Лабораторна робота №2

Тема: Програмування лінійних алгоритмів.

Мета: Навчитися знаходити та будувати розв'язки лінійних алгоритмічних задач. Навчитися програмувати задачі, що мають лінійні алгоритмічні розв'язки за допомогою мов програмування високого рівня.

Завдання:

Перший) з кожної таблиці вибрати завдання згідно варіанту; **Другий)** для кожного завдання побудувати блок-схему алгоритму; **Третій)** по кожному завданню розробити програму мовою C++ або Python; **Четвертий)** протестувати розроблені програми та скласти звіт.

Варіанти арифметичних виразів

NG	Арифметичний № Арифметичний № Арифметичний			A n d	
№	Арифметичний	№	Арифметичний		Арифметичний
вар.	вираз	вар.	вираз	вар.	вираз
1	$Z = \frac{2t + y\cos t}{\sqrt{y + 4.831}}$	2	$D = y^2 + \frac{0.5n + 4.8}{\sin y}$	3	$Q = \frac{\sqrt{k + 2.6p\sin k}}{x - d^3}$
4	$F = \ln(d) + \frac{3.5d^2 + 1}{\cos(2y + 2.3)}$	5	$R = \frac{\sin(2t+1)^2 + 0.3}{\ln(t+y)}$	6	$L = \cos^2 c + \frac{3t^2 + 4}{\sqrt{c+t}}$
7	$U = \frac{\ln(k-y) + y^4}{e^y + 2.355k^2}$	8	$A = \frac{\sin(2y+h) + h^2}{e^h + y}$	9	$R = \frac{\sin^2 y + 0.3d}{e^y + \ln(d)}$
10	$G = \frac{9.33w^3 + \sqrt{w}}{\ln(y + 3.5) + \sqrt{y}}$	11	$P = \frac{e^{y+2.5} + 7.1h^3}{\ln\sqrt{y + 0.04h}}$	12	$U = \frac{\ln(2k+4.3)}{e^{k+y} + \sqrt{y}}$
13	$D = \frac{7.8a^2 + 3.52t}{\ln(a+2y) + e^y}$	14	$F = \frac{2\sin(0.354y+1)}{\ln(y+2j)}$	15	$T = \frac{\sin(2+u)}{\ln(2y+u)}$
16	$L = \frac{0.81\cos i}{\ln(y) + 2i^3}$	17	$W = \frac{4t^3 + \ln(r)}{e^{y+r} + 7.2\sin r}$	18	$G = \frac{e^{2y} + \sin(f+3)}{\ln(3.8y+f)}$
19	$N = \frac{m^2 + 2.8m + 0.355}{\cos 2y + 3.6}$	20	$H = \frac{y^2 - 0.8y + \sqrt{y}}{23.1n^2 + \cos n}$	21	$Z = \frac{\sin(p+0.4)^2}{y^2 + 7.325p}$
22	$T = \frac{2.37\sin(t+1)}{\sqrt{4y^2 - 0.1y + 5}}$	23	$R = \frac{\sqrt{\sin^2 y + 6.835}}{\ln(y+k) + 3y^2}$	24	$W = \frac{0.004v + e^{2y}}{e^{\frac{y}{2}}}$
25	$V = \frac{\left(y + 2w\right)^3}{\ln\left(y + 0.75\right)}$	26	$E = \frac{\ln(0.7y + 2q)}{\sqrt{3y^2 + 0.5y + 4}}$	27	$T = \frac{0.355h^2 - 4.355}{e^{y+h} + \sqrt{2.7y}}$
28	$S = \frac{4.351y^3 + 2t\ln(t+x)}{\sqrt{\cos 2y + 4.351}}$	29	$K = \frac{2t^2 + 3l + 7.2}{\ln(y) + e^{2l}}$	30	$N = \frac{3y^{2} + \sqrt{y+1}}{\ln(p+y) + e^{p}}$

