Handwritten Digit Classification

K-NN Classifier:

Sweep K values

for K=1

Train accuracy	Test accuracy
1.0	0.96875

for K=15

Train accuracy	Test accuracy
0.9658571428571429	0.959

Strategy to break the tie

In order to break the tie, my method is to decrease the K number by one until there is only one true corresponding class. Since K-NN classifier applies the majority vote scheme, this method guarantees to find only one true class without modifying the existing weighting scheme.

Plot of accuracy vs K for 10 fold cross validation

The optimal K is 3 from the plot above.

Train accuracy	Average accuracy for K-fold	Tet accuracy
0.9864285714285714	0.96514285714285708	0.9705

Conditional Gaussian Classifier Training:

image of the log of the diagonal elements of each covariance matrix

average conditional log-likelihood for train and test set

Train	Test
-0.124624436669	-0.196673203255

accuracy for the most likely posterior class for train and test set

Train	Test
0.9814285714285714	0.97275

Naive Bayes Classifier Training:

plot of 8 by 8 grayscale image for eta parameter

sample of one new data point for each of 10 digit classes

Average conditional log-likelihood for train and test set

Train	Test
-0.9437538618	-0.987270433725

accuracy for the most likely posterior class for train and test set

Train	Test
0.7741428571428571	0.76425

Model Comparison:

Model	Performance
K-NN Classifier	K-NN can achieve high classification accuracy (~96%) but there are some issues in this model. First, since there is no training process performed, a very hard database is required to store every training data. Moreover, due to the curse of dimensionality, the computational cost is very high if there are multi-dimensional features. The runtime for each prediction is relatively longer than other classification models. Also, K-NN is not a mathematical model, building a subspace from K nearest neighbors is not an adequate way to represent the whole training set.
Conditional Gaussian Classifier	Conditional Gaussian Classifier achieves the higher classification accuracy (~97%) than K-NN Classifier. CGC requires more complex calculations for the covariance matrix but it reduces the overall classification runtime with pre-trained parameters. Also, by applying the Gaussian distribution, the classification decision boundary is non-linear, an advantage to build a more robust multiclass classification model.
Naïve Bayes Classifier	Naïve Bayes Classifier achieves the lowest classification accuracy (~77%) among the 3 models. This method assumes the conditional independence for all the pixel points; thus generate the least complex model. However, this IID assumption is generally not true as each pixel is related to the surroundings in a given class. Furthermore, by applying the Bernoulli distribution, the pixel intensity values are being ignored, and this can lead the poor classification performance.

To sum up, Conditional Gaussian Classifier performs the best while Naïve Bayes Classifier performs the worst. This result matches my expectation as CGC provides a more complete/complex mathematical model and NBC ignores training details with IID assumption.