

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

graficzny © CKE 2013	UZUP	PEŁNIA ZDAJĄCY	Miejsce
	KOD	PESEL	Miejsce na naklejkę z kodem
Układ gr			dysleksja

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów.
- 5. Pisz czytelnie i używaj <u>tylko długopisu lub pióra</u> z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

2 CZERWCA 2015

Godzina rozpoczęcia: 9:00

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50

MMA-P1_**1**P-153

Więcej arkuszy znajdziesz na stronie: arkusze.pl

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (1 pkt)

Liczba $\frac{(0,2)^3}{\sqrt[4]{25^{-3}}}$ jest równa

A.
$$\sqrt{5^3}$$

B.
$$\frac{1}{\sqrt{5^3}}$$

C.
$$\sqrt[3]{5^2}$$

D.
$$\frac{1}{\sqrt[3]{5^2}}$$

Zadanie 2. (1 pkt)

Przy 23-procentowej stawce podatku VAT cena brutto samochodu jest równa 45 018 zł. Jaka jest cena netto tego samochodu?

Zadanie 3. (1 pkt)

Wskaż nierówność, która opisuje zaznaczony na osi liczbowej przedział otwarty (-4, 2).

A.
$$|x-1| < 3$$

B.
$$|x+3| < 1$$

C.
$$|x+1| < 3$$

D.
$$|x-3| < 1$$

Zadanie 4. (1 pkt)

Liczba $17^3 + m^3$ jest podzielna przez 19 dla

A.
$$m = -8$$

B.
$$m = -2$$

C.
$$m = 2$$

D.
$$m = 8$$

Zadanie 5. (1 pkt)

Dla $x \neq 0$ równanie $\frac{-2(x-3)}{x} = x-2$

A. nie ma rozwiązań.

B. ma dokładnie jedno rozwiązanie.

C. ma dwa różne rozwiązania.

D. ma trzy różne rozwiązania.

- A. nie ma rozwiązań rzeczywistych.
- **B.** ma dokładnie jedno rozwiązanie rzeczywiste.
- C. ma dwa dodatnie rozwiązania rzeczywiste.
- **D.** ma dwa ujemne rozwiązania rzeczywiste.

Zadanie 7. *(1 pkt)*

Do dziedziny funkcji f określonej wzorem $f(x) = \frac{x+4}{x(x-1)^2}$ nie mogą należeć liczby

Egzamin maturalny z matematyki Poziom podstawowy

A.
$$x = -4 i x = 0$$

B.
$$x = -4 i x = 1$$

C.
$$x = 0$$
 i $x = 1$

D.
$$x = -1$$
 i $x = 1$

Zadanie 8. (1 pkt)

Wyrażenie $\frac{x}{x-1} - \frac{1}{x}$, określone dla $x \neq 0$ i $x \neq 1$, jest równe

A.
$$\frac{x^2 - x + 1}{x^2 - x}$$

A.
$$\frac{x^2 - x + 1}{x^2 - x}$$
 B. $\frac{x^2 - x - 1}{x^2 - x}$ **C.** $\frac{x - 1}{x^2 - x}$

C.
$$\frac{x-1}{x^2-x}$$

D.
$$\frac{x^2 - x - 1}{x - 1}$$

Zadanie 9. (1 pkt)

Liczba 8 log₄ 2 + 2 jest równa

Zadanie 10. (1 pkt)

Najmniejszą wartością funkcji kwadratowej $f(x) = x^2 + 4x$ jest

$$B.-2$$

MMA_1P

Zadanie 11. *(1 pkt)*

Na rysunku przedstawiono fragment wykresu pewnej funkcji liniowej f.

Funkcja liniowa g, której wykres jest symetryczny do wykresu funkcji f względem poziomej osi układu współrzędnych, jest określona wzorem

A.
$$g(x) = -2x - 2$$

B.
$$g(x) = 2x - 2$$

C.
$$g(x) = -2x + 2$$
 D. $g(x) = 2x + 2$

D.
$$g(x) = 2x + 2$$

Zadanie 12. *(1 pkt)*

Ciąg arytmetyczny (a_n) jest określony wzorem $a_n = 2n - 1$, dla $n \ge 1$. Suma stu początkowych kolejnych wyrazów tego ciągu jest równa

Zadanie 13. (1 pkt)

Ciąg x+35, x-10, x+20 jest geometryczny. Stąd wynika, że

A.
$$x = -8$$

B.
$$x = -1$$

C.
$$x = 5$$

D.
$$x = 15$$

Zadanie 14. (1 pkt)

Kąt α jest najmniejszym z kątów trójkąta prostokątnego o bokach długości 2, $\sqrt{3}$, 1. Wtedy

A.
$$\cos \alpha = \frac{\sqrt{3}}{2}$$

B.
$$\cos \alpha = \frac{1}{2}$$

D.
$$\cos \alpha = \frac{\sqrt{3}}{3}$$

Zadanie 15. (1 pkt)

Dla każdego kąta α , spełniającego warunek $0^{\circ} < \alpha < 90^{\circ}$, wyrażenie $\frac{2\sin\alpha \cdot \cos^2\alpha}{1+\cos^2\alpha - \sin^2\alpha}$ jest równe