Bap. Bupas Bap. Bupas 1 $F = \cos(x^2 + 2) + \frac{3.5x^2 + 1}{\cos^2 y}$ 2 $T = \frac{\sqrt{x + b - a} + \ln(x)}{\cot(b + a)}$ 3 $R = \frac{\sin(x^2 + a)^3 + 4.3^a}{\cos^3 x^4}$ 4 $D = \frac{K^{-arx} - a\sqrt{6} - \cot(x)}{\sin^2(a \arcsin x^2)}$	
$\cos^2 y$ $\operatorname{ctg}(b+a)$	
, ,	os(3ab) + ln y)
3 $R = \frac{\sin(x^2 + a)^3 + 4.3^a}{\cos^3 x^4}$ 4 $D = \frac{K^{-aax} - a\sqrt{6 - cc}}{\sin^2(a \arcsin x - a)}$	os(3 <i>ab</i>) + ln <i>y</i>)
$3 R = \frac{1}{\cos^3 x^4} \qquad 4 D = \frac{\sin^2(a \arcsin x)}{\sin^2(a \arcsin x)}$	+ ln y)
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} \ln(x^3 + y) - y^4$	
5 $L = \operatorname{ctg}^2 c + \frac{2x^2 + 5}{\sqrt{c + t}}$ 6 $U = \frac{\ln(x^3 + y) - y^4}{e^y + 5.4k^3}$	
$= a^5 + \arccos(a + x^3) - \sin^4(v - c)$ $\tan^2(v^3 - h^4) + h^2$	
$7 \qquad P = \frac{a^5 + \arccos(a + x^3) - \sin^4(y - c)}{\sin^3(x + y) + x - y } \qquad 8 \qquad A = \frac{\operatorname{tg}(y^3 - h^4) + h^2}{\sin^3 h + y}$	
9 $F = \frac{\sqrt{(2+y)^2 + \sqrt[7]{\sin(y+5)}}}{\ln(x+1) - y^3}$ 10 $R = \frac{\cos^2 y + 2.4d}{e^y + \ln(\sin^2 x + 6)}$	7
(= / 2	/
11 $G = \frac{\operatorname{tg}(x^4 - 6) - \cos^3(z + xy)}{\cos^4 x^3 e^2}$ 12 $F = \frac{\sqrt{ x + \cos^3 x + z^3}}{ x ^2 + \cos^3 x + z^3}$	$\overline{z^4}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{-a}$
13 $U = \frac{\lg^3 y + \sin^5 x \sqrt{b - c}}{\sqrt{a - b + c}}$ 14 $D = \frac{\cos(x^3 + 6) - \sin^4 x}{\ln x^4 - 2\sin^4 x}$	$\frac{(y-x)}{r}$
V 0. 0 1 0	
	$\frac{(z+x-y)}{z}$
	<u>c</u>
19 $U = \frac{e^{x^3} + (\cos^2 x - 4)}{\arctan x + 5.2y}$ 20 $N = \frac{\sqrt[5]{z + \sqrt{zx}}}{e^x + a^5 \arctan y}$	
19 $U = \frac{e^{x^3} + (\cos^2 x - 4)}{\arctan x + 5.2y}$ 20 $N = \frac{\sqrt[5]{z + \sqrt{zx}}}{e^x + a^5 \arctan y}$	
$2.33 \ln \sqrt{1 + \cos^2 y}$	-
21 $I = \frac{2.33 \ln \sqrt{1 + \cos^2 y}}{e^y + \sin^2 x}$ 22 $K = \frac{\sqrt{(3a + x)^6 - \ln x}}{e^{a + x} + \arcsin 6x^2}$	<u>-</u>
23 $K = \frac{\cos^3 y+x - (x+y)}{\arctan^4(x+a)x^5}$ 24 $R = \frac{\sqrt{\sin^2 y + 6.835}}{\ln(y+k) + 3y^2}$	
$\arctan(y+a)x^2 \qquad \ln(y+k)+3y^2$	
$\begin{vmatrix} a & b^x + \cos^3 x \end{vmatrix}$	
$25 R = \frac{a}{x-a} + \frac{b^x + \cos^3 x}{\lg^3 a + 4.5} $ $26 G = \frac{9.33w^3 + \sqrt{w}}{\ln(y+3.5) + \sqrt{y}}$	
	$\frac{1}{1+\cos(x^3+z^5)}$
$27 L = \frac{\sqrt{e^x - \cos^4(x^2 a^5)} + \arctan^4(a - x^5)}{\sqrt{ a + xc }} 28 f = \frac{\cos^7 bx^5 - (\sin a^3)}{(\arcsin a^3 + \arcsin a^3)}$	$\frac{\cos(x^7-a^2)}{\cos(x^7-a^2)}$
VIII	- u jj
$\cos 2y + 3.6$ $\sin 2x + 3.6$ $\sin 2x + 3.6$	

