

Titel:	Erweiterung Import von Desigo TRA
	Funktionsplänen nach Simulink

Thema: Projekt Auftrag

Projekt: **IMSES**

Der Zweck dieses Dokumentes ist die Definition des Projektes, d.h. es zeigt die aktuelle Situation, welche zum Projekt geführt haben, den Auftrag, den Projektumfang, die Ziele, die Einschränkungen und erwarteten Resultate des Projektes.

Key Words: Projekt Definition, Projekt Auftrag

Speicherort: ProjectShare
Dokument Kategorie: ProjectRecord
Dokument Nummer: IPA-MvG-001_DE

Revision: 4

Änderungsdatum: 2013-03-08 Dokument Status: Genehmigt

Autor: Michael Speckien, 5556
Co-Autoren: Benedikt Schumacher, 3043
Verantwortliche Stelle: Michael Speckien, 5556

Klassifikation: Intern Freigabe, Genehmigung:

(Auftraggeber)	(Projektleiter, Auftragnehmer)

Ausgabe: 08-Mrz-2013 IPA-MvG-001_DE, Rev 4 - Seite 1/9

Inhaltsverzeichnis

1. EINFÜHRUNG	3
1.1 Referenzierte Dokumente	3
1.2 Begriffe und Abkürzungen	3
2. PROJEKT DEFINITION	5
2.1 Aktuelle Situation, Hintergrund	
2.2 Projektziele	
2.3 Projektumfang	7
2.4 Einschränkungen, Randbedingungen	8
2.5 Projekt Organisation	
2.6 Termine, Kosten	
2.7 Frwartete Resultate	9

1. Einführung

1.1 Referenzierte Dokumente

1.2 Begriffe und Abkürzungen

HLK	Heizungs-, Lüftungs- und Klimatechnik
Simatic	Gesamtsystem für Automation der SIEMENS AG, bestehend aus
	Controllern, Kommunikationssystemen, Managementstationen,
	Tools, Bedien- und Beobachtungssystemen, I/O-Modulen, Industrie-
	PCs
TIA Portal	Totally Integrated Automation Portal
	Toolset zum Engineering von Automationslösungen
ABT	Automation Building Tool
	Tool zum Engineering der Gebäudeautomation, basierend auf dem
	TIA Portal. Beinhaltet unter anderem:
	- CFC-Editor
	- BA Objekt-Editor
	- AF-Editor
	- HW-Konfigurator zum Definieren der Eigenschaften eines
	Controllers, der angeschlossenen Bussysteme und der
	physikalischen Ein- und Ausgänge
CFC-Editor, CFC	Continuous Function Chart Editor
	Graphische Programmiersprache zur Programmierung von
	Automationslösungen, insbesondere für Desigo TRA.
Chart	Plan, auf dem der Engineerer mit dem CFC-Editor Bausteine
	platzieren, paramatrieren und untereinander verschalten kann.
	Die Regelung- und Steuerungslogik für die Automation der HLK-
	Geräte, Licht und Jalousien in einem Raum wird grafisch mit Charts
	und Bausteinen programmiert.
Bausteine	Geschlossene Softwaremodule mit Ein- und Ausgangsschnittstelle,
	die der Engineerer in seiner Software grafisch zu einer
	Automatrionslösung verschaltet. Beispiel: PID-Regler
Verschaltung	Verbindung eines Ausgangs eines Bausteins mit einem Eingang
	eines (anderen) Bausteins in einem CFC-Chart
Interchart-Verschaltung	Verbindung eines Ausgangs eines Bausteins mit dem Eingang eines
	Bausteins in einem anderen CFC-Chart innerhalb der gleichen AF
Applikation	Hier:
''	Gesamte Applikation zum Steuern und Regeln einer
	Aufgabenstellung der Gebäudeautomation in einem Controller. Die
	Applikation umfasst auch das Erfassen und Ausgeben von Daten
	von/an Feldgeräte, Bedienpanels, Leitsysteme und andere Controller.
	Beispiel: Lichtsteuerung und Temperaturregelung für mehrere
	Räume. Ein Applikation besteht aus Applikationsfunktionen (AFs) und
	Charts
AF	Applikationsfunktion
	Teil einer Applikation. Sie besteht aus Charts und BA Objekten.
	Beispiel : Raumregelung mit einem Radiator mit Warmwasserventil.

