

高性能、145 MHz FastFET运算放大器

AD8065/AD8066

产品特性

通过汽车应用认证 FET输入放大器

输入偏置电流: 1 pA

低成本

高速: -3 dB带宽: 145 MHz (G = +1)

压摆率: 180 V/μs (G = +2)

低噪声

7 nV/ $\sqrt{\text{Hz}}$ (f = 10 kHz) 0.6 fA/ $\sqrt{\text{Hz}}$ (f = 10 kHz)

宽电源电压范围: 5V至24V 单电源、轨到轨输出

低失调电压: 1.5 mV(最大值) 高共模抑制比: -100 dB

出色的失真特性

无杂散动态范围(SFDR): -88 dBc (1 MHz)

低功耗:电源电流:每个放大器6.4 mA(典型值)

无反相

小型封装: SOIC-8、SOT-23-5和MSOP-8

概述

AD8065/AD8066¹ FastFET™放大器均为电压反馈型放大器,提供FET输入,性能出色、易于使用。AD8065是单路放大器,AD8066是双路放大器。这些放大器采用ADI公司的专有XFCB工艺制造,工作噪声极低(7.0 nV/√Hz和0.6fA/√Hz),输入阻抗非常高。

AD8065/AD8066具有5 V至24 V的宽电源电压范围,可采用单电源供电,带宽为145 MHz,适合各种应用。此外,这些放大器还具有轨到轨输出,使其功能更加多样化。

尽管成本很低,但这些器件仍能提供出色的整体性能。这些放大器的差分增益和相位误差分别为0.02%和0.02°, 0.1 dB平坦度为7 MHz,堪称视频应用的理想之选。此外,这些器件具有180 V/μs高压摆率、出色的失真性能(1 MHz时无杂散动态范围(SFDR)为-88 dBc)、极高的共模抑制(-100 dB)和低输入失调电压(15mV,预热条件下最大值)。 AD8065/AD8066 仅采用每个放大器6.4 mA的典型电源电流,能够驱动高达30 mA的负载电流。

¹受美国专利第6,262,633号保护。

Rev. J

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

应用

汽车驾驶员辅助系统 光电二极管前置放大器 滤波器 ADC驱动器 电平转换 缓冲

AD8065/AD8066均为高性能、高速、FET输入放大器,提供SOIC-8、MSOP-8和SOT-23-5小型封装,额定温度范围为-40°C至+85°C工业温度范围。

AD8065WARTZ-REEL7完全通过汽车应用认证,额定工作 温度范围为-40℃至+105℃扩展温度范围,最高电源电压 范围仅为+5V。

图2. 小信号频率响应

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©2002–2010 Analog Devices, Inc. All rights reserved.

目录

特性1
应用1
连接图1
概述1
修订历史3
±5 V技术规格4
±12 V技术规格6
+5 V技术规格7
绝对最大额定值9
最大功耗9
输出短路9
ESD警告9
典型工作特性10
测试电路17
工作原理
闭环频率响应20
同相闭环频率响应20
反相闭环频率响应20

. 1	宽带工作21
. 1	输入保护21
. 1	散热考量22
. 1	输入和输出过载行为22
. 3	布局布线、接地和旁路考虑23
. 4	电源旁路23
. 6	接地23
. 7	漏电流
. 9	输入电容23
. 9	输出电容23
. 9	输入至输出耦合24
. 9	宽带光电二极管前置放大器24
10	高速JFET输入仪表放大器25
17	视频缓冲器26
20	外形尺寸27
20	订购指南28
20	汽车应用级产品28

修订历史

2010年8月一修1	」版「主修り版」
再 16.0年4年2月1	"产田"为7八式n"相

更改"特性"部分、"应用"部分和"概述"部分1
更改表14
更改表37
更改表49
更改图910
更改"反相闭环频率响应"部分20
移动"漏电流"部分、"输入电容"部分和"输出电容"部分 23
移动"输入至输出耦合"部分、"宽带光电二极管前置放大器"
部分和图5924
更改表525
移动图60和"高速JFET输入仪表放大器"部分25
更新"外形尺寸" 27
更改"订购指南"28
添加"汽车应用级产品"部分28
2009年3月—修订版H至修订版Ⅰ
更改"高速JFET输入仪表放大器"部分23
更新"外形尺寸"
2008年9月—修订版G至修订版H
型の49月一ドリルの主ドリルの 删除表1中的"可用范围参数"3
删除表2中的"可用范围参数"4
删除表3中的"可用范围参数"5 删除表3中的"可用范围参数"5
更改布局
更改"输入和输出过载行为"部分19
更改表5的表达式列22
2006年1月—修订版F至修订版G
更改"订购指南" 26
2005年12月—修订版E至修订版F
格式更新
修改"特性"部分1
更改"概述"1
更改图22至和图2711
更新"外形尺寸"25
更改"订购指南"26

2004年2月—修订版D至修订版E

格式更新
更新图5621
更新"外形尺寸"
更新"订购指南"
2003年11月—修订版C至修订版D
更改"特性"1
更改"连接图"
更新"订购指南"5
更新"外形尺寸"
2003年4月—修订版B至修订版C
增加AD8065的SOIC-8 (R)4
2003年2月—修订版A至修订版B
更改"绝对最大额定值"4
更改测试电路1014
更改测试电路1115
更改"同相闭环频率响应"部分16
更改"反相闭环频率响应" 16
更新图6
更改图719
更改图1021
更改图11
更改"高速JFET输入仪表放大器"部分22
更改"视频缓冲器" 22
2002年8月—修订版0至修订版A
增加AD8066
增加SOIC-8 (R)和MSOP-8 (RM)1
编辑"概述"1
编辑"技术规格"2
新增图25
更改"订购指南"5
编辑TPC 18、25和288
新增TPC 3611
增加测试电路10和1114
增加MSOP (RM-8)23

±5 V技术规格

除非另有说明, $T_A = 25$ °C, $V_S = \pm 5$ V, $R_L = 1$ k Ω 。

表1.

