Precipitation sequence in Niobium-alloyed ferritic stainless steel ¹

Asmita Jana

April 17, 2017

Asmita Jana April 17, 2017 1 / 13

¹Fujita, Nobuhiro, H. K. D. H. Bhadeshia, and Masao Kikuchi. "Precipitation sequence in niobium-alloyed ferritic stainless steel." Modelling and Simulation in Materials Science and Engineering 12.2 (2004): 273.

Niobium in ferritic stainless steels

- ullet Automobile industry becoming energy-efficient o increase in temperature of exhaust gas
- Material in exhaust:
 - Better high temperature strength
 - Resistance to thermal fatigue
- Solution: Nb based ferritic stainless steel
- Disadvantages: Precipitates at high temperatures and long time scales → Decrease in performance.

Asmita Jana April 17, 2017 2 / 13

Experiments

- Nominal composition: 19Cr-0.8Nb wt.%
- Procedure followed:
 - Vacuum melting \rightarrow heating at 1250°C for 30 minutes in an Ar atmosphere \rightarrow hot-rolled and normalized to 900°C \rightarrow Annealing at 1000°C for 10 minutes \rightarrow water quenched \rightarrow Machining \rightarrow isothermal heat treatments at 950°C and 1000°C for 500 hours.
- Characterization done:
 - XRD-precipitates formed were noted.
 - TEM and EDS with carbon extraction replicas
 → microstructures and particle sizes.

Asmita Jana April 17, 2017 3 / 13

Experimental results

Phase transformation

$$\alpha \rightarrow \alpha + Nb(C,N) + Fe_2Nb + Fe_3Nb_3C \rightarrow \alpha + NbN + Fe_3Nb_3C.$$

- Equilibrium has Fe₃Nb₃C
- NbC and Laves phase dissolves.
- ullet Precipitates o more spherical than needle-like.

Asmita Jana April 17, 2017 4 / 13

Table: Presence of precipitates in samples at different experimental conditions: VW, W,S,VS stand for very weak, weak, strong and very strong X-ray intensities

Aging conditions		Precipitates detected		
Temperature ($^{\circ}$ C)	Time (h)	Nb(C,N)	Fe_3Nb_3C	Fe_2Nb
As annealed		S	VS	W
at 1000°C				
	1	VS	VS	VS
	8	S	VS	W
950	20	S	VS	W
	50	S	VS	VW
	100	VW	VS	-
1000	20	W	VS	-

Models used: Nucleation

Classical nucleation theory

$$I = \left(1 - rac{V^{eta}}{V^{lphaeta}}
ight) N_0 rac{kT}{h} exp \left(-rac{G^* + Q^*}{RT}
ight)$$

$$G^* = \frac{16\pi\sigma^3}{3\Delta G_V^2}$$

- ullet V^{eta} and $V^{lphaeta}$ are instantaneous and equilibrium volume fractions of the precipitate.
- N_0 and Q^* are the number density of nucleating sites and activation energy respectively.
- ullet σ and ΔG_V are interfacial energy and volume Gibbs energy change.

Asmita Jana April 17, 2017 6 / 13

Growth: Binary

Growth: governing equation

$$v(c^{\beta\alpha}-c^{\alpha\beta})=-D\frac{\partial c}{\partial z}$$

- D: diffusion coefficient.
- v: growth velocity
- $c^{etalpha}$, $c^{lphaeta}$: concentrations at equilibrium
- $\frac{\partial c}{\partial z}$: concentration gradient.

Asmita Jana April 17, 2017 7 / 13

Growth: MC precipitate

Growth: MC governing equation

$$v(c_X^{\beta\alpha} - c_X^{\alpha\beta}) = -D_X \nabla c_X$$

- C: interstitial atom $\rightarrow D_C >> D_{\rm Nb}$.
- Flux of C and Nb should almost match.
- Movement from b to c and a to c
 - b → initial C composition such that C gradient minimized and M gradient maximised.
 - As solute from matrix depleted, the average composition moves from a to c.
 - c → Equilibrium

Asmita Jana April 17, 2017 8 / 13

Capillarity

Capillarity equation

$$c_{r,\mathrm{M}}^{lphaeta} = \left(1 + rac{\sigma}{kT} rac{v^{eta}}{r} rac{1 - c_{\mathrm{M}}^{lphaeta}}{c_{\mathrm{M}}^{etalpha} - c_{\mathrm{M}}^{lphaeta}}
ight) c_{\mathrm{M}}^{lphaeta}$$

- Phase boundaries → modified
- Reduces amount of small sized precipitates
- ullet Larger the precipitate, lower is the solute content at its interface ightarrow drives coarsening

Asmita Jana April 17, 2017 9 / 13

Calculations and results

- CALPHAD description and solubility products→ Volume Gibbs energy
- Fe-Nb-C system considered
- Parameters varied: N_0 and σ .
- Close agreement with experimental data.
- Interfacial energy 15 times stronger impact than number of nucleation sites.

Asmita Jana April 17, 2017

Parameters obtained

Table: Results from modeling

	AL	`
	Number density of sites: N_0 (m ⁻³)
NbN		2×10^{12}
Fe_2Nb		3×10^{11}
Fe_3Nb_3C		3×10^{12}
	Interfacial energy: $\sigma(\ {\sf J}\ {\sf m}^{-2})$	
NbN		0.230
Fe_2Nb		0.280
Fe_3Nb_3C		0.330

4 L P 4 B P 4 E P 4 E P E P) 4 (P

Asmita Jana April 17, 2017

Volume fraction

- Precipitation sequence verified
- Increases and saturates after some time
 - \rightarrow Simultaneous dissolution of smaller particles + coarsening of the larger particles.

Asmita Jana April 17, 2017 12 / 13

Precipitate sizes

- Mean radius increases and stabilizes after some time
- Larger particle: radii increases
 → Coarsening
- Smaller particle: radii decreases
 → Dissolution
- The number density of precipitates, decreasing during coarsening.

13 / 13

Asmita Jana April 17, 2017

Summary

- Fe-Nb-C system considered
- Parameters varied: N_0 and σ .
- Close agreement with experimental data.
- Interfacial energy 15 times stronger impact than number of nucleation sites.
- ullet Larger particle: radii increases o Coarsening
- Smaller particle: radii decreases → Dissolution

Asmita Jana April 17, 2017