Data Mining

Link Analysis Algorithms
Page Rank,
Hubs and authorities

Link Analysis Algorithms

- Motivation
- ☐ Page Rank
- Topic-Specific Page Rank
- ☐ Hubs and Authorities
- Conclusion

Motivation: Link Analysis

- □ Search engines
 - Serve user's information needs
 - Find relevant results based on keywords
- Spammers
 - Try to attract traffic to their sites
 - Misguide search engines
 - ☐ Link farms, fake keywords, ...
- □ Idea: use links to determine importance

Link Analysis Algorithms

- Motivation
- ☐ Page Rank
- Topic-Specific Page Rank
- ☐ Hubs and Authorities
- Conclusion

Pagerank

(Larry Page and Sergey Brin)

- Assess the importance of a page based on links
- Measure relative importance of a web page. A page is important if many other important pages link to it
 - Recursive definition

Simple recursive formulation

- □ Each link's vote is proportional to the importance of its source page
- □ If page P with importance x has n outlinks, each link gets x/n votes
- □ Page P's own importance is the sum of the votes on its inlinks

Simple "flow" model

The web in 1839

$$y = y/2 + a/2$$

 $a = y/2 + m$
 $m = a/2$

Solving the flow equations

- □ 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo scale factor
- Additional constraint forces uniqueness
 - y+a+m = 1
 - y = 2/5, a = 2/5, m = 1/5
- Gaussian elimination method works for small examples, but we need a better method for large graphs

Matrix formulation

- Matrix M has one row and one column for each web page
- Suppose page j has n outlinks
 - If $j \Rightarrow i$, then $M_{ij} = 1/n$
 - Else M_{ii}=0
- □ M is a column stochastic matrix
 - Columns sum to 1
- □ Suppose **r** is a vector with one entry per web page
 - r_i is the importance score of page i
 - Call it the rank vector
 - $|\mathbf{r}| = 1$

Example

Suppose page j links to 3 pages, including i

Eigenvector formulation

□ The flow equations can be written

r = Mr

- □ So the rank vector is an eigenvector of the stochastic web matrix
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1

Example

$$y = y/2 + a/2$$

 $a = y/2 + m$
 $m = a/2$

$$r = Mr$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

Power Iteration method

- ☐ Simple iterative scheme (aka relaxation)
- ☐ Suppose there are N web pages
- \square Initialize: $\mathbf{r}^0 = [1/N,, 1/N]^T$
- \square Iterate: $\mathbf{r}^{k+1} = \mathbf{Mr}^k$
- \square Stop when $|\mathbf{r}^{k+1} \mathbf{r}^k|_1 < \varepsilon$
 - $\|\mathbf{x}\|_1 = \sum_{1 \le i \le N} |x_i|$ is the L₁ norm
 - Can use any other vector norm e.g., Euclidean

Power Iteration Example

Random Walk Interpretation

- □ Imagine a random web surfer
 - At any time t, surfer is on some page P
 - At time t+1, the surfer follows an outlink from P uniformly at random
 - Ends up on some page Q linked from P
 - Process repeats indefinitely
- Let **p**(t) be a vector whose ith component is the probability that the surfer is at page i at time t
 - $\mathbf{p}(t)$ is a probability distribution on pages

The stationary distribution

- Where is the surfer at time t+1?
 - Follows a link uniformly at random
 - p(t+1) = Mp(t)
- □ Suppose the random walk reaches a state such that $\mathbf{p}(t+1) = \mathbf{Mp}(t) = \mathbf{p}(t)$
 - Then p(t) is called a stationary distribution for the random walk
- \square Our rank vector \mathbf{r} satisfies $\mathbf{r} = \mathbf{Mr}$
 - So it is a stationary distribution for the random surfer

Existence and Uniqueness

A central result from the theory of random walks (aka Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time t = 0.

Spider traps

- □ A group of pages is a spider trap if there are no links from within the group to outside the group
 - Random surfer gets trapped
- □ Spider traps violate the conditions needed for the random walk theorem

Microsoft becomes a spider trap

 \mathbf{m}

3/2 7/4

Random teleports

- □ The Google solution for spider traps
- At each time step, the random surfer has two options:
 - With probability β , follow a link at random
 - With probability 1-β, jump to some page uniformly at random
 - Common values for β are in the range 0.8 to 0.9
- ☐ Surfer will teleport out of spider trap within a few time steps

Random teleports ($\beta = 0.8$)

y 7/15 7/15 1/15 a 7/15 1/15 1/15 m 1/15 7/15 13/15

Random teleports ($\beta = 0.8$)

Matrix formulation

- □ Suppose there are N pages
 - Consider a page j, with set of outlinks O(j)
 - We have $M_{ij} = 1/|O(j)|$ when $j\Rightarrow i$ and $M_{ij} = 0$ otherwise
 - The random teleport is equivalent to
 - \square adding a teleport link from j to every other page with probability $(1-\beta)/N$
 - \square reducing the probability of following each outlink from 1/|O(j)| to $\beta/|O(j)|$
 - \square Equivalent: tax each page a fraction (1-β) of its score and redistribute evenly

