ФЕДЕРАЛЬНОЕ АГЕНТСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ДИМИТРОВГРАДСКИЙ ИНТСТИТУТ ТЕХНОЛОГИЙ, УПРАВЛЕНИЯ И ДИЗАЙНА "КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ"

Лабораторная работа №9 по курсу "Алгоритмы и структуры данных" на тему: "Объекты в DELPHI"

Выполнил студент группы ВТ-21: Потеренко А.Г. Проверил преподаватель: Мингалиев Р.Ш.

Порядок работы.

- 1. Анализ индивидуального задания и разработка способов представления объектов задачи в памяти, методов доступа к ним.
- 2. Разработка программы на языке Паскаль.
- 3. Разработка контрольных примеров.
- 4. Отладка программ.
- 5. Составление отчета.

Содержание отчета.

		Стр
1.	Текст постановки задачи	. 3
2.	Изложение способов представления объектов задачи в памяти и методов дост	упа
	к ним	. 3
3.	Алгоритм	. 4
4.	Описание и обоснование контрольных примеров	. 5

1. Текст постановки задачи.

На основе объекта TVector (вектор) построить объект TMatrix (матрица). Определить для них несколько функций.

2. Изложение способов представления объектов задачи в памяти и методов доступа к ним.

Опишем объекты программы в следующей форме:

Beктор и массив: TVect=array [1..n] of integer; TMatr=array [1..n,1..n] of integer; Указатели на вектор и на массив: PVect=^TVect; PMatr=^TMatr; Описываем объект TVector:

Описываем объект TMatrix:

end;

Описываем экземпляры объекта TVector:

Vect1, Vect2: TVector;

Описываем экземпляры объекта TMatrix:

Matr1, Matr2: TMatrix;

3. Алгоритм решения данной задачи.

ШАГ №1.

Создаем 4 объекта: Vect1

Vect2

Matr1

Matr2

шаг №2.

Динамически выделяем под них память.

шаг №3.

Осуществляем необходимые операции над векторами.

шаг №4.

Освобождаем память из под объектов.

шаг №5

Разрушаем объекты: Vect1

Vect2

Matr1

Matr2

Процедуры, осуществляемые над векторами и матрицами:

1. Модуль (длина) вектора M(V) определяется как:

$$M(V) = \sqrt{\sum_{i=1}^{n} (V[i])^2}$$

2. Произведение постоянной C на вектор M(V):

$$C \cdot V = C \cdot V[i]$$
 $i = \overline{1..n}$

3. Скалярное произведение двух векторов V1 и V2:

$$V1*V2 = \sum_{i=1}^{n} (V1[i]*V2[i])$$

4. Сложение двух векторов V1 и V2:

$$V1+V2=V1[i]+V2[i]$$
 $i=1,n$

5. Произведение вектора №1 и матрицы №1:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} * (d \quad e \quad f) = \begin{pmatrix} a*d & a*e & a*f \\ b*d & b*e & b*f \\ c*d & c*e & c*f \end{pmatrix}$$

4. Описание и обоснование контрольных примеров.

Вектор №1:	Вектор №2:			
54	70			
26	43			
98	17			
10	73			
10	94			
Матрица №1:				
72 60 94 95 26				

```
Произведение вектора №1 и матрицы №1: 3888 3240 5076 5130 1404 1872 1560 2444 2470 676 7056 5880 9212 9310 2548 720 600 940 950 260 720 600 940 950 260
```

Сложение векторов №1 и №2 - есть матрица:

124

69

115

83

104

Произведение векторов №1 и №2:

8234

Умножение векторов №1 и №2 на число 5: Первый вектор Второй вектор

первыи	вектор	ртор	ON BE
270		350	
130		215	
490		85	
50		365	
50		470	

Абсолютная величина вектора №1: 116 Абсолютная величина вектора №2: 146