№ вар.	Арифметичний вираз
1	$V1 = \sqrt{x^2 + \left(\sqrt{\arctan x - e^2} / \sin^2(x^3 + 1.8)\right)^4} + 2.8^{\sqrt{x}}$
2	$V2 = (\sin x - 5.4)^{3x} + \sqrt[3]{\left \lg(x - 1.5)^2 \right + x^{3.5}}$
3	$V3 = x^{2.8} / (\cos^2(x^3 - 1.5)^4 + \sqrt{ x }) - \arctan(x/\ln x)^5$
4	$V4 = \sin^{5}\left(x^{4} - \sqrt[3]{\lg^{4}(x^{2} - \ln^{2}(x - 1.8))}\right) + \arctan^{2}x$
5	$V5 = \left(15.4^{x} - x^{3.9}\right) / \sqrt{x^{2} + \lg^{2} \ln^{3} x^{3} - 1.8 } + 9^{5.3}$
6	$V6 = e^{\sqrt{\lg^3(x^2 - 1.8)^3}} + x^{4.5} / \arctan(x^2 + a^2)^4 - \sqrt{x^{3.2}}$
7	$V7 = \left(\cos^3 x^{1.5} + \sin^2 x^3\right)^4 / \left(\lg^2 \left(x\right) + e^{\sqrt[3]{x+1.8}}\right) + \sqrt{x}$
8	$V8 = \lg^{4} \left(\ln^{3} \left(x^{2} + \sqrt{ x } \right) / \left(x^{3} + e^{x} \right)^{3} \right)^{5} - x^{3.5} / \sin^{2} \left(x^{3} + 1.8 \right)$
9	$V9 = \cos^{5}\left(x^{2} + \arctan\left(\frac{ x - 1.8 }{x^{2} + 1.5}\right)\right) + \sin^{2}\left(x^{2} + 1.5\right)^{5} + \sqrt[3]{x^{3.5}}$
10	V10 = arctg ⁵ (sin ³ (x ² + 1.8) ⁵ - \sqrt{x}) ⁴ - e ^{3.8} /(x ^{4.5} + $\sqrt{ x }$)
11	$V11 = \cos^{3}\left(x^{4} + \lg^{2}\ln^{3}\left(\sqrt{x} - \sqrt[3]{ x }\right)^{2}\right) + \left(4.8^{\sqrt[3]{x}} - \sqrt{ x }\right)^{5}$
12	$V12 = \sin^8 \left(\sqrt{x} + \sqrt[3]{ x^2 + 1.8 } / \cos^2 (x^3 - 1.5)^6 \right) - x^{3.7}$
13	$V13 = e^{x} \left(\cos^{2} \left(x - \sqrt[3]{x^{4} + 5.3} \right)^{4} + \arctan g^{3} x^{2} \right)^{5} + x^{2} / \left(1 + x^{6.6} \right)$
14	$V14 = \sqrt[3]{ x + \sqrt{x^3 + 1.3}/\cos^2(x^3(1+x)^4)}/e^{\sqrt{x}} - x^{7.5}$
15	$V15 = \sin^5\left(\sqrt{ x } + \cos^3(x^2 + 5.4)\right) - \arctan\left(e^{\sqrt{x}} + 5.8^{3.7}\right)$
16	$V16 = \left(x^2 + \sqrt{\sin^2 x - \ln(x^2 - 3)}\right) / \lg^2 \left(x + \sqrt[3]{5.5x + \ln x}\right) - e^{2.5 + x^2}$
17	$V17 = \cos^{2}(x^{2} + \sqrt{x+2}) / \sin(x^{2} + \sqrt{x}) + \ln^{2} x / (\lg x + e^{\sqrt{x}})$
18	V18 = $\sqrt{x^2 + \sin(\sqrt{x} + 2x)} - e^{2x + \sqrt{x}} / (\cos^2 x + \lg^2 (\ln x))$
19	$V19 = \sqrt[3]{x + \cos^2 x + \sin x^2 + \lg x} / (x^2 + \ln^2 x^3 - e^{\sqrt{x}})$
20	$V20 = \sqrt{x + \sqrt{x + \sin^2 x}} / \cos\left(x^2 + \ln^2\left(1 + e^{\sqrt{x}}\right)\right)$
21	$V21 = \left(x^{2} + \cos(x + \ln\sqrt{x^{3} + 1.8})^{2} + \sqrt{ x }\right) / \lg x + e^{\sqrt{x}} $
22	$V22 = \sin^{3}\left(x^{2}\sqrt[3]{x + \sqrt{x^{2} + 1.5}}\right) / \arctan^{2}\left(x^{2} + 2.5e^{x}\right)$
23	$V23 = \cos^{2}\left(x + \sin\left(\sqrt{x^{3} + \sqrt{x + 1.5}} - \ln^{2} x\right) + e^{x}\right)$