Duilding Automatics Objekt
Building Automation Objekt.
Bildet die Schnittstelle zwischen physikalischen Ein- und
Ausgangssignalen und dem Chart sowie die Schnittstelle zum
Bedienen und Beobachten für den Endkunden. Beispiel: analoger
Eingang für Raumtemperatur.
Hier: frei programmierbares Automationsgerät für HLK.
Die Firmware beinhaltet bereits alle Funktionen zur Kommunikation
mit den Feldgeräten und mit dem Anwender.
Eine spezifische HLK Applikation wird mit dem ABT engineert und in
den Controller runtergeladen.
Software der Fa. Mathworks Inc zur numerischen Lösung
mathematischer Probleme.
Zusatzprodukt (Toolbox) zu MATLAB zur graphischen
Programmierung mit Hilfe von Bausteinen. Bei SIEMENS verwendet
für die Programmierung von HLK-Streckenmodellen und den
Reglerentwurf.
Interface Matlab/Simulink Engineering System. Interface zwischen
der auf Matlab/Simulink basierten Entwicklungs- und Testumgebung
zum Engineering System des Desigo Systems.
Produktname für das Simatic basierte Gebäude-Automationssystem
von Siemens Building Technologies.
TRA: Total Room Automation
Teil des Desigo Systems zur Raum-Automation, d.h. zur Automation
der HLK-Geräte, Licht und Jalousien im Raum.
Person die ein Gebäudeautomationslösung engineert, d.h. u.a. die
Regelung und Steuerung programmiert.
Gleichungssystem von der Form Y1 = f(X1), X1 = f(Y1)

2. Projekt Definition

2.1 Aktuelle Situation, Hintergrund

Für die Gebäudeautomation mit frei programmierbaren Controllern wird bei SIEMENS das graphische Engineering Tool Simatic CFC (R) (continuous function chart) eingesetzt. Der CFC ermöglicht es, Automationsaufgaben graphisch zu programmieren. Dazu werden Bausteine wie PID-Regler, Messwerterfassung oder Und-Glieder mit ihren Ein- und Ausgangsschnittstellen auf einem Plan plaziert. Die Schnittstellen der plazierten Bausteine werden zeichnerisch miteinander verschaltet, z.B. die Messwerterfassung mit dem PID-Regler. Anschliessend werden die Pläne compiliert und in den Controller geladen.

Häufig benötigte Applikationen werden im Headquarter Zug erstellt, getestet, dokumentiert und den Regionen als Standardapplikationen zur Verfügung gestellt. Diese Standardapplikationen werden unter anderem auch mit Matlab / Simulink (R) getestet. Da Simulink-Pläne ähnlich aufgebaut sind wie CFC-Pläne, ist es möglich, diese in Simulink nachzubauen und dort zu testen.

In Zusammenarbeit mit MathWorks wurde ein Tool entwickelt, um die zu testenden CFC-Pläne nach Simulink zu importieren.

Beim Import der Standardapplikationen wurde festgestellt, dass "algebraic loops" entstehen, wenn ein Ausgang eines Bausteins mit dem Eingang eines anderen Bausteins verschaltet ist, dessen Ausgang direkt oder indirekt wieder auf einen Eingang des ersten Bausteins führt.

Abbildung 2-1: Algebraische Schleife im CFC-Chart.

Abbildung 2–2: Algebraische Schleife aus Abbildung 2–1 programmiert in Simulink.

Erklärung:

CFC-Programme und Simulink-Programme werden auf unterschiedlichen Systemen mit unterschiedlichen Berechnungsalgorithmen ausgeführt.

Ein CFC-Programm wird entsprechend einer definierbaren Abarbeitungsreihenfolge (kleine Nummer bei den Bausteinen in Abbildung 2–1) ausgeführt. So hat der Eingang In1 an Baustein Sel1 (1) im Zyklus n den Wert des Ausgangs YCtr des Bausteins TRCtrH (4) vom vorherigen Zyklus n-1. Durch dieses Verhalten werden algebraische Schleifen aufgebrochen, mit dem Nachteil, dass es mehrere Berechungszyklen braucht, bis eine Änderung bei allen Bausteinen behandelt worden ist und wieder ein konsistentes Prozessabbild besteht. Im Allgemeinen sind diese Verzögerung unkritisch. Es können aber durch ungeschickte Abarbeitsungreihenfolgen durchaus ungünstige Zwischenzustände produziert werden.

Ein Simulink-Programm wird von einem Solver gelöst, der das Programm in ein Gleichungssystem überführt und diese innerhalb definierbaren Toleranzen nummerisch löst. Zu jedem Zeitschritt wird ein konsistentes Prozessabbild berechnet. Allerdings können in gewissen Fällen algebraische Schleifen nicht aufgelöst werden und müssen vom Programmierer von Hand korrigiert werden, z.B. durch den Einbau eines Speicherglieds (1/z). Diese manuelle Korrekturen können dazu führen, dass Tests in Simulink nicht mehr vollständig reproduzierbar sind.