参数	条件	最小值	典型值	最大值	单位
动态性能					
-3 dB带宽	$G = +1, V_0 = 0.2 \text{ V p-p (AD8065)}$	100	145		MHz
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}	88			MHz
	$G = +1, V_0 = 0.2 \text{ V p-p (AD8066)}$	100	120		MHz
	$G = +2, V_0 = 0.2 \text{ V p-p}$		50		MHz
	$G = +2, V_0 = 2 V p-p$		42		MHz
0.1 dB平坦度带宽	$G = +2, V_0 = 0.2 \text{ V p-p}$		7		MHz
输入过驱恢复时间	G = +1, -5.5 V至+5.5 V		175		ns
输出恢复时间	G = -1, -5.5 V至+5.5 V		170		ns
压摆率	G = +2, V _o = 4 V阶跃	130	180		V/µs
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}	155			V/µs
0.1%建立时间	G = +2, V _O = 2 V阶跃		55		ns
	G = +2, V ₀ = 8 V阶跃		205		ns
噪声/谐波性能	0				
无杂散动态范围(SFDR)	$f_C = 1 \text{ MHz, } G = +2, V_O = 2 \text{ V p-p}$		-88		dBc
	$f_c = 5 \text{ MHz}, G = +2, V_0 = 2 \text{ V p-p}$		-67		dBc
	$f_C = 1 \text{ MHz, } G = +2, V_O = 8 \text{ V p-p}$		-73		dBc
三阶交调截点	$f_C = 10 \text{ MHz}, R_L = 100 \Omega$		24		dBm
输入电压噪声	f = 10 kHz		7		nV/√Hz
输入电流噪声	f = 10 kHz		0.6		fA/√Hz
差分增益误差	NTSC, $G = +2$, $R_L = 150 Ω$		0.02		%
差分相位误差	NTSC, $G = +2$, $R_L = 150 Ω$		0.02		度
直流性能					
输入失调电压	V _{CM} =0V, SOIC封装		0.4	1.5	mV
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}			2.6	mV
输入失调电压漂移	MIN MAX		1	17	μV/°C
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}			17	μV/°C
输入偏置电流	SOIC封装		2	6	рA
	T _{MIN} 至T _{MAX}		25	125	pA
输入失调电流	MIN — MAX		1	10	pA
	T _{MIN} 至T _{MAX}		1	125	pA
开环增益	$V_0 = \pm 3 \text{ V}, R_L = 1 \text{ k}\Omega$	100	113		dB
71 1 Ham	仅限AD8065WARTZ: T _{MIN} -T _{MAX}	100			dB
输入特性	MIN MAX	122			
共模输入阻抗			1000 2.1		GΩ pF
差分输入阻抗			1000 4.5		GΩ pF
输入共模电压范围					11 11 11
FET输入范围		-5至+1.7	-5.0至+2.4		V
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}	-5至+1.7			V
共模抑制比	$V_{CM} = -1 \text{ V} $ $\times 1 \text{ V}$	-85	-100		dB
2.4.15C3.1. drd bet	V _{CM} = -1 V至+1 V (SOT-23)	-82	-91		dB
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}	-82	<i>></i> 1		dB

参数	条件	最小值	典型值	最大值	单位
输出特性					
输出电压摆幅	$R_L = 1 \ k\Omega$	-4.88至+4.90	-4.94至+4.95		V
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}	-4.88至+4.90			V
	$R_L = 150 \Omega$		-4.8至+4.7		V
输出电流	$V_0 = 9 \text{ V p-p, SFDR} \ge -60 \text{ dBc, f} = 500 \text{ kHz}$		35		mA
短路电流			90		mA
容性负载驱动	30%过冲,G=+1		20		pF
电源					
工作范围		5		24	V
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}	5		10	V
每个放大器的静态电流			6.4	7.2	mA
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}			7.2	mA
电源抑制比	±PSRR	-85	-100		dB
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}	-85			dB

±12 V技术规格

除非另有说明, $T_A = 25$ °C, $V_S = \pm 12 \text{ V}$, $R_L = 1 \text{ k}\Omega$ 。

表2.