№ вар.	Арифметичний вираз
24	$V24 = \left(x^{4.5} e^{\sqrt{x}}\right) / \ln^2 \left(x^2 + \cos\left(x + \sqrt[3]{x}\right)\right) - \sin^3 \left x - e^3\right $
25	$V25 = \arctan^2 \left(x^2 + \cos \left(\sqrt{x + x^2 - e^x } \right) / \lg^2 \left(x^3 - \sin x \right) \right)$
26	$V26 = \sin^{2}\left(x^{2} + \sqrt[3]{x + \cos^{2} x }\right) / \ln^{2}\left(\sqrt{x} - \arctan^{2} x \right)^{2}$
27	$V27 = \ln^2 \left(\sqrt{ x } + x^2 + \sin x \right) / \lg^2 \left(e^{\sqrt{x}} + x^4 \right)$
28	$V28 = \lg \ln^2(x) x^2 + \sqrt{x^2 + 1.5} e^{\sqrt{x}} + \cos^3 x^2$
29	$V29 = \cos^{3}\left(\arctan^{2}\left(x + \sqrt[3]{x}\right) + \sin^{2}x\right) / \sin\left \lg^{2}(x + 2.8)\right $
30	$V30 = \lg^{5} \left(x^{3} \ln^{6} \left(x^{2} + 1.7 \right) + e^{\sqrt{x}} \right) - \arctan \left \sqrt[3]{x} + \lg^{3} x^{8} \right $

