Approximation Algorithms

Two approaches to NP-hard problems:

e.g. O(2n)

- (1) Exponential algorithms: (for small inputs)
 - brute-force search
 - branch-and-bound
- (2) Near-optimal solutions: (polynomial time)
 - approximation algorithms (with performance bounds)
 - heuristic algorithms

Performance bounds (*n* is the input size)

e.g. $\rho(n) = 1.5 \rightarrow \text{at most } 1.5 \text{ times}$ ratio bound: $\begin{cases} C/C^* \leq \rho(n) & \text{for minimization} \\ C^*/C \leq \rho(n) & \text{for maximization} \end{cases}$ (Note that $\rho(n) \geq 1$.)

e.g. $\epsilon(n) = 0.5 \rightarrow \text{error within } 50\%$ relative error bound: $\frac{|C - C^*|}{C^*} \le \epsilon(n)$

35-1x

(for both minimization & maximization) $\epsilon(n), \, \rho(n) \, \text{may be} \, \stackrel{\text{\scriptsize (1)}}{\text{\scriptsize (2)}} \, \text{function of n (e.g., lg n, n}^{1/3}) \\ \stackrel{\text{\scriptsize (2)}}{\text{\scriptsize (2)}} \, \text{constant (e.g., 0.5, 2.6)}$ * For many problems, there are approximation

* For many problems, there are approximation algorithms with constant ratio bounds (relative error bounds), independent of *n*.

35.1 The vertex-cover problem 23

A **vertex cover** of an undirected graph G=(V,E) is a subset C of V such that for each $(u, v) \in E$, either $u \in C$ or $v \in C$.

The **vertex-cover problem** is to find for *G* a vertex cover of minimum size. (an NP-hard problem)

(f): the optimal vertex cover $C^*=\{b, d, e\}$

APPROX-VERTEX-COVER (G)

1
$$C \leftarrow \emptyset$$
 uncovered edges
2 $E' \leftarrow E[G]$
3 while $E' \neq \emptyset$
4 do let (u, v) be an arbitrary edge of E'
5 $C \leftarrow C \cup \{u, v\}$
6 remove from E' every edge incident
7 return C on either u or v

 $\varepsilon(n) = 1$ Time: *O(E)* $C < 2C^*$

Theorem 35.1: Approx-Vertex-Cover has o(n) = 2. **Proof:** Let *A* be the set of edges picked in Line 4. Since no two edges in A share an endpoint, we have |C|=2

A needs at lest |A| vertices

35-4

C* covers A (A is a subgraph of G) Let *C** be an optimal cover. *C** should cover *A*. That is, C* should include at least one endpoint of each edge in A. Since no two edges in A share an endpoint, we have $|C^*| \ge |A|$ (=|C|/2) and thus *C*/*C**≤2. · Q.E.D. (1)+(2)

35.2 The traveling-salesman problem (NP-C)

35.2.1 The Euclidean TSP problem (NP-C)

The **Euclidean** traveling-salesman problem is to find in a complete weighted undirected graph G=(V,E) a hamiltonian cycle (a tour) with minimum cost. The edges weights c(u,v) are nonnegative integers. And, the weight function satisfies the following triangle inequality:

$$C(u,w) \leq C(u,v) + C(v,w).$$

APPROX-TSP-TOUR (G, c)

- select a vertex $r \in G$. V to be a "root" vertex
- compute a minimum spanning tree T for G from root rusing MST-PRIM(G, c, r)
- let H be a list of vertices, ordered according to when they are first visited in a preorder tree walk of T
- return the hamiltonian cycle H

(b): T: a minimum spanning tree T

O(V) (c): W: a full walk of T

(d): H: a tour of length 19.074

(e): H*: an optimal tour of length 14.715

Prim's algo $\{E + V^2\}$ (unsorted arrows algo $\{E \mid g \mid V \text{ (binary heap)}\}$ $\{E \mid g \mid V \text{ (Fib. heap)}\}$ (unsorted array)

Time: $O(\cancel{E}) = O(\sqrt{2})$

complete graph Why not Kruskal's MST algo?

Theorem 35.2: Approx-TSP-Tour has $\rho(n) = 2$ **Proof:** Let *T* be a minimum spanning tree. Deleting any edge from H^* , we can obtain a spanning tree. Thus, |T|≤|H*|.-

A *full walk*, denoted by *W*, of *T* lists the vertices when they are first visited and also whenever they are return to after a visit to a subtree. In our example,

Clearly, |M|=2|T|. Thus, $|M| \le 2|H^*|$.