参数	条件	最小值	典型值	最大值	单位
动态性能					
-3 dB带宽	$G = +1, V_0 = 0.2 \text{ V p-p (AD8065)}$	100	145		MHz
	$G = +1, V_0 = 0.2 \text{ V p-p (AD8066)}$	100	115		MHz
	$G = +2, V_0 = 0.2 \text{ V p-p}$		50		MHz
	$G = +2, V_0 = 2 V p-p$		40		MHz
0.1 dB平坦度带宽	$G = +2, V_0 = 0.2 \text{ V p-p}$		7		MHz
输入过驱恢复	G=+1, -12.5 V至+12.5 V		, 175		ns
输出过驱恢复	G=-1, -12.5 V至+12.5 V		170		ns
振	G=+2, V _O =4V阶跃	130	180		V/µs
	o a constant of the constant o	130	55		-
0.1%建立时间	G=+2, V _o =2V阶跃				ns
ng 글로 CHCNe M. Ac	G = +2,V _o = 10 V阶跃		250		ns
噪声/谐波性能	6 4144 6 214 214		100		
无杂散动态范围(SFDR)	$f_C = 1 \text{ MHz}, G = +2, V_O = 2 \text{ V p-p}$		-100		dBc
	$f_C = 5 \text{ MHz}, G = +2, V_O = 2 \text{ V p-p}$		–67		dBc
	$f_C = 1 \text{ MHz}, G = +2, V_O = 10 \text{ V p-p}$		-85		dBc
三阶交调截点	$f_C = 10 \text{ MHz}, R_L = 100 \Omega$		24		dBm
输入电压噪声	f = 10 kHz		7		nV/√Hz
输入电流噪声	f = 10 kHz		1		fA/√Hz
差分增益误差	NTSC, $G = +2$, $R_L = 150 \Omega$		0.04		%
差分相位误差	NTSC, $G = +2$, $R_L = 150 \Omega$		0.03		度
直流性能					
输入失调电压	V _{CM} = 0 V,SOIC封装		0.4	1.5	mV
输入失调电压漂移	CM		1	17	μV/°C
输入偏置电流	SOIC封装		3	7	pА
INV VIII I OVE	T _{MIN} 至 T _{MAX}		25		pA
输入失调电流	MIN MAX		2	10	pA
THE PROPERTY OF LANDING	T _{MIN} 至T _{MAX}		2	. •	pA
开环增益	$V_0 = \pm 10 \text{ V}, R_L = 1 \text{ k}\Omega$	103	114		dB
输入特性	V0 - ±10 V, NL - 1 K22	103			ub
共模输入阻抗			1000 2.1		GΩ p
差分输入阻抗			1000 2.1		
			1000 4.5		GΩ p
输入共模电压范围		1275 - 0.5	12.075 . 0.5		.,
FET输入范围	V 1V7 11V	-12至+8.5	-12.0至+9.5		V
共模抑制比	V _{CM} = -1 V至+1 V	-85	-100		dB
	V _{CM} = −1 V至+1 V (SOT-23)	-82	–91		dB
输出特性					
输出电压摆幅	$R_L = 1 \text{ k}\Omega$	-11.8至+11.8	-11.9至+11.9		V
	$R_L = 350 \Omega$		-11.25至+11.5		V
输出电流	$V_0 = 22 \text{ V p-p, SFDR} \ge -60 \text{ dBc, f} = 500 \text{ kHz}$		30		mA
短路电流			120		mA
容性负载驱动	30%过冲,G=+1		25		рF
电源					
工作范围		5		24	V
每个放大器的静态电流			6.6	7.4	mA
电源抑制比	±PSRR	-84	-93		dB

+5 V技术规格

除非另有说明, $T_A = 25$ °C, $V_S = 5$ V, $R_L = 1$ k Ω 。

表3.

参数	条件	最小值	典型值	最大值	单位
动态性能					
-3 dB带宽	$G = +1, V_0 = 0.2 \text{ V p-p (AD8065)}$	125	155		MHz
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}	90			MHz
	$G = +1, V_0 = 0.2 \text{ V p-p (AD8066)}$	110	130		MHz
	$G = +2, V_0 = 0.2 \text{ V p-p}$		50		MHz
	$G = +2, V_0 = 2 V p-p$		43		MHz
0.1 dB平坦度带宽	$G = +2, V_0 = 0.2 \text{ V p-p}$		6		MHz
输入过驱恢复时间	$G = +1$, $-0.5 \text{ V} \underline{\Sigma} + 5.5 \text{ V}$		175		ns
输出恢复时间	$G = -1$, $-0.5 \text{ V}\underline{\Xi} + 5.5 \text{ V}$		170		ns
压摆率	$G = +2$, $V_0 = 2$ V阶跃	105	160		V/µs
压14十	仅限AD8065WARTZ: T _{MIN} -T _{MAX}	123	100		V/µs
0.1%建立时间	$G = +2$, $V_0 = 2$ V阶跃	123	60		ns
一 <u>。//////////////////////////////////</u>	G - +2, v ₀ - 2 v y x				113
无杂散动态范围(SFDR)	$f_C = 1 \text{ MHz}, G = +2, V_O = 2 \text{ V p-p}$		-65		dBc
儿录取幼恋艳团(Si Dit)	$f_c = 5 \text{ MHz}, G = +2, V_0 = 2 \text{ V p-p}$		-50		dBc
一队交通教士	$f_c = 3 \text{ MHz}, G = +2, v_0 = 2 \text{ V p-p}$ $f_c = 10 \text{ MHz}, R_L = 100 \Omega$		-30 22		dBm
三阶交调截点					
输入电压噪声	f = 10 kHz		7		nV/√Hz
输入电流噪声	f = 10 kHz		0.6		fA/√Hz
差分增益误差	NTSC, $G = +2$, $R_L = 150 \Omega$		0.13		%
差分相位误差	NTSC, $G = +2$, $R_L = 150 \Omega$		0.16		度
直流性能					
输入失调电压	V _{CM} = 1.0 V,SOIC封装		0.4	1.5	mV
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}			2.6	mV
输入失调电压漂移			1	17	μV/°C
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}			17	μV/°C
输入偏置电流	SOIC封装		1	5	рА
	T _{MIN} 至T _{MAX}		25	125	рА
输入失调电流			1	5	рА
	T _{MIN} 至T _{MAX}		1	125	рΑ
开环增益	V _O = 1 V至4 V (AD8065)	100	113		dB
	仅限AD8065WARTZ: T _{MIN} −T _{MAX}	100			dB
	V _O = 1 V至4 V (AD8066)	90	103		dB
输入特性					
共模输入阻抗			1000 2.1		GΩ pF
差分输入阻抗			1000 4.5		GΩ pF
输入共模电压范围			"		
FET输入范围		0至1.7	0至2.4		V
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}	0至1.7	- 11-11		V
共模抑制比	V _{CM} = 0.5 V至1.5 V	-74	-100		dB
八尺叶明记	$V_{CM} = 1 \text{ V} \times 2 \text{ V} \times 2 \text{ (SOT-23)}$	_78	-91		dB
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}	-76	7 1		dB
	MIN MAX	+ , ,			45
輸出 电压摆幅	$R_{l} = 1 \text{ k}\Omega$	0.1至4.85	0.03至4.95		V
1的山飞少7岁11	_	0.1至4.85	0.05主4.93		V
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}	0.1至4.03	0.07至4.83		V
松山山冰	$R_L = 150 \Omega$				
输出电流	$V_0 = 4 \text{ V p-p, SFDR} \ge -60 \text{ dBc, f} = 500 \text{ kHz}$		35 75		mA
短路电流	200() byty C		75		mA
容性负载驱动	30%过冲,G=+1		5		рF