№	Функція	№	Функція
вар.	<u> </u>	вар.	,
1	$y = \frac{2x^2 - \sin^2 x}{\cos(2x) + x^2} - \frac{x+1}{\ln x}$	2	$y = \frac{\ln x^2 + \cos^2 x}{\cos(2x) + x^2} + \frac{\sqrt[3]{x}}{x}$
3	$y = \frac{\ln x^2 + 2\cos^2 x}{\cos(2x)^2} + \frac{\sqrt[3]{x}}{x}$	4	$y = \frac{2\cos^2 x}{1 + x\cos(2x)} + \frac{0.3^x}{x \ln x - 2\sin^2 x}$
5	$y = \frac{x + 2x + \sin x}{\cos^2 x + x^2} + \frac{0.3^x}{\ln x}$	6	$y = \frac{2x + \sin x}{\cos^2 x + x^2} + \frac{0.5^x}{\sqrt{x}}$
7	$y = \frac{\sin x - x^2}{2x + 1} + \frac{(1 + x)^x}{1 + 3x}$	8	$y = \frac{x - \ln x}{2x - 1} + \frac{2x - 1}{x^2 + 3x}$
9	$y = \frac{\ln x + 2x}{x^2 + 1} + \frac{x + 1}{2x^2 + 1}$	10	$y = \frac{3x^2 + 2x}{\sin x + x^2} - \frac{2x}{(1+x^2)(1+2x)}$
11	$y = \frac{4x^2 + 3x}{(1+x)(1+2x)} + \frac{2x+1}{\sin x + 1}$	12	$y = \frac{(2x^2 - 1)}{x^2 + \sin^2 - \frac{2x + 1}{(x + 2)(x + 3)}}$
13	$y = \frac{(4x^2 - 2)(x + 2)}{2x + 3} + \frac{x^2 \sin x}{2x + 1}$	14	$y = \frac{x^2 + 2\sin x}{2x + 1} + \frac{\sqrt{x} - \cos x}{(2x + 1)(\ln x^2 + 1)}$
15	$y = \frac{x^2 + 2(x-1)}{(x+1)(x+\sqrt{3})} + \frac{2\sin^2 x}{2x+3^x}$	16	$y = \frac{4x^2 - 3^x}{2x^2 + 1} + \frac{\ln x}{2x + 3}$
17	$y = \frac{3x-2}{(2x+3)(x+1)} + \frac{\sin 2x}{(x^2+1)(x+2)}$	18	$y = \frac{x^2 - 2x}{(2x+3)(x+4)} + \frac{\sqrt[3]{x}}{2x+3}$
19	$y = \frac{x^2 + 1}{x^3 + 3} + \frac{\sin x}{2x + 3}$	20	$y = \frac{4x^2 + 3x}{3x + 4} + \frac{\sin x}{2\cos x + 1}$

№ вар.	Функція	№ вар.	Функція
21	$y = \frac{3x+2}{2x+3} + \frac{x^2}{(2x+1)(\sin x + 2)}$	22	$y = \frac{4x - \sin x}{x^2 + 3x + 1} + \frac{3x^2 + 2^x}{(x+1)(x^2+1)}$
23	$y = \frac{2x + \sin x}{(x+2)(x+\sqrt{x})} + \frac{4x}{(2x+\sqrt[3]{3})(x^2+1)}$	24	$y = \frac{3x+4}{(x+3)(x+1)^2} + \frac{2x-1}{(x+\sin x)(\ln x+1)}$
25	$y = \frac{4x}{(x+\sin)^2} + \frac{2x+\sqrt[3]{x}}{(x^2+1)(x+1)}$	26	$y = \frac{2x+3^{x}}{(x+1)(x+3)} + \frac{x^{2}+\sqrt{x}}{(2x+1)(x+\sin x)}$
27	$y = \frac{2x+1}{x+1} + \frac{x^2 + \sqrt{x}}{(2x+1)(x+\sin x)}$	28	$y = \frac{3x^2 - \sqrt[3]{x}}{(2x+1)(1+x)} + \frac{2x+1}{(x+3)}$
29	$y = \frac{2x^2 + 1}{x + \sin(x+1)} + \frac{x - 3^x}{(2x+1)(x+2)}$	30	$y = \frac{x^2 + \sin 2x}{2\sqrt{x} + 3x} + \frac{x^2 + 1}{(x+2)(x+3)}$

