# **Decision Trees**

**Bharat Kumar** 

## **Decision Tree**

- A **Decision Tree** is a supervised machine learning model
- used for classification and regression tasks.
- It splits a dataset into subsets based on the value of input features.

#### **Decision Tree**

A **Decision Tree** is a supervised machine learning model used for classification and regression tasks. It splits a dataset into subsets based on the value of input features.



**Root Node** 

The topmost node that represents the entire dataset and initiates the first split.

**Decision Node** 

An internal node that splits the data based on a feature condition.

Leaf Node

The final node that gives the output label and does not split further.

→ Branch

A decision rule leading from one node to another.



| Animal  | Has_Feathers | Can_Fly | Has_Fins | Class (Label) |
|---------|--------------|---------|----------|---------------|
| Hawk    | Yes          | Yes     | No       | Hawk          |
| Penguin | Yes          | No      | No       | Penguin       |
| Dolphin | No           | No      | Yes      | Dolphin       |
| Bear    | No           | No      | No       | Bear          |

### Is the Child going to play?

| Day | Weather              | Temperature        | Humidity             | Wind                 | Play?             |
|-----|----------------------|--------------------|----------------------|----------------------|-------------------|
| 1   | Sunny                | Hot                | High                 | Weak                 | No                |
| 2   | Cloudy               | Hot                | High                 | Weak <sup>1</sup>    | Yes <sup>2</sup>  |
| 3   | Sunny <sup>4</sup>   | Mild <sup>5</sup>  | Normal <sup>6</sup>  | Strong <sup>7</sup>  | Yes <sup>8</sup>  |
| 4   | Cloudy <sup>10</sup> | Mild <sup>11</sup> | High <sup>12</sup>   | Strong <sup>13</sup> | Yes <sup>14</sup> |
| 5   | Rainy <sup>16</sup>  | Mild <sup>17</sup> | High <sup>18</sup>   | Strong <sup>19</sup> | No <sup>20</sup>  |
| 6   | Rainy <sup>22</sup>  | Cool <sup>23</sup> | Normal <sup>24</sup> | Strong <sup>25</sup> | No <sup>26</sup>  |
| 7   | Rainy <sup>28</sup>  | Mild <sup>29</sup> | High <sup>30</sup>   | Weak <sup>31</sup>   | Yes <sup>32</sup> |
| 8   | Sunny <sup>34</sup>  | Hot <sup>35</sup>  | High <sup>36</sup>   | Strong <sup>37</sup> | No <sup>38</sup>  |
| 9   | Cloudy <sup>40</sup> | Hot <sup>41</sup>  | Normal <sup>42</sup> | Weak <sup>43</sup>   | Yes <sup>44</sup> |
| 10  | Rainy <sup>46</sup>  | Mild <sup>47</sup> | High <sup>48</sup>   | Strong <sup>49</sup> | N <sup>50</sup> o |



## What is a Decision Tree?

- A supervised machine learning model used for making decisions.
- Works for both
- classification (e.g., Yes/No) and regression (e.g., price) tasks.
- It splits a large dataset into smaller, more manageable subsets based on its features

| Hours_Studied | Attendance (%) | Midterm_Score (%) | Final_Exam_Status |
|---------------|----------------|-------------------|-------------------|
| 25            | 95             | 85                | Pass              |
| 10            | 60             | 45                | Fail              |
| 18            | 80             | 55                | Pass              |
| 5             | 90             | 40                | Fail              |
| 30            | 98             | 92                | Pass              |
| 12            | 75             | 65                | Pass              |
| 15            | 50             | 50                | Fail              |
| 22            | 85             | 78                | Pass              |
| 19            | 70             | 51                | Pass              |
| 9             | 91             | 75                | Fail              |
|               |                |                   |                   |



```
# Import necessary libraries
import pandas as pd
from sklearn.tree import DecisionTreeClassifier, plot_tree
import matplotlib.pyplot as plt
# 1. Create a more complex dataset
# We've added two more students to make the relationships less simple.
# Now, Midterm_Score alone isn't a perfect predictor.
data = {
    'Hours Studied': [25, 10, 18, 5, 30, 12, 15, 22, 19, 9],
    'Attendance (%)': [95, 60, 80, 90, 98, 75, 50, 85, 70, 91],
    'Midterm_Score (%)': [85, 45, 55, 40, 92, 65, 50, 78, 51, 75],
    'Final Exam Status': ['Pass', 'Fail', 'Pass', 'Fail', 'Pass', 'Pass', 'Fail', 'Pass', 'Pass', 'Fail']
df = pd.DataFrame(data)
# 2. Prepare the data for the model
# X contains the features (the factors we use to predict).
# y contains the target (what we want to predict).
features = ['Hours_Studied', 'Attendance (%)', 'Midterm_Score (%)']
X = df[features]
y = df['Final_Exam_Status']
# 3. Create and train the Decision Tree model
# The model will learn the rules from the data.
# `random_state` is set for reproducibility, so the tree looks the same every time.
model = DecisionTreeClassifier(random state=42)
model.fit(X, y)
```

```
# 4. Visualize the Decision Tree
# This plot shows the more complex rules the model has now learned.
print("Decision Tree Rules:")
plt.figure(figsize=(20, 12))
plot_tree(model,
          feature_names=features,
          class_names=model.classes_, # Shows 'Pass' and 'Fail'
          filled=True, # Colors the nodes for clarity
          rounded=True, # Makes the nodes have rounded corners
          fontsize=10)
plt.title("Decision Tree for Student Pass/Fail Prediction ", fontsize=16)
plt.show()
# 5. Make a prediction for a new student (Example)
# Let's test a student with mixed results.
new_student_data = [[10, 70, 68]] # [Hours_Studied, Attendance, Midterm_Score]
prediction = model.predict(new_student_data)
print("\n--- New Student Prediction ---")
print(f"Data: Hours Studied=10, Attendance=70%, Midterm Score=68%")
print(f"Predicted Exam Status: {prediction[0]}")
```