \ 0.4 \leq z \leq 1.4$

Methodology

6/19 Mercier Wilfried Evolution of galaxy dynamics over the last 10 Gyrs..

Checking morphological parameters Half-light radius

GALFIT run by V. Abril-Melgajero (LAM) on structure galaxies

spheroidal disk-like irregulars

Checking morphological parameters **Ellipticity**

values are consistent between catalogues

scatter is due to bulge dominated (spherically symmetric) systems

Sample selection and redshift distribution

The total number corresponds to galaxies with photometric data in Cassata and/or Zurich catalogues.

- \triangleright sample of 103 galaxies with $R_{1/2} > 0.35$ " and SNR > 10
- \triangleright we loose galaxies at $z \approx 1.4$
- > redshift distribution is not drastically changed

Characteristics of our sample Mass-SFR relation

> massive quiescent (low [OII]) and very low mass galaxies (small size) are lost

Methodology

11/19 Mercier Wilfried Evolution of galaxy dynamics over the last 10 Gyrs..

Kinematical modelling Cleaning galaxies

Kinematical modelling Fitting a model

First results Rotationally supported vs dispersion dominated galaxies?

Median of $V_{\rm max}$ and $\sigma_{\rm v}$ consistent with SINS galaxies at $z \sim 2$ (Förster Schreiber et al., 2009), but with higher scatter.

First results Tully-Fisher Relation

 \triangleright higher V_{max} than in MUSE sample in HUDF of Contini et al. (2019) and EAGLE simulation

> no evolution with redshift found

15/19 Mercier Wilfried Evolution of galaxy dynamics over the last 10 Gyrs...

First results TFR: effect of inclination

> face-on and edge-on galaxies (unfilled circles) have overestimated values of $V_{
m max}$

First results A correlation between SFR and $\sigma_{\rm v}$?

Correlation between SFR and

- (a) $\mathbf{redshift} \to \text{consistent with}$ mass-SFR relation
- $(b) \ \ \mathbf{velocity} \ \mathbf{dispersion}$

Origin? According to Lehnert et al. (2013), energy injection from star-formation.

Perspectives Short term

- ▷ Origin of the velocity offset ?
- ➤ Comparison between "field" galaxies and those in structures

· Check influence of

- different selection criteria
 Difference in the TFR?
- · More disturbed kinematics?
- · Higher nb. of interacting galaxies ?

Abril-Melgajero+19, in prep.

Perspectives Long term (PhD)

- > better selection + larger sample (x10)
- Improve morphological modelling
- > Angular momentum evolution ?
 - > Dark matter vs. luminous mass?
- \triangleright Very deep observations + stacking
 - → explore dark matter distribution at large radii

<u>A</u>nnexes

Mercier Wilfried

Evolution of galaxy dynamics over the last 10 Gyrs...

6/10 Mercier Wilfried Evolution of galaxy dynamics over the last 10 Gyrs...

Mercier Wilfried 7/10

LO Mercier Wilfried

Evolution of galaxy dynamics over the last 10 Gyrs...

Mercier Wilfried 9/10

10/10 Mercier Wilfried

Evolution of galaxy dynamics over the last 10 Gyrs...