Page Rank

- ☐ Construct the NxN matrix **A** as follows
 - $A_{ij} = \beta M_{ij} + (1-\beta)/N$
- □ Verify that **A** is a stochastic matrix
- □ The page rank vector r is the principal eigenvector of this matrix
 - \blacksquare satisfying $\mathbf{r} = \mathbf{Ar}$
- Equivalently, r is the stationary distribution of the random walk with teleports

Dead ends

- □ Pages with no outlinks are "dead ends" for the random surfer
 - Nowhere to go on next step

Microsoft becomes a dead end

Dealing with dead-ends

- □ Teleport
 - Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly
- Prune and propagate
 - Preprocess the graph to eliminate dead-ends
 - Might require multiple passes
 - Compute page rank on reduced graph
 - Approximate values for deadends by propagating values from reduced graph

Computing page rank

- Key step is matrix-vector multiplication
 - rnew = Arold
- □ Easy if we have enough main memory to hold A, r^{old}, r^{new}
- \square Say N = 1 billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N² entries
 - \square 10¹⁸ is a large number!

Rearranging the equation

```
\begin{split} \boldsymbol{r} &= \boldsymbol{A}\boldsymbol{r}, \text{ where} \\ \boldsymbol{A}_{ij} &= \beta \boldsymbol{M}_{ij} + (1 \text{-} \beta)/N \\ \boldsymbol{r}_i &= \sum_{1 \leq j \leq N} \boldsymbol{A}_{ij} \, \boldsymbol{r}_j \\ \boldsymbol{r}_i &= \sum_{1 \leq j \leq N} \left[\beta \boldsymbol{M}_{ij} + (1 \text{-} \beta)/N \right] \, \boldsymbol{r}_j \\ &= \beta \sum_{1 \leq j \leq N} \boldsymbol{M}_{ij} \, \boldsymbol{r}_j + (1 \text{-} \beta)/N \sum_{1 \leq j \leq N} \boldsymbol{r}_j \\ &= \beta \sum_{1 \leq j \leq N} \boldsymbol{M}_{ij} \, \boldsymbol{r}_j + (1 \text{-} \beta)/N, \text{ since } |\boldsymbol{r}| = 1 \\ \boldsymbol{r} &= \beta \boldsymbol{M} \boldsymbol{r} + \left[ (1 \text{-} \beta)/N \right]_N \\ \text{where } [\boldsymbol{x}]_N \text{ is an N-vector with all entries } \boldsymbol{x} \end{split}
```

Sparse matrix formulation

- We can rearrange the page rank equation:

 - $[(1-\beta)/N]_N$ is an N-vector with all entries $(1-\beta)/N$
- M is a sparse matrix!
 - 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - Compute $\mathbf{r}^{\text{new}} = \beta \mathbf{M} \mathbf{r}^{\text{old}}$
 - Add a constant value (1-β)/N to each entry in r^{new}

Sparse matrix encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - say 10N, or 4*10*1 billion = 40GB
 - still won't fit in memory, but will fit on disk

source	dograd	doctiontion	nadaa
node	degree	destination	noaes

0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

Basic Algorithm

- Assume we have enough RAM to fit r^{new}, plus some working memory
 - Store rold and matrix M on disk

Basic Algorithm:

- \square Initialize: $\mathbf{r}^{\text{old}} = [1/N]_{N}$
- ☐ Iterate:
 - Update: Perform a sequential scan of M and rold to update rnew
 - Write out r^{new} to disk as r^{old} for next iteration
 - Every few iterations, compute |r^{new}-r^{old}| and stop if it is below threshold
 - Need to read in both vectors into memory

Update step

```
Initialize all entries of \mathbf{r}^{\text{new}} to (1-\beta)/N

For each page p (out-degree n):

Read into memory: p, n, \text{dest}_1, \ldots, \text{dest}_n, r^{\text{old}}(p)

for j = 1..n:

r^{\text{new}}(\text{dest}_j) += \beta^* r^{\text{old}}(p)/n
```


src	degree	destination
0	3	1, 5, 6
1	4	17, 64, 113, 117
2	2	13, 23

Analysis

- ☐ In each iteration, we have to:
 - Read rold and M
 - Write r^{new} back to disk
 - IO Cost = $2|\mathbf{r}| + |\mathbf{M}|$
- □ What if we had enough memory to fit both r^{new} and r^{old}?
- What if we could not even fit r^{new} in memory?
 - 10 billion pages

Block-based update algorithm

2

src	degree	destination
0	4	0, 1, 3, 5
1	2	0, 5
2	2	3, 4

Link Analysis Algorithms

- Motivation
- ☐ Page Rank
- Topic-Specific Page Rank
- ☐ Hubs and Authorities
- Conclusion

Topic-Specific Page Rank

- Instead of generic popularity, can we measure popularity within a topic?
 - E.g., computer science, health
- □ Bias the random walk
 - When the random walker teleports, he picks a page from a set S of web pages
 - S contains only pages that are relevant to the topic
 - E.g., Open Directory (DMOZ) pages for a given topic (<u>www.dmoz.org</u>)
- For each teleport set S, we get a different rank vector r_s

Matrix formulation

- \square $A_{ij} = \beta M_{ij} + (1-\beta)/|S|$ if $i \in S$
- \square $A_{ij} = \beta M_{ij}$ otherwise
- □ Show that **A** is stochastic
- We have weighted all pages in the teleport set S equally
 - Could also assign different weights to them

Example

Suppose S =
$$\{1\}$$
, $\beta = 0.8$

Node	Iteration			
	0	1	2	stable
1	1.0	0.2	0.52	0.294
2	0	0.4	0.08	0.118
3	0	0.4	0.08	0.327
4	0	0	0.32	0.261

Note how we initialize the page rank vector differently from the unbiased page rank case.