перше зі значень параметрів задати як константу, друге – ввести з екрана

№ вар.	Функція $y = f(x)$	Значення параметрів
1	$y = a \sin^2 b + b \cos^2 a$; $a = \sqrt[3]{ b+c }$; $b = \sqrt{x}$	x = 1.52; c = 5
2	$y = a^2 + b^2$; $a = \ln x $; $b = e^k + a$	x = 5.3; k = 3
3	$y = e^x + 5.8^c$; $c = a^2 + \sqrt{b}$; $a = b^3 + \ln b $	x = 2.5; $b = 7$
4	$y = \sqrt[3]{ a-b }$; $a = \lg x$; $b = \sqrt{x^2 + t^2}$	x = 1.7; t = 3
5	$y = a^3 / b^2$; $a = e^{\sqrt{ x }}$; $b = (\sin p^2 + x^3)$	x = 2.1; p = 2
6	$y = p^2 + t^4$; $p = x^2 - \sqrt{ x }$; $t = \sqrt[3]{x + a^2}$	x = 4; $a = 3.7$
7	$y = c^3 / \cos c$; $c = a^2 + b^2$; $a = \sqrt{ x } + e^{\sqrt{b}}$	x = -11; $b = 12.5$
8	$y = \sin^3(a+b); \ a = t^3 + \sqrt{b}; \ b = \lg^2 x $	x = 10.9; $t = 2$
9	$y = \operatorname{arctg}^{3} x^{2}; \ x = p + k; \ k = \sqrt{p + t^{2}}$	t = 4.1; p = 3
10	$y = \cos^2(a + \sin b); \ a = \sqrt{ x }; \ b = x^4 + m^2$	m = 2; $x = 1.1$
11	$y = \sin^3 a + \cos^2 x$; $a = c + k^2$; $c = \arctan x $	k = 7.2; x = 5
12	$y = e^{\sqrt{ x }} + \cos x; \ x = a + c^3; \ a = \sin^5 b$	b = 3; c = 1.7
13	$y = a\cos x - b\sin x; \ x = \sqrt[3]{a - b}; \ a = t^2b$	t = 2.2; b = 3
14	$y = \sqrt{x} \sin a + \sqrt{b} \cos x; \ a = \lg x ; \ b = x + p^3$	x = 11; p = 2.6

№ вар.	Функція $y = f(x)$	Значення параметрів
15	$y = \lg a / \lg b$; $a = \sqrt{x^2 + b^2}$; $x = e^b + n$	n = 9.1; b = 3
16	$y = \ln x+t ; \ x = t^2 + p; \ t = \sqrt{m}$	m = 3.8; p = 2
17	$y = e^{a+b}$; $a = \lg t + b^2 $; $t = b^2 + \sqrt{bx}$	b = 3; x = 5.2
18	$y = \sqrt[3]{x^2 + c^2}$; $x = e^{mk}$; $c = \cos^2 m + k^2$	k = 2; m = 1.8
19	$y = e^x + 5.8^c$; $c = a^2 + \sqrt{b}$; $a = b^3 + \ln b $	x = 2.8; b = 3
20	$y = x^3 / t^2$; $x = e^{\sqrt{p+a}}$; $t = p^3 + a^3$	a = 2; p = 2.6
21	$y = c^2 + \sqrt{ a }; \ c = \lg b ; \ a = (b+x)^3$	b = 7; x = 2
22	$y = \operatorname{arctg}^2 x ; \ x = t^3 + b^2; \ t = b^3 + e^{\sqrt{q}}$	q = 2; b = 1.8
23	$y = v^3 + \cos^2 w$; $v = \cos^2 a$; $w = \sqrt{a + x }$	x = 2.9; a = -0.9
24	$y = x^2 + \sqrt[3]{ x }$; $x = \cos^2 b + \sin^2 a$; $a = \sqrt{b + t^2}$	b = 7.1; t = 2
25	$y = \sin^3 x + \cos x^2$; $x = \lg ct $; $c = t^2 + \sqrt{a}$	t = -3; $a = 8.8$
26	$y = \lg^2 x + a ; \ x = \sqrt{a + b}; \ a = e^{t+b}$	t = 2; b = 1.8
27	$y = \text{arctg}^3 p ; \ p = \sqrt{x^2 + a^2}; \ x = \sqrt{a} + \sqrt{b}$	a = 7; b = 2.3
28	$y = \sin^4(a^2 + b^2)$; $a = \sqrt{b+t}$; $t = b^2 + k^3$	b = 5; k = 2.8
29	$y = \cos^3 x + a ; \ x = e^b; \ b = a + \sqrt{a + p^2}$	a = -4; p = 3
30	$y = \sin^4(a^2 + b^2)$, $a = \sqrt{b+t}$; $t = b^2 + k^3$	b = 2; k = 1.8