- A. $\cos \alpha$
- **B.** $\sin \alpha$
- C. $2\sin\alpha$
- **D.** $\cos^2 \alpha$

Zadanie 16. (1 pkt)

Bok rombu ma taką samą długość jak przekątna kwadratu. Pole rombu jest równe polu kwadratu. Zatem kąt ostry tego rombu ma miarę

A. 75°

B. 45°

C. 60°

D. 30°

Zadanie 17. (1 pkt)

Dane są punkty A = (-2, 5) oraz B = (4, -1). Promień okręgu opisanego na trójkącie równobocznym ABC jest równy

A. $\sqrt{6}$

B. $2\sqrt{6}$

C. $6\sqrt{3}$

D. $3\sqrt{3}$

Zadanie 18. (1 pkt)

Suma odległości punktu A = (-2, 4) od prostych o równaniach x = 3 i y = -1 jest równa

A. 10

B. 9

C. 8

D. 7

Zadanie 19. (1 pkt)

W trójkącie ABC wpisanym w okrąg o środku w punkcie S, miara kąta ABC jest równa 40° (zobacz rysunek).

Miara α kąta, jaki bok AC tworzy z promieniem CS, jest równa

A. $\alpha = 40^{\circ}$

B. $\alpha = 45^{\circ}$

C. $\alpha = 50^{\circ}$

D. $\alpha = 60^{\circ}$

Zadanie 20. *(1 pkt)*

Dany jest stożek, którego przekrojem osiowym jest trójkąt o bokach długości: 6, 10 i 10. Stosunek pola powierzchni bocznej stożka do pola jego podstawy jest równy

A. $\frac{4}{3}$

B. $\frac{5}{4}$

C. $\frac{5}{3}$

D. $\frac{10}{3}$

Zadanie 21. (1 pkt)

Każda krawędź ostrosłupa prawidłowego trójkątnego ma długość równą 8. Pole powierzchni całkowitej tego ostrosłupa jest równe

A. $16\sqrt{3}$

B. $32\sqrt{3}$

C. $48\sqrt{3}$

D. $64\sqrt{3}$

Egzamin maturalny z matematyki Poziom podstawowy

Zadanie 22. (1 pkt)

Promień kuli o objętości $V = 288\pi$ jest równy

A. 18

B. 9

C. 8

D. 6

Zadanie 23. (1 pkt)

Medianą zestawu danych 2, 3, 5, x, 1, 9 jest liczba 4. Wtedy x może być równe

A. 2

B. 3

C. 4

D. 5

Zadanie 24. (1 pkt)

Ile jest wszystkich liczb naturalnych trzycyfrowych, których iloczyn cyfr jest równy 4?

A. 3

B. 4

C. 6

D. 8

Zadanie 25. (1 pkt)

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo otrzymania iloczynu oczek równego cztery jest równe

A. $\frac{1}{12}$

- **B.** $\frac{1}{18}$
- **C.** $\frac{1}{9}$

D. $\frac{5}{36}$

Zadanie 26. *(2 pkt)*

Rozwiąż nierówność $7x^2 - 28 \le 0$.

Zadanie 27. (2 pkt)

Rozwiąż równanie $x^4 - 2x^3 + 27x - 54 = 0$.

Zadanie 28. (2 pkt)

Funkcja kwadratowa, f dla x = -3 przyjmuje wartość największą równą 4. Do wykresu funkcji f należy punkt A = (-1, 3). Zapisz wzór funkcji kwadratowej f.

Odpowiedź:

Zadanie 29. (2 pkt)

Bok AB czworokąta ABCD wpisanego w okrąg jest średnicą tego okręgu (zobacz rysunek). Udowodnij, że $|AD|^2 + |BD|^2 = |BC|^2 + |AC|^2$.

Zadanie 30. *(2 pkt)*

W siedmiowyrazowym ciągu arytmetycznym środkowy wyraz jest równy 0. Udowodnij, że suma wyrazów tego ciągu jest równa 0.

Zadanie 31. (2 pkt)

Ze zbioru cyfr {1,2,3,4,5,6,7,8} losujemy kolejno dwie cyfry (losowanie bez zwracania) i tworzymy liczby dwucyfrowe tak, że pierwsza wylosowana cyfra jest cyfrą dziesiątek, a druga – cyfrą jedności. Oblicz prawdopodobieństwo utworzenia liczby podzielnej przez 4.

Zadanie 32. (4 pkt)

Dany jest romb o boku długości 35. Długości przekątnych tego rombu różnią się o 14. Oblicz pole tego rombu.

Zadanie 33. (4 pkt)

Wysokość prostopadłościanu *ABCDEFGH* jest równa 1, a długość przekątnej *BH* jest równa sumie długości krawędzi *AB* i *BC*. Oblicz objętość tego prostopadłościanu.

Zadanie 34. (5 pkt)

Deweloper oferuje możliwość kompletnego wyposażenia kuchni i salonu w ofercie "Malejące raty". Wysokość pierwszej raty ustalono na 775 zł. Każda następna rata jest o 10 zł mniejsza od poprzedniej. Całkowity koszt wyposażenia kuchni i salonu ustalono na 30 240 zł. Oblicz wysokość ostatniej raty i liczbę wszystkich rat.

Egzamin maturalny z matematyki Poziom podstawowy

Odpowiedź: