Data Mining Lectures - Naive Bayes classification

Piotr Wasiewicz

Institute of Computer Science pwasiewi@elka.pw.edu.pl

4 czerwca 2017

Probability

$$P(A) = \frac{T^A}{T}$$

- P(A) the measure of likelihood that an event A will occur
 - \mathcal{T}^A all possible results associated with the event A
 - T all possible results

Conditional probability

$$P(C|A) = \frac{P(C \cap A)}{P(A)}$$
 - conditional probability that a patient

has a disease C, if he has symptoms A

$$P(A|C) = \frac{P(A \cap C)}{P(C)}$$
 - conditional probability that a patient

has symptoms A, if he has a disease C

- $P({\it C} \cap {\it A})$ probability that a patient has a disease ${\it C}$ and symptoms ${\it A}$
 - P(C) probability that a patient has a disease C
 - P(A) probability of symptoms

Bayes theorem

$$P(C|A) = \frac{P(C \cap A)}{P(A)}$$

$$P(A|C) = \frac{P(A \cap C)}{P(C)}$$

$$P(C|A) = \frac{P(A|C) * P(C)}{P(A)}$$

Conditional probability table

Table describing conditional probabilities of diseases, where the given symptom was observed:

	influenza C_1	cold C_2	pneumonia \mathcal{C}_3	allergy C_4
headache A_1	$P(C_1 A_1)$	$P(C_2 A_1)$	$P(C_3 A_1)$	$P(C_4 A_1)$
cough A ₂	$P(C_1 A_2)$	$P(C_2 A_2)$	$P(C_3 A_2)$	$P(C_4 A_2)$
sneeze A ₃	$P(C_1 A_3)$	$P(C_2 A_3)$	$P(C_3 A_3)$	$P(C_4 A_3)$
temperature A_4	$P(C_1 A_4)$	$P(C_2 A_4)$	$P(C_3 A_4)$	$P(C_4 A_4)$

$$\sum_{i=1}^{n} P(A_i) = 1 \qquad \sum_{j=1}^{m} P(C_j|A_i) = 1 \qquad P(C_j) = \sum_{i=1}^{n} P(A_i) * P(C_j|A_i)$$

$$P(A_i|C_j) = \frac{P(A_i) * P(C_j|A_i)}{P(C_i)} \qquad P(C_j|A_i) = \frac{P(C_j) * P(A_i|C_j)}{P(A_i)}$$

More general Bayes Theorem formula

Bayes theorem has the more general form for $\underline{\mathsf{many}}$ diseases and many symptoms:

$$P(C_{j}|A_{i1} \cap ... \cap A_{ik}) = \frac{P(C_{j}) * P(A_{i1}|C_{j}) * ... * P(A_{ik}|C_{j})}{\sum_{l=1}^{n} P(C_{l}) * P(A_{i1}|C_{l}) * ... * P(A_{ik}|C_{l})}$$

Bayes Theorem: the comparison of equivalent sets and events

Ω - a space of independent elementary observed results; $A \in 2^{\Omega} \Rightarrow A' \in 2^{\Omega}$ - complementarity; $A, B \in 2^{\Omega} \Rightarrow A \cup B \in 2^{\Omega}$ - additivity	F - the independent rule set such that $a\in F\Leftrightarrow b\notin F-\{0,a\}$ this means $b\wedge \neg a=0$	
$(2^{\Omega}, \cup, \cap,', \Omega, \phi)$	$(F, \vee, \wedge, \neg, 1, 0)$	
$P(\phi) = 0$ $P(\Omega) = 1$	$P(0) = 0 \qquad P(1) = 1$	
$A \cap A' = \phi A \cup A' = \Omega$	$a \wedge \neg a = 0$ $a \vee \neg a = 1$	
$\forall A, B \in 2^{\Omega} A \cap B = \phi$	$\forall a, b \in F a \wedge b = 0$	
$P(A \cup B) = P(A) + P(B)$	$P(a \lor b) = P(a) + P(b)$	
$\forall A \in 2^{\Omega} P(A) + P(A') = 1$	$\forall a \in F P(a) + P(\neg a) = 1$	
$A \subseteq B$ $P(A) \le P(B)$	$(a \Rightarrow b) = 1$ $P(a) \leq P(b)$	

