EART60702: Earth and Environmental Data Science Literature review

Sanghoon Choi 10327738

Literature Review

Environmental Data Science (2023), 2: e2, 1-10 doi:10.1017/eds.2022.31

Deep prior in variational assimilation to estimate an ocean circulation without explicit regularization

Arthur Filoche^{1,*} , Dominique Béréziat¹ and Anastase Charantonis²

¹LIP6, CNRS, Sorbonne Université, Paris 75005, France

²ENSIIE, CNRS, LAMME, France

*Corresponding author. E-mail: arthur.filoche@lip6.fr

Received: 27 October 2022; Accepted: 29 October 2022

Keywords: Deep prior; ocean circulation; regularization; twin experiment; variational data assimilation

Background: $\mathbf{X}_0 = \mathbf{X}_B + \varepsilon_B$

Observation: $\mathbf{Y}_t = \mathbb{H}_t(\mathbf{X}_t) + \varepsilon_{R_t}$

Traditional approach

Accurate Estimation

≈ Minimising Error

≈ Minimising Cost Function

Traditional approach

Accurate Estimation

≈ Minimising Error

≈ Minimising Cost Function

Traditional approach

'Deep prior' approach

- No Explicit Background State
- Implicit Regularization

$$\mathcal{J}(\theta) = \frac{1}{2} \sum_{t=0}^{T} \|\mathbf{Y}_t - \mathbb{H}_t(\mathbb{M}_{0 \to t}(g_{\theta}(z)))\|_{R_t}^2$$

Neural Network

'Deep prior' approach

Data

Simulated data from shallow water model

Result

Table 1. Metrics quantifying the quality of the estimated motion field \mathbf{w}_0 over the assimilated database.

	Assimilation score		Smoothness statistics		
Metric ^a	Endpoint error $(\times 10^2)$	Angular error	$\left\ \nabla \mathbf{w}_0 \right\ _2$	$\ \nabla.\mathbf{w}_0\ _2$	$\ \Delta \mathbf{w}_0\ _2$
4D-Var	04.2 ± 0.4	028.4 ± 9.8	06.1 ± 0.6	05.3 ± 0.5	09.9 ± 1.0
Deep prior 4D-Var	04.6 ± 2.0	026.7 ± 5.0	01.9 ± 0.1	01.6 ± 0.9	01.0 ± 0.3
"Tikhonov" 4D-Var	01.6 ± 0.6	09.9 ± 9.8	02.0 ± 0.1	01.8 ± 0.1	01.9 ± 0.1
Ground truth	00	00	01.7 ± 0.9	01.6 ± 0.1	00.7 ± 0.3

Result

Figure 5. Histograms of smoothness statistics from the estimated motion field \mathbf{w}_0 with various algorithms.

Code

- Dataset
- Modelling
- Experiments
- Figures

Conclusion

- Neural network approach for substituting data assimilation.
- This approach can be an alternative when prior knowledge is not available since it shows comparable accuracy.
- However, still expert-driven handcrafted regularization provides better performances.