2.2 Projektziele

Im Rahmen der IPA sollen die algebraische Schleifen in den CFC-Programmen erkannt werden und beim Import in Simulink korrigiert werden, so dass keine manuelle Nacharbeit mehr erforderlich ist, und damit Fehlerfreiheit und Reproduzierbarkeit gewährleistet ist.

Nach Abschluss der IPA ist es geplant, die Simulink-Testumgebung an mehreren Arbeitsplätzen in der Applikationsentwicklung der Gebäudeautomation einzusetzen.

2.3 Projektumfang

Das Projekt umfaßt folgende Punkte:

1. Erkennen von algebraischen Schleifen:

Erstellen einer im IMSES-Tool integrierten SW-Komponente zum Erkennen von algebraischen Schleifen ("Rückwärtsverschaltungen" in den Charts) in den aus dem ABT exportierten Charts und Ausgabe der Resultate in einem zur Weiterverarbeitung gemäss Punkt 2 geeignetem Format.

Optional (Bonusaufgabe): Dito für Interchart-Verschaltungen

 Korrektur/Auflösen der erkannten algebraischen Schleifen: Erweitern der bestehenden "Simulink-Importer"-Komponente durch eine Funktion, die ein zusätzliches Speicherglied in die nach Simulink konvertierten CFC Daten einbaut gemäss der in Punkt 1 erzeugten Resultatdatei.

3. Erweiterungen IMSES-Tool

Das bestehende GUI zur Steuerung der Funktionen im IMSES-Tool soll mit einem zusätzlichen Menüpunkt zur optionalen Ausführung der automatischen Korrektur von algebraischen Schleifen erweitert werden.

Die Installationsanleitung des IMSES-Tools soll an die Erweiterungen angepasst werden.

Die 3 Punkte sind unmittelbar nach der Realisierung zu testen.

Testkonzept: White-Box-Ansatz mit Stichproben.

Nicht zum Projektumfang gehört die Anpassung der IMSES-Dokumentation. Diese erfolgt im Anschluss an die IPA.

2.4 Einschränkungen, Randbedingungen

2.4.1 ABT Export / Import

Es existiert eine Funktion "ABT-Export / Import", die AFs aus dem ABT in XML-Files exportieren kann. Diese Funktion liefert ein *.zip File mit folgendem Grobaufbau:

*.zip file

*.ba file XML-file mit Tabelle aller BA-Objekte der AF *.xml XML-File für jeden einzelnen Chart der AF

Chart Name, Kommentar, Seitenformat, Version des Charts

FB für jeden Baustein im Chart

Name, Position, Typ des Bausteins

Param für jeden Parameter des Bausteins

Name, Wert des Parameters

Link für jede Verschaltung

Quelle, Ziel

Die detaillierte Definition der XML-Files und ihre Interpretationsregeln liegen vor. Die "ABT Export / Import" Funktion darf nicht verändert werden.

Die zu verwendende Version ist Desigo V5.0 mit Totally Integrated Automation Portal V11

2.4.2 Arbeitsumgebung Matlab / Simulink

Die zu verwendende Version ist Matlab 2010b SP1 oder höher und die aktuelle Version des IMSES-Tools.

2.4.3 Komponente zum Erkennen von algebraischen Schleifen

Je nach Zweckmässigkeit kann diese Aufgabe mit Matlab oder einer anderen Entwicklungsumgebung gelöst werden. In jedem Fall muss aber die Software im IMSES-Tool aufgerufen werden können.

Falls die Komponente nicht mit Matlab programmiert wird, ist die Wahl der entsprechenden Entwicklungsumgebung mit einer Variantenanalyse zu begründen (C/C++, Visual Basic, ...).

2.4.4 Erweiterung der bestehenden "Simulink-Importer"-Komponente

Diese Aufgabe ist zwingend mit Matlab zu lösen, da diese Komponente bereits mit Matlab realisiert wurde.

2.5 Projekt Organisation

Siehe PKOrg www.pkorg.ch

2.6 Termine, Kosten

Termine siehe PKOrg <u>www.pkorg.ch</u>
Die Kosten sind durch die Terminvorgabe definiert.

2.7 Erwartete Resultate

Für alle neuen und geänderten Komponenten:

- Lieferung als Matlab oder exe-File im Projektordner
- Lieferung von dokumentiertem und versioniertem Source-Code
- Lieferung der Programmdokumentation (je nach Bedarf Spezifikation, Realisierungsdokumentation, Variantenanalyse, Code-Listing mit Kommentaren o.ä.) Zielgruppe: Software-Entwickler, die das IMSES-Tool warten und ausbauen.
- Dokumentation der Testfälle und Testergebnisse

Für IMSES:

- Lieferung einer überarbeiteten Installationsanleitung zum IMSES-Tool.

Für das gesamte Projekt:

- Lieferung der Projektdokumentation (Terminplanung, Projektstatus alle 2 Tage)