Learning Machines Demo 3 Catching the prey

Team α - Mick IJzer, Leon Berberich, Justus Huebotter & Nikolay Polyanov

Agenda

- Problem definition
- Methodology
- Experimental setup
- Results
- Conclusions

Task & Problem Definition

- Task:
 - Hunting down the prey (hunter) and avoiding the hunter (prey) with the Robobo
 - Robobo should be able to **detect its target** of the desired color in the arena and change it's path in order to **catch/avoid** it
- Problems:
 - Color sensitive object recognition using camera of the mobile phone
 - (Population) learning from experience
 - Obstacle avoidance
 - Catch the prey as fast as possible (hunter)
 - Survive as long as possible (prey)

Problems Faced

There were several challenges faced while working on the task:

- Running the same script for two robots at the same time
- Difference in cameras between the mobile phones used
- Restart of experiments limited time
 - Took gatherer (last week) as hunter
 - Only evolved prey!

Methods Overview

A combination of an Evolutionary Algorithm and Policy Iteration:

- Learning algorithm:
 - Evolutionary Strategy $(\mu + \lambda)$
 - Variation (crossover & mutation)
 - Selection (probabilistic parent & survival selection)
- Controllers:
 - \circ Deterministic policies π
 - Each row represents a state
 - Each column represents an action
 - \circ Deterministic \rightarrow Action a taken in some state s will always be the same for an individual

```
[[0, 0, 0, 1],
[1, 0, 0, 0],
[0, 1, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0]]
```

Image Processing

- Cropped image
- OpenCV 2 findContours
- Red in range (BGR)
 - o [0, 0, 180] [150, 150, 255] for hunter
 - o [0, 0, 180] [80, 80, 255] for prey

Controller Representation

Actions:

- Forward
- Left turn
- Right turn

Bits included in state:

- IR sensor: object detected right or front
- IR sensor: object detected left
- Camera: target detected
- Memory: target seen in recent iterations
- Memory: target last seen on left or right

Deterministic policy π with 3 columns and 2⁵ = 32 rows.

There are 3³² = 1.85 × 10¹⁵ possible combinations

Evolution Parameters & Metrics

Phenotype	Behavior of the robot when in a state
Genotype	Deterministic policy (where every row is a state with 0 or 1 for each action)
Mapping	Readings & policy table are translated into robot movement by a python function
Fitness	+1 per survived timestep, -50 getting caught, -50 on wall hit (100 steps in total → max fitness = 100)
Crossover	Uniform (Every row is a copy from either P1 or P2)
Mutation	Shuffle a row with probability mu = 0.1
General Settings	Parent selection: prob. rank (2 parents) Survivor selection: prob. rank (10 individuals) Initialization: random Termination: 11 generations

Experimental Setup

In simulation obstacles were added, size and floor color are also different:

- Hunter and prey are both red
- Position of the robots and size of the arena (2m x 2m) remain constant.
- Position → faster learning of obstacle avoidance

Results - Population

- 11 generations
- 10 individuals per generation
- 3 reruns
- Multiple best individuals

²/₃ reruns performed really bad

Reflection Task & Problems

- Task:
 - Hunting down the prey (hunter)
 - Avoiding the hunter (prey)
 - Robobo should be able to **detect its target** of the desired color change it's path in order to **catch/avoid** it
- Problems:
 - o Color sensitive object recognition using camera of the mobile phone
 - (Population) learning from experience
 - Obstacle avoidance
 - Catch the prey as fast as possible (hunter)
 - Survive as long as possible (prey)

Conclusions

- Evolutionary Approach gives a promising learning curve for the population
- Prey behavior seems to be more complex than predator behavior
- Best individuals exhibit desired behavior.
- What we would have liked to try with more time:
 - Co-evolution of hunter and prey populations
 - Increased state space (i.e. back sensors)
 - Multiple scenes (i.e. stochastic)
 - "League" setup

Thank you for your kind attention!

Questions?
Demonstration!