参数	条件	最小值	典型值	最大值	单位
电源					
工作范围		5		24	V
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}	5		10	V
每个放大器的静态电流		5.8	6.4	7.0	mA
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}			7.0	mA
电源抑制比	±PSRR	-78	-100		dB
	仅限AD8065WARTZ: T _{MIN} -T _{MAX}	-78			dB

绝对最大额定值

表4.

参数	额定值
电源电压	26.4 V
功耗	见图3
共模输入电压	V _{EF} - 0.5 V至V _{CC} + 0.5 V
差分输入电压	1.8 V
存储温度范围	-65℃至+125℃
工作温度范围	-40℃至+85℃
仅限AD8065WARTZ	-40℃至+105℃
引脚温度	300°C
(焊接, 10秒)	

注意,超出上述绝对最大额定值可能会导致器件永久性损坏。这只是额定最值,并不能在这些条件下,或者在任何其它超出本技术规范操作章节中所示规格的条件下,推断器件能否正常工作。长期在绝对最大额定值条件下工作会影响器件的可靠性。

最大功耗

AD8065/AD8066封装内的最大安全功耗受限于相应的芯片结温 (T_j) 的升高情况。芯片的塑封局部达到结温。达到玻璃化转变温度 150° C左右时,塑料的特性会发生改变。即使只是暂时超过这一温度限值也会改变封装对芯片作用的应力,从而永久性地转变AD8065/AD8066的参数性能。长时间超过 175° C的结温会导致芯片器件出现变化,因而可能造成故障。

可以利用封装和PCB的静止空气热属性 (θ_{JA}) 、环境温度 (T_A) 和封装的总功耗 (P_D) 来确定芯片的结温。结温可以通过下式计算:

$$T_J = T_A + (P_D \times \theta_{JA})$$

封装的功耗(P_D)为静态功耗与封装中所有输出的负载驱动所导致的功耗之和,而静态功耗则为电源引脚之间的电压 (V_s)乘以静态电流(I_s)。假设负载(R_L)以中间电源电压为基准,则总驱动功耗为 $V_s/2 \times I_{OUT}$,其中一部分消耗在封装中,一部分消耗在负载中($V_{OUT} \times I_{OUT}$)。总驱动功耗和负载功耗之差便是消耗在封装中的功耗。

Pp =静态功耗+(总驱动功耗-负载功耗)

$$P_D = \left(V_S \times I_S\right) + \left(\frac{V_S}{2} \times \frac{V_{OUT}}{R_L}\right) - \frac{V_{OUT}^2}{R_L}$$

应当考虑均方根输出电压。如果 R_L 以 V_s -为基准,像在单电源供电情况下,则总驱动功耗为 $V_s \times I_{our}$ 。

如果均方根信号电平未定,应考虑最差情况: R_L 以电源电压中间值为基准, $V_{OUT}=V_s/4$ 。

$$P_D = \left(V_S \times I_S\right) + \frac{\left(V_S/4\right)^2}{R_L}$$

单电源供电且 R_L 以 V_S -为基准时,最差情况为 $V_{OUT} = V_S/2$ 。

图3.4层板最大功耗与温度的关系

气流可增强散热,从而有效降低 θ_{IA} 。此外,更多金属直接与金属走线的封装引脚、通孔、接地和电源层接触,这同样可降低 θ_{IA} 。必须采取措施降低高速运算放大器输入引脚的寄生电容,如"布局布线、接地和旁路考虑"部分所述。

