Competição Interespecífica e Estrutura de Comunidades

Bibliografia:

Fundamentos (Beguinho): cap. 6 Ecologia (Begão): cap. 8

Sumário

- 1. Natureza da competição
- 2. Efeitos ecológicos
- 3. Efeitos evolutivos
- 4. Competição ou acaso?

Cap. 6

Cap. 8

Competição

Interação entre indivíduos, competindo por recursos LIMITADOS, levando a uma **redução** na sobrevivência, crescimento e/ou fecundidade, **de pelo menos um** dos indivíduos.

Estrutura de Comunidades

- Comunidade biológica: conjunto de espécies de um local
- Estrutura da Comunidade: riqueza de espécies, diversidade e curvas de abundância

Estrutura de Comunidades

- Riqueza de espécies
- Composição e similaridade
- Equidade
- Dominância
- Îndices de diversidade
- Curvas de abundância

Estrutura de Comunidades

- Riqueza de espécies = Número de espécies
- Composição = Quais espécies?
- Similaridade = Quantas espécies em comum e quantas exclusivas, entre comunidades?
- Equidade é o reverso de dominância: distribuição de abundâncias
- Índices de diversidade = Riqueza combinada com equidade
- Curvas de abundância: S x Ni

Aplicações de Estrutura de Comunidades

- Ferramentas para comparar comunidades entre si,
- Ou avalliar a resposta de comunidades a distúrbios ambientais
- Que podem levar à sucessão ecológica
- E nos informar sobre a estabilidade frente a perturbações
- Ou ao impacto de atividades antrópicas

Comparando comunidades

Espécies	Α	В
а	900	350
b	80	200
С	10	150
d	5	100
е	3	90
f	1	50
g	1	20
h	0	10
1	0	8
j	0	6
k	0	5
	0	4
m	0	3
n	0	2
0	0	1
р	0	1

Fanésias	Comu	nidade
Espécies	Α	В
a	900	350
b	80	200
С	10	150
d	5	100
е	3	90
f	1	50
g	1	20
h	0	10
I	0	8
j	0	6
k	0	5
1	0	4
m	0	3
n	0	2
0	0	1
p	0	1
Abundância acumulada (Ntot)		
Riqueza de espécies (S)		
Dominância		
Equidade/ Uniformidade		
Diversidade		
Composição		

Fonésias	Com	nunidade	
Espécies	Α	В	
a	900	350	
b	80	200	
С	10	150	
d	5	100	
е	3	90	
f	1	50	
g	1	20	
h	0	10	
1	0	8	
j	0	6	
k	0	5	
1	0	4	
m	0	3	
n	0	2	
О	0	1	
р	0	1	
Abundância acumulada (Ntot)	1000	1000	
Riqueza de espécies (S)	7	16	
Dominância	maior	menor	
Equidade/ Uniformidade	menor	maior	
Diversidade	menor	maior	
Divoloidado			

Maior dominância

Maior equidade

Riqueza e diversidade

Aprendizagem ativa

Complete a tabela a seguir, contando:

- a abundância acumulada
- o número de espécies

Assinale:

- onde a equidade é maior
- onde a dominância é maior
- onde a diversidade é maior

Aprendizagem ativa

Complete a tabela abaixo, substituindo as interrogações por afirmativas (<,>,=), na medida do possível.

Espécies		Comunidade					
Especies	Α	В	С	D	E		
a	900	350	presente	500			
b	80	200	presente	350			
С	10	150	presente	100			
d	5	100	ausente	30			
e	3	90	ausente	6			
f	1	50	ausente	4			
g	1	20	presente	1			
Abundância acumulada (Ntot)	1000	1000	-	1000	500		
Riqueza de espécies (S)	7	16	7	16	7		
Dominância	A>B,A?D	B <a, b?d<="" td=""><td>C?</td><td>D?</td><td>E?</td></a,>	C?	D?	E?		
Equidade/ Uniformidade	A <b,a?< td=""><td></td><td></td><td></td><td>_</td></b,a?<>				_		
Diversidade							
Composição	A=?	B=D	C=E	D=B	E=C		

Diversidade

- Diversidade de espécies mede simultaneamente a riqueza e a equidade de espécies (abundância relativa)
- Riqueza = número de espécies
- Equidade: quão semelhantes são os números de indivíduos por espécies
- Dominância: o oposto de equidade quão concentrados estão os indivíduos em poucas espécies mais abundantes

Fonésios	Comunidade		A			В		
Espécies	Α	В	Pi	In(Pi)	Pi.lnPi	Pi	In(Pi)	Pi.lnPi
a	900	350	0.9	-0.11	-0.09	0.35	-1.05	-0.37
b	80	200	0.08	-2.53	-0.20	0.2	-1.61	-0.32
С	10	150	0.01	-4.61	-0.05	0.15	-1.90	-0.28
d	5	100	0.005	-5.30	-0.03	0.1	-2.30	-0.23
е	3	90	0.003	-5.81	-0.02	0.09	-2.41	-0.22
f	1	50	0.001	-6.91	-0.01	0.05	-3.00	-0.15
g	1	20	0.001	-6.91	-0.01	0.02	-3.91	-0.08
h	0	10	0			0.01	-4.61	-0.05
I	0	8	0			0.008	-4.83	-0.04
j	0	6	0			0.006	-5.12	-0.03
k	0	5	0			0.005	-5.30	-0.03
I	0	4	0			0.004	-5.52	-0.02
m	0	3	0			0.003	-5.81	-0.02
n	0	2	0			0.002	-6.21	-0.01
0	0	1	0			0.001	-6.91	-0.01
р	0	1	0			0.001	-6.91	-0.01

Diversidade

$$H' = -\sum P_i.lnP_i$$

0.40

1.85

Equidade

$$J' = \frac{H'}{\ln S}$$

0.06

0.27

Índices de diversidade

Adição de fertilizante reduz riqueza e aumenta dominância

Sequencia de espécies

Curvas de abundância

Sucessão autotrófica secundária aumenta a riqueza e a equidade

Ecnácios		Comunidade			
Espécies	Α	В	С	D	
а	900	350	presente	500	
b	80	200	presente	350	
С	10	150	presente	100	
d	5	100	ausente	30	
е	3	90	ausente	6	
f	1	50	ausente	4	
g	1	20	presente	1	
h	0	10	presente	1	
1	0	8	presente	1	
j	0	6	ausente	1	
k	0	5	ausente	1	
1	0	4	ausente	1	
m	0	3	ausente	1	
n	0	2	presente	1	
0	0	1	ausente	1	
р	0	1	ausente	1	

Simetria e Mecanismos da Competição

- Competição intraespecífica x inter-específica
- Competição simétrica x assimétrica: (-,-) até
 (-,0) = Amensalismo

Mecanismos da competição

Exploração:

interação indireta, via redução da disponibilidade de recurso

Exemplos: coruja (noturna) x águia (diurna)

• Interferência:

interação direta entre indivíduos

Exemplos: comportamento agressivo, canibalismo, alelopatia

Efeitos da Competição intraespecífica

 Crescimento limitado, flutuações populacionais e pressões seletivas

Competição intraespecífica

- Crescimento populacional limitado
- Capacidade suporte do ambiente (K)
- Taxa de crescimento per capita diminui com densidade
- Mortalidade aumenta ou natalidade diminui com densidade
- Sobrevivência, crescimento e/ou reprodução diminuem com densidade

Modelos de crescimento populacional

Crescimento limitado

$$\frac{\mathrm{d}N}{\mathrm{d}t} = rN\left(\frac{K-N}{K}\right)$$

$$\frac{\mathrm{d}N}{\mathrm{d}t} = rN\left(\frac{K-N}{K}\right)$$

a)
$$N < K \rightarrow dN/dt > 0$$

b)
$$N = K$$

c)
$$N > K$$

$$\frac{\mathrm{d}N}{\mathrm{d}t} = rN\left(\frac{K-N}{K}\right)$$

b)
$$N = K \rightarrow dN/dt = 0$$

c)
$$N > K$$

Aprendizagem ativa

No modelo logístico, como será a taxa instantânea de crescimento populacional quando a densidade populacional for maior que a capacidade suporte do ambiente?