Note that W is not a tour. It visits a vertex more than once. However, by triangle inequality, we can delete unnecessary visits to a vertex without increasing the cost to obtain H. (In our example, H=(a, b, c, h, d, e, f, g).) Thus, $|H| \le |M| \le 2|H^*|.$ Q.E.D. 3 triangle ineq.

35.2.2 The general TSP problem

Current: 0.814 lg n

Without triangle inequality, an approximation algorithm with constant ratio bound does not exist unless P = NP.

35.5 The subset-sum problem

Approximation scheme: an approximation algorithm takes as input not only an instance of the problem, but also a constant relative error

bound $\varepsilon > 0$.

* T(n) is a function of n & ε part of input

(e.g., $(1/\varepsilon)2^{n/3}$, $n^{3/\varepsilon}$, $(1/\varepsilon)^2 n^3$, $2^{n/\varepsilon}$)

Polynomial-time approximation scheme: an approximation scheme runs in $O(n^k)$ time, where k is a constant. (e.g., $O(n^{3/\varepsilon})$.) polynomial for fixed ε $O((1/\varepsilon)^2 n^3)$

Fully polynomial-time approximation scheme: an approximation scheme runs in $O((1/\varepsilon)^c n^k)$ time, c and k are constants. (e.g., $O((1/\varepsilon)^2 n^3)$ time) polynomial in $1/\varepsilon$, n

*ε 減小,只影響constant factor

The subset-sum problem:

Decision version: Given a set S of positive integers and an integer t, determine whether there is a subset of S that adds up exactly to the target t.

 $S' \subseteq S$, $sum(S') \le t$, sum(S') is max Optimalization version: find a subset of S whose sum is as large as possible but not larger than t.

* special case of the knapsack problem: $(C = t, \text{ all } v_i = w_i) \implies O(nC) \text{ by DP}$ (Ex. 16.2-2, see 16-3ab)

An exponential-time algorithm

(A branch&bound algo - BFS)

EXACT-SUBSET-SUM(S, t)

1 $n \leftarrow |S|$ Li: all combinations of $\{x_1, x_2, ... x_i\}$ (sorted)

2 $L_0 \leftarrow \langle 0 \rangle$ $Cut_1: $ 掉相同的$

3 for $i \leftarrow 1$ to n $O(2|L_{i-1}|)$ time

4 **do** $L_i \leftarrow \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$

5 remove from L_i every element that is

return the largest element in L_n greater

Example: Let S=(2, 2, 14, 3) and t = 15.

$$\Rightarrow L_0 = <0>$$

→ Cut 2: 拿 掉 不 台 法 的

$$<0>\cup(<0>+2)=<0,2> \Rightarrow L_1=<0,2> \ \ L_0\cup(L_0+2)$$
 (sorted)

- e.g. $t = O(n^2)$, $L_i = O(t)$, $\sum L_i = O(nt) = O(n^3)$ ② * In case t is polynomial in n, we have $|L_i| = O(t)$. Thus, the algorithm performs in polynomial time.
- e.g. m = max(S) = $O(n^2)$, $L_i = O(nm)$, $\sum L_i = O(n^2m)$ In case all integers in S are bounded by a polynomial in n, the algorithm also performs in polynomial time.

pseudo-polynomial 35-96

A fully polynomial-time approximation scheme

/delta/

To **trim** a list L by δ is to remove as many elements from L as possible, in such a way that if L' is the result of trimming L, then for every element v that was removed from L, there is an element z < y still in L' such that

 \wedge error $\leq \delta Z$ $y \le z(1+\delta)$ $(y-z \le \delta z)$ why removing y, not z? (We can think of "z representing y" in L'.)

```
21,22 \le 20 \times 1.1
                                                                                                                                                                                                                                 35-10
Example: ^{11} \le 10 \times 1.1
           Let L = (10, 11, 12, 15, 20, 21, 22, 23, 24, 29).
           If \delta = 0.1, we have
                                  L' = (10, 12, 15, 20, 23, 29).
          Let L = (y_1, y_2, ..., y_m). The following procedure
trims L in O(m) time.
       TRIM(L, \delta)
                                                                                                 L'=(..... last)
   4 for i \leftarrow 2 to m
                                            do if y_i > last \cdot (1 + \delta)
                                                                     then append y_i onto the end of L'
                                                                                            last \leftarrow y_i
                      return L'
 An approximation scheme (0 < \varepsilon < 1)
  APPROX-SUBSET-SUM(S, t, \epsilon)
  1 \quad n \leftarrow |S|
              for i \leftarrow 1 to n

P is in the field in the second constant i \leftarrow 1 in the second constant i \leftarrow 1 is i \leftarrow 1 in the second constant i \leftarrow 1 in the
 2 L_0 \leftarrow \langle 0 \rangle
                                      do L_i \leftarrow \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
                                                   L_i \leftarrow \text{TRIM}(L_i, \epsilon/n) \ \delta = \epsilon/n
                                                     remove from L_i every element that is greater
                 let z^* be the largest value in L_n
```