Link Analysis Algorithms

- Motivation
- ☐ Page Rank
- Topic-Specific Page Rank
- □ Hubs and Authorities
- Conclusion

Hubs and Authorities

- ☐ Suppose we are given a collection of documents on some broad topic
 - e.g., stanford, evolution, iraq
 - perhaps obtained through a text search
- Can we organize these documents in some manner?
 - Page rank offers one solution
 - HITS (Hypertext-Induced Topic Selection) is another
 - □ proposed at approx the same time (1998)

HITS Model

- Interesting documents fall into two classes
- Authorities are pages containing useful information
 - course home pages
 - home pages of auto manufacturers
- 2. Hubs are pages that link to authorities
 - course bulletin
 - list of US auto manufacturers

Idealized view

Hubs Authorities

Mutually recursive definition

- A good hub links to many good authorities
- A good authority is linked from many good hubs
- Model using two scores for each node
 - Hub score and Authority score
 - Represented as vectors h and a

Transition Matrix A

- \square HITS uses a matrix A[i, j] = 1 if page i links to page j, 0 if not
- \square A^T , the transpose of A, is similar to the PageRank matrix M, but A^T has 1's where M has fractions

Example

Hub and Authority Equations

- □ The hub score of page P is proportional to the sum of the authority scores of the pages it links to
 - \blacksquare **h** = λAa
 - Constant λ is a scale factor
- □ The authority score of page P is proportional to the sum of the hub scores of the pages it is linked from
 - \blacksquare **a** = $\mu A^T \mathbf{h}$
 - Constant µ is scale factor

Iterative algorithm

- ☐ Initialize **h**, **a** to all 1's
- \square h = Aa
- ☐ Scale **h** so that its max entry is 1.0
- \square a = $\mathbf{A}^{\mathsf{T}}\mathbf{h}$
- ☐ Scale **a** so that its max entry is 1.0
- Continue until h, a converge

Example

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$a(yahoo) = 1 \qquad 1 \qquad 1 \qquad 1 \qquad \cdots \qquad 1$$

$$a(amazon) = 1 \qquad 1 \qquad 4/5 \qquad 0.75 \qquad \cdots \qquad 0.732$$

$$a(m'soft) = 1 \qquad 1 \qquad 1 \qquad 1 \qquad \cdots \qquad 1$$

$$h(yahoo) = 1 \qquad 1 \qquad 1 \qquad 1 \qquad \cdots \qquad 1$$

$$h(yahoo) = 1 \qquad 1 \qquad 1 \qquad 1 \qquad \cdots \qquad 1.000$$

$$h(amazon) = 1 \qquad 2/3 \qquad 0.71 \qquad 0.73 \qquad \cdots \qquad 0.732$$

0.29

0.27 ...

0.268

1 1 0

h(m'soft) = 1 1/3

Existence and Uniqueness

- $h = \lambda Aa$
- $\mathbf{a} = \mu A^T \mathbf{h}$
- $\mathbf{h} = \lambda \mu A A^T \mathbf{h}$
- $\mathbf{a} = \lambda \mu A^T A \mathbf{a}$

Under reasonable assumptions about **A**, the dual iterative algorithm converges to vectors **h*** and **a*** such that:

- h* is the principal eigenvector of the matrix AA^T
- a* is the principal eigenvector of the matrix A^TA

Bipartite cores

Secondary cores

- A single topic can have many bipartite cores
 - corresponding to different meanings, or points of view
 - abortion: pro-choice, pro-life
 - evolution: darwinian, intelligent design
 - jaguar: auto, Mac, NFL team, panthera onca
- How to find such secondary cores?

Finding secondary cores

- Once we find the primary core, we can remove its links from the graph
- Repeat HITS algorithm on residual graph to find the next bipartite core
- \square Roughly, correspond to non-primary eigenvectors of AA^T and A^TA

Creating the graph for HITS

■ We need a well-connected graph of pages for HITS to work well

Link Analysis Algorithms

- Motivation
- ☐ Page Rank
- Topic-Specific Page Rank
- ☐ Hubs and Authorities
- Conclusion

Page Rank and HITS

- Page Rank and HITS are two solutions to the same problem
 - What is the value of an inlink from S to D?
 - In the page rank model, the value of the link depends on the links into S
 - In the HITS model, it depends on the value of the other links out of S
- □ The destinies of Page Rank and HITS post-1998 were very different