Санкт-Петербургский национальный исследовательский у информационных технологий, механики и оптин

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

ГруппаР3114	Работа выполнена24.03.22_
Студент_Лагус М.С.	Отчет сдан
Преподаватель Куксова П. А.	Отчет принят

Отчет по лабораторной работе № 1.02 Изучение скольжения тележки по наклонной плоскости

- 1) Цель работы:
- 1. Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
- 2. Определение величины ускорения свободного падения g.
- 2) Задачи, решаемые при выполнении работы.
 - 1) Провести многократные измерения времени движения тележки по рельсу с фиксированным углом наклона.
 - 2) Провести многократные измерения времени движения тележки по рельсу при разных угла наклона рельса к горизонту.
 - 3) Вычислить величину ускорения свободного падения g.
- 3) Объект исследования.

Величина ускорения свободного падения. Равноускоренное движение тела.

4) Метод экспериментального исследования.

Многократные прямые измерения.

5) Схема установки:

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка угольник

6) Измерительные приборы

Таблица 1

N _Ω π/π	Наименование	Тип прибора	Используе мый диапазон	Погрешнос ть прибора
1	Линейка на рельсе	Линейка	[0; 1.3] м	5 мм
2	Линейка на угольнике	Линейка	[0; 250] мм	0,5 мм

3	ПКЦ- в режиме	Секундоме	[0; 100] c	0,1c
	секундомера	p		

7) Рабочие формулы и исходные данные

$$v_x(t) = v_{0x} + a_x t \tag{1}$$

$$x(t) = x_0 + v_{0x}t + \frac{a_x t^2}{2}.$$
 (2)

$$x_2 - x_1 = \frac{a}{2} (t_2^2 - t_1^2).$$
 (3)

$$m\vec{a} = m\vec{g} + \vec{N} + \vec{F}_{\rm TP} \tag{4}$$

$$\begin{cases} 0y: 0 = N - mg\cos\alpha\\ 0x: ma = mg\sin\alpha - \mu mg\cos\alpha \end{cases}$$
 (5)

$$a = g\sin\alpha - \mu g\cos\alpha \tag{6}$$

$$a = g\left(\sin\alpha - \mu\right). \tag{7}$$

$$\Delta_a = 2\sigma_a,\tag{9}$$

$$\varepsilon_a = \frac{\Delta a}{a} \cdot 100\%. \tag{10}$$

$$\sin \alpha = \frac{(h_0 - h) - (h'_0 - h')}{x' - x} \tag{11}$$

$$\langle a \rangle = \frac{2(x_2 - x_1)}{\langle t_2 \rangle^2 - \langle t_1 \rangle^2} \tag{12}$$

$$\Delta a = \langle a \rangle \cdot \sqrt{\frac{(\Delta x_{\text{H2}})^2 + (\Delta x_{\text{HI}})^2}{(x_2 - x_1)^2} + 4 \cdot \frac{(\langle t_1 \rangle \Delta t_1)^2 + (\langle t_2 \rangle \Delta t_2)^2}{\left(\langle t_2 \rangle^2 - \langle t_1 \rangle^2\right)^2}} \quad (13) \qquad \qquad \varepsilon_g = \frac{\Delta g}{g} \cdot 100\%.$$

$$B \equiv g = \frac{\sum_{i=1}^{N} a_i \sin \alpha_i - \frac{1}{N} \sum_{i=1}^{N} a_i \sum_{i=1}^{N} \sin \alpha_i}{\sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} \sin \alpha_i\right)^2}; \quad (14)$$

$$A = \frac{1}{N} \left(\sum_{i=1}^{N} a_i - B \sum_{i=1}^{N} \sin \alpha_i \right).$$
 (15)

$$\sigma_g = \sqrt{\frac{\sum_{i=1}^{N} d_i^2}{D(N-2)}}.$$
 (16)

$$d_i = a_i - (A + B\sin\alpha_i), \qquad (17)$$

$$D = \sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} \sin \alpha_i \right)^2.$$
 (18)

$$\Delta a = 2\sigma$$
. (19)

$$\varepsilon_g = \frac{\Delta g}{g} \cdot 100\%. \tag{20}$$

- (1) зависимость проекции скорости тела от времени
- (2) зависимость координаты тела х от времени t
- (3) следствие из (2), если начальная скорость равна нулю

- (4) второй закон Ньютона, описывающий движение тележки
- (5) проекции уравнения (4) на координатные оси
- (6) следствие из (5) для модуля ускорения
- (7) формула для ускорения
- (8) коэффициент а и его среднеквадратичное отклонение
- (9) абсолютная погрешность коэффициента а
- (10) относительная погрешность ускорения
- (11) значение синуса угла наклона рельса к горизонту
- (12) значение ускорения
- (13) погрешность ускорения для каждой серии измерений
- (14) коэффициент линейной зависимости
- (15) коэффициент линейной зависимости
- (16) СКО для ускорения свободного падения коэф. В
- (17) часть формулы (16)
- (18) часть формулы (16)
- (19) абсолютная погрешность коэффициента
- (20) относительная погрешность д

8) Результаты прямых измерений и их обработки.

Таблица 1. Вертикальные координаты h0 и h'0

для
$$x = 0,22$$
 м и $x' = 1,0$ м

X, M	x', M	h_0 , мм	h ₀ ', мм
$0,220 \pm 0,005$	$1,000 \pm 0,005$	$154,0 \pm 0,5$	$150,0 \pm 0,5$

Таблица 2. Результаты прямых измерений (Задание 1)

Измеренные величины			Рассчитанные величины			
No	х1, м	х2, м	t1, c	t2, c	х2 - х1, м	(t2^2 - t1^2)/2, c
1	0,15	0,40	1,5	2,7	0,25	2,52
2	0,15	0,50	1,5	3,0	0,35	3,37
3	0,15	0,70	1,4	3,6	0,55	5,5
4	0,15	0,90	1,5	4,2	0,75	7,69
5	0,15	1,00	1,4	4,6	0,85	9,6

Таблица 3. Результаты прямых измерений (Задание 2)

N пл	h, мм	h', мм	No	t1, c	t2, c
		1	1,1	4,2	
			2	1,2	4,3
1	144	149	3	1,2	4,3
			4	1,2	4,3
			5	1,1	4,2
			1	0,9	3,1
			2	0,8	3,0
2	135	148	3	0,8	3,1
			4	0,8	3,0
			5	0,8	3,0
			1	0,7	2,5
			2	0,7	2,5
3	126	148	3	0,8	2,5
			4	0,7	2,4
			5	0,7	2,5
			1	0,6	2,1
			2	0,6	2,2
4	117	147	3	0,7	2,2
			4	0,6	2,1
			5	0,6	2,2
			1	0,5	1,9
			2	0,6	1,8
5	108	146	3	0,5	1,9
			4	0,6	1,9
			5	0,6	1,9

Nпл - количество пластин

h - высота на координате x = 0,22 м

h' - высота на координате x' = 1,00 м

Таблица 4. Результаты расчетов (Задание 2)

Результаты расчетов (Задание 2)					
N пл sin a t1 ±Δt1 t2 ±Δt2 a ±Δa					
1	0,0115	1,16	4,26	0,0928	
2	0,0218	0,82	3,04	0,1820	
3	0,0333	0,72	2,48	0,2770	
4	0,0436	0,62	2,16	0,3644	
5	0,0538	0,56	1,88	0,4844	

9) Расчет результатов косвенных измерений:

Задание 1.

1. Рассчитываю величины из Таблица 2 (Пример расчета)

$$Y = x2 - x1$$
:
 $Y1 = 0.40 - 0.15 = 0.25 (M)$
 $Y2 = 0.50 - 0.15 = 0.35 (M)$

Погрешности для Y и Z рассчитаны в п.10

2. Нахожу точки экспериментальной зависимости Yi; Zi

$$Y1; Z1 = 0.250 \pm 0.007; 2.52 0.30$$

$$Y2$$
; $Z2=0.350 \pm 0.007$; $3.370.33$

$$Y3 ; Z3 = 0.550 \pm 0.007; 5.5 0.38$$

$$Y4; Z4 = 0.750 \pm 0.007; 7.69 0.4$$

Y5; Z5=
$$0.850 \pm 0.007$$
; $9.60.5$

3. Ускорение тележки методом наименьших квадратов (МНК)

$$a = 0.25*2.52+0.35*3.37+0.55*5.5+0.75*7.69+0.85*9.62.522+3.372+5.52+7.692+\\ +9.62=0.0941(\text{m/c2})$$

Задание 2.

1. Значение синусов углов наклона рельса к горизонту (примеры расчетов): $\sin \alpha = h0-h-(h0'-h')x'-x$

$$Nпл = 1$$
:

$$\sin\alpha = 154-144-(150-149)1000-220=0,0115$$

$$Nпл = 2$$
:

$$\sin\alpha = 154-135-(150-148)1000-220 = 0,0218$$

2. Средние значения t1 и t2 (примеры расчетов):

Nпл = 1:

$$t1=1,1+1,2+1,2+1,15=1,16$$
 (c)

Nпл = 3:

$$t3 = 0.7 + 0.7 + 0.8 + 0.7 + 0.75 = 0.72$$
 (c)

3. Значения ускорения (а) (примеры расчетов):

Nпл= 3:

$$\langle a \rangle 3 = 2*(1,00-0,22)2,482-0,722 = 0,0928 \text{ (M/c2)}$$

Nпл = 4:

$$\langle a \rangle 4 = 2*(1,00-0,22)2,162-0,622 = 0,3644 \text{ (M/c2)}$$

10) Расчет погрешностей измерений Погрешности Y:

Среднее арифметическое значение входящих в Y измеряемых величин

$$x1 = 0,15+0,15+0,15+0,15+0,15$$
 5=0,15(M)

$$x2=0,4+0,5+0,7+0,9+1,0$$
 5=0,7(M)

Абсолютные погрешности измерений, входящих в Ү

$$\Delta x1 = \Delta x2 = \Delta x$$
 изм= 0,005(м)

Значение Ү

$$Y = x2 - x1 = 0.7 - 0.15 = 0.55(M)$$

Абсолютная погрешность

$$\Delta Y = -1*0,0052+1*0,0052 = 0,007(M)$$

$$\Delta Y1 = \Delta Y2 = \Delta Y3 = \Delta Y4 = \Delta Y5 = 0,007 \text{ M},$$

так как в формуле нет значений x1 или x2, то абсолютная погрешность Y не зависит от них

Погрешности Z:

Среднее арифметическое значение входящих в Z измеряемых величин

$$t1 = 1,5+1,5+1,4+1,5+1,4$$
 5=1,46(c)

$$t2=2,7+3,0+3,6+4,2+4,6$$
 5=3,6(c)

Значение Z

Абсолютная погрешность

$$\Delta Z = (t2*0,1)2+t1*0,12$$

$$\Delta Z1 = 2,7*0,12+1,5*0,12=0,30(c2)$$

$$\Delta$$
Z2= (3*0,1)2+1,5* 0,12 =0,33(c2)

$$\Delta$$
Z3= (3,6*0,1)2+1,4* 0,12 =0,38(c2)

$$\Delta$$
Z4= (4,2*0,1)2+1,5* 0,12 =0,4(c2)

11) Графики

12) Окончательные результаты

Задание 1.

$$a \pm \Delta a$$
=0,094 ±0,004m c2; α = 0,90 ϵ =4%

Задание 2.

$$(g \pm \Delta g) = 9.4 \pm 0.5 \text{m c} 2; \quad \alpha = 0.90$$

 $g=6\%$

 μ = =(0,00313 ±0,000031)

Вывод:

На построенных графиках заметно, что точки экспериментальных зависимостей находятся очень близко к графикам линейных зависимостей, значит движение тележки было равноускоренным и при фиксированном угле наклона, и при изменяемом угле наклона.

Вычисленное значение ускорения свободного падения отличается от табличного для Санкт-Петербурга на величину, меньшую абсолютной погрешности g, значит можно считать вычисления достоверными.