→拿掉很接近的

return z^*

35-11

Example: Let S=<104, 102, 201, 101>, t=308, and ε = 0.2. We have $\delta = \varepsilon/4 = 0.05$ and

line 2:
$$L_0 = \langle 0 \rangle$$
,

$$\begin{vmatrix} \ln 4 & L_1 & = \langle 0, 104 \rangle, \\ \ln 6 & L_1 & = \langle 0, 104 \rangle, \\ \ln 6 & L_1 & = \langle 0, 104 \rangle, \\ \ln 6 & L_2 & = \langle 0, 102, 104, 206 \rangle, \\ \ln 6 & L_2 & = \langle 0, 102, 206 \rangle, \\ \ln 6 & L_2 & = \langle 0, 102, 206 \rangle, \\ \ln 6 & L_3 & = \langle 0, 102, 201, 206, 303, 407 \rangle, \\ \ln 6 & L_3 & = \langle 0, 102, 201, 303, 407 \rangle, \\ \ln 6 & L_3 & = \langle 0, 102, 201, 303, 407 \rangle, \\ \ln 6 & L_4 & = \langle 0, 101, 102, 201, 203, 302, 303, 404 \rangle, \\ \ln 6 & L_4 & = \langle 0, 101, 201, 302, 404 \rangle, \\ \ln 6$$

The answer is $z^*=302$, which is well within $\varepsilon=20\%$. (The optimal answer is 307 (=104+102+101).)

Theorem 35.8 Approx-Subset-Sum is a fully polynomial-time approximation scheme.

Proof:

(a) Clearly, the answer is legal. (not larger than *t* and being the sum of a subset).

(b) relative error bound is within ε .

(c) fully polynomial-time: Time = $\sum 2|L_i| = O(\sum |L_i|)$

$$L_i: y_1 = 0, y_2, y_3, ..., y_k$$
(distinct integers)

Since $y_2 \ge 1$ and $y_i > y_{i-1} \times (1+\delta)$, we have

$$y_k > (1+\delta)^{k-2}$$
.

Since $y_k > (1+\delta)^{k-2}$ ①

Since $y_k \le t$, we have 35-13 $k-2 \leq \log_{1+\delta} t$. Thus,

$$k = \frac{|L_{i}| \leq \log_{1+\delta} t + 2}{= \frac{\ln t}{\ln(1+\delta)} + 2}$$

$$\leq \frac{(1+\delta)\ln t}{\delta} + 2$$

$$(\lg_{a} b = \frac{\lg_{c} b}{\lg_{c} a})$$

(by (3.17),
$$\frac{x}{1+x} \le \ln(1+x)$$
 for $x > -1$)

$$\leq \frac{n(1+\frac{\varepsilon}{n})\ln t}{\varepsilon} + 2 \qquad \delta = \frac{\varepsilon}{n}$$

$$\leq \frac{2n\ln t}{\varepsilon} + 2 \quad \text{(by } \frac{\varepsilon}{n} < 1\text{)}$$

$$\varepsilon < 1 \text{ (See 35-10)}$$

$$\epsilon$$
 < 1 (See 35-10

Time =
$$O(\sum_{0 \le i \le n-1} |L_i|)$$

= $O(n(\frac{2n \ln t}{\epsilon} + 2))$
= $O(\frac{1}{\epsilon}n^2 \log t)$ polynomial or pseudo-polynomial?

Homework: Ex. 35.1-4, 35.5-4.

Differences in the 3rd Edition

Approximation scheme: (1st) (defined by relative error bound) (0.6)Given a parameter: a Goal: $\varepsilon = \alpha$ (0.6)(or simply "Given ε ") (0.06 for n = 10)(set $\delta = \varepsilon / n$) Approximation scheme: (2nd, 3rd) Approximation Scheme: (defined by ratio bound) Given a parameter: α (0.6) Goal: $\rho = 1 + \alpha$ (1.6)

APPROX-SUBSET-SUM (S, t, ϵ)

```
1 n \leftarrow |S|
2 L_0 \leftarrow \langle 0 \rangle
3 for i \leftarrow 1 to n
           do L_i \leftarrow \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
                L_i \leftarrow \text{TRIM}(L_i, \epsilon/2n) \Leftrightarrow
                remove from L_i every element that is greater
                                                                          than t
     let z^* be the largest value in L_n
     return z^*
```

(for MAX, set $\delta = \alpha / 2n$) (0.03 for n = 10)

(In the textbook, ε is used to denote α)