Варіанти задач з лінійною структурою

№ вар.	Завдання
1	Трикутник задано координатами своїх вершин. Обчислити його площу,
	використовуючи формулу Герона: $S = p(p-a)(p-b)(p-c)$, де $p = (a+b+c)/2$;
	а, b і с – довжини сторін трикутника. Координати вершин ввести
	з клавіатури. Для обчислення довжини відрізка між точками $(x_1, y_1), (x_2, y_2)$
	використовувати формулу $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$
2	Знайти період T і частоту ν коливань у контурі, ємність конденсатора
	в якому — C , індуктивність — L . Значення C і L ввести з клавіатури.
	$T=2\pi\sqrt{LC}$, $ u=1/T$
3	Обчислити довжину і площу кола для заданого радіуса. Значення радіуса
	ввести з екрана
4	Обчислити площу трикутника за трьма сторонами $-a, b, c, -$ використовую-
	чи формулу Герона (див. варіант 1). Довжини сторін ввести з клавіатури

№	Завдання
вар.	
5	Знайти косинус кута поміж векторами $\vec{a} = (a_1, a_2)$ та $\vec{b} = (b_1, b_2)$
	за формулою $\cos \alpha = (\vec{a} \cdot \vec{b})/(\vec{a} \cdot \vec{b})$. Модуль вектора $ \vec{a} = \sqrt{a_1^2 + a_2^2}$.
	Скалярний добуток векторів обчислити за формулою $a \cdot b = a_1b_1 + a_2b_2$
6	Обчислити відстань від точки M до площин $22x-4y-20z-45=0$ та
	3x - y + 5z + 1 = 0, використовуючи формулу відстані від точки до площини
	$\rho = \frac{\left ax_0 + y_0 + cz_0 + d \right }{\sqrt{a^2 + b^2 + c^2}} . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
7	Радіолокаційна станція випромінює $n=1000$ імпульсів за 1 с з довжиною хвилі $\lambda=0.03$ м. Потужність одного імпульсу $P_1=7\cdot 10^{-4}$ Вт, а тривалість $\tau=3\cdot 10^{-7}$ Вт. Обчислити енергію одного імпульсу $W_1=P_1\tau$; середню
	корисну потужність станції $P = W_1 k$; кількість довжин хвиль в одному імпульсі $k = c \tau / \lambda$, якщо $c = 30$ ввести з екрана
8	Обчислити корені рівняння $ax^2 + bx + c = 0$, заданого коефіцієнтами
	$a,\ b,\ c$ (припускаючи, що $a \neq 0$ і що корені є дійсні). Значення $a = 2,$ $b = -8, c = -10$ ввести з екрана
9	Обчислити корінь рівняння $2x/a+b-12=0$ за різних значень параметрів a та b . Значення a , b ввести з екрана
10	Обчислити гіпотенузу і площу прямокутного трикутника за двома заданими катетами. Довжини катетів ввести з екрана.
11	Тіло рухається за законом $S = t^3 - \sqrt{t}$. Обчислити швидкість тіла і відстань у момент часу t . Значення t ввести з екрана. (Функція швидкості є похідною від функції відстані)
12	Обчислити катет та площу прямокутного трикутника за заданими катетом і гіпотенузою. Довжини катета й гіпотенузи ввести з екрана
13	Обчислити $Z = (v1 + v2 + v3)/3$, де $v1$, $v2$, $v3$ — об'єми куль з радіусами
	R_1 , R_2 , R_3 відповідно. Об'єм кулі обчислити за формулою $V=4/3\piR^3$. Значення радіусів ввести з екрана
14	У коливальному контурі ємність конденсатора $C = 10^{-6} \Phi$, індуктивність
	котушки $L=0.04~\Gamma$ н, амплітуда напруги на конденсаторі $U=100~\mathrm{B}.$
	Обчислити амплітуду сили струму $I = U\sqrt{C/L}$, повну енергію $W = LI^2/2$
15	Чотирикутник задано координатами власних вершин.
	Обчислити його периметр. Вершини ввести з екрана
16	Обчислити значення функції $W = \operatorname{sh}(x) \cdot \operatorname{tg}(x+1) - \operatorname{tg}^2(2+\operatorname{sh}(x-1))$,
	де $sh(x) = (e^x - e^{-x})/2$. Значення x ввести з екрана
17	При зміненні сили струму в котушці, індуктивність якої $L=0.5~\Gamma$ н,
	в $n=2$ рази енергія магнітного поля змінилась на $\Delta W=3$ Дж. Знайти
	початкові значення енергії $W_1 = \Delta W/(n^2-1)$ та сили струму $I_1 = \sqrt{2W_1/L}$

