Wydział: EAIiIB	Imię i nazwisko: Jakub Cios		Rok: III Blok: B Grupa: 1
Data wykonania: 10.11.23	<u>LABORATORIUM ELEKTRONIKI PRZEMYSŁOWEJ</u> Ćw. 5 Generator napięcia piłokształtnego		
Zaliczenie:	Podpis prowadzącego:	Uwagi:	

Schemat generatora oraz opis działania

Grafika 1 Schemat generatora napięcia piłokształtnego

Generator napięcia piłokształtnego opiera się na dwóch wzmacniaczach operacyjnych, oznaczonych jako W₁ i W₂. Jeden z tych wzmacniaczy działa jako układ całkujący, powodując liniowe ładowanie kondensatora. W rezultacie na wyjściu tego wzmacniacza otrzymujemy napięcie o charakterze liniowym. Drugi wzmacniacz operacyjny działa jako komparator, który zaczyna blokować tranzystor T₂, gdy napięcie na kondensatorze C₁ osiąga wartość progową. Wtedy tranzystor T₁ jest aktywowany, co prowadzi do rozładowania kondensatora. Spadek napięcia na wyjściu wzmacniacza W₁ powoduje zablokowanie

tranzystora T₁ i nasycenie tranzystora T₂, co z kolei powoduje ponowne ładowanie kondensatora C₁. Prąd ładowania kondensatora, a więc częstotliwość generowanego sygnału jest regulowana za pomocą potencjometru P₁. Wartość napięcia do której się naładowuje się kondensator regulujemy potencjometrem P₂, od niej również zależy częstotliwość Dodatkowo, w układzie umieszczona jest dioda, pełniąca funkcję zabezpieczającą tranzystor T₂ przed uszkodzeniem. Jest to osiągnięte przez utrzymanie napięcia baza-emiter tranzystora T₂ na niższym poziomie niż napięcie kolektor-emiter, co jest osiągane za pomocą diody, chroniąc tranzystor przed potencjalnym ryzykiem zniszczenia.

Zarejestrowane oscylogramy

Grafika 2 Przebieg w punkcie 1 – napięcie na wyjściu wzmacniacza W1

Jest to przebieg napięcia sterującego, w którym czas narastania regulujemy potencjometrem $P_1.$

Grafika 3 Przebieg w punkcie 2 –napięcie na wyjściu wzmacniacza W2

Możemy zauważyć, iż praktycznie płaska część górna odpowiada czasom narastania z poprzedniego wykresu. Natomiast chwilowe spadki odpowiadają czasom opadania z poprzedniego wykresu.

Grafika 4 Przebieg w punkcie 3 – napięcie na tranzystorze T2

Ten przebieg również odpowiada dwóm poprzednim. Płaska część równa zerowemu napięciu odpowiada czasom narastania z punktu 1, natomiast chwilowe skoki napięcia odpowiadają czasom opadania.

Charakterystyka częstotliwości od napięcia

Przeprowadziliśmy pomiary częstotliwości mierząc napięcie średnie w punkcie 1 regulując jego wartość potencjometrem P₁. Rozpoczęliśmy od napięcia 0,5 V, a następnie zwiększaliśmy je o 0,5 V, aż do osiągnięcia 3,5 V. Wiedząc, iż przy przekroczeniu tej wartości charakterystyka staje się nieliniowa.

U [V]	f [Hz]
0.5	505
1.0	937
1.5	1477
2.0	1927
2.5	2379
3.0	2383
3.5	3279

Grafika 5 Charakterystyka częstotliwości od napięcia

Zgodnie z oczekiwaniami wartość częstotliwości zmienia się linowo w zależności od napięcia.

Czas narastania i opadania

Dokonaliśmy również pomiarów czasu narastania i opadania przebiegu dla U_{smin} oraz U_{smax} , które zostały zestawione poniżej.

	czas narastania [us]	czas opadania [us]
Usmax	1750	227
Usmin	18	21

Jak widać o ile czas narastania zmienia się w dużym stopniu to czas opadania pozostaje prawie bez zmian. Dzieje się tak ponieważ rozładowywanie kondensatora przebiega w taki sam sposób niezależnie od ustawionej częstotliwości.