图3显示在JEDEC标准4层板上,SOIC (125°C/W)、SOT-23 (180°C/W)和MSOP (150°C/W)三种封装的最大安全功耗与环境温度的关系。 θ_{LA} 值均为近似值。

输出短路

输出短接至地或AD8065/AD8066吸取过多电流会引发严重 故障。

ESD警告

ESD(静电放电)敏感器件。

带电器件和电路板可能会在没有察觉的情况下放电。 尽管本产品具有专利或专有保护电路,但在遇到高 能量ESD时,器件可能会损坏。因此,应当采取适当 的ESD防范措施,以避免器件性能下降或功能丧失。

典型工作特性

默认条件: ± 5 V, $C_L = 5$ pF, $R_L = 1$ k Ω , $V_{OUT} = 2$ V p-p, 温度 = 25°C.

图4. 不同增益下的小信号频率响应

图5. 不同电源下的小信号频率响应(见图42)

图6. 不同电源下的大信号频率响应(见图42)

图7.0.1 dB平坦度频率响应(见图43)

图8. 不同电源下的小信号频率响应(见图43)

图9. 不同电源下的大信号频率响应(见图43)

图16. 不同负载下谐波失真与频率的关系(见图43)

图17. 不同负载下谐波失真与幅度的关系, $V_s = \pm 12 V(见图43)$

图18. 三阶交调截点与频率和电源电压的关系

图19. 不同增益下谐波失真与频率的关系(见图42和图43)

图20. 不同幅度下谐波失真与频率的关系(见图43)

图21. 电压噪声

图22.5 V电源下的小信号瞬态响应(见图42)

02916-022

02916-023

图23. 大信号瞬态响应(见图42)

图24. 输出过驱恢复(见图44)

图25.±5 V下的小信号瞬态响应(见图42)

图26. 大信号瞬态响应(见图43)

图27. 输入过驱恢复(见图42)

02916-026

02916-025

图28. 长期建立时间(见图49)

图29. 输入偏置电流与温度的关系

V_{IN} = 500mV/DIV +0.1% -0.1% OUT 2mV/DIV 10ns/DIV

图31.0.1%短期建立时间(见图49)

02916-E-031

图32. 输入偏置电流与共模电压范围的关系 (参见"输入和输出过驱行为"部分)

图33. 输入失调电压

图35. 输出饱和电压与输出负载电流的关系

图36. PSRR与频率的关系(见图48和图50)

图37. 输出阻抗与频率的关系(见图45和图47)

图38. 输出饱和电压与温度的关系

图39. 串扰与频率的关系(见图51)

02916-E-037

02916-E-038

图40. 不同电源电压下静态电源电流与温度的关系

图41. 不同电源电压下开环增益与负载电流的关系

Rev. J | Page 16 of 28

测试电路

SOIC-8引脚排列

图44. G = -1

图45. 输出阻抗G=+1

图46. 共模抑制比(CMRR)

图47. 输出阻抗G = +2

图48. 正PSRR

图49. 建立时间

图52. 单电源供电

图51. 串扰—AD8066

工作原理

AD8065/AD8066是电压反馈型运算放大器,集激光调整 FET输入级与ADI公司的超快速互补双极性(XFCB)工艺于一体,实现了高精度和高速度的卓越组合。其电源电压范围为5 V至24 V。该放大器具有取得专利的轨到轨输出级,驱动范围可达任一电源的0.5 V内,可提供高达30 mA的源电流或吸电流。此外还具有单电源输入级,能够处理从负电源电压以下到正供电轨3 V范围内的共模信号。由于辅助双极性输入级可以采用高达正电源电压的输入电压工作,因此可以在JFET输入范围之外工作。对于电源电压范围内的共模电压,运算放大器就好像具有轨到轨输入一样工作,并不会表现出任何反相行为。

对于1 MHz、2 V p-p信号, AD8065/AD8066的电压噪声为7 nV/√Hz, 失真为-88 dBc, 这令它非常适合用在高分辨率数据采集系统。低噪声、亚皮安级输入电流、精密失调和高速特性使这些运放特别适合用作光电二极管应用中的前置放大器。AD8065/AD8066的速度和输出驱动能力还使得这些器件适合视频应用。

闭环频率响应

AD8065/AD8066是优秀的电压反馈型放大器,其开环频率响应与积分器响应类似,如图53所示。反相和同相配置的基本闭环频率响应可以从所示原理图获得。

同相闭环频率响应

求解传递函数:

$$\frac{V_O}{V_I} = \frac{2\pi \times f_{crossover} \left(R_G + R_F\right)}{\left(R_F + R_G\right)s + 2\pi \times f_{crossover} \times R_G}$$

其中f_{crossover}为放大器开环增益等于0 dB时的频率。

At dc
$$\frac{V_O}{V_I} = \frac{R_F + R_G}{R_G}$$

对于直流,闭环-3 dB频率:

$$f_{-3dB} = f_{crossover} \times \frac{R_G}{R_F + R_G}$$

反相闭环频率响应

$$\frac{V_O}{V_I} = \frac{-2\pi \times f_{crossover} \times R_F}{s(R_F + R_G) + 2\pi \times f_{crossover} \times R_G}$$