3 min

$$\frac{\mathrm{d}N}{\mathrm{d}t} = rN\left(\frac{K-N}{K}\right)$$

a)
$$N < K$$

b)
$$N = K$$

Modelos com retardo temporal

a) Modelo contínuo

$$\frac{dN}{dt} = r \cdot N_t \left(\frac{K - N_{t-R}}{K} \right)$$

b) Modelo discreto

$$N_{t+1} = N_t \cdot e^{r\left(\frac{1-N_t}{K}\right)}$$

Modelos discretos de crescimento limitado (retardo temporal embutido)

Modelos discretos de crescimento limitado: quando aumenta o **r**, ocorre **flutuação populacional**

A **competição** pode manter uma população constante ou com flutuações

Exemplos de competição interespecífica

COMPETIÇÃO ENTRE CRACAS

Chthamalus stellatus

Balanus balanoides

Competição interespecífica

- Efeitos ecológicos:
 - limitação no crescimento populacional
 - redução no nicho ecológico realizado
 - exclusão competitiva
- Efeitos evolutivos: alteração no nicho ecológico fundamental
 - = deslocamento de caracteres

Efeito ecológico da competição

Nicho fundamental versus nicho realizado

Deslocamento de caracteres

RESOURCE USE (ex. seed size)

- Duas espécies não podem coexistir se utilizam o mesmo nicho
- Princípio de Gause (1934)
- Se duas espécies competidoras coexistem em um ambiente estável, isso ocorre como um resultado de uma diferenciação de nichos
- Se, no entanto, não existe esta diferenciação, então uma espécie irá excluir a outra

- Duas espécies não podem coexistir se utilizam o mesmo nicho
- Uma espécie pode excluir outra espécie que utiliza nicho semelhante

Coexistência pode ser mediada por diferenças de nicho

As duas espécies persistem nos cultivos porque:

- ocupam posições distintas no meio de cultivo;
- utilizam diferentes formas de microorganismos como alimento

- Embora há teorias sugerindo que duas espécies nunca coexistem usando nichos semelhantes ...
- A única forma de testar competição é com manipulação

1. Controle

2. Sem roedores

3. Sem formigas

4. Sem ambos

1. Controle
N
Tempo

2. Sem roedores

3. Sem formigas

s 4. Sem ambos

Formigas

Roedores

Tempo

1. Controle

2. Sem roedores

1. Controle

2. Sem roedores

1. Controle

2. Sem roedores

3. Sem formigas

4. Sem ambos

2. Sem roedores

A longo prazo, a retirada dos roedores reduziu a predação de sementes grandes, levando a uma aumento da densidade de plantas grandes, que excluiram as plantas pequenas, reduzindo os recursos das formigas.

Facilitação indireta

Competição por exploração

Competição por exploração

 A curto prazo, formigas e roedores competem por exploração de um recurso comum em disponibilidade limitada – as sementes.

Facilitação indireta

Facilitação indireta

- A longo prazo, a exclusão de roedores reduz a predação de sementes grandes,
- levando a um aumento na sua germinação,
- crescimento de plantas grandes,
- que competem com as plantas de sementes pequenas,
- reduzindo a densidade de plantas de sementes pequenas,
- reduzindo a disponibilidade de recursos (sementes pequenas) para formigas,
- Reduzindo a população de formigas.

Efeitos evolutivos da competição interespecífica

Dinâmica de nichos

Evidências de deslocamento competitivo

Competição ou modelo neutro?

Evidências de deslocamento competitivo

Herpestes javanicus (j) Herpestes ewardsii (e) Herpestes smithii (s)

Nativo

Introduzido

Herpestes javanicus (j)

Diâmetro do canino (mm)

Nativo Introduzido

Diâmetro do canino (mm)

Deslocamento competitivo por competição passada

Nativo Introduzido

Alívio competitivo

Diâmetro do canino (mm)

Estrutura de comunidades

- Riqueza de espécies, equidade/dominância e diversidade
- Curvas de abundância: Abundância relativa x sequência de espécies
- Quanto mais inclinada a curva, maior a dominância
- Quanto mais deitada a curva, maior a equidade
- Quanto mais longa a curva, maior a riqueza

Competição

- Exploração x interferência
- Interação negativa recíproca (– , –), às vezes assimétrica (0,–)
- Redução do nicho fundamental → realizado
- Princípio da exclusão competitiva
- Heterogeneidade e diferenciação de nichos
- Experimentos manipulativos

Competição

- Respostas populacionais à exclusão de competidores: alívio competitivo
- Efeitos a longo prazo: facilitação indireta
- Efeitos evolutivos da competição passada: deslocamento competitivo (ou fantasma?)
- Existe similaridade limitante? modelos neutros

Competição interaespecífica

- Crescimento limitado
- Modelo logístico: $\frac{dN}{dt} = rN\left(\frac{K-N}{K}\right)$
- $N < K \rightarrow dN/dt > 0$
- $N = K \rightarrow dN/dt = 0$
- $N > K \rightarrow dN/dt < 0$
- modelo com retardo tempora: flutuações regulares ou caos determinista