Bayes model

Bayes rule

$$P(h|e) = \frac{P(e|h)P(h)}{P(e)}$$

where h means hypothesis and e denotes an event. Such a rule is just an another form of the usual rule:

$$e \Rightarrow h$$

Bayes Theorem

$$\exists \ H = \{h_1, \dots, h_n\}, \ \text{where}$$

$$\forall i \neq j \quad h_i \land h_j = \mathbf{0} \quad \bigcup_{i=1}^n h_i = \mathbf{1}, \quad P(h_i) > 0, \quad i = 1, \dots, n$$

$$\exists \ \{e_1, \dots, e_m\}, \ \text{where}$$

$$P(e_1, \dots, e_m | h_i) = \prod_{j=1}^m P(e_j | h_i), \quad i = 1, \dots, n \Leftrightarrow$$

$$\Leftrightarrow \forall e_j, h_i \quad e_j \text{ conditionally independent on } h_i$$

$$P(h_i | e_1, \dots, e_m) = \frac{P(e_1, \dots, e_m | h_i) P(h_i)}{\sum_{k=1}^m P(e_j | h_i)}$$

$$P(h_i | e_1, \dots, e_m) = \frac{\prod_{j=1}^m P(e_j | h_i)}{\sum_{k=1}^m \prod_{j=1}^m P(e_j | h_k) P(h_k)}$$

Piotr Wasiewicz

EARIN

PROSPECTOR modifications (1976)

An additional assumption:

$$P(e_1,\ldots,e_m|\neg h_i) = \prod_{j=1}^m P(e_j|\neg h_i), \ i=1,\ldots,n$$
 New Bayes rule:
$$P(\neg h|e) = \frac{P(e|\neg h)P(\neg h)}{P(e)} \text{ or }$$

$$\frac{P(h|e)}{P(\neg h|e)} = \frac{P(e|h)}{P(e|\neg h)} \frac{P(h)}{P(\neg h)}$$

$$O(h) = \frac{P(h)}{P(\neg h)} - \text{a chance } \underline{\text{a priori}}$$

$$O(h|e) = \frac{P(h|e)}{P(\neg h|e)} - \text{a chance } \underline{\text{a posteriori}}$$
 A reliability coefficient:
$$\lambda = \frac{P(e|h)}{P(e|\neg h)} \Rightarrow O(h|e) = \lambda O(h)$$

Piotr Wasiewicz

EARIN

Further PROSPECTOR modifications

In a general case:
$$O(h_i|e_1,\ldots,e_m)=O(h_i)\prod_{k=1}^m\lambda_{k_i},$$
 where $\lambda_{k_i}=rac{P(e_k|h_i)}{P(e_k|\neg h_i)}$

$$\overline{\lambda} = \frac{P(\neg e|h)}{P(\neg e|\neg h)} \Rightarrow O(h|\neg e) = \overline{\lambda}O(h)$$

Coefficients λ i $\overline{\lambda}$ are defined a priori. λ denotes observation sufficiency e (especially for $\lambda \gg 1$) and $\overline{\lambda}$ denotes necessity e (especially for $0 \le \overline{\lambda} \le 1$).

Bayes model disadvantages

- Assumptions are not accomplished.
- Ignorance is hidden in a priori probabilities.
- Probabilities are known only for elementary observed independently events, but not for their sets.
- Probabilities are for both negative and positive events at the same time.

Naive Bayes classifier assumptions

- Each instance x described by attribute values $a(x) = \langle a_1(x), a_2(x) \dots a_n(x) \rangle$, where $a_i(x)$ is the given value of the attribute a_i $(a_i(x) \in \{a_{ij}\}, j \in (1 \dots A_i))$.
- Attribute values $a_i(x)$ of instances x are conditionally independent given the target class C_k .
- It is so called Naive Bayes assumption:

$$P(a(x)|C_k) = \prod_i P(a_i(x)|C_k)$$

which is usually not true, but incorrect class probabilities very often permit correct classification.

- Conditional probabilities of attribute values $a_i(x)$ given the class C_k are $P(a_i(x)|C_k) = P_{T^{C_k}}(a_i(x)) = \frac{|T^{C_k}_{a_i(x)}|}{|T^{C_k}|}$.
- $P(C_k|a(x)) = \frac{P(C_k)\prod_i P(a_i(x)|C_k)}{\sum_{C_l \in C} P(C_l)\prod_i P(a_i(x)|C_l)}$

Piotr Wasiewicz

Naive Bayes classifier

• The final Naive Bayes classifier hypothesis h(x) predicting the correct class is just the greatest conditional probability:

$$P(C_{k}|a(x)) = \frac{P(C_{k})P(a(x)|C_{k})}{\sum_{C_{l} \in C} P(C_{l})P(a(x)|C_{l})}$$
• $P(C_{k}|a(x)) = \frac{P(C_{k})\prod_{i} P(a_{i}(x)|C_{k})}{\sum_{i} P(C_{l})\prod_{i} P(a_{i}(x)|C_{l})}$

- $h(x) = \arg\max_{C_k \in C} P(C_k | a(x))$
- In a case of not present values in training instances to prevent prediction errors the number of values A_i of the attribute a_i is added to conditional probability:

$$P(a_i(x)|C_k) = P_{T^{C_k}}(a_i(x)) = \frac{|T^{C_k}_{a_i(x)}|+1}{|T^{C_k}|+A_i}.$$

Piotr Wasiewicz