№	Э ориомия
вар.	Завдання
18	Обчислити периметр трикутника, заданого координатами його вершин. Координати вершин ввести з екрана
19	Задано трикутник ABC довжинами власних сторін a, b, c , які слід ввести з екрана. Обчислити його бісектриси (бісектриса, проведена до сторони a , дорівнює $\sqrt{bc(a+b+c)(b+c-a)}/(b+c)$)
20	Задано трикутник АВС довжинами власних сторін а, b, c. Обчислити його
20	медіани (медіана, проведена до сторони a , дорівнює $0.5\sqrt{2b^2+2c^2-a^2}$.
21	Значення a, b, c ввести з екрана
21	Обчислити $Z=(R_1+R_2+R_3)/3$, де R_1,R_2,R_3- радіуси куль з об'ємами $V_1,$ V_2,V_3 відповідно. Радіус кулі обчислити за формулою $R=\sqrt[3]{3V/4\pi}$.
	Значення об'ємів ввести з екрана
22	Задані довжини a , b і c сторін певного трикутника. Обчислити медіани трикутника, сторонами якого ϵ медіани вихідного трикутника. Довжина медіани, проведеної до сторони a , дорівню ϵ $0.5\sqrt{2b^2+2c^2-a^2}$
23	За якого значення напруги на конденсаторі коливального контура (в долях
23	амплітудного значення $u/U_{\text{макс}}$) і через який час (в долях періоду t/T) енергія
	електричного поля буде в n разів відрізнюватися від енергії магнітного поля?
	Значення n ввести з екрана. $u/U_{\text{макс}} = \sqrt{n/(n+1)}$; $t/T = \arccos \sqrt{n/(n+1)}/(2\pi)$
24	Обчислити об'єм зрізаної піраміди, основами якої є квадрати зі сторонами
	a та b . $V = h(S_1 + \sqrt{S_1S_2 + S_2})/3$; S_1 , S_2 — площі основ, h — висота піраміди.
	Значення а, b, h ввести з екрана
25	Обчислити рентабельність роботи підприємства за місяць за формулою рентабельність = прибуток / собівартість · 100 %, якщо собівартість
	продукції в поточному місяці зменшилась порівняно з минулим на 2 %.
	Значення прибутку і собівартості за минулий місяць ввести з екрана
26	Обчислити хвильовий опір напівхвильового вібратора
	$p=120(\ln(2\lambda/(\pi d))-0.577),\; \lambda=(3+0.1\;n)$. Значення n та d ввести з екрана
27	Найти радіуси описаного R і вписаного r кіл для правильного
	многокутника з числом сторін n і довжиною сторони a .
	$R = a/(2\sin(\pi/n)), r = a/tg(\pi/n)$. Значення n і a ввести з екрана
28	Обчислити об'єм зрізаного конуса, основи якого мають радіуси R та r .
	$V = h(S_1 + \sqrt{S_1S_2} + S_2)/3$; S_1 , S_2 – площі основ, h – висота конуса.
	Значення R, r, h ввести з екрана
29	Ввести координати точки площини (x, y) . Здійснити перехід до полярних
	координат (ρ, ϕ) , де $\rho = \sqrt{x^2 + y^2}$, $g = y/x$
30	Тіло рухається за законом $S = t^3 - 3t^2 + 2$. Обчислити швидкість тіла
	в момент часу t. Значення t ввести з екрана.
	(Функція швидкості ϵ похідною від функції відстані)

Вимоги до звіту:

- 1) Титульний аркуш;
- 2) Мета та постановка задачі;
- Завдання;
- 4) Блок-схеми алгоритмів задач;
- 5) Код програм;
- 6) Тестування програм;
- 7) Висновки до роботи.