Exercise Solutions for Math 20

Functions, Graphs, Symmetry

Nile Jocson <novoseiversia@gmail.com>

November 19, 2024

1

- 1.1 Transform each of the following real-valued functions to a functional notation f(x); find its domain and range; and compute f(1).
- 1.1.a f assigns the number 10 to any one-digit integer.

 $\Rightarrow f(x) = 10$ Final answer. $\Rightarrow \text{dom}(f) = [-9, 9]$ The domain is the set of one digit integers. $\Rightarrow \text{ran}(f) = 10$ The function can only equate to 10. $\Rightarrow f(1) = 10$

1.1.b f maps a given real number to the real number that is 4 more than its square root.

 $\Rightarrow f(x) = \sqrt{x} + 4$ Final answer. Assuming that only the principal root is needed. $\Rightarrow \operatorname{dom}(f) = [0, +\infty)$ The square root of a negative number cannot be real. $\Rightarrow \operatorname{ran}(f) = [4, +\infty]$ $\Rightarrow f(1) \in \{3, 5\}$

1.1.c $\{(x,y) \mid y = \frac{1}{6-x}\}$

 $\Rightarrow f(x) = \frac{1}{6-x}$ Final answer. $\Rightarrow \text{dom}(f) = \mathbb{R} \setminus \{6\}$ x = 6 is an undefined point. $\Rightarrow \text{ran}(f) = \mathbb{R}$ $\Rightarrow f(1) = \frac{1}{5}$

1.1.d $\{(x,y) \mid y = \sqrt{x^2 - 5x + 6}\}$

 $\Rightarrow (x-2)(x-3) \ge 0$ Find the domain by solving $x^2 - 5x + 6 \ge 0$; factor by grouping.

Create a table of signs.

 $\Rightarrow x \in (-\infty,2] \cup [3,+\infty)$

 $\Rightarrow f(x) = \sqrt{x^2 - 5x + 6}$ Final answer.

Continued on next page

```
\Rightarrow \operatorname{dom}(f) = (-\infty, 2] \cup [3, +\infty)
\Rightarrow \operatorname{ran}(f) = [0, +\infty)
\Rightarrow f(1) = \sqrt{2}
```

1.1.e $\{(x,y) \mid y = \frac{1}{\sqrt[3]{x^2 - 1}}\}$

(1)(1)	T. 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1
$\Rightarrow (x-1)(x+1) = 0$	Find undefined points by solving $x^2 - 1 = 0$; factor using
	difference of two squares.
$\Rightarrow x \in \{-1, 1\}$	
$\Rightarrow x = \frac{1}{\sqrt[3]{y^2 - 1}}$	Find the inverse function.
$\Rightarrow \frac{1}{x} = \sqrt[3]{y^2 - 1}$	
$\Rightarrow \frac{1}{x^3} = y^2 - 1$	
$\Rightarrow y^2 = \frac{1}{x^3} + 1$	
$\Rightarrow y^2 = \frac{1}{x^3} + \frac{x^3}{x^3}$	
$\Rightarrow y^2 = \frac{1+x^3}{x^3}$	
$\Rightarrow f'(x) = \pm \sqrt{\frac{1+x^3}{x^3}}$	
·	
\Rightarrow dom $(f') = (-\infty, -1] \cup (0, +\infty)$	Find the domain of the inverse function; 0 is also an undefined
	point.
$\Rightarrow f(x) = \frac{1}{\sqrt[3]{x^2 - 1}}$	Final answer.
$\Rightarrow \operatorname{dom}(f) = \mathbb{R} \setminus \{-1, 1\}$	
$\Rightarrow \operatorname{ran}(f) = (-\infty, -1] \cup (0, +\infty)$	
$\Rightarrow f(1)$ is undefined.	