ABSTRACT OF THE DISCLOSURE

Apparatus and methods implemented in a processor semiconductor logic chip for providing
novel "hint instructions" that uniquely preserve and reuse branch predictions replaced in a
branch history table (BHT). A branch prediction is lost in the BHT after its associated
instruction is replaced in an instruction cache. The unique "hint instructions" are
generated and stored in a unique instruction cache which associates each hint instruction
with a line of instructions. The hint instructions contains the latest branch history for all
branch instructions executed in an associated line of instructions, and they are stored in the
instruction cache during instruction cache hits in the associated line. During an instruction
cache miss in an instruction line, the associated hint instruction is stored in a second level
cache with a copy of the associated instruction line being replaced in the instruction cache.
In the second level cache, the copy of the line is located through the instruction cache
directory entry associated with the line being replaced in the instruction cache. Later, the
hint instruction can be retrieved into the instruction cache when its associated instruction
line is fetched from the second level cache, and then its associated hint instruction is also
retrieved and used to restore the latest branch predictions for that instruction line. In the
prior art this branch prediction would have been lost. It is estimated that this invention
improves program performance for each replaced branch prediction by about 80%, due to
increasing the probability of BHT bits correctly predicting the branch paths in the
program from about 50% to over 90%. Each incorrect BHT branch prediction may result
in the loss of many execution cycles, resulting in additional instruction re-execution
overhead when incorrect branch paths are belatedly discovered.