At dc
$$\frac{V_O}{V_I} = -\frac{R_F}{R_G}$$

对于直流, 闭环-3 dB频率:

$$f_{-3dB} = f_{crossover} \times \frac{R_G}{R_F + R_G}$$

闭环带宽与运算放大器电路的噪声增益(R_F + R_G)/R_G成反比。对于2以上的噪声增益,这一简单的模型精确可行。 当噪声增益等于或小于2时,电路的实际带宽高于利用此 模型所预测的值,原因是实际运算放大器的频率响应被其 它极点影响。

图54. 电压反馈型放大器的直流误差

图54显示了电压反馈型放大器的直流误差。对于反相和同相配置,

如果 R_s = $R_F \parallel R_G$,则 I_b +和 I_b -所引起的电压误差最小(AD8065 的输入电流在整个温度范围内通常都小于20 pA,这一误差应当不是问题)。为了包括共模效应和电源抑制效应,可以将总 V_{OS} 表示为:

 V_{OSnom} 是标称条件下的额定失调电压, ΔV_s 是相对于标称条件的电源变化,PSR是电源抑制比, ΔV_{CM} 是相对于标称条件的共模电压变化,而CMR则是共模抑制比。

宽带运作

图42至图44所示电路用于确定增益为+1、+2和-1时的宽带特性。求和点源阻抗($R_F || R_G$)与放大器的6.6pF输入电容形成放大器环路响应的一个极点。如果形成的时间常数过低,这可能会引起峰化和振铃。建议使用300 Ω 至1 k Ω 的反馈电阻,因为它们不会过度地减轻放大器负载,形成的时间常数也不会太低。频率响应中的峰化可以通过与反馈电阻并联一个小电容(C_F)来进行补偿,如图12所示。图中显示了不同反馈电容对同相G = +2放大器的峰化和带宽的影响。

为获得最快建立时间和最佳失真性能, AD8065/AD8066输入引脚上的阻抗应相互匹配。这样可以将非线性共模电容效应降至最低,该效应会降低交流性能。

实际失真性能取决于多个因素:

- 应用的闭环增益
- 反相抑或同相
- 放大器负载
- 信号频率和幅度
- 电路板布局布线

另请参见图16至图20。在低增益反相应用中使用AD8065时,由于可以消除共模效应,因而可使失真达到最低。闭环增益越高,失真性能就越差。

输入保护

AD8065/AD8066的输入采用输入引脚之间的背靠背二极管和各电源的ESD二极管进行保护。这样会得到输入电流为数皮安的输入级,可以承受高达1500 V ESD事件(人体模型),且性能不会下降。

保护器件的过大功耗会损坏或降低放大器的性能。大于 0.7 V的差分电压产生的输入电流约为(|V+-V-|0.7 V)/R₁, 其中R,为与输入端串联的电阻。

输入电压超出正电源电压时,输入电流约为 $(V_I - V_{cc} - 0.7)/R_I$ 。超出负电源电压时,输入电流约为 $(V_I - V_{EE} + 0.7)/R_I$ 。如果放大器的输入端必须持续存在0.7 V以上的差分电压,或者输入电压超出放大器电源电压,则输入电流应通过合适大小的输入电阻 (R_I) 限制为30 mA,如图55所示。

散热考量

AD8065以24 V电源和6.5 mA静态电流工作时,空载功耗为 156 mW。AD8066功耗则为312 mW。这可能导致显著的 热效应,尤其是在小型SOT-23-5(热阻为160°C/W)封装中。 V_{os} 温漂经过调整来保证17 μ V/°C的最大漂移,从而使得对于采用SOT-23-5封装、以24 V电源工作的AD8065/AD8066,预热效应引起的变化幅度最大可达0.425 mV。

温度每升高10℃, I_b会增大1.7倍。与采用5 V单电源供电相比, 采用24 V电源时I_b要高近五倍。

高负载会增加功耗并提升芯片结温,如"最大功耗"部分所述。应注意不要超过封装的额定功耗。

输入和输出过载特性

图56所示为AD8065/AD8066输入级的简化原理图。图中有 串接N沟道JFET输入对、ESD和其它保护二极管,以及可 以消除任何相位翻转的辅助NPN输入级。放大器的共模输 入电压驱动至约正电源3 V以内时,输入JFET的偏置电流会 关闭,NPN对的偏置电流会打开,从而控制放大器。此时 NPN差分对可以设置放大器的失调,输入偏置电流处于几 十毫安范围内。该特性如图32中所示。共模电压从正电源 阈值降至3 V以下时,就会恢复正常工作。

轨到轨输出级的输出晶体管配有电路来限制其在输出过驱时的饱和程度。这有助于改善输出恢复时间。图24所示为 ±5 V电源 上0.5 V输出过驱的输出恢复情况。

图56. 简化输入级

布局布线、接地和旁路考虑 ^{电源旁路}

电源引脚实际上是输入,必须小心,确保施加无噪声的稳定直流电压。旁路电容的作用是在所有频率条件下在电源和地之间构成低阻抗,从而通过分流或滤波消除大多数噪声。

去耦方案旨在通过电容并联组合将所有频率条件下的旁路阻抗降至最低。0.1 μF(X7R或NPO)芯片电容非常重要,并应尽可能靠近放大器封装。4.7 μF钽电容对于高频旁路不太重要,多数情况下,每个电路板只需在电源输入端连接一个电容即足够。

接地

在高密度集成PCB上,接地层很重要,可以分散电流,进而将寄生电感降至最低。不过,了解电路中的电流流向对实现有效的高速电路设计至关重要。电流路径的长度与寄生电感的量级成正比,因此与路径的高频阻抗也成正比。感性接地回路中的高速电流会产生干扰电压噪声。

高频旁路电容引脚的长度是最重要的。旁路接地的寄生电感会不利于旁路电容产生的低阻抗。应将旁路电容的接地引线置于同一物理位置。负载电流也来自电源,因此负载阻抗的地应与旁路电容地在同一物理位置。若使用较大电容并在较低频率时有效,电流返回路径距离并不重要。

漏电流

不良的PCB布局、污染和板绝缘材料可能会引起远大于AD8065/AD8066输入偏置电流的漏电流。输入端与邻近走线的任何压差都会引起漏电流通过PCB绝缘器,例如:1V/100 GΩ = 10 pA。同样,任何污染(人体油脂就是一种常见污染)都会造成显著的漏电流。为了大幅降低漏电流,应在输入端和输入引脚周围放置一个保护环(屏蔽),并将其驱动至与输入端相同的电位。这样,输入端与周围区域之间不存在压差,从而不会产生漏电流。为使保护环真正有

效,必须用阻抗相对较低的源驱动它,在使用多层板时, 应将输入引脚四周及上下完全包围起来。

另一种能导致漏电流的效应是绝缘材料本身的电荷吸收。 尽可能减少输入引脚与保护环之间的材料量有助于降低电 荷吸收。此外,某些情况下可能需要使用特氟龙或陶瓷等 低吸收材料。

输入电容

除旁路和接地外,高速放大器对输入端与接地之间的寄生 电容也很敏感。几皮法的电容就会降低高频时的输入阻 抗,进而提高放大器的增益,导致频率响应峰化,严重时 甚至引起振荡。建议将连接到输入引脚的外部无源器件尽 可能靠近输入端放置,避免产生寄生电容。接地层和电源 层应与电路板所有层上的输入引脚保持较短的距离。

输出电容

在较小程度上,输出端上的寄生电容会导致频率响应中出现峰化和振铃。有两种方法可以有效地将其影响降至最低:

- 如图57所示,将一个小电阻(R_s)与输出端串联,从而将负载电容与放大器的输出级隔离开来。电阻值最好选择为20 Ω (见图10)。
- 用更高的噪声增益提高相位裕量或在-IN和输出端之间 并联一个电阻和电容来增加一个极点。

图58. 宽带光电二极管前置放大器

输入至输出耦合

为将输入与输出之间的容性耦合降至最低,输出和输入信 号走线不应平行。

宽带光电二极管前置放大器

图58显示了一个电流电压转换器和一个光电二极管的电气 模型, 其基本传递函数为:

$$V_{OUT} = \frac{I_{PHOTO} \times R_F}{1 + sC_F R_F}$$

其中, I_{PHOTO}为光电二极管的输出电流, R_F和C_F的并联组 合设置信号带宽。

此前置放大器所能实现的稳定带宽是以下参数的函数: R_E、放大器的增益带宽积,以及放大器求和点的总电容, 包括C。和放大器输入电容。R。与该总电容在放大器的环路 传输中产生一个极点,它可能会导致峰化和电路不稳定。 增加C。可以在环路传输中创建一个零点,它能补偿上述极 点的影响并降低信号带宽。在45°相位裕量(f(45))下产生的 信号带宽可以表示为:

$$f_{(45)} = \sqrt{\frac{f_{CR}}{2\pi \times R_F \times C_S}}$$

其中,fcp为放大器的交越频率,Rp为反馈电阻,而Co为放 大器求和点的总电容(放大器+光电二极管+电路板寄生电

产生f₍₄₅₎的C_r值可以表示为:

$$C_F = \sqrt{\frac{C_S}{2\pi \times R_F \times f_{CR}}}$$

此时的频率响应显示大约2 dB的峰化和15%的过冲。将C。 加倍以及将带宽减半会使频率响应平坦化, 瞬态过冲约 为5%。

前置放大器的输出噪声与频率的关系如图59所示。

环路传输中的极点相当于放大器噪声增益中的零点,这会 导致整个频率范围内的输入电压噪声被放大。C。引入的环 路传输零点可以限制放大效应。噪声增益带宽扩展至前置 放大器信号带宽以外, 最终通过放大器的环路增益降低而 滚降。建议保持输入引脚阻抗相互匹配,以消除增加输出 噪声的共模噪声峰化效应。

将输出电压噪声频谱密度的平方对频率积分, 然后取平方 根,可以获得前置放大器的总均方根输出噪声。表5列出 了放大器、反馈电阻和源电阻的近似噪声计算公式,同时 显示了一个示例前置放大器的噪声成分: $R_{r} = 50 \text{ k}\Omega$ 、 $C_{s} =$ 15 pF、C_E = 2 pF(帯宽约为1.6 MHz)。

表5. 光电二极管前置放大器的RMS噪声贡献

贡献因素	表达式	RMS噪声(R _F = 50 kΩ、C _S = 15 pF、C _F = 2 pF
R _F (×2)	$\sqrt{2 \times 4 kT \times R_F \times f_2 \times 1.57}$	64.5 μV
放大器至f ₁	$VEN \times \sqrt{f_1}$	2.4 μV
放大器(f ₂ - f ₁)	$VEN \times \sqrt{\frac{C_S + C_M + C_F + 2C_D}{C_F}} \times \sqrt{f_2 - f_1}$	31 μV
放大器至(之前f2	$VEN \times \sqrt{\frac{C_S + C_M + 2C_D + C_F}{C_F}} \times \sqrt{f_3 \times 1.57}$	260 μV
		270 μV(总和)

图60显示了一个采用AD8065/AD8066构建的具有高输入阻抗的高速仪表放大器示例。其直流传递函数为:

$$V_{OUT} = (V_N - V_P) \left(1 + \frac{1000}{R_G} \right)$$

高速JFET输入仪表放大器

对于G = +1,建议将两个前置放大器的反馈电阻设置为低值(例如,源阻抗为50 Ω 时设置为50 Ω)。G = +1时带宽为50 MHz。对于较高增益,带宽由前置放大器设置,计算公式如下:

$$Inamp_{-3dB} = (f_{CR} \times R_G)/(2 \times R_F)$$

仪表放大器的共模抑制主要由电阻比的匹配度决定: R1:R2对R3:R4。可以通过下式估算:

$$\frac{V_O}{V_{CM}} = \frac{\left(\delta 1 - \delta 2\right)}{\left(1 + \delta 1\right)\delta 2}$$

前置放大器的求和点阻抗等于 $R_F \parallel 0.5(R_G)$ 。这就是用于匹配目的的值。

视频缓冲器

AD8065的输出电流能力和速度使其可用作视频缓冲器,如图61所示。

G = +2配置可以补偿因信号端接而引起的信号分压。对于 最高7 MHz的信号,该缓冲器可以在从低幅度到最高2 V p-p范围内保持0.1 dB平坦度(见图7)。采用±5 V电源供电 时,测得的差分增益和差分相位分别为0.02%和0.028°。

外形尺寸

COMPLIANT TO JEDEC STANDARDS MO-187-AA 图64. 8引脚超小型封装[MSOP] (RM-8)

图示尺寸单位: mm Rev. J | Page 27 of 28

订购指南

型号 ^{1,2}	温度范围	封装描述	封装选项	标识
AD8065AR	-40℃至+85℃	8引脚 SOIC_N	R-8	
AD8065AR-REEL	-40℃至+85℃	8引脚 SOIC_N	R-8	
AD8065AR-REEL7	-40℃至+85℃	8引脚 SOIC_N	R-8	
AD8065ARZ	-40℃至+85℃	8引脚 SOIC_N	R-8	
AD8065ARZ-REEL	-40℃至+85℃	8引脚 SOIC_N	R-8	
AD8065ARZ-REEL7	-40℃至+85℃	8引脚 SOIC_N	R-8	
AD8065ART-R2	-40℃至+85℃	5引脚 SOT-23	RJ-5	HRA
AD8065ART-REEL	-40℃至+85℃	5引脚 SOT-23	RJ-5	HRA
AD8065ART-REEL7	-40℃至+85℃	5引脚 SOT-23	RJ-5	HRA
AD8065ARTZ-R2	-40℃至+85℃	5引脚 SOT-23	RJ-5	HRA#
AD8065ARTZ-REEL	-40℃至+85℃	5引脚 SOT-23	RJ-5	HRA #
AD8065ARTZ-REEL7	-40℃至+85℃	5引脚 SOT-23	RJ-5	HRA#
AD8065WARTZ-REEL7	-40℃至+105℃	5引脚 SOT-23	RJ-5	H2F#
AD8065ART-EBZ		评估板(8引脚 SOIC_N)		
AD8065AR-EBZ		评估板(8引脚 SOIC_N)		
AD8066AR	-40℃至+85℃	8引脚 SOIC_N	R-8	
AD8066AR-REEL7	-40℃至+85℃	8引脚 SOIC_N	R-8	
AD8066ARZ	-40℃至+85℃	8引脚 SOIC_N	R-8	
AD8066ARZ-RL	-40℃至+85℃	8引脚 SOIC_N	R-8	
AD8066ARZ-R7	-40℃至+85℃	8引脚 SOIC_N	R-8	
AD8066ARM	-40℃至+85℃	8引脚 SOIC_N	RM-8	H1B
AD8066ARM-REEL	-40℃至+85℃	8引脚 MSOP	RM-8	H1B
AD8066ARM-REEL7	-40℃至+85℃	8引脚 MSOP	RM-8	H1B
AD8066ARMZ	-40℃至+85℃	8引脚 MSOP	RM-8	H7C
AD8066ARMZ-REEL7	-40℃至+85℃	8引脚 MSOP	RM-8	H7C
AD8066AR-EBZ		评估板(8引脚 SOIC_N)		
AD8066ARM-EBZ		评估板(5引脚 SOT-23)		

¹Z=RoHS兼容器件,#表示RoHS兼容器件的产品可能在顶部或底部进行标识。

汽车应用级产品

AD8065W生产工艺受到严格控制,以提供满足汽车应用的质量和可靠性要求。请注意,车用型号的技术规格可能不同于商用型号;因此,设计人员应仔细阅读本数据手册的技术规格部分。只有显示为汽车应用级的产品才能用于汽车应用。欲了解特定产品的订购信息并获得这些型号的汽车可靠性报告,请联系当地ADI客户代表。

²W=通过汽车应用认证。